Tópicos de estatística aplicada utilizando R*

Uma abordagem gerando relatórios reprodutíveis usando RStudio, LaTeX, RMarkdown e Quarto

Emerson Scheidegger

2023-06-05

Neste documento tento abordar de forma simples como trabalhar com a Regressão Linear Simples utilizando a linguagem R e a suíte do RStudio. Para gerar este documento utilizei o RStudio + RMarkdown + LaTex + Quarto.

Sumário

1	Cara	icteristicas do R	
2	lmp 2.1 2.2 2.3	Importanto arquivos .csv	4
3	Fun	ções estatísticas	Ę
	3.1	Tabelas	1
	3.2	Tabelas de proporções	5
	3.3	Medidas de resumo	6
	3.4	Summary	6
		3.4.1 Média	6
		3.4.2 Mediana	6
		3.4.3 Variância	7
		3.4.4 Desvio-padrão	7
4	Test	es de Hipótese	8
	4.1	Testes para a média populacional e para a comparação de duas médias	8
		4.1.1 Teste t para média populacional	G
		4.1.2 Teste t para comparação de duas médias com variâncias iguais	9
		4.1.3 Teste t pareado	6
	4.2		10
			10

^{*}Agradeço ao R CORE TEAM (2023) e a todos que dedicaram seu tempo no desenvolvimento de funções e pacotes para o ambiente RStudio principalmente a Yihui Xie https://yihui.org pela milhares de horas dedicadas a melhorar nossas vidas

		4.2.2 Teste para comparação de duas proporções	11								
	4.3	Testes para Normalidade	12								
		4.3.1 shapiro.test() \dots	12								
		4.3.2 ad.test()	13								
		4.3.3 cvm.test()	13								
		4.3.4 lillie.test()	14								
		4.3.5 pearson.test()	14								
		4.3.6 sf.test()	15								
5	Test	tes para comparação de variâncias	15								
	5.1	Pacote: stats	15								
		5.1.1 bartlett.test()	15								
	5.2	Pacote: car	16								
		5.2.1 levene.test()	17								
6	Fund	ções Matemáticas	17								
	6.1	Combinatória	17								
	6.2	Fatorial	18								
	6.3	Raiz Quadrada	18								
7	Gráf	ficos	18								
8	Prol	babilidade	18								
9	Exe	mplos	18								
			18								
Referências											
Li	ista	de Figuras									
	1	Teste de independência do exemplo: Satisfação no trabalho, Agresti(2002, p.57)	11								
	$\frac{1}{2}$	Vendas mensais de três lojas	16								
	3	Disputa de jogos entre dois times	16								
	4	Vendas mensais de três lojas	17								
	-	reliand inclinate action to more inclinations.	- 1								

1 Características do R

- Não foi feito para manipulação de dados em larga escala.
- Forma mais fácil e direta de acessar os dados é convertê-los para texto e importar.
- Salva a sessão em um arquivo .RDATA, que armazena todos os objetos R, possibilitando que um projeto seja retomado posteriormente ou intercambiado com colaboradores.
- Acessa bancos de dados e planilhas Microsoft Excel via ODBC e outros bancos de dados por servidor SQL, ampliando a capacidade de trabalhar com dados em larga escala.
- A partir da versão 2.1.1 possui um editor de script, que facilita a execução de comandos diretamente de dentro do R.
- Possui pacotes com funções específicas que podem ser instalados pela Internet, através do próprio programa.
- Conta com inúmeros colaboradores no mundo inteiro que criam, testam e corrigem as funções que podem ser usadas por qualquer pessoa.
- Gera gráficos em diferentes formatos para as mais diversas utilizações.
- O Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

2 Importação de dados

2.1 Importando arquivos .csv

```
#download.file("https://www.ime.usp.br/~pam/dados.RData", "dados.RData")
  #load("dados.RData")
  tab2_1<-read.table("tabela2_1.csv", dec=",", sep=";",h=T)
 names(tab2_1)
[1] "N"
                     "estado_civil"
                                        "grau_instrucao"
                                                          "n_filhos"
[5] "salario"
                                        "idade_meses"
                     "idade_anos"
                                                          "reg_procedencia"
  summary(tab2_1$salario)
                          Mean 3rd Qu.
  Min. 1st Qu. Median
                                          Max.
         7.553 10.165 11.122 14.060 23.300
```

2.2 Importanto arquivos .xls ou .xlxs

2.3 Distribuições de Frequência

```
# Calcula a tabela de frequências absolutas e armazena o resultado em 'ni'
  ni<-table(tab2_1$grau_instrucao)</pre>
  fi<-prop.table(ni) # Tabela de frequências relativas (f_i)</pre>
  p_fi<-100*prop.table(ni) # Porcentagem (100 f_i)</pre>
  # Adiciona linhas de total
  ni<-c(ni,sum(ni))</pre>
  fi<-c(fi,sum(fi))</pre>
  p_fi<-c(p_fi,sum(p_fi))</pre>
  names(ni)[4]<-"Total"</pre>
  tab2_2<-cbind(ni,fi=round(fi,digits=2),p_fi=round(p_fi,digits=2))</pre>
  tab2_2
                    ni
                         fi p_fi
ensino fundamental 12 0.33 33.33
ensino médio 18 0.50 50.00
                    6 0.17 16.67
superior
Total
                   36 1.00 100.00
```

3 Funções estatísticas

3.1 Tabelas

```
#Grau de instrução
  table(tab2_1$grau_instrucao)
ensino fundamental
                         ensino médio
                                                superior
  #Grau de instrução x Estado Civil
  table(tab2_1$grau_instrucao,tab2_1$estado_civil)
                     casado solteiro
  ensino fundamental
                        5
  ensino médio
                         12
                                   6
                                   3
  superior
                          3
  table(tab2_1$n_filhos, tab2_1$grau_instrucao)
    ensino fundamental ensino médio superior
 0
                                  4
                                           0
  1
 2
                     2
                                  5
                                           0
  3
                                  0
                                           2
                     1
                     0
```

3.2 Tabelas de proporções

superior

```
# Grau de instrução x Estado Civil
prop.table(table(tab2_1$grau_instrucao,tab2_1$estado_civil))
                       casado
                                solteiro
ensino fundamental 0.13888889 0.19444444
ensino médio
                  0.33333333 0.16666667
                   0.08333333 0.08333333
superior
# Com duas casas decimais
round(prop.table(table(tab2_1$grau_instrucao,tab2_1$estado_civil)),2)
                   casado solteiro
ensino fundamental
                     0.14
                              0.19
                     0.33
                              0.17
ensino médio
```

0.08

0.08

3.3 Medidas de resumo

3.4 Summary

Resume a variável quantitativa em: mínimo, máximo, média, mediana, 1° quartil, 3° quartil e dados não preenchidos. Caso a variável seja qualitativa, é informado o número de observações para cada nível.

Medidas de resumo dos salários:

```
summary(tab2_1$salario)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.000 7.553 10.165 11.122 14.060 23.300
```

Resumo da variável salário apenas para casados

```
summary(tab2_1$salario[tab2_1$estado_civil=="casado"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.560 8.742 11.925 12.123 15.030 23.300
```

! Importante

Observação: Caso a variável desejada seja qualitativa numérica, é possível que o R interprete-a como sendo uma variável quantitativa. Para evitar que isso aconteça, utilize a função as.factor(). Ex: summary(as.factor(dados\$sexo))

3.4.1 Média

```
# Média dos salários
cat('A média de salário é:', mean(tab2_1$salario), '\n')
A média de salário é: 11.12222

# Média de idade
cat('A média de idade é:', mean(tab2_1$idade_anos), '\n')
A média de idade é: 34.58333
```

3.4.2 Mediana

```
# Mediana dos salários
  cat('A mediana de salário é:', median(tab2_1$salario),'\n')
A mediana de salário é: 10.165
  # Mediana de idade
  cat('A mediana de idade é:', median(tab2_1$idade_anos), '\n')
A mediana de idade é: 34.5
3.4.3 Variância
  # Variância dos salários
  cat('A variância de salário é:', var(tab2_1$salario),'\n')
A variância de salário é: 21.04477
3.4.4 Desvio-padrão
sintaxe: sd(variável)
opções:
na.rm: TRUE, calcula o desvio padrão considerando apenas os dados existentes, ignora os dados
faltantes.
FALSE, calcula o desvio padrão apenas se todos os valores estiverem preenchidos, caso contrário
retorna NA.
Exemplo:
  cat('O desvio-padrão dos salários é:', sd(tab2_1$salario),'\n')
O desvio-padrão dos salários é: 4.587458
Erro em var(tab2_1$n_filhos) : observações faltantes em cov/cor
  sd(tab2_1$n_filhos)
```

Tratando as observações faltantes

[1] NA

```
sd(tab2_1$n_filhos, na.rm=TRUE)
```

[1] 1.268028

4 Testes de Hipótese

4.1 Testes para a média populacional e para a comparação de duas médias

t.test()

Realiza o teste t-Student para uma ou duas amostras.

sintaxe:

t.test(amostra1, amostra2, opções)

parâmetros

amostra1: Vetor contendo a amostra da qual se quer testar a média populacional, ou comparar a média populacional com a média populacional da amostra 2.

amostra2: Vetor contendo a amostra 2 para comparação da média populacional com a média populacional da amostra 1.

opções

alternative: string indicando a hipótese alternativa desejada. Valores possíveis: "two-sided", "less" ou "greater".

mu: valor indicando o verdadeiro valor da média populacional para o caso de uma amostra, ou a diferença entre as médias para o caso de duas amostras.

paired: TRUE – realiza o teste t pareado.

FALSE – realiza o teste t não pareado.

var.equal:TRUE – indica que a variância populacional é a igual nas duas amostras.

FALSE – indica que a variância populacional de cada amostra é diferente.

conf.level: coeficiente de confiança do intervalo.

4.1.1 Teste t para média populacional

Paired t-test

data: antes and depois

t = -5.3231, df = 9, p-value = 0.000479

```
amostra1 = c(14.9, 13.4, 14.5, 13.5, 15.0, 13.9, 14.9, 16.4, 14.6, 15.4)
  t.test(amostra1, mu=15)
    One Sample t-test
data: amostra1
t = -1.2252, df = 9, p-value = 0.2516
alternative hypothesis: true mean is not equal to 15
95 percent confidence interval:
 14.00375 15.29625
sample estimates:
mean of x
    14.65
4.1.2 Teste t para comparação de duas médias com variâncias iguais
  amostra1 = c(16.6,13.4,14.6,15.1,12.9,15.2,14.0,16.6,15.4,13.0)
  amostra2 = c(15.8, 17.9, 18.2, 20.2, 18.1, 17.8, 18.3, 18.6, 17.0, 18.4)
  t.test(amostra1, amostra2, var.equal = TRUE)
    Two Sample t-test
data: amostra1 and amostra2
t = -6.0257, df = 18, p-value = 1.069e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.518003 -2.181997
sample estimates:
mean of x mean of y
    14.68
              18.03
4.1.3 Teste t pareado
  antes = c(16.6, 13.4, 14.6, 15.1, 12.9, 15.2, 14.0, 16.6, 15.4, 13.0)
  depois = c(15.8,17.9,18.2,20.2,18.1,17.8,18.3,18.6,17.0,18.4)
  t.test(antes,depois,paired=TRUE)
```

```
alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval:
-4.773642 -1.926358
sample estimates:
mean difference
-3.35
```

4.2 Testes para uma proporção populacional e para comparação de duas proporções

```
prop.test()
```

Realiza o teste de proporções para uma ou duas amostras.

sintaxe:

```
prop.test(x, n, p, opções)
```

Parâmetros

- x: Vetor contendo o número de sucessos em cada amostra.
- n: Vetor contendo o número de realizações de cada amostra.
- p: Vetor contendo as probabilidades de sucesso de cada amostra.

Exemplo:

4.2.1 Teste para uma proporção populacional

```
prop.test(104,200,0.6,correct=F)

1-sample proportions test without continuity correction

data: 104 out of 200, null probability 0.6
X-squared = 5.3333, df = 1, p-value = 0.02092
alternative hypothesis: true p is not equal to 0.6
95 percent confidence interval:
    0.4510379 0.5882083
sample estimates:
    p
0.52
```

4.2.2 Teste para comparação de duas proporções

```
prop.test(c(104,50),c(200,95),correct=F)
```

2-sample test for equality of proportions without continuity correction

```
data: c(104, 50) out of c(200, 95)
X-squared = 0.010297, df = 1, p-value = 0.9192
alternative hypothesis: two.sided
95 percent confidence interval:
   -0.1282799    0.1156483
sample estimates:
    prop 1    prop 2
0.5200000    0.5263158
```

Teste

Realiza o teste exato de independência de linhas e colunas em uma tabela de contingência com as marginais fixas.

Sintaxe:

fisher.test(x, opções)

Parâmetros

x: Matriz (tabela) contendo a frequência de observações em cada casela.

Opções

alternative: string indicando a hipótese alternativa desejada.

Valores possíveis: "two-sided", "less" ou "greater".

conf.int: TRUE: calcula o intervalo de confiança para a razão de chances em tabelas de dimensão 2x2.

conf.level: coeficiente de confiança do intervalo.

Receita	Satisfação								
	Muito Insatisfeito	Pouco Insatisfeito	Moderadamente Satisfeito	Muito Satisfeito					
< 15 mil	1	3	10	6					
15-25 mil	2	3	10	7					
25-40 mil	1	6	14	12					
> 40 mil	0	1	9	11					

Figura 1: Teste de independência do exemplo: Satisfação no trabalho, Agresti(2002, p.57)

```
Trabalho = matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4, dimnames = list(Receita=c("< 15mil", "15-25mil", "25-40mil", "> 40mil"),
```

```
Satisfação=c("M.Insatisfeito", "P.Insatisfeito", "Mod.Satisfeito", "M.Satisfeito"))) fisher.test(Trabalho)
```

Fisher's Exact Test for Count Data

data: Trabalho
p-value = 0.7827

alternative hypothesis: two.sided

4.3 Testes para Normalidade

Estes pacotes contém diversos testes que verificam se os dados amostrais contém evidências de serem oriundos de uma população com distribuição Normal.

Pacote: base (Este pacote já está instalado)

4.3.1 shapiro.test()

Realiza o teste de Shapiro-Wilk para normalidade.

sintaxe:

shapiro.test(amostra)

Parâmetros

amostra: Vetor contendo a amostra da qual se quer testar normalidade. Deve conter uma amostra de tamanho entre 3 e 5000.

São permitidos missing values.

Exemplo:

```
shapiro.test(rnorm(10, mean=10, sd=4))

Shapiro-Wilk normality test

data: rnorm(10, mean = 10, sd = 4)

W = 0.91073, p-value = 0.286
```

Pacote opcional: nortest

Este pacote precisa ser instalado.

4.3.2 ad.test()

Realiza o teste de Anderson-Darling para normalidade.

sintaxe:

```
\mathbf{ad.test}(\mathit{amostra})
```

Parâmetros

amostra: Vetor contendo a amostra da qual se quer testar normalidade. Deve conter uma amostra de tamanho maior ou igual a 7.

São permitidos missing values.

Exemplo:

```
ad.test(rnorm(10, mean=10, sd=4))
Anderson-Darling normality test
data: rnorm(10, mean = 10, sd = 4)
A = 0.29716, p-value = 0.521
```

4.3.3 cvm.test()

Realiza o teste de Cramer-von Mises para normalidade.

sintaxe:

```
cvm.test(amostra)
```

Parâmetros

amostra: Vetor contendo a amostra da qual se quer testar normalidade. Deve conter uma amostra de tamanho maior ou igual a 7.

São permitidos missing values.

```
cvm.test(rnorm(10, mean=10, sd=4))

Cramer-von Mises normality test

data: rnorm(10, mean = 10, sd = 4)

W = 0.055981, p-value = 0.3926
```

4.3.4 lillie.test()

Realiza o teste de Lilliefors (Kolmogorov-Smirnov) para normalidade.

sintaxe:

 ${\bf lillie.test}(amostra)$

Parâmetros

amostra: Vetor contendo a amostra da qual se quer testar normalidade. Deve conter uma amostra de tamanho maior ou igual a 4.

São permitidos missing values.

Exemplo:

```
lillie.test(rnorm(10, mean=10, sd=4))

Lilliefors (Kolmogorov-Smirnov) normality test

data: rnorm(10, mean = 10, sd = 4)

D = 0.14475, p-value = 0.7997
```

4.3.5 pearson.test()

Realiza o teste Qui-quadrado de Pearson para normalidade.

sintaxe:

pearson.test(amostra)

Parâmetros

amostra: Vetor contendo a amostra da qual se quer testar normalidade.

São permitidos missing values.

Opções

n.classes: Número de classes. São permitidos missing values.

adjust: TRUE: o valor p é calculado de uma distribuição Qui-quadrado com o número de graus de liberdade igual ao número de classes – 3.

FALSE: o valor p é calculado de uma distribuição Qui-quadrado com o número de graus de liberdade igual ao número de classes -1.

```
pearson.test(rnorm(10, mean=10, sd=4))
```

```
Pearson chi-square normality test
```

```
data: rnorm(10, mean = 10, sd = 4)
P = 2, p-value = 0.5724
```

4.3.6 sf.test()

Realiza o teste de Shapiro-Francia para normalidade.

sintaxe:

sf.test(amostra)

Parâmetros

amostra: Vetor contendo a amostra da qual se quer testar normalidade.

Deve conter uma amostra de tamanho entre 5 e 5000. São permitidos missing values.

Exemplo:

```
sf.test(rnorm(10, mean=10, sd=4))
Shapiro-Francia normality test
data: rnorm(10, mean = 10, sd = 4)
W = 0.9372, p-value = 0.4656
```

5 Testes para comparação de variâncias

5.1 Pacote: stats

5.1.1 bartlett.test()

Realiza o teste de Bartlett com a hipótese nula de que as variâncias dos grupos são iguais (R CORE TEAM, 2023).

sintaxe:

bartlett.test(formula, dados)

Parâmetros

formula: Relação entre a variável dependente e o fator. Ex: "Vendas ~ Mês".

dados: Conjunto de dados onde será aplicada a formula.

Exemplo: Queremos comparar a variabilidade das vendas entre os meses

```
Vendas = c(10,12,15,14,13,17,16,13,12,19,14,16,12,13,10,15,11,16,11,16,12,10,9,12,12,
```

_			_						200	200		
Loja	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
A	10	14	16	19	12	15	11	10	12	13	18	23
В	12	13	13	14	13	11	16	09	11	11	16	25
С	15	17	12	16	10	16	12	12	08	14	21	24

Figura 2: Vendas mensais de três lojas

```
11,8,13,11,14,18,16,21,23,25,24)
Mes = c("Jan","Jan","Fev","Fev","Fev","Mar","Mar","Mar","Abr","Abr","Abr",
"Mai","Mai","Mai","Jun","Jun","Jun","Jul","Jul","Jul","Ago","Ago","Ago",
"Set","Set","Set","Out","Out","Out","Nov","Nov","Nov","Dez","Dez","Dez")
dados = data.frame(Vendas=Vendas, Mes=Mes)
bartlett.test(Vendas ~ Mes, data=dados)
```

Bartlett test of homogeneity of variances

```
data: Vendas by Mes
Bartlett's K-squared = 2.844, df = 11, p-value = 0.9926
```

i Nota

Também é possível especificar os grupos da seguinte forma: bartlett.test(list(GRUPO1, GRUPO2)), onde GRUPO1 e GRUPO2 são vetores contendo os valores das observações de cada amostra.

Exemplo:

	Jogo 1	Jogo 2	Jogo 3	Jogo 4	Jogo 5	Jogo 6
Time A	30	25	32	22	19	26
Time B	18	24	31	28	29	30

Figura 3: Disputa de jogos entre dois times

```
TimeA = c(30,25,32,22,19,26)
TimeB = c(18,24,31,28,29,30)
bartlett.test(list(TimeA, TimeB))
```

Bartlett test of homogeneity of variances

```
data: list(TimeA, TimeB)
Bartlett's K-squared = 0.00032462, df = 1, p-value = 0.9856
```

5.2 Pacote: car

Este pacote precisa ser instalado (FOX; WEISBERG; PRICE, 2023).

5.2.1 levene.test()

Realiza o teste de Bartlett com a hipótese nula de que as variâncias dos grupos são iguais.

sintaxe:

leveneTest(formula, dados)

Parâmetros

formula: Relação entre a variável dependente e o fator. Ex: "Vendas ~ Mês".

dados: Conjunto de dados onde será aplicada a formula.

Exemplo: Utilizando o mesmo exemplo visto no teste de Bartlett:

_			_							00		
Loja	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
A	10	14	16	19	12	15	11	10	12	13	18	23
В	12	13	13	14	13	11	16	09	11	11	16	25
C	15	17	12	16	10	16	12	12	08	14	21	24

Figura 4: Vendas mensais de três lojas

```
leveneTest(dados$Vendas, dados$Mes)
```

Warning in leveneTest.default(dados\$Vendas, dados\$Mes): dados\$Mes coerced to factor.

```
Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 11 0.1678 0.9981
24
```

6 Funções Matemáticas

6.1 Combinatória

Calcula o número de combinações de n elementos em grupos de tamanho k.

sintaxe:

choose(n,k)

exemplo:

```
choose(8,5)
```

[1] 56

6.2 Fatorial

```
Calcula o fatorial de x.
sintaxe:
factorial(x)
exemplo:
factorial(5)
```

6.3 Raiz Quadrada

```
Calcula a raiz quadrada de x.
sintaxe:
sqrt(x)
exemplo:
sqrt(81)
```

7 Gráficos

8 Probabilidade

9 Exemplos

Referências

FOX, J.; WEISBERG, S.; PRICE, B. car: Companion to Applied Regression. [s.l: s.n.]. R CORE TEAM. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2023.