The Khintchine Constant and Friends

Zoltán Szabó

Gatsby Unit, Tea Talk September 18, 2015

A few days ago

$$\left\|k-\hat{k}\right\|_{L^{s}(\mathbb{D})}\leq ?$$

A few days ago

$$\left\|k-\hat{k}
ight\|_{L^{s}(\mathbb{D})}\leq ? \xrightarrow{ ext{after a bit of formula manipulation}}$$

$$\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} f_{i} \right\| \leq B_{s} \left(\sum_{i=1}^{n} \|f_{i}\|^{p} \right)^{\frac{1}{p}},$$

where

- ϵ : Rademacher sequence, $\mathbb{P}(\epsilon_i = \pm 1) = 0.5$, i.i.d.
- $\|\cdot\| = \|\cdot\|_{L^s(\mathcal{D})}$, $p = \min(s, 2)$, $f_i = \cos(\langle \omega_i, \cdot \cdot \rangle)$.

Today

Parallelogram rule

Parallelogram rule

• Statement: $||f + g||_2^2 + ||f - g||_2^2 = 2(||f||_2^2 + ||g||_2^2)$.

Parallelogram rule

• Statement: $\|f + g\|_2^2 + \|f - g\|_2^2 = 2\left(\|f\|_2^2 + \|g\|_2^2\right)$. Indeed

$$\begin{split} \|f + g\|_{2}^{2} + \|f - g\|_{2}^{2} &= \langle f + g, f + g \rangle_{2} + \langle f - g, f - g \rangle_{2} \\ &= 2 \left(\|f\|_{2}^{2} + \|g\|_{2}^{2} \right) \pm 2 \langle f, g \rangle_{2} \,. \end{split}$$

• We only used: \mathbb{R}^2 is a normed space, $||f|| = \sqrt{\langle f, f \rangle}$.

Example when the parallelogram rule fails

$$X=C[0,1]$$
 with $\|h\|_{\infty}=\max_{y\in[0,1]}|h(y)|$:
$$f(y):=1-y,\;g(y):=y,$$

Example when the parallelogram rule fails

$$X = C[0,1]$$
 with $||h||_{\infty} = \max_{y \in [0,1]} |h(y)|$:
$$f(y) := 1 - y, \ g(y) := y,$$

$$||f + g||_{\infty}^{2} + ||f - g||_{\infty}^{2} = ||1||_{\infty}^{2} + ||\underbrace{1 - 2y}_{\in [-1,1]}||_{\infty}^{2} = 1^{2} + 1^{2} = 2,$$

Example when the parallelogram rule fails

$$\begin{split} X &= C[0,1] \text{ with } \|h\|_{\infty} = \max_{y \in [0,1]} |h(y)| : \\ & f(y) := 1 - y, \ g(y) := y, \\ \|f + g\|_{\infty}^2 + \|f - g\|_{\infty}^2 = \|1\|_{\infty}^2 + \|\underbrace{1 - 2y}_{\in [-1,1]}\|_{\infty}^2 = 1^2 + 1^2 = 2, \\ & 2\left(\|f\|_{\infty}^2 + \|g\|_{\infty}^2\right) = 2\|\underbrace{1 - y}_{\in [0,1]}\|_{\infty}^2 + 2\|\underbrace{y}_{\in [0,1]}\|_{\infty}^2 = 2 + 2 = 4. \end{split}$$

Parallelogram rule ⇔ inner product

Results: An X

- normed space is Euclidean \Leftrightarrow parallelogram rule $(\forall f, g \in X)$.
- Banach space is Hilbert \Leftrightarrow parallelogram rule $(\forall f, g \in X)$.

We are interested in Banach spaces; today in L^s .

Randomized signs in the parallelogram rule (p = 2):

average
$$\left\| \sum_{i=1}^{n} \epsilon_i x_i \right\|^p$$

Randomized signs in the parallelogram rule (p = 2):

average
$$\left\|\sum_{i=1}^{n} \epsilon_{i} x_{i}\right\|^{p} = \mathbb{E}_{\epsilon} \left\|\sum_{i=1}^{n} \epsilon_{i} x_{i}\right\|^{p}$$

Randomized signs in the parallelogram rule (p = 2):

$$\underset{\epsilon_i=\pm 1}{\operatorname{average}} \left\| \sum_{i=1}^n \epsilon_i x_i \right\|^p = \mathbb{E}_{\epsilon} \left\| \sum_{i=1}^n \epsilon_i x_i \right\|^p = \int_0^1 \left\| \sum_{i=1}^n r_i(u) x_i \right\|^p du,$$

Randomized signs in the parallelogram rule (p = 2):

$$\underset{\epsilon_i=\pm 1}{\mathsf{average}} \left\| \sum_{i=1}^n \epsilon_i x_i \right\|^p = \mathbb{E}_{\epsilon} \left\| \sum_{i=1}^n \epsilon_i x_i \right\|^p = \int_0^1 \left\| \sum_{i=1}^n r_i(u) x_i \right\|^p \mathrm{d}u,$$

where $r_i(u) = sgn\left(\sin\left(2^i\pi u\right)\right) \in L^2[0,1]$, ONS,

$$\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\|^{2} = \int_{0}^{1} \left\| \sum_{i=1}^{n} r_{i}(u) x_{i} \right\|^{2} du$$

$$\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\|^{2} = \int_{0}^{1} \left\| \sum_{i=1}^{n} r_{i}(u) x_{i} \right\|^{2} du$$

$$\stackrel{f \leftrightarrow \sum}{=} \sum_{i,i=1}^{n} \int_{0}^{1} r_{i}(u) r_{j}(u) \langle x_{i}, x_{j} \rangle du$$

$$\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\|^{2} = \int_{0}^{1} \left\| \sum_{i=1}^{n} r_{i}(u) x_{i} \right\|^{2} du$$

$$\int_{=}^{\leftrightarrow \sum} \sum_{i,j=1}^{n} \int_{0}^{1} r_{i}(u) r_{j}(u) \langle x_{i}, x_{j} \rangle du$$

$$r_{i}: \underset{=}{\text{ONS}} \int_{0}^{1} \sum_{i=1}^{n} r_{i}(u)^{2} \langle x_{i}, x_{i} \rangle du$$

$$\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\|^{2} = \int_{0}^{1} \left\| \sum_{i=1}^{n} r_{i}(u) x_{i} \right\|^{2} du$$

$$\stackrel{f \leftrightarrow \sum}{=} \sum_{i,j=1}^{n} \int_{0}^{1} r_{i}(u) r_{j}(u) \left\langle x_{i}, x_{j} \right\rangle du$$

$$\stackrel{r_{i}: \text{ONS}}{=} \int_{0}^{1} \sum_{i=1}^{n} \underbrace{r_{i}(u)^{2}}_{1} \left\langle x_{i}, x_{i} \right\rangle du = \sum_{i=1}^{n} \|x_{i}\|^{2}.$$

In a Hilbert space:

$$\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\|^{2} = \int_{0}^{1} \left\| \sum_{i=1}^{n} r_{i}(u) x_{i} \right\|^{2} du$$

$$\int_{0}^{1} \left\| \sum_{i,j=1}^{n} \int_{0}^{1} r_{i}(u) r_{j}(u) \left\langle x_{i}, x_{j} \right\rangle du$$

$$\int_{0}^{1} \left\| \sum_{i=1}^{n} \int_{0}^{1} r_{i}(u) r_{j}(u) \left\langle x_{i}, x_{i} \right\rangle du = \sum_{i=1}^{n} \left\| x_{i} \right\|^{2}.$$

Result: X Banach space is Hilbert \Leftrightarrow this rule holds $(\forall n, \{x_i\}_{i=1}^n \subset X)$.

Type-, cotype definition: Hilbert space $\Leftrightarrow p = q = 2$

X Banach space is of

• type p if $\forall n, \forall \{x_i\}_{i=1}^n \subset X$:

$$\sqrt{\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\|^{2}} = \sqrt{\int_{0}^{1} \left\| \sum_{i=1}^{n} r_{i}(u) x_{i} \right\|^{2} du} \leq B \left(\sum_{i=1}^{n} \|x_{i}\|^{p} \right)^{\frac{1}{p}}.$$

2 cotype q if $\forall n, \forall \{x_i\}_{i=1}^n \subset X$:

$$\sqrt{\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\|^{2}} = \sqrt{\int_{0}^{1} \left\| \sum_{i=1}^{n} r_{i}(u) x_{i} \right\|^{2} du} \ge A \left(\sum_{i=1}^{n} \left\| x_{i} \right\|^{q} \right)^{\frac{1}{q}}.$$

Relevant intervals: $p \in [1, 2], q \in [2, \infty]$.

Classical Khintchine inequality: $X = \mathbb{R}$

For
$$\forall s \in (0, \infty)$$
, $\exists A_s > 0, B_s > 0$ s.t. $\forall \{x_i\}_{i=1}^n \subset \mathbb{R}$

$$A_{s} \|\mathbf{x}\|_{2} \leq \left(\mathbb{E}_{\epsilon} \left| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right|^{s} \right)^{\frac{1}{s}} \leq B_{s} \|\mathbf{x}\|_{2}.$$

Classical Khintchine inequality: $X = \mathbb{R}$

For $\forall s \in (0, \infty)$, $\exists A_s > 0, B_s > 0$ s.t. $\forall \{x_i\}_{i=1}^n \subset \mathbb{R}$

$$A_s \|\mathbf{x}\|_2 \le \left(\mathbb{E}_{\epsilon} \left| \sum_{i=1}^n \epsilon_i x_i \right|^s \right)^{\frac{1}{s}} \le B_s \|\mathbf{x}\|_2.$$

Interpretation:

- \mathbb{R} is of type 2, cotype 2 (simplest Hilbert space). $s \neq 2$ (too).
- $\bullet \left(\mathbb{E}_{\epsilon} \left| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right|^{s} \right)^{\frac{1}{s}} = \left(\int_{0}^{1} \left| \sum_{i=1}^{n} r_{i}(u) x_{i} \right|^{s} du \right)^{\frac{1}{s}} = \left\| \sum_{i=1}^{n} x_{i} r_{i} \right\|_{L^{s}[0,1]}, \text{ i.e.}$
- $(r_i) \subset L^s[0,1] \Leftrightarrow (e_i) \subset \ell^2$ basis.
- A_s, B_s : Khintchine constants.

The exponent is irrelevant in the type/cotype definition

 $\xrightarrow{\textbf{s}\text{-conjecture holds generally}} \mathsf{Kahane theorem: For } \forall \textbf{s} \in (1,\infty) \ \exists \textit{K}_{\textbf{s}} \ \mathsf{s.t.}$

for every Banach space X, $\forall n, \{x_i\}_{i=1}^n \subset X$:

$$\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\| \leq \left(\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\|^{s} \right)^{\frac{1}{s}} \leq K_{s} \mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{n} \epsilon_{i} x_{i} \right\|.$$

Note (proof
$$\Rightarrow$$
): $K_s = \left(\frac{2s-1}{s-1}\right)^{s-1}$ is good.

$$X = L^s(Z, \mathcal{A}, \mu)$$
, $s \in [1, \infty)$: $p = \min(s, 2)$, $q = \max(2, s)$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i} \epsilon_{i} x_{i} \right\|_{L^{s}}^{s}$$

$$X = L^s(Z, \mathcal{A}, \mu)$$
, $s \in [1, \infty)$: $p = \min(s, 2)$, $q = \max(2, s)$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i} \epsilon_{i} x_{i} \right\|_{L^{s}}^{s} \stackrel{(a)}{=} \int_{Z} \mathbb{E}_{\varepsilon} \left| \sum_{i} \epsilon_{i} x_{i}(z) \right|^{s} d\mu(z)$$

(a) :
$$\|\cdot\|_{L^s}$$
 def., $\int \leftrightarrow \sum$

$$X = L^s(Z, \mathcal{A}, \mu)$$
, $s \in [1, \infty)$: $p = \min(s, 2)$, $q = \max(2, s)$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i} \epsilon_{i} x_{i} \right\|_{L^{s}}^{s} \stackrel{(a)}{=} \int_{Z} \mathbb{E}_{\varepsilon} \left| \sum_{i} \epsilon_{i} x_{i}(z) \right|^{s} d\mu(z) \stackrel{(b)}{\leq} B_{s}^{s} \int_{Z} \left(\sum_{i} |x_{i}(z)|^{2} \right)^{\frac{s}{2}} d\mu(z),$$

$$* = \int_{Z} \|[x_{i}(z)]\|_{2}^{s} d\mu(z)$$

(a) :
$$\|\cdot\|_{L^s}$$
 def., $\int \leftrightarrow \sum$, (b) [\mathbb{R} -Khintchine] s

$$X = L^s(Z, \mathcal{A}, \mu)$$
, $s \in [1, \infty)$: $p = \min(s, 2)$, $q = \max(2, s)$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i} \epsilon_{i} x_{i} \right\|_{L^{s}}^{s} \stackrel{(a)}{=} \int_{Z} \mathbb{E}_{\varepsilon} \left| \sum_{i} \epsilon_{i} x_{i}(z) \right|^{s} d\mu(z) \stackrel{(b)}{\leq} B_{s}^{s} \int_{Z} \left(\sum_{i} |x_{i}(z)|^{2} \right)^{\frac{s}{2}} d\mu(z),$$

$$* = \int_{Z} \|[x_{i}(z)]\|_{2}^{s} d\mu(z) \stackrel{(c)}{\leq} \int_{Z} \|[x_{i}(z)]\|_{s}^{s} d\mu(z)$$

$$= \int_{Z} \sum_{i} |x_{i}(z)|^{s} d\mu(z)$$

(a) :
$$\|\cdot\|_{L^s}$$
 def., $\int \leftrightarrow \sum$, (b) $[\mathbb{R}$ -Khintchine] s , (c): if $s \leq 2$

 $\|\mathbf{v}\|_{2} \leq \|\mathbf{v}\|_{s}$

$$X = L^s(Z, A, \mu)$$
, $s \in [1, \infty)$: $p = \min(s, 2)$, $q = \max(2, s)$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i} \epsilon_{i} x_{i} \right\|_{L^{s}}^{s} \stackrel{(a)}{=} \int_{Z} \mathbb{E}_{\varepsilon} \left| \sum_{i} \epsilon_{i} x_{i}(z) \right|^{s} d\mu(z) \stackrel{(b)}{\leq} B_{s}^{s} \int_{Z} \left(\sum_{i} |x_{i}(z)|^{2} \right)^{\frac{s}{2}} d\mu(z),$$

$$* = \int_{Z} \|[x_{i}(z)]\|_{2}^{s} d\mu(z) \stackrel{(c)}{\leq} \int_{Z} \|[x_{i}(z)]\|_{s}^{s} d\mu(z)$$

$$= \int_{Z} \sum_{i} |x_{i}(z)|^{s} d\mu(z) \stackrel{(d)}{=} \sum_{i} \|x_{i}\|_{L^{s}}^{s},$$

(a), (d):
$$\|\cdot\|_{L^s}$$
 def., $\int \leftrightarrow \sum$, (b) [\mathbb{R} -Khintchine] s , (c): if $s \leq 2$ $\|\mathbf{v}\|_2 \leq \|\mathbf{v}\|_s$

$$X = L^s(Z, A, \mu)$$
, $s \in [1, \infty)$: $p = \min(s, 2)$, $q = \max(2, s)$

$$\mathbb{E}_{\varepsilon} \left\| \sum_{i} \epsilon_{i} x_{i} \right\|_{L^{s}}^{s} \stackrel{(a)}{=} \int_{Z} \mathbb{E}_{\varepsilon} \left| \sum_{i} \epsilon_{i} x_{i}(z) \right|^{s} d\mu(z) \stackrel{(b)}{\leq} B_{s}^{s} \int_{Z} \left(\sum_{i} |x_{i}(z)|^{2} \right)^{\frac{s}{2}} d\mu(z),$$

$$* = \int_{Z} \|[x_{i}(z)]\|_{2}^{s} d\mu(z) \stackrel{(c)}{\leq} \int_{Z} \|[x_{i}(z)]\|_{s}^{s} d\mu(z)$$

$$= \int_{Z} \sum_{i} |x_{i}(z)|^{s} d\mu(z) \stackrel{(d)}{=} \sum_{i} \|x_{i}\|_{L^{s}}^{s},$$

$$(*)^{\frac{2}{s}} \stackrel{(e)}{\leq} \sum_{i} \left(\int_{Z} |x_{i}(z)|^{s} d\mu(z) \right)^{\frac{2}{s}} = \sum_{i} \|x_{i}\|_{L^{s}}^{2}.$$

$$(a), (d): \|\cdot\|_{L^{s}} def., \int \leftrightarrow \sum_{i} , (b) \left[\mathbb{R}-Khintchine \right]^{s}, (c): if s \leq 2$$

 $\|\mathbf{v}\|_2 \le \|\mathbf{v}\|_s$, (e): if $s \ge 2$, triangle ineq. to $z \mapsto \sum |x_i(z)|^2$.

Order of the Khintchine constant, L^s

• The \mathbb{R} -Khintchine constants (A_s, B_s) appeared in L^s !

Order of the Khintchine constant, L^s

- The \mathbb{R} -Khintchine constants (A_s, B_s) appeared in L^s !
- Optimal B_s is known $\left[\Gamma(t) = \int_0^\infty u^{t-1} e^{-u} \, \mathrm{d}u\right]$:

$$B_s = egin{cases} 1 & s \in (1,2], \ \sqrt{2} \left\lceil rac{\Gamma\left(rac{s+1}{2}
ight)}{\sqrt{\pi}}
ight
ceil^{rac{1}{s}} & s \in (2,\infty). \end{cases}$$

Order of the Khintchine constant, L^s

- The \mathbb{R} -Khintchine constants (A_s, B_s) appeared in L^s !
- Optimal B_s is known $\left[\Gamma(t) = \int_0^\infty u^{t-1} e^{-u} du\right]$:

$$B_s = egin{cases} 1 & s \in (1,2], \ \sqrt{2} \left\lceil rac{\Gamma\left(rac{s+1}{2}
ight)}{\sqrt{\pi}}
ight
ceil^{rac{1}{s}} & s \in (2,\infty). \end{cases}$$

• B_s order $(s \to \infty)$: $\Gamma \sim ! \xrightarrow{\text{Stirling formula}} B_s \leq \mathcal{O}(\sqrt{s})$.

Summary

- L^s guarantees: empirical processes, concentration, type.
- Type:
 - analytical formula for L^s.
- Classical Khintchine constant $(X = \mathbb{R})$:
 - It bounds the L^s-constant.
 - Its order & optimal value are known.

Thank you for the attention!

Contents

- Relevant (co)type intervals.
- L^s : type-cotype, $X X^*$: type-cotype.
- Kahane theorem: l.h.s.
- Some additional (co)type properties.
- Optimal As.

Let
$$x_i = x$$
 ($\forall i$), where $||x|| = 1$. Then ($s = 1$)

$$\int_0^1 \left\| \sum_i r_i(u) x_i \right\| du \stackrel{\|x\|=1}{=} \int_0^1 \left| \sum_i r_i(u) \right| du =: (*),$$

Let
$$x_i = x$$
 ($\forall i$), where $||x|| = 1$. Then ($s = 1$)

$$\int_0^1 \left\| \sum_i r_i(u) x_i \right\| du \stackrel{\|x\|=1}{=} \int_0^1 \left| \sum_i r_i(u) \right| du =: (*),$$

$$A_1\sqrt{n} \le (*) \le \sqrt{n} \ (\Leftarrow \mathbb{R}\text{-Khintchine}) \Rightarrow (*) = \mathcal{O}(\sqrt{n}),$$

Let
$$x_i = x$$
 ($\forall i$), where $||x|| = 1$. Then ($s = 1$)

$$\int_0^1 \left\| \sum_i r_i(u) x_i \right\| du \stackrel{\|x\|=1}{=} \int_0^1 \left| \sum_i r_i(u) \right| du =: (*),$$

$$A_1\sqrt{n} \le (*) \le \sqrt{n} \ (\Leftarrow \mathbb{R}\text{-Khintchine}) \Rightarrow (*) = \mathcal{O}(\sqrt{n}),$$

$$\int_0^1 \left\| \sum_i r_i(u) x_i \right\| du \le B \left(\sum_{i=1}^n \underbrace{\|x_i\|^p}_{-1} \right)^{\frac{1}{p}} = \underbrace{0} \left(n^{\frac{1}{p}} \right)$$

Let
$$x_i = x \ (\forall i)$$
, where $||x|| = 1$. Then $(s = 1)$

$$\int_0^1 \left\| \sum_i r_i(u) x_i \right\| du \stackrel{\|x\|=1}{=} \int_0^1 \left| \sum_i r_i(u) \right| du =: (*),$$

$$A_1\sqrt{n} \le (*) \le \sqrt{n} \ (\Leftarrow \mathbb{R}\text{-Khintchine}) \Rightarrow (*) = \mathcal{O}(\sqrt{n}),$$

$$\int_0^1 \left\| \sum_i r_i(u) x_i \right\| du \le B \left(\sum_{i=1}^n \underbrace{\|x_i\|^p}_{-1} \right)^{\frac{1}{p}} = \underbrace{0} \left(n^{\frac{1}{p}} \right) \Rightarrow p \le 2,$$

Let
$$x_i = x$$
 ($\forall i$), where $||x|| = 1$. Then ($s = 1$)

$$\int_0^1 \left\| \sum_i r_i(u) x_i \right\| du \stackrel{\|x\|=1}{=} \int_0^1 \left| \sum_i r_i(u) \right| du =: (*),$$

$$A_1\sqrt{n} \le (*) \le \sqrt{n} \ (\Leftarrow \mathbb{R}\text{-Khintchine}) \Rightarrow (*) = \mathcal{O}(\sqrt{n}),$$

$$\int_{0}^{1} \left\| \sum_{i} r_{i}(u) x_{i} \right\| du \leq B \left(\sum_{i=1}^{n} \underbrace{\left\| x_{i} \right\|^{p}}_{=1} \right)^{\frac{1}{p}} = \underbrace{0} \left(n^{\frac{1}{p}} \right) \Rightarrow p \leq 2,$$

$$\geq A \left(\sum_{i=1}^{n} \underbrace{\left\| x_{i} \right\|^{q}}_{=1} \right)^{\frac{1}{q}} = \underbrace{0} \left(n^{\frac{1}{q}} \right)$$

Let
$$x_i = x$$
 ($\forall i$), where $||x|| = 1$. Then ($s = 1$)

$$\int_0^1 \left\| \sum_i r_i(u) x_i \right\| du \stackrel{\|x\|=1}{=} \int_0^1 \left| \sum_i r_i(u) \right| du =: (*),$$

$$A_1\sqrt{n} \le (*) \le \sqrt{n} \ (\Leftarrow \mathbb{R}\text{-Khintchine}) \Rightarrow (*) = \mathcal{O}(\sqrt{n}),$$

$$\int_{0}^{1} \left\| \sum_{i} r_{i}(u) x_{i} \right\| du \leq B \left(\sum_{i=1}^{n} \underbrace{\|x_{i}\|^{p}}_{=1} \right)^{\frac{1}{p}} = \underbrace{0 \left(n^{\frac{1}{p}} \right)}_{p} \Rightarrow p \leq 2,$$

$$\geq A \left(\sum_{i=1}^{n} \underbrace{\|x_{i}\|^{q}}_{=1} \right)^{\frac{1}{q}} = \underbrace{0 \left(n^{\frac{1}{q}} \right)}_{q} \Rightarrow 2 \leq q.$$

L^s : type-cotype relation

• $L^s(Z, A, \mu)$: type $p = \min(s, 2)$. $L^{s^*}(Z, A, \mu)$ $(\frac{1}{s} + \frac{1}{s^*} = 1)$: cotype $q = \max(2, s^*)$. Observation:

$$\frac{1}{p} + \frac{1}{q} = 1. \tag{1}$$

L^s : type-cotype relation

• $L^s(Z, A, \mu)$: type $p = \min(s, 2)$. $L^{s^*}(Z, A, \mu)$ $(\frac{1}{s} + \frac{1}{s^*} = 1)$: cotype $q = \max(2, s^*)$. Observation:

$$\frac{1}{p} + \frac{1}{q} = 1. \tag{1}$$

• More generally, if X is of type $p \Rightarrow X^*$ is of cotype q satisfying (1).

L^s: type-cotype relation

• $L^s(Z, A, \mu)$: type $p = \min(s, 2)$. $L^{s^*}(Z, A, \mu)$ $(\frac{1}{s} + \frac{1}{s^*} = 1)$: cotype $q = \max(2, s^*)$. Observation:

$$\frac{1}{p} + \frac{1}{q} = 1. {1}$$

- More generally, if X is of type $p \Rightarrow X^*$ is of cotype q satisfying (1).
- Note (converse is not true): ℓ^1 of cotype 2, $(\ell^1)^* = \ell^{\infty}$ is not of type $p \ge 1$.

X: type $p \Rightarrow X^*$: cotype q such that 1/p + 1/q = 1

For $\forall \epsilon > 0$ and $\forall \{x_i^*\}_{i=1}^n \subset X^* \ \exists \{x_i\}_{i=1}^n \subset X, \ \|x_i\| = 1 \colon \|x_i^*\| < (1+\epsilon)x_i^*(x_i).$

$$\left(\sum_{i=1}^{n} \|x_{i}^{*}\|^{q}\right)^{\frac{1}{q}} \leq \left(1+\epsilon\right) \left[\sum_{i} x_{i}^{*}(x_{i})^{q}\right]^{\frac{1}{q}} = \left(1+\epsilon\right) \|[x_{i}^{*}(x_{i})]\|_{q},
\|[x_{i}^{*}(x_{i})]\|_{q} \stackrel{(a)}{=} \sup_{\|\mathbf{a}\|_{p} \leq 1} \left\{ \sum_{i} a_{i} x_{i}^{*}(x_{i}) \right\},
\stackrel{(b)}{=} \int_{0}^{1} \left[\sum_{i} r_{i}(u) x_{i}^{*}\right] \left[\sum_{j} r_{j}(u) a_{j} x_{j}\right] du = (*)$$

$$\left(*\right) \stackrel{(c)}{\leq} \left(\int_{0}^{1} \left\|\sum_{i} r_{i}(u) x_{i}^{*}\right\|^{q} du\right)^{\frac{1}{q}} \left(\int_{0}^{1} \left\|\sum_{i} r_{j}(u) a_{j} x_{j}\right\|^{p} du\right)^{\frac{1}{p}}$$

(a): dual of $\|\cdot\|_p$, (b): (r_i) : ONS, (c): Hölder inequality.

X: type $p \Rightarrow X^*$: cotype q

The remaining term:

$$\left(\int_{0}^{1}\left\|\sum_{j}r_{j}(u)a_{j}x_{j}\right\|^{p}du\right)^{\frac{1}{p}} \stackrel{(a)}{\leq} K_{p} \underbrace{\int_{0}^{1}\left\|\sum_{j}r_{j}(u)a_{j}x_{j}\right\|}_{\leq A_{p}\left(\sum_{j}\left\|a_{j}x_{j}\right\|^{p}\right)^{\frac{1}{p}} \stackrel{(c)}{=} A_{p}\left\|\mathbf{a}\right\|_{p}}_{\leq 1}.$$

(a): exponent is irrelevant (Kahane-T.), (b): X is of type p, (c): $\|a_jx_j\|=|a_j\|\|x_j\|=|a_j|$ ($\|x_j\|=1$). At the end: $\epsilon\to 0$.

Kahane theorem: I.h.s.

$$\mathbb{E}_{\epsilon} \left\| \sum_{i} \epsilon_{i} x_{i} \right\| = \int_{0}^{1} \left\| \sum_{i} r_{i}(u) x_{i} \right\| du = \left\| \sum_{i} r_{i}(u) x_{i} \right\|_{L^{1}([0,1];B)},$$

$$\left(\mathbb{E}_{\epsilon} \left\| \sum_{i} \epsilon_{i} x_{i} \right\|^{p} \right)^{\frac{1}{p}} = \left(\int_{0}^{1} \left\| \sum_{i} r_{i}(u) x_{i} \right\|^{p} du \right)^{\frac{1}{p}} = \left\| \sum_{i} r_{i}(u) x_{i} \right\|_{L^{p}([0,1];B)},$$

$$1 \leq a \leq b \leq \infty \Rightarrow \|f\|_{L^{a}(Z,\mu;B)} \leq \|f\|_{L^{b}(Z,\mu;B)}, \text{ if } \mu(Z) = 1.$$

Proof: $a := 1 \le b := p$, $\lambda([0,1]) = 1$ gives the result.

Further (co)type properties - 1

- By triangle inequality & $|r_i(u)| = 1$: always
 - Type p = 1: $\left\| \sum_{i} r_i(u) x_i \right\| \leq \sum_{i} \|r_i(u) x_i\| = \sum_{i} \|x_i\|$.
 - Cotype $q = \infty$: $\left\| \sum_{i} r_i(u) x_i \right\| \ge \|r_j(u) x_j\| = \|x_j\| \ (\forall j).$
- ℓ^1 is of no type p > 1.
- ℓ^{∞} , c_0 : is of no cotype $q < \infty$.

Further (co)type properties - 2

- X is of type p (cotype q) \Rightarrow
 - X is of type $p' \leq p$ (cotype $q' \geq q$).
 - all its subspaces are so.
 - quotients are of type p (with the same constant).
- Y: Banach of type p_Y , cotype $q_Y \Rightarrow L^s(Z, A, \mu; Y)$ is of type $\min(s, p_Y)$, $\max(s, q_Y)$.
- L^{∞} is of type 1 and cotype ∞ $(r \to \infty)$: valid for cotype).

Stirling formula

Order estimation for n!:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Optimal A_s

$$A_s = egin{cases} 2^{rac{1}{2}-rac{1}{s}} & s \in (0,s_0], \ \sqrt{2}\left[rac{\Gamma\left(rac{s+1}{2}
ight)}{\sqrt{\pi}}
ight]^{rac{1}{s}} & s \in (s_0,2), \ 1 & s \in [2,\infty), \end{cases}$$

where s_0 is the solution of $\Gamma\left(\frac{s+1}{2}\right)=\frac{\sqrt{\pi}}{2}$ on $s\in(1,2)$, $s_0\approx1.84742$.