实验报告

课程名称:	
实验类型:操作实验_ 实验项目名称:实验一: 基于 Neurosurgeon 的云边协同推理实现	<u> </u>
姓名: 学号:	
QQ 号码:	
(高校联合班成员填写: 学校)
实验日期:年月日	
了解云边协同计算的基本原理和架构	

- 一、 实验目的和要求:
 - 了解**云边协同计算**的基本原理和架构
 - 理解深度学习模型**分割推理**的机制和方法
 - 掌握基于 AlexNet 模型的动态切分点选择技术
 - 学习通过网络带宽控制工具进行性能测试的方法
 - 分析不同网络条件下云边协同推理的性能表现

二、实验内容

基于 Neurosurgeon 框架以及 AlexNet 深度学习模型, 根据实验代码库 (https://github.com/csmVIc/edge-cloud-experiment) 完成以下实验

云边协同推理性能测试实验

- ✓ 配置不同的边缘端 CPU 资源, 例如 (0.3, 0.5, 0.6, 0.7)
- ✓ 通过 tc 工具调节网络带宽, 例如 (5mbit/s, 7mbit/s, 10mbit/s)
- ✔ 分析模型结构,测试不同切分点下的端到端推理延迟
- ✓ 分析本地计算时间、数据传输时间和云端计算时间
- ✓ 记录实验内容,找到在哪一种设备以及网络带宽下,云边协同的端到端延迟最低

三、 实验背景

● DNN 云边协同工作

云边协同旨在充分利用云边端资源完成 DNN 任务的推理计算,将整体模型进行划分后,利用终端设备、边缘服务器以及云计算中心的计算资源,将 DNN 划分为多个部

- 分,分别部署在不同设备上进行推理。
 - 1. 充分利用系统中可用的计算资源
 - 2. 降低输入数据的传输开销
- Neurosurgeon 框架介绍

Neurosurgeon 是一个用于深度神经网络(DNN)分区的预测框架,旨在优化移动设备上的 DNN 推理性能。该框架通过在移动设备和云端之间智能地分割神经网络层,来最小化端到端的推理延迟。Neurosurgeon 能够根据网络条件、设备性能和模型结构动态选择最优的切分点,实现云边协同推理的性能优化。

四、主要仪器设备

- 边缘计算设备 高性能边缘设备香橙派
- 云端服务器 高性能边缘设备香橙派模拟
- 软件环境 代码运行环境: PyTorch 部署环境: Kubernetes, Docker.
- 五、 实验题目简答
 - a) 什么是云边协同计算? 它在物联网应用中有哪些优势?
 - b) AlexNet 模型的切分点选择对推理性能有什么影响?请分析你会选择切分点 xxx 的原因?
 - c) 代码中云端和边缘端是使用什么方式来进行通信的?

六、 实验数据记录和处理

tips (实验文件 -> deployment.yaml 中):

1. 调节网络带宽 (调节范围: 1-9mbit)

2. 调节网络资源 (调节范围: 0.2 - 0.8, 一位小数点, 注意 limits 和 requests 设置相同

值)

```
privileged: true
resources:
limits:
cpu: "0.6"
requests:
cpu: "0.6"
env:
```

以下实验记录均需结合屏幕截图,进行文字标注和描述(看完请删除本句,以及以上tips)。

1) 实验环境配置截图

边缘资源配置: 0.6

```
securityContext:
   privileged: true
resources:
   limits:
        cpu: "0.6"
   requests:
        cpu: "0.6"
   env:
        name: PYTHONUNBUFFERED
        value: "1"
   args: ["/bin/bash","-c","tc qdisc add dev eth0 root tbf rate 5mbit burst 32kb codePath: usr/Demoac/.edge/edge-cloud/
ports:
```

边缘带宽配置: 5mbit

2) 元物云平台终端运行截图

edge-t:

```
2025-07-06 16:38:58: websocket connect success
2025-07-06 16:38:58: get bandwidth value: 0.5857340159296119 MB/s
2025-07-06 16:38:58: 再动设置切分点: partition_point = 22
2025-07-06 16:38:58: 最终切分点: partition_point = 22
2025-07-06 16:38:58: short message , model type has been sent successfully
2025-07-06 16:38:58: ŷ备预热中...
2025-07-06 16:38:58: ŷ备预热中...
2025-07-06 16:39:16: CPU Warm Up: 1329:365ms
2025-07-06 16:39:56: pindid pindid
```

cloud-test:

```
edge-test cloud-test

2025-07-16 22:15:52: websocket connect success
2025-07-16 22:15:52: successfully connection :<socket.socket fd=5, family=AddressFamily.AF_INET, t
'10.244.3.161', 53368)>
2025-07-16 22:15:52: get model type successfully.
2025-07-16 22:15:52: get partition point successfully.
2025-07-16 22:16:32: get dege_output and transfer latency successfully.
2025-07-16 22:16:32: short message , transfer latency has been sent successfully
2025-07-16 22:16:32: ②各国各中...
2025-07-16 22:16:32: CPU Warm Up: 0.007ms
2025-07-16 22:16:32: short message , cloud latency has been sent successfully
2025-07-16 22:16:32: short message , cloud latency has been sent successfully
2025-07-16 22:16:32: short message , cloud latency has been sent successfully
2025-07-16 22:16:32: short message , cloud latency has been sent successfully
2025-07-16 22:16:32: short message , cloud latency has been sent successfully
2025-07-16 22:16:32: short message , cloud latency has been sent successfully
```

3) 数据分析记录截图

cpu	带宽	切分点	end-end	本地	传输	云端
0.6	5mbit/s	0	1774.445	0.015	976.728	797.702
0.6	5mbit/s	8	1444.430	727.729	361.846	354.855
0.6	5mbit/s	13	1287.431	1137.941	36.436	113.054
0.6	5mbit/s	22	1327.931	1325.248	2.678	0.011

七、实验结果与分析

通过上述实验和相关资料学习,分别解答以下问题 (看完请删除本句):

● 基于该实验,谈谈你对云边协同推理计算的理解