Лабораторная работа № 3.2.4 Свободные колебания в электрическом контуре

Рябых Владислав и Исыпов Илья, Б05-905 8 октября 2020 г.

Цель работы: исследование свободных колебаний в электрическом колебательном контуре.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, индуктивность, электронный осциллограф с разделительной панелью, измеритель LCR.

Теория

Рис. 1: Колебательный контур

Основное уравнение колебательного контура

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0 \tag{1}$$

Где $\gamma = \frac{R}{2L}$ — коэффициент затухания, $\omega_0^2 = \frac{1}{LC}$ — собственная частота контура. Решением этого уравнения являются затухающие колебания:

$$I = Ae^{-\gamma t}\cos(\omega t - \theta)$$

Здесь $\omega = \sqrt{\omega_0^2 - \gamma^2}$. Можно записать решение (1) и для напряжения:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta)$$

В контуре со слабым затуханием ($\omega \simeq \omega_0$) верна формула Томпсона для периода:

$$T = \frac{2\pi}{\omega_0} \le \frac{2\pi}{\omega} = 2\pi\sqrt{LC}$$

Режим работы контура, при котором $\gamma = \omega_0$, называется **критическим**. Его сопротивление равно

$$R_{\rm Kp} = 2\sqrt{\frac{L}{C}} \tag{2}$$

Потери затухающих колебаний принято характеризовать через **добротность** и **логарифмический декремент затухания**:

$$Q = 2\pi \frac{W}{\Delta W} = \frac{1}{R} \sqrt{\frac{L}{C}} -$$
Добротность, потери энергии (3)

$$\Theta = \frac{1}{n} \gamma T = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$
 — Лог. декремент, потери амплитуды (4)

Экспериментальная установка

На рис. 2 приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа. Для периодического возбуждения колебаний в контуре используется генератор импульсов

 Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит диодный тиристор D и ограничительный резистор R_1 .

Рис. 2: Схема установки для исследования свободных колебаний

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\simeq 1~\mathrm{MOm}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода <синхроимпульсы> генератора.

Ход работы

Измерение периодов

Проведем измерения при R=0. Будем изменять ёмкость от 0.02 до 0.90 мк Φ , проводя измерения периода по формуле $T_{\rm 9 KC\Pi}=T_0\frac{x}{nx_0}$, где $T_0=0.01$ с, x_0 — расстояние одного импульса, x — расстояние n импульсов. Погрешность $\sigma_x=\sigma_{x_0}=0.1, \sigma_{T_0}=0.001$ с, тогда

$$\sigma_{T_{\text{эксп}}} = T_{\text{эксп}} \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_{x_0}}{x_0}\right)^2 + \left(\frac{\sigma_{T_0}}{T_0}\right)^2}$$

а $T_{\text{теор}} = 2\pi\sqrt{LC}$, где L = 136 мГн, $\sigma_L = 5$ мГн. $\frac{\sigma_C}{C} \approx 0$. Тогда $\sigma_{T_{\text{теор}}} = T_{\text{теор}} \cdot \frac{1}{2} \frac{\sigma_L}{L}$ Результаты измерений приведены в таблице 1.

Построим по данным из таблицы график зависимости $T_{
m skcn}$ от $T_{
m teop},$ см. рис 3

C , мк Φ	n	$T_{ m skc}$ п, мс	$T_{ m Teop},~{ m Mc}$	$\sigma_{T_{\mathfrak{g}_{\mathrm{KCII}}}},\;\mathrm{MC}$	$\sigma_{T_{\mathrm{reop}}},\;\mathrm{MC}$
0.02	32	0.31	0.33	0.03	0.01
0.13	12	0.83	0.84	0.08	0.02
0.24	8	1.25	1.13	0.13	0.03
0.35	7	1.43	1.37	0.14	0.03
0.46	6	1.67	1.57	0.17	0.04
0.57	5	2.00	1.75	0.20	0.04
0.68	5	2.00	1.91	0.20	0.05
0.79	5	2.00	2.06	0.20	0.05
0.90	4	2.50	2.20	0.25	0.05

Таблица 1: результаты измерений периодов

Рис. 3: график зависимости $T_{
m эксп}$ от $T_{
m теор}$

Критическое сопротивление и декремент затухания

Теперь, считая L=200 мГн, вычислим ёмкость. $\nu_0=5$ кГц $\Rightarrow C=\frac{1}{(2\pi\nu_0)^2L}=5$ нФ. Тогда по формуле (2) $R_{\rm kp}=2\sqrt{\frac{L}{C}}\approx 12.6$ кОм. Установим C=5 нФ на магазине

ёмкостей, будем наблюдать картину затухающих колебаний, изменяя R от $0.1R_{\rm kp}$ до $R_{\rm kp}$. При этом сопротивление магазина, при котором колебания становятся апериодическими, примерно равняется $R_{\rm эксп}=6900~{\rm Om}\approx 0.55R_{\rm kp}$.

Теперь, изменяя сопротивление от $0.1R_{\text{эксп}}$ до $0.3R_{\text{эксп}}$, будем измерять амплитуды колебаний, разделенных на n частей, для вычисления декремента по формуле (4). Погрешности амплитуд $\sigma_{U_k} = \sigma_{U_{k+n}} = 0.1$, таким образом $\sigma_{\Theta} = \Theta \sqrt{\left(\frac{\sigma_{U_k}}{U_k}\right)^2 + \left(\frac{\sigma_{U_{k+n}}}{U_{k+n}}\right)^2}$

R, R_{Kp}	R,OM	U_k ,дел	U_{k+n} ,дел	n	Θ	$\frac{1}{\Theta^2}$	$R_{ ext{KOHT}}, ext{Om}$	$\frac{1}{R_{\text{KOHT}}^2}$, 10^{-6}Om^{-2}	$\sigma_{ heta}$	$\sigma_{rac{1}{ heta^2}}$
0.10	690	3.1	0.6	4	0.41	5.93	711	1.98	0.07	2.01
0.13	897	6.2	0.6	4	0.58	2.93	918	1.19	0.10	0.98
0.16	1104	5.0	0.6	3	0.71	2.00	1125	0.79	0.12	0.67
0.19	1311	3.8	0.7	2	0.85	1.40	1332	0.56	0.12	0.41
0.22	1518	6.8	0.9	2	1.01	0.98	1539	0.42	0.11	0.22
0.25	1725	6.4	0.6	2	1.18	0.71	1746	0.33	0.20	0.24
0.28	1932	6.2	0.4	2	1.37	0.53	1953	0.26	0.34	0.27
0.30	2070	6.2	1.5	1	1.42	0.50	2091	0.23	0.10	0.07

Таблица 2: результаты измерений амплитуд

По данным из таблицы $\frac{1}{2}$ построим график зависимости $\frac{1}{\Theta^2}$ от $\frac{1}{R_{\text{конт}}^2}$. См. рис. $\frac{4}{2}$

Если заменить
$$\frac{1}{\Theta^2} = Y$$
, $\frac{1}{R_{\text{конт}}^2} = X$, то получаем, что $\frac{\Delta Y}{\Delta X} = 3.051 \cdot 10^6 \; \text{Ом}^2$. Тогда $R_{\text{кр}} = 2\pi \sqrt{\frac{\Delta Y}{\Delta X}} \approx 10.97 \; \text{кОм}$. Погрешность равна $\sigma_{R_{\text{кр}}} = R_{\text{кр}} \frac{1}{2} \frac{\sigma_a}{a} \approx 0.37 \; \text{кОм}$.

Вычислим теоретическое значение $R_{\rm kp}=2\sqrt{\frac{L}{C}}$, где C=5 нФ, L=136 мГн. Получаем $R_{\rm kp}\approx 10.43$ кОм, погрешность $\sigma_{R_{\rm kp}}=R_{\rm kp}\frac{1}{2}\frac{\sigma_L}{L}\approx 0.29$ кОм.

Добротность

По формуле (3) посчитаем добротность через параметры контура C=5 нФ, L=136 мГн. Погрешность $\sigma_Q=Q\frac{1}{2}\frac{\sigma_L}{L}$

Таким образом получаем:

Рис. 4: график зависимости $\frac{1}{\Theta^2}$ от $\frac{1}{R_{\text{конт}}^2}$

$$R = 2070 \text{ Om}, \qquad Q = 2.49 \pm 0.03$$
 $R = 1725 \text{ Om}, \qquad Q = 2.99 \pm 0.04$ $R = 897 \text{ Om}, \qquad Q = 5.75 \pm 0.07$ $R = 690 \text{ Om}, \qquad Q = 7.48 \pm 0.09$

Теперь сделаем это по формуле $Q = \frac{\pi}{\Theta}$. Данные берём из таблицы 2. Погрешность равна $\sigma_Q = Q \frac{\sigma_{\Theta}}{\Theta}$.

$$\Theta = 1.42, \qquad Q = 2.21 \pm 0.38$$

 $\Theta = 1.18, \qquad Q = 2.66 \pm 0.45$
 $\Theta = 0.58, \qquad Q = 5.41 \pm 0.91$
 $\Theta = 0.41, \qquad Q = 7.66 \pm 1.11$

Теперь возьмём логарифмический декремент затухания, полученный через отношения радиусов спиралей, т.е. $\Theta=\frac{1}{n}\ln\frac{r_k}{r_{k+n}}$. Радиус мы будем измерять, наблюдая

картину фазовых колебаний.

При
$$R = 2070$$
 Ом $r_k = 0.6$, $r_{k+1} = 2.4 \Rightarrow \Theta \approx 1.39$

При
$$R = 1725$$
 Ом $r_k = 0.8$, $r_{k+1} = 2.6 \Rightarrow \Theta \approx 1.18$

При
$$R = 897 \; \text{Ом} \quad r_k = 1.1, \; \; r_{k+2} = 3.4 \; \Rightarrow \; \Theta \approx 0.56$$

При
$$R = 690$$
 Ом $r_k = 1.4, r_{k+2} = 3.6 \Rightarrow \Theta \approx 0.47$

Погрешность считается аналогично формулам выше. Итого получаем для спирали:

$$\Theta = 1.39,$$
 $Q = 2.27 \pm 0.43$
 $\Theta = 1.18,$ $Q = 2.66 \pm 0.56$
 $\Theta = 0.56,$ $Q = 5.57 \pm 0.71$
 $\Theta = 0.47,$ $Q = 6.65 \pm 0.88$

Выводы

В этой работе мы изучили свободные колебания в электрическом контуре: сначала измеряли периоды при $\gamma \approx 0$, затем находили критическое сопротивление и изучали колебательный контур при сопротивлениях порядка $(0.1-0.3)~R_{\rm kp}$. Мы исследовали зависимость логарифмического декремента затухания от сопротивления контура, а также добротности от параметров контура и от декремента.

Таблица 3: Расчет критического сопротивления

T	$R_{ m Kp}$					
	Teop.	Подбор	Граф.			
136 ± 5 м Γ н	(10.43 ± 0.29) кОм	12.6 кОм	(10.97 ± 0.37) кОм			

Таблица 4: Расчет добротности

R	Q					
11	Teop.	$f(\Theta)$	Спираль			
2070 Ом	2.49 ± 0.03	2.21 ± 0.38	2.27 ± 0.43			
1725 Ом	2.99 ± 0.04	2.66 ± 0.45	2.66 ± 0.56			
897 Ом	5.75 ± 0.07	5.41 ± 0.91	5.57 ± 0.71			
690 Ом	7.48 ± 0.09	7.66 ± 1.11	6.65 ± 0.88			

Как можно видеть, полученные результаты совпадают в пределах погрешности. Значение критического сопротивления, полученное подбором, достаточно сильно отклонилось от двух других, потому что в нём мы брали примерное значение L.