INTRODUCTION TO LOGISTIC REGRESSION

OPENING

INTRO TO CLASSIFICATION

WHERE ARE WE?

CLASSIFICATION VS REGRESSION

Classification

Regression

COMMON ALGORITHMS

WHAT IS THE OUTCOME VARIABLE?

Regression

Age	Income	Loan Amount
21	20000	0
37	55000	150000
29	35000	120000
23	17000	550000
34	70000	250000
47	84000	0
25	30000	90000

Classification

Age	Income	Loan Status
21	20000	Rejected
37	55000	Approved
29	35000	Approved
23	17000	Rejected
34	70000	Approved
47	84000	Rejected
25	30000	Approved

CLASSIFICATION vs REGRESSION

CLASSIFICATION

CLASSIFICATION

INTRODUCTION

LOGISTIC REGRESSION

LOGISTIC REGRESSION

Logistic regression is a linear approach to solving a classification problem. It will use a linear regression *style* approach to predict the class of an item, but retain the interpretability of linear regression model.

LINEAR REGRESSION can't model a binary outcome

We need a way to transform our regression model so that its range changes from $[-\infty, \infty]$ to [0, 1].

LINEAR REGRESSION can't model a binary outcome

LOGISTIC REGRESSION

- To do this, we'll use a log-based transformation called the **logit function**.
- It will limit our range to [0,1] and create the right shape for our regression line to match the categorical outcome variable.

EQUATIONS

▶ Linear regression equation:

$$y = \beta_1 X + \beta_0$$

▶ Logistic regression equation:

$$p = P(y \mid X) = \frac{1}{1 + e^{-\beta_1 X + \beta_0}}$$

$$logit(p) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

INTRODUCTION

INTERPRETING COEFFICIENTS

COEFFICIENTS

- ▶ Positive coefficients increase the log odds of the response (and thus increase the probability)
- Negative coefficients decrease the log odds of the response (and thus decrease the probability).

	probability	odds	logodds
0	0.10	0.111111	-2.197225
1	0.20	0.250000	-1.386294
2	0.25	0.333333	-1.098612
3	0.50	1.000000	0.000000
4	0.60	1.500000	0.405465
5	0.80	4.000000	1.386294
6	0.90	9.000000	2.197225

LOGISTIC REGRESSION COEFFICIENTS

- The intercept is the log of the odds when all predictors are zero
- Coefficients
 are the log of
 the odds of
 each
 predictor

Binary Logit: Churn

	Estimate	Standard Error	z	p
(Intercept)	-1.41	0.16	-8.73	< .001
Senior Citizen: Yes	0.41	0.11	3.60	< .001
Tenure	-0.03	0.00	-11.38	< .001
Internet Service: DSL	0.92	0.21	4.39	< .001
Internet Service: Fiber optic	1.82	0.32	5.66	< .001
Contract: One year	-0.88	0.14	-6.25	< .001
Contract: Two year	-1.68	0.24	-7.02	< .001
Monthly Charges	0.00	0.00	1.11	.266

n = 3,522 cases used in estimation (Training sample); R-squared: 0.1898; Correct predictions: 79.05%; McFadden's rho-squared: 0.2564; AIC: 3,065.1; multiple comparisons correction: None

COEFFICIENTS EXAMPLE: TITANIC SURVIVAL

▶ These coefficients are "log odds"

- ▶ log odds = o indicates even probability
- ▶ log odds < o indicates less likely to occur
- ▶ log odds > o indicates more likely to occur

	Log Odds	odds_ratios
Pclass	-0.796128	0.451072
Sex_male	-0.637771	0.528469
Sex_female	0.637771	1.892258
Age	-0.441080	0.643341
SibSp	-0.324210	0.723098
Parch	-0.109567	0.896222
Fare	0.165687	1.180204
Embarked_S	-0.094984	0.909388
Embarked_C	0.093482	1.097991
Embarked_Q	0.022137	1.022384

INTERPRET THE COEFFICIENTS

Changing the β_0 value shifts the curve horizontally, whereas changing the β_1 value changes the slope of the curve.

