Yuxuan (Effie) Li

liyuxuan@google.com | https://effie-li.github.io

- Research focus: machine and human cognition, model evaluation, interpretability

Education

2019 - 2024 Stanford University, PhD in Cognitive Psychology.

2013 – 2017 Trinity College, BS in Computer Science and Psychology. summa cum laude.

Research Positions

2025 - Research Scientist @ Google DeepMind

2024 summer Research Intern @ Meta

2023 summer Research Intern @ Allen Institute for AI

2017 - 2019 Research Specialist @ UPenn

2016 summer Research Intern @ Columbia Business School

Projects and publications

A learning theory of subgoal choices in transformers and humans

Li, Y., & McClelland, J.L. Learning to decompose: Human-like subgoal preferences emerge in transformers learning graph traversal. *Submitted*.

Li, Y., & McClelland, J.L. Emergent human-like path preferences and implicit subgoal selection in transformers learning graph traversal. *Cognitive Computational Neuroscience.*poster

Generalization and multi-task representation/decomposition in transformers

Li, Y., & McClelland, J.L. Representations and computations in transformers that support generalization on structured tasks. *Transactions on Machine Learning Research. paper, code*

Representation learning for embodied planning

2023 **Li, Y.**, & Weihs, L. Understanding representations pretrained with auxiliary losses for embodied agent planning. *NeurIPS 2023 Generalization in Planning Workshop. paper*

Human decision making and memory

- 2024 **Li, Y.**, Pazdera, J.K., & Kahana, M.J. EEG decoders track memory dynamics. *Nature Communications. paper, code*
- 2023 Kahana, M.J., Lohnas, L.J., Healey, K., . . ., **Li, Y.**, . . ., & Weidemann, C.T. The Penn Electrophysiology of Encoding and Retrieval Study. *JEP: LMC. paper*
- 2022 **Li, Y.,** & McClelland, J.L. A weighted constraint satisfaction approach to human goal-directed decision making. *PLOS Computational Biology. paper, code*
- 2022 Katerman, B.S., Li, Y., Pazdera, J.K., Keane, C., & Kahana, M.J. EEG biomarkers of free recall. NeuroImage. paper
- Grubb, M.A., & Li, Y. Assessing the role of accuracy-based feedback in value-driven attentional capture. *Attention, Perception, & Psychophysics. paper*

Talks and Presentations

- Dec 2024 Li, Y. Emergent task decomposition and subgoal choices in transformers. Mind, Brain, Computation and Technology Seminar Series, Stanford University.
- Mar 2024 Li, Y. Emergent structured computation from learning and its implications for cognitive science and AI. Microsoft Research Lab, Redmond.
- Nov 2023 **Li, Y.** Systematic generalization and emergent structures in transformers trained on structured tasks. *FriSem seminar, Department of Psychology, Stanford University*.
- Apr 2022 Li, Y. A weighted constraint satisfaction approach to human goal-directed decision making. Cognitive Tools Lab, University of California, San Diego.
- Feb 2021 Li, Y. Model-based reinforcement learning and the reinforcement learning framework for human behavior. TA Lecture in PSYCH 209, Stanford University.
- 2020, 2021 **Li, Y.** Building online psychology experiments with jsPsych: a tutorial. *TA Lecture in PSYCH* 251, Stanford University.

Honors and Awards

- 2022 2024 Ric Weiland Graduate Fellowship in the Humanities & Sciences. Stanford University.
- 2013 2017 Phi Beta Kappa, Dean's Scholar (top 5%), Faculty Honors, Holland Scholar. Trinity College.

Teaching and Services

Reviewer CogSci, CCN, NeurIPS, CVPR, TMLR

TA Neural network models of cognition, brain decoding, Experimental methods, developmental psychology, introduction to computing, mathematical foundations of computing

Technical Skills

Programming Python, R, some experience with HTML/CSS/JavaScript

Packages LLM (langchain), deep learning (transformers, pytorch, pytorch-lightning, allenact, einops), experiment management (wandb), machine learning (scikit-learn), data analysis (scipy, numpy, pandas), data visualization (matplotlib), cognitive (neuro)science (mne, ptsa)

Other LaTeX, statistics (linear modeling, generalized linear modeling, mixed-effects models), representation analysis, online behavioral platforms (Prolific)