Part II — Stochastic Financial Models

Based on lectures by J. R. Norris

Notes taken by Joseph Tedds using Dexter Chua's header and Gilles Castel's snippets.

Michaelmas 2019

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Utility and mean-variance analysis

Utility functions; risk aversion and risk neutrality. Portfolio selection with the meanvariance criterion; the efficient frontier when all assets are risky and when there is one riskless asset. The capital-asset pricing model. Reservation bid and ask prices, marginal utility pricing. Simplest ideas of equilibrium and market cleaning. State-price density. [5]

Martingales

Conditional expectation, definition and basic properties. Conditional expectation, definition and basic properties. Stopping times. Martingales, supermartingales, submartingales. Use of the optional sampling theorem. [3]

Dynamic Models

Introduction to dynamic programming; optimal stopping and exercising American puts; optimal portfolio selection. [3]

Pricing contingent conditions

Lack of arbitrage in one-period models; hedging portfolios; martingale probabilities and pricing claims in the binomial model. Extension to the multi-period binomial model. Axiomatic derivation. [4]

Brownian motion

Introduction to Brownian motion; Brownian motion as a limit of random walks. Hitting-time distributions; changes of probability. [3]

Black-Scholes model

The BlackScholes formula for the price of a European call; sensitivity of price with respect to the parameters; implied volatility; pricing other claims. Binomial approximation to BlackScholes. Use of finite-difference schemes to compute prices [6]

Contents

0	Intr	oduction	3
1	Util	ity and mean-variance analysis	4
	1.1	Contingency claims and utility functions	4
	1.2	Reservation prices and marginal prices	5
	1.3	Single period asset price model	6
	1.4	Portfolio selection using the mean-variance criterion	7

0 Introduction

1 Utility and mean-variance analysis

1.1 Contingency claims and utility functions

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A random variable X on Ω , provides a model for an investment which delivers $X(\omega)$ for consumption depending on chance $\omega \in \Omega$.

Definition (Contingent claim). In this context we often use the term *contingent claim* as another name for a random variable.

Definition (Utility function). By a *utility function* we mean any non-decreasing function $U: \mathbb{R} \mapsto [-\infty, \infty)$. Think of U(x) as quantifying the satisfaction obtained on consuming x. Allowing $-\infty$ is a way of saying the value of x that obtains $-\infty$ is unacceptable.

We often assume the investor will act to maximise expected utility. So Y is preferred to X iff $\mathbb{E}\left[U(X)\right] \leq \mathbb{E}\left[U(Y)\right]$. If $\mathbb{E}\left[U(X)\right] = \mathbb{E}\left[U(Y)\right]$ the investor is said to be indifferent between X and Y. We say the investor is risk averse if they prefer $\mathbb{E}\left[X\right]$ to X for all integrable random variables X. We say risk neutral if indifferent between X and $\mathbb{E}\left[X\right]$.

Definition. Recall that U is a concave function if for all $x, y \in \mathbb{R}$, all $p \in (0, 1)$

$$pU(x) + (1-p)U(y) \le U(px + (1-p)y).$$

1

Proposition. An investor with utility function U is risk averse if and only if U is concave.

Proof. Suppose risk averse. Consider the contingent claim X taking values x, y with probabilities p, (1-p) respectively. Then,

$$pU(x) + (1-p)U(y) = \mathbb{E}[U(X)] \le U(\mathbb{E}[X]) = U(px + (1-p)y).$$

Hence U is concave.

Suppose on the other hand U is concave. Let X be an integrable random variable (i.e. $\mathbb{E}[|X|] < \infty$) then by Jensen's inequality

$$\mathbb{E}\left[U(X)\right] \le U(\mathbb{E}\left[X\right]).$$

Hence, the investor is risk averse.

2

Example. For $\gamma \in (0, \infty)$ the CARA (constant absolute relative aversion) utility function of parameter γ is given by

$$CARA_{\gamma}(x) = -e^{-\gamma x}$$
.

3 For $R \in (0,1) \cup (1,\infty)$ the CRRA (constant relative risk aversion) utility function of parameter R is given by

$$CRRA_R(x) = \begin{cases} \frac{x^{1-R}}{1-R} & x > 0\\ -\infty & x \le 0 \end{cases}.$$

Also,

$$CRRA_1(x) = \begin{cases} \log x & x > 0 \\ -\infty & \text{otherwise} \end{cases}.$$

4

Non-rigorous discussion Let U be concave (note that U is non-decreasing). Consider a small continent claim X. We ask whether we prefer w + X to w for a given constant w. By Taylor's theorem

$$U(w+X) \approx U(w) + X \underbrace{U'(w)}_{>0} + \frac{1}{2} X^2 \underbrace{U''(w)}_{<0}.$$

$$\mathbb{E}\left[U(w+X)\right] \approx U(w) + \mathbb{E}\left[X\right]U'(w) + \frac{1}{2}\mathbb{E}\left[X^2\right]U''(w),$$

so we prefer w + X if

$$2\frac{\mathbb{E}\left[X\right]}{\mathbb{E}\left[X^2\right]} > -\frac{U^{\prime\prime}(w)}{U^\prime(w)}$$

the Arrow-Pratt coefficient of absolute risk aversion. For CARA $_{\gamma}$ this constant is equal to γ .

Similarly, do we prefer w(1+X) to w? Yes if

$$2\frac{\mathbb{E}\left[X\right]}{\mathbb{E}\left[X^2\right]} > -\frac{wU''(w)}{U'(w)}$$

the Arrow-Pratt coefficient of relative risk aversion. For $CRRA_R$ this constant is equal to R.

1.2 Reservation prices and marginal prices

Consider an investor with concave utility function. Suppose they have available a set \mathcal{A} of contingent claims, and suppose $\mathbb{E}[U(X)]$ is maximised over \mathcal{A} at $X^* \in \mathcal{A}$. Let Y be another contingent claim. The investor would buy Y for price π if there exists $X \in \mathcal{A}$ such that

$$\mathbb{E}\left[U(X+Y-\pi)\right] > \mathbb{E}\left[U(X^*)\right].$$

The supremum of all such prices $\pi_b(Y)$ is the *(reservation) bid price)* for Y. The investor would sell Y for price π if there exists $X \in \mathcal{A}$ such that

$$\mathbb{E}\left[U(X-Y+\pi)\right] > \mathbb{E}\left[U(X^*)\right].$$

The infimum of all such prices $\pi_a(Y)$ is the *(reservation) ask price* for Y.

Proposition. (Ask above, bid below) Assume \mathcal{A} is convex. Then $\pi_b(Y) \leq \pi_a(Y)$

Proof. It suffices to show there is no price π at which the investor will both buy and sell. Suppose for a contradiction that there exist X_a, X_b such that

$$\mathbb{E}\left[U(X_a - Y + \pi)\right] > \mathbb{E}\left[U(X^*)\right].$$

$$\mathbb{E}\left[U(X_b+Y-\pi)\right] > \mathbb{E}\left[U(X^*)\right].$$

Now $X = \frac{X_a + X_b}{2} \in \mathcal{A}$ since \mathcal{A} is convex and $U(X) \geq \frac{U(X_a - Y + \pi) + U(X_b + Y - \pi)}{2}$ since U is concave. Then we obtain the following contradiction.

$$\mathbb{E}\left[U(X^*)\right] < \frac{\mathbb{E}\left[U(X_a - Y + \pi)\right] + \mathbb{E}\left[U(X_b + Y - \pi)\right]}{2} \le \mathbb{E}\left[U(X)\right] \le \mathbb{E}\left[U(X^*)\right].$$

Hence there is no such π .

Recall U is concave and non-decreasing. An investor has available a set of of contingent claims \mathcal{A} , and seeks to maximise $\mathbb{E}\left[U(X)\right], X \in \mathcal{A}$. Assume $X^* \in \mathcal{A}$ is a maximiser. Suppose Y is another contingent claim. Assume that \mathcal{A} is an affine space and that U is a differentiable and strictly concave.

Definition (Affine space). S is affine if S - S is a vector space. This can be visualised as a vector space away from the origin.

Then X^* is unique (or $\frac{X_1^* + X_2^{ast}}{2}$ is better.

Definition (Marginal price). We define the marginal price of Y as

$$\pi_m(Y) = \mathbb{E}\left[U'(X^*)Y\right]/\mathbb{E}\left[U'(X^*)\right].$$

Non-rigorous discussion to explain Note that for $\Xi \in \mathcal{A} - \mathcal{A}$ the map $t \mapsto \mathbb{E}\left[\overline{U(X^* + t\Xi]} \text{ on } \mathbb{R} \text{ achieves its minimum at } t = 0. \text{ So}\right]$

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{0} \mathbb{E}\left[U(X^* + t\Xi)\right] = \mathbb{E}\left[U'(X^*)\right].$$

It is plausible that there is a differentiable map $t \mapsto X^*(t) : \mathbb{R} \leftarrow \mathcal{A}$ such that for all t

$$\mathbb{E}\left[U(X^*(t)-tY+\pi_b(tY))\right]=\mathbb{E}\left[U(X^*)\right].$$

Then $X^*(0) = X^*$. Define $\Xi \in \frac{\mathrm{d}}{\mathrm{dt}} \Big|_{0} X^*(t), \pi = \frac{\mathrm{d}}{\mathrm{dt}} \Big|_{0} \pi_b(tY)$. It is plausible that $\Xi \in \mathcal{A} - \mathcal{A}$. So

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{0} \mathbb{E}\left[U(X^{*}(t) - tY + \pi_{b}(tY))\right] = \mathbb{E}\left[U'(X^{*})(\Xi - Y + \pi)\right].$$

So we see

$$\pi_m(Y) = \frac{\mathrm{d}}{\mathrm{dt}}\Big|_0 \pi_b(tY) = \frac{\mathrm{d}}{\mathrm{dt}}\Big|_0 \pi_a(tY).$$

So marginal price is the price to buy (or sell) a small amount of Y.

1.3 Single period asset price model

Definition (Single period asset price model). By a single period asset price model, we mean a pair of random variables (S_0, S_1) in \mathbb{R}^d . We write $S_n = (S_n^1, \ldots, S_n^d)$ with S_n^i the price of asset i at time n.

Definition (Numeraire). By a *numeraire* we mean a pair of random variables $(S_0^0, S_1^0 \text{ in } (0, \infty).$

Notation. We write

$$\overline{S}_n = (S_n^0, S_n) = (S_n^0, S_n^1, \dots, S_n^d).$$

Call $(\overline{S}_0, \overline{S}_1)$ an asset price model with numeraire

Often we take $S_0^0 = 1, S_1^0 = 1 + r$ some constant $r \in (-1, \infty)$, Then S^0 is called a *riskless bond* and r is the *interest rate*. We assume \overline{S}_0 is non-random as the default.

In the case without numeraire, an investor with initial wealth w_0 chooses $\theta \in \mathbb{R}^d$ subject to

$$\theta.S_0 = \sum_{i=1}^d \theta^i S_0^i = w_0.$$

Then the investor has wealth $\theta.S_1$ at time 1. We call θ the portfolio. With numeraire, investor chooses $\overline{\theta} = (\theta^0, \theta \text{ such that } \overline{\theta}.\overline{S}_0 = w_0$. The wealth at time 1 is $\overline{\theta}.\overline{S}_0$.

It may be that there exists a random variable $\rho \geq 0$ such that $\mathbb{E}\left[\rho S_1^i\right] = S_0^i$ for all i. Then we call ρ a state price density

1.4 Portfolio selection using the mean-variance criterion

Let (S_0, S_1) be an asset price model on \mathbb{R}^d with S_0 non-random, S_1 has mean μ , variance V. We assume that V is invertible and S_0, μ are linearly independent. Suppose we are given w_0, w_1 . The investor wishes to

minimise
$$\operatorname{var}(\theta.S_1)$$

subject to $\theta.S_0 = w_0,$
 $\mathbb{E}[\theta.S_1] = w_1$

Note $\mathbb{E}[\theta.S_1] = \theta.\mu$, $var(\theta.S_1) = \theta.(V\theta)$ So our problem is to

minimise
$$\theta.(V\theta)$$

subject to $\theta.S_0 = w_0$, $\theta.\mu = w_1$.

Consider $L(\theta, \lambda) = \frac{1}{2}\theta_{\cdot}(V\theta) - \lambda_0\theta_{\cdot}S_0 - \lambda_1\theta_{\cdot}\mu$ At minimising θ^* .

$$0 = \frac{\partial}{\partial \theta^{i}} L(\theta, \lambda)$$
$$= (V\theta)^{i} - \lambda_{0} S_{0}^{i} - \lambda_{1} \mu^{i}.$$

So $\theta^* = \lambda_0 A S_0 + \lambda_1 A \mu$, $A = V^{-1}$. Now fit the constants

$$w_0 = \theta_{\cdot}^* S_0 = \lambda_0 a + \lambda_1 b$$

$$w_1 = \theta_{\cdot}^* \mu = \lambda_0 b + \lambda_1 c$$

 $a=S_0.(AS_0), b=\mu(AS_0)=S_0(A\mu), c=\mu(A\mu).$ Note that $\Delta=ac-b^2\neq 0$ by linear independence

$$\begin{pmatrix} w_0 \\ w_1 \end{pmatrix} = M \begin{pmatrix} \lambda_0 \\ \lambda_1 \end{pmatrix}, M = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$
$$M^{-1} = \frac{1}{\Delta} \begin{pmatrix} d & -b \\ -b & a \end{pmatrix}.$$
$$\begin{pmatrix} \lambda_0 \\ \lambda_1 \end{pmatrix} = M^{-1} \begin{pmatrix} w_0 \\ w_1 \end{pmatrix}.$$

So

$$\theta^* = \frac{cw_0 - bw_1}{\Delta} AS_0 + \frac{aw_1 - bw_0}{\Delta} A\mu$$

The minimising variance is

$$\theta_{\cdot}^{*}(V\theta^{*}) = (\lambda_{0}AS_{1} + \lambda_{1}A\mu)_{\cdot}(\lambda_{0}S_{0} + \lambda_{1}\mu)$$

$$= (\lambda_{0}\lambda_{1})M\begin{pmatrix}\lambda_{0}\\\lambda_{1}\end{pmatrix}$$

$$= (w_{0}w_{1})M^{-1}\begin{pmatrix}w_{0}\\w_{1}\end{pmatrix}$$

$$= \frac{cw_{0}^{2} - 2bw_{0}w_{1} + aw_{1}^{2}}{\Delta} = q(w_{1})$$

We minimise this over w_1 where $2bw_0 \neq 2aw_1$

$$w_1^* = \frac{b}{a}w_0, \theta_{\min}^* = \frac{w_0}{a}AS_0.$$

Putting w_1^* back into q, we obtain

$$q(w_1^*) = \frac{acw_0^2 - 2b^2w_0^2}{a\Delta} + \frac{b^2}{a\Delta}w_0^2 = \frac{w_0^2}{a}$$