Alcohol Abuse and Mental/Physical Health in the United States

Jane Condon

2024-03-18

Loading packages

```
library(haven)
library(sf)
library(ggplot2)
library(sjPlot)
library(sjmisc)
library(sjlabelled)
library(plyr)
library(tidyverse)
library(formatR)
```

Importing data from the CDC's BRFSS - 2018

```
zip_tf <- tempfile()
zip_url <- "https://www.cdc.gov/brfss/annual_data/2018/files/LLCP2018XPT.zip"
download.file(zip_url, zip_tf, mode = "wb")
brfss_tbl <- read_xpt(zip_tf)
brfss_df <- data.frame(brfss_tbl)
names(brfss_df) <- tolower(names(brfss_df))
brfss_df[, "one"] <- 1</pre>
```

Data Manipulation and Cleaning

Selecting only the variable names that we want to keep to make the data more manageable

```
variables <- c("x_state", "maxdrnks", "alcday5", "avedrnk2",
        "drnk3ge5", "menthlth", "poorhlth", "addepev2", "genhlth",
        "physhlth", "x_ageg5yr", "sex1", "one", "x_llcpwt", "x_rfbing5")
brfss_df <- brfss_df[variables]</pre>
```

Adding state abbreviation column

Subsetting the data

Binge Drinking Prevalence

```
binge_prev <- brfss_df[(brfss_df$x_rfbing5 == 1 | brfss_df$x_rfbing5 ==
2) & !is.na(brfss_df$x_rfbing5), ]</pre>
```

Binge Drinking Intensity

Binge Drinking Frequency

Average Alcohol Consumption

Average Drinking Frequency

```
# Dataframe excluding NA and 'not sure' or 'refused'
# responses from the 'number of days per week/month where
# you consumed an alcoholic beverage' column
alc_days <- brfss_df[(brfss_df$alcday5 %in% 101:107 | brfss_df$alcday5 %in%
    201:230 | brfss df$alcday5 == 888) & !is.na(brfss df$alcday5),
   1
# Replacing '888' values with '0', since a response of
# '888' means 'No drinks in the past 30 days'
alc_days$alcday5[alc_days$alcday5 == "888"] <- 0</pre>
# Remove the '2' from 201-230 values, since 2 = ays
# per month and dividing it by 7 to get 'days per week'
alc_days$alcday5 <- ifelse(alc_days$alcday5 %in% 201:209, gsub("20",
    "", alc_days$alcday5), alc_days$alcday5)
alc days$alcday5 <- ifelse(alc days$alcday5 %in% 210:230, gsub("2",
    "", alc_days$alcday5), alc_days$alcday5)
alc_days$alcday5 <- ifelse(alc_days$alcday5 %in% 1:30, round((as.numeric(alc_days$alcday5))/7,
    2), alc days$alcday5)
# Remove the '10' from 101-107 values, since 1 _ _ = days
# per week
alc_days$alcday5 <- ifelse(alc_days$alcday5 %in% 101:107, gsub("10",
    "", alc_days$alcday5), alc_days$alcday5)
```

Exploratory Data Analysis and Visualizations

Binge Drinking Prevalence

Calculating the proportion of binge drinkers in each state

```
yesNo <- data.frame(Yes = rowSums(binge_prev["x_rfbing5"] ==
2), No = rowSums(binge_prev["x_rfbing5"] == 1))
binge <- aggregate(yesNo, binge_prev["stname"], sum)
binge$percent <- (binge$Yes)/(binge$Yes + binge$No) * 100
binge$percent <- round(binge$percent, 2)</pre>
```

Creating a map to display the proportion of binge drinkers in each state

```
states <- st_read("2015-2019-acs-states.geojson")</pre>
## Reading layer '2015-2019-acs-states' from data source
     'C:\Users\jane9\OneDrive\Documents\March Analytics Project\2015-2019-acs-states.geojson'
     using driver 'GeoJSON'
## Simple feature collection with 52 features and 93 fields
## Geometry type: MULTIPOLYGON
## Dimension:
                  XY
## Bounding box: xmin: -179 ymin: 17.91377 xmax: -65.22157 ymax: 71.35256
## Geodetic CRS: WGS 84
states <- states[!(states$ST %in% c("PR", "AK", "HI")), ]</pre>
binge <- binge[!(binge$stname %in% c("Puerto Rico ", "Alaska",</pre>
    "Hawaii")), ]
states <- st_transform(states, 6580)</pre>
states_prevalence <- merge(states, binge[, c("stname", "percent")],</pre>
    by.x = "Name", by.y = "stname")
map <- ggplot() + geom_sf(data = states_prevalence, aes(fill = binge$percent)) +</pre>
    scale_fill_distiller(palette = "PuBuGn", trans = "reverse") +
    labs(title = "Binge Drinking Prevalence \n (Prevalence of Binge Drinking Among Adults in the Past 3
        fill = "Prevalence Rate (%)") + theme(plot.title = element_text(hjust = 0.5))
print(map)
```


Binge Drinking Intensity

Looking at state means and quartiles of 'most drinks consumed on a single occasion in the past 30 days' among those who engaged in binge drinking in the past 30 days

Creating a map to display the state means for binge drinking intensity

Binge Drinking Intensity Max Number of Drinks on a Single Occasion Among Binge Drinkers)

Binge Drinking Frequency

Calculating state means for binge drinking frequency among those who engage in binge drinking

```
# Creating a subset of the data, which only includes those
# who have engaged in binge drinking in the past 30 days
```

Creating a map displaying binge drinking frequency

Binge Drinking Frequency
1ean Number of Binge Drinking Occasions Among Binge Drinkers)

Depressive Disorders and Mental/Physical Health Condition vs Binge Drinking

Constructing a Logistic Regression Model to Predict Whether a Survey Respondent is a Binge Drinker Based on Their Health Condition

Preparing the Data for Logistic Regression

 $\begin{tabular}{l} \textbf{Logistic Regression Model: Binge Drinker} \sim \textbf{Depressive Disorder} + \textbf{Mental Health} + \textbf{Physical Health} + \textbf{General Health} \\ \end{tabular}$

```
model <- glm(x_rfbing5 ~ addepev2 + menthlth + physhlth + genhlth,
   family = binomial(link = "logit"), data = health_prev)
summary(model)
##
## Call:
## glm(formula = x_rfbing5 ~ addepev2 + menthlth + physhlth + genhlth,
      family = binomial(link = "logit"), data = health_prev)
##
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.5511005 0.0124565 -124.52 <2e-16 ***
## addepev21 0.0213137 0.0132365
                                    1.61
                                            0.107
## menthlth
              0.0259187 0.0006286
                                   41.23
                                           <2e-16 ***
## physhlth -0.0222096 0.0007225 -30.74
                                           <2e-16 ***
             ## genhlth
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 315952 on 396886 degrees of freedom
## Residual deviance: 312393 on 396882 degrees of freedom
## AIC: 312403
## Number of Fisher Scoring iterations: 5
# Displaying results of logistic regression as a table
tab_model(model, dv.labels = "Binge Drinker (No = 0, Yes = 1)",
   pred.labels = c("(Intercept)", "Depressive Disorder", "Mental Health",
       "Physical Health", "General Health"), show.est = TRUE,
   show.stat = TRUE)
```

Profiled confidence intervals may take longer time to compute.

Use 'ci_method="wald"' for faster computation of CIs.

Stacked Bar Plot Showing Binge Drinking vs. Deppressive Disorder

Binge Drinking vs. Depressive Disorder

Binge Drinking vs. Poor Mental and Physical Health

Binge Drinking vs. Mental and Physical Health

Binge Drinking vs. General Health

```
dat3 <- aggregate(genhlth ~ x_rfbing5, health_prev, median)
ggplot(data = dat3, aes(x = x_rfbing5, y = genhlth, fill = x_rfbing5)) +
    geom_bar(stat = "identity", width = 0.5) + scale_x_discrete(labels = c("No",
    "Yes")) + scale_fill_manual(values = c("#a7d4bf", "#3a6953"),
    labels = c("No", "Yes")) + labs(title = "Binge Drinking vs. General Health",
    fill = "Binge Drinker", x = "Binge Drinker", y = "Median General Health Rating (1-5)") +</pre>
```

```
geom_text(aes(label = round(genhlth, 2)), hjust = 0.5, vjust = 4,
size = 4, color = "white") + theme(plot.title = element_text(hjust = 0.5))
```


