MAST20009 Assign 4 Sem 1, 2020

and mass density N=3/5+27

$$\Rightarrow c'(t) = (1, \lambda, \sqrt{t'})$$

$$\Rightarrow \frac{ds}{dt} = |c'(t)| = \sqrt{1+4+t'} = \sqrt{5+t'}$$

and
$$x(t)=t$$
, $y(t)=2t$, $z(t)=\frac{2}{3}t^{3/2}$
=) $N=3\sqrt{5+t}$

* Mass wire =
$$\int_{c}^{a} \mu \, ds$$

= $\int_{0}^{a} \mu \, ds \, dt$
= $\int_{0}^{a} 3\sqrt{5+t^{7}} \sqrt{5+t^{7}} \, dt$
= $3\int_{0}^{a} 5+t \, dt$
= $3\left[5t+\frac{1}{a}t^{2}\right]_{t=0}^{t=a}$
= $3\left(10+a\right)$
= $36\left(unb\right)$

*
$$\int_{C} Z \mu ds = \int_{0}^{\lambda} Z \mu \frac{ds}{dt} dt$$

$$= \int_{0}^{\lambda} \frac{1}{3} t^{3/2} \cdot 3\sqrt{5+t} \sqrt{5+t} dt$$

$$= 2 \int_{0}^{\lambda} t^{3/2} (5+t) dt$$

$$= 2 \int_{0}^{\lambda} 5t^{3/2} + t^{5/2} dt$$

$$= 4 \left[2 \int_{0}^{\lambda} 5t^{3/2} + t^{5/2} dt + t^{5/2} dt$$

$$= 4 \left[2 \int_{0}^{\lambda} 5t^{3/2} + t^{5/2} dt + t^{5/$$

* Centre of mass of wire is
$$(x_c, y_c, Z_c) = \left(\frac{38}{36}, \frac{76}{36}, \frac{44\sqrt{2}}{7(36)}\right)$$

$$= \left(\frac{19}{18}, \frac{38}{18}, \frac{4\sqrt{2}}{7}\right)$$

$$= \left(\frac{19}{18}, \frac{19}{9}, \frac{4\sqrt{2}}{7}\right)$$

(0)

C: 16x2+y2=16, (0,-4) to (0,4) clockwise., E = 2y1+3xj

(a)

Let
$$\chi(t) = \cos t$$
, $\gamma(t) = -4\sin t$, $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$
 $\Rightarrow C(t) = (\cot, -4\sin t)$, $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$

$$c'(t) = (-\sin t, -4\cos t)$$

Work done =
$$\int_{C} E \cdot ds$$
=
$$\int_{0.2\pi/2}^{3\pi/2} F[s(t)] \cdot s'(t) dt$$
=
$$\int_{0.2\pi/2}^{3\pi/2} (-8\sin t, 3\cos t) \cdot (-\sin t, -4\cos t) dt$$
=
$$\int_{0.2\pi/2}^{3\pi/2} (-8\sin t, 3\cos t) \cdot (-\sin t, -4\cos t) dt$$

Now
$$\cos(2t) = 2\cos^2 t - 1$$
, $\cos(2t) = 1 - 2\sin^2 t$

$$= \int_{\pi/2}^{3\pi/2} 4(1 - \cos(2t)) - 6(\cos(2t) + 1) dt$$

$$= \int_{\pi/2}^{3\pi/2} - 2 - 10\cos(2t) dt$$

$$= \int_{\pi/2}^{3\pi/2} - 2 - 10\cos(2t) dt$$

$$= \left[-2t - 5\sin(2t)\right]_{t=\pi/2}^{t=3\pi/2}$$

$$= -2\left(\frac{3\pi}{2} - \frac{\pi}{2}\right)$$

(a) D: Crowsechon of cylinde in xyplane

Parametrise R by

$$x=u, y=v, Z=\frac{5-x-2y}{2}=\frac{5}{2}-\frac{u}{2}-v$$

A normal to plane is

Ty XTV =
$$\begin{vmatrix} i & j & k & \theta \\ 1 & 0 & -1/2 \\ 0 & 1 & -1 \end{vmatrix}$$

$$= i (1/2) - j (-1) + k (1)$$

$$= |T_{4} \times T_{2}| = \sqrt{\frac{1}{4} + 1 + 1} = \sqrt{\frac{2}{4}} = \frac{3}{2}$$

So Area =
$$\iint_R 1 dS$$
= $\iint_D |T_y \times T_y| dudy$

Where O is projection into xy plane shown in part (a)

$$= \frac{3}{a} \iint_D du dv$$

$$= \frac{3}{2} \iint_{D} dx dy \quad (x=u, v=y)$$

Memod 2

Special case formula where
$$Z = f(x,y) = \frac{5-x-ay}{2} = \frac{5-x}{a} = \frac{x}{a}$$

$$\Rightarrow$$
 $|\underline{n}| = \sqrt{1+4+4} = \sqrt{9}^7 = 3$

$$\Rightarrow \vec{D} = \frac{1}{2}(1,2,2)$$

So Area R =
$$\iint_{R} 1 dS$$

$$= \iint_{D} \frac{1}{[R \cdot \kappa]} dx dy$$

$$= \frac{3}{4} \iint_{D} dx dy$$

Where O is projection into my plane shown in part (a)

To evaluate integral use honzontal smpor to desembe D

$$y^{2} \le x \le 2 - y^{2}$$
$$-1 \le y \le 1$$

So Area
$$R = \frac{3}{2} \int_{-1}^{1} \int_{y^2}^{x^2 - y^2} dx dy$$

$$= \frac{3}{2} \int_{-1}^{1} \left[x \right]_{x=y^2}^{x=2-y^2} dy$$

$$= \frac{3}{2} \int_{-1}^{1} 2 - y^2 - y^2 dy$$

$$= \frac{3}{2} \int_{-1}^{1} 2 - 2y^2 dy$$

$$= \frac{3}{2} \int_{-1}^{1} 1 - y^2 dy$$

$$= \frac{3}{2} \left[\left(1 - \frac{1}{3} \right) - \left(-1 + \frac{1}{3} \right) \right]$$

$$= \frac{3}{2} \left(\frac{2}{3} + \frac{2}{3} \right)$$

(b) If
$$T = x^2 + y^2 + 3(z-a)^2$$

 $\Rightarrow \underline{H} = -k\nabla T = -k(2x, 2y, 6(z-a))$
If $k=1$ on dome and $k=3$ on floor then
 $\underline{H} = \int (-2x, -2y, -6z+12)$ on dome
 $(-6x, -6y, -18z + 36)$ on floor

Consider surfaces of dome and floor separately

#
$$S_1$$
 - dome, $Z = 8 - 2x^2 - 2y^2$
Let $x = p\cos\phi$, $y = p\sin\phi$
 $\Rightarrow Z = 8 - 2p^2\cos^2\phi - 2p^2\sin^2\phi = 8 - 2p^2$
So $\Phi(p,\phi) = (p\cos\phi, p\sin\phi, 8 - 2p^2)$
Where $0 \le p \le 3$, $0 \le \phi \le 2\pi$

Now
$$T_p \times T_p = \begin{bmatrix} \underline{U} & \underline{U} & \underline{J} & \underline{G} & \underline{K} & \underline{G} \\ \underline{Cosd} & \underline{Sinb} & -4p \\ -psind & \underline{pcosd} & \underline{O} \end{bmatrix}$$

 $= \underline{i} \left(4p^2 (\cos \phi) - \underline{j} \left(-4p^2 \sin \phi \right) + \underline{K} \left(p \cos^2 \phi + p \sin^2 \phi \right)$ $= \underline{i} \left(4p^2 (\cos \phi) + \underline{j} \left(4p^2 \sin \phi \right) + \underline{K} p$

From picture outward normal has positive & component.

Since p20 then Texto is outward normal to dome.

So heat flux across Si (dome) is

$$\iint_{S_1} \underline{H} \cdot d\underline{S} = \int_0^3 \int_0^{2\pi} \underline{H} \cdot (\underline{T}g \times \underline{T}\underline{\phi}) d\phi dp$$

$$= \int_{0}^{3} \int_{0}^{2\pi} (-2\rho\cos\phi, -2\rho\sin\phi, -48 + 12\rho^{2} + 12) \cdot (4\rho^{2}\cos\phi, 4\rho^{2}\sin\phi, \rho) d\phi d\rho$$

$$= \int_0^3 \int_0^{2\pi} - 8\rho^3 \cos^2 \phi - 8\rho^3 \sin^2 \phi - 36\rho + 12\rho^3 d\phi d\rho$$

$$= \int_0^3 \int_0^{2\pi} - 8\rho^3 - 36\rho + 12\rho^3 d\phi d\rho$$

$$=\int_{0}^{3}\int_{0}^{2\pi}4\rho^{3}-36\rho dd d\rho$$

$$=2\pi\int_{0}^{3}4\rho^{3}-36\rho d\rho$$

$$=2\pi \left[\rho^{4} - 18\rho^{2} \right]_{\rho=0}^{\rho=3}$$

*
$$S_2 - floor$$
, $Z = -10 \times^2 + y^2 \le 9$

On floor $\hat{N} = -16$

So heat flux acros S_2 (duk) is

 $S_1 + \frac{1}{2} \cdot \frac{1}{2}$

$$\iint_{S_2} \underline{H} \cdot dS = \iint_{S_2} \underline{H} \cdot \underline{n} \, dS$$

$$= \iint_{S_2} (-6x, -6y, -18z + 36) \cdot (0, 0, -1) \, dS$$

$$= \iint_{S_2} 18z - 36 \, dS$$

On
$$S_{2}$$
 $Z=-10$ =) $18Z-36=-180-36=-216$
= $\iint_{S_{2}} -216 \, dS$
= $-216 \, area(S_{2})$

As Goor is a disk of radius 3, its area is 9π $= (-216)(9\pi)$ $= -1944\pi$

Combining the heat flux across
$$S$$
 is
$$\iint_S H \cdot dS = \iint_S H \cdot dS + \iint_S H \cdot dS$$
$$= -(62\pi - 1944\pi)$$

= -2106 T