TD: Changements d'états

I Isothermes d'Andrews

La figure ci-contre représente un ensemble de courbes expérimentales appelées isothermes d'Andrews, représentant la pression P d'une mole de fluide en fonction du volume **molaire**, pour différentes températures.

- 2) Indiquer la courbe de rosée et la courbe d'ébullition.
- 3) Préciser l'état physique et calculer, s'ils sont définis, les titres massiques x_V et x_L de la vapeur et du liquide pour :

a -
$$V_m = 0.6 \,\mathrm{L \cdot mol^{-1}}$$
 et $T = 110 \,\mathrm{^{\circ}C}$;

b -
$$P = 110 \,\text{bars et } T = 200 \,^{\circ}\text{C};$$

$$c - V_m = 0.2 \,L \cdot mol^{-1} \text{ et } T = 125 \,^{\circ}\text{C}.$$

II | Calorimétries

Données

$$c_{\rm eau} = 4185\,\mathrm{J\cdot K^{-1}\cdot kg^{-1}} \text{ et } \Delta h_{\rm fus} = 335\,\mathrm{kJ\cdot kg^{-1}}.$$

II/A Première expérience

Dans un calorimètre parfaitement isolé de capacité thermique $C=150\,\mathrm{J\cdot K^{-1}}$, on place $m=100\,\mathrm{g}$ d'eau à la température $\theta=18\,^\circ\mathrm{C}$ en équilibre thermique avec le vase intérieur et une masse $m_g=25\,\mathrm{g}$ de glace sèche à 0°C. Calculer la température d'équilibre.

II/B Seconde expérience

Dans un calorimètre parfaitement isolé de capacité thermique $C=246\,\mathrm{J\cdot K^{-1}}$, on place $m=100\,\mathrm{g}$ d'eau à la température $\theta=18\,^\circ\mathrm{C}$ en équilibre thermique avec le vase intérieur et une masse $m_g=50\,\mathrm{g}$ de glace sèche à 0°C. Déterminer la température d'équilibre. Quelle proportion de glace a fondu?

III Stockage d'eau chaude

Une masse $m=100\,\mathrm{kg}$ d'eau chaude est stockée dans une cuve fermée de volume $V_0=200\,\mathrm{L}$, que l'on modélise comme étant indéformable. Pour simplifier, on ne tient pas compte de l'air contenu dans la cuve en plus de l'eau. Suite à un échauffement accidentel, l'eau normalement maintenue à $T_0=60\,\mathrm{^{\circ}C}$ passe à $T=500\,\mathrm{^{\circ}C}$.

La vapeur d'eau est modélisée par un gaz parfait. On tient compte de la légère compressibilité et dilatabilité de l'eau liquide par une équation d'état de la forme :

$$\ln \frac{V}{V_0} = \alpha (T - T_0) - \chi_T (P - P_0) \qquad \text{avec} \qquad \begin{cases} \alpha = 3.0 \times 10^{-4} \,\text{K}^{-1} \\ \chi_T = 5.0 \times 10^{-10} \,\text{Pa}^{-1} \end{cases}$$

- 1) Identifiez, sur le diagramme de Clapeyron, la courbe de rosée, la courbe d'ébullition, le point critique et les différentes phases dans lesquelles se trouve l'eau.
- 2) Montrez que pour un équilibre liquide-vapeur, on a :

$$x_g = \frac{m_g}{m_g + m_\ell} = \frac{v - v_l}{v_g - v_\ell}$$

où m_g représente la masse d'eau sous la forme vapeur, m_ℓ , la masse d'eau sous forme de liquide, v, le volume massique du mélange, v_g et v_l , les volumes massiques des phases vapeur et liquide.

FIGURE 6.1 – Diagramme de Clapeyron (P,v) de l'eau. Plusieurs isothermes sont représentées pour des températures allant de 60 à 600 °C. Attention, les échelles sont logarithmiques.

- 3) En utilisant le diagramme de Clapeyron, déterminer la composition du mélange liquide-gaz initial.
- 4) Sous quelle forme trouve-t-on l'eau après l'échauffement accidentel? Déterminer la pression P correspondante. Commenter.
- 5) La soupape de sécurité permet au fur et à mesure du chauffage de laisser de la vapeur d'eau s'échapper : la cuve est finalement presque vide et ne contient plus que $m_0 = 400 \,\mathrm{g}$ d'eau. Déterminer la pression finale et conclure.

IV Cycle de RANKINE

Un moteur fonctionne avec une masse m d'eau. Cette masse d'eau subit les transformations suivantes :

- \Diamond AB : isotherme (A liquide saturant à T_1 et P_1 ; B à P_2);
- \Diamond BC : échauffement réversible isobare qui amène l'eau à la température T_2 (C liquide saturant);
- \diamond CD: vaporisation totale sous la pression P_2 et à la température T_2 ;
- \Diamond DE : détente adiabatique réversible jusqu'à la température T_1 ;
- \diamond EA : liquéfaction totale à la température T_1 .

La capacité thermique massique de l'eau liquide vaut $c_{\text{liq}} = 4.18 \,\text{kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$. Dans le tableau suivant, on donne les caractéristiques des points se trouvant sur la courbe de saturation aux pressions P_1 et P_2 .

	P (bar)	T(K)	$v_l \; (\mathrm{m}^3 \cdot \mathrm{kg}^{-1})$	$v_g \ (\mathrm{m}^3 \cdot \mathrm{kg}^{-1})$	$h_l \; (\mathrm{kJ \cdot kg^{-1}})$	$h_g \; (\mathrm{kJ \cdot kg^{-1}})$
P_1 P_2	0,250 $1,208$	338,15 378,15	$1,02 \times 10^{-3} \\ 1,05 \times 10^{-3}$	6,202 1,419	272,02 $440,17$	2618,4 2683,7

La variation d'entropie massique d'un liquide pour une transformation d'une température T_A à une température T_B s'exprime

$$\Delta s_{AB} = s_B - s_A = c_{\text{liq}} \ln \left(\frac{T_B}{T_A} \right)$$

La variation d'entropie massique lors d'un changement d'état est :

$$\Delta s = \frac{\Delta h}{T}$$

avec Δh la variation d'enthalpie massique lors du changement d'état et T la température du changement d'état.

- 1) Tracer l'allure de deux isothermes d'Andrews dans le diagramme de Clapeyron. On fera apparaître la courbe de saturation. Dessiner l'allure du cycle sur ce même diagramme.
- 2) a Montrer que la variation $s_B s_A$ est nulle.

- b Exprimer $s_C s_B$ en fonction de c_{liq} , T_1 et T_2 .
- c Exprimer $s_D s_C$ en fonction de $h_g(T_2), h_l(T_2)$ et T_2 .
- d Calculer $s_E s_D$.
- 3) Énoncer le théorème des moments.
- 4) Soit x la fraction massique de vapeur en E. On admet que l'on peut appliquer le théorème des moments pour l'entropie. Déterminer x littéralement puis numériquement.
- 5) Calculer les transferts thermiques massiques échangés lors des transformations BCD et EA.
- 6) Déterminer le rendement du cycle. Application numérique.

V Résolution de problème : coca-cola

Par une chaude journée d'été, vous avez oublié de mettre votre soda au frais. Combien de glaçons faut-il ajouter pour que sa température descende à $5\,^{\circ}\mathrm{C}$?