Note of Group Theory

Kaiser University of South China

2025年1月12日

摘要

这一篇笔记是本科阶段学习群论的笔记。

参考文献

[1]	Joseph J. Rotman, An Introduction to the Theory of Groups
[2]	周彬, Lie 群与 Lie 代数
[3]	Pierre Ramond, Group Theory : A Physicist's Survey
[4]	崔建伟, 群论讲义
[5]	A. Das and S. Okubo, Lie Groups and Lie Algebras for Physicists

目录

1	1 有限群 (Finite Group)		
	1.1	群与群乘法	2
	1.2	群同态 (Group Homomorphisms) 与群的直乘	3
	1.3	群的线性表示理论	3
2	表示	论	3
3	李群 (Lie Group)		
4	李代	数 (Lie Algebra)	3

1 有限群 (Finite Group)

1.1 群与群乘法

废话也就不多说,我们直接给出群的定义,并在之后讲解一下为什么要这样去定义 **定义 1** (Definition of a group).

Suppose we give a set $\mathbb{G} = \{g_0, g_1, g_2, \dots\}$ and an operator \cdot , if they satisfy the following properties

1. Closure For every ordered pair of elements, g_i and g_j , there exists a unique element

$$a_i \cdot a_j = a_k \tag{1}$$

for any three i, j, k.

2. Associativity The \cdot operation is associative

$$g_i \cdot (g_j \cdot g_k) = (g_i \cdot g_j) \cdot g_k \tag{2}$$

3. Unit element The set G contains a unique element e(here we will use g_0 to symbol it) such that

$$g_0 \cdot g_i = g_i \cdot g_0 = g_i \tag{3}$$

for all i. In particular, this means that

$$g_0 \cdot g_0 = g_0.$$

4. Inverse element Corresponding to every element g_i , there exists a unique element of G, the inverse $(g_i)^{-1}$ such that

$$g_i \cdot (g_i)^{-1} = (g_i)^{-1} \cdot g_i = g_0$$
 (4)

In particular, this means that

$$g_0 = (g_0)^{-1}$$

then we called the set \mathbb{G} a Group.

同时,我们根据集合 @ 的元素个数

- 1.2 群同态 (Group Homomorphisms) 与群的直乘
- 1.3 群的线性表示理论
- 2 表示论
- 3 李群 (Lie Group)
- 4 李代数 (Lie Algebra)