KINCTIC THEORY OF

Gases N

Ideal Gas Assumptions:

1 No. of particles is very lays.

2 The volume V is much larger than actual volume of gas.

3 Bynamics of particles is governed by Newton's cawof

Is Gas particles interact w/ anything via elastic collisions

5 particles are identical and indistinguishable.

A Absolute temperature

PV= nRT

MRT = 2/3 NA (1/2 m v-2)

ner; n= N

when; k = baltzmann's constant

k. P/NA = 1.38 × 10-23 J/k

ROOT Mean square speed:

$$\frac{1}{2} \sqrt{\frac{3kT}{m}}$$

Vms =
$$\sqrt{\frac{3kT}{m}} = \sqrt{\frac{3P}{M}} = \sqrt{\frac{3P}{9m}}$$

Mean or Average Speed:

VRMS>VAV> VMP

Vav =
$$\sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8R7}{\pi M}} = \sqrt{\frac{8P}{\pi f}}$$

MOST Probable speed:

$$V_{mp} = \int \frac{2kT}{m} = \int \frac{2P}{9}$$

Mean Free Path. #

The particles of gas undergoe path of a single gas molecule u paths. The mean free path is t blu two successive collisions.

$$\lambda = \frac{kT}{\sqrt{2}\pi d^2 f}$$
or

* near free pathway: I Distance blu two siccessive

Different forms of Ideal Gas eq:

PV2 nRT

THBUTION of speed. xwell-boltzmann

A Molecules travelling at very high or very I low speed an negligible.

> 7 Parobabilitie Distribution (ugue.

A

Ca

pressure Equation.

Multipy÷ RNS by 2

495 Law.

Internal energy of Gas:

$$U^{2} f \left[\frac{m}{2} RT \right]$$

$$U^{2} f nRT$$

[Crms 2 Vums]

+ gas mixture:

$$\frac{n_1M_1+n_2M_2}{n_1+n_2}$$

3 specific heat at constant volume.

$$C_{v mix} = \frac{n_1(v_1 + n_2)C_{v_2}}{n_1 + n_2}$$

3 Ep: Cpmix 2 n, Cp, + n2 Cp2

n, + n2 Cp2

4 Y mixture (Adiabatic Constant):

Ymix 2 Cpnix

Cymix

$$\frac{n_1 + n_2}{2m_1} = \frac{n_1}{k_1 - 1} + \frac{n_2}{k_2 - 1}$$

: relaxation 71me:

4 7 ime between two successive collision.

- Denoted by (I).

T & L & L

* specific heat capacity of solid = 3 R

"i " " liquid = 9 R (water)

OSCILLATIONS

(SIMPLE MARMONIC MOHON)

pesiodic motn:

I wnien repeat itself over & over again after a regular interval of time.

Oscillatory or vibratory met n: #

I Body moves to Ex pro soo back & forth supertedly about a fixed point.

Y ailia Marmonie mot n.

narmonic mota

- can be expressed in single haymonic junction (i.e. sine or cosine)

Example:

 $Y = A \sin \omega t$ uz A cos Wt

non-Harmonic moth

-) cannot be expressed in tems of single harmonic noth.

Example:

Y = A sin 60+ + bsin2607

Important teams:

(i) Amplitude: maximum displacement from mean posith.

(2) Folguenay: no. of periodic mot " executed by body per second. ->)

- SI uni 1: Merte (Mz)

-1 V= 1 -1 INZ = 1eps = 15-1

(3) Time period: Least interval of time after which periodic moto repeat itself.

- Denoted by T

est unit: second.

(4) Angular Frequency: Equal to product of frequency of Ju body with Jactor 201.

(W2 271) 2 272 T

Stunit: MZ or mad/see

| Had = 180,000

Depret 2 180 x red

SIMPLE I special type of periodic moth, in which a particle MORNIONO moves to ze pro supe atedly about a mean posith. Restoring & Displacement of particle from ~ Extreme mean posit". Extrem Mean F = -ku :. Kz force constant of SI unit; Newton 2 N/m - pimensions; [MT-2] # If the particle is oscillating on a small att c of circular path, then for angular SMM: Restoring & - Angular
displacement T x -0 # PHOSE OF SUM: - Phase at any instant is a physical egty, which completely expresses the posith and discetion of mot ". (at 420 # Displacement when object starts from mean posit ": y z Asinwt # Displacement when object starts from extreme posithis n 2 A coscel A A - amplitude & cor anywhen velocity. * 4/2 = displacement.

PHaser | vector diagram:

of particle in term of phase.

Velouty:

$$\begin{cases}
 \sin^2 \cos t + \cos^2 \cos t = 1 \\
 \cos^2 \cos t = 1 - \sin^2 \cos t \\
 -\cos \cos t = \sqrt{1 - \sin^2 \cos t}
 \end{cases}$$

$$7 \text{ Vmax} = (0) \sqrt{A^2-0}$$
 $\text{Vmax} = (0) \sqrt{A^2-0}$
 $\text{Vmax} = (0) \sqrt{A^2-0}$
 mean posith

$$\Rightarrow$$
 V min 2 (e) $\sqrt{A^2 - A^2}$ [$\gamma \in A(max)$, $\gamma \in A(max)$]

V min = 0

A celebration:

$$a = \frac{dU}{dt}$$

$$a = \frac{d(A \omega) \cos(\omega t)}{dt}$$

$$a = -A \omega \sin(\omega t) \cdot \omega$$

$$\alpha = -A \omega^{2} \sin(\omega t)$$

$$\alpha^{2} = -\omega^{2} y$$

phase difference.

Y ty object nettherstands from mean or extreme.

$$Y = A \sin(\omega t - \phi)$$

[max]

$$(max)$$
 (max)
 (max)

$$a = \frac{2\pi}{T}^{L}$$

OR

T & mars/intrafa

- Consexuation of Energy:

T.E =
$$k \cdot \epsilon + p \cdot \epsilon$$
.

= $\frac{1}{2} m \omega (A^2 - y^2) + \frac{1}{2} m \omega^2 y^2$

= $\frac{1}{2} m \omega y^2 (A^2 - y^2 + y^2)$

= $\frac{1}{2} m \omega A^2$

TE at extreme:
$$= UE + PE$$

$$= 0 + \int m (\omega)^2 A^2$$

$$= \int m (\omega)^2 A^2$$

a) Impostant relations:

1. Position:

2. velocity:

3. Acceleration:

4. ENLTGY:

K.E.

P.E.

7.E:

> simple pendulum:

Rope: Inextensible massless

(Restoring

Time period:
$$2\pi \sqrt{\frac{\text{Disp.}}{\text{Acce.}}}$$

$$T = 2\pi \sqrt{\frac{\text{u}}{a}}$$

pendulum in lift:

upwards

Down wards

 $T = 2\pi \sqrt{\frac{2}{g-a}}$