Practical aspects of deep learning

10/10 points (100%)

Quiz, 10 questions

~	Congra	atulations! You passed!	Next lte
	✓	1 / 1 points	
		have 10,000,000 examples, how would you split the train/	dev/test set?
		60% train . 20% dev . 20% test	
		33% train . 33% dev . 33% test	
	0	98% train . 1% dev . 1% test	
	Corr	rect	
	~	1 / 1 points	
	2.	ev and test set should:	

Come from the same distribution

Correct

Come from different distributions

Practical as ₁	pects of ideap learning (same (x,y) pairs)	10/10 points (100%)
Ouiz 10 questions		

Have the same number of examples 1/1 points If your Neural Network model seems to have high variance, what of the following would be promising things to try? Make the Neural Network deeper **Un-selected is correct** Get more test data **Un-selected is correct** Increase the number of units in each hidden layer **Un-selected** is correct Get more training data Correct Add regularization

Correct

1/1 points

4.

Practical as	You are working on an automated check-out kiosk for a supermarket, and Pectusion of the points (10 classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)			
	Increase the regularization parameter lambda Correct			
	Decrease the regularization parameter lambda			
	Un-selected is correct			
	Get more training data			
	Correct			
	Use a bigger neural network			
	Un-selected is correct			
	1/1 points			
	5. What is weight decay?			
	Gradual corruption of the weights in the neural network if it is trained on noisy data.			
	A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.			
	A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.			
	Correct			

The process of gradually decreasing the learning rate during Practical aspects of deep learning Quiz, 10 questions 1/1 points What happens when you increase the regularization hyperparameter lambda? Weights are pushed toward becoming smaller (closer to 0) Correct Weights are pushed toward becoming bigger (further from 0) Doubling lambda should roughly result in doubling the weights Gradient descent taking bigger steps with each iteration (proportional to lambda) 1/1 points 7. With the inverted dropout technique, at test time: You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training. You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training Correct

10/10 points (100%)

You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.

Practical aspects of deep learning

10/10 points (100%)

Quiz, 10 questions

Correct

Practical aspects of deep learning

10/10 points (100%)

Fractical asp	ects of deep learning	10/
Quiz, 10 questions	Dropout	
	Correct	
	Exploding gradient	
	Un-selected is correct	
	Xavier initialization	
	Un-selected is correct	
	Gradient Checking	
	Un-selected is correct	
	Data augmentation	
	Correct	
	Vanishing gradient	
	Un-selected is correct	
-	1/1	
	points	
	10. Why do we normalize the inputs x ?	
``		
	It makes it easier to visualize the data	