50. Trabalho Computacional (TIP7077 – Inteligência Computacional Aplicada)

Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)

Departamento de Engenharia de Teleinformática (DETI)

Universidade Federal do Ceará (UFC)

Responsável: Prof. Guilherme de Alencar Barreto Data: 14/06/2014 - Data de entrega: 23/06/2014

Questão Única

Tomando como referência o problema de estacionar um veículo usando controle fuzzy, pede-se:

- (i) Implementar as funções de pertinência das três variáveis envolvidas: 2 entradas (distância -x, ângulo do caminhão $-\phi$) e uma saída (ângulo da direção $-\theta$) usando funções gaussianas.
- (ii) Usando a base de regras (matriz de regras) disponível no material auxiliar fornecido, comparar a saída precisa produzida (θ) usando as funções de pertinência do Item (i) com a saída produzida por funções de pertinência triangulares. Testar os seguintes valores das entradas precisas, completando a tabela abaixo:

Distância (x)	Ângulo caminhão (φ)	Saída (θ) funções triangulares	Saída (θ) funções gaussianas
47,5m	+99°		
20,0m	-45°		
60,0m	+92,5°		

- (iii) Para cada par de entrada (x, ϕ) do Item (ii) determinar quais regras são ativadas destacando os elementos da matriz de regras correspondentes. Usar apenas as funções de ativação gaussianas.
- (iv) Para cada par de entrada (x, ϕ) do Item (ii) determinar os gráficos dos conjuntos fuzzy de saída de cada regra individual que foi ativada, bem como o conjunto fuzzy de saída agregado. Usar apenas as funções de ativação gaussianas.
- (v) Determinar a superfície de controle referente à aproximação da função $\theta = f(x, \phi)$ usando as funções de pertinência gaussianas e a matriz de regras dadas. Comparar com a superfície gerada por funções de pertinência triangulares.

Boa Sorte!