Лабораторная работа № 3 «Однофакторный дисперсионный анализ»

студента <u>Когановского Григория</u> группы <u>Б22-534</u>. Дата сдачи: <u>29.11.2024</u> Ведущий преподаватель: <u>Новиков М.А.</u> оценка: ____ подпись:____

Вариант №7

Цель работы: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проведения однофакторного дисперсионного анализа (*One-Way ANOVA*).

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	Объем выборки, n_i
X_1	N(-1,2)	$m_1 = -1, \sigma_1 = 2$	$m_1 = -1$	$\sigma_1^2 = 4$	100
X_2	R(-2,0)	$a_2 = -2, b_2 = 0$	$m_2 = \frac{a_2 + b_2}{2} = -1$	$\sigma_2^2 = \frac{(b_2 - a_2)^2}{12} = \frac{1}{3}$	100
<i>X</i> ₃	N(2, 1)	$m_3 = 2, \sigma_3 = 1$	$m_3 = 2$	$\sigma_3^2 = 1$	200

Количество случайных величин k = 3

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \overline{x}_i	Оценка дисперсии, S_i^2	Оценка с.к.о., s_i
X_1	-0.87	3.88	1.97
X_2	-0.92	0.33	0.57
<i>X</i> ₃	2.01	0.86	0.93
Pooled	0.07	3.56	1.89

2. Визуальное представление выборок

Диаграммы *Box-and-Whisker*:

Примечание: для построения диаграмм использовать функции boxplot, vartestn (matplotlib.pyplot.boxplot)

3. Проверка условия применимости дисперсионного анализа

Статистическая гипотеза: $H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2$

Критерий Бартлетта:

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
145.96	0.00	H_0 отклоняется	Нет

Примечание: для проверки гипотезы использовать функцию vartestn (scipy.stats.bartlett)

Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика»

4. Однофакторный дисперсионный анализ

Таблица дисперсионного анализа:

Источник вариации	Показатель вариации	Число степеней свободы	Несмещённая оценка
Группировочный признак	$\tilde{D}_{ ext{Meж}\Gamma ext{p}} = 1.88$	k - 1 = 2	$\frac{n}{k-1}\tilde{D}_{\text{межгр}} = 281.77$
Остаточные признаки	$\tilde{D}_{\mathrm{BHYTp}} = 1.67$	n - k = 297	$\frac{n}{n-k}\tilde{D}_{\rm BHYTP} = 1.69$
Все признаки	$\tilde{D}_{ m OOM} = 3.55$	n - 1 = 299	$\frac{n}{n-1}\tilde{D}_{\text{Общ}} = 3.56$

Эмпирический коэффициент детерминации $\eta^2 = 0.53$

Эмпирическое корреляционное отношение $\eta=0.73$

Статистическая гипотеза: $H_0: m_1 = m_2 = m_3$

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
166.84	0.00	H_{0} отклоняется	Нет

Примечание: при расчетах использовать функцию anoval (scipy.stats.f oneway)

5. Метод линейных контрастов

Доверительные интервалы для $m_1, ..., m_k$:

Попарные сравнения m_i и m_j :

Trong the strains we have				
Гипотеза	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
$H_0: m_1 = m_2$	-0.06	0.94	H_{0} принимается	Нет
$H_0: m_1 = m_3$	2.88	0.00	H_0 отклоняется	Нет
$H_0: m_2 = m_3$	2.94	0.00	H_0 отклоняется	Нет

Примечание: при расчетах использовать функцию multcompare (statsmodels.stats.multicomp.pairwise_tukeyhsd)