

Machine Learning 10 Support Vector Machines

Prof. Dr. Steffen Staab

Nadeen Fatallah

Daniel Frank

Akram Sadat Hosseini

Jiaxin Pan

Osama Mohamed

Arvindh Arunbabu

Tim Schneider

Yi Wang

https://www.ki.uni-stuttgart.de/

- based on slides by
 - Thomas Gottron, U. Koblenz-Landau, https://west.uni-koblenz.de/de/studying/courses/ws1718/machine-learning-and-data-mining-1
 - Andrew Zisserman, http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

1 Perceptron Algorithm

Binary classification

• Given training data $\{(x_i, y_i)\}_{i=1}^N$ with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1,1\}$,

Learn a classifier

$$\hat{f}(x_i) = \begin{cases} > 0, & \text{if } y_i = +1 \\ < 0, & \text{if } y_i = -1 \end{cases}$$

Correct classification:

$$\hat{f}(x_i)y_i > 0$$

Linear separability

linearly separable

Linear separability

linearly separable

not linearly separable

Linear classifiers

A linear classifier has the form

$$\hat{f}(x) = w^T x + b$$

- In 2D the discriminant is a line
- w is the normal to the line,
 and b the bias
- w is known as the weight vector

Linear classifiers

- Let's assume $x_i = (1, x_{i,1}, ..., x_{i,d})$ (as in linear regression)
- The we write

$$\hat{f}(x) = w^T x$$

Linear classifiers

A linear classifier has the form

$$\hat{f}(x) = w^T x$$

- In 3D the discriminant is a plane
- In n-dim the discriminant is a hyperplane
- Only w (including b) are needed to classify new data

The perceptron classifier

- Given training data $\{(x_i, y_i)\}_{i=1}^N$ with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1,1\}$,
- how to find a weight vector w, the separating hyperplane, such that the two categories are separated for the dataset?

- Perceptron algorithm
 - 1. Initialize $w = \overline{0}$
 - 2. While there is i such that $\hat{f}(x_i)y_i < 0$ do
 - $w := w \alpha x_i \operatorname{sign}(\hat{f}(x_i)) = w + \alpha x_i y_i$ (not for $\operatorname{sign}(...)=0$)

Example for perceptron algorithm in 2D

- 1. Initialize $w = \overline{0}$
- 2. While there is *i* such that $\hat{f}(x_i)y_i < 0$ do
 - $w := w + \alpha x_i \operatorname{sign}(\hat{f}(x_i))$

before update

At convergence: $w = \sum_{i=1}^{N} \alpha_i x_i$

after update

2 Support Vectors

What is the best *w*?

 Idea: maximum margin solution is most stable under perturbations of the inputs

Support Vector Machine

SVM Optimization Problem (1)

• Distance $\delta(x_i, h)$ of data point x_i from hyperplane h

$$\delta(x_i, h) = \frac{y_i \cdot (w^T x_i + b)}{|w|}$$

SVM Optimization Problem (1)

- In general, length of vector w does not matter
 - fix w such that support vectors x_i make $y_i \cdot (w^T x_i + b) = 1$
- Then positive and negative support vectors have distance $\delta(x_j, h) = \frac{1}{|w|}$ from hyperplane which we want to maximize
- Standard formulation: Minimize $\frac{|w|}{2}$

(inverse margin)

Support Vector Machine

SVM Optimization Problem (2)

$$\max_{w} \frac{2}{||w||}$$

subject to

$$y_i(w^T x_i + b) \ge 1$$
, for $i = 1 ... N$

Or equivalently

$$\min_{w} ||w||^2$$

subject to the same constraints

This is a quadratic optimization problem subject to linear constraints and there is a unique minimum

Compare the two optimization criteria for classfication of linearly separable data by linear regression with classification by SVM

Linear classification
using regression:
decision line is average
between regression lines;
all data points are

considered

Linear classification
using SVM:
decision line maximizes
margins between support
vectors; far away data
points are irrelevant

3 Soft Margin and Hinge Loss

Re-visiting linear separability

 Points can be linearly separated, but with very narrow margin

Re-visiting linear separability

 Points can be linearly separated, but with very narrow margin

 Possibly the large margin solution is better, even though one constraint is violated

Trade-off between the margin and the number of mistakes on training data

(Zisserman 2015)

Introduce "slack" variables

Soft margin solution

Revised optimization problem

$$\min_{w \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||w||^2 + C \sum_{i=1}^N \xi_i$$

subject to

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$
, for $i = 1 ... N$

- Every constraint can be satisfied if ξ_i is sufficiently large
- C is a regularization parameter:
 - small C allows constraints to be easily ignored \Longrightarrow large margin
 - large *C* makes constraints hard to ignore ⇒ narrow margin
 - $C = \infty$ enforces all constraints \Rightarrow hard margin
- Still a quadratic optimization problem with unique minimum
- One hyperparameter C

Loss function

Given constraints:

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

• We can rewrite ξ_i as:

$$\xi_i = \max(0, 1 - y_i \hat{f}(x_i))$$

• Hence, we can optimize the unconstrained optimization problem over w:

Loss function

$$\min_{w \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} \frac{1}{C} ||w||^2 + \sum_{i=1}^N \max(0, 1 - y_i \hat{f}(x_i))$$
loss function

Points are in three categories:

- 1. $y_i f(x_i) > 1$ Point is outside margin. No contribution to loss
- Point is on margin.

 No contribution to loss.

 As in hard margin case.

2. $y_i f(x_i) = 1$

3. $y_i f(x_i) < 1$ Point violates margin constraint. Contributes to loss

 $\mathbf{w}^T\mathbf{x} + b = 0$

Hinge loss

- ullet SVM uses "hinge" loss $\max{(0,1-y_i\widehat{f}(\mathbf{x}_i))}$
- an approximation to the 0-1 loss

4 Gradient descent over convex function

Gradient descent/ascent

Climb down a hill Climb up a hill

Given differentiable function describing height of hill at position $x = (x_1, ..., x_k)$ height of hill f(x).

How to climb up/down fastest?

Go in direction where

$$\frac{df(x)}{dx} = \nabla_{x} f(x)$$

is maximal/minimal

https://en.wikipedia.org/wiki/Gradient_descent#/media/File:Gradient_descent.svg

In general: challenge can be difficult

Gradient Descent (- but without posts)

https://goo.gl/images/JKN6zm

Optimization continued

$$\min_{\mathbf{w} \in \mathbb{R}^d} C \sum_{i}^{N} \max \left(0, 1 - y_i \widehat{f}(\mathbf{x}_i)\right) + ||\mathbf{w}||^2$$

Questions

Does this cost function have a unique solution?

Optimization continued

Questions

- Does this cost function have a unique solution?
- Do we find it using gradient descent?
 Does the solution we find using gradient descent depend on the starting point?

To the rescue:

 If the cost function is convex, then a locally optimal point is globally optimal (provided the optimization is over constraints that form a convex set – given in our case)

Convex functions

D – a domain in \mathbb{R}^n .

A convex function $f:D\to \mathbb{R}$ is one that satisfies, for any \mathbf{x}_0 and \mathbf{x}_1 in D:

$$f((1-\alpha)\mathbf{x}_0 + \alpha\mathbf{x}_1) \le (1-\alpha)f(\mathbf{x}_0) + \alpha f(\mathbf{x}_1) .$$

Line joining $(\mathbf{x}_0, f(\mathbf{x}_0))$ and $(\mathbf{x}_1, f(\mathbf{x}_1))$ lies above the function graph.

Convex function examples

A non-negative sum of convex functions is convex

Applied to hinge loss and regularization

SVM

$$\min_{\mathbf{w} \in \mathbb{R}^d} C \sum_{i=1}^{N} \max (0, 1 - y_i f(\mathbf{x}_i)) + ||\mathbf{w}||^2 \qquad \text{convex}$$

Gradient descent algorithm for SVM

To minimize a cost function C(w) use the iterative update

$$w_{t+1} \coloneqq w_t - \eta_t \nabla_{\mathbf{w}} \mathcal{C}(\mathbf{w}_{\mathsf{t}})$$

where η is the learning rate.

Let's rewrite the minimization problem as an average with $\lambda = \frac{2}{c}$:

$$C(w) = \frac{1}{NC} ||w||^2 + \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i \hat{f}(x_i)) =$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\lambda}{2} ||w||^2 + \max(0, 1 - y_i \hat{f}(x_i)) \right)$$

and
$$\hat{f}(x_i) = w^T x + b$$

Sub-gradient for hinge loss

$$\mathcal{L}(x_i, y_i; w) = \max(0, 1 - y_i \hat{f}(x_i)), \hat{f}(x_i) = w^T x_i + b$$

(Zisserman 2015)

Sub-gradient descent algorithm for SVM

$$C(w) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\lambda}{2} \|w\|^{2} + \mathcal{L}(x_{i}, y_{i}; w) \right)$$

The iterative update is

$$w_{t+1} \coloneqq w_t - \eta \nabla_w \mathcal{C}(w_t) \coloneqq$$

$$\coloneqq w_t - \eta \frac{1}{N} \sum_{i=1}^{N} (\lambda w_t + \nabla_w \mathcal{L}(x_i, y_i; w))$$

Then each iteration t involves cycling through the training data with the updates:

$$w_{t+1} \coloneqq \begin{cases} w_t - \eta(\lambda w_t - y_i x_i), & \text{if } y_i \hat{f}(x_i) < 1 \\ w_t - \eta \lambda w_t, & \text{otherwise} \end{cases}$$

Typical learning rate in Pegasos: $\eta_t = \frac{1}{\lambda t}$

5 The dual problem

Primal vs dual problem

- **SVM** is a linear classifier: $\hat{f}(x) = w^T x + b$
- The primal problem: an optimization problem over w:

$$\min_{w \in \mathbb{R}^d} \frac{1}{C} \|w\|^2 + \sum_{i=1}^N \max(0, 1 - y_i \hat{f}(x_i))$$

• The dual problem: Getting rid of the w for a slightly different representation of $\hat{f}(x)$ leads to the following representation

$$\hat{f}(x) = \sum_{i=1}^{N} \alpha_i y_i (x_i^T x) + b$$

and a new optimization problem with the same solution, but several advantages. Let us show this on following slides...

Revisit Optimization Problem for Hard Margin Case

Minimize the quadratic form

$$\frac{\|w\|^2}{2} = \frac{w^T w}{2}$$

With constraints

$$y_i \cdot (w^T x_i + b) \ge 1 \ \forall i$$

- The constraints will reach a value of 1 for at least one instance.
- Include hard constraints into the loss function:

$$\mathcal{L}(w, b, \alpha) = \frac{\|w\|^2}{2} - \sum_{i=1}^{N} \alpha_i (y_i \cdot (w^T x_i + b) - 1)$$

failed constraints "punish" the objective function

Excursion: Lagrange Multiplier

• We want to maximize a function f(x) under the constraints g(x) = a

Solution with Lagrange Multiplier

Optimize the Lagrangian

$$f(x) - \lambda(g(x) - a)$$

instead!

Nicely visual explanation of Lagrange optimization at https://www.svm-tutorial.com/2016/09/duality-lagrange-multipliers/

Algorithm for optimization with a Lagrange multiplier

- 1. Write down the Lagrangian $f(x) \lambda \cdot (g(x) a)$
- Take derivative of Lagrangian wrt x, set it to 0 to find estimate of x that depends on λ
- Plug your estimate of x in the Lagrangian, take the derivative wrt λ, and set it to 0, to find the optimal value for the lagrange multiplier λ
- 4. Plug in the Lagrange multiplier in your estimate for x

Revisit Optimization Problem for Hard Margin Case

Minimize the quadratic form

$$\frac{\|w\|^2}{2} = \frac{w^T w}{2}$$

With constraints

$$y_i \cdot (w^T x_i + b) \ge 1 \ \forall i$$

- The constraints will reach a value of 1 for at least one instance.
- Include hard constraints into the loss function:

$$\mathcal{L}(w,b,\alpha) = \frac{\|w\|^2}{2} - \sum_{i=1}^{N} \alpha_i (y_i \cdot (w^T x_i + b) - 1)$$

$$\alpha_i \text{ are the Lagrange multipliers}$$

failed constraints "punish" the objective function

Lagrangian primal problem

Lagrangian primal problem is:

$$\min_{w,b} \max_{\alpha} \mathcal{L}(w,b,\alpha)$$

subject to $\forall i: \alpha_i \geq 0$

Finding the optimum

• Loss is a function of w, b, and α

$$\mathcal{L}(w, b, \alpha) = \frac{\|w\|^2}{2} - \sum_{i=1}^{N} \alpha_i (y_i \cdot (w^T x_i + b) - 1)$$

Find optimum using derivatives:

$$\frac{\partial}{\partial b}\mathcal{L}(w,b,\alpha) = 0 \implies 0 = \sum_{i=1}^{N} \alpha_i y_i$$

$$\frac{\partial}{\partial w_j} \mathcal{L}(w, b, \alpha) = 0 \Longrightarrow w_j = \sum_{i=1}^N \alpha_i y_i x_{i,j} \Longrightarrow w = \sum_{i=1}^N \alpha_i y_i x_i$$

w is a linear combination of the data instances!

Substitution into $\mathcal{L}(w, b, \alpha)$

$$\mathcal{L}(w,b,\alpha)_{|w=\sum_{i=1}^{N}\alpha_{i}y_{i}x_{i}} = \frac{\|w\|^{2}}{2} - \sum_{i=1}^{N}\alpha_{i}(y_{i} \cdot (w^{T}x_{i} + b) - 1) =$$

$$\mathcal{L}(w, b, \alpha)_{|w = \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}} = \frac{1}{2} \left\{ \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} = \frac{1}{2} \left\{ \sum_{j=1}^{N} \alpha_{j} y_{j} x_{j} \right\}^{T} \left\{ \sum_{k=1}^{N} \alpha_{k} y_{k} x_{k} \right\} - \sum_{i=1}^{N} \alpha_{i} \left\{ y_{i} \cdot \left(\left\{ \sum_{j=1}^{N} \alpha_{j} y_{j} x_{j} \right\}^{T} x_{i} + b \right) - 1 \right\} = 0$$

$$= \frac{1}{2} \sum_{j,k} \alpha_j \alpha_k y_j y_k (x_j^T x_k) - \sum_{i,j} \alpha_i \alpha_j y_i y_j (x_i^T x_j) - b \sum_{i=1}^N \alpha_i y_i + \sum_{i=1}^N \alpha_i = 0$$

$$= \mathcal{L}(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{j,k} \alpha_j \alpha_k y_j y_k (x_j^T x_k)$$

Wolfe dual problem

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{j,k} \alpha_j \alpha_k y_j y_k (x_j^T x_k)$$

subject to $\forall i$: $\alpha_i \ge 0$, and $0 = \sum_{i=1}^N \alpha_i y_i$

- This problem is solvable with quadratic programming, because it fulfills the Karush-Kuhn-Tucker conditions on α_i that handle inequality constraints (≥1) in the Lagrange optimization (not given here!).
- It gives us the classification function:

$$\hat{f}(x) = \sum_{i=1}^{N} \alpha_i \cdot y_i \cdot x_i^T x + b$$

 α_i is positive if x_i is a support vector

Non-separable Case (similar as before)

• Introduce (positive) "slack variables" ξ_i to allow deviations from the minimum distance:

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

Include a penalizing term in the optimization function:

$$C\left(\sum_{i=1}^{m} \xi_i\right)^k$$

- Transform to Lagrangian
 - with additional Lagrange multipliers for the slack variables being constrained to positive values ...

Summary: Primal and dual formulations

Primal version of classifier

$$\hat{f}(x) = w^T x + b$$

Dual version of classifier

$$\hat{f}(x) = \sum_{i=1}^{N} \alpha_i \cdot y_i \cdot x_i^T x + b$$

The dual form classifier seems to work like a kNN classifier, it requires the training data points x_i . However, many of the α_i are zero. The ones that are non-zero define the support vectors x_i .

Summary: Primal and dual formulations

Lagrangian primal problem is:

$$\min_{w,b} \max_{\alpha} \mathcal{L}(w,b,\alpha)$$

subject to $\forall i: \alpha_i \geq 0$

Lagrangian dual problem is:

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{j,k} \alpha_j \alpha_k y_j y_k (x_j^T x_k)$$

subject to $\forall i$: $\alpha_i \ge 0$, and $0 = \sum_{i=1}^N \alpha_i y_i$

6 Kernelization Tricks in SVMs

Non-linear Case

- Not all classes can be separated via a hyperplane
- Essential:
 - Dual representation uses only the product of data instances:

$$\hat{f}(x) = \sum_{i=1}^{N} \alpha_i \cdot y_i \cdot x_i^T x + b$$

- x_i : i-th training instance
- α_i : weight for i-th training instance
- Same for the Lagrangian...

Feature engineering using $\phi(x)$

• Classifier: Given $x_i \in \mathbb{R}^d$, $\phi : \mathbb{R}^d \to \mathbb{R}^D$, $w \in \mathbb{R}^D$ $\hat{f}(x) = w^T \phi(x) + b$

Learning:

$$\min_{w \in \mathbb{R}^D} \frac{1}{C} ||w||^2 + \sum_{i=1}^N \max(0, 1 - y_i \hat{f}(x_i))$$

Cf. lecture on regression.
Chapter "beyond linear input"

Example 1: From 1-dim to 2-dim

Example 2: From 2-dim to 3-dim

$$\Phi: \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{array}\right) \quad \mathbb{R}^2 \to \mathbb{R}^3$$

• This means that the problem can still be solved by a linear classifier

Feature engineering using $\phi(x)$

• Classifier: Given $x_i \in \mathbb{R}^d$, $\phi : \mathbb{R}^d \to \mathbb{R}^D$, $w \in \mathbb{R}^D$ $\hat{f}(x) = w^T \phi(x) + b$

Learning:

$$\min_{w \in \mathbb{R}^D} \frac{1}{C} ||w||^2 + \sum_{i=1}^N \max(0, 1 - y_i \hat{f}(x_i))$$

- $\phi(x)$ maps to high dimensional space \mathbb{R}^D where data is separable
- If $D \gg d$ then there are many more parameters to learn for w

Dual classifier in transformed feature space

Classifier:

$$\hat{f}(x) = \sum_{i=1}^{N} \alpha_i \cdot y_i \cdot x_i^T x + b$$

$$\Rightarrow \hat{f}(x) = \sum_{i=1}^{N} \alpha_i \cdot y_i \cdot \phi(x_i)^T \phi(x) + b$$

Learning:

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{j,k} \alpha_j \alpha_k y_j y_k (x_j^T x_k)$$

$$\Rightarrow \max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{j,k} \alpha_j \alpha_k y_j y_k \left(\phi(x_j)^T \phi(x_k) \right)$$

subject to
$$\forall i$$
: $\alpha_i \ge 0$, and $0 = \sum_{i=1}^N \alpha_i y_i$

 $\phi(x)$ only occurs in pairs $\phi(x_i)^T \phi(x_i)$

Kernels
$$k(x_j, x_i) = \phi(x_j)^T \phi(x_i)$$

Dual classifier using kernels

Classifier:

$$\hat{f}(x) = \sum_{i=1}^{N} \alpha_i \cdot y_i \cdot \phi(x_i)^T \phi(x) + b$$

$$\Rightarrow \hat{f}(x) = \sum_{i=1}^{N} \alpha_i \cdot y_i \cdot k(x_i, x) + b$$

Learning:

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{j,k} \alpha_{j} \alpha_{k} y_{j} y_{k} \left(\phi(x_{j})^{T} \phi(x_{k}) \right)$$

$$\Rightarrow \max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{j,k} \alpha_{j} \alpha_{k} y_{j} y_{k} k(x_{j}, x_{k})$$

Example kernels

- Linear kernels: $k(x, x') = x^T x'$
- Polynomial kernels: $k(x, x') = (1 + x^T x')^d$, for any d > 0
 - Contains all polynomial terms up to degree
- Gaussian kernels: $k(x, x') = e^{-\frac{\|x x'\|^2}{2\sigma^2}}$, for $\sigma > 0$
 - Infinite dimensional feature space
 - Also called Radial basis function kernel (RBF)
 - often works quite well!
- Graph kernels: random walk
- String kernels: ...
- build your own kernel for your own problem!

Summary on kernels

- "Instead of inventing funny non-linear features, we may directly invent funny kernels" (Toussaint 2019)
- Inventing a kernel is intuitive:
 - k(x, x') expresses how correlated y and y' should be
 - it is a meassure of similarity, it compares x and x'.
- Specifying how 'comparable' x and x' are is often more intuitive than defining "features that might work".

Background reading and more

 Smooth readong about SVMs: Alexandre Kowalczyk, Support vector machines succinctly. Syncfusion. Free ebook:

https://www.syncfusion.com/ebooks/support vector machines succinctly

 Also talks about most efficient algorithms to be used for finding support vectors (it is neither of the two presented here!)

7 Transductive Classification

Transductive learning characteristics

Characteristics

- Training data AND test data known at learning time
- Learning happens specifically for the given test cases

Use cases

- news recommender
- spam classifier
- document reorganization

Thorsten Joachims:

Transductive Inference for Text Classification using Support Vector Machines. ICML 1999: 200-209

Maximum margin hyperplane

Training data
$$\{..., (\vec{x}_i, y_i), ...\}$$

Test data
$$\{\dots \vec{x}_j^* \dots\}$$

Loss function

$$\frac{1}{2} \| \overrightarrow{w} \|^2 + C \sum_{i=0}^{n} \xi_i + C^* \sum_{j=0}^{k} \xi_j^*$$

subject to:

subject to:
$$\forall_{i=1}^{n}: y_{i}[\overrightarrow{w} \cdot \overrightarrow{x}_{i} + b] \geq 1 - \xi_{i}$$

$$\forall_{j=1}^{k}: y_{j}^{*}[\overrightarrow{w} \cdot \overrightarrow{x}_{j}^{*} + b] \geq 1 - \xi_{j}^{*}$$

$$\forall_{i=1}^{n}: \xi_{i} > 0$$

$$\forall_{j=1}^{k}: \xi_{j}^{*} > 0$$

Naive, intractable approach:

- for every hyperplane:
 - classify \vec{x}_i^*
 - compute loss

Reuters data set experiments (3299 test documents)

Reuters data set experiments (17 training documents)

Current research at Analytic Computing:

Multi-label classification with hyperbolic hyperplanes

Figure 2: (a) A Poincaré hyperplane is defined as the intersection between the Poincaré ball \mathbb{D} and the boundary of an n-ball $\mathbb{B}_{\mathbf{c}}$. The Poincaré hyperplane is uniquely parameterized by a center point \mathbf{c} , and the corresponding n-ball (its radius and center) can be uniquely determined by Proposition 1. (b) Label implication is interpreted as n-ball insideness. (c) Mutual exclusion is interpreted as n-ball disjointedness.

So far with hyperbolic logistic regression but doing it with hyperbolic SVM could be a project or a bachelor thesis

Thank you!

Steffen Staab

E-Mail Steffen.staab@ki.uni-stuttgart.de Telefon +49 (0) 711 685-88100 www.ki.uni-stuttgart.de/

Universität Stuttgart Analytic Computing, KI Universitätsstraße 32, 50569 Stuttgart