THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Program to Develop High Strength Aluminum Powder Metallurgy Products

Phase III -- Scale Up A

Final Report

Reported by: W. S. Cebulak
D. J. Truax
Alcoa Research Laboratories
Physical Metallurgy Division

Report for: January 21, 1971 to March 20, 1972

U. S. Army
Frankford Arsenal
Contract DAAA25-70-C0358

A Department of the Army Manufacturing Methods and Technology Project

September 29, 1972

1 8 NOV 1972

nochford area, aten. Smith - 1-3300 Philadelphia, 12. 19137

ALUMINUM COMPANY OF AMERICA

P. O. BOX 2970 · PITTSBURGH. PA. 15230

ALCOA TECHNICAL CENTER

September 29, 1972

U. S. ARMY
FRANKFORD ARSENAL
CONTRACT DAAA 25-70-C0358

PROGRAM TO DEVELOP HIGH STRENGTH ALUMINUM POWDER METALLURGY PRODUCTS

PHASE III - SCALE-UP A

FINAL REPORT

For the Period January 21, 1971 to March 20, 1972

W. S. Cebulak	<u>10-2-12-</u>	
W. S. Cebulak Project Engineer		
D. J. Truax	10-2-72	
D. J. Truax Project Engineer		
J. P. Sule!	11.3.72	
Project Supervisor		

FOREWORD

This report presents the results of investigations conducted under a Manufacturing Methods and Technology Contract with the U. S. Army, administered by Messrs Harold Markus and Donald H. Kleppinger at Frankford Arsenal. This contract was funded jointly by the Aviation Systems Command (AVSCOM), St. Louis; the Munitions Command (MUCOM), Dover, New Jersey; and the Production Equipment Agency (PEQUA), Rock Island, Illinois.

SYNOPSIS

Wrought products from 170-lb aluminum alloy powder compacts have been fabricated and evaluated against three combinations of properties. Product forms included extrusions, die forgings, hand forgings, plate and sheet. Properties of interest included strength, ductility, fracture toughness, stress-corrosion cracking resistance, exfoliation corrosion resistance, and smooth and notched specimen fatigue performance.

Alloy MA66 extrusions met Target B properties:

	Target B Properties	Measured Properties Al-8.0 Zn-2.5 Mg-1.0 Cu
Y.S ksi	85	84.2
K _{Ic} - ksi√in.	26	28
SCC - ksi	25	25
(sustained stress)		
Fatigue Limit - ksi	14	18.5
$(K_t = 3, R = 0.0)$		
Exfoliation	Immune	Resistant
Elongation - %	11	11.2

MA66 and MA67 extrusions approached the property objectives of Target A, with the exceptions noted:

		Measured Properties		
		MA67:	MA66:	
	Target A	Al-8.0 Zn-2.5 Mg-	Al-8.0 Zn-	
	Properties	1.0 Cu-1.6 Co	2.5 Mg-1.0 Cu	
Y.S ksi	95	95.9	94.3	
K _{IC} - ksi√in.	26	17	26	
SCC - ksi	25	25	<25	
(sustained stress)				
Fatigue Limit - ksi $(K_t = 3, R = 0.0)$	14	20	20	
Exfoliation	Resistant	Resistant	Resistant	
Elongation - %	11	7.8	8.0	

Properties quoted above were obtained on materials which were fabricated by the argon preheating method that was optimized in Phase I.⁴ Late in Phase III, dramatic improvements in longi-

tudinal and transverse fracture toughness (25 and 100% increases, respectively) were achieved by vacuum preheating and hot pressing (VAC process) prior to hot working. With the VAC process, a P/M high purity Al-8.0 $\rm Zn-2.5~Mg-1.0~Cu$ alloy achieved better transverse ductility and fracture toughness than ingot metallurgy (I/M) 7050 and 7075 extrusions.

Fine (15 μ M APD) powders with irregular shapes resulted in better ductility and toughness in extrusions than medium (23 μ M) and coarse (50 μ M). Extrusions made from irregular-shaped, air atomized powder were surerior to smooth, regular-shaped powders atomized with inert gases.

Fine, irregular-shaped powders resulted in better forgeability and better properties in hand forgings (open die) than coarse powders. Transverse toughness improved with increasing amounts of hot reduction. Forgeability and properties were improved by preheating compacts in argon or nitrogen instead of air.

Alloy MA67 achieved a superior combination of strength and SCC resistance in die forgings, plate and hand forgings compared to I/M 7050 and 7075 alloys, while all the P/M alloys tested were superior to 7075. However, the P/M wrought products fabricated without vacuum preheating and hot pressing were generally inferior in fracture toughness to 7075.

Table of Contents

				rage
FOREWORI	D	• • • •	• • • • • • • • • • • • • • • • • • • •	i
SYNOPSI	S	• • • •	• • • • • • • • • • • • • • • • • • • •	ii
INTRODUC	CTIO	N	•••••	1
OBJECTI	VES.	• • • •		
PRODUCT:	ION 2	AND 1	EVALUATION OF ALUMINUM P/M WROUGHT PRODUCTS	5
I.	Ext	rusio	ons	5
	A.	Prop	perties of Extrusions from 170-lb Compacts	5
		1.	Material Preparation	5
		2.	Results and Discussion	6
			Tensile Properties, 6. Toughness, 7. Stress-Corrosion Cracking, 8. Fatigue, 12. Exfoliation, 13.	
		3.	Conclusions	15
	В.		oying and Processing to Improve Fracture ghness	15
		1.	Increasing Amount of Hot Deformation	16
		2.	Decreasing Amounts of Constitutent	17
			Decreasing Insoluble Phases Containing Fe and Si, 17. Eliminating Insoluble and Undissolved Phases Containing Cu, 18. Decreasing Oxides by Using Coarser Powder, 19. Decreasing Oxides by Atomizing With Inert Gases, 20. Decreasing Oxides by Preventing Additional Oxidation, 23.	
		3.	Eliminating Entrapped Gases by Vacuum Preheating and Hot Compacting	24
		4.	Conclusions	27
	C.	One	nch Sensitivity	28

			Table of Contents (Continued)	Page
II.	Die	Forg	ings	29
	A.		perties of Die Forgings from 170-lb	29
		1.	Material Preparation	29
		2.	Results and Discussion	30
		3.	Conclusions	31
III.	Hane	d For	gings	33
	Α.		perties of Hand Forgings from 170-lb	33
		1.	Material Preparation	33
		2.	Results and Discussion	34
		3.	Conclusions	36
	В.	Opti	imization of Processing for Forgeability	36
		1.	Material Preparation	36
		2.	Results and Discussion	37
			Effect of Alloy, 37. Effect of Powder Size, 38. Effect of Preheat Atmosphere, 38. Effect of Preheat Temperature, 39. Effect of Preheat Time, 32. Effect of Hot Compacting Pressure, 39. Effect of Amount of Scalp, 39. Effect of Amount of Hot Work, 40.	
		3.	Conclusions	40
	C.		ect of Process Variations on Fracture ghness and Ductility of Hand Forgings	41
		1.	Material Preparation	41
		2.	Results and Discussion	41
			Effects of Alloys, 41. Effect of Powder Size, 42. Effect of Preheat Atmosphere, 42. Effect of Preheat Temperature, 45. Effect of Preheat Time, 45. Effect of Hot Compactin Pressure, 45. Effect of Amount of Hot Work, 46.	ng

The second of the second of the second secon

		Table of Contents (Continued)	Page
		3. Conclusions	46
IV.	Pl	ate	48
	Α.	Properties of 1.5" Thick Plate from 170-lb Compacts	48
		1. Material Preparation	48
		2. Results and Discussion	48
		3. Conclusions	49
V.	Sh	eet	51
	Α.	Properties of 0.090" Thick Sheet from 170-1b Compacts	51
		1. Material Preparation	51
		2. Results and Discussion	52
		3. Conclusions	54
SUMMARY	OF	CONCLUSIONS	55
REFEREN	CES	· · · · · · · · · · · · · · · · · · ·	59
TABLES			
FIGURES	;		
APPENDI	X		
DISTRIE	UTI	CON LIST	
GLOSSAF	ξY		
		List of Tables	
Table 1	. -	Target A	
Table 2	: -	Target B	
Table 3	. –	Target C	
Table 4	-	Strength and Stress-Corrosion Performance - Target vs Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co 2" Diameter Extra	A usions

- Table 5 Composition of Alloys for Scaled Up Product Evaluation
- Table 6 Fabrication of Hot Pressed 170-lb Compacts
- Table 7 Fabricating Conditions for Extrusion Billets
- Table 8 Powder Screen Analysis of Alloys for Scaled Up Production Evaluation
- Table 9 Effect of Alloy and Powder Size on Compact Green
 Density
- Table 10 Extrusions Conditions for 1/2" x 6-3/8" and Octagonal Bar Extrusions
- Table 11 Effect of Second-Step Aging Time on Longitudinal Properties of Octagonal Extrusions
- Table 13 Mechanical Properties of P/M and I/M 1/2"x6-3/8" Extruded Bar (Extrusion Ratio = 13.9:1)
- Table 14 Stress-Corrosion Performance of Octagonal Extrusions in 3.5% NaCl Alternate Immerstion Test - Federal Test Method 823
- Table 15 Notched Specimen (K₊=3) Axial Stress Fatigue Performance of Stagonal Extrusions (Stress Ratio = 0.0)
- Table 16 Smooth Specimen Axial Stress Fatigue Performance of Octagonal Extrusions (Stress Ratio = 0.0)
- Table 17 Exfoliation Corrosion Performance of 1/2" x 6-3/8"
 Extruded Bar in ExCO Test for 48 Hours Total Immersion
- Table 18 General Fabricating Procedure for P/M Extrusions
- Table 19 Composition of Alloys for Effect of Increasing Hot Reduction on Fracture Toughness
- Table 20 Powder Size and Screen Analyses of Alloy Powders for Effect of Increased Hot Reduction on Fracture Toughness
- Table 21 Compacting, Preheating and Extruding Conditions for Effect of Increasing Hot Deformation on Fracture Toughness
- Table 22 Longitudinal Tensile and Notched Tensile Properties of Al-6.5 Zn-2.3 Mg-1.5 Cu Alloy Extrusions

- Table 23 Longitudinal Tensile and Notched Tensile Properties of Al-5.9 Zn-2.1 Mg-2.3 Cu-0.1 Zr Alloy Extrusions
- Table 24 Longitudinal Tensile and Notched Tensile Properties of Al-9.0 Zn-2.5 Mq-1.0 Cu Extrusions
- Table 25 Effect of Extrusion Ratio on Longitudinal Strength,
 Ductility and Fracture Toughness of P/M Extrusions
- Table 26 Fabricating Conditions of Extrusions for Determining
 The Effect of Reduced Fe and Si on Extrusion Fracture
 Toughness
- Table 27 Effect of Reduced Fe and Si on Mechanical Properties of P/M Extrusions
- Table 28 Composition and Powder Size of Cu-Free P/M Al-Zr-Mg Alloys. Data From Cu-Bearing Comparison Alloys from Ref. 5
- Table 29 Fabricating Conditions for Cu-Free P/M Al-Zn-Mg Alloy Extrusions
- Table 30 Tensile and Notched Tensile Properties of Cu-Free P/M 7XXX Alloy Extrusions
- Table 31 Stress-Corrosion Cracking Performance of P/M Al-9.0 Zn-2.5 Mg Alloy Extrusions
- Table 32 Composition and Powder Size of Fine and Coarse Powders
 For Improving Fracture Toughness by Decreasing Oxides
 from Powder Surfaces
- Table 33 Fabricating Conditions for Extrusions for Improving Fracture Toughness by Reduced Oxides from Increased Powder Size
- Table 34 Effect of Powder Size on Extrusion Properties for Furnace and Can Preheats
- Table 35 Composition of Alloys Atomized with Inert Gases to Reduce the Amount of Oxide Second Phase Particles

The state of the s

TANK TO SEE STATE OF THE PARTY OF THE PARTY

- Table 36 Powder Size and Screen Analyses of Alloys for Inert Atomizing to Reduce the Amount of Oxide Second Phase Particles
- Table 37 Fabrication Conditions for Extrusion from Inert Atomized Powders for Reduced Amounts of Oxide Second Phase Particles

- Table 38 Tensile and Notched Tensile Properties of Extrusions Low Insoluble Element Al-6.5 Zn-2.3 Mg-1.5 Cu Alloy
- Table 39 Effect of Powder Size and Shape on Density and Transverse Elongation and NTS/YS
- Table 40 Fffect of Can-Argon Preheating on Extrusion Properties
 Compared to Atmosphere Furnace Properties
- Table 41 Composition and Powder Size of Alloy Powders for Vacuum Preheating to Improve Fracture Toughness
- Table 42 P/M Extrusion Fabricating Conditions with Vacuum Preheating for Improved Fracture Toughness
- Table 43 Tensile and Notched Tensile Properties of Extrusions from Vacuum or Nitrogen Preheated and Hot Pressed Compacts

The second secon

- Table 44 Comparison of Properties of Extrusions from Vacuum or Nitrogen Preheated Compacts and Experimentally Produced I/M 7050 and 7075 Extrusions
- Table 45 Fusion Extracted Gas from Vacuum Preheat P/M Extrusions
- Table 46 Effect of Powder Size and Composition on Quench Sensitivity of Al-9.0 Zn-2.5 Mg Alloy Extrusions
- Table 47 Billet Fabricating Conditions for Hot Pressed Compacts
 Extruded to 4" Diameter Die Forging Stock
- Table 48 Compacts Fabricated to 4" Diameter Stock for Die Forging
- Table 49 Tensile Properties of P/M and 7075 Alloy 9078 Die Forgings
- Table 50 Alternate Immersion Stress-Corrosion Performance of P/M 9078 Die Forgings. A.I. Test with Short-Transverse Tensile Bars (Across the Parting Plane) Federal Test Method 823
- Table 51 Billet Fabricating Conditions for Hot Pressed Compacts
 Hand Forged to 2" x 10" x 47"
- Table 52 Tensile Properties of P/M 2"x10"x47" Hand Forgings
- Table 53 Alternate Immersion Stress-Corrosion Performance of P/M 2" Thick Hand Forgings. Short-Transverse Tensile Bars Tested in A.I. by Federal Test Method 823

- Table 54 Effect of Second-Step Age on Longitudinal Tensile Properties of 2" Thick x 10" Wide Hand Forgings
- Table 55 P/M Billet Fabricating Conditions for Hot Pressed Compact Hand Forged to 5" Sq. or 3" Sq.
- Table 56 Ultrasonic and Visually Rated Quality of P/M Hand Forgings
- Table 57 Effect of Alloy, Powder Size and Not Compacting Pressure on Forging Quality 3" Sq. and 5" Sq. Nand Forgings
- Table 58 Ultrasonic and Visually Rated Quality of 2.2" x 10"
 Hand Forgings
- Table 59 Ultrasonic and Visually Rated Quality of 5" x 10"
 Preforged Rolling Stock
- Table 60 Effect of Preheat Atmosphere and Time on Forging Quality of 6.5 Zn-2.3 Mg-1.5 Cu Alloy 3" Sq. and 5" Sq. Hand Forgings
- Table 61 Effect of Preheat Temperature and Atmosphere on Metal Recovery of 6.5 Zn-2.3 Mg-1.5 Cu Alloy 3" Sq. and 5" Sq. Hand Forgings
- Table 62 Effect of Hot Compacting Pressure on the Number of Isolated Discontinuities in 3" Square and 5" Square Hand Forgings
- Table 63 Effect of the Amount of Scalp on Metal Recovery in 6.5 Zn-2.3 Mg-1.5 Cu Alloy 5" Sq. Hand Forgings
- Table 64 Ultrasonic Quality Rating of 2.2" x 10" and 5" x 10" Hand Forgings
- Table 65 Effect of Increasing Hot Work on Quality of MA65 Alloy Hand Forgings
- Table 66 Effect of Process Variations on Oxygen Content and Mechanical Properties of 3" Square Hand Forgings
- Table 67 Effect of Increased Reduction on Tensile and Notched Tensile Properties of MA65 Alloy Hand Forgings
- Table 68 Effect of Alloy and Powder Size on Mechanical Properties of 3" Square Hand Forgings

- Table 69 Effect of Preheat Atmosphere and Time on Notched
 Tensile Strength: Yield Strength Ratio of 3" Square
 Hand Forgings from Fine Powder MA65 Alloy
- Table 70 Effect of Preheat Time and Atmosphere on Elongation of 3" Sq. Hand Forgings from Fine Powder MA65 Alloy
- Table 71 Effect of Preheat Time and Atmosphere on Reduction of Area of 3" Sq. Hand Forgings from Fine Powder MA65 Alloy
- Table 72 Effect of Preheat Gas on Dissolved Gas in P/M Hand Forgings
- Table 73 Effect of Treheat Atmosphere on Mechanical Properties of 3" Square Hand Forgings from Fine Powder MA65 Alloy
- Table 74 Effect of Sample Location on Oxygen Content of an Argon Atmosphere Furnace Preheated MA65 Alloy Compact after Hot Pressing
- Table 75 Effect of Preheat Atmosphere and Temperature on Fracture Toughness (NTS/YS) and Ductility of 3" Square Hand Forgings from Fine Powder MA65 Alloy
- Table 76 Effect of Hot Compacting Pressure and Alloy on Properties of P/M 3" Square Hand Forgings
- Table 77 Effect of Atmosphere Furnace Door Openings, Preheat Time, Hot Compacting Pressure and Alloy on Oxygen Content of P/M Compacts.
- Table 78 Process Conditions for Compacts to be Fabricated to Plate
- Table 79 Scalping of 5" x 10" x 35" Preforged Rolling Stock for Plate
- Table 80 Tensile Properties of P/M 1.5" Thick Plate
- Table 81 Alternate Immersion Stress-Corrosion Performance of P/M 1.5" Plate. Short-Transverse Tensile Bars Tested in A.I. By Federal Test Method 823.
- Table 82 Process Conditions for Compacts to be Fabricated to Sheet
- Table 83 Scalping of 5" x 10" x 35" Preforged Rolling Stock for Sheet

- Table 84 Mechanical Properties of P/M 0.090" Sheet
- Table 85 Effect of Second-Step Age Time at 325 F on Longitudinal Tensile Properties of P/M 0.090" Sheet
- Table 86 Effect of Annealing Temperature on Grain Size in P/M 0.090" Sheet
- Table 87 Properties of Annealed P/M 0.090" Sheet
- Table 88 Strain Hardening Coefficient and Strain Ratio for P/M Sheet
- Table 89 ExCO Exfoliation Test Results on P/M 0.090" Sheet
- Table 90 Property Goals of Target B Compared to MA66 Alloy Extrusions
- Table 91 Property Goals of Target A Compared to MA66 and MA67 Alloy Extrusions

List of Figures

- Figure 1 Extruded Octagonal Bar Specimen Layout
- Figure 2 Hot Compacting Cylinder

- Figure 3 Extruded 1/2" x 6-3/8" Bar Specimen Layout
- Figure 4 a. Notched Tensile Specimen and b. Kahn-Tear Specimen
- Figure 5 Longitudinal Yield Strength vs Second-Step Age Time for Extruded Octagonal Bar
- Figure 6 Effect of Powder Size on the NTS/YS vs Yield Strength Relationship for P/M Extruded Octagonal Bar
- Figure 7 Comparison of P/M and I/M Alloys NTS/YS vs Yield Strength for Extruded Octagonal Bar
- Figure 8 Effect of Powder Size on the TrS/YS vs Yield Strength Relationship for P/M Extruded 1/2" x 6-3/8" Bar

- Figure 9 Comparison of P/M and I/M Alloys TrS/YS vs Yield Strength for Extruded 1/2" x 6-3/8" Bar
- Figure 10 Correlation between longitudinal K_{Ic} and NTS/YS for P/M Extruded Rod and Bar

A STATE OF THE PROPERTY OF THE

- Figure 11 Effect of Transverse Yield Strength and Applied Stress on Percent Surviving 30 Days in A.I. SCC Test Transverse Tensile Bars from Extruded Octagonal Bar
- Figure 12 Effect of Transverse Yield Strength and Applied Stress on Percent Surviving 84 Days in A.I. SCC Test Transverse Tensile Bars from Extruded Octagonal Bar
- Figure 13 Comparison of Extrusion Microstructures MA67 Alloy (1.6% Co) vs MA66 @ 2000X, 5000X
- Figure 14 Comparison of Co₂Al₉ Particle Size and Particle Location to Grain Boundary Precipitate and Precipitate-Free-Zone. TEM @ 50,000X
- Figure 15 Interaction of Co₂Al₉ Particles and a Stress-Corrosion Intergranular Crack
- Figure 16 Notched-Specimen Axial-Stress Fatigue Performance Comparison for P/M and I/M Alloy Extruded Bar at 95 ksi LYS. Compared to Commercial 7075-T6510 Extruded Bar
- Figure 17 Notched-Specimen Axial Stress Fatigue Performance Comparison for P/M MA65 and I/M 7075 Alloy Extruded Bars at 87 ksi LYS. Compared to Commercial 7075-T6510 Extruded Bar
- Figure 18 Smooth-Specimen Axial-Stress Fatigue Performance Comparison for P/M and I/M Alloy Extruded Bar at 95 ksi LYS. Compared to 7075-T65X Fatigue Band
- Figure 19 Smooth-Specimen Axial-Stress Fatigue Performance Comparison for P/M MA65 and I/M 7075 Alloy Extruded Bars at 87 ksi LYS. Compared to 7075-T65X Fatigue Band
- Figure 20 Exfoliation Corrosion Resistance vs Longitudinal Yield Strength for P/M and I/M Alloy Extruded 1/2" x 6-3/8" Bar.
- Figure 21 Appearance of ExCO Test Exfoliated Test Panels of I/M 7001, 7178 and 7075 Alloy Extruded 1/2" x 6-3/8" Bars

- Figure 22 Appearance of Tested ExCO Panels of Fine Powder MA65, MA66 and MA67 Alloy Extruded 1/2" x 6-3/8" Bars
- Figure 23 Comparison of Longitudinal Grain Structures of Fine Powder and Coarse Powder P/M MA65 Extrusions to I/M 7075 Grain Structure. From 1/2" x 6-3/8" Extrusions
- Figure 24 Schematics of CANAR, CANIT, VAC and RET Preheat Methods
- Figure 25 Effect of Decreasing Fe and Si on the NTS/YS to Yield Strength Relationship for P/M Extrusions
- Figure 26 Effect of Eliminating Cu in an Al-Zn-Mg-Cu Alloy on the Longitudinal NTS/YS to Yield Strength Relationship for Fine Powder P/M Extruded Bar
- Figure 27 Effect of Eliminating Cu in an Al-Zn-Mg-Cu Alloy on the Transverse NTS/YS to Yield Strength Relationship for Fine Powder P/M Extruded Bar
- Figure 28 Effect of Decreasing Zn on the NTS/YS to Yield Strength Relationship for P/M Al-Zn-Mg-Cu Extruded Bar

A manuscriptura servici i i manuscriptura servici serv

- Figure 29 Effect of Powder Size on the Longitudinal NTS/YS to Yield Strength Relationship for P/M Extrusions Prepared from Atmosphere FCE Preheated Compacts
- Figure 30 Effect of Powder Size on the Transverse NTS/YS to Yield Strength Relationship for P/M Extrusions Prepared from Atmosphere FCE Preheated Compacts
- Figure 31 Effect of Powder Size on the Longitudinal NTS/YS to Yield Strength Relationship for P/M Extrusions Prepared from CANAR Preheated Compacts
- Figure 32 Longitudinal Microstructure of MA65 Alloy Extrusion from Fine, Irregular Powder
- Figure 33 Porosity in Longitudinal and Transverse Directions of Extruded Rod from CANAR Preheated Compact of Coarse, Irregular Powder
- Figure 34 Powder Particle Size Distributions
- Figure 35 Effect of Powder Size on Void Size in Extrusions from FCE Preheated Compacts

- Figure 36 Comparison of Powder Particle Shape for Regular (Argon-Atomized) and Irregular (Air-Atomized)
 Powders
- Figure 37 Effect of Oxygen Content on Transverse Properties of P/M Extrusions
- Figure 38 Effect of Density on Transverse Mechanical Properties of Al-6.4 Zn-2.3 Mg-1.5 Cu P/M Extrusions
- Figure 39 Effect of Atomizing Atmosphere and Preheat Method on the NTS/YS to Yield Strength Relationships for Al-6.4 Zn-2.3 Mg-1.5 Cu Extrusions from Fine Powders
- Figure 40 Effect of Atomizing Atmosphere and Preheat Method on the NTS/YS to Yield Strength Relationships for Al-6.4 Zn-2.3 Mg-1.5 Cu Extrusions from Coarse Powders
- Figure 41 Effect of Vacuum Preheat on the Transverse NTS/YS to Yield Strength Relationship for P/M Extrusions
- Figure 42 Effect of Density on Transverse Elongation and NTS/YS of Extrusions from Vacuum and Nitrogen Preheated Compacts
- Figure 43 Effect of Total Gas Content on Transverse Fracture Toughness (NTS/YS) of P/M MA83 Extrusions

- Figure 44 Effect of Hot Compacting Pressure on Transverse Fracture Toughness (NTS/YS) of P/M MA83 Extrusions
- Figure 45 Comparison of Extrusion Structures from VAC Preheated and CANIT Preheated P/M MA83 Extrusions
- Figure 46 Production Sequence of P/M Die Forgings (Die 9078)
- Figure 47 Specimen Layout for P/M Die Forgings (Die 9078)
- Figure 48 Effect of Yield Strength on NTS/YS of P/M Alloy and I/M 7075 Die Forgings (Die 9078)
- Figure 49 Effect of Short-Transverse Yield Strength and Applied Stress on Percent Surviving 30 Days in A.I. SCC Test Short-Transverse Tensile Bars from 9078 Die Forgings
- Figure 50 Effect of Short-Transverse Yield Strength and Applied Stress on Percent Surviving 84 Days in A.I. SCC Test Short-Transverse Tensile Bars from 9078 Die Forgings

- Figure 51 Schematic of "A" Upset and Draw Hand Forging Operation
- Figure 52 Specimen Layout for 2" Thick x 10" Wide Hand Forgings
- Figure 53 Effect of Quenching Rate on Longitudinal Yield Strength of P/M 2" Thick x 10" Wide Hand Forgings
- Figure 54 Effect of Second-Step Aging Time on Longitudinal Yield Strength of P/M 2" Thick x 10" Wide Hand Forgings
- Figure 55 Effect of Yield Strength on Fracture Toughness (NTS/YS) of 2" Thick x 10" Wide Hand Forgings
- Figure 56 Effect of Short-Transverse Yield Strength and Applied Stress on Percent Surviving 30 Days in A.I. SCC Test. Short-Transverse Tensile Bars from 2" Thick P/M Alloy and I/M 7075 Hand Forgings
- Figure 57 Effect of Short-Transverse Yield Strength and Applied Stress on Percent Surviving 84 Days in A.I. SCC Test. Short-Transverse Tensile Bars from 2" Thick P/M Alloy and I/M 7075 Hand Forgings
- Figure 58 Three-Dimensional Microstructure of MA65 (6.5 Zn-2.3 Mg-1.5 Cu) Alloy Hand Forging
- Figure 59 Three-Dimensional Microstructure of MA67 (8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co) Alloy Hand Forging
- Figure 60 Forging Orientation and Specimen Layout for 5" Square Hand Forging Stepped to 3" Square.
- Figure 61 Forging Orientation and Specimen Layout for 5" Square MA65 Alloy Hand Forging Stepped to 3-1/2" Square, Stepped to 2" Square
- Figure 62 Comparison of Porosity in the Structure of Hand Forgings with 3 ml/100 gms and 15 ml/100 gms Total Gas Content
- Figure 63 Effect of Distance into the Compact on Compact Oxidation
- Figure 64 Effect of Amount of Reduction on Mechanical Properties of Hand Forgings
- Figure 65 Effect of Increased Reduction on Porosity in Hand Forgings
- Figure 66 Specimen Layout for 1.5" Thick P/M Plate

- Figure 67 Effect of Yield Strength on Fracture Toughness of 1.5"
 Thick P/M Plate Compared to I/M 7075 and 7050 Plate
- Figure 68 Effect of Short-Transverse Yield Strength and Applied Stress on Percent Surviving 30 Days in A.I. SCC Test. Short-Transverse Tensile Bars from 1.5" Thick P/M Alloy and 2-2.5" Thick I/M 7075 and 7050 Plate
- Figure 69 Effect of Short-Transverse Yield Strength and Applied Stress on Percent Surviving 84 Days in A.I. SCC Test. Short-Transverse Tensile Bars from 1.5" Thick P/M Alloy and 2-2.5" Thick I/M 7075 and 7050 Plate
- Figure 70 Effect of Yield Strength on the Fracture Toughness (TrS/YS) of P/M 0.090" Sheet Compared to I/M 7075 and 7050 Sheet

List of Tables - Appendix

Table 1 - Stress-Corrosion Performance of Octagonal Extrusions in New Kensington Atmosphere (Material from Phase II, Ref. 5) in Test March 19, 1971

- Table 2 Stress-Corrosion Performance of Octagonal Extrusions from 170 lb Compacts in New Kensington Atmosphere (Phase III, Table 12)
- Table 3 Stress-Corrosion Performance of P/M Die Forgings (Die 9078) in New Kensington Atmosphere (Phase III See Tables 49, 50)
- Table 4 Stress-Corrosion Performance of P/M Hand Forgings (2" Thick) in New Kensington Atmosphere
- Table 5 Stress-Corrosion Performance of P/M Plate (1-1/2" Thick) in New Kensington Atmosphere (Phase III See Tables 80, 81)

INTRODUCTION

An Alcoa Research Laboratories investigation for the U.S. Army completed in 1966 developed aluminum powder metallurgy alloys having combinations of high strength and resistance to stress-corrosion cracking (SCC) which were superior to those of conventional aluminum alloys. 1,2,3 These alloys were superior to alloy 7075 and variants of 7075, which had the best combinations of strength and stress-corrosion cracking resistance commercially available at that time. In addition to the alloys developed, the earlier study also developed a process for fabricating P/M (Powder Metallurgy) atomized alloy extrusions which had ultrasonic quality at least equal to that of conventional aerospace materials.

The current investigation, proposed to the U.S. Army in 1968, is intended to scale up these P/M developments and to fabricate and evaluate aluminum P/M wrought products. Phase I of this program, initiated in January 1970 and completed on January 20, 1971, was a process optimization study on 15-20 lb compacts that defined some process limitations for fabricating high quality hand forgings from inert gas preheated and hot pressed compacts. Phase II of this program, initiated in January 1970 and completed on April 20, 1971, was an alloy optimization study aimed at developing P/M Cloy extrusions with superior combinations of high strength, fracture toughness, SCC resistance, exfoliation corrosion

resistance and fatigue performance when compared to commercial alloys.

In Phase II, alloys with optimum combinations of properties met target properties except as follows: Target A (Table 1), all properties except toughness and stress-corrosion cracking resistance; Target B (Table 2), all properties;

Target C (Table 3), all properties except fracture toughness.

An alloy under study in an Alcoa-funded development had shown capability of meeting Target A strength and stress-corrosion cracking resistance targets (Table 4), but fracture toughness was lower than the Target A goal.

On the basis of these results, Phase III (the subject of this final report) was initiated to scale up to 170-lb compacts and to evaluate wrought products made from them.

The goals of Phase III were: (1) to evaluate alloys capable of meeting Targets A and B in scaled-up wrought products, (2) to study factors affecting fracture toughness in anticipation of improving fracture toughness for Targets A and C, and (3) to study processing factors expected to affect forgeability in hand forging of the scaled-up compacts. The alloy meeting Target B property objectives (Table 2) and the alloy with the strength and SCC requirements of Target A (Table 4) were selected for scaled-up product evaluation in Phase III. A variation of this latter alloy without cobalt was also included to achieve improved fracture toughness.

Wrought products fabricated from 170-1b compacts for evaluation included extrusions, die forgings, hand forgings, plate and sheet. Discussion of fabrication and properties in this report is grouped by product in the above order.

The report on the study of factors affecting fracture toughness is principally in the section relating to extrusions because this was the product used for most of this work. In addition, some of the fabricating variations studied in forgeability of hand forgings affected fracture toughness, and this information is presented in the section devoted to hand forgings.

The discussion on forgeability vs processing is discussed under hand forgings, the test vehicle in this study.

Since new commercially available alloys 7050 and 7049 with superior strength and stress-corrosion cracking resistance compared to 7075 alloy have become available recently, comparisons between the P/M wrought products and 7050 and 7049 alloys will be included where published information exists on comparable product forms.

Following these product-related discussions, a summary of conclusions is presented.

A glossary of terms and abbreviations is appended to decode abbreviations and captions used in this report.

OBJECTIVES

The purpose of Phase III of this investigation was to optimize fabricating processes, alloys and tempers to achieve combinations of properties shown below:

Dwonowky	Combination		Combination
Property	A	В	<u>C</u>
Yield Strength - ksi	95	85	75
K _{IC} - ksi√in.	26	26	45
Exfoliation	High Resistance	Immune	Immune
SCC Threshold	25	25	42
Stress - ksi			
Fatigue Endurance Limit - ksi			
Notched Axial Stress			
$(K_t = 3, R = 0.0)$	14	14	16
Smooth Rotating Beam	22	22	22
Elongation - %	11	11	11

The above targets are averages or typicals for extrusions.

PRODUCTION AND EVALUATION OF ALUMINUM P/M WROUGHT PRODUCTS

I. Extrusions

A. Properties of Extrusions from 170-1b Compacts

1. Material Preparation. Extruded bar in an octagonal section shown in Figure 1 and a 1/2" thick x 6-3/8" wide bar were fabricated for the P/M extrusion evaluation as follows:

MA65, MA66, MA83, and MA67 (see Table 5) by the procedure outlined in Table 6 using specific conditions for each compact listed in Table 7. These hot pressed compacts were scalped to 7.25" diameter and cut in two to yield two pieces, each 12.5" long. Billets from the ram end of the hot pressed compact (see Figure 2) were extruded to the 1/2" thick x 6-3/8" wide bar, while billets from the blind die end of the same hot pressed compacts were extruded to the octagonal bar (Figure 1) using extrusion conditions shown in Table 10.

Sections of production D.C. (direct chill) cast 9" diameter 7001 and 7178 and 11" diameter 7075 ingot were scalped to 7.25" diameter and extruded to the octagonal bar and to the 1/2" x 6-3/8" bar along with the P/M billets using extrusion conditions in Table 10.

The extrusion conditions shown in Table 10 revealed lower extrusion breakout pressure for the P/M extrusions when

compared to the same section extruded with I/M (In.got Metallurgy) 7XXX alloys.

These extrusions were heat treated and aged as shown in Tables 11, 12 and 13. The rate of change of longitudinal yield strength (LYS) with second-step aging time at 325 F was determined from data in Table 11 to provide a basis for estimating the aging conditions necessary to achieve the target yield strengths for the extruded P/M products.

Sections of extruded octagonal bar and 1/2" x 6-3/8" bar were second-step aged as shown in Tables 12 and 13, respectively. The octagonal extrusions were sampled as shown in Figure 1 for tensile and notched tensile properties; stress-corrosion cracking tests of transverse tensile bars exposed in 3.5% NaCl solution by alternate immersion per Federal Test Method 823 (hereafter referred to as "A.I."), and in inland industrial atmosphere at New Kensington, Pennsylvania; and axial stress fatigue tests with stress ratio (R) = 0.0 using smooth specimens and notched (K_t = 3) specimens. The 1/2" x 6-3/8" specimens were sampled as shown in Figure 3 for tensile and Kahn-type tear" tests and for exfoliation panels machined to expose midplane and 10% of thickness planes to the ExcO" accelerated exfoliation corrosion test.8

2. Results and Discussion.

a. <u>Tensile Properties</u>. The effect of second-step aging at 325 F on longitudinal tensile properties of octagonal

extrusions is shown in Table 11 and Figure 5. Alloys MA66 and MA67 were capable of higher strength than MA65, but both show a more marked decrease in strength with increasing second-step aging time at 325 F.

Tensile and notched tensile properties of octagonal extruded bar and tensile and tear properties of 1/2" x 6-3/8" extruded bar are shown in Tables 12 and 13, respectively, along with properties of I/M 7001, 7178, and 7075 in these same extruded sections. The P/M extrusions were aged to meet the strength target objectives and to match or exceed the strength of the commercial I/M extrusion alloys.

b. <u>Toughness</u>. The fracture toughness (notched tensile strength/yield strength (NTS/YS) or tear strength/yield strength (TrS/YS)) was a function of yield strength level, as shown in Figures 6-9. Thus, the fracture toughness rating of the various alloy extrusions must be weighted for yield strength.

Relative to the fracture toughness targets stated in the objectives, Targets A and B required : longitudinal NTS/YS of 1.25 to approximate a $K_{\rm IC}$ of 26 ksi/in., s shown in Figure 10 (from Ref. 5). Alloys MA66 and MA65 met these objectives for Targets A and B (Figure 6), while MA67 achieved the equivalent of a $K_{\rm IC}$ = 17.5 ksi/in. None of the alloy-tempers tested achieved the fracture toughness equivalent to Target C ($K_{\rm IC}$ = 45 ksi/in.).

All of the Al-Zn-Mg-Cu alloys (without Co) achieved a somewhat higher longitudinal fracture toughness to YS relationship compared to the 1.6 Co alloy (Figures 6 and 8). The comparison of fine and coarse powders shown in Figures 6 and 8 did not show a conclusive effect of powder size on toughness. This effect will be explored in detail in Section IB2c, page 19. The effect of 1.6% Co in MA67 compared to MA66 clearly decreased the fracture toughness.

In transverse NTS/YS (Figure 6) or transverse TrS/YS (Figure 8), powder size had no apparent effect in these extrusions.

comparing the P/M extrusions to I/M 7075, 7178, or 7001 showed MA65 and MA66 to have longitudinal NTS/YS equal to the I/M alloys (Figure 7), and MA65, MA66 and MA67 to have longitudinal TrS/YS equal to the I/M alloys (Figure 9). However, in transverse NTS/YS (Figure 7) or long transverse TrS/YS (Figure 9) the I/M extrusions had generally higher fracture toughness, although the toughness advantage of I/M extrusions decreased as yield strength increased. Experiments to improve fracture toughness will be discussed in detail in a following section, along with an experimentally verified procedure to markedly improve fracture toughness.

c. <u>Stress-Corrosion Cracking</u>. The 3.5% NaCl solution alternate immersion SCC test results of transverse tensile bars from octagonal extrusions are shown in Table 14.

Performance of the various alloy extrusions was dependent on time

in test, on strength, on aging at 325 F, and on applied stress, as shown in Figures 11 and 12. While 30-day exposure results are frequently used f. specification tests, 84-day exposure results are better indicators of long-time atmospheric SCC performance.

Note that even the 84-day test does not always accurately indicate long-time atmospheric exposure results. These later results are required to complete the SCC evaluation.

Relative to the property targets stated in the Objectives, MA67 achieved the SCC objective of Target A (95 ksi LYS, 25 ksi sustained stress), while MA66 achieved the SCC objective of Target B (85 ksi LYS, 25 ksi sustained stress), as shown in Table 14. MA67 would be expected to exceed the Target B SCC objective if aged to 85 ksi LYS. None of the extrusions tested at Target C (LYS of 75 ksi) achieved the SCC objective, including I/M 7075. Fine powder MA65, I/M 7075 and I/M 7178 came closest, sustaining 35 ksi, 35 ksi, and 30 ksi stress, respectively, without failure in the 84-day test (tempers with <70.5 ksi TYS, Figures 12a and b). As shown in Figure 11, these latter three materials passed 30 days in A.I. at up to 45 ksi sustained stress, but did not complete 84 days in A.I. at the higher sustained stresses tested (Table 14).

Relative to the I/M alloys tested, MA67 achieved superior strength at 25 ksi sustained stress, with fine powder MA67 at 85-87 ksi TYS (transverse yield strength) clearly superior to 7001-T6 (Figure 12). MA66 at 74 ksi TYS was superior to 7178-T6

at the same yield strength at 25 ksi sustained stress (Figure 12), with clear superiority after 30 days A.I. (Figure 11) at up to 40 ksi applied stress.

Alloy MA65 extrusions from Phase II aged to meet Targets
B or C have not developed SCC failures in New Kensington atmosphere
tests (17 months completed in a 48-month test) at 42 ksi stress at
85 or 75 ksi LYS (Table 1, Appendix).

In six months exposure in New Kensington industrial atmosphere SCC tests, no failures have developed in specimens from the Phase III extrusions at sustained stresses up to 45 ksi (Table 2, Appendix). These tests will continue through 4 years exposure.

The beneficial effect of Co_2Al_9 and $FeNiAl_9$ on the stress-corrosion resistance of Al-Zn-Mg-Cu P/M alloys has been known for some time. The reasons for the effect are not yet known. Co_2Al_9 and $FeNiAl_9$ are very similar compounds and the discussion which follows uses the former for illustration.

The compounds appear as small (less than 2 μ M) rounded particles as illustrated in Figures 13a and b. The size and spacing of particles in the final wrought product depends on dendrite arm spacing (i.e., solidification rate) in the powder and on fabricating history. The particles are not particularly associated with grain and subgrain boundaries, occurring both at and away from boundaries.

In transmission electron micrographs, Co_2Al_9 appears as dark eliptical particles which are significantly larger than the grain boundary precipitate (M-phase) and the precipitate free zones adjacent to grain boundaries (Figure 14).

This Co₂Al₉ is about 400 millivolts cathodic to the matrix (0.1 N calomel scale). This suggests that when a stress-corrosion crack proceeding along a grain boundary hits a Co₂Al₉ particle, the particle-matrix interface becomes the preferred site for corrosion, with the matrix corroding. Corrosion around the particle could effectively blunt the intergranular corrosion crack tip as shown schematically in Figure 15a, reducing the stress concentration at the crack tip and slowing or stopping the SCC crack. Figures 15b and 15c show metallographic evidence of this stress-corrosion crack blunting at an intermetallic particle in an Al-9.7 Zn-4.1 Mg-0.8 Cu-1.4 Co alloy extrusion transverse tensile bar exposed in New Kensington atmosphere for over four years with 25 ksi sustained stress.³

In such a mechanism, the interparticle spacing of $\operatorname{Co_2Al_9}$ along grain boundaries would be an important factor in prolonging SCC failure times, and performance would be enhanced by decreasing spacing. Interparticle spacing decreases with decreasing powder size, and it was observed that fine powder gave better SCC performance than coarse powder (Figure 12c).

Another possible reason for the beneficial effect of $\mathrm{Co_2Al_2}$ is that it may catalyze the reaction of atomic hydrogen formed at the corrosion crack tip to molecular hydrogen and prevent the diffusion of hydrogen along the grain boundary. Direct evidence of this catalysis has been observed in the following experiment. When a massive piece of the $\mathrm{Co_2Al_9}$ compound was embedded in 7075 sheet and the couple was exposed to a heated NaCl solution, it was observed that a gas, presumably hydrogen, was evolved from the interface between the $\mathrm{Co_2Al_9}$ and the 7075.

It was also observed that the Co-free MA66 alloy extrusion exhibited long, straight longitudinal boundaries (Figure 13c) compared to the Co-bearing P/M MA67 alloy (Figure 13b). The increased irregularity of intergranular paths in the Co-bearing MA67 may ennance SCC resistance by increasing the time necessary to corrode to the intergranular stress-corrosion crack-path-length required for specimen fracture.

d. <u>Fatigue</u>. Although it is impossible to reach firm conclusions on fatigue characteristics from the limited data available, results to date are encouraging. All of the P/M alloys tested at 95 ksi and 85 ksi LYS exceeded the axial stress fatigue performance required in the Objectives section for Targets A and B (endurance limit of 14 ksi maximum stress for a $K_t=3$ notch and stress ratio (R) = 0.0), as shown in Table 15. Further, P/M MA66 and MA67 at 95 ksi LYS exceeded the notched fatigue per-

formance of the control I/M 7001-T6 at all stresses tested (Figure 16). Near the endurance limit, these P/M alloys exceeded the maximum stress to failure of commercial 7075-T6510 extrusions by 40%.

P/M MA65 at 87 ksi LYS developed slightly superior notched specimen fatigue performance relative to the control I/M 7075-T6 at 87 ksi LYS (Figure 17), with the control 7075-T6 nearly matching the commercial 7075-T6510 fatigue performance.

In axial stress fatigue tests for smooth specimens, at stress ratio (R) = 0.0, P/M MA66 and MA67 at 95 ksi LYS showed superior fatigue life compared to I/M 7001-T6 (Figure 18, Table 16). This superior P/M alloy fatigue performance was evident in spite of the occurrence of fretting-initiated specimen failures in the specimen grips for a large number of the P/M specimens.

comparing P/M MA65-T6 and the control I/M 7075-T6, both at 87 ksi LYS (Figure 19), the P/M alloy showed superior smooth specimen fatigue performance over the ingot alloy, in spite of the occurrence of fretting-initiated grip failures which tended to shorten specimen life in MA65.

e. Exfoliation. In accelerated ExCO exfoliation corrosion tests, the P/M 1/2" x 6-3/8" extruded bar showed high resistance to this type of corrosion attack regardless of strength. Relative to the target exfoliation corrosion resistance stated in the Objectives, the P/M extrusions readily met the requirements

for high exfoliation resistance, regardless of strength (Figure 20). The vigorous general corrosion attack in the ExCO test precluded determination of immunity to exfoliation corrosion. This determination awaits the exposure of similar test panels in a seacoast environment.

I/M extrusions in the T6 temper developed varying degrees of exfoliation, as shown in Figure 21, with 7001-T6 clearly showing the results of low resistance to exfoliation corrosion (shown as a visible lifting of the surface grains). Further aging at 325 F improved the exfoliation corrosion resistance of 7178 and 7075 at a considerable sacrifice in strength (Figure 20).

In the P/M extrusions, Figure 22 shows that only pitting corrosion resulted from the ExCO exposure, with near-surface samples from fine powder extrusions of MA65 and MA66 being somewhat resistant even to pitting attack. Aging at 325 F did not change the exfoliation corrosion resistance of the P/M extrusions, nor did reducing Fe and Si (Table 17). However, reducing Fe and Si did somewhat reduce the extent of pitting in this test, particularly with samples aged at 325 F.

The high exfoliation resistance of the P/M extrusions can be related to the fragmented (fine powder) or recrystallized (coarse powder) structure of the P/M extrusions (Figures 23a and b, respectively) providing short longitudinal grain boundary segments between intersecting transverse grain boundaries. The

I/M 7075 extrusion (Figure 23c) shows the fibrous elongated structure developed in I/M extrusions that results in underleafing corrosion and lifting of grains because of long continuous path for intergranular corrosion in the longitudinal direction.

3. Conclusions.

- a. Alloy MA66 in extrusions achieved the strength, ductility, fracture toughness, resistance to stress-corrosion cracking, and exfoliation resistance required for the Target B combination of properties at 85 ksi LYS.
- b. Alloy MA66 met the property combination for Target A (95 ksi LYS) in extrusions except for ductility and resistance to SCC.
- c. Alloy MA67 met the property combination for Target A (95 ksi LYS) in extrusions except for ductility and fracture toughness.

B. Alloying and Processing to Improve Fracture Toughness

In analyzing the fracture toughness achieved in Phases

I and II of this program, 4,5 it was noted that P/M wrought products

were generally no better in longitudinal fracture toughness than

I/M 7075-T6, and also were lower than I/M 7075-T6 in transverse

fracture toughness. Excessive scatter in the YS vs NTS/YS

relationship also obscured expected effects in some cases.

Additional studies of factors affecting fracture toughness were,

therefore, incorporated in Phase III to improve toughness by:

- 1. Increasing the amount of hot deformation.
- Decreasing the amount of constituents.
 - a. Decreasing insoluble phases containing Fe and Si.
 - b. Eliminating Cu.
 - Decreasing oxides by using coarser powder.
 - d. Decreasing oxides by atomizing with inert gases.
 - e. Decreasing oxides by preventing additional oxidation during preheating and transferring of hot compacts from furnace to compacting cylinder.
- 3. Eliminating entrapped gases by preheating and hot compacting in vacuum.

The results of these studies to improve fracture toughness in P/M extrusions are presented in the above order in the following sections.

1. Increasing the Amount of Hot Deformation. Extruded 7/8" diameter (extrusion ratio = 53:1) and 2" diameter (extrusion ratio = 9.3:1) rod in Al-6.5 Zn-2.2 Mg-1.5 Cu, Al-5.9 Zn-2.1 Mg-2.2 Cu-0.1 Zr and Al-9.2 Zn-2.5 Mg-1.0 Cu alloys were prepared by a procedure outlined in Table 18 from air atomized alloy powders described in Tables 19 and 20. These powders were isostatically cold pressed in a wet bag system at 38 to 40 ksi applied pressure. The green compacts were encapsulated in welded aluminum cans as illustrated in Figure 24a, preheated in flowing argon (CANAR preheat) to 1000 F and soaked at 1000 F for the times shown in Table 21. Immediately after preheating, the compact and can were

hot pressed at 90 ksi and extruded to 7/8" diameter or 2" diameter rod from an extrusion cylinder operated at 700 F at less than 3 feet/minute with extrusion conditions shown in Table 21.

Samples 3/4" diameter machined from 7/8" or 2" diameter extruded rod were solution heat treated, quenched and aged as shown in Tables 22, 23 and 24 for determination of longitudinal tensile and notched tensile properties.

As shown in Table 25, increasing hot reduction in extrusion above an extrusion ratio of 9.3 had no significant effect on longitudinal yield strength, ductility, or fracture toughness (NTS/YS). The effect of hot reduction of less than the equivalent of 9.3 extrusion ratio will be examined further in hand forgings in a later section of this report.

2. Decreasing Amounts of Constituent.

a. <u>Decreasing Insoluble Phases Containing Fe and Si</u>. The extrusions listed in Table 26 were fabricated by the general procedure shown in Table 18 with specific processing conditions shown in Table 26. The effect of the differences in extrusion ratio among these extrusions was considered negligible, on the basis of the results presented earlier (see Table 25). These extrusions were solution heat treated, quenched and aged as shown in Table 27 and tested for tensile and notched tensile properties in the longitudinal and transverse directions.

Reducing the Fe and Si improved the fracture toughness of P/M extrusions at the lower longitudinal and transverse yield strengths (82 ksi and lower) but not at higher yield strengths (92-94 ksi), as seen in Figure 25. It appears that the lower matrix ductility at these high yield strengths may overwhelm the effect of second phase particles on fracture toughness.

Containing Cu. The alloy powders described in Table 28 were fabricated to octagonal extrusions (Figure 1) by the general procedure shown in Table 18 with specific processing conditions shown in Table 29. These extrusions were solution heat treated, quenched and aged as shown in Table 30. Tensile and notched tensile properties of these extrusions were determined, as was stress-corrosion cracking resistance of selected samples.

The fine powder Cu-free Al-Zn-Mg alloys showed an improvement in longitudinal NTS/YS over the Cu-bearing comparison alloys (Figure 26) but little advantage in transverse NTS/YS (Figure 27).

The magnitude of the improvement in longitudinal NTS/YS with eliminating Cu was smaller than the improvement shown in Figure 28 for the effect of decreasing Zn. Since decreasing Zn did not decrease SCC resistance, while decreasing Cu did decrease SCC resistance at high strength (Table 31), eliminating Cu will not be considered further as a means of improving fra ture toughness.

c. Decreasing Oxides by Using Coarser powder. In addition to the extrusions listed in Tables 22, 23, 24 and 30, which include extrusions from fine (15 uM APD) and coarse (48 µM APD) powders, other extrusions of MA65 alloy (A1-6.5 Zn-2.3 Mg-1.5 Cu) from air atomized powders were fabricated to provide a range of processing conditions to detect process and powder size interactions. The alloy/powders described in Table 32 were compacted, preheated and extruded by the general procedure shown in Table 18, with specific conditions for each extrusion as listed in Table 33. In addition to an atmosphere furnace preheat (FCE preheat) with flowing argon, prior to hot working, other compacts were preheated in welded aluminum cans with flowing argon prior to can and compact being hot pressed and extruded (CANAR preheat, Figure 24a). These extrusions were solution heat treated, cold water quenched and aged as shown in Table 34.

Increasing powder size did result in a decrease in the amount of oxygen in the extrusions, but fracture toughness (NTS/YS) decreased with decreasing oxygen (Table 34). Combining these results with those from Table 30, coarser powder (45 µM) did yield lower longitudinal fracture toughness, shown as lower NTS/YS in Figure 29, and substantially lower transverse NTS/YS in Figure 30. The results shown above substantially agreed with the longitudinal fracture toughness for CANAR preheated extrusions shown in Figure 31. The extrusions from coarse powder had lower

longitudinal fracture toughness above 80-85 ks: LYS than fine powder (16 uM) extrusions. In addition, the coarse powder extrusions developed lower transverse fracture toughness at all yield strengths tested.

Examination of the sample having the highest observed density in Table 34, i.e., 0.1020 lb/cu.in., revealed a few scattered fine (<l uM) pores, Figure 32, indicating that this sample was very near the maximum possible density. Samples having lower density, from coarse powders, contained more and larger pores, and pores were elongated in the direction of metal flow as illustrated in Figure 33.

Particle size analyses (Figure 34) suggest that there are fewer small particles in the coarse powders to fill interstices between larger particles. In addition, it seems reasonable that nonideal packing of particles results in larger interparticle voids in coarse powders than in fine. This would necessitate larger amounts of micrometal flow to achieve complete densification, and for a given amount of macrodeformation, large voids would be more difficult to fill than small ones. Figure 35 illustrates the effect of powder size on pore size in extrusions.

The state of the s

d. <u>Decreasing Oxides by Atomizing With Inert Gases</u>.

Powders of Al-6.5 Zn-2.3 Mg-1.5 Cu alloy were prepared by inert

gas aspirating and air collecting to generate alloy extrusions

from powders with reduced amounts of oxide. The alloy compositions

listed in Table 35 were atomized with air, nitrogen, argon or helium to yield fine and coarse powders of powder sizes shown in Table 36. Inert atomizing did result in a substantial reduction in the amount of oxygen in the powder as shown in Table 35 comparing argon and air atomized powders of near equal powder size. This reduction in oxygen may be partially related to: (a) decreased surface area of the smooth, regular shaped particles of the argon atomized powders (Figure 36a) compared to the irregular shaped air atomized particles (Figure 36b) and (b) decreased amount of fine particles in the regular, inert atomized powders (Figure 34) compared to the irregular, air atomized powders. No measurements of oxide thickness were made to determine that contribution to reducing the amount of oxile.

These alloy powders were compacted, preicated and extruded by the general procedure shown in Table 18, with specific conditions for each extrusion listed in Table 37. The bulk of these samples were CANAR preheated (can preheat/hot press with argon) as shown in Figure 24a, while selected samples of air and argon atomized powders were FCE preheated.

The extrusions listed in Table 38 were solution heat treated, cold water quenched and aged as shown for determination of longitudinal and transverse tensile and notched tensile properties.

Inert atomizing variations used to prepare A1-6.5 Zn-2.5 Mg-1.5 Cu extrusions resulted in variations in the amount of oxide in the extrusions and variations in the ductility and fracture toughness (Table 38). Among the inert atomizing gases, argon generally gave superior transverse ductility and comparable NTS/YS to the materials prepared with helium or nitrogen. Because all of the inert gases gave smooth, regular shaped powder, as illustrated in Figure 36a, the extrusions from argon-atomized powders were selected for detailed study as being representative of regular shaped, inert atomized alloys. These were compared to extrusions from air atomized powders.

Because this study was intended to improve toughness by decreasing the amount of oxide second phase particles, it was of interest that mechanical properties, particularly transverse elongation, NTS/YS and tensile strength were found to <u>increase</u> with increasing oxygen content (Figure 37). One reason for the contrary trend was porosity, as illustrated by density differences between extrusions from regular (argon atomized) and irregular (air atomized) powders (Table 39). These density differences had a most potent effect on transverse mechanical properties, particularly NTS/YS near the highest observed density (Figure 38).

A reason for the inferior properties with regular shaped, inert atomized powders is suggested by the way these particles might pack during densification. Irregular-shaped particles give

rise to long thin voids between particles which close readily with applied hydrostatic stress and are sheared readily during extrusion. Additionally, metal tails and particle surface projections provide metal to fill small voids at particle interstices by combined hydrostatic stress and shearing metal flow in extrusion. Relatively smooth, regular particles result in regular, near spherical voids at particle interstices which will not fully close with applied hydrostatic stress. Further, these small, numerous, near spherical voids are resistant to closing in combined hydrostatic stress and shearing metal flow in extrusion. 10

Powder shape had a more significant effect on fine powders than on coarse, with regular particles giving 0.5% lower density but up to 28% lower transverse fracture toughness (NTS/YS) than irregular particles (Table 39).

e. <u>Decreasing Oxides by Preventing Additional</u>

Oxidation. In inert-gas atmosphere-furnace preheating (FCE preheat), some dilution of the inert gas by air takes place when opening the furnace to remove a compact (Ref. 4, Table 5), exposing the remaining compacts in the furnace to oxygen. In addition, transporting the compact in air to a press for hot working would be expected to further expose the compact to oxygen. Preheating the compact in flowing argon inside a welded aluminum can and hot pressing the compact in the can (CANAR preheat) eliminates both of these sources of oxidation and would be expected to result in

lower amounts of oxides than atmosphere furnace preheating. The extrusions from air and argon atomized powders listed in Table 38 processed with FCE and CANAR preheat did show reduced oxygen with CANAR preheat (Table 40). However, this reduced oxygen was accompanied by reduced density and reduced fracture toughness in both longitudinal and transverse directions (Table 40). CANAR preheat generally shows reduced fracture toughness even after compensating for differences in yield strengths (Figures 39 and 40).

One possible explanation for the superiority of FCE preheating over CANAR preheating lies in gas entrapped in the can in
hot pressing interfering with interparticle bonding. Processing a
bare compact allows egress of interparticle gas which passes the
compacting cylinder dies to escape the compacting cylinder, thus
allowing intimate contact and bonding between particles. Since a
nonreactive gas (e.g., argon) in a pore impedes pore closing
during hot pressing and extruding, lower density might be expected
in CANAR preheating if argon is trapped in the can. Evidence of
this was higher density in FCE preheat extrusions compared to
CANAR preheat extrusions (Table 40).

3. Eliminating Entrapped Gases by Vacuum Preheating and Hot Compacting. The above evidence of gas entrapment in CANAR preheat compared to FCE preheat led to the trial of a vacuum preheat/hot press, i.e., preheating with a vacuum and maintaining

the vacuum in hot pressing by weld-sealing the evacuation line prior to hot pressing (VAC preheat, Figure 24b). Alloy powders described in Table 41, prepared by air and nitrogen atomizing, were processed by the general procedure outlined in Table 18, using specific processing conditions shown in Table 42, to the 1-9/16" octagonal extruded bar shown in Figure 1. In addition to VAC preheating, compacts were (a) preheated in cans with flowing nitrogen and hot pressed in the can (CANIT preheat, Figure 24a) or (b) preheated in retorts with flowing nitrogen and hot pressed bare in an extrusion cylinder (RET preheat, Figure 24c) prior to extruding. Some samples being vacuum preheated developed air leaks of varying degrees during sealing (AVAC preheat).

These octagonal extrusions were solution heat treated, cold-water quenched and aged as shown in Table 43 for determination of longitudinal and transverse tensile and notched tensile properties. Selected samples listed in Table 44 (those achieving the highest transverse NTS/YS) were also sampled for plane-strain fracture toughness (K_{TC}) specimens.

VAC preheat/hot press of MA83 alloy clearly gave very dramatically improved fracture toughness over inert gas preheat/hot press (Table 43), particularly in the transverse direction. The improvement in transverse toughness was well beyond any of the individual incremental improvements observed for the individual factors discussed earlier (Figure 41).

The toughness improvement with VAC preheat was not entirely explained by differences in density as shown in Figure 42. CANIT and RET preheated extrusions showed improved NTS/YS with increasing density, while vacuum preheating and hot pressing gave substantially higher NTS/YS than any gas preheated extrusions at the same density. As observed earlier (Figure 38), ductility improved at near maximum density regardless of preheat.

A substantial part of the toughness improvement with VAC preheat was related to minimizing gas content in preheat/hot pressing (Figure 43, Table 45) to avoid entrapped gas interfering with interparticle bonding. In addition to eliminating interference of gas with bonding, increasing the hot compacting pressure to increase bonding force gave improved transverse fracture toughness (Figure 44) for both vacuum and inert gas preheats.

A part of the improvement in fracture toughness with vacuum preheat may be the result of diminishing the amount of second phase in the extruded structure compared to nitrogen preheat as shown in Figure 45. The white constituent in Figures 45c and 45d appears to be an oxide (generated in decomposition of water adsorbed on the powder particle surfaces during heat up) or a nitride (generated by reaction of aluminum and nitrogen during preheating).

P/M Ma83 extrusions with VAC preheat compared favorably with experimentally generated I/M 7050 and 7075 extrusions (in Table 45), with the VAC preheated MA83 surpassing both 7050 and 7075 in transverse plane-strain fracture toughness (K_{IC}) and ductility. When properly processed, the P/M alloy appeared to show somewhat less anisotropy in ductility and fracture toughness (K_{IC}) than 7050 and 7075, possibly due to the fine grain size and constituent size.

4. Conclusions.

- a. Vacuum preheat/hot press substantially improved the longitudinal and transverse fracture toughness of P/M extrusions.
- b. Vacuum preheated MA83 extrusions surpassed the transverse plane-strain fracture toughness and ductility of 7050 and 7075 extrusions.

The following conclusions are tentative because they are based on inert gas preheated material and are clouded by unknown amounts of gas and porosity:

c. Fine powder (16 μ M APD) of irregular shape (as atomized in air) provided maximum extrusion density and transverse ductility and fracture-toughness (NTS/YS) in extrusions from inert gas preheated compacts.

- d. Among inert gas preheats, maximum transverse toughness (NTS/YS) was achieved by furnace or retort preheating followed by bare compact hot pressing preceding hot working.
- e. Reduced Fe and Si improved fracture toughness below 85 ksi YS in both longitudinal and transverse directions.
- f. Eliminating Cu in Al-9 Zn-2.5 Mg alloys improved fracture toughness in extrusions in longitudinal direction.
- g. Reducing Zn improved fracture toughness in longitudinal and transverse directions.

C. Quench Sensitivity

The preparation and heat treatment of the Al-Zn-Mg and Al-Zn-Mg-Co extrusions listed in Table 30 was described above in section IB2b, page 18, under programs to improve fracture toughness. These extrusions were also used to study quench sensitivity by varying the quench rate after solution heat treatment.

As shown in rible 46, the extrusions made from coarse powder were substantially less quench sensitive than those from fine powder. In the absence of Co, Cu slightly decreased quench sensitivity. In the absence of Cu, Co slightly increased quench sensitivity. Combined Co and Cu additions increased quench sensitivity.

II. Die Forgings

A. Properties of Die Forgings from 170-1b Compacts

1. <u>Material Preparation</u>. The die forging shown in Figure 46, designated Die 9078, was fabricated from P/M 4" diameter extruded rod as follows.

Hot pressed compacts of alloys MA65, MA66, MA83, and MA67 (listed in Table 5) were prepared by the procedure outlined in Table 6 using specific conditions for each compact listed in Table 47. These hot-pressed compacts were scalped to remove 1/8"-1/4" off the diameter, reheated and extruded to 4" diameter rod using extrusion conditions listed in Table 48.

The die forging was prepared in a two-step block and finish sequence. The 4" diameter rod was reheated to 800 F and forged in a blocker die heated to 800 F. After trimming excess parting plane flash, the blocker forging was reheated to 800 F and finish forged in 800 F dies. The relative scale of the green compact, hot pressed compact, extruded 4" diameter rod and the 9078 die forging is shown in Figure 46. I/M alloy 7075 forgings were similarly fabricated, starting with 11" diameter D.C. ingot, scalped to 9" diameter to provide a comparison commercial alloy product.

The forgings were solution heat treated at 920 F (P/M alloys) or 880 F (7075) for 2 hours, quenched as shown in Table 49, aged 6-7 days at room temperature plus 24 hours at 250 F. Selected forgings were further aged 6 hours at 325 F, as shown in Table 49.

These forgings were sampled as shown in Figure 47 for web and flange tensile and notched tensile properties and for SCC test tensile bars across the parting plane for accelerated A.I. (alternate immersion per federal Test Method 823) and industrial atmospheric (New Kensington, Pa.) exposures.

2. Results and Discussion. The mechanical properties of the 9078 die forgings are summarized in Table 49, while the A.I. SCC performance is shown in Table 50. Table 3, Appendix, shows the progress of New Kensington atmosphere SCC tests to date, with 170-230 days completed in a planned 4-year test.

The P/M forgings clearly achieved superior strength compared to I/M 7075 alloy as shown in Table 49. However, all of the P/M alloys were inferior in fracture toughness (NTS/YS) compared to I/M 7075, particularly in the short transverse direction (across the parting plane) as shown in Figure 48. The processing for these forgings included an argon preheat in an atmosphere furnace and argon/air hot press; it is anticipated that vacuum preheat/hot press processing will substantially improve fracture toughness in all directions, particularly in the transverse direction as was accomplished in extrusions (see Figure 41).

Stress-corrosion performance in alternate immersion is shown as a function of STYS in Figures 49 and 50. The SCC performance is in terms of percent surviving after 30 days and 84 days at stresses of 25, 30, 35, 40, and 45 ksi. The I/M 7075-T6

control which was carried in this experiment is shown as are curves for I/M 7049 and I/M 7050 die forgings (die 9078 and similar forgings) from other investigations. 11

After 30 days, MA67 was capable of higher strengths for a given level of SCC resistance than the other P/M and I/M materials shown in Figure 49. MA66 alloy appeared to be inferior to MA67 in the combination of strength and resistance to stress-corrosion cracking but was superior to 7075, 7050 and 7049 at lower levels of applied stress. MA65 alloy was superior to I/M 7075 but inferior to the other P/M alloys and to 7049 and 7050 die forgings.

After 84 days, MA67 was capable of higher strengths at a given level of SCC resistance than the other P/M and I/M materials in Figure 50. MA66 appeared to be inferior to MA67, about the same as 7049 and 7050, and superior to 7075. MA65 was superior to 7075 but inferior to 7049 and 7050.

In the absence of a correlation between A.I. and long-time exposure in natural environments for these new alloys, the relative ranking of the SCC properties of these materials is considered tentative. Long-time tests in New Kensington atmosphere are in progress.

3. Conclusions.

a. MA67 alloy developed a better combination of strength and resistance to stress-corrosion cracking in die forgings than I/M 7075, 7049 and 7050 in accelerated tests.

THE PERSON NAMED IN

- b. P/M alloys MA65, MA66 and MA67 all developed better combinations of strength and resistance to stress-corrosion cracking than I/M 7075 forgings.
- c. P/M alloy die forgings fabricated from inert gas preheated compacts had lower fracture toughness than I/M 7075 forgings.

III. Hand Forgings

A. Properties of Hand Forgings from 170-1b Compacts

1. Material Preparation. Hand forgings 2" thick x 10" wide x 47" long were fabricated from atomized alloys as follows.

Hot pressed compacts (see Figure 2) of alloys MA65, MA66, and MA67 (listed in Table 5) from 15 µM and 50 µM (APD) powders were fabricated by the procedure outlined in Table 6, using specific conditions for each compact listed in Table 51. These hot pressed compacts were scalped to 7.5" diameter x 22.5" long, reheated to 700 F and forged by an "A" upset and draw procedure (as shown in Figure 51) to 2.2" x 10" x 47". A billet 7.5" diameter x 22.5" long from 11" diameter 7075 D.C. ingot was similarly forged to provide a comparison material for testing. After ultrasonic inspection, the forgings were scalped to 2.05" thick (removing equal amounts from each side of forging) to provide a uniform quenching thickness and parallel sides for compressive stress relief.

The forgings were solution heat treated at 920 F (P/M alloys) or 880 F (I/M 7075), quenched and aged as shown in Table 52. These forgings were sampled for tensile and notched tensile properties in the longitudinal, long transverse and short transverse directions and for short transverse tensile bars for accelerated A.I. and atmospheric (New Kensington, Pa.) SCC tests, as shown in Figure 52.

2. Results and Discussion. The mechanical properties of the 2" thick hand forgings are summarized in Table 52, while A.I. SCC performance is presented in Table 53. Table 4, Appendix shows the samples in New Kensington atmosphere, with 170-270 days completed in planned 4-years test.

The quench sensitivity exhibited by these P/M alloy forgings appeared to be substantially less than 7075, 3 comparable to 7049, 4 and slightly higher than 7050, 5 based on the effect of decreasing quench rate on longitudinal yield strength shown in Figure 53.

Second-step aging at 325 F decreased the longitudinal yield strength as shown in Table 54 and Figure 54. MA65 alloy, with higher Cu and lower Zn + Mg, lost strength slower than either MA66 or MA67.

The coarse powder hand forgings compared rather favorably in longitudinal and long transverse ductility and fracture toughness with the fine powder forgings, as shown in Table 52 and Figure 55a and b. However, the poor short transverse (ST) ductility and very poor STYS and NTS/YS of the coarse powder hand forgings (Table 52) eliminated these materials from further serious study.

The fine powder hand forgings clearly achieved superior strength relative to I/M 7075 in all directions. However, the fine powder forgings were inferior in fracture toughness (NTS/YS) compared to I/M 7075 in the longitudinal and long transverse

directions (Figure 55). The processing for these forgings included an argon preheat in an atmosphere furnace and argon/air hot press; it is anticipated that vacuum preheat/hot press processing will substantially improve fracture toughness in all directions, particularly in the transverse direction as was accomplished in extrusions (see Figure 41).

After 30-day exposure in A.I. stress-corrosion testing, all of the P/M alloy hand forgings developed superior strength and SCC resistance compared to I/M 7075, as shown in Figure 56. In order of increasing strength with SCC resistance, the P/M alloys would rank in the following order: MA65, MA66, and MA67.

After 84-day exposure in A.I., none of the P/M alloytempers passed at 30 ksi ST sustained stress (Figure 57). MA65
at 62 ksi STYS and MA67 at 69 ksi STYS sustained 25 ksi stress
without failure. MA66 and the other P/M alloys would be expected
to sustain higher stress without failure at lower yield strengths
than those tested here.

The superior strength and stress-corrosion cracking resistance of the P/M forgings compared to I/M 7075 appears to be related to the very fine grain size of the P/M forgings in all directions (illustrated for MA65 in Figure 58), and to the combination of fine grain size and fine distribution of Co_2Al_9 achieved in P/M alloys with cobalt, illustrated in Figure 59. Note that the Co_2Al_9 particles are not appreciably elongated by

working in hand forging, and that the grains are more equiaxed in MA67 than in MA65.

3. Conclusions.

- a. P/M MA65, MA66 and MA67 alloy hand forgings developed superior strength with SCC resistance compared to I/M 7075 hand forgings.
- b. P/M alloy hand forgings fabricated from argon preheated hot pressed compacts had inferior fracture toughness compared to I/M 7075.

B. Optimization of Processing for Forgeability

- 1. <u>Material Preparation</u>. Three kinds of hand forgings were made and evaluated to determine the effect of process variables on quality as noted by visual examination and ultrasonic inspection. The kinds of forgings were:
 - a. 5" square stepped to 3" square.
 - b. 5" square stepped to 3.5" square stepped to 2" square.

c. $5" \times 10" \times 36"$.

The process variables were alloy, powder size, preheat atmosphere, temperature and time, hot compacting pressure, amount of scalp, and amount of hot work.

Hot pressed compacts (see Figure 2) of alloys MA65, MA66, and MA67 were fabricated by the procedure outlined in Table 6 using specific conditions for each compact as listed in Table 55. The

hot pressed compacts were scalped as shown in Table 55, reheated to 700 - and forged by an "A" upset and draw procedure as shown in Figures 51, 60, and 61.

The forgings were etched and visually inspected for cracking on the faces and unrestrained ends. Prior to ultrasonic inspection, the 3" square and 5" square forgings were solution heat treated for 2 hours at 920 F, cold water quenched, and aged 4-7 days at room temperature plus 24 hours at 250 F. The other forgings were ultrasonically inspected in the as-forged temper. The ultrasonic inspection used a 10 MHz, 3/4" diameter lithium sulfate search unit and standardization for a 2" trace-to-peak indication from the 3-0075 (No. 3) Reference Block (3/64" diameter flat bottomed hole). The volume of metal meeting SNT class "A" Standards was computed and recorded as "per cent metal recovery" in Table 56. The 2" x 10" x 47" hand forgings described earlier (Section IIIA, page 33) were also inspected for forgeability in the following discussion.

2. <u>Results and Discussion</u>. The quality ratings of the P/M hand forgings described above are summarized in Table 56 and discussed by process step below.

a. Effect of Alloy. Alloys with low insolubles (i.e., no cobalt) yielded slightly better recovery than the alloy with 1.6 Co (Table 57), particularly at high hot compacting pressure (90 ksi) for fine powder (15 µM APD).

b. Effect of Powder Size. Decreasing powder size substantially improved forging quality, as shown in Tables 57, 58, and 59, for all compacts fabricated to square or rectangular hand forgings. Forgings from 50 µM (APD) powders gave unacceptable forging quality, with some compacts cracking during loading for hot pressing and the hot pressed billets cracking severely during forging. Forgings from 23 uM powders were marginally acceptable. Only the forgings from 15 µM powders were nearly perfect (Table 57), notably at high hot compacting pressures.

c. Effect of Preheat Atmosphere. Preheating in a retort with any of the atmospheres shown in Table 60 resulted in high metal recovery. Inert gas preheating resulted in forgings with generally fewer cracks than with ambient air preheating in a retort, although the cracks in the latter forging were quite shallow. Furnace air preheating (in a circulating air reheat furnace) resulted in severely cracked forgings and very little sound metal.

Changing the gas flow rate had very little effect on forging quality for either algon or nitrogen preheating (Table 60). Changing the inert gas from nitrogen to argon had no significant effect on forging quality (Table 61). Nitrogen preheating gave forgings with less surface checking than argon. This checking was only a surface condition.

- d. Effect of Preheat Temperature. No appreciable changes in forging recovery resulted from the preheat temperature variations shown in Table 61. It is significant to note that a compact preheated at 1050 F (70 F above the solidus) cracked in handling before hot pressing. Temperatures substantially above the alloy solidus temperature may be excessive for routine preheating of large compacts.
- e. <u>Effect of Preheat Time</u>. Increasing preheat time from 1 to 5 hours improved recovery slightly with little effect on the amount of cracking during forging (Table 60).

- f. Effect of Hot Compacting Pressure. Decreasing hot compacting pressure from 90 ksi to 75 ksi resulted in small improvement in metal recovery and visual quality (Table 57, forgings from 23 µM powders) but with a substantial increase in the number of small isolated discontinuities in the forgings (Table 62). This trend was observed previously (Ref. 4, pg. 70). Further decreasing the hot compacting pressure from 75 ksi to 60 ksi did not appreciably change the amount of sound forging but did slightly decrease visual quality with increased surface checking.
- g. <u>Effect of Amount of Scalp</u>. Some scalping to remove the oxidized and contaminated metal at the hot compact surface is necessary to produce flaw-free forgings. As shown in Tables 63 and 64, the unscalped billets gave forgings with less than 50% of its volume as sound forging, with severe cracking

extending well into the forging. A small scalping cut, on the order of 0.3" off the diameter and the ram end, appears necessary to remove the contaminated surface (Table 63). Part of the loss of sound material from the 5" x 10" x 36" hand forgings from unscalped compacts (Table 64) was the result of buckling in upsetting due to excessive length/diameter ratio, resulting in an extensive fold at one end of the forged slab.

More extensive cracking in pieces with slight blind die end scalp suggests that the blind die end of the compact is less forgeable than the ram end (Table 63). This may be due to a pressure gradient in hot pressing, with pressure decreasing with distance from the ram dummy block. This effect is probably related to hot compact length to ram end diameter ratio, in this case 3.3:1.

h. Effect of the Amount of Hot Work. Increasing amounts of hot work in forging did not appreciably affect forging quality (Table 65), but affected mechanical properties, to be discussed in a following section.

3. Conclusions.

- a. Compacts from fine powders (15 μM APD) had superior forgeability compared to compacts from coarser powders (22 to 50 μM APD).
- b. Preheating in nitrogen, argon or in a closed retort gave better forgeability than circulating air furnace preheating.

- c. Scalping of hot pressed compacts is necessary prior to forging to minimize cracking during hot forging.
- d. Reducing hot compacting pressure below 90 ksi increased the number of isolated discontinuities in hand forgings without appreciably affecting forging recovery.
- e. The following process variations had no appreciable effects on forging quality:

Preheat temperatures from 950 to 1050 F. Preheat times from 1 to 5 hours. Increasing hot reductions from 75 to 95%.

- C. Effect of Process Variations on Fracture Toughness and Ductility of Hand Forgings
- 1. Material Preparation. The fabrication of P/M 3" square and 5" square hand forgings was described in Section IIIB, page 36. These hand forgings were heat treated and tested for mechanical properties as shown in Table 66, and sampled as shown in Figure 60. The forging with 75 to 97% reduction (404877H1) was sampled as in Figure 61 for 1" blanks, which were heat treated and aged as shown in Table 67. These properties are discussed below.

2. Results and Discussion.

a. <u>Effects of Alloys</u>. Increasing Zn+Mg+Cu increased strength and decreased ductility and fracture toughness (NTS/YS) in all test directions. The 1.6% Co in MA67 increased the strength slightly over MA66, notably in the transverse directions in 3"

square hand forgings, but generally reduced ductility and fracture toughness (see Table 68).

b. Effect of Powder Size. Increasing powder size resulted in increased strength and generally decreased ductility and fracture toughness (NTS/YS), as shown in Table 68. As pointed out previously (Table 57), increasing powder size substantially decreased forging quality due to cracking during forging, yielding forgings of less than ultrasonic SNT Class "A" quality.

c. Effect of Preheat Atmosphere. While strength was not appreciably affected by changing preheat atmosphere (Table 66), fracture toughness (NTS/YS) and ductility did vary with changing atmosphere. Longidutinal NTS/YS and ductility were highest for argon preheating at any of the flow rates shown in Tables 69, 70, and 71, with nitrogen preheating only slightly inferior to argon.

Fracture toughness in the two transverse directions showed nitrogen to be superior to argon, substantially so at high gas flow rates (Table 69). Increasing gas flow rate decreased toughness with argon, but increased toughness for nitrogen. Highest transverse toughness was achieved with 0.75 CFH/lb flow rate for nitrogen preheat. Transverse ductility showed no consistent effect of changing preheat gas (Tables 70 and 71).

おいて 一大人とうとうこう からなびに

It was suggested that the poor toughness with argon preheating might result from argon entrapment in hot pressing.

The preheat gas should displace the gas evolving from the powder surface in the interstices of the compact during preheating. This preheat gas then would occupy the pores in the compact and might interfere with densifying once the interconnected porosity was closed during hot pressing. With nitrogen in the compact's interstices, a potential reaction with aluminum could eliminate the gas in pores (by converting to solid AlN), allowing more complete densification.

Analyses confirmed the presence of argon in the forging preheated in that gas and the absence of argon in the forging preheated in nitrogen. Furthermore, the nitrogen-preheated forging contained more total nitrogen than the argon-preheated forging. The most significant result, however, was that 98-99% of the gas in both forgings was hydrogen (Table 72) and that low short transverse toughness was associated with a high gas content (Table 73). Although densities were equal within experimental error, careful examination with scanning electron microscope confirmed the presence of more porosity in the forging having lower transverse toughness and higher gas content (Figure 62).

It is not clear why this particular set of preheating conditions gave lower gas content. In any case, vacuum preheating and hot pressing has substantially improved toughness, especially in the transverse direction (Figure 41).

Preheating in a retort with no gas flow gave substantially lower ductility and fracture toughness in all test directions. Poor fracture toughness in this material (Table 69), even in the longitudinal direction, precludes further consideration of this preheat method.

Atmosphere furnace preheating with argon gave lower transverse fracture toughness (Table 69) and short transverse ductility (Tables 70 and 71) than retort preheating. One possible explanation might be in re-gassing of the compact preheated in the atmosphere furnace due to atmosphere dilution with moist air in the furnace when the furnace door is opened, and due to exposure to moist air in transporting the compact from furnace to compacting cylinder (3 to 5 minutes in air). The effect of high gas content in reducing toughness was discussed earlier.

The evidence that re-gassing is occurring was the oxidation of the compact, presumably from air penetration into the compact, shown in Figure 63 and Table 74. This re-gassing could affect properties in up to 84% of the volume of the forging, with the "A" upset and draw forging (Figure 51) serving to spread the affected region along the entire length of the forging.

Using retorts or cans for individual compact preheating is preferred to atmosphere furnace preheating to avoid air contamination and reduced fracture toughness. Vacuum preheating and hot pressing, to eliminate exposure to air, has given improved fracture toughness (Figure 41).

東京 大京年 京河の子高佐の大阪

- d. Effect of Preheat Temperature. Increasing preheat temperature from 950 to 1000 F improved transverse ductility and fracture toughness with no effect on longitudinal properties (Table 75). Further increasing temperature to 1050 F generally decreased transverse NTS/YS and ductility.
- e. <u>Effect of Preheat Time</u>. Increasing preheat time from one to five hours had no appreciable effect on fracture toughness or ductility of hand forgings (Tables 69, 70, and 71).
- hot compacting pressure from 60 ksi to 90 ksi had little effect on mechanical properties, as shown in Table 76. The slightly higher average yield strength for the forgings hot pressed at 90 ksi was balanced by a corresponding decrease in fracture toughness (NTS/YS). Part of the decline in NTS/YS with increasing hot compacting pressure was the result of an incidental increase in exposure to argon diluted with air. As shown in Table 77, the experiment had an accidental bias which had number of door openings (during which the argon atmosphere was diluted by air) increasing with increasing hot compacting pressure. This may have resulted in gas readsorption in the compact and a consequent decline in fracture toughness. As shown in Table 77, this increased exposure to air did not oxidize the compact.

As discussed earlier (Section IIIB, 2f, page 39), decreasing hot compacting pressure below 90 ksi severely affected

quality of hand forgings, making 90 ksi a minimum hot compacting pressure for compacts to be hand forged.

g. Effect of Amount of Hot Work. Increasing hot work resulted in a marked increase in transverse fracture toughness (NTS/YS) with little effect on other mechanical properties (Table 67, Figure 64). Based on Figure 64, it is desirable to use L = 20 (reductions of 95%) or greater for optimizing transverse fracture toughness. The improved fracture toughness appears to be partially the result of decreased porosity with increasing reduction (Figure 65).

3. Conclusions.

- a. Increasing alloying additions increased strength but decreased ductility and fracture toughness.
- b. Increasing powder size increased strength but markedly decreased ductility and fracture toughness.
- c. Nitrogen gas preheating gave forgings with superior transverse fracture toughness in hand forgings over forgings prepared with argon preheating.
- d. Preheating in a retort followed by bare compact hot pressing resulted in forgings with superior transverse fracture toughness compared to forgings from atmosphere furnace preheated compacts.
- e. Increasing amounts of hot work substantially improved transverse fracture toughness in hand forgings, notably from 75 to 90% reduction.

- f. Preheating at 1000 F gave superior fracture toughness compared to 950 or 1050 F preheat temperatures.
- g. Increasing preheat time from 1 to 5 hours or increasing hot compacting pressure from 60 to 90 ksi did not affect mechanical properties.

IV. Plate

A. Properties of 1.5" Thick Plate from 170-1b Compacts

1. Material Preparation. Hot rolled P/M 1.5" thick plate was fabricated for evaluation by the following procedure.

alloys were prepared by a procedure outlined in Table 6 using specific processing conditions for each compact as listed in Table 78. These hot pressed compacts were reheated and forged by the "A" upset and draw sequence shown in Figure 51 to 5" thick x 10" wide x 36" long slabs. These slabs were scalped as shown in Table 79 to approximately 3-1/4" x 8-1/2" x 31", reheated to 700 F and hot rolled to 1.5" thick. This plate was solution heat treated 2 hours at 920 F, cold water quenched, stretched and aged as shown in Table 80. The plate was sampled for properties as shown in Figure 66 in the three principal directions, notched tensile strength in L and LT directions and ST direction tensile bar SCC performance in the accelerated A.I. test per Federal Test Method 823 and in New Kensington, Pennsylvania, atmosphere.

2. Results and Discussion. The mechanical properties of the 1-1/2" thick P/M plate are summarized in Table 80, while the A.I. SCC performance is shown in Table 81. Table 5, Appendix shows the progress of New Kensington atmospheric SCC tests to date, with up to 258 days completed in test in a planned 4-year test.

The P/M plate clearly achieved superior strength compared to I/M 7075 and 7050 alloy plate, as shown in Figure 67.

However, the P/M alloy plate was inferior in fracture toughness (NTS/YS). The processing for this plate included an argon preheat in an atmosphere furnace followed by argon/air hot press; it is anticipated that vacuum preheat/hot press compacting will substantially improve fracture toughness in all directions, as demonstrated in extrusions earlier (Figure 41).

After 30 days in A.I. (Figure 68), all materials tested were superior to I/M 7075 in the combination of strength and resistance to SCC. MA67 was the best of the materials tested.

MA66 was superior to I/M 7050 and to MA65. MA65 appeared fairly similar to I/M 7050.

After 84 days in A.I. (Figure 69), test conditions did not permit a conclusion on the relative merits of the materials at stresses of 35 ksi and higher. At 25 and 30 ksi, MA67 was superior to I/M 7075 and I/M 7050.

As shown in Table 5, Appendix, the P/M and I/M alloys in single-step aged tempers and X7050-T6X1 developed SCC early in the planned 4-year test, as was the case in the 84 day A.I. test results shown in Table 81.

3. Conclusions.

a. MA67 alloy developed a superior combination of strength and resistance to SCC in plate over I/M 7050 and 7075 alloys as well as the other P/M alloys in accelerated tests.

- b. P/M alloys MA65, MA66 and MA67 all developed superior combinations of strength and resistance to SCC after 50 days A.I. exposure compared to I/M 7075.
- c. P/M plate fabricated from inert gas preheated compacts had inferior fracture toughness compared to I/M 7075 and 7050 plate.

V. Sheet

A. Properties of 0.090" Thick Sheet from 170-1b Compacts

1. <u>Material Preparation</u>. P/M 0.090" sheet was fabricated for evaluation by the following procedure.

Hot pressed compacts of MA65, MA66 and MA67 atomized alloys (Table 5) were prepared by a procedure outlined in Table 6 using specific processing conditions for each compact as listed in Table 82. These hot pressed compacts were reheated and forged by an "A" upset and draw sequence shown in Figure 51 to 5" thick x 10" wide x 36" long slabs. These slabs were scalped as shown in Table 83 to approximately 2" x 7-1/2" x 24", reheated to 700 F, hot cross rolled to 9" wide and hot longitudinally rolled to 0.250" thick. A section of this 0.250" plate was reheated to 700 F and hot rolled in one pass to 0.144" thick. This sheet was annealed 2 hours at 650 F and cold rolled to 0.090" thick.

The samples listed in Table 84 were solution heat treated 1 hour at 920 F, cold water quenched, stretched 1.8%, aged 5 days at room temperature plus 24 hours at 250 F. These materials were sampled for longitudinal and transverse tensile and Kahn-Type tear tests⁷ and for exfoliation corrosion with machined surfaces exposing planes 10% below rolled surface and mid-thickness to the ExCo test.⁸ The effect of second-step aging at 325 F on longitudinal tensile properties was determined on samples listed in Table 85.

The effect of annealing temperature on grain size in the 0.090" sheet we determined to be as shown in Table 86. Since 920 F, the solution heat treatment temperature, gave the finest or near the finest grain size, no separate annealing treatments prior to SHT were used on material to be tested in a heat treated and aged condition.

Properties of annealed material listed in Table 87 were determined on sheet samples annealed for one hour at 920 F, rapidly cooled to 750 F, cooled at 50 F/hour to 450 F, held 4 hours at 450 F and air cooled to room temperature. Tensile properties in the longitudinal, transverse and at 45° to the longitudinal direction were determined, as were the Strain Hardening Coefficient (η in $\sigma = \varepsilon^{\eta}$) and the Strain Ratio's (η in θ and the Strain Ratio's thickness strain) in the three directions on this annealed material.

2. Results and Discussion. The mechanical properties of the heat treated and aged tempers of the P/M 0.090" sheet are presented in Tables 84 and 85, while the tensile properties of the annealed sheet are shown in Table 87, and the strain hardening coefficients and strain ratios in Table 88. Exco exfoliation corrosion test results are summarized in Table 89.

While P/M alloys MA66 and MA67 achieved higher strength than I/M 7050, the latter showed superior fracture toughness (Trs/YS or U.P.E. in Table 84). MA65 alloy showed equal strength

and fracture toughness compared to 7075. MA66 alloy achieved better longitudinal strength than I/M 7050, but only matches I/M 7050 strength in the transverse direction. All of the P/M alloys showed inferior strength and fracture toughness (TrS/YS) compared to I/M 7050 (Figure 70). However, this P/M sheet was fabricated from inert gas preheated compacts. On the basis of the effect of vacuum preheat/hot press on the fracture toughness of extrusions (Figure 41), it is anticipated that incorporating this preheat in compacts for sheet will substantially enhance fracture toughness.

The annealed P/M sheet in all alloys showed strengths below the typical strength for 7075-0 and ductility above typical 7075-0 elongation (Table 87).

The strain hardening coefficient and strain ratio provide qualitative ratings of the relative formability of sheet materials. The values of η and R shown in Table 88 for the P/M alloys are generally typical of aluminum base alloys, although the coarse powder (50 μ M APD) sheet in MA65 and MA66 alloys clearly show high η and R compared to fine powder. On this basis sheet from coarse powder would be expected to be more formable than fine powder (15 μ M) sheet. This potentially favorable forming characteristic may be related in part to the fine grain size of the coarse powder sheet after 1 hour at 920 F (Table 86).

MA65, MA66, and MA67 showed only pitting attack in ExCO even when exposed for twice as long as the standard test for 7XXX alloys (Table 89).

3. Conclusions.

- a. P/M MA65 developed similar strength and tear properties to I/M 7075.
- b. I/M 7050 alloy developed superior strength with good fracture toughness compared to the P/M alloys and I/M 7075.
- c. P/M 0.090" sheet was not susceptible to exfoliation corrosion at up to 88 ksi yield strength.
- d. Coarse powder gave finer grain size in sheet compared to fine powder.

SUMMARY OF CONCLUSIONS

- 1. Alloy MA66 (Al-8 Zn-2.5 Mg-1 Cu) in extrusions achieved the strength, ductility, fracture toughness, resistance to stress-corrosion cracking and exfoliation required for the Target B combination of properties, at 85 ksi longitudinal yield strength (LYS) (Table 90).
- 2. Alloy MA67 (A1-8 Zn-2.5 Mg-1 Cu-1.6 Co) in extrusions fabricated from argon preheated compacts had the strength, resistance to SCC and exfoliation, and fatigue performance required for the Target A combination of properties, at 95 ksi LYS (Table 91). This alloy did not meet the elongation (11%) and fracture toughness (K_{IC} = 26 ksi√in.) objectives for Target A.
- 3. Alloy MA66 in extrusions achieved the strength, ductility, fracture toughness, exfoliation resistance and fatigue performance goals of the Target A combination of properties, at 95 ksi LYS (Table 91). This alloy-temper did not meet the SCC goal for Target A.
- 4. Vacuum preheating and compacting substantially improved the longitudinal and transverse fracture toughness of P/M extrusions when compared to extrusions from argon or nitrogen atmosphere preheated compacts.
- 5. Vacuum preheated MA83 (high purity base Al-8 Zn-2.5 Mg-l Cu) extrusions surpassed the transverse plane-strain

fracture toughness (K_{Ic}) and ductility of I/M (Ingot Metallurgy) 7050 and 7075 extrusions.

- 6. P/M MA67 alloy developed a superior combination of strength and SCC resistance compared to I/M 7075, 7178 and 7001 alloys in extrusions.
- 7. P/M MA67 alloy developed a superior combination of strength and SCC resistance compared to I/M 7050, 7049, and 7075 alloys in die forgings.
- 8. P/M MA67 alloy developed a superior combination of strength and SCC resistance compared to I/M 7075 alloy in hand forgings.
- 9. P/M MA67 alloy developed a superior combination of strength and SCC resistance compared to 7050 and 7075 alloys in plate.
- 10. P/M MA65, MA66, and MA67 alloys all developed superior combinations of strength and resistance to stress-corrosion cracking compared to I/M 7075 alloy in die forgings, plate, extrusions, and hand forgings.
- 11. P/M extrusions at up to 95 ksi LYS and P/M 0.090" sheet at up to 88 ksi LYS was resistant to exfoliation corrosion, based on ExCO accelerated total immersion test. I/M extrusions 7001, 7178, and 7075 all showed inferior combinations of strength and exfoliation resistance compared to P/M alloy extrusions.

- 12. P/M MA66 and MA67 extrusions sustained up to 40% higher fatigue stress than commercial 7075-T6510 without failure in notched fatigue tests ($K_{t}=3$, R=0.0, 10^{8} cycles).
- 13. P/M MA65 extrusions developed smooth specimen fatigue performance superior to 7075-T6 extrusions at equal yield strength.
- 14. P/M MA66 and MA67 extrusions developed smooth and notched specimen fatigue performance superior to 7001-T6 and 7075-T6.
- 15. P/M MA65 sheet developed comparable strength and fracture toughness (tear properties) to I/M 7075-T6 sheet.
- 16. P/M alloy die forgings, plate and hand forgings fabricated from argon preheated compacts had inferior fracture toughness compared to I/M 7075 alloy. Vacuum preheating is expected to substantially improve fracture toughness when applied to these products.
- 17. Transverse fracture toughness and ductility in extrusions is strongly dependent on extrusion density, associated porosity and porosity distribution.
- 18. Fine powder of irregular shape (as atomized in air) provided maximum extrusion density, transverse ductility and fracture toughness in extrusions from inert gas preheated compacts.
- 19. Hot pressed compacts from fine powders had superior forgeability, ductility and fracture toughness in open die hand forgings compared to coarse powder compacts.

- 20. Among inert gas preheats, maximum transverse fracture toughness was achieved by furnace or retort preheating followed by bare compact hot pressing preceding hot working. Exposure to air in transferring compact from furnace or retort to compacting cylinder should be minimized to prevent oxidation of the compact near the compact surface.
- 21. Increasing amounts of hot reduction substantially improved transverse fracture toughness of hand forgings from hot pressed compacts prepared with argon preheating, by closing up residual interparticle porosity present in the hot pressed compacts.
- 22. Scalping of hot pressed compacts prepared with argon preheating is necessary prior to hand forging to remove the oxidized surface layer and thus minimize surface cracking during hot forging.
- 23. Nitrogen gas preheating gave superior degassing of green compacts compared to argon preheating and resulted in hand forgings with superior transverse fracture toughness compared to hand forgings from argon preheated compacts.
- 24. Preheating green compacts in nitrogen or argon prior to hot pressing improved forgeability and mechanical properties over preheating without a flowing inert gas.

REFERENCES

- Lyle, J. P., Jr., "Development of Aluminum Base Alloys -Section I Final Report," Contract No. DA-36-034-ORD-3559 RD, September 7, 1966.
- Haarr, A. P., "Development of Aluminum Base Alloys Section II Final Report," Contract No. DA-36-034-ORD-3559 RD, December 20, 1965.
- 3. Haarr, A. P., "Development of Aluminum Base Alloys Section III Final Report," Contract No. DA-36-034-ORD-3559 RD, May 31, 1966.
- 4. Cebulak, W. S., and Truax, D. J., "Program to Develop High-Strength Aluminum Powder Metallurgy Products - Phase I - Process Optimization - Final Report," Contract No. DAAA25-70-CO358, March 12, 1971, AD882-137L.
- 5. Cebulak, W. S., and Truax, D. J., "Program to Develop High-Strength Aluminum Powder Metallurgy Products - Phase II - P/M Alloy Optimization - Final Report," Contract No. DAAA25-70-CO358, June 1, 1971, AD884-642L.
- 6. Lyle, J. P., Jr., and Cebulak, W. S., "Properties of High-Strength Aluminum P/M Products," presented at The Third Air Force Metal Working Conference, Western Metal and Tool Exposition, March 13-16, 1972, Los Angeles, California.
- 7. Kaufman, J. G., and Hunsicker, H. Y., "Fracture Toughness Testing at Alcoa Research Laboratories," Symposium on Fracture Toughness Testing and Its Applications, 1965, ASTM Special Technical Publication No. 381.
- 8. Sprowls, D. O., Walsh, J. D., Shumaker, M. B., "Simplified Exfoliation Testing of Aluminum Alloys," presented at Symposium on Localized Corresion, ASTM Annual Meeting, Atlantic City, June 1971.
- 9. Kaufman, J. G., Schilling, P. E., Nordmark, G. E., Lifka, B. W., and Coursen, J. W., "Fracture Toughness, Fatigue and Corrosion Characteristics of X7080-T7E41 and 7178-T651 Plate and 7075-T6510, 7075-T73510, X7080-T7E42 and 7178-T6510 Extruded Shapes," AFML-TR-69-255, Contract No. F33615-67-C-1521, November 1969.
- 10. Kahlow, Kurt J., and Avitzur, Betzalel, "Void Behavior as Influenced by Pressure and Plastic Deformation," Lehigh University, October 1971.

REFERENCES (CONTINUED)

- 11. Staley, J. T., "Exploratory Development of High-Strength Stress-Corrosion Resistant Aluminum Alloys Usable in Thick Section Applications," Air Force Contract No. F33615-69-C-1644, Phase II, to be reported in Final Report.
- 12. Kunkle, D. A., and Willey, L. A., "Densities of Wrought Aluminum Alloys," <u>Journal of Materials</u>, Vol 1, No. 1, March 1966, p 226.
- 13. Hunsicker, H. Y., "The Metallurgy of Heat Treatment,"
 Aluminum, Vol. 1, American Society for Metals, Metals
 Park, Ohio, 1967, p 139.
- 14. Summerson, T. J., and Luhan, J. V., "Development of 7049-T73 High-Strength, Stress-Corrosion Resistant Aluminum Alloy Forgings," presented at 1970 WESTEC, Los Angeles, March 11, 1970.
- 15. Staley, J. T., and Hunsicker, H. Y., "New Aluminum Alloy X7050," presented at ASM Metals Congress, Detroit, Michigan, October 18-20, 1971.

No. of the Control of

- 16. Staley, J. T., "Investigation to Develop a High-Strength Stress-Corrosion Resistant Naval Aircraft Aluminum Alloy Final Report," Naval Air Systems Command Contract No. N00019-69-C-0292, November 20, 1970.
- 17. Nelson, P. G., and Winlock, J., "A Method of Determining the Percentage Elongation at Maximum Load in the Tension Test," ASTM Bulletin, January 1949, p 53.
- 18. Rogers, R. W., Jr., and Anderson, W. A., "Effect of Plastic Anisotropy on Drawing Characteristics of Aluminum Alloy Sheet,"

 Metal Forming: Interrelation Between Theory and Practice,
 Plenum Publishing Corporation, New York, 1971, p 185.
- 19. Kaufman, J. G., and Holt, Marshall, "Fracture Characteristics of Aluminum Alloys," Alcoa Research Laboratories Technical Papter No. 18, Aluminum Company of America, Pittsburgh, Pennsylvania, 1965.
- 20. Private communication with J. T. Staley, June 19, 1972.
- 21. Aluminum Standards and Data, The Aluminum Association, New York, New York, December 1969.

Table 1

TARGET A

Property	Target	Measured Properties 9.0 Zn-2.5 Mg-1.0 Cu
Y.S. (ksi)	95	94.8
K _{IC} ksi√in.	26	19 ²
SCC (ksi)	25	<25
Fatigue ^l (ksi)	22	30
Exfoliation	Resistant	Immune
Elongation (%)	11	8

Notes: 1. Endurance limit for smooth specimen, rotating beam.
Estimated from NTS/YS.

2.

WSC:km 8-3-72

Table 2 TARGET B

Property	Target	Measured Properties 6.5 Zn-2.3 Mg-1.5 Cu
Y.S. (ksi)	85	84.5
K _{IC} (ksi√in.)	26	284
SCC (ksi)	25	40
Fatigue ¹ (ksi)		
Smooth rotating beam	22	30
Smooth axial stress ²	34	
Notched axial stress ³	14	~~
Exfoliation	Immune	Ímmune
Elongation (%)	11	13.5

Notes: 1. Endurance limit.

2. Stress ratio (R) = 0.0.

3. R = 0.0, $K_{t} = 3$. 4. Estimated from NTS/YS.

WSC:km 8-3-72

Table 3
TARGET C

Property	Target	Measured Properties 5.5 Zn-2.0 Mg-2.0 Cu
Y.S. (ksi)	75	75.2
K _{Ic} (ksi/in.)	45	33 ²
SCC (ksi)	42	40
Fatigue ^l (ksi)	22	25
Exfoliation	Immune	Immune
Elongation (%)	11	15

Notes: 1. Endurance limit for smooth specimen,

rotating beam test.
2. Estimated from NTS/YS.

WSC:km

8-3-72

Table 4

STRENGTH AND STRESS CORROSION PERFORMANCE TARGET A VS Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co
2" DIAMETER EXTRUSIONS

	Longitudinal		Transverse
	Y.S.	Y.S.	SCC (sustained stress)
Target A	95 ksi		25 ksi
Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 C	o 95	81 ksi	5/5 Pass at 25 ksi ¹

The state of the s

Note: 1. S/N = Specimens Surviving/Specimens Tested for 910 days in New Kensington Atmosphere. 3/5 Pass 910 days with 40 ksi applied stress.

WSC:dk 8-16-72

		Cr	888	8699	888	22.03.
		걆	000	8888	888	.03 .03
		NŢ	888	8888	0.00	888
		81	888	0000	1.52 1.61 1.64	
No.	47	Be	.002	.003 .003 .003	.002 .003 .003	.002
EVALUATION	Weight 47	rZl	6.46 6.43 6.42	7.92 8.37 8.34 8.19	8.28 7.82 7.86	7.16 5.75 6.56
		We was	2.36	2.56 2.54 2.56 2.56	2.64 2.49 2.51	2.77 2.40 2.45
SCALED UP PRODUCT		5	1.53	1.09	1.03	1.93 1.66 1.86
				₹ ₹ ₹ ₹	999	.16 .18
OF ALLOYS FOR		Si	888	.05 .05 .01	.05 .05	.07
COMPOSITION OF AL	Pot	No.	1537-8 1540 1539	1541 1543 1542 1566	1544 1546 1545	
- •	Size 10	M	15.6 23.9 48.5	16.5 21.8 49.3 13.6	14.7 22.7 51.2	Ingot Ingot Ingot
	•	1071	MA65 MA65 MA65	MA66 MA66 MA66 MA83	MA6; MA67 MA67	7001 7075 7178
	,	oampre No.	104877 ¹ 104878 ² 104878 ²	404880 3 , 6 4048814 4048824 405481 9	4048835 4048845 4048855	405241-18 405295-49 405297-49

71-041904 Analytical Chemistry J. Notes:

71-042001; Analytical Chemistry

71-042607. 71-041312 Analytical Chemistry J. O. Analytical Chemistry

71-062503. 71-042901. Analytical Chemistry J. O. Analytical Chemistry J. O.

Cr = Mn = Ti = 0.00%, except as noted.

Analytical Chemistry J. 0. 71-100503, Mn=0.02. Analytical Chemistry J. 0. 71-081608, Mn=0.04.

Average Particle Diameter from Fisher Sub-Sieve Sizer.

Table 6

FABRICATION OF HOT PRESSED 170-LB COMPACTS

- Melt and Alloy See Table 5 for Compositions.
- 2. Atomize See Table 8 for Powder Sizes, Screen Analyses.
- 3. Scalp Powders See Table 8 for Scalping Screens.
- 4. Cold Compact Powders Isostatically cold pressed at 30 ksi
 to yield green compact 8" diameter x
 42 " long. Compacts 76-80% of theoretical
 density. See Table 9 for observed compact
 densities.
- 5. Preheat Compacts Heat in flowing argon in a controlled atmosphere furnace.
- 6. Hot Press Immediately after preheat, hot press at 90 ksi in a Tapered Cylinder (see Figure 2) to yield a 8.4 to 9.2" diameter x 28" long compact.

Table 7

I BILLETS	
XTRUSION	
FOR	
CONDITIONS FOR E	
FABRICATING (

	Scalped Billet ⁴	\mathtt{Length}^5	in.												
	ed Bi		Ì		25	25		25		25			25	25	25
	Scalp	Dia.	in.		7.2	7.2		7.2		7.2			7.2	7.2	7.2
Hot	Compact	Pressure	ksi		06	06		06		06			06	06	06
		Flow	CFH/1b		0.29	0.29		0.29		0.29			0.29	0.29	0.29
	tions		Gas		Argon	Argon		Argon		Argon			Argon	Argon	Argon
	Condi	Temp	0 F		1000	1000		1000		1000			1000	1000	1000
	Preheat Conditions	Time	hrs		2.3	1.0		1.2	.0 Cu	2.0			1.9	1.6	1.0
			Method ³	5 Cu	Furnace	Furnace	Cu	Furnace	n-2.5 Mg-1.0	Furnace	,	Cu-1.6 Co	Furnace	Furnace	Furnace
Approx.	Compact	$\mathtt{Density}$	%	A1-6.5 Zn-2.3 Mg-1.5 Cu	78	80	Al-8.0 Zn-2.5 Mq-1.0 Cu	78	High Purity Al-8.0 Zn-2.5 Mg-1	77	!	Al-8.0 Zn-2.5 Mq-1.0 Cu-1.6 Co	76	9/	77
	Powder	Sizel	mm	A1-6.5 Z	15.6	48.5	A1-8.0 Z	16.5	High Pur	13.6		A1-8.0 Z	14.7	14.7	51.2
			Sample No.	MA65 Alloy:	404877-E1	404879-E2	MA66 Alloy:	404880-E3	MA83 Alloy:	405481-E7	1	MA67 Alloy:	404883-X4	404883-E5	404885-E6

APD from Fisher Sub-Siève Sizer. Notes:

Percent of Theoretical Density - from Table 9.

Preheated in a muffle atmosphere furnace immediately before

8.3" to 9.2" diameter (tapered) x 28" long. Hot pressed compact: hot pressing.

Equal amounts scalped from each end of hot pressed billet. 4.5

Table 8

POWDER SCREEN ANALYSIS OF ALLOYS FOR SCALED UP PRODUCT EVALUATION

Sample No.	Alloy	Pot No.	Date Atomized	A PD ³ u M	U.S. -30+50	Standard S -50+100	U.S. Standard Screen Analysis (Wt. %) ¹ 0+50 -50+100 -100+200 -200+325	rsis (Wt, %) -200+325	-325	Scalping Screen (Tyler)
404877 404878	MA65 MA65	1537-8 1540	4-14,16-71	15.6	0.0	0.0	4.6	11.8	83.6	100
404879	MA65	1539	4-19-71	48.5	15.4	35.9	28.1	11.7	6.0	24
404880	MA66	1541	4-21-71	16.5	0.0	0.0	5.6	13.0	81.4	100
404881	MA66	1543	4-23-71	21.8	2.8	16.0	22.0	16.2	43.0	48
404882	MA66	1542	4-23-71	49.3	13.0	34.6	29.3	13.2	6.6	24
405481	MA83	1566	8-13-71	13.6	0.0	0.0	1.2	7.3	91.5	100
404883	MA67	1544	4-26-71	14.7	0.0	0.0	3.2	9.5	87.4	100
<+	MA67	1546	4-28-71	22.7	2.0	14.6	21.7	16.3	45.4	48
404885	MA67	1545	4-28-71	51.28	12.9	35.3	29.6	12.9	9.1	24

Notes: 1. Screen Analysis made after scalping.

2. 50µM maximum scale reading. APD estimated.

Average Particle Diameter from Fisher Sub-Sieve Sizer.

Table 9

EFFECT OF ALLOY AND POWDER SIZE ON COMPACT GREEN DENSITY

		E + 0 * 0 0 0 E		, c		Powder
		Density ⁴	COIIIDAC	Powder Size ²	HST LY-	nacurat Age Time ³
	Alloy	lbs/in.3	15	23	20	Days
MA65:	MA65: 6.5 Zn-2.3 Mg-1.5 Cu	0.1019	78	80	80	21–26
MA66:	MA66: 8.0 Zn-2.5 Mg-1.0 Cu	0.1025	78	77	92	20-21
MA67:	MA67: 8.0 Zn-2.5 Mg-1 Cu-1.6 Co	0.1031	92	92	77	15-16

Percent of theoretical density. All compacts cold cylinder to approximately 8" dia. x 42" long. pressed at 30 ksi in a wet bag isostatic Notes:

- 2. Average Particle Diameter (µM) from Fisher Sub-Sieve Sizer.
- 3. Time between atomizing and cold compacting.
- 4. Calculated from Ref. 12.

Table 10

1/2" x 6-3/8" AND OCTAGONAL BAR EXTRUSIONS EXTRUSIONS CONDITIONS FOR

sion		Extrusion No.	6169 6170	6171	6629	6172 6173	6174	6157	6159	6158
Octagonal Extrusion	Extrusion Breakout	Pressure ksi	78.8 81.5	77.4	9.89	82.8 86.9	84.2	(4)	92.4	9.66
		Piece No.	E1BD E2BD	E3BD	E7BD	X4BD E5BD	E6BD	-2	ī,	ო I
trusion ¹		Extrusion No.	6163 6164	6165	6628	6166 6167	6168	6160	6161	6162
1/2" x 6-3/8" Extrusion ¹	Extrusion Breakout	Pressure	86.9 85.6	84.2	79.9	86.9 88.3	86.9	89.6	9.68	9.68
1/2		Piece No.	E1R E2R	E3R	E7R	X4R E5R	E6R	-1	4-	4-
	ָרָ נייני	Sizes	15.6	16.5	13.6	14.7	51.2	!	l i	ļ
		Alloy	MA65 MA65	MA66	MA83	MA67	MA67	70013	7075³	7878³
		S. No.	404877 404879	404880	405481	404883	404885	405241	405295	405297

Billets 7-1/2"diameter x 12-1/2" lg. reheated to 700 F and extruded to indicated section from a 7-1/2" dia. extrusion cylinder at less than 3 feet/minute extrusion speed. 1/2" x 6-3/8" has extrusion ratio Octagonal extrusion ratio = 17.1. Notes:

Average Particle Diameter from Fisher Sub-Sieve Sizer.

Extrusions fabricated from D.C. ingot (9" diameter for 7001 and 7178, 11" diameter for 7075), scalped to 7-1/2" diameter. 3.5

Not measured. 4 CHARLES THE STATE OF THE STATE

Table 11

EFFECT OF SECOND-STEP AGING TIME ON
LONGITUDINAL PROPERTIES OF OCTAGONAL EXTRUSIONS

		Second-					
	Powder	Step		tudinal	Propert		
	Size ¹	Age ²	T.S.	Y.S.	% E1.	RA	E.C.
Sample No.	<u> </u>	@ 325 F	<u>ksi</u>	ksi	in 4D	*	% IACS
MA65 Alloy:	6.5 Zn-2.3	Mg-1.5 Cu					
404877-E1S1	15.6	None	99.2	86.1	8.0		34.7
404877-E1S2	15.6	2 hrs.	90.3	83.9	10.0		38.8
404877-E1S3	15.6	13 hrs.	85.0	79.2	14.0		42.4
404877-E1S6	15.6	16 hrs.	78.2	71.4	12.8	32	
404877-E1S4	15.6	20 hrs.	75.2	67.5	13.0	34	
404879-E2S4	48.5	None	88.9	83.2	14.0	27	32.2
404879-E2S5	48.5	2 hrs.	89.0	86.0	13.0	33	34.5
404879-E2S3	48.5	13 hrs.	84.2	78.6	16.0		38.5
404879-E2S6	48.5	16 hrs.	84.2	79.9	14.5	40	
404879-E2S7	48.5	20 hrs.	79.2	73.2	15.5	46	
MA66 Alloy:	8.0 Zn-2.5	Mg-1.0 Cu					
404880-E3S1	16.5	None	100.8	95.1	12.0		34.0
404880-E3S2	16.5	6 hrs.	88.9	84.9	16.0		41.1
404880-E3S3	16.5	16 hrs.	81.4	76.3	16.0		43.9
MA67 Alloy:	8.0 Zn-2.5	Mg-1.0 Cu-1	.6 Co				
404883-X4S1	14.7	None	104.2	98.9	12.0		32.3
404883-X4S2	14.7	6 hr::.	90.2	86.0	13.0		38.7
404883-X4S3	14.7	16 hrs.	83.9	77.6	14.0		41.0
404883-E5S1	14.7	None	103.4	97.4	10.0		:·2. ı
404883-E5S2	14.7	6 hrs.	89.7	84.4	11.0		سار ترق
404883-E5S3	14.7	16 hrs.	83.4	76.4	14.0		40.9
404885-E6S1	51.2	None	108.5	103.4	12.0		30.3
404885-E6S2	51.2	6 hrs.	97.2	91.2	10.0		34.8
404885-E6S3	51.2	16 hrs.	88.6	83.2	. 12.0		37.6

Notes: 1. Average Particle Diameter from Fisher Sub Sieve Sizer.

WSC/lmk 8/11/72

^{2.} Solution heat treated 2 hours @ 920 F, cold water quenched, aged 4-7 days @ room temperature + 24 hours @ 250 F + second-step aging as shown.

Table 12 TENSILE PROPERTIES OF P/M AND I/M OCTAGONAL EXTRUDED BAR (EXTRUSION RATIO = 17.1:1)

			Second-	Electrical				_								
		Preheat	Step Age	Conduc-			itudina	1 Prope					nsverse	Proper		
Sample	Size	Atmos-	hrs.	tivity	T.S.	Y.S.	♣ E1.		NTS		T.S.	Y.S.	• E1.		NTS	
No.	шМ	phere2	● 325 P	• IACS	ksi	ksi	in 4D	Rof A	ksi	NTS/YS	ksi	<u>ksi</u>	in 4D	R of A	kki	NTS/YS
															•	
MA65 A1	loy: Al	-6.5 Zn-2	.3 Mg-1.5 C	<u>u</u>												
404837E1B	15.6	Argon	0,	38.1	94.5	86.7	8.8	10	109.8	1.27	83.6	72.4	8.6	8	54.2	0.75
404877E1C	15.6	Argon	14	43.2	82.3	76.6	11.0	18	96.6	1.26	75.8	68.2	8.6	16	57.0	0.84
404879E2B	48.5	Argon	None	32.3	89.4	84.0	14.0	21	114.5	1.36	84.2	73.1	7.0	5	53.1	0.73
404879E2C		Argon	19	39.7	81.0	75.8	15.0	40		1.41	76.4	70.0	5.4	6	56.6	0.81
		•	_													
MAGE AL	loy: A	l-8.0 Zn-2	.5 Mg-1.0 C	<u>n</u>												
4C4880E3B	16.5	Argon	0*	33.6	98.3	94.3	8.0	9		1.25	86.1	78.7	9.4	7	52.2	0.66
404880E3C	16.5	Argon	6	40.7	87.2	84.2	11.2	26	107.7	1.28	80.1	74.2	9.4	22	49.3	0.66
404882C	49.3	Nitrogen ⁷	6	31.0	92.4	90.2	11.7	27	93.2	1.03	83.1	80.8	1.6	3	34.6	0.43
MASS Allo	v: High	n Purity A	1-8.0 Zn-2.	5 Mg-1.0 Cu	(0.02	max. e	a. Fe.	Si)								
40581E7C	13.6			33.4		92.6	8.0		112 6	1.27	86.0	76.8	11 7	19	59.8	0.78
4030TE/C	13.0	Aryon	None	33.4	97.3	92.0	8.0		117.5	1.2/	86.0	16.0	11.7	19	39.0	0.76
MA67 Allo	y: Al-	3.0 Zn-2.5	Mg-1.0 Cu													
404883X4C	14.7	Argon	None	31.6	104.8	98.5	7.5		76.1	0.77	90.8	82.4	3.5	3	40.0	0.49
404883E50	14.7	Argon	None	31.6	102.6	97.8	9.0		78.4	0.80	91.8	82.6	4.3	2	38.0	0.46
404883#52		Argon	0.5	33.5	99.6		7.8	11		0.92	89.8	82.8	7.4	14	43.7	0.53
404883X4B	14.7	Argon	1	34.0	98.4	94.9	7.3	16	85.0	0.90	89.1	83.4	3.9	5	46.0	0.55
404885E60	51.2	Argon	None	30.1	107.2	103.9	8.5		85.8	0.83	87.7	82.2	3.1	1	35.5	0.43
404985E6E	51.2	Argon	3	33.5	99.8	97.4	7.8	14	83.8	0.86	88.6	84.3	2.3	2	34.3	0.41
7001 \$110	w. 11-	7.2 2c+2.8	Mg-1.9 Cu-	0.2 Cr												
														_		
4052412C	I/H ⁵		None	30.5	103.8	98.8	7.0		3.2	1.15	87.8	79.3	4.7	7	53.3	0.67
7178 Allo		6.6 Zn-2.4	Mg-1.9 Cu-	0.2 Cr					•			•				
4052973C	I/K ^S		None	31.7	97.8	91.2	9.2	12	114.8	1.26	83.6	73.9	6.2	7	65.0	0.88
4052973A*			9.5	37.4	85.9	79.9	10.2	24	102.4	1.28	76.8	70.5	7.0	10	63.2	0.90
7075 3110	w. 11-	5 8 7n=2 4	Mg-1.7 Cu-	.0 2 Cr												
405295 50			None	30.7		86.9		13		1.31	80.4	71.8	8.0	. 8	75.5	
405295 58	B I/N		24	40.0	80.2	73.4	12.5	34	99.2	1.35	72.4	63.9	8.0	13	73.6	1.15

Average Particle Diameter from Fisher Sub-Sieve Sizer.

Average Particle Diameter from Fisher Sub-Sieve Sizer.

Isostatically pressed 170 lb. green compact preheated to 1000 F in flowing argon, hot pressed at 90 ksi, scalped, reheated and extruded, except as noted.

Solution heat treated 2 hours @ 920 F (P/M) or 4 hours @ 870 F (I/M), cold water quenched (no stress relief), naturally aged 4-7 days + 24 hours @ 250 F.

Heated up to 325 F, no hold @ 325 F.

I/M = Ingot Metallurgy. From 9" diameter D.C. ingot (production plant cast).

I/M = Ingot Metallurgy. From 11" diameter D.C. ingot (production plant cast).

15 lb. compact preheated in a retort with flowing N₂, hot pressed at 90 ksi, extruded with 12.4 extrusion ratio. SHT 2 hrs. @ 920 F, CWQ, aged 24 hours @ 250 F + 6 hours @ 325 F (from Table 43).

WSC/lmk

MECHANICAL PROPERTIES OF P/M AND 1/M 1/2"x6-3/8" EYTRUDED BAR (EXTRUSION RATIO = 13.9:1)

			Second-				Longit	udinal	Longitudinal Properties	2				Long-Tre	msverse	Long-Transverse Properties	es	
Sample No.	Powder Sizer uM	Preheat Atmospherea	Step Age ⁵ hrs @ 325 F	E.C.	T.S.	Y.S. ksi	E1. % in 4D	동세	Str.	Tr.S./Y.S.	o Padn	T.S.	Y.S. kai	El. \$ in 4D	돌세	Tear Str. Ksi T	Ir.S./7.S.	01220
K465 Alloy:	A1-6.5 Zn-	A1-6.5 Zn-2.3 Mg-1.5 Cu																
104877E1A	15.6 15.6	Argon Argon	None 6	35.3	89.9 77.2	81.2 67.2	12.5	218	63.7 81.0	0.78	2754 3074	86.6 74.4	76.2 64.8	13.0	8:	51.2 55.8	0.67 0.86	૪ૹૢ
404879528 404879520	1.05.5 7.08.5	Argon	None 16	35.0	88.8 79.1	83.3 73.3	14.0 16.0	75 75 75	82.2 83.8	0.99	1000 1495	82.0 78.0	75.1	15.0	87.7%	69.5 60.0	0.93 0.84	185 140
MA66 Alloy:	A1-8.0 Zn-	A1-8.0 2n-2.5 Mg-1.0 Cu																
1,04880E3B 1,04880E3A	16.5 16.5	Argon Argon	None 3	35.1	93.9 87.0	87.6 81.2	12.0	5 [†]	6.45 6.49	0.86 1.04	N.D.e	92.0 83.6	84.4 77.2	13.5	8%	61.1 59.9	0.72 0.78	ટ્ટાટા
MAB3 Alloy:	High Purit	y A1-8.0 Zn-2.5	MAB3 Alloy: High Purity Al-8.0 Zn-2.5 Mg-1.0 Cu (0.02% Max. ea. Fe, Si)	2% Max. ca	. Fe, St)													
405481£78 405481£7A	13.6 13.6	Argon Argon	None 3	35.4	93.0 85.1	86.9 79.1	12.0	77 %	75.0 97.5	0.86 1.23	N.D.6	83.0	82.8 77.2	0.41	328	63.6 58.7	0.77 0.76	250 150
MA67 Alloy:	A1-8.0 Zn-	A1-8.0 Zn-2.5 Ng-1.0 Cu-1.6 Co	1.6 00															
401,993X4B 404&325B 404883X4A 40489385A	14.7 14.7 14.7	Argon Argon Argon Argon	None Rone 1,	38.30	100.88 86.2.5	4328 4356	8.5 10.5 10.5	15 82 88	56.1 58.0 83.2 75.6	0.58 0.62 0.97	125 202 8.D.6 N.D.6	4.4.4.5. 4.4.4.5.48	90.1 88.4 77.0 76.4	10.0 11.0 12.0	21887	55.5 48.0 58.3 50.7	0.62 0.54 0.76 0.66	કાકાકા <u>ણ</u>
401.885568 40488556A	51.2	Argon Argon	None 7	31.2	101.2	97.0 78.8	8.5 12.0	gy g	1°79 1°79	0.58 0.82	125	4.88 8.88 8.88	89.1	0.01	ងឧ	53.7 54.0	0.60	કાકા
7001 Alloy:	A1-7.2 7n-	A1-7.2 Zn-2.8 Mg-1.9 Cu-0.2 Cr).2 Cr					•										
405241-13	1/%,	:	None	31.6	100.0	92.8	0.6	ន្ទ	62.6	0.67	150	4*56	4.98	12.0	ħτ	59.5	69.0	٩ı
7178 Alloy:	Al-0.6 Zn-	A1-0.6 Zn-2.4 Mg-1.9 Cu-0.2 Cr),2 Cr															
405297-4c 4c5297-43	1/15	: :	None 10	38.0	91.2	83.6 72.8	0.0	ដូដ	66.8 75.6	0.80 1.04	1904 2704	87.4 80.0	78.4 70.7	12.0	91 12	54.9 64.2	0.70	100 145
7075 Alloy:	A1-5.8 Zn-	A1-5.8 Zn-2.4 Mg-1.7 Cu-0.2 Cr	3.2 Cr															
1,05295-1,c 1,05295-1,B	1/H 1/H	11	None 24	32.3	88.14 77.6	80.2 67.3	11.0	25	83.5 82.0	1.04	345 386	83.0	74.2 65.2	13.0 13.0	જ્ઞજ્ઞ	79.8 4.87	1.08	245 205
No. e.	Average Par	tiele Dimeter	Average Particle Dismeter from Fisher Sub-Sieve Sizer.	-Steve Sta	er.													

18

٠,

 $\lambda_{\rm sc}^{C}$

ric Elivisiás

1. VALUE OF

en eksteke.

Average Particle Diumeter from Fisher Sub-Sieve Sizer.

Institcted Diumeter from Fisher Sub-Sieve Sizer.

Institcted Diumeter from Fisher Speed to 1000 F in flowing argon, hot pressed at 90 ksi, scalped, reheated and extruded.

Extrusions solution heat treated 2 hours @ 920 F (P/M) or h hours @ 870 F (I/M), co.d water quenched, stretched 2%, aged h days at room tementure.

Strength France Area (From II from on temt).

Tear Strength France of non-standard fracture.

1.0. Ear Strength From Strength.

1.0. Ear Stretch.

1.0. Unit Propagation Energy - in-lbs/in.2.

THE RESERVE THE PROPERTY OF THE PARTY OF THE

The second second

From 11" dia. D.C. Ingot (production plant cast).

Table 14

#,

STRESS-CORROSION PERFORMANCE OF OCTAGONAL EXTRUSIONS IN 3.5% NACL ALTERNATE IMMERSION TEST - FEDERAL TEST METHOD 823

Notes:

4.2.4.

Average Particle Diameter. First-step aged 24 hrs. @ 250 F. P = pass - did not fail in 84 day exposure in A.I.

Table 15

NOTCHED SPECIMEN (K₊=3) AXIAL STRESS FATIGUE PERFORMANCE OF OCTAGONAL EXTRUSIONS (STRESS RATIO = 0.0)

	30 kei	19	14	; <u>,</u>	27 6	ט ל	12 4
	25 ksi					2,015	
-	cated 22.5 ksi			735	2	116,411	
	Kilocycles to Failure at Maximum Stress Indicated ksi 17.5 ksi 18.5 ksi 20 ksi 21 ksi 22.5 k			103,304+			
	Maximum S 20 ksi	387	29	101,523+		50,708+	16,041
!	ailure at 18.5 ksi	26,492	9,327	8,772+³			
	17.5 ksi 18.5 ksi 20 ksi	47,880+					
	<u>17 ksi</u>		73,826+		68,976+		
	15 ksi	111,2854 62,3504	31,237+	484,98	102,356+	77,031+103,260+	106,195+
ואס	ksi	86.7 84.0	86.9	84.2 94.3	95.6	94.9	98.8
Powder Size ²	MH	15.6 48.5	Ingot	16.5	13.6	14.7	Ingot
	Specimen No.	404877-E1A 404879-E2A	405295-5D	404880-E3C 404880-E3A	405381-E7B	404883-x4A 404883-E5A	405241 - 2A
	Alloy	MA65 MA65	7075	MA66 MA66	MA83	MA67 MA67	7001

...ี ณ ๓ Notes:

Samples with "+" did not fail. Average Particle Diameter from Fisher Sub-Sieve Sizer. In test.

The state of the s

Table 16

SMOOTH SPECIMEN AXIAL STRESS FATIGUE PERFORMANCE OF OCTAGONAL EXTRUSIONS (STRESS RATIO = 0.0)

¥.

	70 Ves	27			72				<u>.</u>	}			22
	60 ksi	147	ì	50	10,4421	149	ì		790	4,370		!	35
ა. მე	50 ksi	374	r	777	1,240t	210			77	<u> </u>		S	8
ress India	45 ksi	24,2501		0.00	040	4,7961	2,8901	1,1991	1.699	8,2891			
Kilocycles to Failure at Maximum Stress Indicateds	41 ksi	7,518	737	נפין ע	23,602 ¹	13,385	14,700	612	643	53,6001	107	10,735	
ailure at	37 ksi	10,9331		27 3001	10,7881	42,293						11,517	9,296
ycles to F	34 ksi	125,217+	7269									37,9881	
Kiloc	32 ksi		31,101										
	30 KS1	419	44,196+ 31,1								† ††		
LYS	TOU	86.7 84.0	Ingot 86.9	94.3		95.6	((94.9	6.56		4.76	98.8	
Powder Size ³		15.6 48.5	Ingot	1.6.5		다	£	7.4.7	14.7		51.2	Ingot	
Specimen No.		404877Ela 404879Ela	405295-5D	404880E3A	0.10	40>461~E7B	4048837114	V+vC00+04	404883-E5A	100.10	404885-E6A	405241 - 2A	
<u>A11.0y</u>		MA65 MA65	7075	MA66	24.00	50440	. MA67		MA67	0757	/.O.W.	7001	

ri 0 m Notes:

ist.

Grip failure. Samples with "+" did not fail. Average Particle Diameter.

THE PROPERTY OF THE PROPERTY O

A Complete C

Table 17

EXFOLIATION CORROSION PERFOR: CE OF 1/2" X 6-3/8" EXTRUDED BAR
IN EXCO TEST FOR 48 HOURS TOTAL IMMERSION⁴

	•	Second-				2.5
	Powder	Step	Stre		Exfolia	
Specimen	Size ¹	Age ²	LYS	TYS	T/2	T/10
Nc.	<u> </u>	<u>@ 325 F</u>	ksi	ksi	(E1)	(E2)
MA65 Alloy:	Al-6.5 Zn-2.3 Mg	-1.5 Cu				
404877-Ela	15.6	None	81.2	76.2	P	P
404877-E1C	15.6	16 hrs.	67.2	64.8	P	P
404879-E2B	48.5	None	83.3	75.1	P	P
404879-E2C	48.5	16 hrs.	73.3	71.1	P	P
MA66 Alloy:	Al-8.0 Zn-2.5 Mg	-1.0 Cu				
404880-E3B	16.5	None	87.6	84.4	P	P
404880-E3A	16.5	3 hrs.	81.2	77.2	P	P
MA83 Ailoy:	High Purity Al-8	3.0 Zn-2.5 Mg-1	.0 Cu			
405481-E7B	13.6	None	86.9	82.8	P	P
405481-E7A	13.6	3 hrs.	79.1	77.2	P	P
405402 2711	23.0	J 1125.	,,,,	,,,,	=	•
MA67 Alloy:	A1-8.0 Zn-2.5 Mg	-1.0 Cu-1.6 Co				
404883-X4B	14.7	None	96.2	90.1	P	P
404883-E5B	14.7	None	94.3	88.4	P	P
404883-X4A	14.7	4 hrs.	79.6	77.0	P	P
404883-£5A	14.7	5 hrs.	77.7	76.4	P	P
404885-E6B	51.2	None	97.0	89.1	P	P
404885-E6A	51.2	7 hrs.	78.8	77.4	P	P
7075						
405295-4C	Ingot	None	80.2	74.2	PB	E(A)
405295-4B	Ingot	24 hrs.	67.3	65.2	P	P
7178						
405297-4C	Ingot	None	83.6	78.4	(E(A)	E(A)
405297-4B	Ingot	10 hrs.	72.8	70.7	P	P
7001						
405241-1B	Ingot	None	92.8	86.4	E(C)	E (C)

Notes: 1. Average Particle Diameter from Fisher Sub-Sieve Sizer.

2. First-step aged 24 hours @ 250 F.

3. Exfoliation Visual Ratings: N - no appreciable attack.

P, PB - pitting or pit blistering.

E - exfoliation, A, B, C, D in order of increasing severity.

4. ExCo Test - 48 hours total immersion in 25°C solution:

4 M NaCl

0.5 M Potassium Nitrate

0.1 M Nitric Acid

pH = 0.4

5. T/2 = mid-thickness plane of extrusion.
T/10 = plane 10% of thickness below extrusion surface.

Table 18 . GENERAL FABRICATING PROCEDURE FOR P/M EXTRUSIONS

Process Step

Comments

Melt and Alloy

Atomize Molten Alloy - Generally atomized with air.

Scalp Powder - Screened to remove oversize.

Cold Compact - Powders cold pressed by a wet bag isostatic method

with 30 to 60 ksi applied compacting pressure.

Reheat/hot press - All green compacts heated to 1000 F and held @

1000 F. Immediately following preheat, compacts

were hot pressed and/or hot worked.

Hot Work - Compacts extruded from 6-3/8" or 7-1/2" diameter

cylinders.

WSC/lmk 8/16/72

Table 19

INCREASING HOT REDUCTION ON FRACTURE TOUGHNESS COMPOSITION OF ALLOYS FOR EFFECT OF

Pot	Powder Size ²	Atomizing				Compos	Composition ¹ - Weight %	- Weigh	## 96			
	MIT	Gas	Si	F)	8	Wg	Zu	ZZ	ဒ	Ni	Be	023
တ္တ	15.6 45.0	Air Air	.005	.005	1.52	2.21	6.49	8.8	000	000	.002	.355
1527 1527	16.0	Air Air	88	88	2.25	2.09	5.82	-	000	8 8	.001	
93	15.3	Air Air	00.	00.	1.00	2.54	9.24	00.	88	00.	.002	

Mn = Cr = Ti = 0.00**≒** 4. 4. 4. Notes:

Average Particle Diameter from Fisher Sub-Sieve Sizer.

Fast neutron activation analysis on powder.

Off Scale - Estimated.

WSC/lmk 8/3/72

<u> Control de la composition della composition de</u>

Table 20

POWDER SIZE AND SCREEN ANALYSES OF ALLOY POWDERS FOR EFFECT OF INCREASED HOT REDUCTION ON FRACTURE TOUGHNESS

Scalping	Screen	1,00	24	100	24	1,00°E	24
	-325	84.2	11.2	82.6		88.0	10.0
Veight &	-200+325	12.0	16.2	12.0	12.2	8.0	14.0
lysis ² - V	-50+100 -100+200 -200+325	3.8	35.4	5.4	34.2	4.0	35.8
Screen Ana	-50+100	0.0	31.4	0.0	33.6	0.0	33.0
01	-30+20	0.0	5.8	0.0	8.0	0.0	7.2
Powder Size ¹	MIL	15.6	45.0	16.0	46.0	15.3	46.0
Atomizing	Gas	Air	Air	Air	Air	Air	Air
Date	Atomized	5-14-71	5-14-71	3-25-71	3-24-71	3-23-71	3-23-71
Pot	No.	1549	1549	1527	1527	1526	1526
Sample	No.	405071	405075	404661	404662	404663	404664

Average particle diameter from Fisher Sub-Sieve Sizer. Notes:

U.S. Standard Screens. Tyler Series Screens.

Off Scale - Estimated.

WSC/lmk 8/4/72

Table 21

COMPACTING, PREHEATING AND EXTRUDING CONDITIONS FOR EFFECT OF INCREASING HOT DEFORMATION ON FRACTURE TOUGHNESS

Extrusion No.	6202- 6203- 6209- 6206-	6187 6188 6197 6189 6190 6198	6191 6192 6199 6195 6196 6200
Extrusion Speed ft/min	ന്നന	ကိုကိုကိုကိုက	ကကက်ကက်က
Extrusion Breakout Press. ksi	56.3 80.6 63.8 78.7	56 93.45 93.	54.5 782.5 78.7 52.5 72.5
Section ⁶	2.0.% 88. 88. 88.	2.0. 2.0. 2.0. 88.	2 2 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Extrusion Cylinder Temp.	700 700 700 700	700 700 700 700 700	700 700 700 700 700
Press. Dwell Min.	нннн	нанана	ппппппп
Hot Compact Press. ⁵ ksi	8888	88888	888888
Preheat Time @ 1000 F	1.7 hrs. 2.7 hrs. 1.9 hrs. 2.3 hrs.	2.0 hrs. 2.1 hrs. 2.7 hrs. 2.6 hrs. 2.8 hrs. 3.0 hrs.	3.0 hrs. 3.2 hrs. 3.5 hrs. 2.0 hrs. 2.5 lrs. 3.7 hrs.
Preheat Method ⁴	CANAR CANAR CANAR CANAR	CANAR CANAR CANAR CANAR CANAR CANAR	CANAR CANAR CANAR CANAR CANAR
Green Density 3	82.1 82.7 82.6 82.3	<u> </u>	333333
Cold Compact Press.2 ksi	88888	04 04 04 04	999999
Powder Size ¹ LUM	15.6 15.6 45.0 45.0	16.0 16.0 16.0 16.0 16.0	15.3 15.3 15.3 46.0 46.0
Sample Atomizing No. Gas Al-6.5 Zn-2.3 Mg-1.5 Cu	405071.3-2 Air 15.6 405071.4-3 Air 15.6 405075-2 Air 45.0 405075-3 Air 45.0 A1-5.9 Zn-2.1 Mg-2.2 Cu-0.11 Zr	404661-1 404661-2 404661-3 404662-1 404662-2 404662-3 Air 404662-3 Air Al-9.2 Zn-2.5 Mg-1.0 Cu	Air Air Air Air Air
Sample No. Al-6.5 Zn-2	405071.3-2 405071.4-3 405075-2 405075-3 A1-5-9 Zn-2	hoh661-1 hoh661-2 hoh661-3 hoh662-1 hoh662-2 hoh662-3	404663-1 404663-2 404664-1 404664-2 404664-2 404664-2

40.04.00.5 Notes:

Average Particle Diameter.
Compacts prepared by Wet Bag Isostatic Pressing.
Percent of Theoretical Density.
Can preheated with flowing argon, can and compact hot pressed.
Pressed in extrusion cylinder at ram face pressures shown.
2" dia. (Extrusion Ratio = 9.3:1). 7/8" dia. (Extrusion Ratio = 53:1).
Not measured.

Table 22

LONGITUDINAL TENSILE AND NOTCHED TENSILE PROPERTIES OF Al-6.5 Zn-2.3 Mg-1.5 Cu ALLOY EXTRUSIONS

ty % Fe	.005	.005	00.	000
Purity % Si	.005	.005	00.	000
NTS/XS	1.27	1.29	1.20	1.27
% El.	13.0	12.0	14.0	12.0
Y.S.	83.9	83.3	83.0	85.6
T.S.	88.8	88.7	87.0	90.7 85.5
Second- Step Age @ 325 F	None 13 hrs.	None 13 hrs.	None 13 hrs.	None 13 hrs.
Extrusion Ratio	ຕ ຕ ດ ດ	53.3	ო ო თ თ	53
Preheat Method	CANAR	CANAR	CANAR CANAR	CANAR
Powder Size ³ µM	15.6 15.6	15.6 15.6	45.0 45.0	45.0 45.0
Sample No.	405071-2B 405071-2C	405071-3B 405071-3C	405075-2B 405075-2C	405075-3B 405075-3C

All compacts preheated using a flowing àrgon atmosphere. Samples from 405071 and 405075 solution heat treated as 0.75" diameter rod. ۲. ۶ Notes:

920 F, CWQ, no natural age, first-step aged 24 hours @ Solution heat treated 2 hours @

250 F.

Average Particle Diameter. ж. 4.

Mechanical Testing J.O. 051071-D.

WSC/lmk 8/10/72

Table 23

LONGITUDINAL TENSILE AND NOTCHED TENSILE PROPERTIES OF Al-5.9 Zn-2.1 Mg-2.3 Cu-0.1 Zr ALLOY EXTRUSIONS

ity * Fe	88	00.	000	88
Purity 8 Si	800	000	000	000
NTS/YS	1.40	1.37	1.16	1.15
* El.	14.0	14.0	12.0	12.0
Y.S.	78.4 69.6	78.3	85.2 79.1	85.4 78.9
T.S. ksi	84.0	83.8	89.5	89.7
Second- Step Age	8 hrs. 16 hrs.	8 hrs. 16 hrs.	8 hrs. 16 hrs.	8 hrs. 16 hrs.
Extrusion Ratio	e. e.	53	e. 6	53
Preheat Method	CANAR	CANAR	CANAR	CANAR
Powder Size ³ µM	16.0	16.0 16.0	46.0 46.0	46.0
Sample No.	404661-2B 404661-2C	404661-3B 404661-3C	404662-2B 404662-2C	404662-3B 404662-3C

All compacts preheated using a flowing argon atmosphere. ۲; ج Notes:

250 F. solution heat treated 2 hours @ 890 F, CWQ, no natural age, first step aged 24 hours @ Samples from 404661 and 404662 solution heat treated as 0.75" diameter rod,

Average Particle Diameter. е. 4

Mechanical Testing J.O. 051071-D.

Table 24

LONGITUDINAL TENSILE AND NOTCHED TENSILE PROPERTIES OF Al-9.0 Zn-2.5 Mg-1.0 Cu EXTRUSIONS

Furity Si & Fe	000	Ö Ö Ö	888	000
Pur * Si	0000	0000	8.8.8	888
NTS/YS	1.11 1.22 1.27	1.19	.92 1.00 1.21	.97 1.09 1.18
% E1.	8.0 13.0 7.0	11.0	12.0 10.0 14.0	12.0 10.0 12.0
Y.S. ksi	92.7 83.0 75.3	95.4	93.5 87.1 80.8	91.7 85.4 77.8
r.S. ksi	99.2 86.2 79.8	100.4 95.4 11 78.4 73.8 8	97.0 88.8 83.9	95.4 87.0 80.6
Second- Step Age @ 325 F	None 6 hrs. 16 hrs.	None 6 hrs. 16 hrs.		None 6 hrs. 16 hrs.
Extrusion Ratio	ო ო ო თ თ თ	53 53	ო ო ო თ თ თ	ນິສສ
Preheat Method	CANAR CANAR CANAR	CANAR CANAR CANAR	CANAR CANAR CANAR	CANAR CANAR CANAR
Powder Size ³ µM	15.3 15.3 15.3	15.3 15.3 15.3	46.0 46.0 46.0	46.0 46.0 46.0
Sample No.	404663-2A 404663-2B 404663-2C	404663-3A 404663-3B 404663-3C	404664-2A 404664-2B 404664-2C	404664-3A 404664-3B 404664-3C

All compacts preheated using a flowing argon atmosphere. ۲; ۶ Notes:

880 F, CWQ, no natural age, first-step aged 24 hours @ Samples from 404663 and 404664 solution heat treated as 0.75" diameter rod. Solution heat treated 2 hours @

250 F.

Average Particle Diameter. ж. 4

Mechanical Testing J.O. 051071-D.

WSC/lmk 8/10/72

The state of the s

Table 25

EFFECT OF EXTRUSION RATIO ON LONGITUDINAL STRENGTH, DUCTILITY AND FRACTURE TOUGHNESS OF P/M EXTRUSIONS

NTS/YS Extrusion Ratio 9.3 53	1.29	1.30		1,37	1.15	1.34 1.28	-	1.19	(3)	1.30
NTC Extrusion 9.3	1.27	1.30		1,40	1.16	1.35		1.11	1.22	1.27
zion Ratio 53	12.0 12.0	16.0 14.0		14.0	2.0	15.0 14.0		11.0	(3)	8.0 12.0
* Elongation Extrusion Ratio 9.3 53	13.0			14.0		14.0		8.0 1	13.0	
:s:										
eld Strength - k Extrusion Ratio 9.3 53	83.3 85.6	74.1 81.2		78.3		78.9		95.4 91.7	(3) 85.4	73.8
Vield Strength - ksi Extrusion Ratio 9.3 53	83.9	74.6 78.4		78.4	0 0	79.1		92.7 93.5	83.0	75.3 80.8
Second- Swder Step Size	None None	13 hrs. 13 hrs.	Al-5.9 Zn-2.1 Mg-2.3 Cu-0.1 Zr	8 hrs. 8 hrs.	16 hrs.	16 hrs.	5 Mg-1.0 Cu	None None	6 hrs. 6 hrs.	16 hrs. 16 hrs.
Powder Sizel µM Al-6.5 Zn-2	15.6 45.0	15.6 45.0	Al-5.9 Zn-2	16.0 46.0	16.0	46.0	Al-9.2 Zn-2.5 Mg-1.0 Cu	15.3 46.0	15.3 46.0	15.3 46.0

.. Notes:

Average particle diameter. First step aged 24 hours at 250 F. No tests.

Table 26

FABRICATING CONDITIONS OF EXTRUSIONS FOR DETERMINING THE EFFECT OF REDUCED

FOR THE TOUGHNESS

Extrusion No.		699	4670	571		6193		6171		6629
		4	ぞ	4		9		9		ğ
Extrusion Breakout Pressure ksi		54.3	57.0	(9)		56.3		77.4		9.89
Extrusion Ratio		17.1	17.1	17.1		6,3		17.1		17.1
Section ⁵		OCTA.	OCTA.	OCTA.		2.0"		OCTA.		OCTA.
Extrusion Cylinder Temp.		700	700	700		700		700		700
Hot Compact Press.		90	06	06		06		206		904
Preheat Time @ 300 F	m Ref. 5)	2.2	2.9	3.1	002 Be	2.3	3 Be	1.2	2 Be	2.0
Preheat Method ³	4 Si (fro	FCE	FCE	FCE	• 1	FCE	5 Si-0.00	FCE		FCE
Green Density	04 Fe-0.0	82	83	82	005 Fe-0.	87.4	04 Fe-0.0	787	01 Fe-0.0	777
Cold Compact Pressure ksi	1.50 Cu-0.	35	35	35	52 Cu-0.	09	.09 Cu-0.	30	.03 Cu-0.	30
Powder Sizel µM	2.39 Mg-1	16.5	16.5	16.5	2.21 Mg-1	15.6	2.56 Mg-1	16.5	2.52 Mg-1	13.6
Sample No.	Al-6.55 Zn-2.39 Mg-1.50 Cu-0.04 Fe-0.04 Si (from Ref. 5)	398749-1	398749-2	398749-3	Al-6.49 Zn-2.21 Mg-1.52 Cu-0.005 Fe-0.005 Si-0	405071A-4	Al-7.92 Zn-2.56 Mg-1.09 Cu-0.04 Fe-0.05 Si-0.003 Be	404880-E3BD 16.5	A1-8.19 Zn-2.52 Mg-1.03 Cu-0.01 Fe-0.01 Si-0.00	405481-E7BD 13.6

Average particle diameter from Fisher Sub Sieve Sizer. Notes:

Percent of theoretical density. 398749 (37 lb. compacts), 405071A-4 20 lb. compact.

Compacts preheated in flowing argon in an atmosphere (muffle) furnace.

Ram face pressure in an extrusion cylinder, except see footnote 7.

1-9/16" octagon shown in Figure 1.

Not determined.

Blind 170 lb. compacts hot pressed after preheat in tapered hot compacting cylinder. die end billet scalped, reheated and extruded.

Table 27

EFFECT OF REDUCED Fe AND SI ON MECHANICAL PROPERTIES OF P/M EXTRUSIONS

NTS/YS		.72	<u>6</u> .		99.	99.	÷.78
El.		8 8 0 0	Ò•6		4.6	o 4	11.7
Y.S. ksi		72.8 65.9	68.4		78.7	74.2	76.8
T.S. ksi		79.5	79.9		86.1	80.1	86.0
SX/SIN		1.28	1.39		1.25	1.28	1.27
\$ El.		13.5	12.0		8.0	11.2	8.0
Y.S. ksi		84.8	81.8		94.3	84.2	92.6
T.S. ksi		89.8 80.8	90.0		98.3	87.2	97.3
Second- Step Age ² @ 325 F		2 hrs. ⁴ 13 hrs. ⁴	None		None ³	6 hrs.	None
tyl * Si		.04	.005	1	.05	• 05	.01
Purity ¹	Mg-1.5 Cu	40.	.005	Mg-1.0 Cu	.04	.04	.01
Sample No.	Al-6.5 Zn-2.3 Mg-1.5 Cu	398749-1 398749-4	405071A-4B	A1-8.0 Zn-2.5 Mg-1.0 Cu	404880-E3B	404880-E3C	405481-E7C

તં જ Notes:

Higher purity is indicated by reduced Fe and Si. All extrusions solution heat treated 2 hours @ 920 F, CWQ,

naturally aged 4-7 days + 24 hours @ 250 F. Extrusion heated to 325 F with no hold @ 325 F. Data from Ref. 5.

w 4

WSC/lmk 8/11/72

AND THE PROPERTY OF THE PROPER

Table 28

DATA FROM CU-BEARING COMPARISON ALLOYS FROM REF. COMPOSITION AND POWDER SIZE OF CU-FREE P/M Al-Zn-Mg ALLOYS.

	Be	.002	.002
	Ni	0000	.01
Weight %	00	0000	.81 .81
J	Zu	9.31 9.35 8.94	9.23 9.29 8.80
Composition ²	Mg	2.47 2.48 2.59	2.42 2.46 2.56
တ	Ca	0.00 0.00 1.10	0.00 0.00 1.04
	Бe	.04 .04	. 0 . . 0 . . 0 .
	Si	.06	.05
Powder Size		15.9 46.0 16.9	15.0 45.0 14.8
Pot		1533 1533 1462	1534 1534 1464
Sample		399604 399605 398761	399606 399607 398763

Average Particle Diameter. Mn=Cr=Ti=Zr=0.00. Notes:

Scalping	100 24	100 24 100
328		85.8 9.0 84.0
- Weight % 200 -200+325	12.6 12.5 16.6	9.6 15.2 11.0
Vsis ² - We	5.6 31.2 10.0	35.8 5.0
een Anal -50+100	0.0 36.4 0.0	33.2
Scr -30+50	0.0	0.00
Powder Size µN	15.9 46.0 16.9	15.0 45.0 14.8
Date Atomized	4-1-71 4-1-71 10-2-70	4-2-71 4-2-71 10-5-70
Pot No.	1533 1533 1462	1534 1534 1464
Sample No.	399604 399605 398761	399606 399607 398763

Average Particle Diameter from Fisher Sub-Sieve Sizer. Notes:

U.S. Standard Screens.

Tyler Series Screens.

Table 29

PABRICATING CONDITIONS FOR CU-FREE P/M A1-2n-Mn ALLOY EXTRUSIONS

Extrusion No.		5780 5781 5781	578 578 578 56 56 56 56 56 56 56 56 56 56 56 56 56		4705 4706 4707		5775	57778 57778 57779		4712: 4713: 4714:
Extrusion Speed ft/min.		നനം	[.] വനമ്പന		ကကက်		നന	ฑ๓๓		ოოო
Extrusion Breakout Press. ksi		50 50 50 50 50 50 50 50 50 50 50 50 50 5			77.77 75.53		55.7	60 60 60 60 60 60 60 60 60 60 60 60 60 6		0.00 10.00 10.00 10.00
Section		Octa.	Octa. Octa. Octa.		Octa. Octa.		Octa.	Octa. Octa.		Octa. Octa.
Extrusion Cylinder Temp.		2,7 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0	700 700 700 700 700		700 700 700 700		200	388		747 788 888
Press. Dwell Min.		ਜ਼ ਜ਼ ਜ਼	нан		ннн		нн	H H H		ннн
Hot Compact Press. ⁵ ksi		888	8888		888		888	888		.888
Preheat Time @ 1000 F		3.5 hrs.	200 222				ທູ ທູ ດ ໝູ່ ເ ~ ແ	, o a		11.3 7.1
Preheat Method*		77 77 8 8 8 8	FC B B B B B B B B B B B B B B B B B B B		FCE FCE FCE		7 7 7 8 8 8 8	FOE		7 7 7 20 8 8 8 8
Green Donaity 3		ŒE	333		82 79 79		333	333		79 79 79
Cold Compact Press. 2 ksi		ಜ್ಞ	ಜಿಜಿ	Cus	333	ଥ	000	888	Cu-0.8 Co	35.55
Powder Sizel	-2.5 Mg	15.9 15.9 9.9	0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	A1-8.9 Zn-2.6 Ng-1.1 Cu	26.9 26.9 26.9	A1-9.3-Zn-2.4 Mg-0.8 Co	15.0	15.0	A1-8.8 Zn-2.6 Mg-1.0 Cu-0.8 Con	11.11.11.12.12.12.12.12.12.12.12.12.12.1
Sample No.	A1-9-3 2n-2-5 Mg	399604-1 399604-2 399604-3	399605-1 399605-2 399605-3	A1-8.9 Zn-	398761-1 398761-3 398761-4	A1-9.3-Zn-	399606-1 399606-2 399606-3	399607-1 399607-2	A1-8.8 Zn-	398763-1 398763-2 398703-3

Average Particle Diameter from Fisher Sub-Sieve Sizer. 4 % w = v % % & & Note::

Compacts prepared by Wet Bag Isostatic Compact. Percent of Theoretical Density.

Green compacts preheated in flowing argon at 0.29 CFH/lb. compact to 1000 F in an atmosphere (muffle) furnace.
All compacts preheated in extrusion cylinders at run face pressures shown.
17.1:1 Extrusion Ratio - see Figure 1 for section drawing.
Not measured.
Fabricating conditions for comparison Cu-bearing extrusions from Ref. 5.

Table 30 TENSILE AND NOTCHED TENSILE PROPERTIES OF CU-FREE P/M 7XXX ALLOY EXTRUSIONS

	Powder		Second-	<u> </u>	Longi	tudinal			Tran	èverse	
Sample	Size	Quench ⁴	Step Age ³	T.S.	Y.S.	• E1.		T.S.	Y.S.	% E1.	
No.	μм	*F/sec	@ 300 F	ksi	<u>kŝi</u>	<u>in.4D</u>	NTS/YS	<u>.ksi.</u>	ksi	in 4D	NTS/YS
Al-9.3 En-2.	5: Mg										
399604-1D	15.9	160	None	91.3	91.1	7	1.00	84.6	80.7	4	.59
399604-1B	15.9	160	6 hrs.	86.4	85.4	11	1.15	79.2	73.0	6.5	.51
399604-1C	15.9	160	18 hrs.	79.7	77.61		1.32	73.4	68.5	10	.83
399604-3D	15.9	3	None	65.8	56.0	14	1.74	58.9	49.2	9	.91
399604~3B	15.9	3	6 hrs.	65.0	56.7	14	1.62	60.4	50.4	8	.75
39960Š-1D	46.0	160	Noné	91.8	90.7	8	.77	84.5	82.1	2	.41
399605-1B	46.0	160	6 hrs.	88.8	87.8	8	.81	82.2	78.2	1.5	.45
399605-1C	46.0	160	18 hrs.	82.5	80.5	13	1.20	76.4	72.8	5	.44
399605-3D	46.0	3	None	78.5	73.6	9	.92	75.8	69.1	2	.42
399605-3B	46.0	3	6 hrs.	79.3	74.4	8	.94	71.7	67.0	2	.49
A1-8.9 Žn-2.	6 Mg-1.1 Cu										
398761-A1	16.9	160	None	96.4	92.6	10	.97	69.5	78.0	7	.67
398761-A2	16.9	160	6 hrs.	79.4	75.2	13	1.19	78.8	73.0	42	.68
398761-A3	16.9	160	16 hrs.	71.7	65.5	15	1.36	73.7	67.5	5	.66
398761-B1	16.9	3	None	71.7	59.4	14	1.45	65.1	52.8	5	.57
398761-B2	16.9	3	6 hrs.	63.8	54.4	12	1.35	62.4	49.8	8	.81
A1-9.2 Zn-2	4 Eg-0.81 C	<u>o</u>									
399606-1D	15.0	160	None	89.6	88.2	10 ¹	1.14	89.2	81.0	4	.47
399606-1B	15.0	160	6 hrs.	85.8	84.6	12	1.17	80.0	74.5	6	.64
399606-1C	15.0	160	18 hrs.	79.7	77.6	12	1.28	73.5	68.6	9	.73
399606-3D	15.0	3	None	57.0	53.7	22	1.47	57.2	48.8	9	.92
399606-3̀̀̀̀	15.0	3	6 hrs.	62.6	54.7	14	1.43	58.1	49.8	6	.81
399607-1A3	45.0	160	None	99.6	99.0	8	.70	86.4	83.4	2	.35
399607-1A1	45.0	160	6 hrs.	94.5	92.4	14	. 86	85.1	77.6	4	.48
399607-1A2	45.0	160	18 hrs.	85.1	83.6	16	1.29	77.4	72.6	4	.53
399607-2A3	45.0	´ 3	None	84.0	78.6	101	.83	72.6	67.6	21,2	.32
399607-2A1	45.0	3	6 hrs.	79.2	72.6	10	1.01	68.9	65.1 ¹	21	.34
Al-8.8 Zn-2	.6 Mg-1.0 Cu	-0.80 Co									
393763-A1	14.8	160	None	100.8	95.9	10	.75	90.0	81.4	8	.50
398763-A2	14.8	160	6 hrs.	87.6	83.9	14	1.00	82.1	76.4	10	.57
398763-A3	14.8	160	16 hrs.	81.4	75.9	16	1.13	75.6	67.9	10	.69
398763-B1	14.8	3	None	63.8	50.8	14	1.35	57.9	46.3	12	.98
398763-B2	14.8	3	6 hrs.	57.4	48.0	15	1.43	53.5	44.3	12	1.07

- Notes: 1. Single specimen, all others average of duplicate specimens.
 - 2. Failed outside of gauge length.
 - 399604-399607 first-stop aged 48 hrs. @ 250 F, second-step aged @ 300 F. 398761 and 398763 first-stey aged 24 hrs. @ 250 F, second-step aged @ 325 F.
 - 4. Quench rate from solution heat treat temperature Rate from 750 F to 550 F.

WSC/lmk 8/15/72

Table 31

STRESS-CORROSION CRACKING PERFORMANCE OF P/M A1-9.0 Zn-2.5 Mq ALLOY EXTRUSIONS

	25 ksi	40,135,ok200 27,27,27	48,107,158 152,167,0k200	3 6k 200	3 ok 200
ied Stress	35 ksi	27,27 12,20	59,66 88,107	20k200	2 ok 200
Days to Failure at Applied Stress ³ Test ² New Kensington Atmosphere	42 ksi	32,39,40 12,12	27,55,70 32,107,116	30k200	3 0k 200
ays to F	A.l. Test 42 ksi 25 ksi	7,51	13,16	28,33	20k84
Ď,	42 ksi 25 ks	2,2	3,5	10,11	76.4 28,46
	rys ksi	73.0	74.5	78.0	76.4
	ksi	85.4 87.8	84.6 83.6	95.6	83.9
Powder	Size	15.9	15.0	16.9	14.8
	ଥ	None None	% %	None	.8%
	Ca	None	None	1%	1%
	Sample No.	399604-1B 399605-1B	399606-1B 399607-1A2	398761-A1	398763-A2

Average Particle Diameter. 3.5. Notes:

3.5% NaCl solution per Federal Test Method 823.

Transverse 1/8" diameter tensile bars.

Table 32

IMPROVING FRACTURE TOUGHNESS BY DECREASING OXIDES FROM POWDER SURFACES COMPOSITION AND POWDER SIZE OF FINE AND COARSE ALLOY POWDERS FOR

	Oxygen	.355
%	Be	.002
	Zu	6.49
	Mg	2.21
	Cu	1.52
	Fig.	.005
	Si	.005
Powder Sizel	μη	15.6 45.0
PO +	No.	1549 1549
Samo	No.	405071 405075

Notes: 1. Average Particle Diameter.

2. Melt Analysis - Mn=Cr=Ti=Zr=Co=Ni=0.00.

3. Fast Neutron Activation Analysis on Powder.

Scalping Screen ³	100 24
-325	84.2
eight % -200+325	12.0
Analysis ² -Weight % 00 -100+200 -200+32	35.4
Screen An -50+100	0.0
-30+50	0.0
Powder Size ¹	15.6
Date Atomized	5-14-71 5-14-71
Pot No.	1549 1549
Sample No.	405071 405075

Average Particle Diameter from Fisher Sub-Sieve Sizer. Notes:

2. U.S. Standard Screens.

3. Tyler Series Screens.

Table 33

FRACTURE TOUGHNESS BY REDUCED OXIDES FROM INCREASED POWDER SIZE

	,	•
Extrusion No.	6201	6214 6207
Extrusion Breakout Pressure ksi	(⁷) 56.3	65.7 65.7
Section ⁶	2.0"	2.0"
Extrusion Cylinder Temp	700	700
Hot Compact Pressure ⁵ ksi	06	066
Preheat Time 1000 F	1.7 hrs 2.3 hrs	2.5 hrs 1.9 hrs
Preheat Method ⁴	CANAR FCE	CANAR FCE
Green. Density ³	88.4 87.4	86.8 87.0
Cold Compact Pressure ² ksi	09	09
Powder Size ¹ µM	15.6 15.6	45.0
Sample No.	05071-1 05071-4	05075-1 05075-4

1.

Average Particle Diameter. Notes:

Compacts prepared by a Wet Bag Isostatic Pressing Technique. Percent of theoretical.

- atmosphere furnace preheat with flowing argon, bare compact CANAR - can preheat/hot press with flowing argon. hot pressed in extrusion cylinder. FCE

Bare compacts or compacts in cans hot pressed in 6-3/8" extrusion cylinder.

9.3:1 Extrusion Ratio-extruded at 3 feet/minute.

Not determined.

Table 34

PROPERTIES FOR FURNACE AND CAN PREHEATS EFFECT OF POWDER SIZE ON EXTRUSION

	NTS/YS	0.89	0.60	0.59 0.46
Transverse	% El in 4D	9.0	7.0	2.0
Tran	Ksi ksi	68.4 69.8	68.4 67.6	69.0 65.9
	T.S. Ksi	79.9	78.4	75.9
	NTS/XS	1.39	1.27	1.41
Longitud <u>inal</u>	% El in 40	12.0	12.7	16.0
Longi	Y.S. KSi	81.8	82.4	75.6
	r.S. Ksi	90.0	90.1	81.4
Second-	Age 5	None None	None None	13 hrs 13 hrs
	Extrusion Density ⁴	.1020	.1019	.1019
•	Extrusion Preheat Oxygen ³ Method ² Wt.8	.368	.295	.295
		FCE	CANAR	CANAR
•	Powder Size ¹ µM	15.6	15.6	15.6 45.0
	Sample No.	405071-4B	405071-1B	405071-1C 405075-1C

Average Particle Diameter. Notes:

See Table 33, Footnote 4.

Fast Neutron Activation Analysis of Extrusions. 2 w 4 v

Extrusion solution heat treated for 2 hours $\mbox{@}$ 920 F, Density in as-quenched temper (lbs./cu. in.).

cold water quenched, aged 7 days at room temperature +

24 hours @ 250 F.

Table 35

COMPOSITION OF ALLOYS ATOMIZED WITH INERT GASES TO REDUCE THE AMOUNT OF OXIDE SECOND PHASE PARTICLES

	,		•
	0.00	355	195 074
,	Be	0.0000	000000 00000
	πN	0000	Ó Ó Ó Ô
1t %	Zr Co	8888	8888
- Weigh	\overline{z}	8888	0000
tion 1	Zu	6.49	6.38 6.41 64.00 64.00
Composition	Mg	9.99.99 9.95.99 9.05.99	0 0 0 0 0 00 00 0 00 00
	Cu	4441 672 673 673 673 673	цццц 25. 40. 20. 20. 20.
	Fe	000° 1000° 1000°	000 000 000 000 000
	Si	.005 .007 .007	.003 .003 .003 .003
Atomizing	Gas	Air Air Nitrogen Nitrogen	Argon Argon Helium Helium
Powder Size2	Wil	15.6 15.0 15.8 72.0	20.0 50.0 14.5 51.04
Pot	No.	1549 1549 1549 1549	1550 1550 1550 1550
Sample	No.	405071 405075 405073 405077	405072 405076 405074 405078

Mn=Cr=Ti=0.00 Notes:

Average Particle Diameter from Fisher Sub-Sieve Sizer. Fast Neutron Activiation Analysis on Powder -i 0i m^-i

Off scale - estimated.

Table 36

POWDER SIZE AND SCREEN ANALYSES OF ALLOYS FOR INERT ATOMIZING TO REDUCE THE AMOUNT OF OXIDE SECOND PHASE PARTICLES

Scalping	Screen	012 01 00 00 00 00 00 00 00 00 00 00 00 00)
	-325	92.6 85.0 85.0 85.0 85.0	17.4
Weight &	-200+325	12.0 16.2 1.1 1.2 15.6 15.6	Ď
Screen Analysis ² - Weight %	-100+200	35.8 35.4 33.3 33.8 12.6 1.6	30.2
Screen And	-50+100	31.44 31.44 30.0 30.0 30.0	37.2
,	-30+50	0.00 8 0.00	12.0
Powder Size ¹	MI	15.6 45.0 15.8 52.0 50.0	51.07
Atomizing	Gas	Air Air Nitrogen Nitrogen Argon Argon Helium	Helium
Date	Atomized	5-14-71 5-14-71 5-14-71 5-14-71 5-15-71 5-15-71	5-15-71
†	No.	1549 1549 1549 1550 1550	1550
o [cmes	No.	405071 405073 405077 405077 405076 405076	405078

Notes: 1. Average Particle Diameter from Fisher Sub-Sieve Sizer.

2. U.S. Standard Screens.

. Tyler Series Screens.

Off Scale - Estimated.

WSC/lmk 8/4/72 Table 37

FABRICATION: CONDITIONS FOR EXTRUSION FROM INERT ATOMIZED FOWDERS: FOR REDUCED AMOUNTS OF OXIDE: SECOND PHASE PARTICLES

Extruston, No.	`	6201 (6193	62 <u>11</u> 6207	6203 6194	6210	6204	<u>(</u> 6205) 6212.
Extrusion Speed ft/min		က်ကိ	ന്'ന്	· ଜିକ	က်က်	ḿ m	'n m
Extrusion Breakout Press. ksi		(7) 56.3	65•7. 65•7.	60.0 65.7	63.8 65.7	56.3 63.8	58.1 67.5
Section ⁵		0.0 0.0	0.0 0.0	, o . o . o . o . o . o . o . o . o . o	0°0 0°0 8°0	2°0"	2.0"
Extrusion Cylinder Temp.		700	700	700 700	700 700	700 700	700
Press. Dwell Min.		нн	ਜਿਜ	нн	ਜੱਜ	н н	н н
Hot Compact Press. ⁵ ksi		88	88	88	88	8 8	8 8
Preheat Time @ 1000 F		1.7 hrs. 2.3 hrs.	2.5 hrs. 1.9 hrs.	1.7 hrs. 2.6 hrs.	2.1 hrs. 2.1 hrs.	2.2 hrs.	2.2 hrs. 2.4 hrs.
Preheat Method4		None CANAR FCE	None CANAR FCE	None None CANAR	None None None CANAR	None CANAR None CATAR	None CANAR None CANAR
Green Density ³		4°. 88 84°. 441	47 86.8 87.0	50 80.5 86.57 88.55	54 80 895 889 20 20 20 20 20 20 20 20 20 20 20 20 20	52 86.5 86.5	53 88.7 54 87.6
Cold Compact Press.2 ksi		000	÷88	o 8 t 9 8	0 6 7 8 0	०७०७	0909
Powder Size ¹ µM	-si	15.6 15.6 15.6	45.0 45.0 45.0	00000	2222	15.8 15.8 528 528	14.5 14.5 518 518
Atomizing Gas	A1-6.5 Zn-2.3 Hg-1.5 Cu	Air Air Air	Air Air Air	Argon Argon Argon Argon Argon	Argon Argon Argon Argon Argon	Nitrogen Nitrogen Nitrogen Nitrogen	Helium Helium Helium
Sample No.	A1-6.5 Zn-	404071A 405071-1 405071A-1	405075 405075-1 105075-1	405072 405072-3 405072-2 405072-1 405072-4	405076 405076-3 405076-2 405076-1	105073 105073-1 105077 105077-1	405074 405074-1 405078 405078-1

Average Particle Diameter from Fisher Sub-Sieve Sizer. Notes:

. 5.

Compacts prepared by Wet Bag Isostatic Compact. Percent of Theoretical Density.

44664666

See Figure 25 for details of Preheat Method. All compacts hot pressed in extrusion cylinders at ram face pressures shown. Extruded from 6-3/8" diameter cylinder, except as noted. Extrusion Ratios: 2" dia. - 9.3; 7/8" dia. - 53; Octa. - 12.4

Not measured. Off Scale - Estimated.

TENSILE AND NOTCHED TENSILE PROPERTIES OF EXTRUSIONS - LOW INSOLUBLE ELEMENT A1-6.5 Zn-2.3 Mg-1.5 Cu ALLOY

ΑÍV.

	<u>*</u>					
NTS/XB				15.0 52.0 54.0 57.0 57.0	•	
e Propertie \$ El. in 40	0.0.00	7.010	0 0 0 0 0 0 0 0 0 0 0 0	0,000 0,000 0,000	8 8 8 8	୍ଷ୍ଟ ଚୁଦ୍ଧ ପ୍ର ପ୍ର
Transverse Y.S.				67.66 68.57.88		
T.S.	78.4 77.4 79.6 71.5	79.9 82.2	75.9 76.6 7.6.4	71.4 73.4 73.4	78.2 71.9	జి ప్రభావ తా
ies* NTS/YS				1.227		
Iongitudinal Properties ² X.S. % El. Ks1 in 4D NTS	11.4 13.8 13.8	12.0	16.0 2.0 16.0	8.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	14.0 15.8	13.0 15.0 14.0
gitudin Y.S. ksi				82.18 78.97 79.14 77.99		
Lon T.S. ksi	88.5% 88.5% 88.5%	90.0 91.9	83.23 83.23 83.83	88 88 88 86 43 48 86 43 48	88.23 7.88	83.8 80.6 81.8 81.7
Extrusion Density11 <u>lbs/cu. in.</u>	. 1019 (21) (21)	.1020	.1019 .1013 (12)	.1007 .1037 (12)	.1015 .1014	.1007 .1007 (3.2) (1.2)
Extrusion Oxygen 1 Wt. %	.295 .139 .198	.368 .148	. 139 139 198	050. 049. 049.	982 982	
Second- Step Age	None None None	None None	Hans.	None None None	None None	13 hrs. 13 hrs. 13 hrs.
Preheat Method	Canar Canar Canar Canar	FCE	Canar Canar Canar Canar	Cener Cener Cersr Cener	PCE	Cenar Canar Canar Canar
MED (T)	ងខ្មន	32	ន្តមន្ត	ដូដូដូង	n,	1222
Powder Size*	15.6 20.0 15.8 14.5	15.6 20.0	25.5 20.0 24.5 3.5 5.5	45.0 50.0 52 ¹³ 51 ² 3	45.0 50.0	45.0 50.0 51.3
Atomizing Atmosphere	Air Argor Nitrogen Helium	Afr	Air Argon Kitrogen Hellum	Air Argon Nitrogen Hellum	Air Argon	Air Argon Nitrogen Helium
Sample No.	405071-1B 405072-1B 405073-1B	405071-48 405072-48	405071-10 405072-10 405073-10 405073-10	405075-1B 405076-1B 405077-1B 405078-1B	1,05075-48 1,05076-48	405075-10 405076-10 405077-10 405078-10

Motes:

1. 9.3:1 extrusion ratio.
2. Mechanical Testing J. 0. 051071-E.
3. All Extrusions solution heat treated 2 hours @ 920 F, CM2, naturally aged 7 days,
first-step artificially aged 24 hours @ 250 F.
4. Average partificially aged 24 hours @ 250 F.
5. Mean Particle Diameter from Fisher Sub-Sieve Sizer.
6. All values are average of duplicate specimens except where noted.
7. Average of four specimens.
8. Average of four specimens.
9. Single test value.
10. Falled outside of gauge length.
11. Specimens in as quenched temper.
12. Not measured.
13. Off scale - estimated. નુષ્યુષ્ટ સુષ્યુદ્ધ જ છૂટી મું સુષ્

TABLE 39

EFFECT OF POWDER SIZE AND SHAPE ON DENSITY AND TRANSVERSE ELONGATION AND NTS/YS

Density-lb/cu.in.	Fine Coarse	0.1020 0.1015	0.1016 0.1014	`	0.1019 0.1007	0.1013 0.1007
NTS/YS	Coarse	0.55	0.53		0.51	0.52
SLN	Fine 1	0.89	0.64		09.0	0.54
tion - %	Fine Coarse	7	7		7	ო
Elonga	Fine 1	თ	7		7	8
Particle	Shape	Irregular	Regular		Irregular	Regular
	Preheat	FCE	FCE		CANAR	CANAR

15 µM APD. 3.5. Notes:

50 µM APD.

Regular Irregular powders are air atomized. powders are argon atomized.

THE STATE OF STATE OF

Table 40

COMPARED TO ATMOSPHERE FURNACE PROPERTIES (FROM TABLE 39) EFFECT OF CAN-ARGON PREHEATING ON EXTRUSION PROPERTIES

Atomizing	Powder Size uM	Extrusic Pred CANAR	Extrusion Oxygen Preheat CANAR FCE	Extrusion Den Preheat CANAR FC	Extrusion Density Preheat CANAR FCE lbs/cu.in.	Long. NTS/YS° Preheat CANAR FCE	Long. NTS/YS³ Preheat CANAR FCE	Trans. NTS/YS ³ Preheat CANAR FCE	TTS/YS ³ leat FCE
Air Argon	15.6	.295	.368 .148	.1019	.1020 .1016	1.27 1.39 1.19 1.32	1.39	.60	.89
Air Argon	45.0	.081	.086	.1007	.1015	1.21	1.30	.51	, 23 50 50 50 50 50 50 50 50 50 50 50 50 50

Average Particle Diameter. Notes:

Density in as-quenched temper.

Extrusions aged 24 hours @ 250 F (from Table 38).

and the constitution of th

Table 41

COMPOSITION AND POWDER SIZE OF ALLOY - POWDERS FOR VACUUM PREHEATING TO IMPROVE FRACTURE TOUGHNESS

	Be	.002	.002	.002	. 002′	. 600.
ن د %	Zu	6.46	6.47	7.82	8.19	8.34
¹ - Weight %	Mg	2.26	2.25	2.41	2.52	2.56
Composition	S	1.53	1.49	1.06	1.03	1.06
Comp	Fe	.05	.004	.01	.01	• 04
	Si	90.	.007	.02	.01	.05
atomizing	Gas	Air	Ni trogen	Air	Air	Air
Powder Size	Mu	15.6	15.8	14.0	13.6	49.3
Pot	No.	1537	1549	1567	1.566	1542
Sample	No.	404877	405073	405536	405481	404882

Notes: 1. Mn=Cr=Ti=Ni=Zr=0.00. 2. Average Particle Diameter.

				Powder						. `
Sample		Date	Atomizing	Size		Screen A	Screen Analysis ²	- Weight%	%	Scalping
No.	No.	Atomized	Gas	Мп	-30+20	-50+100	-100+200	-200+325	-325	Screen
										,
404877	1537	4-14-71	Air	15.6	0.0	0.0	4.6	11.8	83.6	100
405073	1549	5-14-71	Nitrogen	15.8	0.0	0.0	1.2	6.2	95.6	100
405536	1567	9-8-11	Air	14.0	0.0	0.0	1.0	5.5	93.5	100
405481	1566	8-13-71	Air	13.6	0.0	0.0	1.2	7.3	91.5	100
404882	1542	4-23-71	Air	49.3	13.0	34.6	29.3	13.2	9.9	24

Average Particle Daimeter from Fisher Sub-Sieve Sizer. Notes:

2. U.S. Standard Screens.

3. Tyler Series Screens.

the second second of present the second seco

P/M "XTRUSIOR FABRICATING CONDITIONS WITH VACUUM PREHEATING FOR IMPROVED FRACTURE TOUGHNESS

			•	The state of the s									
Sample No.	Accentaing Gas	Powder Sizel uM	Cold Compact Press.2 ks1	Green Density ³	Preheat Method*	Preheat Time @ 1000 F	Hot Compact Press. ⁵ ksi	Press. Dwell ks1	Extrusion Cylinder Temp.	Section	Extrusion Breakout Press	Extrusion Speed ft/min.	Extrusion No.
A1-6.5 Zn-2.	A1-6.5 Zn-2.3 Mg-1.5 Cu			•									
404877A9 405073A	Air ^{lo} Nitrogen	15.6 15.8	œ9	78 93	RET	1.0	90 156	101	800	Octa Octa	30.1 38.9	ળં ળં	6928 6933
MAB3 Alloy:	A1-8.0 2n-2.5 Mg-1.0 Cu	Mg-1.0 Cu											
405536A 405536C 405536D 405536E 405536G	Air Air Air	00000	88888	888 888 89 89	VAC CANIT RET RET RET	(8) (8) 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	156 156 156 156	20040	00000 00000 000000	Octa Octa Octa Octa	8 0 A 0 8 8 0 A 0 8 8 0 A 0 8	 ดีดีดีดีนี้	6927 6925 6926 6926
4054811 4054813 4054813 140548118	Air Air Air	13.6 13.6 13.6	None 866	££££	RET RET AVAC AVAC	8.1 8.5 8.5 8.5	156 0 0 156	ឧ००ឧ	20000 40000	Octa Octa Octa	37.6 28.6 32.6 32.6	હે તું તું	6930 6923 6931 6940
MAGG Alloy:	A1-8.0 Zn-2.5 Mg-1.0 Cu-0.04 ea. Fe,	Mg-1.0 Cu	-0.04 ea. F	e, Si									
4048828 4048328 404382C	Air Air Air	149.3 149.3	888	(7) 88 88	AVAC RET RET	(11) 1.6 1.2	156 156 94	222	8888 8888	Octa Octa Octa	39.5 32.6 30.4	ળંળંળ	6934 6929 6932
	Notes: 1.		Average Farticle Diameter from Fi	iameter from	sher	Sub-Sieve Sizer	ř.						

Not measured.

Average Farticle Diameter from Fisher Sub-Sieve Sizer. Compacts prepared by Wet Bag Isotatic Compacting. Percent of theoretical density.
See Figure 24 for details of preheat method.
All compacts hot pressed in extrusion cylinders at ram face pressures shown. Extruded from 6-3/8" diameter cylinder, extrusion ratio: 12.4:1. (See Figure 1.)

Approximately 1 to 3 hours. VAC and AVAC: 1 hrs. in furnace. Loose powder, tapped to pack in can. 1, 1 long billet from 170 lb. hot pressed compact.

Table 43

A CONTRACT OF THE PROPERTY OF

TENSILE AND NOTCHED TENSILE PROPERTIES OF EXTRUSIONS FROM VACUUM OR NITROGEN

:		
	,	1
100000		
5	Š	
	Š	l
		i
2	5	

Fabricating Procedures

												-	
	NTS/YS.		9.6		69.0	87	0 0 2 0 0	1.24	84.0	00	•	0.62	0.83
	R.A.		នុក	기구	-	ئا م	`య స్ట	į.	N	- 3 M		<i>4</i> 7	3
veres D	: E		o. 0 	0 C	3,0	8,4	, 6 6 6 6 7 6		1.6			8	9.e
T. Stand	Y.S.		76.3	72.0	72.0	4.5 €.0	64. 60.0	75.4	33.1	చ్చి చాలు		73.6	છે. ૦
	K T		85.0 78.6	78.0 6.0 6.0	77.5	76.2	66 4.0	& &	86.8	83.2		82.1	3.6
	HTS/YS		07.1	 	7.30	1,13 1,32	ន្តម	1.37	ñ:	1.03		04.4	F:3
perties	R.A		35	₹% ₹	Š	88	82:	ž,	80 80	ខន		4,	27
dinel Pro	1n. 40		13.3	5.15 2.75		7.11 10.9	22. 24.	9	10.2	n.7		12.5) 1
Longitu	K 25		83.7	10.	;	28. 28. 28. 28. 28.		1.00	8 8 6 8	88		28.6 5.6	3
	7		98.6 98.6	858 200		388 289 299	8 8 8 8 8 8 8 8 8	, S	91.0	92.1		9.00 10.00 1	?
Second	A869 325 F		None 6 hrs.	6 hra.			6 hra.		6 hr.	6 hra.		None	
Extrusion	1bs/cu.in.		1028	1027	000	201	1027		.1024	.1022		ତ୍ତ	<u>.</u>
Extrusion	Ft/min.		លូលូ ស្	. ળ ળ	_	• m ⁽			ળું ભુ	٠÷		લે ળ	
Press	m fu.		999	ន្តក	- 9	10,00	Non	Fo, S17	ទទ	2		ន្តក	
Not Compact Press	THE N	리	1126 1556 1566	8%	156	None None	None" 155	31-0.01 08.	156		21	828	1000000
Preheat	Wethod?	-2.5 Nr-1.0	VAC VAC CANIT	in in	RET		AVAC AVACIO	A1-8.0 Zn-2.5 Mg-1.0 Ci-0.04 08, Fo, S17	AVE. RET	RET	At 202 (2) 25:2 Mg - 1:2 Cu	Ret .	Motest 1. Acoustic facility
Powder Size	핔	A1-8.0 Zn	 	14.0 14.0	14.0	ដដ ១.១	13.6 13.6	A1-8.0 Zn-	0 0 0 0 0 0	2.6.	At-2:2 (At	15.8 15.6	Moters
:	Sample No.	M83 Alloy: A1-8.0 20-2.5 Mr-1.0 Cu	105536A 105536A 105536C	405536E	4055360	105481H	105181.	MAGG Alloy:	4045822A 4045828 4049328	5	1	1,05073A 1,01,877A9	

Avorage Particle Diameter.

See text, Figure 24 for method details.

Measured in tempor with 24 has 6 250 F aging.

Extrustons colution heat treated 2 hours 6 920 F, cold water quenched, no room temporature age, 250 F, and 24 hours 6 250 F.

See Tables 18 and 42 for complete fabricating procedure.

See Tables 14 for detailed alloy and powder description.

See Table 11 for detailed alloy and powder description.

4" long billet from 170 lb. het pressed compact.

Compact extruded without het pressing; extrusion breakout pressures = 28.6 (J) or 22.6 (K).

25 lbs. of loose powder in can prehented to 125 µM pressure. . ఇట్ట్లు కాట్లాలు ఆ

THE REPORT OF THE PARTY OF THE

Table 44

COMPARISON OF PROPERTIES OF EXTRUSIONS FROM VACUUM OR NITROGEN PREHEATED COMPACTS AND EXPERIMENTALLY PRODUCED I/M 7050 AND 7075 EXTRUSIONS

	K _T C.	34.0 22.4 (7)	28:0 21:8:0
perties	NTS/YS	1.2710 1.2410 0.7910	(7) 105
\sim	% E1.	9.4 7.0 7.0	7.0 8.6
Trans	Y.S. ksi	75.4 76.4 72.0	76.2 67.8
	T.S.	81.1 81.4 78.6	83.0 80.2
	K C	37.8 35.8 (7)	37.5 35.0
perties	NTS/YS	1.401° 1.37 ¹ ° 1.321°	(7) 1.31
itudinal Properties	% El.	12.5 14.1 10.2	14.8 (9)
Longita	Ksi ksi	85.8 85.0 84.1	89.4 89.0
,	Ksi Ksi	89.0 88.0	93.4 94.9
Second-	Step Age @ 325	6 hrs. 6 hrs. 6 hrs.	20 hrs. None
4	Method	VAC AVAC CANIT	
(L	No 8	413104 413103 405536C	413102 405295
A18 428	Alloy	MA835 MA835 MA835	7050° 7075°

See text, Figure 24 for full description. Notes:

Solution heat treated 2 hours @ 920 F (MA83), 895 F (7050) or 4 hrs. @ 870 F (7075), CW2, N.A. 4 days (405536C-No N.A.), + 24 hours @ 250 F.

ksi /in. - Not valid KIc per ASTM E399 - specimens not thick enough to achieve plane-strain and linear elestic conditions.

Extrusion ratio = 12.4 Extrusion ratio = 17.1 ksi /in. 1.56" extruded octagonal rod (Figure 1). 1.56" extruded octagonal rod (Figure 1).

4,00,00

Not determined.

413103 fabricated as 405481L; 413104 fabricated as 405536A (See Table 42).

Not determined - Specimens failed to shoulder. Data from Table 43.

Table 45

EXTRACTED GAS FROM VACUUM PREHEAT P/M EXTRUSIONS FUSION

	Water	(λ (5 c	o 6	N.0	1 (T•0	(٠ ٢	(ນ້
	ô	(N 0	i i	l l	i I	ť	l	T•2		۲ د
Extracted Gas Analysis-Wt. %	Methané	(0.03	T•0	H.0	0.24	г. О	r	Ţ•Ţ		T•02
sîs-W	c 00	,	α i 0	0.1	1	ر 0	! !		0.5 L.Y	į	٧٠.٢
s Analy	႘		;	:	1 9	χ. Ο	o ••	,	6.5		i
cted Ga	Ar		1	0.02	i	0.1	0.03		!		ļ
Extra	N S	•	т, т,	† •0	0.3	i	i		I.	;	9 .
	田		0. 86	99.1	8,	7.86	98.7	ć	89.2	ć	82°8 11.6
Total Gas4	m1/100gms		2 • 4	3.5	3.0	1.5	2•6	!	0,155		0.13
Hot Compact Pressure	ksi		156	156	156	None	156	0.2 Cr	None	0.11 Zr	None
Preheat	Method	5 Mg-1.0 Cu	VAC	CANIT	RET	AVAC	AVAC	A1-5.8 Zn-2.4 Mg-1.7 Cu-0.2	1	A1-6.1 Zn-2.4 Mg-2.3 Cu-0.11	!
	Material	A1-8.0 Zn-2.5 Mg-1.0 Cu	P/M	P/M	P/M	P/M	P/M	A1-5.8 Zn-2.	Ingot	A1-6.1 Zn-2.	Ingot
	Sample No.	MA83 Alloy:	405536 A	405536 c	405536 G	405481 К	405481 L3	7075 Alloy:	405295-5B	7050 Alloy:	379738

See Table 42, Figure 24 for preheat details.
Extruded without hot pressing; broke out at 22.6 ksi.
Loose powder preheated with vacuum.
Gas extracted with sample at 700 C.
Ethane = 0.5%
72-011919. Notes:

Table 46

QUENCH SENSITIVITY OF A1-9.0 Zn-2.5 Mg ALLOY EXTRUSIONS

sverse	Powder Size 161M 461M	84.2	81.1	85.0	80.0
d Strength Tran	Powder Size Powder	61.0 64.3	60.2 56.9	68.1 68.3	66.8 58.0
ximum Yiel					
cent of Ma tudinal	er Size 461M	81.1	4°6L	848	78.6
Per Longi	Powd 161M	61.4 67.7	60 . 7 53 . 0	66.5 72.3	64.7 57.2
Second-	Step Age	None None	None None	6 hrs. 6 hrs.	6 hrs. 6 hrs.
	0)+	None None	0.81	None None	0.81
	Ca	None 1.1%	None 1.0	None 1.1	None 1.0

second-step aged @ 300 F. Cu-bearing alloys were aged 24 hours @ 250 F, second-step aged @ 325 F. Yield Strength with 3°F/sec. quench rate from 750 to 550 F, as a percentage of yield strength with 160°F/sec. Cu-free alloys were first-step aged 48 hours @ 250 F, H Notes:

quench rate. å

THE PROPERTY OF THE PROPERTY O

Table 47

BILLET PABRICATING CONDITIONS FOR HOT PRESSED COMPACTS EXTRUDED TO 4" DIAMETER DIE FORGING STOCK

		Approx. Cold		Prehea	Preheat Conditions	itions		Hot	:	•
	Powder Size	Compact Density ²		Time	Temp.		Flow	Compact Pressure	Scalpe Dia.	Scalped Billet" Dia. Length?
Sample No.	пщ	90	Method ³	hrs.	o 년	Gas	CFH/hr	ksi	in.	in.
MA65 Alloy:	A1-6.5 Zn	MA65 Alloy: Al-6.5 Zn-2.3 Mg-1.5 Cu								
404877-D1	15.6	78	Furnace	1.0	1000	Argon	0.29	06	8.7	26.
404877-D2	15.6	78	Furnace	2.0	1000	Argon	0.29	06	8.7	26.
MA66 Alloy:	A1-8.0 Zn	Al-8.0 Zn-2.5 Mg-1.0 Cu								
404880-D3	16.5	78	Furnace	2.3	1000	Argon	0.29	06	8.7	26.
404880-D4	16.5	78	Furnace	2.6	1000	Argon	0.29	06	8.7	26.
MA83 Alloy:	High Puri	High Purity Al-8.0 Zn-2.5 Mg-1.0 Cu	.5 Mg-1.0	Cu						
405481-D7	14.7	77	Furnace	1.2	1000	Argon	0.29	06	8.7	26.
405481-D8	14.7	77	Furnace	1.6	1000	Argon	0.29	06	8.7	26.
MA67 Allov:	A1-8.0 Zn	A1-8.0 Zn-2.5 Mg-1.0 Cu-1.6	-1.6 Co							
404883-D5	14.7	92	Furnace	2.9	1000	Argon	0.29	06	8.7	26.
404883-D6	14.7	76	Furnace	3.3	1000	Argon	0.29	06	8.7	26.

Average Particle Diameter from Fisher Sub-Sieve Sizer. Percent of theoretical density - from Table 9. 3.5. Notes:

Preheated in a muffle atmosphere furnace immediately before hot pressing.

8.3" to 9.2" jameter (tapered) x 28" long. Hot pressed compact: 4. .

Equal amounts scalped from each end of hot pressed billet.

では、10mm

Table 48

COMPACTS FABRICATED TO 4" DIAMETER STOCK FOR DIE FORGING?

Alloy	S. No.	Extrusion No.	Reheat Temp.	Breakout Pressure ksi	Preheat Time hrs.	Preheat Temp.
MA65: 6.5 Zn-2.3 Mg-1.5 Cu	404877-D1 404877-D2	6078 6079	720 710	33.7 33.2		1000
MA66: 8.0 Zn-2.5 Mg-1.0 Cu	404880-D3 404880-D4	6080 6081	710 710	30.3 29.6		1000
MA83: 8.0 Zn-2.5 Mg-1.0 Cu	405481-D7 405481-D8	6607 6608	700	35.8 32.2		1000
MA67: 8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	404883-D5 404883-D6	6082 6083	720 720	29.4 30.3		1000
IM ¹ 7075	4052951	4809	200	35.6		860

Notes: 1. Ingot Metallurgy.

pressed at 90 ksi. Compact scalped 1/8" off diameter, induction reheated to 700 F and extruded with 5.4:1 Extrusion Ratio from 9-1/4" diameter cylinder at less than 3 feet/minute extrusion speed. Powders of 15 μ M APD, cold pressed to 75% density, preheated 1-3 hours @ 1000 F and hot ď

TENSILE PROPERTIES OF P/M AND 7075 ALLOY 9078 DIE FORGINGS

	HT3/13		0.68	0.76 1.14		0.55	0.83 0.83	0.57		5 00	0.56 0.75	6.0		46°0	91°1 71°34
ties	R.A.		49	ដង		φġ	ოფ	မည် (၂)		o न	99	⊅ 23		₹£	道 1 1
Fransverse Properties	6 in. 4D		3.0 13.1	7.5 13.0.		ά mœ	11.2	2.5		ν, ον φ, λο	5.0	80°0		9.11 0.11	10.5
Transve	T.S. Y.S. ksi ksi		76.9' 69.0' 85.9 75.4	71.2 59.1 77.9 65.3		84.0 75.9 87.9 81.2	77.5 74.4. 88.0 84.1	76.8 65.2° 82.8° 73.1°	•	87.8 79.3. 97.4 89.2	84.4 77.6 90.3 85.6	81.0. 71.6 83.8 73.0		80.1 70.6 92.0 81.8	71.0 58.6 81.0 68.2
	Direction ⁵ k		7 H	N. T.		₩	ж Н	Z H		æ60	& 60 ≥ E+	z fi		æ6	Z H
	SX/SIN		1.25	1.1 1.20		1.05 0.83	1.0	1.07		0.73 0.63	0.88 0.75	0.78		1.34	1.36
roperties	ksi 6 in. 4D 6		98	ដន		। <u>१</u>	える	35		৵৸	71 61	5 5 5 7		15	22
tudinal P	E1.		13.2 13.8	14.3 14.5		10.7	12.5 11.7	10.7		10.0 8.9	9.9 6.0	9.6 10.4		11.8	10.7
Long	Y.S. ksi		74°4 79°4	4.59 65.4		91.9 6.48	81.8 84.4	76.4 74.8		88. 88. 88. 88.	83.1 85.8	74.5		82.9 86.0	69.1 69.0
	r.S.		85.6 89.1	79.7		90.5	86.6 88.4	87.2 84.6		96.7 100.5	89.3 90.7	89.0 84.7		92.9 95.2	82.8 79.4
	Specimen Location		Flange Web	Flange Web		Flange Web	Flange Web	Flange Web		Flange Web	Flange Wol	Flange ` Web		Flange Web	Flange Web
Web Electrical	Conductivity Specimen & IACS Location		Flange 35.2 Web	Flange 39.0 Web		Flange 34.3 Web	Flange 41.0 Web	Flange 38.7 Web		Flange 33.7 Web	Flange 39.3 Wei	Flange '		Flange Web	Flange Web
														None Flange Web	None Flange Web
	Connectivity F % IACS		35.2	39•0		34•3	41.0	38.7		33.7	39•3	36.9			
Second	Stress Age ⁵ Conhetivity Relief @ 325 F % IACS		None 35-2	None 39.0		None 34.3	6 hrs. 41.0	None 38.7	-1.6 Co	None 33.7	6 hrs. 39.3	None 36.9	-0.2 Cr	None	None
Second	Stress Age ⁵ Conhetivity Relief @ 325 F % IACS	-2-3 Mg-1-5 Ou	None None 35.2	None None 39.0		None None 34.3	None 6 hrs. 41.0	None None 38.7	-2.5 Ng-1.0 Cu-1.6 Co	None None 33.7	None 6 hrs. 39.3	None None 36.9	-2.4 Mg-1.7 Cu-0.2 Cr	None None	None None
Quench : Second	Temp. Stress Age ³ Conductivity F Relief @ 325 F % IACS	A1-6.5 2n-2.3 Ng-1.5 Cu	80 None None 35.2	150 None None 39.0	MAGG Alloy: Al-8.0 2n-2.5 Mg-1.0 Cu	80 None None 34.3	80 None 6 hrs. 41.0	150 None None 38.7	MAST Alloy: Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	80 None None 33.7	80 None 6 hrs. 39.3	150 None None 36.9	A1-5.8 Zn-2.4 Mg-1.7 Cu-0.2 Cr	80 None None	150 None None

Marine St.

Aller British

Notes:

1.2

Average Particle Diameter from Fisher Sub-Sieve Sizer.
 Isostatically pressed 170 lb. green compacts preheated in flowing argon to 1000 F, hot pressed at 90 ksi, scalped, reheated and extraded from a 9-1/k" diameter cylinder to 4" diameter rod (Extrusion Ratio (E.R.) = 5.4:1) for stock for production plant die forging.
 Die forgings solution heat treated 2 hours @ 250 F (P/M) or 880 F (I/M 7075), quenched as shown, aged 4-7 days at room temperature + 24 hours @ 250 F + further aging @ 325 F as shown.
 See Figure 47 for flange and web locations tested.
 I = Short transverse specimens with specimen adjacent to and normal to the die parting plane.
 I = Inong transverse specimens with specimen adjacent to solve dimension.
 I/M = Ingot Wetallurgy 7075. Extrusion billet (8-3/\psi, aichined from 11" diameter D.C. ingot produced in a production plant, Forging stock (4" diameter) extruded in conjunction with P/M forging stock (8-R. = 5.4:1), die forged in a production plant in conjunction with the P/M die forging.

Table 50

A.I. TEST WITH SHORT-TRANSVERSE TENSILE BARS (ACROSS THE PARTING PLANE) - FEDERAL TEST METHOD 823 ALTERNATE IMMERSION STRESS-CORROSION PERFORMANCE OF P/M 9078 DIE FORGINGS.

	45 ksi	,	3,5,P	ال ا		9,16,16	1,30,32	8,34,34	-	16,17,21	1,61,63	17,24,68	•	1,2,2	2,2	
dicated Test	40 ksi 4		3,4,5			14,19,20		18,29,50 8,	•	Φ.		58,58,60. I			2,2,3, 2,	
Days to Failure at Indicated Stress Level in A.I. Test	35 ksi		4,4,34				29,29,32	29,34,43		18,20,21	69,83,P	P, P, P		2,3,3	2,3,3	
Days to E Stress I	30 ksi		19,34,47	47,17		21,29,34	36,42,65	63,P,P		41,45,P	69,P,P	P, P, P	•	2,3,3	3,3,3	
	25 ksi		45,46,63	7 / 7		27,30,34	54,P,P	68,68,P		30,P,P	62,P,P	D'D'D		2,2,3	3,4,4	
ge ties STYS	ksi		0.69	7.6c		75.9	74.4	65.2		79.3	77.6	71.6		9.0 2	58.6	
Flange Properties	ksi		74.4	66.4		78.5	81.8	76.4		88.3	83.Ĭ	77.2		82.9	69.1	•
Second- Step	@ 325 F	5 Cu	None	None	0 Cu	None	6 hrs.	None	.0 Cu-1.6 Co	None	6 hrs.	None		None	None	
Quench Water	Temp °F	MA65 Alloy: Al-6.5 Zn-2.3 Mg-1.5 Cu	80	150	MA66 Alloy: Al-8.0 Zn-2.5 Mg-1.0 Cu	80	80	150	Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	80	80	150	Ħ	80	150	
	Sample No. 1	MA65 Alloy:	404877-DIF	404877-D2F	MA66 Alloy:	404880-D3F	404880-D3R	404880-D4F	MA67 Alloy:	404883-D5F	404883-D5R	404883-D6F	I/M 7075 Alloy	405295-2F	405295-2R	

All P/M forgings from 15µM APD powders. First-step aged 24 hours @ 250 F. P = pass 84 days exposure in A.I. test. Notes:

Table 51

BILLET FABRICATING CONDITIONS FOR HOT PRESSED COMPACTS HAND FORGED TO 2" x 10" x 47"

		Scalbed Bidlet	Length 5		(((22.55)	22.5	22.5	22.5	22.5	22.5		- '	22	22.5	22.5	22.5.	22.5	•	· (22.5	22.5	22.5
		Scalbe	Dia.		t	ر . د .	ر ا • ئ	7.5	7.5	7.5	7.5			7.5	ار کر اوگرا	7.5	, , , , ,	7.5		ţ	∩` t :• :?; t	ر• <i>ا</i>	7.5
		Hot	Pressure ksi		ć	000	90	060	ò6	90	06		Č)) ()) (0.0	90		9	9 6))	06
/t ×			Flow CFH/1b		oc c	600	0.00	67.0	0.29	0, 29	0.29		oc o	0 . 0 .	0.29 0.09	, o	ָ פּאָ פּאָ	0.69		o C	000	0.63	0.29
X TO		Preheat Conditions	Gas		Argon	Argon	11067E	Argon	Argon	Argon	Argon		2002	Argon	Argon	Argon	Argon	At 9011		Argon	Argon	1106 111	Argon
7 77		t Cond	Temp °F		1000		000	000	000T	1000	1000		. 0001		1000	1000	0001	9		1000	1000		1000
LEADY FORGED TO Z		Prehea	Time hrs.		1,7	0.0) r	L . 9	1.0	1.2		2 7	, c) -		, – i r.) •	,	2.0	2.4		φ. •
מיייים			Method ³	ģ	Furnace			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r urilace	Furnace	Furnace	ä	Furnace	Furnace	Furnace	Furnace	Furnace		u-1.6 Co	Furnace	Furnace	קר מארו <u>ה</u>	rariace
	Approx. Cold	Compact	\$ \$	Zn-2.3 Mq-1.5	78	78	78	. c	8 6	00	80	Zn-2.5 Mg-1.0	78	78	78	76	76		8.0 Zn-2.5 Mq-1.0 Cu-1.6 Co	92	. 92	76	2
		Powder	bare.	A1-6.5 Z	!	15.6	15.6	7.48	, o	0.0	48.5	A1-8.0.2	16.5	16.5	16.5	49.3	49.3		A1 8.0 Zr	14.7	14.7	14.7	
•	19. 13		Sample No.	MA65 Alloy:	404877-M1	404877-M2	404877-M3	404879-N2	404879-MA	707070 MILE	4040/9 - MD	MA66 Alloy:	404880-M7	404880-M8	404880-M9	404882-M10	404882-M11		MA67 Alloy:	404883-M12	404883-M13	404883-M14	

Average Particle Diameter from Fisher Sub-Sieve Sizer. Notes:

2. Percent of theoretical density - From Table 9.

Preheated in a muffle atmosphere furnace immediately before hot pressing.

8.3" to 9.2" diameter (tapered) x 28" Long; Hot pressed compact:

Equal amounts scalped from each end of hot pressed billet.

TENSILE PROPERTIES OF P/M 2"xlo"xh7" HAND FORSINGS

	NTB/AE	0000 0000 0000 0000 0000	37.66 37.66 31.78		54.00 54.00 54.00 57.00	31:96		0000 0000 1400	· •	96;0°
R of A		N Ó M W	គ ក់ ទៅ-		Ģ N H M	्यू .लंबाः - यू .लंबाः		ह्य स'त. ं		ŷ
Short-Transverse Properties	20 JH 40	4966 8644	49 07 1		๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛	14.1		\$		5,1₽
Short-Tr Y.S.		62.0 63.0 63.0 63.0	4.88		89.568 89.468	1,11		25 69 60 7 66 7 7		74.7 '59.8
E S	KSI	75.68 68.9 7.1.1.	4.64.6		28 2.65 5.75 5.05	49.0 61.4 35.7		88. 2.87. 2.6. 4.4.		74.7
ies.	NIS/IS	11111 111111	5555 5555 5555 5555		0.83 0.88 1.16	0.0 78.0 0.0		0.71 0.85 0.76 0.85		1.42
Properties. R of A	P	1878	ងដង		RB88	118 117 8		ដូខ្លួ		22
Iong-Transverse F	an 4	14.1 11.7 13.0	00 00 00 00 00 00 00 00 00 00 00 00 00		10.9 1.9 1.8	9.6 4.6 7.5		00.7 0.7 0.8 0.8		14.0
ong-Tra	V P	5684 57.54	68.0 68.0 1.0		85 E E 88 4 6 6 6	88.6 78.3 83.0		4.05 73.05 73.05		68.2
T.S.	Wait	82.4 77.2 79.4 75.6	82.8 82.8 80.0		88 48 48 48 48 48 48	97.2 86.0 90.7		91.8 83.3 80.83		79.6
es vinc/co	61/61W	1.04 1.25 1.25	1.04 1.13 1.19 1.19		0.91 0.93 1.23	0.00 0.90 0.90		6.000 9.88 4.000		1.42
Properti R of A	P	នេះមន	882%		ት ሕሕ	258		8 71 25		16
Iongitudinal Properties Y.S. El. R of A	7	12.5 13.5 13.5	4.01.0 6.5.01.0 8.5.01		12.0 11.5 11.5	10.0 8.0 8.0		ဂုဏ္ထ လူထ ကိုထိ ယီထိ		10.5
Longi Y.S.	104	4888 966	7. 6.49 6.49 7.49		80.0 76.8 69.8	91.0 76.9 75.4		81.8 76.4 70.6		6.69
F	104	82.7 75.4 79.7 76.9	85.1 77.8 76.6 70.9		87.2 82.4 83.6 78.1	95.9 82.4 81.5		88888 88888 88888		81.4
Electrical Conductivity	Sout a	34.6 41.3 35.7 37.1	32.7 37.1 33.3		33.7 38.0 38.1	31.8 33.3		33.0 33.7 36.1		31.5
Second- Step Aget	2	None 4 hrs. None	None 4 hrs. None		None 2 hrs. None None	None 4 hrs. None		None 2 hrs. None None		None
Temper Stress		None None	2.8% None None		2.2% None None	None 36.25		2.5% 2.5% None None		2.4%
Quench Water Temp.		8828	8888	۶Į	88 55 150 180 180 180 180 180 180 180 180 180 18	888	n-1.6 co	88 258	14-0-2 Cr	&
Preheat Atmosphere®	A1-6.5 Zn-2.3 Mg-1.5 Cu	Argon Argon Argon Argon	Argon Argon Argon Argon	A1-8.0 Zn-2.5 Mg-1.0 Cu	Argon Argon Argon Argon	Argon Argon Argon	A1-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	Argon Argon Argon Argon	A1-5.8 Zn-2.4 Mg-1.7 Cu-0.2 Cz	I
Fowder Size ¹	A1-6.5 Zn	15.6 15.6 15.6	18.5 18.5 18.5 18.5	A1-8.0 Zn	16.5 16.5 16.5	169.3 169.3 169.3	A1-8.0 Zn-	14.7 14.7 14.7		1/16
Serrate No.	MA65 Alloy:	404877N2B 404877N2C 404877N3C	404879828 40487982C 40487984C	NA65 Alloy:	1401-83048A 1401-88048B 1401-88047B 1401-88049C	1,0488240.0A 1,0488240.0B 1,0488240.1B	MA67 Alloy:	404883403A 404883403B 404883402B 404883402B	7075 Alloy:	405295

4.5

2"x10"x47" H.F. Average Particle Diameter.
Isostatically pressed 170 lb green compacts preheated to 1000 F in flowing argon in an atmosphere furnace, hot pressed at 90 ksi, scalped, reheated and hand forged က်ဆံ

Compressive Stress Relief: Percent decrease in thickness for compressing within 8 hours efter quench.
Forgings solution heat treated 2 hours @ 920 F (880 F-7075) quenched as shown, aged 4.7 days at room temperature + 24 hours @ 250 F + second-step age indicated hours @ 325 F and 1.7 days at room temperature + 24 hours @ 250 F + second-step age indicated hours @ 327 das x 22.5" long billet taken from a 11" dismeter D.C. Ingot.
Notched Tensile Strength.

Table 53

ALTERNATE IMMERSION STRESS-CORROSION PERFORMANCE OF P/M 2" THICK HAND FORGINGS. SHORT-TRANSVERSE TENSILE BARS TESTED IN A.I. BY FEDERAL TEST METHOD 823

	45 ksi		1,2,2	29,42,43	1/1/1	2,2,2	2,2,2		7,9,11	15, 17, 22	3,4,4	1,2,3	3,3,3	•	4,4,4	29,39,39	4,4,4	16,28,32			2,3,3,
ndicated . Test			1,1,2	52,52,52	1,1,1	2,2,3	2,2,2		7,17,17	18, 24, 24	47575	3,4,16	3,4,4		4,4,48	31,39,52	3,4,4	24,68,73	,	(((2,3,3
Days to Failure at Indicated Stress Level in A.I. Test	35 ksi		2,2,2	53,65,78	1,1,1	3,11,11	3,3,3		14,14,19	29, 29, 34	8,16,17	8,24,25	3,3,8		4,16,34	57,57,82	12,16,30	4,4,11		(2,3,3
Days to E Stress I	30 ksi		2,2,29	62,73,84	2,2,2	4,4,5	3,3,3		14,24,28	31,34,35	15,15,24	33,33,43	3,3,14		4,20,P	78,P,P	4,44,56	76,P,P		0	2,2,2
	25 ksi		4,25,26	P3,P,P	2,4,59	3,24,80	5,21,25		20, 27, 43	52,52,53	28,32,44	42,52,60	6,32,32		P, P, P	P,P,P	41,P,P	P,P,P		c c	2,2,2
STYS	ksi		62.2	62.5	65.0	63.2	70.0		68.2	67.9	70.6	68.4	ł		72.0	69.2	70.6	66.4		6	29.8
LYS	ksi		74.2	68.0	9.69	66.7	71.8		80.0	76.8	76.2	8.69	6.97		81.8	76.4	74.8	9.07		6	69.9
Second- Step Age	@ 325 F		None	4 hrs.	None	None	4 hrs.		None	2 hrs.	None	None	4 hrs.	1.6 Co	None	2 hrs.	None	None			None
Quench Water	Temp oF	.3 Mg-1.5 Cu	80	80	150	180	80	Al-8.0 Zn-2.5 Mg-1.0 Cu	80	80	150	180	80	A1-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	80	80	150	180		ć	ဝ္ထ
Powder Size ¹	MIL	A1-6.5 Zn-2.3 Mg-1.5	15.6	15.6	15.6	15.6	48.5	Al-8.0 Zn-2	16.5	16.5	16.5	16.5	49.3	A1-8.0 Zn-2	14.7	14.7	14.7	14.7	۸c	†	
	Sample No.	MA65 Alloy:	404877-M2B	404877-M2C	404877-M1C	404877-M3C	404879-N2C	MA66 Alloy:	404880-M8A	404880-M8B	404880-M7B	404880-M9C	404882-M10B	MA67 Alloy:	404883-M13A	404883-M13B	404883-M12B	404883-M14C	I/M 7075 Alloy	40.100.	405295-02

Average Particle Diameter. Nótes:

.. ...

First-step aged 24 hours @ 250 F. P = pass 84 days exposure without failure.

A CONTRACTOR OF THE PARTY OF TH

TABLE 54

The state of the s

TENSILE PROPERTIES OF 2" THICK x 10" WIDE HAND FORGINGS 1 EFFECT OF SECOND-STEP AGE ON LONGITUDINAL

4.	R. Of A.	~~:		28 28	့်က က		1. O	4.0	200	P Ó	4	18	28	: ::::::::::::::::::::::::::::::::::::	17	Õ	; , 20 , , 20 ,
LONGITUDINAL PROPERTIES*	E1.	% in 4D	14.0	11.0	12.0	14.0	12.0	13,5	12.0	12.0	15.0	11.0	12.0	14.0	10.0	10.0	12.0
LONGITUDI	Y.S.	ksi	71.8	67.8	64.8	75.2		72.1	79.8	71.5	64.2	89.6	9.67	74.6	82.9	68.8	63.4
	T.S.	ksi	81.2	75.6	72.7	83.0	78.1	79.8	86.8	77.8	72.7	95.2	85.2	81.8	91.3	ά	73.8
Second-	ep Age	hrs @ 325°F	0	4	16	0	4	16	0	4	16	0	4	76	, o	4	16
Powder	Size	MT .	15.6			48.5			16.5			49.3			14.7		
		WITON	MA65			MA65			MA66			MA66			MA67		
	Sample	ardina.	404877 M2			404879 N2			404880 M8			404882 N10			404883 M13		

stress relieved and aged 24 hrs @ 250 F (as shown in Table 52) All forgings heat treated, cold-water quenched, compressive before second-step aging.

Notes:

Average Particle Diameter. 2 e 4

Zero hours @ 325 F is single-step aged only. M.T. No. 051071-L, dated 8-31-71.

WSC: kin 8-4-72

P/M BILLET FABRICATING CONDITIONS FOR HOT PRESSED COMPACT HAND FORGED TO 5" SQ. 3" SQ., OR 2" SQ.

Billet	Lengths ⁵ in.		19 19	13	9,5	246	161	ę,		ę Ę	`	19	161	ę ę	19	**	29 r	22.5	19	Ų, č	16
Scalped Billet	Dia.		7.5	7.5	7.5	ָ ֓֞֞֜֞֜֝֞֜֞֜֝֞֜֞֞֜֞֞֜֞֞֜֞֞֜֞֞֓֓֓֞֞֜֞֜֝֓֓֞֞֜֜֝֓֓֞֜֜֝֓֡֓֜֝֞֡	, iç	7.5	7.00	7.75		7.75 27.75	8.25	8.0 7.75	52.2	Unscalped	 	J.r.	7.5	٠. د. ه	֓֞֞֜֞֜֜֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֞֝֓֓֓֓֞֝֓֓֓֞֝֓
Compact	Density 1bs/in.3																			נכטר	1301.
Hot Compact	Pressure ksi	•	888	888	8.8	888	28	88	28	88	ζ.	88	\ጸ	88	8	.8:	88	88	8	25 8	28
ļ	Flow CFH/1b		0.17	0.35	0.35	, 0 5 5 6 7 7		00	80.0	8.0 0		8,8 0 0	(S)	ର ୦ ୦	8.0	0.29	& & • •	0.0	0.89	& &	0.29
នព	Gas		Argon Argon	Argon Argon	Argon	Ni trogen	Nitrogen Nitrogen	Air	Alf Argon	Argon		Argon	Argon	Argon	Argon	Argon	Argon	Argon	Argon	Argon	Argon
Preheat Conditions	Temp.		0001	1000	950	200	1000 950	1000	3001	0001	3	000,5	800	0001	3000	,000	000	1000	1000	0001	1000
Prehes	Time hrs		, 0 w.n	12.0	٠ 0		. u.	0,0	7.0 1.0	0,4	•	1.7	1.0	7°.1	1.7	1.2	0,0	? O.	1,3	ц. Со	00.
	Methoda		Retort Retort	Retort Retort	Retort	Retort	Retort Retort	Retort	rurnace Furnace	Furnace	o ni iida	Furnace	Furnace	Furnace	Furnace	Furnace	Furnace	Furnace	Furnace	Furnace	Furnace
Approx.	Cold Compact Density - %	Mg-1.5 Cu	78 77	78						73	2	77	2								
Powder	Size UM	A1-6.5 Zn-2.3 Mg-1.5 Cu	888	કુકુકુકુ કુકુકુકુ	85	989	స్టాన్ల	88	స్టర్టు		3	స్ట్రజ	స్ట్రాహ్	స్ట్రజ్జ	, %	80	8 5 1	88	20	200	22
	Samole	MA65 Alloy:	404877-A1 404877-A2	404877-A4 404877-A5	4-7734c4	404877-A8	404877-A9 404877-A10	404877-412	404877-813 404877-31	404877-C1	20-110+0+	404877-C3	404877-05	424877-c6 424877-c7	h04877-C8	62-118404	404877-H1	404877-P7	404878-82	404878-B3	401876-84 404879-85

Table 55 (Cont'd.)

Constitution to the first of an arrange of the second to t

P/M BILLET FABRICATING CONDITIONS FOR HOT PRESSED COMPACT HAND FORGED TO 5" S2., 3" S2., OR 2" S2.

	,		,	. ,			· .	* '	hốt pre	, 10 . O O .
:	scarped Billettia. Longthstin.	- -	19) <u>0</u> ,015	•	91,000	£.	90 E	in loading for	911111111111111111111111111111111111111
e G	Scalpe Dia.	,	7.5	, v, v, v	<u> </u>	ابر د. ش ش ه	· <u>}</u>	7.5 7.5	Cracked'	
toerac.	Density 1bs/in.3			•1029		.1043 .1043			.1038	
Hot	Pressure		&&	588	•	8,8,8	}	83	900	
	Flow CFH/1b		88.0	0°50 0°50 0°50		68.89 68.69 68.69 68.69	,	&.°°	0.29	
suo	Gas		Argon	Argon Argon Argon		Argon Argon Argon)	Argon Argon	Argon Argon	
Preheat Conditions	Temp.		1000	1000		1000		1000 1000	1000	
Prehe	Time hrs		0 00	1.0 1.0		1111 790		0.6 1.0	1.0	
	Method ³		Furnace	Furnace Furnace Furnace		Furnace Furnace Furnace		Furnace Furnace	Furnace Furnace	
Approx.	Cold Compact Density - 2	. Kg-1.0 Cu	<i>m</i>	77	MA67 Alloy: Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	76 27	MAÉT Alloy: Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	76 76	75 79	
Powder	Size	MAGG Alloy: A1-8.0 Zn-2.5 Kg-1.0 Cu	. K. C. C.	222	41-8.0 Zn-2.5	88 85 50 50 50 50 50 50 50 50 50 50 50 50 50	A1-8.0 Zn-2.5	22.22	99	
	Sample	MAGG Alloy:	404830-B6 404831-B7 404831-B8	404881-89 404882-810	MA67 Alloy:	404883-811 404883-812 404884-813	MAGZ Alloy:	404884-81 <i>1</i> 4 404885-815	404885-816 404885-817	

Notes:

Average Particle Diameter from Fisher Sub-Sieve Sizer.
Percent of theoretical density from Table 9.
Freheated in a muffle atmosphere furnace immediately before hot pressing.
Hot pressed compact: 8.3 to 9.2" diameter (tapered) x 28" long.
Equal amounts scalped from each end of hot pressed billet. 4 % & * 1.

<u>.</u>

New Transport of Academic Allendary

en la completation de la complet

ULTRASONIC AND VISUALLY RATED QUALITY
OF P/M HAND FORGINGS
Ultrasonic quality

							٠٠٠.
uality ⁵ Face Cracking		ઌ૽ૹૢ૽ૡૼૡૺ ૹૹૢ૽ૹૼૡૺૡૼ	# 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ပ ရာ ရှိ ၂ ရှိ ရှိ ပ ပ ၂ ရှိ ရှိ ပ ပ	့် ပို့ခ်ပက်ပ ့	英国名	Ö∴ğ
Visual Quality ⁵ End Face Cracking Cracki	-	મેં તે વે વે વે વે વે વે વે વે	સંસ્થિત સ્વ સ્થિત સ્થિત સ્થિત સ્થિત સ્થિત સ્થિત સ્થિત સ્થિત સ્થિત સ્ સ સ્ સ્ સ સ્ સ સ્ સ સ્ સ સ સ સ્ સ	4.8.4 4.8 4.8	& & & & &	द छ द	P B
quality t3 % Metal Recovery		% & & & & & & & & & & & & & & & & & & &	හිතික දිනි	6 6 6 6 6 7 6 7	469 100 100 76	100 100 100	38 11
Ultrasonic Qua me ² und Billet ³ ng Volume in.³		758 758 758 758	758 758 758 758	27.75 88.77.58 88.98 88.98 88.98 88.98 88.98	899 9999 8955 8955	840 1700 745	1700
Ultre Volume 2 of Sound Forging		654 684 671 702 671	678 672 664 682 673	689 1135 716 896 622	838 1000 985 852	840 832 745	646 693
Forging Section	Zn-Z.3 Mg-1.5 Cu	5" Sq. Stepped to 3" Sq. 5" Sq. Stepped to 3" Sq. 5" Sq.	5" Sq. Stepped to 3" Sq. 5" Sq. Stepped to 3" Sq. 5" Sq. Stepped to 3" Sq. 5" Sq.	5" Sq. Stepped to 3" Sq. 5" Sq. Stepped to 3" Sq. 5" Sq.	5" 89. 5" 80. 5" 89. 5" 89.	8 8 8 8	5" × 10" · 5" × 10"
Powder Sizel UM	6.5 Zn-2.	15.6 15.6 15.5 15.5	15.66.66 15.66.66	211111 2221111 20000	221 221 221 24 25 25 25 25 25 25 25 25 25 25 25 25 25	15.6 15.6 15.6	15.6
Sample	MA65 Alloy:	1404877-41 -42 -43 -44 -45	-46 -48 -49 -410	- A12 - A13 - C1 - C2	2000 4000 4000 4000 4000	-c8 -43 -43	τι. 5τ.

Table 56 (Cont'd.)

QUALITY.	
RATED	TINGS
VISUALLY	HAND FORCE
AND	P/M
ULTRASONIC AND VISUALLY RATED QUALITY	OF P/M HAND FORGINGS

	Visual Quality ⁶ End Face acking Cracking	OBAUA			A-,C A,C- C,C	សួក្ស ស		в,в о о о	дОы
	Visual (End Cracking	B, E ⁵ A, E ⁶ D A			B,C A,C- A,D-	е, е е о о		A, A A, E ⁶ D, E ⁶ B	C B A,E ^{\$}
lity	% Metal Recovery4	188827			93 82 82	15 24 55 67		13.83 13.83 14.83 15.8	81 83 50
Ultrasonic Quality	Billet ³ Volume in. ³	1705 1705 995 995 995			758 758 753	758 1700 995 995 995		758 1700 1700 1700	995 995 1700
Ultra	Volume2 of Sound Forging in.	921 1029 832 799 765			703 660 621.	112 409 555 476 669		739 420 667 648 769	804 822 859
	Forging Section	5" x 10" 5" x 10" 2.2" x 10" 2.2" x 10" 2.2" x 10"	5" Sq. 5" Sq. 5" x 10"	Zn-2.3 Mg-1.5 Cu	5" Sq. Stepped to 3" Sq. 5" Sq. Stepped to 3" Sq. 5" Sq. 5" Sq. 5" Sq. 5" Sq.	5" Sq. Stepped to 3" Sq. 5" x 10" 2.2" x 10" 2.2" x 10" 5" x 10" 5" x 10"	8.0 Zn-2.5 Mg-1.0 Cu	5" Sq. Stepped to 3" Sq. 5" x 10" 5" x 10" 5" x 10" 2.2" x 10"	2.2" x 10" 2.2" x 10" 5" x 10"
	Powder Sizel UM	15.6 15.6 15.6 15.6	15.6 15.6 15.6	6.5 Zn-2.	6,6,6 83,6 83,6 83,6 83,6 83,6 83,6 83,6	484 484 5.84 5.84 5.84 5.85 5.85 5.84	8.0 2n-2.	16.5 16.5 16.5 16.5	16.5 16.5 16.5
	Sample	-K1 -N1 -M1 -M2	-P7 -P7	MA65 Alloy:	404878-B2 -B3 -B4	404879-B5 -K2 -M4 -M5 -N2 -N2	MA65 Alloy:	, 404880-B6 -J3 -J4 -K3 -M7	8M 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 56 (Cont'd.)

All the state of t

ULTRASONIC AND VISUALLY RATED QUALITY OF P/M HAND FORGINGS

			Ultr	Ultrasonic Quality	ality		
Sample <u>Number</u>	Powder Size ¹	Forging Section	Volume of Sound Forging in.	Billet 3 Volume in.3	% Metal Recovery ⁴	Visual Quality ⁵ End Face Cracking Cracki	nality ⁵ Face Cracking
40488 1-в7 -вв -в9	21.8 21.8 21.8	5" Sq. Stepped to 3" Sq. 5" Sq. St. St. Stepped to 3" Sq. 5" Sq. 5" Sq.	662 664 632	758 758 758	888 8388	, D,B A,B	C-,B A,B D,D
404882-BlO -K ¹ + -N ⁴ -MLO -MLO	64 64 64 64 64 64 64 64	5" Sq. Stepped to 3" Sq. 5" x 10" 5" x 10" 2.2" x 10" 2.2" x 10"	320 0 549 533 539	758 1700 1700 995 995	25 25 0 E	റ ப,ப செ செ செ	គ្.គ.គ.១ គ.
MA67 Alloy:	8.0 Zn-2.	MA67 Alloy: 8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co					
404883-B11 -B12 -J5 -K5 -M12	14.7 14.7 14.7 14.7 14.7	5" Sq. Stepped to 3" Sq. 5" Sq. Stepped to 3" Sq. 5" x 10" 5" x 10" 2.2" x 10"	688 671 854 483 826	758 758 1700 1700 995	8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9	A, E A, A D, E ⁶ E, E ⁶ D	B,B B,B D D B
-M13 -M14 -N5	14.7 14.7 14.7	2.2" x 10" 2.2" x 10" 5" x 1C"	788 878 848	995 995 1700	79 88 50	റ В D, E	ፋወፀ

The Section of the se

Table 56 (Cont'd.)

ULTRASONIC AND VISUALLY RATED QUALITY OF P/M HAND FORGINGS

		Quality ⁵	Face	Cracking Cracking	B,B	A, C-	B-B-
		Visual	End	Cracking	A,B	A,D	A,B-
ality			% Metal	Recovery4	89	8	82
asonic Or		Billet 3	Volume	in.	758	758	758
Ultr	Volume ²	of Sound	Forging	in. in. Recover	179	682	619
T T T T T T T T T T T T T T T T T T T				Forging Section	Stepped to 3"	Sq. Stepped	Sq. Stepped to 3"
		Powder	$Size^1$	E E	22.7	22.7	22.7
			Sample	Number	404884-B13	-B14	-B15

Average Particle Diameter. Notes:

Volume of forging of Ultrasonic SNT Class A quality. Volume of scalped billet minus volume of any steps.

Percent metal Recovery = Volume of SNT Class A Forging X 100. Billet Volume

Visual Quality Ratings shown are for a single forging except for the 5" sq. stepped to 3" sq. forging, which show the 5" sq. then the 3" sq. forging quality. 5.

Ends	Practically perfect	Surface tears	Surface checks	Checks, small cracks	Severe crack	
Faces	A Practically perfect	B Slight tears	C Slight checks	D Checks, small cracks	E All severely cracked	quality of the other end.
Visual Quality Ratings:						Quality rating of one end, quality of the other end.

છ

Table 57

EFFECT OF ALLOY, POWDER SIZE AND HOT COMPACTING PRESSURE
ON FORGING QUALITY - 3" SQ. AND 5" SQ. HAND FORGINGS

			Hot	Co	mpacting Press	ure ³		
	6	0 ksi			75 ksi		00 ks	i
	Powd	er Siz	e ⁶		Powder Size	Pov	der (Size
Alloy ⁵	<u>15</u>	<u>23</u>	<u>50</u>		23	15	23	<u>50</u>
% Metal Recovery								
MA65		93			87	94	82	15
MA66		88			88	98	83	42
MA67	91	89	(2)	٠	90	89	82	(2)
Face Cracking - 3" Sq. F	orging	<u>s4</u>						
MA65		C			C-	B-	С	E
MA66		В			В	В	D	E
MA 67	В	В			C-	В	B-	(2)
Face Cracking - 5" Sq. F	orging	rs ⁴						
MA65		A-			A	В	С	E
MA66		C-			A	В	D	E
MA61	В	В	(2)		A	В	B-	(2)
End Cracking - 3" Sq. Fo	rgings	4						
MA65		С			C-	A	D-	E
MA66		В			В	A	B-	E
MA 67	В	В	(2)		D	A	B-	(2)
End Cracking - 5" Sq. Fo	rgings	34						
MA65		В			А	A	A	E
MA66		D			Α	A	A	C-
MA67	A	A	(2)		А	A	A	(2)
MA66	A	D	(2)		A	A	A	C-

Notes: 1. Percent Metal Recovery = $\frac{\text{Volume of SNT Class A Forging}}{\text{Volume of Scalped Billet}} \times 100$.

- 2. Cracked during loading for hot press.
- 3. Other processing conditions for forgings B1 to B17 shown in Table 55.
- 4. Visual Quality Ratings:

	FACES	END
Ā	Practically perfect	Practically perfect
	Slight tears	Surface tears
C	Slight checks	Surface checks
D	Checks, small cracks	Checks, small cracks
E	All severely cracked	Severe cracks

- 5. See Table 5 for alloy composition
- 6. Average Particle Diameter in uM.

ULTRASONIC AND VISUALLY RATED QUALITY OF 2.2" x 10" HAND FORGINGS

	57% 54%	ပ် ပ်	ДЩ	
1	of Forgings N2, M4 and M5: of Forgings M10 and M11:	of Forgings N2, M4 and M5; of Forgings M10 and M11:	Average of Forgings N2, M4 and M5: Average of Forgings M10 and M11:	ļ.
Powde	s N2, s M10	s M2,	s M2,	rerfec
Mri09 ma	orgings	° orgings forgings	orgings	cu. in. ENDS Practically perfect
s fro			of I	cu.
Forgings from 50µM Powder	Average Average	Average Average	Average Average	s A/995
	80% 80% 83%	m m #	m ວໍ່ ບ	SNT ClassisS
J.	Y. M2 and M3: M8 and M9: M13 and M14:		M2 and M3: M8 and M9: , M13 and M14:	100 x Volume SNT Class A/995 cu. in. FACES Practically perfect Practica
IM Powde	letal Recovery Forgings MI, Forgings M7,	s M1, s M7, s M12,	gs Ml, gs M7, gs M12,	overy = 3 cing:
from 15	% Metal Recoof Forgings of Forgings	Cracking ² of Forgings of Forgings	Cracking ² of Forgings M1, of Forgings M7,	tal Reco lity Rat
Forgings from 15µM Powder	Ultrasonic Quality - % Metal Recovery MA65 Average of Forgings M1, N MA66 Average of Forgings M7, N MA67 Average of Forgings M7, N	(D) (Visual Quality - End Cracking ^a MA65 Average of Forgin MA67 Average of Forgin	Percent Metal Recovery Visual Quality Rating:
딦	Oua.	Llity An An	llity An An	
정	<u>sonic</u> 65 66	1 Que 65 66 67	1 Que 65 66 67	
Alloy	Ultrasor MA65 MA66	Visual C MA65 MA66 MA67	Visual (MA65 MA66 MA67	Notes:

Other processing conditions for forgings Ml to Ml4 and N2 are shown in Table 51 .

Checking, small cracks Medium, severe cracks

Checking, small cracks Medium, large cracks

Slight tears Slight checking

4 目じ口団

*

Surface tears Slight checking

ULTRASONIC AND VISUALLY RATED QUALITY OF 5" x 10" PREFORGED ROLLING STOCK

		24% 16%		២២		E	
Forgings from 50µM Powder		Forging K2: Average - Forgings K4 and N4:		Forging K2: Average - Forgings K4 and N4:		Forging K2: Average - Forgings K4 and N4:	A/1700 cu. in. ENDS
		48% 38% 43%		<u>-</u>		A-,E B,E D-,E	NT Class ES
Forgings from 15µM Powder	Ultrasonic Quality - % Metal Recovery¹	Average - Forgings Jl, J2, Kl and Nl: Average - Forgings J3, J4, K3 and N3: Average - Forgings J5, K5 and N5:	Visual Quality - Face Cracking ²	Average - Forgings Jl, J2, Kl and Nl: Average - Forgings J3, J4, K3 and N3: Average - Forgings J5, K5 and N5:	Visual Quality - End Cracking ^{2,3}	Average - Forgings Jl, J2, Kl and Nl: Average - Forgings J3, J4, K3 and N3: Average - Forgings J5, K5 and N5:	Percent Metal Recovery = 100 x Volume SNT Class A/1700 cu. Visual Quality Ratings:
Alloy	ltrasonic	MA65 MA66 MA67	isual Qua	MA65 MA66 MA67	isual Qua	MA65 MA66 MA67	Notes: 1 2.

1		CONTRACT
	A Practically perfect	Practically perfect
	B Slight tears	Surface tears
	C Slight checking	Slight checking
	D Checking, small cracks	Checking, small cracks
	E Medium, large cracks	Medium, large cracks. folds

Forging Code Number - Rating of one end, rating of other end.

Other processing conditions for these forgings given in Tables 78 and 82.

TABLE 60

EFFECT OF PREHEAT ATMOSPHERE AND TIME ON FORGING QUALITY OF 6.5 Zn-2.3 Mg-1.5 Cu ALLOY - 3" SQ. AND 5" SQ. HAND FORGINGS

Preheat Atmosphere ¹	Preheat Time (Hours)	Gas O	Flow 0.17		<u>0.75</u>	Gas Flo		(CFH/1b) 0.75
Ultrasonic Quality - % Me	etal Recov	ery ²	•					
Retort - Argon Retort - Purified Argon Retort - Argon Retort - Nitrogen	1 1 5 1		86	90 89 93 88	89 90			
Retort - Ambient Air Circulating Furnace Air	1	91 18						
Visual Quality - Face Cra	acking ³	<u>3"</u>	Square	e Forgi	ngs	5" Squa	re Forg	ings
Retort - Argon Retort - Purified Argon Retort - Argon Retort - Nitrogen	1 1 5 1		В	B A A A	B A	В	B A A	A A
Retort - Ambient Air Circulating Furnace Air	1	C E				D - E		
Visual Quality - End Cra	cking ³	3"	Square	e Forgi	ngs	5" Squa	are Forg	ings
Retort - Argon Retort - Purified Argon Retort - Argon Retort - Nitrogen	1 1 5 1		В	D A A A	A A	A	A A A	A A
Retort - Ambient Air Circulating Furnace Air	1	A E				A E		

- Notes: 1. Other processing conditions for Forgings Al to Al3 listed in Table 55.
 - 2. Percent Metal Recovery = $\frac{\text{Volume of SNT Class A Forgings}}{\text{Volume of Scalped Billet}} \times 100$
 - 3. Visual Quality Ratings:

	FACES	ENDS
Α	Practically perfect	Practically perfect
В	Slight tears	Surface tears
C	Slight checks	Surface checks
D	Checks, small cracks	Checks, small cracks
E	All severely cracked	Severe crack

TABLE 61

EFFECT OF PREHEAT TEMPERATURE AND ATMOSPHERE ON METAL RECOVERY OF 6.5 Zn-2.3 Mg-1.5 Cu ALLOY - 3" SQ. AND 5" SQ. HAND FORGINGS

	<u>eheat</u>	Temperat	ure (°F)	Prehea	t Tempera	ature (°F)
Atmosphere ¹	950	1000	1050	950	1000	1050

Ultrasonic Quality -	% Met	al Recov	erv ²			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Argon	89	90	89			
Nitrogen	89	88	(4)			
			\ - 7			
Visual Quality - Fac	e Crac	king ³				
	<u> </u>					
	3" Sa	uare For	ainas	5" (Square Fo	orainas
	<u> </u>		335	<u> </u>	Square re	2191195
Argon	В	В	A	B-	В	A
Nitrogen	A	A	(4)	A	A	(4)
3	•••		\ - /	••	••	(-/
Visual Quality - End	Crack	ing ³				
	3" Sa	uare For	gings	5" (Square Fo	orgings
			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	,	square re	2 3 2 1 1 5 5
Argon	Α	D	В	А	A	A
Nitrogen	A	A	(4)	A	A	(4)
<u> </u>	••	••	\ -7		ß	(1)

- Notes: 1. Retort preheat with gas flow of 0.35 CFH/lb. of compact. Other processing conditions in Table 55.
 - 2. Percent Metal Recovery = $\frac{\text{Volume of SNr Class A Forging}}{\text{Volume of Scalped Billet}} \times 100$
 - 3. Visual Quality Rating:

	FACES	ENDS
A	Practically perfect	Practically perfect
В	Slight tears	Surface tears
C	Slight checks	Surface checks
D	Checks, small cracks	Checks, small cracks
E	All severely cracked	Severe crack

4. Compact cracked while loading for hot press.

Table 62

EFFECT OF HOT COMPACTING PRESSURE ON THE NUMBER OF ISOLATED DISCONTINUITIES IN 3" SQUARE AND 5" SQUARE HAND FORGINGS

Allcy	Hot Compacting Pressure (ksi) +	Number of Isolated Discontinuities 60 75 90	Number of Isolated Scontinuit:	t 100 90	
MA65: 6.5 Zn-2.3 Mg-1.5 Cu		ω	12	4	
MA66: 8.0 Zn-2.5 Mg-1.0 Cu		13 18	18	m	
MA67: 8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co		12	15	H	

Notes: 1. Compacts from 23µM powders.

Other processing conditions shown in Table 55 for Forgings Bl to Bl7.

WSC: km 8-3-72

TABLE 63

EFFECT OF THE AMOUNT OF SCALP ON METAL RECOVERY IN 6.5 Zn-2.3 Mg-1.5 Cu ALLOY - 5" SQ. HAND FORGINGS

		Sca	lp from	Ram E	nd of	Forgir	i g
		0	0.25"	1.0"	4.5"	8.0"	8.75"
<u>Minimum S</u>	calp	Sca		Blind	Die E	nd of	Forging
From Diameter	Diameter	0	8.75"	8.0"	4.5"	1.0"	0.25"
Ultrasonic Qua	lity - % Metal R	lecov	ery1				
0s	Tapered	49					
0.30"	8.25"				100		
0.55	8.0				100		
0.67	7.75		100	94	95	66	70
1.05	7.50				100		
Visual Quality	- Face Cracking	13					
0s	Tapered	E					
0.30"	8.25"				C		
0.55	8.0				Þ		
0.67	7.75		C-	C-	Ċ	D	С
1.05	7.50				В		
Visual Quality	- End Cracking3						
Os	Tapered	E					
0.30"	8.25"				B-		
0.55	8.0				Α		
0.67	7.75		A	A	A	В	A
1.05	7.50				A		

Notes: 1. Percent Recovery = $\frac{\text{Volume of SNT Class A Forging}}{\text{Volume of Forging Billet}} \times 100$

FACE

- 2. Unscalped Forging Billet, 8.2" to 9.2" dia. X 28" long.
- 3. Visual Quality Ratings:

		23.25
A	Practically perfect	Practically perfect
B	Slight tears	Surface tears
C	Slight checks	Surface checks
D	Checks, small cracks	Checks, small cracks
E	All severely cracked	Severe crack

ENDS

4. See Table 55 for other processing conditions of Forgings Cl to C9.

TABLE 64

ULTRASONIC QUALITY RATING OF 2.2" X 10" AND 5" X 10" HAND FORGINGS¹

		2.2" X 10" X 4 Hand Forgings	2.2" X 10" X 47" Hand Forgings	5" X 10" X Rolling	5" X 10" X 36" Forged Rolling Stock
		Average Sound Forging	Average %	Average Sound Averag	Average %
Alloy	Powder Size	Volume cu. in.	Recoverya	Volume cu. in.	Recovery
MA65: 6.5 Zn-2.3 Mg-1.5 Cu	15.6 48.5	799 567	80	822 409	48 24
MA66: 8.0 Zn-2.5 Mg-1.0 Cu	16.5 49.3	798 536	80 54	648 274	38 16
MA67: 8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co 1	6 Co 14.7	831	. 84	728	43

Other processing conditions in Tables 51, 78 and 82. ٦. Notes:

Percent Recovery = Volume of SNT Class "A" Forging X 100. Unscalped Billet Volume = 1700 in. 3 . ش

Table 65

EFFECT OF INCREASING HOT WORK ON QUALITY OF MA65 ALLOY HAND FORGINGS³

3-1/2" Sq. x 2" Sq. x 21" 47"	100 100	A.	A
5" Sq. x 12"	100	æ	A
Section Size→	Ultrasonic Quality % Metal Recovery:	<u>Visual Quality</u> ² Face Cracking	End Cracking

x 100 حا Percent Metal Recovery = Volume of Forging = SNT Class Volume of Scalped Billet Notes:

- 2. A = No cracking (a practically perfect forging).
 3. Forging H1 (S-No 404877) from 15 6uM powder cold
- 78% green density, preheated 2 hours @ 1000 F, hot pressed at 90 ksi, scalped to 7.5" dia. x 19" long, reheated to 700 F Forging H1 (S-No 404877) from 15.6µM powder, cold pressed to and A upset and draw forged to section sizes shown above.

WSC: km 8-3-72

EFFECT OF PROCESS VARIATIONS ON OXYGEN CONTENT AND MECHANICAL PROPERTIES OF 3" SQUARE HAND FORGINGS

		NTS/YS	0.81 0.89 0.89	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.36	69.0	0.57 0.54
	Versc	₩ ≨	650 F S	บ⁄อ≒ เกต	0.5	m.	нα,
	Short-Transverse	~ ≅l	87.997 000.00	25.0 2.5.0 2.5.0 0.1	1.5	3.0	2.0
	Shor	Y.S.	88888 66.66	65.4 67.6 66.6 66.8	9.99	66.2	66.4 63.3
		T.S.	77.2 77.4 76.4 77.0°	76.0 76.8 74.0 7.17	71.59	73.9	88.88 9.07 (*)
•		NTS/YS	1.02 1.03 1.03 1.03	3005: 11:13	0.82	0.99	0.89 0.84 0.78
PROPERTIES	verse	₩ ₩	ន្ឋម្ភមន្ត	45848	22	97	ន្ទង្គន
	Long-Transverse	<u> %</u> ଘ	31.38.31.31 2.00.00	1.05.55 5.55.50	9.5	11.5	8.0.8 0.0.8
MECHANICAL	Ion	Y.S.	98448 96499	23.23.23 6.6.4.6.6	65.3	64.2	48.44 6.45 8.45
		F.S.	75.3 76.3 76.3 75.3	75.3 74.6 76.4 76.6	77.0	75.20	75.8° 77.3
		NT9/YS	44444 88888 888888		0.85	1.36	1.28
	nal	* \$	ቋ፟ቒቘ <u></u> ኇ	338288	82	ထ္ထ	33.2
	Longi tudina	82	17.0 16.0 17.0 16.5	18.0 17.0 17.0	14.5	16.5	13.0 16.5 16.0
	Ior	Y.S. ksi	45.65 6.65 6.65 6.65 6.65	4.05458 4.0568	73.3	9.69	74.0 77.6 77.0
		T.S.	80.0 78.5 78.9 78.9	78.0 77.9 79.7	82.7	78.40	31.8 79.2 86.0
		Oxygen in Compact Wt. %	0.38 0.39 0.39 0.39		0.32	0.32	0.22 0.24 0.23
		Hot Compact Press ksi	88888	88888	8.3	8	848
		Flow CFH/1b	0.17 0.35 0.35 0.35	0.35 0.35 0.75 0.35	None	0.29	& 62.0 62.0
SNO		88	***	24222	Air	¥	444
PROCESS VARIATIONS	Preheat	Temp.	8886	9505059 9505050	000	200	0000
PROCESS	1	Time	44444 40000	94444	27.7	٠. د.	1.1.1 6.5.6.3
		Method	Retort Retort Retort Retort Retort	Retort Retort Retort Retort	Retort Furnace	Purnace	Furnace Furnace Furnace
		Powdor Size? UX	15.6 15.6 15.6 15.6	15.6 15.6 15.6 15.6	15.6 6.6	15.0	999 888
		A110y.	NA65 NA65 RA65 NA65	MAGS MAGS MAGS MAGS	KA65	KNO?	## ## ## ## ## ## ## ## ## ## ## ## ##
		Forging No.	40487781 40487782 40487783 40487784 40487784	LOUBT7A6 LOUBT77:7 LOUBT7A8 LOUBT7A9 LOUBT7A9	104877A12 104877A13	Tal John,	40487882 40487883 40487884

Table 66 (Cont'd.)

•

KFFECT OF PROCESS VARIATIONS ON OXYGEN CONTENT AND KECHANICAL PROPERTIES OF 3" SQUARE HAND FORGINGS

			nts/ys		Ş	8	;	14.0	24.0	2
		Varee	×≊	}	•	ሳ		N	m	- 00
		Short-Transvires	추 입		•	0.0	(0.%	0.1	3 22
		Shor	Y.S.		ć	0.1%	į	4.0	75.4	2.57 2.4.47
			H.S.	3	2 1		333	, (e)	92.6	72:2 73:2 (2)
1	2		NTS/YS		2	; ;	\$ 13, 65 6 0 0	A.	\$50	0.00 1.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
	ZER11E	Nir Br	⊸ ≋i		u	` ;	⊒ ~-	ŧ	Oνα	ดบท
4	7	Long - Iranswers	ᇂ디				o o v	?	0.0	000
Property of Armanylly and		ron	Y.S.		70.3	2 6	73.0	2	73.6	73.6
5	Ē		ေန. လူ 4	٤	80.1			ે દે		883.5 86.9
			NTS/YG		1.14		, 60 c	<u> </u>	0.89 .87	0.84 0.83 0.74
	-		∞ ≨		3	`	38k	i	20	
	Tone triding		~ ≊l		15.0		13.0		12.5	12.0 12.5
	5		Y.S.		80.4		81.3	•	0.08	880.5 5.5.5 7.4
			7.3.	ê	86.5	,	98.5		87.14	
	j	xygen	in Compact Wt. \$	3.054			0.22			75.25 20.25
			Pre-s	8			83		82	8758
		~ _'								
			710v. CF1(1b	0.29	0.33	0.29	88	6.39	ର ୧୯ ୧୯	જે જે જે જે જે જે
55			9	ź	¥	ş	\$ \$	ş	44	\$ \$ \$
PROCECS VARIATIONS	Prelicat		To a	800	300	38	88	1000	888	3500 3000 3000 3000
OCECS V	Ě		Tra e	8.0	1.0	2,5	1.5	7.0	1.0	2002
E			Method	Purnace	Purnace	Purnace	Purnace	Purnace	Purnace	Parance Parance
		Powder	100 H	¥8.3	16.5	21.8	ಜ. ನ ನ	£9.3	14.7	22.7 22.7 22.7
			A1102	MA65	XX 66	MASS	\$ 95 \$ \$	MAG6	HA67 HA67	NA67 NA67 NA67
			Forgine	40487995	4048S1BG	404881B7	40498189 40498189	404882B10	holo83812 holo83812	1,01,881,813 1,01,81,41,14 1,01,81,41,15

- 10 V

Kotes:

CARREST CARREST CONTRACTOR CONTRA

TABLE 67

EFFECT OF INCREASED REDUCTION ON TENSILE AND NOTCHED TENSILE PROPERTIES OF MA65' ALLOY HAND FORGINGS

				MECHANICAL	MECHANICAL PROPERTIES ³			
Direction	L Ratio ²	T.S. ksi	Y.S. ksi	E1 % in 4D	R. of A.	NTS	NTS/YS	Aproximate Kics ksi/in,
Longitudinal	5	82.8	75.6	16.4	34	95.1	1.27	27
	10.2	80.0	73.6	16.4	41	95.1	1.29	27
	31	79.1	71.8	17.2	45	95.7	1.33	29
Long-Transverse	5	82.1	70.8	12.5	16	56.9	0.80	15
	10.2	81.0	71.6	12.1	18	69.5	0.97	18
	31	79.1	70.0	10.2	15	75.9	1.08	21
Short-Transverse	5	76.6	68.7	3.1	2	45.0	0.65	13
	10.2	81.4	70.6	8.6	10	56.0	0.79	15
	31	79.2	72.1	6.2	10	73.2	1.02	19

isostatically at 30 ksi, preheated 2 hours @ 1000 F in argon, hot pressed at Sample 404877-Hi, Al-6.4 Zn-2.5 Mg-l.5 Cu, from 15.6 :1M powder cold pressed 90 ksi, scalped to 7.5" dia. X 19" long, reheated to 700 F and A upset and draw forged to 5" sq., stepped to 3-1/2" sq., stepped to 2" sq.

Cross Sectional Area of Billet Cross Sectional Area of Forging; 5" sq. (L=5); 3 1/2" sq. (L=10.2); 2" sq. (L=31). 2

3. From M.T. No. 051071-F, dated 7-22-71 or 8-24-71.

All samples solution heat treated as 1" sq. blanks X 5", 4", 3-1/2", 3", cold-water quenched, aged 7 days at room or 2" long @ 920 F for 2 hours temperature + 24 hours @ 250 F.

5. See Figure 10 (from Ref. 5).

TABLE 68

EFFECT OF ALLOY AND POWDER SIZE ON MECHANICAL PROPERTIES OF 3" SQUARE HAND FORGINGS

ties	50	1	(3) (4) (4)		(E) (E) (4)		(a) (3)	—	
Proper	Size ⁵								
ər. ^su	Powder 23		(2) 74,0 (3)		(S) (S) (S)		(2) 0,41	(e)	
Short-Trans, 'se Properties	15		66.2 71.0 75.8		600 000		0.69 0.60	0.42	ر ت
erties	50		©©_4		$\begin{pmatrix} \varepsilon \\ \varepsilon \\ \end{pmatrix}$		(8) (8)	(4)	it.ione
	Powder Size		64.8 73.3 75.6		8 V V		0.78 0.59	94.0	sed at 90 ksi (other fabricating conditions
Long-T	15		64.2 70.3 74.8		11.5 6.0 6.0		0.99	09.0	ther fa
erties	12		(E) (4)		$\begin{pmatrix} \varepsilon \\ \xi \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$		(B)	(4)) ksi (c
inal F	23		77.0 81.7 84.4		16.0 13.5 12.5		1.14	ħ 2. 0	
Long1 tu	15		69.6 80.4 79.9		16.5 15.0 11.0		1.36	0.87	All forgings from compacts hot pres
	ဒ္ဓ		1.6		1.6		,	T•0	compact
Composition	ह		ц г г г		1.1.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0		т. С.	P•0	from
Compos	Mg		0 0 0 0 0 0		0 0 0 6 0 0		999	V•7	rgings
	E3	(ksi)	6.4 8.1 8.0	n 4D)	4.0 8.0 9.0		98° 4.1°	0.00	All fo
	Alloy	Yield Strength (ksi)	MA65 MA66 MA67	Elongation (% in 4D)	MA65 MA66 MA67	rol	MA65 MA66 MA67	2	Notes: 1.
	ৰ <u>া</u>	Yield	W W	Elonge	M. M.	NTS/YS	MA MA	H _a	No

Table 55), heat treated as 3" sq., aged to T6 temper. Forging cracked orthagonal to short-transverse direction during aging. Forging would not meet ultrasonic SNT Class A quality standards. 0, w. 4, r.

No forging prepared.

Average Particle Diameter in µM.

WSC:dld 8/3/72

Table 69

EFFECT OF PREHEAT ATMOSPHERE AND TIME ON NOTCHED TENSILE STRENGTH:YIELD STRENGTH RATIO OF 3" SQUARE HAND FORGINGS FROM FINE POWDER MA65 ALLOY*

Short-Transverse NTS/YS Gas Flow Rate (CFH/1b)	0 0.17 0.35 0.75	0.81 0.91 0.75	0.89	0.87	0.96 1.05	0•36	(1)	69*0
1	0 0.17 0.35 0.75	1.01 1.04 0.98	1.02	1.03	1.07 1.12	0.82	(1)	66°0
Longitudinal NTS/YS Gas Flow Rate (CFH/1b)	0 0.17 0.35 0.75	1.32 1.32 1.35	1.36	1.36	1.27 1.29	0.85	(1)	1.36
Preheat Time3	Hours	႕	5	႕	H	rH	H	7
Atmosphere		Retort: Argon	Retort: Argon	Retort: Purified Argon	Retort: N2	Retort: Ambient Air	Circulating Air	Furnace Argon ²

Forging less than SNT Class A quality - cracked during forging. ų ų Notes:

Preheated with 0.29 CFH/1b flow rate in an atmosphere furnace. Forging 404877B1 exposed to no door openings prior to its being removed from furnace.

რ.‡

Other fabricating conditions shown in Table 55. 15.6µM Average Particle Diameter Powder in Al-6.5 Zn-2.3 Mg-1.5 Cu Alloy.

WSC:km 8-4-72

TABLE 70

のでは、「「「「「「「」」」というできます。 「「「」」というできます。 「「」」では、「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「

. SQ. ī EFFECT OF PREHEAT TIME AND ATMOSPHERE ON ELONGATION OF HAND FORGINGS FROM FINE POWDER MA65 ALLOYS

Short-Transverse Gas Flow Rate (CFH/1b)	0 0.17 0.35 0.75	84 7	9	**	. 50	ο	$\binom{i}{j}$	en
Elongation - % in 4D Long-Transverse Gas Flow Rate (CFH/1b)	0 0.17 0.35 0.75	13 134 8	12	12	13 13	10	(1)	1.2
Longitudinal Gas Flow Rate (CFH/1b)	0 0.17 0.35 0.75	17 164 17	18	16	144 17	14	(1)	16
Preheat Time ⁷	Hours	-1	5	Н	Н	Н	Н	ч
Atmosphere		Retort: Argon	Retort: Argon	Retort: Purified Argon	Retort: Nitrogen	Retort: Ambient Air	Circulating Air	Furnace: Argon ³

Forging too severely cracked for testing. با د: د: Notes:

All compacts preheated at 1000 F under conditions shown. က်

Preheated with 0.29 CFH/lb flow rate. Exposed to no door openings prior to removal from the furnace.

Single specimen, all others average of duplicate tests.

Failed outside gauge length.

Retest being made.

4.00.00

Other fabricating conditions in Table 55. Al-6.5 Zn-2.3 Mg-1.5 Cu in 15.6 µM Average Particle Diameter Powder.

TABLE 71

EFFECT OF PREHEAT TIME AND ATMOSPHERE ON REDUCTION OF AREA OF 3" SQ. HAND FORGINGS FROM FINE POWDER MA65 ALLOY

					Reduction in Area - %	Area - %			
Atmosphere2	Preheat Time ⁷	Longitudinal Gas Flow Rate (CFH/1b	Longitudinal Tow Rate (CF	a.1 CFH/1b)	Long-Transverse Gas Flow Rate (CFH/1b	Sverse (CFH/1b)	Short-Transverse Gas Flow Rate (CFII/1b)	Short-Transverse Flow Rate (CFII/	rse FII/1b)
	Hours	0 0.1	0.17 0.35	0.75	0 0.17 0.	0.35 0.75	0 0.17	0.17 0.35	0.75
Retort: Argon	Н	34	31	38	23	274 10	174	10	9
Retort: Argon	5		04		П	18		7	
Retort: Purified Argon	н		32		Г	18		12	
Retort: Nitrogen	H		274	30	(d	25 19		#	\$
Retort: Ambient Air	Н	30			22		н		
Circulating Air	Н	(1)			(1)		(1)		
Furnace: Argon³			38		rt	16		ю	

Forging too severely cracked for testing. 4 % % Notes:

All compacts preheated at 1000 F under conditions shown.

Preheated with 0.29 CFH/lb flow rate, exposed to no door

Single specimen, all others average of duplicate tests. openings prior to removal from the atmosphere furnace.

Failed outside gauge length.

Retest being made.

4,00,60

Other fabricating conditions in Table 55. Al-6.5 Zn-2.3 Mg-1.5 Cu in 15.6 µM average particle diameter powder.

Table 72

EFFECT OF PREHEAT GAS ON DISSOLVED GAS IN P/M HAND FORGINGS

*

Tota1	Nitrogen ⁴	%90.0	0.14%
% - g	42 Ar N2 Others	0.1	0.1
sitions	N2	1.9	9.0
Compos	Ar	0.2	0.0
Gas	H2	97.8 0.2 1.9 0.1	99.3 0.0 0.6 0.1
Total Gas ³	m1/100 gm	14.6	3.0
Gas Flow ²	CFH/1D	0.75	0.75
Preheat	648	Argon	Nitrogen
Preheat	Me thod *	RET	RET
7	Sample NO.	404877-A3	404877-A9

Retort preheat - Figure 24. Notes:

Cubic feet per hour per lb. of compact.

Total detected gas in 700 C fusion extraction

per 100 grams of sample.

Nitrogen present in solid and gaseous forms in the wrought product.
Analytical Chemistry J.O. 71-111608.

5.

Table 73

EFFECT OF PREHEAT ATMOSPHERE ON MECHANICAL PROPERTIES OF 3" SQUARE HAND FORGINGS FROM FINE POWDER MA65 ALLOY

Short-Transverse	NTS/YS	1.05	0.75
-Trans	· ਜ਼ੋ	ო	9
Short	ksi El	66.6 3	66.1 6
Long-Transverse	NTS/YS	65.6 13 1.12	0.98
Trans	EI.	13	က
Long-	ksi	65.6	64.2
Longitudinal	ksi El. NTS/YS	70.9 17 1.29	69.7 17 1.35
gituc	E1.	17	17
Lon	ksi	70.9	69.7
Total Gas Content	m1/100gms	3.0	14.6
Forging Density	lbs/in.	0.1023	0.1023
Gas Flow Rate	CFH/1b.	0.75	0.75
Preheat	Gas	Nitrogen	Argon

Notes: 1. Preheated in a retort for one hour @ 1000 F immediately before hot pressing.

2. Al-6.5 Zn-2.3 Mg-l.5 Cu alloy from a 15.6 µM Average Particle Diameter Powder.

WSC/lmk 9/26/72

रूपार्वाका व्यवस्था विकास स्थापना विकास स्थापना विकास स्थापना विकास स्थापना विकास स्थापना विकास स्थापना विकास विकास स्थापना विकास स्थापना स्

Table 74

ATMOSPHERE FURNACE PREHEATED MA65 ALLOY COMPACT AFTER HOT PRESSING EFFECT OF SAMPLE LOCATION ON OXYGEN CONTENT OF AN ARGON

Weight Per Cent Oxygen	0.40	0.33	0°*0	0.29	0.29
Distance ¹ - Compact Surface to Specimen Center Line	" ' ' ' 0	1.5"	2.5"	4.0"	8.0"
S-No. ²	404877 C2-1R	404877 C2-2R	404877 C2-3R	404877 C2-4R	404877 C2-5R

length. See Figure 2. Al-6.5 Zn-2.3 Mg-1.5 Cu alloy from 15.6 µM air atomized powder. 8.4" diameter on ram end, tapering to 9.2" diameter over 28" Compact is Distance from "ram" end of hot pressed compact. Notes:

2 m 4

Analytical Chemistry J.O. 71-062910.

Other fabricating conditions Compact exposed to one door opening - closing cycle before removal from atmosphere furnace. in Table 55.

TABLE 75

EFFECT OF PREHEAT ATMOSPHERE AND TEMPERATURE ON FRACTURE TOUGHNESS (NTS/YS) AND DUCTILITY OF 3" SQUARE HAND FORGINGS FROM FINE POWDER MA65 ALLOY³

E						
~,Mg		(¹) 0.83		$\binom{1}{12}$		(₁)
Short-Transverse eat temperature 50 1000 105		0.95		2 2		ћ 10
Short-Transverse Preheat temperature 950 1000 109	•	0.78		ц <i>Ь</i>		ασ
。 ()						
<u>.</u>		(1) 1.01		$\binom{1}{10}$		$\binom{1}{12}$
Long-Transverse at Temperature 0 1000 105		1.07		51 51 51		25 27
Long-Transverse Preheat Temperature		1.02		10		7
nal ture (°F) 1050	gth	(1) 1.34;		(1) 18		(1) 36
Longitudinal t Temperature	1 Stren	1.27		7² 16		27
Longitudinal Preheat Temperature (°) 950 1000 1050	gth/Yielo	1.34		75 78 78		33
Atmosphere	Notched Tensile Strength/Yield Strength	Nitrogen Argon	Elongation (% in 4D)	Nitrogen Argon	Reduction in Area (%)	Nitrogen Argon
Atmc	Note	Ni trog Argon	Elor	Nitrog Argon	Redi	Nitrog Argon

Cracked in loading for hot pressing.

Ļ

Notes:

Failed outside gauge length. તં

Other fabricating conditions in Table 55 for this Al-6.5 Zn-2.3 Mg-1.5 Cu alloy from a 15.6 μ M APD powder. ů

WSC:dld 8/3/72

THE REPORT OF THE PROPERTY OF

TABLE 76

EFFECT OF HOT COMPACTING PRESSURE AND ALLOY ON PROPERTIES OF P/M 3" SQUARE HAND FORGINGS

Short-Transverse Hot Compacting Pressure (ksi) 60 75 90	1	66.4 63.3 (2) (2) (2) 74.6 73.5 74.4 (2)		1.0 2.0 (2) (2) (2) 2.0 1.0 1.0 (2)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.57 0.54 (2) (2) (2) 0.41 0.33 0.44 (2)	
Long-Transverse Hot Compacting Pressure (ksi)		64.5 66.2 64.8 72.8 73.0 73.3 72.8 73.6 75.6		8.0 11.0 8.0 8.0 3.5 5.0 2.0 4.0 5.0		10 14 10 11 3 4 2 6 8		0.89 0.84 0.78 0.64 0.54 0.59 0.62 0.58 0.46	powder heat treated as 3" square bar, Other fabricating conditions in Table 55.
Hot Compacting Pressure (ksi) Alloy ³ 60 75 90	Yield Strength (ksi)	MA65 74.0 71.6 77.0 MA66 81.3 81.7 MA67 80.2 80.2 84.4	Elongation (% in 4D)	MA65 13.0 16.5 16.0 MA66 14.0 14.0 13.5 MA67 12.0 11.0 12.5	Reduction of Area (%)	MA65 24 37 23 MA66 31 29 27 MA67 27 25	Notched Tensile Strength/Yield Strength	MA65 1.24 1.28 1.14 MA66 0.94 0.93 0.92 MA67 0.84 0.83 0.74	Notes: 1. Forgings from 23 µM powder heat trea aged to T6 temper. Other fabricatin

2. No tests - quench crack orthagonal to short-transverse direction.
3. Compositions in Table 5.

The second secon

TABLE 77

COMPACTING PRESSURE AND ALLOY ON OXYGEN CONTENT OF P/M COMPACTS2 EFFECT OF ATMOSPHERE FURNACE DOOR OPENINGS, PREHEAT TIME, HOT

	Hot Com	Hot Compacting Pressure	ssure4
Alloys	60 ksi	75 KS1	90 Ks1
Prior Door Openings1			
MA65 MA66	н н	77	ოო
MA67	7	m	4
Preheat Time (Hours)			
MA65	1.3	1.5	1.8
MA66	1.2	1.5	1.7
MA67	1.7	2.0	2.1
Weight Percent Oxygen ³			
MA65	0.22	0.24	0.23
MA66	0.25	0.22	0.22
MA67	0.24	0.25	0.24

MA65	0.22	0.24	0.23
MA66	0.25	0.22	0.22
MA67	0.24	0.25	0.24

Door openings prior to opening for removal from furnace for hot pressing. Notes:

Analytical Chemistry J. O. 71-062910. All compacts from 23 uM powders

Other fabricating conditions in Table 55 2 m 4 v

Compositions in Table 5.

Table 78

PROCESS CONDITIONS FOR COMPACTS TO BE FABRICATED TO PLATE

Scalped Billet	in. in.		Unscalped	Unscalped	Unscalped	7.5 22.5	7.5 22.5			Unscalped	Unscalped	Unscalped	Unscalped		Unscalped	Unscalped
Hot Compact	Pressure ksi		06	06	06	06	06			ე6	06	06	06		06	. 06
	FIOW CFH/1b		0.29	0.29	0.29	0.29	0.29			0.29	0.29	0.29	0.29		0.29	0.29
itions	Gas		Argon	Argon	Argon	Argon	Argon			Argon	Argon	Argon	Argon		Argon	Argon
Preheat Conditions	T.emp.		1000	1000	1000	1000	1000			1000	1000	1000	1000		1000	1000
Prehe	Time		1.3	1.6	2.1	24	24			2.2	1.5	1.2	1.5		1.5	1:6
	Method ³	Çn	Furnace	Furnace	Furnace	Furnace	Furnace	ć		Furnace	Furnace	Furnace	Furnace	Cu-1.6 Co	Furnace	Furnace
Approx. Cold Compact	Density-	Al-6.5 Zr-2.3 Mg-1.5 Cu	78	78	78	78	80	C .	A1-0.0 ZII-Z.3 Mg-1.0 Cu	78	78	78	92	Al-8.0 Zn-2.5 Mq-1.0 Cu-1.6 Co	9/	76
Powder	S1ze¹ µM	A1-6.5 Z	15.6	15.6	15.6	15.6	48.5	0	A1-0.0 2	16.5	16.5	16.5	49.3	A1-8.0 Z1	14.7	14.7
	Sample No.	1A65 Alloy:	404877-K1	404877-N1	404877-J1	404877-P8 ⁶	404879-x6 ⁶	יייס רות אאמא	HOO BITON:	404880-N3	404880-J4	404880-K3	404882-K4	IA67 Alloy:	404883-J5	404883-N5

Sand F

Average Particle Diameter from Fisher Sub-Sieve Sizer. Notes:

2. Percent of Theoretical - from Table 9.

Preheated in a muffle atmosphere furnace immediately before hot pressing.

8.3" to 9.2" diameter (tapered) x 28" long. Hot pressed compact:

Equal amounts scalped from each end of hot pressed billet.

5. Forged to 5" x 10" x 24" slab.

Table 79

SCALPING OF 5" x 10" x 35" PREFORGED ROLLING STOCK FOR PLATE

	Scalped Slab Dimensions	3-1/4" x 8-1/2" x 31"	3-1/4" x 8-3/6" x 30 r/0"	3-1/4" x 8-1/4" x 31-7/8"
alped	Edges	3/4",3/4" 3/4",13/16"	1",5/8"	1",3/4"
Amount Scalped	Face	1.00"	1.00"	1.25"
	Ram Face	0.75"	0.75"	0.5"
Fowder Size ¹	JIM	15.6	16.5	14.7
Piece	Number	K L L L L	N3	J5
	S. No.	404877 404877	404880	404883
	Stock for 1.5" Thick Plate	MAGS	MA66	MA67

NOTE: 1. Average Particle Diameter from Fisher Sub-Sieve Sizor.

MEGNINGS MESSENGE OF THE PROPERTY OF THE PROPE

TENSILE PROPERTIES OF P/M 1.5" THICK PLATE

R of A		8 0.5		6.5		00		
Short-Transverse Properties		€€		1.6 6.3		3.1		000
Y.S.		67.6 68.3		76.3		78.0 75.4		65.6 61.8 58.9
T.3.		79.h 72.t		85.4 84.5		88.1 82.4		76.0 72.0 68.8
NTS/YS		1.07		9.0 18.0		0.70		
Properties R of A		ቷጸ		67%		ដេ		
COME-Transvorse Properties 1.5. RI. R of A ksi £ in to £		10.5		11.2 11.5		, o		นูดรู
Iong-Tr Y.S. ksi		71.6		86.5 5.5		81.0 76.4		6.5. 6.5. 6.5.
T.S.		81.6		87.6 82.2		88 0.0		87.5 76.3 72.3
N7S/Y9		1.26		2.0 8.0		0.66 0.84 0.84		
operties R of A		77 83		19		17		
longitudinal Properties -S. El. R of A		10.0		10.0		7.5		17 17 17
Long! Y.S.		73.2 69.6		85.5 75.1	•	88.4 77.3		79.8 59.8 59.3
r.s.		79.4		89.89 83.89 83.89		93.2 83.8		86.4 73.5 69.5
Electrical Conductivity		34.2		33.9 39.0		33.7 36.0		2,50 9,00 8,00 8,00 8,00 8,00 8,00 8,00 8,0
Second- Ster Agel		None 4 hrs.		None 2 hrs.		None 2 hrs.	(£	None 20 24
Stretch		1:5		2.5		9:0	(2.5" Thic	1.5-5
Quench Water Temp.	8	88	al	238	cu-1.6 co	88	Cu-0.2 Cr	ଛଛଛ
Preheat Atmosphere?	A1-6.5 Zn-2.3 %2-1.5 Cu	Argon Argon	NA66 Alloy: Al-8.0 Zn-2.5 Ng-1.0 Cu	Argon	WA67 Alloy: Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	Argon	A1-5.7 Zn-2.6 Ng-1.8 Cu-0.2 Cr (2.5" Thick)	111
Fowder Size ¹ LIN		15.6 15.6	A1-8.0	16.5	A1-8.0	14.7		11 11 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample vo.	M65 Alloy:	404877K1B	MAGE Alloy:	404830N3A 40489CN3B	M67 Alloy:	404883J58 404883J5B	7075 Alloy:	399479 399480 399481

Nutes:

Isostatically pressed 170 lb green compacts preheated to 1000 F in flowing argon, hot pressed at 90 ksi, reheated, forged to 5"x10"x36", scalped to 3-1/4"x8-1/2"x31", reheated, hot rolled to 1.5" thick.

P/M 1.5" place solution hert treated 2 hours @ 920 F, cold water quenched, stretched amount shown, aged 4-7 days at room temperature + 24 hours @ 250 F + flitther agence = 1 ms thom.

Spec. ens falled outside gauge length.

I/W w Ingot Wetallurgy. Production 7075-T651 2.5" thick plate purchased for comparison material. Samplen laboratory second-step aged as indicated.

۳. ۱۳.

Table 81

SHORT-TRANSVERSE TENSILE BARS TESTED IN A.I. BY FEDERAL TEST METHOD 823. ALTERNATE IMMERSTON STRESS-CORROSION PERFORMANCE OF P/M 1.5" PLATE.

														ır)	e,
		.I. Test	45 ksi		2.2.2	31,31,68		5,6	9,19,21		2.2.2	9,24,32		2.2.2.2.5	8,36	76,P,P,P,P
		ss Level in A	40 ksi		2.2.2	31,32,45		4,5,5	10,16,19		2.2.3	2,3,8		2.2.2.3	29,31	P,P,P,P,P
		Days to Failume at Indicated Stress Level in A.I. Test	35 ksi		2.2.2	32,45,59		7,8,16	16,21,25		1,1,3	27,38,84		2,2,2,2	28,48	66,P,P,P,P
		Failure at I	30 ksi		2,2,2	63,83,P3		9,16,21	16,31,31		3,16,P ³	P, P, P		2,2,2,3,3	36,37	P,P,P,P,P
		Days to	25 ksi		2,2,3	32,40,76		16,16,22	16,17,57		2,3,P ³	P3,P,P		2,2,2,2,2	29,67	P,P,P,P,P
e i	cties	STYS	ksi	er I	67.6	68.3		77.2	76.3	1-1.6 Co	78.0	75.4		65.6	61.8	58.9
Plate	Propert	LYS	ksi	Mg-1.5 Ct	73.2	9.69	Mg-1.0 Cu	85.5	79.1	Mg-1.0 Cu	88.4	77.3		79.8	63.8	59.3
Second-	Step	Age ²	@ 325 F	NA65 Alloy: Al-6.5 Zn-2.3 Mg-1.5 Cu	None	4 hrs.	Al-8.0 Zn-2.5 Mg-1.0 Cu	None	2 hrs.	Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	None	2 hrs.	***	None	10 hrs.	24 hrs.
		•	Sample No.	MA65 Alloy:	404877-K1B	404877-K1C	MA66 Alloy:	404880-N3A	404880-N3B	MA67 Alloy:	404883-J5A	404883~J5B	I/M 7075 Alloy"	399479-B ⁵	399480-4	399481-R°

All P/M plate from 15µM APD Powders. Notes:

First-step aged 24 hours @ 250 F.

P = pass 84 days exposure in A.I. with specimen intact. 2.5" thick plate produced plate, 7075-f651, laboratory second-step aged.

Includes samples marked 413364-B.

Includes samples marked 413363-R.

THE PROPERTY OF THE PROPERTY O

Table 82

Action of the second of the second

PROCESS CONDITIONS FOR COMPACTS TO BE FABRICATED TO SHEET

Scalped Billet4	Dia. Length		Unscalped Unscalped		Unscalped Unscalped		Unscalped
Hot Compact	Pressure		06		06		06
	Flow CFH/1b		0.29		0.29		0.29
ditions	Gas		Argon Argon		Argon Argon		Argon
Preheat Conditions	Temp OF		1000		1000		1000
Prehe	Time		1.0		1.2		1.9
	Method ³	Cn	Furnace Furnace	Cn	Furnace Furnace	Cu-1.6 Co	Furnace
Approx. Cold Compact	Density ²	Al-6.5 Zn-2.3 Mg-1.5 Cu	78 80	A1-8.0 Zn-2.5 Mg-1.0 Cu	78 <i>76</i>	A1-8.0 Zn-2.5 Mq-1.0 Cu-1.6 Co	76
Powder	Size	A1-6.5 Zr	15.6 48.5	A1-8.0 ZI	16.5 49.3	A1-8.0 Zr	14.7
	Sample No.	MA65 Alloy:	404877-J2 404879-K2	MA66 Alloy:	404880-J3 404882-N4	MA67 Alloy:	404883 - K5

Average Particle Diameter. Notes:

Percent of theoretical density - from Table 9. н 3.

Preheated in a muffle atmosphere furnace immediately before hot pressing.

8.3" to 9.2" diameter (tapered) x 28" long. Hot Pressed Compact:

Table 83

SCALPING OF 5" x 10" x 35" PREFORGED ROLLING STOCK FOR SHEET

	Scalped Slab Dimensions		$2" \times 7 - 1/2" \times 24"$	1-7/8" × $7-1/8$ " × 24"	$2" \times 7-1/2" \times 24"$	$2" \times 7 - 1/2" \times 24"$	2" x 7-1/2" x 24"
alped	Edges		1-1/2",5/8"	1-3/4",1-5/16"	1",15/16"	1-5/16",1-1/8"	1-9/16",15/16"
Amount Scalped	Blind Die Face		1.5"	1.625"	1.375"	1.5"	1.5"
	Ram Face		1.5"	1.5"	1.625"	1.5"	1.5"
Powder	Sizel µM		16	48	16	49	15
	Piece		32	K2	J.3	N4	K5
	S. No.		404877	404879	404880	404882	404883
	Alloy	Stock for Rolling Sheet	MA65		MA66		MA67

NOTE: 1. Average Particle Diameter from Fisher Sub Sieve Sizer.

Table 84

MECHANICAL PROPERTIES OF P/M 0.090" SHEET

			Ouench		Cooper				Longit	Longitudinal Properties	perties				Trans	Transmerse Dronoution	444	
Nample No.	Powder Size; uM A1-6.5 zn-	Saret Preheat Saret Preheat Saret No. 10M Atmospheres Mi65 Alloy: Al-6.5 Zn-2.3 Mg-1.5 Cu	Water Temp.	% Stretch		Electrical Conductivity	F.S.	Y.S. ksi	£11.	Tear Strength ksi	Tr.S./Y.S.	Unit Propagation Energy inlbs/in?	T.S.	Y.S. ksi	E1.	Tear Strength	Tr.S./Y.S.	Unit Propagation Energy inlbs/in?
01.877.J25 04.379K25 366 A. Joy:	15.6 48.5 A1-8.0 zn-	401877123 15.6 Argon 404879K2B 48.5 Argon 4366 A.loy: A1-8.0 Zn-2.5 Mc-1.0 Cu	88	11.88	None None	34.3 32.7	81.6 84.6	74.6	13.5	76.9 80.0	1.03	370 250	81.0 82.1	71.17	13.5 14.8	71.9	1.01	285 345
O4880J3B O4882N4B MA67 Alloy:	16.5 49.3 A1-8.0 zn-	04680J3B 16.5 Argon 80 04892N4B 49.3 Argon 80 M67 Alloy: Al-8.0 Zn-2.5 Ng-1.0 Cu-1.6 Co	% 9°1-	1.8	None None	33.5 31.5	87.2 90.8	83.2 86.8	11.5	59.0 56.4	0.71 0.65	100	86.3 88.6	78.4 79.4	11.0	56.8 53.6	0.72 0.67	100
404883x5B 14. I/M 7075-T6 Sheet*	14.7 Sheet4	Argon	80	1.8	None	31.5	92.0	88.2	10.0	46.8	0.53	75	91.8	82.0	10.0	9*94	75.0	135
C/N 7050	Sheet						85.6	0.67	0.11		1.17	(e)	85.8	79.1	11.0	71.3	0.98	300

નં જં

otes:

Average Particle Diameter.

Isostatically pressed 170 lb. green compacts preheated in flowing argon to 1000 F, hot pressed @ 90 ksi. Billet reheated, forged to 5"x10"x36" slab. Slab scalped to 2"x7.5"x24", hot rolled (cross rolled + longitudinally rolled) to 0.250", reheated, hot rolled to 0.144" thick, annealed, cold rolled Sheet solution heat treated 1 hour @ 920 F, cold water quenched, stretched as shown, naturally aged 5 days + 24 hours @ 250 F.

Ref. 19.

Ref. 20.

Diagonal fractures.

₩4. **٢**, 0,

The state of the s

The second second

Table 85

EFFECT OF SECOND-STEP AGE TIME AT 325 F ON
LONGITUDINAL TENSILE PROPERTIES OF P/M 0.090" SHEET

	Powder	Second - Step		ongitud Propert	
	Size ¹	Age ²	T.S.	Y.S.	% E1.
Sample No.	μМ	@ 325°F	<u>ksi</u>	ksi	in 1 in.
MA65 Alloy:	A1-6.5 Zn-2.3 N	1g-1.5 Cu			
404877-J2B	15.6	None	80.7	73.5	13.5
404877-J2C	15.6	2 hrs.	82.2	77.2	12.0
404877-J2D	15.6	6 hrs.	80.6	75.2	11.5
404877-J2E	15.6	15 hrs.	77.6	69.2	11.0
404877-J2F	15.6	20 hrs.	73.2	64.2	12.5
404879-K2B	48.5	None	83.0	76.7	13.0
404879~K2C	48.5	2 hrs.	84.4	80.1	11.0
404879-K2D	48.5	6 hrs.	84.0	79.0	10.0
404879-K2E	48.5	15 hrs.	80.3	73.5	11.5
404879-K2F	48.5	20 hrs.	78.7	70.9	11.5
MA66 Alloy:	Al-8.0 Zn-2.5	Mg-1.0 Cu			
404880-J3B	16.5	None	86.0	82.7	12.0
404880-J3C	16.5	2 hrs.	84.5	82.6	10.5
404880-J3D	16.5	6 hrs.	81.0	76.6	11.0
404880-J3E	16.5	15 hrs.	76.8	,69.5	12.0
404880-J3F	16.5	20 hrs.	74.4	65.6	12.0
404882~N3B	49.3	None	88.88	84.6	10.5
404882-N3C	49.3	2 hrs.	88.6	86.2	7.5
404882-N3D	49.3	6 hrs.	85.8	81.6	9.0
404882-N3E	49.3	15 hrs.	81.4	74.5	10.0
404882-N3F	49.3	20 hrs.	78.5	70.5	10.5
MA67 Alloy:	A1-8.0 Zn-2.5	Mg-1.0 Cu-1.6 Co			
404883-K5B	14.7	None	89.4	84.7	9.0
404883-K5C	14.7	2 hrs.	86.6	81.4	9.0
404883-K5D	14.7	6 hrs.	82.8	75.6	10.0
404883-K5E	14.7	15 hrs.	76.6	66.8	11.0
404883-K5F	14.7	20 hrs.	73.2	62.2	11.0

Notes: 1. Average particle diameter.

2. First-step aged 24 hours @ 250 F.

WSC/lmk 8/11/72

Table 86

EFFECT OF ANNEALING TEMPERATURE ON GRAIN SIZE IN P/M 0.090" SHEET

		Powder Sizel		Grain	Grain Count (grains/num3)	ains/num3)	2	
Sample No.	Alloy	Wn	700	750	800		9205	9206
404877 - J2 404879 - K2	MA65 MA65	15.6 48.5	1,500 40,300	5,300 62,900	6,000 69,400	3,500	5,376 55,080	13,800
404880 - J3 404882 - N4	MA66 MA66	16.5 49.3	3,900	6,000	7,700	3,000	15,120 88,536	2,400 59,600
404883 - K5	MA67	14.7	009	3,2004	4006,3	3,200	90,440	3,200

Notes: 1. Average Particle Diameter.

Others annealed 1 hour at temperatures shown. Samples annealed 1 hour $ilde{ text{@}}$ 500, 600 and 650 F were partially recrystallized.

0.090" sheet annealed in a hot HOMO furnace after cold rolling from 0.144" thick.

each side) - 48,000 grains/mm 3 @ 750 F and 154,900 grains/mm 3 @ 800 F. These samples showed much finer grain size near surface (to 1/3 of thickness from All samples are interior (£) grain size.

this material, which was also sampled for tensile and tear properties One hour at 920 F, the solution heat treatment temperature used for Not separately annealed before SHT. in a maximum strength temper. ъ.

6. Annealed 2 hours @ 920 F.

A CONTRACTOR OF THE PROPERTY O

Table 87

PROPERTIES OF ANNEALED P/M 0.090" SHEET

	Powder	Lot	Longitudinal ²	nal²	Ţ	Transverse ³	se³	45° to I	Rolling	45° to Rolling Direction
,	Size	T.S.	Y.S.	% E1	T.S.	Y.S.	% E1	T.S.	Y.S.	% E1
Sample No.	Wn	ksi	ksi	in 2 in.	ksi	ksi	in 2 in.	ksi	ksi	in 2 in.
MA65 Alloy: Al-6.5 Zn-2.3 Mg-l.5 Cu	41-6.5 Zn-2	.3 Mg-1	.5 Cu							
404877-J2A	15.6	28.6	12.9	22.5	28.8	13.1	21.0	28.7	12.5	21.5
404879-K2A	48.5	28.2	10.0	23.0	28.0	10.8	23.0	27.6	9.6	24.5
MA66 Alloy: Al-8.0 Zn-2.5 Mg-1.0 Cu	41-8.0 Zn-2	.5 Mg-1	.0 Cu							
404880-J3A	16.5	28.2	11.9	23.0	28.0	12.1	22.0	28.4	12.0	22.5
404882-N4A	49.3	27.6	9°8	25.0	27.3	10.7	23.5	27.0	9.6	26.0
MA67 Alloy: Al-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	41-8.0 Zn-2	.5 Mg-1	.0 Cu-1	<u>6 Co</u>						
404883-K5A	14.7	31.0	13.4	21.0	32.4	14.0	22.0	32.9	14.0	21.0
Comnercial I/M 7075 Alloy	1 7075 Allo	δι								
$ extsf{Ty}$ jical 4					33	15	17			
Limits ⁵				•	40 max 21	t 21 max	к 10 пах			

Average Particle Diameter. Notes:

Specimens at 0° to Rolling Direction. Specimens at 90° to Rolling Direction. From Ref. 21, Table 2.1. From Ref. 21, Table 7.2.

Table 88

STRAIN HARDENING COEFFICIENT AND STRAIN RATIO FOR P/M SHEET

IK.	.589	.550	.550
Ratio ³	.548	.492	. 639
Strain Ratio ³	.626	.590	.518
00	.549	.530	. 525
Strain Hardening Coefficient ² 0° 45° 90° n	.204	.162	.166
ng Coef	.163	.164	.161
Hardeni 45°	.146	.210	.172
Strain 0°	Mg-1.5 Cu .140	Mg-1.0 Cu	Mg-1.0 Cu-1.6
Powder Size 1 µ M	1-6.5 Zn-2.3 15.6 48.5	Al-8.0 Zn-2.5 Mg-1.0 16.5 49.3	Al-8.0 Zn-2.5 Mg-1.0
Sample No.	MA65 Alloy: Al-6.5 Zn-2.3 Mg-l.5 404877-J2A 15.6 404879-K2A 48.5	MA66 Alloy: 404880-J3A 404882-N4A	MA67 Alloy: A

Notes: 1. Average Particle Diameter. 2. n in $\sigma = \epsilon^n$ from paf 17 3.

= en from Ref. 17 at indicated degrees to rolling direction.

$$n = \frac{n_0 + 2n_4 s + n_{90}}{4}$$

from Ref. 18 at indicated degrees to rolling direction. $R = R_0 + 2R_{45} + R_{90}$ thickness strain width strain II 24 . ش

Table 89

民民共和党的联系的基础中的1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,

EXCO EXFOLIATION TEST RESULTS ON P/M 0.090" SHEET

on ngs ³ T/2	Д	മ	Д		ᅀ	
Exfoliation Visual Ratings ³ T/10 T/2	C4	Ф	ſų		Д	Average Particle Diameter. All sheet SHT @ 920 F, CWQ, stretched 1.8% , aged 5 days @ room temperature + 24 hours @ 250 F.
ties ² TYS	<u>u</u> 71.1		78.4 79.4	u-1.6 co	82.0	iameter. O F, CWQ, s temperatur
Properties ² IYS TYS	3 Mg-1.5 C	77.8 5_Mg-1.0_C	83.2 8 6. 8	5 Mg-1.0 C	88.2	Average Particle Diameter. All sheet SHT @ 920 F, CWQ aged 5 days @ room tempera 250 F.
Powder Size ¹ UM	Al-6.5 Zn-2.3 Mg-1.5 Cu 15.6 74.6	48.5 77.8	16.5 49.3	A1-8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	14.7	1. Average 2. All shee aged 5 d 250 F.
Sample Number		404879-K2B MA66_Alloy:	404880-J3B 404882-N4B	MA67 Alloy:	404883-K5B	Notes:

N - no appreciable attack, surface may be etched.
 P - pitting: discrete pitting or pit-blistering common in exfoliation resistant commercially produced materials in this test.

Ratings Code:

က်

exfoliation: visible lifting of surface.

」 臼 The second secon

Table 90

PROPERTY GOALS OF TARGET B COMPARED TO MA66 ALLOY EXTRUSIONS

	Target	MA66 Alloy: 8.0 Zn-2.5 Mq-1:0 Cu
Y.S ksi	85	84.2
K _{IC} - ksi√in.	26	281
SCC - sustained stress - ksi	25	25
Fatigue Limit ² - ksi $k_t=3$, R=0.0	14	18.53
Exfoliation	Immune	Resistant
Elongation - %	11	11.2

Approximate based on NTS/YS to KIc correlation. Ļ. Notes:

2. Axial stress.

3. In test, intact at 8.77×10^6 cycles.

Table 91

THE TOTAL STREET, STRE

PROPERTY GOALS OF TARGET A COMPARED TO MA67 AND MA66 ALLOY EXTRUSIONS

, **6**3.

	Target	MA67 Alloy 8.0 Zn-2.5 Mg-1.0 Cu-1.6 Co	MA66 Alloy: 8.0 Zn-2.5 Mg-1.0 Cu
Y.S ksi	95	95.9	94.3
K _{IC} - ksi√in.	26	171	261
SCC - sustained stress - ksi	25	25	<25
Fatigue Limit ² - ksi k _t =3, R=0.0	14	20	20
Exfoliation	Resistant	Resistant	Resistant
Elongation - %	11	7.8	8.0

Approximate $K_{
m Ic}$ based on NTS/YS to $K_{
m Ic}$ correlation. ij Notes:

2. Axial stress.

SPECIMEN LAYOUT FOR OCTAGONAL EXTRUSION

FIGURE 1

SCHEMATIC OF 8.4 IN. DIA. HOT COMPACTING CYLINDER F16. 2

AND THE PERSON NAMED IN COLUMN TO SERVICE OF THE PERSON NAMED IN COLUMN TO SER

0.100" THICK TEAR SPECIMENS (FIGURE 4)

SPECIMEN LAYOUT FOR 1/2"×6-3/8" EXTRUDED BAR.

FIGURE 3

4 a. NOTCHED TENSILE-TEST SPECIMEN

4b. TEAR-TEST SPECIMEN AND REPRESENTATION OF LOAD-DEFORMATION CURVES.

A CONTRACTOR OF A CONTRACTOR O

EFFECT OF SECOND STEP AGE TIME ON LONGITUDINAL YIELD STRENGTH OF P/M OCTAGONAL EXTRUSIONS

EFFECT OF POWDER SIZE ON THE YIELD STRENGTH TO NTS/YS RELATIONSHIP FOR OCTAGONAL EXTRUDED BAR.

COMPARISON OF FRACTURE TOUGHNESS OF FINE POWDER P/M ALLOYS TO INGOT (I/M) ALLOYS IN OCTAGONAL EXTRUDED BAR.

FIGURE 7

EFFECT OF POWDER SIZE ON THE YIELD STRENGTH TO TR.S./Y.S. RELATIONSHIP FOR P/M $1\!\!/\!\!2$ "×6" EXTRUDED BAR

COMPARISON OF TOUGHNESS OF FINE POWDER P/M ALLOYS TO INGOT [I/M] SAMPLES FROM $1/2"\times6-3/8"$ EXTRUDED BAR

FIGURE 9

 $\begin{array}{ll} \text{CORRELATION BETWEEN K}_{Ic} & \text{VS LONGITUDINAL NTS/YS} \\ \text{P/M ALLOY EXTRUSIONS} & \{\text{FROM Ref. 5}\} \end{array}$

EFFECT OF TRANSVERSE YIELD STRENGTH AND APPLIED STRESS ON PERCENT SURVIVAL FOR 30 DAYS EXPOSURE IN THE ALTERNATE IMMERSION STRESS CORROSION TEST. TRANSVERSE TENSILE BARS FROM OCTAGONAL EXTRUDED BAR.

EFFECT OF TRANSVERSE YIELD STRENGTH AND APPLIED STRESS ON PERCENT SURVIVAL FOR 84 DAYS EXPOSURE IN THE ALTERNATE IMMERSION STRESS CORROSION TEST. TRANSVERSE TENSILE BARS FROM OCTAGONAL EXTRUDED BAR.

METALLURGICAL STRUCTURE OF LONGITUDINAL SECTIONS FROM P/M MAGG AND MAG7 EXTRUSIONS. SEM, BROMINE ETCH. ROUND, WHITE CONSTITUENT IN (a) AND (b) ARE Co2 AI9 PARTICLES.

F16. 13

ELECTRON MICROSTRUCTURE OF P/M MA67 ALLOY (AI-8Zn-2.5Mg-ICu-I.6Co), NOTE Co₂Al₉ PARTICLES (A) SUBSTANTIALLY LARGER THAN PRECIPITATE FREE ZONE AND LARGER THAN THE GRAIN BOUNDARY PRECIPITATE. 50,000 X, TEM.

STRESS CORROSION CRACK BLUNTING BY Co₂Al₉ PARTICLES THAT OCCUR AT GRAIN BOUNDARIES. MICROSTRUCTURES FROM A TRANSVERSE TENSILE BAR FROM A Al-9.7 Zn-4.1 Mg-0.8 Cu-1.4 Co ALLOY P/M EXTRUSION. STRESSED AT 25 KSI, EXPOSED 1595 DAYS IN NEW KENSINGTON ATMOSPHERE.

Harris Maria

NOTCHED AXIAL-STRESS FATIGUE PERFORMANCE OF ALUMINUM ALLOY OCTAGONAL EXTRUSIONS COMPARED TO 7075-T6510 EXTRUDED BAR (REF. 9). STRESS RATIO = 0.0 FIGURE 16

The state of the s

EFFECT OF MATERIAL ON NOTCHED FATIGUE PERFORMANCE OF EXTRUSIONS AGED TO 87ksi Longitudinal yield strength. Stress ratio=0.0 Axial stress Figure 17

EFFECT OF MATERIAL ON FATIGUE PERFORMANCE OF EXTRUSIONS AGED TO 87 ksi Longitudinal yield strength. Stress ratio = 0.0 Figure 19

STRENGTH AND EXFOLIATION RESISTANCE OF P/M AND I/M EXTRUSIONS. MIDPLANE AND 10% OF THICKNESS PLANES OF 1/2"×6-3/8" EXTRUSION EXPOSED 48 HOURS IN "EXCO" IMMERSION TEST

EXCO EXFOLIATION CORROSION PERFORMANCE OF CONTROL I/M 7075, 7178 AND 7001 I/2 X 6-3/8 IN. EXTRUSIONS. NOTE EXFOLIATION CORROSION PARTICULARLY EVIDENT IN 7001-T6 AND 7178-T6, AND SLIGHT IN 7075-T6.

EXPOSED 48 HOURS IN EXCO IMMERSION TEST

Complete Com

EXCO EXFOLIATION CORROSION PERFORMANCE OF P/M I/2"X 6-3/8 EXTRUSIONS FROM 15µ POWDERS AT MAXIMUM STRENGTH. NOTE ABSENCE OF SURFACE LIFTING AND ONLY PITTING CORROSION ATTACK.

F16. 22

a. MA65 ALLOY EXTRUSION FROM 15 µM POWDER 500 X, KELLER'S ETCH.

b. MA65 ALLOY EXTRUSION FROM 50 µM POWDER 100 X , KELLER'S ETCH .

c. I/M 7075 ALLOY EXTRUSION. 500X, KELLER'S ETCH.

LONGITUDINAL STRUCTURE OF P/M MA65 AND I/M 7075 I/2 IN. X 6-3/8 IN. EXTRUDED BARS NEAR MID-THICKNESS.

A.] "CANAR" OR "CANIT" PREHEAT METHODS CAN PREHEAT WITH FLOWING ARGON OR NITROGEN

B.) "VAC" OR "AVAC" PREHEAT METHODS VACUUM PREHEAT/HOT PRESS

C.) "RET" PREHEAT METHOD RETORT WITH FLOWING NITROGEN

RETORT AND CAN COMPACT PREHEATING SCHEMATICS

*

EFFECT OF REDUCED Fe AND SI ON FRACTURE TOUGHNESS OF P/M EXTRUSIONS. NOTE HIGHER NTS/YS FOR A SPECIFIED Y.S. WITH LOWER Fe AND SI AT UP TO 82 ksi Y.S.

EFFECT OF Cu CONTENT ON THE LONGITUDINAL NTS / YS TO YIELD STRENGTH RELATION FOR EXTRUSIONS FROM 16 μ M (APD) POWDERS. FIGURE 26

EFFECT OF Cu CONTENT ON THE TRANSVERSE NTS / YS TO YIELD STRENGTH RELATION FOR EXTRUSIONS FROM 16 μ M [APD] POWDERS. FIGURE 27

EFFECT OF INCREASING Zn ON FRACTURETOUGHNESS OF P/M EXTRUSIONS. NOTE: DECREASE IN NTS/YS AT ANY CONSTANT STRENGTH WITH INCREASING Zn FROM 8% TO 9%. 9Zn [REF.6].

FIGURE 28

LONGITUDINAL

SY\2TM

FIGURE 29

COMPACTS (FCE PREHEAT

EFFECT OF POWDER SIZE ON THE TRANSVERSE NTS/YS TO YIELD STRENGTH RELATION FOR P/M EXTRUSIONS FROM ATMOSPHERE FURNACE PREHEATED COMPACTS (ARGON FCE PREHEAT).

EFFECT OF POWDER SIZE ON THE LONGITUDINAL NTS/YS TO YIELD STRENGTH RELATION FOR P/M EXTRUSIONS FROM CAN/ARGON PREHEATED AND HOT PRESSED COMPACTS (CANAR PREHEAT).

FIGURE 31

LONGITUDINAL SECTION OF 2 IN. DIAMETER EXTRUDED ROD MADE FROM FINE IRREGULAR POWDER. DENSITY = 0.1020 LB/CU. IN. 2000 X, SEM UNETCHED.

EXTRUSION

TRANSVERSE

METAL FLOW DIRECTION VERSUS POROSITY

F16.33

The state of the s

PARTICLE SIZE DISTRIBUTION OF AI - 6.4 Zn-2.2 Mg-1.5 Cu ALLOY

EXTRUSION DIRECTION

FINE IRREGULAR POWDER EXTRUSION PROPERTIES:

DENSITY=0.1020 LB/CU.IN. TRANSVERSE ELONG.= 9 % TRANSVERSE NTS/YS=0.89

COARSE IRREGULAR POWDER EXTRUSION PROPERTIES:

DENSITY = 0.1015 LB/CU.IN. TRANSVERSE ELONG. = 2 % TRANSVERSE NTS/YS=0.55

EFFECT OF POWDER SIZE ON VOID SIZE OF EXTRUSIONS FROM FCE PREHEATED COMPACTS. 200X, SEM UNETCHED.

F16. 35

A. POWDER PARTICLES OF -30 + 20 m SIZE RANGE. NOTE SMOOTHNESS AND REGULAR SHAPE. 1000 X

B. POWDER PARTICLES OF
-30 + 20 \(\text{M} \) SIZE RANGE.

NOTE IRREGULAR SHAPE
AND SURFACE IRREGULARITIES. 1000 X

REGULAR AND IRREGULAR SHAPED ATOMIZED AI - 6.5 Zn - 2.3 Mg - 1.5 Cu ALLOY POWDERS

EFFECT OF OXYGEN CONTENT ON TRANSVERSE PROPERTIES OF P/M EXTRUSIONS.

A POST DESCRIPTION OF THE PROPERTY OF THE PROP

FIGURE 37

EFFECT OF DENSITY ON TRANSVERSE MECHANICAL PROPERTIES OF AI-6.4 Zn - 2.3 Mg - 1.5 Cu $\,$ P/M EXTRUSIONS .

EFFECT OF POWDER ATOMIZING ATMOSPHERE ON THE LONGITUDINAL AND TRANSVERSE NTS/YS TO YIELD STRENGTH RELATIONSHIPS FOR HIGH PURITY AI-6.5 Zn-2.3 Mg-1.5 Cu EXTRUSIONS FROM FINE POWDER [15-20 \(\mu \) M APD]

FIGURE 39

EFFECT OF POWDER ATOMIZING ATMOSPHERE ON THE LONGITUDINAL AND TRANSVERSE NTS/YS TO YIELD STRENGTH RELATIONSHIPS FOR HIGH PURITY AI-6.5 Zn-2.3 Mg-1.5 Cu EXTRUSIONS FROM COARSE POWDER [45-51 μ M APD]

FIGURE 40

EFFECT OF VACUUM PREHEAT ON THE TRANSVERSE NTS/YS TO YIELD STRENGTH RELATION FOR P/M EXTRUSIONS. COMPARED TO ARGON FCE PREHEAT (FROM FIGURE 30)

FIGURE 41

EFFECT OF DENSITY ON TRANSVERSE NTS/YS AND ELONGATION OF MA83 ALLOY EXTRUSIONS FROM VACUUM AND NITROGEN PREHEATED COMPACTS.

ALL SECOND STEP AGED 6 HOURS AT 325°F

EFFECT OF TOTAL GAS CONTENT ON TRANSVERSE FRACTURE TOUGHNESS OF P/M MA83 EXTRUSIONS. FUSION GAS EXTRACTION AT 700°C.

FIGURE 43

EFFECT OF HOT COMPACTING PRESSURE ON TRANSVERSE NTS/YS OF P/M MA83 EXTRUSIONS. ALL AGED 24 HOURS AT 250°F + 6 HOURS AT 325°F.

FIGURE 44

a. LONGITUDINAL VIEW:
VAC PREHEATED
MA83 EXTRUSION

b. TRANSVERSE VIEW: VAC PREHEATED MA83 EXTRUSION

c. LONGITUDINAL VIEW:
CANIT PREHEATED
MA83 EXTRUSION

d. TRANSVERSE VIEW:
CANIT PREHEATED
MA83 EXTRUSION

METALLURGICAL STRUCTURE COMPARISON OF MA83 OCTAGONAL EXTRUSIONS FROM COMPACTS PREHEATED IN VACUUM OR IN A CAN WITH NITROGEN.

PRODUCTION SEQUENCE FOR P/M DIE FORGINGS RIGHT TO LEFT: GREEN COMPACT; HOT PRESSED COMPACT; EXTRUDED STOCK; FORGING.

FIG. 46

BOEING RIB FORGING ALCOA DIE 9078 FIG. 47

EFFECT OF YIELD STRENGTH ON FRACTURE TOUGHNESS [NTS/YS] OF P/M AND I/M 7075 DIE FORGINGS.[DIE 9078]

EFFECT OF STRENGTH AND APPLIED STRESS ON PERCENT SURVIVING 30 DAYS IN THE ALTERNATE IMMERSION STRESS CORROSION TEST. TENSILE BAR SPECIMENS FROM DIE FORGINGS.

EFFECT OF STRENGTH AND APPLIED STRESS ON PERCENT SURVIVING 84 DAYS IN THE ALTERNATE IMMERSION STRESS CORROSION TEST. TENSILE BAR SPECIMENS FROM 9078 DIE FORGINGS.

FIGURE 50

CONTROL OF THE PROPERTY OF THE

FIGURE 52

The same of the

STRENGTH OF 2" THICK \times 10" WIDE HAND FORGINGS. P/M HAND FORGINGS A-UPSET AND DRAW (L=15), COLD-WATER QUENCHED EFFECT OF SECOND-STEP AGING TIME ON LONGITUDINAL YIELD AND STRESS RELIEVED. FIRST-STEP AGED 24 HRS AT 250 F.

FIGURE 54

EFFECT OF YIELD STRENGTH ON FRACTURE TOUGHNESS [NTS/YS] OF P/M ALLOY AND I/M 7075 2-in. THICK HAND FORGINGS

FIGURE 55

EFFECT OF YIELD STRENGTH AND APPLIED STRESS ON PERCENT SURVIVING 30 DAYS IN ALTERNATE IMMERSION SCC TEST. SHORT TRANSVERSE TENSILE BARS FROM 2" THICK P/M [OF 16μ powder] and from I/M 7075 hand forgings. Figure 56

Constitution of the second of

SHORT TRANSVERSE YIELD STRENGTH - KSI

EFFECT OF VIELD STRENGTH AND APPLIED STRESS ON PERCENT SURVIVING 84 DAYS IN ALTERNATE IMMERSION SCC TEST. SHORT TRANSVERSE TENSILE BARS FROM 2" THICK P/M ALLOY AND I/M 7075 HAND FORGINGS.

STRUCTURE OF 2 IN. THICK MA65 ALLOY HAND FORGING FROM FINE POWDER (15 µM APD). 2000 X, BROMINE ETCH, SEM

STRUCTURE OF 2 IN. THICK MA67 ALLOY HAND FORGING FROM FINE POWDER (15 MAPD). WHITE ROUNDED CONST!TUENT IS CO₂ Al₉ INTERMETALLIC. 5000 X, BROM!NE ETCH, SEM

Sec.

*

N. A.

1/4 / 2 1/4 / 2

CH MA

可能性

SPECIMEN LAYOUT FOR 3 IN. SQUARE AND 5 IN. SQUARE HAND FORGINGS FIGURE 60

The state of the second second

.

THE PERSON OF TH

5" SQUARE HAND FORGING STEPPED DOWN TO 3-1/2" SQUARE AND 2" SQUARE SECTIONS FIGURE 61

Samuel March Commence of National States of the Samuel States of the Sam

\$ 1367a

Land Co

7 h

SHORT TRANSVERSE NTS/YS=0.75 TOTAL GAS = 14.6 ml/ 100 gms **ARGON PREHEAT** SHORT TRANSVERSE NTS/YS=1.05 TOTAL GAS = 3.0 ml/ 100 gms NITROGEN PREHEAT

EFFFECT OF PREHEAT GAS ON POROSITY (BLACK) IN FORGINGS FROM HOT-PRESSED COMPACTS. GAS FLOW AT 0.75 CFH/LB OF COMPACT. SEM, 10000X, UNETCHED.

F16.62

EXPOSED TO ONE DOOR OPENING - CLOSING CYCLE BEFORE REMOVAL EFFECT OF DISTANCE FROM COMPACT SURFACE ON OXYGEN CONTENT OF A HOT PRESSED MA65 POWDER COMPACT (15.6 MM POWDER) FROM ATMOSPHERE FURNACE FOR HOT PRESSING

FIG. 63

EFFECT OF AMOUNT OF HOT WORK ON PROPERTIES OF MA65 ALLOY FORGED BAR FIG. 64

(a) 5" SQUARE FORGING WITH 75% HOT RED.

(b) 3-1/2" SQUARE FORGING WITH 90% HOT RED.

EFFECT OF INCREASING HOT REDUCTION ON POROSITY IN MA65 ALLOY HAND FORGINGS FROM A 170-LB. HOT PRESSED BILLET. 2000 X, UNETCHED SEM.

*

1.5 INCH THICK PLATE SPECIMEN LAYOUT FIGURE 66

OF P/M 1.5" THICK PLATE. COMPARED TO I/M 7075 AND 7050 ALLOY PLATE (FROM REF.16) 2" THICK.

FIGURE 67

Letter 86. 28

SHORT TRANSVERSE YIELD STRENGTH - ksi

EFFECT OF APPLIED STRESS AND YIELD STRENGTH ON PERCENT SURVIVING 30 DAYS IN ALTERNATE IMMERSION SCC TEST. SHORT TRANSVERSE TENSILE BARS FROM 1.5" THICK P/M AND 2-2.5" THICK I/M 7050 AND I/M 7075 PLATE

EFFECT OF APPLIED STRESS AND YIELD STRENGTH ON PERCENT SURVIVING 84 DAYS IN SCC TEST. SHORT TRANSVERSE TENSILE BARS FROM 1.5" P/M AND 2.0-2.5" I/M 7050 AND I/M 7075 PLATE

FIGURE 69

. . . WENNING MEETING TO LINE TO SEE

STORY WALL STREET

EFFECT OF YIELD STRENGTH ON TEAR STRENGTH/YIELD STRENGTH OF P/M 0.090" SHEET. COMPARED TO I/M 7075 AND 7050 SHEET.

TABLE 1. APPENDIX

	= 95 ksi	nays to Failure at Stross 12 koi 25 ksi								257, 429 1,26, 0K 1,15, 0K 2 0K 1,641, 520 2 0K 1,81, 0K 2 0K		, 98,117 · 238,0K	103,103 509,0K
	LYS	TYS								92.4 93.4 82.7		78.4	72.3
		Dash No.	None	Kone Mone Mone	None Nork	None None None	None None None	None None None None	None None None	444 <i>4</i>			:
ARCH 19, 1971		Days to Failure At Stress 12 ksi 25 ksi			****	% % % % % % % %	%%%% %%%%	%% %% %% %%	%%%% %%%%	8888 8888	1,93,0K		2 ox
SIONS IN	LYS # 85 km1	Days to			8888	8688	8888 555	%% %% %% %%	8888	% % % % % % % %	79,79		2 0X
NL EXTRU		173			7887 500 54	72.8 73.8 73.8	% % % % % % % % % % % % % % % % % % %	76.4 75.3 76.2	76.0 76.0 76.1	77.5 74.6 78.0 56.7	71.77		71.3
OCTABONA	İ	Da.sh	None	None None None	7775	7777	4444	70 90	ሉ የ የ የ	ፌ ኒ ሴቲ	Ÿ		ć.
STREED-CORPOSION PERFORMANCE OF OCTABONAL EXTRUSIONS IN NEW KENSINGTON ATMOSPHERE (NATERIAL PROM PRASE II, REF. 5) IN TEST VARCH 19, 1971		Days to Pailure at Stress 1/2 kmi 25 kmi	% %	6688 8888	8888 8888	%%% ~~~~	8888 8888	8888 8888	8888 8888	%%%% %%%%	147,300		≥ ok
ORROGIO!	* 75 kai	Days to	2 OK	8888 8888	6868 0000	8888	8888	53553 222	8888	2888 8888	81,87 75,79		% %
STREED-C	LYS	TYS K#1	69.3	2382 2602	2-3-8-8 & 4-4-6-6	చినినలి లేచేతేత	8478 5005	555 555 555 555 555 555 555 555 555 55	3888 66.71	68.69 6.66 6.66 6.66	69.0 67.3		9.19
0101131		Mo.	ç	2777	4444	7777	4455	44744	7495	4444	40		ņ
NEW KE		Other Elements Mt. f	0.8 0.0	None 0.2 Co 0.8 Co 0.8 Fe • M	None 0.2 Co 0.8 Co 0.8 Fe + 33	None 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	None 0.1 Co 0.8 Co 0.8 Ye · M	800 0.2 G 0.8 G 0.19 Zr	Nono 0.2 :0 0.8 :0 0.8 :0	None 9.3 Go 0.6 30 0.8 Fe • II	လိုင် ရာထူ ဝ ဝ	<u>[m]</u>	~1 1
		Sumple Ho.	\$.5 Zn-2.0 Mg-1.5 Cu 393767	5.5 2n-2.0 M-2.0 Cu 394741 395742 395743 398744	6,5 Zn-2,4 We-1,0 Cu 395745 393746 394747 399748	6, ° 21-2, 4 18-1, 5 Cu 3937, 9 373750 373752 393752	6,5,70-5,4, <u>Ne.23,5,50</u> 39-3754 39-3754 39-3756	6.7 2n-2,4 yg-2,4 Cu 393770 393772 393772 393773 393773	7.5 2n-2.6 N2-1.6 Cu 393757 394758 394759 398759	8.9 zn-2,6 xz-2,0 c. 394761 394762 394763 394764	7,5 24-1,6 Nr-3,0 Cu 195705 198765	1/N 7178-T6 A1199 Control 351376	1/8 "375 Allay Control 379781.

NOTES: 1. 2 0% - two specieons intact after \$20 days in test. ?. Did not achieve the indicated longitudinal yield atrength.

TABLE 2, APPENDIX

STRESS-CORPOSION PERFORMANCE OF OCTAGONAL EXTRUSIONS FROM 170 LB. COMPACTS IN NEW KENSINGTON ATMOSPHERE (PHASE III, TABLE .2)

		;						1			
		Powder Size ⁾	Second- Step Age	LYS	TYS	Days	Days to Failure at Sustained Stress:	at Sustained	Stress:		Date
S. No.	Alloy	пМ	@ 325 F	ksi	ksi	45 ksi	40 ksi	35 ksi	30 ksi	25 ksi	in Test
404877-513 404877-51C	MA65 MA65	15.6	None 14 hrs.	86.7 76.6	72.4 68.2	3 0K 3 0K	3 OK 3 OK	3 CK 3 OK	3 OK 3 OK	3 ok 3 ok	2-8-72 2-8-72
404879-E2B	MA65 MA65	48.5 48.5	None 19 hrs.	83.9 75.8	73.1	153,2 OK 3 OK	3 OK 3 OK	3 OK 3 OK	3 OK 3 OK	3 OK 3 OK	2-8-72 2-8-72
404880-E3B 404880-E3C	MA66 MA66	16.5 16.5	0.1 hrs. 6 hrs.	94.3 84.2	78.7 74.2	174,2 OK 3 OK	188,2 oK 3 oK	196,2 OK 3 OK	3 0K 3 0K	3 0K 3 0K	2-9-72 4-11-72
404883-E5B	MA67	14.7	0.5 hrs.	6*56	82.8	3 OK	3 oK	3 oK	3 OK	3 OK	2-8-72
404885-E6B	MA67	51.2	3 hrs.	4.76	84.3	160,174,183	174,188 OK	183,2 OK	3 OK	3 OK	2-8-72
				Ingot	Metallurgy	Ingot Metallurgy Control Materials	als				
405295-5C 405295-5B	7075 7075	Ingot Ingot	None 24 hrs.	86.9 73.4	71.8 63.9	.194,2 ok 3 ok	3 OK 3 OK	3 0K	3 3 9 0K	3 OK	2-8-72 11-24-71
405297-3C 405297-3B	7178 7178	Ingot Ingot	None 9.5 hrs.	91.2	73.9	182,2 oK 3 oK	3 OK 3 OK	3 OK	3 OK 3 OK	3 3 OK	2-8-72 11-24-71
1,05211-20	1007	Ingot	None	98.8	79.3	188,2 OK	3 OK	3 OK	3 OK	3 ok.	2-8-72

NOTES: 1. Average Particle Diameter. 2. OK - Intact on August 21, 1972.

> भड़ट/उम्म 8/56/72

TABLE 3, APPENDIX

湯ののまって、まのこのでは、そのかだっていました。 ましょうない

STRESS-CORROSION PERFORMANCE OF P/M DIE FORGINGS (DIE 9078)
IN NEW KENSINGTON ATMOSPHERE (PHASE III - SEE TABLES 49, 50)

		Date	in Test	1-12-72	1-12-72 3-9.72	1-12-72 3-9-72 1-12-72		1-12-72 1-12-72	
			25 ksi	3 OK				209,? OK 1 ⁵ 3,2 OK	
	imens4	ned Stress	30 ksi	3 OK	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 0 K 3 0 K 3 0 K		118,200,0K 118,145,223	
	Short-Transverse Specimens4	Days to Failure at Sustained Stress	Days to Failure at Sustai	35 ksi	3 OK	203,215,0K 3 0K 3 0K	130,151,0K 3 OK 3 OK		53,167,0K 41,59,151
1	Short-Tr			40 ksi	3 OK 3 OK	0 0 K	188,232,0K 3 OK 3 OK	eriai	12,49,100 35,78,186
			45 ksi	3 OK ³ 3 OK	158,196,207 3 OK 3 OK	132,158,0K 3 OK 167,2 OK	Ingot Metallurgy Control Materiai	35,53,53 33,126,130	
e St	Properties	STYS	ksi	69.0 59.1	75.9 74.4 65.2	79.3 77.6 71.6	ot Metall	70.6 58.6	
Flange		LYS	ksi	74.47 4.66.4	78.5 75.9 81.8 74.4 76.4 65.2	88.3 83.1 77.2	Ing	82.9 69.1	
	Second-	Step Agea	@ 325 F	None None	None 6 hrs. None	None 6 hrs. None		None None	
Quench	water	Temp.	5-	80 150	80 80 150	80 80 150		80 150	
			TOTTE	MA65 MA65	MA66 MA66 MA66	MA67 MA67 MA67		7075 7075	
		Committee No. 1	ON DIE	404877-D1F 404877-D2F	1:04880-D3F 404880-D3R 404880-D4F	404883-D5F 404883-D5R 404883-D6F		405295-2F 405295-2R	

NOTES:

40,64

All P/M forgings from 15µM APD Powders. First-step aged 24 hours @ 250 F. OK = specimen intact through 8-31-72. Specimens across parting plane in flange.

TABLE 4, APPENDIX

STRESS-CORROSION PERFORMANCE OF P/M HAND FORGINGS (2" IHICK) IN NEW KENSINGTON ATMOSPHERE

Date in Test	3-9-72 11-24-71 3-9-72 3-9-72	11-24-71	3-9-72 11-24-71 3-9-72 3-9-72	11-54-71	3-9-72 11-24-71 3-9-72 3-9-72	.8 3-9-72
25 ksi	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 OK	3 3 3 3 0K 3 0K 3 0K	3 OK	3 3 0K 3 0K 3 0K	102,109,118
ed Stress 30 ksi	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 OK	0 K K K K K K K K K K K K K K K K K K K	216,241,258	* * * * * * * * * * * * * * * *	83,95,109
Short-Transverse Specimens to Fallure at Sustained Stress ksi 35 ksi 30 ksi	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	258,2 OK	3 3 0K 3 0 0K 0 0K	204,216,241	144, 2 ok 3 ok 3 ok 3 ok	83,88,99
Short-Tr Days to Fall	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	235,272,0K	3 ok 3 ok 154,2 ok 3 ok	98,188,207	132,2 oK 3 oK 3 oK 3 oK	74,88,95
45 ksi	172, 2 0K4 3 0K 140,2 0K 159,2 0K	237,2 OK	162,175,0K 3 0K 172,2 0K 169,2 0K	181,181,218	3 0K 3 0K 120, 2 0K 3 0K	Metallurgy Control Material 69.9 59.8 21,60,68
ing ines SIYS KSi	62.2 62.5 63.2 63.2	0.07	68.2 67.9 70.6 68.4	(3)	72.0 69.2 70.6 66.4	urgy Cont 59.8
Forging Properties LYS SITS KSi KSi	74.2 68.0 69.6 56.7	71.8	80.0 76.8 76.8 69.8	6.97	81.8 76.4 70.6	ŀ
Second- Step Age ² @ 325 F	None 4 hrs. None	4 hrs.	None 2 hrs. Nor.	4 hrs.	None 2 hrs. None None	<u>Ingot</u> None
Quench Water Temp.	80 80 150 1 ⁸ 0	80	80 30 150	36	80 80 150 180	80
Powder Size ¹ UM	15.6 15.6 15.5	48.5	16.55 16.55 16.55	£•64	14.7 14.7 14.7 14.7	Ingot
A110y	MA65 MA65 MA65 MA65	MA65	MA66 MA66 MA66 MA66	MA66	MA67 MA67 MA67 MA67	7075
Sample No.	1001877-M25 1001877-M2C 1001877-M1C 1001877-M3C	404879-N2C	404880-1488 404880-1488 404880-178 404880-195	404882-N10B	40'483-N13A 40'4883-N13B L9'4883-N12B 40'4883-N14C	405295-92

Average Particle Diameter from Fisher sub stave sizer. First-step aged 24 hours @ 250 F. Failed at less than 0.2% offset. OK = specimen intact through 8-31/72. 49.64 NOTES:

TABLE 5, APPENDIX

STRESS-CORROSION PERFORMANCE OF P/M PLATE (1-1/2" THICK) IN NEW KENSINGTON ATMOSPHERE (PHASE III - SEE TABLES 80, 81)

	Date	In Test	11-24-71 11-24-71	11-24-71 11-24-71	11-24-71 11-2!:-71		11-24-71 4-11-72 11-24-71
		25 ksi	3 OK 3 OK	3 OK 3 OK	232, 24 7, 0K 3 0K		44,91,106,111,111 2 OK 5 OK
cimens	ined Stress	30 ksi	35,207,0K 3 OK	231,244 3 ok	179,194,0K 3 OK		44,56,82,87,118 2 ok 5 ok
Short-Transverse Specimens	Days to Failure at Sustained Stress	35 ksi	47,47,200 3 ok	194,214,258 3 ox	141,181,188 3 OK	terial ³	56,56,51,66,73 2 ox 5 ox
Sho	Days to	40 ksi	61,194,0K 3 OK	173,207,244 231,237,0K	179,181,181 249,2 OK	Ingot Metallurgy Control Material ³	44,56,61,91,97 2 OK 5 OK
		45 ksi	50,65, <i>272</i> 3 0K	153,200,200 266,2 OK	91,153,179 3 OK	Ingot Meta	43,44,44,44,55 2 OK 5 OK
Plate perties	SILS	ksi	67.6 68.3	85.5 77.2 79.1 76.3	78.0 75.4		65.6 61.8 58.9
Pla Proper	LYS	ksi	73.2 69.6	85.5	88.4 77.3		79.8 63.8 59.3
Second	Step Age	@ 325 F	None 4 hrs.	None 2 hrs.	None 2 hrs.		None 10 hrs. 24 hrs.
		Alloy	MA65 MA65	MA66 MA66	MA67 MA67		7075 7075 7075
	•	Sample No.	101.877-K13 101.877-K1C	404880-n3A 404880-n3B	404883-J5A 404883-J5B		399479–3 . 399480–4 399481–3°

NOTES:

All P/M plate from 15µM APD powders.
First-step aged 2th hours @ 250 F.
2.5" thick plant produced plate, 7075-7651, laboratory second-step aged. Includes 2 samples per stress marked 413364-B, in test 4-11-72. Includes 2 samples per stress marked 413363-R, in test 4-11-72. OK = Specimens intact through 5-23-72. 4 0 64 50

DISTRIBUTION LIST

Commanding General
U.S. Army Materiel Command
Attn: AMCPR-PI
AMCRD-TC, Mr. L. Croan
Washington, D.C.

Commanding General
U.S. Army Missile Command
Attn: AMSMI-ID, Mr. J. E. Kirshtein
AMSMI-IEP, Mr. Giles Wetherill
Redstone Arsenal, Alabama 35809

Commanding General
U.S. Army Munitions Command
Attn: AMSMU-MT-PC, Mr. D. Griffin
AMSMU-RE-E, Mr. W. G. McDaniel
AMSMU-CG, Mr. R. M. Schwartz
AMSMU-RE-R, Dr. J. Erway
Dover, New Jersey 07801

Commanding General
U.S. Army Weapons Command
Attn: AMSWE-RET, Mr. W. Kisner
AMSWE-PPR, Mr. V. X. Walter
AMSWE-PPR, Mr. G. Hall
Rock Island Arsenal, Illinois 61201

Commanding General
U.S. Army Electronics Command
Attn: AMSEL-RD-GS, Mr. Stanely Mader
Fort Monmouth, New Jersey 07703

Commanding General
U.S. Army Aviation Materiel Command
Attn: AMSAV-PRI, Mr. J. Thorp
AMSAV-PPL, Mr. F. Matthews
AMSAV-PRI, Mr. W. L. Breckinridge
P. O. Box 209, Main Office
St. Louis, Missouri 63166

Commanding General
U.S. Army Mobility Equipment Command
Attn: AMSME-PLA, Mr. J. J. Murphy
AMSME-PLA, Mr. M. W. Schriet
4300 Goodfellow Blvd.
St. Louis, Missouri 63120

Commanding General
U.S. Army Tank Automotive Command
Attn: AMSTA-RCM.1, Mr. D. Phelps
AMSTA-RCM.1, Mr. E. Mortiz
Warren, Michigan 48090

Dr. I. Cadoff New York University University Heights Bronx, New York 10452

Professor M. Flemings
Massachusetts Institute of Technology
Room 35-316
Cambridge, Massachusetts

Dr. Scrade Radtke International Lead Zinc Institute 292 Madison Avenue New York, New York 14305

Dr. Jerome Weiner Columbia University New York, New York 10027

Commanding Officer (35)
Frankford Arsenal
Attn: L7000, D. Kleppinger, 149/2
Philadelphia, Pennsylvania 19137

Commanding Officer
U. S. Army MERDC
Attn: Mr. William H. Baer
SMEFB-MMR, Building 363
Fort Belvoir, Virginia 22060

U.S. Army Small Arms Systems Agency Aberdeen Proving Grounds Attn: AMXAA-AC Aberdeen, Maryland 21005

Mr. H. C. Turner
Branch Manager, Metallic Materials
Dept. 372, Building 33
McDonald Aircraft Corporation
P. O. Box 516
St. Louis, Missouri 63166

Commanding Officer
Picatinny Arsenal
Attn: Material Engineering Lab
Dr. Benner
Dover, New Jersey 07801

Director
U.S. Army Production Equipment Agency
Attn: AMXPE-MT, Mr. H. Holms
Rock Island, Illinois 61201

Defense Documentation Center (20)
Cameron Station
Alexandria, Virginia 22314

Defense Materials Information Center Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201

Air Force Materials Laboratory
Air Force Systems Command
Attn: MATF, Mr. H. Johnson
Mr. I. Perlmutter, Chief
Metals & Ceramics Division
Wright Patterson Air Force Base
Dayton, Ohio 45433

Mr. Carson L. Brooks Reynolds Metals Company 4th and Canal Streets Richmond, Virginia 23220

Dr. Robert S. Busk Dow Chemical Company Midland, Michigan 48640

Dr. LaVerne W. Eastwood Olin Mathieson Chemical Corporation P. O. Box 164 Hannibal, Ohio 43931

Dr. G. Irwin Lehigh University Bethlehem, Pennsylvania 18018

Dr. J. B. Hess Dept. of Metallurgical Research Kaiser Aluminum & Chemical Corp. Spokane, Washington 99215

Dr. William Rostoker University of Illinois College of Engineering Box 4348 Chicago, Illinois 60680

Commanding Officer
U.S. Army Materials & Mechanics Res. Center
Attn: AMXMR-TX, Mr. E. Hegge
AMXMR-TX, P. P. A. Carbonaro
AMXMR-TX, Dr. Priest
Watertown, Massachusetts 02172

Commanding Officer
Savanna Army Depot
Attn: AMXSV-EN
AMC Ammunition Center
Savanna, Illinois 61074

Commanding Officer
Fort Detrick
Attn: SMUFD, Mr. H. M. Meier
Frederick, Maryland 21701

Commanding Officer
Rock Island Arsenal
Attn: SWERI-PPE-5311, Mr. J. A. Fox
Metallurgy Laboratory
Rock Island Arsenal, Illinois 61201

Commanding Officer
U.S. Army Aeronautical Depot Maintenance Center
Attn: SAVAE-EFT, Mr. J. Dugan
Corpus Christi, Texas 78419

Project Manager, General Purpose Vehicles Michigan Army Missile Plant Attn: AMCPM-GPV-QV, Mr. E. A. Cowgill Warren, Michigan 48090

Commanding Officer
Watervliet Arsenal
Attn: SWEWV-PPP-WP, Mr. L. Slawsky
Watervliet, New York 12189

National Aeronautics & Space Administration Attn: G. C. Deutsch 1512 H Street N.W. Washington, D. C. 20546

NASA George C. Marshall Space Flight Center Attn: Mr. William A. Wilson, M-F&AR-M Huntsville, Alabama 35800

NASA Lewis Flight Propulsion Lab. Attn: Library 2100 Brookpar Road Cleveland, Ohio 44135

Commence of the control of the contr

Commanding Officer
Edgewood Arsenal
Attn: Mr. Schneck
Materials Engineering Lab
Edgewood, Maryland 21010

Mr. R. H. Brown 1411 Pacific Avenue Natrona Heights, Pennsylvania 15065

Commander
Naval Air Systems Command
Attn: Mr. R. Schmidt
Code AIR-52031A
Department of Navy
Washington, D. C. 20360

Commander
Naval Air Systems Command
Attn: Mr. Dale Meyn
Code 6322
U. S. Naval Research Lab
Washington, D. C. 20390

Mr. N. Tupper Air Force Flight Dynamics Laboratory (FBA) Wright-Patterson Air Force Base Ohio 45433

GLOSSARY

- A.I. Accelerated Stress-Corrosion Cracking Test Alternate Immersion in 3.5% NaCl solution per Federal Test Method 823:
- APD Average Particle Diameter from Fisher Sub-Sieve Sizer.
- Process involving live vacuum preheating a powder compact in a welded aluminum can followed immediately by sealing the compact in a can under conditions where retention of the vacuum in the can was questionable. Canned compact was hot pressed and/or hot worked in a vacuum of unknown quality.
- CANAR Process of preheating a powder compact in flowing argon gas in a welded aluminum can followed immediately by hot pressing of the canned compact and hot working.
- CANIT Process of preheating a powder compact in flowing nitrogen gas in a welded aluminum can followed immediately by hot pressing and/or hot working of the canned compact.
- Coarse Product made from coarse powder with 50 μM average particle diameter.
- CWQ Cold-water quench after solution heat treatment.
- D.C. Direct Chill Cast Ingot.

- El. Percent elongation in 4 diameters.
- ExCO Accelerated Exfoliation Corrosion Test 48 hours total immersion in a 4 mclar NaCl, 0.5 molar potassium nitrate and 0.1 molar HNO₃ solution.
- Process of preheating a powder compact in flowing argon gas in an atmosphere furnace, removing the compacts individually from the furnace, transporting the hot compact (in air) to a press for hot pressing to essentially full density prior to hot working. Furnace atmosphere diluted with air on each door opening--no vestibule to prevent argon atmosphere dilution with air.
- Fine Product made from fine powder with 15 μM average particle diameter.

GLOSSARY (CONTINUED)

I/M - Products fabricated from direct chill cast ingot.

Flane-strain stress intensity factor, a critical measure of the fracture toughness of a material.

ksi - 1000-lbs per square inch.

L, Long. - Longitudinal.

LT - Long-transverse.

LYS - Longitudinal yield strength.

N.A. - Natural age at room temperature.

NTS/YS - Notched tensile strength/tensile yield strength.

P/M - Products fabricated from atomized alloy powder.

Press. - Pressure in units of 1000 psi = 1 ksi.

Regular - Rounded powder shape resulting from atomizing with an inert gas aspirating the molten metal and collecting and conveying the powder in air.

- Process of preheating a powder compact in flowing nitrogen (or argon) gas in a recloseable retort followed immediately by removing the compact from a retort at the press for hot pressing and/or hot working.

SCC - Stress-corrosion cracking.

SEM - Scanning Electron Micrograph.

SHT - Solution heat treatment.

ST - Short-transverse.

STYS - Short-transverse yield strength.

T6 - Aged 24 hours at 250 F.

Temp. - Temperature in °F.

Trs/YS - Tear strength (Kahn-tear test)/tensile yield strength.

GLOSSARY (CONTINUED)

TYS - Transverse yield strength.

VAC - Process of live vacuum preheating a powder compact in a welded aluminum can to 1000 F, followed immediately by sealing the evacuation line to retain the vacuum and hot pressing to essentially full density.

The state of the s

YS - Yield strength.