

Departamento de Ingeniería Informática y Ciencias de la Computación Facultad de Ingeniería Universidad de Concepción

Modelamiento de Datos Conceptos Fundamentales.

Marcela Varas C. 2003

Parte II. Lenguajes.

8 Modelos Conceptuales, Lógicos y Físicos.

Hay tres tipos de diseños en el modelamiento, los cuales tienen directa relación con los modelos que ocupan: modelos conceptuales, lógicos y físicos.

En la Figura se puede apreciar el proceso de diseño de bases de datos. Los requisitos de datos constituyen un componente de los requisitos de un producto y son una entrada al diseño conceptual.

Figura 2-1

Diseño Conceptual.

Recibe como entrada la especificación de requerimientos y su resultado es el esquema conceptual de la base de datos, que es una descripción de alto nivel de la estructura de la base de datos, independiente del software que se use para manipularla.

Modelos Conceptuales: MER, CCER, Modelos OO, Formalismo Individual, Redes Semánticas. Redes de Transición de Estados.

Diseño Lógico.

Recibe como entrada el esquema conceptual y da como resultado un esquema lógico, que es una descripción de la estructura de la base de datos que puede procesar el software DBMS.

Modelos Lógicos: Relacional, de Redes, Jerárquico, Redes Semánticas, Redes de Transición de Estados, Modelos OO.

Diseño Físico.

Recibe como entrada el esquema lógico y da como resultado un esquema físico, que es una descripción de la implementación de una base de datos en la memoria secundaria, describe las estructuras de almacenamiento y los métodos usados para tener un acceso efectivo a los datos.

Modelos Físicos: Modelo Unificador, Memoria de Elementos.

9 Modelo Entidad Inter Relación (MER, Entity Relationship Model)

En 1976, Peter Chen publicó el modelo entidad relación, el cual tuvo gran aceptación principalmente por su expresividad gráfica. Sobre esta primera versión han trabajado numerosos autores, generando distintas extensiones de mayor o menor utilidad y de aceptación variable en el medio académico y profesional. Muchas de estas extensiones son muy utiles, pero poco difundidas debido principalmente a la ausencia de herramientas automatizadas que apoyen su uso.

A continuación se definen los elementos del modelo entidad relación básico.

9.1 Dominio.

Conjunto de valores de un mismo tipo. Se define como un conjutno, ya sea por extensión o comprensión.

9.2 Atributo.

Elemento de un Dominio. Aporta mediante su rótulo, la semántica de los valores del Dominio al que está asociado.

9.3 Entidad.

Consideremos un número de conjuntos cada uno orientado a un tipo particular de objetos. Estos conjuntos están relacionados con dominios y atributos.

Si consideramos la relación dada por el producto cartesiano de estos dominios, una interpretación que se le da a cada una de estas tuplas es que cada una corresponde a una entidad particular.

⊠Ejemplo.

(Juan , 70, 80, 50) (Pedro , 90, 50, 70)

9.4 Tipo de Entidad.

Los Tipos de Entidad representan clases de objetos de la realidad. Además se componen de atributos, los cuales representan las características de un tipo de entidad.

Tipo de Entidad

En términos de abstracción, un "tipo de entidad" corresponde a la agregación de atributos.

Así las entidades son una ocurrencia de un Tipo de Entidad.

9.5 Identificador de un tipo de entidad.

Un atributo I, posiblemente compuesto, de un tipo de entidad TE, es un Identificador de TE si y sólo si satisface las siguientes 2 propiedades independientes del tiempo.

- a. Unicidad. En cualquier momento dado, no existen dos elementos en TE con el mismo valor de I.
- b. Minimalidad. Si I es compuesto, no será posible eliminar ningún atributo componente de I sin destruir la propiedad de unicidad.

9.6 Tipo de Interrelación.

Los Tipos de interrelación representan agregaciones de dos o más entidades (interrelaciones binarias o n-arias) no necesariamente diferentes.

El Identificador de un Tipo de Interrelación, se forma a partir de los identificadores de los tipos de entidad que relaciona.

Ejemplo. la relación dueño-de puede ser interpretada como un tipo de interrelación entre dos tipos de entidades Persona y Auto.

9.7 Interrrelación.

Es la ocurrencia de un tipo de interrelación.

⊠Ejemplo. (Juan, LK-2346), considerando el tipo de interrelación dueño-de.

9.8 Cardinalidad de tipo de entidad con respecto a un tipo de interrelación.

Para los tipos de interrelación la cardinalidad máxima (mínima) establece el mayor (menor) número de correspondencias en cada una de los tipos de entidad involucradas en la interrelación.

Se define la Cardinalidad del Tipo de Entidad TE con respecto al tipo de interrelación R como:

Card(TE,R) = (mínimo, máximo), con mínimo, máximo $\in \{0,...,n\}$ y mínimo \le máximo. donde toda ocurrencia de TE debe participar al menos *mínimo* veces, y a lo más *máximo* veces en R.

⊠Ejemplo

Tipos de entidades (y atributos)

Auto: Patente (clave)

Año Fabricación

Color

Persona: Rut (clave)

Nombre

Dirección

• Tipos de Interrelaciones

Dueño_de: Rut (clave)

Patente (clave)

Diagrama MER

(1,n): Una persona puede tener uno o más autos

(1,1): Un auto puede tener sólo un dueño .

Modelar un sistema de biblioteca que permita saber :

- autor de un libro
- libros de un autor
- préstamos de un alumno.
- · materia de un libro
- editorial de un libro

☑ Desarrollo.

Tipos de entidad

Autor

© Código Autor (string)Nombre (string)

Fecha Nacimiento	(fecha)
Nacionalidad	(string)

Libro

@ Código Libro (string)Título (string)Año Publicación (año)

Alumno

@ Matrícula (numérico)
Nombre (string)

Ejemplar

@ Código Ejemplar (numérico)

Materia

@ Código Materia (numérico)Materia

Carrera

@ Código Carrera (numérico)

Editorial

@ Código Editorial (numérico)

Editorial

• Tipos de Interrelaciones

Autor_de:

- @ Código Libro
- @ Código Autor

Estudia:

- @ Matrícula
- @ Código Carrera

Prestamo:

- @ Código Ejemplar
- @ Matrícula

Fecha_préstamo (fecha)

Fecha_devolución (fecha)

Editado_por:

- @ Código Editorial
- @ Código Libro

Ejemplar_de :

- @ Código Ejemplar
- @ Código Libro

Es_de:

- @ Código libro
- @ Código Materia
- Diagrama MER

Lectura de las cardinalidades:

- Un Alumno estudia una y sólo una Carrera.
- Una Carrera es estudiada por uno o muchos Alumnos.
- Un Alumno puede tener en préstamo ninguno o a lo más tres Ejemplares.
- Un Ejemplar puede no estar en préstamo o estar en Préstamo a lo más una vez.
- Un Ejemplar corresponde a uno y sólo un Libro.
- Un Libro tiene uno o muchos Ejemplares.
- Un Autor es autor de uno o muchos Libros.
- Un Libro fue escrito por uno o muchos Autores.
- Un Libro es acerca de una o muchas Materias.
- Una Materia es abordada por uno o muchos Libros.
- Una Libro es editado por una y sólo una Editorial.
- Una Editorial ha editado uno o muchos Libros.

9.9 Cómo Modelar en MER

Para modelar en MER se sigue generalmente el siguiente orden:

- a. Identificar los tipos de entidades.
- b. Identificar los tipos de interrelaciones.
- c. Encontrar las cardinalidades.
- d. Identificar los atributos de cada tipo de entidad.
- e. Identificar las claves de cada tipo de entidad.

La regla básica es distinguir tipos de entidades e interrelaciones de atributos. Así, los atributos deben ser atómicos y característicos del tipo de entidad o interrelación que describan.

También los atributos deben pertenecer al tipo de entidad o interrelación que describen y no a otro tipo.

9.9.1 Reglas para elegir identificadores.

- i. No deben existir dos entidades con el mismo valor del identificador (en los tipos de entidad).
- ii. En los tipos de interrelación, la clave es la composición de las claves de los tipos de entidad involucrados, en caso que no se pueda utilizar la clave de un subconjunto de ellos.

9.9.2 Ejercicios Propuestos.

- Construir un esquema MER para una secretaría de universidad. La secretaría matiene datos sobre cada asignatura, incluyendo el profesor, lista de alumnos y la hora y el lugar de las clases. Para cada par estudiante-asignatura se registra su nota.
- Construir un esquema MER para una compañía de seguros de autos con un conjunto de clientes, cada uno de los cuales es propietario de un número de autos. Cada auto tiene asociado el número de accidentes registrados.
- 3. Construir un esquema MER para un hospital con un conjunto de pacientes y un conjunto de médicos. A cada paciente se le asocia un registro de los análisis realizados.

- 4. Construir un esquema MER para modelar la documentación requerida para un esquema conceptual E-R.
- 5. Diseñar un esquema MER que recoja la organización de un sistema de información en el que se quiere tener información sobre municipios, viviendas y personas. Cada persona sólo puede habitar en una vivienda, pero puede ser propietaria de más de una. Nos interesa también la interrelación de las personas con su cabeza de familia. (Haga los supuestos que estime convenientes para justificar sus decisiones de diseño).
- 6. Diseñar un esquema MER que recoja la organización de las carreteras de todo el país. Se sabe que las carreteras se encuentran divididas en tramos, un tramo siempre pertenece a una única carretera y no puede cambiar de carretera, existen una serie de áreas en las que se agrupan los tramos, cada uno de los cuales no puede pertenecer a más de un área y un tramo puede pasar por varios términos municipales, siendo un dato de interés el km del tramo por el que entra en dicho término municipal y el km por el que sale.

10 Modelo Entidad Relación Extendido

El modelo entidad relación ha sido mejorado por varios autores, incorporándole elementos que aumentan su expresividad y apoyan completitud de la especificación de la base de datos o realidad modelada.

A continuación se presentan las extensiones más usadas, que enriquesen lo expuesto en el capítulo anterior.

10.1 Atributo Compuesto.

Corresponde a grupos de atributos que tienen afinidad en cuanto a su significado o a su uso.

10.1 Cardinalidad.

Caracteriza a los atributos de un tipo de entidad y a los tipos de interrelación.

(Las definición aquí utilizada corresponde a la realizada por Tardieu).

10.1.1 Cardinalidad de atributo con respecto a un tipo de entidad.

Para los atributos, la cardinalidad mínima indica el número mínimo de valores de un atributo asociado con cada caso (ocurrencia) de una entidad o interrelación. La cardinalidad máxima indica el número máximo de valores para un atributo asociado a cada caso de una entidad o interrelación.

Se define la Cardinalidad del Atributo A con respecto al tipo de entidad TE como:

Card(A,TE)=(mínimo, máximo), con mínimo, máximo $\in \{0,...,n\}$ y mínimo \le máximo.

donde un elemento de A debe participar al menos *mínimo* veces, y a lo más *máximo* veces en cada ocurrencia de TE.

10.2 Identificador de un tipo de entidad.

Sea TE un tipo de entidad, sean A₁, A₂..., A_n atributos monovalentes obligatorios de TE, sean TE₁, TE₂..., TE_m otros tipos de entidad vinculados a TE por R₁, R₂..., R_m, tipos de interrelación (binarias) obligatorias. Considérese un posible identificador $I = \{a_1, a_2, ..., a_n, TE_1, TE_2, ..., TE_m\}$, n >= 0, m >= 0, n + m >= 1. El valor del identificador para un caso

particular te del tipo de entidad TE se define como el conjunto de todos los valores de los atributos a_i (i = 1,2, ..., n) y todos los casos de los tipos de entidad TE_j (j = 1,2, ..., m) vinculadas con te.

Cada entidad puede tener múltiples identificadores alternativos.

Identificador Compuesto e Interno

Identificador compuesto, mixto y externo

10.2.1 Clasificación de los tipos de entidad según sus identificadores.

- Tipo de Entidad Fuerte: Tipo de entidad con identificador interno.
- Tipo de Entidad Débil: Tipo de entidad con identificador externo o mixto.

10.3 Estructura de Generalización.

Un tipo de entidad TE (tipo de entidad genérica) es una generalización de un grupo de tipos de entidades STE_1 , STE_2 , ..., STE_n (tipos de entidad subconjunto) si cada entidad de los tipos de entidad STE_1 , STE_2 , ..., STE_n es también una entidad del tipo de entidad TE. (Lo opuesto a la generalización se denomina especialización.)

Además cada atributo, interrelación o generalización definida para un tipo de entidad genérica, será heredado por todas las entidades subconjunto de la generalización.

10.4 Cobertura.

Las jerarquías de generalización presentan la propiedad de cobertura. La cobertura puede ser parcial o total y exclusiva o superpuesta. La cobertura parcial o total permite especificar una restricción entre el tipo de entidad genérica y sus tipos de entidad subconjunto, donde todos los elementos del tipo de entidad genérico deben pertenecer a alguno de sus tipos de entidad subconjunto (si es total), o no (si es parcial). La cobertura exclusiva o superpuesta permite especificar una restricción entre los tipos de entidad subconjunto, donde los elementos que pertenecen a un tipo de entidad subconjunto pueden pertenecer también a otro tipo de entidad subconjunto (si es superpuesto) o no (si es exclusiva).

10.5 Agregación de Tipos de Entidad.

Un tipo de interrelación y los tipos de entidad que relaciona, puede ser manejado como un tipo de entidad en un nivel de abstracción mayor, lo que posibilita que se pueda interrelacionar con otros tipos de entidad. Este mecanismo es conocido como Estructura de Agregación o Agregación de Tipos de Entidad, en aquellas extensiones del MER que la incorporan (por ejemplo, CCER [Varas98]).

10.6 Roles de Tipos de Entidad en Tipos de Interrelación.

Un Rol de un Tipo de Entidad en un Tipo de Interrelación es la función que aquel cumple dentro de ésta. La definición de roles permite atribuirle a un tipo de entidad su semántica dentro de la agregación, aportándole mayor expresividad al esquema y permitiendo disminuir ambigüedades en la definición de cardinalidades (esto cobra mayor importancia en aquellos tipos de interrelación que involucran a un mismo tipo de entidad más de una vez).

10.7 Tipos de Interrelaciones Exclusivas con respecto a un Tipo de Entidad.

(Esta definición se obtuvo en base a aquella en [deMiguel93]).

Sea TE un tipo de entidad y sea un conjunto de tipos de interrelación RE= $\{R_1,...,R_n\}$ tales que TE \in R_i, i en $\{1,...,n\}$, RE se dice exclusivo, si cada ocurrencia de TE sólo puede estar presente a lo más en un R_i, i en $\{1,...,n\}$.

Observación: En este caso la cardinalidad mínima de TE con respecto a R_i , con i en $\{1,...,n\}$ debe ser 0.

10.8 Restricciones en MER extendido.

Las restricciones estáticas especifican los estados posibles de la base de datos modelada en un esquema dado. En un esquema MER la principal restricción estática está dada por la estructura (pertenencia de un atributo a un tipo de entidad o interrelación, tipos de entidad que relaciona un tipo de interrelación), y también se pueden especificar las siguientes.

- Dominio.
- Cardinalidad de atributo con respecto a un tipo de entidad.

- Cardinalidad de un tipo de entidad con respecto a un tipo de interrelación.
- Identificadores.
- · Cobertura.
- Tipos de Interrelación Exclusivas con respecto a un Tipo de Entidad.

Las restricciones dinámicas son aquellas que restringen los cambios de estado en la base de datos. Estos aspectos, no son soportados por el modelo entidad relación.

10.9 Estrategia para modelar con MER.

Se debe hacer uso de los conceptos de abstracción básicos: clasificación, agregación y generalización. Para ello se pueden seguir los procesos siguientes.

- 1. Identificar Tipos de Entidad y las relaciones que existen entre ellos.
- 2. Descomponer un tipo de entidad en dos o más tipos de entidad, relacionados o no, o participando en una estructura de generalización.
- 3. Descomponer un tipo de interrelación en varias.
- 4. Identificar atributos para cada elemento.
- 5. Definir identificadores para los tipos de entidad.
- 6. Definir restricciones de cardinalidad y cobertura.
- 7. Verificar que el esquema resultante es correcto con respecto a la especificación (representa toda la realidad descrita).
- 8. Verificar que el esquema es correcto con respecto al buen uso del modelo.
- 9. Analizar modificaciones al esquema.

10.10 Esquema MER y Documentación.

El esquema conceptual de una base de datos en el modelo entidad relación no es sólo el diagrama que se genera al utilizar las reglas generadoras del modelo, sino también la documentación textual asociada.

En este último punto, cobran mayor importancia aquellos aspectos que no quedan explícitamente especificados en el esquema gráfico, ya sea por un criterio estético o por falta de expresividad del modelo.

Comunmente, los dominios no se incorporan en el esquema gráfico, y su definición ni siquiera tiene representación, por lo que su documentación fuera del esquema es obligatoria. También es necesario hacer énfasis en restricciones estáticas que no fueron modeladas, y, en caso de existir restricciones dinámicas, estas deben especificarse fuera del esquema, dado que el modelo entidad relación no las soporta.

Para efectos de documentación, se propone anexar al esquema MER (gráfico), las tablas siguientes con la informacón que corresponda.

10.10.1 Tipos de Entidad.

Tipo de Entidad		
Descripción		
Atributo	Dominio	Cardinalidad

	T	1
•	e son identificadores: Atributo@	
_	nterrelación	
Tipo de Interrelación		
Descripción Tinos do Entidad	Del	Cardinalidad
Tipos de Entidad Relacionados	ROI	Cardinalidad
Atributo	Dominio	Cardinalidad
10.10.3 Atributos C	ompuestos.	
Atributo		
Descripción		
Presente en		
Notación para Descripción:		
se compone de Atributo Comp	outo Componente 2+ + Atributo Compon conente 1, Atributo Componente 2, , Atr Atributo Componente i debe documentarse	ibuto Componente
10.10.4 Atributos.		
Atributo		
Descripción		
Dominio		
Presente en		
Notación para presente en:		
• •	l de se usa el atributo se denomina Nombre	e1 y es un Tipo de
Nombre1(TE) : El objeto dono Entidad.	de se usa el atributo se denomina Nombre e se usa el atributo se denomina Nombre	•
Nombre1(TE) : El objeto dono Entidad. Nombre2(TI): El objeto donde Interrelación.	e se usa el atributo se denomina Nombre.	2 y es un Tipo de
Nombre1(TE): El objeto donde Entidad. Nombre2(TI): El objeto donde Interrelación. Nombre3(@TE): El objeto donde Entidad, siendo este atributo (Nombre4(A): El objeto donde compuesto.	e se usa el atributo se denomina Nombre.	2 y es un Tipo de e3 y es un Tipo de
Nombre1(TE): El objeto donde Entidad. Nombre2(TI): El objeto donde Interrelación. Nombre3(@TE): El objeto dor Entidad, siendo este atributo (Nombre4(A): El objeto donde	e se usa el atributo se denomina Nombre nde se usa el atributo se denomina Nombre (parte de) el identificador.	2 y es un Tipo de e3 y es un Tipo de
Nombre1(TE): El objeto donde Entidad. Nombre2(TI): El objeto donde Interrelación. Nombre3(@TE): El objeto donde Entidad, siendo este atributo (Nombre4(A): El objeto donde compuesto.	e se usa el atributo se denomina Nombre nde se usa el atributo se denomina Nombre (parte de) el identificador.	2 y es un Tipo de e3 y es un Tipo de
Nombre1(TE): El objeto donde Entidad. Nombre2(TI): El objeto donde Interrelación. Nombre3(@TE): El objeto donde Entidad, siendo este atributo (Nombre4(A): El objeto donde compuesto. 10.10.5 Dominios.	e se usa el atributo se denomina Nombre nde se usa el atributo se denomina Nombre (parte de) el identificador.	2 y es un Tipo de e3 y es un Tipo de

10.10.6 Estructuras de Generalización.

Generaliz	ación		Tipo de Entidad Genérica	
Cobertura	1			
Tipos Subconju	de nto	Entidad		

10.10.7 Agregación de Tipos de Entidad

Agregación	Tipo de Interrelación	
Nombre Agregación		

10.10.8 Restricciones Estáticas no modeladas.

Restricciones	Estáticas	
Id Restricción	Objetos Involucrados	Restricción

10.10.9 Restricciones Dinámicas.

Restricciones Dinámicas			
Id Restricción	Objetos Involucrados	Restricción	

10.11 Cualidades de un esquema de datos.

10.11.1 Completitud

Un esquema es completo cuando representa todas las características pertinentes al dominio de la aplicación. Se puede comprobar en principio mirado en detalle todos los requerimientos del dominio de la aplicación y verificando que cada uno de ellos esté representado en algún lugar del esquema (el esquema es completo respecto a los requerimientos) y también se puede revisar el esquema para verificar que cada concepto esté mencionado en los requerimientos (los requerimientos están completos respecto al esquema).

10.11.2 Corrección.

Un esquema es correcto cuando usa con propiedad los conceptos del modelo (MER en este caso).

Un esquema es sintácticamente correcto cuando los conceptos se definen con propiedad en el esquema; por ejemplo, los subconjuntos y las generalizaciones se definen entre entidades pero no entre interrelaciones. Un esquema es semánticamente correcto cuando los conceptos (entidades, interrelaciones, etc.) se usan de acuerdo con sus definiciones. Por ejemplo, es un error semántico usar un atributo para representar los productos de un empresa manufacturera cuando se necesita representar varias propiedades de los productos (por ejemplo, código del producto, precio, partes, etc.), porque un atributo es una propiedad elemental.

Errores semánticos más frecuentes:

- Usar un atributo en lugar de una entidad.
- 2. Olvidar una generalización (o un subconjunto).
- 3. Olvidar una propiedad de herencia de las generalizaciones.
- 4. Usar una interrelación con un número erróneo de entidades (por ejemplo, una interrelación binaria en vez de una ternaria).
- 5. Usar una entidad en lugar de una interrelación.
- 6. Olvidar algún identificador de una entidad.
- 7. Omitir alguna especificación de cardinalidad mínima o máxima.

10.11.3 Minimalidad.

Un esquema es mínimo cuando cada aspecto de los requerimientos aparece sólo una vez en el esquema. También se puede decir que un esquema es mínimo si no se puede borrar del esquema un concepto sin perder alguna información. Cabe señalar que algunas veces es aconsejable permitir alguna redundancia en el esquema; sin embargo, esta redundancia debe documentarse. Esto se logra, por lo regular, añadiendo al esquema conceptual una tabla que indica cómo se calculan los datos derivados a partir de otros datos.

10.11.4 Expresividad.

Un esquema es expresivo cuando representa los requerimientos de una forma natural y se puede entender con facilidad a través del significado de las construcciones del esquema, sin necesidad de explicaciones adicionales.

10.11.5 Legibilidad.

Esta es una propiedad del diagrama que representa gráficamente al esquema. Un diagrama tiene buena legibilidad cuando respeta ciertos criterios estéticos, tales como evitar los cruces de lineas, trazar los cuadros (tipos de entidades) y los rombos (tipos de interrelaciones) de un tamaño similar, que las conexiones sean trazos verticales u horizontales, dejar los niveles jerárquicos superiores sobre los inferiores y minimizar el número de 'esquinas' en el diagrama.

10.11.6 Autoexplicación.

Un esquema se explica a sí mismo cuando puede representar un gran número de propiedades usando el modelo conceptual por si mismo, sin otros formalismos (por ejemplo, anotaciones en lenguaje natural).

10.11.7 Extensibilidad.

Un esquema se adapta fácilmente a requerimientos cambiantes cuando puede descomponerse en partes (módulos o vistas), a fin de aplicar los cambios dentro de cada parte.

10.11.8 Normalidad.

El concepto de normalidad viene de la teoría de la normalización, asociada al modelo relacional. Las formas normales (primera, segunda, tercera, Boyce/Codd, cuarta y quinta), pretenden mantener la estructura lógica de los datos en una forma normal purificada, mitigando los problemas de las anomalías de inserción, borrado y actualización que ocasionan trabajo innecesario porque deben aplicarse los mismos cambios a varios casos de datos, así como el problema de pérdida accidental de datos o la dificultad de representación de determinados hechos.

11 Formalismo Individual

El Formalismo Individual es una herramienta de modelación, o modelo de datos, que permite generar esquemas para cierta realidad. El formalismo individual es un método eminentemente semántico.

Este modelo es utilizado como lenguaje de alto nivel para otros modelos.

Los componentes básicos del F.I. son:

- Individuo
- Relación
- Propiedad

Individuo

Es una familia de objetos que se caracterizan por tener las mismas características. Se les debe definir sin hacer referencia a otros individuos y cada ocurrencia de un individuo debe ser distinguible de otro.

Las características principales de un individuo son:

- la elección de cada individuo es una elección de quien realiza el esquema.
- un individuo debe tener existencia propia, y se le debe poder describir por sí solo, es decir, sin hacer referencia a otros componentes
- cada ocurrencia de un individuo debe ser distinguible de otras
- entre todas las propiedades de un individuo, al menos una o un grupo de ellas nos debe permitir identificar en forma única una ocurrencia de él; a esta propiedad o grupo de propiedades se le llama *Identificador*.

Un individuo queda completamente definido cuando se conoce su *nombre*, *identificador*, y lista de *propiedades* (también llamada entidad o rubrica).

Ocurrencia de Individuo.

Es la ocurrencia o instancia de un individuo, esto es, corresponde a un objeto concreto de la realidad.

Relación

Es una asociación que se establece entre individuos. En general una relación es consecuencia de asociaciones que existen en la realidad.

Una relación se define por cuatro proposiciones:

- su elección depende del interés de la persona que está modelando.
- no tiene existencia propia, materializa una asociación entre dos o más individuos.
- cada ocurrencia de una relación debe ser distinguible de otras
- las propiedades de una relación son comunes a todas sus ocurrencias. Esta lista de propiedades puede estar vacía, en este caso, la relación no tiene ninguna propiedad propia y no hace más que representar un enlace semántico (generalmente de pertenencia).

Para definir completamente una relación se utilizan los siguientes conceptos:

- Colección: es la lista de individuos que componen una relación. Una relación puede tener una colección de dos o más individuos.
- Identificador: es la concatenación de los identificadores de los individuos que componen la relación.
- Rúbrica: está constituida por la lista de identificadores y propiedades propias.

Ocurrencia de Relación.

Es la ocurrencia de la relación entre dos individuos.

Propiedad

Es una característica o atributo que permite describir a los individuos y relaciones. Ejemplo. nombre.

La ocurrencia de una propiedad es un valor. Los valores que toman las propiedades pertenecen a un dominio dado.

Restricciones.

Cardinalidad.

Se refiere a la cantidad de veces, máximo y mínimo, que una ocurrencia de un individuo puede participar en una relación.

Relación Implícita.

Cuando dos individuos A y B están formando una relación, y la cardinalidad de la relación no es muchos es a muchos, entonces la relación se puede omitir, perteneciendo a uno de los individuos.

Esta es una relación del tipo muchos es a muchos, donde una ocurrencia de Autor puede participar una o muchas veces en la relación Escrito, y una ocurrencia de Libro también puede aparecer una o muchas veces en la relación Escrito. Esto significa que un Autor debe haber escrito al menos un libro para que se le considere como tal, que un Autor puede escribir más de un libro, que un Libro puede ser escrito por más de un Autor y que todo Libro debe tener a lo menos un Autor.

Esta relación no es muchos a muchos, donde una ocurrencia de Empleado debe participar una y sólo una vez en la relación Trabaja, mientras que una ocurrencia de Depto puede participar una o muchas veces en esta relación. Esto significa que un Empleado debe trabajar sólo en un Departamento, y no puede no trabajar en ninguno, un Departamento debe tener al menos un empleado, pero puede tener más de uno.

En este caso, se puede hacer uso de una relación implícita (por la cardinalidad uno es a uno de Empleado), quedando el esquema siguiente:

Describir la realidad modelada por el siguiente esquema

☑ Desarrollo.

- Un Puerto está en un País.
- Un País puede tener muchos o ningún Puerto, así como muchos o ningún Barco con su Bandera.
- Un Barco debe tener la bandera de un sólo país.
- Un Barco puede ir vacío (sin Carga) o con muchas Cargas. Las Cargas tienen a lo más un Puerto de origen y un Puerto de Destino.
- Los Puertos pueden ser Origen y Destino para muchas o ninguna Carga.

12 Modelo Relacional.

Este modelo fue propuesto pro Codd en 1970 y se divide en tres partes, las cuales separan la estructura, la integridad y la manipulación de los datos.

12.1 Estructura de Datos Relacional.

La estructura de datos relacional tiene como elemento fundamental la relación. Aquí no existe diferencia entre entidades y relaciones o entre individuos y relaciones.

Una *relación* constituye lo que podríamos llamar una tabla. Una *Tupla* corresponde a una fila de esta tabla y un *atributo* a una columna. El número de tuplas de una relación se denomina *cardinalidad* y el número de atributos se denomina *grado*.

La *clave primaria* es un identificador único para la tabla, es decir, un atributo o combinación de atributos tal que nunca existen dos tuplas de la relación con el mismo valor en ese atributo o combinación de atributos.

Por último, pero no por eso menos importante, un *dominio* es una colección de valores, de los cuales uno o más atributos (columnas) obtienen sus valores reales.

Para efecto de modelación, interesa reconocer relaciones, atributos, dominios y claves primarias. La cardinalidad de una relación se considera a un nivel de implementación.

12.2 Propiedades de las relaciones.

- No existen tuplas repetidas.
- Las tuplas no están ordenadas (de arriba hacia abajo).
- Los atributos no están ordenados (de izquierda a derecha).
- Todos los valores de los atributos son atómicos.

12.3 Reglas de Integridad Relacional

12.3.1 Claves primarias.

Una clave candidata para una relación R es un atributo K posiblemente compuesto, tal que satisface las siguientes dos propiedades independientes del tiempo:

- Unicidad. En cualquier momento dado, no existen dos tuplas en R con el mismo valor de K
- Minimalidad. Si K es compuesto, no será posible eliminar ningún componente de K sin destruir la propiedad de unicidad.

De entre las claves candidatas se elige la clave primaria.

Ningún componente de la clave primaria de una relación puede en algún momento no tener valor (aceptar nulos).

Esto significa que no tiene sentido modelar una entidad que no podemos identificar ni distinguir unas de otras.

12.3.2 Claves Foráneas.

En el modelo relacional se denominan *claves ajenas o claves foráneas* a una referencia de una relación a otra, mediante su clave. Este concepto lo conocemos en el formalismo individual como una relación implícita.

Una Relación (R1) puede poseer como uno de sus atributos (A) una clave primaria de otra relación (R2). Este atributo (A) constituye una clave foránea en R1 y referencia a R2.

En este caso las claves foráneas responden al mismo patrón de las relaciones implícitas del formalismo individual, es decir, existen cuando la cardinalidad de la relación es uno es a muchos.

La regla de integridad referencial nos indica que ningún atributo A que constituye una clave foránea en una relación R1 y referencia a la clave primaria de una relación R2 (no necesariamente distinta) puede tomar un valor que no esté presente en la relación referenciada R2. Esto significa, que la base de datos no debe contener valores de clave ajena sin concordancia.

12.4 Álgebra Relacional.

Consiste de un conjunto de operadores de alto nivel que operan sobre relaciones. Cada uno de estos operadores toma una o dos relaciones como entrada y produce una nueva relación como salida (propiedad de clausura).

Codd definió un conjunto de 8 operadores, los que se describen a continuación.

- 1. Restricción. Extrae las tuplas especificadas de una relación dada (o sea, restringe la relación sólo a las tuplas que satisfagan una condición especificada).
- 2. Proyección. Extrae los atributos especificados de una relación dada.
- Producto. A partir de dos relaciones especificadas, construye una relación que contiene todas las combinaciones posibles de tuplas, una de cada una de las dos relaciones.
- 4. Unión. Construye una relación formada por todas las tuplas que aparecen en cualquiera de las dos relaciones especificadas.
- 5. Intersección. Construye una relación formada por todas aquellas tuplas que aparecen en las dos relaciones especificadas.
- 6. Diferencia. Construye una relación formada por todas las tuplas de la primera relación que no aparezcan en la segunda de las dos relaciones especificadas.
- 7. Reunión. A partir de dos relaciones especificadas, construye una relación que contiene todas las posibles combinaciones de tuplas, una de cada una de las dos relaciones, tales que las dos tuplas participantes en una combinación dada satisfagan alguna condición especificada.
- 8. División. Toma dos relaciones, una binaria y otra unaria, y construye una relación formada por todos los valores de un atributo de la relación binaria que concuerdan (en el otro atributo) con todos los valores en la relación unaria.

Restricción

Proyección

Reunión

12.5 Normalización.

El diseño de esquemas para generar bases de datos relacionales debe considerar el objetivo de almacenar información sin redundancia innecesaria, pero que a la vez nos permitan recuperar información fácilmente. Una técnica consiste en diseñar esquemas que tengan una forma normal adecuada.

Las propiedades indeseables que trae un mal diseño son básicamente

- · repetición de información
- incapacidad para representar cierta información
- pérdida de información.

Las formas normales, definidas en la teoría relacional, nos permiten evitar que estas propiedades indeseables aparezcan en una base de datos basada en un esquema mal diseñado. Un esquema debe estar a lo menos en tercera forma normal, para que sea aceptable.

Hay que considerar que las reglas de normalización están dirigidas a la prevención de anomalías de actualización e inconsistencias en los datos. Ellas no reflejan ninguna consideración de rendimiento. En cierta forma pueden ser visualizados como orientadas por el supuesto de que todos los atributos no clave serán actualizados frecuentemente.

12.5.1 Formas Normales.

PRIMERA FORMA NORMAL

Una relación está en primera forma normal (1FN) si y sólo si todos los dominios simples subyacentes contienen sólo valores atómicos.

Otra forma de expresar la primera forma normal es decir que todas las ocurrencias de un tipo de registro deben contener el mismo número de campos.

Consideremos el caso de agentes que representan compañías que fabrican productos. Una relación sin normalizar que indique los productos que venden los representantes es:

AGENTE	COMPAÑÍA	PRODUCTO1	PRODUCTO2	1
Caro ²	Ford	auto	camión	
	GM	auto	camión	
Jeria	Ford	auto		
Bravo	Ford			

Una relación que representa la misma situación y no transgrede la primera forma normal sería:

AGENTE	COMPAÑÍA	PRODUCTO
Caro	Ford	auto
Caro	Ford	camión
Caro	GM	auto
Caro	GM	camión
Jeria	Ford	auto
Bravo	Ford	

SEGUNDA FORMA NORMAL

Una relación está en segunda forma normal (2FN) si y sólo si está en 1FN y todos los atributos no clave dependen por completo de la clave primaria.

La segunda forma normal es transgredida cuando un campo no clave es un dato sobre un subconjunto de una clave (compuesta).

Consideremos el siguiente esquema propuesto para un registro de inventario.

ARTÍCULO	BODEGA	CANTIDAD	DIRECCIÓN-BODEGA
AITHOULO	DODLOA	CANTIDAD	DIINEGGIOIN-DODEGA

¹Repetición variable de atributos, n productos.

²Se forma un grupo.

Aquí, la clave está formada por (ARTÍCULO,BODEGA).

Se puede observar fácilmente que DIRECCIÓN-BODEGA es un dato acerca de BODEGA y no de ARTICULO, por lo que no se estaría cumpliendo con la segunda forma normal.

Los problemas básicos de diseño son:

- La dirección de la bodega se repite para cada artículo que se almacena en esa bodega (redundancia).
- Si la dirección de bodega cambia, cada registro que se refiera a un artículo almacenado en esa bodega debe ser actualizado. Debido a la redundancia, los datos pueden llegar a ser inconsistentes, con diferentes registros indicando diferentes direcciones para la misma bodega (integridad).
- Si en algún momento no hubiera partes almacenadas en alguna bodega, no habría un registro para anotar la dirección de la bodega (anomalía).

Para satisfacer la segunda forma normal, el esquema anterior debe ser reemplazado por el siguiente:

ARTÍCULO	BODEGA	CANTIDAD
----------	--------	----------

TERCERA FORMA NORMAL

Una relación está en tercera forma normal (3FN) si y sólo si está en 2FN y todos atributos no clave dependen de manera no transitiva de la clave primaria.

La tercera forma normal es transgredida cuando una propiedad no identificada (no clave) es un dato acerca de otro campo no clave.

⊠Ejemplo. El esquema siguiente no está en 3FN.

EMPLEADO	PADRE	DIRECCIÓN-PADRE

Ahora, el siguiente esquema no transgrede la 3FN.

EMPLEADO	PADRE

PADRE	DIRECCIÓN-PADRE
-------	-----------------

Modelamiento de Datos Página 34

Marcela P. Varas C.

Estas son las tres formas normales básicas, existen además la forma normal de Boyce/Codd, la cuarta forma normal, quinta forma normal.

Un hospital mantiene un sistema de control de drogas en el cual las siguientes características aparecen como las relevantes:

- Las drogas están mantenidas en estantes especiales.
- Las drogas son provistas por distintos proveedores
- Existe un archivo que incorpora datos para permitir la ubicación de los proveedores usuales o alternativos de las drogas.
- Siempre que una droga es usada para una intervención y/o tratamiento, los registros del archivo indicado anteriormente es actualizado.
- Cuando la cantidad de la droga en stock cae bajo un cierto nivel, es puesta en una lista de re-orden. Se revisan los fabricantes de la droga y se ubican el proveedor usual o alternativo para ella y se emite una orden de compra para ella.
- Ocasionalmente pedidos urgentes son hechos por teléfono.
- Las drogas recibidas traen adjunto un recibo el cual es chequeado con los detalles de la droga. El registro de la droga es actualizado y la droga es ubicada en el estante correspondiente.

☑Desarrollo.

Supuestos de Diseño.

Los principales supuestos que soportan la normalización del sistema son los que se indican a continuación.

- 1. Existen Ubicaciones (por ejemplo casilleros) en donde se almacenan todas las versiones de una droga.
- 2. Sólo se almacena a lo más una droga (en todas sus versiones) en una ubicación.
- 3. Una droga y sus versiones es almacenada en una y sólo una ubicación.
- 4. Una droga tiene una o más versiones, las cuales se identifican por un código (versión).
- 5. Una versión es única, y pertenece sólo a una droga.
- 6. No existen dos versiones con el mismo nombre y código para la misma droga.
- 7. Un laboratorio puede producir una o varias versiones de drogas.
- 8. Un laboratorio cuenta con uno o más proveedores.

Modelamiento de Datos Página 35

Marcela P. Varas C.

- 9. Un proveedor representa a uno o más laboratorios.
- 10. Un proveedor distribuye todas las drogas que produce un laboratorio al cual representa.
- 11. Una droga tiene sólo un proveedor usual.
- 12. Todos los proveedores que proveen una droga y no están catalogados como su proveedor usual constituyen sus proveedores alternativos.
- 13. Un proveedor puede ser proveedor usual de ninguna, una o muchas drogas.
- 14. Dos proveedores pueden tener la misma dirección o teléfono.

Relaciones, Atributos y Dominios.

Se constituye el sistema de las siguientes relaciones:

- Ubicación (ubicación, estado)

Objetivo: Contener todas las ubicaciones destinadas para el almacenamiento de las drogas.

ubicación: numérico de largo 4. Varía de 1 a 9999. Único.

estado: caracter de largo 3. Toma valores 'ocu' o 'dis', para indicar ocupado y disponible respectivamente.

Claves candidatas: ubicación.

Clave primaria: ubicación. Claves foráneas: no tiene.

Proveedor (proveedor, nombreproveedor, fono, dirección)

Objetivo: contener la información de los proveedores de drogas del hospital.

proveedor: numérico de largo 4. Varía de 1 a 9999. Único.

nombreproveedor: caracter de largo 35. Nombre de los proveedores. Único.

fono: numérico de largo 7. Varía de 1 a 9999999.

dirección: caracter de largo 50. Dirección de los proveedores.

Claves Candidatas: proveedor, nombreproveedor.

Modelamiento de Datos Página 36

Marcela P. Varas C.

Clave primaria: proveedor.

Claves foráneas: no tiene.

Laboratorio (laboratorio, nombrelaboratorio)

Objetivo: contener la información de los laboratorios que producen drogas que se utilizan en el hospital.

laboratorio: numérico de largo 4. Varía de 1 a 9999. Único.

nombrelaboratorio: caracter de largo 15. Nombre de los laboratorios. Único.

Claves candidatas: laboratorio, nombrelaboratorio.

Clave primaria: laboratorio. Claves foráneas: no tiene.

Droga (droga, nombredroga, stock, stockmin, ubicación, proveedor)

Objetivo: contener la información de las drogas que se utilizan y mantienen en el hospital.

droga: numérico de largo 4. Varía de 1 a 9999. Único.

nombredroga: caracter de largo 10. Nombre de las drogas. Único.

stock: numérico de largo 4. Mayor que 0. Stock actual de la droga.

stockmin: numérico de largo 4. Mayor que 0. Stock mínimo de la droga.

ubicación: numérico de largo 4. Ubicación de la droga. Único.

proveedor: numérico de largo 4. Proveedor usual de la droga. varía de 1 a 9999.

Claves candidatas: droga, nombredroga, ubicación.

Clave primaria: droga

Claves foráneas: ubicación, referencia a ubicación en la relación Ubicación.

proveedor, referencia a proveedor en la relación Proveedor.

Versión (droga, versión, nombreversion, laboratorio)

Objetivo: contener la información de las distintas versiones que existen para cada droga que se utiliza en el hospital.

Modelamiento de Datos

Marcela P. Varas C.

droga: numérico de largo 4. Varía de 1 a 9999.

versión: numérico de largo 4. Varía de 1 a 9999. .

nombreversión: caracter de largo 35. Nombre de las versiones. Único.

laboratorio: numérico de largo 4. Varía de 1 a 9999.

Claves candidatas: (droga, versión), nombreversion.

Clave primaria: (droga, versión)

Claves foráneas: laboratorio, referencia a laboratorio en la relación Laboratorio.

ProvLab (proveedor, laboratorio)

Objetivo: contener la información acerca de cuales son los proveedores de un laboratorio.

proveedor: numérico de largo 4. Varía de 1 a 9999. laboratorio: numérico de largo 4. Varía de 1 a 9999.

Claves candidatas: (proveedor, laboratorio)

Clave primaria: (proveedor, laboratrorio)

Claves foráneas: proveedor, referencia a proveedor en la relación Proveedor

laboratorio, referencia a laboratorio en la relación Laboratorio.

Página 37

Restricciones de Integridad.

Además de las restricciones de integridad de las entidades (claves primarias no nulas), las de integridad referencial para las claves foráneas y las dadas por el dominio de los atributos, se tienen las que se declaran a continuación.

Si un proveedor es proveedor (usual) para una droga, este proveedor debe representar a un laboratorio que produzca una versión de esa droga.

Si una droga tiene una ubicación, entonces el estado de esa ubicación debe ser "ocupado".

Esquema.

Observación.

El formalismo gráfico utilizado explícita la implementación de interrelaciones (del MER) entre relaciones(del modelo Relacional) a través de claves foráneas. Las cardinalidades se representan por la notación pie de gallo, donde | | se utiliza para la cardinalidad (1,1) o

uno es a uno , \bigcirc para la cardinalidad (0,1) o cero o uno, \bigcirc para la cardinalidad (0,n) o cero es a muchos y \nearrow para la cardinalidad (n,1) o muchos es a uno.

13 Redes Semánticas.

Las redes semánticas fueron desarrolladas por quienes trabajan en el área de la inteligencia artificial. Las estructuras básicas de este modelo consisten en nodo y arcos formando una red (un grafo). El objetivo de estas redes es la organización y representación del conocimiento general acerca del mundo.

El objetivo inicial para el desarrollo de las redes semánticas fue el entender el lenguaje natural, más que la clasificación de datos. Otra característica de las redes semánticas es que existen tantas como las necesidades que han tenido diferentes investigadores en diferentes proyectos.

Así, resulta difícil decidir a qué se le llama modelo de datos Red Semántica. Esto se debe a que se han tenido diferentes modelos de datos red semántica que son buenos al representar una realidad específica. Se puede decir entonces que cualquier grafo en el cual los nodos se conecten por medio de arcos se le puede llamar red semántica, siempre que nodos y arcos estén etiquetados.

Para tener semántica en un grafo, se necesita definir cuidadosamente el significado de nodos y arcos, y cómo son usados.

Las primeras redes semánticas usaban diferentes nodos y arcos para representar las asociaciones presentes en la memoria humana. Estas primeras redes fueron poco uniformadas en su estructura, no distinguiendo adecuadamente entre diferentes tipos de nodos y arcos. Por ejemplo, objetos individuales (instancias) y clases de objetos (entidades) coexistían en la misma red semántica. No se tenía una clara diferencia entre los nodos que denotaban instancias y los que denotaban clases, por ejemplo, las siguientes redes semánticas.

13.1 Características de las Redes Semánticas.

- a. Diferencian entre tipos de objetos de las instancias. Así, se llama *clasificación* al proceso de ir de instancias de objetos a tipos de objetos.
- b. Se introduce el concepto de *distancia semántica*, cantidad de arcos que separan un nodo de otro. En otros modelos de datos esta distancia sólo tiene implicancias en la performance, y generalmente no se considera ni tiene ninguna connotación semántica.

En las redes semánticas la distancia puede ser importante, y es usada para localizar objetos poco o muy relacionados, dependiendo de la distancia. En algunos casos se puede disminuir la distancia agregando arcos con ese propósito.

c. En las redes semánticas también se tiene la idea de *partición*: es el contexto de una red, en el sentido de tener una *subred*, así para una tarea o trabajo específico sólo una parte de la red está disponible.

Esta facilidad resulta útil en el momento de realizar búsquedas, ya que se limita el espacio de búsqueda.

d. También se tiene la jerarquía de tipo (u objeto). Los tipos de jerarquías que se tienen en una red semántica son PARTE-DE y ES-UN. La existencia de una jerarquía implica que se permite la *herencia* donde un objeto que pertenece a una clase hereda todas las propiedades de la clase.

La herencia no se refiere a la herencia de atributos y sus valores, sino que también se heredan los tipos de relaciones permitidas para esa clase, esto es, su comportamiento.

Ejemplo. Si un empleado es una persona, y la relación "casado con" es válida para persona, entonces también es válida para Ingeniero, Abogado y Secretaria.

Ejemplo. La representación de que un Empleado trabaja en un Departamento, vista en un modelo ER y Red Semántica.

Modelo E/R

Modelo Red Semántica

13.2 Descripción Formal de Red Semántica.

13.2.1 Estructuras.

Las estructuras de cualquier red semántica consiste de un grafo (Red). La forma en que se distingue entre las diferentes redes y arcos determina el tipo de red semántica, y así mismo el modelamiento de datos para el cual fue creada.

Ejemplo. Se puede tener un modelo de datos red semántica en que los nodos representan cosas (instancias o valores de entidades) y los arcos pueden representar relaciones entre los nodos.

En lo antes dicho se tiene que una unidad de información puede ser considerada ya sea como una cosa (nodo) o hecho (arco). Aquí se procura cierta libertad de interpretación, respecto a qué son arcos y qué son nodos. Una forma de decidir si una unidad es cosa (nodo) o hecho (arco) es preguntarse si más adelante tiene que relacionarse con otra cosa (nodo). Si es así, entonces es nodo.

Los nodos pueden ser caracterizados de acuerdo a las cosas que representan. Una de estas caracterizaciones (no la única) es la que establece que los nodos representan conceptos, eventos, características y valores.

a. Conceptos.

Son constantes para la realidad que se desea representar, y son utilizados para especificar valores (Ejemplo. Juan, la persona Juan)

b. Eventos.

Corresponden a acciones que ocurren en la realidad que se modela. Así, "Juan golpea a Pedro" se puede representar mediante un nodo "golpear" y dos nodos conceptos "Juan" y "Pedro".

Los arcos que conectan nodos eventos y nodos concepto corresponden a los roles que los conceptos juegan en el evento. En el ejemplo, "Juan" es el agente (el que produce el golpe) y "Pedro" el objetivo (el que recibe el golpe).

c. Características.

Son nodos que describen propiedades de un concepto. Corresponden a los atributos de un concepto. Ejemplo: el "peso" de Juan.

d. Valores.

Son nodos correspondientes a dominios de valores. Ejemplo: el peso de Juan es "48 Kg.". Corresponden a los valores que pueden tomar las características.

⋉ Ejercicios.

- a. Juan golpea a Pedro.
- b. Juan pesa 70 Kg.

Genere los esquemas y caracterice cada nodo, según lo visto.

☑ Desarrollo.

Marcela P. Varas C.

Conceptos: Juan, Pedro

Eventos: golpea

Características: peso

Valores: 70 Kg.

En particular, si tuviéramos por ejemplo autos y personas, ambos corresponderían a un tipo de nodo CONCEPTO, y no hay diferencia entre el tipo de nodo Auto y el tipo de nodo Persona.

Complementariamente se agrega la clasificación por CLASES. Así, Juan y Pedro son conceptos que pertenecen a la clase Persona, que es a su vez otro concepto. Para lograr esta pertenencia a clases se usa el arco ES_UN.

Además se tiene el arco PARTE_DE, que permite generar estructuras de composición.

- a. Pedro y Juan son personas.
- b. Las personas tienen brazos.

☑ Desarrollo.

Conceptos: Persona, Pedro, Juan, brazos.

- Las personas tienen dos manos.
- Las manos tienen cinco dedos.
- Pedro y Juan son personas.
- Pedro golpea a Juan.
- Las personas usan ropa.
- Las personas comen conejos.
- Los conejos son mamíferos.
- Las personas son mamíferos.
- Juan tiene una mano.

☑Desarrollo.

Eventos: golpea, usan, comen.

Conceptos: personas, manos, dedos, Pedro, Juan, conejos, mamíferos.

Características: número de manos, número de dedos.

Valores: 2,5,1.

Marcela P. Varas C.

Observación.

En este caso, persona tiene dos manos, pero Juan (que es persona) tiene una, lo que se denota "ocultando" la característica "n. manos" de persona mediante la misma característica de Juan.

14 Modelo de Datos Jerárquico.

La estructura básica de este modelo de datos es el tipo de interrelación padre-hijo entre pares de tipos de registros. En la figura se define una base de datos con cinco tipos de registros (Departamento., Personal Administrativo, Profesor, Estudiante y Curso).

Marcela P. Varas C.

En el modelo Jerárquico se tiene la conexión padre-hijo, y en consecuencia no puede haber un hijo sin un padre (no puede estar desconectado).

Una jerarquía debe obedece la estructura de un árbol. Así, el único nodo sin padre es el nodo raíz. Esto trae otra consecuencia, si se borra el padre también desaparecerán los hijos en la base de datos.

Además hay problemas con las relaciones muchos a muchos: un hijo no puede tener muchos padres, por lo que se debe repetir (duplicación de datos).

➣Ejemplo. Un autor tiene muchos libros escritos, los que a su vez pudieron ser escritos por muchos autores.

☑Existen dos alternativas:

y la base de datos quedaría según el esquema i:

y según el esquema ii:

¿Cuál es mejor? Cada uno sirve para obtener diferente información con mayor facilidad, por lo que la elección será condicionada a las necesidades del problema.