Функциональные последовательности и ряды, несобственный интеграл

Методичка по 3 семестру специальности «Информатика» лектор Кастрица О.А.

Оглавление

1			4
	1.1	Функциональные последовательности и ряды	4
		1.1.1 Функциональный ряд	4
		1.1.2 Критерий Коши сходимости в точке	5
	1.2	Равномерная сходимость	6
		1.2.1 Критерий Коши равномерной сходимости	6
2			8
	2.1	Изучение равномерной сходимости	8
		2.1.1 Признак Вейерштрасса	8
		2.1.2 Супремальный критерий	9
	2.2		10
			10
		2.2.2 Признак Абеля	10
•			
3	0.1		$\frac{12}{12}$
	3.1		12
			13
	0.0		14
	3.2	1 1	14
	3.3	Почленное дифференцирование	14
4			17
4	4.1		17
	7.1		$17 \\ 17$
		1	17
	4.2		18
	4.3	±	19
	4.0	интегрирование и дифференцирование степенных рядов	10
5		:	21
	5.1	Разложение функций в степенные ряды	21
			21
			22
			22
		•	
6			25
	6.1	Несобственный интеграл 1-го рода(НИ-1)	25
		6.1.1 Сравнение с рядами	26
	6.2	НИ-1 от положительной функции	27
			27
		6.2.2 Признаки сравнения НИ-1	27

		6.2.3 Степенной признак для НИ-1	28
7			30
	7.1	НИ-1 от знакопеременной функции	30
	7.2	Признаки Дирихле и Абеля сходимости НИ-1	31
		7.2.1 Признак Дирихле сходимости НИ-1	31
		7.2.2 Признак Абеля сходимости НИ-1	32
	7.3	Несобственный интеграл второго рода НИ-2	32
		7.3.1 Несобственная двойная подстановка	33
		7.3.2 Критерий Коши	33
0			0.4
8	0.1	ии о	34
	8.1	НИ-2	34
	8.2	НИ-2 от положительной функции	34 34
		8.2.1 Критерий сходимости НИ-2 от положительной функции	$\frac{54}{35}$
		8.2.3 Степенной признак для НИ-2	36
	8.3	Преобразование НИ-2	36
	0.5	8.3.1 Интегрирование НИ-2 по частям	36
		8.3.2 Теорема о замене переменных	36
	8.4	НИ смешанного типа	37
	0.4		91
9			39
	9.1	Главное значение несобственного интеграла	39
	0.9	Prince value $I = \int_{-\infty}^{+\infty} x^{2m} dx$ and $I = \int_{-\infty}^{\infty} x^{2m} dx$	40
	9.2	Вычисление $I=\int\limits_{-\infty}^{+\infty}\frac{x^{2m}}{1+x^{2n}}dx, m,n\in\mathbb{N}$	40
10			40
10		Userway was proposed to the control of the control	42 42
		Частные и равномерные частные пределы	42
		Интеграл, зависящий от параметра	44
		Предельный переход ИЗОП	45
	10.4	предельный переход изот	40
11			46
	11.1	Теорема Стокса-Зейделя	46
		Дифференцирование ИЗОП	47
		Интегрирование ИЗОП	47
	11.4	Несобственный интеграл первого рода, зависящий от параметра	48
		11.4.1 Критерий Коши	49
12			50
	12.1	Признаки, позволяющие установить равномерную сходимость НИЗОП	50
		12.1.1 Признак Вейерштрасса	50
		12.1.2 Признак Дирихле	51
	10.0	12.1.3 Признак Абеля	51
	12.2	Свойства НИЗОП - 1	52
		12.2.1 Предельный переход в НИЗОП-1	52
		12.2.2 Непрерывность НИЗОП-1	53
		12.2.3 Интегрирование НИЗОП-1	54

13			55
	13.1	НИ от НИЗОП	55
	13.2	Дифференцирование НИЗОП-1	56
	13.3	Локальная равномерная сходимость	56
	13.4	НИЗОП-2	57
		13.4.1 Теорема о непрерывности НИЗОП-2	58
		13.4.2 Критерий Коши	58
			58
			58
14		Ę	69
	14.1	Эйлеров интеграл 1-ого рода	59
			59
		14.1.2 Второе представление бетта функции	60
	14.2	Интеграл Эйлера $\int\limits_0^{+\infty} \frac{x^{p-1}}{1+x} dx$	31
		0	52
15		6	3
10			33
	10.1		33
			33
	15.2		54
		1 0	35
			35
			35
16		6	67
10			, . 37
			; 37
	10.2	1 / / 1	,. 37
	16.3	1 / 1 1	59
		-	
17		·	1
	17.1		71
			71
		1 1 1 1	72
		17.1.3 Вторая теорема Фруллани	73

1.1 Функциональные последовательности и ряды

Будем рассматривать последовательность функций $f_1, f_2, \dots f_n$, где функция $f_k : x \in X \longmapsto f_k(x)$ определена на некотором множестве X.

При фиксированном $x=x_0\in X$ мы получим числовую последовательность $(f_k(x_0)): x_0\in X.$

Определение 1. Если числовая последовательность $f_k(x_0)$ сходится, то говорят, что функциональная последовательность **сходится в точке** x_0 . Это означает, что:

$$\exists y_0 \in \mathbb{R}, \ \forall \epsilon > 0, \ \exists \nu = \nu(\epsilon, y_0) : \ \forall n \ge \nu \ \Rightarrow \ |f_n(x_0) - y_0| \le \epsilon \quad (\le M\epsilon)$$

В точке $x_0 \in X$ последовательность может быть **сходящейся** либо **расходящейся**.

Определение 2. Множество всех точек $x \in X$, в которых последовательность сходится, называется **множеством сходимости**.

Пусть X_1 — множество сходимости последовательности f_n . Тогда $X_1\subset X$. На множестве X_1 определена функция $f(x)=\lim_{n\to\infty}f_n(x), x\in X_1$

Записывается следующим образом: $f_n(x) \stackrel{X_1}{\underset{n \to \infty}{\longrightarrow}} f(x), \quad \forall x \in X_1$. Это означает, что

$$\exists y, \forall \epsilon > 0, \exists \nu = \nu(\epsilon, y) : \forall n \ge \nu \Rightarrow |f(x) - y| \le \epsilon, \forall x \in X_1 \quad (\le M\epsilon)$$

ПРИМЕР.

$$\lim_{n \to \infty} x^n = \begin{cases} 0, & -1 < x < 1, \\ 1, & x = 1; \end{cases}$$
 Множество сходимости: $X_1 = (-1, 1]$

1.1.1 Функциональный ряд

Пусть задана функциональная последовательность $u_k(x), k = 1, 2, \dots$ Построим следующую последовательность:

$$\begin{cases} S_1(x) = u_1(x) \\ S_2(x) = u_1(x) + u_2(x) \\ S_3(x) = u_1(x) + u_2(x) + u_3(x) \\ \dots \\ S_n(x) = \sum_{k=1}^n u_k(x) \end{cases}$$

последовательность сумм.

Её удобно изучать в виде $\sum_{k=1}^{\infty} u_k(x)$. (1)

Определение 3. (1) называется функциональным рядом.

Определение 4. Cуммы $S_n(x)$ называют **частными суммами ряда**.

Если последовательность $S_n(x)$ сходится на некотором множестве X, то есть имеет конечный предел $S_n(x) \overset{X}{\underset{n \to \infty}{\longrightarrow}} S(x) \in \mathbb{R}$, то говорят, что ряд **сходится в точке** x.

Таким образом сходимость ряда — это сходимость последовательности его частных сумм.

Определение 5.
$$S(x) - сумма \ pяда \ (S(x) = \sum_{k=1}^{\infty} u_k(x))$$

Если ряд сходится в каждой точке множества X, то можно задать функцию

$$S: x \longmapsto S(x) = \sum_{k=1}^{\infty} u_k(x)$$

Сходимость ряда в точке x означает, что

$$\forall \epsilon > 0, \exists \nu = \nu(\epsilon, x) : \forall n \ge \nu \Rightarrow \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \le \epsilon \quad (\le M\epsilon)$$

Пример. Рассмотрим ряд $\sum_{k=1}^{\infty} x^k = x + x^2 + x^3 + \cdots = \frac{x}{1-x}$. Он сходится при |x| < 1, множество сходимости: (-1;1)

Таким образом, ряд — это последовательность частных сумм $S_n(x)$.

С другой стороны, если задана последовательность $f_1(x), f_2(x), \ldots$, то можно построить ряд

$$f_1(x) + \sum_{k=1}^{\infty} (f_{k+1}(x) - f_k(x)) = f_1(x) + (f_2(x) - f_1(x)) + (f_3(x) - f_2(x)) + \dots$$

$$\begin{cases} S_1(x) = f_1(x) \\ S_2(x) = f_2(x) \\ \dots \\ S_n(x) = f_n(x) \end{cases}$$

То есть последовательность можно рассматривать как ряд и наоборот.

Тогда всякий результат, сформулированный и доказанный для рядов, может быть сформулирован и доказан для последовательности и наоборот. Это называется **принцип переноса результатов**.

1.1.2 Критерий Коши сходимости в точке

Теорема 1. Последовательность $f_n(x)$ сходится в точке $x \Leftrightarrow$

$$\forall \epsilon > 0, \exists \nu = \nu(\epsilon, x) : \forall n, m \ge \nu \Rightarrow |f_n(x) - f_m(x)| \le \epsilon \quad (\le M\epsilon)$$

Теорема 2. Pяд $\sum_{k=1}^{\infty} u_k(x)$ cходится в точке $x \Leftrightarrow$

$$\forall \epsilon > 0, \exists \nu = \nu \ (\epsilon, x) : \forall n, m \ge \nu \ (n > m) \Rightarrow \left| \sum_{k=m+1}^{n} u_k(x) \right| \le \epsilon \quad (\le M\epsilon)$$

🛇 Доказательство следует из теорем для числовых рядов, так как при фиксированном x мы имеем дело с числовым рядом(последовательностью). \blacksquare

Свойства слагаемых (элементов ряда) не переносятся на свойства суммы ряда.

ПРИМЕР. Рассмотрим ряд
$$\sum_{k=1}^{\infty} (x^k - x^{k+1}) = (x - x^2) + (x^2 - x^3) + \dots$$
 Посчитаем, чему равняются его частные суммы: $S_n(x) = x - x^{n+1}$

Найдем сумму ряда:
$$S(x) = \lim_{n \to \infty} S_n(x) = \begin{cases} x, & -1 < x < 1 \\ 0, & x = 1 \end{cases}$$

Ряд сходится на интервале (-1;1] к S(x). При других x предел не существует или бесконечен.

1.2 Равномерная сходимость

Пусть последовательность $f_n(x) \xrightarrow[n \to \infty]{X} f(x)$, то есть сходится в любой точке $x \in X$.

Определение 6. Говорят, что $f_n(x)$ сходится κ f(x) на X равномерно, если

$$\forall \epsilon > 0, \exists \nu = \nu(\epsilon) : \forall n \ge \nu, \forall x \in X \Rightarrow |f_n(x) - f(x)| \le \epsilon \quad (\le M\epsilon)$$

Обозначается $f_n(x) \stackrel{\Lambda}{\Longrightarrow} f(x)$.

Определение 7. Говорят, что ряд $\sum_{k=1}^{\infty} u_k(x)$ сходится на X равномерно, если

$$\forall \epsilon > 0, \exists \nu = \nu(\epsilon) : \forall n \ge \nu, \forall x \in X \Rightarrow \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \le \epsilon \quad (\le M\epsilon)$$

Обозначается $\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\rightrightarrows}$.

Если ряд сходится равномерно на X, то он сходится в каждой его точке, обратное в общем случае неверно(то же самое и для последовательностей

Пример. Рассмотрим последовательность
$$f_n(x) = \begin{cases} 1 - nx, & 0 \le x \le \frac{1}{n} \\ 0, & \frac{1}{n} < x \le 1 \end{cases}$$
, $x \in [0, 1]$
$$f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 1, & x = 0 \\ 0, & x \in (0, 1] \end{cases}$$

Последовательность сходится в каждой точке из [0,1], но если взять $\epsilon=\frac{1}{3},$ то

$$\exists n_0, \exists x_0 = \frac{1}{2n_0} : f_n(x_0) = 1 - n_0 \frac{1}{2n_0} = \frac{1}{2}$$

Тогда $|f_n(x_0) - f(x_0)| = \frac{1}{2} > \epsilon = \frac{1}{3} \Rightarrow$ последовательность не сходится равномерно на [0, 1].

Критерий Коши равномерной сходимости

Теорема 3. $f_n(x) \stackrel{X}{\Rightarrow} f(x) \Leftrightarrow \forall \epsilon > 0, \ \exists \nu = \nu(\epsilon) : \forall n, m \geq \nu, \ \forall x \in X \Rightarrow$

$$|f_n(x) - f_m(x)| \le \epsilon \quad (\le M\epsilon)$$

Теорема 4.
$$\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\rightrightarrows} \Leftrightarrow \forall \epsilon > 0, \; \exists \nu = \nu(\epsilon) : \forall n, m \geq \nu, (n > m), \forall x \in X \Rightarrow$$

$$\left| \sum_{k=m+1}^{n} u_k(x) \right| \le \epsilon \quad (\le M\epsilon)$$

- ♦ Доказательство проводится для последовательности.
- \Rightarrow Возьмём $\forall \epsilon > 0$, тогда из определения равномерной сходимости следует, что

$$\exists \nu : \begin{cases} n \ge \nu, \forall x \in X \Rightarrow |f_n(x) - f(x)| \le \epsilon \\ m \ge \nu, \forall x \in X \Rightarrow |f_m(x) - f(x)| \le \epsilon \end{cases}$$

Но тогда $|f_n(x)-f_m(x)| \leq |f_n(x)-f(x)|+|f_m(x)-f(x)| \leq \epsilon+\epsilon=2\epsilon$

 \Leftarrow Для $\forall x \in X$ выполняется критерий Коши сходимости числовой последовательности, то есть $\exists f(x)$, следовательно последовательность сходится.

В неравенстве $|f_n(x) - f_m(x)| \le \epsilon$ возьмём $n \ge \nu$, а $m \to \infty$.

Получим $|f_n(x) - f(x)| \le \epsilon$, $\forall x \in X$, то есть выполняется определение равномерной сходимости.

Теорема 4 также доказана на основании принципа переноса результатов.

2.1 Изучение равномерной сходимости

Пусть функция $f_n(x) \stackrel{X}{\to} f(x)$, а ряд $\sum_{k=1}^{\infty} u_k(x) = S(x)$, $x \in X$.

Тогда говорят, что функция $f_n(x)$ сходится к f(x) равномерно $(f_n(x) \stackrel{X}{\rightrightarrows} f(x))$, если

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon) : \forall n \geq \delta, \forall x \in X \Rightarrow |f_n(x) - f(x)| \leq \epsilon$$

и $\sum\limits_{k=1}^{\infty}u_k(x)$ сходится **равномерно** на множестве X $(\sum\limits_{k=1}^{\infty}u_k(x)\overset{X}{\Rightarrow}),$ если

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon) : \forall n \ge \delta, \forall x \in X \Rightarrow \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \le \epsilon$$

2.1.1 Признак Вейерштрасса

Рассмотрим функциональный ряд $\sum_{k=1}^{\infty} u_k(x), x \in X$. (1)

Определение 8. Числовой ряд $\sum_{k=1}^{\infty} C_k$ называют **мажорантой** на множестве X, если $|u_k(x)| \leq C_k, \, \forall x \in X.$

Теорема 5. Если для ряда (1) на X существует сходящаяся мажоранта, то ряд (1) сходится равномерно на X.

 \Diamond Для доказательства используем критерий Коши.

Возьмем любое $\epsilon > 0$. Тогда, так как $\sum_{k=1}^{\infty} C_k$ сходится, то

$$\exists \nu = \nu(\epsilon), \, \forall n, m \ge \nu \, (n > m) \Rightarrow \left| \sum_{k=m+1}^{n} C_k \right| = \sum_{k=m+1}^{n} C_k \le \epsilon$$

$$\left| \sum_{k=m+1}^{n} u_k(x) \right| \le \sum_{k=m+1}^{n} |u_k(x)| \le \sum_{k=m+1}^{n} C_k \le \epsilon$$

На основании критерия Коши ряд сходится равномерно.

Пример. Рассмотрим функциональный ряд $\sum_{k=1}^{\infty} \frac{\sin kx}{k\sqrt{k+2}}$. Тогда для него выполняется следующее:

$$\left| \frac{\sin kx}{k\sqrt{k+2}} \right| \le \frac{1}{k\sqrt{(k+2)}} \sim \frac{1}{k^{\frac{3}{2}}}$$

 $\sum_{k=1}^{\infty} \frac{1}{k\sqrt{k+2}}$ — сходящаяся мажоранта для ряда $\sum_{k=1}^{\infty} \frac{\sin kx}{k\sqrt{k+2}} \Rightarrow$ исходный функциональный ряд равномерно сходится на множестве \mathbb{R} .

Пусть функция $f_n(x) \stackrel{X}{\to} f(x)$. Это означает, что $|f_n(x) - f(x)| \stackrel{X}{\to} 0$.

Теорема 6. Если существует числовая последовательность d_n , такая что $|f_n(x) - f(x)| \le d_n$, $\forall x \in X$ и $d_n \underset{n \to \infty}{\to} 0$, то $f_n(x) \overset{X}{\Longrightarrow} f(x)$.

 \Diamond Возьмем любое $\epsilon > 0$. Тогда

$$\exists \nu = \nu(\epsilon) : \forall n \ge \nu, d_n \le \epsilon \Rightarrow |f_n(x) - f(x)| \le d_n \le \epsilon, \quad \forall x \in X$$

Отсюда получаем, что $f_n(x) \stackrel{X}{\Longrightarrow} f(x)$.

2.1.2 Супремальный критерий

Теорема 7. Пусть $f_n(x) \xrightarrow[n \to \infty]{X} f(x)$ и $\phi_n(x) = |f_n(x) - f(x)|$, а $\sigma_n = \sup_{X} \phi_n(x)$.

Тогда
$$f_n(x) \stackrel{X}{\Longrightarrow} f(x)$$
 при $n \to \infty \Leftrightarrow \sigma_n \underset{n \to \infty}{\to} 0$.

$$\diamondsuit \Leftarrow \Pi$$
усть $\sigma_n \underset{n \to \infty}{\to} 0$.

Тогда по теореме 6 следует, что $f_n(x) \stackrel{X}{\Longrightarrow} f(x)$. Достаточно взять $d_n = \sigma_n$.

$$\Rightarrow$$
 Пусть $f_n(x) \stackrel{X}{\Rightarrow} f(x)$.

Допустим, что $\sigma_n \to 0$, то есть $\exists \epsilon$, такое что $\forall \nu$, $\exists m : |\sigma_m| > \epsilon$. Но σ_m — это супремум, тогда по свойству супремума $\exists x_m$, т.ч. $\phi_m(x_m)$ отличается от σ_m не больше, чем на $\frac{\epsilon}{2}$. Тогда

$$|\phi_m(x_m)| > \frac{\epsilon}{2}$$

Это означает, что неравенство $|\phi_m(x)| \leq \frac{\epsilon}{2}$ не выполняется для любого $x \in X$. То есть, равномерной сходимости нет. Получили противоречие.

Пример. Рассмотрим последовательность $f_n(x) = x^n - x^{2n}, \ x \in [0,1].$

$$f(x) = \lim_{n \to \infty} f_n(x) = 0, \forall x \in [0, 1]$$

Поэтому $\phi_n(x) = |x^n - x^{2n} - 0| = x^n - x^{2n}$.

Найдем супремум функции $\phi_n(x)$. В данном случае, это будет максимум функции $\phi_n(x)$, т.к. она непрерывна (смотрите теорему Вейерштраса).

$$\phi'_n(x) = nx^{n-1} - 2nx^{2n-1} = (1 - 2x^n)nx^{n-1} = 0$$

При этом
$$\sigma_n = \sup_{[0,1]} \phi_n(x) = \phi_n({}^n\sqrt{\frac{1}{2}}) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \nrightarrow 0.$$

Вывод: последовательность сходится на [0, 1], но не сходится равномерно.

Пример. Рассмотрим функциональную последовательность $f_n(x) = x^n - x^{n+1}, x \in [0, 1]$.

$$f(x) = \lim_{n \to +\infty} f_n(x) = 0, \ \forall x \in [0, 1]$$

Тогда $\phi_n(x) = x^n - x^{n+1}$ и $\phi_n(0) = 0, \phi_n(1) = 0.$

$$\phi'_n(x) = nx^{n-1} - (n+1)x^n = x^{n-1}(n-(n+1)x) = 0 \Rightarrow x_0 = \frac{n}{n+1}$$
 – корень

$$\phi_n(x_0) = x^n (1-x)|_{x=x_0} = \left(\frac{n}{n+1}\right)^n \left(1 - \frac{n}{n+1}\right) = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \frac{1}{1+n} \xrightarrow[n \to \infty]{} \frac{1}{e} \cdot 0 = 0$$

Имеем $\sigma_n \to 0$, последовательность сходится по супремальному критерию.

2.2 Признаки Дирихле и Абеля равномерной сходимости

2.2.1 Признак Дирихле

Теорема 8. Будем рассматривать ряд вида: $\sum_{k=1}^{\infty} u_k(x)v_k(x), x \in X$. (2)

- 1. Пусть существует $M: |\sum_{k=1}^n u_k(x)| \leq M, \ \forall n, \forall x \in X.$
- 2. Последовательность $v_k(x) \stackrel{X}{\rightrightarrows} 0$ и монотонна при каждом фиксированном x.

Тогда ряд (2) сходится равномерно на множестве X.

Пример. Рассмотрим ряд $\sum\limits_{k=1}^{\infty} rac{\sin kx}{k}, \ x \in [a,b] \subset (0,\pi).$

Возьмем
$$u_k(x) = \sin kx$$
, $|\sum_{k=1}^n \sin kx| \le |\frac{1}{\sin \frac{x}{2}}| \le M - \min\{\sin a, \sin b\}$, $\forall x \in [a, b]$.

Возьмем $v_k(x) = \frac{1}{k}$. Последовательность $v_k(x)$ не зависит от x и стремится к 0 монотонно, а следовательно оно стремится к 0 равномерно.

Значит по признаку Дирихле $\sum_{k=1}^{\infty} \frac{\sin kx}{k} \stackrel{[a,b]}{\Rightarrow}$.

2.2.2 Признак Абеля

Теорема 9. Будем рассматривать ряд (2).

- 1. $\sum_{k=1}^{\infty} u_k(x)$ сходится равномерно на множестве X.
- 2. Последовательность $v_k(x)$ монотонна при каждом фиксированном x и равномерно ограничена. Т.е. $\exists M: |v_k(x)| \leq M, \ \forall k, \forall x \in X.$

Тогда ряд (2) сходится равномерно на X.

Пример. $\sum_{k=2}^{\infty} \frac{\sin kx \cdot \arctan kx^2}{\ln k}, \ x \in [a,b] \subset (0,\pi).$ Пусть $v_k(x) = \arctan kx^2$. Тогда последовательность стремится к $\frac{\pi}{2} \ \forall x \in [a,b]$. Отсюда следует, что последовательность $v_k(x)$ равномерно ограничена и монотонна при любом фиксированном x.

Пусть $\sum_{k=2}^{\infty}u_k(x)=\sum_{k=2}^{\infty}rac{\sin kx}{\ln k}$. Этот ряд сходится равномерно по признаку Дирихле на

промежутке [a,b]. Следовательно получаем, что $\sum\limits_{k=2}^{\infty}u_k(x)\stackrel{[a,b]}{\Longrightarrow}$.

На основании признака Абеля исходный ряд сходится равномерно на [a,b].

3.1 Предельный переход в рядах и последовательностях

Рассмотрим множество $X \subset \mathbb{R}$ и пусть x_0 предельная точка множества X.

Теорема 10. 1. Пусть ряд
$$\sum_{k=1}^{\infty} u_k(x) = S(x), x \in X$$
 сходится.

2. Существует предел $\lim_{x \to x_0} u_k(x) = b_k \in \mathbb{R}, \ \forall k.$

3.
$$\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Longrightarrow}$$
.

Тогда
$$\lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{k=1}^{\infty} u_k(x) = \sum_{k=1}^{\infty} \lim_{x \to x_0} u_k(x) = \sum_{k=1}^{\infty} b_k$$
 (1).

Теорема 11. 1. Пусть последовательность $f_n(x) \underset{n \to \infty}{\longrightarrow} f(x), x \in X$.

2. Существует предел $\lim_{x\to x_0} f_n(x) = b_n, \ n=1,2,\ldots$

3.
$$f_n(x) \stackrel{X}{\Longrightarrow} f(x)$$
.

Тогда
$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} (\lim_{n\to\infty} f_n(x)) = \lim_{n\to\infty} (\lim_{x\to x_0} f_n(x)) = \lim_{n\to\infty} b_n$$
 (2).

Формулы (1) и (2) говорят о том, что допускается почленный предельный переход.

 \diamondsuit Доказательство проведем для теоремы 10. Докажем, что $\sum_{k=1}^{\infty} b_k$ сходится.

Возьмем любое $\epsilon>0$. Учитывая условие 3, по критерию Коши равномерной сходимости рядов $\exists \nu=\nu(\epsilon): \ \forall n,m\geq \nu \ (n>m), \ \forall x\in X\Rightarrow |\sum_{k=m+1}^n u_k(x)|\leq \epsilon.$

В последнем неравенстве конечное число слагаемых и поэтому

$$\lim_{x \to x_0} \left| \sum_{k=m+1}^n u_k(x) \right| = \left| \sum_{k=m+1}^n \lim_{x \to x_0} u_k(x) \right| = \left| \sum_{k=m+1}^n b_k \right| \le \epsilon$$

Работает критерий Коши для сходимости числового ряда, а следовательно $\sum_{k=1}^{\infty} b_k$ сходится.

Рассмотрим
$$\left| \sum_{k=1}^{\infty} u_k(x) - \sum_{k=1}^{\infty} b_k \right|$$
. $\left| \sum_{k=1}^{\infty} u_k(x) - \sum_{k=1}^{\infty} b_k \right| \le \sum_{k=1}^{n} |u_k(x) - b_k| + \left| \sum_{k=n+1}^{\infty} u_k(x) \right| + \left| \sum_{k=n+1}^{\infty} b_k \right| \le *$

Следуя из пункта 3 и того, что $\sum_{k=1}^{\infty} b_k$ сходится, то

$$\exists \nu_{\epsilon}, \forall n_0 \geq \nu_{\epsilon} \Rightarrow \left| \sum_{k=n_0+1}^{\infty} u_k(x) \right| \leq \epsilon, \forall x \in X \text{ in } \left| \sum_{k=n_0+1}^{\infty} b_k \right| \leq \epsilon$$

Зафиксируем это $n_0 \ge \nu_\epsilon$ и так как выполняется пункт 2 из теоремы, то :

$$\exists \delta_{\epsilon}, \forall x \in X, 0 < |x - x_0| \le \delta_{\epsilon} \Rightarrow |u_k(x) - b_k| \le \frac{\epsilon}{n_0}$$

Тогда $\sum_{k=1}^{n_0} |u_k(x) - b_k| \le \epsilon$, а значит $* \le \epsilon + \epsilon + \epsilon = 3\epsilon$. Отсюда следует, что (1) верно.

Теорема 11 доказывается на основании принципа переноса результатов. Пример. Доказать, что $\sum_{k=1}^{\infty} \frac{1}{k^x}$ сходится равномерно при $x \in (1, +\infty)$.

В качестве точки x_0 возьмем точку 1.

$$\lim_{x \to x_0} \frac{1}{k^x} = \frac{1}{k} = b_k$$

По теореме 10 получаем, что равномерной сходимости на этом промежутке нет.

Теорема Стокса-Зейделя 3.1.1

1. Пусть $u_k(x)$ непрерывны в точке $x_0 \in X$. Теорема 12.

$$2. \ P$$
яд $\sum_{k=1}^{\infty} u_k(x) \stackrel{X}{\Rightarrow} .$

Тогда сумма ряда $\sum_{k=1}^{\infty} u_k(x) = S(x)$ непрерывна в точке x_0 .

1. Пусть функции $f_n(x)$ непрерывны в точке $x_0 \in X$. Теорема 13.

2. Последовательность $f_n(x) \stackrel{X}{\Longrightarrow} f(x)$

Тогда функция f(x) непрерывна в точке x_0 .

♦ Доказательство проведем для теоремы 12.

Так как $u_k(x)$ непрерывна в точке x_0 , то $\exists b_k = \lim_{x \to x_0} u_k(x) = u_k(x_0)$.

Тогда по теореме $10\lim_{x\to x_0}S(x)=\sum_{k=1}^\infty\lim_{x\to x_0}u_k(x)=\sum_{k=1}^\infty u_k(x_0)=S(x_0).$ Следовательно S(x) непрерывна в точке x_0 .

Пример. Рассмотрим функциональный ряд $\sum_{k=1}^{\infty} (x^k - x^{k+1})$. В качестве $u_k(x)$ возьмем $u_k(x) = x^k - x^{k+1}$.

Рассмотрим частную сумму $S_n(x) = (x - x^2) + (x^2 - x^3) + \dots + (x^n - x^{n+1}) = x - x^{n+1}$.

$$S(x) = \lim_{n \to \infty} S_n(x) = \begin{cases} 0, & x = 1 \\ x, & 0 \le x < 1 \end{cases} \quad x \in [0, 1]$$

Если бы ряд сходился равномерно на [0, 1], то сумма ряда была бы непрерывна на этом отрезке. Сумма в данном случае не является непрерывной функцией, тогда равномерной сходимости нет.

3.1.2 Теорема Дини

Теорема 14. 1. Пусть члены ряда $u_k(x)$ и его сумма S(x) непрерывны на отрезке [a,b].

2. $u_k(x) \ge 0, \ \forall x \in [a, b], \forall k.$ Тогда $\sum_{k=1}^{\infty} u_k(x) \stackrel{[a,b]}{\Longrightarrow}$

3.2 Почленное интегрирование

Теорема 15. 1. $u_k(x)$ непрерывны на [a, b].

2. $\sum_{k=1}^{\infty} u_k(x) \stackrel{[a,b]}{\Longrightarrow}.$ $Tor \partial a \int_a^b \sum_{k=1}^{\infty} u_k(x) dx = \sum_{k=1}^{\infty} \int_a^b u_k(x) dx \ (3).$

Теорема 16. 1. Пусть $f_n(x)$ непрерывна на [a,b].

2. $f_n(x) \stackrel{X}{\Longrightarrow} f(x)$. $Tor \partial a \int_a^b f(x) dx = \int_a^b (\lim_{n \to \infty} f_n(x)) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$ (4).

♦ Докажем теорему 16.

Возьмем любое $\epsilon > 0$.

Функция f(x) интегрируема на [a,b], так как она непрерывна на основании теоремы

13. При этом $\left|\int_a^b f(x)dx - \int_a^b f_n(x)dx\right| = \left|\int_a^b (f(x) - f_n(x))dx\right| \le \int_a^b |f(x) - f_n(x)|dx \le *$ Учитывая условие 2, то $\exists \nu_\epsilon, \forall n \ge \nu_\epsilon, \forall x \in [a,b] \Rightarrow |f_n(x) - f(x)| \le \epsilon$.

$$* \le \int_{a}^{b} \epsilon dx = \epsilon (b - a)$$

Значит выполняется соотношение (4). ■

3.3 Почленное дифференцирование

Теорема 17. 1. Пусть ряд $\sum_{k=1}^{\infty} u_k(x)$ сходится и имеет сумму $S(x), x \in [a, b]$.

2. Члены ряда, т.е. функции $u_k(x)$, имеют непрерывные производные.

3. $\sum_{k=1}^{\infty} u'_k(x) \stackrel{[a,b]}{\Longrightarrow}$

Tогда функция S(x) имеет непрерывную производную:

$$S'(x) = \left(\sum_{k=1}^{\infty} u_k(x)\right)' = \sum_{k=1}^{\infty} u'_k(x) \quad (5)$$

14

1. Пусть последовательность $f_n(x)$ сходится κ f(x) на [a,b], Теорема 18. $npu \ n \to \infty$.

- 2. Элементы $f_n(x)$ имеют непрерывные производные $f'_n(x), n = 1, 2, ...$
- 3. Последовательность из производных $f_n'(x) \stackrel{[a,b]}{\Longrightarrow} \kappa$ своему пределу.

Тогда
$$f'(x) = (\lim_{n \to \infty} f_n(x))' = \lim_{n \to \infty} f'_n(x).$$

♦ Доказательство проведем для теоремы 17.

Обозначим $\sum_{k=1}^{\infty} u'_k(x) = S^*(x)$.

Заметим, что функция $S^*(x)$ непрерывна (Т. Стокса-Зейделя). Из условия 3 следует, что $\sum_{k=1}^{\infty} u_k'(x) \stackrel{[a,x]}{\Rightarrow}, \ \forall x \in [a,b].$

На основании теоремы 15 можем записать:

$$\int_{a}^{x} S^{*}(x)dx = \int_{a}^{x} \left(\sum_{k=1}^{\infty} u'_{k}(x)\right) dx = \sum_{k=1}^{\infty} \int_{a}^{x} u'_{k}(x)dx = \sum_{k=1}^{\infty} (u_{k}(x) - u_{k}(a)) = S(x) - S(a)$$

To есть
$$\int_{a}^{x} S^{*}(x)dx = S(x) - S(a)$$
 (6).

Продифференцируем (6) по x. Тогда по теореме Барроу получаем: $S^*(x) = S'(x)$.

Таким образом $S'(x) = \sum_{k=1}^{\infty} u_k'(x)$. Теорема доказана. \blacksquare

Пример. Рассмотрим $\sum_{k=1}^{\infty} \frac{\sin kx}{k^3}$.

Так как функция $\left(\frac{\sin kx}{k^3}\right)' = \frac{\cos kx}{k^2}$ непрерывна на любом отрезке [a,b] и $\sum_{k=1}^{\infty} u_k'(x) =$

 $=\sum_{k=1}^{\infty} \frac{\cos kx}{k^2} \stackrel{[a,b]}{\Longrightarrow}$, поскольку имеет сходящуюся мажоранту $\sum_{k=1}^{\infty} \frac{1}{k^2}$, то этот ряд можно дифференцировать почленно при любом x.

Определение 9. Говорят, что ряд(последовательность) сходится локально равно**мерно на множестве** X, если он сходится равномерно $\forall [a,b] \in X$.

В теореме Стокса-Зейделя и в теореме о почленном дифференцировании можно требовать вместо равномерной сходимости локально равномерную сходимость.

Пример. Рассмотрим ряд $\sum\limits_{k=1}^{\infty} \frac{1}{k^x}, x \in (1, +\infty)$ Возьмем любой отрезок $[a,b] \subset (1, +\infty)$. Тогда

$$\frac{1}{k^x} \le \frac{1}{k^a}, \forall x \in [a, b]$$

Ряд $\sum_{k=0}^{\infty} \frac{1}{k^a}$ сходится и является сходящейся мажорантой для исходного ряда. Тогда по

признаку Вейерштрасса $\sum_{k=1}^{\infty} \frac{1}{k^x} \stackrel{[a,b]}{\Longrightarrow}$, т.е. на промежутке $(1,+\infty)$ этот ряд сходится локально равномерно.

Покажем, что сумма ряда дифференцируема в любой точке $(1, +\infty)$.

Возьмем $\forall x \in [a,b] \subset (1,+\infty)$ и применим теорему о почленном дифференцировании.

$$\left(\frac{1}{k^x}\right)' = (k^{-x})' = -k^{-x} \ln k = -\frac{\ln k}{k^x}$$

Теперь докажем, что ряд $\sum_{k=1}^{\infty} -\frac{\ln k}{k^x}$ сходится равномерно на отрезке [a,b].

$$\left| -\frac{\ln k}{k^x} \right| \le \frac{\ln k}{k^a}, \ \forall x \in [a, b]$$

Положим $a=1+\epsilon$, где $\epsilon>0$. Тогда

$$\frac{\ln k}{k^a} = \frac{\ln k}{k^{1+\epsilon}} = \frac{\ln k}{k^{\frac{\epsilon}{2}}k^{1+\frac{\epsilon}{2}}} \le \frac{1}{k^{1+\frac{\epsilon}{2}}}$$

Ряд $\sum_{k=1}^{\infty} \frac{1}{k^{1+\frac{\epsilon}{2}}}$ сходится и является сходящейся мажорантой для ряда $\sum_{k=1}^{\infty} -\frac{\ln k}{k^x}$, а значит по признаку Вейерштрасса это ряд сходится равномерно на отрезке [a,b].

4.1 Степенные ряды

Определение 10. Степенными рядами называем ряды следующих видов:

$$\bullet \sum_{k=0}^{\infty} a_k x^k (1) \qquad \bullet \sum_{k=0}^{\infty} a_k (x - x_0)^k (2) \qquad (x, a_k, x_0 \in \mathbb{R})$$

Замена $x-x_0=X$ приводит ряд (2) к виду (1): $\sum_{k=0}^{\infty}a_kX^k$. Поэтому если ряд (2) сходится

в \bar{X} , то (1) сходится в точке $\bar{X} = \bar{x} - x_0$.

4.1.1 Теорема Абеля

Теорема 19. Если ряд (1) сходится при x = u, то он сходится абсолютно при любом |x| < |u|. Ряд (1) будет сходиться на промежутке (-R; R), где R = |u|.

Теорему Абеля можно применить и к рядам (2). Пусть в x = u ряд (1) сходится. Тогда для любого $x : |x - x_0| < |u|$ сходится ряд (2). Тогда ряд (2) будет сходиться на промежутке $(x_0 - R; x_0 + R)$, где R = |u|.

4.1.2 Радиус сходимости, множество сходимости ряда

Определение 11.

- Для ряда (1) положим $R = \sup\{x \mid (1) \ cxodumcs \ ex\}.$
- Для ряда (2) положим $R = \sup\{x x_0 \mid (2) \text{ сходится в } x\}.$

R называют **радиусом сходимости** степенного ряда.

Теорема 20. Для радиуса сходимости степенного ряда верны следующие формулы :

•
$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$
 (формула Д'Аламбера) • $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$ (формула Коши)

Примечание: Эти формулы, понятное дело, работают только если описанные пределы существуют.

 \Diamond Положим $D = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$.

Применяя критерий Д'Аламбера для числовых рядов к ряду (2) получаем следующий предел :

$$\lim_{n \to \infty} \frac{|a_n(x - x_0)^n|}{|a_{n+1}(x - x_0)^{n+1}|} = \left(\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}\right) \cdot \frac{1}{|x - x_0|} = \frac{D}{|x - x_0|}$$

При $\frac{D}{|x-x_0|} < 1 \Leftrightarrow |x-x_0| > D$ ряд будет расходиться, значит $R \leq D$. С другой стороны при $\frac{D}{|x-x_0|} > 1 \Leftrightarrow |x-x_0| < D$ ряд сходится и $R \geq D$. Значит R = D.

Положим $K = \frac{1}{\lim\limits_{n \to \infty} \sqrt[n]{|a_n|}}$.

Применяя признак Коши для числовых рядов к ряду (2) получаем :

$$\lim_{n \to \infty} \sqrt[n]{|a_n| |x - x_0|^n} = \left(\lim_{n \to \infty} \sqrt[n]{|a_n|}\right) \cdot |x - x_0| = \frac{|x - x_0|}{K}$$

Если $\frac{|x-x_0|}{K}>1$ то (2) расходится $\Rightarrow R\leq K$. С другой стороны (2) сходится при $\frac{|x-x_0|}{K}<1$ и тогда $R\geq K$, а значит R=K.

Примечание : В некоторых случаях формула Коши не работает, но работает ее обобщение : $R = \frac{1}{\lim\limits_{n \to \infty} \sqrt[n]{|a_n|}}$ (формула Коши-Адамара).

 $\mathbf{\Pi}$ ример. Найти область сходимости ряда $\sum\limits_{k=1}^{\infty} rac{x^k}{k}$

Воспользуемся формулой Д'Аламбера получаем, что $R=\lim_{n\to\infty}\frac{n+1}{n}=1.$ Значит ряд точно сходится на (-1;1).

При x = 1 мы знаем что этот ряд расходится.

При x = -1 можно легко убедиться что этот ряд сойдется.

В итоге ряд сходится на [-1;1).

 Π РИМЕР. Найти область сходимости ряда $\sum\limits_{k=1}^{\infty} rac{(x-2)^k}{k^2}$

Пользуемся формулой Коши получаем, что $\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^2}} = \lim_{n \to \infty} n^{\left(-\frac{2}{n}\right)} = 1$. Тогда ряд точно сходится на (1;3).

При x=3 получаем ряд обратных квадратов $\sum\limits_{k=1}^{\infty} \frac{1}{k^2},$ который как мы знаем сходится.

При x=1 также получаем сходящийся ряд $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$.

В итоге ряд сходится на [1;3].

Пример. Найти область сходимости ряда $\sum_{k=0}^{\infty} k! \cdot x^k$

Пользуясь формулой Д'Аламбера получаем, что $R = \lim_{n \to \infty} \frac{n!}{(n+1)!} = 0$. То есть ряд сходится только на $\{0\}$.

Пример. Найти радиус сходимости ряда $\sum_{k=0}^{\infty} 3^{(-1)^k \cdot k} \cdot x^k = 1 + \frac{1}{3} \cdot x + 3^2 \cdot x^2 + \frac{1}{3^3} \cdot x^3 + \dots$

Формула Коши здесь уже не даст никаких результатов. Поэтому воспользуемся формулой Коши-Адамара :

$$\frac{1}{R} = \overline{\lim_{n \to \infty}} \sqrt[n]{3^{(-1)^n \cdot n}} = \overline{\lim_{n \to \infty}} 3^{(-1)^n} = 3 \Rightarrow R = \frac{1}{3}$$

4.2 Равномерная сходимость степенного ряда

Теорема 21. Пусть R - радиус сходимости ряда (2). Тогда для любого $I = [x_0 - r; x_0 + r] \subseteq (x_0 - R; x_0 + R)$ ряд (2) сходится равномерно на I.

 \diamondsuit Ряд (2) имеет в качестве числовой мажоранты ряд $\sum_{k=0}^{\infty} |a_k| \mu^k$, где $\mu = \max(|x_0 - r|, |x_0 + r|)$ (из теоремы Абеля следует абсолютная сходимость, а значит она позволяет гарантировать сходимость мажоранты).

Тогда по признаку Вейерштрасса ряд (2) сходится равномерно. ■

Можно показать, что ряд (2) задает непрерывную функцию на $(x_0 - R; x_0 + R)$.

Для доказательства непрерывности в точке $x \in (x_0 - R; x_0 + R)$ достаточно просто выбрать такое $I \subseteq (x_0 - R; x_0 + R)$, что $x \in I$ и воспользоваться теоремой Стокса-Зейделя.

Теорема 22. Пусть R - радиус сходимости ряда (2) и пусть (2) сходится в $x = x_0 + R$ (или в $x = x_0 - R$).

Тогда для любого $a \in (x_0 - R; x_0 + R)$ ряд (2) сходится равномерно на $[a; x_0 + R]$ (или $[x_0 - R; a]$) и задает непрерывную функцию на $(x_0 - R; x_0 + R]$ (или $[x_0 - R; x_0 + R]$).

♦ Доказательство строится по аналогии с предыдущими рассуждениями.

В качестве числовой мажоранты для ряда (2) на $[a; x_0 + R]$ берем $\sum_{k=0}^{\infty} |a_k| \mu^k$, где $\mu = \max(|a|, |x_0 + R|)$, а затем пользуемся теоремой Вейерштрасса.

Для доказательства непрерывности снова используем теорему Стокса-Зейделя.

4.3 Интегрирование и дифференцирование степенных рядов

Лемма 1. Пусть R - радиус сходимости ряда (2). Тогда такой же радиус сходимости имеют и ряды :

(D)
$$\sum_{k=1}^{\infty} k a_k (x - x_0)^{k-1}$$
 (I) $\sum_{k=0}^{\infty} \frac{a_k}{k+1} (x - x_0)^{k+1}$

♦ Воспользуемся формулой Коши-Адамара:

$$(D) \ \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|na_n|}}} = \left(\frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|n|}}}\right) \cdot \left(\frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}\right) = 1 \cdot R = R$$

$$(I) \ \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|\frac{a_n}{n+1}|}} = \left(\frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{\frac{1}{n+1}}}\right) \cdot \left(\frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}\right) = 1 \cdot R = R$$

В качестве вывода из этой теоремы получается несколько пунктов:

- Рассмотренные в теореме ряды как и исходный ряд сходятся на $(x_0 R; x_0 + R)$
- Исходя из теоремы о почленном дифференцировании $\text{функционального ряда}: \left(\sum_{k=0}^\infty a_k(x-x_0)^k\right)' = \sum_{k=0}^\infty \left(a_k(x-x_0)^k\right)' = \sum_{k=1}^\infty k a_k(x-x_0)^{k-1}$
- Пусть $w \in (x_0 R; x_0 + R)$. Тогда исходя из теоремы о почленном интегрировании функционального ряда : $\int_{x_0}^w \left(\sum_{k=0}^\infty a_k (x-x_0)^k\right) dx = \sum_{k=0}^\infty \left(\int_{x_0}^w a_k (x-x_0)^k dx\right) = \sum_{k=0}^\infty \frac{a_k}{k+1} (w-x_0)^{k+1}$

• Ясно, что функция заданная рядом (2) бесконечно интегрируема и дифференцируема на $(x_0 - R; x_0 + R)$.

Пример. Пусть дан ряд $S(x) = \sum_{k=1}^{\infty} \frac{x^k}{k}$.

Как мы видели ранее R = 1 и ряд сходится лишь на [-1;1). Отметим следующее:

- $S'(x) = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$. И этот ряд сходится как и исходная функция на [-1;1)
- $\int\limits_0^w S'(x)dx = \int\limits_0^w \frac{1}{1-x}dx = -\ln(1-w) = S(w)$. Только что мы получили разложение для функции $-\ln(1-x)$.

Пример. Пусть дан ряд $S(x) = \sum_{k=1}^{\infty} kx^{k-1}$

Легко видеть, что R = 1 и ряд сходится лишь на (-1; 1).

Попробуем взять интеграл от S(x):

$$\int_{0}^{w} S(x)dx = \sum_{k=1}^{\infty} \left(\int_{0}^{w} (kx^{k-1}) dx \right) = \sum_{k=1}^{\infty} x^{k} = \frac{x}{1-x}$$

5.1 Разложение функций в степенные ряды

Задача: f(x) представимо в виде степенного ряда на [a,b].

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k, \ x \in (a, b) \ (1)$$

- а) Какие условия у функции для того, чтобы она была разложима в виде (1)?
- б) Если можно, то как найти коэффициенты?
- в) Единственным ли образом ищутся коэффициенты?

5.1.1 Необходимое условие разложимости функции в степенной ряд

Теорема 23. Если (1) возможно, то f(x) должна иметь производные любого порядка: $\exists f^{(k)}(x), x \in (a,b), \forall k.$

 $\diamondsuit f(x) = \sum_{k=0}^{\infty} a_k (x-x_0)^k$, а этот ряд бесконечно-дифференцируем. Теорема доказана. \blacksquare

Пусть $f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \ldots + a_n(x - x_0)^n + \ldots$ — бесконечно-дифференцируема и можно дифференцировать функцию почленно. Тогда:

$$a_0 = f(x_0), \quad f'(x) = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + \ldots + na_n(x - x_0)^{n-1} = [$$
при $x = x_0] = a_1$

Получаем, что при $x = x_0 : f'(x_0) = a_1$.

$$a_1 = f'(x_0), \quad f''(x) = 2 \cdot 1a_2 + 3 \cdot 2a_3(x - x_0) + \ldots + n \cdot (n - 1)a_n(x - x_0)^{n - 2} = [\text{при } x = x_0] = 2!a_2$$

При
$$x = x_0 : \frac{f''(x_0)}{2!} = a_2$$
 и т.д.

Получаем, что
$$a_k = \frac{f^{(k)}(x_0)}{k!}$$
 — коэффициент Тейлора $\Rightarrow f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$.

Так как a_k определяется единственным образом, то и (1) определяется единственным образом.

ПРИМЕР. Рассмотрим функциональную последовательность

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases} \quad x \in (-1, 1)$$

Легко увидеть, что $a_0 = f(0) = 0$. Найдем остальные коэффициенты.

$$a_{1} = f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{-\frac{1}{\Delta x^{2}}} - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} e^{-\frac{1}{\Delta x^{2}}} =$$

$$= \left[\frac{1}{\Delta x} = y, y \to \infty\right] = \lim_{y \to \infty} y e^{-y^{2}} = 0$$

$$a_{2} = \lim_{\Delta x \to 0} \frac{f'(0 + \Delta x) - f'(0)}{\Delta x} = [f'(x) = e^{-\frac{1}{x^{2}}} \cdot \frac{2}{x^{3}}] = \lim_{\Delta x \to 0} \frac{e^{-\frac{1}{\Delta x^{2}}} \cdot \frac{2}{\Delta x^{3}} - 0}{\Delta x} =$$

Получаем, что $a_k = 0, \forall k \Rightarrow$ ряд этой функции — это ряд, в котором все коэффициенты равняются 0. Значит S(x) = 0.

 $=\lim_{\Delta x \to 0} e^{-\frac{1}{\Delta x^2}} \cdot \frac{2}{\Delta x^4} = \left| \frac{1}{\Delta x} = y, y \to \infty \right| = \lim_{y \to \infty} 2y^4 e^{-y^2} = 0$

5.1.2 Критерий разложимости функции в степенной ряд

Теорема 24. Для того, чтобы f(x) могло быть представимо в виде ряда (1) необходимо и достаточно, чтобы остаточный член в формуле Тейлора для f(x) в точке x_0 стремился к 0 для любого x, т.е. $R_n(x_0) \underset{n \to \infty}{\to} 0, \forall x \in (a,b)$.

$$\diamondsuit$$
 Формула Тейлора: $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x)$. Пусть $n \to \infty \Rightarrow (1)$ возможно $\Leftrightarrow R_n(x) \underset{n \to \infty}{\to} 0$

$$R_n(x)=rac{f^{(n+1)}(x_0+ heta(x-x_0))}{(n+1)!}(x-x_0)^{(n+1)}$$
 — остаточный член в форме Лагранжа. $R_n(x)=rac{f^{(n+1)}(x_0+ heta(x-x_0))}{n!}(1- heta)^n(x-x_0)^{(n+1)}$ — остаточный член в форме Коши.

5.1.3 Основные разложения

Используя разложение по формуле Тейлора и отмеченные ранее соответствующие оценки остаточных членов, можно получить разложение в ряд(ряд Тейлора) для следующих функций:

1.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \forall x \in \mathbb{R}$$

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \forall x \in \mathbb{R}$$

3.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}, \forall x \in \mathbb{R}$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}, \forall x \in (-1,1]$$

5.
$$(1+x)^{\mu} = 1 + \mu x + \frac{\mu(\mu-1)}{2!}x^2 + \frac{\mu(\mu-1)(\mu-2)}{3!}x^3 + \dots, \ \mu \in \mathbb{R}, x \in (-1,1)$$

При некотором μ x будет принадлежать большему интервалу.

Используя 1 - 5 можно строить разложение для других элементарных функций.

Пример.

1)
$$\ln \frac{1+x}{1-x} = \ln (1+x) - \ln (1-x) = [$$
используем $4] = \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \ldots\right) - \left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \ldots\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots\right) = 2\sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}$

2)
$$(\arctan x)' = \frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$

Проинтегрируем на отрезке [0, x)

$$\arctan x = \sum_{k=0}^{\infty} (-1)^k \left. \frac{x^{2k+1}}{2k+1} \right|_0^x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$$

3)
$$\int_{0}^{x} e^{-t^2} dt = [\text{He берущийся интеграл}] = \int_{0}^{x} (\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} t^{2k}) dt = \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k+1}}{k!(2k+1)} \bigg|_{0}^{x} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{k!(2k+1)}$$

Использование степенных рядов может быть полезным при решении функциональных уравнений.

ПРИМЕР.
$$\begin{cases} (1-x^2)y'' - xy' - y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

Будем решать уравнение при $x_0 = 0$

$$y = \sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots$$
$$y(0) = 1 = a_0$$

$$y'(0) = a_1 + 2a_2x + \ldots = [$$
при $x = 0] = 0 \Rightarrow a_1 = 0$

Подставим a_0 и a_1 в уравнение y. Получаем:

$$y = 1 + a_2 x^2 + a_3 x^3 + \dots = 1 + \sum_{k=2}^{\infty} a_k x^k$$

Посчитаем производные y' и y'' и подставим их в исходное уравнение.

$$y' = \sum_{k=2}^{\infty} k a_k x^{k-1}, \quad y'' = \sum_{k=2}^{\infty} k (k-1) a_k x^{k-2}$$

$$(1-x^2) \sum_{k=2}^{\infty} k (k-1) a_k x^{k-2} - x \sum_{k=2}^{\infty} k a_k x^{k-1} - 1 - \sum_{k=2}^{\infty} a_k x^k = 0$$

$$\sum_{k=2}^{\infty} k (k-1) a_k x^{k-2} - \sum_{k=2}^{\infty} k (k-1) a_k x^k - \sum_{k=2}^{\infty} k a_k x^k - 1 - \sum_{k=2}^{\infty} a_k x^k = 0$$

$$\sum_{k=2}^{\infty} a_k (k (k-1) x^{k-2} - k (k-1) x^k - k x^k - x^k) = 1$$

$$x^n (n+2) (n+1) a_{n+2} - n (n-1) a_n - n a_n - a_n = 0 \Rightarrow$$

$$a_{n+2} = \frac{n^2 + 1}{(n+2)(n+1)} a_n$$

Так как $a_1=0$, то $a_3=a_5=\ldots=0$, а

$$a_2 = \frac{5}{12}, \ a_4 = \frac{5}{12} \cdot \frac{17}{30} = \frac{17}{72}$$
 и т.д.

6.1 Несобственный интеграл 1-го рода(НИ-1)

При изучении интеграла $\int_a^b f(x)dx$, предполагалось, что [a,b] — конечный промежуток и f(x) ограничена на этом промежутке.

Рассмотрение интеграла проводят следующим образом: рассмотрим интеграл

$$\int_{\alpha}^{\beta} f(x)dx, [\alpha, \beta] \subset |a, b|$$

Расширим отрезок $[\alpha, \beta]$ приближая его к [a, b].

Рассмотрим предел от α до β — НИ-1

Рассмотрим функцию f(x) на $[a,+\infty)$ и интеграл на любом промежутке $\forall [a,A] \subset [a,+\infty),$ то есть $\exists \Phi(A) = \int\limits_a^A f(x) dx,$ и

$$\lim_{A\to +\infty} \Phi(A) = \lim_{A\to +\infty} \int\limits_{a}^{A} f(x) dx = \int\limits_{a}^{+\infty} f(x) dx - \mathbf{H}\mathbf{И}\mathbf{-1}$$

Определение 12. Если этот предел существует и конечный $\left(\exists \lim_{A \to +\infty} \int_a^A f(x) dx\right)$, то говорят, что НИ-1 сходящийся, в противном случае интеграл называется расходящимся.

Пример. $\int\limits_0^{+\infty}\cos xdx = \lim\limits_{A\to +\infty}\int\limits_0^A\cos xdx = \lim\limits_{A\to +\infty}\sin A - \text{ не существует, следовательно}$ несобственный интеграл расходится.

Пример. $\int\limits_0^{+\infty} \frac{dx}{1+x^2} = \lim_{A\to +\infty} \int\limits_0^A \frac{dx}{1+x^2} = \lim_{A\to +\infty} \arctan A = \frac{\pi}{2} - \text{ интеграл сходится}$

Удобно использовать несобственную двойную подстановку

$$F(x)|_a^{+\infty} = \lim_{A \to +\infty} F(x)|_a^A = \lim_{A \to +\infty} (F(A) - F(a))$$
$$F(+\infty) = \lim_{x \to +\infty} F(x)$$

Исходя из этого, получим

$$\int_{0}^{+\infty} \cos x dx = \sin x \Big|_{0}^{+\infty} = \lim_{x \to +\infty} \sin x - \text{He существует}$$

ПРИМЕР.

$$\int\limits_{1}^{+\infty} \frac{dx}{x^p} = \left. \frac{x^{-p+1}}{-p+1} \right|_{1}^{+\infty} = \begin{cases} \text{расходится,} & p < 1 \\ \text{сходится,} & p > 1 \end{cases}$$

$$p=1:\int\limits_{1}^{+\infty} \frac{dx}{x}=\ln x|_{1}^{+\infty}$$
 — расходится

Следовательно

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} \begin{cases} \text{расходится,} & p \leq 1\\ \text{сходится,} & p > 1 \end{cases}$$

Сходимость интеграла означает существование предела, т.е.

$$\exists I : \forall \epsilon > 0, \exists A_{\epsilon} : \forall A \ge A_{\epsilon} \Rightarrow |\Phi(A) - I| = \left| \int_{A}^{+\infty} f(x) dx \right| \le \epsilon$$

Исходя из критерия Коши существования предела $I=\lim_{A\to +\infty}\Phi(A),$ можно создать критерий Коши для НИ-1:

Теорема 25. Критерий Коши

Интеграл $\int_{a}^{+\infty} f(x)dx$ сходится \Leftrightarrow

$$\forall \epsilon > 0, \exists A_{\epsilon} : \forall A_1, A_2 \ge A_{\epsilon}(A_2 \ge A_1) \Rightarrow |\varPhi(A_1) - \varPhi(A_2)| \le \epsilon, \left| \int_{A_1}^{A_2} f(x) dx \right| \le \epsilon$$

6.1.1 Сравнение с рядами

И для рядов, и для НИ-1 главную роль играет конечный предел:

$$\int_{a}^{+\infty} f(x)dx, \quad f(x), \quad \int_{a}^{A} f(x)dx, \qquad \int_{a}^{+\infty} f(x)dx = \lim_{A \to +\infty} \int_{a}^{A} f(x)dx$$

$$\sum_{k=1}^{+\infty} a_k, \qquad a_k, \qquad S_n = \sum_{k=1}^n a_k, \qquad S = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sum_{k=1}^n a_k$$

Выполняются обычные свойства интеграла:

- 1) аддитивность
- 2) монотонность
- 3) линейность

Теорема 26.
$$\int\limits_a^{+\infty} f(x)dx\ cxo\partial umcs \Leftrightarrow cxo\partial umcs\int\limits_b^{+\infty} f(x)dx,\ \forall b\geq a$$

$$\diamondsuit$$
 Возьмем $\forall A \ge b : \int_a^A f(x) dx = \int_a^b f(x) dx + \int_b^A f(x) dx.$

При $A \to +\infty$, слева и справа конечные пределы либо оба существуют, либо оба не существуют. \blacksquare

6.2 НИ-1 от положительной функции

Пусть $f(x) \ge 0, \ x \in [a, +\infty),$ тогда $\Phi(A) = \int\limits_a^A f(x) dx$ возрастает. Если $A_1 > A_2,$ то

$$\Phi(A_1) = \int_a^{A_1} f(x)dx = \int_a^{A_2} f(x)dx + \int_{A_2}^{A_1} f(x)dx \left(\int_{A_2}^{A_1} f(x)dx \right) \ge 0 = \Phi(A_2) + C \left(C \ge 0 \right)$$

6.2.1 Критерий сходимости НИ-1 от положительной функции

Теорема 27. Интеграл $\int_{a}^{+\infty} f(x)dx$ сходится $\Leftrightarrow \exists M: \int_{a}^{A} f(x)dx \leq M, \forall A \geq a.$

Если интеграл от положительной функции расходится (то есть такого M не существует), то $\int_{a}^{+\infty} f(x)dx = +\infty$

Установить поведение интеграла, то есть выяснить, является ли он сходящимся или расходящимся, можно сравнив его с другими интегралами (эталонными), поведение которых известно.

6.2.2 Признаки сравнения НИ-1

Возьмём две функции f(x), g(x) и два интеграла

$$\int_{a}^{+\infty} f(x)dx (2) \qquad \int_{a}^{+\infty} g(x)dx (1)$$

1. Пусть $f(x) \le g(x), \forall x \in [a, +\infty)$

Если (1) сходится, то и (2) сходится;

Если (2) расходится, то и (1) расходится.

 \Diamond Пусть (1) сходится, тогда по критерию сходимости $\exists M: \int\limits_a^A g(x) dx \leq M,$ но то-

гда $\int_a^A f(x) dx \le \int_a^A g(x) dx \le M$, $\forall A \ge a$, по критерию сходимости (достаточность) интеграл (2) сходится.

Пусть (2) расходится, если (1) сходится, то тогда сходится и (2) — Противоречие, следовательно (1) расходится. \blacksquare

Пример. Рассмотрим интеграл $\int_{1}^{+\infty} \frac{dx}{x^2 + e^x}$.

$$f(x) = \frac{1}{x^2 + e^x} \le \frac{1}{x^2}, \ x \in [1, +\infty)$$

 $\int\limits_{1}^{+\infty} \frac{dx}{x^2}$ сходится, тогда сходится и исходный интеграл.

ПРИМЕР.
$$\int_{1}^{+\infty} \frac{dx}{x-\sin^2 x}$$

$$f(x) = \frac{1}{x - \sin^2 x} \ge \frac{1}{x}, x \in [1, +\infty)$$

 $\int\limits_{1}^{+\infty} \frac{dx}{x}$ расходится, тогда расходится и исходный интеграл.

- 2. Пусть $\exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = l$ (конечный или бесконечный)
 - а) $l < +\infty$ (сходится (1) следовательно сходится (2))
 - б) l>0 (расходится (1) следовательно расходится (2))

 \Diamond

a)
$$l < +\infty$$

 $\exists A, \frac{f(x)}{g(x)} \le l+1, \ x > A : f(x) \le (l+1)g(x), \ x > A$

Если интеграл (1) сходится, то из того, что сходится $\int_A^{+\infty} g(x)dx \Rightarrow$ сходится $\int_A^{+\infty} (l+1)g(x)dx$, следовательно, по 1-му признаку, сходится интеграл (2).

б) Пусть l>0, тогда $\lim_{x\to +\infty}\frac{g(x)}{f(x)}=\frac{1}{l}<+\infty$ Если бы (2) сходился, то, по доказанному в а), должен сходиться и (1) — противоречие.

ПРИМЕР.
$$\int_{1}^{+\infty} \frac{\arctan x}{x^2+7} dx$$

$$f(x)=\frac{\arctan x}{x^2+7}, g(x)=\frac{1}{x^2}$$
— эталонный интеграл.

$$\frac{f(x)}{g(x)}=\frac{x^2\arctan x}{x^2+7} o \frac{\pi}{2} < +\infty \Rightarrow$$
 исходный интеграл сходится.

ПРИМЕР.
$$\int_{1}^{+\infty} (\sqrt{x+1} - \sqrt{x}) dx$$

$$f(x) = \sqrt{x+1} - \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}}, g(x) = \frac{1}{\sqrt{x}}$$

$$\frac{f(x)}{g(x)}=\frac{\sqrt{x}}{\sqrt{x+1}+\sqrt{x}} o \frac{1}{2}>0 \Rightarrow$$
 исходный интеграл расходится.

6.2.3 Степенной признак для НИ-1

Теорема 28. Пусть $f(x) \sim \frac{C}{x^p}, \ x \to +\infty, \ C \neq 0, \ mor \partial a \ ecnu$ $\begin{cases} p>1, \ mo \int\limits_{+\infty}^{+\infty} f(x) dx \ cxo \partial umc s \\ p \leq 1, \ mo \int\limits_{a}^{a} f(x) dx \ pacxo \partial umc s \end{cases}$

$$\Diamond$$
 Пусть $g(x) = \frac{1}{x^p}$, $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = C$, $0 < C < +\infty$.

По 2-му признаку, интеграл (2) ведёт себя также, как (1). \blacksquare

Пример.

$$1)\int\limits_{1}^{+\infty} \frac{\sqrt{x+3}}{x^2+10} dx$$

$$f(x) = \frac{\sqrt{x+3}}{x^2+10} \sim \frac{\sqrt{x}}{x^2} = \frac{1}{x^{\frac{3}{2}}} \Rightarrow$$
 интеграл сходится.

$$2)\int\limits_1^{+\infty}\frac{1}{x}\sin\frac{1}{x}dx$$

$$f(x)=\frac{1}{x}\sin\frac{1}{x}\sim\frac{1}{x}\cdot\frac{1}{x}=\frac{1}{x^2}\Rightarrow \text{ интеграл сходится}.$$

$$3) \int_{1}^{+\infty} \frac{\arctan x}{x} dx$$

$$\tan (\arctan x) = \frac{1}{\cot (\arctan x)} = \frac{1}{x}$$

$$\tan \alpha(x) \sim \alpha(x), \text{ тогда } \arctan x \sim \frac{1}{x}$$

$$f(x) = \frac{\arctan x}{x} \sim \frac{1}{x^2} \Rightarrow \text{ интеграл } \text{ сходится.}$$

7.1 НИ-1 от знакопеременной функции

Рассмотрим $\int_{a}^{+\infty} f(x)dx$ (1) и пусть f(x) принимает значения произвольных знаков. На ряду с (1) рассмотрим $\int_{a}^{+\infty} |f(x)|dx$ (2).

Определение 13. Если (2) сходится, то говорят, что (1) абсолютно сходится.

Теорема 29. Если интеграл (1) абсолютно сходится, то он сходится.

♦ Если (1) абсолютно сходится, то

$$\forall \epsilon > 0, \exists A_{\epsilon} : \forall A_1, A_2 \ge A_{\epsilon} \Rightarrow \int_{A_1}^{A_2} |f(x)| dx \le \epsilon$$

Но тогда для (1) имеем:

$$\left| \int_{A_{1}}^{A_{2}} f(x) dx \right| \leq \int_{A_{1}}^{A_{2}} |f(x)| dx \leq \epsilon, \text{ по критерию Коши для (1), интеграл (1) сходится.}$$

ПРИМЕР. Рассмотрим $\int_{1}^{+\infty} \frac{\sin x}{x^2} dx$ и $\int_{1}^{+\infty} \left| \frac{\sin x}{x^2} \right| dx$.

По признаку 1 (его возможно применить, так как интеграл от положительной функции) имеем:

$$\left|\frac{\sin x}{x^2}\right| \le \frac{1}{x^2}$$

Так как $\int_{1}^{+\infty} \frac{1}{x^2} dx$ сходится, то сходится и $\int_{1}^{+\infty} \left| \frac{\sin x}{x^2} \right| dx$. Следовательно исходный интеграл сходится абсолютно, а значит он сходится.

Лемма 2. Пусть функции f(x), g(x), определены на [A, B].

- 1. f(x) непрерывная функция $u \; \exists M : \left| \int\limits_A^x f(t) dt \right| \leq M, \forall x \in [A,B].$
- 2. Функция g(x) имеет непрерывную производную g'(x), которая сохраняет знак и $\exists m: |g(x)| \leq m, \forall x \in [A,B].$

Тогда
$$\left| \int_{A}^{B} f(x)g(x)dx \right| \leq 3mM$$
.

$$\diamondsuit$$
 Рассмотрим $\int_{A}^{B} f(x)g(x)dx$ и проинтегрируем по частям.

$$\begin{vmatrix} \int_{A}^{B} f(x)g(x)dx \end{vmatrix} = \begin{bmatrix} u = g(x), du = g'(x)dx; dv = f(x)dx, v = \int_{A}^{x} f(t)dt \end{bmatrix} =$$

$$= \begin{vmatrix} g(x) \int_{A}^{x} f(t)dt \end{vmatrix}_{A}^{B} - \left(\int_{A}^{B} (g'(x) \int_{A}^{x} f(t)dt)dx \right) \end{vmatrix} \leq \begin{vmatrix} g(x) \int_{A}^{x} f(t)dt \end{vmatrix}_{A}^{B} + \begin{vmatrix} \int_{A}^{B} \left(g'(x) \int_{A}^{x} f(t)dt \right)dx \end{vmatrix} =$$

$$= \begin{vmatrix} g(B) \int_{A}^{x} f(t)dt - 0 \end{vmatrix} + \begin{vmatrix} \int_{A}^{B} \left(g'(x) \int_{A}^{x} f(t)dt \right)dx \end{vmatrix} \leq Mm + \int_{A}^{B} |g'(x)| \begin{vmatrix} \int_{A}^{x} f(t)dt \end{vmatrix}dx \leq$$

$$\leq mM + M \int_{A}^{B} |g'(x)|dx = mM + M \begin{vmatrix} \int_{A}^{B} g'(x)dx \end{vmatrix} = mM + M |g(x)|_{A}^{B} |\leq mM + M2m = 3mM$$

7.2Признаки Дирихле и Абеля сходимости НИ-1

7.2.1Признак Дирихле сходимости НИ-1

Теорема 30. Пусть f(x) непрерывна на $[a, +\infty)$, g(x) имеет непрерывную производную g'(x) $\mu a [a, +\infty) u$

1.
$$\exists M, \left| \int_{a}^{x} f(t)dt \right| \leq M, \forall x \in [a, +\infty).$$

2. g(x) монотонно стремится κ 0, npu $x \to +\infty$.

Тогда
$$\int\limits_{a}^{+\infty} f(x)g(x)dx$$
 сходится.

 \Diamond Воспользуемся критерием Коши и возьмем любое $\epsilon > 0$.

Учитывая пункт 2, получаем что $\exists A_{\epsilon} : g(x) \leq \epsilon, \forall x \geq A_{\epsilon}.$

Возьмем $\forall A_1, x \geq A_{\epsilon}$, тогда

$$\left| \int_{A_1}^x f(x) dx \right| = \left| \int_a^x f(x) dx - \int_a^{A_1} f(x) dx \right| \le \left| \int_a^x f(x) dx \right| + \left| \int_a^{A_1} f(x) dx \right| \le 2M$$

На основании леммы имеем:

$$\left| \int_{A_1}^{A_2} f(x)g(x)dx \right| \le 3\epsilon \cdot 2M = 6M\epsilon$$

Следовательно по критерию Коши $\forall A_1,A_2\geq A_\epsilon$ интеграл сходится. \blacksquare ПРИМЕР. $\int\limits_1^{+\infty}\frac{\sin x}{x}dx$

ПРИМЕР.
$$\int_{1}^{+\infty} \frac{\sin x}{x} dx$$

Положим
$$f(x) = \sin x$$
, $g(x) = \frac{1}{x}$

$$\left|\int_{1}^{x} \sin t dt\right| \leq 2, \ g(x)$$
 монотонно убывает к 0.

По признаку Дирихле, исходный интеграл сходится.

Исследуем теперь на равномерную сходимость:

$$\left|\frac{\sin x}{x}\right| \ge \frac{\sin^2 x}{x} = \frac{1-\cos 2x}{2x}$$
, при этом $\int_1^+ \frac{1-\cos 2x}{2x} dx = \int_1^+ \frac{dx}{2x} - \int_1^+ \frac{\cos 2x}{2x} dx$

Первый интеграл расходится, а второй сходится по признаку Дирихле.

7.2.2 Признак Абеля сходимости НИ-1

Теорема 31. Пусть f(x) непрерывна на $[a, +\infty)$, g(x) имеет непрерывную производную g'(x) на $[a, +\infty)$ u:

1.
$$\int_{a}^{+\infty} f(x)dx \ cxo\partial umca$$

2. g(x) монотонна и ограничена.

Тогда
$$\int\limits_a^{+\infty} f(x)g(x)dx$$
 сходится.

 \Diamond По критерию Коши, возьмем $\forall \epsilon > 0$.

Так как выполняется пункт 1, то существует $\exists A_{\epsilon}, \forall A_1, A_2 \geq A_{\epsilon} : \left| \int\limits_{A_1}^{A_2} f(x) dx \right| \leq \epsilon.$

Тогда

$$\left| \int_{A_1}^{A_2} f(x)g(x)dx \right| \le \left| g(x) \int_{A_1}^x f(t)dt \right|_{A_1}^{A_2} + \left| \int_{A_1}^{A_2} g'(x) \int_{A_1}^x f(t)dt \right| \le$$

$$\le m\epsilon + \epsilon \left| \int_{A_1}^{A_2} g'(x)dx \right| \le m\epsilon + 2m\epsilon = 3m\epsilon$$

ПРИМЕР.
$$\int_{0}^{+\infty} \frac{x \sin x}{1+x^2} dx$$

Положим
$$g(x) = \frac{x^2}{1+x^2}$$
, $f(x) = \frac{\sin x}{x}$

$$\int\limits_{0}^{+\infty} \frac{\sin x}{x} - \text{сходится (доказано ранее)}.$$

 $g(x) \leq 1$ и монотонна.

По признаку Абеля, исходный интеграл сходится.

7.3 Несобственный интеграл второго рода НИ-2

Определение 14. Пусть f(x) определена на [a,b) и не ограничена в окрестности точки b. Тогда b — **особая точка** функции f(x).

Пусть
$$f(x)$$
 интегрируема по Риману на $\forall [a,c] \subset [a,b),$ т.е. $\exists \int_a^c f(x) dx = \Phi(c).$

Определение 15. Рассматривают предел $\lim_{c \to b-0} \Phi(c) = \lim_{c \to b-0} \int_a^c f(x) dx = \int_a^b f(x) dx$ и называют несобственный интеграл второго рода. Если этот предел существует и конечен, то говорят, что НИ-2 сходится, иначе расходится.

Пример.

$$\int\limits_0^1 = \frac{dx}{\sqrt{1-x}} = [x=1\text{--ocoбая точка}] = \lim\limits_{c\to 1-0} \int\limits_0^c \frac{dx}{\sqrt{1-x}} =$$

$$= \lim\limits_{c\to 1-0} \left(-2\sqrt{1-x}\right)\Big|_0^c = \lim\limits_{c\to 1-0} (-2\sqrt{1-c}+2) = 2 \Rightarrow \text{интеграл сходится}$$

7.3.1 Несобственная двойная подстановка

Если
$$b$$
 — ОТ, то $F(x)|_a^b=\lim_{c\to b-0}F(x)|_a^c$.
$$F(x)|_a^b=F(b)-F(a),$$
 принимая $F(b)=\lim_{x\to b-0}F(x)$

ПРИМЕР.

1. $\int\limits_{-b}^{b}\frac{dx}{b-x}=-\ln{(b-x)}|_a^b=-\ln{0}+\ln{(b-a)}\Rightarrow \text{ интеграл расходится}$

2. $\int\limits_a^b \frac{dx}{(b-x)^p} = -\frac{(b-x)^{-p+1}}{-p+1}\bigg|_a^b = \begin{cases} \frac{1}{1-p}, p<1 \Rightarrow \text{интеграл сходится}\\ \infty, p>1 \Rightarrow \text{интеграл расходится} \end{cases}$

3. $\int\limits_0^1 \frac{dx}{x^p} = [x=0 \text{ особая точка}] \Rightarrow \begin{cases} \text{сходится при } p<1\\ \text{расходится при } p\geq 1 \end{cases}$

Сходимость $\int_a^b f(x)dx$, т.е. существование конечного предела $\lim_{c \to b-0} \Phi(c)$ означает:

$$\forall \epsilon > 0, \exists c_{\epsilon} \in [a, b), \forall c \in [c_{\epsilon}, b) \Rightarrow \left| \int_{c}^{b} f(x) dx \right| \leq \epsilon$$

7.3.2 Критерий Коши

Теорема 32. $\int_a^b f(x)dx$ сходится тогда и только тогда, когда $\forall \epsilon > 0, \exists c_{\epsilon} \in [a,b)$ такие, ито $\forall c_1, c_2 \in [c_{\epsilon}, b) : \left| \int_{c_1}^{c_2} f(x)dx \right| \leq \epsilon$

Отметим также, что $\int\limits_a^b f(x)dx$ сходится $\Leftrightarrow \int\limits_\alpha^b f(x)dx, \forall \alpha \in [a,b)$ сходится, поскольку $\int\limits_a^b f(x)dx = \int\limits_a^\alpha f(x)dx + \int\limits_\alpha^b f(x)dx$ Для НИ-2 выполняются свойства аддитивности, монотонности и линейности.

8.1 НИ-2

 $\int_{a}^{b} f(x)dx$, где b — особая точка.

Для НИ-2 выполняются свойства:

- 1. аддитивность
- 2. монотонность
- 3. линейность

Линейность для НИ-2 (как и для НИ-1)

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

Может быть такое, что интеграл слева сходится, а один из интегралов справа расходится.

Аналогично и для НИ-1, то есть для $b = +\infty$.

8.2 НИ-2 от положительной функции

Рассмотрим НИ-2 для положительных функций, $f(x) \ge 0, \forall x \in [a,b)$

$$\Phi(c) = \int_a^c f(x) dx$$
 монотонно возрастает, $c \to b - 0$

Тогда работает критерий сходимости монотонной функции:

8.2.1 Критерий сходимости НИ-2 от положительной функции Теорема 33.

$$\int_{a}^{b} f(x)dx \ cxo \partial umc s \Leftrightarrow \exists M : \int_{a}^{c} f(x)dx \leq M, \forall c \in [a,b)$$

8.2.2 Признаки сравнения НИ-2

Пусть $0 \le f(x) \le \alpha g(x)$, $\alpha = const(*)$

- 1. Если сходится $\int_a^b g(x)dx$ (2) \Rightarrow сходится $\int_a^b f(x)dx$ (1)
 - (1) расходится \Rightarrow (2) расходится

 \Diamond

I: Доказательство аналогично доказательству 1-го признака для НИ-1:

$$\int_{c}^{c} f(x)dx \le \alpha \int_{c}^{c} g(x)dx \le \alpha M \ \forall c$$
, поскольку (2) сходится.

Тогда по критерию (1) тоже сходится.

II: Если (2) сходится, то сходится и (1), **ПРОТИВОРЕЧИЕ**. Следовательно (2) расходится.

Замечание: (*) может выполняться, но не для всех [a,b), а для $[a_1,b), a_1 \ge a$:

$$\int_{a}^{b} \cdots = \int_{a}^{a_{1}} \cdots + \int_{a_{1}}^{b} \cdots$$

- **Пример**. $\int\limits_0^1 \frac{e^x+2}{\sqrt{1-x}} dx, \ 0 \leq \frac{e^x+2}{\sqrt{1-x}} \leq \frac{e+2}{\sqrt{1-x}}, \ \int\limits_0^1 \frac{e+2}{\sqrt{1-x}} dx$ сходится, следовательно исходный интеграл сходится.
- **Пример**. $\int\limits_0^1 \frac{dx}{x\sin x+1}, \ \frac{1}{x\sin x+1} \geq \frac{1}{x}, \ \int\limits_0^1 \frac{dx}{x}$ расходится, следовательно исходный интеграл расходится.
- 2. Если $\exists l = \lim_{x \to b-0} \frac{f(x)}{g(x)}$ то: $\begin{cases} l < +\infty, & \text{сходится } (2) \Rightarrow \text{сходится } (1) \\ l > 0, & \text{расходится } (2) \Rightarrow \text{расходится} (1) \end{cases}$
 - \diamondsuit Пусть $l<+\infty,$ тогда для x близких к b, то есть

$$\exists c, \forall x \in [c, b)$$
 : $\frac{f(x)}{g(x)} < l + 1$, то есть $f(x) \le g(x)(l + 1)$

По первому признаку, из сходимости (2) следует сходимость (1);

Теперь пусть
$$l>0$$
. Тогда $\lim_{x\to b-0}\frac{g(x)}{f(x)}=\frac{1}{l}<+\infty$

Пусть (2) расходится.

Но если (1) сходится, то (2) тоже сходится. **ПРОТИВОРЕЧИЕ**. \blacksquare

ПРИМЕР.
$$\int\limits_0^1 \frac{\arctan\frac{1}{x}}{\sqrt[3]{1-x}} dx = \left[g(x) = \frac{1}{\sqrt[3]{1-x}}, \frac{f(x)}{g(x)} = \arctan\frac{1}{x} \underset{x \to 1}{\to} \frac{\pi}{4}\right]$$

 $\int\limits_0^1 g(x) dx = \int\limits_0^1 {dx \over \sqrt[3]{1-x}}$ — сходится, следовательно и исходный интеграл сходится в особой точке 1.

ПРИМЕР.
$$\int_{0}^{1} \frac{dx}{\sin x} = \left[g(x) = \frac{1}{x}, \frac{f(x)}{g(x)} \underset{x \to 1}{\to} 1 \right]$$

 $\int_{0}^{1} g(x)dx = \int_{0}^{1} \frac{dx}{x}$ — расходится, следовательно и исходный интеграл расходится.

Замечание: если предел $l \in \mathbb{R}, l \neq 0$, то оба интеграла (1) и (2) либо сходятся, либо расходятся одновременно. Если взять в качестве $g(x) = \frac{1}{(b-x)^p}$, то получим степенной признак сходимости.

8.2.3 Степенной признак для НИ-2

Теорема 34. Если
$$f(x) \sim \frac{\alpha}{(b-x)^p}, x \to b-0$$
 то:
$$\begin{cases} p<1, & cxo\partial umcs \\ p\geq 1, & pacxo \partial umcs \end{cases}$$

Пример.
$$\int\limits_0^1 \frac{e^x-1}{\sin^2 x} dx, \ f(x) = \frac{e^x-1}{\sin^2 x} \sim \frac{x}{x^2} = \frac{1}{x}$$
 — исходный интеграл расходится.

ПРИМЕР.
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^4}}, \ f(x) = \frac{1}{\sqrt{1-x^4}} = \frac{1}{\sqrt{(1+x^2)(1-x^2)}} = \frac{1}{\sqrt{(1+x^2)(1-x)(1+x)}} \sim \frac{1}{2\sqrt{1-x}} - \text{исходный интеграл сходится.}$$

ПРИМЕР.
$$\int\limits_{1}^{3} \frac{e^x dx}{\arctan\sqrt{3-x}}, \ f(x) = \frac{e^x}{\arctan\sqrt{3-x}} \sim \frac{e^3}{\sqrt{3-x}}$$
 — исходный интеграл сходится.

8.3 Преобразование НИ-2

 ${
m C~HII}{
m -2}$ можно выполнять операции интегрирования по частям и замену переменных.

В результате таких действий исходный интеграл $\int_a^b f(x)dx$ с OT = b(возможно, $b = \pm \infty$)

приводится к интегралу $\int\limits_{-\beta}^{\beta}g(x)dx.$

Возможно, что $[\alpha,\beta) = [a,b)$, как в случае интегрирования по частям, а возможно это другой промежуток и $\int\limits_{\alpha}^{\beta} g(x) dx$ может оказаться обычным интегралом Римана.

8.3.1 Интегрирование НИ-2 по частям

$$\int_{a}^{b} u dv = uv|_{a}^{b} - \int_{a}^{b} v du$$

ПРИМЕР.
$$\int_{0}^{1} \ln x dx = [\text{OT}: x = 0] = \begin{bmatrix} u = \ln x, & du = \frac{1}{x} dx \\ dv = dx, & v = x \end{bmatrix} = \ln x \cdot x|_{0}^{1} - \int_{0}^{1} dx = \ln 1 - 1$$

8.3.2 Теорема о замене переменных

Теорема 35. Пусть f(x) определена на промежутке [a,b) (возможно, $b=\pm\infty$), интегрируема на $\forall [a,c]\subset [a,b)$ и пусть $\phi(t)$ определена на промежутке $t\in [\alpha,\beta)$ (возможно, $\beta=\pm\infty$), имеет непрерывную производную $\phi'(t)$ и монотонна; пусть также $\phi(\alpha)=a,\lim_{t\to\beta-0}\phi(t)=b,$ тогда $\int\limits_a^b f(x)dx=\int\limits_\alpha^\beta f(\phi(t))\phi'(t)dt$ (3), при этом из сходимости интеграла справа следует сходимость интеграла слева и наоборот.

 \diamondsuit Возьмём $c\in[a,b)$, тогда $\exists\sigma\in[lpha,eta):c=\phi(\sigma)$, так как ϕ — непрерывна и монотонна, тогда $\int\limits_{-c}^{c}f(x)dx=\int\limits_{-c}^{\sigma}f(\phi(t))\phi'(t)dt.$

Ho
$$\sigma \to \beta - 0 \Leftrightarrow c \to b - 0$$
 (4).

При переходе к пределу из (4) получаем (3). ■

Π РИМЕР.

$$\int\limits_0^{+\infty} \sin x^2 dx = \left[t=x^2, \ x=\sqrt{t}, \ dx=\frac{dt}{2\sqrt{t}}\right] = \int\limits_0^{+\infty} \frac{\sin t}{2\sqrt{t}} dt$$
–интеграл сходится по признаку Дирихле

Π РИМЕР.

$$\int\limits_0^1 \sqrt{\frac{x}{1-x^2}} dx = \left[\begin{array}{c} x = \sin t \\ dx = \cos t dt \end{array}\right] = \int\limits_0^{\frac{\pi}{2}} \frac{\sqrt{\sin t}}{\cos t} \cos t dt = \int\limits_0^{\frac{\pi}{2}} \sqrt{\sin t} dt \Rightarrow$$
 исходный интеграл сходится

Пусть функция f(x) имеет ОТ $\beta \in (a,b)$ и других ОТ нет, то

$$\int_{a}^{b} f(x)dx = \int_{a}^{\beta} f(x)dx + \int_{\beta}^{b} f(x)dx$$

- 1) Если оба интеграла справа сходятся, то интеграл слева сходится;
- 2) Если один из интегралов справа расходится, то интеграл слева расходится.

ПРИМЕР.
$$f(x) = \begin{cases} \frac{1}{\sqrt{1-x}}, & 0 \le x < 1 \\ \tan(x-1)^{-1}, & 1 < x \le 2 \end{cases}$$

$$\int_0^2 f(x) dx = \int_0^1 \frac{dx}{\sqrt{1-x}} + \int_1^2 \tan(x-1)^{-1} dx$$

Из того, что первый интеграл справа сходится, а второй не имеет предела(тангенс не имеет предела), следует, что исходный интеграл расходится.

8.4 НИ смешанного типа

Определение 16. НИ смешанного типа называются интегралы вида

$$\int_{b}^{+\infty} f(x)dx = \int_{b}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx$$

где первый интеграл это НИ-2, второй - НИ-1, а b- ОТ.

Может оказаться, что интеграл имеет несколько ОТ.

Пример.
$$\int_{0}^{1} x^{a-1} (1-x)^{b-1} dx, \text{ OT: } x=0, x=1$$

$$x=0: x^{a-1} (1-x)^{b-1} \underset{x\to 0}{\sim} x^{a-1} = \frac{1}{x^{1-a}} \text{ Сходится тогда, когда } 1-a<1, a>0$$

$$x=1: x^{a-1} (1-x)^{b-1} \underset{x\to 1}{\sim} (1-x)^{b-1} = \frac{1}{(1-x)^{1-b}} \text{ Сходится тогда, когда } 1-b<1, b>0$$

Тогда исходный интеграл сходится, когда a>0, b>0.

ПРИМЕР. $\int\limits_0^{\frac{\pi}{2}} (\tan x)^p dx \qquad \text{Особые точки: } x=0, \ x=\frac{\pi}{2}$ $x=0 \ : \ (\tan x)^p \sim x^p = \frac{1}{x^{-p}}, \ \text{сходится при } -p < 1 \Rightarrow p > -1$ $x=\frac{\pi}{2} \ : \ (\tan x)^p = \left(\frac{\sin x}{\cos x}\right)^p \sim \frac{1}{(\cos x)^p} = \frac{1}{(\sin \frac{\pi}{2} - x)^p} \sim \frac{1}{(\frac{\pi}{2} - x)^p}, \ \text{сходится при } p < 1$ Исходный интеграл сходится при $-1 . ОТ может быть <math>-\infty$:

$$\int_{a}^{-\infty} f(x)dx = [x = -t] = -\int_{-a}^{+\infty} f(-t)dt$$

9.1 Главное значение несобственного интеграла

Пусть функция f(x) определена на промежутке $(-\infty, +\infty)$ и интегрируема на любом конечном промежутке. В этом случае у нее 2 особые точки и надо рассмотреть каждую из них отдельно: $\int\limits_{-\infty}^{a} f(x)dx$ и $\int\limits_{a}^{+\infty} f(x)dx$, т.е.

$$\lim_{B_1\to +\infty}\int\limits_{-B_1}^a f(x)dx+\lim_{B_2\to +\infty}\int\limits_a^{B_2} f(x)dx$$
 или
$$\lim_{\substack{B_1\to +\infty\\B_2\to +\infty-B_1}}\int\limits_{-B_1}^{B_2} f(x)dx$$

Если такой предел не существует или бесконечен, то можно рассматривать случай когда B_1 и B_2 связаны каким-то образом.

Чаще всего рассматривают $B_1 = B_2$ и рассматривают $\lim_{B \to +\infty} \int_{B}^{B} f(x) dx$.

Определение 17. Предел $\lim_{B\to +\infty}\int\limits_{-B}^{B}f(x)dx$ называют главным значение НИ и обозначают $v.p\int\limits_{-\infty}^{+\infty}f(x)dx$.

Если $\int\limits_{-\infty}^{+\infty}f(x)dx$ сходится, то его значение совпадает с его главным значением.

Пример. Рассмотрим интеграл $\int_{-\infty}^{+\infty} \frac{x}{x^2 + a^2} dx.$

Интеграл расходится по степенному признаку в точках $-\infty$ и $+\infty$, но его главное значение $v.p\int\limits_{-\infty}^{+\infty}f(x)dx=\lim_{B\to +\infty}\int\limits_{-B}^{+B}f(x)dx=\lim_{B\to +\infty}\int\limits_{-B}^{+B}\frac{x}{x^2+a^2}dx=\lim_{B\to +\infty}\frac{1}{2}\ln{(x^2+a^2)}|_{-B}^{B}=0$

Можно заметить, что если подынтегральная сумма нечетная, то главное значение НИ всегда будет равняться нулю.

Пример. Вычислим $\int_{-\infty}^{+\infty} \frac{x}{(x-\alpha)^2+\beta^2} dx.$

Так как интеграл расходится по степенному признаку, то рассмотрим его главное значение и интеграл:

$$\int_{-B}^{B} \frac{x}{(x-\alpha)^2 + \beta^2} dx = \int_{-B}^{B} \frac{(x-\alpha) + \alpha}{(x-\alpha)^2 + \beta^2} dx = \int_{-B}^{B} \frac{x-\alpha}{(x-\alpha)^2 + \beta^2} d(x-\alpha) + \int_{-B}^{B} \frac{\alpha}{(x-\alpha)^2 + \beta^2} dx = I_1 + I_2$$

Каждый из полученных интегралов рассмотрим по отдельности.

$$I_{1} = \int_{-B}^{B} \frac{x - \alpha}{(x - \alpha)^{2} + \beta^{2}} d(x - \alpha) = \frac{1}{2} \ln \left((x - \alpha)^{2} + \beta^{2} \right) \Big|_{-B}^{B} = \frac{1}{2} \ln \frac{(B - \alpha)^{2} + \beta^{2}}{(-B - \alpha)^{2} + \beta^{2}} \underset{B \to +\infty}{\longrightarrow} 0$$

$$I_{2} = \int_{-B}^{B} \frac{\alpha}{(x-\alpha)^{2} + \beta^{2}} dx = \frac{\alpha}{\beta} \arctan \frac{x-\alpha}{\beta} \Big|_{-B}^{B} = \frac{\alpha}{\beta} \left(\arctan \frac{B-\alpha}{\beta} + \arctan \frac{B+\alpha}{\beta} \right) \underset{B \to +\infty}{\longrightarrow} \frac{\alpha}{\beta} \left(\frac{\pi}{2} sgn\beta + \frac{\pi}{2} sgn\beta \right) = \frac{\alpha}{\beta} \pi sgn\beta$$

Пример. Рассмотрим $\int\limits_{-\infty}^{+\infty} \frac{1}{x-\alpha-i\beta} dx$. Интеграл расходится по степенному признаку, но рассмотрим его главное значение.

$$\int_{-B}^{B} \frac{1}{x - \alpha - i\beta} dx = \int_{-B}^{B} \frac{x - \alpha + i\beta}{(x - \alpha)^2 + \beta^2} dx = \int_{-B}^{B} \frac{x - \alpha}{(x - \alpha)^2 + \beta^2} dx + i\beta \int_{-B}^{B} \frac{1}{(x - \alpha)^2 + \beta^2} dx = I_1 + I_2$$

Интеграл $I_1 \underset{B \to +\infty}{\longrightarrow} 0$, поэтому разберем интеграл I_2 .

$$I_2 = i\beta \int_{-B}^{B} \frac{1}{(x-\alpha)^2 + \beta^2} dx = i\beta \cdot \frac{1}{\beta} \arctan \frac{x-\alpha}{\beta} \Big|_{-B}^{B} = i\pi \cdot sgn\beta$$

Таким образом получаем, что главное значение исходного интеграла равняется:

$$v.p. \int_{-\infty}^{+\infty} \frac{1}{x - \alpha - i\beta} dx = i\pi \cdot sgn\beta$$

9.2 Вычисление
$$I = \int\limits_{-\infty}^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx, m, n \in \mathbb{N}$$

Определение 18. Интеграл $I=\int\limits_{-\infty}^{+\infty}\frac{x^{2m}}{1+x^{2n}}dx, m,n\in\mathbb{N}$ называют **интегралом Эйлера**.

Если m < n, то интеграл сходится по степенному признаку, следовательно его значение совпадает с его главным значением.

Подынтегральная функция рациональная, поэтому разложим её на простейшие множители:

$$1+x^{2n}=0\Rightarrow x^{2n}=-1=e^{i(\pi+2\pi k)}\Rightarrow x_k=e^{i\pi\left(\frac{1}{2n}+\frac{k}{n}\right)}, k=0,1,\dots,2n-1$$
 Заметим, что $x_{k+n}=e^{i\pi\left(\frac{1}{2n}+\frac{k}{n}+1\right)}=e^{i\pi\left(\frac{1}{2n}+\frac{k}{n}\right)}\cdot e^{i\pi}=-x_k$ (2). Тогда

$$\frac{x^{2m}}{1+x^{2n}} = \sum_{k=0}^{2n-1} \frac{A_k}{x-x_k}$$
 (3)

Чтобы найти неопределенный коэффициент A_k , домножим (3) на $(x-x_k)$ и затем положим $x \to x_k$.

$$A_k = \lim_{x \to x_k} \frac{x^{2m}(x-x_k)}{1+x^{2n}} = x_k^{2m} \cdot \lim_{x \to x_k} \frac{x-x_k}{1+x^{2n}} = [\text{по Лопиталю}] = x_k^{2m} \frac{1}{2nx_k^{2n-1}} =$$
$$= [\text{умножим числитель и знаменатель на } x_k] = -\frac{1}{2n} x_k^{2m+1}$$

Подынтегральная функция из себя представляет: $\frac{x^{2m}}{1+x^{2n}} = -\frac{1}{2n} \sum_{k=0}^{2n-1} \frac{x_k^{2m+1}}{x-x_k}$.

$$I = v.p. \int_{-\infty}^{+\infty} \left(-\frac{1}{2n} \sum_{k=0}^{2n-1} \frac{x_k^{2m+1}}{x - x_k} \right) dx = -\frac{1}{2n} \sum_{k=0}^{2n-1} v.p. \int_{-\infty}^{+\infty} \frac{x_k^{2m+1}}{x - x_k} dx = -\frac{1}{2n} \sum_{k=0}^{2n-1} x_k^{2m+1} v.p. \int_{-\infty}^{+\infty} \frac{dx}{x - x_k}$$
(4)

Обозначим $x_k = \alpha_k + i\beta_k = \cos\pi\left(\frac{1}{2n} + \frac{k}{n}\right) + i\sin\pi\left(\frac{1}{2n} + \frac{k}{n}\right), \begin{cases} sgn\beta_k = 1, \ k = 0, \dots, n-1 \\ sgn\beta_k = -1, \ k = n, \dots, 2n-1 \end{cases}$ Из (4) получаем

$$I = -\frac{1}{2n} \left(\sum_{k=0}^{n-1} v.p. \int_{-\infty}^{+\infty} \frac{dx}{x - \alpha_k - i\beta_k} \cdot x_k^{2m+1} + \sum_{k=n}^{2n-1} v.p. \int_{-\infty}^{+\infty} \frac{dx}{x - \alpha_k - i\beta_k} \cdot x_k^{2m+1} \right) = -\frac{1}{2n} \left(\sum_{k=0}^{n-1} v.p. \int_{-\infty}^{+\infty} \frac{dx}{x - \alpha_k - i\beta_k} \cdot x_k^{2m+1} + \sum_{k=n}^{2n-1} v.p. \int_{-\infty}^{+\infty} \frac{dx}{x - \alpha_k - i\beta_k} \cdot x_k^{2m+1} \right) = -\frac{1}{2n} \left(\sum_{k=0}^{n-1} v.p. \int_{-\infty}^{+\infty} \frac{dx}{x - \alpha_k - i\beta_k} \cdot x_k^{2m+1} + \sum_{k=0}^{2n-1} v.p. \int_{-\infty}^{+\infty} \frac{dx}{x - \alpha_k - i\beta_k} \cdot x_k^{2m+1} \right) = -\frac{1}{2n} \left(\sum_{k=0}^{n-1} v.p. \int_{-\infty}^{+\infty} \frac{dx}{x - \alpha_k - i\beta_k} \cdot x_k^{2m+1} + \sum_{k=0}^{2n-1} v.p. \int_{-\infty}^{+\infty} \frac{dx}{x - \alpha_k - i\beta_k} \cdot x_k^{2m+1} \right)$$

= [используя (1) и (2), из которых следует, что $x_{k+n}^{2m+1} = -x_k^{2m+1}$, так как 2m+1 нечетное] =

$$= -\frac{1}{2n} \left(\sum_{k=0}^{n-1} \pi i x_k^{2m+1} + \sum_{k=n}^{2n-1} -\pi i x_k^{2m+1} \right) = -\frac{1}{2n} \cdot 2 \left(\sum_{k=0}^{n-1} \pi i x_k^{2m+1} \right) = -\frac{\pi i}{n} \sum_{k=0}^{n-1} x_k^{2m+1} =$$

$$= -\frac{\pi i}{n} \sum_{k=0}^{n-1} e^{\pi i \left(\frac{1}{2n} + \frac{k}{n} \right) (2m+1)} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{2n} \right)} \sum_{k=0}^{n-1} e^{\pi i \frac{k(2m+1)}{n}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{2n} \right)} \sum_{k=0}^{n-1} \left(e^{\pi i \frac{(2m+1)}{n}} \right)^k =$$

$$= \left[\sum_{k=0}^{n-1} q^k = \frac{1-q^n}{1-q} \right] = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{2n}\right)} \frac{1-e^{\pi i (2m+1)}}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{2n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{2n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} \frac{2}{1-e^{\pi i \left(\frac{2m+1}{n}\right)}} = -\frac{\pi i}{n} e^{\pi i \left(\frac{2m+1}{n}\right)} = -\frac{\pi i}{n} e^{\pi i} e^{\pi i \left(\frac{2m+1}{n}\right)} = -\frac{\pi i}{n} e^{\pi i} e^{\pi i}$$

$$= [\text{умножим числитель и знаменатель на } e^{-\pi i \left(\frac{2m+1}{2n}\right)}] = -\frac{\pi}{n} \frac{2i}{e^{-\pi i \left(\frac{2m+1}{2n}\right)} - e^{\pi i \left(\frac{2m+1}{2n}\right)}} = \frac{\pi}{n \sin \left(\frac{2m+1}{2n}\pi\right)}$$

Таким образом получаем, что $I = \int_{-\infty}^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx = \frac{\pi}{n \sin \frac{2m+1}{2n} \pi}$.

Пусть функция f(x) определена на промежутке (a,b) и имеет единственную особую точку $\beta \in (a,b)$.

Тогда
$$\int_{a}^{b} f(x)dx = \lim_{c_1 \to \beta = 0} \int_{a}^{c_1} f(x)dx + \lim_{c_2 \to \beta + 0} \int_{c_2}^{b} f(x)dx.$$

Для сходимости левой части необходима сходимость 2-х правых частей.

Если конечный предел не существует, то рассматриваем предел предполагая, что $c_2=g(c_1)$. Обычно функцию берут так, что $\beta-c_1=c_2-\beta$.

Тогда интеграл называется **главным значением** и обозначается $v.p.\int_a^b f(x)dx$. Если интеграл сходится, то его значение равняется главному значению.

Пример. Рассмотрим интеграл $\int_{-1}^{2} \frac{dx}{x}$, где 0 является особой точкой и интеграл расходящийся.

$$v.p. \int_{-1}^{2} \frac{dx}{x} = \lim_{c \to 0} \int_{-1}^{c} \frac{dx}{x} + \lim_{c \to 0} \int_{c}^{2} \frac{dx}{x} = \lim_{c \to 0} (\ln x|_{-1}^{c} + \ln x|_{c}^{2}) = \lim_{c \to 0} (\ln c - \ln 1 + \ln 2 - \ln c) = \ln 2$$

10.1 Частные и равномерные частные пределы

Рассмотрим функцию f(x,y) определенную на множестве $X \times Y = \{(x,y)|x \in X, y \in Y\}$. Например, множество точек (x,y), где X = [a,b], Y = [c,d], которое образует прямоугольник, либо X = [a,b], $Y = [c,\infty]$.

Пусть y_0 — предельная точка множества Y. Тогда для фиксированной точки $x_0 \in X$ получим функцию $f(x_0, y)$ и можно рассматривать её предел: $\lim_{y \to x_0} f(x_0, y)$.

Обозначим $\phi(x_0) = \lim_{y \to y_0} f(x_0, y)$. Предполагаем, что предел существует и конечен, т.е. $\phi(x_0)$ - число. Данное равенство обозначает, что для

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon, x_0) : \forall y \in Y, \ 0 < |y - y_0| \le \delta \Rightarrow |f(x_0, y) - \phi(x_0)| \le \epsilon$$

Обозначается следующим образом: $f(x_0, y) \underset{y \to y_0}{\to} \phi(x_0)$.

Предположим, что $\exists \delta$, который годится для $\forall x \in X$ при заданном ϵ . Тогда говорят, что f(x,y) **сходится** к $\phi(x)$ **равномерно** на множестве X.

Определение 19. Равномерная сходимость на множестве X означает, что для

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon) : \forall y \in Y, \ 0 < |y - y_0| \le \delta, \forall x \in X \Rightarrow |f(x, y) - \phi(x)| \le \epsilon$$

Обозначение равномерной сходимости: $f(x,y) \stackrel{X}{\underset{y \to y_0}{\Longrightarrow}} \phi(x)$

10.2 Критерии равномерной сходимости(критерий Коши и супремальный)

Теорема 36 (Критерий Коши). $f(x,y) \stackrel{X}{\underset{y \to y_0}{\Longrightarrow}} \phi(x) \Leftrightarrow$

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon), \forall y_1, y_2 \in Y: \begin{array}{l} 0 < |y_0 - y_1| \le \delta, \\ 0 < |y_0 - y_2| \le \delta, \end{array} \forall x \in X \Rightarrow |f(x, y_1) - f(x, y_2)| \le \epsilon$$

Пусть $f(x,y) \xrightarrow[y \to y_0]{X} \phi(x), \forall x \in X$ и $\rho(x,y) = |f(x,y) - \phi(x)|$.

Теорема 37 (Супремальный критерий). $f(x,y) \stackrel{X}{\underset{y \to y_0}{\Longrightarrow}} \phi(x) \Leftrightarrow \sigma(y) = \sup_{X} \rho(x,y) \underset{y \to y_0}{\longrightarrow} 0.$

 $\diamondsuit \Leftarrow$ Возьмем $\forall \epsilon > 0$. Если $\sigma(y) \underset{y \to y_0}{\to} 0$, то

$$\exists \delta = \delta(\epsilon) : \sigma(y) \le \epsilon, \forall y \in Y : 0 < |y - y_0| \le \delta$$

Ho $\sigma(y) = \sup_{Y} \rho(x,y)$. Тогда $\rho(x,y) = |f(x,y) - \phi(x)| \le \epsilon$ для $\forall x \in X$.

Таким образом, f(x, y) сходится равномерно согласно определению.

 \Rightarrow Дана равномерная сходимость f(x,y). Покажем, что $\sigma(y) \underset{y \to y_0}{\to} 0$.

От противного. Предположим, что $\sigma(y) \not\to 0$ при $y \to y_0$.

Значит $\exists \epsilon > 0$: $\forall \delta = \delta(\epsilon), \exists \tilde{y} \in Y : \sigma(\tilde{y}) > \epsilon$. По свойству супремума $\exists \tilde{x} \in X$, такой что $\rho(\tilde{x}, \tilde{y})$ отличается от $\sigma(\tilde{y})$ сколь угодно мало, к примеру на $\frac{\epsilon}{2}$.

Тогда $|f(\tilde{x}, \tilde{y}) - \phi(\tilde{x})| > \frac{\epsilon}{2}$. Но в этом случае неравенство из определения выполняется не для всех x из X. Т.е. равномерной сходимости нет, противоречие.

ПРИМЕР. Рассмотрим функцию $f(x,y) = x^y - x^{2y}, (x,y) \in [0,1] \times (0,1]$.

Точка $y_0 = 0$ — предельная точка множества Y.

$$\phi(x) = \lim_{y \to y_0} f(x, y) = 0, \forall x \in [0, 1]$$

Тогда $\rho(x,y) = x^y - x^{2y}$

Найдем $\sup \rho(x,y)$ для $x \in [0,1]$. Функция непрерывная, поэтому супремум — максимум этой функции. Максимальное значение достигается либо на концах, либо в стационарных точках.

$$\rho'(x,y) = yx^{y-1} - 2yx^{2y-1} = yx^{y-1}(1 - 2x^y) = 0$$

$$x_0 = \sqrt[y]{\frac{1}{2}}$$
 – корень

Теперь найдем значение $\rho(x,y)$ в точке $x_0: \rho(x_0,y)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$. Тогда $\sigma(y)>\frac{1}{4}\not\to 0$. Функция сходится к своему пределу, но равномерной сходимости нет.

ПРИМЕР.

Рассмотрим функцию $f(x,y) = x^{\frac{1}{y}} - x^{\frac{1}{y}+1}$ на таком же множестве, как и в предыдущем примере.

 $y_0 = 0$ — предельная точка множества Y.

$$\phi(x) = \lim_{y \to y_0} f(x, y) = 0, \forall x \in [0, 1]$$

Посчитаем $\rho(x,y) = x^{\frac{1}{y}} - x^{\frac{1}{y}+1}$.

Функция непрерывная, поэтому супремум — максимум этой функции. Максимальное значение либо на концах, либо в стационарных точках.

$$\rho'(x,y) = \frac{1}{y}x^{\frac{1}{y}-1} - \left(\frac{1}{y}+1\right)x^{\frac{1}{y}} = x^{\frac{1}{y}-1}\left(\frac{1}{y} - \left(\frac{1}{y}+1\right)x\right) = 0$$

$$x_0 = \frac{1}{y+1} - \text{корень}$$
 Тогда
$$\rho(x_0,y) = x_0^{\frac{1}{y}} - x_0^{\frac{1}{y}+1} = \left(\frac{1}{1+y}\right)^{\frac{1}{y}} - \left(\frac{1}{1+y}\right)^{\frac{1}{y}+1} = \frac{1}{y+1}^{\frac{1}{y}}\left(1 - \frac{1}{y+1}\right) = \frac{1}{y+1}^{\frac{1}{y}+1} \cdot y$$

$$\lim_{y \to y_0} \rho(x_0,y) = e \cdot 0 = 0$$

Супремум достигается в точке x_0 , т.к на концах отрезка [0,1] $\rho(x,y)$ обращается в 0. Поэтому $\sup \rho(x,y) = \rho(x_0,y) \underset{n \to n_0}{\to} 0$

Функция сходится к своему пределу равномерно на [0,1].

Теорема 38. Если f(x,y) непрерывна на $[a,b] \times [c,d]$ как $\Phi 2\Pi$, то при $\forall y_0 \in [c,d]$, $f(x,y) \overset{X}{\underset{y \to y_0}{\Longrightarrow}} f(x,y_0)$, где X = [a,b]

 \diamondsuit Во-первых $\phi(x) = \lim_{y \to y_0} f(x,y) = f(x,y_0)$ в силу непрерывности функции.

Функция f(x,y) непрерывна на прямоугольнике $[a,b] \times [c,d]$, а значит равномерно непрерывна на этом промежутке (теорема Кантора). Т.е

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon) : \forall (x_1, y_1), (x_2, y_2) \in [a, b] \times [c, d] : \rho((x_1, y_1), (x_2, y_2)) \le \delta \Rightarrow$$
$$|f(x_1, y_1) - f(x_2, y_2)| \le \epsilon$$

где
$$\rho((x_1,y_1),(x_2,y_2)) = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

В частности, это будет выполняться если $(x_1,y_1)=(x,y)$, а $(x_2,y_2)=(x,y_0)$, если $|y-y_0|\leq \delta$. В этом случае $\rho=\delta$ и $|f(x,y)-f(x,y_0)|\leq \epsilon$ для $\forall x\in X$.

Значит f(x,y) сходится равномерно к $f(x,y_0)$ на [a,b] при $y\to y_0$.

10.3 Интеграл, зависящий от параметра

Будем рассматривать функцию f(x,y), определенную на множестве $X \times Y$ и интегрируемую на X по переменной x при каждом фиксированном $y \in Y$.

Пусть X = [a, b], т.е. рассматривается интеграл $\int_a^b f(x, y) dx = F(y)$ — **интеграл**, зависящий от параметра у.

Когда y пробегает Y, то получаем функцию F(y). Мы имеем дело с новым способом задания функции через интеграл.

ПРИМЕР.
$$F(y) = \int\limits_{1}^{2} cos(xy) dx = \left. \frac{sin(xy)}{y} \right|_{1}^{2} = \frac{sin(2y) - sin(y)}{y}$$
 при $y \neq 0$. Если $y = 0$, то $\int\limits_{1}^{2} dx = 1$.

Пример.
$$F(y) = \int_{0}^{1} sgn(x-y)dx$$

Если y < 0, то x всегда больше $y \Rightarrow sgn(x - y) = 1$.

Если y > 1, то x всегда меньше $y \Rightarrow sgn(x - y) = -1$

$$y < 0 : F(y) = \int_{0}^{1} dx = 1$$

$$y > 1: F(y) = \int_{0}^{1} (-1)dx = -1$$

Если
$$y \in (0,1)$$
, то $\int\limits_0^1 sgn(x-y)dx = \int\limits_0^y (-1)dx + \int\limits_y^1 1dx = -x|_0^y + x|_y^1 = -y + 1 - y = 1 - 2y$.

Таким образом
$$F(y) = \begin{cases} 1, & y \le 0 \\ 1 - 2y, & y \in (0, 1) \\ -1, & y \ge 1 \end{cases}$$

Пример. $\int\limits_{1}^{2}e^{yx^{2}}dx=F(y)$ - неберущийся в элементарных функциях интеграл. Поэтому вычислить F(y) не можем, но $\forall y$ интеграл сходится.

10.4 Предельный переход ИЗОП

Пусть y_0 — предельная точка множества Y.

Теорема 39. Пусть f(x,y) непрерывна по x на $X = [a,b], \forall y \in Y$ и $f(x,y) \stackrel{X}{\underset{y \to y_0}{\Longrightarrow}} \phi(x)$.

Το εθα
$$\lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x,y) dx = \int_a^b \lim_{y \to y_0} f(x,y) dx = \int_a^b \phi(x) dx$$
 (1).

Говорят, что допускается предельный переход под знаком интеграла.

 \Diamond Возьмем $\forall \epsilon > 0$ и рассмотрим

$$\left| \int_{a}^{b} f(x,y)dx - \int_{a}^{b} \phi(x)dx \right| = \left| \int_{a}^{b} (f(x,y) - \phi(x))dx \right| \le \int_{a}^{b} |f(x,y) - \phi(x)dx| \le (*)$$

Т.к сходимость f(x,y) к $\phi(x)$ равномерная, то для y достаточно близких к y_0 модуль разности f(x,y) и $\phi(x)$ не превосходит ϵ , т.е $|f(x,y) - \phi(x)| \le \epsilon$.

Значит (*) $\leq \int_{a}^{b} \epsilon dx = \epsilon (b-a)$ и по М-лемме равенство (1) выполнено. \blacksquare

11.1 Теорема Стокса-Зейделя

Теорема 40. 1. Пусть функция f(x,y) непрерывна по переменной x на промежутке $[a,b], \forall y \in Y$.

2.
$$f(x,y) \underset{y \to y_0}{\overset{X}{\Longrightarrow}} \phi(x)$$
, $i \partial e \ X = [a,b]$.

Тогда функция $\phi(x)$ непрерывна на [a,b].

 \diamondsuit Возьмем любое $x_0 \in X$ и рассмотрим $|\phi(x) - \phi(x_0)| \le |\phi(x) - f(x,y)| + |f(x,y) - f(x_0,y)| + |f(x_0,y) - \phi(x_0)| \le *$.

Теперь возьмем любое $\epsilon > 0$. Так как выполняется пункт 2, то

$$\exists \delta = \delta(\epsilon), \forall y \in Y : 0 < |y - y_0| \le \delta, \forall x \in X \Rightarrow |\phi(x) - f(x,y)| \le \epsilon$$
 и $|f(x_0, y) - \phi(x_0)| \le \epsilon$

Зафиксируем такое y, что $0 < |y - y_0| \le \delta$. Учитывая пункт 1, имеем:

$$\bar{\delta}, 0 < |x - x_0| \le \bar{\delta} \Rightarrow |f(x, y) - f(x_0, y)| \le \epsilon$$

Следуя из этого и доказанного выше, получаем $* \le \epsilon + \epsilon + \epsilon = 3\epsilon$. Таким образом имеем:

$$\forall \epsilon > 0, \exists \ \bar{\delta} : 0 < |x - x_0| \le \bar{\delta} : |\phi(x) - \phi(x_0)| \le 3\epsilon$$

Следовательно $\phi(x)$ непрерывна в точке x_0 .

Следствие. Если функция f(x,y) непрерывна на $[a,b] \times [c,d]$ как $\Phi 2\Pi$, то $F(y) = \int\limits_a^b f(x,y) dx$ непрерывна на [c,d].

 \Diamond Возьмем любое $y_0 \in [c,d]$ и рассмотрим $\lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int\limits_a^b f(x,y) dx = *.$

Так как f(x,y) непрерывна на $[a,b] \times [c,d]$, то $f(x,y) \underset{y \to y_0}{\overset{[a,b]}{\Rightarrow}} f(x,y_0)$ (лекция 10). Значит допускается предельный переход:

$$* = \int_{a}^{b} (\lim_{y \to y_0} f(x, y)) dx = \int_{a}^{b} f(x, y_0) dx = F(y_0)$$

Следовательно F(y) непрерывна в точке y_0 . Поскольку y_0 любая точка из [c,d], то F(y) непрерывна на всем [c,d].

11.2 Дифференцирование ИЗОП

Теорема 41. 1. Пусть f(x,y) непрерывна по x на [a,b] при любом $y \in [c,d]$.

2. $\exists f_y'(x,y)$ непрерывна на $[a,b] \times [c,d]$ как Ф2П.

Тогда $F(y) = \int_a^b f(x,y) dx$ дифференцируема на [c,d] и $F'(y) = \left(\int_a^b f(x,y)\right)_y' = \int_a^b f_y'(x,y) dx$.

То есть допускается дифференцирование под знаком интеграла.

 \diamondsuit Рассмотрим отношение $F(y + \Delta y) - F(y)$.

$$F(y+\Delta y) - F(y) = \int_a^b f(x,y+\Delta y) dx - \int_a^b f(x,y) dx = \int_a^b (f(x,y+\Delta y) - f(x,y)) dx = \int_a^b f(x,y+\Delta y) dx$$

= [Теорема Лагранжа] =
$$\int\limits_a^b (f_y'(x,y+\theta\Delta y)\Delta y)dx = \Delta y\int\limits_a^b f_y'(x,y+\theta\Delta y)dx$$

Тогда

$$\lim_{\Delta y \to 0} \frac{F(y + \Delta y) - F(y)}{\Delta y} = \lim_{\Delta y \to 0} \int_{a}^{b} f'_{y}(x, y + \theta \Delta y) dx =$$

= [Так как f_y^\prime непрерывная функция от двух переменных, то можно перейти

к пределу под знаком интеграла] =
$$\int\limits_a^b (\lim_{\Delta y\to 0} f_y'(x,y+\theta\Delta y))dx = \int\limits_a^b f_y'(x,y)dx$$

Что и требовалось доказать.

11.3 Интегрирование ИЗОП

Теорема 42. Если функция f(x,y) непрерывна на $[a,b] \times [c,d]$, то $F(y) = \int\limits_a^b f(x,y) dx$ ин-

тегрируема на [c,d] и интеграл $\int\limits_{c}^{d}F(y)dy=\int\limits_{c}^{d}\left(\int\limits_{a}^{b}f(x,y)dx\right)dy=\int\limits_{a}^{b}\left(\int\limits_{c}^{d}f(x,y)dy\right)dx$ (*)

Формула (*) говорит о том, что допускается интегрирование под знаком интеграла.

 \Diamond Формула (*) это ни что иное как расстановка пределов по прямоугольнику $[a,b] \times [c,d]$ в интеграле $\iint\limits_{[a,b]\times[c,d]} f(x,y) dx dy$. ■

Рассмотренная теорема позволяет получить информацию о функции F(y) и в случае, когда $\int\limits_a^b f(x,y)dx$ не берущийся.

ПРИМЕР. $F(y) = \int_{0}^{1} e^{yx^{2}} dx$. Не берущийся интеграл.

$$F(0) = \int_{0}^{1} 1 dx = 1$$

Так как функция $f_y'(x,y)=(e^{yx^2})_y'=x^2e^{yx^2}$ непрерывна на промежутке $[0,1]\times[-1,1]$, то по теореме $41\Rightarrow F(y)$ дифференцируема на отрезке [-1,1] и $F'(y)=\int\limits_0^1f_y'(x,y)=\int\limits_0^1x^2e^{yx^2}dx$ и в частности $F'(0)=\int\limits_0^1x^2dx=\frac{1}{3}$.

Теперь рассмотрим $F''(y)=(F'(y))_y'=\int\limits_0^1 x^4e^{yx^2}dx$ и $F''(0)=\frac{1}{5}.$

По формуле Тейлора получаем, что

$$F(y) = F(0) + \frac{F'(0)}{1!}y + \frac{F''(0)}{2!}y^2 + R_2(y)$$

Отсюда следует, что $F(y) = 1 + \frac{1}{3}y + \frac{1}{10}y^2 + o(y^2)$

11.4 Несобственный интеграл первого рода, зависящий от параметра

Будем рассматривать функцию f(x,y) определенную на множестве $(x,y) \in [a,+\infty) \times Y$, где $Y \in \mathbb{R}$ и интегрируемую, в несобственном смысле на промежутке $[a,+\infty)$.

Пусть функция f(x,y) не имеет конечных особых точек и $\forall y \in Y \ \exists F(y) = \int\limits_a^{+\infty} f(x,y) dx \in \mathbb{R}$, т.е. несобственный интеграл сходится $\forall y \in Y$.

Определение 20. $F(y) = \int_{a}^{+\infty} f(x,y) dx$ называется несобственный интеграл первого рода, зависящий от параметра (НИЗОП-1).

Определение 21. Сходимость НИЗОП-1 в точке у означает:

$$\forall \epsilon > 0, \exists A_{\epsilon} = A(\epsilon, y) : \forall A \ge A_{\epsilon} \Rightarrow \left| \int_{A}^{+\infty} f(x, y) dx \right| \le \epsilon$$

Определение 22. Если число A_{ϵ} может быть одним и тем же $\forall y \in Y$, то говорят, что НИЗОП-1 сходится равномерно на Y. Точнее если:

$$\forall \epsilon > 0, \exists A_{\epsilon} = A(\epsilon) : \forall A \ge A_{\epsilon}, \forall y \in Y \Rightarrow \left| \int_{A}^{+\infty} f(x, y) dx \right| \le \epsilon$$

Если НИЗОП-1 сходится равномерно на Y, то используют обозначения $\int\limits_a^{+\infty} f(x,y)dx \stackrel{Y}{\Longrightarrow}$.

Пример. Рассмотрим интеграл $\int\limits_{1}^{+\infty} \frac{dx}{x^y}$. Этот интеграл сходится по степенному признаку для $Y=(1,+\infty)$.

Возьмем подмножество $[a, +\infty) \subset (1, +\infty)$, откуда понятно, что a > 1. Теперь возьмем любое $\epsilon > 0$ и рассмотрим интеграл

 $\left| \int_{A}^{+\infty} \frac{dx}{x^{y}} \right| = [$ модуль можно снести, так как подынтегральная сумма положительная] = [

$$= \frac{x^{-y+1}}{1-y}\bigg|_{A}^{+\infty} = 0 + \frac{A^{-y+1}}{y-1}$$

Так как 1-y<0, то при достаточно больших A величина $A^{1-y}\leq \epsilon,$ а знаменатель $y-1\geq a-1>0.$ Значит

$$\left| \int\limits_A^{+\infty} \frac{dx}{x^y} \right| \le \frac{\epsilon}{a-1}$$
 для достаточно больших A

T.e. интеграл сходится равномерно на промежутке $y \in [a, +\infty)$.

Докажем, что интеграл $\int_{1}^{+\infty} \frac{dx}{x^{y}}$ не сходится равномерно на промежутке $(1, +\infty)$.

$$\int_{A}^{+\infty} \frac{dx}{x^{y}} = \left. \frac{x^{1-y}}{1-y} \right|_{A}^{+\infty} = \frac{A^{1-y}}{y-1} \ge \frac{1}{y-1}$$

За счет выбора y получаем, что полученное выражение будет больше 2, т.е.

$$\exists \epsilon = 2, \forall A, \exists y_0 \in Y : \left| \int_A^{+\infty} \frac{dx}{x^{y_0}} \right| > \epsilon$$

Получили отрицание определения равномерной сходимости.

Пример. Рассмотрим интеграл $\int\limits_0^{+\infty} y e^{-xy} dx, \ y \in (0, +\infty).$

$$\int_{A}^{+\infty} y e^{-xy} dx = -e^{-xy} \Big|_{A}^{+\infty} = e^{-Ay}$$

При любом A сколь угодно большом, т.е. $\forall A \geq A_\epsilon$ имеем $y=y_0=\frac{1}{A}\in (0,+\infty)$:

$$e^{-Ay_0} = e^{-1} > \frac{1}{2e} = \epsilon$$

Т.е. $\exists \epsilon = \frac{1}{2e} : \forall A$ сколь угодно большом $\exists y_0 \in Y : \left| \int\limits_A^{+\infty} y_0 e^{-xy_0} dx \right| > \epsilon$. Следовательно равномерной сходимости нет.

11.4.1 Критерий Коши

Теорема 43. Интеграл $\int_{a}^{+\infty} f(x,y)dx \stackrel{Y}{\Longrightarrow} \Leftrightarrow$

$$\forall \epsilon > 0, \exists A_{\epsilon} : \forall A_1, A_2 \ge A_{\epsilon}(A_2 > A_1), \forall y \in Y \Rightarrow \left| \int_{A_1}^{A_2} f(x, y) dx \right| \le \epsilon$$

12.1 Признаки, позволяющие установить равномерную сходимость НИЗОП

12.1.1Признак Вейерштрасса

Теорема 44. Пусть $\exists \phi(x)$ определенная на $[a,+\infty)$: $\mid f(x,y) \mid \leq \phi(x)$ для $\forall x \in [a,+\infty)$ и $\forall y \in Y$. Если $\int\limits_a^{+\infty} \phi(x) dx$ сходится $\Rightarrow \int\limits_a^{+\infty} f(x,y) dx \stackrel{Y}{\Rightarrow}$ (сходится равномерно).

$$\int\limits_a^{+\infty}\phi(x)dx$$
- мажоранта для
$$\int\limits_a^{+\infty}f(x,y)dx.$$
 \diamondsuit Возьмем $\forall \epsilon>0.$ Т.к мажоранта сходится, то по критерию Коши:

$$\exists A_{\epsilon} : \forall A_1, A_2 \ge A_{\epsilon} \Rightarrow \left| \int_{A_1}^{A_2} \phi(x) dx \right| \le \epsilon$$

Тогда $\left| \int\limits_{A_1}^{A_2} f(x,y) dx \right| \leq \int\limits_{A_1}^{A_2} |f(x,y)| dx \leq \int\limits_{A_1}^{A_2} \phi(x) dx = \left| \int\limits_{A_1}^{A_2} \phi(x) dx \right| \leq \epsilon.$

Получаем $\left|\int\limits_{A_1}^{A_2}f(x,y)dx\right| \leq \left|\int\limits_{A_1}^{A_2}\phi(x)dx\right| \leq \epsilon$, т.е сходимость интеграла равномерная на основании Критерия Коши.

ПРИМЕР.
$$\int_{2}^{+\infty} \frac{\sin(x^2y) + y^2}{x \ln^2 x + e^{xy}} dx, \ y \in [0, 5].$$

$$\left| \frac{\sin(x^2y) + y^2}{x \ln^2 x + e^{xy}} \right| \le \frac{1 + 25}{x \ln^2 x} = \frac{26}{x \ln^2 x}$$

$$\left| \frac{\sin(x^2y) + y^2}{x \ln^2 x + e^{xy}} \right| \le \frac{1+25}{x \ln^2 x} = \frac{26}{x \ln^2 x}$$

 $\int\limits_{\hat{x}}^{+\infty} \frac{26}{x \ln^2 x} dx$ сходится по интегральному признаку, значит исходный интеграл сходится равномерно на Y.

Будем рассматривать $\int_a^{+\infty} h(x,y)g(x)dx$, где h(x,y) — непрерывная функция при $\forall x$ по переменной y и g(x) имеет непрерывную производную g'(x), причем g(x) монотонно стремится к 0.

12.1.2 Признак Дирихле

Теорема 45. Пусть выполняется следующее

1.
$$\left| \int_{a}^{A} h(x,y) dx \right| \le M, \forall A \ge a, \forall y \in Y.$$

 $2. \ g(x)$ монотонно стремится к 0.

Тогда
$$\int_{a}^{+\infty} f(x,y)dx \stackrel{Y}{\Longrightarrow}$$
, где $f(x,y) = h(x,y) \cdot g(x)$

 \Diamond Т.к $g(x) \underset{x \to \infty}{\to} 0$, то для $\forall \epsilon > 0$, $\exists A_{\epsilon} : \forall x \geq A_{\epsilon} \Rightarrow |g(x)| \leq \epsilon$. Рассмотрим $\forall A_1, A_2 \geq A_{\epsilon}$.

$$\left| \int_{A_1}^{A_2} h(x,y) \cdot g(x) dx \right| = \left[g(x) = u, \ du = g'(x) dx \atop dv = h(x,y) dx, \ v = \int_a^x h(x,y) dx \right] =$$

$$= \left| g(x) \cdot \int_a^x h(x,y) dx \right|_{A_2}^{A_2} - \int_A^{A_2} \left(\int_a^x h(x,y) dx \cdot g'(x) \right) dx \right| \le (*)$$

 $\left|\int\limits_a^x h(x,y)dx\right| \leq M$ (дано из условия). Предполагаем, что $A_1 \leq A_2$.

$$\left| \left| g(A_2) \int_a^{A_2} h(x,y) dx \right| + \left| g(A_1) \int_a^{A_1} h(x,y) dx \right| + \left| \int_{A_1}^{A_2} \left(\int_a^x h(x,y) dx \cdot g'(x) \right) dx \right| \le$$

$$\le 2\epsilon M + \int_{A_1}^{A_2} \left| \int_a^x h(x,y) dx \right| \cdot \left| g'(x) \right| dx \le 2\epsilon M + \int_{A_1}^{A_2} M \cdot \left| g'(x) \right| dx \le$$

$$\le \left[\left| g'(x) \right| \text{ не меняет знак} \right] \le 2\epsilon M + M \cdot \left| \int_{A_1}^{A_2} g'(x) dx \right| \le 2\epsilon M + M 2\epsilon = 4M\epsilon$$

На основании критерия Коши, интеграл сходится равномерно.

12.1.3 Признак Абеля

Теорема 46. Пусть h(x,y) непрерывна по x при каждом фиксированном $y \in Y$, g(x) имеет непрерывную производную u:

1.
$$\int_{a}^{+\infty} h(x,y)dx \stackrel{Y}{\Longrightarrow}$$

2. g(x) монотонна и ограничена.

Тогда
$$\int_{a}^{+\infty} f(x,y)dx \stackrel{Y}{\Longrightarrow}$$
, где $f(x,y) = h(x,y) \cdot g(x)$

🔷 Доказательство аналогично, как и для признака Дирихле. 🗖

Пример.
$$\int\limits_0^{+\infty} \frac{x \cdot cos(xy)}{1+x^2} dx, y \in [a, +\infty), a > 0.$$

Мажоранта $\frac{x}{x^2}$ - не является сходяшейся, значит пользуемся другим признаком.

$$\left| \int_{0}^{A} \cos(xy) dx \right| = \left| \frac{\sin(xy)}{y} \right|_{0}^{A} \le \frac{1}{y} \le \frac{1}{a}, \ \forall y \in Y$$

 $\frac{x}{1+x^2}$ монотонно стремится к 0 при $x\to +\infty.$ Тогда по признаку Дирихле интеграл сходится равномерно на $[a,+\infty).$

ПРИМЕР.
$$\int\limits_{1}^{+\infty} \frac{x \cdot arctg(x) \cdot cos(xy)}{1+x^2} dx, y \in [a, +\infty), a > 0$$

$$h(x,y)=rac{x\cdot cos(xy)}{1+x^2}, \int\limits_1^{+\infty}h(x,y)dx\stackrel{[a,+\infty)}{
ightharpoons}$$
 по признаку Дирихле

g(x) = arctg(x) — монотонно возрастает и ограничена $\frac{\pi}{2}$.

Исходный интеграл сходится равномерно на $[a, +\infty)$ по признаку Абеля.

Свойства НИЗОП - 1 12.2

Будем рассматривать $F(y)=\int\limits_{a}^{+\infty}f(x,y)dx$, где f(x,y) определена на $[a,+\infty)\times Y$, непрерывна по x на $[a, +\infty), y \in Y$ и интегрируема при каждом $y \in Y$.

Пусть y_0 - предельная точка Y.

Предельный переход в НИЗОП-1 12.2.1

Лемма 3. Пусть выполняется следующее

1.
$$f(x,y) \stackrel{[a,A]}{\underset{y \to y_0}{\Longrightarrow}} \phi(x), \forall A \ge a.$$
 (сходится равномерно на $\forall [a,A]$).

2.
$$\int_{a}^{+\infty} f(x,y)dx \stackrel{Y}{\Longrightarrow}$$

Тогда $\int_{0}^{+\infty} \phi(x) dx$ сходится.

 \Diamond Возьмем $\forall \epsilon > 0$, т.к по второму условию интеграл сходится равномерно, то по критерию Коши равномерной сходимости $\exists A_{\epsilon}, \forall A_1, A_2 \geq A_{\epsilon}, \forall y \in Y \Rightarrow \left| \int\limits_{A_1}^{A_2} f(x,y) dx \right| \leq \epsilon$

Пусть $y \to y_0$. Из первого пункта следует, что допустим предельный переход ИЗОП.

Получим
$$\left| \int_{A_1}^{A_2} \lim_{y \to y_0} f(x, y) dx \right| = \left| \int_{A_1}^{A_2} \phi(x) dx \right| \le \epsilon$$

По критерию Коши для НИ-1 следует, что $\int\limits_{x}^{+\infty}\phi(x)dx$ сходится. \blacksquare

Теорема 47 (Предельный переход в НИЗОП-1). Пусть выполняется следующее

1.
$$f(x,y) \stackrel{[a,A]}{\underset{y\to y_0}{\Longrightarrow}} \phi(x), \forall A \ge a.$$

2.
$$\int_{a}^{+\infty} f(x,y)dx \stackrel{Y}{\Longrightarrow}$$

Тогда
$$\lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^{+\infty} f(x,y) dx = \int_a^{+\infty} \lim_{y \to y_0} f(x,y) dx = \int_a^{+\infty} \phi(x) dx.$$
 (1)

$$\diamondsuit$$
 Докажем, что $\lim_{y\to y_0} \int_a^{+\infty} f(x,y)dx = \int_a^{+\infty} \phi(x)dx$.

Возьмем $\forall \epsilon \geq 0$ и рассмотрим разность $\left|\int\limits_a^{+\infty} f(x,y)dx - \int\limits_a^{+\infty} \phi(x)dx\right|$.

$$\left| \int_{a}^{+\infty} f(x,y)dx - \int_{a}^{+\infty} \phi(x)dx \right| = \left| \int_{a}^{A} f(x,y)dx + \int_{A}^{+\infty} f(x,y)dx - \int_{a}^{A} \phi(x)dx - \int_{A}^{+\infty} \phi(x)dx \right| \le$$

$$\le \left| \int_{a}^{A} f(x,y) - \phi(x)dx \right| + \left| \int_{A}^{+\infty} f(x,y)dx \right| + \left| \int_{A}^{+\infty} \phi(x)dx \right| \le (*)$$

Из 2-го условия (интеграл сходится равномерно) получаем, что $\forall \epsilon > 0, \left| \int\limits_A^{+\infty} f(x,y) dx \right| \le \epsilon$

 ϵ (для достаточно больших $A \geq A_{\epsilon}$ - из определения равномерной сходимости).

$$\int_{a}^{+\infty} \phi(x) dx$$
 сходится по Лемме 3. Тогда
$$\left| \int_{A}^{+\infty} \phi(x) dx \right| \leq \epsilon.$$

Т.к f(x,y) стремится равномерно к $\phi(x)$, то для y достаточно близких к y_0 $\left|\int\limits_a^A (f(x,y)-\phi(x))dx\right| \le$

$$\int_{a}^{A} |f(x,y) - \phi(x)| dx \le \int_{a}^{A} \frac{\epsilon}{A - a} dx = \epsilon$$

Тогда
$$(*) \leq 3\epsilon$$
. Таким образом $\left|\int\limits_a^{+\infty} f(x,y)dx - \int\limits_a^{+\infty} \phi(x)dx\right| \leq 3\epsilon$.

12.2.2 Непрерывность НИЗОП-1

Теорема 48. Пусть выполняются следующие условия:

1. f(x,y) непрерывна на $[a,+\infty) \times [c,d]$ как $\Phi 2\Pi$;

2.
$$\int_{a}^{+\infty} f(x,y)dx \stackrel{[c,d]}{\Rightarrow}$$

Тогда $F(y) = \int_{c}^{+\infty} f(x,y) dx$ непрерывна на [c,d].

 \Diamond Возьмем $\forall y_0 \in [c,d]$.

Функция f(x,y) непрерывна на $[a,A] \times [c,d]$ как Ф2П для $\forall A>a\Rightarrow$

$$f(x,y) \stackrel{[c,d]}{\underset{y \to y_0}{\Longrightarrow}} f(x,y_0) = \phi(x)$$

Значит допускается предельный переход НИЗОП-1.

$$\lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^{+\infty} f(x, y) dx = \int_a^{+\infty} \lim_{y \to y_0} f(x, y) dx = \int_a^{+\infty} f(x, y_0) dx = F(y_0)$$

12.2.3 Интегрирование НИЗОП-1

Теорема 49. Пусть выполняются следующие условия:

- 1. f(x,y) непрерывна на $[a,+\infty) \times [c,d]$ как $\Phi 2\Pi$;
- 2. $\int_{a}^{+\infty} f(x,y)dx$ сходится равномерно на [c,d].

$$Tor\partial a \int_{c}^{d} \left(\int_{a}^{+\infty} f(x,y) dx \right) dy = \int_{a}^{+\infty} \left(\int_{c}^{d} f(x,y) dy \right) dx. \quad (2)$$

То есть допускается интегрирование по параметру под знаком НИ.

 \Diamond Возьмем $\forall A > a$, тогда

$$\int\limits_{c}^{d} \left(\int\limits_{a}^{A} f(x,y) dx \right) dy = [\text{Теорема об интегрировании ИЗОП}] = \int\limits_{a}^{A} \left(\int\limits_{c}^{d} f(x,y) dy \right) dx$$

Пусть $A \to +\infty$. Тогда получим (2), если докажем что можно перейти к пределу под знаком интеграла слева.

$$F(A,y)=\int\limits_a^A f(x,y)dx$$
 - непрерывная как $\Phi 2\Pi$ и $\int\limits_a^{+\infty} f(x,y)dx \stackrel{[c,d]}{\rightrightarrows}$ (из 2-го условия).

Следовательно, предельный переход под знаком интеграла допустим и мы получаем формулу (2). ■

13.1 НИ от НИЗОП

Теорема 50. Пусть f(x,y) непрерывна на $[a,+\infty) \times [c,+\infty)$ как $\Phi 2\Pi$ u :

1)
$$\int_{a}^{+\infty} f(x,y)dx \stackrel{[c,+\infty)}{\Rightarrow}$$
, $\int_{c}^{+\infty} f(x,y)dy \stackrel{[a,+\infty)}{\Rightarrow}$

2) Сходится хотя бы один из интегралов:

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} |f(x,y)| dx , \int_{a}^{+\infty} dx \int_{c}^{+\infty} |f(x,y)| dy$$

Тогда $\int\limits_{c}^{+\infty}dy\int\limits_{a}^{+\infty}f(x,y)dx=\int\limits_{a}^{+\infty}dx\int\limits_{c}^{+\infty}f(x,y)dy,$ то есть допускается интегрирование по параметру у под знаком НИЗОП.

♦Без доказательства

ПРИМЕР.
$$F(y) = \int_{1}^{+\infty} \frac{e^{-x^2 y}}{1+x^2} dx, \qquad \int_{0}^{+\infty} F(y) dy = I - ?$$

Функция
$$f(x,y) = \int_{1}^{+\infty} \frac{e^{-x^2y}}{1+x^2}$$
 непрерывна как $\Phi 2\Pi$ на $[1,+\infty) \times [0,+\infty)$

$$\int\limits_1^{+\infty} \frac{e^{-x^2y}}{1+x^2} dx \stackrel{y \in [0,+\infty)}{\Longrightarrow}$$
 по признаку Вейерштрасса, ибо у него есть сходящаяся мажоранта

$$\int\limits_0^{+\infty} \frac{e^{-x^2y}}{1+x^2} dy \stackrel{x\in [1,+\infty)}{\Longrightarrow}$$
 по признаку Вейерштрасса, ибо у него есть сходящаяся мажоранта
$$\int\limits_0^{+\infty} \frac{e^{-y}}{2} dy.$$

Покажем, что сходится
$$\int_{1}^{+\infty} dx \int_{0}^{+\infty} \frac{e^{-x^2y}}{1+x^2} dy$$

$$\int_{1}^{+\infty} dx \left(\int_{0}^{+\infty} \frac{e^{-x^{2}y}}{1+x^{2}} dy \right) = \int_{1}^{+\infty} dx \left(-\frac{1}{x^{2}} \cdot \frac{1}{1+x^{2}} e^{-x^{2}y} \right) \Big|_{0}^{+\infty} = \int_{1}^{+\infty} \left(\frac{1}{x^{2}} - \frac{1}{1+x^{2}} \right) dx =$$

$$= \left(-\frac{1}{x} - \arctan x \right) \Big|_{1}^{+\infty} = -\frac{\pi}{2} + 1 + \frac{\pi}{4} = 1 - \frac{\pi}{4}$$

Выполнены все условия теоремы и по (3) :
$$\int_{0}^{+\infty} F(y)dy = \int_{1}^{+\infty} dx \int_{0}^{+\infty} \frac{e^{-x^{2}y}}{1+x^{2}}dy = 1 - \frac{\pi}{4}$$

13.2 Дифференцирование НИЗОП-1

Теорема 51. Пусть

1. f(x,y) непрерывна по x на $[a,+\infty)$ $\forall y \in [c,d]$

2. $\exists f_y'(x,y), \ которая \ непрерывна \ на \ [a,+\infty) imes [c,d] \ как \ \Phi 2\Pi$

3.
$$\int_{a}^{+\infty} f(x,y)dx = F(y) \ \forall y \in [c,d], m.е.$$
 интеграл сходится

4.
$$\int_{a}^{+\infty} f'_{y}(x,y)dx \stackrel{[c,d]}{\Rightarrow}$$

Тогда F(y) дифференцируема и $F'(y) = \left(\int\limits_a^{+\infty} f(x,y) dx\right)_y^{'} = \int\limits_a^{+\infty} f_y'(x,y) dx$ (4), то есть допускается дифференцирование по параметру у под знаком НИЗОП.

 \diamondsuit Пусть $\Phi(y) = \int\limits_{c}^{y} dt \int\limits_{a}^{+\infty} f'_t(x,t) dx$. Для $f'_t(x,t)$ выполняется условие теоремы об интегрируемости НИЗОП, поэтому

$$\Phi(y) = \int_{a}^{+\infty} dx \int_{c}^{y} f'_{t}(x,t)dt = \int_{a}^{+\infty} dx \left(f(x,t)|_{c}^{y} \right) = \int_{a}^{+\infty} f(x,y)dx - \int_{a}^{+\infty} f(x,c)dx = F(y) - F(c)$$

Далее продифференцируем по y это равенство.

Слева: $\int_{-\infty}^{+\infty} f'_t(x,t) dx$ непрерывно по t по теореме о непрерывности НИЗОП-1.

По теореме Барроу, это равно подынтегральной функции от верхнего предела, то есть $\int_{a}^{+\infty} f_y'(x,y) dx = F'(y)$. Получили (4). \blacksquare

13.3 Локальная равномерная сходимость

Определение 23. Говорят, что интеграл $\int_{a}^{+\infty} f(x,y) dx$ сходится на множестве Y ло-кально равномерно, если он сходится равномерно на любом $[c,d] \subset Y$, т.е. $\int_{a}^{+\infty} f(x,y) dx \stackrel{[c,d]}{\Rightarrow}$.

Из равномерной сходимости вытекает локальная равномерная сходимость, но обратное неверно.

Пример. Рассмотрим интеграл $I(a) = \int_0^{+\infty} \frac{dx}{(x^2+a)^2}$. Он сходится для любого a>0 по степенному признаку.

Если a>0, то особые точки: $x=+\infty: \frac{1}{(x^2+a)^2}\sim \frac{1}{x^4}.$

Но равномерной сходимости на $(0, +\infty)$ нет, т.к. $\frac{1}{(x^2+a)^2} \underset{a \to +0}{\to} \frac{1}{x^4}$ и $\int\limits_0^{+\infty} \frac{dx}{x^4}$ расходится в точке 0.

По лемме перед предельным переходом в НИЗОП, равномерной сходимости нет.

Вместе с тем можно заметить, что $I(a)=-\int\limits_0^{+\infty}\left(\frac{1}{x^2+a}\right)_a'$ — этот интеграл тоже сходится при a>0, но равномерной сходимости нет.

Возьмем $\forall a>0$, тогда $\exists [\alpha,\beta]$, такой что $0<\alpha\leq a\leq\beta$. Тогда:

$$\int\limits_{0}^{+\infty} \frac{dx}{x^2+a}, \stackrel{[\alpha,\beta]}{\Longrightarrow}$$
 т.к. есть сходящаяся мажоранта
$$\int\limits_{0}^{+\infty} \frac{dx}{x^2+\alpha}$$

Тогда функция $f(x,\alpha)=\frac{1}{x^2+\alpha}$ непрерывна на $[a,+\infty)\times[\alpha,\beta]$ и имеет непрерывную производную по $\alpha-\frac{1}{(x^2+\alpha)^2},$ непрерывную как $\Phi 2\Pi.$

$$\int\limits_0^{+\infty} f_a'(x,a)dx = -\int\limits_0^{+\infty} \frac{dx}{x^2+a}$$
 сходится по степенному признаку $\forall a \in [\alpha,\beta].$

$$\int\limits_0^{+\infty} f(x,a)dx = \int\limits_0^{+\infty} \frac{dx}{(x^2+a)^2} \stackrel{[\alpha,\beta]}{\Longrightarrow} \ \forall [\alpha,\beta] \ \text{по признаку Вейерштрасса, ибо имеет сходящуюся}$$
 мажоранту
$$\int\limits_0^{+\infty} \frac{dx}{(x^2+\alpha)^2}.$$

Используя локальную равномерную сходимость, имеем: $I(a) = -\int\limits_{a}^{+\infty} \left(\frac{1}{x^2+a}\right)_a' dx =$

$$= -\left(\int_{0}^{+\infty} \frac{1}{x^2 + a} dx\right)_a' = \left(\left(-\frac{1}{\sqrt{a}} \arctan \frac{x}{\sqrt{a}}\right)\Big|_{0}^{+\infty}\right)_a' = \left(-\frac{1}{\sqrt{a}} \frac{\pi}{2}\right)_a' = \frac{\pi}{4\sqrt{a^3}}$$

Таким образом, $I(a) = \frac{\pi}{4\sqrt{a^3}}$, $\forall a \in [\alpha, \beta]$, и в частности в выбранной ранее точке а из этого отрезка, то есть $\forall a > 0$, $\int\limits_0^+ \frac{dx}{(x^2 + a)^2} = \frac{\pi}{4\sqrt{a^3}}$

Замечание: В сформулированных ранее теоремах о непрерывности и дифференцируемости НИЗОП-1 требование равномерной сходимости конкретного интеграла можно заменить требованием локальной равномерной сходимости.

13.4 НИЗОП-2

Пусть f(x,y) определена на $[a,b)\times Y$, где b — ОТ функции f(x,y), то есть f(x,y) неограничена в окрестности точки x=b.

И пусть функция f(x,y) интегрируема, то есть $\exists \int_a^c f(x,y) dx \ \forall c \in [a,b)$.

Положим, что других особых точек нет.

$$\lim_{c \to b-0} \int_{a}^{c} f(x, y) dx = F(y)$$

Определение 24. Если этот предел существует и конечный, то говорят, что $\int_{a}^{o} f(x,y)dx$ **сходится** при данном значении y, в противном случае интеграл **расходится**.

Определение 25. Пусть интеграл сходится для $\forall y \in Y$, тогда на Y определена функция $F(y) = \int\limits_a^b f(x,y) dx$, которую называют **НИЗОП-2**.

Все теоремы, сформулированные для НИЗОП-1, можно сформулировать и для НИЗОП-2.

Но можно свести НИЗОП-2 к НИЗОП-1 при помощи замены переменных:

$$\left[\frac{1}{b-x}\right] = t \mid \frac{1}{b-a} = \alpha = \int_{\alpha}^{+\infty} g(t,y)dt$$

13.4.1 Теорема о непрерывности НИЗОП-2

Теорема 52. Пусть

1. f(x,y) непрерывна на $[a,b) \times [c,d]$ как $\Phi 2\Pi$.

2.
$$\int_{a}^{b} f(x,y)dx \stackrel{[c,d]}{\Rightarrow}$$

Тогда функция $F(y) = \int\limits_a^b f(x,y) dx$ непрерывна на [c,d].

При этих же условиях можно интегрировать НИЗОП-2 под знаком интеграла, то есть

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

Аналогично формулируется и теорема о дифференцировании.

Определение 26. Определение равномерной сходимости:

$$\int_{a}^{b} f(x,y)dx \stackrel{Y}{\Longrightarrow} \Leftrightarrow \forall \epsilon > 0 \; \exists c_{\epsilon} = c(\epsilon) \; : \; \forall c \in [c_{\epsilon},b), \; \forall y \in Y \Rightarrow \left| \int_{c}^{b} f(x,y)dx \right| \leq \epsilon$$

13.4.2 Критерий Коши

Теорема 53.

$$\int_{a}^{b} f(x,y)dx \stackrel{Y}{\Longrightarrow} \Leftrightarrow \forall \epsilon > 0 \; \exists c \; : \; \forall c_{1}, c_{2} \in [c,b), \; \forall y \in Y \Rightarrow \left| \int_{c_{1}}^{c_{2}} f(x,y)dx \right| \leq \epsilon$$

13.4.3 Признак Вейерштрасса

Теорема 54. Если существует g(x), определённая на [a,b) и $|f(x,y)| \leq g(x)$, $\forall x \in [a,b), \ \forall y \in Y : \int\limits_a^b g(x) dx \ cxo \partial umc = \int\limits_a^b f(x,y) dx \stackrel{Y}{\Rightarrow}$

13.4.4 Локальная равномерная сходимость НИЗОП-2

Определение 27. Локальная равномерная сходимость означает, что интеграл равномерно сходится на $\forall [c,d] \subset Y$.

Как и для НИЗОП-1, равномерную сходимость можно заменить на локальную равномерную сходимость в теоремах о непрерывности и дифференцируемости.

14.1 Эйлеров интеграл 1-ого рода

Определение 28. Интеграл $\int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$ называется Эйлеровым интегралом **1-**ого рода.

14.1.1Сходимость Эйлеровго интеграл 1-ого рода

Изучим сходимость этого интеграла.

ОТ: x=0, тогда $x^{a-1}(1-x)^{b-1}\sim x^{a-1}=\frac{1}{x^{1-a}}$ сходится при $1-a<1\Rightarrow a>0$. ОТ: x=1, тогда $x^{a-1}(1-x)^{b-1}\sim (1-x)^{b-1}=\frac{1}{(1-x)^{1-b}}$ сходится при $1-b<1\Rightarrow b>0$.

Следовательно получили, что Эйлеров интеграл 1-ого рода сходится при a>0 и b>0, в других случаях расходится.

Определение 29. При a > 0 и b > 0 интеграл определяет:

$$B(a,b) = \int\limits_{0}^{1} x^{a-1} (1-x)^{b-1} dx -$$
бетта-функция Эйлера.

Будем изучать ее. Положим $1-x=t \Rightarrow x=1-t \Rightarrow dx=-dt$. Тогда:

$$B(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx = -\int_{1}^{0} (1-t)^{a-1} t^{b-1} dt = \int_{0}^{1} t^{b-1} (1-t)^{a-1} dt = B(b,a)$$

Получили, что B(a,b) = B(b,a).

Теперь рассмотрим $B(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx = \begin{bmatrix} u = (1-x)^{b-1}, & du = -(b-1)(1-x)^{b-2} dx \\ dv = x^{a-1} dx, & v = \frac{x^{a}}{a} \end{bmatrix} = 0$

$$= [\Pi \text{усть } b > 1] = \frac{1}{a} x^a (1-x)^{b-1} \Big|_0^1 + \frac{b-1}{a} \int_0^1 x^a (1-x)^{b-2} dx = *$$

Используя тот факт, что $x^a = x^{a-1} \cdot x = x^{a-1} (1 - (1-x))$ получаем:

$$* = \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-(1-x))(1-x)^{b-2} dx = \frac{b-1}{a} \left(\int_{0}^{1} x^{a-1} (1-x)^{b-2} dx - \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx \right) = \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-x)^{b-2} dx = \frac{b-1}{a} \left(\int_{0}^{1} x^{a-1} (1-x)^{b-2} dx - \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx \right) = \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-x)^{b-2} dx = \frac{b-1}{a} \left(\int_{0}^{1} x^{a-1} (1-x)^{b-2} dx - \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx \right) = \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-x)^{b-2} dx = \frac{b-1}{a} \left(\int_{0}^{1} x^{a-1} (1-x)^{b-2} dx - \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx \right) = \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-x)^{b-2} dx = \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-x)^{b-2} dx = \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-x)^{b-2} dx = \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx = \frac{b-1}{a} \int_{0}^{1} x^{a-1} dx = \frac{b-1}{a} \int_{0}^{1} x^{a-1} dx = \frac$$

$$= \frac{b-1}{a} (B(a, b-1) - B(a, b))$$

Отсюда несложно получить, что $B(a,b)=\frac{b-1}{a+b-1}B(a,b-1), b>1$ — это называется формула понижения. Аналогично можно получить формулу $B(a,b)=\frac{a-1}{a+b-1}B(a-1,b), a>1.$

При больших значениях b можно использовать формулу понижения несколько раз.

$$B(a,b) = \frac{b-1}{a+b-1}B(a,b-1) = \frac{(b-1)(b-2)}{(a+b-1)(a+b-2)}B(a,b-2) = \dots$$

Пусть $n = b \in \mathbb{N}$. Тогда:

$$B(a,n) = \frac{(n-1)(n-2)\cdot\ldots\cdot 1}{(a+n-1)(a+n-2)\cdot\ldots\cdot (a+1)}B(a,1)$$
 Т.к.
$$B(a,1) = \int_0^1 x^{a-1}dx = \frac{x^a}{a}\Big|_0^1 = \frac{1}{a}, \text{ получаем}$$

$$B(a,n) = \frac{(n-1)!}{a(a+1)(a+2)\cdot\ldots\cdot (a+n-1)} \quad (1)$$

$$B(m,b) = \frac{(m-1)!}{b(b+1)(b+2)\cdot\ldots\cdot (b+n-1)} \quad (2)$$

Если в формулах оба аргумента функции являются натуральными числами, то

$$B(m,n) = \frac{(n-1)!}{m(m+1)(m+2)\cdot\ldots\cdot(m+n-1)} = \frac{(n-1)!(m-1)!}{(m+n-1)!}$$
 (3)

Определение 30. Формулы (1), (2), (3) называются формулами понижения.

ПРИМЕР.
$$\int_{0}^{1} x^{3} (1-x)^{4} dx = B(4,5) = \frac{3!4!}{8!}$$

14.1.2 Второе представление бетта функции

$$B(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx = \left[t = \frac{x}{1-x}, x = \frac{t}{1+t}, dx = \frac{1}{(1+t)^{2}} dt \right] =$$

$$= \int_{0}^{+\infty} \left(\frac{t}{1+t} \right)^{a-1} \frac{1}{(1+t)^{b-1}} \cdot \frac{1}{(1+t)^{2}} dt = \int_{0}^{+\infty} \frac{t^{a-1}}{(1+t)^{a+b}} dt$$

Таким образом получаем, что

$$\int_{0}^{1} x^{a-1} (1-x)^{b-1} dx = B(a,b) = \int_{0}^{+\infty} \frac{x^{a-1}}{(1+x)^{a+b}} dx$$

Пример. Рассмотрим интеграл $\int\limits_0^{+\infty} \frac{x^{\alpha}}{(1+x^{\beta})^{\gamma}} dx, \quad \beta, \gamma \geq 0.$

$$\int_{0}^{+\infty} \frac{x^{\alpha}}{(1+x^{\beta})^{\gamma}} dx = \left[t = x^{\beta}, x = t^{\frac{1}{\beta}}, dx = \frac{1}{\beta} t^{\frac{1}{\beta}-1} dt \right] = \frac{1}{\beta} \int_{0}^{+\infty} t^{\frac{\alpha}{\beta} + \frac{1}{\beta} - 1} \frac{1}{(1+t)^{\gamma}} dt = \frac{1}{\beta} \int_{0}^{+\infty} \frac{t^{\frac{\alpha+1}{\beta} - 1}}{(1+t)^{\gamma}} dt = \frac{1}{\beta} \int_{0}^{+\infty} \frac{t^{$$

= [Воспользуемся 2-ым представлением В функции] =
$$\left[a=\frac{\alpha+1}{\beta}, \gamma=a+b \Rightarrow b=\gamma-\frac{\alpha+1}{\beta}\right]=$$
 = $\frac{1}{\beta}$ $B\left(\frac{\alpha+1}{\beta}, \gamma-\frac{\alpha+1}{\beta}\right)$

Интеграл Эйлера $\int\limits_{0}^{+\infty} \frac{x^{p-1}}{1+x} dx$

Исследуем интеграл Эйлера на сходимость. x=0 — особая точка. Тогда $\frac{x^{p-1}}{1+x}\sim\frac{1}{x^{1-p}}$ сходится при $1-p<1\Rightarrow p>0$. $x=+\infty$ — особая точка. Тогда $\frac{x^{p-1}}{1+x}\sim\frac{x^{p-1}}{x}=\frac{1}{x^{2-p}}$ сходится при $2-p>1\Rightarrow p<1$. Следовательно, интеграл Эйлера сходится при 0< p<1 и определяет функцию:

Определение 31.

$$E(p)=\int\limits_{0}^{+\infty}rac{x^{p-1}}{1+x}dx~(4)~-$$
функция Эйлера

Как ранее было доказано $\int_{-\infty}^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx = \frac{1}{n} \frac{\pi}{\sin\left(\frac{2m+1}{2n}\pi\right)}$. Т.к. подынтегральная функция четная, то

$$\int_{0}^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx = \frac{1}{2n} \frac{\pi}{\sin\left(\frac{2m+1}{2n}\pi\right)} \Rightarrow$$

$$\frac{1}{2n} \frac{\pi}{\sin\left(\frac{2m+1}{2n}\pi\right)} = \int_{0}^{+\infty} \frac{x^{2m}}{1+x^{2n}} dx = \left[t = x^{2n}, x = t^{\frac{1}{2n}}, dx = \frac{1}{2n} t^{\frac{1}{2n}-1} dt\right] =$$

$$= \frac{1}{2n} \int_{0}^{+\infty} \frac{t^{\frac{2m}{2n} + \frac{1}{2n} - 1}}{1+t} dt = \frac{1}{2n} \int_{0}^{+\infty} \frac{t^{\frac{2m+1}{2n} - 1}}{1+t} dt = [\text{Учитывая } (4)] = \frac{1}{2n} E\left(\frac{2m+1}{2n}\right)$$

$$E\left(\frac{2m+1}{2n}\right) = \frac{\pi}{\sin\left(\frac{2m+1}{2n}\pi\right)} \tag{5}$$

Функция Эйлера является непрерывной функцией от p, так как подынтегральная сумма непрерывна на $\in (0, 1)$.

Возьмем $\forall [p_1, p_2] \subset (0, 1)$ и покажем, что $\int_{0}^{+\infty} \frac{x^{p-1}}{1+x} dx \stackrel{[p_1, p_2]}{\Longrightarrow}$.

x=0 — особая точка. Тогда $\frac{x^{p-1}}{1+x} \leq \frac{x^{p_1-1}}{1+x}$, а $\int\limits_0^2 \frac{x^{p_1-1}}{1+x} dx$ сходится, так как $p_1-1<0$. Значит в точке 0 есть равномерная сходимость

 $x=+\infty$ — особая точка. Тогда $\frac{x^{p-1}}{1+x}\leq \frac{x^{p_2-1}}{1+x}, \forall x\in [2,+\infty), \text{ а } \int\limits_{0}^{+\infty} \frac{x^{p_2-1}}{1+x}dx$ сходится, так

как $p_2-1<0$ и $\frac{x^{p_2-1}}{1+x}\sim\frac{1}{x^{2-p_2}}$ - сходится. Тогда по признаку Вейерштрасса интеграл сходится локально-равномерно $\forall [p_1,p_2]\subset$ $(0,1) \Rightarrow$ функция непрерывна на $[p_1,p_2] \Rightarrow$ функция непрерывна на (0,1).

Получили, что E(p) непрерывна на (0,1).

Возьмем теперь $\forall p \in (0,1)$ и разобьем (0,1) на 2n полуинтервалов и точка p окажется либо в $\left(\frac{2m}{2n},\frac{2m+1}{2n}\right]$, либо в $\left(\frac{2m+1}{2n},\frac{2m+2}{2n}\right]$. Для какого-то m числа $\frac{2m}{2n},\frac{2m+1}{2n},\frac{2m+2}{2n} \xrightarrow[n \to \infty]{} p$, тогда в (5), при $n \to \infty$, получаем

$$\lim_{n \to \infty} E\left(\frac{2m+1}{2n}\right) = \frac{\pi}{\sin p\pi}$$

Поскольку функция E(p) непрерывна на (0,1), то $E(p)=\frac{\pi}{\sin p\pi}.$ Итог

$$\int_{0}^{+\infty} \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin p\pi}$$

14.2.1 Формула дополнения

Рассмотрим
$$B(a,b) = \int_0^{+\infty} \frac{x^{a-1}}{(1+x)^{a+b}} dx$$

Если
$$a+b=1$$
, то $B(a,1-a)=\int\limits_0^{+\infty} \frac{x^{a-1}}{1+x}dx=E(a)=\frac{\pi}{\sin a\pi}.$

$$B(a,1-a)=rac{\pi}{\sin a\pi}$$
 – формула дополнения для ${f 0}<{f a}<{f 1}$

Пример.
$$\int_{0}^{1} x^{-\frac{3}{4}} (1-x)^{-\frac{1}{4}} dx = B(\frac{1}{4}, \frac{3}{4}) = \frac{\pi}{\sin \frac{\pi}{4}} = \pi \sqrt{2}$$

15.1 Эйлеров интеграл 2-ого рода

Определение 32. Интеграл $\int\limits_0^{+\infty} x^{a-1}e^{-x}dx$ называется Эйлеровым интегралом 2-ого рода.

15.1.1 Изучение сходимости интеграла

x=0 — особая точка, тогда $x^{a-1}e^{-x}\sim x^{a-1}=\frac{1}{x^{1-a}}$ сходится при $1-a<1\Rightarrow a>0$. $x=+\infty$ — особая точка. Так как неравенство $\frac{x^{a-1}}{e^x}\leq \frac{1}{x^2}$ выполняется для достаточно больших x и интеграл сходится $\forall a$.

Следовательно, интеграл сходится при a>0 и определяет функцию $\Gamma(a)=\int\limits_0^{+\infty}x^{a-1}e^{-x}dx,$ которая называется **гамма-функция Эйлера**.

Равномерной сходимости на $a \in (0, +\infty)$ нет по лемме перед предельным переходом НИЗОП.

Возьмем $\forall a \in (0, +\infty)$, тогда $\exists [\alpha, A], 0 < \alpha \leq a \leq A$. При этом

$$\int_{0}^{+\infty} x^{a-1}e^{-x}dx = \int_{0}^{1} x^{a-1}e^{-x}dx + \int_{1}^{+\infty} x^{a-1}e^{-x}dx = I_1 + I_2$$

 $I_1:\int\limits_0^1 x^{a-1}e^{-x}dx$. Интеграл сходится равномерно на $[\alpha,A]$, т.к. у него есть сходящаяся мажоранта $\int\limits_0^1 x^{\alpha-1}e^{-x}dx$. Подынтегральная функция непрерывна на $(a,+\infty)\times[\alpha,A]$, тогда $I_1=I_1(a)$ непрерывна на $[\alpha,A]$, и в частности в точке $a\Rightarrow$ непрерывна везде на $(0,+\infty)$. $I_2:\int\limits_1^{+\infty} x^{a-1}e^{-x}dx$ сходится равномерно на $[\alpha,A]$, т. к. $\int\limits_1^{+\infty} x^{A-1}e^{-x}dx$ сходится. Подынтегральная функция непрерывна на $(a,+\infty)\times[\alpha,A]$, тогда $I_2=I_2(a)$ непрерывна на $[\alpha,A]$ и в частности в точке $a\Rightarrow\Gamma(a)$ непрерывна при $\forall a\in(0,+\infty)$.

15.1.2 Изучение дифференцирования интеграла

Рассмотрим интеграл от производной.

$$(x^{a-1}e^{-x})_a' = x^{a-1}e^{-x}\ln x$$

Интеграл $\int\limits_0^{+\infty} x^{a-1}e^{-x} \ln x dx$ не сходится равномерно, но сходится локально равномерно.

Аналогично проделанному выше:

$$\int_{0}^{+\infty} x^{a-1}e^{-x} \ln x dx = \int_{0}^{1} x^{a-1}e^{-x} \ln x dx + \int_{1}^{+\infty} x^{a-1}e^{-x} \ln x dx = I_1 + I_2$$

 $I_1:\int\limits_0^1 x^{a-1}e^{-x}\ln x dx$. Возьмем любой промежуток $[\alpha,A]\subset (0,+\infty)$. Интеграл I_1 сходится равномерно на $[\alpha,A]$, т.к. имеет сходящуюся мажоранту $\int\limits_0^1 x^{\alpha-1}e^{-x}\ln x$ по Вейерштрассу. Также выполняется теорема о дифференцировании НИЗОП и $I_1=I_1(a)$ дифференцируема на $(0,+\infty)$.

 $I_2:\int\limits_1^{+\infty}x^{a-1}e^{-x}\ln xdx$ равномерно сходится, поскольку $x^{a-1}e^{-x}\ln x\leq rac{x^{A-1}}{e^x}\ln x<rac{1}{x^2}$ по Вейерштрассу, $I_2=I_2(a)$ дифференцируема на $[\alpha,A]\Rightarrow$ дифференцируема на $(0,+\infty)$.

Производную можно вычислить, дифференцируя под знаком интегралов $I_1(a), I_2(a)$. Получаем:

$$\Gamma'(a) = \int_{0}^{+\infty} x^{a-1}e^{-x} \ln x dx$$

Аналогично $\Gamma''(a) = \int_0^{+\infty} x^{a-1} e^{-x} \ln^2 x \, dx, \dots, \Gamma^{(n)}(a) = \int_0^{+\infty} x^{a-1} e^{-x} \ln^{(n)} x \, dx, \forall n \in \mathbb{N}.$ Таким образом получаем, что $\Gamma(a)$ бесконечно дифференцируемая функция.

15.2 Формула понижения

Рассмотрим $\Gamma(a+1)$:

$$\Gamma(a+1) = \int_{0}^{+\infty} x^{a} e^{-x} dx = \begin{bmatrix} u = x^{a}, & du = ax^{a-1} dx \\ dv = e^{-x} dx, & v = -e^{-x} \end{bmatrix} =$$

$$= -x^{a} e^{-x} \Big|_{0}^{+\infty} + a \int_{0}^{+\infty} x^{a-1} e^{-x} dx = a\Gamma(a)$$

Отсюда получаем, что

$$\Gamma(a+1) = a\Gamma(a)$$

Если при этом a>0, то мы имеем $\Gamma(a+n)=(a+n-1)\Gamma(a+n-1)=(a+n-1)(a+n-2)\cdot\ldots\cdot a\cdot\Gamma(a).$

Если a=1, то $\Gamma(n+1)=n(n-1)\cdot\ldots\cdot 2\cdot 1\cdot \Gamma(1)$, где $\Gamma(1)=\int\limits_0^{+\infty}e^{-x}dx=-e^{-x}\big|_0^{+\infty}=1.$ Отсюда получается, что $\Gamma(n+1)=n!$

Таким образом $\Gamma(a)$ — это производящая функция для последовательность $x_n=n!$.

15.3 График гамма-функции

По теореме Ролля на [1,2] найдется стационарная точка и значение в этой точке есть локальный экстремум.

Так как $\Gamma''(a) = \int\limits_0^{+\infty} x^{a-1}e^{-x}\ln^2xdx > 0$, то эта стационарная точка — точка локального минимума: $a_0 \approx 1.462, \Gamma(a_0) = 0.886$.

Поскольку $\Gamma''(a) > 0$, то функция выпукла вниз на всей области определения.

Т.к.
$$\Gamma(a+1) = a\Gamma(a)$$
, то $\Gamma(a) = \frac{1}{a}\Gamma(a+1)$ и при $a \to +0$, $\lim_{a \to +0} \Gamma(a) = +\infty$.

15.4 Связь между Г и В функциями

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \quad (1)$$

Пример. Рассмотрим интеграл $\int_{0}^{\frac{\pi}{2}} \sin^{p} x \cos^{q} x dx$.

$$\int_{0}^{\frac{\pi}{2}} \sin^{p} x \cos^{q} x dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin^{p-1} x \cos^{q-1} x \cdot 2 \sin x \cos x dx = \left[\begin{array}{c} \sin^{2} x = t \\ 2 \cos x \sin x dx = dt \end{array} \right] =$$

$$= \frac{1}{2} \int_{0}^{1} t^{\frac{p-1}{2}} (1-t)^{\frac{q-1}{2}} dt = \frac{1}{2} B\left(\frac{p+1}{2}, \frac{q+1}{2}\right) = \frac{1}{2} \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{\Gamma(\frac{p+q}{2}+1)}$$

Из формулы (1) имеем

$$B(a, 1-a) = \frac{\pi}{\sin(\pi a)} = \frac{\Gamma(a)\Gamma(1-a)}{\Gamma(1)} \Leftrightarrow$$

$$\Gamma(a)\Gamma(1-a)=rac{\pi}{\sin\pi a}$$
 — формула дополнения для $\Gamma(a)$

15.5 Формула Лежандра

Рассмотрим B(a, a).

$$B(a,a) = \int_{0}^{1} x^{a-1} (1-x)^{a-1} dx = \int_{0}^{1} (x-x^{2})^{a-1} dx = \int_{0}^{1} \left(\frac{1}{4} - \left(\frac{1}{2} - x\right)^{2}\right)^{a-1} dx = \int_{0}^{1} \left(\frac{1}{4} - \left(\frac{1}{4} - \left(\frac{1}{2} - x\right)^{2}\right)^{a-1} dx = \int_{0}^{1} \left(\frac{1}{4} - \left(\frac{1}{4} - \left(\frac{1}{4} - x\right)^{2}\right)^{a-1} dx = \int_{0}^{1} \left(\frac{1}{4} - x\right)^{a-1} dx =$$

$$= 2\int_{0}^{\frac{1}{2}} \left(\frac{1}{4} - \left(\frac{1}{2} - x\right)^{2}\right)^{a-1} dx = \left[z = \frac{1}{2} - x \atop dx = -dz\right] = 2\int_{0}^{\frac{1}{2}} \left(\frac{1}{4} - z^{2}\right)^{a-1} dz =$$

$$= \left[z^{2} = \frac{1}{4}u^{2}, z = \frac{1}{2}u, dz = \frac{1}{2}du\right] = \int_{0}^{1} \left(\frac{1}{4} - \frac{1}{4}u^{2}\right)^{a-1} du = \int_{0}^{1} \frac{1}{4^{a-1}} (1 - u^{2})^{a-1} du =$$

$$= \left[u^{2} = v, u = v^{\frac{1}{2}}, du = \frac{1}{2\sqrt{v}}dv\right] = \frac{1}{4^{a-1}} \frac{1}{2} \int_{0}^{1} (1 - v)^{a-1} \frac{1}{\sqrt{v}}dv =$$

$$= \frac{B(\frac{1}{2}, a)}{2^{2a-1}}$$

Переходя к гамма-функции, имеем:

$$\frac{\Gamma(a)\Gamma(a)}{\Gamma(2a)} = \frac{1}{2^{2a-1}} \frac{\Gamma(\frac{1}{2})\Gamma(a)}{\Gamma(a+\frac{1}{2})} \Leftrightarrow$$

$$\Gamma\left(a+\frac{1}{2}\right) = \frac{1}{2^{2a-1}} \frac{\Gamma(\frac{1}{2})\Gamma(2a)}{\Gamma(a)}$$

Посчитаем, чему будет равняться $\Gamma\left(\frac{1}{2}\right)$ с помощью формулы дополнения.

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\frac{\pi}{\sin\frac{\pi}{2}}} = \sqrt{\pi}$$

Подставляя $\Gamma\left(\frac{1}{2}\right)$ в ранее найденное нами выражение, имеем:

$$\Gamma\left(a+rac{1}{2}
ight)=rac{1}{2^{2a-1}}rac{\sqrt{\pi}\cdot\Gamma(2a)}{\Gamma(a)}$$
 — формула Лежандра

16.1 Интеграл Пуассона

Определение 33. $I=\int\limits_0^{+\infty}e^{-x^2}dx$ — интеграл Пуассона

$$I = \left[x^2 = t, \ x = \sqrt{t}, \ dx = \frac{1}{2} \frac{1}{\sqrt{t}} dt \right] = \frac{1}{2} \int_{0}^{+\infty} e^{-t} \frac{1}{\sqrt{t}} dt = \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$$

Данный интеграл часто используется в теории вероятностей (смотри плотность нормального распределения).

$$I = \int_{0}^{+\infty} e^{-\sigma x^{2}} dx = \left[\sigma x^{2} = t, \ x = \frac{\sqrt{t}}{\sqrt{\sigma}}, \ dx = \frac{dt}{2\sqrt{\sigma}\sqrt{t}} \right] = \frac{1}{2\sqrt{\sigma}} \int_{0}^{+\infty} e^{-t} t^{-\frac{1}{2}} dt = \frac{1}{2}\sqrt{\frac{\pi}{\sigma}}$$

ПРИМЕР. $\int_{-\infty}^{+\infty} e^{-(ax^2+2bx+c)} dx, \ a>0$

$$\int_{-\infty}^{+\infty} e^{-(ax^2 + 2bx + c)} dx = \int_{-\infty}^{+\infty} e^{-a\left(\left(x^2 + 2\frac{b}{a}x + \frac{b^2}{a^2}\right) + \frac{c}{a} - \frac{b^2}{a^2}\right)} dx = \int_{-\infty}^{+\infty} e^{-a\left(x + \frac{b}{a}\right)^2} \cdot e^{-c + \frac{b^2}{a}} dx =$$

$$= e^{-c + \frac{b^2}{a}} \int_{-\infty}^{+\infty} e^{-a\left(x + \frac{b}{a}\right)^2} dx = \left[x + \frac{b}{a} = t, \ dx = dt\right] = e^{-c + \frac{b^2}{a}} \int_{-\infty}^{+\infty} e^{-at^2} dt =$$

$$= e^{-c + \frac{b^2}{a}} \cdot 2 \int_{0}^{+\infty} e^{-at^2} dt = e^{-c + \frac{b^2}{a}} \cdot 2 \cdot \frac{1}{2} \sqrt{\frac{\pi}{a}} = e^{-c + \frac{b^2}{a}} \sqrt{\frac{\pi}{a}}$$

16.2 Интеграл Дирихле

Определение 34. $I=\int\limits_0^{+\infty} \frac{\sin x}{x} dx$ — интеграл Дирихле

16.2.1 Сходимость интеграла Дирихле

 $x = +\infty$ — особая точка, интеграл сходится по признаку Дирихле. x = 0 — не особая точка, т.к. подынтегральная функция стремится к 1.

Будем рассматривать $F(a)=\int\limits_0^{+\infty}e^{-ax}\frac{\sin x}{x}dx$. Нетрудно видеть, что I=F(0). Изучим F(a).

- Интеграл сходится при $a \ge 0$ по признаку Абеля, ибо $\int_0^{+\infty} \frac{\sin x}{x} dx$ сходится равномерно, а e^{-ax} монотонна и ограничена для $\forall a \ge 0$.
- $F(a) \stackrel{[0,+\infty)}{\Rightarrow}$ по признаку Дирихле.
- F(a) непрерывна на $[0, +\infty)$, т.к. она непрерывна как $\Phi 2\Pi$ на $[0, +\infty) \times [0, A], \forall A \geq 0$.
- Если формально продифференцировать по а функцию под интегралом получим:

$$-\int_{0}^{+\infty} e^{-ax} \sin x \, dx = -\left. \frac{-a \sin x - \cos x}{1 + a^2} \cdot e^{-ax} \right|_{0}^{+\infty} = 0 - \frac{1}{1 + a^2}$$

Т.е. интеграл от производной сходится равномерно, значит дифференцирование под знаком интеграла возможно.

$$F'(a) = -\frac{1}{1+a^2} \Rightarrow F(a) = -\arctan a + c$$

• Заметим, что $F(a) \le \int_0^{+\infty} e^{-ax} dx = \frac{-e^{-ax}}{a} \Big|_0^{+\infty} = \frac{1}{a}$ и поэтому $\lim_{a \to +\infty} F(a) = 0 = \lim_{a \to +\infty} (-\arctan a + c) = -\frac{\pi}{2} + c \Rightarrow c = \frac{\pi}{2} \Rightarrow$

$$F(a) = -\arctan a + \frac{\pi}{2}$$

При $a \to 0$ получаем $F(0) = \frac{\pi}{2}$, но F(0) = I, т.е.

$$\int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Рассмотрим обобщение.

$$\int_{0}^{+\infty} \frac{\sin kx}{x} dx = \int_{0}^{+\infty} \frac{\sin kx}{kx} d(kx) = \int_{0}^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}, \quad k > 0$$

$$\int_{0}^{+\infty} \frac{\sin kx}{x} dx = -\int_{0}^{+\infty} \frac{\sin (-kx)}{x} dx = -\frac{\pi}{2}, \quad k < 0$$

При k=0 интеграл очевидно равен 0.

Таким образом получаем, что

$$\int_{0}^{+\infty} \frac{\sin kx}{x} dx = \frac{\pi}{2} sgn(k), \ \forall k \in \mathbb{R}$$

Пример. Рассмотрим интеграл $\int_{0}^{+\infty} \frac{e^{-x^2}-\cos x}{x^2} dx$.

$$\int_{0}^{+\infty} \frac{e^{-x^{2}} - \cos x}{x^{2}} dx = \begin{bmatrix} u = e^{-x^{2}} - \cos x, & du = (-2xe^{-x^{2}} + \sin x)dx \\ dv = \frac{1}{x^{2}} dx, & v = -\frac{1}{x} \end{bmatrix} =$$

$$= -\frac{e^{-x^{2}} - \cos x}{x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} \frac{-2xe^{-x^{2}} + \sin x}{x} dx = 0 - \sqrt{\pi} + \frac{\pi}{2} = \frac{\pi}{2} - \sqrt{\pi}$$

16.3 Интеграл Лапласа

Будем рассматривать два интеграла, которые называются интегралами Лапласа.

$$A = \int_{0}^{+\infty} \frac{\cos ax}{k^2 + x^2} dx, \quad a \ge 0, k > 0$$

При $\check{k}=0$ интеграл расходится в точке x=0. При остальных k сходится.

$$A(a) = \int\limits_0^{+\infty} \frac{\cos ax}{k^2 + x^2} dx$$
 сходится для $\forall a \geq 0$, причем сходится равномерно $\int\limits_0^{+\infty} \frac{\cos ax}{k^2 + x^2} dx \stackrel{[a, +\infty)}{\Longrightarrow}$

$$B = \int_{0}^{+\infty} \frac{x \sin ax}{k^2 + x^2} dx, \quad a \ge 0, k > 0$$

$$B(a) = \int\limits_0^{+\infty} \frac{x \sin ax}{k^2 + x^2} dx \stackrel{[\epsilon, +\infty)}{\Longrightarrow}, \forall \epsilon > 0$$
, так как $\int\limits_0^A \sin ax \ dx = \frac{\cos ax}{a} \Big|_0^A \le \frac{2}{a}$ и $\frac{x}{k^2 + x^2}$ стремится равномерно, т.к. не зависит от a и монотонно стремится к 0 .

По признаку Дирихле интеграл сходится равномерно на $[\epsilon, +\infty)$, а значит он сходится локально равномерно на $(0, +\infty)$.

Формально продифференцируем A(a) под знаком интеграла:

$$-\int\limits_{0}^{+\infty} \frac{x\sin ax}{k^2 + x^2} dx = -B(a)$$

Отсюда получаем, что дифференцирование законно, так как мы получили локально равномерно сходящийся интеграл на $(0, +\infty)$.

Таким образом $A'(a) = -B(a) \Leftrightarrow$

$$A'(a) + \frac{\pi}{2} = -B(a) + \frac{\pi}{2} = \int_{0}^{+\infty} \frac{-x \sin ax}{k^2 + x^2} dx + \int_{0}^{+\infty} \frac{\sin ax}{x} dx = \int_{0}^{+\infty} \frac{k^2 \sin ax}{x(k^2 + x^2)} dx \Rightarrow$$
$$A''(a) = \int_{0}^{+\infty} \frac{k^2 \cos ax}{k^2 + x^2} dx = k^2 A(a)$$

Дифференцирование под знаком интеграла законно, так как A сходится равномерно.

Решим дифференциальное уравнение $A''(a) - k^2 A = 0$.

$$\lambda^2 - k^2 = 0 \Rightarrow \lambda = \pm k \Rightarrow A(a) = c_1 e^{ka} + c_2 e^{-ka}$$

Заметим, что $|A(a)| \leq \int_0^{+\infty} \frac{1}{k^2+x^2} dx = \frac{1}{k} \arctan \frac{x}{k} \Big|_0^{+\infty} = \frac{\pi}{2k}$ — ограниченная функция. Значит $c_1 = 0$, т.е. $A(a) = c_2 e^{-ka}$.

A(a) сходится равномерно на промежутке $[0, +\infty)$, а следовательно она непрерывна на нем. Тогда

$$A(a) = \int_{0}^{+\infty} \frac{1}{k^2 + x^2} dx = \frac{\pi}{2k}$$

С другой стороны $A(0)=c_2e^{-k\cdot 0}=c_2$, т.е. $c_2=\frac{\pi}{2k}$. Таким образом получаем, что

$$A(a) = \frac{\pi}{2k}e^{-ak}, \quad a \ge 0$$

 $B(a) = -A'(a) = \frac{\pi}{2}e^{-ak}, \quad a > 0$

Если a<0, то $A(a)=A(-a)=\frac{\pi}{2k}e^{-k|a|}$, а $B(a)=-B(-a)=\frac{\pi}{2}e^{-k|a|}$. Если a=0, то $A(a)=\frac{\pi}{2k}e^{-k|a|}$, а B(a)=0.

Причем, оба интеграла не зависят от знака k. Тогда

$$A(a) = \frac{\pi}{2|k|} e^{-|k||a|}, \quad a \in \mathbb{R}, k \neq 0$$
$$B(a) = \frac{\pi}{2} e^{-|k||a|} \cdot sign(a), \quad a \in \mathbb{R}, k \in \mathbb{R}$$

ПРИМЕР.

$$\int_{0}^{+\infty} \frac{\sin^{2} x}{1+x^{2}} dx = \frac{1}{2} \int_{0}^{+\infty} \frac{1-\cos 2x}{1+x^{2}} dx = \frac{1}{2} \left(\int_{0}^{+\infty} \frac{1}{1+x^{2}} dx - \int_{0}^{+\infty} \frac{\cos 2x}{1+x^{2}} dx \right) =$$

$$= \frac{\pi}{4} - \frac{\pi}{4} e^{-2} = \frac{\pi}{4} (1 - \frac{1}{e^{2}}) = \frac{1}{2} A(1, 2)$$

ПРИМЕР.
$$\int_{0}^{+\infty} \frac{\cos ax}{(1+x^2)^2} dx, \ a > 0$$

$$\int_{0}^{+\infty} \frac{\cos ax}{(1+x^{2})^{2}} dx = \int_{0}^{+\infty} \frac{\cos ax}{1+x^{2}} dx - \int_{0}^{+\infty} \frac{x^{2} \cos ax}{(1+x^{2})^{2}} dx = \frac{\pi}{2} e^{-a} - \int_{0}^{+\infty} \frac{x^{2} \cos ax}{(1+x^{2})^{2}} dx =$$

$$= \left[u = x \cos ax \quad du = \cos ax - ax \sin ax \\ dv = \frac{x}{(1+x^{2})^{2}} dx \quad v = \frac{-1}{2(1+x^{2})} \right] =$$

$$= \frac{\pi}{2} e^{-a} + \frac{1}{2} \cdot \frac{x \cos ax}{1+x^{2}} \Big|_{0}^{+\infty} - \frac{1}{2} \cdot \int_{0}^{+\infty} \frac{\cos ax}{1+x^{2}} dx + \frac{a}{2} \cdot \int_{0}^{+\infty} \frac{x \sin ax}{1+x} dx =$$

$$= \frac{\pi}{2} e^{-a} - \frac{1}{2} \cdot \frac{\pi}{2} e^{-a} + \frac{a}{2} \cdot \frac{\pi}{2} e^{-a} = (1+a)\frac{\pi}{4} e^{-a}$$

17.1 Интегралы Фруллани

Будем рассматривать интеграл $\int_{0}^{+\infty} \frac{f(ax)-f(bx)}{x} dx$.

17.1.1 Обобщенная теорема о среднем

Теорема 55. Пусть функция f(x) непрерывна на [a,b], а g(x) интегрируема на [a,b] и сохраняет знак. Тогда

$$\exists \xi \in [a,b] : \int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx \quad (1)$$

 \diamondsuit Поскольку f(x) непрерывна на [a,b], то она ограничена на [a,b] и $\exists m = \min_{[a,b]} f(x), M = \max_{[a,b]} f(x)$. Тогда $m \leq f(x) \leq M, \forall x \in [a,b]$.

Будем считать, что $g(x) \ge 0, \forall x \in [a, b]$. Тогда умножим неравенство на g(x).

$$mg(x) \leq f(x) \cdot g(x) \leq Mg(x)$$

Интегрируя полученное неравенство по отрезку [a,b] будем иметь:

$$m\int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)g(x)dx \le M\int_{a}^{b} g(x)dx \quad (2)$$

Т.к. $g(x) \ge 0$, то $\int_a^b g(x) dx \ge 0$. Если же $\int_a^b g(x) dx = 0$, тогда из неравенства (2) следует, что $\int_a^b f(x)g(x) dx = 0$. Значит соотношение (1) выполняется $\forall \xi \in [a,b]$.

Теперь пусть $\int_a^b g(x)dx > 0$. Тогда из (2) получаем

$$m \le \frac{\int\limits_{a}^{b} f(x)g(x)dx}{\int\limits_{a}^{b} g(x)dx} \le M$$

Обозначим
$$\frac{\int\limits_a^b f(x)g(x)dx}{\int\limits_a^b g(x)dx}=\mu.$$

Функция f(x) непрерывна на [a,b] и достигает своих экстренных значений m и M (теорема Вейерштрасса), но тогда по теореме о промежуточном значении она принимает и значение

$$\mu$$
, т.е. $\exists \xi \in [a.b] : f(\xi) = \mu \Rightarrow \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx} = f(\xi) \Rightarrow$ выполняется (1).

Если q(x) < 0, доказательство проводится аналогично.

17.1.2 Первая теорема Фруллани

Теорема 56. Пусть функция f(x) непрерывна на $[0,+\infty)$ и $\exists \lim_{x\to +\infty} f(x) = f(+\infty) \in \mathbb{R}$.

Тогда
$$\int_{0}^{+\infty} \frac{f(ax) - f(bx)}{x} dx = (f(0) - f(+\infty)) \ln \frac{b}{a} \quad (3).$$

$$\oint_{0}^{+\infty} \frac{f(ax) - f(bx)}{x} dx = \lim_{\substack{\delta \to +0 \\ \Delta \to +\infty}} \int_{\delta}^{\Delta} \frac{f(ax) - f(bx)}{x} dx = \lim_{\substack{\delta \to +0 \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \begin{bmatrix} ax = t \\ bx = t \end{bmatrix} = \lim_{\substack{\delta \to +0 \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(ax)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(bx)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(bx)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(bx)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(bx)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(bx)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(bx)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to +\infty}} \left(\int_{\delta}^{\Delta} \frac{f(bx)}{x} dx - \int_{\delta}^{\Delta} \frac{f(bx)}{x} dx \right) = \lim_{\substack{\delta \to +\infty \\ \Delta \to$$

$$\lim_{\begin{subarray}{c} \delta \to +0 \\ \Delta \to +\infty \end{subarray}} \int_{a\delta}^{a\Delta} \frac{f(t)}{t} dt - \int_{b\delta}^{b\Delta} \frac{f(t)}{t} dt \end{subarray} = *$$

Функция $\frac{f(t)}{t}$ непрерывна на промежутках интегрирования, а значит она интегрируема \Rightarrow существует первообразная. Пусть F(t) — это первообразная.

$$* = \lim_{\substack{\delta \to +0 \\ \Delta \to +\infty}} (F(t)|_{a\delta}^{a\Delta} - F(t)|_{b\delta}^{b\Delta}) = \lim_{\substack{\delta \to +0 \\ \Delta \to +\infty}} (F(a\Delta) - F(a\delta) - F(b\Delta) + F(b\delta)) =$$

$$= \lim_{\substack{\delta \to +0 \\ \Delta \to +\infty}} ((F(b\delta) - F(a\delta)) - (F(b\Delta) - F(a\Delta))) = \lim_{\substack{\delta \to +0 \\ \Delta \to +\infty}} \left(\int_{a\delta}^{b\delta} \frac{f(t)}{t} dt - \int_{a\Delta}^{b\Delta} \frac{f(t)}{t} dt \right) =$$

$$= [\Pi \text{рименим формулу } (1)] = \lim_{\substack{\delta \to +0 \\ \Delta \to +\infty}} \left(f(\xi) \int_{a\delta}^{b\delta} \frac{dt}{t} - f(\tau) \int_{a\Delta}^{b\Delta} \frac{dt}{t} \right) =$$

$$= [\xi \in [a\delta, b\delta], a \ \tau \in [a\Delta, b\Delta]] = \lim_{\substack{\delta \to +0 \\ \Delta \to +\infty}} \left(f(\xi) \ln \frac{b}{a} - f(\tau) \ln \frac{b}{a} \right) =$$

$$= [\text{Так как } f(x) \text{ непрерывна и } \delta \to +0, \Delta \to +\infty, \text{ то будем иметь}] =$$

$$= f(0) \ln \frac{b}{a} - f(+\infty) \ln \frac{b}{a} = (1)$$

Пример. Рассмотрим интеграл $\int_{0}^{+\infty} \frac{\arctan ax - \arctan bx}{x} dx$.

Функция $\arctan x$ непрерывная и имеет конечный предел $\frac{\pi}{2}$. Использовав теорему Фруллани имеем:

$$\int_{0}^{+\infty} \frac{\arctan ax - \arctan bx}{x} dx = \left(\arctan 0 - \frac{\pi}{2}\right) \ln \frac{b}{a} = \frac{\pi}{2} \ln \frac{a}{b}$$

ПРИМЕР. Теперь рассмотрим интеграл $\int_{0}^{+\infty} \frac{(5 \ln{(1+3x)} - 3 \ln{(1+5x)}) dx}{x^2}$.

$$\int_{0}^{+\infty} \frac{(5\ln(1+3x) - 3\ln(1+5x))dx}{x^{2}} = \left[\begin{array}{c} u = 5\ln(1+3x) - 3\ln(1+5x) \\ dv = \frac{1}{x^{2}}dx, \ v = -\frac{1}{x} \end{array} \right] =$$

$$-\frac{5\ln(1+3x) - 3\ln(1+5x)}{x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} \frac{1}{x} \left(\frac{15}{1+3x} - \frac{15}{1+5x} \right) dx =$$

$$= \left[\begin{array}{c} f(t) = \frac{1}{1+t} \\ f(+\infty) = 0 \end{array} \right] = 15(1-0)\ln\frac{5}{3} = 15 \cdot \ln\frac{5}{3}$$

17.1.3 Вторая теорема Фруллани

Теорема 57. Пусть функция f(x) непрерывна на $[0,+\infty)$ и $\int\limits_{\delta}^{+\infty} \frac{f(x)}{x} dx$ сходится при $\delta>0$.

Тогда
$$\int\limits_0^{+\infty} \frac{f(ax) - f(bx)}{x} dx = f(0) \ln \frac{b}{a}$$
.

$$\diamondsuit$$
 Рассмотрим $\int\limits_0^{+\infty} \frac{f(ax) - f(bx)}{x} dx = \lim_{\delta \to +0} \int\limits_{\delta}^{+\infty} \frac{f(ax) - f(bx)}{x} dx.$

$$\lim_{\delta \to +0} \int\limits_{\delta}^{+\infty} \frac{f(ax) - f(bx)}{x} dx = \lim_{\delta \to +0} \left(\int\limits_{\delta}^{+\infty} \frac{f(ax)}{x} dx - \int\limits_{\delta}^{+\infty} \frac{f(bx)}{x} dx \right) = \left[\begin{array}{c} ax = t \\ bx = t \end{array} \right] = 0$$

$$=\lim_{\delta\to+0}\left(\int\limits_{a\delta}^{+\infty}\frac{f(t)}{t}dt-\int\limits_{b\delta}^{+\infty}\frac{f(t)}{t}dt\right)=\left[\text{Свойство аддитивность интегралов}\right]=$$

$$= \lim_{\delta \to +0} \int_{a\delta}^{b\delta} \frac{f(t)}{t} dt = \lim_{\delta \to +0} f(\xi) \int_{a\delta}^{b\delta} \frac{dt}{t} = \lim_{\delta \to +0} f(\xi) \ln \frac{b}{a} = f(0) \ln \frac{b}{a}$$

ПРИМЕР. Рассмотрим интеграл $\int_{0}^{+\infty} \frac{a \sin x - \sin (ax)}{x^2} dx.$

$$\int_{0}^{+\infty} \frac{a\sin x - \sin(ax)}{x^2} dx = \begin{bmatrix} u = a\sin x - \sin(ax) \\ dv = \frac{1}{x^2} dx, \ v = -\frac{1}{x} \end{bmatrix} =$$

$$= -\frac{a\sin x - \sin(ax)}{x} \Big|_0^{+\infty} + \int_2^{+\infty} \frac{a\cos x - a\cos(ax)}{x} dx =$$

= [к интегралу применим 2-ую теорему Фруллани] =

$$=[f(t)=\cos t,\int\limits_{\delta}^{+\infty}rac{\cos t}{t}dt$$
 сходится для $orall\delta\geq 0]=a\cdot\cos 0\cdot\lnrac{a}{1}=a\ln a$

ПРИМЕР.
$$\int\limits_0^{+\infty} \frac{\cos ax - \cos bx}{x} dx = \cos 0 \ln \frac{b}{a} = \ln \frac{b}{a}.$$