# DATA SCIENCE

AULA 4 - ESTATÍSTICA

PROF<sup>a</sup>. ANA CAROLINA B. ALBERTON

#### AULA PASSADA

• O desvio padrão é uma medida que indica o quando o conjunto de dados é uniforme, considerando o quanto os dados se afastam da sua média.

$$D_P = \sqrt{\frac{\sum_{i=1}^{n} (x_i - M_A)^2}{n}}$$

O cálculo do desvio padrão é a raiz quadrada da variância. Vamos ao cálculo então.

#### Um único evento

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo: Jogar um dado e dar 6:

$$P = \frac{1}{6}$$

$$P = 0,16$$



#### **Eventos Excludentes**

Soma-se as probabilidades

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo: Jogar um dado e ser I ou par:

$$P = \frac{1}{6} + \frac{3}{6}$$

$$P = 0.67$$



#### **Eventos Não Excludentes**

Soma-se as probabilidades, diminui-se as sobreposições

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo: Jogar um dado e ser 2 ou par:

$$P = \frac{1}{6} + \frac{3}{6} - \frac{1}{6}$$

$$P = 0.5$$



## **Eventos Dependentes**

Mais de um evento, eles se relacionam com Multiplicação

Exemplo: Com 6 cartas na mão, qual a probabilidade de tirar primeiro

um A e depois um 4?

(Dois eventos dependentes)

$$P = \frac{1}{6} * \frac{1}{5} = 0.028$$



### PASSEIO ALEATÓRIO

- Passeio aleatório é um modelo que descreve uma sequência de passos aleatórios que formam um caminho.
- O passeio aleatório pode ser usado para modelar vários cenários do mundo real que envolvem aleatoriedade
- Sucessão de Etapas Aleatórias e Independentes (uma não influencia a outra);
- Em finanças é usado para estudar os preços de ações;
- É usado para estudar vários fenômenos naturais e empresariais;

## PASSEIO ALEATÓRIO

- Não é "totalmente aleatório"
- Existe uma distribuição de probabilidades

# PASSEIO ALEATÓRIO

| $n \setminus x$ | -5             | -4             | -3             | -2             | -1              | 0              | 1               | 2              | 3              | 4              | 5              |
|-----------------|----------------|----------------|----------------|----------------|-----------------|----------------|-----------------|----------------|----------------|----------------|----------------|
| 0               |                |                |                |                |                 | 1              |                 |                |                |                |                |
| 1               |                |                |                |                | $\frac{1}{2}$   | 0              | $\frac{1}{2}$   |                |                |                |                |
| 2               |                |                |                | $\frac{1}{4}$  | 0               | $\frac{2}{4}$  | 0               | $\frac{1}{4}$  |                |                |                |
| 3               |                |                | $\frac{1}{8}$  | 0              | $\frac{3}{8}$   | 0              | 38              | 0              | $\frac{1}{8}$  |                | 0.             |
| 4               |                | $\frac{1}{16}$ | 0              | $\frac{4}{16}$ | 0               | $\frac{6}{16}$ | 0               | $\frac{4}{16}$ | 0              | $\frac{1}{16}$ |                |
| 5               | $\frac{1}{32}$ | 0              | $\frac{5}{32}$ | 0              | $\frac{10}{32}$ | 0              | $\frac{10}{32}$ | 0              | $\frac{5}{32}$ | 0              | $\frac{1}{32}$ |

## PASSEIO ALEATÓRIO EM AÇÕES/INVESTIMENTO

#### Duas correntes:

- Comportamento de ações são um passeio aleatório, portanto imprevisíveis com Análise Técnica
  - Effcient Market Hypothesis (EMH): única maneira de ganhar é com alto risco
- Comportamento de ações mantém padrões e tendências ao longo do tempo.
- Ver exemplo PYTHON

### MODELO ESTOCÁSTICO E DETERMINÍSTICO

Estocástico: dada uma mesma entrada, a saída pode variar

Determinístico: dada uma mesma entrada, apresenta sempre a mesma saída



EX:Algoritmos como Random Forest e k-means são Estocásticos

## DISTRIBUIÇÃO

- Usado principalmente na teoria da probabilidade
- Comportamento de dados aleatórios

#### Histogram of rbeta(10000, 5, 5)



# DISTRIBUIÇÃO





## DISTRIBUIÇÃO NORMAL - O HISTOGRAMA

Por exemplo, suponhamos 2000 lançamentos de 200 moedas. Vamos calcular quantas 'caras' vou encontrar.
 Utilizando um software de simulação, obtivemos os seguintes resultados:

[80 ... 81] 5 [82 ... 83] [84 ... 85] [86 ... 87] [88 ... 89] [90 ... 91] 60 [92 ... 93] 91 [94 ... 95] [100 ... 101] 227 [102 ... 103] 220 [104 ... 105] 206 [106 ... 107] 174 [108 ... 109] 155 [110 ... 111] 123 [112 ... 113] 84 [114 ... 115] 49 [116 ... 117] 21 [118 ... 119] 18 [120 ... 121] 6 [122 ... 123] 8 [124 ... 125] 2 [126 ... 127] 1 sample mean = 102.132 sample st dev = 7.238



- O mundo é Normal! Muitos dos fenômenos aleatórios que encontramos na prática apresentam uma distribuição muito peculiar, chamada Normal.
- Tem forma de sino e é simétrica em torno da média.
- A área total sob a curva é de I.











$$\mu = 200$$

$$\sigma = 60$$

## DISTRIBUIÇÃO NORMAL - EXEMPLO

```
7.57 6.72 5.59 9.56 4.79 4.84 5.87 10.23 9.53 6.99 9.51 9.21 5.78 6.72 8.96 7.32 7.64 8.53 5.90 7.93 8.82 8.45 7.99 5.77 4.76 4.49 8.97 6.60 8.55 6.30 6.54 5.98 10.88 8.92 7.01 7.58 9.47 6.34 6.17 7.46 8.78 7.13 7.71 8.06 7.67 7.05 9.66 4.37 15.08 9.20 7.64 5.89 11.16 5.35 5.75 8.98 8.74 8.20 8.79 5.80 11.70 5.53 7.75 6.54 9.79 7.43 9.14 5.78 10.31 10.12 9.68 8.11 5.54 10.41 8.83 10.00 5.54 10.32 6.96 7.93 10.14 9.66 10.67 8.17 8.86 8.40 5.15 6.98 8.19 8.72 8.76 8.02 8.93 8.54 3.26 10.06 8.18 2.43 9.17 12.00
```



Média = 8 Desvio Padrão = 2

- Essa curva que chamamos de sino recebe um nome especial: Curva Normal.
- A Curva Normal é a representante do modelo normal e é obtida a partir da função densidade que nada mais é do que uma função que origina o gráfico anterior. Assim, se X é uma variável aleatória com distribuição Normal com média μ e variância σ <sup>2</sup> então a sua densidade é dada por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

- A Normal apresenta as seguintes propriedades:
  - é simétrica ao redor da média;
  - a área sobre a curva é igual a 1;
  - para valores muito grandes de x, tendendo a infinito

(ou muito pequenos, tendendo a menos infinito), a curva tende a zero.



# DISTRIBUIÇÃO NORMAL PADRÃO (Z)



- Distribuição de Referência para outras Distribuições Normais
- Média Zero e Desvio Padrão
   =1

## DISTRIBUIÇÃO NORMAL PADRÃO (Z)

Mostra o número de desvios padrões que o valor está acima ou abaixo da média (score z ou valor z)

- Ex: score z = -2 quer dizer que os dados estão a dois desvios padrão abaixo da média
- Usa-se uma fórmula para calcular a probabilidade de seus dados com relação a tabela Z

## DISTRIBUIÇÃO NORMAL PADRÃO (Z) E PROBABILIDADE

Para encontrar a probabilidade, utiliza-se a Tabela Z para facilitar.

Com a fórmula abaixo você transforma a probabilidade da sua distribuição na probabilidade da tabela Z

Então você olha a probabilidade na tabela!

$$Z = \frac{X - \mu}{\sigma}$$

onde X = seu valor  $\mu$  = média  $\sigma$  = desvio padrão

- Se uma variável aleatória x é normalmente distribuída, a probabilidade de que ela esteja dentro de dado intervalo é igual à área sob a curva nesse intervalo.
- Ex: Pontuações de QI são normalmente distribuídas, com uma média de 100 e um desvio padrão de 15.
  Determine a probabilidade de que uma pessoa selecionada aleatoriamente tenha uma pontuação de QI inferior a 115.
- Para determinar a área nesse intervalo, primeiro encontre o escore z correspondente a x = 115.



$$z = \frac{150 - 100}{15} = 1$$



| Dis                         | tribuiçã | ão Nor | mal: \ | /alores     | de p            | tais qu | ie P(0 | $\leq Z \leq$ | z) = p |        |
|-----------------------------|----------|--------|--------|-------------|-----------------|---------|--------|---------------|--------|--------|
| Parte inteira<br>e primeira |          |        |        | Comments or |                 |         |        |               |        |        |
| decimal de z                | 0        | 1      | 2      | Segunda ca  | asa decima<br>4 | ii de Z | 6      | 7             | 8      | 9      |
| 0,0                         | 0.0000   | 0.0040 | 0.0080 | 0.0120      | 0.0160          | 0.0199  | 0.0239 | 0,0279        | 0,0319 | 0.0359 |
| 0,1                         | 0,0398   | 0,0438 | 0.0478 | 0,0120      | 0,0557          | 0,0596  | 0,0636 | 0,0675        | 0,0714 | 0.0753 |
| 0.2                         | 0.0793   | 0.0832 | 0.0871 | 0.0910      | 0.0948          | 0.0987  | 0,1026 | 0.1064        | 0,1103 | 0.1141 |
| 0,3                         | 0,1179   | 0,1217 | 0,1255 | 0,1293      | 0.1331          | 0,1368  | 0,1406 | 0.1443        | 0,1480 | 0,1517 |
| 0.4                         | 0,1554   | 0,1591 | 0,1628 | 0,1664      | 0,1700          | 0,1736  | 0,1772 | 0.1808        | 0,1844 | 0,1879 |
| 0.5                         | 0.1915   | 0,1950 | 0,1985 | 0.2019      | 0.2054          | 0.2088  | 0.2123 | 0.2157        | 0.2190 | 0.2224 |
| 0.6                         | 0,2257   | 0,2291 | 0.2324 | 0,2357      | 0.2389          | 0,2422  | 0.2454 | 0.2486        | 0,2517 | 0.2549 |
| 0,7                         | 0.2580   | 0,2611 | 0.2642 | 0.2673      | 0.2704          | 0.2734  | 0.2764 | 0,2794        | 0.2823 | 0.2852 |
| 0,8                         | 0,2881   | 0,2910 | 0,2939 | 0,2967      | 0,2995          | 0,3023  | 0,3051 | 0,3078        | 0,3106 | 0,3133 |
| 0.9                         | 0.3159   | 0,3186 | 0.3212 | 0,3238      | 0,3264          | 0,3289  | 0,3315 | 0,3340        | 0,3365 | 0,3389 |
| 1,0                         | 0,3413   | 0,3438 | 0,3461 | 0,3485      | 0,3508          | 0,3531  | 0,3554 | 0,3577        | 0,3599 | 0,3621 |
| 1,1                         | 0,3643   | 0,3665 | 0,3686 | 0,3708      | 0,3729          | 0,3749  | 0,3770 | 0,3790        | 0,3810 | 0,3830 |
| 1,2                         | 0,3849   | 0,3869 | 0,3888 | 0,3907      | 0,3925          | 0,3944  | 0,3962 | 0,3980        | 0,3997 | 0,4015 |
| 1,3                         | 0,4032   | 0,4049 | 0,4066 | 0,4082      | 0,4099          | 0,4115  | 0,4131 | 0,4147        | 0,4162 | 0,4177 |
| 1,4                         | 0,4192   | 0,4207 | 0,4222 | 0,4236      | 0,4251          | 0,4265  | 0,4279 | 0,4292        | 0,4306 | 0,4319 |
| 1,5                         | 0,4332   | 0,4345 | 0,4357 | 0,4370      | 0,4382          | 0,4394  | 0,4406 | 0,4418        | 0,4429 | 0,4441 |
| 1,6                         | 0,4452   | 0,4463 | 0,4474 | 0,4484      | 0,4495          | 0,4505  | 0,4515 | 0,4525        | 0,4535 | 0,4545 |
| 1,7                         | 0,4554   | 0,4564 | 0,4573 | 0,4582      | 0,4591          | 0,4599  | 0,4608 | 0,4616        | 0,4625 | 0,4633 |
| 1,8                         | 0,4641   | 0,4649 | 0,4656 | 0,4664      | 0,4671          | 0,4678  | 0,4686 | 0,4693        | 0,4699 | 0,4706 |
| 1,9                         | 0,4713   | 0,4719 | 0,4726 | 0,4732      | 0,4738          | 0,4744  | 0,4750 | 0,4756        | 0,4761 | 0,4767 |
| 2,0                         | 0,4772   | 0,4778 | 0,4783 | 0,4788      | 0,4793          | 0,4798  | 0,4803 | 0,4808        | 0,4812 | 0,4817 |
| 2,1                         | 0,4821   | 0,4826 | 0,4830 | 0,4834      | 0,4838          | 0,4842  | 0,4846 | 0,4850        | 0,4854 | 0,4857 |
| 2,2                         | 0,4861   | 0,4864 | 0,4868 | 0,4871      | 0,4875          | 0,4878  | 0,4881 | 0,4884        | 0,4887 | 0,4890 |
| 2,3                         | 0,4893   | 0,4896 | 0,4898 | 0,4901      | 0,4904          | 0,4906  | 0,4909 | 0,4911        | 0,4913 | 0,4916 |
| 2,4                         | 0,4918   | 0,4920 | 0,4922 | 0,4925      | 0,4927          | 0,4929  | 0,4931 | 0,4932        | 0,4934 | 0,4936 |
| 2,5                         | 0,4938   | 0,4940 | 0,4941 | 0,4943      | 0,4945          | 0,4946  | 0,4948 | 0,4949        | 0,4951 | 0,4952 |
| 2,6                         | 0,4953   | 0,4955 | 0,4956 | 0,4957      | 0,4959          | 0,4960  | 0,4961 | 0,4962        | 0,4963 | 0,4964 |
| 2,7                         | 0,4965   | 0,4966 | 0,4967 | 0,4968      | 0,4969          | 0,4970  | 0,4971 | 0,4972        | 0,4973 | 0,4974 |
| 2,8                         | 0,4974   | 0,4975 | 0,4976 | 0,4977      | 0,4977          | 0,4978  | 0,4979 | 0,4979        | 0,4980 | 0,4981 |
| 2,9                         | 0,4981   | 0,4982 | 0,4982 | 0,4983      | 0,4984          | 0,4984  | 0,4985 | 0,4985        | 0,4986 | 0,4986 |
| 3,0                         | 0,4987   | 0,4987 | 0,4987 | 0,4988      | 0,4988          | 0,4989  | 0,4989 | 0,4989        | 0,4990 | 0,4990 |
| 3,1                         | 0,4990   | 0,4991 | 0,4991 | 0,4991      | 0,4992          | 0,4992  | 0,4992 | 0,4992        | 0,4993 | 0,4993 |
| 3,2                         | 0,4993   | 0,4993 | 0,4994 | 0,4994      | 0,4994          | 0,4994  | 0,4994 | 0,4995        | 0,4995 | 0,4995 |
| 3,3                         | 0,4995   | 0,4995 | 0,4995 | 0,4996      | 0,4996          | 0,4996  | 0,4996 | 0,4996        | 0,4996 | 0,4997 |
| 3,4                         | 0,4997   | 0,4997 | 0,4997 | 0,4997      | 0,4997          | 0,4997  | 0,4997 | 0,4997        | 0,4997 | 0,4998 |
| 3,5                         | 0,4998   | 0,4998 | 0,4998 | 0,4998      | 0,4998          | 0,4998  | 0,4998 | 0,4998        | 0,4998 | 0,4998 |
| 3,6<br>3,7                  | 0,4998   | 0,4998 | 0,4999 | 0,4999      | 0,4999          | 0,4999  | 0,4999 | 0,4999        | 0,4999 | 0,4999 |
| 3,8                         | 0,4999   | 0,4999 | 0,4999 | 0,4999      | 0,4999          | 0,4999  | 0,4999 | 0,4999        | 0,4999 | 0,4999 |
| 3,0                         | 0,5000   | 0,5000 | 0,5000 | 0,5000      | 0,5000          | 0,5000  | 0,5000 | 0,5000        | 0,5000 | 0,5000 |
| 3,3                         | 0,5000   | 0,5000 | 0,5000 | 0,5000      | 0,0000          | 0,3000  | 0,5000 | 0,5000        | 0,0000 | 0,5000 |

## NORMAIS

$$P(z < 1) = 0.3413,$$



■ Exemplo: Determine o escore z correspondente a uma área acumulada de 0,9803.



- Resp: Localize o 0,9083 0,5 na tabela. Leia os valores no início da linha e no alto da coluna correspondente.
- O Escore Z será de 2,06

- Exemplo I: Existe um conjunto de objetos em uma cesta, cujos pesos são normalmente distribuídos com
  - média = 8 e desvio padrão igual a 2.
  - Qual a chance de se tirar um objeto pesando menos de 6 quilos?

 Exemplo I: Existe um conjunto de objetos em uma cesta, cujos pesos são normalmente distribuídos com média = 8 e desvio padrão igual a 2.

Qual a chance de se tirar um objeto pesando menos de 6 quilos?

| 7 - | X     | - | μ |
|-----|-------|---|---|
| Z - | 27.45 | σ |   |

X = ?(6)  $\mu = m\acute{e}dia$  $\sigma = desvio padrão$ 

$$z = \frac{6-8}{2}$$

$$z = -1$$

$$P = 0.1587$$

| Z    | .00   | .01   | .02   | .03   | .04   | .05   | .06   |
|------|-------|-------|-------|-------|-------|-------|-------|
| -1.6 | .0548 | .0537 | .0526 | .0516 | .0505 | .0495 | .0485 |
| -1.5 | .0668 | .0655 | .0643 | .0630 | .0618 | .0606 | .0594 |
| -1.4 | .0808 | .0793 | .0778 | .0764 | .0749 | .0735 | .0721 |
| -1.3 | .0968 | 2951  | .0934 | .0918 | .0901 | .0885 | .0869 |
| -1.2 | .1151 | 1     | .1112 | .1093 | .1075 | .1056 | .1038 |
| -1.1 | .1357 | 335   | .1314 | .1292 | .1271 | .1251 | .1230 |
| -1.0 | .1587 | .1562 | .1539 | .1515 | .1492 | .1469 | .1446 |
| 0.0  | 4044  | 1014  | 4700  | 4700  | 4700  | 4744  | 4 COF |



Exemplo 2: Existe um conjunto de objetos em uma cesta, cujos pesos são normalmente distribuídos com média = 8 e desvio padrão igual a 2.

Qual a chance de se tirar um objeto pesando mais de 8 quilos?



Exemplo 3: Existe um conjunto de objetos em uma cesta, cujos pesos são normalmente distribuídos com média = 8 e desvio padrão igual a 2.

Qual a chance de se tirar um objeto pesando mais de 8 e menos de 10 quilos?



## DISTRIBUIÇÃO NORMAL PADRÃO (Z)

■ Exemplo 4: Determinado atacadista efetua suas vendas por telefone. Após alguns meses, verificou-se que os pedidos se distribuem normalmente com média de 3.000 pedidos e desvio-padrão de 180 pedidos. Qual a probabilidade de que um mês selecionado ao acaso esta empresa venda menos de 2700 pedidos

ex 5: Considerando a distribuição da nossa última aula:

**2** [20, 32, 32, 36, 39, 43, 46, 48, 49, 50, 52, 53, 56, 57, 63, 64, 65, 74, 75, 90]

Se você escolhe um número, qual seria a chance de você escolher um número entre 39 e 63?

#### lembrando que:

```
\mu = média = 52.2,

\sigma = desvio padrão = 16.32
```

## REFERÊNCIAS

- FÁVERO, Luiz Paulo; BELFIORE, Patrícia. **Manual de Análise de Dados:** Estatística e Modelagem Multivariada com Excel, SPSS e Stata. Rio de Janeiro: Ltc, 2020.
- CIFERRI, Cristina Dutra de Aguiar; CIFERRI, Ricardo Rodrigues. **Modelagem Multidimensional.** São Paulo: Usp, 2020. 14 slides, color. Disponível em: <a href="http://wiki.icmc.usp.br/images/6/6a/SCC5911-02-ModelagemMultidimensional.pdf">http://wiki.icmc.usp.br/images/6/6a/SCC5911-02-ModelagemMultidimensional.pdf</a>. Acesso em: 10 jan. 2020.
- RESENDE, Tânia. **Modelagem multidimensional conceitos básicos.** São Paulo: Slideshare, 2016. 28 slides, color. Disponível em: <a href="https://pt.slideshare.net/TANIARESENDE/modelagem-multidimensional-conceitos-bsicos">https://pt.slideshare.net/TANIARESENDE/modelagem-multidimensional-conceitos-bsicos</a>. Acesso em: 18 fev. 2020.
- JARDIM, Edgar Silveira; OLIVEIRA, Marcus Vinícius Abreu de; MORAVIA, Rodrigo Vitorino. Diferença Entre Banco de Dados Relacional e Banco de Dados Dimensional. **Revista Pensar Tecnologia**, Belo Horizonte, v. 2, n. 4, p. 1-17, julho 2015. Mensal. Disponível em: <a href="http://revistapensar.com.br/tecnologia/pasta\_upload/artigos/a122.pdf">http://revistapensar.com.br/tecnologia/pasta\_upload/artigos/a122.pdf</a>>. Acesso em: 18 fev. 2020.
- SERGENTI, Alexsandro. **Modelagem Relacional e Multidimensional:** uma análise envolvendo Sistemas de Apoio a decisão. 2015. Disponível em: <a href="https://www.linkedin.com/pulse/modelagem-relacional-e-multidimensional-uma-an%C3%A1lise-de-sergenti/">https://www.linkedin.com/pulse/modelagem-relacional-e-multidimensional-uma-an%C3%A1lise-de-sergenti/</a>. Acesso em: 18 fev. 2020.