Lab 02

Common Source Amplifier

Part 1: Sizing Chart

• For real MOSFET $V_{ov} \neq \frac{2I_D}{g_m}$, so we define expression $V^* = \frac{2I_D}{g_m}$, and $V_{ov} = V^*$ in case of square law MOSFET only.

So actual gain will be $A_v = \frac{2V_{RD}}{V^*} = \frac{2I_DR_D}{V^*}$.

- And we assume that channel length value will be L=2um, to avoid short channel effects.
- We choose the value of $V_{RD} = V_{DD}/2 = 0.9V$, which is a common mode output level voltage.
- We have $I_D = 50uA \rightarrow :: R_D = \frac{V_{RD}}{I_D} = 18k\Omega$.
- Also we have $A_v = -10 \rightarrow :: V^* = \frac{2V_{RD}}{A_V} = 0.18V$, which we make the OP voltage of real MOSFET overdrive voltage: $V_Q^* = 0.18V$.
- Calculations of MOSFET width (W) from cadence:

Fig.1 Circuit -schematic from cadence used for selecting MOSFET width

After DC simulation we found that value of threshold voltage will be $V_{th} = 382.625 mV$.

Fig.2 Circuit schematic from cadence

So select to sweep $V_{gs} = 0 \rightarrow V_{th} + 0.4 = 0 \rightarrow 782.625 mV$, and select $V_{ds} = \frac{V_{DD}}{2} = 0.9 \text{V}$.

And firstly assume the width of MOSFET to be W=10um, L=2um.

Fig.3 $V_{ov}\&V^*$ versus V_{gs}

So we found values of $V_{gsQ}=571.1623mV$, $V_{ovQ}=188.537mV$, at value $V_Q^*=180mV$.

Fig.4 I_D , g_m and g_{ds} versus V_{as}

As shown in previous simulation results that at operating point

 $V_{gs} = 571.1623 mV$, we have the following results

$$I_{dQ} = 18.282u$$
A, $g_{mQ} = 203.068u$ S and $g_{dsQ} = 1.1021u$ S.

Parameter	Value
V_Q^*	180mV
V_{gsQ}	571.1623mV
V_{ovQ}	188.537mV
I_{dQ}	18.282uA
g_{mQ}	203.068uS
g_{dsQ}	1.1021uS

Now return to our assumption of width of MOSFET W=10um, and as we know that $I_D \propto W$ at any instant even square law is valid or not.

So at $W = 10um \rightarrow I_{DQ} = 18.282uA$, using the cross multiplication we can get width value at $I_{DQ} = 50uA$ which will be W=27.35um.

And also width of MOSFET is proportional to g_m and g_{ds} , at $W = 10um \rightarrow g_{mQ} = 203.068uS$ and $g_{dsQ} = 1.1021uS$, so using cross multiplication we can get values of g_{mQ} and g_{dsQ} , which will be as following:

$$W = 27.35um \rightarrow g_{mQ} = 555.39uS \text{ and } g_{dsQ} = 3.014uS.$$

And since
$$r_o = \frac{1}{g_{dsQ}} = 331.785k\Omega$$
.

So Common Source Parameters:

Parameter	Value
L	2um
W	27.35um
V_{gsQ}	571.1623mV
R_D	18kΩ
I_{DQ}	50uA
g_m	555.39uS
g_{ds}	3.014uS
r_o	331.785kΩ

Check: $A_v = g_m * (R_D \parallel r_o) = 9.48$.

Part 2: CS Amplifier

1.OP and AC Analysis:

• Operating point parameters comparison from CS simulation and our results in part 1:

Fig.5 CS schematic with OP parameters simulation

OP parameter	Part 1 Result	CS Simulation Result
I_{DQ}	50uA	50.1381uA
${g_m}$	555.39uS	557.235uS
g_{ds}	3.014uS	3.02273uS
r_o	331.785 k Ω	$330.827 \mathrm{k}\Omega$
V_{gsQ}	571.1623mV	571.1623mV

And as shown in previous table that there is a great agreement between our results in part 1 and CS amplifier simulation part.

And as shown in figure that region of MOSFET equal 2 which mean that MOSFET is in saturation region.

• $R_D vs r_o$:

As shown from fig.6 that $r_o = 330.8k\Omega$, and we have value of $R_D = 18k\Omega$. So $r_o \gg R_D$, therefor we can neglect the value of r_o as the two resistances are connected in parallel. And this is clear also in fig.6 simulation results of CS amplifier that $R_{out} = 17.9k\Omega \approx R_D$.

$$R_{out} = 17.9k\Omega \approx R_D$$

If we use minimum channel length we

	1
w	27.35E-6
M0:id	50.14E-6
M0:gm	557.2E-6
M0:gds	3.023E-6
M0:gmb	155.7E-6
M0:vgs (V)	571.2E-3
M0:region	2
M0:ron	17.90E3
M0:rout	330.8E3

Fig. 6 OP parameters from CS amplifier simulation

have to take the value of r_o in consideration because its value will decrease following the relation $r_o = \frac{1}{\lambda l_{DS}} \rightarrow \lambda \propto \frac{1}{L} \rightarrow :: r_o \propto L$.

• Intrinsic gain of MOSFET will be:

$$A_V = g_m * r_o = 557.2uS * 330.8k\Omega = 184.3217.$$

• Amplifier gain analytically:

$$A_v = g_m * (R_D \parallel r_o) = 9.5.$$

And from previous calculations it's clear that intrinsic gain is much greater than amplifier gain.

• AC Analysis:

Amplifier gain magnitude
$$A_v = \frac{V_{out}}{V_{in}} = 9.5$$
.

Amplifier gain in dB
$$A_v = 20 * \log(\frac{V_{out}}{V_{in}}) = 19.55$$
.

And we select value of input voltage to be 1 volt and plot output voltage which is considered to be voltage gain as shown in fig.7, and this meet our spec.

Fig. 7 AC analysis simulation result for CS amplifier

2. Gain Non-Linearity:

• Output voltage V_{out} versus input voltage V_{gs} :

Fig.8 Vout versus Vin

As shown in fig.8 that the relation between V_{out} and V_{in} which is the gain relation is a non-linear relation and this because of depandence of gain on g_m , as the gain equation as following $A_v = g_m * R_D$, and g_m is a strong dependentant on input voltage V_{qs} .

• Derivative of V_{out} versus V_{in} :
As shown in fig.9 that derivative of V_{out} is not constant value and this because that relation between V_{out} and V_{in} is not a linear relation due to dependence on g_m which is dependent on input voltage V_{qs} .

Fig.9 derivatve of Vout versus Vin

• Transient analysis by a sine wave superimposed on input DC voltage level:

Fig.10 transient analysis simulation for input voltage and output voltage

• g_m versus time simulation: As shown in fig.11 that g_m is varied with time and this proves the dependence of g_m on input voltage V_{gs} which also depend on time, so g_m is strong dependent on input voltage V_{gs} .

Fig.11 g_m versus time in transient analysis

• From previous analysis it's clear that our amplifier is a non-linear amplifier becauce the relation between it's input voltage and output voltage is a non-linear relation, this because the gain of amplifier is dependent on g_m which is strongly dependent on input voltage V_{gs} , and this cause the non-linearity in the amplifier gain.