Large deviations of mean-field interacting particle systems in a fast varying environment

Sarath Yasodharan and Rajesh Sundaresan

ECE Department, Indian Institute of Science, Bangalore 560 012, India

Introduction

- Goal: Study large time behaviour and metastability in networked systems.
- Metastability: A system exhibits different behaviour over different time scales.

Figure 1: A sample path of the state of the system in a wireless local area network

- Model: A "fully coupled" two time scale mean-field model.
- Main result: Process-level large deviation principle for the joint law of the empirical measure of the particles and the occupation measure of the fast environment.

System Model

- \bullet N particles and an environment. Their states evolve over time.
- At time t, the state of the nth particle is denoted by $X_n^N(t) \in \mathcal{X}$; the state of the environment is denoted by $Y_N(t) \in \mathcal{Y}$.
- Certain allowed transitions.
 - Particles: a directed graph $(\mathcal{X}, \mathcal{E}_{\mathcal{X}})$; environment: a directed graph $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$.
- Empirical measure of the system of particles at time t:

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^{N} \delta_{X_n^N(t)} \in M_1^N(\mathcal{X}) \subset M_1(\mathcal{X}).$$

- "Fully coupled" Markov evolution. Transition rates at time t:
 - A particle: $x \to x'$ transition at rate $\lambda_{x,x'}(\mu_N(t), Y_N(t))$;
 - Environment: $y \to y'$ transition at rate $N\gamma_{y,y'}(\mu_N(t))$.
- (μ_N, Y_N) is a Markov process with infinitesimal generator

$$f \mapsto \sum_{(x,x')\in\mathcal{E}_{\mathcal{X}}} N\xi(x)\lambda_{x,x'}(\xi,y) \left[f\left(\xi + \frac{\delta_{x'}}{N} - \frac{\delta_{x}}{N},y\right) - f(\xi,y) \right]$$
$$+ N \sum_{y':(y,y')\in\mathcal{E}_{\mathcal{Y}}} (f(\xi,y') - f(\xi,y))\gamma_{y,y'}(\xi), \ (\xi,y) \in M_1^N(\mathcal{X}) \times \mathcal{Y}.$$

Assumptions on the model

- (A1) The graphs $(\mathcal{X}, \mathcal{E}_{\mathcal{X}})$ and $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$ are irreducible.
- (A2) The functions $\lambda_{x,x'}(\cdot,y)$ are Lipschitz continuous and $\inf_{\xi} \lambda_{x,x'}(\xi,y) > 0$ for all $(x,x') \in \mathcal{E}_{\mathcal{X}}$ and $y \in \mathcal{Y}$.
- (A3) The functions $\gamma_{u,u'}(\cdot)$ are continuous and $\inf_{\xi} \gamma_{u,u'}(\xi) > 0$ for all $(y,y') \in \mathcal{E}_{\mathcal{Y}}$.

Preliminaries

Quantities of interest

- Fix a time duration T > 0 and view μ_N as a random element of $D([0,T], M_1(\mathcal{X}))$.
- Consider the occupation measure of the fast environment:

$$\theta_N(t)(\cdot) = \int_0^t 1_{\{Y_N(s) \in \cdot\}} ds, \ 0 \le t \le T.$$

- θ_N is a random element of $D_{\uparrow}([0,T],M(\mathcal{Y}))$, the set of $\theta \in D([0,T],M(\mathcal{Y}))$ such that $\theta_t \theta_s \in M(\mathcal{Y})$ and $\theta_t(\mathcal{Y}) = t$ for $0 \le s \le t \le T$.
- $\theta \in D_{\uparrow}([0,T], M(\mathcal{Y}))$ is also viewed as a measure on $[0,T] \times \mathcal{Y}$ and obeys the disintegration $\theta(dydt) = m_t(dy)dt$ where $m_t \in M_1(\mathcal{Y})$.
- We consider (μ_N, θ_N) with sample paths in $D([0, T], M_1(\mathcal{X})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$.

The averaging principle

- Suppose we freeze $\mu_N(t)$ to be ξ . Then for large N,
 - Y_N would quickly equilibrate to $\pi_{\mathcal{E}}$, the unique invariant probability measure of

$$L_{\xi}g(y) := \sum_{y':(y,y')\in\mathcal{E}_{\mathcal{V}}} (g(y') - g(y))\gamma_{y,y'}(\xi), y \in \mathcal{Y}.$$

- An (x, x') transition occurs at rate $\sum_{y \in \mathcal{Y}} \lambda_{x,x'}(\xi, y) \pi_{\xi}(y) =: \bar{\lambda}_{x,x'}(\xi, \pi_{\xi})$.

Theorem 1 (Bordenave et al. 2009). Suppose that $\mu_N(0) \to \nu$ in $M_1(\mathcal{X})$. Then μ_N converges in probability, in $D([0,T],M_1(\mathcal{X}))$, to the solution to the ODE

$$\dot{\mu}_t = \bar{\Lambda}^*_{\mu_t, \pi_{\mu_t}} \mu_t, \ 0 \le t \le T, \ \mu_0 = \nu,$$

where $\bar{\Lambda}_{\mu_t,\pi_{\mu_t}}(x,x') = \bar{\lambda}_{x,x'}(\mu_t,\pi_{\mu_t})$.

• μ_N is a small random perturbation of the above ODE. We establish a large deviation principle (LDP) for (μ_N, θ_N) ; $P((\mu_N, \theta_N) \in A) \sim \exp\{-N \inf_{(\mu, \theta) \in A} I(\mu, \theta)\}$.

Main Result

Theorem 2. Assume (A1), (A2), and (A3). Suppose that $\{\mu_N(0)\}_{N\geq 1}$ satisfies the LDP on $M_1(\mathcal{X})$ with rate function I_0 . Then the sequence $\{(\mu_N(t), \theta_N(t)), 0 \leq t \leq T\}_{N\geq 1}$ satisfies the LDP on $D([0,T], M_1(\mathcal{X})) \times D_{\uparrow}([0,T], M(\mathcal{Y}))$ with rate function

$$I(\mu, \theta) = I_0(\mu(0)) + J(\mu, \theta);$$

$$J(\mu, \theta) = \int_{[0,T]} \left\{ \sup_{\alpha \in \mathbb{R}^{|\mathcal{Y}|}} \left(\left\langle \alpha, (\dot{\mu}_t - \bar{\Lambda}_{\mu_t, m_t}^* \mu_t) \right\rangle - \sum_{(x, x') \in \mathcal{E}_{\mathcal{X}}} \tau(\alpha(x') - \alpha(x)) \bar{\lambda}_{x, x'}(\mu_t, m_t) \mu_t(x) \right) + \sup_{g \in \mathbb{R}^{|\mathcal{Y}|}} \sum_{y \in \mathcal{Y}} \left(-L_{\mu_t} g(y) - \sum_{y': (y, y') \in \mathcal{E}_{\mathcal{Y}}} \tau(g(y') - g(y)) \gamma_{y, y'}(\mu_t) \right) m_t(y) \right\} dt$$

whenever the mapping $[0,T] \ni t \mapsto \mu_t \in M_1(\mathcal{X})$ is absolutely continuous, where $\theta(dtdy) = m_t(dy)dt$, and $J(\mu,\theta) = +\infty$ otherwise.

•
$$\tau(u) = e^u - u - 1, u \in \mathbb{R}$$
.

Proof Sketch

Exponential tightness

Theorem 3. The sequence $\{(\mu_N(t), \theta_N(t)), t \in [0, T]\}_{N \geq 1}$ is exponentially tight in $D([0, T], M_1(\mathcal{X})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$, i.e., given any M > 0, there exists a compact set K_M such that

$$\limsup_{N\to\infty} \frac{1}{N} \log P\left(\{(\mu_N(t),\theta_N(t)), 0 \le t \le T\} \notin K_M\right) \le -M.$$

An equation for a subsequential rate function

- Let \tilde{I} be a subsequential rate function for $\{(\mu_N, \theta_N), N \geq 1\}$.
- Let $\alpha : [0,T] \times M_1(\mathcal{X}) \to \mathbb{R}^{|\mathcal{X}|}$ and $g : [0,T] \times M_1(\mathcal{X}) \times \mathcal{Y} \to \mathbb{R}$ be bounded measurable, and continuous on $M_1(\mathcal{X})$.
- Define $U_t^{\alpha,g}(\mu,\theta)$ by

$$\int_{[0,t]} \left\{ \langle \alpha_{s}(\mu_{s}), \dot{\mu}_{s} - \bar{\Lambda}_{\mu_{s},m_{s}}^{*} \mu_{s} \rangle - \sum_{(x,x')} \tau(\alpha_{s}(\mu_{s})(x') - \alpha_{s}(\mu_{s})(x)) \bar{\lambda}_{x,x'}(\mu_{s}, m_{s}) \mu_{s}(x) \right. \\
\left. + \sum_{y} \left(-L_{\mu_{s}} g_{s}(\mu_{s}, \cdot)(y) - \sum_{y:(y,y') \in \mathcal{E}_{\mathcal{V}}} \tau(g_{s}(\mu_{s}, y') - g_{s}(\mu_{s}, y)) \gamma_{y,y'}(\mu_{s}) \right) m_{s}(y) \right\} ds.$$

• Using Varadhan's lemma, it can be shown that, for each α and g,

$$\sup_{(\mu,\theta)\in\Gamma} (U_T^{\alpha,g}(\mu,\theta) - \tilde{I}(\mu,\theta)) = 0,$$

where Γ is the set of (μ, θ) such that $t \mapsto \mu_t$ absolutely continuous.

A candidate rate function

- Define $I^*(\mu, \theta) = \sup_{\alpha, g} U_T^{\alpha, g}(\mu, \theta)$.
- It can be shown that $I^* = J$, and that $\tilde{I} \geq I^*$ on Γ . Outside Γ , I^* can be shown to be $+\infty$. We next show that $\tilde{I} \leq I^*$ whenever $I^* < +\infty$.

Identification of I^* on "nice" elements

- Suppose $(\hat{\mu}, \hat{\theta})$ is such that $I^*(\hat{\mu}, \hat{\theta}) < +\infty$; $\inf_{t \in [0,T]} \min_{x \in \mathcal{X}} \hat{\mu}_t(x) > 0$; the mapping $[0,T] \ni t \mapsto \hat{\mu}_t \in M_1(\mathcal{X})$ is Lipschitz continuous; $\inf_{t \in [0,T]} \min_{y \in \mathcal{Y}} \hat{m}_t(y) > 0$ where $\hat{\theta}(dydt) = \hat{m}_t(dy)dt$.
- Then, there exists $(\hat{\alpha}, \hat{g})$ that attains $\sup_{\alpha, g} U_T^{\alpha, g}(\hat{\mu}, \hat{\theta})$. Then get $(\tilde{\mu}, \tilde{\theta})$ that attains the supremum in $\sup_{(\mu, \theta) \in \Gamma} (U_T^{\hat{\alpha}, \hat{g}}(\mu, \theta) \tilde{I}(\mu, \theta)) = 0$.
- Hence, $I^*(\tilde{\mu}, \tilde{\theta}) \ge U_T^{\hat{\alpha}, \hat{g}}(\tilde{\mu}, \tilde{\theta}) = \tilde{I}(\tilde{\mu}, \tilde{\theta})$. Thus $I^*(\tilde{\mu}, \tilde{\theta}) = \tilde{I}(\tilde{\mu}, \tilde{\theta})$.
- Show that $(\tilde{\mu}, \tilde{\theta}) = (\hat{\mu}, \hat{\theta})$. It follows that $\tilde{I}(\hat{\mu}, \hat{\theta}) = I^*(\hat{\mu}, \hat{\theta})$.

Identification of I^* using approximations

• For a general (μ, θ) , construct a suitable sequence of "nice" elements $\{(\mu_i, \theta_i), i \geq 1\}$ and show that $(\mu_i, \theta_i) \rightarrow (\mu, \theta)$ and $I^*(\mu_i, \theta_i) \rightarrow I^*(\mu, \theta)$ as $i \rightarrow \infty$.

Acknowledgements

SY is supported by a research fellowship grant from the Centre for Networked Intelligence (a Cisco CSR Initiative), Indian Institute of Science.