Chapter 8

Further Applications of Integrals

8.1 Arc Length

Theorem 1 (Arc Length). If $\frac{df}{dx}$ is continuous on [a,b], then the length of the curve y=f(x) where $a \leq x \leq b$ is

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{(\Delta x)^2 + (\Delta f)^2} = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + \left(\frac{\Delta f}{\Delta x}\right)^2} \, \Delta x = \int_a^b \sqrt{1 + \left(\frac{df}{dx}\right)^2} \, dx$$

Problem 2. Prove that the circumference of a circle with radius r is $C = 2\pi r$.

Problem 3. Find the length of the arc on the curve $y^2 = x^3$ between the points (1,1) and (4,8).

Problem 4. Find the length of the arc of the parabola $y^2 = x$ from (0,0) to (1,1).

Theorem 5 (Arc Length Function). If $\frac{df}{dx}$ is continuous, then the **arc length function** with initial point (a, f(a)) for the curve y = f(x) is

$$s(x) = \int_a^x \sqrt{1 + \left(f'(t)\right)^2} \, dt$$

Problem 6. Find the arc length function for the curve $y = x^2 - \frac{1}{8} \ln(x)$ taking (1,1) as the initial point.

8.2 Area of a Surface of Revolution

Theorem 7 (Surface Area). Let f be a positive function with continuous derivative. Then the area of the surface obtained by rotating the curve y = f(x) from $a \le x \le b$ about the x-axis is

$$SA = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^2} dx$$

Problem 8. Prove that the surface area of a sphere with radius r is given by $SA = 4\pi r^2$

Problem 9. Find the area of the surface generated by rotating the arc of the parabola $y = x^2$ from (1,1) to (2,4) about the y-axis.

Problem 10. Find the area of the surface generated by rotating $y = e^x$ from $0 \le x \le 1$ about the x-axis.

Problem 11 (Gabriel's Horn). Show that the solid obtained by rotating the region bounded by the curve $y = \frac{1}{x}$ and lines y = 0, x = 1 about the x-axis has infinite volume and finite surface area.

Suggested Homework: Section 8.2 numbers 5, 6, 7, 9, 13, 14, 16