Matrix Factorization

常用在商品推薦系統

Otakus v.s. No. of Figures

There are some common factors behind otakus and characters.

http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/

肥宅

Otakus v.s. No. of Figures

The factors are latent.

Error

decomposition (SVD)

	r^{j}	r^1	r^2	r^3	r^4
r^i			75	0 0 0 0 0 0	
				0-0	MIL
r^A	Α	$5 n_{A1}$	3	?	1
r^B	В	4	3	?	1
r^{C}	С	1	1	?	5
r^D	D	1	?	4	4
r^E	Е	?	1	5	4

因為矩陣少了一些值,因此直接利用SVD是比較困難的

 $r^A \cdot r^1 \approx 5$

 $r^B \cdot r^1 \approx 4$

 $r^{C} \cdot r^{1} \approx 1$

Minimizing

Only considering the defined value

$$L = \sum_{(i,j)} (r^i \cdot r^j - n_{ij})^2$$

Find r^i and r^j by gradient descent

		r^1	r^2	r^3	r^4
			773	0-0-0	
r^A	А	5	3	-0.4	1
r^B	В	4	3	-0.3	1
r^{C}	С	1	1	2.2	5
r^D	D	1	0.6	4	4
r^E	E	0.1	1	5	4

Assume the dimensions of r are all 2 (there are two factors) 假設二維

А	0.2	2.1
В	0.2	1.8
С	1.3	0.7
D	1.9	0.2
E	2.2	0.0

1(春日)	0.0	2.2
2 (炮姐)	0.1	1.5
3 (姐寺)	1.9	-0.3
4 (小唯)	2.2	0.5

More about Matrix Factorization

Considering the induvial characteristics

$$r^A \cdot r^1 pprox 5$$
 $r^A \cdot r^1 + b_A + b_1 pprox 5$ $1公仔本身被買的能力 b_A$: otakus A likes to buy figures b_1 : how popular character 1 is

Minimizing
$$L = \sum_{(i,j)} (r^i \cdot r^j + b_i + b_j - n_{ij})^2$$

Find r^i , r^j , b_i , b_j by gradient descent (can add regularization)

 Ref: Matrix Factorization Techniques For Recommender Systems

文件主題分析

Matrix Factorization for Topic analysis

Latent semantic analysis (LSA)

	Doc 1	Doc 2	Doc 3	Doc 4
投資	5	3	0	1
股票	4	0	0	1
總統	1	1	0	5
選舉	1	0	0	4
立委	0	1	5	4

character→document, otakus→word

Number in Table: 詞彙在文章中出現的次數有多少次 Term frequency (weighted by inverse

document frequency)
可以估測每個詞彙的重要性,以weight代表
Latent factors are topics

(財怒藥、政治)

- Probability latent semantic analysis (PLSA)
 - Thomas Hofmann, Probabilistic Latent Semantic Indexing, SIGIR, 1999
- latent Dirichlet allocation (LDA)
 - David M. Blei, Andrew Y. Ng, Michael I. Jordan, Latent Dirichlet Allocation, Journal of Machine Learning Research, 2003