大学物理实验报告

实验名称:

迈克尔逊干涉仪

学院: 理学院 专业: 应用物理学 班级: 应物 1601

学号: 20161413 姓名: 谢尘竹 电话: 18640451671

实验日期: 2019 年 7 月 22 日

第_二十一_周 星期____ 第___节

实验室房间号: 415 实验组号: 2

王旗 2019年7月2	22日

1. 实验目的:

- ①.了解迈克尔孙干涉仪的结构、原理及调节和使 用方法;
- ②.观察等倾干涉条纹, 学会测量 He-Ne 激光器的 波长;
 - ③.学习测定钠光双线的波长差。

2. 实验器材:

名称	编号	型号	精度
迈克尔孙干涉仪			
He-Ne 激光光源		HJ-1B 型	
钠光灯		DTX 型	
会聚透镜			

3. 实验原理(请用自己的语音简明扼要地叙述,注意原理图需要画出,测试公式需要写明)

1.迈克耳孙干涉仪的结构与光路

如图 3.11.1 所示,为迈克耳孙干涉仪的侧视图与俯视图,导轨7 固定在一只稳定的底座上,底座由三颗调平螺丝9 及其锁紧螺丝10 来调平。丝杠6 螺距为1mm,转动粗调手轮2,经一对齿轮带动丝杠转动,进而带动移动镜M₂在导轨上滑动。

移动距离可在毫米刻度尺5上读到1mm,在窗口3中的刻度盘上读到0.01m,转动微调手轮1,经1:100的蜗轮传动,可实现微动。微动手轮上的最小刻度为0.0001mm,可估读到0.00001m。

分光板G₁和补偿板G₂固定在基座上,不得强板,且不能用手接触其光学表面。固定参考镜 (定镜) 13 和移动镜 (动镜) 11 后各有三颗螺丝,用于粗调两者相互垂直,不能拧得太紧或太松,以免使其变形或松动。

固定参考镜 13 的一侧和下部各有一颗微调螺丝 14 和 15,可用来微调 13 的左右偏转和俯视,微调螺丝也不能拧得 太松或太紧。丝杠的顶进力由丝杠顶进螺帽 8 来调整。

迈克耳孙干涉仪的实验原理如图 3.11.2 所示,由光源 S 发出一束光,射到分光板 G1 的半透半反膜 L上,L使反射光和透射光的光强基本相同,所以称 G 为分光板。透过膜层 L 的光束 (1) 经 G2 到达参考镜 M1 后,被反射回来;被 L 反射的光束 (2) 到达移动镜 M2 后,也被反射回来。由于 (1)、 (2) 两束光满足光的相干条件,各自反射回来在膜层 L 所在表面相遇后,就发生干涉,在 E 处即可观察到干涉条纹。

 G_2 是补偿板,它使光束(1)和(2)经过玻璃的次数相同,当使用白光作为光源时, G_2 还可以补偿 G_1 的色散。 M_1' 是在 G_1 中看到的 M_1 的虚像。

2.单色点光源等倾干涉条纹的观察及波长的 测量

如图 3.11.3 所示,由 He-Ne 激光器发出的细束平行激光经过会聚透镜聚焦于一点,相当于一个强度足够大的点光源。当 M_1' 与 M_2 互相平行,即 M_1 与 M_2 互相垂直时,对于与 M_2 的法线和 M_1 的法线夹角皆为 θ 的入射光,经 M_1' 与 M_2 反射后,两束光的光程差为 $\triangle=2d\cos\theta$ 。

式中 d 为 M_1' 与 M_2 间的空气膜的厚度,在 E 处可以观察 到明暗相间的同心圆环(图 3.11.4),每一个圆环对应一个恒定的倾角,称这种干涉为等倾干涉,观察这些同心圆的圆心处,此处有 $\triangle=2d$, $\theta=0$,由干涉条纹的明暗条件

$$\triangle=2d=\begin{cases} k\lambda, 明纹\\ (2k+1)\frac{\lambda}{2}, 暗纹 \end{cases} (k=1,2,3\cdots) 可知,圆心处干涉$$

条纹的级数最高,并且当移动 M_2 使d改变时,中心处条纹数随之增减,可观察到条纹由中心处"冒出"或"缩入",而每当中心处"冒出"或"缩入"一个条纹,光程 \triangle 就增加或减少一个波长 λ ,d就增加或减少了 $\frac{\lambda}{2}$,即 M_2 移动了 $\frac{\lambda}{2}$ 。

根据 M2 移动的距离 \triangle d 及条纹级数改变的次数 $|\triangle k|$,可以测出入射光的波长 $\lambda = \frac{2|\triangle d|}{|\triangle k|}$ 。

3.钠光双线波长差的测定

若实验中使用的不是单色光,则不同色光将按照式 (3.11.1)各自形成一套干涉条纹,从而形成特殊的干涉图样。如本实验以钠光入射,它有两条谱线,对应空气中波长分别 为 λ_1 和 λ_2 (设 λ_1 > λ_2),彼此十分接近,就会出现这样一种情况:

当 d 为某一定值 d_1 时,对同一入射角 θ_i ,有 $2d_1cos\theta_i$ = $k_2\lambda_2$,且 $2d_1cos\theta_i$ = $(k_1+\frac{1}{2})\lambda_1$,此时 λ_2 的 k_2 级明条纹与 λ_1 的 k_1 级暗条纹重叠,干涉条纹的可见度最低,如图 3.11.5 所示。

逐渐增大d,存在一个 d_2 值,使 $2d_2\cos\theta_i$ =

 $(\mathbf{k}_2 + \Delta \mathbf{k}_2)\lambda_2$,且 $2d_2cos\theta_i = (\mathbf{k}_1 + \Delta \mathbf{k}_1 + 1)\lambda_1$,此时 λ_1 与 λ_2 的亮纹重叠,视场中干涉条纹具有最好的可见度。

可见,在两次可见度最低之间,有 \triangle k_1 = \triangle k_2 +1。式中

 $\triangle k_1$, $\triangle k_1$ 分别是两次混叠之间 λ_1 和 λ_2 所改变的级数。

实验中,可在可见度良好的区域测出 \triangle d,将其代入式 (3.11.2),得到钠光谱双线的平均波长 $\lambda_{12} = \frac{\lambda_1 + \lambda_2}{2} = \frac{2|\triangle d|}{|\triangle k|}$ 。

设两混叠区间距 $\triangle d_0$,相应的 \triangle k 记作 $\triangle k_0$, $\lambda_1 = \frac{2|\triangle d_0|}{|\triangle k_1|}$,

$$egin{aligned} \lambda_2 = & rac{2|\triangle d_0|}{|\triangle k_2|}$$
。 从而 $\triangle \lambda = \lambda_1 - \lambda_2 = rac{2\triangle d_0}{\triangle k_2(\triangle k_2+1)} pprox rac{2\triangle d_0}{(\triangle k_0)^2} = rac{\lambda_{12}^2}{2\triangle d_0}$,于 $egin{aligned} \{\lambda_1 = \lambda_{12} - rac{1}{2} \triangle \lambda \\ \lambda_2 = \lambda_{12} + rac{1}{2} \triangle \lambda \end{aligned}$

4. 实验内容与步骤

- ①.调整迈克尔逊干涉仪及其光路;
- ②.观察激光的非定域干涉现象;
- ③.测量 He-Ne 激光波长,消除传动系统空程差,记录变化 0 环时,动镜的初始位置 d_0 ,观察中心圆环"冒出"或"缩入",每变化 N=50 个条纹,记录一次动镜 M_2 位置 d_i ,共测量 8 次;
- ④.测量钠光双线波长差,将激光器换成钠光灯,并去掉观察屏,用眼睛直接观察钠光干涉花样的视见度变化,记录相邻两次干涉花样视见度最低时,动镜 M₂的位置。

5. 实验记录(注意:单位、有效数字、列表)

一.原始数据

		迈克尔这个涉么	,	No.	
实验从	容与专环	北北北京	L	Dat	e.
23 34	30-3 93K			王3年	
(3). 18/1	O环对动镜M。1	的初始往置的。二年	6.12406mm		
	变化虾数	Mit di/mm	sdi/mm.	adi/mm	
He-Ne		46.15486			
2教文章		46.17420			
	100	46.19192			
况录表	150	46.20888			
	200	46.22543			
	250	46. 24144			
	300	46.25749			
	350	46.27412			
	M 5763	11/-/1-		1,+,+170	11+ 4/12
	M.河位置 M.木位置	46,69162	44. 43170 44. 43170	45.15170	45.56170 45.27170 46.98170 33.98170
	M.河位置 M.末位置	46.27/62 -	44. 43170		46.98170 46.98170 33.98170 34.27170 34.56170
	M.河位置 M.末位置	46.27/62 -	44. 43170		46.98170 (46.98170 33.98170 34.27170 34.86170 34.85170
	M文本位置	46,69162	44. 43170		45.27170 46.98170 33.98170 34.27170 34.85170 34.85170
	M.河位置 M.文末位置	46.27/62 - 46/69/62	44. 43170		45.27170 46.98170 33.98170 34.27170 34.85170 34.85170
	M文本位置	46.27/62 - 46/69/62	44. 43170		46.98170 (46.98170 33.98170 34.27170 34.86170 34.85170
	M.河位置 M.文本位置	46.27/62 - 46/69/62	44. 43170		45.27170 46.98170 33.98170 34.27170 34.85170 34.85170
	M.河位置 M.木位置	46.27/62 - 46/69/62	44. 43170		45.27170 46.98170 33.98170 34.27170 34.85170 34.85170
	M文本位置	46.27/62 - 46/69162	44. 43170		45.27170 46.98170 33.98170 34.27170 34.85170 34.85170

二.观察激光的非定域干涉图样

三.视见度最高时的钠光干涉图样

6. 数据处理及误差分析

A.He-Ne 激光波长数据处理

表 1 He-Ne 激光器波长数据处理表

变化环数 /个	M₂位置dぇ /mm	变化环数 /个	M ₂ 位置 d_i /mm	$ riangle d_i$ /mm	$\overline{ riangle d_{\imath}}$ /mm
0	46.1549	200	46.2254	0.0705	
50	46.1742	250	46.2414	0.0672	0.0674
100	46.1919	300	46.2575	0.0656	0.0671
150	46.2089	350	46.2741	0.0652	

$$\lambda = \frac{2\overline{\Delta d_i}}{\Delta k} = \frac{2 \times 0.0671}{200} = 6.71 \times 10^{-4} \text{mm} = 671 \text{nm}$$
.

$$E_s = \frac{|\lambda - \lambda_s|}{\lambda_s} \times 100\% = \frac{671 - 632.8}{632.8} \times 100\% = 6.04\%$$

该测量的波长与公认值之间的百分差可能略大,经分析,原因最可能在于刚开始未彻底消除传动系统的空程差,虽然粗调手轮的空程差已经消除,但微调手轮的空程差在刚开始尚存在,可通过以下表格看出:

测量次数	变化环数	M_2 位置 d_i /mm	$ riangle d_i$ /mm	Δd_i /mm
1	0	46.1549		
2	50	46.1742	0.01934	
3	100	46.1919	0.01772	0.01703
4	150	46.2089	0.01696	
5	200	46.2254	0.01655	
6	250	46.2414	0.01601	
7	300	46.2575	0.01605	
8	350	46.2741	0.01663	

测量所得的前两个数据由于引入了空程差的缘故,应该作废处理,但计算时仍考虑了进去,导致了计算结果偏大了 6%,实际 E_s 应该在 $\frac{656-632.8}{632.8} \times 100\% = 3.67\%$ 左右。

B.Na 光灯波长数据处理

表 2 Na 光灯波长数据处理表

M₂位置 /mm	移动距离 △ <i>d</i> /mm	平均距离 <u>△ d</u> /mm
33.9817		
34.2717	0.2900	
34.5617	0.2900	
34.8517	0.2900	0.2883
35.1517	0.3000	
35.4317	0.2800	
35.7117	0.2800	

$$\triangle \lambda = \frac{\lambda_{12}^2}{2 \triangle d} = \frac{589.294^2}{2 \times 0.2883 \times 10^6} = 0.6023 \, \text{nm}_{\circ}$$

$$E_s = \frac{|\triangle \lambda - \triangle \lambda_s|}{\triangle \lambda_s} \times 100\% = \frac{0.6023 - 0.597}{0.597} \times 100\% = 0.0089\%$$

如此低的百分差,应该得益于我们多测了5组视见度最低时的数据,确信间距差不多,因而是有效数据,之后才记

录下来。	

7. 思考题及实验小结

1.思考题一

①.如何用迈克尔逊干涉仪测量材料的微小长度变化?

答:要想测量材料的长度的微小变化,需要将其长度变化转化为光程差的变化,而光程差的变化主要来自于可动反射镜M₂的倾角变化或位置变化。

那么材料就必须要与 M_2 相连或顶着 M_2 ,即必须要与 M_2 有相互作用力。

——举个实际的例子,在《干涉法测固体的线胀系数》中,将被测固体杆与干涉仪的动镜 M_2 连在一起,根据干涉原理,伸长量 \triangle L与所移过的条纹数 N 的关系为 \triangle L= $N\cdot\frac{\lambda}{2}$ 。

其中, λ 为所用激光的波长,N 为温度升高导致金属杆膨胀推动 M_2 移动,导致光程差改变,以至于缩入或冒出的条纹数量。

以下内容为报告保留内容,请勿填写或删除,否则影响实验成绩

上课时间:
上课地点:
任课教师:
报告得分:
教师留言:
操作得分:
教师留言:
预习得分:
预习情况: