

SATURDAY, OCTOBER 19, 2019

Report by
Nupur Murthy
Randy Payano
Hekwang Lhi
Victor Dituro

Columbia University
Fu Foundation School of Engineering and
Applied Science

Data Analytics Bootcamp

Executive Summary

The objective of our project is to obtain datasets referencing global country information and global city information for cities with more than one million inhabitants.

DATA SOURCES

We extracted our data from the World Data site. We found a dataset which had a variety of statistics on a national level as well as a dataset with statistics on megacities across the globe. We downloaded the csv files from this url: https://www.worlddata.info/downloads/ and cleaned the data on Python using pandas. We verified the credibility of our data by creating graphs using matplotlib. The specific datasets we used were *countries.csv* and *megacities.csv* which can be found at the URL mentioned above.

DATA DICTIONARY

Countries: a dataset of all the countries defined by the ISO standards committee

Field Name	Туре	Description	Example
country_name	CHAR(50)	Name of Country	Argentina
country_code	CHAR(2)	ISO 3166-2 2 letter Country Code	AR
continent	CHAR(20)	Geographic Continent of Country	South America
capital	CHAR(30)	Capital City of Country	Buenos Aires
country_population	INTEGER	Population of Country in 000s	42,228,429
area	INTEGER	Surface area of Country in km²	2,780,400
coastline	INTEGER	Coastline of Country in km	4,989
government	CHAR(90)	Form of Government	Presidential
currency	CHAR(40)	Currency Name	Argentine Peso
birthrate	FLOAT(3)	Birthrate (per 1000 inhabitants/year)	17.2
deathrate	FLOAT(3)	Deathrate (per 1000 inhabitants/year)	7.6

Megacities: a dataset containing the cities of each country with a population greater than 1 million

Field Name	Туре	Description	Example
city_name	CHAR(30)	Name of City	Buenos Aires
country_code	CHAR(2)	ISO 3166-2 2 letter Country Code	Argentina
city_population	INTEGER	Population of Country in 000s	2,890,200
latitude	FLOAT(10)	Latitude of City	-34.61315
longitude	FLOAT(10)	Longitude of City	-58.37723
region	CHAR(40)	Region of City location	Buenos Aires F.D.

GRAPHS

This dataset shows us that our country population data is consistent. For example, it shows that China and India have the highest populations and USA has the third highest-which is true.

Countries

This dataset is inconsistent. As shown in the graph, the data claims that one city has a population of over 60,000,000 people. The data also shows that another city has a negative population. Both these statistics are clearly false. We made sure to rid of any data which was inconsistent so we are able to make accurate observations in future analysis.

Population

ER DIAGRAM

As shown below, there is a relationship between the datasets by country_code.

TABLE SCHEMA

```
Create table countries_transformed (
2
   Country_name varchar(50),
   Country_code char(2) Primary Key,
3
   Continent varchar(20),
   Capital varchar(30),
   Country_population int,
    Area int,
7
8
   Coastline int,
9
   Government varchar(90),
10 Currency varchar(40),
11 Birthrate float(3),
12
    Deathrate float(3)
13
    );
14
15
    select * from countries_transformed
16
17
    Create table megacities_transformed (
   city_name varchar(30),
18
19
   country_code char(2),
20 Foreign Key (country_code) REFERENCES countries_transformed(country_code),
21 city_population int,
22 latitude float(10),
23 longitude float(10),
   region varchar(40)
24
25
    );
27
   select * from megacities_transformed
```

QUERIES

```
27
     --All the cities in China--
28
     Select city_name
     from megacities_transformed m, countries_transformed c
29
     where c.country_code='CN' and c.country_code = m.country_code
31
32
     --All the cities with a population greater than 4,000,000 people in ascending order--
     Select Distinct city population, country name, city name
34
     from countries_transformed c, megacities_transformed m
     where city_population < 4000000 and c.country_code = m.country_code
     order by city_population ASC
37
     --All the cities in Asia--
     Select city name, country name
     from megacities_transformed m, countries_transformed c
40
     where continent='Asia' and m.country_code = c.country_code
41
42
43
     -- Most populous city in each country--
44
     Select m.country_code, city_name, city_population
45
     FROM megacities_transformed m, countries_transformed c
     Where city_name LIKE 'C%' and city_population > 2000000
46
     group by m.country_code, city_name, city_population
47
     order by city_population DESC
48
49
     --Cities in the South-eastern hemisphere--
51
     Select longitude, latitude, city_name, country_name
52
     From megacities_transformed, countries_transformed
     Where latitude < 0 and longitude > 0 and megacities_transformed.country_code = countries_transformed.country_code
```