弊

南京邮电大学 2017/2018 学年第 一 学期

《 信号与系统 B 》期末试卷 B

院(系)_			玚	王级		当	岁号	姓名				
题号	_	=	. <u>=</u>	四	五	六	七	八	九	+	总	分
得分												
	(日本) (日本)											
2. 离散系统 $y(k) = 3 \sin \left(\frac{\pi}{6} k\right) x(k) + 2 E$												
	$12\frac{s}{(s+1)}$	$\frac{-2}{(s+4)}$		D.	$12{(s+}$	$\frac{s-2}{1(s-4)}$				X 0	X 4	σ
A.1 B.0 C. -1 D. 不存在 7. 设 $F(\omega) = \delta(\omega - \omega_0)$,则它的傅立叶反变换 $f(t)$ 为。												
8. $(t^2 + t^2)$	$\frac{1}{\pi}e^{j\omega_0t}$ + $2t)\delta($	B. $e^{(2t-1)}$	jω ₀ ι ($\mathcal{B}^{\frac{1}{2\pi}}$	e ^{- jω₀t}	D. e						

四、已知系统差分方程 y(k+3)-y(k+2)+y(k+1)=x(k+1)+2x(k) 试画

出该离散时间系统的时域模拟图。(8分)
$$\Omega = \Omega(k+3) - \Omega(k+1) + \Omega(k+1) = \Omega(k)$$
 $\Omega = \Omega(k+3) = \Omega(k) + \Omega(k+2) - \Omega(k+1)$ $\Omega = \Omega(k+1) + \Omega(k)$

得 分

五、设系统如图所示,当输入信号 $x(t)=2e^{-t}uig(tig)$ 时,系统零状态响应为

$$y_{**}(t) = -3e^{-t}u(t) + 12e^{-2t}u(t) - 9e^{-3t}u(t)$$
, (1) 求系统函数 $H(s)$; (2) 求 $H_1(s)$

(12
$$\frac{1}{3}$$
)

(1) $\chi(s) = \mathcal{L}[\chi(t)] = \frac{2}{s+1}$

$$\chi(s) = \frac{1}{s} \chi(s) = \frac{1}$$

六、某离散系统的差分方程为y(k+2) + y(k+1) - 6y(k) = 2x(k),系

统激励 $x(k) = 4^k u(k)$, 试用 Z变换法求该系统的零状态响应。(10 分)

$$\frac{1}{2} \frac{1}{2} \frac{1$$

七、周期信号 $f(t) = 2 + 3\cos\left(\omega_0 t + \frac{\pi}{3}\right) + \sin\left(2\omega_0 t - \frac{\pi}{3}\right) - 2\cos\left(3\omega_0 t + \frac{\pi}{6}\right)$

(1) 画出该信号的单边频谱; (2) 求该周期信号功率 (9 %

(2)
$$p = (2)^2 + \frac{1}{i} \times (3)^2 + \frac{1}{i} \times (1)^2 + \frac{1}{i} \times (2)^2$$

= $|1|$

八、已知系统的系统函数 $H(s) = \frac{4s+2}{s^2+3s+2}$, 输入 $X(t) = e^{-4t}u(t)$, 系统初始

状态 $y(0^-)=1, y'(0^-)=1$, (1) 求系统时域微分方程; (2) 求系统全响应。(12 分)

(1)名总级分,程为: 为"(+)+3岁(+)+2岁(+)=4次(+)+2次(+)

(4)旅商边顶柱风建设,得:

 $s^{2}\gamma(s)-s\gamma(o^{-})-\gamma'(o^{-})+3[s\gamma(s)-\gamma(o^{-})]+2\gamma'(s)=4s\chi(s)+2\chi(s)$ 将 y(で)=1, y'(で)=1, x(1)= J[x(t)]= 1 (入りが終続得。

$$\gamma(s) = \frac{4s+2}{s^2+3s+2} \chi(s) + \frac{s+4}{s^2+3s+2} \\
= \frac{4s+2}{s^2+3s+2} \cdot \frac{1}{s+4} + \frac{s+4}{s^2+3s+2} = \frac{s^2+1^2s+18}{(s+1)(s+2)(s+4)} \\
= \frac{7}{s+1} + \frac{1}{s+2} + \frac{7}{s+4} \\
\gamma(t) = 4^{-1} [\gamma(s)] = \frac{7}{3} e^{-t} + e^{-2t} - \frac{7}{3} e^{-t}, \quad t \ge 0$$

规 则 信 考 试 绝 不 题 作