NOTATIONS ET RAPPELS

- ▶ C désigne l'ensemble des nombres complexes.
- ▶ R désigne l'ensemble des nombres réels, R⁺ l'ensemble des nombres réels positifs ou nuls, R^{+*} l'ensemble des nombres réels positifs non nuls.
- ▶ N désigne l'ensemble des entiers naturels.
- ▶ N* désigne l'ensemble des entiers naturels non nuls.
- > Z désigne l'ensemble des entiers relatifs.
- ightharpoonup C[X] désigne l'espace vectoriel des polynômes à coefficients complexes.
- ⊳ Si $n \in \mathbb{N}$, $\mathbb{C}_n[X]$ désigne le sous espace vectoriel de $\mathbb{C}[X]$, des polynômes de degrés inférieurs ou égaux à n.
- Pour deux réels a,b vérifiant a ≤ b, on désigne par [a,b] l'intervalle fermé d'extrémités a et b. $C([a,b], \mathbb{C})$ désigne l'espace vectoriel des fonctions continues de [a,b] dans \mathbb{C} . On notera en particulier C^0 l'ensemble des fonctions à valeurs complexes continues sur [0,1] et C^1 l'ensemble des fonctions à valeurs complexes de classe C^1 sur [0,1]. Pour $g ∈ C^0$, on pose $||g||_{\infty} = \sup_{x ∈ [0,1]} |g(x)|$.
- ▶ Pour tous entiers naturels p et q vérifiant $p \le q$, l'ensemble $\{n \in \mathbb{N} \mid p \le n \le q\}$ est noté [p,q].
- ▷ Si $(k,n) \in \mathbb{Z} \times \mathbb{N}$, $\binom{n}{k}$ désigne le coefficient binomial dont la valeur est $\begin{cases} \frac{n!}{k!(n-k)!} & \text{si } 0 \leq k \leq n \\ 0 & \text{sinon} \end{cases}$
- \triangleright On rappelle que si $(u_k)_{k\in\mathbb{N}}$ est une suite complexe, $\sum_{k\in\emptyset}u_k=0$.

Notations

- ▶ **Dans tout le problème**, f désigne une fonction continue sur [0,1] à valeurs complexes.
- \triangleright Pour (k, n) ∈ \mathbb{N}^2 on appelle k-ème polynôme de Bernstein d'ordre n le polynôme $B_{k,n}$ donné par :

$$B_{k,n}(X) = \binom{n}{k} X^k (1 - X)^{n-k}$$

- ▷ On considérera dans ce problème un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. On rappelle qu'une variable aléatoire réelle X suit une loi de Bernoulli si $X(\Omega) = \{0, 1\}$. On dit que $p \in [0, 1]$ est le paramètre de cette loi si $\mathbb{P}(X = 1) = \mathbb{P}(X^{-1}\{1\}) = p$.
- \triangleright On considérera $(X_k)_{k\in\mathbb{N}}$ une suite de variables aléatoires, réelles, indépendantes et identiquement distribuées suivant toutes une loi de Bernoulli de paramètre x, où $x\in[0,1]$.

Pour *n* entier naturel non nul on notera $S_n = \sum_{k=1}^n X_k$ et $T_n = \frac{S_n}{n}$.

- \triangleright Pour X variable aléatoire réelle, on note, sous réserve d'existence, $\mathbb{E}(X)$ son espérance mathématique et $\mathbb{V}(X)$ sa variance.
- ⊳ Soit $(Y_k)_{k\in\mathbb{N}}$ et Y des variables aléatoires réelles, de fonctions de répartition respectives F_k et F. On rappelle que $(Y_k)_{k\in\mathbb{N}}$ converge en loi vers Y si, en tout point x où F est continue, la suite $(F_k(x))_{k\in\mathbb{N}}$ converge vers F(x).
- ⊳ Soit $(Y_k)_{k \in \mathbb{N}}$ et Y des variables aléatoires réelles. On dit que $(Y_k)_{k \in \mathbb{N}}$ converge en moyenne quadratique vers Y si la suite $(\mathbb{E}((Y_k Y)^2))_{k \in \mathbb{N}}$ converge vers 0.

Partie I : Une démonstration probabiliste du théorème de Weierstrass

- 1. Donner, en la justifiant, la loi de S_n .
- 2. Déduire de ce premier résultat les propriétés suivantes (seules des démonstrations utilisant la question précédente seront acceptées ici) :
 - (a) $\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, 0 \leq B_{k,n}(x) \leq 1$,

- **(b)** $\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, B_{k,n}(x) = B_{n-k,n}(1-x),$
- (c) et les valeurs de :

i.
$$\sum_{k=0}^{n} B_{k,n}(x),$$

ii.
$$\sum_{k=0}^{n} kB_{k,n}(x),$$

iii.
$$\sum_{k=0}^{n} (k-nx)^2 B_{k,n}(x)$$
.

- 3. Pour $n \in \mathbb{N}^*$ et $k \in [0, n]$ calculer $\mathbb{P}(S_n = k)$ en fonction de $\mathbb{P}(S_{n-1} = k)$ et $\mathbb{P}(S_{n-1} = k 1)$, et en déduire l'expression de $B_{k,n}$ en fonction de $B_{k,n-1}$ et $B_{k-1,n-1}$.
- **4.** Pour n > 0, on définit une application B_n de C^0 vers C[X] par

$$\forall g \in C^0$$
, $B_n(g) = \sum_{k=0}^n g\left(\frac{k}{n}\right) B_{k,n}$.

- (a) Montrer que $(B_{k,n})_{0 \le k \le n}$ est une base de $C_n[X]$.
- (b) Montrer que la restriction de B_n à $C_n[X]$ induit un automorphisme linéaire \overline{B}_n de $C_n[X]$.
- (c) Montrer que

$$\forall P \in \mathbb{C}[X], \exists Q \in \mathbb{C}[X], \exists n \in \mathbb{N}, P = B_n(Q).$$

Un tel Q est-il unique?

5. On rappelle ici que $S_n = \sum_{k=1}^n X_k$, que $T_n = \frac{S_n}{n}$ et que les variables aléatoires $(X_k)_{k \in \mathbb{N}}$ sont indépendantes et identiquement distribuées suivant une loi de Bernoulli de paramètre x. Soit f une fonction continue de [0,1] dans C. Montrer que

$$\mathbb{E}(f(T_n)) = B_n(f)(x)$$

puis que

$$B_n(f)(x) - f(x) = \mathbb{E}(f(T_n) - f(\mathbb{E}(T_n))).$$

- **6.** Montrer que $\forall \delta > 0$, $\mathbb{P}(|T_n x| \ge \delta) \le \frac{1}{4n\delta^2}$.
- 7. Soit X une variable aléatoire réelle à valeurs dans un ensemble fini et φ une fonction définie et convexe sur un intervalle contenant $X(\Omega)$. On suppose de plus que X et $\varphi(X)$ possèdent une espérance. Montrer qu'alors

$$\varphi(\mathbb{E}(X)) \leq \mathbb{E}(\varphi(X)).$$

- 8. Déduire de ce qui précède que $(B_n(f))_{n\in\mathbb{N}^*}$ converge uniformément vers f.
- 9. Démontrer le théorème de Weierstrass : Soient (a, b) ∈ R², avec a < b. Si g est continue sur [a, b], alors g est limite uniforme sur [a, b] d'une suite de polynômes.
- 10. Montrer que ce résultat n'est pas valable si on remplace [a, b] par \mathbb{R} .