GEOMETRIA E ALGEBRA LINEARE - ESERCIZI VI

1. Vettore delle coordinate

Esercizio 1.1 Trovare il vettore $[\mathbf{v}]_{\mathcal{B}}$ delle coordinate di \mathbf{v} rispetto alla base \mathcal{B} .

(1)
$$\mathbf{v} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \in \mathbb{R}^2, \, \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\},$$

(2)
$$\mathbf{v} = (1, 2, 3) \in \mathbb{R}^3$$
, $\mathcal{B} = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$,

(3)
$$\mathbf{v} = (t+1)^2 \in \mathbb{R}[t]_{\leq 2}, \, \mathcal{B} = \{t^2 + t + 1, t^2 + t, t\},\$$

$$(4) \mathbf{v} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \operatorname{Mat}(2, 2), \, \mathcal{B} = \left\{ \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\},$$

2. Matrice Rappresentativa

Esercizio 2.1 Sia $L:\mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione lineare data da

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ z-y \end{pmatrix} ,$$

scrivere la matrice $\mathcal{M}_T^{\mathcal{B},\mathcal{C}}$ associata a T rispetto alle seguenti basi:

$$\mathcal{B} = \left\{ \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \right\}, \quad \mathcal{C} = \left\{ \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}.$$

Esercizio 2.2 Sia $L: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da

$$L\begin{pmatrix}1\\0\\1\end{pmatrix} = \begin{pmatrix}3\\1\\2\end{pmatrix}, \quad L\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}0\\1\\1\end{pmatrix}, \quad L\begin{pmatrix}2\\0\\0\end{pmatrix} = \begin{pmatrix}6\\4\\6\end{pmatrix}.$$

- Determinare la matrice $\mathcal{M}_L^{\mathcal{E},\mathcal{E}}$ associata a L rispetto alla base canonica \mathcal{E} .
 Determinare una base e la dimensione di immagine e nucleo di L.
- ullet Determinare se L è iniettiva o suriettiva.
- Determinare per quali valori di $k \in \mathbb{R}$ il vettore $\mathbf{v}_k = \begin{pmatrix} k+1\\0\\k \end{pmatrix}$ appartiene a $\operatorname{Im}(L)$.

Esercizio 2.3 [Esercizio del tema d'esame del 21/06/2023] Considerare l'applicazione lineare $L: \mathbb{R}^2 \to \mathbb{R}^2$ $\mathbb{R}[t]_{\leq 1}$ definita da

$$L\begin{pmatrix} a \\ b \end{pmatrix} = at + a + b,$$

scrivere la matrice $\mathcal{M}_{L}^{\mathcal{B},\mathcal{C}}$ che rappresenta L rispetto alle basi

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \quad \mathbf{e} \quad \mathcal{C} = \{1, t\},$$

Esercizio 2.4 [Esercizio del tema d'esame del 8/09/2023] Sia $\mathcal{L}: \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione lineare definita da

$$\mathcal{L}\left(\begin{pmatrix}1\\1\\1\\1\end{pmatrix}\right) = \begin{pmatrix}1\\0\\-1\\1\end{pmatrix}, \quad \mathcal{L}\left(\begin{pmatrix}1\\0\\0\\0\end{pmatrix}\right) = \begin{pmatrix}0\\1\\0\\0\end{pmatrix}, \quad \mathcal{L}\left(\begin{pmatrix}0\\0\\1\\0\end{pmatrix}\right) = \begin{pmatrix}0\\0\\0\\0\end{pmatrix}, \quad \mathcal{L}\left(\begin{pmatrix}1\\0\\0\\0\\1\end{pmatrix}\right) = \begin{pmatrix}0\\0\\0\\0\end{pmatrix}.$$

• Dimostrare che la matrice rappresentativa di \mathcal{L} rispetto alle basi canoniche è

$$\mathcal{M}_{\mathcal{L}}^{\mathcal{E},\mathcal{E}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

- Determinare una base per $Ker(\mathcal{L})$ e una base per $Im(\mathcal{L})$.
- Determinare una base per $Ker(\mathcal{L}) \cap Im(\mathcal{L})$ e una base per $Ker(\mathcal{L}) + Im(\mathcal{L})$.

Esercizio 2.5 [Esercizio del tema d'esame del 7/02/2024] Sia $k \in \mathbb{R}$ un parametro. Considerare l'applicazione lineare $L_k : \mathbb{R}[x]_{\leq 1} \to \mathbb{R}^2$ definita da

$$L_k(p(x)) = \begin{pmatrix} p(2) \\ p(k) - p(0) \end{pmatrix}.$$

- Determinare, al variare di $k \in \mathbb{R}$, una base di $\text{Ker}(L_k)$ e $\text{Im}(L_k)$. Esistono valori di $k \in \mathbb{R}$ per cui L_k è un isomorfismo?
- \bullet Determinare la matrice rappresentativa di L_k rispetto alle basi

$$\mathcal{B} = \{x+1, x\} \quad e \quad \mathcal{C} = \left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix} \right\}.$$