Exercícios de Álgebra Computacional (M342)

8. Algoritmo de divisão

1. Calcule o resto da divisão de f por F com a ordem monomial indicado:

$$\begin{array}{llll} \text{(a)} & f = x^7y^2 + x^3y^2 - y + 1, & F = (xy^2 - x, x - y^3), & >_{\text{lex}} & \text{com } x > y \\ \text{(b)} & f = x^7y^2 + x^3y^2 - y + 1, & F = (x - y^3, xy^2 - x), & >_{\text{lex}} & \text{com } x > y \\ \text{(c)} & f = x^7y^2 + x^3y^2 - y + 1, & F = (xy^2 - x, x - y^3), & >_{\text{grlex}} & \text{com } x > y \\ \text{(d)} & f = x^7y^2 + x^3y^2 - y + 1, & F = (x - y^3, xy^2 - x), & >_{\text{grlex}} & \text{com } x > y \\ \text{(e)} & f = xy^2z^2 + xy - yz, & F = (x - y^2, y - z^3, z^2 - 1), & >_{\text{lex}} & \text{com } x > y > z \\ \text{(f)} & f = xy^2z^2 + xy - yz, & F = (y - z^3, z^2 - 1, x - y^2), & >_{\text{lex}} & \text{com } x > y > z \\ \text{(g)} & f = xy^2z^2 + xy - yz, & F = (z^2 - 1, x - y^2, y - z^3), & >_{\text{lex}} & \text{com } x > y > z \\ \end{array}$$

- 2. Sejam $f_1 = x^2y z$, $f_2 = xy 1$ e $f = x^3 x^2y x^2z + x$.
 - (a) Calcule r_1 , o resto da divisão de f por $F = (f_1, f_2)$ utilizando a ordem lex.
 - (b) Calcule r_2 , o resto da divisão de f por $F = (f_2, f_1)$ utilizando a ordem lex.
 - (c) Seja $r = r_1 r_2$. Determine se $r \in I = \langle f_1, f_2 \rangle$.
 - (d) Sem calculo determine o resto da divisão de r por $F = (f_1, f_2)$.
- 3. Sejam $V = V(y x^2, z x^3)$ e $h = z^2 x^4y$.
 - (a) Mostre que h(a, b, c) = 0 para todo ponto $(a, b, c) \in V$.
 - (b) Utilizando uma ordem monomial adequada e divisão de h por $F=(y-x^2,z-x^3)$ para mostrar que $h\in \langle y-x^2,z-x^3\rangle.$