AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

Claim 1 (Currently amended): A high-frequency heating apparatus for driving a magnetron, comprising:

a DC power supply including an AC power supply, a rectifier circuit for rectifying a voltage of the AC power supply, and a smoothing capacitor for smoothing an output voltage of the rectifier circuit;

a series circuit including two semiconductor switching devices, the series circuit being connected in parallel to the DC power supply;

a resonance circuit having a primary winding of a leakage transformer and a capacitor, which are connected to each other, one end of the resonance circuit being connected to a middle point of the series circuit while the other end of the resonance circuit is connected to one end of the DC power supply;

a drive unit for driving each of the semiconductor switching devices alternatively or drives the semiconductor switching devices so as to provide a period in which the semiconductor switching devices are turned off concurrently;

Appln. No. 10/599,431 Amendment dated March 27, 2012 Reply to Office Action dated December 27, 2011

a rectifier unit connected to a secondary winding of the leakage transformer;

a magnetron connected to the rectifier unit;

a dead time generation circuit that generates a dead time control signal for turning off the semiconductor switching devices concurrently;

an error signal generation circuit generating an error signal based on a difference between an input current of the AC power supply and the reference current; and

a frequency-modulated signal generation circuit that outputs to the dead time generation circuit a frequency-modulated signal obtained by controlling an amplitude of a rectified voltage/rectified current signal output from the DC power supply based on the error signal,

wherein the drive unit limits the lowest frequency of a frequency with which the semiconductor switching devices are driven, so that the lowest frequency is set to be high at the beginning of operation of the high frequency heating apparatus, and the lowest frequency is set to be lower gradually thereafter.

Claims 2-4 (Canceled)

Claim 5 (Previously presented): The high-frequency heating apparatus according to claim 32, wherein the lowest frequency limiting circuit has a capacitor, the capacitor is charged during suspension of the high-frequency heating apparatus, and as soon as the high-frequency heating apparatus begins to operate, a voltage of the capacitor is supplied to the dead time generation circuit, and charges accumulated in the capacitor are discharged.

Claim 6 (Previously presented): The high-frequency heating apparatus according to claim 1, wherein the dead time generation circuit generates a fixed or marginally increased dead time regardless of a switching frequency.

Claim 7 (Previously presented): The high-frequency heating apparatus according to claim 1, wherein the dead time generation circuit generates a dead time increased in accordance with increase of a switching frequency.

Claim 8 (Original): The high-frequency heating apparatus according to claim 7, wherein the dead time generation circuit

Appln. No. 10/599,431 Amendment dated March 27, 2012 Reply to Office Action dated December 27, 2011

fixes or marginally increases the dead time at a switching frequency not higher than a predetermined frequency.

Claim 9 (Previously presented): The high-frequency heating apparatus according to claim 7, wherein the dead time generation circuit suddenly increases the dead time at a switching frequency not lower than a predetermined frequency.

Claims 10-12 (Canceled)

Claim 13 (Previously presented): The high-frequency heating apparatus according to claim 1, wherein the dead time generation circuit generates a dead time based on positive and negative offset voltages each varying with a first inclination in proportion to increase of a switching frequency and varying with a second inclination when the switching frequency reaches a predetermined frequency or higher.

Claim 14 (Previously presented): The high-frequency heating apparatus according to claim 1, wherein the dead time generation circuit includes a VCC power supply, a duty control power supply, a first current varying in proportion to a switching frequency, a second current flowing at a predetermined

frequency at beginning and varying in proportion to the frequency, a third current obtaining by multiplying a combining current of the two currents by a predetermined coefficient, and a upper and lower potential generation unit for generating a set of upper and potentials obtained by adding positive and negative offset voltages proportional to the third current, to the duty control power supply respectively, and a dead time is generated based on the set of upper and lower potentials.

Claims 15-31 (Canceled)

Claim 32 (Previously presented): The high-frequency heating apparatus according to claim 1, further comprising:

another series circuit including two semiconductor devices, wherein each of the series circuit and the another series circuit being connected in parallel to the DC power supply,

wherein the other end of the resonance circuit is connected to the one end of the DC power supply through a middle point of the another series circuit; and

wherein the drive unit drives the semiconductor switching devices of the another series circuit alternatively or drives the semiconductor switching devices of the another series circuit so as to provide a period in which the semiconductor switching devices of the another series circuit are turned off concurrently.

Claim 33 (Previously presented): The high-frequency heating apparatus according to claim 1, further comprising:

another series circuit including two capacitors, the series circuit and the another series circuit being connected in parallel to the DC power supply,

wherein the other end of the resonance circuit is connected to the one end of the DC power supply through a middle point of the another series circuit.

Claim 34 (Currently amended): The high-frequency heating apparatus according to claim 1, further comprising wherein:

an error signal generation circuit for generating an error signal from a difference between an input current of the AC power supply and[[all the reference current; and

[[a]] the frequency-modulated signal generation circuit for exerceting acorrects the rectified voltage/rectified current obtained by rectifying the AC power supply, based on an output (the error signal[[] of]] from the error signal generation circuit, wherein an output of the frequency-modulated signal

generation circuit is supplied to the dead time generation
eircuit, the high-frequency heating apparatus further comprising:

[[wherein]]a lowest frequency limiting circuit[[is]] inserted between the frequency-modulated signal generation circuit and the dead time generation circuit, wherein the lowest frequency limiting circuit supplies a limited frequency to the dead time generation circuit based on the output signal of the frequency-modulated signal generation circuit so that a set frequency of the lowest frequency limiting circuit is set to be higher than the output of the frequency-modulated signal generation circuit at the beginning of operation of aforementioned high-frequency heating apparatus, and accordance with time having passed since the beginning of operation, the limited frequency is lowered gradually, while with lowering of the limited frequency, a signal higher in switching frequency of the limited frequency and the output signal of the frequency-modulated signal generation circuit is selected as a signal to be supplied to the dead time generation circuit in accordance with time having passed, so that the selected signal is changed over gradually to the output signal of the frequency-modulated signal generation circuit.

Claim 35 (Previously presented): The high-frequency heating apparatus according to claim 8, wherein a fixed or marginally increased value of the dead time at a switching frequency not higher than a predetermined frequency or a suddenly increased value of the dead time at a switching frequency not lower than a predetermined frequency is variable.

Claim 36 (Previously presented): The high-frequency heating apparatus according to claim 8, wherein a value of the predetermined switching frequency is variable.

Claim 37 (Previously presented): The high-frequency heating apparatus according to claim 1, wherein the dead time generation circuit increases a dead time stepwise with increase of a switching frequency.

Claim 38 (Previously presented): The high-frequency heating apparatus according to claim 14, wherein input power or input current control is performed by changing at least one of a voltage of the duty control power supply and the switching frequency.