<u>-</u>					
Register Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test – II Question Paper

Degree & Branch	B.E. & Computer Science and Engineering				Semester	IV
Subject Code & Name	UCS1401 & Computer Organization and Architecture				Regulation:	2018
Academic Year	2021-2022	Batch	2020-2024	Date	3-05-2022	FN
Time: 90 Minutes	A	nswer All	Maximum	: 50 Marks		

 $Part - A (6 \times 2 = 12 Marks)$

$1 \text{ art} - A \left(0 \wedge 2 - 12 \text{ Waiks} \right)$						
Knowle -dge Level	Question	Course Outcome	Performa -nce Indicator			
K2	 What are the advantages of bit pair recoding in multiplication? ANS: speeding up the multiplication operation guarantees that the maximum number of summands (versions of the multiplicand) that must be added is n/2 for n-bit operands 	CO2	1.3.1			
K2	2. How PCSrc control signal in MIPS datapath is generated? ANS: To generate the PCSrc signal, we will need to AND together a signal from the control unit, which we call Branch, with the Zero signal out of the ALU	CO2	1.4.1			
K2	3. During the multiplication process of single precision floating point numbers, What operation needs to be performed for biasing the exponent of result. ANS: Subtract 127	CO2	1.3.1			
K2	 What are the bias values for IEEE single precision and double precision floating point representations? ANS: 127 and 1023 	CO2	1.4.1			
K2	5. What is need for sign bit extension in MIPS architecture? ANS: The sign extension unit has a 16-bit input that is sign-extended into a 32-bit result. Sign-extend To increase the size of a data item by replicating the high-order sign bit of the original data item in the highorder bits of the larger, destination data item.	CO3	1.3.1			
K2	6. List the merits of pipelining.ANS:• Increase in the throughput	CO3	1.3.1			

- Increase in the number of pipeline stages increases the number of instructions executed simultaneously.
- Pipelining increases the overall performance of the CPU.

$Part - B (3 \times 6 = 18 Marks)$

 $Part - C (2 \times 10 = 20 Marks)$

	10 E 1 ' d	$Part - C (2 \times 10 = 20 \text{ Marks})$		
		ultiplication of (+13) and (-6) by using Booth d bit pair recoding		
	ANS:			
	Multiplier Version of multiplicand selected by bit i	Multiplier bit-pair Multiplier bit on the right Multiplicand		
	Bit i Bit i - 1	i+1 i $i-1$ selected at position i		
	0 0 0×M	0 0 0 0×M		
	0 1 + 1×M	0 0 1 +1×M		
	1 0 -1×M	0 1 0 +1×M		
	1 1 0×M	0 1 1 +2×M		
		1 0 0 -2×M		
	Booth multiplier recoding table.	1 0 1 -1×M		
		1 1 0 -1×M		1.3.1
K3		1 1 0×M	CO2	2.1.3
	1 0 1 0	00000		
		(OR)		
K3	11. Explain restor	ing division method for 1010 by 0011.	CO2	1.3.1 2.1.3

Circuit arrangement for binary division.

Do the following three steps n times:

- 1. Shift A and Q left one bit position.
- 2. Subtract M from A, and place the answer back in A.
- 3. If the sign of A is 1, set q0 to 0 and add M back to A (that is, restore A); otherwise, set q0 to 1

Book example

Prepared By	Reviewed By	Approved By
Dr. D.Venkata Vara Prasad		
Dr.S.Saraswathi		
Course Coordinator	PAC Team	HOD