

### UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA CURSO DE ENGENHARIA DE COMPUTAÇÃO

## TRABALHO FINAL

RELATÓRIO DA DISCIPLINA DE MICROCONTROLADORES Prof. José Eduardo Baggio

Taiana Faleiro dos Santos

Santa Maria, RS, Brasil Julho de 2025

#### **RESUMO**

Este projeto consiste na construção de um sistema automatizado com Arduino capaz de contar itens que são colocados em uma caixa. A contagem é feita por meio de um sensor ultrassônico que detecta a aproximação de um objeto. Um servo motor controla a abertura e fechamento da tampa da caixa, enquanto um display LCD exibe a quantidade atual de itens contados. O sistema foi implementado utilizando o ambiente Tinkercad para simulação de hardware e software.

### 1 INTRODUÇÃO

A comunicação serial é um método de transmissão de dados no qual as informações são enviadas um bit de cada vez, através de um único canal ou fio de comunicação. É amplamente utilizada em sistemas embarcados devido à sua simplicidade e eficiência, sendo ideal para conectar microcontroladores com sensores, módulos e computadores.

No Arduino, a comunicação serial é implementada via protocolo UART (Universal Asynchronous Receiver/Transmitter), permitindo que o microcontrolador envie e receba dados de forma assíncrona, sem a necessidade de um relógio externo. Essa comunicação é especialmente útil para monitorar variáveis em tempo real, realizar depuração e trocar informações com dispositivos externos, como módulos Bluetooth, Wi-Fi ou o próprio computador via cabo USB.

Os protocolos seriais I²C e SPI também estão entre os mais utilizados nas aplicações. Comparados a protocolos seriais mais complexos como CAN, ModBus, USB, PCIe, SATA, HDMI ou Ethernet, UART, I²C e SPI são mais simples, de menor custo de implementação e com menor exigência de hardware adicional. Por isso, são fortemente empregados para a conexão com sensores, memórias, relógios de tempo real (RTC), atuadores e diversos periféricos.

Neste contexto, propõe-se o desenvolvimento de um sistema embarcado com microcontrolador capaz de detectar e contar automaticamente a inserção de objetos em uma caixa. O projeto busca aplicar na prática o uso de periféricos digitais e comunicação serial, reforçando os conceitos estudados em sala de aula. Todo o processo foi documentado neste relatório, incluindo os objetivos, metodologia, código, resultados e considerações finais.

#### 2 MATERIAIS E MÉTODOS

Para o desenvolvimento deste projeto, foram utilizados componentes eletrônicos compatíveis com o microcontrolador Arduino Uno, além de ferramentas de software para programação e simulação. Os principais materiais empregados foram: um microcontrolador Arduino Uno, responsável pelo controle central do sistema; um sensor ultrassônico HC-SR04, utilizado para detectar a presença de objetos próximos à caixa; um servo motor SG90, responsável por abrir e fechar a tampa da caixa; e um display LCD 16x2 com interface I<sup>2</sup>C, utilizado para exibir em tempo real a quantidade de itens inseridos.

O sistema foi simulado no ambiente Tinkercad, que permite a modelagem do circuito e a observação do comportamento dos componentes de forma interativa. A programação foi realizada na IDE Arduino, onde foi escrito o código utilizando as bibliotecas necessárias para o controle do servo motor e do display LCD via I<sup>2</sup>C. Fios de conexão foram utilizados virtualmente para simular as conexões entre os componentes, e um cabo USB foi considerado como meio de comunicação serial entre o Arduino e o computador.

A metodologia aplicada iniciou-se pela definição do problema, que consistia em desenvolver um sistema automatizado capaz de detectar e contar objetos inseridos em uma caixa. Em seguida, realizou-se a escolha dos periféricos, priorizando a utilização de, no mínimo, dois tipos distintos com protocolos de comunicação diferentes, como o I<sup>2</sup>C (LCD) e sinais digitais/PWM (sensor e servo motor). Após a escolha dos componentes, procedeu-se à montagem do circuito no simulador, conectando os pinos do sensor ultrassônico (Trig e Echo) aos pinos digitais 8 e 9 do Arduino, o servo motor ao pino PWM 6, e o display LCD aos pinos A4 (SDA) e A5 (SCL), correspondentes ao barramento I<sup>2</sup>C.

O código foi então desenvolvido para ler a distância do sensor, processar os dados, controlar o servo motor com base na presença de um objeto e atualizar o display com a contagem de itens. Durante os testes, a comunicação serial foi utilizada para enviar dados de distância ao computador, facilitando a calibração dos parâmetros e a depuração de erros.

Por fim, o sistema foi testado em diferentes condições para verificar sua confiabilidade e precisão. As leituras incorretas foram filtradas com limites mínimos e máximos de distância e timeout na leitura do sensor, garantindo maior estabilidade ao sistema.

#### **3 RESULTADOS**

#### 3.1 CÓDIGO-FONTE

O código-fonte desse projeto tem como principal objetivo detectar a presença de um objeto próximo ao sensor ultrassônico, acionar a abertura de uma caixa por meio de um servo motor e atualizar um contador exibido em um display LCD via comunicação I<sup>2</sup>C.

O código foi inteiramente desenvolvido e compilado na plataforma Arduino, um ambiente de desenvolvimento integrado (IDE) de fácil utilização, voltado para programação de microcontroladores da família AVR, como o ATmega328P presente no Arduino Uno (Figura 1).

A IDE Arduino permite escrever o código em linguagem baseada em C/C++, compilar, carregar diretamente no microcontrolador e monitorar o funcionamento por meio do Monitor Serial. Durante o desenvolvimento, bibliotecas externas foram utilizadas para facilitar a integração com os periféricos, como o display LCD I2C (LiquidCrystal\_I2C.h) e o servo motor (Servo.h). A compilação foi feita com sucesso, e o código foi carregado virtualmente no microcontrolador através da simulação no Tinkercad.

A estrutura do código é organizada da seguinte forma:

- Inicialização: são configuradas as bibliotecas necessárias, os pinos de conexão dos periféricos e a comunicação serial para depuração. O display é iniciado e a caixa começa fechada.
- Funções auxiliares: foram criadas duas funções: abrirCaixa() e fecharCaixa(), responsáveis por mover o servo motor para os ângulos correspondentes às posições de abertura (90°) e fechamento (0°).
- Loop principal: a cada iteração, o sensor ultrassônico emite um pulso e calcula a
  distância de um objeto. Se a distância for válida (entre 5 e 100 cm) e a caixa estiver
  fechada, o sistema aciona a abertura da tampa, incrementa o contador e atualiza o
  display. Se não houver objeto, a caixa é fechada automaticamente após alguns
  segundos.
- Depuração: a comunicação serial (UART) foi usada para imprimir no monitor serial os valores de distância lidos, facilitando o ajuste dos limites e a verificação do comportamento do sistema.



Figura 1 – Código desenvolvido e compilado na plataforma Arduino

#### Código da simulação feito na plataforma Arduino:

```
#include <Adafruit_LiquidCrystal.h>
#include <LiquidCrystal.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <Servo.h>
LiquidCrystal_I2C lcd(0x27, 16, 2);
Servo servo;
```

```
const int trigPin = 8;
const int echoPin = 9;
const int servoPin = 6;
int itemCount = 0;
bool caixaAberta = false; // variável para saber se a caixa está aberta
void setup() {
  servo.write(0); // Caixa fechada inicialmente
  Serial.begin(9600);
  lcd.init();
  servo.attach(servoPin);
                     // estabiliza o servo
 delay(200);
  servo.write(0); // Caixa fechada inicialmente
  pinMode(trigPin, OUTPUT);
 pinMode (echoPin, INPUT);
 lcd.setCursor(0, 0);
 lcd.print("Itens: 0");
void abrirCaixa() {
 servo.write(90); // abrir
 delay(500);
}
void fecharCaixa() {
 servo.write(0); // fechar
 delay(500);
}
void loop() {
 long duration;
 int distance;
  digitalWrite(trigPin, LOW); delayMicroseconds(2);
  digitalWrite(trigPin, HIGH); delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  duration = pulseIn(echoPin, HIGH, 30000); // 30 milissegundos (timeout)
  distance = duration * 0.034 / 2;
  if (distance > 5 && distance < 100) {</pre>
   // Se detectar objeto e a caixa estiver fechada, abre
    if (!caixaAberta) {
     abrirCaixa();
      caixaAberta = true;
      itemCount++;
      lcd.setCursor(0, 0);
```

```
lcd.print("Itens: ");
lcd.print(itemCount);
Serial.print("Distancia: ");
Serial.println(distance);
}

lelse {
    // Se não detectar objeto e a caixa estiver aberta, fecha
    if (caixaAberta) {
        delay(1000);
        fecharCaixa();
        caixaAberta = false;
    }
}

delay(100);
```

### 3.2 SIMULAÇÃO

A simulação do projeto foi realizada utilizando o software Tinkercad, uma ferramenta voltada para o desenvolvimento e teste de circuitos eletrônicos. Essa simulação permitiu montar virtualmente todo o sistema, testar o comportamento dos sensores, do servo motor e do display LCD, além de validar o funcionamento lógico do código sem a necessidade de montagem física (Figura 2). Esse ambiente foi fundamental para ajustar distâncias, tempos de resposta e garantir a confiabilidade do projeto antes da implementação prática.



Figura 2 – Circuito simulado na plataforma Tinkercad

Quando o sensor detecta um objeto entre 5 cm e 100 cm de distância, a tampa da caixa é aberta por meio de um servo motor, simulando a entrada de um item na caixa. Ao mesmo tempo, um display LCD I2C exibe a quantidade de itens detectados, incrementando a cada nova abertura. A distância medida pelo sensor também é impressa no Monitor Serial, permitindo acompanhar os valores em tempo real (Figura 3).

Após a abertura, o sistema espera que o objeto se afaste. Assim que o sensor deixa de detectar a presença do objeto, o servo motor fecha a tampa automaticamente após 1 segundo. Com isso, a caixa retorna ao estado de espera, pronta para detectar o próximo item.

A integração entre os componentes foi bem-sucedida, comprovando que o código está funcional e o sistema atende aos objetivos definidos.



Figura 3 – Demonstração da simulação com objeto detectado pelo sensor, distância mostrada no Monitor Serial e tampa da caixa aberta (servo)

#### 4 CONCLUSÃO

O desenvolvimento deste projeto proporcionou uma aplicação prática dos conhecimentos adquiridos sobre microcontroladores, sensores, atuadores e protocolos de comunicação em sistemas embarcados. A implementação de um sistema automatizado de contagem de objetos demonstrou, de forma clara e funcional, como é possível integrar diferentes periféricos como o sensor ultrassônico, o servo motor e o display LCD em uma única solução controlada por um microcontrolador Arduino.

A utilização de protocolos simples e eficientes, como o I<sup>2</sup>C para o LCD e a comunicação serial UART para depuração, mostrou-se adequada para garantir a estabilidade e confiabilidade do sistema. Durante o processo de simulação no ambiente Tinkercad, foi possível testar, ajustar e validar cada etapa do funcionamento do sistema, desde a detecção da presença de objetos até o controle físico da caixa e a exibição dos dados. Este projeto evidencia como soluções simples, bem integradas e corretamente aplicadas podem gerar sistemas automatizados eficientes, reforçando os conhecimentos adquiridos em aula.

### **5 REFERÊNCIAS**

- [1] SANTIAGO, João Felipe Amaral. **Comunicação Serial**. GitHub. 2025. Disponível em: https://github.com/JaoIndio/Docencia\_Microcontroladores/blob/master/ComunicacaoSerial.p df. Acesso em: 19 jun 2025.
- [2] SOUZA, Fábio. Embarcados. **Arduino Comunicação Serial.** 21 jan 2014. Disponível em: https://embarcados.com.br/arduino-comunicacao-serial/. Acesso em: 25 jun 2025.
- [3] MONK, Simon. **Programação com Arduino: começando com Sketches.** 1a ed. Porto Alegre: Bookman, 2013.

# APÊNDICE - APRESENTAÇÃO DO TRABALHO E SIMULAÇÃO FUNCIONANDO

Link para visualizar o vídeo:

https://youtu.be/w\_FUOBQoYFM