Lista 3

Data esperada: 7/5

Terceira lista de exercícios da disciplina MD21 - Convergência em distribuição, Teorema central do limite, método delta e introdução à inferência.

1. Seja X uma variável aleatória normal padrão, $X \sim N(0,1)$, mostre que a função geradora de momentos (f.g.m) de X é

 $M_X(t) = e^{t^2/2}$

- 2. Seja X_1, X_2, \ldots uma sequência de variáveis aleatórias com distribuição dada por $X_n \sim Poisson(\lambda_n)$, onde $\lambda_1, \lambda_2, \ldots$ é uma sequência crescente com $\lambda_n \to \infty$. Mostre que a variável padronizada $Z_n = (X_n \mathbb{E}[X_n])/\mathbb{V}[X_n]^{1/2}$ converge para a Normal padrão.
 - a. Encontre a f.g.m. de $X_n,\,M_{X_n}(t)$ e depois de $Z_n,\,M_{Z_n}(t)$
 - b. Aplique a expansão de Taylor em $M_{Z_n}(t)$ e mostre que $M_{Z_n}(t) \to e^{t^2/2}$
- 3. Sejam X_1, X_2, \dots, X_n variáveis aleatórias i
id com distribuição Beta(a,b). Aplique o TCL e encontre a distribuição limite de
 $\bar{X}_n = 1/n \sum_{i=1}^n X_i$.
- 4. Sejam X_1,X_2,\dots,X_n variáveis aleatórias i
id com distribuição U(0,1). Encontre a distribuição limite de
 $Y_n=\bar{X}_n^2$.
- 5. Sejam X_1, X_2, \dots, X_n variáveis aleatórias i
id com distribuição Poisson com média $\lambda.$
 - a. Mostre que o estimador de $\lambda,~\hat{\lambda},$ via método de momentos e é igual ao de máxima verossimilhança
 - b. Mostre que $\hat{\lambda}$ em a e b são não viciados, isto é, $\mathbb{E}[\hat{\lambda}] = \lambda$.
- 6. Sejam Y_1,Y_2,\ldots,Y_n variáveis aleatórias iid com distribuição Normal com média $\mu_i=\mathbb{E}[Y_i|X_i]=a+bX_i$ e variância σ^2 , onde X_1,X_2,\ldots,X_n são valores observados (não são variáveis aleatórias). Encontre os estimadores de máxima verossimilhança de (a,b,σ^2) .
 - a. Maximize o log da função de verossimilhança
 - b. Encontre primeiro b
 - c. Encontre \hat{a} em função em \hat{b}
 - d. Finalmente encontre $\widehat{\sigma^2}$ em função de $(\widehat{a},\widehat{b})$.