

SRM Institute of Science and Technology College of Engineering and Technology

A1 В

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-22 (Even)

Test

: CLAT-1

Date

: 07/04/2022

Course Code & Title :18MAB302T-Discrete Mathematics for Engineers

: 1 Period (50 minutes) Duration

18MAB302T – Discrete Mathematics for Engineers		Program Outcomes (POs)														
		Graduate Attributes										PSO				
S.				3	. 4	5	6	7	8	9	10	11	12	1	. 5	3
No.	Course Outcomes (COs)	1,	2		-	3				M	M		Н			
1	Problem solving in sets, relations and functions.	M	Н	М		,				IVI	ļ.'''			-	-	ļ. -
2	Solving problems in basic counting principles, inclusion exclusion and number theory.	М	н		М	M				M			Н	-	-	-
3	Solving problems of mathematical logic, inference theory and mathematical induction.	М	н							М			Н	-	-	-
4	Gaining knowledge in groups, rings and fields. Solving problems in coding theory.	М	H		М	,		`		М		,	Н	-	-	-
5	Gaining knowledge in graphs and properties. Learning about trees, minimum spanning trees and graph coloring.	M	н	М						М	М		Н	-	-	-
6	Learning mathematic0al reasoning, combinatorial analysis, algebraic structures and graph theory.	М	Н							М	ks: 25		Н	-	-	-

Year & Sem

: II & III

·Course	Articulation	Matrix:

	Part - A					
	(3 x 4 = 12 Marks)					
Instr	uctions: Answer all Questions	Mar	BL	CO	PO	PI
Q. No			ВL	CO	10	.Code
1	Prove that $(A - C) \cap (C - B) = \emptyset$ analytically where A, B, C are sets.	4	2	1	1	1.1.1
2	Draw the Hasse diagram representing the partial ordering $\{(A,B) \mid A \subseteq B, A, B \in P(S) \text{ where } S = \{x,y,z\}\}$. Here P(S)	4	3	1	2	2.1.1
3	denotes the power set of the set S. Give an example of a relation R such that (i) R is reflexive, transitive but not symmetric. (ii) R is neither symmetric nor anti – symmetric.	4	3	1	2	2.4.4

	Part - B $(1x 13 = 13 Marks)$,				
4	a) Given $R = \{(1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 4), (4, 1)\}$ defined on the set $A = \{1, 2, 3, 4\}$, find the transitive closure of R	7	3	1	2	2.1.3
	using Warshall's algorithm.				-	į
	b) Prove that when two functions are bijective, then their composition will always yield a bijective function.	6	2	1	2	2.1.2

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator