```
In [1]: from IPython.display import Image
Image(filename='logo.PNG', height=340, width=900)
Out[1]:
TRANSFORM YOURSELF
```



```
In [2]: # Importing Libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
In [3]: # Import Dataset
         df = pd.read_csv('creditcard.csv')
In [4]: df.head()
Out[4]:
            Cust ID Gender Age Monthly Income in 1000s CreditScore (1-100)
                                               15
                                                               39
                1
                     Male
                           19
                           21
                                               15
                2
                     Male
                                                               81
```

	Cu	st ID	Gender	Age	Monthly Income in 1000s	CreditScore (1-100)	_
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	
In [5]:	df.ta	ail()					
Out[5]:							
		Cust ID	Gende	r Age	Monthly Income in 1000	s CreditScore (1-100	0)
	195	196					79
	196	197	Female	45	12	6 2	28
	197	198	Male	32	12	6 7	74
	198	199	Male	32	13	7 1	18
	199	200	Male	e 30	13	7 8	33
In [6]:	df.ir	nfo()					
	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns): Cust ID</class></pre>						
In [7]:	df.de	escri	pe()				
Out[7]:		С	ust ID		Age Monthly Income in 10	000s CreditScore (1-	-100)
	count 200.000000 200.000000 200.000000 200.000000						

	Cust ID	Age	Monthly Income in 1000s	CreditScore (1-100)
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

```
In [8]: X = df.iloc[:,[3,4]].values
```

```
In [9]: # Initial View of the Data
plt.figure(figsize=(15,6))
plt.scatter(X[:,0], X[:,1])
```

Out[9]: <matplotlib.collections.PathCollection at 0x1e49a6e7e88>

In [10]: # Finding the optimum clusters using the DENDOGRAMS
import scipy.cluster.hierarchy as sch

```
plt.figure(figsize = (15,10))
dendogram = sch.dendrogram(sch.linkage(X, method='ward'))
plt.title('The Dendogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean Distance')
plt.show()
```



```
In [11]: # Fitting the model
    from sklearn.cluster import AgglomerativeClustering
    hcluster = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidea
    n', linkage = 'ward')
    y_clustering = hcluster.fit_predict(X)
```

In [12]: y_clustering

```
3,
            4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
       1,
            1,
            1,
            1,
            1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2, 0,
       2,
            1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0,
       2,
            0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0,
       2,
            0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0,
       2,
            0, 2], dtype=int64)
In [13]: # Visualizing Results
       plt.figure(figsize=(15,6))
       plt.scatter(X[y clustering==0, 0], X[y clustering==0, 1], s=100, c='re
       d', label = 'Cluster A')
       plt.scatter(X[y clustering==1, 0], X[y clustering==1, 1], s=100, c='blu
       e', label = 'Cluster B')
       plt.scatter(X[y clustering==2, 0], X[y clustering==2, 1], s=100, c='yel
       low', label = 'Cluster C')
       plt.scatter(X[y clustering==3, 0], X[y clustering==3, 1], s=100, c='gre
       en', label = 'Cluster D')
       plt.scatter(X[y clustering==4, 0], X[y clustering==4, 1], s=100, c='pin
       k', label = 'Cluster E')
       plt.legend()
Out[13]: <matplotlib.legend.Legend at 0x1e49d5c37c8>
```


In [14]: from IPython.display import Image
Image(filename='Difference.PNG', height=340, width=900)

Out[14]:	K means Clustering	Hierarchical Clustering		
	K means clustering can handle big data well.	Hierarchical clustering can't handle big data well		
	In K Means clustering, since we start with random choice of clusters, the results produced by running the algorithm multiple times might differ.	In Hierarchical clustering, results are reproducible		
	K Means clustering requires prior knowledge of K i.e. no. of clusters you want to divide your data into	you can stop at whatever number of clusters you find appropriate in hierarchical clustering by interpreting the dendrogram		

shape of the clusters is hyper spherical

K Means is found to work well when the Hierarchical clustering is not found to

work well when the shape of the

clusters is hyper spherical

In []: