## NR. 1

## **OFICIU: 1 PUNCT**

- 1) Definiți următoarele noțiuni:
- a) limita inferioară a unui șir de numere reale  $(x_n)_{n\in\mathbb{N}}$ ;
- b) funcție  $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$  care admite derivată parțială în raport cu variabila  $x_i$  în punctul  $x_0 \in D \cap D'$ ;
- Riemann asociată funcției  $f:[a,b] \to \mathbb{R}$ , diviziunii  $\Delta \in$  $\mathcal{D}([a,b])$  și sistemului de puncte intermediare  $t_{\Delta}$ ;

# (1,50 puncte)

- 2) Să se enunțe următoarele teoreme:
- a) teorema lui Darboux referitoare la funcțiile derivabile;
- b) teorema lui Fubini pe intevale închise n-dimensionale. (1 punct)

## OFICIU: 1 PUNCT

- 1) Definiți următoarele noțiuni:
- a) limita superioară a unui şir de numere reale  $(x_n)_{n\in\mathbb{N}}$ ;
- b) funcție  $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$  care admite derivată parțială de ordinul doi în raport cu variabilele  $x_i$  și  $x_j$  în punctul  $x_0\in D\cap D'$ ;
  - c) diviziune  $\Delta$  a intervalului [a, b] și norma diviziunii  $\Delta$ . (1,50 puncte)
  - 2) Să se enunțe următoarele teoreme:
  - a) teorema lui Lagrange;
  - b) teorema lui Fubini pe mulțimi simple în raport cu axa  $Ox_j$ . (1 punct)

- 1) a) Studiați natura seriei  $\sum_{n=1}^{\infty} \left[ \frac{1.5.9....(4n-3)}{4.8.12...(4n)} \right]^2$ .
- b) Să se demonstreze inegalitatea  $e^{-x} > 1 \frac{x}{1!} + \frac{x^2}{2!} \frac{x^3}{3!} + \frac{x^4}{4!} \quad \forall x \in \mathbb{R}$  $(-\infty, 0)$ . (2,50 puncte)
- 2) a) Să se determine punctele de extrem local ale funcției  $f: \mathbb{R}^2 \to \mathbb{R}$ ,  $f(x,y) = y^2 + x^4 + x^2 - 2xy.$
- b) Să se calculeze  $\iint_D xy^2 dx dy$ ,  $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 5, x \le y\}. \text{ (3 puncte)}$ unde
  - 3) Să se calculeze  $\lim_{n\to\infty} \int_0^1 \frac{nx^n}{x^{2n}+2x^n+2} dx$ . (1 punct)

1) a) Studiaţi natura seriei  $\sum_{n=1}^{\infty} \left[ \frac{1 \cdot 4 \cdot 7 \cdot \dots \cdot (3n-2)}{3 \cdot 6 \cdot 9 \cdot \dots \cdot (3n)} \right]^2$ .

b) Să se demonstreze inegalitatea  $e^{-x} < 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} \quad \forall x \in \mathbb{R}$  $(0, +\infty)$ . (2,50 puncte)

2) a) Să se determine punctele de extrem local ale funcției  $f: \mathbb{R}^2 \to \mathbb{R}$ ,  $f(x,y) = x^2 + y^4 + y^2 - 2xy.$ 

b) Să se calculeze  $\iint_D x^2ydxdy$ ,  $D = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 6, y \le x\}. \text{ (3 puncte)}$   $1 \text{ 3) Să se calculeze } \lim_{n \to \infty} \int_0^1 \frac{nx^n}{x^{2n} + 2x^{n} + 2} dx. \text{ (1 punct)}$ unde

## TEORIE

## SUBIECTUL I: 1,50 puncte

- a) definiție corectă: 0,50 puncte
- b) definiție corectă: 0,50 puncte
- c) definiție corectă: 0,50 puncte

#### SUBIECTUL II: 1 punct

- a) enunt corect: 0,50 puncte
- b) enunt corect: 0,50 puncte

## EXERCITII

## SUBIECTUL I: 2,50 puncte

a) - 
$$\lim_{n\to\infty} \frac{\kappa_{n+1}}{\kappa_n} = \lim_{n\to\infty} \left(\frac{4n+1}{4n+4}\right)^2 = 1$$
: 0,50 puncte

$$-\lim_{n\to\infty} n(\frac{x_n}{x_{n+1}} - 1) = \lim_{n\to\infty} \frac{24n^2 + 15n}{16n^2 + 8n + 1} = \frac{3}{2}; 0,50 \text{ puncte}$$

- finalizare: 0,25 puncte.
- b)  $f^{(n)}(x) = (-1)^n e^{-x} \forall x \in (-\infty, 0), \forall n \in \mathbb{N}: 0.15 \text{ puncte}$
- utilizarea formulei lui Taylor cu restul sub forma lui Lagrange pentru funcția f și deducerea afirmației  $\forall x \in (-\infty,0) \ \exists c \in (x,0) \ astfel \ incât \ f(x) = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{e^{-c}}{5!} x^5$ :
- justificarea inegalității  $\frac{e^{-c}}{5!}x^5 < 0 \ \forall x \in (-\infty,0): 0,25 \ \text{puncte}$
- finalizare: 0,10 puncte

## SUBIECTUL II: 3 puncte

- a) f continuă pe R2: 0,10 puncte
- f funcție de clasă C1 pe R2: 0,15 puncte
- stabilirea punctului critic (0,0): 0,50 puncte

- descriere<br/>a $H_f(0,0)$ , calcularea minorilor  $\Delta_1,\Delta_2$  și justificarea ne<br/>aplicării criteriului în (0,0)0,50 puncte

-  $f(x,y) - f(0,0) = (x-y)^2 + x^4 \ge 0 \ \forall (x,y) \in \mathbb{R}^2 \Rightarrow (0,0) \text{ punct de minim local al funcției } f: 0,25 \text{ puncte}$ 

b) – utilizarea trecerii la coordonate polare  $\rho: \mathbb{R}^2_2 \to \mathbb{R}^2, \rho(R, \alpha) = (R\cos\alpha, R\sin\alpha)$  și obținerea egalității  $\iint_D \sqrt[R]{4} dx dy = \iint_D R^4 \cos^4\alpha \sin\alpha dR d\alpha$ , unde  $D' = [0, \sqrt{5}] \times \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ :

 $\iint_{0} R^{4} \sin^{2} \alpha \cos \alpha dR d\alpha = \int_{\frac{\pi}{4}}^{\frac{2\pi}{4}} \left( \int_{0}^{\sqrt{8}} R^{4} \sin^{2} \alpha \cos \alpha dR \right) d\alpha = 5\sqrt{5} \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^{2} \alpha \cos \alpha d\alpha = 0.75 \text{ puncts}$ 

# \_5√10 0,75 puncte

SUBIECTUL III: 1 punet

- aplicarea formulei de integrare prin parți și obținerea egalității  $\int_0^1 \frac{nx^n}{x^{2n+2}x^{n+2}} dx = \int_0^1 x(arctg(x^n+1))'dx = arcta a$  $\int_0^1 x (arctg(x^n+1))' dx = arctg2 - \int_0^1 arctg(x^n+1) dx : 0.50 \text{ puncts}$  $\lim_{n\to\infty} \int_0^1 \operatorname{dret} g(x^n+1) dx = \frac{\pi}{\epsilon} \cdot 0.40 \text{ punctu$ 

- finalizare: 0,10 puncte

#### BAREM DE CORECTARE NR.1

#### TEORIE

## SUBIECTUL I: 1,50 puncte

- a) definiție corectă: 0,50 puncte
- b) definiție corectă: 0,50 puncte
- c) definiție corectă: 0,50 puncte

#### SUBIECTUL II: 1 punct

- a) enunt corect: 0,50 puncte
- b) enunt corect: 0,50 puncte

#### EXERCITII

## SUBIECTUL I: 2,50 puncte

a) - 
$$\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \lim_{n\to\infty} \left(\frac{3n+1}{3n+3}\right)^2 = 1$$
: 0,50 puncte

$$-\lim_{n\to\infty} n(\frac{x_n}{x_{n+1}}-1) = \lim_{n\to\infty} \frac{12n^2+8n}{9n^2+6n+1} = \frac{4}{3}; \ 0,50 \ \text{puncte}$$

- finalizare: 0,25 puncte.
- b)  $f^{(n)}(x) = (-1)^n e^{-x} \ \forall x \in (0, +\infty), \forall n \in \mathbb{N}: 0.15 \text{ puncte}$
- utilizarea formulei lui Taylor cu restul sub forma lui Lagrange pentru funcția f și deducerea afirmației  $\forall x \in (0, +\infty) \exists c \in (0, x) \ ast fel încât <math>f(x) = 1 \frac{x}{1!} + \frac{x^2}{2!} \frac{x^3}{3!} + \frac{x^4}{4!} \frac{e^{-c}}{5!} x^5$ :

  0.75 puncte
- justificarea inegalității  $\frac{e^{-c}}{5!}x^5>0 \ \forall x\in (0,+\infty):0,\!25$  puncte
- finalizare: 0,10 puncte

## SUBIECTUL II: 3 puncte

- a) f continuă pe R2: 0,10 puncte
- f funcție de clasă C1 pe R2: 0,15 puncte
- stabilirea punctului critic (0,0): 0,50 puncte
  - descriere<br/>a $H_f(0,0),$  calcularea minorilor $\Delta_1,\Delta_2$ și justificarea ne<br/>aplicării criteriului în (0,0): 0,50 puncte
  - $f(x,y)-f(0,0)=(x-y)^2+y^4\geq 0 \ \forall (x,y)\in\mathbb{R}^2\Rightarrow (0,0)$  punct de minim local al funcției  $f\colon 0.25$  puncte
  - b) utilizarea trecerii la coordonate polare  $\rho: \mathbb{R}^2 \to \mathbb{R}^2, \rho(R, \alpha) = (Rcos\alpha, Rsin\alpha)$  și obținerea egalității  $\iint_D x^2 y dx dy = \iint_D R^4 cos^2 a sin \alpha dR d\alpha$ , unde  $D' = \left[0, \sqrt{6}\right] \times \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ : 0.75 puncte
  - $\iint_{D^{r}} R^{4}\cos^{2}\alpha \sin\alpha dR d\alpha = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\int_{0}^{\sqrt{6}} R^{4}\cos^{2}\alpha \sin\alpha dR\right) d\alpha = \frac{36\sqrt{6}}{5} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^{2}\alpha \sin\alpha d\alpha = 0$

- aplicarea formulei de întegrare prin pârți și obținerea egalității  $\int_0^1 \frac{ax^n}{x^{2n}+2x^n+2} dx = \int_0^1 x \left(arctg(x^n+1)\right)' dx = arctg2 \int_0^1 arctg(x^n+1) dx : 0,50 \text{ puncte}$
- . invocarea teoremei convergenței mărginite pentru justificarea afirmației  $\lim_{n\to\infty}\int_0^1 arctg(x^n+1)dx=\frac{\pi}{4},0.40$  puncte
- finalizare: 0,10 puncte

- 1) a) Studiați natura seriei  $\sum_{n=1}^{\infty} \left(\frac{n+1}{an}\right)^{n^2}$ , unde a > 0;
- b) Să se calculeze  $\overline{\lim} x_n$  și  $\underline{\lim} x_n$  pentru șirul  $x_n = \frac{n(-1)^{n-1}}{2n(-1)^{n+1}+1} + \cos \frac{n\pi}{2} \ \forall n \in \mathbb{N}^*.$  (2,50 puncte)
- 2) a) Se consideră funcția  $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \begin{cases} xy^2 \cos \frac{1}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$  continuitatea și diferențiabilitatea funcției f în punctul (0,0).
- b) Să se calculeze  $\iint_D (x+y)dxdy$ , unde  $D = \{(x,y) \in \mathbb{R}^2 | y \le -2x + 2, x \ge 0, y \ge 0 \}. \text{ (3 puncte)}$ 
  - 3) Să se calculeze  $\lim_{n\to\infty} \int_{\frac{1}{2}}^{1} \frac{nx^n}{\sqrt{2x^n-x^{2n}}} dx$ . (1 punct)

# **OFICIU: 1 PUNCT**

- 1) Definiți următoarele noțiuni:
- a) şir Cauchy  $(x_n)_{n\in\mathbb{N}}$  dintr-un spaţiu metric (X,d);
- b) suma Darboux superioară asociată funcției mărginite  $f: E \to \mathbb{R}, E \in \mathbb{R}$  $\mathcal{J}(\mathbb{R}^n)$  și descompunerii Jordan  $\alpha \in \mathcal{D}(E)$ ;
  - c) punct de minim local al funcției  $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ . (1,50 puncte)
  - 2) Să se enunțe următoarele teoreme:
  - a) teorema lui Rolle;
  - b) teorema funcțiilor implicite. (1 punct)

## NR. 1

- 1) a) Studiați natura seriei  $\sum_{n=1}^{\infty} \left(\frac{an}{n+1}\right)^{n(n+1)}$ , unde a > 0;
- b) Să se calculeze  $\overline{\lim} x_n$  și  $\underline{\lim} x_n$  pentru șirul  $x_n = \left(1 + \frac{1}{n}\right)^{n(-1)^n} + \sin\frac{n\pi}{2} \ \forall n \in \mathbb{N}^*.$  (2,50 puncte)
- 2) a) Se consideră funcția  $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \begin{cases} x^2y \sin\frac{1}{x^2+y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$  Să se studieze continuitatea și diferențiabilitatea funcției f în punctul (0,0).
  - b) Să se calculeze  $\iint_D (x-y)dxdy$ , unde  $D = \{(x,y) \in \mathbb{R}^2 | y \le -\frac{x}{2} + 1, x \ge 0, y \ge 0\}$ . (3 puncte)
    - 3) Să se calculeze  $\lim_{n\to\infty} \int_{\frac{1}{2}}^{1} \frac{nx^n}{\sqrt{2x^n-x^{2n}}} dx$ . (1 punct)

## NR. 1

- 1) a) Studiați natura seriei  $\sum_{n=1}^{\infty} \left(\frac{an}{n+1}\right)^{n(n+1)}$ , unde a > 0;
- b) Să se calculeze  $\overline{\lim} x_n$  și  $\underline{\lim} x_n$  pentru șirul  $x_n = \left(1 + \frac{1}{n}\right)^{n(-1)^n} + \sin\frac{n\pi}{2} \ \forall n \in \mathbb{N}^*.$  (2,50 puncte)
- 2) a) Se consideră funcția  $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \begin{cases} x^2y \sin\frac{1}{x^2+y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$  Să se studieze continuitatea și diferențiabilitatea funcției f în punctul (0,0).
  - b) Să se calculeze  $\iint_D (x-y)dxdy$ , unde  $D = \{(x,y) \in \mathbb{R}^2 | y \le -\frac{x}{2} + 1, x \ge 0, y \ge 0\}$ . (3 puncte)
    - 3) Să se calculeze  $\lim_{n\to\infty} \int_{\frac{1}{2}}^{1} \frac{nx^n}{\sqrt{2x^n-x^{2n}}} dx$ . (1 punct)

## TEORIE

## SUBIECTUL I: 1,50 puncte

- a) definiție corectă: 0,50 puncte
- b) definiție corectă: 0,50 puncte
- c) definiție corectă: 0,50 puncte

## SUBIECTUL II: 1 punct

- a) enunt corect: 0,50 puncte
- b) enunt corect: 0,50 puncte

## EXERCITII

## SUBIECTUL I: 2,50 puncte

a) - 
$$\lim_{n\to\infty} \sqrt[n]{x_n} = \lim_{n\to\infty} \left(\frac{n+1}{an}\right)^n = \begin{cases} 0, \ a \in (1, +\infty) \\ +\infty, \ a \in (0, 1) : 0,50 \text{ puncte} \\ e, a = 1 \end{cases}$$

- tratarea cazului  $a \in (0,1)$ : 0,25 puncte
- tratarea cazului  $a \in (1, +\infty)$ : 0,25 puncte
- tratarea cazului a = 1:0,25 puncte
- b) alegerea subșirurilor  $(x_{2k+1})_{k\in\mathbb{N}}$ ,  $(x_{4k})_{k\in\mathbb{N}}$ ,  $(x_{4k*2})_{k\in\mathbb{N}}$ : 0,50 puncte
- determinarea punctelor limită  $-\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}$ : 0,50 puncte
- finalizare: 0,25 puncte

## SUBIECTUL II: 3 puncte

- a) demonstrarea inegalității  $|f(x,y)| \le |y^2x| \ \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$  și justificarea continuității funcției în (0,0): 0,25 puncte
- calculul derivatelor parțiale  $\frac{\partial f}{\partial x}(0,0) = 0, \frac{\partial f}{\partial y}(0,0) = 0$ : **0,50 puncte**
- alegerea operatorului liniar  $T: \mathbb{R}^2 \to \mathbb{R}, T(x,y) = \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y = 0$  și justificarea faptului că  $\lim_{(x,y)\to(0,0)} \frac{|f(x,y)-f(0,0)-T((x,y)-(0,0))|}{\|(x,y)-(0,0)\|} = 0$ : 0,75 puncte
  - b) reprezentarea grafică în sistemul de axe xOy a domeniului de definiție și descrierea acestuia ca fiind  $D = \{(x, y) \in \mathbb{R}^2 | x \in [0,1], 0 \le y \le -2x + 2\}$ : 0,50 puncte

$$-\iint_{D} (x+y)dxdy = \int_{0}^{1} \left( \int_{0}^{-2x+2} (x+y)dy \right) dx = \int_{0}^{1} (-2x+2)dx$$
- calculul corect al integrale;  $\int_{0}^{1} (-2x+2)dx$ : 0,75 puncte

- calculul corect al integralei  $\int_0^1 (-2x+2) dx = 1$ : 0,25 puncte

# SUBIECTUL II: 3 puncte

- a) demonstrarea inegalității  $|f(x,y)| \le |y^2x| \ \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$  și justificarea continuității funcției în (0,0): 0,25 puncte
- calculul derivatelor parțiale  $\frac{\partial f}{\partial x}(0,0) = 0, \frac{\partial f}{\partial y}(0,0) = 0$ : **0,50 puncte**
- alegerea operatorului liniar  $T: \mathbb{R}^2 \to \mathbb{R}, T(x,y) = \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y = 0$  și justificarea faptului că  $\lim_{(x,y)\to(0,0)} \frac{|f(x,y)-f(0,0)-T((x,y)-(0,0))|}{\|(x,y)-(0,0)\|} = 0$ : 0,75 puncte
  - b) reprezentarea grafică în sistemul de axe x0y a domeniului de definiție și descrierea acestuia ca fiind  $D = \{(x, y) \in \mathbb{R}^2 | x \in [0,1], 0 \le y \le -2x + 2\}$ : 0,50 puncte

$$-\iint_{D} (x+y)dxdy = \int_{0}^{1} \left( \int_{0}^{-2x+2} (x+y)dy \right) dx = \int_{0}^{1} (-2x+2)dx$$
: 0,75 puncte

- calculul corect al integralei  $\int_0^1 (-2x+2) dx = 1$ : 0,25 puncte

- aplicarea formulei de integrare prin părți și obținerea egalității  $\int_{\frac{1}{2}}^{1} \frac{nx^n}{\sqrt{2x^n-x^{2n}}} dx =$  $\int_{\frac{1}{2}}^{1} x \left( \arcsin(x^{n} - 1) \right)' dx = -\frac{1}{2} \arcsin\left(\frac{1}{2^{n}} - 1\right) - \int_{\frac{1}{2}}^{1} \arcsin(x^{n} - 1) dx : \mathbf{0.50} \text{ puncte}$
- invocarea teoremei convergenței mărginite pentru justificarea  $\lim_{n\to\infty} \int_{\frac{1}{2}}^1 arcsin(x^n-1)dx = -\frac{\pi}{4}; \ 0,40 \ \text{puncte}$
- finalizare: 0,10 puncte



## TEORIE

# SUBIECTUL I: 1,50 puncte

a) definiție corectă: 0,50 puncte

b) definiție corectă: 0,50 puncte

c) definiție corectă: 0,50 puncte

# SUBIECTUL II: 1 punct

a) enunt corect: 0,50 puncte

b) enunt corect: 0,50 puncte

## EXERCITH

# SUBIECTUL I: 2,50 puncte

a) - 
$$\lim_{n\to\infty} \sqrt[n]{x_n} = \lim_{n\to\infty} \left(\frac{an}{n+1}\right)^{n+1} = \begin{cases} 0, & a \in (0,1) \\ +\infty, & a \in (1,+\infty); \ 0,50 \text{ puncted} \\ \frac{1}{e}, & a = 1 \end{cases}$$

- tratarea cazului  $a \in (0,1)$ : 0,25 puncte

- tratarea cazului  $a \in (1, +\infty)$ : 0,25 puncte

- tratarea cazului a = 1:0,25 puncte

b) - alegerea subșirurilor  $(x_{2k})_{k\in\mathbb{N}}, (x_{4k+1})_{k\in\mathbb{N}}, (x_{4k+3})_{k\in\mathbb{N}}$ : 0,50 puncte

- determinarea punctelor limită  $e, \frac{1}{e} + 1, \frac{1}{e} - 1$ : 0,50 puncte

- finalizare: 0,25 puncte

#### SUBIECTUL II: 3 puncte

- a) demonstrarea inegalității  $|f(x,y)| \le |x^2y| \ \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}\$ și justificarea
- calculul derivatelor parțiale  $\frac{\partial f}{\partial x}(0,0) = 0, \frac{\partial f}{\partial y}(0,0) = 0$ : 0,50 puncte

- alegerea operatorului liniar 
$$T: \mathbb{R}^2 \to \mathbb{R}$$
,  $T(x,y) = \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y = 0$  şi justificarea b) – reprezentarea grafică in sistemul de axe  $x(0,0)$  = 0

faptului ca 
$$\lim_{(x,y)\to(0,0)} \frac{\partial y}{\|(x,y)-(0,0)\|} = 0$$
: 0,75 puncte

b) – reprezentarea grafică în sistemul de axe  $xOy$  a domeniului de definiție și descrierea

acestuia ca fiind  $D = \left\{ (x,y) \in \mathbb{R}^2 \middle| x \in [0,2], 0 \le y \le -\frac{x}{2} + 1 \right\}$ : 0,50 puncte

acestuia ca fiind 
$$D = \{(x,y) \in \mathbb{R}^2 | x \in [0,2], 0 \le y \le -\frac{x}{2} + 1\}$$
: 0,50 puncte §i description of the control of the

- a) demonstrarea inegalității  $|f(x,y)| \le |x^2y| \ \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$  continuității funcției în (0,0): 0,25 puncte
- calculul derivatelor parțiale  $\frac{\partial f}{\partial x}(0,0) = 0$ ,  $\frac{\partial f}{\partial y}(0,0) = 0$ : 0,50 puncte

- alegerea operatorului liniar  $T: \mathbb{R}^2 \to \mathbb{R}, T(x,y) = \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y = 0$  și justificarea faptului că  $\lim_{(x,y)\to(0,0)} \frac{|f(x,y)-f(0,0)-T((x,y)-(0,0))|}{\|(x,y)-(0,0)\|} = 0$ : 0,75 puncte
- b) reprezentarea grafică in sistemul de axe xOy a domeniului de definiție și descrierea acestuia ca fiind  $D = \{(x,y) \in \mathbb{R}^2 | x \in [0,2], 0 \le y \le -\frac{x}{2} + 1\}$ : 0,50 puncte

$$-\iint_{D} (x-y)dxdy = \int_{0}^{2} \left( \int_{0}^{\frac{x}{2}+1} (x-y)dy \right) dx = \int_{0}^{2} \left( -\frac{5x^{2}}{8} + \frac{3x}{2} - \frac{1}{2} \right) dx$$
: 0,75 puncte

- calculul corect al integralei  $\int_0^2 \left(-\frac{5x^2}{8} + \frac{3x}{2} - \frac{1}{2}\right) dx = \frac{1}{3}$ : 0,25 puncte

- aplicarea formulei de integrare prin părți și obținerea egalității  $\int_{\frac{1}{2}}^{1} \frac{nx^n}{\sqrt{2x^n-x^{2n}}} dx = \int_{\frac{1}{2}}^{1} x \left(arcsin(x^n-1)\right)' dx = -\frac{1}{2} arcsin\left(\frac{1}{2^n}-1\right) \int_{\frac{1}{2}}^{1} arcsin(x^n-1) dx : 0,50 \text{ puncte}$
- invocarea teoremei convergenței mărginite pentru justificarea afirmației  $\lim_{n\to\infty}\int_{\frac{1}{2}}^1 arcsin(x^n-1)dx=-\frac{\pi}{4}; 0,40 \text{ puncte}$
- finalizare: 0,10 puncte

