10th Class 2020		
Group-II	PAPER-I	
(Objective Type)	Max. Marks: 10	

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

- The solution set of equation $4x^2 16 = 0$ is: 1-1-
 - (a) $\{\pm 4\}$

- (b) {4}
- (c) $\{\pm 2\} \sqrt{}$
- $(d) \pm 2$
- If α , β are the roots of $7x^2 x + 4 = 0$, then $\alpha\beta$ is: 2-
 - (a) $\frac{-1}{7}$

(b) $\frac{4}{7} \sqrt{ }$

(c) $\frac{7}{4}$

- (d) $\frac{-4}{7}$
- Two square roots of unity are: 3-
 - (a) 1, −1 1/
- (b) 1, ω
- (c) 1, -ω NPR
- (d), ω , ω^2
- Find x in proportion 4:x::5:15:
 - (a) $\frac{75}{4}$

(b) $\frac{4}{3}$

(c) $\frac{3}{4}$

- (d) 12 √
- If a : b = x : y, then invertendo property is: 5-
 - (a) $\frac{a}{x} = \frac{b}{v}$
- (b) $\frac{a}{a-b} = \frac{x}{x-y}$
- (c) $\frac{a+b}{b}$
- (d) $\frac{b}{a} = \frac{y}{y} \sqrt{$
- $\frac{x^3+1}{(x-1)(x+2)}$ is ----. 6-

 - (a) A proper fraction (b) An improper fraction √
 - (c) An identity
- (d) A constant term

-			
7-	The set $\{x \mid x \in W \land x \le 101\}$ is:		
	(a) Infinite set (b) Subset		
	(c) Null set (d) Finite set √		
8-	If A and B are disjoint sets, then A ∪ B is equal to:		
	(a) A (b) B		
	(c) ∮ (d) B∪A √		
9-	A histogram is a set of adjacent:		
	(a) Squares (b) Rectangles √		
	(c) Circles (d) Triangles		
10-	The extent of variation between two extreme observations of a data set is measured by:		
	(a) Average (b) Range √		
	(c) Quartile (d) Domain		
11-	$\frac{3\pi}{4}$ radians = :		
-	(a) 115° (b) 135° √		
	(d) 30°		
12-	A chord passing through the centre of a circle is		
	called: (b) Diameter 1/		
7, -	(a) Radius (b) Diameter 1		
	(c) Circumference (d) Secant A line which has only one point in common with a		
13-	A line which has only one point a circle is called:		
	(b) Cosine of a circle		
	(a) Sine of a circle of (d) Secant of a circle		
	a pair of chords of a circle sustained		
14-	angruent central angles is.		
	(a) Congruent V (b) Incongruent		
	(a) Parallel		
15-	Angle inscribed in a semicircle is:		
	71		
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$		
	(c) $\frac{\pi}{4}$ (d) $\frac{\pi}{5}$		
