Berechenbarkeit und Komplexität

Dozent: Mathias Weller (Skript adaptiert von Rolf Niedermeier)
Betreuer: Leon Kellerhals, Vincent Froese und Philipp Zschoche

Sekretariat: Christlinde Thielcke

Viele Fleißige Tutorinnen und Tutoren

Fachmentorin: Niloofar Nazemi

TU Berlin
Fakultät IV
Fachgebiet Algorithmik und Komplexitätstheorie
https://www.akt.tu-berlin.de

Informatikstudium an der TU Berlin

Organisation

Vorlesungsbetrieb:

- ▶ Vorlesung: Screencasts und PDF-Folien verfügbar über ISIS
- "Freie Großübung" + "Modulkonferenz"

Organisation

Vorlesungsbetrieb:

- ▶ Vorlesung: Screencasts und PDF-Folien verfügbar über ISIS
- "Freie Großübung" + "Modulkonferenz"

Tutorien:

- ► Tutorien: siehe ISIS und MOSES
- ► Tutor*innensprechstunde: TBA

Organisation

Vorlesungsbetrieb:

- Vorlesung: Screencasts und PDF-Folien verfügbar über ISIS
- "Freie Großübung" + "Modulkonferenz"

Tutorien:

- ► Tutorien: siehe ISIS und MOSES
- ► Tutor*innensprechstunde: TBA

Prüfungen: Portfolioprüfung

- ► Multiple-Choice-Test: 25 PP (ca. Mitte Dezember)
- ► Hausaufgabe in Dreiergruppen 25 PP (im Januar)
- Schriftlicher Test: 50 PP (Termin wird über ISIS bekanntgegben)

Ergänzendes Material

Literatur:

- ► Uwe Schöning. *Theoretische Informatik–kurz gefasst*. Spektrum Akademischer Verlag 2008 (5. Auflage).
- ▶ Elaine Rich. Automata, Computability, and Complexity. Pearson 2008.
- Cristopher Moore, Stephan Mertens. The Nature of Computation. Oxford University Press 2011.

Weiteres Material:

YouTube-Kanal NLogSpace (https://www.youtube.com/channel/UCMWYg3eBFp5bbqjlllUku_w)

Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Die Ackermannfunktion
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- . Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit

LO. PSPACE

was ist praktisch berechenbar

es gibt ledure !

Das "hello, world"-Problem

Ziel: Entwicklung von Programm *E* mit folgender Spezifikation:

Input: Programm *P*

Output: "Top", wenn P den string "hello, world" ausgibt, "Flop", sonst

Das ..hello. world"-Problem

Ziel: Entwicklung von Programm E mit folgender Spezifikation:

Input: Programm P > 213: Compiler / Interpreter

Output: "Top", wenn P den string "hello, world" ausgibt, "Flop", sonst

Bemerkung: E hat "Typ höherer Ordnung" (d.h. Eingabe ist (Text eines) Programms P).

Das "hello, world"-Problem

Ziel: Entwicklung von Programm *E* mit folgender Spezifikation:

Input: Programm *P*

Output: "Top", wenn P den string "hello, world" ausgibt, "Flop", sonst

Bemerkung: E hat "Typ höherer Ordnung" (d.h. Eingabe ist (Text eines) Programms P).

```
Beispiel für Eingabe P
main(){
  printf("hello, world");
```

- → Existiert ein Programm E für diese spezielle Eingabe P?
 → Existiert ein Programm E auch für beliebige Programme P?
 → nicht wöglich G

- ► Ein (deterministischer) endlicher Automat (kurz DFA) ist ein Quintupel $M = (Z, \Sigma, \delta, z_0, E)$ mit
 - ► Z ist eine nichtleere, endliche Menge von **Zuständen**,
 - $ightharpoonup \Sigma$ ist ein nichtleeres, endliches Alphabet von **Eingabezeichen** mit $Z \cap \Sigma = \emptyset$,

- ► Ein (deterministischer) endlicher Automat (kurz DFA) ist ein Quintupel $M = (Z, \Sigma, \delta, z_0, E)$ mit
 - ► Z ist eine nichtleere, endliche Menge von **Zuständen**,
 - $ightharpoonup \Sigma$ ist ein nichtleeres, endliches Alphabet von **Eingabezeichen** mit $Z \cap \Sigma = \emptyset$,
 - $\delta: Z \times \Sigma \to Z$ ist die partielle Überführungsfunktion,

- ► Ein (deterministischer) endlicher Automat (kurz DFA) ist ein Quintupel $M = (Z, \Sigma, \delta, z_0, E)$ mit
 - ► Z ist eine nichtleere, endliche Menge von **Zuständen**,
 - Σ ist ein nichtleeres, endliches Alphabet von **Eingabezeichen** mit $Z \cap \Sigma = \emptyset$,
 - ▶ $\delta: Z \times \Sigma \to Z$ ist die partielle Überführungsfunktion,
 - $ightharpoonup z_0 \in Z$ ist der **Startzustand** und
 - $ightharpoonup E \subset Z$ ist die Menge der **Endzustände**.

- ► Ein (deterministischer) endlicher Automat (kurz DFA) ist ein Quintupel $M = (Z, \Sigma, \delta, z_0, E)$ mit
 - ► Z ist eine nichtleere, endliche Menge von **Zuständen**,
 - $ightharpoonup \Sigma$ ist ein nichtleeres, endliches Alphabet von **Eingabezeichen** mit $Z \cap \Sigma = \emptyset$,
 - $\delta: Z \times \Sigma \to Z$ ist die partielle Überführungsfunktion,
 - $ightharpoonup z_0 \in Z$ ist der **Startzustand** und
 - $ightharpoonup E \subset Z$ ist die Menge der **Endzustände**.
- ▶ Zu M definieren wir die partielle Funktion $\hat{\delta}: Z \times \Sigma^* \to Z$ induktiv für alle $z \in Z$:

$$\hat{\delta}(z,\epsilon) := z$$

$$\forall_{x \in \Sigma^*} \qquad \hat{\delta}(z,ax) := \hat{\delta}(\delta(z,a),x) \qquad \text{falls } \delta(z,a) \neq \bot$$

Definition (Endlicher Automat)

- ► Ein (deterministischer) endlicher Automat (kurz DFA) ist ein Quintupel $M = (Z, \Sigma, \delta, z_0, E)$ mit
 - ► Z ist eine nichtleere, endliche Menge von **Zuständen**,
 - $ightharpoonup \Sigma$ ist ein nichtleeres, endliches Alphabet von **Eingabezeichen** mit $Z \cap \Sigma = \emptyset$,
 - $\delta: Z \times \Sigma \to Z$ ist die partielle Überführungsfunktion,
 - $ightharpoonup z_0 \in Z$ ist der **Startzustand** und
 - $ightharpoonup E \subset Z$ ist die Menge der **Endzustände**.
- ▶ Zu M definieren wir die partielle Funktion $\hat{\delta}: Z \times \Sigma^* \to Z$ induktiv für alle $z \in Z$:

$$\hat{\delta}(z,\underline{\epsilon}) := z$$
 $\forall_{x \in \Sigma^*}$
 $\hat{\delta}(z,\underline{ax}) := \hat{\delta}(\widehat{\delta(z,a)},\underline{x})$ falls $\underline{\delta(z,a)} \neq \bot$

▶ Ein DFA $M = (Z, \Sigma, \delta, z_0, E)$ akzeptiert ein Wort $w \in \Sigma^*$ falls $\hat{\delta}(z_0, \underline{w}) \in E$

- ► Ein (deterministischer) endlicher Automat (kurz DFA) ist ein Quintupel $M = (Z, \Sigma, \delta, z_0, E)$ mit
 - ► Z ist eine nichtleere, endliche Menge von **Zuständen**,
 - $ightharpoonup \Sigma$ ist ein nichtleeres, endliches Alphabet von **Eingabezeichen** mit $Z \cap \Sigma = \emptyset$,
 - ▶ $\delta: Z \times \Sigma \to Z$ ist die partielle Überführungsfunktion,
 - \triangleright $z_0 \in Z$ ist der **Startzustand** und
 - $ightharpoonup E \subset Z$ ist die Menge der **Endzustände**.
- ▶ Zu M definieren wir die partielle Funktion $\hat{\delta}: Z \times \Sigma^* \to Z$ induktiv für alle $z \in Z$:

$$\hat{\delta}(z,\epsilon) := z$$
 $\forall_{x \in \Sigma^*}$
 $\hat{\delta}(z,ax) := \hat{\delta}(\delta(z,a),x)$ falls $\delta(z,a) \neq \bot$

- ▶ Ein DFA $M = (Z, \Sigma, \delta, z_0, E)$ akzeptiert ein Wort $w \in \Sigma^*$ falls $\hat{\delta}(z_0, w) \in E$
 - ▶ Die von M akzeptierte Sprache ist $T(\underline{M}) := \{x \in \Sigma^* \mid \hat{\delta}(z_0, x) \in E\}.$

Beispielautomat

$$M = (\{\underline{z_0}, \underline{z_1}, \underline{z_2}\}, \{\underline{0}, \underline{1}\}, \delta, \underline{z_0}, \{\underline{z_2}\}) \text{ mit } \underbrace{\begin{array}{c|cccc} \delta & z_0 & z_1 & z_2 \\ \hline 0 & z_0 & z_2 & z_1 \\ \hline \rightarrow 1 & z_1 & \overline{z_0} & z_2 \end{array}}_{}$$

Beispielautomat

$$M = (\{z_0, z_1, z_2\}, \{0, 1\}, \delta, z_0, \{z_2\}) \text{ mit } \begin{array}{c|ccc} \delta & z_0 & z_1 & z_2 \\ \hline 0 & z_0 & z_2 & z_1 \\ 1 & z_1 & z_0 & z_2 \end{array}$$

Beispielautomat

 $T(M) = \{ w \in \{0,1\}^* \mid w \text{ ist Binärdarstellung einer Zahl } n \text{ mit } n \text{ mod } 3 = 2 \}.$

Beispielautomat

 $z_i \sim$ das bisher gelesene Wort ist die Binärkodierung einer Zahl n mit Rest i modulo 3.

$$\frac{110}{n = 3x + 1}$$

$$n = 3x + 1$$

$$n = 2(3x + 1) + 0 = 6x + 2$$

 $T(M) = \{ w \in \{0,1\}^* \mid w \text{ ist Binärdarstellung einer Zahl } n \text{ mit } n \text{ mod } 3 = 2 \}.$

Beispielautomat

$$M = (\{z_0, z_1, z_2\}, \{0, 1\}, \delta, z_0, \{z_2\}) \text{ mit } \underbrace{\begin{array}{cccc} \delta & z_0 & z_1 & z_2 \\ \hline 0 & z_0 & z_2 & z_1 \\ 1 & z_1 & z_0 & z_2 \end{array}}_{}$$

 $z_i \sim$ das bisher gelesene Wort ist die Binärkodierung einer Zahl n mit Rest i modulo 3.

 $T(M) = \{ w \in \{0,1\}^* \mid w \text{ ist Binärdarstellung einer Zahl } n \text{ mit } n \text{ mod } 3 = 2 \}.$

Frage: Sind die Binärdarstellungen der Zahlen n mit $n \mod 4 = 1$ von einem DFA erkennbar?

Grenzen endlicher Automaten

Gibt es jeweils einen endlichen Automaten zur Erkennung folgender Sprachen?

- ▶ $\{w \in \{0,1\}^* \mid w \text{ ist Binärdarstellung einer geraden Zahl}\}$
- ► $\{a^n b^n \mid 0 \le n \le 1000\}$
- $\blacktriangleright \{a^nb^n \mid n \ge 0\} \quad \times$

- $\qquad \qquad \left\{ \underline{a^n b^n c^n} \mid n \ge 0 \right\} \ \times$

Die Turing Maschine

Alan Mathison Turing, 1912-1954.

Inspiration: "Menschliche Computer" 1890.

LEGO Turing Maschine

Informell

endliche Kontrolle + unendliches Band

Quellen:

 $\verb|http://therunnereclectic.files.wordpress.com/2014/11/alan-turing-running.jpg|$

http://en.wikipedia.org/wiki/Harvard_Computers

http://cs.cmu.edu/~soonhok/images/20120718_LegoTM/legotm.png

Definition ((deterministische) Turing-Machine)

Eine **Turing-Maschine** (kurz DTM) ist ein Septupel $M = (Z, \Sigma, \underline{\Gamma}, \delta, z_0, \underline{\square}, E)$ mit

Definition ((deterministische) Turing-Machine)

Eine **Turing-Maschine** (kurz DTM) ist ein Septupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ mit

- ► Z, einer nicht-leeren, endlichen Menge von **Zuständen**,
- \triangleright Σ , dem **Eingabealphabet**,

z₀ ∈ Z. dem Startzustand.

die partielle Überführungsfunktion

 $ightharpoonup E \subseteq Z$, der Menge der **Endzustände**.

Definition ((deterministische) Turing-Machine)

Eine **Turing-Maschine** (kurz DTM) ist ein Septupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ mit

- ► Z, einer nicht-leeren, endlichen Menge von **Zuständen**,
- \triangleright Σ , dem **Eingabealphabet**,
- $ightharpoonup \Gamma \supseteq \Gamma$, dem **Arbeits** oder **Bandalphabet** mit $\Gamma \cap Z = \emptyset$,
- lacksquare die partielle Überführungsfunktion
- \triangleright $z_0 \in Z$, dem **Startzustand**,
- $ightharpoonup \sqsubseteq \Gamma \setminus \Sigma$, dem **Blanksymbol** und
- $ightharpoonup E \subseteq Z$, der Menge der **Endzustände**.

Definition ((deterministische) Turing-Machine)

Eine **Turing-Maschine** (kurz DTM) ist ein Septupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ mit

- ► Z, einer nicht-leeren, endlichen Menge von **Zuständen**,
- \triangleright Σ , dem **Eingabealphabet**,
- ▶ $\Gamma \supseteq \Sigma$, dem **Arbeits** oder **Bandalphabet** mit $\Gamma \cap Z = \emptyset$,
- $\delta: (Z \setminus E) \times \Gamma \rightarrow Z \times \Gamma \times \{L, R, N\}$, die partielle Überführungsfunktion
- \triangleright $z_0 \in Z$, dem **Startzustand**,
- $ightharpoonup \Box \in \Gamma \setminus \Sigma$, dem **Blanksymbol** und
- $ightharpoonup E \subseteq Z$, der Menge der **Endzustände**.

Definition ((deterministische) Turing-Machine)

Eine **Turing-Maschine** (kurz DTM) ist ein Septupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ mit

- ► Z, einer nicht-leeren, endlichen Menge von **Zuständen**,
- \triangleright Σ , dem **Eingabealphabet**,
- $ightharpoonup \Gamma \supseteq \Sigma$, dem **Arbeits** oder **Bandalphabet** mit $\Gamma \cap Z = \emptyset$,
- ▶ δ : $(Z \setminus E) \times \Gamma \to Z \times \Gamma \times \{\underline{L}, R, N\}$, die partielle Überführungsfunktion
- $ightharpoonup z_0 \in Z$, dem **Startzustand**,
- $ightharpoonup \Box \in \Gamma \setminus \Sigma$, dem **Blanksymbol** und
- $ightharpoonup E \subseteq Z$, der Menge der **Endzustände**.

Interpretation: Wenn M im Zustand z das Zeichen a liest und $\delta(z, a) = (\underline{z'}, \underline{a'}, \underline{p})$, so

- \triangleright geht M in Zustand z' über,
- ▶ überschreibt das a durch ein a'
- bewegt den Lese/Schreibkopf gemäß p (nach Links, Rechts, oder gar Nicht)

$$\delta(z_0,0)=(z_0,0,R)$$

$$\delta(z_0,0)=(z_0,0,R)$$

$$\delta(z_0,0)=(z_0,0,R)$$

$$\delta(z_0,0) = (z_0,0,R)$$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$
 $\delta(z_1, 0) = (z_0, 1, R)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

$$\delta(z_0, 1) = (z_1, 0, L)$$

$$\delta(z_1, 0) = (z_0, 1, R)$$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$
 $\delta(z_1, 0) = (z_0, 1, R)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

$$\delta(z_0, 1) = (z_1, 0, L)$$

$$\delta(z_1, 0) = (z_0, 1, R)$$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$
 $\delta(z_1, 0) = (z_0, 1, R)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

$$\delta(z_0, 1) = (z_1, 0, L)$$

$$\delta(z_1, 0) = (z_0, 1, R)$$

$$\delta(z_0, 0) = (z_0, 0, R)$$

$$\delta(z_0, 1) = (z_1, 0, L)$$

$$\delta(z_1, 0) = (z_0, 1, R)$$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$
 $\delta(z_1, 0) = (z_0, 1, R)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$
 $\delta(z_1, 0) = (z_0, 1, R)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$
 $\delta(z_1, 0) = (z_0, 1, R)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_1, 0, L)$
 $\delta(z_1, 0) = (z_0, 1, R)$

$$\delta(z_0, 0) = (z_0, 0, R)$$

$$\delta(z_0, 1) = (z_1, 0, L)$$

$$\delta(z_1, 0) = (z_0, 1, R)$$

Definition (Konfiguration, Folgekonfiguration)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine TM. Eine **Konfiguration** von M ist ein Wort \underline{azb} mit $\underline{a}, \underline{b} \in \Gamma^*$ und $\underline{z} \in Z$.

Definition (Konfiguration, Folgekonfiguration)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine TM. Eine **Konfiguration** von M ist ein Wort azb mit $a, b \in \Gamma^*$ und $z \in Z$. (überflüssige \square -Symbole an den Rändern der Konfiguration weglassen)

Mathias Weller (TU Berlin)

Definition (Konfiguration, Folgekonfiguration)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine TM. Eine **Konfiguration** von M ist ein Wort <u>azb</u> mit $a, b \in \Gamma^*$ und $z \in Z$. (überflüssige \square -Symbole an den Rändern der Konfiguration weglassen)

Definition (Konfiguration, Folgekonfiguration)

Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ eine TM. Eine **Konfiguration** von M ist ein Wort azb mit $a,b\in\Gamma^*$ und $z\in Z$. (überflüssige \Box -Symbole an den Rändern der Konfiguration weglassen)

Die **Startkonfiguration** zu einem Wort $x \in \Sigma^*$ ist z_0x .

Definition (Konfiguration, Folgekonfiguration)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine TM. Eine **Konfiguration** von M ist ein Wort azb mit $a, b \in \Gamma^*$ und $z \in Z$.

Die **Startkonfiguration** zu einem Wort $x \in \Sigma^*$ ist z_0x .

Sei
$$k = a_1 \dots a_n z b_1 \dots b_n$$
 eine Konfiguration (falls $\underline{n} = 0$, dann $\underline{b_1} := \square$). Dann

$$\frac{k \vdash_{M}^{0} k}{k \vdash_{M}^{1} k}$$

$$k \vdash_{M}^{1} k$$

$$k \vdash_{M}^{1} a_{1} \dots a_{m} z' c b_{2} \dots b_{n}$$

$$k \vdash_{M}^{1} a_{1} \dots a_{m} c z' b_{2} \dots b_{n}$$

$$k \vdash_{M}^{1} a_{1} \dots a_{m-1} z' a_{m} c b_{2} \dots b_{n}$$

$$k \vdash_{M}^{1} a_{1} \dots a_{m-1} z' a_{m} c b_{2} \dots b_{n}$$

$$k \vdash_{M}^{1} c b_{2} \dots b_{n}$$

$$falls \delta(z, b_{1}) = (z', c, \underline{L}) \text{ und } m > 0$$

$$k \vdash_{M}^{1} z' \Box c b_{2} \dots b_{n}$$

$$falls \delta(z, b_{1}) = (z', c, \underline{L}) \text{ und } m = 0.$$

Definition (Konfiguration, Folgekonfiguration)

Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\square,E)$ eine TM. Eine **Konfiguration** von M ist ein Wort azb mit $a,b\in\Gamma^*$ und $z\in Z$. (überflüssige \square -Symbole an den Rändern der Konfiguration weglassen)

Die **Startkonfiguration** zu einem Wort $x \in \Sigma^*$ ist z_0x .

Sei
$$k=a_1\ldots a_m\underline{z}b_1\ldots b_n$$
 eine Konfiguration (falls $n=0$, dann $b_1:=\square$). Dann $k\vdash^0_{\overline{M}}k$
$$k\vdash^1_{\overline{M}}\qquad a_1\ldots a_mz'cb_2\ldots b_n\qquad \text{falls }\delta(z,b_1)=(z',c,N)$$

$$k\vdash^1_{\overline{M}}\qquad a_1\ldots a_mcz'b_2\ldots b_n\qquad \text{falls }\delta(z,b_1)=(z',c,R)$$

$$k\vdash^1_{\overline{M}}\qquad a_1\ldots a_{m-1}z'a_mcb_2\ldots b_n\qquad \text{falls }\delta(z,b_1)=(z',c,L) \text{ und }m>0$$

k ist **haltend** (d.h. k hat keine Folgekonfiguration) falls $\delta(z, b_1) = \bot$

k ist akzeptierend falls $z \in E$

Weiter sei $\underline{k} \vdash^{\underline{i+1}}_{\underline{M}} \underline{k'} \iff \exists_{\underline{q}} k \vdash^1_{\underline{M}} \underline{q} \vdash^i_{\underline{M}} k'$ für alle i und $k \vdash^{\bullet}_{\underline{M}} k' \iff \exists_{\underline{i \in \mathbb{N}}} k \vdash^i_{\underline{M}} k'$

 $k \vdash^1_M$

 $z' \square cb_2 \dots b_n$ falls $\delta(z, b_1) = (z', c, L)$ und m = 0.

Definition (Konfiguration, Folgekonfiguration)

Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ eine TM. Eine **Konfiguration** von M ist ein Wort azb mit $a,b\in\Gamma^*$ und $z\in Z$. (überflüssige \Box -Symbole an den Rändern der Konfiguration weglassen)

Die **Startkonfiguration** zu einem Wort $x \in \Sigma^*$ ist z_0x .

Sei
$$k=a_1\dots a_m \mathbb{Z} b_1\dots b_n$$
 eine Konfiguration (falls $n=0$, dann $b_1:=\square$). Dann $k\vdash^0_M k$

$$k \vdash_M^1$$
 $a_1 \dots a_m \mathbf{z}' c b_2 \dots b_n$ falls $\delta(z, b_1) = (z', c, N)$ $k \vdash_M^1$ $a_1 \dots a_m c \mathbf{z}' b_2 \dots b_n$ falls $\delta(z, b_1) = (z', c, R)$

$$k \vdash_M^1$$
 $a_1 \dots a_{m-1} z' a_m c b_2 \dots b_n$ falls $\delta(z, b_1) = (z', c, L)$ und $m > 0$
 $k \vdash_M^1$ $z' \Box c b_2 \dots b_n$ falls $\delta(z, b_1) = (z', c, L)$ und $m = 0$.

k ist **haltend** (d.h. k hat keine Folgekonfiguration) falls $\delta(z, b_1) = \bot k$ ist **akzeptierend** falls $z \in E$

Weiter sei
$$k \vdash_M^{i+1} k' \iff \exists_q k \vdash_M^1 q \vdash_M^i k'$$
 für alle i und $k \vdash_M^* k' \iff \exists_{i \in \mathbb{N}} k \vdash_M^i k'$

Frage: gibt es akzeptierende Konfigurationen, die nicht haltend sind?

Beispiel: Eingabe 101				
<i>z</i> ₀ 101	\vdash^1_{M}			
1 <u>z</u> 001	$\vdash^1_{\mathcal{M}}$			
10 <u>z</u> 01	$\vdash^1_{\mathcal{M}}$			
101 <u>z</u> 0	$\vdash^1_{\mathcal{M}}$			
10 z ₁ 1	$\vdash^1_{\mathcal{M}}$			
1 <i>z</i> ₁ 00	$\vdash^1_{\mathcal{M}}$			
<u>z</u> 2110	$\vdash^1_{\mathcal{M}}$			
<i>z</i> ₂ □110	\vdash^1_{M}			
<u>z</u> e110				
$z_e 110$ haltend & akzeptierend				

Frage: Was macht *M* bei leerer Eingabe? Bei Eingabe 000?

Akzeptieren und Halten einer TM

Definition (Akzeptieren, Halten)

Turing-Maschine $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$:

- ► *M* hält auf $w \in \Sigma^*$, falls eine haltende Konfiguration k' existiert mit $z_0w \not \vdash_M \underline{k'}$.
- ▶ M akzeptiert $w \in \Sigma^*$, falls eine akzeptierende Konfiguation k' existiert mit $\underline{z_0w} \models_M^{\bullet} k'$.
- ightharpoonup M akzeptiert Sprache T(M) enthält genau die Wörter w die M akzeptiert. Formal,

$$T(M) := \{ w \in \Sigma^* \mid \exists_{\underline{\alpha}, \underline{\beta} \in \Gamma^*} \exists_{\underline{z} \in \underline{E}} : \underline{z_0 w} \vdash_M^* \underline{\alpha z \beta} \}.$$

Beispiel Turing-Maschine: akzeptiere $\{0^n1^n \mid n \in \mathbb{N}\}$

$$M = (\{z_0, z_1, z_R, z_L, z_e\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \square\}, \delta, z_0, \square, \{z_e\})$$

δ	0	1	
<i>z</i> ₀	(z_R, \square, R)		(z_e, \square, N)
z_1	$(z_R, 0, R)$ $(z_L, 0, L)$	(z_L, \square, L)	\perp
ZR	$(z_R,0,R)$	$(z_R,1,R)$	(z_1, \square, L)
ZL	$(z_{L}, 0, L)$	$(z_L,1,L)$	(z_0,\Box,R)

Beispiel Turing-Maschine: akzeptiere $\{0^n1^n \mid n \in \mathbb{N}\}$

$$M = (\{z_0, z_1, z_R, z_L, z_e\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \square\}, \delta, z_0, \square, \{z_e\})$$

Beispiel Turing-Maschine: akzeptiere $\{0^n1^n \mid n \in \mathbb{N}\}$

$$\begin{split} M &= (\{z_0, z_1, z_R, z_L, z_e\}, \Sigma = \{0, 1\}, \Gamma = \\ \{0, 1, \Box\}, \delta, z_0, \Box, \{z_e\}) \\ &\qquad \qquad \frac{\delta \quad 0 \quad 1 \quad \Box}{z_0 \quad (z_R, \Box, R) \quad \bot \quad (z_e, \Box, N)} \\ z_1 \quad \bot \quad (z_L, \Box, L) \quad \bot \\ z_R \quad (z_R, 0, R) \quad (z_R, 1, R) \quad (z_1, \Box, L) \\ z_L \quad (z_L, 0, L) \quad (z_L, 1, L) \quad (z_0, \Box, R) \end{split}$$

