Miscellany

Clark Barwick

July 10, 2025

Contents

Balmer spectrum 1

Geometric backgrounds

1

Balmer spectrum

Let *C* be a symmetric monoidal stable presentable category.

An *idempotent algebra* in C is an object A along with a map $\eta\colon 1\to A$ such that $\eta\otimes A\colon A\cong A\otimes A$. The category of idempotent algebras forms a poset, which is the poset of closeds in a locale Spec C. So an idempotent algebra A corresponds to a closed $Z_A\subseteq \operatorname{Spec} C$, which corresponds to an open complement $U_A\subseteq \operatorname{Spec} C$.

The category C now localizes over Spec C: for every open set $U_A \subseteq \operatorname{Spec} C$, let

$$O_{\operatorname{Spec} C}(U_A) = C/\operatorname{Mod}(A)$$
.

Accordingly, $\Gamma(\operatorname{Spec} C, O) = C$. The pair $(\operatorname{Spec} C, O)$ is

Geometric backgrounds

Let X be a topos, and let $X_0 \subseteq X$ be a subcategory that is stable under pullback. Let C be a symmetric monoidal stable presentable category.

A six functor formalism for (X, X_0) valued in C-modules is a lax symmetric monoidal functor

$$A: \operatorname{Span}(X; X, X_0) \to \operatorname{Mod}(C)$$

that restricts to a sheaf

$$X^{op} = \operatorname{Span}(X; X, X^{\approx}) \to \operatorname{Mod}(C)$$

Such a triple (X, X_0, A) is what we call a *geometric background*.