

THE \mathcal{H} -FLOW TRANSLATING SOLITONS IN \mathbb{R}^3 AND \mathbb{R}^4

HOJOO LEE

ABSTRACT. We solve the prescribed Hoffman-Osserman Gauss map problem for translating soliton surfaces to the mean curvature flow in \mathbb{R}^4 . Our solution is inspired by Ilmanen's correspondence between translating soliton surfaces and minimal surfaces.

The recent decades admit intensive research devoted to the study of solitons [8] to the mean curvature flow (\mathcal{H} -flow for short). The simplest example is the grim reaper $y = \ln(\cos x)$ which moves by downward translation under the \mathcal{H} -flow. As known in [3, 9, 18, 21], there exist fascinating geometric dualities between the \mathcal{H} -flow solitons and minimal submanifolds.

A surface is a *translator* [21] when its mean curvature vector field agrees with the normal component of a constant Killing vector field. Translators arise as Hamilton's convex eternal solutions and Huisken-Sinestrari's Type II singularities for the \mathcal{H} -flow, and become natural generalization of minimal surfaces. The eight equivalent definitions of minimal surfaces illustrated in [12] show the richness of the minimal surfaces theory. However, even in \mathbb{R}^3 , only few non-minimal translators are known:

Altschuler and Wu [1] showed the existence of the convex, rotationally symmetric, entire graphical translator. Clutterbuck, Schnürer and Schulze [4] constructed the winglike bigraphical translators, which are analogous to catenoids. Halldorsson [5] proved the existence of helicoidal translators. Nguyen [16] used Scherk's minimal towers to desingularize the intersection of a grim reaper cylinder and a plane, and obtained a complete embedded translator. See also her generalization [17].

Our main goal is to adopt the splitting of the generalized Gauss map of oriented surfaces in \mathbb{R}^4 to construct an explicit Weierstrass type representation for translators in \mathbb{R}^4 . We first introduce the complexification of the generalized Gauss map. Inside the complex projective space \mathbb{CP}^3 , we take the variety

$$\mathcal{Q}_2 = \{ [\zeta] = [\zeta_1 : \cdots : \zeta_4] \in \mathbb{CP}^3 : \zeta_1^2 + \cdots + \zeta_4^2 = 0 \},$$

which becomes a model for the Grassmannian manifold $\mathcal{G}_{2,2}$ of oriented planes in \mathbb{R}^4 . Reading the biholomorphic map from \mathcal{Q}_2 to $\mathbb{CP}^1 \times \mathbb{CP}^1$ as a splitting of \mathcal{Q}_2 , Hoffman and Osserman [6, 7] defined the generalized Gauss map of a conformal immersion $\mathbf{X} : \Sigma \rightarrow \mathbb{R}^4$, $z \mapsto \mathbf{X}(z)$ as follows:

$$\mathcal{G}(z) = \left[\frac{\partial \mathbf{X}}{\partial z} \right] = [1 + g_1 g_2, i(1 - g_1 g_2), g_1 - g_2, -i(g_1 + g_2)] \in \mathcal{Q}_2 \subset \mathbb{CP}^3.$$

We call the induced pair (g_1, g_2) the complexified Gauss map of the immersion \mathbf{X} .

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Education, Science and Technology) [NRF-2011-357-C00007] and in part by 2010 Korea-France STAR Program.

Lemma 1 (Poincaré's Lemma). Let $\xi : \Omega \rightarrow \mathbb{C}$ be a function on a simply connected domain $\Omega \subset \mathbb{C}$. If we have $\frac{\partial}{\partial z}\xi(z) \in \mathbb{R}$ for all $z \in \Omega$, then there exists a function $x : \Omega \rightarrow \mathbb{R}$ such that $\frac{\partial}{\partial z}x(z) = \xi(z)$.

Theorem 2 (Correspondence from null curves in \mathbb{C}^4 to translators in \mathbb{R}^4). Let (g_1, g_2) be a pair of nowhere-holomorphic C^2 functions from a simply connected domain $\Omega \subset \mathbb{C}$ to the open unit disc $\mathbb{D} := \{w \in \mathbb{C} \mid |w| < 1\}$ satisfying the compatibility condition

$$(0.1) \quad \mathcal{F} := \frac{(g_1)_{\bar{z}}}{(1 - g_1\overline{g_2})(1 + |g_1|^2)} = \frac{(g_2)_{\bar{z}}}{(1 - \overline{g_1}g_2)(1 + |g_2|^2)}, \quad z \in \Omega.$$

We assume that one of the following two integrability conditions holds on Ω :

$$(0.2) \quad 0 = (g_1)_{z\bar{z}} + \left(\frac{\overline{g_2}}{1 - g_1\overline{g_2}} - \frac{\overline{g_1}}{1 + |g_1|^2} \right) (g_1)_z (g_1)_{\bar{z}} + \frac{g_1 + g_2}{(1 - \overline{g_1}g_2)(1 + |g_1|^2)} |(g_1)_{\bar{z}}|^2,$$

$$(0.3) \quad 0 = (g_2)_{z\bar{z}} + \left(\frac{\overline{g_1}}{1 - \overline{g_1}g_2} - \frac{\overline{g_2}}{1 + |g_2|^2} \right) (g_2)_z (g_2)_{\bar{z}} + \frac{g_1 + g_2}{(1 - g_1\overline{g_2})(1 + |g_2|^2)} |(g_2)_{\bar{z}}|^2.$$

Then, we obtain the following statements.

- (a) Both (0.2) and (0.3) hold. (Assuming (0.1), we claim that (0.2) is equivalent to (0.3).)
- (b) The complex curve $\phi := (\phi_1, \phi_2, \phi_3, \phi_4) : \Omega \rightarrow \mathbb{C}^4$ defined by

$$\phi = f(1 + g_1g_2, i(1 - g_1g_2), g_1 - g_2, -i(g_1 + g_2)), \quad f := -2i\overline{\mathcal{F}}$$

fulfills the three properties on the domain Ω :

- (b1) **nullity** $\phi \cdot \phi = \phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2 = 0$,
- (b2) **non-degeneracy** $|\phi|^2 = |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 > 0$,
- (b3) **integrability** $\frac{\partial \phi}{\partial \bar{z}} = \left(\frac{\partial \phi_1}{\partial \bar{z}}, \frac{\partial \phi_2}{\partial \bar{z}}, \frac{\partial \phi_3}{\partial \bar{z}}, \frac{\partial \phi_4}{\partial \bar{z}} \right) \in \mathbb{R}^4$.

- (c) Integrating the complex null immersion $\phi : \Omega \rightarrow \mathbb{C}^4$ yields a translator Σ in \mathbb{R}^4 .

- (c1) There exists a conformal immersion $\mathbf{X} = (x_1, x_2, x_3, x_4) : \Omega \rightarrow \mathbb{R}^4$ satisfying

$$\mathbf{X}_z = \phi.$$

- (c2) The induced metric ds^2 on the z -domain Ω by the immersion \mathbf{X} reads

$$ds^2 = \frac{16|(g_1)_{\bar{z}}|^2}{|1 - g_1\overline{g_2}|^2} \cdot \frac{1 + |g_2|^2}{1 + |g_1|^2} |dz|^2 = \frac{16|(g_2)_{\bar{z}}|^2}{|1 - \overline{g_1}g_2|^2} \cdot \frac{1 + |g_1|^2}{1 + |g_2|^2} |dz|^2.$$

- (c3) The pair (g_1, g_2) is the complexified Gauss map of the surface $\Sigma = \mathbf{X}(\Omega)$. In other words, the generalized Gauss map of the conformal immersion \mathbf{X} reads

$$[\mathbf{X}_z] = [1 + g_1g_2, i(1 - g_1g_2), g_1 - g_2, -i(g_1 + g_2)] \in \mathcal{Q}_2 \subset \mathbb{CP}^3.$$

- (c4) The surface Σ becomes a translator with the translating velocity $-\mathbf{e}_4 = (0, 0, 0, -1)$.

Proof. **Step A.** For the proof of (a), we first set up the notations

$$\begin{cases} \mathcal{L} := (g_1)_{z\bar{z}} + \left(\frac{\overline{g_2}}{1 - g_1\overline{g_2}} - \frac{\overline{g_1}}{1 + |g_1|^2} \right) (g_1)_z (g_1)_{\bar{z}} + \frac{g_1 + g_2}{(1 - \overline{g_1}g_2)(1 + |g_1|^2)} |(g_1)_{\bar{z}}|^2, \\ \mathcal{R} := (g_2)_{z\bar{z}} + \left(\frac{\overline{g_1}}{1 - \overline{g_1}g_2} - \frac{\overline{g_2}}{1 + |g_2|^2} \right) (g_2)_z (g_2)_{\bar{z}} + \frac{g_1 + g_2}{(1 - g_1\overline{g_2})(1 + |g_2|^2)} |(g_2)_{\bar{z}}|^2. \end{cases}$$

We first assume only (0.1). Taking the conjugation in (0.1) yields

$$\overline{\mathcal{F}} = \frac{(\overline{g_2})_z}{(1 - g_1\overline{g_2})(1 + |g_2|^2)} = \frac{(\overline{g_1})_z}{(1 - \overline{g_1}g_2)(1 + |g_1|^2)}.$$

Taking into account this, we deduce

$$\begin{aligned} \frac{\mathcal{F}_z}{\mathcal{F}} &= \frac{(g_1)_{z\bar{z}}}{(g_1)_{\bar{z}}} + \left(\frac{\overline{g_2}}{1 - g_1\overline{g_2}} - \frac{\overline{g_1}}{1 + |g_1|^2} \right) (g_1)_z + \left(\frac{1 + |g_2|^2}{1 - \overline{g_1}g_2} - 1 \right) \cdot \frac{g_1}{1 + |g_1|^2} (\overline{g_1})_z \\ &= \frac{\mathcal{L}}{(g_1)_{\bar{z}}} - \overline{F} \left[g_1 \left(1 - |g_2|^2 \right) + g_2 \left(1 - |g_1|^2 \right) \right] \end{aligned}$$

and

$$\begin{aligned} \frac{\mathcal{F}_z}{\mathcal{F}} &= \frac{(g_2)_{z\bar{z}}}{(g_2)_{\bar{z}}} + \left(\frac{\overline{g_1}}{1 - g_2\overline{g_2}} - \frac{\overline{g_2}}{1 + |g_2|^2} \right) (g_2)_z + \left(\frac{1 + |g_1|^2}{1 - g_1\overline{g_2}} - 1 \right) \cdot \frac{g_2}{1 + |g_2|^2} (\overline{g_2})_z \\ &= \frac{\mathcal{R}}{(g_2)_{\bar{z}}} - \overline{F} \left[g_1 \left(1 - |g_2|^2 \right) + g_2 \left(1 - |g_1|^2 \right) \right]. \end{aligned}$$

These two equalities thus show the equality

$$\frac{\mathcal{L}}{(g_1)_{\bar{z}}} = \frac{\mathcal{R}}{(g_2)_{\bar{z}}},$$

which means the desired implications: (0.2) \iff $\mathcal{L} = 0 \iff \mathcal{R} = 0 \iff$ (0.3).

Step B. We deduce several equalities which will be used in the proof of **(b)** and **(c)**. According to **(a)**, from now on, we assume that both (0.2) and (0.3) hold. Since both \mathcal{L} and \mathcal{R} vanish, the previous equalities imply

$$\mathcal{F}_z = -|\mathcal{F}|^2 \left[g_1 \left(1 - |g_2|^2 \right) + g_2 \left(1 - |g_1|^2 \right) \right].$$

Conjugating this and using the definition $f = -2i\overline{\mathcal{F}}$, we arrive at the equality

$$(0.4) \quad f_{\bar{z}} = \frac{i}{2} |f|^2 \left[\overline{g_1} \left(1 - |g_2|^2 \right) + \overline{g_2} \left(1 - |g_1|^2 \right) \right].$$

The compatibility condition (0.1) can be written in terms of $f = -2i\overline{\mathcal{F}}$:

$$(0.5) \quad \overline{f} = \frac{2i(g_1)_{\bar{z}}}{(1 - g_1\overline{g_2})(1 + |g_1|^2)} = \frac{2i(g_2)_{\bar{z}}}{(1 - \overline{g_1}g_2)(1 + |g_2|^2)}.$$

It immediately follows from (0.4) and (0.5) that

$$(0.6) \quad (fg_1)_{\bar{z}} = f_{\bar{z}}g_1 + (g_1)_{\bar{z}}f = -\frac{i}{2} |f|^2 \left(1 - 2g_1\overline{g_2} + |g_1|^2|g_2|^2 \right)$$

and

$$(0.7) \quad (fg_2)_{\bar{z}} = f_{\bar{z}}g_2 + (g_2)_{\bar{z}}f = -\frac{i}{2} |f|^2 \left(1 - 2\overline{g_1}g_2 + |g_1|^2|g_2|^2 \right).$$

Another computation taking into account (0.5) and (0.6) shows

$$(0.8) \quad (fg_1g_2)_{\bar{z}} = (fg_1)_{\bar{z}}g_2 + (g_2)_{\bar{z}}fg_1 = -\frac{i}{2} |f|^2 \left[g_1 \left(1 - |g_2|^2 \right) + g_2 \left(1 - |g_1|^2 \right) \right].$$

Step C. Our aim here is to establish the claims in **(b)** on the complex curve

$$\phi = (\phi_1, \phi_2, \phi_3, \phi_4) = f(1 + g_1g_2, i(1 - g_1g_2), g_1 - g_2, -i(g_1 + g_2)).$$

First, the equality in **(b1)** is obvious. Next, by the assumptions on g_1 and g_2 , we see that $f = -2i\bar{F}$ never vanish. Then, the assertion **(b2)** follows from the equality

$$(0.9) \quad |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 = 2|f|^2 \left(1 + |g_1|^2\right) \left(1 + |g_2|^2\right).$$

We employ the equalities in **Step B** to show the assertion **(b3)**. Joining the equalities in (0.4), (0.6), (0.7), and (0.8) and the definition of ϕ , we reach

$$(0.10) \quad \begin{cases} (\phi_1)_{\bar{z}} = |f|^2 \left[\left(1 - |g_2|^2\right) \operatorname{Im} g_1 + \left(1 - |g_1|^2\right) \operatorname{Im} g_2 \right], \\ (\phi_2)_{\bar{z}} = -|f|^2 \left[\left(1 - |g_2|^2\right) \operatorname{Re} g_1 + \left(1 - |g_1|^2\right) \operatorname{Re} g_2 \right], \\ (\phi_3)_{\bar{z}} = 2|f|^2 \operatorname{Im} (\bar{g}_1 g_2), \\ (\phi_4)_{\bar{z}} = -|f|^2 \left[1 - 2\operatorname{Re} (\bar{g}_1 g_2) + |g_1|^2 |g_2|^2 \right]. \end{cases}$$

These four equalities guarantee the integrability condition $\left(\frac{\partial \phi_1}{\partial z}, \frac{\partial \phi_2}{\partial z}, \frac{\partial \phi_3}{\partial z}, \frac{\partial \phi_4}{\partial z}\right) \in \mathbb{R}^4$.

Step D. We prove the claims **(c1)**, **(c2)**, and **(c3)**. Thanks to **(b3)**, we can integrate the curve ϕ . Since Ω is simply connected, applying Lemma 1 to the complex curve ϕ , we see the existence of the function $\mathbf{X} = (x_1, x_2, x_3, x_4) : \Omega \rightarrow \mathbb{R}^4$ satisfying

$$\mathbf{X}_z = \phi = f (1 + g_1 g_2, i(1 - g_1 g_2), g_1 - g_2, -i(g_1 + g_2)).$$

This and the nullity of ϕ guarantee that the mapping \mathbf{X} is conformal. Using (0.9), one then find that the induced metric $ds^2 = \Lambda^2 |dz|^2$ by the immersion \mathbf{X} reads

$$(0.11) \quad ds^2 = \Lambda^2 |dz|^2 = 4|f|^2 \left(1 + |g_1|^2\right) \left(1 + |g_2|^2\right) |dz|^2.$$

Since f never vanish, this completes the proof of **(c1)**. Also, joining (0.5) and (0.11) imply the equality in **(c2)**. The integrability $\mathbf{X}_z = \phi$ and the definition of ϕ gives

$$[\mathbf{X}_z] = [1 + g_1 g_2, i(1 - g_1 g_2), g_1 - g_2, -i(g_1 + g_2)],$$

which completes the proof of **(c3)**.

Step E. Finally, we prove the claim **(c4)**. First, we find the normal component of the vector field $-\mathbf{e}_4 = (0, 0, 0, -1)$ in terms of g_1 and g_2 . We compute

$$\begin{aligned} (-\mathbf{e}_4)^{\perp} &= -\mathbf{e}_4 - \left[\left(\frac{\mathbf{X}_u}{\Lambda} \cdot (-\mathbf{e}_4) \right) \frac{\mathbf{X}_u}{\Lambda} + \left(\frac{\mathbf{X}_v}{\Lambda} \cdot (-\mathbf{e}_4) \right) \frac{\mathbf{X}_v}{\Lambda} \right] \\ &= -\mathbf{e}_4 + \frac{2}{\Lambda^2} [(\mathbf{X}_{\bar{z}} \cdot \mathbf{e}_4) \mathbf{X}_z + (\mathbf{X}_z \cdot \mathbf{e}_4) \mathbf{X}_{\bar{z}}] \\ &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix} + \frac{4}{\Lambda^2} \begin{bmatrix} \operatorname{Re}(\phi_1 \bar{\phi}_4) \\ \operatorname{Re}(\phi_2 \bar{\phi}_4) \\ \operatorname{Re}(\phi_3 \bar{\phi}_4) \\ |\phi_4|^2 \end{bmatrix}. \end{aligned}$$

Combining this, (0.10), and (0.11) yields

$$(-\mathbf{e}_4)^{\perp} = \frac{1}{(1 + |g_1|^2)(1 + |g_2|^2)} \begin{bmatrix} \left[\left(1 - |g_2|^2\right) \operatorname{Im} g_1 + \left(1 - |g_1|^2\right) \operatorname{Im} g_2 \right] \\ - \left[\left(1 - |g_2|^2\right) \operatorname{Re} g_1 + \left(1 - |g_1|^2\right) \operatorname{Re} g_2 \right] \\ 2 \operatorname{Im} (\bar{g}_1 g_2) \\ - \left[1 - 2\operatorname{Re} (\bar{g}_1 g_2) + |g_1|^2 |g_2|^2 \right] \end{bmatrix}.$$

Second, we find the mean curvature vector $\mathcal{H} = \Delta_{ds^2} \mathbf{X} = \frac{4}{\Lambda^2} \frac{\partial}{\partial z} \left(\frac{\partial}{\partial z} \mathbf{X} \right) = \frac{4}{\Lambda^2} \phi_{\bar{z}}$ on our surface $\Sigma = \mathbf{X}(\Omega)$. Now, joining this, (0.10), and (0.11), we can write the mean curvature vector \mathcal{H} in terms of g_1 and g_2 :

$$\mathcal{H} = \frac{1}{(1 + |g_1|^2)(1 + |g_2|^2)} \begin{bmatrix} \left[(1 - |g_2|^2) \operatorname{Im} g_1 + (1 - |g_1|^2) \operatorname{Im} g_2 \right] \\ - \left[(1 - |g_2|^2) \operatorname{Re} g_1 + (1 - |g_1|^2) \operatorname{Re} g_2 \right] \\ 2 \operatorname{Im} (\overline{g_1} g_2) \\ - \left[1 - 2\operatorname{Re} (\overline{g_1} g_2) + |g_1|^2 |g_2|^2 \right] \end{bmatrix}.$$

We therefore conclude that $\mathcal{H} = (-\mathbf{e}_4)^\perp$. \square

Remark 1 (Ilmanen's correspondence). Theorem 2 generalizes the classical Weierstrass construction from holomorphic null immersions in \mathbb{C}^3 to conformal minimal immersions in \mathbb{R}^3 . The key ingredient behind Theorem 2 is the Ilmanen correspondence between translators and minimal surfaces. (See [9] and [21].) We deform the flat metric of \mathbb{R}^4 conformally to introduce the four dimensional Riemannian manifold

$$\mathcal{I}^4 = (\mathbb{R}^4, e^{-x_4} (dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2)).$$

Any conformal immersion $\mathbf{X} : \Omega \rightarrow \mathbb{R}^4$ of a downward translator with the translating velocity $-\mathbf{e}_4 = (0, 0, 0, -1)$ in Euclidean space \mathbb{R}^4 then can be identified as a conformal minimal immersion $\mathbf{X} : \Omega \rightarrow \mathcal{I}^4$. However, it is not easy to find Riemannian manifolds which admit explicit representations for their minimal surfaces.

Example 3 (The Hamiltonian stationary Lagrangian translator in \mathbb{C}^2). Recently, interesting Lagrangian translators in the complex plane \mathbb{C}^2 are discovered in [2, 10, 13]. In 2010, Castro and Lerma [2, Corollary 2] classified all Hamiltonian stationary Lagrangian translators in \mathbb{C}^2 . Locally, they are unique up to dilations (except for the totally geodesic ones) [2, Corollary 3]. The point of this example is to explicitly recover the Hoffman-Osserman Gauss map of the Castro-Lerma translator in $\mathbb{R}^4 = \mathbb{C}^2$.

We first notice that Theorem 2 still holds when we regard the prescribed Gauss map (g_1, g_2) as a pair of functions from a simply connected domain Ω to the complex plane (not just the unit disc). However, in this case, the induced mapping $\mathbf{X} : \Omega \rightarrow \mathbb{R}^4$ of the translator may admit the branch points where $\overline{g_1} g_2 = 1$ (or equivalently, $g_1 \overline{g_2} = 1$).

Imposing the additional condition $|g_1| = 1$ produces Lagrangian translators with the velocity $-\mathbf{e}_4 = (0, 0, 0, -1)$. Then, our integrability condition in (c1) for downward translators can be re-written as

$$\mathbf{X}_z = ((x_1)_z, (x_2)_z, (x_3)_z, (x_4)_z) = -\theta_z \left(\frac{1 + g_1 g_2}{g_1 - g_2}, i \frac{1 - g_1 g_2}{g_1 - g_2}, 1, -i \frac{g_1 + g_2}{g_1 - g_2} \right),$$

where θ denotes the Lagrangian angle with $i g_1 = e^{i\theta}$. The third terms $(x_3)_z = -\theta_z$ can be viewed as [2, Proposition 1], [10, Proposition 2.5] and [15, Proposition 2.1].

We consider a complexified Gauss map of the form, for some \mathbb{R} -valued function \mathcal{G} ,

$$(g_1(z), g_2(z)) = (e^{iv}, \mathcal{G}(u)e^{iv}), \quad z = u + iv \in \mathbb{R} + i\mathbb{R}$$

and want to solve the system (0.1) and (0.2). First, the compatibility condition (0.1) induces the ordinary differential equation

$$\frac{1}{2} = \frac{1}{1 + \mathcal{G}^2} \left(\mathcal{G} - \frac{d\mathcal{G}}{du} \right),$$

and a canonical solution is given by $\mathcal{G}(u) = \frac{u+1}{u-1}$. One can easily check that

$$(g_1(z), g_2(z)) = (e^{iv}, \mathcal{G}(u)e^{iv}) = \left(e^{iv}, \frac{u+1}{u-1}e^{iv} \right)$$

satisfies the integrability condition (0.2). Then, the induced Lagrangian translator Σ with the velocity $-\mathbf{e}_4$ admits the conformal parametrization

$$\mathbf{X}(u, v) = \left(u \sin v, -u \cos v, -v, -\frac{1}{2}u^2 \right).$$

Since the induced metric on Σ reads $ds^2 = (1 + u^2)(du^2 + dv^2)$, the Lagrangian angle function $\theta(u, v) = \frac{\pi}{2} + v$ with $i g_1 = e^{i\theta}$ is harmonic on Σ . We find that this Hamiltonian stationary Lagrangian translator Σ with the velocity $(0, 0, 0, -1)$ coincides with the Castro-Lerma translator [2, Corollary 2] with the velocity $(1, 0, 0, 0)$ by a suitable change of coordinates.

Theorem 4 (Correspondence from null curves in \mathbb{C}^3 to translators in \mathbb{R}^3). *When a nowhere-holomorphic C^2 function $G : \Omega \rightarrow \mathbb{D}$ from a simply connected domain $\Omega \subset \mathbb{C}$ to the open unit disc $\mathbb{D} := \{w \in \mathbb{C} \mid |w| < 1\}$ satisfying the translator equation*

$$(0.12) \quad G_{z\bar{z}} + 2 \frac{\overline{G}|G|^2}{1 - |G|^4} G_z G_{\bar{z}} + 2 \frac{G}{1 - |G|^4} |G_{\bar{z}}|^2 = 0, \quad z \in \Omega,$$

we associate a complex curve $\phi = \phi_G = (\phi_1, \phi_2, \phi_3) : \Omega \rightarrow \mathbb{C}^3$ as follows:

$$\phi = \frac{2\overline{G}_z}{|G|^4 - 1} (1 - G^2, i(1 + G^2), 2G).$$

(a) Then, the complex curve ϕ fulfills the three properties on the domain Ω :

- (a1) **nullity** $\phi \cdot \phi = \phi_1^2 + \phi_2^2 + \phi_3^2 = 0$,
- (a2) **non-degeneracy** $|\phi|^2 = |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 > 0$,
- (a3) **integrability** $\frac{\partial \phi}{\partial \bar{z}} = \left(\frac{\partial \phi_1}{\partial \bar{z}}, \frac{\partial \phi_2}{\partial \bar{z}}, \frac{\partial \phi_3}{\partial \bar{z}} \right) \in \mathbb{R}^3$.

(b) Also, integrating $\mathbf{X}_z = \phi$ on Ω yields a downward translator $\Sigma = \mathbf{X}(\Omega)$ with the velocity $-\mathbf{e}_3 = (0, 0, -1)$ in \mathbb{R}^3 . The prescribed map G becomes the complexified Gauss map of the induced surface $\Sigma = \mathbf{X}(\Omega)$ via the stereographic projection from the north pole. The induced metric ds^2 by the immersion \mathbf{X} reads $ds^2 = \frac{16|G_{\bar{z}}|^2}{(|G|^2 - 1)^2} |dz|^2$.

Proof. We take $(g_1, g_2) = (iG, iG)$ in Theorem 2. □

Example 5 (Downward grim reaper cylinder as an analogue of Scherk's surface).

(a) An application of our representation formula in Theorem 4 to the solution

$$G(z) = G(u + iv) = \tanh u \in (-1, 1), \quad u + iv \in \mathbb{C}$$

of the translator equation (0.12) yields the conformal immersion $\mathbf{X} : \mathbb{R}^2 \rightarrow \mathbb{R}^3$

$$\mathbf{X}(u, v) = (x_1, x_2, x_3) = \left(-2 \tan^{-1}(\tanh u), 2v, -\ln(\cosh(2u)) \right),$$

(b) It represents the graphical translator with the translating velocity $-\mathbf{e}_3$:

$$x_3 = \mathcal{F}(x_1, x_2) = \ln(\cos x_1), \quad (x_1, x_2) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \mathbb{R}.$$

Its height function $\mathcal{F} : (-\frac{\pi}{2}, \frac{\pi}{2}) \times \mathbb{R} \rightarrow \mathbb{R}$ is a Jenkins-Serrin type solution of

$$(0.13) \quad \nabla \cdot \left(\frac{1}{\sqrt{1 + |\nabla \mathcal{F}|^2}} \nabla \mathcal{F} \right) + \frac{1}{\sqrt{1 + |\nabla \mathcal{F}|^2}} = 0$$

and has $-\infty$ boundary values. Our graph $x_3 = \mathcal{F}(x_1, x_2)$ becomes a cylinder over the downward grim reaper on the $x_1 x_3$ -plane. It can be viewed as an analogue of the classical Jenkins-Serrin type minimal graph, discovered by Scherk in 1834,

$$x_3 = \ln(\cos x_1) - \ln(\cos x_2), \quad (x_1, x_2) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

Its height function takes the values $\pm\infty$ on alternate sides of the square domain.

(c) More generally, Scherk discovered the doubly periodic minimal graph $\Sigma_\rho^{2\alpha}$ [14]:

$$x_3 = \frac{1}{\rho} \left[\ln \left(\cos \left(\frac{\rho}{2} \left[\frac{x_1}{\cos \alpha} - \frac{x_2}{\sin \alpha} \right] \right) \right) - \ln \left(\cos \left(\frac{\rho}{2} \left[\frac{x_1}{\cos \alpha} + \frac{x_2}{\sin \alpha} \right] \right) \right) \right]$$

for some constants $\alpha \in (0, \frac{\pi}{2})$ and $\rho > 0$. It is defined on an infinite chess board-like net of *rhombooids*. Its picture is available at [20]. However, unlike the deformations of Scherk's minimal surfaces by *shearing*, it is not possible to shear the grim reaper cylinder to obtain non-trivial deformations of unit-speed translators.

Remark 2 (Jenkins-Serrin type problem for graphical translators). A beautiful theory for infinite boundary value problems of minimal graphs is developed by Jenkins and Serrin [11]. Moreover, Spruck [19] obtained a Jenkins-Serrin type theory for constant mean curvature graphs. It would be very interesting to investigate a similar Dirichlet problem for graphical translators. In the following Example 6, we prove that, for any $l \geq \pi$, there exists a downward *unit-speed* graphical translator that its height function is defined over an infinite strip of width l and takes the values $-\infty$ on its boundary. We propose a conjecture that the lower bound π is a critical constant in the sense that, for any $l \in (0, \pi)$, there exists no downward *unit-speed* graphical translator defined over an infinite strip of width l approaching $-\infty$ on its boundary.

Example 6 (Deformations of grim reaper cylinder). Let $\theta \in \mathbb{R}$ be a constant.

(a) We begin with the following solution $G = G^\theta(z)$ of the translator equation (0.12):

$$G(z) = G(u + iv) = \frac{\cosh \theta \sinh(2u) + i \sinh \theta}{1 + \cosh \theta \cosh(2u)}, \quad u + iv \in \mathbb{C}.$$

Theorem 4 then induces the conformal immersion $\mathbf{X}^\theta = (x_1, x_2, x_3) : \mathbb{R}^2 \rightarrow \mathbb{R}^3$

$$\begin{cases} x_1(u, v) = -2 \cosh \theta \tan^{-1}(\tanh u), \\ x_2(u, v) = \sinh \theta \ln(\cosh(2u)) + 2v, \\ x_3(u, v) = -\ln(\cosh(2u)) + 2v \sinh \theta. \end{cases}$$

The downward translator $\mathbb{G}^\theta = \mathbf{X}^\theta(\mathbb{R}^2)$ has the translating velocity $(0, 0, -1)$.

(b) Using the patch \mathbf{X}^θ , one can easily check that Gauss map of the translator \mathbb{G}^θ lies on a half circle. Let us introduce a new linear coordinate

$$x_0 = \frac{1}{\cosh \theta} x_2 + \frac{\sinh \theta}{\cosh \theta} x_3$$

and then prepare an orthonormal basis

$$\mathcal{U}_1 = (1, 0, 0), \quad \mathcal{U}_2^\theta = \left(0, -\frac{\sinh \theta}{\cosh \theta}, \frac{1}{\cosh \theta} \right), \quad \mathcal{U}_3^\theta = \left(0, \frac{1}{\cosh \theta}, \frac{\sinh \theta}{\cosh \theta} \right).$$

It is easily shown that our surface \mathbb{G}^θ admits a new geometric patch

$$(x_1, x_2, x_3) = \widehat{\mathbf{X}}^\theta(x_1, x_0) = x_1 \mathcal{U}_1 + \mathbf{T}^\theta(x_1) \mathcal{U}_2^\theta + x_0 \mathcal{U}_3^\theta.$$

Here, $\mathbf{T}^\theta(\cdot) = \cosh \theta \ln \left(\cos \left(\frac{\cdot}{\cosh \theta} \right) \right)$ is a parabolic rescaling of the downward unit-speed grim reaper function. The patch $\widehat{\mathbf{X}}^\theta$ says that the surface \mathbb{G}^θ becomes a cylinder over a parabolically rescaled grim reaper curve in the plane spanned by \mathcal{U}_1 and \mathcal{U}_2^θ .

(c) Our one-parameter family $\{\mathbb{G}^\theta\}_{\theta \in \mathbb{R}}$ of cylinders with the same translating velocity admits a simple geometric description. Applying a suitable rotation in the ambient space \mathbb{R}^3 to the grim reaper cylinder \mathbb{G}^0 with velocity $-\mathcal{U}_2^0 = (0, 0, -1)$:

$$(x_1, x_0) \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \times \mathbb{R} \mapsto \widehat{\mathbf{X}}^0(x_1, x_0) = x_1 \mathcal{U}_1 + \mathbf{T}^0(x_1) \mathcal{U}_2^0 + x_0 \mathcal{U}_3^0,$$

we obtain the congruent cylinder parametrized by

$$(x_1, x_0) \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \times \mathbb{R} \mapsto x_1 \mathcal{U}_1 + \mathbf{T}^0(x_1) \mathcal{U}_2^\theta + x_0 \mathcal{U}_3^\theta,$$

which translates with the rotated velocity $-\mathcal{U}_2^\theta$ under the \mathcal{H} -flow. However, we observe that this rotated cylinder also can be viewed as a translator with new velocity $-\cosh \theta \mathcal{U}_2^0 = (0, 0, -\cosh \theta)$. Employing the appropriate parabolic rescaling as a speed-down action, we meet our cylinder \mathbb{G}^θ parametrized by

$$(x_1, x_0) \in \left(-\frac{\pi}{2} \cosh \theta, \frac{\pi}{2} \cosh \theta \right) \times \mathbb{R} \mapsto \widehat{\mathbf{X}}^\theta(x_1, x_0) = x_1 \mathcal{U}_1 + \mathbf{T}^\theta(x_1) \mathcal{U}_2^\theta + x_0 \mathcal{U}_3^\theta,$$

which translates with velocity $-\mathcal{U}_2^0 = (0, 0, -1)$ under the \mathcal{H} -flow.

(d) We prove the claim in Remark 2. We are able to view the downward unit-speed translator \mathbb{G}^θ as the graph of the function $\mathcal{F}^\theta : \left(-\frac{\pi}{2} \cosh \theta, \frac{\pi}{2} \cosh \theta \right) \times \mathbb{R} \rightarrow \mathbb{R}$:

$$x_3 = \mathcal{F}^\theta(x_1, x_2) = \cosh \theta \mathbf{T}^\theta(x_1) + \sinh \theta x_2.$$

Its height function \mathcal{F}^θ solves the PDE (0.13) over the strip of width $l = \pi \cosh \theta \geq \pi$.

Acknowledgement. I would like to thank Brian White for letting me know about Tom Ilmanen's paper [9], where he presented the correspondence in Remark 1. I also would like to thank Ildefonso Castro for his interests in this work and helpful comments on the Hamiltonian stationary Lagrangian translators in the complex plane [2, Corollary 2,3].

REFERENCES

- [1] S. J. Altschuler and L. F. Wu, *Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle*, Calc. Var. Partial Differential Equations, **2** (1994), no. 1, 101–111.
- [2] I. Castro and A. M. Lerma, *Translating solitons for Lagrangian mean curvature flow in complex Euclidean plane*, arXiv:1007.1886v1.
- [3] T. H. Colding and W. P. Minicozzi II, *Minimal surfaces and mean curvature flow*, arXiv:1102.1411v1.
- [4] J. Clutterbuck, O. C. Schnürer and F. Schulze, *Stability of translating solutions to mean curvature flow*, Calc. Var. Partial Differential Equations, **29** (2007), no. 3, 281–293.
- [5] H. P. Halldorsson, *Helicoidal surfaces rotating / translating under the mean curvature flow*, arXiv:1106.4583v2.
- [6] D. A. Hoffman and R. Osserman, *The geometry of the generalized Gauss map*, Mem. Amer. Math. Soc. **28** (1980), no. 236.

- [7] D. A. Hoffman and R. Osserman, *The Gauss map of surfaces in \mathbb{R}^3 and \mathbb{R}^4* , Proc. London Math. Soc. **50** (1985), no. 3, 27–56.
- [8] N. Hungerbühler and K. Smoczyk, *Soliton solutions for the mean curvature flow*, Differential Integral Equations, **13** (2000), no. 10-12, 1321–1345.
- [9] Tom Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. **108** (1994), no. 520.
- [10] D. Joyce, Y.-I. Lee and M.-P. Tsui, *Self-similar solutions and translating solitons for Lagrangian mean curvature flow*, J. Differential Geom. **84** (2010), no. 1, 127–161.
- [11] H. Jenkins and J. Serrin, *Variational problems of minimal surface type. II. Boundary value problems for the minimal surface equation*. Arch. Rational Mech. Anal. **21** (1966) 321–342.
- [12] W. H. Meeks III and J. Pérez, The classical theory of minimal surfaces, Bull. Amer. Math. Soc. (N.S.) **48** (2011), no 3, 325–407.
- [13] H. Nakahara, *Some examples of self-similar solutions and translating solitons for Lagrangian mean curvature flow*, arXiv:1109.3554v1.
- [14] J. C. C. Nitsche, Lectures on Minimal Surfaces, Volume 1, Cambridge University Press, Cambridge, 1988.
- [15] A. Neves and G. Tian, *Translating solutions to Lagrangian mean curvature flow*, arXiv:0711.4341, to appear in Trans. Amer. Math. Soc.
- [16] X. H. Nguyen, *Translating tridents*, Comm. in Partial Differential Equations. **34** (2009), no. 3, 257–280.
- [17] X. H. Nguyen, *Complete Embedded Self-Translating Surfaces under Mean Curvature Flow*, arXiv:1004.2657.
- [18] K. Smoczyk, *A relation between mean curvature flow solitons and minimal submanifolds*, Math. Nachr. **229** (2001), p. 175–186.
- [19] J. Spruck, *Infinite boundary value problems for surfaces of constant mean curvature*, Arch. Rational Mech. Anal. **49** (1972/73), 1–31.
- [20] M. Weber, *Sheared Doubly Periodic Scherk*, <http://bit.ly/hKLALe>.
- [21] B. White, *Subsequent Singularities in Mean-Convex Mean Curvature Flow*, arXiv:1103.1469v2.

DEPARTMENT OF GEOMETRY AND TOPOLOGY, UNIVERSITY OF GRANADA, GRANADA, SPAIN.
E-mail address: ultrametric@gmail.com