Zpracování měřených hodnot

Náběh setrvačníku

Graf 1: Závislost proudu setrvačníkem na čase.

Graf 2: Závislost příkonu setrvačníku na čase. - asi zahodíme...

Odpojení setrvačníku

Graf 3: Závislost proudu setrvačníkem na čase.

Graf 4: Závislost výkonu setrvačníku na čase.

Akumulovaná energie a moment hybnosti, dodaná práce

Pro následující výpočty použijeme dle zadání zjednodušení a budeme počítat se Setrvačníky jakožto s plnými válci. Pak tedy moment setrvačnosti vypočteme takto:

$$J = \frac{1}{2}mr^2 = \frac{1}{2} \cdot 9, 3 \cdot \left(\frac{247 \text{ [mm]}}{2 \cdot 1000}\right)^2 = 0,071 \text{ kg} \cdot \text{m}^3$$

Následně vypočteme kinetickou energii:

$$E_k = \frac{1}{2}J\omega^2 = \frac{1}{2} \cdot 0,071 \cdot (2\pi \cdot 10,63)^2 = 158.2 \,\mathrm{J}$$

Pro výpočet práce dodané setrvačníkem je potřeba vypočítat plochu po křivkou závislosti výkonu na čase. Použijeme přibližnou obdélníkovou metodu:

$$W = \int_0^\infty P \, dt \approx \sum_{i=1}^{n-1} \frac{(P_i + P_{i+1}) \cdot (t_{i+1} - t_i)}{2} \quad [J]$$

Číslo	m [kg]	d [mm]	$J [kg \cdot m^3]$	E_k [J]	W [J]
1	9,3	247	$7,092 \cdot 10^{-2}$	158,201	65,981
2	8,25	254	$6,653 \cdot 10^{-2}$	137,278	55,664
3	3,05	250	$2,383 \cdot 10^{-2}$	51,456	27,423
4	3,055	165	$1,040 \cdot 10^{-2}$	23,185	15,350

Tabulka 1: Moment setrvačnosti a teoretická i měřená akumulovaná energie.

Materiál setrvačníků

Pro výpočet objemu setrvečníku vycházíme z technických výkresů. Vždy počítám objem plného válce a následně odečtu oba výřezy ve tvaru komolého kužele a díry na šrouby a osu.

$$\rho = \frac{m}{V} = \frac{9.3}{9.823 \cdot 10^{-4}} = 9467.3 \,\mathrm{kg \cdot m^{-3}}$$

Číslo	$V [m^3]$	m [kg]	$\rho \ [\mathrm{kg} \cdot \mathrm{m}^{-3}]$	$\rho_{tab} \ [\mathrm{kg \cdot m^{-3}}]$	Materiál
1	$9,823 \cdot 10^{-4}$	9,3	9467,3	8960	slitina olova
2	$1,176 \cdot 10^{-3}$	8,25	7017,1	7870	železo
3	$1,107 \cdot 10^{-3}$	3,05	2754,5	2700	hliník
4	$4,108 \cdot 10^{-4}$	3,055	7437,3	7870	železo

Tabulka 2: Objemy a materiál setrvačníků

Závěr

V této úloze jsme zkoumali možnosti akumulace energie do kinetocké energie rotujících těles – setrvačníků. Na velikost akukulované energie má vliv moment setrvačnosti setrvačníku a frekvence jeho otáček. Frekvence byla pro všechny naše vzorky srovnatelná, tedy její vliv jsme neověřili, ale hodnoty námi měřené akumulované energie korespondují s vypočtenými momenty setrvačnosti. Stručně řečeno, klíčovou roli zde hraje hmotnost a průměr setrvačníku.

Absolutní čísla ani výpočet účinnosti zde nemá smysl uvádět, jelikož teoretická hodnota kinetické energie je zatížena chybou přibližně 25 % z důvodu zjednodušení v zadání a měřená hodnota energie je zatížena ztrátami, zejména třením, jejich velikost se bude nejspíše měnit v závislosti na frekvenci, proto jejich vliv nelze snadno odečíst.

Z vypočtených objemů jsme také určili materiály jednotlivých setrvačníků, které jsou uvedeny v Tab. 2.