Solució al problema 56

Tenim

$$f(x) = x - e \sin x - M, \qquad e \in (0,1), \qquad M \in \mathbb{R},$$

$$f'(x) = 1 - e \cos x,$$

$$f''(x) = -e \sin x.$$

(a) Com que
$$f'(x) \geq 1-e>0$$
, i $\lim_{x\to\pm\infty} f(x)=\pm\infty$,
$$f(x) \text{ t\'e una \'unica soluci\'o real }\alpha.$$

$$f(M-e)=-e-e\sin(M-e)=-e(1+\sin(M-e))\leq 0,$$

$$f(M+e)=e(1-\sin(M+e))\geq 0.$$

implica que $\alpha \in [M - e, M + e]$.

Solució II

(b) $x_{k+1} = g(x_k)$, on $g(x) = e \sin x + M$. Com que $g'(x) = e \cos x$:

$$|g'(x)| \le e < 1, \quad \forall x \in \mathbb{R}.$$

Aplicant el teorema del valor mitjà obtenim

$$|g(x)-g(y)|\leq e|x-y|.$$

Per tant si $\epsilon_i = x_i - \alpha$ llavors $\epsilon_n \leq e^n \epsilon_0 \to 0$ quan $n \to \infty$.

(c) Si $x_0=M$ llavors $\epsilon_0\le e$ i per tant $\epsilon_n\le e^{n+1}$. Per a tenir $\epsilon_n\le 10^{-20},$ imposem

$$e^{n+1} \le 10^{-20}$$

. Per tant,

$$n \ge 20 \log 10/(-\log e) - 1.$$

Si e = 0.1 cal que $n \ge 19$ i si e = 0.9 cal que $n \ge 438$.

Solució III

(d) Sabem que pel mètode de Newton-Raphson

$$\epsilon_{k+1} \approx \frac{1}{2} \left| \frac{f''(\alpha)}{f'(\alpha)} \right| \epsilon_k^2.$$

Com que

$$\left|\frac{f''(\alpha)}{f'(\alpha)}\right| = \left|\frac{e\sin\alpha}{1 - e\cos\alpha}\right| \le \frac{e}{1 - e},$$

podem fer l'estimació:

$$\epsilon_{k+1} pprox rac{1}{2} rac{e}{1-e} \epsilon_k^2$$

i $\epsilon_0 \leq e$.

Per e=0.1 obtenim que $n\geq 4$ i per e=0.9 no podem determinar el nombre d'iterats, ja que $\epsilon_1>1$ i l'estimació no és bona.

Nota

Podem fer una estimació rigorosa si tenim en compte que

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n), \quad 0 = f(x_n) + f'(x_n)(\alpha - x_n) + \frac{1}{2}f''(\xi)(\alpha - x_n)^2.$$

on $\xi \in \langle x_n, \alpha \rangle$. Aleshores

$$x_{n+1} - \alpha = \frac{1}{2} \frac{f''(\xi)}{f'(x_n)} (\alpha - x_n)^2,$$

amb el que obtenim que

$$\epsilon_{k+1} \leq rac{1}{2} rac{e}{1-e} \epsilon_k^2,$$

i podem procedir com abans.

