Artificial Intelligence: Deep Learning

(too recent to be in the Russell & Norvig book) many slides from: Y. Bengio, A. Ng and Y. LeCun

Today

- 1. Motivation
- 2. Feature Learning
- 3. CNNs for I mage Processing
- 4. Conclusion

History of AI

Major Breakthroughs

- Speech Recognition & Machine Translation (2010+)
- I mage Recognition & Computer Vision (2012+)

Object recognition Self driving cars

- Natural Language Processing (2014+)
- •

Today

- 1. Motivation
- 2. Feature Learning Towns American

4. Conclusion

Classic ML

Automatic Feature Learning

Advantages of Unsupervised Feature

Learning

Automatic Feature Learning

Deep Learning = Machine learning algorithms based on learning multiple levels of representation / abstraction.

- Y. Bengio
- Each layer learns more abstract features that are then combined / composed into higher-level features automatically
- Like the human brain ...
 - has many layers of neurons which act as feature detectors
 - detecting more and more abstract features as you go up
- E.g. to classify an image of a cat:
 - Bottom Layers: Edge detectors, curves, corners straight lines
 - Middle Layers: Fur patterns, eyes, ears
 - Higher Layers: Body, head, legs
 - Top Layer: Cat or Dog

What Types of Features?

- For image recognition
 - pixel -> edge -> texton -> motif -> part -> object

- For NLP
 - character -> word -> constituents -> clause -> sentence -> discourse
- For speech:
 - sample ->spectral band -> sound -> ... phone -> phoneme -> word

Output nodes

Hidden nodes

Connections

Eg: Learning I mage Features

Examples of learned objects parts from object categories Chairs

Today

- Motivation
- 2. Feature Learning
- 3. CNNs for I mage Processing

 4. Concluse'

4. Conclusion

Many Types of Neural Networks

Many Types of Deep Networks (con't)

CNNs for I mage Processing

CNNs = Convolutional Neural Networks

25	2	1	44
223	7	6	60
196	8	2	148
249	1	3	40
60	7	1	154
59	1	7	213
214	7	3	163
89	182	219	13
74	146	113	72
89	18	244	85
1	4	8	97
3	4	2	121
2	1	2	131
7	6	8	47
3	5	5	126
7	6	8	121
5	3	1	237

I mage of a 4 in grey scale Value = 0-> white 255->black

CNNs for I mage Processing

- Use a filter (aka kernel) that "convolves" on the image
- Filter = small weight matrix to learn

I(original image)

W (filter)

$$\begin{array}{l} C_{11} = (I_{11} \times W_{11}) + (I_{12} \times W_{12}) + (I_{21} \times W_{21}) + (I_{22} \times W_{22}) \\ = 86 \times 1 + 4 \times 0.3 + 252 \times 0.5 + 3 \times 2 = 219.2 \end{array}$$

- Use a filter (aka kernel) that "convolves" on the image
- Filter = small weight matrix to learn

I(original image)

W (filter)

$$C_{12} = (I_{12} \times W_{11}) + (I_{13} \times W_{12}) + (I_{22} \times W_{21}) + (I_{23} \times W_{22})$$

= 252 × 1 + 3 × 0.3 + 34 × 0.5 + 7 × 2 = 283.9

- Use a filter (aka kernel) that "convolves" on the image
- Filter = small weight matrix to learn

I(original image)

W (filter)

$$\begin{array}{l} C_{13} = (I_{13} \times W_{11}) + (I_{14} \times W_{12}) + (I_{23} \times W_{21}) + (I_{24} \times W_{22}) \\ = 34 \times 1 + 7 \times 0.3 + 105 \times 0.5 + 2 \times 2 = 92.6 \end{array}$$

- Use a filter (aka kernel) that "convolves" on the image
- Filter = small weight matrix to learn

I(original image)

W (filter)

$$C_{38} = (I_{37} \times W_{11}) + (I_{47} \times W_{12}) + (I_{38} \times W_{21}) + (I_{37} \times W_{22})$$

= 74 × 1 + 180 × 0.3 + 204 × 0.5 + 253 × 2 = 736

Learn the Filters

18	54	51	239	244	188
55	121	75	78	95	88
35	24	204	113	109	221
3	154	104	235	25	130
15	253	225	159	78	233
68	85	180	214	245	0

429	505	686	856
261	792	412	640
633	653	851	751
608	913	713	657
633	653	851	7

$$I(6\times6)$$

$$W(3\times3)$$
 $C(4\times4)$

$$C(4\times4)$$

- The weight matrix (filter/kernel) behaves like a filter
- The network learns the values of the filter(s) that activate when they "see" some visual feature that is useful to identify the object (the final classification)
 - Ex. a horizontal line, a blotch of some color, a circle...

Convolution Hyper-parameters

- 1. Stride
- 2. Padding

Stride

$$I(7 \times 7)$$

W (3×3) with stride =1
$$C$$
 (5×5)

$$C (5 \times 5)$$

I (7×7)

$$C (3 \times 3)$$

Padding

```
9 0 0 1
1 0 1 0
0 1 1 2
2 1 0 1
```

```
0 0 0
0 1 0
0 0 0
```

```
0 1 9 not picked up ;-(
```

filter should pick up high values surrounded by low values

Learn Several Filters

So we create 1 activation map per filter

Pooling Layer

- Used to:
 - To reduce the size of the activation maps
 - So that we reduce the number of parameters of the network and hence avoid overfitting.
- Several strategies:

429	505	686	856
261	792	412	640
633	653	851	751
608	913	713	657

Average pooling

429	505	686	856
261	792	412	640
633	653	851	751
608	913	713	657

Architecture of a CNN

- Stack:
 - Convolutional Layers
 - Pooling Layers
- Finish off with:
 - A fully connected layer at the end for the final classification

Learning a Hierarchy of Features

Example of a CNN

Successful CNN Networks

LeNet

- First successful applications of CNNs
- Developed by Yann LeCun in the 1990's
- used to read zip codes, digits, etc.

AlexNet

- First work that popularized CNNs for computer vision
- developed by Alex Krizhevsky, Hya Sutskever and Geoff Hinton (U. of Toronto)
- In 2012 significantly outperformed all teams at the ImageNet ILSVRC challenge

Today

- 1. Motivation
- 2. Feature Learning
- 3. CNNs for I mage Processing4. Conclusion

Why now?

1. Basic science

- Backpropagation did not work / overfitting...
- now: developed method for training, better activation functions, better architectures....
- Need for lots training data...
- now: we have massive amounts + unsupervised pre-training

2. GPU computing

- Neural networks are very very long to train... (days, weeks)
- now: use of GPU's which are optimized for very fast matrix multiplication

3. Open Access to resources

- now: Access to DL methods, code and frameworks
- now: Fast turnaround from idea to implementation

https://www.researchgate.net/profile/Dubravko_Miljkovic/publication/268239364/figure/fig30/AS:394719407427587@ 147111

History of AI

Rules learns via the data ;-) But: features identified by the experts (eg. linguistics, medical doctors,...)

History of AI

2000's

1990's

Conclusion

- Deep Learning is thriving!
 - vision
 - image processing
 - speech recognition
 - natural language processing
- Canada is a world leader in Deep Learning
 - 1. Montreal: (Bengio et al.) MILA
 - 2. Toronto: (Hinton et al.) <u>Vector Institute</u>
 - 3. Edmonton: (Sutton et al.) AMII