Report.md 2024-12-01

Homework: 2024/11/27

1. Information Matrix of Binary Choice Models

a.
$$L_{n}(\beta) = \sum_{i=1}^{n} \left(Y_{i} L_{n} G(X_{i}^{i} \beta) + (I - Y_{i}) L_{n}(I - G(X_{i}^{i} \beta)) \right) = \sum_{i=1}^{n} \left(Y_{i} L_{n} G(X_{i}^{i} \beta) + (I - Y_{i}) L_{n}(-G(X_{i}^{i} \beta)) \right)$$

some function $S_{n}(\beta) = V_{\beta} L_{n}(\beta) = \sum_{i=1}^{n} \frac{V_{\beta} G(X_{i}^{i} \beta)}{G(X_{i}^{i} \beta)} = \sum_{i=1}^{n} X_{i} L_{n}(X_{i}^{i} \beta)$, for $L_{n}(x) = \frac{3}{3x} L_{n}G(x)$

Hessian matrix $H_{n}(\beta) = V_{\beta} L_{n}(\beta) = \sum_{i=1}^{n} X_{i} X_{i}^{i} L_{n}^{i}(X_{i}^{i} \beta) + (X_{i}^{i} \beta) L_{n}^{i}(X_{i}^{i} \beta)$, for $L_{n}(x) = \frac{3}{3x} L_{n}G(x)$

Information matrix $B_{n}(\beta) = V_{\beta} L_{n}(\beta) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$

2.

market-cycle-index sequence & its predictions of different models

Report.md 2024-12-01

Score values of probit and logit models

```
Probit Model Score Values:

dfy infl svar tms
-0.0120446060 0.0010997689 0.0016579720 -0.0027711492 0.0047622655
tbl dfr dp ttr bmr
0.0026251451 -0.0043932080 0.0137075978 0.0011586185 -0.0061308072
ntis
0.0001298595

Logit Model Score Values:

dfy infl svar tms
-0.0018310312 0.0009013303 0.0006512284 -0.0002166276 -0.0003751593
tbl dfr dp tr bmr
-0.0002529876 0.0002769116 -0.0034284784 0.0001790371 -0.0053869289
ntis
-0.0005339635
```

By observing the score values, we can see that the score values of probit and logit models are close to zero, which indicates that the numerical optimization is successfully converged.

3. Source Code

Source Code