Sitzung 7

Von Dichten und Verteilungsfunktionen (II)

Sitzung Mathematik für Ingenieure C4: INF vom 15. Mai 2020

Wigand Rathmann

Lehrstuhl für Angewandte Analysis Department Mathematik Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Fragen

Wahrscheinlichkeitsmaße

Ziel dieses Themas

- Sie kennen die Begriffe Wahrscheinlichkeitsdichte und Verteilungsfunktion?
- 2. Sie wissen, warum es Zähldichten und stetige Dichten benötigt werden.
- 3. Sie können Wahrscheinlichkeiten mit Hilfe von Wahrscheinlichkeitsdichten und Verteilungsfunktionen berechnen.
- 4. Sie kennen den Zusammenhang zwischen den Begriffen Wahrscheinlichkeitsdichte und Verteilungsfunktion
- 5. Sie kennen Beispiele für verschiedene Verteilungen

Antworten auf die ...

... weiterführenden Fragen

 Stellen Sie sich eine Liste der bis jetzt erwähnten Verteilungen zusammen. Führen dazu die Dichtefunktion, Verteilungsfunktion und mögliche Beispiele auf.

Teilen Sie ihre Informationen im Wiki https://www.studon.fau.de/wikiwpage 38248 3058524.html

2. Zeigen Sie, dass für die geometrischen Verteilung die Aussage

$$P(\mathbb{N})=1$$

gilt.

3. Was bedeutet der Begriff gemischte Verteilung?

Antworten

Verteilungen

Stellen Sie sich eine Liste der bis jetzt erwähnten Verteilungen zusammen. Führen dazu die Dichtefunktion, Verteilungsfunktion und mögliche Beispiele auf.

Teilen Sie ihre Informationen im Wiki

https://www.studon.fau.de/wikiwpage_38248_3058524.html Welche Verteilungen haben es auf Ihre Liste geschafft?

Antworten

Geometrische Verteilung

Zeigen Sie, dass für die geometrischen Verteilung die Aussage

$$P(\mathbb{N})=1$$

gilt.

Antworten

Gemischte Verteilung

Was bedeutet der Begriff gemischte Verteilung?

Eine Riemann-integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) \geqslant 0 \ (x \in \mathbb{R}) \ \text{und} \ \int_{-\infty}^{\infty} f(x) \, \mathrm{d} \, x = 1$$
 (1)

heißt Riemann-Dichte über ℝ oder auch stetige Dichte.

Jede R-Dichte definiert eindeutig ein W-Maß p über (\mathbb{R},\mathbb{B}) mit der Eigenschaft

$$P((a,b]) = P([a,b]) = \int_{a}^{b} f(x) dx$$
 (2)

mit $(a \leqslant b)$ und $P(\{\omega\}) = 0$

Satz 4.9 (Fortsetzungssatz)

Ist P auf einem geeigneten Erzeuger \mathcal{E} von \mathcal{A} festgelegt und auf \mathcal{E} nicht-negativ, σ -additiv und normiert, dann gibt es eine eindeutige Fortsetzung von P auf \mathcal{A} .

Eine Riemann-integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) \geqslant 0 \ (x \in \mathbb{R}) \ \text{und} \ \int_{-\infty}^{\infty} f(x) \, \mathrm{d} \, x = 1$$
 (1)

heißt Riemann-Dichte über $\mathbb R$ oder auch stetige Dichte.

Jede R-Dichte definiert eindeutig ein W-Maß p über (\mathbb{R},\mathbb{B}) mit der Eigenschaft

$$P((a,b]) = P([a,b]) = \int_{a}^{b} f(x) dx$$
 (2)

mit $(a \leq b)$ und $P(\{\omega\}) = 0$.

Satz 4.9 (Fortsetzungssatz)

Ist P auf einem geeigneten Erzeuger \mathcal{E} von \mathcal{A} festgelegt und auf \mathcal{E} nicht-negativ, σ -additiv und normiert, dann gibt es eine eindeutige Fortsetzung von P auf \mathcal{A} .

Eine Riemann-integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) \geqslant 0 \ (x \in \mathbb{R}) \ \text{und} \ \int_{-\infty}^{\infty} f(x) \, \mathrm{d} \, x = 1$$
 (1)

heißt Riemann-Dichte über $\mathbb R$ oder auch stetige Dichte.

Jede R-Dichte definiert eindeutig ein W-Maß p über (\mathbb{R},\mathbb{B}) mit der Eigenschaft

$$P((a,b]) = P([a,b]) = \int_{a}^{b} f(x) dx$$
 (2)

mit $(a \leq b)$ und $P(\{\omega\}) = 0$.

Satz 4.9 (Fortsetzungssatz)

Ist P auf einem geeigneten Erzeuger $\mathcal E$ von $\mathcal A$ festgelegt und auf $\mathcal E$ nicht-negativ, σ -additiv und normiert, dann gibt es eine eindeutige Fortsetzung von P auf $\mathcal A$

Eine Riemann-integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) \geqslant 0 \ (x \in \mathbb{R}) \ \text{und} \ \int_{-\infty}^{\infty} f(x) \, \mathrm{d} \, x = 1$$
 (1)

heißt **Riemann-Dichte** über \mathbb{R} oder auch **stetige Dichte**. Jede R-Dichte definiert eindeutig ein W-Maß p über (\mathbb{R}, \mathbb{B}) mit der Eigenschaft

$$P((a,b]) = P([a,b]) = \int_{a}^{b} f(x) dx$$
 (2)

mit $(a \leqslant b)$ und $P(\{\omega\}) = 0$.

Satz 4.9 (Fortsetzungssatz)

Ist P auf einem geeigneten Erzeuger $\mathcal E$ von $\mathcal A$ festgelegt und auf $\mathcal E$ nicht-negativ, σ -additiv und normiert, dann gibt es eine eindeutige Fortsetzung von P auf $\mathcal A$.

Empirische Verteilungsfunktion

Zur empirischen Verteilung eines Datensatzes $\mathbf{x} = (x_1, \dots, x_n)$ gehört die **empirische Verteilungsfunktion**

$$\hat{F}_n^{\mathbf{x}}(x) := \frac{1}{n} \sum_{i=1}^n 1_{[x_i,\infty)}(x), \quad x \in \mathbb{R}.$$
 (3)

Definition 4.16 (Verteilungsfunktion)

Ist
$$P$$
 ein beliebiges W-Maß über (\mathbb{R},\mathbb{B}) , dann heißt die Abbildung $F:\mathbb{R}\to\mathbb{R}$ mit
$$F(x):=P\left((-\infty,x]\right),\quad x\in\mathbb{R} \tag{4}$$

die Verteilungsfunktion von P. Es gilt

$$P((a,b]) = F(b) - F(a), \quad a,b \in \mathbb{R}, \ a \leqslant b. \tag{5}$$

$$F(x) = \int_{-\infty}^{x} f(t) dt$$
 und $P((a, b]) = \int_{a}^{b} f(t) dt = F(b) - F(a)$. (6)

Definition 4.16 (Verteilungsfunktion)

Ist P ein beliebiges W-Maß über (\mathbb{R},\mathbb{B}) , dann heißt die Abbildung $F:\mathbb{R}\to\mathbb{R}$ mit

$$F(x) := P((-\infty, x]), \quad x \in \mathbb{R}$$
 (4)

die Verteilungsfunktion von P. Es gilt

$$P((a,b]) = F(b) - F(a), \ a,b \in \mathbb{R}, \ a \leq b.$$
 (5)

$$F(x) = \int_{-\infty}^{x} f(t) dt$$
 und $P((a, b]) = \int_{a}^{b} f(t) dt = F(b) - F(a)$. (6)

Definition 4.16 (Verteilungsfunktion)

Ist P ein beliebiges W-Maß über (\mathbb{R},\mathbb{B}) , dann heißt die Abbildung $F:\mathbb{R}\to\mathbb{R}$

mit
$$F(x) := P((-\infty, x]), \quad x \in \mathbb{R}$$
 (4)

die Verteilungsfunktion von P. Es gilt

$$P((a,b]) = F(b) - F(a), \quad a,b \in \mathbb{R}, \ a \leqslant b. \tag{5}$$

Berechnung von Verteilungsfunktionen

Für ein W-Maß über $\mathbb R$ mit der Riemann-Dichte f gilt mit dieser Definition

$$F(x) = \int_{a}^{x} f(t) dt$$
 und $P((a, b]) = \int_{a}^{b} f(t) dt = F(b) - F(a)$. (6)

Ist F die VF eines W-Maßes P über (\mathbb{R}, \mathbb{B}) , dann gilt:

- 1. F ist isoton, d.h. monoton nicht fallend.
- 2. F ist "normiert", d. h. F besitzt die Grenzwerte

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$
$$F(\infty) = \lim_{x \to \infty} F(x) = 1.$$

- 3. F ist rechtsseitig stetig
- 4. F besitzt linksseitige Grenzwerte

$$F(x-) = \lim_{h \to 0^+} F(x-h) = P((-\infty, x)).$$

5. Für Einpunktmengen $\{x\}$ gilt:

$$P({x}) = F(x) - F(x-)$$

Ist F die VF eines W-Maßes P über (\mathbb{R}, \mathbb{B}) , dann gilt:

- 1. F ist isoton, d. h. monoton nicht fallend.
- 2. F ist "normiert", d. h. F besitzt die Grenzwerte

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0,$$

$$F(\infty) = \lim_{x \to \infty} F(x) = 1.$$

- 3. F ist rechtsseitig stetig.
- 4. F besitzt linksseitige Grenzwerte

$$F(x-) = \lim_{h \to 0^+} F(x-h) = P((-\infty, x))$$

Für Einpunktmengen {x} gilt:

$$P({x}) = F(x) - F(x-)$$

Ist F die VF eines W-Maßes P über (\mathbb{R}, \mathbb{B}) , dann gilt:

- 1. F ist isoton, d. h. monoton nicht fallend.
- 2. F ist "normiert", d. h. F besitzt die Grenzwerte

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0,$$

$$F(\infty) = \lim_{x \to \infty} F(x) = 1.$$

- 3. F ist rechtsseitig stetig.
- 4. F besitzt linksseitige Grenzwerte

$$F(x-) = \lim_{h \to 0^+} F(x-h) = P((-\infty, x))$$

Für Einpunktmengen {x} gilt:

$$P({x}) = F(x) - F(x-)$$

Ist F die VF eines W-Maßes P über (\mathbb{R}, \mathbb{B}) , dann gilt:

- 1. F ist isoton, d. h. monoton nicht fallend.
- 2. F ist "normiert", d. h. F besitzt die Grenzwerte

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0,$$

$$F(\infty) = \lim_{x \to \infty} F(x) = 1.$$

- 3. *F* ist rechtsseitig stetig.
- 4. F besitzt linksseitige Grenzwerte

$$F(x-) = \lim_{h \to 0^+} F(x-h) = P((-\infty, x)).$$

5. Für Einpunktmengen {x} gilt

$$P(\lbrace x\rbrace) = F(x) - F(x-)$$

Ist F die VF eines W-Maßes P über (\mathbb{R}, \mathbb{B}) , dann gilt:

- 1. F ist isoton, d.h. monoton nicht fallend.
- 2. F ist "normiert", d. h. F besitzt die Grenzwerte

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0,$$

$$F(\infty) = \lim_{x \to \infty} F(x) = 1.$$

- 3. *F* ist rechtsseitig stetig.
- 4. F besitzt linksseitige Grenzwerte

$$F(x-) = \lim_{h \to 0^+} F(x-h) = P((-\infty, x)).$$

5. Für Einpunktmengen $\{x\}$ gilt:

$$P({x}) = F(x) - F(x-).$$

Definition 4.12 (Normalverteilung $\mathcal{N}(a, \sigma^2)$ **)**

Für jeden Wert $a \in \mathbb{R}$ und $\sigma > 0$ ist

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$
 (7)

eine Riemann-Dichte. Das zugehörige W-Maß heißt Normalverteilung mit "Mittelwert" a und der "Streuung" σ ; kurz $\mathcal{N}(a, \sigma^2)$.

Standardnormalverteilung $\mathcal{N}(0,1)$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R} .$$
 (8)

Definition 4.12 (Normalverteilung $\mathcal{N}(a, \sigma^2)$)

Für jeden Wert $a \in \mathbb{R}$ und $\sigma > 0$ ist

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$
 (7)

eine Riemann-Dichte. Das zugehörige W-Maß heißt **Normalverteilung** mit "Mittelwert" *a* und der "Streuung" σ ; kurz $\mathcal{N}(a, \sigma^2)$.

Standardnormalverteilung $\mathcal{N}(0,1)$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R} .$$
 (8)

Definition 4.12 (Normalverteilung $\mathcal{N}(a, \sigma^2)$)

Für jeden Wert $a \in \mathbb{R}$ und $\sigma > 0$ ist

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$
 (7)

eine Riemann-Dichte. Das zugehörige W-Maß heißt **Normalverteilung** mit "Mittelwert" *a* und der "Streuung" σ ; kurz $\mathcal{N}(a, \sigma^2)$.

Standardnormalverteilung $\mathcal{N}(0,1)$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}.$$
 (8)

Verteilungsfunktion $\mathcal{N}(0,1)$

$$\Phi(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du \quad x \in \mathbb{R} .$$
 (9)

Verteilungsfunktion $\mathcal{N}(a, \sigma^2)$ und $\mathcal{N}(0, 1)$

$$F_{a,\sigma^2}(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{t-a}{\sigma}\right)^2} dt = \Phi\left(\frac{x-a}{\sigma^2}\right) \quad x \in \mathbb{R} . \tag{10}$$

Substitution

$$u = \frac{t-a}{\sigma}, \quad du = \frac{1}{\sigma}d$$

Verteilungsfunktion $\mathcal{N}(0,1)$

$$\Phi(x) = \int_{-\infty}^{\Lambda} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du \quad x \in \mathbb{R} .$$
 (9)

(10)

Verteilungsfunktion $\mathcal{N}(a, \sigma^2)$ und $\mathcal{N}(0, 1)$

$$F_{a,\sigma^2}(x) = \int\limits_{-\infty}^{x} rac{1}{\sigma\sqrt{2\pi}} e^{-rac{1}{2}\left(rac{t-a}{\sigma}
ight)^2} \,\mathrm{d}t = \Phi\left(rac{x-a}{\sigma^2}
ight) \quad x \in \mathbb{R} \;.$$

$$u = \frac{t - a}{\sigma}, \quad du = \frac{1}{\sigma}dt$$

Ihre Fragen

... stellen, Fragen haben keine Pause.

- in den Online-Sitzungen (Vorlesungen, Übungen),
- per Mail an wigand.rathmann@fau.de oder marius.yamakou@fau.de,
- im Forum https://www.studon.fau.de/frm2897793.html,
 Die Fragen, die bis Donnerstag gestellt wurden, werden am Freitag in der Online-Runde diskutiert.
- per Telefon (zu den Sprechzeiten sind wir auch im Büro)

```
Wigand Rathmann 09131/85-67129 Mi 11-12 Uhr
Marius Yamakou 09131/85-67127 Di 14-15 Uhr
```

Sprechstunde zur Mathematik für Ingenieure

Wann: dienstags 09:00 - 16:30 Uhr und donnerstags 09:00-17:00 Uhr, Wo:

https://webconf.vc.dfn.de/ssim/ (Adobe Connect) und https://fau.zoom.us/j/91308761442 (Zoom)