§2.1 Solving Linear Systems

Augmented coefficient matrix:

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

. . . .

$$A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n = b_n$$

Uniqueness of Solution

- Unique if A is non-singular or det(A) = |A| ≠ 0; equivalently, the rows of A and columns of A must be *linearly* independent.
- If **A** is singular, then Ax=b has ∞ or no solutions.

Ill-conditioning

- Case when coefficient matrix **A** is *nearly* singular (or when | **A** | is very small).
- Can estimate |A| < |A|, where |A| is a matrix norm:

Ill-conditioning

- The <u>condition number</u> of a **A** is defined by $cond(\mathbf{A}) = ||A|| \times ||A^{-1}||$.

Ill-conditioning

• Suppose we modify the second equation of the previous example to be 2x + 1.002y = 0. What does the solution to the 2 by 2 linear system become?

• So, we see that a _____% change in **A** yields a _____% change in the solution.

Methods of Solution

- **Direct methods** based on *elementary operations* that do not augment the solution:
 - 1. Exchange 2 rows (changes sign of |A|);
 - 2. Multiply equation by nonzero constant α (|**A**| becomes α |**A**|);
 - 3. Multiply equation by nonzero constant α and subtract it from another equation (|A| unchanged).
- Iterative methods (or indirect methods) typically used for large and sparse A (more zeros than nonzeros); guess solution and improve every iteration.

Direct Methods

Method	Initial Form	Final Form
Gauss Elimination	$\mathbf{A}\mathbf{x}=\mathbf{b}$	$\mathbf{U}_{\mathbf{X}=\mathbf{C}}$
LU Decomposition	$\mathbf{A}\mathbf{x}=\mathbf{b}$	LUx=b

Gauss-Jordan Elim. Ax=b Ix=c

Sample U,L for 3-by-3 matrices:

LU Decomposition

Transform Ax=b given A=LU:
 (LU)x=b → L(Ux)=b; let Ux=y and solve Ly=b for y via forward substitution, then solve Ux=y for the solution vector x.

LU Decomposition

• Now that we have $y=(y_1 y_2 y_3)^T$ use back-substitution to get $x=(x_1 x_2 x_3)^T$:

LU Decomposition Example

$$A = \begin{pmatrix} 8 & -6 & 2 \\ -4 & 11 & -7 \\ 4 & -7 & 6 \end{pmatrix}, \quad b = \begin{pmatrix} 28 \\ -40 \\ 33 \end{pmatrix}$$

• Use elementary row operations that preserve the solution and produce an *upper-triangular* augmented coefficient matrix.

Example:
$$4x_1 - 2x_2 + x_3 = 11$$

$$-2x_1 + 4x_2 - 2x_3 = -16$$

$$x_1 - 2x_2 + 4x_3 = 17$$

$$\Rightarrow \begin{pmatrix} 4 & -2 & 1 & 11 \\ -2 & 4 & -2 & -16 \\ 1 & -2 & 4 & 17 \end{pmatrix} a$$
b
c

• Now element in (2,2) position is the *pivot*:

$$Eq(c) \leftarrow Eq(c) - (-0.5) \times Eq(b) \rightarrow \begin{pmatrix} 4 & -2 & 1 & | & 11 \\ 0 & 3 & -1.5 & | & -10.5 \\ 0 & 0 & 3 & | & 9 \end{pmatrix}$$

$$(x_1, x_2, x_3)^T = (\underline{})^T$$

• Python code for elimination phase (getting the uppertriangular augmented coefficient matrix):

```
for k in range(0,n-1):
    for i in range(k+1,n):
        if a[i,k] != 0.0
            lam=a[i,k]/a[k,k] #pivot
            a[i,k+1:n]=a[i,k+1:n]-lam*a[k,k+1:n]
            b[i]=b[i]-lam*b[k]
```

• What happens to A_{ij} for i > j?

- See gaussElim.py on page 41 of textbook.
- Can handle multiple right-hand-sides (**AX**=**B**) with minor changes to gaussElim.py but method would be inefficient; back-substitution has to be repeated for each final column of **B**.

§2.3 LU Decomposition

• Can express $\underline{any} n$ -by-n matrix \mathbf{A} as \mathbf{A} = \mathbf{LU} .

Different forms:

Doolittle $L_{ii}=1$, i=1,2,...,n

Crout $U_{ii} = 1, i = 1, 2, ..., n$

Choleski $L=U^T$ (for symmetric matrices A)

How do we solve Ax=b using A=LU?

Doolittle's Decomposition

• Most common LU decomposition; matrix (or

array A) can be overwritten: Implicit that the diagonal of L is all ones; element in L_{ij} is the pivot equation

$$\left(\begin{array}{cccc} U_{11} & U_{12} & U_{13} \\ L_{21} & U_{22} & U_{23} \\ L_{31} & L_{32} & U_{33} \end{array} \right)$$

multiplier λ needed to zero the current A_{ij} element; LUdecomp.py on p. 47 in textbook.

Choleski Decomposition

- $A=LL^T$
- A must be symmetric (i.e., $A=A^T$)
- A must be positive definite $(\vec{x}^T A \vec{x} > 0 \ \forall \vec{x} \neq \vec{0})$

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} = \begin{pmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{pmatrix} \begin{pmatrix} L_{11} & L_{21} & L_{31} \\ 0 & L_{22} & L_{32} \\ 0 & 0 & L_{33} \end{pmatrix}$$

Choleski Decomposition

Match A to the product LL^T:

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} = \begin{pmatrix} L_{11}^2 & L_{11}L_{21} & L_{11}L_{31} \\ L_{11}L_{21} & L_{21}^2 + L_{22}^2 & L_{21}L_{31} + L_{22}L_{32} \\ L_{11}L_{31} & L_{21}L_{31} + L_{22}L_{32} & L_{21}^2 + L_{22}^2 + L_{23}^2 \end{pmatrix}$$

Choleski Decomposition

• Generalization for *n*-by-*n* matrices:

$$\begin{split} L_{jj} &= \sqrt{A_{jj} - \sum_{k=1}^{j-1} L_{jk}^2}, \quad j = 2, 3, ..., n \\ L_{ij} &= \left(A_{ij} - \sum_{k=1}^{j-1} L_{ik} L_{jk}\right) / L_{jj}, \quad j = 2, 3, ..., n; i = j+1, j+2, ..., n \end{split}$$

- See choleski.py on p. 50 of textbook.
- <u>Applications</u>: Example 2.8 (p. 54), Problem Set 2.1 (#16, p. 57)

§2.4 Symmetric & Banded Matrices

Sparse matrix – most elements are zero.

 Banded matrix – nonzeros are clustered near the main diagonal; tridiagonal matrix A has a

bandwidth of 3:

Banded Matrices

• For a banded matrix **A** with **A**=**LU**, both **L** and **U** retain the banded *structure* of **A**:

Banded Matrices

- How can we exploit symmetry & banded structure in solving Ax=b?
- For *tridiagonal* coefficient matrices, we only need to eliminate one element below each pivot element, i.e., only one elementary operation is needed per pivot row.
- See LUdecomp3.py on pp. 61-62 of the textbook.

Banded Matrices

- In LUdecomp3.py notice that b is overwritten with the solution vector in LUsolve3(c,d,e,b).
- <u>Application</u>: Example 2.11 on p.68 of the textbook.

Symmetric Coefficient Matrices

• It is common to have symmetric and/or banded matrices in engineering applications; $\mathbf{A} = \mathbf{A}^T$ but not necessarily positive definite in this case.

If $A=A^T$, then $A=LU=LDL^T$, where **D** is a diagonal matrix.

 We can use LUdecomp.py and recover L and D from the U factor.

Symmetric Coefficient Matrices

Matching elements of U we can recover L and D:

$$\begin{pmatrix} D_1 & & & \\ & D_2 & & \\ & & D_3 & & \\ & & & D_n \end{pmatrix} \begin{pmatrix} 1 & L_{21} & L_{31} & \dots & L_{n1} \\ & 1 & L_{32} & \dots & L_{n2} \\ & & & 1 & \dots & L_{n3} \\ & & & & \ddots & \\ & & & & 1 \end{pmatrix} = \begin{pmatrix} D_1 & D_1 L_{21} & D_1 L_{31} & \dots & D_1 L_{n1} \\ & D_2 & D_2 L_{32} & \dots & D_2 L_{n2} \\ & & & & D_3 & \dots & D_3 L_{n3} \\ & & & & & \dots & \\ & & & & & D_n \end{pmatrix}$$

• <u>Application</u>: Problem Set 2.2 (#3, p. 78): given 5-by-5 symmetric tridiagonal matrix **A**, determine **L** and **D** so that **A**=**LDL**^T.

§2.5 Pivoting

• Need to reorder equations during the elimination phase in order to avoid very *small* multipliers (pivot elements). $\begin{pmatrix} \varepsilon & -1 & 1 \end{pmatrix}$

• Suppose the augmented matrix is $\begin{bmatrix} \epsilon & -1 & 1 & 0 \\ -1 & 2 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{bmatrix}$

Pivoting

- We don't always have to pick A_{kk} for the pivot element when zeroing out elements in column k (below the diagonal).
- Instead, we find A_{pk} of the largest *relative* size (r_{pk}) : $r = max(r_{pk})$ is k

$$r_{pk} = \max_{j} (r_{jk}), j \ge k,$$

where
$$r_{ij} = \frac{|A_{ij}|}{S_i}$$
, $S_i = \max_j |A_{ij}|$, $i = 1, 2, ..., n$.

Pivoting

- If $p \neq k$, we interchange rows k and p and proceed with the elimination.
- See gaussPivot.py on pp. 72-73; uses the swap.py function on p. 67.
- See also the LUpivot.py module on pp. 74-75; incorporates pivoting into Doolittle's decomposition and row permutations are stored in the seq vector.
- <u>Sample application</u>: Problem Set 2.2 (#12) on pp. 79-80.

Pivoting (Caveats)

- Destroys symmetry and bandedness which do arise in many engineering applications.
- Pivoting is unnecessary when the matrix is diagonally dominant: (1 2 1

 $\begin{pmatrix}
4 & -2 & 1 \\
-2 & 4 & -1 \\
1 & -1 & 3
\end{pmatrix}$

Computation time is increased with pivoting.

§2.6 Matrix Inversion

- Can compute A^{-1} for an n-by-n matrix A by solving $AX=I_n$.
- If **A** is banded, **A**⁻¹ will be dense (lose nonzero structure); if **A** is triangular, **A**⁻¹ will also be triangular.
- Cost of inverting A to solve Ax=b (i.e., $x=A^{-1}b$) is much higher than using LU decomposition.

§2.7 Iterative Methods

- Sometimes they are called *indirect* methods.
- Take an initial guess at the solution x (for Ax=b) and repeatedly improve x until change is negligible.
- <u>Advantages</u>: store only nonzeros of A and methods are self-correcting (round-off errors are corrected in subsequent iterations).

Iterative Methods

- <u>Drawback</u>: do not always converge to the exact solution; if the matrix **A** is *diagonally dominant*, convergence is **guaranteed**.
- Initial guess affects the number of iterations (not really if method converges).
- First method we consider is <u>Gauss-Seidel</u>.

- Write $\mathbf{A}x = \mathbf{b}$ as $\sum_{j=1}^{n} A_{ij} x_j = b_i, i = 1, 2, ..., n$.
- Extract term for x_i to get $A_{ii}x_i + \sum_{\substack{j=1 \ i \neq i}}^{n} A_{ij}x_j = b_i, i = 1, 2, ..., n$.
- Solving for x_i yields:

$$x_{i} = \frac{1}{A_{ii}} \left(b_{i} - \sum_{\substack{j=1 \ j \neq i}}^{n} A_{ij} x_{j} \right), i = 1, 2, ..., n.$$

• Algorithm: $x_i^{(k+1)} \leftarrow \frac{1}{A_{ii}} \left(b_i - \sum_{\substack{j=1 \ j \neq i}}^n A_{ij} x_j^{(k)} \right), i = 1, 2, ..., n.$

• Start with an initial guess, $x^{(0)}$ and generate successive iterates $x^{(1)}$, $x^{(2)}$,..., etc. until the difference between $x^{(k+1)}$ and $x^{(k)}$ is sufficiently small; how can convergence be improved?

Algorithm with relaxation:

$$x_i^{(k+1)} \leftarrow \frac{\omega}{A_{ii}} \left(b_i - \sum_{\substack{j=1 \ j \neq i}}^n A_{ij} x_j^{(k)} \right) + (1 - \omega) x_i^{(k)}, i = 1, 2, ..., n.$$

• Take weighted average of previous iteration values; ω <1 (under-relaxation), ω >1 (over-relaxation). What is optimal ω ?

• Can be shown that $\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - \left(\frac{\Delta x^{(k+p)}}{\Delta x^{(k)}}\right)^{\frac{1}{p}}}}$

where *p* is a positive integer and $\Delta x^{(k)} = |x^{(k-1)} - x^{(k)}|$.

• <u>Strategy</u>: (1) perform k iterations with $\omega = 1$, after k^{th} iteration record $\Delta x^{(k)}$; (2) perform p more iterations and record $\Delta x^{(k+p)}$; and (3) perform subsequent iterations with $\omega = \omega_{opt}$; see gaussSeidel.py on p.89 and Example 2.17 on pp. 95-96.

- Consider the function $f(x) = \frac{1}{2} x^T A x b^T x$, where **A** is a symmetric and positive definite (SPD) matrix and x,b are vectors in \mathbb{R}^n .
- The minimum for f(x) occurs when the gradient $\nabla f = Ax b = 0$ or when Ax = b.
- Desire an iteration of the form $x_{k+1} = x_k + \alpha_k s_k$; where s_k is a search direction and α_k is the step length.

- To minimize $f(x_{k+1})$ we choose α_k so that $\mathbf{A}(x_k + \alpha_k s_k) = b$, why?
- Let $r_k = b \mathbf{A} x_k$ (k^{th} residual? vector) so that $\mathbf{A}(x_k + \alpha_k s_k) = b$ after multiplying through by \mathbf{A} yields $\alpha_k \mathbf{A} s_k = b \mathbf{A} x_k = r_k$.
- Using this last equality and solving for α_k yields $\alpha_k = s_k^T r_k / s_k^T \mathbf{A} s_k$ (a way to compute the step length).
- How do we determine the search direction s_k ?

- Could choose $s_k = -\nabla f = r_k$ (i.e., direction of largest negative change in f(x)); this is called the method of *steepest descent*.
- How would it converge?
- Alternative approach: conjugate gradient with $s_{k+1} = r_{k+1} + \beta_k s_k$, where the constant β_k is chosen so that two successive s_k 's are *conjugate*. This means $s_{k+1}^T \mathbf{A} s_k = 0$.

- CG preserves minimizations from previous iterations (no backtracking); not the case for steepest descent.
- Compare convergence paths:

Assuming **exact** arithmetic, CG would converge in at most *n* steps for an *n*-by-*n* linear system.

- Since $s_{k+1} = r_{k+1} + \beta_k s_k$ and we require $s_{k+1}^T \mathbf{A} s_k = 0$, then we must have $(r_{k+1} + \beta_k s_k)^T \mathbf{A} s_k = 0$.
- Solving for β_k we obtain... $\beta_k = -r_{k+1}{}^T \mathbf{A} s_k / s_k{}^T \mathbf{A} s_k$ (and we can now advance the search direction).
- Initialization of CG algorithm:
 - 1) Choose x_0
 - 2) Compute $r_0 = b \mathbf{A} x_0$
 - 3) Choose $s_0 = r_0$ (i.e., start with direction of steepest descent)

Main loop of CG algorithm:

4) For
$$k = 0, 1, 2, ...$$

$$\alpha_{k} = s_{k}^{T} r_{k} / s_{k}^{T} \mathbf{A} s_{k}$$

$$x_{k+1} = x_{k} + \alpha_{k} s_{k}$$

$$r_{k+1} = b - \mathbf{A} x_{k+1}$$
If $|r_{k+1}| \le \varepsilon$, exit loop. (ε is the error tolerance.)
$$\beta_{k} = -r_{k+1}^{T} \mathbf{A} s_{k} / s_{k}^{T} \mathbf{A} s_{k}$$

$$s_{k+1} = r_{k+1} + \beta_{k} s_{k}$$

• Residual vectors $r_1, r_2, r_3,...$ are mutually orthogonal (i.e., $r_i^T r_j = 0$ for $i \neq j$).

- Since the n residual vectors $\{r_1, r_2, r_3, ..., r_n\}$ are mutually orthogonal, we know that $r_{n+1} = 0$. Why?
- This means that CG should theoretically converge in *n* iterations of the loop; typically obtain convergence in much less than *n* iterations.
- See conjGrad.py on pp.91-92 of textbook and review Example 2.18 on p.97.

