# 《微机原理与接口技术》实验报告

| 姓     | 名:  |             |
|-------|-----|-------------|
| 学     | 号:  |             |
| 专业班级: |     |             |
| 实验名称: |     | 第四次实验       |
| 实验    | 日期: | 2023年11月13日 |

## 备注:

- (1)请将报告电子版发到邮箱 MrSuInterfaceWork@163.com, 文件名: 姓名-学号-班级-微机原理-第 X 次实验. docx。
- (2) 提交的内容: 文档,实验源代码(有几个任务就提交几个源代码)
  - (3) 邮件的主题和文件名同名。
  - (4) 文档排版统一为小四仿宋, 行间距离 1.5 倍行距。
  - (5) 提交日期: 下一次实验之前

# 一、实验目的

- 1) 掌握接口的功能,理解缓冲和锁存概念,熟练掌握接口电路设计技术。
- 2) 掌握常用并行接口芯片(8255A)原理,掌握其接口电路设计技术。
- 3) 掌握工控系统常用外设(LED,开关,数码管,继电器,红外传感器,ADC0809) 原理和应用电路设计技术。

# 二、实验内容

- 1) 设计一个基于红外传感器的安保电路。当红外传感器通道被穿越时(即有人或物体侵入)警报灯亮起。在数码管上显示累计穿越的次数。
- 2) [1的加强版]设计一个基于红外传感器的安保电路。仅当红外传感器通道被从某个方向上穿越时(即有人或物体侵入)警报灯亮起,而从另外一个方向穿越时不报警,视为合法穿越。在数码管上显示累计穿越的次数。
- 3) [1的加强版]设计一个基于红外传感器的安保电路。当红外传感器通道被穿越时(即有人或物体侵入)红色警报灯亮起。在数码管上显示累计穿越的次数。当人或物体离通道还有若干距离时(例如2米,可调)就点亮黄色警报灯

# 三、实验过程和疑难问题解决

### 3.1 红外安保电路设计

#### 3.1.1 概述



#### 3.1.2 红外传感器



红外传感器接在8253芯片的CLK0端口上,提供计数信号供8253计数。

### 3.1.3 继电器控制警报灯



8255芯片的PB0端口接在继电器上,控制WarnLED灯的亮灭。

### 3.1.4 复位开关设计



复位开关提供RESET信号给8255芯片的PC0端口,8255芯片读取PC0端口的值并作出判断。

### 3.1.5 数码管电路



接在8255芯片的PA端口上,通过程序控制对应段的亮灭。(程序见后)

|     | U1          |          |                                     |    |     |
|-----|-------------|----------|-------------------------------------|----|-----|
| 32  | PD          | DT       | $\sqrt{\mathbf{p}(\mathbf{g}_1)}$   | 27 |     |
| 29  | RD          |          | $\frac{\Gamma/R(S1)}{\Gamma N(S0)}$ | 26 |     |
|     | WR          | וע       | EN(S0)                              | 25 |     |
| 28  | 10/14/50    |          | ALE                                 |    |     |
|     | IO/M(S2)    |          |                                     | 35 |     |
| 18  |             |          | .19(S6)                             | 36 |     |
| 24  | <u>INTR</u> |          | 18(S5)                              | 37 |     |
| 17  | INTA        | A        | 17(S4)                              | 38 |     |
| 1 / | NMI         | A        | 16(S3)                              | 36 | _   |
| 2.1 |             |          |                                     | 20 |     |
| 31  | HOLD        |          | A15                                 | 39 |     |
| 30  | HLDA        |          | A14                                 | 2  |     |
| 22  |             |          | A13                                 | 3  |     |
| 22  | READY       | 8088CPU  | A12                                 | 4  |     |
| 23  | TEST        |          | A11                                 | 5  |     |
|     | ILSI        | $\infty$ | A10                                 | 6  |     |
| 33  | MN/MX       | 8        | A10<br>A9                           | 7  | B   |
|     | IVIIN/IVIA  | 8        | A9<br>A8                            | 8  | A   |
| 34  | <del></del> |          | Ao                                  |    |     |
|     | SS0         |          | 4 D.7                               | 9  | DB7 |
| 21  | DEGET       |          | AD7                                 | 10 | DB6 |
|     | RESET       |          | AD6                                 | 11 | DB5 |
| 19  | CT TT       |          | AD5                                 | 12 | DB4 |
|     | CLK         |          | AD4                                 | 13 | DB3 |
| 40  |             |          | AD3                                 | 14 | DB2 |
| 20  | VCC         |          | AD2                                 | 15 | DB1 |
| 1   | GND         |          | AD1                                 | 16 | DB0 |
| 1   | GND         |          | AD0                                 | 10 |     |
|     | 8088        |          |                                     |    |     |
|     | 0000        |          |                                     |    |     |
|     |             |          |                                     |    |     |



与实验二相同 (CPU部分引脚为简单未连接)

#### 3.1.7 8253芯片 (地址: 500H)



计数芯片,读取的数据返还给CPU的AL寄存器。

#### 3.1.8 8255芯片 (地址: 600H)



数据线与CPU连接, PA端口控制数码管, PB端口控制继电器, PC端口检测复位按钮。

#### 3.1.9 控制程序

```
1
   DATA SEGMENT
2
       num_table DB 3Fh, 06h, 5Bh, 4Fh, 66h, 6Dh, 7Dh, 07h, 7Fh, 6Fh, 77h,
    7Ch, 39h, 5Eh, 79h, 71h
3
   DATA END
5
   STACK SEGMENT
6
       DW 128 DUP(0)
7
   STACK ENDS
8
9
    CODE SEGMENT
10
           ; 初始化数据段和堆栈段
11
           MOV AX, DATA
12
           MOV DS, AX
13
       WORKING:
14
           ; 读8253计数芯片的计数值
           MOV DX, 503H
15
           MOV AL, 00100000B; 读计数器0
16
17
           OUT DX, AL
           MOV DX, 500H
18
19
           IN AL, DX
20
           CMP AL, 0
21
           ; 读取到的值为0,说明没有物体通过,继续循环
```

```
22
      JE WORKING
23
       OUTPUT_DIGITAL:
24
          ; 读取到的值不为0,说明有物体通过,输出数码数字
25
          CALL DIGITAL
26
27
       OUTPUT_WARNLED:
28
          MOV DX, 601H
29
          ; PBO输出为1, 控制继电器点亮警告灯
30
          OUT DX, 01H
31
32
       DETECT_BUTTON:
          ; 读取8255的PC端口状态(其中PC0连接到按钮)
33
34
          MOV DX, 602H ; 8255的PC地址
35
          IN AL, DX
          TEST AL, 01H ; 检查PC0位
36
37
          JNZ RESET_WARNLED ; 如果按钮被按下,则跳转到关闭警告灯的代码
38
          JMP WORKING
39
40
      RESET_WARNLED:
41
         ; 关闭警告灯
42
          MOV DX, 601H
          OUT DX, 00H ; 设置PBO为0, 关闭警告灯
43
44
          JMP WORKING
45
46
   CODE ENDS
47
   ; 数码管输出子程序
48
49
   DIGITAL PROC
50
       ; 清除AH, 因为要使用AX作为偏移量
51
       XOR
            AH, AH
52
       MOV
              BX, OFFSET num_table
53
       ; BX = num_table + AL
54
       ADD
            BX, AX
55
56
      : 从查找表中获取对应的数码管表示
57
       MOV AL, [BX]
58
       ;输出到数码管,数码管连接到8255的端口A
59
            DX, 600H
60
       MOV
61
       OUT
            DX, AL
62
   DIGITAL ENDP
63
```

# 四、收获

通过本次实验,我深入理解了接口技术、缓冲和锁存概念的重要性,并熟练掌握了接口电路设计技术。特别是在设计基于红外传感器的安保电路中,我不仅学会了应用常用的并行接口芯片(8255A)原理,还掌握了如何结合工控系统常用外设(如LED,数码管等)进行创新的电路设计。这次实验有效地增强了我的实践技能和理论知识,使我能够更好地理解并应用这些核心技术。