Proba scrisă la FIZICĂ

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

A. MECANICA

Varianta 5

Se consideră accelerația gravitațională $g = 10 \,\text{m/s}^2$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile fiind cele utilizate în manualele de fizică, unitatea de măsură a mărimii fizice exprimate prin produsul $m \cdot v$ poate fi scrisă în forma:
- a. N·m

- c. N·s
- d. W

- (3p)
- 2. Viteza de 0,6 km/min exprimată în unități de măsură fundamentale din S.I. corespunde valorii:
- **b.** 1m/s
- **c.** 10 m/s
- **d.** $100 \, \text{m/s}$
- (3p)
- 3. În figura alăturată este reprezentată viteza unui biciclist în funcție de timp. Distanța parcursă de biciclist în cele 8 minute este:
- **a.** 4,8 km
- **b.** 3,6 km
- **c.** 2,4 km
- **d.** 1,2 km

- t(min)(3p)
- 4. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, legea lui Hooke poate fi scrisă sub

- $\mathbf{a.} \ \frac{\Delta \ell}{\ell_0} = \frac{F}{S_0} \cdot E \qquad \qquad \mathbf{b.} \ \frac{F}{S_0} = \frac{\Delta \ell}{\ell_0} \cdot E \qquad \qquad \mathbf{c.} \ \frac{F}{S_0} \cdot \frac{\Delta \ell}{\ell_0} = E \qquad \qquad \mathbf{d.} \ \frac{F}{S_0} \cdot \frac{\Delta \ell}{\ell_0} \cdot E = 1$ (3p)
- **5.** O minge cu masa m=1 kg este aruncată cu viteza inițială $v_0=2$ m/s, de la înălțimea h=1 m față de nivelul la care energia potențială gravitațională se consideră nulă. Energia mecanică totală a mingii la momentul initial este:
- **a.** 2 J
- **b.** 6 J
- **c.** 10 J
- **d.** 12 J
- (3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un corp având masa m=3 kg se mişcă pe o suprafață orizontală, cu viteză constantă, sub acțiunea unei

forțe \vec{F}_1 care formează cu orizontala un unghi $\alpha = 53^{\circ}8'$ ($\sin \alpha = 0.8$), ca în figura alăturată. Forța de frecare la alunecare dintre corp și suprafața orizontală este $F_f = 9 \,\mathrm{N}$.

- a. Reprezentați forțele care acționează asupra corpului în timpul mișcării sale.
- **b.** Determinați valoarea forței F_1 .
- c. Calculați valoarea coeficientului de frecare la alunecare dintre corp și suprafața orizontală.
- \mathbf{d} . Forța F_1 își încetează acțiunea. Corpul își continuă mișcarea, urcând de-a lungul unui plan înclinat ce formează cu orizontala unghiul $\alpha = 53^{\circ}8'$ (sin $\alpha = 0.8$), sub acțiunea unei forțe de tracțiune \vec{F}_2 orientată paralel cu suprafața planului. Coeficientul de frecare la alunecare dintre corp și suprafața planului este $\mu = 0.5$. Determinați valoarea forței \vec{F}_2 astfel încât corpul să urce pe plan cu accelerația $a = 1 \text{ m/s}^2$.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un corp de masă m = 700 g se află inițial în repaus, pe sol. Se acționează asupra corpului cu o forță verticală constantă, de valoare $F = 16 \,\mathrm{N}$, până când corpul ajunge la înăltimea $h = 1.4 \,\mathrm{m}$ fată de sol. Din acest punct corpul își continuă liber mișcarea. Considerăm că interacțiunea cu aerul este neglijabilă pe toată durata mișcării corpului. Determinați:

- a. variația energiei potențiale gravitaționale în timpul ridicării corpului până la înălțimea h față de sol;
- **b.** lucrul mecanic efectuat de forta \vec{F} pe distanta h;
- c. viteza corpului la înăltimea h;
- d. impulsul mecanic al corpului în momentul atingerii solului.

Proba scrisă la FIZICĂ

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Varianta 5

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Procesul termodinamic în care căldura primită de o cantitate dată de gaz ideal este transformată integral în lucru mecanic este:
- a. comprimare izobară
- b. comprimare adiabatică
- c. destindere adiabatică
- d. destindere izotermă.

(3p) 2. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimată prin produsul $p \cdot \Delta V$ este:

- a. J
- b. J·K
- **c.** J·mol⁻¹

3. O cantitate de gaz, considerat ideal, este supusă procesului ciclic termodinamic 1-2-3-1, reprezentat în coordonate p-V în figura alăturată. Știind că în cursul procesului 3 - 1 variația energiei interne este nulă, relația dintre temperaturile gazului în

d. J·mol

(3p) (3p)

- stările 1, 2 și 3 este:

- **a.** $T_1 < T_2 = T_3$ **b.** $T_1 > T_2 = T_3$ **c.** $T_1 = T_3 < T_2$ **d.** $T_1 < T_2 > T_3$
- **4.** Un gaz ideal, aflat la temperatura $t_1 = 27^{\circ}\text{C}$, este încălzit la presiune constantă astfel încât volumul gazului se dublează. Temperatura gazului în starea finală este egală cu:

- **a.** $T_2 = 327 \,\mathrm{K}$ **b.** $T_2 = 423 \,\mathrm{K}$ **c.** $T_2 = 600 \,\mathrm{K}$ **d.** $T_2 = 683 \,\mathrm{K}$ **(3p) 5.** O masă $m = 100 \,\mathrm{g}$ de apă $\left(c_a = 4{,}18 \,\mathrm{J} \cdot \mathrm{g}^{-1} \cdot \mathrm{K}^{-1}\right)$ este încălzită cu $\Delta T = 1 \,\mathrm{K}$. Căldura necesară acestui proces este egală cu:
- **a.** 41,8 J
- **b.** 418 J
- **c.** 4180 J
- **d.** 41.8kJ

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un vas cilindric orizontal, închis la ambele capete, este împărțit cu ajutorul unui piston termoizolant, care se poate mişca fără frecare, în două compartimente M și N, de volume $V_{\rm M}=1~{\rm dm^3}$ respectiv $V_{\rm N}=2\,{\rm dm^3}$. Gazul din compartimentul M se află la presiunea $p_{\rm M}=10^5\,{\rm Pa}$, iar gazul din compartimentul N la presiunea $p_{\rm N}=2\cdot 10^5\,{\rm Pa}$. Iniţial gazele se află la aceeaşi temperatură $T_{\rm N}$ iar pistonul este blocat. Considerând cele două gaze ideale, determinați:

- a. raportul dintre numărul de molecule aflate în compartimentul M și numărul de molecule aflate în compartimentul N;
- **b.** cantitatea de gaz aflată în compartimentul M, dacă temperatura este $T = 250 \, \text{K}$;
- c. volumul ocupat de gazul din compartimentul M, după deblocarea pistonului si stabilirea echilibrului mecanic, știind că în timpul procesului temperatura rămâne constantă în ambele compertimente;
- d. valoarea temperaturii până la care trebuie încălzit gazul din compartimentul M pentru ca pistonul să revină în poziția inițială.

III. Rezolvați următoarea problemă:

(15 puncte)

O cantitate v = 1 mol de gaz ideal biatomic ($C_V = 2.5R$) efectuează procesul ciclic 1 - 2 - 3 - 1 reprezentat în coordonate p-V în figura alăturată. Temperatura gazului în starea inițială este

 $T_1 = 300 \text{ K}$, iar valoarea presiunii în starea 3 este dublă față de valoarea din starea 1. Determinati:

- **b.** lucrul mecanic total schimbat de gaz cu mediul exterior în timpul unui ciclu;
- c. randamentul motorului termic care funcționează după procesul 1-2-3-1;
- d. randamentul unui ciclu Carnot care ar funcționa între temperaturile extreme atinse de gaz în timpul procesului ciclic dat.

Proba scrisă la FIZICĂ

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 5

Se consideră sarcina electrică elementară $e = 1,6 \cdot 10^{-19}$ C.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. În figura alăturată este reprezentată dependența de lungime a rezistenței electrice a două conductoare liniare, metalice, confectionate din același material. Relația dintre secțiunile transversale ale celor două conductoare este:
- **a.** $S_1 = S_2$
- **b.** $S_1 = 2S_2$
- **c.** $S_1 > S_2$
- **d.** $S_2 > S_1$

L(m)(3p)

2. Ținând seama de notațiile uzuale din manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimată prin produsul $E^2 \cdot r^{-1}$ este:

- a. V
- **b.** J

- $\text{d. }W^2\cdot\Omega^{-1}$

(3p)

3. Tensiunea la care trebuie alimentat un bec cu rezistența electrică $R = 1936 \,\Omega$ pentru a funcționa la puterea nominală de P = 25 W este:

- **a.** 110 V
- **b.** 220 V
- **c.** 1100 V
- **d.** 2200 V

(3p)

- 4. O grupare formată din patru rezistoare cu rezistențe electrice diferite, legate în paralel, este conectată la bornele unei surse de tensiune constantă. Afirmația corectă este:
- a. rezistenta grupării scade atunci când rezistenta electrică unui rezistor creste
- b. rezistenta grupării este mai mică decât rezistenta oricărui rezistor din grupare
- c. intensitatea curentului prin sursă creste dacă se scoate un rezistor din grupare
- d. intensitatea curentului electric ce străbate fiecare rezistor aceeasi valoare.

(3p)

5. Un conductor metalic este parcurs de un curent electric cu intensitatea I = 3,2mA. Numărul de electroni ce străbat secțiunea transversală într-un minut este egal cu:

- **a.** 12 · 10¹⁹
- **b.** 3.2 · 10¹⁹
- **c.** $5 \cdot 10^{18}$
- **d.** $12 \cdot 10^{17}$

(3p)

II. Rezolvați următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Generatoarele sunt identice, având t.e.m. $E=6\,\mathrm{V}\,$ şi rezistenţa interioară $r=2\Omega\,$ fiecare. Cele două rezistoare sunt identice şi au fiecare rezistenţa electrică $R = 24 \Omega$. Determinați:

- a. parametrii sursei echivalente formate din cele trei generatoare;
- **b.** indicația unui ampermetru ideal conectat între bornele A și B;
- **c.** indicația unui voltmetru ideal conectat între bornele A și B;
- d. rezistența circuitului exterior sursei echivalente dacă între bornele A și B se montează un rezistor având rezistența electrică $R_1 = 2R$.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O baterie este formată prin legarea în paralel a sase elemente identice, fiecare element având tensiunea electromotoare E = 32 V și rezistența interioară r. Bateria alimentează un rezistor R. Tensiunea la bornele bateriei este U = 30 V, iar puterea disipată pe rezistor este P = 60 W. Determinați:

- **a.** energia consumată de rezistor într-un interval de timp $\Delta t = 1$ min;
- **b.** rezistența interioară r a unui element;
- c. randamentul circuitului;
- d. puterea maximă ce ar putea fi debitată de baterie pe un circuit având rezistența electrică convenabil aleasă.

Proba scrisă la FIZICĂ

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TENDUNAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

D. OPTICA

Varianta 5

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. O radiație incidentă pe un catod produce efect fotoelectric extern. În această situație putem afirma că:
- a. frecventa radiatiei incidente este mai mare sau egală cu frecvența de prag
- b. energia unui foton din radiația incidentă este mai mică decât lucrul mecanic de extracție
- c. frecvența radiației incidente este mai mică decât frecvența de prag
- d. lungimea de undă a radiației incidente este mai mare decât lungimea de undă de prag

(3p)

- **2.** O rază de lumină trece dintr-un mediu cu indicele de refracție n_1 într-un mediu cu indicele de refracție n_2 . Relația corectă între unghiul de incidență i și unghiul de refracție r este:
- **a.** $n_1 \cos r = n_2 \cos i$
- **b.** $n_1 \sin r = n_2 \sin i$
- **c.** $n_1 \sin i = n_2 \sin r$
- **d.** $n_1 \cos i = n_2 \cos r$

(3p)

- 3. Despre indicele de refractie absolut al unui mediu transparent se poate afirma că:
- a. este o mărime fizică adimensională
- b. are aceeasi unitate de măsură ca si distanța focală a unei lentile
- c. are aceeași unitate de măsură ca și convergența unei lentile
- d. are aceeași unitate de măsură ca și viteza luminii

(3p)

- 4. Un sistem optic centrat este alcătuit din două lentile convergente subțiri cu distanțele focale $f_1 = 12,5$ cm, respectiv $f_2 = 50$ cm. Lentilele sunt alipite. Distanța focală echivalentă a sistemului este egală cu:
- **a.** 8 cm
- **b.** 10 cm
- **c.** 31cm
- **d.** 50 cm

(3p)

- 5. În figura alăturată este reprezentată dependenta energiei cinetice maxime a electronilor emişi de frecvenţa radiaţiilor incidente ce cad pe un catod. Lucrul mecanic de extracție al materialului din care este confecționat catodul este aproximativ egal cu:
- **a.** $5.3 \cdot 10^{-19}$ J
- **b.** $3,9 \cdot 10^{-19}$ J
- **c.** $2.6 \cdot 10^{-19}$ J
- **d.** $1.3 \cdot 10^{-19}$ J

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un object luminos liniar este situat la $0.80 \,\mathrm{m}$ în fața unei lentile subțiri cu distanța focală $f = 16 \,\mathrm{cm}$, perpendicular pe axa optică principală a lentilei. Imaginea se formează pe un ecran aflat de cealaltă parte a lentilei.

- a. Realizați un desen în care să evidențiați construcția imaginii prin lentilă.
- **b.** Calculati convergenta lentilei.
- c. Calculați distanța dintre obiectul luminos și imaginea acestuia prin lentilă.
- d. Calculați mărirea liniară transversală și precizați dacă imaginea este reală sau virtuală, dreaptă sau răsturnată, mărită sau micșorată.

III. Rezolvaţi următoarea problemă:

În cadrul unui experiment de interferență a luminii se utilizează un dispozitiv Young iluminat cu radiație monocromatică având lungimea de undă $\lambda = 500\,\mathrm{nm}$, ce provine de la o sursă situată pe axa de simetrie a sistemului. Distanta dintre cele două fante este $2\ell = 2\,\text{mm}$, iar distanta de la planul fantelor la ecran este $D = 1 \,\mathrm{m}$. Determinati:

- a. frecvența radiației utilizate;
- **b.** valoarea interfranjei;
- **c.** diferența de drum dintre razele care interferă și formează maximul de ordin k = 5;
- d. distanța dintre fante pentru ca interfranja să rămână la valoarea inițială atunci când experimentul se desfășoară într-un mediu cu indicele de refracție n =