

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

944983913

CO-ORDINATED SCIENCES

0654/32

Paper 3 Theory (Core)

May/June 2021

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Fig. 1.1 is a diagram of the female reproductive system.

Fig. 1.1

	(1)	State the letter from Fig. 1.1 that shows the part where:	
		fertilisation occurs	
		gametes are produced.	[2]
	(ii)	Identify the part labelled B in Fig. 1.1.	[1]
(b)	Fig.	. 1.2 shows a student's description of fertilisation in humans.	
	The	e description of fertilisation in humans is incorrect.	
	Circ	cle the two incorrect words in the description in Fig. 1.2.	

Fertilisation is the separation of the nuclei from a sperm cell and an ovary cell.

Fig. 1.2 [2]

(c) Fig. 1.3 shows how the thickness of the uterus lining changes during the menstrual cycle.

Fig. 1.3

Table 1.1 represents the days during an average menstrual cycle.

Table 1.1

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15	16	17	18	19	20	21	22	23	24	25	26	27	28	

Use Fig. 1.3 and your own knowledge to:

- (i) place ticks (✓) in Table 1.1 to show the days when the uterus lining is shed [1]
- (ii) place crosses (X) in Table 1.1 to show the days when the uterus lining is at its thickest.
 [1]
- (d) Complete the sentence to define the term reproduction.

Reproduction is the processes that make	of the same
of organism.	[2]

[Total: 9]

(a)	Mag	gnesium	is in Period 3 of the Periodic Table).	
	(i)		e Periodic Table to name the noble		
	(ii)		e the change in metallic character	across Period 3.	
(b)	Mag	gnesium	reacts with carbon dioxide.		
	Ма	gnesium	oxide and carbon are made.		
	(i)	Write th	ne word equation for this reaction.		
				→ +	[1]
	(ii)	The rea	action between magnesium and ca	rbon dioxide is exotherm	ic.
		Explain	what is meant by an exothermic r	eaction.	
					[1]
(c)			magnesium has a proton number per) of 24.	(atomic number) of 12 a	and a nucleon number
		•	able 2.1 to show the names and his magnesium atom.	numbers of the two par	ticles contained in the
			Table 2.1		
			name of particle	number of particles	
					[2]
(d)		gnesium oride.	carbonate reacts with dilute hyd	drochloric acid to make	aqueous magnesium
	(i)	Magnes	sium carbonate is insoluble in wate	er.	
			ne separation technique used to re sium carbonate and water.	move magnesium carbo	nate from a mixture of
					[1]

(ii)	Magnesium chlo	ride dissolves in wat	er.	
	State the separa of magnesium ch		to obtain solid magr	nesium chloride from a solution
				[1]
(iii)	Magnesium carb	onate reacts with dil	ute hydrochloric acid	l.
	Complete the ba	lanced symbol equa	tion for this reaction.	
	MgCO	$_3$ +HC l \rightarrow	$MgCl_2 + CO_2$	+ H ₂ O [1]
(iv)	Dilute hydrochlo	ric acid contains aqu	eous chloride ions.	
	State the test for	aqueous chloride io	ns and give the obse	ervation for a positive result.
	test			
	observation			
				[2]
(e) Tab	le 2.2 shows the	composition of a mag	gnesium alloy.	
		Tabl	e 2.2	
		element	% by mass	
		magnesium	94	
		neodymium	2	
		yttrium	4	
(i)	Calculate the ma	ass of magnesium in	500 kg of the alloy.	
				kg [1]
(ii)	The alloy is used	l in aircraft bodies.		
	Suggest why the bodies.	e alloy of magnesiur	m is used rather tha	n pure magnesium for aircraft
				[1]
				[Total: 13]

(a)	A to	rch (flashlight) contains four cells, a lamp and a switch connected in series.	
	(i)	Draw a circuit diagram for the torch using standard electrical symbols.	
		[3	3]
	(ii)	The potential difference (p.d.) across the lamp is 6.0 V when the switch is closed.	-
	()	The resistance of the lamp is 5.0Ω when lit.	
		Calculate the current in the lamp.	
		Calculate the surrent in the lamp.	
		current =A [2	2]
	(iii)	Two lamps each of resistance 5.0Ω are connected together in a series circuit.	
		Calculate the combined resistance of the two lamps in series.	
		resistance = Ω [1]

(b) Choose words from the list to complete the sentences to describe the energy transfers that occur when the torch is switched on.

You may use each word once, more than once or not at all.

	chemical	elastic	electrical	gravitational	
	light	nuclear	sound	thermal	
	The energy stored in	the cells is		potential energy.	
	This energy is transf through the lamp.	erred into		energy which passes	5
	The useful energy from	om the lamp is		energy.	
	Some energy is was	ted as		. energy.	[3]
(c)	Solar energy is sor resource.	metimes used to p	oower torches. Sola	r energy is a renewable	energy
	State two other rene	wable energy reso	urces.		
	1				
	2				[2]

(d) Fig. 3.1 shows a ray of light from a torch shining on a mirror.

Fig. 3.1

(i)	State the name of line XZ .	
		[1]
(ii)	State what happens to the ray of light at point X on Fig. 3.1.	
		[1]
	[Total:	13

4 (a) Fig. 4.1 is a diagram of the heart.

Fig. 4.1

(i)	Identify the parts labelled B , C and D in Fig. 4.1.	
	В	
	C	
	D	
		[3]
(ii)	Describe the function of the structure labelled E .	
		[1]
(iii)	The blood vessel labelled A is an artery.	
	Describe the role of arteries in the circulatory system.	
		[1]
Nar	me two of the main components of blood.	
1		
2		
		[2]

© UCLES 2021 0654/32/M/J/21

(b)

(c) A student measures their heart rate over a 24-hour period.

Fig. 4.2 shows a graph of the results.

Fig. 4.2

(1)	seen in Fig. 4.2.
	bpm [1]
(ii)	At 10:00 hours the student attends a fitness class.
	Estimate the length of time of the fitness class.
	hours [1]
(iii)	At 18:00 hours the student was scared by a snake.
	Describe and explain the result seen at 18:00 hours in Fig. 4.2.
	Use ideas about hormones in your answer.
	[2]

[Total: 11]

5 (a) Potassium is a very reactive metal.

Potassium is stored under oil as shown in Fig. 5.1.

Fig. 5.1

Suggest two reasons why potassium is stored under oil.

1	
2	
	[7]

(b) Potassium has a proton number of 19.

Complete Fig. 5.2 to show the electronic structure of a potassium atom.

The inner shell electrons have been drawn for you.

Fig. 5.2

[2]

(c) Solid potassium reacts with chlorine gas to make solid potassium chloride.

(i)	Describe the differences between the structures of a solid and a gas in terms of particle
	separation and particle arrangement.

particle arrangement	 	
		[2]

particle separation

(ii)	When potassium reacts with chlorine, potassium atoms become potassium ions.	
	Describe what happens to a potassium atom when it becomes a potassium ion.	
		[1]
(iii)	Potassium and chlorine are elements. Potassium chloride is a compound.	
	Describe the difference between an element and a compound.	
		[2]

(d) The maximum mass of potassium chloride that dissolves in 100 cm³ of water is called the solubility of potassium chloride.

Fig. 5.3 shows the solubility of potassium chloride in water at different temperatures.

Fig. 5.3

(i)	Describe the trend in solubility shown in Fig. 5.3.
	[1
(ii)	State the mass of potassium chloride that dissolves in 100 cm ³ of water at 45 °C.
	g [1
	[Total: 11

6 (a) Fig. 6.1 shows the speed-time graph for the journey of a train travelling between two stations.

Fig. 6.1

(i)	Use letters from the graph in Fig. 6.1 to identify the two stations on	the train's journey.
	and	[1]

- (ii) On Fig. 6.1, label with a cross (X) a part of the journey when the train is accelerating. [1]
- (iii) Use Fig. 6.1 to calculate the total distance travelled by the train on this journey.

distance = m [3]

(b) Fig. 6.2 shows the forces acting on the train when it travels at a constant speed.

	V R
	Fig. 6.2
(i)	State which force, P, Q, R or S, is the weight of the train.
	[1]
(ii)	Compare the magnitude and the direction of forces Q and S when the train is travelling at a constant speed.
	[7]
	[2]
	[Total: 8]

7 (a) A scientist investigates the effect of immersion of plant cells in different concentrations of sugar solution.

Fig. 7.1 shows the appearance of the plant cells before immersion.

Fig. 7.1

Beakers **A–D** contain different concentrations of sugar solution.

Some plant cells are placed in each solution and left for an hour.

Table 7.1 shows the results.

Table 7.1

beaker	appearance of plant cells after immersion
Α	
В	
С	
D	

	(i)	Describe the change seen to the plant cells placed in beaker A in Table 7.1.	
	(ii)	Suggest which beaker contains the solution with the same concentration as the cells.	plant
		Give a reason for your answer.	
		beaker	
		reason	[2]
(b)	Wat	er enters the plant through the root hair cells.	
	Con	nplete the flow chart to show the pathway of water through the cells of a plant.	
	root	hair cell $ ightarrow$ xylem $ ightarrow$	[2]
(c)	Xyle	em transports water through the plant stem.	
	Nan	ne the tissue that transports sugars through the plant stem.	
			[1]
(d)	Wat	er and carbon dioxide are raw materials required for photosynthesis.	
	Nan	ne two other requirements for photosynthesis.	
	1		
	2		
			[2]
(e)	Prof	tecting land from deforestation helps stop the loss of soil.	
	This	s is because tree roots hold the soil together, stopping it being washed away.	
	Sug	gest two other benefits of protecting land from deforestation.	
	1		
	2		
			[2]

8 (a) Fig. 8.1 shows the electrolysis of molten lead(II) bromide.

Fig. 8.1

	(i)	State the name of the electrode where lead is made.	
			[1]
	(ii)	Explain why an orange gas is seen above the molten lead(II) bromide.	
			[1]
(b)	Lea	d is extracted from lead oxide by reaction with carbon.	
	The	equation for the reaction is shown.	
		lead oxide + carbon → lead + carbon dioxide	
	Nan	ne the substance that is oxidised and the substance that is reduced in this reaction.	
	sub	stance oxidised	
	sub	stance reduced	
			[1]
(c)	Lea	d is a metal.	
	Sug	gest one test to show that lead is a metal.	
			[1]
(d)	Lea	d reacts very slowly with dilute sulfuric acid.	
	Stat	te two ways of increasing the rate of reaction between lead and dilute sulfuric acid.	
	1		
	2		
			[2]

9 Fig. 9.1 shows a tumble dryer.

Fig. 9.1

In a tumble dryer, wet clothes are warmed and dried. Water on the clothes evaporates.

(a)	(i)	Describe the process of evaporation.
		Use ideas about molecules in your answer.
		[2]
	(ii)	During evaporation the water does not boil.
		State the boiling point of water.
		°C [1]
	(iii)	Inside the tumble dryer, water vapour changes into liquid water.
		State the term used to describe a gas changing into a liquid.
		[1]
	(iv)	Thermal energy passes through the metal casing of the tumble dryer.
		State the method of thermal energy transfer through metals.
		[1]

(b)	(i)	The tumble dryer is noisy and emits loud sound waves with a low pitch.
		Describe the sound waves in terms of their amplitude and frequency.
		amplitude
		frequency
		[2
	(ii)	State the lowest audible frequency for a healthy human ear.
		State the unit of your answer.
		frequency = unit
	(iii)	The speed of sound in air is 340 m/s.
		Calculate the time taken for a sound wave to travel 85 m.
		time =s [2

[Total: 11]

10 (a) Fig. 10.1 is a diagram of the human alimentary canal and associated organs.

Fig. 10.1

(i) Label Fig. 10.1 on the answer lines provided.

Choose words from the list.

- anus
- large intestine
- mouth
- pancreas
- small intestine
- stomach

(ii) Different processes occur in the alimentary canal.

Complete Table 10.1 using words from the list in (a)(i).

Table 10.1

process	one part of the alimentary canal where process occurs
ingestion	
egestion	
mechanical digestion	

[3]

[3]

(b)	Describe the role of chemical of	ligestion in the alimentary canal.	
		[2]
(c)	The boxes contain the beginni	ngs and the endings of some sentences.	
	Join one sentence beginning t	o one sentence ending to define the term assimilation.	
	beginning	ending	
dig	similation is the movement of gested food molecules into the lls of the body	where they are excreted, becoming part of the faeces.	
dig	similation is the movement of gested food molecules into the ags of the body	where they are excreted, becoming part of the cells.	
un	similation is the movement of digested food molecules into e lungs of the body	where they are used, becoming part of the faeces.	
un	similation is the movement of digested food molecules into e cells of the body	where they are used, becoming part of the cells.	2]

[Total: 10]

11 Fig. 11.1 shows the structures of five compounds A, B, C, D and E.

Fig. 11.1

(a) Use the letters **A–E** to identify all the hydrocarbon molecules.

.....[1]

(b) Use the letters **A–E** to identify the **two** products of the complete combustion of a hydrocarbon.

..... and [1]

(c) Use Fig. 11.1 to name one greenhouse gas.

.....[1]

(d) Draw a dot-and-cross diagram to show the bonding in molecule **E**.

Only show the outer shell electrons.

[3]

(e)	Cor	npound D is an unsaturated compound.
	(i)	State what is meant by the term <i>unsaturated</i> compound.
		[1]
	(ii)	Name the process that produces smaller unsaturated hydrocarbon molecules from large saturated hydrocarbon molecules.
		[1]
	(iii)	State the chemical test for an unsaturated hydrocarbon and give the observation for a positive result.
		test
		observation
		[2]
		[Total: 10]

12	(a)	Electricity is generated in a nuclear power station by the nuclear fission of plutonium-239.							
		Des	cribe what happe		-	_			
	(b)	Plut	onium-239 is an					[1]	
		(i)	State the meani						
								[1]	
		(ii)	Plutonium-239	emits β-radiatio	on.				
			Suggest how a	small sample o	of plutonium-23	39 can be store	ed safely.		
								[1]	
		(iii) Plutonium-239 has a half-life of 24 000 years.							
			A sample of plu	tonium-239 ha	s a mass of 80	00 g.			
			Calculate the m	ass of plutoniu	ım-239 remain	ing after 48 000	0 years.		
					mas	s =		g [2]	
		(iv)	State two different	ences betweer	ı β-radiation ar	nd γ-radiation.			
			1						
			2						
		(v)	Fig. 12.1 above	an incomplete	alaatramaan	otio opootrum		[2]	
		(v)	Fig. 12.1 shows	·		•			
			Place γ-radiation	IT III IIS COITECT	place III i ig. i	Z. I.			
				ultraviolet	visible light		microwaves		
					9				

Fig. 12.1

[1]

[Total: 8]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

=	2 He	helium 4	10	Ne	neon 20	18	Ą	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon			
			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	B	bromine 80	53	Н	iodine 127	85	Αt	astatine -			
>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	molonium —	116	^	livermorium –
>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ър	lead 207	114	Fl	flerovium
=			2	В	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
									30	Zu	zinc 65	48	р О	cadmium 112	80	РĜ	mercury 201	112	C	copernicium –
									29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
									28	Ż	nickel 59	46	Pq	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
			_						27	ဝိ	cobalt 59	45	Rh	rhodium 103	77	Ľ	indium 192	109	¥	meitnerium -
	- I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium -
									25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
				pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
		Key	atomic numbe	mic sym	name ative atomic m				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	g C	dubnium –
				atc	<u>a</u>				22	i=	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	弘	rutherfordium -
									21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	26	Ba	barium 137	88	Ra	radium
_			3	:=	lithium 7	£	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium -
			1	Key III IV V VII atomic number 5 6 7 8 9	II	II	Key 11 IV V VII VIII H Hydrogen a atomic number name relative atomic mass 4 5 6 7 8 9 Be beryfllum 9 12 atomic symbol name 11 boron 12 carbon 11 nitrogen 12 carbon 14 nitrogen 16 rivorine 19 12 14 16 19 12 14 15 16 17	II	III	III	III	III IV VI VII VIII III III	II	II	1	II	1 1 1 1 1 1 1 1 1 1	III	III IV V VI VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII	1 1 1 1 1 1 1 1 1 1

71	Lutetium 175	103	۲	lawrencium -
02 X	ytterbium 173	102	9 N	nobelium –
69 E	thulium 169	101	Md	mendelevium –
88 7	erbium 167	100	Fm	fermium —
29 T	holmium 165	66	Es	einsteinium –
99	dysprosium 163	86	Ç	californium —
65 Th	terbium 159	97	Ř	berkelium -
⁴⁹ رب	gadolinium 157	96	Cm	curium –
63 <u>T</u>	europium 152	92	Am	americium -
62 C	samarium 150	94	Pn	plutonium —
61 B	promethium	93	ď	neptunium —
09	neodymium 144	92	\supset	uranium 238
59 D	praseodymium 141	91	Ра	protactinium 231
28	cerium 140	06	L	thorium 232
57	lanthanum 139	68	Ac	actinium -

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).