5.3. classificação de aplicações lineares

página 1/3

departamento de matemática

universidade de aveiro

- 1. Das aplicações lineares do exercício 4 da folha de exercícios "5.2. núcleo e imagem de uma aplicação linear", indique quais são:
 - i. monomorfismos;
 - ii. epimorfismos;
 - iii. isomorfismos;
 - iv. endomorfismos;
 - v. automorfismos.
- 2. Mostre que a aplicação linear $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ definida por $\varphi(x,y) = (2x+y,x-y,x)$, para todo $(x,y,z) \in \mathbb{R}^3$ é um monomorfismo.
- 3. Considere a aplicação linear $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ tal que:

$$\varphi(1,1,0) = (0,1,1)$$
 $\varphi(1,0,1) = (1,1,1)$ e $\varphi(0,1,1) = (2,1,-1)$.

Mostre que φ é um automorfismo.

4. Considere a aplicação linear ψ de \mathbb{R}^3 para \mathbb{R}^4 definida por:

$$\psi(1,1,1) = (1,0,0,0)$$
 $\psi(1,1,0) = (0,1,1,0)$ e $\psi(1,0,0) = (k,1,k,k-1)$,

onde k é um parâmetro real. Diga para que valores de k a aplicação ψ é:

- (a) monomorfismo;
- (b) epimorfismo.
- 5. Seja $\mathcal{B} = ((1,2),(-1,3))$ uma base de \mathbb{R}^2 e seja φ o endomorfismo de \mathbb{R}^2 definido por $\varphi(x,y) = (x,2x)$, para todo $(x,y) \in \mathbb{R}^2$.
 - (a) Mostre que $\mathcal{B}' = (\varphi(1,2), \varphi(-1,3))$ não é uma base de \mathbb{R}^2 .
 - (b) Classifique φ quanto à injectividade e à sobrejectividade, usando a alínea anterior.
- 6. Seja φ o endomorfismo de \mathbb{R}^3 definido por:

$$\varphi(x, y, z) = (x, x + \alpha y + \alpha^2 z, -x + y - z), \quad \forall (x, y, z) \in \mathbb{R}^3$$

onde α é um parâmetro real. Determine os valores de α para os quais φ é um automorfismo.

7. Sejam E um espaço vectorial real e $\mathcal{B} = (e_1, e_2, e_3)$ uma base de E. Considere a aplicação $\varphi : E \longrightarrow E$ definida por:

$$\varphi(xe_1 + ye_2 + ze_3) = (x + y + z)e_1 + (x + y + 3z)e_2 + (x + y + k)e_3, \ \forall x, y, z \in \mathbb{R}$$
 onde k é um parâmetro real.

- (a) Para que valores de k, φ é uma aplicação linear?
- (b) Considere k = 0.
 - i. Classifique o endomorfismo quanto à injectividade e à sobrejectividade.
 - ii. Determine $\varphi^{-1}(\{e_1 + e_2 + e_3\})$.
- 8. Sejam E e E' espaços vectoriais sobre \mathbb{K} e φ uma aplicação linear de E em E'. Diga se são verdadeiras ou falsas as seguintes afirmações, justificando:
 - (a) Se $v_1, \ldots, v_k \in E$ são vectores linearmente independentes então $\varphi(v_1), \ldots, \varphi(v_k) \in E'$ são vectores linearmente independentes.
 - (b) Se $v_1, \ldots, v_k \in E$ são vectores linearmente dependentes então $\varphi(v_1), \ldots, \varphi(v_k) \in E'$ são vectores linearmente dependentes.
 - (c) Se dim $E = \dim E'$ então φ é um isomorfismo.
 - (d) Se φ é um monomorfismo então dim $E \leq \dim E'$.
 - (e) Se φ é um epimorfismo então dim $E \ge \dim E'$.
- 9. Sejam V e E' espaços vectoriais sobre \mathbb{K} e φ uma aplicação linear de E em E'. Sejam ainda F e G dois subespaços vectoriais de E.
 - (a) Suponha que $E = F \oplus G$. Mostre que:
 - i. Se φ é um monomorfismo então $\varphi(F) \cap \varphi(G) = \{0_{E'}\};$
 - ii. $\varphi(F) + \varphi(G) = E'$ se e só se φ é um epimorfismo.
 - (b) Suponha que $E' = \varphi(F) \oplus \varphi(G)$. Mostre que:
 - i. φ é um epimorfismo;
 - ii. Se φ é um monomorfismo então $E = F \oplus G$.

5.3. classificação de aplicações lineares

página 3/3

- 1. i. (d), (e) e (h); ii. (e), (f), (g) e (j); iii. (e); iv. (a), (c), (d) e (e); v. (e).
- 4. (a) $k \neq 1$; (b) não existe nenhum valor de k.
- 5. (b) φ não é um monomorfismo nem epimorfismo.
- 6. $\alpha \in \mathbb{R} \setminus \{-1, 0\}$.
- 7. (a) k=0; (b) i. φ não é monomorfismo nem epimorfismo; ii. $\{(1-z)e_1+ze_3:z\in\mathbb{R}\}.$
- 8. (a) F; (b) V; (c) V; (d) V; (e) V.