Laboratorium 5. – Szymon Szkarłat

Zadanie 1. – Przygotowanie środowiska testowego

W moim środowisku testowym znajdują się 3 urządzenia z systemem Windows. Komputer stacjonarny (win10), laptop (win11), maszyna wirtualna (win10) oraz maszyna wirtualna z KaliLinux. Rysunek techniczny, który miej więcej odzwierciedla aktualne połączenie sieci. Do sporządzenia rysunków technicznych podczas wykonywania tego laboratorium użyłem popularnego programu od firmy CISCO, a mianowicie CISCO Packet Tracert.

Zadanie 2. – Pozyskiwanie informacji z sieci przy użyciu skanera Nmap

1. Sprawdzenie adresu IP oraz ustawień sieci (ifconfig && route in) mojej sieci.

```
-(kali⊕kali)-[~]
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.0.248 netmask 255.255.255.0 broadcast 192.168.0.255
        inet6 2a02:a317:c040:dd00:532e:aa4d:ce40:7c2f prefixlen 64 scopeid 0×0<global>
inet6 fe80::931f:6f53:3c6f:c60c prefixlen 64 scopeid 0×20<link>
        ether 00:0c:29:21:77:33 txqueuelen 1000 (Ethernet)
        RX packets 244 bytes 51423 (50.2 KiB)
        RX errors 0 dropped 1 overruns 0 frame 0
        TX packets 67 bytes 31261 (30.5 KiB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
eth1: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
        inet 10.255.255.100 netmask 255.255.255.0 broadcast 10.255.255.255
        inet6 fe80::85dc:7311:317f:3fac prefixlen 64 scopeid 0×20<link>
        ether 00:0c:29:21:77:3d txqueuelen 1000 (Ethernet)
        RX packets 0 bytes 0 (0.0 B)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 125 bytes 18840 (18.3 KiB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
        inet6 ::1 prefixlen 128 scopeid 0×10<host>
        loop txqueuelen 1000 (Local Loopback)
        RX packets 4 bytes 240 (240.0 B)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 4 bytes 240 (240.0 B)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
Kernel IP routing table
Destination
                                 Genmask
                                                  Flags Metric Ref
                                                                       Use Iface
                Gateway
                192.168.0.1
0.0.0.0
                                 0.0.0.0
                                                  UG
                                                        100 0
                                                                       0 eth0
                10.255.255.10
                                                         101
0.0.0.0
                                 0.0.0.0
                                                                Ø
                                                                         0 eth1
10.255.255.0
                                 255.255.255.0
                0.0.0.0
                                                         101
                                                                         0 eth1
192.168.0.0
                                 255.255.255.0 U
                0.0.0.0
                                                         100
                                                                         0 eth0
```

2. Skanowanie całej podsieci na 24 bitach, w której znajdują się maszyny oraz inne urządzenia.

```
-(kali®kali)-[~]
sudo nmap -sn 192.168.0.0/24
[sudo] password for kali:
Starting Nmap 7.94 ( https://nmap.org ) at 2024-01-13 04
:26 EST
Nmap scan report for 192.168.0.1
Host is up (0.0021s latency).
MAC Address: 38:43:7D:A5:3D:44 (Compal Broadband Network
s)
Nmap scan report for 192.168.0.2
Host is up (0.00049s latency).
MAC Address: 64:66:B3:64:F2:8E (TP-Link Technologies)
Nmap scan report for 192.168.0.19
Host is up (0.00035s latency).
MAC Address: B4:2E:99:15:FB:26 (Giga-byte Technology)
Nmap scan report for 192.168.0.45
Host is up (0.054s latency).
MAC Address: AA:9D:09:C3:7C:EB (Unknown)
Nmap scan report for 192.168.0.87
Host is up (0.0017s latency).
MAC Address: 6C:A6:04:75:29:03 (Arris Group)
Nmap scan report for 192.168.0.101
Host is up (0.00027s latency).
MAC Address: 00:0C:29:A2:9A:E8 (VMware)
Nmap scan report for 192.168.0.248
Host is up.
Nmap done: 256 IP addresses (7 hosts up) scanned in 2.66
 seconds
```

Po przeskanowaniu sieci pojawiły się informacje o adresach IP urządzeń, które pracują w mojej sieci. Adres 192.168.0.19 (komputer stacjonarny z win10), 192.168.0.101 (win10 na maszynie wirtualnej) – nastąpiła zmiana adresu IP, 192.168.0.45 (laptop z win11) – nastąpiła zmiana adresu IP. No na koniec 192.168.0.248, czyli adres KaliLinuxa. Nastąpiła zmiana dzierżawy niektórych adresów przez DHCP.

3. Sprawdzenie czy maszyna wirtualna Windows 10 jest poprawnie rozpoznawana przez narzędzie Nmap.

```
-(kali⊛kali)-[~]
 -$ <u>sudo</u> nmap -A 192.168.0.101
Starting Nmap 7.94 ( https://nmap.org ) at 2024-01-13 04:34 EST
Nmap scan report for 192.168.0.101
Host is up (0.00044s latency).
Not shown: 999 filtered tcp ports (no-response)
        STATE SERVICE VERSION
PORT
5357/tcp open http
                      Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)
|_http-server-header: Microsoft-HTTPAPI/2.0
_http-title: Service Unavailable
MAC Address: 00:0C:29:A2:9A:E8 (VMware)
Warning: OSScan results may be unreliable because we could not find at least 1 open and 1 closed port
Device type: general purpose
Running (JUST GUESSING): Microsoft Windows XP 2019 (89%)
OS CPE: cpe:/o:microsoft:windows_xp::sp3
Aggressive OS guesses: Microsoft Windows XP SP3 (89%), Microsoft Windows Server 2019 (85%)
No exact OS matches for host (test conditions non-ideal).
Network Distance: 1 hop
Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
TRACEROUTE
HOP RTT
            ADDRESS
   0.44 ms 192.168.0.101
OS and Service detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 26.49 seconds
```

Odpowiedź jest: tak. Mamy tutaj informację np. o tym ile skoków należało wykonać, aby dostać się do maszyny wirtualnej z Win10. Udało się odczytać również adres MAC oraz otwarte porty (tj. 5357/tcp).

Aktualizacja rysunku technicznego

Zadanie 3. – Analiza ruchu sieciowego przy wykorzystaniu narzędzia TCPdump

1. Na systemie KaliLinux polecenie tcpdump jest domyślnie zainstalowane. Zatem przechodzę do wykonania polecenia sudo tcpdump -i eth0 -v

```
tcpdump: listening on eth0, link-type EN10MB (Ethernet), snapshot length 262144 bytes 04:42:07.562282 IP (tos 0×0, ttl 1, id 61130, offset 0, flags [none], proto IGMP (2), length 32, options (RA)) 192.168.0.101 > 224.0.0.252: igmp v2 report 224.0.0.252 04:42:07.843291 IP (tos 0×0, ttl 64, id 54430, offset 0, flags [DF], proto UDP (17), length 70)
```

2. Wykonanie polecenia ping z systemu KaliLinux w kierunku bramy domyślnej i przefiltrowanie wykonanego pingu

```
(kali© kali)-[~]

sudo tcpdump -i eth0 -v host 192.168.0.1

tcpdump: listening on eth0, link-type EN10MB (Ethernet), snapshot length 262144 bytes

04:44:25.833235 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.0.116 tell compalhub.home, length 46

04:44:25.89339 IP (tos 0×0, ttl 64, id 26686, offset 0, flags [DF], proto UDP (17), length 72)

192.168.0.248.52215 > compalhub.home.domain: 59704+ PTR? 116.0.168.192.in-addr.arpa. (44)

04:44:25.893495 IP (tos 0×0, ttl 64, id 30180, offset 0, flags [DF], proto UDP (17), length 72)

compalhub.home.domain > 192.168.0.248.52215: 59704 NXDomain* 0/0/0 (44)

04:44:25.893698 IP (tos 0×0, ttl 64, id 353520, offset 0, flags [DF], proto UDP (17), length 70)

192.168.0.248.59708 > compalhub.home.domain: 27182+ PTR? 1.0.168.192.in-addr.arpa. (42)

04:44:25.896769 IP (tos 0×0, ttl 64, id 30181, offset 0, flags [DF], proto UDP (17), length 98)

compalhub.home.domain > 192.168.0.248.59708: 27182* 1/0/0 1.0.168.192.in-addr.arpa. PTR compalhub.home. (70)

04:44:25.992610 IP (tos 0×0, ttl 64, id 18346, offset 0, flags [DF], proto UDP (17), length 72)

192.168.0.248.36266 > compalhub.home.domain: 42149+ PTR? 248.0.168.192.in-addr.arpa. (44)

04:44:25.996501 IP (tos 0×0, ttl 64, id 30182, offset 0, flags [DF], proto UDP (17), length 72)

compalhub.home.domain > 192.168.0.248.36266: 42149 NXDomain* 0/0/0 (44)

04:44:26.832763 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.0.116 tell compalhub.home, length 46

04:44:27.833838 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.0.116 tell compalhub.home, length 46

04:44:29.071499 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.0.116 tell compalhub.home, length 46
```

Operacja przefiltrowania uzyskanych wyników zakończył się powodzeniem.

3. Zastosowanie filtrowania w programie tcpdump wskazując przy tym adres źródłowy i docelowy. Otwarcie przeglądarki i wyświetlenie jednej z witryn internatowych (tj. www.onet.pl)

Zastosowanie filtru przyniosło zamierzony efekt i udało się odnaleźć stronę www.onet.pl

4. Wykonanie filtrowania wskazując kolejno port 80 i 443

Port 443, wyświetlił nam się przykładowo Facebook.

```
(kali© kali)-[~]

$ sudo tcpdump -i eth0 -v dst port 443

tcpdump: listening on eth0, link-type EN10MB (Ethernet), snapshot length 262144 bytes

04:54:12.318505 IP6 (flowlabel 0×ec725, hlim 64, next-header TCP (6) payload length: 52) 2a02:a317:c040:dd00:3577:ee

8a:799e:242d.50124 > edge-star6-shv-01-waw1.facebook.com.https: Flags [P.], cksum 0×f0f2 (correct), seq 188199778:1

881997750, ack 2549014247, win 1024, length 32

04:54:12.318506 IP6 (flowlabel 0×c305e, hlim 64, next-header TCP (6) payload length: 52) 2a02:a317:c040:dd00:3577:ee

8a:799e:242d.50107 > edge-star6-shv-01-waw1.facebook.com.https: Flags [P.], cksum 0×f3d6 (correct), seq 322357272:32

2357304, ack 3472047446, win 1026, length 32

04:54:12.318506 IP6 (flowlabel 0×75459, hlim 64, next-header TCP (6) payload length: 52) 2a02:a317:c040:dd00:3577:ee

8a:799e:242d.50106 > edge-star6-shv-01-waw1.facebook.com.https: Flags [P.], cksum 0×bc0d (correct), seq 3688409402:3

688409434, ack 1416470482, win 1026, length 32

04:54:12.412807 IP6 (flowlabel 0×c725, hlim 64, next-header TCP (6) payload length: 20) 2a02:a317:c040:dd00:3577:ee

8a:799e:242d.50124 > edge-star6-shv-01-waw1.facebook.com.https: Flags [.], cksum 0×e3cb (correct), ack 29, win 1024, length 0

04:54:12.412808 IP6 (flowlabel 0×75459, hlim 64, next-header TCP (6) payload length: 20) 2a02:a317:c040:dd00:3577:ee

8a:799e:242d.50106 > edge-star6-shv-01-waw1.facebook.com.https: Flags [.], cksum 0×e3cb (correct), ack 29, win 1025, length 0

04:54:12.412808 IP6 (flowlabel 0×c305e, hlim 64, next-header TCP (6) payload length: 20) 2a02:a317:c040:dd00:3577:ee

8a:799e:242d.50106 > edge-star6-shv-01-waw1.facebook.com.https: Flags [.], cksum 0×e3cd (correct), ack 29, win 1025, length 0

04:54:12.412808 IP6 (flowlabel 0×c305e, hlim 64, next-header TCP (6) payload length: 20) 2a02:a317:c040:dd00:3577:ee

8a:799e:242d.50107 > edge-star6-shv-01-waw1.facebook.com.https: Flags [.], cksum 0×e4db (correct), ack 29, win 1026, length 0
```

Zadanie 4. – Analiza ruchu sieciowego przy wykorzystaniu programu Wireshark

- 1. Program Wireshark na systemie KaliLinux jest domyślnie zainstalowany
- 2. Otworzenie programu Wireshark i rozpoczęcie nasłuchiwania sieci (eth0)

3. Po uruchomieniu skanowania na Wireshark oraz wykonaniu polecenia sudo nmap -sS 192.168.1.101

Pierwsze polecenie jakie zobaczyłem:

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000000	ARRISGro_75:29:03	Giga-Byt_15:fb:26	ARP	60 Who has 192.168.0.19? Tell 192.168.0.87
	2 0.000000211	Giga-Byt_15:fb:26	ARRISGro_75:29:03	ARP	60 192.168.0.19 is at b4:2e:99:15:fb:26
	3 1.025134189	192.168.0.19	104.17.138.37	TCP	60 50241 → 443 [ACK] Seq=1 Ack=1 Win=1028 Len=1 [TCP segment of a reassemb
	4 1.048368397	104.17.138.37	192.168.0.19	TCP	66 443 → 50241 [ACK] Seq=1 Ack=2 Win=8 Len=0 SLE=1 SRE=2
	5 2.284261813	2a02:a317:c040:dd00	2a03:2880:f016:8:fa	TLSv1.2	103 Application Data
	6 2.305353365	2a03:2880:f016:8:fa	2a02:a317:c040:dd00	TCP	74 443 → 51310 [ACK] Seq=1 Ack=30 Win=1643 Len=0
	7 2.353515893	2a03:2880:f016:8:fa	2a02:a317:c040:dd00	TLSv1.2	99 Application Data
	8 2.408182311	2a02:a317:c040:dd00	2a03:2880:f016:8:fa	TCP	74 51310 → 443 [ACK] Seq=30 Ack=26 Win=1025 Len=0
	9 3.290255895	2a02:a317:c040:dd00	2a03:2880:f016:b:fa	TLSv1.2	106 Application Data
	10 3.290256119	2a02:a317:c040:dd00	2a03:2880:f016:b:fa	TLSv1.2	106 Application Data

Polecenia TCP, których podczas skanowania sieci generowana jest olbrzymia ich ilość.

No. Time	Source	Destination	Protocol	Length Info
460 3.94050110	5 192.168.0.248	192.168.0.101	TCP	58 51370 → 1494 [SYN] Seq=0
461 3.94053728	9 192.168.0.248	192.168.0.101	TCP	58 51370 → 7402 [SYN] Seq=0
462 3.94055563	9 192.168.0.248	192.168.0.101	TCP	58 51370 → 146 [SYN] Seq=0 \
463 3.94475708	5 192.168.0.248	192.168.0.101	TCP	58 51370 → 1107 [SYN] Seq=0
464 3.94740773	5 192.168.0.248	192.168.0.101	TCP	58 51370 → 3869 [SYN] Seq=0
465 4.02723506	4 192.168.0.248	192.168.0.101	TCP	58 51372 → 5877 [SYN] Seq=0
466 4.02727614	7 192.168.0.248	192.168.0.101	TCP	58 51372 → 1600 [SYN] Seq=0
467 4.03020563	9 192.168.0.248	192.168.0.101	TCP	58 51372 → 3052 [SYN] Seq=0
468 4.03492176	7 192.168.0.248	192.168.0.101	TCP	58 51372 → 416 [SYN] Seq=0 \
469 4.03856361	0 192.168.0.248	192.168.0.101	TCP	58 51372 → 3351 [SYN] Seq=0
470 4.04158700	3 192.168.0.248	192.168.0.101	TCP	58 51372 → 146 [SYN] Seq=0 \
471 4.04162872	3 192.168.0.248	192.168.0.101	TCP	58 51372 → 7402 [SYN] Seq=0
472 4.04164727	5 192.168.0.248	192.168.0.101	TCP	58 51372 → 1494 [SYN] Seq=0
473 4.04560688	1 192.168.0.248	192.168.0.101	TCP	58 51372 → 1107 [SYN] Seq=0
474 4.04833092	8 192.168.0.248	192.168.0.101	TCP	58 51372 → 3869 [SYN] Seq=0
475 4.12761457	6 192.168.0.248	192.168.0.101	TCP	58 51370 → 425 [SYN] Seq=0 \
476 4.12768861	7 192.168.0.248	192.168.0.101	TCP	58 51370 → 687 [SYN] Seq=0 \
477 4.13123506	9 192.168.0.248	192.168.0.101	TCP	58 51370 → 2010 [SYN] Seq=0
478 4.13525183	3 192.168.0.248	192.168.0.101	TCP	58 51370 → 8291 [SYN] Seq=0
479 4.13887003	0 192.168.0.248	192.168.0.101	TCP	58 51370 → 8181 [SYN] Seq=0
480 4.14183534	3 192.168.0.248	192.168.0.101	TCP	58 51370 → 7512 [SYN] Seq=0
481 4.14188277	0 192.168.0.248	192.168.0.101	TCP	58 51370 → 7443 [SYN] Seq=0
482 4.14190228	7 192.168.0.248	192.168.0.101	TCP	58 51370 → 1052 [SYN] Seq=0
483 4.14595270	0 192.168.0.248	192.168.0.101	TCP	58 51370 → 9071 [SYN] Seq=0
484 4.14961401	9 192.168.0.248	192.168.0.101	TCP	58 51370 → 21571 [SYN] Seq=
485 4.22804326	0 192.168.0.248	192.168.0.101	TCP	58 51372 → 687 [SYN] Seq=0 \
486 4.22808432	5 192.168.0.248	192.168.0.101	TCP	58 51372 → 425 [SYN] Seq=0 \
487 4.23211075	2 192.168.0.248	192.168.0.101	TCP	58 51372 → 2010 [SYN] Seq=0
488 4.23598642	4 192.168.0.248	192.168.0.101	TCP	58 51372 → 8291 [SYN] Seq=0
489 4.23956315	3 192.168.0.248	192.168.0.101	TCP	58 51372 → 8181 [SYN] Seq=0
490 4.24228619	2 192.168.0.248	192.168.0.101	TCP	58 51372 → 1052 [SYN] Seq=0
491 4.24232369	3 192.168.0.248	192.168.0.101	TCP	58 51372 → 7443 [SYN] Seq=0
492 4.24234209	4 192.168.0.248	192.168.0.101	TCP	58 51372 → 7512 [SYN] Seq=0
493 4.24626454	2 192.168.0.248	192.168.0.101	TCP	58 51372 → 9071 [SYN] Seq=0
494 4.25072137	5 192.168.0.248	192.168.0.101	TCP	58 51372 → 21571 [SYN] Seq=
495 4.32907919		192.168.0.101	TCP	58 51370 → 99 [SYN] Seq=0 W.
496 4.32911990	2 192.168.0.248	192.168.0.101	TCP	58 51370 → 5120 [SYN] Seq=0
497 4.33302415	1 192.168.0.248	192.168.0.101	TCP	58 51370 → 3880 [SYN] Seq=0
498 4.33604586	9 192.168.0.248	192.168.0.101	TCP	58 51370 → 7 [SYN] Seq=0 Wi

Łącznie udało się przechwycić blisko (1200 logów), na początku pojawiały się polecenia nie związane z protokołem TCP. Jak widać stroną pytającą, a więc źródłową był adres 192.168.0.248, czyli komputer z KaliLinux. Natomiast stroną odbierającą, komputer o adresie 192.168.0.101 (maszyna Vmware z win10)

•			
1232 8.668033801	192.168.0.248	192.168.0.101	TCP
1233 8.668050743	192.168.0.248	192.168.0.101	TCP
1234 8.668067391	192.168.0.248	192.168.0.101	TCP
1235 8.668085348	192.168.0.248	192.168.0.101	TCP
1236 8.668102765	192.168.0.248	192.168.0.101	TCP
1237 8.668119649	192.168.0.248	192.168.0.101	TCP
1238 8.668136175	192.168.0.248	192.168.0.101	TCP

Osoba, która monitoruje sieć byłaby w stanie zorientować się, że sieć jest właśnie skanowana, z łatwością odczytałaby adres IP nadawcy (osoba skanująca sieć). W konsekwencji nie stanowiłoby to większego problemu, aby zablokować osobę przeprowadzającą skan sieci w taki sposób.

Teraz wykonałem inny sposób skanowania sieci, przy pomocy polecenia: sudo nmap 192.168.1.103 -- data-length 32 - f - T5

Zapytań tych, po wykonaniu tego polecenia, jest znacznie więcej, ale są one podzielone, przez co automaty czy inne zautomatyzowane narzędzia nie byłyby w stanie zablokować skanowania sieci przeprowadzonego w ten sposób.

b b	. tell speeds.			
4620 4.771126330	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4621 4.771186950	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4622 4.771244993	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4623 4.771304310	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4624 4.771366197	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4625 4.771378762	192.168.0.248	192.168.0.101	TCP	42 39527 → 2107 [SYN] Seq=0 Win=1
4626 4.774795338	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4627 4.774813737	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4628 4.774886471	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4629 4.774898872	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4630 4.774959877	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4631 4.774972070	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4632 4.775032611	192.168.0.248	192.168.0.101	TCP	42 39527 → 13722 [SYN] Seq=0 Win=
4633 4.779587360	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4634 4.779609556	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4635 4.779729842	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4636 4.779742602	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4637 4.779842350	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4638 4.779876768	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4639 4.779984183	192.168.0.248	192.168.0.101	TCP	42 39527 → 26 [SYN] Seq=0 Win=102
4640 4.783131899	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4641 4.783150010	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4642 4.783219076	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4643 4.783231494	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4644 4.783291373	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4645 4.783303063	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4646 4.783364879	192.168.0.248	192.168.0.101	TCP	42 39527 → 1087 [SYN] Seq=0 Win=1
4647 4.786055778	192.168.0.19	92.204.189.63	TCP	60 49723 → 443 [ACK] Seq=1 Ack=1
4648 4.793373682	92.204.189.63	192.168.0.19	SSL	106 Continuation Data
4649 4.793373834	192.168.0.19	92.204.189.63	SSL	90 Continuation Data
4650 4.801498374	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4651 4.801585706	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4652 4.801674409	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4653 4.801743950	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4654 4.801806857	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4655 4.801868805	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
4656 4.801929656	192.168.0.248	192.168.0.101	TCP	42 39525 → 1717 [SYN] Seq=0 Win=1
46E7 4 00EE00222	100 160 0 040	100 160 0 101	TD://	42 Fragmented ID protocol (proto-

Łącznie podczas rej sesji udało się przechwycić blisko 14 tysięcy pakietów, były one generowane z równym odstępem czasu.

14036 /.0003014//	192.100.0.240	192.100.0.101	1774	42 Fragmented IP protocot (proto-
14039 7.000517106	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
14040 7.000529032	192.168.0.248	192.168.0.101	TCP	42 39527 → 6789 [SYN] Seq=0 Win=1
14041 7.003165652	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
14042 7.003182611	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
14043 7.003210024	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
14044 7.003222852	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
14045 7.003239320	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
14046 7.003251369	192.168.0.248	192.168.0.101	IPv4	42 Fragmented IP protocol (proto=
14047 7.003267562	192.168.0.248	192.168.0.101	TCP	42 39527 → 3517 [SYN] Seq=0 Win=1

Zadanie 5 - Analiza pliku zawierającego dane pakietów z zainfekowanego komputera

1. Pobranie z platformy UPEL pliku z ruchem sieciowym

Wczytanie go do programu Wireshark.

Plik zawiera zrzut pakietów sieciowych z ostatnich 8 minut działania zainfekowanego komputera. W trakcie tego czasu został przeprowadzony dodatkowo atak sieciowy wykorzystujący podatność systemową.

Odpowiedzi na pytania:

a) Podaj adres IP komputera, który został poddany analizie.

Adres IP komputera, który został poddany analizie posiada adres 172.16.17.131, jestem w stanie go zidentyfikować za pomocą protokołu BROWSER.

44 32.818469	172.16.17.128	172.16.17.131	TCP
45 32.858300	172.16.17.131	172.16.17.255	BROWSER
46 22 040245	170 16 17 100	170 16 17 101	TCD

b) Podaj adres gatewaya tego komputera

GT, dla tego komputera wynosi 172.16.17.2

Jource	Destination	1 TOLOCOL L
172.16.17.131	172.16.17.2	DNS

c) Czy przedstawione zdarzenie działo się w ramach wirtualnych maszyn?

TAK, zarówno GT jak i komputer to maszyny wirtualne

d) Czy w trakcie działania zainfekowanego komputera jesteśmy w stanie określić, czy stacja była skanowana w sieci w poszukiwaniu otwartych portów?

Oczywiście, że stacja była skanowana w poszukiwaniu otwartych portów, świadczy o tym ilość wysłanych pakietów TCP. Pakietów tych jest ok 2 tysięcy, pakiety są wysyłane na różne porty.

```
172.16.17.131
                                               TCP
172.16.17.128
                                                            60 57325 → 1556
172.16.17.128
                                                            60 57325 → 255 [
                        172.16.17.131
                                                TCP
                                                            60 57325 → 109
172.16.17.128
                       172.16.17.131
                                               TCP
                                                            60\ 57325\ \rightarrow\ 2869
172.16.17.128
                       172.16.17.131
                                               TCP
                                               TCP
                                                            60\ 57325\ \rightarrow\ 1031
172.16.17.128
                        172.16.17.131
                                                            60 57325 → 2381
172.16.17.128
                       172.16.17.131
                                               TCP
172.16.17.128
                       172.16.17.131
                                               TCP
                                                            60 57325 → 10025
```

e) Jeśli tak, to przez kogo (IP sprawcy i jaką metodą), jeśli nie, to jakich informacji brakuje w badanym pliku?

IP sprawcy to 172.16.17.128, jest to adres źródłowy, z którego wykonywano zapytania TCP, w celu przeskanowania sieci.

Wydaje mi się, że sprawca mógł użyć polecenia sudo nmap -sS na adres IP komputera, który został poddany atakowi. Wynik w Wireshark jest bardzo podobny do tego, który zaprezentowałem wcześniej w tym raporcie.

f) W takcie działania zainfekowanego komputera został rozgłoszony ARP z adresem MAC (00:0c:29:ec:8a:14). Do kogo należy? Należy do naszego sprawcy, tj. 172.16.17.128

g) Analizowane logi zawierają informacje o pliku wykonywalny exe. Sprawdź, kiedy został pobrany, z którego adresu i jak nazywa się plik?

Plik bad_file.exe został pobrany w szóstej minucie z adresu 172.16.17.128

```
21/6 309.699201 1/2.16.17.128 172.16.17.131 SNB 93 NI Create AndX Response, FID: 0x00009, Error: SIAIUS_OBJECT_NAME_NOI_FOUND 1/2.16.17.131 172.16.17.131 SNB 155 Trans2 Response, QUERY_PATH_INFO, Query File Basic Info, Path: \bad_file.exe 12/19 362.251732 172.16.17.131 172.16.17.131 SNB 155 Trans2 Response, QUERY_PATH_INFO, Query File Standard Info, Path: \bad_file.exe 12/19 362.251732 172.16.17.131 172.16.17.131 SNB 137 Trans2 Response, QUERY_PATH_INFO, Query File Standard Info, Path: \bad_file.exe 12/19 362.2551732 172.16.17.131 172.16.17.131 SNB 137 Trans2 Response, QUERY_PATH_INFO, Query File Standard Info, Path: \bad_file.exe 12/19 362.2551651 172.16.17.131 172.16.17.131 SNB 128 Trans2 Response, QUERY_PATH_INFO, Query File Standard Info, Path: \bad_file.exe 12/19 362.2551651 172.16.17.131 172.16.17.131 SNB 93 Trans2 Response, QUERY_PS_INFO, Query FS Attribute Info 12/19 362.258165 172.16.17.131 172.16.17.131 SNB 93 Trans2 Response, QUERY_PS_INFO, Cerror: STATUS_NOT_FOUND 12/19 362.261573 172.16.17.128 172.16.17.131 SNB 93 Trans2 Response, DIERY_PS_INFO, CERROR STATUS_OBJECT_NAME_NOT_FOUND 12/19 362.265186 172.16.17.131 172.16.17.128 SNB 130 NT Create AndX Request, Path: \srvsvc 12/19 362.265865 172.16.17.131 172.16.17.128 SNB 168 Trans2 Request, GET_DFS_REFERRAL, File: \sl2.172.16.17.128\SQCL 21/19.363.772659 172.16.17.131 172.16.17.131 SNB 93 NT Create AndX Request, Fath: \srvsvc 12/19.363.772659 172.16.17.131 172.16.17.131 SNB 168 Trans2 Request, GET_DFS_REFERRAL, Error: STATUS_OBJECT_NAME_NOT_FOUND 12/19.363.726465 172.16.17.131 172.16.17.131 SNB 168 Trans2 Request, GET_DFS_REFERRAL, Error: STATUS_NOT_FOUND 12/19.363.726465 172.16.17.131 172.16.17.131 SNB 93 NT Create AndX Request, Path: \srvsvc 12/19.363.726465 172.16.17.131 172.16.17.131 SNB 93 NT Create AndX Request, Path: \srvsvc 12/19.363.726465 172.16.17.131 172.16.17.131 SNB 93 NT Create AndX Request, Path: \srvsvc 12/19.363.726465 172.16.17.131 172.16.17.131 SNB 93 NT Create AndX Request, Path: \srvsvc 12/19.363.726465 172.16.17.131 172.16.17.13
```

h) Przy użyciu opcji z Wireshark "Extract Object" wyciągnij odnaleziony plik, zapisz go w nowym folderze i przy pomocy narzędzia md5sum sprawdź jego sumę kontrolną.

Obliczenie sumy kontrolnej za pomocą narzędzia m5sum

```
(kali@ kali)-[~/Desktop]
$ md5sum bad_file.exe
0debc9d4f0d92253c9488f9a626ba59a bad_file.exe
```

i) Pozyskaną sumę kontrolną wklej na stronie https://www.virustotal.com w zakładce search. Przedstaw i opisz wynik analizy.

Jak widać na załączonym screenie plik ten jest bardzo niebezpieczny. Jest opisany w VirusTotal jako troian.

j) Który z portów był wykorzystany do przesyłania danych pochodzących z ataku? Jest to port 445.

```
Destination Address: 1/2.16.1/.128
  Transmission Control Protocol, Src Port: 49162, Dst Port: 445, Seq: 2592, Ack:
  NetBIOS Session Service
  SMB (Server Message Block Protocol)
k) Podaj nazwę komputera, który został zaatakowany.
                                                     54 49161 → 443 [ACK] Seq=2234 ACK=30
1/2.10.1/.131 82.145.210.19
172.16.17.131
                     172.16.17.2
                                          NBNS
                                                    110 Refresh NB WORKGROUP<00>
172.16.17.131
                     172.16.17.2
                                          NBNS
                                                    110 Refresh NB WORKGROUP<00>
172.16.17.131
                     172.16.17.2
                                          NBNS
                                                    110 Refresh NB WORKGROUP<00>
172.16.17.131
                     172.16.17.2
                                          NBNS
                                                    110 Refresh NB KOMPUTER<00>
                                                    110 Refresh NB KOMPUTER<00>
172.16.17.131
                     172.16.17.2
                                          NBNS
172.16.17.131
                     172.16.17.2
                                          NBNS
                                                    110 Refresh NB KOMPUTER<00>
                                          NBNS
                                                    110 Refresh NB KOMPUTER<20>
172.16.17.131
                     172.16.17.2
172.16.17.131
                     172.16.17.2
                                          NBNS
                                                    110 Refresh NB KOMPUTER<20>
172.16.17.131
                     172.16.17.2
                                          NBNS
                                                    110 Refresh NB KOMPUTER<20>
```

komputer ma bardzo oryginalną nazwę tj. KOMPUTER.

Zadanie 6. - NetworkMiner jako alternatywny program do analizy ruchu sieciowego

1. Zainstalowanie NetworkMiner i otwarcie pliku .pcap

Mowa tutaj o loginie i haśle do serwera 172.16.17.128.

Według mnie pliku nie da się w odnaleźć/ Uważam, że może być to spowodowane tym, że był pobierany w kawałkach. Użyłem zakładki "Keywords" do odnalezienia szczątkowych informacji o pliku bad_file.exe.

610064005F00660069006	.(.D+V\.b.a.df.i.l.ee.x.e	172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006	b.a.df.i.l.ee.x.e.	172.16.17.128 [172.16.17.128] (Other)	TCP 445
610064005F00660069006	.(.D+V\.b.a.df.i.l.ee.x.e	172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006	b.a.df.i.l.ee.x.e.	172.16.17.128 [172.16.17.128] (Other)	TCP 445
610064005F00660069006		172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006		172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006		172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006		172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006		172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006		172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006		172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006		172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006		172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006	.(.D+V\.b.a.df.i.l.ee.x.e	172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006	b.a.df.i.l.ee.x.e.	172.16.17.128 [172.16.17.128] (Other)	TCP 445
610064005F00660069006	B.DE\.b.a.df.i.l.ee.x.e.:.Z	172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006	*,D%\.b.a.df.i.l.ee.x.e	172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006	".D%\.b.a.df.i.l.ee.x.e	172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006		172,16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006	.(.D+V\.b.a.df.i.l.ee.x.e	172.16.17.131 [KOMPUTER] (Windows)	TCP 49162
610064005F00660069006	\$.Ab.a.df.i.l.ee.x.e.	172.16.17.128 [172.16.17.128] (Other)	TCP 445
610064005F00660069006	.(.D+V\.b.a.df.i.l.ee.x.e	172.16.17.131 [KOMPUTER] (Windows)	TCP 49162