# A Bayesian Conjugate Gradient Method

# Solving Linear Systems

#### The Problem

• Goal: find  $x^*$  in the equation

$$Ax^* = b$$

- $A \in \mathbb{R}^{d \times d}$  invertible (sometimes SPD)
- $x^*, b \in \mathbb{R}^d$

#### **Direct Methods**

- Direct methods aim to solve the system in "one shot"
- E.g. Cholesky factorisation:
  - 1. Compute  $A = LL^{\top}$
  - 2. Compute Lz = b
  - 3. Solve  $L^{\mathsf{T}}x^{\star}=z$
- (Naive) cost:  $\mathcal{O}(d^3)$  computation,  $\mathcal{O}(d^2)$  storage.



#### Iterative Methods

- Iterative Methods aim to produce a sequence  $(x_m) \to x^*$  as  $m \to \infty$ .
- Often possible to elicit an iterative method that is faster than a direct method
  if we are willing to accept a small error in the result.

## The Conjugate Gradient Method

#### Hestenes and Stiefel, 1952

Consider the functional

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Ax - x^{\mathsf{T}}b$$

which has a unique minimum  $x^*$ .

• CG arises from performing modified gradient descent on this function.

## The Conjugate Gradient Method

Raw gradient descent:

$$\tilde{s}_m = b - Ax_{m-1} = r_{m-1}$$

CG search directions:

$$\tilde{s}_m = r_{m-1} - \langle s_{m-1}, r_{m-1} \rangle_A \times s_{m-1}$$

• Produces a set of search directions that are A-orthonormal (after normalisation)



#### Computational Cost

- $\mathcal{O}(md^2)$  computation (1 matrix-vector product per-iteration)
- $\mathcal{O}(d)$  storage (only need to store 2-3 additional vectors)

# Classical Theory

Introduce the Krylov Subspace

$$K_m(A, b) = \text{span}\{b, Ab, ..., A^{m-1}b\}$$

# Theorem (Krylov Subpace Method)

Let 
$$K_m^* = x_0 + K_m(A, r_0)$$
. Then:

$$x_{m} = \underset{x \in K_{m}^{\star}}{\operatorname{argmin}} \|x - x^{\star}\|_{A}$$

$$(\|z\|_{A}^{2} = z^{\mathsf{T}}Az)$$

# Theorem (CG Converges Fast)

It holds that:

$$\frac{\|x_m - x^*\|_A}{\|x_0 - x^*\|_A} \le 2\left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^m$$

# BayesCG

#### Probabilistic Linear Solvers

- Start with a Gaussian prior  $x \sim \mathcal{N}(x_0, \Sigma_0)$
- Condition on data provided by a set of search directions:

$$s_m^{\mathsf{T}} A x^* = s_m^{\mathsf{T}} b =: y_m$$

• Letting  $S = (s_1 \dots s_m)$ :

#### Probabilistic Linear Solver (Posterior)

$$x \mid y_1, \dots, y_m \sim \mathcal{N}(x_m, \Sigma_m)$$

$$x_m = x_0 + \Sigma_0 A^{\mathsf{T}} S_m \Lambda_m^{-1} (b - Ax_0)$$

$$\Sigma_m = \Sigma_0 - \Sigma_0 A^{\mathsf{T}} S_m \Lambda_m^{-1} S_m^{\mathsf{T}} A \Sigma_0$$

where

$$\Lambda_m = S_m^{\mathsf{T}} A \Sigma_0 A^{\mathsf{T}} S_m$$

#### **A Problem**

- To compute the posterior we must invert  $\Lambda_m = S_m^\intercal A \Sigma_0 A^\intercal S_m$ .
- Note that  $(\Lambda_m)_{ij} = \langle s_i, s_j \rangle_{A\Sigma_0 A^\top}$ .
- If we can construct search directions to be **orthonormal** in the  $A\Sigma_0A^\top$  inner product, the inverse is trivial.

# Theorem (BayesCG)

Let  $\tilde{s}_1 = r_0$  and

$$\tilde{s}_{m} = r_{m-1} - \langle s_{m-1}, r_{m-1} \rangle_{A\Sigma_{0}A^{\top}} \times s_{m-1}$$

Then, after normalisation,  $s_1, \ldots, s_m$  are  $A\Sigma_0A^\top$ -orthonormal, and

$$x_{m} = x_{m-1} + \Sigma_{m-1} A^{T} s_{m} \times s_{m}^{T} r_{m-1}$$
  
$$\Sigma_{m} = \Sigma_{m-1} - \Sigma_{m-1} A^{T} s_{m} s_{m}^{T} A \Sigma_{m-1}$$

#### Cost

- $\mathcal{O}(md^2)$  computation (2-3 matrix-vector products per-iteration)
- $\mathcal{O}(md)$  storage (need to store search directions to compute  $\Sigma_m$ )

More costly than CG - but comes with UQ.

# Theorem (Krylov Subspace Method)

Let 
$$K_m^* = x_0 + \Sigma_0 A^{\mathsf{T}} K_m (A \Sigma_0 A^{\mathsf{T}}, r_0)$$
. Then:

$$x_m = \underset{x \in K_m^*}{\operatorname{argmin}} \|x - x^*\|_{\Sigma_0^{-1}}$$

Note that setting  $\Sigma_0 = A^{-1}$  reproduces CG!

# Theorem (Rate of Convergence)

It holds that:

$$\frac{\|x_m - x^*\|_{\Sigma_0^{-1}}}{\|x_0 - x^*\|_{\Sigma_0^{-1}}} \le 2 \left( \frac{\sqrt{\kappa(\Sigma_0 A^{\mathsf{T}} A)} - 1}{\sqrt{\kappa(\Sigma_0 A^{\mathsf{T}} A)} + 1} \right)^m$$

Fastest convergence when  $\kappa(\Sigma_0 A^{\mathsf{T}} A) \approx 1$ .

# Experimental Results

#### Priors Considered

- $\Sigma_0 = A^{-1}$  replicates CG.
- $\Sigma_0 = I$  "uninformative" prior.
- Preconditioner Prior Given a preconditioner for A, take  $\Sigma_0 = (P^{\mathsf{T}}P)^{-1}$ .

(Left) preconditioner is a matrix P such that  $P^{-1}$  is easily computable, and  $\kappa(P^{-1}A) \ll \kappa(A)$ .

# **Experimental Setup**

- $\bullet$  A a random sparse matrix.
- d = 100
- Draw test problems  $x^* \sim \mathcal{N}(0,I)$ .
- Apply BayesCG to m = 100.
- Compare to CG and "A-Priori Optimal" (essentially random) directions.



#### **Posterior Calibration**

- We say that the posterior is "well-calibrated" if  $x^*$  typically looks like a draw from the posterior.
- To assess this we compute the Z-statistic:

$$Z(x^*) = \|x_m(x^*) - x^*\|_{\Sigma_m(x^*)}^2$$

• If the posterior is well-calibrated we can prove that  $Z(X) \sim \chi^2_{d-m}$ , when X is distributed according to the prior.



# A Crime Against Bayes

• When we applied Bayes theorem we cheated!

$$s_m = r_{m-1} - \langle s_{m-1}, r_{m-1} \rangle \times s_{m-1}$$
  
 $r_{m-1} = b - Ax_{m-1} = A(x^* - x_m)$ 

SO

$$s_m^{\mathsf{T}}b = s_m(x^{\star})^{\mathsf{T}}Ax^{\star}$$

#### Conclusions

- Mitigating poor UQ using (e.g.) empirical Bayes.
- Using BayesCG in applications (e.g. IterGP).

# Thanks