Section 2: Probability

STA 35C - Statistical Data Science III

Instructor: Akira Horiguchi

Fall Quarter 2025 (Sep 24 – Dec 12) MWF, 12:10 PM – 1:00 PM, Olson 158 University of California, Davis

Section 1: Overview

Based on Chapter 1 of textbook: https://www.probabilitycourse.com/

- 1 Probability
 - Finding probabilities
 - Probability models: discrete vs continuous
- 2 Conditional probability
 - Independence
 - Law of total probability
 - Bayes' rule
 - Conditional independence

Probability

Probability measure: introduction

Probability is a way to quantify randomness and/or uncertainty.

- e.g., coin flips, dice rolls, stocks, weather.
- Rules of probability should be intuitive and self-consistent.
- Self-consistent: the rules shouldn't lead to contradictions.
- Thus these rules must be constructed in a certain way.
- Suppose we want to assign a probability to each event in a set of possible events.
- We would like, at the very least:
 - 1. each probability to be a value between 0 and 1 (inclusive)
 - 2. the probability assigned to the full set of events to be 1
 - close to $1 \Rightarrow$ very likely that A occurs.
 - 3. the probability assigned to the empty set to be o
 - close to o ⇒ very unlikely that A occurs.
- We need more restrictions to ensure self-consistency.
- The following definition will lead to intuitive and self-consistent rules of probability.
 - We assign a *probability* measure P(A) to an event A.

Probability measure: definition

Definition 1: Probabilty measure $P(\cdot)$

For a nonempty sample space Ω , the set function $P: \Omega \to [0,1]$ is a *probability measure*, if

- $\blacksquare P(\Omega) = 1,$
- for any pairwise disjoints events $A_1, A_2, A_3, \dots \subset \Omega$ (i.e. $A_i \cap A_j = \emptyset$ for all i, j with $i \neq j$), holds:

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$$
 (1)

This definition fulfills the three desirable properties:

- \blacksquare $P(\Omega) = 1$: the probability of the biggest possible set is equal to 1.
 - Property (1) called the countable additivity property allows us to add probabilities of disjoint sets.

Probability

Finding probabilities

Finding probabilities

Given a random experiment with a sample space Ω , how do we find the probability of an event of interest? Use:

- the specific information that we have about the random experiment.
- the probability rules induced by Definition 1.

Finding probabilities: example

Example: Roll a fair four-sided die. What is the probability of $E = \{1, 3\}$?

- Information about experiment (fair die): $P(\{1\}) = P(\{2\}) = P(\{3\}) = P(\{4\})$.
- Probability rules:

$$1 = P(S)$$
= $P(\{1\} \cup \{2\} \cup \{3\} \cup \{4\})$
= $P(\{1\}) + P(\{2\}) + P(\{3\}) + P(\{4\})$
= $4P(\{1\})$.

Thus
$$P(\{1\}) = P(\{2\}) = P(\{3\}) = P(\{4\}) = \frac{1}{4}$$
. Finally,

$$P(E) = P(\{1,3\}) = P(\{1\}) + P(\{3\}) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

Finding probabilities: notation

Annoying to write e.g., $P(\{2\})$

- Simplify to P(2)
- lacksquare But always keep in mind that P is a function on sets, not on individual outcomes.

Finding probabilities: more tools

Definition 1 implies the following additional properties:

Properties of $P(\cdot)$

Given a sample space Ω and arbitrary events $A, B \subset \Omega$, Definition 1 implies

- 1. $P(\emptyset) = 0$
- 2. $P(A^c) = 1 P(A)$
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 4. $P(B \setminus A) = P(B) P(A \cap B)$
- 5. $P(A) \leq P(B)$ if $A \subset B$.

(Pictures for intuition; for formal proofs, see "Example 1.10" in §1.3.3 of textbook)

Finding probabilities: example

Suppose we have the following information:

- 1. There is a 60 percent chance that it will rain today.
- 2. There is a 50 percent chance that it will rain tomorrow.
- 3. There is a 30 percent chance that it does not rain either day.

Find the following probabilities:

- a. The probability that it will rain today or tomorrow.
- b. The probability that it will rain today and tomorrow.
- c. The probability that it will rain today but not tomorrow.
- d. The probability that it either will rain today or tomorrow, but not both.

Probability

Probability models: discrete vs continuous

Probability models: discrete vs continuous

Distinguish between two different types of sample spaces: discrete and continuous.

- Will discuss in more detail in Section 3 of the course.
- Discrete: can compute the probability of an event by adding all outcomes in the event.
- Continuous: need to use integration instead of summation.

Probability models: discrete

If a sample space Ω is a countable set, this refers to a *discrete* probability model.

- Can list all elements: $\Omega = \{s_1, s_2, s_3, \dots\}$.
- For an event $A \subset \Omega$, by countable additivity (1) we can write

$$P(A) = P\left(\bigcup_{s \in A} \{s\}\right) = \sum_{s \in A} P(s)$$

Thus, to find probability of an event, just need to sum the probability of individual elements in that event.

Probability models: discrete (example)

Consider a gambling game: win k-2 dollars with probability $\frac{1}{2^k}$ for any $k \in \mathbb{N}$.

- What is the probability of winning at least \$1 and less than \$4?
- What is the probability of winning more than \$1?

Probability models: discrete (equally likely outcomes)

Important special case: finite sample space Ω where each outcome is equally likely.

■ Thus for any outcome $s \in \Omega$, we must have

$$P(s) = \frac{1}{|\Omega|}.$$

■ In such a case, for any event A, we can write

$$P(A) = \sum_{s \in A} P(s) = \sum_{s \in A} \frac{1}{|\Omega|} = \frac{|A|}{|\Omega|}.$$

Probability models: continuous

Consider a sample space Ω that is an *uncountable* set.

- E.g., a 50-minute exam (so $\Omega = [0, 50]$), and let T_{Ant} be the time it takes Ant to finish the exam.
- What is the probability of $T_{Ant} \in [42.5, 45)$?

Conditional probability

Introduction

As you obtain additional information, how should you update probabilities of events?

- For example, suppose I roll a fair die.
- Let $A = \{1, 3, 5\}$. What is the probability that the outcome is in A? We will write this as P(A).

■ Let $B = \{1, 2, 3\}$. What is the probability of A if I know that the outcome is in B? We will write this as P(A|B).

Notation

In the previous example, we call...

- \blacksquare ... P(A) the prior probability of A;
- \blacksquare ... P(A|B) the conditional probability of A given that B has occurred.
 - Usually shortened to the conditional probability of A given B.

The way we obtained P(A|B) in this example can be generalized by the following definition.

Definition

Definition 2: Conditional probability

If A and B are two events in a sample space Ω , then the conditional probability of A given B is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \text{ when } P(B) > 0.$$
 (2)

If we know that B has occurred, then we can discard every outcome outside of B.

■ In other words, our sample space is reduced to the set *B*. (Picture)

- We divide $P(A \cap B)$ by P(B) so that the conditional probability of the new sample space B becomes 1.
- P(A|B) is undefined when P(B) = o (meaning B never occurs).

Conditional probability rules

Conditional probability itself is a probability measure.

■ So all probability rules learned so far can be extended to conditional probability. For example, Definition 1 (slide 3) and other properties (slide 7)

Important special cases

Plug into Definition 2

■ When A and B are disjoint:

■ When B is a subset of A:

■ When A is a subset of B:

Example

I roll a fair die twice. Let

- \blacksquare X_1 be the result of the first roll;
- \blacksquare X_2 be the result of the second roll;

Given that I know $X_1 + X_2 = 7$, what is the probability that $X_1 = 4$ or $X_2 = 4$?

■ Let B be the event that $X_1 + X_2 = 7$. Let A be the event that $X_1 = 4$ or $X_2 = 4$.

Chain rule

We can rearrange the formula in Definition 2 as

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B).$$

We can generalize this to 3 events:

$$P(A \cap B \cap C) =$$

We can generalize this to $n \ge 2$ events (chain rule for conditional probability):

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_2, A_1) \cdots P(A_n | A_{n-1}, A_{n-2} \cdots A_1)$$

20

Example

Of 100 units of a certain product, 5 are defective. If we pick three of the 100 units at random, what is the probability that none of them are defective?

■ For i = 1, 2, 3, let A_i be the event that the *i*th picked unit is NOT defective.

Conditional probability

Independence

Introduction

Let A be the event that it rains tomorrow. Let B be the event that the coin I toss (indoors) tomorrow lands heads up.

- Should the result of the coin toss depend on tomorrow's weather?
- Should the probability of A depend on whether or not B happens?
- Two events are *independent* if one does not convey any info about the other.

Definition

Definition 3: Independent events

Two events A and B are independent if and only if

$$P(A \cap B) = P(A)P(B). \tag{3}$$

If two events A and B are independent and $P(B) \neq 0$, then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A),$$

i.e., the conditional probability P(A|B) is the same as the prior probability P(A).

- Sometimes it is obvious if two given events are independent or not.
- Other times, we need to check if they satisfy the independence condition (4).

Example

I pick a random number from $\{1, 2, 3, \cdots, 10\}$, and call it N.

- Suppose that all outcomes are equally likely.
- Let A be the event that N < 7, and let B be the event that N is even.

Are A and B independent?

Corollary

The following result can now be proven:

Corollary 1

If events A and B are independent, then

- \blacksquare A and B^c are independent,
- \blacksquare A^c and B are independent, and
- \blacksquare A^c and B^c are independent.

Achtung!

Independent ≠ disjoint

- Two independent events convey no information about the other.
- Two *disjoint* events cannot occur at the same time.

Definition: extend to ≥ 2 events

Definition 4: Independent events (≥ 2)

For $n \ge 2$, events A_1, A_2, \dots, A_n are independent if and only if we have

$$P\left(\bigcap_{k\in\mathcal{K}}A_k\right) = \prod_{k\in\mathcal{K}}P(A_k). \tag{4}$$

for every nonempty subset $\mathcal{K} \subset \{1, 2, \dots, n\}$.

Conditional probability

Law of total probability

Result

Law of Total Probability:

If events B_1, B_2, B_3, \cdots form a partition of the sample space, then for any event A we have

$$P(A) = \sum_{i} P(A \cap B_{i}) = \sum_{i} P(A|B_{i}) P(B_{i}).$$
 (5)

Because B and B^c partition the sample space, from (5) we get:

$$P(A) = P(A|B) P(B) + P(A|B^{c}) P(B^{c}).$$

Fig.1.24 - Law of total probability.

An example

Suppose there is a population of students who are left- or right-handed (assume that no student is ambidextrous). We know that:

- 30% of these students are taller than 6 feet, and of these, 40% are left-handed.
- Of the remaining 70% of students, 20% are left-handed.

Using the law of total probability, calculate the probability that a student chosen uniformly at random from this population is left-handed.

Conditional probability

Bayes' rule

Introduction

From the definition of conditional probability, we know for any two events A and B that

$$P(B|A) P(A) = P(A \cap B) = P(A|B) P(B).$$

Dividing by P(A) (assuming it is not zero), we get Bayes' rule:

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)} \tag{6}$$

Often P(A) is unknown and difficult to deduce.

■ Sometimes we can use the law of total probability (5).

Example: False positive paradox

A certain disease affects about 1 out of 10,000 people. There is a test to check whether the person has the disease. In particular, we know that

- the probability that the test result is positive, given that the person does not have the disease, is 2%;
- the probability that the test result is negative, given that the person has the disease, is 1%.

Suppose a random person gets tested for the disease and the test result is positive. What is the probability that the person has the disease?

Example: False positive paradox

Bayesian paradigm

Bayes' rule leads to Bayesian statistics.

- Bayesian interpretation: probability expresses a degree of belief in an event. Use Bayes' rule to update degree of belief based on observed data.
- Frequentist interpretation: probability is the long-run relative frequency of an event after many trials.
- Don't need to know for this course. More intuition here https://www.youtube.com/watch?v=9wCnvr7Xw4E

Conditional probability

Conditional independence

Definition

Extend concept of *independence* to conditionally independent events.

Two events A and B are conditionally independent given an event C with P(C) > 0 if

$$P(A \cap B|C) = P(A|C)P(B|C) \tag{7}$$

Example: Two coins

A box contains two coins: one regular coin and one two-headed coin (P(H) = 1). Choose a coin at random and toss it twice. Define the following events.

- A: First coin toss results in an H.
- B: Second coin toss results in an H.
- C: Coin 1 (regular) has been selected.

Note that A and B are not independent, but they are conditionally independent given C. Find P(A|C), P(B|C), $P(A \cap B|C)$, P(A), P(B), $P(A \cap B)$.