

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/31
Paper 3 Pure Math	ematics 3 (P3)		May/June 2017
			1 hour 45 minutes
Candidates answer	on the Question Paper.		
Additional Materials	: List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

••	
••	 •••••
••	
••	
••	 •••••
••	•••••
••	
••	•••••
••	
••	•••••
	•••••
••	 •••••
	 •••••
••	•••••
••	
••	•••••

coefficients	$\frac{1}{(1+6x)}$ in as					
•••••	•••••	••••••	••••••	 ••••••••	•••••	•••••
			•••••	 		
			•••••	 		•••••
•••••	•••••	••••••	••••••	 •	•••••	•••••
•••••	•••••		••••••	 		•••••
•••••		•••••		 		•••••
				 		••••
•••••	•••••	••••••	••••••	 ••••••••	•••••	•••••
			•••••	 		•••••
	•••••	••••••••••	••••••			•••••
			•••••	 		
			•••••	 		•••••
				 		•••••

3

It is given that $x = \ln(1 - y) - \ln y$, where $0 < y < 1$.
(i) Show that $y = \frac{e^{-x}}{1 + e^{-x}}$. [2]

••••••		•••••	 •••••	••••••	••••••	•••••	••••••	•••••
•••••			 •••••			•••••		
•••••		•••••	 •••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	••••••	 •••••	••••••	••••••	•••••	•••••	•••••
•••••			 •••••	•••••	•••••	•••••	••••••	•••••
•••••			 					
•••••	•••••	•••••	 •••••	••••••	••••••	•••••	•••••	•••••
•••••	•••••	•••••	 					
•••••			 •••••	•••••	•••••	•••••	••••••	
•••••			 					
•••••			 •••••	•••••	•••••	•••••	••••••	•••••
•••••			 					
•••••			 •••••	•••••	•••••	•••••		

	4	The	parametric	equations	of a	curve	are
--	---	-----	------------	-----------	------	-------	-----

$$x = \ln \cos \theta$$
, $y = 3\theta - \tan \theta$,

where $0 \le \theta < \frac{1}{2}\pi$.

(i)	Express $\frac{dy}{dx}$ in terms of $\tan \theta$.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

to 1.	•															
•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••				••••
•••••								•••••		•••••	•••••	•••••			•••••	••••
		•••••					•••••	•••••		•••••	•••••	•••••			•••••	
												•••••			•••••	
										•••••		•••••				
										•••••					•••••	
												•••••				•••
																•••
										•••••		•••••				•••
•••••	••••••	••••••		••••••	••••••											
•••••	••••••	•••••	•••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••••	••••••	••••••	•••
•••••	•••••	•••••			••••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••	••••••	••••••	••••••	•••
•••••	••••••	•••••	• • • • • • • • • •		••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••
•••••	••••••	•••••			••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••
•••••			•••••		••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		••••••	•••••	•••
•••••	••••••	•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••
•••••	•••••	•••••	•••••		••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••
•••••	•••••	•••••		••••••	••••••	••••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••
•••••		•••••			••••••		•••••	••••••	•••••	•••••		•••••	••••••	•••••	•••••	•••
			• • • • • • • • • • • • • • • • • • • •							•••••	•••••	•••••				

The diagram shows a semicircle with centre O, radius r and diameter AB. The point P on its circumference is such that the area of the minor segment on AP is equal to half the area of the minor segment on BP. The angle AOP is x radians.

	Verify by calculation that x lies between 1 and 1.5.	
•		
••		
••		
		•••••
••		•••••
l p	Use an iterative formula based on the equation in part (i) to determine x correct to blaces. Give the result of each iteration to 5 decimal places.	to 3 deci
••		•••••

6

The plane with equation 2x + 2y - z = 5 is denoted by m. Relative to the origin O, the points A and B

S	how that the plane m bisects AB at right angles.	
••		
		• • • • • • • • • • • • • • • • • • • •
••		
••		
••		
- •		
••		
••		
••		,
••		
••		
••		••••••
••		
••		
••		

Find the equation	on of p , giving	g your answer	r in the form	ax + by + cz =	= <i>d</i> .	
	•••••					
•••••		•••••	•••••	•••••	•••••	••••••
•••••	•••••	•••••	•••••		•••••	••••••
	•••••					
••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••
••••••		•••••	•••••	••••••	•••••	••••••
	•••••					
••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	••••••
			•••••			
•••••••••••	•••••••	•••••••	•••••••••	••••••	••••••	••••••
	•••••					
••••••	•••••	•••••	••••••	••••••	••••••	••••••
						•••••
		••••••			••••••	
	•••••		•••••			
••••••	•••••	•••••	••••••	••••••	••••••	••••••
	•••••		•••••			
						•••••

7	Th	42 41	C1	1-4 4	
7	Throughout this	auestion the	use of a cal	culator is noi	: permitted.

The complex numbers u and w are defined by u = -1 + 7i and w = 3 + 4i.

	$2w$ and $\frac{u}{w}$.						complex number
•••••							
•••••							
•••••							
•••••							
			•••••			•••••	
•••••							
•••••					•••••		
•••••							
•••••							
	and diagram v	with origin	O, the poin	A, B and	l C represent	the complex	numbers u, w a
2w res			O, the poin	nts A,B and	l C represent	the complex	
2w res	spectively.		O, the poin	nts <i>A</i> , <i>B</i> and	l C represent	the complex	
2w res	spectively.		O, the poin	nts A, B and	1 C represent	the complex	numbers u, w a
2w res	spectively.		O, the poin	nts A, B and	l C represent	the complex	numbers u, w a
2w res	spectively.		O, the poin	nts A, B and	l C represent	the complex	numbers u, w
2w res	spectively.		O, the poin	nts A, B and	1 C represent	the complex	numbers u, w a

(iii)	State fully the geometrical relation between the line segments <i>OB</i> and <i>CA</i> . [2]
()	[2]

	$R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimals.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

(ii) Hence solve the equation	on
-------------------------------	----

$2\sin(x-30^{\circ})-\cos x=1,$	
for $0^{\circ} < x < 180^{\circ}$.	[3]

(i)	Express $\frac{1}{x(2x+3)}$ in partial fractions.	[2
		••••
		••••
		••••
		••••
		••••
		••••
(ii)	The variables x and y satisfy the differential equation	
	$x(2x+3)\frac{\mathrm{d}y}{\mathrm{d}x} = y,$	
	and it is given that $y = 1$ when $x = 1$. Solve the differential equation and calculate the value when $x = 9$, giving your answer correct to 3 significant figures.	e of
		••••
		••••
		••••
		••••
		••••
		••••
		••••

10

The diagram shows the curve $y = \sin x \cos^2 2x$ for $0 \le x \le \frac{1}{4}\pi$ and its maximum point M.

(i)	Using the substitution $u = \cos x$, find by integration the exact area of the shaded region bounded by the curve and the <i>x</i> -axis. [6]

Find the x -coordinate of M . Give your answer correct to 2 decimal places.	[
	•••••
	••••••
	••••••
	•••••
	••••••
	••••••
	•••••
	•••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.