Problem Statement or Requirement: A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

As a data scientist, you must develop a model which will predict the insurance charges.

- 1.) Identify your problem statement
- 2.) Tell basic info about the dataset (Total number of rows, columns)
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)
- 4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)
- 6.) Mention your final model, justify why u have chosen the same. Kindly create Repository in the name Regression Assignment. Upload all the ipynb and final document in the pdf Communication is important (How you are representing the document.)

Solution:

- 1. The client wants a machine learning model to predict insurance charges based on input parameters. This is a **supervised learning** problem, specifically a **regression** problem.
- 2. The dataset has 1338 rows and 6 columns. The provides dataset columns are age, sex, bmi, children, smoker and charges.
- 3. The sex and smoker columns contain categorical data. Therefore One-hot encoder is applied to convert categorical data to numerical data.

4.

Model Name	R2 score
Multiple Linear Regression	0.797450452408694
Multiple Linear Regression	0.881633285044482
Decision Tree	0.8893369867925229
Random Forest Regression	0.898679055705128

- 5. SVR ,Decision Tree and Random Forest Tabulation are attached below
- 6. The **Random Forest model** achieved the highest R² score of **0.898**. It handles non-linearity data better than other models.

1	Kernel	Gamma	С	Epsilon	Cache Size	R2 Score
2	linear	scale	1000	0.001	300	0.75012
3	linear	scale	5000	0.1	200	0.74865
4	linear	scale	5000	0.1	300	0.74865
5	linear	scale	5000	0.001	200	0.74865
6	linear	scale	5000	0.001	300	0.74865
7	linear	auto	10	0.001	300	0.5007
8	linear	auto	100	0.1	200	0.64241
9	linear	auto	100	0.1	300	0.64241
10	linear	auto	100	0.001	200	0.64242
11	linear	auto	100	0.001	300	0.64242
12	linear	auto	1000	0.1	200	0.75012
13	linear	auto	1000	0.1	300	0.75012
14	linear	auto	1000	0.001	200	0.75012
15	linear	auto	1000	0.001	300	0.75012
16	linear	auto	5000	0.1	200	0.74865
17	linear	auto	5000	0.1	300	0.74865
18	linear	auto	5000	0.001	200	0.74865
19	linear	auto	5000	0.001	300	0.74865
20	poly	scale	1000	0.1	200	0.86049
21	poly	scale	1000	0.1	300	0.86049
22	poly	scale	1000	0.001	200	0.86049
23	poly	scale	1000	0.001	300	0.86049
24	poly	scale	5000	0.1	200	0.86051
25	poly	scale	5000	0.1	300	0.86051
26	poly	scale	5000	0.001	200	0.86051
27	poly	scale	5000	0.001	300	0.86051
28	poly	auto	100	0.001	200	0.65781
29	poly	auto	100	0.001	300	0.65781
30	poly	auto	1000	0.1	200	0.86049
31	poly	auto	1000	0.1	300	0.86049
32	poly	auto	1000	0.001	200	0.86049
33	poly	auto	1000	0.001	300	0.86049
34	poly	auto	5000	0.1	200	0.86051
35	poly	auto	5000	0.1	300	0.86051
36	poly	auto	5000	0.001	200	0.86051
37	poly	auto	5000	0.001	300	0.86051
38	rbf	scale	1000	0.1	200	0.82522
39	rbf	scale	1000	0.1	300	0.82522
40	rbf	scale	1000	0.001	200	0.82522
41	rbf	scale	1000	0.001	300	0.82522
42	rbf	scale	5000	0.1	200	0.88163
43						
44						

7							
	1	Criterion	Splitter		Min Samp		
2	2	squared_		2		None	0.6
5	3	squared_		2	1	10	0.8
5	4	squared_		2	1	20	0.8
5	5	squared_		2		None	0.8
5	6	squared_		2	2	10	0.8
7	7	squared_		2	2	20	0.8
	8	squared_		5	1	None	0.7
L	9	squared_		5	1	10	0.8
L	10	squared_	best	5	1	20	0.8
2	11	squared_	best	5		None	0.8
2	12	squared_	best	5	2	10	0.8
)	13	squared_	best	5	2	20	0.8
2	14	squared_	random	2	1	None	0.7
	15	squared_	random	2	1	10	0.
2	16	squared_	random	2	1	20	0.8
2	17	squared_	random	2	2	None	0.8
5	18	squared_	random	2	2	10	0.
5	19	squared_	random	2	2	20	0.8
5	20	squared_	random	5	1	None	0.8
	21	squared	random	5	1	10	0.
5	22	squared	random	5	1	20	0.8
9	23	squared	random	5	2	None	0.8
9	24	squared	random	5	2	10	0.
9	25	squared	random	5	2	20	0.8
9	26	absolute		2	1	None	0.6
l	27	absolute	best	2	1	10	0.8
	28	absolute	best	2	1	20	0.8
L	29	absolute	best	2	2	None	0.3
L	30	absolute		2	2	10	0.8
L	31	absolute	best	2	2	20	0.8
L	32	absolute		5	1	None	0.8
L	33	absolute		5	1	10	0.8
9	34	absolute		5	1	20	0.8
	35	absolute		5	_	None	0.8
9	36	absolute		5	2	10	0.8
9	37	absolute		5	2	20	0.8
9	38	absolute		2	1	None	0.7
L	39	absolute		2	1	10	0.8
L	40	absolute		2	1	20	0.8
i i	41	absolute		2	2	None	0.8
	42	absolute		2	2	10	0.8
L	43			2	2	20	
2	44	absolute absolute		5	1	None 20	0.8
2	45						
2	46	absolute		5	1	10	0.8
2		absolute		5	1	None	0.8
	47	absolute		5		None	0.8
3	48	absolute	random	5	2	10	0.8
•	49	absolute		5	2	20	0.8

	т	C 1 - 1 - 1	M. D.	L4	L P	D I	D2 C
1	Trees		Max Dep				
2		squared		sqrt	0	42	0.88321
3		squared		sqrt	0	0	0.879
4		squared		sqrt	0.01	42	0.88328
5		squared		sqrt	0.01	0	0.87716
6		squared		log2	0	42	0.88321
7		squared		log2	0	0	0.879
8	50	squared	error	log2	0.01	42	0.88328
9	50	squared	error	log2	0.01	0	0.87716
10	50	squared	еггог	sqrt	0	42	0.8927
11	50	squared	error	sart	0	0	0.88974
12	50	squared	error	sqrt	0.01	42	0.8927
13	50	squared	еггог	sqrt	0.01	0	0.88974
14	50	squared	еггог	log2	0	42	0.8927
15	50	squared	еггог	log2	0	0	0.88974
16		squared		log2	0.01	42	0.8927
17		squared		log2	0.01	0	0.88974
18	50	absolute	error	sart	0	42	0.89218
19		absolute		sqrt	Ō	0	0.88417
20		absolute		sart	0.01	42	0.88939
21		absolute	-	sart	0.01	0	0.88861
22		absolute		log2	0	42	0.89218
23		absolute		log2	Ö		0.88417
24		absolute	-	log2	0.01	42	0.88939
25		absolute		log2	0.01	0	0.88861
26		absolute		sart	0.01	42	0.89536
27		absolute		sart	0	0	0.89031
28		absolute	_	sart	0.01	42	0.89868
29		absolute		sart	0.01	0	0.88956
30				-	0.01	42	0.89536
31		absolute		log2	0.01	92	0.88956
		absolute	error	log2		_	
32		poisson		sqrt	0	42	0.88261
33		poisson		sqrt	0	0	0.87713
34		poisson		sart	0.01	42	0.88432
35		poisson		sart	0.01	0	0.88527
36		poisson		log2	0	42	0.88261
37		poisson		log2	0	0	0.87713
38		poisson		log2	0.01	42	0.88432
39		poisson		log2	0.01	0	0.88527
40		poisson		sqrt	0	42	0.88828
41	50	poisson		sqrt	0	0	0.89059
42	50	poisson		sqrt	0.01	42	0.88968
43	50	poisson		sqrt	0.01	0	0.89444
44	50	poisson		log2	0	42	0.88828
45	50	poisson		log2	0	0	0.89059
46	50	poisson		log2	0.01	42	0.88968
47	50	poisson		log2	0.01	0	0.89444
48		squared	еггог	sart	0	42	0.88719
		squared		sart	Ö	0	0.88068
49	100						