Funktionalanalysis 1

Übungsaufgaben zu:

"Lecture 19 – Die Hilbertraumadjungierte"

19/1: Betrachte den Shift-Operator S am $\ell^2(\mathbb{N})$, das ist

$$S: \left\{ \begin{array}{ccc} \ell^2(\mathbb{N}) & \to & \ell^2(\mathbb{N}) \\ (x_1, x_2, x_3, \ldots) & \mapsto & (0, x_1, x_2, \ldots) \end{array} \right.$$

- (a) Zeige dass S isometrisch ist, bestimme ran S und zeige dass ran S abgeschlossen ist, und zeige $\bigcap_{n=1}^{\infty} \operatorname{ran}(S^n) = \{0\}.$
- (b) Bestimme die Hilbertraumadjungierte S^* von S, und bestimme $\ker(S^*)$, $\operatorname{ran}(S^*)$, und $\bigcap_{n=1}^{\infty} \operatorname{ran}([S^*]^n)$.