MM719 - 1S 2018 - Exame de Qualificação

Nome:	RA:
1101110.	101.

Escolher itens cujo total de pontos possíveis não ultrapasse 10,5 (existem 12 pontos disponíveis). Salvo menção em contrário, V denota um espaço vetorial sobre um corpo \mathbb{F} . Todas as respostas devem ser devidamente justificadas (contas são justificativas). Bom trabalho!

1. Suponha que T seja um operador linear num espaço vetorial real V de dimensão finita cujos fatores invariantes são:

$$f_1(t) = t^2(t-1)^4(t-\pi)^3$$
, $f_2(t) = t^2(t-1)^2(t-\pi)$ e $f_3(t) = (t-1)(t-\pi)$.

- (a) (0,5) Encontre os polinômios mínimo e característico de T.
- (b) (0.8) Encontre uma forma canônica de Jordan para T.
- 2. Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ a transformação linear dada por

$$T(x_1, x_2, x_3, x_4) = (3x_3 + x_4, 2x_1 + 2x_2 - 4x_3 + 2x_4, x_3 + x_4, 3x_4 - x_3).$$

- (a) (1,0) Encontre uma base de Jordan com respeito a T.
- (b) (0.5) Calcule os fatores invariantes de T.
- (c) (1,0) Descreva todos os subespaços T-invariantes.
- 3. Seja V o espaço vetorial $\mathcal{P}_2(\mathbb{R})$ dos polinômios de grau menor ou igual a 2 e considere as funções $f_i:V\to\mathbb{R}, i=1,2,3$, dadas por

$$f_1(p) = p(0),$$
 $f_2(p) = p'(1),$ $f_3(p) = \int_0^1 p''(t)dt.$

- (a) (0,8) Verifique que $f_i \in V^*$ para i = 1, 2, 3 e que $\beta = \{f_1, f_2, f_3\}$ é base de V^* .
- (b) (0,7) Encontre base α de V de modo que β seja sua base dual.
- 4. Responda se cada uma das afirmações abaixo é verdadeira ou falsa.
 - (a) (0,5) Se $V=V_1\oplus V_2\oplus \cdots \oplus V_m$, então V^* é isomorfo a $V_1^*\oplus V_2^*\oplus \cdots \oplus V_m^*$.
 - (b) (0,5) Se $A \in M_n(\mathbb{R})$, existe $P \in GL_n(\mathbb{R})$ tal que $PAP^{-1} = A^t$.
 - (c) (0,5) Para todo operador linear T em um espaço vetorial real qualquer se tem $\{f \in \mathbb{R}[t] : f(T) = 0\} \neq \{0\}$.
 - (d) (0,5) A imagem de uma função multilinear é um subespaço de seu contradomínio.
 - (e) (0,5) Se W é um subespaço de V, todo elemento de W^* é a restrição a W de um elemento de V^* .
- 5. Considere a forma quadrática em \mathbb{R}^3 dada por $q(x,y,z)=2(xy+xz+yz)-(x^2+y^2+z^2)$ e seja ϕ a forma bilinear simétrica tal que $q(v)=\phi(v,v)$. Considere também o operador linear T em \mathbb{R}^3 tal que $\langle T(e_i),e_j\rangle=\phi(e_i,e_j)$ para quaisquer $1\leq i,j\leq 3$ sendo $\{e_1,e_2,e_3\}$ a base canônica e $\langle \ ,\ \rangle$ o produto interno usual do \mathbb{R}^3 .
 - (a) (1,0) Encontre base β de \mathbb{R}^3 com respeito a qual as representações matriciais $[T]^{\beta}_{\beta}$ de T e $[\phi]_{\beta}$ de ϕ sejam diagonais.
 - (b) (0,5) Calcule a assinatura de ϕ .
 - (c) (0,7) Dê exemplo de uma base γ de \mathbb{R}^3 tal que $[\phi]_{\gamma}$ é diagonal, mas $[T]_{\gamma}^{\gamma}$ não é diagonal.
- 6. Sejam V e W espaços vetoriais sobre \mathbb{F} .
 - (a) (1,0) Mostre que existe única transformação linear $\Gamma: V \otimes W \to \operatorname{Hom}_{\mathbb{F}}(V^*, W)$ satisfazendo

$$\Gamma(v\otimes w)(f)=f(v)w \qquad \text{para quaisquer} \qquad v\in V, w\in W, f\in V^*.$$

(b) (1,0) Mostre que, se $\dim(V) < \infty$, Γ é um isomorfismo.

EXAME DE ANÁLISE NO RN DM-IMECC-UNICAMP, 16 de Julho de 2018

Nome:	$\mathbf{R} \Lambda \cdot$
None:	ILA:

- 1. a) Sejam $U \subset \mathbb{R}^n$ um aberto e $f: U \to \mathbb{R}^m$. Defina o que significa f ser diferenciável em um ponto $a \in U$.
 - b) Seja $f: M_{n \times n} \to M_{n \times n}$ dada por $f(A) = A^2$ onde $M_{n \times n}$ denota o espaço das matrizes n por n (esse espaço é naturalmente associado ao espaço \mathbb{R}^{n^2}). Determine a derivada do mapa f.
- 2. Seja p um polinômio com coeficientes reais e $grau(p) \ge 1$. Defina a função $f: \mathbb{R}^2 \to \mathbb{R}^2$ por f(x,y) = (p(x+y), p(x-y)). Prove que existe um conjunto aberto e denso de pontos de \mathbb{R}^2 para os quais o mapa f é um difeomorfismo local quando restrito a alguma vizinhança de cada um desses pontos.
- 3. a) Enuncie o teorema da função implícita.
 - b) Seja $f: \mathbb{R}^n \to \mathbb{R}$ um mapa suave e tal que $y \in \mathbb{R}$ é um valor regular. Prove que $f^{-1}(y)$ é uma variedade e calcule a dimensão desta variedade.
- 4. Prove que a 1-forma definida em $\mathbb{R}^2 \setminus \{0\}$ dada por

$$\omega = \frac{-y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy$$

é uma forma fechada, mas nao é exata.

- 5. a) Defina o que é uma variedade orientável.
 - b) Disserte sobre o teorema de Stokes (e.g. enuncie o teorema, dê uma aplicação,...)

EQ Mestrado Topologia Geral - 18 de julho de 2018

Nome: R.A.:

Exercício 1. (4pt) Responda verdadeiro ou falso para as afirmações abaixo, dando uma demonstração ou um contra-exemplo para justificar cada resposta.

- 1. Todo conjunto compacto é fechado;
- 2. A exponencial complexa $e^{it} = \cos t + i \sin t$ fornece um homeomorfismo entre o intervalo $[0, 2\pi)$ e o circulo S^1 ;
- 3. Seja $D^2 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ o disco bidimensional. Então, toda função contínua $f: D^2 \to D^2$ possui ponto fixo;
- 4. Se $p_1: X \times Y \to X$ é a projeção no primeiro fator, então p_1 é uma aplicação fechada.

Escolha 3 das questões abaixo para responder:

Exercício 2. (2pt) Seja $f: X \to Y$ uma função qualquer. Sendo Y compacto e Hausdorff, mostre que f é contínua se, e só se, o gráfico de f,

$$\Gamma(f) = \{x \times f(x) \mid x \in X\}$$

é fechado.

Exercício 3. (2pt) Mostre que todo espaço métrico compacto é segundo contável.

Exercício 4. (2pt) Seja $p: E \to B$ um recobrimento. Mostre que se B é compacto e $p^{-1}(b)$ é finito para todo $b \in B$, então E é compacto.

Exercício 5. (2pt) Seja X um espaço topológico compacto e Y um espaço topológico Hausdorff. Mostre que toda aplicação contínua e bijetora $f:X\to Y$ é um homeomorfismo. Com base nisto decida se pode existir ou não uma curva de Peano injetora.

Exercício 6. (2pt) Mostre que um mapa $f: S^1 \to X$, onde X é um espaço topológico arbitrário, é homotópico a um mapa constante se, e só se, existe uma extensão de f para o disco D^2 .