Bellman - Ford Algorithm

I Generate Shortest Path algorithm

- Inixialize for
$$v \in V$$
, $d(v) \leftarrow \infty$, $T(v) = NIL$
- $d(z) \leftarrow 0$

- Main repeat select edge (Somehow), relax edge (u,v, w)
Until can't relax comy more.

Problems.

- () (mp/exity could be exp time (even for pasitive edge weights) $O(2^{n/2})$
- (2) Will not terminate if there is a negative cycle reachable from the source.

Bellman- Ford Algorithm

Bellman-Ford (G, W, S)

Initialize ();
for
$$i = 1$$
 to $|V| - 1$
for each edge $(u, V) \in E$
Relax (u, V, W)

Felox (u, v, w)if dinJ > dinJ + w(u, v) $\{divJ = dinJ + w(u, v)$ $\pi ivJ = u \}$ o(E) for each edge (u,v) (E):

if div]>diu]+wiu,v]

report neg. cycle exists I neg. cycles

o theorem

If G=(V, E) contains no neg. Weight edges, then after BF algorithm executes, $d \ge V = 2(S,V)$ for all $V \in V$

Corollary: If a value dty fails to converge after 1VI-1 cycles, there exists a neg cycle that reachable from S.

 $S = V_0 \qquad V_2 \qquad V = V_K$

Path: $V_0, V_1, V_2, \ldots, V_{k-1}$ $k \leq |V| - 1$, else we have neg, cycle

· froof Anenm.

Let $v \in V$, $T = \langle v_e, V_1, v_2, \dots, V_k \rangle$ $V_o = S$ to $V_x = V$ this path p is a shortest path with m in # edges no neg-cycles implies p is $Simple \implies k \leq |V| - 1$ there I path then all elses F, we have

 $d \in V = 8 (S, V)$, because we relax (V_0, V_1) $d \in V = 8 (S, V)$, because in 2nd $d \in V = 2$ passes, $d \in V = 8 (S, V)$, because in 2nd $d \in V = 0$ $d \in V = 0$