112-1 Discrete Mathematics Charpter 1-3

姓名:許嘉隆 學號:412770116

4.

p	q	r	$p \vee q$	$p \wedge q$	q∨r	q∧r	$(p \lor q) \lor r$	$p \lor (q \lor r)$	$(p \wedge q) \wedge r$	$p \wedge (q \wedge r)$
T	T	T	T	T	T	T	T	T	T	T
T	T	F	T	T	T	F	T	T	F	F
T	F	T	T	F	T	F	T	T	F	F
T	F	F	T	F	F	F	T	T	F	F
F	T	T	T	F	T	T	T	T	F	F
F	T	F	T	F	T	F	T	T	F	F
F	F	T	F	F	T	F	T	T	F	F
F	F	F	F	F	F	F	F	F	F	F

6.

	р	q	-р	-q	$p \wedge q$	$-(p \wedge q)$	- <i>p</i> ∨- <i>q</i>
	\overline{T}	T	F	F	T	F	F
	T	F	F	T	F	T	T
	F	T	T	F	F	T	T
1.	F	F	T	T	F	T	T

10.

a)
$$-p \rightarrow -q$$

 $\equiv -(-p) \lor -q$ by the conditional – disjunction equivalence
 $\equiv p \lor -q$ by the double negation law

b)
$$(p \lor q) \to -p$$

 $\equiv -(p \lor q) \lor -p$ by the conditional – disjunction equivalence
 $\equiv (-p \land -q) \lor -p$ by the De Morgan's laws
 $\equiv -p$ by the absorption laws

c)
$$(p \rightarrow -q) \rightarrow (-p \rightarrow q)$$

 $\equiv -(p \rightarrow -q) \vee (-p \rightarrow q)$ by the conditional – disjunction equivalence
 $\equiv -(-p \vee -q) \vee (-(-p) \vee q)$ by the conditional – disjunction equivalence
 $\equiv (p \wedge q) \vee p \vee q$ by the De Morgan's laws
 $\equiv p \vee q$ by the absorption laws

12.

a,c)

	4,0)									
p	q	-р	p∨q	$[-p \land (p \lor q)] \to q$	$p \rightarrow q$	$[p \land (p \rightarrow q)] \rightarrow q$				
T	T	F	T	T	T	T				
T	F	F	T	T	F	T				
F	T	T	T	T	T	T				
F	F	T	F	T	T	T				

b	,	d)

p	q	r	$p \vee q$	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$[(p \to q) \land (q \to r)] \to (p \to r)$	$\left[(p \lor q) \land (p \to r) \land (q \to r) \right] \to r$
T	T	T	T	T	T	T	T	T
T	T	F	T	T	F	F	T	T
T	F	T	T	F	T	T	T	T
T	F	F	T	F	T	F	T	T
F	T	T	T	T	T	T	T	T
F	T	F	T	T	F	T	T	T
F	F	T	F	T	T	T	T	T
F	F	F	F	T	T	T	T	T

16.

a)
$$[-p \land (p \lor q)] \rightarrow q$$

 $\equiv -[-p \land (p \lor q)] \lor q$ by the conditional – disjunction equivalence
 $\equiv p \lor - (p \lor q) \lor q$ by the De Morgan's laws
 $\equiv (p \lor q) \lor - (p \lor q)$ by the commutative and associative laws
 $\equiv T$ because $p \lor \neg p \equiv T$

b)
$$\left[\left(p \to q \right) \land \left(q \to r \right) \right] \to \left(p \to r \right)$$
 $\equiv -\left[\left(p \to q \right) \land \left(q \to r \right) \right] \lor \left(p \to r \right)$ by the conditional – disjunction equivalence

 $\equiv -\left(p \to q \right) \lor -\left(q \to r \right) \lor \left(p \to r \right)$ by the De Morgan's laws

 $\equiv -\left(-p \lor q \right) \lor -\left(-q \lor r \right) \lor \left(-p \lor r \right)$ by the conditional – disjunction equivalence

 $\equiv \left(p \land -q \right) \lor \left(q \land -r \right) \lor -p \lor r$ by the De Morgan's laws

 $\equiv \left[\left(p \land -q \right) \lor -p \right] \lor \left[\left(q \land -r \right) \lor r \right]$ by the commutative and associative laws

 $\equiv \left[\left(p \lor -p \right) \land \left(-q \lor -p \right) \right] \lor \left[\left(q \lor r \right) \land \left(-r \lor r \right) \right]$ by the distributive laws

 $\equiv \left[\left(-q \lor -p \right) \lor \left(q \lor r \right) \land T \right]$ because $p \lor \neg p \equiv T$
 $\equiv \left(-q \lor q \right) \lor \left(-p \lor r \right)$ by the identity laws

 $\equiv \left(-q \lor q \right) \lor \left(-p \lor r \right)$ by the commutative and associative laws

 $\equiv T \lor \left(-p \lor r \right)$ by the domination laws

c)
$$[p \land (p \rightarrow q)] \rightarrow q$$

 $\equiv -[p \land (p \rightarrow q)] \lor q$ by the conditional – disjunction equivalence
 $\equiv -p \lor - (p \rightarrow q) \lor q$ by the De Morgan's laws
 $\equiv -p \lor - (-p \lor q) \lor q$ by the conditional – disjunction equivalence
 $\equiv -p \lor (p \land -q) \lor q$ by the De Morgan's laws
 $\equiv (-p \lor p) \land (-p \lor -q \lor q)$ by the distributive and associative laws
 $\equiv T \land (-p \lor T)$ because $p \lor \neg p \equiv T$
 $\equiv -p \lor T$ by the identity laws
 $\equiv T$ by the domination laws

d) $[(p \lor q) \land (p \rightarrow r) \land (q \rightarrow r)] \rightarrow r$

 $\equiv -[(p \lor q) \land (p \to r) \land (q \to r)] \lor r$ by the conditional – disjunction equivalence

 $\equiv -(p \lor q) \lor -(p \to r) \lor -(q \to r) \lor r$ by the De Morgan's laws

 $\equiv -(p \lor q) \lor -(-p \lor r) \lor -(-q \lor r) \lor r$ by the conditional – disjunction equivalence

 $\equiv (-p \land -q) \lor (p \land -r) \lor (q \land -r) \lor r$ by the De Morgan's laws $\equiv (-p \land -q) \lor (p \land -r) \lor (q \lor r) \land (-r \lor r)$ by the distributive laws

 $\equiv (-p \land -q) \lor (p \land -r) \lor (q \lor r) \land T$ because $p \lor \neg p \equiv T$ $\equiv (-p \land -q) \lor [(p \land -r) \lor r] \lor q$ by the identity, commutative and associative laws

 $\equiv (-p \land -q) \lor [(p \lor r) \land (-r \lor r)] \lor q \qquad by the distributive laws$

 $\equiv (-p \land -q) \lor [(p \lor r) \land T] \lor q \qquad because p \lor \neg p \equiv T$ $= [(m \land q) \lor m] \lor r \lor q \qquad because p \lor \neg p \equiv T$

 $\equiv [(-p \land -q) \lor p] \lor r \lor q$ by the identity and associative laws

 $\equiv [(-p \lor p) \land (-q \lor p)] \lor r \lor q$ by the distributive laws $\equiv [T \land (-q \lor p)] \lor r \lor q$ because $p \lor \neg p \equiv T$

 $\equiv (-q \lor q) \lor p \lor r$ by the identity, commutative and associative laws

 $\equiv T \lor p \lor r$ because $p \lor \neg p \equiv T$ $\equiv T$ by the domination laws