Interpolare polinomială

1. Introducere

Exemple:

(Burden, Richard L.; Faires, J. Douglas: Numerical Analysis, 8th ed., pages 104–105, ISBN 0534392008.)

A census of the population of the United States is taken every 10 years.

The following table lists the population, in thousands of people, from 1940 to 1990.

Year	1940	1950	1960	1970	1980	1990
Population (in thousands)		151,326	179,323	203,302	226,542	249,633

Care a fost populația în 1996, care va fi populația în 2000?

(Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 3rd ed, ISBN-13:978-0-07-340110-2, pag 336) Variația densității aerului

TABLE 15.1 Density (ρ), dynamic viscosity (μ), and kinematic viscosity (v) as a function of temperature (T) at 1 atm as reported by White (1999).

	the second state of the se	and the second s	24 - 24 - 25 - 25 - 25 - 25 - 25 - 25 -
<i>T</i> , °C	$ ho$, kg/m 3	μ , N \cdot s/m 2	v , m^2/s
-40	1.52	1.51×10^{-5}	0.99 × 10 ⁻⁵
0	1.29	1.71×10^{-5}	1.33×10^{-5}
20	1.20	1.80×10^{-5}	1.50×10^{-5}
50	1.09	1.95×10^{-5}	1.79 x 10 ⁻⁵
100	0.946	2.17×10^{-5}	2.30×10^{-5}
150	0.835	2.38×10^{-5}	2.85×10^{-5}
200	0.746	2.57×10^{-5}	3.45 x 10 ⁻⁵
250	0.675	2.75×10^{-5}	4.08×10^{-5}
300	0.616	2.93×10^{-5}	4.75 × 10 ⁻⁵
400	0.525	3.25×10^{-5}	6.20×10^{-5}
500	0.457	3.55×10^{-5}	7.77 x 10 ⁻⁵

Fie datele obținute prin metode experimentale date în tabelul de corespondență

t (min)	1	5	10	15	17	20	30	40
C(t)	24,5	10,30	8,50	7,8	7,70	7,45	7,30	7,25

Reprezentarea grafică a datelor din acest tablou este

Evoluția concentrației C(t) (mg/L) în funcție de timpul t.

Noţiunea de interpolare s-a introdus pentru nevoia de găsi o estimare a unei funcţii f într-un punct x pentru care experimantal nu s-a putut realiza. Grafic se poate da o estimare dar aceasta poate conţine erori semnificative.

Interpolare liniară

Interpolarea liniară presupune că variația dintre două puncte experimentale este de natură liniară.

Fie funcția f măsurată experimental în două puncte a și a+h cu pasul h foarte mic, fie a < x < a+h. Atunci valoarea f(x) se poate aproxima prin

$$f(x) \approx f(a) + (x - a)f'(x) \tag{7.5}$$

Din definiția derivatei unei funcții într-un punct putem aproxima

$$f'(a) \approx \frac{f(a+h) - f(a)}{h}$$

Prin urmare putem scrie

$$f(x) \approx f(a) + (x-a) \frac{f(a+h) - f(a)}{h}$$

Exemplu: Considerând datele experimentale prezentate în exemplul 1 estimați C(7) prin formula interpolării liniare.

Soluție: Pentru a estima valoarea t = 7 sau 8 e necesar sa cunoaștem valoarea concentrației în două puncte a și a+h cu a < t < a+h

$$C(t) \approx C(a) + (t-a) \frac{C(a+h) - C(a)}{h}$$

Avem 5 < 7 < 10, prin urmare a = 5 si h = 5

$$C(7) \approx C(5) + (7-5)\frac{C(10) - C(5)}{5} = 10,30 + 2\frac{8,5 - 10,30}{5} = 9,58 \text{ mg/L}$$

Avem 5 < 8 < 10, prin urmare a = 5 si h = 5

$$C(7) \approx C(5) + (8-5)\frac{C(10) - C(5)}{5} = 10,30 + 3\frac{8,5 - 10,30}{5} = 9,22 \text{ mg/L}$$

Interpolare parabolică

Interpolarea parabolică presupune că variația între trei puncte experimentale este de tip parabolic.

O funcție f dată experimental în trei puncte a-h, a și a+h cu pasul h foarte mic. Fie a-h<x<a+h, atunci f(x) este dată de

$$f(x) \approx f(a) + (x-a)\frac{f(a+h) - f(a-h)}{2h} + \frac{(x-a)^2}{2} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}$$
(7.6)

Exemplu: Considerând datele experimentale prezentate în exemplul 1 estimați C(7) prin formula interpolării parabolice.

Soluție: Este necesar de a cunoaște valorile experimentale ale funcției C în trei puncte învecinate lui t = 7, pentru care a - h < t < a + h, adică C(a - h), C(a) și C(a - h).

Luăm a = 10 și h = 5 atunci

$$C(7) \approx C(10) + (7 - 10) \frac{C(15) - C(5)}{10} + \frac{(7 - 10)^2}{2} \frac{C(15) - 2C(10) + C(5)}{25}$$

$$C(7) \approx 8.5 - 3 \frac{7.8 - 10.3}{10} + \frac{(-3)^2}{2} \frac{7.8 - 2(8.5) + 10.3}{25} \approx 9.45 \text{ mg/L}$$

$$C(8) \approx C(10) + (8-10)\frac{C(15) - C(5)}{10} + \frac{(8-10)^2}{2}\frac{C(15) - 2C(10) + C(5)}{25}$$
$$C(8) \approx 8.5 - 2\frac{7.8 - 10.3}{10} + \frac{(-2)^2}{2}\frac{7.8 - 2(8.5) + 10.3}{25} \approx 9.088 \, mg/L$$

Interpolare liniară și parabolică

În general când se dau un număr de puncte și n informații referitoare la aceste puncte (valori ale unei funcții, și/sau valori ale derivatelor funcțiilor în punctele respective) putem construi un polinom de grad n-1 numit polinom de interpolare ce va trece prin acele puncte.

Exemplu: Fie punctele x_1 şi x_2 şi valorile cunoscute $f(x_1)$, $f'(x_1)$ şi $f(x_2)$. Atunci putem construi polinomul P(x) de grad 2 ce trece prin punctele x_1 şi x_2 rezolvând sistemul cu necunoscutele a,b,c:

$$P(x_1) = a x_1^2 + b x_1 + c = f(x_1)$$

$$P'(x_1) = 2 a x_1 + b = f'(x_1)$$

$$P(x_2) = a x_2^2 + b x_2 + c = f(x_2)$$

Examples of interpolating polynomials: (a) first-order (linear) connecting two points, (b) second-order (quadratic or parabolic) connecting three points, and (c) third-order (cubic) connecting four points.

2. Interpolare Lagrange

(R. Trîmbitas, 2005, Analiza numerica. O introducere bazata pe MATLAB, Presa Universitară Clujeană)

Observația 5.3.1. Funcția $f: I \to \mathbb{R}$, I interval, se numește absolut continuă pe I dacă $\forall \varepsilon > 0 \exists \delta > 0$ astfel încât oricare ar fi un sistem finit de subintervale disjuncte ale lui I $\{(a_k, b_k)\}_{k=\overline{1,n}}$ cu proprietatea $\sum_{k=1}^{n} (b_k - a_k) < \delta$ să avem

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon.$$

Pentru $n \in \mathbb{N}^*$, definim

$$H^{n}[a,b] = \{f : [a,b] \to \mathbb{R} : f \in C^{n-1}[a,b], f^{(n-1)} \text{ absolut continuă pe } [a,b] \}.$$

Orice funcție $f \in H^n[a,b]$ admite o reprezentare de tip Taylor cu restul sub formă integrală

$$f(x) = \sum_{k=0}^{n-1} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt.$$

Teorema (Peano). Fie L o funcțională reală, continuă, definită pe $H^n[a,b]$. Dacă $KerL = \mathbb{P}_{n-1}$ atunci

$$Lf = \int_{a}^{b} K(t)f^{(n)}(t)dt,$$

unde

$$K(t) = \frac{1}{(n-1)!} L[(\cdot - t)_+^{n-1}] \quad \text{(nucleul lui Peano)}.$$

Funcția

$$z_{+} = \left\{ \begin{array}{ll} z, & z \ge 0 \\ 0, & z < 0 \end{array} \right.$$

se numește parte pozitivă, iar z_+^n se numește putere trunchiată.

0

Fie intervalul închis $[a,b] \subset \mathbb{R}$, $f:[a,b] \to \mathbb{R}$ și o mulțime de m+1 puncte distincte $\{x_0,x_1,\ldots,x_m\} \subset [a,b]$.

Teorema Există un polinom și numai unul $L_m f \in \mathbb{P}_m$ astfel încât

$$\forall i = 0, 1, ..., m, (L_m f)(x_i) = f(x_i);$$

acest polinom se scrie sub forma

$$(L_m f)(x) = \sum_{i=0}^m f(x_i)\ell_i(x),$$

unde

$$\ell_i(x) = \prod_{\substack{j=0\\j\neq i}}^m \frac{x - x_j}{x_i - x_j}.$$

Polinomul $L_m f$ definit astfel se numește polinom de interpolare Lagrange a lui f relativ la punctele x_0, x_1, \ldots, x_m , iar funcțiile $\ell_i(x)$, $i = \overline{0, m}$, se numesc polinoame de bază (fundamentale) Lagrange asociate acelor puncte.

Sursa MATLAB 5.11 Interpolare Lagrange

```
function fi=lagr(x,y,xi)
%LAGR - calculeaza polinomul de interpolare Lagrange
% x,y -coordonatele nodurilor
% xi - punctele in care se evalueaza polinomul
if nargin ~=3
    error('numar ilegal de argumente')
end
[mu,nu]=size(xi);
fi=zeros(mu,nu);
np1=length(y);
for i=1:np1
    z=ones (mu, nu);
    for j = [1:i-1,i+1:np1]
        z=z.*(xi-x(j))/(x(i)-x(j));
    end;
    fi=fi+z*y(i);
end
```

Exemplu (Ward Cheney, David Kincaid, Numerical Mathematics and Computing, Sixth edition, 2008)

Write out the cardinal polynomials appropriate to the problem of interpolating the following table, and give the Lagrange form of the interpolating polynomial:

Solution

$$\ell_0(x) = \frac{\left(x - \frac{1}{4}\right)(x - 1)}{\left(\frac{1}{3} - \frac{1}{4}\right)\left(\frac{1}{3} - 1\right)} = -18\left(x - \frac{1}{4}\right)(x - 1)$$

$$\ell_1(x) = \frac{\left(x - \frac{1}{3}\right)(x - 1)}{\left(\frac{1}{4} - \frac{1}{3}\right)\left(\frac{1}{4} - 1\right)} = 16\left(x - \frac{1}{3}\right)(x - 1)$$

$$\ell_2(x) = \frac{\left(x - \frac{1}{3}\right)\left(x - \frac{1}{4}\right)}{\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)} = 2\left(x - \frac{1}{3}\right)\left(x - \frac{1}{4}\right)$$

Therefore, the interpolating polynomial in Lagrange's form is

$$p_2(x) = -36\left(x - \frac{1}{4}\right)(x - 1) - 16\left(x - \frac{1}{3}\right)(x - 1) + 14\left(x - \frac{1}{3}\right)\left(x - \frac{1}{4}\right)$$

Exemplu x_0 și x_1 este

Polinomul de interpolare Lagrange corespunzător unei funcții f și nodurilor

$$(L_1 f)(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1),$$

adică dreapta care trece prin punctele $(x_0, f(x_0))$ și $(x_1, f(x_1))$. Analog, polinomul de interpolare Lagrange corespunzător unei funcții f și nodurilor x_0, x_1 și x_2 este

$$(L_2 f)(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2),$$

adică parabola care trece prin punctele $(x_0, f(x_0))$, $(x_1, f(x_1))$ și $(x_2, f(x_2))$. Interpretarea lor geometrică apare în figura

Interpretarea geometrică a lui L_1f (stânga) și L_2f

3. Interpolare Hermite

(R. Trîmbiţaş, 2005, Analiza numerica. O introducere bazata pe MATLAB, Presa Universitară Clujeană)

În loc să facem să coincidă f și polinomul de interpolare în punctele x_i din [a,b], am putea face ca f și polinomul de interpolare să coincidă împreună cu derivatele lor până la ordinul r_i în punctele x_i . Se obține:

Teorema Fiind date (m+1) puncte distincte x_0, x_1, \ldots, x_m din [a,b] şi (m+1) numere naturale r_0, r_1, \ldots, r_m , punem $n=m+r_0+r_1+\cdots+r_m$. Atunci, fiind dată o funcție f, definită pe [a,b] și admițând derivate de ordin r_i în punctele x_i , există un singur polinom și numai unul $H_n f$ de grad $\leq n$ astfel încât

$$\forall (i, \ell), 0 \le i \le m, 0 \le \ell \le r_i \qquad (H_n f)^{(\ell)}(x_i) = f^{(\ell)}(x_i),$$

unde $f^{(\ell)}(x_i)$ este derivata de ordinul ℓ a lui f în x_i .

Definiția Polinomul definit în acest mod se numește polinom de interpolare al lui Hermite al funcției f relativ la punctele x_0, x_1, \ldots, x_m și la întregii r_0, r_1, \ldots, r_m .

1) Dându-se numerele reale $b_{i\ell}$ pentru orice pereche (i,ℓ) astfel încât $0 \le i \le k$ și $0 \le \ell \le r_i$, am arătat că problema generală de interpolare Hermite

să se determine
$$p_n \in \mathbb{P}_n$$
 a.î. $\forall (i, \ell)$ cu $0 \le i \le m$ și $0 \le \ell \le r_i, \ p_n^{(\ell)}(x_i) = b_{i\ell}$

admite o soluție și numai una. În particular, dacă alegem pentru o pereche (i,ℓ) dată $b_{i\ell}=1$ și $b_{jn}=0, \ \forall \ (j,m)\neq (i,\ell)$, se obține un polinom de bază (fundamental) de interpolare Hermite relativ la punctele x_0,x_1,\ldots,x_m și la întregii r_0,r_1,\ldots,r_m .

$$(H_n f)(x) = \sum_{i=0}^m \sum_{\ell=0}^{r_i} f^{(\ell)}(x) h_{i\ell}(x).$$

Punând

$$q_i(x) = \prod_{\substack{j=0 \ j \neq i}}^k \left(\frac{x - x_j}{x_i - x_j}\right)^{r_{j+1}},$$

se verifică că polinoamele de bază $h_{i\ell}$ sunt definite prin relațiile de recurență

$$h_{ir_i}(x) = \frac{(x - x_i)^{r_i}}{r_i!} q_i(x)$$

și pentru $\ell = r_i - 1, r_i - 2, \dots, 1, 0$

$$h_{i\ell}(x) = \frac{(x - x_i)^{\ell}}{\ell!} q_i(x) - \sum_{j=\ell+1}^{r_i} {j \choose \ell} q_i^{(j-\ell)}(x_i) h_{ij}(x).$$

Vom prezenta o expresie mai convenabilă a polinoamelor fundamentale Hermite, obținută de Dimitrie D. Stancu în 1957[60]. Ele verifică relațiile

$$h_{kj}^{(p)}(x_{\nu}) = 0, \qquad \nu \neq k, \ p = \overline{0, r_{\nu}}$$
$$h_{kj}^{(p)}(x_k) = \delta_{jp}, \quad p = \overline{0, r_k},$$

pentru $j = \overline{0, r_k}$ și $\nu, k = \overline{0, m}$. Introducând notațiile

$$u(x) = \prod_{k=0}^{m} (x - x_k)^{r_k + 1}$$

şi

$$u_k(x) = \frac{u(x)}{(x - x_k)^{r_k + 1}},$$

rezultă că h_{kj} are forma

$$h_{kj}(x) = u_k(x)(x - x_k)^j g_{kj}(x), \qquad g_{kj} \in \mathbb{P}_{r_k - j}.$$

Dezvoltând g_{kj} cu formula lui Taylor, avem

$$g_{kj}(x) = \sum_{\nu=0}^{r_k-j} \frac{(x-x_k)^{\nu}}{\nu!} g_{kj}^{(\nu)}(x_k);$$

Derivând și aplicând formula lui Leibniz se obține:

$$g_{kj}^{(\nu)}(x_k) = \frac{1}{j!} \left[\frac{1}{u_k(x)} \right]_{x=x_k}^{(\nu)}$$

iar în final avem:

$$h_{kj}(x) = \frac{(x - x_k)^j}{j!} u_k(x) \sum_{\nu=0}^{r_k - j} \frac{(x - x_k)^\nu}{\nu!} \left[\frac{1}{u_k(x)} \right]_{x = x_k}^{(\nu)}.$$

(Burden, Richard L.; Faires, J. Douglas: Numerical Analysis, 8th ed., pages 104–105, ISBN 0534392008.)

If $f \in C^1[a, b]$ and $x_0, \ldots, x_n \in [a, b]$ are distinct, the unique polynomial of least degree agreeing with f and f' at x_0, \ldots, x_n is the Hermite polynomial of degree at most 2n + 1 given by

$$H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \hat{H}_{n,j}(x),$$

where

$$H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)]L^2_{n,j}(x)$$

and

$$\hat{H}_{n,j}(x) = (x - x_j)L_{n,j}^2(x).$$

In this context, $L_{n,j}(x)$ denotes the jth Lagrange coefficient polynomial of degree n defined in Eq. (3.2).

Moreover, if $f \in C^{2n+2}[a, b]$, then

$$f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \dots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi),$$

for some ξ with $a < \xi < b$.

Exemplu: Aflaţi f(1.5) folosind interpolarea Hermite:

k	x_k	$f(x_k)$	$f'(x_k)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-0.5698959
2	1.9	0.2818186	-0.5811571

We first compute the Lagrange polynomials and their derivatives. This gives

$$L_{2,0}(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}, \qquad L'_{2,0}(x) = \frac{100}{9}x - \frac{175}{9};$$

$$L_{2,1}(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{-100}{9}x^2 + \frac{320}{9}x - \frac{247}{9}, \qquad L'_{2,1}(x) = \frac{-200}{9}x + \frac{320}{9};$$

and

$$L_{2,2} = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{50}{9}x^2 - \frac{145}{9}x + \frac{104}{9}, \qquad L'_{2,2}(x) = \frac{100}{9}x - \frac{145}{9}.$$

$$\begin{split} H_{2,0}(x) &= [1-2(x-1.3)(-5)] \left(\frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}\right)^2 \\ &= (10x-12) \left(\frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}\right)^2, \\ H_{2,1}(x) &= 1 \cdot \left(\frac{-100}{9}x^2 + \frac{320}{9}x - \frac{247}{9}\right)^2, \end{split} \qquad \hat{H}_{2,1}(x) = (x-1.6) \left(\frac{50}{9}x^2 - \frac{145}{9}x + \frac{104}{9}\right)^2, \end{split}$$

$$\hat{H}_{2,2}(x) = (x - 1.9) \left(\frac{50}{9} x^2 - \frac{145}{9} x + \frac{104}{9} \right)^2.$$

$$H_5(x) = 0.6200860H_{2,0}(x) + 0.4554022H_{2,1}(x) + 0.2818186H_{2,2}(x)$$
$$-0.5220232\hat{H}_{2,0}(x) - 0.5698959\hat{H}_{2,1}(x) - 0.5811571\hat{H}_{2,2}(x)$$

$$H_5(1.5) = 0.6200860 \left(\frac{4}{27}\right) + 0.4554022 \left(\frac{64}{81}\right) + 0.2818186 \left(\frac{5}{81}\right)$$
$$-0.5220232 \left(\frac{4}{405}\right) - 0.5698959 \left(\frac{-32}{405}\right) - 0.5811571 \left(\frac{-2}{405}\right)$$
$$= 0.5118277,$$

Exemplu: (http://en.wikipedia.org/wiki/Shamir%27s Secret Sharing)

Mathematical definition [edit]

The goal is to divide data D (e.g., a safe combination) into n pieces D_1, \ldots, D_n in such a way that:

- Knowledge of any k or more D_i pieces makes D easily computable.
- 2. Knowledge of any k=1 or fewer D_i pieces leaves D completely undetermined (in the sense that all its possible values are equally likely).

This scheme is called (k,n) threshold scheme. If k=n then all participants are required to reconstruct the secret.

Shamir's secret-sharing scheme [edit]

The essential idea of Adi Shamir's threshold scheme is that 2 points are sufficient to define a line, 3 points are sufficient to define a parabola, 4 points to define a cubic curve and so forth. That is, it takes k points to define a polynomial of degree k=1.

Suppose we want to use a (k, n) threshold scheme to share our secret S, without loss of generality assumed to be an element in a finite field F of size $0 < k \le n < P$ where P is a prime number.

Choose at random k=1 coefficients a_1,\cdots,a_{k-1} in F, and let $a_0=S$. Build the polynomial $f(x)=a_0+a_1x+a_2x^2+a_3x^3+\cdots+a_{k-1}x^{k-1}$. Let us construct any n points out of it, for instance set $i=1,\cdots,n$ to retrieve (i,f(i)). Every participant is given a point (an integer input to the polynomial, and the corresponding integer output). Given any subset of k of these pairs, we can find the coefficients of the polynomial using interpolation. The secret is the constant term a_0 .

Preparation [edit]

Suppose that our secret is 1234 (S = 1234).

We wish to divide the secret into 6 parts (n=6), where any subset of 3 parts (k=3) is sufficient to reconstruct the secret. At random we obtain two (k=1) numbers: 166 and 94.

$$(a_1 = 166; a_2 = 94)$$

Our polynomial to produce secret shares (points) is therefore:

$$f(x) = 1234 + 166x + 94x^2$$

We construct 6 points from the polynomial:

$$(1,1494)$$
; $(2,1942)$; $(3,2578)$; $(4,3402)$; $(5,4414)$; $(6,5614)$

We give each participant a different single point (both x and f(x)).

Reconstruction [edit]

In order to reconstruct the secret any 3 points will be enough.

Let us consider
$$(x_0, y_0) = (2, 1942)$$
; $(x_1, y_1) = (4, 3402)$; $(x_2, y_2) = (5, 4414)$.

We will compute Lagrange basis polynomials:

$$\ell_0 = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} = \frac{x - 4}{2 - 4} \cdot \frac{x - 5}{2 - 5} = \frac{1}{6}x^2 - \frac{3}{2}x + \frac{10}{3}$$

$$x - x_0 \quad x - x_2 \quad x - 2 \quad x - 5 \quad 1 \quad 3$$

$$\ell_1 = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} = \frac{x - 2}{4 - 2} \cdot \frac{x - 5}{4 - 5} = -\frac{1}{2}x^2 + \frac{7}{2}x - 5$$

$$\ell_2 = \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} = \frac{x - 2}{5 - 2} \cdot \frac{x - 4}{5 - 4} = \frac{1}{3}x^2 - 2x + \frac{8}{3}$$

Therefore

$$f(x) = \sum_{j=0}^{2} y_j \cdot \ell_j(x)$$

$$= 1234 + 166x + 94x^2$$

Recall that the secret is the free coefficient, which means that S=1234, and we are done.

3. Erorile polinoamelor de interpolare

Dacă dorim să utilizăm polinomul de interpolare Lagrange sau Hermite pentru a aproxima funcția f într-un punct $x \in [a,b]$, distinct de nodurile de interpolare (x_0,\ldots,x_m) , trebuie să estimăm eroarea comisă $(R_nf)(x) = f(x) - (H_nf)(x)$. Dacă nu posedăm nici o informație referitoare la f în afara punctelor x_i , este clar că nu putem spune nimic despre $(R_nf)(x)$; într-adevăr este posibil să schimbăm f în afara punctelor x_i fără a modifica $(H_nf)(x)$. Trebuie deci să facem ipoteze suplimentare, care vor fi ipoteze de regularitate asupra lui f. Să notăm cu $C^m[a,b]$ spațiul funcțiilor reale de m ori continuu diferențiabile pe [a,b]. Avem următoarea teoremă referitoare la estimarea erorii în interpolarea Hermite.

Teorema Presupunem că $f \in C^n[\alpha, \beta]$ și există $f^{(n+1)}$ pe (α, β) , unde $\alpha = \min\{x, x_0, \dots, x_m\}$ și $\beta = \max\{x, x_0, \dots, x_m\}$; atunci, pentru orice $x \in [\alpha, \beta]$, există un $\xi_x \in (\alpha, \beta)$ astfel încât

$$(R_n f)(x) = \frac{1}{(n+1)!} u_n(x) f^{(n+1)}(\xi_x),$$

unde

$$u_n(x) = \prod_{i=0}^{m} (x - x_i)^{r_{i+1}}.$$

Deoarece interpolarea Lagrange este un caz particular al interpolarii Hermite ($r_i = 0$, i=0,1,...,m) avem:

Corolarul 5.3.18. Presupunem că $f \in C^m[\alpha, \beta]$ și există $f^{(m+1)}$ pe (α, β) , unde $\alpha = \min\{x, x_0, \ldots, x_m\}$ și $\beta = \max\{x, x_0, \ldots, x_m\}$; atunci, pentru orice $x \in [\alpha, \beta]$, există un $\xi_x \in (\alpha, \beta)$ astfel încât

$$(R_m f)(x) = \frac{1}{(n+1)!} u_m(x) f^{(m+1)}(\xi_x), \tag{5.3.26}$$

unde

$$u_m(x) = \prod_{i=0}^m (x - x_i).$$