- On note $f(\theta) = e^{-i\theta} + 1 + e^{i\theta} + e^{2i\theta} + e^{3i\theta} + e^{4i\theta}$ 2. Montrer que $|f(\theta)| = |1 + e^{i\theta} + e^{i2\theta} + e^{i3\theta} + e^{4i\theta} + e^{5i\theta}|$
- - 3. En déduire que pour tout $\theta \in \mathbb{R} \setminus \{2k\pi, k \in \mathbb{Z}\}$ on a

1. Résoudre pour $\theta \in \mathbb{R}$, l'équation $e^{i\theta} = 1$.

4. En déduire la valeur de $\inf\{|f(\theta)|, \theta \in \mathbb{R}\}.$ 5. Montrer que pour tout $\theta \in \mathbb{R}$, $|f(\theta)| < 6$. 6. En déduire la valeur de $\sup\{|f(\theta)|, \theta \in \mathbb{R}\}.$

 $|f(\theta)| = \left| \frac{\sin(3\theta)}{\sin(\frac{\theta}{2})} \right|.$