Exercise 4. Show that the collection \mathscr{T}_c given in example 4 of §12 is a topology on the set X. Is the collection

$$\mathscr{T}_{\infty} = \{U \mid X - U \text{ is infinite or empty or all of } X\}$$

a topology on X?

Example 4. Let X be a set; let \mathscr{T}_c be the collection of all subsets U of X such that X - U is either countable or is all of X. Then \mathscr{T}_c is a topology on X.

Proof. Let us show that \mathscr{T}_c satisfies the definition of a topology.

- (a) $X X = \emptyset$, which is countable, so $X \in \mathcal{T}_c$.
- (b) $X \emptyset = X$, which is all of X, so $\emptyset \in \mathcal{T}_c$.
- (c) For all nonempty family $\{U_{\alpha}\}_{{\alpha}\in J}$ of elements of X, we have

$$X - \bigcup_{\alpha \in J} U_{\alpha} = \bigcap_{\alpha \in J} (X - U_{\alpha})$$

and the latter is countable as a subset of $X-U_{\alpha}$ for all $\alpha \in J$. Thus the union $\bigcup_{\alpha \in J} U_{\alpha}$ is also an element of X.

(d) For all finite set $\{U_1, \ldots, U_n\}$ of elements of X, we have

$$\bigcap_{k=1}^{n} (X - U_k) = X - \bigcup_{k=1}^{n} U_k$$

From the previous point, the union $\bigcup_{k=1}^n U_k$ of elements of X is an element U of X, and so X - U is either countable or equal to X. Thus the finite intersection $\bigcap_{k=1}^n U_k$ is an element of X.

The family $\mathscr{T}_{\infty} = \{ U \in X \mid X - U \text{ is infinite or empty or all of } X \}$ is not in general a topology on X: let $X = \mathbb{R}$, the family

$$F = \{(-\infty, -1/n) \cup (1/n, +\infty), n \in \mathbb{Z}_+\}$$

satisfies X-U is infinite for all $U \in F$ and is therefore a subset of \mathscr{T}_{∞} . However,

$$\bigcap_{U\in F}(X-U)=\bigcap_{k=1}^{\infty}\left[-\frac{1}{k},\frac{1}{k}\right]=\{0\}$$

which is not infinite, not empty, and not equal to \mathbb{R} , so $\bigcup_{U \in F} U$ is not an element of \mathscr{T}_{∞} .