Codificações

Yuri Kaszubowski Lopes Éverlin Fighera Costa Marques

	3		
	UDESC		
YKL e EFCM (UDESC)	Codificações		1/15
B . ~ B . E			
Revisão: Ponto Fl	utuante		
	valor binário normalizado a , quais campos são import		
Não precisamos aDevemos armaze	armazenar o 1 antes do ponto l nar:	oinário, nem a base.	
Sinal (0 positiveExpoente	ro, 1 negativo)		
* mantissa (part	e à direita do ponto binário)		
 Os valores então ser ±1, mmmmmmm 			
* mmmmmmm é	a mantissa (ou fração)		
* eeeeee é o ex* Armazenamos	poente apenas a mantissa, o expoente, e	o sinal	

YKL	eЕ	FCM	(UD	ESC)

Anotações

Anotações

Anotações			

Exercícios extras de ponto flutuante

- Qual o maior e o menor valor que podem ser representados em ponto flutuante de precisão dupla e simples (desconsiderando infinito)? Quais são seus equivalentes em decimal?
- 2 Exiba os seguintes valores em ponto flutuante. Quando necessário trunque (ignore os bits que não couberem) os valores. Faça o desenho da memória como nos exemplos e coloque os endereços dos bits (para deixar claro a ordem dos bits).
 - ► -16,015625₁₀
 - Em precisão simples
 Em precisão dupla

 - ► -0, 1₁₀
 - Em precisão simples
 Em precisão dupla
 - ➤ 0,1₁₀

 ★ Em precisão simples
 ★ Em precisão dupla

 - - Em precisão simples
 Em precisão dupla
 Em meia precisão: 10 bits para mantissa, 5 para expoente e 1 para sinal

YKL e EFCM (UDE

Codificações

- Quando representamos letras, palavras, números ... por um grupo especial de símbolos, estamos criando uma codificação
 - Cada letra tem seu próprio grupo, que podemos chamar de código
 Exemplo de codificação: código Morse
- Precisamos de codificações para para representar caracteres, letras especiais, símbolos, ... em binário
- Como as letras, símbolos, ... são representados em nossos computadores?

Anotações

Anotações

ASCII

- Uma das formas mais simples de representações é o código ASCII:
 - American Standard Code for Information Interchange
- Código de 7 bits
 - Em um byte há 8 bits, mas ASCII define código com 7 bits
 Quantos códigos diferentes temos?
 2⁷ = 128 códigos
- Representar todos os caracteres do seu teclado, além de códigos de controle (e.g. pulo de linha \n)
- Veja https://www.rapidtables.com/code/text/ascii-table.html

Tabela ASCII

1 int	main(){	
2	<pre>char c1 = '\0';</pre>	//caractere NULL - 0000 0000 na memória
3	<pre>char c2 = 'a';</pre>	//caractere a - 0110 0001 na memória
4	<pre>char c3 = '9';</pre>	//caractere 9 - 0011 1001 na memória
5		
6	return 0;	
7 1		

• Note que o caractere '9' (0011 1001) tem um valor diferente do número 9₁₀ (1001₂)

Anotações			

Observação

- Nossas máquinas são comumente endereçadas a byte

 - Cada endereço de memória suporta exatamente 1 byte
 Você aprenderá detalhes na disciplina de Arquitetura de Computadores
- Sendo assim, comumente um char vai ocupar 1 byte (8 bits), e não 7 bits

 - Os valores padrões sempre começarão com um 0 O bit extra é muitas vezes utilizado para se criar extensões da tabela ASCII
 - ★ Contendo por exemplo caracteres específicos de determinados alfabetos, como
- O código ASCII foi um dos primeiros padrões a serem adotados em larga
 - ▶ Possibilitou que as máquinas se comuniquem
 - Se cada máquina utiliza sua própria codificação, fica difícil a comunicação entre elas

YKL e EFCM (UDESC)	Codificações	7/15

Anotações

Truques

Converter de ASCII para 0-9

- A tabela ASCII foi criada para que conversões sejam feitas de maneira simples e rápida
- Como converter de binário para ASCII, e vice-versa?

Número	ASCII	Binário
0	011 0000	0
1	011 0001	1
2	011 0010	10
3	011 0011	11
4	011 0100	100
5	011 0101	101
6	011 0110	110
7	011 0111	111
8	011 1000	1000
9	011 1001	1001

YKL e EEC	M (UI	DESC)

			7	
8	1	ī	5	

Anotações

Anotações		

Truques

Converter de ASCII para 0-9

 Basta ligar/desligar os bits indicados! Podemos usar uma operação lógica, o que pode ser mais rápido (veremos adiante) ou somar/subtrair 48

Número	ASCII	Binário
0	011 0000	0
1	011 0001	1
2	011 0010	10
3	011 0011	11
4	011 0100	100
5	011 0101	101
6	011 0110	110
7	011 0111	111
8	011 1000	1000
9	011 1001	1001

YKL e EFCM (UDESC)	Codificações

3		

Truques

Maiúsculo/Minúsculo • Como converter entre maiúsculo ou minúsculo? • Basta ligar/desligar os bits indicados! Podemos usar uma operação lógica, o que pode ser mais rápido ou somar/subtrair 32 Note que $2^5 = 32$ Códigos ASCII Códigos ASCII a: 01100001 b: 01100010 c: 0110011 d: 01100100 e: 01100101 g: 01100111 h: 01101000 A : 01000001 B : 01000010 C : 0100011 D : 01000100 E : 01000101 F : 01000111 G : 01000101 H : 01001000 A : 01000001 B : 01000010 C : 01000011 D : 01000100 E : 01000101 G : 01000111 H : 01001000 01100001 01100010 01100011 a : b : c : d : e : f : d: 01100011 d: 01100100 e: 01100101 f: 01100110 g: 01100111 h: 01101000 x : 01111000 y : 01111001 z : 01111010 X : 01011000 Y : 01011001 Z : 01011010 01111000 01111001 01111010 X : 01011000 Y : 01011001 Z : 01011010 10/15

Anotações			

Outras codificações

- Existem diversas outras codificações que utilizamos nos nossos dia a dia
- Exemplos:
 - Compatíveis com o ASCII (adicionam novos códigos, mas são compatíveis com o ASCII)
 - * ASCII estendido * UTF-8 * CP1252
 - ► Código BCD
 - Gray Code

And	otações				

Observações

- Se você está comunicando dois dispositivos, uma das coisas que você deve levar em consideração é a codificação
- Exemplo: um dispositivo utiliza BCD para representar números, e outro ASCII
 - ▶ Você vai precisar converter

Anotações		
-		
-		

 Exercícios extras Crie um programa em C que exibe todos os caracteres ASCII, e seus códigos ASCII em binário e em decimal. Pesquise sobre UTF-8. Como ele é formado? Quantos bits ocupa? Como ele é compatível com ASCII? 	Anotações
YKL e EFCM (UDESC) Codificações 13/15	
 Referências TOCCI, R.J.; WIDMER,N.S. Sistemas digitais: princípios e aplicações. 11a ed, Prentice-Hall, 2011. RUGGIERO, M.; LOPES, V. da R. Cálculo numérico: aspectos teóricos e computacionais. Makron Books do Brasil, 1996. NULL, L.; LOBUR, J. Princípios Básicos de Arquitetura e Organização de Computadores. 2014. Bookman, 2009. ISBN 9788577807666. 	Anotações
YKL e EFCM (UDESC) Codificações 14/15	

Anotações