A General Truncated Regularization Framework for Contrast-Preserving Variational Signal and Image Restoration: Motivation and Implementation

WU ChunLin (Joint work with LIU ZhiFang, WEN Shuang)

School of Mathematical Sciences, Nankai University, Tianjin 300071, China

NJUPT, Nanjing, April, 14, 2018

Outline

- Variational signal and image restoration
- 2 Assumptions on potential functions $\rho(\cdot)$
- Nonconvex regularization: Motivation
- Truncated regularization framework
- Theoretical justification in 1D
- Numerical demonstration in 2D
- Conclusions
- References

Section 1. Variational signal and image restoration

- signal degradation

- signal restoration

- image degradation

true image

blurred and noisy observation

- image restoration

true image

ő

blurred and noisy observation

- 1D signal

• 1D signal $f \in \mathbb{R}^K$ is a degradation of $\underline{u} \in \mathbb{R}^N$:

$$\underline{u} \to A\underline{u} \xrightarrow{n} f$$
,

- A is a linear operator such as a blur convolution.
- $n = \{n_i : 1 \le i \le K\}$ is random noise.
- $n_i \sim \mathcal{N}(0, \sigma^2)$, $1 \le i \le K$ are i.i.d. random variables, such as additive Gaussian noise and multiplicative noise.

- general model for signal restoration

$$\min_{u \in \mathbb{R}^{N}} \left\{ E(u) = \sum_{1 \leq i \leq N} \varphi((\nabla_{x}u)_{i}) + \frac{\alpha}{2} ||Au - f||_{\mathbb{R}^{K}}^{2} \\
= \sum_{1 \leq i \leq N} \rho(|(\nabla_{x}u)_{i}|) + \frac{\alpha}{2} ||Au - f||_{\mathbb{R}^{K}}^{2} \right\},$$
(1)

- ∇_x is the forward difference operator with a specific boundary condition, e.g., the periodic or Neumann boundary condition.

- 2D image

• 2D image $\mathbf{f} \in \mathbb{R}^{K \times K}$ is a degradation of $\underline{\mathbf{u}} \in \mathbb{R}^{N \times N}$:

$$\underline{u} \to A\underline{u} \xrightarrow{n} f,$$

- A is a linear operator such as a blur convolution.
- $\mathbf{n} = {\mathbf{n}_{i,j}, 1 \leq i, j \leq K}$ is random noise.
- $\{\mathbf{n}_{i,j} \sim \mathcal{N}(0, \sigma^2), 1 \leq i, j \leq K\}$ are i.i.d. random variables, such as additive Gaussian noise and multiplicative noise.

- general model for image restoration

$$\min_{\mathbf{u} \in \mathbb{R}^{N \times N}} \left\{ E_{\text{ani}}(\mathbf{u}) = \sum_{1 \leq i,j \leq N} (\varphi((\nabla_{x}\mathbf{u})_{i,j}) + \varphi((\nabla_{y}\mathbf{u})_{i,j})) + \frac{\alpha}{2} \|\mathbf{A}\mathbf{u} - \mathbf{f}\|_{\mathbb{R}^{K \times K}}^{2} \right\}, \\
= \sum_{1 \leq i,j \leq N} (\rho(|(\nabla_{x}\mathbf{u})_{i,j}|) + \rho(|(\nabla_{y}\mathbf{u})_{i,j}|)) + \frac{\alpha}{2} \|\mathbf{A}\mathbf{u} - \mathbf{f}\|_{\mathbb{R}^{K \times K}}^{2} \right\}, \\
\min_{\mathbf{u} \in \mathbb{R}^{N \times N}} \left\{ E_{\text{iso}}(\mathbf{u}) = \sum_{1 \leq i,j \leq N} \psi((\nabla_{x}\mathbf{u})_{i,j}, (\nabla_{y}\mathbf{u})_{i,j}) + \frac{\alpha}{2} \|\mathbf{A}\mathbf{u} - \mathbf{f}\|_{\mathbb{R}^{K \times K}}^{2} \right\}, \quad (3)$$

$$= \sum_{1 \leq i,j \leq N} \rho(\sqrt{(\nabla_{x}\mathbf{u})_{i,j}^{2} + (\nabla_{y}\mathbf{u})_{i,j}^{2}}) + \frac{\alpha}{2} \|\mathbf{A}\mathbf{u} - \mathbf{f}\|_{\mathbb{R}^{K \times K}}^{2} \right\}, \quad (3)$$

• ∇_x and ∇_y are the forward difference operators with a specific boundary condition.

Section 2. Assumptions on potential functions $\rho(\cdot)$

Assumptions on potential functions $\rho(\cdot)$

- (AS1) $\rho(0) = 0, \rho(s) < +\infty, \forall s < +\infty$ with 0 as its strict minimizer;
- (AS2) $\rho(s)$ is increasing over $[0, \infty)$;
- (AS3) $\rho(s)$ is C^2 on $(0, +\infty)$;
- (AS4) $\rho''(s) < 0$ strictly increases on $(0, +\infty)$ or $\rho''(s) \equiv 0$ on $(0, +\infty)$.

Assumptions on potential functions $\rho(\cdot)$

- some potential functions

$$\begin{aligned} & \text{when } 0 0, a > 2 & \text{when } p > 1, \theta > 0. \\ & \rho_1(s) = s & \rho_2(s) = s^p & \rho_2(s) = \min\{\theta s^2, 1\} \\ & \rho_2(s) = s^p & \rho_2(s) = s^p \\ & \rho_3(s) = \ln(\theta s + 1) & \rho_4(s) = \frac{\theta s}{1 + \theta s} \\ & \rho_5(0) = 0, \rho_5(s) = 1 \text{ if } s > 0 \\ & \rho_6(s) = \ln(\theta s^p + 1) & \rho_7(s) = \frac{\theta s^p}{1 + \theta s^p} & \rho_7(s) = \frac{\theta s^p}{1 + \theta s^p} \\ & \rho_8(s) = \begin{cases} \theta s, & s \leq \theta \\ \frac{-s^2 - \theta^2 + 2a\theta s}{2(a-1)}, & \theta < s < a\theta \\ \frac{(a+1)\theta^2}{2}, & s > a\theta \end{cases} \end{aligned}$$

Section 3. Nonconvex regularization: Motivation

Nonconvex regularization: Motivation

- Key features of signals and images:
 - Edges
 - Contrasts
- Convex regularizer is impossible to perfectly recover a nonconstant signal.

Nonconvex regularization: Motivation - 1D signal

Proposition

Assume $\rho(\cdot)$ to be convex and satisfy (AS1)(AS2). If a signal $\tilde{u} \in \mathbb{R}^N$ can be recovered by the minimization problem (1) with $f = A\tilde{u}$, then $\tilde{u} \in \mathbb{R}^N$ is a constant signal, i.e., $\tilde{u} = c(1, 1, \dots, 1) \in \mathbb{R}^N$ for some $c \in \mathbb{R}$.

Section 4. Truncated regularization framework

Truncated regularization framework

A new regularizer function

$$\overline{T}(\cdot) = \rho_{\tau}(\cdot) = \rho(\min(\cdot, \tau)), \tag{4}$$

- $\tau > 0$ is a positive real parameter.
- Flat on $(\tau, +\infty)$.
- If $\rho(\cdot)$ satisfies the basic assumptions (AS1)(AS2), $\overline{T}(\cdot) = \rho_{\tau}(\cdot)$ also satisfies the basic assumptions (AS1)(AS2).
- $\overline{T}(\cdot)$ is always nonconvex.

Truncated regularization framework - subadditivity of min function

Lemma

Given $a, b \ge 0, \tau > 0$, then

$$\min(a+b,\tau) \le \min(a,\tau) + \min(b,\tau). \tag{5}$$

Proposition

Given $\tau > 0$, if $\rho(\cdot)$ satisfies the subadditivity property over $[0, +\infty)$ and the assumptions (AS1)(AS2), then its truncated version $\overline{T}(\cdot) = \rho(\min(\cdot, \tau))$ also has the subadditivity property over $[0, +\infty)$.

Section 5. Theoretical justification in 1D

Theoretical justification in 1D

- truncated regularization in 1D signal

- $\bullet \emptyset \neq \Omega \subsetneq J = \{1, \cdots, N\}.$
- $\mathbf{1}_{\Omega}$ be its indicator function and $\zeta > 0$ be a real number.
- $J_0 = \{i : (\nabla_x \mathbf{1}_{\Omega})_i = 0\}.$

Consider now the minimization problem (1) using truncated regularization where $f = A(\zeta \mathbf{1}_{\Omega}) \in \mathbb{R}^{K}$. Denote

$$E^{\zeta}(u) = \sum_{1 \le i \le N} \overline{T}(|(\nabla_x u)_i|) + \frac{\alpha}{2} ||A(u - \zeta \mathbf{1}_{\Omega})||_{\mathbb{R}^K}^2.$$
 (6)

Theoretical justification in 1D

- perfect recovery of 1D signal

The following theorem shows the perfect recovery (i.e., contrast preservation) of the signal $\zeta \mathbf{1}_{\Omega}$ by (1) with a truncated regularization.

Theorem

If $\zeta > \tau + \sqrt{\frac{4\overline{T}(\tau)}{\alpha \mu_{\min}}} \# J_1$, then the global minimizer is $\zeta \mathbf{1}_{\Omega}$. Here $\mu_{\min} > 0$ is the minimal eigenvalue of $A^T A$.

Theoretical justification in 1D

- perfect recovery of 1D signal

Theorem

Assume $A^TA = diag\{d_1, d_2, \dots, d_N\}, d_i > 0, i = 1, 2, \dots, N$ and the regularizer function $\overline{T}(\cdot)$ in (6) to satisfy the subadditivity (Note here we do not require the finiteness of τ). Let v be the global minimizer of (6), then

- (1) The extremum principle holds, i.e., $0 \le v_i \le \zeta$ for all $i \in J$;
- (2) No new (and thus false) discontinuity appears in v, i.e., $J_1^* = \{i \in J : (\nabla_x v)_i \neq 0\} \subseteq J_1;$
- (3) v preserves the monotonicity (not necessarily strict) from the input signal $\zeta \mathbf{1}_{\Omega}$.

Section 6. Numerical demonstration in 2D

- truncated regularization in 2D image

• Anisotropic 2D truncated regularization model:

$$\min_{\mathbf{u} \in V} \left\{ E_{\text{ani}}^{\overline{T}}(\mathbf{u}) = \sum_{1 \le i, j \le N} \overline{T}(|(\nabla_x \mathbf{u})_{ij}|) + \overline{T}(|(\nabla_y \mathbf{u})_{ij}|) + \frac{\alpha}{2} ||\mathbf{A}\mathbf{u} - \mathbf{f}||_V^2 \right\},$$
(7)

• *Isotropic 2D truncated regularization model:*

$$\min_{\mathbf{u} \in V} \left\{ E_{\text{iso}}^{\overline{T}}(\mathbf{u}) = \sum_{1 \le i, j \le N} \overline{T} \left(\sqrt{(\nabla_x \mathbf{u})_{ij}^2 + (\nabla_y \mathbf{u})_{ij}^2} \right) + \frac{\alpha}{2} \|\mathbf{A}\mathbf{u} - \mathbf{f}\|_V^2 \right\},\tag{8}$$

which are truncated versions of (2) and (3), respectively.

- ADMM solver

Constrained optimization problem:

$$\min_{(\mathbf{u}, \mathbf{q}) \in V \times Q} \left\{ \tilde{E}_{iso}^{\overline{T}}(\mathbf{u}, \mathbf{q}) = \sum_{1 \le i, j \le N} \overline{T}(|\mathbf{q}_{ij}|) + \frac{\alpha}{2} ||\mathbf{A}\mathbf{u} - \mathbf{f}||_V^2 \right\},$$
s.t.
$$\mathbf{q} = (\nabla_x \mathbf{u}, \nabla_y \mathbf{u}).$$
(9)

The augmented Lagrangian functional for the problem (9):

$$\mathcal{L}(\mathbf{u}, \mathbf{q}; \boldsymbol{\lambda}) = \sum_{1 \le i, j \le N} \overline{T}(|\mathbf{q}_{ij}|) + \frac{\alpha}{2} \|\mathbf{A}\mathbf{u} - \mathbf{f}\|_{V}^{2} + (\boldsymbol{\lambda}, \mathbf{q} - \nabla \mathbf{u})_{Q} + \frac{\beta}{2} \|\mathbf{q} - \nabla \mathbf{u}\|_{Q}^{2}$$
$$= R(\mathbf{q}) + \frac{\alpha}{2} \|\mathbf{A}\mathbf{u} - \mathbf{f}\|_{V}^{2} + (\boldsymbol{\lambda}, \mathbf{q} - \nabla \mathbf{u})_{Q} + \frac{\beta}{2} \|\mathbf{q} - \nabla \mathbf{u}\|_{Q}^{2},$$

- $\lambda \in Q$ is the Lagrangian multiplier, $\beta > 0$ is a constant;
- \bullet $R(\mathbf{q})$ is introduced to simply the notation of the regularization term.

- algorithm for (8)

- 1: Initialization: $\mathbf{u}^0, \mathbf{q}^0, \boldsymbol{\lambda}^0$;
- 2: while stopping criteria is not satisfied do
- 3: Compute \mathbf{q}^{k+1} , \mathbf{u}^{k+1} , and update $\boldsymbol{\lambda}^{k+1}$ as follows:

$$\mathbf{q}^{k+1} \in \operatorname*{argmin}_{\mathbf{q} \in Q} \mathcal{L}(\mathbf{u}^k, \mathbf{q}; \boldsymbol{\lambda}^k), \tag{10}$$

$$\mathbf{u}^{k+1} = \operatorname*{argmin}_{\mathbf{u} \in V} \mathcal{L}(\mathbf{u}, \mathbf{q}^{k+1}; \boldsymbol{\lambda}^k), \tag{11}$$

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k + \beta(\mathbf{q}^{k+1} - \nabla \mathbf{u}^{k+1}), \tag{12}$$

4: end while

- u-sub problem (11)

The \mathbf{u} -sub problem (11) is a quadratic optimization problem, whose optimality condition gives a linear system

$$\alpha \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{u} - \mathbf{f}) - \nabla^{\mathsf{T}} \boldsymbol{\lambda}^{k} - \beta \nabla^{\mathsf{T}} \mathbf{q}^{k+1} - \beta \Delta \mathbf{u} = 0,$$

which can be solved by Fourier transform with an FFT implementation.

- q-sub problem (10)

The problem (10) reads

$$\min_{\mathbf{q} \in \mathcal{Q}} \left\{ \sum_{1 \leq i, j \leq N} \overline{T}(|\mathbf{q}_{ij}|) + (\boldsymbol{\lambda}^k, \mathbf{q} - \nabla \mathbf{u}^k)_{\mathcal{Q}} + \frac{\beta}{2} \|\mathbf{q} - \nabla \mathbf{u}^k\|_{\mathcal{Q}}^2 \right\},$$

which, by the monotonicity of ρ over $[0, +\infty)$, is

$$\min_{\mathbf{q}\in\mathcal{Q}}\left\{\sum_{1\leq i,j\leq N}\min\left(\rho(|\mathbf{q}_{ij}|),\rho(\tau)\right)+\frac{\beta}{2}|\mathbf{q}_{i,j}-\mathbf{w}_{i,j}|^2\right\},\,$$

where $\mathbf{w} = \nabla \mathbf{u}^k - \boldsymbol{\lambda}^k/\beta \in Q$. This problem is separable.

$$\min_{\boldsymbol{z} \in \mathbb{R}^2} \left\{ g(\boldsymbol{z}; \boldsymbol{w}) = \min \left(\rho(|\boldsymbol{z}|), \rho(\tau) \right) + \frac{\beta}{2} |\boldsymbol{z} - \boldsymbol{w}|^2 \right\},$$

where $|z| = \sqrt{(z^{(1)})^2 + (z^{(2)})^2}$; and $w \in \mathbb{R}^2, \tau > 0, \beta > 0$ are given.

- q-sub problem (10) Cont.

Suppose
$$z^* = \underset{z \in \mathbb{R}^2}{\operatorname{argmin}} g(z; w)$$
.

- If w = (0,0), it is clear that $z^* = (0,0)$.
- For w with $|w| \neq 0$, z^* has the same direction as w: $z^* = \frac{|z^*|}{|w|} w$. Thus to obtain z^* , it is sufficient to calculate $|z^*|$ as the minimizer of the following univariate problem:

$$\min_{s\geq 0} \left\{ \chi(s; \tau, \beta, t) = \min \left(\rho(s), \rho(\tau) \right) + \frac{\beta}{2} (s-t)^2 \right\}, \quad (13)$$

where t = |w|.

- q-sub problem (10) Cont.

For the convenience of description, we introduce the following two functions

$$\chi_1(s) = \rho(s) + \frac{\beta}{2}(s-t)^2,$$
 (14)

$$\chi_2(s) = \rho(\tau) + \frac{\beta}{2}(s-t)^2.$$
(15)

- q—sub problem (10) Cont.

Proposition

The minimization problem (13) can be solved by

$$s^* = \begin{cases} s_1^*, & \chi_1(s_1^*) < \chi_2(s_2^*), \\ \{s_1^*, s_2^*\}, & \chi_1(s_1^*) = \chi_2(s_2^*), \\ s_2^*, & \chi_1(s_1^*) > \chi_2(s_2^*), \end{cases}$$
(16)

where

$$s_1^* = \operatorname*{argmin}_{0 \leq s \leq \tau} \chi_1(s); s_2^* = \operatorname*{argmin}_{s \geq \tau} \chi_2(s) = \max\left(t, \tau\right).$$

- q-sub problem (10) Cont.

Proposition

[second order lower bound] If $\rho(\cdot)$ satisfies (AS1)(AS2)(AS3)(AS4) and s_{loc}^* is a local minimizer of $\min_{s\geq 0} \chi_1(s)$, then either $s_{loc}^*=0$ or $s_{loc}^*\geq s_L$.

Proposition

Under the assumptions of Proposition above, we have:

- (1) If $s_L > 0$, $\chi_1'(s_L) \ge 0$ ($s_L = 0$, $\chi_1'(0+) \ge 0$), then $s_1^* = 0$ is the unique global minimizer of $\min_{0 \le s \le \tau} \chi_1(s)$.
- (2) If $s_L > 0$, $\chi_1'(s_L) < 0$ ($s_L = 0$, $\chi_1'(0+) < 0$), then the equation $\chi_1'(s) = 0$ has a unique root \bar{s} on $[s_L, t]$. Set $\mathcal{X} = \{0, \min(\bar{s}, \tau)\}$. The global minimizer of $\min_{0 \le s \le \tau} \chi_1(s)$ is given by $s_1^* = \arg\min_{s \in \mathcal{X}} \chi_1(s)$.

- algorithm for solving (13)

```
t, \tau, the second order bound s_L and functions \chi_1(s), \chi_1'(s+), \chi_2(s);
Ensure:
             // Find the global minimizer of s_1^* = \arg \min_{0 \le s \le \tau} \chi_1(s).
             if \chi_1'(s_L+) < 0 then
     3:
                     Find the root \bar{s} of equation \chi'_1(s) = 0 in [s_L, t];
     4:
5:
             Set the feasible set \mathcal{X} = \{0, \min(\bar{s}, \tau)\}:
                 Choose s_1^* \in \mathcal{X} with s_1^* := \arg \min_{s \in \mathcal{X}} \chi_1(s);
             else
                Set s_1^* = 0;
             end if
              // Find the global minimizer of s_2^* = \arg\min_{t \le \tau} \chi_2(s).
             Set s_2^* = \max\{\tau, t\};
             // Find the global minimizer s*.
             Choose s* with
                                                                 s^* = \begin{cases} s_1^*, & \chi_1(s_1^*) < \chi_2(s_2^*), \\ \{s_1^*, s_2^*\}, & \chi_1(s_1^*) = \chi_2(s_2^*), \\ s_1^*, & \text{otherwise} \end{cases}
```

- convergence analysis

(AS5) $A^{\mathsf{T}}A$ ($\mathbf{A}^{\mathsf{T}}\mathbf{A}$) is invertible.

Theorem

Assume that (AS1)(AS2)(AS3)(AS4)(AS5) hold and $\lambda^{k+1} - \lambda^k \to 0$ as $k \to \infty$ in the ADMM. Then any cluster point of the sequence $\{(\mathbf{u}^k, \mathbf{q}^k, \lambda^k)\}$, if exists, is a KKT point of the constrained optimization problem.

[Satellite. Size: 135 × 135]

[Blurry & Noisy. PSNR: 19.99dB]

[TV. PSNR: 23.30dB]

[TR-TV. PSNR: 23.95dB]

[SCAD. PSNR: 24.11dB]

[TR-\(\ell_2\). PSNR: 23.01dB]

 $[\ell_p. PSNR: 23.93dB]$

[TR- ℓ_p . PSNR: 24.04dB]

[LN. PSNR: 23.77dB]

[TR-LN. PSNR: 24.04dB]

[FRAC. PSNR: 23.78dB]

[TR-FRAC. PSNR:23.87dB]

[Shepp-Logan. Size: 256 × 256]

[Blurry & Noisy. PSNR: 19.02dB]

[TV. PSNR: 26.66dB]

[TR-TV. PSNR: 27.38dB]

[SCAD. PSNR: 27.67dB]

[TR-\(\ell_2\). PSNR: 24.86dB]

[ℓ_p. PSNR: 27.20dB]

[TR- ℓ_p . PSNR: 27.45dB]

[LN. PSNR: 27.55dB]

[TR-LN. PSNR: 28.02dB]

[FRAC. PSNR: 26.69dB]

[TR-FRAC. PSNR:27.30dB]

- experimental results analysis

- PSNR values

TR-TV		$TR-\ell_p$		TR-LN		TR-FRAC		SCAD	
$(\alpha, \beta) =$		$(\alpha, \beta, p) =$		$(\alpha, \beta, \theta) =$		$(\alpha, \beta, \theta) =$		$(\alpha, \beta) =$	
(2000, 600)		(5000, 5000, 0.5)		(13000, 8000, 10)		(8000, 6000, 10)		(200, 100)	
τ	PSNR	τ	PSNR	τ	PSNR	τ	PSNR	$\theta(\tau = a\theta)$	PSNR
0.1	23.12	0.1	23.63	0.1	23.57	0.1	23.52	0.01	22.39
0.2	23.58	0.2	24.04	0.2	24.04	0.2	23.87	0.04	23.22
0.3	23.48	0.3	23.98	0.3	23.90	0.3	23.83	0.07	23.89
0.4	23.81	0.4	23.93	0.4	23.90	0.4	23.81	0.10	24.11
0.5	23.99	0.5	23.93	0.5	23.90	0.5	23.81	0.13	24.07
0.6	24.00	0.6	23.93	0.6	23.90	0.6	23.81	0.16	23.93
0.7	24.00	0.7	23.93	0.7	23.90	0.7	23.81	0.19	23.77
0.8	24.00	0.8	23.93	0.8	23.90	0.8	23.81	0.22	23.61
0.9	24.00	0.9	23.93	0.9	23.90	0.9	23.81	0.25	23.49
1.0	24.00	1.0	23.93	1.0	23.90	1.0	23.81	0.27	23.48

Section 7. Conclusions

Conclusions

- Any convex regularization, is impossible to recover the ground truth.
- Presented a general truncation regularization framework.
- Analysis in 1D theoretically to show better performance.
- Optimization in 2D with implementation and convergence.
- Experiments numerically showed advantages of our method.
- One future work is to design more efficient algorithms.

Section 8. References

- Wu C. and Liu Z. and Wen S. A General Truncated Regularization Framework for Contrast-Preserving Variational Signal and Image Restoration: Motivation and Implementation. Accepted by Sci. China. Math. 2018.
 - Guo K, Han D, and Yuan X. Convergence analysis of Douglas—Rachford splitting method for "strongly + weakly" convex programming. SIAM J Numer Anal, 2017, 55: 1549-1577.
- Wang Y, Yin W, and Zeng J. Global convergence of ADMM in nonconvex nonsmooth optimization. arXiv preprint arXiv:1511.06324v4, 2016.
- G Li and Pong T K. Global convergence of splitting methods for nonconvex composite optimization. SIAM J Optim, 2015, 25: 2434–2460.
- Hintermüller M and Wu T. Nonconvex TV^q-models in image restoration: Analysis and a trust-region regularization-based superlinearly convergent solver. SIAM J Imaging Sci, 2013, 6: 1385–1415.
- Xu Z, Chang X, Xu F, et al. $L_{1/2}$ regularization: A thresholding representation theory and a fast solver. IEEE Trans Neural Netw Learn Syst, 2012, 23: 1013–1027.

- Wu C and Tai X-C. Augmented lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J Imaging Sci, 2010, 3: 300–339.
- Nikolova M, Ng M K, and Tam C-P. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans Image Process, 2010, 19: 3073–3088.
- Wang Y, Yang J, Yin W, et al. A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci, 2008, 1: 248–272.
- Nikolova M. Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model Simul, 2005, 4: 960–991.
- Rudin L I, Osher S, and Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D, 1992, 60: 259–268.

Thank you!