Random Variables and Probability Distributions

From Outcomes to Real Numbers

Revisit Dice Rolling Example

Define a new variable: The sum of the dots facing upward when rolling two dice.

Let's call this variable X.

Thus, X= the sum of dots facing upward when rolling two dice.

Random Variable

Thus, X= the sum of dots facing upward when rolling two dice.

X is called a Random Variable.

X can take values from the set {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Suppose that X takes 7, then we say X = x, where x = 7 or in short X = 7.

7 is one of the realizations of X, meaning 7 is an observed value of the measurement X.

X

What is the definition of a random variable?

A **random variable** is a function that assigns a numerical value to each outcome in a sample space of a random experiment.

Formal Definition:

A **random variable** is a function $X:\Omega o\mathbb{R}$, where:

- ullet Ω is the **sample space** (the set of all possible outcomes of a random process),
- \mathbb{R} is the set of **real numbers**, and
- ullet For each outcome $\omega\in\Omega$, $X(\omega)$ is a real number associated with that outcome.

The Distribution of a Random Variable

x	2	3	4	5	6	7	8	9	10	11	12
pro	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

$$prob = p(x) = \begin{cases} \frac{1}{36}, & x = 2,12\\ \frac{2}{36}, & x = 3,11\\ \frac{3}{36}, & x = 4,10\\ \frac{4}{36}, & x = 5,9\\ \frac{5}{36}, & x = 6,8\\ \frac{6}{36}, & x = 7\\ 0, & Otherwise \end{cases}$$

Probability Mass Function

What is the definition of a probability mass function?

A **probability mass function (PMF)** is a function that gives the probability that a **discrete** random variable is exactly equal to a specific value.

Formal Definition:

Let X be a discrete random variable. The probability mass function p(x) is defined as:

$$p(x) = P(X = x)$$

for all values x in the range of X.

$$prob = p(x) = \begin{cases} \frac{1}{36}, & x = 2,12\\ \frac{2}{36}, & x = 3,11\\ \frac{3}{36}, & x = 4,10\\ \frac{4}{36}, & x = 5,9\\ \frac{5}{36}, & x = 6,8\\ \frac{6}{36}, & x = 7\\ 0, & Otherwise \end{cases}$$

Example:

- X is a discrete random variable.
- The distribution of X is discrete.
- The p.m.f. of X is given as p(x), where

$$p(x) = P(X = x).$$

X = number of declared majors before BYU graduation (a student who never changes his or her major has 1 major)

Remarks

- p(x) is a function.
- P(X = x) is a probability of the event $\{X = x\}$.
- The function p(x) takes value of the probability of $\{X = x\}$.

Example: Rolling Dice

X	2	3	4	5	6	7	8	9	10	11	12
prob	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

$$P(X \ge 7) = p(7) + p(8) + \dots + p(12) = \sum_{x=7}^{12} p(x)$$

Note that $\{X \ge 7\} = \{X = 7\} \cup \{X = 8\} \cup \cdots \cup \{X = 12\} = \bigcup_{x=7}^{12} \{X = x\}$. The event is the union of a series of mutually exclusive events. Thus, we can use probability Axiom 3 to find $P(X \ge 7)$.

Example:

$$P(X = 4) = p(4) = 0.1$$

$$P(X > 1) = p(2) + p(3) + P(4) + p(5) = 0.85$$

$$P(X > 1) = 1 - p(1) = 1 - 0.15 = 0.85$$

X= number of declared majors before BYU graduation (a student who never changes his or her major has 1 major)

Properties of a PMF:

- **1.** Non-negativity: $p(x) \geq 0$ for all values of x
- 2. Normalization: $\sum_{x\in\mathcal{X}}p(x)=1$, where \mathcal{X} is the set of all possible values that X can take
- **3. Support:** p(x)>0 only for values $x\in\mathcal{X}$; for all other x, p(x)=0

Random Variable

X can take values from the set {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

7 is one of the realizations of X, meaning 7 is an observed value of the measurement X.

Probability Axioms

- 1. P(S) = 1, where S is the sample space
- $P(A) \ge 0$, where $A \subseteq S$
- 3. $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$, where A'_i s are disjoint events

Properties of a PMF:

Notes

- 1. Non-negativity: $p(x) \ge 0$ for all values of x
- **2. Normalization**: $\sum_{x \in \mathcal{X}} p(x) = 1$, where \mathcal{X} is the set of all possible values that X can take
- **3. Support:** p(x)>0 only for values $x\in\mathcal{X}$; for all other x, p(x)=0

Verifying PMF Properties

(a)	<i>x</i>	2	3	4	5	6	7	8	9	10	11	12
(4)	prob	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

$$\begin{array}{c|cccc}
x & p(x) \\
\hline
1 & 0.15 \\
2 & 0.30 \\
3 & 0.40 \\
4 & 0.10 \\
5 & 0.05
\end{array}$$

(c) Which of the following functions is a p.m.f.?

$$p(x) = \begin{cases} 0.5, & x = 1\\ 0.1, & x = 2\\ 0.2, & x = 3\\ 0, & Otherwise \end{cases}$$

$$f(x) = \begin{cases} 0.5, & x = 1 \\ 0.3, & x = 2 \\ 0.2, & x = 3 \\ 0, & Otherwise \end{cases}$$

Example: Binary Outcomes

- Suppose we play a game with only two possible outcomes:
 - □ Success The probability of succeeding in the game is 0.7
 - □ Failure The probability of failing in the game is 0.3
- We introduce a random variable X, where

$$X = \begin{cases} 1, & \text{if it is a success} \\ 0, & \text{if it is a failure} \end{cases}$$

• The p.m.f. is then given by

$$p(x) = \begin{cases} 0.7, & for \ x = 1 \\ 1 - 0.7, & for \ x = 0 \end{cases}$$

Remarks

- The random variable in the Binary Outcome example is called a Bernoulli random variable.
- The p.m.f. can also be written as

$$p(x) = 0.7^{x}(1 - 0.7)^{1-x}$$
, for $x = 0$ or 1

• If we denote the probability of a success by a generical notation p, then the above function is written as

$$p(x) = p^{x}(1-p)^{1-x}$$
, for $x = 0$ or 1

Bernoulli Distribution

• The random variable in the Binary Outcome example is called a Bernoulli random variable.