(Pages: 2) 033MAT011—FEB 2023—8595

THIRD SEMESTER B.A./B.Sc. DEGREE EXAMINATION, FEBRUARY 2023 (NEP-DSCC)

Mathematics

ORDINARY DIFFERENTIAL EQUATIONS AND REAL ANALYSIS—I

Time: Two Hours

Answer all questions.

- I. Answer any five of the following:
 - 1 Verify the exactness of the equation $(x^3 + 3xy^2) dx + (3x^2y + y^3) dy = 0$ and hence solve it.
 - 2 Solve: $p^2 7p + 12 = 0$ where $p = \frac{dy}{dx}$.
 - 3 Find the particular integral of $\frac{d^2y}{dx^2} + 9y = \cos 4x$.
 - 4 Define bounded sequence and give an example.
 - 5 Test the convergence of the series:

$$1 + \frac{1}{4^{2/3}} + \frac{1}{9^{2/3}} + \frac{1}{16^{2/3}} + \dots$$

6 Test the convergence of the series:

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

 $(5 \times 2 = 10 \text{ marks})$

Maximum: 60 Marks

- II. Answer any four of the following:
 - 7 Solve the equation $y = 2px + x^2p^4$.

8 Solve:
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{-3x}$$
.

9 Solve
$$(x^2D^2 - 3xD + 4)y = 2x^2$$
 where $D = \frac{d}{dx}$.

Turn over

- 10 Prove that the sequence $\left\{\frac{2n-7}{3n+2}\right\}$ is (i) monotonically increasing ; (ii) bounded ; and (iii) tends to limit $\frac{2}{3}$.
- 11 Discuss the convergence of the series $\sum \frac{3^n n!}{n^n}$.

 $(4 \times 5 = 20 \text{ marks})$

- III. Answer any three of the following:
 - 12 (a) Prove that the necessary and sufficient condition for the equation Mdx + Ndy = 0 to be exact is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.
 - (b) Find the orthogonal trajectories of the family of parabolas $y = ax^2$ where a is a parameter.
 - 13 (a) With usual notations, prove that $\frac{1}{f(D^2)}\sin ax = \frac{1}{f(-a^2)}\sin ax$ provided $f(-a^2) \neq 0$.
 - (b) Solve the simultaneous differential equation $\frac{dx}{dt} + 5x 2y = e^t$; $\frac{dy}{dt} x + 6y = e^{2t}$.
 - 14 (a) If the sequence $\{a_n\}$ converges to l then prove that $\lim_{n\to\infty}\frac{a_1+a_2+a_3+\ldots+a_n}{n}=l$.
 - (b) Prove that the sequence $\{x_n\}$ defined by $x_1 = 1$, $x_n = \sqrt{2 + x_{n-1}} \ \forall \ n \ge 2$ is convergent and converges to 2.
 - 15 (a) State and prove Cauchy's root test for a series of positive terms.
 - (b) Test the convergence of the series $\sum ne^{-n^2}$.

 $(3 \times 10 = 30 \text{ marks})$