```
In [1]: #This model is building a logistic regression model to predict if the content
    was shared or not.
    #Installing necessary libraries

import pandas as pd
import numpy as np
import seaborn as sns
%matplotlib inline
```

In [2]: pwd

Out[2]: 'C:\\Users\\rehnu'

In [3]: cd C:\Users\rehnu\OneDrive\Desktop\Python!

C:\Users\rehnu\OneDrive\Desktop\Python!

In [5]: #Loading the dataset
Popularity = pd.read_csv("NewsPopularity_Logistics_BB2.csv")

In [6]: #Showing first few rows of the dataset
Popularity.head()

Out[6]:

	length_title	length_content	images	videos	keywords	onWeekend	Relevancy	positive_word
0	12	219	1	0	5	No	0.500331	0.76923
1	9	255	1	0	4	No	0.799756	0.73333
2	9	211	1	0	6	No	0.217792	0.85714
3	9	531	1	0	7	No	0.028573	0.66666
4	13	1072	20	0	7	No	0.028633	0.86021

Out[7]:

	length_title	length_content	images	videos	keywords	onWeekend	Relevancy	positive_
39639	11	346	1	1	8	No	0.025038	0.7
39640	12	328	3	48	7	No	0.029349	8.0
39641	10	442	12	1	8	No	0.159004	0.5
39642	6	682	1	0	5	No	0.040004	0.4
39643	10	157	0	2	4	No	0.050001	8.0

In [8]: #Observing column type of the dataset Popularity.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39644 entries, 0 to 39643
Data columns (total 12 columns):
length title
                       39644 non-null int64
length_content
                       39644 non-null int64
images
                       39644 non-null int64
videos
                       39644 non-null int64
keywords
                       39644 non-null int64
onWeekend
                       39644 non-null object
                       39644 non-null float64
Relevancy
positive words
                       39644 non-null float64
                       39644 non-null float64
negative words
title_subjectivity
                       39644 non-null float64
title sentiments
                       39644 non-null float64
wasShared
                       39644 non-null object
dtypes: float64(5), int64(5), object(2)
memory usage: 3.6+ MB
```

In [9]: #Showing number of rows and columns of the dataset Popularity.shape

Out[9]: (39644, 12)

```
In [10]: #Observing if there is any missing data on the file. No missing value found.
         Popularity.isnull().sum()
Out[10]: length_title
                                 0
          length_content
                                 0
         images
                                 0
         videos
                                 0
          keywords
                                 0
         onWeekend
                                 0
         Relevancy
                                 0
         positive_words
                                 0
         negative words
          title_subjectivity
                                 0
          title sentiments
                                 0
         wasShared
                                 0
         dtype: int64
In [11]: | #There were two categorical columns ('onWeekend' and 'wasShared'). Making them
         binary.
         Popularity['onWeekend'] = Popularity['onWeekend'].map({'Yes' : 1, 'No' : 0})
         Popularity['wasShared'] = Popularity['wasShared'].map({'Yes' : 1, 'NO' : 0})
In [12]: #Again showing the first few rows of the file to see if those categorical colu
         mns are now integer or not.
         Popularity.head()
Out[12]:
```

	length_title	length_content	images	videos	keywords	onWeekend	Relevancy	positive_word
0	12	219	1	0	5	0	0.500331	0.76923
1	9	255	1	0	4	0	0.799756	0.73333
2	9	211	1	0	6	0	0.217792	0.85714
3	9	531	1	0	7	0	0.028573	0.66666
4	13	1072	20	0	7	0	0.028633	0.86021

```
In [13]: #Observing the column type of the data file.
         Popularity.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 39644 entries, 0 to 39643
         Data columns (total 12 columns):
         length title
                                39644 non-null int64
                                39644 non-null int64
          length content
         images
                                39644 non-null int64
         videos
                                39644 non-null int64
          keywords
                                39644 non-null int64
         onWeekend
                                39644 non-null int64
         Relevancy
                                39644 non-null float64
         positive words
                                39644 non-null float64
         negative words
                                39644 non-null float64
          title_subjectivity
                                39644 non-null float64
          title sentiments
                                39644 non-null float64
         wasShared
                                39644 non-null int64
         dtypes: float64(5), int64(7)
         memory usage: 3.6 MB
In [14]: #showing the percentage of time the content was shared.
         wasShared = (sum(Popularity['wasShared'])/len(Popularity['wasShared'].index))*
In [15]: | wasShared
Out[15]: 68.66108364443548
         #Importing sklearn library and train test split for spliting the data file int
In [16]:
         o test and train
         from sklearn.model selection import train test split
In [17]: #Declaring depending and independing variables
         x = Popularity.drop(['wasShared'], axis = 1)
         y = Popularity['wasShared']
```

In [18]: #Showing all independent variables
 x.head()

Out[18]:

	length_title	length_content	images	videos	keywords	onWeekend	Relevancy	positive_word
0	12	219	1	0	5	0	0.500331	0.76923
1	9	255	1	0	4	0	0.799756	0.73333
2	9	211	1	0	6	0	0.217792	0.85714
3	9	531	1	0	7	0	0.028573	0.66666
4	13	1072	20	0	7	0	0.028633	0.86021

```
In [19]: #Showing dependent variable
    y.head()
```

Out[19]: 0 0

1 0

2 1

3 1

4 0

Name: wasShared, dtype: int64

In [20]: #Spliting dependent and independent variables into 70% and 30% train and test categories.

x_train, x_test, y_train, y_test = train_test_split(x,y, train_size = 0.7, tes
t_size = 0.3, random_state = 100)

In [21]: import statsmodels.api as sm

C:\Users\rehnu\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2389: Fu tureWarning: Method .ptp is deprecated and will be removed in a future versio n. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

Out[22]: Generalized Linear Model Regression Results

Dep. Variable:	wasShared	No. Observations:	27750
Model:	GLM	Df Residuals:	27738
Model Family:	Binomial	Df Model:	11
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-16653.
Date:	Sun, 24 May 2020	Deviance:	33306.
Time:	01:34:52	Pearson chi2:	2.77e+04

No. Iterations: 5

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	0.6499	0.118	5.492	0.000	0.418	0.882
length_title	-0.0395	0.006	-6.264	0.000	-0.052	-0.027
length_content	8.163e-05	3.26e-05	2.508	0.012	1.78e-05	0.000
images	0.0157	0.002	8.097	0.000	0.012	0.019
videos	0.0100	0.003	2.929	0.003	0.003	0.017
keywords	0.0594	0.007	8.356	0.000	0.045	0.073
onWeekend	1.1737	0.051	23.146	0.000	1.074	1.273
Relevancy	0.6285	0.055	11.408	0.000	0.521	0.737
positive_words	-0.0497	0.087	-0.574	0.566	-0.219	0.120
negative_words	-0.8252	0.104	-7.937	0.000	-1.029	-0.621
title_subjectivity	0.1023	0.042	2.423	0.015	0.020	0.185
title_sentiments	0.1819	0.053	3.443	0.001	0.078	0.285

```
In [23]: import matplotlib.pyplot as plt import seaborn as sns
```

%matplotlib inline

```
In [24]: #Creating a Heatmap of the data file.

plt.figure(figsize = (20,10))
sns.heatmap(Popularity.corr(), annot= True)
```

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x2952660b108>


```
In [25]: #Removing 'positive_words' as it has high p-value and less impact on a content
being shared.

x_test2 = x_test.drop(['positive_words'],axis =1)
x_train2 = x_train.drop(['positive_words'], axis = 1)
```

In [26]: #After deleting 'Positive_words' creating the Heatmap again.

plt.figure(figsize = (20,10))
sns.heatmap(x_train2.corr(), annot= True)

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x29527006808>

In [27]: #After deleting 'Positive_words' building and showing the result of Linear Reg
ression model.

logm2 = sm.GLM(y_train,(sm.add_constant(x_train2)), family = sm.families.Binom
ial())
logm2.fit().summary()

Out[27]: Generalized Linear Model Regression Results

27750	No. Observations:	wasShared	Dep. Variable:
27739	Df Residuals:	GLM	Model:
10	Df Model:	Binomial	Model Family:
1.0000	Scale:	logit	Link Function:
-16653.	Log-Likelihood:	IRLS	Method:
33306.	Deviance:	Sun, 24 May 2020	Date:
2.77e+04	Pearson chi2:	01:36:16	Time:

No. Iterations: 5

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	0.6067	0.091	6.648	0.000	0.428	0.786
length_title	-0.0393	0.006	-6.244	0.000	-0.052	-0.027
length_content	7.817e-05	3.2e-05	2.446	0.014	1.55e-05	0.000
images	0.0157	0.002	8.132	0.000	0.012	0.020
videos	0.0100	0.003	2.942	0.003	0.003	0.017
keywords	0.0594	0.007	8.357	0.000	0.045	0.073
onWeekend	1.1738	0.051	23.151	0.000	1.074	1.273
Relevancy	0.6256	0.055	11.404	0.000	0.518	0.733
negative_words	-0.7926	0.087	-9.123	0.000	-0.963	-0.622
title_subjectivity	0.1032	0.042	2.445	0.015	0.020	0.186
title_sentiments	0.1803	0.053	3.418	0.001	0.077	0.284

```
In [28]:
         #Building Logistic Regression model with train dataset of dependent and indepe
         ndent variables.
         from sklearn.linear model import LogisticRegression
         from sklearn import metrics
         logsk = LogisticRegression()
         logsk.fit(x train,y train)
         C:\Users\rehnu\Anaconda3\lib\site-packages\sklearn\linear model\logistic.py:4
         32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
         a solver to silence this warning.
           FutureWarning)
Out[28]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                             intercept_scaling=1, l1_ratio=None, max_iter=100,
                            multi_class='warn', n_jobs=None, penalty='12',
                            random state=None, solver='warn', tol=0.0001, verbose=0,
                            warm start=False)
In [29]:
         logsk
Out[29]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                             intercept_scaling=1, l1_ratio=None, max_iter=100,
                            multi_class='warn', n_jobs=None, penalty='12',
                            random state=None, solver='warn', tol=0.0001, verbose=0,
                            warm start=False)
In [30]:
         #Creating a vaiable to predict values for the test data set of independent var
         iables.
         y pred = logsk.predict proba(x test)
In [32]: #Declaring a dataframe of the predicted variable data
         y pred df = pd.DataFrame(y pred)
In [33]: #Showing only the shared content column
         y pred 1 = y pred df.iloc[:,[1]]
In [34]: y_pred_1.head()
Out[34]:
                  1
          0 0.737322
          1 0.710362
          2 0.768704
          3 0.763017
          4 0.600920
```

```
In [35]: #Another dataframe with the dependent varible's test dataset.

y_test_df = pd.DataFrame(y_test)
```

In [36]: #Joining two dataframes together and removing their index number column so tha
 t they appear side by side.

y_pred_1.reset_index(drop= True, inplace = True)
 y_test_df.reset_index(drop= True, inplace = True)
 y_pred_1 = y_pred_1.rename(columns= {1 : 'WasShared_Predicted'})
 y_pred_final = pd.concat([y_test_df, y_pred_1],axis = 1)

Out[37]:

	wasShared	WasShared_Predicted
0	1	0.737322
1	0	0.710362
2	1	0.768704
3	0	0.763017
4	1	0.600920
5	1	0.568105
6	0	0.681206
7	1	0.713121
8	0	0.756291
9	1	0.758318

```
In [38]: #Creating a new column with a condition to be matched with actual result.

y_pred_final['Predicted'] = y_pred_final.WasShared_Predicted.map(lambda x: 1 i
    f x > 0.5 else 0 )
```

```
In [39]: y_pred_final.head(10)
```

Out[39]:

	wasShared	WasShared_Predicted	Predicted
0	1	0.737322	1
1	0	0.710362	1
2	1	0.768704	1
3	0	0.763017	1
4	1	0.600920	1
5	1	0.568105	1
6	0	0.681206	1
7	1	0.713121	1
8	0	0.756291	1
9	1	0.758318	1

```
In [40]: from sklearn import metrics
```

In [41]: #Creating confusion matrix.

cm = metrics.confusion_matrix(y_pred_final.wasShared, y_pred_final.Predicted)

In [42]: cm

In [43]: #showing the overall accuracy of the model.
metrics.accuracy_score(y_pred_final.wasShared, y_pred_final.Predicted)

Out[43]: 0.6862283504287876

In [44]: #A model was built using Logistic Regression to predict if the content was shared or not.

#All the independent variables were affecting if the content will be shared or not except 'Positive_words' column as it's

#p-value was higher.

#From the logistic regression model I can say that the number of words in the content (length_content), the number of images in the content (images), the number of videos in the content (videos), the number of keywords (keywords), if the content was read on a weekend (onWeekend), a measure of the relevancy of the content (relevancy), a measure of subjectivity in the title (title_subjectivity), a measure of sentiments in the title (title_sentiments) are the factors that can determine whether a new content will be shared or not.

#For one-unit change in these factors(the log odds ratio of wasShared (measure if the content was shared) will be increased.

#The Accuracy is 0.686(68.6%) which means the model is capable of classifying instances correctly in 68.6% cases.

In []:					
In []:	:				
In []:	:				