

## **HAN Interface**

Interface Description
Customer Confidential
Version 1.0 A

# 1 (12) CUSTOMER CONFIDENTIAL VERSION 1.0A



## **Contents**

| 1 | Pre | face                                    | 2  |
|---|-----|-----------------------------------------|----|
|   | 1.1 | About this document                     | 2  |
|   | 1.2 | References                              | 2  |
| 2 | HA  | N interface                             | 3  |
|   | 2.1 | Role of HAN interface in the AMI system | 3  |
|   | 2.2 | HAN interface HW structure              | 3  |
|   | 2.3 | HAN Protocol interface according to NVE | 5  |
|   | 2.4 | HAN interface activation                | 7  |
|   |     | 2.4.1 List sending interval             | 7  |
|   | 2.5 | Data encryption.                        | 7  |
| 3 | Dat | ta format                               | 8  |
|   | 3.1 | Data framing                            | 8  |
|   | 3.2 | Push setup                              |    |
|   |     | 3.2.1 List 1                            |    |
|   |     | 3.2.2 List 2                            | 9  |
|   |     | 3.2.3 List 3                            | 9  |
|   | 3.3 | Examples of sent data                   | 10 |
|   |     | 3.3.1 List 2 sending (1-phase)          | 10 |
| 4 | HA  | N development kit                       | 11 |
|   | 4.1 | Aidon HAN SDK devices                   | 11 |
|   | 4.2 | RS-232 port for activation              | 12 |
|   | 4.3 | RS-232 port activation commands         | 12 |



## 1 Preface

#### 1.1 About this document

This document describes the HAN-NVE interface on Aidon Energy Service Devices (ESD) and is intended for HAN developers.

The HAN interface in the devices is activated from the Aidon head-end system.

#### 1.2 References

| Reference     | Description                                                                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC 62056-7-5 | IEC 62056-7-5:2016: Electricity metering data exchange - The DLMS/COSEM suite - Part 7-5: Local data transmission profiles for Local Networks (LN)                                    |
| IEC 61334-6   | IEC 61334-6:2000: Distribution automation using distribution line carrier systems - Part 6: A-XDR encoding rule                                                                       |
| IEC 62056-46  | IEC 62056-46:2002+AMD1:2006 CSV  Consolidated version: Electricity metering - Data exchange for meter reading, tariff and load control - Part 46: Data link layer using HDLC protocol |
| IEC 62056-5-3 | IEC 62056-5-3: Electricity metering data exchange – The DLMS/COSEM suite – Part 5-3: DLMS/COSEM application layer                                                                     |
|               | EXCERPT DLMS UA Blue Book: COSEM interface classes and OBIS identification system http://dlms.com/documents/Excerpt_BB12.pdf                                                          |



#### 2 HAN interface

#### 2.1 Role of HAN interface in the AMI system

The role of the HAN interface in the AMI system is to provide near real time information for the customer of their energy usage.

#### 2.2 HAN interface HW structure

The Aidon RF2 System Modules have a physical HAN interface that can be taken into use by external devices according to the M-Bus standard (EN 13757-2). The RJ45 connector on the System Modules is either integrated or can be wired outside the Aidon ESD with an HAN adapter.

On the RJ45 connector, 2 pins are used for HAN:

• RJ45 PIN1: +24V M-bus TX

• RJ45 PIN2: GND

The interface supplies power to a connected HAN device up to 700 mW. The interface is protected against short circuits. The Aidon System Module software can turn the power off from the interface in case of fault current.

The interface of the HAN device that is connected to the Aidon ESD must be double isolated from the mains.

The picture below shows the installation of the HAN solution using the System Module type where the HAN adapter cable is used.





Figure 1: Example installation of the HAN adapter solution.

The picture below shows Energy service device where HAN is available on the front of cover.



Figure 2: HAN interface integrated to ESD.



## 2.3 HAN Protocol interface according to NVE

|      | Norwegian HAN spesification - OBIS List Information |                         |                                                                                                           |  |  |  |  |  |  |
|------|-----------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Item | Description                                         | Value                   | Remarks                                                                                                   |  |  |  |  |  |  |
| Α    | File name                                           | Aidon_V0001.xlsx        | Filename: OBIS List identifier.xlsx. Format for publication is pdf.                                       |  |  |  |  |  |  |
| В    | List version - date                                 | 10.05.2016              | DD.MM.YYYY                                                                                                |  |  |  |  |  |  |
| С    | OBIS List version identifier                        | AIDON_V0001             | Shall be identical to corresponding OBIS code value in the meter                                          |  |  |  |  |  |  |
| D    | Meter type                                          | Aidon 65XX              | 1P 6515, 3P3W 6525, 3P4W 6534, 3P3W CT 6540, 3P4W CT 6550                                                 |  |  |  |  |  |  |
| E    | Number of metering systems                          | 1,2,3                   | (1,2,3)                                                                                                   |  |  |  |  |  |  |
| F    | Direct connected meter                              | Yes, No                 |                                                                                                           |  |  |  |  |  |  |
| G    | Current Transformer connected meter(                | Yes, No                 |                                                                                                           |  |  |  |  |  |  |
| Н    | Voltage (V)                                         | 1x230, 3x230, 3x230/400 | (1x 230, 3x230, 3x230/400)                                                                                |  |  |  |  |  |  |
|      | Current Imax (A)                                    | 6, 100                  | (6, 80, 100 A) Imax on the meters nameplate                                                               |  |  |  |  |  |  |
| J    | Baudrate M-BUS (HAN)                                | 2400                    |                                                                                                           |  |  |  |  |  |  |
| K    | List 1 Stream out every                             | 2.5 seconds             | The value is measured between the messages                                                                |  |  |  |  |  |  |
| L    | List 2 Stream out every                             | 10 seconds              | The values are measured between the messages                                                              |  |  |  |  |  |  |
| М    | List 3 Stream out every                             | 1 hour                  | The values are generated at XX:00:00 and streamed out from the HAN interface 10 second later (XX:00:10)   |  |  |  |  |  |  |
| N    | HAN maximum power to HEMS (mW)                      | 700 mW                  | The largest power that the customer equipment ( HEMS or display) can consume from the meter HAN interface |  |  |  |  |  |  |
| 0    | HAN maximum current to HEMS (mA)                    | 30 mA                   |                                                                                                           |  |  |  |  |  |  |
| ХХ   | Excel Template version                              | SF/22.04.2016           | This line should be deleted before publishing                                                             |  |  |  |  |  |  |

|     | Norwegian HAN spesification - OBIS Codes |    |     |      |      |     |       |      |                                                       |       |                      |       |
|-----|------------------------------------------|----|-----|------|------|-----|-------|------|-------------------------------------------------------|-------|----------------------|-------|
| C   | OBIS List version identifier:            |    |     |      |      | ent | ifiei | r:   | AIDON_V0001                                           |       |                      |       |
| Lis | t numl                                   | er | OBI | S Co | de - | Gro | up V  | alue | Object                                                |       | Attributes           |       |
| 1   | 2                                        | 3  | Α   | В    | С    | D   | Ε     | F    | Object name                                           | Unit  | Data type            | Numb. |
| 1   |                                          |    | 1   | 0    | 1    | 7   | 0     | 255  | Active power+ (Q1+Q4)                                 | kW    | double-long-unsigned | 1     |
|     | 1                                        | 1  | 1   | 1    | 0    | 2   | 129   | 255  | OBIS List version identifier                          |       | visible-string       | 2     |
|     | 2                                        | 2  | 0   | 0    | 96   | 1   | 0     | 255  | Meter - ID (GIAI GS1 - 16 digit )                     |       | visible-string       | 3     |
|     | 3                                        | 3  | 0   | 0    | 96   | 1   | 7     | 255  | Metertype                                             |       | visible-string       | 4     |
|     | 4                                        | 4  | 1   | 0    | 1    | 7   | 0     | 255  | Active power+ (Q1+Q4)                                 | kW    | double-long-unsigned | 5     |
|     | 5                                        | 5  | 1   | 0    | 2    | 7   | 0     | 255  | Active power - (Q2+Q3)                                | kW    | double-long-unsigned | 6     |
|     | 6                                        | 6  | 1   | 0    | 3    | 7   | 0     | 255  | Reactive power + (Q1+Q2)                              | kVAr  | double-long-unsigned | 7     |
|     | 7                                        | 7  | 1   | 0    | 4    | 7   | 0     | 255  | Reactive power - (Q3+Q4)                              | kVAr  | double-long-unsigned | 8     |
|     | 8                                        | 8  | 1   | 0    | 31   | 7   | 0     | 255  | IL1 Current phase L1                                  | Α     | long-signed          | 9     |
|     | 9                                        | 9  | 1   | 0    | 51   | 7   | 0     | 255  | IL2 Current phase L2                                  | Α     | long-signed          | 10    |
|     | 10                                       | 10 | 1   | 0    | 71   | 7   | 0     | 255  | IL3 Current phase L3                                  | Α     | long-signed          | 11    |
|     | 11                                       | 11 | 1   | 0    | 32   | 7   | 0     | 255  | UL1 Phase voltage 4W meter , Line voltage 3W meter    | V     | long-unsigned        | 12    |
|     | 12                                       | 12 | 1   | 0    | 52   | 7   | 0     | 255  | UL2 Phase voltage 4W meter , Line voltage 3W meter    | V     | long-unsigned        | 13    |
|     | 13                                       | 13 | 1   | 0    | 72   | 7   | 0     | 255  | UL3 Phase voltage 4W meter , Line voltage 3W meter    | V     | long-unsigned        | 14    |
|     |                                          | 14 | 0   | 0    | 1    | 0   | 0     | 255  | Clock and date in meter                               |       | octet-string         | 15    |
|     |                                          | 15 | 1   | 0    | 1    | 8   | 0     | 255  | Cumulative hourly active import energy (A+) (Q1+Q4)   | kWh   | double-long-unsigned | 16    |
|     |                                          | 16 | 1   | 0    | 2    | 8   | 0     | 255  | Cumulative hourly active export energy (A-) (Q2+Q3)   | kWh   | double-long-unsigned | 17    |
|     |                                          | 17 | 1   | 0    | 3    | 8   | 0     | 255  | Cumulative hourly reactive import energy (R+) (Q1+Q2) | kVArh | double-long-unsigned | 18    |
|     |                                          | 18 | 1   | 0    | 4    | 8   | 0     | 255  | Cumulative hourly reactive export energy (R-) (Q3+Q4) | kVArh | double-long-unsigned | 19    |



|        | Norwegian HAN spesification - OBIS Codes                                                                                              |  |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Item   |                                                                                                                                       |  |  |  |  |  |  |
| Number | Long description OBIS Code                                                                                                            |  |  |  |  |  |  |
| 1      | Active power in import direction, with resolution of W, Format 4.3 ( xxxx,xxx kW)                                                     |  |  |  |  |  |  |
| 2      | Version number of this OBIS list to track the changes                                                                                 |  |  |  |  |  |  |
| 3      | Serial number of the meter point:16 digits 99999999999999                                                                             |  |  |  |  |  |  |
| 4      | Type number of the meter: "6515 , 6525, 6534, 6540, 6550"                                                                             |  |  |  |  |  |  |
| 5      | Active power in import direction, with resolution of W, Format 4.3(xxxx,xxx kW)                                                       |  |  |  |  |  |  |
| 6      | Active power in export direction, with resolution of W, Format 4.3 ( xxxx,xxx kW)                                                     |  |  |  |  |  |  |
| 7      | Reactive power in import direction with resolution of VAr, Format 4.3 ( xxxx,xxx kVAr)                                                |  |  |  |  |  |  |
| 8      | Reactive power in export direction, with resolution of VAr, Format 4.3 (xxxx,xxx kVAr)                                                |  |  |  |  |  |  |
| 9      | 0,5 second RMS current L1, with resolution of 0.1 A, Format 3.1 (xxx.x A) (3P3W Current between L1 and L2 and part from current betwe |  |  |  |  |  |  |
| 10     | 0,5 second RMS current L2, with resolution of 0.1 A, Format 3.1 (xxx.x A) (3P3W 0 A)                                                  |  |  |  |  |  |  |
| 11     | 0,5 second RMS current L3, with resolution of 0.1 A, Format 3.1 (xxx.x A) (3P3W Current between L2 and L3 and part from current betwe |  |  |  |  |  |  |
| 12     | 0,5 second RMS voltage L1, with resolution of 0.1 V, Format 3.1 (xxx.x V) (3P3W Line voltage L1-L2)                                   |  |  |  |  |  |  |
| 13     | 0,5 second RMS voltage L2, with resolution of 0.1 V, Format 3.1 (xxx.x V) ( 3P3W Line voltage L1-L3)                                  |  |  |  |  |  |  |
| 14     | 0,5 second RMS voltage L3, with resolution of 0.1 V, Format 3.1 ( xxx.x V) (3P3W Line voltage L2-L3 )                                 |  |  |  |  |  |  |
| 15     | Local date and time of Norway                                                                                                         |  |  |  |  |  |  |
| 16     | Active energy import, with resolution of 10 Wh, Format 7.2 ( xxxxxxx.xx kWh)                                                          |  |  |  |  |  |  |
| 17     | Active energy export, with resolution of 10 Wh, Format 7.2 ( xxxxxxx.xx kWh)                                                          |  |  |  |  |  |  |
| 18     | Reactive Energy import, with resolution of 10 Varh, Format 7.2 ( xxxxxxx.xx kVArh)                                                    |  |  |  |  |  |  |
| 19     | Reactive Energy export, with resolution of 10 Varh, Format 7.2 ( xxxxxxx.xx kVArh)                                                    |  |  |  |  |  |  |



#### 2.4 HAN interface activation

By default, the interface is not activated and even the power supply to the HAN device is not activated. The activation can be done from the Aidon head-end system.

When the HAN interface is activated:

- The power supply is active and power up to 0.7 W can be drawn from the interface
- Specified versions of lists are continuously pushed

#### 2.4.1 List sending interval

The table below is an example of list sending intervals.

| Time       | List  |
|------------|-------|
| 09:00:00   | List2 |
| 09:00:02,5 | List1 |
| 09:00:05   | List1 |
| 09:00:07   | List1 |
| 09:00:10   | List3 |
| 09:00:12,5 | List1 |
| 09:00:15   | List1 |
| 16:00:17,5 | List1 |
| 16:00:20   | List2 |

## 2.5 Data encryption

It is possible to encrypt the data using AES-128 keys. Key handling between the connected HAN device and the system is out of the scope in this feature.



## 3 Data format

## 3.1 Data framing

HAN data packets are sent inside an HDLC frame. The following COSEM classes are used:

- Data (class\_id 1)
- Register (class\_id 3)
- Clock (class\_id 9)



Figure 3: Data format

## 3.2 Push setup

The following chapters describe the push setups for AIDON\_Vooo1 lists. COSEM objects that do not exist for a specific meter type, are not pushed.



#### 3.2.1 List 1

| COSEM object          | class_id | OBIS code     | Attribute |
|-----------------------|----------|---------------|-----------|
| Active power+ (Q1+Q4) | 3        | 1-1:1.7.0.255 | 0         |

#### 3.2.2 List 2

| COSEM object                                       | class_id | OBIS code       | Attribute |
|----------------------------------------------------|----------|-----------------|-----------|
| Active power+ (Q1+Q4)                              | 3        | 1-0:1.7.0.255   | 0         |
| OBIS List version identifier                       | 1        | 1-1:0.2.129.255 | 0         |
| Meter -ID (GIAI GS1 -16 digit)                     | 1        | 0-0:96.1.0.255  | 0         |
| Meter type                                         | 1        | 0-0:96.1.7.255  | 0         |
| Active power+ (Q1+Q4)                              | 3        | 1-0:1.7.0.255   | 0         |
| Active power - (Q2+Q3)                             | 3        | 1-0:2.7.0.255   | 0         |
| Reactive power + ( Q1+Q2)                          | 3        | 1-0:3.7.0.255   | 0         |
| Reactive power - ( Q3+Q4)                          | 3        | 1-0:4.7.0.255   | 0         |
| IL1 Current phase L1                               | 3        | 1-0:31.7.0.255  | 0         |
| IL2 Current phase L2*                              | 3        | 1-0:51.7.0.255  | 0         |
| IL3 Current phase L3*                              | 3        | 1-0:71.7.0.255  | 0         |
| UL1 Phase voltage 4W meter, line voltage 3W meter  | 3        | 1-0:32.7.0.255  | 0         |
| UL2 Phase voltage 4W meter, line voltage 3W meter* | 3        | 1-0:52.7.0.255  | 0         |
| UL3 Phase voltage 4W meter, line voltage 3W meter* | 3        | 1-0:72.7.0.255  | 0         |

#### 3.2.3 List 3

| COSEM object                   | class_id | OBIS code       | Attribute |
|--------------------------------|----------|-----------------|-----------|
| Active power+ (Q1+Q4)          | 3        | 1-0:1.7.0.255   | 0         |
| OBIS List version identifier   | 1        | 1-1:0.2.129.255 | 0         |
| Meter -ID (GIAI GS1 -16 digit) | 1        | 0-0:96.1.0.255  | 0         |
| Meter type                     | 1        | 0-0:96.1.7.255  | 0         |
| Active power+ (Q1+Q4)          | 3        | 1-0:1.7.0.255   | 0         |
| Active power - (Q2+Q3)         | 3        | 1-0:2.7.0.255   | 0         |
| Reactive power + ( Q1+Q2)      | 3        | 1-0:3.7.0.255   | 0         |
| Reactive power - ( Q3+Q4)      | 3        | 1-0:4.7.0.255   | 0         |
| IL1 Current phase L1           | 3        | 1-0:31.7.0.255  | 0         |
| IL2 Current phase L2*          | 3        | 1-0:51.7.0.255  | 0         |
| IL3 Current phase L3*          | 3        | 1-0:71.7.0.255  | 0         |



| COSEM object                                          | class_id | OBIS code      | Attribute |
|-------------------------------------------------------|----------|----------------|-----------|
| UL1 Phase voltage 4W meter, line voltage 3W meter     | 3        | 1-0:32.7.0.255 | 0         |
| UL2 Phase voltage 4W meter, line voltage 3W meter*    | 3        | 1-0:52.7.0.255 | 0         |
| UL3 Phase voltage 4W meter, line voltage 3W meter*    | 3        | 1-0:72.7.0.255 | 0         |
| Clock and date in meter                               | 8        | 0-0:1.0.0.255  | 1,2       |
| Cumulative hourly active import energy (A+) (Q1+Q4)   | 3        | 1-0:1.8.0.255  | 0         |
| Cumulative hourly active export energy (A-) (Q2+Q3)   | 3        | 1-0:2.8.0.255  | 0         |
| Cumulative hourly reactive import energy (R+) (Q1+Q2) | 3        | 1-0:3.8.0.255  | 0         |
| Cumulative hourly reactive export energy (R-) (Q3+Q4) | 3        | 1-0:4.8.0.255  | 0         |

<sup>\*</sup>missing from 1-phase meter

## 3.3 Examples of sent data

#### 3.3.1 List 2 sending (1-phase)

```
7e a0d2 41 0883 13 82d6 e6e700
0f 40000000 00
0109
0202 0906 0101000281ff 0a0b 4149444f4e5f5630303031
0202 0906 0000600100ff 0a10 37333539393932383930393431373432
0202 0906 0000600107ff 0a04 36353135
0203 0906 0100010700ff 06 00000552 0202 0f00 161b
0203 0906 0100020700ff 06 00000000 0202 0f00 161b
0203 0906 0100030700ff 06 000003e4 0202 0f00 161d
0203 0906 0100040700ff 06 00000000 0202 0f00 161d
0203 0906 01001f0700ff 10 005d 0202 0fff 1621
0203 0906 0100200700ff 12 09c4 0202 0fff 1623
e0c4 7e
```



## 4 HAN development kit

The HAN interface software development kit (SDK) is meant to be used for development purposes. The Aidon HAN SDK consists of an Aidon ESD with HAN development System Module software, and it is used to allow design houses to independently test the HAN interface on Aidon's devices.

The HAN SDK software enables the activation of the HAN interface locally without the need of system activation.



Figure 4: HAN development environment.

#### 4.1 Aidon HAN SDK devices

The Aidon System Module type with the HAN SDK software is the following:

• Aidon 6901 HAN Development System Module

The following Aidon Meters can be equipped with the 6901 System Module:

- Aidon 6515 1-phase Meter with CB on both lines and Earth Fault Current Measurement
- Aidon 6525 3-phase Meter with CB and Earth Fault Measurement
- Aidon 6534 3-phase Meter with CB and Neutral Current Measurement
- Aidon 6540 3-phase CT Meter
- Aidon 6550 3-phase CT Meter



#### 4.2 RS-232 port for activation

An RS-232 port is used from the device to simulate HES interface. The RS-232 signals are located in same RJ45 connector. A standard RS-232 cable shall be wired via the HAN device to a PC.

On the RJ45 connector, 3 pins are used for RS-232:

• RJ45 PIN6: RS-232 RX to device / TX from PC

• RJ45 PIN7: RS-232 TX from device / RX to PC

• RJ45 PIN8: GND for RS-232

## 4.3 RS-232 port activation commands

Communication settings for RS-232 port are 115200/8-N-1.

The following table describes the commands available via the RS-232 interface. Note that the commands are case sensitive.

| Command                                           | Output                                                                        | Description                                                                                                                                       |
|---------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| HAN ENABLE:0                                      | HAN DISABLED                                                                  | Disables HAN interface                                                                                                                            |
| HAN ENABLE:1                                      | HAN ENABLED                                                                   | Enables HAN interface without encryption                                                                                                          |
| HAN ENABLE:2 <key></key>                          | HAN ENABLED WITH ENCRYPTION or KEY SETTING FAILED or WRONG KEY LENGTH         | Enables HAN interface with security key.<br>Key must be given as 16 byte hex-string.<br>Example: HAN ENABLE:2<br>00112233445566778899AABBCCDDEEFF |
| TIME                                              | CURRENT TIME: YYYY-MM-DD<br>HH:mm:ss                                          | Prints current date and time in ESD                                                                                                               |
| TIME: <yyyy-mm-dd<br>HH:mm:ss&gt;</yyyy-mm-dd<br> | SETTING TIME: YYYY-MM-DD HH:mm:ss TIME SETTING SUCCESS or TIME SETTING FAILED | Sets ESD date and time.  Example: TIME 2018-05-01 12:00:00                                                                                        |
|                                                   | HAN FAULT                                                                     | Overcurrent situation detected                                                                                                                    |