F. Runner's Problem

time limit per test: 4 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

You are running through a rectangular field. This field can be represented as a matrix with 3 rows and m columns. (i,j) denotes a cell belonging to i-th row and j-th column.

You start in (2, 1) and have to end your path in (2, m). From the cell (i, j) you may advance to:

- (i-1, j+1) only if i > 1,
- (i, j + 1), or
- (i+1, j+1) only if i < 3.

However, there are n obstacles blocking your path. k-th obstacle is denoted by three integers a_k , l_k and r_k , and it forbids entering any cell (a_k, j) such that $l_k \le j \le r_k$.

You have to calculate the number of different paths from (2, 1) to (2, m), and print it modulo $10^9 + 7$.

Input

The first line contains two integers n and m ($1 \le n \le 10^4$, $3 \le m \le 10^{18}$) — the number of obstacles and the number of columns in the matrix, respectively.

Then n lines follow, each containing three integers a_k , l_k and r_k ($1 \le a_k \le 3$, $2 \le l_k \le r_k \le m$ - 1) denoting an obstacle blocking every cell (a_k, j) such that $l_k \le j \le r_k$. Some cells may be blocked by multiple obstacles.

Output

Print the number of different paths from (2, 1) to (2, m), taken modulo $10^9 + 7$. If it is impossible to get from (2, 1) to (2, m), then the number of paths is 0.

Example

input	t
-------	---

2 5

1 3 4 2 2 3

output

2