Exercise session 3

Exercise 21. Find the minimum, maximum, infimum, supremum for the following sets (if possible):

a)
$$A = \{-2, -3\} \cup [0, 2]$$

d)
$$A = [0, 5] \cap (3, 6)$$
,

a)
$$A = \{-2, -3\} \cup [0, 2],$$
 d) $A = \{0, 5\} \cap (3, 6),$ g) $A = \{x \in \mathbb{N} \mid x > \sqrt{5}\},$

b)
$$A = [5, 9)$$
.

e)
$$A = \{x \in \mathbb{R} \mid x \ge \sqrt{3}\}$$

h)
$$A = \{1 + \frac{1}{n} \mid n \in \mathbb{N}^+\},\$$

c)
$$A = [5, 9] \cup [12, 13]$$

f)
$$A = \{x \in \mathbb{Q} \mid x^2 \le 2\}$$

b)
$$A = [5, 9),$$
 e) $A = \{x \in \mathbb{R} \mid x \ge \sqrt{3}\},$ h) $A = \{1 + \frac{1}{n} \mid n \in \mathbb{N}^+\},$ c) $A = [5, 9] \cup [12, 13],$ f) $A = \{x \in \mathbb{Q} \mid x^2 \le 2\},$ 5},

Exercise 22. Compute sup and inf (if it exists) in S and prove it by definition.

a)
$$S = [0, 2), S \subseteq \mathbb{R}$$

b)
$$S = (-1, \sqrt{2}), S \subseteq \mathbb{Q}$$

Exercise 23. Find sets S and T with the following properties:

a)
$$\sup S = \inf T$$
, $S \cap T = \emptyset$,

b) inf
$$S = \sup S$$
, $S \subseteq T$,

c) inf
$$T = \min S$$
, T has no minimal element.

Exercise 24. Let A and B be non-empty bounded subsets of \mathbb{R} , and let A+B be the set of all sums a + b where $a \in A$ and $b \in B$. Prove the following equalities, or give a counterexample:

3

a)
$$\sup(A+B) = \sup A + \sup B$$
,

c)
$$\inf(A+B) = \inf A + \inf B$$
,

b)
$$\sup(A - B) = \sup A - \sup B$$
,

d)
$$\inf(A - B) = \inf A - \inf B$$
.

Exercise 25. Given a = 2 + 3i and b = -1 + i, compute |a - 5b|.

Exercise 26. Prove directly from the definition of limit:

a)
$$\lim_{n \to \infty} \frac{1}{3n^4} = 0$$

c)
$$\lim_{n \to \infty} \frac{3n+1}{2n-1} = \frac{3}{2}$$
,

b)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1}} = 0$$

$$d) \lim_{n \to \infty} \frac{1}{n} + \frac{\sin n}{n+1} = 0$$