Machine Learning for Fluid Mechanics Features and Autoencoders

Bernd Noack

HIT, China & TU Berlin

Overview

1. Introduction
From da Vinci to LLE
2. Proximity map
3. Locally Linear Embedding
Autoencoding on manifolds / The future of ROR
4. Proper Orthogonal Decomposition
4. Proper Orthogonal Decomposition Autoencoding on subspace with minimum residuum
Autoencoding on subspace with minimum residuum
Autoencoding on subspace with minimum residuum 5. Other modal expansions
Autoencoding on subspace with minimum residuum 5. Other modal expansions

How does Cluster-based ROM work?

Time-resolved snapshot data

Cluster analysis

Low number of representative states

Markov process

Dynamic model for the cluster transitions

Further analysis of transition processes: Cluster sociology (cliques, hubs), dynamically important clusters, etc.

How does CROM work?

K-means algorithm (see: Loyd, 1957 & 1982):

1. Initialize K clusters (randomly, Kmeans++)

- Initialize K clusters (randomly, Kmeans++)
 Do
- 2. Assign objects to closest cluster

- Initialize K clusters (randomly, Kmeans++)
 Do
- 2. Assign objects to closest cluster
- 3. Compute new mean of objects in clusters until clusters are converged.

- Initialize K clusters (randomly, Kmeans++)
 Do
- 2. Assign objects to closest cluster
- 3. Compute new mean of objects in clusters until clusters are converged.

- Initialize K clusters (randomly, Kmeans++)
 Do
- 2. Assign objects to closest cluster
- 3. Compute new mean of objects in clusters until clusters are converged.

K-means algorithm (see: Loyd, 1957 & 1982):

- Initialize K clusters (randomly, Kmeans++)
- 2. Assign objects to closest cluster
- 3. Compute new mean of objects in clusters until clusters are converged.

Optimization problem:

$$J\left(\boldsymbol{c}_{1},\ldots,\boldsymbol{c}_{K}\right)=\sum_{k=1}^{K}\sum_{\boldsymbol{v}^{m}\in\mathscr{C}_{k}}\left\|\boldsymbol{v}^{m}-\boldsymbol{c}_{k}\right\|_{\varOmega}^{2}$$

$$\boldsymbol{c}_1^{opt}, \ldots, \boldsymbol{c}_K^{opt} = \operatorname*{argmin}_{\boldsymbol{c}_1, \ldots, \boldsymbol{c}_K} J(\boldsymbol{c}_1, \ldots, \boldsymbol{c}_K)$$

Issues:

- Cluster number needs to be defined in advance (tests for good choice)
- Converges to local optimum
- Clustering effected by initial choice of centroids
- Definition of distance

Clustering of mixing layer data

K-means applied to POD coefficient vectors for K=10, M=2000 snapshots

- Compression of all snapshots into a few modes
- Uncertainty due to cluster size

How does CROM work?

• Discrete states with probabilities $\ \, {m p}^l = \left[p_1^l, \dots, p_K^l\right]^T \quad \sum_{k=1}^K p_k^l = 1$

 Transition probabilities to move from one state to another depends on current state

$$\boldsymbol{p}^{l+1} = P \, \boldsymbol{p}^l$$

• Transition matrix: $P_{jk} = \frac{n_{jk}}{n_k}$

• Example:

• Transition matrix: $P_{jk} = \frac{n_{jk}}{n_k}$

$$P_{21} = \frac{3}{2}$$

• Transition matrix: $P_{jk} = \frac{n_{jk}}{n_k}$

$$P_{21} = \frac{3}{6}$$

• Transition matrix: $P_{jk} = \frac{n_{jk}}{n_k}$

$$P_{21} = \frac{3}{6}$$
 $P_{11} = \frac{2}{6}$

$$P_{11} = \frac{2}{6}$$

• Transition matrix: $P_{jk} = \frac{n_{jk}}{n_k}$

$$P_{21} = \frac{3}{6}$$
 $P_{11} = \frac{2}{6}$
 $P_{31} = \frac{1}{6}$

$$P_{11} = \frac{2}{6}$$

$$P_{31} = \frac{1}{6}$$

• Transition matrix: $P_{jk} = \frac{n_{jk}}{n_k}$

$$P_{21} = \frac{3}{6}$$
 $P_{11} = \frac{2}{6}$

$$P_{11} = \frac{2}{6}$$

$$P_{31} = \frac{1}{6}$$
 $P_{j2} = 0$
 $P_{j3} = 0$

$$P_{i2} = 0$$

$$P_{i3}=0$$

CROM results of a mixing layer

Cluster transition matrix

Transition probability

$$P_{jk} = Prob(c_j|c_k)$$

to move to c_i if the current state is c_k

CROM results of a mixing layer

Cluster transition matrix

Transition probability

$$P_{jk} = Prob(c_j | c_k)$$

move to c_j if the

to move to \mathbf{c}_{j} if the current state is \boldsymbol{c}_k

Two cluster groups with oscillatory behavior

CROM results of a mixing layer

Cluster transition matrix

Transition probability

$$P_{jk}=Prob(c_j|c_k)$$
 to move to c_j if the current state is c_k

Two cluster groups with oscillatory behavior.

Flipper cluster c1 connects The two groups.

CROM of a mixing layer

CROM of a mixing layer

- Most clusters are 'phase bins'
- Centroids are aligned with the dynamical evolution of the flow
- Identification of two shedding regimes
- Flipper cluster acts as a switch between both shedding regimes

Conclusions

- Data-driven approach to extract physical mechanisms in an unsupervised manner
- Some tuning parameters:
 - cluster number
 - time step of data
 - distance metric
- Cluster sociology
- Linear model taking into account nonlinear actuation dynamics

CROM vs. POD Galerkin models

Machine Learning for Fluid Mechanics Applications → Autoencoders

Bernd Noack

HIT, China & TU Berlin

Overview

Α.	Recursive DMD
	Combining the advantages of POD+DMD
B.	Feature-based manifold modeling
	The case for manifolds as opposed to POD
C.	Metric of attractor overlap

Overview

A. Recursive DMD	
	1D
B. Feature-based manifold modeling	
The case for manifolds as opposed to PC	D
C. Metric of attractor overlap	
attractor da	ta

Alternatives to POD

- (1) Dynamic Mode Decomposition (DMD)

 Rowley+ 2009 JFM, Schmid 2010 JFM
 - ID of stability modes near steady solution; Fourier modes on attractor
- (2) Recursive DMD (rDMD) Noack+ 2016 JFM

 Fourier-like modes with low residual
- (3) Extended POD (EPOD)

 Hoarau 2006 PF
 - Linearly links flow to sensor data
- (4) Spectral POD (SPOD)

 Sieber 2016 JFM
 - Interpolation between POD and Fourier modes
- (5) Spectral POD (SPOD) $II \equiv Towne+ 2018 JFM$
 - Space and time-dependent modes
- (6) Convective POD (CPOD) = 2018 AFCC Schulze
 - POD-like modes for convection
- ... Many more for many more purposes

POD—Recursive algorithm

Step 0	Snapshot data
Step 1	$m{u}^m(m{x}) := m{u}(m{x}, t^m)$, $t^m = m \Delta t$, $m = 1, \dots, M$ Compute mean
	$oldsymbol{u}_0(oldsymbol{x}) := \langle oldsymbol{u}^m(oldsymbol{x}) angle_M := rac{1}{M} \sum\limits_{m=1}^M oldsymbol{u}^m(oldsymbol{x})$
Step 2	Compute fluctuation $m-1$
Step 3	$egin{aligned} v^m(x) &:= u^m(x) - u_0(x) \ ext{Compute POD mode} & u_1(x) \end{aligned}$
	-most energetic direction
	$\left\langle (\boldsymbol{v}^m(\boldsymbol{x}),\boldsymbol{u}_1(\boldsymbol{x}))_{\Omega} ^2 \right\rangle_M \stackrel{!}{=} \max$
Step 4	Remove orthogonal component w.r.t $u_1(x)$ $v^m(x) \leftarrow v^m(x) - a_1^m u_1(x)$ where $a_1^m := (v^m, u_1)_{\Omega}$
Step 5	Repeat Step 3 & 4 for the <i>i</i> th POD mode
	$oldsymbol{u}_i(oldsymbol{x})$
$i = 1, \dots, N$	

DMD—Basic idea ■ Rowley+ 2009 JFM, Schmid 2010 JFM

Step 0 Snapshot data—Now time-resolved, i.e. with small Δt

$$u^{m}(x) := u(x, t^{m}), t^{m} = m\Delta t, m = 1, ..., M$$

Step 1 **Identify linear map A**

$$u^{m+1} = Au^m, m = 1, \dots, M-1$$

Step 2 Compute eigenmodes of A

—These are the DMD modes!

$$\lambda_i u_i = A u_i, i = 1, \dots, M - 1$$

- Comment 1 Near steady solution/linear growth (CFD)
 - ⇒ Some DMD modes are stability modes
- Comment 2 On attractor / in experiment
 - —statistically representative data
 - **⇒ All DMD modes become Fourier modes**

Recursive DMD (rDMD)—Algorithm | Noack, Stankiewicz, Morzyński & Schmid 2016 JFM

Step 0	Snapshot data—Now time resolved, small Δt
Step 1	$m{u}^m(m{x}) := m{u}(m{x}, t^m)$, $t^m = m \Delta t$, $m = 1, \dots, M$ Compute mean
	$oldsymbol{u}_0(oldsymbol{x}) := \langle oldsymbol{u}^m(oldsymbol{x}) angle_M := rac{1}{M} \sum\limits_{m=1}^M oldsymbol{u}^m(oldsymbol{x})$
Step 2	Compute fluctuation
Step 3	$oldsymbol{v}^m(oldsymbol{x}) := oldsymbol{u}^m(oldsymbol{x}) - oldsymbol{u}_0(oldsymbol{x})$ Compute dominant DMD mode $oldsymbol{u}_1(oldsymbol{x})$
	From all DMD modes, take the one which re-
Step 4	solves the largest fluctuation level. Remove orthogonal component w.r.t $u_1(x)$ $v^m(x) \leftarrow v^m(x) - a_1^m u_1(x)$ where $a_1^m := (v^m, u_1)_{\Omega}$
Step 5	Repeat Step 3, 4 for ith rDMD mode $u_i(x)$
$i = 2, \ldots, N$	

Recursive DMD—Wake transient

■ Noack, Stankiewitz, Morzyński & Schmid (2016) JFM

POD modes

■ Noack, Stankiewitz, Morzyński & Schmid (2016) JFM

POD amplitudes

DMD modes

DMD amplitudes

Recursive DMD—Modes

Recursive DMD—Amplitudes

Recursive DMD—Residuals

Overview

A. Recursive DMD
Combining the advantages of POD+DMD
B. Feature-based manifold modeling
The case for manifolds as opposed to POD
C. Metric of attractor overlap
Comparing attractor data

Feature-based Manifold Model (FeMM)

■ J.C. Loiseau, B.R. Noack & S.L. Brunton 2018 JFM

2D Cylinder wake transient (Re = 100)

🔳 J.C. Loiseau, B.R. Noack & S.L. Brunton 2018 JFM

(1) Sensor signal $s = c_L$

(2) Velocity field u(x,t) (Visualization of vorticity fluctuation)

Feature-based Manifold Model (FeMM)

🔳 J.C. Loiseau, B.R. Noack & S.L. Brunton 2018 JFM

2D Cylinder wake transient steady→periodic

(2) SINDy | Brunton et al. 2016 PNAS Black-box model

$$\frac{da_1}{dt} = 1.12a_2$$

$$\frac{da_2}{dt} = -1.12a_1 + 0.2(1 - a_1^2 - a_2^2)a_2.$$

- (3) Local mapping $a \mapsto u(x)$ Gray-box model with (2)
- (4) EXTRA $u(x,t) = u_s(x) + \sum_i a_i(t)u_i(x)$ Galerkin model

Feature-based Manifold Model II

🔳 J.C. Loiseau, B.R. Noack & S.L. Brunton 2018 JFM

2D Cylinder wake transient steady→periodic

t = 50.00

t = 125.00

(a) Direct numerical simulation

(b) Local linear mapping

(c) Galerkin expansion

Feature-based Manifold Model vs POD

🔳 J.C. Loiseau, B.R. Noack & S.L. Brunton 2018 JFM

2D Cylinder wake transient steady→periodic

The 25 POD mode expansion is orders of magnitude worse than the 2-dimensional feature-based manifold!

Overview

A. Recursive DMD
Combining the advantages of POD+DMD
P. Fosture based manifold modeling
B. Feature-based manifold modeling
The case for manifolds as opposed to POD
C. Metric of attractor overlap
Comparing attractor data

Metric of attractor overlap (MAO)

R. Ishar, E. Kaiser, M. Morzynski, M. Albers, P. Meysonnat, W. Schröder 2018 JFM (in revision)

Metric of attractor overlap (MAO)

 \equiv R. Ishar, E. Kaiser, M. Morzynski, M. Albers, P. Meysonnat, W. Schröder 2018 JFM (in revision)

(0) Snapshots of attractor \mathcal{A}, \mathcal{B} : $u^m, m = 1, ..., M$

$$\chi_A^m = \begin{cases} 1 & \text{for } \mathbf{u}^m \in \mathcal{A} \\ 0 & \text{otherwise} \end{cases}$$

$$\chi_A^m = \begin{cases} 1 & \text{for } \boldsymbol{u}^m \in \mathcal{A} \\ 0 & \text{otherwise} \end{cases} \quad M_A := \sum_{m=1}^M \chi_A^m \quad \text{analog var. for } \mathcal{B}$$

(1) Snapshot-based metric:

$$D(\mathcal{A}, \mathcal{B}) = \frac{1}{M_A} \sum \chi_A^m D(\mathbf{u}^m, \mathcal{B}) + \frac{1}{M_B} \sum \chi_B^m D(\mathbf{u}^m, \mathcal{A})$$

(2) Clustering: M snapshots u^m in K centroids c_k ;

 $\xi_k^m = 1 \leftrightarrow u^m$ belongs to c_k ; otherwise $\xi_k^m = 0$.

- (3) Overlap clusters $A \cap B$: $\xi_k^m = \chi_A^m = \chi_B^m = 1$
- (4) Disjoint clusters A, \mathcal{B} : $\xi_k^m = 1$ and $\chi_A^m + \chi_B^m = 1$
- (5) Proximity map for many attractos: $A^l \mapsto \gamma^l \in R^2$.

Drag reduction LES data—Made in Aachen

📃 R. Ishar, E. Kaiser, M. Morzynski, M. Albers, P. Meysonnat, W. Schröder 2019 JFM

$$Re_{\theta} = 1000$$

Ma = 0.2

Analysis domain

- $x/\delta_{\theta} \in [50, 100]$,
- $y/\delta_{\theta} \in [0, 15]$
- $z/\delta_{ heta} \in [0,21]$ (1000+ units)

$$y = A\cos 2\pi \left[\frac{t}{T} - \frac{z}{\lambda_z}\right]$$

- $A^+ \in [0,78]$
- $T^+ \in [20, 120]$
- $\lambda^+ \in [200, 3000]$

LES drag reduction study

🔳 R. Ishar, E. Kaiser, M. Morzynski, M. Albers, P. Meysonnat, W. Schröder 2019 JFM

Contour plot of the λ_2 -criterion (Jeong & Hussain 1995), coloured by the instantaneous streamwise velocity, for three turbulent boundary layer flows; non-actuated reference case N_1 , actuated highest drag reduction case N_{24} , actuated lowest drag reduction case N_2 .

LES drag reduction study

🔳 R. Ishar, E. Kaiser, M. Morzynski, M. Albers, P. Meysonnat, W. Schröder 2019 JFM

Illustration of the turbulent boundary layer flow: (left) non-actuated reference case N_1 , (center) actuated case with highest drag reduction N_{24} , and (right) actuated case with lowest drag reduction N_2 ; (top) contour plots of the instantaneous Cartesian velocity components u,v, and w in a y-z plane at $x/\theta \approx 65$; (bottom) time evolution of the instantaneous drag reduction rate Δc_d .

TBL Drag reduction — Clustering

 \equiv R. Ishar, E. Kaiser, M. Morzynski, M. Albers, P. Meysonnat, W. Schröder 2018 JFM (in revision)

50 clusters from 38 actuation cases

TBL drag reduction — Metric of Attractor Overlap

🔳 R. Ishar, E. Kaiser, M. Morzynski, M. Albers, P. Meysonnat, W. Schröder 2019 JFM

Metric of attractor overlap D(A,B) \sim average distance between attractors A and B

TBL drag reduction — Metric of Attractor Overlap

🔳 R. Ishar, E. Kaiser, M. Morzynski, M. Albers, P. Meysonnat, W. Schröder 2019 JFM

Interpretation of attractor proximity map

Attractor proximity map of the turbulent boundary layer simulations: (a) color-coded with drag reduction Δc_D ; (b) color-coded with wavelength λ^+ .