PODD: An Ontology-driven Data Repository for Collaborative Phenomics Research

Yuan-Fang Li

liyf@itee.uq.edu.au

The eResearch Lab, School of ITEE The University of Queensland

12th International Conference on Asian Digital Libraries – Gold Coast, Australia

Outline

- **1** Introduction
- Related Work
- 3 The PODD Ontology
- Conclusion

Challenges in phenomics research data management

- Data is huge
 - \bullet TPA: 0.5TB/week \sim 25 TB/year

Challenges in phenomics research data management

- Data is huge
 - ullet TPA: 0.5TB/week \sim 25 TB/year
- New platforms/processes/technologies quickly emerge

Challenges in phenomics research data management

- Data is huge
 - ullet TPA: 0.5TB/week \sim 25 TB/year
- New platforms/processes/technologies quickly emerge
- Data needs context
 - Scientific, administrative & other metadata

Challenges in phenomics research data management

- Data is huge
 - ullet TPA: 0.5TB/week \sim 25 TB/year
- New platforms/processes/technologies quickly emerge
- Data needs context
 - Scientific, administrative & other metadata

Repositories for the management of data

Not all questions answered

- Australian Plant Phenomics Facility (APPF)
 - High-throughput (TPA) & high-resolution (HRPPC) centers

- Australian Plant Phenomics Facility (APPF)
 - High-throughput (TPA) & high-resolution (HRPPC) centers
- Australian Phenomics Network (APN)
 - Mouse models, deep imaging and measuring platforms

- Australian Plant Phenomics Facility (APPF)
 - High-throughput (TPA) & high-resolution (HRPPC) centers
- Australian Phenomics Network (APN)
 - Mouse models, deep imaging and measuring platforms
- Atlas of Living Australia (ALA)
 - Biodiversity information portal

Data Management Requirements

Data capturing

Flow Cytometry FACS data

Histopathology Zeiss slide images

Plant imaging Lemnatec images, Flourogroscan images, 3D

imaging

Infrared imaging FLIR images

Chemical measure- Chlorophyll content, Stomatal conductance

ments

Visual observation Manual reports (plant, mouse phenotypes)

...

Data Management Requirements

Metadata capturing

Project proposal, project plan

Investigation Objectives, design

Materials Lines/genotypes, samples, growth conditions

Devices Specs, settings, versions

Processes Workflows, protocols, variations

Measurements Data, images

Analysis Observations, results

Data Management Requirements

Data management tasks

- Data distribution & sharing
- Data publishing
- Access control
- Archival & versioning
- Data discovery & analysis
- Data integration

PODD: an ontology-driven repository

Goals

- Acquisition and storage of large volumes of data
 - Distribution, access control, versioning, etc.
- Data conxtualization
 - Logical organization
 - Provenance tracking
 - Discovery & integration
- Prepare for change
 - Changes in domain model

PODD: an ontology-driven repository

Goals

- Acquisition and storage of large volumes of data
 - Distribution, access control, versioning, etc.
- Data conxtualization
 - Logical organization
 - Provenance tracking
 - Discovery & integration
- Prepare for change
 - Changes in domain model

Approach

- An ontology-driven approach
- Ontologies as the domain model
- Benefits: flexibility & extensibility

Outline

- 1 Introduction
- Related Work
- The PODD Ontology
- Conclusion

Related Work

FuGe – Functional Genomics Experiment

- Material, Protocol, Data, etc.
- Can be extended to support phenomics
- Defined in UML & mapped to database schemas difficult to extend for new concepts

Related Work

FuGe – Functional Genomics Experiment

- Material, Protocol, Data, etc.
- Can be extended to support phenomics
- Defined in UML & mapped to database schemas difficult to extend for new concepts

OBI – Ontology for Biomedical Investigations

- "An integrated ontology for the description of life-science and clinical investigations."
- Comprehensive: 2,600+ classes, 10,000+ axioms
- \times Complex, computationally ($\mathcal{SHOIN}(D)$)

Related Work

Web Ontology Language (OWL)

- Precise, open & extensible exactly what we need!
- Provides core language constructs & vocabularies for expressing complex ontologies – data models
- APIs, query engines & automated reasoners available

Fedora Commons

- Mature open-source digital repository software
- Modular & extensible
- Widely used

Outline

- Introduction
- Related Work
- The PODD Ontology
- Conclusion

The PODD Ontology

Modeling essentials

- Domain concepts OWL classes
- Inter-concept relations OWL predicates & OWL restrictions
- Concrete domain objects OWL Individuals
- Comments, descriptions OWL annotations

The PODD Ontology

Modeling essentials

- Domain concepts OWL classes
- Inter-concept relations OWL predicates & OWL restrictions
- Concrete domain objects OWL Individuals
- Comments, descriptions OWL annotations

Benefits

- Extensibility through inheritance
- Reuse & integration through ontology mapping & ontology annotation
 - Gene Ontology, Plant Ontology, etc.

The PODD Ontology – Overview

Project Principal Investigator (1) Project Administrator (m) Project Member (m) Project Observer (m) Start Date (1) Duration (0..1) Lead Institution (1) Project Status (1) Completion Date (0..1) Publication Status (1)

Core Metadata ID PID URL Link Title Description Creator Creation Date Last Modifier Jast Modifier

The PODD Ontology – An Example

Example

The **Project** concept

- The top-level concept
- Constraints on inter-object relations & attributes

The PODD Ontology – An Example

Example

The **Project** concept

- The top-level concept
- Constraints on inter-object relations & attributes

```
Project \sqsubseteq = 1 \ hasProjectPlan \ \sqcap \ \forall \ hasProjectPlan. ProjectPlan \ \sqsubseteq \geq 1 \ hasInvestigation \ \sqcap \ \forall \ hasInvestigation. Investigation \ \sqsubseteq = 1 \ hasStartDate \ \sqcap \ \forall \ hasStartDate. xsd: date \ \sqsubseteq \leq 1 \ hasPublicationDate \ \sqcap \ \forall \ hasPublicationDate. date
```

• Extensibility from inheritance of OWL classes & predicates

PODD Ontology - Roles

Ontologies drive repository functions

Presentation

Object creation, editing, display, etc.

Storage

Object (de)serialization to/from ontologies

Validation

Validation based on concept constraints

Discovery

- Queries using SPARQL
- Full-text search

The PODD Repository: The High-level Architecture

Outline

- Introduction
- Related Work
- **3** The PODD Ontology
- 4 Conclusion

Conclusion

To recap

- Large amounts of data need to be managed
 - There is a need for data archival, storage & discovery
- Current approaches lacking/inadequate/inflexible
 - Emerging processes, platforms, technologies require a extensible conceptual framework
- An ontology-driven architecture as the foundation of PODD
 - Ontologies as the domain model
 - Extensible & open

Conclusion

Where we are now

- PODD ontology for phenomics research
- Development of basic repository functionality
- Development of PODD web interface

Conclusion

Where we are now

- PODD ontology for phenomics research
- Development of basic repository functionality
- Development of PODD web interface

What's next

- Development of batch data import/export processes
- Development of object discovery services
- Integration with Shibboleth authentication
- Exposing data for discovery
- Integrating with other data sources

THANK YOU!

Acknowledgment

Faith Davies, Gavin Kennedy, Jane Hunter @ eResearch Lab, School of ITEE, UQ