Lösungen zu den Aufgaben zur Klausurvorbereitung

Aufgabe 1: Die Grammatik $G = \langle \{E\}, \{\text{"+"}, \text{"*"}, \text{"x"}\}, R, E \rangle$ habe die folgenden Regeln:

$$E \rightarrow E E$$
 "+" | $E E$ "*" | "x".

Wenden Sie den Algorithmus von Earley auf den String "xx+x*" an.

Lösung: Der Earley-Algorithmus berechnet die folgenden Mengen:

(a)
$$Q_0 = \{ \langle \widehat{S} \rightarrow \bullet E, 0 \rangle, \\ \langle E \rightarrow \bullet \text{``x''}, 0 \rangle, \\ \langle E \rightarrow \bullet \text{``y''}, 0 \rangle, \\ \langle E \rightarrow \bullet E E \text{ ``*''}, 0 \rangle, \\ \langle E \rightarrow \bullet E E \text{ ``+''}, 0 \rangle \}$$

(b)
$$Q_1 = \{ \langle \widehat{S} \rightarrow E \bullet, 0 \rangle, \langle E \rightarrow \bullet \text{``x''}, 1 \rangle, \langle E \rightarrow \bullet \text{``y''}, 1 \rangle, \langle E \rightarrow \bullet E E \text{``*''}, 1 \rangle, \langle E \rightarrow \bullet E E \text{``*''}, 1 \rangle, \langle E \rightarrow \text{``x''}, 0 \rangle, \langle E \rightarrow E \bullet E \text{``*''}, 0 \rangle, \langle E \rightarrow E \bullet E \text{``*''}, 0 \rangle, \langle E \rightarrow E \bullet E \text{``*''}, 0 \rangle \}$$

(c)
$$Q_2 = \{ \langle E \rightarrow \bullet \text{``x''}, 2 \rangle, \\ \langle E \rightarrow \bullet \text{``y''}, 2 \rangle, \\ \langle E \rightarrow \bullet E E \text{``*''}, 2 \rangle, \\ \langle E \rightarrow \bullet E E \text{``+''}, 2 \rangle, \\ \langle E \rightarrow \text{``x''} \bullet, 1 \rangle, \\ \langle E \rightarrow E \bullet E \text{``*''}, 1 \rangle, \\ \langle E \rightarrow E \bullet E \text{``+''}, 1 \rangle, \\ \langle E \rightarrow E E \bullet \text{``*''}, 0 \rangle, \\ \langle E \rightarrow E E \bullet \text{``+'''}, 0 \rangle \}$$

(d)
$$Q_3 = \{ \langle \widehat{S} \rightarrow E \bullet, 0 \rangle, \langle E \rightarrow \bullet \text{``x''}, 3 \rangle, \langle E \rightarrow \bullet \text{``y''}, 3 \rangle, \langle E \rightarrow \bullet E E \text{``*''}, 3 \rangle, \langle E \rightarrow \bullet E E \text{``*''}, 3 \rangle, \langle E \rightarrow E \bullet E \text{``*''}, 0 \rangle, \langle E \rightarrow E \bullet E \text{``*''}, 0 \rangle, \langle E \rightarrow E \bullet E \text{``+''}, 0 \rangle, \langle E \rightarrow E E \text{``+''}, 0 \rangle \}$$

(e)
$$Q_4 = \{ \langle E \rightarrow \bullet \text{``x''}, 4 \rangle, \\ \langle E \rightarrow \bullet \text{``y''}, 4 \rangle, \\ \langle E \rightarrow \bullet E E \text{``*''}, 4 \rangle, \\ \langle E \rightarrow \bullet E E \text{``+''}, 4 \rangle, \\ \langle E \rightarrow \text{``x''} \bullet, 3 \rangle, \\ \langle E \rightarrow E \bullet E \text{``*''}, 3 \rangle, \\ \langle E \rightarrow E \bullet E \text{``+''}, 3 \rangle, \\ \langle E \rightarrow E E \bullet \text{``*''}, 0 \rangle, \\ \langle E \rightarrow E E \bullet \text{``+'''}, 0 \rangle \}$$

$$\begin{split} \text{(f)} \ \ Q_5 &= \{ \ \ \langle \widehat{S} \rightarrow E \bullet, 0 \rangle, \\ \langle E \rightarrow \bullet \text{``x''}, 5 \rangle, \\ \langle E \rightarrow \bullet \text{``y''}, 5 \rangle, \\ \langle E \rightarrow \bullet E E \text{``*''}, 5 \rangle, \\ \langle E \rightarrow \bullet E E \text{``*''}, 5 \rangle, \\ \langle E \rightarrow E \bullet E \text{``*''}, 0 \rangle, \\ \langle E \rightarrow E \bullet E \text{``*''}, 0 \rangle, \\ \langle E \rightarrow E E \text{``*''}, 0 \rangle, \\ \langle E \rightarrow E E \text{``*''}, 0 \rangle \, \} \end{split}$$

Aufgabe 2: Die Grammatik $G = \langle \{S\}, \{\text{"+"}, \text{"-"}, \text{"a"}\}, R, S \rangle$ habe die folgenden Regeln:

$$S \rightarrow S\,S$$
 "+" | $S\,S$ "-" | "a".

- (a) Berechnen Sie die Mengen First(S) und Follow(S).
- (b) Berechnen Sie die Menge der SLR-Zustände für diese Grammatik.
- (c) Berechnen Sie die Funktionen action() und goto() für diese Grammatik.
- (d) Berechnen Sie die Menge der LR-Zustände für diese Grammatik.

Lösung:

(a) Es gilt offenbar

$$First(S) = \{a\}$$
 und $Follow(S) = \{"+", "-", "a", \$\}.$

- (b) Wir erhalten die folgenden Zustände:
 - 1. Wir definieren $s_0 = closure(\{\hat{S} \to \star S\})$ und finden

$$s_0 = \{ \ \widehat{S} \rightarrow \bullet \ S, \ S \rightarrow \bullet \text{``a''}, \ S \rightarrow \bullet \ S \ S\text{``+''}, \ S \rightarrow \bullet \ S \ S\text{``-''} \}.$$

2. Wir definieren $s_1 = goto(s_0, S)$ und finden

$$\begin{array}{lll} s_1 &=& \{ & \widehat{S} \rightarrow S \bullet, \\ & S \rightarrow \bullet \text{``a"}, \\ & S \rightarrow \bullet S S \text{``+"}, \\ & S \rightarrow \bullet S S \text{``-"}, \\ & S \rightarrow S \bullet S \text{``+"}, \\ & S \rightarrow S \bullet S \text{``-"}, \\ \}. \end{array}$$

3. Wir definieren $s_2 = goto(s_1, S)$ und finden

$$\begin{array}{rcl} s_2 &=& \{ & S \rightarrow \bullet \text{``a''}, \\ & S \rightarrow \bullet S \ S\text{``+''}, \\ & S \rightarrow \bullet S \ S\text{``-''}, \\ & S \rightarrow S \bullet S\text{``+''}, \\ & S \rightarrow S \bullet S\text{``-''}, \\ & S \rightarrow S \ S \bullet \text{``+''}, \\ & S \rightarrow S \ S \bullet \text{``-''} \\ \end{array}$$

4. Wir definieren $s_3 = goto(s_2, "a")$ und finden

$$s_3 = \{S \rightarrow \text{``a"} \bullet \}.$$

5. Wir definieren $s_4 = goto(s_2, "+")$ und finden

$$s_4 = \{S \rightarrow S S + \bullet \bullet \}.$$

6. Wir definieren $s_5 = goto(s_2, "-")$ und finden

$$s_5 = \{S \rightarrow S S \text{``-"} \bullet \}.$$

- (c) Damit erhalten wir für die Funktion action() die folgende Tabelle:
 - 1. $action(s_0, "a") = \langle shift, s_3 \rangle$
 - 2. $action(s_1, "\$") = accept$
 - 3. $action(s_1, "a") = \langle shift, s_3 \rangle$
 - 4. $action(s_2, "+") = \langle shift, s_4 \rangle$
 - 5. $action(s_2, "-") = \langle \mathtt{shift}, s_5 \rangle$
 - 6. $action(s_2, "a") = \langle shift, s_3 \rangle$
 - 7. $action(s_3, "\$") = \langle reduce, S \rightarrow "a" \rangle$
 - 8. $action(s_3, "+") = \langle reduce, S \rightarrow "a" \rangle$
 - 9. $action(s_3, "-") = \langle reduce, S \rightarrow "a" \rangle$
 - 10. $action(s_3, "a") = \langle reduce, S \rightarrow "a" \rangle$
 - 11. $action(s_4, "\$") = \langle reduce, S \rightarrow S S"+" \rangle$
 - 12. $action(s_4, "+") = \langle reduce, S \rightarrow SS"+" \rangle$
 - 13. $action(s_4, "-") = \langle \texttt{reduce}, S \rightarrow S S"+" \rangle$
 - 14. $action(s_4, "a") = \langle \texttt{reduce}, S \rightarrow S S"+" \rangle$
 - 15. $action(s_5,$ "\$") = $\langle \texttt{reduce}, S \rightarrow S S$ "-" \rangle
 - 16. $action(s_5, "+") = \langle reduce, S \rightarrow S S "-" \rangle$
 - 17. $action(s_5, "-") = \langle reduce, S \rightarrow SS"-" \rangle$
 - 18. $action(s_5, "a") = \langle \texttt{reduce}, S \rightarrow S S"-" \rangle$

Für die Funktion goto() finden wir:

- 1. $goto(s_0, S) = s_1$
- 2. $goto(s_1, S) = s_2$
- 3. $goto(s_2, S) = s_2$
- (d) Wir erhalten die folgenden Zustände:
 - 1. Wir setzen wieder $s_0 = closure(\{\widehat{S} \to \bullet S : \$\})$ und erhalten diesmal

$$\begin{array}{lll} s_0 & = & \left\{ & \widehat{S} \rightarrow \bullet \ S : \ `\$", \\ & S \rightarrow \bullet ``a" : \left\{ `\$", ``a" \right\}, \\ & S \rightarrow \bullet \ S \ S"+" : \left\{ ``\$", ``a" \right\}, \\ & S \rightarrow \bullet \ S \ S"-" : \left\{ ``\$", ``a" \right\} \\ & \right\}. \end{array}$$

2. Wir definieren $s_1 = goto(s_0, S)$ und erhalten

$$\begin{array}{lll} s_1 &=& \left\{ & \widehat{S} \rightarrow S \bullet : \text{``\$''}, \\ & S \rightarrow \bullet \text{``a''} : \left\{ \text{``+''}, \text{``-''}, \text{``a''} \right\}, \\ & S \rightarrow \bullet S S \text{``+''} : \left\{ \text{``+''}, \text{``-''}, \text{``a''} \right\}, \\ & S \rightarrow \bullet S S \bullet S \text{``-''} : \left\{ \text{``\$''}, \text{``a''} \right\}, \\ & S \rightarrow S \bullet S \text{``-''} : \left\{ \text{``\$''}, \text{``a''} \right\}, \\ & S \rightarrow S \bullet S \text{``-''} : \left\{ \text{``\$''}, \text{``a''} \right\}, \\ & \right\}. \end{array}$$

3. Wir definieren $s_2 = goto(s_1, S)$ und erhalten

$$s_2 = \left\{ \begin{array}{c} S \rightarrow \bullet \text{``a"} : \{\text{``+", ``-", ``a"}\}, \\ S \rightarrow \bullet S S\text{``+"} : \{\text{``+", ``-", ``a"}\}, \\ S \rightarrow \bullet S S\text{``-"} : \{\text{``+", ``-", ``a"}\}, \\ S \rightarrow S \bullet S\text{``+"} : \{\text{``+", ``-", ``a"}\}, \\ S \rightarrow S \bullet S\text{``-"} : \{\text{``+", ``-", ``a"}\}, \\ S \rightarrow S S \bullet \text{``+"} : \{\text{``$", ``a"}\}, \\ S \rightarrow S S \bullet \text{``-"} : \{\text{``$", ``a"}\}, \\ S \rightarrow S S \bullet \text{``-"} : \{\text{``$", ``a"}\}, \\ \end{array} \right\}.$$

4. Wir definieren $s_3 = goto(s_2, S)$ und erhalten

$$s_{3} = \left\{ \begin{array}{c} S \rightarrow \bullet \text{``a"} : \left\{\text{``+"}, \text{``-"}, \text{``a"}\right\}, \\ S \rightarrow \bullet S S\text{``+"} : \left\{\text{``+"}, \text{``-"}, \text{``a"}\right\}, \\ S \rightarrow \bullet S S\text{``-"} : \left\{\text{``+"}, \text{``-"}, \text{``a"}\right\}, \\ S \rightarrow S \bullet S\text{``+"} : \left\{\text{``+"}, \text{``-"}, \text{``a"}\right\}, \\ S \rightarrow S \bullet S\text{``-"} : \left\{\text{``+"}, \text{``-"}, \text{``a"}\right\}, \\ S \rightarrow S S \bullet \text{``+"} : \left\{\text{``+"}, \text{``-"}, \text{``a"}\right\}, \\ S \rightarrow S S \bullet \text{``-"} : \left\{\text{``+"}, \text{``-"}, \text{``a"}\right\}, \\ S \rightarrow S S \bullet \text{``-"} : \left\{\text{``+"}, \text{``-"}, \text{``a"}\right\}, \\ \right\}.$$

5. Wir definieren $s_4 = goto(s_0, "a")$ und erhalten

$$s_4 = \{S \to \text{``a"} \bullet : \{\text{``$", ``a"}\}\}.$$

6. Wir definieren $s_5 = goto(s_2, "a")$ und erhalten

$$s_5 = \{S \rightarrow \text{``a"} \bullet : \{\text{``+"}, \text{``-"}, \text{``a"}\}\}$$

7. Wir definieren $s_6 = goto(s_2, "+")$ und erhalten

$$s_6 = \{S \rightarrow S \, S \text{``+"} \bullet : \{\text{``\$"}, \text{``a"}\} \}$$

8. Wir definieren $s_7 = goto(s_3, "+")$ und erhalten

$$s_7 = \{S \rightarrow S S + \bullet : \{"+", "-", "a"\}\}$$

9. Wir definieren $s_8 = goto(s_2, "-")$ und erhalten

$$s_8 = \{S \rightarrow S S$$
"-"•: {"\$", "a"}}

10. Wir definieren $s_9 = goto(s_3, "-")$ und erhalten

$$s_9 = \{S \rightarrow S \, S$$
"-"•: {"+", "-", "a"}}

Aufgabe 3: Die Grammatik $G = \langle \{A, B\}, \{\text{"u"}, \text{"x"}, \text{"y"}, \text{"z"}\}, R, A \rangle$ habe die folgenden Regeln:

Bearbeiten Sie die folgenden Teilaufgaben:

- (a) Überprüfen Sie, ob die diese Grammatik eine LL(1)-Grammatik ist und begründen Sie Ihre Antwort.
- (b) Überprüfen Sie, ob die diese Grammatik eine LL(*)-Grammatik ist und begründen Sie Ihre Antwort.
- (c) Überprüfen Sie, ob die diese Grammatik eine SLR-Grammatik ist und begründen Sie Ihre Antwort.

Lösung:

(a) Die Grammatik ist keine LL(1)-Grammatik, denn zwischen den beiden Regeln

$$A \rightarrow$$
 "y" B "z" und $A \rightarrow$ "y" "u" "x"

gibt es einen Konflikt, wir haben

$$First("y"B"z") = {"y"} \quad \text{und} \quad First("y""u""z") = {"y"}$$

und damit folgt

$$First("y"B"z") \cap First("y""u""z") = {"y"} \neq {\}.$$

- (b) Um zu überprüfen, ob die Grammatik eine LL(*)-Grammatik ist, annotieren wir die Regeln wie im Skript beschrieben mit Zuständen und erhalten die folgenden annotierten Regeln:
 - 1. $A \rightarrow_{\langle 0,1 \rangle} B_{\langle 1,1 \rangle}$ "x" $_{\langle 2,1 \rangle}$
 - 2. $A \rightarrow_{\langle 0,2 \rangle}$ "y" $_{\langle 1,2 \rangle} B_{\langle 2,2 \rangle}$ "z" $_{\langle 3,2 \rangle}$
 - 3. $A \rightarrow_{\langle 0,3 \rangle}$ "u" $_{\langle 1,3 \rangle}$ "z" $_{\langle 2,3 \rangle}$
 - 4. $A \rightarrow_{\langle 0,4 \rangle}$ "y" $_{\langle 1,4 \rangle}$ "u" $_{\langle 2,4 \rangle}$ "x" $_{\langle 3,4 \rangle}$
 - 5. $B \rightarrow_{\langle 5,0 \rangle}$ "u" $_{\langle 6,0 \rangle}$

Als Bullett-Zustand definieren wir den Zustand $\langle 0,0 \rangle$ und setzen $bullett(B) = \langle 4,0 \rangle$ sowie $end(B) = \langle 7,0 \rangle$. Die Zustands-Übergangs-Funktion des für einen LL(*)-Parser zu konstruierenden nicht-deterministischen Automaten ist dann wie folgt gegeben:

1. Der Bullett-Zustand ist mit den Anfangs-Zuständen der einzelnen Regeln für A verbunden, wir haben also

$$\begin{split} &\delta(\langle 0,0\rangle,\varepsilon) = \langle 0,1\rangle, \quad \delta(\langle 0,0\rangle,\varepsilon) = \langle 0,2\rangle, \\ &\delta(\langle 0,0\rangle,\varepsilon) = \langle 0,3\rangle, \quad \delta(\langle 0,0\rangle,\varepsilon) = \langle 0,4\rangle. \end{split}$$

2. Aus der Regel $A \to B$ "x" erhalten wir die Übergänge

$$\delta(\langle 0, 1 \rangle, \varepsilon) = \langle 4, 0 \rangle, \quad \delta(\langle 7, 0 \rangle, \varepsilon) = \langle 1, 1 \rangle, \quad \delta(\langle 1, 1 \rangle, \text{``x"}) = \langle 2, 1 \rangle.$$

3. Aus der Regel $A \to \text{"y"} B\text{"z"}$ erhalten wir die Übergänge

$$\delta(\langle 0,2\rangle,\text{``y''}) = \langle 1,2\rangle, \quad \delta(\langle 1,2\rangle,\varepsilon) = \langle 4,0\rangle,$$

$$\delta(\langle 7, 0 \rangle, \varepsilon) = \langle 2, 2 \rangle, \quad \delta(\langle 2, 2 \rangle, \text{"z"}) = \langle 3, 2 \rangle.$$

4. Aus der Regel $A \to$ "u" "z" erhalten wir die Übergänge

$$\delta(\langle 0, 3 \rangle, \text{``u"}) = \langle 1, 3 \rangle, \quad \delta(\langle 1, 3 \rangle, \text{``z"}) = \langle 2, 3 \rangle.$$

5. Aus der Regel $A \rightarrow$ "y" "u" "x" erhalten wir die Übergänge

$$\delta(\langle 0,4\rangle,\text{``y"}) = \langle 1,4\rangle, \quad \delta(\langle 1,4\rangle,\text{``u"}) = \langle 2,4\rangle, \quad \delta(\langle 2,4\rangle,\text{``x"}) = \langle 3,4\rangle.$$

6. Aus der Regel $B \to$ "u" erhalten wir die Übergänge

$$\delta(\langle 4,0\rangle,\varepsilon)=\langle 5,0\rangle, \quad \delta(\langle 5,0\rangle,\text{``u"})=\langle 6,0\rangle, \quad \delta(\langle 6,0\rangle,\varepsilon)=\langle 7,0\rangle.$$

7. Die Menge der akzeptierenden Zustände ist durch die Endzustände der Regeln für die Variable A gegeben:

$$\{\langle 2,1\rangle,\langle 3,2\rangle,\langle 2,3\rangle,\langle 3,4\rangle\}$$

Wir beginnen nun damit, diesen nicht-deterministischen Automaten in einen deterministischen Automaten zu überführen. Der Bullett-Zustand des deterministischen Automaten ist dann

$$S_0 := \{ \langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 0, 2 \rangle, \langle 0, 3 \rangle, \langle 0, 4 \rangle, \langle 4, 0 \rangle, \langle 5, 0 \rangle \}.$$

Wir definieren

$$S_1 := \Delta(S_0, \text{``u"}) = \{ \langle 6, 0 \rangle, \langle 7, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 1, 3 \rangle \}.$$

Weiter definieren wir

$$S_2 := \Delta(S_1, \text{"z"}) = \{\langle 3, 2 \rangle, \langle 2, 3 \rangle\}.$$

Diese Menge enthält zwei akzeptierende Zustände, ist aber nicht homogen, da diese Zustände einen unterschiedlichen Index haben. Folglich handelt es sich bei der obigen Grammatik nicht um eine LL(*)-Grammatik.

Bemerkung: Antlr kann aus der obigen Grammatik trotzdem einen Parser erzeugen, weil Antlr die Regel $B \rightarrow$ "u" expandiert und dann die folgende Grammatik analysiert:

Die so umgeformte Grammatik ist eine LL(*)-Grammatik.

(c) Die angegebene Grammatik ist keine SLR-Grammatik. Um das zu sehen, erweitern wir die Grammatik um die Regel $\widehat{S} \to A$ und berechnen den Zustand

$$s_0 = closure(\{\widehat{S} \to A\}).$$

Wir finden

$$s_0 = \left\{ \begin{array}{c} S \rightarrow \bullet A, \\ A \rightarrow \bullet B \text{``x''}, \\ A \rightarrow \bullet \text{``y''} B \text{``z''}, \\ A \rightarrow \bullet \text{``u''} \text{``z''}, \\ A \rightarrow \bullet \text{``y''} \text{``u'''} \text{``x''}, \\ B \rightarrow \bullet \text{``u''} \end{array} \right.$$

Wir berechnen nun $goto(s_0, "u")$ und erhalten

$$s_1 = \{A \rightarrow \text{``u"} \bullet \text{``z"}, B \rightarrow \text{``u"} \bullet \}.$$

Bei der Berechnung von $action(s_1, "z")$ tritt nun eine Shift-Reduce-Konflikt auf, denn es gilt $follow(B) = \{ "x", "z" \}.$

Bemerkung: Die in der Aufgabe angegebene Grammatik ist sowohl eine LR-Grammatik als auch eine LALR-Grammatik. Letzteres läßt sich mit Bison oder JavaCup nachweisen und Ersteres folgt aus der Tatsache, dass jede LALR-Grammatik auch eine LR-Grammatik ist.

Aufgabe 4: Wir definieren geschachtelte Listen rekursiv als solche Listen, deren Elemente natürliche Zahlen oder geschachtelte Listen sind. Die Elemente in geschachtelten Listen sollen durch Kommata getrennt werden und die Listen selber sollen durch die eckigen Klammern "[" und "]" begrenzt sein. Beispiele für geschachtelte Listen sind also:

Lösen Sie die folgenden Teilaufgaben:

- (a) Geben Sie eine Grammatik für geschachtelte Listen an.
- (b) Definieren Sie geeignete Klassen, mit deren Hilfe Sie geschachtelte Listen repräsentieren können.
- (c) Geben Sie einen JavaCup-Parser an, der eine geschachtelte Liste einliest und einen abstrakten Syntax-Baum der Liste berechnet.

Hinweis: In der Klausur können Sie später davon ausgehen, dass ein geeigneter *JFlex*-Scanner bereits gegeben ist, aber bei dieser Aufgabe sollen Sie den Scanner ebenfalls erstellen, damit Sie Ihre Lösung auch testen können.

Lösung:

(a) Die Grammatik $G = \langle \{S, L, N, E\}, \{\text{``[","]", ","Number}\}, R, S \rangle$, deren Regeln durch

gegeben sind, leistet das Gewünschte. Hier steht L für eine ungeklammerte Liste, deren Elemente durch Kommata getrennt sind, N steht für eine ungeklammerte nicht-leere Liste, deren Elemente durch Kommata getrennt sind und E steht für ein Listen-Element, ist also entweder eine in eckigen Klammern eingefasste Liste oder eine Zahl.

(b) Wir definieren eine abstrakte Klasse Element, die sowohl Listen als auch Zahlen umfasst. Von dieser Klasse leiten wir eine Klasse für Listen und eine für Zahlen ab:

```
public abstract class Element {}
    public class MyList extends Element {
        private List<Element> mListExpr;
4
        public MyList(List<Element> listExpr) {
            mListExpr = listExpr;
        public List<Element> getListExpr() {
            return mListExpr;
10
11
    }
12
13
    public class MyNumber extends Element {
14
        private Integer mNumber;
15
16
        public MyNumber(Integer number) {
17
            mNumber = number;
19
        public Integer getNumber() {
            return mNumber;
21
        }
22
    }
23
```

Wir können die Struktur dieser Klassen kürzer durch die folgende Gleichung spezifizieren:

(c) Die JavaCup-Spezifikation des Parsers hat die folgende Form:

```
import java_cup.runtime.*;
1
    import java.util.*;
2
                      OPEN, CLOSE, COMMA;
    terminal
    terminal Integer NUMBER;
    nonterminal Element
    nonterminal List<Element> 1, n;
    nonterminal Element
9
10
    s ::= OPEN 1:e CLOSE
11
          {: List<Listen> list = new LinkedList<Listen>();
12
             RESULT = new MyList(e);
13
          :};
14
    1 ::= n:1
                              {: RESULT = 1; :}
16
       | /* epsilon */
                              {: List<Element> l = new LinkedList<Element>();
17
                                 RESULT = 1;
18
                              :}
19
20
                              {: 1.add(x); RESULT = 1; :}
    n ::= n:1 COMMA e:x
22
                              {: List<Element> l = new LinkedList<Element>();
       l e:x
23
                                 1.add(x);
24
                                 RESULT = 1;
                              :}
26
27
28
                              {: RESULT = x;}
    e ::= s:x
29
       | NUMBER:x
                              {: RESULT = new MyNumber(x); :}
30
31
```

Der dazugehörige Scanner ist wie folgt definiert:

```
import java_cup.runtime.*;
    %%
3
    %char
    %line
    %column
    %cup
    %{
10
        private Symbol symbol(int type) {
11
            return new Symbol(type, yychar, yychar + yylength());
12
        }
13
14
        private Symbol symbol(int type, Object value) {
15
            return new Symbol(type, yychar, yychar + yylength(), value);
16
17
    %}
18
19
    %%
20
21
    "["
              { return symbol( sym.OPEN ); }
22
    "]"
              { return symbol( sym.CLOSE ); }
23
              { return symbol( sym.COMMA ); }
24
             { return symbol( sym.NUMBER, new Integer(yytext()) ); }
    [0-9]+
26
27
    [ \t \  { /* skip white space */ }
28
29
    [^]
              { throw new Error("Illegal character"); }
30
```

Aufgabe 5: Der Typ list(T) sei wie folgt definiert:

Die Funktion addLast habe die folgende Signatur:

```
signature addLast: list(T) * T -> list(T);
```

und die Variablen x und z haben den Typ int.

(a) Berechnen Sie

(b) Lösen Sie die in Teil (a) berechneten Typ-Gleichungen.

Lösung:

(a) Wir berechnen zunächst die Typ-Gleichungen nach der im Skript angegebenen Definition.

```
\begin{split} & typeEqs(\texttt{addLast(cons(x, nil), z): list(int)}) \\ = & \{\texttt{list}(T) = \texttt{list(int)}\} \cup typeEqs(cons(x, nil): \texttt{list}(T)) \cup typeEqs(z:T) \\ = & \{\texttt{list}(T) = \texttt{list(int)}\} \cup \{\texttt{list}(S) = \texttt{list}(T)\} \cup \\ & typeEqs(x:S) \cup typeEqs(\texttt{nil:list}(S)) \cup typeEqs(z:T) \\ = & \{\texttt{list}(T) = \texttt{list(int)}, \, \texttt{list}(S) = \texttt{list}(T), \, \texttt{int} = S, \, \texttt{list}(R) = \texttt{list}(S), \, \texttt{int} = T\} \end{split}
```

(b) Wir lösen die oben berechneten Typ-Gleichungen nach dem im Skript angegebenen Verfahren.

Damit ist die Substitution $[T \mapsto \mathtt{int}, S \mapsto \mathtt{int}, R \mapsto \mathtt{int}]$ eine Lösung der Typ-Gleichungen und wir können folgern, dass der Term tatsächlich den angegebenen Typ hat.

Aufgabe 6: Nehmen Sie an, dass die im Skript eingeführte Sprache *Integer-*C um eine do-while-Schleife erweitert werden soll, deren Syntax durch die folgende Grammatik-Regel gegeben ist:

```
statement → "do" statement "while" "("boolExpr")".
```

Die Semantik dieses Konstruktes soll mit der Semantik des entsprechenden Konstruktes in der Sprache C übereinstimmen.

- (a) Geben Sie eine Gleichung an, die beschreibt, wie eine do-while-Schleife in Java-Byte-Code übersetzt werden kann.
- (b) Geben Sie die Methode compile() an, die das entsprechende Konstrukt übersetzt. Gehen Sie dabei davon aus, dass Sie diese Methode innerhalb einer Klasse DoWhile implementieren, wobei diese Klasse für EP wie folgt spezifiziert ist:

```
Statement = \cdots + DoWhile(Statement stmnt, BoolExpr cond) + \cdots;
```

Lösung:

(a) Die Übersetzung einer do-while-Schleife der Form

```
while (cond) statement
```

orientiert sich an der folgenden Spezifikation:

(b) Die Methode compile() kann in der Klasse DoWhile wie folgt implementiert werden:

```
public List<AssemblerCmd> compile() {
1
          List<AssemblerCmd> result = new LinkedList<AssemblerCmd>();
          LABEL
                       loopLabel = new LABEL();
          LABEL
                       nextLabel = new LABEL();
                                 = new IFEQ(nextLabel.getLabel());
          AssemblerCmd ifeq
          AssemblerCmd gotoLoop = new GOTO(loopLabel.getLabel());
          result.add(loopLabel);
          result.addAll(mStmnt.compile());
          result.addAll(mCond.compile());
          result.add(ifeq);
10
          result.add(gotoLoop);
11
          result.add(nextLabel);
12
          return result;
13
      }
14
```