Comunicaciones I2C vs SPI.

Curso robótica II: Día 3

Comunicación SPI e I2C

- Protocolos más comunes junto con UART.
- Comunicación en serie.
- Comunicación entre elementos de una PCB/Equipo.
- Distancias cortas (máximo 1m)
- Se trabajan con lectura/escritura con registros.
- Muy común en sensores/actuadores.

Ejemplo mapa registros BMI160

Read/write			read only write			only reserved					
		N.		1-20							
Register Address	Register Name	Default Value	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
0x7E	CMD	0x00				c	md				
0x7D						res	erved				
0x7C		-				res	erved				
0x7B	STEP_CONF_1	0x03		reser	rved		step_cnt_en		step_conf_10_8		
0x7A	STEP_CONF_0	0x15		step_conf_7_0							
0x79	STEP_CNT_1	0x00		step_cnt_15_8							
0x78	STEP_CNT_0	0x00	Land to the same of			step_	cnt_7_0				
0x77	OFFSET_6	0x00	gyr_off_en	gyr_off_en acc_off_en off_gyr_z_9_8 off_gyr_y_9_8 off_gyr_x_9_8						x_9_8	
0x76	OFFSET_5	0x00				off_gy	r z 7 0	000000000000000000000000000000000000000	S. C. Me VIDEO		
0x75	OFFSET_4	0x00		off_gyr_y_7_0							
0x74	OFFSET_3	0x00		off_gyr_x_7_0							
0x73	OFFSET_2	0x00		off_acc_z							
0x72	OFFSET_1	0x00		off_acc_y							
0x71	OFFSET_0	0x00	off_acc_x								
0x70	NV_CONF	0x00						spi_en			
0x6F	-	-	reserved								
0x6E		- 1	reserved								

Más ejemplos

Table 7. ADT7411 Registers

RD/WR Address	Name	Power- on Default	
00h	Interrupt Status 1	00h	
01h	Interrupt Status 2	00h	
02h	Reserved	11.00	
03h	Internal Temperature and Voo LSBs	00h	
04h	External Temperature and AIN1 to AIN 4 LSBs	00h	
05h	AIN5 to AIN8 LSBs	00h	
06h	V _{DD} MSBs	xxh	
07h	Internal Temperature MSBs	00h	
08h	External Temperature MSBs/AIN1 MSBs	00h	
09h	AIN2 MSBs	00h	
0Ah	AIN3 MSBs	00h	
0Bh	AIN4 MSBs	00h	
0Ch	AIN5 MSBs	00h	
0Dh	AIN6 MSBs	00h	
0Eh	AIN7 MSBs	00h	
0Fh	AIN8 MSBs	00h	
10h-17h	Reserved		
18h	Control Configuration 1	00h	
19h	Control Configuration 2	00h	
1Ah	Control Configuration 3	00h	

Más ejemplos

8 REGISTER MAP

The following table lists the register map for the IAM-20380.

Table 7. ADT7411 Re	gisters
---------------------	---------

RD/WR Address	Name				
00h	Interrupt Status 1				
01h	Interrupt Status 2				
02h	Reserved				
03h	Internal Temperature and Voo LS				
04h	External Temperature and AIN1 to				
05h	AIN5 to AIN8 LSBs				
06h	V _{DD} MSBs				
07h	Internal Temperature MSBs				
08h	External Temperature MSBs/AIN1				
09h	AIN2 MSBs				
0Ah	AIN3 MSBs				
0Bh	AIN4 MSBs				
0Ch	AIN5 MSBs				
0Dh	AIN6 MSBs				
0Eh	AIN7 MSBs				
0Fh	AIN8 MSBs				
10h-17h	Reserved				
18h	Control Configuration 1				
19h	Control Configuration 2				
1Ah	Control Configuration 3				

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Accessible (writable) in Sleep Mode	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
00	00	SELF_TEST_X_GYRO	R/W	N	XG_ST_DATA[7:0]					-		
01	01	SELF_TEST_Y_GYRO	R/W	N		YG_ST_DATA[7:0]						
02	02	SELF_TEST_Z_GYRO	R/W	N		ZG_ST_DATA[7:0]						
13	19	XG_OFFS_USRH	R/W	N				X_OFFS_	USR [15:8]			
14	20	XG_OFFS_USRL	R/W	N				X_OFFS	_USR [7:0]			
15	21	YG_OFFS_USRH	R/W	N				Y_OFFS_	USR [15:8]			
16	22	YG_OFFS_USRL	R/W	N				Y_OFFS	_USR [7:0]			
17	23	ZG_OFFS_USRH	R/W	N		Z_OFFS_USR [15:8]						
18	24	ZG_OFFS_USRL	R/W	N		Z_OFFS_USR [7:0]						
19	25	SMPLRT_DIV	R/W	N	SMPLRT_DIV[7:0]							
1A	26	CONFIG	R/W	N	- FIFO_ EXT_SYNC_SET[2:0] DLPF_CFG[2:0]							
1 B	27	GYRO_CONFIG	R/W	N	XG_ST	YG_ST	ZG_ST	FS_SE	L [1:0]		FCHOI	CE_B[1:0]
1E	30	LP_MODE_CFG	R/W	N	GYRO_CYCL E		G_AVGCFG[2:0]			-		
23	35	FIFO_EN	R/W	N	TEMP _FIFO_EN	XG_FIFO_EN	YG_FIFO_EN	ZG_FIFO_EN	-	-	1920	
36	54	FSYNC_INT	R/C	N	FSYNC_INT	- 2	¥	60	23		123	8
37	55	INT_PIN_CFG	R/W	Y	INT_LEVEL	INT_OPEN	LATCH _INT_EN	INT_RD _CLEAR	FSYNC_INT_L EVEL	FSYNC _INT_MODE_ EN	123	9
38	56	INT_ENABLE	R/W	Y		н		FIFO _OFLOW _EN		GDRIVE_INT_ EN	1000	DATA_RDY_I NT_EN
ЗА	58	INT_STATUS	R/C	N		Æ		FIFO _OFLOW _INT	Ē2	GDRIVE_INT	(55)	DATA _RDY_INT

Ejemplo Registro STATUS (BMI160)

2.11.6 Register (0x1B) STATUS

ADDRESS 0x1B RESET 0b00000000 MODE R DESCRIPTION Reports sensor status flags. DEFINITION

Bit	Acronym	Definition
7	drdy_acc	Data ready (DRDY) for accelerometer in register
6	drdy_gyr	Data ready (DRDY) for gyroscope in register
5	drdy_mag	Data ready (DRDY) for magnetometer in register
4	nvm_rdy	NVM controller status
3	foc_rdy	FOC completed
2	mag_man_op	'0' indicates no manual magnetometer interface operation '1' indicates a manual magnetometer interface operation triggered via MAG_IF[2] or MAG_IF[3]
1	gyr_self_test_ok	'0' when gyroscope self-test is running or failed. '1' when gyroscope self-test completed successfully.

Drdy *: gets reset when one byte of the register for sensor * is read.

Nvm_rdy: status of NVM controller: '0' → NVM write operation is in progress; '1' → NVM

is ready to accept a new write trigger

foc_rdy: Fast offset compensation completed

Curso Robolica 2 de Wiabyluon en lwilch y youlube.

Ejemplo registro ACC_CONF (BMI160)

2.11.11 Register (0x40) ACC_CONF

ADDRESS 0x40 RESET 0b00101000 MODE RW

DESCRIPTION Sets the output data rate, the bandwidth, and the read mode of the acceleration sensor.

DEFINITION

Name		Register (0)	(40) ACC_CONF			
Bit	7	6	5	4		
Read/Write	R/W	R/W	R/W	R/W		
Reset Value	0	0	1	0		
Content acc_us		acc_bwp				
Bit	3	2	1	0		
Read/Write	R/W	R/W	R/W	R/W		
Reset Value	1	0	0	0		
Content	acc_odr					

acc_us: undersampling parameter. The undersampling parameter is typically used in low power mode

acc_bwp: bandwidth parameter determines filter configuration (acc_us=0) and averaging for undersampling mode (acc_us=1). For details see chapter 2.2.4.

acc_odr: define the output data rate in Hz is given by 100/2^{8-val(acc_odr)}. The output data rate is independent of the power mode setting for the sensor

acc_odr	Output data rate in Hz
0b0000	Reserved
0b0001	25/32
0b0010	25/16

0b1000	100
0b1011	800
0b1100	1600
0b1101-0b1111	Reserved

When acc_us is set to '0' and the accelerometer is in low-power mode, it will change to normal mode. If the acc_us is set to '0' and an command to enter low-power mode is send to the Register (0x7E) CMD, this command is ignored.

Inter-Integrated Circuit (I2C)

Características I2C

- Comunicación half-duplex
- Solo se necesitan 2 pines:

SDA: DatosSCL: Reloj

- Se necesitan resistencias de pull-up.
 Su valor limita la velocidad.
- Velocidades:
 - Standard: 100 kbits/s
 - Fast: 400 kbits/s
 - Existen más, pero el ESP32 no las soporta
- Los dispositivos tienen direcciones (generalmente configurables)
- Meten el Read/Write en el byte de address.

I²C modes

1 0 modes							
Mode ^[3]	Maximum speed	Maximum capacitance	Drive	Direction			
Standard mode (Sm)	100 kbit/s	400 pF	Open drain*	Bidirectional			
Fast mode (Fm)	400 kbit/s	400 pF	Open drain*	Bidirectional			
Fast mode plus (Fm+)	1 Mbit/s	550 pF	Open drain*	Bidirectional			
High-speed mode (Hs)	1.7 Mbit/s	400 pF	Open drain*	Bidirectional			
High-speed mode (Hs)	3.4 Mbit/s	100 pF	Open drain*	Bidirectional			
Ultra-fast mode (UFm)	5 Mbit/s	?	Push-pull	Unidirectional			

Señales I2C

Ejemplo I2C del bmi160

A tener en cuenta durante el diseño

- El valor de la resistencia de pull-up limita la velocidad:
 - A mayor resistencia, menos velocidad.
 - A menor resistencia, más velocidad.
- Elegir la resistencia entre 2k2Ω y 10kΩ.
- Para resolver problemas:
 - Ejecutar escáner de I2C en velocidades bajas.
 - Probar velocidades de I2C más bajas.
 - Si funciona, bajar el valor de las resistencias y volver a subir la velocidad
 - Sino, seguramente sea otra cosa.

Ejemplos de chips I2C

- VL53I0x: Sensor de distancia ToF
- **TMP100**: Sensor de temperatura
- AHT-20: Sensor de humedad y temperatura
- TCA9548A: Multiplexor I2C
- MCP23016: Expansor I2c

Serial Peripheral Interface (SPI)

Características SPI

- Comunicación full-duplex
- Se necesitan 3 pines + 1x dispositivo:
 - MOSI: Master Out Slave In
 - MISO: Master In Slave Out
 - o SCLK: Reloj
 - o CS: Chip Select
- Velocidades hasta cientos de MHz
- Solo puede haber un CS encendido a la vez.
- Se puede configura el CPAH y CPOL dando 4 configuraciones:
 - CPAH = 0, CPOL = 0 (modo 0)
 - CPAH = 0, CPOL = 1
 - CPAH = 1, CPOL = 0
 - CPAH = 1, CPOL = 1 (modo 3)

Modos SPI

Ejemplo SPI BMI160

Límites de velocidad para el SPI en ESP32

Ejemplos de chips SPI

- ICM-40627: Imu
- BMP384: Sensor de presión
- Memorias Flash (Usando QSPI)
- HIH6030-000-001: Sensor de humedad
- **PCF2123**: RTC

I2C vs SPI (En ESP32)

	I2C	SPI
Velocidad	Hasta 400 kbps	Hasta 80 MHz
Número de pines	2	3 + 1x (nº Dispositivos)
Componentes externos	Resistencias pull-up	Nada
Interfaces disponibles	2 en el ESP32	3 en el ESP32

No usar el SPI1

Alataqueerr

ESP-IDF: SPI Configuración

- spi_bus_config_t:
 - Configuramos el SPI común, pines generales.
 - Se usa en: spi_bus_initialize
- spi_device_interface_config_t:
 - Configuración de la comunicación.
 - Hay uno por cada dispositivo que tengas conectado.
 - Se usa en: spi_bus_add_device
- spi device handle t:
 - Tiene que haber uno por cada dispositivo conectado.
 - Se usa para hacer la acción en un dispositivo concreto.

```
#include <driver/spi_master.h>
typedef struct {
    int mosi io num;
    int miso_io_num;
    int sclk io num;
 spi bus config t;
typedef struct {
    uint8_t command_bits;
    uint8 t address bits;
    uint8 t mode;
    int clock_speed_hz;
    int spics io num;
 spi device interface config t;
```

ESP-IDF: SPI Transmisión.

- spi_transaction_t:
 - Configuramos la transferencia, datos y longitud.
 - Se usa en: spi_device_polling_transmit
- Flags:
 - SPI TRANS USE RXDATA
 - SPI_TRANS_USE_TXDATA

```
struct spi_transaction_t {
    uint32 t flags;
    size t length;
    size_t rxlength;
    union {
        const void *tx buffer;
        uint8 t tx data[4];
    };
    union {
        void *rx_buffer;
        uint8 t rx data[4];
```