Линейная алгебра 1 семестр Экзамен

Студенты ИС'а

время последней сборки: 5 января 2023 г. 13:02

"Спасибо всем за вклад в написание билетов".

Содержание

1	Поле комплексных чисел.	3
2	Линейное пространство арифметических векторов. Определение, проверка аксиом.	5
3	Линейное пространство направленных отрезков с общим началом. Определение, проверка аксиом.	6
4	Матрицы. Определение. Арифметика матриц.	7
5	Определители. Свойства.	8
6	Обратная матрица. Существование и единственность.	9
7	Определение СЛАУ. Совместность, определенность. Теорема Крамера.	10
8	Линейная зависимость арифметических векторов. Линейная зависимость системы одного и двух векторов.	11
9	Теоремы о линейно зависимых и независимых системах векторов.	12
10	Базис. Определение, основные теоремы.	13
11	Ранг матрицы. Элементарные преобразования.	14
12	Метод Гаусса (приведение матрицы к ступенчатому виду). Вычисление ранга.	15
13	Теория СЛАУ. Теорема Кронекера-Капелли. Два случая совместности (определенные и неопределенные СЛАУ).	16

14 Решение однородной СЛАУ. Структура решения неоднородной СЛАУ.	17
15 Линейное координатное пространство. Базис, размерность.	18
16 Подпространство. Линейная оболочка.	19
17 Изоморфизм линейных пространств.	20
18 Пространство решений однородной СЛАУ. Фундаментальная система решений.	21
19 Преобразование базиса и координат.	22
20 Скалярное произведение и норма векторов. Ортонормированный базис.	23
21 Системы координат. Определение. Декартовы и полярная СК.	24
22 Геометрический вектор в координатном пространстве. Определение, характеристики.	2 5
23 Произведения векторов и их приложения.	26
24 Коллинеарность, компланарность, ортогональность векторов. Критерии.	27
25 Уравнения прямой на плоскости.	28
26 Уравнения плоскости в пространстве.	29

1 Поле комплексных чисел.

* В других билетах особо не спрашивают, что такое группа, кольцо и поле. Поэтому я решил добавить это в данный билет.

Множество — совокупность объектов с общим свойством.

Существуют бинарные и унарные операции над множествами. Бинарная принимает два аргумента и возвращает один результат, унарная аналогично принимает один аргумент и возвращает один результат.

Алгебраическая операция на множестве X — соответствие, при котором каждой паре элементов из множества X соответствует единственный элемент этого же множества.

Алгебраическая структура (Алгебраическая система в википедии) — называется объект, являющийся совокупностью непустого множества Aи непустого набора алгебраических операций $f_1, f_2, \ldots, f_k, \ldots$

Из определения следует, что множество N с операцией — не является алгебраической структурой, так как — на таком множестве не замкнутая операция.

Алгебраические структуры далее классифицируются так:

- Группой (G, \oplus) называется алгебраическая система с одной бинарной **алгебраической** операцией
 - 1. Определена бинарная операция.

 Например, сложение или умножение, поэтому обычно говорят, что "группа по сложению" или "группа по умножению"
 - 2. Операция является ассоциативной.
 - 3. Существует нейтральный элемент для данной операции в данном множестве. Для сложение \mathbb{O} , так как $\forall a \in G \, \mathbb{O} + a = a \in G$. Для умножения $\mathbb{1}$, так как $\forall a \in G \, \mathbb{1} \cdot a = a \in G$.
 - 4. Каждый элемент множества имеет обратный. Для структуры по сложению: $\forall a \in G \, \exists a' \in G \, a' + a = \mathbb{0}$

Группа называется абелевой, если операция в ней коммутативна, т.е.

$$\forall x, y \in G \ x \oplus y = y \oplus x$$

- **Кольцом** называется непустое множество R с двумя заданными на нём бинарными операциями + (сложение) и · (умножение), которые обладают следующими свойствами:
 - * Разумеется + и \cdot это просто обозначения некоторых операций, что-бы не писать операция 1.
 - 1. относительно сложения + множество R образует **абелеву** группу, называемую аддитивной группой кольца; нейтральный элемент этой группы называется нулём и обозначается $\mathbb 0$
 - 2. умножение · дистрибутивно относительно сложения: для любых $a,b,c\in R$ имеют место соотношения

$$(a+b) \cdot c = a \cdot c + b \cdot c, c \cdot (a+b) = c \cdot a + c \cdot b$$

Если операция умножения коммутативна (ассоциативна), то кольцо называется коммутативным (ассоциативным).

• Полем называется коммутативное ассоциативное кольцо с единицей, в котором любой ненулевой элемент обратим.

Поле комплексных чисел

Поле комплексных чисел — множеств упорядоченных пар $\mathbb{C} = \{(x,y)|x,y\in\mathbb{R}\}$ Пусть $z_1=(x_1,y_1), z_2=(x_2,y_2).$

• Введём +:

$$z_1 + z_2 = z_2 + z_1 = (x_1 + x_2, y_1 + y_2)$$

• Введём ::

$$z_1 \cdot z_2 = z_2 \cdot z_1 = (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1)$$

• Пусть

$$\mathbb{O}_{\mathbb{C}} = (0,0), \mathbb{1}_{\mathbb{C}} = (1,0)$$

Множество $(\mathbb{C},+,\cdot)$ является полем.

Пусть

$$i = (0, 1)$$

Тогда любое комплексное число можно обозначать так z=(a,b)==a+ib

$$i^2 = (0,1) \cdot (0,1) = \dots = -1$$

Отсюда получаем $i = \sqrt{-1}$ — мнимая единица.

	ИТМО, Санкт-Петербург				
2	Линейное пространство арифметических векторов.				
	Определение, проверка аксиом.				

	ИТМО, Санкт-Петербург
3	
	общим началом. Определение, проверка аксиом.

4	Матрицы.	Определение.	Арифметика матр	иц.

		, 1 31
5	Определители.	

6	Обратная	матрица.	Существование	и единственность.

7	Определение СЛАУ.	Совместность,	определенность.
	Теорема Крамера.		

8 Линейная зависимость арифметических векторов. Линейная зависимость системы одного и двух векторов.

9	Теоремы		зависимых		исимых	
9		векторов.	SWEITERINIDIA	11 110000	LL VELIVE BELLE	
	CHOTOMAX	bentopob.				

10	Базис.	Определение,	основные	теоремы.

11	Ранг	матрицы.	Элементарные	преобразования.

12 Метод Гаусса (приведение матрицы к ступенчатому виду). Вычисление ранга.		ИТМО, Санкт-Петербург
виду). Вычисление ранга.	12	Метод Гаусса (приведение матрицы к ступенчатому
		виду). Вычисление ранга.

13 Теория СЛАУ. Теорема Кронекера-Капелли. Два случая совместности (определенные и неопределенные СЛАУ).

	ИТМО, Санкт-Петербург	
14		ения
	неоднородной СЛАУ.	

Линейная алгебра 1 семестр Экзамен

	ИТМО, Санкт-Петербург
$\overline{15}$	Линейное координатное пространство. Базис,
	размерность.

16	Подпространство.	Линейная	оболочка.

$\overline{17}$	Изоморфизм линейных пространств.

	тто, сами погороди
19	Преобразование базиса и координат.

	Линейная алгебра 1 семестр Экзамен ИТМО, Санкт-Петербург		
20	Скалярное произведение и норма векторов.		
	Ортонормированный базис.		

		О, Санкт-Петербург	
21	Системы координат.	Определение.	Декартовы и
	полярная СК.		

23	Произведения векторов и их приложения.

24	Коллинеарность, компланарность, ортогональность		
	векторов. Критерии.		

25	Уравнения прямой на плоскости.

26	Уравнения плоскости в пространстве.