```
In [1]:
         # PCA section, Correlation, Heatmaps, plots can be seen to be the most important
In [2]:
         # For plotting, import libraries
         from matplotlib import pyplot as plt
          import matplotlib
          import seaborn as sns
          %matplotlib inline
          import numpy as np
In [3]:
          import warnings
         warnings.filterwarnings('ignore')
In [4]:
          classForAnalysis = 2
In [5]:
         # data exploration
         import pandas as pd
          #df = pd.read_csv('../nhanes_input_data/newdietaryIntakeDataForClassificationAndAnalysi
         df = pd.read_csv('../nhanes_output_data/classifiedGroups/2022-12-01/' + str(classForAna
         df.head()
Out[5]:
                                                                                              SEQN -
                                                                                          Respondent
           RIDAGEYR_Age_in_years_at_screening URDACT_Albumin_creatinine_ratio_mg_g DataYear
                                                                                            sequence
                                                                                             number
                                                                                   2017-
         0
                                          3
                                                                           3.19
                                                                                             101691.0 1
                                                                                    2018
                                                                                   2017-
         1
                                          3
                                                                           3.19
                                                                                             101691.0
                                                                                    2018
                                                                                   2017-
         2
                                          3
                                                                           3.19
                                                                                            101691.0
                                                                                    2018
                                                                                   2017-
         3
                                          3
                                                                           3.19
                                                                                             101691.0
                                                                                    2018
                                                                                   2017-
                                          3
                                                                           3.19
                                                                                            101691.0 1
         4
                                                                                    2018
        5 rows × 87 columns
In [6]:
         df.describe()
```

Out[6]:		RIDAGEYR_Age_in_years_at_screening	URDACT_Albumin_creatinine_ratio_mg_g	SEQN - Respondent sequence number	V Di or
	count	65637.000000	65637.000000	59401.000000	594
	mean	14.770693	9.703108	98395.475261	407
	std	7.706131	6.067687	2661.533862	435
	min	3.000000	3.000000	93707.000000	39
	25%	8.000000	5.320000	96040.000000	145
	50%	14.000000	7.710000	98445.000000	266
	75%	20.000000	12.270000	100668.000000	491
	max	30.000000	30.990000	102951.000000	4070
	8 rows	× 86 columns			

8 rows × 86 columns

PCA

Applying PCA on Actual Intake Amount

```
In [7]:
         df.columns[:10]
        Index(['RIDAGEYR_Age_in_years_at_screening',
Out[7]:
                'URDACT_Albumin_creatinine_ratio_mg_g', 'DataYear',
                'SEQN - Respondent sequence number',
                'WTDRD1 - Dietary day one sample weight',
                'WTDR2D - Dietary two-day sample weight',
                'DR1ILINE - Food/Individual component number',
                'DR1DRSTZ - Dietary recall status', 'DR1EXMER - Interviewer ID code',
                'DRABF - Breast-fed infant (either day)'],
              dtype='object')
In [8]:
         # Will Keep only important columns
In [9]:
         df classified = df [
             # 'RIDAGEYR_Age_in_years_at_screening',
                 #'URDACT_Albumin_creatinine_ratio_mg_g'
                 #, 'DataYear'
                 #, 'SEQN - Respondent sequence number'
                 #, 'WTDRD1 - Dietary day one sample weight'
                 #, 'WTDR2D - Dietary two-day sample weight'
                 #, 'DR1ILINE - Food/Individual component number'
                 #, 'DR1DRSTZ - Dietary recall status'
                 #, 'DR1EXMER - Interviewer ID code'
                 #, 'DRABF - Breast-fed infant (either day)'
                 #, 'DRDINT - Number of days of intake'
```

```
#, 'DR1DBIH - # of days b/w intake and HH interview'
       #, 'DR1DAY - Intake day of the week'
       #, 'DR1LANG - Language respondent used mostly'
       #, 'DR1CCMNM - Combination food number'
       #, 'DR1CCMTX - Combination food type'
       #, 'DR1_020 - Time of eating occasion (HH:MM)'
       #, 'DR1 030Z - Name of eating occasion'
        #, 'DR1FS - Source of food'
       #, 'DR1_040Z - Did you eat this meal at home?'
        #, 'DR1IFDCD - USDA food code'
        #, 'DR1IGRMS - Grams'
        'DR1IKCAL - Energy (kcal)'
        , 'DR1IPROT - Protein (gm)'
        , 'DR1ICARB - Carbohydrate (gm)'
        , 'DR1ISUGR - Total sugars (gm)'
        , 'DR1IFIBE - Dietary fiber (gm)'
        , 'DR1ITFAT - Total fat (gm)'
        , 'DR1ISFAT - Total saturated fatty acids (gm)'
        , 'DR1IMFAT - Total monounsaturated fatty acids (gm)'
        , 'DR1IPFAT - Total polyunsaturated fatty acids (gm)'
        , 'DR1ICHOL - Cholesterol (mg)'
        , 'URDACT_Albumin_creatinine_ratio_mg_g'
   1
df_classified.head()
```

DR1ISFAT

out[9].		DR1IKCAL - Energy (kcal)		DR1ICARB - Carbohydrate (gm)	DR1ISUGR - Total sugars (gm)	DR1IFIBE - Dietary fiber (gm)	DR1ITFAT - Total fat (gm)	- Total saturated fatty acids (gm)	DR1IMFAT - Total monounsaturated fatty acids (gm)
	0	278.0	6.55	58.97	24.34	5.3	3.70	0.391	0.817
	1	455.0	22.01	70.91	8.35	6.1	9.29	2.741	3.218
	2	69.0	1.71	8.02	0.71	0.5	3.28	1.069	0.917
	3	114.0	0.25	28.02	23.86	0.5	0.32	0.055	0.015
	4	195.0	10.67	15.19	15.65	0.0	10.41	6.051	2.238
	4								•
In [10]:	df_classified.columns								
Out[10]:	<pre>Index(['DR1IKCAL - Energy (kcal)', 'DR1IPROT - Protein (gm)',</pre>								

'DR1ICHOL - Cholesterol (mg)', 'URDACT_Albumin_creatinine_ratio_mg_g'],

dtype='object')

Out[9]:

```
In [11]:
          df_classified = df_classified.fillna(0)
In [12]:
          # only actual intake by the participants -- othe fields such as recommended amounts are
In [13]:
          out_folder = '../nhanes_output_data/'
          # data folder = './data-for-code/'
          df classified.to csv(out folder + 'actual only for excel analysis acr and food group.cs
In [14]:
          # saving data to csv files to verify with excel analysis
In [15]:
          ####----
          # steps followed from ref: https://python-for-multivariate-analysis.readthedocs.io/a li
          import sklearn
          from sklearn import preprocessing
          standardisedX = sklearn.preprocessing.scale(df classified)
          standardisedX = pd.DataFrame(standardisedX, index=df_classified.index, columns=df_class
          standardisedX.apply(np.mean), '---\n', standardisedX.apply(np.std)
         (DR1IKCAL - Energy (kcal)
                                                                6.579847e-15
Out[15]:
          DR1IPROT - Protein (gm)
                                                                1.232112e-14
          DR1ICARB - Carbohydrate (gm)
                                                                3.437190e-15
          DR1ISUGR - Total sugars (gm)
                                                                3.802967e-15
          DR1IFIBE - Dietary fiber (gm)
                                                               -1.618842e-14
                                                               -9.064140e-15
          DR1ITFAT - Total fat (gm)
          DR1ISFAT - Total saturated fatty acids (gm)
                                                               7.557529e-15
          DR1IMFAT - Total monounsaturated fatty acids (gm)
                                                               -8.102079e-15
          DR1IPFAT - Total polyunsaturated fatty acids (gm)
                                                                6.021161e-15
          DR1ICHOL - Cholesterol (mg)
                                                                1.978352e-14
          URDACT Albumin creatinine ratio mg g
                                                               -9.960867e-16
          dtype: float64,
          '---\n',
          DR1IKCAL - Energy (kcal)
                                                                1.0
          DR1IPROT - Protein (gm)
                                                                1.0
          DR1ICARB - Carbohydrate (gm)
                                                                1.0
          DR1ISUGR - Total sugars (gm)
                                                                1.0
          DR1IFIBE - Dietary fiber (gm)
                                                                1.0
          DR1ITFAT - Total fat (gm)
                                                                1.0
          DR1ISFAT - Total saturated fatty acids (gm)
                                                                1.0
          DR1IMFAT - Total monounsaturated fatty acids (gm)
                                                                1.0
          DR1IPFAT - Total polyunsaturated fatty acids (gm)
                                                                1.0
          DR1ICHOL - Cholesterol (mg)
                                                                1.0
          URDACT_Albumin_creatinine_ratio_mg_g
                                                                1.0
          dtype: float64)
In [16]:
          standardisedX.head()
```

Out[16]:		DR1IKCAL - Energy (kcal)	DR1IPROT - Protein (gm)	DR1ICARB - Carbohydrate (gm)	DR1ISUGR - Total sugars (gm)	DR1IFIBE - Dietary fiber (gm)	DR1ITFAT - Total fat (gm)	DR1ISFAT - Total saturated fatty acids (gm)	DR1IMFAT - Total monounsaturated fatty acids (gm)
	0	0.753588	0.164913	1.766400	1.236734	2.165423	-0.166534	-0.373437	-0.268443
	1	1.683818	1.728801	2.265610	0.081527	2.568815	0.391704	0.241061	0.398781
	2	-0.344820	-0.324688	-0.363814	-0.470428	-0.254927	-0.208477	-0.196148	-0.240654
	3	-0.108320	-0.472377	0.472384	1.202056	-0.254927	-0.504073	-0.461298	-0.491314
	4	0.317378	0.581680	-0.064037	0.608920	-0.507047	0.503551	1.106588	0.126445
	4								>

Target variable data: standard

dividing into high and low mortality

0.753588

1.683818

0.164913

1.728801

1.766400

2.265610

```
In [17]:
           y = abs(standardisedX['URDACT_Albumin_creatinine_ratio_mg_g'])
           y = standardisedX['URDACT Albumin creatinine ratio mg g']
                   -1.073417
Out[17]:
                   -1.073417
                   -1.073417
          3
                   -1.073417
                   -1.073417
          65632
                    3.203369
          65633
                    3.203369
          65634
                    3.203369
          65635
                    3.203369
          65636
                    3.374770
          Name: URDACT_Albumin_creatinine_ratio_mg_g, Length: 65637, dtype: float64
In [18]:
           # > 0.5
           standardisedX_with_target = standardisedX
           standardisedX = standardisedX.drop(['URDACT_Albumin_creatinine_ratio_mg_g'], axis=1)
In [19]:
           standardisedX
Out[19]:
                                                                                   DR1ISFAT
                                                    DR1ISUGR
                                                               DR1IFIBE
                                                                                      - Total
                 DR1IKCAL
                            DR1IPROT
                                        DR1ICARB -
                                                                         DR1ITFAT
                                                                                              DR1IMFAT - To
                                                        - Total
                                                               - Dietary
                                                                                   saturated
                   - Energy
                             - Protein
                                      Carbohydrate
                                                                            - Total
                                                                                             monounsaturat
                                                                                       fatty
                                                        sugars
                                                                   fiber
                     (kcal)
                                              (gm)
                                                                          fat (gm)
                                                                                               fatty acids (g
                                (gm)
```

(gm)

1.236734

0.081527

(gm)

-0.166534

0.391704

2.165423

2.568815

acids (gm)

-0.2684

0.3987

-0.373437

0.241061

	DR1IKCAL - Energy (kcal)	DR1IPROT - Protein (gm)	DR1ICARB - Carbohydrate (gm)	DR1ISUGR - Total sugars (gm)	DR1IFIBE - Dietary fiber (gm)	DR1ITFAT - Total fat (gm)	- Total saturated fatty acids (gm)	DR1IMFAT - To monounsaturat fatty acids (g
2	-0.344820	-0.324688	-0.363814	-0.470428	-0.254927	-0.208477	-0.196148	-0.2406
3	-0.108320	-0.472377	0.472384	1.202056	-0.254927	-0.504073	-0.461298	-0.4913
4	0.317378	0.581680	-0.064037	0.608920	-0.507047	0.503551	1.106588	0.1264
•••								
65632	-0.707452	-0.497666	-0.699130	-0.521723	-0.507047	-0.536029	-0.475679	-0.4954
65633	1.930828	2.979103	1.752603	0.030956	1.409064	0.835098	0.534712	0.8423
65634	-0.681174	-0.423822	-0.680733	-0.518833	-0.456623	-0.531036	-0.473849	-0.4932
65635	0.333145	-0.472377	1.403490	2.696093	-0.507047	-0.526043	-0.475679	-0.4954
65636	-0.707452	-0.497666	-0.699130	-0.521723	-0.507047	-0.536029	-0.475679	-0.4954
			et = standara disedX.drop([bumin_cre	atinine_r	atio_mg_g	'], axis=1)
<pre>#### #ref: https://python-for-multivariate-analysis.readthedocs.io/a_little_book_of_python_f def pca_summary(pca, standardised_data, out=True): names = ["PC"+str(i) for i in range(1, len(pca.explained_variance_ratio_)+1)] a = list(np.std(pca.transform(standardised_data), axis=0)) b = list(pca.explained_variance_ratio_) c = [np.sum(pca.explained_variance_ratio_[:i]) for i in range(1, len(pca.explained_columns = pd.MultiIndex.from_tuples([("sdev", "Standard deviation"), ("varprop", "Psummary = pd.DataFrame(list(zip(a, b, c)), index=names, columns=columns) if out: print("Importance of components:") display(summary) return summary</pre>								
: ####- Summa ####-	ary = pca_s	summary(pc	a, standardis	sedX)				

DR1ISFAT

sday

	saev	varprop	cumprop
	Standard deviation	Proportion of Variance	Cumulative Proportion
PC1	2.425792	0.588447	0.588447
PC2	1.274877	0.162531	0.750978
PC3	0.935343	0.087487	0.838465
PC4	0.787327	0.061988	0.900453
PC5	0.657010	0.043166	0.943619
PC6	0.527021	0.027775	0.971394
PC7	0.391137	0.015299	0.986693
PC8	0.342736	0.011747	0.998440
PC9	0.118608	0.001407	0.999847
PC10	0.039123	0.000153	1.000000

varnron

cumprop

Important Components

```
def screeplot(pca, standardised_values):
    y = np.std(pca.transform(standardised_values), axis=0)**2
    x = np.arange(len(y)) + 1
    plt.plot(x, y, "o-")
    plt.xticks(x, ["Comp."+str(i) for i in x], rotation=60)
    plt.ylabel("Variance")
    plt.title('PCA variance in Components')
    plt.savefig( out_folder + 'images/class_' + str(classForAnalysis) + '_pca_component plt.show()
    screeplot(pca, standardisedX)
```



```
In [26]: #summary.sdev**2
    #pca.components_[0]
    #np.sum(pca.components_[0]**2)
```

```
In [27]:
          ####----
          # ref: https://python-for-multivariate-analysis.readthedocs.io/a little book of python
          # not my code, I am using this as (similar to) a library function with some adjustments
          def calcpc(variables, loadings):
              # find the number of samples in the data set and the number of variables
              numsamples, numvariables = variables.shape
              # make a vector to store the component
              pc = np.zeros(numsamples)
              # calculate the value of the component for each sample
              for i in range(numsamples):
                  valuei = 0
                  for j in range(numvariables):
                      valueij = variables.iloc[i, j]
                      loadingj = loadings[j]
                      valuei = valuei + (valueij * loadingj)
                  pc[i] = valuei
              return pc
```

```
In [28]: ####----
calcpc(standardisedX, pca.components_[0])
```

```
pca.transform(standardisedX)[:, 0]
          pca.transform(standardisedX)[:, 0]
          pca.components_[1]
          np.sum(pca.components_[1]**2)
          #highest loadings for
         1.00000000000000016
Out[28]:
In [29]:
          # Define high and low mortality
          # The code below is not used.
          # y as defined earlier will rather be used
          #import sklearn
          #from sklearn import preprocessing
          #standardisedX mortality = sklearn.preprocessing.scale(df diff ratio mortality)
          #standardisedX mortality = pd.DataFrame(standardisedX mortality, index=df diff ratio mo
          #standardisedX_mortality.apply(np.mean), '---', standardisedX_mortality.apply(np.std)
```

#standardisedX mortality

ref: https://python-for-multivariateanalysis.readthedocs.io/a_little_book_of_python_

not my code from the URL above, using this as a library function

```
def pca_scatter(pca, standardised_values, classifs): foo = pca.transform(standardised_values) bar = pd.DataFrame(list(zip(foo[:, 0], foo[:, 1], classifs)), columns=["PC1", "PC2", "Class"]) plt.savefig('./images/pca_components_separating_high_low_mortality' + '.png') sns.lmplot("PC1", "PC2", bar, hue="Class", fit_reg=False) pca_scatter(pca, standardisedX, y)
```

Plot first two components

Next section (i.e. four components) is more important than this

```
In [30]: ####---
# reference: https://towardsdatascience.com/dive-into-pca-principal-component-analysis-

pca_components_cont = pca.components_[0:4]

plt.matshow(pca_components_cont, cmap='viridis')
plt.yticks([0,1],['1st Comp','2nd Comp'],fontsize=10)
```

```
plt.colorbar()
#plt.xticks(range(1, len(df_classified.columns)),df_classified.columns[1:len(df_classif
plt.xticks(range(len(standardisedX.columns)),standardisedX.columns,rotation=65,ha='left
#plt.tight_layout()
plt.savefig(out_folder + 'images/class_' + str(classForAnalysis) + '_pca_food_groups_wh
plt.show() #
# from the abobe plot, Vegetable, Grain, Protein contribute the most to the 1st compone
```



```
In [31]:
          # reference: https://towardsdatascience.com/dive-into-pca-principal-component-analysis-
          plt.rcParams['figure.figsize'] = 30, 16
          components_to_count = 4
          pca_components_cont = pca.components_[0:components_to_count]
          ylabels = []
          for c in range (components_to_count):
              ylabels.append('Component ' + str(c) )
          xlabels = []
          for c in range (components_to_count):
              xlabels.append(c)
          plt.matshow(pca_components_cont, cmap='viridis')
          plt.yticks(xlabels, ylabels, fontsize=10)
          plt.colorbar()
          plt.xticks(range(len(standardisedX.columns)), standardisedX.columns, rotation=90, ha='l
          plt.show()#
```


In [32]: #df_diff_ratio_with_mortality.corr()
standardisedX_with_target.corr()

Out[32]:

	DR1IKCAL - Energy (kcal)	DR1IPROT - Protein (gm)	DR1ICARB - Carbohydrate (gm)	DR1ISUGR - Total sugars (gm)	DR1IFIBE - Dietary fiber (gm)	DR1 - fat
DR1IKCAL - Energy (kcal)	1.000000	0.750768	0.821517	0.405780	0.608648	0.8
DR1IPROT - Protein (gm)	0.750768	1.000000	0.391921	0.042503	0.408277	0.7
DR1ICARB - Carbohydrate (gm)	0.821517	0.391921	1.000000	0.682396	0.624645	0.5
DR1ISUGR - Total sugars (gm)	0.405780	0.042503	0.682396	1.000000	0.152735	0.1
DR1IFIBE - Dietary fiber (gm)	0.608648	0.408277	0.624645	0.152735	1.000000	0.4
DR1ITFAT - Total fat (gm)	0.874442	0.718474	0.511845	0.136934	0.475480	1.0
DR1ISFAT - Total saturated fatty acids (gm)	0.805749	0.668649	0.480840	0.173170	0.403810	0.9
DR1IMFAT - Total monounsaturated fatty acids (gm)	0.822331	0.705087	0.455606	0.099253	0.455725	0.9
DR1IPFAT - Total polyunsaturated fatty acids (gm)	0.677703	0.479268	0.407994	0.058382	0.411252	0.8
DR1ICHOL - Cholesterol (mg)	0.452747	0.634661	0.124848	0.010980	0.090229	0.5
URDACT_Albumin_creatinine_ratio_mg_g	-0.049675	-0.041114	-0.038183	-0.026280	-0.024058	-0.0

In [35]: standardisedX_with_target

Out[35]:		DR1IKCAL - Energy (kcal)	- Energy - Protein C		DR1ISUGR - Total sugars (gm)	DR1IFIBE - Dietary fiber (gm)	DR1ITFAT - Total fat (gm)	- Total saturated fatty acids (gm)	DR1IMFAT - To monounsaturat fatty acids (g	
	0	0.753588	0.164913	1.766400	1.236734	2.165423	-0.166534	-0.373437	-0.2684	
	1	1.683818	1.728801	2.265610	0.081527	2.568815	0.391704	0.241061	0.3987	

	DR1IKCAL - Energy (kcal)	DR1IPROT - Protein (gm)	DR1ICARB - Carbohydrate (gm)	DR1ISUGR - Total sugars (gm)	DR1IFIBE - Dietary fiber (gm)	DR1ITFAT - Total fat (gm)	DR1ISFAT - Total saturated fatty acids (gm)	DR1IMFAT - To monounsaturat fatty acids (g
2	-0.344820	-0.324688	-0.363814	-0.470428	-0.254927	-0.208477	-0.196148	-0.240€
3	-0.108320	-0.472377	0.472384	1.202056	-0.254927	-0.504073	-0.461298	-0.4913
4	0.317378	0.581680	-0.064037	0.608920	-0.507047	0.503551	1.106588	0.1264
•••								
65632	-0.707452	-0.497666	-0.699130	-0.521723	-0.507047	-0.536029	-0.475679	-0.4954
65633	1.930828	2.979103	1.752603	0.030956	1.409064	0.835098	0.534712	0.8423
65634	-0.681174	-0.423822	-0.680733	-0.518833	-0.456623	-0.531036	-0.473849	-0.4932
65635	0.333145	-0.472377	1.403490	2.696093	-0.507047	-0.526043	-0.475679	-0.4954
65636	-0.707452	-0.497666	-0.699130	-0.521723	-0.507047	-0.536029	-0.475679	-0.4954

65637 rows × 11 columns

In []:	4	
In []:		