Technische Universität München

Assignment 3: MPI Point-to-Point and One-Sided Communication

Programming of Super Computers

Friedrich Menhorn, Benjamin Rüth, Erik Wannerberg Team 12

December 12, 2015

Contents

1. Provided Implementation and Baseline

- 1.1 Cannon's algorithm
- 1.2 Baseline
- 1.3 Scalability

2. MPI Point-to-Point Communication

- 2.1 MPI Non-Blocking Operations
- 2.2 Optimizations
- 2.3 Scaling

- 3.1 MPI One-Sided Operations
- 3.2 Optimizations
- 3.3 Scaling

1. Provided Implementation and Baseline

- 1.1 Cannon's algorithm
- 1.2 Baseline
- 1.3 Scalability

2. MPI Point-to-Point Communication

- 2.1 MPI Non-Blocking Operations
- 2.2 Optimizations
- 2.3 Scaling

- 3.1 MPI One-Sided Operations
- 3.2 Optimizations
- 3.3 Scaling

Cannon's algorithm

- explain algorithm
- provided implementation

Baseline

Challenges in getting an accurate baseline and changes to the Load-Leveler batch script.

Scalability

- Compute time scalability with fixed 64 processes and varying size of input files.
- MPI time scalability with fixed 64 processes and varying size of input files.
- Differences in scalability between the Sandy Bridge and Haswell architectures.

1. Provided Implementation and Baseline

- 1.1 Cannon's algorithm
- 1.2 Baseline
- 1.3 Scalability

2. MPI Point-to-Point Communication

- 2.1 MPI Non-Blocking Operations
- 2.2 Optimizations
- 2.3 Scaling

- 3.1 MPI One-Sided Operations
- 3.2 Optimizations
- 3.3 Scaling

MPI Non-Blocking Operations

- Send/Receive
 - MPI_Isend
 - MPI_Irecv
- Synchronization
 - MPI_Wait
 - MPI_Probe

Optimizations

- · What is overlap?
 - We do not wait for either task to be completed, but try to do communication and computation at the same time. We are hiding communication time by doing computation in the meantime.
- What is the theoretical maximum overlap that can be achieved?
 Bounds for pure communication time:

$$\max\left(0,\mathit{T}_{\mathrm{MPI}}^{\mathrm{blocking}}-\mathit{T}_{\mathrm{computation}}\right) \leq \mathit{T}_{\mathrm{MPI}}^{\mathrm{non-blocking}} \leq \mathit{T}_{\mathrm{MPI}}^{\mathrm{blocking}}$$

Overheads:

- Copying into and from buffers
- Initialization

Maximum overlap depends on amount of $T_{\text{computation}}$. As soon as $T_{\text{computation}} > T_{\text{MPI}}^{\text{blocking}}$, we can theoretically achieve 100% overlap.

Optimizations (cond.)

Was communication and computation overlap achieved?

Scaling

- Was a speedup observed versus the baseline?
- Were there any differences between Sandy Bridge and Haswell nodes?

1. Provided Implementation and Baseline

- 1.1 Cannon's algorithm
- 1.2 Baseline
- 1.3 Scalability

2. MPI Point-to-Point Communication

- 2.1 MPI Non-Blocking Operations
- 2.2 Optimizations
- 2.3 Scaling

- 3.1 MPI One-Sided Operations
- 3.2 Optimizations
- 3.3 Scaling

MPI One-Sided Operations

- Initialization
 - MPI_Win_create
 - MPI_Win_free
- Remote Memory Access
 - MPI_Put
 - MPI_Get
 - MPI_Accumulate
- Synchronization
 - MPI_Win_fence
 - MPI_Win_post / MPI_Win_start / MPI_Win_complete / MPI_Win_wait
 - MPI_Win_lock / MPI_Win_unlock

Optimizations

Was communication and computation overlap achieved?

Scaling

- Was a speedup observed versus the baseline?
- Was a speedup observed versus the non-blocking version?
- Were there any differences between Sandy Bridge and Haswell nodes?