

TOOL PATH PLANNING FOR FACE MILLING OF 3-D SURFACE

Presented by: Aayushi Verma

Roll No.: 18ME02034

Guided by: Dr. Gaurav Bartarya School of Mechanical Sciences,

IIT Bhubaneswar

Tessellated representation

- To fabricate any design, the 3-D model (surface or solid) has to be transferred to STL (Standard Tessellation Language) format.
- The STL file format is generated using a tessellation process, which generates triangles to represent the CAD model.
- The STL model is mathematically sliced by intersecting it with horizontal planes. Each slice represents a cross-section data for the part.

Figure 1: An object and its tessellated representation

- These triangles are described by a set of X, Y and Z coordinates for each of three vertices, and a unit normal vector to indicate which side of the triangle contains the mass.
- STL file can be in ASCII or in binary format.

```
solid u_shape
facet normal 0.000000e+00 0.000000e+00 -1.000000e+00
    outer loop
    vertex 0.000000e+00 5.000000e+01 0.000000e+00
    vertex 1.000000e+02 5.000000e+01 0.000000e+00
    vertex 0.000000e+00 0.000000e+00 0.000000e+00
    endloop
endfacet
```

Fig 2-: STL File and description of ASCII representation format

OBJECTIVE

• To develop a tool path plan using STL format of 3D object by slicing the model.

Reading STL file

Slicing the model

Find the Cutting Plan (Zc)

The program scans STL file, picks the Z-coordinate of all the triangle, compare, and find the top, the bottom of the geometric (Zmin, Zmax), add the slice thickness to Zmin.

Zc = Zmin + slice thickness

Find the Facets that intersect with the Cutting Plan

The program scans STL file to pick one triangle at a time, the Z-coordinate of its three vertices compared with the Z-height of the current plane,

Zmin <= Zc <= Zmax , Zmin, Zmax are in one triangle

Fig. 3- The possible cases for triangle-plane slicing

Fig. 4- Intersection points

Tool Path Algorithm

Let <L1{(X0,Y0),(X1,Y1)},L2{(X0,Y0),(X1,Y1)}Lm{(X0,Y0),(X1,Y1)}> be array of intersecting line segments.

Fig..5- Zc=zmin

Fig..6- Zc=zmax

b) Zc=maxz

Fig.7 a) 3D model of bracket

Fig. 8 a) 3D model of bracket

Fig. 9 a) 3D model of bunny

Fig. 11:- Animation of tool path trajectory

Fig. 10:- 3D representation of tool path lines

FUTURE WORK

- Optimization of an algorithm for slicing of STL file of the 3D object by reducing time-complexity.
- Development of a method to represent the contour formation of each slice with the help of intersection points and normal vector information.