Instructions for Python, Matlab, and R codes used in the manuscript

'Python algorithm' Folder:

- **SubRegion_generate.py**: segment gigapixel whole slide images into processable small tiles. In this study each tile (subregion) is 200*200 pixels. The output is for cell extraction.
- Color_method.py: assign coordinate to every pixel of downsampled whole slide images.
 The output is used to generate equidistant sections.
- (examplar script) Case1_cKDTree_CD3CD4.py: calculate DoC score for CD3 and CD4 for Case 1. The script uses KDTree algorithm (implemented in C language) to accelerate the process to search nearest neighbors.
- Case1 subfolder: CD3+, CD4+, CD8+, CD20+, and FoxP3+ cell coordinates for Case 1. Coordinate files are used as input for cKDTree algorithm.

'Matlab algorithms' folder:

- 'Registration' subfolder:
 - Case_1_reginfo:
 - Transformation matrices (included in '_SecInfo' folders)
 - Annotations for CD4 (as the reference to compare the local and global registration algorithm)
 - CD4+ cells coordinate
 - Contour:
 - Registered contour under local and global registration.
 - Case1_Contour_globalReg.m: register the original annotations for target whole slides images using global registration transformation matrices.
 - Case1_Contour_localReg.m: register the original annotations for target whole slides images using local registration transformation matrices.
 - Case1_Coords_Registration.m: register the cell coordinates part by part using the

local transformation matrices.

- Reg_Integration.m: Integrate registered (local registration) subregions into a complete image.
- Registration_validation.R: Evaluate the performance of local registration by calculating the DICE score for both local and global method and then compare using Wilcoxon test.

'Segmentation subfolder:

- 'Sources' subfolder:
 - Case1 subfolder:
 - CD3 subfolder:
 - 'Coords' subfolder: local cell coordinate for each subregion.
 - 'Processed subregions' subfolder: subregion images labeled with algorithmic detected cells.
 - 'subregions subfolder': raw subregion images.
 - CD4, 8, 20, FoxP3 subfolders: same as above.
 - Case2 5 subfolders: same as above.
- Main.m: main script for cell extraction and coordinate record. Capable of batch processing.
- Coordinate_record.m: Matlab function script, record cell coordinate while processing each subregion.
- rgb2cmyk.m: Matlab function script, converts RGB channel to CMYK channel.
- Tumor_Reconstruct.m: take all subregion coordinate files as input, convert local coordinate into global coordinate and then combine.
- regionSelect.m: rules out preliminary cells which failed to pass the morphometric filters from the cell candidate pool.
- RandomSelect.R: select processed subregion images using systemic sampling methods to

evaluate the performance of segmentation algorithm.

- 'Spatial statistics' folder:
- MiFunction.R: function script.
- fractalAnalysis.R: perform fractal analysis to determine window size for spatial model fitting (Fig.S4).
- IF_CT_generate.R: obtain invasive front and tumor regions.
- N_generate_and_area.R: obtain normal regions and calculate areas for IF, CT, and N.
- Annotation_vis.R: visualize region annotations (Fig.5A).
- Section_generate.R: generate equidistant sections (rings) towards the tumor boundary (Fig.4C).
- Intra-hetero.R: visualize cell density variations across each specimen (Figs.5D, S8) and generate density vs distance profile from N to CT (immune infiltration profile).
- Density_Profile_WSI.R: calculate standard error for each density along the immune infiltration profile (Figs.5C, S7).
- **Density_Profile_IF.R:** generate density-distance profile along the invasive front and associated standard errors (Figs.4D, 5E, S9).
- Shannon_Entropy.R: use a modified version of Shannon's Entropy to gauge the spatial heterogeneity across the specimen (Fig.6).
- subregion_fit.R: perform spatial model fitting for a typical clustered point pattern and a typical non-clustered point pattern (Fig.7).
- Cluster_stats.R: perform clustering and morphometric analysis (Figs.8, S12).
- Chisq-test-WSI.R: perform chi-square test for densities (over equidistant sections generated by script 'Section_generate.R', Fig.S5).
- Chisq-test-IF.R: perform chi-square test for densities (over regions generated by Voronoi tessellation, Fig.S6).
- Correlation_analysis.R: perform correlation analysis (Figs.9, 10).