# Humble Active Learning from Peers

Che Shen, Yuemei Zhang, Jingxi Xu
Department of Computer Science
Columbia University

### **A Real World Problem**

Personalized spam filters for everyone



### A Real World Problem

Suppose we want to train personalized spam filters for 15 users.

- Each user has his own personalized spam filter
- Needs 1000 labelled emails for each user to train a good model.
- Total 15000 labels needed.
- Total 15 models/learners needed.

### Question

What if we have 15 MILLION users in the system? Do we really need that much labels for each user?

### **Possible Solutions**

- *Multi-task learning* leverages the relationship between tasks to transfer relevant knowledge from information-rich tasks to information-poor ones.
  - Batch learning an entire training set is available
  - Online learning the learner sees the data sequentially
- *Active learning* allows the learner to make a decision on whether to ask the oracle to provide the true label for the current example and incur a cost or to skip this example.

### **Possible Solutions**

Maybe we can take advantage of the knowledge about the relationship among users?

- Some spams are universal to all users
  - E.g., financial spams
- Some messages might be useful to certain affinity groups
  - Kobe and Lebron are interested in invitations to play NBA All Star but Obama and Trump might not

We can keep track of these similarity/relationship information and also improve our knowledge through learning (asking feedback from oracles).

### **Active learning from peers**

Here we go,

### Online Multitask learning with selective sampling

### **Active learning from peers**

- 1. Receive an example  $x^{(t)}$  for the task k
- 2. If the task k is not confident in the prediction for this example, ask the *peers* or *related tasks* whether they can give a confident label to this example.
- 3. If the *peers* are not confident enough, ask the oracle for the true label  $y^{(t)}$ .

2 for t = 1 ... T do

end

*Update*  $\tau$ :

10

11

12

13

14 15

16

17 end

Receive  $(x^{(t)}, k)$ 

if  $P^{(t)} = 1$  then

Compute  $\hat{p}_{kk}^{(t)} = \langle x^{(t)}, w_{\iota}^{(t-1)} 
angle$ 

Predict  $\hat{y}^{(t)} = sign(\hat{p}_{hh}^{(t)})$ 

**put:** 
$$b_1 > 0$$
,  $b_2 > 0$  s.t.,  $b_2 \ge b_1$ ,  $\lambda > 0$ , Number o

**put:** 
$$b_1 > 0$$
,  $b_2 > 0$  s.t.,  $b_2 \ge b_1$ ,  $\lambda > 0$ , Number of

**Input:** 
$$b_1 > 0, b_2 > 0$$
 s.t.,  $b_2 \ge b_1, \lambda > 0$ , Number of rounds T

**ut**: 
$$b_1 > 0$$
,  $b_2 > 0$  s.t.,  $b_2 \ge b_1$ ,  $\lambda > 0$ , Number of

**ut**: 
$$b_1 > 0$$
,  $b_2 > 0$  s.t.,  $b_2 \ge b_1$ ,  $\lambda > 0$ , Number of

**ut**: 
$$b_1 > 0, b_2 > 0$$
 s.t.,  $b_2 \ge b_1, \lambda > 0$ , Number of

**it**: 
$$b_1 > 0$$
,  $b_2 > 0$  s.t.,  $b_2 \ge b_1$ ,  $\lambda > 0$ , Number o

**ut**: 
$$b_1 > 0$$
,  $b_2 > 0$  s.t.,  $b_2 > b_1$ ,  $\lambda > 0$ , Number of

**but:** 
$$h_1 > 0$$
  $h_2 > 0$  s.t.  $h_2 > h_1$   $\lambda > 0$  Number of

**1:** 
$$h_1 > 0$$
,  $h_2 > 0$  s.t.,  $h_2 > h_1$ ,  $\lambda > 0$ . Number of

Draw a Bernoulli random variable  $P^{(t)}$  with probability  $\frac{b_1}{b_1+|\hat{n}^{(t)}|}$ 

Query true label  $y^{(t)}$  if  $Z^{(t)} = 1$  and set  $M^{(t)} = 1$  if  $\hat{y}^{(t)} \neq y^{(t)}$ 

Update  $w_h^{(t)} = w_h^{(t-1)} + (M^{(t)}Z^{(t)}y^{(t)} + \tilde{Z}^{(t)}\tilde{y}^{(t)})x^{(t)}$ 

Compute  $ilde{p}^{(t)} = \sum_{m \neq k, m \in [K]} au_{km}^{(t-1)} \hat{p}_{km}^{(t)}$  and  $ilde{y}^{(t)} = sign( ilde{p}^{(t)})$ *Draw* a Bernoulli random variable  $Q^{(t)}$  with probability  $\frac{b_2}{b_2+|\tilde{n}^{(t)}|}$ 

 $\tau_{km}^{(t)} = \frac{\tau_{km}^{(t-1)} e^{-\frac{Z(t)}{\lambda} \ell_{km}^{(t)}}}{\sum_{m' \in [K]} \tau_{km'}^{(t-1)} e^{-\frac{Z(t)}{\lambda} \ell_{km'}^{(t)}}} \quad m \in [K], m \neq k$ 

Compute  $\hat{p}_{km}^{(t)} = \langle x^{(t)}, w_m^{(t-1)} \rangle \ \forall m \neq k, m \in [K]$ 

Set  $Z^{(t)} = P^{(t)}Q^{(t)} \& \tilde{Z}^{(t)} = P^{(t)}(1 - Q^{(t)})$ 

**ut:** 
$$h_1 > 0$$
  $h_2 > 0$  s.t.  $h_3 > h_4$   $\lambda > 0$  Number of

- **Algorithm 1:** Active Learning from Peers
- 1 *Initialize*  $w_m^{(0)} = \mathbf{0} \ \forall m \in [K], \, \boldsymbol{\tau}^{(0)}.$

### Active Learning from Peers -- a Humble Approach

The above algorithm suffers from the problem that in making predictions, it cannot make good use of peer tasks' advices.

- During the training period, the algorithm decides whether to ask peer tasks by sampling from a Bernoulli random variable.
- In the test period, when making predictions, it does not make sense to make decisions based on a random variable. So it cannot use the same strategy as it uses in the training period.
- We proposed a new algorithm, called "humble active learning from peers". It is called humble because in the training period it will always ask peer tasks.

#### **Input** b > 0, C > 0, number of rounds T 1: initialize $w_m^{(0)} = 0, \forall m \in [K], \boldsymbol{\tau}^{(0)}$ 2: **for** t = 1, 2, ..., T **do** Receive $(x^{(t)}, k)$

**Algorithm 2** Humble Active Learning from Peers

Compute 
$$p_{km}^{(t)} = \langle x^{(t)}, w_m^{(t-1)} \rangle$$
 for  $m \in [K]$ 

 $p = \sum_{m \in [K]} p_{km}^{(t)} \tau_{km}^{(t-1)}$ 

Predict  $\hat{y}(t) = sign(p)$ 

if  $P^{(t)} = 1$  then Query true label  $y^{(t)}$ 

8:

10:

13:

14:

end if

15: end for

11: end if 12: Update  $\tau$ :

if  $y^{(t)} \neq \hat{y}^{(t)}$  then Update  $w_k^{(t)} = w_k^{(t-1)} + y^{(t)}x^{(t)}$ 

16: Output  $\boldsymbol{\tau}^{(t)} \cdot w^{(t)}$  as the final weight

 $\tau_{km}^{(t)} = \frac{\tau_{km}^{(t-1)} e^{-C \cdot l_{km}}}{\sum_{m' \in [K]} \tau_{km'}^{(t-1)} e^{-C \cdot l_{km'}^{(t)}}}$ 

Draw a Bernoulli random variable  $P^{(t)}$  with probability  $\frac{b}{b+|n|}$ 

### **Experiment Results**

| Spam Email Detection |          |          |              |
|----------------------|----------|----------|--------------|
| Model                | Accuracy | #Queries | Mistake rate |
| PEER                 | 0.8497   | 1108.8   | 0.2255       |
|                      | (0.007)  | (32.1)   | (0.005)      |
| HUMBLE               | 0.8867   | 1046.6   | 0.1735       |
|                      | (0.031)  | (14.74)  | (0.006)      |

### **Experiment Results**



### **Experiment Results**

Email dataset (query budget = 300)



### **Contribution and Future Work**

### Contribution

- Re-implement active learning from peers algorithm as proposed in [1], and achieve similar results on all datasets in that paper
- Propose a new algorithm *humble* active learning from peers, and achieve *better* result on spam email data set and similar results on other datasets.

#### Future work

- Test both algorithms on a new dataset from *KKBox's Music Recommendation Challenge*, where we will predict whether a user will listen to a song again based on song information.
- Learn more than 10000 personalized recommenders from 230 Million
   Songs

### **Main References**

- [1] Murugesan, Keerthiram, and Jaime Carbonell. "Active learning from peers." Advances in Neural Information Processing Systems. 2017.
- [2] Murugesan, Keerthiram, et al. "Adaptive smoothed online multi-task learning." Advances in Neural Information Processing Systems. 2016.

## Questions?

### Thank You!