Complex Variables - Assignment 2

Baoqi Zhang - S2067576

January 20, 2024

Workshop 2

Question 5

 (\Rightarrow) Let $a_0 \in \mathbb{C}$ be a non-zero complex number, and suppose $U \subseteq \mathbb{C}$ be an open set. Since the set U is open, then by definition 1.2.2, for all $u_0 \in U$, there exists $\epsilon > 0$ such that $D_{\epsilon}(u_0) \subseteq U$.

Consider the set $a_0U = \{a_0u : u \in U\}$. For all $u_0 \in U$, $a_0u_0 \in a_0U$, $D_{\epsilon}(u_0)$ is mapped to $D_{\epsilon|a_0|}(a_0u_0)$ under the mapping $f : u \to a_0u$. i.e. $D_{\epsilon}(u_0) = \{u_0 \in U : |u - u_0| < \epsilon\} = \{|a_0||u - u_0| < |a_0|\epsilon\} = \{|a_0u - a_0zu_0| < |a_0|\epsilon\} = D_{\epsilon|a_0|}(a_0u_0)$. Since $a_0 \neq 0$ and $\epsilon > 0$, we have $\epsilon|a_0| > 0$. Thus $D_{\epsilon|a_0|}(a_0u_0) \subseteq a_0U$. Hence a_0U is open.

(\Leftarrow)Conversely, if the set $a_0U=\{a_0u:u\in U\}$ is open, then by definition 1.2.2, for all $a_0u_0\in a_0U$, there exists an $\epsilon>0$ such that $D_\epsilon(a_0u_0)\subseteq a_0U$, i.e. $D_\epsilon(a_0u_0)=\{a_0u_0\in a_0U:|a_0u-a_0u_0|<\epsilon\}=\{u_0\in U:\frac{|a_0||u-u_0|}{|a_0|}<\frac{\epsilon}{|a_0|}\}=\{u_0\in U:|u-u_0|<\frac{\epsilon}{|a_0|}\}=D_{\epsilon/a_0}(u_0).$ Thus for all $z_0\in U$, there exists an $\epsilon>0$, such that $D_{\epsilon/|a_0|}(u_0)\subseteq U$. Hence $U\subseteq \mathbb{C}$ is open.

Hence, we proved that $U \subseteq \mathbb{C}$ is open if and only if the set $a_0U = \{a_0u : u \in U\}$ is open.

Question 6

We should first prove that $U = \mathbb{C} \setminus \{z = re^{i0} : r \geq 0\}$ is open, let $z_0 = x_0 + iy_0 \in U$. Set $\epsilon = |y_0|$, such that $\{z_0 \in U : |z - z_0| < \epsilon\} = D_{\epsilon}(z_0) = D_{|y_0|}(z_0)$

$$|z - z_0| = |x + iy - x_0 - iy_0| < |y_0|$$

$$\sqrt{(x - x_0)^2 + (y - y_0)^2} < |y_0|$$

$$(x - x_0)^2 + (y - y_0)^2 < y_0^2$$

From above, we can see that $y \neq 0$, or the inequality does not hold, since $(x - x_0)^2 > 0$. So the open ball does not intersect or touch the positive real axis, so $z \in U$, and $D_{|y_0|}(z_0) = D_{\epsilon}(z_0) \subseteq D_{\phi}$.

By question 5, we have $U \subseteq \mathbb{C}$ is open if and only if the set $a_0U = \{a_0u : u \in U\}$, which is open, now set $a_0 = e^{i\phi}$, then $a_0U = \{z = re^{i\phi} : r \geq 0\}$, so the cut plane $D_{\phi} = \mathbb{C} \setminus \{z = re^{i0} : r \geq 0\}$ is open.

Workshop 3

Question 5

Let $z = x + iy \in \mathbb{C}$, so Re(z) = x and Im(z) = y. Then $f(z) = \sqrt[3]{|Re(z)|^2 Im(z)|} = \sqrt[3]{|x^2y|} = \sqrt[3]{x^2|y|}$.

Suppose f = u + iv, then $u = \sqrt[3]{x^2|y|}$ and v = 0. Applying the partial derivatives of u and v with respect to x and y, and at $z_0 = 0$, we have

$$\frac{\partial u}{\partial x}(z_0) = \frac{\partial u}{\partial x}(0,0) \bigg|_{x=0} = \lim_{x\to 0} \frac{\partial u}{\partial x}(0,0) = \lim_{x\to 0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{x\to 0} \frac{\sqrt[3]{x^2|y|} - \sqrt[3]{0}}{x - 0} = 0$$

$$\left. \frac{\partial u}{\partial y}(z_0) = \frac{\partial u}{\partial y}(0,0) \right|_{x=0} = \lim_{y\to 0} \frac{\partial u}{\partial y}(0,0) = \lim_{y\to 0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{y\to 0} \frac{\sqrt[3]{x^2|y|} - \sqrt[3]{0}}{y - 0} = 0$$

and,

$$\frac{\partial v}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0) = 0$$

we can conclude that

$$\frac{\partial u}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0) = 0 \ ; \frac{\partial v}{\partial x}(z_0) = -\frac{\partial u}{\partial y}(z_0) = 0$$

which satisfies the Cauchy-Riemann equations.

However, f = u(x, y) + iv(x, y) is not differentiable at z = 0, where $u(x, y) = \sqrt[3]{|(Re(z))^2 Im(z)|}$ and v(x, y) = 0. To see this, consider the partial derivative of u(x, y) with respect to x under y=x, and let z = x + iy, then z = x + xi:

$$\frac{\partial u}{\partial x}(0,0) = \lim_{x \to 0} \frac{u(z) - u(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt[3]{|(Re(z))^2 Im(z)|} - 0}{x} = \lim_{x \to 0} \frac{\sqrt[3]{x^2 |x|}}{x}$$

If x is negative, then |x| = -x, and thus $\frac{\partial u}{\partial x}(0,0) = \lim_{x\to 0} \frac{\sqrt[3]{x^2|x|}}{-x} = -1$

If x is positive, then |x| = x, and thus $\frac{\partial u}{\partial x}(0,0) = \lim_{x\to 0} \frac{\sqrt[3]{x^2|x|}}{x} = 1$

From above, we can see that the limits are different, hence f is not differentiable at 0.

Therefore, f satisfies the Cauchy-Riemann equations at z=0, but it is not differentiable at 0.

Question 6

Given the imaginary part of a holomorphic function f(u, v) is

$$v(x,y) = ax^{3} + bx^{2}y + cxy^{2} + dy^{3}$$

so the partial derivative with respect to x and y are

$$\frac{\partial v}{\partial x} = 3ax^2 + 2bxy + cy^2; \quad \frac{\partial^2 v}{\partial x^2} = 6ax + 2by$$
$$\frac{\partial v}{\partial y} = bx^2 + 2cxy + 3dy^2; \quad \frac{\partial^2 v}{\partial y^2} = 2cx + 6dy$$

By lemma 1.4.14, if the function f = u + iv is holomorphic on \mathbb{C} , then u and v are harmonic. Since v is harmonic, by definition 1.4.13, v satisfies the Laplace equation, i.e

$$\frac{\partial^2 v}{\partial x^2}(x,y) + \frac{\partial^2 v}{\partial y^2}(x,y) = 0$$

Then we have

$$6ax + 2by + 2cx + 6dy = 0$$

$$\Rightarrow (6a + 2c)x + (2b + 6d)y = 0$$

$$\Rightarrow c = -3a \quad and \quad b = -3d$$

so v(x,y) can be rewritten as $v(x,y) = ax^3 - 3dx^2y - 3axy^2 + dy^3$.

Given that f is holomporphic, then it must be differentiable, thus f holds the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y) = -3dx^2 - 6axy + 3dy^2$$
$$\frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y) = -3ax^2 + 6dxy + 3ay^2$$

Then we integrate $\frac{\partial u}{\partial x}(x,y)$ with respect to x, we have

$$-dx^3 - 3ax^2y + 3dx^2y + \phi(x)$$
, for some function $\phi: \mathbb{R} \to \mathbb{R}$

and we integrate $\frac{\partial u}{\partial y}(x,y)$ with respect to y, we have

$$-3ax^2y + 3dxy^2 + ay^3 + \psi(x)$$
, for some function $\psi : \mathbb{R} \to \mathbb{R}$

so u can be written as $-dx^3 - 3ax^2 + 3dxy^2 + ay^3 + \alpha$, where $\alpha \in \mathbb{R}$ is a constant. Hence $f(x+iy) = (-dx^3 - 3ax^2y + 3dxy^2 + ay^3 + \alpha) + i(ax^3 - 3dx^2y - 3axy^2 + dy^3)$ is the constructed holomorphic function.