PMATH 336 Introduction to Group Theory

Keven Qiu Instructor: Wentang Kuo Fall 2024

Rings, Fields, and Groups

Definition: Cartesian Product

For a set S, we write $S \times S = \{(a, b) : a \in S, b \in S\}.$

Definition: Binary Operation

A binary operation on S is a map $*: S \times S \to S$, where for $a, b \in S$, we denote *(a,b) = a*b.

E.g. For $S = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, there are $*: \times, +$.

Definition: Ring (With Identity)

A set R together with two binary operations + and \times , where for $a, b \in R$, we often write $a \times b = a \cdot b = ab$ and a + b and two distinct elements 0 and 1, such that

- 1. + is associative: (a + b) + c = a + (b + c) for all $a, b, c \in R$
- 2. + is commutative: a + b = b + a for all $a, b \in R$
- 3. 0 is an additive identity: 0 + a = a for all $a \in R$
- 4. Every element has an additive inverse: $\forall a \in \mathbb{R}, \exists b \in \mathbb{R} \text{ such that } a+b=0$
- 5. · is associative: (ab)c = a(bc) for all $a, b, c \in R$
- 6. 1 is a multiplicative identity: $1 \cdot a = a \cdot 1 = a$ for all $a \in R$
- 7. · is distributive over +: a(b+c) = ab + ac for all $a, b, c \in R$

Note that we do not assume that ab = ba.

Definition: Commutative Ring

A set R that is a ring and \cdot is commutative.

Definition: Right(Left) Inverse

For $a \in R$, $a \neq 0$, we say a has a right(left) inverse if $\exists b \in R$, ab = 1 (ba = 1).

Definition: Unit (Invertible)

We say a is a unit/invertible if a has the same right and left inverse, ab = ba = 1.

Definition: Field

A commutative ring that satisfies every non-zero element is a unit.

Remark: For some non-commutative ring, there exists $a \in R$, a has a right inverse, but it has no left inverse. We have ab = ca = 1, but $b \neq c$.

E.g. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings. \mathbb{Z} is not a field, take 2, the inverse is $\frac{1}{2}$, but $\frac{1}{2} \notin \mathbb{Z}$. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all fields.

 $\mathbb{F}_p = \mathbb{Z}_p$ where p is prime, then this is a field. \mathbb{Z}_m where $m \in \mathbb{N}$ and m is not prime is a ring, but not a field.

E.g. If R is a ring, then R[x] (the set of all polynomials in x with coefficients in R) is a ring and not a field. x has no inverse.

Proposition

In R[x], the set of units in R[x] is the same as that in R.

So the set of units in $\mathbb{Z}[x]$ is the set of units in \mathbb{Z} .

Proposition

If R is a ring and $n \in N$, then $M_n(R)$ (the set of all $n \times n$ matrices with entries in R) is a ring. It is usually non-commutative.

E.g. Let R and S be rings. Then

$$R \times S = \{(r, s) : r \in R, s \in S\}$$

Define $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$ and $(r_1, s_1) \cdot (r_2, s_2) = (r_1 r_2, s_1 s_2)$. Then $(R \times S, +, \cdot)$ is a ring with $0_{R \times S} = (0_R, 0_S)$ and $1_{R \times S} = (1_R, 1_S)$.

Theorem (Uniqueness of Inverse)

Let R be a commutative ring. Let $a \in R$, then

- 1. The additive inverse of a is unique. $(a + b = 0 = a + c \implies b = c)$
- 2. For $a \neq 0$, if a has an inverse, then it is unique. $(ab = 1 = ac \implies b = c)$

Proof. 1.

$$b = 0 + b$$

= $(c + a) + b$
= $c + (a + b)$
= $c + 0$
= c

2. Similar.

Definition: Additive Inverse

For $a \in R$, denote -a as the unique additive inverse of a.

Definition: Inverse

For $a \in R$, if a has an inverse, denote a^{-1} or $\frac{1}{a}$ as the inverse of a.

Theorem (Cancellation)

Let R be a ring, then for all $a, b, c \in R$,

- 1. If a + b = a + c, then b = c.
- 2. If a + b = a, then b = 0.
- 3. If a + b = 0, then b = -a.

Let F be a field, then for all $a, b, c \in F$,

- 1. If ab = ac, then either a = 0 or b = c.
- 2. If ab = a, the neither a = 0 or b = 1.
- 3. If ab = 1, then $b = a^{-1}$.
- 4. If ab = 0, then either a = 0 or b = 0.

Proof. 1. b = 0 + b = (-a + a) + b = -a + (a + b) = -a + (a + c) = (-a + a) + c = 0 + c = c.

3

- 2. a + b = a + 0, then it follows from 1.
- 3. a+b=0=a+(-a), then it follows from 1.

4. Recall $A \Longrightarrow B \lor C$ is the same as $A \land \neg B \Longrightarrow C$. So assume $a \ne 0$. We have ab = ac. Since $a \ne 0$ and F is a field, a has the inverse a^{-1} . Thus,

$$b = 1 \cdot b = (a^{-1} \cdot a)b$$

$$= a^{-1}(ab)$$

$$= a^{-1}(ac)$$

$$= (a^{-1}a)c$$

$$= 1 \cdot c = c$$

5, 6, 7 follows from 4.

Theorem

Let R be a ring and $a \in R$, then

- 1. $0 \cdot a = 0$.
- 2. $(-1) \cdot a = -a$.

Proof. 1. $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$. By cancellation theorem (2), $0 \cdot a = 0$.

2. $0 = 0 \cdot a = (1 + (-1)) \cdot a = 1 \cdot a + (-1) \cdot a$. Since $a + (-1) \cdot a = 0$, then by cancellation theorem (3), $(-1) \cdot a = -a$.

Definition: Group

A set G with a binary operation $\cdot: G \times G \to G$ satisfying the following conditions:

- 1. For all $f, g, h \in G$, (fg)h = f(gh)
- 2. There exists an element e_{ℓ} (ℓ stands for left) called an identity such that for all $g \in G$,
 - (a) $e_{\ell} \cdot g = g$
 - (b) there exists an element g_ℓ^{-1} such that $g_\ell^{-1} \cdot g = e_\ell$

Subgroups and Cyclic Groups

Symmetric Groups

Homomorphisms

Cosets and Normal Subgroups

Free and Finite Abelian Groups

Isometrics and Symmetric Groups

Group Actions

Sylow Theorems