1. KNN Algorithm:

- KNN (K-Nearest Neighbors) is a supervised machine learning algorithm used for both classification and regression tasks.
- It makes predictions based on the similarity of a new data point to its k nearest neighbors in the training dataset.

2. Choosing the Value of K:

- The value of K is typically chosen through hyperparameter tuning, using techniques like cross-validation.
- A small value of K may lead to noisy predictions and overfitting, while a large value of K may result in overly smoothed decision boundaries and underfitting.

3. Difference between KNN Classifier and Regressor:

- KNN Classifier predicts the class label of a data point based on the majority class of its k nearest neighbors.
- KNN Regressor predicts the continuous value of a data point based on the average or weighted average of the target values of its k nearest neighbors.

4. Measuring Performance of KNN:

 Performance of KNN can be measured using classification accuracy, precision, recall, F1 score, or regression metrics like mean squared error (MSE) or R-squared

5. Curse of Dimensionality:

- The curse of dimensionality refers to the phenomenon where the feature space becomes increasingly sparse as the number of dimensions (features) grows.
- In KNN, as the dimensionality of the feature space increases, the distance between data points becomes less meaningful, making it difficult to find meaningful nearest neighbors.

6. Handling Missing Values in KNN:

- One approach is to impute missing values using techniques like mean imputation, median imputation, or KNN imputation itself.
- Alternatively, missing values can be handled by treating them as a separate category or using advanced imputation techniques like iterative imputation.

7. Comparison of KNN Classifier and Regressor:

- KNN Classifier is suitable for classification problems where the decision boundaries are relatively smooth and the classes are well-separated.
- KNN Regressor is suitable for regression problems where the relationships between features and target values are not linear and have complex patterns.

8. Strengths and Weaknesses of KNN:

- Strengths: Simple to implement, non-parametric, handles multi-class problems, robust to noisy training data.
- Weaknesses: Computationally expensive during prediction, sensitive to the choice of distance metric and value of K, requires a large amount of memory to store the entire training dataset.

9. Difference between Euclidean and Manhattan Distance:

- Euclidean distance measures the shortest straight-line distance between two points in Euclidean space.
- Manhattan distance (also known as city block or taxicab distance) measures the
 distance between two points as the sum of the absolute differences of their
 coordinates.

10. Role of Feature Scaling in KNN:

• Feature scaling is important in KNN because it helps to ensure that all features contribute equally to the distance calculation.

- Without scaling, features with larger magnitudes may dominate the distance calculation, leading to biased results.
- Common scaling techniques include standardization (subtracting the mean and dividing by the standard deviation) and normalization (scaling features to a fixed range, typically [0, 1]).