LINEAR ALGEBRA (MA20105)

Problems Sheet-6:

Notation: $\mathbb{F} = (\mathbb{R}, \mathbb{C})$ will always denote a field and $\mathbb{F}^n := \mathbb{F} \times \cdots \times \mathbb{F}$ (n times). \mathbb{R} will denote the field of real numbers \mathbb{C} will denote the field of complex numbers

Problems related to Linear functionals and dual space:

- 1. In \mathbb{R}^3 , let $\alpha_1 = (1,0,1)$, $\alpha_2 = (0,1,-2)$, $\alpha_3 = (-1,-1,0)$.
 - (i) f is a linear functional on \mathbb{R}^3 such that

$$f(\alpha_1) = 1$$
, $f(\alpha_2) = -1$, $f(\alpha_3) = 3$,

and if $\alpha = (a, b, c)$, find $f(\alpha)$.

(ii) Describe explicitly a linear functional f on \mathbb{R}^3 such that

$$f(\alpha_1) = f(\alpha_2) = 0$$

but $f(\alpha_3) \neq 0$.

(iii) Let f be any linear functional such that

$$f(\alpha_1) = f(\alpha_2) = 0$$

and $f(\alpha_3) \neq 0$. If $\alpha = (2, 3, -1)$, show that $f(\alpha) \neq 0$.

- 2. Let $\mathcal{B} = \{\alpha_1, \alpha_1, \alpha_3\}$ be the basis for \mathbb{C}^3 defined by $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 1, 1)$, $\alpha_3 = (2, 2, 0)$. Find the dual basis of \mathcal{B} .
- 3. If A and B are $n \times n$ matrices over the field F, show that trace(AB) = trace(BA). Show that similar matrices have the same trace.
- 4. Let V be the vector space of all polynomial functions p from \mathbb{R} to \mathbb{R} which have degree 2 or less:

$$p(x) = c_0 + c_1 x + c_2 x^2.$$

Check that the following are linear functionals i.e. a linear map from $V \to \mathbb{R}$

$$f_1(p) = \int_0^1 p(x)dx; \ f_2(p) = \int_0^2 p(x)dx; \ f_3(p) = \int_0^{-1} p(x)dx.$$

5. If A and B are $n \times n$ complex matrices, show that AB - BA = I is impossible.