An Introduction to Deep Graph Generation

Xinyang Liu 2023.6.28

The Problem: Graph Generation

Applications:

- Drug discovery, material design
- Social network modeling

Why do we study Graph Generation?

- Insights Understand the formulation of graphs
- Predictions Predict how will the graph further evolve
- Simulations Use the same process to generate novel graph instances
- Anomaly detection Decide if a graph is normal / abnormal

Graph Generation Tasks

Task 1: Realistic graph generation

■ Generate graphs that are similar to a given set of graphs

Task 2: Goal-directed graph generation

- Generate graphs that **optimize given objectives/constraints**
 - E.g., Drug molecule generation/optimization

Problem Definition

$$G = (\mathcal{V}, \mathcal{E}, X, A)$$

 \mathcal{V} is the vertex set

 $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the edge set

$$X \in \mathbb{R}^{N \times D}$$
, $A \in \mathbb{R}^{N \times N \times F}$

Given a set of M observed graphs $\mathcal{G} = \{G_i\}_{i=1}^M$, graph generation learns the distribution of these graph $p(\mathcal{G})$. Then, a new graph can be sampled $G_{new} \sim p(\mathcal{G})$

Problem Definition

$$G = (\mathcal{V}, E, X, A)$$

 \mathcal{V} is the vertex set

 $E \subseteq \mathcal{V} \times \mathcal{V}$ is the edge set

$$X \in \mathbb{R}^{N \times D}$$
, $A \in \mathbb{R}^{N \times N \times F}$

Related Problems

- Link prediction
- Graph structure learning
- Generative sampling
- Set generation

Given a set of M observed graphs $\mathcal{G} = \{G_i\}_{i=1}^M$, graph generation learns the distribution of these graph $p(\mathcal{G})$. Then, a new graph can be sampled $G_{new} \sim p(\mathcal{G})$

Generative Methods

Deep Generative Models (DGMs)

- Autoregressive Models (ARs)
- Variational Autoencoders (VAEs)
- Generative Adversarial Networks (GANs)
- Normalizing Flows (NFs)
- Energy-Based Models (EBMs)
- Diffusion models
- Combinatorial Optimization Methods (COMs)
- Reinforcement Learning
- Bayesian Optimization (BO)
- Markov Chain Monte Carlo (MCMC)
- ...

$$p_{model}(\mathbf{x};\theta) = \prod_{t=1}^{n} p_{model}(x_t|x_1, \dots, x_{t-1};\theta)$$

 x_t will be the t-th action (add node, add edge)

The sequence S^{π} has **two levels**

Node-level: add nodes, one at a time $S^{\pi} = (S_1^{\pi}, S_2^{\pi}, S_3^{\pi}, S_4^{\pi}, S_5^{\pi})$

Edge-level: add edges between existing nodes $S_4^{\pi} = (S_{4,1}^{\pi}, S_{4,2}^{\pi}, S_{4,3}^{\pi})$

Our goal: Model $p_{model}(x; \theta) = \prod_{t=1}^{n} p_{model}(x_t | x_1, ..., x_{t-1}; \theta)$

Let
$$y_t = p_{model}(x_t | x_1, ..., x_{t-1}; \theta)$$

Then we need to sample x_{t+1} from y_t : $x_{t+1} \sim y_t$

- Each step of RNN outputs a probability of a single edge
- We then sample from the distribution, and feed sample to next step:

Variational Autoencoders (VAEs) for Graph Generation

$$(X,A) \Rightarrow \begin{bmatrix} \mathsf{Encoder} \\ q_{\phi}(\mathbf{z}|X,A) \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{z} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathsf{Decoder} \\ p_{\theta}(A|\mathbf{z}) \end{bmatrix} \Rightarrow A$$

$$\begin{aligned} \mathbf{VGAE} & \quad \mathcal{L} = -\mathbb{E}_{q_{\phi}(\mathbf{Z}|\mathbf{X},\mathbf{A})} \big[\log p_{\theta} \big(\widehat{\mathbf{A}} \big| \mathbf{Z} \big) \big] - KL[q_{\phi}(\mathbf{Z}|\mathbf{X},\mathbf{A}) || p_{\theta}(\mathbf{Z}) \big] \\ & \quad \hat{\mathbf{A}} = \sigma \big(\mathbf{Z} \mathbf{Z}^{\top} \big) \,, \ \, \text{with} \quad \mathbf{Z} = \mathrm{GCN}(\mathbf{X},\mathbf{A}) \end{aligned}$$

Variational Graph Auto-Encoders. Thomas N. Kipf and Max Welling. NIPS 2016 workshop

Variational Autoencoders (VAEs) for Graph Generation

GraphVAE
$$\mathcal{L} = \mathbb{E}_{q_{\phi}(z|\mathbf{G})}[-\log p_{\theta}(\mathbf{G}|\mathbf{z})] + KL[q_{\phi}(\mathbf{z}|\mathbf{G})||p_{\theta}(\mathbf{z})]$$

GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders. Martin Simonovsky and Nikos Komodakis, ICANN 2018

By Xinyang Liu, Xidian University

13

Variational Autoencoders (VAEs) for Graph Generation

JTVAE

Junction Tree Variational Autoencoder for Molecular Graph Generation. Wengong Jin, Regina Barzilay and Tommi Jaakkola, *ICML 2018*

Normalizing Flows (NFs) for Graph Generation

MoFlow: An Invertible Flow Model for Generating Molecular Graphs. Chengxi Zang and Fei Wang, KDD 2020

Generative Adversarial Networks (GANs)

for Graph Generation

MolGAN
$$L(\theta) = \lambda \cdot L_{WGAN}(\theta) + (1 - \lambda) \cdot L_{RL}(\theta)$$

MolGAN: An implicit generative model for small molecular graphs, Nicola De Cao and Thomas Kipf, ICML 2018 workshop

Energy-Based Models (EBMs) for Graph Generation

GraphEBM

$$H^{\ell+1} = \sigma \left(\sum_{k=1}^{c+1} \left(A_{(:,:,k)} H^{\ell} W_k^{\ell} \right) \right)$$

$$h_G = \sum_{i=1}^n H_{(i,:)}^L \in \mathbb{R}^d$$

$$E_{\theta}(X,A) = h_G^T W \in \mathbb{R}$$

EBMs:
$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z(\theta)}$$

$$\mathcal{L}_{energy} = E_{\theta}(X^{\oplus}, A^{\oplus}) - E_{\theta}(X^{\odot}, A^{\odot})$$

$$X^{k} = X^{k-1} - \frac{\lambda}{2} \nabla_{X} E_{\theta} (X^{k-1}, A^{k-1}) + w^{k}$$

$$A^{k} = A^{k-1} - \frac{\lambda}{2} \nabla_{A} E_{\theta} (X^{k-1}, A^{k-1}) + \eta^{k}$$

GRAPHEBM: MOLECULAR GRAPH GENERATION WITH ENERGY-BASED MODELS, Meng Liu, Keqiang Yan, Bora Oztekin and Shuiwang Ji, *ICLR 2021 workshop*

Diffusion models for Graph Generation EDP-GNN

$$\mathbf{s}_{\boldsymbol{\theta}}(\cdot; \sigma) : \mathcal{A} \to \mathcal{A}.$$

$$\begin{cases} \prod_{i < j} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(\tilde{\mathbf{A}}_{[i,j]} - \mathbf{A}_{[i,j]})^{2}}{2\sigma^{2}}\right\}, & \text{if } \tilde{\mathbf{A}} = \tilde{\mathbf{A}}^{\mathsf{T}} \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathcal{L}(\boldsymbol{\theta}; \{\sigma_{i}\}_{i=1}^{L}) \triangleq \frac{1}{2L} \sum_{i=1}^{L} \sigma_{i}^{2} \mathbb{E}\left[\left\|\mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{A}}, \sigma) + \frac{\tilde{\mathbf{A}} - \mathbf{A}}{\sigma^{2}}\right\|_{2}^{2}\right]$$

$$(\tilde{\mathbf{A}}_0)_{[i,j]} = egin{cases} |arepsilon_{[i,j]}|, & i < j \ (\tilde{\mathbf{A}}_0)_{[j,i]}, & ext{otherwise}, \end{cases}$$

$$\mathbf{A}_{[i,j]}^{ ext{(sample)}} = \mathbb{1}_{ ilde{\mathbf{A}}_{[i,j]} > 0.5}$$

Permutation Invariant Graph Generation via Score-Based Generative Modeling. Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, Stefano Ermon, *AISTATS 2020*

Diffusion models for Graph Generation EDP-GNN

$$\mathbf{s}_{oldsymbol{ heta}}(\cdot;\sigma): \mathcal{A} o \mathcal{A}. \ \left\{ egin{aligned} &\prod_{i < j} rac{1}{\sqrt{2\pi}\sigma} \exp\left\{-rac{(ilde{\mathbf{A}}_{[i,j]} - \mathbf{A}_{[i,j]})^2}{2\sigma^2}
ight\}, & ext{if } ilde{\mathbf{A}} = ilde{\mathbf{A}}^\mathsf{T} \ 0, & ext{otherwise.} \end{aligned}
ight.$$

$$\mathcal{L}(\boldsymbol{\theta}; \{\sigma_i\}_{i=1}^L) \triangleq \frac{1}{2L} \sum_{i=1}^L \sigma_i^2 \mathbb{E} \left[\left\| \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{A}}, \sigma) + \frac{\tilde{\mathbf{A}} - \mathbf{A}}{\sigma^2} \right\|_2^2 \right]$$

sampling

$$(\tilde{\mathbf{A}}_0)_{[i,j]} = egin{cases} |arepsilon_{[i,j]}|, & i < j \ (\tilde{\mathbf{A}}_0)_{[j,i]}, & ext{otherwise}, \end{cases}$$

$$\mathbf{A}_{[i,j]}^{ ext{(sample)}} = \mathbb{1}_{\tilde{\mathbf{A}}_{[i,j]} > 0.5}$$

Edgewise Dense Prediction Graph Neural Network (EDP-GNN)

Node feature inference

$$\mathbf{Z}^{(k+1)} = \text{MultiChannelGNN}^{(k)}(\mathbf{A}^{(k)}, \mathbf{Z}^{(k)})$$

Edge feature inference

$$\tilde{\mathbf{A}}_{[\cdot,i,j]}^{(k+1)} = \mathrm{MLP}_{\mathrm{Edge}}^{(k)} \left(\mathrm{CONCAT}(\mathbf{A}_{[\cdot,i,j]}^{(k)}, \mathbf{Z}_i^{(k+1)}, \mathbf{Z}_j^{(k+1)}) \right)$$

$$\mathbf{A}^{(k+1)} = \mathbf{\tilde{A}}^{(k+1)} + (\mathbf{\tilde{A}}^{(k+1)})^\mathsf{T}$$

Permutation Invariant Graph Generation via Score-Based Generative Modeling. Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, Stefano Ermon, *AISTATS 2020*

MCMC Method for Molecule Optimization

MIMOSA: Multi Constraint Molecule Sampling for Molecule Optimization

mGNN: Multi-class classification for the masked node **bGNN**: Binary classification for the molecule topology

$$Y' \sim \begin{cases} S_{\text{replace}}(Y'|\ Y), & \text{prob } \gamma_1, \text{accept w. min}\{1, w_r\}, \\ S_{\text{add}}(Y'|\ Y), & \text{prob. } \gamma_2, \text{accept w. min}\{1, w_a\}, \\ S_{\text{delete}}(Y'|\ Y), & \text{prob. } \gamma_3, \text{accept w. min}\{1, w_a\}, \\ S_{\text{delete}}(Y'|\ Y), & \text{prob. } \gamma_3, \text{accept w. min}\{1, w_d\}, \end{cases}$$

$$w_a = \frac{p_X(Y') \cdot \text{bGNN}(Y, u) \cdot [\text{mGNN}(Y', v)]_{s_v}}{p_X(Y) \cdot (1 - \text{bGNN}(Y', u))},$$

$$w_d = \frac{p_X(Y') \cdot (1 - \text{bGNN}(Y', u))}{p_X(Y) \cdot \text{bGNN}(Y', u) \cdot [\text{mGNN}(Y', v)]_{s_v}},$$

$$egin{aligned} w_r &= rac{p_X(Y') \cdot [ext{mGNN}(Y,v)]_{s_v'}}{p_X(Y) \cdot [ext{mGNN}(Y,v)]_{s_v}}, \ \ w_a &= rac{p_X(Y') \cdot ext{bGNN}(Y,u) \cdot [ext{mGNN}(Y',v)]_{s_v}}{p_X(Y) \cdot (1 - ext{bGNN}(Y,u))}, \ \ w_d &= rac{p_X(Y') \cdot \left(1 - ext{bGNN}(Y',u)
ight)}{p_X(Y) \cdot ext{bGNN}(Y',u) \cdot [ext{mGNN}(Y,v)]_{s_v}}, \end{aligned}$$

Permutation Equivariance and Invariance

Permutation Equivariance (PE): $f(PAP^T) = Pf(A)$

Permutation Invariance (PI): $f(PAP^T) = f(A)$

Example:

GCN, GAT: Inherently permutation invariant

$$H^{\ell+1} = \sigma \left(\sum_{k=1}^{c+1} \left(A_{(:,:,k)} H^{\ell} W_k^{\ell} \right) \right)$$

$$\mathbf{s}: \mathbb{R}^{N imes N}
ightarrow \mathbb{R}^{N imes N}$$
 Permutation equivariant

$$\int_{\gamma[{f 0},{f A}]}\langle{f s}({f X}),{
m d}\,{f X}
angle_{
m F}\!+\!C$$
 Permutation invariant

$$\int_{\gamma[\mathbf{0},\mathbf{A}]} \langle \mathbf{s}(\mathbf{X}), \mathrm{d}\,\mathbf{X} \rangle_{\mathrm{F}} + C \text{ Permutation invariant}$$

$$\log p_{\boldsymbol{\theta}}(\mathbf{A}) = \int_{\gamma[\mathbf{0},\mathbf{A}]} \langle \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{X}), \mathrm{d}\,\mathbf{X} \rangle_{\mathrm{F}} + \log p_{\boldsymbol{\theta}}(\mathbf{0}) \text{ Permutation invariant}$$

Reference

Survey

MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design. Yuanqi Du, Tianfan Fu, Jimeng Sun and Shengchao Liu, 2022

A Survey on Graph Diffusion Models: Generative AI in Science for Molecule, Protein and Material. Mengchun Zhang, Maryam Qamar, Taegoo Kang, Yuna Jung, Chenshuang Zhang, Sung-Ho Bae and Chaoning Zhang, 2022

A Survey on Deep Graph Generation: Methods and Applications. Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu and Shu Wu, LoG 2022

Methods

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton and Jure Leskovec, *ICML 2018*

Variational Graph Auto-Encoders. Thomas N. Kipf and Max Welling. NIPS 2016

GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders. Martin Simonovsky and Nikos Komodakis, ICANN 2018 Junction Tree Variational Autoencoder for Molecular Graph Generation. Wengong Jin, Regina Barzilay and Tommi Jaakkola, *ICML* 2018

MolGAN: An implicit generative model for small molecular graphs. Nicola De Cao and Thomas Kipf, ICML 2018 workshop GRAPHEBM: MOLECULAR GRAPH GENERATION WITH ENERGY-BASED MODELS. Meng Liu, Keqiang Yan, Bora Oztekin and Shuiwang Ji, ICLR 2021 workshop

Permutation Invariant Graph Generation via Score-Based Generative Modeling. Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, Stefano Ermon, *AISTATS 2020*

MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization. Tianfan Fu, Cao Xiao, Xinhao Li, Lucas M. Glass and Jimeng Sun, AAAI 2021

Course

Deep Generative Models for Graph. CS224W, Stanford

Rethinking

What tasks can we benefit from Graph Generation?

- Predictions Predict how will the graph further evolve
- Anomaly detection Decide if a graph is normal / abnormal

Graph Generation Tasks

Task 1: Realistic graph generation

■ Generate graphs that are **similar to a given set of graphs**

Task 2: Goal-directed graph generation

■ Generate graphs that **optimize given objectives/constraints**