In [1]: #OPEN FILES AND IMPORT LIBRARIES import pandas as pd import re import matplotlib.pyplot as plt df0 = pd.read excel("Data Analyst Report Writer Sample Dataset.xlsx", index col=0) #df0 = pd.read csv("Data Analyst Report Writer Sample Dataset.csv",index col=0) In [2]: #FIRST FIVE LINES #----df0.head(5)Out[2]: skill_title DocumentId Type OriginalTitle CreationDate OriginalCompanyName RangeFrom RangeTo Clu ObjectId computer 2020-03-10 software Lab 5bd23e5214b35001c88804db University of Toronto 201163998 48650.0 48650.0 Technician 05:29:20 technical support equipment Lab 2020-03-10 5aca7f0d0cbf2c0460d62041 201163998 University of Toronto 48650.0 48650.0 job Technician 05:29:20 servicing laboratory Lab 2020-03-10 5add7a07dccd3b50f3bf5a69 201163998 48650.0 equipment job University of Toronto 48650.0 Technician 05:29:20 installation Lab 2020-03-10 laboratory 201163998 5acbe821c2c2f1713ae19ccf job University of Toronto 48650.0 48650.0 05:29:20 Technician maintenance mechanical 2020-03-10 Lab 5aa76e2653b12204854a64f0 48650.0 201163998 University of Toronto 48650.0 equipment job 05:29:20 Technician maintenance In [3]: #SHAPE OF THE DATASET df0.shape Out[3]: (231713, 17) In [4]: #Check that the data types are correct '''Agregation vectors should be floats or ints not objects, if object then there may be bad character SIII df0.dtypes Out[4]: skill_title object DocumentId int64 Type object OriginalTitle object datetime64[ns] CreationDate OriginalCompanyName object float64 RangeFrom RangeTo float64 ClusteredTitle object OriginalLocation object OriginalSalary object CountryCode object City object SalaryParsed object State object Complexity float64 float64 importance dtype: object #Name of columns and index of each column: In [5]: ''' This function provides a clean output of columns and indexes''' def col(dfs): list col = list(dfs.columns.values) list_number_col = [] zip_list = [] for i in range(0, len(list_col)): list_number_col.append(i) zip_list = list(zip(list_number_col, list_col)) #[(0, 'event_date'), (1, 'id'), (2, 'dimension_1')] for i in zip_list: a = i[0]b = i[1]print(str(a) + "|" + b) print(col(df0)) 0|skill title 1 | DocumentId 2|Type 3|OriginalTitle 4|CreationDate 5|OriginalCompanyName 6|RangeFrom 7 | RangeTo 8|ClusteredTitle 9|OriginalLocation 10|OriginalSalary 11 | CountryCode 12|City 13|SalaryParsed 14|State 15 | Complexity 16|importance None In []: In [59]: | #Check unique values of columns '''Use this line to have a close look at the data''' set(list(df0.iloc[:,11])) #len(sorted(set(list(df0.iloc[:,5])), reverse=True)) #check = sorted(set(list(df0.iloc[:,5])), reverse=True) #print("Length of list : ",len(check)) #print("TOP 3 VALUES OF LIST : ",(check[0:3])) #print("BOT 3 VALUES OF LIST : ",(check[-3:])) Out[59]: {'AU', 'CA', 'GB', 'SA', 'US', nan} In [9]: '''Vectors Analysis: - skill_title : 3578 Job Titles - DocumentId : 7*642 IDS* - Type: ['resume', 'job'] - OriginalTitle: - CreationDate: 5708 dates ['2020-04-05 03:56:11', , Timestamp('2005-10-15 00:00:00')]] - CreationDate: - OriginalCompanyName: Where the employee comes from - RangeFrom: - RangeTo: - OriginalSalary: - OriginalLocation: - CountryCode: - City - State - SalaryParsed: ["b'\\x00'", "b'\\x01'"] cannot use - Complexity: [nan,1.0,.... 10.0] Ten grades of complexity [0.804382] - importance: *VARIABLES:* Suply: Demand = Resume Supply = JobOut[9]: "Vectors Analysis:\n-----\n- skill_title : 3578 Job Titles \n- DocumentI ['resume', 'job']\n- OriginalTitle: 57 7642 IDS\n- Type: 08 dates ['2020-04-05 03:56:11',, Timestamp('2005-10-15 00:00:00')]] \n- CreationDate:\n- Origi nalCompanyName: \n- RangeFrom:\n- RangeTo:\n\n" In [159]: import datetime as dt #CREATE INDEX FOR YEAR AND MONTH df0['CreationDate'] = pd.to datetime(df0['CreationDate']) df0['year'] = pd.DatetimeIndex(df0['CreationDate']).year df0['month'] = pd.DatetimeIndex(df0['CreationDate']).month #CREATE INDEX FOR YEAR 2020 filterDate = [2020]index_date = df0.year.isin(filterDate) #CREATE NEW DATASET FOR 2020 ONLY df1 = df0[index_date] print("ALL DATES (df0 shape) = ",df0.shape, "\n", "2020 ONLY (df1 shape) = ",df1.shape) ALL DATES (df0 shape) = (231713, 19)2020 ONLY (df1 shape) = (112744, 19)In [160]: #Prepare Series Supply of Jobs for 2020 #----regex_supply = "resume" series_supply = df1.iloc[:,2] index supply = series supply.str.contains(regex supply) index_supply #REMOVE NOT NEEDED DATES df1_supply = df1[index_supply] print("SUPPLY (RESUME) = ",df1_supply.shape) SUPPLY (RESUME) = (3981, 19)In [161]: #Prepare Series Demand of Jobs for 2020 #----regex_demand = "job" series_demand = df1.iloc[:,2] index_demand = series_demand.str.contains(regex_demand) index_demand #REMOVE NOT NEEDED DATES df1_demand = df1[index_demand] print("DEMAND (JOBS) = ",df1_demand.shape) DEMAND (JOBS) = (108763, 19)In [162]: #JOBS - TEN MOST DEMANDED SKILLS IN 2020 #----df2_demand = df1_demand.iloc[:,[0,1]] df2_demand_agg = df2_demand.groupby('skill_title').count() df2_demand_agg = df2_demand_agg.sort_values(by='DocumentId', ascending=False).apply(lambda x: x.nlarge st(10)).reset_index() df2_demand_agg = df2_demand_agg.rename(columns={'DocumentId':'skill_count'}) df2_demand_agg Out[162]: skill_title skill_count 0 Responsibility 2023 2007 Management 2 **Clinical Trials** 1972 Communication Skills 1922 Work Collaboratively 1581 5 Research 1430 6 1358 Training 7 Interpersonal 1197 Leadership 8 1115 9 Prioritization 1087 In []: In [163]: #RESUME - DEMANDED SKILLS NEEDED IN 2020 BY JOB TITLE, SKILL TYPE, LOCATION df2 demand_multivector = df1_demand.iloc[:,[0,1,8,11,12]] df2_demand_multivector = df2_demand_multivector.groupby(['ClusteredTitle','skill_title','City','Countr yCode']).count() df2_demand_multivector = df2_demand_multivector.sort_values(by=['DocumentId','ClusteredTitle','City'], ascending=False).reset_index() df2_demand_multivector = df2_demand_multivector.rename(columns={'DocumentId':'skill count'}) df2 demand multivector Out[163]: ClusteredTitle skill_title CountryCode skill_count City 0 regulatory affairs manager Drug Development Montréal CA 130 English Montréal 1 regulatory affairs manager CA 130 2 regulatory affairs manager Montréal CA 130 French Teamwork Montréal 3 regulatory affairs manager CA 130 regulatory affairs manager **Business Strategy** Montréal CA 128 66072 software implementation CA .net developer Toronto 66073 **Toronto** CA .net developer software planning 66074 software product management **Toronto** CA .net developer 66075 .net developer time management Toronto CA 66076 user experience design .net developer Toronto 66077 rows × 5 columns In [172]: #SAMPLE AGREGATION WHAT ARE THE 20 MOST DEMANDED JOBS IN THE CITY OF "Toronto" index_city = df2_demand_multivector.pipe(lambda x: x['City'] == "Toronto") df2_city = df2_demand_multivector[index_city].iloc[:,[1,2]].groupby('skill_title').count().sort_values (by= 'City', ascending=False).head(5).rename(columns={'City':'skill count'}) df2 city Out[172]: skill_count skill_title Responsibility 65 Management 64 Interpersonal 50 **Communication Skills** 48 **Problem Solving** 45 df2_city.plot.bar(rot=0) Out[173]: <matplotlib.axes._subplots.AxesSubplot at 0x221308bc190> skill count 60 50 40 30 20 10 0 ResponsibilityManagementInterpers@mmunication Exhibitem Solving skill_title In [166]: #OUTPUT THE INVENTORY OF SKILLS FOR JOBS (df2 demand multivector).to csv('inventory skills demand.csv', sep = ',', index=False) In []: In [167]: #RESUME - SUPPLIED SKILLS IN 2020 BY JOB TITLE, SKILL TYPE, LOCATION df2_supply_multivector = df1_supply.iloc[:,[0,1,8,11,12]] df2_supply_multivector = df2_supply_multivector.groupby(['ClusteredTitle','skill_title','City','Countr yCode']).count() df2 supply multivector = df2 supply multivector.sort values(by=['DocumentId','ClusteredTitle','City'], ascending=False) .reset_index() df2_supply_multivector = df2_supply_multivector.rename(columns={'DocumentId':'skill_count'}) df2_supply_multivector Out[167]: ClusteredTitle skill_title City CountryCode skill_count US 0 scientist Research Kalamazoo 8 1 scientist **Drug Discovery** Kalamazoo US 7 2 scientist High Performance Liquid Chromatography US Kalamazoo 7 Kalamazoo 3 researcher Research US 7 4 **Drug Discovery** Kalamazoo US 6 researcher 3720 Unclustered Retail Sales District Heights US 3721 Unclustered Supervision District Heights US Unclustered US 3722 financial reporting District Heights 3723 Unclustered internal financial reporting District Heights US 1 Unclustered US 3724 web design District Heights 3725 rows × 5 columns **#OUTPUT THE INVENTORY OF SKILLS FOR JOBS** In [169]: (df2 supply multivector).to csv('inventory skills supply.csv', sep = ',', index=False) In []: