А сколько счастливых билетов?

1. Докажите, что КСБ не более 100000.

Определение 1. Обозначеним через a_k – количество трехзначных номеров с суммой цифр k, b_k – количество шестизначных номеров с суммой цифр k.

- **2.** Докажите, что КСБ с суммой цифр 2k равно a_k^2 .
- **3.** Найдите а) a_4 ; б) a_9 .
- **4.** Докажите, что КСБ равно $a_0^2 + a_1^2 + \ldots + a_{27}^2$.
- **5.** Докажите, что $a_k = a_{27-k}$.
- **6.** Докажите, что КСБ равно $2(a_0^2 + a_1^2 + \ldots + a_{13}^2)$.

Определение 2. Рассмотрим все тройки неотрицательных целых чисел, удовлетворяющих уравнению x+y+z=k. Назовем нарушением, если x, y или z больше 9. Назовем тройку хорошей, если в ней нет нарушений и плохой в противном случае. Аналогично определяются плохие и хорошие шестерки.

- 7. Найдите количество плохих троек при k = 10 и k = 11.
- **8.** Докажите, что при $10 \le k \le 19$ количество плохих троек равно $3a_{k-10}$.
- **9.** Найдите все a_k при $k = 0, 1, 2, \dots, 12, 13$ и вычислите КСБ.
- **10.** Докажите, что КСБ равно количеству шестизначных номеров с суммой цифр 27.
- **11.** Докажите, что КСБ меньше C_{32}^5 .
- **12.** Докажите, что при $10 \leqslant k$ количество плохих шестерок не более C_{k-5}^5 .
- **13.** Докажите, что КСБ больше $C_{32}^5 6C_{22}^5$.
- **14.** Докажите, что при данном k количество плохих шестерок с двумя нарушениями в данных местах равно C_{k-15}^5 .
- **15.** Докажите, что $KCE = C_{32}^5 6C_{22}^5 + C_6^2C_{12}^5$.
- **16.** Найдите количество а) четырехзначных; б) восьмизначных счастливых билетов.