ZAD. Nacrtajte bodeov dijagram prijenosne funkcije $G(s) = \frac{1}{T_1 s} \frac{K_2 K_3 (1 + s T_2)}{(1 + s T_3)}$

1. Član:
$$G_1 = \frac{1}{j\omega T_1}$$
 $T_1 = 1[s]$

$$G_{1} = \frac{1}{j\omega T_{1}} = \frac{1}{\omega T_{1}} e^{-j\frac{\pi}{2}}$$

$$A_{1}(\omega) = \frac{1}{\omega T_{1}} \quad \varphi_{1}(\omega) = -\frac{\pi}{2}$$

$$A_{1}(\omega)_{dB} = 20\log\frac{1}{\omega T_{1}} = -20\log\omega T_{1}$$

Amplitudna karakteristika:

Fazna karakteristika:

2. Član:
$$G_2 = K_2(1 + j\omega T_2)$$
 $T_2 = 100 [ms]$, $K_2 = 2.5$

$$G_2 = K_2(1+j\frac{\omega}{\omega_{l2}})$$

$$A_2(\omega) = K_2\sqrt{1+\left(\frac{\omega}{\omega_{l2}}\right)^2}$$

$$\varphi_2(\omega) = arctg\left(\frac{\omega}{\omega_{l2}}\right)$$

$$A_2(\omega)_{dB} = 20\log K_2 + 20\log \sqrt{1+\left(\frac{\omega}{\omega_{l2}}\right)^2}$$

$$\omega_{l2} = \frac{1}{T_2} = \frac{1}{0.1} = 10 \ rad/s,$$

$$K_2 = 2.5$$

Amplitudna karakteristika:

Fazna karakteristika:

3. Član:
$$G_3 = \frac{K_3}{1 + j\omega T_3}$$
 $T_3 = 10 [ms], K_3 = 2$

$$G_{3} = \frac{K_{3}}{1 + j\frac{\omega}{\omega_{l3}}}$$

$$A_{3}(\omega) = K_{3} \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_{l3}}\right)^{2}}}$$

$$\varphi_{3}(\omega) = -arctg\left(\frac{\omega}{\omega_{l3}}\right)$$

$$A_{3}(\omega)_{dB} = 20\log K_{3} - 20\log \sqrt{1 + \left(\frac{\omega}{\omega_{l3}}\right)^{2}}$$

$$\omega_{l3} = \frac{1}{T_{3}} = \frac{1}{0.01} = 100 \ rad \ / s, \qquad K_{3} = 2$$

Amplitudna karakteristika:

Fazna karakteristika:

4. Sustav: $G(j\omega) = G_1(j\omega)G_2(j\omega)G_3(j\omega)$

Amplitudna karakteristika: $A(\omega)_{dB} = A_1(\omega)_{dB} + A_2(\omega)_{dB} + A_3(\omega)_{dB}$

Fazna karakteristika: $\varphi(\omega) = -\frac{\pi}{2} + arctg(\frac{\omega}{\omega_{12}}) - arctg(\frac{\omega}{\omega_{13}})$

Amplitudna karakteristika (zbroj amplitudnih karakteristika pojedinačnih elemenata):

Fazna karakteristika sustava (zbroj faznih karakteristika pojedinačnih elemenata):

Radi <u>preciznijeg</u> crtanja fazne karakteristike preporuča se slijedeće. Izračuna se vrijednost fazne karakteristike $\varphi(\omega)$ za desetak različitih frekvencija.

Ukupna fazna karakteristika sustava:
$$\varphi(\omega) = -\frac{\pi}{2} + arctg(\frac{\omega}{\omega_{l2}}) - arctg(\frac{\omega}{\omega_{l3}})$$

ω [rad/s]	0.5	1	5	8	10	30	50	100	300	700
φ(ω) [rad]	-1.52	-1.48	-1.16	-0.98	-0.88	-0.61	-0.66	-0.89	-1.28	-1.44
φ(ω) [°]	-87.4	-84.7	-66.3	-56.0	-50.7	-35.1	-37.9	-50.7	-73.5	-82.7

Napomena: vrijednosti frekvencije su u radijanima u sekundi! (na kalkulatoru prebaciti na "rad" prilikom računanja arctg funkcije). Izračunatu faznu karakteristiku pomnožiti s 180/pi da bi se dobila vrijednost faze u stupnjevima.

Dobivene točke ucrtaju se na dijagram te se spoje. Rezultat je frekvencijska karakteristika sustava.

D.Z. Nacrtati Bodeov dijagram na lin-log papiru te odredite ustaljenu komponentu odziva sustava na pobudu oblika $\sin(2t) + 1.5\sin(10t - pi/6)$