

How do we properly assess if someone is going to be a credit risk?

OBJECTIVE

Credit Card holder data

OBJECTIVE

Credit Card holder data

OBJECTIVE

More **consistency** to loaning process

Telltale signs of a potential defaulter

The Data

Dataset information

30,000 clients

24 variables

- Age
- Gender
- Marriage
- Education

- April to September, 2005
- Bill Statements
- Payment amount
- Repayment status

Data Pre-Processing

Target Skew

TARGET SKEW

Class imbalance

22% Defaulters

Taken into account

DATASET FEATURES

Methodology⁵

Models Used

F1

Train/Cross-Validation

Results of best model from Train/Cross-Validation

Threshold Tuning

Final Train/Test

Models Used

- Gaussian Naïve Bayes
- Logistic Regression
- K-Nearest Neighbors
- Decision Tree
- Random Forest
- Linear SVC

Model Evaluation

- o F1 Score
- Harmonic mean of *Precison* and *Recall*
- Best value at 1, worst value at 0

```
F1 Score = 

2 x (Precision x Recall)

Precision + Recall
```

Recall

Out of **ALL** the defaulters, how many did the model actually get right?

Precision

How accurate the model is based on it's own predictions

Model Evaluation

- o F1 Score
- Harmonic mean of *Precison* and *Recall*
- Best value at 1, worst value at 0

Recall

Out of **ALL** the defaulters, how many did the model actually get right?

Precision

How accurate the model is based on it's own predictions

60% Train Data

20% Holdout Data

20% Validation Data

5-fold Cross-Validation

60% Train 20% Val 20% Test

Vanilla Dataset

Models	Fl
GaussianNB	0.40
Logistic Reg	0.0
K-NN	0.24
Decision Tre	0.39
Random Forest	0.40
Linear SVC	0.01

60% Train

20% Val

Vanilla Dataset

Models	Fl
GaussianNB	0.40
Logistic Reg	0.0
K-NN	0.24
Decision Tre	0.39
Random Forest	0.40
Linear SVC	0.01

60% Train

20% Val

Vanilla Dataset

Models	Fl
GaussianNB	0.40
Logistic Reg	0.0
K-NN	0.24
Decision Tre	0.39
Random Forest	0.40
Linear SVC	0.01

Must improve F1 Score

60% Train

20% Val

Vanilla Dataset

Oversample

Dataset

Undersample

Dataset

SMOTE

Dataset

Account for Class Imbalance

60% Train

20% Val

Un-Scale scaled **Undersample Oversample SMOTE** Vanilla Dataset Dataset Dataset Dataset

Account for Class Imbalance

60% Train

20% Val

Preliminary Results

Models	FI
GaussianNB	0.40
Logistic Reg	0
K-NN	0.24
Decision Tre	0.39
Random Forest	0.40
Linear SVC	0.01

Vanilla Dataset

60% Train

20% Val

Preliminary Results

Scale

Vanilla Dataset

Models	F1
GaussianNB	0.40
Logistic Reg	0
K-NN	0.24
Decision Tre	0.39
Random Forest	0.40
Linear SVC	0.01

F1 Improved	
0.52	
0.35	
0.42	
0.40	
0.41	
0.27	

60% Train

20% Val

Preliminary Results

Scale

Vanilla Dataset

Models	FI	F1 Improved
GaussianNB	0.40	0.52
Logistic Reg	0	0.35
K-NN	0.24	0.42
Decision Tre	0.39	0.40
Random Forest	0.40	0.41
Linear SVC	0.01	0.27

60% Train

20% Val

Further increase F1

Scale

Vanilla Dataset

Models	F1
GaussianNB	0.40
Logistic Reg	0
K-NN	0.24
Decision Tre	0.39
Random Forest	0.40
Linear SVC	0.01

F1 Improved	
0.52	
0.35	
0.42	
0.40	
0.41	
0.27	

Next highest two

60% Train

20% Val

Further increase F1

Scale

Vanilla Dataset

Models	FI
GaussianNB	0.40
Logistic Reg	0
K-NN	0.24
Decision Tre	0.39
Random Forest	0.40
Linear SVC	0.01

F1 Improved	
0.52	
0.35	
0.42	
0.40	
0.41	
0.27	

Hyper-Parameter Tune

60% Train

20% Val

Post-Hyper Tuning

Scale

Models	F1 Improved
GaussianNB	0.52
K-NN	0.42
Random Forest	0.41

Vanilla Dataset

No significant improvement in F1 score

60% Train

20% Val

Post-Hyper Tuning

Scale

Models	F1 Improved
GaussianNB	0.52
K-NN	0.42
Random Forest	0.4

Vanilla Dataset

GaussianNB Chosen F1 = 0.52

60% Train

20% Val

GaussianNB Train/CV Results

Threshold = 0.5

60% Train

20% Val

GaussianNB Train/CV Results

Threshold = 0.5

Test/CV Recall = 0.56

Only captures 56% of all the defaulters

44% not captured

60% Train

20% Val

GaussianNB Train/CV Results

Need for further optimization

60% Train

20% Val

Threshold Optimization

Threshold = **0.25**

60% Train 20% Val 20% Test

Threshold Optimization

Threshold = **0.25**

Test/CV Recall = **0.76**

Improved to 76%

60% Train

20% Val

Threshold Optimization

Trade-off: More False Positive Predictions

Higher recall outweighs cost of inconveniencing more people

60% Train 20% Val 20% Test

Train on 80% data

80% Train

Test on 20% unseen data

80% Train 20% Test

80% Train

79%

80% Train

Future Work

FEATURE ENGINEER

FEATURE SELECTION

HYPERPARAMETER TUNING

OTHER MODELS

Questions?

www.linkedin.com/in/seow-xian-jin

github.com/xianjinseow92/projects

xianjinseow92@gmail.com

APPENDIX

Feature Importance

Model Evaluation

- o F1 Score
- Harmonic mean of Precison and Recall
- Considers both to compute score
- Best value at 1, worst value at 0

Precision

How accurate the model is from all it's own predictions

Recall

Out of all the defaulters, how many did the model actually get right?