Subset-Sum and Intro to Network Flow

1 Subset-Sum

SUBSET-SUM (SS): Given $a_1, a_2, \ldots, a_n \in \mathbb{N}$ and a target integer b, is there a set $S \subseteq \{1, 2, \ldots n\}$ with $\sum_{i \in S} a_i = b$?

Theorem 1. SS is NP-complete.

Proof. A two-part proof: (1) $SS \in NP$, (2) SS is NP-hard.

(1). $SS \in \mathbf{NP}$

Certificate: A proposed set S.

Certifier: A polytime algorithm that checks $\sum_{i \in S} a_i = b$ and that $S \subseteq \{1, 2, \dots n\}$.

(2). SS is NP-hard

We reduce from a known **NP**-hard problem (X3C) to SS.

Theorem 2. $X3C \leq p SS$.

Proof. The input to the reduction is the set X with |X| = 3m and $T_1, T_2, \ldots, T_n \subseteq X$ with $|T_i| = 3$. The output is the natural numbers a_1, a_2, \ldots, a_k and b.

Observe that the sets T_j are representable as bitstrings. We put X in an arbitrary order $X = \{X_1, X_2, \dots, X_{3m}\}$; then T_j is a 3m-bit number, where there are three ones in the positions of X_i which are contained in T_j and zeroes everywhere else.

Let a_j be the number corresponding to the bitstring representation of T_j . If $T_i \cap T_j = \emptyset$, then $a_i + a_j$ has six ones exactly in the positions $T_i \cup T_j$. However, when $T_i \cap T_j \neq \emptyset$, there is carryover between the bits, which invalidates our mapping from sets to numbers. So, we read the bitstrings with a large enough base such that carryover can never happen (i.e., base n + 1).

Thus, we set a_j to the bitstring describing T_j read in base n+1, $b=11...1_{n+1}=\sum_{i=0}^{3m-1}(n+1)^i=\frac{1}{n}(n+1)^{3m}-1$, and k=n. This reduction produces exponentially large numbers in b, but only polynomially many bits, so it runs in polynomial time. It satisfies:

(1). If X3C has a solution S, then SS also has a solution.

(2). If SS has a solution S with
$$\sum_{j \in S} a_j = 11 \dots 1_{n+1}$$
, then X3C also has a solution.

Since we proved that SS is both in NP and NP-hard, SS must be NP-complete. In an earlier lecture, we saw SS $\leq p$ KNAPSACK, so we also know that KNAPSACK is NP-complete.

2 Partition

2.1 Partition

PARTITION (PR): Given $a_1, a_2, \ldots, a_n \in \mathbb{N}$, is there a set $S \subseteq \{1, 2, \ldots n\}$ with $\sum_{i \in S} a_i = \frac{1}{2} \sum_i a_i$?

Theorem 3. PR is NP-complete.

Proof. A two-part proof: (1) $PR \in \mathbf{NP}$, (2) PR is \mathbf{NP} -hard.

(1). $PR \in \mathbf{NP}$

Certificate: A proposed set S.

Certifier: A polytime algorithm which checks that all elements exist and $\sum_{i \in S} a_i = \frac{1}{2} \sum_i a_i$.

(2). PR is **NP**-hard

We reduce from a known NP-hard problem (SS) to PR.

Theorem 4. $SS \leq p PR$

Proof. The input to the reduction is $a_1, a_2, \ldots, a_n \in \mathbb{N}$ and b. The output is a'_1, a'_2, \ldots, a'_m . Without loss of generality, we say that $b \leq \frac{1}{2} \sum_i a_i$.

Let m = n + 2 and $a'_i = a_i$ for all $i \le n$. With the remaining two a'_i elements, we will construct two large elements such that they cannot be placed in the same set, and they balance the sets to equivalent sizes. Let $W = \sum_i a_i$. Then $a'_{n+1} = 2W + b$, and $a'_{n+2} = 3W - b$.

This reduction is polytime and satisfies:

(1). If there exists an S such that $\sum_{i \in S} a_i = b$, then there exists a set S' such that $\sum_{i \in S} a'_i = \frac{1}{2} \sum_j a'_j$.

Add a'_{n+2} to S. Then, $\sum_{i \in S} a'_i + a'_{n+2} = b + 3W - b = 3W = \frac{1}{2} \sum_j a_j$.

(2). If there exists a set S' such that $\sum_{i \in S} a'_i = \frac{1}{2} \sum_j a'_j$, then there exists an S such that $\sum_{i \in S} a_i = b$.

We know that S' and \bar{S}' contain exactly one of a'_{n+1} and a'_{n+2} . Say that $a'_{n+2} \in S'$; then $\sum_{i \in S, i \neq n+2} a'_i = 3W - (3W - b) = b$, so S' without a'_{n+2} solves SS.

Since we proved that PR is both in **NP** and **NP**-hard, PR must be **NP**-complete.

2.2 An Incorrect Reduction to Graph Partition

GRAPH PARTITION (GPR): Given a graph \mathcal{G} , is it possible to divide V into S, \bar{S} such that $|S| = \frac{n}{2}$ and there are no edges between (S, \bar{S}) ?

Incorrect method to show that $PR \leq p$ GPR: Given a_1, a_2, \ldots, a_m , then for each a_i , construct a clique of a_i nodes. Then, there will always be such an equal, and because every component is a clique, there will be no edges in the cut. While the logic here is correct, the algorithm is not polytime. Instead, it is pseudo-polynomial, because building the m cliques is equivalent to writing every a_i in unary.

3 Network Flow

3.1 Definition of flow

Given a network $\mathcal{G} = (V, E)$ of links (pipes, streets, etc). Each link has a capacity $c_e \geq 0$ of how much flow it can transport per unit time at steady state. Find the maximum amount that can be transported from a source s to a sink t in steady state per unit time. For convenience of definition, we assume no incoming edges to s, or outgoing edges from t.

A flow F assigns an amount of flow f_e to each edge e. The requirements of a flow are:

- (1). Non-negative: $f_e \geq 0 \ \forall e$
- (2). Capacity constraint: $f_e \leq c_e \ \forall e$
- (3). Conservation constraint: $\forall v \neq s, t : \sum_{e \text{ into } v} f_e = \sum_{e \text{ out of } v} f_e$. "What goes in must come out."

The flow value $v(F) = \sum_{e \text{ out of } s} f_e$. Equivalently, $v(F) = \sum_{e \text{ into } t} f_e$.

3.2 Max flow

MAX-FLOW: Given \mathcal{G} , cost vector \vec{c} , and $s, t \in V$, find F^* from s to t maximizing v(F). Note: F^* exists by a compactness and continuity argument.

Theorem 5. There exists a polynomial time algorithm to find F^* ; further, if all $c_e \in \mathbb{N}$, then all $f_e \in \mathbb{N}$.

3.3 Min cut

MIN-CUT: Given \mathcal{G} , cost vector \vec{c} , and $s, t \in V$, find a cut (S, \bar{S}) of V with $s \in S$, $t \in \bar{S}$ that minimizes $C(S, \bar{S}) = \sum_{e=(u,v) \text{ across } (S,\bar{S})} c_e$. In other words, we are looking for the biggest bottleneck across a cut.

Theorem 6. A minimum (s,t) cut with respect to c_e can be found in polynomial time.

Theorem 7. The cost of the minimum (s,t) cut with respect to c_e is equal to the maximum (s,t) flow with capacities c_e .

Min cut is technically an upper bound to max flow, but next class we will prove that they elegantly equalize.