Volatility Spillover Between UK Exchange Market and Stock Market by Wavelet Analysis

Changjiang Jia

School of Mathematics

11/3/2018

Outline

What is Volatility Spillover

What is Wavelet Transform

An Example of Wavelet Transform on Artificial Signal

Empirical Analysis on FTSE100 and USD-GBP

Volatility Spillover

What is Volatility Spillover

Figure 1: Volatility Spillover is actually the risk transfer from different markets

- Equity flows increase
- ▶ Portfolio risk management

Wavelet Transform Basic Idea

 Using a series of waveform curves to capture the features of original signal

Figure 2: the wavelet capture the features

How Wavelet Generates

▶ Definition: A wavelet is a waveform of effectively limited duration that has an average value of zero.

$$\int_{-\infty}^{+\infty} \psi(t)dt = 0$$
$$\int_{-\infty}^{+\infty} \psi^{2}(t)dt = 1$$

Figure 3: the Morlet wavelet.

How Wavelet Compress and Shift

Figure 4: How scale coefficient s and shift coefficient τ Works.

How Wavelet Transform Works Step by Step

► Take a wavelet from the start of the signal, given the first scale factor.

- ► Calculate the detail coefficient $C(scale, position) = \int_{-\infty}^{\infty} f(t)\psi(scale, position, t)dt$
- ► The coefficient measures how the wavelet related closely to the original signal

How Wavelet Transform Works

▶ Shift the wavelet to the next data point and repeat the previous steps until cover the whole signal.

How Wavelet Transform Works

change the scale(stretch) the wavelet for low frequency details

- ▶ Repeat the previous steps for all scales
- why we use wavelet transform

Why Wavelet Transform

- ▶ 1.transform result contains the time information.
- ▶ 2. Given low scale factor= Compressed wavelet = Rapidly changing details = High frequency Component.
- ➤ 3.Given high scale factor= Stretched wavelet = Slowly changing, coarse features = Low frequency Component.
- 4.Another advantage of wavelet is that its different scale factors can make people investigate the signal at various time scales, which is also called multiresolution.
- next, I give a example of wavelet transform result.

Example of Wavelet Transform

$$dS = 0.001Sdt + 0.01Sdx, t \in (0, 1000)$$

 $dS = 0.001Sdt + 0.05Sdx, t \in (1000, 2000)$
 $dS = 0.001Sdt + 0.02Sdx, t \in (2000, 3000)$

Figure 5: How Wavelet Transform Works.

Example of Wavelet Transform

Figure 6: The Result of Wavelet Transform

Empirical Data Analysis

► The half-year 30-minute data of GBP-USD Exchange Rate and FTSE100 Index

Figure 7: The data

Correlation by Scale-Wavelet Coefficients

• Use cross-correlation equation for scale τ_j at lag-term, which is defined as:

Correlation by Scale-Wavelet Coefficients

scale1 means the details existing in 0.5-1hour scale, scale2 means 1-2hours, scale 3 means 2-4 hours scale 4 means 4-8 hours(one day), scale 5 means 8-16 hours(two days), scale 6 means weeks scale, scale 7 means half-months scale.

Figure 8: Correlation by Scale-Wavelet Coefficients

Correlation by Scale-Wavelet Coefficients for Lead-Lag Analysis

Figure 9: Correlation by Scale-Wavelet Coefficients level 1

Correlation by Scale-Wavelet Coefficients for Lead-Lag Analysis

Figure 10: Correlation by Scale-Wavelet Coefficients level 6

Correlation by Scale-Wavelet Coefficients for Lead-Lag Analysis

Figure 11: Correlation by Scale-Wavelet Coefficients level 7

Conclusion

 For short time scale such 30min-60min and two day data the lead-lag relation is not significant, the volatility spillover is not significant

For a longer time scale such weekly scale and half-month scale the lead-lag relation is significant, there exists the stock market volatility spillover to currency exchange market.