計量分析 2:復習テスト 14

学籍番号	氏名		
	2023年1月21日		

注意: すべての質問に解答しなければ提出とは認めない. 正答に修正した上で,復習テスト $9\sim14$ を(左上で)ホチキス止めし,定期試験実施日(1月26日の予定)にまとめて提出すること.

1. 処置ダミーを D,処置をする時としない時の潜在的な結果を (Y_1^*,Y_0^*) ,観測される結果を Y,共変量を X とする. d=0,1 について $\mathrm{E}(Y_d^*|X)=r_d(X)$ とする.処置確率を $p(X):=\Pr[D=1|X]$ とする. (a) X=x のときの条件付き ATE を $r_0(.),r_1(.)$ で表しなさい.

(b) X を所与として Y_1^*, Y_0^* は D と条件付き平均独立とする. $\mathrm{E}(Y|X)$ を $r_0(.), r_1(.), p(.)$ で表しなさい.

2.	処置ダミーを D ,	処置をする時と	こしない時の潜在的	的な結果を (Y	Y_1^*, Y_0^*),	観測される結果を Y	,共変量
	を X とする. d =	= 0,1 について]	$E(Y_d^* X) = \alpha_d +$	$\beta_d X$, $U_d :=$	$Y_d^* - \mathrm{E}($	$Y_d^* X)$ とする.	

(a) 条件つき ATE を X の関数で表しなさい.

(b) Y を D, X, U_0, U_1 で表しなさい.

(c) $\beta_0=\beta_1=\beta,\ U_0=U_1=U$ とする. Y を D,X,U で表しなさい. また処置効果 $Y_1^*-Y_0^*$ を求めなさい.

解答例

1. (a)

$$ATE(x) := E(Y_1^* - Y_0^* | X = x)$$

$$= E(Y_1^* | X = x) - E(Y_0^* | X = x)$$

$$= r_1(x) - r_0(x)$$

(b) 繰り返し期待値の法則より

$$\begin{split} \mathbf{E}(Y|X) &= \mathbf{E}(DY_1^* + (1-D)Y_0^*|X) \\ &= \mathbf{E}(\mathbf{E}(DY_1^* + (1-D)Y_0^*|D,X)|X) \\ &= \mathbf{E}(D\,\mathbf{E}(Y_1^*|D,X) + (1-D)\,\mathbf{E}(Y_0^*|D,X)|X) \\ &= \mathbf{E}(D\,\mathbf{E}(Y_1^*|X) + (1-D)\,\mathbf{E}(Y_0^*|X)|X) \\ &= \mathbf{E}(D|X)\,\mathbf{E}(Y_1^*|X) + (1-\mathbf{E}(D|X))\,\mathbf{E}(Y_0^*|X) \\ &= \mathbf{P}(D=1|X]r_1(X) + (1-\mathbf{P}(D=1|X])r_0(X) \\ &= p(X)r_1(X) + (1-p(X))r_0(X) \end{split}$$

2. (a)

$$ATE(X) := E(Y_1^* - Y_0^* | X)$$

$$= E(Y_1^* | X) - E(Y_0^* | X)$$

$$= \alpha_1 + \beta_1 X - (\alpha_0 + \beta_0 X)$$

$$= \alpha_1 - \alpha_0 + (\beta_1 - \beta_0) X$$

(b)

$$Y := DY_1^* + (1 - D)Y_0^*$$

$$= Y_0^* + D(Y_1^* - Y_0^*)$$

$$= \alpha_0 + \beta_0 X + U_0 + D[\alpha_1 + \beta_1 X + U_1 - (\alpha_0 + \beta_0 X + U_0)]$$

$$= \alpha_0 + \beta_0 X + U_0 + D[(\alpha_1 - \alpha_0) + (\beta_1 - \beta_0)X + U_1 - U_0]$$

$$= \alpha_0 + (\alpha_1 - \alpha_0)D + \beta_0 X + (\beta_1 - \beta_0)DX + U_0 + D(U_1 - U_0)$$

(c) 前問より

$$Y = \alpha_0 + (\alpha_1 - \alpha_0)D + \beta X + U$$

処置効果は

$$Y_1^* - Y_0^* = \alpha_1 + \beta X + U - (\alpha_0 + \beta X + U)$$

= \alpha_1 - \alpha_0