

On Out-of-distribution Detection with Energy-based Models

Sven Elflein, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann Technical University of Munich

Problem Definition & Contribution

Goal: Investigate superior OOD detection performance of EBMs vs. other generative models. **Motivation:**

- Recent research on density estimation focuses on exact likelihood methods.
- Findings of superior OOD detection performance of EBMs without analysis.

Key Contributions:

- Find that EBMs do not strictly outperform Normalizing Flows across multiple training methods.
- Identify that learning semantic features induced by supervision improves OOD detection in recent discriminative EBMs.
- Show that one can use architectural modifications to improve OOD detection with EBMs.

Method

Energy-based model (EBM). Energy-function E_{θ} defines a density over the data x as

$$p_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{Z(\theta)} \tag{1}$$

where $Z(\theta) = \int \exp(-E_{\theta}(x))dx$.

Joint Energy model (JEM) [2]. Given a classifier $f: \mathbb{R}^D \mapsto \mathbb{R}^C$ assigning logits for C classes for a datapoint $x \in \mathbb{R}^D$

$$p_{\theta}(y \mid x) = \frac{\exp(f_{\theta}(x)[y])}{\sum_{y'} \exp(f_{\theta}(x)[y'])}$$
 (2)

where $f_{\theta}(x)[y]$ denotes the y-th logit. The logits $f_{\theta}(x)[y]$ can be interpret as unnormalized probabilities of the joint distribution $p_{\theta}(x,y)$ which yields the marginal distribution over x as

$$p_{\theta}(x) = \sum_{y} p_{\theta}(x, y) = \sum_{y} \frac{\exp(f(x)[y])}{Z(\theta)}$$
(3)

Training. We follow [2] and optimize the factorization

$$\log p_{\theta}(x, y) = \log p_{\theta}(x) + \log p_{\theta}(y \mid x) \tag{4}$$

using 2 and 3. In particular, we use a Cross Entropy objective to optimize $p_{\theta}(y \mid x)$ weighted with hyperparameter γ .

For optimizing $p_{\theta}(x)$, we consider different approaches which have shown to scale to high-dimensional data.

Sliced score matching (SSM) [4]. Efficient update formula based on random projection

$$\mathbb{E}_{p_v} \mathbb{E}_{p(x)} \left[v^T \nabla_x s_\theta(x) v + \frac{1}{2} \|s_\theta(x)\|_2^2 \right]$$
(5)

where $v \sim p_v$ is a simple distribution of random vectors.

Contrastive divergence (CD) [3]. Approximation of the gradient of the maximum likelihood objective by

$$\nabla_{\theta} p_{\theta}(x) = \mathbb{E}_{p_{\theta}(x')} \left[\nabla_{\theta} E_{\theta}(x') \right] - \nabla_{\theta} E_{\theta}(x)$$
(6)

VERA [1]. Learn the parameters ϕ of a auxiliary distribution q_{ϕ} as the optimum of

$$\log Z(\theta) = \max_{q_{\phi}} \mathbb{E}_{q_{\phi}(x)} \left[f_{\theta}(x) \right] + H(q_{\phi})$$

which can be plugged into 1 to obtain an alternative method for training EBMs with a variational approximation to estimate the entropy term $H_{q_{\phi}}$.

OOD Detection.

For OOD detection, we compute the density $p_{\theta}(x)$ at the considered datapoint x. We treat ID data as class 1 and OOD data as class 0 and compute AUC-PR.

Experiments & Results

Differentiation of natural and non-natural dataset.

<u>Natural OOD</u>: Requires learning semantic features to differentiate, e.g., images of classes not in training set.

Non-natural OOD: Requires detection farther from the training data manifold, e.g., noise, OODomain

Are EBMs better than Normalizing Flows?

EBMs do not consistently outperform Normalizing Flows across different training methods (Improvements: CD 11.9%, VERA 4.3%, SSM -4.3%)

Does supervision improve OOD detection?

Model	ID dataset	Natural	Non-natural
CD	CIFAR-10	-10.82	-9.11
	FMNIST	47.17	3.24
	Segment	1.85	0.89
	Sensorless	29.72	-0.02
	CIFAR-10	7.33	-27.94
SSM	FMNIST	50.61	-20.26
	Segment	25.89	-21.94
	Sensorless	22.13	-40.73
VERA	CIFAR-10	-1.16	-3.00
	FMNIST	33.66	-15.53
	Segment	4.98	-0.57
	Sensorless	97.93	0.07

- Leveraging supervision with JEMs improves some results significantly on *natural* OOD datasets
- Results do not improve or even degrade on *non-natural* OOD datasets
- Investigation shows: Weighting parameter of cross-entropy loss γ affects the density estimates far from training data
- → *Non-natural* data becomes harder to detect

Sidestepping tuning of γ

Model	ID dataset	Natural	Non-natural
CD	CIFAR-10	48.60	3.37
	FMNIST	95.79	-13.52
SSM	CIFAR-10	53.84	-2.31
	FMNIST	58.40	59.59
VERA	CIFAR-10	50.16	16.97
	FMNIST	15.12	1.80

- Introduce supervision by training on embeddings obtained from classification model
- OOD detection significantly improves on *natural* and in cases on *non-natural* datasets
- Shows that vanilla EBMs struggle to extract high-level, semantic features

Can we encourage semantic features?

_	Model	ID dataset	Natural	Non-natural
-	CD	CIFAR-10 FMNIST	20.18 67.95	20.38 10.88
	SSM	CIFAR-10 FMNIST	14.76 1.75	33.34 -5.92
	VERA	CIFAR-10 FMNIST	19.66 26.84	33.22 32.94

- Introduce bottlenecks through 1×1 convolutions
- OOD detection improves consistently upon the baseline EBMs by learning higher-level features
- The difference in density assigned for low-level features to images increases significantly

References

- [1] Will Grathwohl, Jacob Kelly, Milad Hashemi, Mohammad Norouzi, Kevin Swersky, and David Duvenaud. No MCMC for me: Amortized sampling for fast and stable training of energy-based models. arXiv:2010.04230 [cs], October 2020.
- [2] Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and Kevin Swersky. Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One. *arXiv:1912.03263 [cs, stat]*, September 2020.
- [3] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence. *Neural Computation*, 14(8):1771–1800, August 2002.
- [4] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced Score Matching: A Scalable Approach to Density and Score Estimation. arXiv:1905.07088 [cs, stat], June 2019.