TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
FB, 03 mar 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Um esquema regressivo (*upwind*) de ordem 2. Expanda em série de Taylor u(x,t) desde x_i até x_{i-1} e x_{i-2} (igualmente espaçados de Δx) até a ordem 2, elimine $\partial^2 u/\partial x^2$ e encontre uma aproximação de diferenças finitas para $\partial u/\partial x|_{x_i}$ cujo erro é $O(\Delta x^2)$.

SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

$$u_{i-1} = u_i - \frac{\partial u}{\partial x} \bigg|_i \Delta x + \frac{\partial^2 u}{\partial x^2} \bigg|_i \frac{\Delta x^2}{2} + O(\Delta x^3),$$

$$u_{i-2} = u_i - \frac{\partial u}{\partial x} \bigg|_i 2\Delta x + \frac{\partial^2 u}{\partial x^2} \bigg|_i \frac{(2\Delta x)^2}{2} + O(\Delta x^3).$$

Para eliminar $\partial^2 u/\partial x^2$, multiplicamos a primeira equação acima por 4, e subtraímos:

$$\begin{aligned} 4u_{i-1} &= 4u_i - \frac{\partial u}{\partial x}\bigg|_i 4\Delta x + \frac{\partial^2 u}{\partial x^2}\bigg|_i 2\Delta x^2 + O(\Delta x^3), \\ u_{i-2} &= u_i - \frac{\partial u}{\partial x}\bigg|_i 2\Delta x + \frac{\partial^2 u}{\partial x^2}\bigg|_i 2\Delta x^2 + O(\Delta x^3), \\ 4u_{i-1} - u_{i-2} &= 3u_i - 2\frac{\partial u}{\partial x}\bigg|_i \Delta x + O(\Delta x^3); \\ \frac{\partial u}{\partial x}\bigg|_i &= \frac{3u_i - 4u_{i-1} + u_{i-2}}{2\Delta x} + O(\Delta x^2) \blacksquare \end{aligned}$$

2 [25] Sejam $x, y \in \mathbb{R}^n$ tais que

$$x = (a_1, a_2, ..., a_n),$$

 $y = (1, 1, ..., 1),$
 $\sum_{i=1}^{n} a_i = 1.$

Usando a desigualdade de Cauchy-Schwarz, prove que

$$\sum_{i=1}^n a_i^2 \ge \frac{1}{n}.$$

SOLUÇÃO DA QUESTÃO:

$$\left| \sum_{i=1}^{n} (a_i \times 1) \right|^2 \le \left(\sum_{i=1}^{n} a_i^2 \right) \left(\sum_{i=1}^{n} 1^2 \right),$$

$$1 \le n \left(\sum_{i=1}^{n} a_i^2 \right),$$

$$\sum_{i=1}^{n} a_i^2 \ge \frac{1}{n} \blacksquare$$

3 [25] Ache a série trigonométrica de Fourier (isto é: a série em senos e cossenos) de

$$f(x) = \begin{cases} 0, & -1 \le x < 0, \\ x, & 0 \le x \le 1. \end{cases}$$

SOLUÇÃO DA QUESTÃO:

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos\left(\frac{2n\pi x}{L}\right) + B_n \sin\left(\frac{2n\pi x}{L}\right) \right],$$

$$A_n = \frac{2}{L} \int_a^b f(\xi) \cos\left(\frac{2n\pi \xi}{L}\right) d\xi,$$

$$B_n = \frac{2}{L} \int_a^b f(\xi) \sin\left(\frac{2n\pi \xi}{L}\right) d\xi.$$

Prosseguindo no cálculo dos coeficientes,

$$A_0 = \frac{2}{2} \int_0^1 x \, \mathrm{d}x = \frac{1}{2},$$

$$A_n = \int_0^1 \xi \cos\left(\frac{2n\pi\xi}{L}\right) \, \mathrm{d}\xi = \frac{\cos(n\pi) - 1}{\pi^2 n^2},$$

$$B_n = \int_0^1 \xi \sin\left(\frac{2n\pi\xi}{L}\right) \, \mathrm{d}\xi = -\frac{\cos(n\pi)}{\pi n} \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} - 2xy = \mathrm{sen}(x), \ y(0) = 3.$$

SOLUÇÃO DA QUESTÃO:

Multiplico por $G(x, \xi)$ e integro de 0 a infinito:

$$\int_{\xi=0}^{\infty} G(x,\xi) \left[\frac{\mathrm{d}y}{\mathrm{d}\xi} - 2\xi y \right] \, \mathrm{d}\xi = \int_{0}^{\infty} G(x,\xi) \operatorname{sen} \xi \, \mathrm{d}\xi$$

Integrando por partes,

$$G(x,\xi)y(\xi)\Big|_{\xi=0}^{\infty} + \int_{\xi=0}^{\infty} y(\xi) \left[-\frac{\partial G}{\partial \xi} - 2\xi G \right] d\xi = \int_{0}^{\infty} G(x,\xi) \operatorname{sen} \xi d\xi$$

$$\lim_{\xi \to \infty} G(x, \xi) = 0 \Rightarrow$$

$$-G(x, 0)y(0) + \int_{\xi=0}^{\infty} y(\xi) \left[-\frac{\partial G}{\partial \xi} - 2\xi G \right] d\xi = \int_{0}^{\infty} G(x, \xi) \operatorname{sen} \xi d\xi$$

$$-\frac{\partial G}{\partial \xi} - 2\xi G = \delta(\xi - x).$$

$$\frac{dG}{d\xi} + 2\xi G = -\delta(\xi - x).$$

Agora, G = uv, e

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}\xi} + 2\xi v\right] + v\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\delta(\xi - x)$$

$$\frac{\mathrm{d}v}{\mathrm{d}\xi} = -2\xi v$$

$$\frac{\mathrm{d}v}{2v} = -2\xi$$

$$\ln\left(\frac{v}{v_0(x)}\right) = -\xi^2$$

$$v = v_0(x)\exp(-\xi^2)$$

$$\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\frac{\exp(\xi^2)}{v_0(x)}\delta(\xi - x)$$

$$u(\xi) = u_0(x) - \int_{\eta=0}^{\xi} \frac{\exp(\eta^2)}{v_0(x)}\delta(\eta - x)\,\mathrm{d}\eta$$

$$= u_0(x) - \frac{H(\xi - x)\exp(x^2)}{v_0(x)} \Rightarrow$$

$$G(x, \xi) = \left[u_0(x)v_0(x) - H(\xi - x)\exp(x^2)\right]\exp(-\xi^2)$$

$$= \left[G_0(x) - H(\xi - x)\exp(x^2)\right]\exp(-\xi^2).$$

Mas

$$\lim_{\xi \to \infty} G(x, \xi) = 0 \Rightarrow G_0(x) = \exp(x^2)$$

$$G(x, \xi) = [1 - H(\xi - x)] \exp(x^2 - \xi^2) \blacksquare$$