Set 12: Orthogonality and Approximation-Part 3

Kyle A. Gallivan Department of Mathematics

Florida State University

Foundations of Computational Math 2 Spring 2013

Discrete Least Squares

Suppose $x_0 < x_1 < \cdots < x_m$ are given and the metric

$$\sum_{i=0}^{m} \omega_i (f(x_i) - p_n(x_i))^2$$

with $\omega_i > 0$ is used to determine the polynomial, $p_n^*(x)$, of degree n that achieves the minimal value.

Typically, $m \gg n$. If m = n then the unique interpolating polynomial is the solution.

Discrete Least Squares

Suppose we have a basis of polynomials $(\phi_0(x), \dots, \phi_n(x))$ and let

$$p_n(x) = \sum_{j=0}^n \phi_j(x)\xi_j$$

then the conditions are

$$\begin{pmatrix} \rho_0 \\ \rho_1 \\ \vdots \\ \rho_m \end{pmatrix} = \begin{pmatrix} \omega_0^{1/2} f(x_0) \\ \omega_1^{1/2} f(x_1) \\ \vdots \\ \omega_m^{1/2} f(x_m) \end{pmatrix} - \begin{pmatrix} \omega_0^{1/2} \phi_0(x_0) & \dots & \omega_0^{1/2} \phi_n(x_0) \\ \omega_1^{1/2} \phi_0(x_1) & \dots & \omega_1^{1/2} \phi_n(x_1) \\ \vdots & & \vdots \\ \omega_m^{1/2} \phi_0(x_m) & \dots & \omega_m^{1/2} \phi_n(x_m) \end{pmatrix} \begin{pmatrix} \xi_0 \\ \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$$

$$r = W^{1/2} (b - Ax) = (\tilde{b} - \tilde{A}x)$$

Discrete Least Squares

Two equivalent problems:

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_W^2$$
 where
$$\|v\|_W^2 = v^T W v$$

$$\min_{x \in \mathbb{R}^n} \|\tilde{b} - \tilde{A}x\|_2^2$$

The latter is the standard linear least squares problem. We assume that A has linearly independent columns and therefore we can solve using:

- Householder reflector-based transformation method
- SVD-based method
- Conjugate gradient iterative method

Discrete Least Squares and Polynomials

Back to polynomial approximations.

We assumed a basis of polynomials $(\phi_0(x), \dots, \phi_n(x))$ and let

$$p_n(x) = \sum_{j=0}^{n} \phi_j(x)\xi_j$$

Can we select $\phi_j(x)$ so that $\tilde{A}=W^{1/2}A$ has orthogonal columns? If so then the discrete least squares problem is solved by applying \tilde{A}^T to the vector \tilde{b} and scaling.

Discrete Orthogonal Polynomials

Define the inner product

$$(f,g) = (g,f) = \sum_{i=0}^{m} f(x_i)g(x_i)$$

i.e., we have $\omega_i = 1$ for $0 \le i \le m$

We want polynomials $P_i(x)$ for $0 \le i \le m$ such that

$$(P_r(x), P_s(x)) = \delta_{r,s}, \quad 0 \le r, s \le m$$

We restrict the problem further by choosing $-1 \le x_i \le 1$ and equally spaced points $x_i = x_0 + ih$, with $x_0 = -1$ and h = 2/m.

Gram Polynomials

Theorem 12.1. Let m > 0 be given and let $x_i = x_0 + ih$, with $x_0 = -1$ and h = 2/m and define the inner product

$$(f,g) = (g,f) = \sum_{i=0}^{m} f(x_i)g(x_i).$$

The Gram polynomials, $P_i(x)$, for $0 \le n \le m$, are defined by the recurrence

$$P_{-1}(x) = 0, \quad P_0(x) = \frac{1}{\sqrt{m+1}}, \quad P_{n+1}(x) = \alpha_n x P_n(x) - \gamma_n P_{n-1}(x)$$

$$\alpha_n = \frac{m}{n+1} \left(\frac{4(n+1)^2 - 1}{(m+1)^2 - (n+1)^2} \right)^{1/2} \text{ and } \gamma_n = \frac{\alpha_n}{\alpha_{n-1}}$$

$$satisfy (P_i, P_j) = \delta_{i,j}, \quad 0 \le i, j \le m$$

Proof. See Dahlquist and Bjorck or Isaacson and Keller.

Gram Polynomials

- Gram Polynomials are the discrete analogs of the Legendre Polynomials
- When $n << \sqrt{m}$ they behave like Legendre polynomials.
- When $n >> \sqrt{m}$ they have large oscillations and large maximum norms.
- When using equidistant data $n < 2\sqrt{m}$ is recommended.

Chebyshev Polynomials

Lemma. Recall the Chebyshev polynomials

$$T_n(x) = \cos(n \arccos x), \ n \ge 1$$

 $T_0(x) = 1, \ T_1(x) = x, \ T_{n+1} = 2xT_n(x) - T_{n-1}(x)$

and consider the roots of $T_{m+1}(x)$ for some given m > 0,

$$x_i = \cos \frac{2i+1}{m+1} \frac{\pi}{2}, \quad 0 \le i \le m$$

The discrete inner product $(T_i, T_j) = \sum_{k=0}^m T_i(x_k) T_j(x_k)$ for $0 \le i, j \le m$ satisfies (note the weights are all 1):

$$(T_i, T_j) = 0, i \neq j$$

 $(T_i, T_j) = \frac{m+1}{2}, i = j \neq 0$
 $(T_i, T_j) = m+1, i = j = 0$

Chebyshev Polynomials

Theorem 12.2. Let

$$P_n(x) = \frac{\sqrt{2}}{\sqrt{m+1}}\cos(n\arccos x), \ n \ge 1$$

$$P_0(x) = \frac{1}{\sqrt{m+1}}, \ P_1(x) = \frac{\sqrt{2}}{\sqrt{m+1}}T_1(x),$$

$$P_2(x) = \frac{\sqrt{2}}{\sqrt{m+1}} T_2(x), \quad P_{n+1} = 2x P_n(x) - P_{n-1}(x), \quad n \ge 2$$

and, for some given m > 0, let

$$x_i = \cos\frac{2i+1}{m+1}\frac{\pi}{2}, \ \ 0 \le i \le m$$

The discrete inner product $(P_i, P_j) = \sum_{k=0}^{m} P_i(x_k) P_j(x_k)$ for $0 \le i, j \le m$ satisfies

$$(P_i, P_j) = \delta_{i,j}$$