

## 13.8: Predicting the Direction of a Reaction

Often you will know the concentrations of reactants and products for a particular reaction and want to know whether the system is at equilibrium. If it is not, it is useful to predict how those concentrations will change as the reaction approaches equilibrium. A useful tool for making such predictions is the **reaction quotient**, *Q*. *Q* has the same mathematical form as the equilibrium-constant expression, but *Q* is a ratio of the actual concentrations (not a ratio of equilibrium concentrations).

For example, suppose you are interested in the reaction

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

$$K_{
m c} = rac{[{
m SO}_3]^2}{[{
m SO}_2]^2[{
m O}_2]} = 245~{
m mol/L(at~1000~K)}$$

and you have added 0.10 mol of each gas to a container with volume 10.0 L. Is the system at equilibrium? If not, will the concentration of  $SO_3$  be greater than or less than 0.010 mol/L when equilibrium is reached? You can answer these questions by calculating Q and comparing it with  $K_c$ . There are three possibilities:

- If  $Q = K_C$  then the actual concentrations of products (and of reactants) are equal to the equilibrium concentrations and the system is at equilibrium.
- If *Q* < *K*<sub>c</sub> then the actual concentrations of products are less than the equilibrium concentrations; the forward reaction will occur and more products will be formed.
- If *Q* > *K*<sub>c</sub> then the actual concentrations of products are greater than the equilibrium concentrations; the reverse reaction will occur and more reactants will be formed.

For the reaction given above,

$$Q = rac{[\mathrm{SO}_3]^2}{[\mathrm{SO}_2]^2[\mathrm{O}_2]} = rac{(rac{0.1mol}{10L})^2}{(rac{0.1mol}{10L})^2(rac{0.1mol}{10L})} = 100rac{\mathrm{mol}}{\mathrm{L}}$$

(In the expression for Q each actual concentration is enclosed in braces {curly brackets} in order to distinguish it from the equilibrium concentrations, which, in the  $K_c$  expression, are enclosed in [square brackets].) In this case Q = 100 mol/L. This is less than  $K_c$ , which has the value 245 mol/L. This implies that the concentrations of products are less than the equilibrium concentrations (and the concentrations of reactants are greater than the equilibrium concentrations). Therefore the reaction will proceed in the forward direction, producing more products, until the concentrations reach their equilibrium values.

## ✓ Example 13.8.1: Equilibrium

At 2300 K, the equilibrium constant,  $K_c$ , is 1.7 x 10<sup>-3</sup> for the reaction

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

A mixture of the three gases at 2300 K has these concentrations,  $[N_2] = 0.17$  mol dm<sup>-3</sup>,  $[O_2] = 0.17$  mol dm<sup>-3</sup>, and [NO] = 0.034 mol dm<sup>-3</sup>.

- (a) Is the system at equilibrium?
- (b) In which direction must the reaction occur to reach equilibrium?
- (c) What are the equilibrium concentrations of N<sub>2</sub>, O<sub>2</sub>, and NO?

## Solution

Use the known concentrations to calculate Q. Compare Q with  $K_c$  to answer questions (a) and (b). Use an ICE table to answer part (c).

$$Q = rac{\{ ext{NO}\}^2}{\{ ext{N}_2\}\{ ext{O}_2\}} = rac{(0.034 ext{mol dm}^{-3})^2}{(0.17 ext{mol dm}^{-3})(0.17 ext{mol dm}^{-3})} = 4.0 imes 10^{-2}$$

a. Q is larger than  $K_c$ , so the reaction is not at equilibrium.



- b. Because Q is larger than  $K_c$ , the concentration of the product, NO, is larger than its equilibrium concentration and the concentrations of the reactants,  $N_2$  and  $O_2$ , are smaller than their equilibrium concentrations. Therefore some of the product, NO, will be consumed and more of the reactants, N<sub>2</sub> and O<sub>2</sub>, will be formed.
- c. Use the given concentrations as the initial concentrations of reactants and product. Enter these into an ICE table. Let *x* be the increase in the concentration of N<sub>2</sub> as the system reacts to equilibrium. The ICE table looks like this:

|                                                |          |          |                    | Ne                 |
|------------------------------------------------|----------|----------|--------------------|--------------------|
|                                                | $N_2$    | $O_2$    | NO                 | xt,                |
| Initial concentration/mol dm <sup>-3</sup>     | 0.17     | 0.17     | 0.034              | sub                |
| Change in concentration/mol dm <sup>-3</sup>   | X        | х        | -2 <i>x</i>        | stit               |
| Equilibrium concentration/mol dm <sup>-3</sup> | 0.17 + x | 0.17 + x | 0.034 - 2 <i>x</i> | the<br>equ<br>ilib |
|                                                |          |          |                    | riu                |

m concentrations into the  $K_c$  expression and solve for x.

$$K_{
m c} = 1.7 imes 10^{-3} = rac{(0.034 - 2x)^2}{(0.17 + x)(0.1 + x)}$$

Now take the square root of both sides of this equation. This gives

$$\sqrt{1.7 imes 10^{-3}} = 0.0412 = rac{0.034 - 2x}{0.17 + x}$$

Multiplying both sides by 0.17 + x gives

$$0.0070 + 0.412x = 0.034 - 2x$$

$$2x + 0.0412x = 0.034 - 0.0070$$

$$x = \frac{0.0270}{2.0412} = 0.0132$$

$$[\mathrm{N}_2] = [\mathrm{O}_2] = 0.17 + 0.013 = 0.183 \; \mathrm{mol} \; \mathrm{dm}^{-3}$$
 
$$[\mathrm{NO}] = 0.034 - 2(0.0132) = 0.0076 \; \mathrm{mol} \; \mathrm{dm}^{-3}$$

$$[NO] = 0.034 - 2(0.0132) = 0.0076 \text{ mol dm}^{-3}$$

Check the result by substituting these concentrations into the equilibrium constant expression.

$$K_{
m c} = rac{(0.0076)^2}{(0.18)(0.18)} = 1.8 imes 10^{-3}$$

This agrees to two significant figures with the  $K_c$  value of 1.7 x 10<sup>-3</sup>.

This page titled 13.8: Predicting the Direction of a Reaction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Ed Vitz, John W. Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, & Adam Hahn.