yang-lee theorem

李梓瑞

2024年9月11日

- 1 简介
 - Theorem(I)
 - Theorem(II)
- 2 证明
- 3 讨论
 - ■例子
 - 历史上的错误猜想与证明
 - Yang-Lee edge

Theorem(I): The quantity

$$\Theta = \lim_{V \to \infty} \left(\frac{1}{V} \ln \Xi(z, V, T) \right)$$

exists for all z>0. The result is a continuous, non-decreasing function of z which is independent of the shape of the box (up to some sensible assumptions such as Surface Area/ $V\sim V^{-1/3}$ which ensures that the box isn't some stupid fractalshape). Moreover, let R be a fixed, volume independent, region in the complex z plane which contains part of the real, positive axis. If R contains no zero of $\Xi(z,V,T)$ for all $z\in R$ then Θ is a an analytic function of z for all $z\in R$. In particular, all derivatives of Θ are continuous.

Assume: 硬球两体相互作用

$$U(r_{jk}) \begin{cases} = \infty, & r \le a, \\ = 0, & r > b, \\ \ge u_0, & a < r \le b \end{cases}$$

首先考虑有限体积,则系统存在粒子数上限 N_0 ,此时巨配分函数是 degree=N 的多项式 $\Xi \sim \prod_{j=1}^N (z-z_j)$,但其在实轴上显然没有根,因此 $(1)z_1 \neq$ 正实数;(2) 密度 ρ 和压强 βp 此时都是实的、正的解析函数;(3) define $v^{-1} = \rho$,则 p(v,T) 是解析函数,且 ρ , $\left(\frac{\partial \rho}{\partial \ln y}\right)_T$, $\left(\frac{\partial p}{\partial \rho}\right)_T$ 都是正的,并有限.

Conclusion: V 有限时,不会发生相变.

取热力学极限 $N \to \infty, V \to \infty$. Ξ is now defined as an infinite series.

Lemma(I): z > 0 时,

$$\lim_{V \to \infty} \frac{1}{V} \ln \Xi = \beta p$$

存在, 且是 z 的单调连续递增函数.

Lemma(II): 设在 z 的复平面上存在区域 R, 其中不包含 Xi 的零点、并且包含了一段正的实 z 轴, 则在 R 内

$$\lim_{V o \infty} rac{1}{V} \ln \Xi, \ \ {
m and} \ \ orall {
m IP整数} n, \lim_{V o \infty} rac{1}{V} rac{\partial^n}{\partial (\ln z)^n} \ln \Xi$$

都存在, 且是 z 的解析函数. 此外 $\frac{\partial}{\partial (\ln y)}$ 与 $\lim_{V \to \infty}$ 在 R 上对 易.

相变

(1) 实轴上无根

density: $\rho = \frac{\partial \Theta}{\partial (\ln z)}$ 存在且大于零 (Lemma(I)). $p-\rho$: $\frac{\partial p}{\partial \rho}=\frac{\partial p/\partial (\ln z)}{\partial \rho/\partial (\ln z)}$. 而我们知道分母不为零 (见前文有限体积 的讨论), 于是无相变.

(2) 极限下根向实轴逼近

If we look at points z where zeros appear on the positive real axis, then Θ will generally not be analytic. If $\partial\Theta/\partial z$ is discontinuous, then the system is said to undergo a first order phase transition. More generally, if $\partial^m\Theta/\partial z^m$ is discontinuous for m=n, but continuous for all m< n, then the system undergoes an n^{th} order phase transition.(\sim 点的密度)

└─Theorem(II)

Theorem(II): The zeroes of the $\Xi(z)$ all lie on the unit circle |z|=1, where $z=e^{\beta\mu}$.

- Ising model in a random field
- lattice gas in a random medium
- 有序-无序转变

I 的详细证明见李政道的《统计力学》3.1 和 3.2, 下面介绍 Ⅱ 的证明.

There are at least two different lines of approach, algebraic or analytic. We choose the latter(simple).

Suppose we have a finite graph G with vertices labelled by i = 1, . . , N and edges by (jk) with j < k. At each vertex i there is an Ising spin si taking the values $\pm 1.$ The partition function of the classical ising model is

$$Z(h) = \sum_{\{s_i\}} \exp \beta \left(\sum_{jk} V_{jk} s_i s_j + \sum_{j} h_j s_j \right), \tag{1}$$

and can be mapped to a lattice gas by $n_j=\frac{1}{2}(s_j+1)$ taking 0 or 1. Restricting $n\leq 1\to$ fermions. Taking $V_{jk}\leq 0\to$ attractive.

Then considering the grand partition function

$$\Xi(z) = \sum_{n_j = 0, 1} \prod_j z_j^{n_j} \exp\left(-4\beta \sum_{jk} V_{jk} (n_j - n_k)^2\right),$$
 (2)

where $z_j = e^{2\beta h_j}$ is the local activity.

Under the Ising symmetry $(s_j \to -s_j, h_j \to -h_j)$, which translates into $(n_j \to 1-n_j, z_j \to z_j^{-1})$, the grand partition function is invariant,

$$\Xi(z) = (\prod_{j=1}^{N} z_j) \Xi(z^{-1}).$$
(3)

 V_{ik} is real $\to \Xi(z) = \overline{\Xi}(\overline{z})$

We can state that $\Xi(z)$ is non-zero in $\bigcap_{j=1}^N \{|z_j| < 1\}$.(对 N 做数学归纳法)

The case N=1 is trivial, where $\Xi(z_1)=1+z_1$.

For N=2, $\Xi(z_1,z_2)=1+a_{12}(z_1+z_2)+z_1z_2$, which vanishes when $z_2=-\frac{1+a_{12}z_1}{a_{12}+z_1}$. This maps $|z_1|<1$ into $|z_2|>1$, in other words there is no way to take the $|z_1|<1$ and $|z_2|<1$ at the same time.

Suppose it is true for all graphs of degree $\leq N-1$. Considering the sum over n_1 in (2), the term with $n_1=0$ just gives the partition function without site $1(\mathcal{G}\setminus\{1\})$, while that with $n_1=1$ modifies the activities at the remaining vertices of $\mathcal{G}\setminus\{1\}$.

Setting $a_{jk} = e^{-\beta V_{jk}} \le 1$, then

$$\Xi^{\mathcal{G}}(z_1,\ldots,z_n) = \Xi^{\mathcal{G}\setminus 1}(a_{12}z_1,\ldots,a_{1n}z_n) + z_1a_{12}\ldots a_{1n}\Xi^{\mathcal{G}\setminus 1}(z_2/a_{12},\ldots,z_n/a_{1n})$$
(4)

The first term is non-zero by hypothesis, and the second may be written $z_1 \dots z_n \overline{\Xi^{\mathcal{G} \setminus 1}}(a_{12}/\bar{z_2}, \dots, a_{1n}/\bar{z_n})$,

Beside we can say that the second term is smaller than the first,

$$\sup_{|a_{1j}| \le 1} \sup_{|z_j| < 1} \left| \frac{z_1 \dots z_n \overline{\Xi^{\mathcal{G} \setminus 1}}(a_{12}/\bar{z}_2, \dots, a_{1n}/\bar{z}_n)}{\Xi^{\mathcal{G} \setminus 1}(a_{12}z_1, \dots, a_{1n}z_n)} \right| \le 1, \tag{5}$$

because

Continuity: the left-hand side does not change if we go with $|a_{1j}| \le 1 \rightarrow |a_{1j}| < 1$.

Maximum modulus principle: the supremum is attained on the boundary, so we need to consider the bound $|z_j|=1$, where the left-hand side become 1.

$$\Xi^{\mathcal{G}}(z_1,\ldots,z_n) = \Xi^{\mathcal{G}\setminus 1}(a_{12}z_1,\ldots,a_{1n}z_n) + z_1 \ldots z_n \overline{\Xi^{\mathcal{G}\setminus 1}}(a_{12}/\bar{z_2},\ldots,a_{1n}/\bar{z_n}).$$
 (6)

We can see the first term is larger than the second, so it is impossible to find a point making $\Xi^{\mathcal{G}}(z_1,\ldots,z_n)$ vanishes. However for the present we specialize to the case when all the z_j are equal to z, and Ξ is a polynomial of degree N in z.

Proof: From the our statement before, the interior of the unit circle is free of zeroes. But from (3) the exterior of the unit circle is also zero-free. That's all.

Example:

$$\Xi = \frac{(1+z)^V (1-z)^V}{1-z}, V \in \mathbb{Z}$$

根 $z=-1,e^{2\pi ik/V}$ 分布在单位圆上, 极限下根的密度增加, 有些根将接近 z=1. 通过 Θ 计算 p,ρ , 得到状态方程,

$$\beta p = \begin{cases} \ln \frac{V}{V-1}, & V > 2; \\ \ln 2, & \frac{2}{3} \le V \le 2; \\ \ln \frac{V(1-V)}{(2V-1)^2}, & \frac{1}{2} < V < \frac{2}{3}. \end{cases}$$

具体步骤见李政道的《统计力学》3.3 others: 静电模拟

$$\frac{1}{V}\ln\Xi = \sum_{l=0}^{\infty} \alpha_l(V) z^l$$

迈耶的猜想和其猜想的错误证明源于 $l \to \infty$ 和 $V \to \infty$ 两个极 限过程的不合理的对调. 他们先取 $V \to \infty$ 就无法得到割线和实 轴相交的位置. 应该先让 V 有限并使 $l \to \infty$, 得到根向实轴逼近 的趋势, 再取 $V \to \infty$ 定出相变点.

在 yang 和 lee 的第二篇文献中, 他们利用了外部磁场 h 下的铁 磁 Ising 模型与具有 activity $z = e^{\beta h}$ 的晶格气体之间的等价性, 证明了: 在任何 degree= N 的有限图上, 配分函数仅在单位圆上 有零点,此时这对应于纯虚数的 h. 此外, 由于对于实数 h, Ξ 是正项的和, 因此这些零点离实轴有一 定距离. 这种情况应在话当规则的晶格上和热力学极限下. 在足 够高的温度下持续存在,并且当 |Imh| 大于某个临界值 h_c 时,零 点应在虚轴上变得密集. 这个极限点被称为杨-李边界 (Yang-Lee edge). 在零磁场 h=0 下, free energy per site 的极限 $\lim_{N\to\infty} \left(-\frac{1}{N}\right) \log Z$ 随着温度 T 从上方接近临界温度 T_c 时出现 奇异性 yang 和 lee 认为其来源于杨-李边界接近实轴, 即 $h_c \rightarrow 0$.

References I

- 1. arXiv:2305.13288 《The Yang-Lee Edge Singularity and Related Problems》
- 2. 《统计力学》李政道
- 3. 《Statistical Physics》 David tong