Assignment 4

(Decision Tree and Ensemble Learning)

Ahmed Shehata Mahmoud

Sarah Hossam Elmowafy

Part 1: Numerical Questions:

1- Gini index

1 Guni Split for weather	n est		
weather: 10			
Sunny	Cloudy	Rany	······································
3 Points	3 points	4 points	
Yes: 2 no:1	4es:2 no:3	4s:1 no:3	
gini = 1- [pci)2			
$=1-\left(\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)^2=.44$	$=1-\left(\frac{2}{3}\right)^2-\left(\frac{1}{3}\right)$	$2 = .44 = 1 - (\frac{1}{u})^2 - (\frac{3}{4})^2$	-)2 = .375
_gini split = 0.44 * 3 + 0			•••••
2 Curic Split for Lengra hot 4 (241, 2 no)			
$gini = 1 - (1/2)^2 - (1/2)^2$	- o.S		
_ mild S(340,2 no)			
give = $1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2$			
- Cool = 1 (oys, 1 no)			
gini = 1-0-1=0			
-giri split = 0.5 x 4 +	0.48 x 5 + 0 =	o.u4	
3 Cuini Split for hun	uelitye		
- high 7(34es, 4no)			
$gini = 1 - (\frac{3}{7})^2 - (\frac{y}{7})^2$)2 = 0.487		
	- Caran		

Normal 3(244,1	no)			
$9 \text{mi} = 1 - \left(\frac{2}{3}\right)^2$	$\left(\frac{1}{3}\right)^2 = 0.44$			
gwi split = 0.4	89 x 7 + 0.44	x <u>3</u> = 0.478	,	
1 Split for word				
weak 4 (3 yes,				
- strong = 6(24e	s, 4ne)			
$g_{i} = 1 - (\frac{7}{6})$				
- gni split = 0	1. 375 x 4 + 0	.44 x 6 = 0	7.41 7	
Ø., T.I.				
O - wather	. 9.417	- This	mll be the	root note
@ - Cupratur	J) = 0.44			
(1) Junich	: 0.417	***************************************	***************************************	

		weather		
	6	>1	4	
(0	Sunrel	(cloudy)	(Rainy)	

A for sunnye				
S for sunnye	$f_{\mathbf{z}}$	f ₃	fy	label
S for sunnye fi	fr hot	f3 lugh	fy weale	lahd Yes
f1	fr hot mild	f3 high noimal	fy weall Stong	lahil Yis

Gini split for fr leuprature (3)		Indicin
- hat ecites, (no)		, alley
gini = $1 - (\frac{1}{2})^2 - (\frac{1}{2})^2 = 0.5$: 0.33	Mana
	۵. گخ	; James
- milal = 1(14es, 0 no)		
= 1-0-1=0	***************************************	
	***************************************	······
gini split = 0.5 x 2 + 0 = 0.33		Mount
**	***************************************	
- Give Split for Humichty (3)		******************
- high 2(1 yes, I no)		······································
gini = $1 - (\frac{1}{2})^2 - (\frac{1}{2})^2 = 0.5$	***************************************	
1 17	******************	***************************************
_ normal = 1(140,0 no)	***************************************	
gini = 1-0-1=0	••••••	
aii solt - a (x ? . a - a 22	***************************************	
- giù split = 0.5 x 2 + 0 = 0.33		
- Cin Split for wind (3)		
- rucale 1(140, 0 no)		
- strong 2 (140, 1no)		
gini (wale) = 1-0-1=0		
gini (strong) = 1_ (\frac{1}{2})^2 = 0.5		
gini split = 0.0.5 $\times \frac{2}{3} = 0.33$		

	io		Lt most as all	are gual
	4 : 0.33			
3 wind:	a. 33			
		weather		
			3/0	
Cloudy	<u> </u>	Sunny	Pai	ny
		leuprature hot	<u></u>	A second
•••••		40	Lynning	. <u></u>
	- Je	s) hun	widely.	<u></u>
		normal	high	
		(yes)	(no)	
		<u> </u>		
for cloudy				
Juliani	_		fy	label
for Crowney	f2	f3		
0	fr hot	+3 hyh	weall	no
f, cloudy	1	high	weall	no Yes
	hot	high		no Yes Yu
cloudy cloudy	hot mild	-high -high	weale strong	no Yes Yes
cloudy Cloudy Cloudy	hot mild hot	-high -high nomal	weall Strong weall	y _u
cloudy cloudy Cloudy Cloudy Lini split	hot mild hot for leupratus	high high nounal	weale Story weale	yu
cloudy cloudy Cloudy Cloudy Lini split	hot mild hot for leupratus	high high nounal	weale Story weale	yu
foody cloudy cloudy Cloudy Frini Split hat 2 gini =	hot mild hot for leapratus $(14, (n))$ $(-(\frac{1}{2})^2 - (\frac{1}{2})^2$	high high nounal	weale Story weale	yu
cloudy cloudy Cloudy Cloudy - hot 2 - gini =	hot mild hot for largerative $(14, (n))$ $1-(\frac{1}{2})^2-(\frac{1}{2})^2$ $1(14, on)$	high high normal 3	weak Strong weak	yu
cloudy cloudy Cloudy Cloudy Ant 2 gini = mild gini =	hot mild hot for leapratus (14, 1n) 1-(\frac{1}{2})^2 (\frac{1}{2})^2 1(14, 0n) 1-0-1=0	high nowal 3 = 0.5	weale Strong weale	yu
cloudy cloudy Cloudy Cloudy Sini split hat 2 gini = mild gini =	hot mild hot for largerative $(14, (n))$ $1-(\frac{1}{2})^2-(\frac{1}{2})^2$ $1(14, on)$	high nowal 3 = 0.5	weale Strong weale	yu

Crini split	for humiclety			
	(1y, 1n)			
	(Cly, on)			
	lit = 0.33			
	for wind o			
Cuni Indocis				
Conprature				
humidity				
wind				
	***************************************	weather		
	,			
Clark		Sunny	Pains	u
terpro	tue			
	hat			
will	hu	midity		
(413)	noval	high	***************************************	
	Yu	no)	
for Lange				
£1	f2	f3	<i>f.</i> ₄	label
naing	mild	high	Strag	no
Rainf	Cool	nounal	Story	no.
Mary	mild	high	weak	- Ju
пату	mild	high	Shong	no
				e de la
		······		
Construction of the Construction of Assessment		الانظال		

Cuini split for texp	
_ mild 3 (1 des, 2 no)	
- Cool ((oyer, Ina)	(
$-9ini - 1 - (\frac{1}{3})^3 - (\frac{2}{3})^2 = 0.44$	131-2
- gini = 0.44 x 3/4 + 0 = 0.33	Ez
7	
Cure Split for huncity	
- high 3 (tyes, 2no)	
_ normal ((oyes, Ino)	
$-gini = 1 - \left(\frac{1}{3}\right)^2 - \left(\frac{2}{3}\right)^2 = \frac{4}{9} = 0.44$	
Lange Control of the	
Prin Solit for word	
- weall 1 (oyes, Ino)	
5 - 4 2 (QVI) 3 NA)	***************************************
$-9iii = 1 - 0 - 1 = 0$ $-9iii = 1 - \left(\frac{0}{3}\right)^2 - \left(\frac{3}{3}\right)^2 = 0$	
$-9ini - 1 - (0)^2 - (3)^2 = 0$	4 <u>.1</u>
Gini Indices Leaprature = 0.33	· · · · · · · · · · · · · · · · · · ·
Comprature = 0.33	
Humidity = 0.33	
aund = 0 \(\) we will ch	se the least gine coalus
weather	11
chunny	Larry
Cloudye	1.
*	stg wind
	not and

CS Scanned with CamScanner

Information Gain
(1) Entropy (8) = -Pyes log Pyes - Pno log Pno = _ 5 log 5 _ 5 log 5 = 1
$= -\frac{5}{10} \log_2 \frac{5}{10} - \frac{5}{10} \log_2 \frac{5}{10} = 1$
De find which feature has the mareinal information gain
Crain (8, weather) = 1- 1-8 cloudy 1 Entropy (8 cloudy) -
18 sung 1 Entropy (5 sung) - 18 raig / rEntropy (S raig)
$=1-\frac{3}{10}\left(-\frac{2}{3}\log_{\frac{2}{3}}\frac{2}{3}-\frac{1}{3}\log_{\frac{2}{3}}\right)-\frac{3}{10}\left(-\frac{2}{3}\log_{\frac{2}{3}}\frac{2}{3}-\frac{1}{3}\log_{\frac{2}{3}}\right)$ $-\frac{4}{10}\left(-\frac{3}{4}\log_{\frac{2}{3}}\frac{3}{4}-\frac{1}{4}\log_{\frac{2}{3}}\frac{1}{4}\right)=$ $1+\left(275275-0.324\right)=1-\left(874\right)=0.126$
(2) Crain (S, Tenprature) - 1 - 1 Shat / Centrapy (Shat) -
10 Smild! Entropy (Smild) _ 10 Cool 1 Entropy (Scool)
$=1-\frac{4}{10}\left(\frac{-2}{4}\log_{\frac{1}{2}}\frac{2}{4}-\frac{2}{4}\log_{\frac{1}{2}}\frac{2}{4}\right)-\frac{5}{10}\left(\frac{-3}{5}\log_{\frac{1}{2}}\frac{3}{5}-\frac{2}{5}\log_{\frac{1}{2}}\frac{3}{5}\right)$
- 1 (-1 log +) = 14 - 0.485 - 0 = .115
3. Quin (S. Themeditys) = 1 - 7 (-4 log 4 - 3 log 3)
$-\frac{3}{10}\left(\frac{-2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3}\right) = 1.689.275 = .036$

Grain (S, wind) = $1 - \frac{6}{10} \left(\frac{-4}{6} \log_2 \frac{4}{6} - \frac{2}{6} \log_2 \frac{2}{6} \right)$
$-\frac{4}{10} \left(\frac{-3}{4} $
Its Now, The weather and wind goin have the same value so, we will go with the left most which is weather. So, owe nost node is weather.
Sunny Suny Raing 3(24, in) 3(24, in) a(14, 322)
→ let's start with Sunny , Entropy (Sunny) = Pres (log2 Pres) - Pro (log2 Pro) = -2 log2 2 1 log2 1 = 0.918
No Crain (Sound Temp) = 0.918 - Oshat rentropy (Shat) - Smith rentropy (Shat)
$= 0.918 - \frac{2}{3} \left(\frac{-1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} \right) - \frac{1}{3} \left(\frac{-1}{3} \log 1 \right)$ $= 0.918 - 0.667 - 0 = 0.251$
2. Crain (Suny, Hundity) = 0.918 - Sught Colopy (Shigh) 1 Snowel Entropy (Snowel)
$= 0.918 - \frac{2}{3} \left(-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} \right) - \frac{1}{3} \left(-\frac{1}{2} \log 1 \right)$ $= 0.918 - 0.667 - 0 = 0.251$

CS Scanned with CamScanner

3 Cain (Ssung, wind) = 0.918 - Small Entropy (Swale)
estal & tallala
$=0.918-\frac{2}{3}\left(-\frac{1}{2}\log 1\right)-\frac{2}{3}\left(-\frac{1}{2}\log \frac{1}{2}-\frac{1}{2}\log \frac{1}{2}\right)$
= 0.918 - 0.667 - 0 = 0.251
Entropy (cloudy) =- Pus log les - Pro log no
$\frac{-2}{3} \log_{1} \frac{2}{3} - \frac{1}{3} \log_{2} \frac{1}{3} = 0.918$
Grain (Schools, Lemp) = Shot Certrapy (Shot) - Smid Entrap (Smid) = 0.918 - \frac{2}{3} log (-\frac{1}{2} log \frac{1}{2} - \frac{1}{2} log \frac{1}{2}) - \frac{1}{3} (-1 log 1)
- agl = 2 log (-1 log 1 - 1 log 1) - 3 (-1 log 1)
= 0.918 - 0.667 - 0 = 0.251 W
Contrast (Rains) = Pus log, yes - Pno log, no = - 1 log, 1 - 3 log, 3 = 0.8112 for later
= - \frac{1}{4} \log_1 \frac{1}{4} - \frac{3}{4} \log_1 \frac{3}{4} = 0.8112 \for for Valle
2 11 111 2018 Shapel Entroy (Shape)
Crain (School > Humolity) = 0.918 - Shape (Shape) (Shape)
$= 0.918 - \frac{2}{3} \left(-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} \right) - \frac{1}{3} \left(-1 \log 1 \right)$
= 0.918 - 0.667 -0 = 0.251
Crain (Schol, wind) = 0.918 - bs water Entrapy (Sweak)
Josstma Colopy (Sstong)
$= 0.918 - \frac{2}{3} \left(-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} \right) - \frac{1}{3} \left(- \log \right)$ $= 0.918 - 0.667 - 0 = 0.25 $
Ja = 0.918 - 0.60 + -0 - 0.231
Crain (Sein, lemp) = 0.8112 - Ismid! Entropy (Smid) - Is coal Entropy
$(scol) = 0.8112 - \frac{3}{4} \left(-\frac{2}{3} log \frac{2}{3} - \frac{1}{3} log \frac{1}{3} \right) - \frac{1}{4} \left(-1 log 1 \right)$
_ 8112_0.6887_0 = 0.122

CS Scanned with CamScanner

Gain (Rainy, Humichty) = 0.812_[Shigh] Entropy (Shigh) 1 Snormal Entropy (Snormal)
$= 0.8122 - \frac{3}{4} \left(\frac{-2}{3} \log \frac{2}{3} - \frac{1}{3} \log \frac{1}{3} \right) - \frac{1}{4} \left(-1 \log 1 \right)$ $= 0.8122 - 0.6887 - 0 = 0.1225$
Gain (Slaw, wind) = 0.8112 - 18stmg Entrapy (Strap) - Sucak! Entrapy (Sweak)
$= 0.8112 - \frac{3}{4} \left(-\frac{3}{9} \log \frac{3}{9} \right) - \frac{1}{4} \left(-1 \log 1 \right)$ $= 0.8112 - 0 - 0 = \boxed{0.8112}$
→ for sunny and cloudy all splits have the same gain so we will go with the left most temperature for lawy wind has the higher gain
sunm clo wely Rany taproture taproture taproture taproture taproture ves no

for Sunny?	Anna I was a second
Entropy (That) = - Pues log (Pres) - Pro (log	Pris) read of
= -\frac{1}{2} log \frac{1}{2} - \frac{1}{2} log \frac{1}{2}	=1
- 0 1511 -	(http://www.t.st
Gair (Shot, Humichty = 1 - Shigh Entropy (.	Shigh)
=1-2(-1 log 1 1 log 1) =0	
2 2 3 2 3 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	
Gain (Shot, wind) = 1_loSweuld Entropy (Swears = 1- \frac{1}{2} (-1 log 1) - \frac{1}{2} (-log 1) = \frac{1}{2}	6)-1-Ssh 1 Entropy (Sstrig)
- 134 logic mild is a pure node here , it will	be Yes
-> for Andy?	
Entropy (Flot) = - Pues log yes - Pro log no	
=-\frac{1}{2} log \frac{1}{2} - \frac{1}{2} log \frac{1}{2} = 1	
2 2 2 2	
Grain (Sh.f. Humidity) = 1- 68hg1 Entrpy (a =1-1/2 (-1lg1) - 1/2 leg 1 - 1/1	
P. (-801 1) 6 Sweat (& Lou	68 12
Gain (eSht , wind) = 1 - Los weak (Cutopy = 1 - 2 (-1 tg \frac{1}{2} - \frac{1}{2} lag \frac{1}{2}) =	(O) weak)
for mild, Pure node always yes	
- 1	
CS Scanned with CamScanner	

temprature mild had temprature wind strong yes walk strong hat humidity no humidity no humidity no humidity no humid			
temprature mild hot temprature wind yes wealt strong humidity (yes) (yes) (yes)		weather	
temprature mild hot temprature wind yes wealt strong humidity (yes) (yes) (yes)			Painy
mild temproture wind strong hot walk strong hot yes no	Sund		
yes weak strong ages humidity (yes) (no)	tenprature	7	
yes week strong ages humidity (yes) (no)		tonetone	To had
yes wind ajes hot yes no humidity	mild that	Semps accorde	out to
yes wind ajes yes no humidity	<u> </u>		would strong
yes) (no) humicity	(yes) wind		<u>K</u> <u>X</u>
(yes) (no)	wealt	ng (agos)	(yes) (no)
(yes) (no)	<u> </u>	Lymin	4,1
high nounce	(yes) (n	1	7
		high	nounce
		€	Y
(no) (ages)		(no)	ajes

Part 2: Programming Questions

- **First:** Create Circle and Classification datasets using sklearn make_circles and make_classification methods.

Classification Dataset (300,20)									
0	1	2	3	4	5	6	7	8	9
-1.325981	0.095412	-1.037029	-0.057757	-1.448467	1.226664	0.666355	-0.904076	0.596930	-0.726712
1.702056	-0.335052	1.078571	-1.342867	1.297082	-0.167253	-0.604033	2.628537	0.230704	0.415251
-0.492697	-0.182905	0.215240	-0.134822	-0.857703	0.045166	1.859346	-2.777665	-1.436356	-0.584094
0.870360	-2.263660	1.177830	-1.385278	-0.413804	-0.927363	0.888339	3.462582	1.556596	0.102178
-1.556177	-1.230546	-1.143981	-2.163098	0.085843	-1.406460	-0.174823	-1.007583	0.736853	-0.396123
	-1.325981 1.702056 -0.492697 0.870360	-1.325981 0.095412 1.702056 -0.335052 -0.492697 -0.182905 0.870360 -2.263660	-1.325981 0.095412 -1.037029 1.702056 -0.335052 1.078571 -0.492697 -0.182905 0.215240 0.870360 -2.263660 1.177830	0 1 2 3 -1.325981 0.095412 -1.037029 -0.057757 1.702056 -0.335052 1.078571 -1.342867 -0.492697 -0.182905 0.215240 -0.134822 0.870360 -2.263660 1.177830 -1.385278	0 1 2 3 4 -1.325981 0.095412 -1.037029 -0.057757 -1.448467 1.702056 -0.335052 1.078571 -1.342867 1.297082 -0.492697 -0.182905 0.215240 -0.134822 -0.857703 0.870360 -2.263660 1.177830 -1.385278 -0.413804	0 1 2 3 4 5 -1.325981 0.095412 -1.037029 -0.057757 -1.448467 1.226664 1.702056 -0.335052 1.078571 -1.342867 1.297082 -0.167253 -0.492697 -0.182905 0.215240 -0.134822 -0.857703 0.045166 0.870360 -2.263660 1.177830 -1.385278 -0.413804 -0.927363	0 1 2 3 4 5 6 -1.325981 0.095412 -1.037029 -0.057757 -1.448467 1.226664 0.666355 1.702056 -0.335052 1.078571 -1.342867 1.297082 -0.167253 -0.604033 -0.492697 -0.182905 0.215240 -0.134822 -0.857703 0.045166 1.859346 0.870360 -2.263660 1.177830 -1.385278 -0.413804 -0.927363 0.888339	0 1 2 3 4 5 6 7 -1.325981 0.095412 -1.037029 -0.057757 -1.448467 1.226664 0.666355 -0.904076 1.702056 -0.335052 1.078571 -1.342867 1.297082 -0.167253 -0.604033 2.628537 -0.492697 -0.182905 0.215240 -0.134822 -0.857703 0.045166 1.859346 -2.777665 0.870360 -2.263660 1.177830 -1.385278 -0.413804 -0.927363 0.888339 3.462582	0 1 2 3 4 5 6 7 8 -1.325981 0.095412 -1.037029 -0.057757 -1.448467 1.226664 0.666355 -0.904076 0.596930 1.702056 -0.335052 1.078571 -1.342867 1.297082 -0.167253 -0.604033 2.628537 0.230704 -0.492697 -0.182905 0.215240 -0.134822 -0.857703 0.045166 1.859346 -2.777665 -1.436356 0.870360 -2.263660 1.177830 -1.385278 -0.413804 -0.927363 0.888339 3.462582 1.556596

- Decision Tree

- Q4:

```
from sklearn.tree import DecisionTreeClassifier

def build_dt(crit, title):
    dt = DecisionTreeClassifier(random_state=0, criterion= crit)
    dt.fit(X_train_ci, y_train_ci)

    dt_pred = dt.predict(X_test_ci)

    print_accuracy(dt, y_test_ci, dt_pred, X_test_ci)
    plot_decision_boundary(X_test_ci, y_test_ci, dt, title)

    return dt, dt_pred
```

1. Decision Tree With gini 1. dt1, y_pred_dt1 = build_dt("gini", "DT with Gini") Confusion Matrix Decision Boundary

- As we see from the two decision tree models based on gini and entropy, the second model based on entropy get higher accuracy than the first one as the entropy add more complexity to the model due to logarithm function, so it fit the data better than gini.
- And due to logarithm function Entropy may be a little slower to compute

Q5

- Her, I get the importance features after applying decision tree to classification dataset, we got 8 features from 19

- Then, I create a list of 7 lists, the first list has 1 feature, second has 2 features, third has 3 features, up to list number 7 has the 7 features.
- Fit decision tree to list of 7 a lists which has the most importance feature as I mentioned using cross validation of 4
- We got 4 accuracy at each list of lists

valid_acc = []
test_acc =[]

dt_model = DecisionTreeClassifier(random_state=0, criterion= 'entropy')

for i in lst:
 cv_acc = cross_validate(dt_model, X_train_cl[:,i], y_train_cl, cv = 4)
print(cv_acc)
 valid_acc.append(cv_acc['test_score']*100)

 dt_model.fit(X_train_cl[:, i], y_train_cl)
 y_preds = dt_model.predict(X_test_cl.iloc[:, i])
 test_accuracy = accuracy_score(y_test_cl, y_preds)
 test_acc.append(test_accuracy* 100)

cv_acc = list(map(list, zip(*valid_acc)))

- Then, I plot the Validation Accuracy (y-axis) vs Top K Important Feature (x-axis) curve, and test accuracy

Bagging

```
from sklearn.ensemble import BaggingClassifier
# base_estimator = DecisionTreeClassifier

c = 1
n_estimators = [2, 5, 15, 20]
for i in n_estimators:
    bc_model = BaggingClassifier(n_estimators = i, random_state=0)
    bc_model.fit(X_train_ci, y_train_ci)

bc_pred = bc_model.predict(X_test_ci)

print("\nModel: {}".format(c))
    title_bc = "n_estimator: {} ".format(i)
    plot_decision_boundary(X_test_ci, y_test_ci, bc_model, title_bc)

print_accuracy(bc_model, y_test_ci, bc_pred, X_test_ci)
    print("-----")

c += 1
```


- **Q7**

- Bagging refers to training the same model multiple times on different data sets(which are obtained by random sampling with replacement from the training set, we have **bootstrapping**). All the models are combined at the end, which leads to higher stability and a **lower variance** compared to the individual models, which lead to **reduce overfitting**.

- Random Forest

- From our 4 models of random forest based on different number of estimators, we see that the accuracy increases as the number of estimators increased, as we see the best model got accuracy with number of estimators equal 20
- The difference between bagging and random forest is that
 - In Random forests, only a subset of features is selected at random out of the total and the best split feature from the subset is used to split each node in a tree,
 - unlike in bagging, where all features are considered for splitting a node.

- Boosting

```
from sklearn.ensemble import AdaBoostClassifier

n_estimators = [10, 50, 100, 200]
lr = [0.1, 1, 2]

count = 1
for i in n_estimators:
    for j in lr:
        ada_model = AdaBoostClassifier(n_estimators= i, learning_rate= j)
        ada_model.fit(X_train_ci, y_train_ci)
        ada_pred = ada_model.predict(X_test_ci)
        acc = round(accuracy_score(y_test_ci, ada_pred) * 100, 2)

#        print_accuracy(ada_model, y_test_ci, ada_pred, X_test_ci)
        title_ada = "Model:{}, n_estimators:{}, learning_rate:{}, accuracy:{}".format(count, i, j, acc)
        plot_decision_boundary(X_test_ci, y_test_ci, ada_model, title_ada)
        count += 1
```


Model 11 accuracy: 78.33

Model:11, n_estimators:200, learning_rate:1, accuracy:78.33

Model 12 accuracy: 61.67

- Stacking

```
from sklearn.ensemble import StackingClassifier
from sklearn.linear model import LogisticRegression
from sklearn.naive bayes import GaussianNB
estimators = [
     ('DT', DecisionTreeClassifier(random state=0, criterion= 'entropy')),
     ('BC', BaggingClassifier(n estimators = 5, random state=0)),
     ('RF', RF(n estimators = 2)),
     ('ADA', AdaBoostClassifier(n estimators= 50, learning rate= 1))]
aggregators = [
    DecisionTreeClassifier(random state=0, criterion= 'entropy'),
    LogisticRegression(),
    GaussianNB()1
titles = ["Decision Tree", "Logistic Regression", "Naive Bayes"]
for i, j in enumerate(aggregators):
    stack model = StackingClassifier(estimators= estimators, final estimator=j)
    stack_model.fit(X_train_ci, y_train_ci)
    stack pred = stack model.predict(X test ci)
    acc = round(accuracy_score(y_test_ci, stack_pred) * 100, 3)
    print("\nStacking with: {}".format(titles[i]))
    stack title = "\nStacking with: {}".format(titles[i])
    plot_decision_boundary(X_test_ci, y_test_ci, stack_model, stack_title)
print_accuracy(stack_model, y_test_ci, stack_pred, X_test_ci)
```


Conclusion

- In the numerical question the information gain and the gini index produced the same tree in the end.
- In this assignment, we have built some models based on different techniques as **decision tree**, **random forest**, **bagging**, **boosting**, and **stacking**
- We have learned the difference between bagging and random forest and how the models built with those techniques.
- Also, Boosting techniques based on sequential models, and we see that the model accuracy decreased as
 the learning rate and number of estimators increased, and best model got accuracy based on 50 number
 of estimators and 1 as Lr.
- Additionally, in stacking, we see that the best aggregators here is **naive Bayes** which got **0.82 accuracy.**
- From all models created, we conclude that, the best models are the model that based on importance features as decision tree with cross validation, as it reach 99% sometimes.
- We also conclude that **cross validation** is very useful with little data.