微分 応用問題集

(例題 1)関数 $f(x) = 2x^3 - 3kx^2 + k^2x$ の極大値と極小値との差が 1 となるような

定数 k を求めよ

$$[H] f'(x) = 6x^2 - 6kx + k^2$$

極値を持つ $\leftrightarrow f'(x)$ の判別式 D > 0

$$\frac{D}{4} = (-3k)^2 - 6 \cdot k^2 = 3k^2 > 0 \text{ } \text{\sharp } \text{\flat } k \neq 0$$

$$f'(x) = 0$$
の解 α , β ($\alpha < \beta$)とすると

解と係数の関係から

$$\alpha + \beta = k$$
 , $\alpha\beta = \frac{k^2}{6}$

 $3次関数の<math>x^3$ の係数が正より

 $f(\alpha)$ が極大値、 $f(\beta)$ が極小値となるので

$$f(\alpha) - f(\beta) = (2\alpha^3 - 3k\alpha^2 + k^2\alpha) - (2\beta^3 - 3k\beta^2 + k^2\beta)$$

$$= 2(\alpha^3 - \beta^3) - 3k(\alpha^2 - \beta^2) + k^2(\alpha - \beta)$$

$$= (\alpha - \beta)\{2(\alpha^2 + \alpha\beta + \beta^2) - 3k(\alpha + \beta) + k^2\}$$

$$= (\alpha - \beta)\{2(\alpha + \beta)^2 - 2\alpha\beta - 3k(\alpha + \beta) + k^2\}$$

$$\alpha - \beta = -\frac{|k|}{\sqrt{3}} \left(\alpha < \beta \ \ \ \ \ \right)$$

よって

$$f(\alpha) - f(\beta) = -\frac{|k|}{\sqrt{3}} (2k^2 - 2 \cdot \frac{k^2}{6} - 3k \cdot k + k^2)$$
$$= \left| \frac{k}{\sqrt{3}} \right|^3 = 1 \text{ より } \mathbf{k} = \pm \sqrt{3} \left(k \neq 0 \text{ を満たす} \right)$$

(演習)関数 $f(x) = x^3 + x^2 + kx - 1$ の極大値と極小値との差が 4 となるような定数

k を求めよ

[解]

$$f'(x) = 3x^2 + 2x + k$$

$$f'(x) = 0$$
 の解 α , β ($\alpha < \beta$) とすると

解と係数の関係から

$$\alpha + \beta = -\frac{2}{3}$$
, $\alpha\beta = \frac{k}{3}$

3次関数の x^3 の係数が正より

 $f(\alpha)$ が極大値、 $f(\beta)$ が極小値となるので

$$f(\alpha) - f(\beta) = (\alpha^{3} + \alpha^{2} + k\alpha - 1) - (\beta^{3} + \beta^{2} + k\beta - 1)$$

$$= (\alpha^{3} - \beta^{3}) + (\alpha^{2} - \beta^{2}) + k(\alpha - \beta)$$

$$= (\alpha - \beta)\{(\alpha^{2} + \alpha\beta + \beta^{2}) + (\alpha + \beta) + k\}$$

$$= (\alpha - \beta)\{(\alpha + \beta)^{2} - \alpha\beta + (\alpha + \beta) + k\}$$

$$\alpha - \beta = -\frac{2\sqrt{1-3k}}{3} \left(\alpha < \beta \ \ \ \ \) \ \right)$$

よって

$$f(\alpha) - f(\beta) = -\frac{2\sqrt{1-3k}}{3} \left(\frac{4}{9} - \frac{1}{3}k - \frac{2}{3} + k \right) = -\frac{2\sqrt{1-3k}}{3} \cdot \left\{ -\frac{2(1-3k)}{9} \right\} = \frac{4}{27} (1 - 3k)^{\frac{3}{2}} = 4 \ \text{L} \ \text{D}$$

$$(1-3k)^{\frac{3}{2}}=27$$

$$(1-3k)^{\frac{3}{2}}=9^{\frac{3}{2}}$$

$$1 - 3k = 9$$

$$\mathbf{k} = -\frac{8}{3} \left(k < \frac{1}{3}$$
を満たす $\right)$

(例題 2) 関数 $f(x) = x^3 - 6ax^2$ の $0 \le x \le 2$ の最大値・最小値を求めよ

[解] $f'(x) = 3x^2 - 12ax = 3x(x - 4a)$ 極値の候補は x = 0, 4a となる

最大値・最小値を求めるのに候補となるのは極値と端点である

つまり、極値が区間 $0 \le x \le 2$ によって場合分けする

(i)4a<0つまりa<0のとき

増減表は

よって 最大値 8-24a(x=2) 最小値 0(x=0)

x	0		2
f'(x)	0	+	
f(x)	0	7	8 - 24a

(ii) $0 \le 4a \le 2$ つまり $0 \le a \le \frac{1}{2}$ のとき

増減表は

х	0	•••	4a	•••	2
f'(x)	0	_	0	+	
f(x)	0	\ <u></u>	$-32a^{3}$	7	8 - 24a

最大値の候補は0,8-24aよりそこでも場合分けすると

$$0 \le a < \frac{1}{3}$$
のとき 最大値 $8 - 24a \ (x = 2)$ 最小値 $-32a^3 \ (x = 4a)$

$$a = \frac{1}{3}$$
 のとき 最大値 $0 (x = 0, 2)$ 最小値 $-\frac{32}{27} \left(x = \frac{4}{3}\right)$

$$\frac{1}{3} < a \le \frac{1}{2}$$
 のとき 最大値 $\mathbf{0}(x = \mathbf{0})$ 最小値 $-32a^3(x = 4a)$

(iii) 2 < 4a つまり $\frac{1}{2}$ < a のとき

増減表は

よって 最大値 0(x=0) 最小値 8-24a(x=2)

х	0		2
f'(x)	0		
f(x)	0	٧	8 - 24a

(類題 1)p137 4

[解] $f'(x) = 3x^2 - 3a^2 = 3(x - a)(x + a)$ 極値候補は $x = \pm a$ 0 < a < 2 より最大値・最小値の候補となるのは x = a

増減表は

х	0	•••	а	•••	2
f'(x)		_	0	+	
f(x)	0	>	$-2a^{3}$	7	$-6a^2 + 8$

最大値の候補は $0,-6a^2+8$ よりそこで場合分けする

$$0 < a < rac{2\sqrt{3}}{3}$$
 のとき 最大値 $-6a^2 + 8 \ (x = 2)$ 最小値 $-2a^3 \ (x = a)$

$$a = \frac{2\sqrt{3}}{3}$$
 のとき 最大値 $0 (x = 0, 2)$ 最小値 $-2a^3 (x = a)$

$$\frac{2\sqrt{3}}{3} < a < 2$$
 のとき 最大値 $0 (x = 0)$ 最小値 $-2a^3 (x = a)$

(類題 2) a < 0 とする。関数 $f(x) = 2x^3 - 3(a+1)x^2 + 6ax$ の $-2 \le x \le 2$ における

最大値・最小値を求めよ

[解] $f'(x) = 6x^2 - 6(a+1)x + 6a = 6(x-1)(x-a)$ 極値候補は x = 1, a

a < 0 であることを考え、x = a が区間 $-2 \le x \le 2$ に含まれるかで場合分けする

(i) a < -2 のとき

増減表は

x	-2	•••	1	•••	2
f'(x)		_	0	+	
f(x)	-24a - 28	7	3a - 1	7	4

最大値の候補はx = -2,2 a < -2より f(-2) > f(2)

よって 最大値 -24a - 28(x = -2) 最小値 3a - 1(x = 1)

(ii) $-2 \le a < 0$ のとき

増減表は

x	-2	•••	а	•••	1		2
f'(x)		+	0	_	0	+	
f(x)	-24a - 28	7	$-a^3 + 3a^2$	>	3a - 1	7	4

最大値の候補はx = a,2 最小値の候補はx = -2,1

$$-2 \le a < -1$$
 \emptyset $\ge f(a) > f(2), f(-2) > f(1)$

$$a = -1$$
 \emptyset ξ ξ $f(a) = f(2)$, $f(-2) = f(1)$

-1 < a < 0 のとき f(a) < f(2), f(-2) < f(1)

したがって

$$-2 < a < -1$$
 のとき 最大値 $-a^3 + 3a^2 (x = a)$ 最小値 $3a - 1 (x = 1)$

$$a = -1$$
 のとき 最大値 $4(x = a, 2)$ 最小値 $-4(x = -2, 1)$

$$-1 < a < 0$$
 のとき 最大値 $4(x = 2)$ 最小値 $-24a - 28(x = -2)$

(類題 3)p143 7

[解] $f'(x) = 6x^2 - 6ax = 6x(x - a)$ 極値候補は x = 0, a

a > 0 であることを考え、x = a が区間 $-1 \le x \le 4$ に含まれるかで場合分けする

(i)0 < a ≤ 4 のとき

増減表は

x	-1	•••	0	•••	а		4
f'(x)		+	0	_	0	+	
f(x)	-3a - 2	7	0	٧	$-a^3$	7	-48a + 128

最大値の候補はx = 0.4 最小値の候補はx = -1.a

$$a = 2 \mathcal{O}$$
 $\geq f(0) < f(4), f(-1) = f(a)$

$$2 < a < \frac{8}{3}$$
 \emptyset ≥ 3 $f(0) < f(4), f(-1) > f(a)$

$$\frac{8}{3} < a \le 4 \text{ O }$$
 $\ge f(0) > f(4), f(-1) > f(a)$

よって

$$0 < a < 2$$
 のとき 最大値 $-48a + 128(x = 4)$ 最小値 $-3a - 2(x = -1)$

$$a=2$$
 のとき 最大値 $32(x=4)$ 最小値 $-8(x=-1,2)$

$$2 < a < \frac{8}{3}$$
 のとき 最大値 $-48a + 128(x = 4)$ 最小値 $-a^3(x = a)$

$$a = \frac{8}{3}$$
 のとき 最大値 $0 (x = 0, 4)$ 最小値 $-\frac{512}{27} \left(x = \frac{8}{3}\right)$

$$\frac{8}{3} < a \le 4$$
 のとき 最大値 $0 (x = 0)$ 最小値 $-a^3 (x = a)$

(ii)4≤aのとき

増減表は

x	-1	•••	0	•••	4
f'(x)		+	0	_	
f(x)	-3a - 2	7	0	7	-48a + 128

最小値の候補はx = -1,4

 $4 \le a$ のとき f(-1) > f(4)

よって

最大値 0(x = 0) 最小値 -48a + 128(x = 4)