A) Veri Tanımı

Günlük Web Sitesi Ziyaret Durumu

Bu veri seti statforecasting.com adlı istatistiksel tahmin öğretim notlarını içeren web sitesindeki çeşitli ziyaret trafiği için 5 yılı kapsayacak şekilde günlük zaman serisi verilerini içermektedir. Değişkenler; günlük sayfa yükleme sayıları, tekil ziyaretçiler, ilk kez gelen ziyaretçiler ve web sitesine geri dönen ziyaretçilerdir.

Veri setimiz, 14 Eylül 2014 ile 19 Ağustos 2020 arasındaki tarih aralığından oluşan 2167 satır 8 sütundan oluşmaktadır.

Ziyaret, tanımlandığı şekilde aynı kullanıcı tarafından belirli bir günde sitedeki bir veya daha fazla sayfaya yapılan giriş akışı olarak tanımlanır. Aynı IP adresini paylaşan birden fazla kişi (örneğin bir bilgisayar laboratuvarında) tek bir kullanıcı olarak kabul edilir, bu nedenle gerçek kullanıcı sayısı bir dereceye kadar eksik sayılabilir. Son 6 saat içinde aynı IP adresinden bir giriş gelmemişse, ziyaret "benzersiz(unique)" olarak sınıflandırılır. Siteyi tekrardan ziyaret eden kişiler(Returning. Visits), kabul ettikleri takdirde cerezler tarafından tanımlanır. Diğerleri ilk kez gelen ziyaretçiler(First.Time.Visits) olarak sınıflandırılır, bu nedenle benzersiz ziyaretçi sayısı(Unique. Visits), tanım gereği geri gelen ve ilk kez gelen ziyaretçilerin sayılarının toplamıdır. Veriyle ilgili zaman serisi analizlerine başlamadan önce veride eksik değer olup olmadığı kontrol edilmiştir ve kontrollerimiz sonucu eksik değer olmadığı sonucuna ulaşılmıştır.

Değişkenler

Row: Satır Numaraları.

Day: Text formatında Günler.

Day.Of.Week: Haftanın Günleri.(1:Pazar(Sunday), 2:Pazartesi(Monday), ...)

Date: Tarih(Ay\Gün\Y1l).

Page.Loads: Günlük Sayfa Yüklenmeleri.

Unique.Visits: Benzersiz ziyaretçi sayısı. İlk kez gelen ziyaretçi sayısı ve siteyi tekrardan ziyaret eden kişi sayısının toplamıdır. (IP adreslerinden 6 saatten fazla bir

süredir herhangi bir sayfaya ulaşılmayan günlük ziyaretçi sayısı)

First.Time.Visits: İlk kez gelen ziyaretçi sayısı.

Returning.Visits: Siteyi tekrardan ziyaret eden kişiler.

Veri Linki:

https://www.kaggle.com/datasets/bobnau/daily-website-visitors

Veri setimizdeki eksik gözlem varlığını analizlerimize başlamadan önce sorguladık ve eksik değer olmadığını gördük. Sonrasında verimizi EViews'da içe aktardık ve analizimize hazırladık.

Çizgi Grafiği

Bu grafiğe baktığımız zaman sarmal bir yapıda olduğunu görüyoruz. Bu tür grafikler mevsimselliğin göstergesidir. Şu an için grafikten hareketle mevsimsellik var diyebiliriz. Grafiğe baktığımızda verimiz durağan gözükmektedir. Daha sonrasında analizler yardımıyla daha net bir karara varacağız.

Not: Analizlerimizin tümünde **alfa = 0.05** alınmıştır.

B) Verimiz Zaman Serisi Mi?

Verimizin zaman serisi olup olmadığına yani gözlemlerin ilişkili olup olmadığına korelasyon ile bakıyoruz.

H0: Gözlemler ilişkisizdir. Veri zaman serisi değildir.

H1: Gözlemler ilişkilidir. Veri zaman serisidir.

Korelogramımızı oluşturduk. EViews'un default önerisiyle gecikme değerimizi 36'da bıraktık.

Prob değerleri 0.05'ten küçük olduğu için gözlemler ilişkilidir, H0 hiptoezi reddedilir. Veri setimiz bir zaman serisidir / gözlemler ilişkilidir.

C) Otokorelasyon Durumu

H0 : Otokorelasyon yoktur.H1 : Otokorelasyon vardır.

PAC kısmında alfa değeri 0.05'ten büyük olan değerler olduğu için H0 reddedilir. Otokorelasyon bu seri için vardır.

D) Veri Normal Dağılıyor Mu?

H0: Veri normal dağılmaktadır.

H1: Veri normal dağılmamaktadır.

Jarque Bera Testi ile karar verilir. Jarque Bera probability değeri alfa değeri olan 0.05'ten küçük olduğundan H0 reddedilir. Verimiz normal dağılmamaktadır.

Çarpıklık ve basıklık durumunu inceleyecek olursak;

Skewness değeri (0.085462) 0'dan büyük olduğu için sağa çarpıktır. **Kurtosis değeri** (2.413) için 3'ten küçük olduğu için basıklık vardır; fakat grafikten de görüleceği üzere verimiz normale çok yakın bir dağılıma sahiptir. Bu nedenle dönüşüm yapmadan devam etmeyi tercih ediyoruz.

E) Durağanlık Testi

H0: Seride birim kök içerir ve seri durağan değildir. Stokastik trend vardır.

H1: Seride birim kök içermez ve seri durağandır. Stokastik trend yoktur.

· -					-
View Proc Object Propertie	s Print Name	Freeze Samp	le Genr Sheet	Graph Stat	s Idei
Augmented Dick					
Null Hypothesis: UNIQUE	VISITS has a	unit root			^
Exogenous: Constant					
Lag Length: 22 (Automati	c - based on S	SIC, maxlag=2	.5)		
			-Statistic	Prob.*	
			-Statistic	1100.	
Augmented Dickey-Fuller			4.898205	0.0000	
Test critical values:	1% level		3.433203		
	5% level 10% level		2.862686 2.567426		
	107010001		2.007 120		
*MacKinnon (1996) one-s	sided p-values.				
Augmented Dickey-Fuller	Test Equation				
Dependent Variable: D(U					
Method: Least Squares		,			
Date: 06/09/22 Time: 22					
Sample (adjusted): 10/07					
Included observations: 21	144 arter adjus	imenis			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
UNIQUE VISITS(-1)	-0.039281	0.008019	-4.898205	0.0000	
D(UNIQUE_VISITS(-1))	-0.032739	0.022332	-1.466037	0.1428	
D(UNIQUE_VISITS(-2))	-0.225912	0.022206	-10.17365	0.0000	
D(UNIQUE_VISITS(-3))	-0.102897	0.022671	-4.538678	0.0000	
D(UNIQUE_VISITS(-4))	-0.092637	0.022538	-4.110265	0.0000	
D(UNIQUE_VISITS(-5)) D(UNIQUE_VISITS(-6))	-0.121474 0.028561	0.022594 0.022637	-5.376332 1.261670	0.0000 0.2072	
D(UNIQUE VISITS(-7))	0.408955	0.022571	18.11823	0.0000	
D(UNIQUE_VISITS(-8))	0.070398	0.024236	2.904642	0.0037	
D(UNIQUE VISITS(-9))	0.039351	0.024209	1.625488	0.1042	
D(UNIQUE_VISITS(-1	0.024712	0.024046	1.027693	0.3042	
D(UNIQUE_VISITS(-1	-0.060376	0.024037	-2.511838	0.0121	
D(UNIQUE_VISITS(-1	0.004551	0.023972	0.189851	0.8494	
D(UNIQUE_VISITS(-1	-0.092236	0.023973	-3.847536	0.0001	
D(UNIQUE_VISITS(-1 D(UNIQUE_VISITS(-1	0.126632 -0.040673	0.024015 0.024164	5.272942 -1.683206	0.0000 0.0925	U
	0.010010	3.02 1101	1.000200	0.0020	*
D(UNIQUE_VISITS(-1	-0.044985	0.022800	-1.97303	37 0.04	186
D(UNIQUE_VISITS(-1	-0.063806	0.022815	-2.79663	32 0.00)52
D(UNIQUE_VISITS(-1	-0.016893	0.022580	-0.74814	18 0.45	45
D(UNIQUE_VISITS(-1	-0.108539	0.022395	-4.84661	4 0.00	000
D(UNIQUE_VISITS(-2	-0.040601	0.022301			
D(UNIQUE_VISITS(-2	0.151940	0.021548			
D(UNIQUE_VISITS(-2	-0.067982	0.021750			
С	115.1542	24.16484	4.76536	31 0.00	000
R-squared	0.888576	Mean depe	endent var	-0.7541	198
Adjusted R-squared	0.887367	S.D. deper		679.60	
S.E. of regression	228.0796	Akaike info		13.708	
Sum squared resid	1.10E+08	Schwarz o		13.771	
Log likelihood	-14671.40		uinn criter.	13.731	
F-statistic	735.0621	Durbin-Wa		1.9878	
Prob(F-statistic)	0.000000				

Augmented Dickey-Fuller testindeki prob değeri alfa değeri olan 0.05'ten küçük olduğundan H0 reddedilir. Seride birim kök yoktur ve seri durağandır. Stokastik trend yoktur.

Bu noktada, verimiz zaten durağan olduğu için durağanlaştırma için fark alma işlemlerini yapmayacağız.

F) Trend Var Mı?

ls (unique_visits) c @trend

ls: least squares

■ Equation: UNTITLED Workfile: DAILY-WEBSITE-VISITORS::Untitled\

View Proc Object Print Name Freeze Estimate Forecast Stats Resids

Dependent Variable: UNIQUE_VISITS

Method: Least Squares Date: 06/10/22 Time: 22:22 Sample: 9/14/2014 8/19/2020 Included observations: 2167

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	2810.028 0.123378	41.87757 67.10103 0.033484 3.684722		0.0000 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.006232 0.005773 975.0597 2.06E+09 -17988.21 13.57718 0.000235	Mean depend S.D. depend Akaike info c Schwarz crit Hannan-Quii Durbin-Wats	ent var riterion erion nn criter.	2943.647 977.8865 16.60380 16.60904 16.60571 0.485371

Yorum: @trend katsayısının prob değeri alfadan (0,05) küçük olduğu için H0 hipotezi reddedilir: Evet, deterministik trend vardır.

B1 katsayısı için hipotez:

H0: B1 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B1 katsayısı anlamlıdır. Deterministik trend vardır.

G) Deterministik Trendin Modellenmesi

a) Doğrusal Trend Modeli

ls (unique_visits) c @trend

Kurulan Model:

Yt = 2810.028 + 0.123t

B0 katsayısı için hipotez:

H0: B0 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B0 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

B1 katsayısı için hipotez:

H0: B1 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B1 katsayısı anlamlıdır. Deterministik trend vardır.

Karar : Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

Sonuç : B1 katsayısını baz alıyoruz. B1 katsayısı, yani trend katsayısı anlamlıdır, bu model uygun model olarak kullanılabilir.

VIF değeri 5 ya da 10'dan büyükse çoklu bağlantı göstergesidir. Çoklu bağlantı varsa ilgili katsayılar bu nedenle zayıf bir şekilde kestiriliyor demektir. Verimizin değerlerini incelediğimiz zaman böyle bir problemle karşılaşılmadığını görüyoruz.

b) Birinci Farklar Trend Modeli

ls d(unique_visits) c @trend

/iew Proc Object Print	Name Freeze	Estimate Forec	ast Stats Res	sids
Dependent Variable: D Method: Least Square: Date: 06/10/22 Time: Sample (adjusted): 9/1 Included observations:	s 22:49 5/2014 8/19/20	020		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.792002	29.20904	0.129823	0.8967
@TREND	-0.003507	0.023349	-0.150218	0.8806
R-squared	0.000010	Mean depen	-0.008310	
Adjusted R-squared	-0.000452	S.D. dependent var		679.3100
S.E. of regression	679.4634	Akaike info criterion		15.88141
Sum squared resid	9.99E+08	Schwarz criterion		15.88665
Log likelihood	-17197.56	Hannan-Quinn criter.		15.88332
F-statistic	0.022565	Durbin-Wats	son stat	1.391029
Prob(F-statistic)	0.880607			

Kurulan Model:

Yt = 3.792 - 0.0035t

B0 katsayısı için hipotez:

H0: B0 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B0 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri > 0,05 olduğu için H0 reddedilemez. Deterministik trend yoktur.

B1 katsayısı için hipotez:

H0: B1 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B1 katsayısı anlamlıdır. Deterministik trend vardır.

Karar : Prob değeri > 0,05 olduğu için H0 reddedilemez. Deterministik trend yoktur.

Sonuç : B1 katsayısını baz alıyoruz. B1 katsayısı, yani trend katsayısı anlamlı değildir., bu model uygun model olarak kullanılamaz.

VIF değerlerini incelediğimizde 5'i geçmediği için modelde çoklu bağlantı probleminden söz edemeyiz.

c) Üstel Trend Modeli

Is log(unique visits) c @trend

Kurulan Model:

$$ln(Yt) = 7.87 + 0.0000501t$$

B0 katsayısı için hipotez:

H0: B0 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B0 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

B1 katsayısı için hipotez:

H0: B1 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B1 katsayısı anlamlıdır. Deterministik trend vardır.

Karar : Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

Sonuç : B1 katsayısını baz alıyoruz. B1 katsayısı, yani trend katsayısı anlamlıdır, bu model uygun model olarak kullanılabilir.

VIF değeri 5 ya da 10'dan büyükse çoklu bağlantı göstergesidir.

d) Karesel Trend Modeli

ls (unique visits) c @trend @trend^2

/iew Proc Object Prin	t Name Freeze	Estimate F	orecast Stats R	esids
Dependent Variable: UI	VIQUE_VISITS			
Method: Least Squares	_			
Date: 06/10/22 Time: 2				
Sample: 9/14/2014 8/19				
ncluded observations:	2167			
Variable	Coefficient	Std. Erro	r t-Statistic	Prob.
С	2904.262	62.73575	46.29357	0.0000
@TREND	-0.137778	0.133782	-1.029864	0.3032
@TREND^2	0.000121	5.98E-05	2.016173	0.0439
R-squared	0.008095	Mean depe	2943.647	
Adjusted R-squared	0.007179	S.D. dependent var		977.8865
S.E. of regression	974.3702	Akaike info criterion		16.60284
Sum squared resid	2.05E+09	Schwarz criterion		16.61071
Log likelihood	-17986.18	Hannan-Quinn criter.		16.60572
F-statistic	8.830677	Durbin-Wa	tson stat	0.486283
Prob(F-statistic)	0.000152			

Kurulan Model:

B0 katsayısı için hipotez:

H0: B0 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B0 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

B1 katsayısı için hipotez:

H0: B1 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B1 katsayısı anlamlıdır. Deterministik trend vardır.

Karar : Prob değeri > 0,05 olduğu için H0 reddedilemez. Deterministik trend yoktur..

B2 katsayısı için hipotez:

H0: B2 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B2 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

Sonuç : B2 katsayısını baz alıyoruz. B2 katsayısı, yani trend^2 katsayısı anlamlıdır, bu model uygun model olarak kullanılabilir.

VIF değerleri 5 ve 10'dan yüksek çıktığı için çoklu bağlantı probleminden söz edilebilir. Bu model için çoklu bağlantı problemi vardır.
e) Lojistik Trend Modeli
Serimizdeki en büyük değer 5541 olduğu için, bu değerden büyük bir değer olan 10000'i seçiyoruz.
ls log(10000/unique_visits -1) c @trend

Kurulan Model:

Yt = 1.000779 - 0.0000676t

B0 katsayısı için hipotez:

H0: B0 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B0 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

B1 katsayısı için hipotez:

H0: B1 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B1 katsayısı anlamlıdır. Deterministik trend vardır.

Karar : Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

Sonuç: B0 ve B1 katsayıları anlamlıdır. B1 katsayısını baz alıyoruz. B1 katsayısı, yani trend katsayısı anlamlıdır, bu model uygun model olarak kullanılabilir.

f) Kübik Trend Modeli

ls unique_visits c @trend @trend^2 @trend^3

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	2733.846	83.41539	32.77388	0.0000
@TREND	0.807445	0.333594	2.420439	0.0156
@TREND^2	-0.000971	0.000358	-2.711774	0.0067
@TREND^3	3.36E-07	1.09E-07	3.091902	0.0020
R-squared	0.012460	Mean depend	2943.647	
Adjusted R-squared	0.011090	S.D. depende	nt var	977.8865
S.E. of regression	972.4488	Akaike info cri	terion	16.59936
Sum squared resid	2.05E+09	Schwarz criter	ion	16.60984
Log likelihood	-17981.40	Hannan-Quin	n criter.	16.60319
F-statistic	9.097025	Durbin-Watso	n stat	0.488433
Prob(F-statistic)	0.000006			

Kurulan Model:

 $Yt = 2733.846 + 0.807445t - 0.000971t^2 + 0.000000336t^3$

B0 katsayısı için hipotez:

H0: B0 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B0 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

B1 katsayısı için hipotez:

H0: B1 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B1 katsayısı anlamlıdır. Deterministik trend vardır.

Karar : Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

B2 katsayısı için hipotez:

H0: B2 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B2 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

B3 katsayısı için hipotez:

H0: B3 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B3 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

Sonuç : B0, B1, B2 ve B3 katsayıları anlamlı olduğu için bu model geçerli olarak kullanılabilir.

g) Logaritmik Trend Modeli

series a=@trend+1

Is unique visits c log(a)

Kurulan Model:

Yt = 2387.099 + 83.27447ln(t)

B0 katsayısı için hipotez:

H0: B0 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B0 katsayısı anlamlıdır. Deterministik trend vardır.

Karar: Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

B1 katsayısı için hipotez:

H0: B1 katsayısı anlamsızdır. Deterministik trend yoktur.

H1: B1 katsayısı anlamlıdır. Deterministik trend vardır.

Karar : Prob değeri < 0,05 olduğu için H0 reddedilir. Deterministik trend vardır.

Sonuç: B0 ve B1 katsayıları anlamlıdır. B1 katsayısını baz alıyoruz. B1 katsayısı, yani trend katsayısı anlamlıdır, bu model uygun model olarak kullanılabilir.

Modellerin Karşılaştırılması

Forecast: UNIQUE_VISF_DOGRUSALMODEL

Actual: UNIQUE_VISITS

Forecast sample: 9/14/2014 8/19/2020

Included observations: 2167

Root Mean Squared Error 974.6096
Mean Absolute Error 796.9792
Mean Abs. Percent Error 34.28008
Theil Inequality Coef. 0.161188
Bias Proportion 0.000000
Variance Proportion 0.853664
Covariance Proportion 0.146336
Theil U2 Coefficient 1.648244

Forecast: UNIQUE_VISF_BIRINCI_FARKLAR_MODEL

Actual: UNIQUE_VISITS

Forecast sample: 9/14/2014 8/19/2020 Adjusted sample: 9/15/2014 8/19/2020

Included observations: 2166

Root Mean Squared Error 1177.231
Mean Absolute Error 968.7189
Mean Abs. Percent Error 41.05611
Theil Inequality Coef. 0.192681

Bias Proportion 0.000000

Variance Proportion 0.095690
Covariance Proportion 0.904310
Theil U2 Coefficient 1.981675
Symmetric MAPE 34.43099

Forecast: UNIQUE_VISF_USTELMODEL

28.36885

Actual: UNIQUE_VISITS

Symmetric MAPE

Forecast sample: 9/14/2014 8/19/2020

Included observations: 2167

Root Mean Squared Error 990.8719 Mean Absolute Error 805.5363 Mean Abs. Percent Error 32.48894 Theil Inequality Coef. 0.168862 **Bias Proportion** 0.032568 Variance Proportion 0.808568 Covariance Proportion 0.158864 Theil U2 Coefficient 1.521248 Symmetric MAPE 28.74559 Forecast: UNIQUE_VISF_KARESEL_MODEL

Actual: UNIQUE_VISITS

Forecast sample: 9/14/2014 8/19/2020

Included observations: 2167

Root Mean Squared Error 973.6955 Mean Absolute Error 796.4349 Mean Abs. Percent Error 34.22109 Theil Inequality Coef. 0.161029 Bias Proportion 0.000000 0.834905 Variance Proportion Covariance Proportion 0.165095 Theil U2 Coefficient 1.642854 Symmetric MAPE 28.35250

Forecast: UNIQUE VISF LOJISTIK

Actual: UNIQUE VISITS

Symmetric MAPE

Forecast sample: 9/14/2014 8/19/2020

Included observations: 2167

Root Mean Squared Error 980.6500 Mean Absolute Error 798.7718 Mean Abs. Percent Error 33.06967 Theil Inequality Coef. 0.165145 **Bias Proportion** 0.012263 Variance Proportion 0.826883 Covariance Proportion 0.160854 Theil U2 Coefficient 1.566624

Forecast: UNIQUE_VISF_KUBIK_MODEL

Actual: UNIQUE_VISITS

Forecast sample: 9/14/2014 8/19/2020

Included observations: 2167

Root Mean Squared Error 971.5509 Mean Absolute Error 795.3651 Mean Abs. Percent Error 34.14039 Theil Inequality Coef. 0.160655 Bias Proportion 0.000000 Variance Proportion 0.799169 Covariance Proportion 0.200831 Theil U2 Coefficient 1.635549 Symmetric MAPE 28.31410

Forecast: UNIQUE_VISF_LOGARITMIK

Actual: UNIQUE_VISITS

28.48144

Forecast sample: 9/14/2014 8/19/2020

Included observations: 2167

Root Mean Squared Error 974.1671 Mean Absolute Error 796.5779 Mean Abs. Percent Error 34.28674 Theil Inequality Coef. 0.161111 Bias Proportion 0.000000 Variance Proportion 0.844226 Covariance Proportion 0.155774 Theil U2 Coefficient 1.651180 Symmetric MAPE 28.35219

SONUÇ:

R^2 olarak en büyük olan ve RMSE değeri olarak en küçük model olan Karesel Model'in seçilmesine karar verilmiştir.

Seçilen Karesel Trend Modelinde:

Yukarıda da bahsettiğimiz gibi seçtiğimiz karesel modelde çoklu bağlantı problemi vardır.

Hatalar Normal Dağılıyor Mu?

Prob. değeri 0.05'den küçük olduğundan:

H0: Artıklar normal dağılıyor.

H1: Artıklar normal dağılmıyor.

Karar: Prob değeri 0.05'den küçüktür. Yokluk hipotezi reddedilmiştir. Artıklar normal dağılmıyor.

Histogramdan da görülebildiği gibi artıklar hafif sağa çarpıktır.

Otokorelasyon problemi var mı?

Partial Correlation bölümünde güven aralığını aşan değerler vardır. Seride otokorelasyon olduğunu söyleyebiliriz.

Değişen varyans problemi var mı?

Probability değeri 0.05'ten küçük olduğundan değişen varyans problemi vardır.

0 Ortalama varyans problemi var mı?

Verinin ortalaması 0'a yakın olduğundan dolayı bu varsayım sağlanmaktadır.

Aşağıda karesel trend modelinin denklemini ve temsil ettiği katsayı değerlerini görebilirsiniz.

Üstel Düzleştirme

Üstel düzleştirme yöntemi ile veri setimizdeki son değişim ve sıçramaları baz alarak öngörüleri devamlı güncelleyebiliriz.

Öncelikle verimizi tahmin etmek istediğimiz tarihlere göre ayarlayarak genişletiyoruz. Biz on günü tahmin etmek istedik bu yüzden end date tarihini 08/19/2020 iken 08/29/2020 olarak ayarlıyoruz. Böylece gözlem sayımızı 2167'den 2177'ye çıkarmış olduk.

Bizim verimizin yapısını göz önüne aldığımız zaman Holt-Winters-Additive ve Holt-Winters Multiplicative yöntemlerini deneyip aralarında bir karara varacağız.

HOLT-WINTERS-ADDITIVE:

Aşağıdaki grafikte bu yöntemin orijinal veriyle oldukça uyumlu olduğunu gözlemliyoruz.

HOLT-WINTERS-Multiplicative:

View Proc C	Object	Properties	Print	Name	Freeze	Default	~	Sort	Edit+/-	Sm
8/09/2020		1950.053								
8/10/2020		2533.481								
8/11/2020		2795.273								
8/12/2020		2841.459								
8/13/2020		2862.863								
8/14/2020		2358.877								
8/15/2020		1677.088								
8/16/2020		2011.688								
8/17/2020		2661.127								
8/18/2020		2719.325								
8/19/2020		2782.986								
8/20/2020		1785.170								
8/21/2020		1506.430								
8/22/2020		1091.748								
8/23/2020		1297.506								
8/24/2020		1699.341								
8/25/2020		1748.727								
8/26/2020		1809.063								
8/27/2020		1786.450								
8/28/2020		1507.510								
8/29/2020		1092.531								

Yine aynı şekilde bu grafikte HOLT-WINTERS-Multiplicative yönteminin de iyi uyum sağladığını görüyoruz.

Karar: Modellerin RMSE değerlerini karşılaştırıyoruz.

HOLT-WINTERS-Multiplicative modelinde hata oranı(RMSE) daha küçük olduğu için HOLT-WINTERS-Multiplicative modelini seçiyoruz.

AYRIŞTIRMA İŞLEMLERİ

Daha önceden yaptığımız uygulamada 10 günü tahmin etmek için gözlemlerimize NA değerlerini eklemiştik. Şimdi ise verimizi mevsimsellikten ve trendden arındırmak için STL algoritmasıyla ayrıştırma işlemini yapacağız.

"LOESS (STL) algoritması kullanılarak yapılan Mevsimsellik-Trend ayrıştırması, ekonomik ve çevresel analizlerde sıklıkla kullanılan sağlam bir zaman serisi ayrıştırma yöntemidir.

STL yöntemi, bir zaman serisini trend, mevsimsel ve kalan bileşenlere ayrıştırmak için yerel olarak yerleştirilmiş regresyon modellerini kullanır." (1)

STL'yi herhangi bir veri kümesine uygulayabilirsiniz, ancak anlamlı sonuçlar yalnızca verilerde yinelenen bir zamansal model varsa döndürülür.

STL algoritması, iki döngüde LOESS kullanarak zaman serilerinde yumuşatma gerçekleştirir.

Yukarıdaki grafiklerde zaman serimizin ayrıştırılmış bileşenlerini görebilirsiniz. Trend ve Mevsimselliğe ek olarak, "Remainder" grafiği verilerde mevcut olan gürültü miktarını gösterir.

Remainder'da sıfıra yakın değerler, mevsimsel ve trend bileşenlerinin zaman serilerini tanımlamada doğru olduğunu gösterirken, daha büyük kalan değerler gürültünün varlığını gösterir.

Remainder bileşenini, verilerdeki aykırı değerleri belirlemek için de kullanabilirsiniz.

STL algoritması, zaman serimizi bileşenlerine ayırarak her bir bileşeni yeni değişkenler olarak environment'ımıza atadı. Şimdi manuel olarak seriyi kendimiz ayrıştıracağız.

ÇARPIMSAL MODEL: **Tahmin = Trend . Mevsim . Hata** olduğunu unutmayalım.

Serinin Trendden Ayrıştırılarak Forecastlenmesi

Aşağıda "unique visf" değişkeni oluşturarak sonraki 10 günü tahminledik:

Trendin çizgi grafiğine baktığımızda hafif bir pozitif trend olduğunu görebiliriz:

Sonrasında orijinal veriden trendi çıkararak <u>saf trend verisini</u> "trend" (serinin trendden ayrıştırılmış hali) isimli değişkende depoladık.

Not: Trend grafiğinin üstte yaptığımız STL ayrıştırma yönteminin sonucunda oluşan unique_visits_trend'le aynı olduğunu görebiliriz.

Serinin Mevsimsellikten Ayrıştırılması

Ayrıştırmayı yaparken, "Mevsim" adı altında orijinal veriden mevsimsellikten ayrıştırılmış halinin farkını depoladık:

Oluşturduğumuz mevsim serisinde tahmin edilecek 10 günü (NA) bir önceki 10 günün değerleriyle dolduruyoruz:

EViews - [Series: MEVSIM Workfile: DAILY-WEBSITE-VISITORS::Untitled\]

Hata Serisini Elde Etme

series hata=unique_visits-tahmin

Tahmin'i Elde Etme

series hata=unique_visits-tahmin

Hepsinin Beraber Görünümü:

BOX-JENKINS METODOLOJISI

Mevsimsel Box-Jenkins Modelleri: (SAR) (SMA) (SARMA/SARIMA)

Verimiz mevsimsellik içermektedir. Aynı zamanda günlük verilerden oluşmaktadır. SARIMA modelleri serimiz için uygun modellerdir.

Durbin-Watsons Test istatistiğine göre değerler 1.7 ile 2.3 arasında yer aldığından dolayı otokorelasyon yoktur diyebiliriz.

Prob değeri alfa değeri olan 0.05'ten küçüktür . Ayrıca serimiz durağandır. Buradan d = 0 diyebiliriz.

SARIMA (p,d,q) (P,D,Q)s

P: mevsimsel otoregresyon (SAR) modelinin derecesi,

D: mevsimsel fark alma işlemi sayısı,

Q: mevsimsel hareketli ortalama (SMA) modelinin derecesi

s: periyot

Serimiz durağan olduğu için bu adımlarda fark alınmayacaktır(d=0).

Mevsimsel Otoregresyon Modelleri (SAR) SAR(1) = SARIMA(1,0,0)(1,0,0)

ls unique visits c sar(1)

H0: Model anlamlıdır

H1: Model anlamsızdır.

Prob değerleri alfa değeri olan 0.05'ten küçük olduğundan H0 reddedilemez. Inverted AR roots değerinin 1 değerine yakın olması çok iyi değil ve bizim verimizde 1 değerine yakın. Kolegrama bakalım.

						,
	Correlogram of Residuals					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
<u> </u>		1	0.365	0.365	288.61	
			-0.287		467.74	0.000
<u> </u>	h		-0.310	0.034	675.97	0.000
I			-0.309		883.20	0.000
<u> </u>	<u> </u>	5	-0.281	-0.162	1054.3	0.000
ı		6	0.364	0.585	1342.4	0.000
		7	0.913	0.744	3154.3	0.000
ı	m	8	0.353	0.014	3425.3	0.000
d i	di	9	-0.290	-0.051	3608.2	0.000
ı ı	dı	10	-0.319	-0.035	3829.9	0.000
i	d ₁	11	-0.323	-0.095	4057.5	0.000
d i		12	-0.286	-0.108	4235.7	0.000
<u> </u>	di	13	0.342	-0.064	4490.4	0.000
		14	0.877	0.232	6168.7	0.000
<u> </u>		15	0.332	-0.077	6409.5	0.000
-	di	16	-0.302	-0.052	6609.2	0.000
<u> </u>	•	17	-0.331	-0.023	6849.4	0.000
<u> </u>		18	-0.328	0.002	7085.3	0.000
-	🖆	19	-0.300	-0.100	7282.5	0.000
-	•	20	0.330	0.028	7520.4	0.000
		21	0.858	0.180	9132.8	0.000
·		22	0.313	-0.067	9347.7	0.000
<u> </u>		23	-0.311	0.005	9560.1	0.000
ı ı	•	24	-0.331	0.029	9800.9	0.000
<u> </u>	•	25	-0.329	0.030	10038.	0.000
ı ı	di	26	-0.303	-0.039	10240.	0.000
ı <u>— — — — — — — — — — — — — — — — — — —</u>	•	27	0.319	-0.020	10463.	0.000
		28	0.848	0.160	12044.	0.000
		29	0.310	-0.007	12255.	0.000
-	•	30	-0.314	-0.018	12473.	0.000
ı ı	(1)	31	-0.336	-0.029	12722.	0.000
ı ı	•	32	-0.331	-0.013	12963.	0.000
· ·	(1)	33	-0.304	-0.040	13167.	0.000
—	•	34	0.308	-0.056	13377.	0.000
		35	0.836	0.093	14919.	0.000

Partial Correlation kısmına baktığımda değerlerin güven aralıklarının çok değişmediğini görebiliyoruz. Bu yüzden bu model sorunumuzu çözmedi.Fark almamız gerekiyor.. Periyodumuz 7 olduğundan farkı 7 olarak aldık ve tekrardan kodumuzu yazıp partial correlationa bakalım.

Command

genr fark=unique_visits-unique_visits(-7)
Is fark c sar(1)

H0: Model anlamlıdır
H1: Model anlamsızdır.

Prob değeri alfa değeri olan 0.05'ten büyük olduğundan H0 reddedilir. Model anlamsızdır.

SAR(2) = SARIMA(2,0,0)(2,1,0)

ls unique visits c sar(2)

H0: Model anlamlıdır
H1: Model anlamsızdır.

Prob değerleri alfa değeri olan 0.05'ten küçük olduğundan H0 reddedilemez. Model anlamlıdır.Inverted AR roots değerinin 1 değerine yakın olması çok iyi değil ancak bizim verimizde 1 değerine çok yakın değil. Kolegrama bakalım.

Güven sınırlarını aşan değerler hala var. Bu modelimiz de uygun bir model gibi gözükmüyor.

Mevsimsel Hareketli Ortalama Modelleri (SMA)

SMA(1) = SARIMA(0,0,1)(0,1,1)

ls unique_visits c sma(1)

H0: Model anlamlıdır
H1: Model anlamsızdır.

Güven aralığı sorunları hala çözülmedi. En sonunda en uygun modele karşılaştırma yaparak karar vereceğiz.

SMA(2) = SARIMA(0,0,)(0,1,2)

ls unique_visits c sma(2)

H0: Model anlamlıdır

H1: Model anlamsızdır.

Bu model de uygun bir model olarak gözükmüyor, en sonunda inceleyeceğiz.

Mevsimsel Otoregresif Hareketli Ortalama Modelleri (SARMA/SARIMA)

SARIMA(1,0,1)(1,1,1) = SAR(1) + SMA(1)

ls unique_visits c sar(1) sma(1)

iew Proc Object Prin	t Name Freeze	Estimate Fore	ecast Stats R	esids
Dependent Variable: Ul	NIQUE_VISITS			
Method: ARMA Maximur	m Likelihood (B	FGS)		
Date: 06/19/22 Time: (02:26			
Sample: 9/14/2014 8/1				
Included observations:				
Convergence achieved				
Coefficient covariance	computed using	g outer product	of gradients	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2940.127	47.98274	61.27467	0.0000
AR(1)	0.572780	0.022823	25.09702	0.0000
MA(1)	0.746732	0.017107	43.65180	0.0000
SIGMASQ	266908.2	9938.544	26.85587	0.0000
R-squared	0.720755	Mean depend	ent var	2943.647
Adjusted R-squared	0.720368	S.D. depende	nt var	977.8865
S.E. of regression	517.1091	Akaike info cri	terion	15.33712
Sum squared resid	5.78E+08	Schwarz criter	15.34760	
Log likelihood	-16613.77	Hannan-Quin		15.34095
F-statistic	1860.961	Durbin-Watso	n stat	1.880550
Prob(F-statistic)	0.000000			
Inverted AR Roots	.57			
Inverted MA Roots	75			

H0: Model anlamlıdır H1: Model anlamsızdır.

Modeldeki birçok güven aralığı sorununun giderilmiş olduğunu görüyoruz fakat hala mevcut.

SARIMA(2,0,1)(2,1,1) = SAR(2) + SMA(1)

Equation: UNTITLED	Workfile: DAILY	-WEBSITE-\	VISITORS::	U [- O	×	
View Proc Object Print	Name Freeze	Estimate	Forecast	Stats	Resids		
Dependent Variable: UNIQUE_VISITS Method: ARMA Maximum Likelihood (BFGS) Date: 06/19/22 Time: 02:38 Sample: 9/14/2014 8/19/2020 Included observations: 2167 Convergence achieved after 5 iterations Coefficient covariance computed using outer product of gradients							
Variable	Coefficient	Std. Err	or t-S	Statisti	c Pro	b.	
С	2941.364	35.9844	14 81	.7398	7 0.00	000	
AR(2)	0.332018	0.02321	18 14	.2999	0.00	000	
MA(1)	0.915443	0.00964	47 94	.8971	9 0.00	000	
SIGMASQ	333442.1	11823.5	50 28	.2016	3 0.00	000	
R-squared	0.651146	Mean dep	endent v	ar	2943.0	347	
Adjusted R-squared	0.650662	S.D. depe	ndent va	r	977.88	365	
S.E. of regression	577.9781	Akaike inf	o criterio:	n	15.559	344	
Sum squared resid	7.23E+08	Schwarz o	criterion		15.569	993	
Log likelihood	-16854.65	Hannan-0	Quinn crit	er.	15.563	328	
F-statistic	1345.766	Durbin-W	atson sta	ıt	1.299)95	
Prob(F-statistic)	0.000000						
Inverted AR Roots	.58	58					
Inverted MA Roots	92						

H0: Model anlamlıdır H1: Model anlamsızdır.

SARIMA(1,0,2)(1,1,2) = SAR(1) + SMA(2)

Dependent Variable: UNIQUE_VISITS Method: ARMA Maximum Likelihood (BFGS)

Date: 06/19/22 Time: 02:41 Sample: 9/14/2014 8/19/2020 Included observations: 2167

Convergence achieved after 13 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2917.300	142.9339	20.41013	0.0000
AR(1)	0.976594	0.005410	180.5259	0.0000
MA(2)	-0.724349	0.017173	-42.18034	0.0000
SIGMASQ	277656.5	10588.39	26.22274	0.0000
R-squared	0.709510	Mean dependent var		2943.647
Adjusted R-squared	0.709107	S.D. dependent var		977.8865
S.E. of regression	527.4182	Akaike info criterion		15.37673
Sum squared resid	6.02E+08	Schwarz criterion		15.38722
Log likelihood	-16656.69	Hannan-Quinn criter.		15.38057
F-statistic	1761.012	Durbin-Watso	on stat	1.507424
Prob(F-statistic)	0.000000			
Inverted AR Roots	.98			
Inverted MA Roots	.85	85		

H0: Model anlamlıdır

H1: Model anlamsızdır.

SARIMA(2,0,2)(2,1,2) = SAR(2) + SMA(2)

Equation: UNTITLED Workfile: DAILY-WEBSITE-VISITORS::U... View | Proc | Object | | Print | Name | Freeze | | Estimate | Forecast | Stats | Resids |

Dependent Variable: UNIQUE_VISITS Method: ARMA Maximum Likelihood (BFGS)

Date: 06/19/22 Time: 02:43 Sample: 9/14/2014 8/19/2020 Included observations: 2167

Convergence achieved after 15 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(2) MA(2) SIGMASQ	2943.154 -0.350296 0.879943 724281.5	29.41589 0.033097 0.013064 24544.82	100.0532 -10.58387 67.35619 29.50853	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.242241 0.241190 851.8338 1.57E+09 -17695.32 230.4902 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2943.647 977.8865 16.33532 16.34581 16.33915 0.909833
Inverted AR Roots Inverted MA Roots	00+.59i 00+.94i	0059i 0094i		

H0: Model anlamlıdır

H1: Model anlamsızdır.

UYGUN MODEL SEÇİMİ

sar(1)

sar(2)

sma(1)

- 88

sma(2)

Inverted MA Roots

Inverted MA Roots

-.00-.77i

-.00+.77i

sar(1) sma(1)

sar(2) sma(1)

sar(1) sma(2)

Dependent Variable: UNIQUE_VISITS Method: ARMA Maximum Likelihood (BFGS)

Date: 06/19/22 Time: 02:41 Sample: 9/14/2014 8/19/2020 Included observations: 2167

Convergence achieved after 13 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2917.300	142.9339	20.41013	0.0000
AR(1)	0.976594	0.005410	180.5259	0.0000
MA(2)	-0.724349	0.017173	-42.18034	0.0000
SIGMASQ	277656.5	10588.39	26.22274	0.0000
R-squared	0.709510	Mean dependent var		2943.647
Adjusted R-squared	0.709107	S.D. dependent var		977.8865
S.E. of regression	527.4182	Akaike info criterion		15.37673
Sum squared resid	6.02E+08	Schwarz criterion		15.38722
Log likelihood	-16656.69	Hannan-Quinn criter.		15.38057
F-statistic	1761.012	Durbin-Watson stat		1.507424
Prob(F-statistic)	0.000000			
Inverted AR Roots	.98		<u> </u>	
Inverted MA Roots	.85	85		

sar(2) sma(2)

Dependent Variable: UNIQUE_VISITS Method: ARMA Maximum Likelihood (BFGS)

Date: 06/19/22 Time: 02:43 Sample: 9/14/2014 8/19/2020 Included observations: 2167

Convergence achieved after 15 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(2) MA(2) SIGMASQ	2943.154 -0.350296 0.879943 724281.5	29.41589 0.033097 0.013064 24544.82	100.0532 -10.58387 67.35619 29.50853	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.242241 0.241190 851.8338 1.57E+09 -17695.32 230.4902 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2943.647 977.8865 16.33532 16.34581 16.33915 0.909833
Inverted AR Roots Inverted MA Roots	00+.59i 00+.94i	0059i 0094i		

Kurduğum tüm modellerin ve değişkenlerin R^2leri ve değişkenlerin güven aralıkları incelendiğinde en uygun model SARIMA(1,0,1)(1,1,1)= SAR(1) + SMA(1) olarak gözüküyor. Bu modelin VIF değerlerine bakalım.

VIF değerleri 1 ila 10 arasında. Çoklu bağlantı sorunumuz yok gözüküyor. Bir de forecasti inceleyelim.

Hem serimizi hem de tahmini beraber görüntülediğimizde;

Seçtiğimiz modele göre siteye giren günlük ziyaretçi sayısını verileri göz önünde bulundurarak çeşitli uygulamalarla tahmin etmiş olduk.

KAYNAKÇA

 $\frac{https://doc.arcgis.com/en/insights/latest/analyze/stl.htm\#:\sim:text=Seasonal\%2DTr}{end\%20decomposition\%20using\%20LOESS\%20(STL)\%20is\%20a\%20robust,}\\ \underline{\%2C\%20seasonal\%2C\%20and\%20remainder\%20components}. (1)$