

### MODULE #4 - SOFTWARE BLACK-BOX TESTING METHODS

# **Topic #4 – Category Partition Testing Method**

Instructor: Jerry Gao, Ph.D., Professor San Jose State University







#### TOPIC #4 - DECISION TABLE TESTING METHOD

What is Category Partition Testing?

**Category Partition Main Characteristics** 

How to Perform Category Partition Methods

Category Partition Testing Examples



**Category Partition Testing Summary** 



### What is category partition testing method?

Category Partition Method **[CPM]** is a specification based testing technique helping the testers create test cases by refining the functional specification of a program into test requirements.

The idea behind **category partition** testing is to divide the input domains of a component into N different disjoint partitions and select one value from each input domain to create a test case.

This method emphasizes both the specification **coverage** and **error detection** aspects of testing





#### **Main Characteristics**

- The test specification is concise and uniform representation of test information for a function
- The partition can be easily modified and gives the tester a logical way to control the volume the tests.
- The generator tool provides an automated way to produce thorough tests which avoids impossible or undesirable tests.





### **Category Partition Systematic Method**

According to T.J Ostrand and M.J.Balcer, he proposed a systematic method consisting of the following steps:

- ✓ Decompose function specifications into functional units.
- ✓ Identify parameters and environment conditions.
- ✓ Find categories of information.
- ✓ Partition each category into choices.
- ✓ Write test specification for each unit.
- ✓ Produce test frames.
- ✓ Generate test cases.





### **Partition Testing Example**

Example 1 : Test Specification for ATM – PIN Number

Partition:

PIN

Wrong PIN [property mismatch]

Correct PIN [property match]

Withdraw amount

Multiple of 20 [if match]

[property correct]

Less than 20 [if match]

[property wrong]

Greater than 20 but not multiple of 20

[if match]

[property wrong]





### **An Example of using Category Partition Method**

Example 2:

Test a command-line program that supports "find" operation as follows:

Command: find

*Syntax*: find <pattern> <file>

#### **Function Specifications:**

The find command is used to locate one or more instances of a given pattern in a text file.

- All lines in the file that contain the pattern are written to standard output.
- A line containing the pattern is written only once, regardless of the no. of times the pattern occurs in it.
- The pattern is any sequence of characters whose length does not exceed the maximum length of a line in the file.
- To include a blank in the pattern, the entire pattern must be enclosed in quotes ("). To include a quotation mark in the pattern, two quotes in a row ("") must be used.





### An Example of using Category Partition Method

#### **Examples:**

- find john myfile
  - displays lines in the file myfile which contain john
- find "john smith" myfile
  - display lines in the file myfile which contains john smith.
- find "john" " smith" myfile
  - display lines in the file which contains john" smith.

When file is considered as a parameter, we need to consider the following:no. of occurrences of the pattern in the file.- no. of occurrences of the pattern in a line that contains it.- maximum line length in the file





### An Example of using Category Partition Method

Test specification for Find command:

#### Parameters:

#### 1. Pattern Size:

- ✓ empty
- ✓ single character
- ✓ many character
- ✓ longer than any line in the file

#### 2. Quoting:

- ✓ Pattern is quoted
- ✓ Pattern is not quoted
- ✓ Pattern is improperly quoted





### An Example of using Category Partition Method

Test specification for Find command:

#### **Parameters:**

#### 1. Embedded blanks:

- ✓ No embedded blank
- ✓ One embedded blank
- ✓ Several embedded blanks

#### 2. Embedded quotes:

- ✓ No embedded quotes
- ✓ One embedded quotes
- ✓ Several embedded quotes

#### **Parameters:**

#### File name:

- ✓ Good File name
- ✓ No File name
- ✓ Omitted

#### **Environment:**

(only for the pattern)

#### File access environment:

- ✓ File not accessible
- ✓ File can't read
- ✓ File can't open





### An Example of using Category Partition Method

#### **Parameters:**

**Environment**: (only for the pattern)

- 1. No. of occurrences of pattern in the file:
  - ✓ None
  - ✓ Exactly one
  - ✓ More than one
- 2. Pattern occurrences on target line:
  - ✓ One
  - ✓ None
  - ✓ More than one





### An Example of using Category Partition Method



- empty
- single character
- many character
- longer than any line in the file
- · Pattern is quoted
- · Pattern is not quoted
- Pattern is improperly quoted
- No embedded blank
- One embedded blank
- Several embedded blanks

- No embedded quotes
- One embedded quotes
- Several embedded quotes





### An Example of using Category Partition Method

#### Example 2:

• Specification: The program prompts the user for a positive integer in the range 1 to 20 and then for a string of characters of that length. The program then prompts for a character and returns the position in the string at which the character was first found or a message indicating that the character was not present in the string. The user has the option to search for more characters.





### An Example of using Category Partition Method

#### Example 2:

# Parameters and Categories

- Three parameters: integer x (length), the string a, and the character c
- For x the categories are "in-range" (1-20) or "out-of-range"
- Categories for a: minimal, maximal, intermediate length
- Categories for c: character appears at the beginning, middle, end of string, or does not occur in the string





### An Example of using Category Partition Method

#### **Example 2:**

# Formal Test Specifications

| ×: |                             |                                |
|----|-----------------------------|--------------------------------|
| 1) | 0                           | [error]                        |
| 2) | 1                           | [property stringok, length1]   |
| 3) | 2-19                        | [property stringok, midlength] |
| 4) | 20                          | [property stringok, length20]  |
| 5) | 21                          | [error]                        |
| a: |                             |                                |
| 1) | Length 1                    | [if stringok and length1]      |
| 2) | Length 2-19                 | [if stringok and midlength]    |
| 3) | Length 20                   | [if stringok and length20]     |
| c: |                             |                                |
| 1) | At first position in string | [if stringok]                  |
| 2) | At last position in string  | [if stringok and not length1]  |
| 3) | In middle of string         | [if stringok and not length1]  |
| 4) | Not in string               | [if stringok]                  |
|    |                             |                                |





#### An Example of using Category Partition Method

#### **Example 2:**

# Test Frames and Cases

```
\times 1
                  x = 0
\times 2a1c1
                  x = 1, \alpha = 'A', c = 'A'
                  x = 1, \alpha = 'A', c = 'B'
x 2a1c4
x 3a2c1
                  x = 7, \alpha = 'ABCDEFG', c = 'A'
                  x = 7, \alpha = 'ABCDEFG', c = 'G'
x 3a2c2
                  x = 7, \alpha = 'ABCDEFG', c = 'D'
x 3a2c3
                  x = 7, \alpha = 'ABCDEFG', c = 'X'
x 3a2c4
                  x = 20, a = 'ABCDEFGHIJKLMNOPQRST', c = 'A'
x 4a3c1
                  x = 20, a = 'ABCDEFGHIJKLMNOPQRST', <math>c = 'T'
x 4a3c2
                  x = 20, a = 'ABCDEFGHIJKLMNOPQRST', c = 'J'
x 4a3c3
x 4a3c4
                  x = 20, a = 'ABCDEFGHIJKLMNOPQRST', c = 'X'
                  x = 21
x 5
```





### **Category Partition Testing Summary**

#### Advantage:

- The tester can modify the test specification whenever necessary
- Reduce the number of test cases.
- Provides logical way to control the volume of tests.
- Language or implementation independent

#### Test Coverage:

- Each of the categorized partition has a test case derived from it.
- Test frames are generated which consist of maximum combination of choices in the category that is being partitioned.

#### Limitations:

- Lack of systematic methods to partition input domains of a component for the given non-formal function specification.
- Does not unearth bugs due to incorrect specifications.

#### Challenges:

- Identifying the parameters and environments, conditions and categories requires experienced tester.

