Следующий вопрос продолжил тему электромагнитной экологии:

"При проведении аттестации рабочих мест было установлено превышение магнитного поля до величин, в 10 раз превосходящих предельные нормы. Подскажите, пожалуйста, наиболее эффективный способ снижения поля".

Отвечает Михаил Вячеславович Матвеев, также рассматривающий проблемы, связанные с генерацией магнитного поля в электроустановках зданий.

Михаил Матвеев, к.ф-м.н., ООО "ЭЗОП", г. Москва

СИЛЬНОЕ МАГНИТНОЕ ПОЛЕ

СИМПТОМ СЕРЬЕЗНЫХ ПРОБЛЕМ В СИСТЕМЕ ЭЛЕКТРОСНАБЖЕНИЯ

В промышленных, офисных и жилых зданиях довольно часто приходится сталкиваться с ситуацией, когда уровни постоянно действующих магнитных полей оказываются выше предельно допустимых значений согласно Санитарным Правилам и Нормам (СанПиН СанПиН 2.2.2/2.4.1340-03). Так, для низкочастотного магнитного поля (диапазон 5 Гц - 2 кГц) в СанПиН принимается норма 250 нТл (около 0,2 A/м). В реальности поля вблизи проводки и силового электрооборудования часто достигают уровня порядка 1 А/м и выше.

Мы не будем касаться вопросов обоснованности той или иной нормы и степени опасности влияния магнитного поля на организм человека. Отметим лишь, что воздействие магнитного поля амплитудой порядка 1 А/м и выше чаще всего проявляется в виде эффекта "дрожания" изображения на экранах электронно-лучевых трубок (ЭЛТ). Чаще всего страдают мониторы компьютеров. Хотя сам по себе компьютер остается полностью работоспособным, работа пользователя оказывается затруднена.

НЕИЗБЕЖНОЕ ЗЛО ИЛИ?...

На первый взгляд, генерация магнитного поля силовым оборудованием представляет собой "неизбежное зло". Действительно, любой ток, протекающий в проводнике, порождает, согласно закону Био-Савара, магнитное поле напряженностью H, пропорциональное току I и обратно пропорциональное расстоянию от рассматриваемой точки до проводника I (рис. 1).

Поскольку потребляемые токи определяются нагрузкой, то кажется, что единственным средством снижения уровня поля является увеличение расстояние от тока - источника поля - до, например, рабочего места с компьютером. В реальных условиях сделать это возможно далеко не всегда. Экранирование же низкочастотного магнитного поля представляет собой сложную задачу и используется крайне редко (причем успешно - почти никогда).

Однако ситуация вовсе не так безнадежна. Дело в том, что в гра-

Рис. 1. Генерация магнитного поля

Рис. 2. Компенсация магнитного поля

мотно спроектированной и выполненной системе электроснабжения ток от различных проводников компенсируется. На рис. 2, например, показана компенсация магнитного поля при протекании тока в однофазной цепи (причем фазный и N-проводник проложены рядом).

Поскольку на удалении от места прокладки проводников векторы напряженности поля от них очень близки по модулю и почти противоположны по направлению, результирующее поле оказывается много меньше поля от каждого из проводников в отдельности. Аналогичная ситуация будет и в трехфазной цепи. Таким образом, поле от кабеля, токи в котором сбалансированы (т.е., сумма токов во всех проводниках с учетом направления в каждый момент времени равна нулю) будет мало уже на расстоянии, в несколько раз превышающем диаметр кабеля.

СЛУЧАИ ПОЯВЛЕНИЯ ПОЛЕЙ

Тогда за счет чего же возникают магнитные поля, вызывающие "дрожание" изображения на мониторах? Дело в том, что в некоторых случаях протекание токов разных фаз, а также токов в фазных проводниках и некомпенсированного тока нулевой последовательности происходит по совершенно разным путям. Приведем наиболее распространенные причины такой ситуации:

1. Наличие так называемых "токов утечки", когда часть тока из N(или PEN)-проводника попадает на металлоконструкции здания, PE-проводники и т.п. В этом случае фазные проводники, N(PEN)-проводники

и металлоконструкции здания вместе с РЕ-проводниками образуют подобие рамочной антенны, внутри и вблизи которой создается значительное магнитное поле. Проблема токов утечки подробно уже рассматривалась в журнале "Новости Электротехники" (\mathbb{N} 5(23)2003), и потому подробно останавливаться на ней не будем.

- 2. Прокладка фазных проводников на значительном расстоянии друг от друга. На одном из хладокомбинатов, например, мы наблюдали следующую картину: непосредственно под полом помещения, в котором размещалась компьютерная техника, проходили шины питания холодильного оборудования с межфазными расстояниями порядка метра. В результате работать за мониторами компьютеров в помещении было практически невозможно.
- 3. Расположение недалеко от помещения с компьютерной техникой высоковольтного оборудования (например, реакторов). По условиям обеспечения электрической прочности изоляции, расстояния между проводниками и электроаппаратами разных фаз для высоковольтного оборудования принципиально не может быть сделано малым, и потому оно является источником значительного магнитного поля.
- 4. Иногда системы энергоснабжения являются принципиально несимметричными. Таковы, например, тяговые сети на железнодорожном транспорте.
- 5. В некоторых случаях, источниками полей являются блуждающие токи в протяженных металлических коммуникациях (например, в трубопроводах различного назначения). При этом генерация поля обычно не зависит от режима работы электроустановки рассматриваемого объекта.

СПОСОБЫ РЕШЕНИЯ ПРОБЛЕМЫ

Таким образом, в первую очередь следует определить причину, по которой происходит генерация влияющего магнитного поля. В зависимости от причины, могут быть рекомендованы различные подходы к решению проблемы.

- Так, если причиной являются токи утечки, в первую очередь следует привести схему электроустановки в соответствие с рекомендуемыми ПУЭ схемами TN-S, TN-C-S, чего в большинстве случаев оказывается достаточно для решения проблемы. На практике это сводится к обнаружению и устранению нежелательных соединений между N- и РЕ-проводниками в щитках, розетках и т.п.
- В некоторых случаях возникает необходимость в разрыве путей протекания влияющих токов: установка изолирующих вставок на внешние трубопроводы, применение разделительных трансформаторов и т.п.
- При проектировании электроустановок следует, по возможности, избегать прокладки фазных, N- и PEN- проводников по различным трассам и на значительном расстоянии друг от друга.
- Чувствительное оборудование (компьютеры и т.п.) следует размещать на достаточном (обычно не менее 10-15 м) расстоянии от высоковольтного оборудования.
- И, наконец, иногда приходится прибегать (особенно для защиты от полей чувствительного электронного оборудования, например магниторезонансных томографов) к использованию специальных систем компенсации магнитного поля, состоящих из датчика, модуля управления и токовой цепи. В этом случае датчик измеряет напряженность внешнего магнитного поля, а модуль управления создает в токовой цепи такой ток, что поле от него в месте размещения защищаемой аппаратуры компенсирует внешнее поле.

Отметим, что в большинстве случаев проведение мероприятий по снижению уровней полей довольно трудоемко и требует известной квалификации. Поэтому на практике, если речь идет о "дрожании" изображения на мониторах компьютеров, часто идут по самому простому пути: в зоне действия поля мониторы на базе ЭЛТ заменяют на жидкокристаллические (TFT), обладающие намного меньшей чувствительностью к магнитному полю. В этом случае проблема "дрожания" изображения обычно решается. Но уровень магнитного поля при этом попрежнему превышает норму СанПиН. Кроме того, наличие токов утечки и блуждающих токов может приводить и к другим неприятным последствиям, включая невозможность применения УЗО, электрокоррозию трубопроводов, зашумление цепей связи и т.п.

Таким образом, высокий уровень магнитных полей часто является лишь одним из симптомов, свидетельствующих о наличии серьезных проблем в системе электроснабжения.