Machine Learning Package

Portfolio de algoritmos de Machine Learning

Sumário

- A validação cruzada permite avaliar de maneira credível o desempenho de um modelo num determinado dataset
- •Iremos implementar a validação cruzada k-fold cross_validate
- A otimização de parâmetros consiste num processo de seleção dos melhores modelos que minimizam o erro
- •Iremos implementar a procura em grelha grid_search_cv

Datasets

- Os datasets estão disponíveis em:
 - https://www.dropbox.com/sh/oas4yru2r9n61hk/AADpRunbqES 44W49gx9deRN5a?dl=0

cross_validate

- Adiciona o módulo cross_validate.py ao sub-package model_selection
- def cross_validate:
 - assinatura/argumentos:
 - model modelo a validar
 - dataset dataset de validação
 - scoring função de score
 - cv número de *folds*
 - test size tamanho do dataset de teste
 - ouput esperado:
 - Um dicionário com os scores de treino e teste
 - algoritmo:
 - Ver slide seguinte

cross_validate

- O algoritmo do cross_validate:
 - 1. Obtém uma seed/random_state usando o np.random.randint
 - 2. Divide o dataset em treino e teste usando a seed gerada anteriormente e o tamanho do dataset de teste
 - 3. Treina o modelo
 - 4. Obtém o score do modelo no dataset de treino. Usa a função de score
 - 5. Obtém o score do modelo no dataset de teste. Usa a função de score
 - 6. Repete os passos anteriores para todos os folds (cv)
- O cross_validate deve retornar um dicionário com as seguintes chaves:
 - seeds: as seeds geradas para cada fold
 - train: os scores do modelo no dataset de treino para cada fold
 - test: os scores do modelo no dataset de teste para cada fold

Teste cross_validate

- cross_validate:
 - 1. Usa o dataset *breast-bin.csv*
 - Usa o sklearn.preprocessing.StandardScaler para standardizar os dataset.
 breast_dataset.X = StandardScaler().fit_transform(breast_dataset.X)
 - 3. Cria o modelo *LogisticRegression*
 - 4. Realiza uma validação cruzada com 5 folds
 - 5. Quais os scores obtidos?

grid_search_cv

- Adiciona o módulo grid_search.py ao sub-package model_selection
- def grid_search_cv:
 - assinatura/argumentos:
 - model modelo a validar
 - dataset dataset de validação
 - parameter_grid os parâmetros para a procura. Dicionário com nome do parâmetro e valores de procura
 - scoring função de score
 - cv número de *folds*
 - test_size tamanho do dataset de teste
 - ouput esperado:
 - Uma lista de dicionários com a combinação dos parâmetros e os scores de treino e teste
 - algoritmo:
 - Ver slide seguinte

grid_search_cv

- O algoritmo do *grid_search*:
 - Verifica se os parâmetros fornecidos existem no modelo.
 Podes usar a função do python hasattr.
 - 2. Obtém o produto cartesiano dos parâmetros fornecidos (todas as combinações possíveis). Podes usar o *itertools.product* para obter todas as combinações.
 - 3. Altera os parâmetros do modelo com uma combinação. Podes usar a função do python *setattr.*
 - 4. Realiza o cross validate com esta combinação
 - 5. Guarda a combinação de parâmetros e os scores obtidos.
 - 6. Repete os passos 3, 4 e 5 para todas as combinações.
- O grid_search deve retornar uma lista de dicionários. Os dicionários devem conter as seguintes chaves:
 - parameters: a combinação de parâmetros
 - seeds: as seeds geradas para cada fold
 - train: os scores do modelo no dataset de treino para cada fold
 - test: os scores do modelo no dataset de teste para cada fold

Teste grid_search_cv

- grid_search_cv:
 - 1. Usa o dataset *breast-bin.csv*
 - Usa o sklearn.preprocessing.StandardScaler para standardizar os dataset.
 - breast_dataset.X = StandardScaler().fit_transform(breast_dataset.X)
 - 3. Cria o modelo *LogisticRegression*
 - 4. Realiza uma procura em grelha com os seguintes parâmetros:
 - l2_penalty: 1, 10
 - alpha: 0.001, 0.0001
 - max_iter: 1000, 2000
 - 5. Podes usar 3 folds para o *cross_validate*
 - 6. Quais os scores obtidos?

Avaliação

- Exercício 8: Adiciona o método randomized_search_cv.
 - O método *randomized_search_cv* implementa uma estratégia de otimização de parâmetros de usando Nº combinações aleatórias. O *randomized_search_cv* avalia apenas um conjunto aleatório de parâmetros retirados de uma distribuição ou conjunto de valores possíveis.
 - 8.1) Considera a estrutura e algoritmo do randomized_search_cv apresentados nos slides seguintes
 - 8.2) Valida a tua implementação seguindo o protocolo:
 - 1. Usa o dataset *breast-bin.csv*
 - 2. Usa o *sklearn.preprocessing.StandardScaler* para standardizar os dataset. breast_dataset.X = StandardScaler().fit_transform(breast_dataset.X)
 - 3. Cria o modelo LogisticRegression
 - 4. Realiza uma procura aleatória com as seguintes distribuições de parâmetros:
 - l2_penalty: distribuição entre 1 e 10 com 10 intervalos iguais (e.g., np.linspace(1, 10, 10))
 - alpha: distribuição entre 0.001 e 0.0001 com 100 intervalos iguais (e.g., np.linspace(0.001, 0.0001, 100))
 - max_iter: distribuição entre 1000 e 2000 com 200 intervalos iguais (e.g., np.linspace(1000, 2000, 200))
 - 5. Podes usar *n* iter de 10 e 3 folds para o cross validate.
 - 6. Quais os scores obtidos?

randomized_search_cv

- Adiciona o módulo randomized_search.py ao sub-package model_selection
- def randomized_search_cv:
 - assinatura/argumentos:
 - model modelo a validar
 - dataset dataset de validação
 - parameter_distribution os parâmetros para a procura. Dicionário com nome do parâmetro e distribuição de valores
 - scoring função de score
 - cv número de *folds*
 - n_iter número de combinações aleatórias de parâmetros
 - test_size tamanho do dataset de teste
 - ouput esperado:
 - Uma lista de dicionários com a combinação dos parâmetros e os scores de treino e teste
 - algoritmo:
 - Ver slide seguinte

randomized_search_cv

- O algoritmo do randomized_search:
 - 1. Verifica se os parâmetros fornecidos existem no modelo.
 - 2. Obtém *n_iter* combinações de parâmetros. Ou seja, se *n_iter* for igual a 10 deves obter 10 combinações dos parâmetros fornecidos. Podes usar a função *np.random.choice* do *numpy* para retirar um valor aleatório da distribuição de valores de cada parâmetro.
 - 3. Altera os parâmetros do modelo com uma combinação.
 - 4. Realiza o *cross_validate* com esta combinação.
 - 5. Guarda a combinação de parâmetros e os scores obtidos.
 - 6. Repete os passos 3, 4 e 5 para todas as combinações.
- O randomized_search deve retornar uma lista de dicionários. Os dicionários devem conter as seguintes chaves:
 - parameters: a combinação de parâmetros
 - seeds: as seeds geradas para cada fold
 - train: os scores do modelo no dataset de treino para cada fold
 - test: os scores do modelo no dataset de teste para cada fold

