# 情感分析作业报告

# 一、程序说明

### 1. 依赖

训练框架: Keras, Tensenflow

评估框架: Sklearn 语料集: V2 数据集

### 2. 使用说明

详见 readme 文件,注意鲁棒性较差,运行时请按照提示输入

## 二、模型结构图及分析

本次实验中,实现了 CNN、RNN 和 MLP baseline 三种网络。网络具体的结构如下图所示





图 2 左: MLP 模型 右: RNN 模型

### 分析

词向量。对所提供的语料库进行预处理,去除英文标点并将所有字符转化为小写,之后借助 word2vec 模型,预先训练出词向量,保存为 model 文件夹下wv. model 文件,词向量的维度设置为100。

输入处理。由于所给定的语料为英文短句,共计 7666 条英文语句中所含单词超过 120 个的不足 10 条,故本次作业中将输入语句的最大次数设置为 120。之后对每句英文语料,将其中单词分别替换为对应的词向量,从而得到的120x100 维矩阵作为网络的输入;若语料中所含单词超过 120,则超出部分自动截去,否则则自动补零至 120 (注:输入网络的词向量设置为可随训练的进行自动调整)。

CNN 的设计。基本参照论文中的结构,整个网络一共分为3个通道,将120x100的词向量输入后,分别通过3,4,5x30的卷积及最大池化层,得到对应的特征值,之后将三个通道的特征值连接,经过全连接层后 softmax 输出。

RNN 的设计。采用了多层的 LSTM, 而后又通过了两层全连接神经网络后 softmax 输出。但不知为何单此设置训练的结果并不好, 而在输入层后添加了一平均池化层后, 模型的准确率提升了近 15% (考虑添加池化层的最初目的是想抽取特征, 使训练时参数少些)。

MLP的设计。同RNN类似,主要用了四个全连接层,分为了两个通道,其效果也与RNN相当。

### 三、实验结果及分析

三种网络的实验指标以及部分参数如下表所示:

| 模型              | CNN       | MLP       | RNN       |
|-----------------|-----------|-----------|-----------|
| Accuracy        | 0. 515329 | 0. 455969 | 0. 472277 |
| F1-score(macro) | 0. 519203 | 0. 455821 | 0. 444985 |
| F1-score(micro) | 0. 515329 | 0. 455969 | 0. 472277 |
| Optimizer       | Adam      | Adam      | RMSprop   |
| Learning-rate   | 0. 0015   | 0. 0012   | 0.001     |
| Loss            | CCE       | CCE       | CCE       |

其中向量维度统一为 100, 最大词数为 120, batchsize 为 100, 迭代次数 13 次

### 参数效果分析

整个实验首先要确定的参数是向量维度和最大词数,当然,理论上来讲是越大越好,但如前面已分析,给定语料为英文短句,最大词数本就有限;此外,参数设置过大反而可能会拖慢训练的速度,而且随着增长,其对准确率的影响越来越小。综合上述考虑,最终选择了100和120。

训练周期数对模型的准确率影响不大,基本上 7<sup>~</sup>8 个周期后,网络就已经趋于稳定,之后会在相应值附近有一定涨落。

Optimizer 对模型的影响出乎意料的大。一开始时 MLP 的准确率只有 28%,但将 Optimizer 由 SGD 改为 Adam 后,准确率便上升到了 48%。CNN 同样如此,Adam 与 SGD 二者准确率差距也多达到 10%。而 RNN 则是选择使用 RMSprop,据称它是"特别适用于循环神经网络"的一种训练方式。总之觉得不同的网络结构,适合着不同的 optimizer,至于如何选择,更多的还需要根据经验与实际效果。

此次作业为多分类任务,因此**损失函数**可使用多分类交叉熵,实验开始之前尝试过使用均方误差 MSE 作为损失函数,预测的是情感的分布。但发现 MSE 很难收敛,并且效果很差。因此最后全部采用 CCE 来作为交叉熵损失函数

**学习速率**对模型的影响也很大,较大的学习速率会造成模型的过拟合,准确率会随之降低不少。

总结:比较三种模型的效果,CNN 在各方面均最佳,RNN 次之,但与 baseline 差不太多。而与 MLP 相比,RNN 的训练时间较长,所以有点得不偿失。MLP 作为一个入门模型,效果却不错,可以和 RNN 媲美,我感觉原因只可能是 RNN 网络的一些参数没有找对或者数据集的问题。此外,在作业中,RNN 网络的宏平均与微平均之间也稍有差距,令我也有点不解。

总之,综合各种结果,感觉 CNN 更适合情感分类的工作,它在卷积核与输出之间存在着比较明显的对应关系,实验效果也最好,而 RNN 则很难说清 LSTM 层的意义,甚至综合考量只能与 MLP 相当。

# 四、问题思考

1) 如果控制实验训练的停止时间? 简要陈述你的实现方式,并试分析固定迭代次数与 early stopping 等方法的优缺点。

控制实验训练的停止一般来说有两种方式

一种为 early stopping,一般来讲,选定某一指标(如在验证集上的准确率、准确率不再上升的周期数等等),设置一个阈值  $\theta$  (和累计次数  $\lambda$ ),当所

选定指标达到阈值(或累计达到 λ 次)时,则停止。

另一种则是**固定迭代次数**,估计过拟合前的位置,设置固定的迭代次数,当 然实际中可以根据模型效果做相应的调整。

我采取的方式为第二种,先在一个较大的周期内训练,然后观察每个周期内验证集损失、准确率的变化趋势,再选择较小的周期,进行多次的验证。实际上,由于输入数据的顺序随机,变量初始化也是随机的,所以每次训练的效果并不完全一样。因此,最终我选定一个平均较为稳定的周期数。

固定迭代次数方式的**优点**是,操作简单,而且在模型不复杂的情况下,可以 快速的完成多次训练,从而非常直观的比较不同模型的数据(曲线)来判断模型 的优劣;但**缺点**是确定合适的迭代次数花费时间较长,需要多次训练验证。

至于 early stopping,一般来讲其选定的指标通常为验证集的准确率等,这种方式的优点是,在模型较复杂、时间不足或想快速选择模型时,能有效提高时间效率;缺点是实现起来不如前者简单,同时也不太能直观地比较出不同模型的特点。

#### 2) 过拟合和欠拟合是深度学习常见的问题,有什么方法可以解决上述问题。

**欠拟合**主要是指模型的复杂度低,在训练集上表现很差,未能较好的捕捉到数据的特征,学习到数据背后的规律以拟合数据。

解决方法主要有两方面,一是网络结构太过简单,可通过增加网络复杂度、深度来解决,二是模型中特征项不够,需要在模型中增加特征项,换用更复杂的模型,如将线性模型替换为多项式模型等来解决;当然,还有可能是参数设置错误,比如训练次数过少等而导致的,这种则需要视情况做出相关调整。

**过拟合**可简单描述为模型复杂度高于实际问题,模型在训练集上表现很好,但在测试集上却较差,泛化能力差。

#### 相应地,解决方法有

- 1. 获取和使用更多的数据,也即增大数据集。这个是最直接的方法,为模型提供更多的数据,使得数据能尽可能地反应整体的全貌,让模型在数据上充分地学习并不断地修正。
- 2. 对数据集进一步的清洗与处理,过拟合有可能是由于数据不纯,特征值过 多导致的,此时可以对数据作进一步的处理,删除掉一些冗余的特征等等。
  - 3. 采用合适的模型, 降低模型的复杂度
- 4. 使用 dropout 函数, Dropout 指的是在训练过程中每次按一定的概率随机 地隐藏一部分神经元(激活函数输出设为0), 不让其参与计算。它在一定程度上 可以消除神经元节点间的联合, 降低了网络对单个神经元的依赖, 增强模型的泛 化能力。
- 5. 选择训练合适的停止时间,训练次数过多,难免会产生过拟合现象,可使用控制迭代次数与 Early Stopping 的方法适时地终止训练,避免过拟合。

如何处理过拟合是深度学习中经常遇到的问题,主要的目标就是提升模型的泛化能力,通过查阅资料,解决过拟合的方法一般还有控制学习速率,采用 L1/L2 正则化,以及使用 Batch\_Normalization 等,在遇到具体问题时需要具体分析,选择合适的方法以达到最优的效果。

#### 3) 试分析梯度消失和梯度爆炸产生的原因,以及对应的解决方式。

原因: 梯度消失和爆炸的根本原因在于 BP 这一训练方法,本次实验中,神经网络都是基于 BP 算法,根据由损失函数计算的误差通过梯度反向传播的方式,来指导网络中权值的更新变化,由于将误差向前传递的过程需要使用链式法则,

而链式法则为连乘的形式,当网络层数越深时,根据链式法则计算出的梯度值会接近0或者特别大,也即出现梯度消失或爆炸。

#### 解决方法常用的有:

- 1. 选择 Relu、LeakyReLU、ELU等激活函数。以 Relu 函数为例,其导数在正数部分是恒等于 1 的;而其他的激活函数如 sigmoid,其导函数最大值为 1/4,当网络层数越多,反向传输值难免越小,最终导致出现梯度消失的情况。因此在深层网络中常使用 relu 激活函数以缓解梯度消失与爆炸问题。
- 2. 梯度裁剪。主要针对梯度爆炸问题,设置一个阈值,然后更新梯度的时候,如果梯度超过这个阈值,那么就将其强制限制在这个范围之内,以防止梯度爆炸。
  - 3. 使用 BN (Batch Normalization) 算法

此外,梯度消失与爆炸的解决方法还有对权重进行正则化、使用残差网络等,在此不再一一叙述。

#### 4) 试分析 CNN, RNN, 全连接神经网络(MLP) 三者的优缺点与各自适用的场景。

|      | MLP                | CNN             | RNN             |
|------|--------------------|-----------------|-----------------|
| 优点   | 结构简单, 易理解, 可解释, 学习 | 结构简单,权重共享减少了需要训 | 结构简单,可解释,有时序性,可 |
|      | 全局信息               |                 | 以对序列内容建         |
|      |                    | 训练速度, 可自动       | 模,处理序列数据        |
|      |                    | 提取特征,在局部        |                 |
|      |                    | 特征明显时优势         |                 |
|      |                    | 很大              |                 |
| 缺点   | 参数规模较小时            | 网络结构比较浅         | 需要训练参数较         |
|      | 学习能力弱,参数           | 时学习能力有限,        | 多,容易出现梯度        |
|      | 规模大时对机器            | 不能获取全局信         | 消失和梯度爆炸         |
|      | 配置(内存等)要           | 息               | 问题,不具有特征        |
|      | 求较高                |                 | 学习能力,且训练        |
|      |                    |                 | 较慢              |
| 适用场景 | 由于会提取到全            | 图像处理中的分         | 语音处理,人机对        |
|      | 局特征,因此常常           | 类、目标检测等,        | 话,文本处理等模        |
|      | 只放在各种网络            | 特别是可直接将         | 型输入为时间序         |
|      | 最后,用于综合所           | 图像进行输入,避        | 列数据             |
|      | 有的信息               | 免了复杂的特征         |                 |
|      |                    | 提取等             |                 |

# 五、心得体会

此次作业是我第一次接触人工神经网络,通过使用 keras 框架搭建了三个简单的网络模型,当运行起来预测程序并输入语句看到网络输出的结果时,心情还是蛮激动的,不过一些语句情感的预测并不太准,模型的准确率在测试集上也并算不高,自己的网络结构及参数还需再改善。通过这次作业,我也更深刻地理解了人工智能的黑盒特点:针对具体的问题来讲,选择何种网络结构、参数更多的是依据经验、实际效果等,缺少强有力的理论支撑,不过这也是由于网络中所含神经元过多,难以完全描述的缘故。