CHEMISTRY

Asesoría-Tomo III y IV

Determine el número de enlaces pi() y carbonos con hibridación sp²

- A) 7 y 12 B) 7 y 13 8 y 12
- D) 8 y 13 E) 6 y 12

<u>Resolució</u>

RECORDEMOS

Hibridación

8 enlaces pi(π)

12 carbonos con hibridación sp²

Indique si las moléculas presentan enlace covalente polar o covalente apolar.

I. SeO ₃	Enlace covalente polar
II. Br ₂	Enlace covalente apolar
III. PCl ₃ _	Enlace covalente polar
IV. SF ₆ _	Enlace covalente polar
V. I ₂	Enlace covalente apolar

Resolució

En lace covalente apolar se da cuando los átomos son del mismo elemento. El enlace covalente polar se produce entre átomos de elementos no metálicos diferentes.

Escribe la fórmula para cada uno de los compuestos

- Hidróxido de cobre (II):
- Hidróxido de plomo (IV): _____Pb(OH)_Z
- Trióxido de dialuminio :
- Monóxido de mercurio :

RECORDANDO

Resolució

Nomenclatura de Stock

Función

Nombre del elemento

(valencia en Romanos)

Nomenclatura Sistemática (IUPAC)

Se emplean prefijos de cantidad: mono, di, tri, tetra, penta, hexa, etc.

PIEGUIICA

Formule los siguientes ácidos:

H₂SeO₃ Ácido selenioso:

Se(2+, 4+, 6+)

HIO₄ Ácido peryódico:

n : Ácido selenioso

Se^(2+, 4+, 6+)

$$Se^{(2+, 4+, 6+)}$$
 H_2SeO_{4+2}
 H_2SeO_3

Ácido peryódico

$$(1+, 3+, 5+, 7+)$$
 $HIO_{\frac{7+1}{2}}$ HIO₄

Determine la fórmula del producto principal al hacer reaccionar Pb(OH)₄ con HBrO₂

A) PbBrO₂ Pb(BrO₂)₄ C) Pb(BrO₂)₃ D) Pb₂BrO₂ E) Pb(BrO₂)₂ Resolució

$$HBrO_2 + Pb(OH)_4 \rightarrow Pb(BrO_2)_4 + H_2O$$

$$-H^+$$

$$Pb^{4+} + BrO_2 \rightarrow Pb (BrO_2)_4 + H_2O$$

Pregunta

NIOC

Determine la masa de una aleación formada por 5 moles de oro y 10 moles de mercurio. Datos: mA (uma): Au = 197; Hg = 200,6

A) 1991 g B) 3001 g C) 2971 g D) 2006 g E) 985 g

Resolució

 $\Delta u = 5$ moles de Au

$$n Au = \frac{m}{mA Au}$$

$$5 = \frac{m}{197}$$

$$mAu = 985 g$$

n Hg = 10 moles de Hg

$$n Hg = \frac{m}{mA Hg}$$

$$10 = \frac{m}{200,6}$$

$$mHg = 2006 g$$

$$m \text{ total} =$$

$$985 g +$$

$$2006 g$$

$$2991 g$$

Pregunta

Se añade flúor a un tanque de acero de 8 L, siendo la temperatura 47 ºC. Luego se traslada a otro recipiente a 207 ºC. ¿Cuál debe ser el volumen del nuevo recipiente para mantener la misma presión?

A) 8 L \bigcirc 12 L C) 10 L D) 6 L E) 16 L Resolució

Si la presión es constante, entonces el proceso es isobárico

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$V_2 = \frac{V_1 T_2}{T_1}$$

$$V_2 = \frac{8.480}{320}$$

$$V_1$$
= 8 L T_1 = 47 °C + 273= 320 K
 V_2 = x L T_2 = 207 °C + 273= 480 K

rieguiita

Determine la presión ocupada por 100 moles de gas propano a 127 ºC de temperatura cuyo balón tiene un volumen de 8 200 L.

Resolució

Aplicando

$$PV = RTn$$

Despejando

$$P = \frac{RTn}{V}$$

Datos

$$T = 127 + 273 = 400 K$$

$$R = 0.082 \text{ atm} \cdot \text{L/mol} \cdot \text{K}$$

$$P = \frac{0,082 \cdot 400 \cdot 100}{8200}$$

$$P = \frac{82 \cdot 400 \cdot 100}{1000 \cdot 8200}$$

$$P = 0.4 atm$$

Pregunta

NIOO

En las siguientes ecuaciones, indique el tipo de reacción.

I.
$$Mg + CuSO_4 \rightarrow MgSO_4 + Cu$$

III. NaHCO₃
$$\rightarrow$$
 Na₂CO₃ + CO₂ + H₂O

<u>Resolució</u>

<u>n</u>:

Reacción de sustitución o desplazamiento simple

Reacción de doble desplazamiento o metátesis

Reacción de descomposición

Reacción de combustión incompleta

Pregunta

Las nitrosaminas, o, más correctamente, N-nitrosoaminas, son moléculas que contienen un grupo funcional nitroso y que suscitan preocupación debido a que sus impurezas podrían ser cancerígenas para el ser humano.

Aunque pueden encontrarse en algunos alimentos y en el suministro de agua potable, su presencia en un medicamento se considera inaceptable.

Estos compuesto contienen sustancias mutágenas y cancerígenas muy potentes que el Centro Internacional de Investigaciones sobre el Cáncer de la OMS clasifica como posibles sustancias cancerígenas para el ser humano. A pesar de la potencia de estas impurezas, el riesgo de que causen cáncer a seres humanos es muy bajo cuando las concentraciones son pequeñas; sin embargo, si es peligroso cuando las concentraciones aumentan. Se pueden formar en el organismo a partir de los nitritos que se adiciona a los productos cárnicos como conservante.

Escriba la fórmula del nitrito de sodio obtenido a partir del ácido nitroso cuando reacciona con hidróxido de sodio-

Figura 1: N-nitrosodimetilamina (NDMA)

Figura 2: N-nitrosodietilamina (NDEA)

Resolució

