

🤦 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15110090303

FCC REPORT

(WIFI)

Applicant: Antel Communications LLC

Address of Applicant: 21 Bennetts Road, Suite 201, Setauket, NY 11733, USA

Equipment Under Test (EUT)

Product Name: smart phone

Model No.: AL501

Trade mark: Avantel

FCC ID: 2AE62AL501

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 23 Nov., 2015

Date of Test: 23 Nov., to 21 Dec., 2015

Date of report issued: 21 Dec., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	21 Dec., 2015	Original

Tested by: Date: 21 Dec., 2015

Test Engineer

Reviewed by: 21 Dec., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5		NERAL INFORMATION	
•			
	5.1	CLIENT INFORMATION	
	5.2 5.3	GENERAL DESCRIPTION OF E.U.T	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6		T RESULTS AND MEASUREMENT DATA	
•			
	6.1	ANTENNA REQUIREMENT:	_
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4 6.5	OCCUPY BANDWIDTHPOWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	67
8		CONSTRUCTIONAL DETAILS	68
_		CUNDIRUCIUNAL DETAILS	h×

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Antel Communications LLC
Address of Applicant:	21 Bennetts Road, Suite 201, Setauket, NY 11733, USA
Manufacturer:	AMER Mobile Technology Co.,LTD
Address of Manufacturer:	17F, Tower B, HuiHai Center, Chuangye Road no.1,Longhua new district, Shenzhen. China.

5.2 General Description of E.U.T.

Product Name:	smart phone
Model No.:	AL501
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.53 dBi
AC adapter:	Model: AL501 Input:100-240V AC, 50/60Hz 0.15A Output:5V DC MAX 1000mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-2150mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

P C Report No: CCIS15110090303

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	

Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2013	11-09-2016	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.53 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.4: 2009				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Fraguency range (MHz)	Limit (d	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30 * Decreases with the logarithn	60	50		
Test procedure	 The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling im The peripheral devices at through a LISN that provi with 50ohm termination. (test setup and photograp) Both sides of A.C. line an interference. In order to fi positions of equipment ar changed according to AN measurement. 	s are connected to the ation network (L.I.S.N.) pedance for the measure also connected to the des a 50ohm/50uH co (Please refer to the blocks). The checked for maximum ind the maximum emisted all of the interface of ISI C63.4: 2009 on correction networks.), which provides a uring equipment. The main power pupling impedance back diagram of the m conducted asion, the relative cables must be		
Test setup:	LISN 40cm		er — AC power		
Test Uncertainty:			±3.28 dB		
Test Instruments:	Refer to section 5.6 for details)			
Test mode:	Refer to section 5.3 for details)			
Test results:	Passed				
		•			

Measurement Data

Neutral:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smart Phone Model : AL501 Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: MT
Remark: Test Mode : Wifi mode

temark								
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
-	MHz	dBu₹	<u>d</u> B		dBu∀	dBu₹	<u>d</u> B	
1	0.160	33.78	0.25	10.78	44.81	65.47	-20.66	QP
1 2 3 4 5 6 7 8 9	0.160	23.56	0.25	10.78	34.59	55.47	-20.88	Average
3	0.274	28.26		10.74	39.26		-21.72	
4	0.274	21.01	0.26	10.74	32.01	50.98	-18.97	Average
5	0.431	29.33	0.26	10.73	40.32	57.24	-16.92	QP
6	0.521	37.02	0.28	10.76	48.06	56.00	-7.94	QP
7	0.521	29.74	0.28	10.76	40.78	46.00	-5.22	Average
8	0.561	26.61	0.25	10.77	37.63	46.00	-8.37	Average
9	0.589	34.77	0.24	10.77	45.78	56.00	-10.22	QP
10	0.589	26.56	0.24	10.77	37.57	46.00	-8.43	Average
11	0.708	22.10	0.18	10.77	33.05	46.00	-12.95	Average
12	0.716	28.86	0.18	10.78	39.82	56.00	-16.18	QP

Line:

Trace: 7

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: Smart Phone EUT Model : AL501 Test Mode : Wifi mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
	MHz	dBu∜	dB	dB	dBu₹	dBu₹	dB	
1	0.155	17.44	0.27	10.78	28.49	55.74	-27.25	Average
2	0.160	32.56	0.27	10.78	43.61	65.47	-21.86	QP
3	0.195	26.43	0.28	10.76	37.47	63.80	-26.33	QP
4	0.195	11.47	0.28	10.76	22.51	53.80	-31.29	Average
5	0.235	25.41	0.27	10.75			-25.83	QP
6	0.274	11.54	0.26	10.74		50.98	-28.44	Average
7	0.546	26.90	0.27	10.76	37.93	56.00	-18.07	QP
1 2 3 4 5 6 7 8 9	0.561	13.58	0.27	10.77	24.62	46.00	-21.38	Average
9	0.679	8.84	0.23	10.77	19.84	46.00	-26.16	Average
10	5.447	6.73	0.30	10.84	17.87			Average
11	6.024	23.34	0.31	10.82	34.47		-25.53	
12	21.715	30.72		10.91	42.03		-17.97	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dDin)	Nesuit
Lowest	12.41	12.17	12.29	11.46		
Middle	12.93	12.02	12.20	11.38	30.00	Pass
Highest	12.28	12.43	12.34	10.68		

Test plot as follows:

Highest channel

Lowest channel

Middle channel

Highest channel

12.29 dBm

Bandwidth

Power

Laurant ab ann

20 MHz

Middle channel

Highest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
1031011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	result
Lowest	10.32	16.56	17.84	35.52		
Middle	10.16	16.08	17.84	35.52	>500	Pass
Highest	8.96	12.80	12.88	35.68		

Test CH		99% Occupy	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Nesuit
Lowest	12.64	16.64	17.76	35.84		
Middle	12.56	16.64	17.76	36.00	N/A	N/A
Highest	11.12	16.00	17.12	35.84		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 27.NOV.2015 17:39:09

Lowest channel

Date: 27.NOV.2015 17:40:39

Middle channel

Date: 27.NOV.2015 17:55:52

Highest channel

Date: 27.NOV.2015 17:28:52

Lowest channel

Date: 27.NOV.2015 17:32:06

Middle channel

Date: 27.NOV.2015 18:28:49

Highest channel

Date: 27.NOV.2015 17:20:50

Lowest channel

Date: 27.NOV.2015 17:24:19

Middle channel

Date: 27.NOV.2015 18:32:19

Highest channel

Test mode: 802.11n(H40)

Date: 27.NOV.2015 17:19:13

Lowest channel

Date: 27.NOV.2015 17:17:16

Middle channel

Date: 27.NOV.2015 17:16:10

Highest channel

99% OBW

Test mode: 802.11b

Date: 27.NOV.2015 18:34:31

Lowest channel

Date: 27.NOV.2015 18:35:01

Middle channel

Date: 27.NOV.2015 18:35:22

Highest channel

Date: 27.NOV.2015 18:35:53

Lowest channel

Date: 27.NOV.2015 18:36:20

Middle channel

Date: 27.NOV.2015 18:36:36

Highest channel

Date: 27.NOV.2015 18:37:05

Lowest channel

Date: 27.NOV.2015 18:37:25

Middle channel

Date: 27.NOV.2015 18:37:48

Highest channel

Page 25 of 68

Test mode: 802.11n(H40)

Date: 27.NOV.2015 18:38:14

Lowest channel

Date: 27.NOV.2015 18:38:35

Middle channel

Date: 27.NOV.2015 18:39:01

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		Power Spec	Limit(dBm)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Result
Lowest	-4.91	-7.80	-5.71	-9.82		
Middle	-5.79	-5.20	-4.15	-8.14	8.00	Pass
Highest	-4.26	-6.33	-5.84	-9.90		

Test plot as follows:

Date: 14.DEC.2015 11:21:00

Lowest channel

Date: 14.DEC.2015 11:21:23

Middle channel

Date: 14.DEC.2015 11:21:49

Highest channel

Date: 14.DEC.2015 11:20:37

Lowest channel

Date: 14.DEC.2015 11:19:40

Middle channel

Date: 14.DEC.2015 11:20:12

Highest channel

Test mode: 802.11n(H20)

Date: 14.DEC.2015 11:22:52

Lowest channel

Date: 14.DEC.2015 11:23:21

Middle channel

Date: 14.DEC.2015 11:23:43

Highest channel

Test mode: 802.11n(H40)

Date: 14.DEC.2015 11:24:16

Lowest channel

Date: 14.DEC.2015 11:24:47

Middle channel

Date: 14.DEC.2015 11:28:29

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	· ·		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Date: 27.NOV.2015 18:53:23

Lowest channel

Date: 27.NOV.2015 19:09:07

Highest channel

Date: 27.NOV.2015 18:54:48

Lowest channel

Date: 27.NOV.2015 19:08:11

Highest channel

802.11n(H20)

Date: 27.NOV.2015 18:56:18

Lowest channel

Highest channel

Date: 27.NOV.2015 19:01:31

Date: 27.NOV.2015 18:59:25

802.11n(H40)

Date: 27.NOV.2015 18:58:28

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

<u></u>	Nadiated Lilission Method									
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
	Test Method:	ANSI C63.10: 2009 and KDB 558074v03r03 section 12.1								
	Test Frequency Range:	2.3GHz to 2.5GHz								
	Test site:	Measurement Distance: 3m								
	Receiver setup:									
	·	Frequency	Detector	RBW	VBW	Remark				
		Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	1226		RMS	1MHz	3MHz	Average Value				
	Limit:	Freque	encv	Limit (dBuV/m @3m)		Remark				
				54.00		Average Value				
		Above 1GHz 74.00				Peak Value				
	Test setun:	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 								
	Test setup:	Artenna Tower Ground fisherona Plane Test Receiver								
	Test Instruments:	Refer to section	5.6 for detail	S						
	Test mode:	Refer to section 5.3 for details								
	Test results:	Passed								
		ı								

802.11b

Test channel: Lowest

Horizontal:

: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : smart phone

Model : AL501

Test mode : WIFI-B-L Mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

21KCAL	u .	Road	Ant enna	Cable	Drasma		Limit	Over	
	Freq	Level					11.77	5-11-7-15-7-7-7-7	
	MHz	dBu∀	dB/m	dB	−−−dB	dBuV/m	dBuV/m	dB	
1 2	2390, 000 2390, 000					54.00 41.76			Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : smart phone

Model : AL501

Test mode : WIFI-B-L Mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Test Engineer: MT REMARK :

nan.	r :	Read	Ant enna	Cable	Presmo		Limit	Over	
	Freq								Remark
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000	19.62	27.58	6.63	0.00	53.83	74.00	-20.17	Peak
2	2390,000	7 21	27.58	6.63	0.00	41.42	54.00	-12.58	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : smart phone

Model : AL501

Test mode : WIFI-B-H Mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

EMAN	w :	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq						Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	d₿	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500	19.72 7.80	27.52 27.52	6.85 6.85	0.00 0.00	54.09 42.17	74.00 54.00	-19.91 -11.83	Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : smart phone

: AL501 Model

Test mode : WIFI-B-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT REMARK :

ЛΑ	<i>v</i> :								
			Antenna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBu∜/m	dBuV/m	dB	
	2483.500	20.06	27.52	6.85	0.00	54.43	74.00	-19.57	Peak
	2483.500	7.81	27.52	6.85	0.00	42.18	54.00	-11.82	Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : smart phone

Model : AL501

Test mode : WIFI-G-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

- Hum		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq		Factor				Line	Limit	Remark	
	MHz	dBuV	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	₫B		
1 2	2390.000 2390.000		27.58 27.58					-17.94 -11.15	Peak Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : smart phone Model : AL501 : WIFI-G-L Mode Test mode

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT

REMA

AJ	: AX	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	—dBu∀		dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000	1300 00 00 10 10 10 10 10	27.58 27.58	2,00,00,000			74.00 54.00		Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : smart phone Model : AL501

Test mode : WIFI-G-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∛	—dB/m	d₿	dB	dBuV/m	dBuV/m	dB		
1	2483, 500 2483, 500									

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : smart phone

Model

: AL501 : WIFI-G-H Mode Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT REMARK :

RK :	Read	Antenna	Cable	Preamn		Limit	Over	
Freq		Factor						
MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBu∀/m	₫B	
2483.500 2483.500								Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : smart phone

Model : AL501

Test mode : WIFI-N20-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT REMARK :

		Read Freq Level				Level			
2	MHz	dBu∛	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000		27.58 27.58			56.22 43.28			Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : smart phone

Model : AL501

Test mode : WIFI-N20-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

MAK	K :	22 3		(202021)	1200		122 200		
	<u> </u>		Ant enna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
8	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2390.000	21.45	27.58	6.63	0.00	55.66	74.00	-18.34	Peak
2	2390,000	8.71	27, 58	6, 63	0.00	42,92	54,00	-11.08	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : smart phone

Model : AL501

: WIFI-N20-H Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Test Engineer: MT REMARK :

-HUTI		Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	₫B	d₿	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500		The second secon				74.00 54.00		Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : smart phone

: AL501 Model

: WIFI-N20-H Mode Test mode Power Rating : AC120V/60Hz

Huni:55% Environment : Temp: 25.5°C

Test Engineer: MT

REMA

u	RK	: Res	dånt enna	Cable	Presmo		Limit	Over	
	Fre		1 Factor						
	MH	z dBu	V dB/m	dB	d₿	dBuV/m	dBuV/m	dB	
	2483.50 2483.50		4 27.52		0.00				Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : smart phone

Model : AL501

Test mode : WIFI-N40-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

Linear	1200	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
	MHz	dBu₹	dB/m	₫₿	dB	dBuV/m	dBuV/m	₫B	
1 2	2390.000 2390.000					54.09 42.65			

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : smart phone

: AL501 Model

: WIFI-N40-L Mode Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT

REMA

Ah	CK :			011	-				
	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	d₿	₫B	dBuV/m	dBuV/m	dB	
	2390.000 2390.000					57.89 42.62			Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : smart phone

: AL501 Model

: WIFI-N40-H Mode Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT

REMARK

	226	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
22	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 50 of 68

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : smart phone

Model : AL501

Test mode : WIFI-N40-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	220	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	─dB/m	dB	dB	dBuV/m	dBuV/m	dB	
	2483.500								
2	2483, 500	9.33	27.52	6.85	0.00	43.70	54.00	-10.30	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009 and KDB558074 section 11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
	Spectrum Analyzer
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Date: 27.NOV.2015 20:44:24

30MHz~25GHz

Middle channel

Date: 27.NOV.2015 20:56:15

Highest channel

Date: 27.NOV.2015 20:42:40

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 27.NOV.2015 20:48:17

Middle channel

Date: 27.NOV.2015 20:57:15

30MHz~25GHz

Highest channel

Date: 27.NOV.2015 20:50:34

Test mode: 802.11n(H20) Lowest channel

Date: 27.NOV.2015 20:51:23

30MHz~25GHz

Middle channel

Date: 27.NOV.2015 20:58:06

30MHz~25GHz

Highest channel

Date: 27.NOV.2015 20:52:03

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 27.NOV.2015 20:52:52

Middle channel

Date: 27.NOV.2015 20:59:24

30MHz~25GHz

Highest channel

Date: 27.NOV.2015 20:53:36

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	09 and 15.205	5					
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement [Distance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
	II Above 1(iHz								
	Above 1G112	Average Value							
Limit:	Freque		Limit (dBuV/	/m @3m)	Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-216MHz 43.5 Quasi								
	216MHz-960MHz 46.0 Quasi-peak								
	960MHz-1GHz 54.0 Quasi-peak								
	Above 1	GHz)	Average Value					
			74.0		Peak Value				
Test Procedure:	the ground degrees to degrees to antenna, we tower. 3. The antendate ground Both horize make the reach search to find the search s	I at a 3 meters determine the vas set 3 meters which was more and height is value and vermeasurement to the rota tab maximum respected embers and width with sion level of the rould be responded to the rota tab maximum respected to the rotatable and with the	chamber. The position of the maximum that the position of the	e table was he highest of the interference of a varie meter to fund a value of the constant of the analysis of the emiter of the analysis of					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : smart phone : AL501 Model : Wifi Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

EMARK	:		*****						
	Freq		Antenna Factor				Limit Line		
-	MHz	dBu₹	$\overline{-dB/n}$	₫₿	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	dB	
1	47.492	41.16	13.41	0.59	29.84	25.32	40.00	-14.68	QP
2	83.522	47.33	9.87	0.87	29.61	28.46	40.00	-11.54	QP
2 3 4 5	89.276	46.25	11.76	0.91	29.57	29.35	43.50	-14.15	QP
4	167.237	47.90	8.87	1.34	29.07	29.04	43.50	-14.46	QP
5	208.580	47.55	10.84	1.42	28.78	31.03	43.50	-12.47	QP
6	284.977	42.32	12.75	1.73	28.48	28.32	46.00	-17.68	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : smart phone Model : AL501 Test mode : Wifi Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu∜	$-\overline{dB/m}$	dB	dB	dBuV/m	dBu√/m	<u>dB</u>	
1	46.503	46.88	13.46	0.57	29.85	31.06	40.00	-8.94	QP
1 2 3 4 5	53.318	46.12	13.12	0.64	29.81	30.07	40.00	-9.93	QP
3	92.139	45.78	12.33	0.92	29.56	29.47	43.50	-14.03	QP
4	170.195	51.75	8.97	1.35	29.05	33.02	43.50	-10.48	QP
5	206.398	48.63	10.77	1.41	28.79	32.02	43.50	-11.48	QP
6	271.325	38.21	12.42	1.69	28.50	23.82	46.00	-22.18	QP

Above 1GHz

Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.52	31.54	10.58	40.22	50.42	74.00	-23.58	Vertical	
4824.00	49.42	31.54	10.58	40.22	51.32	74.00	-22.68	Horizontal	
Test mode: 8	02.11b		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.62	31.54	10.58	40.22	41.52	54.00	-12.48	Vertical	
4824.00	40.53	31.54	10.58	40.22	42.43	54.00	-11.57	Horizontal	

Test mode: 80	02.11b		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.11	31.57	10.64	40.15	48.17	74.00	-25.83	Vertical	
4874.00	45.87	31.57	10.64	40.15	47.93	74.00	-26.07	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.16	31.57	10.64	40.15	39.22	54.00	-14.78	Vertical	
4874.00			10.64	40.15	38.74	54.00	-15.26	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	45.65	31.61	10.70	40.08	47.88	74.00	-26.12	Vertical		
4924.00	46.36	31.61	10.70	40.08	48.59	74.00	-25.41	Horizontal		
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	36.61	31.61	10.70	40.08	38.84	54.00	-15.16	Vertical		
4924.00	37.25	31.61	10.70	40.08	39.48	54.00	-14.52	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.23	31.54	10.58	40.22	50.13	74.00	-23.87	Vertical	
4824.00	49.14	31.54	10.58	40.22	51.04	74.00	-22.96	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	39.54	31.54	10.58	40.22	41.44	54.00	-12.56	Vertical	
4824.00	39.61	31.54	10.58	40.22	41.51	54.00	-12.49	Horizontal	

Test mode: 80	02.11g		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.02	31.57	10.64	40.15	49.08	74.00	-24.92	Vertical	
4874.00	46.63	31.57	10.64	40.15	48.69	74.00	-25.31	Horizontal	
Test mode: 80	02.11g		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.62	31.57	10.64	40.15	40.68	54.00	-13.32	Vertical	
4874.00	37.41	31.57	10.64	40.15	39.47	54.00	-14.53	Horizontal	

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.63	31.61	10.70	40.08	48.86	74.00	-25.14	Vertical
4924.00	47.02	31.61	10.70	40.08	49.25	74.00	-24.75	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.03	31.61	10.70	40.08	39.26	54.00	-14.74	Vertical
4924.00	38.12	31.61	10.70	40.08	40.35	54.00	-13.65	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.21	31.54	10.58	40.22	51.11	74.00	-22.89	Vertical	
4824.00	48.75	31.54	10.58	40.22	50.65	74.00	-23.35	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.01	31.54	10.58	40.22	41.91	54.00	-12.09	Vertical	
4824.00	39.24	31.54	10.58	40.22	41.14	54.00	-12.86	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.51	31.57	10.64	40.15	49.57	74.00	-24.43	Vertical	
4874.00	47.16	31.57	10.64	40.15	49.22	74.00	-24.78	Horizontal	
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.54	31.57	10.64	40.15	40.60	54.00	-13.40	Vertical	
4874.00	38.68	31.57	10.64	40.15	40.74	54.00	-13.26	Horizontal	

Test mode: 80	02.11n(H20)		Test char	nel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.03	31.61	10.70	40.08	49.26	74.00	-24.74	Vertical
4924.00	47.53	31.61	10.70	40.08	49.76	74.00	-24.24	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	38.36	31.61	10.70	40.08	40.59	54.00	-13.41	Vertical
4924.00	38.15	31.61	10.70	40.08	40.38	54.00	-13.62	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	49.24	31.55	10.61	40.19	51.21	74.00	-22.79	Vertical
4844.00	48.72	31.55	10.61	40.19	50.69	74.00	-23.31	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	40.36	31.55	10.61	40.19	42.33	54.00	-11.67	Vertical
4844.00	39.62	31.55	10.61	40.19	41.59	54.00	-12.41	Horizontal

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.25	31.57	10.64	40.15	49.31	74.00	-24.69	Vertical	
4874.00	46.78	31.57	10.64	40.15	48.84	74.00	-25.16	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.62	31.57	10.64	40.15	40.68	54.00	-13.32	Vertical	
4874.00	37.84	31.57	10.64	40.15	39.90	54.00	-14.10	Horizontal	

Test mode: 80	02.11n(H40)		Test char	nel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	48.26	31.59	10.67	40.10	50.42	74.00	-23.58	Vertical
4904.00	48.13	31.59	10.67	40.10	50.29	74.00	-23.71	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Ave	rage	
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polar.
								Polar. Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.