Department of Computer Science and Engineering (CSE) BRAC University

Practice Problem Set 6

CSE251 - Electronic Devices and Circuits

BJT CIRCUITS

Logic Function Implementation, Modes of Operation, Method of Assumed States, Multistage Circuits, MOSFET-BJT Hybrid Problems

Course Description, COs, and Policies

Midterm and Final Questions

Give a switch-BJT implementation of the following logic functions. A, B, C, D, E, and Fare Boolean inputs.

$$I. \quad f = A.B.C + D.E$$

II.
$$f = \overline{A.B.(C+D)}$$

III.
$$f = A.B + \bar{A}.\bar{B}$$

IV.
$$f = \overline{A.C} + \overline{B+C}$$

$$V. \quad f = (A.B + C).D$$

$$VI. \quad f = A.B + C.D$$

VII.
$$f = A.B.C + D$$

VIII.
$$f = (A + B) \cdot (C + D)$$

$$IX. f = (A.B + C).D.(E + F)$$

$$X. \quad f = A \oplus B$$

XI.
$$f = \overline{C.(A+B)}.(A+\overline{B}+C)$$

DEPT. OF CSE, BRACU

• For the adjacent circuit, V_E was measured and found to be -0.7~V. If $\beta=50$, determine I_E , I_B , I_C , and V_C .

• Determine and verify the operating region for each of the transistors in the following circuits. Assume $V_{BE,\,active}=0.7\,V$, $V_{BE,\,sat}=0.8\,V$, and $V_{CE,\,sat}=0.2\,V$.

• For the NPN transistors in the following circuit, $\beta=75$, $V_{BE,\,active}=0.7\,V$, $V_{BE,\,sat}=0.8\,V$, and $V_{CE,\,sat}=0.2\,V$. Determine the labeled quantities.

- For the transistors in the following circuits, $\beta=100$, $V_{BE,\,active}=0.7~V$, $V_{BE,\,sat}=0.8~V$, and $V_{CE,\,sat}=0.2~V$.
 - a) Show that the transistor is in neither cut-off, saturation, nor active mode.
 - b) Determine V_B . V_C , and V_E . [Hint for (b): $V_{BC} = V_{BE} V_{CE}$]

- For the adjacent circuit, assume $\alpha \approx 1$ and $V_{\rm BE}=0.7~V$ at the edge of saturation. What are the values of V_C and V_E if $V_B=0~V$? For what values of V_B does the transistor operates in
 - I. cut-off and
 - II. saturation.

- For the adjacent circuit, assume that V_{BE} remains constant at $0.7\,V$ when the transistor is ON. The transistor β is specified to be 50. Determine the value of V_{BB} that results in the transistor operating:
 - I. in the active region with $V_{CE} = 5 V$,
 - II. at the edge of saturation, and

[Hint: at the edge of saturation, β is still 50 and assume $V_{CE}=0.3~V.$]

III. deep in saturation with $\beta_{forced} = 10$ and $V_{CE} = 0.2 \ V$.

- For the following circuit, $V_S=5\,V$, $R_L=10\,k\Omega$, and $R_I=500\,k\Omega$. Assume $\beta=100$ for the transistor, $V_{BE,\,active}=V_{BE,\,sat}=0.6\,V$, and $V_{CE,\,at\,the\,edge\,of\,sat}=V_{CE,\,sat}=0.2\,V$.
- I. Derive an expression relating v_0 and v_I assuming the transistor is in active mode.
- II. What is the highest value of v_I for which the transistor operates in cut-off.
- III. What is the highest (or lowest) value of v_I for which the transistor operates in its active region (or enters into its saturation region). What are the corresponding range for v_O ? [$\beta = 100$ at the edge of saturation]
- IV. Based on the relation found in I and values of v_I and v_O found in II and III, draw the VTC (v_O vs. v_I) graph for the circuit.

- For the following circuit, $V_S=10~V$, $R_E=100~k\Omega$, and $R_I=10~k\Omega$. Assume $\beta=100$ for the transistor, $V_{BE,~active}=V_{BE,~sat}=0.6~V$, and $V_{CE,~at~edge~of~sat}=V_{CE,~sat}=0.2~V$.
- I. Derive an expression relating v_0 and v_I assuming the transistor is in active mode.
- II. What is the highest value of v_I for which the transistor operates in cut-off.
- III. What are the highest (or lowest) values of v_I for which the transistor remains in its active region (or operates at the edge of saturation). What are the corresponding range for v_O ? [$\beta = 100$ at the edge of saturation]
- IV. Based on the expression found in I and values of v_I and v_O found in II and III, draw the VTC (v_O v_S . v_I) graph for the circuit.

• For the NPN transistor in the following circuit, $\beta=100$, $V_{BE,active}=0.7~V$, $V_{BE,sat}=0.8~V$, and $V_{CE,sat}=0.2~V$. Determine the current through the $50~k\Omega$ resistor.

• For the NPN BJT in the adjacent circuit, $\beta=100$, $V_{BE,\,active}=0.7\,V$, $V_{BE,\,sat}=0.8\,V$, and $V_{CE,\,sat}=0.2\,V$. Determine the operating region of the transistor.

• For the transistor Q_1 in the adjacent circuit, $\beta=100$, V_{BE} is constant at 0.7~V when Q_1 remains ON, and $V_{CE,\,sat}=0.2~V$. For Q_2 , $k_n'=0.25~{mA/_{V^2}}$, $\left(\frac{W}{L}\right)=\frac{0.72~\mu m}{0.18~\mu m}$, and $V_{Tn}=1~V$. Determine the value of R_D so that Q_2 operates at the edge of saturation.

• The transistors in the adjacent circuit are identical. Here, $\beta=100$, $V_{BE,\,active}=0.7\,V$, $V_{BE,\,sat}=0.8\,V$, and $V_{CE,\,sat}=0.2\,V$. Determine V_{C1} and V_{C2} .

• The transistors in the following circuit are identical. Here, $\beta=80$, $V_{BE,\,active}=0.7\,V$, $V_{BE,\,sat}=0.7\,V$, and $V_{CE,\,sat}=0.2\,V$. Determine the base currents.

• The transistors in the adjacent circuit are identical. Here, $\beta=120$, $V_{BE,\,active}=0.7\,V$, $V_{BE,\,sat}=0.7\,V$, and $V_{CE,\,sat}=0.2\,V$. Determine V_{o} .

