

An Overview of 802.11e

Guan-Hsiung Liaw (廖冠雄)

ghliaw@yahoo.com.tw

Outlines

- Introduction
- Traffic Differentiation
- Hybrid Coordination Function (HCF)
 - Contention-Based Channel Access EDCA
 - Controlled Channel Access HCCA
- Block Acknowledgement
- Direct Link Protocol (DLP)
- Automatic Power-Save Delivery (APSD)
- Performance Evaluation

IEEE 802 Family

802 Overview and architecture 802.1 Management 802.1d Bridging 802.1q VLAN

4

802.11 MAC and Other

Characteristics of Media Streams

Media Streams

- Audio
 - Speech
 - Uncompressed e.g. 64 kbps PCM
 - Compressed: e.g. ITU-T G.723.1, G.729, ...
 - Low bit rate & Constant bit rate
 - Music
 - Uncompressed e.g. CD: 16bit, 44.1khz
 - Compressed: e.g. MP2, MP3, ...
 - Medium bit rate & Variable/Constant bit rate
- Video
 - Compressed e.g. Mpeg-1, Mpeg-2, Mpeg-4, ...
 - High bit rate & Variable/Constant bit rate

Processing of Media Streams

1

QoS Requirement

- Parameters of traffic stream
 - Controlled transmission rate
 - Peak rate & Average rate
 - Controlled Service Interval
 - Minimum & Maximum
 - Burst Size on peak rate
- Requirements
 - Bounded Delay ! (→ for real-time & smooth interaction)
 - Bounded Jitter! (→ for smooth playout)
- Solution in device: Jitter Buffer
- Solution in network: Prioritized Transmission

Two Kinds of QoS

Parameterized QoS:

 A strict QoS requirement expressed quantitatively in terms of data rate, delay bound etc. (ex. BW of 10 Mbps, delay bound of 10ms)

Prioritized QoS:

 Loose QoS requirement expressed in terms of relative delivery priority

Is 802.11 enough for QoS?

- DCF can not provide QoS trivially
- PCF is not enough
 - Only 1 frame can be sent at each polling
 - Point Coordinator (PC) does not know the QoS requirement of traffic
 - Can not guarantee the delay and jitter bound

Brief of IEEE 802.11e

- Defined at IEEE 802.11 Task Group E
- Goal: Providing QoS
 - Minimize Latency
 - Maximize throughput
 - Define traffic models for both Ad-hoc and Infrastructure
- Approach: Enhance the MAC (802.11)
- Current Status
 - Draft 11 (Sponsor Ballot is ongoing)
 - Will be finalized this year (???)

Major Enhancements in 802.11e

- Basic elements for QoS
 - Traffic Differentiation
 - Concept of Transmission Opportunity (TXOP)
- New Contention-based channel access
 - Enhanced Distributed Channel Access (EDCA) (Contention-Based)
- New Contention-free channel access
 - HCF Controlled Channel Access (HCCA) (Contention Free)
- Other new mechanisms for higher throughput
 - Block Acknowledgement (Block Ack)
 - Direct Link Setup (DLS)
 - Automatic Power-Save Delivery (APSD)

Terms

- QoS Facility
 - The mechanisms for QoS defined in 802.11e
- QAP
 - Access Point supporting QoS facility
- QSTA
 - Station supporting QoS facility
- QBSS
- Hybrid Coorinator (HC)
- Access Category (AC)
- User Priority (UP)
- Traffic Category (TC)
- Traffic Specification (TSPEC)
- Traffic Stream (TS)
- Traffic Identifier (TID)
 An Overview of IEEE 802.11e

13

Traffic Differentiation

Classification of QoS Data

New frame subtype: QoS Data

- Each MSDU of QoS Data is classified as one kind of traffic
 - Identified by <u>TID</u> field in frame header
- Two types of traffic classification
 - By User Priority (UP)
 - (for prioritized QoS)
 - By Traffic Specification (TSPEC)
 - (for parameterized QoS)

Use

User Priority

8 User Priorities:

Identical to IEEE 802.1D priority tags

Priority	User Priority (same as 802.1D user priority	802.1D Designation	Access category (AC)	Designation (Informative)
Lowest	1	BK	AC_BK	Background
	2	-	AC_BK	Background
	0	BE	AC_BE	Best Effort
	3	EE	AC_BE	Video
	4	CL	AC_VI	Video
+	5	VI	AC_VI	Video
highest	6	VO	AC_VO	Voice
-8	7	NC	AC_VO	Voice

User Priority (cont.)

- Priority Determination of MSDU
 - Directly:
 - provided at MAC SAP by upper-layer software
 - Indirectly:
 - defined in TSPEC's

Access Category (AC)

- Rules
 - One UP belongs to one AC
 - Each AC contains two UP
 - Traffic of higher UP will be transmitted first in one AC
- In EDCA, media access is based on the AC of MSDU
- 4 AC's are defined
 - AC_BK (background)
 - AC_BE (best-effort)
 - AC_VI (Video)
 - AC_VO (Voice)
- In EDCA, the size of Contention-Window (CW) and Inter-frame space (IFS) is dependent on AC

Traffic Specification

- Traffic Specification (TSPEC)
 - Characteristics of traffic streams created by negotiation between QSTA and HC
 - HC can schedule the polling within CFP and the data transmission of the TS accordingly
 - At most 8 TSPEC can be registered
 - Identified by TSID (0~7)
- TSPEC Setup & Delete
 - Use Management Frame with new subtype Action
 - ADDTS request & ADDTS response: for TSPEC setup
 - DELTS: for TSPEC delete

MAC Frame Formats

MAC frame format (QoS Data):

octets: 2	2	6	6	6	2	6	2	n	4
Frame Control	Duration / ID	Address 1	Address 2	Address 3	Sequence Control	Address 4	<u>QoS</u> <u>Control</u>	Frame Body	FCS
	MAC Header								

QoS Control Field:

Applicable Frame (sub) Types	Bits 0-3	Bit 4	Bit 5-6	Bit 7	Bits 8-15	
QoS (+)CF-Poll frames sent by HC	TID	EOSP	Ack Policy	Reserved	TXOP limit	
QoS Data, QoS Null, and QoS Data+CF-Ack frames sent by HC	TID	EOSP	Ack Policy	Reserved	QAP PS Buffer State	
QoS data type frames sent by	TID	0	Ack Policy	Reserved	TXOP duration requested	
non-AP QSTAs	TID	1	Ack Policy	Reserved	Queue size	

(Source: Draft11)

Frame Formats (cont.)

- In QoS control field,
 - TID: Traffic Identifier
 - EOSP: End of Service Period
 - Service period is ended after successful transmission of this frame
 - Used with APSD
 - QAP PS Buffer State

Traffic Identified (TID)

- Distinguish MSDUs of different traffic types
- Range: 0-15

Bits 0-3	Usage
0-7	UP for prioritized QoS (TC)
8-15	TSID for parameterized QoS (TS)

Action Frames: ADDTS request & ADDTS response

Frame Body:

ADDTS Request

Order	Information
1	Category
2	Action
3	Dialog Token
4	TSPEC
5 - n	TCLAS (optional)
n + 1	TCLAS Processing (optional)

ADDTS Response

Order	Information
1	Category
2	Action
3	Dialog Token
4	Status Code
5	TS Delay
6	TSPEC
7 – n	TCLAS (optional)
n + 1	TCLAS Processing (optional)
n + 2	Schedule

TSPEC Element Format

О	ctets: 1	1	3	2	2	4	4	4	4	
Е	Clement ID (13)	Length (55)	TS Info	I I	Maximum MSDU Size	Service	e Service	Inactivity Interval	Suspension Interval	
	4		4	1		4	4	4 2	2	
Ser	vice Start Time	Minimum Data Rate	- 1				Delay u Bound Pl	nim m HY ate	lth Medium	
TS I	nfo: B1 B4	B5 B6	B7 B8	В9	B10	B11 B13	B14 B15	B16	B17 B23	
Traffic Type	TSID	Direction	Access Policy	Aggregation	APSD	User Priority	TSInfo Ack Policy	Schedule	Reserved	
Bits: 1	4	2	2	1	1	3	2	1	7	'

Fields in TS Info

在802.11e 中的名稱	中文名稱	欄位大小 (位元)	意義
Traffic Type	資料流型態	1	1表示這是週期性的資料流;0則表示非週期性的資料流。
TSID	資料流辨識 碼	3	為上層軟體設定給該資料流的辨識碼,範圍是十進位的0~7。
Direction	傳送方向	2	標示出該資料流的傳送方向: I)Uplink(上行):由工作站流向存取點。 II)Downlink(下行):由存取點流向工作站。 III)Direct link(直接連線):直接傳到另一個工作站。 IV)Bi-directional link(雙向):同時有上行與下行的資料流。
Access Policy	存取策略	2	標示出此資料流要在何種通道存取模式下傳送:競爭模式(EDCA)、免競爭模式(HCCA)、或兩者皆可。
Aggregation	集成式排程	1	標示出此資料流在存取點轉送時是否要使用集成式的排程方式,而非個別排程。 802.11e規定:當資料流指定使用省電模式自動傳送(APSD)時,則非得要使用集成 式排程不可。
APSD	省電模式自 動傳送	1	標示出此資料流是否要使用省電模式自動傳送。
User Priority	使用者優先 權	3	標示出此資料流所對應的使用者優先權(應用於EDCA模式中競爭通道存取權)。
TSInfo Ack Policy	回應方式	2	標示出在傳送此資料流的訊框時所採用的回應傳送方式:原始802.11的回應方式、不回應、或是整批回應方式。
Schedule	是否排程	1	若此資料流指定的存取策略(也就是Access Policy欄位)包含EDCA模式時,此欄位即用來標示是否需要存取點依據TSPEC的各項QoS需求進行排程,以分配通道傳輸權供此資料流傳送。或是若APSD欄位設定為1,則表示在省電模式自動傳送時,是要使用不排程的方式或是有排程的方式來作資料傳送。

 For identifying the TS to which the incoming MSDUs belong

Traffic Classification (TCLAS) Element

Classifier Type	Classifier Parameters
0	Ethernet parameters
1	TCP/UDP IP parameters
2	IEEE 802.1D/Q Parameters
3 - 255	Reserved

Octets: 1 6 6 2 Type 0 Classifier Classifier Source Destination Type Type (0) Mask Address Address Octets: 1 4 4 2 2 1 Type 1 (IPv4) Classifier Source IP Destination Source Classifier Destination Version DSCP Protocol Reserved Type (1) Mask Address IP Address Port Port 16 16 2 3 Octets: 1 Classifier Classifier Source IP Destination Source Destination Flow Version Type 1 (IPv6) Address **Type** (1) Mask IP Address Label Port Port Octets: 1 1 2 802.1Q Classifier Classifier Type 2 Mask Tag Type Type (2)

ALL OVELVIEW OF IEEE 802.11e

27

2004/12/3

- HC contains Schedule element in ADDTS response if incoming ADDTS request's TS_INFO.Schedule = 1.
- If TS_Info.Access_Policy includes EDCA, the schedule element indicate the polling schedule for this TS in HCF
- If TS_Info.APSD = 1, the schedule element indicate the wakeup schedule for transmission

Hybrid Coordination Function (HCF)

HCF Brief

- In 802.11, two access methods are
 - Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)
- In 802.11e, HCF access method is added, including
 - Contention-Based channel access— EDCA
 - Combined with DCF
 - Controlled channel access HCCA
 - Similar to PCF but with enhancement

4

MAC Architecture

- Difference from original DCF
 - Contention between ACs (Not STAs)
 - AC Contends for Transmission Opportunity (TXOP) in unit of 32 microseconds.
 - New Inter-frame Space (IFS) for each AC:
 Arbitration Interframe Space (AIFS)

Reference Implementation

IFS in 802.11 DCF: Contention between STAs

DCF Example

IFS in EDCF: Contention between **ACs**

Arbitration Interframe Space (AIFS)

- QSTA use AIFS to defer the contention window or transmission for each AC
- AIF[AC] =AIFSN[AC] x aSlotTime + aSIFTime
 - AIFSN for each AC is broadcast via beacon frame containing 'EDCA Parameter Set' element
- (DIFS = 2 x aSlotTime + aSIFTime)

EDCA Parameter Set Element

ACI: AC Index

ACM: Admission Control Mandatory

Default EDCA Parameter Set

For QSTA

40	<u>CWmin</u>	<u>CWmax</u>	<u>AIFSN</u>	TXOP Limit		
<u>AC</u>				DS-CCK ⁸	Extended Rate /OFDM ⁹	Other PHYs
AC_BK	<u>aCWmin</u>	<u>aCWmax</u>	7	<u>0</u>	<u>0</u>	0
AC_BE	aCWmin	<u>aCWmax</u>	<u>3</u>	<u>0</u>	<u>0</u>	<u>0</u>
AC_VI	(aCWmin+1)/2 – <u>1</u>	<u>aCWmin</u>	<u>2</u> 1	<u>6.016ms</u>	3.008ms	0
AC_VO	(aCWmin+1)/4 –	(aCWmin+1)/2/-	2 1	3.264ms	<u>1.504ms</u>	<u>0</u>

CW size is smaller than DCF's

For QSTA:

For QAP:

AIFS=DIFS AIFS<DIFS

HCF Controlled Channel Access (HCCA)

- The procedure is similar to PCF
- Hybrid Coordinator (HC)
 - Operate at QAP
 - Control the iteration of CFP and CP
 - By using beacon and CF-End frame and NAV Mechanism (Same as PCF)
 - Use polling Scheme to assign TXOP to QSTA
 - Issue Qos (+) CF-poll frame to poll QSTA
 - Polling can be issued in both CFP & CP
 - Polling schedule in HC can be calculated according to TSPECs

Iteration of CFP and CP

Transmission Opportunity (TXOP)

- TXOP: the duration of a QSTA to transmit frame(s)
- When will a QSTA get a TXOP ?
 - Win a contention in EDCA during CP
 - Receive a QoS (+)CF-poll (→"polled TXOP")

Transmission Opportunity (TXOP) (cont.)

In TXOP, frames exchange sequences are separated by SIFS

Transmission Opportunity (TXOP) (cont.)

- How is TXOP limit given
 - For EDCA, TXOP limit is given in Beacon Frame (at EDCA Parameter Set Element in frame body)
 - For controlled channel access, TXOP limit is given in "QoS (+)CF-poll" frames (at Qos Control field in MAC header)

Applicable Frame (sub) Types	Bits 0-3	Bit 4	Bit 5-6	Bit 7	Bits 8-15
QoS (+)CF-Poll frames sent by HC	TID	EOSP	Ack Policy	Reserved	TXOP limit
QoS Data, QoS Null, and QoS Data+CF-Ack frames sent by HC	TID	EOSP	Ack Policy	Reserved	QAP PS Buffer State
QoS data type frames sent by	TID	0	Ack Policy	Reserved	TXOP duration requested
non-AP QSTAs	TID	1.	Ack Policy	Reserved	Queue size

Direct Link Protocol (DLP)

Direct Link Setup (DLS)

Direct Link

 Directly send frames from one QSTA to another in QBSS

Motivation of DLS

- Wake up the recipient in PS mode via QAP
- Exchange information between sender and recipient

The handshake procedure

Notes:

- 1. DLS Request and DLS Response are both Action management frame
- 2. The direct link will become inactive if no frames have been exchanged for DLPTimeoutValue duration.
- 3. Recipient shall not go into power save for DLPTimeoutValue duration.
- 4. After timeout, the frames are transmitted via AP again.

Block Acknowledgement

Brief of Block Ack

- (Optional function in implementation)
- Improve channel efficiency
 - By aggregating several acks into one frame
- Two types
 - Immediate Block Ack
 - Suitable for High-bandwidth, low latency traffic
 - Delayed Block Ack
 - Suitable for applications tolerating moderate latency

Procedure of Block Ack

XXX: Action frame

XXX: Control Frame

Setup Burst Ack Parameters

- Action Frames (Management frames)
 - ADDBA Request, with parameters
 - TID
 - Block Ack Policy (Immediate or delayed)
 - Transmit Buffer Size
 - Timeout Value
 - ADDBA Response, with parameters
 - Status Code
 - Burst Ack Policy (1 for Immediate, 0 for Delayed)
 - TID
 - Re-ordering Burst Size (number of buffers)
 - Timeout value
 - DELBA
 - Initiator
 - TID

Immediate Block Ack

Delayed Block Ack

Automatic Power-Save Delivery (APSD)

Brief of APSD

- Enhancing PS-mode in QBSS
- QAP deliver downlink frames, which belong to some specified AC, to powersaving stations automatically
- Two type of delivery mechanism
 - Unscheduled APSD (U-APSD)
 - Scheduled APSD (S-APSD)

Unscheduled APSD (U-APSD)

Steps:

- Power-saving QSTA wakes up and send a "trigger" data frame belonging to "trigger-enabled" AC to QAP
- After receiving "trigger" frame, a service period (SP) is started
- QAP send frames belonging to "delivery-enabled" AC to QSTA
- The limit of SP is Max SP Length given by the QSTA at association
- (Frames not in "delivery-enabled" AC are delivered via original PS-poll mechanism)

Scheduled APSD (S-APSD)

- QSTA negotiate a APSD Schedule with QAP via ADDTS
- QAP start transmitting the frames of the specified TS at Service Start Time and the following periods
- QSTA must wake up at Service Start Time and the following periods to receive frames

Specifying Trigger-Enabled / Delivery-Enabled AC

- QSTA Specifying
- By Association
 - Association Frame contains "QoS Capability" element

Specifying Trigger-Enabled / Delivery-Enabled AC (cont.)

By ADDTS (TSPEC)

TS Info:

APSD = 1, Schedule = 0, Direction = uplink \rightarrow the implied AC is "trigger-enable"

APSD = 1, Schedule = 0, <u>Direction = downlink</u> → the implied AC is <u>"delivery-</u> enable"

Implementation-Dependent Issues

- HC scheduling
 - Mixture of downlink and polled TXOP scheduling
- QSTA scheduling
 - During a polled TXOP, schedule frame transmissions
- Admission control by HC
 - To decide whether to admit a TS or not

Performance Evaluation

Brief

Source:

- Stefan Mangold, et al., "Analysis of IEEE 802.11e for QoS support in wireless LANs
- ," IEEE Wireless Communications, Dec. 2003.
- Evaluations (802.11e w/ 802.11a PHY)
 - Achievable EDCA throughput
 - QoS Guarantees with Prioritized Access of HC

Scenario 1

- Assumption
 - IEEE 802.11e MAC + IEEE 802.11a PHY
 - Control frames are sent at 6 Mbps
 - Data frames are sent at 24 Mbps
 - Each stream 250 kbps
 - 1 station (HC) transmits to 3 stations one stream per AC
 - Default EDCA parameters are used

Result 1

Scenario 2

- Two scenarios
- Transmission Rate

Data Frame: 24 Mbit/s

Others: 6 Mbit/s

- Three TCs
 - High: constant arrival (5ms), MSDU 80 bytes, 128 kbps
 - Medium & low: Poisson arrival, MSDU 200 bytes, 160 kbps
- TXOP allows for transmitting one data frame
- Beacon interval: 102.4 ms

Fig. 7: Scenario with two QBSSs.

Table 1: Used EDCF parameters for the three TCs.

	High	Medium	Low
AIFS*	2	4	7
CWmin	7	10	15
CWmax	7	31	255
PF	2	2	2

^{*)} When AIFS is represented by a number instead of time, the actual AIFS in time is determined by SIFS (which is 16 us in 802.11a) + AIFS (in number) * slot_time (which is 9 us in 802.11a).

Result 3

Thank You!

Q & A