

审核:

 制 :			
	重庆宗申航空发动机	乳制造有限公司	
	标准	版	
	ZS C12H ECU RS	3232 通信协议	
文件编号:			
内部数据 妥善保	管 未经允许 严禁外泄		

批准:

会签:

更改记录

版本	更改说明	日期	人员
V00. 00. 01	新增	2020. 04. 18	肖候均
V00. 00. 02	1、增加飞控指令协议 2、优化排版	2020. 05. 18	朱于然
V00. 00. 03	1、增加 ECU 发送参数, 更改发送的头字节 2、优化油泵与发动机控制逻辑	2020. 08. 26	朱于然
V00. 00. 04	增加 ECU 发送参数: 瞬时油耗	2020. 08. 27	朱于然
V00. 00. 05	修改I缸缸温、II缸缸温、环境温度、燃油 压力和气轨压力上报精度。	2020. 09. 01	曾祥磊
V00. 00. 06	ECU 收到下发的指令后,且指令正确则回复飞控,表示收到指令。	2020. 10. 16	曾祥磊
V00. 01. 00	大版本更新,版本迭代号进位 1、增加 ECU 状态机参数发送功能; 2、删除节气门目标位置命令,增加目标转速接收命令。 3、增加附录(状态机说明、故障停机说明) 4、更改 ECU 接收数据的接收要求	2020. 11. 18	朱于然
V00. 01. 01	1、删除附录; 2、目标转速与目标油门的接收合并到一个字 节。同时增加一个转速或油门选择位。	2021. 3. 4	朱于然

目 录

1	引言	1
	1.1编写目的	1
	1.2概述	
	1.3适用范围	
2	术语与定义	
3	ではった人 ECU RS232 接口逻辑框图	
3		
4	ECU 数据帧	1
	4.1 ECU 帧格式	1
	4.2 ECU 发送帧内容详述	2
	4.3 ECU 接收数据帧	
	4.4 ECU 回复数据帧	
5	总结	
_		

1 引言

1.1 编写目的

本文档描述了 ECU 基于 RS232 接口的通信协议。该文档用于指导 ECU 协议软件开发,本文档主要读者为软件开发人员以及相关技术人员。

1.2 概述

针对航发两冲程活塞发动机的发动机电子控制单元(ECU),基于通信 RS232 接口设计一套通信协议,用于 ECU 与飞控之间的数据交互,协议主要内容包括 ECU 发送给飞控的反馈数据以及飞控发送给 ECU 的控制指令。

1.3 适用范围

软件系统名称: ECU 控制软件。

2 术语与定义

ECU: 发动机电子控制单元。

3 ECU RS232 接口逻辑框图

ECU 与飞控之间通过 RS232 接口进行实时数据通信。ECU 与飞控之间的通信链路示意图如图 1 所示。

图 1 ECU 与飞控通信链路示意图

4 ECU 数据帧

4.1 ECU 帧格式

ECU 与飞控通过 RS232 接口进行通信,通信速率 115200bps,无奇偶校验;数据位 8 位;结束位 1 位。ECU 通信数据帧结构如表 1 所示:

Q/ZSH.S12-02-B03 1 保存期限: 产品生命

WI Boo XXXIIIXAII						
位置	单位	详细描述				
0	byte	协议头字节1				
1	Byte	协议头字节 2				
2	byte	帧长度: N+2				
3N	bytes	数据帧内容: ECU 相关数据信息				
N+1	byte	校验和: Checksum = byte[2] + byte[3] + …+ byte[N].				

表 1 ECU 发送数据帧结构

注:数据帧内容发送时,是高字节在前、低字节在后。

4.2 ECU 发送帧内容详述

ECU 发送数据帧在 ECU 上电后自动周期性发送,发送周期 100ms。ECU 发送数据帧如表 2 所示。

次 2 ECO							
位置	单位	详细描述					
0	byte	协议头字节 1: 0xAA					
1	Byte	协议头字节 2: 0x55					
2	byte	帧长度: 50					
348	bytes	数据帧内容: ECU 相关数据信息					
49	byte	校验和: Checksum = byte[2] + byte[3] + ···+ byte[48].					

表 2 ECU 发送数据帧信息

ECU 发送数据帧中的数据帧内容主要为 ECU 相关数据信息,包括 ECU 传感器采集数据及执行器输出数据等,详细内容如表 2 所示:

名称	帧位置	长度	数据类型	单位	精度	上传值[范围]
发动机转速	3	2Byte	uint16	RPM	1	[0, 15000]
I 缸缸温	5	2Byte	int16	$^{\circ}$ C	0.1	[-400, 3000]
II 缸缸温	7	2Byte	int16	$^{\circ}$ C	0.1	[-400, 3000]
环境温度	9	2Byte	int16	$^{\circ}$ C	0.1	[-200, 2600]
油门开度	11	2Byte	uint16	%	0.1	[0, 1000]
ECU 供电电压	13	1Byte	uint8	V	0.1	[0, 240]
大气压力	14	2Byte	uint16	kPa	0.1	[150, 1100]
本次飞行累积油耗	16	2Byte	uint16	g	1	[0,60000]

表 3 ECU 发送数据帧内容列表

Q/ZSH.S12-02-B03 2 保存期限:产品生命

uint16

uint16

Bar

Bar

0.001

0.001

[0, 20000]

[0, 20000]

燃油压力

气轨压力

18

20

2Byte

2Byte

1 缸喷油脉宽	22	2Byte	uint16	ms	0. 01	[0, 2000]
2 缸喷油脉宽	24	2Byte	uint16	ms	0. 01	[0, 2000]
喷气脉宽	26	2Byte	uint16	ms	0. 01	[0, 2000]
喷油提前角	28	2Byte	int16	CrA	0. 1	[-3600, 3600]
点火提前角	30	2Byte	int16	CrA	0. 1	[-3600, 3600]
燃油泵转速	32	2Byte	uint16	RPM	1	[0, 18000]
ECU 故障码	34	2Byte	uint16	_	ı	_
燃油瞬时油耗	36	2Byte	uint16	g/h	1	[0,60000]
ECU 状态标志位 (预留)	38	1Byte	Uint8	/	1	[0, 4]
预留位	39	11Byte	_	_	_	_

注: 预留位发0。ECU故障码为循环发送。

协议解析:信号物理值=((高字节) * 256 + 低字节) * 精度。

以转速计算为例子: RPM = (Buff[4] * 256+Buff[5]) *1。

4.3 ECU 接收数据帧

本命令由飞控端主动向 ECU 发送指令数据包,发送方式为周期发送,发送周期为 100ms。 ECU 接收数据帧格式如表 4 所示。

数据格式如下:

- 12

表 4 ECU 接收数据帧结构

位置	单位	详细描述
0	byte	协议头字节 1: 0x81
1	Byte	协议头字节 2: 0xA5
2	byte	帧长度: 11
39	bytes	数据帧内容: 上位机控制指令数据
10	byte	校验和: Checksum = byte[2] + byte[3] + ···+ byte[9].

指令数据如下表所示:

表 5 ECU 接收数据列表

名称	帧位置	长度	数据类型	单位	精度	下发值[范围]
发动机目标转速		2Byte		Rpm	1	[0, 7500]
发动机目标油门	3	2Byte	uint16	%	0. 1	[0, 1000]

发动机启动/停机控制位	5	2Byte	uint16	_	1	启动: 0xF0F0 停机: 0x1010
燃油泵启动/停止控制位	7	2Byte	uint16	_	1	启动: 0xF0F0 停止: 0x1010
目标转速/油门选择位	9	1Byte	Uint8	_	1	0: 目标油门 1: 目标转速

说明:

- ① ECU燃油泵控制与发动机启停控制,无关联关系,各为独立控制(但若关闭燃油泵, 发动机将无燃油供给)。
- ② "发动机目标转速"与"发动机目标油门"是互斥控制,根据"目标转速/油门选择位"来选择第3帧位置的数据是目标转速还是目标油门(目前暂未提供"发动机目标转速"控制功能)。

4.4 ECU 回复数据帧

ECU 对飞控端发送的指令数据进行解析,若校验和通过,则回复飞控,回复数据帧格式如表 6 所示。

农 U ECU 回复数船侧结构							
位置	单位	详细描述					
0	byte	协议头字节 1: 0xBB					
1	Byte	协议头字节 2: 0x66					
2	byte 🎿	帧长度: 8					
36	bytes	数据帧内容: 上位机控制指令解析结果					
7	byte	校验和: Checksum = byte[2] + byte[3] + ···+ byte[6].					

表 6 ECU 回复数据帧结构

ECU 回复数据帧中的数据帧内容为飞控下发指令正确与否的解析,详细内容如表 7 所示:

表 7 ECU 回复数据列表

名称	帧位置	长度	数据类型	备注
指令正确标志位	3	1Byte	uint8	校验和正确回复: 1 校验和错误回复: 0
目标位置正确标志位	4	1Byte	uint8	收到命令回复1,
发动机启动/停机控制正确标志位	5	1Byte	uint8	否则回复 0

燃油泵启动/停机控制正确标志位	6	1Byte	uint8	
-----------------	---	-------	-------	--

5 总结

该文档规定了 ECU 的 RS232 通信数据帧格式。宗申航空发动机制造有限公司讨论确定对该协议拥有最终解释权。

