Zadanie 15. W sytuacji jak w zadaniu 14 pokaż, że każdy element M można przedstawić jako $\mu_i(x_i)$ dla pewnego $i \in I$ oraz $x_i \in M_i$.

Pokaż również, że jeżeli $\mu_i(x_i)$ = 0, wtedy istnieje j \geq i takie, że $\mu_{ij}(x_i)$ = 0 w M_i .

Po pierwsze, weźmy sobie jakieś $x \in M$. Ono tak naprawdę siedzi w C ale bez D (bo M = C/D), czyli $x = \sum \mu_i(x_i)$. Super. To teraz my wiemy, że i jest częściowo uporządkowane i że elementy C mają niezera na skończenie wielu miejscach, czyli musi istnieć jakieś j takie, że

$$x = \sum \mu_i(x_i) = \sum_{i < j} \mu_i(x_i).$$

Ale my mamy powiedzialne, że jeśli i \leq j, to μ_i = $\mu_i \circ \mu_{ii}$, czyli

$$\sum_{i < j} \mu_i(x_i) = \sum_{i < j} \mu_j(\mu_{ij}(x_i)) = \mu_j \left[\sum \mu_{ij}(x_i) \right],$$

a przecież $\sum_{i < j} \mu_{ij}(x_i) \in M_i$

Niech x_i takie, że $\mu_i(x_i) = 0$. Wtedy istnieje $j \ge i$ takie, że $0 = \mu_i(x_i) = \mu_i(\mu_{ii}(x_i))$.

Zadanie 16. Pokaż, że prosta granica jest określona (z dokładnością do izomorfizmu) przez następującą własność. Niech N będzie A-modułem i niech dla każdego i \in I α_i : $M_i \to N$ będzie homomorfizmem A-modułów takim, że α_i = $\alpha_j \circ \mu_{ij}$ zawsze gdy i \leq j. Wtedy istnieje unikalny homomorfizm α : $M \to N$ taki, że α_i = $\alpha \circ \mu_i$ dla wszystkich i \in I.

TY DEBILU NIE TO POKAZYWAŁAŚ, ŻE JEST JEDYNE, TO M MAJĄ BYĆ JEDYNE A NIE lpha

Jedyność: Załóżmy, że dwie granice proste spełniają ten diagram:

 $\mathsf{Mamy}\ \alpha_{\mathbf{i}} = \mu_{\mathbf{i}} \circ \alpha_{\mathbf{i}} : \mathsf{M}_{\mathbf{i}} \to \mathsf{M'}\ \mathsf{i}\ \alpha_{\mathbf{i}}' = \mu_{\mathbf{i}} \circ \alpha_{\mathbf{i}}.$

Chcemy wybrać szczególną rodziną α_i i.

Zadanie 17. Niech $(M_i)_{i\in I}$ będzie rodziną podmodułów A-modułu takich, że dla każdej pary indeksów i, j \in I istnieje k \in I takie, że M_i + M_j \in M_k . Zdefiniujemy i \leq j przez M_i \subseteq M_j i niech μ_{ij} : $M_i \rightarrow M_j$ będzie włożeniem M_i w M_i . Pokaż, że

$$\lim_{i \to \infty} M_i = \sum_i M_i = \bigcup_i M_i.$$

W szczególności, dowolny A-moduł jest prosta granicą skończenie generowanych podmodułów.

Najpierw to drugie pytanie. Niech S będzie zbiorem skończenie generowanych podmodułów M. Od razu widać, że jest to zbiór uporządkowany przez zawieranie. Niech $x \in M$. No raczej nie może być nieskończoną sumą generatorów, tylko musi być sumowany przez skończenie wiele ziomeczków, czyli jego generatory są w skończenie wielu M_i , czyli są w $\bigcup M_i$, czyli jest to $\varinjlim M_i$ na mocy pierwszej części ćwiczenia.

To teraz powrót do pierwszej części zadanka. Wydaje mi się, że $\bigcup M_i \subseteq \sum M_i$ jest dość proste. $\sum M_i \subseteq \varinjlim M_i$ brzmi jak coś z definicji. Zostaje mi, że $\varinjlim M_i \subseteq \bigcup M_i$. To weźmy sobie dowolnego $x \in M$, wiem że istnieje $x_i \in M_i$ takie, że $\mu_i(x_i) = x$ no i to mi chyba kończy dowód? Bo μ_i to tak naprawdę identyczność obcięta do M_i ?

Zadanie 18. Niech $\mathbb{M}=(M_i,\mu_{ij}),\ \mathbb{N}=(N_i,\nu_{ij})$ będą skierowanymi systemami A-modułów nad tym samym skierowanym zbiorem. Niech M, N będą ich skierowanymi granicami i $\mu_i:M_i\to M,\ \nu_i:N_i\to N$ związanymi z nimi homomorfizmami.

Homomorfizm $\phi: \mathbb{M} \to \mathbb{N}$ jest z definicji rodziną homomorfizmów A-modułów $\phi_i: M_i \to N_i$ takich, że $\phi_i \circ \mu_{ij} = \nu_{ij} \circ \phi_i$ zawsze gdy $i \leq j$. Pokaż, że ϕ definiuje unikalny homomorfizm $\phi = \varinjlim \phi_i: M \to N$ taki, że $\phi \circ \mu_i = \nu_i \circ \phi_i$ dla wszystkich $i \in I$.