

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Seripanrin

Field of the Invention

5 This invention relates to newly identified polypeptides and polynucleotides encoding such polypeptides sometimes hereinafter referred to as „Seripanrin“, to their use in diagnosis and in identifying compounds that may be agonists, antagonists that are potentially useful in therapy, and to production of such polypeptides and polynucleotides.

10

Background of the Invention

15

The drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics", that is, high throughput genome- or gene-based biology. This approach as a means to identify genes and gene products as therapeutic targets is rapidly superceding earlier approaches based on "positional cloning". A phenotype, that is a biological function or genetic disease, would be identified and this would then be tracked back to the responsible gene, based on its genetic map position.

20

Functional genomics relies heavily on high-throughput DNA sequencing technologies and the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available. There is a continuing need to identify and characterise further genes and their related polypeptides/proteins, as targets for drug discovery.

25

Summary of the Invention

30

The present invention relates to Seripanrin, in particular Seripanrin polypeptides and Seripanrin polynucleotides, recombinant materials and methods for their production. Such polypeptides and polynucleotides are of

- 2 -

interest in relation to methods of treatment of certain diseases, including, but not limited to, cancer, osteoporosis, aberrant wound healing, angiogenesis, inflammatory disorders, chronic obstructive pulmonary disorder, diabetes, arthritis, stroke and cardiovascular diseases, hereinafter referred to as "diseases of the invention". In a further aspect, the invention relates to methods for identifying agonists and antagonists (e.g., inhibitors) using the materials provided by the invention, and treating conditions associated with Seripanerin imbalance with the identified compounds. In a still further aspect, the invention relates to diagnostic assays for detecting diseases associated with inappropriate Seripanerin activity or levels.

Description of the Invention

In a first aspect, the present invention relates to Seripanerin polypeptides. Such polypeptides include:

- (a) an isolated polypeptide encoded by a polynucleotide comprising the sequence selected from SEQ ID NO:1;
- (b) an isolated polypeptide comprising a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to the polypeptide sequence selected from SEQ ID NO:2;
- (c) an isolated polypeptide comprising the polypeptide sequence selected from SEQ ID NO:2;
- (d) an isolated polypeptide having at least 95%, 96%, 97%, 98%, or 99% identity to the polypeptide sequence from SEQ ID NO:2;
- (e) the polypeptide sequence selected from SEQ ID NO:2; and
- (f) an isolated polypeptide having or comprising a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to the polypeptide sequence selected from SEQ ID NO:2;
- (g) fragments and variants of such polypeptides in (a) to (f).

Polypeptides of the present invention are believed to be members of the serine protease family of polypeptides. Cell proliferation and tissue growth

under normal conditions are tightly regulated processes. An intricate system of extracellular and intracellular signalling pathways makes sure that the proliferating cells are not infiltrating into surrounding tissues. Circumventing this control is the hallmark of malignant tumours. It is this contribution to the metastatic property of malignant tumours, which is largely responsible for their lethality (Stetler-Stevenson, W.G. et al., Annu. Rev. Cell Biol. 1993; 9:541-73; Meyer, T. and Hart, I.R., Eur. J Cancer 1998; 34(2):214-21).

Metastasis is a multistage process involving numerous aberrant functions of tumour cells. These include tumour angiogenesis, attachment, adhesion to the vascular basement membrane, local proteolysis, degradation of extracellular matrix components, migration through the vasculature, invasion of the basement membrane, and proliferation at secondary sites (Poste, G. and Fidler, I.J., Nature 1980; 283: 139-146; Liotta, L.A. et al., Cell 1991; 64(2):327-336). Increased proteolytic activity is one documented feature of metastasizing cells. This increased activity is thought to result from the combined aberrant regulation of extracellular proteolytic enzymes (Chen, W.T., Curr. Opin. Cell Biol. 1992; 4(5): 802-809) in cancer cells as well as in the surrounding stroma.

At the cell-extracellular matrix interface, tumour cells elaborate membrane protrusions termed 'invadopodia' that exhibit increased proteolytic activities at invasion foci and thus allow metastatic cells to digest the surrounding matrix (Chen, W.T., Enzyme Protein 1996; 49:59-71). Perhaps the so far best understood example of such membrane associated protease activity is the involvement of urokinase plasminogen activator and matrix metalloproteinases in some cases of tumour cell migration (DeClerk, Y.A. and Laug, W.E., Enzyme Protein 1996; 49:72-84). Interestingly, it has also been shown that these proteins facilitate the sprouting of blood vessels to feed the growing tumour. (Kroon, M.E. et al., Am. J Pathol. 1999;154(6):1731-42; Rabbani, S.A., In Vivo 1998;12(1):135-42). Accordingly, in animal models it has already been shown that interfering with these proteolytic mechanisms is a valid

approach to treat metastasizing tumours (Wilson, C.L. et al., Proc. Natl Acad. Sci. USA 1997; 94:1402-1407).

5 Disclosed herein is the identification of a novel extracellular serine
protease (reviewed in Rawlings, N.D. and Barrett, A.J.; Methods Enzymol. 1994; 244:19-61). Seripanrin, specifically over-expressed in
certain kinds of tumours, like (but not limited to) colon cancer, ovarian
cancer, pancreas cancer, prostate cancer and uterine cancer, or in
stromal cells in close proximity to these tumour cells. This protease is a
10 typical type II transmembrane domain protein with a short cytoplasmic
N-terminus which could interact with intracellular components of the
cytoskeleton and/or intracellular signalling or degradation pathways.
Adjacent to that is a transmembrane domain, immediately followed by a
15 low density lipoprotein (LDL) domain, a scavenger receptor cysteine-rich
(SRCR) domain and a protease domain, which based on its sequence
homology identifies this protein as a new member of the class of trypsin-
like serine proteases. This domain structure is shared between
Seripanrin and its so far closest homologue, the recently cloned type II
20 transmembrane-anchored serine protease TMPRSS2 (Paoloni-
Giacobino, A. et al., Genomics 1997; 44(3):309-320). The LDL domain,
originally identified as seven tandemly repeated modules in the low
density lipoprotein receptor (Südhof, T.C. et al., Science 1985; 228:815-
822), is known to contain a calcium binding domain and mediates binding
25 to lipoproteins (Deborah F. et al., Nature 1997; 388:691-693; Russell,
D.W.Q. et al., J Biol. Chem. 1989; 264:21688-21782). Similarly, the SRCR
domain, originally identified during the analysis of type I macrophage
scavenger receptor (Freeman, M. et al., Proc. Natl Acad. Sci. USA 1990;
30 87:8810-8814), is thought to mediate protein-protein interactions and
ligand binding (Hohenester, E. et al., Nat. Struct. Biol. 1999; 6(3):228-
232).

35 This modular structure of Seripanrin suggests that it is a transmembrane
serine protease where the LDL and SRCR domains help to define the
specificity of Seripanrin's intra- and intermolecular interactions. Although
not yet shown, Seripanrin might be expressed in an inactive form which

then has to be activated first (most likely by a proteolytic mechanism) to become proteolytically active. However, it is also conceivable that the protease inactive form alone can already perform important protein-protein interactions, similar to so-called adaptor proteins which also lack any enzymatic activities. This possibility is supported by the fact that expression of a differentially spliced isoform can be detected for Seripancrin which lacks the proteolytic domain (as well as the SRCR domain). Additionally, cleavage of Seripancrin can result in a secreted form which could function in distance to the Seripancrin expressing cell. Beside these two so far described isoforms there is a third splicing isoform detectable, which represents basically the ORF of the main splicing isoform (AA1-432) plus an additional stretch of 60 amino acids with no obvious sequence homology added at the C-terminus.

Cloning starting point was the identification of a short stretch of cDNA which is overexpressed in pancreas tumour (U54603; Gress, T.M. et al., Genes Chromosomes Cancer 1997; 19(2):97-103). The authors did not disclose any homology for this transcript. Extending this sequence (using standard molecular and biochemical methods) resulted in the identification of the full length form as well as a truncated isoform of this gene which we called Seripancrin. The fact that this gene seems to be specifically upregulated in various cancers, whereas its expression is low up to not detectable in the corresponding healthy tissues, implies that Seripancrin could not only represent a good marker for cancerous tissues, but it could also represent a novel drug target to treat specifically primary and secondary tumours. The gene encoding Seripancrin maps to chromosome 11q22-q23, a locus known to contain cell proliferation and metastasis promoting genes. Interestingly, a cluster of matrix metalloproteases (including MMP-1, MMP-3 and MMP-10; Formstone, C.J. et al., Genomics 1993; 16:289-291) has also been mapped to that region, which could suggest that if there is a correlation between locus and epistatic interaction, Seripancrin is activating or is being activated by any of these MMPs (something similar has been shown for the serine proteases plasmin and trypsin, which have been implicated in the activation of pro-MMP-1 and pro-MMP-3 (RaoC.N. et al., Biochem. Biophys. Res. Commun. 1999; 255(1):94-98 and references therein)).

- 6 -

The biological properties of the Seripanrin are hereinafter referred to as "biological activity of Seripanrin" or "Seripanrin activity". Preferably, a polypeptide of the present invention exhibits at least one biological activity of Seripanrin.

5 Polypeptides of the present invention also includes variants of the aforementioned polypeptides, including all allelic forms and splice variants. Such polypeptides vary from the reference polypeptide by insertions, deletions, and substitutions that may be conservative or non-conservative, or any combination thereof. Particularly preferred variants are those in
10 which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acids are inserted, substituted, or deleted, in any combination.

15 Preferred fragments of polypeptides of the present invention include an isolated polypeptide comprising an amino acid sequence having at least 30, 50 or 100 contiguous amino acids from the amino acid sequence of SEQ ID NO: 2, or an isolated polypeptide comprising an amino acid sequence having at least 30, 50 or 100 contiguous amino acids truncated or deleted from the amino acid sequence of SEQ ID NO: 2. Preferred
20 fragments are biologically active fragments that mediate the biological activity of Seripanrin, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also preferred are those fragments that are antigenic or immunogenic in an animal, especially in a human.

25 Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention. The polypeptides of the present invention may be in the form of the "mature" protein or may be a part of a larger protein such as a precursor or a fusion protein. It is often advantageous to include an additional amino acid sequence that contains secretory or leader sequences, pro-sequences, sequences that aid in purification, for instance multiple histidine residues, or an additional sequence for stability during recombinant production.

30 Polypeptides of the present invention can be prepared in any suitable manner, for instance by isolation from naturally occurring sources, from

- 7 -

genetically engineered host cells comprising expression systems (*vide infra*) or by chemical synthesis, using for instance automated peptide synthesisers, or a combination of such methods.. Means for preparing such polypeptides are well understood in the art.

5 In a further aspect, the present invention relates to Seripancrin polynucleotides. Such polynucleotides include:

- (a) an isolated polynucleotide comprising a polynucleotide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to the polynucleotide sequence selected from SEQ ID NO:1;
- 10 (b) an isolated polynucleotide comprising the polynucleotide selected from SEQ ID NO:1;
- (c) an isolated polynucleotide having at least 95%, 96%, 97%, 98%, or 99% identity to the polynucleotide selected from SEQ ID NO:1;
- (d) the isolated polynucleotide selected from SEQ ID NO:1;
- 15 (e) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to the polypeptide sequence selected from SEQ ID NO:2;
- (f) an isolated polynucleotide comprising a polynucleotide sequence encoding the polypeptide selected from SEQ ID NO:2;
- 20 (g) an isolated polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95%, 96%, 97%, 98%, or 99% identity to the polypeptide sequence selected from SEQ ID NO:2;
- (h) an isolated polynucleotide encoding the polypeptide selected from SEQ ID NO:2;
- 25 (i) an isolated polynucleotide having or comprising a polynucleotide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to the polynucleotide sequence selected from SEQ ID NO:1;
- (j) an isolated polynucleotide having or comprising a polynucleotide sequence encoding a polypeptide sequence that has an Identity Index of 0.95, 0.96, 0.97, 0.98, or 0.99 compared to the polypeptide sequence selected from SEQ ID NO:2; and

- 8 -

polynucleotides that are fragments and variants of the above mentioned polynucleotides or that are complementary to above mentioned polynucleotides, over the entire length thereof.

Preferred fragments of polynucleotides of the present invention include an isolated polynucleotide comprising an nucleotide sequence having at least 5 15, 30, 50 or 100 contiguous nucleotides from the sequence of SEQ ID NO: 1, or an isolated polynucleotide comprising an sequence having at least 30, 50 or 100 contiguous nucleotides truncated or deleted from the sequence selected from SEQ ID NO: 1.

Preferred variants of polynucleotides of the present invention include 10 splice variants, allelic variants, and polymorphisms, including polynucleotides having one or more single nucleotide polymorphisms (SNPs).

Polynucleotides of the present invention also include polynucleotides 15 encoding polypeptide variants that comprise the amino acid sequence of SEQ ID NO:2 and in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 amino acid residues are substituted, deleted or added, in any combination.

In a further aspect, the present invention provides polynucleotides that 20 are RNA transcripts of the DNA sequences of the present invention. Accordingly, there is provided an RNA polynucleotide that:

(a) comprises an RNA transcript of the DNA sequence encoding the polypeptide selected from SEQ ID NO:2;

(b) is the RNA transcript of the DNA sequence encoding the 25 polypeptide selected from SEQ ID NO:2;

(c) comprises an RNA transcript of the DNA sequence selected from SEQ ID NO:1; or

(d) is the RNA transcript of the DNA sequence selected from SEQ 30 ID NO:1;

and RNA polynucleotides that are complementary thereto.

The polynucleotide sequences of SEQ ID NO:1 show homology with E13203 (JP 1997149790-A), U75329 (Genomics 1997; 44:309-320). The polynucleotide sequencea of SEQ ID NO:1 are cDNA sequence that encode the polypeptides of SEQ ID NO:2. The polynucleotide sequencesencoding the polypeptides of SEQ ID NO:2 may be identical to the polypeptides encoding sequences of SEQ ID NO:1 or it may be a sequence other than SEQ ID NO:1, which, as a result of the redundancy (degeneracy) of the genetic code, also encodes the polypeptides of SEQ ID NO:2. The polypeptides of the SEQ ID NO:2 are related to other proteins of the serine protease family, having homology and/or structural similarity with pTMPRSS2 (Genomics 1997; 44:302-320)..

Preferred polypeptides and polynucleotides of the present invention are expected to have, *inter alia*, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention have at least one Seripancrin activity.

Polynucleotides of the present invention may be obtained using standard cloning and screening techniques from a cDNA library derived from mRNA in cells of human colon, colon tumour, pancreas, pancreas tumour, ovary cancer, prostate cancer, pharynx carcinoma, adenocarcinoma, cheek carcinoma, squamous cell carcinoma; B-cell lymphoma, uterine cancer, testis, fetal lung and embryonic tissues. (see for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.

When polynucleotides of the present invention are used for the recombinant production of polypeptides of the present invention, the polynucleotide may include the coding sequence for the mature polypeptide, by itself, or the coding sequence for the mature polypeptide in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence that facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments of this aspect of the invention, the marker sequence

- 10 -

is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag. The polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.

Polynucleotides that are identical, or have sufficient identity to a polynucleotide sequences selected from SEQ ID NO:1, may be used as hybridization probes for cDNA and genomic DNA or as primers for a nucleic acid amplification reaction (for instance, PCR). Such probes and primers may be used to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes (including genes encoding paralogs from human sources and orthologs and paralogs from species other than human) that have a high sequence similarity to SEQ ID NO:1, typically at least 95% identity. Preferred probes and primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50, if not at least 100 nucleotides. Particularly preferred probes will have between 30 and 50 nucleotides. Particularly preferred primers will have between 20 and 25 nucleotides.

A polynucleotide encoding a polypeptide of the present invention, including homologs from species other than human, may be obtained by a process comprising the steps of screening a library under stringent hybridization conditions with a labeled probe having a sequence selected from SEQ ID NO: 1 or a fragment thereof, preferably of at least 15 nucleotides; and isolating full-length cDNA and genomic clones containing said polynucleotide sequence. Such hybridization techniques are well known to the skilled artisan. Preferred stringent hybridization conditions include overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA; followed by washing the filters in 0.1x SSC at about 65°C. Thus the present invention also includes isolated polynucleotides, preferably with a nucleotide sequence of at least 100, obtained by screening a library under stringent hybridization conditions with a labeled probe having a sequence selected from SEQ ID NO:1 or a fragment thereof, preferably of at least 15 nucleotides.

- 11 -

The skilled artisan will appreciate that, in many cases, an isolated cDNA sequence will be incomplete, in that the region coding for the polypeptide does not extend all the way through to the 5' terminus. This is a consequence of reverse transcriptase, an enzyme with inherently low "processivity" (a measure of the ability of the enzyme to remain attached to the template during the polymerisation reaction), failing to complete a DNA copy of the mRNA template during first strand cDNA synthesis.

There are several methods available and well known to those skilled in the art to obtain full-length cDNAs, or extend short cDNAs, for example those based on the method of Rapid Amplification of cDNA ends (RACE) (see, for example, Frohman et al., Proc Nat Acad Sci USA 85, 8998-9002, 1988). Recent modifications of the technique, exemplified by the Marathon (trade mark) technology (Clontech Laboratories Inc.) for example, have significantly simplified the search for longer cDNAs. In the Marathon (trade mark) technology, cDNAs have been prepared from mRNA extracted from a chosen tissue and an 'adaptor' sequence ligated onto each end. Nucleic acid amplification (PCR) is then carried out to amplify the "missing" 5' end of the cDNA using a combination of gene specific and adaptor specific oligonucleotide primers. The PCR reaction is then repeated using 'nested' primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the known gene sequence). The products of this reaction can then be analysed by DNA sequencing and a full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.

Recombinant polypeptides of the present invention may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems comprising a polynucleotide or polynucleotides of the present invention, to host cells which are genetically engineered with such expression systems and to the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such

- 12 -

proteins using RNAs derived from the DNA constructs of the present invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Polynucleotides may be introduced into host cells by methods described in many standard laboratory manuals, such as Davis et al., *Basic Methods in Molecular Biology* (1986) and Sambrook et al. (*ibid*). Preferred methods of introducing polynucleotides into host cells include, for instance, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.

Representative examples of appropriate hosts include bacterial cells, such as *Streptococci*, *Staphylococci*, *E. coli*, *Streptomyces* and *Bacillus subtilis* cells; fungal cells, such as yeast cells and *Aspergillus* cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used, for instance, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any system or vector that is able to maintain, propagate or express a polynucleotide to produce a polypeptide in a host may be used. The appropriate polynucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., (*ibid*). Appropriate secretion signals may be incorporated into the desired polypeptide to allow secretion of the translated protein into the lumen of the endoplasmic reticulum, the

5

10

15

20

25

30

35

periplasmic space or the extracellular environment. These signals may be endogenous to the polypeptide or they may be heterologous signals.

If a polypeptide of the present invention is to be expressed for use in screening assays, it is generally preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If the polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide. If produced intracellularly, the cells must first be lysed before the polypeptide is recovered.

10 Polypeptides of the present invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during intracellular synthesis, isolation and/or purification.

20 Polynucleotides of the present invention may be used as diagnostic reagents, through detecting mutations in the associated gene. Detection of a mutated form of the gene characterised by the polynucleotide of SEQ ID NO:1 in the cDNA or genomic sequence and which is associated with a dysfunction will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, or susceptibility to a disease, which results from under-expression, over-expression or altered spatial or temporal expression of the gene. Individuals carrying mutations in the gene may be detected at the DNA level by a variety of techniques well known in the art.

30 Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or it may be amplified enzymatically by using PCR, preferably RT-PCR, or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by

- 14 -

hybridizing amplified DNA to labeled Seripancrin nucleotide sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence difference may also be detected by alterations in the electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing (see, for instance, Myers et al., Science (1985) 230:1242). Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (see Cotton et al., Proc Natl Acad Sci USA (1985) 85: 4397-4401).

An array of oligonucleotides probes comprising Seripancrin polynucleotide sequence or fragments thereof can be constructed to conduct efficient screening of e.g., genetic mutations. Such arrays are preferably high density arrays or grids. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability, see, for example, M.Chee et al., Science, 274, 610-613 (1996) and other references cited therein.

Detection of abnormally decreased or increased levels of polypeptide or mRNA expression may also be used for diagnosing or determining susceptibility of a subject to a disease of the invention. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, nucleic acid amplification, for instance PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as a polypeptide of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

Thus in another aspect, the present invention relates to a diagnostic kit comprising:

(a) a polynucleotide of the present invention, preferably a nucleotide sequence of SEQ ID NO: 1, or a fragment or an RNA transcript thereof;

(b) a nucleotide sequence complementary to that of (a);

- 15 -

(c) a polypeptide of the present invention, preferably a polypeptide of SEQ ID NO:2 or a fragment thereof; or

(d) an antibody to a polypeptide of the present invention, preferably to a polypeptide of SEQ ID NO:2.

5 It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component. Such a kit will be of use in diagnosing a disease or susceptibility to a disease, particularly diseases of the invention, amongst others.

10 The polynucleotide sequences of the present invention are valuable for chromosome localisation studies. The sequence is specifically targeted to, and can hybridize with, a particular location on an individual human chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found in, for example, V. McKusick, Mendelian Inheritance in Man (available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (co-inheritance of physically adjacent genes). Precise human chromosomal localisations for a genomic sequence (gene fragment etc.) can be determined using Radiation Hybrid (RH) Mapping (Walter, M. Spillett, D., Thomas, P., Weissenbach, J., and Goodfellow, P., 20 (1994) A method for constructing radiation hybrid maps of whole genomes, *Nature Genetics* 7, 22-28). A number of RH panels are available from Research Genetics (Huntsville, AL, USA) e.g. the GeneBridge4 RH panel (*Hum Mol Genet* 1996 Mar;5(3):339-46 A radiation hybrid map of the human genome. Gyapay G, Schmitt K, Fizames C, Jones H, Vega-Czarny N, Spillett D, Muselet D, Prud'Homme JF, Dib C, Auffray C, Morissette J, Weissenbach J, Goodfellow PN). To determine the chromosomal location of a gene using this panel, 93 PCRs are performed using primers designed from the gene of interest on RH DNAs. Each of these DNAs contains random human genomic fragments maintained in a hamster background (human / hamster hybrid cell lines). These PCRs result in 93 scores indicating the presence or absence of

- 16 -

the PCR product of the gene of interest. These scores are compared with scores created using PCR products from genomic sequences of known location. This comparison is conducted at <http://www.genome.wi.mit.edu/>. The gene of the present invention maps to human chromosome 11q22-q23 (D11S1347-D11S939).

The polynucleotide sequences of the present invention are also valuable tools for tissue expression studies. Such studies allow the determination of expression patterns of polynucleotides of the present invention which may give an indication as to the expression patterns of the encoded polypeptides in tissues, by detecting the mRNAs that encode them. The techniques used are well known in the art and include *in situ* hybridisation techniques to clones arrayed on a grid, such as cDNA microarray hybridisation (Schena *et al*, *Science*, 270, 467-470, 1995 and Shalon *et al*, *Genome Res*, 6, 639-645, 1996) and nucleotide amplification techniques such as PCR. A preferred method uses the TAQMAN (Trade mark) technology available from Perkin Elmer. Results from these studies can provide an indication of the normal function of the polypeptide in the organism. In addition, comparative studies of the normal expression pattern of mRNAs with that of mRNAs encoded by an alternative form of the same gene (for example, one having an alteration in polypeptide coding potential or a regulatory mutation) can provide valuable insights into the role of the polypeptides of the present invention, or that of inappropriate expression thereof in disease. Such inappropriate expression may be of a temporal, spatial or simply quantitative nature.

The polypeptides of the present invention are expressed in colon, colon tumour, pancreas, pancreas tumour, ovary cancer, prostate cancer, pharynx carcinoma, adenocarcinoma, cheek carcinoma, squamous cell carcinoma, B-cell lymphoma, uterine cancer, testis, fetal lung and embryonic tissues.

A further aspect of the present invention relates to antibodies. The polypeptides of the invention or their fragments, or cells expressing them, can be used as immunogens to produce antibodies that are immunospecific for polypeptides of the present invention. The term "immunospecific" means that the antibodies have substantially greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.

- 17 -

Antibodies generated against polypeptides of the present invention may be obtained by administering the polypeptides or epitope-bearing fragments, or cells to an animal, preferably a non-human animal, using routine protocols. For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C., Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today (1983) 4:72) and the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985).

Techniques for the production of single chain antibodies, such as those described in U.S. Patent No. 4,946,778, can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms, including other mammals, may be used to express humanized antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography. Antibodies against polypeptides of the present invention may also be employed to treat diseases of the invention, amongst others.

Polypeptides and polynucleotides of the present invention may also be used as vaccines. Accordingly, in a further aspect, the present invention relates to a method for inducing an immunological response in a mammal that comprises inoculating the mammal with a polypeptide of the present invention, adequate to produce antibody and/or T cell immune response, including, for example, cytokine-producing T cells or cytotoxic T cells, to protect said animal from disease, whether that disease is already established within the individual or not. An immunological response in a mammal may also be induced by a method comprises delivering a polypeptide of the present invention via a vector directing expression of the polynucleotide and coding for the polypeptide *in vivo* in order to induce such an immunological response to produce antibody to protect said animal from diseases of the invention. One way of administering the vector is by accelerating it into the desired cells as a coating on particles or otherwise. Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid. For use as a vaccine, a polypeptide or a nucleic acid vector will be normally provided as a

- 18 -

vaccine formulation (composition). The formulation may further comprise a suitable carrier. Since a polypeptide may be broken down in the stomach, it is preferably administered parenterally (for instance, subcutaneous, intramuscular, intravenous, or intradermal injection).
5 Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions that may contain anti-oxidants, buffers, bacteriostats and solutes that render the formulation isotonic with the blood of the recipient; and aqueous and non-aqueous sterile suspensions that may include suspending agents or thickening agents.
10 The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation,
15 such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

20 Polypeptides of the present invention have one or more biological functions that are of relevance in one or more disease states, in particular the diseases of the invention hereinbefore mentioned. It is therefore useful to identify compounds that stimulate or inhibit the function or level of the polypeptide. Accordingly, in a further aspect, the present invention provides for a method of screening compounds to identify those that stimulate or inhibit the function or level of the polypeptide. Such methods identify agonists or antagonists that may be employed for therapeutic and prophylactic purposes for such diseases of the invention as hereinbefore mentioned. Compounds may be identified from a variety of sources, for
25 example, cells, cell-free preparations, chemical libraries, collections of chemical compounds, and natural product mixtures. Such agonists or antagonists so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of the polypeptide; a structural or functional mimetic thereof (see Coligan *et al.*, Current Protocols in Immunology 1(2):Chapter 5 (1991)) or a small molecule.
30

35 The screening method may simply measure the binding of a candidate compound to the polypeptide, or to cells or membranes bearing the

- 19 -

polypeptide, or a fusion protein thereof, by means of a label directly or indirectly associated with the candidate compound. Alternatively, the screening method may involve measuring or detecting (qualitatively or quantitatively) the competitive binding of a candidate compound to the polypeptide against a labeled competitor (e.g. agonist or antagonist).
5 Further, these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells bearing the polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed. Further, the screening methods may simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide of the present invention, to form a mixture, measuring a Seripancri activity in the mixture, and comparing the Seripancri activity of the mixture to a control mixture which contains no candidate compound.
10
15

Polypeptides of the present invention may be employed in conventional low capacity screening methods and also in high-throughput screening (HTS) formats. Such HTS formats include not only the well-established use of 96- and, more recently, 384-well micotiter plates but also emerging methods such as the nanowell method described by Schullek et al, Anal Biochem., 246, 20-29, (1997).
20

Fusion proteins, such as those made from Fc portion and Seripancri polypeptide, as hereinbefore described, can also be used for high-throughput screening assays to identify antagonists for the polypeptide of the present invention (see D. Bennett et al., J Mol Recognition, 8:52-58 (1995); and K. Johanson et al., J Biol Chem, 270(16):9459-9471 (1995)).
25

30 *Screening techniques

The polynucleotides, polypeptides and antibodies to the polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and polypeptide in cells. For example, an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using
35

monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.

5 A polypeptide of the present invention may be used to identify membrane bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, ^{125}I), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (cells, 10 cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be 15 used to identify agonists and antagonists of the polypeptide that compete with the binding of the polypeptide to its receptors, if any. Standard methods for conducting such assays are well understood in the art.

20 Examples of antagonists of polypeptides of the present invention include antibodies or, in some cases, oligonucleotides or proteins that are closely related to the ligands, substrates, receptors, enzymes, etc., as the case 25 may be, of the polypeptide, e.g., a fragment of the ligands, substrates, receptors, enzymes, etc.; or a small molecule that bind to the polypeptide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented.

Screening methods may also involve the use of transgenic technology and Seripanrin gene. The art of constructing transgenic animals is well established. For example, the Seripanrin gene may be introduced 30 through microinjection into the male pronucleus of fertilized oocytes, retroviral transfer into pre- or post-implantation embryos, or injection of genetically modified, such as by electroporation, embryonic stem cells into host blastocysts. Particularly useful transgenic animals are so-called "knock-in" animals in which an animal gene is replaced by the human equivalent within the genome of that animal. Knock-in transgenic animals are useful in the drug discovery process, for target validation, where the compound is specific for the human target. Other useful transgenic

- 21 -

5 animals are so-called "knock-out" animals in which the expression of the animal ortholog of a polypeptide of the present invention and encoded by an endogenous DNA sequence in a cell is partially or completely annulled. The gene knock-out may be targeted to specific cells or tissues, may occur only in certain cells or tissues as a consequence of the limitations of the technology, or may occur in all, or substantially all, cells in the animal. Transgenic animal technology also offers a whole animal expression-cloning system in which introduced genes are expressed to give large amounts of polypeptides of the present invention

10 Screening kits for use in the above described methods form a further aspect of the present invention. Such screening kits comprise:

- (a) a polypeptide of the present invention;
- (b) a recombinant cell expressing a polypeptide of the present invention;
- (c) a cell membrane expressing a polypeptide of the present invention;
- 15 or
- (d) an antibody to a polypeptide of the present invention;

which polypeptide is preferably selected from SEQ ID NO:2.

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.

20

Glossary

The following definitions are provided to facilitate understanding of certain terms used frequently hereinbefore.

25 "Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an

Fab or other immunoglobulin expression library.

"Isolated" means altered "by the hand of man" from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original

- 22 -

environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living organism is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Moreover, a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated" even if it is still present in said organism, which organism may be living or non-living.

"Polynucleotide" generally refers to any polyribonucleotide (RNA) or polydeoxyribonucleotide (DNA), which may be unmodified or modified RNA or DNA. "Polynucleotides" include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term "polynucleotide" also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications may be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short polynucleotides, often referred to as oligonucleotides.

"Polypeptide" refers to any polypeptide comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptides" include amino acid sequences modified either by natural processes, such as post-translational processing, or by chemical modification techniques that are well known in the art. Such modifications are well described in basic texts and in more detailed

- 23 -

monographs, as well as in a voluminous research literature. Modifications may occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present to the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from post-translation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, biotinylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination (see, for instance, Proteins - Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993; Wold, F., Post-translational Protein Modifications: Perspectives and Prospects, 1-12, in Post-translational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter et al., "Analysis for protein modifications and nonprotein cofactors", Meth Enzymol, 182, 626-646, 1990, and Rattan et al., "Protein Synthesis: Post-translational Modifications and Aging", Ann NY Acad Sci, 663, 48-62, 1992).

"Fragment" of a polypeptide sequence refers to a polypeptide sequence that is shorter than the reference sequence but that retains essentially the same biological function or activity as the reference polypeptide. "Fragment" of a polynucleotide sequence refers to a polynucleotide sequence that is shorter than the reference sequences of SEQ ID NO:1..

"Variant" refers to a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, but retains the essential properties thereof. A typical variant of a polynucleotide differs in

nucleotide sequence from the reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from the reference polypeptide. Generally, alterations are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, insertions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. Typical conservative substitutions include Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe and Tyr. A variant of a polynucleotide or polypeptide may be naturally occurring such as an allele, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis. Also included as variants are polypeptides having one or more post-translational modifications, for instance glycosylation, phosphorylation, methylation, ADP ribosylation and the like. Embodiments include methylation of the N-terminal amino acid, phosphorylations of serines and threonines and modification of C-terminal glycines.

"Allele" refers to one of two or more alternative forms of a gene occurring at a given locus in the genome.

"Polymorphism" refers to a variation in nucleotide sequence (and encoded polypeptide sequence, if relevant) at a given position in the genome within a population.

"Single Nucleotide Polymorphism" (SNP) refers to the occurrence of nucleotide variability at a single nucleotide position in the genome, within a population. An SNP may occur within a gene or within intergenic regions of the genome. SNPs can be assayed using Allele Specific Amplification (ASA). For the process at least 3 primers are required. A common primer is used in reverse complement to the polymorphism being assayed. This common primer can be between 50 and 1500 bps

from the polymorphic base. The other two (or more) primers are identical to each other except that the final 3' base wobbles to match one of the two (or more) alleles that make up the polymorphism. Two (or more) PCR reactions are then conducted on sample DNA, each using the common primer and one of the Allele Specific Primers.

"Splice Variant" as used herein refers to cDNA molecules produced from RNA molecules initially transcribed from the same genomic DNA sequence but which have undergone alternative RNA splicing. Alternative RNA splicing occurs when a primary RNA transcript undergoes splicing, generally for the removal of introns, which results in the production of more than one mRNA molecule each of that may encode different amino acid sequences. The term splice variant also refers to the proteins encoded by the above cDNA molecules.

"Identity" reflects a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, determined by comparing the sequences. In general, identity refers to an exact nucleotide to nucleotide or amino acid to amino acid correspondence of the two polynucleotide or two polypeptide sequences, respectively, over the length of the sequences being compared.

"% Identity" - For sequences where there is not an exact correspondence, a "% identity" may be determined. In general, the two sequences to be compared are aligned to give a maximum correlation between the sequences. This may include inserting "gaps" in either one or both sequences, to enhance the degree of alignment. A % identity may be determined over the whole length of each of the sequences being compared (so-called global alignment), that is particularly suitable for sequences of the same or very similar length, or over shorter, defined lengths (so-called local alignment), that is more suitable for sequences of unequal length.

"Similarity" is a further, more sophisticated measure of the relationship between two polypeptide sequences. In general, "similarity" means a comparison between the amino acids of two polypeptide chains, on a residue by residue basis, taking into account not only exact correspondences between pairs of residues, one from each of the sequences being compared (as for identity) but also, where there is

- 26 -

not an exact correspondence, whether, on an evolutionary basis, one residue is a likely substitute for the other. This likelihood has an associated "score" from which the "% similarity" of the two sequences can then be determined.

5 Methods for comparing the identity and similarity of two or more sequences are well known in the art. Thus for instance, programs available in the Wisconsin Sequence Analysis Package, version 9.1 (Devereux J et al, Nucleic Acids Res, 12, 387-395, 1984, available from Genetics Computer Group, Madison, Wisconsin, USA), for example the programs BESTFIT and GAP, may be used to determine the % identity between two polynucleotides and the % identity and the % similarity between two polypeptide sequences. BESTFIT uses the "local homology" algorithm of Smith and Waterman (J Mol Biol, 147, 195-197, 10 1981, Advances in Applied Mathematics, 2, 482-489, 1981) and finds the best single region of similarity between two sequences. BESTFIT is 15 more suited to comparing two polynucleotide or two polypeptide sequences that are dissimilar in length, the program assuming that the shorter sequence represents a portion of the longer. In comparison, GAP aligns two sequences, finding a "maximum similarity", according to the 20 algorithm of Needleman and Wunsch (J Mol Biol, 48, 443-453, 1970). GAP is more suited to comparing sequences that are approximately the same length and an alignment is expected over the entire length. Preferably, the parameters "Gap Weight" and "Length Weight" used in 25 each program are 50 and 3, for polynucleotide sequences and 12 and 4 for polypeptide sequences, respectively. Preferably, % identities and similarities are determined when the two sequences being compared are optimally aligned.

Other programs for determining identity and/or similarity between 30 sequences are also known in the art, for instance the BLAST family of programs (Altschul S F et al, J Mol Biol, 215, 403-410, 1990, Altschul S F et al, Nucleic Acids Res., 25:389-3402, 1997, available from the National Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA and accessible through the home page of the NCBI at www.ncbi.nlm.nih.gov) and FASTA (Pearson W R, Methods in Enzymology, 183, 63-99, 1990; Pearson W R and Lipman D J, Proc Nat Acad Sci USA, 85, 2444-2448, 1988, available as part of the Wisconsin 35 Sequence Analysis Package).

- 27 -

Preferably, the BLOSUM62 amino acid substitution matrix (Henikoff S and Henikoff J G, Proc. Nat. Acad Sci. USA, 89, 10915-10919, 1992) is used in polypeptide sequence comparisons including where nucleotide sequences are first translated into amino acid sequences before comparison.

Preferably, the program BESTFIT is used to determine the % identity of a query polynucleotide or a polypeptide sequence with respect to a reference polynucleotide or a polypeptide sequence, the query and the reference sequence being optimally aligned and the parameters of the program set at the default value, as hereinbefore described.

"Identity Index" is a measure of sequence relatedness which may be used to compare a candidate sequence (polynucleotide or polypeptide) and a reference sequence. Thus, for instance, a candidate polynucleotide sequence having, for example, an Identity Index of 0.95 compared to a reference polynucleotide sequence is identical to the reference sequence except that the candidate polynucleotide sequence may include on average up to five differences per each 100 nucleotides of the reference sequence. Such differences are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion. These differences may occur at the 5' or 3' terminal positions of the reference polynucleotide sequence or anywhere between these terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polynucleotide sequence having an Identity Index of 0.95 compared to a reference polynucleotide sequence, an average of up to 5 in every 100 of the nucleotides of the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described. The same applies *mutatis mutandis* for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.

Similarly, for a polypeptide, a candidate polypeptide sequence having, for example, an Identity Index of 0.95 compared to a reference polypeptide sequence is identical to the reference sequence except that the polypeptide sequence may include an average of up to five differences per each 100 amino acids of the reference sequence. Such differences are selected from the group consisting of at least one amino acid

- 28 -

deletion, substitution, including conservative and non-conservative substitution, or insertion. These differences may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between these terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence. In other words, to obtain a polypeptide sequence having an Identity Index of 0.95 compared to a reference polypeptide sequence, an average of up to 5 in every 100 of the amino acids in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described. The same applies *mutatis mutandis* for other values of the Identity Index, for instance 0.96, 0.97, 0.98 and 0.99.

The relationship between the number of nucleotide or amino acid differences and the Identity Index may be expressed in the following equation:

$$n_a \leq x_a - (x_a \cdot I),$$

in which:

n_a is the number of nucleotide or amino acid differences,

x_a is the total number of nucleotides or amino acids in SEQ ID NO:1 or SEQ ID NO:2, respectively,

I is the Identity Index ,

- is the symbol for the multiplication operator, and

in which any non-integer product of x_a and I is rounded down to the nearest integer prior to subtracting it from x_a .

"Homolog" is a generic term used in the art to indicate a polynucleotide or polypeptide sequence possessing a high degree of sequence relatedness to a reference sequence. Such relatedness may be quantified by determining the degree of identity and/or similarity between the two sequences as hereinbefore defined. Falling within this generic term are the terms "ortholog", and "paralog". "Ortholog" refers to a polynucleotide or polypeptide that is the functional equivalent of the polynucleotide or

- 29 -

polypeptide in another species. "Paralog" refers to a polynucleotide or polypeptide that within the same species which is functionally similar.

"Fusion protein" refers to a protein encoded by two, unrelated, fused genes or fragments thereof. Examples have been disclosed in US 5541087, 5726044. In the case of Fc-Seripancrin, employing an immunoglobulin Fc region as a part of a fusion protein is advantageous for performing the functional expression of Fc-Seripancrin or fragments of -Seripancrin, to improve pharmacokinetic properties of such a fusion protein when used for therapy and to generate a dimeric Seripancrin. The Fc-Seripancrin DNA construct comprises in 5' to 3' direction, a secretion cassette, i.e. a signal sequence that triggers export from a mammalian cell, DNA encoding an immunoglobulin Fc region fragment, as a fusion partner, and a DNA encoding Seripancrin or fragments thereof. In some uses it would be desirable to be able to alter the intrinsic functional properties (complement binding, Fc-Receptor binding) by mutating the functional Fc sides while leaving the rest of the fusion protein untouched or delete the Fc part completely after expression.

All publications and references, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference in their entirety as if each individual publication or reference were specifically and individually indicated to be incorporated by reference herein as being fully set forth. Any patent application to which this application claims priority is also incorporated by reference herein in its entirety in the manner described above for publications and references.

Further examples

Example 1

Construction of the baculovirus transfer vector and expression

DNA fragment encoding amino acid residues 52-435 of the main splicing isoform was cloned for expression of Seripancrin in the baculovirus expression system. For expression Stratagene's vector pPbac (Stratagene) was used. This system allows expression of a secreted

- 30 -

fusion protein where the signal peptide sequence of the human placental alkaline phosphatase protein is fused in front of the sequence to be expressed. The Seripancrin gene was introduced in frame in this vector via a 5' SmaI restriction site and a 3' BamHI site. A single PCR reaction was carried out using the 5' Primer: 5' AAC CCG GGA AAG GTG ATT CTG GAT AAA TAC TAC 3' and the 3' Primer: 5' AAGGATCC TTA CAG CTC AGC CTT CCA GAC ATT G 3' to amplify the above mentioned region of the main splicing isoform. To check for the maintenance of the correct open reading frame, the complete insert, the insert junctions and the signal peptide sequence provided by the vector was sequenced. Expression of the fusion protein in Sf9 cells was done using standard laboratory methods for baculovirus systems based on expression from the polyhedron locus.

Additional variation of the Seripancrin sequence included in some cases the insertion of an MRGS(H)₆ tag at the 3'-end (C-Terminal) for easier detection of protein expression, purification and concentration.

Example 2

Production of Seripancrin

Culture supernatant containing Seripancrin was collected from the baculo expression system and concentrated by pressurized dialysis. A weak anion exchanger such as EMD-DEAE-Fractogel turned out to be ideal for a first adsorption of the protein. Desorption of seripancrin was done by using a linear sodium chloride gradient (0-0.8 M, NaCl, Tris, pH 7.5). Further purification depended mainly on the purity reached in this first chromatographic step. If necessary additional rechromatographies on ion exchanger supports have been conducted. The final step of purification was performed using a Superdex 75 column. The eluted samples have been collected and have been further concentrated by Centricon 10 centrifugation (Amicon) in PBS. These preparations have then been used to perform analytical as well as functional tests. For analytical grade purification of protein - necessary prior to protein sequencing - a reversed phase RP18 column has been used.

Optimization of the chromatographic conditions have been performed using a BiaCore chromatographic system with analytical columns available from Pharmacia. The BiaCore based separation protocol has been scaled up by using FPLC techniques. The optimized running conditions are directly convertible into a semi-preparative or preparative scale of separation. Samples collected from the last chromatographic step have been collected and analysed by SDS-PAGE. Protein bands have been visualized using Coomassie staining. Under reducing conditions the purified recombinant protein revealed a relative molecular weight of 55 kDa \pm 2kDa compared to the calculated theoretical molecular weight of 47962.

Isoelectric focussing using IEF-PAGE (Immobiline 3-10, Pharmacia) technique revealed an isoelectric point of pH 5.7 \pm 0.5. Protein bands and IEF-markers have been visualized using Coomassie staining

In some cases a C-terminal histidin tagged version of the recombinant Seripancrin protein has been expressed. The expressed protein was detected by western blotting method using anti-MRGS(H)6 antibody. Purification was performed using chelators such as NTA or imido acetic acid immobilized on a column matrix and modified with metall ions such as Co, Ni, or Cu.

Example 3

Immunization and antibodies

With the purified recombinant protein available, immunization of animals has been started right away. Immune sera were raised in rabbits and high titered reagents were available for further screening.

Additional antisera have been generated by using synthetic peptides deduced from the sequence of the complete protein. Synthetic peptides have been synthesized (amino-acid sequence 15-28, 83-96, 166-180, 246-262, 382-395) coupled to KLH and used for immunization of rabbits. High titered immune sera generated with the recombinant protein or synthetic peptide have been used to established Elisa technology and Western blot technique to monitor and quantitate the recombinant

- 32 -

protein. Generally antibodies of a given specificity have been pooled and precipitated with Ammonium-sulfat and dialysed against PBS. Selected sera have been biotinylated using the NHS-ester derivative of the biotin, available via Pierce. Biotinylation was performed according to the instruction of the manufacturer. The antigens and the immunochemical techniques used to raise and characterize the polyclonal antibodies can easily be combined with protocols used for the production of monoclonal antibody specificities. The expert in the field would make his choice between a classical technique such as the hybridoma based technology or an antibody library based method according to his local possibilities.

Example 4

Immuno-Assays for estimation of Seripanocrin

Specific sera raised with recombinant seripanocrin have been used as a "catcher antibody" for the coating of 96-well micro-titer plates (Nunc). 50 µl of the anti-Seripanocrin serum (20 µg/ml) has been used to coat plates over night. Prior to use, the plates have been washed three times with PBS and have been incubated for one hour with a BSA solution (1%) in order to prevent non-specific adhesion. Surplus of blocking solution has been removed and 50 µl Seripanocrin has been added in serial dilutions and has been incubated for one hour. Plates have been washed three times prior to the application of the biotinylated anti-Seripanocrin antibody for detection. After an additional one hour, read-out has been performed via streptavidin-POD catalyzed colour reaction with substrates such as ODB-tablets (Dako) measured at 490 nm.

Example 5

Protease Activity Assay:

To determine Seripanocrin's protease activity, recombinant secreted protein was purified from the supernatant of a baculovirus expression system expressing amino acid 52-435 of the main splicing isoform. The purified protein was added to a buffered solution containing a universal protease substrate (casein, resorufin-labeled; BOEHRINGER MANNHEIM) according to the manufacturer's protocol.

Claims

1. An isolated polypeptide selected from one of the groups consisting of:
 - (a) an isolated polypeptide encoded by a polynucleotide comprising the sequence of SEQ ID NO:1;
 - 5 (b) an isolated polypeptide comprising a polypeptide sequence having at least 95% identity to the polypeptide sequence of SEQ ID NO:2;
 - c) an isolated polypeptide having at least 95% identity to the polypeptide sequence of SEQ ID NO:2; and
 - d) the polypeptide sequence of SEQ ID NO:2 and
- 10 (e) fragments and variants of such polypeptides in (a) to (d).

2. The isolated polypeptide as claimed in claim 1 comprising the polypeptide sequence of SEQ ID NO:2.

- 15 3. The isolated polypeptide as claimed in claim 1 which is the polypeptide sequence of SEQ ID NO:2.
4. An isolated polynucleotide selected from one of the groups consisting of:
 - (a) an isolated polynucleotide comprising a polynucleotide sequence having at least 95% identity to the polynucleotide sequence of SEQ ID NO:1;
 - 20 (b) an isolated polynucleotide having at least 95% identity to the polynucleotide of SEQ ID NO:1;
 - (c) an isolated polynucleotide comprising a polynucleotide sequence encoding a polypeptide sequence having at least 95% identity to the polypeptide sequence of SEQ ID NO:2;
 - 25 (d) an isolated polynucleotide having a polynucleotide sequence encoding a polypeptide sequence having at least 95% identity to the polypeptide sequence of SEQ ID NO:2;

- 34 -

- (e) an isolated polynucleotide with a nucleotide sequence of at least 100 nucleotides obtained by screening a library under stringent hybridization conditions with a labeled probe having the sequence of SEQ ID NO: 1 or a fragment thereof having at least 15 nucleotides;
- 5 (f) a polynucleotide which is the RNA equivalent of a polynucleotide of (a) to (e);
or a polynucleotide sequence complementary to said isolated polynucleotide
and polynucleotides that are variants and fragments of the above mentioned
polynucleotides or that are complementary to above mentioned polynucleotides,
over the entire length thereof.

10

5. An isolated polynucleotide as claimed in claim 4 selected from the group consisting of:
- (a) an isolated polynucleotide comprising the polynucleotide of SEQ ID NO:1;
- (b) the isolated polynucleotide of SEQ ID NO:1;
- 15 (c) an isolated polynucleotide comprising a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2; and
- (d) an isolated polynucleotide encoding the polypeptide of SEQ ID NO:2.
6. An expression system comprising a polynucleotide capable of producing a
20 polypeptide of claim 1 when said expression vector is present in a compatible host cell.
7. A recombinant host cell comprising the expression vector of claim 6 or a membrane thereof expressing the polypeptide of claim 1.

25

8. A process for producing a polypeptide of claim 1 comprising the step of culturing a host cell as defined in claim 7 under conditions sufficient for the

production of said polypeptide and recovering the polypeptide from the culture medium.

9. A fusion protein consisting of the Immunoglobulin Fc-region and any one polypeptide of claim 1.
10. An antibody immunospecific for the polypeptide of any one of claims 1 to 3.
11. A method for screening to identify compounds that stimulate or inhibit the function or level of the polypeptide of claim 1 comprising a method selected from the group consisting of:
 - 10 (a) measuring or, detecting, quantitatively or qualitatively, the binding of a candidate compound to the polypeptide (or to the cells or membranes expressing the polypeptide) or a fusion protein thereof by means of a label directly or indirectly associated with the candidate compound;
 - 15 (b) measuring the competition of binding of a candidate compound to the polypeptide (or to the cells or membranes expressing the polypeptide) or a fusion protein thereof in the presence of a labeled competitor;
 - (c) testing whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells or cell membranes expressing the polypeptide;
- 20 (d) mixing a candidate compound with a solution containing a polypeptide of claim 1, to form a mixture, measuring activity of the polypeptide in the mixture, and comparing the activity of the mixture to a control mixture which contains no candidate compound; or
- 25 (e) detecting the effect of a candidate compound on the production of mRNA encoding said polypeptide or said polypeptide in cells, using for instance, an ELISA assay, and
- (f) producing said compound according to biotechnological or chemical standard techniques.

SEQUENCE LISTING

<110> Merck Patent GmbH

5 <120> Seripancrin

<130> SeripancrinUHWS

<140>

10 <141>

<160> .6

<170> PatentIn Ver. 2.1

15 <210> 1

<211> 1305

<212> DNA

<213> Homo sapiens

20 <220>

<221> CDS

<222> (1)...(1305)

25 <400> 1

atg	gat	cct	gac	agt	gat	caa	cct	ctg	aac	agc	ctc	gat	gtc	aaa	ccc		48
Met	Asp	Pro	Asp	Ser	Asp	Gln	Pro	Leu	Asn	Ser	Leu	Asp	Val	Lys	Pro		
1		5				10						15					

ctg	cgc	aaa	ccc	cgt	atc	ccc	atg	gag	acc	ttc	aga	aag	gtc	ggg	atc	96	
Leu	Arg	Lys	Pro	Arg	Ile	Pro	Met	Pro	Met	Glu	Thr	Phe	Arg	Lys	Vai	Gly	Ile
20			25									30					

ccc	atc	atc	ata	gca	cta	ctg	agc	ctg	gcg	agt	atc	atc	att	gtg	gtt	144
Pro	Ile	Ile	Ile	Ala	Leu	Leu	Ser	Leu	Ala	Ser	Ile	Ile	Ile	Val	Val	
35				35			40						45			

gtc	ctc	atc	aag	gtg	att	ctg	gat	aaa	tac	tac	ttc	ctc	tgc	ggg	cag	192
Val	Leu	Ile	Lys	Val	Ile	Leu	Asp	Lys	Tyr	Tyr	Phe	Leu	Cys	Gly	Gln	
40			50				55				60					

cct	ctc	cac	ttc	atc	ccg	agg	aag	cag	ctg	tgt	gac	gga	gac	ctg	gac	240
Pro	Leu	His	Phe	Ile	Pro	Arg	Lys	Gln	Leu	Cys	Asp	Gly	Gl	Leu	Asp	
65			70						75				80			

tgt	ccc	ttg	ggg	gag	gac	gag	gag	cac	tgt	gtc	aag	agc	ttc	ccc	gaa	288
Cys	Pro	Leu	Gly	Glu	Asp	Glu	His	Cys	Val	Lys	Ser	Phe	Pro	Glu		
25			25				90						95			

ggg	cct	gca	gtg	gca	gtc	ccg	ctc	tcc	aag	gac	cga	tcc	aca	ctg	cag	336
Gly	Pro	Ala	Val	Ala	Val	Arg	Leu	Ser	Lys	Asp	Arg	Ser	Thr	Leu	Gln	
100			100				105						110			

gtg	ctg	gac	tct	gcc	aca	ggg	aac	tgg	ttc	tct	gcc	tgt	ttc	gac	aac	384
Val	Leu	Asp	Ser	Ala	Thr	Gly	Asn	Trp	Phe	Ser	Ala	Cys	Phe	Asp	Asn	
115				115			120						125			

tcc	aca	gaa	gct	ctc	gtc	gag	aca	gcc	tgt	agg	cag	atg	ggc	tac	agc	432
Phe	Thr	Glu	Ala	Leu	Ala	Glu	Thr	Ala	Cys	Arg	Gln	Met	Gly	Tyr	Ser	
60			130			135							140			

145	agc aaa ccc act ttc aga gct gtg gag att ggc cca gac caq gat ctg Ser Lys Pro Thr Phe Arg Ala Val Glu Ile Gly Pro Asp Gln Asp Leu 150	155	160	460
5	gat gtt gtt gaa atc aca gaa aac agc caq gag ctt cgc atg cgq aac Asp Val Val Glu Ile Thr Glu Asn Ser Gln Glu Leu Arg Met Arg Asn 165	170	175	526
10	tca agt ggg ccc tgt ctc tca ggc tcc ctg gtc tcc ctg cac tgt ctt Ser Ser Gly Pro Cys Leu Ser Gly Ser Leu Val Ser Leu His Cys Leu 180	185	190	576
15	ccc tgt ggg aag agc ctg aag acc ccc cgt gtg gtt gct ggg gaa gaa Ala Cys Gly Lys Ser Leu Lys Thr Pro Arg Val Val Gly Gly Glu Glu 195	200	205	624
20	gcc tct gtg gat tct tgg cct tgg caq gtc agc atc caq tac gac aaa Ala Ser Val Asp Ser Trp Pro Trp Gln Val Ser Ile Gln Tyr Asp Lys 210	215	220	672
25	caq cac gtc tgt gga ggg agc atc ctg gac ccc cac tgg gtc ctc acg Gln His Val Cys Gly Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr 225	230	235	720
30	gca gcc cac tgc ttc agg aaa cat acc gat gtg ttc aac tgg aag gtg Ala Ala His Cys Phe Arg Lys His Thr Asp Val Phe Asn Trp Lys Val 245	250	255	768
35	cgg gca ggc tca gac aaz ctg ggc agc ttc cca tcc ctg gct gtg gcc Arg Ala Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala 260	265	270	816
40	aag atc atc atc att gaa ttc aac ccc atg tac ccc aaz gac aat gac Lys Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp 275	280	285	864
45	atc gcc ctc atg aag ctg caq ttc cca ctc act ttc tca ggc aca gtc Ile Ala Leu Met Lys Leu Gln Phe Pro Leu Thr Phe Ser Gly Thr Val 290	295	300	912
50	agg ccc atc tgt ctg ccc ttc ttt gat gag gag ctc act cca gcc acc Arg Pro Ile Cys Leu Pro Phe Asp Glu Gln Leu Thr Pro Ala Thr 305	310	315	960
55	cca ctc tgg atc att gga tgg ggc ttt acg aag caq aat gga ggg aag Pro Leu Trp Ile Ile Gly Trp Gly Phe Thr Lys Gln Asn Gly Lys Lys 325	330	335	1008
60	atg tct gac ata ctg ctg caq gcg tca gtc cag gtc att gac agc aca Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val Ile Asp Ser Thr 340	345	350	1056
	cgq tgc aat gca gac gat gcg tac caq ggg gaa gtc acc gag aag atg Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met 355	360	365	1104
	atg tgt gca ggc atc ccg gaa ggg ggt gtg gac acc tgc caq ggt gac Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp 370	375	380	1152

agt ggt ggg ccc ctg atc tac caa tct gac caq tgg cat gtg gtg ggc 1200
 Ser Gly Gly Pro Leu Met Tyr Gln Ser Asp Gln Trp His Val Val Gly
 385 390 395 400

5 atc gtt aac tgg ggc tat ggc tgc ggc ggc ccg aac acc cca gga gta 1248
 Ile Val Ser Trp Gly Tyr Gly Cys Gly Pro Ser Thr Pro Gly Val
 405 410 415

10 tac acc aag gtc tca gcc tat ctc aac tgg atc tac aat gtc tgg aag 1296
 Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys
 420 425 430

15 gct gag ctg 1305
 Ala Glu Leu
 435

<210> 2
 <211> 435
 20 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp Val Lys Pro
 25 1 5 10 15

Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Gly Ile
 20 25 30

30 Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser Ile Ile Val Val
 35 40 45

Val Leu Ile Lys Val Ile Leu Asp Lys Tyr Tyr Phe Leu Cys Gly Gln
 50 55 60

35 Pro Leu His Phe Ile Pro Arg Lys Gln Leu Cys Asp Gly Glu Leu Asp
 65 70 75 80

40 Cys Pro Leu Gly Glu Asp Glu Glu His Cys Val Lys Ser Phe Pro Glu
 85 90 95

Gly Pro Ala Val Ala Val Arg Leu Ser Lys Asp Arg Ser Thr Leu Gln
 100 105 110

45 Val Leu Asp Ser Ala Thr Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn
 115 120 125

Phe Thr Glu Ala Leu Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser
 130 135 140

50 Ser Lys Pro Thr Phe Arg Ala Val Glu Ile Gly Pro Asp Gln Asp Leu
 145 150 155 160

55 Asp Val Val Glu Ile Thr Glu Asn Ser Gln Glu Leu Arg Met Arg Asn
 165 170 175

Ser Ser Gly Pro Cys Leu Ser Gly Ser Leu Val Ser Leu His Cys Leu
 180 185 190

60 Ala Cys Gly Lys Ser Leu Lys Thr Pro Arg Val Val Gly Gly Glu Glu
 195 200 205

Ala Ser Val Asp Ser Trp Pro Trp Gln Val Ser Ile Gln Tyr Asp Lys
 210 215 220

5 Gln His Val Cys Gly Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr
 225 230 235 240

Ala Ala His Cys Phe Arg Lys His Thr Asp Val Phe Asn Trp Lys Val
 10 245 250 255

Arg Ala Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala
 260 265 270

15 Lys Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp
 275 280 285

Ile Ala Leu Met Lys Leu Gln Phe Pro Leu Thr Phe Ser Gly Thr Val
 290 295 300

20 Arg Pro Ile Cys Leu Pro Phe Phe Asp Glu Glu Leu Thr Pro Ala Thr
 305 310 315 320

Pro Leu Trp Ile Ile Gly Trp Gly Phe Thr Lys Gln Asn Gly Gly Lys
 25 325 330 335

Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val Ile Asp Ser Thr
 340 345 350

Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met
 30 355 360 365

Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp
 370 375 380

35 Ser Gly Gly Pro Leu Met Tyr Gln Ser Asp Gln Trp His Val Val Gly
 385 390 395 400

Ile Val Ser Trp Gly Tyr Gly Cys Gly Gly Pro Ser Thr Pro Gly Val
 40 405 410 415

Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys
 420 425 430

Ala Glu Leu
 45 435

<210> 3
 50 <211> 1479
 <212> DNA
 <213> Homo sapiens

<220>
 55 <221> CDS
 <222> (1)...(1479)

<400> 3
 60 atg gat cct gac aat gat caa cct ctg aac agc ctc gat gtc aaa ccc 48
 Met Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp Val Lys Pro
 1 5 10 15

ctg	cgc	aaa	ccc	cgt	atc	ccc	atg	gag	acc	ttc	aga	aag	gtg	ggg	atc	96
Leu	Arg	Lys	Pro	Arg	Ile	Pro	Met	Glu	Thr	Phe	Arg	Lys	Val	Gly	Ile	
20							25						30			
5																
ccc	atc	atc	ata	gca	cta	ctg	agc	ctg	gcg	agt	atc	atc	att	gtc	gtt	144
Pro	Ile	Ile	Aia	Leu	Leu	Ser	Leu	Ala	Ser	Ile	Ile	Ile	Ile	Val	Val	
35							40						45			
10																
gtc	ctc	atc	aag	gtg	att	ctg	gat	aaa	tac	tac	ttc	ctc	tgc	ggg	cag	192
Val	Ile	Lys	Val	Ile	Ile	Ile	Ile	Asp	Lys	Tyr	Tyr	Phe	Leu	Cys	Gly	
50							55					60				
15																
cct	ctc	cac	ttc	atc	ccg	agg	aag	cag	ctg	tgt	gac	gga	gag	ctg	gac	240
Pro	Leu	His	Phe	Ile	Pro	Arg	Lys	Gln	Leu	Cys	Asp	Gly	Gl	Leu	Asp	
65							70					75			80	
20																
tgt	ccc	tta	ggg	gag	gac	gac	gag	cac	tgt	gtc	aag	agc	ttc	ccc	gaa	288
Cys	Pro	Leu	Gly	Glu	Asp	Glu	Glu	Glu	His	Cys	Val	Lys	Ser	Phe	Pro	Glu
85							90					95				
25																
ggg	cct	gca	gtg	gca	gtc	ccg	ctc	tcc	aag	gac	cga	tcc	aca	ctg	cag	336
Gly	Pro	Aia	Vai	Aia	Vai	Arg	Leu	Ser	Lys	Asp	Arg	Ser	Thr	Leu	Gln	
100							105					110				
30																
gtg	ctg	gac	tcg	gcc	aca	ggg	aac	tgg	ttc	tct	gcc	tgt	ttc	gac	aac	384
Val	Ile	Asp	Ser	Ala	Thr	Gly	Asn	Trp	Phe	Ser	Ala	Cys	Phe	Asp	Asn	
115							120					125				
35																
ttc	aca	gaa	gct	ctc	gct	gac	aca	gcc	tgt	agg	cag	atg	ggc	tac	agc	432
Phe	Thr	Glu	Aia	Leu	Ala	Glu	Thr	Ala	Cys	Arg	Gln	Met	Gly	Tyr	Ser	
130							135					140				
40																
agc	aaa	ccc	act	ttc	aga	gct	gtg	gac	att	gcc	cca	gac	cag	gat	ctg	480
Ser	Lys	Pro	Thr	Phe	Arg	Aia	Val	Glu	Ile	Gly	Pro	Asp	Gln	Asp	Leu	
145							150					155			160	
45																
gat	ctt	gtt	gaa	atc	aca	gaa	aac	agc	cag	gag	ctt	ccg	atg	ggg	aac	522
Asp	Val	Val	Glu	Ile	Thr	Glu	Asn	Ser	Gln	Glu	Leu	Arg	Met	Arg	Asn	
165							170					175				
50																
tca	agt	ggg	ccc	tgt	ctc	tca	ggc	tcc	ctg	gtc	tcc	ctg	cac	tgt	ctt	576
Ser	Ser	Gly	Pro	Cys	Leu	Ser	Gly	Ser	Leu	Val	Ser	Leu	His	Cys	Leu	
180							185					190				
55																
gcc	tgt	ggg	aag	agc	ctg	aaq	acc	ccc	cgt	gtg	ggt	ggg	gag	gag	ctg	624
Ala	Cys	Gly	Lys	Ser	Leu	Lys	Thr	Pro	Arg	Val	Val	Gly	Gly	Glu	Glu	
195							200					205				
60																
gcc	tct	gtg	gat	tct	tgg	cct	tgg	cag	gtc	agc	atc	cag	tac	gac	aaa	672
Ala	Ser	Val	Asp	Ser	Trp	Pro	Trp	Gln	Val	Ser	Ile	Gln	Tyr	Asp	Lys	
210							215					220				
65																
cag	cac	gtc	tgt	gga	ggg	agg	atc	ctg	gac	ccc	cac	tgg	gtc	ctc	acs	720
Gln	His	Val	Cys	Gly	Gly	Ser	Ile	Leu	Asp	Pro	His	Trp	Val	Leu	Thr	
225							230					235			240	
70																
gca	gcc	cac	tgc	ttc	agg	aaa	cat	acc	gat	gtg	ttc	aac	tgg	aag	gtg	768
Ala	Ala	His	Cys	Phe	Arg	Lys	His	Thr	Asp	Val	Phe	Asn	Trp	Lys	Val	
245							250					255				

260	265	270	816
Arg Ala Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala			
5	aag atc atc atc att gaa ttc aac ccc atg tac ccc aaa gac aat gac Lys Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp 275 280 285 864		
10	atc gcc ctc atg aag ctg cag ttc cca ctc act ttc tca gcc aca gtc Ile Ala Leu Met Lys Leu Gin Phe Pro Leu Thr Phe Ser Gly Thr Val 290 295 300 912		
15	agg ccc atc tgt ctg ccc ttc ttt gat gag gag ctc act cca gcc acc Arg Pro Ile Cys Leu Pro Phe Asp Glu Glu Leu Thr Pro Ala Thr 305 310 315 320 960		
20	cca ctc tct atc att gga tgg ggc ttt acg aag cag aat gga ggg aag Pro Leu Trp Ile Ile Gly Trp Gly Phe Thr Lys Gin Asn Gly Lys 325 330 335 1008		
25	atc tct gac ata ctc ctg caq gcg tca gtc caq gtc att gac agc aca Met Ser Asp Ile Leu Leu Gin Ala Ser Val Gin Val Ile Asp Ser Thr 340 345 350 1056		
30	cgg tgc aat gca gac gat gct tac caq ggg gaa gtc acc gaq aag atg Arg Cys Asn Ala Asp Asp Ala Tyr Gin Gly Giu Val Thr Giu Lys Met 355 360 365 1104		
35	atg tgt gca gcc atc ccg gaa ggg ggt gtg gac acc tgc caq ggt gac Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gin Gly Asp 370 375 380 1152		
40	agt ggt ggg ccc ctg atg tac caa tct gac caq tgg cat gtc gtg ggc Ser Gly Gly Pro Leu Met Tyr Gin Ser Asp Gin Trp His Val Vai Gly 385 390 395 400 1200		
45	atc gtt agc tgg ggc tat ggc tgc ggg ggc ccg agc acc ccs gga gta Ile Val Ser Trp Gly Tyr Gly Cys Gly Pro Ser Thr Pro Gly Val 405 410 415 1249		
50	tac acc aag gtc tca gcc tat ctc aac tgg atc tac aat gtc tgg aag Tyr Thr Lys Val Ser Aia Tyr Leu Asn Trp Ile Tyr Asn Vai Trp Lys 420 425 430 1296		
55	gat aga act att caq aga aqc tgt aac tcc cca ggg aca ggt ctt gtg Asp Arg Thr Ile Gin Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val 435 440 445 1344		
60	att caq caa cca gct gta ccg ctg atg gag cta cgg tca gct cgq cac Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His 450 455 460 1392		
65	aca cat cgc ctg acc acc tgg gtt tgc ttt ctc tca ttc cct gcc tta Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu 465 470 475 480 1440		
70	cag ccc ctg tcc ccc tta tgc cca ttt ccc tgg gat tga Gin Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp 485 490 1479		

<210> 4
<211> 492
<212> PRT
<213> Homo sapiens

5 <400> 4
Met Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp Val Lys Pro
1 5 10 15
Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Gly Ile
10 20 25 30
Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser Ile Ile Ile Val Val
15 35 40 45
Val Leu Ile Lys Val Ile Leu Asp Lys Tyr Tyr Phe Leu Cys Gly Gln
20 50 55 60
Pro Leu His Phe Ile Pro Arg Lys Gln Leu Cys Asp Gly Glu Leu Asp
25 65 70 75 80
Cys Pro Leu Gly Glu Asp Glu Glu His Cys Val Lys Ser Phe Pro Glu
30 85 90 95
Gly Pro Ala Val Ala Val Arg Leu Ser Lys Asp Arg Ser Thr Leu Gln
35 100 105 110
Val Leu Asp Ser Ala Thr Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn
40 115 120 125
Phe Thr Glu Ala Leu Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser
45 130 135 140
Ser Lys Pro Thr Phe Arg Ala Val Glu Ile Gly Pro Asp Gln Asp Leu
50 145 150 155 160
Asp Val Val Glu Ile Thr Glu Asn Ser Gln Glu Leu Arg Met Arg Asn
55 165 170 175
Ser Ser Gly Pro Cys Leu Ser Gly Ser Leu Val Ser Leu His Cys Leu
60 180 185 190
Ala Cys Gly Lys Ser Leu Lys Thr Pro Arg Val Val Gly Gly Glu Glu
65 195 200 205
Ala Ser Val Asp Ser Trp Pro Trp Gln Val Ser Ile Gln Tyr Asp Lys
70 210 215 220
Gln His Val Cys Gly Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr
75 225 230 235 240
Ala Ala His Cys Phe Arg Lys His Thr Asp Val Phe Asn Trp Lys Val
80 245 250 255
Arg Ala Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala
85 260 265 270
Lys Ile Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp
90 275 280 285
Ile Ala Leu Met Lys Leu Gln Phe Pro Leu Thr Phe Ser Gly Thr Val
95 290 295 300
Arg Pro Ile Cys Leu Pro Phe Asp Glu Glu Leu Thr Pro Ala Thr
100 305 310 315 320
Pro Leu Trp Ile Ile Gly Trp Gly Phe Thr Lys Gln Asn Gly Gly Lys
105 325 330 335
Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val Ile Asp Ser Thr
110 340 345 350
Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met
115 355 360 365
Met Cys Ala Gly Ile Pro Glu Gly Gly Val Asp Thr Cys Gln Gly Asp
120 370 375 380
Ser Gly Gly Pro Leu Met Tyr Gln Ser Asp Gln Trp His Val Val Gly
125 385 390 395 400
Ile Val Ser Trp Gly Tyr Gly Cys Gly Gly Pro Ser Thr Pro Gly Val
130 405 410 415
Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys
135 420 425 430
Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val

	435	440	445		
	Ile Gln Gin Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His				
	450	455	460		
	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu				
5	465	470	475	480	
	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp				
	485	490			
 10					
	<210> 5				
	<211> 609				
	<212> DNA				
	<213> Homo sapiens				
15					
	<220>				
	<221> CDS				
	<222> (1)...(609)				
20	<400> 5				
	atg gat cct gag agt gat caa cct ctg aac agc ctc gat gtc aaa ccc			48	
	Met Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp Val Lys Pro				
	1 5 10 15				
25	ctg cgc aaa ccc cgt atc ccc atg gag acc ttc aga aag gtg ggg atc				96
	Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Gly Ile				
	20 25 30				
30	ccc atc atc ata gca cta ctg agc ctg gcg agt atc atc att ctg gtt				144
	Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser Ile Ile Ile Val Val				
	35 40 45				
35	gtc ctc atc aag gtg att ctg gat aaa tac tac ttc ctc tgc ggg cag				192
	Val Leu Ile Lys Val Ile Leu Asp Lys Tyr Tyr Phe Leu Cys Gly Gln				
	50 55 60				
40	cct ctc cac ttc atc ccg agg aag caq ctg tgt gac gga gaa ctg gac				240
	Pro Leu His Phe Ile Pro Arg Lys Gln Leu Cys Asp Gly Glu Leu Asp				
	65 70 75 80				
45	tgt ccc ttg ggg gag gac gag cac tgt gtc aag agc ttc ccc gaa				288
	Cys Pro Leu Gly Glu Asp Glu Glu His Cys Val Lys Ser Phe Pro Glu				
	85 90 95				
50	ggg cct gca gtg gca gtc cgc ctc tcc aag gac cga tcc aca ctg cag				336
	Gly Pro Ala Val Ala Val Arg Leu Ser Lys Asp Arg Ser Thr Leu Gln				
	100 105 110				
55	gtg ctg gag tgg gcc acg ggg aac tgg ttc tct gcc tgt ttc gac aac				384
	Val Leu Asp Ser Ala Thr Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn				
	115 120 125				
60	ttc aca gca gcc cta gct cgg cca cac ttg gtg ctc cca gca tcc cag				432
	Phe Thr Ala Ala Leu Ala Arg Pro His Leu Val Leu Pro Ala Ser Gln				
	130 135 140				
	gga gag aca cag ccc act gaa caa ggt ctc agg ggt att gct aag cca			480	
	Gly Glu Thr Gln Pro Thr Glu Gln Gly Leu Arg Gly Ile Ala Lys Pro				
	145 150 155 160				
65	aga agg aac ttt ccc aca cta ctg aat gga agc agg ctg tct tgt aaa				528

	Arg Arg Asn Phe Pro Thr Leu Leu Asn Gly Ser Arg Leu Ser Cys Lys			
	165	170	175	
5	agc cca gat cac tgt ggg ctg gag agc aga agg aaa ggg tct gcg cca		576	
	Ser Pro Asp His Cys Gly Leu Glu Arg Arg Arg Lys Gly Ser Ala Pro			
	180	185	190	
	gcc ctg tcc gtc ttc acc cat ccc caa gcc tac		609	
	Ala Leu Ser Val Phe Thr His Pro Gln Ala Tyr			
10	195	200		
	<210> 6			
	<211> 203			
15	<212> PRT			
	<213> Homo sapiens			
	<400> 6			
20	Met Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp Val Lys Pro			
	1	5	10	15
	Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Gly Ile			
	20	25	30	
25	Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser Ile Ile Ile Val Val			
	35	40	45	
	Val Leu Ile Lys Val Ile Leu Asp Lys Tyr Tyr Phe Leu Cys Gly Gln			
30	50	55	60	
	Pro Leu His Phe Ile Pro Arg Lys Gln Leu Cys Asp Gly Glu Leu Asp			
	65	70	75	80
35	Cys Pro Leu Gly Glu Asp Glu Glu His Cys Val Lys Ser Phe Pro Glu			
	85	90	95	
	Gly Pro Ala Val Ala Val Arg Leu Ser Lys Asp Arg Ser Thr Leu Gln			
	100	105	110	
40	Val Leu Asp Ser Ala Thr Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn			
	115	120	125	
	Phe Thr Ala Ala Leu Ala Arg Pro His Leu Val Leu Pro Ala Ser Gln			
	130	135	140	
45				
	Gly Glu Thr Gln Pro Thr Glu Gln Gly Leu Arg Gly Ile Ala Lys Pro			
	145	150	155	160
50	Arg Arg Asn Phe Pro Thr Leu Leu Asn Gly Ser Arg Leu Ser Cys Lys			
	165	170	175	
	Ser Pro Asp His Cys Gly Leu Glu Arg Arg Arg Lys Gly Ser Ala Pro			
	180	185	190	
55	Ala Leu Ser Val Phe Thr His Pro Gln Ala Tyr			
	195	200		

SEQUENCE LISTING

<110> M rck Pat nt GmbH

5 <120> Seripanatin

<120> SeripanatinDHWG

<140>

10 <141>

<160> 6

15 <170> PatentIn Ver. 2.1

<210> 1

<211> 1305

<212> DNA

<213> Homo sapiens

20

<220>

<221> CDS

<222> (1)..(1305)

25 <400> 1

atg gat acc gac agt gat tcc cct ctg aac aac ctc gat gtc aac ccc
 Met Asp Pro Asp Ser Asp Glu Pro Leu Asn Ser Leu Asp Val Lys Pro
 1. 5 10 15

48

30 atg cgc aac ccc cgt atc ccc atg ugg acc ttc aca aac gtc ggg aac
 Leu Arg Iys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Gly Ile
 20 25 30

96

35 ccc aac atc aca gca cts ctg aac ctg ugg agt atc atc aat gtc gtt
 Pro Ile Ile Ile Ala Leu Ser Ile Ala Ser Ile Ile Ile Val Val
 35 40 45

146

40 gtc ctc aac aag gtg att ttc gat aac tac tcc ttc ctc tgc ggg cag
 Val Leu Ile Lys Val Ile Leu Asp Lys Tyr Tyr Phe Leu Cys Gly Glu
 50 55 60

192

45 cct ctc cac ttc ala ccc aac aac ccc atg tgg gac gaa gaa ctc gac
 Pro Leu His Phe Ile Pro Arg Lys Glu Leu Cys Asp Gly Glu Leu Asp
 65 70 75 80

240

50 tgg ccc ttg ugg gag gac gac gac tgg gtc aag aac tcc ccc gaa
 Lys Pro Leu Gly Glu Asp Glu Glu His Cys Val Lys Ser Phe Pro Glu
 75 80 95

288

55 ugg acc gca ttg gca gca ccc tcc aac gac cga tcc acc ctc cag
 Gly Pro Ala Val Ala Val Arg Leu Ser Lys Asp Arg Ser Thr Leu Glu
 100 105 110

336

60 gtg ctg gac tgg gac aca ggg aac tgg ttc tct gcc tgg ttc gac aac
 Val Leu Asp Ser Ala Thr Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn
 115 120 125

384

65 ttc aca gac aat ctc gct ggg aca gac tgg aac cgg cag atg gtc tcc aac
 Phe Thr Glu Ala Leu Ala Cys Thr Ala Cys Arg Gln Met Gly Tyr Ser
 130 135 140

432

agc aaa ccc act ttc aca gct gtg gag att ggc cca gac aaa uac atq 480
 Ser Lys Pro Thr Phe Arg Ala Val Glu Ile Gly Pro Asp Gln Asp Leu
 105 150 155 160

5 ctc gtt gat gaa aac aac aac aac aac cag gag ctc cgc atq cgg aac 526
 Asp Val Val Glu Ile Thr Glu Asn Ser Gln Glu Leu Arg Met Arg Asn
 165 170 175

10 tca aat ggg ccc tgc ttc ggc tcc ctg gtc tcc ctg cac tgc ctc 576
 Ser Ser Gly Pro Cys Leu Ser Gly Ser Leu Val Ser Leu His Cys Leu
 160 185 190

15 gtc tat agg aat aac aac aat aac aac cat uac uuc gat ggt gaa gac 624
 Ala Cys Gly Lys Ser Leu Lys Thr Pro Arg Val Val Gly Gly Glu Glu
 195 200 205

20 gac ttt gtc gat tat tgg cat tgg cag gtc aac aac cag tac gac aaa 672
 Ala Ser Val Asp Ser Trp Pro Trp Gln Val Ser Ile Gln Tyr Asp Lys
 210 215 220

25 cag ccc cac tgc ttc agh aac val acc gat gtc ttc aac tgg aag gcc 720
 Glu His Val Cys Gly Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr
 225 230 235 240

30 gca gcc cac tgc ttc agh aac val acc gat gtc ttc aac tgg aag gcc 768
 Ala Ala His Cys Phe Arg Lys His Thr Asp Val Phe Asn Trp Lys Val
 245 250 255

35 cgg gca ggc tca gac aaa ctg ggc aac ttc cca tcc ctg gct gtg gcc 816
 Arg Ala Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala
 260 265 270

40 aag aac aac aac aac aac aac atq tac ccc aac gac aat gac 864
 Lys Ile Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Iys Asp Asn Asp
 275 280 285

45 aac gcc ctc atq aac aac aac aac atc acc tcc tca gct aca gtc 912
 Ile Ala Leu Met Lys Leu Glu Phe Pro Leu Thr Phe Ser Cys Thr Val
 290 295 300

50 aag gcc aac tcc atq aac aac aac aac atq gac gaa gac gac aac gac 960
 Arg Pro Ile Cys Leu Pro Phe Phe Arg Glu Glu Leu Thr Pro Ala Thr
 305 310 315 320

55 cca aac tgg acc att ggg 144 ggc ttc aca aac aac aac aac aac 1008
 Pro Leu Trp Ile Ile Cys Trp Gly Phe Thr Lys Gln Asn Cys Gly Lys
 325 330 335

60 aca tcc gac aca atq arg cag ggg tca gtc cag gtc att gac aac aca 1056
 Met Ser Asp Ile Leu Leu Glu Ala Ser Val Glu Val Ile Asp Ser Thr
 340 345 350

65 cgg ccc aat gca gac gat ccc tac cag ggg gaa gtc acc gag aac atq 1104
 Arg Cys Asn Ala Asp Asp Ala Tyr Gln Cys Glu Val Thr Glu Lys Met
 355 360 365

70 aac tcc gca ggc aac aac aac ggg cgt uuc gac acc tcc cag gct gac 1152
 Met Cys Ala Gly Ile Pro Glu Gly Gly Val Asp Thr Cys Gln Gly Asp
 370 375 380

385 Met Tyr Ser Asp Cln Trp His Val Val Gly 390 395 400
 395 Ile Val Ser Trp Gly Tyr Cys Ily Gly Pro Ser Thr Pro Gly Val 405 410 415
 415 Tyr Thr Iys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys 420 425 430
 430 Gln Gag Ccc Ala Glu Leu 435
 435 <210> Ile
 <211> Asp
 <212> Phe
 <213> homo sapiens
 440 <2>
 Met Asp Pro Asp Ser Asp Glu Pro Leu Asn Ser Leu Asp Val Lys Pro
 445 : 5 10 15
 Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Gly Ile
 450 20 25 30
 455 Pro Ile Ile Ala Leu Leu Ser Leu Ala Ser Ile Ile Ile Val Val
 460 35 40 45
 Val Leu Ile Lys Val Ile Leu Asp Lys Tyr Tyr Phe Leu Cys Gly Cln
 465 50 55 60
 Pro Leu His Phe Ile Pro Arg Lys Glu Leu Cys Asp Gly Glu Leu Asp
 470 65 70 75 80
 Cys Pro Leu Gly Glu Asp Glu S! His Cys Val Lys Ser Phe Pro Glu
 475 85 90 95
 Gly Pro Ala Val His Val Arg Leu Ser Lys Asp Arg Ser Thr Leu Cln
 480 100 105 110
 485 Val Leu Asp Ser Ala Thr Cln Asn Trp Phe Ser Ala Cys Ile Asp Asn
 490 115 120 125
 Phe Thr Glu Ala Leu Ala Glu Thr Ala Cys Arg Cln Met Gly Tyr Ser
 495 130 135 140
 500 Ser Lys Pro Thr Phe Arg Ala Val Glu Ile Gly Pro Asp Gln Asp Leu
 505 145 150 155 160
 510 Asp Val Val Glu Ile Thr Glu Asn Ser Glu Glu Leu Arg Met Arg Asn
 515 165 170 175
 520 Ser Ser Gly Pro Cys Leu Ser Gly Ser Leu Val Ser Leu His Cys Leu
 525 180 185 190 195
 530 Ala Cys Gly Lys Ser Leu Lys Thr Pro Arg Val Val Gly Gly Glu Glu

	ccg cgt aaa ccc cgt atc acc aca gac acc ttc aca aag gtc ggg atc Ileu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Cys Ile 20	25	30	96
5	ccc acc acc ata gca cta ccg agg ccc gac aca aca acc att gtc gtc Pro Ile Ile Ala Leu Leu Ser Leu Ala Ser Ile Ile Val Val 35	40	45	104
10	gtc ctt atc aag gtc act ccg gat aaa tac tac ttc atc tcc aca aag cag Val Leu Ile Lys Val Ile Leu Asp Lys Tyr Tyr Phe Leu Cys Gly Gln 55	60		132
15	ccg ctc cac itc atc ccg agg aag ccg ccg cgt gac gga aca ctc aca Pro Leu His Phe Ile Pro Arg Lys Gln Leu Cys Asp Gly Glu Leu Asp 65	70	75	240
20	tgt ccc ttg ggg gag gac gag ccg cgt gtc aag aca tcc ccc gaa Cys Phe Leu Gly Glu Asp Glu His Cys Val Lys Ser Phe His Glu 85	90	95	255
25	ggg ctt gca gag gca gtc cgc acc ccc aag gac ccg tcc acc aca atc gag Gly Pro Ala Val Ala Val Arg Leu Ser Lys Asp Arg Ser Thr Leu Gln 100	105	110	336
30	gtg ctg gac ccg gac aca ggg aac tgg ttc tct gcc tct tcc gac aac Val Leu Asp Ser Ala Thr Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn 115	120	125	384
35	tcc acc aca qst ccc qst qac aca gcc tgc aag ccg atg ggc tac aca Phe Thr Glu Ala Leu Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser 130	135	140	432
40	agg ccc acc act itc aca qcc qcc gac att qcc cca gac aca gat atc Ser Lys Pro Thr Phe Arg Ala Val Glu Ile Gly Pro Asp Glu Asp Leu 145	150	155	481
45	qat gtt gtt gaa tcc aca gaa aac aac ccg ccg gag att ccc atc ccg aac Asp Val Val Glu Ile Thr Glu Asn Ser Cln Glu Leu Arg Met Arg Asn 165	170	175	522
50	tca agt ggg ccc tgc tcc aac tcc ctg gtg tcc ctg ccc tgc atc Ser Ser Gly Pro Cys Leu Ser Gly Ser Leu Val Ser Leu His Cys Leu 180	195	197	576
55	gcc tcc ggg aac aac ccc aac acc ccc ccc gtc gtc gtc ggt ggg gag gag Ala Cys Gly Lys Ser Leu Lys Thr Pro Arg Val Val Gly Glu Glu 195	200	205	624
60	gcc tcc gtc gat tcc tgg ccc tgg cag gtc aca acc aca tcc qcc aca Ala Ser Val Asp Ser Trp Pro Trp Gln Val Ser Ile Cln Tyr Asp Lys 210	215	220	672
	cac ccc ctc cgt gga ggg aac aca atc gac ccc ccc ccc gtc atc acc Gln His Val Cys Gly Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr 225	230	235	725
	gca gca ccc tcc tcc agg aac cat acc gat gtc tcc aac tgg aac qtc Ala His His Cys Ile Arg Lys His Tyr Asp Val Phe Asn Trp Lys Val 245	250	255	768

ceg gac gat tca gac aaa ctc ggc aac ttc cca lva cta qat gat gtc gca	216																																																																																																																		
Arg Ala Gly Ser Lys Leu Cys Ser Phe Pro Ser Leu Ala Val Ala																																																																																																																			
260	265	270		i aeq ala ala ala ala gac ttc pcc atg tac ccc aaa gac aac gac	266	lys Ile Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp		275	280	285		atc gac ctc ala aeq ctc ccc ctc aac act ttc cca ggc eca gtc	290	Ile Ala Leu Met Lys Leu Glu Phe Pro Leu Thr Phe Ser Cys Thr Val		295	300			agg ccc aac tgl acc ccc ttt aat aeq gac ccc act cca gcc acc	305	Arg Pro Ile Cys Leu Pro Phe Asp Glu Glu Leu Thr Pro Ala Thr		310	315	320		cca ctc tcc ala gga leu gac ttc ttt aeq aeq aat qaa aqg aag	325	Pro Leu Trp Ile Ile Gly Trp Cys Phe Thr Lys Gln Asn Gly Lys		330	335			atc tcc qac ala ctc ctc ccc tcc gtc ccc gtc aat gac aac aac	340	Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val Ile Asp Ser Thr		345	350			cgg tgg aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	355	Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met		360	365			atc tgc aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	370	Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp		375	380			agt ggt ggg ccc ctc atg tac ccc tcc gac ccc tgg cat gtc gtc ggc	385	Ser Cys Gly Pro Leu Met Tyr Gln Ser Asp Cys Thr His Val Val Gly		390	395	400		atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405	Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val		410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495		
270																																																																																																																			
i aeq ala ala ala ala gac ttc pcc atg tac ccc aaa gac aac gac	266																																																																																																																		
lys Ile Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp																																																																																																																			
275	280	285		atc gac ctc ala aeq ctc ccc ctc aac act ttc cca ggc eca gtc	290	Ile Ala Leu Met Lys Leu Glu Phe Pro Leu Thr Phe Ser Cys Thr Val		295	300			agg ccc aac tgl acc ccc ttt aat aeq gac ccc act cca gcc acc	305	Arg Pro Ile Cys Leu Pro Phe Asp Glu Glu Leu Thr Pro Ala Thr		310	315	320		cca ctc tcc ala gga leu gac ttc ttt aeq aeq aat qaa aqg aag	325	Pro Leu Trp Ile Ile Gly Trp Cys Phe Thr Lys Gln Asn Gly Lys		330	335			atc tcc qac ala ctc ctc ccc tcc gtc ccc gtc aat gac aac aac	340	Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val Ile Asp Ser Thr		345	350			cgg tgg aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	355	Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met		360	365			atc tgc aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	370	Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp		375	380			agt ggt ggg ccc ctc atg tac ccc tcc gac ccc tgg cat gtc gtc ggc	385	Ser Cys Gly Pro Leu Met Tyr Gln Ser Asp Cys Thr His Val Val Gly		390	395	400		atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405	Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val		410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495										
285																																																																																																																			
atc gac ctc ala aeq ctc ccc ctc aac act ttc cca ggc eca gtc	290																																																																																																																		
Ile Ala Leu Met Lys Leu Glu Phe Pro Leu Thr Phe Ser Cys Thr Val																																																																																																																			
295	300			agg ccc aac tgl acc ccc ttt aat aeq gac ccc act cca gcc acc	305	Arg Pro Ile Cys Leu Pro Phe Asp Glu Glu Leu Thr Pro Ala Thr		310	315	320		cca ctc tcc ala gga leu gac ttc ttt aeq aeq aat qaa aqg aag	325	Pro Leu Trp Ile Ile Gly Trp Cys Phe Thr Lys Gln Asn Gly Lys		330	335			atc tcc qac ala ctc ctc ccc tcc gtc ccc gtc aat gac aac aac	340	Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val Ile Asp Ser Thr		345	350			cgg tgg aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	355	Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met		360	365			atc tgc aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	370	Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp		375	380			agt ggt ggg ccc ctc atg tac ccc tcc gac ccc tgg cat gtc gtc ggc	385	Ser Cys Gly Pro Leu Met Tyr Gln Ser Asp Cys Thr His Val Val Gly		390	395	400		atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405	Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val		410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																		
agg ccc aac tgl acc ccc ttt aat aeq gac ccc act cca gcc acc	305																																																																																																																		
Arg Pro Ile Cys Leu Pro Phe Asp Glu Glu Leu Thr Pro Ala Thr																																																																																																																			
310	315	320		cca ctc tcc ala gga leu gac ttc ttt aeq aeq aat qaa aqg aag	325	Pro Leu Trp Ile Ile Gly Trp Cys Phe Thr Lys Gln Asn Gly Lys		330	335			atc tcc qac ala ctc ctc ccc tcc gtc ccc gtc aat gac aac aac	340	Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val Ile Asp Ser Thr		345	350			cgg tgg aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	355	Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met		360	365			atc tgc aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	370	Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp		375	380			agt ggt ggg ccc ctc atg tac ccc tcc gac ccc tgg cat gtc gtc ggc	385	Ser Cys Gly Pro Leu Met Tyr Gln Ser Asp Cys Thr His Val Val Gly		390	395	400		atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405	Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val		410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																										
320																																																																																																																			
cca ctc tcc ala gga leu gac ttc ttt aeq aeq aat qaa aqg aag	325																																																																																																																		
Pro Leu Trp Ile Ile Gly Trp Cys Phe Thr Lys Gln Asn Gly Lys																																																																																																																			
330	335			atc tcc qac ala ctc ctc ccc tcc gtc ccc gtc aat gac aac aac	340	Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val Ile Asp Ser Thr		345	350			cgg tgg aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	355	Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met		360	365			atc tgc aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	370	Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp		375	380			agt ggt ggg ccc ctc atg tac ccc tcc gac ccc tgg cat gtc gtc ggc	385	Ser Cys Gly Pro Leu Met Tyr Gln Ser Asp Cys Thr His Val Val Gly		390	395	400		atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405	Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val		410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																		
atc tcc qac ala ctc ctc ccc tcc gtc ccc gtc aat gac aac aac	340																																																																																																																		
Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val Ile Asp Ser Thr																																																																																																																			
345	350			cgg tgg aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	355	Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met		360	365			atc tgc aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	370	Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp		375	380			agt ggt ggg ccc ctc atg tac ccc tcc gac ccc tgg cat gtc gtc ggc	385	Ser Cys Gly Pro Leu Met Tyr Gln Ser Asp Cys Thr His Val Val Gly		390	395	400		atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405	Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val		410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																										
cgg tgg aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	355																																																																																																																		
Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu Val Thr Glu Lys Met																																																																																																																			
360	365			atc tgc aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	370	Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp		375	380			agt ggt ggg ccc ctc atg tac ccc tcc gac ccc tgg cat gtc gtc ggc	385	Ser Cys Gly Pro Leu Met Tyr Gln Ser Asp Cys Thr His Val Val Gly		390	395	400		atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405	Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val		410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																																		
atc tgc aat gca gac gat aac tcc ccc ggg gaa gca gtc acc gac aac atg	370																																																																																																																		
Met Cys Ala Gly Ile Pro Glu Gly Val Asp Thr Cys Gln Gly Asp																																																																																																																			
375	380			agt ggt ggg ccc ctc atg tac ccc tcc gac ccc tgg cat gtc gtc ggc	385	Ser Cys Gly Pro Leu Met Tyr Gln Ser Asp Cys Thr His Val Val Gly		390	395	400		atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405	Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val		410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																																										
agt ggt ggg ccc ctc atg tac ccc tcc gac ccc tgg cat gtc gtc ggc	385																																																																																																																		
Ser Cys Gly Pro Leu Met Tyr Gln Ser Asp Cys Thr His Val Val Gly																																																																																																																			
390	395	400		atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405	Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val		410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																																																		
400																																																																																																																			
atc gtt aac tgg ggc tcc gac tcc gac ggc ccc aac acc ccc gga gca	405																																																																																																																		
Ile Val Ser Trp Gly Tyr Cys Gly Gly Pro Ser Thr Pro Cys Val																																																																																																																			
410	415			tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420	Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys		425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																																																										
tcc acc aac ctc ccc gac tcc tcc acc tcc acc tcc aat gtc tgg aac	420																																																																																																																		
Tyr Thr Lys Val Ser Ala Tyr Leu Asn Trp Ile Tyr Asn Val Trp Lys																																																																																																																			
425	430	435		gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435	Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val		440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																																																																		
435																																																																																																																			
gat aca aat aac tcc aca aac tcc ccc gac aac gac aat gtc tgg aac	435																																																																																																																		
Asp Arg Thr Ile Gln Arg Ser Cys Asn Ser Pro Gly Thr Gly Leu Val																																																																																																																			
440	445			atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450	Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His		455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																																																																										
atc ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	450																																																																																																																		
Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His																																																																																																																			
455	460			ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465	Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu		470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																																																																																		
ata ccc ccc ccc gac gta ccc ctc atg gac ccc ccc gtc gtc aat	465																																																																																																																		
Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu																																																																																																																			
470	475	480		cag ccc ctc tcc ccc tcc	485	Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp		490	495																																																																																																										
480																																																																																																																			
cag ccc ctc tcc ccc tcc	485																																																																																																																		
Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp																																																																																																																			
490	495																																																																																																																		

<210> 4
<211> 492
<212> PRT
<213> Human genome

435 440 445
 Ile Gln Gln Pro Ala Val Pro Leu Met Glu Leu Arg Ser Ala Arg His
 450 455 460
 Thr His Arg Leu Thr Thr Cys Val Cys Phe Leu Ser Phe Pro Ala Leu
 5 465 470 475 480
 Gln Pro Leu Ser Pro Leu Cys Pro Phe Pro Trp Asp
 485 490

10 <210> 5
 <211> 604
 <212> DNA
 <213> Homo sapiens

15 <220>
 <221> CDS
 <222> (1...:605)

20 <400> 5
 atg gag ctt gac aat gat cca cct ctc gag aac aac ctc gat gtc aaa ccc 95
 Met Asp Pro Asp Ser Asp Cln Pro Leu Asn Ser Leu Asp Val Sys Pro
 1 5 10 15

25 ctc ctc aac ccc cgt atc ccc atg gag acc ttc aga aag gtg ggg atc 96
 Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg Lys Val Gly Ile
 20 25 30

30 ccc att att ata gca ctc ctg aac ctc gca aat atc atc atc gtc gtc 140
 Pro Ile Ile Ile Ala Leu Ser Leu Ala Ser Ile Ile Val Val
 35 40 45

gtc ctc att aag gtg att ctg gat aac taa tcc ctc tcc ggg cag 152
 Val Leu Ile Lys Val Ile Ile Asp Lys Tyr Tyr Phe Leu Cys Gly Gln
 40 45 50

ctc ctc att aag gtg att ctg gat aac taa tcc ctc tcc ggg cag 152
 Pro Leu Ile Ile Pro Arg Lys Gln Leu Cys Ile Gly Glu Leu Asp
 45 50 55

40 tgc ccc ttc ggg gaa gac gac gag cas tgc gtc aag aac ttc ccc gag 240
 Cys Pro Leu Gly Glu Asp Glu Glu His Cys Val Lys Ser Phe Pro Glu
 45 50 55 60

45 ggg ccc gca gtc gca gtc ctc tcc aac gac ccc tcc aca ctc cag 336
 Gly Pro Ala Val Ala Val Arg Leu Ser Lys Asp Arg Ser Thr Leu Cln
 50 55 60 65

50 gtc ctc gac ttc gct aac ggg aac tgg ttc tcc gcc tgc tcc gac aac 384
 Val Leu Asp Ser Ala Thr Gly Asn Cys Phe Ser Ala Cys Phe Asp Asn
 55 60 65 70

55 ttc aca gca gcc ctc gat cgg cca cac ttg gtc ctc gca gca tcc cag 432
 Phe Thr Ala Ala Leu Ala Arg Pro His Leu Val Leu Pro Ala Ser Gln
 60 65 70 75

60 gga gag aca tgg msc act gaa caa ggt ctc wgg gat att gat aag cca 480
 Gly Glu Thr Cln Pro Thr Glu Gln Gly Leu Arg Gly Ile Ala Lys Pro
 65 70 75 80

65 gaa agg aac ttc ccc aca ctc ctc aat gya egn aga ctg tat tgc aac 528

Arg Arg Asn Phe Pro Thr Leu Ileu Asn Gly S = Arg Leu Ser Cys Lys
 165 170 175
 5 Ser Cys Gac Cac Tgt Ggg Ctc Gag Aga Agg Aaa Ggg Tct Gcc Cta 576
 100 185 190 Ser Pro Asp His Cys Gly Leu Glu Arg Arg Iys Cys Ser Ala Pro
 10 Gcc Ctg Tcc Gtc Ttc Acc Cac Ccc Cca Gcc Tcc 609
 Ala Leu Ser Val Phe Thr His Pro Glu Ala Tyr
 195 200

<210> 6
 <211> 203
 15 <212> PRT
 <213> Homo sapiens
 <400> 6
 Met Asp Pro Asp Ser Asp Glu Pro Leu Asn Ser Leu Asp Val Lys Pro
 30 : 5 10 15

Leu Arg Lys Pro Arg Ile Pro Met Ile Thr Phe Arg Lys Val Cys Ile
 20 25 30

25 Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser Ile Ile Ile Val Val
 35 40 45

Val Leu Ile Lys Val Ile Leu Asp Lys Tyr Tyr Phe Leu Cys Gly Glu
 50 55 60

30 Pro Leu His Phe Ile Pro Arg Lys Glu Leu Cys Asp Gly Glu Ceu Asp
 65 70 75 80

Cys Pro Leu Gly Glu Asp Glu Glu His Cys Val Lys Ser Phe Pro Glu
 85 90 95

Gly Pro Ala Val Ala Val Asn Leu Ser Lys Asp Arg Ser Thr Leu Glu
 100 105 110

40 Val Leu Asp Ser Ala Thr Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn
 115 120 125

Phe Thr Ala Ala Leu Ala Asn Pro His Leu Val Leu Pro Ala Ser Glu
 135 138 140

45 Gly Glu Thr Glu Pro Thr Glu Glu Gly Leu Arg Gly Ile Ala Lys Pro
 145 150 155 160

50 Arg Arg Asn Phe Pro Thr Leu Leu Asn Cys Ser Arg Leu Ser Cys Lys
 165 170 175

Ser Pro Asp His Cys Gly Leu Glu Arg Arg Iys Gly Ser Ala Pro
 180 185 190

55 Ala Leu Ser Val Phe Thr His Pro Glu Ala Tyr
 195 200

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 January 2001 (18.01.2001)

PCT

(10) International Publication Number
WO 01/04141 A3

(51) International Patent Classification⁷: C12N 15/57,
9/64, 15/11, 15/10, C07K 19/00, 16/40, C12Q 1/37

D-64665 Alsbach (DE). MATZKU, Siegfried [DE/DE];
Wetzbach 24, D-64673 Zwingenberg (DE). WILBERT,
Oliver [DE/DE]; Liebfrauenstrasse 54, D-64289 Darm-
stadt (DE).

(21) International Application Number: PCT/EP00/06211

(22) International Filing Date: 4 July 2000 (04.07.2000)

(74) Common Representative: MERCK PATENT GMBH;
Frankfurter Str. 250, D-64293 Darmstadt (DE).

(25) Filing Language: English

(81) Designated States (*national*): CA, JP, US.

(26) Publication Language: English

(84) Designated States (*regional*): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

(30) Priority Data:
99113428.9 12 July 1999 (12.07.1999) EP

Published:

— *With international search report.*

(71) Applicant (*for all designated States except US*): MERCK
PATENT GMBH [DE/DE]; Frankfurter Str. 250, D-64293
Darmstadt (DE).

(88) Date of publication of the international search report:
25 May 2001

(72) Inventors; and

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(75) Inventors/Applicants (*for US only*): SÜNDERMANN,
Britta [DE/DE]; Weinbergstrasse 6a, D-64285 Darmstadt
(DE). HOFMANN, Uwe [DE/DE]; Hähnleinerstr. 42,

WO 01/04141 A3

(54) Title: SERIPANCRIN

(57) Abstract: Seripancrin polypeptides and polynucleotides and methods for producing such polypeptides by recombinant tech-
niques are disclosed. Also disclosed are methods for utilizing Seripancrin polypeptides and polymucleotides in diagnostic assays.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/06211

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/57 C12N9/64
 C07K16/40 C12Q1/37

C12N15/11

C12N15/10

C07K19/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, EMBL, WPI Data, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PAOLONI-GIACOBINO A ET AL: "CLONING OF THE TMPRSS2 GENE, WHICH ENCODES A NOVEL SERINE PROTEASE WITH TRANSMEMBRANE, LDLRA, AND SRCR DOMAINS AND MAPS TO 21Q22.3" GENOMICS, US, ACADEMIC PRESS, SAN DIEGO, vol. 44, no. 3, 15 September 1997 (1997-09-15), pages 309-320, XP000856785 ISSN: 0888-7543 cited in the application the whole document ---	1-11
A	JP 09 149790 A (SUNTORY LTD) 10 June 1997 (1997-06-10) the whole document ---	1-11 -/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

15 February 2001

22/02/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax (+31-70) 340-3016

Authorized officer

Gurdjian, D

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/06211

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 99 36550 A (INCYTE PHARMA INC ;CORLEY NEIL C (US); YUE HENRY (US); BANDMAN OLG) 22 July 1999 (1999-07-22) abstract; claims 1-23; figures SEQ.ID6,18 _____	1-8,10, 11
P,X	WO 00 12758 A (RECIPON HERVE ;DIADEXUS LLC (US); SALCEDA SUSANA (US); SUN YONGMIN) 9 March 2000 (2000-03-09) abstract; claims 2-13; figure SEQ.ID.2 _____	1-8,10, 11
P,X	WO 00 12708 A (BAKER KEVIN ;GENENTECH INC (US); GODDARD AUDREY (US); GURNEY AUSTI) 9 March 2000 (2000-03-09) abstract; claims 1-27; figures 155,,SEQ.ID.274, _____	1-8,10

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/06211

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
JP 09149790	A 10-06-1997	NONE		
WO 9936550	A 22-07-1999	AU 2113599 A EP 1045913 A		02-08-1999 25-10-2000
WO 0012758	A 09-03-2000	NONE		
WO 0012708	A 09-03-2000	AU 5590899 A AU 6041399 A WO 0017353 A		21-03-2000 10-04-2000 30-03-2000