Assignment

SAiDL Summer of Code: Exploring applications of Spiking Neural Networks Mentors: Alish Dipani, Mehul Rastogi

1. Implement a Leaky Integrate and Fire model considering it equivalent to a RC circuit (Refer to section 4.1 of the book Spiking Neuron Models: Single Neurons, Populations, Plasticity) in Python using the libraries numpy and matplotlib. The LIF neuron is modeled using the following equation:

$$\tau \frac{du}{dt} = -u + IR$$

$$u(t^{(f)}) = \nu$$

$$\lim_{t \to t^{(f)}, t > t^{(f)}} = u_{rest}$$

$$u = u_{rest} \text{ if } t^{(f)} < t < t^{(f)} + t_{refrac}$$

Values: C= 5 uF, R= 2 KOhm, u_{rest} = 0 mV, t_{refrac} = 5 msec, ν = 1 mV (Hint: See Euler method)

a .Simulate the model for 100 msec with a suitable timestep. Plot the input current vs. time graph and the membrane potential (u) vs. time graph for when the input current (I) is:

I. I = 2uA for 10ms <= t <= 75ms; I = 0Amp otherwise II. I = 1.5uA for 0ms <= t <= 100ms III. I = $5\sin(\omega t)$ uA where $\omega = 45\frac{deg}{msec}$ IV. I = $-2\sin(\omega_1 t) + 3\sin(\omega_2 t) + \cos(\omega_3 t)$ uA where $\omega_1 = 45\frac{deg}{msec}$, $\omega_2 = 60\frac{deg}{msec}$, $\omega_3 = 30\frac{deg}{msec}$

b. Notice that for steady current, the neuron constantly fires with a frequency ν_{firing} . This is dependent on the input current (I). Show this dependency by plotting the ν_{firing} vs. I curve.

2. Create an Artificial Neural Net in numpy which computes the XOR/XNOR of two bit binary numbers depending on a third input. The following table shows the input and outputs.

INPUT TO ANN			
Bit 1	Bit 2	XNOR(0)/XOR(1)	Output
1	1	0	1
1	0	0	0
0	1	0	0
0	0	0	1
1	1	1	0
1	0	1	1
0	1	1	1
0	0	1	0