Faculté de Technologie

Département d'électrotechnique

Electronique de puissance (LET,52)

Chapitre 5

Les Convertisseurs Alternatifs/Continu

Les Montages Redresseurs triphasés commandés

5-1-Introduction

5-1 Etude du montage redresseur parallèle simple P3 à thyristors:

5-1-1-charge fortement inductive $L\gg R$

a- Montage

Les thyristors sont débloqués avec un retard en angle de α , c'est à dire que des impulsions de déblocage sont envoyées sur les gâchettes des thyristors respectivement aux angles:

Pour
$$th_1$$
: $\omega t = (\frac{\pi}{6} + \alpha) + 2k\pi$

Pour th_2 : $\omega t = (\frac{5\pi}{6} + \alpha) + 2k\pi$

Pour th_3 : $\omega t = (\frac{3\pi}{2} + \alpha) + 2k\pi$

b- Principe de fonctionnement

Les différentes phases de fonctionnement du montage sont alors décrites par le tableau suivant:

Intervalles	Thyristor passant	Tension redressée	Tensions aux bornes de $oldsymbol{T_1}$
$\frac{\pi}{6} + \alpha < \theta < \frac{5\pi}{6} + \alpha$	<i>T</i> ₁	$u_C = v_1$	$v_{T1}=0$
$\frac{5\pi}{6} + \alpha < \theta < \frac{3\pi}{2} + \alpha$	<i>T</i> ₂	$u_C = v_2$	$v_{1-}v_{T1}-u_c \Rightarrow v_{T1}=v_1-u_c=v_1-v_2=u_{12}$
$\frac{3\pi}{2} + \alpha < \theta < \frac{13\pi}{6} + \alpha$	<i>T</i> ₃	$u_{\mathcal{C}} = v_3$	$v_{1-}v_{T1}-u_c \Rightarrow v_{T1}=v_1-u_c=v_1-v_3=u_{13}$

c- Valeur moyenne de la tension $oldsymbol{u}_{\mathcal{C}}$ et du courant $oldsymbol{i}_{\mathcal{C}}$

$$\langle u_{\mathcal{C}} \rangle = \frac{3}{2 \cdot \pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{5\pi}{6} + \alpha} u_{\mathcal{C}} \cdot d\theta = \frac{3}{2 \cdot \pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{5\pi}{6} + \alpha} V_{\mathcal{M}} \cdot \sin\theta \cdot d\theta = \frac{3 \cdot V_{\mathcal{M}}}{2 \cdot \pi} [-\cos\theta]_{\frac{\pi}{6} + \alpha}^{\frac{5\pi}{6} + \alpha} = \frac{3 \cdot \sqrt{3} \cdot V_{\mathcal{M}}}{2 \cdot \pi} \cos\alpha$$

- ullet La valeur moyenne de la tension de sortie est positive et dépend des paramètres de la tension et de lpha.
- La tension maximale à supporter par le thyristor en inverse est:

$$V_{Tmax} = -\sqrt{3} \cdot V_{M}$$
 $\langle i_{C} \rangle = I_{C}$
 $\langle i_{1} \rangle = \langle i_{T1} \rangle = \frac{I_{C}}{3}$

Rappelons que le retard à l'amorçage a est compris dans l'intervalle $[0, \pi[$. Deux cas sont à considérer:

- $\alpha \leq \frac{\pi}{2}$, la valeur moyenne de la tension redressée est positive, il en est donc de même pour la puissance active fournie par le réseau au récepteur ($P = \langle u_{\mathcal{C}} \rangle \cdot I_{\mathcal{C}}$); le transfert de puissance se fait du coté alternatif vers le coté continu, le système fonctionne en redresseur.

 $-\alpha > \frac{\pi}{2}$, la valeur moyenne de la tension redressée est négative ainsi donc que la puissance active; le transfert de puissance se fait du coté continu vers le coté alternatif, le système fonctionne en onduleur ou redresseur inversé. Le réseau continu néanmoins à imposer la fréquence et à fournir de la puissance réactive, d'où la précision parfois ajoutée dans la dénomination d'onduleur non-autonome.

5-2- Redressement double alternances commandé par thyristor

5-2-1-redresseur en pont sur une charge fortement inductive $L\gg R$

a- Montage

b- Principe de fonctionnement

Les trois thyristors $T_{1,}, T_{2,}, T_{3,}$ forment un commutateur plus positif, qui laisse passer à tout instant la plus positive des tensions, et les thyristors $T_{4,}, T_{5,}, T_{6,}$ forment un commutateur plus négatif, qui laisse passer la plus négative des tensions. La tension redressée est à tout instant la différence entre ces deux tensions, soit :

Les différentes phases de fonctionnement du montage sont alors décrites par le tableau suivant:

Intervalles	Thyristors passants	Tension redressée	Tensions aux bornes du Thyristor $oldsymbol{T}_{1,}$
$\frac{\pi}{6} + \alpha < \theta < \frac{\pi}{2} + \alpha$	$T_{1,}T_{5}$	$u_C = v_1 - v_2 = u_{12}$	$v_{T1} = 0$
$\frac{\pi}{2} + \alpha < \theta < \frac{5 \cdot \pi}{6} + \alpha$	$T_{1,}T_{6}$	$u_C = v_1 - v_3 = u_{13}$	$v_{T1} = 0$
$\frac{5 \cdot \pi}{6} + \alpha < \theta < \frac{7 \cdot \pi}{6} + \alpha$	$T_{2,}T_{6}$	$u_C = v_2 - v_3 = u_{23}$	$v_{T1} = v_1 - v_2 = u_{12}$
$\frac{7 \cdot \pi}{6} + \alpha < \theta < \frac{3 \cdot \pi}{2} + \alpha$	$T_{2,}T_{4}$	$u_C = v_2 - v_1 = u_{21}$	$v_{T1} = v_1 - v_2 = u_{12}$
$\frac{3 \cdot \pi}{2} + \alpha < \theta < \frac{11 \cdot \pi}{6} + \alpha$	T_{3} , T_{4}	$u_C = v_1 - v_2 = u_{31}$	$v_{T1} = v_1 - v_3 = u_{13}$
$\frac{11 \cdot \pi}{6} + \alpha < \theta < \frac{13 \cdot \pi}{6} + \alpha$	T_{3} , T_{5}	$u_C = v_1 - v_3 = u_{32}$	$v_{T1} = v_1 - v_3 = u_{13}$

c- Valeur moyenne de la tension $v_{\it c}$ et du courant $i_{\it c}$

$$\begin{split} \langle u_{\mathcal{C}} \rangle &= \frac{6}{2\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{2} + \alpha} u_{\mathcal{C}} \cdot d\theta = \frac{6}{2\pi} \int_{\frac{\pi}{2} + \alpha}^{\frac{\pi}{2} + \alpha} V_{\mathcal{M}} \cdot \left(\sin\theta - \sin\left(\theta - \frac{2\pi}{3}\right) \right) \cdot d\theta \\ &= \frac{3V_{\mathcal{M}}}{\pi} \left\{ \left[-\cos\theta \right]_{\frac{\pi}{2} + \alpha}^{\frac{\pi}{2} + \alpha} + \left[\cos\left(\theta - \frac{2\pi}{3}\right)_{\frac{\pi}{2} + \alpha}^{\frac{\pi}{2} + \alpha} \right] \right\} = \frac{3\sqrt{3}V_{\mathcal{M}}}{\pi} \cos\alpha \\ & \langle i_{\mathcal{C}} \rangle = I_{\mathcal{C}} \\ & \langle i_{T1} \rangle = \frac{I_{\mathcal{C}}}{3} \end{split}$$

d-Caractéristique de réglage

 $\alpha=120^{\circ}>\frac{\pi}{2}$