Chapitre 13

Espaces vectoriels

13.1 Structure de corps

DÉFINITION 13.1 : Corps

On considère un ensemble K muni de deux lois de composition interne, notées + et \times . On dit que $(K, +, \times)$ est un corps si et seulement si:

- 1. $(K, +, \times)$ est un anneau;
- 2. tout élément non-nul de K est inversible pour la loi \times .

Exemple 25. $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$ sont des corps, mais $(\mathbb{Z}, +, \times)$ n'en est pas un car les seuls éléments inversibles sont 1 et -1.

Proposition 13.1: Un corps est un anneau intègre

Dans un corps $(\mathbb{K}, +, \times)$, si deux éléments $(x,y) \in \mathbb{K}^2$ verifient $x \times y = 0_K$, alors $x = 0_K$ ou $y = 0_K$. En particulier, on peut « simplifier par un élément non nul »:

$$\forall (a,x,y) \in \mathbb{K}^3, \ a \neq 0_K, \quad a \times x = a \times y \Rightarrow x = y$$

Définition 13.2 : Sous-corps

Soit $K' \subset K$ un sous-ensemble d'un corps $(K, +, \times)$. On dit que la partie K' est un sous-corps du corps K si et seulement si:

- 1. K' est un sous-anneau de l'anneau $(K, +, \times)$;
- 2. l'inverse de tout élément non-nul de K' est dans K'.

DÉFINITION 13.3: Morphisme de corps

Une application f entre deux corps $(K,+,\times)$ et $(K',+,\times)$ est un morphisme de corps si et seulement si c'est un morphisme d'anneaux.

THÉORÈME 13.2 : Calcul d'une somme géométrique dans un corps

Soit un élément $k \in K$ du corps $(K, +, \times)$. Alors la formule suivante permet de calculer une progression géométrique de raison k:

$$\sum_{i=0}^{n} k^{i} = 1 + k + k^{2} + \dots + k^{n} = \begin{cases} (1-k)^{-1} (1-k^{n+1}) & \text{si } k \neq 1\\ (n+1)1_{K} & \text{si } k = 1 \end{cases}$$

Fig. 13.1 – Addition de vecteurs dans \mathbb{R}^2 .

13.2 Espaces vectoriels

Définition 13.4 : Espace vectoriel

Soit $(\mathbb{K}, +, \times)$ un corps commutatif. On appelle espace vectoriel sur le corps \mathbb{K} tout ensemble E muni d'une lei + et d'une loi de composition externe

$$\left\{ \begin{array}{ccc}
K \times E & \longrightarrow & E \\
(\lambda, x) & \mapsto & \lambda \cdot x
\end{array} \right.$$

vérifiant:

- 1. (E,+) est un groupe commutatif,
- 2. $\forall (\lambda, \mu) \in K^2, \forall (x,y) \in E^2$:
 - (a) $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$
 - (b) $\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$
 - (c) $(\lambda \times \mu) \cdot x = \lambda \cdot (\mu \cdot x)$
- 3. $\forall x \in E, 1_K \cdot x = x$

On dit aussi que E est un \mathbb{K} -espace vectoriel. Les éléments de E s'appellent les vecteurs et les éléments de K les scalaires. L'élément neutre pour +, est noté 0_E et s'appelle le vecteur nul.

Exemples

- a) Si K est un corps commutatif, on définit une loi externe en posant pour $\lambda \in K$ et $x \in K$, $\lambda \cdot x = \lambda \times x$. Muni de « + » et « · », K a une structure de K-ev.
- b) Si $K = \mathbb{R}$ et $E = \mathbb{R}^2$, on définit l'addition de deux vecteurs: $X = (x_1, x_2), Y = (y_1, y_2)$ $X + Y = (x_1 + y_1, x_2 + y_2)$ et la multiplication d'un scalaire par un vecteur : Si $\lambda \in \mathbb{R}$, $\lambda \cdot X = (\lambda x_1, \lambda x_2)$. Muni de ces deux lois, \mathbb{R}^2 a une structure de \mathbb{R} -ev. On peut représenter un vecteur $X = (x_1, x_2)$ de \mathbb{R}^2 par une flèche joignant le point (0,0) au point (x_1, x_2) . L'addition de deux vecteurs s'obtient en traçant un parallélogramme.

Proposition 13.3: Espace produit

Soit K un corps commutatif et E_1, \ldots, E_n des K-ev. On définit sur $E_1 \times \cdots \times E_n$ les lois :

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

$$\lambda \cdot (x_1, \dots, x_n) = (\lambda \cdot x_1, \dots, \lambda \cdot x_n)$$

et alors $(E_1 \times \cdots \times E_n, +, \cdot)$ est un K-ev. Le vecteur nul est $(0_{E_1}, \dots, 0_{E_n})$.

En particulier, \mathbb{R}^n est un \mathbb{R} -ev et \mathbb{C}^n est un \mathbb{C} -ev.

Proposition 13.4 : Espaces de fonctions

Soit A un ensemble quelconque et E un K-ev. On note $\mathcal{F}(A,E)$ l'ensemble des fonctions de A vers E. On définit alors deux lois sur $\mathcal{F}(A,E)$:

$$\forall (f,g) \in \mathcal{F}(A,E), \quad (f+g) : \left\{ \begin{array}{ccc} A & \longrightarrow & E \\ x & \mapsto & f(x) + g(x) \end{array} \right.$$

$$\forall f \in \mathcal{F}(A,E), \forall \lambda \in K, \quad \lambda \cdot f : \left\{ \begin{array}{ccc} A & \longrightarrow & E \\ x & \mapsto & \lambda \cdot f(x) \end{array} \right.$$

Alors $(\mathcal{F}(A,E), +, \cdot)$ est un K-ev.

COROLLAIRE 13.5 : Espace de suites

Si E est un \mathbb{K} -espace vectoriel, l'ensemble des suites à valeurs dans \mathbb{K} , muni des lois + et \cdot est également un \mathbb{K} -espace vectoriel $(S(E), +, \cdot)$.

Proposition 13.6 : Règles de calcul dans un ev

pour tout (λ,μ) dans \mathbb{K}^2 , pour tout (x,y) dans E^2 , on a:

$$(\lambda - \mu) \cdot x = \lambda \cdot x - \mu \cdot x$$

$$0_K \cdot x = 0_E$$

$$\lambda \cdot (x - y) = \lambda \cdot x - \lambda \cdot y$$

$$\lambda \cdot 0_E = 0_E$$

$$(-\lambda) \cdot x = -(\lambda \cdot x) = \lambda \cdot (-x)$$

$$(\lambda \cdot x) = 0_E \iff (\lambda = 0_K \text{ ou } x = 0_E)$$

On écrira désormais λx à la place de $\lambda \cdot x$ lorsque la confusion ne sera plus à craindre.

13.3 Sous-espaces vectoriels

Définition 13.5 : Sous-espaces vectoriels

Soit $(E, +, \cdot)$ un K-ev et $F \subset E$ une partie de E. On dit que F est un sev de E si et seulement si : 1. $0_E \in F$

2. $\forall (x,y) \in F^2$, $\forall (\lambda,\mu) \in K^2$, $\lambda x + \mu y \in F$ (on dit que F est stable par combinaisons linéaires).

PROPOSITION 13.7: Un sev a une structure d'espace vectoriel

Si F est un sev de E, alors muni des lois restreintes à F, F est un K-ev.

Remarque 129. Si E est un espace vectoriel, alors les parties $\{0_E\}$ et E sont toujours des sev de E. Exemple 26. Les sous-espaces vectoriels de \mathbb{R}^2 sont: $\{0\}$, \mathbb{R}^2 , toutes les droites passant par l'origine:

$$F = \{\lambda(x_0, y_0) \; ; \; \lambda \in \mathbb{R} \}$$

Exercice 13-1

Soit l l'ensemble des suites réelles convergeant vers 0. Montrer que c'est un \mathbb{R} -ev.

Exercice 13-2

Parmi les ensembles suivants, lesquels sont des sev de l'espace vectoriel $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$?

- 1. $F = \mathcal{C}^n(\mathbb{R})$;
- 2. $F = \{ f \in F \mid f(1) = 2f(0) \};$
- 3. $F = \{ f \in F \mid f(0) = f(1) + 1 \};$
- 4. $F = \{ f \in F \mid \forall x \in \mathbb{R}, f(x) = f(1-x) \} ;$
- 5. $F = \{ f \in F \mid f \text{ dérivable et } \forall x \in \mathbb{R}, f'(x) = a(x)f(x) \} \text{ où } a \in E.$
- 6. $F = \{ f \in F \mid f \text{ dérivable et } \forall x \in \mathbb{R}, f'(x) = a(x)f^2(x) \} \text{ où } a \in E.$

Théorème 13.8 : L'intersection de sev est un sev

Soit $(F_i)_{i\in I}$ une famille de sev de E. Alors $\bigcap_{i\in I} F_i$ est un sev de E.

Exercice 13-3

Montrer que $C^n(I,\mathbb{R})$ et $C^{\infty}(I,\mathbb{R})$ sont des \mathbb{R} -ev.

DÉFINITION 13.6 : Espace vectoriel engendré par une partie

Soit un K-ev E et une partie $A \subset E$ de E. On appelle sous-espace engendré par la partie A, le plus petit sev de E contenant A. On note \mathcal{F}_A l'ensemble des sev de E contenant A, alors:

$$\operatorname{Vect}(A) = \bigcap_{F \in \mathcal{F}_A} F$$

Théorème 13.9: Caractérisation de Vect(A)

Si $A \neq \emptyset$, Vect(A) est l'ensemble des combinaisons linéaires finies d'éléments de A:

$$Vect(A) = \{\lambda_1 a_1 + \dots + \lambda_n x_n ; n \in \mathbb{N}^*, (\lambda_1, \dots, \lambda_n) \in K^n, (a_1, \dots, a_n) \in A^n\}$$

Exercice 13-4

Dans \mathbb{R}^3 , déterminer le sev engendré par $A = \{(1,1,1),(1,0,1)\}$

Exercice 13-5

- 1. Si $A \subset B$, montrer que $Vect(A) \subset Vect(B)$.
- 2. Si F est un sev, montrer que Vect(F) = F.
- 3. Montrer que Vect(Vect(A)) = Vect(A).

Exercice 13-6

Dans l'espace $\mathcal{S}(\mathbb{R})$, on définit pour $n \in \mathbb{N}$ la suite:

$$e_n = (0,0,\ldots,0,1,0\ldots)$$

(tous les termes de la suite sont nuls sauf le nième qui vaut 1). Déterminer le sev engendré par la partie $A = \{e_n ; n \in \mathbb{N}^*\}.$

DÉFINITION 13.7: Somme de sev

Soit E un K-ev et F_1, \ldots, F_n des sev de E. On appelle somme des sev F_i , l'ensemble

$$F_1 + \dots + F_n = \{x_1 + \dots + x_n ; x_1 \in F_1, \dots, x_n \in F_n\}$$

Théorème 13.10 : Caractérisation de $Vect(F_1 + \cdots + F_n)$

 $F_1 + \dots + F_n$ est un sev de E et

$$F_1 + \cdots + F_n = \text{Vect}(F_1 \cup \cdots \cup F_n)$$

Exercice 13-7

Dans l'espace \mathbb{R}^3 , on considère les parties $F = \{(x,0,0) \; ; \; x \in \mathbb{R}\}$ et $G = \{(x,x,0) \; ; \; x \in \mathbb{R}\}$. Montrer que ce sont des sev et déterminer le sous espace F + G.

Définition 13.8 : Somme directe

Soient deux sev F_1 , F_2 de l'espace vectoriel E. On dit que la somme $F_1 + F_2$ est directe si et seulement si tout vecteur de $F_1 + F_2$ s'écrit de façon unique $x = x_1 + x_2$ avec $x_1 \in F_1$ et $x_2 \in F_2$. On note alors $F_1 \oplus F_2$ cette somme.

THÉORÈME 13.11: Caractérisation d'une somme directe

Soient deux sous-espaces vectoriels F_1 et F_2 d'un espace vectoriel E. On a la caractérisation suivante d'une somme directe :

$$F_1 + F_2 = F_1 \oplus F_2 \Longleftrightarrow F_1 \cap F_2 = \{0_E\}$$

DÉFINITION 13.9: Sous-espaces supplémentaires

On dit que F_1 et F_2 sont deux sous-espaces supplémentaires d'un espace vectoriel E si et seulement si :

$$E = F_1 \oplus F_2$$

Remarque 130. Cela signifie que tout vecteur de E s'écrit de façon unique sous la forme

$$x = x_1 + x_2 \text{ avec } x_1 \in F_1, x_2 \in F_2$$

Pour montrer que $E = F_1 \oplus F_2$:

- 1. Montrons que la somme est directe, c'est à dire $F_1 \cap F_2 = \{0\}$. Soit $x \in F_1 \cap F_2 \dots$ donc $x = 0_F$.
- 2. Montrons que $E = F_1 + F_2$: soit $x \in E$. Posons $x_1 = \ldots$ et $x_2 = \ldots$ On a bien $x_1 \in F_1, x_2 \in F_2$ et $x = x_1 + x_2$.

Remarque 131. Ne pas confondre supplémentaire avec complémentaire: le complémentaire d'un sous-espace vectoriel n'est jamais un sous-espace vectoriel (il ne contient pas le vecteur nul).

Remarque 132. Il existe en général une infinité de supplémentaires d'un sous-espace vectoriel. Ne pas parler du supplémentaire d'un sev.

Dans l'espace $E = \mathbb{R}^4$, on considère les sev

$$F = \text{Vect}((1,2,-1,0),(0,2,0,1)) \text{ et } G = \text{Vect}((2,0,0,1),(1,0,0,1))$$

Ces deux sous-espaces sont-ils supplémentaires dans E?

Exercice 13-9

Dans l'espace $E = \mathcal{F}(\mathbb{R},\mathbb{R})$ on considère l'ensemble \mathcal{P} des fonctions paires et l'ensemble \mathcal{I} des fonctions impaires. Montrer que

$$E = \mathcal{P} \oplus \mathcal{I}$$

13.4 Sous-espaces affines

DÉFINITION 13.10 : Sous-espace affine

On dit qu'une partie $\mathcal F$ d'un $\mathbb K$ -espace vectoriel E est un sous-espace affine de E si il existe un élément a de E et un sous-espace vectoriel F de E tel que

$$\mathcal{F} = \{ a + \overrightarrow{f} \mid \overrightarrow{f} \in F \}$$

On note alors $\mathcal{F} = a + F$. On dit que: le sev F est la direction du sous-espace affine \mathcal{F} ;

Fig. 13.2 – Sous-espace affine

Lemme 13.12 : Indépendance d'un vecteur particulier

Si \mathcal{F} est un sous-espace affine de direction F, alors pour tout élément $a' \in \mathcal{F}$, $\mathcal{F} = a' + F$.

DÉFINITION 13.11: Sous-espaces affines parallèles

On dit que le sous-espace affine \mathcal{G} de direction G est parallèle au sous-espace affine \mathcal{F} de direction F lorsque $G \subset F$.

Remarque 133. Dans \mathbb{R}^3 , une droite peut être parallèle à un plan, mais il est incorrect de dire qu'un plan est parallèle à une droite.

Théorème 13.13 : Intersection de sous-espaces affines

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines de directions F et G. Si l'intersection $\mathcal{F} \cap \mathcal{G}$ n'est pas vide, alors $\mathcal{F} \cap \mathcal{G}$ est un sous-espace affine de direction le sous-espace vectoriel $F \cap G$.

(a) Sous-espaces affines parallèles

(b) Sous-espaces affines supplémentaires dans le plan

Fig. 13.3 – Intersection de sous-espaces affines

Proposition 13.14: Intersection de deux sous-espaces affines de directions supplémentaires

Soient deux sous-espaces affines \mathcal{F} et \mathcal{G} de directions F et G, avec

$$E = F \oplus G$$

Alors leur intersection est un singleton: $\exists a \in \mathcal{F} \cap \mathcal{G}$ tel que $\mathcal{F} \cap \mathcal{G} = \{a\}$.

13.5 Systèmes libres, générateurs

DÉFINITION 13.12 : Système de vecteurs

Un système de vecteurs est un n-uplet $S = (x_1, \ldots, x_n)$ de vecteurs de E.

Remarque 134. On parle également de famille finie $(x_i)_{i\in I}$ de vecteurs où I est un ensemble fini.

DÉFINITION 13.13 : Système libre

On dit qu'un système de vecteurs $S = (x_1, \dots, x_n)$ est libre si et seulement si

$$\forall (\lambda_1, \dots, \lambda_n) \in K^n, \ \lambda_1 x_1 + \dots + \lambda_n x_n = 0_E \Rightarrow \lambda_1 = \dots = \lambda_n = 0_K$$

Sinon, on dit que le système est lié.

Pour montrer qu'un système est libre:

- 1. Soient $(\lambda_1, \dots, \lambda_n) \in K^n$ tels que $\lambda_1 x_1 + \dots + \lambda_n x_n = 0_E$;
- 2. ... donc $\lambda_1 = \cdots = \lambda_n = 0_K$

Proposition 13.15 : Propriétés des systèmes liés

Soit $S = (x_1, \ldots, x_n)$ un système de vecteurs de E.

- a. Si l'un des vecteurs est nul, le système est lié;
- b. Si l'un des vecteurs du système apparaît plus d'une fois dans S, le système est lié;
- c. Si le système est lié, l'un des vecteurs s'exprime comme combinaison linéaire des autres vecteurs du système :

$$\exists i \in [1,n], \ \exists (\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+1}, \dots, \lambda_n) \in K^{n-1} \ \text{tq} \ x_i = \sum_{\substack{1 \le j \le n \\ i \ne j}} \lambda_j x_j$$

■ Exercice 13-10

Dans l'espace \mathbb{R}^3 , on considère les vecteurs $x_1=(1,0,2),\ x_2=(1,1,1)$ et $x_3=(1,1,1).$ Le système (x_1,x_2,x_3) est-il libre?

Exercice 13-11

Dans l'espace $\mathcal{F}(\mathbb{R},\mathbb{R})$, on considère les deux fonctions définies par $f(x) = \cos x$ et $g(x) = \sin x$. Montrer que le système (f,g) est libre.

Les trois fonctions définies par f(x) = 1, $g(x) = \cos^2 x$ et $h(x) = \cos 2x$ forment-elles un système libre?

Exercice 13-12

Dans l'espace $E = \mathcal{F}(\mathbb{R},\mathbb{R})$, on considère les fonctions définies par $\forall k \in \mathbb{N}$,

$$f_k: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & \sin(kx) \end{array} \right.$$

Montrer que $\forall n \in \mathbb{N}^*$, le système $S = (f_1, \dots, f_n)$ est libre. On calculera d'abord pour $(p,q) \in \mathbb{N}^2$, l'intégrale:

$$\int_0^{2\pi} \sin(px) \sin(qx) dx = \delta_{pq}$$

Exercice 13-13

Dans l'espace $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on pose pour $k \in \mathbb{N}$,

$$f_k: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & x^k \end{array} \right.$$

Montrer que $\forall n \in \mathbb{N}^*$, le système $S = (f_1, \dots, f_n)$ est libre.

Définition 13.14 : Systèmes générateurs

On dit qu'un système de vecteurs $S=(x_1,\ldots,x_n)$ est générateur d'un espace vectoriel E si et seulement si tout vecteur de E peut s'exprimer comme combinaison linéaire des vecteurs du système:

$$\forall x \in E, \exists (\lambda_1, \dots, \lambda_n) \in K^n \text{ tq } x = \lambda_1 x_1 + \dots + \lambda_n x_n$$

Remarque 135. Cela signifie que Vect(S) = E.

Pour montrer qu'un système est générateur:

- 1. Soit $x \in E$;
- 2. posons $\lambda_1 = \ldots, \lambda_n = \ldots$;
- 3. on a bien $x = \lambda_1 x_1 + \cdots + \lambda_n x_n$.

Exercice 13-14

Dans l'espace \mathbb{R}^2 , montrer que les trois vecteurs $x_1=(1,1), x_2=(2,3)$ et $x_3=(2,2)$ forment un système générateur.

Définition 13.15 : Base

On dit qu'un système de vecteurs $S=(x_1,\ldots,x_n)$ est une base de l'espace vectoriel E si et seulement si:

- 1. le système S est libre;
- 2. le système S est générateur.

Remarque 136. Cela signifie que tout vecteur de E s'écrit de façon unique comme combinaison linéaire de vecteurs de S.

Pour montrer qu'un système est une base:

- 1. Montrons que S est libre ...
- 2. Montrons que S est générateur . . .

Définition 13.16: Base canonique de K^n

Si $E=K^n$, il existe une base privilégiée, la base canonique $e=(e_1,\ldots,e_n)$ où

$$e_1 = (1,0,\ldots,0), e_2 = (0,1,0,\ldots,0),\ldots, e_n = (0,\ldots,0,1)$$

Remarque 137. Ne pas parler de la « base canonique » d'un espace vectoriel quelconque . . .

Exercice 13-15 ■

Montrer que dans l'espace \mathbb{R}^3 , le système formé des vecteurs $e_1 = (1,0,1)$, $e_2 = (1,-1,1)$ et $e_3 = (0,1,1)$ est une base.

13.6 Applications linéaires

DÉFINITION 13.17: Application linéaire

Soient E et F deux espaces vectoriels sur le $m\hat{e}me$ corps K et une application $u: E \mapsto F$. On dit que l'application u est linéaire si et seulement si:

- 1. $\forall (x,y) \in E^2$, u(x+y) = u(x) + u(y);
- 2. $\forall x \in E, \forall \lambda \in K, u(\lambda x) = \lambda u(x)$.

Proposition 13.16 : Caractérisation des applications linéaires

L'application u est linéaire si et seulement si :

$$\forall (x,y) \in E^2, \forall (\lambda,\mu) \in K^2, u(\lambda x + \mu y) = \lambda u(x) + \mu u(y)$$

Remarque 138. Si l'application u est linéaire et si $e = (e_1, \dots, e_n)$ est une base de E, on connaît complètement l'application u si l'on connaît l'image par u des vecteurs de la base.

Exercice 13-16

Déterminer toutes les applications linéaires de \mathbb{R} vers \mathbb{R} .

Exercice 13-17

Déterminer toutes les applications linéaires de \mathbb{R}^2 vers \mathbb{R}^2 .

Exercice 13-18

Soit l'application

$$\phi: \left\{ \begin{array}{ccc} \mathcal{C}([0,1],\mathbb{R}) & \longrightarrow & \mathbb{R} \\ f & \mapsto & \int_0^1 f(x) \, \mathrm{d}x \end{array} \right.$$

Montrer que ϕ est une application linéaire.

THÉORÈME 13.17: Image directe, réciproque d'un sev par une application linéaire

Soit $u: E \mapsto F$ une application linéaire, V un sev de E et W un sev de F. Alors:

- 1. $u^{-1}(W)$ est un sev de E;
- 2. u(V) est un sev de F.

DÉFINITION 13.18: Image, noyau d'une application linéaire

Soit $u: E \mapsto F$ une application linéaire. On appelle :

- 1. noyau de u: Ker $u = \{x \in E \mid u(x) = 0_F\} = u^{-1}(\{0_F\})$ (sev de E);
- 2. $image \ de \ u : Im \ u = \{ y \in F \mid \exists x \in E, \ y = u(x) \} = u(E) \ (sev \ de \ F).$

$$\mathop{E}_{\mathop{\rm Ker}\, u} \stackrel{u}{\longrightarrow} \mathop{F}_{\mathop{\rm Im}\, u}$$

Théorème 13.18 : Caractérisation des applications linéaires injectives et surjectives Soit une application linéaire $u: E \mapsto F$.

- 1. L'application u est *injective* si et seulement si Ker $u = \{0_E\}$;
- 2. L'application u est surjective si et seulement si Im u = F.

Exercice 13-19 ■

Déterminer le noyau et l'image de l'application linéaire

$$u: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (x+y-z,x-y+2z) \end{array} \right.$$

Est-elle injective? Surjective?

Exercice 13-20

Soit l'espace E des fonctions indéfiniment dérivables sur \mathbb{R} . On considère l'application :

$$D: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ f & \mapsto & f' \end{array} \right.$$

Montrer que l'application D est linéaire et déterminer son noyau.

Théorème 13.19 : Équation u(x) = b

Soit une application linéaire $u: E \mapsto F$. On considère un vecteur $b \in F$, et on note \mathcal{S}_E l'ensemble des solutions de l'équation u(x) = b. Alors

- 1. si $b \notin \operatorname{Im} u$, $S_E = \emptyset$;
- 2. si $b \in \text{Im } u$, il existe une solution particulière $x_0 \in \mathcal{S}_E$. L'ensemble des solutions s'écrit alors

$$\mathcal{S}_E = \{x_0 + k \; ; \; k \in \operatorname{Ker} u\}$$

On dit que c'est un sous-espace affine de l'espace vectoriel E.

Fig. 13.4 – Équation u(x) = b

Théorème 13.20 : Composée d'applications linéaires

Soient E,F,G trois K-ev et $u:E\mapsto F,\,v:F\mapsto G$ deux applications linéaires. Alors $v\circ u:E\mapsto G$ est une application linéaire.

Exercice 13-21

Soient (u,v) les deux applications linéaires définies par :

$$u: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \mapsto & (0,x) \end{array} \right. \quad v: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \mapsto & (y,0) \end{array} \right.$$

Déterminer $u \circ v$ et $v \circ u$.

Exercice 13-22

Soient $u,v: E \mapsto E$ deux applications linéaires vérifiant $u \circ v = 0$. Comparer Im v et Ker u.

THÉORÈME 13.21: Inverse d'une application linéaire bijective

Soit $u: E \mapsto F$ une application linéaire bijective et u^{-1} sa bijection réciproque. Alors $u^{-1}: F \mapsto E$ est une application linéaire.

DÉFINITION 13.19: endomorphisme, Isomorphisme, automorphisme

Soient E, F deux K-ev. On note L(E,F) l'ensemble des applications linéaires de E vers F.

- 1. Un endomorphisme de E est une application linéaire $u: E \mapsto E$. On note L(E) = L(E,E) l'ensemble des endomorphismes de E;
- 2. Un isomorphisme de E vers F est une application linéaire $u: E \mapsto F$ bijective;
- 3. Un automorphisme de E est un endomorphisme de E bijectif. On note $\mathrm{GL}(E)$ l'ensemble des automorphismes de E.

Théorème 13.22: L(E,F) est un espace vectoriel

L'ensemble des applications linéaires d'un espace E vers un espace F, $(L(E,F),+,\cdot)$ est un K-ev.

13.7 Structure d'algèbre

DÉFINITION 13.20 : Structure d'algèbre

Soit un corps commutatif K et un ensemble E muni de deux lois de composition interne +, \times et d'une loi de composition externe « · ». On dit que $(E, +, \times, \cdot)$ est une algèbre sur K si et seulement si :

- 1. (E, +, ...) est un K-ev;
- 2. $(E, +, \times)$ est un anneau;
- 3. $\forall \lambda \in K, \forall (x,y) \in E^2, (\lambda \cdot x) \times y = x \times (\lambda \cdot y) = \lambda \cdot (x \times y).$

Remarque 139. Si E est une algèbre, alors $(E, +, \cdot)$ est un e.v. et $(E, +, \times)$ est un anneau. En particulier, on dispose des règles de calcul dans ces deux structures (binôme, factorisation).

Exemples fondamentaux d'algèbres:

- 1. $(\mathbb{C}, +, \times, \cdot)$ (où · désigne la multiplication d'un complexe par un réel) est une \mathbb{R} -algèbre;
- 2. $(\mathcal{F}(I,\mathbb{R}), +, \times, \cdot)$ est une \mathbb{R} -algèbre.
- 3. $(\mathcal{S}(\mathbb{R}), +, \times, \cdot)$ (suites réelles) est une \mathbb{R} -algèbre;
- 4. \mathbb{K}^n est une algèbre si l'on définit la multiplication par

$$(x_1, \ldots, x_n) \times (y_1, \ldots, y_n) = (x_1 y_1, \ldots, x_n y_n)$$

Définition 13.21 : Sous-algèbre

Soit une K-algèbre $(E,+,\times,\cdot)$ et une partie $A\subset E$ de cette algèbre. On dit que A est une sous-algèbre de E lorsque :

- 1. $0_E \in A, 1_E \in A$;
- 2. A est stable par CL: $\forall (x,y) \in A^2, \forall (\lambda,\mu) \in K^2, \lambda x + \mu y \in A$;
- 3. A est stable pour la loi \times : $\forall (x,y) \in A^2, x \times y \in A$.

Alors munie des lois restreintes, A est une algèbre.

DÉFINITION 13.22: Morphismes d'algèbres

Soit $f: E \mapsto E'$ une application entre deux algèbres. On dit que f est un morphisme d'algèbres si et seulement si :

- 1. f est une application linéaire: $\forall (x,y) \in E^2$, $\forall (\lambda,\mu) \in K^2$, $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$;
- 2. $\forall (x,y) \in E^2$, $f(x \times y) = f(x) \times f(y)$;
- 3. $f(1_E) = 1_F$.

Remarque 140. En d'autres termes, un morphisme d'algèbres est un morphisme d'anneau et une application linéaire.

Exercice 13-23

Montrer que $C^n(\mathbb{R},\mathbb{R})$ est une algèbre.

Exercice 13-24

Montrer que $f: \mathbb{C} \to \mathbb{C}$ défini par $f(z) = \overline{z}$ est un morphisme d'algèbres.

Définition 13.23 : Application identité

Soit E un K-ev on définit l'identit'e de E par :

$$\mathrm{id}_E: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ x & \mapsto & x \end{array} \right.$$

Soit $\alpha \in K$. On appelle homothétie vectorielle de rapport α l'application

$$h_{\alpha} = \alpha \operatorname{id}_{E} : \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ x & \mapsto & \alpha \cdot x \end{array} \right.$$

C'est un endomorphisme de E.

Théorème 13.23: Algèbre L(E)

Soit E un K-ev. $(L(E), +, \circ, \cdot)$ est une K-algèbre.

Théorème 13.24 : Groupe linéaire

 $(GL(E), \circ)$ est un groupe (non-commutatif) d'élément neutre id_E . C'est le groupe linéaire.

Remarque 141. En général, si $(u,v) \in \mathrm{GL}(E)^2$, on n'a pas $(u+v) \in \mathrm{GL}(E)$. Si $u \in \mathrm{GL}(E)$, alors $\forall \lambda \in \mathbb{K}^*$, $\lambda.u \in \mathrm{GL}(E) \text{ et } (\lambda.u)^{-1} = \frac{1}{\lambda}.u^{-1}.$

Remarque 142. Puisque l'algèbre $(L(E), +, \circ)$ est un anneau (non-commutatif), on a les formules de calcul suivantes: Si u et v sont deux endomorphismes tels que $u \circ v = v \circ u$, on dispose des formules suivantes:

- 1. Binôme: $\boxed{ (u+v)^n = \sum_{k=0}^n \binom{n}{k} u^k v^{n-k} };$ 2. Factorisation: $\boxed{ u^n v^n = (u-v) \circ (u^{n-1} + u^{n-2} \circ v + \dots + u \circ v^{n-2} + v^{n-1}) };$
- 3. Cas particulier de factorisation : $\operatorname{id} -u^n = (\operatorname{id} -u) \circ (\operatorname{id} +u + u^2 + \cdots + u^{n-1})$

Exercice 13-25

Soit un K-ev E et deux endomorphismes $u,v \in L(E)$.

- a) Développer $(u+v)^2$;
- b) Développer (id -u) \circ (id +u);
- c) Si $u^2 = 0$, montrer que (id -u) est bijective.

Exercice 13-26

On considère les deux endomorphismes de $E=\mathbb{R}^2$ suivants :

$$u: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \mapsto & (y,0) \end{array} \right. \text{ et } v: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \mapsto & (0,y) \end{array} \right.$$

Calculer $u \circ v$, $v \circ u$, u^2 et v^2 . Conclusion? Montrer que l'endomorphisme (id -u) est inversible et déterminer son inverse.

Exercice 13-27 ■

Soit un \mathbb{R} -ev E et un endomorphisme $u \in L(E)$ vérifiant:

$$u^3 + u^2 + 2\operatorname{id}_E = 0$$

Montrer que $u \in GL(E)$ et déterminer son inverse u^{-1} . Soit $\lambda \in \mathbb{R}$. Trouver une condition suffisante sur le scalaire λ pour que l'endomorphisme $u + \lambda$ id soit inversible.

Exercice 13-28

Soit un K-ev E et un endomorphisme $k \in GL(E)$. On considère l'application

$$\phi_k: \left\{ \begin{array}{ccc} L(E) & \longrightarrow & L(E) \\ u & \mapsto & k \circ u \end{array} \right.$$

Montrer que $\phi_k \in GL(L(E))$, puis que l'application

$$\psi: \left\{ \begin{array}{ccc} \operatorname{GL}(E) & \longrightarrow & \operatorname{GL}(L(E)) \\ k & \mapsto & \phi_k \end{array} \right.$$

est un morphisme de groupes injectif.

Exercice 13-29

Soit un \mathbb{R} -ev E et un endomorphisme $u \in L(E)$. Montrer que :

- a) $\operatorname{Im} u = \operatorname{Im} u^2 \iff E = \operatorname{Ker} u + \operatorname{Im} u$
- b) $\operatorname{Ker} u = \operatorname{Ker} u^2 \iff \operatorname{Ker} u \cap \operatorname{Im} u = \{0\}.$

Soit un endomorphisme $u \in L(E)$ tel que $u^{n-1} \neq 0$ et $u^n = 0$. Montrer qu'il existe un vecteur $x \in E$ tel que le système $S = (x, u(x), \dots, u^{n-1}(x))$ soit libre.

13.8 Projecteurs

DÉFINITION 13.24: Projecteurs

Soit un endomorphisme $p \in L(E)$. On dit que p est un projecteur si et seulement si il vérifie l'identité

$$p\circ p=p$$

THÉORÈME 13.25: Décomposition associée à un projecteur

Soit un projecteur p d'un espace vectoriel E. Alors

1. on a la caractérisation suivante de $\operatorname{Im} p$:

$$\operatorname{Im}(p) = \{ x \in E \mid p(x) = x \} = \operatorname{Ker}(\operatorname{id}_E - p)$$

2. $E = \operatorname{Im} p \oplus \operatorname{Ker} p$ et la décomposition d'un vecteur $x \in E$ s'écrit

$$x = \underbrace{p(x)}_{\in \operatorname{Im} p} + \underbrace{x - p(x)}_{\in \operatorname{Ker} p}$$

(a) Décomposition associée à un projecteur

(b) Décomposition associée à une symétrie

Fig. 13.5 – Projecteur, symétrie

Théorème 13.26 : Projecteur associé à deux sev supplémentaires

Soient F et G deux sev de E supplémentaires : $E = F \oplus G$. Alors il existe un unique projecteur p vérifiant :

$$F = \operatorname{Im} p \quad G = \operatorname{Ker} p$$

On dit que p est le projecteur sur le sous-espace F parallèlement au sous-espace G.

Exercice 13-31

Dans l'espace \mathbb{R}^3 , on considère les sous-espaces $E_1 = \text{Vect}(1,1,1)$ et $E_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\}$. Déterminer l'expression analytique du projecteur sur E_2 parallèlement à E_1 .

Exercice 13-32

Soit un projecteur p d'un espace vectoriel E. Montrer que l'endomorphisme (id-p) est aussi un projecteur de E et que l'on a Ker(id-p) = Im p, Im(id-p) = Ker p.

Exercice 13-33

Soit un projecteur p d'un espace vectoriel E et un scalaire $\lambda \in \mathbb{K}$. On définit l'endomorphisme $u = p + \lambda \operatorname{id}_E$. Exprimer pour $n \in \mathbb{N}$, l'endomorphisme u^n à l'aide de p et de id_E .

Exercice 13-34

Soient deux projecteurs p et q d'un espace vectoriel E. Montrer que l'endomorphisme (p+q) est un projecteur de E si et seulement si l'on a $p \circ q = q \circ p = 0$. Si c'est le cas, montrer qu'alors $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$ et que $\operatorname{Ker}(p+q) = \operatorname{Ker} p \cap \operatorname{Ker} q$.

Définition 13.25 : Symétries

Soit un endomorphisme $s \in L(E)$ de E. On dit que cet endomorphisme est une symétrie vectorielle si et seulement s'il vérifie:

$$s \circ s = \mathrm{id}_E$$

Théorème 13.27 : Décomposition associée à une symétrie

On suppose que le corps $\mathbb K$ est $\mathbb Q$, $\mathbb R$ ou $\mathbb C$. Soit une symétrie vectorielle s . Alors

- 1. $E = E_1 \oplus E_2$ où $E_1 = \text{Ker}(s \text{id})$ (vecteurs invariants) et $E_2 = \text{Ker}(s + \text{id})$ (vecteurs transformés en leur opposé);
- 2. si p est la projection sur E_1 parallèlement à E_2 , on a id +s=2p.

Exercice 13-35

Dans l'espace \mathbb{R}^3 , déterminer l'expression analytique de la symétrie par rapport au sous-espace E_1 parallèlement au sous-espace E_2 où:

$$E_1 = \text{Vect}((1,0,0),(1,1,1)) \text{ et } E_2 = \text{Vect}(1,2,0)$$

■ Exercice 13-36

Soit un \mathbb{R} -ev E et un endomorphisme $u \in L(E)$. Soient deux réels distincts $(a,b) \in \mathbb{R}^2$ tels que :

$$(u - a \operatorname{id}) \circ (u - b \operatorname{id}) = 0$$

- a) Montrer que $E = \text{Ker}(u a \text{ id}) \oplus \text{Ker}(u b \text{ id})$.
- b) Déterminer la restriction de u à Ker(u a id) et à Ker(u b id).

Exercice 13-37

On considère un projecteur p d'un \mathbb{R} -espace vectoriel E et un réel $\lambda \in \mathbb{R} \setminus \{0,1\}$. Soit un vecteur $b \in E$. Montrer que l'équation vectorielle

(E)
$$p(x) + \lambda x = b$$

possède une unique solution $x \in E$.

13.9 Formes linéaires

DÉFINITION 13.26: Formes linéaires, dual

Soit un K-ev E. On appelle forme linéaire sur E, une application linéaire $\phi: E \mapsto K$. On note $E^* = L(E,K)$ l'ensemble des formes linéaires sur E. E^* s'appelle l'espace dual de l'espace E.

DÉFINITION 13.27: Hyperplan

On appelle hyperplan de E, le noyau d'une forme linéaire non-nulle:

$$H = \operatorname{Ker} \phi$$

Exercice 13-38

Déterminer toutes les formes linéaires de l'espace \mathbb{R}^3 . Quels-sont les hyperplans de \mathbb{R}^3 ?

Exercice 13-39

Soit l'espace vectoriel $E = \mathcal{F}(\mathbb{R},\mathbb{R})$ et l'application

$$\delta: \left\{ \begin{array}{ccc} E & \longrightarrow & \mathbb{R} \\ f & \mapsto & f(0) \end{array} \right.$$

Vérifier que δ est une forme linéaire sur E et déterminer un supplémentaire de $H = \text{Ker } \delta$.

Théorème 13.28 : Caractérisation des hyperplans

Soit H un sev d'un K-ev E tel que $H \neq E$. Alors H est un hyperplan si et seulement s'il existe un vecteur $a \in E$ tel que H admette la droite vectorielle Vect(a) comme supplémentaire:

$$(H \text{ est un hyperplan}) \iff (\forall a \in E \setminus H, E = H \oplus \text{Vect}(a))$$

■ Exercice 13-40 **■**

Soit $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid 3x - 2y + z = t\}$. Déterminer un supplémentaire de F.

Exercice 13-41

Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ et $H = \{f \in E \mid \int_0^1 f(t) dt = 0\}$. Déterminer un supplémentaire de H dans E.

Théorème 13.29: Deux formes linéaires sont proportionnelles si et seulement si elles ont même noyau

Soient ϕ et ψ deux formes linéaires non-nulles sur E. Alors le système (ϕ, ψ) est lié dans E^* si et seulement si $\operatorname{Ker} \phi = \operatorname{Ker} \psi$.