Advanced Calculus I

Ji, Yong-hyeon

October 29, 2024

We cover the following topics in this note.

- Boundedness, Supremum and Infimum
- Least Upper Bound Property (Completeness Axiom)
- Well-Ordering Principle and Mathematical Induction
- Archimedean Property

Observation. Let $f : [a,b] \to \mathbb{R}$ be a continuous function. Suppose that f(a) and f(b) have opposite signs, i.e., $f(a) \cdot f(b) < 0$. Then, there exists a point $c \in (a,b)$ such that f(c) = 0.

Intermediate Value Theorem

Theorem. Let $[a,b] \subseteq \mathbb{R}$ be a real interval, and let $f:[a,b] \to \mathbb{R}$ be a continuous function on [a,b]. Let f(a) < f(b). If $\gamma \in \mathbb{R}$ satisfies $f(a) < \gamma < f(b)$, then

$$\exists c \in (a,b) \text{ such that } f(c) = \gamma.$$

Contents

1	Numbers	2
2	Least Upper Bound Property of $\mathbb R$	3
3	Well-Ordering Principle and Mathematical Induction	11
4	Archimedean Principle	13
A	Axioms of the Real Numbers	18
	A.1 Field Axioms	18
	A.2 Axiom of Order	19
	A.3 Completeness Axiom	19
В	Application of Well-Ordering Principle	20
C	The 2nd Principle of Mathematical Induction	21

1 Numbers

$$\mathbb{N} := \{1, 2, 3, 4, \dots\}$$
 Natural Numbers
$$\mathbb{Z} := \{0, \pm 1, \pm 2, \pm 3, \pm 4, \dots\}$$
 Integers (Zahlen¹)
$$\mathbb{Q} := \left\{\frac{q}{p} : p, q \in \mathbb{Z}, p \neq 0\right\}$$
 Rationals (Quotient²)
$$\mathbb{R} := \left\{\text{Limit of sequences of rational numbers}\right\}$$
 Real Numbers
$$\mathbb{C} := \left\{p + q\sqrt{-1} : p, q \in \mathbb{R}\right\}$$
 Complex numbers

Remark. The set $\mathbb{Z}_{\geq 0} := \{0\} \cup \mathbb{N} = \{0, 1, 2, \dots\}$ is called *non-negative integers*.

Remark. Let $n_0 \in \mathbb{Z}$ is given. Then

$$\mathbb{Z}_{\geq n_0} := \left\{ n \in \mathbb{Z} : n \geq n_0 \right\}.$$

 $^{^1}$ The integer set is denoted by $\mathbb Z$ because it comes from the German word "Zahlen", meaning "numbers".

 $^{^2}$ The rational set is denoted by $\mathbb Q$ because it stands for "Quotient", representing numbers that can be expressed as the quotient of two integers.

2 Least Upper Bound Property of $\mathbb R$

Boundedness

Definition. Let *S* be a non-empty subset of \mathbb{R} .

- (1) A set *S* is said to be **bounded above** if $\exists \beta \in \mathbb{R}$ such that for all $x \in S$, $x \leq \beta$. A number β is called an **upper bound** of *S*.
- (2) A set *S* is said to be **bounded below** if $\exists \alpha \in \mathbb{R}$ such that for all $x \in S$, $\alpha \leq x$. A number α is called an **lower bound** of *S*.
- (3) A set *S* is **bounded** if it is bounded above and below.

Remark (Caution!). It is not guaranteed that $\beta \in S$ and $\alpha \in S$.

Remark. Let $\emptyset \neq S \subseteq \mathbb{R}$.

S is bounded above (by β) \iff *S* has an upper bound β $\beta \in \mathbb{R}$ is an upper bound of $S \iff \forall x \in S, \ x \leq \beta$

S is bounded below (by α) \iff *S* has an lower bound α $\alpha \in \mathbb{R}$ is an lower bound of $S \iff \forall x \in S, \ \alpha \leq x$

Remark.

- 1. The empty $S = \emptyset$ is bounded.
 - (i) (\emptyset is bounded above) We need to find a real number $\beta \in \mathbb{R}$ s.t. for all $x \in \emptyset$, $x \leq \beta$. Since " $\forall x \in \emptyset$, $x \leq \beta$ " is vacuously true, we can choose any real number as β .
 - (ii) (\varnothing is bounded below) Similarly, we can choose any $\alpha \in \mathbb{R}$ s.t. for all $x \in \varnothing$, $\alpha \le x$.
- 2. Upper bound and lower bound are not unique. A set $S(\neq \emptyset) \subseteq \mathbb{R}$ may have multiple upper bounds and multiple lower bounds.

Exercise. Show that $A = \left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$ has an upper bound and a lower bound.

Sol. The elements of A are: $A = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots\right\}$. Let $x \in A$. Then x = 1 - 1/n for some $n \in \mathbb{N}$.

(i) Since $n \in \mathbb{N}$, we have 1/n > 0. Therefore

$$1 - \frac{1}{n} < 1.$$

Thus, for all $x = 1 - 1/n \in A$, we have $x \le 1$. Hence 1 be an upper bound of A.

(ii) Since $n \in \mathbb{N}$, we have $n \ge 1$, so $1/n \le 1$. Therefore,

$$1 - \frac{1}{n} \ge 1 - 1 = 0.$$

Thus, for all $x = 1 - 1/n \in A$, we have $x \ge 0$. Hence 0 is a lower bound of A.

Exercise. Show that \mathbb{N} has a lower bound but does not have an upper bound.

Sol. Let \mathbb{N} is the set of natural numbers.

- (i) For each $n \in \mathbb{N}$, we have $n \ge 1$, since the smallest element of \mathbb{N} is 1. Therefore, 1 is a lower bound of \mathbb{N} .
- (ii) Assume that

$$\exists \beta \in \mathbb{R} \text{ such that } \forall n \in \mathbb{N}, \ n \leq \beta.$$

However, for any $M \in \mathbb{R}$, we can always find a natural number $n \in \mathbb{N}$ such that $\beta \leq n$, by choosing $n = \lfloor \beta \rfloor + 1 > \beta$. It is a contradiction. Thus \mathbb{N} does not have an upper bound.

Exercise (\star) . Consider a set

$$A := \left\{ r \in \mathbb{Q} : r > 0, \ r^2 < 2 \right\}$$

of positive rational numbers whose squares are less than 2. Then *A* has a lower bound 0. Prove that *A* does not have the maximum element.

Sol. Note that

$$A:=\left\{r\in\mathbb{Q}:r>0,\;r^2<2\right\}=\left\{\cdots,1.4,1.41,1.414,1.4142,1.41421,1.4141213,1.4142135,\cdots\right\}.$$

Let $a \in A$. Then

$$a^2 < 2 < 4 \implies a^2 < 4 \implies |a| < 2 \implies a < 2$$
.

That is, *A* is bounded above by 2. Suppose that *p* is a maximum of *A*. Since $p \in A$, p > 0 and $p^2 < 2$.

Define a rational number $q \in \mathbb{Q}$, for contradiction, by

$$q := p + \frac{2 - p^2}{p + 2} = \frac{2p + 2}{p + 2},$$

where p < q. We must show that $q \in A$.

Clearly q > 0. We claim that $q^2 < 2$:

$$\begin{aligned} 2 - q^2 &= 2 - \left(p + \frac{2 - p^2}{p + 2}\right)^2 = 2 - \left(p^2 + \frac{2p(2 - p^2)}{p + 2} + \frac{(2 - p^2)^2}{(p + 2)^2}\right) \\ &= 2 - p^2 - \frac{2p(2 - p^2)}{p + 2} - \frac{(2 - p^2)^2}{(p + 2)^2} \\ &= \frac{(2 - p^2)(p + 2)^2 - 2p(2 - p^2)(p + 2) - (2 - p^2)^2}{(p + 2)^2} \\ &= \frac{1}{(p + 2)^2} \left[(2 - p^2)(p^2 + 4p + 4) + (2p^2 + 4p)(p^2 - 2) + (-p^4 + 4p^2 - 4) \right] \\ &= \frac{1}{(p + 2)^2} \left[(-1 + 2 - 1)p^4 + (-4 + 4)p^3 + (2 - 4 - 4 + 4)p^2 + (8 - 8)p + (8 - 4) \right] \\ &= \frac{1}{(p + 2)^2} \left[-2p^2 + 4 \right] = \frac{2(2 - p^2)}{(p + 2)^2} > 0. \end{aligned}$$

Thus, $q \in A$ with p < q. It contradicts to the assumption that $p = \max A$. Hence it is proved. \square

Note (Existence of $\sqrt{2}$). There exists $x \in \mathbb{R}$ such that $x^2 = 2$. We write $x = \sqrt{2} > 0$.

Proof. Consider a set

$$A = \left\{ x \in \mathbb{R} : x > 0, \ x^2 < 2 \right\} \subseteq \mathbb{R}.$$

Since $1 \in A$, we know $A \neq \emptyset$. Clearly, A is bounded above (by 2). By the completeness axiom, A has the supremum $\lambda = \sup A \in \mathbb{R}$. Define a number $\mu \in \mathbb{R}$ by

$$\mu := \lambda + \frac{2 - \lambda^2}{\lambda + 2}$$
, and then $\mu^2 - 2 = \frac{2(\lambda^2 - 2)}{(\lambda + 2)^2}$.

(Case I) Let $\lambda^2 < 2$. Then $\lambda < \mu$ and $\mu^2 < 2$. That is, $\mu \in A$ with $\lambda < \mu$. It contradicts to the fact that λ is an upper bound of A.

(Case II) Let $\lambda^2 > 2$. Then

$$\mu < \lambda \text{ and } 2 < \mu^2 \implies \forall x \in A, \ x^2 < 2 < \mu^2 \implies \forall x \in A, \ x < \mu$$
 $\implies \mu \text{ is an upper bound of } A \text{ with } \mu < \lambda.$

It contradicts to the fact that λ is an upper bound of A.

By trichotomy, we obtain $\lambda^2 = 2$ with $\lambda \in \mathbb{R}$.

Supremum and Infimum

Definition. Let $\emptyset \neq S \subseteq X$.

- (1) Let *S* is bounded above. The number $\beta \in \mathbb{R}$ is the **supremum** (or the **least upper bound**) of *S* if and only if
 - (i) β is an upper bound of S, i.e., $\forall x \in S$, $x \leq \beta$;
 - (ii) u is any upper bound of $S \implies \beta \le u$.

We write $\beta = \sup S \in \mathbb{R}$.

- (2) Let *S* is bounded below. The number $\alpha \in \mathbb{R}$ is the **infimum** (or the **greatest lower bound**) of *S* if and only if
 - (i) α is an lower bound of S, i.e., $\forall x \in S$, $\alpha \leq x$;
 - (ii) if ℓ is any lower bound of S then $\ell \leq \alpha$.

We write $\alpha = \inf S \in \mathbb{R}$.

Remark (Caution!). It is not guaranteed that sup $S \in S$ and that inf $S \in S$.

Remark. Let $\emptyset \neq S \subseteq \mathbb{R}$.

(1) Suppose *S* is bounded above. Then

$$\beta = \sup S \iff \text{(i)} \ \forall x \in S, x \leq \beta;$$

- (ii) \forall upper bound $u \in S$, $\beta \leq u$.
- (2) Suppose S is bounded below. Then

$$\alpha = \inf S \iff (i) \ \forall x \in S, \alpha \le x;$$

(ii) \forall lower bound $\ell \in S$, $\ell \leq \alpha$.

Remark.

[u is any upper bound of $S \implies \beta \le u$] \iff [$u < \beta \implies \beta$ is NOT an upper bound of S] \iff $\beta \le u$ for all upper bound u of S.

[ℓ is any lower bound of $S \implies \ell \le \alpha$] \iff [$\alpha < \ell \implies \alpha$ is NOT an lower bound of S] \iff $\ell \le \alpha$ for all lower bound ℓ of S.

Remark (Uniqueness of Supremum and Infimum).

(*Proof by Trichotomy*) Let $\emptyset \neq T \subseteq \mathbb{R}$ and T is bounded above. Suppose that $\sup T = a$ and $\sup T = b$ also. By trichotomy, exactly one of the following holds:

$$a = b$$
, $a < b$, or $b < a$.

However, a < b and b < a are impossible, as a and b are upper bounds, respectively. Hence a = b. Similarly, infimum also is unique.

(*Proof by Anti-symmetry*³ of \leq) Let $\emptyset \neq S \subseteq \mathbb{R}$ and S is bounded. Suppose that $\sup S = a$ and that $\sup S = b$ also. Then

- (a) a is an upper bound of S in \mathbb{R} ; (b) a is a supremum of S in \mathbb{R} ;
- (c) b is an upper bound of S in \mathbb{R} ; (d) b is a supremum of S in \mathbb{R} .

By (a) and (d), we have $b \le a$, and by (b) and (c), we have $a \le b$. Thus by the anti-symmetry of \le : a = b. Similarly, infimum also is unique.

Unbounded Sets

Definition. Let $\emptyset \neq S \subseteq \mathbb{R}$.

- (1) If *S* is NOT bounded above, then we write $\sup S = \infty$
- (2) If *S* is NOT bounded below, then we write $\inf S = -\infty$
- (3) $\sup \emptyset := -\infty$ and $\inf \emptyset := \infty$.

Example. sup $\mathbb{N} = \infty$ and inf $\mathbb{Z} = -\infty$.

Remark. Suppose that $\emptyset \neq S \subseteq \mathbb{R}$ is not bounded above. Then

$$\neg [\exists \beta \in \mathbb{R} \text{ s.t. } \forall x \in S, \ x \leq \beta] \equiv [\forall \beta \in \mathbb{R}, \ \exists x_{\beta} \in S \text{ s.t. } \beta < x_{\beta}].$$

Suppose that $\emptyset \neq T \subseteq \mathbb{R}$ is not bounded below. Then

$$\neg [\exists \alpha \in \mathbb{R} \text{ s.t. } \forall x \in S, \ \alpha \leq x] \equiv [\forall \alpha \in \mathbb{R}, \ \exists x_{\alpha} \in S \text{ s.t. } x_{\alpha} < \alpha].$$

³A relation \mathcal{R} on a set S is anti-symmetric if, for $a, b \in \mathcal{R}$, $a \mathcal{R} b \wedge b \mathcal{R} a \implies a = b$.

Approximation Property for Supremum and Infinum I

Proposition 1.

(1) Let $\emptyset \neq S \subseteq \mathbb{R}$ which is bounded above, and let λ be an upper bound of S in \mathbb{R} .

$$\lambda = \sup S \iff \forall \varepsilon > 0, \ \exists x_{\varepsilon} \in S \ s.t. \ \lambda - \varepsilon < x_{\varepsilon} \le \lambda.$$

(2) Let $\emptyset \neq T \subseteq \mathbb{R}$ which is bounded below, and let γ be a lower bound of T in \mathbb{R} .

$$\gamma = \inf T \iff \forall \varepsilon > 0, \ \exists x_\varepsilon \in T \ s.t. \ \gamma \leq x_\varepsilon < \gamma + \varepsilon.$$

Proof. (1) (\Rightarrow) Let $\lambda = \sup S$. Since λ is an upper bound, $\forall x \in S, \ x \leq \lambda$. That is, $x_{\varepsilon} \leq \lambda$ holds. Let $\varepsilon > 0$. Suppose that

$$\neg [\exists x_{\varepsilon} \in S \text{ s.t. } \lambda - \varepsilon < x_{\varepsilon}] \equiv [\forall x_{\varepsilon} \in S, \ x_{\varepsilon} \leq \lambda - \varepsilon].$$

Then $\lambda - \varepsilon$ be an upper bound. Then $\lambda - \varepsilon < \lambda$ but λ is the *least* upper bound. It is a contradiction. Therefore $\exists x_{\varepsilon} \in S \text{ s.t. } \lambda - \varepsilon < x_{\varepsilon}$.

(\Leftarrow) Let the RHS holds. We claim that λ is the *least* upper bound of *S*:

Assume, for contradiction, that there exists a smaller upper bound $\mu \in \mathbb{R}$ s.t. $\mu < \lambda$. Let $\varepsilon = \lambda - \mu > 0$. Then

$$\exists x_{\varepsilon} \in S \text{ such that } \lambda - \varepsilon < x_{\varepsilon} \leq \lambda$$
,

and so

$$\mu = \lambda - \varepsilon < x_\varepsilon \le \lambda \implies \mu < x_\varepsilon \le \lambda.$$

It contradicts to the assumption that μ is an upper bound of S. Thus, λ be the least upper bound of S.

(2) (\Rightarrow) Let $\gamma = \inf T$. Since γ is a lower bound, $\forall x \in S$, $\gamma \leq x$. That is, $\gamma \leq x_{\varepsilon}$ holds. Let $\varepsilon > 0$. Suppose that

$$\neg [\exists x \in T \text{ s.t. } x < \gamma + \varepsilon] \equiv [\forall x \in T, \ \gamma + \varepsilon \leq x].$$

Then $\gamma + \varepsilon$ be a lower bound. Then $\gamma < \gamma + \varepsilon$ but γ is the *greatest* lower bound. It is a contradiction. Therefore $\exists x_{\varepsilon} \in T \text{ s.t. } x_{\varepsilon} < \gamma + \varepsilon$.

(\Leftarrow) Let the RHS holds. We claim that γ is the *greatest* lower bound of *T*:

Assume, for contradiction, that there exists a greater lower bound $\gamma < \mu$.

Let
$$\varepsilon = \mu - \gamma > 0$$
. Then

$$\exists x_{\varepsilon} \in T \text{ such that } \gamma \leq x_{\varepsilon} < \gamma + \varepsilon$$
,

and so $\gamma \le x_{\varepsilon} < \mu$. It contradicts to the assumption that γ is an lower bound of T. Thus, γ be the greatest lower bound of T.

Remark. See Approximation Property for Supremum and Infinum II.

Least Upper Bound Property (Completeness Axiom) of Real Number

Axiom. Every non-empty subset of \mathbb{R} that is bounded above has the supremum in \mathbb{R} .

Example. \mathbb{Q} does NOT hold completeness axiom. We already showed that $\{x \in \mathbb{Q} : x > 0, x^2 < 2\}$ has NO supremum in \mathbb{Q} .

Infimum Property

Axiom. Every non-empty subset of \mathbb{R} that is bounded below has the <u>infimum</u> in \mathbb{R} .

3 Well-Ordering Principle and Mathematical Induction

Well-Ordering Principle (Principle of the Least Element)

Axiom. Every non-empty subset S of \mathbb{N} has a least element, i.e.,

$$\emptyset \neq S \subseteq \mathbb{N} \implies \exists n \in S \text{ s.t. } \forall k \in S, n \leq k.$$

In other words, $[\emptyset \neq S \subseteq \mathbb{N} \Rightarrow \exists n \in S \text{ s.t. } n = \min(S)].$

Remark (general version). $\emptyset \neq S \subseteq \mathbb{Z}_{\geq n_0} \implies \exists n \in S \text{ s.t. } n = \min S \geq n_0.$

Principle of Mathematical Induction

Axiom. Suppose that $S \subseteq \mathbb{N}$ satisfies the following two conditions:

- 1. (Basic Step) $1 \in S$, and
- 2. (Inductive Step) $n \in S \implies n+1 \in S$.

Then $S = \mathbb{N}$.

Remark (general version). Let $n_0 \in \mathbb{Z}$ be given, and let $S \subseteq \mathbb{Z}_{\geq n_0}$. Suppose that S satisfies the following two conditions:

- 1. (Basic Step) $n_0 \in S$, and
- 2. (Inductive Step) $\forall n \in \mathbb{Z}_{>n_0} : [n \in S \implies n+1 \in S]$.

Then $\forall n \in \mathbb{Z}_{\geq n_0} : n \in S$, i.e., $S = \mathbb{Z}_{\geq n_0}$.

Remark. To show that a mathematical statement P(n) (property for n) holds for $n \in \mathbb{N}$, simply verify that the set

$$S := \{ n \in \mathbb{N} : P(n) \text{ holds} \}$$

satisfies the following conditions:

- (Step 1) Show that P(1) holds.
- (Step 2) Show that P(n + 1) holds with the assumption P(n) holds.

Equivalence of Well-Ordering Principle and Induction

Theorem.

The Well-Ordering Principle and Principle of Mathematical Induction are equivalent.

Proof. **(WOP** \Rightarrow **MI)** Let *S* \subseteq \mathbb{N} satisfy the followings: (i) 1 ∈ *S* and (ii) $k \in S \Rightarrow k + 1 \in S$. We want to establish that $S = \mathbb{N}$ by the Well-Ordering Principle (WOP).

Assume for contradiction that $S \neq \mathbb{N}$. Then $S \subseteq \mathbb{N}$, which means $\mathbb{N} \setminus S \neq \emptyset$. By the WOP,

$$\exists m \in \mathbb{N} \setminus S \text{ s.t. } m = \min(\mathbb{N} \setminus S).$$

Since $1 \in S$, we have $1 \notin \mathbb{N} \setminus S$, so $m \neq 1$ and thus m > 1 (or $m \geq 2$).

Then

$$m = \min(\mathbb{N} \setminus S) \xrightarrow{\text{by minimality of } m} m - 1 \notin \mathbb{N} \setminus S \implies m - 1 \in S \xrightarrow{\text{by (ii)}} m \in S \not\downarrow$$
.

Hence $S = \mathbb{N}$.

(MI \Rightarrow WOP) Suppose that $\emptyset \neq S \subseteq \mathbb{N}$ has no least element. Define the set $T \subseteq \mathbb{N}$ by

$$T := \{ n \in \mathbb{N} : 1, 2, 3, \dots, n \notin S \}.$$

For example, if $3 \in T$ then $1, 2, 3 \notin S$; conversely, if $1, 2, 3 \notin S$ then $3 \in T$. We claim that T satisfies the condition of MI:

- (i) (Basic Step) Since *S* has no least element, $1 \notin S$. Therefore, $1 \in T$.
- (ii) (Inductive Step) Suppose that $k \in T$. This means that $1, 2, ..., k \notin S$. Since S has no least element, $k + 1 \notin S$ (otherwise k + 1 would be a least element of S). Therefore

$$1, 2, ..., k, k + 1 \notin S$$
, i.e., $k + 1 \in T$.

By the Principle of Mathematical Induction, we have $T = \mathbb{N}$. It follows that no natural number is in S, which contradicts $S \neq \emptyset$. Hence it is proved.

4 Archimedean Principle

Archimedean Property (The Unboundedness of Natural Numbers)

Theorem. Let $x \in \mathbb{R}$. Then

 $\exists n \in \mathbb{N} \text{ such that } x < n.$

Proof. Assume, for contradiction, that

$$\forall n \in \mathbb{N}, \ n \leq x.$$

That is $\mathbb{N} \subseteq \mathbb{R}$ is bounded above by $x \in \mathbb{R}$. By the completeness axiom of \mathbb{R} ,

$$\exists \sup \mathbb{N} =: s \in \mathbb{R}.$$

By **Proposition 1**, for $\varepsilon = 1 > 0$, $\exists n \in \mathbb{N} \text{ s.t. } s - 1 < n$. Then

$$s-1 < n \implies s < n+1 \stackrel{n+1 \in \mathbb{N}}{\Longrightarrow} s < n+1 \le \sup \mathbb{N} = s \cancel{4}.$$

Corollary. Let $x, y \in \mathbb{R}$ with x > 0. Then $\exists n \in \mathbb{N}$ such that $y < n \cdot x$.

Proof. Since \mathbb{R} is a field, we know $\frac{y}{x} \in \mathbb{R}$. By the Archimedean property,

$$\exists n \in \mathbb{N} \text{ such that } \frac{y}{x} < n, \text{ i.e., } y < n \cdot x.$$

Corollary. $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon$.

Proof. For $\varepsilon \in \mathbb{R}^+$ and $1 \in \mathbb{R}$, by Archimedean property, we have

$$\exists n \in \mathbb{N} \text{ such that } 1 < \varepsilon \cdot n, \text{ i.e., } \frac{1}{n} < \varepsilon.$$

Note (Archimedean Property in Number Theory). Let $a, b \in \mathbb{N}$. Then $\exists n \in \mathbb{N}$ such that b < na.

Proof. Suppose that $\exists a, b \in \mathbb{N}$ such that

$$\forall n \in \mathbb{N}, na \leq b.$$

Define a set S by

$$S := \{b - na \ge 0 : n \in \mathbb{N}\} \subseteq \mathbb{Z}_{\ge 0}.$$

By the well-ordering principle, $\exists s := \min S$. Since $s = \min S \in S$, we have

$$s = b - ma$$
 for some $m \in \mathbb{N}$.

Since $m + 1 \in \mathbb{N}$ also, we have $b - (m + 1)a \in S$, and so

$$b - (m+1)a = b - ma - a$$

 $< b - ma$ $\therefore a \in \mathbb{N}, \text{i.e.}, a > 0$
 $= \min S \not = 0$

Hence it is proved.

Approximation Property for Supremum and Infinum II

Proposition 2.

(1) Let $\emptyset \neq S \subseteq \mathbb{R}$ which is bounded above, and let λ be an upper bound of S in \mathbb{R} .

$$\lambda = \sup S \iff \forall \varepsilon > 0, \ \exists x_{\varepsilon} \in S \ s.t. \ \lambda - \varepsilon < x_{\varepsilon} \leq \lambda$$

$$\iff \forall n \in \mathbb{N}, \ \exists x_n \in S \ s.t. \ \lambda - \frac{1}{n} < x_n \leq \lambda.$$

(2) Let $\emptyset \neq T \subseteq \mathbb{R}$ which is bounded below, and let γ be a lower bound of T in \mathbb{R} .

$$\gamma = \inf T \in \mathbb{R} \iff \forall \varepsilon > 0, \ \exists x_{\varepsilon} \in T \ s.t. \ \gamma \leq x_{\varepsilon} < \gamma + \varepsilon$$

$$\iff \forall n \in \mathbb{N}, \ \exists x_n \in T \ s.t. \ \gamma \leq x_n < \gamma + \frac{1}{n}.$$

Proof. (1) We NTS that

$$[\forall \varepsilon > 0, \ \exists x_{\varepsilon} \in S \text{ s.t. } \lambda - \varepsilon < x_{\varepsilon} \leq \lambda] \iff [\forall n \in \mathbb{N}, \ \exists x_n \in S \text{ s.t. } \lambda - \frac{1}{n} < x_n \leq \lambda].$$

(⇒) Assume that the LHS holds. Let $n \in \mathbb{N}$. Since 1/n > 0, we can take $\varepsilon = 1/n$ for each $n \in \mathbb{N}$. By assumption, for this choice of ε ,

$$\exists x_n \in S \text{ s.t. } \lambda - \frac{1}{n} < x_n \leq \lambda.$$

 (\Leftarrow) Assume that the RHS holds.

Let $\varepsilon > 0$. By Archimedean property, $\exists n \in \mathbb{N} \text{ s.t. } \frac{1}{n} < \varepsilon$. By assumption, for this n,

$$\lambda - \frac{1}{n} < x_n \le \lambda.$$

Since $1/n < \varepsilon$, we have $\lambda - \varepsilon < \lambda - \frac{1}{n}$, and so

$$\lambda - \varepsilon < \lambda - \frac{1}{n} < x_n \le \lambda$$
, i.e., $\lambda - \varepsilon < x_n \le \lambda$.

Letting $x_n = x_{\varepsilon}$, we see that such an $x_{\varepsilon} \in S$ exists for any $\varepsilon > 0$.

(2) We NTS that

$$[\forall \varepsilon > 0, \ \exists x_{\varepsilon} \in T \text{ s.t. } \gamma \leq x_{\varepsilon} < \gamma + \varepsilon] \iff [\forall n \in \mathbb{N}, \ \exists x_n \in T \text{ s.t. } \gamma \leq x_n < \gamma + \frac{1}{n}].$$

(⇒) Assume that the LHS holds. Let $n \in \mathbb{N}$. Since 1/n > 0, we can take $\varepsilon = 1/n$ for each $n \in \mathbb{N}$. By assumption, for this choice of ε ,

$$\exists x_n \in T \text{ s.t. } \gamma \leq x_n < \gamma + \varepsilon.$$

(\Leftarrow) Assume that the RHS holds.

Let $\varepsilon > 0$. By Archimedean property, $\exists n \in \mathbb{N} \text{ s.t. } \frac{1}{n} < \varepsilon$. By assumption, for this n,

$$\gamma \le x_n < \gamma + \frac{1}{n}.$$

Since $1/n < \varepsilon$, we have $\gamma + \frac{1}{n} < \gamma + \varepsilon$, and so

$$\gamma \le x_n < \gamma + \frac{1}{n} < \gamma + \varepsilon$$
, i.e., $\gamma \le x_n < \gamma + \varepsilon$.

Letting $x_n = x_{\varepsilon}$, we see that such an $x_{\varepsilon} \in T$ exists for any $\varepsilon > 0$.

Remark. See Approximation Property for Supremum and Infinum I.

Density of the Rationals

Theorem. *Let* a, $b \in \mathbb{R}$.

$$a < b \implies \exists q \in \mathbb{Q} \text{ such that } a < q < b.$$

Proof. Let $a, b \in \mathbb{R}$. Suppose that a < b.

We consider the following two cases:

(Case I) $(0 \le a)$ Since b - a > 0, we have $\frac{1}{b-a} \in \mathbb{R}$. By the Archimedean property,

$$\exists n \in \mathbb{N}$$
 s.t. $\frac{1}{b-a} < n$, i.e., $na + 1 < nb$.

Clearly $na \in \mathbb{R}$. Define a set A by

$$A := \{k \in \mathbb{N} : na < k\} \subseteq \mathbb{N}.$$

By the Archimedean property, $\exists k \in \mathbb{N}$ such that na < k. That is, $A \neq \emptyset$. By the well-ordering principle, $\exists m = \min A$. By the minimality of m, we know $m-1 \notin A$, i.e., $m-1 \leq na$, and so $m \leq na+1$. Thus, we obtain

$$na \stackrel{m \in A}{<} m \le na + 1 \stackrel{\text{by A.P.}}{<} nb.$$

Therefore

$$na < m < ny \implies a < \frac{m}{n} < b.$$

Thus, $q := \frac{m}{n} \in \mathbb{Q}$ satisfies a < q < b.

(Case II) (a < 0) Note that $-a \in \mathbb{R}^+$. By the Archimedean property,

$$\exists n \in \mathbb{N} : -a < n, \text{ i.e., } 0 < a + n.$$

By (Case I), we have

$$\exists q \in \mathbb{Q} : a + n < q < b + n$$

since 0 < a + n < b + n. Let $q' = q - n \in \mathbb{Q}$. Then a < q' < b.

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 4. 해석학 개론 (a) 완비성 공리." YouTube Video, 32:20. Published September 09, 2019. URL: https://www.youtube.com/watch?v=pHIImTBdBRs.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 5. 해석학 개론 (b) 유리수의 조밀성와 실수, 자연수 공리" YouTube Video, 30:51. Published September 11, 2019. URL: https://www.youtube.com/watch?v=RYjhQyXxTpQ&t=2s.

A Axioms of the Real Numbers

The following axioms define the real numbers \mathbb{R} as a complete ordered field.

A.1 Field Axioms

Addition:

- 1. Closure under addition: $\forall a, b \in \mathbb{R}, a + b \in \mathbb{R}$
- 2. Associativity of addition: $\forall a, b, c \in \mathbb{R}, (a+b)+c=a+(b+c)$
- 3. Commutativity of addition: $\forall a, b \in \mathbb{R}, a + b = b + a$
- 4. Existence of additive identity: $\exists 0 \in \mathbb{R}$ such that $\forall a \in \mathbb{R}$, a + 0 = a
- 5. Existence of additive inverses: $\forall a \in \mathbb{R}, \ \exists -a \in \mathbb{R} \text{ such that } a + (-a) = 0$

Multiplication:

- 1. Closure under multiplication: $\forall a, b \in \mathbb{R}, \ a \cdot b \in \mathbb{R}$
- 2. Associativity of multiplication: $\forall a, b, c \in \mathbb{R}, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. Commutativity of multiplication: $\forall a, b \in \mathbb{R}, \ a \cdot b = b \cdot a$
- 4. Existence of multiplicative identity: $\exists 1 \in \mathbb{R}, 1 \neq 0$, such that $\forall a \in \mathbb{R}, a \cdot 1 = a$
- 5. Existence of multiplicative inverses: $\forall a \in \mathbb{R}, a \neq 0, \exists a^{-1} \in \mathbb{R}$ such that $a \cdot a^{-1} = 1$

Distributive law:

1. Distributivity of multiplication over addition: $\forall a, b, c \in \mathbb{R}, \ a \cdot (b+c) = a \cdot b + a \cdot c$

A.2 Axiom of Order

A relation < defined on \mathbb{R} satisfy the followings:

1. **Trichotomy**: For $a, b \in \mathbb{R}$, exactly one of the following holds:

$$a = b$$
, $a < b$, or $b < a$.

2. **Transitivity**: For $a, b, c \in \mathbb{R}$,

$$a < b$$
 and $b < c \implies a < c$

3. Additive compatibility: For $a, b, c \in \mathbb{R}$,

$$a < b \implies a + c < b + c$$

4. Multiplicative compatibility: For $a, b \in \mathbb{R}$ and $c \in \mathbb{R}^+$,

$$a < b \implies a \cdot c < b \cdot c$$

A.3 Completeness Axiom

The least upper bound property (or supremum property):

 $\forall S \subseteq \mathbb{R}, \ S \neq \emptyset$, if *S* is bounded above then $\exists \sup(S) \in \mathbb{R}$

B Application of Well-Ordering Principle

Theorem. $\sqrt{2}$ is irrational, i.e., $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

Proof. Suppose $\sqrt{2} \in \mathbb{Q}$. That is, $\exists p, q \in \mathbb{N}$ s.t. $p\sqrt{2} = q$. Define a set S by

$$S:=\left\{k\sqrt{2}\in\mathbb{N}:k\in\mathbb{N}\right\}\subseteq\mathbb{N}.$$

Since $p\sqrt{2} = q \in \mathbb{N}$, we have $S \neq \emptyset$. By the Well-Ordering Principle,

$$\exists s = \min(S) \in S.$$

Then $s = t\sqrt{2}$ for some $t \in \mathbb{N}$. Define a number

$$r := s\sqrt{2} - s$$
.

(Claim 1) $r \in S$:

$$r = s\sqrt{2} - s$$

$$= s\sqrt{2} - t\sqrt{2}$$

$$= (s - t)\sqrt{2}$$

$$\in S$$

$$\therefore s = t\sqrt{2} > t \Rightarrow s - t > 0 \Rightarrow s - t \in \mathbb{N}.$$

(Claim 2) $r < s = \min(S)$:

$$r = s\sqrt{2} - s$$

$$= s(\sqrt{2} - 1)$$

$$< s = \min S$$

$$\therefore s \in \mathbb{N} \text{ and } 1 < \sqrt{2} < 2 \Rightarrow 0 < \sqrt{2} - 1 < 1.$$

It is a contradiction. Hence $\sqrt{2} \notin \mathbb{Q}$.

C The 2nd Principle of Mathematical Induction

The 2nd Principle of Mathematical Induction

Theorem. *Suppose that* $T \subseteq \mathbb{N}$ *satisfies the following two conditions:*

- 1. (Basic Step) $1 \in T$, and
- 2. (Inductive Step) $1, 2, ... n \in T \implies n + 1 \in T$.

Then $T = \mathbb{N}$.

Proof. We use the first principle of mathematical induction. Define the set T' by

$$T' := \{ n \in \mathbb{N} : 1, 2, \dots, n \in T \} \subseteq \mathbb{N}.$$

For example, if $1, 2, 3 \in T$ then $3 \in T'$; conversely, if $3 \in T'$ then $1, 2, 3 \in T$. Since $n \in T' \Rightarrow n \in T$, we have $T' \subseteq T \subseteq \mathbb{N}$. We claim that T' satisfies the condition of MI:

- (i) (Basic Step) Clearly $1 \in T'$.
- (ii) (Inductive Step) Suppose that $k \in T'$. This means that $1, 2, ..., k \in T$. By condition 2,

$$1, 2, \ldots, k, k + 1 \in T$$
, i.e., $k + 1 \in T'$.

Therefore by the first principle of mathematical induction, $T' = \mathbb{N}$. That is,

$$\mathbb{N} = T' \subseteq T \subseteq \mathbb{N} \implies T = \mathbb{N}.$$

Hence it is proved.

Remark. To show that a mathematical statement P(n) (property for n) holds for $n \in \mathbb{N}$, verify that the set

$$S := \{ n \in \mathbb{N} : P(n) \text{ holds} \}$$

satisfies the following conditions:

- (Step 1) Show that P(1) holds.
- (Step 2) Show that P(n + 1) holds assuming P(k) holds for all $k \le n$.