Table of Probability Distributions

(This material was taken primarily from Wikipedia, https://en.wikipedia.org/wiki/Main_Page where you can search for the distributions included in this table. Additional material was taken from the textbook, Ugarte, M.D., Militino, A.F. & Arnholt, A.T. 2016. **Probability and Statistics with R: Second Edition**. Boca Raton, FL: CRC Press, Taylor & Francis Group, A Chapman & Hall Book. Other sources are cited within the table.)

Туре	Name	Conditions, Assumptions, Requirements	Uses	Examples
Univariate Discrete				
	Uniform	A symmetric distribution representing a finite number of values that are equally likely.	A simple example is that of a single, fair die. The possible values, 1 through 6, are equally likely. However be careful, the sum of two dice does not have equal probability.	Probability mass function $ \frac{1}{n} = \frac{1}{n} + \frac{1}{n}$

Туре	Name	Conditions, Assumptions, Requirements	Uses	Examples
				Cumulative distribution function 1
	Bernoulli	A random variable equals 1 (one) with probability p and equals 0 with probability $q = 1 - p$	Special case of the Binomial distribution. The probability distribution of an experiment that asks a yesno question or involves a situation such as a coin toss.	Various (p, q) for Bernoulli coin-toss (1) Success (0) Failure (2) Failure (2) Failure (3) Failure (4) Failure (4) Failure (5) Failure (6) Failure (7)
	Binomial	Used to model the number of successes in a	Probability of the number of successes in a sequence of <i>n</i> independent experiments	

Туре	Name	Conditions, Assumptions, Requirements	Uses	Examples
		sample of size n drawn with replacement from a population of size N .	yielding yes-no type results. A single success/failure experiment is called a Bernoulli trial or Bernoulli experiment. And, where $n=1$ the binomial distribution is the special case called the Bernoulli distribution. When sampling is carried out without replacement the draws are not independent and the result is represented by the hypergeometric distribution.	Probability mass function p-0.5 and n-20 p-0.7 and n-20 p-0.5 and N-20
	Poisson	For a given number of events over a fixed interval of time and/or space	Has been used to model events such as the number of patients arriving in an emergency room.	

Туре	Name	Conditions, Assumptions, Requirements	Uses	Examples
		if the events have a		Probability mass function
		known average		0.40
		rate and are		0.35 · · · · · · · · · · · · · · · · · · ·
		independent.		$\lambda = 4$ 0.30 0.25 0.00 0.05 0.00 0.05 0.00
				Cumulative distribution function
				$\begin{array}{c} 1.0 \\ 0.8 \\ \hline \\ 0.4 \\ 0.2 \\ \hline \\ 0.0 \\ 0.0 \\ \hline \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ \hline \\ 0.0 \\ \hline \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0$
				the integers of k and flat everywhere else because a variable that is Poisson distributed

Туре	Name	Conditions, Assumptions, Requirements	Uses	Examples	
				takes on only integer values.	
	Geometric	An experiment involves a sequence of independent trials for which there are only 2 (two) possible outcomes, e.g. success or failure.	For these experiments the (geometric) random variable is the count of failures before the first success. For example, if any of a family of drugs has a probability of $p=0.6$ of being effective for a particular patient what is the probability that a physician will prescribe the drug from the family of drugs that is effective on the first trial? What is the probability that the physician will prescribe the effective drug on the second trial? and so on.	 There are actually 2 (two) distinct geometric probability distributions. Often called the "Shifted" Geometric distribution, this is the probability distribution for the number X of Bernoulli trials required to achieve one success over the set of real numbers (trials) beginning with the number 1, i.e. {1, 2, 3,}. This is the distribution, Y = X - 1, representing the number of failures before the first success. This distribution begins with 0 (zero). 	
	Negative Binomial	Represents the number of	Also called the Pascal distribution.		
		successes in a		0.10	
		sequence of	The Pascal and Polya	0.08	
		independent and	distributions are special	0.06 n = 1	
		identically	cases of the negative	0.04	
		distributed	binomial distribution. For	0.02	
		Bernoulli trials that	situations in which events	0 5 10 15 20 25 k	
		occur prior to a	are not independent, e.g. a		
		specified/ known	tornado outbreak due to the		

Туре	Name	Conditions, Assumptions, Requirements	Uses	Examples					
		number of failures.	same severe weather system, the Polya distribution produces a more accurate model than the Poisson distribution. Such events are often called "contagious" events because of their highly, positively correlated occurrences. Occurrences of events that are truly independent have a positive covariance term.	0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 5 10 15 20 0.035 0.030 0.025 0.020 0.015 0.010 0.005 0.000	25 30 - n = 2	0 p = 0			
	Hyper-	Describes the	Represents the classic case	0 20 40 6	50 80 Co	ntingen	cy Table		
	geometric	probability of k successes in n draws without	of an urn with 2 (two) colored balls (or marbles), e.g. one green and one red			drawn	not drawn	total	
		replacement from a finite population of size <i>N</i> with	(or one black and one white). N is the total number of balls, K the number of green		green marbles	k	K- k	К	
		exactly <i>K</i> successes where each draw is either	balls. Therefore, N – K is the number of red balls. Drawing either green (or		red marbles	n – k	N + k - n - K	N - K	
		a success or a failure.	black) represents success whereas drawing either red		total	n	N – n	N	
			(or white) represents failure. Because the balls are not replaced as they are drawn						

	the draws are not independent. As an aside, the card game Texas Hold	Relationship to other distributions			
	'em uses this distribution to compute the probability of drawing desired cards.		With replacements	No replacements	
		Given number of draws	binomial distribution	hypergeometric distribution	
		Given number of failures	negative binomial distribution	negative hypergeometric distribution	
In statistical mechanics, gives the probability that a system will be in a certain state based on the state's energy and the system's temperature.	Has been used in physics, mathematics and economics. For example, in economics the Boltzmann distribution has been used to allocate permits for emissions trading among countries.	Frequency Distribution (Boltzmann Distribution) for Particles in a System over Vari Possible States		/300meV 1eV.	

Туре	Name	Conditions, Assumptions, Requirements	Uses	Examples
				difference and temperature.
	Logarithmic (series)	Also called the log- series distribution, is derived from the Maclaurin series expansion $-\ln(1-p)=p+\frac{p^2}{2}+\frac{p^3}{3}+\cdots$, which is also a Taylor series expansion when centered at 0 (zero).	Used by R. A. Fisher to describe relative species abundance.	Probability mass function Probability mass func

Туре	Name	Conditions, Assumptions, Requirements	Uses	Examples
Univariate Continuous	3			
Continuous	Uniform	Also called the rectangular distribution, is a family of symmetric probability distributions. Over the interval it is defined, the pdf for the continuous uniform distribution is given by: $f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \leq x \leq b \\ 0 & \text{for } x < a \text{ or } x > b \end{cases}$	Step-function; pseudo- random number generation with a uniform distribution; etc.	Probability Density Function $ f(x) \\ \frac{1}{b-a} \\ 0 a b x $ Cumulative Distribution Function $ f(x) \\ 0 a b x $
	Exponential	Describes the time between events in a Poisson process. Involves a rate parameter, typically λ. The exponential distribution is a special case of the gamma distribution. It is the continuous analogue of	There are many uses of this all centering around arrivals, e.g. arrivals of phone calls in a call center, the service times in queuing theory, or time for radioactive particle decays.	

Туре	Name	Conditions, Assumptions, Requirements	Uses	Examples
		the geometric distribution.		Probability Density Function
	Gamma	The gamma function is an extension of the factorial function with its argument shifted by -1. The gamma function is defined for all real numbers and for all complex numbers except for non-positive integers. If n is a positive integer the gamma function is given by: $\Gamma(n) = (n-1)!$ For example, $\Gamma(1) = 1, \Gamma(2) =$	The gamma function is used as the basis for many other distributions, e.g. the Beta distribution. The gamma function has been used to interpolate a factorial function to non-integer values.	Gamma function along part of the real axis. Gamma function 2 4 2 4

Туре	Name	Conditions,	Uses	Examples	
		Assumptions,			
		Requirements			
		$1, \Gamma(3) = 2, \Gamma(4) =$			
		$6, \Gamma(5) = 24$, and so on.			
		For complex numbers			
		with a positive real part			
		the gamma function is			
		given by:			
		$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$			
	Weibull	Parameters include:	The Weibull distribution		
		$\lambda \in (0, +\infty)$ scale	is used for many		
		$k \in (0, +\infty)$ shape	applications including:		
		Support: $x \in [0, +\infty)$	in hydrology to model		
		The PDF is given by:	extreme events such as	Probability Density Function	Cumulative Distribution Function
		f(x)	annual maximum one-	λ = 1, k = 0.5	1.0
		$\int_{-\infty}^{\infty} \left(\frac{x}{2}\right)^{k-1} e^{-(x/\lambda)^k} x$	day rainfalls, the	$\begin{array}{c}$	
		$= \{\overline{\lambda}(\overline{\lambda})\}$	distribution of particle	8	80
		$\int_{0}^{\infty} x$	sizes generated by	/\	9
		The CDF is all and b	grinding/milling and	8.1	9 -
		The CDF is given by:	crushing operations,	1.0	4
		$\int \left\{ 1 - e^{-(x/\lambda)^k} x \ge 0 \right\}$	survival analysis,		°]///
		$\int 0 \qquad x < 0$	reliability engineering	80	007
		15(1 + 1/4)	and failure analysis,		$\begin{array}{c c} & \lambda = 1, k = 0.5 \\ \hline & \lambda = 1, k = 1 \end{array}$
		Mean: $\lambda\Gamma(1+1/k)$	industrial engineering	9	$\begin{array}{c} -\lambda = 1, k = 1.5 \\ -\lambda = 1, k = 5 \end{array}$
		Median: $\lambda(\ln 2)^{1/k}$	for manufacturing and	0.0 0.5 1.0 1.5 2.0 2.5	0.0 0.5 1.0 1.5 2.0 2.5
		Mode: $1/k$	delivery times, wind		
		$\left\{\lambda \left(\frac{k-1}{k}\right)^{1/k} k > 1\right.$	speed distributions for		
		$\left \begin{array}{ccc} \begin{pmatrix} k & l \\ 0 & & k \leq 1 \end{array} \right $	the wind power		
		\(\(\lambda \) \(\lambda \) \(\	industry, and more.		

Beta	Is defined on the	In the limit when both		
	interval $[0,1]$ and	shape parameters,		
	parameterized by two	α and β approach zero,	Probability Density Function	Cumulative Distribution Function
	positive shape	the Beta distribution	$\begin{array}{c} \alpha = \beta = 0.5 \\ \alpha = 5, \beta = 1 \end{array}$	$\alpha = \beta = 0.5$
	parameters, α and β ,	approaches the	$ \begin{array}{c ccccc} \alpha & = 5, \beta & = 1 & & \\ \alpha & = 1, \beta & = 3 & & \\ \alpha & = 2, \beta & = 2 & & \\ \end{array} $	$\begin{array}{c} \alpha = 5, \beta = 1 \\ \alpha = 1, \beta = 3 \end{array}$ $\begin{array}{c} \alpha = 3, \beta = 3 \end{array}$
	i.e. notation	Bernoulli distribution.	$\alpha = 2, \beta = 2$ $\alpha = 2, \beta = 5$	0.8 $\alpha = 2, \beta = 2$ $\alpha = 2, \beta = 5$
	$Beta(\alpha,\beta).$		1.5	0.6
		Used in Bayesian	10d	ii d
	Parameters:	inference as part of a	1	0.4
	$\alpha > 0$ shape (real)	family of conjugate		
	$\beta > 0$ shape (real)	prior probability	0.5	0.2
		distributions for the		
	Support: $x \in$	binomial (including the	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
	$[0,1]$ or $x \in (0,1)$	Bernoulli) and		
		geometric distributions.		
	The PDF is given by:			
	$x^{\alpha-1}(1-x)^{\beta-1}$	Used for continuous		
	$B(\alpha,\beta)$	wavelets known as Beta		
	where	wavelets.		
	$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$	Used to model events		
	$\Gamma(\alpha+\beta)$	(e.g. in project		
	The CDF is given by:	management) that are		
	$I_x(\alpha,\beta)$	constrained over an		
	$I_{x}(u, p)$ (the regularized	interval with specified		
	incomplete beta	minimum and maximum		
	function)	values, e.g. PERT, CPM,		
	Tunction	etc.		

Gaussian (Normal)	Notation: $\mathcal{N}(\mu, \sigma^2)$ Parameters: $\mu \in \mathbb{R} = \text{mean}$ $\sigma^2 > 0 = \text{variance}$ The PDF is given by: $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ The CDF is given by: $\frac{1}{2}\left[1 + erf\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right]$	The most commonly used distribution, the Gaussian distribution is often used to represent real-valued random variables whose distribution is not a priori known, e.g. in the natural and social sciences. Also known as the "Bell curve".	Probability Density Function
Student's t	Parameters: $v > 0$ degrees of freedom (real). The PDF is given by:	Assessing the statistical significance of two sample means or generating confidence intervals for the difference between two population means. Also used in linear regression analyses.	

	$\frac{\Gamma\left(\frac{\upsilon+1}{2}\right)}{\sqrt{\upsilon\pi}\Gamma\left(\frac{\upsilon}{2}\right)}\left(1\right)$ $+\frac{x^2}{\upsilon}\right)^{-\frac{\upsilon+1}{2}}$ where Γ is the Gamma function. The CDF is given by: $\frac{1}{2} + x\Gamma\left(\frac{\upsilon+1}{2}\right)x$ ${}_{2}F_{1}\left(\frac{1}{2},\frac{\upsilon+1}{2};\frac{3}{2};-\frac{x^2}{\upsilon}\right)$ $\sqrt{\pi\upsilon}\Gamma\left(\frac{\upsilon}{2}\right)$ where ${}_{2}F_{1}$ is the hypergeometric function.	Mean: 0 for $v > 1$, otherwise undefined Median: 0 Mode: 0 Variance: $\frac{v}{v-2}$ for $v > 2$, ∞ for $1 < v \le 2$, Otherwise undefined.	Probability Density Function $ 0.40 \\ 0.35 \\ 0.30 \\ 0.25 \\ \hline{\times} 0.20 \\ 0.15 \\ 0.00 \\ 0.05 \\ 0.00 $	Cumulative Distribution Function $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
F-Distribution (see also the "non-central F- distribution")	If a random variable X has an F -distribution with parameters d_1 and d_2 , then the notation is: $X \sim F(d_1, d_2)$. Parameters: $d_1, d_2 > 0$ degrees of freedom Support: $x \in [0, +\infty)$	Often used as the null distribution of a test statistic, e.g. the $F-test$ in ANOVA.	Probability Density Function 2.5 d1=1, d2=1 d1=2, d2=1 d1=5, d2=2 d1=10, d2=1 d1=100, d2=100 0 1 2 3 4 5	Cumulative Distribution Function 1 0.8 0.6 0.4 0.2 d1=1, d2=1 d1=2, d2=1 d1=5, d2=2 d1=10, d2=1 d1=100, d2=100 0 1 2 3 4 5

	The PDF is given by: $\frac{\left(d_1x\right)^{d_1}d_2^{d_2}}{\sqrt{\left(d_1x+d_2\right)^{d_1+d_2}}}$ $xB\left(\frac{d_1}{2},\frac{d_2}{2}\right)$ where B is the Beta function. (Note: do not confuse the Beta function and the Beta distribution!) $I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2},\frac{d_2}{2}\right)$ that is, $F(x;d_1,d_2) = I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2},\frac{d_2}{2}\right)$ Mean: $\frac{d_2}{d_2-2}$ for $d_2>2$		
Log-normal	If $X \sim \mathcal{N}(\mu, \sigma^2)$ is a normal distribution then $\exp(X) \sim Lognormal(\mu, \epsilon)$.	Used for a random variable whose logarithm is normally distributed.	

	$\mu \in (-\infty, +\infty),$ $\sigma > 0$ The PDF is given by: $\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$ The CDF is given by: $\frac{1}{2} + \frac{1}{2}erf\left[\frac{\ln x - \mu}{\sqrt{2}\sigma}\right]$ Mean: $exp\left(\mu + \frac{\sigma^2}{2}\right)$		Probability Density Function $ \begin{array}{c} \sigma = 0.25, \ \mu = 0 \\ 1.5 \\ 0.5 \\ 0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ \end{array} $	Cumulative Distribution Function $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rayleigh	$\sigma>0$ The PDF is given by: $\frac{x}{\sigma^2}e^{-x^2/(2\sigma^2)}$ The CDF is given by: $1-e^{-x^2/(2\sigma^2)}$ Mean: $\sigma\sqrt{\frac{\pi}{2}}$	The Rayleigh distribution is a Chi distribution with two degrees of freedom. A Rayleigh distribution is often observed when the overall magnitude of a vector is related to its directional components, e.g. when the wind velocity is analyzed in two dimensions.	Probability Density Function 1.2 1 0.8 0.6 0.4 0.2 0 2 4 6 8 10	Cumulative Distribution Function 0.8 0.6 0.4 0.2 0.2 0.6 0.7 0.7 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Chi-squared	Notation:	The Chi-squared	Probability Density Function
(see also the	$\chi^2(k)$ or χ^2_k	distribution with \emph{k}	$f_k(x)$ χ_k^2
"non-central		degrees of freedom is	0.5
chi-squared	Parameters:	the distribution of the	-k=3
distribution")	$k \in \mathbb{N} > 0$ (known as	sum of squares of k	-k=4 $-k=6$
	"degrees of freedom")	independent standard	$\begin{array}{c c} - & k=0 \\ - & k=9 \end{array}$
		normal random	0.2
	The PDF is given by:	variables. It is a special	
	$\frac{1}{x^{k/2-1}}e^{-x/2}$	case of the gamma	0.1
	$\frac{1}{2^{k/2}\Gamma(k/2)}^{\chi}$	distribution and is	0.0
		frequently used in	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	The CDF is given by:	inferential statistics	
	$\frac{1}{\Gamma(k/2)}\gamma\left(\frac{k}{2},\frac{x}{2}\right)$	particularly for	Consulative Distribution Forestien
		hypothesis testing.	Cumulative Distribution Function $F_k(x)$, Y_k^2
	where $\gamma(s,t)$ is the		\uparrow
	lower complete gamma		1.0
	function		0.8
			0.6 $k=1$
	Mean: <i>k</i>		-k=2 $-k=3$
			0.4 $k=4$
			-k=6
			<u>− κ=9</u>
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Multivariate				
	Multinomial	Parameters:	The multinomial	
		n > 0 number of trials	distribution is a	
		(integer)	generalization of the	
		p_1, \dots, p_k event	binomial distribution	
		probabilities $(\sum p_i = 1)$	used to model the	
			probability of counts for	
		The pmf is given by:	rolling a k -sided die n	
		$\frac{n!}{x_i!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k}$	times. When $k = 2$ the	
		$x_i!\cdots x_k!^{P_1}$	multinomial distribution	
			is the binomial	
,		Mean:	distribution.	
		$E\{X_i\} = np_i$		4
	Multivariate	Parameters:	Extension of the model	
	hyper-	$c \in \mathbb{N} = \{0, 1, \dots\}$	of an urn with green	
	geometric	$(K_1, \dots, K_c) \in \mathbb{N}^c$	and red marbles	ļ
	distribution	$N = \sum_{i=1}^{\infty} K_i$	extended to include	
		$N = \sum_{i=1}^{N_l} N_i$	additional colors of	
		$n \in \{0, \dots, N\}$	marbles. It has the	
			same relationship to the multinomial distribution	
		The pmf is given by:	that the hypergeometric	
			distribution has to the	
		$\frac{\prod_{i=1}^{c} \binom{K_i}{k_i}}{\binom{N}{n}}$	binomial distribution.	
		(N)	That is, the multinomial	
		(n)	distribution is the "with-	
		N.4	replacement"	
		Mean:	distribution and the	
		$E(X_i) = \frac{nK_i}{N}$	multivariate hyper-	
		IV IV	geometric is the	
			"without replacement"	

		distribution.	
Multivariate	If $X \sim \mathcal{N}(\mu, \Sigma)$ is a		
log-normal	multivariate normal		
	distribution then		
	$Y = \exp(X)$ has a		
	multivariate log-normal		
	distribution with mean		
	$E[Y]_i = e^{\mu_i + \frac{1}{2} \sum_{ii}}.$		