Duy Nguyen dcnguyen060899@gmail.com

Berkeley Engineering BerkeleyHaas

UC Berkeley Machine Learning and Artificial Intelligence Professional Certificate

Healthcare Management Data Analysis: Executive Summary

Outline

- Executive Summary
- 2 Key Insights
 - Patient Readmissions
 - Length of Stay
 - Other Observations
- Recommendations
- Next Steps
- Conclusion
- 6 Comprehensive Modelling Insight Report
- 7 Comprehensive Classification Report
- 8 Business Cost Analysis

Executive Summary

- Exploratory data analysis (EDA) of hospital dataset to uncover patterns related to patient readmissions and length of stay.
- Focus on hospital type, ward type, admission type, severity of illness, and other key features.
- Aim: Provide actionable insights for hospital management to enhance patient care and optimize operations.

Total Readmissions by Hospital Type

Figure: Total Readmissions by Hospital Type Code

- Observation: Hospital type 'a' has the highest readmissions.
- ▶ Interpretation: Suggests complex cases or larger capacity.

Total Readmissions by City Code Hospital

Figure: Total Readmissions by City Code Hospital

- Observation: Cities with hospital codes '1' and '2' have the highest readmissions.
- Interpretation: Indicates urban areas with higher patient inflow.

Total Readmissions by Hospital Region

Figure: Total Readmissions by Hospital Region Code

- **▶ Observation**: Regions 'X' and 'Y' have higher readmissions.
- ▶ Interpretation: Suggests regional differences in hospital capacities.

Total Readmissions by Department

Figure: Total Readmissions by Department

- Dbservation: Gynecology department has the highest readmissions.
- ▶ Interpretation: Indicates a need for specialized follow-up care.

Total Readmissions by Ward Type

Figure: Total Readmissions by Ward Type

- **Observation**: Ward type 'R' has the highest readmissions.
- ▶ Interpretation: Suggests higher volume or more complex cases.

Total Readmissions by Ward Facility Code

Figure: Total Readmissions by Ward Facility Code

- ▶ **Observation**: Ward facility code 'F' has the highest readmissions.
- Interpretation: Suggests serving a larger or more critically ill patient population.

Total Readmissions by Type of Admission

Figure: Total Readmissions by Type of Admission

- **Observation**: Trauma admissions have the highest readmissions.
- Interpretation: Reflects the critical nature of trauma patients.

Total Readmissions by Severity of Illness

Figure: Total Readmissions by Severity of Illness

- **Observation**: Moderate severity of illness has the highest readmissions.
- ▶ Interpretation: Indicates ongoing health issues requiring repeated care.

Length of Stay by Hospital Type

Figure: Hospital Type Code vs Length of Stay

- **Observation**: Variability in length of stay across hospital types.
- ▶ Interpretation: Hospital type 'a' handles a broader range of conditions.

Length of Stay by Department

Figure: Department vs Length of Stay

- Observation: Longer stays in surgery and TB & Chest disease departments.
- **▶ Interpretation**: Reflects more severe or complex cases.

Length of Stay by Ward Type

Figure: Ward Type vs Length of Stay

- Observation: Longer stays in ward types 'T' and 'U'.
- ▶ Interpretation: Indicates more critical or long-term care patients.

Length of Stay by City Code Hospital

Figure: City Code Hospital vs Length of Stay

- Observation: Consistent length of stay across city codes with some variability.
- **▶ Interpretation**: Reflects different patient management practices.

Length of Stay by Hospital Region

Figure: Hospital Region Code vs Length of Stay

- Observation: Similar length of stay patterns across regions 'X', 'Y', and 'Z'.
- Interpretation: Indicates standardized patient care and management.

Length of Stay by Type of Admission

Figure: Type of Admission vs Length of Stay

- Observation: Trauma admissions have longer stays.
- ▶ **Interpretation**: Reflects the critical nature of trauma cases.

Length of Stay by Severity of Illness

Figure: Severity of Illness vs Length of Stay

- Observation: Extreme severity of illness leads to longer stays.
- ▶ Interpretation: Requires intensive care and prolonged treatment.

Correlation Matrix

Figure: Correlation Matrix of Selected Numerical Features

- Observation: Positive correlation between visitors and length of stay.
- Interpretation: More visitors may indicate severe conditions.

Distribution of Admission Deposits

Figure: Distribution of Admission Deposit

- Observation: Normal distribution of admission deposits.
- ▶ Interpretation: Indicates standardized billing approach.

Distribution of Visitors with Patients

Figure: Distribution of Visitors with Patients

- ▶ **Observation**: Majority have 0-5 visitors.
- ▶ Interpretation: Reflects social support patterns.

Recommendations

- Focus on High Readmission Departments: Assess gynecology for improvements in follow-up care.
- Address Regional Differences: Ensure uniformity in patient care across regions.
- Enhance Trauma Care Facilities: Provide adequate resources for trauma patients.
- Patient Support Programs: Implement social support and post-discharge follow-ups.

Next Steps

- Deeper analysis into gynecology department predominance.
- Investigate regional differences.
- Develop and test predictive models for length of stay.
- Design and prototype a recommendation system.

EDA Conclusion

- Complex interactions between patient characteristics, hospital features, and length of stay.
- Enhance decision-making, resource allocation, and patient care outcomes.
- Implement strategies to improve operational efficiency and patient satisfaction.

Model Performance Summary

Model	Train Accuracy	Test Accuracy
Dummies Classifier	27.43%	27.64%
Gradient Boosting	41.93%	41.62%
Random Forest	49.68%	42.19%
CatBoost	46.23%	42.84%
XGBoost	45.80%	42.41%
Logistic Regression	39.92%	40.10%

Table: Model Performance Summary

Key Features Influencing Length of Stay

- Visitors with Patient: Significant impact on length of stay.
- Ward Type (Q, P, S): Crucial role in determining length of stay.
- Admission Deposit: Higher deposits correlate with longer stays.
- **Bed Grade**: Reflects quality and type of care received.
- Available Extra Rooms in Hospital: Impacts length of stay.
- > Type of Admission (Emergency, Trauma): Linked to longer stays.
- Severity of Illness (Minor, Extreme, Moderate): Critical factor.
- Hospital Codes and City Codes: Reflect differences in hospital policies and regional healthcare quality.

Visualizations: Gradient Boosting

Figure: Gradient Boosting Feature Importances

Visualizations: Random Forest

Figure: Random Forest Feature Importances

Visualizations: CatBoost

Figure: CatBoost Feature Importances

Visualizations: XGBoost

Figure: XGBoost Feature Importances

Visualizations: Logistic Regression (lbfgs solver)

Figure: Logistic Regression Feature Importances (Ibfgs)

Visualizations: Logistic Regression (quasi-Newton solver)

Figure: Logistic Regression Feature Importances (quasi-Newton)

Insights and Recommendations

- Resource Allocation: Optimize resources based on ward types and severity of illness.
- Visitor Management: Policies around visitor management can influence length of stay.
- Financial Planning: Plan and manage hospital finances based on admission deposits.
- Tailored Care Plans: Personalized care plans based on type of admission and severity of illness.
- Facility Improvements: Invest in hospital facilities to improve patient care and management efficiency.

Baseline Model

Figure: Confusion Matrix Baseline

Baseline Model

Figure: ROC-AUC Baseline

Random Forest

Figure: Confusion Matrix RF

Random Forest

Figure: ROC-AUC RF

Gradient Boosting

Figure: Confusion Matrix GB

Gradient Boosting

Figure: ROC-AUC GB

CatBoost

Figure: Confusion Matrix CatBoost

CatBoost

Figure: ROC-AUC CatBoost

XGBoost

Figure: Confusion Matrix XGBoost

XGBoost

Figure: ROC-AUC XGBoost

Logistic Regression (quasi-Newton)

Figure: Confusion Matrix Logistic Regression (quasi-Newton)

Logistic Regression (quasi-Newton)

Figure: ROC-AUC Logistic Regression (quasi-Newton)

Analysis

- Classification Reports: Varying precision, recall, and F1-scores across classes.
- **Confusion Matrices**: High levels of misclassifications for certain classes.
- ▶ ROC-AUC Curves: High AUC scores (above 0.70) for most classes.

Conclusion and Recommendations

- Model Selection: CatBoost and XGBoost preferred for better accuracy and AUC scores.
- **Feature Engineering**: Focus on classes with lower performance.
- Class Imbalance: Use techniques like oversampling, undersampling, or class weights.
- Hyperparameter Tuning: Further tuning for CatBoost and XGBoost may improve performance.

Assumptions

- Cost of a False Positive (FP): \$100
- Cost of a False Negative (FN): \$500
- Number of Transactions: 100,000,000
- Current System (Baseline Model):
 - False Positive Count: 46,899
 - False Negative Count: 73,397
 - **Accuracy**: 27.64%

Cost Analysis: Random Forest

- False Positives (FP): 14,000
- False Negatives (FN): 40,000
- **Total Cost**: \$21,400,000
- **Savings**: \$28,600,000

Cost Analysis: Gradient Boosting

- False Positives (FP): 16,000
- False Negatives (FN): 38,000
- **Total Cost**: \$20,600,000
- **Savings**: \$29,400,000

Cost Analysis: CatBoost

- False Positives (FP): 15,000
- False Negatives (FN): 35,000
- **Total Cost**: \$19,000,000
- **Savings**: \$31,000,000

Cost Analysis: XGBoost

- False Positives (FP): 13,000
- False Negatives (FN): 37,000
- **Total Cost**: \$19,800,000
- **Savings**: \$30,200,000

Summary

Model	FP Cost	FN Cost	Total Cost	Savings
Random Forest	\$1,400,000	\$20,000,000	\$21,400,000	\$28,600,000
Gradient Boosting	\$1,600,000	\$19,000,000	\$20,600,000	\$29,400,000
CatBoost	\$1,500,000	\$17,500,000	\$19,000,000	\$31,000,000
XGBoost	\$1,300,000	\$18,500,000	\$19,800,000	\$30,200,000

Table: Cost Summary for Each Model

Conclusion

- CatBoost: Highest potential savings (\$31,000,000) by minimizing the cost of false positives and negatives.
- ➤ XGBoost: Significant savings (\$30,200,000).
- Implementing Models: Can lead to substantial cost savings and improve patient care.
- Further Tuning: Continuous monitoring and enhancement of models to optimize performance and maximize benefits.