

Please feel free to introduce yourself to your neighbors—name, pronouns, a hobby, etc.

and/or

Answer the first question on Wooclap!

Learning outcome for Topic 8: The Molecule – MO Theory

LOs: (1) Use the VSEPR model to predict the shapes of molecules with steric #'s 2, 3, 4, 5, and 6. (2) Predict bond and net dipoles

Atomic Theory
Shapes of atomic orbitals

VSEPR

Shapes of molecules

But how are atomic orbitals combined to make bonds and give these shapes?

- 1. Orbital overlap model (localized overlap of atomic valence shell orbitals)
- 2. Hybrid orbital (Hybridization) theory (localized overlap of hybrid and atomic orbitals)
- 3. Molecular orbital theory (orbitals delocalized over entire molecule)

Orbital Overlap Model

Assumption: Only the valence orbitals are needed to describe bonding

Bonding in Hydrogen Sulphide (H₂S)

Bonding in Hydrogen Sulphide (H₂S)

VSPER predicts **109.5**° (4 electron groups)

Orbital overlap model predicts **90°**, which is more consist with experimental data for H₂S (angle of **92.1°**)

Bonding in methane (CH₄): carbon

- Maximum of 2 electrons per orbital
- Based on orbital overlap model, carbon in methane should only be able to form 2 bonds:

- VSPER theory tells us there are 4 C-H bonds separated at 109.5° and experiments verify these bond angles
 - Must modify the theory of bonding!

Hybridization/Hybrid Orbital Theory

• Hybrid atomic orbitals: One "s" and 3 "p" orbitals combine in varying proportions to form hybrid orbitals (sp, sp², and sp³ orbitals).

 # of hybrid orbitals generated by hybridization = # of valence atomic orbitals participating in hybridization

Experimental evidence points to 4 identical bonds in methane

Bonding in methane (CH₄)

Methane forms from orbital overlap between the hydrogen
 1s orbitals and the sp³ hybrid orbitals of the carbon atom

Key features of hybridization

- Steric number of an inner atom determines the number and type of hybrid orbitals
- Hybrid orbitals form localized bonds by overlap with atomic orbitals or with other hybrid orbitals
- No need to hybridize outer atom orbitals because they do not have limiting geometries

sp³ hybrid orbitals

SN = 2, linear

SN = 3, trigonal planar

SN = 4, tetrahedral

 sp^3d hybrid orbitals

 sp^3d^2 hybrid orbitals

SN = 5, trigonal bipyramidal

SN = 6, octahedral

sp² hybrid orbitals: Bonding in Ethylene (C_2H_4)

Bonding in Ethylene (C₂H₄)

A **sigma bond (σ)** has a high electron density distributed symmetrically along the bond axis – formed by s or sp^x hybrid orbitals

A pi bond (π) has a high electron density concentrated above and below the bond axis – formed by p orbitals

sp hybrid orbitals: Bonding in acetylene (C₂H₂)

Bonding in acetylene (C₂H₂)

Overview: Hybridization process

15

Hybridization summary

Thing/group = atom or lone pair

 $\sigma \& \pi$ bonds

Hybridization		Method of hybrid atomic orbital formation	bonded to	Geometry of the atom	
H, C	sp ³	s + p + p + p	4	Tetrahedral 109.5°	
, C, ⊓ . O.	sp ²	s + p + p (one p orbital is left over, unhybridized	3	Trigonal planar 120°	
H−C≡C−H	sp	s + p (2 p orbitals are left over, unhybridized	2	Linear 180°	
		Atomic orbitals overlap	Molecular orbit	als	

(inc. hybrid orbitals)

Molecular Orbital (MO) Theory

Hybrid orbitals and localized bonds provide a model of bonding that is great for rationalizing and predicting chemical structure, but localized bonds cannot predict or interpret other aspects of bonding and reactivity.

- Molecular orbital theory involves delocalized electrons
- Orbital: region in space where the probability of finding an electron in high
- Orbitals are described mathematically as wave functions
- Bonds (called bonding molecular orbitals) are formed by the overlap of atomic (or hybrid atomic) orbitals
- Atomic orbitals and/or hybrid atomic orbitals overlap to form molecular orbitals
 - Single bonds: σ , σ *
 - To form double and triple bonds: π and π *

Analogy: orbitals are like waves of a lake

Formation of H₂

Orbitals have positive and negative phases, analogous to the top and bottom portions of a wave on a lake

Formation of H₂

Making a MO diagram: H₂

Step 2: Build the MO's

Step 3: Move electrons into the MO's

Step 4: Calculate Bond Order (BO)

Н

Step 4: Making a MO diagram: H₂

Bond Order: tells us about the stability of the molecule

If BO > 0 means molecule is stable and will exist!

If BO ≤ 0 means the molecule is unstable and does NOT exist!

What about H_2^{-2} ?

Draw the MO diagram for H₂⁻². Based on the BO, does the molecule exist?

Step 1: Start with the atomic orbitals

Step 2: Build the MO's

Step 3: Move electrons into the MO's

Step 4: Calculate Bond Order (BO)

What about larger atoms that have p orbitals?

2p ——— 2]

What type of MO's do p orbitals form?

Step 1: Start with the atomic orbitals

Step 2: Build the MO's

Step 3: Move electrons into the MO's

Step 4: Calculate Bond Order (BO)

p orbitals can make σ bonds = σ and σ^* orbitals

Bonding molecular orbital

p orbitals can make π bonds = π and π^* orbitals

Anti-bonding molecular orbital

σ and π swap places!

- Diatomic molecules less than Z =6, have 2s and 2p atomic orbital closer in energy
- σ_{2s} and σ_{2p} MOs also close in energy causing them to mix
- Effect of mixing pushes $\sigma_{\rm 2p}$ up in energy, to the point where $\pi_{\rm 2p}$ orbitals are below $\sigma_{\rm 2p}$
- As effective nuclear charge (Z_{eff})
 increases (Z ≥6), less mixing of the
 σ 2s and 2p MOs

What do the MO diagrams look like when σ and π swap places!

E

into the MO's

Step 4: Calculate Bond
Order (BO)

What is the BO of O₂?

Example: Build the MO of F₂ **Step 1: Start with the**

atomic orbitals

Step 2: Build the MO's 2n"N-type vs O-type"

Step 3: Move electrons

What is the BO of F_2 ?

into the MO's

Step 4: Calculate Bond Order (BO)

Example: Build the MO of Ne₂ Step 1: Start with the

atomic orbitals

Step 2: Build the MO's 2p "N-type vs O-type"

Step 3: Move electrons into the MO's

Step 4: Calculate Bond Order (BO)

•

Ne 25

Heteronuclear Diatomic Molecules Build the MO of NO

20

V	U	•

Individual	² P	
atomic orbitals		
do not lie at the		
same energy		

Magnetism

Paramagnetic: unpaired electrons that are attracted to the magnetic field

Diamagnetic: paired electrons are repelled by the magnetic field

Molecular oxygen (O_2) is paramagnetic, so it clings to the poles of a magnet

Heteronuclear Diatomic Molecules

Draw and label the MO diagram of the cyanide ion, CN⁻. Give the bond order and the magnetism

Individual

atomic orbitals do not lie at the same energy level

diamagnetic or

paramagnetic?

Is CN-