034MAT011 - S - 23 - 2462

FOURTH SEMESTER B.SC. (NEP) DEGREE EXAMINATION, AUG./SEPT. 2023 MATHEMATICS (DSC - 1)

Partial Differential Equations and Integral Transforms

Time : 2 Hours]

[Max. Marks: 60

Instruction : Answer all questions.

I. Answer any five of the following:

 $(5 \times 2 = 10)$

- 1) Form a partial differential equation by eliminating arbitrary constants a and b from z = ax + by.
- 2) Find the general integral for the partial differential equation $z = px + qy 2\sqrt{pq}$.
- 3) Classify the partial differential equation $2\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + 3\frac{\partial^2 u}{\partial y^2} = 2$.
- 4) Find the Laplace transform of sin 2t. cos 3t.
- 5) Find the Fourier coefficient a_0 for the function $f(x) = x + x^2$ in $[-\pi, \pi]$.
- 6) Write the half-range Fourier cosine series.
- II. Answer any four of the following:

 $(4 \times 5 = 20)$

- 7) Solve the Lagrange's partial differential equation $y^2p xyq = x(z 2y)$.
- 8) Solve $(D^2 5DD' + 2D'^2)z = 5 \sin(2x + 3y)$.
- 9) If L[f(t)] = F(S) then prove that $L[f''(t)] = S^2 L[f(t)] S f(0) f'(0)$.
- 10) Solve using Laplace transform $\frac{d^2y}{dt^2} 3\frac{dy}{dt} + 2y = e^{3t}$ given y(0) = 0 = y'(0).
- 11) Find the Fourier series of f(x) = |x| in $[-\pi, \pi]$, hence deduce that

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

[P.T.O.

034MAT011 - S - 23 - 2462

 $(3 \times 10 = 30)$

III. Answer any three of the following:

- 12) a) Solve by Charpit's method px + qy pq = 0.
 - b) Find the complete integral of $p^2 + q^2 = x + y$.
- 13) a) Solve $4(r-s) + t = 16 \log(x+2y)$.
 - b) Solve $(D^3 4D^2D' + 4DD'^2)z = cos(2x + 3y)$.
- 14) a) Prove that the Laplace transform of a periodic function f(t) with period T is given by $L[f(t)] = \frac{1}{1 - e^{-ST}} \int_{2}^{T} e^{-St} f(t) dt$.
 - b) Evaluate $L^{-1} \left[log \left(1 + \frac{a^2}{S^2} \right) \right]$.
- 15) a) Find the finite Fourier sine transform for the function $f(x) = ax x^2$ in (0, a).
 - b) Find the Half-range cosine series of $f(x) = \sin x$ in $(0, \pi)$.