

CHAPTER 4 VECTOR SPACES

- 4.1 Vectors in \mathbb{R}^n
- 4.2 Vector Spaces
- 4.3 Subspaces of Vector Spaces
- 4.4 Spanning Sets and Linear Independence
- 4.5 Basis and Dimension
- 4.6 Rank of a Matrix and Systems of Linear Equations
- 4.7 Coordinates and Change of Basis
- 4.8 Applications of Vector Spaces

4.1 Vectors in R^n

• An ordered *n*-tuple:

a sequence of *n* real number (x_1, x_2, \dots, x_n)

• n-space: R^n

the set of all ordered n-tuple

• Ex:

$$n = 1$$
 $R^{1} = 1$ -space = set of all real number

$$n = 2$$
 $R^2 = 2$ -space
= set of all ordered pair of real numbers (x_1, x_2)

$$n = 3$$
 $R^3 = 3$ -space
= set of all ordered triple of real numbers (x_1, x_2, x_3)

$$n = 4$$
 $R^4 = 4$ -space
= set of all ordered quadruple of real numbers (x_1, x_2, x_3, x_4)

Notes:

- (1) An *n*-tuple (x_1, x_2, \dots, x_n) can be viewed as <u>a point</u> in \mathbb{R}^n with the x_i 's as its coordinates.
- (2) An *n*-tuple (x_1, x_2, \dots, x_n) can be viewed as <u>a vector</u> $x = (x_1, x_2, \dots, x_n)$ in \mathbb{R}^n with the x_i 's as its components.

• Ex:

$$\mathbf{u} = (u_1, u_2, \dots, u_n), \quad \mathbf{v} = (v_1, v_2, \dots, v_n)$$
 (two vectors in \mathbb{R}^n)

• Equal:

$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1, u_2 = v_2, \dots, u_n = v_n$

• Vector addition (the sum of **u** and **v**):

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

• Scalar multiplication (the scalar multiple of \mathbf{u} by c):

$$c\mathbf{u} = (cu_1, cu_2, \cdots, cu_n)$$

Notes:

The sum of two vectors and the scalar multiple of a vector in \mathbb{R}^n are called the standard operations in \mathbb{R}^n .

• Negative:

$$-\mathbf{u} = (-u_1, -u_2, -u_3, ..., -u_n)$$

Difference:

$$\mathbf{u} - \mathbf{v} = (u_1 - v_1, u_2 - v_2, u_3 - v_3, ..., u_n - v_n)$$

Zero vector:

$$\mathbf{0} = (0, 0, ..., 0)$$

- Notes:
 - (1) The zero vector $\mathbf{0}$ in \mathbb{R}^n is called the **additive identity** in \mathbb{R}^n .
 - (2) The vector –v is called the additive inverse of v.

• Thm 4.2: (Properties of vector addition and scalar multiplication)

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in R^n , and let c and d be scalars.

- (1) $\mathbf{u}+\mathbf{v}$ is a vector in \mathbb{R}^n
- (2) u+v=v+u
- (3) (u+v)+w = u+(v+w)
- (4) u+0=u
- (5) $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- (6) $c\mathbf{u}$ is a vector in \mathbb{R}^n
- (7) $c(\mathbf{u}+\mathbf{v}) = c\mathbf{u}+c\mathbf{v}$
- (8) $(c+d)\mathbf{u} = \mathbf{c}\mathbf{u} + \mathbf{d}\mathbf{u}$
- (9) $c(d\mathbf{u}) = (cd)\mathbf{u}$
- $(10) 1(\mathbf{u}) = \mathbf{u}$

• Ex 5: (Vector operations in \mathbb{R}^4)

Let $\mathbf{u} = (2, -1, 5, 0)$, $\mathbf{v} = (4, 3, 1, -1)$, and $\mathbf{w} = (-6, 2, 0, 3)$ be vectors in \mathbb{R}^4 . Solve \mathbf{x} for \mathbf{x} in each of the following.

(a)
$$x = 2u - (v + 3w)$$

(b)
$$3(x+w) = 2u - v+x$$

Sol: (a)
$$\mathbf{x} = 2\mathbf{u} - (\mathbf{v} + 3\mathbf{w})$$

 $= 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$
 $= (4, -2, 10, 0) - (4, 3, 1, -1) - (-18, 6, 0, 9)$
 $= (4 - 4 + 18, -2 - 3 - 6, 10 - 1 - 0, 0 + 1 - 9)$
 $= (18, -11, 9, -8).$

(b)
$$3(\mathbf{x} + \mathbf{w}) = 2\mathbf{u} - \mathbf{v} + \mathbf{x}$$

 $3\mathbf{x} + 3\mathbf{w} = 2\mathbf{u} - \mathbf{v} + \mathbf{x}$
 $3\mathbf{x} - \mathbf{x} = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$
 $2\mathbf{x} = 2\mathbf{u} - \mathbf{v} - 3\mathbf{w}$
 $\mathbf{x} = \mathbf{u} - \frac{1}{2}\mathbf{v} - \frac{3}{2}\mathbf{w}$
 $= (2,1,5,0) + (-2, \frac{-3}{2}, \frac{-1}{2}, \frac{1}{2}) + (9,-3,0, \frac{-9}{2})$
 $= (9, \frac{-11}{2}, \frac{9}{2}, -4)$

■ Thm 4.3: (Properties of additive identity and additive inverse)

Let \mathbf{v} be a vector in R^n and c be a scalar. Then the following is true.

- (1) The additive identity is unique. That is, if $\mathbf{u}+\mathbf{v}=\mathbf{v}$, then $\mathbf{u}=\mathbf{0}$
- (2) The additive inverse of v is unique. That is, if v+u=0, then u=-v
- (3) 0v = 0
- (4) c0 = 0
- (5) If cv=0, then c=0 or v=0
- $(6) (-\mathbf{v}) = \mathbf{v}$

• Linear combination:

The vector \mathbf{x} is called a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, if it can be expressed in the form

$$\mathbf{x} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_n \mathbf{v_n}$$
 c_1, c_2, \dots, c_n : scalar

Ex 6:

Given
$$\mathbf{x} = (-1, -2, -2)$$
, $\mathbf{u} = (0,1,4)$, $\mathbf{v} = (-1,1,2)$, and $\mathbf{w} = (3,1,2)$ in R^3 , find a , b , and c such that $\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$.

Sol:
$$-b + 3c = -1$$

 $a + b + c = -2$
 $4a + 2b + 2c = -2$
 $\Rightarrow a = 1, b = -2, c = -1$

Thus
$$\mathbf{x} = \mathbf{u} - 2\mathbf{v} - \mathbf{w}$$

Notes:

A vector $\mathbf{u} = (u_1, u_2, \dots, u_n)$ in \mathbb{R}^n can be viewed as:

a
$$1 \times n$$
 row matrix (row vector): $\mathbf{u} = [u_1, u_2, \dots, u_n]$

or

a
$$n \times 1$$
 column matrix (column vector): $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$

(The matrix operations of addition and scalar multiplication give the same results as the corresponding vector operations)

Vector addition

$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n)$$
$$= (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

$$\mathbf{u} + \mathbf{v} = [u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n]$$
$$= [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]$$

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

$$c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ \vdots \\ cu_n \end{bmatrix}$$

Scalar multiplication

$$c\mathbf{u} = c(u_1, u_2, \dots, u_n)$$
$$= (cu_1, cu_2, \dots, cu_n)$$

$$c\mathbf{u} = c[u_1, u_2, \dots, u_n]$$
$$= [cu_1, cu_2, \dots, cu_n]$$

$$c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ \vdots \\ cu_n \end{bmatrix}$$

Key Learning in Section 4.1

- Represent a vector as a directed line segment.
- Perform basic vector operations in \mathbb{R}^2 and represent them graphically.
- Perform basic vector operations in \mathbb{R}^n .
- Write a vector as a linear combination of other vectors.

Keywords in Section 4.1

- ordered *n*-tuple: 有序的*n*項
- *n*-space: *n*維空間
- equal:相等
- vector addition:向量加法
- scalar multiplication:純量乘法
- negative: 負向量
- difference:向量差
- zero vector: 零向量
- additive identity:加法單位元素
- additive inverse:加法反元素

4.2 Vector Spaces

Vector spaces:

Let *V* be a set on which two operations (vector addition and scalar multiplication) are defined. If the following axioms are satisfied for every **u**, **v**, and **w** in *V* and every scalar (real number) *c* and *d*, then *V* is called a **vector space**.

Addition:

- (1) $\mathbf{u} + \mathbf{v}$ is in V
- $(2) \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (3) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- (4) V has a zero vector $\mathbf{0}$ such that for every \mathbf{u} in V, $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- (5) For every \mathbf{u} in V, there is a vector in V denoted by $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

Scalar multiplication:

- (6) $c\mathbf{u}$ is in V.
- (7) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- (8) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- (9) $c(d\mathbf{u}) = (cd)\mathbf{u}$
- $(10) 1(\mathbf{u}) = \mathbf{u}$

Notes:

(1) A vector space consists of <u>four entities</u>:

a set of vectors, a set of scalars, and two operations

V: nonempty set

c: scalar

 $+(\mathbf{u},\mathbf{v}) = \mathbf{u} + \mathbf{v} \square$ vector addition

 $\bullet(c, \mathbf{u}) = c\mathbf{u} \square$ scalar multiplication

 $(V, +, \bullet)$ is called a vector space

(2) $V = \{0\}$ zero vector space

• Examples of vector spaces:

- (1) *n*-tuple space: R^n $(u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n) = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n) \text{ vector addition}$ $k(u_1, u_2, \dots, u_n) = (ku_1, ku_2, \dots, ku_n) \text{ scalar multiplication}$
- (2) Matrix space: $V = M_{m \times n}$ (the set of all $m \times n$ matrices with real values)

Ex: :
$$(m = n = 2)$$

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{22} \end{bmatrix}$$
 vector addition

$$\begin{vmatrix} k \begin{vmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{vmatrix} = \begin{vmatrix} ku_{11} & ku_{12} \\ ku_{21} & ku_{22} \end{vmatrix}$$
 scalar multiplication

(3) *n*-th degree polynomial space: $V = P_n(x)$ (the set of all real polynomials of degree *n* or less)

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$
$$kp(x) = ka_0 + ka_1x + \dots + ka_nx^n$$

(4) Function space: $V = c(-\infty, \infty)$ (the set of all real-valued continuous functions defined on the entire real line.)

$$(f+g)(x) = f(x) + g(x)$$
$$(kf)(x) = kf(x)$$

- Notes: To show that a set is not a vector space, you need only find one axiom that is not satisfied.
- Ex 6: The set of all integers. VS or not?

Pf:

■ Ex 7: The set of all second-degree polynomials. VS or not?

Pf:

• Ex 8:

 $V=R^2$ =the set of all ordered pairs of real numbers

vector addition:
$$(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2)$$

scalar multiplication: $c(u_1, u_2) = (cu_1, 0)$

IS V a VS or not.

Sol:

- $1(1,1) = (1,0) \neq (1,1)$
- : the set (together with the two given operations) is not a vector space

Key Learning in Section 4.2

- Define a vector space and recognize some important vector spaces.
- Show that a given set is not a vector space.

Keywords in Section 4.2:

- vector space:向量空間
- *n*-space: *n*維空間
- matrix space:矩陣空間
- polynomial space:多項式空間
- function space:函數空間

4.3 Subspaces of Vector Spaces

Subspace:

$$(V,+,\bullet)$$
: a vector space

$$W \neq \phi$$

$$W \subset V$$
: a nonempty subset

$$(W,+,\bullet)$$
: a vector space (under the operations of addition and scalar multiplication defined in V)

 \Rightarrow W is a subspace of V

Trivial subspace:

Every vector space V has at least two subspaces.

- (1) Zero vector space $\{0\}$ is a subspace of V.
- (2) V is a subspace of V.

■ Thm 4.5: (Test for a subspace)

If W is a <u>nonempty subset</u> of a vector space V, then W is a subspace of V if and only if the following conditions hold.

- (1) If \mathbf{u} and \mathbf{v} are in W, then $\mathbf{u}+\mathbf{v}$ is in W.
- (2) If \mathbf{u} is in W and c is any scalar, then $c\mathbf{u}$ is in W.

- V has a zero vector 0 such that for every u in V, u + 0 = u ?
- For every u in V, there is a vector in V denoted by -u such that u + (-u) = 0?

• Ex 2: (A subspace of $M_{2\times 2}$)

Let W be the set of all 2×2 symmetric matrices. Determine whether W is a subspace of vector space $M_{2\times 2}$ or not, with the operations of matrix addition standard and scalar multiplication.

Sol:

 $\therefore W$ is a subspace of $M_{2\times 2}$

• Ex 3: (The set of singular matrices is not a subspace of $M_{2\times 2}$)

Let W be the set of singular matrices of order 2. Show that W is not a subspace of $M_{2\times 2}$ with the standard operations.

Sol:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in W, B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in W$$

$$\therefore A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \notin W$$

 $\therefore W_2$ is not a subspace of $M_{2\times 2}$

• Ex 4: (The set of first-quadrant vectors is not a subspace of \mathbb{R}^2)

Show that $W = \{(x_1, x_2) : x_1 \ge 0 \text{ and } x_2 \ge 0\}$, with the standard operations, is not a subspace of R^2 .

Sol:

Let
$$\mathbf{u} = (1, 1) \in W$$

$$(-1)\mathbf{u} = (-1)(1,1) = (-1,-1) \notin W$$

(not closed under scalar multiplication)

 $\therefore W$ is not a subspace of R^2

• Ex 6: (Determining subspaces of R^2)

Which of the following two subsets is a subspace of R^2 ?

- (a) The set of points on the line given by x+2y=0.
- (b) The set of points on the line given by x+2y=1.

Sol:

(a)
$$W = \{(x, y) \mid x + 2y = 0\} = \{(-2t, t) \mid t \in R\}$$

Let $v_1 = (-2t_1, t_1) \in W$ $v_2 = (-2t_2, t_2) \in W$
 $v_1 + v_2 = (-2(t_1 + t_2), t_1 + t_2) \in W$ (closed under addition)
 $v_1 = (-2(kt_1), kt_1) \in W$ (closed under scalar multiplication)

 $\therefore W$ is a subspace of R^2

(b)
$$W = \{(x, y) \mid x + 2y = 1\}$$
 (Note: the zero vector is not on the line)

Let
$$v = (1,0) \in W$$

$$\because (-1)v = (-1,0) \notin W$$

 $\therefore W$ is not a subspace of R^2

• Ex 8: (Determining subspaces of R^3)

Which of the following subsets is a subspace of R^3 ?

(a)
$$W = \{(x_1, x_2, 1) \mid x_1, x_2 \in R\}$$

(b)
$$W = \{(x_1, x_1 + x_3, x_3) \mid x_1, x_3 \in R\}$$

Sol:

(a) Let
$$\mathbf{v} = (0,0,1) \in W$$

 $\Rightarrow (-1)\mathbf{v} = (0,0,-1) \notin W$

 $\therefore W$ is not a subspace of R^3

(b) Let
$$\mathbf{v} = (v_1, v_1 + v_3, v_3) \in W$$
, $\mathbf{u} = (u_1, u_1 + u_3, u_3) \in W$

$$\because \mathbf{v} + \mathbf{u} = (v_1 + u_1, (v_1 + u_1) + (v_3 + u_3), v_3 + u_3) \in W$$

$$k\mathbf{v} = (kv_1, (kv_1) + (kv_3), kv_3) \in W$$

 $\therefore W$ is a subspace of \mathbb{R}^3

• Thm 4.6: (The intersection of two subspaces is a subspace)

If V and W are both subspaces of a vector space U, then the intersection of V and W (denoted by $V \cap U$) is also a subspace of U.

Key Learning in Section 4.3

- Determine whether a subset W of a vector space V is a subspace of V.
- Determine subspaces of R^n .

Keywords in Section 4.3:

■ subspace:子空間

■ trivial subspace: 顯然子空間

4.4 Spanning Sets and Linear Independence

Linear combination:

A vector \mathbf{v} in a vector space V is called a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ in V if \mathbf{v} can be written in the form

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \ldots + c_k \mathbf{u}_k$$
 c_1, c_2, \cdots, c_k : scalars

• Ex 2-3: (Finding a linear combination)

$$\mathbf{v}_1 = (1,2,3) \quad \mathbf{v}_2 = (0,1,2) \quad \mathbf{v}_3 = (-1,0,1)$$

Prove (a) $\mathbf{w} = (1,1,1)$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$

(b) $\mathbf{w} = (1,-2,2)$ is not a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$

Sol:

(a)
$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

 $(1,1,1) = c_1 (1,2,3) + c_2 (0,1,2) + c_3 (-1,0,1)$
 $= (c_1 - c_3, 2c_1 + c_2, 3c_1 + 2c_2 + c_3)$
 $c_1 - c_3 = 1$
 $\Rightarrow 2c_1 + c_2 = 1$
 $3c_1 + 2c_2 + c_3 = 1$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 2 & 1 & 0 & | & 1 \\ 3 & 2 & 1 & | & 1 \end{bmatrix} \xrightarrow{\text{Guass-Jordan Elimination}} \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\Rightarrow c_1 = 1 + t$$
, $c_2 = -1 - 2t$, $c_3 = t$

(this system has infinitely many solutions)

$$\Rightarrow \mathbf{w} = 2\mathbf{v}_1 - 3\mathbf{v}_2 + \mathbf{v}_3$$

(b)

$$\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -2 \\ 3 & 2 & 1 & 2 \end{bmatrix} \xrightarrow{\text{Guass-Jordan Elimination}} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 0 & 7 \end{bmatrix}$$

 \Rightarrow this system has no solution (:: 0 \neq 7)

$$\Rightarrow$$
 w \neq c_1 **v**₁ + c_2 **v**₂ + c_3 **v**₃

• the span of a set: span (S)

If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is a set of vectors in a vector space V, then **the span of** S is the set of all linear combinations of the vectors in S,

$$\operatorname{span}(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid \forall c_i \in R\}$$
(the set of all linear combinations of vectors in S)

a spanning set of a vector space:

If every vector in a given vector space can be written as a linear combination of vectors in a given set *S*, then *S* is called a spanning set of the vector space.

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid \forall c_i \in R\} = V$$

Notes:

$$\operatorname{span}(S) = V$$

 \Rightarrow S spans (generates) V

V is spanned (generated) by S

S is a spanning set of V

• Ex 5: (A spanning set for R^3)

Show that the set $S = \{(1,2,3), (0,1,2), (-2,0,1)\}$ spans R^3

Sol:

We must determine whether an arbitrary vector $\mathbf{u} = (u_1, u_2, u_3)$

in R^3 can be as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 .

$$\mathbf{u} \in R^3 \Rightarrow \mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

$$\Rightarrow c_1 -2c_3 = u_1$$

$$2c_1 + c_2 = u_2$$

$$3c_1 + 2c_2 + c_3 = u_3$$

The problem thus reduces to determining whether this system is consistent for all values of u_1, u_2 , and u_3 .

$$|A| = \begin{vmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{vmatrix} \neq 0$$

 $\Rightarrow A\mathbf{x} = \mathbf{b}$ has exactly one solution for every u.

$$\Rightarrow span(S) = R^3$$

• Thm 4.7: (Span(S) is a subspace of V)

If $S=\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is a set of vectors in a vector space V, then

- (a) span (S) is a subspace of V.
- (b) span (S) is the smallest subspace of V that contains S.(Every other subspace of V that contains S must contain span (S).)

• Linear Independent (L.I.) and Linear Dependent (L.D.):

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} : \text{a set of vectors in a vector space V}$$

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k = \mathbf{0}$$

- (1) If the equation has only the trivial solution $(c_1 = c_2 = \cdots = c_k = 0)$ then S is called linearly independent.
- (2) If the equation has a nontrivial solution (i.e., not all zeros), then *S* is called linearly dependent.

• Ex 8: (Testing for linearly independent)

Determine whether the following set of vectors in R^3 is L.I. or L.D.

$$S = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$$
ol:
$$c_1 \mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3 \quad c_1 \quad -2c_3 = 0$$

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0} \implies 2c_1 + c_2 + c_3 = 0$$

$$3c_1 + 2c_2 + c_3 = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{\text{Gauss-Jordan Elimination}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow c_1 = c_2 = c_3 = 0$$
 (only the trivial solution)

 \Rightarrow S is linearly independent

• Ex 9: (Testing for linearly independent)

Determine whether the following set of vectors in P_2 is L.I. or L.D.

$$S = \{1+x-2x^2, 2+5x-x^2, x+x^2\}$$

Sol:
$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0}$$

i.e.
$$c_1(1+x-2x^2) + c_2(2+5x-x^2) + c_3(x+x^2) = 0+0x+0x^2$$

- \Rightarrow This system has infinitely many solutions. (i.e., This system has nontrivial solutions.)
- \Rightarrow S is linearly dependent.

(Ex:
$$c_1=2$$
, $c_2=-1$, $c_3=3$)

• Ex 10: (Testing for linearly independent)

Determine whether the following set of vectors in 2×2 matrix space is L.I. or L.D.

$$S = \left\{ \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \right\}$$

$$\mathbf{v}_1 \qquad \mathbf{v}_2 \qquad \mathbf{v}_3$$

Sol:

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0}$$

$$c_{1} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + c_{2} \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} + c_{3} \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow 2c_1+3c_2+c_3=0 \\ c_1=0 \\ 2c_2+2c_3=0 \\ c_1+c_2=0$$

$$\Rightarrow \begin{bmatrix} 2 & 3 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{\text{Gauss-Jordan Elimination}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow c_1 = c_2 = c_3 = 0$$
 (This system has only the trivial solution.)

 \Rightarrow S is linearly independent.

• Thm 4.8: (A property of linearly dependent sets)

A set $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$, $k \ge 2$, is linearly dependent if and only if at least one of the vectors \mathbf{v}_j in S can be written as a linear combination of the other vectors in S.

Pf:

$$(\Rightarrow) \quad c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k = \mathbf{0}$$

:: S is linearly dependent

$$\Rightarrow c_i \neq 0$$
 for some i

$$\Rightarrow \mathbf{V}_i = \frac{c_1}{c_i} \mathbf{V}_1 + \dots + \frac{c_{i-1}}{c_i} \mathbf{V}_{i-1} + \frac{c_{i+1}}{c_i} \mathbf{V}_{i+1} + \dots + \frac{c_k}{c_i} \mathbf{V}_k$$

 (\Leftarrow)

Let
$$\mathbf{v}_i = d_1 \mathbf{v}_1 + \dots + d_{i-1} \mathbf{v}_{i-1} + d_{i+1} \mathbf{v}_{i+1} + \dots + d_k \mathbf{v}_k$$

$$\Rightarrow d_1 \mathbf{v}_1 + \dots + d_{i-1} \mathbf{v}_{i-1} - \mathbf{v}_i + d_{i+1} \mathbf{v}_{i+1} + \dots + d_k \mathbf{v}_k = \mathbf{0}$$

$$\Rightarrow c_1 = d_1, ..., c_{i-1} = d_{i-1}, c_i = -1, c_{i+1} = d_{i+1}, ..., c_k = d_k$$
 (nontrivial solution)

 \Rightarrow S is linearly dependent

Key Learning in Section 4.4

- Write a linear combination of a set of vectors in a vector space *V*.
- Determine whether a set S of vectors in a vector space V is a spanning set of V.
- Determine whether a set of vectors in a vector space *V* is linearly independent.

Keywords in Section 4.4:

- linear combination:線性組合
- spanning set: 生成集合
- trivial solution: 顯然解
- linear independent:線性獨立
- linear dependent:線性相依