

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2025

CLASA a IX-a – soluții

Problema 1. Fie ABCD un paralelogram și O intersecția diagonalelor. Demonstrați că pentru orice punct $M \in (AB)$, există în mod unic punctele $N \in (OC)$ și $P \in (OD)$ astfel încât O este centrul de greutate al triunghiului MNP.

De aici avem
$$\overrightarrow{ON} = \frac{x}{x+1}\overrightarrow{OC} = -\frac{x}{x+1}\overrightarrow{OA}$$
 şi $\overrightarrow{OP} = \frac{y}{y+1}\overrightarrow{OD} = -\frac{y}{y+1}\overrightarrow{OB}$ 1 punct

Deoarece \overrightarrow{OA} şi \overrightarrow{OB} sunt necoliniari, O este centrul de greutate al triunghiului MNP dacă şi numai dacă $\frac{x}{x+1} = \frac{1}{k+1} \Leftrightarrow x = \frac{1}{k}$ şi $\frac{y}{y+1} = \frac{k}{k+1} \Leftrightarrow y = k$, adică punctul N este unic determinat de raportul $x = \frac{1}{k} = \frac{ON}{NC}$, iar punctul P este unic determinat de raportul $y = k = \frac{OP}{NC}$, cea ce

Problema 2. Rezolvați în \mathbb{R} ecuația:

$$\frac{1}{\{x\}} + \frac{1}{[x]} + \frac{1}{x} = 0,$$

unde [x] şi $\{x\}$ sunt partea întreagă, respectiv partea fraționară a numărului real x.

Gazeta Matematică

Ecuația din enunț este echivalentă cu:

$$\frac{[x] + \{x\}}{[x]\{x\}} = -\frac{1}{x} \Leftrightarrow -x^2 = [x]\{x\}. \quad (\star)$$

 $x^2 - kx - k^2 = 0$, având soluţiile $x_{1,2} = \frac{k \pm k\sqrt{5}}{2}$. Din [x] = -k, obţinem că singura soluţie posibilă ar fi $x_1 = \frac{k - k\sqrt{5}}{2}$ 2 puncte

În final, trebuie să găsim valorile lui $k \in \mathbb{N}^*$ pentru care $\left\lceil \frac{k - k\sqrt{5}}{2} \right\rceil = -k$, ceea ce este echivalent cu:

$$-k \leq k \frac{1-\sqrt{5}}{2} < -k+1 \Leftrightarrow 3k \geq k\sqrt{5} > 3k-2,$$

Problema 3. Determinați numerele reale pozitive a, b, c, d astfel încât a+b+c+d=80 și

$$a + \frac{b}{1+a} + \frac{c}{1+a+b} + \frac{d}{1+a+b+c} = 8.$$

Soluție. A două relație după adunare cu 4 în ambii membri se scrie:

$$1 + a + \frac{1+a+b}{1+a} + \frac{1+a+b+c}{1+a+b} + \frac{1+a+b+c+d}{1+a+b+c} = 12.$$

$$1 + a + \frac{1+a+b}{1+a} \ge 2\sqrt{(1+a) \cdot \frac{1+a+b}{1+a}} = 2\sqrt{1+a+b};$$

$$\frac{1+a+b+c}{1+a+b} + \frac{1+a+b+c+d}{1+a+b+c} \ge 2\sqrt{\frac{1+a+b+c}{1+a+b} \cdot \frac{1+a+b+c+d}{1+a+b+c}} = 2\sqrt{\frac{81}{1+a+b}}.$$

Prin adunarea celor două inegalități și aplicând din nou inegalitatea mediilor se ajunge la:

$$12 = 1 + a + \frac{1+a+b}{1+a} + \frac{1+a+b+c}{1+a+b} + \frac{1+a+b+c+d}{1+a+b+c} \ge 2\sqrt{1+a+b} + \frac{18}{\sqrt{1+a+b}} \ge 12.$$

Problema 4. Fie $(x_n)_{n\geq 1}$ un şir crescător nemărginit de numere naturale cu $x_1=1$ şi $x_{n+1}\leq 2x_n$, pentru orice $n\geq 1$. Demonstrați că orice număr natural nenul se poate scrie ca sumă finită de termeni distincți doi câte doi ai şirului $(x_n)_{n>1}$.

Notă: Doi termeni x_i şi x_j ai şirului $(x_n)_{n\geq 1}$ se numesc distincți dacă $i\neq j$.

Soluție. Fie k un număr natural nenul astfel încât $1 \le k < 2x_n$ pentru un $n \ge 1$ natural. Vom demonstra prin inducție că putem scrie $k = \sum_{i=1}^n \varepsilon_i x_i$ cu $\varepsilon_i \in \{0,1\}, i = \overline{1,n}$. Deoarece șirul $(x_n)_{n\ge 1}$ este nemărginit, putem acoperi toate numerele naturale nenule cu această construcție.

Afirmatia do mai sus este adovárată pontru n = 1

Afirmația de mai sus este adevărată pentru n=1.

$$0 < k - x_{N+1} < 2x_{N+1} - x_{N+1} \le 2x_N,$$