Best Available Copy

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

15R-15

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Number: (51) International Patent Classification 7: C07D 211/58, 401/06, 405/12, 401/10, 413/06, 409/06, A61K 31/496, A61P 31/12, 19/00 PCT/US00/11632 2 (11) International Publication Number: (43) International Publication Date: 9 November 2000 (09.11.00) WO 00/66558

(63) Related by Continuation (CON) or Continuation-in-Part (22) International Filing Date: (CIP) to Earlier Application US Filed on 4 May 1999 (04.05.99) 09/305,226 (CIP) 4 May 1999 (04.05.99) 1 May 2000 (01.05.00) S

(71) Applicant (for all designated States except US): SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).

(75) Inventors/Applicants (for US only): BAROUDY, Bahlge, M. (US/US); 706 Central Avenue, Weartfield, NJ 07050 (US), (CLADER, John, W. (US/US); 428 North Union Avenue, Cranford, NJ 07016 (US), JOSIEN, Hubert, B. [FR/US]; 3441 Wathington Boulevart, Jersey City, NJ 07310 (US), MCCOMBIES, Suart, W. (16JUS); 38 Hanford Piace, Coldwell, NJ 07006 (US), MCKITTRICK, Brian, A. [US/US]; (72) Inventors; and (75) Inventors/Appl

Street, Weehawken, NJ 07087 (US), TAGAT, Jayarun, R. (USVIS); 133 Boynton Court, Westfield, NJ 07090 (US), VICE, Susan, F. [USVUS]; 1144 Sawmill Road, Mountainside, NJ 07092 (US), LAUGHLIN, Mark, A. [USVUS]; 25 Cinder Road, #3M, Edison, NJ 08820 (US), GILBERT, Eric [USVUS]; 2119 Gamble Road, Scotch Plains, NJ 07076 (US), LABROLI, Marc, A. (USVUS); 1805 Augusta Circle, Mount Laurel, NJ 08034 (US). 67 Laurel Avenue, Bloomfield, NJ 07003 (US). MILLER, Michael, W. (US/US); 1017 South Avenue, Wearfield, NJ 07000 (US). RUUSTADT, Bernard, R. (19KUS); 24 Brook Place, West Orange, NJ 07052 (US). PALANI, Anandan [IN/US]; 2015 Chiloping Hill Road, Kenilworth, NJ 07033 (US). SMITH, Elizabeth, M. (ICA/US); 165 Grove Avenue, Verona, NJ 07044 (US). STENSMA, RIO [CN/US]; 3 5th

(74) Agents: MAGATTI, Anita, W. et al.; Schering-Plough Corporation, Patent Department, K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0330 (US).

(S). (81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, HR, HU, D, II, NN, IS, P, KG, KR, KZ, LC, LK, LR, LT, LU, LY, MA, MD, MG, MK, MN, MX, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TT, TM, TT, TZ, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurnatian patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TO),

(54) Title: PIPERAZINE DERIVATIVES USEFUL AS CCR5 ANTAGONISTS

(S7) Abstract

The use of CCR3 antagonists of formula (1) or a pharmaceulically acceptable salt thereof, wherein: R is optionally substituted phenyl, pyridyt, tilophenyl or naphthyl; R¹ is hydrogen or alkyl; R² is substituted phenyl, aubstituted heteroaryl, naphthyl, fluorenyl, diphenylmethyl or optionally substituted phenyl— or heteroaryl-alkyl; R³ is hydrogen, alkyl, alkoxyalkyl, cyclonkyl, cyclonkyl, cyclonkyl, or optionally substituted phenyl, phenylmethyl, phenylmethylmethyl, phenylmethylm

naphthyl, naphthylalkyl, heteroaryl or alkyl; R6 is hydrogen, alkyl or alkenyl; for the treatment of HIV, solid organ transplant neteroarylalkyl; R4. R5 and R7 are hydrogen or alkyl; R6 is hydrogen, alkyl or alkenyl; for the treatment of HIV, solid organ transplant rejection, gant w, host disease, arbrids, heteroatida derbrids, inflammatory bowel disease, atopic dermatits, psoriasis, asthma, altergies or multiple scierosis is disclosed, as well as novel compounds, pharmaceutical compositions comprising them, and the combination of CCR3 antagonists of the invention in combination with antiviral agents useful in the treatment of HIV or agents useful in the treatment of

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Æ	Þ	æ	ដ	5	2	Ş	Ω	5	8	ą	ς	¥Β	BR	2	8	38	98	88	ВА	2	ě	7	ž	2
Estonia	Denmark	Germany	Czech Republic	Chba	Oritiza	Camernon	Côte d'Ivoire	Switzerland	Congo	Central African Republic	Canada	Belurus	Brazil	Benin	Bulgaria	Burkina Faso	Belgium	Barbados	Bosnia and Herzegovina	Azerbaljan	Australia	Austria	Armenia	Albania
ž	Ę	E	5	2	Ş		₹	KG	K	¥	7	S	F	Ħ	3	£	2	유	£	8	C.	2	3	S
Liberia	Sri Lanka	Liechtenstein	Saint Lucia	Kazakstan	Republic of Korea	Republic of Korea	Democratic People's	Kyngyastan	Kebya .	Japan	Dady	fceland	lmel	Ireland	Hungary	Greece	Guinea	Ghana	Georgia	United Kingdom	Gabon	France	Finland	Spain
SG	S	8	R	RO	3	25	Z	8	Z	R	XX	W.	Ä	Z	ML		ž	MG	Ä	š	V	E	두	E
Singapore	Sweden	Suctan	Russian Federation	Romania	Portugal	Poland	New Zealand	Norway	Netherlands	Niger	Mexico	Malawi	Mauritania	Mongolia	MEI	Republic of Macedonia	The former Yugoslav	Madagascar	Republic of Moldova	Мопасо	Lervia	Laxembourg	Lithuania	Lesotho
								ZW	3	ş	2	S	ទ	Ş	4	귏	₹	z	ಕ	귕	S 2	S	3K	23
								Zimbebwe	Yugoslavia	Viet Nam	Uzbekistan	United States of America	Uganda	Ukraine	Trinidad and Tobago	Turkey	Turkmenistan	Tajikistan	Togo	Q.	Swaziland	Senegal	Slovakia	Slovenia

PCT/US00/11632

ഗ

PIPERAZINE DERIVATIVES USEFUL AS CCR5 ANTAGONISTS

ð

ACKGROUND

The present invention relates to piperazine derivatives useful as selective CCR5 antagonists, pharmaceutical compositions containing the compounds. The invention also relates to the use of a combination of a CCR5 antagonist of this invention and one or more antiviral or other agents useful in the treatment of Human Immunodeficiency Virus (HIV). The invention further relates to the use of a CCR-5 antagonist of this invention, alone or in combination with another agent, in the treatment of solid organ transplant rejection, graft v. host disease, arthritis, rheumatoid arthritis, inflammatory bowel disease, atopic dermatitis, psoriasis, asthma, allergies or multiple sclerosis.

The global health crisis caused by HIV, the causative agent of Acquired Immunodeficiency Syndrome (AIDS), is unquestioned, and while recent advances in drug therapies have been successful in slowing the progression of AIDS, there is still a need to find a safer, more efficient, less expensive way to control the virus.

25

It has been reported that the CCR5 gene plays a role in resistance to HIV infection. HIV infection begins by attachment of the virus to a target cell membrane through interaction with the cellular receptor CD4 and a secondary chemokine co-receptor molecule, and proceeds by replication and dissemination of infected cells through the blood and other tissue. There are various chemokine receptors, but for macrophage-tropic HIV, believed to be the key pathogenic strain that replicates *in vivo* in the early stages of infection, the principal chemokine receptor required for the entry of HIV into the cell is CCR5. Therefore, interfering with the interaction between the viral receptor CCR5 and HIV can block HIV entry into the cell.

WO 00/66558 PCT/US00/11632

.2

The present invention relates to small molecules which are CCR5 antagonists.

CCR-5 receptors have been reported to mediate cell transfer in

inflammatory diseases such as arthritis, rheumatoid arthritis, atopic dermatitis, psoriasis, asthma and allergies, and inhibitors of such receptors are expected to be useful in the treatment of such diseases, and in the treatment of other inflammatory diseases or conditions such as inflammatory bowel disease, multiple sclerosis, solid organ transplant rejection and graft v. host disease.

10 Related piperazine derivatives which are muscarinic antagonists useful in the treatment of cognitive disorders such as Alzheimer's disease are disclosed in US patents 5,883,096; 6,037,352; 5,889,006.

A-M. Vandamme et al., Antiviral Chemistry & Chemotherapy, 9:187-203 (1998) disclose current clinical treatments of HIV-1 infections in man including at least triple drug combinations or so-called Highly Active Antiretroviral Therapy ("HAART"); HAART involves various combinations of nucleoside reverse transcriptase inhibitors ("NRTI"), non-nucleoside reverse transcriptase inhibitors ("NRTI"), and HIV protease inhibitors ("PI"). In compliant drug-naive patients, HAART is effective in reducing mortality and progression of HIV-1 to AIDS. However, these multidrug therapies do not eliminate HIV-1 and long-term treatment usually results in multidrug resistance. Development of new drug therapies to provide better HIV-1 treatment remains a priority.

SUMMARY OF THE INVENTION

25

The present invention relates to the treatment of HIV comprising administering to a mammal in need of such treatment an effective amount of a CCR5 antagonist represented by the structural formula I:

30 or a pharmaceutically acceptable salt thereof, wherein R is R⁸-phenyl, R⁸-pyridyl, R⁸-thiophenyl or R⁸-naphthyl; R¹ is hydrogen or C₁-C₆ alkyl;

.

R2 is R9, R10, R11-phenyl; R9, R10, R11-substituted 6-membered heteroaryl; R9, R10, R11-substituted 6-membered heteroaryl N-oxide; R12, R13-substituted 5-membered heteroaryl; naphthyl; fluorenyl;

diphenylmethyl H 16 or H 16; R3 is hydrogen, C₁-C₆ alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, C₃-C₁₀

cycloalkyl, C₃-C₁₀ cycloalkyl(C₁-C₆)alkyl, R⁸-phenyl, R⁸-phenyl(C₁-C₆)alkyl, R⁸-naphthyl, R⁸-naphthyl(C₁-C₆)alkyl, R⁸-heteroaryl or R⁸-heteroaryl(C₁-C₆)alkyl;

R4, R5, R7 and R13 are independently selected from the group consisting of hydrogen and (C1-C6)-alkyl;

ಠ

R6 is hydrogen, C1-C6 alkyl or C2-C6 alkenyl;

R⁸ is 1 to 3 substituents independently selected from the group consisting of hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -CF₃, CF₃O₂-, CH₃C(O)-, -CN, CH₃SO₂-, CF₃SO₂-, R¹⁴-phenyl, R¹⁴-benzyl,

15 CH₃C(=NOCH₃), CH₃C(=NOCH₂CH₃), O SO₂, -NH₂, -NHCOCF₃, -NHCONH(C₁-C₆ alkyl), -NHCO(C₁-C₆ alkyl), O

5-membered heteroaryl and ______, wherein X is -O-, -NH- or -N(CH₃)-;
R⁹ and R¹⁰ are independently selected from the group consisting of (C₁-C₆)alkyl, halogen, -NR"R", -OH, -CF₃, -OCH₃, -O-acyl, -OCF₃ and -Si(CH₃)-:

8

25 C₆)alkyl)₂, -NHSO₂(C₁-C₆)alkyl, -N(SO₂CF₃)₂, -NHCO₂(C₁-C₆)alkyl, C₃-C₁₀ cycloalkyl, -SR²⁰, -SO₂R²⁰, -SO₂NH(C₁-C₆ alkyl), -OSO₂(C₁-C₆)alkyl, -OSO₂CF₃, hydroxy(C₁-C₆)alkyl, -CON R¹⁷R¹⁶, -CON(CH₂CH₂-O-CH₃)₂, -OCONH(C₁-C₆)alkyl, -CO₂R¹⁷, -Si(CH₃)₃ or -B(OC(CH₃)₂)₂; R¹² is (C₁-C₆)alkyl, -NH₂ or R¹⁴-phanyl;

R14 is 1 to 3 substituents independently selected from the group consisting of hydrogen, (C1-C6) alkyl, -CF3, -CO2R17, -CN, (C1-C6)alkoxy and halogen;

မ

WO 00/66558

PCT/US00/11632

4

R¹⁵ and R¹⁶ are independently selected from the group consisting of hydrogen and C₁-C₆ alkyl, or R¹⁵ and R¹⁶ together are a C₂-C₅ alkylene group and with the carbon to which they are attached form a spiro ring of 3 to 6 carbon atoms;

5 R¹⁷, R¹⁸ and R¹⁹ are independently selected from the group consisting of H and C₁-C₆ alkyl; and R²⁰ is C₁-C₆ alkyl or phenyl.

Preferred are compounds of formula I wherein R is R⁸-phenyl or R⁸naphthyl, especially wherein R⁸ is a single substituent, and especially wherein the R⁸ substituent is in the 4-position. For R⁸-phenyl, preferred R⁸ substituents are -CF₃, -OCF₃, CH₃SO₂-, CH₃CO-, CH₃C(=NOCH₃)-, Br and I. For R⁸-naphthyl, R⁸ is preferably C₁-C₆ alkoxy. Also preferred are compounds of formula I wherein R³ is hydrogen, (C₁-C₆) alkyl, R⁸-phenyl.

15 R8-benzyl or R8-pyridyl; more preferred definitions for R3 are methyl, ethyl phenyl, benzyl and pyridyl. R1 is preferably hydrogen. For compounds of formula I, R6 is preferably hydrogen or methyl, especially methyl. R4 is preferably methyl; R5 and R7 are each preferably hydrogen.

In compounds of formula I, R² is preferably R⁹, R¹⁰, R¹¹-phenyl,

R⁹, R¹⁰, R¹¹-pyridyl or an N-oxide thereof, or R⁹, R¹⁰, R¹¹-pyrimidyl. When
R² is pyridyl, it is preferably 3- or 4-pyridyl, and when pyrimidyl, it is
preferably 5-pyrimidyl. The R⁹ and R¹⁰ substituents are preferably
attached to carbon ring members adjacent to the carbon joining the ring to
the rest of the molecule and the R¹¹ substituent can be attached to any of
the remaining unsubstituted carbon ring members. For example, as shown in

25 the remaining unsubstituted carbon ring members, for example as shown in the following structures:

Preferred R9 and R10 substituents are: (C1-C6)alkyl, especially methyl; halogen, especially chloro or bromo, -OH and -NH2. When R2 is phenyl, R11 is preferably hydrogen or -OH; when R2 is pyridyl, R11 is preferably hydrogen; and when R2 is pyrimidyl, R11 is preferably hydrogen, methyl or phenyl. Examples of particularly preferred R2 groups are as

the structural formula II Also claimed are novel CCR5 antagonist compounds represented by

or a pharmaceutically acceptable salt thereof, wherein Ra is R8a-phenyl, R8b-pyridyl, R8b-thiophenyl or R8-naphthyl;

ಠ

R2 is R9, R10, R11-phenyl; R9, R10, R11-substituted 6-membered R1 is hydrogen or C1-C6 alkyl;

R12, R13-substituted 5-membered heteroaryl; naphthyl; fluorenyl; R15 R14 R15 heteroaryl; R9, R10, R11-substituted 6-membered heteroaryl N-oxide;

ᇙ

cycloalkyl, C₃-C₁₀ cycloalkyl(C₁-C₆)alkyl, R8-phenyl, R8-phenyl(C₁-C₆)alkyl R8-naphthyl, R⁸-naphthyl(C₁-C₈)alkyl, R8-heteroaryl or R8-heteroaryl(C₁-R³ is hydrogen, C₁-C₆ alkyl, (C₁-C₆)aikoxy(C₁-C₆)alkyl, C₃-C₁₀

consisting of hydrogen and (C₁-C₆)-alkyl; R4, R5, R7 and R13 are independently selected from the group R⁶ is hydrogen, C₁-C₆ alkyl or C₂-C₆ alkenyl;

20

PCT/US00/11632

CH₃C(O)-, -CN, CH₃SO₂-, CF₃SO₂-, R¹⁴-phenyl, R¹⁴-benzyl, consisting of hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -CF₃, CF₃O-, R⁸ is 1 to 3 substituents independently selected from the group

-NHCONH(C1-C6 alkyl), -NHCO(C1-C6 alkyl), -NHSO2(C1-C6 alkyl), CH₃C(=NOCH₃), CH₃C(=NOCH₂CH₃), O So₂, -NH₂, -NHCOCF₃,

5-membered heteroaryl and $-N \xrightarrow{\times} x$, wherein X is -O-, -NH- or -N(CH₃)-; consisting of hydrogen, halogen, -CF₃, CF₃O-, -CN, CF₃SO₂-, R¹⁴-phenyl R8a is 1 to 3 substituents independently selected from the group

ಠ -NHCOCF₃, 5-membered heteroaryl and $\overset{-}{\smile}$, wherein X is as defined

consisting of hydrogen, halogen, -CF₃, CF₃O-, CH₃C(O)-, -CN, CF₃SO₂-R8b is 1 to 3 substituents independently selected from the group

R14-benzyl, CH₃C(=NOCH₃), CH₃C(=NOCH₂CH₃), O So₂,

5 -NHCOCF3, 5-membered heteroaryl and $\overset{-N}{\searrow}_{\text{,}}$ wherein X is as defined

(C1-C6)alkyl, halogen, -NR"R", -OH, -CF3, -OCH3, -O-acyl, -OCF3 and ${\sf R}^9$ and ${\sf R}^{10}$ are independently selected from the group consisting of

R11 is R9, hydrogen, phenyl, -NO2, -CN, -CH2F, -CHF2, -CHO

25 8 C₆)alkyl, -OSO₂CF₃, hydroxy(C₁-C₆)alkyl, -CON R¹⁷R¹⁸, -CON(CH₂CH₂-Ocycloalkyl, -SR 20 , -SOR 20 , -SO $_2$ R 20 , -SO $_2$ NH(C $_1$ -C $_6$ alkyl), -OSO $_2$ (C $_1$ -C₆)alkyl)₂, -NHSO₂(C₁-C₈)alkyl, -N(SO₂CF₃)₂, -NHCO₂(C₁-C₆)alkyl, C₃-C₁₀ $C_{1)} cycloalky/(C_{1}\text{-}C_{6})alky/), \ -NHCO(C_{1}\text{-}C_{6})alky/, \ -NHCOCF_{3}, \ -NHSO_{2}N((C_{1}\text{-}C_{6})alky/), \ -NHCOCF_{3}, \$ -CH=NOR¹⁷, pyridyl, pyridyl N-oxide, pyrimidinyl, pyrazinyl, -N(R¹⁷)CONR¹⁸R¹⁹, -NHCONH(chioro-(C₁-C₆)alkyl), -NHCONH((C₃-

-OCONH(C_1 - C_8)alkyl, -CO₂R¹⁷, -Si(CH₃)₃ or -B(OC(CH₃)₂)₂ R¹² is (C₁-C₆)alkyl, -NH₂ or R¹⁴-phenyl;

မ consisting of hydrogen, (C₁-C₆) alkyl, -CF₃, -CO₂R₁₇, -CN, (C₁-C₆)alkoxy R14 is 1 to 3 substituents independently selected from the group

PCT/US00/11632

R15 and R16 are independently selected from the group consisting of hydrogen and C1-C6 alkyl, or R15 and R16 together are a C2-C5 alkylene group and with the carbon to which they are attached form a spiro ring of 3 to 6 carbon atoms;

R¹⁷, R¹⁸ and R¹⁹ are independently selected from the group consisting of H and C₁-C₈ alkyl; and R²⁰ is C₁-C₉ alkyl or phenyl; or

ຜ

(2) Ra is R8-phenyl, R8-pyridyl or R8-thiopheny

and A1, A3, R4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A", A", A" and A∞ are as defined in (1).

ಠ

Preferred compounds of formula II are those defined in (1).

More preferred are those of formula II(1) wherein Ra is Raa-phenyl

More preferred are those of formula II(1) wherein Ra is Ra-phenyl or R8-naphthyl, wherein R8a is -CF3, CF3O- or halogen and R8 is C1-C6 alkoxy. The R8a or R8 substituent is preferably a single substituent; it is especially preferred that the R8a or R8 substituent is in the 4-position. Also preferred are compounds of formula II(1) wherein R3 is hydrogen, (C1-C6) alkyl, R8-phenyl, R8-benzyl or R8-pyridyl; more preferred definitions for R3 are methyl, ethyl, phenyl, benzyl and pyridyl. R1 is preferably hydrogen. For compounds of formula II(1), R6 is preferably hydrogen or methyl, especially methyl. R4 is preferably methyl; R5 and R7 are each preferably hydrogen.

R² in formula II(1) is preferably as defined for formula I, i.e., R9, R10 R¹¹-phenyl, R9, R10, R¹¹-pyridyl or an N-oxide thereof, or R9, R10, R11. pyrimidyl, wherein the R9, R10, R11-substitution is as defined above for preferred compounds of formula I.

25

Another aspect of the invention is a pharmaceutical composition for treatment of HIV comprising an effective amount of a CCR5 antagonist of formula II in combination with a pharmaceutically acceptable carrier. Another aspect of the invention is a pharmaceutical composition for treatment of solid organ transplant rejection, graft v. host disease, arthritis rheumatoid arthritis, inflammatory bowel disease, atopic dermatitis, psoriasis, asthma, allergies or multiple sclerosis comprising an effective amount of a CCR5 antagonist of formula II in combination with a pharmaceutically acceptable carrier.

မွ

႘ၟ

WO 00/66558 PCT/US00/11632

Yet another aspect of this invention is a method of treatment of HIV comprising administering to a human in need of such treatment an effective amount of a CCR5 antagonist compound of formula II. Another aspect of the invention is a method of treatment of solid organ transplant rejection, and the latest the contraction of the contraction.

5 graft v. host disease, arthritis, rheumatoid arthritis, inflammatory bowel disease, atopic dermatitis, psoriasis, asthma, allergies or multiple sclerosis comprising administering to a human in need of such treatment an effective amount of a CCR5 antagonist compound of formula I or II.

Still another aspect of this invention is the use of a CCR5 antagonist of formula I or II of this invention in combination with one or more antiviral or other agents useful in the treatment of Human Immunodeficiency Virus for the treatment of AIDS. Still another aspect of this invention is the use of a CCR5 antagonist of formula I or II of this invention in combination with one or more other agents useful in the treatment of solid organ transplant rejection, graft v. host disease, inflammatory bowel disease, rheumatoid arthritis or multiple sclerosis. The CCR5 and antiviral or other agents which are components of the combination can be administered in a single dosage form or they can be administered separately; a kit comprising separate dosage forms of the actives is also contemplated.

DETAILED DESCRIPTION OF THE INVENTION

8

As used herein, the following terms are used as defined below unless otherwise indicated.

Alkyl represents straight and branched carbon chains and contains from one to six carbon atoms.

Alkenyl represents C₂-C₆ carbon chains having one or two unsaturated bonds, provided that two unsaturated bonds are not adjacent to each other.

Substituted phenyl means that the phenyl group can be substituted at any available position on the phenyl ring.

ဗ

Acyl means a radical of a carboxylic acid having the formula alkyl-C(O)-, aryl-C(O)-, aralkyl-C(O)-, (C₃-C₇)cycloalkyl-C(O)-, (C₃-C₇)cycloalkyl-(C₁-C₆)alkyl-C(O)-, and heteroaryl-C(O)-, wherein alkyl and heteroaryl are as defined herein; aryl is R¹⁴-phenyl or R¹⁴-naphthyl; and aralkyl is aryl-(C₁-C₆)alkyl, wherein aryl is as defined above.

႘

Heteroaryl represents cyclic aromatic groups of 5 or 6 atoms or bicyclic groups of 11 to 12 atoms having 1 or 2 heteroatoms independently selected from O, S or N, said heteroatom(s) interrupting a carbocyclic ring

PCT/US00/11632

WO 00/66558

form an N-oxide. All regioisomers are contemplated, e.g., 2-pyridyl, 3-pyridyl and 4-pyridyl. Typical 6-membered heteroaryl groups are pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl and the N-oxides thereof. For 5-membered heteroaryl rings, carbon atoms can be substituted by R12 or R13 groups. Typical 5-membered heteroaryl rings are furyl, thienyl, pyrrolyl,

thiazolyl, Isothiazolyl, Imidazolyl, pyrazolyl and Isoxazolyl.

5-Membered rings having one heteroatom can be joined through the 2- or 3- position; 5-membered rings having two heteroatoms are preferably joined through the 4-position. Bicyclic groups typically are benzo-fused ring systems derived from the heteroaryl groups named above, e.g.

quinolyl, phthalazinyl, quinazolinyl, benzofuranyl, benzothienyl and indolyl.

Preferred points of substitution for 6-membered heteroaryl rings at R² are described above. When R² is a 5-membered heteroaryl group, the R¹² and R¹³ substituents are preferably attached to carbon ring members adjacent to the carbon joining the ring to the rest of the molecule, and R¹²

ᆳ

20 is preferably alkyl; however, if a heteroatom is adjacent to the carbon joining the ring to the rest of the molecule (i.e., as in 2-pyrrolyl), R12 is preferably attached to a carbon ring member adjacent to the carbon joining the ring to the rest of the molecule.

Halogen represents fluoro, chloro, bromo and iodo

ß

One or more, preferaby one to four, antiviral agents useful in anti-HIV-1 therapy may be used in combination with a CCR5 antagonist of the present invention. The antiviral agent or agents may be combined with the CCR5 antagonist in a single dosage form, or the CCR5 antagonist and the antiviral agent or agents may be administered simultaneously or

30 sequentially as separate dosage forms. The antiviral agents contemplated for use in combination with the compounds of the present invention comprise nucleoside and nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors and other antiviral drugs listed below not falling within these classifications. In

35 particular, the combinations known as HAART (Highly Active Antiretroviral Therapy) are contemplated for use in combination with the CCR5 antagonists of this invention.

The term "nucleoside and nucleotide reverse transcriptase inhibitors" ("NRTI" s) as used herein means nucleosides and nucleotides and analogues thereof that inhibit the activity of HIV-1 reverse transcriptase, the enzyme which catalyzes the conversion of viral genomic HIV-1 RNA into proving HIV-1 DNA

S

Typical suitable NRTIs include zidovudine (AZT) available under the RETROVIR tradename from Glaxo-Wellcome Inc., Research Triangle, NC 27709; didanosine (ddl) available under the VIDEX tradename from Bristol-Myers Squibb Co., Princeton, NJ 08543; zalcitabine (ddC) available under the HIVID tradename from Roche Pharmaceuticals, Nutley, NJ 07110; stavudine (d4T) available under the ZERIT trademark from Bristol-Myers Squibb Co., Princeton, NJ 08543; lamivudine (3TC) available under the EPIVIR tradename from Glaxo-Wellcome Research Triangle, NC 27709; abacavir (1592U89) disclosed in WO96/30025 and available under

!

the ZIAGEN trademark from Glaxo-Wellcome Research Triangle, NC 27709; adefovir dipivoxil [bis(POM)-PMEA] available under the PREVON tradename from Gilead Sciences, Foster City, CA 94404; lobucavir (BMS-180194), a nucleoside reverse transcriptase inhibitor disclosed in EP-0385154 and EP-0736533 and under development by Bristol-Myers
 Squibb, Princeton, NJ 08543; BCH-10652, a reverse transcriptase inhibitor

U.S. Patent No. 5,814,639 and under development by Triangle
25 Pharmaceuticals, Durham, NC 27707; beta-L-FD4 (also called beta-L-D4C and named beta-L-2', 3'-dideoxy-5-fluoro-cytidene) licensed by Yale
University to Vion Pharmaceuticals, New Haven CT 06511; DAPD, the purine nucleoside, (-)-beta-D-2,6,-diamino-purine dioxolane disclosed in EP 0656778 and licensed by Emory University and the University of Georgia to

emitricitabine [(-)-FTC] licensed from Emory University under Emory Univ.

(in the form of a racemic mixture of BCH-10618 and BCH-10619) under development by Biochem Pharma, Laval, Quebec H7V, 4A7, Canada;

Triangle Pharmaceuticals, Durham, NC 27707; and lodenosine (FddA), 9-(2,3-dideoxy-2-fluoro-b-D-threo-pentofuranosyl)adenine, a acid stable purine-based reverse transcriptase inhibitor discovered by the NIH and under development by U.S. Bioscience Inc., West Conshohoken, PA 19428.

The term "non-nucleoside reverse transcriptase inhibitors" ("NNRTI"s) as used herein means non-nucleosides that inhibit the activity of HIV-1 reverse transcriptase.

35

:::

Typical suitable NNRTIs include nevirapine (BI-RG-587) available under the VIRAMUNE tradename from Boehringer Ingelheim, the manufacturer for Roxane Laboratories, Columbus, OH 43216; delaviradine (BHAP, U-90152) available under the RESCRIPTOR tradename from

- 5 Pharmacia & Upjohn Co., Bridgewater NJ 08807; efavirenz (DMP-266) a benzoxazin-2-one disclosed in WO94/03440 and available under the SUSTIVA tradename from DuPont Pharmaceutical Co., Wilmington, DE 19880-0723; PNU-142721, a furopyridine-thio-pyrimide under development by Pharmacia and Upjohn, Bridgewater NJ 08807; AG-1549
- (formerly Shionogi # S-1153); 5-(3,5-dichlorophenyl)- thio-4-isopropyl-1-(4-pyridyl)methyl-IH-imidazol-2-ylmethyl carbonate disclosed in WO 96 /10019 and under clinical development by Agouron Pharmaceuticals, Inc., LaJolla CA 92037-1020; MKC-442 (1-(ethoxy-methyl)-5-(1-methylethyl)-6-(phenylmethyl)-(2,4(1H,3H)-pyrimidinedione) discovered by Mitsubishi
- 15 Chemical Co. and under development by Trlangle Pharmaceuticals, Durham, NC 27707; and (+)-calanolide A (NSC-675451) and B, coumarin derivatives disclosed in NIH U.S. Patent No. 5,489,697, licensed to Med Chem Research, which is co-developing (+) calanolide A with Vita-Invest as an orally administrable product.
- The term "protease inhibitor" ("PI") as used herein means inhibitors of the HIV-1 protease, an enzyme required for the proteolytic cleavage of viral polyprotein precursors (e.g., viral GAG and GAG Pol polyproteins), into the individual functional proteins found in infectious HIV-1. HIV protease inhibitors include compounds having a peptidomimetic structure,
- 25 high molecular weight (7600 daltons) and substantial peptide character, e.g. CRIXIVAN(available from Merck) as well as nonpeptide protease inhibitors e.g., VIRACEPT (available from Agouron).

Typical suitable PIs include saquinavir (Ro 31-8959) available in hard gel capsules under the INVIRASE tradename and as soft gel capsules under the FORTOUASE tradename from Roche Pharmaceuticals, Nutley, NJ 07110-1199; ritonavir (ABT-538) available under the NORVIR tradename from Abbott Laboratories, Abbott Park, IL 60064; indinavir (MK-

639) available under the CRIXIVAN tradename from Merck & Co., Inc.,

West Point, PA 19486-0004; nelfnavir (AG-1343) available under the VIRACEPT tradename from Agouron Pharmaceuticals, Inc., LaJolla CA 92037-1020; amprenavir (141W94), tradename AGENERASE, a non-peptide protease inhibitor under development by Vertex Pharmaceuticals, Inc., Cambridge, MA 02139-4211 and available from Glaxo-Wellcome,

÷

WO 00/66558 PCT/US00/11632

Research Triangle, NC under an expanded access program; lasinavir (BMS-234475) available from Bristol-Myers Squibb, Princeton, NJ 08543 (originally discovered by Novartis, Basel, Switzerland (CGP-61755); DMP-450, a cyclic urea discovered by Dupont and under development by

5 Triangle Pharmaceuticals; BMS-2322623, an azapeptide under development by Bristol-Myers Squibb, Princeton, NJ 08543, as a 2nd-generation HIV-1 PI; ABT-378 under development by Abbott, Abbott Park IL 60064; and AG-1549 an orally active imidazole carbamate discovered by Shionogi (Shionogi #S-1153) and under development by Agouron Pharmaceuticals, Inc., LaJolla CA 92037-1020.

Other antiviral agents include hydroxyurea, ribavirin, IL-2, IL-12, pentafuside and Yissum Project No. 11607. Hydroxyurea (Droxia), a ribonucleoside triphosphate reductase inhibitor, the enzyme involved in the activation of T-cells, was discovered at the NCI is under development by

- 15 Bristol-Myers Squibb; in preclinical studies, it was shown to have a synergistic effect on the activity of didanosine and has been studied with stavudine. IL-2 is disclosed in Ajinomoto EP-014226B, Takeda EP-0176299, and Chiron U. S. Patent Nos. RE 33653, 4530787, 4569790, 4604377, 4748234, 4752585, and 4949314 is available under the
- PROLEUKIN (aldesleukin) tradename from Chiron Corp., Emeryville, CA 94608-2997 as a lyophilized powder for IV infusion or sc administration upon reconstitution and dilution with water; a dose of about 1 to about 20 million IU/day, sc is preferred; a dose of about 15 million IU/day, sc is more preferred. IL-12 is disclosed in WO96/25171 and is available from Roche
- Pharmaceuticals, Nutley, NJ 07110-1199 and American Home Products, Madison, NJ 07940; a dose of about 0.5 microgram/kg/day to about 10 microgram/kg/day, sc is preferred. Pentafuside (DP-178, T-20) a 36-amino acid synthetic peptide, disclosed in U.S. Patent No.5,464,933 licensed from Duke University to Trimeris which is developing pentafuside in collaboration
- with Duke University; pentafuside acts by inhibiting fusion of HIV-1 to target membranes. Pentafuside (3-100 mg /day) is given as a continuous sc infusion or injection together with efavirenz and 2 Pl's to HIV-1 positive patients refractory to a triple combination therapy; use of 100 mg/day is preferred. Yissum Project No. 11607, a synthetic protein based on the HIV-1 Vif protein, is under preclinical development by Yissum Research Development Co., Jerusalem 91042, Israel. Ribavirin, 1-B-D-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide, is available from ICN Pharmaceuticals,

WO 00/66558 PCT/US00/11632

3

U.S. Patent No. 4,211,771. Inc., Costa Mesa, CA; its manufacture and formulation are described in

CT multidrug combination therapies, especially the HAART triple and such as (i) at least three anti-HIV-1 drugs selected from two NRTIs, one PI, quadruple combination therapies. Typical suitable known anti-HIV-1 drug found useful for treating HIV-1 infections in man alone, or as part of therapies include, but are not limited to multidrug combination therapies The term "anti-HIV-1 therapy" as used herein means any anti-HIV-1

ಠ from , NNRTIs and Pis. Typical suitable HAART - multidrug combination a second PI, and one NNRTI; and (ii) at least two anti-HIV-1 drugs selected

therapies include:

such as two NRTIs, one PI and a second PI or one NNRTI. In treatment of (b) two NRTIs and one NNRTI; and (c) quadruple combination therapies (a) triple combination therapies such as two NRTIs and one PI; or

5 naive patients, it is preferred to start anti-HIV-1 treatment with the triple HIV-1-RNA plasma levels should be monitored every 3-6 months. Should combination therapy; the use of two NRTIs and one PI is preferred unless viral load plateau, a fourth drug,e.g., one PI or one NNRTI could be added there is intolerance to PIs. Drug compliance is essential. The CD4+ and

8 See the table below wherein typical therapies are further described: ANTI-HIV-1 MULTI DRUG COMBINATION THERAPIES

Triple Combination Therapies

- Two NATIs' + one Pi2
- Two NRTIs1 + one NNRTI3

25

Quadruple Combination Therapies

Two NRTIs + one PI + a second PI or one NNRTI

C. ALTERNATIVES:5

Two NRTI1

မ

One NRTI⁵ + one Pl²

Two Pis⁶ ± one NRTI⁷ or NNRTI³

One Pi² + one NRTI⁷ + one NNRTI³

FOOTNOTES TO TABLE

ဌ

- One of the following: zidovudine + lamivudine; zidovudine + zidovudine + zalcitabine didanosine; stavudine + lamivudine; stavudine + didanosine;
- Ņ Indinavir, nelfinavir, ritonavir or saquinavir soft gel capsules.

WO 00/66558 PCT/US00/11632

-14 -

Nevirapine or delavirdine.

ω 9:187 at p 193-197 and Figures 1 + 2. See A-M. Vandamne et al Antiviral Chemistry & Chemotherapy

- combinations may lead to HIV- resistance and clinical failure in many regimen because of compliance problems or toxicity, and for those who fail or relapse on a recommended Alternative regimens are for patients unable to take a recommended regimen. Double nucleoside
- Most data obtained with saquinavir and ritonavir (each 400 mg bid)
- Zidovudine, stavudine or didanosine.

5

the present invention are as follows: graft v. host disease, inflammatory bowel disease and multiple sclerosis which can be administered in combination with the CCR5 antagonists of Agents known in the treatment of rheumatoid arthritis, transplant and

. 5

antilymphocyte globulin, OKT-3 antibody, and steroids; suppressants such as cyclosporine and Interleukin-10 (IL-10), tacrolimus, solid organ transplant rejection and graft v. host disease: immune

inflammatory bowel disease: IL-10 (see US 5,368,854), steroids and

8

steroids and mycophenolate mofetil; rheumatoid arthritis: methotrexate, azathioprine, cyclophosphamide

multiple sclerosis: interferon-beta, interferon-alpha, and steroids

8forms (e.g., enantiomers, diastereoisomers, atropisomers and rotamers). admixture, including racemic mixtures. The invention contemplates all such isomers both in pure form and in Certain compounds of the invention may exist in different isomeric

မ may form pharmaceutically acceptable salts. Examples of such salts may such as ammonia, alkyl amines, hydroxyalkylamines, N-methylglucamine contemplated are salts formed with pharmaceutically acceptable amines include sodium, potassium, calcium, aluminum, gold and silver salts. Also which possess a carboxyl or phenolic hydroxyl group. These compounds Certain compounds will be acidic in nature, e.g. those compounds

such as amino groups also form salts with weaker acids. Examples of form salts with strong acid, while compounds having basic substituents salts, e.g., acid addition salts. For example, the pyrido-nitrogen atoms may Certain basic compounds also form pharmaceutically acceptable

႘ၟ

with a sufficient amount of the desired acid to produce a salt in the to those in the art. The salts are prepared by contacting the free base form maleic, methanesulfonic and other mineral and carboxylic acids well known acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, suitable acids for salt formation are hydrochloric, sulfuric, phosphoric,

ഗ

ಠ physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise equivalent to their respective free base forms for base forms differ from their respective salt forms somewhat in certain NaOH, potassium carbonate, ammonia and sodium bicarbonate. The free the salt with a suitable dilute aqueous base solution such as dilute aqueous conventional manner. The free base forms may be regenerated by treating

salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention. acceptable salts within the scope of the invention and all acid and base All such acid and base salts are intended to be pharmaceutically

purposes of the invention.

ᇙ

the methods described in WO96/26196 and WO98/05292. in the art, for example by the procedures described in the following reaction schemes, by the methods described in the examples below, and by using Compounds of the invention can be made by the procedures known

8

benzotriazole (HOBT); m-chloroperbenzoic acid (MCPBA); triethylamine is ethyl, Pr is propyl, Bu is butyl, Ph is phenyl, and Ac is acetyl. dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (DEC). AT is N,N-dimethylformamide (DMF); trifluoroacetic acid (TFA); 1-hydroxymethanol (MeOH); acetic acid (HOAc or AcOH); ethyl acetate (EtOAc); room temperature, and TLC is thin-layer chromatography. Me is methyl, Et (Et₃N); diethyl ether (Et₂O); dimethylsulfoxide (DMSO); and 1-(3the abbreviations indicated: tetrahydrofuran (THF); ethanot (EtOH); The following solvents and reagents may be referred to herein by

23

ၶ

WO 00/66558 PCT/US00/11632

piperidone, NaBH(OAc)3; f: CF3CO2H; g: acylation; h: N-Boc-4piperidone, Ti(OPr-i)₄, Et₂AICN; i: CH₃MgBr. K₂CO₃); b: ClCH₂COCl; c: NH₃; d: NaBH₄-BF₃; e: N-Boc-4-Reagents and conditions: a: R4CH(OSO₂CF₃)CO₂CH₃, base (e.g.

G

8 5 ಠ give (9), deprotection to (10) and final N-acylation affords the compounds carried out under standard conditions, e.g., with a compound R2COOH and of formula IB wherein R⁵ is H and R⁶ is methyl. Acylation of (7) and (10) is the piperazine (5). Depending upon the desired R^b substituent, this is above and R1 is hydrogen, is converted via (2) and (3) to the e.g., (S)-methyl 4-substituted benzylamine, and a chiral lactate in step a, reagents such as DEC and HOBT. Use of a chiral compound of formula 1, gives the aminonitrile (8), which, after treatment with methyl Grignard to wherein R⁵ and R⁶ are H; alternatively, a modified Strecker reaction on (5) deprotected to (7) and finally acylated to the compounds of formula IA processed in two ways. Reductive amination gives (6), which can be diketopiperazine (4), wherein R4 is as defined above, which is reduced to In Scheme 1, a benzylamine (1), wherein R and R³ are as defined

e.g., methyl (R)-lactate triflate, will result in chiral compounds of formulas IA

Reagents: j: oxaborazolidine, BH3; k: CH3SO2CI, base; l: CF3CO2H.

and displacement with inversion by treatment with a suitable piperazine, on a pre-formed piperazine derivative. For example, preferred compounds which may either be mono-protected, in which case final elaboration with the S,S stereochemistry may be obtained in this way by chiral reduction of a ketone (11) to the alcohol (12), activation as the mesylate, In Scheme 2, the compounds are prepared by an alkylation process

ಠ requires deprotection followed by the steps described in (e) - (g) in Scheme Scheme 1 to obtain ID. which case the final steps are (f) and (g) (deprotection and acylation) as in 1 to obtain IC, or may be elaborated prior to the displacement step, in

5

can be used. route of Scheme 2 or a reductive amination method as typified in Scheme 3 For compounds where R3 and R1 are each H, either the alkylation

8 Scheme 4

WO 00/66558

method as typified in Scheme 4 is preferrred For diaryl compounds, wherein R and R3 are each aryl, an alkylation ...

Piperazines of formula 14, especially those wherein R3 is C2-C6 alkyl

or benzyl, may also be obtained by a process wherein the R1.8 is introduced as shown ahous but an allowable to a process wherein the R1.8 is introduced as shown about the R1.8 is intro materials, other compounds of formula 14 can be similarly prepared is introduced as shown above by an alkylation-decyanation sequence. The hydrogen, R^3 is ethyl and R^4 is methyl, but using appropriate starting reaction is exemplified for compounds wherein R is CF₃O-phenyl, R¹ is

p: CF₃CO₂H; q: NaBH₄, BF₃. 20 20 Peagents: m: BOC₂O, base; n: R⁶MgBr; o: CCl₃CO₂H, NaBH₃CN;

8 5 reduction provides (21), which can be used to prepare compounds of conversion to the N(t-butoxycarbonyl) compound (17); addition of a diketopiperazine intermediates (4) of Scheme 1. (4) is activated by group at R5 on the piperazine ring may be prepared from the formula I in the manner described for intermediate (5) in Scheme 1. Grignard reagent and sequential reduction, deprotection and lactam As shown in Scheme 6, compounds bearing an additional alkyl

resultant piperazine or BOC-piperazine is then treated as shown in Scheme procedures for these conversions are provided in the examples below. The converted to CI, CN, -C(O)NH₂, H, Ph and p-CIC₆H₄CH₂-. Detailed R8 is I. Several examples are shown in the above scheme, wherein R8 is shown in Scheme 1 can be obtained from a common intermediate, wherein Many piperazines wherein R is R8-phenyl (or their Boc derivatives)

ဟ

5

method, as shown in the specific example of Scheme 8. Some compounds of the invention may be obtained by a Mannich

ᇙ preparative examples, which should not be construed to limit the scope of within the scope of the invention may be apparent to those skilled in the an the disclosure. Alternative mechanistic pathways and analogous structures Compounds useful in this invention are exemplified by the following

Example 1

B.
$$R^2 = 2.6 \cdot Me_2 \cdot C_0 H_3$$
B. $R^2 = 2.00 \cdot 6 \cdot Me_2 \cdot C_0 H_3$
C. $R^2 = 2.00 \cdot 6 \cdot Me_2 \cdot C_0 C_0 H_3$

Step 1: Stir methyl R-lactate (5.0 g) in CH₂Cl₂ (40 ml) at -70° C and add trfluoromethanesulfonic anhydride (7.6 ml), then 2,6-lutidine (7.8 ml),

20

WO 00/66558

PCT/US00/11632

ഗ product (7.50 g) as a thick oil water (60 ml). Stir 20h at RT, dry the organic phase over K2CO3, evaporate solution to (S)-methyl 4-bromobenzylamine (9.0 g) and K₂CO₃ (11.2 g) in Remove the cooling, stir 0.5h, wash with 2N HCl and add the organic and chromatograph on silica gel with Et₂O-CH₂Cl₂ to give the desired

and CICH2COCI (5.0 ml) for 5h, then evaporate and use the resultant residue directly in the next step. Step 2: Reflux the product of step 1 (7.5 g) in 1,2-dichloroethane (40 ml)

ᇙ 5 g), cool in ice, add conc. NH₄OH solution (15 ml) and stir to RT for 20h piperazine (5.85 g), suitable for the next step. NaOH and extract with EtOAc. Dry over K2CO3 and evaporate to obtain the conc. HCl (30 ml). Heat at 100° C for 1h., cool, basify with excess 2N heat at 100° C for 10h. Cool and add CH₃OH (20 ml) dropwise, followed by at 70° C/ 5 mm to give the diketopiperazine, suitable for the next step. Add water (200 ml) dropwise, collect the solid, wash well with water and dry (60 ml) and NaBH₄ (3.4 g) under N₂, add BF₃·OEt₂ (6.8 ml) dropwise, then Step 4: Stir a mixture of the product of step 3 (6.8 g), 1,2-dimethoxyethane Step 3: Stir the product of step 2 in DMSO (80 ml), water (10 ml) and NaI (8

25 8 a 4M solution of HCl in 1,4-dioxane (10 ml) dropwise. Collect the solid, wash with Et₂O, and stir with CH₂Cl₂ and excess aqueous NaOH. Dry the Boc-4-piperidinone (4.32 g), HOAc (1.15 ml), CH₂Cl₂ (80 ml) and sodium product. Evaporate and dissolve the residue in Et₂O (100 ml). Stir and add through a pad of silca gel, washing with 10:1 CH₂Cl₂-Et₂O to elute all of the Na₂CO₃ solution slowly, stir for 0.5h, separate and filter the organic phase triacetoxy-borohydride (NaBH(OAc)3) (8.3 g). Add excess aqueous Step 5: Stir for 20h. at RT a mixture of the product of step 4 (5.48 g), N-

organic phase over K₂CO₃ and evaporate to obtain the desired product

ဒ္ဌ ဗ solution. Dry over K₂CO₃ and evaporate to obtain the product (1,15 g). HRMS found: 498.2130; MH+ Calc: 498.2120. convert the product to the hydrochloride. Mp 185-192°C (decomposition) 6 with 2,6-dimethylbenzoyl chloride in CH₂Cl₂ and aqueous NaOH, and Compound 1A: Following the standard procedure, react the product of step (4 ml). Evaporate, dissolve in CH₂Cl₂ and wash with excess 1N NaOH Step 6: Stir at RT for 2h a mixture of the product of step 5 (1.5 g) and TFA

diisopropylethylamine in DMF, purify the amide by preparative TLC and step 6 with 2-amino-6-methylbenzoic acid using HOBT and DEC with Compound 1B: Following the standard procedure, couple the product of

- 21

convert to the hydrochloride. Mp 188-196°C (decomposition). HRMS found: 499.2069; MH* Calc: 499.2072.

Compound 1C: Following the above method, couple the product of step 6 with 2-amino-6-chlorobenzoic acid and convert after purification to the

5 hydrochloride. Mp 192-200°C (decomposition). HRMS found: 519.1530; MH* Calc: 519.1526.

Example 2

A. R² = 2.6.M₀2C₀H₃

B. R² = 2·NH₂·6·Cl·C₀H₃

C. R² = 2·Me·6·OH·C₀H₃

D. R² = 2·Me·6·NH₂C₀H₃

Step 1: Stir the product of Example 1, step 4 (1.00 g), N-t-butoxycarbonyl4-piperidinone (0.77 g) and titanium (IV) isopropoxide (Ti(CiPr)₄) (1.00 g)
for 20h at RT in CH₂Cl₂ (15 ml), reflux for 3h and cool to RT. Add
diethylaluminum cyanide (Et₂AlCN) (4.2 ml of 1M toluene solution) and the
stir for 5 days at RT under dry N₂. Workup in CH₂Cl₂-aq. NaOH, dry and
evaporate the organic phase and chromatograph on silica gel with CH₂Cl₂-

CH₃OH (100:1) to obtain the desired product (0.72 g).

<u>Step.2</u>: React the product of step 1 (0.70 g) in dry THF (15 ml) under N₂ with CH₃MgBr (4 ml of 3M Et₂O solution) at RT for 20h. Workup in EtOAcwater and filter the organic phase through silica gel, washing with EtOAcEvaporate to obtain the desired product (0.65 g).

ᆳ

20 Step 3: Deprotect the product of step 2 with TFA according to the procedure described in Example 1, step 6.

Compound 2A: React the product of step 3 with dimethylbenzoyl chloride as described in Example 1 and convert to the HCl salt. Mp 180-187°C (decomposition). HRMS Found: 512.2272; MH* Calc: 512.2276.

25 Compound 2B: React the product of step 3 with 2-amino-6-chlorobenzoic acid as described in Example 1, purify the crude product by preparative TLC and convert to the HCl salt. Mp 195-200°C (decomposition). HRMS Found: 535.1662; MH* Calc: 535.1652.

Compound 2C: React the product of step 3 with 2-hydroxy-630 methylbenzoic acid as described in Example 1, purify the crude product by preparative TLC and convert to the HCl salt. Mp 206-210°C (decomposition). HRMS Found: 514.2067; MH* Calc: 514.2069.

Compound 2D: React the product of step 3 with 2-amino-6-methylbenzoic

acid using a procedure similar to that described in Example 1, purify the

WO 00/66558 PCT/US00/11632

- 22 -

crude product by preparative TLC and convent to the HCl salt. Mp 202-209°C (decomposition). HRMS Found: 513.2227; MH* Calc: 513.2229.

Example 3

A.
$$R^2 = 2.6 \text{-di-Me-C}_6 H_3$$

B. $R^2 = 2.1 \text{-Mg-G}_6 H_3$
C. $R^2 = 2.4 \text{-di-Me-3-pyridy}$

- 5 Step 1: Reflux and stir a mixture of S-alanine methyl ester hydrochloride (14 g), anhydrous Na₂CO₃ (60 g), dry CH₃CN (125 ml), chlorodiphenylmethane (22.3 g) and Nal (5 g) for 6 hr. Cool, add ice-H₂O and extract with Et₂O (350 ml, then 50 ml). Combine the Et₂O extracts and wash with portions of 1N aq. HCl: 200 ml, 100 ml, then 4 x 10 ml.
- Combine the aqueous acid extracts, stir and add excess Na₂CO₃ in small poprtions until the mixture is basic. Extract with Et₂O, dry over MgSO₄ and evaporate to obtain the N-diphenylmethyl compound (23.2 g).

 Step 2: Reflux all of the above compound with CiCH₂COCI (10 ml) in dichloroethane (60 ml) for 4 h. Evaporate, and co-evaporate with toluene (20 ml). Dissolve the residue in CH₂Cl₂ (200 ml), stir for 0.5 h with activated carbon (10 g), filter and evaporate. Stir the residue with ice cooling in DMSO (200 ml) and gradually add concentrated aqueous NH₃
- collect the solid, wash well with water, then with several small portions of a 10:1 hexane-Et₂O mixture, and dry at 50°C with high vacuum to obtain the solid diketopiperazine (15.5 g). Recrystallise a small sample from CH₂Cl₂-hexanes: mp 186-188°C; (α)_D²⁰ = +272.6°.

(100 ml), then NaI (10 g). Stir at RT for 20 hr. Add iced water (500 ml),

Step 3: Stir the product of step 2 (4.0 g) in dimethoxyethane (40 ml) and NaBH₄ (1.6 g) under N₂ and add BF₃·OEt₂ (3.2 ml) slowly. Reflux for 20 h. Cool and add CH₃OH (10 ml) dropwise, then conc. HCl (15 ml). Reflux for

2 h., and work up in excess 2N aq. NaOH and extract with CH₂Cl₂. Dry over K₂CO₃ and evaporate. Chromatograph on silica, eluting with CH₂Cl₂-CH₃OH mixtures, and finally with 5:1:0.1 v/v/v CH₂Cl₂:CH₃OH:NH₄OH. Combine and evaporate the product fractions to obtain the desired product (1.95 g) as a pale yellow gum.

Step 4: Stir a mixture of the product of step 3 (0.50 g), N-allyloxycarbonyl-4-piperidone (0.40 g), CH₂Cl₂ (5 ml) and NaBH(OAc)₃ (0. 70 g) at RT for 20 h. Work up in CH₂Cl₂ and excess aq. NaOH, dry over MgSO₄,

PCT/US00/11632

contaminated with a small amount of starting ketone, but suitable for the Et₂O in CH₂Cl₂, to obtain the desired compound (0.80 g) as an oil evaporate and isolate the product by preparative TLC, eluting with 10%

- Ç Work up with aqueous NaOH, extract with 5:1 v/v toluene:CH2Cl2, dry over (0.072 g) and palladium (II) acetate (0.02 g) and stir at RT under N_2 for 2 h water (5 ml) and piperidine (1.5 ml). Add tri(4-sulfophenyl)phosphine Step 5: Stir a mixture of the product of step 4 (0.80 g), CH₃CN (20 ml) K₂CO₃ and evaporate to obtain a yellow oil, suitable for acylation.
- ö by preparative TLC, eluting with 3:1 v/v Et₂O:CH₂Cl₂. Precipitate the NaBH(OAc)₃ (0.15 g) for 2.5 h., cool, and work up with CH₂Cl₂ and N-(2,6-dimethoxybenzoyl)-4-piperidinone (0.10 g), CH₂Cl₂ (2 ml) and Compound 3A: Stir and reflux a mixture of the product of step 5 (0.10 g) aqueous NaOH. Dry over MgSO4, evaporate and isolate the major product
- 5 hydrochoride to obtain the desired compound as the HCl salt (0.13 g). Mp 173-177°C (decomposition). HRMS Found: 482.3175; MH*Calc:

acid using DEC-HOBT as described in Example 1, isolate the product by Compound 3B: Couple the product of step 5 with 2-amino-6-chlorobenzoic

25 8 (decomposition). HRMS Found: 483.3114; MH* Calc: 483.3124. PTLC and precipitate the hydrochloride to give compound 3B. Mp 188precipitate the hydrochloride to give compound 3C. Mp 180-188°C using DEC-HOBt as described above, isolate the product by PTLC and Compound 3C: Couple the product of step 5 with 2,4-dimethylnicotinic acid 195°C (decomposition). HRMS Found: 503.2567; MH* Calc: 503.2578

compounds were prepared: Using procedures similar to those described above, the following

3E; Mp. 170-175°C

WO 00/66558

PCT/US00/11632

ಠ quenched with about 5 ml of CH₃OH carefully until effervescence stopped; washed with 1N HCl, water, 10% NaHCO3 solution and brine of 2M borane-methyl sulfide complex (3 ml; 6 mmol) in THF was added solid (S)-2-methyl oxaborolidine (0.54g; 2 mmol). After 10 min., a solution volatiles were removed in vacuo. The residue was dissolved in CH₂Cl₂ and material had been converted to a more polar product. The reaction was dropwise over 5 min. TLC at the end of 30 min. showed that the starting dry THF (10 ml) was cooled in an ice bath and treated with freshly prepared Step 1: A solution of 4-trifluoromethyl acetophenone (1.88 g; 10 mmol) in

5 desired chiral alcohol (1.6 g; 84%) as a colorless oil. TLC chromatography (FSGC) using 10-20% EtOAc in hexanes furnished the Concentration in vacuo gave 2g of a yellow gum. Flash silica gel $R_{l} = 0.6$ in 25% EtOAc:hexanes.

CH₃SO₂Cl (0.87 ml; 10.6 mmol) to form a turbid white solution. The CH₂Cl₂ cooled in an ice bath were added Et₃N (2.3 ml; 16.32 mmol) and Step 2: To a solution of the product of step 1(1.55g; 8.16 mmol) in 10 ml of

8 Concentration in vacuo gave the chiral mesylate (2.1g; 96%) as a pale with CH₂Cl₂, washing with water, 1N HCl, 10% NaHCO₃ solution and brine reaction was quenched with water and the organic product was extracted yellow oil. TLC $R_1 = 0.6$ in 25% EtOAc:hexanes

မ 23 protected 2(S)-methyl piperazine (1.56g; 7.8 mmol - prepared from the cooled to RT, diluted with CH₂Cl₂ (50 ml) and washed with water (3 x 100 carbonyloxy)phthalimide) and 2,2,6,6-tetramethyl piperidine (1.34 ml; 8 mmol) in 14 ml of dry CN₃CN were heated at reflux until TLC indicated reaction of commercial 2(S)-methyl piperazine with N-(tert-butoxycomplete disappearance of the mesylate (16 h). The reaction mixture was Step 3: A solution of the product of step 2 (2.1g; 7.8 mmol), the N-BOC

PCT/US00/11632

hexanes) served to isolate the desired (S,S)-diastereomer (1.5g; 52%) and concentrated to obtain 2.8 g of a yellow gum. FSGC (20% EtOAc in ml) and brine. The organic extract was dried over solid MgSO₄ and ther its benzylic epimer, the (R,S)-diastereomer (0.5g; 17%) for a combined

- Ç 69% yield. TLC R_i = 0.75 (S,S) and 0.56 (R,S) in 25% EtOAc:hexanes pH to 10. Extractive work up in CH₂Cl₂ gave 1.1g of a yellow syrup. FSGC Bh. The reaction was quenched by adding 1N NaOH solution to adjust the mt of CH₂Cl₂ and the resulting yellow-orange solution was stirred at RT for Step 4: TFA (6 ml) was added to a solution of the product of step 3 in 12
- ಠ eluition with 1% Et₃N in 10% CH₃OH:CH₂Cl₂ was needed to elute the using 10% CH₃OH in CH₂Cl₂ removed the less polar impurity and gradient desired free amine of the (S,S) diastereomer. Yield = 0.9g (75%). TLC R, = 0.5 in 10% CH3OH:CH2Cl2.
- 5 x) and brine. The CH₂Cl₂ extract was dried over anhydrous MgSO₄ and was diluted with 50 ml of CH₂Cl₂, washed with 1N NaOH solution, water (2 for a day. TLC indicated absence of starting material. The reaction mixture glaciat AcOH (80 µl) in 8 ml of CH₂Cl₂ was stirred at ambient temperature piperidinone (0.86g; 4.3 mmol), NaB(OAc)₃H (1.05g; 4.95 mmol) and Step 5: A colorless solution of the product of step 4 (0.9g; 3.3 mmol), 4-
- 8 concentrated to obtain 1.7g of yellow oil. FSGC (25% acetone in hexanes) = 0.6 in 25% acetone/hexanes. was used to isolate the pure product (1.3g; 86%) as a white foam. TLC R,
- 2.87 mmol) in CH₂Cl₂ (10 ml) and the resulting yellow orange solution was Step 6: TFA (5 ml) was added to a solution of the product of step 5 (1.3g;
- 23 ml of CH₂Cl₂ and washed with water, then brine and dried over MgSO₄. and the pH was adjusted to 10. The organic product was extracted into 50 stirrred at RT for 7 h. The reaction was quenched with 1N NaOH solution Concentration gave the free amine (0.98g; 98%) as a yellow syrup. TLC Ry = 0.1 in 25% acetone/hexanes
- ဌဌ မ isolated by extractive work up and purified through FSGC using 25% and formation of two over-lapping spots of medium polarity (rotomers of the <u>Step 7</u>: The product of step 6 (0.78g; 2.21 mmol), DEC (0.65g; 3.4 mmol) hindered amide) as the major product. The crude product (1.3g) was mmol) were dissolved in 8 ml of CH₂Cl₂ to which was added HOBT (0.46g; 3.4 mmol) and 2-amino-6-chloro benzoic acid (0.51g; 2.9 temperature for 16h. TLC analysis showed absence of starting material diisopropylethyl amine (0.7 ml) and the mixture was stirred at ambient

WO 00/66558 PCT/US00/11632

8

pale yellow foam. TLC R₁ = 0.45 and 0.5 in 25% acetone:CH₂Cl₂ acetone in CH₂Cl₂ as eluant to give the title compound (0.88g; 80%) as a

solution of the title compound free base (0.76g; 1.54 mmol) in CH₂Cl₂ (5ml) A solution of hydrogen chloride in Et₂O (1M; 3 ml) was added to a

ಠ salt of the title compound was dried under high vacuum to yield an off-white to obtain an instantaneous white precipitate. After stirring at RT for solid (0.88g; 95%). Mp: 205-210° C. EtOAc, stirred for 30 min, filtered and washed with Et₂O (100 ml). The HCI residue was suspended in dry toluene (3 x 10 ml) and azeotroped. The white solid thus obtained was suspended in dry Et₂O containing 10% 2 h, the volatiles were removed on a rotary evaporator and the white

4

5 described in step 7 using the appropriate carboxylic acids. Physical data The product of step 6 was converted to other amides (4A-4E) as

for compounds 4-4E having the following structures is as follows:

4	4E	4D	4C	4B	4A	4	χ̈	where
CF ₃	CF ₃	CF ₃	CF ₃	CF3	CF3	CF ₃	교	in R ⁸ and R ²
\ <u>\</u> _\ <u>\</u> _\ <u>\</u> _\ <u>\</u>	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\		\nearrow	9-X	NH ₂	<i>_</i>	72.	wherein R ⁸ and R ² are as defined in the table:
:	152	207-210	186-190	203-206	192-195	205-210	Mp (°C)	d in the table:
490.2796	505	489.2851	488.2902	490.2681	489.2841	509.2295	HRMS (MH ⁺)	

5 ಠ ဟ water and the organics were extracted into Et₂O. The organic extract was which was prepared freshly from the corresponding carbinol, the 2(S)-TLC R_t = 0.6 (for 25a) and 0.4 (for 25b) in 25% EtOAc-hexanes. obtain 2 g of crude product. Flash chromatography on silica gel and elution washed with saturated NH₄Cl and brine and concentrated in vacuo to and formation of two well-separated products. The mixture was diluted with grams of 25a and ~0.5 grams of 25b respectively (~45% combined yield) first with 25% Et₂O-hexane followed by 25% EtOAc-hexane gave ~0.5 methyl piperazine (1.12g, 5.62 mmol) and 2,2,6,6-tetramethyl piperidine 100-110°C (internal temp.) for 10 h. TLC analysis showed absence of 24 (TMP) (1.9 ml, 11.2 mmol) were dissolved in dry DMF (2 ml) and heated to A solution of the racemic benzyl chloride 24 (1.26g, 5.62 mmol)

products 5 to 5F having the formula

Purified 25a was treated as described previously to obtain the final

wherein R² is as defined in the table

58	5A	თ	Ţ	3
- √ • • • • • • • • • • • • • • • • • • •	₹		R2	wildight it is as defined in the lable.
233 (sharp)	198-203	208-212	mp (°C)	ים זיין ניום ומטום.
539.2390	535.2913	519.2958	HRMS	

WO 00/66558 PCT/US00/11632

HE	5G	5F	SE .	5D	5C
		No No			
205-210	198-203	190	202	253	190
l	;	535.2901	519.2964	· 558.1887	575.1800

1) NaHMDS / Et-I 2) Na(OAc)₃BH MgBr₂: Et₂O / CH₃CN Ti(OiPr)4 / Et2AICN F3CO 28a. (S,S)-Diastereomer 28b. (R,S)-Diastereomer

ml of CH₂Cl₂ was stirred at RT for 24 h. El₂AlCN was introduced and A mixture of the aldehyde 26 (3.9g, 20.5 mmol), the 2(S)-methyl-N-

ಠ stirred for an additional day. The reaction mixture was processed as FSGC (TLC R_f = 0.45/0.5 for diastereomers seen with 25% Et₂O-hexanes described before to obtain 4.71 grams (58%) of the cyano amine 27 after BOC-piperazine (4.1 g, 20.5 mmol) and Ti(OiPr)₄ (6.1 mL; 20.5 mmol) in 40

of 27 (1g; 2.5 mmol) in dry THF cooled in a dry ice/acetone bath. The ml). The dry ice bath was removed and the reaction was stirred at ambient resulting bright yellow solution was treated with CH₃CH₂I (7.5 mmol; 0.6 Step 2: Sodium hexamethyldisilazide (1M; 3.1 ml) was added to a solution

- ဟ temperature for 15 min. followed by gentle warming in a warm water bath extractive work up and purification by FSGC gave two alkylated compounds (40°C) for 30 min. TLC indicated two well-separated spots. Standard Step 3: The product of step 2 was stirred with NaBH(OAc)3 (2x) and (combined yield: 0.7g; 70%). TLC R_t = 0.6 and 0.4 (25% EtOAc/hexanes).
- õ 0.8 grams of crude product. FSGC (25% EtOAc-hexanes) gave MgBr₂:OEt₂ (1x) in CH₃CN for a day. The reaction mixture was quenched with water, the organics were extracted into EtOAc and processed to obtain (28a) and 0.45 (28b) in 25% EtOAc-hexanes. ~ 0.4 grams of each diastereomer (combined yield $\sim 100\%$). TLC R_i = 0.55
- ឆ 6, 6A and 6B with an ipso-methyl group as well as compounds 6C and 6D which lack the ipso-methyl group usual 5 step sequence to complete the synthesis of compounds of Example Step 4: Compound 28a (S,S-diastereomer) was processed through the

WO 00/66558 PCT/US00/11632

Example 7

- 30 -

sulfone containing compounds of Example 7 havng the formula: acetophenone which was treated as in Example 4, steps 1-6 to obtain the the para position started with the corresponding para-substituted The synthesis of compounds with an alkyl or arylsulfonyl R8 group at

wherein R8 and R2 are as defined in the table

PCT/US00/11632

reaction mixture was then treated with Et₂AICN (5.5 ml; 1M solution in in 10 ml of CH₂Cl₂ was stirred at ambient temperature for 24 h. The N-BOC-4-piperidinone (0.91g; 4.6 mmol) and (Ti(OiPr)₄) (1.4 ml; 4.6 mmol) Step 1: A solution of the product of Example 4, step 4 (1.25g; 4.6 mmol),

- G toluene) and stirring continued for 20 h. The reaction mixture was diluted washing the filtercake with EtOAc. The filtrate layers were separated and aqueous layer) organic layer was treated with excess celite and filtered, layers were separated as much as possible. The turbid (from inseparable with EtOAc and stirred with saturated NaHCO3 solution (10 min.) and the
- ಠ the organic layer was washed with water and brine, dried over anhydrous Et₂O). After 1 h, the ice bath was removed and the yellow, heterogeneous cooled in an ice bath and treated with CH₃MgBr (7.5 ml of a 3M solution in Step 2: The Strecker amine from step 1 (2.16g) was dissolved in dry THF MgSO₄ and concentrated to obtain 2.16g (98%) of an amber gum.
- ಕ a yellow gum (1.85g; 88%). TLC $R_r = 0.5$ in 1:1 Et₂O:hexanes. reaction mixture was stirred at RT for 18h. The reaction was quenched 1:1 mixture of CH₂Cl₂:EtOAc. The ipso-methyl compound was isolated as FSGC, eluting the major product away from more polar impurities using a CH₂Cl₂. Concentration gave 2.2 g of a yellow gum which was purified by with saturated NH₄Cl solution, diluted with water and extracted with
- quenched with 1N NaOH solution to a pH of 9-10 and processed by 3.2 mmol) in 10 mt of CH₂Cl₂ and stirred at 25° C for 2 h. The reaction was Step 3: TFA (6 ml) was added to a solution of the product of step 2 (1.5g. extraction into CH2Cl2 to obtain 1.2 g of crude product. FSGC using 1:1

8

- 25 CH₂Cl₂ led to the isolation of the free piperidine as a yellow gum (1.07g: CH2Cl2:EtOAc removed all the less polar impurities and gradient elution 90%). TLC $H_1 = 0.2$ in 10% $CH_3OH:CH_2Cl_2$. with 10% CH₃OH in CH₂Cl₂ and finally with 10% (ca. 7N-NH₃) CH₃OH in
- မ stirred at 25° C for 24 h. The reaction mixture was diluted with CH₂Cl₂ (25 ml), washed with water, 10% NaHCO3 solution and brine, then mmol) and diisopropyl ethyl amine (1ml; 5.6 mmol) in CH₂Cl₂ (15 ml) was nicotinic acid (0.42g; 2.8 mmol), DEC (0.8g; 4.2 mmol), HOBT (0.57g; 4.2 Step.4: A solution of the product of step 3 (1.03g; 2.8 mmol), 2,4-dimethy
- မ္ဟ gradient elution with 10% acetone-CH₂Cl₂ followed by 2-5% CH₃OH in concentrated to obtain 1.6g of crude oil. FSGC of this material using CH₂Cl₂ gave the title compound (1.1g; 80%) as a white foam. TLC $R_1 = 0.45$ in 5% $CH_3OH-CH_2Cl_2$

÷

WO 00/66558 PCT/US00/11632

G washing the filtrate with Et₂O. The HCl salt of the title compound thus removed in vacuo. The product was suspended in Et₂O and filtered, obtained was dried in vacuo (1.1g; mp. 213-215° C). HRMS (MH+) forming a white precipitate. After stirring at 25° C for 1h, the volatiles were hydrogen chloride in Et₂O (6.1 ml of a 1M solution) was added, instantly dissolved in a 1:1 mixture of EtOAc:Et₂O (8 ml) and a fresh solution of The free base of the title compound (1g; 2 mmol) isolated above was

the product of step 3 using appropriate acids, and compounds 8F-8H, wherein the R8-substituent is a ρ-methyl sulfonyl group were similarly The following amides 8A-8E were prepared in a similar manner from

ಠ

86	8F	8E	8D	80	88	8A	ŗ	where
-SO ₂ CH ₃	-SO ₂ CH ₃	CF ₃	R _B	wherein R8 and R2				
***	\rightarrow					NIH ₂	R2	are as defined in the table:
217-221	201-205	210-212	216-218	262-263	222-224	216	Mp (⁰ C)	n the table:
533.2355	512.2955	519.2970	523.2466	502.3039	504.2850	503.3021	HRMS (MH ⁺)	

쭢 <u>∞</u>

-SO₂CH₃ င္ပ်င္

195-198 216-219

514.2736

မ္

WO 00/66558

--

PCT/US00/11632

Xx. R11 Mp (°C) HRMS (MH*) SS -OH 210-220 518.2997 ST -OC(O)NHCH,CH, 205-210 589.3374 ST -OC(O)NHCH,CH, 165-171 596.2757 SV -CHO 199-204 595.3254 W -CHO 88-92 595.3254 W -CHO 88-92 530.2985 SX -CH=NH-OCH, (2xHCl sall) 552.3020 SY -CHF₂ (2xHCl sall) 552.3020 SZ -NH-C(O)-NH-CH,CH, 214-219 588.3521 AA -NH, 92-98 517.3154 AA -NHSO₂CH₂CH₃ 225-211 609.3078 SZHCl sall) 520.2949 536.2663 DD -CI 235-238 536.2663 DD -CI 237-240 580.2141	<u>@</u>	@	8	<u>&</u>	æ		· ·		<u></u>	· ·	<u></u>		m	m
Mp (°C) 210-220 (2xHCl salt) 205-210 (2xHCl salt) 165-171 (2xHCl salt) 199-204 (2xHCl salt) 199-204 (2xHCl salt) 199-205 (2xHCl salt) 202-205 (2xHCl salt) 214-219 (2xHCl salt) 214-219 (2xHCl salt) 214-217 (2xHCl salt) 92-98 205-211 (2xHCl salt) 92-98 205-211 (2xHCl salt) 235-238 (2xHCl salt) 235-238 (2xHCl salt) 237-240 (2xHCl salt) 237-240	8EE	800	800	8BB	8AA	8Z	8Y	8X	8W	٧8	BU	8Т	88	Ex.
	-Br	Ċ	-TI	-NHSO,CH,CH,	-NH,	-NH-C(O)-NH-CH,CH,	-CHF ₂	-CH=NH-OCH,	-СНО	}~(_N0.	-080,сн,	-OC(O)NHCH,CH,	-ОН	R ¹¹
HRMS (MH*) 518.2997 589.3374 596.2757 595.3254 530.2985 559.3260 552.3020 588.3521 517.3154 609.3078 520.2949 536.2663 580.2141	237-240 (2xHCl salt)	235-238 (2xHCl salt)	212-217 (2xHCl salt)	205-211 (2xHCl salt)	92-98	214-219 (2xHCl salt)	>245 (dec) (2xHCl salt)	202-205 (2xHCl salt)	88-92	199-204 (2xHCl salt)	165-171 (2xHCl salt)	205-210 (2xHCl salt)	210-220 (2xHCl salt)	Mp (°C)
	580.2141	536.2663	520.2949	609.3078	517.3154	588.3521	552.3020	559.3260	530.2985	595.3254	596.2757	589.3374	518.2997	HRMS (MH⁺)

G solution was concentrated. Purification via preparative TLC (EtOAc, SiO2) gave the title compound as a yellow oil. m.p. (2xHCl salt) 210-220 °C. 0.32 mmol) were taken up in CH₂Cl₂ and stirred at 25 °C for 20 h. The 0.16 mmol), EDC (61 mg, 0.32 mmol), HOBT (49 mg, 0.32 mmol), iPr₂NEt 85: The tri-hydrochloride salt of the product of Example 8, step 3 (75 mg, (0.16 ml, 0.96 mmol), and 2,6-dimethyl-4-hydroxy-benzoic acid (53 mg,

ELN (0.13 ml, 0.95 mmol) were taken up in CH₂Cl₂ and stirred at 25 °C for 8T: 8S (100 mg, 0.19 mmol), ethyl isocyanate (0.05 ml, 0.58 mmol), and HRMS (MH") calcd. for C₂₉H₃₉O₂N₃F₃, 518.2994; Found, 518.2997.

ಕ Purification via preparative TLC (2/1 EtOAc/hexanes, SiO2) gave the title compound as a yellow oil. 16 h. The solution was diluted with CH₂Cl₂ and washed with 1 N NaOH. The organic layer was dried (Na,SO,), filtered, and concentrated.

mmol), and NaH (38 mg, 60 wt% in oil) were taken up in THF and stirred at 8U: 8S (250 mg, 0.48 mmol), methane sulfonyl anhydride (250 mg, 1.44 NaHCO₃. The organic layer was dried (Na₂SO₄), filtered, and concentrated 25 °C for 20 h. The solution was diluted with EtOAc and washed with sat'd

5

8 R ဦ 8 ő 82 88 œ 몆 ළ ĊF3 ĊF3 -CF3 ĊF3 ဌ ĊF3 ĊF3 ĊF3 ĊF3 <u>`</u> 255-257 208-212 223-226 215-220 218-223 190-194 250-255 176-181 >245 526.2243 586.1442 566.1987 522.2507 528.2439 576.1562 570.1739 528.1791 708.0040

of the structure Using procedures described following the table, compounds 8S-8EE

ഗ were prepared, wherein R" is defined in the table

compound as a yellow oil (280 mg, 98%). Purification via preparative TLC (1/1 EtOAc/hexanes, SiO2) gave the title

The tri-hydrochloride salt of the product of Example 8, step 3 (50 mg

ml, 0.4 mmol), and 2,6-dimethyl-4-(4-pyridyl-N-oxide)-benzoic acid (73 mg, 0.1 mmol), EDC (38 mg, 0.2 mmol), HOBT (27 mg, 0.2 mmol), iPr,NEt (0.07 TLC (2/1 acetone/hexanes, SiO₂) gave 8V as a yellow oil (23 mg, 39%). 25 °C for 19 h. The solution was concentrated. Purification via preparative 0.3 mmol) (see preparation below) were taken up in CH₂Cl₂ and stirred at

Preparation of 2.6-dimethyl-4-(4-pyridyl-N-oxide) benzoic acid

25 °C for 17 h. The solution was filtered and partitioned between Et₂O and ml, 51 mmol), and Cs₂CO₃ (17 g, 51 mmol) were allowed to stir in DMF at et al Journal of the American Chemical Society 1985, 50, 1867), MeI (3.2 Stap A: 4-Benzyloxy-2,6-dimethyl benzoic acid (8.7 g, 34 mmol; Thea, S

ಠ

5 water. The aqueous layer was extracted with Et₂O. The combined Et₂O (MgSO,), filtered, and concentrated. Purification via flash chromatography layers were washed with H₂O and brine. The organic layer was dried (10/1 hexanes/Et₂O, SiO₂) gave 8.6 g (94 %) of the methyl ester as a

8 psi H, and shaken in a Parr apparatus at 25 °C for 17h. The solution was Step B: The benzyl protected phenol (8.5 g, 32 mmol) and Pd/C (750 mg filtered (Celite). Concentration gave 5.6 ${f g}$ (98 %) of the phenol as a white 10 wt % Pd) were taken up in CH,OH. The solution was charged with 50

8diluted with CH,Cl, and washed with sat NaHCO,. The aqueous layer was warmed to 25 $^{\circ}$ C and stirred at that temperature for 4.5 h. The solution was mmol) was added dropwise to the solution at 0 °C. The solution was were dissolved in CH2Cl2 at 0 °C. Triflic anhydride (Tf2O) (4.2 ml, 25.2 Step C: The phenol (3.5 g, 19.4 mmol) and iPr2NEt (3.76 g, 29.1 mmol)

÷

WO 00/66558

PCT/US00/11632

Purification via flash chromatography (10/1, hexanes/EtO, SIO,) gave 5.7 g Na,SO. Filtration and concentration gave the crude aryl triflate. extracted with CH₂Cl₂. The combined organic layers were dried over (94 %) of the triflate as a yellow oil.

- in DME/H₂0 (4/1, 25 ml). The solution was heated to 90 °C (oil bath) under aqueous layer was extracted with EtOAc. The combined EtOAc layers N₂ for 18 h. The solution was partitioned between EtOAc and H₂O. The Pd(PPh₃), (370 mg, 0.32 mmol), and Na₂CO₃ (1 g, 9.6 mmol) were taken up Step D: The triflate (1g, 3.2 mmol), 4-pyridyl boronic acid (1.2 g, 9.6 mmol)
- 5 were dried (Na_zSO₄). Filtration and concentration gave a dark brown oil mg (100 %) of the pyridyl derivative as an orange oil. Purification via flash chromatography (3/1 hexanes/EtOAc, SiO₂) gave 770

3.2 mmol) were dissolved in CH₂Cl₂. The solution was stirred at 25 °C for Step E: The pyridyl derivative (390 mg, 1.6 mmol) and mCPBA (550 mg,

- ಭ C₁₅H₁₆O₃N , 258.1130; Found, 258.1131. 400 mg (97 %) of the N-oxide as an orange oil. HRMS (MH') calcd. for 18 h. The solution was diluted with CH₂Cl₂ and washed with 1 N NaOH. The organic layer was dried (Na₂SO₄). Filtration and concentration gave
- 25 8 244.0974; Found, 244.0981. under high vacuum, the free acid (377 mg, 100 %) was obtained as a tan resulting solid was filtered and washed with water and brine. After drying NaOH and 2 ml of EtOH. The solution was heated at reflux for 20 h. The solid. m.p. >225 °C (decomp). HRMS (MH') calcd. for C, H, O, N, solution was concentrated. The residue was treated with conc. HCl. The Step E: The methyl ester (400 mg, 1.6 mmol) was taken up in 5 ml of 3 N
- ဗ mg (61 %) of 8W as a yellow foam. Purification via flash chromatography (2/1 hexanes/EtOAc, SiO2) gave 898 g, 2.8 mmol), 2,6-dimethyl-4-formyl benzoic acid (500 mg, 2.8 mmol) (see preparation below), EDC (1.1 g, 5.6 mmol), HOBT (760 mg, 5.6 mmol) and 8W: The tri-hydrochloride salt of the product of Example 8, step 3 (1.34 iPrNEt (2 ml, 11 mmol) were subjected to the standard coupling conditions

Preparation of 2,6-dimethyl-4-formyl benzoic acid

solution was stirred at 0 °C for 3 h. The solution was partitioned between 0°C. Tt₂O (5.8 ml, 34 mmol) was added slowly to the solution at 0°C. The mmol) and iPr₂NEt (5.6 g, 43 mmol) were taken up in CH₂Cl₂ and cooled to Step A: 4-Hydroxy-2,6-dimethyl-benzoic acid, tert-butyl ester (6.4 g, 29

- sat. NaHCO3 and CH2Cl2. The aqueous layer was extracted with CH2Cl2. concentration gave a brown oil. Purification via flash chromatography (20/1 The combined organic layers were dried (Na,SO,). Filtration and hexanes/Et₂O, SiO₂) gave 7.99 g (82 %) of the triflate as a yellow solid.
- ಕ mg, 0.3 mmol), and vinyl tributyl tin (4.5 ml, 16 mmol) were taken up in THF under N_2 . The solution was heated at 70 °C for 16 h. The solution was EtOAc. The combined organic layers were dried (MgSO,). Filtration and organic layer was separated, and the aqueous layers were extracted with partitioned between EtOAc and sat. KF. The mixture was filtered. The Step B: The triflate (5 g, 15 mmol), LiCl (1.25 g, 30 mmol), Pd(PPh,), (340
- ᇙ concentration gave a yellow oil. Purification via flash chromatography (20/1 solution until a dark blue color persisted. The reaction was quenched with hexanes/Et₂O, SiO₂) gave 1.96 g (57 %) of the olefin as a yellow oil. The solution was cooled to -78 °C. Ozone was bubbled through the Step C: The olefin (0.6 g, 2.6 mmol) was taken up in CH_CI/MeOH (1/1).
- 8 dimethyl sulfide. The reaction was concentrated to furnish the aldehyde as
- up in CH₂Cl₂ and stirred at 25 °C for 19 h. Concentration of the solution Step D: The tert-butyl ester (650 mg, 2.8 mmol) and TFA (3 ml) were taken gave the acid as a beige solid
- 25 8X: 8W (100 mg, 0.19 mmol), H₂NOMe-HCl (28 mg, 0.34 mmol), NaOAc CH,Cl.. The combined organic layers were dried (Na,SO,). Filtration and °C for 17h. The solution was concentrated. The residue was partitioned between CH₂Cl₂ and 1 N NaOH. The aqueous layer was extracted with (32 mg, 0.46 mmol) were taken up in MeOH. The solution was stirred at 25
- မွ concentration gave the crude product. Purification via preparative TLC (1/1 hexanes/EtOAc, SiO₂) gave 85 mg (84 %) of 8X.
- 0.16 mmol) and 4-difluoromethyl-2,6-dimethyl benzoic acid (32 mg, 0.16 8Y: The tri-hydrochloride salt of the product of Example 8, step 3 (75 mg mmol) were subjected to the standard coupling conditions (EDC/HOBT/
- ႘ၟ iPr,NEI). Purification via preparative TLC (2/1 hexanes/EtOAc, SiO,) gave

WO 00/66558 PCT/US00/11632

Preparation of 4-difluoromethyl-2,6-dimethyl benzoic acid [Bis(2-methoxyethyl)amino]sulfur trifluoride

5 difluoro derivative. h. The solution was quenched with sat. NaHCO3. The aqueous layer was taken up 1,2-dichloroethane and stirred at 65 °C for 6 h and at 25 °C for 19 preparative TLC (10/1 hexanes/Et₂O, SiO₂) gave 210 mg (50 %) of the extracted with CH₂Cl₂. The combined organic layers were dried (NaSO₂). Filtration and concentration gave the crude product. Purification via sulfur trifluoride (640 mg, 2.9 mmol), and EtOH (0.02 ml, 0.34 mmol) were Step A: The aldehyde (400 mg, 1.7 mmol), [bis(2-methoxyethyl)amino]-

dioxane, 8.2 mmol) were taken up in MeOH. The solution was stirred at 45 °C for 20 h. The solution was concentrated to obtain the acid as a white Step B: The tert-butyl ester (210 mg, 0.82 mmol) and HCl (2.1 ml of 4 M in

8 5 coupling conditions (EDC/HOBT/iPr,NEt). Purification via flash (400 mg, 1.7 mmol) (see preparation below) were subjected to the standard 82: The tri-hydrochloride salt of the product of Example 8, step 3 (811 mg. chromatography (1/1 hexanes/acetone, SiO₂) gave 803 mg (81 %) of 82 as 1.7 mmol) and 4-[(ethylamino)carbonylamino]-2,6-dimethyl benzoic acid

Preparation of 4-{(ethylamino)carbonylamino}-2,6-dimethyl benzoic acid NHC(O)CF₃

ml, 209 mmol) was added slowly to the solution. After the addition, the The solution was cooled in a water bath. Trifluoroacetic anhydride (29.5 Step A: 3,5-Dimethyl aniline (18.5 ml, 149 mmol) was taken up in CH₂Cl

25

WO 00/66558

PCT/US00/11632

solution was stirred at 25 °C for 3.5 h. The solution was quenched with was added slowly to the solution while maintaining the RT water bath. The solution was stirred at 25 °C for 15 minutes. Bromine (7.3 ml, 142 mmol) 10% Na₂S₂O₃. The aqueous layer was extracted with CH₂Cl₂. The

- G combined organic layers were dried (MgSO₄), treated with activated carbon recrystallization (hexanes/Et,O) gave two crops (34 g total, 77%) of the and filtered. Concentration gave an orange solid. Purification via brominated derivative as a white solid.
- Step B: The aryl bromide (17 g, 57 mmol) was taken up in THF and cooled
- ಠ sec-BuLi (62 ml of a 1.3 M in cyclohexane, 80 mmol) was added slowly to mmol) was added slowly to the solution at -78 °C. After 5 min of stirring, to -78 °C under N₂. Methyllithium/LiBr (54 ml of a 1.5 M solution in Et₂O, 80 the reaction solution at -78 °C. After 5 min, di-t-butyl dicarbonate (22.5g. 103 mmol) in THF was added to the solution at -78 °C. The solution was
- 8 ಭ as an off-white solid. concentration gave a yellow solid. Purification via flash chromatography warmed to 25 °C. After 30 min, the reaction mixture was partitioned (1/1 to 1/4 hexanes/CH₂Cl₂, SiO₂) gave 13.1 g (72 %) of the tert-butyl ester between water and CH₂Cl₂. The aqueous layer was extracted with CH₂Cl₂ The combined organic layers were dried (MgSO₄). Filtration and
- solution was partitioned between CH₂Cl₂ and water. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with mmol) were taken up in MeOH/H₂O (3/1) and heated at 60 °C for 3 h. The Step C: The trifluoro-acetamide (10 g, 31 mmol) and NaOH (2.5 g, 62
- 25 water and dried (Na₂SO₂). Filtration and concentration gave 6.4 g (93 %) of the aniline as an orange solid.
- warmed to 25 °C and stirred at that temperature for 2h. The solution was CuCl (90 mg, 0.9 mmol) were taken up in DMF at 0 °C. The solution was Step D: The aniline (1 g. 4.5 mmol), ethyl isocyanate (0.4 ml, 5 mmol), and
- မ extracted with EtOAc. The combined layers were washed with brine and Purification via flash chromatography (3/1 to 1/1 hexanes/EtOAc, SiO₂) dried (MgSO₄). Filtration and concentration gave a yellow solid. partitioned between EtOAc and 10 % NH,OH. The aqueous layer was gave 904 mg (69 %) of the urea as a yellow solid.
- မ္ဟ residue was partitioned between EĻO and 1 N NaOH. The aqueous, basic 16.5 h. The solution was concentrated under reduced pressure. The ml) were taken up in iPrOH and heated at 45 °C for 3.5 h and at 25 °C for Step E: The tert-butyl ester (900 mg, 3.1 mmol) and 4 M HCl in dioxane (3

;

acidified with conc. HCl (pH = 1-2). The aqueous layer was extracted with concentration gave the 400 mg (55 %) of the acid as a white solid EtOAc. The combined EtOAc layers were dried (Na₂SO₂). Filtration and layer was extracted with Et₂O. The aqueous layer was cooled to 0 °C and

8AA: The tri-hydrochloride salt of the product of Example 8, step 3 (2 g, preparation below) were subjected to the standard coupling conditions hexanes/acetone, SiO2) gave 1.16 g (52 %) of 8AA as a yellow foam 4.3 mmol) and 4-amino-2,6-dimethyl benzoic acid (710 mg, 4.3 mmol) (see (EDC/HOBT/iPr,NEt). Purification via flash chromatography (2/1

Preparation of 4-amino-2,6-dimethyl benzoic acid

5

was concentrated to obtain the acid (710 mg) in quantitative yield. dioxane) were taken up in MeOH at heated at 45 °C for 20 h. The solution The tert-butyl ester (950 mg, 4.3 mmol) and HCl (11 ml, 4 M in

- 8 ᇙ brown oil. Purification via preparative TLC (2/1 hexanes/acetone, SIO₂) gave 100 mg (86 %) of 8BB as a colorless oil. organic layers were dried (Na,SO,). Filtration and concentration gave a CH₂Cl₂. The aqueous layer was extracted with CH₂Cl₂. The combined 8BB: 8AA (100 mg, 0.19 mmol) and ethane sulfonyl chloride (0.02 ml, 0.2: was concentrated. The residue was partitioned between 1 N NaOH and mmol) were taken up in pyridine and stirred at 25 °C for 19 h. The solution
- mg, 0.27 mmol) and 4-fluoro-2,6-dimethyl benzoic acid (58 mg, 0.35 mmol 8CC: The trihydrochloride salt of the product of Example 8, step 3 (127 (see preparation below) were coupled according to the general procedure
- 8EtOAc, SiO₂) gave 8CC as a colorless oil (87 mg bis-HCl salt, 54 %). (EDC/HOBT/iPr₂NEt). Purification via preparative TLC (2/1 hexanes/

- ဗ pellets (2-3) of KOH were added, and the solution was heated at reflux for min. The solution was cooled and diluted with MeOH and water. A few (196 mg, 1.7 mmol) were heated in 1,2-dichlorobenzene at 100 °C for 30 between Et₂O and 1 N NaOH. The aqueous layer was extracted with Et₂O 16 h. The solution was concentrated. The residue was partitioned 4-Amino-2,6-dimethyl benzoic acid (200 mg, 1.1 mmol) and NOBF,
- ၾ The aqueous layer was cooled to 0 °C and acidified with conc. HCl (pH =

1-2). The aqueous layer was extracted with CH₂Cl₂. The organic layers were dried (Na₂SO₄). Filtration and concentration gave 58 mg (31 %) of the acid as a tan solid.

8DD: The trihydrochloride salt of the product of Example 8, step 3 (150 mg, 0.31 mmol) and 4-chloro-2,6-dimethyl benzoic acid (76 mg, 0.41 mmol) (see preparation below) were coupled according to the general procedure (EDC/HOBT/iPr₂NEt). Purification via preparative TLC (4/1 hexanes/ acetone, SiO₂) gave 8DD as a colorless oil.

Preparation of 4-chloro-2,6-dimethyl benzoic acid

ಠ

4-Amino-2,6-dimethyl benzoic acid (172 mg, 0.96 mmol) and CuCl, (155 mg, 1.15 mmol) were taken up in CH₃CN at 0 °C. Tert-butyl nitrite (0.17 ml, 1.4 mmol) was added to the solution at 0 °C. The solution was warmed to 25 °C and then at 65 °C for 45 min. The solution was partitioned

to between E_{\$}O and water. The aqueous layer was extracted with E_{\$}O. The combined organic layers were washed with brine and dried (MgSO₄). Filtration and concentration gave the methyl ester. The methyl ester was hydrolyzed as described above for the fluoro derivative (KOH). After extractive workup, 4-chloro-2,6-dimethyl benzoic acid (158 mg, 89 %) was obtained as a yellow solid.

8EE: The trihydrochloride salt of the product of Example 8, step 3 (180 mg 0.38 mmol) and 4-bromo-2,6-dimethyl benzoic acid (95 mg, 0.41 mmol) (see preparation below) were coupled according to the general procedure (EDC/HOBT/iPr,NEt). Purification via preparative TLC (4/1 hexanes/

25 acetone, SiO₂) gave **BEE** as a colorless oil (140 mg bis-HCl salt, 56 %).

<u>Step A</u>: The triftate (500 mg, 1.48 mmol), hexamethylditin (0.31 mmol, 1.48 mmol), LiCi (377 mg, 8.9 mmol), and Pd(PPh₂), (171 mg, 0.15 mmol) were heated in THF (70 °C) under N₄ for 21 h. The solution was partitioned between Et₂O and pH = 7 buffer (NH₂OAc). The aqueous layer was extracted with Et₂O. The combined Et₂O layers were washed with brine and dried (Na₂SO₂). Filtration and concentration gave the crude aryl stannane as a yellow semisolid.

မ

5

WO 00/66558

- 42 -

Step B: The aryl stannane (0.74 mmol) was taken up in CH₂Cl₂ at 0 °C. Bromine (0.7 ml of 1 M Br₂ in CH₂Cl₂) was added to the solution. The solution was stirred at 0 °C for 30 min. The solution was diluted with CH₂Cl₂ and washed with 10 % Na₂S₂O₂. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₂). The solution was filtered. TFA (2 ml) was added to the solution, and the solution was stirred at 25 °C for 17 h. The solution was concentrated. The residue was partitioned between Et₂O and 1 N NaOH. The aqueous layer was extracted with Et₂O. The aqueous layer was cooled to 0 °C and acidified with conc.

10 HCl (pH = 1-2). The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₂). Filtration and concentration gave 100 mg (59 %) of the acid as a white solid.

Using procedures described following the table, compounds 8FF-8HH of the structure

were prepared, wherein R" is defined in the table:

Ex.	R ¹¹	Мр (⁰ С)	HRMS (MH ⁺)
8FF	-осн,	217-220 (2xHCl salt)	572.2048
8GG	-OH	198-204 (2xHCl salt)	558.1898
8НН	}-{_N0	200-205 (2xHCl salt)	635.2172

8FF: The trihydrochloride salt of the product of Example 8, step 3 (100 mg, 0.21 mmol) and 2,6-dichloro-4-methoxy-benzoic acid (140 mg, 0.63 mmol) were coupled according to the general procedure (EDC/HOBT/iPr₂NEt). Purification via preparative TLC (3/1 hexanes/EtOAc, SiO₂) gave 8FF as a colorless oil (27 mg, 23 %).

8

8GG: The trihydrochloride salt of the product of Example 8, step 3 (330mg 0.7 mmol) and 2,6-dichloro-4-hydroxy-benzoic acid (290 mg, 1.4 mmol) (see preparation below) were coupled according to the general procedure (EDC/HOBT/iPr₂NEt). Purification via preparative TLC (1/1 hexanes/ EtOAc, SiO₂) gave **8GG** as a colorless oil (75 mg, 19 %).

Preparatiion of 2,6-dichloro-4-hydroxy-benzoic acid

WO 00/66558 PCT/US00/11632

- 43

2,6-Dichloro-4-methoxy-benzoic acid (500 mg, 2.3 mmol) was taken up in CH₂Cl₂ and cooled to –78 °C. BBr₃ (6.9 ml of a 1 M solution in CH₂Cl₂) was added to the solution at –78 °C. The solution was warmed to 25 °C and stirred at that temperature for 16 h. The solution was quenched with 3 N NaOH. The aqueous layer was extracted with CH₂Cl₂. The aqueous layer was cooled (0 °C) and acidified with conc. HCl (pH = 1-2). The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₂). Filtration and concentration gave the crude phenol which was used without further purification.

ഗ

8HH: The trihydrochloride salt of the product of Example 8, step 3 (96 mg. 0.2 mmol) and 2.6-dichloro-4-(4-pyridyl-N-oxide)-benzoic acid (55 mg, 0.2 mmol) (see preparation below) were coupled according to the general procedure (EDC/HOBT/iPr_sNEt). Purification via preparative TLC (1/5 hexanes/acetone, SiO_s) gave 8HH as a colorless oil (54 mg, 43 %).

Preparation of 2,6-dichloro-4-(4-pyridyl-N-oxide) benzoic acid

5

5

2,4,6-Trichloro benzoic acid, tert-butyl ester (500 mg, 1.8 mmol), 4-pyridyl boronic acid (270 mg, 2.16 mmol), Pd(PCy₂)₂Cl₂ (130 mg, 0.18 mmol), and CsF (540 mg, 3.6 mmol) were taken up in NMP and heated at 100 °C under N₂ (16 h). The solution was partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine and dried (Na₂SO₂). Filtration and concentration gave the crude product. Purification via preparative TLC (1/1 hexanes/EtOAc, SiO₂) gave 68 mg (12 %) of the pyridyl ester. The tert-butyl ester was converted into the acid as done previously for the dimethyl derivative (a. mCPBA /b. TFA).

20

Using suitable starting materials and the procedures described for examples 8S to 8HH, the compounds of the following structure were prepared:

ું છ

8

WO 00/66558 PCT/US00/11632

erein R" is defined in the table

<u></u>	00	<u> </u>	00	go go	00	<u> </u>	<u></u>	<u>@</u>	<u> </u>	<u>@</u>	00	<u>00</u>	00	<u></u>	
WWB	W8	8UU	87	8SS	8AR	800	8PP	800	8NN	вмм	8LL	8KK	چ	<u>≅</u>	Ň
*** O-\$-CF ₃	YH CF3	<i>X</i>	***	*****	СН,ОН	12 	,		34 July 0.	X N	;r,	*\\ 	宁	-осн,	בּ
215-220	201-207	231-236	198-204	206-212	> 235 (dec)	205-215	135-140	> 230 (dec)	196-203	210-216	202-208	186-190	> 260	236-240	m.p. (°C)
650.2487	613.2977	580.3263	579.3311	580.3263	532.3151	602,3682	617.3679	578.3358	595.3260	579.3311	579.3311	603.3522	516.3202	532.3151	calc.
650.2497	613.2981	580.3252	579.3315	580.3258	532.3124	602.3722	617.3671	578.3368	595.3256	579.3311	579.3303	603.3513	516.3213	532.3166	found (MIT)

614.3690	614.3682	192-196	Z, Z,	8AN
616.3836	616.3838	170-174	N N	8AM
622.3129	622.3136	211-215	J. H.	8AL
527.2991	527.2998	240-250	CN	BAK
661.3949	661.3941	165-173	N(CH2CH2OMe)2	8AJ
616.3844	616.3838	200-206	\ \ \ \ \ \ \ \	8AI
574.3378	574.3369	186-192	TN. Me	ван
602.3672	602.3682	205-209	Z, Z	BAG
559.3257	559.3260	215-220	, Y N We	8AF
573.3424	573.3416	215-220	±×,E	8AE
560.3220	560.3212	215-220	y ^r N M²	8AD
559.3263	559.3260	208-213	у,Ч, Сн³	8AC
624.3204	624.3195	202-205	-}-N-#-Nw62	8AB
534.3117	534.3108	> 245	CH,F	8ZZ
5952921	595.2930	210-214	-N-S-CH3	844
545.3098	545.3103	198-201	γ∕≫ _N OH	8XX

8PP was performed on the free base All melting points were done on the bis hydrochloride salts (2xHCl) except

WO 00/66558

PCT/US00/11632

- 46 -

8AO-8AQ, the compounds of the following structure were prepared: procedures similar to those described above and following the table for Using derivatives of the triflate intermediate described in 82 in

wherein R" is defined in the table

Ex.	Ru	m.p. (°C)
8A0	-CN	240-250
8AP	-CONHEt	215-220
8AQ	-N(CH,)CONHEt	186-203
8AR	-CONH,	200-208
8AS	-CONHCH,	215-220
8AT	-CON(CH,CH,OCH,),	165-173
8AU	-CON(Et),	170-180
8AV	-N(CH,)CONHCH,	198-210
8AW	-NHCH,	190-200
8AX	-N(CH,)CONH,	190-220

5 5 g) in 77% yield. reaction was cooled to RT, diluted with EtOAc and saturated aqueous to give, after isolation of the appropriate band, the cyano intermediate (0.2 plate chromatography (2000 µM silica plates; 8:1 hexanes: EtOAc eluant), brine and evaporated to give a crude oil which was purified by preparative NaHCO3. The EtOAc layer was removed, washed with water; dried with Pd(PPh₃)₄ (0.3 g) and DMF (1.5 ml) were heated at 80 °C for 17 h. The Step 1: The triflate intermediate (see 8W) (0.4 g), Zn(CN)₂ (0.2 g),

20 form) were treated in the same fashion as Example 8, Step 4, using DMF (2 ml), HOBt (45 mg), DEC (60 mg) and diisopropyl ethyl amine (0.1 ml) to was stirred at 50 °C for 3 h and evaporated. This crude intermediate Step 2: The product of Step 1 (0.2 g) was dissolved in MeOH (1.5 ml) and (0.038 g) and the product of Example 8, Step 3 (65 mg; trihydrochloride HCI (4M solution in 1,4-dioxane; 2 ml) was added. The resulting solution

- 47

give, after isolation and purification, the free base form of 8AO, which was converted to its HCl salt (45 mg) in 95% yield.

5 Step 1: 2,6-Dimethyl-4-formyl benzoic acid (1.96 g) (see 8W) was dissolved in t-butanol (94 ml) and 2-methyl-2-butene (24 ml). A solution of NaCiO₂ (6.89 g), NaH₂PO₄ monohydrate (8.17 g) and water (45 ml) was added dropwise to the first solution. After complete addition, the pH was adjusted to 3 and two layers resulted. The organic layer was removed and evaporated to give intermediate acid (1.80 g) as a white crystalline solid, which was used without purification.

<u>Step 2</u>: To a solution of the product of Step 1 (0.62 g), CH₂Cl₂ (5 ml) and DMF (1 drop) was added oxalyl chloride (0.31 ml) and the resulting solution was stirred for 10 min, at which time a second portion of oxalyl chloride

(0.30 ml) was added. The reaction was stirred for 10 min, toluene was added and the mixture was evaporated to dryness. CH,Cl₂ (10 ml) and EtNH₂ (1 ml) were added and the reaction was stirred for 2 days, then partitioned between brine and CH₂Cl₂. The CH₂Cl₃ layer was evaporated and HCl (4 ml of a 4 M solution in 1,4-dioxane) was added. The resulting solution was stirred for 3 h and evaporated to give a solid which was

solution was stirred for 3 h and evaporated to give a solid which was washed with Et₂O and collected to give the amide intermediate (0.13 g) in 24 % yield.

Step 3: The product of Example 8, Step 3 (60 mg; trihydrochloride form) and the product of step 2 (35 mg) were treated in the same fashion as Example 8, Step 4 to give, after work up and purification, 8AP as the free base form, which was converted to the HCl salt (50 mg) in 62% yield.

25

Step 1: To a solution of the amine intermediate (2 g) (see 8Z) was added NaH (0.4 g of a 60% oil dispersion). The resulting suspension was stirred for 15 min and Me_sSO_s was added. After heating at reflux for 1.5 h, the reaction was cooled to RT, poured into saturated NH_sCl aqueous solution and extracted with Et_sO. After evaporation, the crude reaction mixture was

÷

ဗ

WO 00/66558 PCT/US00/11632

- 48 -

chromatographed on silica gel, eluting with 4:1 hexanes:EtOAc, to give, after evaporation of the appropriate fractions, the methylamine intermediate (0.8 g) in 38% yield.

Step 2: The product of Step 1 (0.12 g), THF (5 ml) and EtNCO (54 mg) were heated at reflux for 17 h. EtNCO (54 mg) and 1,4-dioxane (2 ml) were added and the resulting solution was heated in a sealed tube at 65 °C for 17 h. The solution was cooled, evaporated and purified by preparative plate chromatography (silica gel; 25% EtOAc:CH₂Cl₂), to give the desired product (0.1 g) as a crystalline solid in 64% yield.

10 <u>Step 3</u>: The product of Step 2 (0.1 g) was treated in the same fashion as Example 8, Step 3 (p 28) to give the desired intermediate (0.08 g) which was used directly in the next step.

Step 4: The product of Example 8, Step 3(75 mg; trihydrochloride form) and the product of Step 3 (0.04 g) were treated in the same fashion as

15 Example 8, Step 4, to give, after work up and purification, 8AQ as the free base form, which was converted to the HCl salt (65 mg) in 62% yield.

Using procedures described above and employing commercially available acids, compounds 8AY-8BT of the structure

20 were prepared, wherein R10 and R11 are defined in the table:

1	wale bie	were prepared, writeren n	allo n ale dell'ieu	מוש טפוווישט זוו נוזש נמטופי.
	Ex.	R ^s	R ^{II}	Mp (° C)
_	8AY	-СН,	н	205-208
	8AZ	F	н	250-255
_	8BA	CI	н	215-217
_	8BC	-Cમ,	Br	228-231
	8BD	-СН,	}—{_N	194-198
	388	Ω	CI	240-241
r—	8	Ω	TI	268-270
	986	Br	I	210-213
_	豎	Ω	Br	213-217
,—	8	Br	т	176-181
	8	_	Ι	184-190
_	8BK	-CF,	TI	204-209

- 50 -

- 49 -

275-280	NO ₂	Ω	887
230-240	I	-Si(CH ₃) ₃	8BS
211-214	Ξ	CH3CH2-	8BR
190-194	Ω	Br	880
235-240	Ω	Ξ	8BP
238-240	Ē	I	880
258-260	71)	I	8BN
215-220	Į.	Ω	8BM
268-270	П	TI	88L
		100000000000000000000000000000000000000	

compounds were prepared: Using procedures similar to those described above, the following

wherein \mathbb{R}^8 , \mathbb{R}^3 , \mathbb{R}^6 and \mathbb{R}^2 are as defined in the table

8CB	8CA	882	884	8ВХ	8BW	8BV	8BU	Ε̈́
ĊF ₃	-CF ₃	-CF ₃	ĊF3	-CF ₃	-ÇF ₃	ĊF ₃	ĊF ₃	P.
/	ĈH ³	ĈH3	ĒH3			 .	.: <u>C</u>	Ę
-CH ₂ CH ₃	-СН2СН3	-CH ₃	-CH ₃	-CH ₃	-CH ₃	-CH ₃	순	P.
Z = Z	Z=/	ıg∰ş	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			F ₃ C_N	H ₃ C _N N	ᆪ
200-202	179-181	237-240	195-200	235-238	212-217	80-85	195-220	Mp (°C)

8CF	8CE	8CD
-CF ₃	F ₃ C N ²	-CF ₃
\triangleright	ĈH³	/
-CH ₃	-СН ₃	-СН,СН,
,	K,	NHCONHE
235-239	206-210	199-205

methoxy-benzyl chloride (1.1 ml; 8.1 mmol) and diisopropyl ethyl amine Concentration gave the crude product, which was purified by FSGC (10% dissolved in CH_2Cl_2 (30 ml) and washed with water and brine. was cooled to RT and volatiles were removed in vacuo. The residue was (1.5 ml) in dry CH₃CN were heated at reflux for 5 h. The reaction mixture Step 1: A solution of 4-N-BOC-2(S)-methyl piperazine (1.5g; 7.5 mmol), 4-

Extractive work-up in CH₂Cl₂ furnished the desired product (1.4g; 97%) as 6.56 mmol) in 12 ml of CH₂Cl₂ and the mixture stirred at 25° C for 1.5 h. The reaction was quenched with 1N NaOH and adjusted to pH 10. TFA (6 ml) was added to a solution of the above compound (2.1g;

5

EtOAc-hexanes) to obtain 2.1g (88%) of product as a pale yellow liquid.

8 ᆳ another day. The Strecker amine thus formed was worked-up and isolated a coloriess gum. EtOAc-CH2Cl2. (2.7g; 100%) as described in Example 8, step 2. TLC $R_{\text{t}} = 0.3$ in 25% to the reaction mixture and the mixture stirred at ambient temperature for at 25°C for 24h. A 1M solution of Et₂AlCN in toluene (7.6 ml) was added piperidinone (1.27g; 6.4 mmol) and Ti(OiPr)₄ (1.9 ml; 6.4 mmol) was stirred Step 2: A mixture of the product of step 1 (1.4g; 6.36 mmol), N-BOC-4-

 8 the ice bath was removed and the reaction allowed to proceed at RT for change from the starting material; the mixture was warmed at 60° C for 5 h 15 h. TLC analysis of the heterogeneous reaction mixture showed no THF at 0° C and CH₃MgBr (3M in Et₂O; 10.5 ml) was added to it. After 1 h, The Strecker amine (2.7g; 6.3 mmol) was dissolved in 15 ml of dry

with no observed change in TLC behavior. The reaction mixture was

-51.

quenched with saturated NH₄Cl and organic products extracted into CH₂Cl₂. FSGC of the crude product (2.7g) using 15% acetone-hexanes as the eluant provided the desired ipso-methyl compound as a colorless gum (2.3g; 87%).

- 5 <u>Step 3</u>: The product of step 2 (1.7g; 4.08 mmol), ammonium formate (1.4g; 22 mmol) and 10% palladium on carbon (0.4g) were mixed in 20 ml of CH₃OH and heated at reflux for 5 h. The reaction mixture was filtered through celite and volatiles were removed. The residue was dissolved in CH₂Cl₂ and washed with 10% NaOH solution, water and brine.
- 10 Concentration in vacuo gave 1.1g (92%) of pale yellow gum.

 Step 4: A solution of the product of step 3 (0.12g; 0.4 mmol), p-trifluoromethyl benzyl bromide (0.1g; 0.4 mmol) and diisopropyl ethyl amine (0.1 ml) in dry CH₃CN was gently warmed (60-70° C) for 16 h. The mixture was cooled and organic product isolated via extractive work-up in CH₂Cl₂.
- 15 FSGC (10-30% Et₂O-CH₂Cl₂; R₁ = 0.4) yielded the major product as a colorless film (0.12g; 68%).

Treatment of the above product (in CH₂Cl₂) with TFA (1 ml) for 1 h followed by basification and standard work-up provided the desired compound (0.09g; 96%) as a colorless film.

20 <u>Step 5</u>: The product of step 4 (0.045g: 0.13 mmol) and 6-chloro anthranilic acid (0.022g: 0.13 mmol) were coupled as described in Example 1 and after work-up and FSGC (5% CH₃OH in CH₂Cl₂) the title compound was isolated as a colorless film (0.058g; 90%).

The HCl salt of the title compound was prepared in the usual manner by the reaction of the free base with 1M HCl-Et₂O and processing the precipitate to obtain a beige solid (0.066g).

Using a similar procedure, the product of step 3 was converted to other compounds, first by alkylation of the piperazine nitrogen with the appropriate halide, followed by deprotection and coupling of the piperidinyl portion with the appropriate acid to form the amides of general structure:

မ

wherein R and R² are as defined in the table:

:

WO 00/66558 PCT/US00/11632

- 52

క	92	9M	9L	9	9	9	ЭН	96	316	98	90	ဗိ	.88	9A	Ϋ́,
F,C	*	MeQ			MeO N	MeO_N	, o./		F,CO.	F,CO C	. 🗟	\triangleright	F _y C \(\sum_{\cdot\}\)	F,C (J D
		\Rightarrow	NH ₂	-\	<u>*</u>	-\=	<u></u>	>≼	<u>*</u>	⇒	<u></u>	\Rightarrow	⇒	<u></u>	P2
192-205	246-251	229-232	212-216	268-271	229-232	226-229	222-226	201-204	244-247	206-209	249-251	247-249	204-208	246-249	Mp (° C)
:	434.3168	450.3126	476.1975	455.2577	472.2474	451.3060	505.2039	484.2630	525.2242	504.2848	567.1407	546.1978	488.2895	509.2293	HRMS (MH*)

ន

-54

ထို 9 9 R 9 9 98 258-262 203-206 202-210 185-196 180-205 190-205 ; : : ;

4-ethoxynaphthyl were also prepared: Using a similar procedure described below, compounds wherein R is

Steps 1-3: See Example 9.

 $\underline{\text{Step.4A}}$: 4-Hydroxynaphthaldehyde (0.86g) and K₂CO $_3$ (1.38g, 2 equiv.) in

ಠ Ç residue was placed on preparative thin layer plates (10, 1000 μ), and eluted concentrated in vacuo, the residue treated with EtOAc, and the mixture CH₃CN (35 ml) were treated with CH₃CH₂I (0.80 ml, 2 equiv.), and the was concentrated in vacuo to give an orange-brown residue (0.89g). This filtered. The filtrate was partitioned with H2O. The dried (MgSO₄) EtOAc resulting mixture was stirred at RT for 20 h. The reaction mixture was

with CH₂Cl₂ to give the title compound (0.82g). 4A (0.571g; 2.9 mmol) in CH₂Cl₂ (25 ml) were stirred at RT for 30 min. Step 4: Under argon, the products of step 3 (0.270g; 0.95 mmol) and step

Na(OAc)3BH (0.506g; 3.4 mmol) was added. After 19 h, the reaction

8 ᇙ washed with CH₂Cl₂ (5X), THF (5X), THF:H₂O (5X), H₂O (5X), CH₃OH (5X) and CH_2Cl_2 (5X). The resin was eluted with 2M NH3 in CH_3OH (300 to ~50 ml. Amberlyst 15 (4.5 meq/g: 2.4g; 11.025 mmeq) was added. After (3X) and then brine. The dried (MgSO₄) CH₂Cl₂ solution was concentrated with CH₂Cl₂ (3X). The combined CH₂Cl₂ solution was washed with H₂O mixture was quenched with dilute NaOH. The aqueous layer was washed 19 h, additional Amberlyst 15 (2.3g) was added. After 7 h, the resin was

> and eluted with CH₂Cl₂:2M NH₃ in CH₃OH (9:1) to give an amber oil ml) (3X), followed by concentration in vacuo to give an amber oil (0.215g). The crude material was placed on preparative thin layer plates (4, 1000µ),

9, step 5, the following compounds were prepared: Step 5: Using the appropriate carboxylic acid in the procedure of Example

(0.125g, 36%)

LCMS found M+H = 531; HPLC Retention time 5.52 min.

ಕ LCMS found M+H = 516; HPLC* Retention time 5.66 min. min; Soln A 0.1% TFA/H₂O, Soln B 0.1% TFA/CH₃CN at 245 nm HPLC: VYDAC 218TP5405 column; gradient 5-95% B over 10 min hold 2

have the methyl substituent, the following compound was prepared: Using a similar procedure wherein the starting piperazine does not

5

Example 10

20 cooled, diluted with 30 ml of CH₂Cl₂ and washed with 1N NaOH solution, ml of CH₂Cl₂ was heated at gentle reflux for 14 h. The contents were p-iodobenzaldehyde (0.46g; 2 mmol) and NaBH(OAc)₃ (0.65g; 3 mmol) in 6 Step 1: A solution of 4-N-BOC-2(S)-methyl piperazine (0.4g; 2 mmol),

afforded the desired product (0.66g; 79%) as a colorless film. TLC R, = 0.6 water and brine to isolate an yellow oil (0.8g). FSGC (25% EtOAc-hexane) 25% EtOAc-hexane

თ standard work up, the mono-alkylated piperazine (0.5g; 100%) was 1.58 mmol) by treatment with TFA (1 ml) in CH2Cl2 (2 ml). Following obtained as a colorless gum. The BOC protecting group was removed from the product (0.66g

Step 2: NaBH(OAc)₃ (0.63g; 3 mmol) and two drops of AcOH were added

ಠ piperidinone (0.6g; 3 mmol) in 5 ml of CH₂Cl₂ and the resulting solution FSGC, the desired product (0.6g; 76%) was obtained as a colorless oil. was stirred at ambient temperature for 16 h. After the usual work up and TLC $R_1 = 0.4$ in 25% acetone-CH₂Cl₂. to a solution of the product of step 1 (0.5g; 1.58 mmol) and N-BOC-

5 protected compound (0.6g; 1.2 mmol) by treatment with TFA (2 ml) in The free piperidine (0.38g; 79%) was prepared from the N-BOC

8 previously. This procedure furnished the compound 10A (0.13g; 73%) as a amine (0.1 ml), followed by product isolation, were carried out as described Compound 10A: The coupling of 6-chloro anthranilic acid (0.065g; 0.38 colorless film. TLC $R_1 = 0.5 / 0.45$ for a pair of rotomers in 2% CH₃OH-DEC (0.092g; 0.48 mmol), HOBT (0.065g; 0.48 mmol) and diisopropylethyl mmol) with the product of step 2 (0.127g; 0.32 mmol) in the presence of

25 manner. Mp: 198-202° C; HRMS (MH*) = 553.1231. The HCI salt of the title compound was prepared in the usual

acid gave compound 10B (HCl salt) in 73% yield. Mp: 197-200° C; HRMS Compound 10B: Coupling the product of step 2 with 6-methyl anthranilic $(MH^{T}) = 533.1774.$

မွ step 2 to obtain the amide 10C (HCl salt) in 50% yield. Mp: 202-205° C; $HRMS (MH^{+}) = 532.1826$ <u> 20mpound 10C</u>: 2,6-Dimethyl benzoic acid was coupled to the product of

dropped into ice-cold trifluoroacetic anhydride (40 ml) in CH2Cl2 (200 ml) within 15 min. The mixture was stirred at RT for 1 h, then cooled in an ice Step_1: (S)-Methylbenzylamine (27 mt, 0.2 mol) in CH₂Cl₂ (50 ml) was

. 35

WO 00/66558

ഗ and washed with NaHCO3, filtered through a short silica gel column and aqueous, 500 ml) and stirred for 0.5 h. The organic layer was separated mixture was diluted with CH₂Cl₂ (500 ml) and ice-cold Na₂SO₃ (10% overnight in the dark, more [bis(trifluoroacetoxy)iodo]benzene (24 g, 0.056 acetoxy)iodo]-benzene (25 g, 0.058 mol). After being stirred at RT washed with CH₂Cl₂ (500 ml). After CH₂Cl₂ was evaporated, Et₂O (125 water bath, iodine was added (27 g, 0.106 mol) and then [bis(trifluoromol) was added and the mixture was stirred at RT for one more day. The

ಕ was dried at RT and iodo compound (36.5 g, 53% yield, R_t = 0.7, added gradually to the Et₂O solution and the mixture was stirred for 0.5 h EtOAc/hexanes, 1:3) was obtained. Step 2: The product of step 1 (11.2 g, 0.033 mol) was dissolved in CH₃OH The precipitate was collected and washed with hexanes. The white solid

ml) was added and the mixture stirred for 10 min. Hexanes (600 ml) was

5 combined organic portion was washed with brine, dried over Na₂SO₄, evaporated, the aqueous layer was extracted with Et2O (3x100 ml) and the dropwise. The mixture was stirred at RT for 2.5 h. After the CH₃OH was (200 ml) and NaOH (15 g, 0.375 mol) in water (100 ml) was added

filtered and concentrated to give a free amine.

23 8 to the triflate solution followed by K₂CO₃ (18 g, 0.132 mol) in water (20 ml) washed with 2N HCl. The freshly prepared amine from above was added 30 min. More CH₂Cl₂ was added to the mixture and the solution was stirred for 5 min at -78° C. The mixture was warmed to RT and stirred for and then 2,6-lutidine (6.27 g, 0.059 mol) were added and the mixture was atmosphere. Trifluoromethane sulfonic anhydride (10.2 g, 0.036 mmol) and the mixture was stirred and cooled in acetone-CO2 to -78°C under N2 The mixture was stirred at RT overnight. Extractive work-up with CH₂Cl₂ Methyl-R-lactate (4.08 g, 0.039 mol) was dissolved in CH₂Cl₂ (40 ml)

ၓၟ မ C for 30 min., warmed up to RT and stirred overnight. Water (100 ml) was NH₄OH (56 ml, 1.04 mol) were added. The reaction mixture was stirred 0° was dissolved in DMSO (40 ml) at 0°C and NaI (5.2 g, 0.035 mol) and dichloroethane (100 ml) and CICH₂COCI (117.2 g, 82 ml, 1.04 mol). The $(8.27 g, 75\% \text{ yield}, R_t = 0.65, \text{hexanes/EtOAc}, 3:1)$ as a yellow syrup. CICH₂COCI were removed under vacuum. The remaining yellow syrup mixture was stirred under reflux condition for 3 h. Both the solvent and Step 3: The amine of step 2 (17.3 g, 0.052 mol) was dissolved in followed by silica gel column chromatography gave a secondary amine

added to the mixture and the precipitate was filtered and washed with

diketopiperazine (14.3 g, 77% yield, R, = 0.56, hexanes/ EtOAc, 3:1). water. The white solid obtained was dried in air to give the Step 4: The diketopiperazine of step 3 (14.3 g, 0.04 mol) was dissolved in

dimethoxy ethane (200 ml) and NaBH₄ (15.1 g, 0.4 mol) and BF₃-OEt₂ (34

g, 29.5 ml, 0.24 mol) were added to the solution. The mixture was stirred CH₃OH (500 ml) and then concentrated HCl (300 ml) were added slowly to under reflux conditions for 3 h and then cooled to about 0°C on a ice bath. reflux conditions for 45 min. The mixture was concentrated and NaOH was the mixture. The solution was stirred for 20 min. at RT and then under

ಠ added until the pH was more than 10. Extractive work up with EtOAc gave the desired piperazine as a yellow syrup (12.9 g, 98% yield). (5.73 g, 28.8 mmol), NaBH(OAc)₃ (6.1 g, 28.8 mmol) and 2M AcOH (5.76 Step 5: The product of step 4 (1.9 g, 5.79 mmol), N-BOC-4-piperidone

ដ stirred overnight. After the solvent was removed, NaOH (3N) was added afforded pure piperazino-piperidine (2.21 g, 75% yield, $R_l = 0.18$, and extractive work up with EtOAc followed by silica gel chromatography hexanes/EtOAc, 1:1) as a syrup. ml, 11.52 mmol) were combined in CH₂Cl₂ (150 ml) and the mixture was

Step 6: The product of step 5 (1.9 g, 3.7 mmol) was dissolved in CH₂Cl₂

8 syrup. To a solution of the free piperazino-piperidine (200 mg, 0.484 mmol) EtOAc gave the free piperazino-piperidine (1.3 g, 85% yield) as a yellow solution (3N) was added to the remaining syrup and extractive work up with (10 ml) and TFA (10 ml) was added. The mixture was stirred at RT for 2 h. After the removal of the solvent and TFA under reduced pressure, NaOH

25 in CH₂Cl₂ (2 ml) were added 2,6-dimethylbenzoic acid (150 mg, 0.99 syrup and extractive work up with EtOAc followed by column under reduced pressure. NaOH solution (3N) was added to the remaining mixture was stirred at RT overnight and then the solvent was removed mmol), DEC (191 mg, 0.99 mmol) and HOBT (135 mg, 0.99 mmol). The

မွ chromatography afforded the title compound (210 mg, 80% yield, $R_{\rm f}$ = 0.37 546.1981, found 546.1965. Mp: 190° C (dec.) CH₂Cl₂/CH₃OH, 20:1). HRMS (as the HCl) calcd for C₂₇H₃₇N₃OI (M+H⁺)

Using a similar procedure, compounds of the formula

were prepared, wherein R9 and R10 are as defined in the table:

႘ၟ

WO 00/66558

PCT/US00/11632

	Ϋ́	Ŋ	A10	Mp (°C)	HRMS
	11A	-СН3	-NH ₂	198 (dec.)	547.1928
	11B	-CI	-NH ₂	203 (dec.)	567.1395
	11C	-OH	-ОН	200 (dec.)	550.1555
-	110	-0СH ₃	-осн _з	200 (dec.)	578.1860

ಠ ഗ CH₂Cl₂ was added Ti(OiPr)₄ (1.19 g, 4.2 mmol) and the mixture was stirred at RT overnight. 1M Et₂AlCN (5.04 ml, 5.04 mmol) was added, the mixture mixture was stirred at RT overnight, then cooled to 0°C and saturated ml) and 3M CH₃MgBr (7 ml, 21 mmol) was added to the solution. The the Strecker amine as a yellow syrup. The syrup was dissolved in THF (40 NaHCO₃ was added to the residue and extractive work up with EtOAc gave was stirred overnight at RT and the solvent was evaporated. Saturated Step 1: To the solution of the product of Example 11, step 4 (1.4 g, 4.2 mmol) and 1-tert-butoxycarbonyl-4-piperidone (0.93 g, 4.67 mmol) in

5 Step 6, to obtain the title compound. Mp. 190° C (dec.); HRMS (as the Step 2: Treat the product of step 1 in the manner described in Example 11. HCI salt): found 560.2145

81% yield, R_I = 0.52, hexanes/EtOAc, 2:1).

silica gel chromatography gave the piperazino-piperidine product (1.78 g. NH₄Cl and water was added. Extractive work up with EtOAc followed by

Using a similar procedure, compounds of the formula

8 were prepared, wherein R2 is as

		···		2
12C	128	12A	Ex	oparca,
€но Ден	н₂М ДСН3	IS N ^Z H	R ²	ייכוכ טוכטמוכט, אוופוכווו וו־ זם מם מפווווכט ווו וווט ומטופ.
208 (dec.)	150 (dec.)	145 (dec.)	mp (°C)	Comment of the
561.2096	561.2083	581.1537	HRMS	10000

59-

4 (250 mg, 0.581 mmol) in DMF (2.5 ml), CuCl (1 g, 10.1 mmol) was Step 1: To a solution of the N-BOC protected product of Example 11, step

ഗ

- added. The suspension was stirred under N2 at 110°C for 24 h. After the chloro-substituted piperazine and its BOC derivative. After treating the turned bright blue. Extractive work up with EtOAc gave a mixture of the mixture was cooled to RT, NH4OH was added and the solution gradually mixture with TFA (5 ml) in CH₂Cl₂ (2 ml) for 2 h, the solvent was
- ಠ evaporated and NaOH (3N) was added. Extractive work up with EtOAc Step 2: The product of step 1 was treated in a manner similar to Example afforded the pure piperazine (110 mg, 79%) as a yellow syrup. (as the HCl salt): found 454.2617. 11, steps 5 and 6, to obtain the title compound. Mp. 180° C (dec.); HRMS
- Using a similar procedure, compounds of the formula

5

:

WO 00/66558 PCT/US00/11632

were prepared, wherein R9 and R10 are as defined in the table:

	Εx	R ⁹	H10	Mp (°C)	HAMS
_	13A	-СН3	-NH ₂	200 (dec.)	455.2577
	13B	-CI	-NH ₂	200 (dec.)	475.2023
	13C	-CI	-CI	187 (dec.)	494.1536

compounds of the formula Using the product of step 1 in the procedure of Example 12,

were prepared, wherein R2 is as defined in the table:

131	13H	13G	13F	13E	13D	Ex
EHO CHO	CL CI	H3CH3 CH3	H ₂ N CH ₃	H ₂ N Cl	нзстонз	R ²
200 (dec.)	260 (dec.)	195 (dec.)	210 (dec.)	205 (dec.)	197 (dec.)	Mp (°C)
485.2688	509.1634	470.2689	469.2734	489.2184	468.2779	HRMS

The suspension was stirred under N₂ at 110°C for 22 h. After the mixture chromatography gave the cyano derivative (2.29 g, 60% yield, R₁ = 0.5, was cooled to RT, NH₄OH was added and the solution gradually turned hexanes/EtOAc, 4:1), the carboxamide derivative (0.95 g, 23.6% yield, R, = bright blue. Extractive work up with EtOAc followed by silica gel column 4 (5 g, 0.012 mol) in DMF (20 ml), CuCN (20.8 g, 0.23 mol) was added. Step 1: To a solution of the N-BOC protected product of Example 11, step

ಕ

WO 00/66558 PCT/US00/11632

yield, $R_i = 0.75$, hexanes/EtOAc, 2:1). 0.2, CH₂Cl₂/CH₃OH, 10:1) and the unsubstituted derivative (85 mg, 2.4%

the title compound following the procedure of Example 11, steps 5 and 6 Step 2: The BOC group on the cyano compound of step 1 was first removed under acidic conditions and the resultant amine was converted to

HRMS (as the HCl salt): found 445.4970.

ഗ

ಠ added NaBH₄ (3.69 g, 97.6 mmol) slowly. A black precipitate was formed 4 (1.4 g, 3.26 mmol) and CuCl (1.61 g, 16.3 mmol) in CH₃OH at 0° C was Extractive work up with EtOAc afforded the desired compound (1g, 100% removed by cellte filtration and CH₃OH was removed under vacuum. The mixture was warmed to RT and stirred overnight. The precipitate was Step 1: To a solution of the N-BOC protected product of Example 11, step

Step 2: The BOC group on the product of step 1 was removed under acidic

ឆ

yield, R_t = 0.55, hexanes/EtOAc, 5:1) as a syrup.

conditions and the resultant amine was converted to the title compound Mp. 195° C; HRMS (as the HCl salt): found 420.3016. following the procedure of Example 11, steps 5 and 6.

Using a similar procedure, the following compound is prepared:

20

HRMS (as the HCl sait): found 441.2426

Example 16

25 Extractive work up with EtOAc followed by silica gel column mmol), 2M Na₂CO₃ (14 ml) and tetrakis(tri-phenyl phosphine) palladium 4 (2.5 g, 5.8 mmol) in benzene were added phenyl boric acid (1.68 g, 13.8 chromatography gave the phenyl derivative (1.37g, 62% yield, $R_{\rm f}$ = 0.5 (0.67 g, 0.58 mmol). The mixture was stirred under reflux overnight. Step 1: To a solution of the N-BOC protected product of Example 11, step

conditions and the resultant amine was converted to the title compound Step 2: The BOC group on the product of step 1 was removed under acidic မ

hexane/EtOAc, 5:1) as a syrup.

WO 00/66558 PCT/USQ0/11632

Mp. 190° C; HRMS (as the HCl salt): found 496.3319 following the procedure of Example 11, steps 5 and 6. Using a similar procedure, compounds of the formula

were prepared, wherein R2 is as defined in the table:

	2?5666	223255	223254	Sch
	160	16B	16A	m X
Z- ₹ Z=	но~~сна	⁶ H2 H2N CH3	H ₂ N CI	₽
	190 (dec.)	65-70*	190 (dec.)	Mp (° C)
	498.3225	497.3287	517.2754	HRMS

free base

5 **5** mmol) was dissolved in dry THF and the temperature was brought to -78° C Saturated NH₄Cl was added to the mixture and extractive work up with under N2. Butyl lithium (2.5 M solution, 0.832 ml, 2 mmol) was added and Step 1: The N-BOC protected product of Example 11, step 4 (800 mg, 1.88 mixture was stirred for 30 min. at -78° C, then gradually warmed up to RT. into p-chlorobenzyl aldehyde (234 mg, 2.07 mmol) in THF at -78° C. The the mixture was stirred at -78°C for 10 min. The solution then was dropped

8 remaining syrup. Extractive work up with EtOAc afforded the chlorobenzy removed under reduced pressure, NaOH solution (3N) was added to the (52 mg, 0.45 mmol) and TFA (5 ml) in CH₂Cl₂ (5 ml) was stirred under derivative (20 mg, 68% yield) as a yellow syrup.. reflux conditions for 2 h. After CH₂Cl₂, triethylsilane and TFA were Step 2: A solution of alcohol of step 1 (40 mg, 0.090 mmol), triethylsilane

alcohol (30 mg, 3.6% yield, R_i = 0.5, hexanes/EtOAc, 2:1) as a yellow EtOAc followed by silica gel column chromatography gave the desired

WO 00/6558 . PCT/US00/11632

- 63 -

Step 3: The product of step 2 was converted to the title compound following the procedure of Example 11, steps 5 and 6. Mp. 170° C (dec.): HRMS (as the HCl salt): found 544.3101.

Example 1

ഗ

Step 1: To a solution of the N-BOC protected 4-piperidinyl derivative of the cyano compound of Example 14, step 1 (510 mg, 1.24 mmol) in Et₂O (4 ml) was added 3M CH₃MgBr (4 ml) in a dropwise manner. The mixture was stirred under reflux overnight. After the solution was cooled on ice-bath,

10 12N HCI (4 ml) was added and the mixture was stirred on a steam bath for 2 h. The solution was cooled to RT and solid NaOH pellets were added until the pH was more than 10. Extractive work up with EtOAc/CH₃OH (3:1) afforded the desired methyl ketone (249 mg, 61% yield) as a syrup.

Step 2: The product of step 1 was treated according to the standard DEC peptide coupling procedures of Example 11, step 6, to obtain the title

compound. Mp. 210° C; HRMS (as the HCl salt): found 483.2522.

Using a similar procedure, the following compound is prepared:

Mp. 210° C (dec.); HRMS (as the HCl salt): found 463.3088

8

Step 1: To a solution of the product of Example 22 (140 mg, 0.29 mmol) in CH₃OH (10 ml) and EtOH (1 ml) were added NH₂OCH₃·HCl (738 mg, 8.84 mmol) and NaOAc (725 mg, 8.84 mmol). The suspension was stirred at 40 °C overnight, the solvents were evaporated and water was added to the residue. Extractive work up with EtOAc followed by silica gel chromatography generated the title compound (99 mg, 68% yield, R_I = 0.38, CH₂Cl₂/CH₃OH, 20:1). HRMS (as the tartrate) calc'd. for C₃₁H₄₅N₄O₂ (M+H*) 505.3543; found 505.3542.

25

Using a similar procedure, compounds of the formula

÷

မ

WO 00/66558 PCT/US00/11632

were prepared, wherein R8, R6 and R2 are as defined in the table

	19E	19D	19C	198	19A	Ex
	н₃с—с—}	н₃с—с—}	NOCH2CH3 H3C-C}	үосн _э н₃с—с—}	үосн _з н₃с—с—}	R8
n	-CH ₃	-CH ₃	н	н	н	끯
	H ₃ C _N CH ₃	H ₃ C CH ₃	H ₃ C _N CH ₃	H ₃ C _N CH ₃	H ₂ N CI	콗
	195 (dec.)	180 (dec.)	:	150 (dec.)	194 (dec.)	mp (°C)
	493.3291	508.3296	506.3494	492.3344	512.2785	HRMS

Dissolve the free piperazino-piperidine of Example 11, step 6 (1.7 g, 3.3 mmol) in CHCl₃ (30ml; = Stock solution A). Add 250 ul of stock solution A (0.027 mmol) to a slurry of 0.15 g (~ 0.14 mmol) of resin bound cardodiimide (prepared by reacting Argopore-Cl resin with 1-(3-dimethylaminopropyl)3-ethyl carbodiimide in DMF at 100° C in DMF (1.5ml) in a polyethylene SPE cartridge. To this mixture add 75ul of a 1 M solution of

polyethylene SPE cartridge. To this mixture add 75ul of a 1 M solution of 5-methyl-3-phenylisoxazole-4-carboxylic acid in DMF (0.075 mmol), and HOBT (24 ul of a 1M solution in DMF). Shake this mixture for 14 h, filter and add 0.1 g of Amberlyst-15 resin (0.47 mmol) to the filtrate. Shake for 1 to 2 h, filter and wash the resin twice with each of the following solvents THF, CH₂Cl₂ and CH₃OH, then wash with THF and CH₂Cl₂. Treat the

resin with 2M NH₃ in CH₃OH (1 time for 30 min, and 1 time for 5 min). Combine and concentrate the filtrates under reduced pressure to afford the title compound. LCMS found MH $^+$ = 599.1 (calculated MW 598); TLC R_f = 0.74 (CH₂Cl₂/CH₃OH/NH₄OH (95/5/0.5)).

gave the following compounds Using the procedure above with the appropriate carboxylic acids

20K	20,	201	201	20G	20F 1	20€	20D ş	20C	20B	20A	×
£	\	J.		F	н _а со т осн,		£ (ÇÇ, ÇÇ, ÇÇ,	ō-∰ō ŽĀ	_ \text{\tint{\text{\tint{\text{\ti}\}\tittt{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}}\text{\texi}}}\text{\text{\text{\text{\text{\text{\text{\texi}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	72,
MH ⁺ = 546.1 R_t = 5.37 min.	MH+ = 558.1 R _t = 5.35 min.	$MH^+ = 586.1$ $R_1 = 6.02 \text{ min.}$	$MH^+ = 568.1$ $R_1 = 5.67$ min.	$MH^+ = 606.1$ $R_1 = 6.17 \text{ min.}$	MH+ \approx 658.2 R _t = 5.69 min.	$MH^+ = 604.1$ $R_1 = 5.60 \text{ min.}$	MH+ = 588.1 R ₁ = 6.61 min.	$MH^+ = 560.1$ $R_1 = 5.77 \text{ min.}$	MH+ = 601.1 R ₁ = 5.69 min.	MH+ = 600.1 R _t = 6.56 min.	LCMS results
0.52	0.33	0.63	0.57	0.43	0.86	0.87	0.66	0.60	0.63	0.92	TLC R _f values

WO 00/66558

- 66 -

6.96 mmol), 1-ten-butoxycarbonyl-4-piperidone (1.66g, 8.35 mmol) and was first removed under acidic conditions and the resulting amine (1.59 g, Step 1: The BOC group on the cyano compound of Example 14, step 1, at RT and the solvent was evaporated. Saturated NaHCO3 was added to Et₂AlCN (8.35 ml, 8.35 mmol) was added, the mixture was stirred overnight Ti(OiPr)₄ (2.18 g, 7.66 mmol) in CH₂Cl₂ were stirred at RT overnight. 1M

5

chromatography gave the Strecker amine as a yellow syrup (1.76 g, 58%

the residue and extractive work up with EtOAc followed by column

yield, $R_t = 0.70$, Hexanes/EtOAc, 2:1).

5 Saturated NH₄Cl (10 ml) was added and a precipitate appeared. Water (40 derivative (169 mg, 86% yield, R_i = 0.53, Hexanes/EtOAc, 2:1). EtOAc followed by column chromatography gave the desired ipso-methyl ml) was addded and the precipitate disappeared. Extractive work up with dropwise. The mixture was stirred at RT overnight and then cooled to 0°C. anhydrous THF (2 ml) and 3M CH₃MgBr (0.76 ml, 2.29 mmol) was added Step 2: The amine of Step 1 (200 mg, 0.46 mmol) was dissolved in

20 Example 11, Step 6, to obtain the title compound. Dec. 198°C; HRMS (as the HCI salt): found 460.3079. Step 3: The product of step 2 was treated in the manner described in

Using a similar procedure, compounds of the formula

were prepared, wherein R2 is as defined in the table:

21D	210	21B	21A	Ex
H ₃ C-X-CH ₃	CI CI	H ₃ C CH ₃	H ₂ N Ci	R²
195 (dec.)	250 (dec.)	65-75* * Mp for the free amine	205 (dec.)	Mp (°C)
461.3019	500.1992	476.3033	480.2532	HRMS

PCT/US00/11632

ហ a steam bath for 2 h. After the mixture was cooled on ice, NaOH was added dropwise. 12N HCl (6 ml) was added and the mixture was stirred on conditions overnight. The mixture was cooled on ice and water (5 ml) was Step 1: The Strecker amine from Example 21, step 1 (380 mg, 0.87 mmol) was treated with CH₃MgBr (2.9 ml, 8.7 mmol) in Et₂O (5 ml) under reflux

ö Mp. 80-85° C; HRMS found 476.3271. following the peptide coupling procedure described in Example 11, step 6 Step 2: The product of step 1 was converted to the title compound EtOAc afforded a free amine as a syrup (307 mg, 100% yield).

added until the pH of the solution was above 10. Extractive work up with

ಠ

to give the desired product as a yellow liquid (64.7 g) in 65% yield, which

Using a similar procedure, compounds of the formula

5 were prepared, wherein R2 is as defined in the table

228	22A	Ex.
H ₃ C CH ₃	H3C CH3	R ²
200 (dec.)	195 (dec.)	Mp (°C)
478.3178	493.3172	HRMS

ml) were mixed together, using an overhead mechanical stirrer. CH3CN Step 1: Ethyl diacetoacetate (93.4 g), Cs₂CO₃ (185 g) and CH₃CN (550)

8

WO 00/66558

PCT/US00/11632

extracts were combined and Et₂O (300 ml) was added. The resulting (pH = 11). The Et₂O layer was dried over MgSO₄, filtered and evaporated was cooled in an ice bath and washed once with cooled (0°C) 2 N NaOH Et₂O extracts were combined and evaporated to half volume. The solution mixture was filtered, the filter cake was washed with Et_2O (2 X 100 ml), the trifluoromethane sulfonate (88.6 g) was added dropwise and after addition, filtered, and the salts were washed with Et₂O (2 X 50 ml). The organic the cooling bath was removed. The mixture was stirred for 1 h at RT, (50 ml) was added and the resulting mixture was cooled to 0°C. Methyl

acetate (36.2 g) were mixed together at RT. After refluxing for 4 h, the (commercial solution; 21 wt%; 113 g) ethanol (587 ml) and formamidine Step 2: The product of step 1 (64.2 g), sodium ethoxide in ethanol was used directly in the next step.

8 5 silica gel chromatography (980 g; 4:1 hexanes:EtOAc as eluant). After isolated in 46% yield and used directly in the next step. evaporation of the appropriate fractions, the desired product (28.5 g) was ethanol was removed under vacuum. The resulting liquid was partitioned mixture was cooled to RT, the resulting precipitate was filtered off and the and evaporated to give a dark crude liquid (50.7 g) which was purified by CH₂Cl₂ (3 x 150 ml). The CH₂Cl₂ extracts were dried over MgSO₄, filtered between water and $\mathrm{CH_2Cl_2}$ and the aqueous layer was extracted with

Step 3: The product of step 2 (28.1 g), NaOH (6.72 g), water (65 ml) and

မ 25 resulting white solid was treated with toluene (2 x 20 ml), the solvent was 5.30%, N 18.41%; found: C 55.13%, H 5.44%, N 18.18%. h. The desired product (14.9 g) was isolated as a white solid in 63% yield removed in vacuo at 50°C and then dried under vacuum (1 mm Hg) for 18 stirring. The resulting white precipitate was collected by filtration, washed was cooled to 0°C and conc. HCl (14.3 ml) was added dropwise with in vacuo until a thick paste resulted. Water (20 ml) was added, the mixture resulting solution was cooled to RT and the volatile materials were removed mp: 176-178°C. Elemental analysis of C7H8N2O2: calc'd C 55.26%, H with ice water (2 X 10 ml) and air dried with suction for 30 min. The EtOH (130 ml) were mixed together at RT and heated at reflux for 1h. The

precipitate formed was collected by filtration. The resulting solid was resulting mixture was stirred at RT for 5 min, cooled in an ice bath and the aqueous filtrate (from above) to dryness and addition of water (20 ml). The A second crop of product was isolated by evaporation of the

ၾ

product of step 3 (3.45 g) were mixed together and DEC (4.35 g) was product (4.68 g) as a cream colored solid to give a combined yield of 83% DMF (11.3 ml), HOBt (3.07 g), diisopropyl ethyl amine (12.3 ml) and the washed with ice water (2 X 5 ml) and dried as described above to give the Step 4: The product of Example 4, step 6 (trihydrochloride form; 5.4 g),

- added in portions over 15 min. The resulting mixture was heated at 45°C for 18 h, cooled to RT, diluted with EtOAc (80 ml) and washed with 2 N NaOH (25 ml). The aqueous layer was extracted with EtOAc (3 x 25 ml), the organic extracts were combined, washed with brine, dried over
- ಠ Na₂SO₄, filtered and evaporated. The resulting crude oil was purified by compound (5.21 g) was isolated as a light colored foam in 91% yield. After evaporation of the appropriate fractions, the free base form of the title silica gel chromatography (170 g; 76:19:5 hexanes:ElOAc:Et₃N as eluant). Step 5: To a cooled (0°C) solution of the free base of step 4 (2.00 g) and
- ᄚ EtOAc (20 ml) was added HCI (3.0 ml of a 4.0 M solution in 1,4-dioxane). g) as a white solid in 97% yield. mp: 159-162°C. washed with Et₂O (2 X 20 ml), air dried with suction for 10 min and then under vacuum (1 mm Hg) at 90°C for 5 h to give the title compound (2.30 The resulting mixture was warmed to RT, diluted with Et₂O (20 ml), filtered
- Elemental analysis of C27H36N5OF3*2HCI*0.5H2O: calc'd: C 55.38%, H 6.71%, N 11.96%, Cl 12.11%; found: C 55.19%, H 6.69%, N 11.75%, Cl

8

procedure Additional pyrimidine derivative-compounds were made using similar

25

မွ in ethanol (commercial solution; 21 wt%; 8.03 g). After extraction and (2.03 g) for formamidine acetate. The amounts of the reagents were: product of Example 23, step 1 (4.0 g), ethanol (20 ml) and sodium ethoxide manner as in Example 23, step 2, substituting acetamidine hydrochloride Step 1: The product of Example 23, step 1 was treated in the same

> WO 00/66558 PCT/US00/11632

After extraction and purification as described above, the product was colorless liquid in 41% yield, which was used directly in the next step Example 23, step 3, using ethanol (5 ml), water (5 ml) and NaOH (1.0 g). Step 2: The product of step 1 (1.7 g) was treated in the same manner as purification as described above, the product was isolated (1.7 g) as a

2 (immediately above) (0.028 g) were subjected to the same reaction Step 3: The product of Example 4, step 6 (0.05 g), and the product of step

isolated (0.12 g) as a white solid in 8% yield, which was used directly in the

ಕ ភ conditions as in Example 23, step 4, using HOBt (20 mg), DEC (45 mg) 185-190°C purification as described above, the product was converted to its HCl salt diisopropyl ethylamine (40 mg) and DMF (1.5 ml). After extraction and compound (77 mg) as a white solid in 97% yield over the two steps. mp: using the procedure outlined for Example 23, step 5 to give the title

25 8 which was used directly in the next step. Example 23, step 2, substituting benzamidine hydrochloride (3.35 g) for Example 23, step 1 (4.0 g), ethanol (20 ml) and sodium ethoxide in ethanol described above, the product was isolated (4.5 g) as a liquid in 82% yield (commercial solution; 21 wt%; 8.03 g). After extraction and purification as formamidine acetate. The amounts of the reagents were: product of Step 1: The product of Example 23, step 1 was treated in the same as in

Step 2: The product of step 1 (4.5 g) was treated in the same manner as isolated (3.0 g) as a white solid in 77% yield which was used directly in the After extraction and purification as described above, the product was Example 23, step 3, using ethanol (10 ml), water (10 ml) and NaOH (2.0 g)

မ

.71 -

Step 3: The product of Example 4, step 6 (75 mg), and the product of step 2 (immediately above) (39 mg) were subjected to the same reaction conditions as in Example 23, step 4, using HOBt (35 mg), DEC (53 mg), diisopropyl ethylamine (100 mg) and DMF (2 ml). After extraction and purification as described above, the product was converted to its HCl salt using the procedure outlined for Example 23, step 5 to give the title compound (98 mg) as a white solid in 96% yield over the two steps.

ഗ

mp:250-253°C

EIO O Marcos HOOO

ಠ

Step 1: The product of Example 23, step 2 (528 mg) was dissolved in CH₂Cl₂ (5.0 ml) and meta-chloroperbenzoic acid (mCPBA) (600 mg) was added in three portions at RT. The resulting mixture was stirred at RT for 24 h and CH₂Cl₂ (2 ml) and mCPBA (200 mg) were added. After 3 h, the mixture was poured onto a silica gel column (40 g) and eluted with 1:1 hexanes:EtOAc and then 10:1 CH₂Cl₂:CH₃OH. After evaporation of the appropriate fractions, the product was isolated (512 mg) as a waxy white solid in 89% yield, which was used directly in the next step.

5

20 Step 2: The product of step 1 was dissolved in CH₃OH (1.8 ml) and a solution of 1.0 M Na₂CO₃ (1.5 ml) was added. After stirring at RT for 36 h, the resulting mixture was evaporated to dryness, toluene (2 ml) was added and the mixture was evaporated to dryness. The resulting crude solid (153 mg) was used directly in the next step without purification.

25 <u>Step 3</u>: The product of Example 4, step 6 (94 mg), and the product of step 2 (immediately above) (76 mg) were subjected to the same reaction conditions as in Example 23, step 4, using HOBt (92 mg), DEC (130 mg), diisopropyl ethylamine (0.14 ml) and DMF (0.25 ml). After extraction and purification by preparative thin layer chromatography (1000 μM silica plate; 95:5 EtOAc:Et₃N eluant), the free base form of the title compound was isolated (52 mg) as a foam in 40% yield. HRMS: calc'd: M'H⁺: C₂₇H₃₇N₅O₂F₃: 520.2899; measured: 520.2908.

;

WO 00/6558 PCT/US00/11632

- 72 -

Step 4: The product of step 3 (52 mg) was subjected to the reaction conditions in Example 23, step 5, using EtOAc (1.0 ml) and HCl (4.0 M solution in 1,4-dioxane; 75 μl) to give, after work up, the title compound (44.5 mg) as a white solid in 76% yield. mp: decomposition above 161°C

5 Using similar procedures, the compounds of the formula

were also prepared, wherein Rt and R' are as defined in the table:

23N	23M	23L	23K	23J	231	23H	23G	23F	23E	23D	Ex.
-OCF,	-OCF	-OCF,	-OCF	-CF,	-CF,	-CF,	ĊF,	-CF,	-CF,	-CF,	Ę
- 오	-осн,	Ρħ	-CH,	-SCH,	I	-CF,	-NHCONHEt	-NH,	-осн,	-OH	P,
185-191	200-210	239-242	205-210	>176 (dec)	154-159	83-86	184-190	200-210	169-173	175-185	m.p. (°C)

Example 24

Arylcyclopropylamides

5

Bu₃Sn to the coupling to the

Step 1: To the stannane (0.39 g, 0.95 mmol) in DMF (10 ml) was added the 2-chloro-4-fluoroiodobenzene (0.73 g, 2.86 mmol), Cul (0.19 g, 1.05 mmol) and tetrakis(triphenylphosphine)palladium (0) (0.11 g, 0.095 mmol)

- 73

The reaction was stirred at RT under N₂ for 21 h. The reaction mixture was added to Et₂O and the heterogeneous solution filtered through a bed of celite, washing with EtOAc. The filtrate was washed with water and brine and dried (MgSO₂). Filtration and evaporation of the solvent in vacuo afforded a residue that was preadsorbed on silice cal.

afforded a residue that was preadsorbed on silica gel. Purification by silica gel chromatography (4% EtOAc/hexane) yielded the arylacrylate (0.19 g, 78%), which was used directly in the next step.

ഗ

Step 2: To trimethy/sulfoxonium lodide (0.18 g, 0.81 mmol) in DMSO (1.6 ml) was added potassium tent-butoxide (0.09 g, 0.81 mmol). The reaction

10 mixture was stirred at RT for 1 h, at which time the arylacrylate (0.19 g, 0.74 mmol) in DMSO (1.6 ml) was added. The reaction mixture was stirred at RT for 5 h and water was added. The mixture was extracted with EtOAc. The combined organic layers were washed with water and brine and dried (MgSO₄). Filtration and evaporation of the solvent in vacuo afforded the

any lcyclopropyl ester that was used directly by taking up into CH₂Cl₂ (3 ml) and adding TFA (0.5 ml). The reaction mixture was stirred at RT for 15 h and then concentrated in vacuo to afford the arylcyclopropylcarboxylic acid (0.14 g, 91%-2 steps). Without further purification, the carboxylic acid was coupled to the product of example 8, step 3, using the procedure of

20 Example 8, step 4 to obtain 24A as the HCI salt. HRMS (M+H): found 566.2561.

Method B:

To the 2-fluorophenylacetonitrile (0.80 g. 5.92 mmol), benzyltriethyl25 ammonium chloride (0.03 g. 0.12 mmol), and 1-bromo-2-chloroethane (1.70 g. 11.9 mmol) was added 50% aqueous NaOH (3.5 ml). The reaction was stirred at 45 °C for 21 h and ethylene glycol was added (3 ml). The reaction was then warmed to 100 °C and stirred for 7 h. Upon cooling to RT, the reaction was diluted with water and washed with EtOAc. The aqueous layer was acidified to pH 2-3 with aqueous 6N HCl. The acidified

WO 00/66558 PCT/US00/11632

solution was extracted with Et₂O. The combined Et₂O extracts were washed with water and brine and dried (MgSQ₂). Filtration and evaporation of the solvent in vacuo afforded a pale yellow solid (1.06 g, 99%). The arylcyclopropyl acid was coupled to the product of example 8, step 3, using the procedure of Example 8, step 4 to obtain 24B as the HCl salt. HRMS (M+H): found 532.2949.

Using similar procedures, the compounds of the formula

were prepared, wherein { is as defined in the table:

24M	24L	24K	24J	241	24H	24G	24F	24E	24D	24C	Ex.
CH30 CH3	HO	N N N N N N N N N N N N N N N N N N N	الگار	Br	ų.́О _{осн₃}	50 1	ĹΩ ^{CH3}	↓.(C) ^{OCH} 3	ĮQ [°]	ų.Ω	}-(3 ^{R14}
572.3107	558.2949	539.3003	532.2956	592.2150	544.3151	1	:		-	••	HRMS (M+H) m.r
1	:	ı	;	:	;	>225	225-230	172-176	>225	240-245	m.p. (°C)

75-

240	24P	240	24N
N Y	ĻÆ\$	لي CF3	ĹΩ _{CF3}
515.2991	520.2609	582.2910	582.2910
	:	;	:

Step 1:

Cyclopropyl carboxaldehyde (3.4 ml), S-methyl N-BOC piperazine (8.28 g), CH₂Cl₂ (82 ml) and Ti(OiPr)₂ (15.80 ml) were mixed together and stirred at RT for 23 h, then the resulting solution was cooled to 0 °C and Et₂AlCN (1.0 M in toluene; 62.1 ml) was added. The solution was stirred for 5 h at RT.

addition of EtOAc (120 ml) and water (120 ml). The resulting slurry was stirred for 15 min, filtered, washed with EtOAc (3 X 35 ml) and the EtOAc layer was removed, washed with brine, dried over Na_xSO_x, filtered and evaporated to give the desired intermediate (12.0 g) which was used directly in the next step.

. .

$$\begin{array}{c|c}
 & F_{3C} & MgCI \\
\hline
 & NBOC \\
\hline$$

To a 0°C solution of 4-iodobenzotrifluoride (40 g) and THF (52 ml) was added isopropyl magnesium chloride (2.0 M in El₂O; 74 ml). The resulting solution was stirred at RT for 1 h and then added to a 0 °C solution of the product of step 1 (10.0 g) and THF (26 ml) over 10 min. The reaction solution was warmed to RT, stirred overnight and EtOAc (50 ml)

20

WO 00/66558

76

PCT/US00/11632

was added. After stirring for 10 min, 2 N NaOH (50 ml) was added and the resulting mixture was stirred for 30 min, filtered and the salts were washed with EtOAc (3 X 20 ml). The combined EtOAc extracts were washed with brine, dried over Na₂SO₄, filtered and evaporated to give the crude product

with hexanes:EtOAc (8:1). Two diastereomeric products were collected as a single fraction (15.9 g) and further purified by column chromatography as described above to give intermediate A (R₁=0.47 in 4:1 hexanes:EtOAc; 5.34 g), which was contaminated with an unidentified impurity. (The second diastereomer B (R₁=0.29 in 4:1 hexanes:EtOAc) was also

Siep 3

collected.)

To a solution of A from Step 2 (3.96 g) and CH₂Cl₂ (120 ml) was added DOWEX 50X2-100 ion exchange resin (15 g) and the resulting mixture was shaken for 2.5 h at RT. The resin was filtered off and washed with CH₂Cl₂ (2 X 40 ml). The resin was treated with 7 N NH₃ in CH₃OH (30 ml), the resin was filtered off and this procedure was repeated two times. The CH₃OH extracts were combined and evaporated. The resulting oil was treated with toluene:CH₂Cl₃ (1:1; 15 ml) and evaporated to give the piperazine intermediate (0.80 g) as a clear oil. HRMS: calc'd: MH': C₁₈H₂,N₂F₃:299.1735; measured:299.1748.

The product of Step 3 (0.57 g) was treated in the same fashion as Example 8, Step 1, using N-BOC 4-piperidone (0.42 g), CH₂Cl₂ (3.84 ml), Ti(OiPr)₄ (3.39 ml), El₂AlCN (2.88 ml) and CH₃MgBr (3.0 M in El₂O; 3.2 ml) to give the desired product (0.78 g) as a clear oil in 82 % yield.

Step 5: The product of Step 4 (0.12 g) was treated with AcOH:CH₂Cl₂ (3:1, v.v; 1.4 ml) followed by BF₃El₂O (0.14 ml). After stirring for 1 h, the resulting solution was diluted with CH₂Cl₂ (10 ml), cooled to 0°C and the pH was adjusted to 10 with solid NaOH. Water (2 ml) was added and the

.

CH₂Cl₂ layer was removed. After further extraction (2 X 10 ml) with CH₂Cl₂, the organic layer was washed with water, brine, dried over Na₂SO₂, filtered and evaporated to give the free piperidine (80 mg) in 81 % yield.

- Step 6: The product of Step 5 (57 mg) was treated in the same fashion as in Example 8, Step 4, using DMF (0.30 ml), HOBt (41 mg), DEC (57 mg), diisopropyl ethyl amine (0.08 ml) and 4,6-dimethyl 5-pyrimidine carboxylic acid (43 mg); the reaction was stirred at 45°C for 5 h. Purification of the crude oil was carried out by preparative plate chromatography (silica adsorbent; 2000 μM; 76:19:5 EtOAc:hexanes:Et,N as eluant) to give, after
- 10 elution of the desired band (1:1 CH₂Cl₂:MeOH) and concentration of solvent, the title compound (70 mg) as a clear oil in 93% yield. The HCl salt was prepared as described for Example 8, Step 4 (78 mg) in 100% yield. mp:147-149°C.

Using a similar procedure, the following compound was prepared:

\(\sqrt{} \)

NHCONHET

15 F₃C m.p. >188 (dec).

20 Step

The desired compound was prepared in a manner similar to Example 25, Step 1, using p-trifluoromethyl benzaldehyde (20 g) instead of cyclopropyl carboxaldehyde, to give, after work up, a mixture of

25 diastereomers (22.7 g) in 59% yield.

WO 00/66558 PCT/US00/11632

- 78 -

To a -70°C solution of the product of step 1 (1.9 g) and THF (15 ml) was added NaHMDS (1.0 M in THF; 7.5 ml) followed by benzyl bromide (2 ml). The cooling bath was removed and the resulting solution was stirred for 45 min. Concentrated NH₄OH (10 ml) was added and the reaction was stirred for 30 min. The resulting mixture was partitioned between water and CH₂Cl₂, the CH₂Cl₂ extracts were removed and evaporated and the crude oil was purified by column chromatography (silica gel; 2:1 hexanes:CH₂Cl₂; 10:1 to 7:1 hexanes:EtOAc as eluant) to give, after evaporation of the appropriate fractions, a mixture of intermediates (1.92 g) as a yellow foam.

F₃C NBOC MgBr₂/CH₃CN F₃C B NBOC F₃C NBO

ಠ

The mixture of Step 2 (1.91 g), CH₃CN (35 ml), sodium triacetoxy borohydride (4.0 g) and magnesium bromide etherate (2.25 g) were mixed and stirred at RT for 70 h. Water (25 ml) was added and then, gradually, a solution of Na CO. (10 n) in water (50 ml). After extraction with EtOAc (2 X

- solution of Na₂CO₃ (10 g) in water (50 ml). After extraction with EtOAc (2 X 50 ml), drying and evaporation of the organic layer, the resulting oil was purified by preparative plate chromatography (5 X 2000 mM silica plates; 6:1 hexanes:EtOAc as eluant). The less polar band was removed, treated with 1:1 methanol:CH₂Ct₂, filtered and evaporated to give intermediate A (0.84 g) as a white foam. HRMS: calc'd: MH*: C₂₅H₂₉O₂N₂F₃:449.2407;
- Step_4: The product of Step 3 (0.81 g) was treated in the same fashion as in Example 8, Step 3, using TFA (5 ml) and CH₂Cl₂ (10 ml), to give, after work up, the free piperazine (0.60 g) as a clear gum. HRMS: calc'd: MH*:

measured:4492416.

- work up, the free piperazine (0.60 g) as a clear gum. HRMS: calc'd: MH*: 25 C₂₇H₂₇N₂F₃: 349.1892; measured:349.1894. Step 5: The product of Step 4 (0.39 g) was treated in the same fashion as in Example 8, Step 1, using N-BOC 4-piperidone (0.25 g), CH₂Cl₂ (8 ml),
- give the desired BOC-protected piperidinyl intermediate (0.44 g) as a clear 30 oil in 72 % yield. HRMS: calc'd: M'H': C₃,H₄O₂N₃F₃:546.3307; measured:546.3315.

Ti(OiPr), (0.40 mg), Et,AICN (2 ml) and CH3MgBr (3.0 M in Et,O; 1.5 ml) to

Step 6: The product of step 5 (0.43 g) was treated in the same fashion as in Example 8, Step 3, using TFA (3 ml), CH₂Cl₂ (2 ml) and water (0.2 ml) to give, after work up, the free piperidinyl intermediate (0.37 g) as a clear oil.

- 79 -

Step 7: The product of step 6 (50 mg) was treated in the same fashion as in Example 8, Step 4, using CH₂Cl₂ (3 ml), HOBt (28 mg), DEC (40 mg), diisopropyl ethyl amine (42 mg) and 4,6-dimethyl 5-pyrimidine carboxylic acid (24 mg); the reaction was stirred at RT for 2 days. Using the procedure described in Example 8, Step 4, the HCl salt of the title compound was prepared (59 mg) in 91% yield (from the product of Step 5). M.p:187-196°C. HRMS: calc'd: M·H.: C₃₀H₄₀ON₂F₃:580.3263; measured:580.3263.

.. .

တ

Using a similar procedure, compounds of the formula

were prepared, wherein R^{ts}, R³ and R² are as defined in the table:

Ex. R ^a R ³ 26B -CF3	-CF3	/ / -	R ² Mp (°C) R ³ Ms -92 R ⁴ 86-92	
26C 26D	-CF3 -CF3	· · · · · · · · · · · · · · · · · · ·		ğ /
26E	-CF3		OHN (NHCONHE
26F	-OCF3	9	N={-}	N Y OCH3
26G	-OCF3	<i>S</i>	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	HO
26H	-OCF3	9	₹	N Z
261	-OCF3	9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	21
26J	-OCF3	9	J	ō

WO 00/66558

PCT/US00/11632

. 80-

26R 26Q 26N 26X 26P 26 0 26M 26L -OCF3 -CF3 -OCF3 Ċ E ĊF3 OCF3 OCF39 249-250 (dec) 254-256 (dec) 256-258 180-205 230-240 60-65 60-62 65-68

F₉0,

Example 27

F₃C OH

4 '-Trifluoromethyl)propiophenone (2.02 g, 0.01 mol) and (S)-2-methyl-CBS-oxazaborolidine (1M in THF) (2.0 ml, 0.002 mol) in THF (10 ml) was cooled in an ice-bath and borane-methyl sulfide complex (2M in THF) (3 ml, 0.006 mol) was added dropwise to the mixture. The mixture was stirred for 30 min at 0° C and CH₃OH was added slowly until no

10 bubbles appeared. The solvents were removed under reduced pressure and HCl solution (1N) was added to the mixture. EtOAc extractive work up

Ċ

followed by silica gel chromatography afforded the alcohol (1.47 g) in 72% yield.

Step 2: A solution of the product of Step 1 (4.32 g, 0.021 mol) and Et,N

(5.9 ml, 0.042 mol) in CH₂Cl₂ (20 ml) was cooled to 0° C in ice bath and CH₃SO₂Cl (2.13 ml, 0.028 mol) was added dropwise. The mixture was stirred at 0° C for 1 h and the ice bath was removed. Water was added to the mixture and CH₂Cl₂ extractive work up afforded the mesylate (5.99 g) in quantitative yield.

Step 3: The product of Step 2 (5.93 g, 0.021 mol) and 1-tert-butoxy-

carbonyl-3S -methyl piperazine (4.2 g, 0.021 mol) were dissolved in anhydrous CH₂CN (20 ml) and oven-dry K₂CO₃ (4.35 g, 0.032 mol) was added to the solution. The mixture was stirred under reflux for 2 days, then diluted with water. EtOAc extractive work up followed by silica gel chromatography gave the desired product (3.16 g) in 39% yield.

15 Step 4: TFA (10 ml) was added to a solution of the product of Step 3(1.15 g, 2.59 mmol) in CH₂Cl₂ (5 ml) and the mixture was stirred at RT for 2 h, then concentrated under reduced pressure. NaOH (3N) was added to the residue and extractive work up with EtOAc gave the desired amine in quantitative yield.

20 Step 5: The product of Step 4 and 1-tert-butoxycarbonyl-4-piperidone (0.94 g, 4.74 mmol) were treated with Ti(OiPr), Et,AICN and CH,MgBr in a manner similar to that described in Example 8, step 1, to obtain the desired product (1.09 g) in 87% yield (from the amine of Step 4).

Step 6: TFA (4 ml) was added to a solution of the product of Step 5 (0.76 mg, 1.57 mmol) in CH₂Cl₂ (2 ml) and the mixture was stirred at RT for 2 h before it was concentrated under reduced pressure. NaOH (3N) was added to the residue and extractive work up with EtOAc gave the desired amine in quantitative vield.

Step 7: The amine of Step 6 and 4,6-dimethylpyrimidine 5-carboxylic acid (0.36 g, 2.35 mmol), were coupled as described in Example 8, Step 4, to obtain the title compound (0.58 g) in 72% yield. M.p. 160; HRMS (MH') found: 518.3123.

မွ

Using a similar procedure, compounds of the formula

WO 00/66558

PCT/US00/11632

											_
27.J	271	27H	27G	27F	27E	27D	27C	27B	27A	Ϋ́	100
유	СН	СН	СН	НЭ	유	Z	z	Z	z	7	prepare
Et	Et	EI	Et	庇	ū	Me	Me	Me	Me	Ŋ	prepared wherein Z,
Me	Me	Ме	Me	Me	Me	Me	Me	I	Ι	ಸ್ಥ	n Z, R ³ , R ⁶
○ -€;	NHZ	NHCONHE	NHCOCCF ₃	<u>₽</u> —(\$	\$\$	\$_ \ _\$	z=_ξ	چ چ	z=_{\sqrt{2}}	Ą	and
215	215	210	230	215	197	200	190	190	185	Dec.(0°C)	defined in th
593.3470	531.3305	602.3678	627.3145	532.3147	533.3097	520.2902	505.2898	506.2729	491.2744	HRMS	ne table below

WO 00/66558 PCT/US00/11632

- 83 -

27R	270	27P	270	27N	27M	27L	27K
z	z	z	Z	z	z	운	유
7-Pr	n-Pr	ŋ-Pr	n-Pr	n-Pr	n-Pr	Œ	Œ
Mθ	Mθ	Me	Ме	Mθ	Me	Me	Me
	25 N	ZO)	₩	NHCONHEL	ν= % 2- ξ	N(SO ₂ CF ₃) ₂	o- ≥> -€-5
195	225	165	202	210	204	170	195
548.3217	584.3205	543.3311	531.3304	617.3798	533.3207	745.2308	609.3424

Using similar procedures, the following compounds were also

WO 00/66558 PCT/US00/11632

- 84

Step 1: The cyano amine was prepared from p-trifluoromethyl benzaldehyde and 2(S)-methyl-4-(tert-butoxycarbonyl) piperazine exactly as describedin Example 6, Step 1.

G

Step 2: A solution of the cyano amine 2 (2.5 g; 6.53 mmol) in 30 ml of dry THF was placed under a blanket of N₂ and cooled to -78° C. This solution

- was treated with a solution of sodium hexa-methyl disilazide in THF (1M; 26 ml) followed after 5 min with neat allyl bromide (6 ml). Upon removal of the bath and letting the reaction mixture warm to RT (-1h), it changed from a yellow solution to dark reddish brown solution. The reaction was quenched with saturated NH₂Cl solution and the product extracted with EtOAc,
 washed with water, brine and dried. Concentration in vacuo afforded a brown semi solid. FSGC of this material using 25% EtO in hexane as
- brown semi solid. FSGC of this material using 25% Et₂O in hexane as eluant gave 2.5 grams (92%) of the desired product as an amber gum (TLC R₁ = 0.65, 0.6 for two overlapping spots).

Step 3: A solution of the product of Step 2 (2.4g) in CH₃OH was treated with 10% Pd/C (0.2g) and placed under a balloon of H₂ gas. After stirring at RT for 4 h, the catalyst was removed via filtration through celite.

Concentration of the filtrate yielded an amber gum.

The α-propyl nitrile obtained above was dissolved in CH₂CN (12 ml).

Magnesium bromide etherate (2.1 g; 8.14 mmol) and sodium triacetoxy

borohydride (3.44 g; 16.2 mmol) were added and the reaction mixture was stirred at RT overnight. The reaction was quenched with water and rendered basic with saturated NaHCO₃. The organic products were

.

extracted with EtOAc and processed to obtain ~ 2 g of crude material. FSGC (10-25% Et₂O in hexane) served to isolate two diasteromeric products (1.7g total; 79% for two steps):

(S, S)-Diastereomer (A): TLC R_i = 0.6 (25% ELO-Hexane), 0.9 g of a colorless gum.

(R, S)-Diastereomer (B): TLC R, = 0.5 (25% Et,O-Hexane). 0.8 g of a colorless gum.

Step 4: Removal of the BOC-protecting group from the intermediate A was accomplished by treatment with TFA in CH₂Cl₂. The isolated free

10 piperazine (0.68g; 2.3 mmol), N-(tert-butoxycarbonyl)-4-piperidinone (0.45g; 2.3 mmol) and Ti(OiPr), (0.7 mL; 2.5 mmol) were dissolved in 10 ml of CH₂Cl₂ and stlrred overnight. Et₂AICN (1M in toluene; 2.7 ml) was introduced into the reaction mixture and the resultant solution was stirred for a day. The reaction was diluted with EtOAc and quenched with water.

15 Celite was added to aid in the filtration of titanium and aluminum salts. The biphasic filtrate was washed with water, brine and dried. Concentration in vacuo yielded 1.1 g of a yellow gum (TLC R₁ = 0.55 in 25% EtOAc-hexane). The resultant ipso-cyano compound was dissolved in dry THF (8 ml)

and treated with a solution of CH,MgBr (3M in Et,Q; 6 ml) and stirred overnight at RT. The reaction flask was placed in a cold water bath and carefully quenched with saturated NH,Cl solution. The organic product was extracted with EtOAc and washed with water and brine. Concentration to a crude product which was purified by rapid FSGC (10-25% EtOAc in hexane) gave the BOC-piperidinyl compound as a pale yellow gum (1.1g;

Step 5: The BOC-protecting group on the piperidine nitrogen in the product of Step 4 was removed by treatment with TFA in CH₂Cl₂. Basification with I M NaOH and processing in CH₂Cl₃ afforded the unprotected piperidine in 90% yield. This intermediate was coupled (EDCI HOBI) to anyl and heteroaryl carboxylic acids to obtain the amides exemplified in the following table:

မ

25

100%). TLC R, = 0.6 in 25% EtOAc-hexane.

wherein R2 is as defined in the table:

Г					ı	I	I	I	I	Ţ
	281	28H	28G	28F	28E	2 8D	28C	288	28A	Æ.
	HNH HN	Но	NH ₂		Z P	5	\triangleleft	Z	z=\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	P.
	223	217	216	102	258	239	246	59	249	Mp (°C)
	Calculated: 616.3838 Found: 616.3848	Calculated: 546.3307 Found: 546.3309	Calculated: 545.3467 Found: 545.3459	Calculated: 623.3573 Found: 623.3572	Calculated: 583.3260 Found: 583.3272	Calculated: 542.3358 Found: 542.3361	Calculated: 530.3358 Found: 530.3372	Calculated: 547.3260 Found: 547.3278	Calculated: 532.3263 Found: 532.3268	HRMS (MH")

Using similar procedures, the following compounds were prepared:

wherein R⁸, R³ and R² are as defined in the table:

in the procedure of Example 28, steps 1-4 (processing isomer B in step 3), Example 26, steps 6-7, the following compound was prepared (HCl salt): then using the process of Example 1, step 5, followed by the process of Using 3-fluoro benzyl bromide or chloride in place of benzyl bromide

ဟ

NaOMe / CH₃OH

ಠ of a saturated solution of NaHCO, was added and stirred at RT for 2 h. The mixture was diluted with 20 ml of CH₂Cl₂ and the organic product extracted Step1: Solid m-CPBA was added to a solution of p-trifluoromethyl styrene (3g; 17.4 mmol) in 30 ml of CH₂Cl, and stirred at RT for 20 h. About 20 ml

÷

WO 00/66558

PCT/US00/11632

88

oil. TLC $R_1 = 0.8$ (25% EtOAc in hexane). crude product. FSGC gave 3g (90%) of the desired epoxide as a colorless into the CH2Cl2 layer. The organic extract was processed to obtain the

O CH,OH. After stirring at RT for a day, CH,OH was removed in vacuo. The solution of the product of Step 1 (2g; 10.6 mmol) in 20 ml of anhydrous a colorless oil (R, = 0.3 50% Et₂O in hexane) Concentration, followed by FSGC, furnished 1.3 g (55%) of the carbinol as residue was dissolved in CH2Cl2 and washed with water and brine. Step 2: Freshly prepared NaOCH, (0.6g; 10.6 mmol) was added to a

ಕ Step 3: The carbinol of Step 2 (1.3g; 5.9 mmol) was dissolved in CH₂Cl₂ mmol) and CH₃SO₂Cl (0.6 ml; 7.7 mmol) and stirring for 30 min formed the and cooled in an ice bath. Sequential treatment with Et₃N (1.7 ml; 12 mesylate. The product was extracted by standard work up (yield = 100%) The mesylate (1.76g; 5.9 mmol) and 2(S)-methyl-4-(tert-

ಪ butoxycarbonyl) piperazine (2.4 g; 12 mmol) were dissolved in 5 ml of RT and directly subjected to flash chromatography on silica gel. Eluting products A and B (Total yield = 86%). with 25%, then 50% Et₂O in hexane served to isolate the diastereomeric CH₂CN and heated to reflux for 19 h. The reaction mixture was cooled to

25 8 the BOC-protected piperidinyl compound (0.87g; 92%). $R_i = 0.3$ (50%) 2.2 mmol) with N-BOC-piperidin-4-one with the installation of the ipso-Step 4: Reductive amination of the free piperazine dervied from A (0.9g) B: R₁ = 0.4 (50% Et₂O in hexane). Amber gum (1.13g; 44%) A: R, = 0.5 (50% EtO in hexane). Light yellow gum (0.9g; 42%) EtOAc in hexane). methyl group was carried out as described in Example 1, step 4. to obtain

the compounds shown in the following table: nitrogen via TFA, and the resultant compound was coupled with acids Step 5: The BOC protecting group was removed from the piperidine using the EDCI / HOBt method as described in Example 8, step 4, to obtain

အ

wherein R2 is as shown in the table:

- 89 -

Calculated: 618.3631 Found: 618.3638	192	N TI	29D
Calculated: 549,3053 Found: 549.3057	101		29C
Calculated: 548.3100 Found: 548.3092	208		298
Calculated: 534.3056 Found: 534.3050	163	N= \ N= \ N= \	29A
HRMS (MH")	Mp (°C)	22.	Ε̈́X

Example 30

5 A solution of p-trifluoromethoxy benzaldehyde (0.48 ml, 3.36 mmol), the piperidino-pipiperazine (1.00g, 3.36 mmol) and benzotriazole (0.48g, 4.00 mmol) in dry toluene were heated at reflux for 6 h. The reaction mixture was cooled to RT and the solvent was removed *in vacuo*. Following NMR verification of the formation of the product, the product was used without further purification in the next step.

Step 2:

To a solution of the product of Step 1 (1.16g, 1.97 mmol) in 20 ml of toluene was added a solution of n-propyl magnesium bromide (2M in Et₂O,

WO 00/66558

PCT/US00/11632

1.1 ml) and the mixture stirred at RT for 15 h. The reaction mixture was quenched by pouring onto ice and saturated aqueous NH₂Cl solution. The aqueous layer was extracted with EtOAc, washed with 1M NaOH solution, water and brine. Concentration and purification by FSGC (20% EtOAc

hexane) provided the desired product A. Further elution with 30% EtOAc in hexane gave the (R, S) diastereomer B.

Step 3: The amine A was treated with TFA in CH₂Cl₂ to remove the BOC⁻⁻⁻⁻ protecting group. Coupling of the free piperidine with acids using EDCI / HOBt provided compounds 30-30B in the following table; similar methods

ഗ

10 were used to prepare compounds 30C-I.

Pas C

301	30Н	30G ⁻	30F	30E	30D	30C	308	30A	30	Ex.
-OCF ₃	н	-CF ₃	-CF	Ι	н	Ŧ	-OCF ₃	-OCF,	-OCF,	Rª
	-{	{	{			·-	n-Pr	n-Pr	n-Pr	R ³
N.√.	-	NS -	N= N-	J D CN	HN-	N N N	- HN-C	Z = \ .	₫-	Ŋ
165-175	178-188	180-186	180-192	84-90	177-189	175-178	219	241	237	Mp (°C)
•	:	-	:	:	-	:	632.3779	548.3217	546.3314	HRMS (MH') found

WO 00/66558

PCT/US00/11632

- 91 -

Examp

Mixture of diastereomers

A solution of the product of Example 12, step 2 (150 mg, 0.27 mmol), irnidazole (27.4 mg, 0.403mmol), 1,10-phenanthroline (48 mg, 0.27 mmol), trans,trans-dibenzylideneacetone (6.28 mg, 0.027 mmol), copper (II) trifluoromethanesultonate benzene complex (15 mg, 0.027 mmol) and Cs₂CO₃ (96.1 mg, 0.30 mmol) in xylene (2 ml) was stirred at 110° C for 5 days. The reaction mixture was cooled to RT and saturated NaHCO₃ was added. Extractive EtOAc work up followed by silica gel chromatography gave the title compound (70 mg, 52% yield). Dec. 215° C (HCl salt). HRMS calcd for C₂₀H₃₀ClN₃OS (M+H+) 500.3389, found 500.3396.

ಠ

G

The following assays can be used to determine the CCR5 antagonistic activity of the compounds of the invention.

ឆ

CCR5 Membrane Binding Assay:

A high throughput screen utilizing a CCR5 membrane binding assay identifies inhibitors of RANTES binding. This assay utilizes membranes prepared from NIH 3T3 cells expressing the human CCR5 chemokine receptor which have the ability to bind to RANTES, a natural ligand for the receptor. Using a 95-well plate format, membrane preparations are incubated with 125I-RANTES in the presence or absence of compound for one hour. Compounds are serially diluted over a wide range of 0.001 ug/ml to 1 ug/ml and tested in

8

triplicates. Reaction cocktails are harvested through glass filber filters, and washed thoroughly. Total counts for replicates are averaged and data reported as the concentration required to inhibit 50 percent of total 1251-RANTES binding. Compounds with potent activity in the membrane binding assay are further characterized in secondary cell-based HIV-1 entry and replication assays.

23

30 HIV-1 Entry Assay:

Replication defective HIV-1 reporter virions are generated by cotransfection of a plasmid encoding the NL4-3 strain of HIV-1 (which has been modified by mutation of the envelope gene and introduction of a luciferase reporter plasmid) along with a plasmid encoding one of several HIV-1 envelope genes as described by Connor et al., Virology, 206 (1995), p. 935-

ၾ

WO 00/66558 PCT/US00/11632

944. Following transfection of the two plasmids by calcium phosphate precipitation, the viral supernatants are harvested on day 3 and a functional viral titer determined. These stocks are then used to infect U87 cells stably expressing CD4 and the chemokine receptor CCR5 which have been preincubated with or without test compound. Infections are carried out for 2

hours at 37 °C, the cells washed and media replaced with fresh media containing compound. The cells are incubated for 3 days, lysed and luciferase activity determined. Results are reported as the concentration of compound required to inhibit 50% of the luciferase activity in the control cultures.

10 HIV-1 Replication Assay:

This assay uses primary peripheral blood mononuclear cells or the stable U87-CCR5 cell line to determine the effect of anti-CCR5 compounds to block infection of primary HIV-1 strains. The primary lymphocytes are purified from normal healthy donors and stimulated *in vitro* with PHA and IL-2 three days prior to infection. Using a 96-well plate format, cells are pretreated with drug for 1 hour at 37 °C and subsequently infected with an M-tropic HIV-1 isolates. Following infection, the cells are washed to remove residual inoculum and cultured in the presence of compound for 4 days. Culture supernatants are harvested and viral replication measured by determination of viral p24 antigen concentration.

ᇙ

Calcium Flux Assay:

8

Cells expressing the HIV coreceptor CCR5 are loaded with calcium sensitive dyes prior to addition of compound or the natural CCR5 ligand.

Compounds with agonist properties will induce a calcium flux signal in the cell,

25 while CCR5 antagonists are identified as compounds which do not induce signaling by themselves but are capable of blocking signaling by the natural ligand RANTES.

GTPyS Binding Assay:

A GTP_YS binding assay measures receptor activation by CCR5 ligands.

30 This assay measures the binding of ³⁵S labeled-GTP to receptor coupled Gproteins that occurs as a result of receptor activation by an appropriate ligand.

In this assay, the CCR5 ligand, RANTES, is incubated with membranes from
CCR5 expressing cells and binding to the receptor activation (or binding) is
determined by assaying for bound ³⁵S label. The assay quantitatively
determines if compounds exhibit agonist characteristics by inducing activation
of the receptor or alternatively antagonist properties by measuring inhibition of
RANTES binding in a competitive or non-competitive fashion.

Chemotaxis Assay:

-93 -

The chemotaxis assay is a functional assay which characterizes the agonist vs. antagonist properties of the test compounds. The assay measures the ability of a non-adherent murine cell line expressing human CCR5 (BaF-550) to migrate across a membrane in response to either test compounds or natural ligands (i.e., RANTES, MIP-18). Cells migrate across the permeable membrane towards compounds with agonist activity. Compounds that are antagonists not only fail to induce chemotaxis, but are also capable of inhibiting cell migration in response to known CCR5

Ç

The role of CC chemokine receptors such as CCR-5 receptors in inflammatory conditions has been reported in such publications as Immunology Letters, 5Z, (1997), 117-120 (arthritis); Clinical & Experimental Rheumatology, 1Z (4) (1999), p. 419-425 (rheumatoid arthritis); Clinical & Experimental Immunology, 11Z (2) (1999), p.237-243 (atopic dermatitis); International Journal of Immunopharmacology, 20 (11) (1998), p. 661-7 (pspriasis); Journal of Allergy & Clinical Immunology, 100 (6, Pt 2) (1997)

International Journal of Immunopharmacology, <u>20</u> (11) (1998), p. 661-7 (psoriasis); <u>Journal of Allergy & Clinical Immunology</u>, <u>100</u> (6, Pt 2) (1997), p. S52-5 (asthma); and <u>Journal of Immunology</u>, <u>159</u> (6) (1997), p. 2962-72 (allergies).

In the assay to determine inhibition of RANTES binding, compounds of the invention range in activity from a Ki of about 0.5 to about 1500 nM, with preferred compounds having a range of activity from about 0.5 to about 750 nM, more preferably about 0.5 to 300 nM, and most preferably about 0.5 to 50 nM. The results for preferred and representative compounds of formulas I and II in the test to determine inhibition of

25 RANTES binding are given in the table below. In the table, "Ex. No. stands for "Example Number" and "nM" stands for "nanomolar."

Ex. No.	Ki (nM) Inhibition of RANTES binding
3C	9.97
င်	30.0
ee E	1.43
11	10.5
16	60
20A	1300
23	2.95

WO 00/66558 PCT/US00/11632

- 94 -

For preparing pharmaceutical compositions of the CCR5 antagonist compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories.

The powders and tablets may be comprised of from about 5 to about 95

percent active ingredient. Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), Remington's Pharmaceutical Sciences, 18th Edition, (1990), Mack Publishing Co., Easton, Pennsylvania.

Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.

Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas, e.g.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions

25 and emulsions.

The CCR5 antagonist compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.

မ

Preferably the CCR5 antagonist compound is administered orally.

Preferably, the pharmaceutical preparation is in a unit dosage form.

In such form, the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective

The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 10 mg to about 500 mg, preferably from about 25 mg to about 300 mg, more preferably from about 50 mg to about

႘ၟ

amount to achieve the desired purpose

- 96 -

WO 00/66558

to the particular application. 250 mg, and most preferably from about 55 mg to about 200 mg, according

divided and administered in portions during the day as required. Determination of the proper dosage regimen for a particular situation is within the skill of the art. For convenience, the total daily dosage may be requirements of the patient and the severity of the condition being treated The actual dosage employed may be varied depending upon the

G

compounds of the invention and/or the pharmaceutically acceptable salts The amount and frequency of administration of the CCR5 antagonist

ಠ 5 preferably about 200 mg/day, in two to four divided doses. thereof will be regulated according to the judgment of the attending clinician to about 300 mg/day, preferably 150 mg/day to 250 mg/day, more dosage regimen for oral administration can range from about 100 mg/day severity of the symptoms being treated. A typical recommended daily considering such factors as age, condition and size of the patient as well as

patient and the severity of the HIV-1 infection. in the protocol taking into consideration the age, sex and condition of the approved doses and dosage regimen in the package insert or as set forth other agents will be determined by attending clinician in view of the The doses and dosage regimen of the NRTIs, NNRTIs, PIs and

8

the spirit and scope of the present invention. and variations thereof will be apparent to those of ordinary skill in the art. the specific embodiments set forth above, many alternatives, modifications All such alternatives, modifications and variations are intended to fall within While the present invention has been described in conjunction with

25

PCT/US00/11632

A compound represented by the structural formula II

or a pharmaceutically acceptable salt thereof, wherein

Ra is R8a-phenyl, R8b-pyridyl, R8b-thiophenyl or R8-naphthyl; R1 is hydrogen or C1-C6 alkyl;

heteroaryl; R9, R10, R11-substituted 6-membered heteroaryl N-oxide; R2 is R9, R10, R11-phenyl; R9, R10, R11-substituted 6-membered

R12, R13-substituted 5-membered heteroaryl; naphthyl; fluorenyl;

ಠ

cycloalkyl, C₃-C₁₀ cycloalkyl(C₁-C₆)alkyl, R⁶-phenyl, R⁶-phenyl(C₁-C₆)alkyl R8-naphthyl, R8-naphthyl(C1-C6)alkyl, R8-heteroaryl or R8-heteroaryl(C1-R3 is hydrogen, C1-C6 alkyl, (C1-C6)alkoxy(C1-C8)alkyl, C3-C10

consisting of hydrogen and (C₁-C₆)-alkyl; R4, R5, R7 and R13 are independently selected from the group 5

R6 is hydrogen, C1-C6 alkyl or C2-C6 alkenyl;

8 consisting of hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -CF₃, CF₃O-, CH₃C(O)-, -CN, CH₃SO₂-, CF₃SO₂-, R¹⁴-phenyl, R¹⁴-benzyl, R8 is 1 to 3 substituents independently selected from the group

$$\label{eq:condition} CH_3C(=NOCH_3C(=NOCH_2CH_3), O So_2 , -NH_2, -NHCOCF_3 -NHCONH(C_1-C_6 alkyl), -NHCO(C_1-C_6 alkyl), -NHSO_2(C_1-C_6 alkyl), -NHCO(C_1-C_6 alkyl), -NHSO_2(C_1-C_6 alkyl), -NHCO(C_1-C_6 alkyl), -NHSO_2(C_1-C_6 alkyl), -NHCO(C_1-C_6 alkyl), -NHSO_2(C_1-C_6 alkyl), -NHCO(C_1-C_6 alkyl),$$

5-membered heteroaryl and $\stackrel{-N}{\searrow}_{,}$ wherein X is $-O_{-}$, $-NH_{-}$ or $-N(CH_{3})_{-}$; consisting of hydrogen, halogen, -CF₃, CF₃O-, -CN, CF₃SO₂-, R¹⁴-phenyl R8a is 1 to 3 substituents independently selected from the group

25

-NHCOCF₃, 5-membered heteroaryl and
$$\stackrel{-N}{\smile}_{,}$$
 wherein X is as defined above;

-NHCOCF₃, 5-membered heteroaryl and $\stackrel{-N}{\searrow}_{,}$ wherein X is as defined

 R^9 and R^{10} are independently selected from the group consisting of (C1-C6)alkyl, halogen, -NR"R", -OH, -CF3, -OCH3, -O-acyl, -OCF3 and

5 cycloalkyl, -SH 20 , -SOH 20 , -SO $_2$ R 20 , -SO $_2$ NH(C₁-C $_6$ alkyl), -OSO $_2$ (C₁-C1,cycloalkyl(C1-C6)alkyl), -NHCO(C1-C6)alkyl, -NHCOCF3, -NHSO2N((C1-C1)cycloalkyl(C1-C6)alkyl), -NHCO(C1-C6)alkyl, -NHCOCF3, -NHSO2N((C1-C6)alkyl), -NHCO(C1-C6)alkyl, -NHCOCF3, -NHSO2N((C1-C6)alkyl), -NHCO(C1-C6)alkyl, -NHCOCF3, -NHSO2N((C1-C6)alkyl), -NHCOCCF3, -NHSO2N((C1-C6)alkyl), -NHSO2N((C -CH=NOR¹⁷, pyridyl, pyridyl N-oxide, pyrimidinyl, pyrazinyl, -N(R¹⁷)CONR¹⁸R¹⁹, -NHCONH(chloro-(C₁-C₆)alkyl), -NHCONH((C₃-R11 is R9, hydrogen, phenyl, -NO2, -CN, -CH2F, -CHF2, -CHO,

5 C₈)alkyl, -OSO₂CF₃, hydroxy(C₁-C₆)alkyl, -CON R¹⁷R¹⁸, -CON(CH₂CH₂-O-

-OCONH(C_1 - C_6)alkyl, -CO₂R¹⁷, -Si(CH₃)₃ or -B(OC(CH₃)₂)₂ R12 is (C1-C6)alkyl, -NH2 or R14-phenyl;

8 consisting of hydrogen, (C₁-C₆) alkyl, -CF₃, -CO₂R₁₇, -CN, (C₁-C₆)alkoxy R14 is 1 to 3 substituents independently selected from the group

to 6 carbon atoms; group and with the carbon to which they are attached form a spiro ring of 3 hydrogen and C_1 - C_6 alkyl, or R^{15} and R^{16} together are a C_2 - C_5 alkylene R¹⁵ and R¹⁶ are independently selected from the group consisting of

consisting of H and C1-C6 alkyl; and R¹⁷, R¹⁸ and R¹⁹ are independently selected from the group 25

R²⁰ is C₁-C₆ alkyl or phenyl; or

 \mathfrak{D} Ra is R8-phenyl, R8-pyridyl or R8-thiopheny

မ

WO 00/66558 PCT/US00/11632

A compound of claim 1 wherein Ra is R8a-phenyl or R8-naphthyl.

R8-phenyl, R8-benzyl or R8-pyridyl. A compound of claim 1 wherein R3 is hydrogen, (C1-C6) alkyl,

ō methyl; R⁴ is methyl; and R⁵ and R⁷ are each hydrogen. A compound of claim 1 wherein R1 is hydrogen; R6 is hydrogen or

R11-pyridyl or an N-oxide thereof; or R9, R10, R11-pyrimidyl. A compound of claim 1 wherein R2 is R9, R10, R11-phenyl; R9, R10

A compound of claim 6 wherein R² is selected from the group

ting of
$$A^{9}$$
 A^{10} A^{9} A^{10} A^{9} A^{10} A^{9} A^{10} A^{10}

halogen, -OH and -NH2. wherein R9 and R10 are selected from the group consisting of (C1-C6)alkyl

20

represented by the structural formula A compound selected from the group consisting of those

wherein R, R³, R⁶ and R² are as defined in the following table:

8 →	R	
EHJ	A ³	
I	R6	
нзс-Жснз	H ²	

- 99 -

- 100 -

		NC-{}	° - }	o-{}-{		$\frac{1}{2}$			H ₃ CSO ₂ -{}}	F3C0-{}}		F ₃ c	H ₃ CSO ₂ -{}}	F30 \	F ₃ c
EHŽ	EHĴ	ĒH3	ÇH₃ ≅	ËH3	ĖH3	ËH3	н		Н	Ħ	н	I	ÇH ₃	. Era	ČH3
Ι	I	Ι	-CH ₃	Ι	-CH ₃	Ι	н	-СН3	-СН3	-СН3	-СН3	-CH ₃	-CH ₃	-CH3	-СН ₃
н _з с Дсн _з	н _з с-Жонз	н _з с-Жонз	HZN Ç	н _з с-Жсн _з	H ₂ N Ci	нзсЖонз	н _з с-Жсн _з	нъсЖснз	H ₂ N Ci	H ₂ N CI	H ₂ N CI	ньсЖонз	H ₂ N-Ci	0-z_+	H ₃ C N N N N CH ₃

		\$0,000 A	н₃сѕо₂-{}	F300 🗪	F300 \		F300 🗪	F ₂ 00	F300 	F ₃ c	F ₃ C	Fyc 🗪		B7_}
;;!C#		EH3	:"E	9		<i>l</i>	: EA	C.	FH3	EHG	÷H3			EH3
·CH3	-СН ₃	I	I	-CH3	-CH3	-CH ₃	-CH ₃	-CH ₃	-CH3	Ι	Ι	Ι	Ι	-СН3
H ₃ C CH ₃	H ₂ N CI	н _э с-Жон _э	н₃с∰сн₃	H ₃ C CH ₃	H ₃ CÈ CH ₃	H ₃ C CH ₃	H ₃ C N N N N N	O - N	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃	H ^M KH	H ₃ C CH ₃	нзс-Жонз

:

WO 00/66558

PCT/US00/11632

· 101 ·

F ₃ C \\	F300-{}	Ş	F ₅ ¢ \(\rightarrow \)	F ₃ C-N=	F ₁ 0.	F30-	F ₃ C N N	F30-{}	F3C-{}	F3C-{}	CH3CH2O-{}	CH3CH2C-{}	H ₃ C
,/_	/	_. .5	/	°HG	/	, <i>P</i>	°H3	/	/	EH3	Ι	Ι	
-CH ³	-СН,	-CH,	-CH,	-CH ²	-CH,	-СН,	-СН,	-сн,сн,	-сн,сн,	-сн,сн,	-СН3	-СН ₃	
H₃C->—CH₃	H ₃ C CH ₃	н₃с-Дсн₃	H ₃ C CH ₃	H₃C→ÇCH₃ N⇔N	H₃C N⇒N CH₃	H ₃ C-X-CH ₃	н₃с₩сн₃	H ₃ C CH ₃	H ₃ C-XXXCH ₃	H ₃ C-∕ACH ₃	H ₃ C N ₂ CH ₃	H ₃ CH ₃ CH ₃	(

F3C-{}	F3C-{}	F3C-{}}	F3C-{}-{	F3C-{}
:: / CF	⁄ــر	9-	_. ,o-	
-CH	-CH,	-CH ₃	Ę.	ŗ.
H ₃ C√N CH ₃	H ₃ C ₄ CH ₃ N ∨ N	H ₃ C CH ₃	H ₃ C ~~ CH ₃	H ₃ C CH ₃

- pharmaceutically acceptable carrier. effective amount of a CCR5 antagonist of claim 1 in combination with a dermatitis, psoriasis, asthma, allergies or multiple sclerosis, comprising an Immunodeficiency Virus, solid organ transplant rejection, graft v. host disease, arthritis, rheumatoid arthritis, inflammatory bowel disease, atopic A pharmaceutical composition for the treatment of Human
- ಠ medicament for treating Human Immunodeficiency Virus, solid organ transplant rejection, graft v. host disease, arthritis, rheumatoid arthritis, or multiple sclerosis. inflammatory bowel disease, atopic dermatitis, psoriasis, asthma, allergies The use of a compound of claim 1 for the preparation of a
- 5 11. The use of a compound of claim 1 for the preparation of a useful in the treatment of Human Immunodeficiency Virus, medicament for combined use with one or more antiviral or other agents
- 8 group consisting of nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors and protease inhibitors. The use of claim 11 wherein the antiviral agent is selected from the
- medicament for combined use with one or more agents for treating solid The use of a compound of claim 1 for the preparation of a

disease, rheumatoid arthritis or multiple sclerosis. organ transplant rejection, graft v. host disease, inflammatory bowel

G structural formula 1: or multiple sclerosis, wherein the CCR5 antagonist is represented by the inflammatory bowel disease, atopic dermatitis, psoriasis, asthma, allergies transplant rejection, graft v. host disease, arthritis, rheumatoid arthritis, medicament for treating Human Immunodeficiency Virus, solid organ 14. The use of a CCR5 antagonist of formula I for the preparation of a

or a pharmaceutically acceptable salt thereof, wherein

ಠ

R1 is hydrogen or C1-C6 alkyl; R is R8-phenyl, R8-pyridyl, R8-thiophenyl or R8-naphthyl;

heteroaryl; R9, R10, R11-substituted 6-membered heteroaryl N-oxide; R12, R13.substituted 5-membered heteroaryl; naphthyl; fluorenyl; R2 is R9, R10, R11-phenyl; R9, R10, R11-substituted 6-membered

ភ

R3 is hydrogen, C1-C6 alkyl, (C1-C6)alkoxy(C1-C8)alkyl, C3-C10

R8-naphthyl, R8-naphthyl(C1-C6)alkyl, R8-heteroaryl or R8-heteroaryl(C1cycloalkyl, C₃-C₁₀ cycloalkyl(C₁-C₆)alkyl, R⁸-phenyl, R⁸-phenyl(C₁-C₆)alkyl

8

consisting of hydrogen and (C₁-C₆)-alkyl; R4, R5, R7 and R13 are independently selected from the group

R⁶ is hydrogen, C₁-C₆ alkyl or C₂-C₆ alkenyl;

25

CH₃C(O)-, -CN, CH₃SO₂-, CF₃SO₂-, R¹⁴-phenyl, R¹⁴-benzyl, consisting of hydrogen, halogen, C1-C6 alkyl, C1-C6 alkoxy, -CF3, CF3O-R^B is 1 to 3 substituents independently selected from the group

CH₃C(=NOCH₃), CH₃C(=NOCH₂CH₃), o so ,-NH₂,-NHCOCF₃

÷

WO 00/66558

PCT/US00/11632

-NHCONH(C1-C6 alkyl), -NHCO(C1-C6 alkyl), -NHSO2(C1-C6 alkyl),

5-membered heteroaryl and (C1-C6)alkyl, halogen, -NR''R'', -OH, -CF3, -OCH3, -O-acyl, -OCF3 and R9 and R10 are independently selected from the group consisting of , wherein X is -O-, -NH- or -N(CH₃)-;

C₁₎cycloalkyl(C₁-C₆)alkyl), -NHCO(C₁-C₆)alkyl, -NHCOCF₃, -NHSO₂N((C₁--N(R17)CONR18R19, -NHCONH(chloro-(C1-C8)alkyl), -NHCONH((C3--CH=NOR¹⁷, pyridyl, pyridyl N-oxide, pyrimidinyl, pyrazinyl, R11 is R9, hydrogen, phenyl, -NO2, -CN, -CH2F, -CHF2, -CHO,

ಠ C₆)alkyl)₂, -NHSO₂(C₁-C₆)alkyl, -N(SO₂CF₃)₂, -NHCO₂(C₁-C₆)alkyl, C₃-C₁₀ cycloalkyl, $-SR^{20}$, $-SOR^{20}$, $-SO_2R^{20}$, $-SO_2NH(C_1-C_8$ alkyl), $-OSO_2(C_1-C_8)$ CH₃)₂, -OCONH(C₁-C₆)alkyl, -CO₂R¹⁷, -Si(CH₃)₃ or -B(OC(CH₃)₂)₂; C₆)alkyl, -OSO₂CF₃, hydroxy(C₁-C₆)alkyl, -CON R¹⁷R ¹⁸, -CON(CH₂CH₂-O-R¹² is (C₁-C₆)alkyl, -NH₂ or R¹⁴-phenyl;

5 consisting of hydrogen, (C₁-C₆) alkyl, -CF₃, -CO₂R₁₇, -CN, (C₁-C₆)alkoxy R14 is 1 to 3 substituents independently selected from the group

8 group and with the carbon to which they are attached form a spiro ring of 3 hydrogen and C₁-C₆ alkyl, or R¹⁵ and R¹⁶ together are a C₂-C₅ alkylene R15 and R16 are independently selected from the group consisting of

consisting of H and C_1 - C_6 alkyl; and R^{20} is C_1 - C_6 alkyl or phenyl. R¹⁷, R¹⁸ and R¹⁹ are independently selected from the group

to 6 carbon atoms;

5 The use of claim 14 wherein R is R8-phenyl or R8-naphthyl. 23

phenyl, R8-benzyl or R8-pyridyl. The use of claim 14 wherein R3 is hydrogen, (C1-C6) alkyl, R8

မ

The use of claim 14 wherein R1 is hydrogen and R6 is hydrogen or

<u>ფ</u>

WO 00/66558 PCT/US00/11632

- 105

19. The use of claim 14 wherein R2 is R9, R10, R11-phenyl; R9, R10, R11-pyridyl or an N-oxide thereof, or R9, R10, R11-pyrimidyl.

 The use of claim 19 wherein R² is selected from the group consisting of

wherein R^9 and R^{10} are selected from the group consisting of (C1-C6)alkyl, halogen, -OH and -NH2.

- 10 21. The use of claim 20 wherein R² is phenyl or pyridyl and R¹¹ is hydrogen, or wherein R² is pyrimidyl and R¹¹ is hydrogen, methyl or phenyl.
- The use of claim 14 for the treatment of Human Immunodeficiency
 Virus, further comprising one or more antiviral or other agents useful in the treatment of Human Immunodeficiency Virus.
- 23. The use of claim 22 wherein the antiviral agent is selected from the group consisting of nucleoside reverse transcriptase inhibitors, non-
- 20 nucleoside reverse transcriptase inhibitors and protease inhibitors.
- 24. The use of claim 14 for the treatment of solid organ transplant rejection, graft v. host disease, inflammatory bowel disease, rheumatoid arthritis or multiple sclerosis, further comprising one or more other agents useful in the treatment of said diseases.

ည္ပ

- 25. A kit comprising in separate containers in a single package pharmaceutical compositions for use in combination to treat Human Immunodeficiency Virus which comprises in one container a
- 30 pharmaceutical composition comprising an effective amount of a CCRS antagonist of claim 14 in a pharmaceutically acceptable carrier, and in separate containers, one or more pharmaceutical composition comprising an effective amount of a antiviral or other agent useful in the treatment of Human Immunodeficiency Virus in a pharmaceutically acceptable carrier.

35

INTERNATIONAL SEARCH REPORT

Š	1
5	2
00/11630	Application No

Name and ma	2	Date of the ac	atter than latter		, ×	>	×	Category *	3	CHEM ABS	Dogumenta	IPC 7	According to	IPC 7
Name and making address of the ISA European Palers Office, P.B. 5818 Princetiann 2 III. 2238 NV Rijastin Tal. (431-70) 340-2640, Tr. 31 651 epo nt. Fax: (431-70) 340-2640, Fr. 31 651 epo nt.	August 2000	Date of the actual completion of the international search	his not resuresi	Further documents are listed in the continuation of box $\boldsymbol{C}_{\boldsymbol{c}}$	WO 00 00488 A (MCCOMBIE STUART W CORP (US); TAGAT JAYARAM R (US); 6 January 2000 (2000-01-06) claim 1	WO 99 04794 A (OATES BRYAN :FINKE PAUL (US): MACCOSS MALCOLM (US): MERCK & CO 4 February 1999 (1999-02-04) abstract; claim 1	WO 98 05292 A (SCHERING CORP) 12 February 1998 (1998-02-12) claim 1; examples a US 5 889 006 A 30 March 1999 (1999-03-30) cited in the application	Citation of document, with indication, where appropriate, of the relevant passages	C POCINERIOS CONCOCERS TO RESERVATOR	Electromo data base consused during the international season (nume of data base and, where practical, season terms used) CHEM ABS Data, WPI Data, EPO-Internal	Documentation seasoned other than instrum documentation to the eigent that qual documents are included in the fields searched	Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K A61P	According to International Payand Classification (IPC) or to both national destification and IPC A PET ING READYLAND	A CLASSHCLATION OF SHARECT WATER 1PC 7 C070211/58 C070401/06 C070405/12 C070409/06 A61K31/496 A61F31/12
De Jong, B	11/08/2000	Date of mailing of the International search report	To later document published after the International filing date or protify data and not in conflict with the application but already and the foreign of the transport of the transport of the conflict of the principle or the protify of the conflict of the conflict of the principle or the conflict of the	X Patent family members are fated in arriex.	:SCHERING VICE)	E PAUL E		levart passages		sse and, where practical, search terms use	such documents are included in the fields a	aon aymbola)	cation and IPC	C070401/10 A61P19/00
		ch report	meacast filing date the application but the application to only underlying the buccuscions to Lumbra is lateral size a person sidled unity	TI BYTISK	1,2	1,9,14	1,2,25	Referent to claim No.		a	eurched			C07D413/06

om PCT/ISA/210 (aecond aneet) (Judy 1992)

INTERNATIONAL SEARCH REPORT

PCT/US 00/11632

F 2								E		* .
9 2								9		0
WO 9805292								WO 9904794		WO 0000488
WO 9805292								794		488
> "								➣		Þ
12								2		06
date 2-02-19								04-02-1999		06-01-2000
^{dato}								1999		2000
	0	0.0	_	٠.	_	-	_	***		>
	2	7 2	~	P 2	5		S	2	٦	2
58890 38999	T 9 %	9 5	9	9005	ဖွ	, Lu	6	85	10	48
588900 389999	389999 971111 973246	990036	093848	200050111	99055	33153	6043255	8576098	1003514	4820199 A
6 A	N W N	D N	3 A	7 T	A	4 2	5 A	>		9 A
22 2	222	= 2	0	0.	9	: :	22	=	ω	=
deta 30-03-1999 25-02-1998	25-02-1998 23-11-1999 20-10-1999	5661-90-91 5661-01-02)1-09-1999	02-02-2000	7-04-1999	19-07-1999	28-03-2000	16-02-1999	31-05-2000	17-01-2000
199	- 199	199	-199	200	-199	<u>.</u>	-200	-199	-2000	2000
1999	9661 6661 8661	1999 1999	1999	2000	1999	1999	2000	1999	2000	2000

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.