ECE 468: Digital Image Processing

Lecture 15

Prof. Sinisa Todorovic

sinisa@eecs.oregonstate.edu

Outline

- Image reconstruction from projections (Textbook 5.11)
- Radon Transform (Textbook 5.11.3)
- Fourier-Slice Theorem (Textbook 5.11.4)

Computed Tomography

Computed Tomography

Radon Transform

 $x\cos\theta_k + y\sin\theta_k = \rho_j$

Two Equivalent Definitions of the Line

$$y = ax + b$$

$$x \cos \theta + y \sin \theta = \rho$$

Radon Transform

$$g(\rho,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)\delta(x\cos\theta + y\sin\theta - \rho)dxdy$$

continuous space coordinates

Radon Transform

$$g(\rho, \theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos \theta + y \sin \theta - \rho) dx dy$$

continuous space coordinates

$$g(\rho, \theta) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \delta(x \cos \theta + y \sin \theta - \rho)$$

discrete space coordinates

Example: Radon Transform

$$g(\rho, \theta) = ?$$

Example: Radon Transform

$$\theta = 0$$

$$g(\rho, \theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x - \rho) dx dy$$

$$= \int_{-\infty}^{\infty} f(\rho, y) dy$$

Example: Radon Transform

$$g(\rho, \theta) = \int_{-\sqrt{r^2 - \rho^2}}^{\sqrt{r^2 - \rho^2}} f(\rho, y) dy$$

$$= \int_{-\sqrt{r^2 - \rho^2}}^{\sqrt{r^2 - \rho^2}} Ady$$

Properties of the Radon Transform

$$g(\rho, \theta + 180^{\circ}) =$$

Properties of the Radon Transform

$$g(\rho, \theta + 180^{\circ}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos(\theta + 180^{\circ}) + y \sin(\theta + 180^{\circ}) - \rho) dx dy$$

Properties of the Radon Transform

$$g(\rho, \theta + 180^{\circ}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos(\theta + 180^{\circ}) + y \sin(\theta + 180^{\circ}) - \rho) \, dx \, dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(-x \cos \theta - y \sin \theta - \rho) \, dx \, dy$$
$$= g(-\rho, \theta)$$

Sinogram = Image of Radon Transform

a b c d

FIGURE 5.39 Two images and their sinograms (Radon transforms). Each row of a sinogram is a projection along the corresponding angle on the vertical axis. Image (c) is called the *Shepp-Logan phantom*. In its original form, the contrast of the phantom is quite low. It is shown enhanced here to facilitate viewing.

Properties of Objects from Sinogram

• Sinogram symmetric = Object symmetric

Sinogram symmetric about image center =
 Object symmetric and parallel to x and y axes

Sinogram smooth = Object has uniform intensity

Outline

• Fourier-Slice Theorem (Textbook 5.11.4)

Computed Tomography (CT)

Key objective: Reconstruct f(x, y)

from its projections $g(\rho, \theta)$

relates

1D Fourier Transform of the projection

with

2D Fourier Transform of the original image

1D Fourier Transform of the Projection

$$G(\omega, \theta) = \int_{-\infty}^{\infty} g(\rho, \theta) e^{-j2\pi\omega\rho} d\rho$$

$$G(\omega, \theta + 180^{\circ}) = ?$$

$$G(\omega, \theta + 180^{\circ}) = ?$$

$$G(\omega, \theta + 180^{\circ}) = \int_{-\infty}^{\infty} g(\rho, \theta + 180^{\circ}) e^{-j2\pi\omega\rho} d\rho$$
$$= \int_{-\infty}^{\infty} g(-\rho, \theta) e^{-j2\pi\omega\rho} d\rho$$

$$G(\omega, \theta + 180^{\circ}) = ?$$

$$G(\omega, \theta + 180^{\circ}) = ?$$

$$= -\int_{-\infty}^{-\infty} g(\rho, \theta) e^{j2\pi\omega\rho} d\rho$$

$$= \int_{-\infty}^{\infty} g(\rho, \theta) e^{-j2\pi(-\omega)\rho} d\rho$$

$$= G(-\omega, \theta)$$

$$G(\omega, \theta) = \int_{-\infty}^{\infty} g(\rho, \theta) e^{-j2\pi\omega\rho} d\rho$$

$$G(\omega, \theta) = \int_{-\infty}^{\infty} g(\rho, \theta) e^{-j2\pi\omega\rho} d\rho$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x \cos \theta + y \sin \theta - \rho) e^{-j2\pi\omega\rho} dx dy d\rho$$

$$G(\omega, \theta) = \int_{-\infty}^{\infty} g(\rho, \theta) e^{-j2\pi\omega\rho} d\rho$$

$$G(\omega, \theta) = \int_{-\infty}^{\infty} g(\rho, \theta) e^{-j2\pi\omega\rho} d\rho$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi\omega(x\cos\theta + y\sin\theta)} dx dy$$

$$G(\omega, \theta) = \int_{-\infty}^{\infty} g(\rho, \theta) e^{-j2\pi\omega\rho} d\rho$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi\omega(x\cos\theta + y\sin\theta)} dx dy$$

$$= F(\omega \cos \theta, \omega \sin \theta)$$

Fourier Slice Theorem relates

1D Fourier Transform of the projection

with

2D Fourier Transform of the original image

1D FT = a slice of 2D FT

Given $g(\rho, \theta)$, that is $G(\omega, \theta)$

find f(x,y)

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du \ dv$$

by definition

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du \ dv$$

polar coordinates in the frequency domain

$$u = \omega \cos \theta, \ v = \omega \sin \theta, \ \Rightarrow \ dudv = \omega d\omega d\theta$$

$$f(x,y) = \int_0^{2\pi} \int_0^{\infty} F(\omega \cos \theta, \omega \sin \theta) e^{j2\pi\omega(x \cos \theta + y \sin \theta)} \omega \ d\omega \ d\theta$$

$$f(x,y) = \int_0^{2\pi} \int_0^{\infty} F(\omega \cos \theta, \omega \sin \theta) e^{j2\pi\omega(x \cos \theta + y \sin \theta)} \omega \ d\omega \ d\theta$$

$$f(x,y) = \int_0^{2\pi} \int_0^{\infty} F(\omega \cos \theta, \omega \sin \theta) e^{j2\pi\omega(x \cos \theta + y \sin \theta)} \omega \ d\omega \ d\theta$$

by Fourier Slice Theorem

$$f(x,y) = \int_0^{2\pi} \int_0^{\infty} G(\omega,\theta) e^{j2\pi\omega(x\cos\theta + y\sin\theta)} \omega \ d\omega \ d\theta$$

$$f(x,y) = \int_0^{2\pi} \int_0^{\infty} G(\omega,\theta) e^{j2\pi\omega(x\cos\theta + y\sin\theta)} \omega \ d\omega \ d\theta$$

$$f(x,y) = \int_0^{2\pi} \int_0^{\infty} G(\omega,\theta) e^{j2\pi\omega(x\cos\theta + y\sin\theta)} \omega \ d\omega \ d\theta$$

$$G(\omega, \theta + 180^{\circ}) = G(-\omega, \theta)$$

$$f(x,y) = \int_0^{\pi} \int_0^{\infty} |\omega| G(\omega,\theta) e^{j2\pi\omega(x\cos\theta + y\sin\theta)} d\omega d\theta$$

$$f(x,y) = \int_0^{\pi} \left[\int_0^{\infty} |\omega| G(\omega,\theta) e^{j2\pi\omega\rho} d\omega \right]_{\rho=x\cos\theta+y\sin\theta} d\theta$$

$$f(x,y) = \int_0^\pi \left[\int_0^\infty |\omega| G(\omega,\theta) \mathrm{e}^{j2\pi\omega\rho} \ d\omega \right]_{\rho=x\cos\theta+y\sin\theta} d\theta$$
1D filtering

Box + Ramp Filter

Algorithm for Filtered Backprojection

- 1. Given projections $g(\rho,\theta)$ obtained at each fixed angle θ
- 2. Compute $G(\omega,\theta) = 1D$ Fourier Transform of each projection $g(\rho,\theta)$
- 3. Multiply $G(\omega,\theta)$ by the filter function $|\omega|$ modified by Hamming window
- 4. Compute the inverse of the results from 3.
- 5. Integrate (sum) over θ all results from 4.

Examples

