ANALISI II

Federico Mainetti Gambera

18 maggio 2020

Indice

1	Ripa	sso
	1.1	Trigonometria
	1.2	Asintotici
	1.3	Derivate
	1.4	Sviluppi
2	C	- (
2		e (analisi I) Social naturali
	2.1	Serie notevoli
		2.1.1 serie geometrica
		2.1.2 serie armonica
		2.1.3 serie armonica generalizzata
		2.1.4 serie di mengoli
		2.1.5 numero e
	0.0	2.1.6 sviluppi di Taylor delle funzioni elementari
	2.2	Criteri e teoremi
3	Seri	e di funzioni (analisi II) 13
		Serie di potenze
		3.1.1 Nel campo complesso
		3.1.2 Nel campo reale
		3.1.3 Serie di Taylor / MacLaurin
	3.2	Serie di Fourier
	_	3.2.1 Forma trigonometrica
		3.2.2 Funzioni con periodi diversi da 2π
		3.2.3 Forma esponenziale complessa
	3.3	Note sugli esercizi
		3.3.1 Serie di potenze nel campo reale
		3.3.2 Convergenza uniforme per serie di potenza
		3.3.3 Sviuluppabilità in serie di Fourier
		3.3.4 Calcolo delle serie di Fourier per funzioni 2π -periodiche
		3.3.5 Semplificazioni nel calcolo delle serie di Fourier per funzioni pari e dispari 20
		3.3.6 Riassunto dei criteri per la convergenza della serie di Fourier $\sum F$
		3.3.7 Armoniche
	_	
4		zioni $\mathbb{R} o \mathbb{R}^n$ ("Funzioni di una variabile a valori vettoriali", "Curve nel piano e
		o spazio")
	4.1	Introduzione alle funzioni $R \to R^n$
		4.1.1 Definizioni e terminologia
		4.1.2 Calcolo differenziale per funzioni $R \to R^n$
		4.1.3 Calcolo integrale per funzioni $R \to R^n$
	4.2	Lunghezza di un arco di curva
		4.2.1 Curve rettificabili e lunghezza
		4.2.2 Riparametrizzazioni e parametro arco (o ascissa curvilinea)
	4.3	Integrali di linea (di prima specie)
	4.4	Note sugli esercizi
		4.4.1 Ripasso sul calcolo vettoriale
		4.4.2 Proprietà delle curve
		4.4.3 Equazioni di grafici di funzioni

		4.4.4 Rappresentazioni di equazioni in forma polare	28
		4.4.9 Equazione dell'ellisse 2 4.4.10 Interpretazione geometrica degli integrali di prima specie 2 4.4.11 Integrali di linea di seconda specie 2	9
5		ioni $\mathbb{R}^n o\mathbb{R}$ ("Calcolo differenziale per funzioni reali di più variabili", "Funzioni	
		di più variabili")	
	5.1	Topologia in \mathbb{R}^n e proprietà delle funzioni continue	
	5.2	Calcolo di limiti di funzioni in più variabili	
		5.2.1 Non esistenza del limite	
		5.2.2 Uso di maggiorazioni con funzioni radiali per provare l'esistenza del limite 3 5.2.3 Note sugli esercizi per il calcolo di limiti	
	5.3	Continuità di funzioni in più variabili	
	5.4	Calcolo differenziale di funzioni in più variabili	
	5.4	5.4.1 Derivate parziali	
		5.4.2 Piano tangente a funzioni in due variabili	
		5.4.3 Differenziabilità e approssimazione lineare	
		5.4.4 Verifica della differenziabilità	
		5.4.5 Derivate direzionali	
		5.4.6 Riepilogo	
		5.4.7 Extra: Gradiente di una funzione radiale, Criterio di continuità e differenziabilità	
		per funzioni radiali, funzioni omogenee, Equazione del trasporto	5
	5.5	Derivate di ordine superiore e matrice Hessiana	
		5.5.1 Formula di Taylor (resto secondo Peano)	7
	5.6	Ottimizzazione libera	3
		5.6.1 Ripasso sugli autovalori e autovetori	3
		5.6.2 Massimi e minimi	3
		5.6.3 Strategia per lo studio dei massimi e dei minimi	ç
	5.7	Ottimizzazione. Estremi vincolanti	ç
		5.7.1 Metodo dei moltiplicatori di Lagrange (dal libro di Gazzola)	ç
		5.7.2 Il metodo delle restrizioni	.(
	5.8	Funzioni convesse di n variabili	
		5.8.1 Generalità sulle funzioni convesse	
		5.8.2 Ottimizzazione di funzioni convesse e concave	
	5.9	Funzioni definite implicitamente	
		5.9.1 Funzione implicita di una variabile	
		5.9.2 Note sugli esercizi	.2
6	Into	grali 4	
U	Integ 6.1	Teorema fondamentale del calcolo integrale:	
	6.2	Proprietà degli integrali:	
	6.3	Integrali fondamentali:	
	6.4	Integrali notevoli:	
	6.5	Integrali riconducibili:	
	6.6	Integrazione per sostituzione:	
	6.7	Integrazione delle funzioni razionali:	
	6.8	Funzioni razionali di e^x	
	6.9	Integrazione per parti:	
		integrazione delle funzioni trigonometriche	
		Integrazione delle funzioni irrazzionali	
		Simmetrie e valori assoluti nel calcolo di integrali definiti	
		Osservazione. Integrale generalizzato di una funzioen dispari su un intervallo simmetrico 4	
		INTEGRALI GENERALIZZATI	
		Integrazione di funzioni non limitate	
		Criteri di integrabilità al finito	<u>.</u> c
	6.17	Integrazione su intervalli illimitati	.ç
	6.18	Criteri di integrabilità all'infinito	(

	6.20	Osservazione. Ordine di annullamento di una funzione derivabile	50 50 51
7	Calc	olo integrale per funzioni di più variabili	53
	7.1	Integrali doppi	53
		7.1.1 Integrale su una regione semplice	53
		7.1.2 Baricentro e momento d'inerzia con gli integrali doppi	54
		7.1.3 Cambi di variabili negli integrali doppi	54
		7.1.4 Cambio di variabili in coordinate polari	55
	7.2	Integrali impropri	55
	7.3	Integrali tripli	55
		7.3.1 Integrazione per fili	56
		7.3.2 Integrazione per strati	56
		7.3.3 Cambi di variabili negli integrali tripli	56
		7.3.4 Coordinate cilindriche	56
		7.3.5 Coordinate sferiche	56
	7.4	Note sugli esercizi	57
_			
8		olo differenziale per funzioni di più variabili a valori vettoriali (BRAMANTI)	60
	8.1	Funzioni di più variabili a valori vettoriali: generalità	60
		8.1.1 Superfici in forma parametrica	60
		8.1.2 Trasformazioni di coordinate	60
		8.1.3 Campi vettoriali	60
	8.2	Limiti, continuità e differenziabilità per funzioni $\tilde{f}:\mathbb{R}^n \to \mathbb{R}^m$	61
	8.3	Superfici regolari in forma parametrica	61
		8.3.1 Superfici cartesiane (grafico di funzioni di due variabili)	62
		8.3.2 Superfici di rotazione	63
	8.4	Varietà k-dimenzionali in \mathbb{R}^n e funzioni definite implicitamente	63
		8.4.1 Varietà k-dimensionali in \mathbb{R}^n in forma parametrica	63
		8.4.2 Funzioni implicite definite da sistemi di equazioni	63
		8.4.3 Varietà k-dimensionali in \mathbb{R}^n in forma implicita	64
	8.5	Trasformazioni di coordinate e loro inversione	64
		8.5.1 Il teorema della funzione inversa	64
		8.5.2 Trasformazione di operatori differenziali	66
	8.6	Note sugli esercizi	66
9	Euna	zioni di più variabili a valori vettoriali (GAZZOLA)	67
9	9.1	• ,	67
	9.1	Campi vettoriali	68
	9.2	9.2.1 Forme differenziali lineari	70
	9.3	Flusso e Teorema della divergenza	70
	9.5	9.3.1 Flusso	71
		9.3.2 Teorema della divergenza	71
		5.5.2 Teorema della divergenza	11
10	Equa	azioni differenziali	72
	10.1	Modelli differenziali	72
	10.2	Equazioni del primo ordine	72
		10.2.1 Generalità	72
		10.2.2 Equazioni a variabili separabili	72
		10.2.3 Equazioni lineari del prim'ordine	73
		10.2.4 Note sugli esercizi	74
		10.2.5 Equazione di Bernoulli	74
		10.2.6 Prolungamento delle soluzioni	74
	10.3	Equazioni lineari del secondo ordine	75
		10.3.1 Spazi di funzioni	75
		10.3.2 Generalità sulle equazioni lineari. Problema di Cauchy	75
		10.3.3 La struttura dell'integrale generale	75
		10.3.4 Equazioni omogenee a coefficienti costanti	76
		10.3.5 Equazioni completa a coefficienti costanti	77
		10.3.6 metodo di somiglianza	77

	10.3.7 Metodo di sovrapposizione	78
	10.3.8 Metodo di variazione delle costanti	78
	10.3.9 Note sugli esercizi	78
	10.3.10 Equazione di Eulero	78
10.4	Sistemi lineari omogenei	80
10.5	Diagonalizzazione di una matrice	81

1 Ripasso

1.1 Trigonometria

$$sin^2(x) + cos^2(x) = 1$$

$$sin(2x) = 2sin(x)cos(x)$$

$$sin(x)cos(x) = \frac{1}{2}sin(2x)$$

$$cos(2x) = \begin{cases} cos^2(x) - sin^2(x) \\ 1 - 2sin^2(x) \\ 2cos^2(x) - 1 \end{cases}$$

$$sin^2(x) = \frac{1}{2}(1 - cos(2x)) \quad ottenuta \ da \ [cos(2x) = cos^2(x) - sin^2(x) = 1 - 2sin^2(x)]$$

$$cos^2(x) = \frac{1}{2}(1 + cos(2x)) \quad ottenuta \ da \ [cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1]$$

$$Ch^2(x) = \frac{e^x + e^{-x}}{2}$$

$$Sh^2(x) = \frac{e^x + e^{-x}}{2}$$

$$Ch^2(x) - Sh^2(x) = 1$$

$$Sh(2x) = 2Sh(x)Ch(x)$$

$$Ch(2x) = Sh^2(x) + Ch^2(x)$$

$$SettSh(x) = log(x + \sqrt{x^2 + 1})$$

$$ScttCh(x) = log(x + \sqrt{x^2 + 1})$$

$$Stt(Ch(x) = log(x + \sqrt{x^2 + 1})$$

$$Sh(SettCh(a)) = \sqrt{a^2 - 1} \quad ottenuta \ da \ [Ch^2(x) - Sh^2(x) = 1] \rightarrow [Sh(x) = \sqrt{Ch^2(x) - 1}] \rightarrow [x = SettCh(a)]$$

$$Ch(SettSh(a)) = \sqrt{a^2 + 1} \quad ottenuta \ da \ [Ch^2(x) - Sh^2(x) = 1] \rightarrow [Ch(x) = \sqrt{1 + Sh^2(x)}] \rightarrow [x = SettSh(a)]$$

$$sin(a)cos(b) = \frac{1}{2}sin(a + b) + sin(a - b)$$

$$cos(a)sin(b) = \frac{1}{2}sin(a + b) + sin(a - b)$$

$$cos(a)cos(b) = \frac{1}{2}cos(a + b) + cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) + cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) + cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) + cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) + cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) + cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) + cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) + cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) + cos(a - b)$$

$$sin(a) + sin(a)cos(b) + sin(b)cos(a)$$

$$cos(a + b) = cos(a)cos(b) + sin(a)sin(b)$$

$$cos(a - b) = cos(a)cos(b) + sin(a)sin(b)$$

$$sin(a) + sin(\beta) = 2cos\left(\frac{\alpha + \beta}{2}\right) cos\left(\frac{\alpha - \beta}{2}\right)$$

$$cos(\alpha) + cos(\beta) = 2cos\left(\frac{\alpha + \beta}{2}\right) cos\left(\frac{\alpha - \beta}{2}\right)$$

$$cos(\alpha) - cos(\beta) = -2sin\left(\frac{\alpha + \beta}{2}\right) sin\left(\frac{\alpha - \beta}{2}\right)$$

Ango Radianti	olo Gradi	Seno	Coseno	Tangente	Cotangente
Raulallu	Graui				
0	0°	0	1	0	αο
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	√ <u>3</u> 3	√3
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	90°	1	0	ω	0
π	180°	0	-1	0	œ
$\frac{3\pi}{2}$	270°	-1	0	co	0
2 π 568 × 539	360°	0	1	0	ω

1.2 Asintotici

$$\begin{split} \sin(f(x)) \sim f(x) & \ln(1+f(x)) \sim f(x) & \log_a(1+f(x)) \sim \frac{f(x)}{\ln(a)} \\ e^{f(x)} - 1 \sim f(x) & a^{f(x)} - 1 \sim \ln(a) f(x) & (1+f(x))^c - 1 \sim c f(x) \\ 1 - \cos(f(x)) \sim \frac{1}{2} [f(x)]^2 & \tan(f(x)) \sim f(x) & \arcsin(f(x)) \sim f(x) \\ & \arctan(f(x)) \sim f(x) & \sinh(f(x)) \sim f(x) & \cosh(f(x)) - 1 \sim \frac{[f(x)]^2}{2} \\ & \tanh(f(x)) \sim f(x) \end{split}$$

1.3 Derivate

FUNZIONE	DERIVATA
f(x) = costante	$f^{\prime}(x)=0$ Dimostrazione derivata di una costante
f(x) = x	f'(x)=1 Dimostrazione derivata di x
$f(x) = x^s, \ s \in \mathbb{R}$	$f^{\prime}(x)=sx^{s-1}$ Dimostrazione derivata di una potenza
$f(x) = a^x$	$f'(x) = a^x \ln{(a)} \label{eq:f'}$ Dimostrazione derivata dell'esponenziale
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = \log_a(x)$	$f'(x) = \frac{1}{x \ln{(a)}}$ Dimostrazione derivata del logaritmo
$f(x) = \ln\left(x\right)$	$f'(x) = \frac{1}{x}$
f(x) = x	$f'(x) = \frac{ x }{x}$ Dimostrazione derivata valore assoluto
$f(x) = \sin\left(x\right)$	$f'(x) = \cos{(x)}$ Dimostrazione derivata del seno
$f(x) = \cos\left(x\right)$	$f'(x) = -\sin{(x)}$ Dimostrazione derivata del coseno
$f(x) = \tan(x)$ [non è elementare]	$f'(x) = \frac{1}{\cos^2{(x)}}$ Dimostrazione derivata della tangente
$f(x) = \cot(x)$ [non è elementare]	$f'(x) = -\frac{1}{\sin^2{(x)}}$ Dimostrazione derivata della cotangente

$f(x) = \arcsin(x)$	$f'(x) = \frac{1}{\sqrt{1-x^2}}$ Dimostrazione derivata dell'arcoseno
$f(x) = \arccos(x)$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$ Dimostrazione analoga alla precedente
$f(x) = \arctan(x)$	$f'(x) = \frac{1}{1+x^2} \label{eq:f'}$ Dimostrazione derivata dell'arcotangente
$f(x) = \operatorname{arccot}(x)$	$f'(x) = -\frac{1}{1+x^2} \label{eq:f'}$ Dimostrazione analoga alla precedente
$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$	$f'(x) = \cosh(x)$ Dimostrazione: semplici conti
$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$	$f'(x) = \sinh(x)$ Idem come sopra

1.4 Sviluppi

Alcuni sviluppi di McLaurin notevoli

(si sottintende ovunque che i resti sono trascurabili per $x \to 0$)

$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) $ $= \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) $ $= \sin x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) $ $= \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) $ $= \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) $ $= \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+2}) $ $= \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+2}) $ $= x + \frac{1}{3}x^{3} + \frac{2}{15}x^{5} + o(x^{6}) $ $= x - \frac{1}{3}x^{3} + \frac{2}{15}x^{5} + o(x^{6}) $ $= \sum_{k=0}^{n} (-1)^{k-1} \frac{x^{k}}{k} + o(x^{n}) $	$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o\left(x^{2n+2}\right)$	$= \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n)$
$ \cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o\left(x^{2n+1}\right) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o\left(x^{2n+2}\right) \\ \tanh x = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^6\right) \\ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + o\left(x^n\right) = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + o\left(x^n\right) $		
$ tanh x = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^6\right) $ $ \ln\left(1+x\right) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1}\frac{x^n}{n} + o\left(x^n\right) $ $ = \sum_{k=1}^{n} (-1)^{k-1}\frac{x^k}{k} + o\left(x^n\right) $	$\cosh x = 1 + \frac{x^2}{1} + \frac{x^4}{1} + \dots + \frac{x^{2n}}{1} + o(x^{2n+1})$	$= \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2n+2}\right)$
$ tanh x = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^6\right) $ $ \ln\left(1+x\right) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1}\frac{x^n}{n} + o\left(x^n\right) $ $ = \sum_{k=1}^{n} (-1)^{k-1}\frac{x^k}{k} + o\left(x^n\right) $		$= \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o\left(x^{2n+2}\right)$
$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} + o(x^n)$		
n = 2k+1	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$	$= \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + o(x^n)$
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o\left(x^{2n+2}\right) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2n+2}\right)$, , , , , , , , , , , , , , , , , , ,	$= \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2n+2}\right)$
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o\left(x^{2n+1}\right) = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} + o\left(x^{2n+1}\right)$		$= \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$
$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^6)$		
$\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots + \left \binom{-1/2}{n} \right \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right) = \sum_{k=0}^{n} \left \binom{-1/2}{k} \right \frac{x^{2k+1}}{2k+1} + o\left(x^{2n+2}\right) = \sum_{k=0}^{n} \left \binom{-1/2}{k} \right \frac{x^{2n+2}}{2k+1} + o\left(x^{2n+2}\right) = \sum_{k=0}^{n} \left \binom{-1/2}{2k} \right \frac{x^{2n+2}}{2k+1} + o\left(x^{2n+2}\right) =$	$\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots + \left \binom{-1/2}{n} \right \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right)$	$= \sum_{k=0}^{n} \left \binom{-1/2}{k} \right \frac{x^{2k+1}}{2k+1} + o\left(x^{2n+2}\right)$
$\arccos x = \frac{\pi}{2} - \arcsin x$		
$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right) = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{2k+1} + o\left(x^{2n+2}\right)$	$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right)$	$= \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2})$
$(1+x)^{\alpha} = 1 + \alpha x + {\alpha \choose 2} x^2 + {\alpha \choose 3} x^3 + \dots + {\alpha \choose n} x^n + o(x^n) = \sum_{k=0}^n {\alpha \choose k} x^k + o(x^n)$	$(1+x)^{\alpha} = 1 + \alpha x + {\alpha \choose 2} x^2 + {\alpha \choose 3} x^3 + \dots + {\alpha \choose n} x^n + o(x^n)$	
$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \dots + (-1)^n x^n + o(x^n) = \sum_{k=0}^n (-1)^k x^k + o(x^n)$	$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \dots + (-1)^n x^n + o(x^n)$	
$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + o(x^n)$ $= \sum_{k=0}^n x^k + o(x^n)$	$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + o(x^n)$	$= \sum_{k=0}^{n} x^k + o(x^n)$
$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots + \binom{1/2}{n}x^n + o(x^n) = \sum_{k=0}^n \binom{1/2}{k}x^k + o(x^n)$	$\sqrt{1+x}$ = $1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots + {1/2 \choose n}x^n + o(x^n)$	$= \sum_{k=0}^{n} \binom{1/2}{k} x^k + o(x^n)$
$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots + \binom{-1/2}{n}x^n + o(x^n) = \sum_{k=0}^n \binom{-1/2}{k}x^k + o(x^n)$	$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots + {\binom{-1/2}{n}}x^n + o(x^n)$	$= \sum_{k=0}^{n} {\binom{-1/2}{k}} x^k + o(x^n)$
$\sqrt[3]{1+x} = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + \dots + \binom{1/3}{n}x^n + o(x^n) = \sum_{k=0}^n \binom{1/3}{k}x^k + o(x^n)$	$\sqrt[3]{1+x}$ = $1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + \dots + \binom{1/3}{n}x^n + o(x^n)$	$= \sum_{k=0}^{n} {1/3 \choose k} x^k + o(x^n)$
1 1 2 7 $(-1/3)$ $\sum_{i=1}^{n} (-1/3)^{i}$ $k \in \mathbb{N}$	$\frac{1}{\sqrt[3]{1+x}} = 1 - \frac{1}{3}x + \frac{2}{9}x^2 - \frac{7}{81}x^3 + \dots + \binom{-1/3}{n}x^n + o(x^n)$	$= \sum_{k=0}^{n} {\binom{-1/3}{k}} x^k + o\left(x^n\right)$

Si ricordi che $\forall \alpha \in \mathbb{R}$ si pone $\binom{\alpha}{0} = 1$ e $\binom{\alpha}{n} = \overbrace{\alpha \left(\alpha - 1\right) \cdots \left(\alpha - n + 1\right)}^{n \text{ fitteri}}$ se $n \geq 1$.

2 Serie (analisi I)

2.1 Serie notevoli

2.1.1 serie geometrica

$$\sum_{n=0}^{\infty} q^n = \lim_{k \to \infty} \frac{1 - q^{k+1}}{1 - q} = \begin{cases} \frac{1}{1 - q} & se \quad -1 < q < 1 \\ +\infty & se \quad q \ge 1 \\ irregolare & se \quad q \le -1 \end{cases}$$

2.1.2 serie armonica

$$\sum_{n=1}^{\infty} \frac{1}{n} \ge \log(n+1) \to +\infty$$

2.1.3 serie armonica generalizzata

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 per $\alpha \leq 1$
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \geq \sum_{n=1}^{\infty} \frac{1}{n} \to +\infty \quad \text{diverge}$$
 per $\alpha > 1$
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = converge$$
 per $\alpha = 2$
$$\sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6} \left(\sim \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = serie \quad di \quad mengoli \right)$$

2.1.4 serie di mengoli

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1} \to 1$$

2.1.5 numero e

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$

2.1.6 sviluppi di Taylor delle funzioni elementari

$$e^{x} = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^{k}}{k!} = \sum_{k=0}^{+\infty} \frac{x^{k}}{k!}$$

$$sin(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} = \frac{e^{ix} - e^{-ix}}{2}$$

$$cos(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!} = \frac{e^{ix} + e^{-ix}}{2}$$

$$Sh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$$

$$Ch(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

$$log(1+x) = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{k}}{k} \quad per \quad |x| < 1$$

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \binom{\alpha}{k} x^{k} \quad \text{per } \alpha \in \mathbb{R} \text{ e per } |x| < 1$$

2.2 Criteri e teoremi

teor. Condizione necessaria affinché una serie $\sum_{n=0}^{\infty} a_n$ converga è che il termine generale a_n tenda a zero. (Cioè perchè la serie converga, il termine a_n deve tendere a zero, ma non per forza se il termine a_n tende a zero allora la serie converge)

teor. supponiamo che una serie $\sum_{n=0}^{\infty} a_n$ converga, allora per ogni k anche risulta convergente anche $\sum_{n=k}^{\infty} a_n$.

Criterio serie a termini non negativi Una serie $\sum_{n=0}^{\infty} a_n$ a termini non negativi è convergente o divergente a $+\infty$. Essa converge se e solo se la successione delle somme parziali n-esime è limitata.

Criterio del confronto Siano $\sum an$ e $\sum b_n$ due serie a termini non negativi tali che $a_n < b_n$ definitivamente, allora:

- $\sum b_n$ convergente $\Rightarrow \sum a_n$ convergente.
- $\sum a_n$ divergente $\Rightarrow \sum b_n$ divergente.

Criterio del confronto asintotico Se $a_n \sim b_n$, allora le corrispondenti serie $\sum a_n$ e $\sum b_n$ hanno lo stesso carattere (o entrambe divergenti o entrambe divergenti)

Criterio della radice Sia $\sum a_n$ una serie a termini non negativi. Se esiste il limite

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = l$$

- l > 1 la serie diverge $+\infty$
- l < 1 la serie converge
- l=1 nulla si può concludere

Spesso utilizzato con termini che hanno come esponente n.

Criterio del rapporto Sia $\sum a_n$ una serie a termini positivi. Se esiste il limite

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l$$

- l>1 diverge $+\infty$
- l < 1 converge
- ullet l=1 nulla si può concludere

Spesso utilizzato quando si hanno termini come n^n e n!.

Criterio serie a termini di segno variabile Una serie $\sum a_n$ si dice assolutamente convergente se converge la serie $\sum |a_n|$. Se la serie $\sum a_n$ converge assolutamente, allora converge.

Criterio di Leibniz Sia data la serie

$$\sum_{n=0}^{\infty} (-1)^n a_n \ con \ a_n \ge 0 \ \forall \ n$$

Se la successione $\{a_n\}$ è decrescente e se $a_n \to 0$ per $n \to \infty$, allora la serie è convergente.

Il criterio di Leibniz può essere applicato anche se i termini sono definitivamente di segno alterno e la successione a_n è definitivamente decrescente.

Per verificare la decrescenza bisogna dimostrare che $a_{n+1} < a_n$ oppure mediante il limite a $+\infty$ della derivata prima di a_n o studiano quando la derivata prima di $a_n < 0$.

Per determinare se una serie è decrescente non vanno usati gli asintotici!

Criterio della somma di serie convergenti Se $\sum_{n=1}^{\infty} a_n$ converge e $\sum_{n=1}^{\infty} b_n$ converge, allora $\sum_{n=1}^{\infty} a_n + b_n$ converge.

Criterio della somma di serie convergenti e divergenti Se $\sum_{n=1}^{\infty}a_n$ converge e $\sum_{n=1}^{\infty}b_n$ diverge, allora $\sum_{n=1}^{\infty}a_n+b_n$ diverge.

Criterio serie a termini complessi Sia la serie $\sum_{n=0}^{\infty}a_n$ con a_n complesso, se la serie $\sum_{n=0}^{\infty}|a_n|$ converge, allora anche $\sum_{n=0}^{\infty}a_n$ converge

Criterio di Dirichlet Siano a_n e b_n due succesioni tali che:

- $\bullet \ a_n$ è a valori complessi e la sua successione delle somme parziali è limitata.
- ullet b_n è a valori reali positivi e tende monotonamente a zero

allora la serie $\sum a_n b_n$ è convergente.

3 Serie di funzioni (analisi II)

3.1 Serie di potenze

3.1.1 Nel campo complesso

def. Sia $\{a_n\}$ una successione di numeri complessi e sia $z_0\in\mathbb{C}.$ La serie

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

si chiama **serie di potenza centrata** in z_0 .

Con la semplice traslazione $z-z_0 \to z$ possiamo ricondurci al caso $z_0=0$:

$$\sum_{n=0}^{\infty} a_n z^n$$

Una serie di potenze ammette un $R \in [0, +\infty]$ tale che converge se |z| < R, non converge se |z| > R e nulla si può dire se |z| = R.

Criterio del rapporto: Se esiste

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

allora la serie $\sum_{n=0}^{\infty} a_n z^n$ converge se |z| < R e non converge se |z| > R.

Criterio della radice: Se esiste

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$

allora la serie $\sum_{n=0}^{\infty} a_n z^n$ converge se |z| < R e non converge se |z| > R.

L'insieme di convergenza di una serie di potenze in $\mathbb C$ è un disco.

Se $R=+\infty$ il disco è tutto \mathbb{C} , se R=0 il disco è vuoto. Il numero $R\in [0,+\infty]$ si chiama raggio di convergenza della serie di potenza.

Questi due criteri non dicono nulla sul comportamento della serie nei punti sul bordo del disco, cioè |z|=R.

teor. Sia $\{a_n\}$ una successione di numeri complessi tale che la serie di potenze

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

converga per |z| < R (con R > 0). Allora le serie ottenute derivando e integrando termine a termine, e cioè

$$\sum_{n=1}^{\infty} n a_n z^{n-1} \qquad \sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1}$$

sono rispettivamente la derivata e una primitiva della funzione f; inoltre, il loro raggio di convergenza è ancora R.

3.1.2 Nel campo reale

Diremo che una serie di funzioni $\sum_n f_n(x)$ converge puntualmente per ogni $x \in I$ se la serie numerica $\sum_n f_n(x)$ converge per ogni $x \in I$.

$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \lim_{k \to \infty} \sum_{n=0}^{k} f_n(x) \quad \forall \ x \in I$$

cioè

$$f_n(x) o f(x)$$
 puntualmente se $\lim_{n o \infty} f_n(x) = f(x)$

Diremo che la serie di funzioni $\sum_n f_n(x)$ converge uniformemente a f(x) su I se

$$\lim_{k \to \infty} \sup_{x \in I} \left| f(x) - \sum_{n=0}^{k} f_n(x) \right| = 0$$

dove $f(x) = \sum_{n=1}^{\infty} f_n(x)$ è il limite puntuale della serie e $\sum_{n=0}^{k} f_n(x)$ è la somma parziale ennesima della serie.

Cioè

$$f_n(x) \to f(x)$$
 uniformemente se $\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$

Diremo che la serie di funzioni $\sum_n f_n(x)$ converge totalmente su I se

$$\sum_{n=0}^{\infty} \sup_{x \in I} |f_n(x)| < +\infty$$

convergenza totale \implies convergenza uniforme \implies convergenza puntuale

Serie di potenza nel campo reale:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

che possiamo traslare nell'origine:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

Criteri del rapporto e della radice: Si possono ancora usare i criteri della radice e del rapporto specificati nel campo complesso, R rappresenta ancora il raggio del disco di convergenza nel piano complesso, ma essendo interessati all'asse reale si considera il solo intervallo (-R,R).

La serie di potenza nel campo reale converge **puntualmente** per ogni $x \in (-R, R)$, dove R è dato dal criterio del rapporto o dal criterio della radice, e non converge se |x| > R.

Come nel caso complesso, non possiamo dire nulle sulla convergenza in $x = \pm R$.

Per quanto riguarda la convergenza **uniforme**, la serie di potenza nel campo reale converge uniformemente in $[-R+\epsilon,R-\epsilon]$ per ogni $\epsilon\in(0,R)$.

Criterio di Abel: Se la serie di potenza $\sum_{n=0}^{\infty} a_n x^n$ converge per x=R, allora converge uniformemente in $[-R+\epsilon,R]$ per ogni $\epsilon\in(0,R)$; analogo risultato se la serie converge per x=-R. Se la serie converge per $x=\pm R$ allora converge uniformemente su tutto [-R,R].

teor. (Integrazione per serie)

Se la serie di potenza $\sum_{n=0}^{\infty} a_n x^n$ converge uniformemente a f su [c,d] allora

$$\int_{c}^{d} f(x)dx = \int_{c}^{d} \left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) dx = \sum_{n=0}^{\infty} a_{n} \int_{c}^{d} x^{n} dx = \sum_{n=0}^{\infty} a_{n} \frac{d^{n+1} - c^{n+1}}{n+1}$$

teor. (Derivazione per serie)

Date le serie

$$(1) \sum f_n(x) \qquad (2) \sum f'_n(x),$$

se sono verificate le seguenti ipotesi:

- le f_n sono continue nell'intervallo (a, b),
- la serie (2) converge uniformemente in (a, b),
- la serie (1) converge per $x = x_0 \in (a, b)$

allora valgono le seguenti tesi:

• la serie (1) converge uniformemente in (a,b) (quindi converge a una funzione continua),

- la serie (1) converge a una funzione derivabile in (a,b),
- è possibile derivare la (1) termine a termine, cioè

$$\frac{d}{dx}\left(\sum f_n(x)\right) = \sum f'_n(x).$$

3.1.3 Serie di Taylor / MacLaurin

Introduciamo una vasta classe di funzioni elementari delle quali sappiamo scrivere esplicitamente le serie di potenza che le rappresentano.

Data una funzione f di classe C^{∞} in un punto x_0 , possiamo scrivere formalmente

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

che, se poniamo $a_n=f^{(n)}(x_0)/n!$, coincide con una serie di potenza nel campo reale. Se R>0 e la serie converge a f, allora la scrittura non è solo formale ma vale per ongi $x\in (x_0-R,x_0+R)$. In tale intervallo si ha convergenza puntuale, mentre la convergenza uniforme è garantita negli intervalli $[x_0-R+\epsilon,x_0+R-\epsilon]$ per ogni $\epsilon\in (0,R)$.

$$e^x = \sum_{n=0}^\infty \frac{x^n}{n!} \quad (R=\infty)$$

$$Ch(x) = \text{termini pari dello sviluppo di } e^x = \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!} \quad (R=\infty)$$

$$Sh(x) = \text{termini dispari dello sviluppo di } e^x = \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!} \quad (R=\infty)$$

$$sin(x) = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad (R=\infty)$$

$$cos(x) = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n} \quad (R=\infty)$$

$$\frac{1}{1-x} = \sum_{n=0}^\infty x^n \quad (R=1)$$

$$\begin{cases} \text{se } x = 1 : \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \quad (\text{converge per Leibniz}) \\ \text{se } x = -1 : \sum_{n=1}^\infty \frac{-1}{n} \quad (\text{diverge, serie armonica}) \end{cases}$$

$$\frac{1}{1+x^2} = \sum_{n=0}^\infty -1^n \cdot x^{2n} \quad (R=1)$$

$$arctan(x) = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1} \quad (R=1)$$

$$(1+x)^\alpha = \sum_{n=0}^\infty \binom{\alpha}{n} x^n \quad (R=1)$$

3.2 Serie di Fourier

3.2.1 Forma trigonometrica

Nello studio delle serie di potenza $\sum_n a_n z^n$ abbiamo visto che i problemi principali riguardano lo studio di |z|=R con R raggio di convergenza. Per tali possiamo scrivere $z=R(cos(\theta)+sin(\theta))$ e ottenere:

$$\sum_{n=0}^{\infty} a_n R^n(\cos(n\theta) + i\sin(n\theta))$$

Se $\{a_n\}\subset\mathbb{R}$, siamo quindi portati a studiare la convergenza di serie trigonometriche del tipo

$$\sum_{n=0}^{\infty} \alpha_n cos(n\theta) \qquad \sum_{n=1}^{\infty} \beta_n sin(n\theta)$$

Per ogni scelta di $\alpha_n, \beta_n \in \mathbb{R}$ le funzioni

$$a_0 + \sum_{n=1}^{\infty} (\alpha_n cos(nx) + \beta_n sin(nx))$$

si chiamano **polinomi trigonometrici** di grado k; che sono funzioni periodiche di periodo 2π che hanno valor medio α_0 su $[0, 2\pi]$.

Diremo che una serie in forma trigonometrica converge se converge una successione di polinomi trogonometrici.

oss.

$$\sum_{n=1}^{\infty}(|\alpha_n|+|\beta_n|)<\infty\Rightarrow \text{converge totalmente su }[0,2\pi]\Rightarrow \text{converge uniformemente}\Rightarrow \text{converge puntualmente}$$

oss. La serie trigonometrica può perdere la convergenza dopo una derivazione.

Criterio di Dirichlet

$$\alpha_n, \beta_n \downarrow 0 \Rightarrow$$
 polinomio trigonometrico converge puntualmente su $(0, 2\pi)$

dove con il simbolo $\downarrow 0$ indichiamo che le successioni descrescono monotonamente a 0 e che sono positive.

Lemma. Per ogni $m, n = 1, 2, \ldots$ risulta

$$\begin{split} \int_0^{2\pi} \sin(nx) dx &= \int_0^{2\pi} \cos(nx) = 0 \\ \int_0^{2\pi} \sin(mx) \cos(nx) dx &= 0 \\ \int_0^{2\pi} \sin^2(nx) dx &= \int_0^{2\pi} \cos^2(nx) dx = \pi \\ \int_0^{2\pi} \sin(mx) \sin(nx) dx &= \int_0^{2\pi} \cos(mx) \sin(nx) dx = 0 \quad \text{se } m \neq n \end{split}$$

Si trovano gli stessi valori integrando su qualunque intervallo di ampiezza 2π .

teor. calcolo delle serie di Fourier per funzioni 2π -periodiche Se una funzione f è 2π -periodica ed è sviluppabile in serie di Fourier, si ha che

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$$

allora

$$a_n = \frac{1}{\pi} \int_I f(x) cos(nx) dx \quad \forall \ n \ge 0$$

$$b_n = \frac{1}{\pi} \int_I f(x) \sin(nx) dx \quad \forall \ n \ge 1$$

dove l'intervallo I è un qualunque intervallo di ampiezza 2π (tipicamente si prende da $-\pi$ a π , per sfruttare eventuali simmetrie. . .) e il termine a_0 si calcola come $a_0=\frac{1}{\pi}\int_I f(x)dx$. Gli a_n e b_n vengono chiamati **coefficienti di Fourier** di f, mentre la serie $f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_ncos(nx)+b_nsin(nx))$ viene chiamata **serie di Fourier** associata a f.

oss. Gli integrali del teorema si possono calcolare se risulta $\int_0^{2\pi} |f| < \infty$ e cioè se l'integrale improprio di |f| è convergente.

Diremo che la serie

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$$

converge in media quadratica alla f se

$$\lim_{k \to \infty} \int_0^{2\pi} \left| f(x) - \frac{a_0}{2} - \sum_{n=1}^k \left(a_n \cos(nx) + b_n \sin(nx) \right) \right|^2 dx = 0$$

teor. Sia f una funzione 2π -periodica tale che $\int_0^{2\pi} f^2 < \infty$. Allora la sua serie di Fourier converge a f in media quadratica.

Definiamo lo spazio X delle funzioni f tali che $\int_0^{2\pi} f^2 < \infty$ e introduciamo il "prodotto scalare" definito come

$$(x,g)_X = \frac{1}{\pi} \int_0^{2\pi} f(x)g(x)dx \quad \forall f,g \in X$$

per cui troviamo che

$$B = \left\{ \frac{1}{\sqrt{2}}, \cos(nx), \sin(nx) \right\}_{n=1}^{\infty}$$

è ortonormale in X.

teor. Identità di Parseval

Sia $f \in X$ e sia $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$ la sua serie di Fourier. Allora

$$\frac{1}{\pi} \int_0^{2\pi} f(x)^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

Per il teorema di Riemann-Lebesgue sappiamo che $a_n, b_n \to 0$ per $n \to \infty$.

convergenza uniforme ⇒ convergenza in media quadratica ⇒ ⇒ convergenza puntuale su sottosuccession in quasi ogni punto

def. Diciamo che $f:[0,2\pi]\to\mathbb{R}$ è **regolare a tratti** se è limitata in $[0,2\pi]$ e se l'intervallo $[0,2\pi]$ si può scomporre in un numero finito di sottointervalli su ciascuno dei quali f è continua e derivabile; inoltre, agli estremi di ogni sottointervallo, esistno finiti i limiti sia di f che di f'.

oss. se $f\in C^1[0,2\pi]$ allora f è regolare a tratti. Ma anche se ci sono punti angolosi o punti di discontinuità a salto, purchè f e f' abbiano limiti finiti in prossimità dei salti, allora f è regolare a tratti. Non devono esserti asintoti verticali o punti a tangenza verticale.

Se una funzione f è regolare a tratti allora la sua serie di Fourier converge a f in media quadratica. Dunque a meno di pochi possibili punti, la conergenza sarà anche puntuale.

teor. Sia $f:[0,2\pi]\to\mathbb{R}$ regolare a tratti. Allora la sua serie di Fourier converge in ogni punto $x_0\in[0,2\pi]$ alla media dei due limiti $f(x_0^\pm)$:

$$\frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n cos(nx_0) + b_n sin(nx_0) \right) = \frac{f(x_0^+) + f(x_0^-)}{2}$$

con la convenzione che $f(0^{\pm})=f(2\pi^{\pm})$. In particolare, se f è continua in x_0 , allora la serie converge a $f(x_0)$.

3.2.2 Funzioni con periodi diversi da 2π

Come ci si comporta in presenza di funzioni con periodo $T \neq 2\pi$? L'unica differenza sta nel calcolo dei coefficienti di Fouriere:

$$a_n = \frac{2}{T} \int_0^T f(x) \cos\left(\frac{2\pi n}{T}x\right) dx, \qquad b_n = \frac{2}{T} \int_0^T f(x) \sin\left(\frac{2\pi n}{T}x\right)$$

La funzione f si scrive allora:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi n}{T}x\right) + b_n \sin\left(\frac{2\pi n}{2}x\right) \right)$$

Tutti i teoremi valgono allo stesso modo, l'unico da "sistemare" è l'identità di Parseval, che, per fuznioni T-periodiche f soddisfacenti $\int_0^T f^2 < \infty$, diventa:

$$\frac{2}{T} \int_0^T f(x)^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

3.2.3 Forma esponenziale complessa

La formula di Eulero, $e^{i\theta} = cos(\theta) + isin(\theta)$, suggerisce di scrivere una serie di Fourier utilizzando gli esponenziali.

$$f_n = \frac{a_n - ib_n}{2} = \frac{1}{2\pi} \int_0^{2\pi} f(x)(\cos(nx) - i\sin(nx)) dx = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx}$$

$$f_{-n} = \frac{a_n + ib_n}{2} = \frac{1}{2\pi} \int_0^{2\pi} f(x)(\cos(nx) + i\sin(nx)) dx = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{inx}$$

da cui

$$a_n = f_n + f_{-n}$$
$$b_n = i(f_n)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx)) = \sum_{n=-\infty}^{\infty} f_n e^{inx}$$

Identità di Parseval:

$$\frac{1}{2\pi} \int_0^{2\pi} f(x)^2 dx = \sum_{n=-\infty}^{\infty} |f_n|^2$$

3.3 Note sugli esercizi

3.3.1 Serie di potenze nel campo reale

Sono dette serie di potenza le serie di funzioni della forma:

$$\sum_{n} a_n x^n \qquad \sum_{n} a_n (x - x_0)^n$$

in cui la prima si dice centrata nell'origine e la seconda centrata in x_0 (con la semplice traslazione di $x-x_0$ a x ci si può sempre ricondurre al caso $x_0=0$).

Una volta calcolato il raggio di convergenza R come

$$R = \lim_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|} \qquad \qquad R = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$$

dove l'uso della prima o della seconda è suggerito dalle circostanze, ci sono tre casi possibili:

- R=0, la serie converge se e solo se $x=x_0$;
- $R = +\infty$, la serie converge puntualmente per ogni $x \in \mathbb{R}$;
- $0 < R < \infty$,
 - la serie converge puntualmente se $|x-x_0| < R$, ossia nell'intervalo (x_0-R,x_0+R)
 - la serie non converge se $|x x_0| > R$
 - nulla si può dire riguardo al comportamento della serie nei punti $x=x_0-R$ e $x=x_0+R$

Per calcolare il raggio di convergenza R si usano due formule:

$$R = \lim_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|}$$

$$R = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$$

3.3.2 Convergenza uniforme per serie di potenza

Se una serie di potenze converge per $x \in (a,b)$, si dimostra che tale serie converge uniformemente in ogni intervallo $[\alpha,\beta]$ con $a<\alpha<\beta< b$.

Vale inoltre il **teorema di Abel**: se la serie di potenze $\sum a_n(x-x_0)^n$, converge negli estremi di un intervallo [a,b], allora converge uniformemente in tutto l'intervallo [a,b].

Possibili casi:

- converge in $x \in [a, b]$, converge uniformemente in [a, b]
- converge in $x \in [a,b)$, fissato un $\epsilon > 0$, converge uniformemente in $[a,b-\epsilon]$
- converge in $x \in (a, b]$, fissato un $\epsilon > 0$, converge uniformemente in $[a + \epsilon, b]$
- converge in (a,b), fissato un $\epsilon > 0$ e $\delta > 0$, converge uniformemente in $[a+\delta,b-\epsilon]$
- converge per x uguale a un solo punto, non ha senso parlare di convergenza uniforme
- converge per $x \in \mathbb{R}$, converge uniformemente in $[\alpha, \beta]$ con $-\infty < \alpha < \beta < +\infty$

3.3.3 Sviuluppabilità in serie di Fourier

Una funzione periodica $f: \mathbb{R} \to \mathbb{R}$ è sviluppabile in serie di Fourier se vale una delle due condizioni seguenti:

- \bullet f è limitata e monotona a tratti su un periodo, oppure
- il quadrato di f è integrabile su un periodo (vale meno di ∞).

Inoltre se la funzione f è continua in x_0 , allora la serie di Fourier converge al valore della funzione, viceversa se in x_0 è presente una discontinuità di prima specie (ma f è limitata e monotona a tratti):

$$\lim_{x \to x_0^-} f(x) = f_-(x_0)$$

$$\lim_{x \to x_0^+} f(x) = f_+(x_0)$$

$$f_{-}(x_0) \neq f_{+}(x_0)$$

allora (quale sia il valore che f assume in x_0) il valore della serie in x_0 è la media aritmentica dei due valori:

$$\frac{f_{-}(x_0) + f_{+}(x_0)}{2}$$

In parole povere, **per valutare se la funzione sia rappresentabile o meno con una serie di Fourier**, per prima cosa si controlla se è limitata e monotona tratti su un periodo (si capisce con una analisi grafica), se lo è allora la funzione è rappresentabile con Fourier. Altrimenti si può usare anche un metodo analitico: si prende la funzione, e si fa l'integrale $\int_0^{2\pi} f^2$, se l'integrale ha un valore finito, allora la funzione può essere sviluppata con una serie di Fourier. Da notare che l'integrale può essere svolto anche in senso generalizzato per risolvere puntii in cui la funzione va a ∞ .

Per valutare per quali valori di x la serie converge effettivamente alla funzione indicata, si usa il seguente criterio: dove la funzione è continua, la serie converge al valore della funzione, dove ci sono discontinuità a salto la serie converge al valor medio degli estremi del salto, dove ci sono altri tipi di discontinuità non si può concludere nulla sul comportamento della seria.

3.3.4 Calcolo delle serie di Fourier per funzioni 2π -periodiche

Se una funzione f è 2π -periodica ed è sviluppabile in serie di Fourier, si ha che

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$$

allora

$$a_n = \frac{1}{\pi} \int_I f(x) cos(nx) dx \quad \forall \ n \ge 0$$

$$b_n = \frac{1}{\pi} \int_I f(x) \sin(nx) dx \quad \forall \ n \ge 1$$

dove l'intervallo I è un qualunque intervallo di ampiezza 2π (tipicamente si prende da $-\pi$ a π , per sfruttare eventuali simmetrie...) e il termine a_0 si calcola come $a_0 = \frac{1}{\pi} \int_I f(x) dx$.

3.3.5 Semplificazioni nel calcolo delle serie di Fourier per funzioni pari e dispari

I coefficienti di Fourier di funzioni 2π -periodiche si possono calcolare integrando su un qualunque intervallo di ampiezza 2π . Tipicamente si sceglie l'intervallo $[-\pi,\pi]$ perchè permette di sfruttare eventuali simmetrie della funzione f.

Infatti, se la funzione f è **pari** allora risulta pari anche f(x)cos(nx) mentre risulta dispari f(x)sin(nx), dunque:

$$f \text{ pari } \Rightarrow a_n = \frac{2}{\pi} \int_0^{\pi} f(x) cos(nx) dx, \quad b_n = 0$$

Invece, se la funzione f è **dispari** allora risulta dispari anche la funzione f(x)cos(nx) mentre risulta pari f(x)sin(nx), dunque:

$$f$$
 dispari $\Rightarrow a_n = 0, \quad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) sin(nx) dx$

3.3.6 Riassunto dei criteri per la convergenza della serie di Fourier $\sum F$

Appunti prof:

Condizione di partenza:

$$\int_0^{2\pi} f^2 < \infty \Leftrightarrow \text{possiamo calcolare } \{a_n, b_n\}$$

- se $\sum_{n=1}^{\infty}(|a_n|+|b_n|)<\infty$ (converge) $\Rightarrow \sum F \to f$ totalmente $\Rightarrow \sum F \to f$ uniformemente. Proprietà: una successione/serie di funzioni continue che converge uniformemente ha limite continuo.
- ullet se f non è continua, la serie di Fourier $\sum F$ non può convergere uniformemente.
- $\int_0^{2\pi} f^2 < \infty$ e cioè $\sum_{n=0}^\infty (a_n^2 + b_n^2) < \infty$ \iff $\sum F \to f$ in media quadratica.
- Criterio di Dirichlet: se $a_n, b_n \downarrow 0 \Rightarrow \sum F \rightarrow f$ puntualmente su $(0, 2\pi)$.
- f regolare a tratti $\Rightarrow \sum F(x) o rac{f(x)^+ + f(x)^-}{2}$ puntualmente su $[0,2\pi]$

Note dal libro di esercizi:

Data la generica funzione di Fourier:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n cos(nx) + b_n sin(nx)$$

per stabilirne la convergenza è possibile percorrere due strade:

- Criterio di Dirichlet: se le successioni a_n e b_n sono monotone decrescenti e tendono a 0, allora la serie di Fourier covnerge in tutti i punti, tranne al più in $x=2k\pi$.
- Criterio di Weierstrass per le serie di funzioni: Data una serie di funzioni $\sum f_n(x)$, se per $x \in [a,b]$ si ha che
 - $-|f_n(x)| \le c_n$
 - $-\sum c_n$ converge

allora la serie di partenza converge uniformemente in tutto l'intervallo [a,b]. Per usarlo con le serie di Fourier: poichè

$$|a_n cos(nx) + b_n sin(nx)| \le |a_n| + |b_n|$$

se la serie $\sum |a_n| + |b_n|$ converge, allora la serie di Fourier converge (uniformemente), e quindi la funzione a cui converge è continua.

Inoltre, poichè derivando la funzione termine a termine, otteniamo la serie

$$\sum_{n=1}^{\infty} (nb_n)cos(nx) - (na_n)sin(nx)$$

è sufficiente riapplicare a quust'ultima i criteri di convergenza, per controllare se la serie di partenza converge a una funzione derivabile.

3.3.7 Armoniche

Data una serie di Fourier:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$$

Allora può essere riscritta nella forma

$$f(x) \sim \text{valor medio } + \sum_{n=1}^{\infty} \alpha_n cos(nx + \theta_n)$$

di cui dobbiamo ricavare α_n e θ_n :

$$\alpha_n = \sqrt{a_n^2 + b_n^2}$$

е

$$cos(\theta_n) = \frac{a_n}{\sqrt{a_n^2 + b_n^2}}$$

$$sin(\theta_n) = -\frac{b_n}{\sqrt{a_n^2 + b_n^2}}$$

da cui si ricava che θ_n è:

$$\theta_n = \begin{cases} \arctan\left(\frac{-b_n}{a_n}\right) & \text{se } a_n > 0\\ \pi + \arctan\left(\frac{-b_n}{a_n}\right) & \text{se } a_n < 0 \end{cases}$$

se $a_n=0$, non si può usare l'arcotangente, ma in tal caso la trasposizione è banale e diventa diventa:

$$b_n sin(nx) = b_n cos(nx - \frac{\pi}{2})$$

4 Funzioni $\mathbb{R} \to \mathbb{R}^n$ ("Funzioni di una variabile a valori vettoria-li", "Curve nel piano e nello spazio")

4.1 Introduzione alle funzioni $R \rightarrow R^n$

4.1.1 Definizioni e terminologia

Si dice funzione a valori vettoriali una funzione $\vec{f}: \mathbb{R} \to \mathbb{R}^n$ con n > 1.

Il limite della funzione a valori vettoriali si calcola componente per componente:

$$\lim_{t \to t_0} (r_1(t), r_2(t), \dots, r_n(t)) = \left(\lim_{t \to t_0} r_1(t), \lim_{t \to t_0} r_2(t), \dots, \lim_{t \to t_0} r_n(t) \right)$$

Valgono allo stesso modo delle funzioni unidimensionali il teorema di unicità del limite e la definizione di **continuità** (una funzione a valori vettoriali è continua in un punto se lo sono tutte le sue componenti).

Nel caso n=2 o 3, una funzione $\vec{f}:\mathbb{R}\to\mathbb{R}^n$ rappresenta una curva nel piano o nello spazio tridimensionale.

Sia I un intervallo in $\mathbb R$. Si dice **arco di curva continua**, o **cammino**, in $\mathbb R^n$ una funzione $\vec r:I\to\mathbb R^n$ continua.

Una curva si dice **chiusa** se $\vec{r}(a) = \vec{r}(b)$ con I = [a, b].

Una curva si dice **semplice** se non ripassa mai nello stesso punto, cioè se $r:(a,b)\to\mathbb{R}^n$ è iniettiva..

Una curva si dice **piana** se esiste un piano che contiene il suo sostegno (in particolare tutte le curve $f: \mathbb{R} \to \mathbb{R}^n$ con n=2).

Il **sostegno** della curva è l'immagine della funzione, cioè l'insieme dei punti di \mathbb{R}^n percorsi dal punto mobile.

Due curve si dicono equivalenti se hanno lo stesso sostegno.

4.1.2 Calcolo differenziale per funzioni $R \rightarrow R^n$

Sia $\vec{r}:I \to \mathbb{R}^n$ e $t_0 \in I$, si dice che \vec{r} è **derivabile** in t_0 se esiste finito

$$\vec{r}'(t_0) = \lim_{h \to 0} \frac{\vec{r}(t_0 + h) - \vec{r}(t_0)}{h}$$

Se \vec{r} è derivabile in tutto I e inoltre \vec{r}' è continuo in I, si dice che \vec{r} è di **classe** $C^1(I)$ ($\vec{r} \in C^1(I)$).

Notiamo che il vettore derivato è il vettore delle derivate delle componeneti:

$$\vec{r'}(t_0) = (r'_1(t_0), r'_2(t_0), \dots, r'_n(t_0))$$

Sia $I\subseteq\mathbb{R}$ un intervallo. Si dice arco di curva **regolare** un arco di curva $\vec{r}:I\to\mathbb{R}^n$ tale che $\vec{r}\in C^1(I)$ e $\vec{r}'(t)\neq 0$ per ogni $t\in I$ (solo nell'intervallo aperto, queste due proprietà possono non verificarsi agli estremi).

Il fatto che $\vec{r}'(t) \neq 0$ è una proprietà il cui significato è vettoriale: le componenti di $\vec{r}'(t)$ non possono annullarsi contemporanemente, e cioè che $|\vec{r}'(t)| \neq 0$, cioè che il punto mobile non si ferma mai $(\vec{r}'(t)$ rappresenta la velocità).

Dato un vettore $\vec{r}(t)$ si dice

• velocità: $\vec{r}'(t)$

• velocità scalare: $|\vec{r}'(t)|$

• accellerazione: $\vec{r}''(t)$

• accellerazione scalare: $|\vec{r}''(t)|$

Di conseguenza per le curve regolari è ben definito il versore tangente:

$$\vec{T} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$$

Si dice arco di curva **regolare a tratti** un arco di curva $\vec{r}:I\to\mathbb{R}^n$ tale che: \vec{r} è continua e l'intervallo I può essere suddiviso in un numero finito di sottointervalli, su ciascuno dei quali \vec{r} è un arco di curva regolare.

Alcune proprietà del calcolo differenziale vettoriale:

$$(\vec{u}+\vec{v})' = \vec{u}' + \vec{v}'$$

$$(c\vec{u})' = c\vec{u}' \quad \text{con c costante}$$

$$(f\vec{u})' = f'\vec{u} + \vec{u}'f \quad \text{con } f \text{ funzione}$$

$$[\vec{u}(f(t))]' = \vec{u}'(f(t))f'(t)$$

$$(\vec{u}\cdot\vec{v})' = \vec{u}'\cdot\vec{v} + \vec{u}\cdot\vec{v}'$$

$$(\vec{u}\times\vec{v})' = \vec{u}'\times\vec{v} + \vec{u}\times\vec{v}' \quad in \ \mathbb{R}^3$$

4.1.3 Calcolo integrale per funzioni $R \rightarrow R^n$

$$\int_a^b \vec{r}(t)dt = \left(\int_a^b \vec{r_1}(t)dt, \int_a^b \vec{r_2}(t)dt, \dots, \int_a^b \vec{r_n}(t)dt, \right)$$

Diremo che \vec{r} è **integrabile** in [a,b] se lo è ognuna delle sue componenti.

$$\int_{a}^{b} \vec{r}'(t)dt = \vec{r}(b) - \vec{r}(a)$$

Può essere utile utilizzare il seguente lemma:

$$\left| \int_{a}^{b} \vec{r}(t)dt \right| \leq \int_{a}^{b} |\vec{r}(t)|dt$$

Se $\vec{r}(t)$ è una curva regolare e chiusa in [a,b], allora $\int_a^b \vec{r}'(t)dt = 0$.

4.2 Lunghezza di un arco di curva

4.2.1 Curve rettificabili e lunghezza

Si dice che γ è **rettificabile** se

$$sub_{\mathcal{P}}l(\mathcal{P}) = l(\gamma) < +\infty$$

Dove l'estremo superiore è calcolato al variare di tutte le possibili partizioni $\mathcal P$ di [a,b]. In tal caso $l(\gamma)$ assegna per definizione, la lunghezza di γ .

teor. Sia $\vec{r}:[a,b]\to\mathbb{R}^n$ la parametrizzazione di un arco di curva γ regolare. Allora γ è rettificabile e la sua **lunghezza** vale

$$l(\gamma) = \int_{a}^{b} |\vec{r}'(t)| dt$$

Nello spazio tridimensionale la formula diventa:

$$l(\gamma) = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt$$

(Da un punto di vista fisico queste due formule ci dicono che lo spostamento è l'integrale della velocità, cosa ben nota).

Inoltre:

Sia γ l'unione di due curve rettificabili, allora γ è rettificabile, la stessa proprietà si estende a un numero finito qualsiasi di curve rettificabili.

Se una curva γ è regolare a tratti, allora è rettificabile.

Vediamo il caso in cui si vuole calcolare la lunghezza di una curva in forma cartesiana (una funzione...) y = f(x):

Sia γ una curva piana regolare che sia grafico di una funzione, ossia:

$$\gamma: \begin{cases} x=t \\ y=f(t) \end{cases} \qquad \text{per } t \in [a,b]$$

allora

$$l(\gamma) = \int_{a}^{b} \sqrt{1 + f'(t)^2} dt$$

Vediamo il caso in cui su vuole calcolare la **lunghezza di una curva in forma polare** $\rho = f(\theta)$: Sia γ una curva piana regolare in forma polare, ossia:

$$\gamma: \begin{cases} x = f(\theta)cos(\theta) \\ y = f(\theta)sin(\theta) \end{cases} \quad \text{per } \theta \in [\theta_1, \theta_2]$$

allora

$$l(\gamma) = \int_{\theta_1}^{\theta_2} \sqrt{g(\theta)^2 + g'(\theta)^2} d\theta$$

4.2.2 Riparametrizzazioni e parametro arco (o ascissa curvilinea)

Sostanzialmente, due curve equivalenti dipendono da un cambio di variabile. Se r=r(t) con $t\in [a,b]$ ha per sostegno γ e se $\phi:[c,d]\to [a,b]$ è una funzione continua e strettamente monotona (crescente o descrescente), allora la curva $\rho(t):=r(\phi(t))$, con $t\in [c,d]$, ha lo stesso sostegno di γ . Si usa dire che $\rho(t)$ è una **riparametrizzazione** di r(t).

Notiamo che dopo una riparametrizzazione la lunghezza dell'arco di curva rimane la stessa, anche se il verso o la velocità di percorrenza cambiano (es. per invertire il senso di percorrenza si può riparametrizzare t con -t).

Se invece di calcolare la lunghezza di una curva da un valore a a un valore b, cioè in [a,b], la calcolassimo in $[t_0,t]$, con t_0 un effettivo valore e t una variabile, otterremmo una funzione di t definita come:

$$s(t) = \int_{t_0}^t |\vec{r}'(\tau)| d\tau$$

Inoltre se si è in grado di calcolare esplicitamente tale funzione e poi di invertirla, esprimendo t come funzione di s, è possibile riparametrizzare la curva in funzione del parametro s, detto **parametro arco** o **ascissa curvilinea** (ricordarsi di ricalcolare anche gli estremi dell'intervallo secondo il nuovo parametro).

Notiamo che se $|\vec{r}'(t)| = 1$, t coincide con il parametro arco, quindi la curva sarebbe già parametrizzata secondo il parametro arco.

Se $\vec{r} = \vec{r}(s)$ è un curva parametrizzata mediante il parametro arco, il vettore derivato $\vec{r}'(s)$ coincide col **versore tangente** \vec{T} .

Se $\vec{r}(t)$ è una curva parametrizzata rispetto a un parametro t qualunque (non necessariamente il parametro arco), si ha:

$$\frac{ds}{dt} = |\vec{r}'(t)| = v(t)$$

che si riscrive anche nella forma

$$ds = |\vec{r}'(t)|dt = v(t)dt$$

dove il simbolo ds prende il nome di lunghezza d'arco elementare.

4.3 Integrali di linea (di prima specie)

Sia $\vec{r}:[a,b]\to\mathbb{R}$ un arco di curva regolare di sostegno γ e sia f una funzione a valori reali, definita in un sottoinsieme A di \mathbb{R}^n contenente γ , cioè $f:A\subset\mathbb{R}^n\to\mathbb{R}$ con $\gamma\subset A$.

Si dice integrale di linea (di prima specie) di f lungo γ l'integrale

$$\int_{\gamma} f ds = \int_{a}^{b} f(\vec{r}(t)) |\vec{r}'(t)| dt$$

Lintegrale di f di prima specie lungo γ è invariante per parametrizzazioni equivalenti e anche per cambiamento di orientazione.

Osserviamo che se f=1 (soffitto di altezza costatne), ritroviamo la lunghezza di una linea.

Applicazioni fisiche:

• Il **baricentro** di γ è il punto $B=(\bar{x},\bar{y},\bar{z})$ con:

$$\begin{cases} \bar{x} = \frac{1}{m} \int_{\gamma} x \rho ds = \frac{1}{m} \int_{a}^{b} x(t) \rho(\vec{r}(t)) | \vec{r}'(t) | dt \\ \bar{y} = \frac{1}{m} \int_{\gamma} y \rho ds = \frac{1}{m} \int_{a}^{b} y(t) \rho(\vec{r}(t)) | \vec{r}'(t) | dt \\ \bar{z} = \frac{1}{m} \int_{\gamma} z \rho ds = \frac{1}{m} \int_{a}^{b} z(t) \rho(\vec{r}(t)) | \vec{r}'(t) | dt \end{cases}$$

dove ρ è la densità lineare e m è la massa (calcolabile come $\int_{\gamma} \rho ds$). Se il corpo è **omogeneo** (ρ = costante), il baricentro si dice **centroide** e ha coordinate:

$$\begin{cases} \bar{x} = \frac{\rho}{m} \int_{\gamma} x ds = \frac{1}{l(\gamma)} \int_{a}^{b} x(t) |\vec{r'}(t)| dt = \frac{\int_{a}^{b} x(t) |\vec{r'}(t)| dt}{\int_{a}^{b} |\vec{r''}(t)| dt} \\ \bar{y} = \text{ stesso di sopra} \\ \bar{z} = \text{ stesso di sopra} \end{cases}$$

• momento di inerzia di γ rispetto a un asse fissato. Se $\delta(x,y,z)$ indica la distanza del punto (x,y,z) da quest'asse fissato, si ha:

$$I = \int_{\gamma} \delta^2 \rho ds = \int_a^b \delta^2(\vec{r}(t)) \rho(\vec{r}(t)) |\vec{r}'(t)| dt$$

Se il corpo è **omogeneo** (ρ = costante):

$$I = \frac{m}{l(\gamma)} \int_{\gamma} \delta^2 ds = m \frac{\int_a^b \delta^2(\vec{r}(t)) |\vec{r'}(t)| dt}{\int_a^b |\vec{r'}(t)| dt}$$

Per gli esercizi: può essere molto utile cercare di ridefinire la curva spostandola in modo tale che l'asse di riferimento sia uno degli assi cartesiani, in questo modo esprimere la distanza δ di ogni punto dall'asse può essere più facile.

4.4 Note sugli esercizi

4.4.1 Ripasso sul calcolo vettoriale

vettore:

$$\vec{x} = (x_1, x_2, \dots, x_n)$$

modulo di un vettore:

$$|\vec{x}| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

versore:

$$vers(\vec{x}) = \frac{\vec{x}}{|\vec{x}|}$$

 \vec{x}, \vec{y} sono **paralleli** se

$$\lambda \vec{x} = \mu \vec{y}$$
 per qualche $\lambda, \mu \in \mathbb{R}$

Somma di vettori: si sommano le componenti simili.

Prodotto fra un vettore e uno scalare: si moltiplica ogni componente per lo scalare.

Prodotto scalare fra vettori: ha come risultato un numero reale ottenuto dalla formula

$$\vec{u} \cdot \vec{v} = (u_1v_1 + u_2v_2 + \dots + u_nv_n)$$

Il prodotto scalare può essere espresso anche come

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| cos(\theta)$$

dove θ rappresenta l'angolo tra i due vettori. Di conseguenza $\vec{u}\cdot\vec{v}=0$ solo se i due vettori sono ortogonali.

Dal prodotto scalare si può ricavare l'angolo fra due vettori

$$cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$$

Inoltre $\vec{v} \cdot \vec{v} = |\vec{v}|^2$.

Prodotto vettoriale:

$$\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Il prodotto vettoriale si annulla solo se i vettori sono paralleli.

Regola della mano destra: il primo fattore va sul pollice, il secondo sull indice, il risultato è nel medio.

Inoltre $\vec{v} \times \vec{v} = 0$.

Prodotto misto:

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Il prodotto misto si annulla solo se i tre vettori sono linearmente indipendenti.

4.4.2 Proprietà delle curve

- continua: se le componenti sono continue.
- chiusa: se agli estremi dell'intervallo in cui son definite la curva ha lo stesso valore (se fosse definita su tutto \mathbb{R} si controllano i limiti all'infinito).
- asintoti: se i limiti all'infinito hanno un valore finito per una delle due componenti.
- semplice: se la curva non passa mai due volte per lo stesso punto. Si verifica per logica, spesso è utile notare se almeno una delle due componenti è strettamente monotona (crescente o decrescente). Spesso per funzioni trigonometriche si cerca di ragionare sulla loro periodicità.
- regolare: Si calcola la derivata della curva (derivata delle componenti) e in seguito il modulo della derivata (radice della somma delle componenti alla seconda). Se le derivate delle componenti sono funzioni continue e il modulo della derivata non si annulla mai per i valori di t per cui la curva è definita (estremi esclusi, sempre) allora la curva è regolare. (Ci sono metodi particolari per calcolare il modulo della derivata, per esempio, per funzioni in forma polare il modulo della derivata è: $\rho = f(\theta) \Rightarrow |\vec{r}'(\theta)| = \sqrt{f'(\theta)^2 + f(\theta)^2}$; ma, inoltre, non bisogna scordarsi di calcolare le derivate delle componenti per controllare che siano continue). Infine per individuare i punti di singolarità (cioè quelli in cui la funzione non è regolare) si calcolano

i punti in cui $\vec{r}(t) = (x, y, z)$ per cui t annulla la derivata.

• piana:

Primo metodo: si controlla se il versore binormale alla curva è costante. Il vettore binormale della caruva $\gamma(x(t),y(t),z(t))$ si calcola come prodotto vettoriale di $\gamma'(t) \times \gamma''(t)$, una volta normalizzato (dividendo ogni componente per il modulo (componenti al quadrato sommate sotto radice)) si ottiene il versore e si controlla se è costante (curva piana) o non costante (curva non piana)

e dunque basta assicurarsi che non sia presente la variabile t (p.s. $\gamma'(t)=(x'(t),y'(t),z'(t),\gamma''(t)=(x'(t),y'(t),z'(t))$). Concettualmente, se i calcoli sono troppo complicati, si può ragionare sul fatto che se il vettore binormale (che è sempre ortonormale alla curva) ha sempre la stessa direzione (anche se di modulo diverso) allora la curva è piana.

Secondo metodo: sostiuiamo le equazioni parametriche della curva $\gamma(x(t),y(t),z(t))$ nella formula del piano generico ax+by+cz+d=0. Se risulta che l'equazione è sempre soddisfatta, allora la curva è complanare.

4.4.3 Equazioni di grafici di funzioni

Curve ottenute da grafici di funzioni in una variabile:

$$y = f(x)$$
 per x in $[a, b]$

Forma parametrica:

$$\begin{cases} x = t \\ y = f(t) \end{cases} \quad \text{per t } \in [a,b]$$

Proprietà:

- è continua se e solo se f è continua
- è regolare se e solo se f è derivabile con continuità (le condizioni di non annullamento della derivata prima sono automaticamente verificate perchè x'(t) = 1)
- ullet è regolare a tratti se e solo se f è continua e a tratti derivabile con continuità
- non è mai chiusa
- è sempre semplice

4.4.4 Rappresentazioni di equazioni in forma polare

L'equazione

$$\rho = f(\theta) \quad \text{per} \ \theta \in [\theta_1, \theta_2]$$

è una forma abbreviata che, tramite la sostituzione $x = \rho cos(\theta)$ e $y = \rho sin(\theta)$, può essere riscritta:

$$\begin{cases} x = f(\theta)cos(\theta) \\ y = f(\theta)sin(\theta) \end{cases} \quad \text{per } \theta \in [\theta_1, \theta_2]$$

Ricordiamo che $\rho = \sqrt{x^2 + y^2}$ Osserviamo che

$$\vec{r}'(\theta) = (f'(\theta)\cos(\theta) - f(\theta)\sin(\theta), f'(\theta)\sin(\theta) - f(\theta)\cos(\theta))$$
$$|\vec{r}'(\theta)| = \sqrt{\rho(\theta)^2 + \rho'(\theta)^2} = \sqrt{f'(\theta)^2 + f(\theta)^2}$$

Geometricamente la forma polare $\rho=f(\theta)$ può essere visualizzata come la curva tracciata da una penna posta su un braccio che ruota attorno all'origine a velocità costante (in modo che il tempo t combaci con l'angolo θ). Mentre il braccio ruota la penna si sposta lungo il braccio in modo da essere a distanza $f(\theta)$ dall'origine all'istante θ .

Proprietà:

- ullet è continua se e solo se f è continua
- ullet è regolare se e solo se f è derivabile con continuità, inoltra f e f' non si annullano mai contemporaneamente
- è chiusa se e solo se $f(\theta_1) = f(\theta_2)$ e $\theta_2 \theta_1 = 2n\pi$ per qualche intero n.

Rappresetnazioni di coniche in forma polare

Equazione polare della conica:

$$\rho = \frac{\epsilon p}{1 - \epsilon cos(\theta)}$$

con $\epsilon > 0$ e p > 0 e θ varia nell'intervallo in cui il secondo membro è definito e positivo. Questa equazione rappresenta:

$$\begin{cases} \text{un'ellissi} & \text{se } \epsilon < 1 \\ \text{una parabola} & \text{se } \epsilon = 1 \\ \text{un'iperbole} & \text{se } \epsilon > 1 \end{cases}$$

Notiamo che il segmo - davanti al coseno non è importante, infatti se cambiamo $\theta=t+\pi$ l'equazione si trasforma in $\rho = \frac{\epsilon p}{1 + \epsilon cos(t)}$.

Equazione della circonferenza:

$$\rho = R$$

4.4.6 Equazione di una retta passante per due punti

Dati due punti (x_1, x_2) e (y_1, y_2) la retta passante per questi punti è definita dall'equazione

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

Questa formula vale se i due punti non sono allineati verticalmente o orizzontalmente.

Negli esercizi sul calcolo delle lunghezze di archi di curve e di parametrizzazione secondo il parametro arco è risultato molto utile l'intergale:

$$\int_0^{2\pi} \sqrt{1 + cos(t)} dt = \left[\text{moltiplicando per } \frac{\sqrt{1 - cos(t)}}{\sqrt{1 - cos(t)}} \right] = \int_0^{2\pi} \frac{|sin(t)|}{\sqrt{1 - cos(t)}} dt = \left[2\sqrt{cos(t) + 1} \cdot tan(\frac{t}{2}) \right]_0^{2\pi} = 4\sqrt{2}$$

Alternativamente l'equazione della retta può essere trovata come

$$y = mx + q$$

con
$$m = \frac{y_1 - y_2}{x_1 - x_2}$$
 e $q = \frac{x_1 y_2 - x_2 y_1}{x_1 - x_2}$

4.4.7 Equazione della retta tangente a una curva r(t) = (x(t), y(t)) in un punto t_0

La generica retta ha forma y = mx + q.

Il coefficiente m si trova facendo il rapporto $\frac{y'(t_0)}{x'(t_0)}$.

Il valore di q si ricava sostituendo nell'equazione y=mx+q la m trovata, la y con il valore di $y(t_0)$ e la x con il valore di $x(t_0)$.

In alternativa, data una curva $\vec{r}(t) = \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$, il vettore tangente è dato da $\vec{r}'(t) = \begin{cases} x = x'(t) \\ y = y'(t) \\ z = z'(t) \end{cases}$. Ora per scrivere l'equazione della retta tangente in un certo punto $\vec{r}(t_0) = \begin{bmatrix} x(t_0) \\ y(t_0) \\ z(t_0) \end{bmatrix}$ è sufficiente

calcolare il valore di $\vec{r}'(t)$ in $t = t_0$ e scrivere:

$$\vec{r}(t) = \begin{bmatrix} x'(t_0) \\ y'(t_0) \\ z'(t_0) \end{bmatrix} + t \cdot [$$

28

4.4.8 Equazione della circonferenza

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

con r raggio e (x_c,y_c) centro. Centrata nell'origine la circonferenza è $x^2+y^2=1$.

La forma canonica è

$$x^2y^2 + \alpha x + \beta y + \gamma = 0$$

La circonferenza parametrizzata è spesso:

$$\begin{cases} x = x_0 + R \cdot \cos\alpha \\ y = y_0 + R \cdot \sin\alpha \end{cases}$$

con (x_0, y_0) centro e R raggio.

4.4.9 Equazione dell'ellisse

Con a lunghezza del semiaasse orizzontale e b lunghezza del semiasse verticale

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

L'ellisse parametrizzata è spesso:

$$\begin{cases} x = a \cdot \cos \alpha \\ y = b \cdot \sin \alpha \end{cases}$$

4.4.10 Interpretazione geometrica degli integrali di prima specie

Data una linea γ nel piano (x,y) e data una funzione z=f(x,y) (una superficie) definita e non negativa in corrispondenza dei punti di γ , l'integrale

$$\int_{\gamma} f(x,y)ds$$

può essere visto come l'area della superficie verticale compresa tra la linea γ nel piano (x,y) e la superficie z=f(x,y)

4.4.11 Integrali di linea di seconda specie

Come per gli integrali di prima specie, anche per gli integrali di seconda specie le variabiliche compaiono nell'integrale vengono trasformate nel parametro della linea γ ; mentre nel caso degli integrali di prima specie ds diventava $|\vec{r}'(t)|dt$, ora negli integrali compaiono i termini dx,dy,dz che diventano rispettivamente

$$dx = x'(t)dt$$
 $dy = y'(t)dt$ $dz = z'(t)dt$

Da notare è che negli integrali di seconda specie, siccome le variabili di integrazione sono x,y,z, il risultato è legatoal verso di percorrenza della linea.

5 Funzioni $\mathbb{R}^n \to \mathbb{R}$ ("Calcolo differenziale per funzioni reali di più variabili", "Funzioni reali di più variabili")

5.1 Topologia in \mathbb{R}^n e proprietà delle funzioni continue

Dato un punto $M(x_0,y_0)\in\mathbb{R}^2$ e dato r>0 indicheremo con $B_r(M)$ il disco centrato in M di raggio r:

$$B_r(X_0, y_0) = \{(x, y) \in \mathbb{R}^2; (x - x_0)^2 + (y - y_0)^2 < r^2\}.$$

Diremo anche che $B_r(x_0, y_0)$ è un **intorno** del punto (x_0, y_0) : tutti gli intorni del punto si ottengono facendo variare r > 0. Indicheremo invece con $B_r^0(x_0, y_0)$ un **intorno bucato** di (x_0, y_0) e cioè:

$$B_r^0(x_0, y_0) = \{(x, y) \in \mathbb{R}^2; 0 < (x - x_0)^2 + (y - y_0)^2 < r^2\}$$

Nel caso n-dimensionale, dato un punto $M(x_1^0,\ldots,x_n^0)\in\mathbb{R}^n$, si definisce

$$B_r(M) = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n; \sum_{i=1}^n (x_i - x_i^0)^2 < r^2 \right\}$$

Sia E un sottoinsieme di \mathbb{R}^n , un **punto** x_0 si dice:

- **interno** ad E, se esiste un intorno centrato in x_0 contenuto in E;
- **esterno** ad E, se esiste un intorno centrato in x_0 contenuto in E^c ;
- di frontiera per E, se ogni intorno centrato in x_0 contiene almeno un punto di E e uno di E^c .

Un insieme $E \subseteq \mathbb{R}^n$ si dice:

- aperto, se ogni suo punto è interno a E;
- chiuso, se il suo complementare è aperto.

Sia E un **insieme** di \mathbb{R}^n , si dice:

- **interno** di E, e si indica con E^o , l'insieme dei punti interni di E;
- frontiera o bordo di E, e si indica con δE , l'insieme dei punti di frontiera di E;
- chiusura di E, e si indica con \bar{E} , l'insieme $E \cup \delta E$.

Alcune informazioni extra:

- si ha sempre $E^o \subset \delta E \subset \bar{E}$;
- il complementare di un aperto è chiuso e viceversa;
- esistono insiemi nè aperti nè chiusi, gli unici insiemi sia aperti sia chiusi sono quello vuoto e \mathbb{R}^n ;
- l'unione di una famiglia qualsiasi (anche infinita) di insiemi aperti e l'intersezione di un numero finito di insiemi aperti sono insiemi aperti
- l'intersezione di una famiglia qualsiasi (anche infinita) di insiemi chiusi è l'unione di un numero finito di insiemi chiusi sono insiemi chiusi;
- un insieme aperto non contiene nessuno dei suoi punti di frontiera, un insieme chiuso contiene tutti i suoi punti di frontiera.

Un insieme si dice:

- limitato se esiste un intorno che lo contiene tutto;
- connesso se per ogni coppia di punti dell'insieme, esiste un arco continuo che che li connette contenuto nell'insieme.

Estremi:

Sia $\Omega\subset\mathbb{R}^n$ e sia $f_\Omega\to\mathbb{R}$. Diremo che $(\bar x,\bar y)\in\Omega$ è un punto di **massimo relativo** per f se esiste r>0 tale che $f(x,y)\leq f(\bar x,\bar y)$ per ogni $(x,y)\in B_r(\bar x,\bar y)\cap\Omega$; Diremo che $(\bar x,\bar y)\in\Omega$ è un punto di **minimo relativo** per f se vale la disuguaglianza opposta. Diremo che $(\bar x,\bar y)\in\Omega$ è punto di **massimo assoluto** per f se $f(x,y)\leq f(\bar x,\bar y)$ per ogni $f(x,y)\in\Omega$; diremo che $f(x,y)\in\Omega$ 0 è punto di **minimo assoluto** per f se vale la disuguaglianza opposta.

5.2 Calcolo di limiti di funzioni in più variabili

Sia $l \in \mathbb{R}$, diremo che

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l$$

se

$$\forall \ \epsilon > 0 \ \exists \ \delta > 0 \ \mathsf{tale} \ \mathsf{che} \ (x,y) \in b^0_\delta(x_0,y_0) \Rightarrow |f(x,y)-l| < \epsilon$$

In \mathbb{R} si parla di limite "destro" e "sinistro", in \mathbb{R}^n , per via della presenza dell'intorno bucato, ci sono infiniti modi di avvicinarsi al limite: il valore dipende dal cammina che si segue.

5.2.1 Non esistenza del limite

Per mostrare che un certa funzione in più varibili non ammette limite in un determinato punto, è sufficiente determinare due curve passasnti per il punto lungo le quali la funzione assume limiti diversi.

es.

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

Analiziamo la funzione lungo due curve:

- con y = x ottengo $f(x, x) = \frac{1}{2}$
- con y = -x ottengo $f(x, -x) = -\frac{1}{2}$

non ammette limite.

5.2.2 Uso di maggiorazioni con funzioni radiali per provare l'esistenza del limite

Il trucco più efficace per calcolare i limiti (in \mathbb{R}^2) è quello di passare in **coordinate polari**.

Per dimostrare l'esistenza di un limite per $(x,y) \to (0,0)$ (!), si impone $x = \rho \cdot cos(\theta)$ e $y = \rho \cdot sin(\theta)$, successivamente si pone l'intera funzione sotto modulo e si fa il limite per $\rho \to 0$. Il segreto dta nell'usare semplificazioni e maggiorazioni per eliminare i seni e i coseni. E' essenziale che la funzione non dipenda da θ , altrimenti il limite non esiste.

Più in generale se si volesse calcolare il limite per $(x,y) \to (x_0,y_0)$ (con (x_0,y_0) anche diverso dall'origine) si pongono $x=x_0+\rho\cdot cos(\theta)$ e $y=y_0+\rho\cdot sin(\theta)$ e si procede come sopra.

5.2.3 Note sugli esercizi per il calcolo di limiti

- Se il limite non presenta una forma di indeterminazione allora il valore cercato si ricava sostituendo direttamente il punto nella funzione.
- Tecniche standard della maggiorazione:
 - disuguaglianza triangolare:

$$|a+b| \le |a| + |b|$$

- maggiorazione di frazioni, con a, b, c > 0:

$$\frac{a}{b+c} \le \frac{a}{b}$$

- maggiorazione di funzioni trigonometriche:

$$|cos(\theta)| \le 1$$
, $|sin(\theta)| \le 1$

- Il criterio che ci permette di trovare il limite richiede di trovare una funzione maggiorante di |f| che sia radiale (dipenda solo da ρ , non θ) e infinitesima. Da notare è che è possibile semplificare la funzione anche senza passare subito in coordinate polari.
- Solitamente si suddivide la funzione in una serie di somme di funzioni e si studiano quest'ultime separatamente.

5.3 Continuità di funzioni in più variabili

Una funzione $f: \mathbb{R}^n \to \mathbb{R}$ è **continua** in un punto x_0 se

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

La continuità di una funzione è anche deducibile dal fatto che sia costituita (somma/ prodotto/ quoziente/ certe volte anche composizione) da funzioni elementari continue.

oss. Per verificare la continuità di una funzione si usa spesso il concetto di differenziabilità (vedi sotto, "verifica della differenziabilità").

Proprietà delle funzioni continue:

- Teorema di Weierstrass. Sia $E \subset \mathbb{R}^n$ un insieme chiuso e limitato e $f: E \to \mathbb{R}$ sia continua, allora f ammette massimo e minimo in E, cioè esistono x_m e x_M tali che $f(x_m) \le f(x) \le f(x_M)$ per ogni xinE.
- Teorema degli zeri. Sia E un insieme connesso di \mathbb{R}^n e $f:E\to\mathbb{R}$ sia continua. Se x,y sono due punti di E tali che f(x)<0 e f(y)>0, allora esiste un terzo punto $z\in E$ in cui f si annulla. In particolare, lungo ogni arco di curva continua contenuto in E che congiunge x e y, c'è almeno un punto in cui f si annulla.
- Teorema di permanenza del segno. Se f è continua in $(x_0, y_0) \in \mathbb{R}^2$ e $f(x_0, y_0) > 0$, allora esiste $\delta > 0$ tale che f(x, y) > 0 per ogni $f(x, y) \in B_{\delta}(x_0, y_0)$.

5.4 Calcolo differenziale di funzioni in più variabili

5.4.1 Derivate parziali

Una funzione $f: \mathbb{R}^2 \to \mathbb{R}$ si dice **derivabile** in $(x_0, y_0) \in \mathbb{R}^2$ se esistono finiti i due limiti

$$f_x(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$

$$f_y(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}$$

in tal caso, i numeri $f_x(x_0, y_0)$ e $f_y(x_0, y_0)$ si chiamato **derivate parziali** di f in (x_0, y_0) .

Geometricamente, le derivate parziali rappresentano le pendenze che si hanno sul fianco della montagna quando si prendono le direzioni degli assi orientati.

Una funzione $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ si dice **derivabile** in un punto del suo dominio se in quel punto **esistono tutte le sue derivate parziali**; si dice derivabile in A se è derivabile in ogni punto di A.

Se le derivate parziali, oltre ad esistere, sono continue nel punto (x_0, y_0) , diremo che la funzione f è di classe C^1 in tale punto.

Se f è derivabile in un punto, chiameremo **gradiente** ($\nabla f(x)$) il vettore delle sue derivate parziali.

Diversamente dal caso n=1, in n=2 la **derivabilità non implica continuità**.

Proprietà per il calcolo delle derivate:

$$\begin{split} \delta(\alpha \cdot f + \beta \cdot g) &= \alpha \delta(f) + \beta \delta(g) \\ \delta(f \cdot g) &= g \cdot \delta(f) + f \cdot \delta(g) \\ \delta\left(\frac{f}{g}\right) &= \frac{g \cdot \delta(f) - f \delta(g)}{g^2} \\ h(x) &= f(g(x)) = g \circ f \Rightarrow h'(x) = f'(g(x))g'(x) \end{split}$$

$$\frac{\delta}{\delta x}|x| = \frac{|x|}{x}$$

Molto spesso, per calcolare una derivata parziale si può evitare di usare la definizione: per derivare rispetto a x basta considerare y come una costante e derivare la funzione come se fosse della sola variabile x e viceversa.

Per il calcolo di una derivata parziale in punto (x_0,y_0) secondo la definizione, seguire questo procedimento: se si richiede di calcolare il valore della derivata parziale di x (cioè $\frac{\delta f}{\delta x}(x_0,y_0)$), si parte dalla funzione f(x,y) e si sostituisce $y=y_0$, ottenendo quindi $f(x,y_0)$, successivamente si calcola la derivata parziale, ottenendo dunque $\frac{\delta f}{\delta x}(x,y_0)$. Come ultima cosa si sostituisce $x=x_0$ e si arriva a un risultato numerico. Per la trovare il valore della derivata parziale di y in un preciso punto seguire lo stesso procedimento opposto.

In alcuni esercizi è richiesto di calcolare le derivate parziali in tutti i punti in cui esistono. Il procedimento tipico consiste nel calcolare per prima cosa le derivate parziali generiche. Una volta calcolate sapremo che sicuramente esistono dove queste sono definite (dominio), ma non siamo sicuri dei punti in cui non lo sono (al di fuori del dominio). Quindi dobbiamo analizzare singolarmente tutti i punti al di fuori del dominio e per farlo sfruttiamo il procedimento visto sopra ("derivata parziale in un punto secondo la definizione"), calcolando esplicitamente le derivate nei punti richiesti. Finchè si tratta per esempio di calcolarle per un punto preciso non ci sono problemi, il calcolo è facile, ma ci sono alcuni casi difficili, per esempio:

• Calcolare le derivate parziali secondo la definizione lungo una retta. Per esempio in y=0, per calcolare la $\frac{\delta f}{\delta x}(x_0,0)$ non ci sono problemi, si procede come al solito. Ma per la $\frac{\delta f}{\delta y}(x_0,0)$ ci sono difficoltà, siccome non possiamo sostituire le y con 0 e poi derivare per la y, dobbiamo ragionare così: la derivata non esiste a meno che non ci sia un valore che le x possono assumere che annullino la funzione (per gli es che ho fatto fino ad ora sono solo al numeratore). Il concetto generale è che se non si trovano valori per x_0 tali che annullino la funzione e quindi ci permettano di calcolare la derivata parziale, si finisce per tornare a guardare la derivata parziale generica e quindi a non trovarla per quella retta. [spiegato davvero male, ma è un concetto strano].

Per stabilire dove la funzione sia derivabile bisogna calcolare le derivate parziali e osservarne il dominio.

(n.b. tipicamente negli esercizi le funzioni sono descritte da un sistema che contiene una funzione prolungata nell'origine, in questo caso bisogna calcolare le derivate parziali al di fuori dell'origine e studiarne il dominio, in seguito bisogna calcolare il valore della derivata parziale nel punto (0,0) col metodo descritto precedentemente).

5.4.2 Piano tangente a funzioni in due variabili

Il procedimento che mostriamo permette di individuare il piano tangente nell'ipotesi che esso esista, potrebbe però non esserci.

Costruire il **piano tangente** a una funzione in due variabili in un punto (x_0, y_0) :

1. troviamo la retta tangente alla funzione nel piano $y=y_0$:

$$\begin{cases} z = f(x_0, y_0) + \frac{\delta f}{\delta x}(x_0, y_0) \cdot (x - x_0) \\ y = y_0 \end{cases}$$

2. troviamo la retta tangente alla funzione nel piano $x = x_0$:

$$\begin{cases} z = f(x_0, y_0) + \frac{\delta f}{\delta x}(x_0, y_0) \cdot (y - y_0) \\ x = x_0 \end{cases}$$

3. costruiamo il piano che contiene entrambe le rette:

$$z = f(x_0, y_0) + \frac{\delta f}{\delta x}(x_0, y_0) \cdot (x - x_0) + \frac{\delta f}{\delta x}(x_0, y_0) \cdot (y - y_0)$$

5.4.3 Differenziabilità e approssimazione lineare

In due o più variabili la sola derivabilità non implica nè continuità nè l'esistenza del piano tangente.

Concetto di differenziabilità in più variabili: l'incremento di f è uguale all'incremento calcolato lungo il piano tangente, più un infinitesimo di ordine superiore rispetto alla lunghezza dell'incremento (h,k) delle variabili indipendenti. In formule:

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = \frac{\delta f}{\delta x}(x_0, y_0) \cdot (x - x_0) + \frac{\delta f}{\delta y}(x_0, y_0) \cdot (y - y_0) + o(\sqrt{h^2 + k^2})$$

per $(h, k) \to (0, 0)$.

Tutto ciò che è prima dell'uguale (primo membro) rappresenta l'incremento della funzione, i primi due addendi del secondo membro rappresentano l'incremento calacolato lungo il pinao tangente. Ricordiamo che l'ultimo addendo rappresenta una funzione tale che $\lim_{(h,k)\to(0,0)} \frac{o(\sqrt{h^2+k^2})}{\sqrt{h^2+k^2}} = 0$.

Se l'equazione di prima è soddisfatta, diremo che la funzione è **differenziabile** in (x_0, y_0) .

Una funzione $f:\mathbb{R}^2 \to \mathbb{R}$ si dice **differenziabile** in (x_0,y_0) se è derivabile e se

$$\lim_{(h,k)\to(0,0)} \frac{f(x_0+h,y_0+k) - f(x_0,y_0) - hf_x(x_0,y_0) - kf_y(x_0,y_0)}{\sqrt{h^2 + k^2}} = 0$$

(Ricordiamo che $h = x - x_0$ e $k = y - y_o$).

Questa scrittura dice che "il grafico della superficie si allontana dal piano tangente con un ordine di infinitesimo superiore a quello della distanza dal punto".

$$f$$
 differenziabile in $(x_0, y_0) \Rightarrow f$ continua in (x_0, y_0)

Da notare che la **differenziabilità implica la derivabilità**, cioè se una funzione è differenziabile in un punto, allora è anche derivabile nello stesso.

Se f è differenziabile in x_0 , si dice **differenziale** di f calcolato in x_0 la funzione lineare $df(x_0)$: $\mathbb{R}^n \to \mathbb{R}$ definita da:

$$df(x_0) : h \to \nabla f(x_0) \cdot h.$$

Nel caso in due varibiali, il numero $\nabla f(x_0) \cdot h$ rappresenta l'incremento della funzione nel passare da x_0 a $x_0 + h$, calcolato lungo il piano tangente al grafico di f in x_0 .

L'approssimazione dell'incremento di f con il suo differenziale prende il nome di **linearizzazione**.

5.4.4 Verifica della differenziabilità

Per dimostrare la differenziabilità in un punto (x_0, y_0) bisogna provare che:

$$\lim_{h,k\to 0,0} \frac{f(x_0+h,y_0+k) - \{f(x_0,y_0) + \frac{\delta f}{\delta x}(x_0,y_0)h + \frac{\delta f}{\delta y}(x_0,y_0)k\}}{\sqrt{h^2+k^2}} = 0.$$

dove $h = x - x_0$ e $k = y - y_0$.

Ma per certi casi particolari esistono criteri molto più comodi e semplici.

Teorema di condizione sufficiente di differenziabilità: se le derivate parziali di f esistono in un intorno di x_0 e sono continue in x_0 , allora f è differenziabile in x_0 .

In particolare se le derivate parziali esistono e sono continue in tutto A, allora f è differenziabile in tutto A

Una funzione le cui derivate parziali esistono e sono continue in tutto A si dice di classe $C^1(A)$, dunque: $f \in C^1(A) \to f$ differenziabile in A.

Negli esercizi spesso si usa anche l'omogeneità di una funzione per sapere se essa è differenziabile o continua, oppure le proprietà delle funzioni radiali.

Negli esercizi seguire quest'ordine:

- 1. E' continua nel punto richiesto? se non lo è, può essere allungata?
- 2. Funzione radiale? (vedi più avanti)
- 3. Funzione omogenea? (vedi più avanti)
- 4. Calcolo delle derivate parziali nel punto. Sono continue in quel punto?
- 5. Verifica della differenziabilità tramite la definizione.

5.4.5 Derivate direzionali

Si dice **derivata direzionale** della funzione f rispetto al versore $v_{\theta} = \begin{cases} cos(\theta) \\ sin(\theta) \end{cases}$, nel punto (x_0, y_0) ,

il limite

$$\frac{\delta f}{\delta \theta}(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0 + t cos(\theta), y_0 + t sin(v_\theta)) - f(x_0, y_0)}{t}$$

Se tale limite esiste ed è finito diremo che f è derivabile nella direzione v_{θ}

Calcolo di una derivata direzionale per un generico vettore $(cos(\theta), sin(\theta))$ nell'origine di una funzione f: Per prima cosa si ottiene la funzione $g(t) = f(t \cdot cos(\theta), t \cdot sin(\theta))$ e la si semplifica per $t \to 0$ (anche usando asintotici). In seguito si studia la derivata $g'(0) = \frac{\delta f}{\delta t}(t \cdot cos(\theta), t \cdot sin(\theta))$. Se è richiesto il calcolo in un punto generico, e non nell'origine, è sufficiente usare $t \cdot cos(\theta) + x_0$ e $t \cdot sin(\theta) + y_0$.

Se la funzione è differenziabile, allora le derivate parziali consentono di calcolare tutte le altre derivate direzionali.

Formula del gradiente:

$$\frac{\delta f}{\delta v_{\theta}}(x_0,y_0) = \nabla f(x_0,y_0) \cdot v_{\theta} = \frac{\delta f}{\delta x}(x_0,y_0)cos(\theta) + \frac{\delta f}{\delta y}(x_0,y_0)sin(\theta)$$

Cioè la derivata direzionale è il prodotto scalare del gradiente con il versore nella direzione in cui si deriva, quindi tutte le derivate direzionali sono combinazioni lineari delle derivate parziali. Se la formula del gradiente non vale in un punto, allora la funzione non è differenziabile in quel punto. Inoltre la formula del gradiente non vale se la generica derivata direzionale non è combinazione lineare di $cos(\theta), sin(\theta)$.

Da notare è che $\nabla f(x_0, y_0)$ indica la **direzione di massima crescita** di f, ossia la direzione di massima derivata direzionale, invece $-\nabla f(x_0)$ rappresenta la direzione di minima derivata direzionale, infine nelle direzioni ortogonali al gradiente le derivate direzionali sono nulle, quindi di **pendenza nulla**.

Il gradiente è ortogolane il ogni punto alle linee di livello.

5.4.6 Riepilogo

- $f \in C^1(A) \Rightarrow f$ differenziabile in A (cioè f ha iperpiano tangente) $\Rightarrow f$ è continua, derivabile, ha derivate direzionali, vale la formula del gradiente.
- ullet f continua, derivabile, dotata di tutte le derivate direzionali $\Rightarrow f$ differenziabile
- ullet f derivabile, dotata di tutte le derivate direzionali $\not\Rightarrow f$ continua

5.4.7 Extra: Gradiente di una funzione radiale, Criterio di continuità e differenziabilità per funzioni radiali, funzioni omogenee, Equazione del trasporto

Gradiente di una funzione radiale

Si chiama funzione radiale una funzione h che dipende solo dalla distanza di dall'origine, ossia

$$h(x) = g(|x|).$$

ponendo $\rho = |x| = \sqrt{\sum_{j=1}^n x_j^2}$ si ha:

$$\nabla_{\rho} = \left(\frac{x_1}{\rho}, \frac{x_2}{\rho}, \dots, \frac{x_n}{\rho}\right).$$
$$\nabla h(x) = g'(|x|)\left(\frac{x_1}{|x|}, \dots, \frac{x_n}{|x|}\right)$$
$$|\nabla h(x)| = |g'(|x|)|$$

Le funzioni radiali sono spesso utilizzate negli esercizi in cui le incognite compaiono solo all'interno del termine $\sqrt{\sum_{j=1}^n x_j^2}$, in tal caso si ottiene $g(\rho)$ sostituendo ogni $\sqrt{\sum_{j=1}^n x_j^2}$ con ρ , successivamente si può procedere sfruttando le proprietà di continuità e differenziabilità delle funzioni radiali.

Criterio di continuità e differenziabilità per funzioni radiali

Sia $f:\mathbb{R}^n-\{0\}\to\mathbb{R}$ una funzione radiale, cioè f(x)=g(|x|) con $g:(0,+\infty)\to\mathbb{R}$ e sia f continua fuori dall'origine. Allora:

- f è continua in 0, se e solo se esiste finito $\lim_{\rho \to 0^+} g(\rho)$;
- f è differenziabile in 0 se e solo se esiste g'(0) = 0.

Negli esercizi spesso si controlla prima la continuità nell'origine, se non lo è si allunga la funzione e successivamente si calcola la differenziabilità nell'origine.

Funzioni omogenee

Una funzione $f: \mathbb{R}^n \to \mathbb{R}$ (eventualmente definita solo per $x \neq 0$), non identicamente nulla, si dice positivamente omogenea di grado $\alpha \in \mathbb{R}$ se

$$f(\lambda x) = \lambda^{\alpha} f(x) \quad \forall x \in \mathbb{R}^n, x \neq 0, \lambda > 0.$$

La funzione f si dice omogenea di grado α se la formula di prima vale anche per $\lambda < 0$. Se f è positivamente omogenea vale

$$f(x) = f(|x| \cdot \frac{x}{|x|}) = |x|^{\alpha} f(\frac{x}{|x|}).$$

In particolare se f è omogenea (o positivamente omogenea) di grado zero, significa che è costante su ogni retta (o semiretta) uscente dall'origine. Infatti, indicata con

$$r(t) = tv$$

con v versore fissato, sarà

$$f(r(t)) = f(tv) = t^0 f(v) = f(v) = costante.$$

Più in generale, per una funzione in due variabili positivamente omogenea di grado α vale la seguente rappresentazione in coordinate polari:

$$f(\rho, \theta) = \rho^{\alpha} g(1, \theta)$$

per qualche $\alpha \in \mathbb{R}$ e qualche funzione $g:[0,2\pi) \to \mathbb{R}$.

Sia $f:\mathbb{R}^n\to\mathbb{R}$ una funzione positivamente omogenea di grado α , definita e continua per $x\neq 0$. Allora:

- f è continua anche nell'origine se $\alpha > 0$; in questo caso f(0) = 0; f è discontinua nell'origine se $\alpha < 0$; è discontinua anche se $\alpha = 0$, tranne il caso banale in cui f è costante.
- f è differenziabile nell'origine se $\alpha>1$; non è differenziabile nell'origine se $\alpha<1$, tranne il caso banale in cui $\alpha=0$ e f è costante; se $\alpha=1$, f è differenziabile se e solo se è una funzione lineare, (ossia $f(x)=a\cdot x$ per qualche vettore costante $a\in\mathbb{R}^n$).

Si ricordi che ogni ogni derivata parziale prima di una funzione posivamente omogenea di grado α , se esiste, è una funzione positivamente omogenea di grado $\alpha-1$.

Equazione del trasporto

Si definisce equazione del trasporto la seguente:

$$c\frac{\delta u}{\delta x} + \frac{\delta u}{\delta t} = 0 \tag{?}$$

Teorema del valor medio. Sia $A \subset \mathbb{R}^n$ un aperto e $f: A \to \mathbb{R}$ una funzione differenziabile in A. Allora per ogni coppia di punti $x_0, x_1 \in A$, esiste un punto x^* tale per cui:

$$f(x_1) - f(x_0) = \nabla f(x^*) \cdot (x_1 + x_0).$$

In particolare:

$$|f(x_1) - f(x_0)| \le |\nabla f(x^*)| \cdot |(x_1 + x_0)|.$$

5.5 Derivate di ordine superiore e matrice Hessiana

Per una funzione $f: \mathbb{R}^n \to \mathbb{R}$ esistono n^2 derivate parziali seconde che indicheremo nel seguente modo:

$$f_{x_i x_j} = (f_{x_i})_{x_j} = \frac{\delta^2 f}{\delta x_j \delta x_i} = \frac{\delta}{\delta x_j} \left(\frac{\delta f}{\delta x_i} \right)$$

Le derivate seconde vengono poi inserite in una matrice chiamata matrice Hessiana:

$$H_f = \begin{pmatrix} f_{x_1 x_1} & f_{x_1 x_2} & \dots & f_{x_1 x_n} \\ f_{x_2 x_1} & f_{x_2 x_2} & \dots & f_{x_2 x_n} \\ \dots & \dots & \dots & \dots \\ f_{x_n x_1} & f_{x_n x_2} & \dots & f_{x_n x_n} \end{pmatrix}$$

In particolare, per due variabili:

$$H_f(x_0, y_0) = \begin{pmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{pmatrix}$$

Chiameremo derivate seconde doppie quelle del tipo $f_{x_ix_i}$ che giaciono sulla diagonale principale di H_f e derivate seconde miste tutte le altre.

Dato un sottoinsieme $\Omega \subset \mathbb{R}^n$, indichiamo con $C^2(\Omega)$ l'insieme delle funzioni $f:\Omega \to \mathbb{R}$ che hanno tutte le derivate seconde continue. La storia poi continua: una funzione si dice di classe C^k se ha tutte le derivate k-esime continue.

Teorema di Schwarz Sia $\Omega \subset \mathbb{R}^n$ un insieme aperto e sia $f \in C^2(\Omega)$; allora $f_{x_ix_j} = f_{x_jx_i}$ per ogni $i, j = 1, \ldots, n$, e cioè la matrice hessiana H_f è simmetrica.

La traccia della matrice Hessiana viene chiamata Laplaciano e indicato come:

$$\Delta f = \sum_{i=1}^{n} f_{x_i x_j}$$

Se $f \in C^2(A)$ e $x_0 \in A$, si dice **differenziale secondo** di f in x_0 la funzione

$$d^2 f(x_0)$$
: $h \to \sum_{i=1}^n \sum_{j=0}^n \frac{\delta^2(f)}{\delta(x_i)\delta(x_j)}(x_0)h_i h_j$.

5.5.1 Formula di Taylor (resto secondo Peano)

Formula di Taylor al secondo ordine (resto secondo peano):

Sia f di classe C^2 in $(x_0, y_0) \in \mathbb{R}^2$. Allora, per $(x, y) \to (x_0, y_0)$ si ha

$$f(x,y) = f(x_0, y_0) + \nabla f(x_0, y_0) \cdot {\begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}} + \frac{1}{2} H_f(x_0, y_0) {\begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}} \cdot {\begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}} + o[(x - x_0)^2 + (y - y_0)^2]$$

dove l'operazione indicata con \cdot è un prodotto scalare, mentre l'operazione $H_f(x_0,y_0)\binom{x-x_0}{y-y_0}$ è un prodotto matriciale righe per colonne.

Formula di Taylor (resto secondo Peano) scritta per esteso per $(x,y) \to (x_0,y_0)$:

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) +$$

$$+ \frac{1}{2} \left(f_{xx}(x_0, y_0)(x - x_0)^2 + 2f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + f_{yy}(x_0, y_0)(y - y_0)^2 \right) +$$

$$+ o[(x - x_0)^2 + (y - y_0)^2]$$

per $(x, y) \to (x_0, y_0)$.

5.6 Ottimizzazione libera

5.6.1 Ripasso sugli autovalori e autovetori

Ricordiamo che un numero complesso λ e un vettore non nullo $v \in \mathbb{C}^n$. Si dicono, rispettivamente, **autovalore e autovettore** (di λ) di una matrice M di ordine n, se soddisfano la relazione:

$$Mv = \lambda v$$

oppure

$$(M - \lambda I_n)v = 0.$$

Quest'ultima equazione ha soluzioni v non nulle se e solo se la matrice dei coefficienti e singolare, ovvero se λ è soluzione dell'equazione caratteristica:

$$det(M - \lambda I) = 0$$

esistono esattamente n autovalori di M ciascuno contato secondo la propria molteplicità. Le matrici M simmetriche hanno prorpietà importanti:

- gli autovalori di M sono reali e possiedono autovettori reali;
- esistono n autovettori lineari che costituiscono una base ortonormale in \mathbb{R}^n ;
- La matrice $S = w_1, w_2, \dots, w_n$ le cui colonne sono gli autovettori lineari è orotognale e diagonalizza M, precisamente:

$$S^T M S = \Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

5.6.2 Massimi e minimi

Teorema Sia f di classe C^2 in un punto $\vec{x}^0 \in \mathbb{R}^n$ e sia $H_f(\vec{x}^0)$ la sua matrice Hessiana. Se tutti gli autovalori di $H_f(\vec{x}^0)$ sono **positivi**, allora esiste un intorno di \vec{x}^0 dove la superficie di equazione $x_{n+1} = f(x_1, \dots, x_n)$ sta sopra al piano tangente in \vec{x}^0 . Se tutti gli autovalori di $H_f(\vec{x}^0)$ sono **negativi**, allora esiste un intorno di \vec{x}^0 dove la superficie di equazione $x_{n+1} = f(x_1, \dots, x_n)$ sta sotto al piano tangente in \vec{x}^0 . Se $H_f(\vec{x}^0)$ ha autovalori di entrambi i segni, allora la superficie di equazione $x_{n+1} = f(x_1, \dots, x_n)$ attraversa il piano tangente in \vec{x}^0 .

Questo teorema si può enunciare geometricamente dicendo che se tutti gli autovalori di $H_f(\vec{x}^0)$ sono positivi (negativi) allora la funzione f è convessa (concava) in \vec{x}^0 .

Definiamo i punti di estremo:

- x_0 è detto punto di massimo (minimo) globale se per ogni x si ha $f(x) \le f(x_0)$ ($f(x) \ge f(x_0)$);
- x_0 è detto punto di massimo (minimo) locale se esiste un intorno di x_0 detto U tale per cui per ogni $x \in U$ si ha $f(x) \leq f(x_0)$ ($f(x) \geq f(x_0)$).

Il teorema enunciato prima è utile per determinare i massimi e minimi relativi della funzione f. I punti candidati ad essere tali sono individuati dal:

Teorema di Fermat: Sia $f: \mathbb{R}^n \to \mathbb{R}$ derivabile in un punto $\vec{x}^0 \in \mathbb{R}^n$ di estremo relativo: allora $\nabla f(\vec{x}^0) = 0$.

I punti in cui il gradiente di una funzione si annulla si dicono punti **critici** o **stazionari** di f. Una volta individuati tutti i punti stazionari, si può iniziare un'analisi su di essi per verificare se sono o meno punti di massimo o minimo. Se non lo sono essi prendono il nome di punti di **sella** o **colle**. Da notare particolarmente è che una funzione può assumere valori di massimo o minimo anche in punti in cui non è derivabile, dunque questi punti vanno analizzati separatamente.

Caso n=2

Sia f di classe C^2 , in un punto critico (trovato col teorema di Fermat) $(x_0,y_0)\in\mathbb{R}^2$.

Se $f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) > f_{xy}(x_0, y_0)^2$ allora f ha un estremo relativo in (x_0, y_0) : se $f_{xx}(x_0, y_0) > 0$ allora il punto è di minimo relativo, se $f_{xx}(x_0, y_0) < 0$ allora il punto è di massimo relativo.

Si ha $det[H_f(x_0,y_0)]=f_{xx}(x_0,y_0)f_{yy}(x_0,y_0)-f_{xy}(x_0,y_0)^2$. Se i due autovalori sono concordi il determinante è positivo e, in particolare, non può essere $f_{xx}(x_0,y_0)=0$. Se i due autovalori sono discordi, allora il determinante è negativo.

Se $det[H_f(x_0, y_0)] = 0$ diremo che siamo nel "caso dubbio". Per toglierci il dubbio, potremmo analizzare le derivate terze e quarte (ma diventerebbe troppo complicato), quindi solitamente si preferisce affrontare il problema direttamente analizzando il segno di $f(x, y) - f(x_0, y_0)$.

5.6.3 Strategia per lo studio dei massimi e dei minimi

Vediamo una strategia da seguire:

- 1. si isolano i punti di f che non sono regolari (es. non derivabili una o due volte). Questi punti dovranno essere analizzati separatamente;
- 2. trovare i punti critici risolvendo:

$$\begin{cases} f_{x_1}(x_1, x_2, \dots, x_n) = 0 \\ f_{x_2}(x_1, x_2, \dots, x_n) = 0 \\ \dots \\ f_{x_n}(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

- 3. per ogni punto critico:
 - (a) si calcola l'Hessiana:

$$H_f(x_0, y_0) = \begin{cases} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_yx(x_0, y_0) & f_{yy}(x_0, y_0) \end{cases}$$

- (b) se $det(H_f(x_0, y_0)) > 0$ e
 - $f_{xx}(x_0, y_0) > 0$ allora (x_0, y_0) è di minimo locale forte;
 - $f_{xx}(x_0, y_0) < 0$ allora (x_0, y_0) è di massimo locale forte;

(si noti che in questo caso $f_{xx}(x_0,y_0)$ e $f_{yy}(x_0,y_0)$ hanno lo stesso segno).

- (c) se $det(H_f(x_0,y_0)) < 0$ allora (x_0,y_0) è punto di sella;
- (d) se $det(H_f(x_0,y_0))=0$ occore un analisi ulteriore. Si possono percorrere due vie: 1.si studiano le derivate successive (terza e quarta) [sconsigliato]; 2. si affronta il problema direttamente analizzando il segno di $f(x,y)-f(x_0,y_0)$

5.7 Ottimizzazione. Estremi vincolanti

5.7.1 Metodo dei moltiplicatori di Lagrange (dal libro di Gazzola)

Un punto di ottimo per f vincolato a g=0 si ottiene c ercando una curva di livello di f che sia tangente alla curva di livello 0 di g. Dato che il gradiente di una funzione è ortogonale alla sua curva di livello, la condizione di tangenza tra le due curve di livello si traduce in una relazione di proporzionalità tra ∇f e ∇g . Questo è il principio che governa il **metodo dei moltiplicatori di Lagrange**.

Siano $f,g\in C^1$ e supponiamo di volere ottimizzare (massimizzare o minimizzare) la funzione z=f(x,y) sotto il vincolo g(x,y)=0 (se fosse g(x,y)=b possiamo trasformarla in g(x,y)-b=0). Introduciamo la funzione $L:\mathbb{R}^3\to\mathbb{R}$ definita da

$$L(x, y, \lambda) = f(x, y) - \lambda g(x, y)$$

e che si chiama **Lagrangiana**. Se cerchiamo i punti stazionari (in \mathbb{R}^3 !) della funzione L siamo portati a risolvere il sistema $\nabla L = 0$ e cioè

$$\begin{cases} f_x(x,y) = \lambda g_x(x,y) \\ f_y(x,y) = \lambda g_y(x,y) \\ g(x,y) = 0 \end{cases}$$

Le prime due condizioni si possono riscrivere coem $\nabla f = \lambda \nabla g$ ed esprimono la proporzionalità tra gradienti chem a sua volta, descrive la tangenza delle curve di livello di f e g. La terza equazione è l'equazione del vincolo e dice che la suddetta tangenza va cercata tra i punto che appartengono al vincolo.

Chiaramente da queste equazioni non distinguiamo gli eventuali massimi dai minimi e non è nemmeno detto che una soluzione sia un estremo relativo, tuttavia: gli eventuali punti di ottimo di f soggetti al vincolo g=0 vanno cercati tra le soluzioni di queste tre equazioni.

Per capire quali dei punti che sono soluzione del sistema sono estremi, è sufficiente calcolare i valori della funzione in tali punti e valutare se sono massimi o minimi.

Il **teorema di Weierstrass** può essere di aiuto per garantire l'esistenza dei massimi e dei minimi: Sia $[a,b]\subset\mathbb{R}$ un intervallo chiuso e limitato non vuoto e sia $f\colon [a,b]\to\mathbb{R}$ una funzione continua. Allora f(x) ammette (almeno) un punto di massimo assoluto e un punto di minimo assoluto nell'intervallo [a,b]. Da notare è che se il vincolo non è chiuso e limitato non si può usare il teorema di Weierstrass.

Notiamo che il valore esatto del moltiplicatore λ non è essenziale: permette di trovare i punti candidati, ma non serve per calcolare il livello delal funzione.

Un punto più delicato diguarda i punti in cui i vettori delle derivate parziali di f e di g $(\nabla f$ e $\nabla g)$ si annullano sul vincolo. Se si annulla ∇f troveremo un moltiplicatore nullo e saremo in presenza di un punto critico libero di f che posiamo tranquillamente inserire tra i candidati e valutarlo insieme agli altri punti. Se invece di annulla ∇g il metodo di Lagrange non funziona dato che non si riesce a determinare il moltiplicatore, quindi questi punti dovranno essere inseriti fra i candidati e valutati a parte.

5.7.2 Il metodo delle restrizioni

[TODO]...

5.8 Funzioni convesse di n variabili

5.8.1 Generalità sulle funzioni convesse

Un insieme $\Omega\subseteq\mathbb{R}^n$ si dice convesso se per ogni coppia di punti $x_1,x_2\in\Omega$ si ha che $[x_1,x_2]\subseteq\Omega$ (dove col simbolo $[x_1,x_2]$ si denota il segmento con estremi x_1,x_2); si dice strettamente convesso se per ogni coppia di punti $x_1,x_2\in\Omega$ il segmento (x_1,x_2) privato degli estremi è strettamente contenuto in Ω .

Si dice epigrafico di una funzione $f~:~\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ l'insieme

$$epi(f) = \{(x, z) \in \mathbb{R}^{n+1} : z \ge f(x), x \in \Omega\}$$

Si dice che una funzione è convessa se epi(f) è un sottoinsieme convesso, si dice che una funzione è concava se -f è convessa.

Formalmente si dice che una funzione è convessa se e solo se per ogni $x_1, x_2, t \in [0, 1]$ vale la condizione

$$f(tx_2 + (1-t)x_1) \le tf(x_2) + (1-t)f(x_1).$$

Si noti che $tx_2 + (1-t)x_1$ percorre il segmento $[x_1, x_2]$ al variare di $t \in [0, 1]$

Se f è convessa allora:

- f è continua;
- f ha derivate parziali destre e sinistre in ogni punto;
- nei punti in cui è derivabile, f è anche dierenziabile.

Teorema di convessità e piano tangente. Sia $f:\Omega\to\mathbb{R}$ differenziabile in Ω . Allora f è convessa in Ω se e solo se per ogni coppia di punti $x_0,x\in\Omega$ si ha:

$$f(x) \ge f(x_0) + \nabla f(x_0) \cdot (x - x_0).$$

In due dimensioni:

$$f(x,y) \ge f(x_0,y_0) + \frac{\delta f}{\delta x}(x_0,y_0)(x-x_0) + \frac{\delta f}{\delta y}(x_0,y_0)(y-y_0).$$

che geometricamente significa che il paino tangente in $x - 0, y_0$ sta sotto f.

Teorema di convessità e matrice Hessiana. Sia $f \in C^2(\Omega)$, con Ω aperto convesso in \mathbb{R}^n . Se per ogni x_0 in Ω la forma quadratica $d^2f(x_0)$ è semidefinita positiva, allora f è convessa in Ω .

5.8.2 Ottimizzazione di funzioni convesse e concave

Nelle funzioni convesse (concave) i punti stazionari, se esistono, rappresentano minimi (massimi) globali. Inoltre se la funzione è strettamente convessa (concava), il punto critico è di minimo (massimo) globale forte, quindi, in particolare, è unico.

5.9 Funzioni definite implicitamente

5.9.1 Funzione implicita di una variabile

Teor. di Dini della funzione implicita. Sia A un aperto in \mathbb{R}^2 e $f:A\to\mathbb{R}$ una funzione $C^1(A)$. Supponiamo che in un punto $(x_0,y_0)\in A$ sia:

$$f(x_0, y_0) = 0$$
 e $f_y(x_0, y_0) \neq 0$.

Allora esiste un intorno I di x_0 in $\mathbb R$ e un'unica funzione g : $I \to \mathbb R$, tale che $y_0 = g(x_0)$ e

$$f(x, g(x)) = 0 \quad \forall x \in I.$$

Inoltre, $g \in C^1(I)$ e

$$g'(x) = -\frac{f_x(x, g_x)}{f_y(x, g_x)} \quad \forall x \in I.$$

Notiamo che se $f(x_0, y_0) = 0$ e $f_y(x_0, y_0) = 0$, ma $f_x(x_0, y_0) \neq 0$, il teorema è ancora applicabile scambiando gli ruoli di x e y.

In sostanza i punti in cui il teorema di Dini non è applicabile sono quelli in cui il gradiente di f si annulla, ossia i punti critici.

5.9.2 Note sugli esercizi

Tipicamente negli esercizi la richiesta è di calcolare la funzione g'(x) in un punto. Si inizia calcolando i punti per cui f(x,y)=0 (solitamente vengono forniti). Una volta trovati questi punti si deve verificare che $\frac{\delta f}{\delta y}f(x,y)$ (oppure $\frac{\delta f}{\delta x}f(x,y)$) sia $\neq 0$. Se queste condizioni si verificano, allora il Teorema di Dini è applicabile e si può procedere a calcolare $g'(x)=-\frac{\frac{\delta f}{\delta x}(x,y)}{\frac{\delta f}{\delta y}(x,y)}$ e a trovarne il valore in un punto.

Se in un esercizio viene chiesto di calcolare, oltre a g'(x), anche g''(x), allora si può usare un altro procedimento: si può derivare rispetto a x l'equazione f(x,g(x))=0 e quindi ricavare g'(x). Succesivamente si può derivare ancora l'equazione e ricavare g''(x). Spesso per risolvere queste equazioni è più semplice derivarle e poi sostituire $x=x_0$ con l' x_0 richiesto dall'esercizio.

6 Integrali

6.1 Teorema fondamentale del calcolo integrale:

$$\int_{a}^{b} f(x)dx = G(b) - G(a)$$

6.2 Proprietà degli integrali:

$$\int_{a}^{b} f(x)dx = \int_{a}^{r} f(x)dx + \int_{r}^{b} f(x)dx$$
$$\left| \int_{a}^{b} f(x)dx \right| \le \int_{a}^{b} |f(x)|dx$$
$$\int k \cdot f(x)dx = k \cdot \int f(x)dx$$
$$\int [f_{1}(x) + f_{2}(x)]dx = \int f_{1}(x)dx + \int f_{2}(x)dx$$

6.3 Integrali fondamentali:

$$\int f'(x)dx = f(x) + c$$

$$\int a \, dx = ax + c$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\int \frac{1}{x} dx = \ln(|x|) + c$$

$$\int \sin(x) dx = -\cos(x) + c$$

$$\int \cos(x) dx = \sin(x) + c$$

$$\int \tan(x) dx = -\log|\cos(x)| + c$$

$$\int \log(x) dx = x\log(x) - \int x \cdot \frac{1}{x} dx - \int 1 dx = x\log(x) - x + c$$

$$\int \arctan(x) dx = x - \frac{1}{x} dx - \int 1 dx = x - \frac{1}{2} \log(1 + x^2) + c$$

$$\int \cot(x) dx = x - \frac{1}{x} dx = x - \cot(x) + c$$

$$\int \cot(x) dx = \log|\sin(x)| + c$$

$$\int (1 + tg^2(x)) dx = \int \frac{1}{\cos^2(x)} dx = tg(x) + c$$

$$\int (1 + ctg^2(x)) dx = \int \frac{1}{\sin^2(x)} dx = -\cot(x) + c$$

$$\int Ch(x) dx = Ch(x) + c$$

$$\int Ch(x) dx = \log|Ch(x)| + c$$

$$\int Coth(x) dx = \log|Ch(x)| + c$$

$$\int e^x dx = e^x + c$$

$$\int e^{kx} dx = \frac{e^{kx}}{k} + c$$

$$\int a^x dx = \frac{a^x}{\ln(a)} + c$$

Integrali notevoli:

$$\begin{aligned} & \mathbf{5.4} \quad \mathbf{Integrali \ notevoli:} \\ & \int \sin^2(x) dx = [integrato \ una \ volta \ per \ parti \ e \ sostituzione \ con \ cos^2(x) + sin^2(x) = 1] = \frac{1}{2}(x - sin(x) cos(x)) + c \\ & \int \cos^2(x) dx = [integrato \ una \ volta \ per \ parti \ e \ sostituzione \ con \ cos^2(x) + sin^2(x) = 1] = \frac{1}{2}(x + sin(x) cos(x)) + c \\ & \int tan^2(x) dx = tan(x) - x + c \\ & \int cotan^2(x) dx = -x - cot(x) + c \\ & \int Sh^2(x) dx = [integrato \ una \ volta \ per \ parti \ e \ sostituzione \ con \ Ch^2(x) - Sh^2(x) = 1] = \frac{1}{4}(Sh(2x) - 2x) + c \\ & \int Ch^2(x) dx = [integrato \ una \ volta \ per \ parti \ e \ sostituzione \ con \ Ch^2(x) - Sh^2(x) = 1] = \frac{1}{2}(x + Sh(x)Ch(x)) + c \\ & \int Ch^2(x) dx = [integrato \ una \ volta \ per \ parti \ e \ sostituzione \ con \ Ch^2(x) - Sh^2(x) = 1] = \frac{1}{2}(x + Sh(x)Ch(x)) + c \\ & \int Th^2(x) dx = x - Cth(x) + c \\ & \int Coth^2(x) dx = x - Cth(x) + c \\ & \int \frac{1}{\sin^2(x)} dx = [1 = \cos^2(x) + sin^2(x)] = \int 1 + tan^2(x) dx = -cotan(x) + c \\ & \int \frac{1}{\cos^2(x)} dx = [1 = \cos^2(x) + sin^2(x)] = \int 1 + tan^2(x) dx = tan(x) + c \\ & \int \frac{1}{\cot^2(x)} dx = \int \cot^2(x) dx \\ & \int \frac{1}{\cot^2(x)} dx = \int \cot^2(x) dx \\ & \int \frac{1}{\cot^2(x)} dx = \int \cot^2(x) dx \\ & \int \frac{1}{\cot^2(x)} dx = \int (1 - Th^2(x)) dx = -Coth(x) + c \\ & \int \frac{1}{(h^2(x))} dx = \int (1 - Th^2(x)) dx = -Coth(x) + c \\ & \int \frac{1}{1 + x^2} dx = arcty(x) + c \\ & \int \frac{1}{\sqrt{1 - x^2}} dx = arcty(x) + c \\ & \int \frac{1}{\sqrt{1 - x^2}} dx = arcsh(x) + c \\ & \int \frac{1}{\sqrt{1 - x^2}} dx = arcsh(x) + c \\ & \int \frac{1}{\sqrt{1 - x^2}} dx = arcsh(x) + \sqrt{x^2 + a^2} + c \\ & \int \sqrt{x^2 + a^2} dx = \frac{1}{2} \sqrt{x^2 + a^2} + \frac{2}{2} \log(x + \sqrt{x^2 + a^2}) + c \\ & \int \sqrt{x^2 + a^2} dx = \frac{1}{2} (a^2 arcsin(\frac{\pi}{x}) + x \sqrt{a^2 - x^2}) + c \end{aligned}$$

6.5 Integrali riconducibili:

$$\int f^{n}(x) \cdot f'(x) dx = \frac{f^{n+1}(x)}{n+1} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \log|f(x)| + c$$

$$\int f'(x) \cdot \cos(f(x)) dx = \sin(f(x)) + c$$

$$\int f'(x) \cdot \sin(f(x)) dx = -\cos(f(x)) + c$$

$$\int e^{(f(x))} \cdot f'(x) dx = e^{f(x)} + c$$

$$\int a^{f(x)} \cdot f'(x) dx = \frac{a^{f(x)}}{\ln(a)} + c$$

$$\int \frac{f'(x)}{1 + f^{2}(x)} dx = \operatorname{arct} g(f(x)) + c$$

6.6 Integrazione per sostituzione:

Sostituire alla variabile x una funzione di un'altra variabile t, purchè tale funzione sia derivabile e invertibile.

Ponendo x = g(t) da cui deriva dx = g'(t)dt si ha che:

$$\int f(x)dx = \int f[g(t)] \cdot g'(t)dt$$

Da ricordare è che se si è in presenza di un integrale definito bisogna aggiornare anche gli estremi di integrazione. Se non si volesse cambiare l'intervall odi integrazione si può risostituire il vecchio valore di t.

6.7 Integrazione delle funzioni razionali:

$$\int \frac{P_n(x)}{Q_m(x)} dx$$

Per prima cosa se il grado del numeratore $\grave{e} \geq$ del grado del denominatore, si esegue la divisione di polinomi:

• Si dispongono i polinomi dal termine di grado maggiore a quello minore nella seguente maniera:

$$P(x) \mid Q(x)$$

badando al fatto che se nel polinomio P(x) mancasse qualche termine bisognerebbe scrivere 0 nella sua posizione.

- Si dividono il termine di grado massimo di P(x) con quello di grado massimo di Q(x), riportando il risultato al di sotto di Q(x).
- Moltiplichiamo il termine appena scritto per ogni termine di Q(x), ne invertiamo il segno e lo trascriviamo al di sotto dei termini con lo stesso grado di P(x)
- Sommiamo termine per termine P(x) con i valore appena scritti e li riportiamo sotto.
- Ripetiamo questo procedimento finchè il grado più alto fra i termini dell'ultima riga scritta a sinistra è minore (non minore uguale) del termine di grado massimo di Q(x)
- Il polinomio a destra è il risultato della divisione S(x), mentre ciò che rimane sulla sinistra è il resto R(x). Possiamo ora riscrivere il numeratore:

$$P(x) = S(x) \cdot Q(x) + R(x)$$

Vediamo ora i vari casi possibili:

- denominatore di primo grado: integrale immediato tramite il logaritmo
- denominatore di secondo grado: si calcola il segno del discriminante:
 - due radici distinte: si scompone in fratti semplici

$$\frac{N(x)}{D_1(x) \cdot D_2(x)} = \frac{a}{D_1(x)} + \frac{b}{D_2(x)}$$
$$\frac{a \cdot D_2(x) + b \cdot D_1(x)}{D_1(x) \cdot D_2(x)} = \frac{N(x)}{D_1(x) \cdot D_2(x)}$$
$$a \cdot D_2(x) + b \cdot D_1(x) = N(x)$$

Una volta determinate a e b si riscrive l'integrale come $\frac{a}{D_1(x)}+\frac{b}{D_2(x)}$ e si integra come somma di logaritmi

- denominatore quadrato perfetto: (due soluzioni coincidenti), si procede per sostituzione:

$$\int \frac{N(x)}{D(x)^2} dx = [D(x) = t, \dots] = \dots$$

L'utilità della sostituzione è quella di spezzare la frazione in una somma di frazion ida integrare una ad una.

- denominatore non si annulla mai:

Casi semplici:

$$\int \frac{1}{1+x^2} dx = arctg(x) + c$$

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} arctg \frac{x}{a} + c$$

$$\int \frac{1}{a^2 + (x+b)^2} dx = \frac{1}{a} arctg \frac{x+b}{a} + c$$

Caso generico: Si cerca di dividere l'integrale in una somma di integrali, il primo deve contenere al numeratore la derivata del denominatore, il secondo non deve contenere la \boldsymbol{x} al numeratore, cioè deve essere una costante e quindi riconducibile ai casi semplici sopra riportati. Il denominatore non cambia. Ci si arriva a logica.

denominatore di grado maggiore di due: è sempre possibile scomporlo in prodotti di fattori
di primo grado o di secondo grado irriducibili, per farlo si usa Ruffini (o altrimenti si va a tentoni
ricordando che PROBABILMENTE una radice della funzione è un dividendo (positivi e negativi)
del numero che si ricava moltiplicando il coefficiente del termine massimo e il termine noto).
 Fatto questo si scompone la frazione in fratti semplici con la stessa logica del caso di due
radici distinte, ricordando che il numeratore deve essere un espressione di un grado minore del
denominatore, per esempio se il denominatore è di grado 2, allora si userà ax + b che è di grado

6.8 Funzioni razionali di e^x

Si pone $e^x = t$, x = log(t), $dx = \frac{dt}{t}$ e ci si riconduce a una funzione razionale classica.

6.9 Integrazione per parti:

$$\int f'(x) \cdot g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$

La formula deriva dalla formula di derivazione della moltiplicazioni di due funzioni:

$$(fg)' = f'g + fg'$$
$$fg' = (fg)' - f'g$$

Si può vedere la formula di integrazione per parti più facilmente così:

$$\int integranda \cdot derivanda \, dx = primitiva \cdot derivanda - \int primitiva \cdot derivata \, dx$$

L'integrazione per parti si usa:

• dovendo calcolare integrali della forma

$$\int x^n \cdot f(x) dx \quad f(x) = \begin{cases} \cos(x) \\ \sin(x) \\ e^x \\ Sh(x) \\ Ch(x) \end{cases}$$

si integra per parti derivando x^n e integrando f(x). Per n=1 l'integrale si riduce a uno immediato, per n>1 si itera il procedimento fino al caso n=1. Si possono svolgere allo stesso modo anche integrali del tipo:

$$\int P_n(x)f(x)dx$$

• dovendo calcolare integrali della forma

$$\int f(x)g(x)dx \quad \begin{cases} f(x) = e^{\alpha x}, Sh(\alpha x), Ch(\alpha x), a^{bx} \\ g(x) = \cos(\beta x), \sin(\beta x) \end{cases}$$

si eseguono due integrazioni per parti consecutive, nella prima la scelta della funzione da integrare o derivare è indifferente, nella seconda però la scelte deve essere coerente alla prima. Chiamando I l'integrale di partenza si ottiene una funzione della forma

$$I = h(x) - \frac{\beta^2}{\alpha}I$$

da cui si ricava I.

Se entrambe le funzioni f(x) e g(x) sono del tipo cos(x) o sin(x) si usano le formule di duplicazione o prostaferesi (vedi più avanti).

 \bullet L'integrale del logaritmo, derivando log(x) e integrando 1

$$\int \log(x)dx = x\log(x) - \int x \cdot \frac{1}{x}dx - \int 1dx = x\log(x) - x + c$$

Più in generale, dovendo calcolare integrali della forma

$$\int x^m log^n(x) dx$$

e ponendo $g'=x^m$ e $f=log^n(x)$ ed eseguendo iterativamente n integrazioni per parti si riesce a calcolare l'integrale del logaritmo. Ancora più in generale si possono risolvere integrali della forma:

$$\int P_m(x) \cdot Q_n(\log(x)) dx$$

• l'integrale dell'arcotangente, derivando arctg(x) e integrando 1

$$\int arctg(x)dx = xarctg(x) - \int \frac{x}{1+x^2}dx = xarctg(x) - \frac{1}{2}log(1+x^2) + c$$

Più in generale

$$\int x^n arctg(x) dx = \frac{x^{n+1}}{n+1} arctg(x) - \int \frac{x^{n+1}}{n+1} \frac{dx}{1+x^2}$$

6.10 integrazione delle funzioni trigonometriche

• dovendo calcolare

$$\int f(\sin(x)) \cdot \cos(x) dx \quad \Rightarrow \quad \sin(x) = t, \cos(x) dx = dt$$

$$\int f(\cos(x)) \cdot \sin(x) dx \quad \Rightarrow \quad \cos(x) dx = dt$$

In particolare per calcolare

$$\int sin^n(x)cos^m(x)$$

se almeno uno degli esponenti è dispari si riesce a riscrivere l'integrale in una delle forme viste sopra utilizzando: $sin^2(x) + cos^2(x) = 1$. Se entrambi gli esponenti sono pari si usano le formule trigonometriche per abbassarne il grado: $cos^2(x) = \frac{1}{2}(1 + cos(2x))$ e $sin^2(x) = \frac{1}{2}(1 - cos(2x))$

• per integrali del tipo

$$\int cos(\alpha x)sin(\beta x)dx, \quad \int cos(\alpha x)cos(\beta x)dx, \quad \int sin(\alpha x)sin(\beta x)dx,$$

si usano le regole di prostaferesi che riconducono a somme di integrali immediati

• integrali di funzioni razionali di sin(x) e cos(x) possono sempre essere ricondotti a integrali di funzioni razionali generiche tramite la sostituzione:

$$t = tg\left(\frac{x}{2}\right), \quad x = 2arctg(t), \quad dx = \frac{2}{1+t^2}dt$$

ne derivano le seguenti identità trigonometriche:

$$\begin{cases} \cos(x) = \frac{1-t^2}{1+t^2} \\ \sin(x) = \frac{2t}{1+t^2} \end{cases}$$

• integrali definiti notevoli:

$$\int_0^{n\frac{\pi}{2}} \cos^2(kx) dx = \int_0^{n\frac{\pi}{2}} \sin^2(kx) dx = n\frac{\pi}{4}$$

• per calcolare integrali razionali con Sh(x) e Ch(x) o si trovano scorciatoie con trasformazioni oppure si usa la sostituzione $e^x=t, x=log(t), dx=\frac{dt}{t}$

6.11 Integrazione delle funzioni irrazzionali

ullet se l'integranda è una funzione razionale di x moltiplicata per solo una delle seguenti

$$\int R(x)\sqrt{a^{2}-x^{2}}dx = [x = a \cdot sin(t), dx = a \cdot cos(t)dt] = \int \sqrt{a^{2}(1-sin^{2}(t))}dx = \int |a \cdot cos(t)|dx$$

$$\int R(x)\sqrt{a^{2}+x^{2}} = [x = a \cdot Sh(t), dx = a \cdot Ch(t)dt] = \int \sqrt{a^{2}(1-Sh^{2}(t))}dx = \int a \cdot Ch(t)dx$$

$$\int R(x)\sqrt{x^{2}-a^{2}} = [x = a \cdot Ch(t), dx = a \cdot Sh(t)dt] = \int \sqrt{a^{2}(Ch^{2}(t)-1)}dx = \int |a \cdot Sh(t)|dx$$

Negli ultimi due casi per tornare alla variabile x occorre usare le funzioni iperobliche inverse:

$$\begin{cases} x = a \cdot Ch(t) \Rightarrow t = SettCh(\frac{x}{a}) = log\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1}\right) \\ x = a \cdot Sh(t) \Rightarrow t = SettSh\left(\frac{x}{a}\right) = log\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1}\right) \end{cases}$$

è utile anche ricordare che $Sh(SettCh(a)) = \sqrt{a^2-1}$ e $Ch(SettSh(a)) = \sqrt{a^2+1}$

- integrale di una funzione razionale di $x, x^{\frac{n_1}{m_1}}, x^{\frac{n_2}{m_2}}$, etc. Si pone $x = t^n$ con n = minimo comune multiplo di m_1 , m_2 , etc. Si ha quindi $dx = n \cdot t^{n-1}dt$ e si ottiene una funzione razionale di t.
- Se l'integranda è una funzione del tipo $R(x^{2n+1}, \sqrt{x^2 \pm a^2})$

$$\int x^{2n+1} R(\sqrt{x^2 \pm a^2}) dx = [\sqrt{x^2 \pm a^2} = t, x dx = t dt, x^{2n+1} \cdot dx = (t^2 \mp a^2)^n t \cdot dt]$$

6.12 Simmetrie e valori assoluti nel calcolo di integrali definiti

• se f(x) è pari:

$$\int_{-k}^{k} f(x)dx = 2\int_{0}^{k} f(x)dx$$

• se f(x) è dispari:

$$\int_{-k}^{k} f(x)dx = 0$$

6.13 Osservazione. Integrale generalizzato di una funzioen dispari su un intervallo simmetrico

Non è corretto affermare l'annullarsi di un integrale dispari per motivi di simmetria in un intervallo simmetrico senza prima verificare la convergenza dell'integrale stesso.

6.14 INTEGRALI GENERALIZZATI

6.15 Integrazione di funzioni non limitate

Metodo generale di risoluzione:

$$\lim_{x \to b^{-}} f(x) = \pm \infty$$

$$\lim_{x \to a^{+}} f(x) = \pm \infty$$

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0^{+}} \int_{a}^{b-\epsilon} f(x)dx$$

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0^{+}} \int_{a+\epsilon}^{b} f(x)dx$$

6.16 Criteri di integrabilità al finito

Siano $\lim_{x\to b^-} f(x) = \lim_{x\to b^-} g(x) = +\infty$:

- confronto: se $0 \le f(x) \le g(x)$, allora g integrabile $\Rightarrow f$ integrabile e f non integrabile $\Rightarrow g$ non integrabile.
- confronto asintotico: se f>0 e g>0 e $f\sim g$ per $x\to b^-$, allora f integrabile $\Leftrightarrow g$ integrabile.
- **teor.** (da usare per studiare per esempio funzioni seno e coseno per $x \to \infty$)

$$\int_a^b |f(x)| dx \ convergente \ \Rightarrow \int_a^b f(x) dx \ convergente$$

6.17 Integrazione su intervalli illimitati

Metodo generale di risoluzione:

$$\int_{a}^{+\infty} f(x)dx = \lim_{\omega \to +\infty} \int_{a}^{\omega} f(x)dx$$
$$\int_{-\infty}^{b} f(x)dx = \lim_{\omega \to -\infty} \int_{\omega}^{b} f(x)dx$$
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

def. Se il limite dell'integrale di f esiste finito allora f si dice integrabile oppure che l'integrale è convergente.

def. Se il limite dell'integrale è $\pm \infty$, l'integrale si dice divergente.

def. Se il limite non esiste, l'integrale non esiste.

per essere integrabile deve avere limite finito.

6.18 Criteri di integrabilità all'infinito

- confronto: se $0 \le f(x) \le g(x)$ in $[a, +\infty)$, allora g integrabile $\Rightarrow f$ integrabile e f non integrabile. $\Rightarrow g$ non integrabile.
- confronto asintotico: se f > 0, g > 0 e $f \sim g$ per $x \to +\infty$, allora f integrabile $\Leftrightarrow g$ integrabile
- **teor.** (da usare per studiare per esempio funzioni seno e coseno per $x \to \infty$)

$$\int_{a}^{+\infty} |f(x)| dx \ convergente \ \Rightarrow \int_{a}^{+\infty} f(x) dx \ convergente$$

6.19 Osservazione. Ordine di annullamento di una funzione derivabile.

Se f è una funzione derivabile in un intervallo I, la formula di Taylor ci dice che se f si annulla in un punto $\alpha \in I$, si annulla almeno del prim'ordine. Precisamente poichè

$$f(x) - f(\alpha) = f'(\alpha)(x - \alpha) + o(x - \alpha)$$

se $f'(\alpha) \neq 0$ allora f ha uno zero del prim'ordine in α . Se $f'(\alpha) = 0$ ma, ad esempio, $f''(\alpha) \neq 0$, si può concludere che f si annulla del 2^0 ordine, e così via. In ogni caso non può annullarsi di un ordine inore di 1.

6.20 Integrali generalizzati notevoli

Caso 1:

$$\begin{split} & \int_a^b \frac{1}{(x-a)^p} dx \to \begin{cases} converge & se \ p < 1 \\ diverge & se \ p \geq 1 \end{cases} \\ & \int_a^b \frac{dx}{(b-x)^p} \to \begin{cases} converge & se \ p < 1 \\ diverge & se \ p \geq 1 \end{cases} \end{split}$$

Caso 2:

$$\int_{a}^{+\infty} \frac{1}{x^{p}} dx \to \begin{cases} converge & se \ p > 1 \\ diverge & se \ p \leq 1 \end{cases}$$

Caso 3: con $0 < \alpha < 1$

$$\int_0^\alpha \frac{1}{x^a \cdot |ln(x)|^b} \to \begin{cases} converge \ se \end{cases} \begin{cases} a < 1 \ e \ b \in \mathbb{R} \\ oppure \\ a = 1 \ e \ b > 1 \\ a > 1 \ e \ b \in \mathbb{R} \\ oppure \\ a = 1 \ e \ b \le 1 \end{cases}$$

Caso 4: con $\alpha > 1$

$$\int_{\alpha}^{+\infty} \frac{1}{x^{\alpha} \cdot ln^{b}(x)} dx \to \begin{cases} converge & se \\ \end{cases} \begin{cases} a > 1 & e & b \in \mathbb{R} \\ oppure \\ a = 1 & e & b > 1 \end{cases}$$
$$diverge & se \\ diverge & se \end{cases} \begin{cases} a > 1 & e & b \in \mathbb{R} \\ oppure \\ a = 1 & e & b \le 1 \end{cases}$$

Caso 5: con $\alpha > 1$

$$\int_{1}^{\alpha} \frac{1}{\ln^{p}(x)} dx \to \begin{cases} converge & se & p < 1 \\ diverge & se & p \ge 1 \end{cases}$$

6.21 FUNZIONI INTEGRALI

teor. Secondo teorema fondamentale del calcolo integrale Sia $f:[a,b]\to\mathbb{R}$ una funzione integrabile e sia $x_0\in[a,b]$ e sia

$$F(x) = \int_{x_0}^{x} f(t)dt$$

Allora:

- La funzione F è continua in [a,b]
- Se inoltre f è continua in [a,b], allora F è derivabile in [a,b] e vale

$$F'(x) = f(x)$$
 per ogni $x \in [a, b]$

(Se f(t) non è continua su tutto I, ma è integrabile in senso generalizzato, in tutti i punti in cui f(t) è continua, F(x) è derivabile e F'(x) = f(x)) F ha punti di non derivabilità dove f è discontinua.

Conseguenze:

- ullet se f è continua, F è derivabile con continuità
- se f è continua e derivabile con continuità, anche F' è derivabile con continuità, quindi F è due volte derivabile con continuità. Iterando: la funzione integrale ha sempre un grado di regolarità in più rispetto alla funzione integranda
- ullet ogni fuzione continua su I ha una primitiva su I

Logica degli esercizi in cui bisogna trovare l'intervallo di definizione:

$$F(x) = \int_{x_0}^{x} f(x)dx$$

- lo scopo è determinare dove la funzione integranda è integrabile.
- Vedere dove la funzione integranda è continua, una funzione continua è integrabile. Analizzare i punti di discontinuità:
- Se una funzione ha un numero finito di discontinuità limitate in un intervallo, allora è integrabile in quell'intervallo. In poche parole se è una discontinuità a salto è integrabile.
- Per gli altri punti di discontinuità la funzione integranda è illimitat, quindi bisogna studiarla (con i
 criteri del confronto, del confronto asintotico, col teorema del modulo, calcolando effettivamente
 la primitiva e il limite, o riducendosi al caso particolare delle funzioni non limitate con gli asintotici
 o gli sviluppi di Taylor).
- Se la funzione itegranda non è integrabile nel punto x_0 allora l'insieme di definizione di F è vuoto. Ma se x_0 fosse un punto di accumulazione bisogna studiare l'integrale della funione per $t \to x_0$ e vedere se è effettivamente integrabile o meno.

Logica degli esercizi sulla regolarità delle funzioni integrali:

$$F(x) = \int_{x_0}^{x} f(x)dx$$

- si determina l'insieme di definizione. (vedi sopra)
- per determinare i punti di non derivabilità di F(x) studiamo la sua derivata F'(x) = f(x). I punti di non derivabilità sono quelli quelli dove f(x) non è definita, e in F(x) corrispondono a:
 - discontinuità a salto in f è un punto angoloso in F
 - punti di asintoto verticale di f sono cuspidi (verso l'alto o il basso) o flessi a tangente verticale (ascendente o discendente) di F

• Notiamo che tangenti verticali o discontinuità a salto o buchi nella funzione di F non possono essere presenti nel dominio di F, perchè essendo punti di discontinuità non sono derivabili e dunque non presenti nell'intervallo di integrazione di f.

Dunque la funzione F è (sempre) continua nel suo intervallo di definizione.

Logica degli esercizi sui grafici qualitativi della funzione integrale F(x) a partire dalla funzione integranda g(x)

- F è crescente sugli intervalli in cui g è positiva, F è decrescente sugli intervalli in cui g è negativa.
- ullet punti in cui g incrocia l'asse delle x sono punti di massimo o minimo
- discontinuità a salto in g sono punti angolosi
- F è concava verso l'alto (il basso) negli intervalli in cui g è crescente (decrescente)
- ullet punti di cambio massimo e minimo in g sono punti di cambio di concavità in F

Limite all'infinito di una funzione integrale:

$$\lim_{x \to +\infty} F(x) = \ integrale \ \ generalizzato \ \ = \int_{x_0}^{+\infty} f(t) dt$$

se l'integrale generallizzato converge esiste limite finito (anche se non si riesce a calcolare), se non converge o è divergente o non esiste.

Caso particolare è quello in cui $f(t) \to m$, costante non nulla, per cui $F(x) \sim mx$. Quindi F(x) tende a infinito con crescita lineare e potrebbe avere asintoto obliquo calcolabile come

$$\lim_{x \to \infty} [F(x) - mx] = \lim_{x \to \infty} \int_{x_0}^x [f(t) - m]dt + mx_0$$

Ossia esiste asintoto obliquo se l'integrale generalizzato

$$\int_{x_0}^{\infty} [f(t) - m] dt$$

converge.

7 Calcolo integrale per funzioni di più variabili

7.1 Integrali doppi

L'integrale doppio derve per il calcolo di volumi.

$$\int_{\Omega} f(x,y) dx dy$$

Proprietà:

- se $f(x,y) \geq g(x,y) \Rightarrow \int_{\Omega} f(x,y) dx dy \geq \int_{\Omega} g(x,y) dx dy$
- $|\int_{\Omega} f(x,y) dx dy| \le \int_{\Omega} |f(x,y)| dx dy$
- linearità:

$$\int_{\Omega} [\alpha \cdot f(x,y) + \beta \cdot g(x,y)] dx dy = \alpha \int_{\Omega} f(x,y) dx dy + \beta \int_{\Omega} g(x,y) dx dy$$

• addittività: Se Ω_1, Ω_2 sono aperti tali che $\Omega_1 \cap \Omega_2 = \emptyset$, allora

$$\int_{\Omega_1 \cap \Omega_2} f(x, y) dx dy = \int_{\Omega_1} f(x, y) dx dy + \int_{\Omega_2} f(x, y) dx dy$$

• valor medio: se $f \in C^0(\Omega)$ con Ω chiuso e limitato, allora esiste $(x_0, y_0) \in \Omega$ tale che

$$f(x_0, y_0) = \frac{1}{|\Omega|} \int_{\Omega} f(x, y) dx dy$$

Regione y-semplice: Se l'intersezione di una qualunque retta verticale con la Ω è un segmento o vuota.

Regione x-semplice: Se l'intersezione di una qualunque retta orizzontale con la Ω è un segmento o vuota.

Una regione piana Ω si dice **regolare** se può essere scomposta in un numero finito di regioni semplici.

7.1.1 Integrale su una regione semplice

Consideriamo il caso in cui Ω è un rettangolo con vertici a, b, c, d.

Prendendo una sezione verticale rispetto a x nel punto x_0 , notiamo che l'area è rappresentata da $A = \int_c^d f(x_0, y) dy$. Variando per tutte le x_0 che appartengono all'intervallo [a, b] otteniamo

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

Questo concetto è applicabile anche a tutte le Ω semplici, l'area della sezione rispetto a x è $A=\int_{q(x)}^{h(x)}f(x,y)dy$, e quindi il volume:

$$\int_a^b \left(\int_{g(x)}^{h(x)} f(x, y) dy \right) dx$$

Dunque:

teor. Formula di riduzione per integrali doppi.

Se Ω è y-semplice, cioè se $\Omega = \{(x,y) \in \mathbb{R}^2, a < x < b, g(x) < y < h(x)\}$

$$\int_{\Omega} f(x,y) dx dy = \int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x,y) dy \right) dx$$

Dove g(x) rappresenta il limite inferiore di Ω , e h(x) il limite superiore. Se Ω è **x-semplice**, cioè se $\Omega = \{(x,y) \in \mathbb{R}^2, a < y < b, g(x) < x < h(x)\}$

$$\int_{\Omega} f(x,y) dx dy = \int_{a}^{b} \left(\int_{g(y)}^{h(y)} f(x,y) dx \right) dy$$

Dove g(x) rappresenta il limite inferiore di Ω , e h(x) il limite superiore.

7.1.2 Baricentro e momento d'inerzia con gli integrali doppi

Gli integrali doppi possono essere usati per calcolare il baricentro di una lamina piana e del momento d'inerzia della lamina rispetto ad un asse perpendicolare al piano della lamina.

Sia Ω la forma della lamina e d(x,y) la densità di massa nel punto (x,y). La massa sarà $M=\int_{\Omega}d(x,y)dxdy$.

• Baricentro: $B(x_b, y_b)$

$$x_b = \frac{1}{M} \int_{\Omega} x d(x, y) dx dy$$
 $y_b = \frac{1}{M} \int_{\Omega} y d(x, y) dx dy$

Se la densità fosse costante avremmo d(x,y)=d, $M=d|\Omega|$ e

$$x_b = \frac{1}{|\Omega|} \int_{\Omega} x dx dy$$
 $y_b = \frac{1}{|\Omega|} \int_{\Omega} y dx dy$

• Momento d'inerzia:

Detta $\delta(x,y)$ la distanza di ogni punto $(x,y) \in \Omega$ dall'asse r perpendicolare al piano:

$$I = \int_{\Omega} \delta^{2}(x, y) \cdot d(x, y) dx dy$$

7.1.3 Cambi di variabili negli integrali doppi

Il problema è quello di trasformare un insieme $\Omega\subset\mathbb{R}^2$ in un altro insieme $T\subset\mathbb{R}^2$ più semplice geometricamente.

$$(u,v) = \Phi(x,y)$$

La trasformazione Φ deve essere biunivoca, cioè all'interno dell'intervallo la derivata prima di Φ non deve annullarsi.

Stiamo quindi cercando di creare una trasformazione $\Phi:\Omega\to T$ che sia invertibile

$$\Phi: \begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$

$$\Phi^{-}1: \begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$

Cerchiamo ora una condizione sulle derivate di Φ in modo che sia sicuramente invertibile.

Matrice Jacobiana:

$$\frac{\delta(x,y)}{\delta(u,v)} = \begin{pmatrix} \frac{\delta x}{\delta u} & \frac{\delta x}{\delta v} \\ \frac{\delta y}{\delta u} & \frac{\delta x}{\delta v} \end{pmatrix} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix} \quad \text{della trasformazione } \Phi$$

Se risulta $det(\frac{\delta(x,y)}{\delta(u,v)}) \neq 0 \quad \forall \ (u,v) \in T \text{(senza la frontiera)}, \ \text{allora} \ \Phi \ \text{sarà localmente invertibile.}$

Questa condizione equivale a imporre che

Jacobiano
$$= \left| det(\frac{\delta(x,y)}{\delta(u,v)}) \right| = |x_u y_v - x_v y_u| > 0$$

teor. Date le premesse fin'ora mostrate, allora:

$$\int_{\Omega} f(x,y) dx dy = \int_{T} f(x(u,v),y(u,v)) \cdot \left| \det(\frac{\delta(x,y)}{\delta(u,v)}) \right| du dv$$

7.1.4 Cambio di variabili in coordinate polari

Sia $\Omega \in \mathbb{R}^2$, i punti (x,y) vengono trasformati in punti $(\rho,\theta) \in T$ tali che

$$\Phi: \begin{cases} x = \rho cos(\theta) \\ y = \rho sin(\theta) \end{cases}$$

$$\rho = \sqrt{x^2 + y^2} \ge 0 \qquad \theta \in [0, 2\pi)$$

La trasformazione Φ trasforma il piano \mathbb{R}^2 in una striscia di piano, la cui altezza massima è $\theta=2\pi$ (non compresa) e la lunghezza è determinata da ρ . Un caso delicato è $\rho=0$, in cui θ non è definito.

Jacobiano
$$= \rho$$

Nelle integrazioni in coordinate polari, essendo il Jacobiano $= \rho$, il termine $dx\ dy$ diventa $\rho\ d\rho\ d\theta$.

7.2 Integrali impropri

Se $\Omega\subset\mathbb{R}^n$ è un aperto illimitato e $f\in C^0(\bar\Omega)$ soddisfa $f\geq 0$ (o $f\leq 0$) si costruiscono dei domini invadenti $\Omega_r=\Omega\cap B_r.$ Se poi esiste finito il limite

$$\lim_{x \to \infty} \int_{\Omega_x} f(x) dx$$

diremo che f è integrabile in senso generalizzato e

$$\int_{\Omega} f = \lim_{x \to \infty} \int_{\Omega_r} f(x) dx$$

7.3 Integrali tripli

7.3.1 Integrazione per fili

Se l'insieme Ω è semplice rispetto all'asse z o **z-semplice**, cioè esistono $D \subset \mathbb{R}^2$ e $g,h \in C^0(\bar{D})$ tali che g < h in D e

$$\Omega = \{(x, y, z) \in \mathbb{R}^3, (x, y) \in D, g(x, y) < z < h(x, y)\}$$

cioè se l'intersezione di una retta parallela all'asse z e Ω è un segmeno o vuota, allora data $f\in C^0(\Omega)$ si ha

$$\int_{\Omega} f(x, y, z) dx dy dz = \int_{D} \left(\int_{g(x, y)}^{h(x, y)} f(x, y, z) dz \right) dx dy$$

Allo stesso modo si procede nel caso di Ω x-semplice o y-semplice.

7.3.2 Integrazione per strati

Se Ω è semplice rispetto alla coppia (x,y) e cioè esistono a < b tali che

$$\Omega = \{(x, y, z) \in \mathbb{R}^3, a < z < b, (x, y) \in D_z \ \forall \ z \in (a, b)\}$$

dove D_z è un insieme regolare $\forall z \in (a,b)$, cioè se l'intersezione fra un piano parallelo al piano z=0 e Ω è un insieme regolare oppure è vuota, allora data $f \in C^0(\bar{\Omega})$ si ha

$$\int_{\Omega} f(x, y, z) dx dy dz = \int_{a}^{b} \left(\int_{D_{z}} f(x, y, z) dx dy \right) dz$$

Allo stesso modo si procede nel caso di Ω semplice rispetto alle coppie (x,z) o (y,z)

7.3.3 Cambi di variabili negli integrali tripli

7.3.4 Coordinate cilindriche

Presa una sezione verticale (cioè di un piano che passa per l'asse z) si definiscono:

 ρ rappresenta la distanza tra l'origine degli assi e la proiezione del punto P sul piano xy (in poche parole la distanza fra il punto e l'asse z).

z rappresenta la quota del punto P dal piano xy.

 θ di quando deve ruotare il piano per rappresentare il volume di partenza.

$$\forall \begin{cases} \rho \in [0, \infty) \\ \theta \in [0, 2\pi) \\ z \in \mathbb{R} \end{cases} \Longrightarrow \begin{cases} x = \rho cos(\theta) \\ y = \rho sin(\theta) \\ z = z \end{cases}$$

Matrice Jacobiana:

$$\frac{\delta(x,y,z)}{\delta(\rho,\theta,z)} = \begin{pmatrix} \cos(\theta) & -\rho\sin(\theta) & 0\\ \sin(\theta) & \rho\cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$det(\frac{\delta(x,y)}{\delta(u,v)}) = \rho = \left| det(\frac{\delta(x,y)}{\delta(u,v)}) \right|$$

7.3.5 Coordinate sferiche

$$\forall \begin{cases} \rho \in [0, \infty) \\ \phi \in [0, \pi] \\ \theta \in [0, 2\pi) \end{cases} \implies \begin{cases} x = \rho sin(\phi)cos(\theta) \\ y = \rho sin(\phi)sin(\theta) \\ z = \rho cos(\phi) \end{cases}$$

 $\rho^2=x^2+y^2+z^2\,$ e rappresenta la distanza fra il punto (x,y,z) e l'origine

oppure se si prende $\phi \in [-\pi/2, +\pi/2]$ si ottengono le coordinate:

$$\begin{cases} x = \rho cos(\phi) cos(\theta) \\ y = \rho cos(\phi) sin(\theta) \\ z = \rho sin(\phi) \end{cases}$$

Matrice Jacobiana:

$$\frac{\delta(x,y,z)}{\delta(\rho,\theta,z)} = \begin{pmatrix} \sin(\phi)\cos(\theta) & \rho\cos(\phi)\cos(\theta) & -\rho\sin(\phi)\sin(\theta) \\ \sin(\phi)\sin(\theta) & \rho\cos(\phi)\sin(\theta) & \rho\sin(\phi)\cos(\theta) \\ \cos(\phi) & -\rho\sin(\phi) & 0 \end{pmatrix}$$
$$\det(\frac{\delta(x,y)}{\delta(u,v)}) = \rho^2 \sin(\phi)$$

che si annulla in tutti i punti dell'asse z che sono punti della frontiera e dunque non interessano.

7.4 Note sugli esercizi

Data una funzione su due variabili f(x, y):

• f è dispari rispetto a x se

$$f(-x,y) = -f(x,y)$$

ullet f è pari rispetto a x se

$$f(-x,y) = f(x,y)$$

ullet f è dispari rispetto a y se

$$f(x, -y) = -f(x, y)$$

ullet f è pari rispetto a y se

$$f(x, -y) = f(x, y)$$

Quindi

- Se la funzione f è dispari rispetto a y e la superficie di integrazione è simmetrica rispetto a x, allora l'integrale è nullo.
- Se la funzione f è dispari rispetto a x e la superficie di integrazione è simmetrica rispetto a y, allora l'integrale è nullo.
- Se la funzione f è pari rispetto a y e la superficie di intergrazione è simmetrica rispetto a x, allora l'integrale si può calcolare solo sul metà superficie e moltiplicando per due il risultato finale
- Se la funzione f è pari rispetto a x e la superficie di intergrazione è simmetrica rispetto a y, allora l'integrale si può calcolare solo sul metà superficie e moltiplicando per due il risultato finale

Dato un dominio T (superficie) del piano e una funzione $f(x,y) \geq 0$ definita su T, l'integrale doppio esteso a T di f rappresenta, il volume del solido compreso tra il piano xy e la superficie definita dalla funzione f, che si proietta in T; sempre in analogia con quanto accade in una variabile, se la funzione cambia segno in T, il volume del solido va calcolato integrando su T il valore assoluto di $f\colon |f|$. Inoltre, ponendo f=1 su T, l'integrale doppio della funzione costante uguale a 1 sappresenta l'area di T.

Dato un dominio T di \mathbb{R}^3 , il volume di T può essere espresso tramite il calcolo dell'integrale triplo della funzione costante f(x,y,z)=1

$$Volume(T) = \int \int \int_T dx dy dz$$

Passando nel piano da coordinate cartesiane a coordinate polari abbiamo visto che l'elemento d'area $dx\ dy$ diventa $\rho\ d\rho\ d\theta$, allo stesso modo nello spazio l'elemento di volume $dx\ dy\ dz$ diventa in coordinate cilindriche $\rho\ d\rho d\ \theta dz$ e in coordinate sferiche $R^2sin(\phi)\ dR\ d\phi\ d\theta$ (se però adottiamo le coordinate sferiche con $-\frac{\pi}{2} \le \phi \le \frac{\pi}{2}$ l'elemento di volume diventa $R^2cos(\phi)\ dR\ d\phi\ d\theta$).

Data una regione piana T, e detta $\delta(x,y)$ non negativa su T densità superficiale di massa relativa alla lamina rappresentata dalla regione T, l'integrale doppio esteso su T della funzione δ rappresenta la masssa M della lamina T:

$$M = \int \int_{T} \delta(x, y) dx dy$$

Valgono inoltre le seguenti formule per il calcolo delle coordinate (x_b, x_a) del baricentro della lamina e per il calcolo del momento d'inerzia $M_{(x_0,y_0)}$ della lamina rispetto all'asse perpendicolare al piano passante per il punto (x_0,y_0) :

$$x_b = \frac{1}{M} \int \int_T x \delta(x, y) dx dy$$

$$y_b = \frac{1}{M} \int \int_T y \delta(x, y) dx dy$$

$$M_{(x_0, y_0)} = \int \int_T ((x - x_0)^2 + (y - y_0)^2) \delta(x, y) dx dy$$

Data una regione T di \mathbb{R}^3 , e data una funzione $\delta(x,y,z)$ non negativa su T, interpretando δ come densità di massa, relativa al solido rappresentato dalla regione T, l'integrale triplo esteso a T della funzione δ rappresenta la massa M del solido T:

$$M = \int \int \int_{T} \delta(X, y, z) dx dy dz$$

Valgono inoltre le seguenti formule, per il calcolo delle coordinate (x_b, y_b, z_b) del baricentro del solido:

$$x_b = \frac{1}{M} \int \int \int_T x \, \delta(x, y, z) dx dy dz$$
$$y_b = \frac{1}{M} \int \int \int_T y \, \delta(x, y, z) dx dy dz$$
$$z_b = \frac{1}{M} \int \int \int_T z \, \delta(x, y, z) dx dy dz$$

Momento d'inerzia di un solido T rispetto all'asse z:

$$M_z = \int \int \int_T (x^2 + y^2) \, \delta(x, y, z) dx \, dy \, dz$$

Domini in \mathbb{R}^3 : vi sono 6 differenti oridini con i quali esprimere i domini, tra questi meritano particolare attenzione i seguenti:

- quello per cui z è la variabile più esterna e, fissata z, si procede a fissare le restanti due coordinate (x,y per coordinate cartesiante, ρ,θ per coordinate cilindriche) sui domini piani che corrispondono alle varie quote di z, la cosiddetta espressione per strati;
- quell per cui z è la variabile più interna : si fissano le due coordinate piane (x,y) per coordinate polari, ρ,θ per coordinate cilindriche) in modo generale, dopodichè per ogni coppia x,y o ρ,θ , si fissa la corrispondente z, la cosiddetta espressione per fili.

Retta per due punti (x_1, y_1) e (x_2, y_2) :

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

Piano per tre punti (x_a,y_a,z_a) (x_b,y_b,z_b) e (x_c,y_c,z_c) è il determinante della matrice

$$\det \begin{pmatrix} x - x_a & y - y_a & z - z_a \\ x_b - x_a & y_b - y_a & z_b - z_a \\ x_c - x_a & y_c - y_a & z_c - z_a \end{pmatrix} = 0$$

8 Calcolo differenziale per funzioni di più variabili a valori vettoriali (BRAMANTI)

8.1 Funzioni di più variabili a valori vettoriali: generalità

$$\vec{f}: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$$

Mostriamo alcuni esempi di oggetti rappresentabili tramite funzioni di più variabili a valori vettoriali.

8.1.1 Superfici in forma parametrica

Le superfici in forma parametrica, sono solo un caso particolare del concetto più asatratto e generale di varietà k-dimensionale in forma parametrica in \mathbb{R}^m . (Più avanti sarà discusso meglio).

8.1.2 Trasformazioni di coordinate

$$\vec{f}: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$$

Coordinate polari nel piano. Il punto $(x,y) \in \mathbb{R}^2$ può essere anche individuato in forma polare ed è molto comodo se si è in presenza di simmetrie rispetto all'origine. Ricordando che la distanza dall'origine è $\rho = \sqrt{x^2 + y^2}$ e θ è l'angolo formato tra il vettore (x,y) e l'asse x, otteniamo:

$$\begin{cases} x = \rho cos(\theta) \\ y = \rho sin(\theta) \end{cases} \qquad \text{con } \rho \in [0,+\infty), \theta \in [0,2\pi) \text{ o qualunque intervallo di ampiezza } 2\pi$$

Questa trasformazione di coordinate si può vedere come una funzione $\vec{f}: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) = f(\rho,\theta)$.

Coordinate cilindriche nello spazio. Viene utilizzato per descrivere insiemi e funzioni che hanno simetrie rispetto all'asse delle z in \mathbb{R}^3 e si ha:

$$\begin{cases} x = \rho cos(\theta) \\ y = \rho sin(\theta) \\ z = t \end{cases} \quad \text{con } \rho \in [0, +\infty), \theta \in [0, 2\pi), t \in \mathbb{R}$$

Questa trasformazione si può vedere come una funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$.

Coordinate sferiche nello spazio. Viene utilizzato per descrivere insiemi e funzioni che hanno simmetrie rispetto all'origine in \mathbb{R}^3 e si ha:

$$\begin{cases} x = \rho sin(\phi)cos(\theta) \\ y = \rho sin(\phi)sin(\theta) \\ z = \rho cos(\phi) \end{cases} \quad \text{con } \rho > 0, \ \in [0, \pi], \theta \in [0, 2\pi)$$

Queste trasformazioni si possono vedere come funzioni $f: \mathbb{R}^2 \to \mathbb{R}^3$.

Da notare che se si ha ρ costante, il sistema rappresenta la superficie di una sfera di raggio ρ in forma parametrica.

8.1.3 Campi vettoriali

Sono solo esempi ed esercizi.

8.2 Limiti, continuità e differenziabilità per funzioni $\vec{f}: \mathbb{R}^n \to \mathbb{R}^m$

Se $\vec{f}: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, possiamo scrivere

$$\vec{f}(x) = (f_1(x), \dots, f_m(x))$$

dove le f_i sono componenti di \vec{f} e sono funzioni reali di più variabili.

Il limite si può calcolare componente per componente

$$\lim_{x \to x_0} \vec{f}(x) = (\lim_{x \to x_0} f_1(x), \dots, \lim_{x \to x_0} f_m(x))$$

Una funzione $\vec{f}:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ è continua se e solo se lo sono tutte le sue componenti.

Diremo che $\vec{f}: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ è differenziabile in x_0 se tutte le sue componenti lo sono.

Matrice Jacobiana di \vec{f} :

$$D\vec{f}(x_0) = \begin{pmatrix} \frac{\delta f_1}{\delta x_1} & \frac{\delta f_1}{\delta x_2} & \dots & \frac{\delta f_1}{\delta x_n} \\ \frac{\delta f_2}{\delta x_1} & \dots & \dots & \frac{\delta f_2}{\delta x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\delta f_m}{\delta x_1} & \dots & \dots & \frac{\delta f_m}{\delta x_n} \end{pmatrix} (x_0)$$

Da notare è che la colonna i-esima rappresenta il vettore delle derivate di tutte le funzioni di \vec{f} derivate rispetto al i-esimo parametro. Indicheremo questo vettore come \vec{f}_{x_i}

teor. Condizione sufficiente affinchè una funzione $\vec{f}:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$, con A aperto, risulti differenziabile in A è che tutti gli elementi della sua matrice Jacobiana siano funzioni continue in A.

Se $\vec{f}:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ è differenziabile, allora è derivabile e continua.

teor. Siano $\vec{f}:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$, $\vec{g}:B\subseteq\mathbb{R}^m\to\mathbb{R}^k$ e supponiamo che sia ben definita almeno in un intorno C di $x_0\in A$ la funzione composta $\vec{g}\circ\vec{f}:C\subseteq\mathbb{R}^n\to\mathbb{R}^k$. Se \vec{f} è differenziabile in x_0 e \vec{g} è differenziabile in $y_0=\vec{f}(x_0)$, anche $\vec{g}\circ\vec{f}$ è differenziabile in x_0 e la sua matrice jacobiana si ottiene come prodotto (matriciale) delle matrici Jacobiane di \vec{f} e \vec{g} , calcolate nei punti x_0 e $\vec{f}(x_0)$.

$$D(\vec{g} \circ \vec{f})(x_0) = D\vec{g}(\vec{f}(x_0))D\vec{f}(x_0)$$

8.3 Superfici regolari in forma parametrica

Una superficie in forma parametrica è una funzione del tipo:

$$\vec{r}:A\subseteq\mathbb{R}^2\to\mathbb{R}^3$$

con
$$\vec{r} = (x, y, z)$$
 e

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases} (u, v) \in A$$

Valutare se una superficie in forma parametrica è regolare:

def. Una superficie parametrizzata da $\vec{r}=\vec{r}(u,v)$, con $\vec{r}:A\subseteq\mathbb{R}^2\to\mathbb{R}^3$ si dice regolare se \vec{r} è differenziabile in A e inoltre la matrice Jacobiana di \vec{r} ha rango due in ogni punto di A. Se in qualche punto di A le condizioni vengono violate, chiameremo punti singolari della superficie i punti corrispondenti.

Le condizioni possono essere verificate tramite l'esistenza e il non annullamento di:

$$\vec{r}_u(u_0, v_0) \times \vec{r}_v(u_0, v_0) = \det \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\delta x}{\delta u}(u_0, v_0) & \frac{\delta y}{\delta u}(u_0, v_0) & \frac{\delta z}{\delta u}(u_0, v_0) \\ \frac{\delta x}{\delta v}(u_0, v_0) & \frac{\delta y}{\delta v}(u_0, v_0) & \frac{\delta z}{\delta v}(u_0, v_0) \end{pmatrix} \neq 0$$

con

$$\vec{r}_{u}(u_{0}, v_{0}) = (\frac{\delta x}{\delta u}(u_{0}, v_{0}), \frac{\delta y}{\delta u}(u_{0}, v_{0}), \frac{\delta z}{\delta u}(u_{0}, v_{0}))$$
$$\vec{r}_{v}(u_{0}, v_{0}) = (\frac{\delta x}{\delta v}(u_{0}, v_{0}), \frac{\delta y}{\delta v}(u_{0}, v_{0}), \frac{\delta z}{\delta v}(u_{0}, v_{0}))$$

Una proprietà di quest'ultimo prodotto vettoriale è che è normale alla superficie nel punto in cui è calcolato.

Il versore normale è:

$$\vec{n} = \frac{\vec{r}_u \times \vec{r}_v}{|\vec{r}_u \times \vec{r}_v|}$$

[Equazione del piano tangente (manca).]

8.3.1 Superfici cartesiane (grafico di funzioni di due variabili)

Il grafico di z = f(x, y) è una superficie che si può riscrivere nella forma:

$$\begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

Matrice Jacobiana per superfici cartesiane:

$$\begin{pmatrix} 1 & 0 & f_u(u_0, v_0) \\ 0 & 1 & f_v(u_0, v_0) \end{pmatrix}$$

$$\det \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & f_u(u_0, v_0) \\ 0 & 1 & f_v(u_0, v_0) \end{pmatrix} = -\vec{i}f_u - \vec{j}f_v + \vec{k}$$

Versore normale per superfici cartesiane:

$$\vec{n} = \frac{-\vec{i}f_u - \vec{j}f_u + \vec{k}}{\sqrt{1 + |\nabla f|^2}}$$

Se f è differenziabile in A, allora il suo grafico è sempre una superficie regolare.

Elemento d'area:

$$dS = \sqrt{1 + |\nabla f|^2} du dv$$

8.3.2 Superfici di rotazione

Superfici ottenute facendo ruotare una curva γ detta generatrice attorno a un asse. In un riferimento (x,y,a) sia y l'asse a cui vogliamo far ruotare una curva γ , inizialmente assegnata al piano x,z in forma parametrica:

$$\begin{cases} x = a(t) \\ y = b(t) \end{cases} \quad t \in I$$

La superficie che si ottiene per rotazione è

$$\begin{cases} x = a(t)cos(\theta) \\ y = b(t) \\ z = b(t)sin(\theta) \end{cases} \quad t \in I, \theta \in [0, 2\pi]$$

(questo sistema va adattato di caso in caso, badando principalmente a due fatti: che la curva da far ruotare deve essere tutta da una parte (a destra o a sinistra) dell'asse su cui si ruota e che l'asse su cui si ruota la funzione determina come viene scritto il sistema, per esempio, sopra, siccome volevamo far ruoate attorno a y, allora non abbiamo aggiunto seni o coseni alla coordinata y).

Matrice Jacobiana di superfici di rotazione:

$$\begin{array}{lll} a'(t)cos(\theta) & b'(t) & a'(t)sin(\theta) \\ -a(t)sin(\theta) & 0 & a(t)cos(\theta) \end{array}$$

Elemento d'area di superfici di rotazione:

$$dS = |a(t)|\sqrt{a'(t)^2 + b'(t)^2}dtd\theta$$

Versore normale di superfici di rotazione:

$$\vec{n} = \frac{(b'(t)cos(\theta), -a'(t), b'(t)sin(\theta))}{\sqrt{a'(t)^2 + b'(t)^2}}$$

8.4 Varietà k-dimenzionali in \mathbb{R}^n e funzioni definite implicitamente

8.4.1 Varietà k-dimensionali in \mathbb{R}^n in forma parametrica

def. Si dice varietà regolare k-dimensionale in forma parametrica, immersa in \mathbb{R}^n (con $1 \leq k \leq n-1$), una funzione $\vec{r}: \Omega \to \mathbb{R}^n$, con Ω aperto in \mathbb{R}^k , tale che $\vec{r} \in C^1(\Omega)$ e la matriche Jacobiana di \vec{r} ha rango k in ogni punto di Ω .

Nel caso particolare in cui k=n-1 (e n>3) la varietà si dice ipersuperficie in \mathbb{R}^n .

Dal punto di visa dell'intuizione geometrica, la varietà k-dimensionale è l'immagine della funzione $ec{r}$ in \mathbb{R}^n

8.4.2 Funzioni implicite definite da sistemi di equazioni

Avendo un sistema di m equazioni in n+m incognite, il teorema di Rouchè-Capelli ci dice che se la matrice del sistema ha rango massimo (cioè m) si riescono a esplicitare m variabili in funzione di altre m.

Nel caso non lineare ci si limita a verificare il teorema di Rouchè-Capelli localmente: nell'intorno di un punto in cui si sa che il sistema è soddisfatto, il rango massimo della matrice del sistema lineare diventa il rango massimo della matrice del sistema linearizzato, cioè della matrice Jacobiana del sistema non lineare.

notazioni:

Scriviamo un sistema di m equazioni in n+m variabili nella seguente forma vettoriale

$$\vec{f}(x,y) = 0$$

 $\text{dove } \vec{f}: A \subset \mathbb{R}^{n+m} \to \mathbb{R}^m \text{, } \vec{x} \in \mathbb{R}^n \text{, } \vec{y} \in \mathbb{R}^m.$

Denotiamo con $D_y \vec{f}(x_0,y_0)$ la matrice Jacobiana della funzione $y \to \vec{f}(x_0,y)$, calcolata nel punto y_0 , ossia la matrice di $m \times m$ elementi $\frac{\delta f_i}{\delta y_j}(x_0,y_0)$, con $(i,j=1,2,\ldots,m)$ (con $D_x f(\vec{x_0},y_0)$ denotiamo l'analogo per le x).

teor. Teorema di Dini, della funzione implicita: caso generale.

Sia A un aperto di \mathbb{R}^{n+m} , $\vec{f}:A\to\mathbb{R}^m$, $\vec{f}\in C^1(A)$, e supponiamo che nel punto $(x_0,y_0)\in A$ sia

$$\vec{f}(x_0, y_0) = 0;$$
 $det(D_y \vec{f}(x_0, y_0)) \neq 0$

Allora esiste un intorno $U \subset \mathbb{R}^n$ di x_0 e un unica funzione $\vec{g}: U \to \mathbb{R}^m$, $g \in C^1(U)$, tale che, per ogni $x \in U$,

$$\vec{f}(x, \vec{g}(x)) = 0$$

$$Dg(x) = -D_y \vec{f}(x, \vec{g}(x))^{-1} D_x \vec{f}(x, \vec{g}(x))$$

8.4.3 Varietà k-dimensionali in \mathbb{R}^n in forma implicita

def. Si dice varietà k-dimensionale in forma implicita, immersa in \mathbb{R}^n , un sottoinieme (non vuoto) di \mathbb{R}^n del tipo:

$$M = \{x \in \Omega : \vec{f}(x) = 0\}$$

dove Ω è un aperto di \mathbb{R}^n , $\vec{f}:\Omega\to\mathbb{R}^{n-k}$, $\vec{f}\in C^1(\Omega)$ e il rango di $D\vec{f}$ è uguale a n-k in ogni punto di Ω . La varietà si dirà di classe C^m (per qualche intero $m\geq 1$) se, inoltre, $\vec{f}\in C^m(\Omega)$; si dirà di classe C^∞ se è di classe C^m per ogni intero m.

Si noti che se k=n-1 la funzione f ha valori reali; in questo caso M è definita da un'unica equazione in n variabili, si chiamerà ipersuperficie in forma cartesiana implicita. Nel caso n=3 si ha semplicemente una superficie in forma cartesiana implicita (es. la sfera: $x^2+y^2+z^2-R^2=0$).

Se $n=3,\ k=1,$ abbiamo due equazioni in tre variabili, cioè una curva in forma cartesiana implicità (vista come intersezione di due superfici).

8.5 Trasformazioni di coordinate e loro inversione

8.5.1 Il teorema della funzione inversa

Una funzione lineare $\vec{f}: \mathbb{R}^n \to \mathbb{R}^n$ nella forma

$$\vec{f}(\vec{x}) = A\vec{x}$$

per una certa matrice A, $n \times n$, risulta invertibile se e solo se $det(A) \neq 0$ (teorema di Cramer).

Per una funzione non lineare $\vec{f}:A\to\mathbb{R}^n$, tale che $\vec{f}\in C^1(A)$, per qualche aperto $A\subseteq\mathbb{R}^n$ non possiamo usare lo stesso risultato, ma possiamo dire che è invertibile in un intorno di x_0 , quando la matrice Jacobiana (approssimazione lineare della funzione non lineare) calcolata in x_0 è invertibile, \vec{f} risulta invertibile almeno in un intorno di x_0 .

def. Una funzione $\vec{f}:A\to B$ (A,B) aperti in \mathbb{R}^n) si dice invertibile in A se è iniettiva, ossia se per ogni $x_1,x_2\in A$

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

f si dice suriettiva su B se per ogni $y \in B$ esiste $x \in A$ tale che $\vec{f}(x) = y$. f si dice biiettiva se è iniettiva e suriettiva.

teor. Teorema di inversione locale. Sia $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^n$ con A aperto, tale che $\vec{f}\in C^1(A)$. Supponiamo che per un dato punto $x_0\in A$ sia

$$det(Df(x_0)) \neq 0$$

Allora esistono un intorno U di x_0 e un intorno V di $\vec{f}(x_0)$ tra i quali la funzione \vec{f} è biunivoca; inoltre, detta $g:V\to U$ la corrispondenza inversa, si ha che $\vec{g}\in C^1(V)$ e

$$D\vec{g}(\vec{f}(x)) = D\vec{f}(x)^{-1}$$
 per ogni $x \in U$

Bisogna far attenzione al fatto che si sta parlando di invertibilità locale e non globale, tutto ciò che si può dire è che c'è un intorno in cui la funzione è invertibile.

Coordinate polari nel piano

La trasformazione

$$\begin{cases} x = \rho cos(\theta) \\ y = \rho sin(\theta) \end{cases}$$

ha matrice Jacobiana

$$\begin{pmatrix} cos(\theta) & -\rho sin(\theta) \\ sin(\theta) & \rho cos(\theta) \end{pmatrix}$$

con determinante ρ . La trasformazione è regolare ad eccezione di $\rho=0$ (origine del piano).

Coordinate cilindriche nello spazio

La trasformazione

$$\begin{cases} x = \rho cos(\theta) \\ y = \rho sin(\theta) \\ z = t \end{cases}$$

ha matrice Jacobiana

$$\begin{pmatrix} \cos(\theta) & -\rho \sin(\theta) & 0\\ \sin(\theta) & \rho \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

con determinante ρ . La trasformazione è regolare ad eccezione di $\rho = 0$ (l'asse z).

Coordinate sferiche nello spazio

La trasformazione

$$\begin{cases} x = \rho sin(\phi)cos(\theta) \\ y = \rho sin(\phi)cos(\theta) \\ z = \rho cos(\phi) \end{cases}$$

ha matrice Jacobiana

$$\begin{pmatrix} sin(phi)cos(\theta) & \rho cos(phi)cos(\theta) & -\rho sin(\phi)sin(\theta) \\ sin(\phi)sin(\theta) & \rho cos(\phi)sin(\theta) & \rho sin(\phi)cos(\theta) \\ cos(\phi) & -\rho sin(\phi) & 0 \end{pmatrix}$$

con determinante $\rho^2 sin(\phi)$. La trasformazione è regolare tranne che per $\rho=0$ (origine dello spazio) e $\phi=0,\pi$ (i due semiassi z nello spazio). In conclusione sono singolari tutti i punti dell'asse z.

8.5.2 Trasformazione di operatori differenziali

Sia

$$\vec{T}(x,y) = (a(x,y), b(x,y))$$

una trasformazione regolare $\vec{T}:\mathbb{R}^2 \to \mathbb{R}^2$.

Sia ora $f(u,v): \mathbb{R}^2 \to \mathbb{R}$ una funzione differenziabile. Posto $(u,v) = \vec{T}(x,y)$ definiamo

$$g(x,y) = f(\vec{T}(x,y))$$

Sfruttando il teorema della differenziabilità della funzione composta, possiamo scrivere mediante le derivate di f

$$\frac{\delta g}{\delta x}(x,y) = \frac{\delta f}{\delta x}(\vec{T}(x,y)) \cdot \frac{\delta T_1}{\delta x}(x,y) + \frac{\delta f}{\delta y}(\vec{T}(x,y)) \cdot \frac{\delta T_2}{\delta x}(x,y)$$

dove T_1 e T_2 rappresentano la prima (a(x,y)) e la seconda (b(x,y)) componente di \overrightarrow{T} . Negli esercizi le derivate parziali rimangono indicate come in formula senza essere esplcitate (f) non viene definita nelle consegne), mentre le derivate con T_1 e T_2 si possono risolvere. Dunque la formula effettivamente diventa:

$$\frac{\delta g}{\delta x}(x,y) = \frac{\delta f}{\delta x}(a(x,y),b(x,y)) \cdot \frac{\delta a(x,y)}{\delta x} + \frac{\delta f}{\delta y}(a(x,y),b(x,y)) \cdot \frac{\delta b(x,y)}{\delta x}$$

Analogamente l'altra derivata di g è:

$$\frac{\delta g}{\delta y}(x,y) == \frac{\delta f}{\delta x}(\vec{T}(x,y)) \cdot \frac{\delta T_1}{\delta y}(x,y) + \frac{\delta f}{\delta y}(\vec{T}(x,y)) \cdot \frac{\delta T_2}{\delta y}(x,y)$$

Negli esercizi sul libro si fanno anche derivate di secondo grado, ma sinceramente non c'ho capito molto, quindi buona fortuna... chiedi appunti sull'argomento a qualcuno.

Lascio scritte anche le informazioni trovate sul libro di teoria, anche se non sono molto chiare... Sia

$$\begin{cases} x = g(u, v) \\ y = h(u, v) \end{cases}$$

una trasformazione regolare di coordinate nel piano e sia f(x,y) una funzione differenziabile. Sotto l'azione della trasformazione di coordinate, f diventerà funzione di u e v e per il teorema sul differenziale di una funzione composta, si può scrivere:

$$\frac{\delta f}{\delta u} = \frac{\delta f}{\delta x} \frac{\delta g}{\delta u} + \frac{\delta f}{\delta y} \frac{\delta h}{\delta u}$$

$$\frac{\delta f}{\delta v} = \frac{\delta f}{\delta x} \frac{\delta g}{\delta v} + \frac{\delta f}{\delta y} \frac{\delta h}{\delta v}$$

8.6 Note sugli esercizi

elemento d'area e regolarità

$$dS = |\vec{r}_t \times \vec{r}_u| dt du$$

è una scrittura comoda e sintetica che mette in luce la regolarità o meno della superficie (dove $|\vec{r}_t \times \vec{r}_u|$ si annulla abbiamo punti singolari (vedi superfici regolari in forma parametrica per saperne di più).

L'elemento d'area per **trasformazioni** in \mathbb{R}^2 o \mathbb{R}^3 è calcolato come il modulo del determinante della matrice Jacobiana (che sarà 2x2 o 3x3).

Ricordiamo che per \vec{r}_t si intende il vettore delle derivate di tutte le funzioni che compongono \vec{r} derivate rispetto al parametro t.

9 Funzioni di più variabili a valori vettoriali (GAZZOLA)

9.1 Campi vettoriali

Un campo vettoriale $F:\mathbb{R}^n\to\mathbb{R}^m$ è una funzione che ad ogni punto dello spazio \mathbb{R}^n associa un vettore di \mathbb{R}^m .

$$F(\vec{x}) = (F_1(\vec{x}), \dots, f_m(\vec{x})) = \sum_{h=1}^{m} F_h(\vec{x})e_h$$

dove le componenti F_h sono funzioni scalari e gli e_h rappresentano i vettori della base canonica di \mathbb{R}^m . Se tutte le componenti F_h sono di classe C^1 , diremo che $F \in C^1(\mathbb{R}^n, \mathbb{R}^m)$

oss. n=m=1 funzione reale di variabile reale; $n=1, m\geq 2$ curva; $n\geq 2, m=1$ funzione scalare di più variabili.

Sia $\Omega \in \mathbb{R}^3$ un aperto, dato un campo $F \in C^1(\Omega, \mathbb{R}^3)$, chiameremo **linea di campo** di F una curva regolare che in ongi punto del suo sostegno sia tangente a F.

Con questa definizione si caratterizza una linea di campo di $F \in C^1(\mathbb{R}^3, \mathbb{R}^3)$ con una curva regolare r = r(t) tale che r'(t) sia proporzionale a F(r(t)). Dato che il coefficiente di proporzionalità è variabile possiamo scrivere:

$$r'(t) = p(t)F(r(t))$$

dove p(t) rappresenta la proporzionalità. Notiamo che $p(t) \neq 0$ per ogni t, quindi o p(t) > 0 (verso di percorrenza e flusso coincidono) o p(t) < 0 (verso di percorrenza opposto al flusso).

$$\begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = p(t) \begin{pmatrix} F_1(x(t), y(t), z(t)) \\ F_2(x(t), y(t), z(t)) \\ F_3(x(t), y(t), z(t)) \end{pmatrix}$$

$$\frac{x'(t)}{F_1(x(t), y(t), z(t))} = \frac{y'(t)}{F_2(x(t), y(t), z(t))} = \frac{z'(t)}{F_3(x(t), y(t), z(t))}$$

$$\frac{dx}{F_1(x, y, z)} = \frac{dy}{F_2(x, y, z)} = \frac{dz}{F_3(x, y, z)}$$

e le linee di campo si ottengono integrando:

$$\int \frac{dx}{F_1(x, y, z)} = \int \frac{dy}{F_2(x, y, z)} = \int \frac{dz}{F_3(x, y, z)}$$

Chiamiamo **rotore** di un campo $F \in C^1(\mathbb{R}^3, \mathbb{R}^3)$ il vettore

$$rot(F) = \nabla \wedge F = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

Un campo a rotore nullo viene chiamato irrotazionale.

Per calcolare il rotore di una funzione $F \in C^1(\mathbb{R}^2, \mathbb{R}^2)$, è sufficiente immergerlo in \mathbb{R}^3 , ponendo $F(x,Y) = (F_1(x,y), F_2(x,y)) \to F(x,y,z) = (F_1(x,y), F_2(x,y), 0)$ e si trova:

$$rot(F) = \nabla \wedge F = \left(\frac{\delta F_2}{\delta x} - \frac{\delta F_1}{\delta y}\right) \vec{k}$$

Quindi il rotore è perpendicolare al piano del campo.

Anche in tre dimensioni il rotore individue una direzione che è perpendicolare al piano che localmente tende a contenere le linee di campo.

Il modulo del rotore misura la tendenza a ruotare attorno all'asse della sua direzione. Se le linee di campo tendono ad accolgersi attorno all'asse, il rotore abrà il verso della vite che ruota nel verso delle linee di campo. Se il rotore è nullo, non c'è effetto rotatorio.

Chiamiamo divergenza di un campo $F \in C^1(\mathbb{R}^3, \mathbb{R}^3)$ lo scalare

$$div(F) = \nabla \cdot F = \frac{\delta F_1}{\delta x} + \frac{\delta F_2}{\delta y} + \frac{\delta F_3}{\delta z}$$

Un campo a divergenza nulla viene chiamato solenoidale. La divergenza in n=1 coincide con la derivata di una funzione scalare.

oss.

$$\nabla \wedge (\nabla u) = rot(\nabla u) = 0 \qquad \forall u \in C^2(\Omega, \mathbb{R}),$$

cioè un gradiente è irrotazionale;

$$\nabla \cdot (\nabla \wedge F) = div(rot(F)) = 0 \qquad \forall F \in C^2(\Omega, \mathbb{R}^3),$$

cioè un rotore è solenoidale;

$$\nabla \cdot (\nabla u) = div(\nabla u) = \nabla u \qquad \forall \ u \in C^2(\Omega, \mathbb{R}).$$

9.2 Lavoro di un campo vettoriale

def. Sla γ il sostegno orientato di una curva regolare a tratti $r:I\to\mathbb{R}^n$ e sia $F\in C^0(\mathbb{R}^n,\mathbb{R}^n)$. Si chiama **lavoro** di F lungo γ l'integrale di linea

$$L_{\gamma}(F) = \int_{\gamma} F \cdot dr = \int_{I} F(r(t)) \cdot r'(t) dt$$

Sia I=[a,b], da un punto di vista fisico, $L_{\gamma}(F)$ rappresenta il lavoro che compie la forza F per spostare il suo punto di applicazione lungo γ da r(b).

Rispetto al classico integrale di linea che non cambia se riparametriziamo la curva con verso opposto, l'integrale che calcola il lavoro cambia segno se la curva cambia verso.

Diremo che $F \in C^1(\Omega, \mathbb{R}^n)$ è **conservativo** se esite una funzione reale $U \in C^2(\Omega, \mathbb{R})$, che chiameremo **potenziale** di F, tale che $\nabla U = F$.

F conservativo $\Longrightarrow F$ irrotazionale

da cui ricaviamo che se F non è irrotazionale, allora non è conservativo.

Il lavoro di F lungo un qualunque sostegno γ si esprime come

$$L_{\gamma}(F) = \int_{a}^{b} \nabla U(r(t)) \cdot r'(t) dt = U(r(b)) - U(r(a))$$

Questa espressione ci dice che il lavoro di un campo conservativo si calcola come differenza di potenziale e che il lavoro di un campo conservativo non dipende dalla curva di percorrenza, ma solo dai suoi estremi. Inoltre il lavoro di F lungo il sostegno di una qualunque linea chiusa è nullo.

def. Un insieme $\Omega\subset\mathbb{R}^n$ si dice semplicemente connesso se ogni linea chiusa $\gamma\subset\Omega$ è contraibile in Ω a un punto di Ω . In altre parole, partendo da una linea chiusa $\gamma\subset\Omega$ deve essere possibile contrarla con continuità, fino a ridurla a un punto e questo deve avvenire sempre rimanendo in Ω . In parole povere, in \mathbb{R}^2 un insieme si dice semplicemente connsesso se è fatto da un "pezzo unico" e non ha buchi (anche di un solo punto), in \mathbb{R}^3 un buco puntuale non è sufficiente a far perdere questa proprietà, ma deve esserci un buco della forma simile a quella di un segmento perchè l'insieme non sia semplicemente connesso.

teor. sia Ω un insieme semplicemente connesso, e sia F, allora

$$F$$
 conservativo \iff F irrotazionale

Da notare è il fatto che sia una condizione sufficiente, non necessaria. Notiamo anche che un campo irrotazionale è sempre localmente conservativo.

Per sapere se un campo è conservativo:

• si controlla se è irrotazionale:

- se non lo è, il campo non è conservativo, e per calcolarne il lavoro dobbiamo per forza usare la definizione (vedi metodi sotto).
- se lo è, dobbiamo vedere se il dominio dove è definito è semplicemente connesso:
 - * se lo è, il campo è conservativo (vedi metodi sotto per il calcolo del lavoro).
 - * se non lo è, non possiamo concludere nulla a priori e quindi siamo costretti a provare a costruire un potenziale, che se è differenziabile in tutto il dominio, F è conservativo.

Come trovare un potenziale di un campo conservativo:

• Metodo 1:Dato un campo $F(x,y,z)=(F_1(x,y,z),F_2(x,y,z),F_3(x,y,z)), \ F\in C^1(\mathbb{R}^3,\mathbb{R}^3),$ cerchiamo una funzione $U\in C^2(\mathbb{R}^3,\mathbb{R})$ tale che

$$U_x(x, y, z) = F_1(x, y, z)$$

$$U_y(x, y, z) = F_2(x, y, z)$$

$$U_z(x, y, z) = F_3(x, y, z)$$

Analiziamo il procedimento per la prima di queste: integriamo rispetta a x, ma trattandosi di un integrale indefinito abbiamo una costante indefinita che potrebbe dipendere da y e z:

$$U(x, y, z) = \int F_1(x, y, z) dx + \phi(y, z)$$

Dunque

$$U(x, y, z) = \int F_2(x, y, z) dy + \phi(x, z)$$

$$U(x,y,z) = \int F_3(x,y,z)dz + \phi(x,y)$$

Se riusciamo a trovare un'espressione che si possa esprimere contemporaneamente in queste tre forme, quella sarebbe un potenziale. A livello pratico U(x,y,z) è uguale a tutti i termini che compaiono nelle tre equazioni viste sopra, senza ripetere gli elementi (per esempio se nella prima equazione esce $U=x+\phi(\ldots)$ e nella seconda $U=x+y+\phi(\ldots)$ e nella terza $U=z+\phi(\ldots)$, il potenziale sarà U=x+y+z, cioè senza ripetere i termini uguali).

• Metodo 2: Sia $F(x,y,z) = X(x,y,z)\vec{i} + Y(x,y,z)\vec{j} + Z(x,y,z)\vec{k}$ conservativo, esiste U(x,y,z) tale che

$$\frac{\delta U}{\delta x} = X(x, y, z)$$
 $\frac{\delta U}{\delta y} = Y(x, y, z)$ $\frac{\delta U}{\delta z} = Z(x, y, z)$

Ora si considera la più semplice di queste euqazioni, immaginiamo sia la prima.

Per determinare U prendiamo una primitiva di U_x in cui y e z figurano come costanti:

$$f(x, y, z) = \int X(x, y, z)dx + H(y, z)$$

Se adesso deriviamo rispetto a y, il risultato deve corrispondere a Y:

$$\frac{\delta f}{\delta u}(x, y, z) = Y(x, y, z)$$

Questa relazione ci permette di determinare la "porzione" di H(y,z) che dipende da y, quindi sostituendo questa in f(x,y,z) e quindi trasformando H(y,z) in solo H(z) e riderivando rispetto a z e uguagliando il risultato a Z(x,y,z), troveremo l'espressione definitava di U, a meno di una costante arbitraria.

• Metodo 3: calcolo del lavoro con la definizione:

$$L_{\gamma}(F) = \int_{\gamma} F \cdot dr = \int_{I} F(r(t)) \cdot r'(t) dt$$

Per calcolarlo usiamo il seguente metodo:

Dati un campo vettoriale e una linea orientata

$$F(x,y) = X(x,y,z)\vec{i} + Y(x,y,z)\vec{j}.$$

$$l: r(t) = [x(t)]\vec{i} + [y(t)]\vec{j}, \quad \forall t \in [a, b]$$

il lavoro da r(a) a r(b) è dato dall'integrale di linea:

$$L_{AB} = \int_{I} F \cdot dr = \int_{I} [X(x,y)dx + Y(x,y)dy]$$

Questo integrale si può trasformare in un integrale nella variabile t ponendo al posto di x e y i valori x(t) e y(t), e ponendo dx = x'(t)dt e dy = y'(t)dt, ossia:

$$L_{AB} = \int_{a}^{b} \left[X(x(t), y(t)) \ x'(t) + Y(x(t), y(t)) \ y'(t) \right] dt$$

Con a e b estremi tali che se t=a e t=b la funzione della curva r(t) valga i suoi estremi.

Se la linea l è chiusa, allora il lavoro compiuto da F per compiere un giro (in senso antiorario) lungo l prende il nome di **circuitazione**.

oss. se U è un potenziale di F, cioè grad(U)=F, anche grad(U+C)=F, e quindi anche U+C è un potenziale per F, pertando, se F è conservativo esistono infiniti potenziali di F, che differiscono per una costante.

oss. è sempre possibile verificare l'esattezza dei propri conti nella ricerca di un potenziale: grad(U) = F, dunque calcolando le derivate parziali di U dovremmo trovare le componenti di F.

oss. Bisogna sempre verificare che il dominio sia un insieme semplicemente connesso, se non lo fosse bisogna suddividere il dominio in tanti intervalli semplicemente connessi e specificare che il potenziale vale per ognuno di questi separatamente.

9.2.1 Forme differenziali lineari

Nel calcolo del lavoro di un campo $F \in C^1(\mathbb{R}^n, \mathbb{R}^n)$, ci imbattiamo in integrande del tipo

$$F \cdot dr = F_1 dx + f_2 dy + F_3 dz$$

nel caso n=3 e con solo i primi due addenti nel caso n=2. UN'espressione di questo tipo prende il nome di **forma differenziale lineare**. Il lavoro si esprime quindi come integrale di linea di una forma differenziale lineare:

$$\int_{\gamma} F \cdot dr = \int \begin{pmatrix} F_1(x, y, z) \\ F_2(x, y, z) \\ F_3(x, y, z) \end{pmatrix} \cdot \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \int_{\gamma} (F_1 dx + F_2 dy + F_3 dz)$$

Se F è conservativo, esiste un potenziale $U \in C^2(\mathbb{R}^n, \mathbb{R})$ tale che $\nabla U = F$ e cioè

$$dU = U_x dx + U_y dy + U_z dz = F_1 dx F_2 dy + F_3 dz$$

In questo caso, la forma differenziale coincide con il differenziale di U e viene chiamata forma differenziale esatta.

Se

$$\begin{cases} (F_1)_y = (F_2)_x \\ (F_1)_z = (F_3)_x \\ (F_2)_z = (F_3)_y \end{cases}$$

allora la funzione F è irrotazionale e la forma differenziale lineare corrispondente viene chiamata forma differenziale **chiusa**.

Ogni forma differenziale esatta è anche chiusa, mentre il viceversa non è vero.

9.3 Flusso e Teorema della divergenza

9.3.1 Flusso

Per calcolare il flusso abbiamo bisogno di

- ullet un campo vettoriale $F:C\subseteq\mathbb{R}^3\to\mathbb{R}^3$
- una superficie Σ dello spazio \mathbb{R}^3 espressa in forma parametrica: $\vec{r}(u,v) = (x(u,v),y(u,v),z(u,v))$
- $\vec{n}:\mathbb{R}^3\to\mathbb{R}^3$, il versore normale alla superficie al variare del punto (posizione) (x,y,z) appartenente alla superficie. Bisogna porre attenzione al verso della normale, che olitamente è dato dall'esercizio stesso, per ogni normale potremmo dare dure versi, opposti tra loro. Quando la superficie è espressa in forma parametrica, il vettore normale si ottiene effettuando il prodotto vettoriale tra $\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}$ e quindi il versore normale è dato da:

$$\frac{\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}}{\left| \frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v} \right|}$$

Il flusso di un campo vettoriale F attraverso la superficie Σ è

$$\begin{split} \Phi &= \int \int_{\Sigma} F \cdot n d\Sigma = \int \int_{S} F(r(u,v)) \cdot \frac{\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}}{\left|\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}\right|} \left|\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}\right| du dv \\ &= \int \int_{S} F(r(u,v)) \cdot \frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v} du dv \end{split}$$

Se la superficie è il grafico di una funzione nella forma z=f(x,y) allora la precedente formula si riscrive come:

$$\Phi = \int \int_{S} F(x, y, f(x, y)) \cdot \left(-\frac{\delta f}{\delta x}, -\frac{\delta f}{\delta y}, 1 \right) dx dy$$

Poichè il terzo elemento del vettore normale è 1 allora esso è rivolto verso le quote crescenti di z.

Se la superficie è espressa in forma implicita dobbiamo parametrizzarla e usare le formule illustrate.

9.3.2 Teorema della divergenza

Consideriamo $F \in C^1(\Omega,\mathbb{R}^n)$ con $\Omega \subset \mathbb{R}^n$ e limitato, inoltre sia \vec{n} un versore definito su un punto del bordo di Ω (detto $\delta\Omega$) e perpendicolare al piano tangente in $\delta\Omega$ e orientato verso l'esterno. Il prodotto scalare $F \cdot \vec{n}$ rappresenta il flusso uscente (se >0, entrante se <0) da $\delta\Omega$.

teor. della divergenza.

Sia $\Omega \subset \mathbb{R}^n$ un aperto limitato, semplice rispetto a tutti gli assi cartesiani con versore nomrale uscente \vec{n} in ogni punto di $\delta\Omega$. Sia $F \in C^1(\bar{\Omega}, \mathbb{R}^n)$ un campo vettoriale. Allora

$$\int_{\Omega} \nabla \cdot F(x) dx = \int_{\delta \Omega} F \cdot \vec{n} \ dS$$

Questo teorema afferma che l'integrale su un dominio della divergenza di un campo è pari al flusso del campo che attraversa la sua frontiera.

Con questo teorema spiagamo anche il significato dell'operatore divergenza: misura il grado di comprimibilità di un fluido e, più in generale, quella di un campo vettoriale.

In parole più semplici il teorema della divergenza ci permette di dire che:

Se la superficie l è la frontiera di un solido V, allora il flusso del campo vettoriale F uscente da l è uguale all'integrale triplo su V della divergenza di F:

$$Flusso = \int \int_{I} F \cdot n \ dS = \int \int \int_{V} div(F) dx dy dz$$

oss. se l rappresentasse una superficie D, possiamo comunque calcolare il flusso del campo vettoriale attraverso l come l'integrale doppio su D.

oss. Si può combinare il calcolo di flussi in superfici e volumi diversi, per alla fine sommarli o sottrarli ed ottenere flussi di figure complesse.

10 Equazioni differenziali

10.1 Modelli differenziali

Si dice equazione differenziale di ordine n un equazione del tipo:

$$F(t, y, y', y'', \dots, y^{(n)}) = 0$$

dove y(t) è la funzione incognita.

Si dirà soluzione, o (curva) integrale, di un equazione differenziale, nell'intervallo $I \subset \mathbb{R}$, una funzione $\phi(t)$, definita almeno in I e a valori reali per cui risulti

$$F(t,\phi(t),\phi'(t),\phi''(t),\ldots,\phi^{(n)}(t))=0 \qquad \forall t \in I$$

Infine si dirà integrale generale di un equazione differenziale una formula che rappresenti la famiglia di tutte le soluzioni.

10.2 Equazioni del primo ordine

10.2.1 Generalità

L'insieme delle soluzioni di un'equazione differenziale del prim'ordine prende il nome di integrale generale dell'equazione.

Un equazione differenziale si dice in forma normale se è nella forma

$$y'(t) = f(t, y(t))$$

e ha infinite soluzioni del tipo

$$y(t) = \int f(t, y(t))dt + c.$$

La condizione supplementare

$$y(t_0) = y_0$$

permette di selezionare una soluzione particolare.

Il problema di risolvere queste equazioni prende il nome di problema di Cauchy, e si intende sempre che bisogna trovare come soluzione una funzione:

- ullet definita su un intervallo I, contenente il punto t_0 ;
- ullet derivabile in tutto I e che soddisfa l'equazione in tutto I.

10.2.2 Equazioni a variabili separabili

Le equazioni a variabili separabili sono equazioni del tipo

$$y' = a(t)b(y)$$

con a continua in $I \subset \mathbb{R}$ e b continua in $J \subset \mathbb{R}$.

Per risolverle notiamo che per tutte le \bar{y}_0 per cui $b(\bar{y}_0)=0$, primo e secondo membro si annullano. Prendendo in considerazione, invece, tutte le \bar{y}_1 per cui $b(\bar{y}_1)\neq 0$, otteniamo:

$$\int \frac{dy}{b(y)} = \int a(t)dt + c$$

Quindi se B(y) è una primitiva di $\frac{1}{b(y)}$ e A(t) è una primitiva di a(t), otteniamo:

$$B(y) = A(t) + c$$

e se si può ottenere la funzione inversa di B possiamo scrivere:

$$y = B^{-1}(A(t) + c)$$
$$y = F(t, c)$$

teor. Problema di Cauchy per un'equazione a variabili separabili.

Si consideri il problema di Cauchy:

$$\begin{cases} y' = a(t)b(y) \\ y(t_0) = y_0 \end{cases}$$

Dove a è continua in un intorno I di t_0 e b è continua in un intorno J di t_0 . Allora essite un intorno t_0 $I' \subset I$ e una funzione $y \in C^1(I')$ soluzione del problema.

Se inoltre $b \in C^1(J)$, allora tale soluzione è unica.

10.2.3 Equazioni lineari del prim'ordine

Sono equazioni la cui forma normale è

$$y'(t) + a(t)y(t) = f(t)$$

e viene chiama equazione completa.

Se f = 0 l'equazione si dice omogenea.

$$z'(t) + a(t)z(t) = 0$$

teor. L'integrale generale dell'equazione completa si ottiene aggiungengo all'integrale generale dell'omogenea una soluzione particolare della completa.

Soluzione dell'equazione omogenea

$$z(t) = ce^{-\int a(t)dt}$$

Ricerca di una soluzione particolare dell'equazione completa

Se una soluzione particolare non si riesce a trovare facilmente, si può usare il seguente metodo, detto di variazione della costante

$$\bar{y}(t) = c(t)e^{-A(t)}$$

Dove per A(t) si intende una primitiva di a(t) (essendo una primitiva qualunque, si può omettere la c).

Sostituendo \bar{y} nella forma completa otteniamo l'integrale generale della forma completa:

$$y(t) = ce^{-A(t)} + e^{-A(t)} \int f(t)e^{A(t)}dt$$

oss. Nella primitiva A(t) e nell'integrale $\int f(t)e^{A(t)}dt$ non c'è bisogno di aggiungere la solita costante di integrazione arbitraria.

Soluzione del problema di Cauchy

La soluzione

$$y(t) = ce^{-A(t)} + e^{-A(t)} \int f(t)e^{A(t)}dt$$

sarà determinata da una condizione iniziale

$$y(t_0) = y_0$$

scegliendo la primitiva A(t) tale che $A(t_0)=0$ (cioè $A(t)=\int_{t_0}^t a(s)ds$), sarà

$$y(t) = ce^{-A(t)} + e^{-A(t)} \int_{t_0}^t f(s)e^{A(s)}ds$$

teor. Problema di Cauchy per un equazione lineare del prim'ordine.

Siano a,f funzioni continue in un intervallo I contenente t_0 . Allora, per ogni $y_0 \in \mathbb{R}$ il problema di Cauchy

$$\begin{cases} y'(t) + a(t)y(t) = f(t) \\ y(t_0) = y_0 \end{cases}$$

ha una e una sola soluzione $y \in C^1(I)$ e tale soluzione è

$$y(t) = ce^{-A(t)} + e^{-A(t)} \int_{t_0}^t f(s)e^{A(s)}ds$$

10.2.4 Note sugli esercizi

Per trovare il massimo intervallo della soluzione bisogna prendere un intervallo contenente il punto t_0 , per cui la soluzione e la funzione di partenza siano continue e definite (si può anche prolungare per continuità).

10.2.5 Equazione di Bernoulli

Un equazion differenziale si dice di Bernoulli se si può scrivere nella forma

$$y' = a(t)y + b(t)y^{\alpha}$$

osserviamo subito che se $\alpha=0$ o $\alpha=1$ l'equazione è lineare. Se poi α fosse irrazionale o razionale con denominatore pari, non avrebbe senso definire y^{α} per y<0. Infine, se $\alpha<0$ non ha senso y^{α} per y=0.

Per evitare complicazioni ci occuperemo solo di soluzioni non negativa ($y \ge 0$).

teor. Siano $t_0 \in \mathbb{R}$, $y_0 \ge 0$ e siano $a,b \in C^0$ in un intorno di t_0 . Allora il problema di Cauchy $y(t_0) = y_0$ per un equazione di Bernoulli ammette una e una sola soluzione nei seguenti casi:

$$\alpha > 1 \quad y_0 \ge 0$$

$$0 < \alpha < 1 \quad y_0 > 0$$

$$\alpha < 0 \quad y_0 > 0$$

Se $\alpha>0$ l'equazione di bernoulli ammette anche la soluzione nulla y=0, pertanto se $\alpha>1$ e $y_0=0$, il problema di Cauchy ammette solo la soluzione nulla.

Nel caso $y_0=0$ e $0<\alpha<1$, è garantita l'esistenza di una soluzione per il problema di Cauchy $y(t_0)=0$ ma non ne è assicurata l'unicità (potrebbe crearsi un pannello di Peano).

Se $y_0>0$ la soluzione rimarrà strettamente positiva per $\alpha>1$, potrenne agganciarsi alla soluzione y=0 con un pannello di peano se $0<\alpha<1$, potrebbe tendere a 0 con tangente verticale se $\alpha<0$ (in quest'ultimo caso, bisogna verificare il comportamento della funzione b(t) che, annullandosi, potrebbe verificare l'infinito di y^{α}).

Risolvere un equazione di Bernoulli:

Si divide l'equazione per y^{α} e si ottiene $y^{-\alpha}y'=a(t)y^{1-\alpha}+b(t)$.

Si pone $z(t)=y(t)^{1-\alpha}$ e si ottiene $z'=(1-\alpha)a(t)z+(1-\alpha)b(t)$, che è un'equazione lineare e quindi possiamo risolvere con i soliti metodi. Una volta trovata la soluzione z(t) (che sarà ≥ 0 o > 0 a seconda dei valori di α), si determina $y(t)=z(t)^{\frac{1}{1-\alpha}}$

10.2.6 Prolungamento delle soluzioni

10.3 Equazioni lineari del secondo ordine

10.3.1 Spazi di funzioni

Sia I un intervallo e consideriamo l'insieme \mathbb{F} di tutte le funzioni definite in I, a valori reali. Con le operazioni naturali di somma di due funzioni e prodotto per uno scalare:

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda f)(x) = \lambda f()$$

 ${\mathbb F}$ risulta essere uno spazio vettoriale.

def. definiamo $C^n(I)$ lo spazio delle funzioni dotate di derivata n-essima continua.

10.3.2 Generalità sulle equazioni lineari. Problema di Cauchy

Un equazione differenziale del secondo ordine si dice lineare se è del tipo

$$a_2(t)y'' + a_1(t)y' + a_0(t)y = g(t)$$

dove le funzioni a_i e il termine noto g sono funzioni continue in un certo intervallo I.

Se il termine noto è nulla l'equazione si dice omogenea, altrimenti si dice completa.

Se i coefficienti a_i sono costanti, l'equazione si dirà a coefficienti costanti, altrimenti a coefficienti variabili.

Se $a_2 = 1$ l'equazione si dirà in forma normale (se in un equazione il coefficiente a_2 non si annulla mai possiamo riscrivere l'equazione in fomra normale dividendo per questo).

Nella soluzione si avranno sempre due coefficienti c_1 e c_2 , per selezionare una soluzione particolare avremo bisogno di due condizioni iniziali:

$$\begin{cases} y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$

che insieme all'equazione iniziale prenderà il nome di problema di Cauchy.

teor. (per funzioni del secondo ordine in forma normale)

Se a, b, f sono funzioni continue in un intervallo I contenente il punto t_0 , per ogni $y_0, y_1 \in \mathbb{R}$ il problema di Cauchy

$$\begin{cases} y'' + a(t)y' + b(t)y = f(t) \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$

ha una e una sola soluzione $y \in C^2(I)$.

Tale soluzione è individuata imponendo le condizioni iniziali nell'espressione che assegna l'integrale generale dell'equazione.

10.3.3 La struttura dell'integrale generale

teor. Struttura dell'integrale generale dell'equazione lineare completa

- a. L'insieme delle soluzioni dell'equazione omogenea Lz=0 con $L:C^2(I)\to C^0(I)$ in un dato intervallo I è uno spazio vettoriale (sottospazio di $C^2(I)$).
- b. L'integrale generale dell'equazione completa di ottiene sommando l'integrale generale dell'equazione omogenea e una soluzione particolare dell'equazione completa.

teor. Proprietà di un equazione omogenea del secondo ordine.

Lo spazio vettoriale delle soluzioni di un'equazione lineare omogenea del secondo ordine ha dimensione due.

Significa che esistono 2 soluzioni (z_1, z_2) tali che:

- 1. sono linearmente indipendenti
- 2. ogni altra soluzione è combinazione lineare di queste due soluzioni.
- 3. L'integrale generale dell'equazione omogenea è assegnato dalla formula

$$c_1 z_1(t) + c_2 z_2(t)$$

teor. Determinante Wronskiano e indipendenza.

Siano z_1 e z_2 due funzioni $C^2(I)$, soluzioni di un equazione lineare omogenea di secondo ordine nell'intervallo I. Allora esse sono linearmente indipendenti in $C^2(I)$ se e solo se la seguente matrice

$$z_1(t) z_2(t) z'_1(t) z'_2(t)$$

detta matrice Wronskiana, ha determinante diverso da 0 per ongi $t \in I$. Inoltre, affinché questo accada, è sufficiente che il determinante si adiverso da 0 in un punto $t_0 \in I$ (il determinante o si annulla in tutti i punti o è diverso da 0 in tutti i punti, se è diverso da zero in tutti i punti z_1, z_2 sono indipendenti).

Per determinare l'integrale generale di un'equazione differenziale completa del secondo ordine si riconduce ai due passi seguenti:

- 1) determinare l'integrale generale dell'equazione omogenea corrispondente, cioè due soluzioni $z_1(t), z_2(t)$ linearmente indipendenti.
- 2) determinare una soluzione particolare $\bar{y}(t)$ dell'equazione completa.

L'integrale generale avrà dunque la forma:

$$\bar{y}(t) + c_1 z_1(t) + c_2 z_2(t)$$

10.3.4 Equazioni omogenee a coefficienti costanti

$$z''(t) + az'(t) + bz(t) = 0$$

Sostituendo $z(t) = e^{rt}$

$$e^{rt}(r^2 + ar + b) = 0$$

Calcoliamo il Δ di $r^2 + ar + b$, detta equazione caratteristica:

• $\Delta > 0$, due radici reali distinte r_1 e r_2 , soluzione:

$$z(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

• $\Delta < 0$, due radici complesse $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$, soluzione:

$$z_1(t) = e^{(\alpha + i\beta)t} = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t)) = e^{\alpha t}\cos(\beta t)$$

$$z_2(t) = e^{(\alpha - i\beta)t} = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t)) = e^{\alpha t}\sin(\beta t)$$

da cui

$$z(t) = e^{\alpha t} (c_1 cos(\beta t) + c_2 sin(\beta t))$$

quest'ultima espressione può essere riscritta anche come $z(t)=e^{\alpha t}Acos(\beta t+\phi)$, con A e ϕ costanti reali arbitrarie.

• $\Delta = 0$, unica radice $r = \frac{-a}{2}$, soluzioni:

$$e^{rt}$$
 te^{rt}

$$z(t) = e^{rt}(c_1 + c_2 t)$$

10.3.5 Equazioni completa a coefficienti costanti

$$y''(t) + ay'(t) + by(t) = f(t)$$

Vediamo per prima cosa il

10.3.6 metodo di somiglianza

Si analizza il termine noto f(t):

• $f(t) = p_r(t)$, dove $p_r(t)$ è un polinomio di grado r, si cerca una soluzione di tipo polinomiale:

$$y(t) = q_r(t)$$
 se $b \neq 0$
 $y(t) = tq_r(t)$ se $b = 0, a \neq 0$
 $y(t) = t^2q_r(t)$ se $b = 0, a = 0$

dove $q_r(t)$ è un generico polinomio di grado r di cui occorre determinare i coefficienti.

• $f(t)=Ae^{\lambda t}$, con $\lambda\in\mathbb{C}$. Si cerca una soluzione del tipo $y(t)=e^{\lambda t}\gamma(t)$:

$$\gamma'' + \gamma'(2\lambda + a) + \gamma(\lambda^2 + a\lambda + b) = A$$

Se:

— se
$$\lambda^2+a\lambda+b\neq 0$$

$$\gamma(t)=costante=\frac{A}{\lambda^2+a\lambda+b}$$

$$y(t)=\frac{Ae^{\lambda t}}{\lambda^2+a\lambda+b}$$

- se
$$\lambda^2 + a\lambda + b = 0$$
, ma $2\lambda + a \neq 0$

$$\gamma'(t) = costante = \frac{A}{2\lambda + a}$$
$$\gamma(t) = \frac{At}{2\lambda + a}$$
$$y(t) = \frac{Ate^{\lambda t}}{2\lambda + a}$$

- se
$$\lambda^2 + a\lambda + b = 0$$
, ma $2\lambda + a = 0$

$$\gamma'' = A$$

Z

$$\gamma(t) = \frac{A}{2}t^2$$

$$y(t) = \frac{A}{2}t^2e^{\lambda t}$$

Nella classe dei termini noti $e^{\lambda t}$ con $\lambda \in \mathbb{C}$, rientrano anche:

$$cos(\omega t)$$
, $sin(\omega t)$, $e^{\lambda t}cos(\omega t)$, $e^{\lambda t}sin(\omega t)$

Ricordiamo la formula di Eulero:

$$re^{i\theta} = r[cos(\theta) + isin(\theta)]$$

Quindi se si è in presenza di un $sin(\omega t)$ come termine noto, si può studiare l'equazione che ha come termine noto $cos(\omega t) + i \cdot sin(\omega t)$ e poi prenderne la parte immaginaria.

Viceversa se si è in presenza di una $cos(\omega t)$ come termine noto, si può studiare l'equazione che ha come termine noto $cos(\omega t) + i \cdot sin(\omega t)$ e poi prenderne la parte reale.

In ogni caso, per facilitare la derivazione, si trasforma $cos(\omega t) + i \cdot sin(\omega t)$ in $e^{i\omega t}$ e si procede nello studio di un termine noto della forma $f(t) = Ae^{\lambda t}$.

Fa eccezione a questa tipologia il caso in cui manchi il termine in y'.

10.3.7 Metodo di sovrapposizione

se, per esempio, il termine noto f(t)= polinomio + una funzione trigonometrica, si può trovare una soluzione per f(t)= polinomio, e una per f(t)= funzione trigonometrica e sommando le soluzioni si trova una soluzione dell'equazione di partenza.

10.3.8 Metodo di variazione delle costanti

Illustriamo ora un metodo generale che consente di determinare una soluzione particolare qualunque sia la forma del termine noto.

Il metodo è applicabile purchè si conoscando già due soluzioni z_1,z_2 indipendenti dell'equazione omogenea associata.

Dovremo quindi trovare le due funzioni c_1 e c_2 tali che

$$\begin{cases} c'_1 z_1 + c'_2 z_2 = 0 \\ c'_1 z'_1 + c'_2 z'_2 = f \end{cases}$$

cioè

$$c'_1 = \frac{-z_2 f}{z'_2 z_1 - z_2 z'_1}$$
$$c'_2 = \frac{z - 1 f}{z'_2 z_1 - z_2 z'_1}$$

Dobbiamo quindi trovare due primitive di c'_1 e c'_2 e sostituire in:

$$y(t) = (c_1(t) + k_1)z_1(t) + (c_2(t) + k_2)z_2(t)$$

con k_i costanti arbitrarie di integrazione.

10.3.9 Note sugli esercizi

$$\int e^{ax}\cos(bx)dx = Re(\int e^{a+ib}xdx)$$

$$\int e^{ax}\sin(bx)dx = Im(\int e^{a+ib}xdx)$$

$$\int e^{(a+ib)x}dx = \frac{1}{a+ib}e^{(a+ib)x} = \frac{e^{ax}}{a^2+b^2}(a-ib)(\cos(bx)+i\sin(bx))$$

10.3.10 Equazione di Eulero

Per risolvere:

$$ax^2y'' + bxy' + cy = 0$$

si risolve l'equazione di secondo grado:

$$ar(r-a) + br + c = 0$$

• $\Delta > 0$, soluzioni r_1, r_2

$$y(x) = c_1 x^{r_1} + c_2 x^{r_2}$$

 $\operatorname{per}\, x>0$

• $\Delta < 0$, soluzioni $r_{1,2} = \alpha \pm i \beta$

$$y(x) = x^{\alpha}(c_1 cos(\beta log(x)) + c_2 sin(\beta log(x)))$$

 $\operatorname{per}\, x>0$

ullet $\Delta=0$, soluzioni coincidenti r

$$y(x) = x^r(c_1 + c_2 log(x))$$

 $\operatorname{per}\, x>0$

Per x<0, si studia ancora la stessa equazione di secondo grado e si hanno soluzioni analoghe, ma con x sostituita da -x.

	ay" -	$+by'+cy=f(x) \tag{*}$		
$(con a, b, c costanti, a \neq 0)$				
Forma di $f(x)$	Forma in cui si cerca $\bar{y}(x)$	Eventuali eccezioni e osservazioni		
CASO 1				
polinomio di grado n	polinomio di grado n	Se nella (*) $c = 0$, cercare un polinomio di grado $n + 1$; se $c = b = 0$, cercare un polinomio di grado $n + 2$.		
ESEMPI CASO 1				
$y'' + 2y = x^3 + 2$	$\overline{y}(x) = \alpha x^3 + \beta x^2 + \gamma x + \delta$			
y'' - 3y' = 2x + 1	$\bar{y}(x) = \alpha x^2 + \beta x + \gamma$			
CASO 2				
esponenziale Ae ^{λx}	esponenziale $ce^{\lambda x}$ (lo stesso λ , e c da determinarsi)	Se non c'é soluzione di questo tipo (ciò accade perché $a\lambda^2 + b\lambda + c = 0$, ossia perché $e^{\lambda x}$ è soluzione dell'eq. diff. omogenea), cercare $\bar{y}(x) = cxe^{\lambda x}$; se nemmeno questo tipo di soluzione esiste, cercare $\bar{y}(x) = cx^2e^{\lambda x}$		
ESEMPI CASO 2		se nemineno questo upo di soluzione esiste, cercare $y(x) = cx$ e		
$y'' + 2y' + 3y = 2e^{-3x}$	$\overline{y}(x) = ce^{-3x}$			
$y'' + 2y' - 3y = 3e^x$	$\overline{y}(x) = cxe^x$			
	e: $\lambda = 1$ è soluzione dell'eq. caratteris iò occorre moltiplicare per x)	tica $\lambda^2 + 2\lambda - 3 = 0$; equivalentemente: e^x è soluzione dell'eq. diff. omogenes		
CASO 3				
$A\cos\omega x + B\sin\omega x$	$c_1\cos\omega x + c_2\sin\omega x$ (lo stesso ω , e c_1, c_2 da determinars	Notare che anche se f ha uno solo dei due addendi (seno o coseno), i) in generale la soluzione li ha entrambi. Se $b = 0$ può accadere che $c_1 \cos \omega x + c_2 \sin \omega x$ sia soluzione dell'omogenea: in tal caso, cercare soluzione $x(c_1 \cos \omega x + c_2 \sin \omega x)$.		
		in an early cutain solution afterward + clauses).		
ESEMPIO CASO 3				

Forma di $f(x)$	Forma in cui si cerca $\overline{y}(x)$	Eventuali eccezioni e osservazioni
CASO 4	45/777 45 75	155 1877 N. 18 45 JT 1981 NATIONAL STATE SAME WAS TRANSPER
$e^{\lambda x}(A\cos\omega x + B\sin\omega x)$	$e^{\lambda x}(c_1\cos\omega x + c_2\sin\omega x)$ (gli stessi ω, λ e c_1, c_2 da determinarsi)	Se $z = \lambda + i\omega$ è soluzione di $az^2 + bz + c = 0$, sostituire $e^{\lambda z}$ con $xe^{\lambda z}$. Notare che anche se f ha uno solo dei due addendi (seno o coseno), in generale la soluzione li ha entrambi.
ESEMPI CASO 4	25/2	
$y'' + 2y = 3e^{-x}\sin 2x$	$\overline{y}(x) = e^{-x}(c_1\cos 2x + c_2\sin 2x)$	
	$\overline{y}(x) = xe^{2x}(c_1 \cos x + c_2 \sin x)$	
y'' - 4y' + 5y = 0, perci	δ si introduce il fattore x).	stica $z^2-4\lambda+5=0$, ossia $e^{2x}{\cos}x$, $e^{2x}{\sin}x$ sono soluzioni dell'eq. omogener
	iù comodo effettuare i calcoli utili:	
Per sinteticità, qui non si	i riporta l'illustrazione di quel met	odo).
CASO 5	2000/01 01 02	927 -072 STATE 1000 - 0.000 4927 0000 - 000
$e^{\lambda x}p(x)$, dove $p(x)$ è un polinomio di grado n	$e^{\lambda x}q(x)$, con lo stesso λ , e $q(x)$ polinomio di grado n , da determinarsi	Se λ è soluzione dell'eq. caratteristica $a\lambda^2 + b\lambda + c = 0$, cercare una soluzione $y(x) = e^{\lambda x}$. (polinomio di grado $n+1$)
ESEMPI CASO 5	occinimas	
$y''+2y'-y=e^{3x}(x+2)$	$\bar{v}(x) = e^{3x}(ax+b)$	
	$\bar{y}(x) = e^x(ax^2 + bx + c)$	
(Spiegazione 2º esempio		eristica $\lambda^2 - \lambda = 0$, ossia e^x è soluzione dell'equazione omogenea $y'' - y = 0$;
		SOMMA DI DUE FUNZIONI DEI TIPI PRECEDENTI
una soluzione particolare ya d	lell'equazione $Ly = f_1$; una soluzione par	descritis in precedenza, e sufficente cercare (separatamente): ricolare y_2 dell'equazione $Ly = f_2$; ne $y_1 + y_2$ sarà una soluzione particolare di $Ly = f_1 + f_2$.
Esempio:		
$y'' + 2y = 3e^{-x} + x^2 + 1$		
		zerca una soluzione $y_1 = ax^2 + bc + c$ dell'equazione $y'' + 2y = x^3 + 1$;
la funzione y1 + y2 sarà allor	a una soluzione particolare dell'equazione	di partenza.

10.4 Sistemi lineari omogenei

$$y' = A(t)y$$

viene detto sistema omogeneo.

$$\begin{cases} y' = A(t)y \\ y(t_0) = y_0 \end{cases}$$

è il problema di cauchy associato.

Se $y_0=0$, allora l'unica soluzione è y(t)=0.

Se ϕ_1 e ϕ_2 risolvono il sistema omogeneo, anche $\alpha\phi_1+\beta\phi_2$ per ogni $\alpha,\beta\in\mathbb{R}$ lo risolverà.

Se A è una matrice costante il sistema si dice a coefficienti costanti.

Sia un matrice M, vogliamo calcolare e^M . Se M è diagonale si ottiene facilmente:

$$M = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \Rightarrow e^M = \begin{pmatrix} e^{\lambda_1} & 0 & \dots & 0 \\ 0 & e^{\lambda_2} & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & e^{\lambda_n} \end{pmatrix}$$

Se M non è diagonale, ma è diagonalizzabile, e cioè esiste una matrice non singolare S tale che $\Lambda = S^{-1}MS$ sia diagonale, allora

$$M = S\Lambda S^{-1} \Rightarrow M^k = S\Lambda^k S^{-1} \Rightarrow e^M = Se^\Lambda S^{-1}$$

con e^{Λ} che si calcola come abbiamo visto per le matrici diagonali.

Una matrice quadrata è diagonalizzabile se e solo se tutti i suoi autovalori sono regolari.

Precisiamo che vengono considerati anche autovalori complessi che, per una matrice a coefficienti reali, possono esserci se e solo se c'è anche il loro coniugato. In tal caso, gli esponenziali dipendenti da tempo vanno interpretati con la formula di Eulero e generano funzioni trigonometriche.

Abbiamo dunque visto come si trova l'esponenziale di una matrice diagonalizzabile costante. Volendo trovare l'esponenziale della matrice At, facciamo un paio di osservazioni elementari:

- ullet se A è diagonalizzabile, lo è anche At e si può usare la stessa mtrice di passaggio S per diagonalizzarla
- ullet gli autovali di At sono uguali agli autovalori di A moltiplicati per t

Da queste osservazioni possiamo dedurre che

$$e^A S e^{\Lambda} S^{-1} \Rightarrow e^{At} = S e^{\Lambda t} S^{-1}$$

teor. Le colonne della matrice e^{At} formano un sistema fondamentale di soluzioni di y'=Ay e cioè, per ogni $C\in\mathbb{R}^n$ il vettore $e^{At}C$ è una soluzione di di y'=Ay

La fuznione $\phi(t)=Ce^{\lambda t}$ è soluzione di y'=At se e solo se λ è un autovalore di A (possibilmente complesso) e C è un autovettore associato a λ .

10.5 Diagonalizzazione di una matrice

Una matrice A è diagonalizzabile se

- Il numero degli autovalori di A contati con la loro molteplicità è uguale all'ordine della matrice
- la molteplicità geometrica di ciascun autovalore coincide con la realtiva molteplicità algebrica

Sia A una matrice, i suoi autovalori si ottengono risolvendo

$$det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$

risolvendo questa equazione per λ otteniamo i vari autovalori.

La molteplicità algebrica consiste nel quante volte λ appare come soluzione dell'equazione precedente. Perchè A sia diagonalizzabile, la somma della molteplicità algebrica di ogni autovalore deve essere uguale all'ordine della matrice.

Perchè A sia diagonalizzabile bisogna anche verificare che la molteplicità algebrica di ogni autovalore coincide con la realtiva molteplicità geometrica, che si calcola così:

$$m_a(\lambda) = n - rk(A - \lambda I)$$

dove n è l'ordine di A.

Se A è diagonalizzabile, allora esiste una matrice P che la diagonalizza e una matrice D a cui A è simile, per cui valga:

$$D = PAP^{-1}$$

- la matrice D è una matrice diagonale i cui elementi della diagonale principale sono gli autovalori della matrice A. Gli autovalori con molteplicità algebrica maggiore di 1 vanno ripetuti più volte.
- la matrice P è la matrice che ha come colonne gli autovettori associati a ogni autovalore, ossia ha come colonne i vettori che fromano le basi degli autospazi relativi a ciascun autovalore.

Affinchè tutto funzioni ci deve essere corrispondenza fra le matrici D e P: la j-esima colonna della matrice P contiene l'autovettore associato all'autovalore presente nella j-esima colonna della matrice D

Il calcolo degli autovettori relativi a un autovalore λ si esegue risolvendo il sistema:

$$(A - \lambda I)v = 0$$

con $v = {x \choose u}$, e cioè risolvendo il sistema:

$$\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

Invece per calcolare l'inversa della matrice ${\cal P}$ si seguono i seguenti passaggi:

- Calcola la trasposta A^T della matrice A (basta scambiare tra loro le righe con le colonne)
- sostituire ogni elemento della matrice trasposta col il proprio complemento algebrico (complemento algebrico: preso l'elemento $a_{h,k}$ della matrice, il suo complemento algebrico si calcola come $(-1)^{(h+k)} \cdot C_{h,k}$, dove con $X_{h,k}$ si intende il determinante della matrice ottenuta da quella di partenza eliminando la riga h e la colonna k)
- Adesso dividi la matrice dei complementi algebrici per det(A) (cioe' dividi ogni termine per det(A)) e ottieni l'inversa della matrice quadrata di partenza