Game Theory Notes

A Course in Game Theory

Tianyu Du

December 16, 2018

Contents

1	Introduction	1
2	Nash Equilibrium	1

1 Introduction

Assumption 1.1 (pg.4). Assume that each decision-maker is *rational* in the sense that he is aware of his alternatives, forms expectation about any unknowns, has clear preferences, and chooses his action deliberately after some process of optimization.

Definition 1.1 (pg.4). A model of **rational choice** consists

- A set *A* of *actions*.
- A set *C* of *consequences*.
- A consequence function $g: A \to C$.
- A preference relation \geq on C.

Definition 1.2 (pg.7). A **preference relation** is a complete reflexive transitive binary relation.

2 Nash Equilibrium

Definition 2.1 (11.1). A strategic game consists of

- a finite set of **players** N.
- for each player $i \in N$, an **actions** $A_i \neq \emptyset$.
- for each player $i \in N$, a **preference relation** \succeq_i defined on $A \equiv \prod_{i \in N} A_i$.

and can be written as a triple $\langle N, (A_i), (\geq_i) \rangle$.

Definition 2.2 (pg.11). A strategic game $\langle N, (A_i), (\geq_i) \rangle$ is **finite** if

$$|A_i| < \aleph_0 \ \forall i \in N$$

Definition 2.3 (14.1). A **Nash equilibrium of a strategic game** $\langle N, (A_i), (\succeq_i) \rangle$ is a profile $a^* \in A$ of actions with property that for every player $i \in N$

$$(a_i^*, a_{-i}^*) \gtrsim_i (a_i, a_{-i}^*) \, \forall a_i \in A_i$$

Definition 2.4 (pg.15). The **best-response function** for a player i is defined as

$$B_i(a_{-i}) = \{a_i \in A_i : (a_i, a_{-i}) \succeq_i (a'_i, a_{-i}) \ \forall a'_i \in A_i\}$$

Remark 2.1. The best-response of a_{-i} can be written as

$$B_i(a_{-i}) = \bigcap_{a_i' \in A_i} \{a_i \in A_i : (a_i, a_{-i}) \gtrsim_i (a_i', a_{-i})\}$$

where each of them is the upper contour set of a'_i .

Thus, if \succeq_i is quasi-concave, then $B_i(a_{-i})$ is an intersection of convex sets and therefore itself convex.

Remark 2.2 (pg.15). So a Nash equilibrium is a profile $a^* \in A$ such that

$$a_i^* \in B_i(a_{-i}^*) \ \forall i \in N$$

Lemma 2.1 (pg.19). A strategic game $\langle N, (A_i), (\geq_i) \rangle$ has a Nash equilibrium if equivalent to the following statement:

Define set-valued function $B: A \rightarrow A$ by

$$B(a) = \prod_{i \in N} B_i(a_{-i})$$

and there exists $a^* \in A$ such that $a^* \in B(a^*)$.

Lemma 2.2 (20.1 Kakutani's fixed point theorem). Let X be a <u>compact convex</u> subset of \mathbb{R}^n and let $f: X \to X$ be a set-valued function for which

- for all $x \in X$ the set f(x) is non-empty and convex.
- the graph of f is closed. (i.e. for all sequences $\{x_n\}$ and $\{y_n\}$ such that $y_n \in f(x_n)$ for all $n, x_n \to x$ and $y_n \to y$ then $y \in f(x)$)

Then there exists $x^* \in X$ such that $x^* \in f(x^*)$.

Definition 2.5 (pg.20). A preference relation \geq_i over A is quasi-concave on A_i if for every $a^* \in A$ the upper contour set over a_i^* , given other players' strategies

$$\{a_i \in A_i : (a_{-i}^*, a_i) \gtrsim_i a^*\}$$

is convex.

Proposition 2.1 (20.3). The strategic game $\langle N, (A_i), (\succeq_i) \rangle$ has a Nash equilibrium if for all $i \in N$,

• the set A_i of actions of player i is a nonempty <u>compact convex</u> subset of a Euclidian space

and the preference relation \geq_i is

- continuous
- quasi-concave on A_i .

Proof. Let $B: A \rightarrow A$ be a correspondence defined as

$$B(a) := \prod_{i \in N} B_i(a_{-i})$$

Note that for each $a \in A$ and for each $i \in N$,

 $B_i(a_{-i}) \neq \emptyset$ since preference \geq_i is continuous and A_i is compact (EVT).

Also $B_i(a_{-i})$ is convex since it's basically a intersection of upper contour sets and each of those upper contour is convex since \geq_i is quasi-concave.

So the Cartesian product of the finite collection of B_i is non-empty and convex.

Also the graph *B* is closed since \geq_i is continuous.

So there exists $a^* \in A$ such that $a^* \in B(a^*)$.

So Nash equilibrium presents.