The Modal Cube Revisited: Semantics without worlds

Renato Leme, Carlos Olarte, Elaine Pimentel and Marcelo Coniglio

LIPN. Université Sorbonne Paris Nord

September 28, 2025

Modal Logic

► Normal propositional modal logic:

$$\alpha, \beta ::= \mathbf{p} \mid \bot \mid \alpha \to \beta \mid \Box \alpha$$

Modal Logic

Normal propositional modal logic:

$$\alpha, \beta ::= \mathbf{p} \mid \bot \mid \alpha \to \beta \mid \Box \alpha$$

Classical logic plus Necessitation, axiom K and some combination of axioms D, T, B, 4 and 5.

$$RN \vdash^{\star} A \Rightarrow \vdash^{\star} \Box A$$

$$\mathsf{K}\ \Box(\mathsf{A}\to\mathsf{B})\to(\Box\mathsf{A}\to\Box\mathsf{B})$$

Modal Logic

Normal propositional modal logic:

$$\alpha, \beta ::= \mathbf{p} \mid \bot \mid \alpha \to \beta \mid \Box \alpha$$

Classical logic plus Necessitation, axiom K and some combination of axioms D, T, B, 4 and 5.

$$RN \vdash^* A \Rightarrow \vdash^* \Box A$$

$$D \square A \rightarrow \lozenge A$$

$$T \square A \rightarrow A$$

$$B A \rightarrow \Box \Diamond A$$

$$4 \square A \rightarrow \square \square A$$

$$5 \lozenge A \rightarrow \Box \lozenge A$$

$$\mathsf{K} \ \Box (\mathsf{A} \to \mathsf{B}) \to (\Box \mathsf{A} \to \Box \mathsf{B})$$

Kripke Semantics

► The usual relational semantics of "possible worlds"

 $\mathcal{M}, w \Vdash \Box A$ iff for all wRv implies $\mathcal{M}, v \Vdash A$;

Kripke Semantics

The usual relational semantics of "possible worlds"

```
\mathcal{M}, w \Vdash \Box A iff for all wRv implies \mathcal{M}, v \Vdash A;
```

► Frame conditions:

D : Seriality

T: Reflexivity

B : Symmetry

4 : Transitivity

5: Euclidianness

Kripke Semantics

The usual relational semantics of "possible worlds"

```
\mathcal{M}, w \Vdash \Box A iff for all wRv implies \mathcal{M}, v \Vdash A;
```

Frame conditions:

D : Seriality

T: Reflexivity

B: Symmetry

4 : Transitivity

5: Euclidianness

What about the "standard" truth table semantics?

Bad news

- Gödel: intuitionistic logic admits no finite-valued truth-functional semantics
- Since IPL can be faithfully embedded in S4, then S4 itself is not finite-valued.
- Dugundji: The above (negative) result holds for the whole modal cube.

We are then in a sort of dead end...

- No need of possible worlds to give meaning to modalities.
- Non-deterministic matrix (nmatrix) generalize truth tables [AL05].
- 4 truth values for a complete system for KT, S4 and S5.

Α	□ ^{KT4} A	♦KT4A
F	{ F }	{F }
f	{F, f }	⟨T,t }
t	{F, f }	{T, t }
T	⟨T ⟩	⟨T ⟩

A simple example in S4

Α	□ ^{KT4} A	♦KT4A	$\alpha \rightarrow \beta$	F	f	t	Т
F	{ F }	{ F }	F	T	T	Т	T
f	{F, f }	{T, t}	f	t	T, t	T, t	T
t	{F, f }	{T, t}	t	f	f	T, t	T
T	⟨T ⟩	{T }	Т	F	f	t	T

A simple example in S4

Α	$\Box^{KT4} A$	♦KT4A	$\alpha \to \beta$	F	f	t	Т
F	{ F }	{ F }	F	T	T	Т	T
f	{F, f }	{T, t}	f	t	T, t	T, t	T
t	{F, f }	⟨T,t ⟩	t	f	f	T, t	T
T	(T)	⟨T ⟩	Т	F	f	t	T

- ightharpoonup p
- $\blacktriangleright \ \lozenge(p \to p)$

A simple example in S4

Α	$\Box^{KT4} A$	♦KT4A	$\alpha \to \beta$	F	f	t	T
F	{ F }	{ F }	F	T	T	Т	T
f	{F, f }	{T, t}	f	t	T, t	T, t	T
t	{F, f }	{T, t}	t	f	f	T, t	T
T	(T)	{T }	Т	F	f	t	T

- ightharpoonup p
- $\blacktriangleright \ \Diamond(p \to p)$
- ▶ $\Box(p \rightarrow p)$ (bad surprise...)

Soundness fails!

р	$p \rightarrow p$	$\Box(p o p)$
F	Т	Т
f	Т	Т
f	t	F, f
t	Т	Т
t	t	F, f
T	Т	Т

 Kearns' solution: level valuations, that remove "undesirable" valuations.

	р	$p \rightarrow p$	$\Box(p o p)$	
	F	Т	T	
	f	Т	T	
×	f	t	F, f	
	t	Т	Т	
×	t	t	F, f	
	T	Т	T	

- Since $p \to p$ is a tautology, a good level valuation must assign a designed value to $\Box \alpha$.
- ► This enforces the necessitation rule.

	р	$p \rightarrow p$	$\Box(p o p)$	
	F	Т	T	
	f	Т	T	
×	f	t	F, f	
	t	Т	Т	
×	t	t	F, f	
	T	Т	Т	

- Since $p \to p$ is a tautology, a good level valuation must assign a designed value to $\Box \alpha$.
- ► This enforces the necessitation rule.

However, this is **NOT** a decision procedure:

- 1. It requires to check all the tautologies.
- 2. Some rows will be removed "later" (when do we stop?)

Grätz Procedure [Grä22]: Partial Valuations

- Sound and complete decision procedure for KT and KT4.
- Only subformulas of the formula are evaluated.
- Certain values creates dependencies that must be satisfied.

Grätz Procedure [Grä22]: Partial Valuations

- Sound and complete decision procedure for KT and KT4.
- Only subformulas of the formula are evaluated.
- Certain values creates dependencies that must be satisfied.
- ► E.g., **t** below is not properly supported:

	р	$p \rightarrow p$	$\Box(p o p)$
	F	Т	Т
	f	Т	Т
×	f	t	F, f
	t	Т	Т
×	t	t	F, f
	Т	Т	Т

Our Contribution

State of the art

- ► Kearns' level valuations for 9/15 modal logics.
- Decision procedures only for KT and KT4.

Our Contribution

State of the art

- Kearns' level valuations for 9/15 modal logics.
- Decision procedures only for KT and KT4.

Our Contribution

- Kearns' level valuations and decision procedures for all the 15 logics.
- All such procedures are systematically constructed (and previous ones are obtained as instances).
- ► The key point: meaning and classification of truth values.

Ecumenism

The present [Kearnsean] semantic account is simpler than the standard [Kripkean] account [...] For I do not think there are such things as possible worlds, or even that they constitute a useful fiction." (Kearns)

Ecumenism

The present [Kearnsean] semantic account is simpler than the standard [Kripkean] account [...] For I do not think there are such things as possible worlds, or even that they constitute a useful fiction." (Kearns)

One of the virtues of Kripkean semantics is the correspondence between axioms and the accessibility relations [...] If there is a correspondence [with Kearnsean semantics] it is not a simple one. (Omori and Skurt)

Ecumenism

The present [Kearnsean] semantic account is simpler than the standard [Kripkean] account [...] For I do not think there are such things as possible worlds, or even that they constitute a useful fiction." (Kearns)

One of the virtues of Kripkean semantics is the correspondence between axioms and the accessibility relations [...] If there is a correspondence [with Kearnsean semantics] it is not a simple one. (Omori and Skurt)

Both semantics are indeed very well related!

Our relational model, on partial valuations, preserves the usual frame conditions in modal logics!

Outline

The Meaning of Truth Values

Level Valuations

Partial Valuations and Relational Model

Concluding Remarks

Outline

The Meaning of Truth Values

Level Valuations

Partial Valuations and Relational Mode

Concluding Remarks

Truth-value	Intuitive meaning
$V(\alpha) = F$	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
$\mathbf{v}(\alpha) = \mathbf{f}$	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$V(\alpha) = f_1$	$\Box \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
$v(\alpha) = f_2$	$\Box \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$v(\alpha) = t_2$	$\Diamond \neg \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = \mathbf{t_1}$	$\Box \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = \mathbf{t}$	$\Diamond \neg \alpha \wedge \alpha \wedge \Diamond \alpha$
$V(\alpha) = T$	$\Box \alpha \wedge \alpha \wedge \Diamond \alpha$

Truth-value	Intuitive meaning
$v(\alpha) = \mathbf{F}$	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
$v(\alpha) = f$	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$v(\alpha) = f_1$	$\Box \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
$v(lpha) = f_2$	$\Box \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$\mathbf{v}(\alpha) = \mathbf{t_2}$	$\Diamond \neg \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = t_1$	$\Box \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = t$	$\Diamond \neg \alpha \wedge \alpha \wedge \Diamond \alpha$
$V(\alpha) = T$	$\Box \alpha \wedge \alpha \wedge \Diamond \alpha$

Truth-value	Intuitive meaning
$v(\alpha) = \mathbf{F}$	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
$\mathbf{v}(\alpha) = \mathbf{f}$	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$v(\alpha) = f_1$	$\Box \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
$v(\alpha) = f_2$	$\Box \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$v(\alpha) = t_2$	$\Diamond \neg \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = \mathbf{t_1}$	$\Box \alpha \wedge \alpha \wedge \Box \neg \alpha$
$V(\alpha) = \mathbf{t}$	$\Diamond \neg \alpha \wedge \alpha \wedge \Diamond \alpha$
$V(\alpha) = T$	$\Box \alpha \wedge \alpha \wedge \Diamond \alpha$

Truth-value	Intuitive meaning
v(lpha) = F	$\Diamond \neg \alpha \land \neg \alpha \land \Box \neg \alpha$
v(lpha) = f	$\Diamond \neg \alpha \land \neg \alpha \land \Diamond \alpha$
$v(lpha) = f_1$	$\Box \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
$v(lpha) = f_2$	$\Box \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$v(\alpha) = t_2$	$\Diamond \neg \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = t_1$	$\Box \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = t$	$\Diamond \neg \alpha \wedge \alpha \wedge \Diamond \alpha$
$V(\alpha) = T$	$\Box \alpha \wedge \alpha \wedge \Diamond \alpha$

Truth-value	Intuitive meaning
$v(\alpha) = \mathbf{F}$	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
v(lpha) = f	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$v(\alpha) = f_1$	$\square \alpha \wedge \neg \alpha \wedge \square \neg \alpha$
$v(\alpha) = f_2$	$\square \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$v(\alpha) = t_2$	$\Diamond \neg \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = t_1$	$\square \alpha \wedge \alpha \wedge \square \neg \alpha$
$v(\alpha) = \mathbf{t}$	$\Diamond \neg \alpha \wedge \alpha \wedge \Diamond \alpha$
$V(\alpha) = T$	$\square \alpha \wedge \alpha \wedge \Diamond \alpha$

Truth-value	Intuitive meaning
v(lpha) = F	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
$\mathbf{v}(\alpha) = \mathbf{f}$	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$V(\alpha) = f_1$	$\square \alpha \wedge \neg \alpha \wedge \square \neg \alpha$
$v(lpha) = f_2$	$\Box \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$\mathbf{v}(\alpha) = \mathbf{t_2}$	$\Diamond \neg \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = t_1$	$\Box \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = \mathbf{t}$	$\Diamond \neg \alpha \wedge \alpha \wedge \Diamond \alpha$
$V(\alpha) = T$	$\Box \alpha \wedge \alpha \wedge \Diamond \alpha$

The 8 values introduced in [OS16] for K.

Truth-value	Intuitive meaning
v(lpha) = F	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
v(lpha) = f	$\Diamond \neg \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$v(lpha) = f_1$	$\Box \alpha \wedge \neg \alpha \wedge \Box \neg \alpha$
$v(lpha) = f_2$	$\Box \alpha \wedge \neg \alpha \wedge \Diamond \alpha$
$v(\alpha) = t_2$	$\Diamond \neg \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = t_1$	$\Box \alpha \wedge \alpha \wedge \Box \neg \alpha$
$v(\alpha) = \mathbf{t}$	$\Diamond \neg \alpha \wedge \alpha \wedge \Diamond \alpha$
$V(\alpha) = T$	$\Box \alpha \wedge \alpha \wedge \Diamond \alpha$

Value function: $\mathbf{t}(\beta) = \Diamond \neg \beta \land \beta \land \Diamond \beta$

Distinguished Sets

Classification of the 8 values:

1. $\mathcal{D} = \{\mathbf{T}, \mathbf{t}, \mathbf{t}_1, \mathbf{t}_2\}$ (α is true) 2. $\mathcal{N} = \{\mathbf{T}, \mathbf{t}_1, \mathbf{f}_2, \mathbf{f}_1\}$ (α is necessary) 3. $\mathcal{I} = \{\mathbf{F}, \mathbf{f}_1, \mathbf{t}_2, \mathbf{t}_1\}$ ($\neg \alpha$ is necessary) 4. $\mathcal{P} = \{\mathbf{T}, \mathbf{t}, \mathbf{f}_2, \mathbf{f}\}$ (α is possible) 5. $\mathcal{PN} = \{\mathbf{F}, \mathbf{f}, \mathbf{t}, \mathbf{t}_2\}$ ($\neg \alpha$ is possible)

For example, $\mathbf{t_2}(\alpha) = \Diamond \neg \alpha \land \alpha \land \Box \neg \alpha$, hence:

- ▶ $\mathbf{t_2} \in \mathcal{PN}$ (¬ α is possible)
- ▶ $\mathbf{t_2} \in \mathcal{D}$ (designated value, α is true "now")
- ▶ $\mathbf{t_2} \in \mathcal{I}$ (α is impossible)

Do we need all the 8 values?

 $\mathbf{t_1}$ and $\mathbf{f_1}$ denote "states" without successors:

$$\mathbf{t_1}(\alpha) = \Box \neg \alpha \wedge \alpha \wedge \Box \alpha$$
$$\mathbf{f_1}(\alpha) = \Box \neg \alpha \wedge \neg \alpha \wedge \Box \alpha$$

Do we need all the 8 values?

 $\mathbf{t_1}$ and $\mathbf{f_1}$ denote "states" without successors:

$$\mathbf{t_1}(\alpha) = \Box \neg \alpha \wedge \alpha \wedge \Box \alpha$$
$$\mathbf{f_1}(\alpha) = \Box \neg \alpha \wedge \neg \alpha \wedge \Box \alpha$$

- Not needed in logics characterizing serial frames.
- Our approach: The "modal characterization" of truth values yields conditions on those values. These conditions are systemically obtained for all the 15 logics.

Values per Family of Logics

Truth-value	Meaning
$V(\alpha) = \mathbf{F}$	$\Diamond \neg \alpha, \neg \alpha, \Box \neg \alpha$
$v(\alpha) = f$	$\Diamond \neg \alpha, \neg \alpha, \Diamond \alpha$
$v(lpha) = f_1$	$\Box \alpha, \neg \alpha, \Box \neg \alpha$
$v(\alpha) = f_2$	$\Box \alpha, \neg \alpha, \Diamond \alpha$
$v(lpha) = t_2$	$\Diamond \neg \alpha, \alpha, \Box \neg \alpha$
$v(\alpha) = t_1$	$\Box \alpha, \alpha, \Box \neg \alpha$
$v(\alpha) = t$	$\Diamond \neg \alpha, \alpha, \Diamond \alpha$
$V(\alpha) = T$	$\Box \alpha, \alpha, \Diamond \alpha$

	Axiom	Condition	Rule
D	$\Box \alpha \to \Diamond \alpha$	$v(\alpha) \in \mathcal{N}$	$v(\alpha) \in \mathcal{P}$
		$v(\alpha) \in \mathcal{I}$	$v(\alpha) \in \mathcal{PN}$

Values allowed

- $ightharpoonup \mathcal{V}(K) = \{T, t, t_1, t_2, F, f, f_1, f_2\}$
- $\qquad \qquad \mathcal{V}(\mathsf{KD}) = \{\mathsf{T}, \mathsf{t}, \overset{\bigstar}{\mathsf{K}}, \mathsf{t_2}, \mathsf{F}, \mathsf{f}, \overset{\bigstar}{\mathsf{K}}, \mathsf{f_2}\}$

Distinguished sets

- $ightharpoonup \mathcal{D} = \{ T, t, t_1, t_2 \}$
- $ightharpoonup \mathcal{N} = \{ T, t_1, f_2, f_1 \}$
- $ightharpoonup \mathcal{I} = \{F, f_1, t_2, t_1\}$
- ▶ $P = \{T, t, f_2, f\}$
- $\triangleright \mathcal{PN} = \{\mathbf{F}, \mathbf{f}, \mathbf{t}, \mathbf{t_2}\}$

Values per Family of Logics

Truth-value	Meaning
$V(\alpha) = \mathbf{F}$	$\Diamond \neg \alpha, \neg \alpha, \Box \neg \alpha$
$v(\alpha) = f$	$\Diamond \neg \alpha, \neg \alpha, \Diamond \alpha$
$v(\alpha) = f_1$	$\Box \alpha, \neg \alpha, \Box \neg \alpha$
$v(\alpha) = f_2$	$\Box \alpha, \neg \alpha, \Diamond \alpha$
$v(\alpha) = t_2$	$\Diamond \neg \alpha, \alpha, \Box \neg \alpha$
$v(\alpha) = t_1$	$\Box \alpha, \alpha, \Box \neg \alpha$
$V(\alpha) = \mathbf{t}$	$\Diamond \neg \alpha, \alpha, \Diamond \alpha$
$V(\alpha) = T$	$\Box \alpha, \alpha, \Diamond \alpha$

Distinguished sets

$$ightharpoonup \mathcal{D} = \{ T, t, t_1, t_2 \}$$

$$\mathcal{N} = \{\mathsf{T}, \mathsf{t_1}, \mathsf{f_2}, \mathsf{f_1}\}$$

$$ightharpoonup \mathcal{I} = \{F, f_1, t_2, t_1\}$$

▶
$$P = \{T, t, f_2, f\}$$

$$ightharpoonup \mathcal{PN} = \{F, f, t, t_2\}$$

	Axiom	Condition	Rule
D	$\Box \alpha \to \Diamond \alpha$	$v(\alpha) \in \mathcal{N}$	$v(\alpha) \in \mathcal{P}$
		$v(\alpha) \in \mathcal{I}$	$v(\alpha) \in \mathcal{PN}$
Т	$\Box \alpha \to \alpha$	$v(\alpha) \in \mathcal{N}$	$v(\alpha) \in \mathcal{D}$
		$v(lpha)\in\mathcal{I}$	$v(\alpha) \not\in \mathcal{D}$

Values allowed

- $ightharpoonup V(K) = \{T, t, t_1, t_2, F, f, f_1, f_2\}$
- $\mathcal{V}(\mathsf{KD}) = \{\mathsf{T}, \mathsf{t}, \bigstar, \mathsf{t_2}, \mathsf{F}, \mathsf{f}, \bigstar, \mathsf{f_2}\}$
- $\mathcal{V}(\mathsf{KT}) = \{\mathsf{T}, \mathsf{t}, \mathsf{K}, \mathsf{K}, \mathsf{F}, \mathsf{f}, \mathsf{K}, \mathsf{K}\}$

$\alpha \to \beta$	F	f	f ₁	f ₂	t ₂	t ₁	t	T
F	⟨T ⟩	⟨T ⟩	{ T }	(T)	(T)	(T)	⟨T ⟩	(T)
f	{ t }	$\{T,t\}$	{ t ₁ }	(T)	{ t }	(T)	{T,t}	(T)
f ₁	$\{t_2\}$	{ t }	{ t ₁ }	(T)	$\{\mathbf t_{\mathbf 2}\}$	{ t ₁ }	{ t }	(T)
f ₂	{ t ₂ }	{ t }	{ t ₁ }	(T)	$\{\mathbf{t_2}\}$	{ t ₁ }	{ t }	(T)
t ₂	$\{\mathbf{f_2}\}$	$\{\mathbf{f_2}\}$	{ f ₂ }	$\{\mathbf{f_2}\}$	$\{T\}$	(T)	(T)	(T)
t ₁	{ F }	{ f }	{ f ₁ }	$\{\mathbf{f_2}\}$	$\{\mathbf t_{\mathbf 2}\}$	$\{\mathbf t_1\}$	{ t ₂ }	(T)
t	{ f }	$\{\mathbf f, \mathbf f_{\mathbf 2}\}$	{ f ₂ }	$\{\mathbf{f_2}\}$	{ t }	(T)	{T,t}	(T)
T	{ F }	{ f }	{ f ₁ }	$\{\mathbf{f_2}\}$	$\{\mathbf{t_2}\}$	{ t ₁ }	{ t }	(T }

α	$\Box^{K} \alpha$	$\Box^{KB} \alpha$	$\Box^{K4} \alpha$	$\Box^{K5} \alpha$	$\Box^{\text{K45}}\alpha$
F	$\{\textbf{F}, \textbf{f}, \textbf{f_2}\}$	⟨F ⟩	$\{\textbf{F}, \textbf{f}, \textbf{f_2}\}$	{ F }	{F }
f	$\{\textbf{F}, \textbf{f}, \textbf{f_2}\}$	{F }	$\{\textbf{F}, \textbf{f}, \textbf{f_2}\}$	{ F }	{ F }
f ₁	$\{\mathbf t_1\}$	$\{\mathbf t_1\}$	$\{\mathbf t_1\}$	$\{\mathbf t_1\}$	$\{\mathbf t_1\}$
f ₂	$\{\textbf{T},\textbf{t},\textbf{t_2}\}$	$\{\mathbf t_{\mathbf 2}\}$	$\{T\}$	$\{ \textbf{T}, \textbf{t_2} \}$	(T)
t ₂	$\{\textbf{F},\textbf{f},\textbf{f_2}\}$	$\{\textbf{F},\textbf{f},\textbf{f_2}\}$	$\{\textbf{F},\textbf{f},\textbf{f_2}\}$	$\{{f F}\}$	{F }
t ₁	$\{\mathbf{t_1}\}$	$\{\mathbf{t_1}\}$	$\{\mathbf t_1\}$	$\{\mathbf t_1\}$	$\{\mathbf{t_1}\}$
t	$\{\textbf{F}, \textbf{f}, \textbf{f_2}\}$	$\{\textbf{F}, \textbf{f}, \textbf{f_2}\}$	$\{\textbf{F}, \textbf{f}, \textbf{f_2}\}$	{F }	⟨F }
T	$\{\textbf{T},\textbf{t},\textbf{t_2}\}$	$\{\textbf{T},\textbf{t},\textbf{t_2}\}$	(T }	$\{ \textbf{T}, \textbf{t_2} \}$	⟨T }

α	$\Box^{KT} \alpha$	$\Box^{KTB} \alpha$	$\Box^{KT4}\alpha$	$\Box^{KTB45} \alpha$
F	{ F }	{F }	{ F }	⟨F }
f	{F, f }	{F }	{F, f }	{F }
t	{F, f }	{F, f }	{F, f }	{F }
T	{T, t}	{T, t}	⟨T }	⟨T }

α	$\Box^{KD} \alpha$	$\Box^{KDB} \alpha$	$\Box^{KD4} \alpha$	$\Box^{KD5}\alpha$	$\Box^{KD45}\alpha$
F	$\{F,f,f_2\}$	{F }	{F }	{F }	{F }
f	$\{\mathbf{F},\mathbf{f},\mathbf{f_2}\}$	{F }	$\{\mathbf{F},\mathbf{f},\mathbf{f_2}\}$	{ F }	⟨F }
f ₂	$\{\mathbf{T},\mathbf{t},\mathbf{t_2}\}$	$\{\mathbf t_{\mathbf 2}\}$	(T)	$\{\mathbf{T},\mathbf{t_2}\}$	(T)
t ₂	$\{\mathbf{F},\mathbf{f},\mathbf{f_2}\}$	$\{\mathbf{F},\mathbf{f},\mathbf{f_2}\}$	{ F }	{ F }	{ F }
t	$\{\textbf{F},\textbf{f},\textbf{f_2}\}$	$\{\textbf{F},\textbf{f},\textbf{f_2}\}$	$\{\textbf{F},\textbf{f},\textbf{f_2}\}$	{F }	⟨F }
Т	$\{\textbf{T},\textbf{t},\textbf{t_2}\}$	$\{\textbf{T},\textbf{t},\textbf{t_2}\}$	(T)	$\{T, t_2\}$	{T }

Outline

The Meaning of Truth Values

Level Valuations

Partial Valuations and Relational Mode

Concluding Remarks

Level Semantics Revisited

```
Definition (Level valuation in \mathcal{M}_{\star})

Let Val(\mathcal{M}_{\star}) be the set of valuation functions in \mathcal{M}_{\star}.

\mathcal{L}_{0}(\mathcal{M}_{\star}) Every v \in Val(\mathcal{M}_{\star}) where, if \exists \alpha. v(\alpha) \in \{\mathbf{t}_{1}, \mathbf{f}_{1}\}, then \forall \beta, v(\beta) \in \{\mathbf{t}_{1}, \mathbf{f}_{1}\}.

\mathcal{L}_{k+1}(\mathcal{M}_{\star}) Every v \in \mathcal{L}_{k} such that, for every formula \alpha, if \models^{\mathcal{L}_{k}} \alpha, then v(\alpha) \in \{\mathbf{T}, \mathbf{t}_{1}\}
```

Level Semantics Revisited

Definition (Level valuation in \mathcal{M}_{\star})

Let $Val(\mathcal{M}_{\star})$ be the set of valuation functions in \mathcal{M}_{\star} .

$$\mathcal{L}_0(\mathcal{M}_{\star})$$
 Every $\mathbf{v} \in Val(\mathcal{M}_{\star})$ where, if $\exists \alpha. \mathbf{v}(\alpha) \in \{\mathbf{t_1}, \mathbf{f_1}\}$, then $\forall \beta, \mathbf{v}(\beta) \in \{\mathbf{t_1}, \mathbf{f_1}\}$.

 $\mathcal{L}_{k+1}(\mathcal{M}_{\star})$ Every $v \in \mathcal{L}_k$ such that, for every formula α , if $\vdash^{\mathcal{L}_k} \alpha$, then $v(\alpha) \in \{\mathbf{T}, \mathbf{t_1}\}$

The set of level valuations in \mathcal{M}_{\star} is given by

$$\mathcal{L}(\mathcal{M}_{\star}) = \bigcap_{n=0}^{\infty} \mathcal{L}_n$$

Soundness ($\Gamma \vdash^{\star} \alpha \Rightarrow \Gamma \vDash^{\mathcal{L}(\mathcal{M}_{\star})} \alpha$) is easy.

Completeness of Level Valuations

Henkin construction where characteristic functions are obtained directly from the meaning of the truth values.

$$V_{\Delta}^{\mathcal{L}}(\alpha) = \iota \text{ iff } \Delta \vdash^{\mathcal{L}} \iota(\alpha)$$

Completeness of Level Valuations

Henkin construction where characteristic functions are obtained directly from the meaning of the truth values.

$$\mathsf{v}^{\mathcal{L}}_{\Delta}(\alpha) = \iota \mathsf{iff} \ \Delta \vdash^{\mathcal{L}} \iota(\alpha)$$

For instance, for the family KT*:

$$\mathbf{V}_{\Delta}^{\mathcal{L}}(\alpha) = \begin{cases} \mathbf{F} & \text{iff } \Delta \vdash^{\mathcal{L}} \Box \neg \alpha \text{ (and } \Delta \vdash^{\mathcal{L}} \neg \alpha \land \lozenge \neg \alpha) \\ \mathbf{f} & \text{iff } \Delta \vdash^{\mathcal{L}} \neg \alpha \land \lozenge \alpha \text{ (and } \Delta \vdash^{\mathcal{L}} \lozenge \neg \alpha) \\ \mathbf{t} & \text{iff } \Delta \vdash^{\mathcal{L}} \alpha \land \lozenge \neg \alpha \text{ (and } \Delta \vdash^{\mathcal{L}} \lozenge \alpha) \\ \mathbf{T} & \text{iff } \Delta \vdash^{\mathcal{L}} \Box \alpha \text{ (and } \Delta \vdash^{\mathcal{L}} \alpha \land \lozenge \alpha) \end{cases}.$$

Lemma (Adequacy)

For every logic $\mathcal L$ and maximally consistent set Δ , $v_\Delta^{\mathcal L}$ is a level valuation.

Theorem (Completeness)

For every modal logic \mathcal{L} and associated Nmatrix \mathcal{M} ,

$$\Gamma \vDash^{\mathcal{L}(\mathcal{M}_{\star})} \alpha \Rightarrow \Gamma \vdash^{\star} \alpha.$$

Outline

The Meaning of Truth Values

Level Valuations

Partial Valuations and Relational Model

Concluding Remarks

Back to the Meaning of Values

Consider a valuation v s.t $v(\alpha) = \mathbf{f_2}$:

- ▶ Recall: $\mathbf{f_2}(\alpha) = \Box \alpha \land \neg \alpha \land \Diamond \alpha$.
- \blacktriangleright Hence, $\Diamond \alpha$ needs to be true.
- ▶ This requires the existence of a valuation v' s.t. $v'(\alpha) \in \mathcal{D}$, thus fulfilling the requirement $\Diamond \alpha$.

Back to the Meaning of Values

Consider a valuation v s.t $v(\alpha) = \mathbf{f_2}$:

- ▶ Recall: $\mathbf{f_2}(\alpha) = \Box \alpha \land \neg \alpha \land \Diamond \alpha$.
- ightharpoonup Hence, $\Diamond \alpha$ needs to be true.
- ► This requires the existence of a valuation v' s.t. $v'(\alpha) \in \mathcal{D}$, thus fulfilling the requirement $\Diamond \alpha$.
- ▶ Such v' must satisfy some extra requirements (due to \Box):
 - ▶ By NEC: if $v(\beta) \in \mathcal{N}$ and vRv' then $v'(\beta) \in \mathcal{D}$
 - ▶ In, e.g., K4: if $v(\beta) \in \mathcal{N}$ and vRv' then $v'(\beta) \in \mathcal{N}$.

We will systematically build a relational model for partial valuations.

Relational Model

Definition (Pre-model $\langle \Pi, R \rangle$)

Where $\Pi \subseteq [\Lambda \to \mathcal{V}]_{\mathcal{M}}$ is a set of partial valuations, and $R \subseteq \Pi \times \Pi$ relates valuations:

- 1. If $v(\alpha) \in \mathcal{P}$, then $\exists v' \in \Pi$ such that vRv' and $v'(\alpha) \in \mathcal{D}$;
- 2. If $v(\alpha) \in \mathcal{PN}$, then $\exists v' \in \Pi$ such that vRv' and $v'(\alpha) \notin \mathcal{D}$.

$$\begin{array}{ccc} \alpha \dots \beta \dots \\ \mathbf{v} : \dots \mathcal{P} \dots \mathcal{P} \mathcal{N} \dots \\ & \downarrow_{\exists} & \downarrow_{\exists} \\ \mathbf{v}' : \dots \mathcal{D} \dots \mathcal{D}^{\complement} \dots \end{array}$$

From Pre-models to K-Models

Property		Condition	Implies
nec		$v(\alpha) \in \mathcal{N}$ and vRv'	$v'(\alpha)\in\mathcal{D}$
		$v(\alpha) \in \mathcal{I} \text{ and } vRv'$	$\mathbf{V}'(\alpha) \not\in \mathcal{D}$

▶ Notation $\iota \Rightarrow^R V$: if $v(\alpha) = \iota$ and vRv', then $v'(\alpha) \in V$.

$$\mathbf{T} \Rightarrow^{R} \mathbf{T}, \mathbf{t}, \mathbf{t_{1}}, \mathbf{t_{2}} \qquad \qquad \mathbf{F} \Rightarrow^{R} \mathbf{F}, \mathbf{f}, \mathbf{f_{1}}, \mathbf{f_{2}}$$

$$\alpha \dots \beta \dots \qquad \qquad \alpha \dots \beta \dots$$

$$\mathbf{v} : \dots \mathbf{T} \dots \mathcal{P}, \mathcal{P} \mathcal{N} \dots \qquad \qquad \mathbf{v} : \dots \mathbf{F} \dots \mathcal{P}, \mathcal{P} \mathcal{N} \dots$$

$$\downarrow_{R} \quad \downarrow_{\exists} \qquad \qquad \downarrow_{R} \quad \downarrow_{\exists}$$

$$\mathbf{v}' : \dots \mathcal{D} \dots \mathcal{D}, \mathcal{D}^{\complement} \dots \qquad \qquad \mathbf{v}' : \dots \mathcal{D}^{\complement} \dots \mathcal{D}, \mathcal{D}^{\complement} \dots$$

From K-Models to K4* Models

Property		Condition	Implies	
4	$\square \alpha \rightarrow \square \square \alpha$	$v(\alpha) \in \mathcal{N}$ and vRv'	$\mathbf{v}'(\alpha) \in \mathcal{N}$	
		$v(\alpha) \in \mathcal{I} \text{ and } vRv'$	$v'(\alpha) \in \mathcal{I}$	

K	K4
$T \Rightarrow^R T, t, t_1, t_2$	$T \Rightarrow^R T, t_1$
$\mathbf{t_2} \Rightarrow^R \mathbf{F}, \mathbf{f}, \mathbf{f_1}, \mathbf{f_2}$	$\mathbf{t_2} \Rightarrow^R \mathbf{F}, \mathbf{f_1}$

Distinguished sets

- $\blacktriangleright \ \mathcal{N} = \{T, t_1, f_2, f_1\}$
- $\blacktriangleright \ \mathcal{I} = \{F, f_1, t_2, t_1\}$

The Whole Picture (The Recipe)

	Property	Condition	Implies
nec		$w(\alpha) \in \mathcal{N}$ and wRw'	$w'(\alpha) \in \mathcal{D}$
liec		$w(\alpha) \in \mathcal{I}$ and wRw'	$\mathbf{W}'(\alpha) \not\in \mathcal{D}$
t	$\Box \alpha \rightarrow \alpha$	$w(\alpha) \in \mathcal{N}$	$w(\alpha) \in \mathcal{D}$
'	$\square \alpha \rightarrow \alpha$	$w(\alpha) \in \mathcal{I}$	$w(\alpha) \not\in \mathcal{D}$
d	$\Box \alpha \rightarrow \Diamond \alpha$	$w(\alpha) \in \mathcal{N}$	$w(\alpha) \in \mathcal{P}$
u	$\Box \alpha \rightarrow \Diamond \alpha$	$w(\alpha) \in \mathcal{I}$	$w(\alpha) \in \mathcal{PN}$
b	$\alpha \to \Box \Diamond \alpha$	$w(\alpha) \in \mathcal{D}$ and wRw'	$w'(\alpha) \in \mathcal{P}$
D		$w(\alpha) \not\in \mathcal{D}$ and wRw'	$\mathbf{w}'(\alpha) \in \mathcal{PN}$
4	$\Box \alpha \to \Box \Box \alpha$	$w(\alpha) \in \mathcal{N}$ and wRw'	$w'(\alpha) \in \mathcal{N}$
•		$w(\alpha) \in \mathcal{I}$ and wRw'	$w'(\alpha) \in \mathcal{I}$
	$\Diamond \alpha \to \Box \Diamond \alpha$	$w(\alpha) \in \mathcal{P}$ and wRw'	$w'(\alpha) \in \mathcal{P}$
5		$w(\alpha) \in \mathcal{PN}$ and wRw'	$\mathbf{w}'(\alpha) \in \mathcal{PN}$
	$\Box\Box\alpha\to\Box\Box\Box\alpha$	$w(\alpha), w'(\alpha) \in \mathcal{N}$, wRw' and (wRw" or w'Rw")	$\mathbf{w}''(\alpha) \in \mathcal{N}$
		$w(\alpha), w'(\alpha) \in \mathcal{I}$, wRw' and (wRw'') or $w'Rw''$)	$\mathbf{w}''(\alpha) \in \mathcal{I}$

The Whole Picture (The Dishes)

```
T \Rightarrow^R T, t
                                                                                                                                                       T \Rightarrow^R T.t \quad T \Rightarrow^R T
                                                     \mathbf{t} \Rightarrow^{R} \mathbf{T}, \mathbf{t}, \mathbf{f}, \mathbf{f}_{2}
                                                                                                                                                      \mathbf{t} \Rightarrow^{R} \mathbf{t} \cdot \mathbf{f}
                                                                                                                                                                                            \mathbf{t} \Rightarrow^R \mathbf{t} \cdot \mathbf{f}
                                                                                                                                                      \mathbf{t_1} \Rightarrow^R \bullet \mathbf{t_1} \Rightarrow^R \bullet
T \Rightarrow^R T, t, t_1, t_2 \quad t_1 \Rightarrow^R \bullet
                                                                                                                                                                                                                                    T \Rightarrow^R T
                                                                                                    T \Rightarrow^R T. t_1
\mathbf{t}_1 \Rightarrow^R \bullet
                                                    \mathbf{t_2} \Rightarrow^R \mathbf{f}, \mathbf{f_2}
                                                                                                                                                       \mathbf{t_2} \Rightarrow^R \mathbf{F}, \mathbf{f} \quad \mathbf{t_2} \Rightarrow^R \mathbf{F}
                                                                                                                                                                                                                               t \Rightarrow^R t \cdot f
                                                                                                    \mathbf{t_1} \Rightarrow^R \bullet
                                                                                                                                                      \mathbf{f_2} \Rightarrow^R \mathbf{T}, \mathbf{t} \quad \mathbf{f_2} \Rightarrow^R \mathbf{T} \quad \mathbf{t_1} \Rightarrow^R \bullet
                                                                                                                                                                                                                                                                       T \Rightarrow^R T, t, t_2
\mathbf{t_2} \Rightarrow^R \mathbf{F}, \mathbf{f}, \mathbf{f_1}, \mathbf{f_2} \quad \mathbf{f_2} \Rightarrow^R \mathbf{t}, \mathbf{t_2}
                                                                                                    \mathbf{t_2} \Rightarrow^R \mathbf{F}, \mathbf{f_1}
\mathbf{f_2} \Rightarrow^R \mathbf{T}, \mathbf{t}, \mathbf{t_1}, \mathbf{t_2} \quad \mathbf{f_1} \Rightarrow^R \bullet
                                                                                                    \mathbf{f_2} \Rightarrow^R \mathbf{T}. \mathbf{t_1}
                                                                                                                                                      \mathbf{f_1} \Rightarrow^R \bullet \qquad \mathbf{f_1} \Rightarrow^R \bullet \qquad \mathbf{f_1} \Rightarrow^R \bullet
                                                                                                                                                                                                                                                                       \mathbf{t_2} \Rightarrow^R \mathbf{F}, \mathbf{f}, \mathbf{f_2}
f_1 \Rightarrow^R \bullet f \Rightarrow^R F, f, t, t_2 \quad f_1 \Rightarrow^R \bullet
                                                                                                                                                      f \Rightarrow^R t. f \quad f \Rightarrow^R t. f \quad f \Rightarrow^R t. f \quad f_2 \Rightarrow^R T. t. t_2
\mathbf{F} \Rightarrow^R \mathbf{F}, \mathbf{f}, \mathbf{f_1}, \mathbf{f_2} \quad \mathbf{F} \Rightarrow^R \mathbf{F}, \mathbf{f}
                                                                                                                                                       \mathbf{F} \Rightarrow^R \mathbf{F} \cdot \mathbf{f}
                                                                                                                                                                                            \mathbf{F} \Rightarrow^{R} \mathbf{F}
                                                                                                                                                                                                                                   \mathbf{F} \Rightarrow^R \mathbf{F}
                                                                                                                                                                                                                                                                       \mathbf{F} \Rightarrow^R \mathbf{F}, \mathbf{f}, \mathbf{f}_2
                                                                                                    \mathbf{F} \Rightarrow^R \mathbf{F} \cdot \mathbf{f}_1
              (a) K
                                                              (b) KB
                                                                                                               (c) K4
                                                                                                                                                          (d) K5
                                                                                                                                                                                             (e) K45
                                                                                                                                                                                                                                    (f) KB45
                                                                                                                                                                                                                                                                             (g) KD
                                                                                                                                                                                               \mathbf{t} \rightarrowtail \mathbf{f}
                                                                                                                                                                                                                                                                      \mathbf{t} \rightarrowtail \mathbf{f}
        T \Rightarrow^R T. t
                                                                                      T \Rightarrow^R T.t \quad T \Rightarrow^R T
                                                                                                                                                                                               \mathbf{f} \rightarrowtail \mathbf{t}
                                                                                                                                                                                                                                                                      \mathbf{f} \rightarrowtail \mathbf{t}
                                                                                     \mathbf{t} \Rightarrow^R \mathbf{t}, \mathbf{f} \quad \mathbf{t} \Rightarrow^R \mathbf{t}, \mathbf{f} \quad \mathbf{t} \mapsto \mathbf{F} \mathbf{f}
        \mathbf{t} \Rightarrow^R \mathbf{T}, \mathbf{t}, \mathbf{f}, \mathbf{f}_2
                                                                                                                                                                                                                                    \mathbf{t} \rightarrowtail \mathbf{F} \cdot \mathbf{f}
        T \Rightarrow^R T
                                                                                                                                                                                                                                                                      t \Rightarrow^R t f
                                                                                                                                                                                                                                                                     f \Rightarrow^R \mathbf{t}, \mathbf{f}
         \mathbf{F} \Rightarrow^R \mathbf{F} \cdot \mathbf{f} \qquad \mathbf{F} \Rightarrow^R \mathbf{F}
                                                                                      \mathbf{F} \Rightarrow^{R} \mathbf{F}.\mathbf{f} \quad \mathbf{F} \Rightarrow^{R} \mathbf{F} \quad \mathbf{F} \Rightarrow^{R} \mathbf{F}.\mathbf{f}
                                                                                                                                                                                               \mathbf{F} \Rightarrow^R \mathbf{F} \cdot \mathbf{f} \qquad \mathbf{F} \Rightarrow^R \mathbf{F}
                                                                                                                                                                                                                                                                      \mathbf{F} \Rightarrow^{R} \mathbf{F}
             (h) KDB
                                                     (i) KD4
                                                                                         (i) KD5
                                                                                                                         (k) KD45
                                                                                                                                                               (l) KT
                                                                                                                                                                                                 (m) KTB
                                                                                                                                                                                                                                    (n) KT4
                                                                                                                                                                                                                                                                    (o) KTB45
```

Frame Properties

According to the logic \mathcal{L} , the relation induced by \Rightarrow^R is serial/reflexive/symmetric/transitive/Euclidian.

Building Tables

- Models can be extended with "new columns"
- ► This procedure is deterministic.

Theorem (Analyticity (Procedure))

Every partial level-valuation can be extended to a level-valuation.

Theorem (Soundness)

For every \mathcal{L} , $\Gamma \vdash^{\mathcal{L}} \alpha \Rightarrow \Gamma \vDash^{\mathcal{L}} \alpha$.

Completeness of Partial Valuations

- We show that level valuations restricted to a (closed) domain are good partial valuations.
- This is called co-analyticity.
- ► The proof is entirely guided by the modal characterization of truth values.

Completeness of Partial Valuations

- We show that level valuations restricted to a (closed) domain are good partial valuations.
- ► This is called co-analyticity.
- ► The proof is entirely guided by the modal characterization of truth values.

Theorem (Co-analyticity)

For every level-valuation v and every set closed under subformulas Λ , $v \downarrow_{\Lambda}$ is a partial level-valuation.

Theorem (Completeness)

For every \mathcal{L} , $\Gamma \vDash^{\mathcal{L}} \alpha \Rightarrow \Gamma \vdash^{\mathcal{L}} \alpha$.

Outline

The Meaning of Truth Values

Level Valuations

Partial Valuations and Relational Mode

Concluding Remarks

Concluding Remarks

Our nmatrices were computed (and refined) with the aid of a Rocq procedure (impossible by hand!). E.g, axiom **K** in KTB45:

```
**Command A, Proctice** **Definition** **Definition
```

Future work

Full mechanization of our proofs. Partial results for S5.

Concluding Remarks

Showing analyticity correct for KD requires checking more than 15M cases!

Maude to the rescue:

```
[A:t, C:f, NEW:f]: 1,
[A : t2, C : f2, NEW : f2]: (2 <- 1),
[A : f2, C : t2, NEW : t]: (2 <- 1),
[A : f2, C : f2, NEW : t2]: (2 <- 1)))
16 : ok((
[A:t, C:f, NEW:f]: 1,
[A: t2, C: f2, NEW: f2]: (2 <- 1),
[A : f2, C : t2, NEW : t2]: (2 <- 1),
[A : f2, C : f2, NEW : T]: (2 <- 1)))
16 : ok((
[A:t,C:f, NEW:f]: 1,
[A: t2, C: f2, NEW: f2]: (2 <- 1),
[A : f2, C : t2, NEW : t2]: (2 <- 1),
[A : f2, C : f2, NEW : t]: (2 <- 1)))
16 : ok((
[A:t,C:f, NEW:f]: 1,
[A : t2, C : f2, NEW : f2]: (2 <- 1),
[A : f2, C : t2, NEW : t2]: (2 <- 1),
[A : f2, C : f2, NEW : t2]: (2 <- 1)))
```

Future Work

- Intuitionistic modal cube: combining the nmatrices for LJ in [LCL24] with those proposed here.
- Non-normal modalities? How many values are needed?
- Counter-models (some partial results with our Rocq tool)
- Relating complexity results?
- NMatrices for Ecumenical systems (already in progress).

Thank you!

References I

- Arnon Avron and Iddo Lev, *Non-deterministic* multiple-valued structures, Journal of Logic and Computation **15** (2005), no. 3, 241–261.
- Lukas Grätz, Truth tables for modal logics t and s4, by using three-valued non-deterministic level semantics, Journal of Logic and Computation 32 (2022), no. 1, 129–157.
- John T Kearns, *Modal semantics without possible worlds*, The Journal of Symbolic Logic **46** (1981), no. 1, 77–86.
- Renato Leme, Marcelo Coniglio, and Bruno Lopes, Intuitionism with truth tables: A decision procedure for ipl based on rnmatrices, 2024.
- Hitoshi Omori and Daniel Skurt, *More modal semantics* without possible worlds, IfCoLog Journal of Logics and their Applications **3** (2016), no. 5, 815–846.