### Modul Verteilte Systeme

### Vermittlung

Peter Tröger Beuth Hochschule für Technik Berlin Sommersemester 2020 (Version 1)



## Teil 1: Neue Übung "DSLP Zeitabfrage"

- Aufgabenstellung
- DSLP Spezifikation
- Verbindung zum Server, Demo

## Ausgangspunkt



### Einige Server sind erreichbar



- compute.beuth-hochschule.de
- Textkonsole in Linux auf einem Server der Hochschule
- Kommandozeilenzugriff auf eigenes Heimatlaufwerk
- Alle Rechner im Beuth-Netz direkt erreichbar
- Software in Linux / macOS X vorinstalliert, Windows: PuTTY

```
shaw:~ ptroeger$ ssh ptroeger@compute.beuth-hochschule.de Linux compute 4.17.0-0.bpo.3-amd64 #1 SMP Debian 4.17.17-1~bpo9+1 (2018-08-27) x86_64

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
Last login: Mon Nov 5 10:24:32 2018 from 2001:638:812:c00:18c3:917d:54df:dd68 ptroeger@compute:~$
```

- SSH Protokoll kann nicht nur entfernte Konsole ermöglichen
- Zusätzliche Unterstützung für SSH-Tunnel
  - Unterscheidung in SSH-Client, SSH-Server und Ziel-Server
  - SSH-Server leitet Datenverkehr des Client auf Ziel-Server weiter
  - Benötigt Portnummer und IP-Adresse des Ziels
  - Wird beim Verbindungsaufbau konfiguriert
  - Tunnel wird beim Schließen der Konsole ebenfalls geschlossen



ssh -L 44444:dbl44.beuth-hochschule.de:44444 ptroeger@compute.beuth-hochschule.de



#### Variante 2: Virtual Private Network

#### https://doku.beuth-hochschule.de/zugang/vpn



Teil 2: Vermittlung

### Wiederholung: Netzwerkausdehnung



### Wiederholung: Protokoll

- Protokolle stellen die Interoperabilität der Kommunikationspartner sicher
- Menge von Regeln für den Datenaustausch
  - Beteiligte können Informationen senden und empfangen
  - Mehrerer solcher Beteiligter sind vorhanden
  - · Müssen die gleiche "Sprache" sprechen
  - Syntax vs. Semantik
- Protokollelemente Datenformate, Signalisierung, Fehlerbehandlung, Angleichung der Geschwindigkeiten, Aufteilung von Daten, ...

### Wiederholung: Schichtenmodell

- Einordnung von Protokollen in ein Schichtenmodell
- Verwendung von einem Protokoll durch ein anderes
  - Beispiel: HTTP über WLAN vs. HTTP über LTE
  - Bei jedem Teilnehmer hat die gleiche Schicht die gleichen Aufgaben
  - · Änderungen an einer Schicht sollen die andere Schicht nicht beeinflussen
  - Grundkonzept ist auch aus dem Software Engineering bekannt:

"Teile und herrsche"

### Wiederholung: Protokolle im Internet



**OSI-Modell** 

Internet-Modell

### Wiederholung: Ethernet

- Bits werden als Signalpegel auf einem physischen Kabel repräsentiert
- Teilnehmer teilen sich das physische Übertragungsmedium
- Weltweit eindeutige Media Access Control (MAC) Adresse
- Kollisionen werden durch Signalüberlagerung erkannt
- CSMA/CD Verfahren (Carrier Sense Multiple Access/Collision Detection)



### Wiederholung: Switching

6

3a:18:dc:30:b6:44



3a:18:dc:30:b6:44



**OSI-Modell** 

TCP/IP-Modell

- Bisher: Kommunikation auf dem gleichen Übertragungsmedium (Netzzugriff)
  - Kupferkabel, Glasfaser oder Wellen als Medium
  - Direkte Verbindung aller Knoten, ggf. kaskadiert (Bsp. Switching)
- MAC-Adressen sind zwar weltweit eindeutig, aber nur im eigenen Ethernet-LAN direkt als Zieladresse nutzbar
- OSI Layer 3 Vermittlung (network layer)
  - Übertragung über LAN-Grenzen hinweg
  - Unabhängigkeit vom Übertragungsmedium realisieren (LAN vs. WAN)





### Vermittlung durch Router





Jeder Router hat einen Anschluss pro verbundenen Netzwerk



- OSI Layer 3: Datenübertragung über mehrere Stationen (hops)
  - Weiterleitung von Paketen durch mehrere LANs "hindurch"
  - Layer 3 Paket wird als Daten verpackt in Layer 1/2 Paketen weitergegeben
  - Einzelne Layer-1/2 Netze (Ethernet, Bluetooth etc.) werden dafür mit Routern verbunden, welcher das Layer 3 - Protokoll verstehen
  - Daten "links" empfangen und "rechts" wieder versenden
  - Router kann auch unterschiedliche Layer 1/2 Technologien verbinden (Bsp.: DSL-Router)
- Vermittlung regelt heutzutage das Internet Protocol (IP)

## Layer 1/2 vs. Layer 3



Anwendung: Anfrage an 172.217.18.3

**Ethernet**-Paket

Ziel: a8:20:66:3a:e4:8e

(Router im eigenen LAN)

Daten:

**IP**-Paket:

Ziel: 172.217.18.3

Anfrage der Anwendung

MAC: a8:20:66:3a:e4:8e

**Ethernet**-Paket

Ziel: 45:33:aa:cd:32:31 (nächster Router)

Daten:

**IP**-Paket:

Ziel: 172.217.18.3

Anfrage der Anwendung

MAC: 45:33:aa:cd:32:31



**Ethernet**-Paket

Ziel: 25:11:ab:3d:12:42 (nächster Router, im Ziel-LAN)

Daten:

**IP**-Paket:

Ziel: 172.217.18.3

Anfrage der Anwendung

MAC: 25:11:ab:3d:12:42



**Ethernet**-Paket

Ziel: aa:bb:cc:dd:ee:ff

(Server)

Daten:

IP-Paket:

Ziel: 172.217.18.3

Anfrage der Anwendung

- Anwendungen versenden IP-Pakete, damit Vermittlung automatisch passiert
  - Muss nicht mehr wissen, was das Layer 1/2 Protokoll ist
  - Internet funktioniert über verschiedene Netzzugriffstechnologien hinweg
- · Häufig Switch und Router in einem Gerät-> Layer 3 Switch
- Bei Versand von IP-Paketen somit zwei Möglichkeiten:
  - Empfänger ist im gleichen Subnetz bzw. Segment
    - -> direkte Auslieferung an Empfänger per Ethernet
  - Sonst: Auslieferung an den Router per Ethernet



#### Internet Protocol

- Internet Protocol Version 4 (IPv4)
  - Seit den 70er Jahren Standard für Vermittlung im Internet (RFC 791)
  - 32 Bit für IP-Adresse = 4.3 Milliarden Adressen
  - Vergabe ganzer Adressbereiche an Organisationen, mittlerweile aufgebraucht
- Internet Protocol Version 6 (IPv6)
  - Einführung 1998, mittlerweile ca. 20% Verbreitung
  - Bessere Berücksichtigung von mobilen Geräten, Sicherheit und Skalierbarkeit des Routing

#### IPv4 - Paket



#### Protokolle



#### IPv4 - Paket

- · Übermittlung von Datagrammen mit flexibler Länge, maximale Größe 64kB
- Header ist üblicherweise 20 Byte lang
  - IP-Version, Länge des Headers, Länge der Nutzdaten
  - Diensttyp (TOS) für Priorisierung von wichtigen Paketen
  - Fragmentierung: IP-Paket wird in kleinere Teile zerlegt, welche separate Routen nehmen
  - Anzahl der Router, die maximal passiert werden dürfen (time to live)
  - Transportprotokoll, welches durch das IP-Paket übertragen wird
  - Quell- und Zieladresse

#### IPv6 - Paket

- Wieder Versand von Datagrammen mit maximal 64kB
- Quell- und Zieladresse mit jeweils 128 Bit
  - Geräteidentifikation immer mit den letzten 64 Bit
  - Darstellung als 8 Gruppen von jeweils 16 Bit
- Aufeinanderfolgende 0-Werte werden als "::" ausgedrückt
  - 2001:0db8:0000:0000:0000:ff00:0042:8329 = 2001:db8::ff00:42:8329
- Optimierungen f
   ür Skalierbarkeit und automatische Adressvergabe

### Routingtabelle

- Jeder Computer hat eine Routingtabelle
  - Option 1: IP-Adresse ist auf Layer 1/2 direkt erreichbar
    - -> MAC-Adresse in Tabelle vermerkt
  - Option 2: IP-Adresse ist auf Layer 1/2 nicht direkt erreichbar, da in anderem Netz
     -> Paket an Router / Default Gateway weiterleiten, auch in Tabelle vermerkt
- Jeder Router hat ebenfalls eine Routingtabelle
  - Multiple LANs angeschlossen und in Tabelle verzeichnet
  - Ebenfalls Default Gateway eingetragen, falls Zielnetz nicht direkt angeschlossen
- Linux, Windows: netstat -r, MacOS X: netstat -nr

# Routingtabelle auf dem Computer

|                     |                   | Chio      |            |          |       |        |
|---------------------|-------------------|-----------|------------|----------|-------|--------|
| macmini:~ troeger\$ | netstat -nr grep  | a grep مر | -v en4 gre | p –v lin | k     |        |
| Routing tables      | , it C            |           |            |          |       |        |
|                     | * Alle            |           |            |          |       |        |
| Internet:           | Oole              |           |            | 4//      |       |        |
| Destination         | Gateway           | Flags     | Refs       |          | Netif | Expire |
| default             | 192.168.176.1     | UGSc      | 72         |          | en0   |        |
| default             | 192.168.178.1     | UGScI     | 2          | 0        | en1   |        |
| 169.254.206.120     | 20:a2:e4:88:a9:28 | UHLSW     | 0          |          | en0   | !      |
| 169.254.211.135     | 20:a2:e4:88:a9:28 | UHLSW     | 0          |          | en0   | !      |
| 169.254.224.0       | 48:51:b7:cd:88:6d | UHLSW     | 0          | NLAN 4   | en0   | !      |
| 192.168.178.1       | c8:e:14:65:7:ff   | UHLWIir   | 15         | N . 4    | en0   | 1172   |
| 192.168.178.1       | c8:e:14:65:7:ff   | UHLWIir   |            | 1        | en1   | 1068   |
| 192.168.178.4       | d8:9d:67:e4:74:b  | UHLWI     |            | 0        | en1   | 1063   |
| 192.168.178.20      | 0:90:a9:e3:5f:93  | UHLWIi    | 4          | 60538    | en0   | 1064   |
| 192.168.178.20      | 0:90:a9:e3:5f:93  | UHLWI     | 0          | 0        | en1   | 1064   |
| 192.168.178.24      | 44:d8:84:6a:f1:33 | UHLWI     | 0          | 0        | en1   | 1063   |
| 192.168.178.31      | 82:c7:a6:d3:53:c1 | UHLWI     | 0          | 30       | en0   | 1064   |
| 192.168.178.31      | 82:c7:a6:d3:53:c1 | UHLWI     | 0          | 0        | en1   | 1064   |
| 192.168.178.72      | 0:17:88:67:d7:92  | UHLW*     | 0          | 36       | en0   | 1081   |
| 192.168.178.72      | 0:17:88:67:d7:92  | Πh        | ^          | 0        | en1   | 1081   |
| 192.168.178.74      | ac:6f:bb:56:cd:6c | MAC-      | -Adresse   | 54       | en0   | 1068   |
| 192.168.178.151     | 90:8d:6c:3c:55:27 | Un        |            | 1        | en0   | 1092   |
| 224.0.0.251         | 1:0:5e:0:0:fb     | UHML. I   | 0          | 0        | en0   |        |
| 239.255.255.250     | 1:0:5e:7f:ff:fa   | UHMLWI    | 0          | 14752    | en0   |        |
| 239.255.255.250     | 1:0:5e:7f:ff:fa   | UHmLWI    | 0          | 6        | en1   |        |

#### Routingtabelle auf dem Router

- Jeder Router ist f
  ür einen anderen Router der default gateway
- Es entsteht eine Vermittlungskette
- Problem: Router kann nicht jede denkbare Zieladresse in Tabelle speichern
  - Welchen seiner Ethernet-Anschlüsse soll er zum Senden nehmen?
  - IP-Teilnehmer werden in logische Gruppen eingeteilt -> Subnetz
  - Router leiten Pakete an Subnetze weiter, nicht an einzelne Rechner
- Analogie: Vermittlung der Post durch Postleitzahlen

Fortsetzung folgt ...