Rajalakshmi Engineering College

Name: Manju sri N

Email: 241801151@rajalakshmi.edu.in

Roll no: 241801151 Phone: 8946059431

Branch: REC

Department: I AI & DS FC

Batch: 2028

Degree: B.E - AI & DS

NeoColab_REC_CS23221_Python Programming

REC_Python_Week 1_CY

Attempt : 1 Total Mark : 40 Marks Obtained : 30

Section 1: Coding

1. Problem Statement

John is developing a financial application to help users manage their investment portfolios. As part of the application, he needs to write a program that receives the portfolio's main value and the values of two specific investments as inputs. The program should then display these values in reverse order for clear visualization.

Help John achieve this functionality by writing the required program.

Input Format

The first line of input consists of a float, representing the first investment value.

The second line of input consists of a float, representing the second investment value.

The third line of input consists of an integer, representing the portfolio ID.

Output Format

The first line of output prints "The values in the reverse order:".

The second line prints the integer, representing the portfolio ID.

The third line prints the second float, representing the second investment value.

The fourth line prints the first float, representing the first investment value.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 35.29 9374.11 48

Output: The values in the reverse order:

48

9374.11 35.29

Answer

```
investment1=float(input())
investment2=float(input())
portfolio_id=int(input())
print("The values in the reverse order:")
print(portfolio_id)
print(investment2)
print(investment1)
```

Status: Correct Marks: 10/10

2. Problem Statement

Shawn is planning for his younger sister's college education and wants to ensure she has enough funds when the time comes. He starts with an

initial principal amount and plans to make regular monthly contributions to a savings account that offers a fixed annual interest rate.

Shawn needs to calculate the total amount that will accumulate by the time his sister is ready for college. Your task is to write a program that calculates the final amount in the savings account based on the initial principal, monthly contributions, annual interest rate, and the number of months the money is invested.

Formula:

$$A = P \times (1 + r/n)^{n}(n \times t) + C \times [((1 + r/n)^{n}(n \times t) - 1) / (r/n)]$$

Where:

A = Final amount after the specified time

P = Initial principal amount

C = Monthly contribution

r = Annual interest rate (as a decimal, e.g., 5% = 0.05)

n = Number of compounding periods per year (12 for monthly compounding)

t = Total time in years (months / 12)

Input Format

The first line of input consists of a float P, representing the initial principal amount.

The second line of input consists of a float R, representing the annual interest rate (in percentage).

The third line of input consists of a float C, representing the monthly contribution.

The fourth line of input consists of an integer M, representing the number of months.

Output Format

The output displays "Final amount after X months: Rs." followed by the total accumulated amount, formatted to two decimal places, where X is the number

of months.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 10000.0 5.0 2000.0 12

Output: Final amount after 12 months: Rs.35069.33

Answer

```
p=float(input())
c=float(input())
r=float(input())
months=int(input())
n=12
t=months/12
r_n=(r/100)
A=p*((1+r_n)/n)**(n*t)+c*(((1+r_n/n)**(n*t)-1)/(r_n/n))
print(f"Final amount after {months} months: Rs.{A:.2f}")
```

Status: Wrong Marks: 0/10

3. Problem Statement

Alex is an air traffic controller who needs to record and manage flight delays efficiently. Given a flight number, the delay in minutes (as a string), and the coordinates of the flight's current position (as a complex number),

Help Alex convert and store this information in a structured format.

Input Format

The first line of input consists of an integer N, representing the flight number.

The second line consists of a string representing the delay in minutes.

The third line consists of two floats separated by a space, representing the real and imaginary parts of the complex number for the flight's position.

Output Format

The first line of output displays the complex number.

The second line displays a string with the flight number, delay, and the real and imaginary parts of the complex number, separated by commas.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 12345 30.5 12.3 45.6 Output: (12.3+45.6j) 12345, 30.5, 12.3, 45.6

Answer

flight_number=int(input())
delay=input()
real,imag=map(float,input().split())
position=complex(real,imag)
print(position)
print(f"{flight_number}, {delay}, {position.real} , {position.imag}")

Status: Correct Marks: 10/10

4. Problem Statement

Emily is organizing a taco party and needs to determine the total number of tacos required and the total cost. Each attendee at the party will consume 2 tacos. To ensure there are enough tacos:

If there are 10 or more attendees, Emily will need to provide an additional 5 tacos. If there are fewer than 10 attendees, Emily must ensure a minimum of 20 tacos are provided.

The cost of each taco is \$25. Write a program that calculates both the total number of tacos required and the total cost based on the number of attendees.

Input Format

The input consists of an integer n, representing the number of attendees.

Output Format

The first line prints "Number of tacos needed: " followed by an integer representing the number of tacos needed for n attendees.

The second line prints "Total cost: " followed by an integer representing the total cost."

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 10

Output: Number of tacos needed: 25

Total cost: 625

Answer

```
n=int(input())
tacos_needed=n*2
if n<10:
    tacos_needed=max(tacos_needed, 20)
elif n>=10:
    tacos_needed += 5
total_cost=tacos_needed*25
print(f"Number of tacos needed: {tacos_needed}")
print(f"Total cost: {total_cost}")
```

Status: Correct Marks: 10/10