Prediction models

Seminar Data Science for Economics

Madina Kurmangaliyeva

m.kurmangaliyeva@uvt.nl

Spring 2021

Tilburg University

In general, all prediction tasks have the same basic steps:

- 1. Train a less flexible model on a training sample
- 2. Train a **more flexible model** on the training sample
- 3. Compare MSE of model 1 and 2 on the **validation sample** and choose the one with the smallest MSE
- 4. Calculate MSE of the chosen model on the **test** sample. √MSE is the expected spread of the prediction errors of your best prediction model.

https://madina-k.github.io/dse_mk2021

Having a validation set and test set?

Why don't we use the MSE of the chosen model in the validation set?

Why do we need a test set?

Model 1

Model 2

Predictive power

Model 1 = Model 2

MSE ~ N(5,1) MSE ~ N(5,1)

Predictive power

Model 1 = Model 2

MSE ~ N(5,1) MSE ~ N(5,1)

Validation 1 5.26 5.05

Predictive power

Model 1 = Model 2

MSE ~ N(5,1) MSE ~ N(5,1)

Validation 1 5.26 5.05

Validation 2 5.90 6.56

Validation 3 4.63 4.86

Predictive power

Model 1 = Model 2

MSE ~ N(5,1) MSE ~ N(5,1)

Validation 1 5.26 5.05

5.90 6.56

Validation 3 4.63 4.86

Validation 2

Predictive power

5.05

Model 1 = Model 2

MSE ~ N(5,1) MSE ~ N(5,1)

Validation 1 5.26

Validation 2 5.90 6.56

Validation 3 4.63 4.86

Predictive power

Model 1 = Model 2

MSE ~ N(5,1) MSE ~ N(5,1)

Validation 1 5.26

Validation 2 5.90

Validation 3 4.63

5.05

6.56

4.86

$E(MSE | min MSE) \neq E(MSE)$

Hence, we need a yet untouched sample (test sample) to estimate the unbiased out-of-sample MSE

Isn't it wasteful to split data in 3 equal parts (training, validation, and test)?

TEST

Your data

Your training + validation data

Your training + validation data

$$CV_MSE(\text{model } i) = \frac{1}{2} (MSE_1^i + MSE_2^i)$$

$$CV_MSE(\text{model } i) = \frac{1}{2} (MSE_1^i + MSE_2^i)$$

2-fold cross validation

$$CV_MSE(\text{model } i) = \frac{1}{2} (MSE_1^i + MSE_2^i)$$

Train	Train	Train	Train	Validate
-------	-------	-------	-------	----------

Train	Train	Train	Train	Validate
Train	Train	Train	Validate	Train

Train	Train	Train	Train	Validate
Train	Train	Train	Validate	Train
Train	Train	Validate	Train	Train
Train	Validate	Train	Train	Train
Validate	Train	Train	Train	Train

Train	Train	Train	Train	Validate
Train	Train	Train	Validate	Train
Train	Train	Validate	Train	Train
Train	Validate	Train	Train	Train
Validate	Train	Train	Train	Train
CV_MSE(model i) = $\frac{1}{5} \sum_{j=1}^{5} MSE_{j}^{i}$				

Train Train Train Validate

Train Train Validate Train

Train Train Validate Train

Train

5-fold cross validation

Train Validate Train Train Train

ValidateTrainTrainTrain

CV_MSE(model i) = $\frac{1}{5} \sum_{j=1}^{5} MSE_{j}^{i}$

In general, can generalize to a k-fold CV procedure

$$k = 2$$

Split in half

Leave-one-out CV

fig 5.3 from ISLR

In general, can generalize to a k-fold CV procedure

k = 2

Split in half

Fig. 2.9 from ISLR

Fig. 5.6 from ISLR.

Bottomline

To have or not to have the test set?

TEST

Your data