Homework Problems

H9.1 Prove the following properties of infinite sets:

- (a) If A is a countably infinite set, then it has only countable subsets, i.e. if $B \subseteq A$, then B is either finite or countably infinite.
- (b) If A is an uncountable set, then it has both uncountable and countably infinite subsets.

a)

"Prove every subset of N is either finite or countable":

 $extstyle{ t Proof}$: Consider a nonempty set of nonnegative integers S such that $S\subseteq N$. Then there exists an injective function $f:S\longrightarrow N$ by definition. More specifically, define f as: $f(s_i)=i,i\in N$

This allows us to use f to enumerate the elements of S by their size: letting s_1 be the smallest element of S, s_2 be the smallest element of $S \setminus \{s_1\}$ and so forth inductively until we exhaust all the elements of S. Using f, we would have paired up s_1 with $1 \in N$, s_2 with $2 \in N$ and so forth.

If there exists an element i_n of N where f^{-1} is undefined, as in, no element of S maps to i, then $S \subset N$ and card(S) < card(N), implying that S is finite. More specifically, S would have a finite cardinality of i_n-1

Otherwise, if such an element i_n does not exist, f will not only be an injection but also a surjection, since for all elements $i \in N$, there exists an $s_i \in S$ such that $f(s_i) = i$. Since f is both injective and surjective, it is a bijection, implying that card(S) = card(N). So by definition, if there exists a bijection between a set and the natural numbers, that set is countably infinite in cardinality.

b)

Let T be an uncountable set. Choose S_n to be a finite subset of T with n elements. It's always possible to pick such a set because T is uncountable. Now let:

$$S = \bigcup_{n=1}^{\infty} S_n$$

This set is a countable union of finite sets. Thus, it's at most countable. S must be infinite because for all $n \in \mathbb{N}$, there is $S_n \subset S$. In other words, there is no n for which |S| < n.

So let T be uncountable.

If T is bounded above then it has a supremum η . If $\eta \in T$ then let $S = \{\eta\}$. Otherwise, let $S = \{\eta_n : n \in \mathbb{N}\}$ where $(\eta_n)_{n=1}^{\infty}$ is some strictly increasing sequence in T converging to η .

If T is unbounded then let $S = \{\eta_n : n \in \mathbb{N}\}$, where $(\eta_n)_{n=1}^{\infty}$ is some strictly increasing sequence in T which tends to ∞ .

In any case, by construction, for each $t \in T$ there exists $s \in S$ such that $s \ge t$, as you should verify; and S is clearly countable.

If you require S to be countably *infinite* then, in the case T bounded and $\sup T = \eta \in T$ given above, let S' be any countably infinite subset of T (e.g. constructed as in Ayman Hourieh's answer) and then let $S = S' \cup \{\eta\}$.

H9.2 The set of natural numbers \mathbb{N} is (by definition) countable, or more specifically countably infinite. Prove, by using Cantor's diagonalisation

method, that there are uncountably many functions from natural numbers to natural numbers. In other words, prove that the set

$$F = \{ f \mid f : \mathbb{N} \to \mathbb{N} \}$$

is uncountable.

Let f: N1 -> N2 an arbitrary function of N -> N, where N1 is enumerated from 0 to infinity in order and N2 is randomly selected

For example: f(i): 0 -> 3, 1 -> 5, 2-> 9, 3-> 3, 4-> 8, 5-> 11 and so on....

There exists a function f: N1 -> N2 that does not belong to this set and we can prove by Cantors' diagonalization method

f1	f2	f2	f3	
0->1	0-> 9	0-> 3	0->10	
1->3	1->7	1->2	1->5	
2->5	2->2	2-> 4	2->6	
3->2	3->10	3-> 8	3->6	
0->1	1->7	2->4	3-> 6	
	0->1 1->3 2->5 3->2	2->5	2->5 2->2 2-> 3 3->2 3->10 3-> 8 f1 f2 f2 0->1 0-> 9 0-> 3 1->3 1->7 1->2 2->5 2->2 2-> 4 3->2 3->10 3-> 8	2->5 2->2 2->3 2->6 3->2 3->10 3->8 3->5 f1 f2 f2 f3 0->1 0-> 9 0-> 3 0->10 1->3 1->7 1->2 1->5 2->5 2->2 2-> 4 2->6 3->2 3->10 3-> 8 3->6

That is, the function not in the set is constructed by using the mapping of each f in the set in the diagonal line and increment N2 by 1. This new f is guaranteed to not be in the set as it always differ at least in N1->N2 from any other functions in the set of N->N functions

- H9.3 Are the following statements true or false? Justify your answers.
 - 1. All regular languages are decidable.
 - 2. The complement of any context-free language is decidable.
 - 3. The complement of any language recognised by a deterministic Turing machine is decidable.
 - 4. All languages recognised by nondeterministic Turing machines are semidecidable.
 - 5. If a language can be recognised by a deterministic pushdown automaton, then it is also decidable.
 - 6. If a language is decidable, then it can be recognised by some nondeterministic pushdown automaton.
- 1. All regular languages are decidable.

True, since every regular language is context-free, every context-free language is decidable, and every decidable language is Turing-decidable.

2. The complement of any context-free language is decidable.

True. All context-free language is decidable. Also, the complement of decibel language is also a decidable language => Complement of any context-free language is decidable

- 3. The complement of any language recognised by a deterministic Turing machine is decidable. **True.** The deterministic Turing machine always halts, and the language is recognized by a Turing Machine and halts on all inputs => the language is decidable => Its complement is also decidable
- 4. All languages recognised by nondeterministic Turing machines are semidecidable. **True**. semi-decidable languages are all recognized by a Turing machine (Turing-recognizable).
- 5. If a language can be recognised by a deterministic pushdown automaton, then it is also decidable.

True. The class of deterministic pushdown automata accepts the deterministic context-free languages => the language is decidable

6. If a language is decidable, then it can be recognised by some nondeterministic pushdown automaton

True. Since it is decidable => it is still a context free language => a CFG can be recognized by a nondeterministic PDA