# CS-E4650 Methods of Data Mining



I Course logistics, II Introduction to DM, III Preprocessing

### Teaching staff

instructor: Wilhelmiina "Wiki" Hämäläinen (wilhelmiina.hamalainen@aalto.fi) teaching assistants: Egor Eremin egor.eremin@aalto.fi Georgy Ananov georgy.ananov@aalto.fi Hieu Nguen Khac hieu.nguyenkhac@aalto Lai Khoa khoa.lai@aalto.fi Paavo Reinikka paavo.reinikka@aalto.fi Yinjia Zhang yinjia.zhang@aalto.fi + Vinh N'guyen helped with preparation guest lecturers or visitors: prof. Heikki Mannila and MSc Juho Rinta-Paavola contact: course forum, please avoid email chaos!

### Communication and course material

All course information available via mycourses.aalto.fi (MC): https://mycourses.aalto.fi/course/view.php?id=41020

- announcements (all important announcements by MC!)
- lecture notes and external material
- link to the text book: Charu C. Aggarwal: Data Mining: The Textbook, Springer 2015
- exercise tasks and material
- link to course forum https://mdm2023.zulip.aalto.fi/

Ask during lectures and exercise sessions and in the course forum. Please, use email only for personal matters that you cannot ask elsewhere.

### Advicing in zulip

#### Questions on exercises and homeworks

- ask under the right channel (e.g., "Exercise session 1")
- give informative title to the stream (like task number)
- TAs' reply questions during weekdays (+ other students can reply)
- no real-time responses (some delays)
- if you want a reply before weekend, ask before Thu 4pm latest

### Other questions (lectures, general)

 like above, but the lecturer and TAs reply (also students can reply, if you know the answer! e.g., something told in MC)

### Completing course

- activite participation in exercise groups (5 sessions, max 5p)
- 2. submitting homeworks in groups of 2–3 students (5 tasks, max 10p)
- 3. final exam Wed 13.12. 13:00–16:00 (max 24p)
- 4. prerequisite test (max 1p)
  https://plus.cs.aalto.fi/cs-e4650/2023/
  (deadline 18th Sep 2023)
- the final grade is based on the sum of points (max 40)
- to pass the course one needs to get  $\geq 50\%$  of total points and  $\geq 50\%$  of the exam points

### Exercises and homeworks

#### **Exercise tasks**

- individual solution beforehand
- processing in small groups during sessions + presentation
- in exceptional/force majeure circumstances you can once return a solution report to the TAs instead

### **Homeworks** (home assignments)

- done in groups of 2–3 students (but independent work, no Al tools unless specifically asked to use)
- at least 10 days time to solve
- submit before the deadline! (with -10% penalty can be 24h late)

### Average workload (5 ects ≈ 135h)

- 34–36h contact sessions (lectures and exercises)
- 20h preparation for exercises
- 20h graded homeworks (in groups)
- 40h self-studying (more if skipped lectures/sessions)
- 20h preparation for the exam

Important: Solve exercise tasks beforehand! (Best way to learn!)

Self-study every week! (read the book & other learning material)

<sup>&</sup>lt;sup>a</sup>now allocated 1 extra lecture

### Learning goals

- Know fundamental data mining problems, pattern types and methods
- Know which methods to choose for a given problem or keywords to find more information
- Recognize when to expect computational problems and know some feasible strategies
- Understand importance of validation and know some approaches to validation
- Make programs that use or implement DM methods
- Utilize existing source code and tools in DM tasks
- Learn good DM practices

### Meta-learning goals

Not actual learning goals, but useful skills for data miners that you are encouraged to learn!

- reading scientific papers related to DM
- writing efficient programs (and algorithms)
- managing many alternative tools or programming languages
- working in linux/unix environment
- learning critical thinking



# **Syllabus**

- Introduction to DM
- Data preprocessing
- Distance and similarity
- Clustering (extensions of K-family, hierarchical, spectral + evaluation)
- Association mining
- Graph mining
- Social network analysis
- Web mining and recommendation systems
- Text mining
- guests: Data randomization, Episode mining

# Relationship to some other courses



### Prerequisites: Important!

#### 1. Basic mathematics and statistics

- reading mathematical notations
- basic concepts of probability theory (distributions, conditional probability, independence, probability calculus)
- basic concepts of statistics (summary statistics like mean, median, variance, covariance, idea of statistical significance)
- basic matrix algebra (basic operations, some notion of eigenvalues and eigenvectors)

### Prerequisites (cont'd)

### 2. Programming

 ability to process data and implement algorithms in some well-known programming language (Python, Java, C, C++, Matlab)

### 3. Algorithms and data structures

- reading pseudocode
- lists, trees, graphs etc.
- O-notation, NP-hardness
- basic algorithm strategies

# Ask if you don't know something!

- utilize the course forum! It is most efficient!
  - channels for general/practical things, lectures and material, exercises, assigments
  - check extra clarifications, what others have asked and ask new questions
- ask during lectures
  https://presemo.aalto.fi/mdm2023
- take advantage of the exercise sessions
- read the textbook and extra materials
- make study groups with your colleagues
- use library and internet

### Introduction to Data Mining

- What is data mining?
- Data mining process



# What is Data mining (DM)?

- no definite and clear answer
- computationally nontrivial data analysis for finding new useful information from large collections of data
  - interesting patterns like relationships and groupings
- Challenge: data volumes are all the time inreasing!
  - ⇒ more efficient algorithms needed
  - ⇒ number of patterns and spurious discoveries increases ⇒ How to find interesting and reliable patterns?

### Data vs. Information?



- raw data = unprocessed, uninterpreted facts (e.g, measurements)
- information = knoweldge that has meaning, "interpreted data"
- relative terms: the resulting information from one process may be source data for another process

### Relationship to closest neighbouring fields

# DM ~ knowledge discovery (from databases) (KDD) Machine learning strongly overlapping/synonymous!



### Model vs. pattern?

#### **Model**

- global (fits entire data)
- e.g., course success (passing the course) can be predicted from exercise points, time spent on course and participation in exercise groups

#### **Pattern**

- local model (describes some part of data)
- e.g., if students obtain high points in assignment 2 they tend to obtain high points also in the exam task 3

### DM process

1. Defining problem understanding data and background

2. Preprocessing cleaning, feature extraction, selection

3. Data mining (modelling/pattern discovery)

4. Evaluating reliability of results

5. Presenting and intepreting results

### 1. Defining the problem

- Understanding data: what variables measure/describe?
- What are data types? How much there is data?
- What kinds of patterns would be interesting or useful to find?
- What is already known?
- It is worth studying some background theory!
- Difficulty: How people from different fields find the same language?

### Example: defining problem

Medical scientist: How TNF- $\alpha$  stimulation affects gene regulation in prostate cancer cells and which biological functions are involved?

### Computer scientist: First, explain the data

| Data     | Data matrix: expression of genes g1,,gk and class |                      |     |       |            |                    |  |  |  |  |  |  |
|----------|---------------------------------------------------|----------------------|-----|-------|------------|--------------------|--|--|--|--|--|--|
| id       | ~1                                                | expression values of |     |       |            |                    |  |  |  |  |  |  |
|          | g1                                                | g2                   | g3  | • • • | gk         |                    |  |  |  |  |  |  |
| s1<br>s2 |                                                   | 2.3<br>8.0           |     |       | 3.1<br>5.4 | cancer<br>healthy  |  |  |  |  |  |  |
| s3       | 0.5                                               | 0.0                  | 1.5 |       | 3.1        | cancer             |  |  |  |  |  |  |
|          |                                                   |                      |     | •     |            | healthy<br>healthy |  |  |  |  |  |  |
|          |                                                   |                      |     | •     |            | cancer             |  |  |  |  |  |  |
|          |                                                   |                      |     |       |            |                    |  |  |  |  |  |  |
|          |                                                   |                      |     |       |            |                    |  |  |  |  |  |  |
|          |                                                   |                      |     |       |            |                    |  |  |  |  |  |  |



So, I should find  $g_i$ s that differ significantly in two groups and corresponding bfs?

# 2. Preprocessing

- Combining data from different sources (may require transformations)
- Preliminary analysis: means, standard deviations and distributions of variables, correlations, ... (e.g., with statistical tools)
- Data cleaning: handling missing values, detecting and correcting errors
- Feature selection and extraction
- Possibly dimension reduction (combines feature extraction and selection)

### 3. Data mining

- Typical building blocks dependency analysis, classification, clustering, outlier detection
- Always good to begin from dependency analysis! → choosing features and modelling methods
- Usually descriptive modelling helps in building a predictive model
  - e.g., gene—habit—disease data
  - Descriptive: Find 100 most significant association rules related to variable Diabetes
  - Predictive: Learn (from selected data) the best model that predicts diabetes

# 4. Evaluating reliability of results

- Are discovered patterns or models sensible?
  - it is possible there are no models or patterns in the data – but the methods tend to return something even from random data!
- validating predictive models easy (test set, cross validation)
- evaluating reliability of descriptive models more difficult
- Goal: Some guarantees that the discovered pattern is not due to chance
- tools: statistical significance testing, use of validation data

### 5. Presenting and interpreting results

- present results illustratively so that essential things are emphasized
- domain experts have an important role!
- Did you find something new? Could you formulate a hypothesis based on results? What should be studied further?
- leads often to a new DM round; try new variables and possibly other methods
- finish the iterative DM process when you are satisfied or nothing new seems to be discovered

# III Data types

### Many ways to characterize data types

- structured or unstructured
- dependency-oriented or nondependency-oriented
- numerical, categorical or mixed
- static ↔ temporal; spatial; spatiotemporal



### Structured vs. Unstructured

#### Structured

- has a predefined structure (e.g., rows and features)
- e.g., multidimensional, graph-formed, time series

#### Unstructured

- no pre-defined format, just a string
- e.g., text, audio, video, signal data

#### Semistructured

- contains internal tags that identify separate data elements
- e.g., XML documents, emails

### Dependency-orientation

- Nondependency-oriented: no specified dependencies between objects or attributes
- Dependency-oriented: data objects or values related temporally, spatially or through network links
  - 1. explicit dependencies
    - relationships in graph or network data
  - 2. implicit dependencies
    - known to typically occur
    - e.g., consecutive temperature readings likely similar

# Difference: dependencies in data type vs. patterns in data instances

DATA TYPE 

DATA INSTANCES

graph

Dependencies in data structure: edges present relationships



Discovered dependency: clique of A, B and C occurs frequently

Implicit dependencies harder to separate from patterns!

### Basic data type: Multidimensional data

- a set of records, whose fields are features
- notate  $\mathcal{D} = {\overline{X_1}, \dots, \overline{X_n}}$ , where  $\overline{X_i} = (x_i^1, \dots, x_i^d)$ 
  - n rows (records, data points, instances, objects)
     and d features (fields, attributes, dimensions)
- suitable for a relational database, e.g., cow data:

| name       | race       | weight | parity | milk/d | activity |
|------------|------------|--------|--------|--------|----------|
| Rose       | Holstein   | 640    | 2      | 35     | 4800     |
| Daisy      | Ayrshire   | 675    | 3      | 37     | 5100     |
| Strawberry | Finncattle | 615    | 4      | 28     | 7200     |
| Molly      | Ayrshire   | 650    | 1      | 32     | 6300     |

# Numerical, categorical or mixed?

Depending on the type of variables, data may be called numerical (quantitative), categorical or mixed (both).

Variables can be classified by measurement scales:

- 1 Categorical
  - 1.1 Nominal: values are only labels, no order
    - e.g., gender (binary), colour, home city, occupation
    - mode (most common value) is defined
  - 1.2 Ordinal: values have an order
    - e.g., satisfaction with services: very unsatisfied, unsatisfied, neutral, satisfied, very satisfied
    - mode and median (the middle value) defined

### Measurement scales (cont'd)

#### 2 Numerical

- 2.1 Interval scale: difference between values is defined, but not ratio
  - no true zero point
  - temperature 20°C is not twice as warm as 10°C!
  - mean and standard deviation defined
- 2.2 Ratio scale: also ratio is defined
  - absolute zero = absence of the measured property
  - temperature in Kelvins, length, weight, duration
  - mean, standard deviation, geometric mean  $((\prod x_i)^{1/n})$ , coefficient of variation  $(\sigma/\mu)$  defined

### Circular variables

Idea: Values are ordered categories, where the last category precedes the first

- 1. Interval circular
  - e.g., compass direction (angles), time of day, day of year
  - zero on the measurement scale not meaningful!
- 2. Ordinal circular
  - e.g., days of the week (Mon, Tue,...), compass aspect (N, NE, E,...)

Be careful! E.g, cannot calculate arithmetic mean or normal correlation.

# Example: What is the mean angle??



NO! Real mean angle 5 degr!

- present angles  $\alpha_i$  by  $(cos(\alpha_i), sin(\alpha_i))$
- $S = \sum_{i} sin(\alpha_i), C = \sum_{i} cos(\alpha_i)$
- $\theta = arctan\left(\frac{S}{C}\right)$ , if  $S \ge 0$ , C > 0
- $\theta = arctan\left(\frac{S}{C}\right) + \pi$ , if C < 0
- $\theta = \arctan\left(\frac{S}{C}\right) + 2\pi$ , if S < 0,  $C \le 0$
- $\theta = \pi/2$ , if S > 0, C = 0
- undefined, if S = 0, C = 0

Present other circular variables first as angles (e.g.,  $\alpha = \frac{h*2\pi}{24}$ )

### Warning: Number codes # numerical variables

Categorical values have often arbitrary numerical codes that can't be interpreted as numbers!

Gender: 1 = Female, 2 = Male

Cow's race: 0 = Holstein, 1 = Ayrshire, 2 = Finncattle

- cannot measure distance or ratio or calculate mean or Pearson correlation
- you can get numerical presentation by creating dummy (binary indicator) variables for each value
  - e.g.,  $I_{Holstein}$ =1, if race=Holstein, and 0 otherwise

# Warning (cont'd)

The same holds for ordinal variables:

**Opinion**: 1 = fully disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = fully agree

- if fully ordinal and distances between categories equal, variable may be treated as numerical (but not always optimal)
- more typical when many categories ( $\geq 7$ )
- Be careful!

Opinion: 0 = Don't know, 1 = fully disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = fully agree

# Other data types

- time series
- discrete sequences
- spatial data
- network and graph data
- text

## Time series

- continuous measurements over time
- e.g., from environmental sensors, health monitoring devices, ECG
- at time stamps  $t_1, \ldots, t_n$  measurements  $(Y_1, \ldots, Y_n)$
- may also be multivariate time series  $(\overline{Y_1}, \dots, \overline{Y_n})$ , where  $\overline{Y_i} = (y_i^1, \dots, y_i^d)$
- e.g., heart rate, oxygen saturation, diastolic and systolic blood pressure at every minute
- often temporal correlations (like dependencies between consecutive values or periodic patterns)

## Discrete sequences

- like time series, but sequences of categorical variables
- special case: strings (no time stamps, but positions)
- e.g., event logs, strings of nucleotides (DNA, genes)

| Event ID | Class | Туре  | Severity | Date/Time                   | Description                                                                                                                                                                                                     |
|----------|-------|-------|----------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 958      | Audit | Log   | minor    | Fri Apr 23<br>15:03:30 2010 | root : Open Session : object = /session/type : value = www : success                                                                                                                                            |
| 957      | Fault | Fault | critical | Fri Apr 23<br>13 02:41 2010 | Fault detected at time = Fri Apr 23 13:02:41 2010. The suspect component:<br>/SYS/BL3/NET1 has fault in policy. fabric fatal with probability=50. Refer to<br>http://www.sun.com/msg/SPX86-8001-95 for details. |
| 956      | Fault | Fault | critical | Fri Apr 23<br>13:02:41 2010 | Fault detected at time = Fri Apr 23 13:02:41 2010. The suspect component:<br>/SYS/BL3/NETO has fault to pciex fabric fatal with probability=50. Refer to<br>http://www.sun.com/msg/SPX86-8001-95 for details.   |
| 955      | PMI   | Log   | critical | Fri Apr 23<br>13:02:38 2010 | ID = 1d1 : 04/23/2010 : 13:02:38 : Critical Interrupt : BIO5 : PCI SERR: IOH 3 ESI                                                                                                                              |
| 954      | IPMI  | Log   | critical | Fri Apr 23<br>13:02:38 2010 | ID = 1dD : 04/23/2010 : 13:02:38 : Critical Interrupt : BIOS : PCI SERR: IOH 2 ESI                                                                                                                              |
| 953      | PMI   | Log   | critical | Fri Apr 23<br>13:02:38 2010 | ID = 1cf : 04/23/2010 : 13:02:38 : Critical Interrupt : BIOS : PCI SERR: IOH 1 ESI                                                                                                                              |

Figure from https://docs.oracle.com/cd/E19140-01/html/821-0796/gjfwa.html

# Difficulty: how to combine temporal data when the measuring frequency varies?

## Example from a cow-house:

- body temperature and rumen acidity are measured every minute
- activity device records average activity every 15 min
- milk production (amount, protein and fat contents etc.) is measured daily
- feeding automaton event log contains time stamp, automaton id, cow id, feed type, amount and duration for every visit
- drinking automaton event log contains time stamp, cow id, amount of water and duration

# Spatial and spatiotemporal data

- spatial: measurements of non-spatial attributes in spatial locations (typically 2D)
  - e.g. sea surface temperature
- spatiotemporal data
  - e.g., temperature over time or ship trajectories



Figure from http://www.elane.com/EN/Detail106.html

# Spatiotemporal data: contextual and behavioural attributes

Contextual attributes define the context

Behavioural attributes are measured in this context

Two main types of spatiotemporal data:

- Both spatial and temporal attributes define the context where some behavioural attribute (like temperature) is measured
- 2. Temporal attribute is contextual and spatial attributes are behavioural (e.g., trajectory analysis)

# Network and graph data

- nodes correspond objects and edges relationships
   + attributes may be associated with nodes or edges
- directed (web structure) or undirected (social network)



# Example: wikipedia hyperlink structure



Figure from <a href="https://wiki.digitalmethods.net/Dmi/">https://wiki.digitalmethods.net/Dmi/</a>
WikipediaAnalysis

# Example: social network structure



- Nodes: Individuals in the network
- Edges: Links/relationships between individuals
- Edge weight on (i, j): Influence weight W<sub>i,j</sub>

Source: Lu and Lakshmanan ICDM 2012

https://www.slideshare.net/WeiLu12/

profit-maximization-over-social-networks

## Text data

- raw text is a string, i.e., dependency-oriented
- often represented as a bag-of-words or document-term matrix (nondependency-oriented)
- which can be presented in vector space (as multidimensional data)
  - how often terms occur in document? ⇒ numerical features for term frequencies
  - ⇒ often transformed to tf-idf values (contains weighting + log scaling)

More on the text mining lecture!

# Example: tf-idf presentation of sentences

d0: Simple example with cats and mouse

d1: Another simple example with dogs and cats

d2: Another simple example with mouse and cheese

|   | and | another | cats | cheese | dogs | example | mouse | simple | with |
|---|-----|---------|------|--------|------|---------|-------|--------|------|
| 0 | 1   | 0       | 1    | 0      | 0    | 1       | 1     | 1      | 1    |
| 1 | 1   | 1       | 1    | 0      | 1    | 1       | 0     | 1      | 1    |
| 2 | 1   | 1       | 0    | 1      | 0    | 1       | 1     | 1      | 1    |

|   | and | another  | cats     | cheese   | dogs     | example | mouse    | simple | with |
|---|-----|----------|----------|----------|----------|---------|----------|--------|------|
| 0 | 0.0 | 0.000000 | 0.067578 | 0.000000 | 0.000000 | 0.0     | 0.067578 | 0.0    | 0.0  |
| 1 | 0.0 | 0.057924 | 0.057924 | 0.000000 | 0.156945 | 0.0     | 0.000000 | 0.0    | 0.0  |
| 2 | 0.0 | 0.057924 | 0.000000 | 0.156945 | 0.000000 | 0.0     | 0.057924 | 0.0    | 0.0  |

Example from <a href="https://medium.com/@MSalnikov/text-clustering-with-k-means-and-tf-idf-f099bcf95183">https://medium.com/@MSalnikov/text-clustering-with-k-means-and-tf-idf-f099bcf95183</a>

# Data preprocessing: main tasks

- 1. Data cleaning: handling errors and missing values
- 2. Feature extraction: creating new features by combining and transforming existing ones
  - a crucial step! ⇒ what patterns you can find
  - application specific ⇒ understanding the domain
- 3. Data reduction
  - sampling
  - feature selection
  - dimension reduction by transformations

# 1. Data cleaning

Goal: detect & eliminate errors, missing values, duplicates, noise, sometimes outliers

but outliers may also reveal some interesting event!

#### Sources:

- automatic measuring devices may stop reading or transmit duplicates (e.g., HW failures or battery exhaustion)
- users may not want to specify (correct) information for privacy reasons
- manually entered data contains very often errors!
- automatically produced text (from scanned documents or speech) prone to errors

# Real world example

Task: predict cows' activities (walking, standing, lying, ...)

Data: sequences of accelerometer measurements for time

intervals when an animal performs an activity (class).



- faulty devices
- lack of calibration
- transmission breaks
- noise
- individual fluctuations
- errors in human annotation

# Errors and inconsistencies: strategies

- check inconsistencies between different data sources
  - e.g., name spelling
- use domain knowledge
  - known ranges of values (age cannot be 800 yrs)
  - known relationships (if country='USA', city≠'Sanghai')
- check outliers and extreme values (error candidates)
  - not errors, if they have a reasonable explanation
- data smoothing reduces noise and random fluctuations
  - e.g., scaling, discretization, dimension reduction
- use robust methods in the modelling phase

# Example: outliers may reveal errors



# Missing values: strategies

If possible, replace with correct values. Otherwise,

- if a feature has many missing values, prune the feature
- if a record has many missing value, prune the record
- impute missing values
  - mean or median of the feature (among all or similar records/nearest neighbours)
  - predict the missing value using other features (e.g., random forests imputation)
  - Warning! Imputation may have a strong effect the results!
- use a modelling technique that allows missing values (just replace with special values like "NA")

## 2. Feature extraction methods

- scaling and normalization: numerical → numerical
- discretization: numerical → categorical
- binarization: categorical → binary (0/1)
- creating similarity graphs: any type → graph
- transformations for dimension reduction: create new less redundant features and keep the best ones
  - both feature extraction + data reduction

# Scaling and normalization

Problem: Features with large magnitudes often dominate

- ⇒ transform to the same scale or standardize distributions
  - min-max scaling:

$$y = \frac{x - \min(x)}{\max(x) - \min(x)}$$
 (new range [0, 1])

mean normalization:

$$y = \frac{x - mean(x)}{\max(x) - \min(x)}$$
 (new range [-1, 1],  $mean(y) = 0$ )

Beware! outliers can affect a lot!

## Standardization or z-score normalization

### If the distribution is normal:

$$z = \frac{x - mean(x)}{stdev(x)}$$

$$mean(z) = 0$$

$$stdev(z) = 1$$



#### image source:

https://sphweb.bumc.bu.edu/otlt/MPH-Modules/

PH717-QuantCore/PH717-Module6-RandomError/PH717-

Module6-RandomError5.html

# Discretization: numerical → categorical

- divide the numerical range into intervals (bins) + give labels to bins
- temperature could be discretized as  $T < 0^{\circ}$ C cold,  $0 \le T < 15^{\circ}$ C cool,  $T \ge 15^{\circ}$ C warm
- binarization: a special case when the new variable is binary (true/false or 1/0)
- e.g., frost=1, if T < 0 and frost=0 otherwise
- Note! Also categorical variables can be binarized
  - eye-colour={blue, brown, green, grey} ⇒
     blue-eyed=1, if eye-colour=blue, and 0 otherwise

## Some discretization methods

- Equi-width discretization
  - equally wide bins
  - good if uniform distribution
- Equi-depth (equal frequency)
  - each bin has an equal number of records
- Many supervised methods if class labels available
- Visual/manual: often best results, but can be worksome

# Example: internet users/100 people in countries

Equi-width or equi-depth wouldn't present natural groups



## Discretization: benefits and limitations

- + good way to handle mixed data
- removes noise and individual variation
- ⇒ it is often worth of analyzing a discretized version of purely numerical data
  - + less noise, clearer patterns
  - + more efficient algorithms
  - discrete patterns may help to choose the right modelling method also for numerical data
  - loses some information
  - optimal discretization difficult! (optimal discretization of one variable may depend on other variables)

# Useful type transport: any type → similarity graph

- idea: present pairwise similarities among closest neighbours by a neighbourhood/similarity graph
- suitable for any data type if the distance/similarity function can be defined
- for any application based on the notion of similarity/distances
  - e.g., clustering, recommendations based on similarity
- enables use of numerous network algorithms
- Beware: can be time consuming for large data! (brute force  $O(n^2)$ , n=number of objects)

# Constructing nearest neighbour graph (idea)

Given objects  $O_1, \ldots, O_n$ , a distance measure d and a user-defined parameter  $\epsilon$  or K.

- 1. create a node for each  $O_i$
- 2. create an edge between a pair near/similar objects:
  - i) if  $d(O_i, O_j) \le \epsilon \Rightarrow$  undirected edge  $O_i O_j$  or
  - ii) if  $O_j$  is among K nearest neighbours of  $O_i \Rightarrow$  directed edge  $O_i \rightarrow O_j$  (direction can be ignored)
- 3. give weights to edges reflecting similarity, e.g.,

$$w_{ij} = e^{-d(O_i,O_j)^2/t^2}$$
 (heat kernel, t user-defined)

# 3. Data reduction: approaches

- 1. sampling (select a subset of records)
- 2. feature selection (select a subset of features)
  - application specific!
  - filtering methods: prune features before modelling
  - wrapper methods: use modelling (e.g., clustering) to evaluate goodness of feature sets
  - hybrid methods: candidates by filtering + evaluation by modelling
- 3. dimension reduction
  - by axis rotation (PCA, SVD)
  - with type transformation

# Main messages

- careful with data types
- careful with preprocessing (data often dirty!)
- feature extraction has a strong effect

**Reading for lecture 1:** 

Book Ch 1 and Ch 2 except 2.4.3-2.4.4