University of Southern California

Avoiding Overruns in the Specification of Non-Functional Requirements

Barry Boehm, USC CSSE GSAW 2016 March 2, 2016

The Multiplicative Effect of NFRs on Cost

- Response-time NFR example
- The need for evidence-based reviews (EBRs)
- Avoiding NFR Architecture-Breakers
 - Build it now; tune it later
 - Agile methods: NFRs as deferrable stories
- The Exponential Effect of Architecture-Breakers on Cost
 - Confronting the Conspiracy of Optimism
- Steps for Performing Evidence-Based Decision Reviews
 - "An Evidence-Based Systems Engineering (SE) Data Item Description"

Problems Encountered without EBRs: Factor-of-3 Impact on Cost

© 2016 by USC CSSE.

Published by The Aerospace Corporation with permission.

Problems Avoidable with EBRs

- Attempt to validate 1-second response time
 - Commercial system benchmarking and architecture analysis: needs expensive custom solution
 - Prototype: 4-second response time OK 90% of the time
- Negotiate response time ranges
 - 2 seconds desirable
 - 4 seconds acceptable with some 2-second special cases
- Benchmark commercial system add-ons to validate their feasibility
- Present solution and feasibility evidence at anchor point milestone review
 - Result: Acceptable solution with minimal delay

- The Multiplicative Effect of NFRs on Cost
 - Response-time NFR example
 - The need for evidence-based reviews (EBRs)

Avoiding NFR Architecture-Breakers

- Build it now; tune it later
- Agile methods: NFRs as deferrable stories
- The Exponential Effect of Architecture-Breakers on Cost
 - Confronting the Conspiracy of Optimism
- Steps for Performing Evidence-Based Decision Reviews
 - "An Evidence-Based Systems Engineering (SE) Data Item Description"

University of Southern California

Off-Nominal Architecture-Breakers

© 2016 by USC CSSE.

Published by The Aerospace Corporation with permission.

CCPDS-R Results: No Late 80-20 Rework

- Architecture and evidence first
 - -Integration during the design phase
 - -Demonstration-based evaluation
- Risk Management
- **■** Configuration baseline change metrics:

- The Multiplicative Effect of NFRs on Cost
 - Response-time NFR example
 - The need for evidence-based reviews (EBRs)
- Avoiding NFR Architecture-Breakers
 - Build it now; tune it later
 - Agile methods: NFRs as deferrable stories

- Confronting the Conspiracy of Optimism
- Steps for Performing Evidence-Based Decision Reviews
 - "An Evidence-Based Systems Engineering (SE) Data Item Description"

Need for EBRs in Large Systems of Systems

 $\ensuremath{\text{@}}$ 2016 by USC CSSE. Published by The Aerospace Corporation with permission.

- The Multiplicative Effect of NFRs on Cost
 - Response-time NFR example
 - The need for evidence-based reviews (EBRs)
- Avoiding NFR Architecture-Breakers
 - Build it now; tune it later
 - Agile methods: NFRs as deferrable stories
- The Exponential Effect of Architecture-Breakers on Cost
 - Confronting the Conspiracy of Optimism
- Steps for Performing Evidence-Based Decision Reviews
 - "An Evidence-Based Systems Engineering (SE) Data Item Description"

Steps for Developing Feasibility Evidence

- A. Develop phase work-products/artifacts
 - ConOps, Rqts., Architecture, Plans, Budgets, Schedules
- B. Determine most critical feasibility assurance issues
 - Issues for which lack of feasibility evidence is program-critical
- C. Evaluate feasibility assessment options
 - Cost-effectiveness, risk reduction leverage/ROI, rework avoidance
 - Tool, data, scenario availability
- D. Select options, develop feasibility assessment plans
- E. Prepare FE assessment plans and earned value milestones
 - Try to relate earned value to risk-exposure avoided rather than budgeted cost

"Steps" denoted by letters rather than numbers to indicate that many are done concurrently

Steps for Developing Feasibility Evidence (continued)

- F. Begin monitoring progress with respect to plans
 - Also monitor project/technology/objectives changes and adapt plans
- G. Prepare evidence-generation enablers
 - Assessment criteria

University of Southern California

- Parametric models, parameter values, bases of estimate
- COTS assessment criteria and plans
- Benchmarking candidates, test cases
- Prototypes/simulations, evaluation plans, subjects, and scenarios
- Instrumentation, data analysis capabilities
- H. Perform pilot assessments; evaluate and iterate plans and enablers
- I. Assess readiness for Commitment Review
 - Shortfalls identified as risks and covered by risk mitigation plans
 - Proceed to Commitment Review if ready
- J. Hold Commitment Review when ready; adjust plans based on review outcomes

- The Multiplicative Effect of NFRs on Cost
 - Response-time NFR example
 - The need for evidence-based reviews (EBRs)
- Avoiding NFR Architecture-Breakers
 - Build it now; tune it later
 - Agile methods: NFRs as deferrable stories
- The Exponential Effect of Architecture-Breakers on Cost
 - Confronting the Conspiracy of Optimism
- Steps for Performing Evidence-Based Decision Reviews
 - "An Evidence-Based Systems Engineering (SE) Data Item Description"

Backup Charts

Types of Milestone Reviews

- Schedule-based reviews (contract-driven)
 - We'll hold the PDR on April 1 whether we have a design or not
 - High probability of proceeding into a Death March
- Event-based reviews (artifact-driven)
 - The design will be done by June 1, so we'll have the review then
 - Large "Death by PowerPoint and UML" event
 - Hard to avoid proceeding with many unresolved risks and interfaces
- Evidence-based commitment reviews (risk-driven)
 - Evidence provided in Feasibility Evidence Description (FED)
 - A first-class deliverable
 - Shortfalls in evidence are uncertainties and risks
 - Should be covered by risk mitigation plans
 - Stakeholders decide to commit based on risks of going forward

Nature of FEDs and Anchor Point Milestones

 <u>Evidence</u> provided by developer and validated by independent experts that:

If the system is built to the specified architecture, it will

- Satisfy the specified operational concept and requirements
 - Capability, interfaces, level of service, and evolution
- Be buildable within the budgets and schedules in the plan
- Generate a viable return on investment
- Generate satisfactory outcomes for all of the success-critical stakeholders
- Shortfalls in evidence are uncertainties and risks
 - Should be resolved or covered by risk management plans
- Assessed in increasing detail at major anchor point milestones
 - Serves as basis for stakeholders' commitment to proceed
 - Serves to synchronize and stabilize concurrently engineered elements

Can be used to strengthen current schedule- or event-based reviews

The Incremental Commitment Life Cycle Process: Overview

© 2016 by USC CSSE.

Published by The Aerospace Corporation with permission.

Center for Systems and Software Engineering

Large-Scale
Simulation and
Testbed FED
Preparation
Example

Center for Systems and Software Engineering

Overview of Example Review Process: DCR/MS-B

Review Planning Tasks

- Collect/distribute review products
- Determine readiness
- Identify stakeholders, expert reviewers
- Identify review leader and recorder
- Identify location/facilities
- Prepare/distribute agenda

Review Entrance Criteria

- Successful FCR/MS-A
- Required inputs available

Review Inputs

 DCR/MS-B Package: operational concept, prototypes, requirements, architecture, life cycle plans, feasibility evidence

Perform Pre-Review Technical Activities

- Experts, stakeholders review DRC/MS-B package, submit issues
- Developers prepare responses to issues

Conduct DCR/MS-B Review Meeting

- Discuss, resolve issues
- Identify action plans, risk mitigation plans

Review Exit Criteria

- Evidence of DCR/MS-B Package Feasibility validated
- Feasibility shortfalls identified as risks, covered by risk mitigation plans
- Stakeholder agreement on DCR/MS-B package content
- Stakeholder commitment to support Development phase
- All open issues have action plans
- Otherwise, review fails

Review Outputs

- · Action plans
- Risk mitigation plans

Post Review Tasks

- Publish review minutes
- Publish and track open action items
- Document lessons learned

© 2016 by USC CSSE.

Published by The Aerospace Corporation with permission.