

Hands on CaSQ

From PD to AF + logical formulae

Executable Boolean models from molecular interaction maps

CaSQ – a Python package

```
usage: casq [-h] [-v] [-d] [-c] [-b] [-g GRANULARITY] [-s] [-r S]
           [infile] [outfile]
Convert CellDesigner models to SBML-qual with a rather strict semantics.
Copyright (C) 2019-2021 Sylvain.Soliman@inria.fr GPLv3
positional arguments:
 infile
                      CellDesigner File
 outfile
                      SBML-Qual/BMA json File
optional arguments:
 -h, --help
                      show this help message and exit
 -v, --version show program's version number and exit
 -d, --debug
                     Display a lot of debug information
 -c, --csv
                      Store the species information in a separate CSV file
                      Output to BMA json format
 -b, --bma
 -g GRANULARITY, --granularity GRANULARITY
                      When exporting to BMA, use this granularity
                      Store the influence information in a separate SIF file
 -s, --sif
                      Delete connected components in the resulting model if
 -r S, --remove S
                      their size is smaller than S. A negative S leads to
                      keep only the biggest(s) connected component(s)
```


SBML qual

```
Apoptosis_stable.sbml 44.1 KB 🔓
                                                                                                                                                                                                                                                                                                                                                                                                                            Web IDE
                   <?xml version='1.0' encoding='utf-8'?>
                    <sbml xmlns:bqbiol="http://biomodels.net/biology-qualifiers/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" level="3" version="1" layout:required="false" x</pre>
                    <rdf:Description rdf:about="#s37">
                    <bqbiol:isDescribedBy>
                    <rdf:Bag>
                    <rdf:li rdf:resource="urn:miriam:pubmed:31226023" />
                    </rdf:Bag>
                    </bqbiol:isDescribedBy>
                    <bqbiol:isDescribedBy>
                    <rdf:Bag>
                    <rdf:li rdf:resource="urn:miriam:mesh:D017209" />
                    </rdf:Bag>
                    </bddiol:isDescribedBy>
                    <bqbiol:isDescribedBy><rdf:Bag></rdf:Bag></rdf:li rdf:resource="urn:casq:function:CASP7|Orf3b|Orf8a|N|S|Orf9b|Orf6|CASP3" /></rdf:Bag></bqbiol:isDescribedBy><bqbiol:isDescribedBy>
                   </rdf:RDF>
                    </annotation></qual:qualitativeSpecies><qual:qualitativeSpecies qual:maxLevel="1" qual:compartment="comp1" qual:name="M" qual:constant="true" qual:id="sa42"><annotation></qual:qualitativeSpecies><qual:qualitativeSpecies qual:maxLevel="1" qual:compartment="comp1" qual:name="M" qual:constant="true" qual:id="sa42"><annotation></qual:qualitativeSpecies><qual:qualitativeSpecies qual:maxLevel="1" qual:compartment="comp1" qual:name="M" qual:constant="true" qual:id="sa42"><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><annotation><anno
                    <rdf:Description rdf:about="#s38">
                    <bqbiol:isEncodedBy>
       18
                    <rdf:Bag>
                    <rdf:li rdf:resource="urn:miriam:ncbiprotein:APO40582" />
       21 (/ndf·Rag)
```


🔍 Search

New Model

Logical Model

Constraint-Based Model

RECENTLY PUBLIS

Create

Import

Sélect, fichiers

Aucun fichier chois

Version 1 Overview <u>Model</u> Simulation Analysis Network Analysis Knowledge Base

Layout

File Insert Edit Workspace Help

References

File Insert Edit Workspace Help

Real time Simulations

The CoLoMoTo consortium

The CoLoMoTo Consortium

About CoLoMoTo

CoLoMoTo (Consortium for Logical Models and Tools) is a consortium of research groups interested in logical modelling: modelers, curators and developers of methods and tools. The consortium works on the definition of standards for model representation and interchange (especially the SBML qual format), and on the comparison of methods, models and tools.

This website reports on the activities of the consortium, and provides an overview of software tools and biological models based on the logical formalism.

Contact information

We run a mailing list for the colomoto community at colomoto-discuss@googlegroups.com. You can also contact us on contact@colomoto.org.

There is also a CoLoMoTo group on LinkedIn.

The CoLoMoTo notebook

ė

- Visit it!
- https://github.com/colomoto/colomoto-docker

Embedded software

Besides the Jupyter notebook, the docker image provides access to the following softwares:

Software tool	Homepage	Description	Jupyter interface	
ActoNet	https://github.com/algorecell/pyActoNet	Abduction-based control of fixed points of Boolean networks	Python module actonet	
bioLQM	http://colomoto.org/biolqm/	Logical Qualitative Modelling toolkit	Python module biolqm	
boolSim	https://www.vital- it.ch/research/software/boolSim	Attractors and reachable sets in synchronous and asynchronous Boolean networks	Python module boolsim	
CABEAN	https://satoss.uni.lu/software/CABEAN/	A Software Tool for the Control of Asynchronous Boolean Networks	Python module cabean	
Caspo	https://bioasp.github.io/caspo/	Reasoning on the response of logical signaling networks with Answer Set Programming	Python module caspo_control	
CaSQ	https://github.com/soli/casq	Convert static interaction maps into executable models	Python module	
CellCollective	https://cellcollective.org	Model repository and knowledge base	Python module cellcollective	
GINsim	http://ginsim.org	Boolean and multi-valued network modelling	Python module ginsim	
MaBoSS	http://maboss.curie.fr	Markovian Boolean Stochastic Simulator	Python module maboss	
mpbn	https://github.com/pauleve/mpbn	Most Permissive Boolean Networks	Python module	
NuSMV	http://nusmv.fbk.eu	Symbolic model-checker	Python module	
Pint	https://loicpauleve.name/pint	Static analyzer for dynamics of Automata Networks	Python module pypint	
PyBoolNet	https://github.com/hklarner/PyBoolNet	Generation, modification and analysis of Boolean networks	Python module PyBoolNet	
R-BoolNet	https://cran.r- project.org/package=BoolNet	Analysis and reconstruction of Boolean networks dynamics	RPY2 python interface	
StableMotifs	https://github.com/jgtz/StableMotifs	Target-control of Boolean networks	Python module stablemotifs	

Open your shell

Create an executable model with CaSQ

Load and view the model in GINsim

Out[4]:

Calculate stable states

Out[6]:	FASFAS	L_complex	BIMBADPUMA_complex	Apoptosome_complex	TNFATNFR1_complex	BCL2BCLXLMCL1_complex	TRADDFADD_complex	TNFR1
	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0
	251	1	1	1	1	1	1	1
	252	1	1	1	1	1	1	1
	253	1	1	1	1	1	1	1
	254	1	1	1	1	1	1	1
	255	1	1	1	1	1	1	1

