

Use Bellman Ford's Algorithm to find the shortest path of a maze.

Step 1: Similar to the previous question of finding the shortest path of the a maze. But instead of using Dijkstra's Algorithm, you will use Bellman Ford's Algorithm.

Step 2: Comparing the performance of Dijkstra's Algorithm and Bellman Ford's Algorithm in solving this question by

Big-O comparison

comparing how many steps are required to find a graph that has the shortest path.

Note:

A step is defined as either comparing two numbers or replacing a number.

You can count how many steps for Dijkstra's Algorithm on the created table.

Refer this example on counting the steps for Bellman Ford's Algorithm.

Ans:

Step 1:

Step 2:

Step 3:

Step4:

Step 5:

Bellman Ford's Algorithm:

Cycle 1:

	0	1	3	∞	∞	∞	∞	∞	∞	∞	00	∞	∞	∞
step S	S	Α	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	00	∞	∞	∞	∞	∞	∞	∞	∞	∞	00
step A	S	Α	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	∞	∞	∞	∞	∞	∞	∞	∞	∞
step B	S	Α	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	∞	∞	∞	∞	∞	00	∞	∞	∞
step C	S	Α	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	6	7	8	∞	∞	00	∞	∞	∞
step D	S	А	В	С	D	F	G	Н	I	J	K	L	М	E
	0	1	3	5	5	6	7	8	11	∞	00	11	∞	∞
step F	S	A	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	6	7	8	11	12	10	11	∞	∞
step G	S	Α	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	6	7	8	11	12	10	11	∞	∞
step H	S	А	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	6	7	8	11	12	10	11	∞	∞
step I	S	Α	В	С	D	F	G	Н	I	J	K	L	M	Е
	0	1	3	5	5	6	7	8	11	12	10	11	∞	∞
step J	S	Α	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	6	7	8	11	12	10	11	11	18
step K	S	A	В	С	D	F	G	Н	I	J	K	L	М	E 18
	0 S	1 A	3 B	5 C	5 D	6 F	7 G	8	11 I	12 .I	10 K	11 L	11 M	18 E
step L	0	1	3	5	5	6	7	H 8	11	12	10	11	11	18
step M	S	A	В	C	D	F	G	Н	I	.J	K	L	M	E
	0	1	3	5	5	6	7	8	11	12	10	11	11	18
step E	S	A	В	С	D	F	G	Н	I	J	К	L	M	E

Cycle 2: do it one more time to check is there are any shorter path

	0	1	3	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞
step S	S	Α	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	∞	∞	∞	∞	∞	∞	∞	00	∞	∞	∞
step A	S	Α	В	C	D	F	G	Н	I	J	K	L	M	Е
	0	1	3	5	5	∞	∞	∞	∞	∞	∞	∞	∞	∞
step B	S	A	В	С	D	F	G	Н	I	J	K	L	M	Е
	0	1	3	5	5	∞	∞	∞	∞	∞	∞	∞	∞	∞
step C	S	Α	В	С	D	F	G	Н	I	J	K	L	M	Е
	0	1	3	5	5	6	7	8	∞	∞	∞	∞	∞	∞
step D	S	Α	В	С	D	F	G	Н	I	J	K	L	M	Е
	0	1	3	5	5	6	7	8	11	∞	∞	11	∞	∞
step F	S	A	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	6	7	8	11	12	10	11	∞	∞
step G	S	Α	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	6	7	8	11	12	10	11	∞	∞
step H	S	Α	В	С	D	F	G	Н	I	J	K	L	M	Е
	0	1	3	5	5	6	7	8	11	12	10	11	∞	∞
step I	S	Α	В	С	D	F	G	Н	I	J	K	L	M	Е
	0	1	3	5	5	6	7	8	11	12	10	11	∞	∞
step J	S	Α	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	6	7	8	11	12	10	11	11	18
step K	S	A	В	С	D	F	G	Н	I	J	K	L	M	E
	0	1	3	5	5	6	7	8	11	12	10	11	11	18
step L	S	A	В	С	D	F	G	Н	I	J	K	L	М	E
	0	1	3	5	5	6	7	8	11	12	10	11	11	18
step M	S	A	B 3	C 5	D 5	F	G 7	H 8	1 11	Ј 12	K 10	11	M 11	E
gton F	0	1 A	3 B	. C	D D	F F	G	8 H	I	12	IU K	L L	M M	18 E
step E	S	A	В	C	U	F	G	Н	1	J	K	L	M	E

So shortest path from S to E is 18

Comparing the performance of Dijkstra's Algorithm and Bellman Ford's Algorithm:

Bellman Ford's Algorithm time complexity is O(V, E) and Dijkstra's Algorithm has $O(V^2 + E)$ Dijkstra's Algorithm visited vertex once, but Bellman Ford's Algorithm visited twice.