Contents

1	Pro	bability (Recap)			
	1.1	Random variables			
	1.2	Random vectors			
	1.3	The multivariate normal distribution			
	1.4	<u>Statistics</u>			
	1.5	Complements & large-sample results			
	1.6	In-course exercise			

1 Probability (Recap)

Suggested textbooks

- S.N. Wood. Core Statistics. Cambridge University Press, 2015.
- B. Efron, T. Hastie. Computer Age Statistical Inference Algorithms, Evidence, and Data Science. Cambridge University Press, 201.

1.1 Random variables

Statistics is about the extraction of information from data that contain an unpredictable component.

Random variables (r.v.) are the mathematical device employed to build models of this variability.

A r.v. takes a different value at random each time is observed.

Distribution of a r.v.

The main tools used to describe the **distribution** of values taken by a r.v. are:

- 1. Probability functions
- 2. Cumulative distribution functions
- 3. Quantile functions

1.1.1 Discrete distributions

Discrete r.v. take values in a discrete set.

The **probability (mass) function** (p.m.f.) of a discrete r.v. X is the function f(x) such that

$$f(x) = Pr(X = x)$$

with
$$0 \le f(x) \le 1$$
 and $\sum_i f(x_i) = 1$.

The probability function defines the distribution of X.

1.1.1.1 Mean and variance of a discrete r.v.

For many purposes, the first two moments of a distribution provide a useful summary.

The **mean** (**expected value**) of a discrete r.v. X is

$$E(X) = \sum_{i} x_i f(x_i)$$

and the definition is extended to any function g of X

$$E\{g(X)\} = \sum_{i} g(x_i) f(x_i).$$

The special case $g(X) = (X\mu)^2$, with $\mu = E(X)$, is the **variance** of X

$$var(X) = E\{(X\mu)^2\} = E(X^2)\mu^2.$$

The **standard deviation** is just given by $\sqrt{var(X)}$.

1.1.1.2 Notable discrete random variables

Discrete r.v. often used in applications:

- Binomial distribution
- Poisson distribution
- Negative binomial distribution
- Geometric distribution
- Hypergeometric distribution

The fist two deserve some further attention.

1.1.1.3 The binomial distribution

Consider n independent binary trials each with success probability p, 0 . The r.v. X that counts the number of successes has**binomial distribution**with probability function

$$Pr(X = x) = \binom{n}{x} p^x (1p)^{nx}, \quad x = 0, \dots, n.$$

The notation is $X \sim \mathcal{B}(n, p)$, and E(X) = np, var(X) = np(1p).

The case when n = 1 is known as **Bernoulli distribution**.

R lab: the binomial distribution

```
par(mfrow=c(1,2), pty="s", pch = 20)
plot(0:20, dbinom(0:20, 20, 0.2), xlab = "x", ylab = "f(x)")
plot(0:50, dbinom(0:50, 50, 0.5), xlab = "x", ylab = "f(x)")
```


1.1.1.4 The Poisson distribution

The special case of the binomial distribution with $n \to \infty$ and $p \to 0$, while their product is held constant at $\lambda = np$, yields the **Poisson distribution**.

The probability function is

$$Pr(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, 2, ...$$

with $\lambda > 0$.

The notation is $X \sim \mathcal{P}(\lambda)$, and $E(X) = var(X) = \lambda$.

R lab: the Poisson distribution

```
par(mfrow=c(1,2), pty="s", pch = 20)
plot(0:20, dpois(0:20, 5), xlab = "x", ylab = "f(x)")
plot(0:50, dpois(0:50, 10), xlab = "x", ylab = "f(x)")
```


1.1.2 Continuous distributions

Continuous r.v. take values from intervals on the real line.

The (**probability**) density function (p.d.f.) of a continuous r.v. X is the function f(x) such that, for any constants $a \leq b$

$$Pr(a \le X \le b) = \int_a^b f(x)dx.$$

Note that $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x)dx = 1$.

The probability density function defines the distribution of X.

1.1.2.1 Mean and variance of a continuous r.v.

The definitions given in the discrete case are readily extended.

The mean (expected value) of a continuous r.v. X is

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

and the definition is extended to any function g of X

$$E\{g(X)\} = \int_{-\infty}^{\infty} g(x)f(x)dx.$$

This includes the variance as a special case.

Two results apply to a **linear transformation** a + bX, with a, b constants:

$$E(a+bX) = a + bE(X)$$

$$var(a+bX) = b^2 var(X).$$

1.1.2.2 Notable continuous random variables

Important continuous distributions include:

- Normal distribution
- χ^2 distribution
- \bullet F distribution
- \bullet t and Cauchy distributions
- Gamma, Weibull and exponential distributions

The normal distribution has a major role in statistics. The χ^2 , t and F distributions are relative of the normal distribution.

1.1.2.3 The normal distribution

A r.v. X has a **normal** (or **Gaussian**) distribution if it has p.d.f.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{1}{2\sigma^2}(x-\mu)^2\right\}, \quad -\infty < x < \infty$$

The notation is $X \sim \mathcal{N}(\mu, \sigma^2)$, and $E(X) = \mu$ and $var(X) = \sigma^2$, $\sigma^2 > 0$, $\mu \in \Re$.

An important property is that for any constants a, b

$$a + bX \sim \mathcal{N}(a + b\mu, b^2\sigma^2),$$

so that $Z = (X\mu)/\sigma \sim \mathcal{N}(0,1)$, the **standard normal** distribution.

Finally, $Y = e^X$ has a **lognormal** distribution, useful for asymmetric variables with occasional right-tail outliers.

R lab: the normal distribution

```
xx <- seq(-10, 10, l=1000)
plot(xx, dnorm(xx, 0, 0.5), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dnorm(xx, 5, 1), col = 2)
lines(xx, dnorm(xx, 0, 1), col = 3)
lines(xx, dnorm(xx, 0, 2), col = 4)</pre>
```


1.1.2.4 The χ^2 distribution

Let Z_1, \ldots, Z_k be a set of independent $\mathcal{N}(0,1)$ r.v., then $X = \sum_{i=1}^k Z_i^2$ is a r.v. with a χ^2 distribution with k degrees of freedom.

The notation is $X \sim \chi_k^2$, E(X) = k and var(X) = 2k.

It is a special case of the Gamma distribution.

It plays an important role in the theory of hypothesis testing in statistics.

R lab: the χ^2 distribution

```
xx <- seq(0, 40, l=1000)
plot(xx, dchisq(xx, 5), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dchisq(xx, 10), col = 2)
lines(xx, dchisq(xx, 20), col = 3)</pre>
```


1.1.2.5 The F distribution

Let $X \sim \chi_n^2$ and $Y \sim \chi_m^2$, independent, then the r.v.

$$F = \frac{X/n}{Y/m}$$

has an F distribution with n and m degrees of freedom.

The notation is $F \sim \mathcal{F}_{n,m}$, and E(F) = m/(m-2) provided that m > 2.

The distribution is almost never used as a model for observed data, but it has a central role in hypothesis testing involving linear models.

R lab: the F distribution

```
xx <- seq(0, 10, l=1000)
plot(xx, df(xx, 10, 10), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, df(xx, 10, 5), col = 3)
lines(xx, df(xx, 5, 2), col = 2)</pre>
```


1.1.2.6 The t and Cauchy distributions

Let $Z \sim \mathcal{N}(0,1)$ and $X \sim \chi_n^2$, independent, then the r.v.

$$T = \frac{Z}{X/n}$$

has a t distribution with n degrees of freedom.

The notation is $T \sim \sqcup_n$, and E(T) = 0 provided that n > 1, whereas var(T) = n/(n-2) provided that n > 2.

 $t_{\infty} \sim \mathcal{N}(0,1)$, while for n finite the distribution has heavier tails than the standard normal distribution.

The case t_1 is the Cauchy distribution.

The distribution is almost never used as a model for observed data, but it has a central role in hypothesis testing involving linear models.

The distribution has a central role in statistical inference; at times it is used for modelling phenomena presenting *outliers*.

R lab: the t and Cauchy distributions

```
xx <- seq(-5, 5, l=1000)
plot(xx, dnorm(xx, 0, 1), xlab ="x", ylab ="f(x)", type ="l")
lines(xx, dt(xx, 30), col = 2)
lines(xx, dt(xx, 5), col = 3)
lines(xx, dt(xx, 1), col = 4)</pre>
```


1.1.3 C.d.f. and quantile functions

1.1.3.1 Cumulative distribution functions

The cumulative distribution function (c.d.f.) of a r.v. X is the function F(x) such that

$$F(x) = Pr(X \le x),$$

and it can be obtained from the probability function or the density function: the c.d.f. identifies the distribution.

From the definition of F it follows that $F(\infty) = 0$, F(1) = 1, F(x) is monotonic.

A useful property is that if F is a continuous function then U = F(X) has a uniform distribution.

R lab: uniform transformation

```
x <- rnorm(10^5) ### simulate values from N(0,1)
xx <- seq(min(x), max(x), 1 = 1000)
hist.scott(x, main = "") ### from MASS package
lines(xx, dnorm(xx), col = 2, lwd = 2)</pre>
```


R lab: uniform transformation (cont'd)

```
u <- pnorm(x) ### that's the uniform transformation
hist.scott(u, main="")
segments(0, 1, 1, 1, col = 2, lwd = 2)
curve(dunif(x), from=0, to=1, col = 2, lwd = 2, add=T)</pre>
```


1.1.3.2 The quantile function

The inverse of the c.d.f. is defined as

$$F^{1}(p) = min(x|F(x) \ge p), \quad 0 \le p \le 1.$$

This is the usual inverse function of F when F is continuous.

Another useful property is that if $U \sim \mathcal{U}(0,1)$, namely it has a **uniform distribution** in [0,1], then the r.v. $X = F^1(U)$ has c.d.f. F.

This provides a simple method to generate random numbers from a distribution with known quantile function: it is the **inversion sampling** method, that only requires the ability to simulate from a uniform distribution.

Example: normal cdf and quantile functions

Let us consider the case of $X \sim N(5, 2^2)$, with c.d.f. and quantile functions given by pnorm and qnorm. Make by exercise!

R lab: inversion sampling

```
u <- runif(10^4); y <- qnorm(u, m = 5, s = 2)
par(mfrow=c(1,2), pty = "s", pch=20)
qqnorm(y, main = "")
qqline(y)
## Now, trace the density function of y to check ...</pre>
```


Side note: quantile-quantile plot

The previous slide demonstrated the usage of the quantile function to build a tool for model **goodness-of-fit**.

The quantile-quantile plot visualizes the plausibility of a theoretical distribution for a set of observations $y = (y_1, \dots, y_n)$.

This is done by comparing the quantile function of the assumed model with the sample quantiles, which are the points that lie on the inverse of the **empirical distribution function**

$$\hat{F}_n(t) = \frac{\text{number of elements of } y \le t}{n}.$$

If the agreement between the data and the theoretical distribution is good, the points on the plot would approximately lie on a line.

1.2 Random vectors

1.2.1 Joint distribution

In statistics multiple variables are usually observed, and vectors of random variables (**random vectors**) are required. The two-dimensional case is useful to illustrate the main concepts, and will be used here.

For continuous r.v., the **joint (probability) density function** extends the one-dimensional case: it is the f(x,y) function such that, for any $A \subset \Re^2$

$$Pr\{(X,Y) \in A\} = \int \int_A f(x,y) dx dy.$$

Note that $f(x,y) \ge 0$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$.

The probability density function defines the **joint distribution** of the random vector (X, Y).

1.2.2 Marginal distribution

The joint distribution embodies information about each components, so that the distribution of X, ignoring Y, can be obtained from f(x, y). The **marginal density function** of X is given by

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy,$$

and similarly for the other variable.

(Note: here and elsewhere we always use the symbol f for any p.d.f., identifying the specific case by the argument of the function).

1.2.3 Conditional distribution

The **conditional density function** of Y given $X = x_0$ updates the distribution of Y by incorporating the information that $X = x_0$.

It is given by the important formula

$$f(y|X = x_0) = \frac{f(x_0, y)}{f(x_0)},$$

provided $f(x_0) > 0$.

The simplified notation $f(y|x_0)$ is often employed.

The conditional p.d.f. is properly defined, since $f(y|X=x_0) \ge 0$ and $\int_{-\infty}^{\infty} f(y|x_0)dy = 1$.

A symmetric definition applies to X given $Y = y_0$.

Conditional distribution: useful properties

In the two dimensional case, it is readily possible to write

$$f(x,y) = f(x)f(y|x).$$

Extensions to higher dimensions require some care:

$$f(x, y, z) = f(x, y|z)f(z)$$

$$f(x, y|z) = f(x|y, z)f(y|z) = f(x|z)f(y|x, z)$$

$$f(x, y, z) = f(x|y, z)f(y, z)$$

$$f(x, y, z) = f(x|y, z)f(y|z)f(z)$$

$$f(x_1, x_2, \dots, x_n) = f(x_1)f(x_2|x_1)f(x_3|x_2, x_1)\dots f(x_n|x_{n1}, \dots, x_2, x_1)$$

R lab: simulation from joint distributions

```
x <- rbinom(10^5, size = 1, prob = 0.7)
y <- rnorm(10^5, m = x * 5, s = 1) ### Y| X = x ~ N(x * 5, 1)
hist.scott(y, main = "", xlim = c(-4, 10))</pre>
```


R lab: simulation from joint distributions (cont'd)

```
xx <- seq(-4, 10, 1 = 1000)
ff <- 0.3 * dnorm(xx, 0) + 0.7 * dnorm(xx, 5)
### This is a mixture of normal distributions
hist.scott(y, main = "", xlim = c(-4, 10))
lines(xx, ff, col = "red", lwd = 2)</pre>
```


1.2.4 Bayes theorem

From From the factorization of the joint distribution it readily follows that

$$f(x,y) = f(x)f(y|x) = f(y)f(x|y)$$

from which we obtain the Bayes theorem

$$f(x|y) = \frac{f(x)f(y|x)}{f(y)}.$$

This is a cornerstone of statistics, leading to an entire school of statistical modelling.

1.2.5 Independence and conditional independence

When f(y|x) does not depend on the value of x, the r.v. X and Y are **independent**, and

$$f(x,y) = f(y)f(x).$$

More in general, n r.v. are independent if and only if

$$f(x_1, x_2, \dots, x_n) = f(x_1)f(x_2)\dots f(x_n).$$

Conditional independence arises when two r.v. are independent given a third one:

$$f(y,x|z) = f(x|z)f(y|z)$$

An important part of statistical modelling exploits some sort of conditional independence.

1.2.5.1 Example of conditional independence: the Markov property

The general factorization defined above

$$f(x_1, x_2, \dots, x_n) = f(x_1)f(x_2|x_1)f(x_3|x_2, x_1)\dots f(x_n|x_{n1}, \dots, x_2, x_1)$$

will simplify considerably when the first order Markov property holds:

$$f(x_i|x_1,\ldots,x_{i1}) = f(x_i|x_{i1})$$

which means that X_i is independent of X_1, \ldots, X_{i2} given X_{i1} .

We get

$$f(x_1, x_2, \dots, x_n) = f(x_1) \sum_{i=2}^{n} f(x_i | x_{i1}).$$

When the variables are observed over time, this means that the process has **short memory**, a property quite useful in the statistical modelling of time series.

1.2.5.2 Mean and variance of linear transformations

For two r.v. X and Y and two constants a, b we get

$$E(aX + bY) = aE(X) + bE(Y).$$

The result follows from the more general one

$$E\{g(X,Y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y)dxdy.$$

For variances we need first to introduce the **covariance** between X and Y

$$cov(X,Y) = E\{(X\mu_x)(Y\mu_y)\} = E(XY)\mu_x\mu_y,$$

where $\mu_x = E(X)$ and $\mu_y = E(Y)$.

Then

$$var(aX + bY) = a^{2}var(X) + b^{2}var(Y) + 2abcov(X, Y).$$

Note: for X, Y independent it follows that cov(X,Y) = 0. The reverse is not true, unless the joint distribution of X and Y is multivariate normal.

1.2.5.3 Mean vector

For a random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)^T$, the **mean vector** is just

$$E(\mathbf{X}) = \begin{pmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{pmatrix}.$$

The mean vector has the same properties of the scalar case, so that for example $E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})$, and for **A** and **b** a $n \times n$ matrix and a $n \times 1$ vector, respectively, it follows that

$$E(A\mathbf{X} + \mathbf{b}) = \mathbf{A}E(\mathbf{X}) + \mathbf{b}.$$

1.2.5.4 Variance-covariance matrix

The variance-covariance matrix of the random vector \mathbf{X} collects all the variances (on the main) diagonal and all the pairwise covariances (off the main diagonal), being the $n \times n$ symmetric positive semi-definite matrix:

$$\Sigma = E\{(\mathbf{X} - \mu_x)(\mathbf{Y} - \mu_y)^T\} = \begin{pmatrix} var(X_1) & cov(X_1, X_2) & \dots & cov(X_1, X_n) \\ cov(X_1, X_2) & var(X_2) & \dots & cov(X_2, X_n) \\ \vdots & \vdots & \vdots & \vdots \\ cov(X_1, X_n) & cov(X_2, X_n) & \dots & var(X_n) \end{pmatrix}$$

Useful properties:

$$\Sigma_{\mathbf{AX}+\mathbf{b}} = \mathbf{A}\Sigma\mathbf{A}^{T}$$
$$var(\mathbf{a}^{T}\mathbf{X}) = \mathbf{a}^{T}\Sigma\mathbf{a} (\geq 0)$$

1.2.5.5 Transformation of random variables and random vectors

Given a continuous r.v. X and a transformation Y = g(X), with g an invertible function, it readily follows that

$$f_y(y) = f_x\{g^{-1}(y)\} \left| \frac{dx}{dy} \right|.$$

The result is extended to two continuous random vectors with the same dimension

$$f_{\mathbf{v}}(\mathbf{y}) = f_{\mathbf{x}} \{ g^{-1}(\mathbf{y}) \} |\mathbf{J}|.$$

with $J_{ij} = \partial x_i / \partial y_j$.

For discrete r.v., the results are simpler, with no need of including the Jacobian of the transformation.

1.3 The multivariate normal distribution

Start from a set of n i.i.d. $Z_i \sim N(0,1)$, so that $E(\mathbf{Z}) = \mathbf{0}$ and covariance matrix \mathbf{I}_n . If \mathbf{B} is $m \times n$ matrix of coefficients and μ a m-vector of coefficients, then the m-dimensional random vector \mathbf{X}

$$X = BZ + \mu$$

has a multivariate normal distribution with covariance matrix $\Sigma = \mathbf{B}\mathbf{B}^T$.

The notation is

$$\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$$
.

Joint p.d.f.

Using basic results on transformation of random vectors, starting from the joint p.d.f of Z_1, Z_2, \ldots, Z_n we obtain

$$f_{\mathbf{x}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^m |\Sigma|}} \exp\left\{ (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \right\}, \quad \mathbf{x} \in \Re^m$$

provided that Σ has full rank m.

The result can be extended to singular Σ by recourse to the pseudo-inverse of Σ : this is used, for example, in the analysis of *compositional data*.

A useful property which holds only for this distribution: two r.v. with multivariate normal distribution and zero covariance are independent.

1.3.0.1 Example: bivariate case

We take $\mu_1 = \mu_2 = 0$, $\sigma_1^2 = sigma_2^2 = 1$, $\sigma_{12} = .5$ (at left), $\sigma_{12} = -.9$ (at right).

1.3.1 Linear transformations

It is simple to verify that if $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$ and \mathbf{A} is a $k \times m$ matrix of constants then

$$\mathbf{AX} \sim \mathcal{N}(\mathbf{A}\mu, \mathbf{A}\Sigma \mathbf{A}^T).$$

A special case is obtained when k = 1, in that for a m-dimensional vector **a**

$$\mathbf{a}^T \mathbf{X} \sim \mathcal{N}(\mathbf{a}^T \mu, \mathbf{a}^T \Sigma \mathbf{a}).$$

Note that for suitable choices of \mathbf{a} (when all the elements 0s or 1s) it follows that the marginal distribution of any subvector of \mathbf{X} is multivariate normal.

Normality of the marginal distributions, instead, does not imply multivariate normality

1.3.2 Conditional distributions

Consider two random vectors \mathbf{X} and \mathbf{Y} with multivariate normal joint distribution, and partition their joint covariance matrix as

$$\Sigma = \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix}$$

and similarly for the mean vector $\mu = (\mu_{\mathbf{X}}, \mu_{\mathbf{Y}})^T$.

Using results on partitioned matrices, it follows that the **conditional distributions are multivariate normal**.

For instance

$$\mathbf{Y}|\mathbf{x} \sim \mathcal{N}(\mu_{\mathbf{Y}} + \Sigma_{\mathbf{Y}\mathbf{X}}\Sigma_{\mathbf{X}\mathbf{X}}^{-1}(\mathbf{x} - \mu_{\mathbf{x}}), \Sigma_{\mathbf{Y}\mathbf{Y}} - \Sigma_{\mathbf{Y}\mathbf{X}}\Sigma_{\mathbf{X}\mathbf{X}}^{-1}\Sigma_{\mathbf{X}\mathbf{Y}}).$$

1.4 Statistics

1.4.1 Random sample

The collection of r.v. $X_1, X_2, ..., X_n$ is said to be a **random sample** of size n if they are *independent and identically distributed*, that is

- X_1, X_2, \ldots, X_n are independent r.v.
- They have the same distribution, namely the same c.d.f.

The concept is central in statistics, and it is the suitable mathematical model for the outcome of sampling units from a very large population. The definition is, however, more general.

(For more details: https://www.probabilitycourse.com/chapter8/8_1_1_random_sampling.php.)

1.4.2 Statistics

A **statistic** is a r.v. defined as a function of a set of r.v.

Obvious examples are the sample mean and variance of data y_1, y_2, \ldots, y_n :

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \qquad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i \bar{y})^2.$$

Consider a random vector \mathbf{y} with p.d.f. $f_{\theta}(y)$ depending on a vector θ (which is the *parameter*, as we will see).

If a statistic $t(\mathbf{y})$ is such that $f_{\theta}(\mathbf{y})$ can be written as

$$f_{\theta}(\mathbf{y}) = h(\mathbf{y})q_{\theta}t(\mathbf{y}),$$

where h does not depend on θ , and g depends on \mathbf{y} only through $t(\mathbf{y})$, then t is a sufficient statistic for θ : all the information available on θ contained in \mathbf{y} is supplied by $t(\mathbf{y})$.

The concepts of information and sufficiency are central in statistical inference.

Example: sufficient statistic for the normal distribution

Given a vector of independent normal r.v. $Y_i \sim \mathcal{N}(\mu, \sigma^2)$, it follows that $\theta = (\mu, \sigma^2)$ and

$$f_{\theta}(\mathbf{y}) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{\frac{1}{2\sigma^{2}}(y_{i} - \mu)^{2}\right\}$$
$$= \frac{1}{\sigma^{n}(\sqrt{2\pi})^{n}} \exp\left\{\frac{1}{2\sigma^{2}}(y_{i} - \mu)^{2}\right\}.$$

By some simple algebra, it is possible to show that the two-dimensional statistic $t(\mathbf{y}) = (\bar{y}, s^2)$ is sufficient for (μ, σ^2) .

1.5 Complements & large-sample results

1.5.1 Moment generating function

The The moment generating function (m.g.f.) characterises the distribution of a r.v. X, and it is defined as

$$M_X(t) = E(e^{tX}),$$
 for t real.

The name derives from the fact the k^{th} derivative of the m.g.f. at t=0 gives the k^{th} uncentered moment:

$$\frac{d^k M_X(t)}{dt^k}|_{t=0} = E(X^k).$$

Two useful properties:

- If $M_X(t) = M_Y(t)$ for some small interval around t = 0, then X and Y have the same distribution.
- If X and Y are independent, $M_{X+Y}(t) = M_X(t)M_Y(t)$.

1.5.2 The central limit theorem

For i.i.d. r.v. X_1, X_2, \dots, X_n with mean μ and finite variance σ^2 , the **central limit theorem** states that for large n the distribution of the r.v. $\bar{X}_n = \sum_{i=1}^n X_i/n$ is approximately

$$\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n).$$

More formally, the theorem says that for any $x \in \Re$ the c.d.f. of $Z_n = (\bar{X}_n \mu)/\sqrt{\sigma^2/n}$ satisfies

$$\lim_{n\to\infty} F_{Z_n}(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{z^2/2} dz.$$

The proof is simple, and it uses the m.g.f.

The theorem generalizes to multivariate and non-identical settings.

It has a central importance in statistics, since it supports the normal approximation to the distribution of a r.v. that can be viewed as the sum of other r.v.

1.5.3 The law of large numbers

Consider i.i.d. r.v. X_1, \ldots, X_n , with mean μ and $(E|X_i|) < \infty$.

The strong law of large numbers states that, for any positive ϵ

$$Pr\left(\lim_{n\to\infty}|\bar{X}_n\mu|<\epsilon\right)=1,$$

namely \bar{X}_n converges almost surely to μ .

With the further assumption $var(X_i) = \sigma^2$, the weak law of large numbers follows

$$\lim_{n\to\infty} Pr(|\bar{X}_n\mu| \ge \epsilon) = 0.$$

The proof of the weak law of large numbers uses the **Chebyshev's inequality**.

The result may hold also for non-i.i.d. cases, provided $var(\bar{X}_n) \to 0$ for large n.

1.5.4 Jensen's inequality

This is another useful result, that states that for a r.v. X and a concave function g

$$g\{E(X)\} \ge E\{g(X)\}.$$

(Note: a concave function is such that

$$g\{\alpha x_1 + (1\alpha)x_2\} \ge \alpha g(x_1) + (1\alpha)g(x_2)$$

for any x_1 , x_2 , and $0 \le \alpha \le 1$.)

An example is $g(x) = x^2$, so that

$$E(X)^2 \ge E(X^2) \implies E(X)^2 \le E(X^2),$$

which is obviously true since $E(X^2) = var(X) + E(X)^2$.

1.6 In-course exercise

1.6.1 The binomial distribution: approximation with CLT

Using the central limit theorem, we may approximate the binomial distribution with a normal distribution. In fact, by means of CLT, we already know that

$$\bar{X}_n \sim \mathcal{N}(p, pq/n)$$

Then, it is easy to show that

$$n\bar{X}_n \sim \mathcal{N}(np, npq)$$

For large n, the binomial distribution may be approximated by a normal distribution with mean $\mu = np$ and variance $\sigma^2 = npq$.

Exercise on CLT

- 1. Write a R code for checking the validity of the CLT when the distribustion of X is binomial (Hint: for different p increase n). Use plots for visualizing the results.
- 2. Use the code above for checking that a Poisson distribution can be approximated by a Normal by increasing λ .
- 3. Check the validity of the CLT for the distribution of the mean of n uniform variables in [0,1].