1. Premici p in q sta dani z enačbama

$$p: x-1=y=z$$
 in $q: x-1=\frac{y+2}{3}=z-1$.

Poišči točko P na premici p in točko Q na premici q, da bo vektor \overrightarrow{PQ} pravokoten tako na premico p kot na premico q. Poišči še enačbo premice, ki seka premici p in q pod pravim kotom.

- 2. Ravnina Θ ima enačbo 3x 2y + 6z = 1, točka A pa koordinate (4, -1, 6).
 - (a) Ali leži točka A na ravnini Θ ? Če ne, kolikšna je razdalja med točko A in ravnino Θ ?
 - (b) Poišči točko A', ki leži na ravnini Θ in je hkrati najbližja točki A.
 - (c) Poišči še točko A'', ki jo dobimo pri zrcaljenju točke A preko ravnine Θ .
- 3. Ravnina Σ in premica p sta dani z enačbama:

$$\Sigma: 2x - y + 3z = 5$$
, $p: x = \frac{6-y}{2} = z + 1$.

- (a) Poišči koordinate točke T, v kateri se ravnina Σ in premica p sekata.
- (b) Prezrcali premico p preko ravnine Σ . Prezrcaljeno premico zapiši s kanonično enačbo.
- 4. Dane so ravnine Σ_1 , Σ_2 in Σ_3 z enačbami:

$$\Sigma_1: 2x + y + 3z = 3,$$

 $\Sigma_2: 3x - 4y + 2z = 5,$
 $\Sigma_3: x - 2y + z = 3.$

- (a) Poišči parametrizacijo premice p, v kateri se sekata ravnini Σ_2 in Σ_3 .
- (b) Poišči koordinate točke *T*, v kateri se vse tri ravnine sekajo.
- 5. Imamo matrike

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 3 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ in } C = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$$

ter vektorja

$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \text{ in } \mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}.$$

(a) Izračunaj naslednje produkte matrik in vektorjev, če je to mogoče.

$$AB$$
, BA , BC , CB , $(B+C)A$, $A^{\mathsf{T}}A$, AA^{T} , $\mathbf{x}^{\mathsf{T}}\mathbf{y}$, $\mathbf{x}\mathbf{y}$, $\mathbf{x}\mathbf{y}^{\mathsf{T}}$, $A\mathbf{x}$, $B\mathbf{y}$.

(b) Izračunaj B^2 in B^3 . Kako se elementi matrike B^n izražajo z n?

6. Ko matrike L, M in N pomnožimo z vektorjem $\mathbf{x} = [x_1, x_2, x_3]^\mathsf{T} \in \mathbb{R}^3$, dobimo naslednje vektorje

$$L\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 - 3x_1 \end{bmatrix}, \quad M\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_1 + x_2 + x_3 \end{bmatrix} \quad \text{in} \quad N\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ 0 \end{bmatrix}.$$

Poišči matrike L, M in N!