PATENT COOPERATION TI ATY

	From th	e INTERNATIONAL B	UREAU
PCT	To:		
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422) BOW Defe Ager D/IPI A4 B Farn Ham		BOWDERY, Anthony, Oliver Defence Evaluation & Research Agency D/IPD (DERA) Formalities A4 Building, Ively Road Farnborough Hampshire GU14 0LX ROYAUME-UNI	
Applicant's or agent's file reference IPD/P3139/WOD		IMPORTANT NOT	IFICATION
International application No. PCT/GB99/03055		nal filing date (day/month/y eptember 1999 (14.09	Ī
The following indications appeared on record concerning:		·	
	the agen	t the comm	on representative
Name and Address TURNER, James, Arthur		State of Nationality	State of Residence
D Young & Co. 21 New Fetter Lane London EC4A 1DA		Telephone No. +44 2380 634816	
United Kingdom		Facsimile No. +44 2380 224262	
		Teleprinter No.	
2. The International Bureau hereby notifies the applicant that the	he following	change has been recorded	concerning:
X the person the name the add	lress [the nationality	the residence
Name and Address BOWDERY, Anthony, Oliver		State of Nationality	State of Residence
Defence Evaluation & Research		Telephone No.	<u></u>
Agency D/IPD (DERA) Formalities		01252 392710	
A4 Building, Ively Road		Facsimile No.	
Farnborough		01252 393920	
Hampshire GU14 0LX United Kingdom		Teleprinter No.	
3. Further observations, if necessary:			
·			
	·		
4. A copy of this notification has been sent to:			
X the receiving Office	ſ	the designated Offices	concerned
the International Searching Authority	ļ	The elected Offices cor	ncerned
	ļ	=	
X the International Preliminary Examining Authority		other:	
The International Bureau of WIPO	Authorized	officer	
34, chemin des Colombettes		Anman QIU	
1211 Geneva 20, Switzerland			
Facsimile No : (41,22) 740 14 35	Telephone	No · (41-22) 338 83.38	

PATENT COOPERATION TREATY

To:

From the	INTE	RNAT	ΓΙΟΝΑL	BUREAU
----------	------	------	--------	--------

PCT

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

SMITH, Peter, George, Robin et al

Assistant Commissioner for Patents United States Patent and Trademark Office

Box PCT

Washington, D.C.20231 ETATS-UNIS D'AMERIQUE

Date of r	nailing	(day/m	onth/year)
11 (May 2	000 (1	11.05.00)

in its capacity as elected Office

International application No.	Applicant's or agent's file reference
PCT/GB99/03055	IPD/P3139/WOD
International filing date (day/month/year)	Priority date (day/month/year)
14 September 1999 (14.09.99)	14 September 1998 (14.09.98)
Applicant	

1.	The designated Office is hereby notified of its election made:
	X in the demand filed with the International Preliminary Examining Authority on:
	07 April 2000 (07.04.00)
	in a notice effecting later election filed with the International Bureau on:
	·
2.	The election X was was not
	made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Anman QIU

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

PATENT COOPERATION TREATY

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

	-		
Applicant's or agent's file refe	FOR FURTHER ACTIO	See Notification of Transmittal of International	
IPD/P3139/WOD	FON FUNITIEN ACTIO	Preliminary Examination Report (Form PCT/IPEA/416)	
International application No.	International filing date (day/m	nonth/year) Priority date (day/month/year)	
PCT/GB99/03055	14/09/1999	14/09/1998	
International Patent Classifica G02B6/12	ation (IPC) or national classification and IPC	i	
Applicant			
	STATE FOR DEFENCE et al.		
The SeonLiant Of	STATE FOR DEFENCE et al.		
	liminary examination report has been prep the applicant according to Article 36.	pared by this International Preliminary Examining Authority	
2. This REPORT consis	ts of a total of 4 sheets, including this cover	er sheet.	
This report is also accompanied by ANNEXES, i.e. sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT). These annexes consist of a total of 6 sheets.			
3. This report contains ir	ndications relating to the following items:		
I ⊠ Basis of t	he report	I	
II Priority			
_	III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability		
	nity of invention	d to neverthy inventive eten or industrial applicability	
	and explanations suporting such statemen	d to novelty, inventive step or industrial applicability;	
VI □ Certain o	documents cited		
VII 🗆 Certain de	efects in the international application		
VIII 🛛 Certain ol	bservations on the international application	n	
Date of submission of the den	nand Date	te of completion of this report	
07/04/2000	21.1	11.2000	
Name and mailing address of		horized officer	
preliminary examining authori European Paten D-80298 Munich Tel. +49 89 2399 Fax: +49 89 239	t Office Lor 9 - 0 Tx: 523656 epmu d	rd, R ephone No. +49 89 2399 2580	

International application No. PCT/GB99/03055

 Basis of the repor
--

1.	res _i the	ponse to an invitation	rawn on the basis of (substitute on under Article 14 are referred to not contain amendments (Rule	o in this repo	rt as "originally filed" ai	
	2,4	-11	as originally filed			
	1,1	a,3,3a	as received on	13/09/2000	with letter of	11/09/2000
	Cla	ims, No.:				
	1-1:	2	as received on	13/09/2000	with letter of	11/09/2000
	Dra	wings, sheets:				
	1/4-	-4/4	as originally filed			
•	1464					
2.			juage, all the elements marked a international application was filed			
	The	se elements were a	available or furnished to this Auth	nority in the fo	ollowing language: , v	which is:
		the language of a	translation furnished for the purp	oses of the ir	nternational search (un	der Rule 23.1(b)).
		the language of pu	ublication of the international app	lication (unde	er Rule 48.3(b)).	
	the language of a translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).					
3.	With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:					
		contained in the in	ternational application in written	form.		
	☐ filed together with the international application in computer readable form.					
	☐ furnished subsequently to this Authority in written form.					
		furnished subsequ	ently to this Authority in compute	er readable fo	rm.	
			t the subsequently furnished writ pplication as filed has been furni		e listing does not go be	eyond the disclosure in
		The statement tha listing has been fu	t the information recorded in con rnished.	nputer readab	ole form is identical to t	he written sequence

4. The amendments have resulted in the cancellation of:

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB99/03055

		the description,	pages:
		the claims,	Nos.:
		the drawings,	sheets:
5.			established as if (some of) the amendments had not been made, since they have been ond the disclosure as filed (Rule 70.2(c)):
		(Any replacement sh report.)	eet containing such amendments must be referred to under item 1 and annexed to this
6.	Add	itional observations, i	f necessary:

- V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- 1. Statement

Novelty (N)

Yes:

Claims 1-12

No:

Yes:

Claims

Inventive step (IS)

Yes: Claims 1-12

No: Claims

Industrial applicability (IA)

Claims 1-12

No: Claims

2. Citations and explanations see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made: see separate sheet

EXAMINATION REPORT - SEPARATE SHEET

Conc rning S ction V

Claims 1 and 11

Subject to the comments in Section VIII of this Report, claims 1 and 11 appear to define an arrangement which would not be derivable from the available prior art, since the formation of a waveguide using lateral confinement resulting from index modification of a guiding layer and vertical confinement by layers bonded above and below the guiding layer by direct interfacial bonding is not suggested by the available prior art documents. The claims therefore meet the requirements of Article 33(2) and (3) PCT

Claims 2 to 10 and 12

These claims define specific embodiments of the inventive concept of claims 1 and 11, and hence also meet the requirements of Article 33(2) and (3) PCT.

Concerning Section VIII

- 1. From the discussion of the technical problem in the passage spanning pages 1 and 2 of the present application, it is clear that the technical problem addressed by the application, and its solution, relate to waveguides formed between two "superstructure" layers. Since the independent claims 1 and 11 do not define that the superstructure layers have a refractive index such as to provide vertical confinement, it is apparent that these claims lack a technical feature which is essential to the invention, so that they do not clearly define the invention. These claims therefore do not meet the requirements of Article 6 PCT.
- The application contains on page 11 a list of documents entitled "Publication References". The remainder of the application however contains no reference to these documents, so that their significance is not apparent.

5

10

15

20

25

30

FABRICATION OF OPTICAL WAVEGUIDES

This invention relates to the fabrication of optical waveguides.

One known technique for fabricating optical waveguides is the so-called direct bonding (or direct interfacial bonding) technique.

Direct bonding (DB) is a fabrication technique that uses the Van der Waals forces present when two atomically flat bodies approach each other to create a bond between the bodies. If the bodies are laminas of optical material having appropriate refractive indices, the material laminas can be joined to form waveguiding boundaries.

In one established way to form such a bond the surfaces of two pieces of optical material are polished so as to be very flat (i.e. substantially flat at atomic dimensions). The crystalline structures of the two polished faces are preferably aligned with each other and the polished faces are pressed together. A heat treatment can be useful to encourage a pyroelectric effect and the exchange of electrons between the two surfaces. This gives rise to an electrostatic attraction between the two surfaces, which tends to expel any remaining air or liquid from between the two surfaces. A final annealing step can improve the bond strength further.

A DB bond can be formed irrespective of the lattice constants and orientation of the bodies involved and causes no degradation on the crystalline microstructure or either material. By contacting surfaces in such a non-destructive way, DB preserves the bulk characteristics of each bonded material whilst avoiding possible problems caused by lattice defects, such as increased propagation loss and optical damage.

This invention provides an optical waveguide comprising at least a guiding lamina of optical material bonded by direct interfacial bonding to a superstructure lamina of optical material, in which regions of the guiding lamina have modified optical properties so as to define a light guiding path along the guiding lamina.

The invention recognises and addresses the shortcomings of previous proposals for the use of DB structures in optical waveguides. In such previous proposals, a flat lamina of a material having a raised refractive index (forming a waveguide "core") is bonded between two laminas of material having a lower refractive index (forming a waveguide "superstructure"). While this provided a bulk guiding structure, the large

3

method which has already been demonstrated in the production of LiNbO₃ planar waveguides for electro-optic applications. One of the primary attractions offered by this technique is that the non-linearity and domain characteristics of the PPLN structure after bonding should remain unchanged from the bulk material - a combination that annealed proton exchange and Ti indiffusion methods are close to achieving, but not yet at their full theoretical efficiencies. A further advantage of the present method is the extra flexibility available when designing devices, as combinations of multiple laminas with different material properties are now possible.

5

10

15

20

25

30

Viewed from a second aspect this invention provides a method of fabricating an optical waveguide, the method comprising the steps of:

- (a) bonding, by direct interfacial bonding, a guiding lamina of optical material to a superstructure lamina of optical material; and
- (b) before, during or after step (a), modifying optical properties of regions of the guiding lamina so as to define a light guiding path along the guiding lamina.

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

Figure 1 is a schematic diagram of a waveguide formed using a lamina of PPLN bonded between two laminas of lithium tantalate;

Figure 2 schematically illustrates a second harmonic generator using the waveguide of Figure 1;

Figure 3 is a graph relating the square root of second harmonic power to launch power for the apparatus of Figure 2;

Figures 4 and 5 are schematic diagrams illustrating the fabrication of a waveguide according to an embodiment of the invention using an indiffusion technique; and

Figure 6 schematically illustrates a waveguide according to a further embodiment of the invention.

In the following description, preparation and use of an example waveguide as a second harmonic generator will first be described with reference to Figures 1 to 3. Then, other waveguides also forming embodiments of the invention will be described.

12

CLAIMS

1. An optical waveguide comprising at least a guiding lamina of optical material bonded by direct interfacial bonding to a superstructure lamina of optical material, in which regions of the guiding lamina have modified optical properties so as to define a light guiding path along the guiding lamina.

5

15

25

- 2. A waveguide according to claim 1, comprising a further superstructure lamina bonded by direct interfacial bonding to the guiding lamina.
- 10 3. A waveguide according to claim 1 or claim 2, in which the guiding lamina is formed of a ferroelectric material.
 - 4. A waveguide according to claim 3, in which the guiding lamina is formed of lithium niobate.
 - 5. A waveguide according to claim 3 or claim 4, in which the modified regions are electrically poled regions of the guiding lamina.
- 6. A waveguide according to claim 5, in which the modified regions are spatially periodical electrically poled regions of the guiding lamina.
 - 7. A waveguide according to any one of claims 1 to 5, in which the modified regions are formed by indiffusion of one or more dopant materials into the guiding lamina.
 - 8. A waveguide according to any one of claims 1 to 7, in which at least part of the modified regions form the light-guiding path.

13

- 9. A waveguide according to any one of claims 1 to 7, in which the light guiding path is formed of an unmodified region of the guiding lamina, the modified regions defining boundaries of the light guiding path.
- 5 10. An optical parametric device comprising:
 a waveguide according to any one of the preceding claims; and
 means for launching an input optical signal into the waveguide.
 - 11. A device according to claim 10, comprising:

15

25

- an output filter for filtering light emerging from the waveguide to reduce components at the wavelength of the input optical signal.
 - 12. A method of fabricating an optical waveguide, the method comprising the steps of:
 - (a) bonding, by direct interfacial bonding, a guiding lamina of optical material to a superstructure lamina of optical material; and
 - (b) before, during or after step (a), modifying optical properties of regions of the guiding lamina so as to define a light guiding path along the guiding lamina.
- 20 13. A method according to claim 12, comprising the steps of:
 - (c) after steps (a) and (b), removing material from the guiding lamina to reduce the thickness of the guiding lamina; and
 - (d) after step (c), bonding, by direct interfacial bonding, a further superstructure lamina to the guiding lamina.
 - 14. A method according to claim 13, comprising:
 - (e) before step (a), indiffusing and/or out-diffusing material to/from one face of the guiding lamina to modify regions of the guiding lamina, that face being bonded to the superstructure lamina in step (a); and

14

(f) before step (d), indiffusing and/or out-diffusing material to/from the exposed face of the guiding lamina to modify regions of the guiding lamina, that face being bonded to the further superstructure lamina in step (d).

QU

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference	(Form PCT/ISA/2	of Transmittal of International Search Report 220) as well as, where applicable, item 5 below.		
P/5372.WO	ACTION			
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/month/year)		
PCT/GB 99/03055	14/09/1999	14/09/1998		
Applicant				
UNIVERSITY OF SOUTHAMPTON	et al.			
This International Search Report has bee according to Article 18. A copy is being tra	n prepared by this International Searching Aut ansmitted to the International Bureau.	hority and is transmitted to the applicant		
This International Search Report consists X It is also accompanied by	of a total of sheets. a copy of each prior art document cited in this	report.		
Basis of the report				
 With regard to the language, the language in which it was filed, unl 	international search was carried out on the ba ess otherwise indicated under this item.	sis of the international application in the		
the international search w Authority (Rule 23.1(b)).	ras carried out on the basis of a translation of t	he international application furnished to this		
b. With regard to any nucleotide an was carried out on the basis of the	d/or amino acid sequence disclosed in the ine sequence listing:	nternational application, the international search		
contained in the internation	onal application in written form.			
filed together with the inte	rnational application in computer readable for	n.		
furnished subsequently to this Authority in written form.				
furnished subsequently to this Authority in computer readble form.				
the statement that the sub international application a	sequently furnished written sequence listing d s filed has been furnished.	oes not go beyond the disclosure in the		
the statement that the info furnished	ormation recorded in computer readable form is	s identical to the written sequence listing has been		
2. Certain claims were fou	nd unsearchable (See Box I).	•		
3. Unity of invention is lac	king (see Box II).			
4. With regard to the title,				
X the text is approved as su	bmitted by the applicant.			
the text has been establis	hed by this Authority to read as follows:			
5. With regard to the abstract,				
the text is approved as su	bmitted by the applicant.			
the text has been establish within one month from the	hed, according to Rule 38.2(b), by this Authorit date of mailing of this international search rep	ty as it appears in Box III. The applicant may, ort, submit comments to this Authority.		
6. The figure of the drawings to be publi	shed with the abstract is Figure No.	1		
X as suggested by the applie	cant.	None of the figures.		
because the applicant faile	ed to suggest a figure.			
because this figure better	characterizes the invention.			

international application No.

PCT/GB 99/03055

Box III TEXT OF THE ABSTRACT (Continuation of item 5 f the first sheet)

·		

ational Application No
PCT/GB 99/03055

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G02B6/12 G02F1/377

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} \text{Minimum documentation searched (classification system followed by classification symbols)} \\ IPC & 7 & G02B & G02F \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category ³	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 598 395 A (MATSUSHITA ELECTRIC INDUSTRIAL CO LTD) 25 May 1994 (1994-05-25) example 21	1,3,4, 7-9,12
X	PELISSIER S ET AL: "NEW TECHNIQUE TO PRODUCE BURIED CHANNEL WAVEGUIDES IN GLASS" OPTICAL ENGINEERING, US, SOC. OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS. BELLINGHAM, vol. 37, no. 4, page 1111-1114 XP000771670 ISSN: 0091-3286 figure 1	1,7,8,12

Patent family members are listed in annex.
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the document is combined with one or more other such docu- ments, such combination being obvious to a person skilled
in the art.
"&" document member of the same patent family
Date of mailing of the international search report
16/12/1999
Authorized officer
Lord, R

1

tional Application No
PCT/GB 99/03055

tegory ° Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
ROSS G W ET AL: "GENERATION OF HIGH-POWER BLUE LIGHT IN PERIODICALLY POLED LINBO3" OPTICS LETTERS,US,OPTICAL SOCIETY OF AMERICA, WASHINGTON, vol. 23, no. 3, page 171-173 XP000741206 ISSN: 0146-9592 cited in the application the whole document	3-6,10, 11
US 5 122 852 A (CHANG WINSTON K ET AL) 16 June 1992 (1992-06-16) column 3, line 31 - line 36	3,4
YOO S J B ET AL: "QUASI-PHASE-MATCHED SECOND-HARMONIC GENERATION IN ALGAAS WAVEGUIDESWITH PERIODIC DOMAIN INVERSION ARCHIEVED BY WAFER-BONDING" APPLIED PHYSICS LETTERS, US, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 66, no. 25, page 3410-3412 XP000520298 ISSN: 0003-6951 the whole document	5,6,10,

1

TIONAL SEARCH REPORT

tional Application No PCT/GB 99/03055

Patent document cited in search repor	t	Publication date		ent family ember(s)	Publication date
EP 0598395	A	25-05-1994		69323958 D 69323958 T 6222229 A 137125 B 5485540 A 5785874 A	22-04-1999 16-09-1999 12-08-1994 15-06-1998 16-01-1996 28-07-1998
US 5122852	Α	16-06-1992	NONE		

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: G02B 6/12, G02F 1/377

A1

(11) International Publication Number:

WO 00/16140

(43) International Publication Date:

23 March 2000 (23.03.00)

(21) International Application Number:

PCT/GB99/03055

(22) International Filing Date:

14 September 1999 (14.09.99)

(30) Priority Data:

9820024.9

14 September 1998 (14.09.98) GB

(71) Applicant (for all designated States except US): UNIVERSITY OF SOUTHAMPTON [GB/GB]; Highfield, Southampton, Hampshire SO19 1BJ (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SMITH, Peter, George, Robin [GB/GB]; 38 Eight Acres, Romsey, Hampshire S051 5BQ (GB). ROSS, Graeme, William [GB/GB]; 35 Gladstone Place, Queen's Cross, Aberdeen AB10 6UX (GB). HANNA, David, Colin [GB/GB]; 346 Hill Lane, Shirley, Southampton, Hampshire S015 7PH (GB). SHEPHERD, David, P. [GB/GB]; Flat 2, 116 Highfield Lane, Highfield, Southampton, Hampshire S017 1NP (GB). GAWITH, Colin, Barry, Edmund [GB/GB]; 24 Upland Court Road, Harold Wood, Romford, Essex RM3 0TT (GB).
- (74) Agent: TURNER, James, Arthur; D Young & Co., 21 New Fetter Lane, London EC4A 1DA (GB).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: FABRICATION OF OPTICAL WAVEGUIDES

(57) Abstract

An optical waveguide comprising at least a guiding lamina (10) of optical material bonded by direct interfacial bonding to a superstructure lamina (20) of optical material, in which regions of the guiding lamina have modified optical properties so as to define a light guiding path along the guiding lamina. In a particular example, a periodically poled LiNbO₃ planar waveguide is buried in LiTaO₃ by direct interfacial bonding and precision polishing techniques and used in an optical frequency doubling system.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Itały	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

In .tional Application No PCT/GB 99/03055

			101/00 33/	05055
A. CLASSII IPC 7	FICATION OF SUBJECT MATTER G02B6/12 G02F1/377			-
According to	International Patent Classification (IPC) or to both national classifica	tion and IPC		
	SEARCHED			
Minimum do IPC 7	cumentation searched (classification system followed by classificatio G02B G02F	n symbols)		
	ion searched other than minimum documentation to the extent that su			
Electronic da	ata base consulted during the international search (name of data bas	e and, where practical,	search terms used	
C. DOCUME	NTS CONSIDERED TO BE RELEVANT			
Calegory °	Citation of document, with indication, where appropriate, of the rele	vant passages		Relevant to claim No.
X	EP 0 598 395 A (MATSUSHITA ELECTR INDUSTRIAL CO LTD) 25 May 1994 (1994-05-25) example 21	IC		1,3,4, 7-9,12
X	PELISSIER S ET AL: "NEW TECHNIQU PRODUCE BURIED CHANNEL WAVEGUIDES GLASS" OPTICAL ENGINEERING,US,SOC. OF PHOTO-OPTICAL INSTRUMENTATION ENG BELLINGHAM, vol. 37, no. 4, page 1111-1114 XP000771670 ISSN: 0091-3286 figure 1	IN		1,7,8,12
		,		
X Furth	ner documents are listed in the continuation of box C.	X Patent family (members are listed	in annex.
"A" docume	tegories of cited documents : ant defining the general state of the art which is not ered to be of particular relevance		lished after the inted I not in conflict with I the principle or the	the application but
"E" earlier o	document but published on or after the international	"X" document of particu	lar relevance; the cared novel or cannot	
"L" docume	nt which may throw doubts on priority claim(s) or	involve an inventiv	e step when the do	cument is taken alone
citation	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or		red to involve an inv	ventive step when the ore other such docu-
other r	means			us to a person skilled
	ant published prior to the international filing date but an the priority date claimed	"&" document member	of the same patent	family
	actual completion of the international search	_	the international sea	arch report
	December 1999	16/12/1	999 	
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Lord, R		

1

Int ional Application No PCT/GB 99/03055

		PCT/GB 99/03055
.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category '	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	ROSS G W ET AL: "GENERATION OF HIGH-POWER BLUE LIGHT IN PERIODICALLY POLED LINBO3" OPTICS LETTERS,US,OPTICAL SOCIETY OF AMERICA, WASHINGTON, vol. 23, no. 3, page 171-173 XP000741206 ISSN: 0146-9592 cited in the application the whole document	3-6,10, 11
A	US 5 122 852 A (CHANG WINSTON K ET AL) 16 June 1992 (1992-06-16) column 3, line 31 - line 36	3,4
A	YOO S J B ET AL: "QUASI-PHASE-MATCHED SECOND-HARMONIC GENERATION IN ALGAAS WAVEGUIDESWITH PERIODIC DOMAIN INVERSION ARCHIEVED BY WAFER-BONDING" APPLIED PHYSICS LETTERS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 66, no. 25, page 3410-3412 XP000520298 ISSN: 0003-6951 the whole document	5,6,10,

1

Information on patent family members

In: dional Application No PCT/GB 99/03055

Patent document cited in search report		Publication date	1	Patent family member(s)	Publication date
EP 0598395	Α	25-05-1994	DE	69323958 D	22-04-1999
			DE	69323958 T	16-09-1999
			JP	6222229 A	12-08-1994
			KR	137125 B	15-06-1998
			US	5485540 A	16-01-1996
			US	5785874 A	28-07-1998
US 5122852	A	16-06-1992	NONE	-	

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

G02B 6/12, G02F 1/377

(11) International Publication Number:

WO 00/16140

(43) International Publication Date:

23 March 2000 (23.03.00)

(21) International Application Number:

PCT/GB99/03055

A1

(22) International Filing Date:

14 September 1999 (14.09.99)

(30) Priority Data:

9820024.9

14 September 1998 (14.09.98)

(71) Applicant (for all designated States except US): UNIVERSITY OF SOUTHAMPTON [GB/GB]; Highfield, Southampton, Hampshire SO19 1BJ (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SMITH, Peter, George, Robin [GB/GB]; 38 Eight Acres, Romsey, Hampshire S051 5BQ (GB), ROSS, Graeme, William [GB/GB]; 35 Gladstone Place, Oueen's Cross, Aberdeen AB10 6UX (GB), HANNA, David, Colin [GB/GB]; 346 Hill Lane, Shirley, Southampton, Hampshire SO15 7PH (GB). SHEPHERD, David, P. [GB/GB]; Flat 2, 116 Highfield Lane, Highfield, Southampton, Hampshire SO17 1NP (GB). GAWITH, Colin, Barry, Edmund [GB/GB]; 24 Upland Court Road, Harold Wood, Romford, Essex RM3 OTT (GB).
- (74) Agent: TURNER, James, Arthur, D Young & Co., 21 New Fetter Lane, London EC4A 1DA (GB).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: FABRICATION OF OPTICAL WAVEGUIDES

(57) Abstract

An optical waveguide comprising at least a guiding lamina (10) of optical material bonded by direct interfacial bonding to a superstructure lamina (20) of optical material, in which regions of the guiding lamina have modified optical properties so as to define a light guiding path along the guiding lamina. In a particular example, a periodically poled LiNbO3 planar waveguide is buried in LiTaO3 by direct interfacial bonding and precision polishing techniques and used in an optical frequency doubling system.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AL AM	Amenia	FI	Finland	LT	Lithuania	SK	Slovakia
		FR	Prance	LU	Luxembourg	SN	Senegal
AT	Austria	GA	Gabon	LV	Latvia	SZ	Swaziland
AU	Australia	GB	United Kingdom	MC	Monaco	TD	Chad
AZ	Azerbaijan		•	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GE	Georgia	MG	•	TJ	Tajikistan
BB	Barbados	GH	Ghana		Madagascar	TM	Turkmenistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TR	
BF	Burkina Faso	GR	Greece		Republic of Macedonia		Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IB	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DB	Germany	u	Liechtenstein	SD	Sudan		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

FABRICATION OF OPTICAL WAVEGUIDES

This invention relates to the fabrication of optical waveguides.

5

10

15

20

25

30

One known technique for fabricating optical waveguides is the so-called direct bonding (or direct interfacial bonding) technique.

Direct bonding (DB) is a fabrication technique that uses the Van der Waals forces present when two atomically flat bodies approach each other to create a bond between the bodies. If the bodies are laminas of optical material having appropriate refractive indices, the material laminas can be joined to form waveguiding boundaries.

In one established way to form such a bond the surfaces of two pieces of optical material are polished so as to be very flat (i.e. substantially flat at atomic dimensions). The crystalline structures of the two polished faces are preferably aligned with each other and the polished faces are pressed together. A heat treatment can be useful to encourage a pyroelectric effect and the exchange of electrons between the two surfaces. This gives rise to an electrostatic attraction between the two surfaces, which tends to expel any remaining air or liquid from between the two surfaces. A final annealing step can improve the bond strength further.

A DB bond can be formed irrespective of the lattice constants and orientation of the bodies involved and causes no degradation on the crystalline microstructure or either material. By contacting surfaces in such a non-destructive way, DB preserves the bulk characteristics of each bonded material whilst avoiding possible problems caused by lattice defects, such as increased propagation loss and optical damage.

This invention provides an optical waveguide comprising at least a guiding lamina of optical material bonded by direct interfacial bonding to a superstructure lamina of optical material, in which regions of the guiding lamina have modified optical properties so as to define a light guiding path along the guiding lamina.

The invention recognises and addresses the shortcomings of previous proposals for the use of DB structures in optical waveguides. In such previous proposals, a flat lamina of a material having a raised refractive index (forming a waveguide "core") is bonded between two laminas of material having a lower refractive index (forming a waveguide "superstructure"). While this provided a bulk guiding structure, the large

2

lateral dimension of the flat "core" lamina meant that the arrangement was not useful for many waveguiding applications or as a single-mode waveguide.

In contrast, in the invention, regions of the core lamina have modified optical properties so as to define a light guiding path along the core lamina. This can give a greatly increased flexibility of use and allow the guiding path to be much more tightly defined than in previous arrangements.

5

10

15

20

25

30

Although the method is suitable for use with many types of materials, such as glasses, it is preferred that the core lamina is a ferroelectric material, allowing the modified regions to be generated by electrical poling.

A particularly useful ferroelectric material having well-studied optical and electrical properties, is periodically poled lithium niobate (PPLN). PPLN combines a large non-linear coefficient, a widely-controllable phase-matching wavelength, and zero walk-off characteristics that make it an ideal material to achieve quasi-phase matching (QPM) for non-linear frequency conversion. With recent improvements in the efficiency of second-harmonic generation (SHG) within PPLN substrates, it is recognised in the present invention that the use of such a material in an appropriate waveguide geometry formed using the invention can provide a realisation of various compact non-linear devices based on harmonic or parametric generation.

The present method is particularly appropriate for use with PPLN, and has several advantages over other techniques for fabricating waveguides using PPLN such as the so-called "annealed proton exchange" technique and the "titanium indiffusion" technique, both of which act on a single PPLN crystal and modify the crystal near the surface in order to create regions of higher refractive index for optical confinement.

Previous experiments investigating the bonding characteristics of PPLN have been directed towards fabricating thick multi-laminated stacks of the material for a large physical aperture, and thus high power applications. In contrast, creating a sufficiently thin lamina of PPLN increases the average pump intensity applied to the domain-inverted structure via optical confinement, and thus allows efficient SHG even at low pump powers. Fabrication of such a device is obtainable by bonding PPLN onto a suitable substrate before precision polishing down to waveguide dimensions, a

5

10

15

20

25

30

method which has already been demonstrated in the production of LiNbO₃ planar waveguides for electro-optic applications. One of the primary attractions offered by this technique is that the non-linearity and domain characteristics of the PPLN structure after bonding should remain unchanged from the bulk material - a combination that annealed proton exchange and Ti indiffusion methods are close to achieving, but not yet at their full theoretical efficiencies. A further advantage of the present method is the extra flexibility available when designing devices, as combinations of multiple laminas with different material properties are now possible.

Viewed from a second aspect this invention provides a method of fabricating an optical waveguide, the method comprising the steps of:

- (a) bonding, by direct interfacial bonding, a guiding lamina of optical material to a superstructure lamina of optical material; and
- (b) before, during or after step (a), modifying optical properties of regions of the guiding lamina so as to define a light guiding path along the guiding lamina.

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

Figure 1 is a schematic diagram of a waveguide formed using a lamina of PPLN bonded between two laminas of lithium tantalate;

Figure 2 schematically illustrates a second harmonic generator using the waveguide of Figure 1;

Figure 3 is a graph relating the square root of second harmonic power to launch power for the apparatus of Figure 2;

Figures 4 and 5 are schematic diagrams illustrating the fabrication of a waveguide according to an embodiment of the invention using an indiffusion technique; and

Figure 6 schematically illustrates a waveguide according to a further embodiment of the invention.

In the following description, preparation and use of an example waveguide as a second harmonic generator will first be described with reference to Figures 1 to 3. Then, other waveguides also forming embodiments of the invention will be described.

4

Figure 1 schematically illustrates a waveguide formed as a directly bonded sandwich of a lamina 10 of PPLN between two laminas 20 of lithium tantalate (LiTaO₃).

The PPLN lamina 10 is in the form of a PPLN grating, in that the lithium niobate (LiNbO₃) material is poled in a periodic, "striped" arrangement. These "stripes" of alternately poled regions in the lithium niobate material are shown schematically in Figure 1 as alternate black and white stripes, although it will be appreciated that in reality the periodic poling structure would almost certainly not be detectable by the human eye.

5

10

15

20

25

Production of the PPLN grating began with a 0.5-mm-thick single domain z-cut LiNbO₃ sample of about 15 mm x 15 mm surface area. A photoresist pattern was created on the z-face of the crystal by photolithography. This formed regions on the crystal surface which are covered by an electrical insulator, and regions which are not so covered. A liquid electrode was then applied to the partially insulated surface, and domain inversion in the z-axis was performed at room temperature by the application of a single high voltage pulse of ~ 11 kV through the liquid electrode. This resulted in three 5.5-mm-long PPLN gratings, positioned in the centre of the LiNbO₃ sample at 1 mm intervals. Grating periods of 6.58, 6.50, and 6.38 µm were created, the first two of which are suitable for frequency doubling of a Nd:YAG laser operating at 1064 nm.

LiTaO₃ was chosen as a suitable material for both the substrate and superstructure laminas as it combines thermal characteristics that are a good match for LiNbO₃, an important pre-requisite when annealing bonds at high temperatures, together with a refractive index lower than that of LiNbO₃.

Each LiTaO₃ substrate was 0.5-mm-thick and shaped relative to the PPLN sample to provide a bonding area of about 12mm x 10 mm between the two optically flat surfaces. To form a bond between an LiTaO₃ substrate and the PPLN grating, the two materials were first cleaned, then a mixture of H₂O₂-NH₄OH-H₂O (1:1:6) was applied to both materials, followed by several minutes of rinsing in de-ionised water, in order to render their surfaces hydrophilic.

PCT/GB99/03055 WO 00/16140

5

Contacting of the PPLN and LiTaO3 laminas was performed at room temperature with both samples aligned along the same crystalline orientation. A heat treatment of 120°C immediately followed crystal contact to induce the pyroelectric effect at the DB interface. The resultant electrostatic attraction forced any excess air or liquid from between the two surfaces, whilst bringing them close enough to encourage the formation of hydrogen bonds. This effect was evident by the elimination of most contact fringes at the crystal interface. Annealing of the bonded sample at 320°C for 6 hours provided a bond strength sufficient for further machining, and the PPLN region was lapped down to obtain a waveguiding lamina of 12-µm-thickness.

The second superstructure lamina of LiTaO₃ was then added as above. The 10 final DB structure included bonded interfaces of about 12mm x 10 mm above and below the PPLN core, although evidence of small unbonded regions at the edges of the sample were detected by the presence of optical fringes. The unnecessary material surrounding the gratings was later removed using dicing equipment and the waveguide end-faces were then polished to a parallel optical finish. Dimensions of the resulting

buried PPLN planar structure are given schematically in Figure 1.

5

15

20

25

30

An upper limit for the value of the propagation loss of the waveguide structure was found by measuring the transmission of a 1064 nm laser beam when end-launched into the waveguide. It was noted that the transmission changed between the PPLN and unpoled LiNbO3 sections, although this was not due to SHG. The launch from a microscope objective was empirically optimised for each region and maximum transmissions of 81% were found at the edges of the poled regions (where the best SHG occurred) and throughout the unpoled LiNbO3 sections, whilst 65% transmission was obtained at the centre of the PPLN region. Thus, taking into account the 5.5-mmlength of the grating, an upper-limit to the propagation loss in each section can be placed as 1.7 dB cm⁻¹ for the PPLN edges and unpoled LiNbO₃ regions, and 3.4 dB cm⁻¹ for the central PPLN region. In reality, these transmission figures also include a certain loss due to non-perfect launching and so the propagation losses are likely to be much lower. Indeed, DB waveguides in garnets and glasses for laser applications have shown losses of ~0.5 dB cm⁻¹ and less.

5

10

15

20

25

30

To test the non-linear properties of the buried PPLN structure. the SHG characteristics of the 6.50 µm grating were investigated. This grating, which occupied the middle section of the PPLN waveguide, successfully suppressed the photorefractive effect at its phase-matching temperature of 174.1°C and so was chosen for further analysis. The 1064 nm pump source was a cw diode-pumped Nd:YAG laser 30 operating with multi-axial modes. The linear polarisation state was rotated with a half-wave plate (not illustrated) to be parallel with the z-axis of the PPLN in order to access the material's largest non-linear coefficient (d₁₃). Focusing of the pump radiation for launching into the waveguide was performed using a combination of microscope objectives and cylindrical lenses, as shown in Figure 2. In particular, the initially circular pump beam was passed through a spherical collimating lens 40 and into a x2.4 cylindrical-lens telescope 50 to produce widening in the non-guided direction before being focused onto a poled region of the PPLN waveguide device 70 of Figure 1 by a x10 microscope objective 60. Such a combination of optics was chosen to provide good launch efficiency whilst helping to reduce divergence in the horizontal unguided plane. This resulted in a pump source with a line focus and measured spot sizes of 4±1 µm in the guided direction and 11±1 µm in the non-guided direction.

It should be noted that focusing to a waist in the non-guided plane at the input face is not necessarily the optimum condition for maximum SHG efficiency. However, it was used in this demonstration due to the simplicity of having one x10 objective as the focusing element instead of a more complicated cylindrical-lens launching arrangement. Also, for this initial demonstration, both the input and output end-faces of the waveguide were polished but left uncoated, leading to 14% reflection losses at each face.

The waveguide device 70 was placed in an oven 80 to maintain the waveguide's temperature at the phase-matching temperature of 174.1°C.

A second x10 microscope objective 90 was used to collect the transmitted light from the waveguide. This was followed by an infra-red filter 100 to block any throughput from the pump beams, allowing the generated green output of the PPLN to

7

be measured by an optical power meter. For 204 mW of launched pump power ($\lambda = 1064$ nm), a second-harmonic (SH) power of 1.8 mW ($\lambda = 532$ nm) was generated internal to the crystal. Figure 3 shows a plot of the square root of the SH power versus launched pump power, revealing a quadratic dependence between the measured values.

It should of course be noted that the system of Figure 2 is a specific example of an optical parametric device. The waveguide would be suitable for use in many other such devices.

5

10

15

20

25

30

Due to the unusual pumping geometry used while testing the PPLN waveguide, any calculation of the SHG efficiency from the device would be complicated. Instead, the most interesting comparison to make is with a calculation of the SH power expected from a similar length of bulk PPLN with optimised focusing in the centre of the grating. Assuming a non-linear coefficient of 16 pm V⁻¹ (a value consistent with results in bulk experiments using similarly produced PPLN gratings), it is possible to produce a SH output power of 1.3 mW in the bulk material - a lower result than the 1.8 mW obtained from the direct-bonded waveguide. Therefore, it would appear that even with non-optimum focusing and only one guided dimension, the buried PPLN device shows an improved SHG efficiency over the bulk material.

Characterisation of the output modes of the PPLN waveguide was performed by the use of a video camera and PC-based evaluation software. Surprisingly, it was observed that both the 1064 nm throughput and the SH generated 532 nm radiation from the PPLN waveguide were in the fundamental spatial mode, an unexpected result for a 12- μ m-thick guide with such a large index difference ($\Delta n_e \approx 1\%$). Indeed, only by using a deliberately poor launch was it possible to excite anything other than the fundamental mode at 1064 nm. Even more unusual was the result that the 1064 nm throughput from the unpoled LiNbO3 region within the same buried structure was multi-spatial-mode in nature. This clear difference in the mode properties, combined with the apparently different transmissions described earlier, suggests that the index profile of the PPLN section is different to that of the unpoled LiNbO3 section.

In summary, for the first embodiment of the invention these experiments demonstrate the successful prototype fabrication of a 12-µm-thick, 5.5-mm-long,

5

10

15

20

25

30

symmetrical PPLN waveguide buried in LiNbO₃ by DB. Using the 6.50-μm-period PPLN grating at an elevated temperature of 174°C, an efficient quasi-phase-matched frequency doubling of the 1064 nm line of a cw diode-pumped Nd:YAG laser has been demonstrated. For 204 mW of fundamental pump power, nearly 2 mW of green power was generated at an output wavelength of 532 nm. This result was obtained with non-optimum focusing conditions but remains higher than the theoretical expectation for a similar length of bulk material. The waveguiding properties were shown to be different in the PPLN and unpoled LiNbO₃ regions of the sample, with the PPLN section showing a surprising single-spatial-mode behaviour. These results suggest that the production of longer buried waveguides, potentially incorporating channel structures, should lead to highly-efficient non-linear devices. With a full characterisation of propagation losses and effects of strain upon the index profile, the DB technique should allow extra freedom, and hence new device possibilities, in the choice of non-linear waveguiding structures.

The techniques described above are not limited to PPLN, but can be applied to any optically useful poled ferroelectric material such as LiTaO₃, doped LiNbO₃ (e.g. Mg-, Ti- or rare earth doped), strontium barium niobate, barium titanate, potassium titanyl phosphate and its isomorphs, polar semiconductors such as gallium arsenide and so on.

The poling of the PPLN can be carried out before, during, between and/or after the bonding stages. If the poling is carried out other than before the bonding stages and a ferroelectric material is used for the other laminas, then those other laminas can also end up being poled. This may change the guiding properties of the waveguide but does not prevent operation as a waveguide. Indeed, the bonding properties may even be improved by this measure (or by poling the other laminas separately).

In the example above, a poled area is used to define a waveguiding path along the lamina 10, but with other substrates it may be found that an unpoled lamina offers a more appropriate path.

It is not necessary to surround the lamina 10 by two other laminas 20. Instead, one lamina 20 could be used, to form an "open sandwich" structure of just two

9

laminas. In this case the symmetry of the structure would be altered and the guided mode(s) would probably be different, but operation as a waveguide would still be possible.

The thickness of the lamina 10 can be altered, again altering the nature of the guided mode(s) in the waveguide. In this way, a single mode structure can be fabricated.

5

10

15

20

25

Referring now to Figures 4 and 5, a second embodiment using an indiffusion technique to define a waveguide path will be described.

In this second embodiment, a piece of PPLN 100 is made by the conventional electrical poling method. The piece 100 might be, for example, 500µm thick and several mm in the other two dimensions. One face 110 of the piece 100 is patterned with magnesium oxide (using a process of photolithography and vacuum evaporation or sputtering). The magnesium oxide lamina is less than about 400nm thick, and defines (by the parts not covered by the lamina) a waveguide path along the piece 100. The piece 100 is then heated to a temperature of between about 600°C and about 1200°C. This causes the magnesium oxide material to diffuse in and, in the indiffused regions 130, locally lower the refractive index.

The piece 100 is then bonded, by a direct bonding process applied to the face 110, to a LiTaO₃ substrate (140, Figure 5), before being polished down to a substantially uniform thickness of between, say, about 4µm and about 40µm.

A further magnesium oxide pattern is then deposited on the exposed (newly polished) face of the piece 100, and the heat treatment repeated. This causes the magnesium oxide to indiffuse from the other side, to match the indiffusion from the face 110. Regions 150 of reduced refractive index are thus formed, defining a waveguiding core 160.

This technique, or a complementary out-diffusion technique, is applicable not only to other ferroelectric materials (for examples, see above), but also to any substrates whose refractive index can be altered by an indiffusion technique, such as various glasses, polymers and other crystals. The common advantage shared between

10

all applications of this technique is that the guiding region 160 can be formed of unadulterated material.

Similarly, in all of the embodiments, the "superstructure" laminas can be of various materials such as unpoled LiNbO₃ or other suitable materials from the lists above.

5

10

It is possible to fabricate curved waveguide paths using the above techniques. In the case of the first embodiment, a poling pattern similar to that shown schematically in Figure 6 can be used, where a series of poled regions form a track 170 which bifurcates as a signal splitter. In the case of LiNbO₃ there is a preferred poling direction resulting form the crystal structure, but the arrangement of Figure 6 gets around this restriction to form curved or varying-direction paths using multiple displaced poled stripes.

PUBLICATION REFERENCES

- [1] J A Armstrong, N Bloembergen, J Ducuing, and P S Pershan, Phys. Rev. 125. 1918 (1962)
- 5 [2] G W Ross, M Pollnau, P G R Smith, W A Clarkson, P Britton, and D C Hanna, Opt. Lett. 23. 171 (1998)
 - [3] K Kintaka, M Fujimura, T Suhara, and H Nishihara, J. Lightwave Tech. 14. 462 (1996)
 - [4] M A Arbore and M M Fejer, Opt. Lett. 22. 151 (1997)
- 10 [5] P Baldi, M P De Micheli, K E Hadi, S Nouh, A C Cino, P Aschieri, and D B Ostrowsky, Opt. Eng. 37. 1193 (1998)
 - [6] J Amin, V Pruneri, J Webjorn, P St J Russell, D C Hanna, and J S Wilkinson, Opt. Comm. 135. 41 (1997)
- J Haisma, B A C M Spierings, U K P Biermann, and A A van Gorkum, Appl.
 Opt. 33. 1154 (1994)
 - [8] K Eda, M Sugimoto, and Y Tomita, Appl. Phys. Lett. 66. 827 (1994)
 - [9] M J Missey, V Dominic, L E Myers, and R C Eckardt, Opt. Lett. 23. 664 (1998)
 - [10] Y Tomita, M Sugimoto, and K Eda, Appl. Phys. Lett. 66. 1484 (1995)
- 20 [11] J Haisma, T M Michielsen, and F J H M van der Kruis, Phillips J. Res. 49. 65 (1995)
 - [12] C T A Brown, C L Bonner, T J Warburton, D P Shepherd, A C Tropper, D C Hanna, and H E Meissner, Appl. Phys. Lett. 71. 1139 (1997)
- [13] G A C M Spierings, J Haisma, and T M Michielsen, Phillips J. Res. 49. 47

 25 (1995)
 - [14] G D Boyd and D G Kleinmann, J. Appl. Phys. 39. 3597 (1968)

12

CLAIMS

1. An optical waveguide comprising at least a guiding lamina of optical material bonded by direct interfacial bonding to a superstructure lamina of optical material, in which regions of the guiding lamina have modified optical properties so as to define a light guiding path along the guiding lamina.

5

15

25

- 2. A waveguide according to claim 1, comprising a further superstructure lamina bonded by direct interfacial bonding to the guiding lamina.
- 10 3. A waveguide according to claim 1 or claim 2, in which the guiding lamina is formed of a ferroelectric material.
 - 4. A waveguide according to claim 3, in which the guiding lamina is formed of lithium niobate.
 - 5. A waveguide according to claim 3 or claim 4, in which the modified regions are electrically poled regions of the guiding lamina.
- 6. A waveguide according to claim 5, in which the modified regions are spatially periodical electrically poled regions of the guiding lamina.
 - 7. A waveguide according to any one of claims 1 to 5, in which the modified regions are formed by indiffusion of one or more dopant materials into the guiding lamina.
 - 8. A waveguide according to any one of claims 1 to 7, in which at least part of the modified regions form the light-guiding path.

13

- 9. A waveguide according to any one of claims 1 to 7, in which the light guiding path is formed of an unmodified region of the guiding lamina, the modified regions defining boundaries of the light guiding path.
- 5 10. An optical parametric device comprising:

 a waveguide according to any one of the preceding claims; and
 means for launching an input optical signal into the waveguide.
 - 11. A device according to claim 10, comprising:
- an output filter for filtering light emerging from the waveguide to reduce components at the wavelength of the input optical signal.
 - 12. A method of fabricating an optical waveguide, the method comprising the steps of:
- (a) bonding, by direct interfacial bonding, a guiding lamina of optical material to a superstructure lamina of optical material; and
 - (b) before, during or after step (a), modifying optical properties of regions of the guiding lamina so as to define a light guiding path along the guiding lamina.
- 20 13. A method according to claim 12, comprising the steps of:
 - (c) after steps (a) and (b), removing material from the guiding lamina to reduce the thickness of the guiding lamina; and
 - (d) after step (c), bonding, by direct interfacial bonding, a further superstructure lamina to the guiding lamina.
 - 14. A method according to claim 13, comprising:

25

(e) before step (a), indiffusing and/or out-diffusing material to/from one face of the guiding lamina to modify regions of the guiding lamina, that face being bonded to the superstructure lamina in step (a); and

14

(f) before step (d), indiffusing and/or out-diffusing material to/from the exposed face of the guiding lamina to modify regions of the guiding lamina, that face being bonded to the further superstructure lamina in step (d).

PCT/GB99/03055

3/3

FIG. 6

SUBSTITUTE SHEET (RULE 26)

In .tional Application No PCT/GB 99/03055

	101/46 99/03033
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G02B6/12 G02F1/377	
According to International Patent Classification (IPC) or to both national classification and IPC	
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)	
IPC 7 G02B G02F	
Documentation searched other than minimum documentation to the extent that such documents are	included in the fields searched
Electronic data base consulted during the international search (name of data base and, where prac	tical, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category Citation of document, with indication, where appropriate, of the relevant passages	невечал то сашт но.
X EP 0 598 395 A (MATSUSHITA ELECTRIC INDUSTRIAL CO LTD) 25 May 1994 (1994-05-25) example 21	1,3,4, 7-9,12
PELISSIER S ET AL: "NEW TECHNIQUE TO PRODUCE BURIED CHANNEL WAVEGUIDES IN GLASS" OPTICAL ENGINEERING,US,SOC. OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS. BELLINGHAM, vol. 37, no. 4, page 1111-1114 XP000771670 ISSN: 0091-3286 figure 1	1,7,8,12
-/	
X Further documents are listed in the continuation of box C. X Patent far	mily members are listed in annex.
Special categories of cited documents:	A.C. A. Character internal filling data
or priority date	published after the international filling date e and not in conflict with the application but stand the principle or theory underlying the
filing date carnot be con	articular relevance; the claimed invention sidered novel or cannot be considered to
which is cited to establish the publication date of another "Y" document of po- citation or other special reason (as specified) cannot be cor	entive step when the document is taken alone articular relevance; the clalmad invention sidered to involve an inventive step when the combined with one or more other such docu-
other means ments, such of the description of the international filling date but in the art.	nombination being obvious to a person skilled
	g of the international search report
	2/1999
Name and mailing address of the ISA Authorized offi	icer
European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk	

Int ional Application No PCT/GB 99/03055

A ROSS G W ET AL: "GENERATION OF HIGH-POWER BLUE LIGHT IN PERIODICALLY POLED LINBO3" OPTICS LETTERS, US, OPTICAL SOCIETY OF AMERICA, WASHINGTON, vol. 23, no. 3, page 171-173 XP000741206 ISSN: 0146-9592 cited in the application the whole document A US 5 122 852 A (CHANG WINSTON K ET AL) 16 June 1992 (1992-0-16) column 3, line 31 - line 36 A YOO S J B ET AL: "QUASI-PHASE-MATCHED SECOND-HARMONIC GENERATION IN ALGAAS WAVEGUIDSWITH PERIODIC DOMAIN INVERSION ARCHIEVED BY WAFER-BONDING" APPLIED PHYSICS. LETTERS, US, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 66, no. 25, page 3410-3412 XP000520298 ISSN: 0003-6951 the whole document			1 (1/48 39/03033
A ROSS G W ET AL: "GENERATION OF HIGH-POWER BLUE LIGHT IN PERIODICALLY POLED LINBO3" 11 OPTICS LETTERS,US,OPTICAL SOCIETY OF AMERICA, WASHINGTON, vol. 23, no. 3, page 171-173 XP000741206 ISSN: 0146-9592 cited in the application the whole document A US 5 122 852 A (CHANG WINSTON K ET AL) 3,4 16 June 1992 (1992-06-16) column 3, line 31 - line 36			Relevant to claim No.
BLUE LIGHT IN PERIODICALLY POLED LINBO3" OPTICS LETTERS,US,OPTICAL SOCIETY OF AMERICA, WASHINGTON, vol. 23, no. 3, page 171-173 XP000741206 ISSN: 0146-9592 cited in the application the whole document A US 5 122 852 A (CHANG WINSTON K ET AL) 16 June 1992 (1992-06-16) column 3, line 31 - line 36 A YOO S J B ET AL: "QUASI-PHASE-MATCHED SECOND-HARMONIC GENERATION IN ALGAAS WAVEGUIDESWITH PERIODIC DOMAIN INVERSION ARCHIEVED BY WAFER-BONDING" APPLIED PHYSICS LETTERS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 66, no. 25, page 3410-3412 XP000520298 ISSN: 0003-6951	Category *	Citation of occument, with studement arises appropriate, or the coordinate personal and coordinate per	
16 June 1992 (1992-06-16) column 3, line 31 - line 36 YOO S J B ET AL: "QUASI-PHASE-MATCHED SECOND-HARMONIC GENERATION IN ALGAAS WAVEGUIDESWITH PERIODIC DOMAIN INVERSION ARCHIEVED BY WAFER-BONDING" APPLIED PHYSICS LETTERS, US, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 66, no. 25, page 3410-3412 XP000520298 ISSN: 0003-6951	A	BLUE LIGHT IN PERIODICALLY POLED LINBO3" OPTICS LETTERS,US,OPTICAL SOCIETY OF AMERICA, WASHINGTON, vol. 23, no. 3, page 171-173 XP000741206 ISSN: 0146-9592 cited in the application	
SECOND-HARMONIC GENERATION IN ALGAAS WAVEGUIDESWITH PERIODIC DOMAIN INVERSION ARCHIEVED BY WAFER-BONDING" APPLIED PHYSICS LETTERS, US, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 66, no. 25, page 3410-3412 XP000520298 ISSN: 0003-6951	A	16 June 1992 (1992-06-16)	3,4
	A	SECOND-HARMONIC GENERATION IN ALGAAS WAVEGUIDESWITH PERIODIC DOMAIN INVERSION ARCHIEVED BY WAFER-BONDING" APPLIED PHYSICS LETTERS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 66, no. 25, page 3410-3412 XP000520298 ISSN: 0003-6951	
		-	
·		·	

1

information on patent family members

In. donal Application No PCT/GB 99/03055

Patent document cited in search repor	t	Publication date		Patent family member(s)	Publication date
EP 0598395	A	25-05-1994	DE	69323958 D	22-04-1999
2. 000000	**	_	DE	69323958 T	16-09-1999
			JP	6222229 A	12-08-1994
			KR	137125 B	15-06-1998
			US	5485540 A	16-01-1996
		•	US	5785874 A	28-07-1998
US 5122852	A	16-06-1992	NONE		