# OMCoRP: An Online Mechanism for Competitive Robot Prioritization

Sankar N. Das<sup>1</sup>, Swaprava Nath<sup>2</sup>, and Indranil Saha<sup>2</sup>

<sup>1</sup>Accenture Labs, India, <sup>2</sup>IIT Kanpur India

sankar.c64@gmail.com, swaprava@cse.iitk.ac.in, isaha@cse.iitk.ac.in



#### Collision Avoidance

- A central problem in various autonomous movement environments e.g., warehouse, autonomous vehicles
- Our focus: dynamic arrival and independent control of the robots
- Difficulty: robots are **competitive** rather than **cooperative**
- Design goals:
- -Prioritize the more 'valuable' robots without any prior knowledge of the robots that are independently owned/controlled
- -Scalable to 1000s of robots
- Collision-free and Deadlock-free
- Handle dynamic arrival of robots

## Our Model and Approach

- Model is similar to the auction-like collision avoidance setting
- But analysis is a full-blown mechanism design approach with competitive robots
- The movement is given by a graph with edges being full-duplex paths
- Edges are incident on nodes which are roundabouts
- Robot *i*:
  - -current location  $\ell_i(t)$
  - -intended next location  $n_i(t)$
  - -value for moving to that location  $v_i(t)$ , zero otherwise



Illustration of a vertex with four incident full-duplex edges

#### State-of-the-art

- 1. Offline multi-robot planning algorithms
- generate the collision-free paths for all the robots statically
- computation time for generating path plans prohibitively large
- cannot deal with the *dynamic arrival* of new robots
- 2. Robots independently generate their trajectories offline
  - trajectories are not *collision-free*
  - collision situations are resolved online in a decentralized manner through information exchange
  - cooperative robots
- 3. Robots interact in an auction-like setting and bid for their makespan or demand for resource
  - only *bid* part of the auction is used
  - assumed to bid *truthfully*

#### Competitive Robots

- The robots have different private valuation for movement
- Robots compete with each other to get a prioritized treatment
- The valuation indicates priority of a robot
- -Premium: high value, carries priority shipping items
- -Regular: moderate value, regular items
- -Economy: low priority, non-priority items

### Algorithm: OMCoRP run by the LIM at $I_k(V)$

- 1: **Input:** For every robot  $i \in N_k(t)$ , the current and future cells  $\ell_i(t)$ ,  $n_i(t)$ , and reported value  $\hat{v}_i(t)$
- 2: Output: Decisions for every robot  $i \in N_k(t)$ to STOP/GO/FOLLOW
- 3: Compute  $a_k^*(t+1)$  (eqn:efficient) and suggest the robots  $i \in N_k(t)$  to STOP/GO/FOLLOW according to that recommendation in time t+1
  - - **Setup**: A  $14 \times 14$  workspace.

Obstacle

Lane

Intersection

Direction



## Properties

- Collision-free, decentralized, deadlock-free, and locally efficient
- Dominant strategy truthful: reporting true value is best
- Budget balanced: no net in or outflow of money
- Robust against entry or exit: new robots can join at any time



Scalability: Path planning and auction times of OMCoRP. The numbers on the bars show the workspace width for each number of robots.



for different classes of robots.

## Computation Time (sec) ■■● OMCoRP inflated MPriority 250 20 30

Experiments

**PlanningTime:** The y-axis shows the total planning time of the different algorithms and the x-axis shows the number of robots. For OMCoRP, the planning time is the sum of the offline path computation and online spot auction times.

**Number of Robots** 



Path Length: Average path length and makespan for different mechanisms. The numbers on the bar denote the percentage of cases where the mechanism could find a path within the timeout period.



Number of Robots
Waiting time: Average waiting time under OMCoRP for different classes of robots.



**Dynamic Arrival:** Comparison of Total Planning Time