# L10T4

□ 改变算法中的各类超参数、样本数量、样本分布等,对于梯度下降法还要改变不同的学习率以及不同的batch size和不同epoch次数,讨论实验结果。

## 分布一

### 样本分布:

• +1类:均值【3,0】协方差:单位矩阵数量:200

• -1类: 均值【0,3】协方差:单位矩阵数量:200

### 数据记录

• 使用随机种子控制随机性

• 记广义逆方法为NE(Normal-Equation),梯度下降法为GD(Gradient-Descent)

|             | epoch_num=1000 |        |        |          | epoch_num=10 |         |        |          |
|-------------|----------------|--------|--------|----------|--------------|---------|--------|----------|
|             | lr=0.25        | lr=0.2 | lr=0.1 | lr=0.005 | lr=0.25      | lr=0.25 | lr=0.1 | lr=0.005 |
| test_acc_NE | 1.0            | 1.0    | 1.0    | 1.0      | 1.0          | 1.0     | 1.0    | 1.0      |
| test_acc_GD | 0.0(已发散)       | 0.5    | 1.0    | 1.0      | 0.5          | 0.5     | 1.0    | 0.7      |

# 分布二

### 样本分布

• +1类:均值 [4,2] 协方差:  $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$  数量:75

• -1类: 均值 [0,4] 协方差:  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  数量: 75

#### 数据记录

- 使用随机种子控制随机性
- 记广义逆方法为NE(Normal-Equation),梯度下降法为GD(Gradient-Descent)

|             | epoch_num=1000 |         |         |          | epoch_num=10 |         |         |          |
|-------------|----------------|---------|---------|----------|--------------|---------|---------|----------|
|             | lr=0.1         | lr=0.05 | lr=0.01 | lr=0.005 | lr=0.1       | lr=0.05 | lr=0.01 | lr=0.005 |
| test_acc_NE | 0.93           | 0.93    | 0.93    | 0.93     | 0.93         | 0.93    | 0.93    | 0.93     |
| test_acc_GD | 0.0(已发散)       | 0.93    | 0.93    | 0.93     | 0.43         | 0.93    | 0.13    | 0.13     |
| plot        |                |         |         |          |              |         |         |          |

## 结论分析

- 1. 由于线性回归优化问题存在解析解,可用广义逆法直接求出理论最优解 w ,此时就是数据决定学习上限。如分布一中,由于样本分布可分性良好,因此理论上的模型在测试集上的准确度为1,由于分布二样本分布可分性较好但不算完美(如下图所示),因此理论上的模型在测试集上的准确度到不到1,广义逆法拟合的准确率只有0.93。
- 2. 梯度下降法是各种算法的通用优化算法,在一次次迭代中不断调整参数,因此在合适的学习率与足够多的迭代次数下,梯度下降法可以逼近优化的理论上限(也就是达到广义逆法的效果)。但如果超参数设置不合适,会出现其他问题:
  - a. 在本实验中,较为理想的学习率为0.05~0.1,超过0.1,易导致算法不收敛甚至发散到无穷远处;
  - b. 如果学习率较小(如0.005),则模型学习速率较慢,模型效果依赖迭代轮次,只要epoch足够大,模型总能学习到最优解,原因就是线性回归中的损失函数为均方误差,是凸函数;而如果epoch不够大,则模型还没收敛就停止更新了,此种情况下模型效果也较差。

