PSALTer results panel $S = \frac{\int \int \int \left(\frac{1}{3}\left(-2t_{3}^{2}\mathcal{A}_{\alpha}^{\alpha}\mathcal{A}_{\beta}^{\beta} + 3\mathcal{A}_{\alpha}^{\alpha\beta\chi}\right) \sigma_{\alpha\beta\chi} + 3f^{\alpha\beta} \tau(\Delta + \mathcal{K})_{\alpha\beta} + 4t_{3}^{2}\mathcal{A}_{\alpha}^{\beta}\partial_{\beta}f^{\alpha} - 4t_{3}^{2}\mathcal{A}_{\beta}^{\beta}\partial_{\beta}f^{\alpha} + 2t_{3}^{2}\partial_{\beta}f^{\alpha}\partial_{\beta}f^{\alpha} + 2t_{3}^{2}\partial_{\beta}f^{\alpha}\partial_{\beta}f^{\alpha} - 4t_{3}^{2}\partial_{\beta}f^{\alpha}\partial_{\beta}f^{\alpha}\partial_{\beta}f^{\alpha} - 4t_{3}^{2}\partial_{\beta}f^{\alpha}\partial_{\beta}f^$

Wave operator

Saturated propagator

 $2^{-}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
0 σ == 0	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$-2 \bar{\imath} k^{0,+} \sigma^{\parallel} + 0^{+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$\frac{2ik 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} = 0}{$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1. τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$1^+_{\cdot \tau} \eta^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$1^+_{\cdot}\sigma^{\perp}{}^{\alpha\beta} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$2^+_{\cdot \tau} \parallel^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \beta} +$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}==3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}$	
$2^+ \sigma^{\parallel^{\alpha\beta}} == 0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$	5
Total expected gauge generators:		25

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: $\begin{vmatrix} -3 & -4 & +-4 \end{vmatrix}$

Pole residue:	$\frac{-r}{r} - \frac{r}{r} + \frac{r}{r} + \frac{r}{2r} > 0$
Polarisations:	2

Unitarity conditions

 $(r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1)) || (r_1 > 0 \&\& -2 r_1 < r_5 < -r_1)$