数字逻辑设计

后续课程: 如计算机组

数字逻辑的知识脉络

数制和码制 (编码)

- 数制 (表示数量)
- •编码(表示状态等——非数量,例如:学号等)
 - BCD码 (BCD code)
 - 余3码(Excess-3 code)
 - 格雷码 (Gray code)
 - 文字编码

数制和编码

- •数制
- •数字的表示

$$D = d_{p-1} d_{p-2} \dots d_1 d_0 \cdot d_{-1} d_{-2} \dots d_{-n}$$

- LSB(least significant bit): 最低有效位d_n
- MSB(most significant bit): 最高有效位d_{p-1}

按位计数制

任意十进制数D 可表示如下:

$$D = d_{p-1} d_{p-2} ... d_1 d_0 . d_{-1} d_{-2} ... d_{-n}$$

$$= \sum_{i=-n}^{p-1} d_{i} \times r^{i}$$

```
推广:
B = \sum b_i \times 2^i
H = \sum b_i \times 16^i
```

- r是计数制的基数(Base or Radix),ri为第i位的权。
- 按位计数制的特点
 - 1) 采用基数(Base or Radix), R进制的基数是R
 - 2) 基数确定数符的个数。如十进制的数符为: 0、1、2、3、4、5、6、7、8、9, 个数为10; 二进制的数符为: 0、1, 个数为2
 - 3) 逢基数进一

十一二转换(整数)

十一二转换(小数)

$$R_{10}$$
=0. d_{-1} d_{-2} ... d_{-n}
 $=d_{-1}2^{-1}+d_{-2}2^{-2}+...+d_{-n+1}2^{-n+1}+d_{-n}2^{-n}$
 $=\underline{2^{-1}}(d_{-1}+d_{-2}2^{-1}+...+d_{-n+1}2^{-n+2}+d_{-n}2^{-n+1})$
乘2,去掉整数部分
 $d_{-1}+d_{-2}2^{-1}+...+d_{-n+1}2^{-n+2}+d_{-n}2^{-n+1}$
 $=\underline{2^{-1}}(d_{-2}+...+d_{-n+1}2^{-n+3}+d_{-n}2^{-n+2})$
乘2,去掉整数部分,直到剩余部分为0

	整数		
	0	.4375	*2
<i>d</i> ₋₁	0	.875	*2
d_{-2}	1	.75	*2
<i>d</i> ₋₃	1	.5	*2
<i>d</i> ₋₄	1	.0	

士是 业儿

例: 0.4375=(?.....?)₂ =(0.0111)₂

二进制与八进制和十六进制之间的转换

十进制	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
二进制	000	000	001	001	010 0	010	011	011	100 0	100 1	101 0	101 1	110 0	110 1	111 0	111
八进制	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
十六进制	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F

二进制与八进制和十六进制之间的转换

• **位数替换法**:保持小数点不变,每位八进制数对应3位二进制数;每位十六进制数对应4位二进制数;

二进制转换为八进制或十六进制数时,从小数点开始向左右分组,在MSB(Most Significant Bit)前面和LSB(Least Significant Bit)后面可以加0;

八进制或十六进制转换为二进制数时, MSB前面和LSB后面的 0不写;

例: 10111000.11012 =

数制编码

数制

- 编码
 - ▶BCD码 (BCD code)
 - ▶余3码 (Excess-3 code)
 - ▶格雷码 (Gray code)

原码表示法

- ◆最高有效位表示符号位(Sign bit)
- *0 = \mathbb{I} , 1 = \mathfrak{H} (0 = plus, 1 = minus)
- *其余各位是该数的绝对值

*
$$011111111 = +127$$
 $111111111 = -127$ $00101110 = +46$ $10101110 = -46$

◆零有两种表示(+ 0、 - 0)

$$00000000 = +0$$

$$10000000 = -0$$

- ◆8位二进制码能够表示的带符号十进制数中, 最大的数是+127,而最小的数是-127。
- * n位二进制整数表示的范围:

$$-(2^{n-1}-1)\sim+(2^{n-1}-1)$$

反码表示法

*正数的二进制反码表示与原码相同

*负数的二进制反码表示:

在n位系统中,符号位不变,其余各位在原码基础上按位取反

补码表示法

*正数的二进制补码表示与原码相同

*负数的二进制补码如何求取?

反码(Ones'-Complement)+1

(零只有一种表示) 0=0000000

*逐位取反

1111111

☀约定8位

00000000000

+1

数制和码制 (编码)

- 数制 (表示数量)
- •编码(表示状态等——非数量,例如:学号等)
 - BCD码 (BCD code)
 - 余3码(·Excess-3 code)
 - 格雷码 (Gray code)
 - 文字编码

二进制编码

变色龙, 拱猪, 接龙 ……

玩法N多,本质上,就是54张牌在不同游戏规则下的组合而已

■编码

- **▶BCD码**
- ▶余3码
- ▶格雷码

编法N多,本质上,就是0和1在不同编码规则的组合而已。

BCD码

BCD码(Binary-Coded Decimal)也叫二-十进制编码,用4位二进制数表示1位十进制数

4位二进制码共有2⁴=16种码组,在 这16种代码中,可以任选10种来表示10 个十进制数码

每位二进制数都带有权值

• 根据权值不同, 称其为:

8421BCD

2421BCD

4221BCD ...

Decimal	8421BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD码

Decimal	8421BCD	2421BCD	4221BCD	5421BCD
0	0000	0000 (0000)	0000 (0000)	0000 (0000)
1	0001	0001 (0001)	0001 (0001)	0001 (0001)
2	0010	0010 (1000)	0010 (0100)	0010 (0010)
3	0011	0011 (1001)	0011 (0101)	0011 (0011)
4	0100	0100 (1010)	0110 (1000)	0100 (0100)
5	0101	1011 (0101)	1001 (0111)	1000 (0101)
6	0110	1100 (0110)	1100 (1010)	1001 (0110)
7	0111	1101 (0111)	1101 (1011)	1010 (0111)
8	1000	1110 (1110)	1110 (1110)	1011 (1011)
9	1001	1111 (1111)	1111 (1111)	1100 (1100)

十进制126的5421BCD码是 [填空1]

余3码

Decimal	8421BCD	Excess-3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

- 无权码
- 自补性:对9的自补码
- 8421BCD码+ "0011"

格雷码(Gray Code)

- 由贝尔实验室的Frank Gray在1940年代提出的,1953年获得批准的专利"Pulse Code Communication",当初是为了通信,后来则常用于模拟一数字转换中。
- •在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code)
- 另外由于最大数与最小数之间也仅一位数不同,即"首尾相连",因此又称循环码或反射码。
- •格雷码有多种编码形式——典型格雷码。

典型格雷码(Gray code)

Decimal	Binary	Gray code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111

Decimal	Binary	Gray code
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

怎样计算任意给定的二进制数对应的典型格雷码?

1) 计算法

- ■复制最高位
- 从最高位开始,俩俩比较相邻位:
 - ▶ 二者相同取 0
 - ▶ 二者不同取 1
- 转换前后数据的位宽不变

如何由n位典型格雷码写n+1位典型格雷码

2) 反射法

如何写n位典型格雷码

3) 图形法

2位格雷码

00, 01, 11, 10

3位格雷码

000, 001, 011, 010, 110, 110, 101, 100

Gray Code

4位格雷码

0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

Gray Code

Example 十进制: 3→4 8421BCD **Gray Code** 0011 0010 0100 0110 3 位码元改变 1位码元改变

Gray Code ——连续变化时,比较可靠

35的8421BCD码是 [填空1] , 余3码是 [填空2] , 格雷码是 [填空3] 。

文字编码

- ASCII 编码是最简单的西文编码方案
 - American Standard Code for Information Interchange
 - 8位
- GB2312、GBK、GB18030 是汉字字符编码方案的国家标准
- Unicode 是全球字符编码的国际标准

ASCII码表

ASCII值	控制字符	ASCII值	控制字符	ASCII值	控制字符
32(20H)	(space)	64(40H)	@	96	•
33	!	65(41H)	A	97(61H)	a
34	11	66	В	98	b
• • •	• • •	• • •	• • •	• • •	• • •
48(30H)	0	80	P	112	p
• • •	• • •	• • •	• • •	• • •	• • •
57(39H)	9	89	Y	121	У
58	•	90	Z	122	Z
• • •	• • •	• • •	• • •	• • •	• • •
63	?	95		127	DEL

数制和编码小结

- 数制 (表示数量)
- •编码(表示状态等——非数量,例如:学号等)
 - BCD码 (BCD code)
 - 余3码(Excess-3 code)
 - 格雷码 (Gray code)
 - 文字编码: ASCII、Unicode等

小 结

- 概述
- 课程简介
- 基本概念
- 数制
- 编码
 - ➤ BCD码 (BCD code)
 - > 余3码 (Excess-3 code)
 - ➤ 格雷码 (Gray code)

对于本章节不太清楚的地方?

- A 模拟信号与数字信号的差异
- B常用数制的转换
- c BCD码
- ▶ 余3码
- E 格雷码
- F 没有不熟悉的地方