Gamma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of PPG 400

Figure 1a

Gamma Irradiation of Hydrolyzed Heart Valve

Gamma irradiation of Hydrolyzed Heart Valve Cusps in the Presence of PPG 400 and a Stabilizer Mixture of 62.5mM TroloxC, 100mM Lipoic

Figure 1c

Gamma Irradiation of Porcine Heart Valve Cusps in the Presence of PPG400 with Various Stabilizers

- 1. Molecular Weight Markers
- 2. Blank
- 3. PPG400, 0 kGy
- 4. PPG400, 30 kGy
- 5. PPG400 and TroloxC, 0 kGy
- 6. PPG400 and TroloxC, 30 kGy
- 7. PPG400 and a Cocktail of TroloxC, Lipoic Acid, Coumaric Acid, and n-Propyl Gallate, 0 kGy
- 8. PPG400 and a Cocktail of TroloxC, Lipoic Acid, Coumaric Acid, and n-Propyl Gallate, 30kGy

Figure 1d

Gamma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of PBS

...

Gamma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of 50% DMSO

Gamma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of 50% DMSO and a Stabilizer Mixture of 167 mM Ascorbate, 166 mM Coumaric Acid, and 100 mM n-Propyl Gallate

Gamma Irradiation of Porcine Heart Valve Cusps in the Presence of Various Solvents

Reduced

2011 40.6 40.6 20.6 6.6 6.6

123456789

Figure 2e

1. Molecular Weight Markers

2. PBS, 0 kGy

3. PBS, 25 kGy

4. PPG400, 0 kGy

5. PPG400, 25 kGy

6. 50% DMSO, 0 kGy

7. 50% DMSO, 25 kGy

8. 50% DMSO and Cocktall of Ascorbate, Coumaric Acid, and n-Propyl Gallate, 0 kGy 9. 50% DMSO and Cockfall of Ascorbate, Coumaric Acid, and n-Propyl Gallate, 25 kGy

Gamma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of PBS

Gamma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of a Cryopreservative (Containing Approximately 20% DMSO)

Gamma Irradiation of Hydralyzed Heart Valve Cusps in the Presence of 50% DMSO

Camma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of 50% DMSO and Ascorbate

Gamma Irradiation of Porcine Heart Valve Cusps in the Presence of Various Solvents

Reduced

- 1. Molecular Weight Markers
- 2. Cryoproservative, 0 kGy 3. Cryoproservative, 30 kGy
- 4. PBS, 0 kGy 5. PBS, 30 kGy
- 6. 50% DMSO, 0 kGy 7. 50% DMSO, 30 kGy
- 8. 50% DMSO and Ascorbato, 0 kGy 9. 50% DMSO and Ascorbate, 30 kGy

Figure 3e

Gamma Irradiation of Hydrolyzed Hearl Valve Cusps in the Presence of PBS

25 Gamma Irradiation of Hydrolyzed Heart Valve Cusps 20 in the Presence of PBS and Ascorbate 15 Time (Minutes) 10 70 —45 kGy ---0 kGy Figure 4b Fluorescence

Gamma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of PPG 400

Gamma Irradiation of Hydrolyzed Heart Valve Cusps Dehydrated with PPG 400 and Rehydrated in the Presence of

Samma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of 50% DMSO

Gamma Irradiation of Hydrolyzed Heart Valve Cusps in the Presence of 50% DMSO and Ascorbate

Gamma Irradiation of Porcine Heart Valve Cusps in the Presence of Various Solvents

1. Molecular Weight Markers

2. PBS, 0 kGy

3. PBS, 45 kGy

4. PBS and Ascorbate, 0 kGy

5. PBS and Ascorbate, 45 kGy

6. PPG400, 0 kGy

7. PPG400, 45 kGy

8. Dohydrafed in PPG400 and Rehydrated with PBS and Ascorbate, 0 kGy

9. Dehydrated in PPG400 and Rehydrated with PBS and Ascorbate, 45 kGy

Figure 4g

Gamma Irradiation of Porcine Heart Valve Cusps in the Presence of Various Solvents

- 1. Molecular Weight Markers
- 2.50% DMSO, 0 kGy
- 3. 50% DMSO, 45 kGy
- 4. 50% DMSO and Ascorbate, 0 kGy
- 5. 50% DMSO and Ascorbate, 45 kGy

Figure 4h

ACL Gamma Irradiated at -80°C

AED = 100 mM Ascorbate, 22 mM Ergothionine, 100 mM Deferoxamine

A STATE OF THE ST

c:\class-vp\methods\1030, Channel B

 $\gamma\text{-}irradiation$ of Freeze-Dried Porcine ACL in the Presence of Antioxidants at 4°C $^{+}$

64

Pepsin-Digested Cellagen Isolated from Irradiated Freeze-Dried Porcine ACL in the Presence of Antioxidants at 4°C 1.667kGy/hr

		- 205 - 119 - 98 - 98 - 37 - 30
Pepsin Digested Collagen	OK His ok	
	0K * ; d2K 0K *	

Cocktails: PPG/presoak; 100µM troloxC, 100mM courmeric acid, 100mM lipoic acid, 100mM n-propyl gallate

Presence of Antickidants at 4°C 1.667kGy/hr

Cocktails: PPG/presoak; 100μΜ troloxC, 100mM courmeric acid, 100mM lipoic acid, 100mM n-propyl gallate

Donn's D'anned Allegia Indialed from Irradiated Franco-Dried Porcine ACL in the Le recontribution in the 1.867kGy/hr?

9

Guanidine Extraction of Freeze-dried ACL's

10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17

52 —

37—

22 -

= 0 kGy

=45 kGy

4 = 200 mM Ascorbate, 45 kGy 3 = 200 mM Ascorbate, 0 kGy

= 100 mM Thiourea, 0 kGy

6 = 100 mM Thiourea, 45 kGy

8 = 200 mM Histidine in PBS, 45 kGy 7 = 200 mM Histidine in PBS, 0 kGy

9 = 500 mM Trehalose, 0 kGy

10 = broad range markers

11 = 500 mM Trehalose, 45 kGy

12 = 5 mg/mL Ergothionine, 0 kGy

13 = 5 mg/ml Ergothionine, 45 kGy

15 = 10 mM Poly-lysine, 45 kGy 14 = 10 mM Poly-lysine, 0 kGy

courmeric acid, 100mM lipoic acid, 100mM 16 = PPG, then cocktail (100 µM trolox, 100 mM propyl gallate), 0 kGy

17 = PPG, then cocktail, 45 kGy

Purified GAG/Proteoglycans from Irradiated ACL

つうこうりょうしつ		3 = 5 mg/mL Ergothionine, 0 kGy 4 = 5 mg/ml Ergothionine, 45 kGy 5 = 10 mM Poly-lysine, 0 kGy 6 = 10 mM Poly-lysine, 45 kGy 7 = PPG Pretreatment, then cocktail, 0 kGy 8 = PPG Pretreatment, then cocktail, 45 kGy 9 = Recombinant Human Decorin
	205— 119— 98— 52— 37— 22— 1 = Recombinant Human Decorin 2 = No Scavengers, 0 kGy	5 = No Scavengers, 45 kGy 4 = 200 mM Ascorbate, 0 kGy 5 = 200 mM Ascorbate, 45 kGy 6 = 100 mM Thiourea, 0 kGy 7 = 100 mM Thiourea, 45 kGy 8 = 200 mM Histidine in PBS, 0 kGy 9 = 200 mM Histidine in PBS, 45 kGy

5

DEAE Chromatography of Porcine ACL Irradiated in Cryopreservative ± Ascorbate at –80°C at 5.1 kGy/h

		.									Dose (kGv)	
iO.		-									50	+
55	Quick			-		-	-	•		,	0	+
Modified VS55	đ						-	*		-	20	. 1
ifie	į	=						,	-		. 0	•
po	ed										20	+
Σ	ulat	. •			s			•			0	+
	Regulated			,							50	1
		• ~			-						0	1
					1 1							
tive	ſ	ن									20	+
Z	Quick	٠							,		0	+
se	8		-								20	
bre	Ĺ										0	•
Z	ed										20	+
S L	ulat	-									0	+
Edmonton Cryopreservative	FC Regulated										20	ŧ
mo	L										0	1
Ed	Ŧ	-		-							0	I
			205 —	119 —	 26 76	52 —	37 —	30 —	22—	8		

Edmonton CP: M199, 10% FCS, 2 M DMSO, Pen-Strep Modified VS55: 100 mM trehalose, 15 mM KH₂PO₄, 42 mM K₂HPO₄, 15 mM KCl, 10 mM NaHCO₃, 150 mM mannitol, 24.2% DMSO, 16.8% 1,2-propanediol, 14% formamide

FC: fresh ACL control Quick Freeze: dry-ice ethanol bath

Regulated Freeze: decrease in temp. of 1°C/min to -56-59°C, then placed in -80°C

Guanidine Extract of Porcine ACL Irradiated in Cryopreservative ± Ascorbate at -80°C at 5.1 kGy/h

FC: fresh ACL control

Quick Freeze: dry-ice ethanol bath

Regulated Freeze: decrease in temp. of 1°C/min to -56-59°C, then placed in -80°C

Pepsin-Digested Collagen Isolated from Irradiated Porcine ACL in the Presence of Ascorbate at -80°C 5.1kGy/hr

VS55: 100mM trehalose, 15mM KH₂PO₄, 42mM K₂HPO₄, 15mM KCI, 10mM NaHCO₃, 150mM mannitol, 24.2% DMSO, 16.8% 1,2-propanediol, and 14% formamide

CP: 10% FCS, Penicillin-streptomycin, M199, and 2M DMSO

Pepsin-Digested Collagen Isolated from Irradiated Freeze-Dried Porcine ACL in the Presence of Antioxidants at 4°C 1.656kGy/hr

Cocktails:100µM troloxC, 100mM courmeric acid, 100mM lipoic acid, 100mM n-propyl gallate

4.50

Pepsin-Digested Collagen Isolated from Irradiated Porcine ACL in the Presence of Ascorbate at -80°C 1.53kGy/hr

Densitometry of Pepsin-Digested Collagen Isolated from Irradiated Porcine ACL in the Presence of Ascorbate at -80°C 1.53kGy/hr

PBS/50kGy PBS/A/OkGy TM NaCI/OkGy TM NaCI/S0kGy TM NaCI/S0kGy TM NaCI/S0kGy Markers

8

Pepsin-Digested Collagen Isolated from Irradiated Porcine ACL in the Presence of Scavengers at -80°C 1.53kGy/hr

Low Temperature Gamma Irradiation of ACLs Subjected to Various Forms of Preservation -80°C, 1.5 kGy/h

γ-irradiation of type I Freeze-Dried Collagen in the Presence of Antioxidants at 4°C 1.656kGy/hr /

γ-irradiation of type I Collagen Solution and Gel in the Presence of Antioxidants at -20°C 1.537kGy/hr

γ-irradiation of type I Collagen Solution In the Presence of Antioxidants at -80°C 1.53kGy/hr

γ-irradiation of type I Collagen Solution and Gel in the Presence of Antioxidants at -80°C 1.3kGy/hr '

		200 - 116 - 97 - 66	
Thiourea	Llg Gel 0 50 0 50		
Protectants Asc/GG Methionine	Gel Liq Gel 0 50 0 50		
Protectants As	Dose (KGy) (200 B11-7 116 02-7 97 02-7 # - 66 - 45	
Asc/GG	Llq 0 50		
Asc	Liq Gel		
Control	Liq Gel		
Protectants	Dose (kGy) (β112- Ω2-1- Ω2-1-	
			•

The second secon

y-irradiation of Freeze-Dried type I Collagen in the Presence of Antioxidants at 40C 1.673kGy/hr

trees and have been and the trees the trees of the trees

#1.5.14

 γ -irradiation of type I Collagen Solution in the Presence of Antioxidants at $4^0 extsf{C}$ kGy/hr $^\prime$

fg. 14B

Actions above course some section course of a course of the course of th

7.5. 14C

 γ -irradiation of type I Collagen Solution in the Presence of Antioxidants at -80°C 5.136kGy/hr

tigure 142