FYS-2021 Machine Learning

Bayes Rule and Classification (Part 1)

Slides by Stine Hansen Guest Lecture by Elisabeth Wetzer

Roadmap

- 1. Probabilistic thinking and random variables
- 2. Intuition of the Bayes classifier
- 3. Bayes rule
- 4. Bayes decision rule

Break

- 5. Training a Bayes Classifier
- 6. Maximum likelihood
- 7. The univariate Gaussian Bayes classifier
- 8. Practical connection

Why probabilistic machine learning?

Desirable to return a probability!

Modelling uncertainty

The real world is uncertain.

Probability is used to quantify uncertainty.

In the Bayes classifier:

- Features and class labels are treated as random variables
- Dependencies between random variables are encoded in probability distributions

Probabilistic thinking

A random variable is a function that assigns a value to each outcome of a random experiment.

A probability distribution describes how the probabilities are distributed over the possible values of a random variable.

Probabilistic thinking: Discrete random variables

$$X = \begin{cases} 0 \text{ if heads} \\ 1 \text{ if tails} \end{cases}$$

A random variable is a function that assigns a value to each outcome of a random experiment.

coin toss

pmf

A probability distribution describes how the probabilities are distributed over the possible values of a random variable.

Probabilistic thinking: Continuous random variables

 $X \in \mathbb{R}^+$

A random variable is a function that assigns a value to each outcome of a random experiment.

Measure the height of individuals

pdf

A probability distribution describes how the probabilities are distributed over the possible values of a random variable.

Probability theory

Sum rule is defined as

$$p(X) = \sum_{Y} p(X, Y)$$
 joint distribution

Product rule is defined as

marginal distribution <

$$p(X,Y) = p(Y|X)p(X) = p(X|Y)p(Y)$$

conditional distribution

Marginal distributions are obtained through the sum rule

$$p(W) = \sum_{T} p(W, T)$$
 and $p(T) = \sum_{W} p(W, T)$

Conditional probabilities are computed as

$$p(W|T) = \frac{p(W,T)}{p(T)}$$

W	P(W T=hot)
sun	0.4/0.5 = 0.8
rain	0.1/0.5 = 0.2

W	P(W T=cold)
sun	0.2/0.5 = 0.4
rain	0.3/0.5 = 0.6

Notation

Description	Notation
Random variable	X
Realization of random variable	Х
Set of N realizations	$\{x^1, x^2,, x^N\}$
Class i	C _i
Model parameters	θ

The intuition behind the Bayes classifier

height

Basketball player or not

Example: Classify a realization of a random variable X = x into one of two classes C_1 and C_2 .

Bayes Classifier:

"Assign the sample to the most probable class, given the data"

Decision rule:

$$x \rightarrow C_1$$
 if $p(C_1|X=x) > p(C_2|X=x)$

Need to compute these conditional probabilities!

How to compute $p(C_i|X=x)$?

Use Bayes' Rule!

$$p(C_i|x) = rac{p(x|C_i)\,p(C_i)}{p(x)}$$

Posterior

Posterior

Prior

 $p(x|C_i)\,p(C_i)$

Normalizing constant!

 $p(x) = \sum_{C_i} p(x,C_i) = \sum_{C_i} p(x|C_i)p(C_i)$

Sum rule product rule

$$p(x|C_i)p(C_i) = p(x,C_i) = p(C_i|x)p(x)$$

product rule product rule

How to compute $p(C_i|X=x)$?

Example: Compute the probability of having a disease given a positive test.

 $C = \{disease, not disease\}$ $X \in \{1,0\}$ (positive/negative test) discrete random variable

Want to compute

$$p(C_i|x) = rac{p(x|C_i)p(C_i)}{p(x)}$$
Prior

Posterior

Evidence

$$p(x) = \sum_{C_i} p(x, C_i) = \sum_{C_i} p(x|C_i)p(C_i)$$
sum rule product rule

Posterior
$$p(disease|x=1) = \frac{p(x=1|disease)p(disease)}{p(x=1)} = \frac{0.8*0.004}{0.004*0.8+0.996*0.1} = 0.031$$
 \leftarrow If the test is positive, the chance of disease is 3 %

Likelihood p(x = 1|disease) = 0.8 (sensitivity of test is known to be 80 %)

Prior p(disease) = 0.004 (0.4 % of the population gets the disease)

Evidence p(x = 1) = p(disease)p(x = 1|disease) + p(not disease)p(x = 1|not disease)= 0.004 * 0.8 + 0.996 * 0.1(FP rate of test is known to be 10 %)

Bayes Classifier: Decision rule

$$p(C_i|x) = \frac{p(x|C_i) p(C_i)}{p(x)}$$
Evidence

$$x \to C_1 \quad if \qquad p(C_1|x) > p(C_2|x)$$

$$\frac{p(x|C_1) p(C_1)}{p(x)} > \frac{p(x|C_2) p(C_2)}{p(x)}$$

$$p(x|C_1) p(C_1) > p(x|C_2) p(C_2)$$

$$x \to C_i$$
 if $p(x|C_i) p(C_i) > p(x|C_j) p(C_j) \forall j \neq i$

Bayes classifier

Example: Classify whether a person is a basketball player based on height.

 $C = \{ \text{basketball player}, \text{not basketball player} \}$ $X \in \mathbb{R} \text{ (height in cm)}$ continuous random variable

- Estimate likelihoods, $p(x|C_i)$
- Estimate priors, $p(C_i)$

```
p(basketball\ player) = 0.05
p(not\ basketball\ player) = 0.95
```


Bayes classifier: Properties

$$p(C_{+}) * p(x_{T}|C_{+}) = p(C_{\div}) * p(x_{T}|C_{\div})$$

- Threshold where $p(C_+|x) = p(C_+|x)$
- p(error) = $\int_{x_T}^{\infty} p(C_+) * p(x|C_+) dx +$ $\int_{-\infty}^{x_T} p(C_{\div}) * p(x|C_{\div}) dx$
- Probability of errors is minimized if we have the true $p(x|C_i)$ and $p(C_i)$!

Roadmap

- 1. Probabilistic thinking and random variables
- 2. Intuition of the Bayes classifier
- 3. Bayes rule
- 4. Bayes decision rule

Break

- 5. Training a Bayes Classifier
- 6. Maximum likelihood
- 7. The univariate Gaussian Bayes classifier
- 8. Practical connection

Bayes classifier: Properties

$$p(C_{+}) * p(x_{T}|C_{+}) = p(C_{\div}) * p(x_{T}|C_{\div})$$

- Threshold where $p(C_+|x) = p(C_+|x)$
- p(error) = $\int_{x_T}^{\infty} p(C_+) * p(x|C_+) dx +$ $\int_{-\infty}^{x_T} p(C_{\div}) * p(x|C_{\div}) dx$
- Probability of errors is minimized if we have the true $p(x|C_i)$ and $p(C_i)$!

Need to estimate $p(C_i)$ and $p(x|C_i)$ from data

To train a Bayes classification model = To estimate $p(C_i)$ and $p(x|C_i)$ from training data $\mathcal{D} = \{(x^i, y^i)\}_{i=1}^N!$ Scaling Shape/position

Prior class probabilities, $p(C_i)$

are estimated as the frequency of class C_i in the training data:

$$p(C_i) = \frac{\#\mathcal{D}\{y^i = C_i\}}{N}$$
 Number of training samples belonging to class C_i

Likelihood terms, $p(x|C_i)$

are estimated via maximum likelihood!

Maximum likelihood estimation (MLE)

Estimating the parameter values θ of a statistical model that maximize the likelihood of the observed data

In practice:

- 1. Assume some parameterized distribution $p_{\theta}(x|C_i)$ can be Gaussian, Laplacian, Bernoulli, etc. depending on the type of features
- 2. Estimate the distribution's parameter(s) as

$$\begin{split} \widehat{\theta}_{MLE} &= arg \max_{\theta} \ell(\theta | \mathcal{D}) \quad \equiv arg \max_{\theta} p_{\theta}(x^1, ..., x^N | C_i) \\ &= arg \max_{\theta} \prod_{j=1}^N p_{\theta}(x^j | C_i) \quad \text{Ind. variables: P(A, B) = P(A)*P(B)} \\ &= arg \max_{\theta} \sum_{j=1}^N \log p_{\theta}(x^j | C_i) \log(a^*b) = \log(a) + \log(b) \\ &\log \text{likelihood, } L(\theta | \mathcal{D}) \end{split}$$

Maximum likelihood estimation (MLE)

$$\hat{\theta}_{MLE} = arg \max_{\theta} \sum_{j=1}^{N} \log p_{\theta}(x^{j} | C_{i}) \rightarrow \text{solve:} \qquad \frac{\partial}{\partial \theta} L(\theta | \mathcal{D}) = 0$$

Example: Univariate gaussian distribution, $p_{\theta}(x|C_i) \sim \mathcal{N}(\mu, \sigma)$ Here: $\theta = [\mu, \sigma]$ Assuming we have N_i observed samples from class C_i , $\{x^1, x^2, ..., x^{N_i}\}$

$$\begin{split} L(\theta|\mathcal{D}) &= \sum_{j=1}^{N_i} \log p_{\theta}(x^j|C_i) & \frac{\partial}{\partial \mu} L(\theta|\mathcal{D}) = 0 \quad \rightarrow \quad \hat{\mu}_{MLE} = \frac{1}{N_i} \sum_{j=1}^{N_i} x^j \\ &= \sum_{j=1}^{N_i} \log \left[\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left(\frac{x^j - \mu}{\sigma} \right)^2} \right] \\ &= -N_i \log \left(\sqrt{2\pi} \right) - N_i \log(\sigma) - \frac{1}{2} \sum_{j=1}^{N_i} \left(\frac{x^j - \mu}{\sigma} \right)^2 & \frac{\partial}{\partial \sigma} L(\theta|\mathcal{D}) = 0 \quad \rightarrow \quad \hat{\sigma}_{MLE}^2 = \frac{1}{N_i} \sum_{j=1}^{N_i} \left(x^j - \mu \right)^2 \end{split}$$

(Univariate) Gaussian Bayes classifier

Putting it all together

Assuming we have N training samples from class C_+ , $\{x^1, x^2, ..., x^N\}$, and M training samples from class C_+ , $\{x^1, x^2, ..., x^M\}$, and that $p(x|C_i) \sim \mathcal{N}(\mu_i, \sigma_i)$, $i = \{+, \div\}$.

Training:

MLEs for likelihood terms are given by

$$\hat{\mu}_{+} = \frac{1}{N} \sum_{j=1}^{N} x^{j}$$
 $\hat{\mu}_{+} = \frac{1}{M} \sum_{j=1}^{M} x^{j}$

$$\hat{\sigma}_{+}^{2} = \frac{1}{N} \sum_{j=1}^{N} (x^{j} - \mu)^{2} \quad \hat{\sigma}_{\div}^{2} = \frac{1}{M} \sum_{j=1}^{M} (x^{j} - \mu)^{2}$$

Prior class probability estimates are given by

$$\hat{p}(C_{+}) = \frac{N}{N+M} \qquad \hat{p}(C_{\div}) = \frac{M}{N+M}$$

$$p(C_+) p(x|C_+) \qquad p(C_+)p(x|C_+)$$

(Univariate) Gaussian Bayes classifier

Test time (inference)

$$x \to C_i \quad if$$

$$p(x|C_i) p(C_i) > p(x|C_i) p(C_i) \forall j \neq i$$

Decision rule

When we have some test sample x_{test} that we want to classify, we need to evaluate

$$g_i(\mathbf{x}_{test}) = p(\mathbf{x}_{test}|C_i) p(C_i)$$
 (discriminant function)

for all i. Then chose class C_i if

$$g_i(\mathbf{x}_{test}) = \max_k g_k(\mathbf{x}_{test})$$

$$g_{+}(x_{test}) = \left(\frac{1}{\sqrt{2\pi}\,\widehat{\sigma}_{+}}e^{-\frac{1}{2}\left(\frac{x_{test}-\widehat{\mu}_{+}}{\widehat{\sigma}_{+}}\right)^{2}}\right)\left(\frac{N}{N+M}\right)$$

$$g_{-}(\mathbf{x}_{test}) = \left(\frac{1}{\sqrt{2\pi}\,\widehat{\sigma}_{\div}}e^{-\frac{1}{2}\left(\frac{\mathbf{x}_{test}-\widehat{\mu}_{\div}}{\widehat{\sigma}_{\div}}\right)^{2}}\right)\left(\frac{M}{N+M}\right)$$

Quiz: Training a Bayes classifier

Assume a three-class classification problem where the likelihoods are Gaussians. How many parameters do you have to estimate to train the univariate Bayes classifier?

A: 3 parameters

B: 6 parameters

C: 9 parameters

D: It depends on the dataset

Answer: 3 classes * (prior + mean + std) = 9 parameters

Practical connection

0. [If not done] Split data into train/test

On training data:

- 1. Sort samples according to labels (class)
- 2. For each class: Compute estimates for class prior as class frequency
- 3. For each class: Assume distribution of likelihood and compute corresponding $\hat{\theta}_{MLE}$

On test data:

- 1. For each class: Compute discriminant function
- 2. Assign samples to class with maximum discriminant function
- 3. Compare predictions to labels and compute your confusion matrix

Roadmap

- 1. Probabilistic thinking and random variables
- 2. Intuition of the Bayes classifier
- 3. Bayes rule
- 4. Bayes decision rule

Break

- 5. Training a Bayes Classifier
- 6. Maximum likelihood
- 7. The univariate Gaussian Bayes classifier
- 8. Practical connection

Reject option

$$x \to C_i$$
 if $p(C_i|x) > p(C_j|x) \forall j \neq i$ and $p(C_i|x) > 1 - \lambda$ reject otherwise

Conclusion

- Supervised classification model
- Bayes classifier for univariate data
 - Assume distribution for the likelihoods
 - Learn class priors and MLE parameters for each class
- Closed form solutions to MLE (no iterative optimization)
- Possible to reject samples during inference

Thursday: From univariate to multivariate data

Video by 3Blue1Brown

• https://www.youtube.com/watch?v=HZGCoVF3YvM