卒業論文

Ryohsuke Nishimoto

2021年12月19日

目 次

1	序論	1
2	理論	2
	2.1 イオントラップ	2
	2.2 パウルトラップ	2
	2.3 プレーナーイオントラップ	2
	2.3.1 電極の仕様	2
	2.3.2 Single-well	2
	2.3.3 Double-well	2
	2.4 レーザー冷却	2
	2.5 イオンの運動	2
	2.5.1 余剰マイクロ運動	2
	2.6 画像処理によるイオン捕獲位置と電場の算出	2
	2.6.1 グレースケール化,二値化	2
	2.6.2 イオンの検出および,捕獲位置と電場の算出方法	2
3	実験のセットアップ	3
4	実験方法と結果	4
	4.1 一列配列イオン	4
	4.1.1 捕獲の手順	4
	4.1.2 イオン捕獲位置の dc 電圧依存性	4
	4.1.3 永年周波数の dc 電圧依存性	4
	4.1.4 シミュレーションとの比較	4
	4.2 二列配列イオン	4
	4.2.1 捕獲の手順	4
	4.2.2 比率 R とイオン列間距離の関係	4
	4.2.3 シミュレーションとの比較	4
	4.3 余剰マイクロ運動の補正	4
	4.3.1 補正の手順	4
	4.3.2 補正結果	4
5	考察	5

1 序論

- 2 理論
- 2.1 イオントラップ
- 2.2 パウルトラップ
- 2.3 プレーナーイオントラップ
- 2.3.1 電極の仕様
- 2.3.2 Single-well
- 2.3.3 Double-well
- 2.4 レーザー冷却
- 2.5 イオンの運動
- 2.5.1 余剰マイクロ運動
- 2.6 画像処理によるイオン捕獲位置と電場の算出
- 2.6.1 グレースケール化,二値化
- 2.6.2 イオンの検出および,捕獲位置と電場の算出方法

3 実験のセットアップ

実験系とレーザーの情報

4 実験方法と結果

- 4.1 一列配列イオン
- 4.1.1 捕獲の手順
- 4.1.2 イオン捕獲位置の dc 電圧依存性
- 4.1.3 永年周波数の dc 電圧依存性
- 4.1.4 シミュレーションとの比較
- 4.2 二列配列イオン
- 4.2.1 捕獲の手順
- 4.2.2 比率 R とイオン列間距離の関係
- 4.2.3 シミュレーションとの比較
- 4.3 余剰マイクロ運動の補正
- 4.3.1 補正の手順
- 4.3.2 補正結果

5 考察

6 結論と展望

謝辞

参考文献