TANGENT & NORMAL

TANGENT

Tangent is a limiting case of a secant

NORMAL

A line that is perpendicular to a tangent line at the point of tangency.

CALCULATING TANGENT LINE & NORMAL LINE TO A CURVE

EQUATION OF TANGENT & ITS LENGTH

Equation:
$$y - y_1 = m_T (x-x_1)$$

Length: PT =
$$\frac{y_1\sqrt{1 + (m_T)^2}}{(m_T)}$$

EQUATION OF NORMAL & ITS LENGTH

Equation:
$$y - y_1 = \frac{-1}{m_T} (x - x_1)$$

Length: PN =
$$|y_1\sqrt{1 + (m_T)^2}$$

$$m_T = \left(\frac{dy}{dx}\right)_{P(x_1,y_1)} = \tan\theta$$

SUBTANGENT & SUBNORMAL

TM is the Subtangent and length of

$$TM = \left| \frac{y_1}{m_T} \right|$$

MN is the Subnormal and length of

$$MN = |y_1 m_T|$$

ANGLE BETWEEN TWO INTERSECTING CURVES

m₁ → slope to the curve 1 at point 'P'

m2 - slope to the curve 2 at point 'P'

$$m_1 = \frac{d f(x)}{dx} \Big|_{(x_1, y_1)} m_2 = \frac{d g(x)}{dx} \Big|_{(x_1, y_1)}$$

$$\theta = tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

If $\theta = \frac{\pi}{2}$ then the curves are called Orthogonal Curves.

POINTS TO REMEMBER

3

Equation of Tangent at point $P(x_1,y_1)$ to any second degree general curve

$$ax^{2} + by^{2} + 2hxy + 2gx + 2fy + c = 0$$

REPLACE:

$$x^2 \rightarrow xx_1 \; ; \; y^2 \rightarrow yy_1 \; ; \; 2x \rightarrow x + x_1 \; ; \; 2y \rightarrow y + y_1$$

 $2xy \rightarrow \, xy_1 + x_1y \; ; \, c \rightarrow c$

If curve passes through the 'O' then the equation of the tangent at 'O' may be directly written by comparing the lowest degree terms equal to 0.

$$2gx + 2fy = 0 \text{ or } gx + fy = 0$$

If $\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = 0 \implies$ Tangent is parallel to x-axis (Horizontal Tangent).

• If
$$\left(\frac{dy}{dx}\right)_{(x_1,y_1)} \to \infty$$
 or $\left(\frac{dx}{dy}\right)_{(x_1,y_1)} = 0 \implies$ Tangent is parallel to y-axis (Vertical Tangent).

• If
$$\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \pm 1 \Longrightarrow$$
 Tangent at $P(x_1,y_1)$ is Equally inclined to the coordinate axis.

The shortest distance between two non-intersecting curves is always along to the common normal of the curves.

MONOTONOCITY

Definition

Functions are said to be monotonic if they are either increasing or decreasing in their entire domain, otherwise functions are called non-monotonic function.

Monotonocity of a Function at a Point

A function is said to be monotonically increasing at x = a If f(a + h) > f(a) & f(a - h) < f(a) for small (+ve)h

A function is said to be monotonically decreasing at x = a If f(a + h) < f(a) & f(a - h) > f(a) for small (+ve)h

Monotonicity of a Function in an Interval (First Derivative Test)

Function f(x) is said to be increasing in an interval (a, b) if

$$\frac{dy}{dx} > 0 \text{ or } f'(x) > 0$$

Function f(x) is said to be decreasing is an interval (a, b) if

$$\frac{dy}{dx}$$
 < 0 or f'(x) < 0

Non-Decreasing Function

Non-Increasing Function

Point of Inflection

Point in the domain of f(x) where f '(x) does not changes its sign as x increases through c.

Critical Point

Point in the domain of f(x) where f'(x) is equal to zero or f'(x) fails to exist. Due to any reason.

MONOTONOCITY

Greatest & Lowest Value of a Function

If a continuous function y = f(x) is strictly increasing in [a, b] then

If a continuous function y = f(x) is strictly decreasing in [a, b] then

Rolle's Theorem

Let f(x) be a function of x satisfying following conditions:

- (1) f(x) is continuous in [a, b]
- (2) f(x) is differentiable in (a, b)

Then there exists at least one point x = c, which belongs to (a, b) such that $\{f'(c) = 0\}$

Lagrange's Mean Value Theorem

Let f(x) be a function at x satisfying the following:

- (1) f(x) is continuous in [a, b]
- (2) f(x) is differentiable in (a, b)
- (3) There exist atleast one c∈ (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Points to Remember

- If a function is invertible, it has to be either increasing or decreasing.
- If f is an increasing function then its negative i.e. h = -f is a decreasing function.
- Reciprocal of an increasing function is a decreasing function.
- If f is an increasing function and g is also an increasing function their sum h = f + g is an increasing function.
- If f and g both are increasing function then h = f x g is also an increasing function.
- If a function f is increasing (I) and takes negative values and another function g is decreasing (D) and takes
 positive values, then their product is an increasing function.
- Monotonocity of the difference of two function can be predicted as if I I = can't say, I D = increasing, D I = decreasing, D D = can't say.

MAXIMA AND MINIMA

LOCAL MAXIMUM & MINIMUM

Local maximum Local minimum

ABSOLUTE MAXIMUM & MINIMUM

FINDING MAXIMUM & MINIMUM

FIRST DERIVATIVE TEST

LOCAL MAXIMUM	f'(a) = 0	$f'(a^-) > 0$	$f'(a^+) < 0$
LOCAL MINIMUM	f'(b) = 0	f'(b-) < 0	$f'(b^+) > 0$
SADDLE POINT	f'(c) = 0	$f'(c^-) > 0$	$f'(c^+) > 0$

In general at saddle point (let x = c) f'(c⁺) and f'(c⁻) both are either positive or negative.

SECOND DERIVATIVE TEST

LOCAL MAXIMUM	f'(a) = 0	$f^{\prime\prime}(a) < 0$
LOCAL MINIMUM	f'(b) = 0	$f^{\prime\prime}(b) \ge 0$
SADDLE POINT	f'(c) = 0	f''(c) = 0

In general at saddle point (let x = c)
f'(c) = f''(c) = = fⁿ(c) = 0.