Sistema de controle de Smart Grids

<u>Introdução</u>

Protocolo

Especificação das Mensagens Descrição das Funcionalidades <u>Implementação</u> Execução

INTRODUÇÃO

Smart grid consiste em um sistema baseado em comunicação e tecnologia da informação adequado para a geração, fornecimento e consumo de energia. Esse sistema trata-se de redes inteligentes que são incorporadas às usinas a fim de recolher e administrar dados e, com base nestas informações coletadas, controlá-las com eficácia. Para tal, as smart grids utilizam do fluxo bidirecional de informações, com intuito de formar um sistema automatizado, amplamente distribuído e disponível de novas funcionalidades. Estas

aplicabilidades indicadas são: controle, competência operacional, resiliência da rede e uma melhor integração de tecnologias renováveis.

O Sistema de Supervisão e Controle (SCADA), ao ser incorporado a *smart grid*, possui o encargo de efetuar as coletas, supervisão e administração dos dados. Os dados obtidos geralmente referem-se a valores de medidas e status dos diversos componentes da rede, tornando o sistema uma parte fundamental do setor elétrico, mediante a sua capacidade de cobrir grandes áreas e executar comunicações em tempo real. O SCADA é amplamente utilizado para supervisionar e monitorar continuamente infraestruturas críticas, como redes de distribuição de água, usinas de geração e distribuição de eletricidade, refinarias de petróleo, usinas nucleares e sistemas de transporte público.

Uma empresa de controle e automação decidiu ingressar no segmento de controle em *Smart Grids* e necessita desenvolver um projeto piloto que consiste em criar um controle de informações de rede capaz de gerenciar o estado de uma rede elétrica através de uma unidade de controle centralizada, responsável por todo o fluxo de informações e controles no sistema, a Unidade Terminal Principal, do inglês *Main Terminal Unit* - MTU (o servidor) e de uma Unidade Terminal Remota, do inglês *Remote Terminal Unit* - RTU (o cliente) cuja função é coletar dados dos dispositivos em campo, como sensores, e retornar à MTU por meio de protocolos de comunicação. Esta comunicação ocorre através da Internet. A Figura 1 ilustra a comunicação entre cada uma das entidades do projeto (sensores, RTU e MTU).

Figura 1 - Exemplo de comunicação entre as entidades do projeto

O programa cliente (RTU) coleta dados de corrente elétrica, de tensão elétrica e de eficiência energética de sensores, os quais são descritos na **Tabela I** e envia os valores para o servidor (MTU) que por sua vez calcula e armazena a potência elétrica junto com a eficiência energética. Para que as mudanças aconteçam, o programa servidor espera receber os comandos do cliente, o qual informa os estados dos dispositivos monitorados pelos sensores, por exemplo:

Tabela I - Dados coletados pelos sensores

ID	Corrente = [0,10] A	Tensão = [0,150] V	Eficiência Energética = [0,100] %
0	5 A	100 V	30%

1	2 A	30 V	100%
2	7 A	11 V	70%

Diante do exposto, neste trabalho, você será responsável por desenvolver um sistema em rede cliente-servidor para simular a interação entre a Unidade Terminal Principal - MTU (o servidor) e a Unidade Terminal Remota - RTU (o cliente). A MTU deve atender às seguintes solicitações da RTU:

- 1. Ligar Sensor: Inicia coleta de dados de um sensor.
- 2. **Desligar Sensor:** Encerra a coleta de dados de um sensor.
- 3. Atualizar Informações de Sensor: Altera os valores de dados de um sensor.
- 4. Consultar Informações de Sensor: Informa os atuais valores de um sensor.
- 5. Consultar Tabela de Sensores: Informa os valores armazenados de todos os sensores.

Cada uma dessas solicitações correspondem a uma mensagem enviada pela RTU à MTU. Neste trabalho, você deve implementar os cinco tipos de mensagens propostas, bem como as mensagens de erro e confirmação que serão especificadas nas próximas seções. Você desenvolverá dois (2) programas para um sistema simples de troca de mensagens utilizando apenas as interfaces da API de sockets POSIX e a comunicação via protocolo TCP. Toda conexão deve utilizar a interface de sockets na linguagem C.

Os objetivos gerais deste trabalho são:

- 1. Implementar MTU (o servidor) utilizando a interface de sockets na linguagem C;
- 2. Implementar RTU (o cliente) utilizando a interface de sockets na linguagem C;
- 3. Escrever o relatório.

PROTOCOLO

O protocolo de aplicação deverá funcionar sobre o protocolo TCP. Isso implica que as mensagens serão entregues sobre um canal de bytes com garantias de entrega em ordem, mas é sua responsabilidade implementar as especificações das mensagens e as funcionalidades tanto do servidor quanto do cliente.

A MTU e a RTU trocam mensagens curtas de até 500 bytes utilizando o TCP. As mensagens carregam textos codificados segundo a tabela ASCII. Apenas letras, números e espaços podem ser transmitidos. Caracteres acentuados e especiais não devem ser transmitidos.

ESPECIFICAÇÃO DAS MENSAGENS

Esta seção especifica as mensagens utilizadas na comunicação, bem como as mensagens de erro e confirmação. Nas tabelas abaixo, as células em "—" correspondem aos campos que não precisam ser definidos nas mensagens. As colunas Descrição e Exemplo não fazem parte da estrutura da mensagem.

Est	rutura das Mensagens	1 	
Action	Sensor info	Descrição	Exemplo
INS_REQ	sensorId cor ten efic_energ	Mensagem de solicitação de iniciar sensor	INS_REQ 1 2 30 100
REM_REQ	sensorId	Mensagem de solicitação de desligar sensor	REM_REQ 2
CH_REQ	sensorId cor ten efic_energ	Mensagem de solicitação de alteração de valores de sensor	CH_REQ 2 6 30 80
SEN_REQ	sensorId	Mensagem de solicitação de informações de sensor	SEN_REQ 2
SEN_RES	sensorId ₁ pot ₁ efic_ener ₁	Mensagem de resposta de informações de sensor	sensor 0 : 500 30
VAL_REQ	_	Mensagem de solicitação de valores de sensores	VAL_REQ
VAL_RES	sensorId ₁ pot ₁ efic_ener ₁ sensorId ₂ pot ₂ efic_ener ₂	Mensagem de resposta de valores de sensores	sensors: 1 (60 100) 2 (77 70)

Mensagens de Erro e Confirmação			
Туре	Payload	Descrição	Exemplo
ERROR	Código	Mensagem de erro transmitida do Servidor para Cliente. O campo payload deve informar o código de erro. Abaixo apresenta o código de cada mensagem: 01 : sensor not installed 02 : no sensors 03 : invalid sensor 04 : sensor already exists	ERROR 01

	Mensagem de confirmação transmitida do servidor para cliente. O campo payload deve informar a mensagem de confirmação. Abaixo apresenta o código de cada mensagem: 01 : successful installation 02 : successful removal 03 : successful change	OK 02
--	---	-------

DESCRIÇÃO DAS FUNCIONALIDADES

Esta seção descreve o fluxo de mensagens transmitidas entre a MTU e a RTU resultante de cada uma das cinco funcionalidades da aplicação a fim de gerenciar os sensores na rede elétrica.

1) Ligar Sensor

1. A RTU recebe comando via teclado

install file nome_arquivo

install param sensorld cor ten efic energ

para a instalação do sensor **sensorid** de valores corrente_{id} tensao_{id} eficiencia_energetica_{id}. A RTU verifica se esses valores estão de acordo com o padrão de entrada especificado na **TABELA I**.

- 1.1. Em caso negativo, a RTU imprime a mensagem de erro código 03 (vide *Especificação das Mensagens*) e cancela a ação.
- 1.2. Em caso positivo, a RTU envia a mensagem INS_REQ para a MTU.
- 2. A MTU recebe solicitação e verifica se o sensor existe em TABELA I.
 - 2.1. Em caso positivo, a MTU responde com mensagem de erro código 04.
 - 2.1.1. A RTU recebe código de erro e imprime sua descrição em tela.
 - 2.2. Em caso negativo, a MTU calcula a potência elétrica (P = U*i), adiciona o sensor à **TABELA I** e responde a mensagem de confirmação código 01.
 - 2.2.1. A RTU recebe código de confirmação e imprime sua descrição em tela.

2) Desligar Sensor

1. A RTU recebe comando via teclado

remove sensorId

para a remoção do sensor sensorid. Para isso, a RTU envia a mensagem REM_REQ para a MTU.

- 2. A MTU recebe solicitação e verifica se o sensor existe em TABELA I.
 - 2.1. Em caso negativo, a MTU responde com mensagem de erro código 01.
 - 2.1.1. A RTU recebe código de erro e imprime sua descrição em tela.
 - 2.2. Em caso positivo, a MTU remove o sensor e responde com mensagem de confirmação código 02.
 - 2.2.1. A RTU recebe código de confirmação e imprime sua descrição em tela.
- 3) Atualizar Informações de Sensor
 - 1. A RTU recebe comando via teclado

change file nome_arquivo

change param sensorId cor ten efic_energ

para a alteração dos valores do sensor **sensorid** para corrente_{id} tensao_{id} eficiencia_energetica_{id}. A RTU verifica se esses valores estão de acordo com o padrão de entrada especificado na **TABELA I**.

1.1. Em caso negativo, a RTU imprime a mensagem de erro código 03 e cancela a ação.

- 1.2. Em caso positivo, a RTU envia a mensagem **CH_REQ** para a MTU.
- 2. A MTU recebe solicitação e verifica se o sensor existe em TABELA I.
 - 2.1. Em caso negativo, a MTU responde com mensagem de erro código 01.
 - 2.1.1. A RTU recebe código de erro e imprime sua descrição em tela.
 - 2.2. Em caso positivo, a MTU calcula a potência elétrica (P = U*i), atualiza os valores do sensor e responde com mensagem de confirmação código 03.
 - 2.2.1. RTU recebe código de confirmação e imprime sua descrição em tela.

4) Consultar Informações de Sensor

1. A RTU recebe comando via teclado

show value sensorld

para mostrar os valores do sensor **sensorid**. Para isso, a RTU envia a mensagem **SEN_REQ** para a MTU.

- 2. A MTU recebe solicitação e verifica se o sensor existe em TABELA I.
 - 2.1. Em caso negativo, a MTU responde com mensagem de erro código 01.
 - 2.1.1. A RTU recebe código de erro e imprime sua descrição em tela.
 - 2.2. Em caso positivo, a MTU responde a RTU com os valores atuais do sensor por meio da mensagem **SEN_RES**.
 - 2.2.1. A RTU recebe mensagem e imprime em tela:

sensor sensorId: potid eficiencia_energeticaid

5) Consultar Tabela de Sensores

1. A RTU recebe comando via teclado

show values

para mostrar os valores de sensores instalados. Para isso, a RTU envia a mensagem **VAL_REQ** para a MTU.

- 2. A MTU recebe a solicitação e verifica se existem sensores na Tabela I.
 - a. Em caso negativo, a MTU responde com mensagem de erro código 02.
 - RTU recebe código de erro e imprime sua descrição em tela.
 - Em caso positivo, a MTU responde com os valores dos sensores correntemente instalados por meio da mensagem VAL_RES.
 - i. RTU recebe mensagem e imprime em tela:

```
sensors: sensorld<sub>1</sub> (pot<sub>1</sub> eficiencia_energetica<sub>1</sub>) sensorld<sub>2</sub> (pot<sub>2</sub> eficiencia_energetica<sub>2</sub>) ...
```

IMPLEMENTAÇÃO

Pequenos detalhes devem ser observados no desenvolvimento de cada programa que fará parte do sistema. É importante observar que o protocolo é simples e único (o cliente sempre tem que enviar a mensagem codificada para o servidor e vice-versa, de modo que o correto entendimento da mensagem deve ser feito por todos os programas).

Como mencionado anteriormente, o protocolo de transporte será o TCP, criado com [socket(AF_INET, SOCK_STREAM, 0)] ou com [socket(AF_INET6, SOCK_STREAM, 0)], a fim de utilizar tanto os protocolos de redes IPv4 quanto o IPv6. O programador deve usar as funções send e recv para enviar e receber mensagens. O aluno deve implementar tanto uma versão do servidor (MTU) quanto uma versão do cliente (RTU).

Outros detalhes de implementação:

- As mensagens s\u00e3o terminadas com um caractere de quebra de linha '\n'. O caractere nulo '\0' para termina\u00e4\u00f3o de strings em C n\u00e3o deve ser enviado na rede.
- O cliente deve desconectar do servidor caso receba uma mensagem com um comando desconhecido (exemplo: "instal" em vez de "instal"), mas não precisa retornar mensagem inválida.
- Para funcionamento do sistema de correção semi-automática (descrito abaixo), seu servidor deve fechar todas as conexões e terminar sua execução ao receber a mensagem "kill" a qualquer momento.

Limites:

Cada mensagem possui no máximo 500 bytes.

Materiais para Consulta:

- Capítulos 2 e 3 do livro sobre programação com sockets disponibilizado no Moodle.
- Playlist de programação com sockets.

EXECUÇÃO

O **cliente** deve receber mensagens do teclado e imprimir as mensagens recebidas na tela. O **servidor** deve imprimir na saída padrão todas as mensagens recebidas dos clientes. **Não é necessário** que o servidor aceite mais de um cliente simultaneamente.

Seu servidor deve receber, estritamente nessa ordem, o tipo de endereço que será utilizado (v4 para IPv4 ou v6 para IPv6) e um número de porta na linha de comando especificando em qual porta ele vai receber conexões (Sugestão: utilize a porta 90900 para efeitos de padronização do trabalho). Seu cliente deve receber, estritamente nessa ordem, o endereço IP e a porta do servidor para estabelecimento da conexão. A seguir, um exemplo de execução de um cliente conectado com um servidor em dois terminais distintos:

Terminal 1: ./server v4 90900

Terminal 2: ./client 127.0.0.1 90900

EXEMPLOS DE EXECUÇÃO

Esta seção apresenta alguns exemplos de execuções do sistema.

Exemplo 1 (Instalação e Remoção)	Exemplo 2 (Atualizar Informações de Sensor)	
install file file1.txt	install file file0.txt	
successful installation	successful installation	
install param 2 7 11 70	change param 0 6 93 32	
successful installation	successful change	
remove 2	change file file0.txt	
successful removal	successful change	

Exemplo 3 (Consultar Informações de Sensor)	Exemplo 4 (Consultar Tabela de Sensores)
install param 0 5 90 30	install param 2 7 11 70

successful installation install file file4.txt successful installation show value 0 sensor 0: 450 30

show value 4 sensor 4: 66 57 successful installation install param 0 5 90 30 successful installation show values

sensors: 2 (77 70) 0 (450 30)

Exemplo 5 (Tratamento de erros)	Exemplo 6 (Tratamento de erros)
install param 1 100 2 3	show values
invalid sensor	no sensors
install param 0 1 2	
invalid sensor	
show value 99	
sensor not installed	