Outline

Cuprins

L	Recapitulare	1
2	Algoritmul Knuth-Morris-Pratt	2
3	Expresii regulate	8

1 Recapitulare

String Searching (Matching) Problem

Input Două şiruri: $s = s[0] \dots s[n-1]$, numit subiect sau text, şi $p = p[0] \cdots p[m-1]$, numit pattern.

Output Prima apariție a patternului p în textul s, dacă există; -1, altfel.

Algoritmul naiv (brute force)

- $O(n \cdot m)$ în cazul cel mai nefavorabil, O(min(n,m)) în cazul cel mai favorabil
- numărul mediu de comparații $\leq 2(n+1-m)$

Întrebare: putem obține O(n) în cazul cel mai nefavorabil?

Algoritmul Rabin-Karp

- utilizează tehnica tabelelor de dispersie (hash)
- trebuie să fie ușor de calculat și de comparat valorile hash
- complexitatea în cazul cel mai nefavorabil $O(n \cdot m)$, dar foarte puțin probabil să apară în practică
- complexitatea medie O(m+n)
- extensibil la cazul bidimensional (imagini)

Algoritmul Boyer-Moore

- regula caracterului rău: pentru cazul cel mai nefavorabil are complexitatea $O(m \cdot n)$
- Regula sufixului bun:
 - complexitate O(n+m) dacă patternul p nu apare în subiect; altfel rămâne $O(m\cdot n)$
 - totuși, cu o simplă modif
care (regula Galil, 1979) se poate obține ${\cal O}(n+m)$ în to
ate cazurile
 - algoritmul original al lui Boyer-Moore (1977) utilizează o variantă simplificată a regulei sufixului bun
 - Richard Colen (1991) a stabilit o limită de 3n

Algoritmul Knuth-Morris-Pratt $\mathbf{2}$

Algoritmul naiv 1

a	b	c	b	a	b	a	b	a	a	b	c	b	a	b
				=	=	=	=	=	\neq					
				a	b	a	b	a	c	a				

${\bf Intuiția}^2$

a	b	c	b	a	b	a	b	a	a	b	c	b	a	b
				=	=	=	=	=	\neq					
				a	b	a	b	a	c	a				
					a	b	a	b	a	c	a			
						a	b	a	b	a	c	a		

${\bf Intuiția}^3$

? ? ? ?	a	b	a	b	a	?	?	?	?	?	?
	=	=	=	=	=	\neq					
	a	b	a	b	a	?	?				
		a	b	a	b	?	?	?			
		,	a	b	a	?	?	?	?		

Pentru pattern-ul ababaca, dacă la o poziție i se potrivesc exact 5 caractere, nu există nicio șansă ca pattern-ul să se potrivească la poziția i+1.

Ideea

?	?	?	?	x_0	x_1	x_2	x_3	x_4	x_5	x_6	?	?	?	?	?	?	?	?
				=	=	=	=	=	=	=	=							
				x_0	x_1	x_2	x_3	x_4	x_5	x_6	?]						
								=	=	=								
								x_0	x_1	x_2	x_3	x_4	x_5	x_6	?			

Ideea

?	?	?	?	x_0	x_1	x_2	x_3	x_0	x_1	x_2	?	?	?	?	?	?	?	?
				=	=	=	=	=	=	=	=							
				x_0	x_1	x_2	x_3	x_0	x_1	x_2	?							
								=	=	=								
								x_0	x_1	x_2	x_3	x_0	x_1	x_2	?			

 $^{^{1}}$ Exemplu din [CLRS] 2 Exemplu din [CLRS] 3 Exemplu din [CLRS]

Ideea

?	?	?	?	x_0		x_{k-1}		x_0		x_{k-1}	?	?	?	?
				=	=	=	=	=	=	=	\neq			
				x_0		x_{k-1}		x_0		x_{k-1}	?			

Ne interesează cea mai mare valoarea a lui k astfel încât $x_1 \dots x_k$ să fie atât prefix cât și sufix al părții din pattern care s-a potrivit.

Notații

- \bullet reamintim: frontieră (bordură) a unui șir t un factor (subșir) care este si prefix și sufix al lui t
- notăm: maxFr(k) frontiera maximă a lui p[0..k-1] care e factor propriu $(\neq p[0..k-1])$ f[k] = |maxFr(k)| (lungimea frontierei (bordurii) maxime a lui p[0..k-1])

$$\begin{array}{c|cccc} k & maxFr(k) & f[i] \\ \hline 1 & \varepsilon & 0 \\ 2 & \varepsilon & 0 \\ 3 & a & 1 \\ 4 & ab & 2 \\ 5 & aba & 3 \\ 6 & \varepsilon & 0 \\ \hline \end{array}$$

 \bullet notație: $u \leq_{fr} v$ d
dacă $u \leq_{pref} v$ și $u \leq_{suff} v$

Raționament în domeniul problemei 1/2

- definiția formală a lui maxFr(v): $maxFr(v) <_{fr} v$ și $(\forall w)w <_{fr} v$ implică $w \leq_{fr} maxFr(v)$; cu alte cuvinte, frontiera (bordura) de lungime maximă este maximă și relativ la relația de ordine \leq_{fr} ;
- notație: $maxFr^0(v) = v$, $maxFr^{j+1}(v) = maxFr(maxFr^j(v))$
- avem: $\cdots <_{fr} \max Fr^{j+1}(v) <_{fr} \max Fr^{j}(v) <_{fr} \cdots <_{fr} \max Fr^{1}(v) <_{fr} \max Fr^{0}(v) =$

Theorem 1. $u \leq_{fr} v \ ddac \ a \ exist \ j \geq 0 \ a. \ \hat{i}. \ u = max Fr^{j}(v).$

Corollary 2. $u <_{fr} v \ ddac \ a \ exist \ j > 0 \ a. \ \hat{u} = max Fr^{j}(v).$

Raționament în domeniul problemei 2/2

Theorem 3. $|maxFr^{j}(p[0..k-1])| = f^{j}[k].$

Verificăm pentru j=2,3, cazul general rezultând prin inducție:

$$\begin{split} |\mathit{maxFr}^2(p[0..k-1])| &= |\mathit{maxFr}(\mathit{maxFr}(p[0..k-1]))| \\ &= \mathit{maxFr}(p[0..f[k]-1) \\ &= f[f[k]] \\ &= f^2[k] \\ |\mathit{maxFr}^3(p[0..k-1])| &= |\mathit{maxFr}(\mathit{maxFr}^2(p[0..k-1]))| \\ &= \mathit{maxFr}(p[0..f^2[k]-1) \\ &= f[f^2[k]] \\ &= f^3[k] \end{split}$$

Deoarece frontierele (bordurile) lui v=p[0..k-1] sunt

 $\cdots <_{fr} maxFr^{j+1}(v) <_{fr} maxFr^{j}(v) <_{fr} \cdots <_{fr} maxFr^{1}(v) <_{fr} maxFr^{0}(v) = v$ rezultă că lungimile acestora sunt în relația

$$\cdots < f^{j+1}[k] < f^j[k] < \cdots < f[k] < f^0[k] = k$$
 și că "saltul" de la $\max Fr^{j+1}(v)$ la $\max Fr^j(v)$ este egal cu $f^{j+1}[k] - f^j[k]$

Exemplu 1/6

Să vedem pe un exemplu cum poate fi utilizat eficient f[i]:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
=	=	\neq												
a	b	a	b	a	c	a								
0	1	2	3	4	5	6								

- ullet eșec la pozițiile i=k=2 (poziția i în subject, poziția k în pattern)
- f[k] = f[2] = 0
- se face un salt egal cu k f[k] = 2 0 = 2
- $\bullet\,$ următoarele poziții ce se vor compara: i=2, k=f[k]=0 (k devine f[k])

Exemplu 2/6

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
		#										•	•	
		a	b	a	b	a	c	a						
		0	1	2	3	4	5	6						

- ullet eșec la pozițiile i=2, k=0
- f[0] = ?
- $\bullet\,$ se face un salt egal cuk-f[k]=0,deci luăm f[0]=-1
- $\bullet\,$ următoarele poziții ce se vor compara: i=i+1=3, k=f[k]+1=0 ()

Exemplu 3/6

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
			#									•		
			a	b	a	b	a	c	a					
			0	1	2	3	4	5	6					

- eșec la pozițiile i = 3, k = 0
- f[0] = -1
- $\bullet\,$ se face un salt egal cuk-f[k]=0-f[0]=1
- \bullet următoarele poziții ce se vor compara: i=i+1=4, k=f[k]+1=0 (se incrementează cu 1 atât i cât și k)

Exemplu 4/6

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a	b	c	b	a	b	a	b	a	b	a	b	a	c	a
				=	=	=	=	=	#					
				a	b	a	b	a	c	a				
				0	1	2	3	4	5	6				

- eșec la pozițiile i = 9, k = 5
- f[5] = 3
- $\bullet\,$ se face un salt egal cuk-f[k]=5-f[5]=2
- $\bullet\,$ următoarele poziții ce se vor compara: $i=9, k=f[k]=3\ (k$ devine f[k])

Exemplu 5/6

- eșec la pozițiile i = 11, k = 5
- f[5] = 3
- $\bullet\,$ se face un salt egal cuk-f[k]=5-f[5]=2
- \bullet următoarele poziții ce se vor compara: i=11, k=f[k]=3 (k devine f[k])

Exemplu 6/6

()	1	2	3	4	5	6	7	8	9	10	11	12	13	14
(\overline{a}	b	c	b	a	b	a	b	a	b	a	b	a	c	a
												=	=	=	=
									a	b	a	b	a	c	a
									0	1	2	3	4	5	6

• s-a găsit prima apariție

Reguli

- dacă k = m 1, atunci avem o apariție la la poziția de start i m + 1;
- dacă $p[k] \neq s[i]$ atunci k devine p[k] (k = p[k]), adică se trece la următoarea frontieră (bordură);
- dacă k == -1 atunci se incrementează atât i cât și k;
- dacă p[k] == s[i] atunci se incrementează atât i cât și k;

Algoritmul KMP în Alk

```
KMP(s, n, t, m, f) {
   i = 0;
   k = 0;
   while (i < n) {
      while (k != -1) && (p[k] != s[i])
        k = f[k];
      // k == -1 or p[k] == s[i]
      if (k = m-1)
        return i-m+1; /* gasit p in s */
   else {
      i = i+1;
      k = k+1;
   }
} return -1; /* p nu apare in s */
}</pre>
```

Timpul de execuție

Reamintim funcția eșec pentru exemplul precedent:

0	1	2	3	4	5	6
a	b	a	b	a	c	a
-1	0	0	1	2	3	0

- 1. Observații:
 - (a) pentru orice $k, -1 \le f[k] < k$.
 - (b) valoarea lui k va crește de cel mult n ori (ca și i)
 - (c) la fiecare iterație while interioară k descrește, dar va fi ≥ -1
 - (d) per total, k nu va putea descrește de mai multe ori de câte ori crește
 - (e) deci while interior va face cel mult n iterații în total
- 2. Concluzie: timpul de execuție pentru KMP este $\mathcal{O}(n)$

Funcția eșec f: introducere

- \bullet deoarece feste utilizată atunci când o comparație eșuează, f se numește și funcție eșec (failure function)
- notată și cu π (de exemplu in [CLR])
- reamintim că $f[i] = |\max Fr(p[0..i-1])|$ (lungimea frontierei maxime a lui p[0..i-1]
- exemplu:

a	b	a	b	a	c	a
-1	0	0	1	2	3	0

- O implementare naivă poate avea complexitatea $O(m^3)$ (exercițiu pentru acasă).
- Dacă presupunem că f[0..i-1] a fost deja calculat, cum calculăm eficient f[i]?

Funcția eșec f:calcul

- reamintim că prefixele lui v = p[0..i-1] sunt: $\cdots <_{fr} maxFr^{j+1}(v) <_{fr} maxFr^{j}(v) <_{fr} \cdots <_{fr} maxFr^{1}(v) <_{fr} maxFr^{0}(v) = v$ și că $f^{j}[i] = |maxFr^{j}(p[0..i-1])$
- rezultă că $f[i] = f^k[i-1]+1$, unde k este cel mai mic întreg cu proprietatea $p[f^k[i-1]+1] = p[i-1]$
- adică ne uităm la prefixele lui p care sunt sufixe ale lui p[0..i-2] și-l luăm pe cel mai mare cu proprietatea că următorul caracter coincide cu p[i-1]

Calculul funcției eșec: reprezentarea în Alk

```
f[0] = -1;
k = -1;
for (i = 1; i <= m; ++i) {
    // invariant: k = f[i-1]
    while(k >= 0 && p[k+1] != p[i-1])
        // invariant: exista j cu k = f^j[i-1] si
        // j este cel mai mic cu p[f^j[i-1]+1] != p[i-1]
        k = f[k];
    k = k + 1;
    f[i] = k;
}
```

Timp de execuție: $\Theta(m)$. Analiza e similară cu cea de la KMP. Funcția eșec reprezentată ca un automat

Un automat este format din:

- alfabet de intrare (a, b, c)
- stări $(-1, 0, 1, \dots, 7)$
- starea inițială (−1)
- stare finală/acceptare (7)
- tranziții spontane: $(-1 \rightarrow 0)$
- tranzitii etichetate: $(0 \xrightarrow{a} 1, 1 \xrightarrow{b} 2, 2 \xrightarrow{a} 3, \dots, 0 \rightarrow -1, 1 \rightarrow 0, \dots)$

Matches

Expresii regulate 3

Motivație: pattern-uri în Emacs (sau alt editor similar)

Pattern

ı		
		Any single character except newline ("\n").
Ì	\.	One period
	[0-9]+	One or more digits
ĺ	[^0-9]+	One or more non-digit characters
.	[A-Za-z]+	one or more letters
. [[-A-Za-z0-9]+	one or more letter, digit, hyphen
ĺ	[_A-Za-z0-9]+	one or more letter, digit, underscore
Ì	[A-Za-z0-9]+	one or more letter, digit, hyphen, underscore
	[[:ascii:]]+	one or more ASCII chars. (codepoint 0 to 127, inclusive)
	[[:nonascii:]]+	one or more none-ASCII characters (For example, Unicode characters)
	[\n\t]+	one or more {newline character, tab, space}.

Din documentație:

[1ex]

Demo cu Emacs

Definitie

În această secțiune considerăm cazul când "pattern"-ul constituie doar o specificație a ceea ce se caută în sensul că el desemnează o mulțime de șiruri pentru care se caută. Numim o astfel de specificație "pattern" generalizat. Un alt mod de a specifica "pattern"-uri generalizate îl constituie expresiile regulate.

Definiție 1. Mulțimea expresiilor regulate peste alfabetul Σ este definită recursiv $\begin{array}{c} \textit{astfel:} \\ \bullet \ \varepsilon, \ \textit{empty sunt expresii regulate} \end{array}$

- ullet orice caracter din Σ este o expresie regulată;
- $dacă e_1, e_2$ sunt expresii regulate, atunci e_1e_2 și $e_1 + e_2$ sunt expresii regulate;
- dacă e este expresie regulată, atunci (e) și e* sunt expresii regulate.

Arborele sintactic abstract: pe tabla.

Legătura cu pachetul <regex> din C++, Emacs

<regex></regex>	expresia regulata
[abc]	a + b + c
\d sau [[:digit:]]	
[[:digit:]]*	$(0+1+\cdots+9)^*$
[[:digit:]]+	$(0+1+\cdots+9)(0+1+\cdots+9)^*$

Limbajul definit de o expresie regulată

Definiție 2. Mulțimea de șiruri (limbajul) L(e) definit de o expresie regulată e este definit recursiv astfel:

- $L(\varepsilon) = \{\varepsilon\}$ (ε este şirul vid (de lungime zero)), $L(\mathsf{empty}) = \emptyset$
- dacă e este un caracter atunci $L(e) = \{e\};$
- $dac\check{a}\ e = e_1e_2\ atunci\ L(e) = L(e_1)L(e_2) = \{w_1w_2 \mid w_1 \in L(e_1), w_2 \in L(e_2)\};$
- $dac\check{a}\ e = e_1 + e_2\ atunci\ L(e) = L(e_1) \cup L(e_2);$
- $dac\breve{a} e = (e_1) \ atunci \ L(e) = L(e_1).$

Exemplu: Fie alfabetul
$$A = \{a, b, c\}$$
. Avem $L(a(b+a)c) = \{abc, aac\}$ şi $L((ab)^*) = \{\varepsilon, ab, abab, ababab, \ldots\} = \{(ab)^k \mid k \ge 0\}$. sfex

Căutare cu expresii regulate

Input Un text s, un pattern p exprimat ca o expresie regulată. [2ex] Output: Prima apariție a unui șir din limbajul definit de expresia regulată [3ex]

Algoritmul de căutare utilizează un automat asociat patternului, similar ca la KMP.

Automatul asociat unei expresii regulate

- cazul de bază

e este o litera (un simbol) $a \in \Sigma$

pentru cazul inductiv presupunem că e_1 și e_2 au asociate automatele: start \longrightarrow

$$\operatorname{start} \longrightarrow \boxed{M_2} \longrightarrow \boxed{M_2}$$

Automatul asociat unei expresii regulate

Automatul asociat unei expresii regulate

Exemplu

$$e = (a + ab)^*ba$$

Detaliile procesului de construție pe tablă

Construcții mai performante

- automatului Brzozowski (1964)
- construcția unui automat determinist
- utilizând funcțiile first și follow (Berry, Setti, 1986)
- paralelizare (Myer, A Four Russians Algorithm for Regular Expression Pattern Matching)
- o altă construcție pentru automatul nedeterminist este Glushkov-McNaughton-Yamada (1960-1961), care poate fi si paralelizată (Navarro & Raffinot, 2004)

Mai multe detallii despre expresii regulate și automatele lor la cursul LFAC din anul II.

Utilizarea automatului în căutare

 $e = (a + ab)^*ba$

De-

talii pe tablă

Complexitatea căutării cu expresii regulate

Presupunem că lungimea expresiei regulate este m (numărul de caractere fără operatori) și $m_{\Sigma} = |\Sigma \cup \{\cdot, +, *\}|$.

Theorem 4 (Thomson, 1968). Problema căutării cu expresii regulate poate fi rezolvată în timpul O(mn) cu automate nedeterministe şi spațiu O(m).

Theorem 5 (Kleene, 1956). Problema căutării cu expresii regulate poate fi rezolvată în timpul $O(n+2^{m_{\Sigma}})$ cu automate deterministe şi spațiu $O(2^{m_{\Sigma}})$.

Theorem 6 (Myers, 1992). Problema căutării cu expresii regulate poate fi rezolvată în timpul $O(mn/\log n)$ cu automate deterministe şi spațiu $O(mn/\log n)$.