Simulation for model checking

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Basic ideas

 Way back in the first week we talked about simulating data from distributions in R using the rfoo functions.

- In general simulations are way more flexible/useful
 - For bootstrapping as we saw in week 7
 - For evaluating models
 - For testing different hypotheses
 - For sensitivity analysis
- At minimum it is useful to simulate
 - A best case scenario
 - A few examples where you know your approach won't work
 - The importance of simulating the extremes

Simulating data from a model

Suppose that you have a regression model

$$Y_i = b_0 + b_1 X_i + e_i$$

Here is an example of generating data from this model where X_i and e_i are normal:

```
set.seed(44333)
x <- rnorm(50)
e <- rnorm(50)
b0 <- 1; b1 <- 2
y <- b0 + b1*x + e</pre>
```

Violating assumptions

```
set.seed(44333)
x <- rnorm(50)
e <- rnorm(50); e2 <- rcauchy(50)
b0 <- 1; b1 <- 2
y <- b0 + b1*x + e; y2 <- b0 + b1*x + e2</pre>
```

Violating assumptions

```
par(mfrow=c(1,2)) \\ plot(lm(y \sim x)\$fitted,lm(y\sim x)\$residuals,pch=19,xlab="fitted",ylab="residuals") \\ plot(lm(y2 \sim x)\$fitted,lm(y2\sim x)\$residuals,pch=19,xlab="fitted",ylab="residuals") \\
```


Repeated simulations

```
set.seed(44333)
betaNorm <- betaCauch <- rep(NA,1000)
for(i in 1:1000){
    x <- rnorm(50); e <- rnorm(50); e2 <- rcauchy(50); b0 <- 1; b1 <- 2
    y <- b0 + b1*x + e; y2 <- b0 + b1*x + e2
    betaNorm[i] <- lm(y ~ x)$coeff[2]; betaCauch[i] <- lm(y2 ~ x)$coeff[2]
}
quantile(betaNorm)</pre>
```

```
0% 25% 50% 75% 100%
1.500 1.906 2.013 2.100 2.596
```

```
quantile(betaCauch)
```

```
0% 25% 50% 75% 100%
-278.352 1.130 1.965 2.804 272.391
```

Monte Carlo Error

boxplot(betaNorm,betaCauch,col="blue",ylim=c(-5,5))

Simulation based on a data set

```
library(UsingR); data(galton); nobs <- dim(galton)[1]
par(mfrow=c(1,2))
hist(galton$child,col="blue",breaks=100)
hist(galton$parent,col="blue",breaks=100)</pre>
```

Histogram of galton\$child

62 64 66 68 70 72 74 galton\$child

Histogram of galton\$parent

Calculating means, variances

```
lm1 <- lm(galton$child ~ galton$parent)
parent0 <- rnorm(nobs,sd=sd(galton$parent),mean=mean(galton$parent))
child0 <- lm1$coeff[1] + lm1$coeff[2]*parent0 + rnorm(nobs,sd=summary(lm1)$sigma)
par(mfrow=c(1,2))
plot(galton$parent,galton$child,pch=19)
plot(parent0,child0,pch=19,col="blue")</pre>
```

Simulating more complicated scenarios

```
library(bootstrap); data(stamp); nobs <- dim(stamp)[1]
hist(stamp$Thickness,col="grey",breaks=100,freq=F)
dens <- density(stamp$Thickness)
lines(dens,col="blue",lwd=3)</pre>
```

Histogram of stamp\$Thickness

A simulation that is too simple

```
plot(density(stamp$Thickness),col="black",lwd=3)
for(i in 1:10){
  newThick <- rnorm(nobs,mean=mean(stamp$Thickness),sd=sd(stamp$Thickness))
  lines(density(newThick),col="grey",lwd=3)
}</pre>
```

density.default(x = stamp\$Thickness)

How density estimation works

http://en.wikipedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png

Simulating from the density estimate

```
plot(density(stamp$Thickness),col="black",lwd=3)
for(i in 1:10){
  newThick <- rnorm(nobs,mean=stamp$Thickness,sd=dens$bw)
  lines(density(newThick),col="grey",lwd=3)
}</pre>
```

density.default(x = stamp\$Thickness)

Increasing variability

```
plot(density(stamp$Thickness),col="black",lwd=3)
for(i in 1:10){
  newThick <- rnorm(nobs,mean=stamp$Thickness,sd=dens$bw*1.5)
  lines(density(newThick,bw=dens$bw),col="grey",lwd=3)
}</pre>
```

density.default(x = stamp\$Thickness)

Notes and further resources

Notes

- Simulation can be applied to missing data problems simulate what missing data might be
- · Simulation values are often drawn from standard distributions, but this may not be appropriate
- Sensitivity analysis means trying different simulations with different assumptions and seeing how estimates change

Further resources

- Advanced Data Analysis From An Elementary Point of View
- The design of simulation studies in medical statistics
- Simulation studies in statistics