EGZAMIN WSTĘPNY Z MATEMATYKI

Egzamin składa się z 30 zadań. Zadania 1–10 oceniane będą w skali 0–2 punkty, zadania 11–30 w skali 0–4 punkty. Czas trwania egzaminu — 240 minut.

Powodzenia!

- 1. Znaleźć wszystkie rozwiązania równania $81x^4 72x^2 = -16$.
- 2. Zbiory A, B i $A \cup B$ mają odpowiednio 1999, 2049 i 3998 elementów. Ile elementów mają odpowiednio zbiory A B i $A \cap B$?
- 3. Jeden metr ma 1000000 mikronów, a 100000000 angstremów to jeden centymetr. Ile angstremów ma jeden mikron?
- 4. Rozwiązać równanie $\log_2(-2)^{5n}=n^2+4,$ w którym njest liczbą naturalną.
- 5. Obliczyć $\binom{n}{5}$, jeśli wiadomo, że $\binom{n}{3} = \binom{n}{4}$.
- 6. Rozwiązać nierówność $|x-1| \le \frac{x}{3} + 1$.
- 7. Dana jest funkcja $f(x) = (x-1)^2$. Na osobnych rysunkach naszkicować wykresy funkcji: (a) y = f(x); (b) y = f(-x); (c) y = f(x+1) 2.
- 8. Rozwiązać nierówność $x+3 \leq \frac{10}{x}$.
- 9. Dla jakich wartości x istnieje trójkat o bokach długości 1, 2, $\log x$?
- 10. W trójkącie naprzeciw boku długości $3\sqrt{2}$ leży kąt miary 45°. Wyznaczyć promień okręgu opisanego na tym trójkącie.
- 11. Mamy dwa naczynia, z których jedno zawiera 10 litrów wody, a drugie 10 litrów soku. Połowę wody przelewamy do soku, mieszamy, a następnie połowę roztworu przelewamy z powrotem do wody. Obliczyć procentowe stężenia otrzymanych roztworów.
- 12. Punkty A(-1,0), B(3,2) i C(5,-2) są wierzchołkami trójkąta. Pokazać, że jest to trójkąt równoramienny. Napisać równanie osi symetrii tego trójkąta.
- 13. Doprowadzić do najprostszej postaci wyrażenie $\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}} + \frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}$.
- 14. W obszar między trzema wzajemnie stycznymi okręgami o promieniu R wpisano okrąg. Znaleźć promień r tego okręgu.
- 15. Funkcję $f(x)=x^5-9x^3-27x^2+243$ zapisać w postaci iloczynowej i następnie rozwiązać nierówność f(x)>0.