Synthesis of Digital Systems COL 719

Part 9: Physical Synthesis - Placement and Routing

Instructor: Preeti Ranjan Panda

Department of Computer Science and Engineering
Indian Institute of Technology Delhi

Standard cell-based ASIC

- Rows of standard cells
 - pre-designed cell library
- Fixed blocks
 - embedded mega-cells (may be custom blocks)
- Placement and interconnect decided by ASIC designer
- Saves time: cells are hand-optimised and pre-tested
- All mask layers are customised for chip
 - design turnaround time: ~8 weeks

Standard cell architecture

Standard Cell Architecture: Details

Gate array-based ASIC

- Transistors pre-fabricated on wafer
- Interconnect decided by ASIC designer
- Small base cell replicated all over chip
- Only top metal layers are customised for chip
 - design turnaround time: ~2 weeks

Gate array architecture

Layout Methodology

Floorplan

- Determing location of blocks
 - memory, datapath, control unit
- Coarse grained

Standard Cell Placement

Determining Cell Locations

Global Routing

- Allocating regions routing of wires
- Coarse grained
- Exact co-ordinates determined later

Approximate region for routing of wire

Detailed Routing

 Determining exact co-ordinates of wires

Compaction

- Removing unused space
 - keeping same connectivity
 - obeying design rules

Layout Verification

Checking for design rule constraint violations

Placement

- Exact solution time consuming
 - not practical for large circuits
- Use heuristics
- Ideal objectives
 - guarantee routable placement
 - minimise critical net delays
 - maximise density
- Realistic objectives
 - minimize total wirelength estimate
 - meet timing requirements for critical nets

Wire Length Estimate: Complete-Graph Measure

- (n-1) wires needed for connecting n terminals
- Estimate:
 - (average of all wire lengths between n terminals) x (n-1)

Wire Length Estimate: Semi-Perimeter

- Find bounding box
 - smallest rectangle enclosing all the terminals
- Estimate:
 - 1/2 * (perimeter of rectangle)
- Exact (minimum) for up to 3 terminals

Estimate =
$$(9 + 11 + 6) / 2$$

Placement Algorithm: Simulated Annealing

- Start with existing solution
- Iteratively improve
 - make random moves
 - accept move based on energy function
 - may accept inferior move to move from local minima
- Analogous to annealing (metallurgical process)
 - start with high temperature
 - gradually cool the metal

Simulated Annealing

```
Temperature T = 10000
Start with random placement
Evaluate objective function E
while (T > 0.001) {
 loop 100 times {
  Randomly interchange two cells -
  if \Delta E \leq 0 accept move /* better solution */
  else accept with probability e^{-\Delta E/T} /* worse solution */
 T = 0.99 T
```

Constants 10000, 0.001, 0.99, 100 empirically determined for specific problem

Window shrinks with T

Moves with larger △E accepted early (when T is large) but not later

Objective Function

- Wire length estimate (C₁)
- Overlapping area (C₂)
 - may result from swapping of cells of different area
- Excess row length (C₃)

Energy
$$E = \alpha C_1 + \beta C_2 + \gamma C_3$$