

Sistemas Digitais

Blocos Lógicos Combinatórios

Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro

> Algumas figuras provenientes de J. Wakerly, "Digital Design Principles & practices"

Sistemas Digitais - AFS

Resumo

- Documentação
- Descodificadores
- · Codificadores
- Multiplexers
- Demultiplexers
- · Multiplexagem em BUS

Sistemas Digitais - AFS

Documentação

- · Essencial em todo o ciclo de vida do projecto
- · Diagramas de Blocos
- · Esquemas lógicos (Logigramas)
- · Esquemas eléctricos
- HDL (ABEL, Verilog, VHDL)
- · Diagramas Temporais
- · Especificações dos componentes

Sistemas Digitais - AFS

3

Diagrama de Blocos

· Descrição funcional ao nível da arquitectura

Sistemas Digitais - AFS

Esquemas Eléctricos

- · Referência do componente
- · Detalhes sobre entradas/saídas de cada componente
- · Números dos pinos
- Títulos de blocos constituintes em desenho hierárquico
- · Designação dos sinais
- · Conectores entre páginas

Sistemas Digitais - AFS

VHDL

 Assunto do próximo semestre em Labs. Sistemas Digitais.

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
entity COUNT8 is
port(
        DIN : in std_logic_vector(7 downto 0);
        CLK : in std_logic;
        LOAD : in std_logic;
        DOUT : out std_logic_vector(7 downto 0)
    );
end COUNT8;
...
Sistemas Digitais - AFS
```


VHDL

```
architecture arch1 of COUNT8 is

begin
   clk_proc : process(CLK)
   variable COUNT : unsigned(7 downto 0) := "000000000";

begin
   if CLK'EVENT AND CLK = '1' then
        if LOAD = '1' then
            COUNT := DIN;
        else COUNT := COUNT + 1;
        end if;
        end if;
        DOUT <= COUNT after 500ps;
        end process clk_proc;

end arch1;

Sistemas Digitais - AFS</pre>
```


Lógica de Polaridade

- Será que ao "1" corresponde sempre ao nível eléctrico mais positivo e o "0" ao mais negativo?
- · R: Depende da realização electrónica.

Sistemas Digitais - AFS

Tabelas de verdade físicas

- Descrição tabular do comportamento do circuito recorrendo aos níveis H e L.
- Em contextos não algébricos a descrição funcional deve confinar-se aos símbolos H e L

Tabela de verdade física

А	В	S
L	L	Н
L	$_{\mathrm{H}}$	Н
Н	L	Н
Н	Η	L

Tabela de verdade em lógica positiva

Α	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Lógica positiva

H=1 L=0

Tabela de verdade física

А	В	S
L	L	Н
L	$_{\mathrm{H}}$	Н
Н	L	Н
Н	$_{\mathrm{H}}$	L

Tabela de verdade em lógica negativa

	Α	В	S
Lógica negativa	1	1	0
H=0	1	0	0
L=1	0	1	0
	0	0	1

Sistemas Digitais - AFS

15

Nomes e níveis activos

- Por razões do contexto físico interessa associar a um sinal uma determinada acção no circuito e o nível eléctrico que o desencadeia
 - Pode ser H ou "muitas vezes" pode ser L
 - O nível assim definido designa-se por nível activo
- Os nomes dos sinais para além de sugestivos devem mencionar também o nível activo.

Exemplos

Active Low	Active High
READY-	READY+
ERROR.L	ERROR.H
ADDR15(L)	ADDR15(H)
RESET*	RESET
ENABLE~	ENABLE
~GO	GO
/RECEIVE	RECEIVE
TRANSMIT_L	TRANSMIT

Sistemas Digitais - AFS

Descodificador 2:4

Tipicamente temos n entradas (código) e 2ⁿ saídas
 2-to-4, 3-to-8, 4-to-16, etc.

li	nputs		Outputs					
EN	l1	Io	YЗ	Y2	Y1	Yo		
0	х	Х	0	0	0	0		
1	0	0	0	0	0	1		
1	0	1	0	0	1	0		
1	1	0	0	1	0	0		
1	1	1	1	0	0	0		

"x" (don't care)

Sistemas Digitais - AFS

19

Descodificador 2:4

- · Diagrama Lógico
- · Qual o papel da entrada EN?
- · Exercício: Determinar as equações das saídas

Sistemas Digitais - AFS

Descodificador e Mintermos

 Podemos recorrer a um bloco de descodificação para obter os mintermos necessários à implementação duma função booleana genérica

O problema da Prioridade

• Exercício: veja o que acontece no exemplo anterior quando por exemplo ${\rm I_3}$ e ${\rm I_5}$ estão activos.

 Situações de conflito "arbitram-se" mediante uma estratégia de prioridade de atendimento

Sistemas Digitais - AFS

Codificador de Prioridade

 Redifinição da lógica interna através das variáveis intermédias H_n

- · Qual o significado da saída IDLE?
- · Qual o código de saída quando I3 e I5 estão activos?

Sistemas Digitais - AFS

33

O Codificador de Prioridade "74148"

- · Active-low I/O
- · Enable Input
- · "Got Something"
- · Enable Output

Inputs								Outputs						
ELL	IO_L	l1_L	l2_L	13_L	14_L	15_L	16_L	17_L		A2_L	A1_L	A0_L	GS_L	EO_L
1	Х	Х	Х	х	х	х	х	х		1	1	1	1	1
0	x	x	x	x	x	x	x	0		0	0	0	0	1
0	х	х	х	х	х	х	0	1		0	0	1	0	1
0	x	x	x	x	x	0	1	1		0	1	0	0	1
0	х	х	х	х	0	1	1	1		0	1	1	0	1
0	x	x	x	0	1	1	1	1		1	0	0	0	1
0	х	х	0	1	1	1	1	1		1	0	1	0	1
0	х	0	1	1	1	1	1	1		1	1	0	0	1
0	0	1	1	1	1	1	1	1		1	1	1	0	1
0	1	1	1	1	1	1	1	1		1	1	1	1	0

Sistemas Digitais - AFS

Funções genéricas com MUX's

- · Caso geral
 - D_k= F_k + lógica adicional a partir das entradas
 - Selecção = subconjunto das entradas
- Exemplo mapeando n-1 variáveis independentes nas entradas de selecção

n-1 variáveis independentes nas entradas de selecção

I1	12	 In		F					
		 0	0	0	1	1			
		 1	0	1	0	1			
			0	In	Īn	1			

Possíveis valores para F em função de In

Sistemas Digitais - AFS

47

Exemplo

· Implementar a função F a partir dum MUX 8:1

 $F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$

- 1. Mapear variáveis de selecção. Neste caso A,B e C. (Outras escolhas seriam possíveis)
- 2. Determinar a lógica associada a cada entrada do mux em função das restantes variáveis independentes (neste caso D)
 - Regiões da tabela de verdade onde A,B e C são constantes. Não confundir com os implicantes no Mapa de Karnaugh

Sistemas Digitais - AFS

Exemplo

• Implementar a função F a partir dum MUX 8:1

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

Exercício

 Implementar a função F a partir dum MUX 4:1 e lógica adicional

$$F(A,B,C,D) = \sum m(1,3,6,7,8,11,12,14)$$

 Escolha várias combinações das variáveis independentes para entradas de selecção e verifique que há escolhas preferenciais

Sistemas Digitais - AFS

Buffers 3'state

- · Saídas possíveis: LOW, HIGH e Hi-Z
- Hi-Z ou Z significa "alta impedância" vista da saída do dispositivo

Sistemas Digitais - AFS

52

Alta-Impedância

- Alta-Impedância significa resistência praticamente infinita, sem ligação.
- · Modelo do interruptor

 Quando EN=0 o interruptor estão aberto determinando uma resistência eléctrica infinita vista do lado da saída

Sistemas Digitais - AFS

Conexão física das saídas

· Partilha de saídas

 Fisicamente podemos ligar as saídas dos buffers desde que o controlo dos "enables" seja devidamente temporizado

Sistemas Digitais - AFS

.5

Multiplexagem revisitada

- · Estratégias eficientes de multiplexagem
- Exemplo 2:1 MUX

Sistemas Digitais - AFS

