Keith Folsom MSDA Math Workshop Weekly Assignment #3

2.34 Card Game

Draw a red card, you win nothing Get a spade, win \$5 For any club, win \$10 Draw an ace of clubs, win an extra \$20

a)	Event	Х	P(X)	X * P(X)	x - E(X)	(x - E(X)) ²
	Draw a spade	5	13/52 = 0.25	1.25	0.87	0.7569
	Draw a club	10	12/52 = 0.23	2.3	5.87	34.4569
	Draw an ace of clubs	30	1/52 = 0.019	0.576	25.87	669.2569
	everything else	0	1 - (26/52) = .5	0	-4.13	17.0569

$$E(X) = 4.13$$

Х	5	10	30	0
P(X)	0.25	0.23	0.019	0.5

$$\mathbf{E(X)} = 5*0.25 + 10*0.23 + 30*0.019 + 0*0.5 = 4.13$$

$$\mathbf{V(X)} = (5 - 4.13)^2*0.25 + (10 - 4.13)^2*0.23 + (30 - 4.3)^2*0.019 + (0 - 4.13)^2*0.5 = 29.35$$

$$\mathbf{SD(X)} = \mathbf{SQRT(29.358)} = 5.41$$

Expected winnings for a single game = \$4.13 Standard deviation = 5.41

b) I would pay no more than \$4.13 per game because you will lose money if you play with anything h

2.40 Baggage fees

\$25 for the first bag \$35 for the second bag

54% of passengers cheeck no bags 34% of passengers check 1 bag

12% of passengers check 2 bags

a)	Х	P(X)	X * P(X)	x - E(X)	(x - E(X)) ²	$(x - E(X))^2 * P(X)$
	0	0.54	0	-15.7	246.49	133.1046
	25	0.34	8.5	9.3	86.49	29.4066
	60	0.12	7.2	44.3	1962.49	235.4988

Х	0	25	60
P(X)	0.54	0.34	0.12

$$E(X) = 0*.54 + 25*0.34 + 60 * 0.12 = 15.7$$

$$V(X) = (0 - 15.7)^2 * 0.54 + (25 - 15.7)^2 * 0.34 + (60 - 12.7)^2 * 0.12 = 398.01$$

$$SD(X) = SQRT(398.01) = 19.95$$

average revenue per passenger = \$15.7

standard deviation = 19.95

b) Revenue for a flight of 120 passengers: 120 * \$15.7 = \$1884

With what standard deviation?

$$V(X) = (0 - 1884)^2 * 0.54 + (25 - 1884)^2 * 0.34 + (35 - 1884)^2 * 0.12$$

$$V(X) = 1916706.24 + 1174999.54 + 410256.12 = 3501961$$

$$SD(X) = SQRT(3501961) = 1871$$

2.42 Selling on Ebay

Tracking two items on Ebay

- 1. a textbook that sells for an avg of \$110 with a standard deviation of \$4
- 2. Mario Kart for Wii which sells for \$38 with a standard deviation of \$5

a)

How much net money should she expect?

Expected value = \$110 - \$38 = \$72

Marcie will expect to spend \$72

Variance =
$$4^2 + 5^2 = 41$$

Standard Deviation = 6.40

b) How much money should she expect to make selling the text book at a 10% commission? Expected value = \$110 * 0.10 = **\$11**

Assuming standard deviation of expected earnings would be 10% of the textbook's std deviation c = 4 * 0.1 = .4

2.46 Income and gender

a) Using R to Plot the data:

df\$Income <- factor(df\$Income , levels=unique(df\$Income))</pre>

q <- qplot(df\$Income, df\$Total, geom="bar", stat="identity", xlab="Income", ylab="Total (%)")

q + theme(axis.text.x = element_text(angle = 90, hjust = 1))

In the graph above, we do not see normal distribution of income. There is skew towards the right

b) Probability that a US resident makes less than \$50,000 per year

$$P(<50k) = 2.2 + 4.7 + 15.8 + 18.3 + 21.2 = 62.2\%$$

Using R:

colSums(subset(df, Income.Range.Start < 50000, select = Total))/100
> colSums(subset(df, Income.Range.Start < 50000, select =
Total))/100
Total
0.622</pre>

c) P(<50k and female) = P(<50k) * P(female) = .622 * .41 = .255

Assumes that this data is representative in that both men and women are equally included in the

Using R:

colSums(subset(df, Income.Range.Start < 50000, select = Total))/100 * 0.41
> colSums(subset(df, Income.Range.Start < 50000, select =
Total))/100 * 0.41
Total
0.25502

d)

I wasn't sure which way to go with this one so I created a tree diagram starting with the probability of being a female then the two branches -- 1) income less than \$50,00 and 2) income greater than \$50,000. The probability of a being a woman with a salary of less than \$50k is .294 which is fairly close to the answer c -- .255

$(x - E(X))^2 * P(X)$
0.189225
7.925087
12.7158811
8.52845

V(X)=29.358 SD(X) = 5.41

nigher than this amount

