

Chapter 02. 가장 단순한 신경망을 통해 작동 원리 이해하기

# STEP1. 얕은 신경망의 구조

### 신경 세포



생물학적인 신경 세포를 단순화하여 모델링한 Neuron. 여러 신호를 받아, 하나의 신호를 만들어 전달하는 역할을 한다. 출력을 내기 전에 활성 함수(activation function)을 통해 비선형 특성을 가할 수 있다.



#### Neuron의 그래프 표현



보통 신경망을 표현할 때, Graph의 Node와 Edge를 이용해 표현한다. 여기서 Node는 단일 뉴런 연산을, Edge는 뉴런의 연결성을 의미한다.



#### 인공신경망 (Artificial Neural Network)



뉴런이 모여 서로 연결된 형태를 인공신경망 (Artificial Neural Network)라고 부른다. 앞으로 배우게 될 모든 딥러닝 네트워크는 인공신경망을 기반으로 하고 있다.



#### 인공신경망 (Artificial Neural Network)



뉴런이 모여 서로 연결된 형태를 인공신경망 (Artificial Neural Network)라고 부른다. 앞으로 배우게 될 모든 딥러닝 네트워크는 인공신경망을 기반으로 하고 있다.



#### 전결합 계층

전결합 계층 (Fully-Connected Layer)



계층 (Layer)

뉴런이 모인 한 단위를 계층(Layer)라고 하며, 이전 계층과 모든 뉴런이 서로 연결된 계층을 Fully-Connected Layer (Dense Layer)라고 한다.



## 얕은 신경망 (Shallow Neural Network)



입력, 은닉, 출력의 3가지 계층으로 되어 있으며, 은닉 계층과 출력 계층이 Fully Connected 계층인 모델을 얕은 신경망 (Shallow Neural Network)라고 한다.

