Apuntes

Matemática 4to

August 26, 2025

1 Practico 0

1.1 Ejercicio 1

1.1.1 $A \subseteq B \leftrightarrow A \subseteq A \cap B$

- (⇒) Si $A \subseteq B$, entonces $A \subseteq (A \cap B)$, $\forall x \in A$ como A está contenida o es igual a B, Por lo tanto $x \in B$, es decir, $x \in A \cap B$.
- (\Leftarrow) Si $A \subseteq (A \cap B)$, entonces $A \subseteq B$, Tomo cualquier $x \in A$. Por hipotesis $x \in (A \cap B)$, por lo que $x \in B$ y como el elemento es arbitrario de A resulta en todo A contenida en B.

1.1.2 $A \subseteq B \leftrightarrow A \cup B \subseteq B$

- (⇒) Si $A \subseteq B$, entonces como todo elemento de A está en B, y la union contiene a los elementos de ambos, entonces todos los elementos de A están tambien en su union con otros conjuntos. Pero como todos los elementos de A están en B resulta en que los elementos de la unión son los elementos de B, por lo tanto $A \cup B = B$
- (⇐) Si $A \cup B \subseteq B$, entonces todos los elementos de $A \cup B$ están en A y/o B. Entonces tenemos 4 casos:

Si $x \in A$ y $x \notin B$ entonces como la unión está contenida en B, entonces todo elemento de A está contenido en B.

Si $x \in A$ y $x \notin B$, entonces no es posible ya que la unión debería estar contenida en B. Por lo tanto todos los elementos de A están en B.

1.1.3 $A \subseteq B \Rightarrow B = A \cup (B \setminus A) \ \mathbf{y} \ A \cap (B \setminus A) = \emptyset$

Como estamos hablando de igualdades necesitamos demostrar la doble inclusión entre ambas proposiciones.

(\subseteq) Sea $x \in B$, tenemos dos posibilidades:

Si $x \in A$, entonces $x \in A \subseteq A \cup (B \setminus A)$

Si $x \notin A$, entonces $x \in B \setminus A \subseteq A \cup (B \setminus A)$

En ambos casos $x \in A \cup (B \setminus A)$, por lo cual $B \subseteq A \cup (B \setminus A)$.

(⊇) Sea $x \in A \cup (B \setminus A)$, entonces tenemos dos posibilidades, pues $A y B \setminus A$ son disjuntas:

Si $x \in A$, entonces $x \in B$ por hipotesis.

Si $x \in B \setminus A$, entonces $x \in B$ por definición de diferencia.

En ambos casos $x \in B$. Como hay doble contencion, se concluye la igualdad.

1.1.4 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Nuevamente demostramos la doble inclusión.

- (⊆) Sea $x \in A \cap (B \cup C)$, entonces $x \in A$ y $x \in (B \cup C)$. A su vez, por definicion de union $x \in B$ o $x \in C$. Viendo los dos casos:
- $x \in A$ y $x \in B$ lo cual es la definición de intersección $x \in A \cap B$
- $x \in A$ y $x \in C$ lo cual es la definicion de intersección $(x \in A \cap C)$. Resulta en x en alguna de esas intersecciones o ambas, por lo tanto $x \in (A \cap B) \cup (A \cap C)$.
- (⊇) Sea $x \in (A \cap B) \cup (A \cap C)$, entonces $x \in (A \cap B)$ o $x \in (A \cap C)$. Ambas intersecciones incluyen a A, por lo que $x \in A$. Ahora tenemos dos casos:

Si $x \in (A \cap B)$, entonces $x \in B$ por lo que $x \in (B \cup C)$ y resulta en $x \in A \cap (B \cup C)$ Si $x \in (A \cap C)$, entonces $x \in C$ por lo que $x \in (B \cup C)$ y resulta en $x \in A \cap (B \cup C)$

Por doble contención se concluye la igualdad.

1.1.5 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- (\subseteq) Sea $x \in A \cup (B \cap C)$, entonces $x \in A$ o $x \in (B \cap C)$:
- Si $x \in A$, entonces $x \in (A \cup B)$ y $x \in (A \cup C)$ por lo que $x \in (A \cup B) \cap (A \cup C)$. Si $x \in (B \cap C)$, entonces $x \in B$ y $x \in C$, por lo que $x \in (A \cup B)$ y $x \in (A \cup C)$,
- Si $x \in (B \cap C)$, entonces $x \in B$ y $x \in C$, por lo que $x \in (A \cup B)$ y $x \in (A \cup C)$ por lo que $x \in (A \cup B) \cap (A \cup C)$.
- (⊇) Sea $x \in (A \cup B) \cap (A \cup C)$, entonces $x \in (A \cup B)$ y $x \in (A \cup C)$, es decir: $x \in A$ lo cual resulta en $x \in A \cup (B \cap C)$
- $x \notin A$, como x tiene que estar en ambas uniones, entonces al no estar en A, $x \in B$ y $x \in C$, por lo que $x \in (B \cap C)$ y resulta en $x \in A \cup (B \cap C)$.

Por doble contención se concluye la igualdad.

1.1.6 $A \subseteq (B \cap C) \rightarrow A \subseteq B \mathbf{y} A \subseteq C$

Sea $x \in A$, por hipotesis $A \subseteq (B \cap C)$, por lo que $x \in (B \cap C)$, es decir, $x \in B$ y $x \in C$. Como cualquier elemento arbitrario de A está en B y C, entonces todo A está en B y en C.

1.1.7 $A \cup B \subseteq C \rightarrow A \subseteq C \mathbf{y} B \subseteq C$

Sea $x \in A \cup B$, esto quiere decir que hay 3 casos:

Si $x \in A$, y $x \notin B$, entonces todos los elementos de A están en C.

Si $x \notin A$, y $x \in B$, entonces todos los elementos de B están en C.

Si $x \in A$ y $x \in B$, entonces todos los elementos de A y B están en C.

En los 3 casos se ven incluidos los conjuntos A y B en C.

1.1.8 $A \subseteq B \leftrightarrow B^c \subseteq A^c$

(⇒) Sea $x \in A$, entonces $x \notin A^c$. Por hipotesis $A \subseteq B$, por lo que $x \in B$