

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta065

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

* Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $\frac{3}{5} + \frac{4}{5}i$.
- (4p) b) Să se calculeze distanța de la punctul O(0,0) la punctul $A\left(\frac{3}{5},\frac{4}{5}\right)$.
- (4p) c) Să se arate că punctul $A_n\left(\frac{n^2-1}{n^2+1}, \frac{2n}{n^2+1}\right)$ este pe cercul de ecuație $x^2+y^2=1, \ \forall n \in \mathbb{N}$.
- (4p) d) Să se arate că pe cercul de ecuație $x^2 + y^2 = 1$ există cel puțin 2007 puncte cu ambele coordonate raționale.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1,3,2), B(3,2,1), C(2,1,3) și D(0,0,0).
- (2p) f) Să se determine $a,b \in \mathbb{R}$, astfel încât punctele P(2,3) și Q(3,2) să fie pe dreapta x + ay + b = 0.

SUBIECTUL II (30p)

1.

- (3p) a) Să se verifice identitatea $\hat{x}^3 = \hat{x}, \ \forall \hat{x} \in \mathbf{Z}_6$.
- (3p) b) Să se arate că $(\hat{x} + \hat{y})^3 = \hat{x}^3 + \hat{y}^3$, $\forall \hat{x}, \hat{y} \in \mathbf{Z}_6$
- (3p) c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^7 + x + 1$, are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(1).
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $\log_2(x^2+7) = \log_2(2x^2+3x+7)$.
- (3p) e) Să se calculeze suma pătratelor rădăcinilor polinomului $f = X^3 X^2 24X + 1$.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \ln(x^2 + 4) \ln(x^2 + 1)$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f'(x)dx$.
- (3p) c) Să se arate că funcția f este strict crescătoare pe intervalul $(-\infty,0]$ și strict descrescătoare pe intervalul $[0,\infty)$.
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}.$
- (3p) e) Să se arate că $0 < f(x) \le \ln 4$, $\forall x \in \mathbb{R}$.

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră matricea
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, mulțimea $C(A) = \left\{ \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \middle| a, b, c \in \mathbf{R} \right\}$ și

funcția $f: C(A) \to C(A)$, $f(X) = X^6$.

- (4p) a) Să se calculeze determinantul și rangul matricei A.
- (4p) b) Să se calculeze A^2 și A^3 .
- (4p) c) Să se arate că matricea A este inversabilă și să se calculeze inversa sa.
- (2p) d) Să se arate că dacă $X \in M_3(\mathbf{R})$ și $X \cdot A = A \cdot X$, atunci $X \in C(A)$.
- (2p) e) Să se arate că dacă $P,Q \in C(A)$, atunci $P+Q \in C(A)$ și $P \cdot Q \in C(A)$.
- (2p) f) Să se arate că dacă $X \in C(A)$ și $f(X) = O_3$, atunci $X = O_3$.
- (2p) g) Să se arate că funcția f nu este nici injectivă, nici surjectivă. SUBIECTUL IV (20p)

Se consideră șirul $(a_n)_{n\geq 1}$, cu termenul general $a_n = \cos\frac{a}{2}\cos\frac{a}{4}\cos\frac{a}{8}\cdot\dots\cdot\cos\frac{a}{2^n}$, $n\geq 1$,

$$a \in \left(0, \frac{\pi}{2}\right)$$
 și funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \cos^2 \frac{x}{2} - \frac{1}{2}\cos x$.

Se presupun cunoscute relațiile $\sin 2x = 2\sin x \cos x$, $1 + \cos x = 2 \cdot \cos^2 \frac{x}{2}$, $x \in \mathbb{R}$.

- (4p) a) Să se arate că f'(x) = 0, $x \in \mathbb{R}$.
- (4p) b) Să se calculeze f(0) și $f(\frac{\pi}{2006})$.
- (4p) c) Să se calculeze $\int_{0}^{2006\pi} f(x) dx.$
- (2p) d) Să se arate că pentru orice $a \in \left(0, \frac{\pi}{2}\right)$ și $n \in \mathbb{N}^*$, are loc egalitatea $a_n = \frac{1}{2^n} \cdot \frac{\sin a}{\sin \frac{a}{2^n}}$.
- (2p) e) Să se verifice egalitățile $\cos \frac{\pi}{4} = \sqrt{\frac{1}{2}}$ și $\cos \frac{\pi}{8} = \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}}$.
- (2p) f) Să se arate că $\lim_{n\to\infty} a_n = \frac{\sin a}{a}, \ \forall \ a \in \left(0, \frac{\pi}{2}\right)$
- (2p) g) Să se arate că $\lim_{n \to \infty} \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}}} \cdot \dots \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \dots + \frac{1}{2}\sqrt{\frac{1}{2}}}} = \frac{2}{\pi}$

2