Spring 2012 Jim Fowler

Thank you for a great quarter: I hope you've enjoyed cohomology and that you'll be able to use (co)homological arguments to do great things. Here are five problems to write up for next Thursday; each is worth eighty points.

Problem 1. Let Σ_2 be the closed surface of genus 2; find a map $f: \Sigma_2 \to \Sigma_2$ which is not homotopic to the identity, but for which $f^*: H^*(\Sigma_2) \to H^*(\Sigma_2)$ is the identity. This is an element of the **Torelli group**.

Problem 2. Sometimes manifolds have finite covers which are homeomorphic to the original manifolds, e.g., S^1 or the *n*-torus. Is it possible that a closed manifold M^n has an infinite-sheeted cover which is homotopy equivalent to itself?

Problem 3. Calculate $H^n(\mathbb{R}P^7 \times S^3; R)$ and compare it to $H^n(SO(5); R)$ for $R = \mathbb{Z}$ and $R = \mathbb{Z}/2$. Is $\mathbb{R}P^7 \times S^3$ homotopy equivalent to SO(5)?

Problem 4. Does Alexander duality hold for "homology spheres"? Suppose M^n is a closed n-manifold with $H_{\star}(M^n) \cong H_{\star}(S^n)$, and K a compact, locally contractible, nonempty, proper subspace of M^n . Is it true that $\tilde{H}_i(M^n - K) \cong \tilde{H}^{n-i-1}(K)$?

Problem 5. The Segre map $\sigma: \mathbb{C}P^n \times \mathbb{C}P^m \to \mathbb{C}P^{(n+1)(m+1)-1}$ is defined by

$$\sigma([x_0:\cdots:x_n],[y_0:\cdots:y_m])=[x_0y_0:\cdots:x_iy_j:\cdots:x_ny_m].$$

Describe the map of rings $\sigma^*: H^*(\mathbb{C}P^{(n+1)(m+1)-1}) \to H^*(\mathbb{C}P^n \times \mathbb{C}P^m)$.