УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 28

> Студент Бободжонов Комронджон Р3113

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $3 \le |x_2x_10 - x_3x_4x_5| \le 6$ и неопределенное значение при $|x_2x_10 - x_3x_4x_5| = 2$.

Таблица истинности

Νo	œ.	<i>m</i> -	<i>m</i> -	<i>m</i> .	<i>m</i>	m - m - O	m - m - m -	m - m - O	m - m - m -	f
0	$\begin{array}{c c} x_1 \\ \hline 0 \end{array}$	$\frac{x_2}{0}$	$\frac{x_3}{0}$	$\frac{x_4}{0}$	$\frac{x_5}{0}$	$x_2x_10 \\ 0$	$x_3x_4x_5 = 0$	$\frac{x_2x_10}{0}$	$x_3x_4x_5$	0
			0		1		1		0	-
1	0	0		0		0		0		0
2	0	0	0	1	0	0	2	0	2	d
3	0	0	0	1	1	0	3	0	3	1
4	0	0	1	0	0	0	4	0	4	1
5	0	0	1	0	1	0	5	0	5	1
6	0	0	1	1	0	0	6	0	6	1
7	0	0	1	1	1	0	7	0	7	0
8	0	1	0	0	0	4	0	4	0	1
9	0	1	0	0	1	4	1	4	1	1
10	0	1	0	1	0	4	2	4	2	d
11	0	1	0	1	1	4	3	4	3	0
12	0	1	1	0	0	4	4	4	4	0
13	0	1	1	0	1	4	5	4	5	0
14	0	1	1	1	0	4	6	4	6	d
15	0	1	1	1	1	4	7	4	7	1
16	1	0	0	0	0	2	0	2	0	d
17	1	0	0	0	1	2	1	2	1	0
18	1	0	0	1	0	2	2	2	2	0
19	1	0	0	1	1	2	3	2	3	0
20	1	0	1	0	0	2	4	2	4	d
21	1	0	1	0	1	2	5	2	5	1
22	1	0	1	1	0	2	6	2	6	1
23	1	0	1	1	1	2	7	2	7	1
24	1	1	0	0	0	6	0	6	0	1
25	1	1	0	0	1	6	1	6	1	1
26	1	1	0	1	0	6	2	6	2	1
27	1	1	0	1	1	6	3	6	3	1
28	1	1	1	0	0	6	4	6	4	d
29	1	1	1	0	1	6	5	6	5	0
30	1	1	1	1	0	6	6	6	6	0
31	1	1	1	1	1	6	7	6	7	0
				-	-		'		<u>'</u>	

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \vee \vee \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$ $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{-1}(f)$		$K^2(f)$		Z(f)
m_4	00100	√	m_2 - m_3	0001X		m_2 - m_6 - m_{10} - m_{14}	0XX10	0001X
m_8	01000	✓	m_4 - m_5	0010X	✓	m_{16} - m_{20} - m_{24} - m_{28}	1XX00	0111X
m_2	00010	✓	m_4 - m_6	001X0	✓	m_4 - m_5 - m_{20} - m_{21}	X010X	0XX10
m_{16}	10000	✓	m_2 - m_6	00X10	✓	m_4 - m_6 - m_{20} - m_{22}	X01X0	1XX00
m_3	00011	√	m_8 - m_9	0100X	✓	m_8 - m_9 - m_{24} - m_{25}	X100X	X010X
m_5	00101	✓	m_8 - m_{10}	010X0	✓	m_8 - m_{10} - m_{24} - m_{26}	X10X0	X01X0
m_6	00110	✓	m_2 - m_{10}	0X010	\checkmark	m_{20} - m_{21} - m_{22} - m_{23}	101XX	X100X
m_9	01001	✓	m_{16} - m_{20}	10X00	✓	m_{24} - m_{25} - m_{26} - m_{27}	110XX	X10X0
m_{24}	11000	✓	m_{16} - m_{24}	1X000	\checkmark			101XX
m_{10}	01010	✓	m_4 - m_{20}	X0100	\checkmark			110XX
m_{20}	10100	✓	m_8 - m_{24}	X1000	✓			
m_{21}	10101	√	m_{10} - m_{14}	01X10	\checkmark			
m_{22}	10110	✓	m_6 - m_{14}	0X110	✓			
m_{25}	11001	✓	m_{20} - m_{21}	1010X	✓			
m_{26}	11010	✓	m_{20} - m_{22}	101X0	✓			
m_{14}	01110	✓	m_{24} - m_{25}	1100X	✓			
m_{28}	11100	✓	m_{24} - m_{26}	110X0	✓			
m_{15}	01111	√	m_{24} - m_{28}	11X00	✓			
m_{23}	10111	✓	m_{20} - m_{28}	1X100	✓			
m_{27}	11011	✓	m_5 - m_{21}	X0101	\checkmark			
			m_6 - m_{22}	X0110	\checkmark			
			m_9 - m_{25}	X1001	✓			
			m_{10} - m_{26}	X1010	✓			
			m_{14} - m_{15}	0111X				
			m_{22} - m_{23}	1011X	✓			
			m_{21} - m_{23}	101X1	✓			
			m_{26} - m_{27}	1101X	✓			
			m_{25} - m_{27}	110X1	✓			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы													
		0	0	0	0	0	0	0	1	1	1	1	1	1	1
				0	0	1	1	1	0	0	0	1	1	1	1
Пр	Простые импликанты		1	1	1	0	0	1	1	1	1	0	0	0	0
			ф		1	0		1	0	1	1		0	1	1
			ф	1	0	0	1	1	1	0	1		1	0	1
			4	5	6	8	9	15	21	22	23	24	25	26	27
	0001X	X													
	0111X							X							
A	0XX10				X										
	1XX00											X			
	X010X		X	Х					Х						==
В	X01X0		X		X					Х					
	X100X					Х	X					X	Х		
	X10X0					Х						X		X	
	101XX								Х	Х	Х				
	110XX											X	X	X	X

Ядро покрытия:

$$T = \begin{cases} 0001X \\ X010X \\ X100X \\ 0111X \\ 101XX \\ 110XX \end{cases}$$

Получим следующую упрощенную импликантную таблицу:

		0-кубы
		0
		0
Пр	остые импликанты	1
		1
		0
		6
A	0XX10	X
В	X01X0	X

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = A \vee B$$

Возможны следующие покрытия:

$$C_{1} = \begin{Bmatrix} T \\ A \end{Bmatrix} = \begin{Bmatrix} 0001X \\ X010X \\ X100X \\ 0111X \\ 101XX \\ 110XX \\ 0XX10 \end{Bmatrix} \qquad C_{2} = \begin{Bmatrix} T \\ B \end{Bmatrix} = \begin{Bmatrix} 0001X \\ X010X \\ X100X \\ 0111X \\ 101XX \\ 110XX \\ X01X0 \end{Bmatrix}$$

$$S_{1}^{a} = 23 \qquad S_{2}^{a} = 23$$

$$S_{1}^{b} = 30 \qquad S_{2}^{b} = 30$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0001X \\ X010X \\ X100X \\ 0111X \\ 101XX \\ 110XX \\ 0XX10 \end{cases}$$

$$S^{a} = 23$$

$$S^{b} = 30$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \vee \overline{x_2} \, x_3 \, \overline{x_4} \vee x_2 \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_2} \, x_3 \vee x_1 \, x_2 \, \overline{x_3} \vee \overline{x_1} \, x_4 \, \overline{x_5}$$

4

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \vee \overline{x_2} \, x_3 \, \overline{x_4} \vee x_2 \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_2} \, x_3 \vee x_1 \, x_2 \, \overline{x_3} \vee \overline{x_1} \, x_4 \, \overline{x_5}$$

Определение МКНФ

$$f = (x_2 \vee x_3 \vee x_4) \ (x_1 \vee x_2 \vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_5}) \ (x_1 \vee \overline{x_2} \vee x_3 \vee \overline{x_4}) \ (\overline{x_2} \vee \overline{x_3} \vee x_4) \ (\overline{x_1} \vee x_2 \vee x_3) \ (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \vee \overline{x_2} \, x_3 \, \overline{x_4} \vee x_2 \, \overline{x_3} \, \overline{x_4} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_2} \, x_3 \vee x_1 \, x_2 \, \overline{x_3} \vee \overline{x_1} \, x_4 \, \overline{x_5} \qquad S_Q = 30 \quad \tau = 2$$

$$f = x_2 \, \overline{x_3} \, (x_1 \vee \overline{x_4}) \vee \overline{x_1} \, x_4 \, (\overline{x_5} \vee \overline{x_2} \, \overline{x_3} \vee x_2 \, x_3) \vee \overline{x_2} \, x_3 \, (x_1 \vee \overline{x_4}) \qquad \qquad S_Q = 23 \quad \tau = 4$$

$$\varphi = \overline{x_1} \, x_4$$

$$\overline{\varphi} = x_1 \vee \overline{x_4}$$

$$f = x_2 \, \overline{x_3} \, \overline{\varphi} \vee \varphi \, (\overline{x_5} \vee \overline{x_2} \, \overline{x_3} \vee x_2 \, x_3) \vee \overline{x_2} \, x_3 \, \overline{\varphi} \qquad \qquad S_Q = 21 \quad \tau = 4$$

Факторизация и декомпозиция МКНФ

$$f = (x_2 \lor x_3 \lor x_4) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4}) (\overline{x_2} \lor \overline{x_3} \lor x_4)$$

$$(\overline{x_1} \lor x_2 \lor x_3) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

$$F = (x_2 \lor x_3 \lor \overline{x_1} x_4) (\overline{x_2} \lor \overline{x_3} \lor \overline{x_1} x_4) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$$

$$S_Q = 27 \quad \tau = 2$$

$$\varphi = \overline{x_1} x_4$$

$$\overline{\varphi} = x_1 \lor \overline{x_4}$$

$$\overline{\varphi} = x_1 \lor \overline{x_4}$$

$$f = (x_2 \lor x_3 \lor \varphi) (\overline{x_2} \lor \overline{x_3} \lor \varphi) (\overline{\varphi} \lor \overline{x_2} \lor x_3) (\overline{\varphi} \lor x_2 \lor \overline{x_3} \lor \overline{x_5})$$

$$S_Q = 20 \quad \tau = 4$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_2 \,\overline{x_3} \,\overline{\varphi} \vee \varphi \,\left(\overline{x_5} \vee \overline{x_2} \,\overline{x_3} \vee x_2 \,x_3\right) \vee \overline{x_2} \,x_3 \,\overline{\varphi} \quad (S_Q = 21, \tau = 4)$$
$$\varphi = \overline{x_1} \,x_4$$

Схема по упрощенной МКНФ:

$$f = (x_2 \lor x_3 \lor \varphi) \ (\overline{x_2} \lor \overline{x_3} \lor \varphi) \ (\overline{\varphi} \lor \overline{x_2} \lor x_3) \ (\overline{\varphi} \lor x_2 \lor \overline{x_3} \lor \overline{x_5}) \quad (S_Q = 20, \tau = 4)$$
$$\varphi = \overline{x_1} x_4$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{x_2 \, \overline{x_3} \, \overline{\varphi}} \, \overline{\varphi \, \overline{x_5 \, \overline{x_2} \, \overline{x_3}} \, \overline{x_2 \, x_3}} \, \overline{\overline{x_2} \, x_3 \, \overline{\varphi}} \quad (S_Q = 28, \tau = 8)$$
$$\varphi = \overline{x_1} \, x_4$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{\overline{x_2}} \, \overline{x_3} \, \overline{\varphi} \, \overline{x_2} \, x_3 \, \overline{\varphi} \, \overline{\varphi} \, x_2 \, \overline{x_3} \, \overline{\varphi} \, \overline{x_2} \, x_3 \, x_5 \quad (S_Q = 24, \tau = 5)$$
$$\varphi = \overline{x_1} \, x_4$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{\overline{x_1} x_4} \overline{\overline{x_2} \overline{x_3}} \overline{\overline{x_2} x_3}} \overline{\overline{\overline{x_2} x_3}} \overline{\overline{x_1} \overline{x_4} \overline{x_5} \overline{\overline{\overline{x_2}} \overline{x_3}} \overline{\overline{x_2} x_3}}$$
 $(S_Q = 28, \tau = 8)$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

