addhealth_semtools

```
library(dplyr)
library(doParallel)
library(ggplot2)
library(here)
library(lavaan)
library(parallel)
library(snow)
library(tibble)
library(tidyverse)
source(here("read_format_addhealth_depression.R"))
```

Lavaan syntax for the config models

```
library(semTools)
```

All users of R (or SEM) are invited to submit functions or ideas for functions.

Attaching package: 'semTools'

The following object is masked from 'package:readr':

clipboard

```
config_model_smt <- '</pre>
   eta1 =~
         l1_w1 * i1_w1 +
         12_w1 * i2_w1 +
         13_w1 * i3_w1 +
         14_w1 * i4_w1 +
         15_w1 * i5_w1 +
         16_w1 * i6_w1 +
         17_w1 * i7_w1 +
         18_w1 * i8_w1
    eta2 =~
         11_w2 * i1_w2 +
         12_w2 * i2_w2 +
         13_w2 * i3_w2 +
         14_w2 * i4_w2 +
         15_w2 * i5_w2 +
         16_w2 * i6_w2 +
         17_w2 * i7_w2 +
         18_w2 * i8_w2
    eta3 =~
         11_w3 * i1_w3 +
         12_w3 * i2_w3 +
         13_w3 * i3_w3 +
         14_w3 * i4_w3 +
         15_w3 * i5_w3 +
         16_w3 * i6_w3 +
         17_w3 * i7_w3 +
         18_w3 * i8_w3
    eta4 =~
         11_w4 * i1_w4 +
         12_w4 * i2_w4 +
         13_w4 * i3_w4 +
         14_w4 * i4_w4 +
         15_w4 * i5_w4 +
         16_w4 * i6_w4 +
         17_w4 * i7_w4 +
```

```
18_w4 * i8_w4
config_model_smt_covs <- '</pre>
    eta1 =~
         l1_w1 * i1_w1 +
         12_w1 * i2_w1 +
         13_w1 * i3_w1 +
         14_w1 * i4_w1 +
         15_w1 * i5_w1 +
         16_w1 * i6_w1 +
         17_w1 * i7_w1 +
         18_w1 * i8_w1
    eta2 =~
         11_{w2} * i1_{w2} +
         12_w2 * i2_w2 +
         13_w2 * i3_w2 +
         14_w2 * i4_w2 +
         15_w2 * i5_w2 +
         16_w2 * i6_w2 +
         17_w2 * i7_w2 +
         18_w2 * i8_w2
    eta3 =~
         11_w3 * i1_w3 +
         12_w3 * i2_w3 +
         13_w3 * i3_w3 +
         14_w3 * i4_w3 +
         15_w3 * i5_w3 +
         16_w3 * i6_w3 +
         17_w3 * i7_w3 +
         18_w3 * i8_w3
    eta4 =~
         l1_w4 * i1_w4 +
         12_w4 * i2_w4 +
         13_w4 * i3_w4 +
         14_w4 * i4_w4 +
         15_w4 * i5_w4 +
         16_w4 * i6_w4 +
         17_w4 * i7_w4 +
         18_w4 * i8_w4
```

```
i5_w1 ~~ i7_w1
 i5_w2 ~~ i7_w2
 i5_w3 ~~ i7_w3
 i5_w4 ~~ i7_w4
# Item 4 and Item 6, respectively:
# "You had trouble keeping your mind on what you were doing."
# "You felt that you were too tired to do things."
 i4_w1 ~~ i6_w1
 i4_w2 ~~ i6_w2
 i4_w3 ~~ i6_w3
 i4_w4 ~~ i6_w4
# Item 2 and Item 5, respectively:
# "You felt that you could not shake off the blues, even with help from your family and you
# "You felt depressed."
 i2_w1 ~~ i5_w1
 i2_w2 ~~ i5_w2
 i2_w3 ~~ i5_w3
 i2_w4 ~~ i5_w4
# Item 2 and Item 7, respectively:
# "You felt that you could not shake off the blues, even with help from your family and yo
# "You felt sad."
 i2_w1 ~~ i7_w1
 i2_w2 ~~ i7_w2
 i2_w3 ~~ i7_w3
 i2_w4 ~~ i7_w4
```

Config Models

```
longitudinal_factor_names <- list(
  comp = c("eta1", "eta2", "eta3", "eta4")
)
longitudinal_ind <- list(</pre>
```

```
i1 = c("i1_w1", "i1_w2", "i1_w3", "i1_w4"),
   i2 = c("i2_w1", "i2_w2", "i2_w3", "i2_w4"),
   i3 = c("i3_w1", "i3_w2", "i3_w3", "i3_w4"),
    i4 = c("i4_w1", "i4_w2", "i4_w3", "i4_w4"),
   i5 = c("i5_w1", "i5_w2", "i5_w3", "i5_w4"),
    i6 = c("i6_w1", "i6_w2", "i6_w3", "i6_w4"),
    i7 = c("i7 w1", "i7 w2", "i7 w3", "i7 w4"),
   i8 = c("i8_w1", "i8_w2", "i8_w3", "i8_w4")
)
config_model_smt <- semTools::measEq.syntax(</pre>
  configural.model = config_model_smt,
 longFacNames = longitudinal_factor_names,
  ID.fac = "fixed.factor",
 ID.cat = "Wu.Estabrook.2016",
 data = dat
config_model_smt <- as.character(config_model_smt)</pre>
config_model_smt_covs <- semTools::measEq.syntax(</pre>
  configural.model = config_model_smt_covs,
 longFacNames = longitudinal_factor_names,
 ID.fac = "fixed.factor",
 ID.cat = "Wu.Estabrook.2016",
 data = dat
config_model_smt_covs <- as.character(config_model_smt_covs)</pre>
```

Weak Model

```
weak_model_smt_covs <- semTools::measEq.syntax(
   configural.model = config_model_smt_covs,
   longFacNames = longitudinal_factor_names,
   ID.fac = "std.lv",
   ID.cat = "Wu.Estabrook.2016",
   long.equal = c("loadings"),</pre>
```

```
data = dat
)
weak_model_smt_covs <- as.character(weak_model_smt_covs)</pre>
```

Strong Model

```
strong_model_smt_covs <- semTools::measEq.syntax(
    configural.model = config_model_smt_covs,
    longFacNames = longitudinal_factor_names,
    ID.fac = "std.lv",
    ID.cat = "Wu.Estabrook.2016",
    long.equal = c("loadings", "intercepts"),
    data = dat
)
strong_model_smt_covs <- as.character(strong_model_smt_covs)</pre>
```

Strict Model

```
# Covs
strict_model_smt_covs <- measEq.syntax(
    configural.model = config_model_smt_covs,
    longFacNames = longitudinal_factor_names,
    ID.fac = "std.lv",
    ID.cat = "Wu.Estabrook.2016",
    long.equal = c("loadings", "intercepts", "residuals"),
    data = dat
)
strict_model_smt_covs <- as.character(strict_model_smt_covs)</pre>
```

Multithreading to fit the models

```
config_model_smt <- as.character(config_model_smt)</pre>
list all fit files sempt <- list(</pre>
  config_model_smt = config_model_smt,
  config model smt covs = config model smt covs,
  weak_model_smt_covs = weak_model_smt_covs,
  strong_model_smt_covs = strong_model_smt_covs,
  strict_model_smt_covs = strict_model_smt_covs
)
RunCFA_sempt <- function(model, test = FALSE) {</pre>
  if (test) {
    res <- lavaan::cfa(model, data = dat)
  } else {
    res <- lavaan::cfa(model, data = dat,
                           estimator = "MLR",
                           meanstructure = TRUE,
                           fixed.x = FALSE,
                           missing = "FIML",
                           se = "robust.mlr")
 }
}
n_cores <- (parallel::detectCores() / 2)</pre>
cl <- makeCluster(n_cores)</pre>
doParallel::registerDoParallel(cl)
snow::clusterExport(cl, c("list_all_fit_files_sempt", "RunCFA_sempt", "dat"))
system.time({
  list_all_res_sempt <- snow::clusterApply(</pre>
    seq_along(list_all_fit_files_sempt),
    function(fit_model_num) {
      print(names(list_all_fit_files_sempt)[fit_model_num])
```

```
fit_cfa_sempt <- RunCFA_sempt(
    list_all_fit_files_sempt[[fit_model_num]],
    # do test = TRUE to test with ML, much faster
    test = FALSE
    )
    return(fit_cfa_sempt)
})
names(list_all_res_sempt) <- names(list_all_fit_files_sempt)
})

user system elapsed
0.02    0.00    52.51

#list_all_res_sempt

#cat(list_all_fit_files_sempt$strong_model_smt_covs)</pre>
```

TODO: Partial Invariance! Using the same syntax as it would for group.partial, though that doesn't free the intercepts.

TODO: lavPredict, factor scores for bartlett, get descriptives for each based on partial invariance model (or if doesn't work, then strong)

```
partial_strong_model_smt_covs <- measEq.syntax(
    configural.model = config_model_smt_covs,
    longFacNames = longitudinal_factor_names,
    longIndNames = longitudinal_ind,
    ID.fac = "std.lv",
    ID.cat = "Wu.Estabrook.2016",
    long.equal = c("loadings", "intercepts"),
    data = dat
)

cat(as.character(partial_strong_model_smt_covs))</pre>
```

LOADINGS:

```
eta1 =~ NA*i1_w1 + lambda.1_1*i1_w1
eta1 =~ NA*i2_w1 + lambda.2_1*i2_w1
eta1 =~ NA*i3 w1 + lambda.3 1*i3 w1
eta1 =~ NA*i4_w1 + lambda.4_1*i4_w1
eta1 =~ NA*i5_w1 + lambda.5_1*i5_w1
eta1 =~ NA*i6_w1 + lambda.6_1*i6_w1
eta1 =~ NA*i7_w1 + lambda.7_1*i7_w1
eta1 =~ NA*i8_w1 + lambda.8_1*i8_w1
eta2 =~ NA*i1_w2 + lambda.1_1*i1_w2
eta2 =~ NA*i2_w2 + lambda.2_1*i2_w2
eta2 =~ NA*i3_w2 + lambda.3_1*i3_w2
eta2 =~ NA*i4_w2 + lambda.4_1*i4_w2
eta2 =~ NA*i5_w2 + lambda.5_1*i5_w2
eta2 =~ NA*i6_w2 + lambda.6_1*i6_w2
eta2 =~ NA*i7_w2 + lambda.7_1*i7_w2
eta2 =~ NA*i8_w2 + lambda.8_1*i8_w2
eta3 =~ NA*i1_w3 + lambda.1_1*i1_w3
eta3 =~ NA*i2 w3 + lambda.2 1*i2 w3
eta3 =~ NA*i3_w3 + lambda.3_1*i3_w3
eta3 =~ NA*i4_w3 + lambda.4_1*i4_w3
eta3 =~ NA*i5_w3 + lambda.5_1*i5_w3
eta3 =~ NA*i6_w3 + lambda.6_1*i6_w3
eta3 =~ NA*i7_w3 + lambda.7_1*i7_w3
eta3 =~ NA*i8_w3 + lambda.8_1*i8_w3
eta4 =~ NA*i1_w4 + lambda.1_1*i1_w4
eta4 =~ NA*i2_w4 + lambda.2_1*i2_w4
eta4 =~ NA*i3_w4 + lambda.3_1*i3_w4
eta4 =~ NA*i4_w4 + lambda.4_1*i4_w4
eta4 = NA*i5_w4 + lambda.5_1*i5_w4
eta4 =~ NA*i6_w4 + lambda.6_1*i6_w4
eta4 =~ NA*i7_w4 + lambda.7_1*i7_w4
eta4 =~ NA*i8_w4 + lambda.8_1*i8_w4
```

INTERCEPTS:

i1_w1 ~ NA*1 + nu.1*1 i2_w1 ~ NA*1 + nu.2*1 i3_w1 ~ NA*1 + nu.3*1 i4_w1 ~ NA*1 + nu.4*1 i5_w1 ~ NA*1 + nu.5*1 i6_w1 ~ NA*1 + nu.6*1

```
i7_w1 \sim NA*1 + nu.7*1
i8_w1 ~ NA*1 + nu.8*1
i1_w2 ~ NA*1 + nu.1*1
i2_w2 ~ NA*1 + nu.2*1
i3 w2 ~ NA*1 + nu.3*1
i4_w2 ~ NA*1 + nu.4*1
i5 w2 ~ NA*1 + nu.5*1
i6_w2 ~ NA*1 + nu.6*1
i7_w2 ~ NA*1 + nu.7*1
i8_w2 ~ NA*1 + nu.8*1
i1_w3 ~ NA*1 + nu.1*1
i2_w3 ~ NA*1 + nu.2*1
i3_w3 ~ NA*1 + nu.3*1
i4_w3 ~ NA*1 + nu.4*1
i5_w3 ~ NA*1 + nu.5*1
i6_w3 ~ NA*1 + nu.6*1
i7_w3 ~ NA*1 + nu.7*1
i8_w3 ~ NA*1 + nu.8*1
i1_w4 ~ NA*1 + nu.1*1
i2 w4 ~ NA*1 + nu.2*1
i3_w4 ~ NA*1 + nu.3*1
i4_w4 \sim NA*1 + nu.4*1
i5_w4 ~ NA*1 + nu.5*1
i6_w4 ~ NA*1 + nu.6*1
i7_w4 ~ NA*1 + nu.7*1
i8_w4 ~ NA*1 + nu.8*1
```

UNIQUE-FACTOR VARIANCES:

```
i1_w1 ~~ NA*i1_w1 + theta.1_1*i1_w1
i2_w1 ~~ NA*i2_w1 + theta.2_2*i2_w1
i3_w1 ~~ NA*i3_w1 + theta.3_3*i3_w1
i4_w1 ~~ NA*i4_w1 + theta.4_4*i4_w1
i5_w1 ~~ NA*i5_w1 + theta.5_5*i5_w1
i6_w1 ~~ NA*i6_w1 + theta.6_6*i6_w1
i7_w1 ~~ NA*i7_w1 + theta.7_7*i7_w1
i8_w1 ~~ NA*i8_w1 + theta.8_8*i8_w1
i1_w2 ~~ NA*i1_w2 + theta.9_9*i1_w2
i2_w2 ~~ NA*i2_w2 + theta.10_10*i2_w2
i3_w2 ~~ NA*i3_w2 + theta.11_11*i3_w2
i4_w2 ~~ NA*i4_w2 + theta.12_12*i4_w2
i5_w2 ~~ NA*i5_w2 + theta.13_13*i5_w2
i6_w2 ~~ NA*i6_w2 + theta.14_14*i6_w2
```

```
i7_w2 ~~ NA*i7_w2 + theta.15_15*i7_w2
i8_w2 ~~ NA*i8_w2 + theta.16_16*i8_w2
i1_w3 ~~ NA*i1_w3 + theta.17_17*i1_w3
i2_w3 ~~ NA*i2_w3 + theta.18_18*i2_w3
i3_w3 ~~ NA*i3_w3 + theta.19_19*i3_w3
i4_w3 ~~ NA*i4_w3 + theta.20_20*i4_w3
i5_w3 ~~ NA*i5_w3 + theta.21_21*i5_w3
i6_w3 ~~ NA*i6_w3 + theta.22_22*i6_w3
i7_w3 ~~ NA*i7_w3 + theta.23_23*i7_w3
i8_w3 ~~ NA*i8_w3 + theta.24_24*i8_w3
i1_w4 ~~ NA*i1_w4 + theta.25_25*i1_w4
i2_w4 ~~ NA*i2_w4 + theta.26_26*i2_w4
i3_w4 \sim NA*i3_w4 + theta.27_27*i3_w4
i4_w4 ~~ NA*i4_w4 + theta.28_28*i4_w4
i5_w4 ~~ NA*i5_w4 + theta.29_29*i5_w4
i6_w4 ~~ NA*i6_w4 + theta.30_30*i6_w4
i7_w4 ~~ NA*i7_w4 + theta.31_31*i7_w4
i8_w4 \sim NA*i8_w4 + theta.32_32*i8_w4
```

UNIQUE-FACTOR COVARIANCES:

```
i1_w1 ~~ NA*i1_w2 + theta.9_1*i1_w2
i1_w1 ~~ NA*i1_w3 + theta.17_1*i1_w3
i1_w1 ~~ NA*i1_w4 + theta.25_1*i1_w4
i2_w1 ~~ NA*i5_w1 + theta.5_2*i5_w1
i2_w1 ~~ NA*i7_w1 + theta.7_2*i7_w1
i2_w1 ~~ NA*i2_w2 + theta.10_2*i2_w2
i2_w1 ~~ NA*i2_w3 + theta.18_2*i2_w3
i2_w1 ~~ NA*i2_w4 + theta.26_2*i2_w4
i3_w1 ~~ NA*i3_w2 + theta.11_3*i3_w2
i3_w1 ~~ NA*i3_w3 + theta.19_3*i3_w3
i3_w1 \sim NA*i3_w4 + theta.27_3*i3_w4
i4_w1 ~~ NA*i6_w1 + theta.6_4*i6_w1
i4_w1 ~~ NA*i4_w2 + theta.12_4*i4_w2
i4 w1 ~~ NA*i4 w3 + theta.20 4*i4 w3
i4_w1 ~~ NA*i4_w4 + theta.28_4*i4_w4
i5_w1 ~~ NA*i7_w1 + theta.7_5*i7_w1
i5_w1 \sim NA*i5_w2 + theta.13_5*i5_w2
i5_w1 ~~ NA*i5_w3 + theta.21_5*i5_w3
i5_w1 ~~ NA*i5_w4 + theta.29_5*i5_w4
i6_w1 ~~ NA*i6_w2 + theta.14_6*i6_w2
i6_w1 ~~ NA*i6_w3 + theta.22_6*i6_w3
i6_w1 ~~ NA*i6_w4 + theta.30_6*i6_w4
```

```
i7_w1 ~~ NA*i7_w2 + theta.15_7*i7_w2
i7_w1 \sim NA*i7_w3 + theta.23_7*i7_w3
i7_w1 ~~ NA*i7_w4 + theta.31_7*i7_w4
i8_w1 ~~ NA*i8_w2 + theta.16_8*i8_w2
i8_w1 ~~ NA*i8_w3 + theta.24_8*i8_w3
i8_w1 ~~ NA*i8_w4 + theta.32_8*i8_w4
i1_w2 ~~ NA*i1_w3 + theta.17_9*i1_w3
i1_w2 ~~ NA*i1_w4 + theta.25_9*i1_w4
i2_w2 ~~ NA*i5_w2 + theta.13_10*i5_w2
i2_w2 ~~ NA*i7_w2 + theta.15_10*i7_w2
i2_w2 ~~ NA*i2_w3 + theta.18_10*i2_w3
i2_w2 ~~ NA*i2_w4 + theta.26_10*i2_w4
i3_w2 ~~ NA*i3_w3 + theta.19_11*i3_w3
i3_w2 \sim NA*i3_w4 + theta.27_11*i3_w4
i4_w2 ~~ NA*i6_w2 + theta.14_12*i6_w2
i4_w2 \sim NA*i4_w3 + theta.20_12*i4_w3
i4_w2 ~~ NA*i4_w4 + theta.28_12*i4_w4
i5_w2 ~~ NA*i7_w2 + theta.15_13*i7_w2
i5_w2 ~~ NA*i5_w3 + theta.21_13*i5_w3
i5_w2 ~~ NA*i5_w4 + theta.29_13*i5_w4
i6_w2 ~~ NA*i6_w3 + theta.22_14*i6_w3
i6_w2 ~~ NA*i6_w4 + theta.30_14*i6_w4
i7_w2 ~~ NA*i7_w3 + theta.23_15*i7_w3
i7_w2 ~~ NA*i7_w4 + theta.31_15*i7_w4
i8_w2 ~~ NA*i8_w3 + theta.24_16*i8_w3
i8_w2 ~~ NA*i8_w4 + theta.32_16*i8_w4
i1_w3 ~~ NA*i1_w4 + theta.25_17*i1_w4
i2_w3 ~~ NA*i5_w3 + theta.21_18*i5_w3
i2_w3 ~~ NA*i7_w3 + theta.23_18*i7_w3
i2_w3 ~~ NA*i2_w4 + theta.26_18*i2_w4
i3_w3 ~~ NA*i3_w4 + theta.27_19*i3_w4
i4_w3 ~~ NA*i6_w3 + theta.22_20*i6_w3
i4_w3 ~~ NA*i4_w4 + theta.28_20*i4_w4
i5_w3 ~~ NA*i7_w3 + theta.23_21*i7_w3
i5 w3 ~~ NA*i5 w4 + theta.29 21*i5 w4
i6_w3 ~~ NA*i6_w4 + theta.30_22*i6_w4
i7_w3 ~~ NA*i7_w4 + theta.31_23*i7_w4
i8_w3 ~~ NA*i8_w4 + theta.32_24*i8_w4
i2_w4 ~~ NA*i5_w4 + theta.29_26*i5_w4
i2_w4 ~~ NA*i7_w4 + theta.31_26*i7_w4
i4_w4 ~~ NA*i6_w4 + theta.30_28*i6_w4
i5_w4 ~~ NA*i7_w4 + theta.31_29*i7_w4
```

```
## LATENT MEANS/INTERCEPTS:
eta1 ~ 0*1 + alpha.1*1
eta2 ~ NA*1 + alpha.2*1
eta3 ~ NA*1 + alpha.3*1
eta4 ~ NA*1 + alpha.4*1
## COMMON-FACTOR VARIANCES:
eta1 ~~ 1*eta1 + psi.1_1*eta1
eta2 ~~ NA*eta2 + psi.2_2*eta2
eta3 ~~ NA*eta3 + psi.3_3*eta3
eta4 ~~ NA*eta4 + psi.4_4*eta4
## COMMON-FACTOR COVARIANCES:
eta1 ~~ NA*eta2 + psi.2_1*eta2
eta1 ~~ NA*eta3 + psi.3_1*eta3
eta1 ~~ NA*eta4 + psi.4_1*eta4
eta2 ~~ NA*eta3 + psi.3_2*eta3
eta2 ~~ NA*eta4 + psi.4_2*eta4
eta3 ~~ NA*eta4 + psi.4_3*eta4
  partial_strong_model_smt_covs_free_64 <-</pre>
    update(partial_strong_model_smt_covs, change.syntax =
                      "i6_w4 \sim NA*1 + nu.6_4*1")
  partial_strong_model_smt_covs_free_64_33 <-</pre>
    update(partial_strong_model_smt_covs_free_64, change.syntax =
                      "i3_w3 \sim NA*1 + nu.3_3*1")
  partial_strong_model_smt_covs_free_64_33_34 <-</pre>
    update(partial_strong_model_smt_covs_free_64_33, change.syntax =
                      "i3 w4 ~ NA*1 + nu.3 4*1")
  partial_strong_model_smt_covs_free_64_33_34_43 <-</pre>
    update(partial_strong_model_smt_covs_free_64_33_34, change.syntax =
                      "i4_w3 \sim NA*1 + nu.4_3*1")
  partial_strong_model_smt_covs_free_64_33_34_43_81 <-
    update(partial_strong_model_smt_covs_free_64_33_34_43, change.syntax =
```

```
"i8 w1 ~ NA*1 + nu.8 1*1")
partial_strong_model_smt_covs_free_64_33_34_43_81_51 <-
  update(partial_strong_model_smt_covs_free_64_33_34_43_81, change.syntax =
                    "i5 w1 ~ NA*1 + nu.5 1*1")
partial_strong_model_smt_covs_free_64_33_34_43_81_51_52 <-
  update(partial_strong_model_smt_covs_free_64_33_34_43_81_51, change.syntax =
                    "i5_w2 \sim NA*1 + nu.5_2*1")
partial_strong_model_smt_covs_free_64_33_34_43_81_51_52_13 <-</pre>
  update(partial_strong_model_smt_covs_free_64_33_34_43_81_51_52, change.syntax =
                    "i1_w3 ~ NA*1 + nu.1_3*1")
partial_strong_model_smt_covs_free_64 <-</pre>
  as.character(partial_strong_model_smt_covs_free_64)
partial_strong_model_smt_covs_free_64_33 <-</pre>
  as.character(partial_strong_model_smt_covs_free_64_33)
partial_strong_model_smt_covs_free_64_33_34 <-</pre>
  as.character(partial_strong_model_smt_covs_free_64_33_34)
partial_strong_model_smt_covs_free_64_33_34_43 <-</pre>
  as.character(partial_strong_model_smt_covs_free_64_33_34_43)
partial_strong_model_smt_covs_free_64_33_34_43_81 <-</pre>
  as.character(partial_strong_model_smt_covs_free_64_33_34_43_81)
partial_strong_model_smt_covs_free_64_33_34_43_81_51 <-</pre>
  as.character(partial strong model smt_covs free 64_33_34_43_81_51)
partial_strong_model_smt_covs_free_64_33_34_43_81_51_52 <-
  as.character(partial_strong_model_smt_covs_free_64_33_34_43_81_51_52)
partial_strong_model_smt_covs_free_64_33_34_43_81_51_52_13 <-
  as.character(partial_strong_model_smt_covs_free_64_33_34_43_81_51_52_13)
cat(partial_strong_model_smt_covs_free_64_33_34_43_81_51_52_13)
```

LOADINGS:

```
eta1 =~ NA*i1_w1 + lambda.1_1*i1_w1
eta1 =~ NA*i2_w1 + lambda.2_1*i2_w1
eta1 =~ NA*i3_w1 + lambda.3_1*i3_w1
eta1 =~ NA*i4_w1 + lambda.4_1*i4_w1
eta1 =~ NA*i5_w1 + lambda.5_1*i5_w1
eta1 =~ NA*i6_w1 + lambda.6_1*i6_w1
eta1 =~ NA*i7_w1 + lambda.7_1*i7_w1
eta1 =~ NA*i8_w1 + lambda.8_1*i8_w1
eta2 =~ NA*i1_w2 + lambda.1_1*i1_w2
eta2 =~ NA*i2_w2 + lambda.2_1*i2_w2
eta2 =~ NA*i3_w2 + lambda.3_1*i3_w2
eta2 =~ NA*i4_w2 + lambda.4_1*i4_w2
eta2 =~ NA*i5_w2 + lambda.5_1*i5_w2
eta2 =~ NA*i6_w2 + lambda.6_1*i6_w2
eta2 =~ NA*i7_w2 + lambda.7_1*i7_w2
eta2 =~ NA*i8_w2 + lambda.8_1*i8_w2
eta3 =~ NA*i1_w3 + lambda.1_1*i1_w3
eta3 =~ NA*i2_w3 + lambda.2_1*i2_w3
eta3 =~ NA*i3 w3 + lambda.3 1*i3 w3
eta3 =~ NA*i4_w3 + lambda.4_1*i4_w3
eta3 =~ NA*i5_w3 + lambda.5_1*i5_w3
eta3 =~ NA*i6_w3 + lambda.6_1*i6_w3
eta3 =~ NA*i7_w3 + lambda.7_1*i7_w3
eta3 =~ NA*i8_w3 + lambda.8_1*i8_w3
eta4 =~ NA*i1_w4 + lambda.1_1*i1_w4
eta4 =~ NA*i2_w4 + lambda.2_1*i2_w4
eta4 =~ NA*i3_w4 + lambda.3_1*i3_w4
eta4 =~ NA*i4_w4 + lambda.4_1*i4_w4
eta4 =~ NA*i5_w4 + lambda.5_1*i5_w4
eta4 = NA*i6_w4 + lambda.6_1*i6_w4
eta4 = NA*i7_w4 + lambda.7_1*i7_w4
eta4 =~ NA*i8_w4 + lambda.8_1*i8_w4
```

INTERCEPTS:

```
i1_w1 ~ NA*1 + nu.1*1
i2_w1 ~ NA*1 + nu.2*1
i3_w1 ~ NA*1 + nu.3*1
i4_w1 ~ NA*1 + nu.4*1
i5_w1 ~ NA*1 + nu.5_1*1
i6_w1 ~ NA*1 + nu.6*1
i7_w1 ~ NA*1 + nu.7*1
```

```
i8_w1 ~ NA*1 + nu.8_1*1
i1_w2 ~ NA*1 + nu.1*1
i2_w2 ~ NA*1 + nu.2*1
i3_w2 ~ NA*1 + nu.3*1
i4 w2 ~ NA*1 + nu.4*1
i5_w2 ~ NA*1 + nu.5_2*1
i6_w2 ~ NA*1 + nu.6*1
i7_w2 ~ NA*1 + nu.7*1
i8_w2 ~ NA*1 + nu.8*1
i1_w3 ~ NA*1 + nu.1_3*1
i2_w3 ~ NA*1 + nu.2*1
i3_w3 \sim NA*1 + nu.3_3*1
i4_w3 \sim NA*1 + nu.4_3*1
i5_w3 ~ NA*1 + nu.5*1
i6_w3 ~ NA*1 + nu.6*1
i7_w3 ~ NA*1 + nu.7*1
i8_w3 ~ NA*1 + nu.8*1
i1_w4 ~ NA*1 + nu.1*1
i2_w4 ~ NA*1 + nu.2*1
i3 w4 ~ NA*1 + nu.3 4*1
i4_w4 \sim NA*1 + nu.4*1
i5_w4 \sim NA*1 + nu.5*1
i6_w4 \sim NA*1 + nu.6_4*1
i7_w4 \sim NA*1 + nu.7*1
i8_w4 ~ NA*1 + nu.8*1
```

UNIQUE-FACTOR VARIANCES:

```
i1_w1 ~~ NA*i1_w1 + theta.1_1*i1_w1
i2_w1 ~~ NA*i2_w1 + theta.2_2*i2_w1
i3_w1 ~~ NA*i3_w1 + theta.3_3*i3_w1
i4_w1 ~~ NA*i4_w1 + theta.4_4*i4_w1
i5_w1 ~~ NA*i5_w1 + theta.5_5*i5_w1
i6_w1 ~~ NA*i6_w1 + theta.6_6*i6_w1
i7_w1 ~~ NA*i7_w1 + theta.7_7*i7_w1
i8_w1 ~~ NA*i8_w1 + theta.8_8*i8_w1
i1_w2 ~~ NA*i1_w2 + theta.9_9*i1_w2
i2_w2 ~~ NA*i2_w2 + theta.10_10*i2_w2
i3_w2 ~~ NA*i3_w2 + theta.11_11*i3_w2
i4_w2 ~~ NA*i4_w2 + theta.12_12*i4_w2
i5_w2 ~~ NA*i5_w2 + theta.13_13*i5_w2
i6_w2 ~~ NA*i6_w2 + theta.14_14*i6_w2
i7_w2 ~~ NA*i7_w2 + theta.15_15*i7_w2
```

```
i8_w2 ~~ NA*i8_w2 + theta.16_16*i8_w2
i1_w3 ~~ NA*i1_w3 + theta.17_17*i1_w3
i2_w3 \sim NA*i2_w3 + theta.18_18*i2_w3
i3_w3 ~~ NA*i3_w3 + theta.19_19*i3_w3
i4_w3 ~~ NA*i4_w3 + theta.20_20*i4_w3
i5_w3 ~~ NA*i5_w3 + theta.21_21*i5_w3
i6_w3 ~~ NA*i6_w3 + theta.22_22*i6_w3
i7_w3 \sim NA*i7_w3 + theta.23_23*i7_w3
i8_w3 ~~ NA*i8_w3 + theta.24_24*i8_w3
i1_w4 ~~ NA*i1_w4 + theta.25_25*i1_w4
i2_w4 ~~ NA*i2_w4 + theta.26_26*i2_w4
i3_w4 \sim NA*i3_w4 + theta.27_27*i3_w4
i4_w4 ~~ NA*i4_w4 + theta.28_28*i4_w4
i5_w4 ~~ NA*i5_w4 + theta.29_29*i5_w4
i6_w4 \sim NA*i6_w4 + theta.30_30*i6_w4
i7_w4 ~~ NA*i7_w4 + theta.31_31*i7_w4
i8_w4 ~~ NA*i8_w4 + theta.32_32*i8_w4
```

UNIQUE-FACTOR COVARIANCES:

```
i1_w1 ~~ NA*i1_w2 + theta.9_1*i1_w2
i1_w1 ~~ NA*i1_w3 + theta.17_1*i1_w3
i1_w1 ~~ NA*i1_w4 + theta.25_1*i1_w4
i2_w1 ~~ NA*i5_w1 + theta.5_2*i5_w1
i2_w1 ~~ NA*i7_w1 + theta.7_2*i7_w1
i2_w1 ~~ NA*i2_w2 + theta.10_2*i2_w2
i2_w1 ~~ NA*i2_w3 + theta.18_2*i2_w3
i2_w1 ~~ NA*i2_w4 + theta.26_2*i2_w4
i3_w1 ~~ NA*i3_w2 + theta.11_3*i3_w2
i3_w1 ~~ NA*i3_w3 + theta.19_3*i3_w3
i3_w1 \sim NA*i3_w4 + theta.27_3*i3_w4
i4_w1 ~~ NA*i6_w1 + theta.6_4*i6_w1
i4_w1 ~~ NA*i4_w2 + theta.12_4*i4_w2
i4_w1 ~~ NA*i4_w3 + theta.20_4*i4_w3
i4 w1 ~~ NA*i4 w4 + theta.28 4*i4 w4
i5_w1 ~~ NA*i7_w1 + theta.7_5*i7_w1
i5_w1 ~~ NA*i5_w2 + theta.13_5*i5_w2
i5_w1 ~~ NA*i5_w3 + theta.21_5*i5_w3
i5_w1 ~~ NA*i5_w4 + theta.29_5*i5_w4
i6_w1 ~~ NA*i6_w2 + theta.14_6*i6_w2
i6_w1 ~~ NA*i6_w3 + theta.22_6*i6_w3
i6_w1 ~~ NA*i6_w4 + theta.30_6*i6_w4
i7_w1 ~~ NA*i7_w2 + theta.15_7*i7_w2
```

```
i7_w1 ~~ NA*i7_w3 + theta.23_7*i7_w3
i7_w1 ~~ NA*i7_w4 + theta.31_7*i7_w4
i8_w1 ~~ NA*i8_w2 + theta.16_8*i8_w2
i8_w1 ~~ NA*i8_w3 + theta.24_8*i8_w3
i8 w1 ~~ NA*i8 w4 + theta.32 8*i8 w4
i1_w2 ~~ NA*i1_w3 + theta.17_9*i1_w3
i1_w2 ~~ NA*i1_w4 + theta.25_9*i1_w4
i2_w2 ~~ NA*i5_w2 + theta.13_10*i5_w2
i2_w2 ~~ NA*i7_w2 + theta.15_10*i7_w2
i2_w2 ~~ NA*i2_w3 + theta.18_10*i2_w3
i2_w2 ~~ NA*i2_w4 + theta.26_10*i2_w4
i3_w2 ~~ NA*i3_w3 + theta.19_11*i3_w3
i3_w2 \sim NA*i3_w4 + theta.27_11*i3_w4
i4_w2 ~~ NA*i6_w2 + theta.14_12*i6_w2
i4_w2 \sim NA*i4_w3 + theta.20_12*i4_w3
i4_w2 ~~ NA*i4_w4 + theta.28_12*i4_w4
i5_w2 ~~ NA*i7_w2 + theta.15_13*i7_w2
i5_w2 ~~ NA*i5_w3 + theta.21_13*i5_w3
i5_w2 ~~ NA*i5_w4 + theta.29_13*i5_w4
i6_w2 ~~ NA*i6_w3 + theta.22_14*i6_w3
i6_w2 ~~ NA*i6_w4 + theta.30_14*i6_w4
i7_w2 ~~ NA*i7_w3 + theta.23_15*i7_w3
i7_w2 \sim NA*i7_w4 + theta.31_15*i7_w4
i8_w2 ~~ NA*i8_w3 + theta.24_16*i8_w3
i8_w2 ~~ NA*i8_w4 + theta.32_16*i8_w4
i1_w3 ~~ NA*i1_w4 + theta.25_17*i1_w4
i2_w3 ~~ NA*i5_w3 + theta.21_18*i5_w3
i2_w3 ~~ NA*i7_w3 + theta.23_18*i7_w3
i2_w3 ~~ NA*i2_w4 + theta.26_18*i2_w4
i3_w3 \sim NA*i3_w4 + theta.27_19*i3_w4
i4_w3 ~~ NA*i6_w3 + theta.22_20*i6_w3
i4_w3 ~~ NA*i4_w4 + theta.28_20*i4_w4
i5_w3 ~~ NA*i7_w3 + theta.23_21*i7_w3
i5_w3 ~~ NA*i5_w4 + theta.29_21*i5_w4
i6 w3 ~~ NA*i6 w4 + theta.30 22*i6 w4
i7_w3 ~~ NA*i7_w4 + theta.31_23*i7_w4
i8_w3 ~~ NA*i8_w4 + theta.32_24*i8_w4
i2_w4 ~~ NA*i5_w4 + theta.29_26*i5_w4
i2_w4 ~~ NA*i7_w4 + theta.31_26*i7_w4
i4_w4 ~~ NA*i6_w4 + theta.30_28*i6_w4
i5_w4 ~~ NA*i7_w4 + theta.31_29*i7_w4
```

LATENT MEANS/INTERCEPTS:

```
eta1 ~ 0*1 + alpha.1*1
eta2 ~ NA*1 + alpha.2*1
eta3 ~ NA*1 + alpha.3*1
eta4 ~ NA*1 + alpha.4*1
## COMMON-FACTOR VARIANCES:
eta1 ~~ 1*eta1 + psi.1_1*eta1
eta2 ~~ NA*eta2 + psi.2_2*eta2
eta3 ~~ NA*eta3 + psi.3_3*eta3
eta4 ~~ NA*eta4 + psi.4_4*eta4
## COMMON-FACTOR COVARIANCES:
eta1 ~~ NA*eta2 + psi.2_1*eta2
eta1 ~~ NA*eta3 + psi.3_1*eta3
eta1 ~~ NA*eta4 + psi.4_1*eta4
eta2 ~~ NA*eta3 + psi.3_2*eta3
eta2 ~~ NA*eta4 + psi.4_2*eta4
eta3 ~~ NA*eta4 + psi.4_3*eta4
  list_all_fit_files_sempt_partial <- list(</pre>
    partial_strong_model_smt_covs_free_64 = partial_strong_model_smt_covs_free_64,
    partial_strong_model_smt_covs_free_64_33 = partial_strong_model_smt_covs_free_64_33,
    partial_strong_model_smt_covs_free_64_33_34 = partial_strong_model_smt_covs_free_64_33_
    partial_strong_model_smt_covs_free_64_33_34_43 = partial_strong_model_smt_covs_free_64_
    partial_strong_model_smt_covs_free_64_33_34_43_81 = partial_strong_model_smt_covs_free_
    partial_strong_model_smt_covs_free_64_33_34_43_81_51 = partial_strong_model_smt_covs_fr
    partial_strong_model_smt_covs_free_64_33_34_43_81_51_52 = partial_strong_model_smt_covs
    RunCFA_sempt <- function(model, test = FALSE) {</pre>
    if (test) {
      res <- lavaan::cfa(model, data = dat)</pre>
    } else {
      res <- lavaan::cfa(model, data = dat,
                           estimator = "MLR",
                           meanstructure = TRUE,
                           fixed.x = FALSE,
```

```
missing = "FIML",
                              se = "robust.mlr")
    }
  }
  n_cores <- (parallel::detectCores() - 2)</pre>
  cl <- makeCluster(n cores)</pre>
  doParallel::registerDoParallel(cl)
  snow::clusterExport(cl, c("list_all_fit_files_sempt_partial", "RunCFA_sempt", "dat"))
  system.time({
    list_all_res_sempt_partial <- snow::clusterApply(</pre>
      seq_along(list_all_fit_files_sempt_partial),
      function(fit_model_num) {
        print(names(list_all_fit_files_sempt_partial)[fit_model_num])
        fit_cfa_sempt <- RunCFA_sempt(</pre>
          list_all_fit_files_sempt_partial[[fit_model_num]],
          # do test = TRUE to test with ML, much faster
          test = FALSE
        return(fit_cfa_sempt)
    names(list_all_res_sempt_partial) <- names(list_all_fit_files_sempt_partial)</pre>
  })
   user
         system elapsed
           0.03
                  64.30
   0.05
  list_all_res_sempt_partial
$partial_strong_model_smt_covs_free_64
lavaan 0.6-19 ended normally after 94 iterations
 Estimator
                                                      ML
 Optimization method
                                                  NLMINB
 Number of model parameters
                                                     172
```

Number of equality constraints	47	
	Used	Total
Number of observations	6502	6504
Number of missing patterns	68	0001
Number of missing passerie	00	
Model Test User Model:		
	Standard	Scaled
Test Statistic	2718.857	2248.922
Degrees of freedom	435	435
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.209
Yuan-Bentler correction (Mplus variant)		
<pre>\$partial_strong_model_smt_covs_free_64_33</pre>		
lavaan 0.6-19 ended normally after 88 iterati	ons	
Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	172	
Number of equality constraints	46	
	Used	Total
Number of observations	6502	6504
Number of missing patterns	68	
Model Test User Model:		
nodel lebb obel nodel.	Standard	Scaled
Test Statistic	2500.834	
Degrees of freedom	434	434
P-value (Chi-square)	0.000	0.000
Scaling correction factor	0.000	1.209
Yuan-Bentler correction (Mplus variant)		1.203
radii Benerer Correction (npras variant)		
<pre>\$partial_strong_model_smt_covs_free_64_33_34</pre>		
lavaan 0.6-19 ended normally after 97 iterati	ons	
·		
Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	172	
Number of equality constraints	45	

Total

Used

Number of observations Number of missing patterns	6502 68	6504
Model Test User Model:		
	Standard	Scaled
Test Statistic	2251.464	1861.028
Degrees of freedom	433	433
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.210
Yuan-Bentler correction (Mplus variant)		
<pre>\$partial_strong_model_smt_covs_free_64_33_34_ lavaan 0.6-19 ended normally after 84 iteration</pre>		
Tavada 0.0 10 Chaca normarry arour or recrue	.0110	
Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	172	
Number of equality constraints	44	
	Used	Total
Number of observations	6502	6504
Number of missing patterns	68	0001
Model Test User Model:		
	Standard	Scaled
Test Statistic	2113.940	1746.829
Degrees of freedom	432	432
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.210
Yuan-Bentler correction (Mplus variant)		
<pre>\$partial_strong_model_smt_covs_free_64_33_34_</pre>	43 81	
lavaan 0.6-19 ended normally after 90 iterati		
- · · ·	3.67	
Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	172	
Number of equality constraints	43	
	Used	Total
Number of observations	6502	6504
Number of missing patterns	68	
.		

Model Test User Model:

	Standard	Scaled
Test Statistic	1994.300	1647.463
Degrees of freedom	431	431
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.211
Yuan-Bentler correction (Mplus variant)		

\$partial_strong_model_smt_covs_free_64_33_34_43_81_51
lavaan 0.6-19 ended normally after 96 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	172
Number of equality constraints	42

Number of observations Used Total Number of observations 6502 6504 Number of missing patterns 68

Model Test User Model:

	Standard	Scaled
Test Statistic	1874.413	1547.530
Degrees of freedom	430	430
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.211
Yuan-Bentler correction (Mplus variant)		

\$partial_strong_model_smt_covs_free_64_33_34_43_81_51_52
lavaan 0.6-19 ended normally after 89 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	172
Number of equality constraints	41
	Used

Number of observations 6502 6504
Number of missing patterns 68

Model Test User Model:

	Standard	Scaled
Test Statistic	1776.649	1466.454

Degrees of freedom	429	429
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.212
Yuan-Bentler correction (Mplus variant)		

\$partial_strong_model_smt_covs_free_64_33_34_43_81_51_52_13
lavaan 0.6-19 ended normally after 89 iterations

Estimator	MT.	
Optimization method	NI.MTNB	
Number of model parameters	172	
-		
Number of equality constraints	40	
	Used	Total
Number of observations	6502	6504
Number of missing patterns	68	
Model Test User Model:		
	Standard	Scaled
Test Statistic	1716.107	1415.884
Degrees of freedom	428	428
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.212