

LOG2810 STRUCTURES DISCRÈTES

TD 12: MODÉLISATION COMPUTATIONNELLE H2023

SOLUTIONNAIRE

Exercice 1.

Soit la grammaire G = (V, T, S, P) avec $V = \{go, Habs, !, S\}, T = \{go, Habs, !\}$. S est l'axiome et P l'ensemble des règles de production suivantes : $S \rightarrow S S \mid S \mid S \mid S \mid go \mid Habs \mid \varepsilon$

La phrase « **go** ! **Habs** ! ! **go** ! **Habs** ! **go** ! **»** est-elle reconnue par cette grammaire ? Dans l'affirmative, donnez l'arbre de dérivation (dérivation à gauche) correspondant.

Réponse:

Oui, la phrase « go! Habs!!go! Habs!go! » est reconnue par cette grammaire.

Il est plus facile de construire l'arbre de dérivation à partir de la chaîne de dérivation car la chaîne fournit une séquence d'étapes claire et directe pour construire l'arbre étape par étape.

• La chaîne de dérivation

$S \rightarrow S S$	
$S \rightarrow S ! S$	$(car S \rightarrow S!)$
$S \rightarrow go ! S$	$(car S \rightarrow go)$
$S \rightarrow go ! S ! S$	$(car S \rightarrow S ! S)$
$S \rightarrow go \mid SS \mid S$	$(car S \rightarrow S S)$
$S \rightarrow go ! S ! S ! S$	$(car S \rightarrow S!)$
$S \rightarrow go \mid Habs \mid S \mid S$	$(car\ S \rightarrow Habs)$
$S \rightarrow go \mid Habs \mid S \mid S \mid S$	$(car S \rightarrow S \mid S)$
$S \rightarrow go \mid Habs \mid SS \mid S \mid S$	$(car S \rightarrow S S)$
$S \rightarrow go ! Habs ! S ! S ! S ! S$	$(car S \rightarrow S!)$
$S \rightarrow go ! Habs ! ! S ! S ! S$	$(car\ S o arepsilon)$
$S \rightarrow go \mid Habs \mid \mid S \mid S \mid S \mid S$	$(car S \rightarrow S \mid S)$
$S \rightarrow go ! Habs ! ! go ! S ! S ! S$	$(car S \rightarrow go)$
$S \rightarrow go \mid Habs \mid \mid go \mid Habs \mid S \mid S$	$(car\ S \rightarrow Habs)$
$S \rightarrow go \mid Habs \mid \mid go \mid Habs \mid go \mid S$	$(car S \rightarrow go)$
$S \rightarrow go ! Habs ! ! go ! Habs ! go !$	$(car S \rightarrow \varepsilon)$

• L'arbre de dérivation

Exercice 2.

Pour chacun des langages suivants, construisez un automate fini déterministe reconnaissant le langage. Vous devez considérer l'ensemble des symboles terminaux $T = \{a, b\}$.

a) Le langage des mots contenant au moins trois fois la lettre a.

Réponse:

b) Le langage des mots formés des lettres **a** ou **b** dont la longueur *l* est congrue à 5 *modulo* 8.

Réponse:

c) Le langage des mots finissant par au moins deux lettres **a** consécutives et qui comportent un nombre impair de lettres **b**.

Réponse :

Exercice 3.

On considère l'alphabet $V = \{0, 1, 2\}$ et les langages L_A et L_B .

$$L_A = \{01, 101\} \text{ et } L_B = \{20000, 21110, 22220\}$$

a) Donnez tous les mots de V^* de longueur inférieure à 3.

Réponse:

```
Mot de longueur 0 : \varepsilon
Mots de longueur 1 : 0, 1, 2
Mots de longueur 2 : 00, 01, 02, 10, 11, 12, 20, 21, 22
```

L'ensemble de mots recherchés est donc : { ε, 0, 1, 2, 00, 01, 02, 10, 11, 12, 20, 21, 22}

b) Déterminez L_A^3

Réponse :

```
L_A^3 = \{(01+101)^3\}
= \{010101, 0110101, 1010101, 10110101, 0101101, 01101101, 10101101, 101101101\}
```

c) Déterminez et simplifiez L_{B}^{*}

Réponse:

```
L_{B}^{*} = \{\varepsilon, 20000, 21110, 22220, 2000020000, ...\}
= \{(20000 + 21110 + 22220)^*\} = \{[2(000 + 111 + 222)0]^*\} = \{[2(0^3 + 1^3 + 2^3)0]^*\}
```

Exercice 4.

Soit le langage $L = \{(ab + bbb)^*ba^*(a + b)\}$ construit sur l'alphabet $X = \{a, b\}$. Proposez une grammaire G = (V, T, S, P) qui engendre le langage L. Vous devez préciser V, T et P.

Réponse :

Note: Plusieurs solutions sont possibles. Celle qui est proposée ici n'est qu'une solution parmi tant d'autres.

- $\bullet \quad G = (V, T, S, P)$
- $V = \{a, b, S, A, B, C, D, E\}$
- $T = \{a, b\}$
- **P** est constitué des productions suivantes :

```
S \rightarrow aA \mid bB \mid bD

A \rightarrow bS

B \rightarrow bC

C \rightarrow bS

D \rightarrow aD \mid aE \mid bE \mid a \mid b

E \rightarrow \varepsilon
```

Exercice 5.

Soit la grammaire G = (V, T, S, P) où $V = \{a, b, S, A, B, C, D, E\}$, $T = \{a, b\}$. S est l'axiome et P l'ensemble des règles de production suivantes :

$$S \rightarrow ACaB$$
 $Ca \rightarrow aaC$
 $CB \rightarrow DB \mid E$
 $aD \rightarrow Da$
 $AD \rightarrow AC$
 $aE \rightarrow Ea$
 $AE \rightarrow \varepsilon$

Quel est le type de la grammaire *G*? Justifiez votre réponse.

Réponse :

- Elle n'est pas de **type 3**, car aucune production de P n'est pas de la forme $w_1 \to a|aH$ ou de la forme $S \to \varepsilon$, a étant un symbole terminal et H un symbole non terminal.
- Elle n'est pas de **type 2** du fait de la présence de la production $Ca \rightarrow aaC$ dont la partie gauche n'est pas symbole non terminal, mais un mot. Il en est de même pour :

$$CB \rightarrow DB|E$$

$$\alpha D \rightarrow D\alpha$$

$$AD \rightarrow AC$$

$$\alpha E \rightarrow E\alpha$$

$$AE \rightarrow \varepsilon$$

- Elle n'est pas de **type 1**, car la production $CB \rightarrow E$ est tel que l(CB) > l(E).
- La grammaire *G* est donc de **type 0**.