Diagnosing Machine Learning Models

Model life cycle

Evaluation metrics

Classification problems

Attributes

tongue_length_cm = 100

ear floppiness=10

nose_cat=very_wet

Prediction

Dog

Binary classification

Predicted	Expected	Score
Cat	Cat	~
Dog	Cat	×
Dog	Dog	~
Cat	Dog	×

Confusion Matrix

Confusion matrix

	Expected	
Predicted	True Positive Eg. Predicts a pregnant woman as pregnant.	False Positive (Type I Error) Eg. Predicts a non-pregnant woman as pregnant.
Pred	False Negative (Type II Error) Eg. Predicts a pregnant woman as non-pregnant.	True Negative Eg. Predicts a non-pregnant woman as not pregnant.

Classification metrics

Number of correct prediction in relation to the total number of predictions

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Expected	
True Positives 40	False Positives 20
False Negatives	True Negatives 30

$$\frac{40+30}{40+30+20+10} = 0.7$$

Classification metrics

Recall- How good our model is at *retrieving* a specific class

$$recall = \frac{TP}{TP + FN}$$

Precision- How particular our model can be with regards to a specific class

$$precision = \frac{TP}{TP+FP}$$

F1 score- Weighted average of recall and precision

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Precision-recall trade-off

Recall

VS

Precision

Regression problems

Regression metrics

Regression metrics

Mean Absolute Error- Average of the *absolute* differences between the predicted and expected values

$$MAE = \frac{SUM(predicted\ values-expected\ values)}{Total\ number\ of\ samples}$$

Lower values indicate a better model

Regression metrics

Root Mean Square Error- Square root of the average of the square differences

$$\sqrt{\frac{SUM(predicted\ values-expected\ values)2}{Total\ number\ of\ samples}}$$

Lower values indicate a better model