Arquitetura de Computadores

LEI – 2022/23 - DI-FCT/NOVA

Aula T1 – 03 de março de 2023

Sumário

Apresentação.

Introdução à arquitetura de Von Neumann.

O Sistema operativo

Arquitetura de Computadores →AC

Apresentação

- Objetivos da cadeira
- Docentes
- Programa
- Funcionamento e trabalho dos alunos
- Avaliação
- Bibliografia

Objetivos

Gerais:

- Conhecimento!...
- ...competência e produtividade
- ...vantagem competitiva no mercado de trabalho
- Específicos de AC:
 - Compreender funcionamento dos computadores e como estes conseguem executar os programas
 - Organização e funcionamento interno dos vários componentes do computador
 - Níveis de abstração, interfaces de programação, mecanismos de execução suportados pelo hardware

A equipa

Pedro Medeiros (regente/responsável)

Maria Cecília Gomes

Kevin Gallagher

Henrique Ferreira

Programa de AC

- Níveis de um sistema computacional. O nível do Sistema operativo.
- Componente CPU
- Componente memória central (RAM)
- Componente sistemas de entradas / saídas

Laboratórios:

- LINUX
- Linguagem C
- Assembly Pentium

AC no curso (u.c. relacionadas)

- 1º semestre:
 - Introdução à Programação
 - Sistemas Lógicos
- 2º semestre:
 - Arquitetura de Computadores
- Seguintes no 1º ciclo do MIEI (futura LEI):
 - Fund. Sistemas de Operação, Ling. Ambientes de Programação, Redes de Computadores

Bibliografia

 Dive Into Systems: A Gentle Introduction to Computer Systems Suzanne J. Matthews, Tia Newhall e Kevin C. Webb, No Starch Press, 2022 https://diveintosystems.org/book/

• Operating Systems: Three Easy Pieces, Remzi Arpaci-Dusseau e Andrea Arpaci-Dusseau, Lulu Books, 2013 https://pages.cs.wisc.edu/~remzi/OSTEP/

How to Think Like a Computer Scientist - C Version, Allen B. Downey (1999), Thomas Scheffler (C version 2018) https://freecomputerbooks.com/books/Think-C_v1.09.pdf

How to Think Like a Computer Scientis

C Ver

Allen B. Downe

Version 1.0

Trabalho do Aluno

- 9 ECTS * 28 horas / ECTS = 252 horas
- Horas em contacto
 - Aulas teóricas: 14 semanas * 3 h /semana
 =42 horas
 - Aulas práticas: 14 semanas * 2 h /semana
 =28 horas
- Horas em autonomia
 - Estudo: 130 horas
 - Trabalhos : 40 horas
- Avaliações6 horas
- Total (240 horas = 15 semanas*16 horas)

Avaliação – Regras Gerais

- A avaliação tem duas componentes:
 - a componente teórico-prática
 - a componente laboratorial
- A frequência é conseguida através da obtenção de 6,0 valores na componente laboratorial (ver à frente)
- Fraude (detetada imediatamente ou a posteriori)
 - Qualquer ato que vicie o processo de avaliação (copiar, ceder cópia, assinar trabalho que não fez, etc.), pode implicar a reprovação imediata de TODOS os alunos envolvidos (os que copiaram e os que deram a copiar)

Componente Teórico-Prática

- 2 Testes Presenciais (2h de duração): incluem perguntas sobre os trabalhos práticos. Datas a confirmar
- Exame Presencial
- Nota da Componente Teórico-Prática (CompTP):
 - CompTP = (Nota_Teste1 + Nota_Teste2) /2 out
 - CompTP = Nota_Exame
- Para obter aprovação:
 - CompTP ≥ 9.5

Componente Laboratorial

- 4 trabalhos EP1, EP2, EP3 e EP4 (grupos de 2 alunos)
 - Entrega eletrónica: data a anunciar (EP1 e EP2 antes do teste 1, EP3 e EP4 antes do teste 2)
 - Discussão virtual através de perguntas nos testes.
 Ver detalhes no CLIP
- Nota da Componente Laboratorial (CompL):
 - CompL = (Nota EP1 + Nota EP2 + Nota EP3 + Nota EP4) / 4
- Para obter aprovação e ter frequência:
 - CompL ≥ 6.0

Avaliação (Nota final)

Nota final (NF) dos alunos

```
 NF = CompTP (se CompTP < 9.5)</li>
 NF = CompL (se CompL < 6.0)</li>
```

NF = 0.25 CompL + 0.75 CompTP

Notas Anteriores

- Os alunos que obtiveram nota CompL superior a 6.0 em 2021/22:
 - Estão dispensados de realizar a componente laboratorial; podem repeti-la, inscrevendo-se nos turnos práticos.
 - Se desistirem, será usada a CompL obtida anteriormente.

Informação

• CLIP

 Sumários (com os elementos de estudo correspondentes), Slides, Enunciados, Outros elementos

Ligar as notificações no CLIP

Outros meios ??

Sumário

Apresentação.

Introdução à arquitetura de Von Neumann.

O Sistema operativo

Bibliografia:

Livro Dive Into Systems, Capítulo 0, Capítulo 5 secção 2

Sistema Computacional

Programa

Sistema operativo (SO)

Hardware CPU, RAM, E/S

Hardware

Memória central (RAM

 Cada posição de memória tem um endereço (que é fixo e único) e um conteúdo (que pode variar).

 O endereço permite identificar (sem ambiguidade) cada posição da memória.

Endereço

0000 0001 1001 0111 Conteúdo 1111 0110

O conteúdo da posição de memória com o endereço 104 é 1111 0110

101:

102:

103:

104:

105:

Funcionamento do CPU

 O CPU executa as instruções guardadas na memória central, de uma forma sequencial.

 Em cada momento, o
 CPU mantém a posição de memória da instrução que está a executar.

0000 0001 100: 1001 0111 101: 102: 103: 1111 0110 104: 105:

Funcionamento do CPU

- A instrução define a ação elementar a executar
 - Ações atuam sobre dados armazenados em memória central ou num dispositivo de entrada/saída.
- Exemplo somar 100 101 102
 - Soma o conteúdo das posições 100 e 101 e armazena o resultado na posição 102.

O que é necessário para executar aplicações (e desenvolvê-las)

Hardware

- CPU + Memória
- Dispositivos de entrada-saída
 - Interacção: teclado, rato, ecrã
 - Arquivo: discos

Software de sistema

- Compiladores / interpretadores
- Interpretador de comandos (incluindo carregador)
- Sistema operativo (ou de operação)
 - Suporte das chamadas ao sistema feitas pelas aplicações e pelos programas de sistema

Ciclo de vida de um programa

Onde guardar o código fonte e os programas?

- Em sectores do disco, porque é um dispositivo de armazenamento permanente
- Os discos são complicados!
- Disco
 - S superfícies, cada com P pistas, cada com S sectores
 - Pode ser visto como contendo N blocos todos do mesmo tamanho (por ex: 1024 bytes)

- Ficheiro: abstracção fornecida pelo sistema operativo que permite esconder a complexidade do disco
 - Nome que é uma cadeira de caracteres (ASCII)
 - Operações: abrir, fechar, ler, escrever
 - Atributos (tamanho, data de criação, ...)
 - Blocos do disco onde está guardado (o último não está normalmente todo preenchido)

Ciclo de vida de um programa agora com ficheiros

Edição do programa

Geração do código

Carregamento

Execução

O que é que é preciso?

- Conjunto de código que implemente funções de acesso aos periféricos e aos ficheiros
 - Operações simples
 - Independentes do hardware
- Carregador
 - Usando as funções anteriores carrega ficheiros executáveis em memória
- Interpretador de comandos
 - Usando as funções anteriores lê comandos do teclado e carrega programas para os executar

Sistema de operação (ou operativo) – abrev. SO

Memória ocupada pelo SO

Memória livre para as aplicações Funções que implementam o acesso a periféricos e ficheiros

Carregador

Interpretador de comandos

Memória onde são carregados os programas End. topo

End. inicial

Funções de um SO "simples"

- Um único utilizador, um programa em execução de cada vez
- Funções essenciais
 - Supervisonar a utilização dos recursos do sistema
 - Controlar os periféricos
 - Gestão da memória central
 - Gestão de ficheiros
 - Suporte da interacção com o utilizador

Quando a energia é ligada salta-se para o código do SO (1)

Como?

- Quando há um "power on" ou um "reset" a máquina de controlo do CPU carrega o PC com um valor fixo F (por ex. 0xFFFFC00)
- Nessa zona de memória, há uma ROM (ie uma memória não volátil); essa ROM contém o código adequado

OxFFFFC00 PC

Quando a energia é ligada salta-se para o código do SO (2)

- É mais habitual o código que começa em F carregar o código do SO a partir de um ficheiro no disco (bootstrap loader)
- O bootstrap loader carrega o SO para a "parte de cima" da RAM
- Quando o carregamento do SO acaba o "bootstrap loader" carrega o PC com o endereço da rotina de inicialização do sistema
- Quando o código de inicialização do SO acaba o PC salta para o código do interpretador de comandos

Inicialização do S.O.

- A parte do SO que reside sempre em memória chamase núcleo ou kernel do SO
- Inicialização do hardware
 - Controladores dos periféricos
- Inicialização das estruturas de dados
 - representam os vários recursos de sistema
 - Usados pelos algoritmos de gestão desses recursos
- Execução do interpretador de comandos
 - Espera por interacção do utilizador

Interpretador de comandos

while (TRUE) do

- apresentar prompt
- ler comando
- executar comando

- Vários nomes e formas:
 - Orientado para linha de comando
 - Shell (UNIX), cmd.com (Windows)
 - Janelas, menus, rato ...
 - Windows, Macintosh, X-Windows (Linux/UNIX)

Interpretador de comandos

