

Plani | Dubai | Goa | Hyderabad

Clustering Algorithm (DBSCAN)

Prof Love Arora

DBSCAN algorithm

(Density-based spatial clustering of applications with noise)

innovate achieve lead

Outline

- Introduction to Clustering
- Density-based Clustering
- Definitions of DBSCAN
- DBSCAN Algorithm
- Implementation in Python

What is Clustering?

- Clustering is an unsupervised machine learning algorithm that divides a data into meaningful sub-groups, called clusters.
- In general a grouping of objects such that the objects in a group (cluster) are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Density-based Clustering Methods

- Clustering based on density (local cluster criterion), such as densityconnected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98) (more grid-based)

DBSCAN: (Density-based spatial clustering of applications with noise)

- Proposed by Ester, Kriegel, Sander, and Xu (KDD96)
- Basic Idea: Clusters are dense regions in the data space, separated by regions of lower object density
- Discovers clusters of arbitrary shape in spatial databases with noise

Figure 1. Sample databases

Density Based Clustering: Basic Concept

- Intuition for the formalization of the basic idea
 - For any point in a cluster, the local point density around that point has to exceed some threshold
 - The set of points from one cluster is spatially connected
- Local point density at a point p defined by two parameters
 - ε: Maximum radius of the neighbourhood of point p.
 - MinPts: Minimum number of points in an
 e neighbourhood of that point.

ε-Neighborhood

- ϵ -Neighborhood Objects within a radius of ϵ from an object. $N_{\epsilon}(p): \{q \mid d(p,q) \leq \epsilon\}$
- "High density" ε-Neighborhood of an object contains at least MinPts of objects.

 ϵ -Neighborhood of p ϵ -Neighborhood of qDensity of p is "high" (MinPts = 4)

Density of q is "low" (MinPts = 4)

Core, Border & Outlier

 $\varepsilon = 1$ unit, MinPts = 5

Given ε and *MinPts*, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

Example

 M, P, O, and R are core objects since each is in an Eps neighborhood containing at least 3 points

Minpts = 3

Eps=radius of the circles

Directly Density-Reachable

An object q is directly density-reachable from object p
if p is a core object and q is in p's ε-neighborhood.

MinPts = 4

- q is directly density-reachable from p
- p is not directly density- reachable from q?
- Density-reachability is asymmetric.

Density-Reachable

- A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points $p_1, \ldots, p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i
 - A point p is directly density-reachable from p2;
 - p2 is directly density-reachable from p1;
 - p1 is directly density-reachable from q;
 - p←p2←p1←q form a chain.

- p is (indirectly) density-reachable from q
- q is not density- reachable from p?

Density-Connected

A point p is <u>density-connected</u> to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are <u>density-reachable</u> from o w.r.t. Eps and MinPts

DBSCAN Algorithm

```
Input: The data set D
```

Parameter: ε, MinPts

```
For each object p in D
if p is a core object and not processed then
C = retrieve all objects density-reachable from p
mark all objects in C as processed
report C as a cluster
else mark p as outlier
end if
```

End For

DBScan Algorithm

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p wrt Eps and MinPts.
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2$ cm
- MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2$ cm
- *MinPts* = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2$ cm
- MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```


Determining Eps and MinPts

In layman's terms, we find a suitable value for epsilon by

- calculating the distance to the nearest *n* points for each point
- sorting and plotting the results.
- Then we look to see where the change is most pronounced (think of the angle between your arm and forearm) and select that as epsilon.

Algorithm 1 The pseudo code of the proposed technique DMDBSCAN to find suitable Epsi for each level of density in data set	
Purpose	To find suitable values of Eps
Input	Data set of size n
Output	Eps for each varied density
Procedure	<pre>1 for i 2 for j = 1 to n 3 d(i,j) ← find distance (x_i, x_j) 4 find minimum values of distances to nearest 3 5 end for 6 end for 7 sort distances ascending and plot to find each value 8 Eps corresponds to critical change in curves</pre>

Figure 1 Pseudocode DMDBSCAN Algorithm (Elbatta 2012)

import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()

```
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) plt.scatter(X[:,0], X[:,1])
```


DBSCAN Vs K-Means

Thank You!!