Homework 13

We learn how to write proofs in text.

- 1. Let A, B, C be sets. Prove each statement. See the slides for the definitions of $A \cup B$, $A \cap B$, $A \subseteq B$, and so on.
 - (1) $A \subseteq A$.
 - (2) $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$.
 - $(3) \ (A\cap C)\cup (B\cap C)\subseteq (A\cup B)\cap C.$
 - $(4) (A \cap B) \cup C \subseteq (A \cup C) \cap (B \cup C).$
 - (5) $(A \cup C) \cap (B \cup C) \subseteq (A \cap B) \cup C$.
 - (6) If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.
- 2. For sets A, B we write A = B if $A \subseteq B$ and $B \subseteq A$. The union $\bigcup_{i \in I} A_i$ denotes the set of all elements x that satisfy $x \in A_i$ for some $i \in I$. The interval [a, b] between real numbers a, b is defined by $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$. Similarly (a, b] is defined by $(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$.
 - (a) For each positive natural number i we define $A_i = [0, 1/i], B_i = (0, 1/i],$ and $C_i = (-1/i, i].$ Compute $\bigcup_{i \in I} A_i, \bigcup_{i \in I} B_i,$ and $\bigcup_{i \in I} C_i.$
 - (b) Prove $(\bigcup_{i \in I} A_i) \cap B = \bigcup_{i \in I} (A_i \cap B)$.
- 3. We study the big O notation, which is used to describe complexity of algorithms. Let $f, g, h : \mathbb{N} \to \mathbb{N}$ be functions on \mathbb{N} . We write $f(n) \in O(g(n))$ if there are some natural numbers c and N such that $f(n) \leq cg(n)$ for all natural numbers $n \geq N$. In other words $f(n) \in O(g(n))$ is defined by:

$$\exists c \exists N \forall n (n \geq N \rightarrow f(n) \leq cg(n))$$

Note that \in of the big O notation technically has nothing to do with that of set theory, and that the negation of $f(n) \in O(g(n))$ is:

$$\forall c \forall N \exists n (n \ge N \land f(n) > cg(n))$$

Show the following statements.

- (1) If f(n) = n and $g(n) = n^2$ then $f(n) \in O(g(n))$.
- (2) If f(n) = n + 10 and $g(n) = n^2$ then $f(n) \in O(g(n))$.
- (3) If f(n) = 100n and $g(n) = n^2$ then $f(n) \in O(g(n))$.
- (4) If f(n) = 100n and $g(n) = n^2$ then $g(n) \in O(f(n))$ does not hold.
- (5) If f(n) = n + 10 and g(n) = 5n then $f(n) \in O(g(n))$.
- (6) If f(n) = n + 10 and g(n) = 5n then $g(n) \in O(f(n))$.
- (7) If $f(n) = n^3$ and $g(n) = 2^n$ then $f(n) \in O(g(n))$.
- (8) If $f(n) = n^3$ and $g(n) = 2^n$ then $g(n) \in O(f(n))$ does not hold.
- (9) If $f(n) \in O(h(n))$ and $g(n) \in O(h(n))$ then $f(n) + g(n) \in O(h(n))$.
- (10) If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.
- 4. Solve the homework about Killer Sudoku, see the slides.
- 5. Prove the soundness theorem of natural deduction for propositional logic.