PadhAl: Backpropagation - the full version

One Fourth Labs

Computing derivatives w.r.t Output Layer

Part 1

The first derivative in the chain

1. What we are actually interested in is:

a.
$$\frac{\partial L(\theta)}{\partial a_{Ii}} = \frac{\partial (-\log \hat{y}_l)}{\partial a_{Ii}}$$

- b. Where L = layer number, i = neuron (from 1 to k), I = index of correct output
- c. Here, we use the cross entropy loss function
- d. In the output layer L, assume we have neurons a_{L1} , a_{L2} ... a_{Lk}
- e. The output layer L involves applying the softmax function the all the neurons
- f. $\hat{y}_l = \frac{e^{a_{Ll}}}{\sum_i e^{a_{Li}}}$ again, (I refers to the index of the correct output neuron)
- g. Thus, $\hat{\mathcal{Y}}_l$ depends on all the neurons' outputs as they all appear in the denominator, thereby making the derivative non-zero for all the output neurons

2.
$$\frac{\partial L(\theta)}{\partial a_{Li}} = \frac{\partial (-\log \hat{y}_l)}{\partial a_{Li}} = \frac{\partial (-\log \hat{y}_l)}{\partial \hat{y}_l} \frac{\partial \hat{y}_l}{\partial a_{Li}}$$

- 3. From the previous points, we know that \hat{y}_l depends on a_{Li}
- 4. The first part of the derivative is fairly straightforward (of the form $\frac{\partial \log x}{\partial x}$)

5.
$$\frac{\partial (-\log \hat{y}_l)}{\partial \hat{y}_l} = \frac{-1}{\hat{y}_l}$$