Lecture 36

GARCH Models Part 2

Arnab Hazra

Dow Jones Industrial Average (recap)

Fig. 1.4. The daily returns of the Dow Jones Industrial Average (DJIA) from April 20, 2006 to April 20, 2016.

Dow Jones Industrial Average (recap)

- ▶ It is easy to spot the financial crisis of 2008 in the figure.
- ► The data shown here are typical of return data $(R_t = \frac{X_t X_{t-1}}{X_{t-1}})$.
- If the return represents a small (in magnitude) percentage change then $\nabla \log(X_t) \approx R_t$. Either value, $\nabla \log(X_t)$ or $\frac{X_t X_{t-1}}{X_{t-1}}$ are called the return.
- ► The mean of the series appears to be stable with an average return of nearly zero, however, highly volatile periods tend to be clustered together.
- A problem in the analysis of these type of financial data is to forecast the volatility of future returns.
- Models such as ARCH and GARCH models and stochastic volatility models have been developed to handle these problems.

ARCH(1) model (recap)

- ▶ If R_t follows an AR(1) process, $Var(R_t|R_{t-1}, R_{t-2}, ...) = Var(R_t|R_{t-1}) = \sigma_W^2$.
- ightharpoonup Typically, for financial series, R_t does not have a constant conditional variance, and highly volatile periods tend to be clustered together.
- ► The simplest ARCH model, the ARCH(1), models the return as

$$R_t = \sigma_t \varepsilon_t, \ \ \sigma_t^2 = \alpha_0 + \alpha_1 R_{t-1}^2$$

where ε_t 's are IID standard Gaussian white noise.

- ▶ With ARMA models, we must impose some constraints ($\alpha_0, \alpha_1 \ge 0$) on the model parameters to obtain desirable properties.
- ► The conditional distribution $R_t | R_{t-1} \sim N(0, \alpha_0 + \alpha_1 R_{t-1}^2)$.

AR(1)-type representation of ARCH(1) model (recap)

- ▶ We can write the ARCH(1) model as a non-Gaussian AR(1) model for R_t^2 .
- First, we write as

$$R_t^2 = \sigma_t^2 \varepsilon_t^2, \quad \alpha_0 + \alpha_1 R_{t-1}^2 = \sigma_t^2.$$

We subtract the two equations to obtain

$$R_t^2 - (\alpha_0 + \alpha_1 R_{t-1}^2) = \sigma_t^2 \varepsilon_t^2 - \sigma_t^2 \stackrel{\text{Notation}}{=} V_t.$$

- ▶ Here $V_t = \sigma_t^2(\varepsilon_t^2 1)$. Because ε_t^2 is the square of a N(0, 1) random variable, $\varepsilon_t^2 1$ is a shifted (to have mean-zero), χ_1^2 random variable.
- ▶ Overall, $R_t^2 = \alpha_0 + \alpha_1 R_{t-1}^2 + V_t$ where $V_t | R_{t-1} \sim (\alpha_0 + \alpha_1 R_{t-1}^2) \times (\chi_1^2 1)$.

Digression: Martingale (recap)

A basic definition of a discrete-time martingale is a discrete-time stochastic process $\{X_1, X_2, X_3, \ldots\}$ that satisfies for any time T,

$$E(|X_t|)<\infty,$$

$$E(X_{T+1}|X_1,\ldots,X_T)=X_T.$$

- ► We can define $X_t^* = X_t E(X_t | X_{t-1}, X_{t-2}, ..., X_1)$.
- Here, clearly,

$$E(X_t^*|X_{t-1}^*,X_{t-2}^*,\ldots,X_1^*)=E(X_t|X_{t-1},X_{t-2},\ldots,X_1)-E(X_t|X_{t-1},X_{t-2},\ldots,X_1)=0.$$

ightharpoonup Here X_t^* is called martingale difference.

Properties of GARCH (recap)

▶ We define $\mathcal{R}_s = \{R_s, R_{s-1}, \ldots\}$.

▶ Because $E(R_t|\mathcal{R}_{t-1}) = 0$, the process R_t is said to be a martingale difference.

ightharpoonup Because R_t is a martingale difference, it is also an uncorrelated sequence.

▶ Therefore, $E(R_t^2)$ and $Var(R_t^2)$ must be constant with respect to time t.

Properties of GARCH (contd., recap)

$$E(R_t) = EE(R_t|\mathcal{R}_{t-1}) = EE(R_t|R_{t-1}) = 0$$

$$Cov(R_{t+h}, R_t) = E(R_t R_{t+h}) = EE(R_t R_{t+h} | R_{t+h-1}) = ER_t E(R_{t+h} | R_{t+h-1}) = 0$$

$$E(R_t^2) = \operatorname{Var}(R_t) = \frac{\alpha_0}{1 - \alpha_1}$$

$$E(R_t^4) = \frac{3\alpha_0^2}{(1 - \alpha_1)^2} \times \frac{1 - \alpha_1^2}{1 - 3\alpha_1^2}$$

Parameter estimation

- Estimation of the parameters α_0 and α_1 of the ARCH(1) model is typically accomplished by conditional MLE.
- ► The conditional likelihood of the data $R_2, ..., R_T$ given R_1 , is given by where the density $f_{\alpha_0,\alpha_1}(R_t|R_{t-1})$.
- ▶ Hence, the criterion function to be minimized, $\ell(\alpha_0, \alpha_1) = c \log[L(\alpha_0, \alpha_1|R_1)]$ is given by

$$\ell(\alpha_0, \alpha_1) = 0.5 \sum_{t=2}^{T} \log(\alpha_0 + \alpha_1 R_{t-1}^2) + 0.5 \sum_{t=2}^{T} \frac{R_t^2}{\alpha_0 + \alpha_1 R_{t-1}^2}.$$

Estimation is accomplished by numerical methods.

ARCH(p) Models

- ► The ARCH(1) model can be extended to the general ARCH(p) model by keeping $R_t = \sigma_t \varepsilon_t$ but extending $\sigma_t^2 = \alpha_0 + \alpha_1 R_{t-1}^2$ to $\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j R_{t-j}^2$.
- ► Estimation for ARCH(p) also follows in an obvious way from the discussion of estimation for ARCH(1) models.
- ▶ That is, the conditional likelihood of the data R_{p+1}, \ldots, R_T given R_1, \ldots, R_p , is

$$L(\alpha|R_1,\ldots,R_p) = \prod_{t=p+1}^T f_{\alpha}(R_t|R_{t-1},\ldots,R_{t-p}),$$

where $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_p)$ and, under the assumption of normality, the conditional densities $f_{\alpha}(\cdot|\cdot)$ are, for t > p, given by

$$R_t|R_{t-1},\ldots,R_{t-p}\sim \mathrm{N}(0,\alpha_0+\sum_{j=1}^p\alpha_jR_{t-j}^2).$$

Other extensions

► It is also possible to combine a regression or an ARMA model for the mean with an ARCH model for the errors.

For example, a regression with ARCH(1) errors model would have the observations X_t as linear function of p regressors, $\mathbf{Z}_t = [z_{t1}, \dots, z_{tp}]'$, and ARCH(1) noise Y_t , say, $X_t = \mathbf{Z}_t'\beta + Y_t$,

Similarly, for example, an AR(1) model for data X_t exhibiting ARCH(1) errors would be $X_t = \phi_0 + \phi_1 X_{t-1} + Y_t$.

GARCH(p, q) model

- Another extension of ARCH is the generalized ARCH or GARCH model.
- ▶ For example, a GARCH(1, 1) model retains $R_t = \sigma_t \varepsilon_t$, but

$$\sigma_t^2 = \alpha_0 + \alpha_1 R_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

▶ The model admits a non-Gaussian ARMA(1, 1) model for the squared process

$$R_t^2 = \alpha_0 + (\alpha_1 + \beta_1)R_{t-1}^2 + V_t - \beta_1 V_{t-1}.$$

It follows from the equations

$$R_t^2 - \sigma_t^2 = \sigma_t^2(\varepsilon_t^2 - 1), \quad \beta_1(R_{t-1}^2 - \sigma_{t-1}^2) = \beta_1\sigma_{t-1}^2(\varepsilon_{t-1}^2 - 1)$$

▶ A natural extension to GARCH(p, q) model is by retaining $R_t = \sigma_t \varepsilon_t$, but

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_p R_{t-j}^2 + \sum_{k=1}^q \beta_k \sigma_{t-k}^2.$$

GARCH fitting to Dow Jones Industrial Average

Fig. 5.6. GARCH one-step-ahead predictions of the DJIA volatility, $\hat{\sigma}_t$, superimposed on part of the data including the financial crisis of 2008.

Drawbacks of GARCH models

- ▶ The volatility component σ_t^2 in GARCH models are conditionally nonstochastic.
- This assumption seems a bit unrealistic and the stochastic volatility model adds a stochastic component to the volatility.
- ▶ For GARCH model, $R_t = \sigma_t \varepsilon_t$ and hence, $\log[R_t^2] = \log[\sigma_t^2] + \log[\varepsilon_t^2]$.
- Thus, $\log[R_t^2]$ are generated by two components, the unobserved volatility $\log[\sigma_t^2]$ and the unobserved noise $\log[\varepsilon_t^2]$.

Stochastic volatility models

► The basic stochastic volatility model assumes the logged latent variable is an autoregressive process

$$\log[\sigma_{t+1}^2] = \phi_0 + \phi_1 \log[\sigma_t^2] + W_t,$$

where $W_t \stackrel{IID}{\sim} N(0, \sigma_W^2)$.

- ▶ The introduction of the noise term W_t makes the latent volatility process stochastic, which is a state-space model.
- ▶ Given T observations, the goals are to estimate the parameters ϕ_0 , ϕ_1 , and σ_W^2 , and then predict future volatility using Kalman forecasting.

Thank you!