Given a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$
 (1)

1 Section 1

Parameters	Values	Description	
m1	$\begin{pmatrix} -3\\0 \end{pmatrix}$	AB	
m2	$\begin{pmatrix} 6 \\ -1 \end{pmatrix}$	ВС	
m3	$\begin{pmatrix} -3 \\ 1 \end{pmatrix}$	AC	
$ \mathbf{B} - \mathbf{A} $	6.08	Length of BC	
Rank	3	Non-Collinear	
n ₁	$\begin{pmatrix} 0 \\ 3 \end{pmatrix}$	Normal to AB	
c_1	-3		
n ₂	$\begin{pmatrix} -1 \\ -6 \end{pmatrix}$	Normal to BC	
c_2	7		
n3	$\begin{pmatrix} -1 \\ -3 \end{pmatrix}$	Normal to AC	
c_3	1		
Area	1.5	Area of $\triangle ABC$	
$\angle A$	161.565		
∠B	9.46 Angle		
∠C	8.97		

TABLE 1: Section 1

Parameters	Values	Description
D	$\begin{pmatrix} 2 \\ -1.5 \end{pmatrix}$	Midpoint of BC
Е	$\begin{pmatrix} 3.5 \\ -1.5 \end{pmatrix}$	Midpoint of CA
F	(1.5) (1.0)	Midpoint of AB
n ₁	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$	AD
c_1	-2	
n2	$\begin{pmatrix} -1 \\ -9 \end{pmatrix} \qquad \qquad BE$	
c_2	10	
n3	$\begin{pmatrix} 2 \\ 9 \end{pmatrix}$ CF	
<i>c</i> ₃	-8	
G	$\begin{pmatrix} 2.0 \\ -1.33 \end{pmatrix}$	Centroid
Rank	2	Collinear

2 Section 2

TABLE 2: Section 2

Fig. 1: Triangle using python

Fig. 2: Centroid using python

3 Section 3 4 Section 4

Parameters	Values	Description
D	(1.92 (-1.49)	Foot on BC
E	$\begin{pmatrix} -0.7 \\ -0.1 \end{pmatrix}$	Foot on CA
F	$\begin{pmatrix} 5 \\ -1 \end{pmatrix}$	Foot on AB
n ₁	$\begin{pmatrix} -6 \\ 1 \end{pmatrix}$	AD
m ₁	$\begin{pmatrix} 0.49 \\ -0.08 \end{pmatrix}$	AD
c_1	-7	
n ₂	$\begin{pmatrix} 3 \\ -1 \end{pmatrix}$	BE.
m ₂	$\begin{pmatrix} -0.9 \\ 0.3 \end{pmatrix}$	DE.
c_2	-2	
n ₃	$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$	CE
m ₃	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$	CF
<i>c</i> ₃	15	
Н	$\begin{pmatrix} 5 \\ 17 \end{pmatrix}$	Orthocentre

	TABLE	3:	Section	3
--	--------------	----	---------	---

Parameters	Values	Description
\mathbf{m}_1	$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$	Perpendicular Bisector of AB
c_1	1.5	
\mathbf{m}_2	$\begin{pmatrix} -6 \\ 1 \end{pmatrix}$	Perpendicular Bisector of BC
c_2	-13.5	
m_3	$\begin{pmatrix} 3 \\ -1 \end{pmatrix}$	Perpendicular Bisector of CA
c_3	12	1
0	$\begin{pmatrix} 0.5 \\ -10.5 \end{pmatrix}$	Circumcentre
R	9.62	Circumradius
$\angle BOC$	323.13°	$\angle BOC = 2\angle BAC$
∠BAC	161.56°	

TABLE 4: Section 4

Fig. 3: Altitudes using python

Fig. 4: Circumcircle using python

5 Section 5

Parameters	Values	Description
m ₁	$\begin{pmatrix} 0.05 \\ 0.32 \end{pmatrix}$	Angle bisector of ∠A
c_1	-0.68	
m ₂	$\begin{pmatrix} 1.99 \\ -0.16 \end{pmatrix}$	Angle bisector of $\angle B$
c_2	2.15	
m ₃	$\begin{pmatrix} 1.93 \\ -0.48 \end{pmatrix}$	Angle bisector of $\angle C$
<i>C</i> ₃	-1.47	
I	$\begin{pmatrix} 1.96 \\ -1.24 \end{pmatrix}$	Incentre
\mathbf{D}_3	$\begin{pmatrix} 1.92 \\ -1.49 \end{pmatrix}$	Point of contact with BC
E ₃	$\begin{pmatrix} 1.96 \\ -1 \end{pmatrix}$	Point of contact with CA
F ₃	$\begin{pmatrix} 2.04 \\ -1.01 \end{pmatrix}$	Point of contact with AB
$ I - D_3 $		
$ \mathbf{I} - \mathbf{E}_3 $		
$ \mathbf{I} - \mathbf{F}_3 $	0.24	$ID_3 = IF_3 = IE_3 = r$
r		
∠BAI	80.78°	/BAI = /CAI
∠CAI	80.78°	$\angle DAI = \angle CAI$

TABLE 5: Section 5

Fig. 5: Incircle using python