Bayesian Games PhD Microeconomics II

Amrish Patel

University of Gothenburg

Tuesday 16th November 2010

Lecture 3 Readings

- Recommended readings
 - Fudenberg and Tirole (1991), pp 209-234
 - MWG (1995), pp 253-257, pp 282-288
- Further reading
 - Gibbons (1992), pp143-163
 - Gintis (2009), pp121-131
 - Hargreaves-Heap & Varoufakis (2004), pp 60-76
 - Myerson (1991), pp 67-83, 127-136, 163-173
 - Osborne (2004), pp 271-357
 - Osborne & Rubinstein (1994), pp 24-30
 - Vega-Redondo (2003), 117-120, 188-204, 217-221
- Seminal contributions
 - Aumann (Ann. of Stat. 1976) "Agreeing to disagree"
 - Harsanyi (Mang. Sci. 1967-68) "Games with incomplete informat... "
 - Harsanyi (IJGT 1973) "Games with randomly perturbed payoffs..."
 - Mertens & Zamir (*IJGT* 1985) "Formulation of Bayesian analysis..."

Motivation

- Recall one of the early assumptions we made in lec 1
 - Assumption 2: Players have complete information
 - i.e. know all payoff functions
- Is this really true in applications?!
 - Does an employer know how innately productive a worker is?
 - Does the government know people's valuation of a public good?
 - Do you know whether I enjoy being a mean or nice examiner?
 - Does a firm know whether their competitor is low or high cost?
 - Does a car buyer know the true quality of a car?
 - Does an insurance company know how healthy you are?
 - etc...
- Often payoff functions are private information
- Definition: A game of incomplete information is where at least one payoff function is not known by every player.

Example: Market Entry with Incomplete Information

- Simple market entry game with incomplete information
 - Player 1 (incumbent): $S_1 = \{ \text{build new factory, don't build} \}$
 - Player 2 (potential entrant): $S_2 = \{\text{enter, don't enter}\}$
 - Incumbent's cost is private information
 - Sometimes we can use iterative dominance

- 1 always has dominant strategy: B if low cost, DB if high cost
- Let p_H denote 2's prior probability that 1 is high cost
- Considering 2's expected payoff, 2 plays E iff $p_H > 1/2$, solved.

Example: Market Entry with Incomplete Information

Typically iterative dominance does not get us far

- DB still dom strat if high cost, but no dom strat if low cost
- So 1 has to predict whether or not 2 plays E
- Suppose y is the prob 2 plays E
- Examining expected payoffs gives, 1 plays B iff y < 1/2
- So 1 has to predict 2's behaviour to BR and 2 cannot infer 1's actions from knowledge of player 1's possible payoffs alone – stuck!

Harsanyi's Transformation

- Harsanyi (1967/68): transform incomplete info into imperfect info
 - Incomplete info on costs → Imperfect info about "Nature"'s move

- Nature chooses Incumbent's "type" (cost)
- Entrant cannot distinguish between the different types
- Assumption 8: Players have common priors on moves by Nature
- NE of imperf info game is a Bayesian Nash Equilibrium

Bayesian-Nash Equilibrium of Market Entry Game

- Solving for the BNE
 - Know player 1 plays DB if high cost, so just consider low cost:
 - Let x be player 1's probability playing B when cost is low
 - Let y be player 2's probability playing E
 - We've already worked out 1's BR

$$x = \begin{cases} 0 & \text{if } y > 1/2\\ \in [0,1] & \text{if } y = 1/2\\ 1 & \text{if } y < 1/2 \end{cases}$$

Compare 2's expected payoffs to get his BR

$$y = \begin{cases} 0 & \text{if } x > 1/\left[2\left(1 - p_H\right)\right] \\ \in [0, 1] & \text{if } x = 1/\left[2\left(1 - p_H\right)\right] \\ 1 & \text{if } x < 1/\left[2\left(1 - p_H\right)\right] \end{cases}$$

- To identify BNE find (x, y) such that
 - x is optimal for 1 with low cost given 2's strategy
 - y is optimal for 2 given 1's strategy and beliefs p_H
- Two BNE: $(x = 0, y = 1) \ \forall p_H$; $(x = 1, y = 0) \ \text{iff } p_H \le \frac{1}{2}$

The Example and Bayesian Games in General

- Reflect on properties of Bayesian games/example
 - Incomplete information game
 - Player 1's cost private info
 - Introduce "Nature" who chooses "type" first→ imperf info game
 - Nature decided high or low cost for player 1
 - Ex ante probabilities same for all players, common prior assumption
 - Both knew p_H and $(1 p_H)$
 - Nature chooses, endowing players with private info in the interim
 - Player 1 found out high or low cost, player 2 didn't
 - i's strategies in transformed game: action for each of i's poss types
 - Player 1 had an action for high cost and an action for low cost
 - Player 2 had 1 action
 - But if player 1 knows his type why a strategy for each of his types?!
 - Similar logic to extensive form's complete contingent plans... For 1 to BR need to think what 2 will do, 2 does not know cost, so thinks probabilistically given p_H about what 1 would do if high and if low cost.

The Example and Bayesian Games in General

- Reflect on properties of Bayesian games/example
 - A Bayesian Nash equilibrium consists of two things:
 - A strategy profile
 - Beliefs specified for each player about "types" of others
 - ullet Our two BNE, $(s_1^* (cost), s_2^*, p_H)$, were

$$\left(\begin{array}{c} \textit{DB} \text{ if } \textit{cost} = \textit{low} \\ \textit{DB} \text{ if } \textit{cost} = \textit{high} \end{array}, \textit{E}, \forall \textit{p}_{\textit{H}} \right) \& \left(\begin{array}{c} \textit{B} \text{ if } \textit{cost} = \textit{low} \\ \textit{DB} \text{ if } \textit{cost} = \textit{high} \end{array}, \textit{DE}, \textit{p}_{\textit{H}} \leq \frac{1}{2} \right)$$

- A BNE requires each player be maximising E [payoff] given others' strategies and beliefs (accurate on own type and probabilistic on others')
 - 1 knows his type so maximises his E[payoff] given 2's strategy (which depends on p_H)
 - 2 doesn't know 1's type, so maximises E [payoff] given p_H and 1's strategy
- Ex post payoff profile depends on full set of choices (including Nature's)

Bayesian Game Description

- Augment game description with "types" the private info
- Bayesian game description

$$\Gamma^{B} := (N, \{S_{i}\}, \Theta, p(.), \{u_{i}(s, \theta)\})$$

- Players N
- Types Θ , p(.)
 - i's type $\theta_i \in \Theta_i$, a random variable, realisation known only to i
 - Assume $|\Theta_i|$ is finite
 - $p(\theta_1,...,\theta_n)$ is the objective joint prob distribution of $\{\theta_i\}_{i\in N}$
 - Assume $p(\theta_i) > 0$ for all $\theta_i \in \Theta_i$
 - Let $p\left(\theta_{-i}\left|\theta_{i}\right.\right)$ denote i's conditional prob of -i's type given own type
 - Let $\theta = \times_{i \in N} \theta_i$ and $\Theta = \times_{i \in N} \Theta_i$
 - ullet Everything is common knowledge except realised $\{ heta_i\}_{i\in N}$
- Strategies S_i
 - Choices over actions (contingent plans for extensive form, later)
 - $s \in S$, usual definitions of strategy profiles
- Payoffs $u_i(s, \theta)$

Bayesian Nash Equilibrium

- Harsanyi transformation Nature chooses θ_i first
 - Strategies can be conditioned on θ_i
 - A pure strategy is a function of type $s_i(\theta_i)$
 - Where $s_i\left(.\right) \in S_i^{\Theta_i}$, all maps $\Theta_i \to S_i$
 - Strategy profiles, $s(.) \in S^{\Theta}$, defined in usual way
 - **Definition:** s(.) is a **Bayes-Nash equilibrium** if for each i

$$s_{i}\left(.\right) \in \operatorname*{arg\,max}_{s_{i}^{\prime} \in S_{i}^{\Theta_{i}}} \sum_{\theta_{i}} p\left(\theta_{i}, \theta_{-i}\right) u_{i}\left(s_{i}^{\prime}\left(\theta_{i}\right), s_{-i}\left(\theta_{-i}\right), \left(\theta_{i}, \theta_{-i}\right)\right).$$

• Since $p(\theta_i) > 0$ for all i, ex ante and interim conditions equivalent

$$s_{i}\left(\theta_{i}\right) \in \operatorname*{arg\,max}_{s' \in S_{i}} p\left(\theta_{-i}\left|\theta_{i}\right.\right) u_{i}\left(s'_{i}, s_{-i}\left(\theta_{-i}\right), \left(\theta_{i}, \theta_{-i}\right)\right).$$

- *i* plays BR to conditional distribution of opponents' strategies for each type that he might end up playing (since doesn't know which)
- BNE existence: appeal to Nash's Theorem, transformed game standard

Another Example: Public Goods Provision

- Public Goods Provision Game
 - $i = \{1, 2\}, A_i = \{contribute, don't\}$
 - Payoffs

$$\begin{array}{c|cc}
C & D \\
C & 1 - c_1, 1 - c_2 & 1 - c_1, 1 \\
D & 1, 1 - c_2 & 0, 0
\end{array}$$

- Complete information
 - (Practice for you: find all the NE of this game), for now note:
 - **1** Never efficient to play CC & CC is never an NE (assuming $c_{1,2} \neq 0$)
 - ② If $c_1 < 1 < c_2$ then CD is efficient & this is the NE (analogous for DC when $c_2 < 1 < c_1$)
 - If $\max\{c_1, c_2\} < 1$ then NE is either CD or DC, provided in both NE so more efficient than DD, not most efficient if higher cost provides

Public Goods Provision with Incomplete Info

- Introduce incomplete information
 - c_i private info
 - Common knowledge that c_i independently drawn from same continuous strictly increase cdf P(.) over $[\underline{c}, \overline{c}]$, where $\underline{c} < 1 < \overline{c}$.
 - Strategies and payoffs
 - *i*'s pure strategy, $s_i(c_i): [\underline{c}, \overline{c}] \to \{0, 1\}$ (contribute or not)
 - i's payoff, $u_i(s_i, s_j, c_i) = \max[s_1, s_2] c_i s_i$
 - BNE
 - Where $(s_i^*(.), s_j^*(.))$ such that for each i and every possible c_i , $s_i^*(c_i)$ maximises $E_{c_i}[u_i(s_i, s_i^*(c_i), c_i)]$
 - Let $z_i \equiv \Pr(s_i^*(c_i) = 1)$ i.e. eqm prob of opponent contributing
 - i contributes if cost
 <benefit* $(1-z_i)$, thus $s_i^*(c_i)=1$ iff $c_i<1-z_i$
 - Thus types $[\underline{c}, c_i^*]$ contribute (empty if $c_i^* < \underline{c}$)
 - Similarly, j contributes iff $c_j \in [\underline{c}, c_i^*]$
 - Since $z_j = \Pr(\underline{c} \le c_j \le c_j^*) = P(c_j^*)$, eqm cutoff satisfies $c_i^* = 1 P(c_i^*)$
 - Then if unique, c_i^* and c_i^* should satisfy $c^* = 1 P(1 P(c^*))$

The Effect of Incomplete Information

- What do the BNE look like? Effect of incomplete cost info?
- Consider two illustrative cases
 - P(.) uniform on [0,2], $P(c) \equiv \frac{c}{2}$
 - c^* is unique, sub $\frac{c}{2}$ into BNE condition, solve c^* , $c^* = \frac{2}{3}$
 - Result: Less efficient than complete info
 - Under-contribution: Play D for $c \in (2/3,1)$ despite ex post benefit > cost, & $1-P(c^*)=\frac{2}{3}$ chance not supplied by other
 - Over-contribution: $c \in [0, 2/3]$ both play C when only need one to.
 - Some P(.) on $[\underline{c},\overline{c}]$ where $\underline{c}\geq 1-P\left(1\right)$
 - 2 asymmetric BNE
 - ullet One always plays D, other always plays C for $c \leq 1$
 - ullet e.g. BNE with player 1 always D: $c_1^*=1-P\left(1
 ight)\leq \underline{c}$ and $c_2^*=1$
 - i.e. 1 never contributes because min cost greater than gain; 2 always contributes since otherwise zero probability of provision.
 - Result: Efficiency vs uniform unclear, less efficient than complete
 - BNE where 1 always D, if $c_1 < \frac{2}{3} \ \& \ c_2 > 1$, not provided (is if uniform)
 - BNE where 2 always D, if $c_1 < \frac{3}{4} \& c_2 > 1$, provided (not if uniform)
 - Coordination on inefficient BNE possible

The Example and Bayesian Games in General

- Prior beliefs are v important in Bayesian games
 - Note how different the BNE looked with the two different cdfs
- Often assume types drawn independently
 - $p(\theta_{-i} | \theta_i) = p(\theta_{-i})$ here, but types correlated in some games
- Bayesian games often have many BNE
 - Complete info game had 2 NE
 - Incomplete info game had 3 BNE that we identified (may be more)
 - NE are supported by consistent strategies
 - BNE supported by consistent beliefs and strategies
 - Many more possible combinations
- Monotonicity and cut-off rules are common in BNE
 - Despite the differences between the equilibria
 - Equilibrium contribution strategies were monotonic functions of type
 - Contribute up to some type, then don't cut-off rule
- Information often has efficiency consequences
 - In our game incomplete info reduced efficiency (a common result)

Prior Beliefs

- Where do they come from?
 - Similar to Nash conjectures e.g. culture, focal, learning etc
 - Could be an objective distribution e.g. male-female ratio in species
- What form "should" they take?
 - Modellers often use uniform or other typical statistical distributions
 - Best to be as general as possible subject to tractability constraints
- Is everyone having the same priors plausible? (Assumption 8)
 - Same info sets and CKR then technically, yes.
 - Aumann (1976): Even if different info sets, still common beliefs:
 - Given CKR, moment players discover holding differing beliefs, incentive to revise beliefs (to incorporate new info)
 - Rational players cannot "agree to disagree"
 - Reasonable?
 - "How many coins in the jar?" vs "Does god exist?"
 - Repeated game vs one-shot game (common priors even then?)
 - Costly information transmission
 - Incentives to acquire info if all free-ride, could agree to disagree!

Interim vs Ex Ante Strict Dominance

- A BNE is an equilibrium in the sense that it's predictable
- So player i must
 - Predict player j's strategy choice to do so...
 - Consider how each $j \neq i$ thinks player i will play
 - Consider j's beliefs about i's type
- In this prediction process, how should we view types θ_i and θ_i'
 - 1 A single player making type-contingent decisions at ex ante stage
 - 2 Two different "individuals" one of which nature will pick to play
- In 1, ex-ante predictions so all types of *i* predict the same
 - Similar to Harsanyi's original formulation
- In 2, interim predictions so predictions may differ between types of i
 - e.g. genetically determined preferences ex ante impossible
- No difference for BNE (players have common beliefs)
- But does it matter for strict dominance?

Strict Dominance and the Public Good Game

- Interim strict dominance
 - Given c_i , which of i's strategies are not strictly dominated?
 - D: not strictly dominated (play D if expect j to contribute, $\forall c_i$)
 - If $c_i > 1$ then C strictly dominated for i
 - If $\underline{c} > 1 P(1)$, no more dominated strategies
 - So, for example, interim dominance permits $c_i \in [\underline{c}, c']$ don't contribute and $c_i \in (c', 1]$ do contribute, former expect j to contribute if $c_j < 1$ and latter expect j never contributes
 - Could not happen in a BNE (cut-off rule/monotonicity in equilibrium)
- Ex ante strict dominance
 - Don't know c_i yet, which of i's strategies is not strictly dominated?
 - Any s_i (.) that has player contribute with prob z>0 and is not a cut-off rule is strictly ex ante dominated by a strategy where player contributes iff $c_i < c'$, where c' = P(z)
 - ullet For any s_j , i receives public good with same prob, but his expected cost of provision is strictly lower
 - Intuitively, if i is a single player, then any beliefs of j's strategy that make it attractive to contribute at c' also make it attractive to contribute at $c_i < c'$

Interim vs Ex Ante Strict Dominance

- Generally, more strategies dominated ex ante than interim
 - For a given type-contingent strategy $\hat{\sigma}_1$ (.) of player 1
 - Easier to find σ_1 (.) satisfying ex ante dominance condition

$$\begin{split} &\sum_{\theta_{1}} p_{1}\left(\theta_{1}\right) \sum p\left(\theta_{-i}\left|\theta_{1}\right.\right) u_{1}\left(\sigma_{1}\left(\theta_{1}\right), \sigma_{-1}\left(\theta_{-1}\right), \theta\right) \\ > &\sum_{\theta_{1}} p_{1}\left(\theta_{1}\right) \sum_{\theta_{-1}} p\left(\theta_{-1}\left|\theta_{1}\right.\right) u_{1}\left(\hat{\sigma}_{1}\left(\theta_{1}\right), \sigma_{-1}\left(\theta_{-1}\right), \theta\right) \end{split}$$

for all $\sigma_{-1}\left(.\right)$, than to find s_{1} and θ_{1} satisfying interim constraints

$$\begin{split} &\sum_{\theta_{-1}} p\left(\theta_{-1} \left| \theta_{1} \right.\right) u_{1}\left(s_{1}, \sigma_{-1}\left(\theta_{-1}\right), \theta\right) \\ > &\sum_{\theta_{-1}} p\left(\theta_{-1} \left| \theta_{1} \right.\right) u_{1}\left(\hat{\sigma}_{1}\left(\theta_{1}\right), \sigma_{-1}\left(\theta_{-1}\right), \theta\right) \end{split}$$

for all $\sigma_{-1}(.)$.

- Intuition:
 - Interim: Many beliefs (differing by type), need domination for all
 - Ex ante: One belief (same for all types), domination easier

Purification of Mixed Strategy Equilibria

- Critique of using mixed strategies in complete info games
 - People don't flip coins to make decisions!
- Can justify mixed strategies using Bayesian games
 - Complete info game example:
 - $S_i = \{invest, don't\}$; $u_i : 1$ if only i invests, -1 if both do, 0 if don't
 - Only symmetric NE is playing invest with prob $\frac{1}{2}$
 - Introduce incomplete information
 - If only *i* invests gets $(1 + \theta_i)$ where θ_i , private, is uniform on $[-\varepsilon, \varepsilon]$
 - BNE: symmetric pure strats s_i ($\theta_i < 0$)=don't and s_i ($\theta_i \ge 0$)=invest
 - Each firm expects other to invest with prob $\frac{1}{2}$, invest iff $\frac{1}{2}(1+\theta_i)+\frac{1}{2}(-1)\geq 0$, i.e. $\theta_i\geq 0$
 - \bullet As $\epsilon \to 0$, pure strategy BNE \to mixed-strategy NE of complete info
- Known as purification of a mixed strategy equilibrium
 - Result (Harsanyi, 1973): Any MSNE can be obtained as limit of pure strategy equilibrium in sequence of slightly perturbed games.
 - Intuition: players play pure strats in Bayesian games, don't know opponent's type, so effectively play as if facing a mixed strat

Extensive Form Bayesian Games

- Only considered incomplete info in strategic form so far
- Extensive form example:

- 2 pure strat NE: (O, F if enter) & (I1, A if enter)
- First NE doesn't seem reasonable: 2 prefers to accom once enters
- Subgame Perfection too weak only 1 subgame, both NE are SPNE!
- Need something stronger for extensive form Bayesian games

Continuation Games vs Subgames

Subgame perfection has no bite as only 1 well-defined subgame

- **Definition**: A **continuation game**, C of Γ^E , is a subset of Γ^E
 - Starting at an information set h (may or may not be singleton)
 - ② Containing only all successor nodes of $x \in h$
 - If $x' \in C$ and $x'' \in h(x')$, then $x'' \in C$ (i.e. no chopping up info sets)
 - **4** Adopt other properties (payoff functions, player/action labels) from Γ^E
- How many continuation games in the example?
- To apply the "spirit" of subgame perfection for continuation games
 - Need a probability distribution over nodes in the first info set
 - Then require BNE in every continuation game

Beliefs and Sequential Rationality

- **Definition:** A system of beliefs in Γ^E is a probability $\mu(x) \in [0,1]$ for each x in Γ^E such that $\sum_{x \in h} \mu(x) = 1$ for all $h \in H$.
 - i.e. player's assessment of the relative probability of being at each node in that information set conditional upon that info set being reached
- **Definition**: A strategy profile σ in Γ^E is **sequentially rational** at h given a system of beliefs μ if

$$E\left[u_{\iota(h)}\left|h,\mu,\sigma_{\iota(h)},\sigma_{-\iota(h)}\right.\right]>E\left[u_{\iota(h)}\left|h,\mu,\hat{\sigma}_{\iota(h)},\sigma_{-\iota(h)}\right.\right]$$

for all $\hat{\sigma}_{\iota(h)} \in \Delta\left(S_{\iota(h)}\right)$. If σ satisfies this condition for all $h \in H$, then σ is sequentially rational given belief system μ .

• i.e. no player wants to change strategy once reach an info set given beliefs about what's happened and opponent's strategy

Consistency of Beliefs

- In a weak perfect Bayesian equilibrium
 - Strategies must be sequentially rational given beliefs
 - Beliefs must be consistent with strategies
 - Similar to Nash conjectures, i.e. beliefs are correct
 - Like SPNE & NE, require BNE in each continuation game
- Illustrate belief consistency:
 - Assume all i play completely mixed strategies, every h reached with positive prob
 - For each x in a player's h, compute $\Pr(x|\sigma)$ then assign conditional prob of being at each x given play has reached that h using Bayes' rule

$$\Pr(x | h, \sigma) = \frac{\Pr(x | \sigma)}{\sum_{x' \in h} \Pr(x' | \sigma)}$$

- ullet E.g. Previous game if 1 plays σ : σ (O) = $\frac{1}{4}$, σ (I1) = $\frac{1}{2}$ & σ (I2) = $\frac{1}{4}$
 - Prob of reaching 2's info set given σ is $\frac{3}{4}$
 - Bayes' rule: prob of being at I1 given info set reached is $\frac{2}{3}$ $(I2=\frac{1}{3})$
 - 2's should have beliefs $\frac{2}{3}$ and $\frac{1}{3}$ to be consistent with 1's σ

Consistency of Beliefs Off the Path

- What about if players are not playing completely mixed strategies?
- \exists some x not reach with positive probability
- Cannot use Bayes' rule to calculate the probability of reaching these
- Never go off the eqm path, even if played repeatedly, so how do you form beliefs about these x?
- WPBE = agnostic... have whatever beliefs you like off the path!
 - This is why it is "weak" relative to the solution concepts we'll look at next lecture!

Weak Perfect Bayesian vs Nash Equilibrium

- ullet Definition: (σ,μ) is a weak perfect Bayesian equilibrium in Γ^E if
 - $oldsymbol{0}$ σ is sequentially rational given μ
 - ② μ is consistent with σ and Bayes' rule on the path, thus any h such that $\Pr(h|\sigma)>0$ must have

$$\mu(x) = \frac{\Pr(x | \sigma)}{\Pr(h | \sigma)}$$
 for all $x \in h$.

- Contrast with definition of NE in this context
- **Definition:** σ is an **NE** in Γ^E if \exists some μ such that
 - **1** σ is sequentially rational given μ for all h such that $\Pr(h|\sigma) > 0$
 - **2** μ is consistent with σ and Bayes' rule on the path
- Sequential rationality
 - Only required on egm path by NE
 - Required on and off the path by WPBE
 - Thus WPBE ⊂ NE

Applying WPBE to the Market Entry Example

Applying WPBE to the example:

- 2 must play "A if enter" in any WPBE
 - ullet This is optimal if get to that info set for any μ
- Previous NE (O, F if enter) is not WPBE
- Is other NE, (11, A if enter), WPBE?
 - ullet Need a μ satisfying condition 2 that makes these σ sequentially rational
 - To satisfy condition 2, must set μ (/1) = 1 (info set reached with positive prob given σ)
 - ullet These σ are indeed sequentially rational given that μ
 - Thus (11, A if enter) is a WPBE.

Summary

- Complete information is unrealistic for most applications
- Bayesian games allow us to model incomplete information
- Harsanyi: transform incomplete info game into imperfect info game
 - Then consider the Bayesian-Nash equilibrium
- Beliefs important in Bayesian games, typically assume common priors
- Equilibria characterised by beliefs & strategies so often more equilibria
- Strict dominance: difference between ex ante and interim application
- Mixed strategies can be defended as the limit of perturbed games
- When considering dynamic games, Bayesian-Nash is often too weak
- WPBE requires sequential rationality on and off the path
 - No requirements on beliefs off the path