## **Decentralized Kalman Filtering**

# Aditya Mahajan McGill University

Joint work with Mohammad Afshari

Fields Workshop on Stochastic Processes and their applications 10 August 2017

 $\begin{array}{ll} \text{Model} & \text{State of the world} & : \ x \sim \mathcal{N}(0, \text{var}(x)) \\ & \text{Observation of agent i:} \ y^i = C^i x + w^i_t, \quad w^i \sim \mathcal{N}(0, \text{var}(w^i)) \\ & \text{Estimate of agent i} & : \ \hat{x}^i = g^i(y^i). \quad \text{Let } \hat{x} = \text{vec}(\hat{x}^1, \dots, \hat{x}^n) \\ & \text{Objective} & \text{Choose } (g^1, \dots, g^n) \ \text{to minimize } \mathbb{E}[\mathbf{c}(x, \hat{x})] \ \text{where} \ \dots \end{array}$ 



Model State of the world :  $x \sim \mathcal{N}(0, \text{var}(x))$  
Observation of agent i:  $y^i = C^i x + w^i_t$ ,  $w^i \sim \mathcal{N}(0, \text{var}(w^i))$  
Estimate of agent i :  $\hat{x}^i = g^i(y^i)$ . Let  $\hat{x} = \text{vec}(\hat{x}^1, \dots, \hat{x}^n)$  
Objective Choose  $(g^1, \dots, g^n)$  to minimize  $\mathbb{E}[c(x, \hat{x})]$  where ...

$$\begin{aligned} &(x-\hat{x}^1)^2 + (x-\hat{x}^2)^2 \\ &+ q(\hat{x}^1 - \hat{x}^2)^2 \end{aligned}$$



 $\label{eq:Model} \begin{tabular}{ll} \begin{$ 

**Objective** Choose  $(g^1, ..., g^n)$  to minimize  $\mathbb{E}[c(x, \hat{x})]$  where ...

$$(x - \hat{x}^{1})^{2} + (x - \hat{x}^{2})^{2} + q(\hat{x}^{1} - \hat{x}^{2})^{2}$$



Model State of the world : 
$$x \sim \mathcal{N}(0, \text{var}(x))$$

Observation of agent i:  $y^i = C^i x + w^i_t$ ,  $w^i \sim \mathcal{N}(0, \text{var}(w^i))$ 

Estimate of agent i :  $\hat{\chi}^i = g^i(y^i)$ . Let  $\hat{\chi} = \text{vec}(\hat{\chi}^1, \dots, \hat{\chi}^n)$ 

**Objective** Choose  $(g^1, \ldots, g^n)$  to minimize  $\mathbb{E}[c(x, \hat{x})]$  where . . .

$$(x - \hat{x}^{1})^{2} + (x - \hat{x}^{2})^{2} + q(\hat{x}^{1} - \hat{x}^{2})^{2}$$

$$(x - \hat{x}^{2})^{2} \qquad (x - \hat{x}^{1})^{2} + (x - \hat{x}^{2})^{2} + (x - \hat{x}^{3})^{2} + (x - \hat{x}^{4})^{2}$$

$$+ q(\hat{x}^{1} - \hat{x}^{2})^{2} + q(\hat{x}^{2} - \hat{x}^{3})^{2} + q(\hat{x}^{3} - \hat{x}^{4})^{4} + q(\hat{x}^{4} - \hat{x}^{1})$$



Decentralized Kalman Filtering-(Mahajan)

Model State of the world :  $x \sim \mathcal{N}(0, \text{var}(x))$ 

Observation of agent i:  $y^i = C^i x + w^i_t$ ,  $w^i \sim \mathcal{N}(0, \text{var}(w^i))$ 

Estimate of agent i:  $\hat{\chi}^i = g^i(y^i)$ . Let  $\hat{\chi} = \text{vec}(\hat{\chi}^1, \dots, \hat{\chi}^n)$ 

**Objective** Choose  $(g^1, \ldots, g^n)$  to minimize  $\mathbb{E}[c(x, \hat{x})]$  where ...

$$(x - \hat{x}^{1})^{2} + (x - \hat{x}^{2})^{2} + q(\hat{x}^{1} - \hat{x}^{2})^{2} + q(\hat{x}^{1} - \hat{x}^{2})^{2} + q(\hat{x}^{1} - \hat{x}^{2})^{2} + q(\hat{x}^{2} - \hat{x}^{3})^{2} + q(\hat{x}^{3} - \hat{x}^{4})^{4} + q(\hat{x}^{4} - \hat{x}^{1})$$

Model State of the world :  $x \sim \mathcal{N}(0, \text{var}(x))$ 

Observation of agent i:  $y^i = C^i x + w^i_t$ ,  $w^i \sim \mathcal{N}(0, \text{var}(w^i))$ 

Estimate of agent 
$$i$$
 :  $\hat{\chi}^i = g^i(y^i)$ . Let  $\hat{\chi} = \text{vec}(\hat{\chi}^1, \dots, \hat{\chi}^n)$ 

Choose  $(q^1, \ldots, q^n)$  to minimize  $\mathbb{E}[c(x, \hat{x})]$  where  $\ldots$ 

Objective Choose 
$$(g^1, ..., g^n)$$
 to minimize  $\mathbb{E}[c(x, \hat{x})]$  where ...

$$c(x, \hat{x}) = \sum_{i=1}^{n} (x - \hat{x}^{i})^{\top} M^{ii}(x - \hat{x}^{i}) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\hat{x}^{i} - \hat{x}^{j})^{\top} M^{ij}(\hat{x}^{i} - \hat{x}^{j})$$

$$(x - \hat{x}^{1})^{2} + (x - \hat{x}^{2})^{2} + q(\hat{x}^{1} - \hat{x}^{2})^{2} + q(\hat{x}^{1} - \hat{x}^{2})^{2} + q(\hat{x}^{2} - \hat{x}^{3})^{2} + q(\hat{x}^{3} - \hat{x}^{4})^{4} + q(\hat{x}^{4} - \hat{x}^{1})$$

$$+ q(x^{1} - x^{2})^{2} + q(x^{2} - x^{3})^{2} + q(x^{2} - x^{3})^{$$



#### Multi-step decentralized estimation (basic version)

 $\begin{array}{ll} \text{Model} & \text{State of the world} & : \ x_{t+1} = Ax_t + w_t^0, \quad w_t^0 \sim \mathcal{N}(0, \text{var}(w^0)) \\ \\ & \text{Observation of agent i:} \ y_t^i = C^i x_t + w_t^i, \quad w_t^i \sim \mathcal{N}(0, \text{var}(w^i)) \\ \\ & \text{Estimate of agent i} & : \ \hat{x}_t^i = g^i(y_{1:t}^i). \quad \text{Let } \hat{x}_t = \text{vec}(\hat{x}_t^1, \dots, \hat{x}_t^n) \\ \end{array}$ 



#### Multi-step decentralized estimation (basic version)

Model State of the world :  $x_{t+1} = Ax_t + w_t^0$ ,  $w_t^0 \sim \mathcal{N}(0, \text{var}(w^0))$ 

Observation of agent i:  $y_t^i = C^i x_t + w_t^i$ ,  $w_t^i \sim \mathcal{N}(0, \text{var}(w^i))$ 

Objective Choose  $(g^1, \dots, g^n)$  to minimize  $\mathbb{E}\left[\sum_{t=1}^i c(x_t, \hat{x}_t)\right]$  where  $c(x_t, \hat{x}_t) = \sum_{i=1}^n (x_t - \hat{x}_t^i)^\top M^{ii}(x_t - \hat{x}_t^i) + \sum_{i=1}^n \sum_{j=i+1}^n (\hat{x}_t^i - \hat{x}_t^j)^\top M^{ij}(\hat{x}_t^i - \hat{x}_t^j)$ 



#### Multi-step decentralized estimation (basic version)

**Objective** 

Model

 $: x_{t+1} = Ax_t + w_t^0, \quad w_t^0 \sim \mathcal{N}(0, \text{var}(w^0))$ Observation of agent i:  $y_t^i = C^i x_t + w_t^i$ ,  $w_t^i \sim \mathcal{N}(0, \text{var}(w^i))$ 

Estimate of agent i:  $\hat{\chi}_t^i = q^i(y_{1,t}^i)$ . Let  $\hat{\chi}_t = \text{vec}(\hat{\chi}_t^1, \dots, \hat{\chi}_t^n)$ 

Choose 
$$(g^1, \dots, g^n)$$
 to minimize  $\mathbb{E}\left[\sum_{t=1}^I c(x_t, \hat{x}_t)\right]$  where 
$$c(x_t, \hat{x}_t) = \sum_{i=1}^n (x_t - \hat{x}_t^i)^\top M^{ii}(x_t - \hat{x}_t^i) + \sum_{i=1}^n \sum_{j=i+1}^n (\hat{x}_t^i - \hat{x}_t^j)^\top M^{ij}(\hat{x}_t^i - \hat{x}_t^j)$$

General version Neighbors can communicate to one another over a communication graph.

$$\hat{\chi}_t^i = g^i(I_t^i)$$
, where  $I_1^i = y_1^i$  and for  $t > 1$ ,  $I_t^i = \text{vec}(y_t^i, I_{t-1}^i, \{I_{t-1}^j\}_{j \in N^i})$ .



#### **Motivation**

The model is interesting and it ought to be useful!

#### Previous work on decentralized Kalman filtering

A very similar model was considered in [Barta 1978] and [Andersland and Teneketzis 1996].

<sup>▶</sup> Andersland and Teneketzis, "Measurement Scheduling for Recursive Team Estimation," JOTA 1996.





<sup>▶</sup> Barta, "On linear control of decentralized stochastic systems," PhD Thesis, MIT 1978.

#### Previous work on decentralized Kalman filtering

A very similar model was considered in [Barta 1978] and [Andersland and Teneketzis 1996].

Model Same as the basic multi-step model (i.e., no inter-agent communication).

Objective Choose 
$$(g^1, ..., g^n)$$
 to minimize  $\mathbb{E}\left[\sum_{t=1}^T c(x_t, \hat{x}_t)\right]$  where

$$c(\mathbf{x}_t, \hat{\mathbf{x}}_t) = \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t^1 \\ \vdots \\ \mathbf{x}_t - \hat{\mathbf{x}}_t^n \end{bmatrix}^{\mathsf{T}} \mathbf{Q} \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t^1 \\ \vdots \\ \mathbf{x}_t - \hat{\mathbf{x}}_t^n \end{bmatrix}.$$



<sup>▶</sup> Barta, "On linear control of decentralized stochastic systems," PhD Thesis, MIT 1978.

Andersland and Teneketzis, "Measurement Scheduling for Recursive Team Estimation," JOTA 1996.

# Barta's (or rather Andersland and Teneketzis's) change of variables

State model Suppose 
$$x \in \mathbb{R}^m$$
. Let  $\mathbb{I} = \underbrace{\begin{bmatrix} I_m & & \\ & \ddots & \\ & & I_m \end{bmatrix}}_{n = \text{times}}$ .

Define 
$$X_t = \mathbb{I} * \underbrace{ \begin{bmatrix} x_t & & \\ & \ddots & \\ & & x_t \end{bmatrix}}_{n-\text{times}}$$
,  $\mathcal{A} = \mathbb{I} * \underbrace{ \begin{bmatrix} A & & \\ & \ddots & \\ & & A \end{bmatrix}}_{n-\text{times}}$ ,  $W_t^0 = \mathbb{I} * \underbrace{ \begin{bmatrix} w_t^0 & & \\ & \ddots & \\ & & w_t^0 \end{bmatrix}}_{n-\text{times}}$ .

 $X_t$  and  $W_t^0$  are nm<sup>2</sup> × nm matrices. A is nm<sup>2</sup> × nm<sup>2</sup>

$$X_{t+1} = \mathcal{A}X_t + W_t^0$$



# Barta's (or rather Andersland and Teneketzis's) change of variables

Observation model  $Y_t = \mathbb{I} * \begin{bmatrix} y_t^1 \\ \ddots \\ y_t^n \end{bmatrix}, \mathcal{C} = \mathbb{I} * \begin{bmatrix} C^1 \\ \ddots \\ C^n \end{bmatrix}, W_t = \mathbb{I} * \begin{bmatrix} w_t^1 \\ \ddots \\ w_t^n \end{bmatrix}.$ 

Then, 
$$Y_t = \mathcal{C}X_t + W_t$$



Decentralized Kalman Filtering-(Mahajan)

Hilbert space

Let  $\mathfrak X$  denote the space of  $(\mathfrak n\mathfrak m^2\times\mathfrak n\mathfrak m)$ -dimensional square integrable random variables. For  $X,Z\in\mathfrak X$ , define

$$\langle X, Z \rangle = \operatorname{Tr} \mathbb{E}[XQZ^{\mathsf{T}}], \qquad \|X\|_{\mathcal{H}}^2 = \langle X, X \rangle$$



#### Hilbert space

Let  $\mathcal{X}$  denote the space of  $(nm^2 \times nm)$ -dimensional square integrable random variables. For  $X, Z \in \mathcal{X}$ , define  $\langle X, Z \rangle = \text{Tr } \mathbb{E}[XQZ^{\top}], \qquad ||X||_{\mathcal{H}}^2 = \langle X, X \rangle$ 

Let  $X_t^*$  denote the minimizer of

$$\min_{\hat{\mathbf{X}}_{\mathrm{t}} \in \mathcal{X}} \|\mathbf{X}_{\mathrm{t}} - \hat{\mathbf{X}}_{\mathrm{t}}\|_{\mathcal{H}}^{2}$$

There exists a binary matrix S such that

$$\inf_{g_t^1,\dots,g_t^n} \mathbb{E}[(\mathbf{x}_t - \hat{\mathbf{x}}_t)^\mathsf{T} \mathbf{Q} (\mathbf{x}_t - \hat{\mathbf{x}}_t)] = \mathbf{S} \, \mathbb{E}[(\mathbf{X}_t - \hat{\mathbf{X}}_t^*) \mathbf{Q} (\mathbf{X}_t - \hat{\mathbf{X}}_t^*)^\mathsf{T}] \mathbf{S}^\mathsf{T}$$

Moreover,  $\hat{\chi}_t^* = S\hat{X}_t^*$  achieves the minimum of the left hand side.



Hilbert space

Let  $\mathcal{X}$  denote the space of  $(nm^2 \times nm)$ -dimensional square integrable random variables. For  $X, Z \in \mathcal{X}$ , define

$$\langle X, Z \rangle = \text{Tr } \mathbb{E}[XQZ^{\mathsf{T}}], \qquad \|X\|_{\mathcal{H}}^2 = \langle X, X \rangle$$

Key Lemma

Let  $X_{\mathbf{t}}^*$  denote the minimizer of  $\min_{\hat{X}_{\mathbf{t}} \in \mathcal{X}} \|X_{\mathbf{t}} - \hat{X}_{\mathbf{t}}\|_{\mathcal{H}}^2$ 

There exists a binary matrix S such that

$$\inf_{g_t^1,\dots,g_t^n} \mathbb{E}[(\mathbf{x}_t - \hat{\mathbf{x}}_t)^\top \mathbf{Q}(\mathbf{x}_t - \hat{\mathbf{x}}_t)] = \mathbf{S}\,\mathbb{E}[(\mathbf{X}_t - \hat{\mathbf{X}}_t^*)\mathbf{Q}(\mathbf{X}_t - \hat{\mathbf{X}}_t^*)^\top]\mathbf{S}^\top$$

Moreover,  $\hat{\chi}_t^* = S\hat{X}_t^*$  achieves the minimum of the left hand side.

 $\hat{X}_t^*$  is given by the orthogonal projection theorem. We can write down Kalman filtering equation!



This is too complicated (for us).

Our solution is much simpler.

A very brief introduction to static teams

#### Static teams (simplified version of Radner's model)

Model ▶ Decentralized system with n agents.

 $ightharpoonup (x,y^1,\ldots,y^n)$  jointly Gaussian.  $cov(x,y^i)=\Theta^i$ ,  $cov(y^i,y^j)=\Sigma^{ij}$ .

▶ Agent i observes  $y^i$  and chooses  $u^i = g^i(y^i)$ .







#### Static teams (simplified version of Radner's model)

Model ▶ Decentralized system with n agents.

 $ightharpoonup (x,y^1,\ldots,y^n)$  jointly Gaussian.  $cov(x,y^i)=\Theta^i$ ,  $cov(y^i,y^j)=\Sigma^{ij}$ .

 $\blacktriangleright$  Agent i observes  $y^i$  and chooses  $u^i=g^i(y^i).$ 

**Objective** Choose  $g = (g^1, ..., g^n)$  to minimize  $\mathbb{E}[c(x, u)]$  where

$$c(\mathbf{x}, \mathbf{u}) = \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} (\mathbf{u}^{i})^{\mathsf{T}} R^{ij} \mathbf{u}^{j} + 2\sum_{i=1}^{n} (\mathbf{u}^{i})^{\mathsf{T}} P_{i} \mathbf{x}\right]$$









#### The idea of Radner's solution

for optimality

Necessary condition

 $(\tilde{g}^1, \dots, \tilde{g}^n)$   $J(\tilde{g}^i, g^{-i}) - J(g) \geqslant 0$ 

A strategy  $g = (g^1, ..., g^n)$  is optimal only if for any other strategy  $\tilde{g} =$ 

This also implies that the strategy g is person by person optimal.

Sufficient condition for optimality

A strategy  $g=(g^1,\ldots,g^n)$  is optimal if for any other strategy  $\tilde{g}=(\tilde{g}^1,\ldots,\tilde{g}^n)$ 

 $J(\tilde{q}) - J(q) \geqslant 0$ 

8

#### The idea of Radner's solution

for optimality

Necessary condition

A strategy  $g=(g^1,\ldots,g^n)$  is optimal only if for any other strategy  $\tilde g=(\tilde g^1,\ldots,\tilde g^n)$   $J(\tilde g^i,g^{-i})-J(g)\geqslant 0$ 

This also implies that the strategy g is person by person optimal.

Sufficient condition for optimality

A strategy  $g=(g^1,\ldots,g^n)$  is optimal if for any other strategy  $\tilde g=(\tilde g^1,\ldots,\tilde g^n)$   $J(\tilde g)-J(g)\geqslant 0$ 

Radner's key result was to show that PBPO implies team optimality.



#### The idea of Radner's solution

**Necessary** condition

for optimality

$$(\tilde{g}^1, \dots, \tilde{g}^n)$$

$$J(\tilde{g}^i, g^{-i}) - J(g) \geqslant 0$$

This also implies that the strategy g is person by person optimal.

Sufficient condition 
$$\text{for optimality} \qquad \text{A strategy } g = (g^1, \dots, g^n) \text{ is optimal if for any other strategy } \tilde{g} = (\tilde{g}^1, \dots, \tilde{g}^n)$$
 
$$J(\tilde{g}) - J(g) \geqslant 0$$

Radner's key result was to show that PBPO implies team optimality.

A strategy  $g = (g^1, ..., g^n)$  is optimal only if for any other strategy  $\tilde{g} =$ 

$$g^i(y^i)=u_i \text{ such that } \frac{\partial}{\partial u^i}\,\mathbb{E}[c(x,g^{-i}(y^{-i}),u^i))\,|\,y^i]=0$$



#### Radner's solution (cont.)

Main result Optimal control law is linear and is given by

$$\mathfrak{u}^{\mathfrak{i}} = F^{\mathfrak{i}}(\mathfrak{y}^{\mathfrak{i}} - \mathbb{E}[\mathfrak{y}^{\mathfrak{i}}]) + H^{\mathfrak{i}} \mathbb{E}[\mathfrak{x}],$$

$$F = -\Gamma^{-1}\mathfrak{n}, \qquad H = -R^{-1}P,$$

where

$$\blacktriangleright F = \text{vec}(F^1, F^2, \cdots, F^n)$$

 $\triangleright$  H = rows(H<sup>1</sup>, H<sup>2</sup>, ..., H<sup>n</sup>).



$$, P^n\Theta^n)$$

 $\triangleright \eta = \text{vec}(P^1\Theta^1, P^2\Theta^2, \dots, P^n\Theta^n).$ 

$$P^n\Theta^n$$







# Key idea

The one-shot decentralized estimation problem is a static team

#### One-step decentralized estimation as a static team



In the decentralized estimation problem, we have

$$c(\mathbf{x}, \hat{\mathbf{x}}) = \sum_{i=1}^{n} (\mathbf{x} - \hat{\mathbf{x}}^i)^{\mathsf{T}} M^{ii} (\mathbf{x} - \hat{\mathbf{x}}^i) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\hat{\mathbf{x}}^i - \hat{\mathbf{x}}^j)^{\mathsf{T}} M^{ij} (\hat{\mathbf{x}}^i - \hat{\mathbf{x}}^j)$$



#### One-step decentralized estimation as a static team



In the decentralized estimation problem, we have

$$c(x, \hat{x}) = \sum_{i=1}^{n} (x - \hat{x}^i)^\top M^{ii}(x - \hat{x}^i) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\hat{x}^i - \hat{x}^j)^\top M^{ij}(\hat{x}^i - \hat{x}^j)$$

This can be written as  $x^TQx + \hat{x}^TR\hat{x} + 2\hat{x}^TPx$ , where

$$\blacktriangleright$$
  $R = [R^{ij}],$  where 
$$\blacktriangleright \Theta^i = \Sigma_x (C^i)^\top.$$

$$R^{ij} = \begin{cases} M^{ii} + \sum_{j \in N_j} M^{ij}, & \text{if } i = j \\ -M^{ij}, & \text{if } j \in N_i \\ 0, & \text{otherwise} \end{cases}$$



#### One-step decentralized estimation as a static team

In the decentralized estimation problem, we have

$$c(x, \hat{x}) = \sum_{i=1}^{n} (x - \hat{x}^{i})^{\top} M^{ii}(x - \hat{x}^{i}) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\hat{x}^{i} - \hat{x}^{j})^{\top} M^{ij}(\hat{x}^{i} - \hat{x}^{j})$$

 $\triangleright \Theta^{i} = \Sigma_{x}(C^{i})^{\top}$ .

This can be written as  $x^TQx + \hat{x}^TR\hat{x} + 2\hat{x}^TPx$ , where

$$R^{ij} = \begin{cases} M^{ii} + \sum_{j \in N_j} M^{ij}, & \text{if } i = j \\ -M^{ij}, & \text{if } j \in N_i \\ 0, & \text{otherwise} \end{cases}$$

Relation to graphs

If we think of  $M^{ij}$  as weights of a cost graph, then R is the graph Laplacian.



 $ightharpoonup R = [R^{ij}]$ , where

#### Optimal solution for one-shot decentralized estimation

Translating Radner's result

Since the model is a static team, from Radner's result we can say that the optimal estimates are

$$\hat{x}^i = F^i y^i$$

However, this form of the solution does not work well for the multi-step case.



#### Optimal solution for one-shot decentralized estimation

**Translating** Radner's result Since the model is a static team, from Radner's result we can say that the optimal estimates are

 $\hat{\mathbf{x}}^{i} = \mathbf{F}^{i} \mathbf{u}^{i}$ 

However, this form of the solution does not work well for the multi-step case.

An alternative form of the solution

Let  $\hat{\chi}_{local}^i = \mathbb{E}[x | y^i]$ . Then, the optimal estimates are given by  $\hat{\chi}^i = L^i \hat{\chi}^i_{local}, \quad L = -\Gamma^{-1} \eta$ 

where

 $ightharpoonup L = \text{vec}(L^1, \dots, L^n)$ 

 $\sum \hat{\Sigma}^{ij} = \text{cov}(\hat{\chi}^i, \hat{\chi}^j) = \Theta^i(\Sigma^{ii})^{-1} \Sigma^{ij} (\Sigma^{jj})^{-1} (\Theta^j)^{\top}$ ho  $\Gamma = [\Gamma^{ij}]$  where  $\Gamma^{ij} = \hat{\Sigma}^{ij} \otimes R^{ij}$ 

 $\triangleright$  n = vec( $P^1\hat{\Sigma}^{11}, \dots, P^n\hat{\Sigma}^{nn}$ )





$$\Gamma = \begin{bmatrix} 1+q & -\alpha q \\ -\alpha q & 1+q \end{bmatrix}, \quad \text{where } \alpha = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2}.$$





$$\Gamma = \begin{bmatrix} 1+q & -\alpha q \\ -\alpha q & 1+q \end{bmatrix}, \quad \text{where } \alpha = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2}.$$

$$\Gamma^{-1} = \frac{1}{(1+q)^2 - (\alpha q)^2} \begin{bmatrix} 1+q & \alpha q \\ \alpha q & 1+q \end{bmatrix}.$$





$$\Gamma = \begin{bmatrix} 1+q & -\alpha q \\ -\alpha q & 1+q \end{bmatrix}, \quad \text{where } \alpha = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2}.$$

$$\Gamma^{-1} = \frac{1}{(1+q)^2 - (\alpha q)^2} \begin{bmatrix} 1+q & \alpha q \\ \alpha q & 1+q \end{bmatrix}.$$

Thus, 
$$L = -\Gamma^{-1}\eta = -\frac{1}{(1+q)^2 - (\alpha q)^2} \begin{bmatrix} 1+q & \alpha q \\ \alpha q & 1+q \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$=\frac{1}{1+(1-\alpha)q}\begin{bmatrix}1\\1\end{bmatrix}.$$



$$\Gamma = \begin{bmatrix} 1+q & -\alpha q \\ -\alpha q & 1+q \end{bmatrix}, \quad \text{where } \alpha = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2}.$$

$$\Gamma^{-1} = \frac{1}{(1+q)^2 - (\alpha q)^2} \begin{bmatrix} 1+q & \alpha q \\ \alpha q & 1+q \end{bmatrix}.$$

Thus, 
$$L = -\Gamma^{-1}\eta = -\frac{1}{(1+q)^2 - (\alpha q)^2} \begin{bmatrix} 1+q & \alpha q \\ \alpha q & 1+q \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
$$= \frac{1}{1+(1-\alpha)q} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Hence, 
$$\hat{\mathbf{x}}^i = \frac{1}{1 + \bar{\alpha}\mathbf{q}} \hat{\mathbf{x}}^i_{\text{local}}$$
, where  $\bar{\alpha} = \frac{\sigma^2}{\sigma_0^2 + \sigma^2}$ . (Recall,  $\hat{\mathbf{x}}^i_{\text{local}} = \alpha \mathbf{y}^i$ .)



#### **Examples of one-shot estimation**



$$\hat{x}^i = \frac{1}{1 + \bar{\alpha} q} \, \hat{x}^i_{\text{local}}, \quad \text{where } \bar{\alpha} = \frac{\sigma^2}{\sigma_0^2 + \sigma^2}.$$



#### **Examples of one-shot estimation**



$$\hat{\chi}^i = \frac{1}{1 + \bar{\alpha} q} \, \hat{\chi}^i_{local}, \quad \text{where } \bar{\alpha} = \frac{\sigma^2}{\sigma_0^2 + \sigma^2}.$$



$$\hat{\chi}^i = \frac{1}{1 + 2\bar{\alpha}q} \, \hat{\chi}^i_{local}.$$



#### **Examples of one-shot estimation**



$$\hat{\chi}^i = \frac{1}{1 + \bar{\alpha} q} \, \hat{\chi}^i_{\text{local'}} \quad \text{where } \bar{\alpha} = \frac{\sigma^2}{\sigma_0^2 + \sigma^2}.$$



$$\hat{\chi}^i = \frac{1}{1 + 2\bar{\alpha}q} \, \hat{\chi}^i_{local}.$$

$$d\text{-regular graph} \qquad \hat{\chi}^i = \frac{1}{1+d\bar{\alpha}q}\,\hat{\chi}^i_{\text{local}}. \qquad \text{Proof: Show that }\Gamma\,L = -\eta$$























Key observation The problem at time t is a one-shot optimization problem



Key observation The problem at time t is a one-shot optimization problem

Let 
$$\hat{x}^i_{\text{local},t} = \mathbb{E}[x_t \,|\, I^i_t]$$
 and  $\hat{\Sigma}^{ij}_t = \text{cov}(\hat{x}^i_{\text{local},t}, \hat{x}^j_{\text{local},t})$ . Then, 
$$\hat{x}^i_t = L^i_t \, \hat{x}^i_{\text{local},t}, \qquad \text{vec}(L^i_t) = -\big[\hat{\Sigma}^{ij}_t \otimes R^{ij}\big]^{-1} \, \text{vec}(P^i \hat{\Sigma}^{ii}_t)$$



Optimal estimator

Key observation The problem at time t is a one-shot optimization problem

Optimal estimator Let 
$$\hat{\chi}^i_{local,t} = \mathbb{E}[x_t \,|\, I^i_t]$$
 and  $\hat{\Sigma}^{ij}_t = \text{cov}(\hat{\chi}^i_{local,t}, \hat{\chi}^j_{local,t})$ . Then,

$$\hat{x}_t^i = L_t^i \, \hat{x}_{\text{local},t}^i, \qquad \text{vec}(L_t^i) = - \big[ \hat{\Sigma}_t^{ij} \otimes R^{ij} \big]^{-1} \, \text{vec}(P^i \hat{\Sigma}_t^{ii})$$

Remarks To compute the optimal solution, we only need to compute 
$$\hat{\chi}^i_{local,t}$$
 and  $\hat{\Sigma}^{ij}_t$ . Recall, all random variables are jointly Gaussian. Pre-computing  $\hat{\Sigma}^{ij}_t$  and keeping track of  $\hat{\chi}^i_{local,t}$  is trivial but for computational complexity.

Almost same as standard Kalman filtering! Relatively straight forward to come up with recursive equations (but for notation!).



#### **Example of multi-step estimation**

$$\Gamma_t = \begin{bmatrix} (1+q)\hat{\Sigma}_t^{11} & -q\hat{\Sigma}_t^{12} \\ -q\hat{\Sigma}_t^{21} & (1+q)\hat{\Sigma}_t^{22} \end{bmatrix}. \qquad \eta_t = \begin{bmatrix} -\hat{\Sigma}_t^{11} \\ -\hat{\Sigma}_t^{22} \end{bmatrix}$$



#### **Example of multi-step estimation**



$$\Gamma_t = \begin{bmatrix} (1+q)\hat{\Sigma}_t^{11} & -q\hat{\Sigma}_t^{12} \\ -q\hat{\Sigma}_t^{21} & (1+q)\hat{\Sigma}_t^{22} \end{bmatrix}. \qquad \eta_t = \begin{bmatrix} -\hat{\Sigma}_t^{11} \\ -\hat{\Sigma}_t^{22} \end{bmatrix}$$

Assume a symmetric communication channel. So,  $\hat{\Sigma}_t^{11} = \hat{\Sigma}_t^{22}$  and  $\hat{\Sigma}_t^{12} = \hat{\Sigma}_t^{21}$ .

Then 
$$L = -\Gamma_t^{-1} \eta_t = \begin{bmatrix} (1+q) & -\alpha_t q \\ -\alpha_t q & (1+q) \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{1+\bar{\alpha}_t q} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\alpha_t = \hat{\Sigma}_t^{12}/\hat{\Sigma}_t^{11}$$
 and  $\bar{\alpha}_t = 1 - \alpha_t$ .



#### **Example of multi-step estimation**



$$\Gamma_t = \begin{bmatrix} (1+q)\hat{\Sigma}_t^{11} & -q\hat{\Sigma}_t^{12} \\ -q\hat{\Sigma}_t^{21} & (1+q)\hat{\Sigma}_t^{22} \end{bmatrix}. \qquad \eta_t = \begin{bmatrix} -\hat{\Sigma}_t^{11} \\ -\hat{\Sigma}_t^{22} \end{bmatrix}$$

Assume a symmetric communication channel. So,  $\hat{\Sigma}_t^{11}=\hat{\Sigma}_t^{22}$  and  $\hat{\Sigma}_t^{12}=\hat{\Sigma}_t^{21}$ .

Then 
$$L = -\Gamma_t^{-1} \eta_t = \begin{bmatrix} (1+q) & -\alpha_t q \\ -\alpha_t q & (1+q) \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{1+\bar{\alpha}_t q} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$lpha_{
m t}=\hat{\Sigma}_{
m t}^{12}/\hat{\Sigma}_{
m t}^{11}$$
 and  $ar{lpha}_{
m t}=1-lpha_{
m t}.$ 

d-regular graph Suppose the communication graph is such that  $\hat{\Sigma}_t^{ii}$  and  $\hat{\Sigma}_t^{ij}$  are symmetric. Then,  $\hat{\chi}^i = \frac{1}{1+d\bar{\alpha}_t q} \hat{\chi}_{local}^i$ ,  $\bar{\alpha}_t = 1 - \frac{\hat{\Sigma}_t^{ij}}{\hat{\Sigma}_{ii}}$ 



# Recursive computation of $\hat{x}_{local,t}^{i}$ and $\hat{\Sigma}_{t}^{ij}$ .



```
No sharing of I_t^i = \{y_{1:t}^i\} information
```



No sharing of  $I_t^i = \{y_{1:t}^i\}$ information

One step delay sharing Complete communication graph with one unit communication delay.  $I_t^i = \{y_t^i, y_{1:t-1}\}$ 



No sharing of  $I_t^i = \{y_{1:t}^i\}$ information

One step delay sharing Complete communication graph with one unit communication delay.  $I_t^i = \{y_t^i, y_{1:t-1}\}$ 

d-step delay sharing Complete communication graph with d units communication delay.  $I_t^i = \{y_{t-d+1:t}^i, y_{1:t-d}\}$ 



No sharing of  $I_t^i = \{y_{1:t}^i\}$ information

One step

Complete communication graph with one unit communication delay. delay sharing  $I_t^i = \{y_t^i, y_{1:t-1}\}$ 

 $I_t^i = \{y_{t-d+1:t}^i, y_{1:t-d}\}$ 

d-step delay

sharing

General comm. graph

of the graph.

Assume a completely connected (directed) communication graph. Can be effectively viewed as a d-step delay sharing, where d is the diameter

Complete communication graph with d units communication delay.

Recursion for local estimates

Recall 
$$\hat{x}_{\text{local},t}^i = \mathbb{E}[x_t \,|\, y_{1:t}^i]$$
. Then, 
$$\hat{x}_{\text{local},t}^i = A\hat{x}_{\text{local},t-1}^i + K_t^i \big[ y_t^i - C^i A \hat{x}_{\text{local},t-1}^i \big]$$



Recursion for local estimates

Recall  $\hat{x}_{local,t}^i = \mathbb{E}[x_t | y_{1:t}^i]$ . Then,

$$\hat{x}_{\text{local},t}^i = A\hat{x}_{\text{local},t-1}^i + K_t^i \big[ y_t^i - C^i A \hat{x}_{\text{local},t-1}^i \big]$$

Recursion for conditional covariance

Let  $\Sigma^i_{t|t} = \text{var}(x_t - \hat{x}^i_{\text{local},t})$  and  $\Sigma^i_{t+1|t} = A^{\mathsf{T}} \Sigma^i_{t|t} A + \text{var}(w^0)$ . Then,

$$\mathbf{K}_{\mathrm{t}}^{\mathrm{i}} = \boldsymbol{\Sigma}_{\mathrm{t}|\mathrm{t}-1}^{\mathrm{i}} \, (\mathbf{C}^{\mathrm{i}})^{\top} \big[ \mathbf{C}^{\mathrm{i}} \, \boldsymbol{\Sigma}_{\mathrm{t}|\mathrm{t}-1}^{\mathrm{i}} \, (\mathbf{C}^{\mathrm{t}})^{\top} + \mathrm{var}(\boldsymbol{w}^{\mathrm{i}}) \big]^{-1}$$

Let 
$$\Lambda_t^i = I - K_t^i C^i$$
. Then,

$$\Sigma_{t|t}^i = \Lambda_t^i \, \Sigma_{t|t-1}^i \, (\Lambda_t^i)^\top + K_t^i \, \operatorname{var}(w^i) \, (K_t^i)^\top$$



Recursion for local estimates

Recall 
$$\hat{x}_{local,t}^i = \mathbb{E}[x_t | y_{1:t}^i]$$
. Then,

Recursion for conditional covariance

$$\begin{split} \hat{x}_{\text{local},t}^i &= A \hat{x}_{\text{local},t-1}^i + K_t^i \big[ y_t^i - C^i A \hat{x}_{\text{local},t-1}^i \big] \\ \text{Let } \Sigma_{\text{t}|t}^i &= \text{var}(x_t - \hat{x}_{\text{local},t}^i) \text{ and } \Sigma_{t+1|t}^i = A^\top \Sigma_{\text{t}|t}^i A + \text{var}(w^0). \text{ Then,} \end{split}$$

 $\mathbf{K}_{\mathrm{t}}^{\mathrm{i}} = \boldsymbol{\Sigma}_{\mathrm{t}|\mathrm{t}-1}^{\mathrm{i}} \, (\mathbf{C}^{\mathrm{i}})^{\top} \big[ \mathbf{C}^{\mathrm{i}} \, \boldsymbol{\Sigma}_{\mathrm{t}|\mathrm{t}-1}^{\mathrm{i}} \, (\mathbf{C}^{\mathrm{t}})^{\top} + \mathrm{var}(\boldsymbol{w}^{\mathrm{i}}) \big]^{-1}$ 

Standard Kalman filter Let 
$$\Lambda_t^i = I - K_t^i C^i$$
. Then,

Standard Kalman filter Let  $\Lambda_t^i = I - K_t^i C^i$ . Then,  $\Sigma_{t+}^i = \Lambda_t^i \Sigma_{t+-1}^i \left( \Lambda_t^i \right)^\top + K_t^i \ \text{var}(w^i) \left( K_t^i \right)^\top$ 

local estimates

Recall 
$$\hat{x}_{local,t}^i = \mathbb{E}[x_t | y_{1:t}^i]$$
. Then, 
$$\hat{x}_{local,t}^i = A\hat{x}_{local,t-1}^i + K_t^i [y_t^i - C^i A\hat{x}_{local,t-1}^i]$$

conditional covariance

Recursion for

Recursion for

.et 
$$\Sigma_{\mathsf{t}|\mathsf{t}}^{\mathsf{i}} =$$

Let  $\Sigma_{t+1}^i = \text{var}(x_t - \hat{\chi}_{local,t}^i)$  and  $\Sigma_{t+1|t}^i = A^T \Sigma_{t+1}^i A + \text{var}(w^0)$ . Then,

$$(C^{i})^{T}[C^{i}]$$

 $\mathsf{K}^{\mathsf{i}}_{\mathsf{t}} = \Sigma^{\mathsf{i}}_{\mathsf{t}|\mathsf{t}-1} \left( \mathsf{C}^{\mathsf{i}} \right)^{\mathsf{T}} \left[ \mathsf{C}^{\mathsf{i}} \, \Sigma^{\mathsf{i}}_{\mathsf{t}|\mathsf{t}-1} \left( \mathsf{C}^{\mathsf{t}} \right)^{\mathsf{T}} + \mathsf{var}(w^{\mathsf{i}}) \right]^{-1}$ 

$$-K_t^i C^i$$
. Then,

Standard Kalman filter Let  $\Lambda_t^i = I - K_t^i C^i$ . Then,  $\Sigma_{t+}^i = \Lambda_t^i \Sigma_{t+-1}^i \left( \Lambda_t^i \right)^\top + K_t^i \text{ var}(w^i) \left( K_t^i \right)^\top$ 

Let  $\hat{\Sigma}_t^{ij} = \text{cov}(\hat{x}_t^i, \hat{x}_t^j)$  and  $\tilde{\Sigma}_{t|t}^{ij} = \text{cov}(x_t - \hat{x}_t^i, x_t - \hat{x}_t^j)$ .

#### Covariance across agents

Then,  $\hat{\Sigma}_t^{ij} = \Sigma_t^x - \Sigma_{t|t}^i - \Sigma_{t|t}^j - \tilde{\Sigma}_{t|t}^{ij}$  and

$$\tilde{\Sigma}_{t|t}^{ij} = \Lambda_t^i \tilde{\Sigma}_{t|t-1}^{ij} (\Lambda_t^j)^\top, \qquad \text{where } \tilde{\Sigma}_{t|t-1}^{ij} = A^\top \tilde{\Sigma}_{t-1}^{ij} A + \text{var}(w^0)$$



Recursion for local estimates

Recall  $\hat{x}_{\text{local},t}^i = \mathbb{E}[x_t \,|\, y_t^i, y_{1:t-1}]$ . Define  $\hat{x}_{t|t-1} = \mathbb{E}[x_t \,|\, y_{1:t-1}]$ . Then,  $\hat{x}_{\text{local},t}^i = \hat{x}_{t|t-1} + K_t^i \big[ y_t^i - C_t^i \hat{x}_{t|t-1} \big]$ 



Recursion for local estimates

Recall  $\hat{x}_{\text{local},t}^i = \mathbb{E}[x_t \,|\, y_t^i, y_{1:t-1}].$  Define  $\hat{x}_{t|t-1} = \mathbb{E}[x_t \,|\, y_{1:t-1}].$  Then,  $\hat{x}_{\text{local},t}^i = \hat{x}_{t|t-1} + K_t^i \big[ y_t^i - C_t^i \hat{x}_{t|t-1} \big]$   $\hat{x}_{t+1|t} = A\hat{x}_{t|t-1} + AK_t \big[ y_t - C\hat{x}_{t|t-1} \big]$ 



Recursion for local estimates

$$\begin{split} \text{Recall } \hat{x}_{\text{local},t}^i &= \mathbb{E}[x_t \,|\, y_t^i, y_{1:t-1}]. \text{ Define } \hat{x}_{t|t-1} = \mathbb{E}[x_t \,|\, y_{1:t-1}]. \text{ Then,} \\ \hat{x}_{\text{local},t}^i &= \hat{x}_{t|t-1} + K_t^i \big[ y_t^i - C_t^i \hat{x}_{t|t-1} \big] \\ \hat{x}_{t+1|t} &= A \hat{x}_{t|t-1} + A K_t \big[ y_t - C \hat{x}_{t|t-1} \big] \end{split}$$

Recursion for conditional covariance

Let  $\Sigma_{t|t-1} = \text{var}(x_t - \hat{x}_{t|t-1})$ . The gains are given by  $\begin{aligned} \mathbf{E} & \quad \mathbf{K}_t^i = \Sigma_{t|t-1}(C_t^i)^\top \big[ C^i \Sigma_{t|t-1}(C^i)^\top + \text{var}(w^i) \big]^{-1} \\ & \quad \mathbf{K}_t = \Sigma_{t|t-1}C^\top \big[ C \Sigma_{t|t-1}C^\top + \text{var}(w^1, \dots, w^n) \big] \end{aligned}$  Define  $\Lambda_t = \mathbf{I} - \mathbf{K}_t C$ .  $\Sigma_{t+1|t} = A \Lambda_t \Sigma_{t|t-1} \Lambda_t^\top A^\top + \text{var}(w^0) + A \mathbf{K}_t \, \text{var}(w^1, \dots, w^n) \mathbf{K}_t^\top A^\top$ 



Recursion for local estimates

Recall 
$$\hat{x}_{\text{local},t}^i = \mathbb{E}[x_t \mid y_t^i, y_{1:t-1}]$$
. Define  $\hat{x}_{t|t-1} = \mathbb{E}[x_t \mid y_{1:t-1}]$ . Then, 
$$\hat{x}_{\text{local},t}^i = \hat{x}_{t|t-1} + K_t^i \big[ y_t^i - C_t^i \hat{x}_{t|t-1} \big]$$
 
$$\hat{x}_{t+1|t} = A \hat{x}_{t|t-1} + A K_t \big[ y_t - C \hat{x}_{t|t-1} \big]$$

Let  $\Sigma_{t|t-1} = \text{var}(x_t - \hat{\chi}_{t|t-1})$ . The gains are given by

Recursion for conditional covariance

$$\begin{aligned} \mathsf{K}_{\mathsf{t}}^{\mathsf{i}} &= \Sigma_{\mathsf{t}|\mathsf{t}-1} (\mathsf{C}_{\mathsf{t}}^{\mathsf{i}})^{\mathsf{T}} \big[ \mathsf{C}^{\mathsf{i}} \Sigma_{\mathsf{t}|\mathsf{t}-1} (\mathsf{C}^{\mathsf{i}})^{\mathsf{T}} + \mathsf{var}(w^{\mathsf{i}})]^{-1} \\ \mathsf{K}_{\mathsf{t}} &= \Sigma_{\mathsf{t}|\mathsf{t}-1} \mathsf{C}^{\mathsf{T}} \big[ \mathsf{C} \Sigma_{\mathsf{t}|\mathsf{t}-1} \mathsf{C}^{\mathsf{T}} + \mathsf{var}(w^{\mathsf{1}}, \ldots, w^{\mathsf{n}}) \big] \end{aligned}$$

Standard Kalman filter  $\begin{aligned} \text{Define } \Lambda_t &= I - K_t C. \\ \Sigma_{t+1|t} &= A \Lambda_t \Sigma_{t|t-1} \Lambda_t^\top A^\top + \text{var}(w^0) + A K_t \, \text{var}(w^1, \dots, w^n) K_t^\top A^\top \end{aligned}$ 



local estimates

Recursion for

Recall  $\hat{x}_{local,t}^i = \mathbb{E}[x_t | y_t^i, y_{1:t-1}]$ . Define  $\hat{x}_{t|t-1} = \mathbb{E}[x_t | y_{1:t-1}]$ . Then,  $\hat{\mathbf{x}}_{\text{local},t}^{i} = \hat{\mathbf{x}}_{\text{t}|t-1} + \mathbf{K}_{\text{t}}^{i} \left[ \mathbf{y}_{\text{t}}^{i} - \mathbf{C}_{\text{t}}^{i} \hat{\mathbf{x}}_{\text{t}|t-1} \right]$  $\hat{x}_{t+1|t} = A\hat{x}_{t|t-1} + AK_t[y_t - C\hat{x}_{t|t-1}]$ 

Recursion for conditional covariance

Let  $\Sigma_{t|t-1} = \text{var}(x_t - \hat{\chi}_{t|t-1})$ . The gains are given by  $\mathsf{K}^{\mathsf{i}}_{\mathsf{t}} = \Sigma_{\mathsf{t}|\mathsf{t}-1} (\mathsf{C}^{\mathsf{i}}_{\mathsf{t}})^{\mathsf{T}} [\mathsf{C}^{\mathsf{i}} \Sigma_{\mathsf{t}|\mathsf{t}-1} (\mathsf{C}^{\mathsf{i}})^{\mathsf{T}} + \mathsf{var}(w^{\mathsf{i}})]^{-1}$ 

Standard Kalman filter  $\begin{aligned} \text{Define } \Lambda_t &= I - K_t C. \\ \Sigma_{t+1|t} &= A \Lambda_t \Sigma_{t|t-1} \Lambda_t^\intercal A^\intercal + \text{var}(w^0) + A K_t \, \text{var}(w^1, \dots, w^n) K_t^\intercal A^\intercal \end{aligned}$ 

 $K_t = \Sigma_{t|t-1}C^{\top}[C\Sigma_{t|t-1}C^{\top} + var(w^1, \dots, w^n)]$ 

 $\hat{\Sigma}_{t}^{ij} = K^{i}C^{i}\Sigma_{t|t-1}(C^{j})^{T}(K^{j})^{T}$ 

Covariance across agents

Recursion for local estimates

 $\text{Recall } \hat{\chi}^i_{\text{local},t} = \mathbb{E}[x_t \, | \, y^i_{t-d+1:t}, y_{1:t-d}]. \text{ Define } \hat{\chi}_{t-d+1|t-d} = \mathbb{E}[x_{t-d+1} \, | \, y_{1:t-d}].$ 

$$\left( \begin{array}{c|c} y_t^i \\ y_t^i \end{array} \right) \quad \left[ \begin{array}{c} C_t^i A^{d-1} \\ C_t^i A^{d-2} \end{array} \right].$$

$$\hat{x}_{local,t}^{i} = A^{d-1}\hat{x}_{t-d+1|t-d} + K_{t}^{i} \left\{ \begin{bmatrix} y_{t}^{i} \\ y_{t-1}^{i} \\ \vdots \\ y_{t-d+1}^{i} \end{bmatrix} - \underbrace{\begin{bmatrix} C_{t}^{i}A^{d-1} \\ C_{t}^{i}A^{d-2} \\ \vdots \\ C_{t}^{i} \end{bmatrix}}_{\hat{x}_{t-d+1|t-d}} \right\}$$



Recursion for local estimates

 $\text{Recall } \hat{\chi}^i_{\text{local},t} = \mathbb{E}[x_t \, | \, y^i_{t-d+1:t}, y_{1:t-d}]. \text{ Define } \hat{\chi}_{t-d+1|t-d} = \mathbb{E}[x_{t-d+1} \, | \, y_{1:t-d}].$ 

$$\hat{x}_{\text{local},t}^{i} = A^{d-1}\hat{x}_{t-d+1|t-d} + K_{t}^{i} \left\{ \begin{bmatrix} y_{t}^{i} \\ y_{t-1}^{i} \\ \vdots \\ y_{t-d+1}^{i} \end{bmatrix} - \underbrace{\begin{bmatrix} C_{t}^{i}A^{d-1} \\ C_{t}^{i}A^{d-2} \\ \vdots \\ C_{t}^{i} \end{bmatrix}}_{\hat{C}_{t}^{i}} \hat{x}_{t-d+1|t-d} \right\}$$

 $\hat{x}_{t+1|t} = A\hat{x}_{t|t-1} + AK_t \big[ y_t - C\hat{x}_{t|t-1} \big]$  Standard Kalman filter and  $\Sigma_{t+1|t} = A\Lambda_t \Sigma_{t|t-1} \Lambda_t^\top A^\top + \text{var}(w^0) + AK_t \, \text{var}(w^1, \dots, w^n) K_t^\top A^\top$ 

$$\hat{x}_{\text{local},t}^i = A^{d-1}\hat{x}_{t-}$$

$$\hat{x}_{\text{local},t}^{i} = A^{d-1}\hat{x}_{t-d+1}$$

Recursion for local estimates

 $\text{Recall } \hat{\chi}_{\text{local},t}^{i} = \mathbb{E}[x_{t} \, | \, y_{t-d+1:t}^{i}, y_{1:t-d}]. \text{ Define } \hat{\chi}_{t-d+1|t-d} = \mathbb{E}[x_{t-d+1} \, | \, y_{1:t-d}].$ 

$$\hat{x}_{t-d+1}^i = A^{d-1} \hat{x}_{t-d+1} + K_t^i \begin{cases} \begin{bmatrix} y_t^i \\ y_{t-1}^i \end{bmatrix} - \begin{bmatrix} C_t^i A^{d-1} \\ C_t^i A^{d-2} \end{bmatrix} \\ \hat{x}_{t-d+1} + A^{d-1} \end{bmatrix}$$

 $\hat{x}_{local,t}^{i} = A^{d-1}\hat{x}_{t-d+1|t-d} + K_{t}^{i} \left\{ \begin{bmatrix} y_{t}^{i} \\ y_{t-1}^{i} \\ \vdots \\ y_{t-d+1}^{i} \end{bmatrix} - \underbrace{\begin{bmatrix} C_{t}^{i}A^{d-1} \\ C_{t}^{i}A^{d-2} \\ \vdots \\ C_{t}^{i} \end{bmatrix}}_{\hat{x}_{t-d+1|t-d}} \right\}$ 

 $\mathsf{K}_{\mathsf{t}}^{\mathsf{i}} = \left[\mathsf{A}^{\mathsf{d}-1} \mathsf{\Sigma}_{\mathsf{t}-\mathsf{d}+1 | \mathsf{t}-\mathsf{d}} (\bar{\mathsf{C}}^{\mathsf{i}})^{\mathsf{T}} + \bar{\mathsf{\Sigma}}_{\mathsf{t}-\mathsf{k}+1}^{\mathsf{i} \mathsf{0}}\right] \left[\bar{\mathsf{C}}^{\mathsf{i}} \mathsf{\Sigma}_{\mathsf{t}-\mathsf{d}+1 | \mathsf{t}-\mathsf{d}} (\bar{\mathsf{C}}^{\mathsf{i}})^{\mathsf{T}} + \bar{\mathsf{\Sigma}}_{\mathsf{t}-\mathsf{d}+1}^{\mathsf{i} \mathsf{i}}\right]^{-1}$ Recursion for conditional covariance where  $\bar{w}_{t-d+1}^{i} = W_{i} \operatorname{vec}(w_{t}^{i}, \dots, w_{t-d+1}^{i})$  and  $\bar{\Sigma}_{t}^{ij} = \operatorname{cov}(\bar{w}_{t}^{i}, \bar{w}_{t}^{j})$ .



local estimates

Recursion for

 $\text{Recall } \hat{x}_{\text{local},t}^i = \mathbb{E}[x_t \,|\, y_{t-d+1:t}^i, y_{1:t-d}]. \text{ Define } \hat{x}_{t-d+1|t-d} = \mathbb{E}[x_{t-d+1} \,|\, y_{1:t-d}].$ 

$$\hat{x}_{\text{local},t}^{i} = A^{d-1}\hat{x}_{t-d+1|t-d} + K_{t}^{i} \left\{ \begin{bmatrix} y_{t}^{i} \\ y_{t-1}^{i} \\ \vdots \\ y_{t-d+1}^{i} \end{bmatrix} - \underbrace{\begin{bmatrix} C_{t}^{i}A^{d-1} \\ C_{t}^{i}A^{d-2} \\ \vdots \\ C_{t}^{i} \end{bmatrix}}_{i} \hat{x}_{t-d+1|t-d} \right\}$$

 $\begin{array}{ll} \text{Recursion for} & \mathsf{K}_t^i = \left[ A^{d-1} \Sigma_{t-d+1|t-d} (\bar{C}^i)^\top + \bar{\Sigma}_{t-k+1}^{i0} \right] \left[ \bar{C}^i \Sigma_{t-d+1|t-d} (\bar{C}^i)^\top + \bar{\Sigma}_{t-d+1}^{ii} \right]^{-1} \\ \text{conditional covariance} & \text{where } \bar{w}_{t-d+1}^i = W_i \, \text{vec}(w_t^i, \ldots, w_{t-d+1}^i) \text{ and } \bar{\Sigma}_t^{ij} = \text{cov}(\bar{w}_t^i, \bar{w}_t^j). \end{array}$ 

Covariance across agents where  $\bar{w}_{t-d+1}^i = W_i \operatorname{vec}(w_t^i, \dots, w_{t-d+1}^i)$  and  $\bar{\Sigma}_t^{ij}$   $\hat{\Sigma}_t^{ij} = \mathsf{K}_t^i \big[ \bar{C}^i \Sigma_{t-d+1|t-d} (\bar{C}^j)^\mathsf{T} + \operatorname{cov}(\bar{w}^i, \bar{w}^j) \big] (\mathsf{K}_t^j)^\mathsf{T}$ 

20

$$I_{t}^{1} = \{y_{1:t}^{1}, y_{1:t-1}^{2}, y_{1:t-2}^{3}, y_{1:t-1}^{4}\}$$





Information structure

$$I_t^1 = \{y_{1:t}^1, y_{1:t-1}^2, y_{1:t-2}^3, y_{1:t-1}^4\} = \{\underbrace{y_t^1, y_{t-1}^1, y_{t-1}^2, y_{t-1}^4}_{\text{local info}}, \underbrace{y_{1:t-2}}_{\text{common info}}\}$$





Information structure

$$I_t^1 = \{y_{1:t}^1, y_{1:t-1}^2, y_{1:t-2}^3, y_{1:t-1}^4\} = \{\underbrace{y_t^1, y_{t-1}^1, y_{t-1}^2, y_{t-1}^4}_{\text{local info}}, \underbrace{y_{1:t-2}}_{\text{common info}}\}$$

#### Local estimates



Recall  $\hat{x}_{local,t}^i = \mathbb{E}[x_t \,|\, I_t^i]$ . Then,

$$\hat{x}_{local,t}^{1} = A\hat{x}_{t-1|t-2} + K_{t}^{1} \left\{ \begin{bmatrix} y_{t}^{1} \\ y_{t-1}^{1} \\ y_{t-1}^{2} \\ y_{t-1}^{4} \end{bmatrix} - \begin{bmatrix} C^{1}A_{t} \\ C^{1} \\ C^{2} \\ C^{4} \end{bmatrix} \hat{x}_{t-1|t-2} \right\}$$



#### Information structure

$$I_t^1 = \{y_{1:t}^1, y_{1:t-1}^2, y_{1:t-2}^3, y_{1:t-1}^4\} = \{\underbrace{y_t^1, y_{t-1}^1, y_{t-1}^2, y_{t-1}^4}_{\text{local info}}, \underbrace{y_{1:t-2}}_{\text{common info}}\}$$

## Local estimates

Recall  $\hat{\mathbf{x}}_{\text{local},t}^{i} = \mathbb{E}[\mathbf{x}_{t} \,|\, \mathbf{I}_{t}^{i}].$  Then,

$$\hat{x}_{local,t}^{1} = A\hat{x}_{t-1|t-2} + K_{t}^{1} \left\{ \begin{bmatrix} y_{t}^{1} \\ y_{t-1}^{1} \\ y_{t-1}^{2} \\ y_{t-1}^{4} \end{bmatrix} - \begin{bmatrix} C^{1}A_{t} \\ C^{1} \\ C^{2} \\ C^{4} \end{bmatrix} \hat{x}_{t-1|t-2} \right\}$$

- - Each node keeps track of a delayed centralized estimator and innovation wrt common information.

#### One-shot decentralized estimation

```
Model State of the world : x \sim \mathcal{N}(0, \text{var}(x))
```

Observation of agent i:  $y^i = C^i x + w^i_t$ ,  $w^i \sim \mathcal{N}(0, \text{var}(w^i))$ 

Estimate of agent i :  $\hat{\chi}^i = g^i(y^i)$ . Let  $\hat{\chi} = \text{vec}(\hat{\chi}^1, \dots, \hat{\chi}^n)$ 

**Objective** Choose  $(g^1, ..., g^n)$  to minimize  $\mathbb{E}[c(x, \hat{x})]$  where ...

$$c(x, \hat{x}) = \sum_{i=1}^{n} (x - \hat{x}^{i})^{\top} M^{ii}(x - \hat{x}^{i}) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\hat{x}^{i} - \hat{x}^{j})^{\top} M^{ij}(\hat{x}^{i} - \hat{x}^{j})$$

$$\begin{array}{lll} (x-\hat{x}^1)^2 + (x-\hat{x}^2)^2 & (x-\hat{x}^1)^2 + (x-\hat{x}^2)^2 + (x-\hat{x}^3)^2 + (x-\hat{x}^4)^2 \\ & + q(\hat{x}^1-\hat{x}^2)^2 & + q(\hat{x}^1-\hat{x}^2)^2 + q(\hat{x}^2-\hat{x}^3)^2 + q(\hat{x}^3-\hat{x}^4)^4 + q(\hat{x}^4-\hat{x}^1)^2 \end{array}$$









#### Multi-step decentralized estimation (basic version)

Observation of agent i:  $y_t^i = C^i x_t + w_t^i$ ,  $w_t^i \sim \mathcal{N}(0, \text{var}(w^i))$ 

 $\text{Estimate of agent i} \quad : \ \hat{x}_t^i = g^i(y_{1:t}^i). \quad \ \text{Let } \hat{x}_t = \text{vec}(\hat{x}_t^1, \dots, \hat{x}_t^n)$ 

Objective Choose 
$$(g^1, ..., g^n)$$
 to minimize  $\mathbb{E}\left[\sum_{t=1}^T c(x_t, \hat{x}_t)\right]$  where

$$c(x_t, \hat{x}_t) = \sum_{i=1}^{n} (x_t - \hat{x}_t^i)^{\mathsf{T}} M^{ii}(x_t - \hat{x}_t^i) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\hat{x}_t^i - \hat{x}_t^j)^{\mathsf{T}} M^{ij}(\hat{x}_t^i - \hat{x}_t^j)$$

General version Neighbors can communicate to one another over a communication graph.

$$\hat{x}_t^i = g^i(I_t^i) \text{, where } I_1^i = y_1^i \quad \text{ and for } t>1 \text{,} \quad I_t^i = \text{vec}\left(y_t^i, I_{t-1}^i, \{I_{t-1}^j\}_{j \in N^i}\right).$$





#### Optimal solution for one-shot decentralized estimation

Translating Radner's result

 $\hat{x}^i = F^i y^i$ 

However, this form of the solution does not work well for the multi-step case.

An alternative form of the solution

Let  $\hat{\chi}^i_{\mathsf{local}} = \mathbb{E}[\mathbf{x} \, | \, \mathbf{y}^i]$ . Then, the optimal estimates are given by

$$\hat{\chi}^i = L^i \, \hat{\chi}^i_{local}, \quad L = -\Gamma^{-1} \eta$$

where

المحموليوم المحالا وسيسمح والمسيد

$$ightharpoonup L = \text{vec}(L^1, \dots, L^n)$$

$$\hat{\Sigma}^{ij} = \text{cov}(\hat{\chi}^i, \hat{\chi}^j) = \Theta^i(\Sigma^{ii})^{-1} \Sigma^{ij} (\Sigma^{jj})^{-1} (\Theta^j)^{\top}$$

$$ightharpoonup \Gamma = [\Gamma^{ij}]$$
, where  $\Gamma^{ij} = \hat{\Sigma}^{ij} \otimes R^{ij}$ 

$$\triangleright$$
 n =  $\text{vec}(P^1\hat{\Sigma}^{11}, \dots, P^n\hat{\Sigma}^{nn})$ 





#### Multi-step decentralized estimation

Key observation The problem at time t is a one-shot optimization problem

Optimal estimator

Let 
$$\hat{x}_{\text{local},t}^i = \mathbb{E}[x_t \,|\, I_t^i]$$
 and  $\hat{\Sigma}_t^{ij} = \text{cov}(\hat{x}_{\text{local},t}^i, \hat{x}_{\text{local},t}^j)$ . Then,

$$\hat{x}_t^i = L_t^i \, \hat{x}_{\text{local},t}^i, \qquad \text{vec}(L_t^i) = - \big[ \hat{\Sigma}_t^{ij} \otimes R^{ij} \big]^{-1} \, \text{vec}(P^i \hat{\Sigma}_t^{ii})$$

Remarks

To compute the optimal solution, we only need to compute  $\hat{x}_{\text{local},t}^i$  and  $\hat{\Sigma}_t^{ij}.$ 

Recall, all random variables are jointly Gaussian. Pre-computing  $\hat{\Sigma}_t^{ij}$  and keeping track of  $\hat{\chi}_{local,t}^i$  is trivial but for computational complexity.

Almost same as standard Kalman filtering! Relatively straight forward to come up with recursive equations (but for notation!).





Decent

#### General graph

$$\begin{array}{ll} \textbf{Information} & I_t^1 = \{y_{1:t}^1, y_{1:t-1}^2, y_{1:t-2}^3, y_{1:t-1}^4\} = \{\underbrace{y_t^1, y_{t-1}^1, y_{t-1}^2, y_{t-1}^4}_{\text{local info}}, \underbrace{y_{1:t-2}^4}_{\text{common info}} \} \\ & \textbf{structure} \\ \end{array}$$



$$\hat{x}_{\text{local},t}^{1} = A\hat{x}_{t-1|t-2} + K_{t}^{1} \left\{ \begin{bmatrix} y_{t}^{1} \\ y_{t-1}^{1} \\ y_{t-1}^{2} \\ y_{t-1}^{4} \end{bmatrix} - \begin{bmatrix} C^{1}A_{t} \\ C^{1} \\ C^{2} \\ C^{4} \end{bmatrix} \hat{x}_{t-1|t-2} \right\}$$

▶ Each node keeps track of a delayed centralized estimator and innovation wrt common information.

