Computer Graphics

Prof. Jibum Kim

Department of Computer Science & Engineering Incheon National University

■ 동차 좌표 (homogeneous coordinate)

- 정의: Point (점) is a location in space
- 특징: Points have position, but neither length nor direction
- 정의: A point P=[x₁ x₂ x₃...x_m]^T in R^m is represented in homogeneous coordinates (동차 좌표) by any m+1 tuple of the form [cx₁ cx₂ cx₃ ... cx_m c]^T, where c is a non-zero scalar
- 전치 행렬? Tuple의 의미?
- 예: 점 $P = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$, $P \in \mathbb{R}^2$
- P 의 가능한 동차 좌표 예 (차원을 하나 올림)

- 동차 좌표의 물리적 의미
- http://darkpgmr.tistory.com/78
- Point에 대해서는 c=1로 고정하고 사용 (vector는 c=0)
- $P=[x_1 \ x_2 \ x_3...x_m]^T$
- 동차좌표
- $[x_1 x_2 x_3 ... x_m 1]^T$
- 예: 점 $P = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$ 의 동차 좌표 $\begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix}$

- 왜 컴퓨터 그래픽스에서는 동차좌표를 사용할까?
- 1. 기본적으로 다음에 배울 변환 (transformation)시에 동차좌표를 사용하면 변환을 행렬 곱, 형태로 표현 가능하다
- 2. 여러 개의 변환이 연속으로 적용되는 복합 변환의 경우에는 이러한 행렬 곱을 하나의 행렬 곱 형태로 바꿀 수 있다 (이것은 계산 속도 면에서도 유리하다)
- OpenGL에서도 동차좌표를 사용함
- 3. 또한, Point와 vector를 구별할 수 있다

$$v = [a_1, a_2, a_3]$$
 $v = [a_1, a_2, a_3, 0]^T$
 $p = [b_1, b_2, b_3]$ $p = [b_1, b_2, b_3, 1]^T$

Object transformations (물체의 변환)

■ Graphics pipeline (OpenGL 2.x 기준)

- 물체의 변환 (transformation of objects)이란 간단히 얘기하면 물체의 크기가 변화되거나 물체의 위치가 이동하는 것들을 말한다.
- 물체의 좌표 P(x, y, z)가 어떤 함수를 통하여 P'(x', y', z')로 mapping 된 것을 의미 한다. P'=f(P)
- 먼저 물체의 변환의 필요성에 대해서 살펴보자

- 물체의 변환의 필요성
- 1) 2D 예: 기본적인 형태의 물체를 만든 후 이를 변환 (이동, 크기 변환 등..)시켜서 다양한 형태를 손쉽게 구성할 수 있다

■ 2) 3D 예: 위치 이동 및 크기 변환

 3) 눈송이 예: 아래의 눈송이 (snowflake)와 같은 몇몇 물체들은 기본 형태를 회전, 이동, 반사와 같은 여러 개의 변환을 반복 적용한 결과이다.

- 물체의 변환 중 컴퓨터 그래픽스에서 가장 중요하면서 가장 흔한 변환은 affine transformation (어파인 변환)이다
- Affine 변환에는 translation (천이), scaling (크기 변화), rotation (회전), shearing (전단)이 있다

- Affine 변환의 중요한 특징
- 1) Affine 변환은 간단한 행렬로 표현 가능하다

■ 2) Affine 변환을 여러 번 실시 한 것을 하나의 Affine 변환 (행렬)으로 표현 가능하다는 것이다

- 2D affine 변환
- 동차좌표를 사용시 아래와 같이 2D에서 행렬 곱으로 정의
- Translation, scaling, rotation, shearing 모두 affine 변환의 일종

Translation

Translation 이란?

- 탄력이 없는 단단한 물체 (rigid body)를 이동하면 물체를 구성하는 vertex들이 동일한 양만큼 움직이는데 이를 translation이라 한다
 - rigid-body transformation : object 의 크기가 불변
 - 예: translation, rotation
 - non-rigid-body transformation : object 크기에 변화
 - 예: scaling

- 1. 2D Translation (천이, 이동)
- 점 P(x,y)가 점 P'(x',y')로 x축으로 Tx, y축으로 Ty만큼 이동
- x'=x+Tx, y'=y+Ty

• 동차좌표료 표현시 :
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & Tx \\ \mathbf{0} & \mathbf{1} & Ty \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- 3D Translation (천이, 이동)
- P(x, y, z)가 P'(x', y', z')로 x축으로 Tx, y축으로 Ty,z축으로Tz만큼 이동
- x'=x+Tx, y'=y+Ty, z'=z+Tz

• 동차좌표로 표현시:
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & Tx \\ 0 & 1 & 0 & Ty \\ 0 & 0 & 1 & Tz \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- 2. 2D Scaling (크기 조절)
- 점 P(x, y)가 점 P'(x', y')로 x축으로 Sx배, y축으로 Sy배 만큼 크기 조절 변환
- x'=Sx-x
- y'=Sy-y
- Sx, Sy는 각각 x,y축 방향의 배울이고 1보다 크면 확대, 작으면 축소

• 동차좌표료표현시 :
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- 만일 배율이 음이 된다면 어떻게 될까?
- 예: Sx=-1, Sy=2인 경우

• 점
$$P = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, P' = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
,

이를 reflection (반사)라 한다

- 3D Scaling (크기 조절)
- 점 P(x, y, z)가 점 P'(x', y', z')로 x축 Sx, y축 Sy, z축 Sz 만큼 각각 크기 조절 변환
- Sx, Sy, Sz는 각각 x,y,z,축 방향의 배율이고 1보다 크면 확대, 작으면 축소
- x'=Sx·x, y'=Sy·y, z'=Sz·z

• 동차좌표로 표현시:
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} Sx & 0 & 0 & 0 \\ 0 & Sy & 0 & 0 \\ 0 & 0 & Sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- 만일 모든 배율이 같은 경우 균등 크기 조절 (uniform scaling),
- 하나라도 다르면 차등 크기 조절 (differential scaling)이라 한다
- 최초의 object가 아래의 가장 왼쪽과 같을 때
- 각각이 균등 크기 조절인지 차등 크기 조절인지 살펴보자

- 3. 2D 회전 (3D 회전은 후에)
- P(x,y)가 원점을 중심으로 반시계 방향으로 θ 만큼 P'(x',y')로 회전
- Φ: 원점과 점 P를 연결한 선분이 x축과 이루는 각, r: 회전 반지름

$$x' = r\cos(\phi + \theta) = r\cos\phi\cos\theta - r\sin\phi\sin\theta = x\cos\theta - y\sin\theta$$
$$y' = r\sin(\phi + \theta) = r\cos\phi\sin\theta + r\sin\phi\cos\theta = x\sin\theta + y\cos\theta$$

$$P' = R \cdot P$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta - \sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

■ 예: 어떤 점 P(3, 5)가 반시계 방향으로 60도 만큼 회전하였을 때의 위치를 구해보자

4. 2D Shearing (전단): 물체를 한쪽으로 밀어낸 모습으로 물체 모양 변함

- x축 방향의 shearing
- x축에서는 y값이 클수록 변화가 크다
- y값은 변화가 없다
- 점 P(x, y) 가 점 P'(x', y')로 x축 shearing시
- x'=x+hy
- **y**'=**y**

인천대학교

h: 전단 인수 (shearing factor)

$$\mathbf{x}$$
축 방향으로의 shearing:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

■ 예: x축 방향으로 shearing이 일어나고 x축 방향으로의 shearing factor=0.3일 때 P(3,4)는 어디로 이동하는가?

■ Y축 방향의 shearing

- x값은 변화가 없다
- y값은 x값이 클수록 변화가 크다
- 점 P(x, y) 가 점 P'(x', y')로 y축 shearing시
- x'=x
- y'=y+gx
- g: 전단 인수 (shearing factor)

• y축 방향으로의 shearing:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ g & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

affine 변환의 특징

- 1. 평행성 유지:두 개 (혹은 그 이상의) 평행한 직선은 Affine 변환 후에도 평행함을 유지
- 2. 직선은 affine 변환 후에도 직선
- 3. 같은 선분 위의 세 점 혹은 그 이상의 점은 Affine 변환 후에도 같은 선분 위에 있음

. . . .

인천대학교

https://en.wikipedia.org/wiki/Affine_transformation

- 3D affine 변환
- Translation, scaling, rotation, shearing 모두 affine 변환의 일종
- 변환 전후에 직선은 직선, 다각형은 다각형으로 유지된다

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- 복합 변환: Composite of transformations
- 일반적으로 물체에 대한 변환이 여러 개가 연속적으로 가해질 수 있다
- 앞에서 배운 변환이 연속적으로 가해지는 것을 복합 변환이라 한다
- 복합 변환의 경우 변환의 순서가 매우 중요하다
- 행렬 곱은 교환 법칙 성립 안함 $T_1T_2 \neq T_2T_1$

■ OpenGL에서의 object transformation

glTranslatef(p, q, r)

 Translate an object p units in the x direction, q units in the y direction, and r units in the z direction

Assume that a teapot is initially located at (0,0,0)

- glOrtho (0.0, 100.0, 0.0, 100.0, -1.0, 1.0)
- 원: 반지름 (20), 중심 (50.0, 50.0, 0.0)
- X축으로 20, y축으로 20만큼 translate

- https://www.dropbox.com/s/11aqiax7tsd 8tjc/circle_translate.txt?dl=0
- // glTranslatef(20.0, 20.0, 0.0)
- 의 주석을 없애 보자

GLUT Object and Translation

GLUT object:

- GLUT 라이브러리에서 쉽게 3D geometric objects를 생성해서 사용하도록 이미 만들어놓은 3D objects를 제공한다
- 각각의 object들은 wireframe, solid rendering (렌더링) 모드 2가지를 제공 한다
- GLUT object는 기본적으로 (0,0,0)에 중심을 두고 있다

- Wireframe rendering (좌측)
- 물체의 뼈대 만을 edge로 묘사. Drawing 속도가 빠른 장점이 있어서 복잡한 물체를 모델링시에 유리
- Solid rendering (우측)
- 물체에 조명을 가하여 색상이 드러난 물체를 그림. 실제 모습을 확인하기 좋음

■ GLUT object들의 예 (각각 solid, wireframe rendering)

Cube

- glutSolidCube (size)
- glutWireCube (size)

Cone

- glutSolidCone (base_radius, height, slices, stacks)
- glutWireCone (base radius, height, slices, stacks)

Sphere

- glutSolidSphere (radius, slices, stacks)
- glutWireSphere (radius, slices, stacks)

Teapot

- glutSolidTeapot(size)
- glutWireTeapot(size)

Torus

- glutSolidTorus (inner radius, outer radius, nsides, rings)
- glutWireTorus (inner_radius, outer_radius, nsides, rings)

- glFrustum()과 GLUT object를 이용한 drawing
- glutWireTeapot(2.0)을 사용, Teapot의 중심 (0,0,0)
- https://www.dropbox.com/s/0tqj634hrihg9vw/simple_teapot_frus tum.txt?dl=0
- 왜 아무것도 보이지 않을까?
- 원근 투영 시 기본적인 Camera 위치는 ? (0, 0, 0)

■ 이번엔 glTranslatef 주석을 제거하고 실행해 보자

■ Viewing frustum안에 있는가?

2. Scaling

OpenGL has glScalef(u, v, w)

It maps each point (x,y,z) of an object to the point (ux, vy, wz). This has the effect of stretching objects by a factor of u in x-direction, v in y-direction, w in z-

- https://www.dropbox.com/s/8fv0kllrhrn0 951/circle_scale.txt?dl=0
- glScalef 부분의 주석을 제거하고 실행해보자

- 3D Teapot에 대해서 scaling
- 단, 이 경우 변환이 2번 연속적으로 발생하므로 복합 변환에 해당한다
- 복합 변환의 경우 변환 순서에 영향을 받지만 자세한 건 복합 변환 부분에서 배운다
- void drawScene()
- {
- glClear(GL_COLOR_BUFFER_BIT);
- glTranslatef(0.0, 0.0, -10.0);
- glScalef(1.0, 2.5, 1.0);
- glutWireTeapot(5.0);

https://www.dropbox.com/s/4rzrng6hkza qqek/simple_teapot_scale.txt?dl=0

glScalef 부분의 주석을 없애보자

■ 이번엔 reflection을 수행해 보자

glScalef(-1.0, 1.0, 1.0);

