Barriers to Reallocation and Economic Growth: the Effects of Firing Costs

Toshihiko Mukoyama Sophie Osotimehin

University of Virginia

Iwai Conference, July 2017

Background

- ► Large scale gross reallocation of inputs across firms: the U.S. annual job creation/destruction rate of over 10%.
- ▶ In general, the loss of aggregate productivity from misallocation of inputs can be large: Restuccia and Rogerson (2008) and Hsieh and Klenow (2009).

Background

- Firing costs (employment protections) can act as barriers to reallocation.
 - Micco and Pagés (2007) and Haltiwanger, Scarpetta, and Schweiger (2014): restrictions on hiring and firing reduce the pace of job creation and job destruction in the cross-country context.
 - ▶ Davis and Haltiwanger (2014): Limiting the firms' ability to fire at will has a negative impact on job reallocation in the U.S. context.

Background

- Firing costs (employment protections) can act as barriers to reallocation.
 - Micco and Pagés (2007) and Haltiwanger, Scarpetta, and Schweiger (2014): restrictions on hiring and firing reduce the pace of job creation and job destruction in the cross-country context.
 - ▶ Davis and Haltiwanger (2014): Limiting the firms' ability to fire at will has a negative impact on job reallocation in the U.S. context.
- Firing costs can also reduce employment and productivity.
 - ▶ Autor, Donohue, and Schwab (2006): The U.S. states that adopted common-law restrictions reduced employment.
 - Autor, Kerr, and Kugler (2007): A particular form of protection (the "good faith exception") had a detrimental effect on state total factor productivity.
 - Bassanini, Nunziata, and Venn (2009): Across OECD countries, employment protection has a negative impact on TFP growth in industries where layoff regulations are more likely to be binding.

Firing costs: Europe vs United states

Source: OECD, average 1995-2005

Firing costs: severance payments, conditions for fair dismissal, notification procedures

Firing costs around the world

Source: World Bank, Doing Business Database 2015

Objective: quantitatively evaluate the effects of firing costs on macroeconomic performance, based on a dynamic general equilibrium model.

Effects on the level of productivity and employment (level effect)

- Effects on the level of productivity and employment (level effect)
- Effects on the productivity growth (growth effect)

- Effects on the level of productivity and employment (level effect)
- Effects on the productivity growth (growth effect)
- ► We build a general equilibrium firm dynamics model with entry, exit, and endogenous innovation.

- Effects on the level of productivity and employment (level effect)
- Effects on the productivity growth (growth effect)
- We build a general equilibrium firm dynamics model with entry, exit, and endogenous innovation.
 - Creative destruction by new entrants
 - Innovation by both entrants and incumbents

- Effects on the level of productivity and employment (level effect)
- Effects on the productivity growth (growth effect)
- We build a general equilibrium firm dynamics model with entry, exit, and endogenous innovation.
 - Creative destruction by new entrants
 - Innovation by both entrants and incumbents
- The model is calibrated using labor market data.

Related literature

- ► Firing costs, misallocation and aggregate productivity
 - Hopenhayn and Rogerson (1993), Moscoso Boedo and Mukoyama (2012)
 - Poschke (2009), Samaniego (2006)
- Firm dynamics and endogenous innovation
 - Klette and Kortum (2004), Acemoglu, Akcigit, Bloom, and Kerr (2013), Akcigit and Kerr (2015), Acemoglu and Cao (2015)

Model: the representative consumer

▶ Utility:

$$\mathbf{U} = \sum_{t=0}^{\infty} \beta^t [\log(C_t) - \xi L_t],$$

where $\beta \in (0,1)$ and $\xi > 0$.

► The consumer works, owns firms, and consumes. Labor is the only production factor.

Model: final-good firms (perfect competition)

▶ Final good (used for consumption and R&D):

$$Y_t = \left(\int_{\mathcal{N}_t} \mathbf{q}_{jt}^{\psi} y_{jt}^{1-\psi} dj \right)^{\frac{1}{1-\psi}}.$$

- y_{jt} is the quantity of intermediate good j.
- ▶ $\mathbf{q}_{jt} = \alpha_{jt}q_{jt}$: α_{jt} is an exogenous temporary shock, and q_{jt} is the underlying quality of intermediate good j.
- $ightharpoonup \mathcal{N}_t \subset [0,1]$: set of active products.
- Aggregate quality (productivity) index: $Q_t \equiv ar{q}_t^{rac{\overline{q}}{1-\psi}}$.

Good j only produced by the cutting-edge producer (monopoly).

- Good j only produced by the cutting-edge producer (monopoly).
- Produced only by labor.

$$y_{jt} = \ell_{jt}.$$

- Good j only produced by the cutting-edge producer (monopoly).
- Produced only by labor.

$$y_{jt} = \ell_{jt}.$$

• Quality q_{jt} can be improved by incumbents' innovation or entrants' creative destruction ("quality ladders").

- Good j only produced by the cutting-edge producer (monopoly).
- Produced only by labor.

$$y_{jt} = \ell_{jt}.$$

- ▶ Quality q_{jt} can be improved by incumbents' innovation or entrants' creative destruction ("quality ladders").
- ▶ Exit if entrant innovates on product j or if hit by an exogenous shock δ .

- Good j only produced by the cutting-edge producer (monopoly).
- Produced only by labor.

$$y_{jt} = \ell_{jt}.$$

- ▶ Quality q_{jt} can be improved by incumbents' innovation or entrants' creative destruction ("quality ladders").
- Exit if entrant innovates on product j or if hit by an exogenous shock δ .
- Gross job flows are observed when:
 - the firm expand/contract
 - the firm enter/exit

- Good j only produced by the cutting-edge producer (monopoly).
- Produced only by labor.

$$y_{jt} = \ell_{jt}.$$

- ▶ Quality q_{jt} can be improved by incumbents' innovation or entrants' creative destruction ("quality ladders").
- Exit if entrant innovates on product j or if hit by an exogenous shock δ .
- Gross job flows are observed when:
 - the firm expand/contract
 - the firm enter/exit
- Firing costs
 - ▶ Tax for each worker fired τw .
 - ▶ The tax is transferred lump-sum to the consumer.

Model: innovation

- ▶ Incumbents can innovate on their own products.
- Entrants innovate randomly across different products.
- Innovation is stochastic.

$$q_{jt} = \begin{cases} (1+\lambda_i)q_{j,t-1} & \text{if innovates} \\ q_{j,t-1} & \text{if does not innovate} \end{cases}$$

where i = I, E.

Later we set $\lambda_E > \lambda_I$ to capture the idea that the entrants' innovation is more radical.

Model: innovation

Incumbents

- Improves the quality of its own product by R&D (in final goods).
- Probability of successful innovation: x_{Ijt}
- Innovation cost:

$$\mathbf{r}_{Ijt} = \theta_I Q_t \frac{q_{jt}}{\bar{q}_t} x_{Ijt}^{\gamma}.$$

- ▶ Cost is increasing in the aggregate productivity Q_t .
- Cost is increasing in the relative productivity q_{jt}/\bar{q}_t .

Model: innovation

Entrants

- Improves the quality of an incumbent's product or of an inactive product. Innovation is undirected.
- First pay the entry cost ϕQ_t (become a potential entrant) and then conduct R&D
- Probability of successful innovation: x_{Et}
- Innovation cost:

$$\mathbf{r}_{Et} = \theta_E Q_t x_{Et}^{\gamma}.$$

- ightharpoonup Cost is increasing in the aggregate productivity Q_t .
- ▶ Creative destruction rate: $\mu = mx_E$, where m is the number of potential entrants.

Model solution and frictionless benchmark

The balanced-growth equilibrium is solved with normalizations:

$$\hat{Y} \equiv Y_t/Q_t$$
, $\hat{w} \equiv w_t/Q_t$, $\hat{q} \equiv q_t/\bar{q}_t$,....

Model solution and frictionless benchmark

The balanced-growth equilibrium is solved with normalizations:

$$\hat{Y} \equiv Y_t/Q_t$$
, $\hat{w} \equiv w_t/Q_t$, $\hat{q} \equiv q_t/\bar{q}_t$,....

Analytical characterizations of the frictionless case:

- ▶ The value function is linear in productivity q.
- ▶ The innovation decision is independent of q (→ Gibrat's law).
- ► The right tail of the productivity distribution is Pareto.
- ▶ The growth rate of \bar{q} can be derived analytically.
- Note: the normalized productivity next period is $(1+\lambda_I)\hat{q}/(1+g_q)$ with successful innovation, but without innovation $\hat{q}/(1+g_q)<\hat{q}$. \to the firm has to contract if it does not innovate.

Calibration

One period = one year

Innovation step

- Innovation steps are $\lambda_E=1.50$ and $\lambda_I=0.25$ (Bena, Garlappi and Grüning (2015)). Entrants' innovations are more radical.
- $\theta_E/\theta_I = \lambda_E/\lambda_I$

Parameters $\xi, \theta_I, \epsilon, \phi, \delta$ are chosen to match

- ► Employment-population ratio of 61.3%
- ► Average growth rate of output per worker 1.48%
- Job creation rate 17.0%
- ▶ Job creation by entrants 6.4%
- ► Tail index of firm size distribution 1.06

Baseline model statistics

Table: Model vs Data (in percents)

	Data	Model
Growth rate g	1.48	1.48
Employment L	0.613	0.613
Job creation rate	17.0	17.0
Job creation rate from entry	6.4	6.4
Tail index	1.06	1.06
Job destruction rate	15.0	17.0
Job destruction from exit	5.3	2.8
R&D ratio R/Y		11.5

Notes: Job flows data from Business Dynamics Statistics (Census) establishment statistics.

Experiment: $\tau=0.3$ (3.6 months of wages = median of severance payments)

(1) Decline in job flows

	Baseline	$\tau = 0.3$
Job creation rate (%)	17.0	4.9
Job creation from entry (%)	6.4	4.4
Job destruction rate (%)	17.0	4.9
Job destruction from exit (%)	2.8	2.4

(2) Level effects

	$\tau = 0$	$\tau = 0.3$
Employment L	100	98.7
Normalized output \hat{Y}	100	98.1
Normalized average productivity \hat{Y}/L	100	99.3
Number of active products N	0.96	0.95

- As in standard firm dynamics models, both employment and output fall.
- Labor productivity also falls, because of misallocation of resources.

▶ Dispersion in the Marginal product of labor (would be equal across firms if no frictions).

(3) Growth effects

	$\tau = 0$	$\tau = 0.3$
Growth rate of output g (%)	1.48	1.40
Average innovation prob by incumbents x_I	0.084	0.090
Creative destruction rate $\mu=mx_E$ (%)	2.65	2.34

- ► The total growth effect is negative: firing taxes reduce productivity growth.
- ▶ Opposite effect on incumbents and entrants.

Innovation rate of entrants is lower.

▶ period profit (tax payment/distortion/wages) (-)

Innovation rate of entrants is lower.

▶ period profit (tax payment/distortion/wages) (-)

Innovation rate of incumbents can be higher or lower.

- ▶ period profit (tax payment/distortion/wages) (−)
- \triangleright creative destruction effect (lower μ) (+)
- ▶ tax-escaping effect (escape tax payment by innovating) (+)

Results: holding μ constant

Figure : Incumbent's innovation probability (x_I)

The tax escaping effect dominates for firms that are 'too big'.

Conclusion

- ▶ We constructed a model to study the effect of barriers to reallocation on aggregate productivity growth.
- The baseline case can be characterized analytically, and the general model can be computed similarly to popular heterogeneous-agent models.
- ▶ The model is calibrated using the labor market data.
- In our baseline calibration, the firing tax
 - reduces gross job flows
 - reduces employment, output, and average labor productivity (level effects)
 - reduces aggregate productivity growth (growth effects)
- ▶ The growth effect is the outcome of two conflicting forces:
 - Entrants' innovation declines.
 - Incumbents' innovation increases.

APPENDIX

Model: timing

- Innovation occurs based on the previous period's R&D. Transitory shock realizes.
- 2. Incumbent firm exits if an entrant has innovated on its product line; Incumbents and new entrants exit if hit by exogenous exit shock.
- 3. Incumbents and entrants decide R&D investment, incumbents decide hiring/firing and pay the firing cost. Production.

Model: firm's problem

$$\begin{split} V_{t}(q_{t}, \alpha_{t}, \ell_{t-1}) &= \max_{\ell_{t}, x_{It}} & \Pi_{t}(q_{t}, \alpha_{t}, \ell_{t-1}, \ell_{t}, x_{It}) \\ &+ \frac{1}{1+r} \bigg\{ (1 - \mu_{t}) \left[(1 - x_{It}) E Z_{t+1}(q_{t}, \alpha_{t+1}, \ell_{t}) \right. \\ &\left. + x_{It} E Z_{t+1}((1 + \lambda_{I}) q_{t}, \alpha_{t+1}, \ell_{t}) \right] \\ &\left. - \mu_{t} \tau w_{t+1} \ell_{t} \bigg\} \end{split}$$

where

$$Z_t(q_t, \alpha_t, \ell_{t-1}) = (1 - \delta)V_t(q_t, \alpha_t, \ell_{t-1}) - \delta \tau w_t \ell_{t-1}$$

and

$$\begin{split} \Pi_t(q_t,\alpha_t,\ell_{t-1},\ell_t,x_{It}) \\ &= (p_t-w_t)\ell_t - \theta_I Q_t \frac{q_t}{\overline{q}_t} x_{It}^{\gamma} - \tau w_t \max\langle 0,\ell_{t-1}-\ell_t \rangle, \end{split}$$
 with $p_t = (\alpha_t q_t)^{\psi} y_{it}^{-\psi} Y_t^{\psi}.$

Model: entry

Free-entry condition

$$\max_{x_{E_t}} \left\{ -\theta_E Q_t x_{Et}^{\gamma} - \phi Q_t + \frac{1}{1+r} x_{Et} \bar{V}_{E,t+1} \right\} = 0,$$

- $ar{V}_E$, the expected value of entry (depends on the number of potential entrants m)
- Creative destruction rate $\mu = mx_E$

Model: period profit

$$\begin{split} \Pi_t(q_t,\alpha_t,\ell_{t-1},\ell_t,x_{It}) \\ &= (p_t-w_t)\ell_t - \theta_I Q_t \frac{q_t}{\bar{q}_t} x_{It}^{\gamma} - \tau w_t \max\langle 0,\ell_{t-1}-\ell_t \rangle, \\ \text{with } p_t &= (\alpha_t q_t)^{\psi} y_{jt}^{-\psi} Y_t^{\psi}. \end{split}$$

Model: balanced growth

The Euler equation:

$$\beta(1 + r_{t+1}) = \frac{C_{t+1}}{C_t} (\equiv 1 + g)$$

where g is the growth rate. The labor-leisure choice:

$$\frac{w_t}{C_t} = \xi.$$

Model: stationarized problem

$$\hat{V}(\hat{q}, \ell) = \max_{\ell' \ge 0, x_I} \hat{\Pi}(\hat{q}, \alpha, \ell, \ell', x_I)$$

$$+ \beta \left((1 - \mu) \hat{S}(x_I, \hat{q}/(1 + g_q), \ell') - \mu \tau \hat{w} \ell' \right),$$

where

$$\hat{S}(x_I, \hat{q}/(1+g_q), \ell') = (1-x_I)E_{\alpha'}\hat{Z}(\hat{q}/(1+g_q), \alpha', \ell') + x_I E_{\alpha'}\hat{Z}((1+\lambda)\hat{q}/(1+g_q), \alpha', \ell').$$

$$\hat{\Pi}(q,\alpha,\ell,\ell',x_I) = ([\alpha \hat{q}]^{\psi} {\ell'}^{-\psi} \hat{Y}^{\psi} - \hat{w}) {\ell'} - \theta_I \hat{q} x_I^{\gamma} - \tau \hat{w} \max \langle 0, \ell - \ell' \rangle.$$

Model: value from entry

$$\hat{\bar{V}}_E = \int \int \hat{Z}((1+\lambda)\hat{q}/(1+g_q), \alpha, 0)(\bar{f}(\hat{q}) + (1-N)h(\hat{q}))\omega(\alpha)d\hat{q}d\alpha.$$

Parameter values

	Parameter	Value
Discount rate	β	0.947
Disutility of labor	ξ	1.475
Demand elasticity	ψ	1/5
Innovation step: entrants	λ_E	1.5
Innovation step: incumbents	λ_I	0.25
Innovation curvature	γ	2.00
Innovation cost	$ heta_E$	7.998
Innovation cost	$ heta_I$	1.333
Entry cost	ϕ	0.1643
Exogenous exit rate	δ	0.001
Transitory shock	ϵ	0.267
Inactive lines	h mean	0.976
Firing tax	au	0

Model: solving for the stationary equilibrium

- 1. Normalized model: $\hat{Y} \equiv Y_t/Q_t$, $\hat{w} \equiv w_t/Q_t$, $\hat{q} \equiv q_t/\bar{q}_t$,....
- 2. Given g_q , μ , \hat{Y} , \hat{w}
 - Compute value functions and decision functions
 - Stationary distribution of firms over \hat{q} , α and ℓ_{-1}
- 3. Stationary GE conditions: find g_q , μ , \hat{Y} , \hat{w} such that
 - (i) \hat{Y} consistent with firms' output decision
 - (ii) $ar{V}_E$ satisfies the free entry condition
 - (iii) $\hat{Y} = \hat{C} + \hat{R}$
 - (iv) $\frac{1}{N} \int \int \hat{q} f(\hat{q}, \alpha, \ell) d\alpha d\ell dq = 1$

The steps are very similar to the standard firm dynamics model (Hopenhayn (1992), Hopenhayn and Rogerson (1993)) and the standard heterogeneous-agent models (Bewley-Huggett-Aiyagari)

Model: frictionless benchmark

▶ The value function is linear in productivity *q*

$$\hat{Z}(\hat{q}, \alpha) = \mathcal{A}\alpha\hat{q} + \mathcal{B}\hat{q},$$

▶ The innovation decision is independent of q (→ Gibrat's law)

$$\gamma \theta_I \hat{q} x_I^{\gamma - 1} = \beta (1 - \mu) E \left[\hat{Z} \left(\frac{(1 + \lambda_I) \hat{q}}{1 + g_q}, \alpha' \right) - \hat{Z} \left(\frac{\hat{q}}{1 + g_q}, \alpha' \right) \right]$$

Note: the normalized productivity next period is $(1+\lambda_I)\hat{q}/(1+g_q)$ with successful innovation, but without innovation $\hat{q}/(1+g_q)<\hat{q}$. \to the firm has to contract if it does not innovate.

Model: frictionless benchmark

Right tail of the productivity distribution is Pareto

$$F(\hat{q} > u) \propto u^{-\kappa}$$

where κ is the solution to:

$$1 = (1 - \delta) \left[(\mu + (1 - \mu)x_I)\gamma_i^{\kappa} + (1 - \mu - (1 - \mu)x_I)\gamma_n^{\kappa} \right].$$

▶ Growth rate of \bar{q} :

$$1 + g_q = (1 - \delta)[(1 + \lambda_I x_I)(1 - \mu) + (1 + \lambda_E)\mu] + \delta(1 + \lambda_E)\bar{q}^h$$

Extensions

Two extensions of the model:

- Persistent exogenous shocks
 - Assume that α can be persistent;
 - The variance and the persistence of α is calibrated to match the variance and the autocovariance of employment growth. The data is taken from Longitudinal Business Database (through Synthetic LBD).
- Modifying innovation process
 - ▶ Entry more likely for low-q products \rightarrow smaller entrants.
 - ▶ Low-q firms have lower $\theta_I \rightarrow$ depart from Gibrat's law.

The main results are robust to these extensions.

Results for extension I: persistent exogenous shock

	Baseline		Persistent α	
	$\tau = 0.0$	$\tau = 0.3$	$\tau = 0.0$	$\tau = 0.3$
Growth rate of output g (%)	1.48	1.40	1.48	1.39
Innovation probability: incumbents \bar{x}_I	0.084	0.090	0.084	0.089
Innovation probability: entrants x_E	0.143	0.143	0.143	0.143
Creative destruction rate μ (%)	2.65	2.34	2.66	2.33
Employment L	100	98.7	100	98.0
Normalized output \hat{Y}	100	98.1	100	96.8
Normalized average productivity \hat{Y}/L	100	99.3	100	98.8
Number of active products N	0.964	0.959	0.964	0.959
Job creation rate (%)	17.0	4.9	17.0	7.0
Job creation rate from entry (%)	6.4	4.5	6.4	4.4
Job destruction rate (%)	17.0	4.9	17.0	7.0
Job destruction rate from exit (%)	2.8	2.4	2.8	2.4
R&D ratio R/Y (%)	11.5	10.7	11.5	10.8

Results for extension II: smaller entrants and deviation from Gibrat's law

	Baseline		Extension	
	$\tau = 0.0$	$\tau = 0.3$	$\tau = 0.0$	$\tau = 0.3$
Growth rate of output g (%)	1.48	1.40	1.48	1.45
Innovation probability: incumbents \bar{x}_I	0.084	0.090	0.055	0.057
Innovation probability: entrants x_E	0.143	0.143	0.042	0.042
Creative destruction rate μ (%)	2.65	2.34	6.29	5.81
Employment L	100	98.7	100	98.8
Normalized output \hat{Y}	100	98.1	100	98.3
Normalized average productivity \hat{Y}/L	100	99.3	100	99.4
Number of active products N	0.964	0.959	0.984	0.983
Job creation rate (%)	17.0	4.9	17.2	5.8
Job creation rate from entry (%)	6.4	4.5	7.5	5.5
Job destruction rate (%)	17.0	4.9	17.2	5.9
Job destruction rate from exit (%)	2.8	2.4	3.2	3.1
Entry rate(%)	2.8	2.4	6.4	6.2
R&D ratio R/Y (%)	11.5	10.7	11.9	11.3

Some empirical analysis

- ► Our model results indicate that the firing tax reduces total R&D, and consequently, productivity growth.
- Bassanini, Nunziata, and Venn (2000) find that firing costs tends to reduce TFP growth in industries where firing costs are more likely to be binding.
- ▶ We repeat the exercise with R&D spending as the dependent variable:

$$\mathsf{R\&D}_{jct} = \beta_0 + \beta_1 \; \mathsf{EPL}_{ct} \times \mathsf{layoff}_j + \gamma_j + \lambda_{ct} + \varepsilon_{jct},$$

▶ The theoretical prediction: $\beta_1 < 0$.

Empirical results

	[1]	[2]	[3]
$EPL_{ct} \times layoff_i$	-0.0393**	-0.0380***	-0.0335
	(0.0135)	(0.0106)	(0.0352)
R-squared	0.352	0.588	0.598
N	5993	3201	359

[1] non-balanced panel [2] balanced panel [3] year=2005.

* p < 0.05; ** p < 0.01; *** p < 0.001.