CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

D. Patterson and J. Hennessy, Computer Organization and Design

- To analyze CMOS circuit:
 - Make table with inputs, transistors, and output(s)
 - For each row of table (setting of inputs), check whether transistor resistance is High,Low
 - For each row of table, check if output has clean path to power (1)
 ground (0)

NAND and NOR GATES

Circuit 1: NAND

Circuit 2: NOR

NAND and NOR GATES

Circuit 2: NOR

AND and OR GATES

AND-OR-INVERT (AOI)

OR-AND-INVERT (OAI)

TRANSMISSION GATE

Also known as Three-state Buffer

Z - high impedance state

THREE-STATE DRIVER (BUFFER)

XOR WITH TRANSMISSION GATES

y	TG1	TG2	z
0		- II	
1			

XOR WITH TRANSMISSION GATES

y	TG1	TG2	z
0		ΨĪ	
1		1	

Clicker Question

What is the state of TG1, TG2, and Z for:

S=1 X0=1 X1=0

e) none

What is the state of TG1, TG2, and Z for:

S=0

$$X0 = 1$$

$$X1=0$$

a) TG1= on
$$TG2=$$
on $Z=0$

e) none

MUX WITH TRANSMISSION GATES

s	TG1	TG2	z
0		I	I
1			

Process of Designing a Hardware

Design Implementation

```
VHDL
                                              Verilog
library IEEE;
                                             module LATCH_IF_ELSEIF (En1, En2, En3, A1, A2, A3,Y)
use IEEE.STD_Logic_1164, all;
                                                  input En1, En2, En3, A1, A2, A3;
                                                  output Y:
entity LATCH_IF_ELSEIF is
 port (En1, En2, En3, A1, A2, A3; in std_logic;
                                                 reg Y;
       Y: out std_logic);
end entity LATCH_IF_ELSEIF;
                                                  always @(En1 or En2 or En3 or A1 or A2 or A3)
                                                    if(En1 == 1)
architecture RTL of LATCH_IF_ELSEIF is
                                                      Y = A1;
begin
                                                   else if (En2 == 1)
  process (En1, En2, En3, A1, A2, A3)
                                                      Y = A2:
  begin
                                                   else if (En3 == 1)
     if (E n1 = '1') then
                                                      Y = A3;
      Y <= A1;
     elseif (En2 = '1') then
                                             end module
      Y <= A2;
     elseif (En3 = '1') then
       Y \leq A3:
     end if,
   end process;
end architecture RTL;
```

FPGA versus ASIC

Intel Pentium Chip

Another CPU

Fabrication

Die

Packaging

Packaging

Board design

Timing Analysis

Gate	Fan-	Propagation delays		
type	in	t_{pLH}	t_{pHL}	
		[ns]	[ns]	
AND	2	0.15 + 0.037L	0.16 + 0.017L	
AND	3	0.20 + 0.038L	0.18 + 0.018L	
OR	2	0.12 + 0.037L	0.20 + 0.019L	
OR	3	0.12 + 0.038L	0.34 + 0.022L	
NOT	1	0.02 + 0.038L	0.05 + 0.017L	

Clicker Question

Using the gate characteristics given below, determine equation for the propagation delay tpHL for this circuit

- a) 0.20+0.038
- b) 0.18+0.018
- c) 0.12+0.038
- d) 0.34+0.022
- e) Not clear

Gate	Fan-	Propagation delays		
type	in	t_{pLH}	t_{pHL}	
		[ns]	[ns]	
AND	2	0.15 + 0.037L	0.16 + 0.017L	
AND	3	0.20 + 0.038L	0.18 + 0.018L	
OR	2	0.12 + 0.037L	0.20 + 0.019L	
OR	3	0.12 + 0.038L	0.34 + 0.022L	
NOT	1	0.02 + 0.038L	0.05 + 0.017L	

NETWORK DELAY Example of path delay calculation:

$$O_1 \rightarrow N_1 \rightarrow A_2 \rightarrow O_2 \rightarrow N_2 \rightarrow A_9 \rightarrow O_5$$

NETWORK DELAY Example of path delay calculation:

$$O_{1} \rightarrow N_{1} \rightarrow A_{2} \rightarrow O_{2} \rightarrow N_{2} \rightarrow A_{9} \rightarrow O_{5}$$

$$T_{pLH}(x_{1}, z_{2}) = t_{pLH}(O_{1}) + t_{pHL}(N_{1}) + t_{pHL}(A_{2}) + t_{pHL}(O_{2}) + t_{pLH}(N_{2}) + t_{pLH}(A_{9}) + t_{pLH}(O_{5})$$

$$T_{pHL}(x_{1}, z_{2}) = t_{pHL}(O_{1}) + t_{pLH}(N_{1}) + t_{pLH}(A_{2}) + t_{pLH}(O_{2}) + t_{pHL}(N_{2}) + t_{pHL}(N_{2}) + t_{pHL}(O_{5})$$

Gate	Identifier	Output load	t_{pLH}	t_{pHL}
			[ns]	[ns]
OR3	O_1	4	0.27	0.43
NOT	N_1	3	0.13	0.10
AND2	A_2	1	0.19	0.18
OR2	O_2	3	0.23	0.26
NOT	N_2	1	0.06	0.07
AND3	A_9	1	0.24	0.20
OR3	O_5	L	0.12 + 0.038L	0.34 + 0.022L

$$T_{pLH}(x_1, z_2) = 0.27 + 0.10 + 0.18 + 0.26 + 0.06$$

 $+0.24 + 0.12 + 0.038L = 1.23 + 0.038L \text{ [ns]}$
 $T_{pHL}(x_1, z_2) = 0.43 + 0.13 + 0.19 + 0.23 + 0.07$
 $+0.20 + 0.34 + 0.022L = 1.59 + 0.022L \text{ [ns]}$