

TEMA 1.1. INTRODUCCIÓN A LA TELEMÁTICA Y REDES

CAPÍTULO 1
TANENBAUM/WETHERALL
QUINTA EDICIÓN

Cátedra Tecnología de Sistemas

00883- Telemática y Redes

Uso de redes computacionales

- Para compañías
- Para la gente
- Usuarios móbiles
- Consideraciones sociales
- Material
 - www.pearsoneducacion.net/tanenbaum/

Aplicaciones de redes para negocios

 El modelo cliente-servidor implica: peticiones y respuestas.

Aplicaciones de redes para negocios

Aplicaciones Domésticas

- En los sistemas "peer to peer" (igual a igual) no hay clientes ni servidores.
 - Compartir datos
 - Comunicación (redes sociales)
 - Comercio electrónico (compras desde el hogar)
 - Entretenimiento (música, vídeos, películas, juegos, etc)
 - Para uso en el hogar (seguridad, sensores, cámaras, etc)

Usuarios Móviles de Red

 Combinaciones de computación inalámbrica y móviles.

Inalámbrica	Móvil	Aplicaciones comunes
No	No	Computadoras de escritorio en oficinas
No	Si	Una computadora netebook que se utiliza en el cuarto de un hotel
Si	No	Las redes en edificaio sin cables
Si	Si	El inventario de la tienda con una computradora de mano

Hardware de Red

- Red de Area Personal (PAN)
- Red de Area Local (LAN)
- Red de Area Metropolitana (MAN)
- Red de Area Amplia (WAN)
- Interredes

Tecnologías de transmisión

- Enlaces o redes de difusión
 - Un solo canal de comunicación compartido
 - Paquetes (son mensajes cortos)
 - Los paquetes pueden dirigirse: Unicasting (unidifusión), multicasting (multidifusión), broadcasting (difusión).
- Enlaces o redes punto a punto

Redes de difusión

Clasificación por escala de procesadores interconectados.

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country	
1000 km	Continent	├ Wide area network
10,000 km	Planet	The Internet

Redes de Área Local

- Dos redes de difusión
- □ (a) Bus
- (b) Ring

Redes de Área Metropolitana

- Una red MAN basada en cable de TV.
- Todo se orienta a la conectividad doméstica

Redes de Área Amplia

Redes de Área Amplia

Software de red

- Jerarquía de protocolos (serie de capas o niveles, reducen complejidad de diseño de las redes)
- Aspectos de diseño para las capas.
 - Comunicación: símplex, semidúplex y dúplex
- □ Servicios: orientado a conexión y sin conexión.

	Servicio	Ejemplo	
Orientado a Conexión	Flujo de mensajes confiable	Secuencia de páginas	
	Flujo de bytes confiables	Descarga de películas	
	Conexión no confiable	Voz sobre IP	
Sin Conexión	Datagrama no confiable	Correo electrónico basura	
	Datagrama confirmación de recepción	Mensajería de texto	
	Solicitud-respuesta	Consulta en una bvase de datos	

Software de red

·Servicios: orientado a conexión y sin conexión.

TCP	UDP	
(Protocolo de Control de Transmisión)	(Protocolo de Datagrama de usuario)	
Puerto de origen Puerto de destino # Secuencia # Confirmación Despla V A P R S Y I Zamiento de datos Ventana Suma de comprobación Puntero urgente Opciones (0 o más palabras de 32 bits) Datos (opcional)	0 Puerto de origen Longitud	16 31 Puerto de destino Suma de comprobación

Software de red

- Primitivas de servicio.
- Conjunto de capas y protocolos: Arquitectura de Red
- Protocolo: acuerdo entre partes para comunicación.

Primitivas de servicios

Primitive	Meaning
LISTEN	Block waiting for an incoming connection
CONNECT	Establish a connection with a waiting peer
RECEIVE	Block waiting for an incoming message
SEND	Send a message to the peer
DISCONNECT	Terminate a connection

 Cinco servicios primitivos para implementar un servicio simple orientado a conexión

Primitivas de servicios

 Paquetes enviados desde una interacción simple clienteservidor en una red orientada a la conexión

Relación entre servicios y protocolos

 La relación entre un servicio y un protocolo. (Capas Adyacentes)

Modelos de Referencia

El Modelo OSI

- Los principios que se aplicaron par llegar a las 7 capas
 - Se debe crear una capa en donde se requiera un nivel diferente de abstracción.
 - Cada capa debe realizar una función bien definida
 - La función de cada capa se debe elegir teniendo en cuanta la definición de protocolos estandarizados internacionalmente
 - Es necesario elegir los límites de las capas de modo que se minimice el flujo de información a través de las interfaces
 - La cantidad de capas debe ser suficiente como par no tener que agrupar funciones distintas en la misma capa; además, debe ser lo bastante pequeña como para que la arquitectura no se vuelva inmanejable.

Ejemplos de protocolos

- Capa 1. Nivel físico: Cable coaxial, fibra óptica, par trenzado, radio, RS-232. (WLAN utilizan ondas de radio 902 MHz, microondas 2,4 GHz y ondas infrarrojas 820 nanómetros.)

 Capa 2.: Nivel de enlace de datos: Ethernet, Fast Ethernet, Gigabit Ethernet, 10 Gigabit Ethernet, Token Ring, FDDI, ATM, HDLC.
- **Capa 3. Nivel de red:** ARP, RARP, IP (IPv4, IPv6), X.25, ICMP, IGMP (se emplea para intercambiar información entre enrutadores IP "que admiten multidifusión."), NetBEUI, IPX, Appletalk.
- Capa 4. Nivel de transporte: TCP, UDP, SPX.
- Capa 5. Nivel de sesión: NetBIOS, RPC, SSL.
- Capa 6. Nivel de presentación: ASN.1.
- **Capa 7. Nivel de aplicación:** SNMP, SMTP, FTP, HTTP, Telnet, ICQ, POP3, IMAP.

Consideraciones de diseño para las capas

- Direccionamiento (físico y lógico)
- Control de errores (ack =acuse de recibo)
- Control de flujo (secuencia, controlar saturación)
- Multiplexación (una misma conexión para múltiples conversaciones no relacionadas entre sí)
- Enrutamiento. Elegir ruta (múltiples trayectorias)

Modelos de referencia

Modelo de Referencia OSI

Modelos de referencia

□ El modelo de referencia TCP/IP

OSI

7 Application 6 Presentation 5 Session Transport 4 3 Network Data link 2 Physical 1

Comparación entre Modelos OSI y TCP/IP

- Conceptos importantes del modelo OSI
- Servicios
 - Define lo que hace la capa.
- Interfaces
 - Indica a los procesos de arriba como acceder a ella (parámetros) y los resultados a esperar.
- Protocolos
 - Los protocolos pares son asunto de esa capa (entidades pares, adyacencia).
- Por Jure

Comparación entre Modelos OSI y TCP/IP

- Conceptos importantes del modelo TCP/IP
- No distingue: servicios, interfaces, protocolos.
- No distingue entre capas 1 y 2.
- Se limita a si mismo.
- Por facto.

Redes de Ejemplo

- Internet
- Arpanet
- Nsfnet
- ·Redes de teléfonos móviles de tercera generación
- Redes LAN inalámbricas
 X.25, Frame Relay y ATM

- ·LANs inalámbricas: 802.11 (Wi-Fi, WLAN)
- □Pueden transmitir datos desde velocidades de 11 Mbps y hasta 108 Mbps (802.11 Super G), aportan encriptación dinámica de claves y autenticación dinámica entre clientes.