Exercício 2. Utilize uma única potência para representar as expressões abaixo.

a)
$$5^2 \cdot 5^3 \cdot 5^4 = 5^9$$

b)
$$\frac{3^2 \cdot 3^0 \cdot 3^7}{27}$$
. $= \frac{3^9}{3^3} = 3^6$

c)
$$\frac{4 \cdot 8^2 \cdot 2^3}{16 \cdot 2^{-1}}$$
 = $\frac{2^2 \cdot (2^3)^2 \cdot 2^3}{2^4 \cdot 2^{-1}}$ = $\frac{2^2 \cdot 2^6 \cdot 2^3}{2^4 \cdot 2^{-1}}$ = $\frac{2^{11}}{2^3}$ = $\frac{2^{11}}{2^3}$

d)
$$\frac{a^2 \cdot a^4}{a^3} = \frac{a^3}{a^3} = a^3$$

Exercício 3. Escreva os radicais abaixo na forma de potência, simplificando quando possível.

a)
$$\sqrt[3]{6^9}$$
. = $6^{\frac{9}{3}}$ = 6^{3} = 6^{3} = 6^{3} = 6^{3} = $6 \cdot 6 \cdot 6$

b)
$$\sqrt[5]{(-8)^2}$$
. = $(-8)^{\frac{2}{5}}$ = $[(-2)^3]^{\frac{2}{5}}$ = $(-2)^{6/5}$

c)
$$\sqrt[3]{(\sqrt{9})^4}$$
. $= (\sqrt{9})^{\frac{4}{3}} = (9^{1/2})^{\frac{4}{3}} = 9^{\frac{2}{3}} = (3^2)^{\frac{2}{3}} = 3^{\frac{4}{3}}$
 $= \sqrt[3]{3^4} = 3^{\frac{4}{3}}$

$$= \frac{3}{3} = 3^{4/3}$$

$$d) \left(\sqrt[5]{\left(\frac{2}{3}\right)^3}\right)^{3/2} \cdot = \left(\frac{2}{3}\right)^{3/5} = \left(\frac{2}{3}\right)^6$$

Exercício 5. Seja a função exponencial $f(\mathbb{R}) \to \mathbb{R}$, definida por $f(x) = \left(\frac{1}{3}\right)^x$, determine:

a)
$$f(2)$$
. = $\left(\frac{1}{3}\right)^2 = \frac{1^2}{3^2} = \frac{1}{9}$

- b) f(-2).
- c) $f\left(\frac{1}{2}\right)$.

$$100 > f(k) = \left(\frac{1}{3}\right)^k \Rightarrow \left(\frac{1}{3}\right)^k \leq 100$$

$$\Rightarrow \left(\frac{1}{3}\right)^{k} < 100$$

$$\left(\frac{1}{3}\right)^4 = \frac{1}{3}$$

$$\left(\frac{1}{3}\right)^2 = \frac{1}{9}$$

$$\left(\frac{4}{3}\right)^3 = \frac{1}{27}$$

$$\left(\frac{1}{3}\right)^4 = \frac{1}{81}$$

$$\frac{1}{3} > \frac{1}{9} > \frac{1}{27} > \frac{1}{81} > \cdots > \left(\frac{1}{3}\right)^{2} > \cdots$$

de cres cente:

$$1 < 3 < 9 < 27 < 81 < \dots < \left(\frac{1}{3}\right)^{k} < \dots$$

$$\left(\frac{1}{3}\right)^0 = 1 \qquad = \qquad 0 = 1$$

$$\left(\frac{1}{3}\right)^{-3} = \frac{1}{3^{-3}} = 3^3 = 27$$

$$\left(\frac{1}{3}\right)^{-1} = \frac{1}{3^{-1}} = 3$$

$$\left(\frac{1}{3}\right)^{-2} = \frac{1}{3^{-2}} = 3^2 = 9$$

$$\left(\frac{1}{3}\right)^{-3} = \frac{1^{-3}}{3^{-3}} = 3^3 = 27$$

$$\left(\frac{1}{3}\right)^{-1} = \frac{1}{3^{-1}} = 3$$

$$\left(\frac{1}{3}\right)^{-2} = \frac{1}{3^{-2}} = 3^2 = 9$$

$$\left(\frac{1}{3}\right)^{-5} = \frac{1}{3^{-5}} = 3^5 = 243$$

$$\left(\frac{1}{3}\right)^{-5} = \frac{1^{-5}}{3^{-5}} = 3^5 = 243$$

e) Qual o número
$$x \in \mathbb{R}$$
 tq $f(x) = 100$?

$$\left(\frac{1}{3}\right)^{\chi} = 100$$

$$-5 \uparrow -4$$

$$2^{x} = 8 = 2^{3} \Rightarrow x = 3$$

$$2^{x} = 9 = 3^{2}$$

$$3^{x} = 243 = 3^{5} \Rightarrow x = 5$$

$$\Rightarrow x = \log_{2} 9$$

$$log_a x = y \Leftrightarrow \alpha = x$$

Exercício 13. Luiz ingeriu 500mg de amoxicilina às 8h. Suponha que a meia-vida dessa substância é de aproximadamente 1h.

- a) Determine a massa dessa substância no organismo de Luiz às 9*h*, 10*h*, 11*h*.
- b) Qual é a massa restante no organismo de Luiz após *t* horas da ingestão do remédio?

$$th: \frac{500}{2^t} = 500.2^{-t} = 500.(\frac{1}{2})^t$$