Odevzdávejte prosím výhradně elektronicky, budu mimo ČR.

Doporučený termín odevzdání: 10. prosince 2019

Tvrdý termín odevzdání: 17. prosince 2019

Souvislost a trhání vrcholů trh (4 body)

Dokažte, že každý souvislý graf G na alespoň třech vrcholech obsahuje dva vrcholy u a v takové, že všechny tři grafy $G \setminus \{u\}$, $G \setminus \{v\}$ a $G \setminus \{u,v\}$ jsou souvislé.

Definice 1 (Automorfismus, strnulý graf). Automorfismus grafu je isomorfismus s ním samým. Každý graf má aspoň jeden automorfismus (totiž identitu) a může mít i další. Grafu, který má jen jeden, říkáme strnulý nebo asymetrický.

Strnulec strn (8 bodů)

Sestrojte strnulý graf, který má alespoň 2 vrcholy, a dokažte to o něm.

Bipartitní podgraf bipg (8 bodů)

Dokažte, že každý graf smhranami obsahuje bipartitní podgraf s alespoň $\frac{m}{2}$ hranami.

Doplněk bipartitního grafu bico (5 bodů) •

Existuje bipartitní graf na alespoň 5 vrcholech, jehož doplněk je také bipartitní?

Kostry a hrana ekost (6 bodů)

Necht' T a \check{T} jsou dvě různé kostry grafu G. Dokažte, že potom pro každou $e \in T \setminus \check{T}$ existuje $\check{e} \in \check{T} \setminus T$ taková, že $T - e + \check{e}$ je také kostra.

Graf s daným počtem koster nkost (8 bodů)

Sestrojte pro každé $n \geq 3$ graf, který má právě n koster. Dokažte, proč graf mající právě 2 kostry neexistuje.

Nezávislá množina a vrcholové pokrytí isvc (4 body)

Dokažte, že pro každý graf G platí, že $U\subseteq V(G)$ je nezávislá množina právě tehdy, když $V(G)\setminus U$ (doplněk U) je vrcholové pokrytí. Množina $C\subseteq V(G)$ je vrcholové pokrytí grafu G pokud pro každou hranu $\{u,v\}\in E(G)$ platí, že $u\in C$ nebo $v\in C$.

$\sqrt{\text{Kružnice v } K_{n,n}}$ kknn (4 body)

Určete počet různých kružnic v $K_{n,n}$.

Minimální stupeň a cesta kdelta (6 bodů)

Označme si nejmenší stupeň v grafu jako δ . Předpokládejme $\delta \geq 2$. Dokažte, že potom v grafu existuje kružnice délky alespoň $\delta+1$.