Gruppe der invertierbaren Elemente

Definition

M Monoid

Einheitengruppe von M (oder Gruppe der invertierbaren Elemente): Gruppe M^{\times} mit Multiplikation gegeben durch diejenige von M.

Beispiel

- ▶ $(\mathbb{Z}, \cdot)^{\times} = \{1, -1\}$
- $\blacktriangleright (\mathbb{Q},\cdot)^{\times} = \mathbb{Q} \setminus \{0\}$
- ► *A* Menge:

$$S_A := Abb(A, A)^{\times}$$
, die symmetrische Gruppe auf A. $S_A = \{f \in Abb(A, A) \mid f \text{ ist invertierbar}\}.$

Untergruppen

Definition

G Gruppe, $U \subseteq G$.

U heißt Untergruppe von G, falls gilt:

- $ightharpoonup e \in U$.
- ▶ Für alle $x, y \in G$ ist auch $x \cdot y^{-1} \in G$.

Untergruppen (Forts.)

Beispiele

▶ Für $n \in \mathbb{Z}$ ist

$$n\mathbb{Z} := \{ nz \mid z \in \mathbb{Z} \}$$

eine Untergruppe von $(\mathbb{Z}, +)$.

Z.B. ist

- ► 2ℤ die Menge der gerande Zahlen.
- ► $0\mathbb{Z} = \{0\}.$
- $ightharpoonup 1\mathbb{Z} = \mathbb{Z}$.
- ▶ Sei A eine Menge und $a \in A$. Dann ist

$$S_{A,a} := \{ f \in S_A \mid f(a) = a \}$$

eine Untergruppe von S_A .

▶ $(\mathbb{N},+)$ ist keine Untergruppe von $(\mathbb{Z},+)$.

Ringe und Körper

Definition

Ring: Menge R mit zwei Verknüpfungen + und \cdot , so dass gilt:

- ightharpoonup (R,+) abelsche Gruppe
- \blacktriangleright (R, \cdot) Monoid
- ▶ für alle $x, y, z \in R$ gilt:

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$
$$(x+y) \cdot z = (x \cdot z) + (y \cdot z)$$

Die letzten beiden Axiome heißen die Distributivgesetze.

► *R* Ring

R kommutativ: · kommutativ

- ► Körper: kommutativer Ring K mit
 - ► 1 ≠ 0
 - ▶ jedes Element von $K \setminus \{0\}$ ist invertierbar

Beispiele

- ► Z mit üblicher Addition und Multiplikation:
- ► ℚ mit üblicher Addition und Multiplikation:

Beispiel

Körper mit genau zwei Elementen:

	0			0	
0	0	1	0	0	0
1	1	0	1	0	1

Beispiel

Die Menge $\mathbb{F}_4:=\{0,1,a,b\}$ mit den Verknüpfungstafeln

+	0	1	a	b	•	0	1	a	b
0	0	1	а	b		0			
1	1	0	b	a	1	0	1	a	b
а	а	b	0	1	а	0	а	b	1
Ь	b	a	1	0	b	0	b	1	a

bildet einen Körper.

Proposition

R Ring

$$f "ur" a \in R": \qquad a \cdot 0 = 0 \cdot a = 0$$

• für
$$a, b \in R$$
: $a(-b) = (-a)b = -ab$

• für
$$a, b \in R$$
: $(-a)(-b) = ab$

Integritätsbereiche

Definition

R kommutativer Ring.

- ▶ $a \in R$ heißt Nullteiler, falls ein $0 \neq b \in R$ existiert mit ab = 0.
- ▶ R heißt Integrit atsbereich, falls $1 \neq 0$ und R keine Nullteiler außer 0 besitzt (d.h. für alle $a, b \in R$ gilt: $ab = 0 \Rightarrow a = 0$ oder b = 0).

Integritätsbereiche (Forts.)

Beispiel

 $\mathsf{Ring}\ \mathbb{Z}\ \mathsf{ist}\ \mathsf{Integrit\"{a}ts}\mathsf{bereich}$

Beispiel

Kommutativer Ring mit genau vier Elementen und Nullteilern:

	0							2	
0	0	1	2	3	0	0	0	0 2	0
1	1	2	3	0	1	0	1	2	3
2	2	3	0	1	2	0	2	0 2	2
3	0 1 2 3	0	1	2	3	0	3	2	1

Integritätsbereiche (Forts.)

Proposition

Körper sind Integritätsbereiche.

Bemerkung

R kommutativer Ring mit $1 \neq 0$

Äquivalent sind:

- ► *R* ist Integritätsbereich
 - ▶ für $a, x, y \in R$: $ax = ay \Rightarrow a = 0$ oder x = y

Polynome

K Körper

Definition

▶ Polynom in der *Unbestimmten X*: Ausdruck der Form

$$f = \sum_{i=0}^{n} a_i X^i = a_0 + a_1 X + \dots + a_n X^n$$

für ein $n \in \mathbb{N}_0$ mit $a_i \in K$ für $i = 0, \dots, n$..

- ▶ Die $a_i \in K$, i = 0, ..., n heißen die *Koeffizienten* von f.
- ▶ K[X]: Menge der Polynome über K in der Unbestimmten X.

Bemerkung und Schreibweise

Koeffizienten gleich 0 können beliebig hinzugefügt oder weggelassen werden.

$$f = \sum_{i=0}^{n} a_i X^i = a_0 + a_1 X + \dots + a_n X^n + 0 X^{n+1} + \dots$$

▶ Der Kürze halber schreibt man:

$$X^i$$
 statt $1X^i$, X statt X^1 , a_0 statt a_0X^0 , $-a_iX^i$ statt $+(-a_i)X^i$ und $0X^i$ lässt man weg.

Beispiel

$$2X^{0} + (-1)X + 1X^{2} + 0X^{3} = 2 - X + X^{2}$$
.

Definitionen

Seien $f = \sum_{i=0}^{n} a_i X^i$ und $g = \sum_{i=0}^{n} b_i X^i$ in K[X].

- ▶ $f = g : \Leftrightarrow a_i = b_i$ für alle i = 0, ..., n.
- ► f heißt das Nullpolynom, geschrieben f = 0, falls $a_i = 0$ für alle i = 0, ..., n.
- ► Sei $f \neq 0$. Dann sei deg $f := \max\{i \mid a_i \neq 0\}$. deg f heißt der *Grad* von f.

Konvention: $deg 0 := -\infty$.

Definitionen

Sei $f = \sum_{i=0}^n a_i X^i \in K[X]$.

- ► a₀ heißt der konstante oder absolute Koeffizient von f.
- ▶ Ist deg $f = n \ge 0$, so heißt a_n der *Leitkoeffizient* oder *Hauptkoeffizient* von f.
- ▶ Das Polynom heißt normiert, wenn der Hauptkoeffizient gleich 1 ist.
- ▶ Das Polynom f heißt *linear*, wenn deg f = 1, und *quadratisch*, wenn deg f = 2 ist.
- ▶ Das Polynom f heißt konstant, wenn $deg f \leq 0$ ist.

Beispiele

► $f = -1 + X^2$ ► $g = X + 2X^2 - X^3$

- ▶ deg f =
- ▶ $\deg g =$
- ► Leitkoeffizient von f:
- ► Leitkoeffizient von g:
- ► Konstanter Koeffizient von *f*:
- ► Konstanter Koeffizient von *g*:
- ► *f* normiert?
- ▶ g normiert?

Notation

 $\mathcal{K}^{(\mathbb{N}_0)} := \{(a_i) \in \mathcal{K}^{\mathbb{N}_0} \mid a_i = 0 \text{ für fast alle } i \in \mathbb{N}_0\}.$ (fast alle: alle, bis auf endlich viele.)

Bemerkung

Das Polynom $f = \sum_{i=0}^n a_i X^i \in K[X]$ kann durch die Folge seiner Koeffizienten

$$(a_0, a_1, a_2, \ldots, a_n, 0, 0, 0, \ldots) \in \mathcal{K}^{(\mathbb{N}_0)}$$

definiert werden (mathematisch präzise Definition von Polynom.)

Unbestimmte: $X = 1X = 1X^1 = (0, 1, 0, 0, 0, ...)$.

Konstante Polynome: $a_0 X^0 = (a_0, 0, 0, 0, ...)$.

Polynomfunktionen

Warnung

Polynome sind keine Funktionen

Sei $K = \mathbb{F}_2 = \{0,1\}$:

- ▶ Abb(K, K) endlich mit |Abb(K, K)| = 4
- ightharpoonup K[X] unendlich

Polynomfunktionen (Forts.)

Definition

$$f = \sum_{i=0}^{n} a_i X^i \in K[X].$$

Polynomfunktion zu f:

$$K \to K$$
, $x \mapsto \sum_{i=0}^{n} a_i x^i$

Missbrauch der Notation: notiere Polynomfunktion auch als f

Für $x \in K$ heißt $f(x) \in K$ der Wert von f an der Stelle x.

Polynomfunktionen (Forts.)

Beispiele

▶ $f = -2 + X - \frac{1}{3}X^2 + X^4 \in \mathbb{Q}[X]$ liefert Polynomfunktion

$$f: \mathbb{Q} \to \mathbb{Q}, \quad a \mapsto -2 + a - \frac{1}{3}a^2 + a^4$$

$$f(5) =$$

$$f = X + X^2 \in \mathbb{F}_2[X]$$

$$f(0) = f(1) = 0$$

Hier liefern f und das Nullpolynom 0 die gleiche Polynomfunktion.

Der Polynomring

Bemerkung

K[X] wird zu einem kommutativen Ring mit Verknüpfungen Addition und Multiplikation wie folgt:

Für
$$f=\sum_{i=0}^n a_i X^i$$
 und $g=\sum_{i=0}^m b_i X^i$ in $K[X]$ sei
$$f+g:=\sum_{i=0}^{\max\{n,m\}}(a_i+b_i)X^i,$$

$$f\cdot g:=\sum_{i=0}^{n+m}c_i X^i \text{ mit } c_i:=\sum_{k=0}^i a_k b_{i-k}$$
 (insbesondere ist $c_0=$ und $c_{n+m}=$

NE bzgl. +:

NE bzgl ·:

Der Polynomring (Forts.)

▶ K wird identifiziert mit $\{aX^0 \mid a \in K\} \subseteq K[X]$

Missbrauch der Notation: für $a \in K$: notiere aX^0 als a

Beispiele

$$f, g \in \mathbb{Q}[X], f = X^2 - 1, g = -X^3 + 2X^2 + X + 1$$

$$f + g = -X^3 + 3X^2 + X$$

$$fg = -X^5 + 2X^4 + 2X^3 - X^2 - X - 1$$

$$-2f = -2X^2 + 2$$

Der Polynomring (Forts.)

Bemerkung

$$f,g \in K[X] \setminus \{0\}$$

• $f+g \neq 0 \Rightarrow$

$$\deg(f+g) \leq \max\{\deg f, \deg g\}$$

$$f + g \neq 0$$
, $\deg f \neq \deg g \Rightarrow$

$$\deg(f+g)=\max\{\deg f,\deg g\}$$

• Es gilt $fg \neq 0$ und

$$\deg(fg) = \deg f + \deg g$$

Grad eines Polynoms (Forts.)

Korollar

$$K[X]^{\times} = K^{\times}$$

Korollar

K[X] ist Integritätsbereich