Resumen Metodológico

Cálculo de los factores de ajuste de las

Tablas de Mortalidad SPP 2017 para Rentas Vitalicias

Introducción

- El presente documento resume la metodología utilizada para determinar los factores de ajuste que se aplican a las Tablas de Mortalidad SPP 2017 para el riesgo Rentas Vitalicias de Rímac Seguros, en adelante la Compañía.
- Tomando en consideración el volumen de información con el que cuenta la Compañía para el ramo de Rentas Vitalicias, se analiza el ajuste de las tablas SPP-2017 únicamente a la experiencia de los titulares sanos y beneficiarios sanos de la cartera propia de Rentas Vitalicias de la Compañía.
- El período de exposición utilizado para el análisis corresponde a los años 2008 hasta el 2017.

Descripción de la metodología

 Para comparar la mortalidad de la tabla de mortalidad SPP 2017 y la mortalidad real de la Compañía se propone utilizar la prueba de bondad de ajuste "Chi-Cuadrada", la cual prueba qué tan bien una muestra de datos categóricos se ajusta a una distribución teórica, en este caso la distribución teórica será la tabla de mortalidad SPP 2017.

Esta técnica usa como estadístico de prueba:

$$\chi^2 = \sum \frac{\left(o_i - e_i\right)^2}{e_i}$$

Donde:

oi: Datos observados

ei: Datos esperados

Las hipótesis para nuestro caso serán:

- H₀: Los datos de la compañía se ajustan a la tabla de mortalidad SPP 2017.
- H₁: Los datos de la compañía no se ajustan a la tabla de mortalidad SPP 2017.
- En el siguiente cuadro se resume el cálculo para los titulares sanos, la columna 'Delta^2' hace referencia al factor $(o_i e_i)^2$ y la suma de toda la columna 'Chi^2' nos dará como resultado el estadístico de prueba χ^2 .

Edad	Expuestos	Actual	q	Expected	var	Delta^2	Chi^2
0	2,484	4	0.0025	6	6	5	0.77
55	2,936	6	0.0035	10	10	19	1.83
57	2,587	10	0.0041	10	10	0	0.02
58	3,078	11	0.0044	14	14	7	0.50
59	3,455	14	0.0048	17	17	7	0.42
60	3,755	12	0.0052	20	20	59	3.00
61	4,033	18	0.0057	23	23	25	1.11
62	4,221	19	0.0062	26	26	54	2.07
63	4,293	29	0.0068	29	29	0	0.00
64	4,395	30	0.0075	33	33	9	0.27
65	6,351	30	0.0084	53	53	535	10.15
66	8,581	78	0.0093	80	79	3	0.03
67	8,576	64	0.0102	88	87	569	6.54
68	8,069	75	0.0114	92	91	277	3.06
69	7,443	100	0.0126	94	93	38	0.41
70	6,772	89	0.0140	95	93	32	0.35
71	6,082	77	0.0155	95	93	307	3.30
72	5,397	66	0.0173	93	92	739	8.07
73	4,683	70	0.0192	90	88	392	4.45
74	4,000	64	0.0213	85	83	454	5.44
75	3,419	70	0.0237	81	79	119	1.51
76	2,856	60	0.0262	75	73	220	3.02
77	2,373	49	0.0291	69	67	402	6.00
78	1,921	64	0.0322	62	60	4	0.07
79	1,512	45	0.0357	54	52	82	1.57
80	1,148	32	0.0397	46	44	183	4.19
81	899	42	0.0438	39	38	7	0.18
82	700	31	0.0482	34	32	8	0.24
83	533	15	0.0529	28	27	175	6.56
84	400	31	0.0582	23	22	59	2.71
85	285	17	0.0639	18	17	1	0.09
86	330	20	0.0729	24	22	17	0.74
88	165	11	0.0873	14	13	12	0.88
90	153	18	0.1237	19	17	1	0.06

 Como resultado el estadístico de prueba es igual a 79.6 cuyo p-value asociado es muy cercano a 0, lo cual es evidencia suficiente para rechazar nuestra hipótesis nula.

Schi^2	79.6
N	34
GL	33
p-value	0.0000

- Por lo tanto, podemos concluir que los datos de la compañía no se ajustan a la tabla de mortalidad SPP 2017 (distribución teórica) y es necesario ajustarla a fin de que dicha refleje el verdadero comportamiento de la cartera de la Compañía.
- El ajuste de la tabla de mortalidad será basado en el ratio O/E (Fallecimientos Observados vs. Fallecimientos Esperados). Construimos el ratio O/E por edad para la exposición histórica y separado para beneficiarios y titulares:

							BENEFICIARIO	OS					
Ed	lad		FEMEN	INO			MASCU	LINO		TOTAL			
Min	Max	Expuestos	Expected	Actual	Ratio	Expuestos	Expected	Actual	Ratio	Expuestos	Expected	Actual	Ratio
0	18	14,502.1	3.4	2.0	58%	14,841.7	6.7	4.0	60%	29,343.8	10.1	6.0	59%
19	49	11,127.8	10.7	17.0	159%	1,510.9	2.5	2.0	79%	12,638.6	13.2	19.0	144%
50	54	8,518.0	17.0	19.0	112%	1,165.7	3.4	1.0	30%	9,683.7	20.4	20.0	98%
55	59	15,086.1	45.1	45.0	100%	1,805.5	7.8	5.0	64%	16,891.6	52.9	50.0	95%
60	64	20,991.9	99.4	92.0	93%	2,403.8	15.7	11.0	70%	23,395.6	115.1	103.0	89%
65	69	19,937.9	143.1	131.0	92%	2,924.2	31.2	33.0	106%	22,862.1	174.2	164.0	94%
70	74	12,707.3	141.7	131.0	92%	2,722.3	48.8	55.0	113%	15,429.6	190.5	186.0	98%
75	79	6,212.6	115.9	109.0	94%	1,876.3	57.0	48.0	84%	8,088.9	172.9	157.0	91%
80	84	2,582.1	86.6	74.0	85%	1,135.1	56.6	43.0	76%	3,717.3	143.2	117.0	82%
85	89	1,101.8	65.7	61.0	93%	572.0	45.2	48.0	106%	1,673.8	110.9	109.0	98%
90	94	392.4	39.3	40.0	102%	210.1	25.1	22.0	88%	602.4	64.4	62.0	96%
95	99	88.3	13.6	16.0	118%	35.0	6.2	12.0	193%	123.3	19.8	28.0	141%
100	104	18.0	4.2	6.0	141%	5.0	1.4	-	0%	23.0	5.7	6.0	106%
105	109	5.0	1.9	-	0%	1.0	0.4	-	0%	6.0	2.2	-	0%
		113,271.3	787.6	743.0	94%	31,208.5	308.0	284.0	92%	144,479.8	1,095.5	1,027.0	94%

	ſ						TITULARES						
Ed	ad		FEMENI	NO			MASCU	LINO		TOTAL			
Min	Max	Expuestos	Expected	Actual	Ratio	Expuestos	Expected	Actual	Ratio	Expuestos	Expected	Actual	Ratio
0	18	-	-	-		-	-	-		-	-	-	
19	49	67.7	0.1	-	0%	97.1	0.2	1.0		164.7	0.3	1.0	324%
50	54	1,102.8	2.3	1.0	44%	646.0	2.0	1.0	50%	1,748.7	4.3	2.0	47%
55	59	2,580.7	7.8	6.0	77%	5,710.1	25.9	15.0	58%	8,290.8	33.6	21.0	62%
60	64	3,659.9	17.4	9.0	52%	12,652.6	83.9	72.0	86%	16,312.5	101.3	81.0	80%
65	69	5,649.5	40.8	29.0	71%	25,001.0	269.3	233.0	87%	30,650.5	310.1	262.0	84%
70	74	3,585.9	39.9	33.0	83%	19,446.6	345.5	286.0	83%	23,032.5	385.4	319.0	83%
75	79	1,630.8	30.3	23.0	76%	9,465.6	280.8	250.0	89%	11,096.4	311.2	273.0	88%
80	84	544.9	18.1	17.0	94%	2,938.0	142.2	127.0	89%	3,482.9	160.3	144.0	90%
85	89	137.0	7.8	7.0	90%	595.0	45.2	39.0	86%	732.0	53.0	46.0	87%
90	94	36.0	3.6	-	0%	79.0	9.2	12.0	131%	115.0	12.8	12.0	94%
95	99	12.0	1.9	2.0	107%	14.0	2.6	1.0	39%	26.0	4.5	3.0	67%
100	104	-	-	-		2.0	0.5	1.0	198%	2.0	0.5	1.0	198%
105	109	-	-	-		-	-	-		-	-	-	
		19,007.2	169.8	127.0	75%	76,646.9	1,207.3	1,038.0	86%	95,654.2	1,377.2	1,165.0	85%

							TOTAL						
Ed	lad		FEMEN	INO		MASCULINO				TOTAL			
Min	Max	Expuestos	Expected	Actual	Ratio	Expuestos	Expected	Actual	Ratio	Expuestos	Expected	Actual	Ratio
0	18	14,502.1	3.4	2.0	58%	14,841.7	6.7	4.0	60%	29,343.8	10.1	6.0	59%
19	49	11,195.4	10.8	17.0	158%	1,607.9	2.7	3.0	110%	12,803.4	13.5	20.0	148%
50	54	9,620.8	19.3	20.0	104%	1,811.6	5.4	2.0	37%	11,432.4	24.7	22.0	89%
55	59	17,666.8	52.8	51.0	97%	7,515.6	33.7	20.0	59%	25,182.4	86.5	71.0	82%
60	64	24,651.7	116.7	101.0	87%	15,056.4	99.7	83.0	83%	39,708.2	216.4	184.0	85%
65	69	25,587.4	183.9	160.0	87%	27,925.2	300.4	266.0	89%	53,512.6	484.3	426.0	88%
70	74	16,293.2	181.6	164.0	90%	22,168.9	394.3	341.0	86%	38,462.1	575.9	505.0	88%
75	79	7,843.5	146.3	132.0	90%	11,341.9	337.8	298.0	88%	19,185.4	484.1	430.0	89%
80	84	3,127.0	104.6	91.0	87%	4,073.2	198.8	170.0	86%	7,200.2	303.5	261.0	86%
85	89	1,238.8	73.5	68.0	92%	1,167.0	90.4	87.0	96%	2,405.8	163.9	155.0	95%
90	94	428.4	42.9	40.0	93%	289.1	34.2	34.0	99%	717.4	77.2	74.0	96%
95	99	100.3	15.5	18.0	116%	49.0	8.8	13.0	147%	149.3	24.3	31.0	128%
100	104	18.0	4.2	6.0	141%	7.0	1.9	1.0	52%	25.0	6.2	7.0	113%
105	109	5.0	1.9	-	0%	1.0	0.4	-	0%	6.0	2.2	-	0%
	L	132,278.6	957.4	870.0	91%	107,855.4	1,515.3	1,322.0	87%	240,134.0	2,472.7	2,192.0	89%

 La exposición se agrupa en intervalos de 10 años desde los 50 años para un análisis más consistente y representativo. El resultado es el siguiente:

			Observados/Esperados				
Min Age	Max Age	Class Mark	Beneficiarios	Titulares			
0	18	9	107.2%	81.6%			
19	49	34	107.2%	81.6%			
50	60	55	95.5%	81.6%			
60	70	65	92.3%	81.6%			
70	80	75	94.4%	85.0%			
80	90	85	88.9%	89.1%			
90	100	95	104.2%	100.0%			
100	110	105	104.2%	100.0%			

 Para obtener un factor de ajuste por edad se interpolan los ratios del cuadro anterior usando cubic splines. • Los cubic splines aproximan cada tramo a polinomios cúbicos S(x).

$$S(x) = \begin{cases} S_0(x), & t_0 \le x \le t_1 \\ S_1(x), & t_1 \le x \le t_2 \\ \vdots & \vdots \\ S_{n-1}(x), & t_{n-1} \le x \le t_n \end{cases}$$

• En nuestro caso, para cada uno de los 8 tramos se tiene un polinomio. Cada polinomio deberá cumplir la siguiente condición en sus extremos:

$$S_{i-1}(x_i) = S_i(x_i)$$

 $S'_{i-1}(x_i) = S'_i(x_i)$
 $S''_{i-1}(x_i) = S''_i(x_i)$

 Resolviendo el sistema de ecuaciones se obtienen los factores de ajuste para cada edad:

Edad	FN Tit										
0	0.8173	19	0.8154	38	0.8173	57	0.8148	76	0.8525	95	1.0000
1	0.8172	20	0.8154	39	0.8176	58	0.8141	77	0.8550	96	1.0058
2	0.8171	21	0.8153	40	0.8178	59	0.8134	78	0.8574	97	1.0098
3	0.8170	22	0.8153	41	0.8181	60	0.8130	79	0.8600	98	1.0122
4	0.8169	23	0.8153	42	0.8183	61	0.8128	80	0.8629	99	1.0131
5	0.8168	24	0.8153	43	0.8185	62	0.8130	81	0.8665	100	1.0128
6	0.8166	25	0.8153	44	0.8187	63	0.8136	82	0.8708	101	1.0115
7	0.8165	26	0.8153	45	0.8188	64	0.8147	83	0.8762	102	1.0093
8	0.8164	27	0.8154	46	0.8189	65	0.8163	84	0.8828	103	1.0066
9	0.8163	28	0.8155	47	0.8189	66	0.8186	85	0.8908	104	1.0034
10	0.8162	29	0.8156	48	0.8188	67	0.8214	86	0.9004	105	1.0000
11	0.8161	30	0.8157	49	0.8187	68	0.8246	87	0.9113	106	1.0000
12	0.8160	31	0.8158	50	0.8186	69	0.8282	88	0.9231	107	1.0000
13	0.8159	32	0.8159	51	0.8183	70	0.8319	89	0.9354	108	1.0000
14	0.8158	33	0.8161	52	0.8180	71	0.8358	90	0.9479	109	1.0000
15	0.8157	34	0.8163	53	0.8175	72	0.8396	91	0.9602		
16	0.8156	35	0.8166	54	0.8170	73	0.8433	92	0.9719		
17	0.8156	36	0.8168	55	0.8163	74	0.8467	93	0.9827		
18	0.8155	37	0.8171	56	0.8156	75	0.8498	94	0.9922		

• El mismo procedimiento se repite para calcular el factor de ajuste para los beneficiarios sanos:

Edad	FN Ben										
0	1.0573	19	1.0855	38	1.0560	57	0.9437	76	0.9384	95	1.0421
1	1.0589	20	1.0863	39	1.0513	58	0.9383	77	0.9309	96	1.0519
2	1.0605	21	1.0869	40	1.0463	59	0.9335	78	0.9222	97	1.0586
3	1.0622	22	1.0873	41	1.0410	60	0.9294	79	0.9131	98	1.0626
4	1.0638	23	1.0875	42	1.0355	61	0.9260	80	0.9042	99	1.0642
5	1.0654	24	1.0875	43	1.0298	62	0.9235	81	0.8964	100	1.0636
6	1.0670	25	1.0872	44	1.0240	63	0.9220	82	0.8902	101	1.0614
7	1.0686	26	1.0867	45	1.0180	64	0.9218	83	0.8865	102	1.0578
8	1.0703	27	1.0860	46	1.0119	65	0.9228	84	0.8860	103	1.0531
9	1.0719	28	1.0849	47	1.0057	66	0.9252	85	0.8894	104	1.0478
10	1.0735	29	1.0836	48	0.9994	67	0.9286	86	0.8971	105	1.0421
11	1.0751	30	1.0819	49	0.9930	68	0.9327	87	0.9087	106	1.0421
12	1.0767	31	1.0799	50	0.9867	69	0.9369	88	0.9233	107	1.0421
13	1.0782	32	1.0776	51	0.9803	70	0.9410	89	0.9401	108	1.0421
14	1.0797	33	1.0749	52	0.9740	71	0.9444	90	0.9583	109	1.0421
15	1.0811	34	1.0719	53	0.9677	72	0.9468	91	0.9771		
16	1.0824	35	1.0684	54	0.9615	73	0.9478	92	0.9957		
17	1.0835	36	1.0646	55	0.9554	74	0.9470	93	1.0133		
18	1.0846	37	1.0605	56	0.9494	75	0.9439	94	1.0290		