Cálculo Teste 1

Número

JUSTIFIQUE CUIDADOSAMENTE TODAS AS SUAS RESPOSTAS.

Grupo I (15 valores)

1. (2 valores)

Mostre que: $\forall x \in [-1, 1]$

 $\arcsin x + \arccos x = \frac{\pi}{2}$ Seja f(x) = arcsenz + arccos x, $\forall x \in [-1, 1]$. Pretende-se mastrar que f(x) é constante (= 1/2)! Ora $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (-\frac{1}{\sqrt{1-x^2}}) = 0$, istoé $f'(x) = (arcseux + arccosx)' = \frac{1}{\sqrt{1-x^2}} + (arccosx)' = \frac{1}{\sqrt{1-$ 2. (2 valores)

Estude a continuidade da função $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por

 $f(x) = \begin{cases} x^3, & x < -1\\ \frac{4x-1}{7-x}, & -1 \le x < 7\\ 5x+2, & x \ge 7 \end{cases}$ 1 função f e' continua eu]-∞, -1 [porque e' polinomial, eu]-1,7 [porque é racional mas x ≠ 7 re eu]7,+∞ [porque neste intervalo, também é polinomial. Para x = -1 tene-se lim $f(x) = \lim_{x \to -1} x^3 = -1$ e lim $f(x) = \lim_{x \to -1} \frac{4x-1}{x-1} = \frac{4(-1)-1}{7-x} = -\frac{5}{8}$, isto e', não $x \to -1$ existe limit(x). Por consequente, f é des continua em-1 Para k=7 tem-se lim $f(x) = \lim_{x \to +7} \frac{4x-1}{7-k}$ que não $x \to +7$ existe (e' un infinitamente grande). Portanto, f descontinua eu 7 f e' continua eve [R] \ -1,7}

(2 valores)

Defina, se existir, (ou mostre que não existe) uma reta tangente ao gráfico da função $f: \mathbb{R} \longrightarrow \mathbb{R}$, no ponto de abcissa x=0, sabendo que

no ponto de abcissa
$$x = 0$$
, sabendo que

$$f(x) = \begin{cases} x^3 + x, & x \le 0 \\ x^2 + x, & x > 0 \end{cases}$$
A retar tangente e' de fruida por $y - f(0) = f'(0)(x - 0)$

$$f'(0) = \begin{cases} x^3 + x, & x \le 0 \\ x^2 + x, & x > 0 \end{cases}$$

$$f'(0) = \begin{cases} x - 0 \end{cases} = \begin{cases} x - 0 \end{cases} = \begin{cases} x - 0 \end{cases}$$

$$f'(0) = \begin{cases} x - 0 \end{cases} = \begin{cases} x - 0 \end{cases}$$

$$f'(0) = \begin{cases} x - 0 \end{cases} = \begin{cases} x - 0 \end{cases}$$

$$f'(0) = \begin{cases} x -$$

4. (2 valores)

Determine

$$\frac{e^{x} + e^{-x} - 2}{1 - \cos(2x)} = \frac{0}{0} \text{ (indeterminação)}$$

Thu
$$\frac{e^{x} + e^{-x} - 2}{1 - \cos(2x)} = \frac{0}{0} \text{ (indeterminação)}$$

Thu
$$\frac{e^{x} + e^{-x} - 2}{1 - \cos(2x)} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0}{0} \text{ (indeterminação)}$$

$$\frac{e^{x} - e^{-x}}{2 - e^{-x}} = \frac{0$$

5. (2 valores)

Seja f uma função, real de variável real, definida por $f(x) = 1 + 2x + 3x^2 + 4x^3$.

Nestas condições, defina o polinómio de Taylor de ordem 2 em torno do ponto a=1 de f.

$$P_{2,1}(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2}(x-1)^{2}$$

$$P_{2,1}(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2}(x-1)^{2}$$

$$P_{2,1}(x) = 1 + 2x + 3x^{2} + 4x^{3} + 4x^{3} + 4x^{3} + 4x^{2} +$$

Defina a função
$$f$$
, real de domínio \mathbb{R} , sabendo que $f'(x)=x^2+1$ e $f(1)=2$.

A familia de fences primitiras de
$$f e'$$

$$F(n) = \int n^2 + 1 \, dn + 6 = \frac{n^3}{3} + n + 6, 6 \, dn$$
Rekade. se que $f(i) = a = \frac{n^3}{3} + n + 6 = 2 \Rightarrow 6 = 2/3$
Assim, $f(n) = \frac{n^3}{3} + n + 2/3$.

7. (3 valores)

Calcule as seguintes primitivas

(a)
$$\int \operatorname{ch} x \operatorname{sh}^2 x \, dx$$
 (b) $\int \frac{e^x}{1 + e^{2x}} \, dx$ (c) $\int x \operatorname{sen}(2x) \, dx$

a) Usando a ugua de primitiva
$$S$$
 imadia T $U'U''dn = U''' + B$
 $V \in M$

$$S = Sh^2 n dn = \frac{8h^3 n}{3} + B, B \in \mathbb{R} \text{ pais } (8h n)' = ch n.$$

$$\int n \, sen(zn) dn = -\frac{\pi}{2} \, cop(2\pi) + \frac{1}{2} \int cop(2\pi) dx + 6$$

$$= -\frac{\pi}{2} \, cop(2\pi) + \frac{1}{4} \, sen(2\pi) \, dn + 6 \, , \, GeR$$

Grupo II (5 valores)

Apresente um exemplo ou justifique porque não existe a entidade descrita.

1. Um conjunto A cujo conjunto de pontos de acumulação seja o conjunto vazio.

Por exemplo

Tem- se A'=0 pois exist pelo menos umo Viginhence de cade um dos elementos de d que no contin outro elemento

2. Uma função $f:\mathbb{R} \longrightarrow \mathbb{R}$ (basta uma representação gráfica) tal que

3. Uma função real de domínio \mathbb{R} e que é descontínua em todos os pontos.

You exemplo

4. Uma função f real de domínio $\mathbb R$ tal que

 $\forall x \neq -1, f'(x)$ existe, e f'(-1) não existe.

$$f'(-1)$$
 não existe

Par exemplo fin = 1/11 pois as derivadus laterais em n=-1 so diferrite.

5. Uma função real de domínio \mathbb{R} que não é primitivável.

uma vez que não exist restrumo feis a agra douvade rija g.

	x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$\operatorname{sen}(a+b) = \operatorname{sen} a \cos b + \cos a \operatorname{sen} b,$	$\cos(a+b) = \cos a \cos b -$
se	en x	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1		
co	os x	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0		
sen a se	n b				•			