Orange Collection

There are N boxes in a row. Each box has one or more oranges in it. Consider these boxes as an array of integers **{b1, b2, b3, ..., bN}**, where bi is the number of oranges in the i-th box.

Mr. X is picking up some oranges. He is currently standing in front of the X-th box where $1 \le X \le N$.

Mr. X likes to move only towards one direction, either right or left. So if he chooses to go right, i.e. towards the N-th box, he can pick up all the oranges from **X-th**, **(X+1)-th**, **(X+2)-th**, ... **N-th** boxes.

And if he chooses to go left, i.e. towards the 1st box, he can pick up all the oranges from **X-th**, **(X-1)-th**, **(X-2)-th**, ... **3rd**, **2nd and 1st** boxes.

Mr. X is wondering what could be the maximum number of oranges he could collect if he chooses to go left or right optimally.

Input Format

The first line will contain an integer \mathbf{T} , representing the number of the test cases. On each of the \mathbf{T} followed by three lines. First line of each test case you will take an integer \mathbf{N} (1 <= \mathbf{N} <= 1000), representing the number of boxes. The second line contains \mathbf{N} space-separated integers $\mathbf{b1}$, $\mathbf{b2}$, ..., \mathbf{bN} (1 <= \mathbf{bi} <= 100) denoting the number of oranges in the i-th box. The third line contains an integer \mathbf{X} (1 <= \mathbf{X} <= \mathbf{N}), representing the position \mathbf{Mr} . \mathbf{X} is currently in front of.

Constraints

empth

Output Format

For each case, print the maximum number of oranges Mr. X can pick up.

Sample Input 0

```
2
5
5 6 9 3 4
3
3
1 2 2
```

Sample Output 0

```
20
5
```