BIẾN & CÁC PHÉP TOÁN

Name: Nguyễn Chí Hiếu

Date: 2020

» NỘI DUNG

1. Biến và Hằng số

2. Các kiểu dữ liêu cơ sở

3. Biểu thức và Các phép toán

Biến (variable)

Là tên đại diện cho một vùng trong bộ nhớ máy tính. Mỗi biến được dùng để lưu trữ dữ liệu khi chạy chương trình.

```
<Kieu_du_lieu> <Ten_bien>;

int n = 5;

double b = 10.5;

char c = 'h';
```

Khai báo (define) và khởi tạo (declare) biến

- * Khai báo biến nhằm thực hiện ba thao tác chính: cấp vùng nhớ cho biến, đặt tên biến và quy đinh kiểu dữ liêu của biến.
- * Biến có thể được khởi tạo giá trị ngay khi khai báo. Nếu không khởi tạo, ngôn ngữ C# sẽ gán một giá trị mặc định.

```
<Kieu_du_lieu> <Ten_bien>;
<Kieu_du_lieu> <Danh_sach_bien>;
<Kieu_du_lieu> <Ten_bien> = <Gia_tri>;
```

Nguyễn Chí Hiếu Lập trình C# 4/

```
Biến (variable)
```

```
1 int a, b;
2
3 a = 5;
4 b = 10;
5
6 int c = a + b;
7 Console.WriteLine("c = {0}", c);
```

Nguyễn Chí Hiểu Lập trình C# 5/44

Hằng số (constant)

Là một loại biến đặc biệt mà giá trị được gán khi vừa khai báo và không thay đổi khi chạy chương trình.

```
const <Kieu_du_lieu > <Ten_hang > = <Gia_tri >;

const double pi = 3.14;

int r = 10;

double c = 2 * r * pi;

Console.WriteLine("c = {0}", c);
```

Nguyễn Chí Hiếu Lập trình C# 6,

Kiểu dữ liệu số nguyên

Ngôn ngữ C# cung cấp 8 kiểu dữ liệu số nguyên như sau:

Kiểu	Tên kiểu	Kích thước (byte)	Khoảng giá trị	Mặc định
sbyte	System.Sbyte	1	$-2^7 \to 2^7 - 1$	0
short	System.Int16	2	$-2^{15} \rightarrow 2^{15} - 1$	0
int	System.Int32	4	$-2^{31} \rightarrow 2^{31} - 1$	0
long	System.Int64	8	$-2^{63} \rightarrow 2^{63} - 1$	OL
byte	System.byte	1	$0 \to 2^8 - 1$	0
ushort	System.UInt16	2	$0 \to 2^{16} - 1$	0
uint	System.UInt32	4	$0 \to 2^{32} - 1$	0
ulong	System.UInt64	8	$0 \to 2^{64} - 1$	0

Kiểu dữ liệu dấu chấm động (floating point)

Kiểu	Tên kiểu	Kích thước (byte)	Khoảng giá trị	Mặc định
float	System.Single	4	$\pm 1.5 \times 10^{-45}$	
			$\rightarrow \pm 3.4 \times 10^{38}$	O.OF
double	System.Double	8	$\pm 5.0 \times 10^{-324}$	
			$\rightarrow \pm 1.7 \times 10^{308}$	O.OD
decimal	System.Decimal	16	$\pm 1.0 \times 10^{-28}$	
			$\rightarrow \pm 7.9228 \times 10^{28}$	O.OM

Kiểu dữ liệu ký tự (char)

Kiểu	Tên kiểu	Kích thước (byte)	Khoảng giá trị	Mặc định
char	System.Char	16	U+0000 to U+FFFF	'\0'

- * Kiểu char có thể được mô tả bởi:
 - * Ký tư.
 - * Chuỗi Unicode gồm: $\backslash u$ và 4 ký tự hexa của bảng mã ASCII.
 - * Chuỗi hexa: $\xspace x$ và 4 ký tự hexa của bảngmã ASCII.

Kiểu dữ liệu ký tự (char)

```
char a = 't';
char b = '\u0074';
char c = '\x0074';

Console.WriteLine("a = {0}", a);
Console.WriteLine("b = {0}", b);
Console.WriteLine("c = {0}", c);
```

- > a = t
- > b = t
- > c = t

Chuyển đổi giữa các kiểu dữ liêu số

Ngôn ngữ C# cung cấp hai cách chuyển đổi kiểu dữ liêu:

- * Không tường minh (implicit): được thực hiện mặc định bởi ngôn ngữ C#
- * Tường minh (explicit): người lập trình dùng toán tử để ép kiểu dữ liêu

Lâp trình C# 11/44

Ép kiểu tường minh

Gồm có hai loai

- * Nới rông (widening): từ kiểu dữ liêu nhỏ sang kiểu dữ liêu lớn hơn.
- * Thu hẹp (narrowwing): từ kiểu dữ liệu lớn sang kiểu dữ liệu nhỏ hơn $\to m \hat{a} t \ m \hat{a} t \ d \hat{u} \ liêu$.

```
1 byte b = 5;
2 long l = b; // long l = (long) b:
```

- 3 Console. WriteLine("b = {0}", b);
- 4 Console.WriteLine("1 = {0}", b);
- 5
- 6 double d = 10.5;
- 7 int i = (int) d;
- 8 Console.WriteLine("d = {0}", d);
 9 Console.WriteLine("i = {0}", i);
- Nguyễn Chí Hiếu

```
Kiểu liệt kê (enum)
Là tập hợp các hằng số có cùng kiểu dữ liệu với nhau.
    enum <Ten_bien>
    {
        Ten_hang_1 = <Gia_tri_1>,
        Ten_hang_2 = <Gia_tri_2>,
        //...
        Ten_hang_n = <Gia_tri_n>
```

```
Kiểu liệt kê (enum)
   enum WeekDay
        Monday, Tuesday, Wednesday, Thursday, Friday,
           Saturday, Sunday
  4
    }
    static void Main(string[] args)
        WeekDay day = WeekDay.Monday;
        Console.WriteLine(day);
```

> Monday

Kiểu liệt kê (enum)

```
enum Direction
       Stop = 0, Left = 1, Up = 2, Right = 3, Down = 4
5
   static void Main(string[] args)
       Direction dir = Direction.Left:
       Console.WriteLine(dir):
10 }
```

> Left

» BIỂU THỨC

Khái niêm

Trong ngôn ngữ lập trình, biểu thức (expression) là sự kết hợp giữa các toán hạng (operand và toán tử/phép toán (operator) để trả về một giá tri.

```
* Toán hạng: biến, hằng, hàm, ...
```

* Toán tử: phép toán số học, logic, ...

```
1 int a, b, c;
2
3 a = 5;
4 b = 10;
5 c = a + b:
```

Nguyễn Chí Hiếu Lập trình C# 16/44

Phân loại phép toán

Trong ngôn ngữ C#, các phép toán được chia thành các loại sau:

- * Phép gán
- * Phép toán số học
- * Phép toán quan hệ và logic
- * Phép toán trên bit

Phép toán gán

* Gán giá trị cho một biến.

Phép toán số học

* Phép toán 2 ngôi

Phép toán	Phép toán C#	Biểu thức toán học	Biểu thức C#
Cộng	+	a+b	a + b
Trừ	_	a-b	a - b
Nhân	*	ab	a * b
Chia	/	$\frac{a}{b}$	a / b
Chia lấy phần dư	%	$a \mod b$	a % b

- * Phép chia: cần kiểm tra ràng buộc số chia phải khác 0.
- * Phép chia lấy phần dư: chỉ áp dụng đối với dữ liệu kiểu char, int, long.

Phép toán số học

* Phép toán 2 ngôi

```
1 int a, b;
2 a = 5:
3 b = 10:
4
5 Console.WriteLine(\frac{a}{b} = \{0\}, a / b):
6
7 Console. WriteLine("a/b = \{0\}", (double) a / b):
  Console. WriteLine("a/b = \{0\}", a / (double) b):
   Console. WriteLine (\frac{a}{b} = \{0\}, (double) a / (double) b):
11 Console.WriteLine("a%b = \{0\}", a % b):
```

Phép toán số học

* Phép toán 1 ngôi (các phép toán tăng giảm giá trị)

Phép toán	Phép toán C#	Biểu thức C#
Tăng giá trị lên 1	++	a++ hay ++a
Giảm giá trị xuống 1		a haya

Phép toán số học

* Phép toán 1 ngôi (các phép toán tăng qiảm qiá trị)

```
1 int a = 5;
2 a++;
3 Console.WriteLine("a = {0}", a);
4
5 int b = 5;
6 ++b;
7 Console.WriteLine("b = {0}", b);
```

Phép toán số học

* Phép toán 1 ngôi (các phép toán tăng qiảm qiá trị)

```
1 int a = 5;
2 //a++;
3 Console.WriteLine("a = {0}", a++);
4
5 int b = 5;
6 //++b;
7 Console.WriteLine("b = {0}", ++b);
```

Các phép toán quan hệ

Biểu thức thực hiện phép toán quan hệ chỉ trả về chân trị đúng (true) hay sai (false).

Phép toán	Phép toán C#	Biểu thức toán học	Biểu thức C#
Lớn hơn	>	a > b	a > b
Nhỏ hơn	<	a < b	a < b
Bằng	==	a = b	a == b
Khác	!=	$a \neq b$	a != b
Lớn hơn hay bằng	>=	$a \ge b$	a >= b
Nhỏ hơn hay bằng	<=	$a \leq b$	a <= b

Các phép toán logic

Biểu thức thực hiện phép toán logic chỉ trả về chân trị đúng (true) hay sai (false).

Phép toán	Phép toán C#	Biểu thức toán học	Biểu thức C#
Phủ định	!	$\neg a$!a
Và	&&	$a \wedge b$	a && b
Hay	П	$a \lor b$	a b

Các phép toán logic

```
1 int a, b;
2 bool kq;
3
4 a = 5;
5 b = 10;
6
7 kq = (a < b) && (b % a == 0);
8 Console.Write(kq);</pre>
```

> True

Thứ tự thực hiện các phép toán logic

Độ ưu tiên	Phép toán C#	
1	!	
2	&&	
3	11	

Thứ tự thực hiện các phép toán logic

Ví dụ

Cho biết giá trị trả về của các biểu thức sau:

- a) $1 < 2 \mid 1 \mid 5 < 10 \&\& 2 == 7$
- b) (1 < 2 || 5 < 10) && 2 == 7
- c) 1 < 2 && 5 < 10 || 2 == 7
- d) $1 < 2 \&\& 5 < 10 \mid | !(2 == 7)$

Phép toán trên bit

Phép toán	Phép toán trong C#	Biểu thức C#
NOT	~	a \sim b
AND	&	a & b
OR		a b
XOR	^	a ^ b
SHIFT LEFT	<<	a << b
SHIFT RIGHT	>>	a >> b

Phép toán trên bit

р	\sim p	
0	1	
1	0	

Ví dụ

Cho số nguyên dương $n=5=(101)_2$. Phép toán phủ định bit được tính như sau:

$$\sim n = \sim (101_2) = (010)_2 = 2_{10}.$$

Phép toán trên bit

р	q	p & q	p I q	p ^ q
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

Phép toán trên bit

Ví du

Cho số nguyên dương $n=5=(101)_2$.

* Phép dịch trái 1 bit

$$n << 1 = (1010)_2 = 10.$$

* Phép dich phải 1 bit

$$n >> 1 = (10)_2 = 2.$$

Nguyễn Chí Hiếu Lập trình C# 32/44

» ĐỘ ƯU TIÊN CỦA CÁC PHÉP TOÁN

Độ ưu tiên	Phép toán C#	Kết hợp
1	[] ()> ++ - (postfix)	trái sang phải
2	sizeof & * + - ! ++ - (prefix)	phải sang trái
3	typecast	phải sang trái
4	* / %	trái sang phải
5	+ -	trái sang phải
6	<< >>	trái sang phải
7	< > <= >=	trái sang phải
8	&	trái sang phải
9	^	trái sang phải
10		trái sang phải
11	&&	trái sang phải
12	П	trái sang phải
13	?:	phải sang trái
14	= *= /= %= += -= «= »= &= = =	phải sang trái
15	,	trái sang phải

Nguyễn Chí Hiếu Lập trình C#

» ĐỘ ƯU TIÊN CỦA CÁC PHÉP TOÁN

```
double kq;
3 \text{ kq} = 6 / 2 * (1 + 2);
4 Console.WriteLine(kq);
5
6 double a, b:
7 a = 5;
8 b = 10;
9 \text{ kq} = a++ * --b / (b - a);
10 Console.WriteLine(kg);
```

- > 9
- > 15

» RÚT GỌN BIỂU THỨC

Một số luật logic

Phủ định của phủ định:

$$\neg \neg p \Leftrightarrow p$$

Luật DeMorgan:

*

$$\neg (p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$$
$$!(p\&\&q) \Leftrightarrow (!p)||(!q)$$

*

$$\neg (p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$$
$$!(p||q) \Leftrightarrow (!p)\&\&(!q)$$

Nguyễn Chí Hiếu

» RÚT GỌN BIỂU THỨC

Ví du

Nhập một số nguyên dương n, kiểm tra n có thỏa một trong hai điều kiện sau:

- * n là số lẻ
- * n là số chẵn và thỏa tất cả các điều kiện sau:
 - * 0 < n < 100
 - * n không chia hết cho 6
 - * n không chia hết cho 8

» RÚT GỌN BIỂU THỨC

```
2 (n \% 2 != 0 || n > 0)
3 && (n \% 2 != 0 || n < 100)
4 && (n % 2 != 0 || (!(n % 6 == 0 || n % 8 == 0))
2 (n % 2 != 0)
3 \mid \mid (n > 0 \&\& n < 100 \&\& !(n \% 6 == 0 \mid \mid n \% 8 == 0)
2 (n \% 2 != 0)
```

Nguyễn Chí Hiếu

Nhập dữ liệu

Sử dụng hàm Read() đọc một ký tự và ReadLine() đọc chuỗi ký tự nhập từ bàn phím $(chu\tilde{\delta}i\ k\acute{e}t\ thúc\ bởi\ phím\ Enter)$.

- * Dữ liệu nhập vào cần chuyển sang kiểu dữ liệu phù hợp trước khi sử dụng
- * Một số hàm dùng chuyển đổi kiểu dữ liệu:
 - * int.Parse(String), double.Parse(String), ...
 - * Convert.ToInt32(String), Convert.ToDouble(String), ...

Nhập dữ liệu

Sử dụng hàm Read() đọc một ký tự và ReadLine() đọc chuỗi ký tự nhập từ bàn phím $(chu\tilde{\delta}i\ k\acute{e}t\ thúc\ bởi\ phím\ Enter)$.

```
char c1 = Console.Read(); // tra ve int
char c2 = (char) Console.Read();
int n = int.Parse(Console.ReadLine());
string s = Console.ReadLine();
```

Nguyễn Chí Hiếu Lập trình C# 39/4

Xuất dữ liêu

- * Hàm Clear() để xóa màn hình.
- * Sử dụng hàm Write(<Chuoi_dinh_dang>) hay hàm WriteLine(<Chuoi_dinh_dang>) để xuất một chuỗi ký tự (được định dạnh) ra màn hình.
 - * Chuỗi
 - * Đặc tả giá trị của biến
 - * Ký tư điều khiển
 - * Chuỗi nội suy: cho phép truyền trực tiếp tên biến vào chuỗi

Xuất dữ liêu

Chuỗi ký tự có thể chứa các biến kết quả bằng những cách sau:

- * Cách 1: sử dụng ký tự + để nối từng cặp chuỗi và giá trị.
- * Cách 2: định dạng chuỗi để xuất nhiều giá trị bằng cách sử dụng lần lượt các ký tự {0}, {1}, ... tương ứng với biến 0, biến 1, ...
- * Cách 3: thêm vào trước chuỗi ký tự dấu \$ và các biến đặt trong cặp dấu ngoặc {}

```
Console.Write("kq0=" + bien_0 + ",kq2=" + bien_1 + ...);
Console.Write("kq0={0}, kq1={1}", bien_0, bien_1, ...);
Console.Write($"kq0={bien_0}, kq1={bien_1}");
```

Xuất dữ liệu

```
int a = int.Parse(Console.ReadLine());
double b = 10.0/3.0;
double c = a + b;

Console.Write("Ket qua:");
Console.WriteLine("a = " + a + ", b = " + b);
Console.WriteLine("c = a + b = {0}", c);
Console.WriteLine($"c = a + b = {c}");
```

Xuất dữ liệu

Bảng 1: Bảng các mã định dạng trong C#.

Ví dụ 1	m = 1127		
Mã	Mô tả	C#	Kết quả
X	Hiển thị số dạng hexa	{0:X}	467
D	Số thập phân với tùy chọn	{0:D5}	01127
Ví dụ 2	n = 1127.1818		
Mã	Mô tả	C#	Kết quả
С	Tiền tệ	{0:C}	1,127.18
E	Số khoa học	{0:E2}	1.13E+003
F	Số thập phân với số lẻ xác định	{0:F3}	1127.182
N	Dấu phẩy ngăn cách phần ngàn	{O:N}	1,127.18
0:0	Điền chữ số 0	{0:00000.00}	01127.18
0:0	Điền khoảng trắng	{0:#####.##}	1127.18
%	Số thập phân dạng %	{0:00.00%}	112718.18%

Nguyễn Chí Hiếu Lập trình C# 43/4

» BÀI TẬP

- 1. Viết chương trình nhập vào điểm học kỳ 1 và học kỳ 2 của một học sinh. In ra điểm trung bình cả năm với 2 số lẻ thập phân.
- 2. Cho một hình chữ nhật có chiều dài gấp 2 lần chiều rộng. Viết chương trình nhập vào chu vi của hình chữ nhật từ bàn phím, tính và in ra diên tích hình chữ nhât.
- 3. Viết chương trình nhập vào một ký tự c từ bàn phím. In ra mã ASCII của ký tư c và hai ký tư phía trước, phía sau của c.
- 4. Nhập vào một số nguyên dương n. In ra bit tại vị trí thứ i từ phải sang trái của n. Ví dụ: $n=27=(11011)_2$, bit thứ 2 từ phải sang trái là 1.
- 5. Rút gọn các biểu thức điều kiện sau:
 - a) !(x!=2 | | x!=7)
 - b) (!(x != 0 && y / x < 1) || x == 0)