Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E 440.000 430.000 420.000 Radiell fart m/s 410.000 400.000 390.000 380.000 370.000 ò 200 400 600 800 1000 1200 1400 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 7.60e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjerna fusjonerer helium i kjernen

STJERNE B) radiusen er 1000 ganger solas radius.

STJERNE C) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE D) stjerna er bare noen hundretusen år gammel men skal allerede snart begynne sin første heliumfusjon

STJERNE E) radiusen er en hundredel av solens radius og gassen i stjerna er elektrondegenerert

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 9.437e+06 kg/m3̂ og temperatur 18 millioner K.

Kjernen i stjerne B har massetet
thet 5.997e+06 kg/m3 og temperatur 39 millioner K.

Kjernen i stjerne C har massetet
thet 3.132e+06 kg/m3̂ og temperatur 24 millioner K.

Kjernen i stjerne D har massetet
thet 2.842e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne E har massetet
thet $3.085\mathrm{e}{+06~\mathrm{kg/m}}\hat{3}$ og temperatur 21 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 3: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

Bølgelgende (cm)

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 3.976e+05 kg/m3̂ og temperatur 25.74 millioner K.

Kjernen i stjerne B har massetet
thet 9.560e+04 kg/m3̂ og temperatur 33.01 millioner K.

Kjernen i stjerne C har massetet
thet $4.028\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 29.49

millioner K.

Kjernen i stjerne D har massetet
thet $3.468\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 31.09 millioner K.

Kjernen i stjerne E har massetet
thet $4.880\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 21.09 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

Observasjon er gjort 51.80 dager etter første observasjon.

0.93

0.88

0.83

0.73

0.68

0.2856

0.2866

0.2876

0.2886

0.2896

0.2906

0.2916

0.2926

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

0.68 | 0.2866

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

0.93 0.88 0.83 0.78

0.2926

0.2936

Observasjon er gjort 103.59 dager etter første observasjon.

0.2896

0.2906

Bølgelengde (nm) minus 656nm

0.2916

0.2886

0.2876

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

39.33 34.96 30.59 26.22 21.85 17.48 13.11 8.74 4.37 0.00 0.00 4.37 8.74 13.11 17.48 21.85 26.22 30.59 34.96 39.33

x-posisjon (10⁻⁶ buesekunder)

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B_Figur_2.png

$Filen~2C/2C_Figur_1.png$

4.37

8.74

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 4.40 buesekunder i løpet av et millisekund. 39.33 34.96 y-posisjon (10⁻⁶ buesekunder) 30.59 26.22 21.85 17.48 13.11 8.74 4.37 0.00

13.11 17.48 21.85 26.22 30.59

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Oslo som ligger i en avstand av 250 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.83220 km/t.

Filen 3E.txt

Tog1 veier 103600.00000 kg og tog2 veier 102200.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 474 km/s.

Filen 4E.txt

Massen til gassklumpene er 1100000.00 kg.

Hastigheten til G1 i x-retning er 48600.00 km/s.

Hastigheten til G2 i x-retning er 57540.00 km/s.

Filen 4G.txt

Massen til stjerna er 39.10 solmasser og radien er 1.16 solradier.