

Phase 1: Data Selection and Data Profiling

Agenda

Entity Matching – General Entity Matching – Product Ш **General Approach** а **Suitable Tables for Entities** b Ш **Entity Matching – LocalBusiness** Matching Problem and Strategy а **Distribution Histograms** IV **Schema Matching Process** a Results b **Evaluation**

Entity Matching – General

DATA SELECTION

PRODUCT

- Biggest entity type
- Cluster IDs given in another corpus

LOCALBUSINESS, HOTEL & RESTAURANT

- LB 3rd biggest entity type
- Phone number and geo location as identifiers

APPROACH

Step 1 Cleaned the tables with TLDbased approach

Use *.com, *.net, *.org, *.uk

Step 2 Used fastText Language Detection on every row

STATISTICS *

PRODUCT

	Before	After
Top100	100	75
Min3	~1.66 M	~435 K

LOCALBUSINESS, HOTEL & RESTAURANT

	Before	After
LB Top100	100	53
LB Min3	~50.5 K	~11.7 K
Hotel Top100	100	52
Hotel Min3	~13 K	~1 K
Restaurant Top100	100	64
Restaurant Min3	~6.4 K	~1 K

^{*} These statistics are referring to Step 1; statistics for Step 2 can be found in the Appendix (Appendix 1)

Entity Matching – Product

General Approach

Either use "brand" column or first 3 words in "name" column

Distribution of Tables per Product Cluster

More than 15 tables per cluster

Distribution of Tables per Product Cluster

More than 15 tables per cluster

Clothes

	count	mean	std	min	25%	50%	75%	max	
Amount	268.0	29.0	159.0	11.0	12.0	13.0	17.0	2600.0	

Suitable Tables for Entities

APPROACH

- Combine information of cluster_ids with brands
- Get information about top clusters that have brands associated
- Get baseline entities by looking into each cluster
- Compute top 15 nearest entities for one baseline by Doc2Vec and discard duplicates

cluster_id	name
16617	nanobeam-ac-gen2
16617	ubiquiti nanobeam ac gen 2 5ghz 19dbi radio and antenna
16617	ubiquiti cpe 5 ghz nanobeam ac, gen2
16617	ubiquiti networks nbe-5ac-gen2 5ghz nanobeam ac gen2 19dbi row
16617	ubiquiti access point 5 ghz nanobeam ac, gen2
18640	magnet - women belong in all places where decisions are being made ruth bader ginsburg
18640	sony zeiss 55mm f/1.8 prime e mount lens
18640	lente sony sonnar t* fe 55mm f/1.8 za
18640	i'm not bossy, i'm the boss - crew socks
18640	blue q blue q damessokken 'i'm not bossy, i'm the boss'
18640	i'm not bossy. i'm the boss. socks
18640	sony sony alpha sonnar t fe 55mm f1.8 za - e-mount (full frame - for a7/a7r)

Possible Entities

652	99153 asus geforce gt 1030 phoenix overclocked single fan 2gb gddr5 pcie 30 graphics card	29
45841	2751278 asus nvidia geforce gt710 2gb gddr5 graphics card	28
40392	285492 geforce gt 1030 2048mb gddr5 pciexpress graphics card 90yv0at0m0na00	14
25477	1021594 882277 asus geforce gtx 1650 dual oc 4gb gddr5 graphics card dual gtx1650 o4g	11
1081	1524820 sony a7 iii full frame mirrorless interchangeable lens camera optical with 3 inch lcd black ilce7m3 b	95
26842	3078421 alpha a6100 mirrorless camera with 16 50mm lens black	14
4022	1961922 sony hvl f45rm compact radio controlled gn 45 camera flash with 1 display black	25
51060	2473758 sony alpha a7s iii mirrorless digital camera body_p_7624	9
9398	89 dolce gabbana pour homme eau de toilette 125 ml 519	11
9444	06 dolce gabbana pour homme eau de toilette	18
12253	36 14439 dolce gabbana pour homme eau de toilette vaporizador 3423473020776	7
10063	44 339 dolce gabbana femme eau de parfum spray 50 ml	10
27329	26 mens shoes nike air force 1 07 black 315122001 55827.aspx	14
580832	280 mens shoes nike air force 1 07 white 315122111 21544.aspx	24
14243	mens shoes nike air force 1 high 07 lv8 wb flax 882096200 165302.aspx	8
585910	mens shoes nike sportswear air force 1 mid 07 triple black 315123001 74438.aspx	11
585927	784 mens shoes nike sportswear air force 1 mid 07 white 315123111 68768.aspx	19

Entity Matching – LocalBusiness

Problem and Matching Strategy

PHONE NUMBERS

- Branches share headquarter phone number
- Same numbers are differently formatted

GEO-LOCATION

- Locations might refer to headquarter
- Different entities share the same building

SOLUTION

- Use the combination of both identifiers
 - Find matching entities across phone numbers
 - Apply geo-matching on only this subset
- Assumption: entries with the same phone number AND the same geo-location are matches and will form a cluster

IV

Preprocessing Phonenumbers

- Use phonenumbers library
 - Goal: normalize phone numbers to *E.164 Format*

Introduces new complexity: country codes

- Library only accepts ISO-alpha 2 country codes like
 - "DE", "US", "IN"
- Solution: **pycountry** library and manual cleansing
 - Saving majority but not all of our data
- Apply *phonenumbers* library to dataset
 - Parse number and country code into phone-object
 - Only keep valid phonenumbers
 - Convert every phone number to E.164 format

"0044 2083661177"

"020 8366 1177"

"+442083661177"

"USA" "United States "德國" "آ"لمان "T" "de" "DEUTSCHLAND"

Country Code:
1 National
Number:
3034443535

Matching Phonenumbers

Scales of Latitude and Longitude

Difference between: Lat: 52.037766, Lon: 8.475497

Lat: 51.322514, Lon:12.287662

Preprocessing Geo-Locations

- Preprocessing:
 - Split Geo-Location in two columns
 - Remove entries that cannot be converterted to float
 - Definition Latitude: Between –90 and 90
 - Definition Longitude: Between −180 and 80
- Using GeoPy
 - Calculate distance between two tupels

{lat: 52.037766, lon: 8.475497}

{lat:'51.322514', lon:

12.287662}

MatchingGeoPoints Difference
[21907, 32] [0.004145070470485397, -1]

Matching Geo-Locations

Entity Matching – Example Result

MatchingGeoPoints	Difference
[21907, 32]	[0.004145070470485397, -1]

```
data.loc[data['indexValue'] == 32][['name', 'address', 'page_url', 'E.164 format', lat, lon]]
```

	name address		page_url	E.164 format	latitude	longitude
32	Tyson's Tacos	{'addresslocality': 'Austin', 'postalcode': '7	https://www.cookingchanneltv.com/restaurant-gu	+15124513326	30.30964	-97.715239

```
data.loc[data['indexValue'] == 21907][['name', 'address', 'page_url', 'E.164 format', lat, lon]]
```

	name address		page_url	E.164 format	latitude	longitude
21907	Tyson's Tacos	{'addresslocality': 'Austin', 'postalcode': '7	https://theinfatuation.com/austin/reviews/tyso	+15124513326	30.309656	-97.7152

II III IV V

Entity Matching – Final Datasets

- Considered entities and tables
 - Local Business
 - Restaurant
 - Hotel
- II. Concatenate top100 + minimum3 over each entity
 - Control for potential overlap
 - Only keep entries in line with matching strategy

- III. Apply combined matching strategy
 - Get final matching files

STATISTICS

Entity	Before	After
Local Business	~ 3.6 Mio	~ 470.000
Restaurant	~ 408.000	~ 130.000
Hotel	~ 525.000	~ 68.000

Entity	Length Matching File	Remaining Tables
Local Business	~ 108.000	1.123
Restaurant	~ 42.000	459
Hotel	~ 28.000	189

Entity Matching – Final Datasets

Histogram of Local Business (20 < cluster size < max)

Histogram of Restaurant (5 < cluster size < max)

		Local Business	Restaurant
	count	107567	42236
	# clusters	25283	10919
	mean	19.76	5.91
S	std	129.69	22.47
statistics	min	2	2
	0.25	2	2
ន	0.5	2	3
clusters	0.75	4	5
70	max	12704	2032
	second largest	3245	420

Entity Matching – Final Datasets

• Histogram of Hotel (5 < cluster size < second largest)

• Histogram of all Entity Types (20 < cluster size < second largest)

Overlapping does exist!

		Local Business	Restaurant	urant Hotel All		
	count	107567	42236	28879	178682	
	# clusters	25283	10919	6993	42606	
statistics	mean	19.76	5.91	67.53	24.33	
	std	129.69	22.47	215.55	136.65	
	min	2	2	2	2	
sta	0.25	2	2	2	2	
5	0.5	2	3	3	2	
clusters	0.75	4	5	4	5	
0	max	12704	2032	5183	12704	
	second largest	3245	420	2477	5183	

Next to Do:

- For some clusters, elements mainly are from a single table
- track cluster elements to original tables and build histograms on matches across tables

Schema Matching

Task at a glance (Phase 1)

Data Understanding

Become familiar with the structure of data

- Tables
- Statistics files
- Columns
- Technical characteristics

Data Preparation

Data processing and profiling

Statistical gathering of the chosen tables after language detection to remove non-English tables

Find 200 column type labels

- Analyzed statistics & occurrence of columns for each class
- Identified 200 most common columns with at least 100 respective tables
- Identified at least 3 similar columns within the 200 column type labels

Selection of Columns/Tables

Distribution of Tables across Classes

Distribution of remaining tables after English language detection

Selection of Tables

Data Used:

- 19 classes used
- filtered on English tables only
- Top100 & Minimum3 files

Process:

- Counter of columns of each class how many times is a column (entity) in a class?
- Division by size of class how well is the column (entity) represented in the class?
- Removal of not interesting columns (entities) such as url, images, row_id etc.
- Filtering most common columns by absolute count of tables -> get top 210
- Find overall categories manually to cluster columns (eg. person_name, rating etc.)
- Categorization of similar column types

Statistics of selected tables

Tables per entity *

^{*} Full overview in repository

Number of entities used from each class

Data types of chosen tables

Statistics of selected tables

Categorized Columns representing similar Column Types

Deep dive: Selection of Groups (min 3 columns per group)

Length similarity:

- Pick an overall category (such as "time" which includes 8 columns)
- Get a few tables with columns from the selected category
- Compute the mean length of the values in one column of one table
- Compare the mean length of the column and class with the other columns and classes

Cosine similarity:

- Pick an overall category (such as "rating" which includes 7 columns)
- Get a few columns from every column that is of interest
- Preprocess data to prepare for embeddings (cleaning etc.)
- Sentence embedding with pretrained fasttext model
- 1-1 comparison of cosine similarities (matrix)

Length similarity measure with one category (Example "Time")

count 749.000000

std 101.189523

40.870512

Cosine Similarity within a Group (Example "Rating")

	product_ratin gvalue	product_aggr egaterating	product_best rating	product_wors trating	recipe_aggre gaterating	localbusiness _aggregaterat ing	creativework _aggregaterat ing	hotel_aggreg aterating	restaurant_ag gregaterating	book_aggrega terating
product_ratingvalue	1									
product_aggregaterating	0.358	1								
product_bestrating	0.918	0.309	1							
product_worstrating	0.49	0.029	0.539	1						
recipe_aggregaterating	0.314	0.665	0.329	0.1	1					
localbusiness_aggregateratin g	0.329	0.692	0.341	0.1	0.998	1				
creativework_aggregateratin g	0.379	0.846	0.365	0.087	0.948	0.96	1			
hotel_aggregaterating	0.33	0.723	0.339	0.096	0.996	0.998	0.969	1		
restaurant_aggregaterating	0.316	0.674	0.33	0.099	0.999	0.998	0.951	0.997	1	
book_aggregaterating	0.37	0.873	0.359	0.082	0.943	0.955	0.992	0.967	0.967	1

Next steps

Finalize groups

Train/Test sets + downsampling

Experiments

Evaluation

Evaluation

TEAMWORK

- High motivation
- Various backgrounds
- Communication within the team
- Communication with Ralph

Communication with other subgroups

TECHNICAL

- Programming tasks
- Usage of server

- Parallel Computing
- Server connection

Appendix 1: Preprocessing with Language Detection – Visualization after Step 2

