Data taken from 50 Ramen Shops in Kyoto, Japan

Prices of Ramen Bowl

Let's take an arbitrary value from Mid-Point column a = 750

As we already know that class interval is h = 100

So, we can change the origin and scale of data as follows

$$u_i = \frac{x_i - a}{h} = \frac{x_i - 750}{100}$$

Lower Class Limit	Upper Class Limit	Frequency	$\mathbf{Mid\text{-}Point}\ (x_i)$	$u_i = \frac{x_i - 750}{100}$
500	600	4	550	-2
600	700	13	650	-1
700	800	18	750	0
800	900	12	850	1
900	1000	3	950	2
		50		

u_i	u_i^2	u_i^3	u_i^4
-2	4	-8	16
-1	1	-1	1
0	0	0	0
1	1	1	1
2	4	8	16

$f_i u_i$	$f_i u_i^2$	$f_i u_i^3$	$f_i u_i^4$
-8	16	-32	64
-13	13	-13	13
0	0	0	0
12	12	12	12
6	12	24	48
-3	53	-9	137

Moments about Zero (After Changing Scale of a group data with equal class interval h)

$$m'_r = \frac{\sum_{i=1}^n f_i u_i^r}{\sum_{i=1}^n f_i} \times (h)^r$$

$$m'_1 = \frac{\sum_{i=1}^n f_i u_i}{\sum_{i=1}^n f_i} \times h = \frac{-3}{50} \times 100 = -6$$

$$m'_2 = \frac{\sum_{i=1}^n f_i u_i^2}{\sum_{i=1}^n f_i} \times h^2 = \frac{53}{50} \times (100)^2 = 10600$$

$$m'_3 = \frac{\sum_{i=1}^n f_i u_i^3}{\sum_{i=1}^n f_i} \times h^3 = \frac{-9}{50} \times (100)^3 = -180000$$

$$m'_4 = \frac{\sum_{i=1}^n f_i u_i^4}{\sum_{i=1}^n f_i} \times h^4 = \frac{137}{50} \times (100)^4 = 274000000$$

Moments about Mean

$$m_1 = m'_1 - m'_1 = 0$$

$$m_2 = m'_2 - (m'_1)^2$$

$$m_3 = m'_3 - 3m'_2m'_1 + 2(m'_1)^3$$

$$m_4 = m'_4 - 4m'_3m'_1 + 6m'_2(m'_1)^2 - 3(m'_1)^4$$

Calculations:

$$m_1 = m_1' - m_1' = 0$$

$$m_1 = -6 - (-6) = 0$$

$$m_2 = m_2' - (m_1')^2$$

$$m_2 = 10600 - (-6)^2 = 10564$$

$$m_3 = m_3' - 3m_2'm_1' + 2(m_1')^3$$

$$m_3 = -180000 - 3(10600)(-6) + 2(-6)^3 = 10368$$

$$m_4 = m'_4 - 4m'_3m'_1 + 6m'_2(m'_1)^2 - 3(m'_1)^4$$

$$m_4 = 274000000 - 4(-180000)(-6) + 6(10600)(-6)^2 - 3(-6)^4$$

$$m_4 = 271965712$$