Esercizi aggiuntivi Tutorato 5

Riccardo Marchesin, Cesare Straffelini, Marco Girardi

Ottobre 2022

ATTENZIONE:

I seguenti esercizi sono proposti dai noi tutor, non dal professore. Quindi, ricordatevi che

- 1. Non sono necessari per la preparazione dell'esame.
- 2. Le difficoltà possono essere "sbilanciate". Passate oltre se qualche punto vi sembra troppo difficile!
- Alcuni sono volutamente vaghi perché pensati con l'obiettivo di suscitare discussione in classe durante il tutorato. Per lo stesso motivo in alcuni esercizi abbiamo aggiunto delle riflessioni meno tecniche e più filosofiche.
- 4. Questi fogli sono un work in progress. La speranza è che migliorino ogni anno. Se li trovate confusionari, se pensate si possa aggiungere qualcosa per migliorarli, se avete ogni tipo di consiglio: ditecelo!

Nota: In tutti gli esercizi "definire induttivamente X" significa dare un insieme di regole tale che X è il minimo punto prefisso dell'operatore delle conseguenze immediate.

1 (Unione disgiunta). Sia l'insieme $A = \{ \text{rosso, giallo, blu} \}$. Si consideri l'insieme $A + \mathbb{N}$ definito dalle seguenti regole

$$\overline{\mathsf{inl}(a)}[a \in A] \qquad \overline{\mathsf{inr}(n)}[n \in \mathbb{N}]$$

- Si tratta di un insieme finito?
- $42 \in A + \mathbb{N}$?
- $\operatorname{inl}(4) \in A + \mathbb{N}$?
- $inl(rosso) \in A + \mathbb{N}$?
- Descrivere intuitivamente quali sono gli elementi di $A + \mathbb{N}$

• Mostrare che per ogni $n \in \mathbb{N}$ si ha $\operatorname{inr}(n) \in A + \mathbb{N} \Rightarrow \operatorname{inr}(n+2) \in A + \mathbb{N}$

Dati due insiemi X e Y, l'insieme X+Y è solitamente chiamato coprodotto di X e Y. Con questa costruzione si possono unire due insiemi "come se fossero disgiunti", ricordandosi la provenienza di ciascun elemento.

2 (Funzioni e relazioni). In questo esercizio consideriamo funzioni e relazioni su \mathbb{Z} (quindi sottoinsiemi di $\mathbb{Z} \times \mathbb{Z}$.

- Dare l'esempio di una relazione che non è una funzione
- Consideriamo $R = \emptyset$. R è una relazione? R è una funzione?
- Rispondere alle domande del punto precedente considerando relazioni in $(\emptyset \times \mathbb{Z})$ invece che in $(\mathbb{Z} \times \mathbb{Z})$

 ${\bf 3}$ (Sequenze). Sia ${\cal S}$ l'insieme delle sequenze di interi, definito induttivamente dalle regole

$$\frac{s}{\epsilon}$$
 $\frac{s}{n:s}(n \in \mathbb{N}).$

Sia S_1 l'insieme definito induttivamente dalle regole

$$-\frac{s}{\epsilon}$$
 $\frac{s}{1:s}$.

- Descrivere intuitivamente l'insieme S_1 .
- Dimostrare, usando il principio di induzione, che $S_1 \subseteq S$.
- Definite induttivamente la relazione $\sqsubseteq \in \mathcal{P}(\mathcal{S} \times \mathcal{S})$, in maniera che valga " $r \sqsubseteq s$ se e solo r è una sottosequenza di s" (per esempio, $(2:\epsilon) \sqsubseteq (5:2:\epsilon)$, mentre $(2:1:\epsilon) \not\sqsubseteq (3:3:1:\epsilon)$.
- Definire induttivamente la relazione $\preceq \in \mathcal{P}(\mathcal{S} \times \mathcal{S})$, in maniera che valga " $r \preceq s$ se e solo r è più corta (o ha la stessa lunghezza) di s". (per esempio, $(1:\epsilon) \preceq (5:2:\epsilon)$, e $(2:4:1:\epsilon) \preceq (3:3:1:\epsilon)$.
- Mostrare che ⊑⊆≼. (Attenzione: a seconda di come avete risolto gli esercizi precedenti, questo potrebbe essere relativamente facile, oppure costringervi a fare delle dimostrazioni per induzione "dentro" ad altre dimostrazioni per induzione).
- Definire induttivamente una relazione $L \subseteq \mathcal{S} \times \mathbb{N}$, che associa ad ogni sequenza la sua lunghezza. Ad esempio, vogliamo (ϵ) L 0 e $(1:3:\epsilon)$ L 2.
- Mostrare che L e una funzione. (Lungo. Seguite la traccia fatta sulle slide per il fattoriale)
- Dimostrare che \sqsubseteq e \preceq sono ordini parziali sull'insieme delle sequenze.

4 (Misto geometrico). Sia $n \geq 1$. Definiamo gli insiemi \mathcal{H}, \mathcal{X} e \mathcal{V} nella seguente maniera:

 $\mathcal{H} = \{W \subseteq \mathbb{R}^n \mid W$ è uno spazio vettoriale di dimensione $n-1\};$

 ${\mathcal X}$ è definito induttivamente dalle seguenti regole

$$\frac{1}{W}(W \in \mathcal{H}) \qquad \frac{W_1 \quad W_2}{W_1 \cap W_2};$$

infine

$$\mathcal{V} = \{W \subsetneqq \mathbb{R}^n \mid W \text{ è uno spazio vettoriale}\}.$$

Dimostrare che $\mathcal{V} \subseteq \mathcal{X}$.