

- a) Compute λ -closure (q_i) for i = 0, 1, 2.
- c) Use Algorithm 6.6.3 to construct a state diagram of a DFA that is equivalent to M. b) Give the input transition function t for M.
- d) Give a regular expression for L(M).
- 30. Let M be the NFA- λ

- a) Compute λ -closure (q_i) for i = 0, 1, 2, 3.
- b) Give the input transition function t for M.
- c) Use Algorithm 6.6.3 to construct a state diagram of a DFA that is equivalent to M.
- d) Give a regular expression for L(M).
- 31. Give a recursive definition of the extended transition function $\hat{\delta}$ of an NFA- λ . The value $\hat{\delta}(\alpha, m)$ is the confidence of the extended transition function $\hat{\delta}$ of an NFA- λ . The value $\delta(q_i, w)$ is the set of states that can be reached by computations that begin at node q_i and completely process that d_i node q_i and completely process the string w.
- 32. Use Algorithm 6.6.3 to construct the state diagram of a DFA equivalent to the NFA in Example 6.5.2. Example 6.5.2.
- 33. . Use Algorithm 6.6.3 to construct the state diagram of a DFA equivalent to the NFA in Exercise 17. Exercise 17.

34. For each of the following NFAs, use Algorithm 6.6.3 to construct the state diagram of an equivalent DFA.

চ

C

d

35. Build an NFA M_1 that accepts $(ab)^*$ and an NFA M_2 that accepts $(ba)^*$. Use λ function of M. Use Algorithm 6.6.3 to construct the state diagram of a DFA that accepts L(M). transitions to obtain a machine M that accepts $(ab)^*(ba)^*$. Give the input transition