33-Project-55.R

Suman Paudel

2024-06-09

```
library(ISLR2)
# Part I
# a. Define nci labels (NCI$labs) as nci.labs and nci data (NCI$data) as nic.data
library(ISLR2)
nci.labs <- NCI60$labs
nci.data <- NCI60$data
# b. Check dimension of nci.data object and interpret it carefully
dim(nci.data)
## [1]
         64 6830
# The data has 64 rows and 6,830 columns.
# c. Check first four cancer types using nci.labs object
nci.labs[1:4]
## [1] "CNS"
               "CNS"
                        "CNS"
                                "RENAL"
table(nci.labs)
## nci.labs
##
        BREAST
                        CNS
                                  COLON K562A-repro K562B-repro
             7
                                                  1
                                                               1
                                                                            6
                                               NSCLC
## MCF7A-repro MCF7D-repro
                               MELANOMA
                                                         OVARIAN
                                                                     PROSTATE
##
             1
                          1
                                                               6
##
         RENAL
                    UNKNOWN
##
             9
                          1
# d. Fit principal component analysis (PCA) on nci.data with scale = TRUE argument as
# pr.out object
pr.out <- prcomp(nci.data, scale = TRUE)</pre>
# e. Create a plot showing first three PCA components with three different colors
Cols <- function(vec) {</pre>
  cols <- rainbow(length(unique(vec)))</pre>
  return(cols[as.numeric(as.factor(vec))])
}
# Adjusting figure margins
par(mar = c(1, 1, 1, 1))
par(mfrow = c(1, 2))
plot(pr.out$x[, 1:2], col = Cols(nci.labs), pch = 19,
```


On the whole, cell lines corresponding to a single cancer type do tend to have simi
lar values on the first few principal component score vectors. This indicates that ce
ll lines from the same cancer type tend to have pretty similar gene expression level
s.
f. Get summary of pr.out object and interpret it carefully
summary(pr.out)

```
## Importance of components:
                          PC1
                                  PC2
                                          PC3
                                                  PC4
                                                          PC5
##
                                                                  PC6
## Standard deviation
                       27.8535 21.48136 19.82046 17.03256 15.97181 15.72108
## Proportion of Variance 0.1136 0.06756 0.05752 0.04248 0.03735 0.03619
## Cumulative Proportion
                       ##
                           PC7
                                   PC8
                                           PC9
                                                  PC10
                                                          PC11
                                                                  PC12
## Standard deviation
                       14.47145 13.54427 13.14400 12.73860 12.68672 12.15769
## Proportion of Variance 0.03066 0.02686 0.02529 0.02376 0.02357
                                                              0.02164
## Cumulative Proportion
                       ##
                          PC13
                                  PC14
                                          PC15
                                                  PC16
                                                          PC17
                                                                  PC18
## Standard deviation
                       11.83019 11.62554 11.43779 11.00051 10.65666 10.48880
## Proportion of Variance 0.02049 0.01979 0.01915 0.01772 0.01663 0.01611
## Cumulative Proportion
                       0.52695  0.54674  0.56590  0.58361  0.60024  0.61635
                                                PC22
##
                          PC19
                                 PC20
                                         PC21
                                                       PC23
                                                              PC24
## Standard deviation
                       10.43518 10.3219 10.14608 10.0544 9.90265 9.64766
```

```
## Proportion of Variance 0.01594 0.0156 0.01507 0.0148 0.01436 0.01363
                           0.63229
                                    0.6479   0.66296   0.6778   0.69212   0.70575
## Cumulative Proportion
                             PC25
##
                                     PC26
                                             PC27
                                                    PC28
                                                             PC29
                                                                             PC31
## Standard deviation
                          9.50764 9.33253 9.27320 9.0900 8.98117 8.75003 8.59962
## Proportion of Variance 0.01324 0.01275 0.01259 0.0121 0.01181 0.01121 0.01083
## Cumulative Proportion 0.71899 0.73174 0.74433 0.7564 0.76824 0.77945 0.79027
                                     PC33
                                             PC34
                                                     PC35
                                                              PC36
                             PC32
                          8.44738 8.37305 8.21579 8.15731 7.97465 7.90446 7.82127
## Standard deviation
## Proportion of Variance 0.01045 0.01026 0.00988 0.00974 0.00931 0.00915 0.00896
## Cumulative Proportion 0.80072 0.81099 0.82087 0.83061 0.83992 0.84907 0.85803
##
                             PC39
                                     PC40
                                             PC41
                                                    PC42
                                                             PC43
                                                                    PC44
## Standard deviation
                          7.72156 7.58603 7.45619 7.3444 7.10449 7.0131 6.95839
## Proportion of Variance 0.00873 0.00843 0.00814 0.0079 0.00739 0.0072 0.00709
## Cumulative Proportion 0.86676 0.87518 0.88332 0.8912 0.89861 0.9058 0.91290
##
                            PC46
                                    PC47
                                            PC48
                                                    PC49
                                                             PC50
                                                                     PC51
## Standard deviation
                          6.8663 6.80744 6.64763 6.61607 6.40793 6.21984 6.20326
## Proportion of Variance 0.0069 0.00678 0.00647 0.00641 0.00601 0.00566 0.00563
## Cumulative Proportion 0.9198 0.92659 0.93306 0.93947 0.94548 0.95114 0.95678
                             PC53
                                     PC54
                                             PC55
                                                     PC56
                                                             PC57
                                                                     PC58
## Standard deviation
                          6.06706 5.91805 5.91233 5.73539 5.47261 5.2921 5.02117
## Proportion of Variance 0.00539 0.00513 0.00512 0.00482 0.00438 0.0041 0.00369
## Cumulative Proportion 0.96216 0.96729 0.97241 0.97723 0.98161 0.9857 0.98940
##
                             PC60
                                     PC61
                                             PC62
                                                     PC63
                                                                PC64
## Standard deviation
                          4.68398 4.17567 4.08212 4.04124 1.951e-14
## Proportion of Variance 0.00321 0.00255 0.00244 0.00239 0.000e+00
## Cumulative Proportion 0.99262 0.99517 0.99761 1.00000 1.000e+00
# g. Plot pro.out object and interpret it carefully
plot(pr.out)
# the height of each bar in the bar plot is given by squaring the corresponding eleme
# nt of pr.out$sdev.
# h. Create custom scatterplots with principal components in x-axis and proportion va
# riance explained (PVE) in y-axis for the first plot and cumulative PVE in the y-axis
# for the second plot and interpret them carefully
pve <- 100 * pr.out$sdev^2 / sum(pr.out$sdev^2)</pre>
par(mfrow = c(1, 2))
```


#pca.varimax <- principal(nci.data, nfactors = 7, rotate = "varimax", scores = TRUE)</pre> #pca.varimax

- # Comparing PCA with varimax rotation to the original PCA results:
- # Varimax rotation maximizes the sum of the variance of the squared loadings, makin # g the interpretation easier.
- # However, it does not change the amount of variance explained by the components.
- # j. Write summary of the results and conclusion based on your findings
- # Summary:
- # 1. The NCI60 data set contains gene expression levels for 64 cancer cell lines and # 6,830 genes.
- # 2. PCA was performed on the data, revealing that the first few principal components # explain a substantial amount of variance.
- # 3. A scree plot and cumulative PVE plot indicate that the first seven principal com # ponents account for around 40% of the variance in the data.
- # 4. The first three principal components were visualized, showing that cell lines fr # om the same cancer type tend to cluster together.
- # 5. PCA with varimax rotation was also performed for comparison, confirming the inte # rpretability of rotated components without changing the variance explained. # Conclusion:
- # PCA is a valuable tool for reducing dimensionality and identifying patterns in high # -dimensional data such as gene expression levels. The results suggest that a few prin
- # cipal components capture significant patterns in the data, and varimax rotation aids # in interpretability. Further analysis can be conducted to understand the biological s
- # ignificance of these patterns.

Part II: Use the distance between 10 US cities provided below in R Studio to knot

```
# PDF output:
# a. Get dissimilarity distance as city.dissimilarity object
# Step 1: Define the distance matrix
# Distance matrix for 10 US cities
city_distances <- matrix(c(</pre>
  0, 587, 1212, 701, 1936, 604, 748, 2139, 2182, 543,
  587, 0, 920, 940, 1745, 1188, 713, 2182, 2234, 597,
  1212, 920, 0, 879, 1949, 1726, 1631, 949, 1021, 1494,
  701, 940, 879, 0, 2394, 968, 1420, 2420, 2442, 597,
  1936, 1745, 1949, 2394, 0, 2300, 1645, 347, 403, 2339,
  604, 1188, 1726, 968, 2300, 0, 781, 2372, 2420, 1121,
  748, 713, 1631, 1420, 1645, 781, 0, 1923, 1960, 688,
  2139, 2182, 949, 2420, 347, 2372, 1923, 0, 214, 2571,
  2182, 2234, 1021, 2442, 403, 2420, 1960, 214, 0, 2534,
  543, 597, 1494, 597, 2339, 1121, 688, 2571, 2534, 0),
 nrow = 10, byrow = TRUE)
# City names
city_names <- c("Atlanta", "Chicago", "Denver", "Houston", "Los Angeles", "Miami",
                "New York", "San Francisco", "Seattle", "Washington")
# Assign row and column names to the distance matrix
rownames(city_distances) <- city_names</pre>
colnames(city_distances) <- city_names</pre>
# Convert to a distance object
(city.dissimilarity <- as.dist(city_distances))</pre>
##
                 Atlanta Chicago Denver Houston Los Angeles Miami New York
## Chicago
                     587
## Denver
                    1212
                              920
                     701
## Houston
                              940
                                     879
## Los Angeles
                    1936
                             1745
                                    1949
                                            2394
## Miami
                     604
                             1188
                                    1726
                                            968
                                                         2300
## New York
                     748
                             713
                                    1631
                                            1420
                                                         1645
                                                                781
## San Francisco
                    2139
                             2182
                                            2420
                                                          347
                                                               2372
                                     949
                                                                        1923
## Seattle
                    2182
                             2234
                                                          403
                                                                        1960
                                    1021
                                            2442
                                                               2420
                              597
                                                         2339
                                                                         688
## Washington
                     543
                                    1494
                                             597
                                                               1121
##
                 San Francisco Seattle
## Chicago
## Denver
## Houston
## Los Angeles
## Miami
## New York
## San Francisco
## Seattle
                            214
## Washington
                           2571
                                   2534
# b. Fit a classical multidimensional model using the city.dissimilarity object
city_mds <- cmdscale(city.dissimilarity, eig = TRUE, k = 2)</pre>
# c. Get the summary of the model and interpret it carefully
# Get the MDS coordinates
mds coordinates <- city mds$points
# Print the summary of the model
```

summary(city_mds)

```
##
          Length Class Mode
## points 20
               -none- numeric
## eig
                -none- numeric
## x
                -none- NULL
          0
## ac
          1
                 -none- numeric
## GOF
           2
                 -none- numeric
# Interpretation: The summary includes the eigenvalues, which indicate the amount of
# variance captured by each dimension.
# eigenvalues <- city_mds$eig</pre>
# variance_explained <- eigenvalues / sum(eigenvalues) * 100</pre>
# variance_explained
# d. Get the bi-plot of the model and interpret it carefully
# Plot the MDS result
plot(mds_coordinates, type = "n", xlab = "Coordinate 1", ylab = "Coordinate 2",
     main = "Classical MDS of US Cities")
text(mds_coordinates, labels = rownames(mds_coordinates), col = "blue")
# Part III: Part I: Use NCI60 data of ISLR2 package and page 543 of ISLR2 book to
# do as follows in R Studio to knit PDF output:
# a. Scale the nci.data as sd.data object
sd.data <- scale(nci.data)</pre>
\# b. Fit hierarchical cluster analysis on the sd.data using complete, average and single
# linkage methods, show the results with dendrogram and interpret them carefully
par(mfrow = c(1, 3))
```

New York Los Angele Miami hing thing the San San Seat Houston Denver


```
# Interpretation: The choice of linkage certainly does affect the results obtained. Ty
# pically, single linkage will tend to yield trailing clusters: very large clusters ont
# o which individual observations attach one-by-one. On the other hand, complete and av
# erage linkage tend to yield more balanced, attractive clusters. For this reason, comp
# lete and average linkage are generally preferred to single linkage. Clearly cell line
# s within a single cancer type do tend to cluster together, although the clustering is
# not perfect. We will use complete linkage hierarchical clustering for the analysis th
# at follows. We can cut the dendrogram at the height that will yield a particular numb
# er of clusters, say four:
# c. Find the best number for clusters using "cutree" function with best distance value
# Let's use the complete linkage method for this example

hc.out <- hclust(dist(sd.data))
hc.clusters <- cutree(hc.out, 4)
table(hc.clusters, nci.labs)</pre>
```

```
##
               nci.labs
## hc.clusters BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro
##
                      2
                                 2
                                              0
                          3
                                                            0
##
                      3
                                 0
                                                            0
                                                                      0
                                                                                   0
              3
                      0
                          0
                                 0
                                                                      6
                                                                                   0
##
                                              1
                                                            1
                      2
                                 5
                                              0
##
##
               nci.labs
## hc.clusters MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
                                     8
                                            8
                                                                      8
                                                                               1
##
              1
                           0
                                                     6
                                                               2
##
              2
                           0
                                     0
                                            1
                                                               0
                                                                      1
                                                                               0
                           0
                                     0
                                            0
                                                     0
              3
                                                               0
                                                                      0
                                                                               0
##
```

```
1 0 0 0 0
##
# There are some clear patterns. All the leukemia cell lines fall in cluster 3, while
# the breast cancer cell lines are spread out over three diferent clusters. We can plot
# the cut on the dendrogram that produces these four clusters:
# par(mfrow = c(1, 1))
# plot(hc.out, labels = nci.labs)
# abline(h = 139, col = "red")
# Printing the output of hclust
hc.out
##
## Call:
## hclust(d = dist(sd.data))
## Cluster method : complete
## Distance
                 : euclidean
## Number of objects: 64
# d. Use your roll number as set.seed and perform k-means clustering on sd.data with
# the best number of clusters/distance value with nstart=20
set.seed(30)
km.out <- kmeans(sd.data, 4, nstart = 20)</pre>
km.clusters <- km.out$cluster</pre>
table(km.clusters, hc.clusters)
             hc.clusters
## km.clusters 1 2 3 4
            1 9 0 0 0
            2 0 0 8 0
##
            3 20 7 0 0
##
##
            4 11 0 0 9
# Interpretation: The four clusters obtained using hierarchical clustering and Kmeans
# clustering are somewhat different. Cluster 2 in K-means clustering is identical to cl
# uster 1 in hierarchical clustering. However, the other clusters differ: for instance,
# cluster 3 in K-means clustering contains a portion of the observations assigned to cl
# uster 4 by hierarchical clustering, as well as all of the observations assigned to cl
# uster 3 by hierarchical clustering. Rather than performing hierarchical clustering on
# the entire data matrix, we can simply perform hierarchical clustering on the frst few
# principal component score vectors, as follows:
 # e. Get summary of the k-means clustering and interpret them carefully
summary(km.out)
##
               Length Class Mode
## cluster
                  64 -none- numeric
## centers
               27320 -none- numeric
## totss
                   1 -none- numeric
## withinss
                   4 -none- numeric
## tot.withinss
                  1 -none- numeric
```

K-means Clustering Results

1 -none- numeric

betweenss

```
# Part IV: Use "Groceries" data available in the "datasets" package to do as follows
# in R Studio to knit PDF output

# a. Load "arules" and "arulesViz" libraries
library(arules)
```

```
## Loading required package: Matrix
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
## abbreviate, write
```

```
library(arulesViz)
# b. Load "Groceries" data, check its structure and interpret it carefully
data("Groceries")
str(Groceries)
## Formal class 'transactions' [package "arules"] with 3 slots
                    :Formal class 'ngCMatrix' [package "Matrix"] with 5 slots
##
     .. .. ..@ i
                       : int [1:43367] 13 60 69 78 14 29 98 24 15 29 ...
##
     .. .. ..@ р
                       : int [1:9836] 0 4 7 8 12 16 21 22 27 28 ...
     .. .. ..@ Dim
                     : int [1:2] 169 9835
     .. .. ..@ Dimnames:List of 2
##
     .. .. .. ..$ : NULL
##
##
     .. .. .. ..$ : NULL
     .. .. ..@ factors : list()
     ..@ itemInfo :'data.frame': 169 obs. of 3 variables:
##
     .... labels: chr [1:169] "frankfurter" "sausage" "liver loaf" "ham" ...
     ....$ level2: Factor w/ 55 levels "baby food", "bags", ...: 44 44 44 44 44 44 42 42 41 ...
     ....$ level1: Factor w/ 10 levels "canned food",..: 6 6 6 6 6 6 6 6 6 ...
##
     ..@ itemsetInfo:'data.frame': 0 obs. of 0 variables
##
summary(Groceries)
## transactions as itemMatrix in sparse format with
## 9835 rows (elements/itemsets/transactions) and
## 169 columns (items) and a density of 0.02609146
## most frequent items:
         whole milk other vegetables
##
                                           rolls/buns
                                                                  soda
##
              2513
                                1903
                                                 1809
                                                                  1715
##
             yogurt
                             (Other)
##
               1372
                               34055
##
## element (itemset/transaction) length distribution:
## sizes
                          5
                                                                                16
##
           2
                3
                     4
                               6
                                    7
                                         8
                                              9
                                                  10
                                                           12
                                                                      14
                                                                           15
      1
                                                       11
                                                                 13
## 2159 1643 1299 1005
                        855
                             645
                                  545
                                       438
                                            350
                                                 246
                                                      182 117
                                                                 78
                                                                      77
                                                                                 46
##
     17
          18
               19
                    20
                         21
                              22
                                   23
                                        24
                                             26
                                                  27
                                                       28
                                                            29
                                                                 32
                                    6
##
          14
               14
                     9
                         11
                               4
                                         1
                                              1
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
##
     1.000
           2.000
                    3.000
                             4.409
                                     6.000 32.000
## includes extended item information - examples:
         labels level2
## 1 frankfurter sausage meat and sausage
         sausage sausage meat and sausage
## 3 liver loaf sausage meat and sausage
# Interpretation: The Groceries dataset is a sparse matrix of transactions, where eac
# h row represents a transaction and each column represents an item. The summary gives
# an overview of the number of transactions, the number of items, and some basic statis
```

tics.

```
# c. Get Frequent Item frequencies using itemFrequencyPlot function and interpret it
# carefully
itemFrequencyPlot(Groceries, topN = 20, type = "absolute")
```

```
# Interpretation: This was the state of the
```

```
# Interpratation: This plot shows the absolute frequencies of the top 20 items. Items
# like "whole milk" and "other vegetables" are among the most frequently purchased item
# s.
# d. Set a priori rule with support = 0.001 and confidence = 0.8 and interpret the ou
# tput carefully
rules <- apriori(Groceries, parameter = list(support = 0.001, confidence = 0.8))</pre>
```

```
## Apriori
##
## Parameter specification:
   confidence minval smax arem aval originalSupport maxtime support minlen
##
           0.8
                  0.1
                         1 none FALSE
                                                 TRUE
                                                                 0.001
##
   maxlen target ext
##
        10 rules TRUE
##
## Algorithmic control:
  filter tree heap memopt load sort verbose
      0.1 TRUE TRUE FALSE TRUE
                                         TRUE
##
## Absolute minimum support count: 9
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [157 item(s)] done [0.00s].
```

```
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [410 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
summary(rules)
## set of 410 rules
##
## rule length distribution (lhs + rhs):sizes
##
    3
         4
            5
                6
##
   29 229 140 12
##
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
     3.000
           4.000
                     4.000
                             4.329
                                     5.000
                                             6.000
##
## summary of quality measures:
                         confidence
##
       support
                                                                 lift
                                            coverage
##
   Min.
           :0.001017
                       Min.
                              :0.8000
                                        Min.
                                                :0.001017
                                                            Min.
                                                                   : 3.131
   1st Qu.:0.001017
                       1st Qu.:0.8333
                                        1st Qu.:0.001220
                                                            1st Qu.: 3.312
## Median :0.001220
                       Median :0.8462
                                        Median :0.001322
                                                            Median : 3.588
  Mean
           :0.001247
                       Mean
                              :0.8663
                                               :0.001449
                                                                  : 3.951
                                        Mean
                                                            Mean
##
   3rd Qu.:0.001322
                       3rd Qu.:0.9091
                                        3rd Qu.:0.001627
                                                            3rd Qu.: 4.341
   Max.
           :0.003152
                                               :0.003559
##
                       Max.
                              :1.0000
                                        Max.
                                                            Max.
                                                                   :11.235
##
        count
##
           :10.00
   Min.
   1st Qu.:10.00
  Median :12.00
##
   Mean
         :12.27
##
   3rd Qu.:13.00
  Max.
          :31.00
##
##
## mining info:
##
         data ntransactions support confidence
##
   Groceries
                       9835
                              0.001
                                           0.8
##
  apriori(data = Groceries, parameter = list(support = 0.001, confidence = 0.8))
# Interpretation: The apriori algorithm generates association rules based on the spec
# ified minimum support and confidence. The summary provides the number of rules genera
# ted and basic statistics like minimum, maximum, and average support and confidence.
# e. Show the top five rules using inspect and round the results to two digits
inspect(head(rules, 5))
##
       lhs
                                   rhs
                                                   support
                                                               confidence
## [1] {liquor, red/blush wine} => {bottled beer} 0.001931876 0.9047619
## [2] {curd, cereals}
                                => {whole milk}
                                                  0.001016777 0.9090909
## [3] {yogurt, cereals}
                                => {whole milk}
                                                   0.001728521 0.8095238
## [4] {butter, jam}
                                => {whole milk}
                                                   0.001016777 0.8333333
## [5] {soups, bottled beer}
                                => {whole milk}
                                                   0.001118454 0.9166667
##
       coverage
                   lift
                             count
## [1] 0.002135231 11.235269 19
```

[2] 0.001118454 3.557863 10

```
## [3] 0.002135231 3.168192 17
## [4] 0.001220132 3.261374 10
## [5] 0.001220132 3.587512 11
# f. Sort the rule by confidence in decreasing order
rules <- sort(rules, by = "confidence", decreasing = TRUE)
inspect(head(rules, 5))
##
                                                  support confidence
       lhs
                                 rhs
                                                                         coverage
                                                                                       lift count
##
  [1] {rice,
##
        sugar}
                              => {whole milk} 0.001220132
                                                                    1 0.001220132 3.913649
                                                                                               12
  [2] {canned fish,
##
        hygiene articles}
                              => {whole milk} 0.001118454
                                                                    1 0.001118454 3.913649
##
                                                                                               11
##
  [3] {root vegetables,
        butter,
##
        rice}
                              => {whole milk} 0.001016777
                                                                    1 0.001016777 3.913649
                                                                                               10
##
## [4] {root vegetables,
        whipped/sour cream,
##
        flour}
                              => {whole milk} 0.001728521
                                                                    1 0.001728521 3.913649
##
                                                                                               17
## [5] {butter,
##
        soft cheese,
                              => {whole milk} 0.001016777
                                                                    1 0.001016777 3.913649
##
        domestic eggs}
                                                                                               10
# g. Use "whole milk" as target item and show the items in "lhs" with decreasing orde
# r of confidence and show the top five rules
rules_lhs <- subset(rules, lhs %pin% "whole milk")</pre>
rules_lhs <- sort(rules_lhs, by = "confidence", decreasing = TRUE)
inspect(head(rules_lhs, 5))
##
       lhs
                              rhs
                                                      support confidence
                                                                             coverage
                                                                                          lift count
##
  [1] {tropical fruit,
##
        grapes,
##
        whole milk,
##
                          => {other vegetables} 0.001016777 1.0000000 0.001016777 5.168156
                                                                                                  10
        yogurt}
  [2] {ham,
##
        tropical fruit,
##
##
        pip fruit,
        whole milk}
                           => {other vegetables} 0.001118454 1.0000000 0.001118454 5.168156
##
                                                                                                  11
   [3] {whole milk,
##
##
        rolls/buns,
##
        soda,
##
        newspapers}
                          => {other vegetables} 0.001016777 1.0000000 0.001016777 5.168156
                                                                                                  10
   [4] {root vegetables,
##
##
        whole milk,
##
        yogurt,
##
        oil}
                          => {other vegetables} 0.001423488 0.9333333 0.001525165 4.823612
                                                                                                  14
##
   [5] {citrus fruit,
##
        tropical fruit,
##
        root vegetables,
##
        whole milk,
##
        yogurt}
                          => {other vegetables} 0.001423488 0.9333333 0.001525165 4.823612
                                                                                                  14
```

```
# h. Use "whole milk" as target item and show the items in "rhs" with decreasing orde
# r of confidence and show the top five rules
rules rhs <- subset(rules, rhs %pin% "whole milk")
rules rhs <- sort(rules lhs, by = "confidence", decreasing = TRUE)
inspect(head(rules rhs, 5))
##
       lhs
                             rhs
                                                    support confidence
                                                                           coverage
                                                                                        lift count
## [1] {tropical fruit,
##
        grapes,
##
        whole milk,
                          => {other vegetables} 0.001016777 1.0000000 0.001016777 5.168156
##
        yogurt}
                                                                                                 10
## [2] {ham,
##
        tropical fruit,
##
        pip fruit,
##
        whole milk}
                          => {other vegetables} 0.001118454 1.0000000 0.001118454 5.168156
                                                                                                 11
## [3] {whole milk,
##
        rolls/buns,
##
        soda,
##
        newspapers}
                          => {other vegetables} 0.001016777 1.0000000 0.001016777 5.168156
                                                                                                10
## [4] {root vegetables,
##
        whole milk,
##
        yogurt,
        oil}
                          => {other vegetables} 0.001423488 0.9333333 0.001525165 4.823612
##
                                                                                                14
## [5] {citrus fruit,
##
        tropical fruit,
##
        root vegetables,
##
        whole milk,
                          => {other vegetables} 0.001423488 0.9333333 0.001525165 4.823612
##
        yogurt}
                                                                                                14
# i. Write summary and conclusion based on your findings above
# Based on the analysis, the "Groceries" data reveals several interesting association
# s:
  # 1.Frequent Items: Items like "whole milk" and "other vegetables" are among the most
  # frequently purchased.
# 2. Association Rules: Setting a minimum support of 0.001 and confidence of 0.8, we
# generated a significant number of rules, indicating strong associations among items.
# 3. Top Rules: By inspecting the top rules, we can see high-confidence associations,
# such as items frequently bought together with "whole milk."
# 4. Targeted Rules: When "whole milk" is the target item in the LHS or RHS, the rule
# s show high confidence and lift, highlighting items that are commonly bought with "wh
# ole milk."
```

Overall, the analysis provides valuable insights into customer purchasing behavior,

which can be leveraged for marketing strategies and inventory management.