21-127 Homework 5

Due: Monday, March 10

Instructions: Submit a PDF of your work through Gradescope by 11:59 PM on the due date stated above. All other instructions from previous homeworks and the syllabus apply as usual.

- 1. For each of the functions below, do the following:
 - Find (with proof) its two-sided inverse if it has one.
 - If it has a left inverse but not a right inverse, find (with proof) its left inverse and prove that it does not have a right inverse.
 - If it has a right inverse but not a left inverse, find (with proof) its right inverse and prove that it does not have a left inverse.
 - If it has neither a left nor a right inverse, prove it.

(a)
$$f: \mathbb{N} \to \mathbb{Z}$$
, $f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$;

(b)
$$g: \mathbb{Z} \to \mathbb{Z}$$
, $g(n) = \frac{n+|n|}{2}$ for all $n \in \mathbb{Z}$.

(c)
$$h: \mathscr{P}(\mathbb{N}) \to \mathscr{P}(\mathbb{N}), h(A) = \mathbb{N} \setminus A \text{ for all } A \in \mathscr{P}(\mathbb{N}).$$

(d)
$$k: \mathscr{P}(\mathbb{R}) \to \mathscr{P}(\mathbb{R}), k(A) = A \cap \mathbb{Q}$$
 for all $A \in \mathscr{P}(\mathbb{R})$.

2. (a) Prove by induction that for all $n \in \mathbb{N}$, the sum of the first n even positive integers is equal to n(n+1).

[In this part, do not use the fact about the sum of the first n integers that we proved in class; instead, prove the required statement directly.]

(b) Prove by induction that for all $n \in \mathbb{N}$, the sum of the first n positive whole cubes is equal to the square of the sum of the first n positive integers.

[A 'whole cube' is the cube of an integer.]

- **3.** Prove by induction that $5 \cdot 8^n 7 \cdot 6^n + 2$ is divisible by 70 for all $n \in \mathbb{N}$.
- **4.** The *Fibonacci sequence* is the sequence f_0, f_1, f_2, \ldots defined recursively by

$$f_0 = 0$$
, $f_1 = 1$, $f_{n+2} = f_{n+1} + f_n$ for all $n \in \mathbb{N}$

- (a) Prove by induction that $\sum_{k=1}^{n} f_{2k-1} = f_{2n}$ for all $n \in \mathbb{N}$.
- (b) Prove by induction that $\sum_{k=1}^{n} f_k = f_{n+2} 1$ for all $n \in \mathbb{N}$.
- **5.** The *Tribonacci sequence* is the sequence t_0, t_1, t_2, \ldots defined by

$$t_0 = 0$$
, $t_1 = 0$, $t_2 = 1$, $t_n = t_{n-1} + t_{n-2} + t_{n-3}$ for all $n \ge 3$

Prove that $t_n \leq 2^{n-3}$ for all $n \geq 3$.

6. Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ be propositional formulas. The operators of *indexed conjunction* $\bigwedge_{i=1}^n$ and *indexed disjunction* $\bigvee_{i=1}^n$ are defined by recursion on $n \in \mathbb{N}$ as follows:

•
$$\bigwedge_{i=1}^{0} \varphi_i = \top$$
 and $\bigwedge_{i=1}^{n+1} \varphi_i = \left(\bigwedge_{i=1}^{n} \varphi_i\right) \wedge \varphi_{n+1}$ for all $n \in \mathbb{N}$;

•
$$\bigvee_{i=1}^{0} \varphi_i = \bot$$
 and $\bigvee_{i=1}^{n+1} \varphi_i = \left(\bigvee_{i=1}^{n} \varphi_i\right) \lor \varphi_{n+1}$ for all $n \in \mathbb{N}$.

where \top represents the true proposition '0 = 0', and \bot represents the false proposition '0 = 1'.

Prove by induction that $\left(\bigvee_{i=1}^{n} p_i\right) \Rightarrow q \equiv \bigwedge_{i=1}^{n} (p_i \Rightarrow q)$ for all $n \in \mathbb{N}$, where p_1, p_2, \ldots and q are propositional variables.