LISTA DE EXERCÍCIOS 2

Universidade Federal de Goiás (UFG) Lógica para Ciência da Computação Esdras Lins Bispo Jr.

8 de Maio de 2014

- 1. Considerar duas valorações \mathcal{V}_1 e \mathcal{V}_2 tais que \mathcal{V}_1 valora todos os átomos em 1 e \mathcal{V}_2 valora todos os átomos em 0. Computar como \mathcal{V}_1 e \mathcal{V}_2 valoram as fórmulas a seguir:
 - (a) $\neg p \rightarrow q$ $\mathcal{V}_1(p,q) = (1,1) :: \mathcal{V}_1(\neg p \rightarrow q) = \neg 1 \rightarrow 1 = 1$ $\mathcal{V}_2(p,q) = (0,0) :: \mathcal{V}_2(\neg p \rightarrow q) = \neg 0 \rightarrow 0 = 0$
 - (b) $p \wedge \neg q \wedge r \wedge \neg s$ $\mathcal{V}_1(p,q,r,s) = (1,1,1,1) :: \mathcal{V}_1(p \wedge \neg q \wedge r \wedge \neg s) = 1 \wedge \neg 1 \wedge 1 \wedge \neg 1 = 0$ $\mathcal{V}_2(p,q,r,s) = (0,0,0,0) :: \mathcal{V}_2(p \wedge \neg q \wedge r \wedge \neg s) = 0 \wedge \neg 0 \wedge 0 \wedge \neg 0 = 0$
 - (c) $p \to q \to r \to (p \land q \land r)$ $\mathcal{V}_1(p,q,r) = (1,1,1) : :$ $\mathcal{V}_1(p \to q \to r \to (p \land q \land r)) = 1 \to 1 \to 1 \to (1 \land 1 \land 1) = 1$ $\mathcal{V}_2(p,q,r) = (0,0,0) : :$ $\mathcal{V}_2(p \to q \to r \to (p \land q \land r)) = 0 \to 0 \to 0 \to (0 \land 0 \land 0) = 1.$
 - (d) $(p \land \neg q) \lor (r \land s)$ $\mathcal{V}_1(p, q, r, s) = (1, 1, 1, 1) : :$ $\mathcal{V}_1((p \land \neg q) \lor (r \land s)) = (1 \land \neg 1) \lor (1 \land 1) = 1$ $\mathcal{V}_2(p, q, r, s) = (0, 0, 0, 0) : :$ $\mathcal{V}_2((p \land \neg q) \lor (r \land s)) = (0 \land \neg 0) \lor (0 \land 0) = 0.$
 - (e) $p \land \neg (p \to \neg q) \lor \neg q$ $\mathcal{V}_1(p,q) = (1,1) : .$ $\mathcal{V}_1(p \land \neg (p \to \neg q) \lor \neg q) = 1 \land \neg (1 \to \neg 1) \lor \neg 1 = 1$ $\mathcal{V}_2(p,q) = (0,0) : .$ $\mathcal{V}_2(p \land \neg (p \to \neg q) \lor \neg q) = 0 \land \neg (0 \to \neg 0) \lor \neg 0 = 1.$

(f)
$$p \lor \neg p$$

$$\mathcal{V}_1(p) = 1 :: \mathcal{V}_1(p \lor \neg p) = 1 \lor \neg 1 = 1$$

$$\mathcal{V}_2(p) = 0 :: \mathcal{V}_2(p \lor \neg p) = 0 \lor \neg 0 = 1.$$

(g)
$$p \land \neg p$$

 $\mathcal{V}_1(p) = 1 \therefore \mathcal{V}_1(p \land \neg p) = 1 \land \neg 1 = 0$
 $\mathcal{V}_2(p) = 0 \therefore \mathcal{V}_2(p \land \neg p) = 0 \land \neg 0 = 0.$

(h)
$$((p \rightarrow q) \rightarrow p) \rightarrow p$$

 $\mathbb{R} \cdot \mathcal{V}_1(p,q) = (1,1) : .$
 $\mathcal{V}_1(((p \rightarrow q) \rightarrow p) \rightarrow p) = ((1 \rightarrow 1) \rightarrow 1) \rightarrow 1 = 1$
 $\mathcal{V}_2(p,q) = (0,0) : .$
 $\mathcal{V}_2(((p \rightarrow q) \rightarrow p) \rightarrow p) = ((0 \rightarrow 0) \rightarrow 0) \rightarrow 0 = 1.$

2. Dar uma valoração para os átomos das fórmulas (b) e (c), no exercício anterior, de forma que a valoração da fórmula seja 1.

R - (b)
$$\mathcal{V}(p,q,r,s)=(1,0,1,0)$$
 e
(c) $\mathcal{V}(p,q,r)=(1,1,1)$
(como (c) é uma fórmula válida, qualquer valoração $\mathcal{V}(p,q,r)$ será 1.

3. Classificar as fórmulas a seguir de acordo com sua satisfazibilidade, validade, falsicabilidade ou insatisfazibilidade:

(a)
$$(p \to q) \to (q \to p)$$

(b)
$$(p \land \neg p) \to q$$

(c)
$$p \to q \to p \land q$$

(d)
$$p \to \neg \neg p$$

(e)
$$\neg (p \lor q \to p)$$

(f)
$$\neg (p \to p \lor q)$$

(g)
$$((p \to q) \land (r \to q)) \to (p \lor r \to q)$$

4. Encontrar uma valoração que satisfaça as seguintes fórmulas:

(a)
$$p \to \neg p$$

R - $V(p) = 0$.

(b)
$$q \to p \land \neg p$$

R - $V(p,q) = (0,0) \text{ ou } V(p,q) = (1,0).$

(c)
$$(p \to q) \to p$$

R - $\mathcal{V}(p,q) = (1,0)$ ou $\mathcal{V}(p,q) = (1,1)$.

(d)
$$\neg (p \lor q \rightarrow q)$$

R - $\mathcal{V}(p,q) = (1,0)$.

(e)
$$(p \to q) \land (\neg p \to \neg q)$$

R - $\mathcal{V}(p,q) = (0,0)$ ou $\mathcal{V}(p,q) = (1,1)$.

(f)
$$(p \to q) \land (q \to p)$$

R - $\mathcal{V}(p,q) = (0,0)$ ou $\mathcal{V}(p,q) = (1,1)$.

5. O fragmento implicativo é o conjunto de fórmulas que são construídas apenas usando o conectivo →. Determinadas fórmulas desse fragmento receberam nomes especiais, conforme indicado a seguir. Verificar a validade de cada uma dessas fórmulas.

$$\mathbf{I} \quad p \to p$$

R - Fórmula válida:

$$\begin{array}{c|c}
p & p \to p \\
\hline
0 & 1 \\
1 & 1
\end{array}$$

$$\mathbf{B} \quad (p \to q) \to (r \to p) \to (r \to p)$$

R - Fórmula válida:

			I	II	III	
\overline{p}	\overline{q}	r	$p \rightarrow q$	$r \rightarrow p$	$II \rightarrow II$	$I \rightarrow III$
0	0	0	1	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

$$\mathbf{C} \quad (p \to q \to r) \to (q \to p \to r)$$

R - Fórmula válida:

			I	II	III	IV	
p	q	r	$q \rightarrow r$	$p \rightarrow r$	$p \to I$	$q \rightarrow II$	$III \rightarrow IV$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	1	1	1
1	0	1	1	1	1	1	1
1	1	0	0	0	0	0	1
1	1	1	1	1	1	1	1

$$\mathbf{W} \quad (p \to p \to q) \to (p \to q)$$

R - Fórmula válida:

		I	II	
\overline{p}	q	$p \rightarrow q$	$p \to I$	$II \rightarrow I$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

$$\mathbf{S} \quad (p \to q \to r) \to (p \to q) \to (p \to r)$$

R - Fórmula válida:

			I	II	III	IV	V	
\overline{p}	\overline{q}	r	$q \rightarrow r$	$p \rightarrow q$	$p \rightarrow r$	$p \to I$	II o III	$IV \rightarrow V$
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	1	0	0	1	1	1
1	0	1	1	0	1	1	1	1
1	1	0	0	1	0	0	0	1
_1	1	1	1	1	1	1	1	1

$$\mathbf{K} \quad p \to q \to p$$

R - Fórmula válida:

		I	
p	q	$q \to p$	$p \to I$
0	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

Peirce $((p \to q) \to p) \to p$ R - Fórmula válida:

		I	II	
p	q	$p \rightarrow q$	$I \to p$	$II \rightarrow p$
0	0	1	0	1
0	1	1	0	1
1	0	0	1	1
1	1	1	1	1

- 6. Dada uma fórmula A com N átomos, calcular o número máximo de posições (ou seja, células ocupadas por 0 ou 1) em uma Tabela da Verdade para A, em função de |A| e N.
- 7. Um *chip* de memória de um computador tem 2⁴ elementos com dois estados (ligado/desligado). Qual o número total de configurações ligado/desligado possíveis?
 - R Como 2^4 elementos são 16 elementos, temos 16 elementos com dois estados do tipo ligado/desligado. Elementos deste tipo funcionam semelhantemente a átomos proposicionais. Logo, o número total de configurações ligado/desligado possíveis será igual ao número de possíveis valorações admitidas pelo conjunto destes átomos, i.e, $2^N=2^{16}=65.536$.
- 8. A tabela da verdade (ou tabela-verdade) para p∨q mostra que o valor de p∨q é verdade se (i) p for verdade, (ii) se q for verdade ou (iii) se ambas forem verdades. Essa utilização da palavra "ou" em que o resultado é verdade se ambas as componentes são verdadeiras é chamado de ou inclusivo. Um outro uso da palavra "ou" na língua portuguesa é o ou exclusivo, algumas vezes denotado por XOU ou XOR (em inglês), em que o resultado é falso se ambas as componentes forem verdadeiras. Esse ou exclusivo está subentendido na frase: "Na bifurcação, devemos seguir ou para o norte ou para o sul". Esse ou exclusivo é simbolizado por p ⊕ q.

- (a) Construa a tabela-verdade para o ou exclusivo.
- (b) Mostre que $p \oplus q \equiv \neg((p \to q) \land (q \to p))$.