Matemática atuarial

Seguros Aula 8

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

- > Produtos atuariais.
 - Seguros de vida vitalício, seguro de vida temporário, seguro dotal puro e seguro dotal.
- Em alguns casos o segurado pode querer que a vigência se inicie alguns anos após a assinatura do contrato de seguro.
- ➤ O valor que a seguradora deverá gastar, em média, com o segurado cujo produto começará a vigorar daqui a "m" anos.

- Pensemos, inicialmente, no seguro de **vida vitalício** que paga 1 *u.m.* Ao final do momento de morte do segurado.
- Porém, esse seguro de vida começará a vigorar daqui a "m" anos.

$$b(T) = \begin{cases} 0 & \text{se } T < m \\ 1 & \text{se } T \ge m \end{cases}$$

$$Z(T) = \begin{cases} v^{T+1} & \text{se } T \ge m \\ 0 & \text{c. c.} \end{cases}$$

 \triangleright Caso em que T é discreto:

$$b(T) = \begin{cases} 0 & \text{se } T < m \\ 1 & \text{se } T \ge m \end{cases} \qquad v(T) = v^{T+1} \qquad Z_T = \begin{cases} v^{T+1} & \text{se } T \ge m \\ 0 & \text{c.c.} \end{cases}$$

$$_{m|A_{x}} = E(Z_{T}) = \sum_{j=m}^{\infty} v^{j+1} {}_{j} p_{x} q_{x+j}$$

 \triangleright Fazendo j = m + t, tem-se:

$$m|A_x = \sum_{j=m}^{\infty} v^{j+1} {}_{j} p_x q_{x+j} = \sum_{t=0}^{\infty} v^{m+t+1} \underbrace{m+t}_{m+t} p_x q_{x+m+t}$$

Lembrando que $\underbrace{m+tp_x} = \underbrace{mp_x} \times t p_{x+m}$, então

$$m|A_{x} = \sum_{t=0}^{\infty} v^{m+t+1} m p_{x} t p_{x+m} q_{x+m+t}$$

$$m|A_{x} = v^{m} m p_{x} \sum_{t=0}^{\infty} v^{t+1} t p_{(x+m)} q_{(x+m)+t}$$

$$_{m|}A_{x}=v^{m}_{m}p_{x}A_{x+m}$$

É, na verdade, o seguro de vida vitalício trazido a valor presente atuarial a data de hoje.

$$_{m|}A_{x} = _{m}E_{x}A_{x+m}$$

Outra forma de cálculo do mesmo seguro seria:

Seguro temporario por m anos, para uma pessoa de idade x.

Demonstração:

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = \sum_{t=0}^{m-1} v^{t+1} {}_{t} p_{x} q_{x+t} + \sum_{t=m}^{\infty} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = A_{x^{1}:\overline{m}|} + \sum_{t=m}^{\infty} v^{t+1} {}_{t} p_{x} q_{x+t}$$

Fazendo: t = m + l

$$A_x = A_{x^1:\overline{m|}} + \sum_{l=0}^{\infty} v^{m+l+1} _{m+l} p_x q_{x+m+l}$$

Lembrando que : $m|A_x = \sum_{l=0}^{\infty} v^{m+l+1} _{m+l} p_x q_{x+m+l}$

$$A_{x} = A_{x^{1}:\overline{m|}} + {}_{m|}A_{x}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

> EXEMPLO 20

Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Ou seja, caso esse segurado faleça após 28 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

Idade	q_X	p_{x}	l_{x}
25	0,00037	0,99963	100000
26	0,00039	0,99961	99963
27	0,00040	0,99960	99924,01
28	0,00042	0,99958	99884,04
29	0,00044	0,99956	99842,09
30	0,00045	0,99955	99798,16
31	0,00046	0,99954	99753,25
32	0,00048	0,99952	99707,37
33	0,00049	0,99951	99659,51
34	0,00050	0,99950	99610,67
35	0,00052	0,99948	99560,87

> EXEMPLO 20

Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Ou seja, caso esse segurado faleça após 28 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

Idade			7
	q_X	p_x	l_x
25	0,00037	0,99963	100000
26	0,00039	0,99961	99963
27	0,00040	0,99960	99924,01
21	0,00040	0,99900	77724,01
28	0,00042	0,99958	99884,04
29	0,00044	0,99956	99842,09
30	0,00045	0,99955	99798,16
31	0,00046	0,99954	99753,25
32	0,00048	0,99952	99707,37
33	0,00049	0,99951	99659,51
55			
34	0,00050	0,99950	99610,67
35	0,00052	0,99948	99560,87

 \triangleright Para o caso em que T é discreto:

$$b(T) = \begin{cases} 0 & \text{se } T < m \\ 1 & \text{se } T \ge m \end{cases} \qquad v(T) = v^{T+1} \qquad Z(T) = \begin{cases} v^{T+1} & \text{se } T \ge m \\ 0 & \text{c.c.} \end{cases}$$

$$m_{\parallel}A_{x} = \sum_{j=m}^{\infty} v^{j+1}_{j} p_{x} q_{x+j}$$

$$m_{\parallel}A_{x} = v^{m}_{m} p_{x} A_{x+m}$$

$$m_{\parallel}A_{x} = A_{x} - A_{x^{1}} \cdot \overline{m_{\parallel}}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

- a) Temporário por "n" anos.
- b) Seguro dotal puro.

Dado que $b_t = 1$ e T discreto.

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja: a) Temporário por "n" anos.

Dado que $b_t = 1$ e T discreto.

Resp.:

O seguro temporário por n para uma pessoa de x anos (caso discreto)

$$A_{x^{1}:\overline{n}|} = \sum_{t=0}^{n-1} v^{t+1} t p_{x} q_{x+t}$$

Então:

> Temporário

$$_{m|A_{x^{1}:\overline{n|}}} = \sum_{t=m}^{(m+n)-1} v^{t+1} {}_{t}p_{x}q_{x+t}$$

Fazendo t = m + l, então:

$$_{m|A_{x^{1}:\overline{n}|}} = \sum_{l=0}^{n-1} v^{m+l+1} \,_{(m+l)} p_{x} q_{x+(m+l)} = v^{m} \sum_{l=0}^{n-1} v^{l+1} \,_{(m+l)} p_{x} q_{x+(m+l)}$$

$$m|A_{x^1:\overline{n}|} = v^m \sum_{l=0}^{n-1} v^{l+1} m p_x p_x q_{x+m+l}$$

$$|m|A_{x^1:\overline{n|}} = v^m |mp_x| \sum_{l=0}^{n-1} v^{l+1} |p_{(x+m)}| q_{(x+m)+l}$$

$$_{m|}A_{x^{1}:\overline{n|}}=v^{m}_{m}p_{x}A_{x^{1}+m:\overline{n|}}$$

$$m|A_{x^1:\overline{n}|} = A_{x^1:\overline{m+n}|} - A_{x^1:\overline{m}|}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

b) Seguro dotal puro.

Dado que $b_t = 1$ e T discreto.

Resp.:

O dotal puro por n para uma pessoa de x anos (caso discreto).

$$A_{x:\overline{n}|^1} = v^n {}_n p_x$$

Dotal Puro

SEGUROS Vida temporários DIFERIDOS

$$Z_T = \begin{cases} v^{T+1} & se \ T \ge m \\ 0 & c.c. \end{cases}$$

$$Z_T = \begin{cases} v^{T+1} & se & m \le T \le (m+n) \\ & 0 & c.c. \end{cases}$$

$$m|A_{x} = \sum_{t=m}^{\infty} v^{t+1} t p_{x} q_{x+t}$$

$$m|A_{x} = v^{m} p_{x} A_{x+m}$$

$$m|A_{x} = A_{x} - A_{x^{1}} \overline{m}|$$

$$m_{|A_{x^{1}}:\overline{n}|} = \sum_{t=m}^{m+n-1} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$m_{|A_{x^{1}}:\overline{n}|} = v^{m} {}_{m} p_{x} A_{x^{1}+m:\overline{n}|}$$

$$m_{|A_{x^{1}}:\overline{n}|} = A_{x^{1}:\overline{m+n}|} - A_{x^{1}:\overline{m}|}$$

> EXEMPLO 21

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Ou seja, caso esse segurado faleça entre seus 28 e 33 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o

prêmio puro:

Idade	q_X	
25	0,00077	
26	0,00081	
27	0,00085	
28	0,00090	
29	0,00095	
30	0,00100	
31	0,00107	
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

Logo queremos calcular $_{3|}A_{25^{1}:\overline{5}|}$

$$b(T) = \begin{cases} 0 & \text{se } T < 3 \\ 1 & \text{se } 3 \le T \le 8 \end{cases} \qquad v(T) = \left(\frac{1}{1+0.04}\right)^T \qquad Z(T) = \begin{cases} \left(\frac{1}{1+0.04}\right)^T 3 \le T \le 8 \\ 0 & \text{c.c.} \end{cases}$$

Idad e	$q_X =_1 q_x$	$ \begin{array}{l} _1 p_x \\ = 1 - {}_1 q_x \end{array} $	$_{1}l_{x}=\frac{l_{x+1}}{p_{x}}$
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

$$m_{|A_{x^{1}:\overline{n}|}} = \sum_{t=m}^{(m+n)-1} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$${}_{3|A_{25^{1}:\overline{5}|}} = \sum_{t=3}^{(3+5)-1} \left(\frac{1}{1,04}\right)^{t+1} {}_{t} p_{25} q_{25+t}$$

$$_{m|}A_{x^{1}:\overline{n|}}=v^{m}_{m}p_{x}A_{x^{1}+m:\overline{n|}}$$

$$_{3|}A_{25^{1}:\overline{5}|} = \left(\frac{1}{1,04}\right)^{3} _{3}p_{25} \sum_{t=0}^{(5)-1} \left(\frac{1}{1,04}\right)^{t+1} _{t}p_{28}q_{28+t}$$

$$Z_{T} = \begin{cases} v^{T+1} T \leq n & A_{x^{1}:\overline{n}} = \sum_{t=0}^{n-1} Z_{T t} p_{x} q_{x+t} \end{cases}$$

$$Z_{T} = e^{-\delta t}; \ 0 \leq t \leq n \quad \overline{A}_{x^{1}:\overline{n}} = \int_{0}^{n} Z_{T t} p_{x} \mu_{x+t} dt \end{cases}$$

$$Z_{T} = \begin{cases} v^{T+1} T \leq n & A_{x^{1}:\overline{n}} = \int_{0}^{n} Z_{T t} p_{x} \mu_{x+t} dt \end{cases}$$

$$Z_{T} = \begin{cases} v^{T} \leq n & A_{x^{1}:\overline{n}} = \int_{0}^{\infty} Z_{T t} p_{x} \mu_{x+t} dt \end{cases}$$

$$Z_{T} = \begin{cases} v^{T} \leq n & A_{x^{1}:\overline{n}} = \int_{0}^{\infty} Z_{T t} p_{x} \mu_{x+t} dt \end{cases}$$

$$Z_{T} = \begin{cases} v^{T} \leq n & A_{x^{1}:\overline{n}} = A_{x^{1}:\overline{n$$

SEGUROS Vida DIFERIDOS -pago no momento da morte

 \triangleright O valor presente atuarial é (para o caso T contínuo) caso vitalício:

$$b(T) = \begin{cases} 0 & \text{se } T < m \\ 1 & \text{se } T \ge m \end{cases} \qquad Z_T = e^{-\delta T}, \ t \ge m$$

$$m|\bar{A}_x = \int_m^\infty e^{-\delta t} f_{T_x}(t) dt$$

> O valor presente atuarial é (para o caso T contínuo) caso vitalício:

$$b(T) = \begin{cases} 0 \text{ se } T < m \\ 1 \text{ se } m \le T \le m+n \end{cases} \qquad Z_T = e^{-\delta T} \quad m \le T \le m+n$$

$$a_{m|}\bar{A}_{x^{1}:\bar{n}|}=\int_{m}^{m+n}e^{-\delta t}f_{T_{x}}(t)dt$$

SEGURO DE VIDA INTEIRO

> Exemplo 22

Determine o valor do prêmio puro único a ser cobrado por um seguro que deseja contratar um seguro que pague $1\,u.m.$ No momento da morte, após $10\,$ anos de carência. Considere que o tempo de vida adicional desse segurado tenha a seguinte função de densidade.

$$f_T(t) = 0.04e^{-0.04T}$$
.

Considere também $\delta = 0.06$.

> Exemplo 22

$$b(T) = \begin{cases} 0 \text{ se } T < 10 \\ 1 \text{ se } T \ge 10 \end{cases} \quad v(T) = e^{-0.039T}, \ T \ge 10$$

$${}_{10|}\bar{A}_x = \int_{10}^{\infty} e^{-0.06t} 0.04 e^{-0.04T} dt$$

$${}_{10|}\bar{A}_x = \int_{10}^{\infty} e^{-0.06t} 0.04 e^{-0.04t} dt = \int_{10}^{\infty} 0.04 e^{-0.1t} dt$$

$${}_{10|}\bar{A}_x = \lim_{t \to \infty} \left(-\frac{0.04}{0.1} e^{-0.1t} \right) + \frac{0.04}{0.1} e^{-0.1(10)}$$

$${}_{10|}\bar{A}_x = 0.147$$

Matemática atuarial

Seguros Aula 9

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Ou seja, caso esse segurado faleça entre seus 28 e 33 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

		(5+3)-1
Idade	q_X	$\frac{1}{3 A_{25^1:\overline{5} }} = \sum_{j=1}^{n} v^{j+1} {}_{j} p_{25} q_{25+j}$
25	0,00077	$3 ^{25}:5 $ $ jP25425+j$
26	0,00081	$\overline{j}=3$
27	0,00085	$_{3 }A_{25^{1}:\overline{5} } = v^{3} _{3}p_{25}A_{28^{1}:\overline{5} }$
28	0,00090	3 25 :5 31 2328-:5
29	0,00095	$_{3 }A_{25^{1}:\overline{5} } = A_{25^{1}:\overline{5+3} } - A_{25^{1}:\overline{3} }$
30	0,00100	
31	0,00107	
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

```
prêmio<- function( i, idade, n,b) {</pre>
           pxx <- c(1, cumprod( px[(idade+1):(idade+n-1)]) )</pre>
           qxx <- c(qx[(idade+1):(idade+n)])</pre>
               <- (1/(i+1)) ^(1:n)
           Ax <- b* sum(v*pxx*qxx)
           return (Ax)
dotal<-function(i,idade,n,b){</pre>
          <- 1/(i+1)^n
     npx <- prod( px[(idade+1):(idade+n)])</pre>
        <- V*npx*b
     return(Dt)
```

```
Idade
                  q_X
25
            0,00077
26
            0,00081
            0,00085
27
            0,00090
28
29
            0,00095
            0,00100
30
            0,00107
31
32
            0,00114
33
            0,00121
34
            0,00130
            0,00139
35
```

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Ou seja, caso esse segurado faleça entre seus 28 e 33 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

		$- 3 A_{25^1:\overline{5} } = v^3 {}_{3}p_{25}A_{28^1:\overline{5} }$
Idade	q_X	
25	0,00077	dotal(0.04,25,3,1) prêmio(0.04,28,5,1)
26	0,00081	a.e.a(e.e)_5)=/ p.ee(e.e)_5)=/
27	0,00085	
28	0,00090	$_{3 }A_{25^{1}:\overline{5} } = A_{25^{1}:\overline{5+3 }} - A_{25^{1}:\overline{3} }$
29	0,00095	
30	0,00100	prêmio(0.04,25,8,1) –prêmio(0.04,25,3,1)
31	0,00107	premio(0.0 1)23)3)1)
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	luade rederal de Alfenas

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro vitalicio, com 3 anos de carência. Ou seja, caso esse segurado faleça entre seus 28 e 33 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

		_	$_{3 }A_{25} = v^3 _{3}p_{25}A_{28}$
Idade	q_X	_	31 23 20
25	0,00077	????	
26	0,00081		
27	0,00085		
28	0,00090		$_{3 }A_{25} = A_{25} - A_{25^1:\overline{3 }}$
29	0,00095		
30	0,00100	????	
31	0,00107		
32	0,00114		
33	0,00121		
34	0,00130		
35	0,00139	loane r	

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Ou seja, caso esse segurado faleça entre seus 28 e 33 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

$$_{3|}A_{25} = v^3 _{3}p_{25}A_{28}$$

 $dotal(0.04,25,3,1) \times prêmio(0.04,28,max(Idade)-28,1)$

$$_{3|}A_{25} = A_{25} - A_{25^1:\overline{3|}}$$

prêmio(0.04,25,max(Idade)-25,1)-prêmio(0.04,25,3,1)

$$Z_{T} = \begin{cases} v^{T+1} T \leq n & A_{x^{1}:\overline{n}|} = \sum_{t=0}^{n-1} Z_{T} t p_{x} q_{x+t} \\ 0 c.c. & A_{x^{1}:\overline{n}|} = \sum_{t=0}^{n-1} Z_{T} t p_{x} q_{x+t} \end{cases}$$

$$Z_{T} = e^{-\delta t}; \ 0 \leq t \leq n \quad \overline{A}_{x^{1}:\overline{n}|} = \int_{0}^{n} Z_{T} t p_{x} \mu_{x+t} dt$$

$$Z_{T} = \begin{cases} v^{T+1} T \leq n & A_{x} = \sum_{t=0}^{\infty} Z_{T} t p_{x} \mu_{x+t} dt \end{cases}$$

$$Z_{T} = \begin{cases} v^{T} \leq n & A_{x^{1}:\overline{n}|} = \sum_{t=0}^{n} Z_{T} t p_{x} \mu_{x+t} dt \end{cases}$$

$$Z_{T} = \begin{cases} v^{T} \leq n & A_{x^{1}:\overline{n}|} = \sum_{t=0}^{n} Z_{T} t p_{x} \mu_{x+t} dt \end{cases}$$

$$Z_{T} = \begin{cases} v^{T} \leq n & A_{x^{1}:\overline{n}|} = A_{x^{1}:\overline{n}|} + A_{x^{1}:\overline{n}|} = A_{x^{1}:\overline{n}|} + A_{x^{1}:\overline{n}|}$$

Relação entre o caso discreto (pagamento no final do ano da morte) e o caso contínuo

➤ Fim do ano → Tabela de vida, na prática, quase no momento da morte.

> Suposição

$$T = (k+1) - (1-s)$$

Relação entre o caso discreto (pagamento no final do ano da morte) e o caso contínuo

- \succ Assumindo que T é independente de S e que $S \sim U_c(0,1)$.
- Considere o seguro de vida inteira pago no momento de morte:

$$\bar{A}_{x} = \int_{0}^{\infty} Z(t) f_{T}(t) dt = E[Z(t)]$$

 $dado Z(t) = v^t$

$$\bar{A}_{x} = \int_{0}^{\infty} v^{t} f_{T}(t) dt = E(v^{T})$$

Relação entre o caso discreto (pagamento no final do ano da morte) e o caso contínuo

$$\bar{A}_{x} = E(v^{T}) = E\left[v^{(k+1)-(1-s)}\right] = E\left[v^{(k+1)}v^{-(1-s)}\right]$$

$$\bar{A}_{x} = E\left[v^{(k+1)}\right]E\left[v^{-(1-s)}\right]$$

$$\bar{A}_{x} = A_{x}E\left[v^{-(1-s)}\right]$$

$$\bar{A}_{x} = A_{x}E\left[e^{-\delta(-(1-s))}\right] = A_{x}E\left[e^{\delta(1-s)}\right]$$

$$\bar{A}_{x} = A_{x}E\left[e^{\delta(1-s)}\right] = A_{x}\int_{0}^{1} e^{\delta(1-s)}ds$$

$$\bar{A}_{x} = A_{x}\frac{e^{\delta-1}}{\delta} = A_{x}\frac{(1+i)-1}{\delta}$$

$$\bar{A}_{x} = A_{x}\frac{i}{\delta}$$

i: Taxa de juros discreta

δ: Taxa de juros constante

Uma pessoa de 25 anos deseja fazer um seguro de **vida inteiro** que paga $1\,u.m$. no momento da morte. Calcule o valor aproximado desse prêmio considerando que o prêmio pago para esse mesmo seguro com indenização ao final do ano de morte é de $A_{25}=0,11242$

Considere que o tempo de sobrevida desse segurado pode ser bem modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 5% ao ano.

Seguro de vida Inteiro

$$A_{25} = \sum_{t=0}^{90} \left(\frac{1}{1,05}\right)^{t+1} t p_{25} q_{25+t} = 0,11242$$

$$\bar{A}_{25} = A_{25} \frac{i}{\delta} = 0,11242 \left(\frac{0,05}{\ln 1,05} \right) = 0,1152076$$

Considerar uma pessoa de idade de 30 anos que decide fazer um seguro de vida vitalício pague um benefício de 1 u.m. ao final do ano de morte. Admita $\bar{A}_{30}=0,28317$ e que i=5%.

Considerar uma pessoa de idade de 30 anos que decide fazer um seguro de vida vital<u>í</u>cio pague um benefício de 1 u.m. ao final do ano de morte. Admita $\bar{A}_{30}=0,28317$ e que i=5%.

$$A_{30} = \frac{\delta}{i}\bar{A}_{30} = \left(\frac{\ln 1,05}{0,05}\right)0,28317 = 0,2763182$$

Relação entre o caso discreto (pagamento no final do ano da morte) e o caso contínuo

$$\bar{A}_{x} = A_{x} \frac{i}{\delta}$$

Para o caso temporário

$$\bar{A}_{x^1:\bar{n}|} = A_{x^1:\bar{n}|} \frac{i}{\delta}$$

Essa relação também serve para calcular de forma aproximada o $\bar{A}_{\chi:\bar{n}|}$.

$$\bar{A}_{x:\bar{n}|} = A_{x^1:\bar{n}|} \frac{i}{\delta} + A_{x:\bar{n}|^1}$$

i: Taxa de juros discreta

δ: Taxa de juros constante