Course-B. Tech	Type- General Elective
Course Code- CSET-335	Course Name- Deep Leaning
Year- 2024	Semester- Even
Date- 19/02/2024	Batch- 2023-2024

CO-Mapping

11 5	CO1	CO2	CO3
Q1-Q3	√		

Objectives

CO1: To explain the fundamentals of deep learning, Convolution neural network.

CO2: To articulate different problem of classification, detection, segmentation, generation and understand existing solutions/ deep learning architectures.

CO3: To implement a solution for the given problem and improve it using various methods transfer learning, hyperparameter optimization.

Assignment-4

Goal: Build and train a Convolutional Neural Network (CNN) to classify handwritten digits from the MNIST dataset.

1. Set Up Your Environment:

Create a Python environment with the required libraries, including TensorFlow and Matplotlib. Set up a Jupyter Notebook or script for your implementation.

Install required libraries !pip install tensorflow matplotlib

2. Load and Preprocess the MNIST Dataset:

Load the MNIST dataset and preprocess the data.

import tensorflow as tf from tensorflow.keras import layers, models from tensorflow.keras.datasets import mnist from tensorflow.keras.utils import to_categorical

```
# Load MNIST data
```

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Preprocess the data

train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255 test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

3. Define and Implement the CNN Model: Design a CNN architecture for MNIST classification.

```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

# Add fully connected layers
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

# Display the model summary
model.summary()
```

4. Compile and Train the Model:

Compile the model with an appropriate loss function, optimizer, and metrics. Train the CNN model on the training set.

```
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
```

history = model.fit(train images, train labels, epochs=10, batch size=64, validation split=0.2)

5. Evaluate the Model:

Evaluate the trained model on the test set and report the classification accuracy.

```
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f'Test accuracy: {test_acc}')
```

6. Visualizations:

Visualize the training and validation loss and accuracy.

```
import matplotlib.pyplot as plt
```

```
# Plot training and validation accuracy
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```

- Q1. Replicate the above code and observe the accuracy.
- Q2. Experiment with different hyperparameters such as the number of filters, kernel size, or activation functions and observe the impact on the performance of the model.
- Q3. Print the model summary for each of the combinations used in Q2.