

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Assistant Commissioner for Patents Washington, D.C. 20231

Dear Sir:

Transmitted herewith for filing is the patent application and oath of the inventor(s): RICHARD L. SMITH

For: SMALL-SCALE HYDROGEN-OXIDIZING-DENITRIFYING BIOREACTOR (SUR-3645)

Date Executed: August 11, 2000

Enclosed are also:

[X] <u>3</u> sheet(s) of drawing(s).

Claims as Filed

Claims	Number Filed	Number Extra	Rate X	Basic Fee \$690.00
Total Claims	8 - 20	0 ^	\$18	= \$ -0-
Independent Claims	2 - 3	0	\$78	= \$ -0-
Total Filing Fee				\$690.00

- [X] Please charge Deposit Account No. 09-0440 in the amount of \$690.00.
- [X] The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any over-payment, to Account No. 09-0440.

To the best of my knowledge and belief, the information contained on the cover sheet is true and correct and any copy submitted is a true copy of the original document.

Please address any correspondence to the undersigned attorney.

Respectfully submitted,

E. Philip Koltos

Registration No. 25,183

Division of General Law

Office of the Solicitor

U.S. Department of the Interior 1849 C Street NW, MS 6531

Washington, D.C. 20240

August 16, 2000 (202) 208-6201 DOCKET NO. SUR-3645

SMALL-SCALE HYDROGEN-OXIDIZING-DENITRIFYING BIOREACTOR Field of the Invention

The present invention relates to a method and apparatus for hydrogenating and denitrifying nitrate-contaminated water or waste materials.

Background of the Invention

Nitrate is the most prevalent ground-water contaminant worldwide. Nitrate originates from agricultural, sewage-disposal, and industrial practices from both point and nonpoint sources. Through not exclusive to the subsurface, nitrate contamination is much more pervasive in ground water because nitrate has a relatively long residence time in that environment. Ground water is also the most common drinking water source for both humans and livestock in rural and suburban areas of the United States. Thus, when the nitrate concentration in water from a supply well exceeds drinking water standards (i.e., 10 mg/L nitrogen), the burden typically falls upon the individual user or household to deal with the problem.

The options currently available to treat nitrate contamination on a small scale level are limited. Since nitrate is stable in aqueous solution, it can only be safely removed chemically by techniques such as anion exchange. This can be costly, replaces one salt for another, and at times is ineffective, depending upon the composition of other salts in the water. Moreover, there is the need to dispose of the nitrate that has been removed. Additional, cost-effective

and Albert I

technology to remove nitrate from drinking water is needed: technology that is effective, safe, and practical at the household and livestock supply scales.

Processes for eliminating nitrates from water by denitrification in microbiological reactors are known. These processes, such as those conducted in rising current reactors containing a granular denitrifying biomass, have been described, for example, by Lettings et al., (1980) and by Timmermans, (1983).

For waste waters in particular, different reducing agents such as sugars, less expensive biodegradable organic material, including cellulose and ethanol, have been used. However, only ethanol has been used in treating water that is to be potable. These conventional reducing agents have the disadvantage that they dissolve in water and reduce the quality of the potable water produced. Therefore, it requires another step to eliminate these reducing agents before the water is ready for use.

Verstrate et al., in U.S. Patent No. 4,696,747, describe a process for eliminating nitrates by biological conversion in the presence of hydrogen gas. This process uses alcaligenous eutrophic bacteria, with *Pseudomonas denitrificans* and *Micrococcus denitrificans* being the preferred microorganisms. However, these bacteria cannot grow and remain active in a hydrogen-fed bioreactor when nitrate is not present, particularly when oxygen is removed.

Hydrogen-oxidizing bacteria, some of which are capable of denitrifying nitrogen oxides, are well known and have been studied in detail for many years (Aragno & Schlegel, 1981). Pilot-scale industrial plants that use mixed-culture populations of hydrogen-oxidizing denitrifiers have been operated in Belgium (Liessens et al., 1992) and Germany (Gros et al., 1988) to produce drinking water from nitrate-contaminated ground water. These plants are engineered to produce up to 50 m³ per day. They are technically complex, require a commercial supply of hydrogen, and trained experts to ensure an adequate function on a daily basis. As a result, an analogous approach or device has not been developed to treat nitrate on a small-scale basis.

Summary of the Invention

It is an object of the present invention to overcome the aforesaid deficiencies of the prior art.

Is is another object of the present invention to provide a bioreactor for treating nitrate-contaminated drinking water.

It is a further object of the present invention to provide a small scale bioreactor for treating nitrate-contaminated drinking water.

It is another object of the present invention to provide a method for treating nitrate-contaminated drinking water even when oxygen is not present in the water being treated.

According to the present invention, autohydrogenotrophic-denitrifying (HOD) bacteria, also known as hydrogen-oxidizing denitrifying bacteria, are used to treat nitrate contamination in water. These bacteria can grow and remain active in a hydrogen-fed bioreactor even when nitrate is not present and even after oxygen has been removed. Of course, there is no reason to attempt to remove nitrate where none is present. However, the function of the bioreactor is much more robust if the bacteria used within it do not need nitrate. For example, the supply of water that is being treated may be shut off for period of time, thus removing the nitrate supply, without affecting the viability of the bacteria within the bioreactor as long as the hydrogen supply is not disrupted. Additionally, some small scale operations may only be used to treat water intermittently. Moreover, these bacteria are more efficient in the exit end of the bioreactor because they do not require a minimal concentration of nitrate to function. Thus, an adequate amount of biomass will be present in the nitrate-free zone of the bioreactor, which helps to insure that the nitrate really is completely removed. This also makes the bioreactor more adaptable to variations in changes in output flow or input nitrate concentration without nitrate breakthrough in the output.

Nitrate-contaminated drinking water is treated with autotrophic, hydrogen-oxidizing denitrifying bacteria which can be isolated from subsurface environments. A low cost

water electrolysis unit that provides a continuous supply of oxygen-free hydrogen is used to generate hydrogen for the process. The bacteria are contained in a flow-through bioreactor which maximizes the ability of the bacteria to remove nitrate in the presence of hydrogen. A sand filtration unit removes unwanted microbial biomass from the treated water.

The present invention provides a small scale nitrate-removal system that uses hydrogen-oxidizing denitrifying bacteria to remove nitrate from the water supplies being used by individual households, farms, or small businesses, the users that are most frequently affected by nitrate contamination and the least likely to find affordable alternative water sources. Flow-through bioreactor systems, e.g., septic tanks, are frequently used on this scale to treat wastewater. The operating parameters for these types of septic systems are also suitable goals for designing a drinking water treatment system. The system of the present invention is cost effective, robust, requires minimal expertise and attention to operate, and produces sufficient quantities of potable water for small scale usage.

The device according to the present invention consists of four principle components:

- (1) autotrophic, hydrogen-oxidizing denitrifying (HOD) bacteria isolated from subsurface environments;
 - (2) a low-cost water electrolysis unit that provides

a continual supply of oxygen-free hydrogen;

- (3) a flow-through bioreactor that contains the hydrogen-oxidizing-denitrifying bacteria and is designed to maximize their ability to remove nitrate in the presence of hydrogen; and
- (4) a sand filtration unit to remove unwanted microbial biomass from the treated water.

Brief Description of the Drawings

Figure 1 shows the reaction for hydrogen-coupled denitrification using HOD bacteria.

Figure 2 shows a hydrogen generator for use in the present invention.

Figure 3 shows a denitrifying bioreactor and sand filter according to the present invention.

Figure 4 shows nitrate concentrations in the inflow and outflow of a mixed culture bioreactor.

Detailed Description of the Invention

Most current understanding of denitrification as a process, and the denitrifying bacteria themselves, comes from studies relating to nitrogen removal mechanisms in soils and sewage treatment applications. Only recently has the process been studied in more nutrient-poor habitats, such as ground water. These studies have revealed that denitrification can occur in the subsurface under suitable conditions (Smith & Duff, 1988; Spaulding & Parrot, 1994), and that the physical, chemical, and biological factors that control the process in

an aquifer are different from surface soils, sediments, and treated sewage (Brooks et al., 1992; Smith et al., 1992; Smith et al., 1996). The present inventor has also discovered that certain subgroups of denitrifying bacteria, whose ecological role previously had been only poorly studied, can be prominent in ground water. One such group is the hydrogen-oxidizing denitrifiers (Smith et al., 1994).

In the process of isolating and characterizing hydrogen-oxidizing denitrifying bacteria, the present inventor discovered that they are comparatively robust microorganisms that can be used as agents to remediate nitrate-contaminated drinking water on a small scale. The present invention provides a low cost, simple hydrogen delivery system that can be used in conjunction with these microorganisms as a pump and treat approach for nitrate-contaminated waters.

Denitrification is a process mediated by a specialized group of microorganisms. These microbes use nitrate as a respiratory terminal electron acceptor in lieu of oxygen, dissimilating the nitrate to nitrogen gas. Because denitrification is a respiratory process, it can consume relatively large amounts of nitrate, and it produces an innocuous end product. Heterotrophic denitrification has been recognized by the sewage treatment industry for some time as a process that can be manipulated to remove nitrate from treated sewage by adding methanol or some other carbon supply to stimulate denitrifying bacteria. The main limitations of

heterotrophic denitrification, including cost, expertise required, and unwanted by-products which reduce water quality, generally preclude the use of this approach on a small scale basis for treating potable water.

Hydrogen-oxidizing denitrifying (HOD) bacteria obtain their energy by oxidizing hydrogen gas and coupling that to nitrate reduction, as shown in Figure 1. bacteria occupy a unique ecological niche, one in which there is little competition from other microorganisms. products of the HOD process are water and nitrogen gas, which are harmless and inconsequential from the perspective of a drinking water supply, as is the small amount of hydrogen that can dissolve in water. In addition, many of the HOD bacteria in groundwater are autotrophic (Smith et al., 1994). means that they use carbon dioxide as a carbon source for growth; they have no additional carbon requirements. carbon dioxide is present in natural waters as carbonate, these bacteria can be used to remove nitrate in a water supply simply by adding hydrogen gas. This treatment is very selective for HOD bacteria, excluding all other types of microorganisms that could not grow under such conditions. HOD bacteria can also use hydrogen and respire aerobically. This trait is very useful in a nitrate removal bioreactor because oxygen inhibits denitrification. Thus, oxygen must first be removed from any water supply before denitrification can commence within the reactor. However, the same HOD

culture can effect both oxygen and nitrate removal, as long as an adequate supply of hydrogen is available.

Hydrogen gas has a low solubility in water. This low solubility requires that an excess of hydrogen be always available to remove the quantities of nitrate found in many contaminated water supplies. Hydrogen that is not utilized by HOD bacteria in the treatment process can be easily removed from the water by aeration. Hydrogen can be generated via electrolysis of water, which produces hydrogen gas at the anode and oxygen gas at the cathode at a molar stoichiometry of 2:1. The amount of hydrogen produced is dependent upon the voltage applied to the electrodes and the electrolyte concentration.

Flow-through bioreactors are designed to provide a fixed stationary support for an attached microbial biofilm. The biofilm contacts or is immersed in a flowing aqueous stream and removes or alters the chemical composition of the water via the activity of the attached microorganisms. In some cases, nutrients or substrates for the microorganisms need to be added to the bioreactor. If the substrate is a gas, such as hydrogen, countercurrent flow of the gas and the water is advantageous to increase the availability of the gas to the microorganisms. This can also serve as a mechanism to strip other unwanted gases, such as oxygen, out of solution.

One embodiment of the present invention is shown in Figures 2 and 3, and consists of the following four

components, the numbers within the text referring to the numbered items in the figures:

Component 1. HOD Bacteria

Pure cultures of autotrophic, hydrogen-oxidizing, denitrifying (HOD) bacteria are used as the reactive agents in the flow-through bioreactor used in this invention. The bacteria have been isolated from nitrate-containing groundwater environments. This makes them ideal for such a treatment system because an aquifer is characterized by water flowing through a porous medium, which is identical to the function of the bioreactor. These microorganisms require no organic carbon for growth, only hydrogen, nitrate, and carbon dioxide.

Autohydrogenotrophic (HOD) bacteria are those which obtain energy from the oxidation of molecular hydrogen coupled with the reduction of nitrate to a gaseous form of nitrogen using inorganic carbon as the sole carbon source for cell growth. HOD bacteria are not limited to one single class of microorganism. However, HOD bacteria can be identified by growing the isolate on HOD medium in the presence of hydrogen. Development of turbidity accompanied by loss of nitrate is considered to be a positive result of HOD capacity. This procedure is described in detail in Smith et al., (1994), the entire contents of which are hereby incorporated by reference.

As described in Smith et al., *ibid.*, a number of HOD bacteria were tested and their characteristics identified.

Tables 1 and 2 show characteristics of some of these bacteria and kinetic parameters of hydrogen uptake by some of the cultures of HOD bacteria.

Characteristics of hydrogen-oxidizing denitrifying bacteria isolated from nitratecontaminated groundwater

P. den	HOD 9	HOD 8	HOD 7	HOD 6	HOD 5	HOD 4	HOD 3	HOD 2	HOD 1		
P. denitrificans ATCC 17741	9	ω	7				~				Strain
í	+	+	i	+	+	+	+	+	+		Motility
+	+	+	i	+	+	+	W	+	+		Catalase
+	W	+	+	¥	E	+	¥	+	¥		Oxidasea
+	i	1	+	ı	ţ	ŧ	ì	ı	ı	ଦୁ	
+	ı	1	+	ı	i	1	t	ı	ī	ХУ	
+	ı	i	i	1	ŀ	I	1	1	1	Ме	
+	ł	1	+	ı	ı	1	ı	ı	i	ns	
+	ŧ	ı	+	1	I	ı	1	ı	1	Ħ	Аe
+	1	ı	+	ı	ı	i	ı	t	ı	O 편	Aerobic
ı	ı	1	+	ı	.1	1	i	1	i	Ci.	growth
+	+	+	+	+	+	+	+	+	+	Ac	th ^b c
+	+	+	+	+	. +	+	+	+	+	РУ	on:
+	+	+	+	+	+	+	+	+	+	Lc	
+	+	+	+	+	+	+	ı	+	t .	S	
+	+	+	+	+	+	+	+	+	+	Gm	
+	1	ı	+	1	ı	ı	1	ı	ı	Ļе	

[&]quot; w, weakly positive.

b Substrates tested for growth: Gu, glucose; Xy, xylose; Me, methanol; Su, sucrose; Fr, fructose; Fo, Formate; Ci, citrate; Ac, acetate; Py, pyruvate; Lc, lactate; Sc, succinate; Gm, glutamate; and Le, leucine.

Table 2 Kinetic parameters for hydrogen uptake by cultures of hydrogenoxidizing denitrifying bacteria with nitrate as the electron acceptor

Strain ^a	K _m	V_{max}
	(µM)	(fmol cell ⁻¹ h ⁻¹)
HOD1	0.88	6.14
HOD2	0.70	2.42
HOD3	0.54	2.49
HOD4	1.50	5.24
HOD5	0.30	3.53
HOD6	0.65	3.57
HOD7	3.32	13.29
HOD8 ^b	0.38	2.13
	0.79	1.85
	0.71	5.56
HOD9 ^b	0.38	2.09
	0.80	1.94
P. denitrificans ATCC 17741	0.77	1.33

Cell growth and uptake assays were done in an autotrophic medium except for HOD 7, for which the medium was supplemented with 3% nutrient broth.

b Results from replicate experiments are shown for HOD8 and 9.

In one embodiment of the present invention, Strain HOD5 as described in Tables 1 and 2 was used. This bacterium is a gram negative, motile rod that grows on hydrogen using either oxygen or nitrate as an electron acceptor. It can also grow aerobically on nutrient broth, acetate, pyruvate, lactate, succinate, and glutamate (Table 1). Phylogenetic

analysis of the full sequence of the 16S RNA reveals that HOD 5 belongs to the beta subclass of the *Proteobacteria*, and is most closely related to purple, non-sulfur phototrophic bacteria, particularly *Rhodocyclus* species.

For the bioreactor, a pure culture of HOD 5 is grown in batch culture on hydrogen and nitrate using HOD medium (Smith et al., *ibid*). Following development of turbidity, the culture is transferred to the bioreactor column which has been filled with HOD medium. The culture is grown statically in the bioreactor, with hydrogen flowing, for 2-3 days before the water supply is turned on.

The HOD isolates shown in Table 1 and several other HOD strains isolated from groundwater (Wahlquist, 2000), have been characterized molecularly, the sequence match results are summarized in Table 3. The results shown in the this table are restricted to the top three matches for each isolate, excluding any database strains with sequences less than 1000 base pairs and those that are not aligned to the RDP tree.

Teolate	Sarb	Full name	Subdivisiond	Group*	Group*	Subgroup* S	Subgroup*
		11 Jour 1 2761 DSM 109 (T)	beta	Azoarcus	N/A ^r	Rcy.tenuis 1	N/A
21#	0.870	Knodocycius teilus su, 2701 20211 107 (17)	beta	Azoarcus	N/A	Rcy.tenuis }	N/A
	0.867	Rhodocyclus tenuis str. 3760 DSM 110.	beta	Azoarcus	N/A	Rcy.tenuis	N/A
17	0074	Paracocciis denitrificans LMG 4218 (T).	alpha	Rhodobacter-Rhodovulum-	Rhodobacter	Paracoccus	Par.denitrificans
14		A LINCOLD TO THE PROPERTY OF T	กใกไกก	Hyphomonas-Rickettsia Rhodobacter-Rhodovulum-	Rhodobacter	Paracoccus	Par.denitrificans
	0.895	Paracoccus denitrificans DSM 65.	mpin	Hyphomonas-Rickettsia			
	0.895	Paracoccus pantotrophus ATCC 35512 (T).	alpha	Rhodobacter-Rhodovulum- Hyphomonas-Rickettsia	Rhodobacter	Paracoccus	Par.genitriticans
5	202	Banacase denicificans DSM 65	alpha	Rhodobacter-Rhodovulum-	Rhodobacter	Paracoccus	Par.denitrificans
#31	1,66.0	ranacoccus ocilinativams point op:	•	Hyphomonas-Rickettsia	Dhadabadar	Daracocciie	Par denitrificans
	0.997	Paracoccus pantotrophus ATCC 35512 (T).	alpha	Ryphomonas-Rickettsia	Monopacies	110000000000000000000000000000000000000	
	0.993	Paracoccus denitrificans LMG 4218 (T).	alpha	Rhodobacter-Rhodovulum- Hyphomonas-Rickettsia	Rhodobacter	Paracoccus	Par.genitriticalis
#65	0 986	Paracoccus denitrificans DSM 65.	alpha	Rhodobacter-Rhodovulum-	Rhodobacter	Paracoccus	Par.denitrificans
	986		alpha	Rhodobacter-Rhodovulum-	Rhodobacter	Paracoccus	Par.denitrificans
	0.978		alpha	Hyphomonas-Kicketisia Rhodobacter-Rhodovulum- Hyphomonas-Ricketisia	Rhodobacter	Paracoccus	Par.denitrificans
COCH	2000	Achromobacter sylosoxidans subsp. denitrificans ATCC 15173 (T).). beta	Bordatella	N/A	Brd.bronchiseptica	N/A
707#	0.823			Bordatella	N/A	Brd.bronchiseptica	N/A
	0.711		beta	Bordatella	N/A	Brd.bronchiseptica	2
#102	0.909	Ochrobactrum anthropi IAM 14119.	alpha	Rhizobium-Agrobacterium	N/A	Brucella Assemblage	N/A
	0.884		alpha	Rhizobium-Agrobacterium	NA	Brucella Assemblage	NA
	0.884		alpha	Rhizobium-Agrobacterium	NA	Brucella Assemolage	NA.
#155	0.738	1	beta	Ral.eutropha	N/A	N/A	N/A A/A
	0.680	Alcangenes sp. su. wz r-z. Ralstonia solanacearum ATCC 11696 (T).	heta a	Ral solanacearum	N/A	Ral.solana	N/A

Table 3, continued.

			C. L.J. J. J. d	Const	Croune	Subornine	Subgroup
0.731 0.726 0.726 0.749 0.741 0.741 0.977 0.977 0.962 0.880 0.880 0.881 0.881 0.881 0.730 0.730 0.711 0.715 0.705	ll name ^e		Suparvision . Group	Croup	Group	Ouog.oup	0000
0.726 0.726 0.741 0.741 0.741 0.977 0.977 0.962 0.880 0.880 0.881 0.881 0.881 0.881 0.709 0.710 0.710 0.710 0.705	idovorax avenae subsp. citru	II ATCC 29625 (T).	bela	Acidovorax	N/A	Acidovorax	Av.avenac
0.726 0.749 0.741 0.741 0.741 0.975 0.962 0.886 0.886 0.880 0.873 0.887 0.881 0.881 0.760 0.730 0.710 0.711 0.705	idovorax avenae subsp. aven	ae ATCC 19860 (T).	beta	Acidovorax	N/A	Acidovorax	Av.avenac
0.749 0.741 0.741 0.741 0.977 0.975 0.962 0.880 0.880 0.881 0.881 0.881 0.881 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.730 0.730	uaspirillum psychrophilum s	r. CA I LMG 5408 (T).	beta	Acidovorax	N/A	Acidovorax	Aqsp.psychrophilum
0.741 0.741 0.971 0.975 0.962 0.886 0.886 0.880 0.8873 0.8871 0.881 0.881 0.706 0.730 0.709 0.711 0.711 0.765	uaspirillum psychrophilum s	tr. CA 1 LMG 5408 (T).	beta	Acidovorax	N/A	Acidovorax	Aqsp.psychrophilum
0.741 3 0.977 1 0.977 1 0.975 1 0.962 1 8 0.886 0.880 0.873 0.873 0.873 0.881 0.881 0.881 0.730 0.709 0.710 0.711 0.705	idovorax facilis CCUG 2113	Đ.	beta	Acidovorax	N/A	Acidovorax	Av.avenae
0.977 1 0.975 1 0.975 1 0.975 2 0.976 2 1 0.886 0.886 0.880 0.873 0.873 0.881 0.881 0.760 0.709 0.709 0.711 0.715 0.705	dophilus ampelinus ATCC 3	3914 (T).	beta	Acidovorax	N/A	Acidovorax	Xp.ampelin
0.975 1 0.962 1 0.962 1 8 0.886 0.880 0.880 0.873 1 0.897 0.881 0.881 0.881 0.760 0.709 0.709 0.719 0.711 0.705	eudomonas acruginosa.		gamma	Pseudomonas and Relatives	N/A	Ps.aeruginosa	N/A
0.962 1 0.886 0.880 0.880 0.887 0.897 0.881 0.881 0.760 0.709 0.719 0.711 0.715 0.705	eudomonas aeruginosa LMG	1242 (T).	gamma	Pseudomonas and Relatives	N/A	Ps.acruginosa	N/A
0.886 0.880 0.880 0.873 0.877 0.881 0.881 0.881 0.881 0.760 0.730 0.709 0.719 0.711 0.705	cudomonas sp. str. CRE 11.		ganma	Pscudomonas and Relatives	N/A	Ps.acruginosa	N/A
0.880 0.873 0.897 0.881 0.881 0.881 0.760 0.730 0.709 0.711 0.715 0.705	eudomonas acruginosa.		gamma	Pseudomonas and Relatives	N/A	Ps. acruginosa	N/A
0.873 0.897 0.881 0.881 0.881 0.760 0.730 0.709 0.709 0.711 0.715	cudomonas sp. str. CRE 11.	27.4	gamma	Pseudomonas and Relatives	N/A	Ps. acruginosa	N/A
0.897 0.881 0.881 0.881 0.760 0.730 0.709 0.709 0.711 0.705	cudomonas aeruginosa LMG	1242 (T).	ganıma	Pseudomonas and Relatives	N/A	Ps. acruginosa	N/A
0.881 0.881 0.881 0.760 0.730 0.709 0.709 0.711 0.715 0.705	eudomonas acruginosa.		gamma	Pseudomonas and Relatives	N/A	Ps.acruginosa	N/A
, , ,	cudomonas sp. str. CRE 11.		gamma	Pseudomonas and Relatives	N/A	Ps.acruginosa	N/A
	eudomonas aeruginosa LMC	1242 (T).	ganıma	Pseudomonas and Relatives	N/A	Ps.acruginosa	N/A
	hodocyclus tenuis str. 3760 E	SM 110.	beta	Azoarcus	N/A	Rcy.tenuis	A/N
	hodocyclus purpureus str. 67	70 DSM 168 (T).	beta	Azoarcus	N/A	Rcy.tenuis	N/A
	hodocyclus tenuis str. 2761 I	SM 109 (T).	bcta	Azoarcus	N/A	Rcy.tenuis	N/A
i	hodocyclus tenuis str. 3760 I)SM 110.	beta	Azoarcus	N/A	Rcy.tcnuis	N/A
į	hodocyclus purpureus str. 67	70 DSM 168 (T).	beta	Azoarcus	N/A	Rcy.tcnuis	N/A
	hodocyclus tenuis str. 2761 I)SM 109 (T).	beta	Azoarcus	N/A	Rcy.tenuis	N/A
	hodocyclus tenuis str. 3760 I)SM 110.	bcta	Azoarcus	N/A	Rcy.tenuis	N/A
	hodocyclus tenuis str. 2761 I	DSM 109 (T).	beta	Azoarcus	N/A	Rcy.tenuis	N/A
0.703 Kilonocyclus tennis su, 5 m to.	Rhodocyclus tenuis str. SW18	•	beta	Azoarcus	N/A	Rcy.tenuis	N/A

Table 3, continued.

Isolate Sab	Full name ^c	Subdivision ^d Group	Group*	Group*	Subgroup	Subgroup
HOD 5° 0.870	Rhodocyclus tenuis str. 2761 DSM 109 (T).	bcla	Azoarcus	N/A	Rcy.tenuis	N/A
0.867	Rhodocyclus tenuis str. SW18.	beta	Azoarcus	N/A	Rcy.tcnuis	N/A
0.860	Rhodocyclus tenuis str. 3760 DSM 110.	beta	Azoarcus .	N/A	Rcy.tenuis	N/A
HOD 6 ⁸ 0.774	Rhodocyclus tenuis str. 3760 DSM 110.	bela	Azoarcus	N/A	Rcy.tenuis	A/N
0.723	Rhodocyclus purpurcus str. 6770 DSM 168 (T).	beta	Azoarcus	N/A	Rcy.tenuis	N/A
0.713	Rhodocyclus tenuis str. 2761 DSM 109 (T).	beta	Azoarcus	N/A	Rcy.tenuis	N/A
HOD 7# 0.955	Sinorhizobium fredii LMG 6217 (T).	alpha	Rhizobium-Agrobacterium	N/A	Srh.fredii	N/A
0.954	Sinorhizobium fredii ATCC 35423 (T).	alpha	Rhizobium-Agrobacterium	N/A	Srh.fredii	N/A
0.947	0.947 Sinorhizobium xinjiangensis IAM 14142.	alpha	Rhizobium-Agrobacterium	N/A	Srh.fredii	N/A
HOD 8º 0.775	Rhodocyclus tenuis str. 3760 DSM 110.	beta	Azoarcus	N/A	Rcy.tenuis	N/A
0.721	Rhodocyclus purpureus str. 6770 DSM 168 (T).	· · · beta	Azoarcus	N/A	Rey.tenuis	N/A
0.717	0.717 Rhodocyclus tenuis str. 2761 DSM 109 (T).	beta	Azoarcus	N/A	Rcy.tenuis	N/A
HOD 98 0.797	HOD 9¢ 0.797 Rhodocyclus tenuis str. 3760 DSM 110.	bela	Azoarcus	N/A	Rcy.tenuis	A/W
0.744	Rhodocyclus purpureus str. 6770 DSM 168 (T).	beta	Azoarcus	N/A	Rcy.tenuis	N/A
0.740	Rhodocyclus tenuis str. 2761 DSM 109 (T).	beta	Azoarcus	N/A	Rey.tenuis	N/A

^{*}includes the top three RDP Sequence Matches that contain at least 1000 base pairs and have been aligned to the RDP tree bab scores range from 0 to 1, with 1 being the closest match possible with a database sequence (see text for complete explanation) 'full name of database strain as registered with the RDP (may include accession numbers for culture collections)
based on the tree posted by the RDP; all strains listed belong to subdivisions of the Proteobacteria phylogenetic groupings on the RDP tree are arranged as a series of nesting hierarchies (e.g., Groups within Groups)

ECape Cod isolate of Smith et al. (1994)

not applicable

Sequence Match analyses suggest that those isolates reducing nitrate in the presence of hydrogen in excess of a threshold amount (20% of 1mM) fall into two subdivision of the Proteobacteria. The 16S rRNA gene sequences of isolates 27, 31, and 65 are most similar to those of Paracoccus denitrificans strains in the Par. denitrificans subgroups of the Paracoccus subgroup of the Rhodobacter group, which belongs to the alpha subdivision of the Proteobacteria. The sequence of isolate 202 is most similar to that of a strain of Achromobacter xylosoxidans subsp. denitrificans in the Brd. bronchiseptica subgroup of the Bordatella group, which belongs to the beta subdivision of the Proteobacteria. The 16S rRNA gene sequences of isolates 12, HOD1, HOD3, HOD4, HOD5, HOD6, HOD8, and HOD9 are most similar to those of Rhodocyclus tenuis strains in the Rcy. tenuiis subgroup of the Azoarcus group, which belongs to the beta subgroup of the Proteobacteia. 16S rRNA gene sequence of HOD7 is most similar to strains of Sinorhizobium fredii in the Snr. fredii subgroup of the Rhizobium-Agrobacterium group, which belongs to the alpha subdivision of the Proteobacteria.

Sequence match results suggest that those isolates producing less than, but at least 10 percent of, the threshold amount of nitrate reduced in the presence of hydrogen fall into three subdivisions of the Proteobacteria. The 16S rRNA gene sequence of isolate 102 is most similar to that of a strain of Ochrobactrum anthropi in the Brucella assemblage of

the Rhizobium-Agrobacterium group, which belongs to the alpha subdivision of the Proteobacteria. The 16S rRNA gene sequence of isolate 155 is most similar to that of a strain of Ralstonia eutropha in the Ral. eutropha group, which belongs to the beta subdivision of the Proteobacteria. The 16S rRNA gene sequence of isolate 204 is most similar to that of a strain of Acidovorax avenae subsp. citrulli in the Av. avenae subgroup of the Acidovorax subgroup of the Acidovorax group, which belongs to the beta subdivision of the Proteobacteria. The 16S rRNA gene sequence of isolate 205 is most similar to that of a strain of Aquaspirillum psychrophilum in the Aqsp. psychrophilum subgroup of the Acidovorax subgroup of the Acidovorax group, which belongs to the beta subdivision of the The 16S rRNA gene sequences of isolates 89, Proteobacteria. 108, and 151 are most similar to those of a Pseudomonas aeruginosa strain in the Ps. aeruginosa subgroup of the Pseudomonas and relatives group, which belongs to the gamma subdivision of the Proteobacteria.

Table 4 provides raw data from 16S ribosomal RNA gene sequencing.

Table 4
Raw data from 16S ribosomal RNA gene sequencing
A=Adenine, T=Thymine, C=Cytosine, G=Guanine, N=unknown; see Methods
section from Wahlquist (2000) for explanation of sequencing method

Isolate #12 full (six-primer) sequence

1	AGAGTTTGAT	CCTGGCTCAG	ATTGAACGCT	GGCGGCATGC	CTTACACATG
51	CAAGTCGAAC	GGCAGCACGG	GAGCTTGCTC	CTGGTGGCGA	GTGGCGAACG
101	GGTGAGTAAT	GCATCGGAAC	GTGCCCTGAA	GTGGGGGATA	ACGCAGCGAA
151	AGTTGCGCTA	ATACCGCATA	TTCTGTGAGC	AGGAAAGCAG	GGGATCGCAA
201	GACCTTGCGC	TTTAGGAGCG	GCCGATGTCG	GATTAGCTAG	TTGGTGGGGT
251	AAAGGCTCAC	CAAGGCGACG	ATCCGTAGCG	GGTCTGAGAG	GATGATCCGC
301	CACACTGGGA	CTGAGACACG	GCCCAGACTC	CTACGGGAGG	CAGCAGTGGG
351	GAATTTTGGA	CAATGGGCGA	AAGCCTGATC	CAGCCATGCC	GCGTGAGTGA
401	AGAAGGCCTT	CGGGTTGTAA	AGCTCTTTCG	GCGGGGAAGA	AATCGCATTC
451	TCTAATACAG	GATGTGGATG	ACGGTACCCG	AATAAGAAGC	ACCGGCTAAC
501	TACGTGCCAG	CAGCCGCGGT	AATACGTAGG	GTGCGAGCGT	TAATCGGAAT
551	TACTGGGCGT	AAAGCGTGCG	CAGGCGGTTT	CGTAAGACAG	ACGTGAAATC
601	CCCGGGCTCA	ACCTGGGAAC	TGCGTTTGTG	ACTGCGAGGC	TAGAGTTTGG
651	CAGAGGGGGG	TGGAATTCCA	CGTGTAGCAG	TGAAATGCGT	AGAGATGTGG
701	AGGAACACCG	ATGGCGAAGG	CAGCCCCCTG	GGCCAATACT	GACGCTCATG
751	CACGAAAGCG	TGGGGAGCAA	.ACAGGATTAG	ATACCCTGGT	AGTCCACGCC
801	CTAAACGATG	TCAACTAGGT	GTTGGGAGGG	TTAAACCTCT	TAGTGCCGTA
851	GCTAACGCGT	GAAGTTGACC	GCCTGGGGAG	TACGGCCGCA	AGGCTAAAAC
901	TCAAAGGAAT	TGACGGGGAC	CCGCACAAGC	GGTGGATGAT	GTGGATTAAT
951	TCGATGCAAC	GCGAAAAACC	TTACCTACCC	TTGACATGTC	AGGAATCCCG
1001	GAGAGATTTG	GGAGTGCCCG	AAAGGGAGCC	TGAACACAGG	TGCTGCATGG
1051	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
1101	CAACCCTTGT	CGTTAATTGC	CATCATTCAG	TTGGGCACTT	TAATGAGACT
1151	GCCGGTGACA	AACCGGAGGA	AGGTGGGGAT	GACGTCAAGT	CCTCATGGCC
1201	CTTATGGGTA	GGGCTTCACA	CGTCATACAA	TGGTCGGTCC	AGAGGGTTGC
1251	CAACCCGCGA	GGGGGAGCTA	ATCTCAGAAA	GCCGATCGTA	GTCCGGATTG
1301	CAGTCTGCAA	CTCGACTGCA	TGAAGTCGGA	ATCGCTAGTA	ATCGCGGATC
1351	AGCATGTCGC	GGTGAATACG	TTCCCGGGTC	TTGTACACAC	CGCCCGTCAC
1401	ACCATGGGAG	CGGGTTCTGC	CAGAAGTAGT	TAGCCTAACC	GCAAGGAGGG
1451	CGATTACCAC	GGCAGGGTTC	GTGACTGGGG	TGAAGTCGTA	ACAAGGTAAC
1501	C				

Isolate #27 one-primer (519r) sequence

1			ACCGTCATTA		
51	TTACAACCCT	AGGGCCTTCA	TCACTCACGC	GGCATGGCTA	GATCAGGGTT
151			CCCACTGCTG		
201	CGTGTCTCAG	TCCCAGTGTG	GCTGATCATC	CTCTCAAACC	AGCTATGGAT
251			ACCCCACCAA		
301	TAATCCTTTG	GCGATAAATC	TTTCCCCCGA	AGGGCGCATA	CGGTATTACC
351	CCCAGTTTCC	CAGGACTATT	CCGTACCAAA	GGGCATATTC	CCACGCCGTT
401	ACTCACCCGT	CCGCCGCTCA	CCCCGAAGGG	TGCGCTCGAC	TTGCATGTGT
451	TAGGCCTGCC	GCAGCGTTCG	TTCTGAGCCA	GGATCAAACT	CTGTTGCNCC
501	AATTCGG				

Isolate #31 full (six-primer) sequence

1	ACACTTTCAT	CCTGGCTCAG	AACGAACGCT	GGCGGCAGGC	CTAACACATG
51				CGGACGGGTG	
151	GGGAATATGC	CCTTTGGTAC	GGAATAGTCC	TGGGAAACTG	GGGGTAATAC
201	CGTATGCGCC	CTTCGGGGGA	AAGATTTATC	GCCAAAGGAT	TAGCCCGCGT
251	TGGATTAGGT	AGTTGGTGGG	GTAATGGCCT	ACCAAGCCGA	CGATCCATAG
301	CTGGTTTGAG	AGGATGATCA	GCCACACTGG	GACTGAGACA	CGGCCCAGAC
251	中へくですべくくくころ	CCCACCACTC	CCCDDTCTTD	CACAATGGGG	GCAACCCTGA

TCTAGCCATG CCGCGTGAGT GATGAAGGCC CTAGGGTTGT AAAGCTCTTT 401 CAGCTGGGAA GATAATGACG GTACCAGCAG AAGAAGCCCC GGCTAACTCC 451 GTGCCAGCAG CCGCGGTAAT ACGGAGGGGG CTAGCGTTGT TCGGAATTAC 501 TGGGCGTAAA GCGCACGTAG GCGGACCGGA AAGTTGGGGG TGAAATCCCG 551 GGGCTCAACC CCGGAACTGC CTTCAAAACT ATCGGTCTGG AGTTCGAGAG 601 AGGTGAGTGG AATTCCGAGT GTAGAGGTGA AATTCGTAGA TATTCGGAGG AACACCAGTG GCGAAGGCGG CTCACTGGCT CGATACTGAC GCTGAGGTGC 651 701 GAAAGCGTGG GGAGCAAACA GGATTAGATA CCCTGGTAGT CCACGCCGTA 751 AACGATGAAT GCCAGTCGTC GGGCAGCATG CTGTTCGGTG ACACACCTAA 801 CGGATTAAGC ATTCCGCCTG GGGAGTACGG TCGCAAGATT AAAACTCAAA 851 GGAATTGACG GGGGCCCGCA CAAGCGGTGG AGCATGTGGT TTAATTCGAA GCAACGCGCA GAACCTTACC AACCCTTGAC ATCCCAGGAC CGGCCCGGAG 901 ACGGGTCTTT CACTTCGGTG ACCTGGAGAC AGGTGCTGCA TGGCTGTCGT 951 1001 CAGCTCGTGT CGTGAGATGT TCGGTTAAGT CCGGCAACGA GCGCAACCCA 1051 CACTCTTAGT TGCCAGCATT TGGTTGGGCA CTCTAAGAGA ACTGCCGATG 1101 ATAAGTCGGA GGAAGGTGTG GATGACGTCA AGTCCTCATG GCCCTTACGG GTTGGGCTAC ACACGTGCTA CAATGGTGGT GACAGTGGGT TAATCCCCAA 1151 1201 AAGCCATCTC AGTTCGGATT GGGGTCTGCA ACTCGACCCC ATGAAGTTGG AATCGCTAGT AATCGCGGAA CAGCATGCCG CGGTGAATAC GTTCCCGGGC 1251 1301 CTTGTACACA CCGCCCGTCA CACCATGGGA GTTGGGTCTA CCCGACGGCC 1351 GTGCGCTAAC CAGCAATGGG GGCAGCGGAC CACGGTAGGC TCAGCGACTG 1401 GGGTGAAGTC GTAACAAGGT AACC 1451

Isolate #65 full (six-primer) sequence

AGAGTTTGAT CCTGGCTCAG AACGAACGCT GGCGGCAGGC CTAACACATG CAAGTCGAGC GCACCCTTCG GGGTGAGCGG CGGACGGGTG AGTAACGCGT 51 GGGAATATGC CCTTTGGTAC GGAATAGTCC TGGGAAACTG GGGGTAATAC 101 CGTATGCGCC CTTCGGGGGA AAGATTTATC GCCAAAGGAT TAGCCCGCGT TGGATTAGGT AGTTGGTGGG GTAATGGCCT ACCAAGCCGA CGATCCATAG 151 201 CTGGTTTGAG AGGATGATCA GCCACACTGG GACTGAGACA CGGCCCAGAC 251 TCCTACGGGA GGCAGCAGTG GGGAATCTTA GACAATGGGG GCAACCCTGA TCTAGCCATG CCGCGTGAGT GATGAAGGCC CTAGGGTTGT AAAGCTCTTT 301 351 CAGCTGGGAA GATAATGACG GTACCAGCAG AAGAAGCCCC GGCTAACTCC GTGCCAGCAG CCGGCGGTAA TACGGAGGGG GCTAGCGTTG TTCGGAATTA 401 451 CTGGGCGTAA AGCGCACGTA GGCGGACCGG AAAGTTGGGG GTGAAATCCC 501 GGGGCTCAAC CCCGGAACTG CCTTCAAAAC TATCGGTCTG GAGTTCGAGA GAGGTGAGTG GAATTCCGAG TGTAGAGGTG AAATTCGTAG ATATTCGGAG 551 GAACACCAGT GGCGAAGGCG GCTCACTGGC TCGATACTGA CGCTGAGGTG 601 651 CGAAAGCGTG GGGAGCAAAC AGGATTAGAT ACCCTGGTAG TCCACGCCGT AAACGATGAA TGCCAGTCGT CGGGCAGCAT GCTGTTCGGT GACACACCTA 701. ACGGATTAAG CATTCCGCCT TGGGGAGTAC GGTCGCAAGA TTAAAACTCA 751 801 AAGGAATTGA CGGGGGCCCG CACAAGCGGT GGAGCATGTG GTTTAATTCG AAGCAACGCG CAGAACCTTA CCAACCCTTG ACATCCCAGG ACCGGCCCGG 851 AGACGGGTCT TTCACTTCGG TGACCTGGAG ACAGGTGCTG CATGGCTGTC 901 951 GTCAGCTCGT GTCGTGAGAT GTTCGGTTAA GTCCGGCAAC GAGCGCAACC 1001 CACACTCTTA GTTGCCAGCA TTTGGTTGGG CACTCTAAGA GAACTGCCGA TGATAAGTCG GAGGAAGGTG TGGATGACGT CAAGTCCTCA TGGCCCTTAC 1051 1101 GGGTTGGGCT ACACACGTGC TACAATGGTG GTGACAGTGG GTTAATCCCC 1151 AAAAGCCATC TCAGTTCGGA TTGGGGTCTG CAACTCGACC CCATGAAGTT GGAATCGCTA GTAATCGCGG AACAGCATGC CGCGGTGAAT ACGTTCCCGG 1201 1251 GCCTTGTACA CACCGCCCGT CACACCATGG GAGTTGGGTC TACCCGACGG CCGTGCGCTA ACCAGCAATG GGGGCAGCGG ACCACGGCTA GGCTCAGCGA 1301 1351 CTGGGGTGAA GTCGTAACAA GGTAACC

Isolate #202 one-primer (519r) sequence

1401

GCCGGTGCTA TTCTGCAGGT ACCGTCAGTT CCGCGGGGTA TTAACCCGCG ACGTTTCTTT CCTGCCAAAA GTGCTTTACA ACCCGAAGGC CTTCATCGCA CACGCGGGAT GGCTGGATCA GGGTTTCCCC CATTGTCCAA AATTCCCCAC 51 TGCTGCCTCC CGTAGGAGTC TGGGCCGTGT CTCAGTCCCA GTGTGGCTGG 101 151

201 251 301 351 401 451	ACCAACTAGC ATCCCCTGCT CGTAGTTATC CGCCACTCGC AAGGCATCCC	TAATCCGATA TTCCCCCGTG CCCCGCTACT CACCAGACCG	CGGATCGTCG TCGGCCGCTC GGGCGTATGC GGGCACGTTC AAGTCCGTGC TCTGAGCCAN	CAATAGTGCA GGTATTAAGC CGATACATTA TGCCGTCGAC	AGGTCTTGCG CACGCTTTCG CTCACCCGTT TTGCATGTGT
501	NTCGG				

Isolate #102 one-primer (519r) sequence

1 51 101 151 201 251 301 351 401 451	TACAACCTA CGCCCATTGT GTGTCTCAGT GTCGCTTGGT ATCCTTTGCC AAGTTTCCCT	GGGCCTTCAT CCAATATTCC CCCAGTGTGG GAGCCTTTAC GATAAATCTT GAGTTATTCC CCGCTCCCCT	CCGTCATTAT CACTCACGCG CCACTGCTGC CTGATCATCC CTCACCAACT TCCCCGAAG GTAGCAAAAG TGCGGGGCGC AGCCAGGATC	GCATGGCTGG CTCCCGTAGG TCTCAGACCA AGCTAATCCA GGCACATACG GTACGTTCCC TCGACTTGCA	ATCAGGCTTG AGTCTGGGCC GCTATGGATC ACGCGGGCCG GTATTAGCAC ACGCGTTACT TGTGTTAAGC
---	--	--	---	--	--

Isolate #155 one-primer (519r) sequence

1	CGTAGTTAGC	CGGTGCTTAT	TCTTCCGGTA	CCGTCATCGA	CGCCGGGTAT
	777677777	CARROCCUTTC	CGGACAAAAG	TGCTTTACAA	CCCGAAGGCC
51	TAACCAGCGC	CATTICITIE	CGGWCKRATA	1001111111	* WW CW CO A A A
101	TTCTTCACAC	ACGCGGCATT	GCTGGATCAG	GGTTGCCCCC	ATTGTCCAAA
	110110110110		GTAGGAGTCT	CCCCCCTCTC	TCAGTCCCAG
151	ATTCCCCACT	GCTGCCTCCC	GTAGGAGICI	GGGCCGIGIC	10,101000110
	CCCCC	CCMCCMCMCA	GACCAGNTAC	CTGATCGTCG	CCTTGGTAGG
201	TGTGGCTGAT	CGICCICICA	GACCAGITAC	0101110010	CTCTCCCCC
0.53	CTCTTTACCCC	ACCAACTAGC	TAATCAGACA	TCGGCCGCTC	CTGTCGCGCG
251	CICIIACCCC	ACCUACTION		OR COMCOMA	CCCC ም እ ም ሞ እ Δ
301	FCCCCCTNAC	CGGTCCCNCN	CTTTCACNCT	CAGGICGIAI	GCGGINIIAA
201	F30000111110		moddada cca	NINCONCACCT	TCCCATCTAT
351	CCTAATCTTT	CGACTAGNTA	TCCCCCACGA	NAGGNCACGI	100011101111
		MOCCH CWCCC	CANCACCCCC	AACCCCGNNC	TGCCGTCNCT
401	LCTCACNCGT	TUGUAUTUGU	CANCAGGCCG	1210000titio	
		CATCCCCCAG			•

Isolate #204 one-primer (519r) sequence

51 101 151 201 251 301 351	CCGTACAAAA GGCTGGATCA CGTAGGAGTC CAGACCAGCT CTAATCTGCC TTTCATCCGT CCCCACGATC	GCAGTTTACA GGCTTTCGCC TGGGCCGTGT ACAGATCGTC ATCGGCCGCT AGATCGTATG GGGCACGTTC ACCTGGTACC	CATTGTCCAA CTCAGTCCCA GGCTTGGTAA CCGTCCGCGC CGGTATTAGC CGATGTATTA GTNCGACTTG	CTTCATCCTG AATTCCCCAC GTGTGGCTTG GCTTTTATCC GAGGTCCGAA AAAGCTTTCG CTACCCGTTC CATGTGTAAG	TGCTGCCTCC ATCATCCTCT CACCAACTAC GATCCCCCGC CCTCGTTATC
401	CCATCCGAAG	ACCTGGTACC	GTNCGACTTG TCAAACTCTG	CATGTGTAAG	GCATGCCGC

Isolate #205 one-primer (519r) sequence

1 CGGTGCTTAT TCTTACGGTA CCGTCTGACC CCTCTTTATT AGAAAGAC 51 TTTTCGTTCC GTACAAAAGC AGTTTACAAC CCGAAGGCCT TCATCCTC 101 CGCGGCATGG CTGGATCAGG CTTTCGCCCA TTGTCCAAAA TTCCCCAC	GC GCA
TTTTCCTTCC CTACAAAGC AGTTTACAAC CCGAAGGCCT TCATCCTC	3CA
51 TTTTCGTTCC GIACAAAAGC ACTTTCCCCAC MMCMCCAAAAA TTCCCCAC	
	ישיר
101 CGCGGCATGG CTGGATCAGG CTTTCGCCCA TTGTCCAAAA TTCCCCAA	, 1 G
THE PROPERTY OF THE PROPERTY O	SAT
151 CTGCCTCCCG TAGGAGTCTG GGCCGTGTCT CAGTCCGAGTCT	707
201 CATCCTCTCA GACCAGCTAC AGATCGTCGG CTTGGTAAGC TTTTATCC	LCA
201 CATCCTCTA GACCAGCTAC AGAICGTCGG CTCCCCCA GGTCCGA	4GA
251 CCAACTACCT AATCTGCCAT CGGCCGCTCC GTCCGCGCGA GGTCCGA	
TO THE TOTAL PROCESS OF THE CONTRACT OF THE CO	3CC
301 TCCCCCGCTT TCATCCGTAG ALCGIAIGCG TATTACTACTACTACTACTACTACTACTACTACTACTACT	rcc
351 TCGTTATCCC CCACGATCGG GCACGTTCCG ATGTATTACT CACCCGT	. 00
331 - GATTIEGO ACCOMPANCE CATCALTTE GATGTGT	۱AG
401 CCACTCGTCA GCATCCGAAG ACCTGTTACC GTTCGACTTG GATGTGTA	Λ.
451 CCATGCGCA GCGTTCATCT GAGCCANGAT CAACTCTGTG GCGACCA	4

Isolate #89 full (six-primer) sequence

1	AGAGTTTGAT	CCTGGCTCAG	ATTGAACGCT	GGCGGCAGGC	CTAACACATG
51	CAAGTCGAGC	GGATGAGGGG	AGCTTGCTCC	TGGATTCAGC	GGCGGACGGG
101	TGAGTAATGC	CTAGGAATCT	GCCTGGTAGT	GGGGGATAAC	GTCCGGAAAC
151	GGGCGCTAAT	ACCGCATACG	TCCTGAGGGA	GAAAGTGGGG	GATCTTCGGA
201	CCTCACGCTA	TCAGATGAGC	CTAGGTCGGA	TTAGCTAGTT	GGTGGGGTAA
251	AGGCCTACCA	AGGCGACGAT	CCGTAACTGG	TCTGAGAGGA	TGATCAGTCA
301	CACTGGAACT	GAGACACGGT	CCAGACTCCT	ACGGGAGGCA	GCAGTGGGGA
351	ATATTGGACA	ATGGGCGAAA	GCCTGATCCA	GCCATGCCGC	GTGTGTGAAG
401	AAGGTCTTCG	GATTGTAAAG	CACTTTAAGT	TGGGAGGAAG	GGCAGTAAGT
451	TAATACCTTG	CTGTTTTGAC	GTTACCAACA	GAATAAGCAC	CGGCTAACTT
501	CGTGCCAGCA	GCCGCGGTAA	TACGAAGGGT	GCAAGCGTTA	ATCGGAATTA
551	CTGGGCGTAA	AGCGCGCGTA	GGTGGTTCAG	CAAGTTGGAT	GTGAAATCCC
601	CGGGCTCAAC	CTGGGAACTG	CATCCAAAAC	TACTGAGCTA	GAGTACGGTA
651	GAGGGTGGTG	GAATTTCCTG	TGTAGCGGTG	AAATGCGTAG	ATATAGGAAG
701	GAACACCAGT	GGCGAAGGCG	ACCACCTGGA	CTGATACTGA	CACTGAGGTG
751	CGAAAGCGTG	GGGAGCAAAC	AGGATTAGAT	ACCCTGGTAG	TCCACGCCGT
801	AAACGATGTC	GACTAGCCGT	TGGGATCCTT	GAGATCTTAG	TGGCGCAGCT
851	AACGCGATAA	GTCGACCGCC	TGGGGAGTAC	GGCCGCAAGG	TTAAAACTCA
901	AATGAATTGA	CGGGGGCCCG	CACAAGCGGT	GGAGCATGTG	GTTTAATTCG
951	AAGCAACGCG	AAGAACCTTA	CCTGGCCTTG	ACATGCTGAG	AACTTTCCAG
1001	AGATGGATTG	GTGCCTTCGG	GAACTCAGAC		CATGGCTGTC
1051	GTCAGCTCGT	GTCGTGAGAT	GTTGGGTTAA	GTCCCGTAAC	GAGCGCAACC
1101	CTTGTCCTTA	GTTACCAGCA	CCTCGGGTGG	GCACTCTAAG	GAGACTGCCG
1151	GTGACAAACC	GGAGGAAGGT	GGGGATGACG	TCAAGTCATC	ATGGCCCTTA
1201	CGGCCAGGGC	TACACACGTG	CTACAATGGT	CGGTACAAAG	GGTTGCCAAG
1251	CCGCGAGGTG	GAGCTAATCC	CATAAAACCG	ATCGTAGTCC	GGATCGCAGT
1301	CTGCAACTCG	ACTGCGTGAA	GTCGGAATCG	CTAGTAATCG	TGAATCAGAA
1351	TGTCACGGTG	AATACGTTCC			CGTCACACCA
1401	TGGGAGTGGG		AGTAGCTAGT		
1451	TACCACGGAG	TGATTCATGA	CTGGGGTGAA	GTCGTAACAA	GGTAACC

Isolate #108 one-primer (519r) sequence

1	GTCGANTTGC	CGGTGCTATT	CTGTTGGTAA	CGTCAAAAAC	AGCAAGGTAT
51	TAACTTACTG	CCCTTCCTCC	CAACTTAAAG	TGCTTTACAA	TCCGAAGACC
101	TTCTTCACAC	ACGCGGCATG	GCTGGATCAG	GCTTTCGCCC	ATTGTCCAAT
151	ATTCCCCACT	GCTGCCTCCC	GTAGGAGTCT	GGACCGTGTC	TCAGTTCCAG
201	TGTGACTGAT	CATCCTCTCA	GACCAGTTAC	GGATCGTCGC	TTGGTAGGCC
251	TTTACCCCAC	CAACTAGCTA	ATCCGACCTA	GGCTCATCTG	ATAGCGTGAG
301	GTCCGAAGAT	CCCCCACTTT	CTCCCTCAGG	ACGTATGCNN	GTATTAGCGC
351	CCGTTTCCGG	ACGTTATCCC	CCACTACCAG	GCAGATTCCT	AGGCATTACT
401	CACCCGTCCG	CCGCTGAATC	CAGGAGCAAG	CTCCCTTCAT	CCGCTCGACT
451	TGCATGTGTT	AGGCCTGCCG	CCAGCGTTCA	ATCTGAGCCA	NGATCAAACT
501	CTGTTGTCAC	GAAATTCGG			

Isolate #151 one-primer (519r) sequence

1	GTGCTATTCT	GTTGGTAACG	TCAAAACAGC	AAGGTATTAA	CTTACTGCCC
51	TTCCTCCCAA	CTTAAAGTGC	TTTACAATCC	GAAGACCTTC	TTCACACACG
101		GGATCAGGCT			
151		GGAGTCTGGA			
201		CAGTTACGGA			
251		GACCTAGGCT			
301		CTCAGGACGT			
351		TACCAGGCAG			
401	TGAATCCAGG	AGCAAGCTCC	CTTCATCGCT	CGACTTGCAT	GTGTTAGGCC
451	TGCCGCAGCG	TTAATCTGAG	CCAGGATCAA	AC	

HOD 1 one-primer (519r) sequence

1 TCGTAGTCCG CCGGTGCTTC TTATTCGGGT ACCGTCATCC ACATCCTGTA

				•	
51	TTAGGAGAAT	GCGATTTCTT	CCCCGCCGAA	AGAGCTTTAC	AACCCGAAGG
101	CCTTCTTCAC	TCACGCGGCA	TGGCTGGATC	AGGCTTTCGC	CCATTGTCCA
151	AAATTCCCCA	CTGCTGCCTC	CCGTAGGAGT	CTGGGCCGTG	TCTCAGTCCC
201	AGTGTGGCGG	ATCATCCTCT	CAGACCCGCT	ACGGATCGTC	GCCTTGGTGA
251	GCCTTTACCC	CACCAACTAG	CTAATCCGAC	ATCGGCCGCT	CCTAAAGCGC
301	AAGGTCTTGC	GANCCCCTGC	TTTCCTGCTC	ACAGAATATG	CGGTATTAGC
351	GCAACTTTCG	CTGCGTTATC	CCCCACTTCA	GGGCACGTTC	CGATGCATTA
401	CTCACCCGTT	CGCCACTCGC	CACCAGGAGC	AAGCTCCCGT	GCTGCCGTTC
451	GACTTGCATG	TGTAAGGCAT	GCCGCCAGCG	TTCAATCTGA	GCCAGGATCA
501	AACTCTGTTG	TCACGAAATT	CGG		

HOD 3 one-primer (519r) sequence

1	AGTNGCCGGT	GCTTCTTATT	CGGGTACCGT	CATCCACATC	CTGTATTAGA
51	GAATGCGATT	TCTTCCCCGC	CGAAAGAGCT	TTACAACCCG	AAGGCCTTCT
101	TCACTCACGC	GGCATGGCTG	GATCAGGCTT	TCGCCCATTG	TCCAAAATTC
151	CCCACTGCTG	CCTCCCGTAG	GAGTCTGGGC	CGTGTCTCAG	TCCCAGTGTG
201				CGTCGCTTGG	
251				GCTCCTAAAG	
301	TGCGATCCCC	TGCTTTCCTG	CTCACAGAAT	ATGCGGTATT	AAGCGCAACT
351				CGTTCCGATG	
401				CCCGTGCTGC	
451	GCATGTGTAA	GGCATGCCGC	CAGCGTTCAA	TCTGAGCCAN	GATCAAACTC
501	TGTTGTCACG	NAAATTCGG			

HOD 4 one-primer (519r) sequence

1	AGTNCGCCGG	TGCTTCTTAT	TCGGGTACCG	TCATCCACAT	CCTGTATTAN
51				CTTTACAACC	
101	CTTCACTCAC	GCGGCATGGC	TGGATCAGGC	TTTCGCCCAT	TGTCCAAAAT
151	TCCCCACTGC	TGCCTCCCGT	AGGAGTCTGG	GCCGTGTCTC	AGTCCCAGTG
201				ATCGTCGCCT	
251	TTACCCCACC	AACTAGCTAA	TCCGACATCG	GCCGCTCCTA	AAGCGCAAGG
301				AATATGCGGT	
351	CTTTCGCTTG	CGTTATCCCC	CACTTCAGGG	CACGTTCCGA	TGCATTACTG
401	ACCCGTTCGC	CACTCGCCAC	CAGGAGCAAG	CTCCCGTGCT	GCCGTTCGAC
451	TTGCATGTGT	AAGGCATGCC	GCCAGNGTTC	AATCTGAGCC	ANGATCAAAC
501	TCTGTTGTCA	CGAATTCGGN	NNNNC		

HOD 5 full (six-primer) sequence

1	AGAGTTTGAT	CCTGGCTCAG	ATTGAACGCT	GGCGGCATGC	CTTACACATG
51	CAAGTCGAAC	GGCAGCACGG	GAGCTTGCTC	CTGGTGGCGA	GTGGCGAACG
101	GGTGAGTAAT	GCATCGGAAC	GTGCCCTGAA	GTGGGGGATA	ACGCAGCGAA
151	AGTTGCGCTA	ATACCGCATA	TTCTGTGAGC	AGGAAAGCAG	GGGATCGCAA
201	GACCTTGCGC	TTTAGGAGCG	GCCGATGTCG	GATTAGCTAG	TTGGTGGGGT
251	AAAGGCTCAC	CAAGGCGACG	ATCCGTAGCG	GGTCTGAGAG	GATGATCCGC
301	CACACTGGGA	CTGAGACACG	GCCCAGACTC	CTACGGGAGG	CAGCAGTGGG
351	GAATTTTGGA	CAATGGGCGA	AAGCCTGATC	CAGCCATGCC	GCGTGAGTGA
401	AGAAGGCCTT	CGGGTTGTAA	AGCTCTTTCG	GCGGGGAAGA	AATCGCATTC
451	TCTAATACAG	GATGTGGATG	ACGGTACCCG	AATAAGAAGC	ACCGGCTAAC
501	TACGTGCCAG	CAGCCGCGGT	AATACGTAGG	GTGCGAGCGT	TAATCGGAAT
551	TACTGGGCGT	AAAGCGTGCG	CAGGCGGTTT	CGTAAGACAG	ACGTGAAATC
601	CCCGGGCTCA	ACCTGGGAAC	TGCGTTTGTG	ACTGCGAGGC	TAGAGTTTGG
651	CAGAGGGGGG	TGGAATTCCA	CGTGTAGCAG	TGAAATGCGT	AGAGATGTGG
701	AGGAACACCG	ATGGCGAAGG	CAGCCCCCTG	GGCCAATACT	GACGCTCATG
751	CACGAAAGCG	TGGGGAGCAA	ACAGGATTAG	ATACCCTGGT	AGTCCACGCC
801	CTAAACGATG	TCAACTAGGT	GTTGGGAGGG	TTAAACCTCT	TAGTGCCGTA
851	GCTAACGCGT	GAAGTTGACC	GCCTGGGGAG	TACGGCCGCA	AGGCTAAAAC
901	TCAAAGGAAT	TGACGGGGAC	CCGCACAAGC	GGTGGATGAT	GTGGATTAAT
051	TOCATOCAAC	CCCNNNNNCC	ΨΨΔΟΟΨΔΟΟΟ	TTGACATGTC	AGGAATCCCG

1001	GAGAGATTTG	GGAGTGCCCG	AAAGGGAGCC	TGAACACAGG	TGCTGCATGG
1051	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
1101	CAACCCTTGT	CGTTAATTGC	CATCATTCAG	TTGGGCACTT	TAATGAGACT
1151	GCCGGTGACA	AACCGGAGGA	AGGTGGGGAT	GACGTCAAGT	CCTCATGGCC
1201	CTTATGGGTA	GGGCTTCACA	CGTCATACAA	TGGTCGGTCC	AGAGGGTTGC
1251	CAACCCGCGA	GGGGGAGCTA	ATCTCAGAAA	GCCGATCGTA	GTCCGGATTG
1301	CAGTCTGCAA	CTCGACTGCA	TGAAGTCGGA	ATCGCTAGTA	ATCGCGGATC
1351	AGCATGTCGC	GGTGAATACG	TTCCCGGGTC	TTGTACACAC	CGCCCGTCAC
1401	ACCATGGGAG	CGGGTTCTGC	CAGAAGTAGT	TAGCCTAACC	GCAAGGAGGG
1451	CGATTACCAC	GGCAGGGTTC	GTGACTGGGG	TGAAGTCGTA	ACAAGGTAAC
1501	С				

HOD 6 one-primer (519r) sequence

7	CNCCTACTTA	GCCGGTGCTT	CTTATTCGGG	TACCGTCATC	CACATCCTGT
51				AAGAGCTTTA	
				CAGGCTTTCG	
101	GCCTTCTTCA	CTCACGCGGC	AIGGCIGGAI	CAGGCTTTCG	CECHTICICC
151	AAAATTCCCC	ACTGCTGCCT	CCCGTAGGAG	TCTGGGCCGT	GTCTCAGTCC
201				TACGGATCGT	
251	AGCCTTTACC	CCACCAACTA	GCTAATCCGA	CATCGGCCGC	TCCTAAAGCG
301	CAAGGTCTTG	CGATCCCCTG	CTTTCCTGCT	CACAGAATAT	GCGGGTATTA
351	AGCGCAACTT	TCGCTGCGTT	ATCCCCCACT	TCAGGGCACG	TTCCGATGCA
401	TTACTCACCC	GTTCGCCACT	CGCCACCAĞĞ	AGCAAGCTCC	CGTGCTGCCG
451	TTCGACTTGC	ATGTGTAAGG	CATGCCGCCA	GCGTTCAATC	TGAGCCAGGA
E 0.1	がこれれるこのででご	ΨΨĊΨĊΔĊĊΔΔ	ΔC		

HOD 7 full (six-primer) sequence

1	AGAGTTTGAT	CCTGGCTCAG	AACGAACGCT	GGCGGCAGGC	TTAACACATG
51	CAAGTCGAGC	GCCCCGCAAG	GGGAGCGGCA	GACGGGTGAG	TAACGCGTGG
101	GAATCTACCC	TTTTCTACGG	AATAACGCAG	GGAAACTTGT	GCTAATACCG
151	TATACGCCCT	TCGGGGGAAA	GATTTATCGG	GAAAGGATGA	GCCCGCGTTG
201	GATTAGCTAG	TTGGTGGGGT	AAAGGCCTAC	CAAGGCGACG	ATCCATAGCT
251	GGTCTGAGAG	GATGATCAGC	CACATTGGGA	CTGAGACACG	GCCCAAACTC
301	CTACGGGAGG	CAGCAGTGGG	GAATATTGGA	CAATGGGCGC	AAGCCTGATC
351	CAGCCATGCC	GCGTGAGTGA	TGAAGGCCCT	AGGGTTGTAA	AGCTCTTTCA
401	CCGGTGAAGA	TAATGACGGT	AACCGGAGAA	GAAGCCCCGG	CTAACTTCGT
451	GCCAGCAGCC	GCGGTAATAC	GAAGGGGGCT	AGCGTTGTTC	GGAATTCTGG
501	GCGTAAAGCG	CACGTAGGCG	GACATTTAAG	TCAGGGGTGA	AATCCCGGGG
551	CTCAACCCCG	GAACTGCCTT	TGATACTGGG	TGTCTAGAGT	ATGGAAGAGG
601	TGAGTGGAAT	TCCGAGTGTA	GAGGTGAAAT	TCGTAGATAT	TCGGAGGAAC
651	ACCAGTGGCG	AAGGCGGCTC	ACTGGTCCAT	TACTGACGCT	GAGGTGCGAA
701	AGCGTGGGGA	GCAAACAGGA	TTAGATACCC	TGGTAGTCCA	CGCCGTAAAC
751	GATGAATGTT	AGCCGTCGGG	CAGTTTACTG	TTCGGTGGCG	CAGCTAACGC
801	ATTAAACATT	CCGCCTGGGG	AGTACGGTCG	CAAGATTAAA	ACTCAAAGGA
851	ATTGACGGGG	GCCCGCACAA	GCGGTGGAGC	ATGTGGTTTA	ATTCGAAGCA
901	ACGCGCAGAA	CCTTACCAGC	CCTTGACATC		ATTACGGAGA
951	CGTTTTCCTT	CAGTTCGGCT		CAGGTGCTGC	ATGGCTGTCG
1001	TCAGCTCGTG	TCGTGAGATG	TTGGGTTAAG	TCCCGCAACG	AGCGCAACCC
1051	TCGCCCTTAG	TTGCCAGCAT	TTAGTTGGGC		GACTGCCGGT
1101	GATAAGCCGA	GAGGAAGGTG	GGGATGACGT	CAAGTCCTCA	TGGCCCTTAC
1151	GGGCTGGGCT	ACACACGTGC	TACAATGGTG	GTGACAGTGG	GCAGCGAGAC
1201	CGCGAGGTCG	AGCTAATCTC	CAAAAGCCAT	CTCAGTTCGG	ATTGCACTCT
1251	GCAACTCGAG	TGCATGAAGT	TGGAATCGCT	AGTAATCGCA	GATCAGCATG
1301	CTGCGGTGAA	TACGTTCCCG	GGCCTTGTAC		TCACACCATG
1351	GGAGTTGGTT	CTACCCGAAG	GTAGTGCGCT	AACCGCAAGG	AGGCAGCTAA
1401	CCACGGTAGG	GTCAAGCGAC	TGGGGTGAAG	TCGTAACAAG	GTAACC

HOD 8 one-primer (519r) sequence

1 GTCGTAGTTG CCGGTGCTTC TTATTCGGGT ACCGTCATCC ACATCCTGTA

51	TTANGAGAAT	GCGATTTCTT	CCCCGCCGAA	AGAGCTTTAC	AACCCGAAGG
101	CCTTCTTCAC	TCACGCGGCA	TGGCTGGATC	AGGCTTTCGC	CCATTGTCCA
151	AAATTCCCCA	CTGCTGCCTC	CCGTAGGAGT	CTGGGCCGTG	TCTCAGTCCC
201	AGTGTGGCGG	ATCATCCTCT	CAGACCCGCT	ACNGGATCGT	CGCCTTGGTG
251	AGCCTTTACC	CCACCAACTA	GCTAATCCGA	CATCGGCCGC	TCCTAAAGCG
301	CAAGGTCTTG	CGATCCCCTG	CTTTCCTGCT	CACAGAATAT	GCGGTATTAG
351	CGCAACTTTC	GCTTGCGTTA	TCCCCCACTT	CAGGGCACGT	TCCGATGCAT
401	TACTCACCCG	TTCGCCACTC	GCCACCAGGA	GCAAGCTCCC	GTGCTGCCGT
451	TCGACTTGCA	TGTGTAAGGC	ATGCCGCAGC	GTTCAATCTG	AGCCANGATC
501	AAACTCTGTT				

HOD 9 one-primer (519r) sequence

1	GNCGTAGTTA	GCCGGTGCTT	CTTATTCGGG	TACCGTCATC	CACATCCTGT
51				AAGAGCTTTA	
101				CAGGCTTTCG	
151	AAAATTCCCC	ACTGCTGCCT	CCCGTAGGAG	TCTGGGCCGT	GTCTCAGTCC
201	CAGTGTGGCG	GATCATCCTC	TCAGACCCGC	TACNGGATCG	TCGCCTTGGT
251				ACATCGGCCG	
301				TCACAGAATA	
351	GCGCAACTTT	CGCTGCGTTA	TCCCCCACTT	CAGGGCACGT	TCCGATGCAT
401	TACTCACCCG	TTCGCCACTC	GCCACCAGGA	GCAAGCTCCC	GTGCTGCCGT
451	TCGACTTGCA	TGTGTAAGGC	ATGCCGCCAG	CGTTCAATCT	GAGCCANGAT
501		TGTCACNAAA			

Heterotophic denitrifiers have been isolated from nearly every environment and are extraordinarily diverse, including thermophiles, diazotrophs, psychrophiles, halophiles, budding bacteria, gliding bacteria, pathogens, phototrophs, fermentative bacteria, magnetotactic bacteria, and others. They are distributed among the division of the domains Archaea and Bacteria. In the Bacteria they include Gram-positive organisms (e.g., actinomycetes, mycobacteria, Bacillus) and Gram-negative organisms (e.g., agrobacteria, pseudomonads, Neisseria, Cytophaga, Aquifex, Campylobacter).

The four identified autohydrogenotrophic denitrifying bacteria reported in the literature belong to the Proteobacteria division of the domain Bacteria. The Proteobacteria consist of the Gram-negative purple photosynthetic bacteria and their nonphotosynthetic relatives. The division is exceptionally diverse and is divided into five subdivisions: the alpha subdivision (e.g., purple nonsulfur bacteria, rhizobacteria, agrobacteria, Nitrobacter), the beta subdivision (e.g., Alcaligenes, Rhodocyclus, Bordatella, Neisseria, Thiobacillus), the gamma subdivision (e.g., purple sulfur bacteria, Azobacter, Chromatium, Enterobacteriaceae, the pseudomonads, Vibrio), the delta subdivision (e.g., mycobacteria, Bdellovibrio, Desulfovibrio) and the epsilon subdivision (e.g., Campylobacter, Wolinella).

Based on this information, it does not appear that the autohydrogenotrophic denitrifying bacteria would form a

monophyletic group. However, one skilled in the art can, without undue experimentation, readily determine if a microorganism is an HOD bacterium by testing it as described above. That is, by growing an isolate on HOD medium as described above in the presence of hydrogen, development of turbidity accompanied by loss of nitrate is considered to be a positive result of HOD capacity.

Component 2. Hydrogen Genrator

The use of hydrogen-enhanced denitrification to remove nitrate from a water supply ultimately depends upon the availabilty of a low-cost, continual source of hydrogen gas. While electrolytic hydrogen generators are currently rather expensive, other means can be used to produce hydrogen for denitrification of water by this method. Other techniques for generating hydrogen gas include corrosive oxidation of Fe(0) or basalt that produces cathodic hydrogen gas from water, biological fermentation or electrolysis units that can operate with a low voltage power supply.

In one embodiment of this invention, hydrogen gas is produced by hydrolysis of water in a dual-chamber, glass reservoir (2). The two chambers are each sealed with a pressure-tight screw top cap that is penetrated with a platinum wire electrode (3). The chambers are connected via hollow glass tubing and contain 4 N sodium hydroxide. The rate of hydrogen gas evolution in the hydrogen generator is dependent upon the concentration of sodium hydroxide used in

the hydrogen generator. Therefore, the sodium hydroxide concentration can be adjusted to match the amount of hydrogen required for a specific bioreactor application. Potassium hydroxide can be used as a substitute for the sodium hydroxide.

A 12 volt 2 amp DC electrical potential is continuously applied to the electrodes using a commercial automobile battery charger (1). Oxygen gas is produced in the cathode chamber and is channeled via metal tubing through a sodium hydroxide trap (5) to an adjustable gas flow controller (6). Hydrogen gas is produced in the anode chamber and is channeled through a sodium hydroxide trap (5), a check valve (7) to prevent back flow, and into the bioreactor (8-10). Internal pressure within the chambers of the hydrogen generator is balanced using the adjustable flow controller.

Component 3 Flow-through Bioreactor

The flow-through bioreactor (8-10) is constructed from plastic pipe and fitted with sealed endcaps. The bioreactor is filled with a coarse porous medium (9) such as washed pea gravel (2-4 mm in diameter) or plastic or glass beads, which serve as solid surfaces to support biofilm formation by the HOD bacteria. Nitrate-laden water is pumped into the top of the reactor and travels downward through the porous medium where it contacts the microbial biofilm, and exits out the bottom of the bioreactor nitrate-free. The water level within the bioreactor is controlled by the height

of the exit tube.

Hydrogen gas enters the bioreactor via an airstone (10) in the bottom. Hydrogen bubbles travel upward, countercurrent to water flow, and are vented out the top endcap. In addition to serving as a substrate for the HOD bacteria, the hydrogen bubbles strip oxygen from the influent water and nitrogen gas from water within the reactor that is produced via the denitrification reaction. The headspace volume in the bioreactor is designed not to exceed 1-5% of the total volume of the bioreactor to minimize the amount of hydrogen gas present within the system.

Component 4. Sand Filtration Unit.

The nitrate-free water exiting the bioreactor then percolates via gravity flow through a sand filtration unit (11-13). This unit is constructed with pipe, generally made of plastic, fitted with a bottom endcap. The unit is filled with a bottom layer of coarse porous medium such as pea gravel 4-6 inches thick, and overlain with clean, coarse to-medium grained sand (12). On top of the sand column is a block (13) to evenly distribute the input water over the surface of the sand. The overall height of the sand filter unit is approximately equivalent to the height of the water column within the bioreactor. In the sand filter, the water is aerated and filtered to remove suspended microorganisms from the bioreactor effluent. The top layer of sand within the

infiltration unit is periodically removed and replaced with clean sand. Water exits the sand filter unit via a tube inserted in the bottom endcap.

Preferred and Extreme Ranges of Conditions

For water with a nitrate concentration of about 2 mM (28 mg/L nitrogen), the optimum hydraulic residence time in the bioreactor is about 1.5-2 hours at a temperature of 25°C. The bioreactor can effectively remove nitrate concentrations of about 0.7 to 20 mM (10-280 mg/L nitrogen) in a pH range of about 6-9.

A bioreactor as described above was grown initially with HOD medium and then switched to well water input. water used had a total dissolved solids load of 204 mg/l, an alkalinity of 190 mg/l as CaCO3, and a pH of 8. This was selected to test the bioreactor using a water source that would represent a challenge for the HOD bacteria, given the composition and pH of the well water. The well water was used "as is", except that nitrate was added. No effort was made to provide nutrients required for HOD growth, such as trace minerals, phosphorus, or inorganic carbon, or to remove indigenous ground-water bacteria. In general, the mixedculture bioreactor was able to remove nitrate from the wellwater input; nitrate levels in the output were well below the drinking water limit, as shown in Figure 4. There were several instances when the output nitrate concentrations were high, but these were all due to an inadvertent shutdown of the

NOTE: NOTE MY

ADDED 4/11/2000 Sid Quelled Sid

rator.

It was discov

discovered that routine

replacement of the water consumed by hydrolysis within the hydrogen generator was important. After 100 days of operation, the nitrate concentration in the input was significantly increased, without any appreciable effect upon the function of the bioreactor (Figure 4).

The device of the present invention provides for small-scale treatment of nitrate-contaminated water. The process and apparatus of the present invention provide for the complete removal and destruction of nitrate from a water supply. The apparatus is small scale and cost effective. The device has its own hydrogen generator, and uses specially chosen autotrophic, hydrogen-oxidizing-denitrifying bacteria that have been isolated from ground water environments. The water filtration unit is low cost and low maintenance.

The apparatus of the present invention comprises four principle components: (1) autotrophic, hydrogen-oxidizing denitrifying bacteria isolated from subsurface environments; (2) a low-cost water electrolysis unit that provides a continual supply of oxygen-free hydrogen; (3) a flow-through bioreactor that contains the HOD bacteria and is designed to maximize their ability to remove nitrate in the presence of hydrogen; and (4) a filtration unit to remove unwanted microbial biomass from the treated water. The present invention provides an important new combination of components to treat nitrate-contaminated water on a small scale basis. Of particular importance is the use of purple, non-sulfur

phototrophic bacteria to treat nitrate contamination in combination with hydrogen.

The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptions and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation.

References

Aragno, M., & Schlegel, H.G., 1981. The hydrogen-oxidizing bacteria, p.865-893. In: Starr, M.P., Stolp, Truper, H.G., Balows, A., & Schlegel, H.G. (Eds.), The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, pp. 865-893, Springer-Verlag, New York.

Brooks, M.H., Smith, R.L. & Macalady, D.L., 1992.

Inhibition of existing denitrification enzyme activity by chloramphenicol. Appl. Environ. Microbiol. <u>58</u>:1746-1753.

Gros, H., Schnoor, G., & Rutten, P., 1988. Biological denitrification process with hydrogen-oxidizing bacteria for drinking water treatment. Water Supply 6:193-198.

Lettings et al., Biotechnol. Bioing. 22:695-734 (1980)

Liessens, J., Vanbrabant, J., Devos, P., Kersters, K., & Verstraete, W., 1992. Mixed culture hydrogenotrophic nitrate reduction in drinking water. Microb. Ecol. 24:271-290.

Spaulding, R.F., & Parrott, J.D., 1994. Shallow groundwater denitrification. Sci. Tot. Environ. <u>141</u>:17-25.

Smith, R.L., Caezan, M.L., & Brooks, M.H., 1994.

Autotrophic, hydrogenoxidizing denitrifying bacteria in ground

water, potential agents for bioremediation of nitrate contamination. Appl. Environ. Microbiol. 60:1949-1955.

Smith, R.L., & Duff, J.H. 1988. Denitrification in contaminated groundwater. Appl. Environ. Microbiol. $\underline{54}$:1071-1078.

Smith, R.L., Howes, B.L., & Duff, J.H., 1991.

Denitrification in nitrate-contaminated groundwater:

Occurrence in steep vertical geochemical gradients. Geochim.

Cosmochim. Acta 55:1815-1825.

Smith, R.L., Garabedian, S.P., & Brooks, M.H., 1996.

Comparison of denitrification activity measurements in ground water using cores and natural gradient tracer tests. Environ.

Sci. Technol. 30:3448-3456.

Timmermans, "Kinetics and Guidelines for the Design of Biological Denitrification Systems of Water," 1983 Doctoral thesis, Catholic University of Louvain Belgium.

Wahlquist, A.M., 2000, The abundance and diversity of autohydrogenotrophic denitrifying bacteria in four aquifers. Masters Thesis, University of Colorado, 73pp.

WHAT IS CLAIMED IS:

- 1. A method for treating nitrate-contaminated water comprising treating said water with autotrophic, hydrogen-oxidizing denitrifying bacteria in the presence of hydrogen.
- 2. The method according to claim 1 wherein the bacteria are purple, non-sulfur phototrophic bacteria.
- 3. The method according to claim 1 wherein the hydrogen is produced by hydrolysis of water.
- 4. The method according to claim 1 wherein the bacteria have been isolated from nitrate-containing groundwater.
- 5. An apparatus for treating nitrate-contaminated water comprising:
- (a) a pure culture of autotrophic, hydrogen-oxidizing denitrifying bacteria;
 - (b) a hydrogen generator;
 - (c) a flow-through bioreactor; and
 - (d) a filtration unit.
- 6. The apparatus of claim 5 wherein said hydrogen generator comprises a dual-chamber reservoir wherein each chamber is sealed with a pressure-tight cap penetrated with an electrode, the chambers connected by hollow tubing and containing a solution of sodium hydroxide or potassium hydroxide.
- 7. The apparatus of claim 5 wherein the flow-through bioreactor is filled with a porous medium for supporting biofilm formation by the bacteria.

8. The apparatus of claim 5 wherein the filtration unit comprises a sand filtration unit.

38

ABSTRACT OF THE DISCLOSURE

A method for treating nitrate-contaminated water comprising treating said water with hydrogen-oxidizing denitrifying bacteria in the presence of hydrogen. The apparatus for use in this method preferably comprises:

- (a) a pure culture of autotrophic, hydrogen-oxidizing denitrifying bacteria;
 - (b) a hydrogen generator;
 - (c) a flow-through bioreactor; and
 - (d) a filtration unit.

f:\,u\usge\smith9\pto\specification

HOD BACTERIA CELL CARBON

FIGURE 1. HYDROGEN COUPLED DENITRIFICATION

Fig 2. Hydrogen Generator

Water distribution block

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION **English Language Declaration**

As below named inventors, we hereby declare that:

Our residences, post office addresses, and citizenships are as stated below next to our names.

We believe we are the original, first, and joint inventors of the subject matter which is claimed and for which a patent is sought on the invention entitled:

as

SMALL-SCALE HYDROGEN-OXIDIZING-DENITRIFYING BIOREACTOR (SUR-3645)

the specification of which (check one):

[X]	is attached h	ereto.		"			
[]	Was filed on						
	Application	Serial No					
	and was ame						
We he	ereby state that ding the claims	we have reviewed a , as amended by any	nd understand the contents of the above-ic y amendment specifically referred to in the	lentified specification, he oath or declaration.			
We ac	cknowledge the cordance with	duty to disclose info Title 37, Code of F	ormation which is material to the examina dederal Regulations, § 1.56(a).	ition of this application			
appli appli	cation(s) for pa	tent or inventor's ce	fits under Title 35, United States Code, ortificate listed below and have also identificate having a filing date before that of the	fied below any foreign			
Prior	Foreign Appl	ication(s)		Priority Claimed			
(Nun	nber)	(Country)	(Day/Month/Year Filed)	YES NO			
(Nun	nber)	(Country)	(Day/Month/Year Filed)	YES NO			
(Nun	nber)	(Country)	(Day/Month/Year Filed)	YES NO			

We hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, § 112, we acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, § 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As named inventors, we hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office in connection therewith.

E. Philip Koltos, Registration No. 24,562 Albert A. Kashinski, Registration No. 25,183

Send Correspondence to:

E. Philip Koltos, Branch of Procurement and Patents, Division of General Law, Office of the Solicitor, Department of the Interior, 1849 C Street NW, Room 6531, Washington, D.C. 20240.

Direct Telephone Calls to: (202) 208-4471.

Full name of first joint inventor
Richard L. Smith

Inventor's Signature

Kuchur Smith

Residence: 4350 Sunshine Canyon Drive, Boulder, Colorado 80302

Citizenship: USA

Post Office Address: U.S. Geological Survey, Water Resources, Division, National Research Program, 3215 Marine Street, Boulder, Colorado 80303

Telephone No.: 393-541-3032