Application 0 Pompe à plateau – Sujet

Considérons le mécanisme de pompe représenté sur la figure ci-dessous.

L'arbre excentrique (1), animé d'un mouvement de rotation autour de l'axe $(O, \overrightarrow{x_0})$ horizontal, agit sur le piston (2) en liaison pivot glissant d'axe $(O, \overrightarrow{z_0})$ avec le bâti (0). Pendant la phase de descente du piston (2), le contact ponctuel en I avec l'excentrique est maintenu par un ressort (r).

Paramétrage

Le repère $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ lié au bâti (0) est supposé galiléen. Le repère $(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est lié à l'arbre excentrique (1). On a de plus :

$$\qquad \qquad \bullet \quad \left(\overrightarrow{y_0}, \overrightarrow{y_1}\right) = \left(\overrightarrow{z_0}, \overrightarrow{z_1}\right) = \theta;$$

$$\begin{pmatrix}
\overrightarrow{y_0}, \overrightarrow{y_1} \\
\overrightarrow{OB} = e\overrightarrow{z_1}, \overrightarrow{BI} = R\overrightarrow{z_0}, \overrightarrow{OA} = z\overrightarrow{z_0}.
\end{pmatrix}$$

Les liaisons pivot entre (0) et (1), ponctuelle entre (1) et (2), et pivot glissant entre (0) et (2) sont supposées sans frottement. Le solide (1) possède un moment d'inertie I_1 par rapport à l'axe $(O, \overrightarrow{x_0})$. Le piston (2) possède une masse m_2 . Le ressort (r), de raideur k, est toujours comprimé. Pour $\theta=\pm\frac{\pi}{2}$, l'effort de compression est égal à $\overrightarrow{F_0}=-F_0\overrightarrow{z_0}$. Un moteur exerce un couple connu de moment $\overrightarrow{C_m} = C_m \overrightarrow{x_0}$ sur l'arbre (1). Le fluide exerce sur le piston une action connue, représentée par un glisseur d'axe $(O, \overrightarrow{z_0})$ et de résultante $\overrightarrow{F_h} = -F_h \overrightarrow{z_0}$.

Résolution cinématique

Question 1 En utilisant une fermeture géométrique ou la méthode de votre choix, déterminer la exprimer z en fonction de θ et de constantes du problème. Déterminer alors $\overline{V(A,2/0)}$ et $\Gamma(A,2/0)$.

Résolution dynamique

Question 2 Proposer une méthode permettant de déterminer l'équation différentielle du mouvement relative au paramètre θ en utilisant le PFD.

Question 3 Mettre en œuvre la méthode proposée précédemment.

Résolution énergétique - Pour plus tard...

Question 4 Proposer une méthode permettant de déterminer l'équation différentielle du mouvement relative au paramètre θ en utilisant le théorème de l'énergie cinétique.

Question 5 Mettre en œuvre la méthode proposée précédemment.

D'après C. Gamelon & P. Dubois.

C1-05

C2-08

C2-09

Pour aller plus loin...

Question 6 En considérant un frottement sec au niveau de la liaison ponctuelle entre **(1)** et **(2)**, déterminer l'équation différentielle du mouvement.

