日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1998年10月 2日

出 願 番 号 Application Number:

平成10年特許顯第281027号

出 願 人 Applicant (s):

A!

ミノルタ株式会社

1999年 7月14日

特許庁長官 Commissioner, Patent Office 保佐山建門

特平10-281027

【書類名】 特許願

【整理番号】 162681

【提出日】 平成10年10月 2日

【あて先】 特許庁長官殿

【国際特許分類】 H04N 1/40

【発明の名称】 画像処理装置

【請求項の数】 5

【発明者】

【住所又は居所】 大阪府大阪市中央区安土町二丁目3番13号大阪国際ビ

ル ミノルタ株式会社内

【氏名】 橋本 圭介

【発明者】

【住所又は居所】 大阪府大阪市中央区安土町二丁目3番13号大阪国際ビ

ル ミノルタ株式会社内

【特許出願人】

【識別番号】 000006079

【住所又は居所】 大阪府大阪市中央区安土町二丁目3番13号大阪国際ビ

ル

【氏名又は名称】 ミノルタ株式会社

【代理人】

【識別番号】 100062144

【弁理士】

【氏名又は名称】 青山 葆

【選任した代理人】

【識別番号】 100086405

【弁理士】

【氏名又は名称】 河宮 治

【選任した代理人】

【識別番号】 100098280

【弁理士】

【氏名又は名称】 石野 正弘

【手数料の表示】

【予納台帳番号】 013262

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】 要約書 1

【包括委任状番号】 9808001

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像処理装置

【特許請求の範囲】

【請求項1】 多値画像データに基づいて、画素を主走査方向に複数のサブ 領域に分割しサブ領域の単位で画像を形成するためのデジタル画像データを出力 する画像処理装置であり、

多値画像データに基づいて、注目画素とその周辺画素の濃度レベルの差から注 目画素のエッジ方向を識別するエッジ判定手段と、

上記エッジ判定部でエッジであると判定された画素にのみ、注目画素に対し注 目画素を中心とした非対称なフィルタを用いた平滑化処理を行い、新たに注目画 素の濃度レベルを生成する濃度レベル生成手段と、

上記エッジ判定手段によって判定された注目画素のエッジ方向にしたがって、 注目画素内の複数のサブ領域に濃度レベルを設定して注目画素の濃度分布を変化 させる濃度制御手段と

を備えることを特徴とした画像処理装置。

【請求項2】 前記の濃度制御手段は、

上記エッジ判定手段によって判定された注目画素のエッジ方向にしたがって、 注目画素内のサブ領域ごとに濃度レベル設定用パラメータを設定する濃度レベル 制御手段と、

濃度レベル制御手段により設定された濃度レベル設定用パラメータを用いて、 注目画素の濃度レベルを基に、注目画素内の複数のサブ領域それぞれに濃度レベルを設定する濃度レベル設定手段と

からなることを特徴とした請求項1に記載された画像処理装置。

【請求項3】 濃度レベル補正手段で用いるフィルタは、副走査方向に非対称であることを特徴とした請求項1に記載された画像処理装置。

【請求項4】 濃度レベル補正手段は、複数のフィルタから1つを選択して 使用することを特徴とした請求項1に記載された画像処理装置。

【請求項5】 濃度レベル補正手段は、複数のフィルタを用いて平滑化した 結果のうち最小の濃度レベルが得られるフィルタを選択することを特徴とした請 求項4に記載された画像処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、デジタル画像データの処理、特に文字画像のエッジ処理に関する。

[0002]

【従来の技術】

画像処理装置は、原稿を読み取って得られたデジタル画像データを処理し、印字用のデジタル印字データを出力する。画像は、デジタル印字データに基づいて再現される。

画像処理装置は、原稿の画像をよりよく再現するため、原稿の画像を読み取ったデジタル画像データについて、種々の処理をおこなう。文字原稿については、文字画像の再現のため、文字のエッジを強調することが望ましい。このため、種々のエッジ判定手法や、エッジ判定結果に基づくデータ強調手法が提案されている。

[0003]

【発明が解決しようとする課題】

画素を複数のサブ画素に分割して、サブ画素単位で濃度を制御する手法がある (たとえば特開平9-240053号公報参照)。この場合、入力された階調データが2値データであれば、濃度重心の位置が常に一定であるため、サブ画素単位で濃度を制御しても、エッジを滑らかにする効果が得られない。

[0004]

本発明の目的は、入力階調データが2値データである場合でもエッジを滑らかにする画像処理装置を提供することである。

[0005]

【課題を解決するための手段】

本発明に係る画像処理装置は、多値画像データに基づいて、画素を主走査方向に複数のサブ領域に分割しサブ領域の単位で画像を形成するためのデジタル画像データを出力する画像処理装置である。エッジ判定手段は、多値画像データに基

づいて、注目画素とその周辺画素の濃度レベルの差から注目画素のエッジ方向を 識別する。濃度レベル生成手段は、上記エッジ判定部でエッジであると判定され た画素にのみ、注目画素を中心とした非対称なフィルタを用い注目画素に対して 平滑化処理を行い、新たに注目画素の濃度レベルを生成する。こうして、周辺画 素の階調から再計算によって、2値画像の場合でも注目画素は多値階調となる。 濃度制御手段は、上記エッジ判定手段によって判定された注目画素のエッジ方向 にしたがって、注目画素内の複数のサブ領域に濃度レベルを設定して注目画素の 濃度分布を変化させる。

また、この画像処理装置において、前記の濃度制御手段は、上記エッジ判定手段によって判定された注目画素のエッジ方向にしたがって、注目画素内のサブ領域ごとに濃度レベル設定用パラメータを設定する濃度レベル制御手段と、濃度レベル制御手段により設定された濃度レベル設定用パラメータを用いて、注目画素の濃度レベルを基に、注目画素内の複数のサブ領域それぞれに濃度レベルを設定する濃度レベル設定手段とからなる。

また、この画像処理装置において、濃度レベル補正手段で用いるフィルタは、 副走査方向に非対称である。

また、この画像処理装置において、濃度レベル補正手段は、複数のフィルタから1つを選択して使用する。好ましくは、この画像処理装置において、濃度レベル補正手段は、複数のフィルタを用いて平滑化した結果のうち最小の濃度レベルが得られるフィルタを選択する。

[0006]

【発明の実施の形態】

以下、添付の図面を参照して本発明の実施形態の画像処理装置について説明する。なお、図面において同一の参照記号は、同一または同等のものをさす。

図1は、本発明の画像処理装置の1実施形態を示す。画像処理装置は、原稿読取装置、コンピュータなどから入力されるデジタル画像データに基づいて、感光体を露光することにより感光体上に画像を形成するためのデジタル画像データを生成し、プリンタに出力する。ここで、注目画素とその周辺の画素との階調差を求め、その階調差の組合わせによって主走査方向でのエッジ方向を識別する。そ

して、エッジ部分で注目画素に対して、副走査方向に非対称なフィルタを用いて 、周辺画素を考慮して濃度レベルを再計算する。そして、識別されたエッジ方向 にしたがって濃度重心を変化させる。

[0007]

具体的に説明すると、画像データ出力装置10は、ここでは図示されていない 原稿読取装置、コンピュータなどから入力されるデジタル画像データを出力する 。ここでは、画像データを、1画素あたり8ビットの階調データとして出力する 。エッジ判定部12は、画像データ出力装置10から出力される階調データを用 いて、注目画素とその周辺の画素との階調差を求め、その階調差の組合わせによ って主走査方向でのエッジ方向を識別する。そして、エッジ判定部12の判定結 果を基に、濃度レベル制御部14は、画素内の濃度重心を制御するためのパラメ ータ信号を、注目画素を主走査方向に分割したサブ画素の単位で生成する。一方 、階調生成部16は、エッジ判定部12の判定結果に基づき、画像データ出力装 置10から入力される階調データから、新たに階調データを生成する。ガンマ補 正部18は、濃度生成部16から出力された階調データの非線形変換をし、プリ ント部24の階調性の非線形ひずみを補正する。濃度レベル設定部20は、ガン マ補正部18により補正されたデータについて、濃度レベル制御部14により生 成された濃度制御パラメータ信号を用いて濃度レベルを制御して、画素内の濃度 重心を変化させる。D/A変換器22は、濃度レベル設定部20により得られた デジタル階調データをアナログ信号に変換し、プリント部24のレーザー駆動回 路に出力する。プリント部24は、入力データに基づいてレーザービームの強度 をサブ画素の単位で変調し、中間調画像をラスター走査で記録媒体上に形成する

[0008]

エッジ判定部12は、注目画素の主走査方向でのエッジ方向を次の4つの場合 に区分して判定する。この判定結果に基づいてエッジをどの方向に寄せるかが判 断される。ここでは、主走査方向を左右方向とする。「右エッジ」とは、文字の 右側にあるエッジ、すなわち、注目画素の左側に文字部がある場合のエッジをい う。「左エッジ」とは、文字の左側にあるエッジ、すなわち、注目画素の右側に 文字部がある場合のエッジをいう。また、「細線エッジ」とは、注目画素の中央に文字部がある場合、すなわち、1つの注目画素内に右エッジと左エッジがある場合のエッジをいう。なお、以上のいずれにも該当しない場合は、「非エッジ部」である。

[0009]

図2は、エッジ判定部12のブロック図である。エッジは、たとえば3×3の 画素マトリクスを用いて判定される。まず、注目画素とその周辺の8画素との階 調差を計算し、注目画素より濃度の高い画素と濃度の低い画素に分ける。図3に 示すように、3×3の画素マトリクスにおいて、V33は注目画素の階調データ を表し、V22, V23, V24, V32, V34, V42, V43, V44は 注目画素に隣接する8個の画素の階調データを表す。図2に示すエッジ判定部1 2において、8個の階調差信号発生回路120は、注目画素の階調データV33 とその周辺の8画素の階調データV22, V23, V24, V32, V34, V 42, V43, V44を入力し、周辺画素と注目画素との階調データの差(階調 差信号)を求める。組合せ判定回路122は、注目画素と周辺画素との階調差を 入力し、その階調差の組合わせによってエッジ方向を判別する。すなわち、注目 画素とその周辺の8画素との階調差を計算し、注目画素より濃度の高い画素と濃 度の低い画素に分ける。そして、注目画素と周囲画素との濃度値の関係からエッ ジ方向を識別する。具体的には、組合せ判定回路122は、これらの8つの階調 差信号の組合わせによって主走査方向でのエッジ方向(右エッジ、左エッジなど)を判別し、右寄せ信号MARKRと左寄せ信号MARKLを生成する。右寄せ 信号MARKRは、右エッジが存在することを示し、左寄せ信号MARKLは左 エッジが存在することを示す。そして、NANDゲート、2個のANDゲートお よび3個のセレクタ(S=LでAを選択する)からなる論理回路124は、これ らの右寄せ信号MARKRと左寄せ信号MARKLからエッジ方向を判断し、エ ッジ方向信号EDGを出力する。すなわち、MARKRとMARKLがともに出 力されていれば、EDG="01"(細線エッジ)が出力され、MARKRまたは MARKLが出力されていれば、EDG="03"(右エッジ)またはEDG=" 02"(左エッジ)が出力され、MARKRとMARKLがいずれも出力されて

いなければ、EDG="00"(非エッジ部)が出力される。

[0010]

図4は、濃度レベル制御部14のブロック図である。エッジ判定部12の出力であるエッジ方向信号EDGをアドレス信号として入力し、8個のパラメータRAM140に記憶されたテーブルより8個の濃度制御パラメータ信号A1,A2,A3,A4,B1,B2,B3,B4を得る。得られた濃度制御パラメータは、濃度レベル設定部20に送られる。

[0011]

図5は、階調生成部16を示す。注目画素を含むライン(V3)と、その前後の2ラインの画像データ(V1、V2、V4、V5)が2種の平滑化回路160、162に入力される。平滑化回路160と平滑化回路162は、それぞれ、処理結果を、セレクタ164と比較器166に送る。セレクタ164は、比較器166の出力に合わせていずれかの出力を選択するが、ここで、平滑結果の階調値が小さい方を選択して、信号VH1として出力する。セレクタ166は、セレクタ164の出力と注目画素を含むラインの信号V3(VH2)のいずれかを選択する。ここで、セレクタ166は、MARKRとMARKLを入力するNORゲート168に合わせていずれかを選択するが、ここで、エッジの場合にのみ、平滑化回路160の出力信号VH1を階調レベルVFとして出力し、その他の場合は、注目画素の信号V3(VH2)を、階調レベルVFとして出力する。

[0012]

図6は、濃度レベル設定部22のブロック図である。4個の濃度レベル演算部180では、ガンマ補正部12で非線形変換された階調データVGに対し、濃度制御パラメータ信号の4種の組合せA1とB1、A2とB2、A3とB3、A4とB4を用いて、それぞれ、ブロック内に示されるような1次演算(VH=A*(VG-B))を行う。この結果、VGから4つの階調信号VH1,VH2,VH3,VH4が得られる。次に、セレクタ182は、画素クロックCLKと画素クロックの倍の周波数を持つ倍速クロックXCLKとを用いて、濃度レベル演算部180において1次演算で得られた4つの階調信号VH1,VH2,VH3,VH4を1画素内でサブ画素ごとに切り換えて、濃度レベル信号VDを生成する

。これにより、1 画素を4 サブ画素に分割し、サブ画素ごとに濃度レベルVDを 出力する。

[0013]

図7から図10は、エッジ判定部12で判定されたエッジ種類のそれぞれについて、1画素内の濃度がどのように変化するかを示したものである。ガンマ補正部16で非線形変換された階調データの階調が増加するにつれ、1画素内の4つのサブ画素に与えられるデジタル階調データがそれぞれそのように変化していくかを示す。図において、各サブ画素における黒部分の高さは、濃度レベルを表す

図7は、右エッジの場合の変化を示す。ここで濃度制御パラメータ信号は、次のとおりである。A1=A2=A3=A4=4。B1=0。B2=64。B3=128。B4=192。図には、階調レベルが0、32、64、96、128、160、192、224、255の場合を示す。図において明らかなように、右エッジであるので、濃度は左側のサブ画素から順に増加される。こうして、画素の濃度の重心は左から順次中央に移動していく。

[0014]

図8は、左エッジの場合の変化を示す。これは、図7の右エッジの場合と左右対称である。ここで濃度制御パラメータ信号は、次の通りである。A1=A2=A3=A4=4。B1=192。B2=128。B3=64。B4=0。図は、階調レベルが0、32、64、96、128、160、192、224、255の場合を示す。図において明らかなように、左エッジであるので、濃度は右側のサブ画素から順に増加される。こうして、画素の濃度の重心は右から順次中央に移動していく。

[0015]

図9は、非エッジの場合の変化を示す。ここで濃度制御パラメータ信号は、次の通りである。A1=A2=A3=A4=1。B1=B2=B3=B4=0。図は、階調レベルが0、32、64、96、128、160、192、224、255の場合を示す。図において明らかなように、エッジが存在しないので、4個のサブ画素はいずれも同じ濃度とし、したがって、画素の濃度の重心は常に中央

にある。濃度は、階調レベルに対応して増加する。

[0016]

図10は、細線エッジの場合の変化を示す。ここで濃度制御パラメータ信号は、次の通りである。A1=A2=A3=A4=2。B1=128、B2=B3=0。B4=128。図は、階調レベルが0、32、64、96、128、160、192、224、255の場合を示す。右エッジと左エッジが同時に存在する細線エッジであるので、図において明らかなように、まず中央の2個のサブ画素の濃度が、階調レベルに対応して増加する。画素の濃度の重心は常に中央にある。次に、両側の2個のサブ画素の濃度が階調レベルに対応して増加する。画素の濃度の重心は常に中央にあるが、濃度分布は、階調レベル128を越えると、しだいに左右に広がっていく。図7~図10では、主に濃度の重心の変化について説明したが、図11に示すように、注目画素内において濃度は端から増加させていくとは限らない。また、変化させるのは重心だけではなく、濃度分布である。

[0017]

図11は、平滑化処理によるエッジ部の再現の状態を示す。左側に示す原画像は2値画像である。この原画像に対して平滑化処理をおこなうと、中央に示す画像が得られる。ここで、斜線部は白と黒の間の濃度レベルを示す。右側に示す画像は、さらにサブ画素単位で非対称フィルタを用いて濃度重心制御を行った時の画像であり、エッジが滑らかに表現されることがわかる。

[0018]

図12は、非対称なフィルタを用いた場合と、対称なフィルタを用いた場合の 平滑化処理の効果を図式的に示す。左側に示す原画像に対し、対称なフィルタを 用いると、右上に示す画像が得られる。ここで、エッジ部の1番目の画素につい て濃度重心が1/8右に寄せられ、2番目の画素について3/8右に寄せられ、 3番目の画素については、重心位置は変化されない。これに対し、左側に示す原 画像に対し、2つの非対称なフィルタを用いて生成される階調値の小さい方を選 択すると、右下に示す画像が得られる。ここで、エッジ部の1番目の画素につい て濃度重心が約1/3右に寄せられ、2番目の画素について約2/3右に寄せら れ、3番目の画素については、重心位置は変化されない。非対称なフィルタを用 いると、再現画像において、エッジ部が滑らかに再現される。

[0019]

【発明の効果】

再現画像において、エッジ部が滑らかに再現される。

【図面の簡単な説明】

- 【図1】 画像処理装置の1実施形態のブロック図。
- 【図2】 エッジ判定部のブロック図。
- 【図3】 エッジ判定用の9個の画素の信号の分布を示す図。
- 【図4】 濃度レベル制御部のブロック図。
- 【図5】 濃度生成部のブロック図。
- 【図6】 濃度レベル設定部のブロック図。
- 【図7】 右エッジの場合の階調レベルに対する濃度の変化を示す図。
- 【図8】 左エッジの場合の階調レベルに対する濃度の変化を示す図。
- 【図9】 非エッジ部の場合の階調レベルに対する濃度の変化を示す図。
- 【図10】 細線エッジの場合の階調レベルに対する濃度の変化を示す図。
- 【図11】 平滑化処理の結果の1例の図。
- 【図12】 非対称フィルタを用いた平滑化処理の結果の1例の図。

【符号の説明】 10 画像データ出力装置、 12 エッジ判定部、

- 14 濃度レベル制御部、 16 階調生成部、 18 ガンマ補正部、
 - 20 濃度レベル設定部。

【書類名】 図面

【図1】

【図2】

【図3】

V22	V23	V24
V 32	V 33	V34
V42	V43	V44

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【書類名】 要約書

【要約】

【課題】 画像処理装置において文字エッジ部をより滑らかに再現する。

【解決手段】 画像処理装置において、多値画像データに基づいて、注目画素とその周辺画素の濃度レベルの差から注目画素のエッジ方向を識別する。注目画素に対し副走査方向に非対称なフィルタを用い注目画素を中心とした平滑化処理を行い、エッジであると判定された画素にのみ、新たに注目画素の濃度レベルを生成する。そして、注目画素のエッジ方向にしたがって、注目画素内の複数のサブ領域に濃度レベルを設定して注目画素の濃度分布を変化させる。

【選択図】 図1

特平10-281027

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】

000006079

【住所又は居所】 大阪府大阪市中央区安土町二丁目3番13号 大阪

国際ビル

【氏名又は名称】 ミノルタ株式会社

【代理人】

申請人

【識別番号】 100062144

【住所又は居所】 大阪府大阪市中央区城見1丁目3番7号 IMPビ

ル 青山特許事務所

【氏名又は名称】

青山 葆

【選任した代理人】

【識別番号】

100086405

【住所又は居所】

大阪府大阪市中央区城見1丁目3番7号 IMPビ

ル 青山特許事務所

【氏名又は名称】

河宮 治

【選任した代理人】

【識別番号】

100098280

【住所又は居所】 大阪府大阪市中央区城見1丁目3番7号 IMPビ

ル 青山特許事務所

【氏名又は名称】 石野 正弘

出願人履歴情報

識別番号

[000006079]

1. 変更年月日 1994年 7月20日

[変更理由] 名称変更

住 所 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル

氏 名 ミノルタ株式会社