Problem

(1994 China Middle School Math Contest) $\triangle ABC$ is an acute triangle. Three altitudes AD, BE, CF meet at point H.C. If BC = a, AC = b, AB = c, then the value of $AH \cdot AD + BH \cdot BE + CH \cdot CF$ is

- (A) $\frac{1}{2}(ab+bc+ca)$ (B) $\frac{1}{2}(a^2+b^2+c^2)$ (C) $\frac{3}{2}(ab+bc+ca)$ (D) $\frac{3}{2}(a^2+b^2+c^2)$

Solution

(B).

We know that points H, D, C, and E are concyclic (Figure 1).

Figure 1

Figure 2

So we have By the law of cosine, $\cos \angle BAE = AC \cdot AB \cdot \cos \angle BAE$ By the law of cosine, $\cos \angle BAE = \frac{AB^2 + AC^2 - BC^2}{2AB \cdot AC}$. So $AH \cdot AD = \frac{1}{2} \left(AC^2 + AB^2 - BC^2 \right) = \frac{1}{2} \left(b^2 + c^2 - a^2 \right)$ Similarly we have: Similarly we have: $BH \cdot BE = BF \cdot BA = BA \cdot BC \cdot \cos \angle CBF$ $= \frac{1}{2} \left(AB^2 + BC^2 - AC^2 \right) = \frac{1}{2} \left(c^2 + a^2 - b^2 \right)$ $CH \cdot CF = CD \cdot CB = CB \cdot AC \cdot \cos \angle ACD$ $= \frac{1}{2} \left(AC^2 + BC^2 - AB^2 \right) = \frac{1}{2} \left(b^2 + a^2 - c^2 \right)$ $(1) + (2) + (3) : AH \cdot AD + BH \cdot BE + CH \cdot CF = \frac{1}{2} \left(a^2 + b^2 + c^2 \right).$ The answer is (B).