19 日本国特許庁(JP)

①特許出願公開

四公開特許公報(A)

昭64-3067

@Int_Cl.4

• 1

證別記号

庁内整理番号

每公開 昭和64年(1989)1月6日

C 04 B 35/16 B 01 J 35/04 A-7412-4G P-7158-4G

審査請求 未請求 発明の数 2 (全12頁)

愛知県名古屋市瑞穂区竹田町 3 丁目 9 番地 日本碍子北家

会発明の名称

砂発 明 者

コージエライトハニカム構造体及びその製造方法

到特 願 昭62-283127

登出 願 昭62(1987)11月11日

優先権主張 @昭62(1987)2月12日 9日本(JP) 19特願 昭62-28364

族アパート 32号

節

②発明者 浜中 俊行 三重県鈴鹿市南若松町429-50番地

⑫発 明 者 浜 口 邦 和 愛知県名古屋市瑞穂区竹田町2丁目15番地 日本碍子南家

族アパート408号

②発明者 茂見 鼓一 愛知県岡崎市本宿町字上トコサフ1番110

①出 願 人 日本码子株式会社 愛知県名古屋市瑞穂区須田町2番56号

②代理人 弁理士 杉村 暁秀 外1名

田

原

明 紐 香

1. 発明の名称 コージェライトハニカム構造体 及びその製造方法

2. 特許請求の範囲

- 1. 主成分の化学組成が 510 x 42~56 度 量 % 、 A1 x 0 x 30~45 重 量 % 、 MgO 12~16 重 量 % で 、 結晶相の主成分がコージェライトから成るハニカム構造体で、気孔率が30%を超え42%以下であって、ハニカム構造の流路方向の40~800 での間の熱膨脹係数が 0.3×10⁻⁴/で以下、流路に垂直な方向の40~800 での間の熱膨脹係数が 0.5×10⁻⁴/で以下であることを特徴とする低膨脹コージェライトハニカム構造体。
- 2. ハニカム構造の流路方向の40~800 ℃の間の熱膨脹係数が 0.2×10・/ ℃以下である特許請求の範囲第1項記載の低膨脹コージェライトハニカム構造体。
- 3. コージェライト結晶のC軸晶出方向が同方向に並んだ最大径が20μm 以上のコージェラ

イト集合体 (ドメイン) を有する特許請求の 範囲第1項記載の低膨脹コージェライトハニ カム構造体。

- 4. コージェライト結晶の C 軸方向の平均長さが 1~5 μ m で、80%以上のコージェライト結晶の C 軸/A 軸長さ比(アスペクト比)が 1.5 以上である特許請求の範囲第1項記載の低膨脹コージェライトハニカム構造体。
- 5. マイクロクラックがドメイン構造内コージェライト結晶の C 軸方向にそって進展している特許請求の範囲第1項記載の低膨脹コージェライトハニカム構造体。
- 6. ハニカム壁面(ハニカム押出方向平行面) のコージェライト結晶 I 比

 $1 = \frac{1(110)}{1(110) + 1(002)}$ が0.78以上である特

許請求の範囲第1項記載の低膨脹コージェライトハニカム構造体。

7. 主成分の化学組成が SiO: 42~56単量%、Al:O: 30~45重量%、MgO 12~16重量%とな

特開昭64-3067(2)

るように平均粒子径 5~100 μ のタルク、 平均粒子径 2 μ 以下のアルミナ、平均粒子 径 15 μ 以下の高純度非晶質シリカ及び他の コージェライト化原料を調合し、この調合物 に可塑化列及び有機結合剤を加えて混合、混 はして可塑化した変形可能なバッチとし、 の可塑化したパッチを押出し成形法により成 形後にしてが成することを特徴とする低路 取コージェライトハニカム構造体の製造方法。

- 8. コージェライト化原料のうちNa ±0が0.12重 量%以下であるアルミナを用いる特許請求の 範囲第7項記載の低膨脹コージェライトハニ カム構造体の製造方法。
- 9. コージェライト化原料のうち平均粒子径2 μm 以下のカオリンを用いる特許請求の範囲 第7項記載の低膨脹コージェライトハニカム 構造体の製造方法。
- · 10. コージェライト化原料のうち平均粒子径7 ~50 μm のタルクを用いる特許額求の範囲第

7 項記取の低膨限コージェライトハニカム構造体の製造方法。

- 11. コージェライト化原料のうち高純度非品質シリカの添加量が 8 ~20重量%である特許請求の範囲第7項記載の低膨脹コージェライトハニカム構造体の製造方法。
- 3. 発明の詳細な説明

(産塾上の利用分野)

本発明はコージェライトハニカム協造触媒担体、 特に自動車排ガスの浄化用触媒担体に用いられる 低膨脹で耐熱衝撃性に優れたハニカム構造体及び その製造方法に関するものである。

(従来の技術及びその問題点)

近年工業技術の進歩に伴い、耐熱性、耐熱衝撃 性に優れた材料の要望が増加している。特に自動 車排ガス浄化装置に用いるセラミックハニカム放 媒担体においては、耐熱衝撃性は重要な特性の一 つであり、排気ガス中の未燃焼炭化水素、一酸化 炭素の放媒反応による急激な発熱やエンジン始動 停止時の急熱、急冷により温度変化を受け、ハニ

カム構造体内に生じる温度差により引き起こされる熱応力に耐える高い耐熱衝撃性が要求されており、特に今日触媒活性向上のためエンジン近傍へ の設置および高速運転に伴いその要求が強い。

この耐熱衝撃性は急熱急冷耐久温度差で表わされ、その耐久温度差はハニカムの特性のうち熱膨 服係数に逆比例することが判明しており、熱膨服 係数が小さいほどその耐久温度差が大きく、ハニカム構造体においては特に流路に垂直な方向(第 4 図 B 軸)の寄与率が大きいことが知られている。

従来、コージェライトセラミックスが低膨脹性を示すことは公知であり、例えば米国特許第3,885,977 号明細書(対応日本出願:特開昭50-75611 号公報)に開示されているように、25~1000での間での热膨脹係数が少なくとも一方向で11×10~7/でより小さい配向したコージェライトセラミックスが示されており、そこではこの配向性を起させる原因として板状粘土、積層粘土に起因する平面的配向を記述しており、その中でシリカ原料を用いた25~1000での間で0.56×10~4/で

の低膨脹性を示す組成が開示されている。

一方、ここでのシリカ使用系での特徴としてその実施例にも示されているように、A 軸熱膨脹係数0.62~0.78×10^{-*}/℃に比べてB 軸熱膨脹係数が1.01~1.08×10^{-*}/℃と大となり、実質的に耐熱衝撃性に寄与するB 軸熱膨脹係数の低膨脹化が達成できない問題点があった。

また、米国特許第3.950.175 号明細御(特開昭50-75612号公報)には、原料中のタルク又は粘土の一郎又は全量をパイロフェライト、カイアナイト、石英、溶融シリカのようなシリカ又はシリカアルミナ源原料によって置換することにより、少なくとも20%の10μm より大きな径の開孔を有するコージェライト系多孔質セラミックスが得られることが開示されている。

一方、この中でシリカ原料として溶融シリカを使用した10μm以上の大気孔を多数有する組成を開示しているが、低膨悪化に関する記載はなく、B軸熱膨脹係数の低膨脹化は達成できなかった。

さらに、特公昭57-28390号公報には、タルク平

特開昭64-3067(3)

均位子径を 5~150 μm にすることにより25~1000 C の間で 1.6×10 **/ C 以下の低膨脹が得られることが開示されているが、25~1000 C の間で 0.9×10 **/ C 未満の低膨脹を示す組成の記載は一切なく、 A 軸および B 軸方向の熱膨脹係数をさらに低膨脹化することはできなかった。

さらにまた、発明者の先願である特願昭61-183904には、気孔率30%以下の扱密化を目的として、5μ 以下の微粒タルクの使用をベースとした高純度非品質シリカと微粒アルミナの組合わせを示しているが、40~800 ての間で 0.3×10・・/ て未満の低膨脹は得られていない。本願発明は気孔率が30%を超え42%以下の範囲でA軸およびB軸方向の熱膨脹係数をさらに低膨脹化したものである。

本発明の目的は上述した不具合を解消して、従来のコージェライトハニカム構造体のA軸。B軸 無膨脹係数の低膨脹化を図ることにより、耐熱性、耐熱衝撃性に優れたコージェライトハニカム構造 体を得ることができるコージェライトハニカム構 遺体及びその製造方法を提供しようとするもので ある。

(問題点を解決するための手段)

本発明のコージェライトハニカム構造体は、主成分の化学組成が SiO: 42~56単量%、A1:0。30~45重量%、MgO 12~16重量%で、結晶相の主成分がコージェライトから成るハニカム構造体で、気孔率が30%を超え42%以下であって、ハニカム構造の流路方向(第4図A軸)の40~800 での間の熱膨脹係数が 0.3×10-4/で以下、波路に垂直な方向(第4図B軸)の40~800 での間の熱膨脹係数が 0.5×10-4/で以下であることを特徴とするものである。

また、本発明のコージェライトハニカム構造体の製造方法は、主成分の化学組成が \$i9 ** 42~56 重量%、A1 *0 ** 30~45 重量%、Ng 0 12~16 重量% となるように平均粒子径 5~100 μm のタルク、平均粒子径 2 μm 以下のアルミナ、平均粒子径15 μm 以下の高純度非晶質シリカ及び他のコージェライト化原料を調合し、この調合物に可塑化剤及

び有機結合剂を加えて混合、混練して可塑化した 変形可能なバッチとし、この可塑化したバッチを 押出し成形法により成形後乾燥し、次いでこの乾 燥物を1350~1440℃の温度にて焼成することを特 做とするものである。

(作用)

さらにまた、この敬精造の特徴としてマイクロクラックの量はタルク、カオリン、アルミナ系の

コージェライト材料と大きく異なることはないが、マイクロクラックがドメイン構造内コージェライト結晶の C 軸方向にそって進展しているものが多く、正の膨脹をするコージェライト結晶 A 軸、 B 軸方向の熱膨脹を吸収するためマイクロクラックの低膨脹化への寄与も大きくなることでハニカム構造体として低膨脹化するためと考えられる。

結晶相は実質的にコージェライト結晶から成る ことが好ましく、コージェライト結晶量として90 賃量%以上、他の含有結晶としてのムライト及び スピネル(サフィリンを含む)を含む。

触媒担体としての気孔率は、30%未満では触媒 担持条件が悪化し、42%を超えると強度が低下す

特開昭64-3067(4)

るとともに触媒担持後の耐熱衝撃性が悪化するため、30%を超え42%以下と限定した。

热膨脹係数は、A 軸方向が 0.3×10-*/でを超え、B 軸方向が 0.5×10-*/でを超えると、それぞれ耐熱衝撃性が悪化するため、A 軸方向 0.3×10-*/で以下および B 軸方向 0.5×10-*/で以下と限定した。なお、A 軸方向の熱膨脹係数は 0.2×10-*/で以下であるとさらに好ましい。

タルク粒度は、平均粒子径 5 μm 未満であると 熱膨脹係数が上昇し気孔率が低下するとともに、 平均粒子径が100 μm を超えると熱膨脹係数およ び気孔率共に上昇するため、平均粒子径 5 ~100 μm と限定した。なお、平均粒子径は7 ~50 μm であると好ましい。

シリカの粒度は、平均粒子径が15μ を超えるとB 舶方向の熱膨脹係数および気孔率が上昇するため平均粒子径15μ 以下と限定する。また、シリカの種類は、結晶質シリカであると熱膨脹係数が上昇し耐熱衝撃性が悪化するとともに、気孔率も上昇するため非晶質シリカを使用する。

表のNo.1~No.36の調合割合に従って調合し、メチルセルロース添加後、混錬し、押出し成形可能な坏土とした。

次いで、それぞれのバッチの坏土を公知の押出成形法により、リブ厚152 μm、1平方センチ当りのセル数62個で四角セル形状を有する直径93mm、高さ100mmの円筒形ハニカム構造体に成形した。ハニカム構造体を乾燥後、第2表に示す最高温度で焼成し、焼結体の特性として、A. B軸の熱膨脹係数、気孔率、コージェライト結晶量、耐熱衝挫性の評価を実施した。評価結果も第2表に示す。

また、上述した結果から、第1図にA軸方向の 熱膨脹係数と耐熱衝撃温度の関係、第2図にB軸 方向の熱膨脹係数と耐熱衝撃温度の関係を示すと ともに、第3図にM1~M7のバッチにおいての タルク平均粒子径とA.B軸方向の熱膨脹係数の 関係とを比較しあわせて従来公知の特公昭57-28390 号公報中第1図のタルク平均粒子径と熱膨 脈係数の関係を示す。

なお、第1裏中原料の平均粒子径は、タルク

アルミナ拉度は、平均粒子径が2μmを超えると熱膨脹係数が上昇するため、平均粒子径2μm 以下と限定した。なお、このアルミナとしては、 Na:0量0.12位量%以下のローソーダアルミナを使 用するとより低膨脹化が可能となるため好ましい。

カオリン粒度は、平均粒子径が 2 μ ■ 以下であり、タルクの平均粒子径の1/3 以下のものを使用するとコージェライト結晶の配向が促進され低影服化が進成できるため好ましい。

アルミナ原料として使用する水酸化アルミニウムは、平均粒子径が2μ ■ 以下であるとコージェライト結晶配向を促進し、低膨脹化に非常に効果があるため好ましい。

非晶質シリカの使用量は、8~20重量%である と低膨脹化に最も効果があるため好ましい。

(実施例)

以下、本発明を実施例と比較例につきさらに詳細に説明する。

実施例1

第1表に示す化学分析値及び粒度の原料を第2

(A), (B), (C) についてはJIS 標準篩による 乾式分離法により、またその他のものは X 線沈降 法によりマイクロメリティックス社のセディグラ フにより測定した。

狩開昭64-3067(5)

*3 結晶質シリカ (石炭) *2 非晶質溶融シリカ

*0 放ソーダアルミナ*1 ローソーダアルミナ

CoO + No.0	+ K 20	0.3	0.3	0.3	6.3	0.3	0.3	0.3	0.2	0.5	0.2	0.2	0.2	0.2	0.2	0.3 Karo	0.3 Kar0	0.12 Nar0	0.3 Nar0	0.12 Nar0	0.3	0.3	ŧ	ı	ı	1	1	
Fer03		6.0	6.0	8.0	0.0	6.0	0:1	0.9	9.0	0.4	0.5	0.7	0.4	0.4	0.4	1	1	i	1	ı	I	ı	1	1	1	1	l	
· 1102		ı	i	1	1	ı	ı		1.0	9.0	0.8	7.7	0.9	.0.8	9.8	1	ı	1	1	1	ı	1	l _	1	1	I	1	<u>'</u>
ngo Ogu	,	30.9	30.1	30.1	30.8	30.8	30.8	30.7	ı	١	ı	ı	1	١	ı	ł	l	١	 	1	1	l	1	1	1	ı	1	
A1:03		0.9	0.0	6.0	1.2	=	1.2	1.0	38.6	38.6	38.6	38.0	45.1	45.1	45.0	99.4	99.4	9.6	88.4	93.6	<u>28</u>	87.8	0.1	6.1	-5-	0.1	6.1	0.1
Si0,	2	61.2	61.3	61.4	61.0	61.1	60.9	61.2	45.5	45.5	45.3	45.4	53.1	53.1	53.1	1	1	ı	1	ı	'	ı	99.5	99.5	88.6	99.₹	93.6	99.3
100	1030	5.6	5.6	5.6	5.1	5.1	5.7	5.1	13.9	13.9	13.8	13.8	0.1	0.1	0.1	0.3	0.3	0.2	0.2	0.5	33.8	33.7	0.2	0.2	0.2	0.3	0.2	0.3
平均粒子径	(m #)	135	100	s	13.0	1.0	5.0	3.2	3.8	2.0	1.2	0.3	3.8	2.0	9.0	7.0	2.0	2.0	1.0	1:0	2.0	1.2	18.5	15.0	15.0	1.6	9.8	6.0
							···-				•					0	0	*	*	*			22 *	2 *	۳ *	*	ლ ₩	*
			(8)	Ω	<u>(a)</u>	(B)	(F)	9			Έ (Σ)	<u>a</u>	1		<u>(</u>)	₹ (¥)	(8)	(C)	<u>e</u>	(E)	14=11		₹ (₹)	(8)	<u> </u>	<u>e</u>	(E)	(F)
		7			•				i	7			品本カオリ			7 7 11					大型化7.1		= 2					
	Co. A1.0. Mr0 T10. Per0.	Ig. loss SiO ₂ Al ₂ O ₃ Mg0 TiO ₂ Fe ₇ O ₃	1中3対2子(登 1g. loss 510e AlzO ₃ NgO 710e FeeO ₃ (μm) 135 5.6 61.2 0.9 30.9 - 0.9	$\frac{1743712718}{(\mu m)} \frac{16.1038}{(\mu m)} \frac{510_s}{61.2} \frac{A1_s0_s}{0.9} \frac{A0_s}{30.9} \frac{110_s}{-0.9} \frac{Fer0_s}{0.9}$ $\frac{2}{2} (A) \frac{135}{100} \frac{5.6}{5.6} \frac{61.2}{61.3} \frac{0.9}{0.9} \frac{30.7}{30.7} \frac{-0.9}{-0.9}$	μεξημη (μm) 1g. loss SiO _e Al 10, a NgO TiO _e FerO _a ρ (A) 135 5.6 61.2 0.9 30.9 — 0.9 (B) 100 5.6 61.3 0.9 30.7 — 0.9 (C) 50 5.6 61.4 0.9 30.7 — 0.9	μμμμμ (μm) 1g. 1038 Si0e Alia0a Ng0 Ti0a Feature ρ (A) 135 5.6 61.2 0.9 30.9 — 0.9 (B) 100 5.6 61.3 0.9 30.7 — 0.9 (C) 50 5.6 61.4 0.9 30.7 — 0.9 (D) 13.0 5.7 61.0 1.2 30.8 — 0.9	μμμμ ξ ξ ξ Ig. 1038 Si0e Alia0a Ng0 Ti0a Feature Λ (A) 135 5.6 61.2 0.9 30.9 — 0.9 (B) 100 5.6 61.3 0.9 30.7 — 0.9 (C) 50 5.6 61.4 0.9 30.7 — 0.9 (D) 13.0 5.7 61.0 1.2 30.8 — 0.9 (E) 7.0 5.7 61.1 1.1 30.8 — 0.9	(μm) 1pt 3pt 3 + 16	μεξημήτηθη Ig. 1038 S10e A1 a0 a Ig0 Ti0a a Fee0a a (A) 135 5.6 61.2 0.9 30.9 — 0.9 (B) 100 5.6 61.3 0.9 30.7 — 0.9 (C) 50 5.6 61.4 0.9 30.7 — 0.9 (D) 13.0 5.7 61.0 1.2 30.8 — 0.9 (F) 5.0 5.7 61.1 1.1 30.8 — 0.9 (F) 5.0 5.7 61.1 1.1 30.8 — 0.9 (F) 5.0 5.7 61.2 1.2 30.8 — 0.9 (G) 3.2 5.7 61.2 1.0 30.7 — 0.9 (G) 3.2 5.7 61.2 1.0 0.9 0.9 0.9 0.9 (G) 7.0 5.7 61.2 1.0 0.9	IPESTÎZÊ Ig. loss S10e Alia0a Ng0 Ti0a Feature $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	$\mu \pm j \pm j \pm \bar{k} \pm \bar{k}$ Ig. 1038 S10e A1 no. $n_g o$ T10s Feno. $\mu \mu$	$\mu \neq j \uparrow \downarrow \neq \uparrow \downarrow \downarrow \downarrow \downarrow$	(μ m) μ b	$\mu_{\rm L} j j j \neq \bar{l} \bar{l} \bar{l}$ $I_{\rm L} i_{\rm L} j_{\rm L} \bar{l} \bar{l}$ $I_{\rm L} i_{\rm L$	$\mu j j j j \mp l \frac{1}{2}$ $l g \cdot l l l l l l l l l l l l l l l l l $	(F) $\frac{1795312748}{(\mu m)}$ $\frac{16. loss}{(\mu m)}$ $\frac{510e}{(\mu m)}$ $\frac{110e}{(\mu m)}$ $\frac{111e}{(\mu m)}$ 11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											

第 2 衷 の 1

		類	습 취	合 (wt?	6)		协志员		旅钻体の	件 性			1		
1/33	タルク	カオリン	仮抗カオ	アルミナ	水位化 781=94.	シリカ	英温度	A軸の熱温原数	B軸の熱級悪係数	宋八定	コージェライト	耐熱街遊 温度 ·	绿	*	
ia.	(平均粒子 径 μ m)	(平均粒子 径 μ =)	(平均位子 役 pa)	(平均粒子 径 μ =)	(平均粒子 径 μ m)	(平均粒子 径 μ ■)	(T)	(×10°*∕℃)	(×10-4/C)	(%)	(wt%)	(T)			
1	40.6 (135)	14.4 (3.8)	9.0 (3.8)	10.5 (2.0)	15.5 (2.0)	10.0(15.0)	1400	0.4	0.7	43	92	850	\$3-3-59	(タルク	粗)
2	40.5 (100)	14.4 (2.0)	9.0 (2.0)	10.5 (2.0)	15.5 (2.0)	10.0(15.0)	1400	0.3	0.5	41	92	950	1		1
3	40.6 (50)	14.4 (2.0)	9.0 (2.0)	10.5 (2.0)	15.5 (1.2)	10.0(15.0)	1400	0.2	0.4	37	93	1000		•	1
	40.6(13.0)	14.4 (2.0)	9.0 (2.0)	10.5 (2.0)	15.5 (1.2)	10.0(15.0)	1400	0.2	0.4	36	93	1050		免	咧
5	40.6 (7.0)	14.4 (2.0)	9.0 (2.0)	10.5 (2.0)	15.5 (1.2)	10.0(15.0)	1400	0.2	0.4	34	93	1000			
6	40.6 (5.0)	1	I .	1	1	10.0(15.0)	1400	0.3	0.5	34	92	950	[]		
7	40.6 (3.2)	14.4 (0.3)	9.0 (1.2)	10.5 (2.0)	15.5 (1.2)	10.0(15.0)	1400	0.5	0.6	31	92	900	会考 8	1 (92)	(数)
B	40.8(13.0)	15.0 (2.0)	11.2 (2.0)	12.4 (4.0)	12.6 (1.2)	8.0 (15.0)	1420	0.5	0.7	36	91	850	23	【アル	ミナ扣)
وا			1	1		8.0 (15.0)	1420	0.3	0.5	35	91	950	11		
10	1	1	1	1 -	. 1	B.O (15.0)		0.2	0.3	34	93	1050			
111		ı	1	1	1	8.0 (15.0)	1	0.2	0.3	33	92	1050	*	発	叨
12		1	1	١,	. 1	8.0 (15.0)		0.1	0.3	32	93	1100	11		
1 13	1	1	1		- 1	8.0 (15.0)		0.1	0.2	31	93	1100			
14) 12.4 (2.0)	• l		1	0.1	0.3	33	92	1050	<u> </u>		

新 2 表 の 2

JASK	四合剂合 (wt%)					独中門	焼精体の特性					·	
1	タルク	カオリン	仮焼カオ リン	アルミナ	水酸化 741.54	シリカ	が成成	A他の外心正体数	B他の控制证例数	氣孔率	7-5254) 44 11 13	可於四	健考
Ha.	(平均粒子 径 pm)	(平均粒子 後 p ■)	(平均粒子 径 p m)	(平均粒子 径 pa)	(平均分子 径 μ =)	(平均粒子 径 p m)	(٣)	(×10-•/℃)	(×10⁻⁴∕∕C)	(%)	(nt36)	温度 -。 (T.)	
15	39.0 (7.0)	15.0 (1.2)	7.5 (2.0)	12.0 (2.0)	14.5 (1.2)	12.0(18.5)	1430	0.2	0.6	43	90	900	参考例 (シリカ祖)
15	39.0 (7.0)	15.0 (1.2)	7.5 (2.0)	12.0 (2.0)	14.5 (1.2)	12.0(15.0)	1430	0.2	0.3	38	92	1050	本発明
17	39.0 (7.0)	15.0 (1.2)	7.5 (2.0)	12.0 (2.0)	14.5 (1.2)	12.0(15.0)	1430	0.5	0.8	43	89	850	参考例(結晶シリカ)
18	39.0 (7.0)	15.0 (1.2)	7.5 (2.0)	12.0 (2.0)	14.5 (1.2)	12.0 (9.1)	1430	0.2	0.3	37	92	1050	本発明
19	39.0 (7.0)	15.0 (1.2)	7.5 (2.0)	12.0 (2.0)	14.5 (1.2)	12.0 (9.8)	1430	0.4	0.6	43	88	900	参考例 (結晶シリカ)
20	39.0 (7.0)	15.0 (1.2)	7.5 (2.0)	12.0 (2.0)	14.5 (1.2)	12.0 (6.0)	1430	0.3	0.4	33	91	1000	1
21	39.0(13.0)	15.0 (1.2)	7.5 (2.0)	12.0 (2.0)	14.5 (1.2)	12.0 (9.1)	1430	0.2	0.3	.38	91	1050	
22	39.0 (50)	15.0 (1.2)	7.5 (2.0)	12.0 (2.0)	14.5 (1.2)	12.0 (9.1)	1430	0.2	0.4	39	91	- 1000	
23	41.0(13.0)	20.0 (1.2)	10.0 (2.0)	11.0 (2.0)	12.0 (1.2)	6.0 (9.1)	1420	0.3	0 . 5.	32	91	950	
24	41.0(13.0)	20.0 (1.2)	10.0 (0.8)	11.0 (2.0)	12.0 (1.2)	6.0 (9.1)	1420	0.3	0.4	31	90	1000	本 兔
25	39.5(13.0)	13.0 (1.2)	4.0 (2.0)	18.0 (2.0)	10.5 (1.2)	15.0 (9.1)	1420	0.2	0.5	39	90	950	
26	39.5(13.0)	13.0 (1.2)	4.0 (0.8)	18.0 (2.0)	10.5 (1.2)	15.0 (9.1)	1420	0.2	0.4	37	91	1000	
27	40.2(13.0)	6.B (1.2)	3.5 (2.0)	18.0 (2.0)	11.5 (1.2)	20.0 (9.1)	1420	0.3	0.5	40	91	900	J

第 2 表 の 3

KZĄ	以 合 割 合 (wL%)				40	焼 結 体 の 特 性									
No.	タルク (平均対子	カオリン(平均位子)	仮焼カオ リン (平均位子	アルミナ (平均粒子	水 酸 化 75ミニケム (平均粒子	シリカ	地成场 马温度	A軸の熱源に係数	日軸の熱品張係数	気孔率	フージェティト 結晶量	耐热链定 温度 。	G	*	
ML	後がの)	そり■)	後/#)	(十万里) 径pm)	(十つ列2十	(平均粒子 径 μ m)	(٣)	(×10⁻⁴∕°C)	(×10⁻⁴/℃)	(%)	(w1%)	(ፔ)			
28	40.2(13.0)	6.8 (1.2)	3.5 (0.8)	18.0(2.0)	11:.5 (1.2)	20.0 (9.1)	1420	0.2	0.5	39	92	950	1		
29	40.5(13.0)	12.5 (3.8)	8.5 (3.8)	14.0 (1.0)	14.0 (1.2)	10.5 (9.1)	1400	0.3	0.5	37	93	950			
30	40.5(13.0)	12.5 (2.0)	8.5 (2.0)	14.0 (1.0)	14.0 (1.2)	10.5 (9.1)	1400	0.2	0.3	35	92	1050			
31	40.5(13.0)	12.5 (1.2)	8.5 (0.8)	14.0 (1.0)	14.0 (1.2)	10.5 (9.1)	1400	0. 1	0.3	. 35	92	1050		_	
32	40.5(13.0)	12.5 (0.3)	8.5 (0.8)	14.0 (1.0)	14.0 (1.2)	10.5 (9.1)	1400	0.0	0.3	34	92	1100	*	発	叨
33	40.3(13.0)	18.7 (2.0)	10.0 (2.0)	21.0 (2.0)	_	10.0 (9.1)	1430	0.3	0.4	34	91	950	10		
34	40.3(13.0)	18.7 (1.2)	10.0 (2.0)	21.0 (1.0)	_	10.0 (9.1)	1430	0.2	0.4	32	92	1000			
35	40.3(13.0)	18.7 (1.2)	10.0 (0.8)	21.0 (1.0)	'-	10.0 (9.1)	1430	0.2	0.4	31	92	1000	}		
36	40.0(13.0)	25.0 (2.0)	21.0 (2.0)	14.0 (2.0)	_	_	1420	0.6	0.8	34	88	800	6	2 ;	64

- ローソーダアルミナ使用
- ●● 結晶質シリカ使用
- #! 水坂圧入法 全胡孔容積換算値(コージェライト真比重2.52とした)
- +2 X線回折 ZaO 内部摂単による定量値
- +3 恒気炉への投入 30分保持、変温への取出での耐久温度

特開昭64-3067(7)

第2 衷の結果から、平均粒子径 5 ~100 μ m の タルク、平均粒子径 2 μ m 以下のアルミナ、平均 粒子径15 μ m 以下の高純度非品質シリカを使用した試験版 2 ~ 6、 9 ~ 14、 16、 18 および 20 ~ 35 は、本発明で規定する A 軸および B 軸の熱膨脹係数を 満たすことがわかった。

また、タルク粒度が本発明外の試料他 1 、 7 、アルミナ粒度が本発明外の試料他 8 、シリカ粒度が本発明外の試料他 8 、シリカ粒度が本発明外の試料他15、結晶シリカを使用した試料他17、19は、それぞれ本発明で規定するA軸およびB軸の熱膨脹係数を満たさないこともわかった。

さらに、第1図、第2図より、耐熱街撃温度が 熱膨脹係数と逆比例し、その相関はB軸の熱膨脹 係数との間で顕著であることが、また第3図より、 本発明では公知例である特公昭57-28390と同粒度 のタルクを用いているが、高純度非晶質シリカと 微粒アルミナの併用により熱膨脹係数を極めて小 さくすることができることがわかった。

実施例2

第2 衷に示した試料のうち数種類の試料を実施例1と同様の方法で準値し、各試料の最小ドメイン最後、コージェライト結晶平均長さ、アスペクト比1.5 以上の結晶量比、ハニカム壁面(ハニカム押出方向平行面)上でのコージェライト結晶の1比(1(110) / (1(110) + (002))) をそれぞれ求めた。結果を第3 衷に示す。

第3表において、ほ小ドメイン長径は各試料のSEN写真より確認できるほ小ドメインの長径から求めた。また、コージェライト結晶平均長さおよびアスペクト比1.5以上の結晶量比は、同じく各試料のSEN写真より無作為にコージェライト結晶を選択し、各結晶の長さと幅を測定するとともにアスペクト比を計算して求めた。

第 3 喪

試	联 Na.	最小ドメイン 長径(μm)	コージェライト結晶 平均長さ(μα)	アスペクト比1.5 以上の結晶量比 (%)	ハニカム壁面 I 比 (1(110) (1(110)+1(002)
3 (本発明)	30	. 2.0	85	0.82
6 ((本発明)	20	1.0	80	0.78
8 ((参考例)	10 +3	0.7	60	0.74
12 ((本発明)	30	3.0	90	0.84
14 ((本発明)	30	2.5	85	0.86
17	(参考例)	10 +3	0.8	50	0.74
20	(本発明)	30	1.5	85	0.80
26	(本発明)	20	3.0	90	0.86
1	(本発明)	30	4.0	85	0.86
1	(本発明)	20	3.5	85	0.88
36	(参考例)	10 •3	0.8	30	0.72

^{•3} コージェライト自形結晶が不明確な部分が多く、確定できるドメインが少い。

特開昭64-3067(8)

第3表の結果から、本発明の一部のは料におい は、最小ドメイン長径は20μm以上、コージェラ イト結晶の平均長さは1~5μm、アスペクト比 1.5以上の結晶量比は80%以上の範囲にあること がわかり、これらの範囲は本発明における好まし い範囲であることがわかった。さらに、ハニカム 壁面の1比は0.78以上が好ましい範囲であること がわかった。

また、第5図(a)、向に試験Ma32(本発明)の50倍および2000倍のSEM 写真を、第6図(a)、向に試験Ma36(参考例)の50倍および2000倍のSEM 写真を示した。さらに、第7図には第5図(a)に示したSEM 写真の各領域を説明するための図を示した。

第 5 図(a)、(c)および第 7 図とから、本発明のは 料価32のものにあっては、C 触方向に伸びた平均 長さ3.5 μ m の長柱状のコージェライト自形結晶 が非常に発達し、長形20μ m 以上のドメインを形 成していることがわかる。また、アスペクト比1.5 以上の結晶が全体の85%を占めており、マイクロ クラックもドメイン内結晶 C 触方向にそったもの が多い。第5図(a)に示す50倍SEM 写真で拡大すれば、自形結晶及びドメインを確認することができる。また、大きなドメインは長径が100 μm 以上にもなり、SEM での確認が困難となる。

これに対し、第6図(a)、(c)に示される試料地36の参考例にあっては、ほとんどの部分でコージェライト自形結晶が認められず、確認できる自形結晶の平均長さも0.8 μ である。従って、ドメインの形成も比較的小さいもの(長径10μ 以上)がごく一部に認められるだけである。第6図(c)に示す2000倍写真は自形結晶が比較的発達した部分であるが、ここでもアスペクト比が1.5以上の結晶は少く、全体では30%しか認められない。また、マイクロクラックも存在するが、コージェライト結晶との関係は明確でない。

さらに、第8図(a)。(a)に試験Ma32(本発明)の 同一視野における常温及び800 でにおけるSEM 写 真を示す。第8図(a)。(b)の比較により、常温で開 いているマイクロクラックが800 でではほぼ完全 に閉じているのが確認でき、このことはマイクロ

クラックがコージェライトハニカムの低膨脹化に 寄与していることを示している。

さらにまた、第9図に試験M32(本発明)とM36(参考例)の1200でまでの熱膨脹ヒステリシス曲線を示す。第9図から、試験M32の最大ヒステリシス量(加熱時膨脹曲線と冷却時収縮曲線の同一温度での熱膨脹率差の扱大値)が0.086 %である。最大ヒステリシス量の大きさはマイクロクラックの量や低膨脹化への寄与の大きさを表わすと考えられ、M32とM36は微構造観察でマイクロクラックの効果はM32の方が大きいことを示している。

(発明の効果)

以上詳細に説明したところから明らかなように、本発明によれば、気孔率30%を超え42%以下であって、40~800 での間の熱彫服係数 A軸:0.3×10-*/で以下、B軸:0.5×10-*/で以下の耐熱性、耐熱衝撃性に使れたハニカム構造体が得ら

れる。従って本発明は、産業上極めて有用であり、 特に高い耐熱性、耐熱衝撃性が要求されている自 動車排ガス浄化装置のマニホールド化、高速運転 に伴うセラミック触媒担体に有用である。

4. 図面の簡単な説明

第1図はA軸の熱膨脹係数と耐熱街整温度との 関係を示すグラフ、

第2図はB軸の熱膨脹係数と耐熱街撃温度との 関係を示すグラフ、

第3図はタルク平均粒子径と熱膨脹係数との関係を示すグラフ、

第4図はハニカム構造体の一例を示す斜視図、

第5図(a), (b)は試験私32の結晶の構造を示す50 倍および2000倍のSEN 写真、

第 6 図(a)、(b) は試験M 36の結晶の構造を示す50 値および2000倍のSEN 写真、

第7図は第5図(a)に示したSEM 写真の各領域を 説明するための図、

第 8 図(i)。 (i)は試験№32の同一視野における常温および800 での結晶の構造を示すSEN 写真、

特開昭64-3067(9)

第9図は試験版32と版36の1200℃までの熱膨脹 ヒステリシス曲線を示す図である。

第 1 図

特許出願人 日本碍子株式会社 代理人弁理士 杉 村 晚 秀

第 2 図

0.8 0.7 0.6 0.5 0.3 0.2 0.1 850 900 950 1000 1050 1100 耐熱衝撃温度 (°C)

第3図

第4図

第7图

第9図

