Řízení databázových systémů

Přednáška 1

Roman Špánek

- Ing. Roman Špánek, Ph.D.
- Kancelář: budova A, 3. patro
- Tel. (48 535) 3519
- email: roman.spanek@tul.cz
- Přednášky na:
 - https://elearning.fm.tul.cz/

Náplň předmětu RDB

- Úvod, relační model dat, normální formy
- Návrh databáze a normální formy
- Indexování a optimalizace
- Uložené procedury, spouště
- NoSQL
- Programování databázových aplikací

• ...

Miniprojekty

- Cílem předmětu je osvojit si a umět použít nabyté znalosti ohledně databází
- Naučit se komunikovat s případným zadavatel (zaměstnavatelem)
- Podmínkou zápočtu bude vytvořit DB aplikaci a také ji prezentovat před publikem (v rámci cvičení či přednášek)

Miniprojekty

- 1. Sami si vytvoříte skupinky po max. 3 studentech
- Zadání bude oznámeno během prvních cca 3 týdnů semestru
- 3. Na konci (cca poslední dva týdny) by jste odevzdávali/prezentovali vaše práce

Historický vývoj zpracování dat

- Systémy pro zpracování souborů
- Nevýhody:
 - redundance dat,
 - nekonzistentnost dat (problém aktualizace od různých uživatelů).
- Přístupy jsou sice ve vyšších programovacích jazycích, ale tzv. natvrdo.
- Při rozvoji systému to vede k neustálému předělávání a dodělávání aplikačních programů.
- Soubory mohou mít různé formáty, je obtížné psát moduly pro řízení přístupu k datům do již hotových programů.
- Problém se zabezpečením. Soubory jsou obvykle dostupné v rámci OS.

Struktura SŘBD

7

Relační model dat

- 1970 E.F. Codd
- Založen na pevném matematickém základu
- *Def:* Matematická relace
 - Relace R* nad množinou atributů
 Ω={A₁:dom(A₁),...,A_n:dom(A_n)}
 je podmnožina kartézského součinu
 dom(Ω)=dom(A₁) x... xdom(A_n),
 kde pro každé A_i je dom(A_i) neprázdným oborem (doménou)
 hodnot, dále nedělitelných.

Relační model dat

- Základní rysy relačního modelu:
 - RMD důsledně odděluje data, která jsou chápána jako relace, od jejich implementace
 - přístup k datům je symetrický, tj. při manipulaci s daty se nezajímáme o přístupové mechanizmy k datům
 - pro manipulaci s daty jsou k dispozici dva silné prostředky relační kalkul a relační algebra

RMD má jediný konstrukt: databázovou relaci

- Mějme množiny D₁,D₂,D₃ ,.....D_n. Z každé vybereme 1 prvek. Tím vytvoříme uspořádanou n-tici.
- Kartézský součin D₁ x D₂... je množina všech posloupností (x₁,x₂,...) kde x₁ je prvkem D₁ ...
- Z hlediska databázových systémů jsou množiny D₁,D₂,.. množinami hodnot atributů a značí se jako domény.

- Schéma relace R(A1:D1,....An:Dn), kde
 - Ai jsou jména atributů
 - Di jsou domény atributů dom(Ai) (obvykle primitivní typy (STRING, INTEGER...).
 - Dvojici Ai:Di se říká atribut relace.
- Relace R nad množinou A je libovolná podmnožina kartézského součinu domén D1x...xDn.
- Prvkům relace se říká n-tice, přičemž n určuje řád relace.

- Relační schéma databáze je dvojice (R,I), kde
 - R je množina schémat relací,
 - I je množina integritních omezení.
 - Relační databáze se schématem (R,I) je konzistentní, pokud prvky všech relací relačního schématu vyhovují I.
- Protože relace jsou množiny, nesmí relace obsahovat duplicitní prvky.

Integritní omezení

- Primární klíč je množina atributů K z A, jejichž hodnoty jednoznačně určují n-tice relace R.
- Kandidáti primárního klíče: primární klíč pouze jeden, alternativní klíče - více
- K musí být minimální (nelze z ní odebrat žádný atribut, aniž by to narušilo jednoznačnost identifikace)
- Atribut, který je součástí nějakého klíče se nazývá klíčový.
- Atributy, které nejsou součástí žádného klíče se nazývají neklíčové.
- Protože relace jsou množiny, nesmí relace obsahovat duplicitní prvky.
- Referenční integrita. Popisuje vztahy mezi daty ve dvou relacích. Atribut, kterého se referenční integrita týká se nazývá cizí klíč (foreign key).

Podmínky, které musí splňovat relační tabulka:

- sloupce mohou být v libovolném pořadí
- řádky mohou být v libovolném pořadí
- sloupce musí být homogenní = ve sloupci musí být údaje stejného typu
- každému sloupci musí být přiřazeno jednoznačné jméno (tzv. atribut)
- v relační tabulce nesmí být dva zcela stejné řádky (z čeho to plyne?).

- Dle relační teorie lze pomocí základních operací
 - sjednocení,
 - kartézský součin,
 - rozdíl,
 - selekce,
 - projekce,
 - přejmenování

uskutečnit veškeré operace s daty

• ostatní operace jsou již jen kombinacemi těchto pěti.

Historie relačních databází

- 1975
 - ANSI SPARC
 - Do té doby pouze schéma a subschéma
 - Schéma: celý obsah databáze
 - Subschéma: pohledy na data, např. pouze výseky
 - Návrh 3-úrovňové architektury databázových systémů
 - Přibylo konceptuální schéma
 - Konceptuální modelovaní

Databázový systém

- DBS=SŘBD+DB
- Architektura SŘBD

- První SQL databází na trhu byl v roce 1980 Oracle.
 Firmu Oracle založil Larry Ellison a jeho počáteční inspirace byla v System-R od IBM.
- Posléze po určitých pochybnostech managementu přišla na trh i IBM se svým produktem DB2.
- ERP (Enterprise Resource Planning) a MRP (Management Resource Planning)
 - Aplikační vrstva nad DBMS (Bean, Oracle, SAP,...)
 - Běžné úkoly plánování, lidské zdroje, sklady, finanční analýza, Business Inteligence,...

Historie

- Deduktivní databázové systémy
- 90. léta:
 - Objektově orientované databázové systémy
 - post-relační databázové systémy
 - multimediální databáze
 - Spacial Databases (GIS)
 - databáze na internetu + skriptovací jazyky (PHP, APS, .NET, JSP,...)

Multimediální DB

- text, grafika, číslicově zpracovaný obraz a zvuk
- Informační systémy úřadů (Office Information Systems)
- dokumenty různých typů, vzájemná provázanost objektů, toky dokumentů, plánovací kalendáře apod.
- XML (Extendable Markup Language)
 - Standard pro výměnu strukturovaných dat v podobě tzv.
 XML
 - XML databáze
 - efektivní ukládání dokumentů a vyhledávání

Objektové modely dat

- Hierarchický, síťový i relační model jsou záznamově orientované modely, které popisují prvky databáze formou jednotlivých záznamů.
- V 90. letech se začaly objevovat první objektově orientované DBMS (OODBMS), které umožňují pracovat s datovou abstrakcí na úrovni objektů a tak přirozeněji a věrněji popisovat skutečný svět.
- Hlavní výhodou tohoto přístupu je snadnější aktualizace dat. Pro objektově orientovaný model (stejně jako pro dále zmíněný objektově relační model ORDBMS) neexistuje žádný standard.

Objektové modely dat

 Vývoj a návrh objektově orientovaných modelů v jejich univerzálnosti a komplexnosti je velmi složitý proces, což se projevuje zatím menším uplatněním tohoto typu modelu v reálných aplikacích.

Objektově-orientovaný datový model

- V roce 1991 vznikla skupina ODMG (Object Database Management Group), jejíž cílem byla snaha o standardizaci v oblasti OO databázových jazyků (http://www.odmg.org/).
- GemStone, Jasmine, O2, ODE, Objectivity, ObjectStore

Objektově relační SŘBD

- Komplikovaný vývoj OOSŘBD vedl ke vzniku objektově relačních SŘBD (ORSŘBD), které spojují pozitivní vlastnosti relačních SŘBD
 - výkonný jazyk SQL,
 - jednoduchá relační implementace složitých dat a objektově orientovaných SŘBD,
 - vazba na reálné objekty,
 - nové typy dat,
 - zapouzdření metod a objektů,
 - dědičnost vlastností tříd,
 - připojování procedur k záznamům

Objektově-relační databáze

- podpora nenormalizovaných (které nejsou v 1NF) relací, rozšíření relačního modelu o bohatší typový systém a OO rysy
- vnořené relace (nested relations)
- domény atributů mohou obsahovat buď atomické (skalární) nebo relační (zanořené relace) hodnoty
 - Titul (nazev, seznam_autoru, vydavatel, rok_vydani, klicova_slova)
- Složité datové typy
 - kolekce
 - množiny, multimnožiny, pole

NoSQL

- NoSQL je nerelační systém řízení báze dat
- Navržen pro distribuovaná datová uložiště (např. Google, Facebook).
- Nevyžadují pevné schéma databáze
- Nepoužívá se JOIN operace
- Škálují horizontálně

Proč NoSQL

- Dostupnost dat je dnes mnohem větší než byla v minulosti
- Osobní data uživatelů, sociální vazby (grafy), geografická data, logy systémů jsou příklady kdy množství dat roste exponenciálně.
- SQL databáze nebyly navrženy na zacházení s tak obrovským množstvím dat

SŘBD vs. NoSQL

SŘBD

- Strukturovaná a organizovaná data
- SQL
- Data a jejich vztahy jsou uloženy v oddělených tabulkách
- DML a DDL
- Konzistence
- Transakce

NoSQL

- Nemá deklarativní dotazovací jazyk
- Nemá definované schéma
- Ukládá dvojice klíč-hodnota
- Uložení sloupců, dokumentů, grafů
- Případná konzistence upřednostněna před ACID vlastnostmi
- Podpora nestrukturovaných a nepředvídatelných dat
- CAP teorém
- Upřednostňují vysoký výkon, dostupnost a rozšiřitelnost

Jaký DB model?

- Relační
- Objektový
- NoSQL
- Jak se rozhodovat?
 - Cena
 - Výkon
 - Škálovatelnost
 - •