Differentiable Mutual Information and Matrix Exponential for Multi-Resolution Image Registration

Abhishek Nan, Matthew Tennant, Uriel Rubin, Nilanjan Ray

Medical Imaging with Deep Learning, 2020

Registration

With MSE

Problems?

- Multi-modal images
- MSE won't work

Source: https://www.mathworks.com/discovery/image-registration.html

Solution?

Mutual Information

$$MI(X,Y) = \sum_{x,y} p(x,y) log \frac{p(x,y)}{p(x)p(y)}.$$

Issues?

- Mutual Information for images is computed using joint histograms.
- Histograms are not differentiable.
- No gradient descent?

Differentiable mutual information

- The function T is realized by a neural network with parameter θ .
- $V(\theta)$ is differentiable and can be used as a objective function in place of MI.

Algorithm 1 MINE

 $\theta \leftarrow \text{initialize network parameters}$

repeat

Draw b minibatch samples from the joint distribution:

$$({m x}^{(1)},{m z}^{(1)}),\ldots,({m x}^{(b)},{m z}^{(b)})\sim \mathbb{P}_{XZ}$$

Draw n samples from the Z marginal distribution:

$$\bar{z}^{(1)},\ldots,\bar{z}^{(\hat{b})}\sim\mathbb{P}_Z$$

Evaluate the lower-bound:

$$\mathcal{V}(\theta) \leftarrow \frac{1}{b} \sum_{i=1}^{b} T_{\theta}(\boldsymbol{x}^{(i)}, \boldsymbol{z}^{(i)}) - \log(\frac{1}{b} \sum_{i=1}^{b} e^{T_{\theta}(\boldsymbol{x}^{(i)}, \bar{\boldsymbol{z}}^{(i)})})$$

Evaluate bias corrected gradients (e.g., moving average):

$$\widetilde{G}(\theta) \leftarrow \widetilde{\nabla}_{\theta} \mathcal{V}(\theta)$$

Update the statistics network parameters:

$$\theta \leftarrow \theta + \widehat{G}(\theta)$$

until convergence

MINE for images

Currently

Matrix exponential

• Matrix exponential of a square matrix A is given by the following:

$$exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

• Geometric transformation matrices can be obtained by exponential of a linear combination of basis matrices.

Matrix Exponential (Examples)

- Affine transform
 - · Basis matrices:

$$B_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B_4 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B_5 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B_6 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Transformation matrix:

$$\exp\left(\sum_{i=1}^{6} \theta_{i} B_{i}\right) = \sum_{k=0}^{\infty} \frac{\left[\sum_{i=1}^{6} \theta_{i} B_{i}\right]^{k}}{k!}$$

Why matrix exponentials?

- Consider gradient descent on rotation matrix with these two options:
 - Option 1: Update each element of rotation matrix:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = \delta \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

 Option 2: Update parameter and use matrix exponential (use closed form expression here) when necessary

$$\theta = \delta \theta$$

Fixed Image $\mathsf{MINE}_{\bigoplus}(\mathsf{F},\,\mathsf{G}_{\mathsf{v}}(\mathsf{M}))$ Moving Image Backpropagate and update Geometric Warping (Gv(M)) Matrix Exponential

So far...

More problems?

- Medical/Microscopy images often are extremely high resolution. So gradient descent can be extremely slow.
- Optimization for neural networks is non-convex.

Solution?

Gaussian Pyramids

Image resolution increases going from the top to the bottom of the pyramid

An example image pyramid Picture source: MICCAI 2010 tutorial

Source: https://en.wikipedia.org/wiki/Pyramid_(image_processing)

- Can we do better?
 - What if we did simultaneous optimization for all levels?
- Each level of optimization is for different images. So MI between them changes as well. Solution?
 - A single MINE can be trained for all of these!
- How?
 - Mini-batches can be constructed by sampling from all levels

What about the loss?

- Since we are doing simultaneous optimization, with modern deep learning frameworks, it's very easy to combine the loss from each level and perform joint optimization.
- For eg, for just 1 level:
 - \circ Loss = MI(F, $G_{V}(M)$)
- For 4 levels:
 - $\qquad \text{Loss} = (\frac{1}{4}) * [\text{MI}(\text{F}_{1}, \text{G}_{v}(\text{M}_{1})) + \text{MI}(\text{F}_{2}, \text{G}_{v}(\text{M}_{2})) + \text{MI}(\text{F}_{3}, \text{G}_{v}(\text{M}_{3})) + \text{MI}(\text{F}_{4}, \text{G}_{v}(\text{M}_{4}))]$

Evaluation

- Public datasets
- Available ground truth

Results

TABLE I: NAED for FIRE dataset along with paired t-test significance values

NAED (Mean ± STD)	p-value
0.0048 ± 0.014	-
0.0194 ± 0.033	1.3e-04
0.0198 ± 0.034	5.4e-05
0.0228 ± 0.032	1.7e-08
0.0311 ± 0.046	4.5e-07
0.0441 ± 0.028	1.4e-27
0.0641 ± 0.094	3.5e-03
	0.0048 ± 0.014 0.0194 ± 0.033 0.0198 ± 0.034 0.0228 ± 0.032 0.0311 ± 0.046 0.0441 ± 0.028

TABLE II: NAED for ANHIR dataset along with paired t-test significance values

Algorithm	NAED (Mean ± STD)	p-value
DRMIME	0.0384 ± 0.087	-
NCC	0.0461 ± 0.084	7.0e-04
MMI	0.0490 ± 0.082	6.2e-05
MSE	0.0641 ± 0.094	5.5e-14
NMI	0.0765 ± 0.090	3.0e-31
AMI	0.0769 ± 0.090	3.7e-30
JHMI	0.0827 ± 0.100	8.3e-21

Source: https://projects.ics.forth.gr/cvrl/fire/

Thank you!