Detecting DNS Tunneling

David Purtseladze

Information Security Office University of Texas at Austin

Domain Name System	01	04	Feature Engineering
DNS Tunneling	02	05	LSTM Model
Malicious queries	03	06	Training and Deployment

Domain Name System (DNS)

Domain Name System (DNS) is a hierarchical structure designed to translate human-readable domain names into IP addresses.

DNS port (53) is not blocked by most firewalls.

no idea, ask the company to the provide a sek the company to the company t

Root Server

TLD server

Client

Recursive DNS Server

here ya go: 1.2.3.4

2nd level domain

top level domain

account.protonvpn.com

1st level domain

> What is DNS Tunneling?

The process of encapsulation of various internet protocols over DNS. Used for exfiltrating data, creating covert communication channels, bypassing firewalls.

Encapsulation of protocols through DNS:

- TCP over DNS iodine, dns2tcp
- IP over DNS dnscat
- DNS beacons cobaltstrike

Encoded payload

Data Exfiltration

DNS Data

DNS logs are generated by Zeek. Queries and corresponding responses are parsed and stored together in a single entry.

dest ip: 199.7.91.13

dest port: 53

proto: udp

query: test.domain.name.zzz

query_length: 20

rcode_name: NXDOMAIN

record_type: A

src_ip: ***.***.***

src_port: 58817

ts: 2024-02-02T23:51:41.466837Z

—-----truncated—----

199.7.91.13 is one of the Root name servers,

hosted by University of Maryland

NXDOMAIN - non existent domain, name servers

could not resolve it to an IP address

record_type: A - the query was made for an

IPv4 address

> Malicious DNS Queries

These queries were captured in a lab environment after setting up DNS tunneling tools (dns2tcp and cobaltstrike).

dns2tcp (base64 encoded):

724w5jd+cmohljqw90ecgx9km4hs/qrpfgt8dg91+cuun0ndjwkhb+lo1/wqtib.r

d27+r9rcnzidhsv55tp9y/obz7svhvzirwd3bneura/rgv/mlxuqijrdfqy9rw.yimiixsh

1zz1kiv9yr9rwuahbeqfxphmlkfqn2dvhrmkqiazo3ziqp.

cobaltstrike (hexadecimal encoding):

post.1243ae0915408fd6c0acdf56c.24cec631c.3d2da7be.beacon.pacattack.xyz

Intuition

Legitimate queries

- Human readable
- Easy to remember
- Short, meaningful
- Domain name from majestic million
- High tier top level domain:.com, .net, .ai

Potentially malicious queries

- Long queries
- Encoded (base64, hex16, other encoding)
- Large number of subdomains
- NXDOMAIN response
- Cheap throwaway top level domain:
 .xyz, .top, .pw

> Feature Engineering

The process of extracting and transforming data using domain knowledge to enhance ML model training and performance.

DNS query length

A Large number of different characters

High string entropy

Capitalization (domain names are case insensitive)

Mix of letters and digits

Encoded payload

A large number of subdomains

Suspicious top level domain

Newly registered domain

Querying TXT Records

length (L)
unique_characters (U)
L*log(U)
uppercase_mask

alphanumeric mask

Masks

Using uppercase and alphanumeric mask to helps the model learn the relationship between categorical variables (lowercase chars, uppercase chars, digits).

Models are capable of learning it on their own using embedded layers, but this process requires a lot of training data.

uppercase mask

"g83ng02bg3GO0++0" \rightarrow "0110011001001001"

alphanumeric mask

"g83ng02bg3GO0++0" \rightarrow "0110011001111111"

> Model selection: LSTM

Long Short Term Memory
Performs well on sequential data
Captures long range dependencies
Can handle variable length inputs
Avoids Exploding/Vanishing gradients

post.1243ae0915408fd6c0acdf56c.24cec631c.3d2da7be.beacon.pacattack.xyz

> High Level Neural Network Diagram

- Character sequence and masks are fed into an embedding layer
- The output of the embedding layer is fed into an LSTM layer
- The output of LSTM layer is concatenated with macro parameters and is fed into a series of dense layers
- The output represents probability of a query being malicious

> Training Data

DNS tunneling data is not readily available. We used DNS payloads captured in a lab environment, hex16 and base64 encoded strings, english sentences and synthesized data created by concatenating string segments from other sources.

- base64, hex16 encoding training
- n-gram training (EAT vs QHG)
- malicious+bening = malicious
- manual data can be relabeled
- 26108 samples

> Sample Training Data

English sentences	dns2tcp payloads	Synthesized	cobaltstrike beacons
The tour did get the group the best pre In order to do this students must under This, plus the fact that the lower conf I think that sounds just right. Have you any idea how much the tyres fr	724w5jd+cmohljqw90ecgx9km4hs/qrpfgt8dg9 7246izqjba 1xmmzwzkba dp8uixshba zvua/weucfcgcs/ga0xakyv06zdpumk8r8hkkqn	nd people fall into three groups: those make a reasonably goba1a445d172d5c9bb5 1xmcgwkyba. over 20 years experience, h t Turocy of Doculabs commented, "This i ad equalised almost imme725643r7cfba4xi	www.180.034376ed1.683d1dbe.beacon.pacat wpad.localdomain post.1243ae0915408fd6c0acdf56c.24cec631 post.121cea0c6.31c775120.3d2da7be.beaco 683d1dbe.beacon.pacattack.xyz
hex16-generated	base64-generated	Reverse lookup	Manually labeled
56D70207472617368657320466175636920616 E 26563746F72206F6620746865204E6174696F6E 3656E617465204865616C74682C204564756361 6573706f6e736520746f2074686520636f726f6 6e2d506f6f6c2f476574747920496d616765732	cA0qDXxxKMavcGBJLa5keiAqSjOQApFfN88Rr8Q bcbvzmzlcib5b3ugysb2zxj5ihbvb3igc wvjagfuaxntlibodw1lcm91cyb0 cmUgYXZhaWxhYmxlIHRvl kga2v5libuagugzgf0ysbpcybqdxn0igluigfub	239.155.96.156.in-addr.arpa 131.47.96.156.in-addr.arpa 197.44.96.156.in-addr.arpa 165.44.96.156.in-addr.arpa 236.151.96.156.in-addr.arpa	szeloba.nask.waw.pl ns3.inwx.de 113.ip-54-37-154.eu 4tmwwtwje5gxaur5ojzntxjkpem6bhz5domainke y.co 25.ip-51-75-28.eu

> Model Performance

67% of stratified samples were used for training and 33% for validation. The training was finished in 5 epochs.

Sensitivity	0.9754	TPR = TP / (TP + FN)
Precision	0.9625	PPV = TP / (TP + FP)
False Positive Rate	0.0653	FPR = FP / (FP + TN)
False Negative Rate	0.0246	FNR = FN / (FN + TP)
Accuracy	0.9604	ACC = (TP + TN) / (P + N)

Re-tuning and Deployment

Samples labeled as suspicious are available on internal network. There is a web interface that allows incident handlers to view the queries, label false positives either on individual basis or regex rules. Samples labeled as false positives will be used to retune the model. The model is retuned every 2 weeks.

We are dealing with 2-3 billion DNS queries on a daily basis. Processing that much information requires a lot of resources. Several evaluation processes are running in parallel, each working on an individual CSV file exported from Clickhouse. A wrapper script is responsible for launching more processes if currently fewer than 12 are running and the CPU usage is less than 60%.

Now what?

Individual queries are not useful for data exfiltration and covert communication channels. Aggregation based on source ip and domain must be done to eliminate false positives.

- Aggregate on domain names
- Aggregate on IP addresses
- Look for anomalous DNS behavior of internal hosts
- Cross reference with other suspicious activity
- Look for DNS traffic surges
- Use Open Source Intelligence: shodan.io, abuseipdb.com, whois.com
- Understand how DNS payload encoding might be used in a non-malicious way unsubscribe links, ad networks
- Be on a lookout for new DNS tunneling tools, train your models to detect them

Thank you!

Feel free to email me if you have any quetions: data@utexas.edu

```
# Build a keras model. The model has 4 inputs.
                                                                           # Alphanumeric sequence
                                                                           a = layers.Embedding(input dim = 3, output dim=16, input length =
# S - character sequence (case insensitive)
                                                                           max seg len)(inputA)
# U - uppercase mask
# A - alpha mask
                                                                           a = layers.LSTM(16, activation = 'tanh')(a)
# M - macro parameters: number of unique characters, length and
                                                                           a = lavers.Dense(8, activation = 'relu')(a)
information.
                                                                           a = keras.Model(inputs=inputA, outputs=a)
from tensorflow import keras
from tensorflow.keras import layers
                                                                           # Macro features
                                                                           m = layers.Dense(8, activation = 'relu')(inputM)
inputS = keras.Input(shape = (256.))
                                                                           m = lavers.Dense(4, activation = 'relu')(m)
inputU = keras.Input(shape = (256.))
                                                                           m = keras.Model(inputs=inputM, outputs = m)
inputA = keras.Input(shape = (256, ))
inputM = keras.Input(shape = (3, ))
                                                                           combined = keras.layers.concatenate([s.output, u.output, a.output,
                                                                           m.output])
# Lowercase character sequence
s = layers.Embedding(input dim = vocab size, output dim=64,
                                                                           z = layers.Dense(16, activation="sigmoid")(combined)
input length = max seg len)(inputS)
                                                                           z = layers.Dense(4, activation="sigmoid")(z)
s = layers.LSTM(64, activation = 'tanh')(s)
                                                                           z = layers.Dense(1, activation="sigmoid")(z)
s = layers.Dense(16, activation = 'relu')(s)
                                                                           model = keras.Model(inputs=[s.input, u.input, a.input, m.input],
s = keras.Model(inputs=inputS, outputs=s)
                                                                           outputs=z)
# Uppercase sequence
u = layers.Embedding(input dim = 3, output dim=16, input length =
                                                                           # Binary cross entropy loss for binary classification
max seg len)(inputU)
                                                                           model.compile(optimizer = 'adam', loss='binary crossentropy', metrics =
u = layers.LSTM(16, activation = 'tanh')(u)
                                                                           ['accuracy'])
u = lavers.Dense(8, activation = 'relu')(u)
u = keras.Model(inputs=inputU, outputs=u)
```

