CLAIMS

1. Method of processing a source image (I_1) generating at least two successive processed images (I_3 , I_4), in which the colour (C_3 ; C_4) of at least one pixel in each processed image (I_3 ; I_4) is different from the colour (C_1) of the pixel in the source image (I_1), and in which the modified colours of the pixel in each processed image (I_3 , I_4) offset each other in order to obtain a colour corresponding to the colour (C_1) of the pixel in the source image (I_1).

10

20

30

5

- 2. Method according to Claim 1, in which the luminance of said pixel in each processed image is equal to the luminance of the pixel in the source image.
- 3. Method according to either of Claims 1 and 2, characterized in that the image is formed by a first set of images (I₁, I₂), this first set generating a second set of processed images (I₃, I₄).
 - 4. Method according to Claim 3, characterized in that the colour (C_3) of at least one pixel in the first image (I_3) of the second set is different from the colour (C_1) of the pixel in the first image (I_1) of the first set and in which the modified colours of the pixel in each image (I_3, I_4) of the second set offset each other in order to obtain a colour corresponding to the resultant colour of the pixel in the images (I_1, I_2) of the first set.
- 5. Method according to one of Claims 1 to 4, in which the colour of a pixel is defined by the chrominance of said pixel.
 - 6. Method according to one of the preceding claims, comprising the steps of:
 - modification of the chrominance (C₁) in at least one pixel of the source image (I₁); and
 - calculation of the chrominance (C_3, C_4) of said pixel in the processed images (I_3, I_4) , in such a way that the average of the chrominances (C_3, C_4) of

said pixel in the processed images (l_3 , l_4) is equal to the average of the chrominances (C_1 ; C_1 , C_2) of said pixel in the image source or sources (l_1 ; l_1 , l_2).

- 5 7. Method according to Claim 6, in which the luminance of said pixel is unchanged.
- 8. Method of displaying images on the basis of at least one source image (I₁), in which a plurality of images (I₃, I₄) are displayed in succession and in which the displayed images are processed using the method of Claims 1 to 7.
 - 9. Method according to Claim 8, in which the luminance of the displayed images is equal to the luminance in the source image.
- 10. Method according to Claim 8 or 9, in which the colour of a pixel is defined by the chrominance of said pixel.

20

- 11. Method according to one of Claims 8 to 10, in which the display rate is greater than the frequency for colour fusion by the human eye.
- 12. Method according to Claim 11, in which the display rate is greater than 20 Hz.
- 13. Device for displaying images on the basis of at least one source image (I₁), in which a plurality of images (I₃, I₄) are displayed in succession and the display device comprising a processing circuit using the method of display according to one of Claims 8 to 12.