Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Курсовая Работа

по дисциплине «Математические модели»

Выполнил:Ферапонтов М.В.Группа:гр. 3530904/00104

Проверил: Воскобойников С. П.

Санкт-Петербург 2023

Содержание

1	Вст	упление	2
	1.1	Постановка задачи	2
2	Pasi	ностная схема	3
	2.1	Внутренние точки	3
	2.2	На левой границе	4
	2.3	На правой границе	5
	2.4	На нижней границе	6
	2.5	На верхней границе	7
	2.6	Левый-нижний угол	7
	2.7	Левый-верхний угол	8
	2.8	Правый-верхний угол	8
	2.9	Правый-нижний угол	9
3	Нев	вязка разностной схемы	10
	3.1	Невязка во внутренних точках	10
	3.2	Невязка на левой границе	12
	3.3	Невязка на правой границе	14
4	Зап	ись СЛАУ	16
	4.1	Запись для внутренних точек	16
	4.2	Запись для левой границы	17
	4.3	Запись для правой границы	18
	4.4	Запись для нижней границы	18
	4.5	Запись для верхней границы	19
	4.6	Запись для левой нижней граничной точки	20
	4.7	Запись для правой нижней граничной точки	20
5	Mea	год сопряжённых градиентов	22
	5.1	Явный метод	22
	5.2	Неявный метод	22
6	Tec	тирование	24
		6.0.1 Тест №2	25
7	Зак	лючение	26

1 Вступление

1.1 Постановка задачи

Вариант N7. Используя интегро-интерполяционный метод, разработать подпрограмму для моделирования распределения температуры в цилиндре, описываемого математической моделью

$$-\left[\frac{1}{r}\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(k_2(r,z)\frac{\partial u}{\partial z}\right)\right]=f(r,z)$$

$$0 \leq c_{11} \leq k_1(r,z) \leq c_{12}, \quad 0 \leq c_{11} \leq k_2(r,z) \leq c_{22}, \quad 0 \leq r \leq R, \ 0 \leq z \leq L$$

С граничными условиями:

$$\begin{aligned} \left.u\right|_{r=0} &-\text{ограничено} & \left.-k_1\frac{\partial u}{\partial r}\right|_{r=R} &= \chi_2 \left.u\right|_{r=R} - \varphi_2(z) \\ \left.k_2\frac{\partial u}{\partial z}\right|_{z=0} &= \chi_3 \left.u\right|_{z=0} - \varphi_3(r) & \left.u\right|_{z=L} &= \varphi_4(r) \\ \chi_2 &\geq 0 & \chi_3 \geq 0 \end{aligned}$$

Матрица алгебраической системы должна храниться в упакованной форме.

2 Разностная схема

Введем основную сетку:

Введем дополнительную сетку:

Преобразуем наше начальное уравнение домножив на г

$$-\left[\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_2(r,z)\frac{\partial u}{\partial z}\right)\right]=rf(r,z)$$

2.1 Внутренние точки

Проинтегрируем уравнение внутри интервала:

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получим:

$$\begin{split} & - \left[\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i+\frac{1}{2}}} dz - \int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2}}} dz \\ & + \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} r k_2(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} r k_2(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j-\frac{1}{2}}} dr \right] = \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int\limits_{z_{j-\frac{1}{2}}}^{r} r f(r,z) dr dz \end{split}$$

Воспользуемся формулами численного дифференцирования:

$$\left.k_1(r,z)\frac{\partial u}{\partial r}\right|_{r=r_{i-\frac{1}{2}}}\approx k_1(r_{i-\frac{1}{2}},z)\frac{v_{i,j}-v_{i-1,j}}{h_r}$$

$$\left.k_2(r,z)\frac{\partial u}{\partial r}\right|_{z=z_{j-\frac{1}{2}}}\approx k_2(r,z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_z}$$

Также воспользуемся формулой средних прямоугольников:

$$\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}r\varphi(r,z)dr=\hbar_{i}r_{i}\varphi_{i}$$

$$\int\limits_{r_{i-\frac{1}{\alpha}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{\alpha}}}^{z_{j+\frac{1}{2}}}r\varphi(r,z)drdz=\hbar_{i}\hbar_{j}r_{i}\varphi_{i,j}$$

В итоге получаем разностную схему внутри интервала:

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &\left.+\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} &-\left[h_{z}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-h_{z}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &+\left.h_{r}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-h_{r}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=h_{r}h_{z}r_{i}f_{i,j} \end{split}$$

Теперь найдем значение разностной схемы на углах и границах интервалов

2.2 На левой границе

Проинтегрируем наше уравнение в i = 0 и z внутри промежутка

$$-\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{r_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} & - \left. \left[\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \right|_{r=r_{i+\frac{1}{2}}} dz - \int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \right|_{r=r_i} dz \\ & + \left. \int\limits_{r_i}^{r_{i+\frac{1}{2}}} r k_2(r,z) \frac{\partial u}{\partial z} \right|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_i}^{r_{i+\frac{1}{2}}} r k_2(r,z) \frac{\partial u}{\partial z} \right|_{z=z_{j-\frac{1}{2}}} dr \right] = \int\limits_{r_i}^{r_{i+\frac{1}{2}}} \int\limits_{z_{j-\frac{1}{2}}}^{r} r f(r,z) dr dz \end{split}$$

Имеем граничное условие:

$$\left.u\right|_{r=0}-$$
 ограничено, т. е $\left.\frac{\partial u}{\partial r}\right|_{r=0}=0$

$$\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rfdr \approx f_{i} \int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rdr = f_{i} \frac{r_{i+\frac{1}{2}}^{2}}{2} = \frac{h_{r}}{2} f_{i} \frac{r_{i+\frac{1}{2}}}{2}, \quad i = 0, \quad r_{i} = 0, r_{i+\frac{1}{2}} = \frac{h_{r}}{2}$$

Получаем разностную схему:

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{i+1}}-0\right.\\ &+\left.\hbar_{i}\frac{r_{i+\frac{1}{2}}}{2}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{i+1}}-\hbar_{i}\frac{r_{i+\frac{1}{2}}}{2}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{i}}\right]=\hbar_{i}\hbar_{j}\frac{r_{i+\frac{1}{2}}}{2}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} &-\left[h_zr_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_j)\frac{v_{1,j}-v_{0,j}}{h_r}-0\right.\\ &\left.+\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j+\frac{1}{2}})\frac{v_{0,j+1}-v_{0,j}}{h_z}-\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j-\frac{1}{2}})\frac{v_{0,j}-v_{0,j-1}}{h_z}\right]=\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}h_zf_{0,j} \end{split}$$

2.3 На правой границе

Проинтегрируем наше уравнение в $i=N_x$ и z внутри промежутка

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} & - \left| \int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \right|_{r=r_i} dz - \int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2}}} dz \\ & + \int\limits_{r_{i-\frac{1}{2}}}^{r_i} r k_2(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_{i-\frac{1}{2}}}^{r_i} r k_2(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j-\frac{1}{2}}} dr \right] = \int\limits_{r_{i-\frac{1}{2}}}^{r_i} \int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r f(r,z) dr dz \end{split}$$

Имеем граничное условие:

$$-k_1\frac{\partial u}{\partial r}\Big|_{r=R}=\chi_2\left.u\right|_{r=R}-\varphi_2(z)$$

Получаем разностную схему:

$$\begin{split} &-\left[-\hbar_{j}r_{i}(\chi_{2}v_{i}-\varphi_{2}(z))-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &+\left.\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} &-\left[-h_zr_{N_r}(\chi_2v_{N_r}-\varphi_2(z))-h_zr_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_j)\frac{v_{N_r,j}-v_{N_r-1,j}}{h_r}\right.\\ &\left.+\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j+\frac{1}{2}})\frac{v_{N_r,j+1}-v_{N_r,j}}{h_z}-\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j-\frac{1}{2}})\frac{v_{N_r,j}-v_{N_r,j-1}}{h_z}\right]=\frac{h_r}{2}r_{N_r}h_zf_{N_r,j} \end{split}$$

2.4 На нижней границе

Проинтегрируем наше уравнение j=0 и i внутри промежутка

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} & - \left[\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}} r k_{1}(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i+\frac{1}{2}}} dz - \int\limits_{z_{j}}^{z_{j+\frac{1}{2}}} r k_{1}(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2}}} dz \\ & + \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} r k_{2}(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} r k_{2}(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j}} dr \right] = \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int\limits_{z_{j}}^{z_{j+\frac{1}{2}}} r f(r,z) dr dz \end{split}$$

Имеем граничное условие:

$$k_2 \frac{\partial u}{\partial z}\Big|_{z=0} = \chi_3 \left. u \right|_{z=0} - \varphi_3(r)$$

Получаем разностную схему:

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &\left.+\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}(\chi_{3}v_{i}-\varphi_{3}(r))\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} -\left[\frac{h_z}{2}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_0)\frac{v_{i+1,0}-v_{i,0}}{h_r} - \frac{h_z}{2}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_0)\frac{v_{i,0}-v_{i-1,0}}{h_r} \right. \\ \left. + h_r r_i k_2(r_i,z_{\frac{1}{2}})\frac{v_{i,1}-v_{i,0}}{h_z} - h_r r_i (\chi_3 v_{i,0} - \varphi_3(r))\right] = h_r \frac{h_z}{2}r_i f_{i,0} \end{split}$$

2.5 На верхней границе

Имеем граничное условие:

$$u|_{z=L} = \varphi_r(r)$$

$$v_{i,N_z} = \varphi(r_i)$$

2.6 Левый-нижний угол

Проинтегрируем наше уравнение в i = 0 и j = 0 внутри промежутка

$$-\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} &-\left[\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i+\frac{1}{2}}}dz-\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i}}dz\\ &+\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j+\frac{1}{2}}}dr-\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j}}dr\right]=\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz \end{split}$$

Имеем граничное условие:

$$\left.u\right|_{r=0}-$$
 ограничено, т. е $\left.\frac{\partial u}{\partial r}\right|_{r=0}=0$

$$\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rfdr \approx f_{i} \int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rdr = f_{i} \frac{r_{i+\frac{1}{2}}^{2}}{2} = h_{r} f_{i} \frac{r_{i+\frac{1}{2}}}{2}, \quad i = 0, \quad r_{i} = 0, r_{i+\frac{1}{2}} = \frac{h_{r}}{2}$$

Также:

$$\left.k_2\frac{\partial u}{\partial z}\right|_{z=0}=\chi_3\left.u\right|_{z=0}-\varphi_3(r)$$

Получаем:

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-0\right.\\ &+\left.\hbar_{i}\frac{r_{i+\frac{1}{2}}}{2}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}\frac{r_{i+\frac{1}{2}}}{2}(\chi_{3}\left.u\right|_{z=0}-\varphi_{3}(r_{0}))\right]=\hbar_{i}\hbar_{j}\frac{r_{i+\frac{1}{2}}}{2}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} &-\left[\frac{h_z}{2}r_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_0)\frac{v_{1,0}-v_{0,0}}{h_r}-0\right.\\ &\left.+\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{\frac{1}{2}})\frac{v_{0,1}-v_{0,0}}{h_z}-\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}(\chi_3v_{0,0}-\varphi_3(r_0))\right]=\frac{h_r}{2}\frac{h_z}{2}\frac{r_{\frac{1}{2}}}{2}f_{0,0} \end{split}$$

2.7 Левый-верхний угол

При i=0 и $z=N_z$ имеем граничное условие: Имеем граничное условие:

$$u|_{z=L} = \varphi_r(r)$$

$$v_{0,N_z} = \varphi(r_0)$$

2.8 Правый-верхний угол

При $i=N_r$ и $z=N_z$ имеем граничное условие: Имеем граничное условие:

$$u|_{z=L} = \varphi_r(r)$$

$$v_{N_r,N_z} = \varphi(r_{N_r})$$

2.9 Правый-нижний угол

Проинегрируем наше уравнение в $i=N_r$ и j=0:

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)$$

Получаем:

$$\begin{split} &-\left[\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i}}\,dz-\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i-\frac{1}{2}}}\,dz\\ &+\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j+\frac{1}{2}}}\,dr-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j}}\,dr\right]=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz \end{split}$$

Имеем граничные условия:

$$\begin{split} -k_1 \frac{\partial u}{\partial r}\Big|_{r=R} &= \chi_2 \left. u \right|_{r=R} - \varphi_2(z) \\ k_2 \frac{\partial u}{\partial z}\Big|_{z=0} &= \chi_3 \left. u \right|_{z=0} - \varphi_3(r) \end{split}$$

Получаем разностную схему:

$$\begin{split} &-\left[-\hbar_{j}r_{i}(\chi_{2}\left.u\right|_{r=R}-\varphi_{2}(z))-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &\left.+\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}(\chi_{3}v_{i}-\varphi_{3}(r))\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному

$$\begin{split} -\left[-\frac{h_z}{2}r_{N_r}(\chi_2v_{N_r,0}-\varphi_2(z)) - \frac{h_z}{2}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_0)\frac{v_{N_r,0}-v_{N_r-1,0}}{h_r}\right. \\ \left. + \frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{\frac{1}{2}})\frac{v_{N_r,1}-v_{N_r,0}}{h_z} - \frac{h_r}{2}r_{N_r}(\chi_3v_{N_r,0}-\varphi_3(r))\right] = \frac{h_r}{2}\frac{h_z}{2}r_{N_r}f_{N_r,0} \end{split}$$

3 Невязка разностной схемы

3.1 Невязка во внутренних точках

Запишем для уравнения разностной сетки во внутренних точках невязку:

$$\begin{split} &-\left[h_{z}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-h_{z}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &+h_{r}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-h_{r}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=h_{r}h_{z}r_{i}f_{i,j}\\ &\xi_{i,j}=h_{r}h_{z}r_{i}f_{i,j}+\left[h_{z}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{u_{i+1,j}-u_{i,j}}{h_{r}}-h_{z}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{u_{i,j}-u_{i-1,j}}{h_{r}}\right.\\ &\left.+h_{r}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{u_{i,j+1}-u_{i,j}}{h_{z}}-h_{r}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{u_{i,j}-u_{i,j-1}}{h_{z}}\right] \end{split}$$

Напишем разложение Тейлора для невязки:

$$\begin{split} u_{i,j-1} &= u(r_i, z_j - h_z) = \left[u - h_z \frac{\partial u}{\partial z} + \frac{h_z^2}{2} \frac{\partial^2 u}{\partial z^2} - \frac{h_z^3}{6} \frac{\partial^3 u}{\partial z^3} + \frac{h_z^4}{24} \frac{\partial^4 u}{\partial z^4} \right]_{i,j} + \mathcal{O}(h_y^5) \\ & \frac{u_{i,j} - u_{i,j-1}}{h_z} = \left[\frac{\partial u}{\partial z} - \frac{h_z}{2} \frac{\partial^2 u}{\partial z^2} + \frac{h_z^2}{6} \frac{\partial^3 u}{\partial z^3} - \frac{h_z^3}{24} \frac{\partial^4 u}{\partial z^4} \right]_{i,j} + \mathcal{O}(h_y^4) \\ & r_i k_2(r_i, z_{j-\frac{1}{2}}) = r_i k_2(r_i, z_j - \frac{h_z}{2}) = \left[rk_2 - \frac{h_z}{2} \frac{\partial rk_2}{\partial z} + \frac{h_z^2}{8} \frac{\partial^2 rk_2}{\partial z^2} - \frac{h_z^3}{48} \frac{\partial^3 rk_2}{\partial z^3} \right]_{i,j} + \mathcal{O}(h^4) \\ & r_i k_2(r_i, z_{j-\frac{1}{2}}) \frac{u_{i,j} - u_{i,j-1}}{h_z} = \left[rk_2 \frac{\partial u}{\partial z} \right]_{i,j} - h_z \left[\frac{1}{2} rk_2 \frac{\partial^2 u}{\partial z^2} + \frac{1}{2} \frac{\partial rk_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + \\ & + h_z^2 \left[\frac{1}{6} rk_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial rk_2}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 rk_2}{\partial z^2} \frac{\partial u}{\partial z} \right]_{i,j} - \\ & - h_z^3 \left[\frac{1}{24} rk_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{12} \frac{\partial rk_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{16} \frac{\partial^2 rk_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{48} \frac{\partial^3 rk_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \\ & + \mathcal{O}(h^4) \end{split}$$

Для $r_i k_2(r_i, z_{j+\frac{1}{2}})$ можно получить невязку аналогичным способом:

$$\begin{split} r_i k_2(r_i, z_{j+\frac{1}{2}}) \frac{u_{i,j+1} - u_{i,j}}{h_z} &= \left[r k_2 \frac{\partial u}{\partial z} \right]_{i,j} + h_z \left[\frac{1}{2} r k_2 \frac{\partial^2 u}{\partial z^2} + \frac{1}{2} \frac{\partial r k_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + \\ &\quad + h_z^2 \left[\frac{1}{6} r k_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial r k_2}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 r k_2}{\partial z^2} \frac{\partial u}{\partial z} \right]_{i,j} + \\ &\quad + h_z^3 \left[\frac{1}{24} r k_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{12} \frac{\partial r k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{16} \frac{\partial^2 r k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{48} \frac{\partial^3 r k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \\ &\quad + \mathcal{O}(h^4) \end{split}$$

$$\begin{split} u_{i-1,j} &= u(r_i - h_r, j) = \left[u - h_r \frac{\partial u}{\partial r} + \frac{h_r^2}{2} \frac{\partial^2 u}{\partial r^2} - \frac{h_r^3}{6} \frac{\partial^3 u}{\partial r^3} + \frac{h_r^4}{24} \frac{\partial^4 u}{\partial r^4} \right]_{i,j} + \mathcal{O}(h^5) \\ & \frac{u_{i,j} - u_{i-1,j}}{h_r} = \left[\frac{\partial u}{\partial r} - \frac{h_r}{2} \frac{\partial^2 u}{\partial r^2} + \frac{h_r^2}{6} \frac{\partial^3 u}{\partial r^3} - \frac{h_r^3}{24} \frac{\partial^4 u}{\partial r^4} \right]_{i,j} + \mathcal{O}(h^4) \\ & r_i k 1(r_{i-\frac{1}{2}}, z_j) = r_i k 1(r_i - \frac{h_r}{2}, z_j) = \left[rk1 - \frac{h_r}{2} \frac{\partial rk_1}{\partial r} + \frac{h_r^2}{8} \frac{\partial^2 rk_1}{\partial r^2} - \frac{h_r^3}{48} \frac{\partial^3 rk_1}{\partial r^3} \right]_{i,j} + \mathcal{O}(h^4) \\ & r_i k_1(r_{i-\frac{1}{2}}, z_j) \frac{u_{i,j} - u_{i-1,j}}{h_r} = \left[rk_1 \frac{\partial u}{\partial r} \right]_{i,j} - h_r \left[\frac{1}{2} rk_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial rk_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + \\ & + h_r^2 \left[\frac{1}{6} rk_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial rk_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 rk_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} - \\ & - h_r^3 \left[\frac{1}{24} rk_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{12} \frac{\partial rk_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 rk_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 rk_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + \\ & + \mathcal{O}(h^4) \end{split}$$

Для $r_i k 1(r_{i=\frac{1}{2}},z_j) \frac{u_{i+1,j}-u_{i,j}}{h_r}$ можно получить невязку аналогично:

$$\begin{split} r_i k_1 (r_{i+\frac{1}{2}}, z_j) \frac{u_{i+1,j} - u_{i,j}}{h_r} &= \left[r k_1 \frac{\partial u}{\partial r} \right]_{i,j} + h_r \left[\frac{1}{2} r k_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial r k_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + \\ &\quad + h_r^2 \left[\frac{1}{6} r k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial r k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + \\ &\quad + h_r^3 \left[\frac{1}{24} r k_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{12} \frac{\partial r k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 r k_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + \\ &\quad + \mathcal{O}(h^4) \end{split}$$

Тогда:

$$\begin{split} r_i k_1 (r_{i+\frac{1}{2}}, z_j) \frac{u_{i+1,j} - u_{i,j}}{h_r} - r_i k_1 (r_{i-\frac{1}{2}}, z_j) \frac{u_{i,j} - u_{i-1,j}}{h_r} &= h_r h_z \left(\left[r k_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial r k_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + \right. \\ &+ \left. h_r^2 \left[\frac{1}{12} r k_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{6} \frac{\partial r k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 r k_1}{\partial r^3} \frac{\partial u}{\partial r} \right] + \mathcal{O}(h_r^4) \right) \\ & \left. r_i k_2 (r_i, z_{j+\frac{1}{2}}) \frac{u_{i,j+1} - u_{i,j}}{h_z} - r_i k_2 (r_i, z_{j-\frac{1}{2}}) \frac{u_{i,j} - u_{i,j-1}}{h_z} = h_r h_z \left(\left[r k_2 \frac{\partial^2 u}{\partial z^2} + \frac{\partial r k_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + \right. \\ & \left. + h_z^2 \left[\frac{1}{12} r k_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{6} \frac{\partial r k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 r k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 r k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \mathcal{O}(h_z^4) \right) \end{split}$$

Будем искать невязку в следующем виде:

$$\tilde{\xi}_{i,j} = \frac{\xi_{i,j}}{h_r h_z}$$

Тогда:

$$\begin{split} &\tilde{\xi}_{i,j} = r_i f_{i,j} + \left[r k_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial r k_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} \left[r k_2 \frac{\partial^2 u}{\partial z^2} + \frac{\partial r k_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + \\ &\quad + h_r^2 \left[\frac{1}{12} r k_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{6} \frac{\partial r k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 r k_1}{\partial r^3} \frac{\partial u}{\partial r} \right] + \mathcal{O}(h_r^3) + \\ &\quad + h_z^2 \left[\frac{1}{12} r k_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{6} \frac{\partial r k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 r k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 r k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,i} + \mathcal{O}(h_z^3) \end{split}$$

Можно заметить, что:

$$\begin{split} & \left[r k_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial r k_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} = \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \\ & \left[r k_2 \frac{\partial^2 u}{\partial z^2} + \frac{\partial r k_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} = \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \end{split}$$

Тем самым:

$$r_i f_{i,j} + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) = 0$$

Получаем:

$$\begin{split} \tilde{\xi}_{i,j} &= h_r^2 \left[\frac{1}{12} r k_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{6} \frac{\partial r k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 r k_1}{\partial r^3} \frac{\partial u}{\partial r} \right] + \mathcal{O}(h_r^3) + \\ &+ h_z^2 \left[\frac{1}{12} r k_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{6} \frac{\partial r k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 r k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 r k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \mathcal{O}(h_z^3) \end{split}$$

Порядок аппроксимации $p_r=2-0=2,\, p_z=2-0=2.$

3.2 Невязка на левой границе

Запишем для уравнения разностной сетки на левой границе невязку:

$$\begin{split} &-\left[h_{z}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})\frac{v_{1,j}-v_{0,j}}{h_{r}}-0\right.\\ &+\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})\frac{v_{0,j+1}-v_{0,j}}{h_{z}}-\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})\frac{v_{0,j}-v_{0,j-1}}{h_{z}}\right]=\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}h_{z}f_{0,j}\\ &\left.\xi_{0,j}=\frac{h_{r}}{2}h_{z}f_{0,j}+\left[h_{z}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})\frac{u_{1,j}-u_{0,j}}{h_{r}}-0\right.\right.\\ &\left.+\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})\frac{u_{0,j+1}-u_{0,j}}{h_{z}}-\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})\frac{u_{0,j}-u_{0,j-1}}{h_{z}}\right] \end{split}$$

Напишем разложение Тейлора для невязки:

$$\begin{split} k_1(r_{\frac{1}{2}},z_j)\frac{u_{1,j}-u_{0,j}}{h_r} &= \left[k_1\frac{\partial u}{\partial r}\right]_{i,j} + \frac{h_r}{2}\left[\frac{\partial}{\partial r}\left(k_1\frac{\partial u}{\partial r}\right)\right]_{i,j} + \\ &+ h_r^2\left[\frac{1}{6}k_1\frac{\partial^3 u}{\partial r^3} + \frac{1}{4}\frac{\partial k_1}{\partial r}\frac{\partial^2 u}{\partial r^2} + \frac{1}{8}\frac{\partial^2 k_1}{\partial r^2}\frac{\partial u}{\partial r}\right]_{i,j} + \mathcal{O}(h_r^3) \end{split}$$

$$\begin{split} &h_r k_2(r_0,z_{j+\frac{1}{2}}) \frac{u_{0,j+1}-u_{0,j}}{h_z} - h_r k_2(r_0,z_{j-\frac{1}{2}}) \frac{u_{0,j}-u_{0,j-1}}{h_z} = h_r \left[h_z \left(\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right)_{i,j} + \right. \\ &\left. + h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{0,j} + \mathcal{O}(h_z^4) \right] \end{split}$$

$$\begin{split} \xi_{0,j} &= \frac{h_r}{2} h_z f_{0,j} + \left[2 h_z \left(\left[k_1 \frac{\partial u}{\partial r} \right]_{i,j} + \frac{h_r}{2} \left[\frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \right]_{i,j} + \right. \\ &+ h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + \mathcal{O}(h_r^3) \right) - 0 + \\ &\left. \frac{h_r}{2} \left(h_z \left[\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} + h_z^3 \left[\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{0,j} + \mathcal{O}(h_z^4) \right) \right] \end{split}$$

Будем искать невязку в следующем виде:

$$\tilde{\xi}_{0,j} = \frac{\xi_{0,j}}{2h_z}$$

$$\begin{split} \tilde{\xi}_{0,j} &= \frac{h_r}{4} \left[f + 2 \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{0,j} + \left[k_1 \frac{\partial u}{\partial r} \right]_{0,j} + \\ &+ h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + \mathcal{O}(h_r^3) + \\ &+ \frac{h_r}{4} \left[h_z^2 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{0,j} + \mathcal{O}(h_z^3) \right] \end{split}$$

Можно заметить:

$$\begin{split} \left. \frac{\partial u}{\partial r} \right|_{r=0} &= 0 \\ \left[f + 2 \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{0,j} &= 0 \end{split}$$

Порядок аппроксимации $p_r = 2 - 0 = 2, p_z = 2 - 0 = 2.$

3.3 Невязка на правой границе

Запишем для уравнения разностной сетки на правой границе невязку:

$$\begin{split} &-\left[-h_z(\chi_2 v_{N_r}-\varphi_2(z))-h_z r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_j)\frac{v_{N_r,j}-v_{N_r-1,j}}{h_r}\right.\\ &\left.+\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j+\frac{1}{2}})\frac{v_{N_r,j+1}-v_{N_r,j}}{h_z}-\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j-\frac{1}{2}})\frac{v_{N_r,j}-v_{N_r,j-1}}{h_z}\right]=\frac{h_r}{2}r_{N_r}h_zf_{N_r,j} \end{split}$$

$$\begin{split} \xi_{N_r,j} &= \frac{h_r}{2} r_{N_r} h_z f_{N_r,j} + \left[-h_z (\chi_2 u_{N_r} - \varphi_2(z)) - h_z r_{N_r - \frac{1}{2}} k_1 (r_{N_r - \frac{1}{2}}, z_j) \frac{u_{N_r,j} - u_{N_r - 1,j}}{h_r} \right. \\ &\left. + \frac{h_r}{2} r_{N_r} k_2 (r_{N_r}, z_{j + \frac{1}{2}}) \frac{u_{N_r,j + 1} - u_{N_r,j}}{h_z} - \frac{h_r}{2} r_{N_r} k_2 (r_{N_r}, z_{j - \frac{1}{2}}) \frac{u_{N_r,j} - u_{N_r,j - 1}}{h_z} \right] \end{split}$$

Напишем разложение Тейлора для невязки:

$$\begin{split} r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_j)\frac{u_{N_r,j}-u_{N_r-1,j}}{h_r} &= \left[rk_1\frac{\partial u}{\partial r}\right]_{N_r,j} - \frac{h_2}{2}\left[\frac{\partial}{\partial r}\left(rk\frac{\partial u}{\partial r}\right)\right]_{N_r,j} + \\ &+ h_r^2\left[\frac{1}{6}rk_1\frac{\partial^3 u}{\partial r^3} + \frac{1}{4}\frac{\partial rk_1}{\partial r}\frac{\partial^2 u}{\partial r^2} + \frac{1}{8}\frac{\partial^2 rk_1}{\partial r^2}\frac{\partial u}{\partial r}\right]_{N_r,j} - \\ &- h_r^3\left[\frac{1}{24}rk_1\frac{\partial^4 u}{\partial r^4} + \frac{1}{12}\frac{\partial rk_1}{\partial r}\frac{\partial^3 u}{\partial r^3} + \frac{1}{16}\frac{\partial^2 rk_1}{\partial r^2}\frac{\partial^2 u}{\partial r^2} + \frac{1}{48}\frac{\partial^3 rk_1}{\partial r^3}\frac{\partial u}{\partial r}\right]_{N_r,j} + \mathcal{O}(h_r^4) \end{split}$$

$$\begin{split} &\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j+\frac{1}{2}})\frac{u_{N_r,j+1}-u_{N_r,j}}{h_z} - \frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j-\frac{1}{2}})\frac{u_{N_r,j}-u_{N_r,j-1}}{h_z} = \\ &\frac{h_r}{2}\left[h_z\left(\frac{\partial}{\partial z}\left(rk_2\frac{\partial u}{\partial z}\right)\right)_{N_r,j} + h_z^3\left(\frac{1}{12}rk_2\frac{\partial^4 u}{\partial z^4} + \frac{1}{6}\frac{\partial rk_2}{\partial z}\frac{\partial^3 u}{\partial z^3} + \frac{1}{8}\frac{\partial^2 rk_2}{\partial z^2}\frac{\partial^2 u}{\partial z^2} + \frac{1}{24}\frac{\partial^3 rk_2}{\partial z^3}\frac{\partial u}{\partial z}\right)_{N_r,j}\right] + \\ &+ \mathcal{O}(h_z^4) \end{split}$$

$$\begin{split} &\xi_{N_r,j} = \frac{h_r}{2} r_{N_r} h_z f_{N_r,j} - h_z (\chi_2 u_{N_r} - \varphi_2(z)) - h_z \left[\left[r k_1 \frac{\partial u}{\partial r} \right]_{N_r,j} - \frac{h_2}{2} \left[\frac{\partial}{\partial r} \left(r k \frac{\partial u}{\partial r} \right) \right]_{N_r,j} + \right. \\ &+ \left. h_r^2 \left[\frac{1}{6} r k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial r k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{N_r,j} - \\ &- h_r^3 \left[\frac{1}{24} r k_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial r k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 r k_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{N_r,j} + \mathcal{O}(h_r^4) \right] + \\ &+ \frac{h_r}{2} \left[h_z \left(\frac{\partial}{\partial z} \left(r k_2 \frac{\partial u}{\partial z} \right) \right)_{N_r,j} + h_z^3 \left(\frac{1}{12} r k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial r k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 r k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 r k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{N_r,j} + \\ &+ \mathcal{O}(h_z^4) \right] \end{split}$$

Будем искать невязку в следующем виде:

$$\tilde{\xi}_{N_r,j} = \frac{\xi_{N_r,j}}{h_z}$$

$$\begin{split} &\tilde{\xi}_{N_r,j} = \frac{h_r}{2} \left[f + \frac{\partial}{\partial r} \left(r k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(r k_2 \frac{\partial u}{\partial z} \right) \right]_{N_r,j} - \left[r k_1 \frac{\partial u}{\partial r} + (\chi_2 u - \varphi(z)) \right]_{N_r,j} - \\ &- h_r^2 \left[\frac{1}{6} r k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial r k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{N_r,j} + \mathcal{O}(h_r^3) + \\ &+ \frac{h_r}{2} \left[h_z^2 \left(\frac{1}{12} r k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial r k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 r k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 r k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{N_r,j} + \mathcal{O}(h_z^3) \right] \end{split}$$

Заметим, что:

$$\begin{split} \left[rk1\frac{\partial u}{\partial r} + (\chi_2 u - \varphi(z))\right]_{N_r,j} &= 0\\ \left[f + \frac{\partial}{\partial r}\left(rk_1\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(rk_2\frac{\partial u}{\partial z}\right)\right]_{N_r,j} &= 0 \end{split}$$

Порядок аппроксимации $p_r = 2 - 0 = 2, p_z = 2 - 0 = 2.$

Можно сделать вывод, что полученная разностная схема имеет второй порядок аппроксимации.

4 Запись СЛАУ

Перейдём к одноиндексной записи

$$m = j(N_r + 1) + i$$

Индексы изменяются в следующих границах:

$$0 \le i \le N_r$$

$$0 \le j \le N_z$$

Тогда имеем:

$$0 \leq m < (N_r+1)(N_y+1)$$

4.1 Запись для внутренних точек

Перепишем наше уравнение с использованием нового индеса для $i\in(0,N_r)$ и $j\in(0,N_z)$:

$$\begin{split} &-\left[h_zr_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_j)\frac{v_{i+1,j}-v_{i,j}}{h_r}-h_zr_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_j)\frac{v_{i,j}-v_{i-1,j}}{h_r}\right.\\ &\left.+h_rr_ik_2(r_i,z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_z}-h_rr_ik_2(r_i,z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_z}\right]=h_rh_zr_if_{i,j} \end{split}$$

$$\begin{split} &-\frac{h_r}{h_z}r_ik_2(r_i,z_{j-\frac{1}{2}})v_{i,j-1}-\frac{h_z}{h_r}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_j)v_{i-1,j}+\\ &+\left[\frac{h_z}{h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_j)+\frac{h_z}{h_r}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_j)+\frac{h_r}{h_z}r_ik_2(r_i,z_{j+\frac{1}{2}})+\frac{h_r}{h_z}r_ik_2(r_i,z_{j-\frac{1}{2}})\right]v_{i,j}\\ &-\frac{h_z}{h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_j)v_{i+1,j}-\frac{h_r}{h_z}r_ik_2(r_i,z_{j+1})v_{i,j+\frac{1}{2}}=h_rh_zr_if_{i,j} \end{split}$$

Введём новые обозначения:

$$a_m w_{m-L} + b_m w_{m-1} + c_m w_m + d_m w_{m+1} + e_m w_{m+L} = g_m$$

где коэффициенты равны:

$$a_m=-\frac{h_r}{h_z}r_ik_2(r_i,z_{j-\frac{1}{2}})$$

$$b_m = -\frac{h_z}{h_m} r_{i-\frac{1}{2}} k_1(r_{i-\frac{1}{2}}, z_j)$$

$$c_m = \frac{h_z}{h_r} r_{i+\frac{1}{2}} k_1(r_{i+\frac{1}{2}}, z_j) + \frac{h_z}{h_r} r_{i-\frac{1}{2}} k_1(r_{i-\frac{1}{2}}, z_j) + \frac{h_r}{h_z} r_i k_2(r_i, z_{j+\frac{1}{2}}) + \frac{h_r}{h_z} r_i k_2(r_i, z_{j-\frac{1}{2}})$$

$$\begin{split} d_m &= -\frac{h_z}{h_r} r_{i+\frac{1}{2}} k_1(r_{i+\frac{1}{2}}, z_j) \\ e_m &= -\frac{h_r}{h_z} r_i k_2(r_i, z_{j+\frac{1}{2}}) \\ g_m &= h_r h_z r_i f_{i,j} \end{split}$$

4.2 Запись для левой границы

Перепишем наше уравнение с использованием нового индекса для i=0 и $j\in(0,N_z)$:

$$\begin{split} &-\left[h_{z}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})\frac{v_{1,j}-v_{0,j}}{h_{r}}-0\right.\\ &+\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})\frac{v_{0,j+1}-v_{0,j}}{h_{z}}-\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})\frac{v_{0,j}-v_{0,j-1}}{h_{z}}\right]=\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}h_{z}f_{0,j}\\ &-\frac{h_{r}}{2h_{z}}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})v_{0,j-1}+\\ &+\left[\frac{h_{z}}{h_{r}}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})+\frac{h_{r}}{2h_{z}}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})+\frac{h_{r}}{2h_{z}}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})\right]v_{0,j}\\ &-\frac{h_{z}}{h}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})v_{1,j}-\frac{h_{r}}{2h}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})v_{0,j+1}=\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}h_{z}f_{0,j} \end{split}$$

Введём новые обозначения:

$$a_m w_{m-L} + c_m w_m + d_m w_{m+1} + e_m w_{m+L} = g_m$$

где коэффициенты равны:

$$\begin{split} a_m &= -\frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{j-\frac{1}{2}}) \\ c_m &= \frac{h_z}{h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_j) + \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{j+\frac{1}{2}}) + \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{j-\frac{1}{2}}) \\ d_m &= -\frac{h_z}{h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_j) \\ e_m &= -\frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{j+\frac{1}{2}}) \\ g_m &= \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} h_z f_{0,j} \end{split}$$

4.3 Запись для правой границы

Перепишем наше уравнение с использованием нового индекса для $i=N_r$ и $j\in(0,N_z)$:

$$\begin{split} &-\left[-h_{z}r_{N_{r}}(\chi_{2}v_{N_{r},j}-\varphi_{2}(z))-h_{z}r_{N_{r}-\frac{1}{2}}k_{1}(r_{N_{r}-\frac{1}{2}},z_{j})\frac{v_{N_{r},j}-v_{N_{r}-1,j}}{h_{r}}\right.\\ &+\frac{h_{r}}{2}r_{N_{r}}k_{2}(r_{N_{r}},z_{j+\frac{1}{2}})\frac{v_{N_{r},j+1}-v_{N_{r},j}}{h_{z}}-\frac{h_{r}}{2}r_{N_{r}}k_{2}(r_{N_{r}},z_{j-\frac{1}{2}})\frac{v_{N_{r},j}-v_{N_{r},j-1}}{h_{z}}\right]=\frac{h_{r}}{2}r_{N_{r}}h_{z}f_{N_{r},j}\\ &-\frac{h_{r}}{2h_{z}}r_{N_{r}}k_{2}(r_{N_{r}},z_{j-\frac{1}{2}})v_{N_{r},j-1}-\frac{h_{z}}{h_{r}}r_{N_{r}-\frac{1}{2}}k_{1}(r_{N_{r}-\frac{1}{2}},z_{j})v_{N_{r}-1,j}\\ &+\left[h_{z}r_{N_{r}}\chi_{2}+\frac{h_{z}}{h_{r}}r_{N_{r}-\frac{1}{2}}k_{1}(r_{N_{r}-\frac{1}{2}},z_{j})+\frac{h_{r}}{2h_{z}}r_{N_{r}}k_{2}(r_{N_{r},z_{j+\frac{1}{2}}})+\frac{h_{r}}{2h_{z}}r_{N_{r}}k_{2}(r_{N_{r}},z_{j-\frac{1}{2}})\right]v_{N_{r},j}\\ &-\frac{h_{r}}{2h}r_{N_{r}}k_{2}(r_{N_{r}},z_{j+\frac{1}{2}})v_{N_{r},j+1}=\frac{h_{r}}{2}r_{N_{r}}h_{z}f_{N_{r},j}+h_{z}r_{N_{r}}\varphi_{2}(z) \end{split}$$

Введём новые обозначения:

$$a_m w_{m-L} + b_m w_{m-1} + c_m w_m + e_m w_{m+L} = g_m$$

где коэффициенты:

$$\begin{split} a_m &= -\frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r}, z_{j-\frac{1}{2}}) \\ b_m &= -\frac{h_z}{h_r} r_{N_r - \frac{1}{2}} k_1(r_{N_r - \frac{1}{2}}, z_j) \\ c_m &= h_z r_{N_r} \chi_2 + \frac{h_z}{h_r} r_{N_r - \frac{1}{2}} k_1(r_{N_r - \frac{1}{2}}, z_j) + \frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r, z_{j+\frac{1}{2}}}) + \frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r}, z_{j-\frac{1}{2}}) \\ e_m &= -\frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r}, z_{j+\frac{1}{2}}) \\ g_m &= \frac{h_r}{2} r_{N_r} h_z f_{N_r, j} + h_z r_{N_r} \varphi_2(z) \end{split}$$

4.4 Запись для нижней границы

Перепишем наше уравнение с использованием нового индекса для $i\in(0,N_r)$ и j=0:

$$\begin{split} -\left[\frac{h_z}{2}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_0)\frac{v_{i+1,0}-v_{i,0}}{h_r} - \frac{h_z}{2}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_0)\frac{v_{i,0}-v_{i-1,0}}{h_r} \right. \\ \left. + h_r r_i k_2(r_i,z_{\frac{1}{2}})\frac{v_{i,1}-v_{i,0}}{h_z} - h_r r_i (\chi_3 v_{i,0} - \varphi_3(r))\right] = h_r \frac{h_z}{2} r_i f_{i,0} \end{split}$$

$$\begin{split} &-\frac{h_z}{2h_r}v_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_0)v_{i-1,0} \\ &+\left[h_rr_i\chi_3+\frac{h_z}{2h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_0)+\frac{h_z}{2h_r}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_0)+\frac{h_r}{h_z}r_ik_2(r_i,z_{\frac{1}{2}})\right]v_{i,0} \\ &-\frac{h_z}{2h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_0)v_{i+1,0}-\frac{h_r}{h_z}r_ik_2(r_i,z_{\frac{1}{2}})v_{i,1}=h_r\frac{h_z}{2}r_if_{i,0}+h_rr_i\varphi(r) \end{split}$$

Введём новые обозначения:

$$b_m w_{m-1} + c_m w_m + d_m w_{m+1} + e_m w_{m+L} = g_m$$

где коэффициенты ранвы:

$$\begin{split} b_m &= -\frac{h_z}{2h_r} r_{i-\frac{1}{2}} k_1(r_{i-\frac{1}{2}}, z_0) \\ c_m &= h_r r_i \chi_3 + \frac{h_z}{2h_r} r_{i+\frac{1}{2}} k_1(r_{i+\frac{1}{2}}, z_0) + \frac{h_z}{2h_r} r_{i-\frac{1}{2}} k_1(r_{i-\frac{1}{2}}, z_0) + \frac{h_r}{h_z} r_i k_2(r_i, z_{\frac{1}{2}}) \\ d_m &= -\frac{h_z}{2h_r} r_{i+\frac{1}{2}} k_1(r_{i+\frac{1}{2}}, z_0) \\ e_m &= -\frac{h_r}{h_z} r_i k_2(r_i, z_{\frac{1}{2}}) \\ g_m &= h_r \frac{h_z}{2} r_i f_{i,0} + h_r r_i \varphi_3(r) \end{split}$$

4.5 Запись для верхней границы

Перепишем наше уравнение с использованием нового индекса для $i \in [0,N_r]$ и $j=N_z$:

$$v_{i,N_z} = \varphi(r_i)$$

Перейдём к новым обозначениям:

$$c_m w_m = \varphi_m$$

где:

$$c_m = 1, \quad \varphi_m = \varphi_4(r_i)$$

4.6 Запись для левой нижней граничной точки

Перепишем наше уравнение с использованием нового индекса для i=0 и j=0:

$$\begin{split} &-\left[\frac{h_z}{2}r_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_0)\frac{v_{1,0}-v_{0,0}}{h_r}-0\right.\\ &\left.+\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{\frac{1}{2}})\frac{v_{0,1}-v_{0,0}}{h_z}-\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}(\chi_3v_{0,0}-\varphi_3(r))\right]=\frac{h_r}{2}\frac{h_z}{2}\frac{r_{\frac{1}{2}}}{2}f_{0,0} \end{split}$$

$$\begin{split} & \left[\frac{h_z}{2h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_0) + \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{\frac{1}{2}}) + \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} \chi_3 \right] v_{0,0} - \\ & - \frac{h_z}{2h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_0) v_{1,0} - \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{\frac{1}{2}}) v_{0,1} = \frac{h_r}{2} \frac{h_z}{2} \frac{r_{\frac{1}{2}}}{2} f_{0,0} + \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} \varphi_3(r_0) \end{split}$$

Введём новые обозначения:

$$c_m w_m + d_m w_{m+1} + e_m w_{m+L} = g_m$$

где коэффициенты ранвы:

$$\begin{split} c_m &= \frac{h_z}{2h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_0) + \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{\frac{1}{2}}) + \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} \chi_3 \\ d_m &= -\frac{h_z}{2h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_0) \\ e_m &= -\frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{\frac{1}{2}}) \\ g_m &= \frac{h_r}{2} \frac{h_z}{2} \frac{r_{\frac{1}{2}}}{2} f_{0,0} + \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} \varphi_3(r_0) \end{split}$$

4.7 Запись для правой нижней граничной точки

Перепишем наше уравнение с использованием нового индекса для $i=N_r$ и j=0:

$$\begin{split} -\left[-\frac{h_z}{2}r_{N_r}(\chi_2v_{N_r,0}-\varphi_2(z)) - \frac{h_z}{2}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_0)\frac{v_{N_r,0}-v_{N_r-1,0}}{h_r}\right.\\ \left. + \frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{\frac{1}{2}})\frac{v_{N_r,1}-v_{N_r,0}}{h_z} - \frac{h_r}{2}r_{N_r}(\chi_3v_{N_r,0}-\varphi_3(r))\right] = \frac{h_r}{2}\frac{h_z}{2}r_{N_r}f_{N_r,0} \end{split}$$

$$\begin{split} &-\frac{h_z}{2h_r}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_0)v_{N_r-1,0} + \\ &+ \left[\frac{h_z}{2}r_{N_r}\chi_2 + \frac{h_z}{2h_r}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_0) + \frac{h_r}{2h_z}r_{N_r}k_2(r_{N_r,z_\frac{1}{2}}) + \frac{h_r}{2}r_{N_r}\chi_3\right]v_{N_r,0} - \\ &- \frac{h_r}{2h_z}r_{N_r}k_2(r_{N_r},z_\frac{1}{2})v_{N_r,1} = \frac{h_r}{2}\frac{h_z}{2}r_{N_r}f_{N_r,0} + \frac{h_z}{2}r_{N_r}\varphi_2(z) + \frac{h_r}{2}r_{N_r}\varphi_3(r) \end{split}$$

Введём новые обозначения:

$$b_m w_{m-1} + c_m w_m + e_m w_{m+L} = g_m$$

где коэффициенты равны:

$$\begin{split} b_m &= -\frac{h_z}{2h_r} r_{N_r - \frac{1}{2}} k_1(r_{N_r - \frac{1}{2}}, z_0) \\ c_m &= \frac{h_z}{2} r_{N_r} \chi_2 + \frac{h_z}{2h_r} r_{N_r - \frac{1}{2}} k_1(r_{N_r - \frac{1}{2}}, z_0) + \frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r, z_{\frac{1}{2}}}) + \frac{h_r}{2} r_{N_r} \chi_3 \\ e_m &= -\frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r}, z_{\frac{1}{2}}) \\ g_m &= \frac{h_r}{2} \frac{h_z}{2} r_{N_r} f_{N_r, 0} + \frac{h_z}{2} r_{N_r} \varphi_2(z) + \frac{h_r}{2} r_{N_r} \varphi_3(r) \end{split}$$

5 Метод сопряжённых градиентов

Для решения системы линейных алгебраических уравнений использовать метод сопряженных градиентов с предобусловливанием. Опишем метод решения следующей системы:

$$Ax = b$$

где А - симметричная, положительно определённая, матрица.

5.1 Явный метод

```
1 r^{(0)} = b - Ax^{(0)}

2 s^{(1)} = r^{(0)}

3 \gamma = \sqrt{(b,b)}

4 for k = 1 to k_{max} do

5 \alpha_k = \frac{\left(r^{(k-1)}, r^{(k-1)}\right)}{\left(As^{(k)}, s^{(k)}\right)}

6 x^{(k)} = x^{(k-1)} + \alpha_k s^{(k)}

7 r^{(k)} = r^{(k-1)} - \alpha_k s^{(k-1)}

8 if \sqrt{(r^{(k)}, r^{(k)})} < \gamma \varepsilon then

9 break

10 end

11 \beta_k = \frac{\left(r^{(k)}, r^{(k)}\right)}{\left(r^{(k-1)}, r^{(k-1)}\right)}

12 s^{(k+1)} = r^{(k)} + \beta_k s^{(k)}

13 end
```

5.2 Неявный метод

еявный метод основывается на использовании предобуславливания. Идея заключается в том, чтобы выбрать матрицу ${\bf B}$, которая является симметричной и положительно определенной, и приблизительно равна матрице ${\bf A}$. Мы выбираем ${\bf B}$ в виде $B=\tilde{L}\tilde{L}^T$, где $\tilde{L}\tilde{L}^T$ представляет собой неполное разложение Холецкого для матрицы ${\bf A}$. Позже мы объясним, почему такой выбор матрицы ${\bf B}$ считается оптимальным.

```
1 r^{(0)} = b - Ax^{(0)}
 2 Bw^{(0)} = r^{(0)}
 s^{(1)} = w^{(0)}
 4 Bg = b
 5 \gamma = \sqrt{(g, b)}
 6 for k = 1 to k_{max} do

7 \alpha_k = \frac{\left(w^{(k-1)}, \ r^{(k-1)}\right)}{\left(As^{(k)}, \ s^{(k)}\right)}

8 x^{(k)} = x^{(k-1)} + \alpha_k s^{(k)}
                 r^{(k)} = r^{(k-1)} - \alpha_k s^{(k-1)}
 9
                 Bw^{(k)}=r^{(k)}
10
                 if \sqrt{(w^{(k)}, r^{(k)})} < \gamma \varepsilon then
11
                            break
12
                 end
13
                \begin{split} \beta_k &= \frac{\left(w^{(k)}, \ r^{(k)}\right)}{\left(w^{(k-1)}, \ r^{(k-1)}\right)} \\ s^{(k+1)} &= w^{(k)} + \beta_k s^{(k)} \end{split}
14
15
16 end
```

Для решения системы Bw(k)=r(k) мы используем метод Гаусса. При выборе $B=\tilde{L}\tilde{L}^T$, нам остается выполнить только две обратные подстановки: $\tilde{L}z^{(k)}=r^k$ и $\tilde{L}^Tw^{(k)}=z^{(k)}$.

6 Тестирование

Протестируем постренную модель на следующих тестовых наборах:

№ теста	$k_1(r,z)$	$k_2(r,z)$	u(r,z)
1	x + y + 3	x + y + 3	1
2	3x + 2y + 1	3x + 2y + 1	x^2
3	$(x+y+3)^2$	$(x+y+3)^2$	$(x + 2y)^2$
4	$(x+2y+3)^3$	$(x+2y+3)^3$	$x^3 + y^2$

Все тесты имеют общие значения:

$$r \in [0,1], \quad z \in [0,2]$$

$$\xi_2 = 2, \quad \xi_3 = 3$$

Погрешность решения задачи вычисляется следующим образом:

$$\delta_1 = \frac{||x - \tilde{x}||_1}{||x||_1}$$

$$\delta_2 = \frac{||x - \tilde{x}|\,|_2}{||x|\,|_2}$$

$$\delta_3 = \frac{||x - \tilde{x}||_{\infty}}{||x||_{\infty}}$$

Значение ε для метода сопряжённых градиентов равно 10^{-8} .

Тест №1

N_r	N_z	n	δ_1	δ_2	δ_3
2	2	8	4.324e - 16	7.63e - 16	4.064e - 16
4	4	27	2.514e - 11	2.419e - 11	2.88e - 11
8	8	62	1.354e - 10	1.284e - 10	1.868e - 10
16	16	117	2.3e - 10	6.527e - 10	1.151e - 10
32	32	423	5.921e - 09	1.849e - 09	4.102e - 09

Таблица 1: Явный метод

N_r	N_z	n	δ_1	δ_2	δ_3
2	2	5	9.509e - 16	4.186e - 16	9.29e - 16
4	4	9	2.395e - 11	2.574e - 11	4.137e - 11
8	8	15	1.62e - 10	2.34e - 10	1.97e - 10
16	16	25	6.74e - 10	9.82e - 10	2.23e - 10
32	32	46	1.12e - 9	1.59e - 9	3.37e-9

Таблица 2: Неявный метод

Имеем лишь ошибку округления.

6.0.1 Tect №2

7 Заключение