

# หัวข้อ (ภาษาไทย) ระบบจัดเก็บข้อมูลที่เชื่อมต่อในเครือข่าย หัวข้อ (ภาษาอังกฤษ) NAS for Raspberry Pi

# ผู้จัดทำ

นายศุภชัย เจริญ รหัสนักศึกษา B6306809 นายอทิป ตั้งสวัสดิ์ รหัสนักศึกษา B6307516 นายอนุวัฒน์ ปัสสาพันธ์ รหัสนักศึกษา B6309237 นายพีรพงษ์ จิตรวุฒิโชติ รหัสนักศึกษา B6309886

# โครงงานนี้เป็นส่วนหนึ่งของรายวิชา 523354 ระบบปฏิบัติการ สาขาวิชาวิศวกรรมคอมพิวเตอร์ สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2564

หัวข้อโครงงาน (ภาษาไทย) ระบบจัดเก็บข้อมูลที่เชื่อมต่อในเครือข่าย หัวข้อโครงงาน (ภาษาอังกฤษ) NAS for Raspberry Pi

#### บทคัดย่อ

ระบบจัดเก็บข้อมูลที่เชื่อมต่อในเครือข่าย (Network Attached Storage - NAS) สำหรับ Raspberry Pi เป็น โครงการที่ทำให้เราสามารถใช้ Raspberry Pi เป็นแหล่งจัดเก็บและแชร์ข้อมูลในเครือข่ายได้อย่างมีประสิทธิภาพ. โดยการ เชื่อมต่อฮาร์ดดิสก์ USB หรือ SSD กับ Raspberry Pi, ผู้ใช้สามารถเข้าถึงข้อมูลผ่านทางเครือข่ายภายในบ้านหรือที่ออ ฟิศ.

การติดตั้ง Samba บน Raspberry Pi ช่วยให้เราสร้างและกำหนดค่าการแชร์ไฟล์ในระบบของเรา. ผู้ใช้สามารถเข้าถึง NAS การสร้างผู้ใช้ Samba และการตั้งค่ารหัสผ่านช่วยเพิ่มความปลอดภัยและควบคุมการเข้าถึง.

ด้วยการนำเสนอ NAS สำหรับ Raspberry Pi, เราสามารถให้บริการจัดเก็บข้อมูลในเครือข่ายได้ในที่สะดวกและราคา ประหยัด ทำให้เป็นทางเลือกที่ดีสำหรับผู้ที่ต้องการการจัดเก็บข้อมูลที่มีประสิทธิภาพและง่ายต่อการใช้งาน.

# 1. วัตถุประสงค์

- 1.1. การแชร์ข้อมูลในเครือข่าย ภายในบ้านหรือในออฟิศ
- 1.2. ทำหน้าที่เป็นตัวจัดเก็บข้อมูลสำรอง (backup) ที่สามารถเข้าถึงได้ในกรณีที่จำเป็น
- 1.3. ช่วยให้ผู้ใช้สามารถเข้าถึงไฟล์ของตนจากระยะไกลผ่านทางอินเทอร์เน็ต
- 1.4. ช่วยการจัดเก็บข้อมูลที่มีความปลอกภัย ด้วย Samba

# 2. ทฤษฎีที่เกี่ยวข้อง

#### 2.1. Network Attached Storage (NAS)

NAS เป็นระบบจัดเก็บข้อมูลที่เชื่อมต่อในเครือข่าย ทำให้ผู้ใช้สามารถเข้าถึงข้อมูลผ่านทางเครือข่ายได้ โดย Raspberry Pi ทำหน้าที่เป็นฮาร์ดแวร์ที่เป็นทั้งเซิร์ฟเวอร์และตัวจัดเก็บข้อมูล.

#### 2.2. Samba

Samba เป็นโปรแกรมที่ใช้สำหรับการแชร์ไฟล์และพร็อกซีเดอร์การพิมพ์ในเครือข่าย. การติดตั้ง Samba บน Raspberry Pi ช่วยให้เราสามารถสร้างและกำหนดค่าการแชร์ไฟล์ได้อย่างสะดวก.

#### 2.3. Raspberry Pi

Raspberry Pi เป็นคอมพิวเตอร์เล็กที่มีขนาดกะทัดรัด, ทำให้เป็นทางเลือกที่เหมาะสมสำหรับการสร้าง NAS ที่ มีความพอเพียงและประหยัดพลังงาน.

#### 3. การออกแบบ

#### 3.1. เชื่อมต่อผ่าน SSH

เปิดหน้าต่างทางเทอร์มินัลบนคอมพิวเตอร์ปกติของคุณ ในการเข้าถึง Raspberry Pi ผ่าน SSH ให้รันคำสั่ง ต่อไปนี้

# 3.2. กำหนดค่าการจัดเก็บข้อมูล

ก่อนอื่น เราต้องทำการฟอร์แมตไดรพ์ที่เราต้องการ ในการดูอุปกรณ์จัดเก็บข้อมูลที่เชื่อมต่อกับระบบของคุณใน ขณะนี้ ให้รันคำสั่งต่อไป

#### \$ 1sb1k

จะแสดงผลลัพธ์มาดังนี้

```
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 1.8T 0 disk

mmcblk0 179:0 0 238.8G 0 disk

mmcblk0p1 179:1 0 256M 0 part /boot

mmcblk0p2 179:2 0 238.5G 0 part /
```

คำสั่งนี้บอกถึงอุปกรณ์จัดเก็บข้อมูลที่เชื่อมต่อกับ Raspberry Pi อุปกรณ์ mmcblk0 คือการ์ด microSD ของ อุปกรณ์จัดเก็บข้อมูล USB แรกที่เชื่อมต่อควรปรากฏในรูปแบบ Storage Device A หรือเรียก สั้น ๆ ว่า sda หากเชื่อมต่ออุปกรณ์จัดเก็บข้อมูล USB เพิ่มเติม จะเห็นว่ามีเป็น Storage Device B (sdb) หรือ C (sdc) ฯลฯ

#### 3.3. แบ่งพาร์ติชันไดรฟ์

ถัดไป, ทำการแบ่งพาร์ติชันบนไดรฟ์ เพื่อให้ Raspberry Pi OS รู้จักกับมันเป็นอุปกรณ์จัดเก็บข้อมูลเดียว

# \$ sudo fdisk /dev/sda

#### 3.4. ฟอร์แมตไดรฟ์

ตอนนี้ที่ไดรฟ์ได้รับการแบ่งพาร์ติชันแล้ว, เราต้องทำการฟอร์แมตมันเพื่อให้ Raspberry Pi OS สามารถอ่าน และเขียนข้อมูลลงไป. คำสั่งต่อไปนี้จะทำการฟอร์แมตไดรฟ์ให้กลายเป็นไฟล์ระบบ ext4

## \$ sudo mkfs.ext4 /dev/sda1

#### 3.5. เชื่อมต่อไดรฟ์

ถัดไป, ทำการเชื่อมต่อไดรพ์เพื่อทำให้มันสามารถใช้งานในระบบไฟล์บน Raspberry Pi

#### \$ sudo mount /dev/sda1

และตรวจสอบให้แน่ใจว่าไดรฟ์ถูกเชื่อมต่อหลังจากทุกรอบการเปิดเครื่อง

## \$ sudo nano /etc/fstab

เพิ่มบรรทัดต่อไปนี้ที่ท้ายของไฟล์

# /dev/sda1 /mnt/sda1/ ext4 defaults,noatime 0 1

เพื่อระบุพาร์ติชันที่จะเชื่อมต่อ,ระบุตำแหน่งที่ใครฟ์จะถูกเชื่อมต่อ,ระบุว่าใครฟ์ถูกฟอร์แมตในรูปแบบของไฟล์ ระบบ ext4,

#### 3.6. สร้างโฟลเดอร์สำหรับการแชร์

# \$ sudo mkdir /mnt/sda1/shared

ทำการรันกำสั่งต่อไปต่อไปนี้เพื่อให้สิทธิ์ในการอ่าน.เขียน, และ execute แก่โฟลเดอร์สำหรับผู้ใช้ทั้งหมดบน Raspberry PI

# \$ sudo chmod -R 777 /mnt/sda1/shared

## 3.7. แชร์ใดรฟ์ผ่านเครื่อข่าย

ใช้คำสั่งติดตั้ง Samba เพื่อทำหน้าที่เป็นตัวกลางในการแปลงโปรโตคอมมิวนิเคชันของ Windows ไปยัง รูปแบบที่เข้าใจได้ของ Linux \$ sudo apt install samba samba-common-bin

แล้วบอกให้ Samba แชร์ไดเรกทอรีผ่านทางเครือข่าย เราสามารถให้คำสั่งแก่ Samba ผ่านไฟล์กำหนดค่าของ Samba หรือ smb.conf ให้เปิดไฟล์กำหนด

\$ sudo nano /etc/samba/smb.conf

[shared]
path=/mnt/sda1/shared
writeable=Yes
create mask=0777
directory mask=0777
public=no

รีสตาร์ท Samba เพื่อโหลดการเปลี่ยนแปลงการกำหนดค่า

\$ sudo systemctl restart smbd

3.8. ให้สิทธิ์การเข้าถึงไดรฟ์

ทำการ Grant drive access ให้ User

\$ sudo smbpasswd -a username

3.9. ทำการเข้าถึง Access

From macOS





#### From Window



การเข้าถึงผ่านแอนดรอยและ IOS สามารถโหลดแอปพลิเคชั่นที่มีการเชื่อมต่อผ่านเครือข่ายเพื่อเข้าใช้งานได้

### 4. ผลการดำเนินงาน

การดำเนินงานในการสร้าง NAS (Network Attached Storage) สำหรับ Raspberry Pi ได้ผลลัพธ์ที่น่าพอใจ ผลการดำเนินงานแสดงให้เห็นว่า Raspberry Pi สามารถทำหน้าที่เป็น NAS ได้อย่างมีประสิทธิภาพและเป็นไปตาม วัตถุประสงค์ที่กำหนดไว้. การสร้างระบบนี้ได้รับการตอบรับที่ดีจากการทำงานในเครือข่ายทั้งในบ้านและจาก ระยะไกล.





# 5. สรุปผลการดำเนินงานและข้อเสนอแนะ

# 5.1. สรุปผลการดำเนินงาน

การดำเนินงานในการสร้าง NAS (Network Attached Storage) สำหรับ Raspberry Pi ได้ผลลัพธ์ที่ดีตามที่ คาดหวังตามวัตถุประสงค์ โดยมีประการแน่นอนดังนี้

- การติดตั้งและกำหนดค่า Samba บน Raspberry Pi สำเร็จและทำให้เป็นเซิร์ฟเวอร์ที่สามารถแชร์ไฟล์ ในเครือข่ายได้
- การเชื่อมต่อฮาร์ดดิสก์ USB หรือ SSD เข้ากับ Raspberry Pi ได้ดี และระบบจัดเก็บข้อมูลสามารถใช้ พื้บที่จัดเก็บได้
- NAS ทำหน้าที่เป็นตัวทำสำเนาข้อมูลได้โดยสามารถใช้ Raspberry Pi เป็นทั้งเซิร์ฟเวอร์และสำรอง ข้อมูล
- การสร้างผู้ใช้ Samba และการตั้งรหัสผ่านช่วยเพิ่มความปลอดภัยและควบคุมการเข้าถึงข้อมูล
- NAS สามารถเข้าถึงไฟล์ผ่านทางเครือข่ายได้ ทั้งในบ้านและจากระยะไกลผ่านทางอินเทอร์เน็ต

# 5.2. ปัญหาและข้อเสนอแนะ

- การทดสอบประสิทธิภาพของระบบในสถานการณ์ที่มีการเข้าถึงและใช้งานข้อมูลมากขึ้น
- ควรปรับแต่งความปลอดภัยของระบบโดยการใช้การตั้งรหัสผ่านที่แข็งแรงและพิจารณาให้มีการ เข้ารหัสข้อมูล
- การเพิ่มความสามารถในการให้บริการเพิ่มเติม เช่น การใช้งานเป็นเซิร์ฟเวอร์อื่น ๆ หรือการเพิ่มแอป พลิเคชันเสริม
- การเพิ่มจำนวนในการเข้าถึงเครือข่าย ได้หลายอุปกรณ์

## เอกสารอ้างอิง

- [1] How to build a Raspberry Pi NAS (2024), สืบค้นเมื่อ 19 มกราคม 2567. จาก.

  https://www.raspberrypi.com/tutorials/nas-box-raspberry-pitutorial/?fbclid=IwAR0YTIoECO6SZ5pBxlxEiH-LcwiFrgZCDYX8tIwuOh\_zVWVCrAT5G\_BTkNM
- [2] การสร้าง Network Attached Storage (NAS) , สืบค้นเมื่อ 20 มกราคม 2567. จาก.

  http://www.raspberryhome.net/article/34/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%A

  A%E0%B8%A3%E0%B9%89%E0%B8%B2%E0%B8%87-network-attached-storagenas?fbclid=lwAR1t2J0nltL3y9N9NsPOOO870behEpllgkuU3OzLUtdqVnt7FXGadpgNb3k