Quiz 4 (Solution)

→ Each question is 25 Points ←

Given the following relation R = (A, B, C, D, E, F), and the following dependencies $F = \{AB \rightarrow DE, CD \rightarrow E, B \rightarrow EF, DF \rightarrow AC, BD \rightarrow AF\}$

Question 1: Do the following functional dependencies hold or not (Yes or No). Show your work.

Using transitivity, augmentation, union and decomposition rules we get the following dependencies:

AB→DE

 $AB \rightarrow D$

AB→E

AB→AE

AB→AD

CD→E

CD→CE

CD→DE

B→EF

B→E

B→F

BC→CE

BC→CF

BD→DF

BD→AC

 $AB \rightarrow AE$

AB→AF

DF→AC

 $DF \rightarrow A$

DF→C

DF→AD

DF→AF

 $BD\rightarrow A$

 $BD\rightarrow C$

B→BE

B→BF

BD→AF

 $BD \rightarrow A$ $BD \rightarrow F$

As we can see: $BD \rightarrow DF \Rightarrow BD \rightarrow F$ $BD \rightarrow F$, $BD \rightarrow C \Rightarrow BD \rightarrow CF$

But we are unable to get dependency of attribute D on BC. BC→CEF and that's it.

BC → CDF NO

BD → CF YES

Question 2: What are the attribute closures of {DF}. That is, compute {DF}+. Show your work.

Start: {DF}
Adding attributes for D {DFEAC}
Adding attributes for F {DFEAC}
Adding attributes for E {DFEAC}
Adding attributes for A {DFEAC}
Adding attributes for C {DFEAC}

 ${DF}^+ = {ACDEF}$

Question 3: Report all candidate keys of R. Show your work.

- Since B is not determined by anything else, then it must be part of the key.
- Also since B determines EF, then no need to check BE and BF.
- What's left is to check BA, BC, and BD. You will find that only BA and BD are keys.

B→BEF

Using union:

 $AB \rightarrow ABEF \rightarrow ABDEF \rightarrow ABDEFC$ (AB $\rightarrow DE, DF \rightarrow AC$)

BC→CEF

 $BD \rightarrow DBEF \rightarrow DBEFAC$ (DF \rightarrow AC)

 $\{AB\}$, where $\{AB\}^+ = \{ABCDEF\}$ and none of A^+ or B^+ contains all keys

 $\{BD\}$, where $\{BD\}^+ = \{ABCDEF\}$ and none of D^+ or B+ contains all keys

Question 4: If R is decomposed into two relations R1 = (A, B, D, F) and R2 = (C, D, E, F), is it lossy or lossless decomposition, and Why?

The common columns are {DF}, Is it candidate key in either of R1 or R2 ??

In R1
$$\rightarrow$$
 {DF}⁺ = D F A (cannot get B, not it is not key)

In R2
$$\rightarrow$$
 {DF}⁺ = D F C E (so DF is a candidate key in R2)

So this decomposition is lossless