MATH 611 (DUE 11/20)

HIDENORI SHINOHARA

Exercise. (Problem 1)

Exercise. (Problem 28 (a)) Let A, B be the Mobius strip and a torus with a small neighborhood around them so the strip and torus are contained in A and B. For any $n \geq 3$, the exact sequence $H_n(A \cap B) \to H_n(A) \oplus H_n(B) \to H_n(X) \to H_{n-1}(A \cap B)$ implies that $H_n(X) \cong H_n(A) \oplus H_n(B) = 0 \oplus 0 = 0$ because the intersection $A \cap B$ is homotopic to S^1 , so $H_n(A \cap B) = H_{n-1}(A \cap B) = 0$. $H_0(X) = 0$

We will examine the LES

$$\tilde{H}_2(A \cap B) \to \tilde{H}_2(A) \oplus \tilde{H}_2(B) \xrightarrow{f_1} \tilde{H}_2(X) \xrightarrow{f_2} \tilde{H}_1(A \cap B) \xrightarrow{f_3} \tilde{H}_1(A) \oplus \tilde{H}_1(B) \xrightarrow{f_4} \tilde{H}_1(X) \to \tilde{H}_0(A \cap B).$$

- Sine $\tilde{H}_2(A \cap B) = 0$, so f_1 is injective.
- $\tilde{H}_1(A \cap B) = \mathbb{Z}$, and $f_3(1) = (2, (1, 0))$ because the intersection goes around the mobius strip twice while it only goes around the torus once. Then f_3 is injective, so $\text{Im}(f_2) = \text{ker}(f_3) = 0$. This implies that $(f_1) = \text{ker}(f_2) = H_2$, so f_1 is surjective.

Therefore, f_1 is bijective, so $H_2(X) = \tilde{H}_2(X) = \tilde{H}_2(A) \oplus \tilde{H}_2(B) = 0 \oplus \mathbb{Z} = \mathbb{Z}$. Finally, f_4 's surjectivity implies that

$$\tilde{H}_1(X) \cong \tilde{H}_1(A) \oplus \tilde{H}_1(B) / \ker(f_4)
= \mathbb{Z} \oplus \mathbb{Z}^2 / \langle (2, (1, 0)) \rangle
\cong \langle a, b, c \rangle / \langle 2a + b \rangle
\cong \langle a, b, c | 2a + b \rangle
\cong \langle a, -2a, c \rangle
\cong \langle a, c \rangle = \mathbb{Z} \oplus \mathbb{Z}.$$

Thus $H_1(X) = \mathbb{Z} \oplus \mathbb{Z}$.

Exercise. (Problem 28 (b)) Let A, B be the Mobius strip and $\mathbb{R}P^2$ with a small neighborhood around them so the strip and $\mathbb{R}P^2$ are contained in A and B. For any $n \geq 3$, the exact sequence $H_n(A \cap B) \to H_n(A) \oplus H_n(B) \to H_n(X) \to H_{n-1}(A \cap B)$ implies that $H_n(X) \cong H_n(A) \oplus H_n(B) = 0 \oplus 0 = 0$ because the intersection $A \cap B$ is homotopic to S^1 , so $H_n(A \cap B) = H_{n-1}(A \cap B) = 0$. Since $X = A \cup B$ has one path component, $H_0(X) = \mathbb{Z}$. We will consider the LES

$$\tilde{H}_2(A) \oplus \tilde{H}_2(B) \xrightarrow{f_1} \tilde{H}_2(X) \xrightarrow{f_2} \tilde{H}_1(A \cap B) \xrightarrow{f_3} \tilde{H}_1(A) \oplus \tilde{H}_1(B) \xrightarrow{f_4} \tilde{H}_1(X) \to \tilde{H}_0(A \cap B).$$

 $\tilde{H}_1(A \cap B) = \mathbb{Z}$, and f_3 maps 1 to (2,1) because the generator wraps around the Mobius strip twice and the $\mathbb{R}P^2$ once. Then f_3 is injective, so f_2 is the zero map. In other words, $\ker(f_2) = \tilde{H}_2(X)$, so f_1 is surjective. Since $\tilde{H}_2(A) \oplus \tilde{H}_2(B) = 0$, $\tilde{H}_2(X) = 0$. Thus $H_2(X) = 0$.

By the first isomorphism theorem and exactness,

$$\tilde{H}_1(X) = \tilde{H}_1(A) \oplus \tilde{H}_1(B) / \ker(f_4)$$

$$= (\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) / \langle (2,1) \rangle$$

$$\cong \langle a, b \mid 2b \rangle / \langle 2a + b \rangle$$

$$= \langle a, b \mid 2b, 2a + b \rangle$$

$$= \langle a, -2a \mid 2(-2a) \rangle$$

$$= \langle a \mid 4a \rangle$$

$$= \mathbb{Z}_4.$$

Therefore, $H_1(X) = \mathbb{Z}_4$.

Exercise. (Problem 29)