Theta Beta Engineer Project Report

Foundation Color Identifier and Dispenser University of California, Irvine

Akhil Nandhakumar, Allyson Lay, Dalen Avrin Smith, Elizabeth Yancey, Emma Shin, Harmeet Singh, Ival Momoh, Jay Kim, Richard Tokiyeda, Victoria Sun

December -day-, 2025

₁ Contents

2	1	Abstract	1			
3	2	Introduction	2			
4		2.1 Background	2			
5		2.2 Objectives	2			
6	3	System Overview				
7		3.1 Overall Architecture	3			
8	4	Hardware Design and Specifications	4			
9		4.1 Bill of Materials	4			
10		4.2 Sensors, Actuators, Drivers	5			
11		4.3 Electrical Connections and Power Distributions	5			
12		4.4 CAD Models	5			
13		4.5 Methodology	5			
14	5	Software Design	6			
15		5.1 Techstack	6			
16		5.2 Control Logic	6			
17		5.3 Computer Vision Pipeline	7			
18		5.4 Color Correction Algorithm	7			
19		5.5 Foundation Formulation	7			
20		5.6 Raspberry Pi Integration	7			
21		5.7 User Interface	7			
22		5.8 User Manual	7			
23	6	Electrical Systems Design	8			
24		6.1 Circuit Schematic and Breadboard Design	8			
25		6.2 Signal Conditioning and Safety Considerations	8			
26	7	Results and Analysis	g			
27		7.1 Testing Protocol	Ć			
28		7.2 Color Accuracy	Ć			
29		7.3 System Performance	Ć			
30	8	Discussion	10			
31		8.1 Limitations	10			

32	8.2 Future Work	10
33	9 Conclusion	11
34	References	12
35	A Pseudocode Listings	13
36	B Wiring & Safety	15
37	C Data Schemas	16
38	List of Figures	
39	5.1 User Flow Diagram	6
40	A.1 Pseudocode: Image Processing Algorithms	14
41	B.1 Wiring Diagram	15
	List of Tables	4
43	4.1 Key Hardware Elements	4

4 Chapter 1

45 Abstract

The Foundation Identifier and Dispenser aims to develop a machine that is able to extract samples from a picture of a human to determine the shade of their skin, allowing the machine 47 to dispense a corresponding foundation shade. The results produced should be both accurate 48 and reproducable. Equipped with computer vision libraries and color correction algorithms, the system allows the user to take an picture alongside a reference color sheet, which has 50 colors of known values. These captured values are processed to correct both camera bias, 51 and lighting correction so that results may remain consistent regardless of lighting conditions during image capture. The system converts RGB values to LAB values, which are higher in accuracy in physical color mixing, as opposed to RGB, which is used to describe pixel colors. The program calculates how much of each color is needed to recreate the user's skin pigment. These pigments are then dispensed via a mechanical system comprised of a Raspberry Pi, servo motors, and syringes. This project demonstrates an application of computer vision in the cosmetic market to alleviate the burden of overconsumption and promote inclusivity.

- 59 Chapter 2
- [∞] Introduction
- ⁶¹ 2.1 Background
- 62 2.2 Objectives

- 63 Chapter 3
- 54 System Overview
- ₆₅ 3.1 Overall Architecture

66 Chapter 4

67 Hardware Design and Specifications

68 4.1 Bill of Materials

Component	Purpose	Quantity	Price		
Raspberry Pi 5 (4GB RAM)	Primary controller	1	\$66.00		
Raspberry Pi 5 Power Supply	Powers Raspberry Pi	1	\$15.99		
DRV8825 Stepper Driver Module 5PCS	Drives stepper motors	1	\$10.56		
NEMA 17 Pancake Stepper Motor 5PCS	Pushes lead screws	1	\$32.99		
Limit Switch 10PCS	Detects plunger	1	\$5.99		
DC 12V 5A Power Supply	Powers motors	1	\$19.99		
Arducam V3 Camera	Captures samples	1	\$25.00		
Wiring	Connects electrical	Bulk	\$5.00		
Breadboard / Perfboard	Circuit layout	1	\$10.00		
Lead Screw with T8 Brass Nut 2PCS	Pushes on syringe	3	\$13.99		
Lead Screw Coupler 5PCS	Connects shaft to screw	1	\$15.99		
Linear Motion Rod Shaft Guide 2PCS	Syringe alignment	3	\$8.69		
Lead Screw Pillow Block Bearings 3PCS	Rotational support	2	\$8.99		
Plastic Syringes 5PCS	Dispensing containers	1	\$6.99		
Total Estimated Cost					

Table 4.1: Key Hardware Elements.

- ⁶⁹ 4.2 Sensors, Actuators, Drivers
- ₇₀ 4.3 Electrical Connections and Power Distributions
- 4.4 CAD Models
- 72 4.5 Methodology

⁷³ Chapter 5

⁷⁴ Software Design

75 5.1 Techstack

5.2 Control Logic

Figure 5.1: User Flow Diagram

- 5.3 Computer Vision Pipeline
- ⁷⁸ 5.4 Color Correction Algorithm
- ₇₉ 5.5 Foundation Formulation
- 5.6 Raspberry Pi Integration
- 5.7 User Interface
- 5.8 User Manual

- Chapter 6
- **Electrical Systems Design**
- 6.1 Circuit Schematic and Breadboard Design
- 6.2 Signal Conditioning and Safety Considerations

- ⁸⁷ Chapter 7
- Results and Analysis
- 7.1 Testing Protocol
- 90 7.2 Color Accuracy
- ₉₁ 7.3 System Performance

- 92 Chapter 8
- ₃₃ Discussion
- 94 8.1 Limitations
- 95 8.2 Future Work

- 6 Chapter 9
- 97 Conclusion

⁹⁸ References

" Appendix A

Pseudocode Listings

```
1: Color Bias Adjustment and Sampling
def IMAGE_PROCESSING(SAMPLE_PICTURE) :
    #INPUT: SAMPLE_PICTURE - image captured by camera
    if SAMPLE PICTURE is EMPTY/NOT DETECTED :
        RAISE_ERROR "Image captured failed or canceled"
   {\sf SKIN\_SAMPLE} = \textit{List} \ \ {\sf of} \ \ {\sf pixel} \ \ {\sf RGB} \ \ {\sf values} \ \ {\sf that} \ \ {\sf constitute} \ \ {\sf a} \ \ {\sf skin} \ \ {\sf region} \ \ {\sf from} \ \ {\sf SAMPLE\_PICTURE}
   <code>CONTROL_SAMPLE = tist of pixel RGB values that encompass the reference color sheet SAMPLE_PICTURE</code>
    if CONTROL SAMPLE is EMPTY/NOT DETECTED :
        RAISE_ERROR "Contol sheet not detected. Take picture with color reference sheet in a well-lit room."
    # get average gamma-corrected RGB codes for the skin region and control
    SKIN_RGB_AVG = calculate average of SKIN_SAMPLE
   CONTROL_MEASURED_VALUES = list of averages of CONTROL_SAMPLE
   SKIN_LINEAR_RGB = apply reverse gamma-correction to SKIN_RGB_AVG
   {\tt CONTROL\_LINEAR\_RGB = \textit{list} \ of \ linearized} \ {\tt RGB \ codes \ from \ CONTROL\_MEASURED\_VALUES}
  CONTROL_KNOWN_VALUES = load("CONTROL_DATABASE.csv") and linearize the codes
CONTROL_TRANSFORM = find transformation matrix that makes CONTROL_LINEAR_RGB = CONTROL_KNOWN_VALUES * CONTROL_TRANSFORM
  XYZ = apply CONTROL_TRANFORM to SKIN_LINEAR_RGB
  LAB_VALUES = convert XYZ color space to LAB(XYZ)
   for element in LAB_VALUES :
           RAISE_ERROR "color conversion error. take a new picture."
```

Figure A.1: Pseudocode: Image Processing Algorithms.

101 Appendix B

Wiring & Safety

Figure B.1: Wiring Diagram

- 103 Appendix C
- Data Schemas