Solving PDEs using Spectral Methods in the Chebyshev basis by example of the Heat Equation

Special Topic on Approximation of Functions Candidate Number: 12345

Abstract

Insert some waffle here if you want. Abstracts are optional for special topics but are part of page count.

1 Introduction

Let \mathbb{N} denote the nonnegative integers, so $0 \in \mathbb{N}$.

1.1 Definition: Chebyshev polynomial

Chebyshev¹ polynomials $T_k : \mathbb{R} \to \mathbb{R}$ are functions satisfying

$$T_k(x) = T_k(\cos \theta) := \cos(k\theta) = \frac{1}{2}(z^k + z^{-k})$$

 $z := e^{i\theta}, \quad x := \Re \mathfrak{e}(z) = \cos(\theta) = \frac{1}{2}(z + z^{-1})$

for $k \in \mathbb{N}$. Then, $T_0(x) = 1$, $T_1(x) = x$, $T_2(x) = 2x^2 - 1$, and so on.

These relations between x, z and θ reveal fundamental connections between three famous basis sets (as we will confirm later): Chebyshev, Legendre and Fourier.

1.1 Theorem: Chebyshev Recursion Formula

The Chebyshev polyomials satisfy the three-term recurrence relation

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$
.

¹named after Pafnuty Lvovich Chebyshev, alternatively transliterated as Tchebycheff, Tchebyshev (French) or Tschebyschow (German)

Proof. Theorem 1.1 For k > 1,

$$2xT_{k}(x) - T_{k-1}(x) = 2x\frac{1}{2}(z^{k} + z^{-k}) - \frac{1}{2}(z^{k-1} + z^{-(k-1)})$$

$$= 2\frac{1}{2}(z + z^{-1})\frac{1}{2}(z^{k} + z^{-k}) - \frac{1}{2}(z^{k-1} + z^{-k+1})$$

$$= \frac{1}{2}(z^{k+1} + z^{k-1} + z^{-k+1} + z^{-k-1}) - \frac{1}{2}(z^{k-1} + z^{-k+1})$$

$$= \frac{1}{2}(z^{k+1} + z^{-(k+1)}) = T_{k+1}(x)$$

The Chebyshev polynomials also satisfy an orthogonality relation,

$$\langle T_m, T_n \rangle := \int_{-1}^1 T_m(x) T_n(x) \frac{1}{\sqrt{1 - x^2}} dx = \int_{\pi}^0 \cos(m\theta) \cos(n\theta) \frac{-\sin(\theta)}{\sqrt{1 - \cos^2(\theta)}} d\theta,$$

which becomes, with the fitting substitution $x = \cos(\theta)$ and $dx = -\sin(\theta)d\theta$,

$$\langle T_m, T_n \rangle = \int_0^{\pi} T_m(\cos \theta) T_n(\cos \theta) \frac{\sin \theta}{\sin \theta} d\theta = \int_0^{\pi} \cos(m\theta) \cos(n\theta) d\theta$$
$$= \frac{1}{2} \int_0^{\pi} \left(\underbrace{\cos((m+n)\theta)}_{=\cos(2m\theta) \text{ for } m=n} + \underbrace{\cos((m-n)\theta)}_{=1 \text{ for } m=n} \right) d\theta$$

along with the knowledge that $\int_0^{\pi} \cos(k\theta) d\theta = k^{-1} [\sin(k\theta)]_0^{\pi} = 0$ for $k \in \mathbb{Z} \setminus \{0\}$,

$$\langle T_m, T_n \rangle = \int_0^{\pi} T_m(\cos \theta) T_n(\cos \theta) d\theta = \begin{cases} 0 & \text{for } m \neq n \\ \pi/2 & \text{for } m = n \neq 0 \\ \pi & \text{for } m = n = 0 \end{cases}$$

which can be effectively utilised to define a function space $(\mathcal{T}, +, \cdot)$ in the *orthogonal* basis of Chebyshev polynomials $\mathcal{T} := \{T_k\}_{k \in \mathbb{N}}$. Note that the operation $\langle \cdot, \cdot \rangle$ satisfies all axioms of an authentic inner product (linearity, etc.) over a function space due to the linearity of the integral.

In the following proceedings, we will restrict our view on functions over the interval $[-1,1] \subset \mathbb{R}$. Any (real) Lipschitz-continuous function $f \in \mathcal{C}_L$, where $\mathcal{C}_L := \{g : [-1,1] \mapsto \mathbb{R} \mid \exists L \text{ s.t. } \forall x_1, x_2 \in \mathbb{R}, |g(x_1) - g(x_2)| \leq L \cdot |x_1 - x_2| \}$ can be represented in the Chebyshev basis \mathcal{T} , as Lipschitz continuity is a sufficient condition for absolute and uniform convergence of the corresponding series representation

$$f(x) = \sum_{k=0}^{\infty} a_k T_k(x), \quad a_k \in \mathbb{R}, \quad k \in \mathbb{N}.$$

Utilising orthogonality, for any $f \in \mathcal{C}_L$, we find coefficients $a_l \in \mathbb{R}$ by 'right-multiplying' the equation $f = \sum_{k=0}^{\infty} a_k T_k$ with any one of the Chebyshev polynomials T_l .

$$\langle f, T_l \rangle = \langle \sum_{k=0}^{\infty} a_k T_k, T_l \rangle = \int_0^{\pi} a_k T_k(\cos \theta) T_l(\cos \theta) d\theta$$

$$= \sum_{k=0}^{\infty} a_k \langle T_k, T_l \rangle \quad \text{by linearity}$$

$$= \begin{cases} a_0 \pi & \text{for } l = 0 \\ a_l \pi / 2 & \text{for } l \neq 0 \end{cases}$$

which can easily be rearranged to give explicit relations for a_0 and a_k

$$a_0 = \frac{1}{\pi} \langle f, T_0 \rangle = \frac{1}{\pi} \int_0^{\pi} f(\cos \theta) d\theta$$
$$a_k = \frac{2}{\pi} \langle f, T_k \rangle = \frac{2}{\pi} \int_0^{\pi} f(\cos \theta) \cos(k\theta) d\theta, \quad k \neq 0.$$

Dealing with a numerical problem, we shall approximate the above two integrals by the rectangular integral rule. Another proof for the explicit coefficient integrals can be found in Trefethen 2019.

1.2 Theorem: Rectangular integral rule

$$\int_{a}^{b} f(x) dx = \lim_{N \to \infty} \frac{b - a}{N} \sum_{k=0}^{N} f(x_k), \quad x_k := a + \frac{b - a}{N} k$$

Bonthuis and Schachinger 2021, p. 128

Most importantly, this quadrature-style integral approximation is only one way of numerically determining the coefficients a_k . Another is to recognise the structure of the above integral for $k \neq 0$ as a cosine transform of the function $(f \circ \cos)$.

1.2 Definition: Cosine Transform

1.3 Definition: Discrete Cosine Transform

Most significantly, this approach via the Discrete Cosine Transform can be sped up by means of the *Fast Fourier Transform* (Cooley and Tukey 1965).

Numerically speaking, a significant improvement to these two approaches can be made by using the *Barycentric interpolation formula in Chebyshev points*.

1.4 Definition: Chebyshev points

From the equispaced points

$$\Theta := \{ \theta_j := jN/\pi \mid j = 0, ..., N \},$$

we can further define the Chebyshev points as the corresponding $\cos(\theta_j)$,

$$X := \{x_j := \cos(\theta_j) \mid \theta_j \in \Theta\}.$$

Figure 1: The Chebyshev points $\{x_j = \cos(\theta_j)\}$ are projections of the equispaced points $\{\theta_j\}$ on the unit circle onto the x-axis.

One way of forcing the boundary conditions, at least the first that came to my mind when thinking of this issue, is to pin down the two highest-order coefficients in the series representation. REFERENCES Candidate 12345 •

2 The heat equation and its solution

3 Differentiation

4 Results

Figure 2: Comparison of heatfun and chebfun

5 Discussion

References

Bonthuis, Douwe and Ewald Schachinger (2021). Lecture Notes in Computational Physics. Institute of Theoretical and Computational Physics, Technical University of Graz.

Cooley, James W. and John W. Tukey (1965). 'An algorithm for the machine calculation of complex Fourier series'. In: *Mathematics of Computation* 19, pp. 297–301. DOI: 10.2307/2003354.

Trefethen, Lloyd N. (2019). Approximation Theory and Approximation Practice, Extended Edition. Philadelphia, PA: Society for Industrial and Applied Mathematics. DOI: 10.1137/1.9781611975949. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611975949.

A Title of Appendix

Appendices are definitely not necessary and assessors are not obliged to read them so only use them for non-vital text, figures or calculations.