7.2. 강도한계상태

(🖙 강.설 4.3.3.2.6)

검토내용

<u> </u>		
연성요	$D_p \le 0.42D_t$	(강.설 4.3-158)
콘크리트	$f_{deck} \le 0.6f'_{c}$ $f_{bot\ con'c} \le 0.6f'_{c}$	(강.설 4.3.3.2.7.2)
Flexure (Non-compact section)		(강.설 4.3-254)
압축플랜지	$f_{bu} \leq \Phi_f F_{nc}$	(강.설 4.3-255)
인장플랜지	f _{bu} ≤ Φ _f F _{nt}	
Flexure (Compact section)	$M_u \le \Phi_f M_n$	(강.설 4.3-253)
웨브	$V_{ui} \leq \Phi_v V_n$	(강.설 4.3-179)

- ① = fbu 플랜지 인장응력
- ② = fbu 플랜지 압축응력
- ③ = fdeck 바닥판 압축응력
- ④ = fbot 내부 con'c 압축응력
- ⑤ = fs 철근 인장응력

(🖙 강.설 B.1)

7.2.1. Y_{PNA} , M_P for plastic moment 산정

P_{t}	=	$F_{yt}b_tt_t$	Tension flange
P_c	=	$F_{yc}b_ct_c$	Compression flange
P_{w}	=	2F _{yw} (D/cosΦ)t _w	Web
P_{con}	=	$0.85f'_cA_{con}$	Bottom concrete
P_s	=	$0.85f'_cb_st_s$	Deck concrete
P_{rt}	=	$F_{yrt}A_{rt}$	Top rebar in deck slab
P_{rb}	=	$F_{yrb}A_{rb}$	Bottom rebar in deck slab
P_{st}	=	$F_{yst}A_{st}$	Top Rib
P_{sb}	=	$F_{ysb}A_{sb}$	Bottom Rib
$\sum P_r$	=		Total area of rebar in bottom concrete
$t_{s,}$ t_{h}	=		deck slab and haunch 두께
D	=		web depth
H_{st} , H_{sb}	=		Top rib and bottom rib depth
C_{rt} C_{rb}	=		Distance from top deck slab to top the centerline of top / bottom layer reb
H_c	=		내부 con'c depth
dr	=	Hc/2	Distance from bottom concrete rebar to PNA

1) 일반 Cases

● 정모멘트

on 조건 / Y _{PNA} / M _P	Distance from Y _{PNA} to mems	
In Web	$d_c = Y + t_c/2$	
$P_t + P_{sb} + (D-2H_{st})P_w/D + \sum P_r \ge P_{st} + P_c + P_s + P_{rb} + P_{rt}$	$d_t = D - Y + t_t/2$	
	$d_{sb} = D - Y - H_{sb}/2$	
D/2 $[(P_t + P_{sb} + \sum P_r - P_{st} - P_c - P_s - P_{rb} - P_{rt}) / P_w + 1]$	$d_{st} = Y - H_{st}/2$	
	$d_s = Y + t_h + t_s/2$	
$P_w / 2 / D [Y^2 + (D-Y)^2] + P_c d_c + P_{sb} d_{sb} + P_{st} d_{st} + P_t d_t + P_s d_s + P_{rb} d_{rb}$	$d_{rb} = Y + th + t_s - c_{rb}$	
+ $P_{rt}d_{rt}$ + $\sum P_rd_r$	$d_{rt} = Y + t_h + t_s - c_{rt}$	
	$d_r = D - Y - H_c/2$	
In Top Flange	$d_t = t_c - Y + D + t_t/2$	
$P_{t} + P_{sb} + \sum P_{r} + P_{w} + P_{st} + P_{c} \ge P_{s} + P_{rb} + P_{rt}$	$d_w = t_c - Y + D/2$	
	$d_{st} = t_c - Y + H_{st}/2$	
$t_c/2 [(P_t + P_{sb} + \sum P_r + P_w + P_{st} - P_s - P_{rb} - P_{rt}) / P_c + 1]$	$d_{sb} = t_c - Y + D - H_{sb}/2$	
	$d_s = t_s/2 + t_h - t_c + Y$	
$P_c / 2 / t_c [Y^2 + (t_c - Y)^2] + P_t d_t + P_{ch} d_{ch} + P_{ct} d_{ct} + P_c d_c + P_{ch} d_{ch}$	$d_{rb} = t_s - c_{rb} + t_h - t_c + Y$	
	$d_{rt} = t_s - c_{rt} + t_h - t_c + Y$	
	$d_r = t_c - Y + D - H_c/2$	
Below P _{rb}	$d_c = t_s + t_h - Y - t_c/2$	
	$d_t = t_s + t_h - Y + D + t_t/2$	
. t . 30 Z-1 - w . 3t . t = (-10 -3/- 5 - 10 - 1t	$d_w = t_s + t_h - Y + D/2$	
$t_a (P_a + P_{ab} + \nabla P_a + P_{ac} + P_{ac} + P_a - P_{ab} - P_{ab}) / P_a$	$d_{st} = t_s + t_h - Y + H_{st}/2$	
c2 (, f , , , 2D , Σ, 1 , , , M , , , 2f , , , ⊆ , , lp , , lΩ) , , ≥	$d_{sb} = t_s + t_h - Y + D - H_{sb}/2$	
$(V^2/2/+)P+Pd+P.d.+Pd+Pd+Pd+P.d.$	$d_{rb} = Y - c_{rb}$	
	$d_{rt} = Y - c_{rt}$	
+ rituit + Zriar	$d_{rt} = t_s + t_h - Y + D - H_c/2$	
Λ+ D.	$d_{c} = t_{s} + t_{h} - Y - t_{c}/2$ $d_{c} = t_{s} + t_{h} - Y - t_{c}/2$	
	$d_c = t_s + t_h - Y + D + t_t/2$	
$r_t + r_sb + Zr_r + r_w + r_{st} + r_c + r_{rb} = (Crb/C_s/r_s + r_{rt})$	$d_t - t_s + t_h - Y + D + t_{t/2}$ $d_w = t_s + t_h - Y + D/2$	
C _{rb}	$d_{st} = t_s + t_h - Y + H_{st}/2$	
	$d_{sb} = t_s + t_h - Y + D - H_{sb}/2$	
$(Y^{2} / 2 / t_{s}) P_{s} + P_{c} a_{c} + P_{sb} a_{sb} + P_{st} a_{st} + P_{w} a_{w} + P_{t} a_{t} + P_{rt} a_{rt} + \sum P_{r} a_{r}$	$d_{rt} = Y - c_{rt}$	
	$d_r = t_s + th - Y + D - H_c/2$	
	$d_c = t_s + t_h - Y - t_c/2$	
$P_t + P_{sb} + \sum P_r + P_w + P_{st} + P_c + P_{rb} \ge (c_{rt}/t_s)P_s + P_{rt}$	$d_t = t_s + t_h - Y + D + t_t/2$	
	$d_w = t_s + t_h - Y + D/2$	
$t_{s} (P_{t} + P_{sb} + \sum P_{r} + P_{w} + P_{st} + P_{c} + P_{rb} - P_{rt}) / P_{s}$	$d_{sb} = t_s + t_h - Y + D - H_{sb}/2$	
	$d_{sb} = t_s + t_h - Y + D - H_{sb}/2$ $d_{st} = t_s + t_h - Y + H_{st}/2$	
$(Y^2 / 2 / t_s) P_s + P_c d_c + P_{sb} d_{sb} + P_{st} d_{st} + P_w d_w + P_t d_t + P_{rb} d_{rb}$	$d_{sb} = t_s + t_h - Y + D - H_{sb}/2$ $d_{st} = t_s + t_h - Y + H_{st}/2$ $d_{rb} = c_{rb} - Y$	
	$d_{sb} = t_s + t_h - Y + D - H_{sb}/2$ $d_{st} = t_s + t_h - Y + H_{st}/2$ $d_{rb} = c_{rb} - Y$ $d_{rt} = Y - c_{rt}$	
$(Y^2 / 2 / t_s) P_s + P_c d_c + P_{sb} d_{sb} + P_{st} d_{st} + P_w d_w + P_t d_t + P_{rb} d_{rb}$	$d_{sb} = t_{s} + t_{h} - Y + D - H_{sb}/2$ $d_{st} = t_{s} + t_{h} - Y + H_{st}/2$ $d_{rb} = c_{rb} - Y$ $d_{rt} = Y - c_{rt}$ $d_{r} = t_{s} + t_{h} - Y + D - H_{c}/2$	
$(Y^2 / 2 / t_s) P_s + P_c d_c + P_{sb} d_{sb} + P_{st} d_{st} + P_w d_w + P_t d_t + P_{rb} d_{rb}$	$d_{sb} = t_s + t_h - Y + D - H_{sb}/2$ $d_{st} = t_s + t_h - Y + H_{st}/2$ $d_{rb} = c_{rb} - Y$ $d_{rt} = Y - c_{rt}$	
$(Y^{2} / 2 / t_{s}) P_{s} + P_{c}d_{c} + P_{sb}d_{sb} + P_{st}d_{st} + P_{w}d_{w} + P_{t}d_{t} + P_{rb}d_{rb} + P_{rt}d_{rt} + \sum P_{r}d_{r}$	$d_{sb} = t_{s} + t_{h} - Y + D - H_{sb}/2$ $d_{st} = t_{s} + t_{h} - Y + H_{st}/2$ $d_{rb} = c_{rb} - Y$ $d_{rt} = Y - c_{rt}$ $d_{r} = t_{s} + t_{h} - Y + D - H_{c}/2$	
$(Y^2 / 2 / t_s) P_s + P_c d_c + P_{sb} d_{sb} + P_{st} d_{st} + P_w d_w + P_t d_t + P_{rb} d_{rb} + P_{rt} d_{rt} + \sum P_r d_r$ At P_{rt}	$d_{sb} = t_{s} + t_{h} - Y + D - H_{sb}/2$ $d_{st} = t_{s} + t_{h} - Y + H_{st}/2$ $d_{rb} = c_{rb} - Y$ $d_{rt} = Y - c_{rt}$ $d_{r} = t_{s} + t_{h} - Y + D - H_{c}/2$ $d_{c} = t_{s} + t_{h} - Y - t_{c}/2$	
$(Y^2 / 2 / t_s) P_s + P_c d_c + P_{sb} d_{sb} + P_{st} d_{st} + P_w d_w + P_t d_t + P_{rb} d_{rb} + P_{rt} d_{rt} + \sum P_r d_r$ At P_{rt}	$d_{sb} = t_{s} + t_{h} - Y + D - H_{sb}/2$ $d_{st} = t_{s} + t_{h} - Y + H_{st}/2$ $d_{rb} = c_{rb} - Y$ $d_{rt} = Y - c_{rt}$ $d_{r} = t_{s} + t_{h} - Y + D - H_{c}/2$ $d_{c} = t_{s} + t_{h} - Y - t_{c}/2$ $d_{t} = t_{s} + t_{h} - Y + D + t_{t}/2$	
$(Y^{2} / 2 / t_{s}) P_{s} + P_{c}d_{c} + P_{sb}d_{sb} + P_{st}d_{st} + P_{w}d_{w} + P_{t}d_{t} + P_{rb}d_{rb} $ $+ P_{rt}d_{rt} + \sum P_{r}d_{r}$ $At P_{rt}$ $P_{t} + P_{sb} + \sum P_{r} + P_{w} + P_{st} + P_{c} + P_{rb} + P_{rt} \ge (c_{rt}/t_{s})P_{s}$	$d_{sb} = t_s + t_h - Y + D - H_{sb}/2$ $d_{st} = t_s + t_h - Y + H_{st}/2$ $d_{rb} = c_{rb} - Y$ $d_{rt} = Y - c_{rt}$ $d_r = t_s + t_h - Y + D - H_c/2$ $d_c = t_s + t_h - Y - t_c/2$ $d_t = t_s + t_h - Y + D + t_t/2$ $d_w = t_s + t_h - Y + D/2$	
	In Web $P_{t} + P_{sb} + (D-2H_{st})P_{w}/D + \sum P_{r} \ge P_{st} + P_{c} + P_{s} + P_{rb} + P_{rt}$ $D/2 \left[(P_{t} + P_{sb} + \sum P_{r} - P_{st} - P_{c} - P_{s} - P_{rb} - P_{rt}) / P_{w} + 1 \right]$ $P_{w} / 2 / D \left[Y^{2} + (D-Y)^{2} \right] + P_{c}d_{c} + P_{sb}d_{sb} + P_{st}d_{st} + P_{t}d_{t} + P_{s}d_{s} + P_{rb}d_{rb} + P_{rt}d_{rt} + \sum P_{r}d_{r}$ In Top Flange	

		$d_r = t_s + t_h - Y + D - H_c/2$
(7)	Above P _{rt}	$d_c = t_s + t_h - Y - t_c/2$
조건	$P_{t} + P_{sb} + \sum P_{r} + P_{w} + P_{st} + P_{c} + P_{rb} + P_{rt} < (c_{rt}/t_{s})P_{s}$	$d_t = t_s + t_h - Y + D + t_t/2$
		$d_w = t_s + t_h - Y + D/2$
$Y_{PNA} =$	$t_{s} (P_{t} + P_{sb} + \sum P_{r} + P_{w} + P_{st} + P_{c} + P_{rb} + P_{rt}) / P_{s}$	$d_{sb} = t_s + t_h - Y + D - H_{sb}/2$
		$d_{st} = t_s + t_h - Y + H_{st}/2$
$M_p =$	$(Y^2 / 2 / t_s) P_s + P_c d_c + P_{sb} d_{sb} + P_{st} d_{st} + P_w d_w + P_t d_t + P_{rb} d_{rb}$	$d_{rb} = c_{rb} - Y$
	+ $P_{rt}d_{rt}$ + $\sum P_rd_r$	$d_{rt} = c_{rt} - Y$
		$d_r = t_s + t_h - Y + D - H_c/2$

● 부모멘트

Locati	on 조건 / YPNA / MP	Distance from Y _{PNA} to mems
(8)	In Web	$d_c = D - Y + t_c/2$
조건	$P_c + P_{sb} + \sum P_r + P_{con} + (D-H_{st})P_w/D \ge P_{st} + P_t + P_{rb} + P_{rt}$	$d_t = Y + t_t/2$
		$d_{st} = Y - H_{st}/2$
$Y_{PNA} =$	D/2 $[(P_c + P_{sb} + \sum P_r + P_{con} - P_{st} - P_t - P_{rb} - P_{rt}) / P_w + 1]$	$d_{sb} = D - Y - H_{sb}/2$
		$d_{rb} = Y + t_h + t_s - c_{rb}$
$M_p =$	P_w / 2 / D $[Y^2 + (D - Y)^2] + P_{con}d_{con} + P_cd_c + P_{sb}d_{sb} + P_{st}d_{st} + P_td_t + P_{rb}d_{rb}$	$d_{rt} = Y + t_h + t_s - c_{rt}$
	+ $P_{rt}d_{rt}$ + $\sum P_rd_r$	$d_{con} = D - Y - H_c/2$
		$d_r = D - Y - H_c/2$
(9)	In Top Flange	$d_c = t_t - Y + D + t_c/2$
조건	$P_c + P_{sb} + \sum P_r + P_{con} + P_w + P_{st} + P_t \ge P_{rb} + P_{rt}$	$d_w = t_t - Y + D/2$
		$d_s = t_s/2 + t_h - t_t + Y$
$Y_{PNA} =$	$t_t/2 [(P_c + P_{sb} + \sum P_r + P_{con} + P_{st} + P_w - P_{rb} - P_{rt}) / P_t + 1]$	$d_{sb} = t_t - Y + D - H_{sb}/2$
		$d_{st} = t_t - Y + H_{st}/2$
$M_p =$	$P_{t} / 2 / t_{t} [Y^{2} + (t_{t} - Y)^{2}] + P_{con}d_{con} + P_{c}d_{c} + P_{sb}d_{sb} + P_{st}d_{st} + P_{w}d_{w} + P_{rb}d_{rb}$	$d_{rb} = t_s + t_h - c_{rb} - t_t + Y$
	+ $P_{rt}d_{rt}$ + $\sum P_rd_r$	$d_{rt} = t_s - c_{rt} - t_t + Y$
		$d_{con} = d_r = t_t - Y + D - H_c/2$

2) Additional Cases

● 정모멘트

Locati	on 조건 / Y _{PNA} / M _P	Distance from Y _{PNA} to mems
(a)	In Top Rib	$d_c = Y + t_c/2$
조건	$P_{t} + P_{sb} + \sum P_{r} + P_{w} + P_{st} \ge P_{c} + P_{s} + P_{rb} + P_{rt}$	$d_t = D - Y + t_t/2$
Y _{PNA} =	$P_{t} + P_{sb} + \sum P_{r} + P_{w} + P_{st} - P_{c} - P_{s} - P_{rb} - P_{rt}$	$d_{sb} = D - Y - H_{sb}/2$
r _{PNA} —	$2P_w / D + 2 P_{st} / H_{st}$	$d_s = Y + t_h + t_s/2$
$M_p =$	P_{st} / 2 / H_{st} [Y ² + (H _{st} - Y) ²] + $P_c d_c$ + $P_{sb} d_{sb}$ + P_w /2 / D [Y ² + (D-Y) ²]	$d_{rt} = Y + t_s + t_h - c_{rt}$
	$+ P_t d_t + P_s d_s + P_{rb} d_{rb} + P_{rt} d_{rt} + \sum P_r d_r$	$d_{rb} = Y + t_h + t_s - c_{rb}$
		$d_r = D - Y - H_c/2$

● 부모멘트

Locati	on 조건 / YPNA / MP	Distance from Y _{PNA} to mems
(b)	In Bot Rib	$d_c = D - Y + t_c/2$
조건	$P_c + P_{sb} + (H_{sb}/H_c)P_{con} + (H_{sb}/D)P_w \ge (D - H_{sb})P_w/D + P_{st} + P_t + P_{rb} + P_{rt}$	$d_t = Y + t_t/2$
Y _{PNA} =	$P_c + P_w + DP_{con}/H_c + (2D/H_{sb} - 1) P_{sb} - P_t - P_{st} - P_{rb} - P_{rt}$	$d_{st} = Y - H_{st}/2$
r _{PNA} —	$2P_{sb} / H_{sb} + P_{con}/H_c + 2 P_w / D$	$d_{rb} = Y + t_h + t_s - c_{rb}$
$M_p =$	P_{sb} / 2 / H_{sb} [(D-Y) ² + (H_{sb} -D+Y) ²] + P_{w} /2 / D [Y ² + (D-Y) ²] + $P_{c}d_{c}$ + $P_{t}d_{t}$	$d_{rt} = Y + t_h + t_s - c_{rt}$
	+ $P_{con} (D-Y)^2 / 2 / H_c + P_{st} d_{st} + P_{rb} d_{rb} + P_{rt} d_{rt} + \sum P_r d_r$	$d_r = D - Y - H_c/2$
(c)	In Bot Con'c	$d_c = D - Y + t_c/2$
조건	$P_c + P_{sb} + P_{con} + (H_c/D)P_w \ge (D - H_c)P_w/D + P_{st} + P_t + P_{rb} + P_{rt}$	$d_t = Y + t_t/2$
Y _{PNA} =	$P_c + P_w + P_{sb} + DP_{con}/H_c - P_t - P_{st} - P_{rb} - P_{rt}$	$d_{st} = Y - H_{st}/2$
IPNA —	$P_{con}/H_c + 2 P_w / D$	$d_{sb} = D - Y - H_{sb}/2$
$M_p =$	$P_w / 2 / D [Y^2 + (D-Y)^2] + P_{con} (D - Y)^2 / 2 / H_c + P_c d_c + P_t d_t$	$d_{rb} = Y + t_h + t_s - c_{rb}$
	+ $P_{st}d_{st}$ + $P_{sb}d_{sb}$ + $P_{rb}d_{rb}$ + $P_{rt}d_{rt}$ + $\sum P_rd_r$	$d_{rt} = Y + t_h + t_s - c_{rt}$
		$d_r = D - Y - H_c/2$
(d)	In Top Rib	$d_c = D - Y + t_c/2$
조건	$P_c + P_{sb} + \sum P_r + P_{con} + P_w + P_{st} \ge P_t + P_{rb} + P_{rt}$	$d_t = Y + t_t/2$
Y _{PNA} =	$P_c + P_{sb} + \sum P_r + P_{con} + P_{st} + P_w - P_t - P_{rb} - P_{rt}$	$d_{sb} = D - Y - H_{sb}/2$
IPNA —	$2P_{st}/H_{st} + 2 P_w / D$	$d_{rb} = Y + t_h + t_s - c_{rb}$
$M_p =$	$P_w [Y^2 + (D-Y)^2] / 2 / D + P_{st} [Y^2 - (H_{st} - Y)^2] / 2 / H_{st} + P_c d_c + P_t d_t$	$d_{rt} = Y + t_h + t_s - c_{rt}$
	+ $P_{con}d_{con}$ + $P_{sb}d_{sb}$ + $P_{rb}d_{rb}$ + $P_{rt}d_{rt}$ + $\sum P_rd_r$	$d_{con} = D - Y - H_c/2$
		$d_r = D - Y - H_c/2$

7.2.2. M_v 항복모멘트 산정

■ 다음 식에서 M_{AD}를 구한다

$$\begin{array}{lll} F_{yc} & = & M_{D1} \ / \ S_{steel} \ + \ M_{D2} \ / \ S_{bot_con} \ + \ M_{D3} \ / \ S_{longterm} \ + \ M_{AD_C} \ / \ S_{shortterm} \\ F_{yt} & = & M_{D1} \ / \ S_{steel} \ + \ M_{D2} \ / \ S_{bot_con} \ + \ M_{D3} \ / \ S_{longterm} \ + \ M_{AD_T} \ / \ S_{shortterm} \\ M_{AD} & = & min(M_{AD_C} \ ; \ M_{AD_T}) \end{array}$$

여기서,
$$M_{D1} = 1.25(M_{DC1} + M_{DC2})$$
 $M_{D2} = 1.25M_{DC3}$ $M_{D3} = 1.25M_{DC4} + 1.50M_{DW}$

■ 다음을 M_v 계산한다

$$M_v = M_{D1} + M_{D2} + M_{D3} + M_{AD}$$

7.2.3. 연성 요구조건

강.설 4.3.3.1.7.3

■ 공칭항복강도 690MPa 균질 합성단면 or 상부 및 하부플랜지의 공칭항복강도 690MPa

$$D_p \le 0.3D_t$$

■ 그 밖의 단면인 경우

 $D_p \leq 0.42D_t$

여기서,

D_t = 합성단면의 전체 높이

D_c = 소성모멘트 상태어세 콘크리트 바닥판의 상단에서나 내부 con'c 하단에서 중립축까지의 거리

Dp PNA Dt

부모멘트

7.2.4. 콘크리트 응력 검토

■ 콘크리트 종방향 응력을 : 0.6f'_c 이하

■ 작용응력

$$f_{deck} = \frac{1.25DC4 + 1.5DW + 1.8LL}{n * S_{deck}}$$

$$f_{bot} = \frac{1.25DC3}{n * S_{bot1}} + \frac{4 + 1.5DW + 1.8LL}{n * S_{bot2}}$$

■ 단기 탄성계수 n 사용

 $n = E / E_c$

강.설 4.3.3.2.7.2

강.설 4.3.3.1.1.1

7.2.5. Flexure checking

Positive moment	Negative moment	
Noncompact section	Compact section	Negative moment
압축플랜지 (강.설 4.3-254)		
$f_{bu} \le \Phi_f F_{nc}$	(강.설 4.3-253)	(강.설 4.3-263)
인장플랜지 (강.설 4.3-255 & 4.3-264)	$M_u \leq \Phi_f M_n$	$f_{bu} \leq \Phi_f F_{nc}$
$f_{bu} \le \Phi_f F_{nt}$		

1) 플랜지 응력 (f_{bu}) 산정

 $f_{bu} = 1.25(DC1 + DC2) / S_{steel} + 1.25DC3 / S_{bot_con} + (1.25DC4 + 1.5DW) / S_{longterm} + 1.8LL / S_{shortterm}$

2) $F_{\rm nc}$ 산정 (Nominal flexural resistance of compression flange)

In positive moment		ment	In negative moment	
(강.설 4.3.3.2.7.2(2))		2(2))	(강.설 4.3.3.2.8.2(2))	
F_{nc}	$= R_b R_b$	$_{\rm h}F_{\rm yc}$	for Open flange	$F_{pc} = F_{cb} \sqrt{[(1 - (f_v / \Phi_v / F_{cv})^2)]}$
F_{nc}	$= R_b R_b$	$_{h}F_{yc}\Delta$	for Box flange	$r_{nc} = r_{cb} V[(1 - (I_V / \Psi_V / r_{cv}))]$
	f_v	=	$T / (2A_0 t_f)$	
	Δ	=	$\sqrt{(1 - (f_v / F_{yc})^2)}$	
	Τ	=	계수하중에 의한 내부토크	
	٨	_	바人거더 다며이 떼하다며저	

Calculation of R_h (Hybrid factor)

강.설 4.3.3.1.1.10(1)

Case	R _h
$F_{yw} \ge F_{yf}$	1.0
Otherwise	$[12+\beta(3\rho-\rho^3)]/(12+2\beta)$

 $\rho = min(F_{yw}/f_n ; 1.0)$ $f_n = max(F_{yf}, f_{bu})$

 $\beta = 2D_n t_w / A_{fn}$

 $D_{n} =$ 단면의 탄성중립축으로 부터 양플린지 안쪽 면까지의 거리 중 큰값

 $A_{fn} = _{}^{}$ 플랜지 단면적과 D_{n} 방향에 위치한 플랜지 덮개판 면적의 합

■ Calculation of R_b (Web load shedding factor)

강.설 4.3.3.1.1.10(2)

Case		R _b
$D/t_w \le 150 (300)$	In Positive moment	1.0
$b_f/(2t_f) \le 12$		
$b_f \le D/6$	In Positive moment	1.0
$t_f \ge 1.1t_w$		
$D/t_w \le 0.95\sqrt{(Ek/F_{yc})}$	수평보강재 있음	1.0
$2D_c/t_w \le \lambda_{rw}$		1.0
Otherwise		1 - $[a_{wc} / (1200 + 300a_{wc})] (2D_c / t_w - \lambda_{rw})$

Since the cross - section proportion limits are satisfied, so $R_{\text{\scriptsize b}}$ is taken as 1.0

Case	k
- 양쭉단이 압축 경우	7.2
- Otherwise	
보강재 없음	9/(D _c /D) ²
$d_s/D_c \ge 0.4$	$5.17/(d_s/D)^2 \ge 9/(D_c/D)^2$
$d_s/D_c < 0.4$	$11.64/[(D_c-d_s)/D]^2$

d_s = 수평보강재 중심선과 압축플랜지 안쪽면사이의 거리

강.설 4.3.3.1.1.10(2)

■ Calculation of a_{wc}

Case	a _{wc}
수평보강재 있음	$2D_ct_w$
정모멘트	$b_{fc}t_{fc} + b_st_s(1 - f_{DC1}/F_{yc})/(3n)$
Otherwise	2D _c t _w /(b _{fc} t _{fc})

 f_{DC1} = compression flange stress caused by factored permanent load applied before composite

■ Calculation of F_{cb} 강.설 4.3.3.2.8.2(2)

Case	F _{cb}
$\lambda_f \leq \lambda_p$	$R_bR_hF_{yc}\Delta$
$\lambda_p < \lambda_f \le \lambda_r$	$R_b R_h F_{yc} [\Delta - (\Delta - (\Delta - 0.3)/R_h) (\lambda_f - \lambda_p)/(\lambda_r - \lambda_p)]$
$\lambda_{\rm r} < \lambda_{\rm f}$	0.9 ER _b k/λ_f^2

 λ_f = b_{fc} / t_{fc} if 종리브 없음

 $\lambda_f = w / t_{fc}$ if 종리브 있음

 $\lambda_r = 0.95 \sqrt{(Ek / (\Delta - 0.3) / F_{yc})}$

 $\lambda_p = 0.57 \sqrt{(Ek / \Delta / F_{yc})}$

 $\Delta = \sqrt{(1 - (f_v / F_{yc})^2)}$

 $f_v = T / (2A_0 t_f)$

T = 계수하중에 의한 내부토크

A₀ = 박스거더 단면의 폐합단면적

w = 압축플랜지의 종방향보강재 폭 또는 웨브로부터 가장 가까운 종방향보강재까지의 거리 중 큰 값

■ Calculation of F_{cv} (can be used the values from Constructibility)

강.설 4.3.3.2.8.2(2)

Case	F _{cv}
$\lambda_{f} \leq 1.12 \sqrt{(Ek_{s}/F_{yc})}$	0.58F _{yc}
$1.12 \text{$\vee$} (\text{Ek}_{\text{s}}/\text{F}_{\text{yc}}) < \lambda_{\text{f}} \leq 1.40 \text{\vee} (\text{Ek}_{\text{s}}/\text{F}_{\text{yc}})$	$0.65\sqrt{(F_{yc}Ek_s)/\lambda_f}$
$\lambda_{\rm f} > 1.40\sqrt{(Ek_{\rm s}/F_{\rm yc})}$	$0.9 \mathrm{Ek_s}/\lambda_\mathrm{f}^2$

■ Calculation of k, k_s - Plate-buckling coefficient (can be used the values from Constructibility)

Case		k	k _s	
종리브 없음		4.0	5.34	
종리브 있음	n = 1	$1.0 \le [8I_s/(wt_{fc}^3)]^{1/3} \le 4.0$	$5.34 + 2.84(I_s/w/t_{fc}^3)^{1/3}$	< 5 34
	n = 2	$1.0 \le [0.894 I_s/(w t_{fc}^3)]^{1/3} \le 4.0$	$(n + 1)^2$	≥ 3.34

n = 등간격인 종방향보강재의 수

l_s = 종리브 단면2차모멘트

D_c = 탄성범위 내에서 웨브의 압축 측 높이

d_s = 수평보강재 중심선과 압축플랜지 안쪽면사이의 거리

w = 압축플랜지의 종방향보강재 사이 폭 또는 웨브로부터 가장 가까운종방향보강재까지의 거리 중 큰 값

3) 공칭휨강도 M_n 산정 (Nominal flexural resistance)

강.설 4.3.3.1.7.1 (2)

■ 공칭항복강도 485MPa 이하인 강재로 균질 합성단면 or 상부 및 하부플랜지의 공칭항복강도 485MPa

Case	M _n
$D_p \le 0.1D_t$	$M_n = M_p$
Otherwise	$M_n = M_p(1.07 - 0.7D_p/D_t)$

■ 공칭항복강도 690MPa 강재로 균질 합성단면 or 상부 및 하부플랜지의 공칭항복강도 690MPa

Case	M _n
$D_p \le 0.1D_t$	$M_n = M_p$
$0.1D_t < D_p \le 0.2D_t$	$M_n = M_p(1.19 - 1.9D_p/D_t)$
Otherwise	$M_n = M_p(1.0 - 0.95D_p/D_t)$

■ 연속교의 경우 단며의 공칭휨강도는 다음 식을 만족해야한다 $M_n \le 1.3R_h M_v$

여기서,

 M_p = 소성모멘트 M_v = 항복모멘트

D_t = 합성단면의 전체높이

D_o = 소성모멘트 상태어세 콘크리트 바닥판의 상단에서나 내부 con'c 하단에서 중립축까지의 거리

4) F_{nt} 산정 (Nominal flexural resistance of tension flange)

Case		F _{nt}	
Positive moment		$R_h F_{yt} \Delta$	강.설 4.3.3.2.7.2 (2)
Negative mement	for Open flange	$R_h F_{yt}$	강.설 4.3.3.2.8.3
Negative moment	for Box flange	$R_h F_{yt} \Delta$	

5) Classification of compact or noncompact section

강.설 4.3.3.2.6.2 (2)

a = 자간 중앙에서의 안접 박스 간 플랜지의 중심간격

w = 같이 각 박스단면의 플랜지 중심간격

b = 난간이나 연석을 포함한 바닥판의 내민부

S = 웨브의 경사도

D_{cp} = 소성모멘트 적용 시 압축을 받는 웨브의 높이

 $D_{cp} > 0$ for the case the plastic neutral axis is in the web, others cases $D_{cp} = 0$

7.2.3. Web checking

강.설 4.3.3.2.9

 $V_{ui} \leq \Phi_{v}V_{n}$

 $V_{ui} = V_u/\cos\Phi$

V_u = 경사진 웨브 1개에 작용하는 계수하중에 의한 전단력

Φ = 연직축에 대한 웨브의 경사각

■ Calculation of V_n (Nominal shear resistance)

Case	V _n	
Unstiffened web	$C \cdot V_p = C \cdot 0.58 F_{yw} Dt_w$	강.설 4.3.3.1.9.2
Stiffened web		
- End panels	$C \cdot V_p = C \cdot 0.58 F_{yw} Dt_w$	강.설 4.3.3.1.9.3(3)
- Interior panels		강.설 4.3.3.1.9.3(2)
$2Dt_{w} / (b_{fc}t_{fc} + b_{ft}t_{ft}) \le 2.5$	$0.58F_{yw}Dt_{w}$ [C + $0.87(1 - C)$ / $\sqrt{(1 - C)}$	$+ d_0^2/D^2)]$
Otherwise	$0.58F_{yw}Dt_{w}$ [C + $0.87(1 - C)$ / $\sqrt{(1 - C)}$	$+ d_0^2 / D^2 + d_0 / D)]$

■ Ratio of shear buckling resistance (C) 산정

강.설 4.3.3.1.9.3(2)

Case	С	
$D/t_w \le 1.12\sqrt{(Ek/F_{yw})}$	1.0	(1)
$1.12\sqrt{(Ek/F_{yw})} < D/t_{w} \le 1.40\sqrt{(Ek/F_{yw})}$	$1.12/(\text{D/t}_{\text{w}}) \sqrt{(\text{Ek/F}_{\text{yw}})}$	(2)
$D/t_w > 1.40\sqrt{(Ek/F_{yw})}$	$1.57(Ek/F_{yw})/(D/t_w)^2$	(3)

■ Calculation of k - shear-buckling ccoefficient

Case	k
Unstiffened web	5.0
Stiffened web	$5+5/(d_0/D)^2$

Classification of stiffened web and unstiffened web

(☞ 강.설 4.3.3.1.9.1(3))

Case	Classification
수직보강재 간격 d ₀ ≤ 3D and 수평보강재 없음	Stiffened web
수직보강재 간격 $d_0 \le 1.5D$ and 수평보강재 있음	Stiffened web
Otherwise	unstiffened web