Lista 3, zadanie 8 Piotr Berezowski, 236749 30 stycznia 2019

1 Treść zadania

Znaleźć DFA o minimalnej liczbie stanów równoważny automatowi

$$M = (\{a, b, c, d, e, f, g, h\}, \{0, 1\}, \delta, a, \{d\}),$$

gdzie δ ma postać

	0	1
a	b	a
b	a	c
С	d	b
d	d	a
e	d	f
f	g	е
\mathbf{g}	f	g
h	g	d

2 Rozwiązanie

Automat M to piątka postaci $(Q, \Sigma, \delta, q_0, F)$, gdzie:

- 1. Q skończony zbiór stanów
- 2. Σ skończony alfabet
- 3. δ funkcja przejścia $Q\times \Sigma \to Q$
- 4. q_0 stan początkowy
- 5. ${\cal F}$ zbiór stanów akceptujących

Rozwiązanie polega na zastosowaniu algorytmu minimalizacji. Kroki algorytmu:

```
\begin{array}{l} \textbf{forall} \ p \in F \land q \in Q \setminus F \ \textbf{do:} \\ | \ \text{oznacz parę} \ (p,q) \\ \textbf{endfor} \\ \textbf{forall} \ p,q \in (F \times F) \cup (Q \setminus F \times Q \setminus F) \ \textbf{do:} \\ | \ \textbf{if} \ \exists_{a \in \Sigma} \ \textbf{t.} \ \dot{\textbf{ze}} \ (\delta(p,a),\delta(q,a)) \ \textbf{jest oznaczona} \ \textbf{then:} \\ | \ \text{oznacz} \ (p,q) \\ | \ \text{oznacz rekurencyjnie wszystkie nieoznaczone pary na liście} \ (p,q) \\ | \ \textbf{else:} \\ | \ | \ \textbf{forall} \ a \in \Sigma \ \textbf{do:} \\ | \ | \ \text{umieść parę} \ (p,q) \ \text{na liście} \ (\delta(p,a),\delta(q,a)), \ \text{o ile} \ \delta(p,a) \neq \delta(q,a) \\ | \ | \ \textbf{endfor} \end{array}
```

$| \quad \ \ \, end if \\ end for \\ \ \ \, \\$

Zaczynamy od zapisania tablicy zawierającej jedną pozycję dla każdej pary stanów.

	h	g	f	\mathbf{e}	d	\mathbf{c}	b	
a								
b								Ī
$^{\mathrm{c}}$								
е								
f								
g								
(

Następnie oznaczamy pary (p,q) takie, że $p \in F \land q \in Q \setminus F$.

b	$^{\mathrm{c}}$	d	e	f	g	h	
		X					a
		X					b
		X					\mathbf{c}
			X	X	X	X	d
							е
							f
							g

Wykonując drugi krok algorytmu oznaczamy kolejne pary.

- 1. $(a,b) \rightarrow^0 (b,a)$ para (b,a) nie jest oznaczona, więc sprawdzamy dalej.
- 2. $(a,b) \rightarrow^1 (a,c)$ para (a,c) nie jest oznaczona, więc sprawdzamy dalej.
- 3. $(a,c) \to^0 (b,d)$ para (b,d) jest oznaczona, więc oznaczamy (a,c). Następnie sprawdzamy czy wcześniej po prawej stronie nie pojawiła się gdzieś nowo oznaczona para (a,c), Jeśli tak, to oznaczamy lewą stronę i rekurencyjnie wykonujemy sprawdzenie dla nowej pary(lewej strony). W tym wypadku wcześniej było $(a,b) \to^1 (a,c)$, więc oznaczamy (a,b) i sprawdzamy czy (a,b) nie pojawiło się wcześniej po prawej stronie. Nie pojawiło się, wiec możemy iść dalej.
- 4. $(a, e) \rightarrow^0 (b, d)$ para (b, d) jest oznaczona, więz oznaczamy (a, e).
- 5. $(a, f) \rightarrow 0 (b, g)$ para (b, g) nie jest oznaczona, więc sprawdzamy dalej.
- 6. $(a,f) \rightarrow^1 (a,e)$ para (a,e) jest oznaczona, więc oznaczamy (a,f).
- 7. $(a,g) \rightarrow^0 (b,f)$ para (b,f)nie jest oznaczona, więc sprawdzamy dalej.

```
8. (a,g) \to (a,g) - para (a,g) nie jest oznaczona, więc sprawdzamy dalej.
```

9.
$$(a,h) \rightarrow 0$$
 (b,g) - para (b,g) nie jest oznaczona, więc sprawdzamy dalej.

10.
$$(a,h) \to (a,d)$$
 - para (a,d) jest oznaczona, więc oznaczamy (a,h) .

11.
$$(b,c) \rightarrow^0 (a,d)$$
 - para (a,d) jest oznaczona, więc oznaczamy (b,c) .

12.
$$(b,e) \rightarrow 0$$
 (a,d) - para (a,d) jest oznaczona, więc oznaczamy (b,e) .

13.
$$(b, f) \rightarrow 0 (a, g)$$
 - para (a, g) nie jest oznaczona, więc sprawdzamy dalej.

14.
$$(b,f) \rightarrow^1 (c,e)$$
 - para (c,e) nie jest oznaczona, więc sprawdzamy dalej.

15.
$$(b,g) \rightarrow^0 (a,f)$$
 - para (a,f) jest oznaczona, więc oznaczamy (b,g) .

16.
$$(b,h) \rightarrow^0 (a,g)$$
 - para (a,g) nie jest oznaczona, więc sprawdzamy dalej.

17.
$$(b,h) \to 1$$
 (c,d) - para (c,d) jest oznaczona, więc oznaczamy (b,h) .

18.
$$(c,e) \rightarrow^0 (d,d)$$
 - para (d,d) nie jest oznaczona, więc sprawdzamy dalej.

19.
$$(c,e) \rightarrow (b,f)$$
 - para (b,f) nie jest oznaczona, więc sprawdzamy dalej.

20.
$$(c, f) \to 0$$
 (d, g) - para (d, g) jest oznaczona, więc oznaczamy (c, f) .

21.
$$(c,g) \to 0$$
 (d,f) - para (d,f) jest oznaczona, więc oznaczamy (c,g) .

22.
$$(c,h) \rightarrow^0 (d,g)$$
 - para (d,g) jest oznaczona, więc oznaczamy (c,h) .

23.
$$(e, f) \rightarrow^0 (d, g)$$
 - para (d, g) jest oznaczona, więc oznaczamy (e, f) .

24.
$$(e,g) \rightarrow^0 (d,f)$$
 - para (d,f) jest oznaczona, więc oznaczamy (e,g) .

25.
$$(e,h) \to 0$$
 (d,g) - para (d,g) jest oznaczona, więc oznaczamy (e,h) .

26.
$$(f,g) \rightarrow^0 (g,f)$$
 - para (g,f) nie jest oznaczona, więc sprawdzamy dalej.

27.
$$(f,g) \to {}^{1}(e,g)$$
 - para (e,g) jest oznaczona, więc oznaczamy (f,g) .

28.
$$(f,h) \to 0$$
 (g,g) - para (g,g) nie jest oznaczona, więc sprawdzamy dalej.

29.
$$(f,h) \to 1$$
 (e,d) - para (e,d) jest oznaczona, więc oznaczamy (f,h) .

30.
$$(g,h) \to 0$$
 (f,g) - para (f,g) jest oznaczona, więc oznaczamy (g,h) .

Ostatecznie tabela wygląda w ten sposób:

b	$^{\mathrm{c}}$	d	e	f	g	h	
X	X	X	X	X		X	a
	X	X	X		X	X	b
		X		X	X	X	c
			X	X	X	X	d
				X	X	X	е
					X	X	f
						X	g

Stany a i g, b i f, c i e są parami równoważne. Stan h nie jest osiągalny ze stanu początkowego, więc możemy go usunąć.