EDEXCEL 6683 STATISTICS S1 NOVEMBER 2004

Question number	Scheme	Marks
1 (a)	a = 202, b = 202, c = 233	B1,B1,B1 (3)
(b)	$Q_1 - 1.5(Q_3 - Q_1) = 191 - 1.5(221 - 191) = 146,$ $Q_3 + 1.5(Q_3 - Q_1) = 221 + 1.5(221 - 191) = 266$	(5)
	attempt at one calculation, 146, 266 ⇒ 269 is an outlier 26	M1A1A1 59 A1dep
	180 190 200 210 210 255 246 256 Ap 276 Mikes	
	Scale and 'mile Box with two whiskers 191, their median, 221 180,266 or 263,269	M1
(c)	Keith: $Q_2 - Q_1 = 11$, $Q_3 - Q_2 = 19 \Rightarrow$ positive skew one calc,+ve skew Asif: $Q_2 - Q_1 = 16$, $Q_3 - Q_2 = 15 \Rightarrow$ almost symm or slight –ve skew	

Question number	Scheme	Ma	arks
2(a)	$b = \frac{S_{xy}}{S_{xx}} = \frac{3477.6}{4402} = 0.7900$	awrt0.79	B1
	$a = \overline{y} - b\overline{x} = 28.6 - (0.7900) \times 36 = 0.159836$ y = 0.16 + 0.79x	awrt 0.16 or equivalent	B1 B1 ∫
(b)	OR just answer B1 ONLY $y = 0.16 + 0.79 \times 45 = 35.71$	awrt 35.7	B1 (3) (1)
		(Tota	d 4 marks)
3 (a)	0.0359 0.1151 X~H(µ,T ⁴)		
(b) (i)	Bell shaped curve	& 4 values	B1 (1)
	$P\left(Z \le \frac{66 - \mu}{\sigma}\right) = 0.0359 \Rightarrow 66 - \mu = -1.80\sigma$	-1.80 B1 se	een
	Clear attempt including standardization either way, $81 - \mu = 1.20\sigma$ 1.20 Subtracting $15 = 1.20\sigma + 1.80\sigma \Rightarrow \sigma = 5$ **given and), or equivalent	I1,A1 B1A1
(ii)	Clear attempt $\mu = 66 + 1.8 \times 5 = 75$	to solve, cso	M1A1 B1 (8)
(c)	$P(69 \le X \le 83) = P\left(\frac{69-75}{5} \le Z \le \frac{83-75}{5}\right)$ standardiz	e both either way	
	$= P(-1.20 \le Z \le 1.60)$ $= 0.8301$	1.20, 1.60 4 dp	A1 seen A1
		(Total	(3) 12 marks)

Question number	Scheme M		
number	Scheme	laiks	
4	<i>x</i> -3 -2 -1 0 1 2		
	$P(X = x) 0.2 0.2 \alpha \alpha 0.1 0.1$		
(a)	$2\alpha + 0.6 = 1 \Rightarrow \alpha = 0.2$ linear function of $\alpha = 1, 0.2$ M1A	1	(2)
(b)	$P(-1 \le X < 2) = P(-1) + P(0) + P(1) = 0.5$	B 1	(1)
(c)	F(0.6)=0.8	B 1	(1)
(d)	$E(X) = (-3 \times 0.2) + \dots + (2 \times 0.1) = -0.9$ $aE(X) + 3 = 1.2 \Rightarrow a(-0.9) = -1.8$ $a = 2$ $\sum_{x \in X} xP(X = x), -0.9$ $aE(X) + 3$		(4)
(e)	$E(X^{2}) = (-3^{2} \times 0.2) + \dots + (2^{2} \times 0.1) = 3.3 \qquad \sum x^{2} P(X = x), 3.3$ $Var(X) = 3.3 - (-0.9)^{2} = 2.49 \qquad \sum x^{2} P(X = x) - (E(X))^{2}, 2.49$	M1A1	
(f)	Var(3X - 2) = 9Var(X) = $9 \times 2.49 = 22.41$	M1 A1	(2)
	(Total	14 mai	cks)

EDEXCEL 6683 STATISTICS S1 NOVEMBER 2004

Question number	Scheme Marks		
5 (a)	2 intersecting closed curves in a box M1		
	$\begin{array}{c c} \mathbf{S} & \begin{array}{c} \mathbf{both} \ \frac{1}{4}, \frac{1}{12} \mathbf{B1,B1} \\ \frac{5}{12} \mathbf{B1J} \end{array} \end{array} \tag{4}$		
(b)	$P(A \cup B) = \frac{7}{12}$ 0.583 or 0.583 or $\frac{7}{12}$ B1 (1)		
(c)	$P(A B) = \frac{P(A \cap B')}{P(B')} = \frac{\frac{1}{4}}{\frac{2}{3}} = \frac{3}{8} \text{ or } 0.375 \text{ their fractions divided, cao } \mathbf{M1,A1}$ (2)		
	(Total 7 marks)		

Question number	Scheme M	arks	
6 (a)	$S_{xx} = 10164 - \frac{272^2}{8} = 916$ Any one method, cao No Solve Solve 13464 - $\frac{320^2}{8} = 664$ cao	М1,А1	
		A1	
	8	cao A1	
	(Or 114.5,83 & 42.75)		(4)
(b)	$r = \frac{342}{\sqrt{916 \times 664}} = 0.43852$ formula, all correct $(\sqrt{608224}), 0.439$	M1A1∫A	1
			(3)
(c)	Slight / weak evidence, students perform similarly in pressups and situps context for +ve	B1 B1	(2)
(d)	$\overline{x} = \frac{272}{8} = 34$ $s = \sqrt{\frac{10164}{8} - 34^2} = \sqrt{114.5} = 10.700 \text{ method includes } \sqrt{\ }, \text{ awrt } 10.$	M1A1	(=)
	$\frac{3-\sqrt{\frac{8}{8}}-34-\sqrt{114.3}-10.700}{8}$ OR divisor (n-1) awrt 11.4	/ WITAT	(4)
(e)	$a = 1.96 \times 10.700 = 20.9729$ (or 22.4 divisor (n-1)) 1.96 1.96× s,21.0 or 22.4		(3)
(f)	Pressups discrete, Normal continuous Not a very good assumption	B1 B1 dep	(2)
	(Total 18 marks)		

EDEXCEL 6683 STATISTICS S1 NOVEMBER 2004

