This is a set of obsolete matlab scripts to calculate the slice numbers, which have been replaced by much faster Fortran programs. I leave them here because they can still be useful if you write matlab scripts.

slice number(\$elon,\$elat,\$slon,\$slat,\$nproc,[0 or 1])

- elon,elat,slon,slat => normal plane -> rotation => new_elon, new_slon => lon array along gcarc
- for every point in the lon_array -> check for each chunk, the possible (ξ, η) , and figure out the chunk number as well as the slice number => print out the slice number
- 0 for minor arc, and 1 for major arc
- use tp2norm(), norm_rot(), norm_rot_back(), tp2xyz(), chunk_map()
- extra auxilliary functions:
 - slice_number2(elon,elat,slon,slat,nproc,[0,1],lat0) get the slice number for points on a 'belt' between source and receiver points.
 - [nx,ny,nz] = tp2norm2(ths,phs,thr,phr) to get the coordinates of the unit normal vector
 - [th,ph] = xyz2tp(x,y,z)
 - [th,ph] = gcarc_station(lats,lons,latr,lonr,[0,1]) output stations with 1 degree apart
 - $-[x,y,z] = xsection_translate(lats,lons,latr,lonr,[0,1],scale) to move xsections up and down for S,P Kernels to be aligned on the same plot$
 - new_array = compact_array(old_array) compacts an array by sorting and removing the repeated entries