Frieze Patterns and Cluster Algebras

Luke Kershaw

University of Bristol

I.kershaw@bristol.ac.uk

13th November 2020

Conway and Coxeter

J.H. Conway

Photo: Denise Applewhite

H.S.M. Coxeter

Photo: Marion Walter

Frieze Patterns

A frieze pattern of height n consists of n+2 rows of positive integers

such that

- (1) every entry in the first and last row is 1, and
- (2) the entries satisfy the $\underbrace{\text{SL}_2_diamond_rule}_{c}$, meaning that every local configuration $a \atop c \atop c$ satisfies ad-bc=1.

$$a \begin{array}{c} b \\ c \end{array} d \Longrightarrow ad-bc=1 \Longrightarrow d=\frac{1+bc}{a}$$

$$a \stackrel{b}{c} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{c} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{c} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{c} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{c} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{\sim} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{c} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{\sim} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{\underset{c}{c}} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{\sim} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \begin{array}{c} b \\ c \end{array} d \Longrightarrow ad-bc=1 \Longrightarrow d=\frac{1+bc}{a}$$

$$a \stackrel{b}{\underset{c}{\circ}} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{\underset{c}{\circ}} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{=} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{\underset{c}{\circ}} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{=} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \stackrel{b}{\underset{c}{\circ}} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

$$a \frac{b}{c} d \implies ad - bc = 1 \implies d = \frac{1 + bc}{a}$$

1		1	1		1		1		1		1		1		
	2	$\sqrt{1}$)	3		2		3		2		1		3	
7		1 1	2		5		5		5		1		2		
	3	1		3		12		8		2		1		7	
8		2	1)		7		19		3		1		3		
	5	2		2		11		7		1		2		5	
3		2	1		3		4		2		1		3		
	1	1		1		1		1		1		1		1	

$$\frac{1 + \frac{x_1 + x_3 + x_2 x_3}{x_1 x_2}}{\frac{1 + x_2}{x_1}} = \frac{x_1 + x_3 + x_1 x_2 + x_2 x_3}{x_2 (1 + x_2)} = \frac{(x_1 + x_3)(1 + x_2)}{x_2 (1 + x_2)} = \frac{x_1 + x_3}{x_2}$$

$$\frac{1 + \frac{x_1 + x_3}{x_2} \cdot \frac{x_1 + x_3 + x_1 x_2 + x_2 x_3}{x_1 x_2 x_3}}{\frac{x_1 + x_3 + x_2 x_3}{x_1 x_2}} = \frac{x_1 x_2^2 x_3 + (x_1 + x_3)(x_1 + x_3 + x_1 x_2 + x_2 x_3)}{x_2 x_3(x_1 + x_3 + x_2 x_3)}$$

$$= \frac{x_1 x_2^2 x_3 + (x_1^2 x_2 + x_1 x_2 x_3) + (x_1 + x_3)(x_1 + x_3 + x_2 x_3)}{x_2 x_3(x_1 + x_3 + x_2 x_3)}$$

$$= \frac{(x_1 x_2 + x_1 + x_3)(x_1 + x_3 + x_2 x_3)}{x_2 x_3(x_1 + x_3 + x_2 x_3)} = \frac{x_1 + x_3 + x_1 x_2}{x_2 x_3}$$

Fomin and Zelevinsky

Sergey Fomin

Andrei Zelevinksy

Cluster Quivers

A quiver is a directed graph, possibly with multiple arrows or loops.

Cluster Quivers

A quiver is a directed graph, possibly with multiple arrows or loops.

Cluster Quivers

A quiver is a directed graph, possibly with multiple arrows or loops.

Cluster Quivers

A quiver is a directed graph, possibly with multiple arrows or loops.

Cluster Quivers

A quiver is a directed graph, possibly with multiple arrows or loops.

A cluster quiver is a quiver Q without oriented cycles of length 1 or 2.

Let Q be a cluster quiver and k be a vertex of Q. The $\underline{\text{mutation}}$ $\mu_k Q$ of Q at k is obtained by the following procedure:

Let Q be a cluster quiver and k be a vertex of Q. The $\underline{\text{mutation}}$ $\mu_k Q$ of Q at k is obtained by the following procedure:

- 1. for each path of length two, $i \rightarrow k \rightarrow j$, add an arrow $i \rightarrow j$.
- 2. reverse the direction of all arrows that start or end at k.
- 3. choose a maximal set of 2-cycles, and remove all arrows appearing in them.

Let Q be a cluster quiver and k be a vertex of Q. The $\underline{\text{mutation}}$ $\mu_k Q$ of Q at k is obtained by the following procedure:

- 1. for each path of length two, $i \rightarrow k \rightarrow j$, add an arrow $i \rightarrow j$.
- 2. reverse the direction of all arrows that start or end at k.
- 3. choose a maximal set of 2-cycles, and remove all arrows appearing in them.

Let Q be a cluster quiver and k be a vertex of Q. The $\underline{\text{mutation}}$ $\mu_k Q$ of Q at k is obtained by the following procedure:

- 1. for each path of length two, $i \rightarrow k \rightarrow j$, add an arrow $i \rightarrow j$.
- 2. reverse the direction of all arrows that start or end at k.
- 3. choose a maximal set of 2-cycles, and remove all arrows appearing in them.

Let Q be a cluster quiver and k be a vertex of Q. The $\underline{\text{mutation}}$ $\mu_k Q$ of Q at k is obtained by the following procedure:

- 1. for each path of length two, $i \rightarrow k \rightarrow j$, add an arrow $i \rightarrow j$.
- 2. reverse the direction of all arrows that start or end at k.
- 3. choose a maximal set of 2-cycles, and remove all arrows appearing in them.

Let Q be a cluster quiver and k be a vertex of Q. The $\underline{\text{mutation}}$ $\mu_k Q$ of Q at k is obtained by the following procedure:

- 1. for each path of length two, $i \rightarrow k \rightarrow j$, add an arrow $i \rightarrow j$.
- 2. reverse the direction of all arrows that start or end at k.
- 3. choose a maximal set of 2-cycles, and remove all arrows appearing in them.

Let Q be a cluster quiver and k be a vertex of Q. The $\underline{\text{mutation}}$ $\mu_k Q$ of Q at k is obtained by the following procedure:

- 1. for each path of length two, $i \to k \to j$, add an arrow $i \to j$.
- 2. reverse the direction of all arrows that start or end at k.
- 3. choose a maximal set of 2-cycles, and remove all arrows appearing in them.

For example, if we mutate the following quiver at vertex 1:

If we mutate at the same vertex twice, we get the original quiver back.

Let $\mathbb{Q}(x_1,\ldots,x_n)$ be the field of rational functions in x_i for $i\in\{1,\ldots,n\}$.

Let $\mathbb{Q}(x_1,\ldots,x_n)$ be the field of rational functions in x_i for $i\in\{1,\ldots,n\}$.

A seed is a cluster quiver Q with vertex set $Q_0 = \{1, \ldots, n\}$, together with a free generating set $\{f_1, \ldots, f_n\} \subseteq \mathbb{Q}(x_1, \ldots, x_n)$ indexed by Q_0 .

Let $\mathbb{Q}(x_1,\ldots,x_n)$ be the field of rational functions in x_i for $i\in\{1,\ldots,n\}$.

A <u>seed</u> is a cluster quiver Q with vertex set $Q_0 = \{1, \ldots, n\}$, together with a free generating set $\{f_1, \ldots, f_n\} \subseteq \mathbb{Q}(x_1, \ldots, x_n)$ indexed by Q_0 .

Define mutation of a seed $(Q, \{f_i\})$ at vertex k to be $\mu_k(Q, \{f_i\}) = (\mu_k Q, \{f_i'\})$ where

$$f_i' = egin{cases} f_i & i
eq k, \ rac{1}{f_k} \left(\prod_{k
ightarrow j} f_j + \prod_{\ell
ightarrow k} f_\ell
ight) & i = k. \end{cases}$$

Let $\mathbb{Q}(x_1,\ldots,x_n)$ be the field of rational functions in x_i for $i\in\{1,\ldots,n\}$.

A <u>seed</u> is a cluster quiver Q with vertex set $Q_0 = \{1, \ldots, n\}$, together with a free generating set $\{f_1, \ldots, f_n\} \subseteq \mathbb{Q}(x_1, \ldots, x_n)$ indexed by Q_0 .

Define mutation of a seed $(Q, \{f_i\})$ at vertex k to be $\mu_k(Q, \{f_i\}) = (\mu_k Q, \{f_i'\})$ where

$$f_i' = egin{cases} f_i & i
eq k, \ rac{1}{f_k} \left(\prod_{k
ightarrow j} f_j + \prod_{\ell
ightarrow k} f_\ell
ight) & i = k. \end{cases}$$

If we mutate a seed twice at the same vertex, we recover the original seed.

A cluster quiver Q with $Q_0 = \{1, ..., n\}$ has $i\underline{n}\underline{i}\underline{t}\underline{i}\underline{a}\underline{l}$ $\underline{s}\underline{e}\underline{e}\underline{d}$ $s_0 = (Q, \{x_i\})$.

A cluster quiver Q with $Q_0 = \{1, ..., n\}$ has $\underline{initial} \underline{seed} \ s_0 = (Q, \{x_i\})$.

Let S_Q be the set of all seeds obtained from s_0 by a finite sequence of mutations.

A cluster quiver Q with $Q_0 = \{1, ..., n\}$ has $i\underline{n}\underline{i}\underline{t}\underline{i}\underline{a}\underline{l}$ $\underline{s}\underline{e}\underline{e}\underline{d}$ $s_0 = (Q, \{x_i\})$.

Let \mathcal{S}_Q be the set of all seeds obtained from s_0 by a finite sequence of mutations.

Definition

The c<u>luster_algebra</u> A_Q of Q is the \mathbb{Q} -subalgebra of $\mathbb{Q}(x_1, \ldots, x_n)$ generated by all functions appearing in seeds of S_Q .

A cluster quiver Q with $Q_0 = \{1, ..., n\}$ has $\underline{initial} \underline{seed} \ s_0 = (Q, \{x_i\})$.

Let \mathcal{S}_Q be the set of all seeds obtained from s_0 by a finite sequence of mutations.

Definition

The c<u>luster_algebra</u> A_Q of Q is the \mathbb{Q} -subalgebra of $\mathbb{Q}(x_1, \ldots, x_n)$ generated by all functions appearing in seeds of S_Q .

We call the rational functions appearing in seeds of S_Q cluster variables.

Laurent Phenomenon for Cluster Algebras

Theorem (Fomin-Zelevinksy 2002)

Let Q be a cluster quiver. Then every cluster variable in A_Q is a Laurent polynomial in the initial variables $\{x_1, \ldots, x_n\}$.

Laurent Phenomenon for Cluster Algebras

Theorem (Fomin-Zelevinksy 2002)

Let Q be a cluster quiver. Then every cluster variable in A_Q is a Laurent polynomial in the initial variables $\{x_1, \ldots, x_n\}$.

Proof.

Fomin and Zelevinsky give a combinatorial proof in their original 2002 paper, using a more general definition of cluster algebras than we do.

Integrality for Friezes

Theorem

Given a frieze of height n, the formulae expressing arbitrary entries in terms of those in a lightning bolt are given by cluster variables in A_Q for Q a quiver of type A_n .

Integrality for Friezes

Theorem

Given a frieze of height n, the formulae expressing arbitrary entries in terms of those in a lightning bolt are given by cluster variables in A_Q for Q a quiver of type A_n .

Corollary

If we set the values in a lightning bolt to 1, we will always obtain a valid frieze pattern; that is, the other entries will all be positive integers.

Integrality for Friezes

Theorem

Given a frieze of height n, the formulae expressing arbitrary entries in terms of those in a lightning bolt are given by cluster variables in A_Q for Q a quiver of type A_n .

Corollary

If we set the values in a lightning bolt to 1, we will always obtain a valid frieze pattern; that is, the other entries will all be positive integers.

The rest of the talk focusses on explaining the proof of this theorem.

Given a lightning bolt with n elements (so the frieze has n non-trivial rows), we define a quiver, Q, by having an arrow between points of the lightning bolt in adjacent rows and orienting the arrow to the right.

Given a lightning bolt with n elements (so the frieze has n non-trivial rows), we define a quiver, Q, by having an arrow between points of the lightning bolt in adjacent rows and orienting the arrow to the right.

Given a lightning bolt with n elements (so the frieze has n non-trivial rows), we define a quiver, Q, by having an arrow between points of the lightning bolt in adjacent rows and orienting the arrow to the right.

Given a lightning bolt with n elements (so the frieze has n non-trivial rows), we define a quiver, Q, by having an arrow between points of the lightning bolt in adjacent rows and orienting the arrow to the right.

A source in Q corresponds to three entries on the lightning bolt (or in the trivial rows) forming the left-hand part of a diamond.

If we mutate our quiver at a source i, this changes Q by reversing the arrows incident to i, which creates a sink. The new variable we obtain is:

$$f_i' = \frac{f_{i-1}f_{i+1} + 1}{f_i}$$

where if i = 1 (resp. i = n) we interpret f_{i-1} (resp. f_{i+1}) as 1.

If we mutate our quiver at a source i, this changes Q by reversing the arrows incident to i, which creates a sink. The new variable we obtain is:

$$f_i' = \frac{f_{i-1}f_{i+1} + 1}{f_i}$$

where if i = 1 (resp. i = n) we interpret f_{i-1} (resp. f_{i+1}) as 1.

Note at this point that $\begin{array}{ccc} f_{i-1} & f_i' & \text{satisfies the SL}_2 \text{ diamond rule.} \\ f_{i+1} & & \end{array}$

If we mutate our quiver at a source i, this changes Q by reversing the arrows incident to i, which creates a sink. The new variable we obtain is:

$$f_i' = \frac{f_{i-1}f_{i+1} + 1}{f_i}$$

where if i = 1 (resp. i = n) we interpret f_{i-1} (resp. f_{i+1}) as 1.

Note at this point that f_i f_{i-1} f_i' satisfies the SL_2 diamond rule.

Thus mutating the quiver at the source i corresponds exactly to filling in the value of the frieze to the right of the lightning bolt entry in row i.

If we mutate our quiver at a source i, this changes Q by reversing the arrows incident to i, which creates a sink. The new variable we obtain is:

$$f_i' = \frac{f_{i-1}f_{i+1} + 1}{f_i}$$

where if i = 1 (resp. i = n) we interpret f_{i-1} (resp. f_{i+1}) as 1.

Note at this point that f_i f_{i-1} f_i' satisfies the SL_2 diamond rule.

Thus mutating the quiver at the source i corresponds exactly to filling in the value of the frieze to the right of the lightning bolt entry in row i.

This then gives us a new lightning bolt of values, with the entry in the *i*-th row moved to the right by one step.

