

Ghulam Ishaq Khan Institute of Engineering Sciences and Technology (GIKI) EE212-Electrical Network Analysis

Name of Group Members:

Malayika Mashroof Khan 2023296

Hamza Barg 2023224

Muhammad Aimal Khan 2023369

Faculty	Department	Area of Specialization
FEE	EE	Electrical Network Analysis

Title: Intelligent Robotic Servo Arm

Project Overview

This project aims to guide enthusiasts through the process of building a functional servo-controlled robotic arm using an Arduino microcontroller. The initiative focuses on hands-on learning, integrating mechanical design with electronic control systems to foster a comprehensive understanding of robotics.

Objectives

Educational Engagement: Introduce learners to the fundamentals of robotics, including servo motor control and Arduino programming.

Skill Development: Enhance practical skills in electronics, coding, and mechanical assembly.

Teleoperation: Mimicking movement remotely for hazardous environments.

Innovation Encouragement: Stimulate creativity by allowing customization and experimentation with the robotic arm's design and functionality.

Scope

- Servo-based actuation for shoulder, elbow, wrist, and base rotation.
- Control of the robotic arm using a microcontroller and PWM signals.
- User interface using potentiometers or buttons for manual control.
- Programmed sequences to perform repetitive or automated tasks.
- Basic end effector (gripper) control for object manipulation.
- Demonstration of potential applications in sensitive tasks such as:

Surgical assistance (simulating delicate motion control in minimally invasive operations).

Bomb diffusion simulations (remotely handling objects in hazardous zones to demonstrate safety-enhancing designs).

System Description

The robotic arm consists of four joints driven by servo motors, each responsible for specific motion: base rotation, shoulder lift, elbow movement, and wrist tilt or gripper control. An Arduino microcontroller will control these servos by sending precise PWM signals.

Hardware Components

• Servo Motors (4x SG90/MG996R)

Controlled via PWM signals for joint actuation.

• Arduino Uno

Generates PWM signals and runs the control logic.

• Power Supply (6V–9V external battery or adapter)

Required to power servo motors independently.

• Potentiometers (optional)

Used for manual control of servo angles.

• Push Buttons / Switches

Trigger pre-programmed sequences or reset positions.

• Jumper Wires and Breadboard

For prototyping and making electrical connections.

• Mechanical Arm Chassis (acrylic, wood, or aluminum)

Laser-cut or manually constructed links for the arm.

• Screws, Nuts, and Servo Horns

To assemble the structure securely.

Simulation Tools

1. Proteus

Simulate PWM output and servo behavior.

2. Arduino IDE

For writing and uploading control code to the microcontroller.

3. Fritzing / SolidWorks

To design circuit layouts or 3D model the arm structure.

Methodology

Design Stages:

1. Mechanical and Circuit Design:

- Design and cut arm links using acrylic/aluminum.
- Connect servo motors to joints.
- Interface servos with Arduino using PWM and external power.

2. Programming and Control:

- Write Embedded C++ code to control servo positions.
- Implement manual control via potentiometers.
- Develop automated sequences for predefined tasks.

3. Testing and Debugging:

- Test each joint individually.
- Debug servo positioning and stability under load.
- Calibrate angles and refine code logic.

Target Audience

- Students and hobbyists interested in robotics and electronics.
- Makers and DIY enthusiasts looking to expand their skill set.
- Medical Professionals
- Law Enforcement Agencies

Rescue Workers

Timeline

Week 1 – First Half:

Plan project, gather components, and begin assembling the robotic arm structure.

Week 1 – Second Half:

Finish mechanical assembly, mount servo motors, and complete wiring to Arduino.

Week 2 – First Half:

Write and test Arduino code for servo control and arm movement coordination.

Week 2 – Second Half:

Finalize testing, document the build, and prepare demo materials or presentation.

Summary

The servo robotic arm project combines mechanical design, servo motor control, and embedded systems programming to create a functional robotic manipulator. With four degrees of freedom and a gripper, the arm is capable of executing precise movements, controlled manually or through programmed sequences. The project not only emphasizes core engineering principles such as PWM-based actuation and real-time control but also highlights the arm's potential in critical fields like surgical assistance and bomb diffusion. Through simulation, testing, and hardware implementation, this project offers a practical understanding of robotics and its role in enhancing automation and safety.