(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 May 2001 (31.05.2001)

(10) International Publication Number WO 01/38577 A2

(51) International Patent Classification7:

Kenneth, W. [US/US]; 1403 Halkirk Way, BelAir, MD

- (21) International Application Number:

C12Q 1/68

(22) International Filing Date:

21 November 2000 (21.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/448,480

24 November 1999 (24.11.1999)

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

09/448,480 (CON)

Filed on

24 November 1999 (24.11.1999)

- (71) Applicant (for all designated States except US): THE JOHNS HOPKINS UNIVERSITY [US/US]; Suite 906, 111 Market Place, Baltimore, MD 21202 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): VELCULESCU, Victor, E. [US/US]; Apt. 903, 1 E. Chase St., Baltimore, MD 21202 (US). VOGELSTEIN, Bert [US/US]; 3700 Breton Way, Baltimore, MD 21208 (US), KINZLER,

21015 (US).

(74) Agents: HEMMENDINGER, Lisa, M. et al.; Banner & Witcoff, Ltd., 11th floor, 1001 G Street, N.W., Washington,

DC 20001-4597 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HUMAN TRANSCRIPTOMES

(57) Abstract: Global gene expression patterns have been characterized in normal and cancerous human cells using serial analysis of gene expression (SAGE). Cancer cell-specific, cell-type specific, and ubiquitously expressed genes have been identified. This information can be used to provide combination of cell type- and cancer-specific gene probes, as well as methods of using these probes to identify particular cell types, screen for useful drugs, reduce cancer-specific gene expression, standardize gene expression, and restore function to a diseased cell or tissue.

HUMAN TRANSCRIPTOMES

This invention was made with government support under CA57345, CA62924, and CA43460 awarded by the National Institutes of Health. The government has certain rights in the invention.

BACKGROUND OF THE INVENTION

The characteristics of an organism are largely determined by the genes expressed within its cells and tissues. These expressed genes can be represented by transcriptomes that convey the identity and expression level of each expressed gene in a defined population of cells (1, 2). Although the entire sequence of the human genome will be elucidated in the near future (3), little is known about the many transcriptomes present in the human organism. Basic questions regarding the set of genes expressed in a given cell type, the distribution of expressed genes, and how these compare to genes expressed in other cell types, have remained largely unanswered.

General properties of gene expression patterns in eukaryotic cells were determined many years ago by RNA-cDNA reassociation kinetics (4), but these studies did not provide much information about the identities of the expressed genes within each expression class. Technological constraints have limited other analyses of gene expression to one or few genes at a time (5-9) or were non-quantitative (10, 11). Serial analysis of gene expression (SAGE) (12), one of several recently developed gene expression methods, has permitted the quantitative analysis of transcriptomes in the yeast *Saccharomyces cereviseae* (1, 13). This effort identified the expression of known and previously unrecognized genes in S.

cereviseae (1, 14) and demonstrated that genome-wide expression analyses were practicable in eukaryotes.

Thus, there is a need in the art for the identification of transcriptomes which represent gene expression in particular cell types or under particular physiological conditions in eukaryotes, particularly in humans.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide such transcriptomes, individual polynucleotides, and methods of using the polynucleotides to identify particular cell types, screen for useful drugs, reduce cancer-specific gene expression, standardize gene expression, and restore function to a diseased cell or tissue. These and other objects of the invention are provided by one or more of the embodiments described below.

One embodiment of the invention is a method of identifying a cell as either a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, or a kidney epithelial cell. Expression in a test cell of a gene product of at least one gene is determined. The at least one gene comprises a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154 and 155;
 - (d) the sequences shown in SEO ID NOS:156-159 and 160:
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225.

Expression of a gene product of at least one gene comprising a sequence shown in (a) identifies the test cell as a colon epithelial cell. Expression of a gene product of at least one gene comprising a sequence shown in (b) identifies the test cell as a brain cell. Expression

of a gene product of at least one gene comprising a sequence shown in (c) identifies the test cell as a keratinocyte. Expression of a gene product of at least one gene comprising a sequence shown in (d) identifies the test cell as a breast epithelial cell. Expression of a gene product of at least one gene comprising a sequence shown in (e) identifies the test cell as a lung epithelial cell. Expression of a gene product of at least one gene comprising a sequence shown in (f) identifies the test cell as a melanocyte. Expression of a gene product of at least one gene comprising a sequence shown in (g) identifies the test cell as a prostate cell. Expression of a gene product of at least one gene comprising a sequence shown in (h) identifies the test cell as a kidney epithelial cell.

Another embodiment of the invention is an isolated polynucleotide comprising a sequence selected from the group consisting of SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-84, 98, 103, 113, 115, 122, 129, 132, 134, 135, 140, 144, 149, 150, 153-168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-213, 216-224, 237, 239, 257, 263, 485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.

Still another embodiment of the invention is a solid support comprising at least one polynucleotide. The polynucleotide comprises a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-83, and 84;
- (b) the sequences shown in SEQ ID NOS:98, 103, 113, 115, 122, 129, 132, 134, 135, 140, 144, 149, and 150;
 - (c) the sequences shown in SEQ ID NOS:153-154 and 155;
 - (d) the sequences shown in SEQ ID NOS:156-157 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-207 and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210;

- (h) the sequences shown in SEQ ID NOS:211-213, 216-223, and 224;
- (i) the sequences shown in SEQ ID NOS:237, 239, 257, and 263; or

(j) the sequences shown in SEQ ID NOS:485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.

Even another embodiment of the invention is a method of identifying a test cell as a cancer cell. Expression in a test cell of a gene product of at least one gene is determined. The at least one gene comprises a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259-260, and 262-265. An increase in expression of at least two-fold relative to expression of the at least one gene in a normal cell identifies the test cell as a cancer cell.

Yet another embodiment of the invention is a method of reducing expression of a cancer-specific gene in a human cell. A reagent which specifically binds to an expression product of a cancer-specific gene is administered to the cell. The cancer-specific gene comprises a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259-260, and 262-265. Expression of the cancer-specific gene is thereby reduced relative to expression of the cancer-specific gene in the absence of the reagent.

Even another embodiment of the invention is a method for comparing expression of a gene in a test sample to expression of a gene in a standard sample. A first ratio and a second ratio are determined. The first ratio is an amount of an expression product of a test gene in a test sample to an amount of an expression product of at least one gene comprising a sequence selected from the group consisting of SEQ ID NOS:266-375, 377-652, 654-796, and 798-1448 in the test sample. The second ratio is an amount of an expression product of the test gene in a standard sample to an amount of an expression product of the at least one gene in the standard sample. The first and second ratios are compared. A difference between the first and second ratios indicates a difference in the amount of the expression product of the test gene in the test sample.

Still another embodiment of the invention is a method of screening candidate anticancer drugs. A cancer cell is contacted with a test compound. Expression of a gene

product of at least one gene in the cancer cell is measured. The at least one gene comprises a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259, 260, 262-263, and 265. A decrease in expression of the gene product in the presence of a test compound relative to expression of the gene product in the absence of the test compound identifies the test compound as a potential anti-cancer drug.

Still another embodiment of the invention is a method of screening test compounds for the ability to increase an organ or cell function. A selected from the group consisting of a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, and a kidney cell is contacted with a test compound. Expression in the cell of a gene product of at least one gene is measured. The gene comprises a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154 and 155;
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207 and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225.

An increase in expression of a gene product of at least one gene comprising a sequence shown in (a) identifies the test compound as a potential drug for increasing a function of a colon cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (b) identifies the test compound as a potential drug for increasing a function of a brain cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (c) identifies the test compound as a potential drug for increasing a function of a skin cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (d) identifies the test compound as a potential drug for increasing a function of a breast cell. An increase in expression of a gene product

of at least one gene comprising a sequence shown in (e) identifies the test compound as a potential drug for increasing a function of a lung cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (f) identifies the test compound as a potential drug for increasing a function of a melanocyte. An increase in expression of a gene product of at least one gene comprising a sequence shown in (g) identifies the test compound as a potential drug for increasing a function of a prostate cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (h) identifies the test compound as a potential drug for increasing a function of a kidney cell.

Yet another embodiment of the invention is a method to restore function to a diseased tissue. A gene is delivered to a diseased cell selected from the group consisting of a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, and a kidney cell. The gene comprises a nucleotide sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154 and 155;
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and ...
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225.

Expression of the gene in the diseased cell is less than expression of the gene in a corresponding cell which is normal. If the diseased cell is a colon epithelial cell, then the nucleotide sequence is selected from (a). If the diseased cell is a brain cell, then the nucleotide sequence is selected from (b). If the diseased cell is a keratinocyte, then the nucleotide sequence is selected from (c). If the diseased cell is a breast epithelial cell, then the nucleotide sequence is selected from (d). If the diseased cell is a lung epithelial cell,

then the nucleotide sequence is selected from (e). If the diseased cell is a melanocyte, then the nucleotide sequence is selected from (f). If the diseased cell is a prostate cell, then the nucleotide sequence is selected from (g). If the diseased cell is a kidney cell, then the nucleotide sequence is selected from (h).

Thus, the invention provides transcriptomes, polynucleotides, and methods of identifying particular cell types, reducing cancer-specific gene expression, identifying cancer cells, standardizing gene expression, screening test compounds for the ability to increase an organ or a cell function, and restoring function to a diseased tissue.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Sampling of gene expression in colon cancer cells. Analysis of transcripts at increasing increments of transcript tags indicates that the fraction of new transcripts identified approaches 0 at approximately 650,000 total tags.

FIG. 2. Colon cancer cell Rot curve.

FIGS. 3A-3C. Gene expression in different tissues. FIG. 3A. Fold reduction or induction of unique transcripts for each of the comparisons analyzed. The source of the transcripts included in each comparison are displayed in FIG. 3C. The relative expression of each transcript was determined by dividing the number of transcript tags in each comparison in the order displayed in FIG. 3C. To avoid division by 0, we used a tag value of 1 for any tag that was not detectable in one of the samples. We then rounded these ratios to the nearest integer; their distribution is plotted on the X axis. The number of transcripts displaying each ratio is plotted on the Y axis. Each comparison is represented by a specific color (see below or FIG. 3C). FIG. 3B. Expression of transcripts for each comparison, where values on X and Y axes represent the observed transcript tag abundances in each of the two compared sets. Light Blue symbols: DLD1 in different physiologic conditions; Yellow symbols: DLD1 cells (X axis) versus HCT116 cells (Y axis); Red symbols: colon cancer cells (X axis) versus normal brain (Y axis); and Dark Blue symbols: colon cancer cells (X axis) versus hemangiopericytoma (Y axis). FIG. 3C. Fraction of transcripts with dramatically altered expression. For each comparison, Expression Change denotes the number of transcripts induced or reduced 10 fold, and (%) denotes the number of altered

transcripts divided by the number of unique transcripts in each case. Differences between expression changes were evaluated using the chi squared test, where the expected expression changes were assumed to be the average expression change for any two comparisons.

TABLE LEGENDS

Table 1. Table of tissues and transcript tags analyzed. "Tissues" represents the source of the RNA analyzed, "Libraries" indicates the number of SAGE libraries analyzed, "Total Transcripts" is the total number of transcripts analyzed from each tissue, and "Unique Transcripts" denotes the number of unique transcripts observed in each tissue.

Table 2. Table of transcript abundance. "Copies/cell" denotes the category of expression level analyzed in transcript copies per cell, "Unique Transcripts" represents the number of unique transcripts observed and those matching GenBank genes or ESTs, and "Mass fraction mRNA" represents the fraction of mRNA molecules contained in each expression category.

Table 3. Table showing tissue-specific transcripts. The number in parentheses adjacent to the tissue type indicates the percent of transcripts exclusively expressed in a given tissue at 10 copies per cell. "Transcript tag" denotes the 10 bp tag adjacent to 4 bp NlaIII anchoring enzyme site, "Copies/cell" denotes the transcript copies per cell expressed, and "UniGene Description" provides a functional description of each matching UniGene cluster (from UniGene Build No. 67). As UniGene cluster numbers change over time, the most recent cluster assignment for each tag can be obtained individually at http://www.ncbi.nlm.nih.gov/SAGE/SAGEtag.cgi (Lal et al., "A public database for gene expression in human cancers," Cancer Research, in press) or for the entire table at http://www.sagenet.org/transcriptome.

Table 4. Table showing ubiquitously expressed genes. "Copies/cell" denotes the average expression level of each transcript from all tissues examined, "Range" represents the range in expression for each transcript tag among all tissues analyzed in copies per cell, and "Range/Avg" is the ratio of the range to the average expression level and provides a measure of uniformity of expression. Other table columns are the same as in Table 5. The

entire table of uniformly expressed transcripts also is available at http://www.sagenet.org/transcriptome.

Table 5. Table showing transcripts uniformly elevated in human cancers. Transcripts expressed at 3 copies/cell whose expression is at least 2-fold higher in each cancer compared to its corresponding normal tissue. CC, colon cancer; BC, brain cancer; BrC, breast cancer; LC, lung cancer; M, melanoma; NC, normal colon epithelium; NB, normal brain; NBr, normal breast epithelium; NL, normal lung epithelium; NM, normal melanocytes. "Avg T/N" is the average ratio of expression in tumor tissue divided by normal tissue (for the purpose of obtaining this ratio, expression values of 0 are converted to 0.5). Other table columns are the same as in Table 5.

Table 6. Table showing transcripts expressed in colon cancer cells at a level of at least 500 copies per cell.

Table 7. Table showing transcripts expressed at a level of at least 500 copies per cell.

DETAILED DESCRIPTION OF THE INVENTION

It is a discovery of the present invention that particular sets of expressed genes ("transcriptomes") are expressed only in cancer cells; expression of these genes can be used, *inter alia*, to identify a test cell as cancerous and to screen for anti-cancer drugs. These cancer-specific genes can also provide targets for therapeutic intervention.

It is another discovery of the invention that other transcriptomes are differentially associated with distinct cell types; expression of genes of these transcriptomes can therefore be used to identify a test cell as belonging to one of these distinct cell types.

It is yet another discovery of the invention that genes of another transcriptome are expressed ubiquitously; expression of genes of this transcriptome can be used to standardize expression of other genes in a variety of gene expression assays.

To identify the transcriptomes described herein we used the SAGE method, as described in Velculescu *et al.* (1) and Velculescu *et al.* (12), to analyze gene expression in a variety of different human cell and tissue types. The SAGE method is also described in U.S. Patents 5,866,330 and 5,695,937. A total of 84 SAGE libraries were generated from

19 tissues (Table 1). Diseased tissues included cancers of the colon, pancreas, breast, lung, and brain, as well as melanoma, hemangiopericytoma, and polycystic kidney disease. Normal tissues included epithelia of the colon, breast, lung, and kidney, melanocytes, chondrocytes, monocytes, cardiomyocytes, keratinocytes, and cells of prostate and brain white matter and astrocytes.

A total of 3,496,829 transcript tags were analyzed and found to represent 134,135 unique transcripts after correcting for sequencing errors (transcript data available at http://www.sagenet.org./transcriptome). Expression levels for these transcripts ranged from 0.3 to a high of 9,417 transcript copies per cell in lung epithelium. Comparison against the GenBank and UniGene collections of characterized genes and expressed sequence tags (ESTs) revealed that 6,900 transcript tags matched known genes, while 65,735 matched ESTs. The remaining 61,500 transcript tags (46%) had no matches to existing databases and corresponded to previously uncharacterized or partially sequenced transcripts.

Each of the genes or transcripts whose expression can be measured in the methods of the invention comprises a unique sequence of at least 10 contiguous nucleotides (the "SAGE tag"). Genes which are differentially expressed in colon, lung, kidney, and breast epithelial cells, brain cells, prostate cells, keratinocytes, or melanocytes are shown in Table 3. Ubiquitously expressed genes are shown in Table 4. Transcripts which are expressed only in cancer tissues, e.g., colon cancer, breast cancer, brain cancer, liver cancer, and melanoma, are shown in Table 5.

This information provides heretofore unavailable picture of human transcriptomes. These results, like the human genome sequence, provide basic information integral to future experimentation in normal and disease states. Because SAGE analyses provide absolute expression levels, future SAGE data can be directly integrated with those described here to provide progressively deeper insights into gene expression patterns. Eventually, a relatively complete description of the transcripts expressed in diverse cell types and in various physiologic states can be obtained.

Isolated polynucleotides

The invention provides isolated polynucleotides comprising either

deoxyribonucleotides or ribonucleotides. Isolated DNA polynucleotides according to the invention contain less than a whole chromosome and can be either genomic DNA or DNA which lacks introns, such as cDNA. Isolated DNA polynucleotides can comprise a gene or a coding sequence of a gene comprising a sequence as shown in SEQ ID NOS:1-1563, such as polynucleotides which comprise a sequence selected from the group consisting of SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-84, 98, 103, 113, 115, 122, 129, 132, 134, 135, 140, 144, 149, 150, 153-168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-213, 216-224, 237, 239, 257, 263, 485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.

Any technique for obtaining a polynucleotide can be used to obtain isolated polynucleotides of the invention. Preferably the polynucleotides are isolated free of other cellular components such as membrane components, proteins, and lipids. They can be made by a cell and isolated, or synthesized using an amplification technique, such as PCR, or by using an automatic synthesizer. Methods for purifying and isolating polynucleotides are routine and are known in the art.

Isolated polynucleotides also include oligonucleotide probes, which comprise at least one of the sequences shown in SEQ ID NOS:1-1563. An oligonucleotide probe is preferably at least 10, 11, 12, 13, 14, 15, 20, 30, 40, or 50 or more nucleotides in length. If desired, a single oligonucleotide probe can comprise 2, 3, 4, or 5 or more of the sequences shown in SEQ ID NOS:1-1563. The probes may or may not be labeled. They may be used, for example, as primers for amplification reactions, such as PCR, in Southern or Northern blots, or for *in situ* hybridization.

Oligonucleotide probes of the invention can be made by expressing cDNA molecules comprising one or more of the sequences shown in SEQ ID NOS:1-1563 in an expression vector in an appropriate host cell. Alternatively, oligonucleotide probes can be synthesized chemically, for example using an automated oligonucleotide synthesizer, as is known in the art.

Solid Supports Comprising Polynucleotides

Polynucleotides, particularly oligonucleotide probes, preferably are immobilized on a solid support. A solid support can be any surface to which a polynucleotide can be attached. Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, gene "chips," or particles such as beads, including but not limited to latex, polystyrene, or glass beads. Any method known in the art can be used to attach a polynucleotide to a solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached respectively to the polynucleotide and the solid support.

Polynucleotides are preferably present on an array so that multiple polynucleotides can be simultaneously tested for hybridization to polynucleotides present in a single biological sample. The polynucleotides can be spotted onto the array or synthesized *in situ* on the array. Such methods include older technologies, such as "dot blot" and "slot blot" hybridization (53, 54), as well as newer "microarray" technologies (55-58). A single array contains at least one polynucleotide, but can contain more than 100, 500, 1,000, 10,000, or 100,000 or more different probes in discrete locations.

Determining expression of a gene product

Each of the methods of the invention involves measuring expression of a gene product of at least one of the genes identified in Tables 3, 4, and 5 (SEQ ID NOS:1-1448). If desired, expression of gene products of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 50, 75, 100, 125, 250, 500, 1,000, 1,250, or more genes can be determined.

Either protein or RNA products of the disclosed genes can be determined. Either qualitative or quantitative methods can be used. The presence of protein products of the disclosed genes can be determined, for example, using a variety of techniques known to the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochemistry. Alternatively, protein synthesis can be determined *in vivo*, in a cell culture, or in an *in vitro* translation system by detecting incorporation of labeled amino acids into protein products.

RNA expression can be determined, for example, using at least 1, 2, 3, 4, 5, 10, 15,

20, 25, 30, 50, 75, 100, 125, 250, 500, 1,000, 5,000, 10,000, or 100,000 or more oligonucleotide probes, either in solution or immobilized on a solid support, as described above. Expression of the disclosed genes is preferably determined using an array of oligonucleotide probes immobilized on a solid support. *In situ* hybridization can also be used to detect RNA expression.

Identification of Cell Types

Cell-type specific genes are expressed at a level greater than 10 copies per cell in a particular cell type, such as epithelial cells of the colon, breast, lung, and kidney, keratinocytes, melanocytes, and cells from the prostate and brain, but are not expressed in cells of other tissues. Such cell-type specific genes represent "cell-type specific transcriptomes." The fraction of cell-type-specific transcripts ranges from 0.05% in normal prostate to 1.76% in normal colon epithelium. Approximately 50% of these transcripts tags match known genes or ESTs. The vast majority of these cell-type-specific genes have not been previously reported in the literature to be cell-type specific.

Cell type-specific genes are shown in Table 3. Genes which comprise the sequences shown in SEQ ID NOS:1-85 are uniquely expressed in colon epithelial cells. Genes which comprise the sequences shown in SEQ ID NOS:86-151 are uniquely expressed in brain cells. Genes which comprise the sequences shown in SEQ ID NOS:152-155 are uniquely expressed in keratinocytes. Genes which comprise the sequences shown in SEQ ID NOS:156-160 are uniquely expressed in breast epithelial cells. Genes which comprises the sequences shown in SEQ ID NOS:161-167 are uniquely expressed in lung epithelial cells. Genes which comprises the sequences shown in SEQ ID NOS:168-208 are uniquely expressed in melanocytes. Genes which comprise the sequences shown in SEQ ID NOS:209 and 210 are uniquely expressed in prostate cells. Genes which comprise the sequences shown in SEQ ID NOS:211-225 are uniquely expressed in kidney epithelial cells. Thus, determination of expression of at least one gene from each of these uniquely expressed groups, particularly those not previously known to be uniquely expressed, can be used to identify a test cell as an epithelial cell of the colon, breast, lung, and kidney, a keratinocyte, a melanocyte, or a cell from the prostate or brain.

Test cells can be obtained, for example, from biopsy or surgical samples, forensic samples, cell lines, or primary cell cultures. Test cells include normal as well as cancer cells, such as primary or metastatic cancer cells.

To identify a test cell as an epithelial cell of the colon, breast, lung, and kidney, a keratinocyte, a melanocyte, or a cell from the prostate or brain, expression of a gene product of at least one gene is determined, using methods such as those described above. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:2, 5-18, and 20-85, the test cell is identified as a colon epithelial cell. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129. and 131-151, the test cell is identified as a brain cell. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:152-155, the test cell is identified as a keratinocyte. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:156-160, the test cell is identified as a breast epithelial cell. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:161-167, the test cell is identified as a lung epithelial cell. Expression of a gene comprising a sequence shown in SEQ ID NOS:168, 170, 172-177, 179-188, and 190-208 identifies the test cell as a melanocyte. Expression of a gene comprising a sequence shown in SEQ ID NOS:209 and 210 identifies the test cell as a prostate cell. Expression of a gene which comprises a sequence shown in SEQ ID NOS:211-225 identifies the test cell as a kidney epithelial cell.

Identifying a Test Cell as a Cancer Cell

A cancer-specific gene is expressed at a level of at least 3 copies per cancer cell, such as a colon cancer, breast cancer, brain cancer, lung cancer, or melanoma cell, at a level which is at least two-fold higher than expression of the same gene in a corresponding normal cell. Cancer-specific genes which comprise the sequences shown in SEQ ID NOS:226-265 (Table 5) represent a "cancer transcriptome." SEQ ID NOS:237, 239, 257, and 263 are sequences which are found in transcripts of novel cancer-specific genes of the invention. Oligonucleotide probes corresponding to cancer-specific genes can be used, for example, to detect and/or measure expression of cancer-specific genes for diagnostic purposes, to assess efficacy of various treatment regimens, and to screen for potential anti-

cancer drugs.

For example, determination of the expression level of any of these genes in a test cell relative to the expression level of the same gene in a normal cell (a cell which is known not to be a cancer cell) can be used to determine whether the test cell is a cancer cell or a non-cancer cell.

Test cells can be any human cell suspected of being a cancer cell, including but not limited to a colon epithelial cell, a breast epithelial cell, a lung epithelial cell, a kidney epithelial cell, a melanocyte, a prostate cell, and a brain cell. Test cells can be obtained, for example, from biopsy samples, surgically excised tissues, forensic samples, cell lines, or primary cell cultures. Comparison can be made to a non-cancer cell type, including to the corresponding non-cancer cell type, either at the time expression is measured in the test cell or by reference to a previously determined expression standard.

To identify a test cell as a cancer cell, expression of a gene product of at least one gene is determined, using methods such as those described above. The at least one gene comprises a sequence selected from the group consisting of SEQ ID NOS:226-265, particularly from the group consisting of SEQ ID NOS:228, 230-236, 238, 240-256, 258-260, and 262-265. An increase in expression of the at least one gene in the test cell which is at least two-fold more than the expression of the at least one gene in a cell which is not cancerous identifies the test cell as a cancer cell.

Reducing Cancer-Specific Gene Expression

Cancer-specific genes provide potential therapeutic targets for treating cancer or for use in model systems, for example, to screen for agents which will enhance the effect of a particular compound on a potential therapeutic target. Thus, a reagent can be administered to a human cell, either *in vitro* or *in vivo*, to reduce expression of a cancer-specific gene. The reagent specifically binds to an expression product of a gene comprising a sequence selected from the group consisting of SEQ ID NOS:226-265, particularly from the group consisting of SEQ ID NOS:228, 230-236, 238, 240-256, 258-260, and 262-265.

If the expression product is a protein, the reagent is preferably an antibody. Protein products of cancer-specific genes can be used as immunogens to generate antibodies, such

as a polyclonal, monoclonal, or single-chain antibodies, as is known in the art. Protein products of cancer-specific genes can be isolated from primary or metastatic tumors, such as primary colon adenocarcinomas, lung cancers, astrocytomas, glioblastomas, breast cancers, and melanomas. Alternatively, protein products can be prepared from cancer cell lines such as SW480, HCT116, DLD1, HT29, RKO, 21-PT, MDA-468, A549, and the like. If desired, cancer-specific gene coding sequences can be expressed in a host cell or in an *in vitro* translation system. An antibody which specifically binds to a protein product of a cancer-specific gene provides a detection signal at least 5-, 10-, or 2-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, the antibody does not detect other proteins in immunochemical assays and can immunoprecipitate the cancer-specific protein product from solution.

For administration in vitro, an antibody can be added to a tissue culture preparation, either as a component of the medium or in addition to the medium. In another embodiment, antibodies are delivered to specific tissues in vivo using receptor-mediated targeted delivery. Receptor-mediated DNA delivery techniques are taught in, for example, Findeis et al. Trends in Biotechnol. 11, 202-05, (1993); Chiou et al., GENE THERAPEUTICS: METHODS AND APPLICATIONS OF DIRECT GENE TRANSFER (J.A. Wolff, ed.) (1994); Wu & Wu, J. Biol. Chem. 263, 621-24, 1988; Wu et al., J. Biol. Chem. 269, 542-46, 1994; Zenke et al., Proc. Natl. Acad. Sci. U.S.A. 87, 3655-59, 1990; Wu et al., J. Biol. Chem. 266, 338-42, 1991.

If single-chain antibodies are used, polynucleotides encoding the antibodies can be constructed and introduced into cells using well-established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun," and DEAE- or calcium phosphate-mediated transfection.

Effective *in vivo* dosages of an antibody are in the range of about 5 μg to about 50 μg/kg of patient body weight, about 50 μg to about 5 mg/kg, about 100 μg to about 500 μg/kg of patient body weight, and about 200 to about 250 μg/kg. For administration of polynucleotides encoding single-chain antibodies, effective *in vivo* dosages are in the range

of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 μg to about 2 mg, about 5 μg to about 500 μg, and about 20 μg to about 100 μg of DNA.

If the expression product is mRNA, the reagent is preferably an antisense oligonucleotide. The nucleotide sequence of an antisense oligonucleotide is complementary to at least a portion of the sequence of the cancer-specific gene. Preferably, the antisense oligonucleotide sequence is at least 10 nucleotides in length, but can be at least 11, 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. An antisense oligonucleotide which specifically binds to an mRNA product of a cancer-specific gene preferably hybridizes with no more than 3 or 2 mismatches, preferably with no more than 1 mismatch, even more preferably with no mismatches.

Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides, including modified oligonucleotides, can be prepared by methods well known in the art (47-52) and introduced into human cells using techniques such as those described above. The cells can be in a primary culture of human tumor cells, in a human tumor cell line, or can be primary or metastatic tumor cells present in a human body.

Preferably, a reagent reduces expression of a cancer-specific gene by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% relative to expression of the gene in the absence of the reagent. Most preferably, the level of gene expression is decreased by at least 90%, 95%, 99%, or 100%. The effectiveness of the mechanism chosen to decrease the level of expression of a cancer-specific gene can be assessed using methods well known in the art, such as hybridization of nucleotide probes to cancer-specific gene mRNA, quantitative RT-PCR, or immunologic detection of a protein product of the cancer-specific gene.

Screening for Anti-Cancer Drugs

According to the invention, test compounds can be screened for potential use as anticancer drugs by assessing their ability to suppress or decrease the expression of at least one cancer-specific gene. The cancer-specific gene comprises a sequence selected from the group consisting of SEQ ID NOS:226-265, particularly from the group consisting of SEQ

ID NOS:228, 230-236, 238, 240-256, 258-260, and 262-265. Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity, including small molecules from compound libraries. Test substances can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, or can be produced recombinantly or synthesized by chemical methods known in the art.

To screen a test compound for use as a possible anti-cancer drug, a cancer cell is contacted with the test compound. The cancer cell can be a cell of a primary or metastatic tumor, such as a tumor of the colon, breast, lung, prostate, brain, or kidney, or a melanoma, which is isolated from a patient. Alternatively, a cancer cell line, such as colon cancer cell lines HCT116, DLD1, HT29, Caco2, SW837, SW480, and RKO, breast cancer cell lines 21-PT, 21-MT, MDA-468, SK-BR3, and BT-474, the A549 lung cancer cell line, and the H392 glioblastoma cell line, can be used.

Expression of a gene product of at least one gene is determined using methods such as those described above. The gene comprises a sequence selected from the group consisting of SEQ ID NOS:226-265, preferably from the group consisting of SEQ ID NOS:228, 230-236, 238, 240-256, 258-260, and 262-265, even more preferably from the group consisting of SEQ ID NOS:237, 239, 257, and 263. A decrease in expression of the gene in the cancer cell identifies the test compound as a potential anti-cancer drug.

Standardizing Expression of a Test Gene

Genes which comprise the sequences shown in SEQ ID NOS:266-1448 (Table 4) are expressed at a level of at least five transcript copies per cell in every cell type analyzed, including epithelia of the colon, breast, lung, and kidney, melanocytes, chondrocytes, monocytes, cardiomyocytes, keratinocytes, prostate cells, and astrocytes, oligodendrocytes, and other cells present in the white matter of brain. These genes thus represent members of the "minimal transcriptome," the set of genes expressed in all human cells. The minimal transcriptome includes well known genes which are often used as experimental controls to normalize gene expression, such as glyceraldehyde 3-phosphate dehydrogenase, elongation factor 1 alpha, and gamma actin.

Ubiquitously expressed genes can be used to compare expression of a test gene in a test sample to expression of a gene in a standard sample. A ubiquitously expressed gene preferably comprises a sequence shown in SEQ ID NOS:266-375, 377-652, 654-796, and 798-1448, and more preferably comprises a sequence shown in SEQ ID NOS:282, 288, 300, 302, 308, 320, 323, 363, 368, 379, 381, 444, 453, 518, 531, 535, 538, 542, 579, 580, 594, 600, 604, 617, 626, 641, 650, 717, 728, 776, 777, 794, 818, 822, 842, 885, 887, 899, 900, 902, 904, 914, 930, 960, 964, 1001, 1015, 1020, 1027, 1035, 1090, 1113, 1119, 1146, 1151, 1163, 1233, 1235, 1252, 1255, 1270, 1340, 1345, 1356, 1359, 1360, 1362, 1385, 1415, and 1441.

Two ratios are determined using gene expression assays such as those described above. The first ratio is an amount of an expression product of a test gene in a test sample to an amount of an expression product of at least one ubiquitously expressed gene comprising a sequence selected from the group consisting of SEQ ID NOS:266-375, 377-652, 798-1447, and 1448 in the test sample. The second ratio is an amount of an expression product of the test gene in a standard sample to an amount of an expression product of the ubiquitously expressed gene in the standard sample. Expression of either the test gene or the ubiquitously expressed gene can be used as the denominator. If desired, multiple ratios can be determined, such as (a) an amount of an expression product of more than one test gene to that of a single ubiquitously expressed gene, (b) an amount of an expression product of an expression product of more than one ubiquitously expressed genes, or (c) an amount of an expression product of more than one test gene to that of more than one ubiquitously expressed gene. Optionally, the ratio in the standard sample can be pre-determined.

The ratios determined in the test and standard samples are compared. A different between the ratios indicates a difference in the amount of the expression product of the test gene in the test sample.

The standard and test samples can be matched samples, such as whole cell cultures or homogenates of cells (such as a biopsy sample) and differ only in that the test biological sample has been subjected to a different environmental condition, such as a test compound, a drug whose effect is known or unknown, or altered temperature or other environmental

condition. Alternatively, the test and standard samples can be corresponding cell types which differ according to developmental age. In one embodiment, the test sample is a cancer cell, such as a colon cancer, breast cancer, lung cancer, melanoma, or brain cancer cell, and the standard sample is a normal cell.

The test gene can be a gene which encodes a protein whose biological function is known or unknown. Preferably the ratio of expression between the test gene and expression of the ubiquitously expressed gene is consistent in the standard sample. Even more preferably, expression of the ubiquitously expressed gene is not altered in the test sample. A difference between the first ratio of expression in the test sample and a second ratio of expression in the standard sample can therefore be used to indicate a difference in expression of the test gene in the test sample.

Screening for Compounds for Increasing an Organ or Cell Function

Test compounds can be screened for the ability to increase an organ or cell function by assessing their ability to increase expression of at least one tissue-specific gene. The tissue-specific gene comprises a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155:
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225.

As with the anti-cancer drug screening method described above, test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity, including small molecules from compound libraries.

Test substances can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, or can be produced recombinantly or synthesized by chemical methods known in the art.

To screen a test compound for the ability to increase an organ or cell function, a cell, such as a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, or a kidney cell, is contacted with the test compound. The cell can be a primary culture, such as an explant culture, of tissue obtained from a human, or can originate from an established cell line.

Expression of a gene product of at least one gene is determined using methods such as those described above. An increase in expression of a gene product of at least one gene comprising a sequence selected from (a) identifies the test compound as a potential drug for increasing a function of a colon cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (b) identifies the test compound as a potential drug for increasing a function of a brain cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (c) identifies the test compound as a potential drug for increasing a function of a skin cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (d) identifies the test compound as a potential drug for increasing a function of a breast cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (e) identifies the test compound as a potential drug for increasing a function of a lung cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (f) identifies the test compound as a potential drug for increasing a function of a melanocyte. An increase in expression of a gene product of at least one gene comprising a sequence selected from (g) identifies the test compound as a potential drug for increasing a function of a prostate cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (h) identifies the test compound as a potential drug for increasing a function of a kidney cell.

Restoring Function to a Diseased Tissue or Cell

Function can be restored to a diseased tissue or cell, such as a melanocyte or a colon,

brain, keratinocyte, breast, lung, prostate, or kidney cell, by delivering an appropriate tissue-specific gene to cells of that tissue. The tissue specific gene comprises a nucleotide sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85 (colon-specific);
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151 (brain-specific);
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155 (keratinocyte-specific);
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160 (breast-specific);
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167 (lung-specific);
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208 (melanocyte-specific);
 - (g) the sequences shown in SEQ ID NOS:209 and 210 (prostate-specific); and
- (h) the sequences shown in SEQ ID NOS:211-224 and 225 (kidney-specific). Expression of the gene in a cell of the diseased tissue preferably is 10, 20, 30, 40, 50, 60, 70, 80, or 90% less than expression of the gene in a cell of the corresponding tissue which is normal. In some cases, the diseased cell fails to express the gene. A tissue-specific gene which is administered to cells for this purpose includes a polynucleotide comprising a coding sequence which is intron-free, such as a cDNA, as well as a polynucleotide which comprises elements in addition to the coding sequence, such as regulatory elements.

Coding sequences of many of the tissue-specific genes disclosed herein are publicly available. For the novel tissue-specific genes identified here, coding sequences can be obtained using a variety of methods, such as restriction-site PCR (Sarkar, PCR Methods Applic. 2:318-322, 1993), inverse PCR (Triglia et al., Nucleic Acids Res. 16:8186, 1988), capture PCR (Lagerstrom, et al., PCR Methods Applic. 1:111-119, 1991). Alternatively, the partial sequences disclosed herein can be nick-translated or end-labeled with ³²P using polynucleotide kinase using labeling methods known to those with skill in the art (BASIC METHODS IN MOLECULAR BIOLOGY, Davis et al., eds., Elsevier Press, N.Y., 1986). A lambda library prepared from the appropriate human tissue can then be directly screened with the labelled sequences of interest.

Many methods for introducing polynucleotides into cells or tissues are available and

can be used to deliver a tissue-specific gene to a cell in vitro or in vivo. Introduction of the tissue-specific gene into a cell can be accomplished by any method by which a nucleic acid molecule can be inserted into a cell, such as transfection, electroporation, microinjection, lipofection, adsorption, and protoplast fusion. For in vitro administration, a tissue-specific gene can be added to a tissue culture preparation, either as a component of the medium or in addition to the medium. In vivo administration can be by means of direct injection of a vector comprising a tissue-specific gene to the particular tissue or cells to which the tissue-specific gene is to be delivered. Alternatively, the tissue-specific gene can be included in a vector which is capable of targeting a particular tissue and administered systemically (59-61).

For *in vitro* administration, suitable concentrations of a tissue-specific gene in the culture medium range from at least about 10 pg to 100 pg/ml, about 100 pg to about 500 pg/ml, about 500 pg to about 1 ng/ml, about 1 ng to about 10 ng/ml, about 10 ng to about 100 ng/ml, or about 100 ng/ml to about 500 ng/ml. For local administration, effective dosages of a tissue-specific gene range from at least about 10 ng to about 100 ng, about 50 ng to 150 ng, about 100 ng to about 250 ng, about 1 µg to about 10 µg, about 5 µg to about 50 µg, about 25 µg to about 100 µg, about 75 µg to about 250 µg, about 100 µg to about 250 µg, about 1 mg, about 1 mg to about 10 mg, about 5 mg to about 500 µg, about 50 mg to about 50 mg, about 5 mg to about 50 mg, about 25 mg to about 100 mg, or about 50 mg to about 200 mg of DNA per injection. Suitable concentrations for systemic administration range from at least about 500 ng to about 50 mg, about 1 µg to about 2 mg, about 5 µg to about 500 µg, and about 20 µg to about 100 µg of DNA per kg of body weight.

Recombinant DNA technologies can be used to improve expression of the tissue-specific gene by manipulating, for example, the number of copies of the gene in the cell, the efficiency with which the gene is transcribed, the efficiency with which the resultant transcripts are translated, and the efficiency of post-translational modifications. Recombinant techniques useful for increasing the expression of a tissue-specific gene in a cell include, but are not limited to, providing the tissue-specific gene in a high-copy number plasmid, integrating the tissue-specific gene into one or more host cell chromosomes, adding vector stability sequences to plasmids, substituting or modifying

transcription control signals (e.g., promoters, operators, enhancers), substituting or modulating translational control signals (e.g., ribosome binding sites, Shine-Dalgarno sequences), and deleting sequences that destabilize transcripts. (See Dow et al., U.S. Patent 5,935,568).

Preferably, delivery of the tissue-specific gene increases expression of a gene product of the tissue-specific gene in the cell or tissue by at least 10, 20, 30, 40, 50, 60 70, 80, 90, 95, 98, 99, or 100% relative to expression of the tissue-specific gene in a diseased cell or tissue to which the gene has not been delivered. Expression of a protein product of the tissue-specific gene can be determined immunologically, using methods such as radioimmunoassay, Western blotting, and immunohistochemistry. Alternatively, incorporation of labeled amino acids into a protein product can be determined. RNA expression is preferably determined using one or more oligonucleotide probes, either in solution or immobilized on a solid support, as described above.

All documents cited in this disclosure are expressly incorporated herein. The above disclosure generally describes the present invention, and all references cited in this disclosure are incorporated by reference herein. A more complete understanding can be obtained by reference to the following specific examples which are provided for purposes of illustration only and are not intended to limit the scope of the invention.

EXAMPLE 1

Tissue samples and the SAGE method

RNA for normal tissues was obtained from the following sources: colon epithetial cells isolated from sections of normal colon mucosa from two patients (41); HaCaT keratinocyte cells (42), normal mammary epithelial cells from two individuals (Clonetics); normal bronchial epithelial cell from two individuals (43); normal melanocytes from two individuals (Cascade Biologics); normal cultured monocytes, dendritic cells and TNF activated dendritic cells; two normal kidney epithelial cell lines; cultured chondrocyte cells from two normal individuals and one patient with osteoarthritic disease; normal fetal cardiomyocytes in normoxic and hypoxic conditions; and normal brain white matter from

two patients and normal cultured astrocyte cells.

RNA for diseased tissues was obtained from the following sources: primary colon adenocarcinomas from two patients, HCT116, DLD1, HT29, Caco2, SW837, SW480, and RKO colon cancer cell lines cultured *in vitro* in a variety of different cellular conditions including log phase growth, G1/G2 phase growth arrest, and apoptosis (40, 41, 44, 45); primary pancreatic adenocarcinomas from two patients and ASPC-1 and PL-45 pancreatic cancer cell lines (41); breast cancer cell lines 21-PT, 21-MT, MDA-468, SK-BR3, and BT-474; primary lung squamous cell cancers from two patients (43), primary lung adenocarcinoma from one patient, and the A549 lung cancer cell line (43); primary melanomas from 3 patients; kidney epithelial cells lines from two patients with polycystic kidney disease; hemangiopericytomas from 5 patients; primary glioblastoma tumors from two patients; and the H392 glioblastoma cell line.

Isolation of polyadenylate RNA and the SAGE method for all tissues was performed as previously described (1, 12; see also U.S. Patents 5,866,330 and 5,695,937).

EXAMPLE 2

Data analysis

The SAGE software (12) was used to analyze raw sequence data and to identify a total of 3,668,175 SAGE tags. Of these, 171,346 tags (4.7%) corresponded to linker sequences and were removed from further analysis. The remaining 3,496,829 tags were derived from transcript sequences, but a small fraction of these contained sequencing errors. SAGE analysis of yeast (1), for which the entire genome sequence is known, demonstrated a sequencing error rate of ~0.7% per bp, translating to a tag error rate of 6.8% (1-0.993; 10), in accord with sequence errors measured in the current data set.

To provide as accurate an estimate of unique genes as possible, we accounted for sequencing errors in two ways. First, we only considered tags that occurred twice in the data set. Although this requirement might have removed legitimate transcript tags expressed at very low levels (less than approximately 0.2 copies per cell, or 2 copies in 3,496,829 transcript tags), it eliminated the majority of sequencing errors (172,276 tags).

Second, because of the size of the data set utilized, it was possible that the same

sequencing error in a given tag may be observed multiple times. To account for these, tags with expression levels high enough to give multiple redundant errors were analyzed for single base substitutions, insertions, and deletions. If the observed expression level of a tag did not exceed its expected incidence due to redundant errors by a factor of five, it was assumed to be the result of a repeated sequencing error. This identified and removed an additional 27,051 unique tags (156,174 total tags), a number very similar to estimates of multiple sequencing errors obtained by Monte Carlo simulations.

In total, these corrections amount to a sequencing error rate of approximately 9.4%, suggesting that our analyses more than fully accounted for sequencing errors and that the remaining 134,135 unique transcript tags represented a conservative accounting of legitimate transcripts.

Transcript tags were matched to known genes and ESTs by use of tables containing matching 10 bp transcript sequences, UniGene clusters, GenBank accession numbers, and functional descriptions downloaded from the **SAGEmap** web site (http://www.ncbi.nlm.nih.gov/SAGE) (Lal et al., in press) on Feb 23, 1999 (UniGene build 70, http://www.ncbi.nlm.nih.gov/UniGene), and the Microsoft Access software. As UniGene clusters numbers may change over time, the most recent tag to cluster mapping be obtained for can each transcript tag individually at http://www.ncbi.nlm.nih.gov/SAGE/SAGEtag.cgi, or for the entire data set at http://www.sagenet.org./transcriptome. A total of 37,534 distinct transcripts from the UniGene database contained polyadenylation signals or polyadenylated tails and matched the collection of SAGE transcript tags; these corresponded to 23,534 unique UniGene clusters.

Transcript abundance per cell was determined simply by dividing the observed number of tags for a given transcript by the total number of transcripts obtained. An estimate of about 300,000 transcripts per cell was used to convert the abundances to copies per cell (46). For tissue specific transcripts, only transcript tags expressed at nominally ≥ 10 transcript copies per cell were considered in order to normalize for tissues with fewer total tags analyzed.

The following transcript data from this analysis are available electronically at the

SAGEnet web site (http://www.sagenet.org/transcriptome) with the corresponding expression levels and UniGene descriptions: 134,135 unique transcript tags identified from 3.5 million total transcripts tags; 69,381 transcript tags identified from colon cancer cells; 217 transcripts that are exclusively expressed in colon epithelium, keratinocytes, breast epithelium, lung epithelium, melanocytes, kidney epithelium and cells from prostate and brain; 987 transcripts that were expressed in all tissues. Individual transcript libraries from a total of ~800,000 transcript tags from colon epithelium, normal brain, colon cancer, and brain cancer are available at the SAGEmap web site (http://www.ncbi.nlm.nih.gov/SAGE) (Lal et al., in press).

EXAMPLE 3

Estimation of the number of genes present in the human genome

The transcripts detected by SAGE provides an estimate of the number of genes present in the human genome. Historically, estimates of the number of unique genes in the genome have ranged from 60,000 to over 100,000 genes using analyses of EST clustering (15), frequency of genes in characterized genomic regions, frequency of CpG islands (16), and RNA-cDNA reassociation kinetics (4). If one were to assume that each unique transcript tag observed by SAGE corresponded to a unique gene, our data would indicate that there are approximately 134,000 genes in the human genome.

However, such an approach is likely to overestimate the number of unique genes in the genome, as distinct transcripts can be derived from a single gene. Multiple sites for polyadenylation (17), alternative splicing, premature transcriptional termination (18), as well as polymorphisms in the SAGE tag or nearby restriction endonuclease site could lead to multiple transcript tags for any one gene. An analysis of all publicly available 3' end-derived ESTs revealed that this was the case for many transcripts, and provided an estimate of the multiplicity of transcripts expected for individual genes. 37,534 distinct 3' transcripts containing polyadenylation signals or polyadenylated tails were observed to correspond to 23,534 unique UniGene clusters, an average 1.6 different transcripts per gene. Applying a similar calculation to our SAGE data would suggest that the 134,135 transcripts observed corresponded to 84,103 unique genes. As our SAGE data is by no

means a complete analysis of transcripts from all possible tissues, this estimate would provide a lower boundary for the number of unique genes in the genome. This figure is significantly higher than the 65,538 genes estimated from a clustering of 982,808 ESTs (UniGene Build 70) (15), and suggests that a substantial number of genes expressed at low levels may not be present in current EST databases.

EXAMPLE 4

Assessment of transcriptome complexity

Assessment of transcriptome complexity requires a relatively complete sampling of a transcriptome for the cell type under analysis. Human cells are thought to contain close to 300,000 mRNA molecules, and therefore an analysis of at least several hundred thousand transcripts would be needed. Approximately 350,000 and 300,000 transcripts were analyzed from DLD1 and HCT116 colorectal cancer cells, respectively. As these cancer cells are diploid, have similar genetic and phenotypic properties, and have very similar gene expression patterns (see below), transcript tags obtained from these cells were analyzed in combination as well as individually.

Analysis of either cell line afforded approximately a one fold coverage of the 300,000 mRNA molecules in a cell, while the combined set represented a two fold coverage even for mRNA molecules present at a single copy per cell. Measurement of ascertained new tags at increasing increments of tags indicated that the fraction of new transcripts from analysis of additional tags approached 0 at approximately 650,000 tags in the combined set (FIG. 1). This suggested that generation of further SAGE tags would yield few additional genes, and Monte Carlo simulations indicated that analysis of 643,283 tags would identify at least one tag for a given transcript 96% of the time if its expression level was at least two transcript copies per cell, and 83% of the time if its expression level was at least one transcript copy per cell.

The combined 643,283 transcript tags represented 69,381 unique transcripts, of which 44,174 corresponded to known genes or ESTs in the GenBank or UniGene databases while 25,207 represented previously undescribed transcripts (Table 2). Even when accounting for multiple unique transcripts per gene, these transcripts would represent at least 43,502

unique genes. This is substantially higher than the previous estimate of 15,000-25,000 expressed genes obtained by RNA-DNA reassociation kinetics in a variety of human cell types (4), and suggests that a significant fraction of the genome may be expressed in individual cell types. As the kinetics of reassociation of a particular class of RNA and cDNA may be affected by a number of experimental variables and may underestimate transcripts of low abundance (4), it is not surprising that our studies have detected a higher number of expressed genes than estimated by hybridization analysis in both human cells (Table 2) and yeast.

EXAMPLE 5

Expression levels of transcripts in colon cancer cells

Expression levels of transcripts in the colon cancer cell ranged from 0.5 to 2341 copies per cell. The 61 transcripts expressed at over 500 transcript copies per cell made up nearly 1/4 of the mRNA mass of the cell and the most highly expressed 623 genes accounted for ½ of the mRNA content. In contrast, the vast majority of unique transcripts were expressed at low levels, with just under 23% of the mRNA mass of the cell comprising 90% of the unique transcripts expressed (Table 2). A "virtual rot" analysis of the expressed transcripts identified a relatively continuous distribution of gene expression without markedly discrete abundance classes, similar to those observed in previous rot studies of human cancer cells (20) (FIG. 2).

The identities of the expressed genes reveal the diversity of expression of a human transcriptome (data available at http://www.sagenet.org./transcriptome). For example, highly expressed genes often encoded proteins important in protein synthesis, energy metabolism, cellular structure and certain tissue specific functions. Moderate and low abundance genes accounted for a multitude of cellular processes including protein modification enzymes, DNA replication machinery, cell surface receptors, components of signal transduction pathways and transcription factors as well as many other transcripts with currently unknown functions.

EXAMPLE 6

Differences in gene expression between different tissues

Differences in gene expression between different tissues may provide insights into the specialized processes underlying human physiology in normal and diseased states. In line with previous observations, overall gene expression patterns among the 19 different tissues analyzed were similar (examples in FIGS. 3A-3C). Changes in gene expression between physiologic states of a particular cell type or between patient samples of the same tissue were less than changes between cell types of different origins (FIGS. 3A-3C). Likewise, only a small fraction of transcripts was exclusively expressed in a particular normal or disease tissue. Detailed analyses of transcripts from epithelia of colon, breast, lung, and kidney, melanocytes, and cells from prostate and brain, identified transcripts that were nominally expressed at greater than 10 copies per cell in one tissue but not in any other tissue studied. The fraction of these tissue-specific transcripts ranged from 0.05% in normal prostate to 1.76% in normal colon epithelium (Table 3). Approximately 50% of these transcript tags matched known genes or ESTs (examples in Table 3 and data available at http://www.sagenet.org/transcriptome). Some of these transcripts identified genes already reported to be important for tissue specific processes. For example, brain specific transcripts such as GABA receptor, myelin basic protein, and synaptopodin are known to be important for synaptic transmission (21) formation and maintenance of the myelin sheath (22) and dendrite shape and motility (23), respectively. guanylin/uroguanylin (24), carbonic anhydrase 1 (25), and CDX2 (26) are known to be expressed in colonic epithelium. 5,6-dihydroxyindole-2-carboxylic acid oxidase has been shown to have an important role for normal melanocyte pigment synthesis (27), while expression of MART-1 and melastatin may have clinical implications for melanoma patients (28, 29). However, the vast majority of the tissue specific transcripts observed have not been previously reported in the literature and their roles in the tissues examined remain to be elucidated.

EXAMPLE 7

Minimal transcriptome

Nearly 1000 transcripts were detected that were expressed at 5 transcript copies per cell in every cell type analyzed. These expressed genes represent a view into the "minimal transcriptome," the set of genes expressed in all human cells. Such genes, listed in order their Table of uniformity of expression in (and available http://www.sagenet.org./transcriptome), largely represent well known constitutive or housekeeping genes thought to provide the molecular machinery necessary for basic functions of cellular life (4). Genes involved in DNA, RNA, protein, lipid and oligosaccharide biosynthesis as well as in energy metabolism were among those observed. Additionally, genes from other functional classes including structural proteins (e.g. dystroglycan and myosin light chain), signaling molecules (e.g. 14-3-3 proteins and MAPKK2), proteins with compartmentalized functions (e.g. lysosome-associated membrane glycoprotein and ER lumen retaining protein receptor 1), cell surface receptors (e.g. FGF receptor and STRL22 G protein coupled receptor), proteins involved in intracellular transport (e.g. syntaxin and alpha SNAP), membrane transporters (e.g. Na⁺/K⁺ ATPase and mitochondrial F1/F0 ATPase), and enzymes involved in post-translational modification and protein degradation (e.g. kinases, phosphatases and proteasome components) were observed and were not previously known to be ubiquitously expressed. Well known genes often used as experimental controls such glyceraldehyde 3-phosphate dehydrogenase, elongation factor 1 alpha, and gamma actin were observed but varied in expression as much as 6 fold among different cell types.

EXAMPLE 8

Genes involved in tumorigenesis

Genes that are uniformly expressed in cancers but expressed at lower levels in normal tissues may turn out to be important for tumorigenesis, and demonstrate how gene expression patterns might be useful in the analysis of disease states. We detected 40 genes that were expressed in all cancer tissues examined at levels 3 transcript copies per cell and whose expression was at least 2-fold higher in each cancer compared to its corresponding

normal tissue (Table 5). Four of these transcripts had no matches to known genes and 15 matched ESTs with no known function. Several of the highly induced transcripts provided tantalizing clues about their roles in tumorigenesis. For example, S100A4 has been thought to play a role in late stage tumorigenesis as it is overexpressed in colorectal adenocarcinomas but not adenomas (30), and its induction can promote (while its inhibition can prevent) metastasis in tumor models. Midkine, a heparin-binding growth factor has been reported to be overexpressed in certain cancers (34), to transform cells *in vitro* (35), and to promote tumor angiogenesis *in vivo*. Finally, overexpression of survivin, an IAP apoptosis inhibitor (37) has been recently shown to predict shorter survival rates in colorectal cancer patients and may carry out its antiapoptotic functions as a mitotic spindle checkpoint factor (39). The observed elevated expression of such genes in many tumor types indicates a potentially general role for these genes in tumorigenesis and suggests they may be useful as diagnostic markers or targets for therapeutic intervention.

EXAMPLE 9

Estimate of gene number

The 134,135 distinct transcripts identified in this study, corresponding to approximately 84,103 unique genes, provided an estimate of gene number substantially higher than the recent estimate (~65,000 genes) derived from extant EST clusters. What could account for the difference between these estimates, considering that both are derived from sequencing of transcripts from similar cell types? One explanation is that the clustering estimate is based on the number of observed EST clusters (62,236) divided by a measure of the completeness of the EST database. The latter value is calculated as the fraction of "characterized" genes in GenBank that already have EST matches (~95%). The characterized genes in GenBank have been assumed to be representative of the rest of the genes in the human genome, but our SAGE data indicated that their average expression was more than 10 fold higher than the mean levels of gene expression. Similarly, the number of ESTs that were present in clusters with characterized genes was approximately 12 fold higher than clusters composed entirely of ESTs. Such highly expressed genes would be more likely to be represented in transcript databases, thereby leading to an overestimation

of the completeness of the EST databases, and an underestimation of the number of unique genes. Indeed, the number of UniGene clusters continues to grow as a greater diversity of tissues is analyzed through the Cancer Genome Anatomy Project, and as of the date of submission of this manuscript already exceeds the recent EST derived estimate (71,849 gene clusters in Build 80 versus 65,538 predicted from Build 70).

Like other genome-wide analyses, studies of human transcriptomes using SAGE have several potential limitations. First, a small number of transcripts would be expected to lack the restriction enzyme site required to produce the 14 bp tags, and would therefore not be detected by our analyses (12). Second, our study was limited to the 19 tissues analyzed. Genes uniquely expressed in other tissues would not have been detected, and accordingly, genes observed to be tissue specific in our studies may turn out to be expressed in other normal or disease states. Finally, identification of genes corresponding to specific tags is mainly based on large but incomplete databases of ESTs and characterized genes. SAGE tags without matches to existing databases can directly be used to identify previously uncharacterized genes (1, 12, 40), but additional 3' EST data, as well as that of genomic regions would make gene identification more rapid.

REFERENCES

- 1. Velculescu et al., Cell 88, 243-251 (1997).
- 2. Pietu et al., Genome Res 9 195-209 (1999).
- 3. Wadman, Nature 398, 177 (1999).
- 4. Lewin, Gene Expression 2, 694-727 (1980).
- 5. Adams et al., Nature 377, 3 ff. (1995)
- 6. Okubo et al., DNA Res 1, 37-45 (1994).
- 7. Alwine et al. Proc Natl Acad Sci USA 74, 5350-5354 (1977).
- 8. Zinn et al. Cell 34, 865-879 (1983).
- 9. Veres et al. Science 237, 415-417 (1987).
- 10. Hedrick et al. Nature 308, 149-153 (1984).
- 11. Liang & Pardee, Science 257, 967-971 (1992).
- 12. Velculescu et al. Science 270, 484-487 (1995).
- 13. Kal et al., Mol Biol Cell 10, 1859-1872 (1999).
- 14. Basrai et al., NORF5/HUG1 is a component of the MEC1 mediated checkpoint response to DNA damage and replication arrest in S. cerevisiae. submitted.
- 15. Fields et al. Nat Genet 7, 345-346 (1994).
- 16. Antequera et al. Proc Natl Acad Sci USA 90 11995-11999 (1993).
- 17. Gautheret et al. Genome Res 8, 524-530 (1998).
- 18. Bouck et al. Trends Genet 15, 159-62 (1999).
- 19. Bentley & Groudine, Cell 53, 245-256 (1988).
- 20. Bishop et al. Nature 250, 199-204 (1974).
- 21. Mody et al. Trends Neurosci 17, 517-25 (1994).
- 22. Staugaitis et al. Bioessays 18, 13-18 (1996).
- 23. Mundel et al., J Cell Biol 139, 193-204 (1997).
- 24. Wiegand et al. FEBS Lett 311, 150-154 (1992).
- 25. Sowden et al. Differentiation 53, 67-74 (1993).
- 26. Suh & Traber, Mol Cell Biol 16, 619-625 (1996).
- 27. Blarzino et al., Free Radic Biol Med 26, 446-453 (1999).
- 28. Busam et al. Adv Anat Pathol 6, 12-18 (1999).

- 29. Duncan et al., Cancer Res 58, 1515-1520 (1998).
- 30. Takenage et al., Clin Cancer Res 3, 2309-2316 (1997).
- 31. Lloyd et al. Oncogene 17, 465-473 (1998).
- 32. Maelandsmo et al., Cancer Res 56, 5490-5498 (1996).
- 33. Muramatsu & Muramatsu, Biochem Biophy Res Commun 177, 652-658 (1991).
- 34. Tsutsui et al., Cancer Res 53, 1281-1285 (1993).
- 35. Kadomatsu et al., Br J Cancer 75, 354-359 (1997).
- 36. Choudhuri et al. Cancer Res. 57, 1814-1819 (1997).
- 37. Ambrosini et al. Nat Med 3, 917-921 (1997).
- 38. Kawasaki et al., Cancer Res 58, 5071-5074 (1998).
- 39. Li et al., Nature 396, 580-584 (1998).
- 40. Polyak et al. Nature 389, 300-304 (1997).
- 41. Zhang et al., Science 276, 1268-1272 (1997).
- 42. Boukam et al., J Cell Biol 106, 761-771 (1988).
- 43. Hibi et al., Cancer Res 58, 5690-5694 (1998).
- 44. Hermeking et al., Molecular Cell 1, 3-11 (1997).
- 45. He et al., Science 281, 1509-1512 (1998).
- 46. Hastie & Bishop, Cell 9, 761-774 (1976).
- 47. Agrawal et al., Trends Biotechnol. 10, 152-158 (1992)
- 48. Uhlmann et al., Chem. Rev. 90, 543-584 (1990)
- 49. Uhlmann et al., Tetrahedron. Lett. 215, 3539-3542 (1987)
- 50. Brown, Meth. Mol. Biol. 20, 1-8 (1994)
- 51. Sonveaux, Meth. Mol. Biol. 26, 1-72 (1994)
- 52. Uhlmann et al., Chem. Rev. 90, 543-583 (1990)
- 53. White & Bancroft, J. Biol. Chem. 257, 8569 (1982)
- 54. Sambrook et al., MOLECULAR CLONING. A LABORATORY MANUAL, 2d ed., pages 7.53-7.57 (1989)
- 55. Chee et al., Science 274, 610-14 (1996)
- 56. DeRisi et al., Nat. Genet. 14, 457-60 (1996)
- 57. Schena, Bioessays 18, 427-31 (1996)

WO 01/38577 PCT/US00/31922

- 58. Lockhart et al., Nature Biotechnology, 14 (1996)
- 59. Romanczuk et al., Hum. Gene. Ther. 10, 2615-26
- 60. Lanzov, Mol. Genet. Metab. 68, 276-82 (1999)
- 61. Lai & Lien, Exp. Nephrol. 7, 11-14 (1999)

Table 1. Tissues and transcript tags analyzed

Normal tissues	Libraries 1	Libraries Total Transcripts Unique Genes	Unique Ger
211.2	r	000	4,000
Colon epithellum	7	880'98	146,21
Keratinocytes ³	7	83,835	12,598
Breast epithelium ³	2	107,632	13,429
Lung epithelium ⁴	2	111,848	11,636
Melanocytes ³	2	110,631	14,824
Prostate ³	7	98,010	9,786
Monocytes ³	ო	66,673	9,504
Kidney epithelium ³	7	103,836	15,094
Chondrocytes ³	4	88,875	11,628
Cardiomyocytes ³	4	77,374	9,449
Brain ²	ო	202,448	23,580
Diseased Tissues			
Colon cancer ^{1,2,3}	22	1,004,509	56,153
Pancreatic cancer1	4	126,414	17,050
Breast cancer ³	5	226,630	18,685
Lung cancer*	5	221,302	22,783
Melanoma ³	2	269,332	25,600
Polycystic kidney disea	2	112,839	16,280
Hemangiopericytoma ³	ς.	199,985	31,351
Brain cancer ²	ო	186,567	23,108
Total	84	3,496,829	84,103

1 Ref. 40, 41, 44, 45 2 Lal et al. 3 unpublished 4 Ref. 43

Table 2. Transcript abundance

	Colon Ca	Colon Cancer Cells
Copies/Cell	Unique transcripts	Mass fraction mRNA (%)
>500 Match GenBank (%)	61 61 (100)	20
50 to 500 Match GenBank (%)	562 554 (99)	27
5 to 50 Match GenBank (%)	6,358 6,023 (95)	30
<=5 Match GenBank (%)	62,400 37,536 (60)	23
Total Match GenBank (%)	69,381 44,174 (64)	100

Table 3. Tissue-specific genes

Tag sequence	SEQ ID NO:	Observed C	opies/cell	Copies/cell Unigene Description
1,00% 1,				
ATACTCCACT	·-	141	431	Guanylate cyclase activator 2 (quanylin, intestinal, heat-stable)
TCAGCTGCAA	- 2	72	220	No match
GTCATCACCA	, m	57	174	H.saplens mRNA for GCAP-II/uroguanylin precursor
CCTTCAAATC	4	46	141	Carbonic anhydrase I
ACACCCATCA	'n	58	88	No match
CCAACACCAG	9	28	98	No match
AATAGITTCC	_	23	02	Pregnancy-specific beta-1 glycoprotein 6
CCAGGCGTCA	80	18	55	No match
GAACAGCTCA	о	18	55	ESTS
TACTCGGCCA	9	15	46	No match
'n	=	12	37	ESTs
AGTGGCTCA	12	11	34	No match
GAGCACCGTG	13	11	34	No match
GATCTATCCA	7	10	31	ESTS
GAACGCCAGA	5	တ	28	No match
GCCCTCGGAG	9	6	28	ESTs
ACAAGCCTAG	17	6	28	No match
GTCACAGGAA	18	6	28	No match
GCCTCGGAG	19	6	28	Human homeobox protein Cdx2 mRNA, complete cds
CTAGGATGAT	20	6	28	ESTS
CCAACTATCG	7	80	24	No match
CTGACGGGGA		60	24	ESTS
GAGGGTTTA	23	8	24	Homo saplens C19steroid specific UDP-glucuronosyltransferase mRNA, complete cds
GGGTCCCAT	75	8	24	No match
GCCAGGTCAC	52	7	21	No match
AGAACACCAA	56	7	21	No match
AATCCCGCCC	27	7	21	Homo sapiens hAQP8 mRNA for aquaporin 8, complete cds
ACACTGCCTC	58	9	18	No match
AGAGTCCAGG	58	ဖ	£	Homo sapiens carcinoembryonic antigen (CGM2) mRNA, complete cds
CCAGACGTAG	8	9	€.	No match
GAGGCCCCG	<u>ب</u>	9	-18	No match
CTGTGTGCCC	. 32	ß	15	ESTs, Weakly similar to tryptase-III [H.sapiens]
: 	33	တ	15	ESTS
GGCTGAACCA	34	2	15	No match
CCAAATCATT	35	S	15	No match
ACGCTGGGC	36	သ	15	No match
ACCTTCATCT	37	က	15	EST
AGGCTTGAG	38	'n	15	No match
ACCTTCATCT	66	S	15	Human rearranged metabotropic glutamate receptor type II (GLUR2) mRNA, complete cds
TCAGGCCAGA	. 64	2	15	No match
CTGTGTGCCC	4	5	15	ESTS

Table 3, cont.

Normal Brain (1.36)

44444444444444		42 5 15 Human RecA-like protein (hREC2) mRNA. complete cds	7	2015	5 15	5 15	, C	10	71	4 12	4	***	4		4 12	3	55 3 9 No match	m	3	3	6	3	200	2	2	3	9	6	6	3	3	3	6	3 No match	3	73 No match	74 3 No match	3	5		2	6	6	3	3		6	No match
----------------	--	--	---	------	------	------	-----	----	----	------	---	-----	---	--	------	---	-----------------	---	---	---	---	---	-----	---	---	---	---	---	---	---	---	---	---	------------	---	-------------	---------------	---	---	--	---	---	---	---	---	--	---	----------

ទូ
က်
함
Ω
O

	~	160	237	Glal fibrillary acidic protein
GTGCGAATCC	. 87	7.62	117	ESTS
:	. 88	36	53	ESTS
TTAACTITAT	68	33	49	Homo sapiens neuroendocrine-specific protein A (NSP) mRNA, complete cds
CAGCCAAATG	6	29	43	ESTS
GCCTGTGGTG	6	28	41	Homo sapiens LY6H mRNA, complete cds
	85	56	39	ESTS
	83	22	33	ESTs
ATTCCATTTC	76	20	30	ESTs
ATTCCATTIC	92	20	တ္ထ	ESTs, Highly similar to RAS-RELATED PROTEIN RAB-10 [Canis familians]
AGAGAGCGGA	96	19	28	Human guanine nucleotide-binding regulatory protein (Go-alpha) gene
TTCTCAATAC	26	19	28	Homo sapiens mRNA for synaptopodin
CATCCTCCA	. 66	19	28	No match
GTATCGATT	6	16	24	Homo sapiens GABA-B receptor mRNA, complete cds
TTGTAACAG	 	15	22	ESTs. Weakly similar to cyclin I (H.saplens)
COCCEPTE) -	.4	22	ESTS
		15	22	Homo sapiens chromosome 7022 sequence
	10.5	15	22	No match
	3			Human mRNA for MOBP (myelin-associated oligodendrocytic basic protein), complete cds,
T444000	104	<u> </u>	22	clone hOPRP1
TOOL SOOT			24	Limon gindleskide hindles regulator protein (Gualaba) gene
ACCAAICCIA	200	‡ ¢	10	AYONING DRECHESONS OF THE PROPERTY PROPERTY OF THE PROPERTY OF
0.00	90-	2		
TCAGACAATA	,0 L	12	2	
TGGTGAGATG	108	12	2	EDIS
ATTITIETT	109	12	18	ESTS
	110	12	18	Homo sapiens mRNA for MEGF4, partial cds
	11	17	16	Glutamate receptor, metabotropic 3
GTCCCACTTC	112	11	16	ESTs
4	=======================================	11	16	
TGACTCACCC	114	10	15	Homo sapiens calmodulin-stimulated phosphodiesterase PDE1B1 mRNA, complete cds
GACAGCGACA	115	10	15	No match
GGTGTACATA	116	9	15	ESTs
TAGCTATAAA	117	10	15	ESTs
GGTGTACATA	118	10	15	ESTS
БТТСАТТТ	119	10	15	ESTS
AATAAATTGC	120	9	15	ESTs
GTTTCATTTT	121	10	15	ESTS
ACACATTGTA	12	10	15	No match
TACCTATTGT	123	10	15	ESTS
TTTAGGAGAA	124	10	15	Homo saplens cyclin E2 mRNA, complete cds
TTTACCACAC	125	10	15	ESTS
CAATTTATGA	126	6	13	ESTS
GTGAAGGTTT	127		13	Homo sabiens (huc) mRNA, complete cds
TGGACTTTA	128	6	13	ESTs
CGATGCCACG	129	6	13	No match
	1			Neuron-specific RNA recognition motifs (RRMs)-containing protein (human, hippocampus,
GTGAAGGTTT	130	σ	13	mRNA, 1992 nt]

_
ទូ
Ō
٠.
m
₾
Ω
B

The second secon	Š		13	ESTE
(111111111111111111111111111111111111	5 5	ο:σ	2 (5)	No match
TOCATTOARG	133	6	13	Human clone 23586 mRNA sequence
CCTATGTATC	134	8	12	No match
ACGGACCAAT	135	80	12	
TATTATCTTG	136	80	12	ESTS
ACTITATACG	137	80	12	ESTS
	•		***********	IESTS, Weakly similar to EPIDERMAL GROWTH FACTOR RECEPTOR KINASE SUBSTRATE
2001	138	α	5	FDS8 (H sanjens)
ACT 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	2 6	· ·	1.0	PETAL NECOROLING ON THE PROPERTY OF THE PROPER
CGCAGICCCC	60	0	7	
TGTAGTGCTC	140	8	12	No match
CTGCTTAAGT	141	80	12	ESTs, Weakly similar to unknown (H.saplens)
ACAGTGGAA	142	8	12	Human mRNA for KIAA0027 gene, partial cds
			Ş	Home socione mBNA for KIAA0283 done hartlal cds
AA CCCAA G	?		2	יייין מבליניים ווויייין ייייין אייייין
ACTATGCATC	144	-	2	No match
i.	145	_	9	ESTS
TTACATTGTA	146	_	10	Homo saplens clone 24461 mRNA sequence
				ESTS. Highly similar to HYPOTHETICAL 52.2 KD PROTEIN ZK512.6 IN CHROMOSOME III
CHUCUCOTA	147	^	5	[Caenorhabditis elegans]
	•		2 5	C.T.
TITTATTCAT	148		2	E018
ACAGAGCATT	149	^	5	No match
TGACCAATAG	150	7	0	
	3 4		ç	Disetin 1 (soform)
AATCCCAAIG	į.		2	
(/8280 0) ==================================				
AFIGUROSTES (0.001 /8)	4	4	48	OBBHAN BECEDTOR TRA
GCGAACI GGG	70		2	No. of the state o
GCAACACTAA	153	7		NO maior
GTAATGGATT	<u>2</u>	က	=	No match
AGCAGACGTG	155	က	=	No match
Constitution (0.14%)				
CONTROLL CONTROL C	15.6	ď	17	No match
	2 4		7	COLUMN
10000000000000000000000000000000000000	2 4) 4		CN CONTRACTOR
10 AAC	8 5		<u> </u>	1000
GATCAGTCAT	128	4	=	NO MARCH
GCTCAGAGTT	160	4	-	No match
			···	
Lung epithellum (0.17%)	:			
TAACCTCCC	161	06	241	No match
A COA CAACT	55	9	4	No match
COLOCACO	2 5	> 4		STATE ON
99-00-099	3 3	0 4	2 9	10 H 20 H
TAGCAAATA	7 20 20	0	2	NO match
GCTGTGCACA	165	4	=	No match
CAGAAATCA	166	4	Ξ	No match

ខ
m
9
e

No match

167

Melanocyte (0.93%)				:
GTGCCATTCT	168	114	309	No match
GATATTGTC	169	04	108	5.6-DIHYDROXYINDOLE-2-CARBOXYLIC ACID UXIDASE PRECURSUR
TATGATTTTA	170	39	106	ESTs
TCACTGCAAC	171	27	73	6.6-DIHYDROXYINDOLE-2-CARBOXYLIC ACID OXIDASE PRECURSOR
CCCAGTCACA	172	21	57	ESTs, Weakly similar to LACTOSE PERMEASE (Escherichia coli)
				ESTS, Highly similar to HIGH AFFIMMUNOGLOBULIN GAMMA FC RECEPTOR I
TATGAGAACC	173	17	46	PRECURSOR [Homo sapiens]
	174	18	43	No match
CTCCACTCTG	175	15	41	No match
ATCCAGTGAC	176	14	38	No match
TGATCTTGAG	177	14	38	ESTs, Moderately similar to PAS protein 5 [H.saplens]
AATGGCTGTT	178	12	33	Human melanoma antigen recognized by T-cells (MART-1) mRNA
ATACTAAAAA	179	12	33	Human cysteine protease CPP32 Isoform alpha mRNA, complete cds
ATACTABABA	180	12	33	EST
GTTATTAAA	181	10	27	PROTEIN-TYROSINE PHOSPHATASE ZETA PRECURSOR
AGAAATCAGT	182	6	24	No match
TTGGATATTA	183	6	24	Homo sapiens clone 23785 mRNA sequence
				Human DNA sequence from PAC 257A7 on chromosome 6p24. Contains two unknown genes
AATTGAGTAG	184	О	24	and ESTs, STSs and a GSS
TOAGTGCTGC	185	6	24	No match
GCAGTACAGT	186	80	22	No match
GAATTCAGGA	187	7	19	Homo saplens mRNA for KIAA0679 protein, partial cds
GACTTCTTTA	188		19	No match
GAATTCAGGA	189	7	19	Homo sapiens melastatin 1 (MLSN1) mRNA, complete cds
GTTTATACTG	90	7	19	No match
	191		19	Homo sapiens mRNA for synaptosome associated protein of 23 kilodaltons, isoform A
GCCCGTGTAG	192	9	16	Msh (Drosophila) homeo box homolog 1 (formerly homeo box 7)
TGGGGTGTGC	193	9	16	Homo sapiens thyroid receptor Interactor (TRIPB) mRNA, 3' end of cds
AATTITIATG	194	2	14	Interferon regulatory factor 4
TCAGTGTCTG	195	2	14	ESTs
GGAGGTCAGC	196	S	14	ESTS
TTCTTCTCAA	197	2	14	ESTs
	198	5	4	ESTs
	199	: 50	14	ESTs, Weakly similar to line-1 protein ORF2 [H.sapiens]
Ĺ	200	2	14	No match
CACTATAGAA	201	2	14	No match
TTTGGTTACA	202	4	11	EST
	203	4	-1	Human R kappa B mRNA, complete cds
!	204	4	1	Homo sapiens clone 23688 mRNA sequence
TATAGAGCAA	205	4	11	No match
TAATAACCAG	206	4	-	No match
	207	4	-	No match
GGAATACGGC	208	4	Ξ	No match

Č	3	
	j	
9	9	
C	200	

Normal Kidney (0.27%)				
CGACAAACTA	211	4		No match
GTAGCACAGA	212	4		No ⊞atch
ACCGTCAATC	213	4		No match
TGGATCAGTC	214	4	12	Human mRNA for KIAA0259 gene, partial cds
тевстсевтс	215	4		EST
GCGACTGCGA	216	4		No match
GCACTAGCTG	217	က		No match
GCGGCGGTT	218	က		No match
	219			No match
GCCCACCTGT	22	С		No match
CGGCGGATGG	23	3		No match
CCCCAGGCCG	222			No match
CCCATTCCAA	223	· CO	6	No match
TCAAGAGGTG	224	9	6	No match
ATAACTGTTG	225		6	Human HFREP-1 mRNA for unknown protein, complete cds
			٠	
The second secon				
				. I I I II III III III III III III III
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
				A 1945 I A 1
AND THE PERSON NAMED IN COLUMN TO ADDRESS OF PERSONS AND PERSONS ASSESSED.				
:	:			The second secon
- -				
				A TRANSPORTED TO THE PROPERTY OF THE PROPERTY
				TO THE PARTY OF A PROPERTY OF A PROPERTY OF THE PROPERTY OF THE PARTY
				. Car
				AND THE PROPERTY OF THE PROPER
				DIGGO P. A CHARLES ON MARKADA MARKA
1				Lass as Time species manuscript contract of the contract of th
!				CALL THE STREET OF THE CALL CALL THE CALL CALL THE CALL CALL CALL CALL CALL CALL CALL CAL
	1			and grid () goods to lite or a state has been been anything companies to companies to contract the contract to the contract t
	***************************************			AND THE PROPERTY OF THE PROPER

Table 4. Ubiquitously expressed transcripts

	000					
	266	44	22	. 62	0.91	Human mRNA for KIAA0038 gene, partial cds
GGCAAGCCA	267	27	÷		1.00	STEROID HORMONE RECEPTOR ERR1
ATTCAGCACC	268	53	=		1.03	ESTs, Highly similar to signal peptidase:SUBUNIT=12kD
ПЕПАПЕС	569	15	Ф	. 21	1.04	Annexin VII (synexin)
ACAGGGTGAC	270	115	47	. 165	5 1.04	Homo sapiens mRNA for EDF-1 protein
GCTTCCATCT	27.1	39		. 58	_	H.saplens BAT1 mRNA for nuclear RNA helicase (DEAD family)
GCTTCCATCT	272	39	11	. 58	_	BB1=malignant cell expression-enhanced gene/tumor progression-enhanced gene
GAGGGTGGCG	273	21	G)	. 32	1.08	Human DR-nm23 mRNA, complete cds
GCAGGGTGGG	274	88	15	. 53	-	V-akt murine thymoma viral oncogene homolog 2
AGCCCTCCCT	275	85	42	. 138	-	Homo saplens autoantigen p542 mRNA, complete cds
GCCATAG	276	51	ď	. 22	1.12	Human mRNA for YSK1, complete cds
стесететес	277	8	Φ	. 32	1.13	ESTs
TGTAGTTTGA	278	4	7	. 62	1.14	Transcription elongation factor B (SIII), polypeptide 1-like
GGGCTGTGG	279	‡	Φ	. 21	1.15	Human TFIIIC Box B-binding subunit mRNA, complete cds
						Homo sapiens mRNA for smallest subunit of ubiquinol-cytochrome c reductase, complete
GGGCTGTGG	280	=	•	. 2	1.15	cds
CACGCAATGC	281	111	53	. 182	2 1.17	Human homolog of Drosophila enhancer of split m9/m10 mRNA, complete cds
CTCACACATT	282	64	8	. 78	1.18	LYSOSOME-ASSOCIATED MEMBRANE GLYCOPROTEIN 1 PRECURSOR
CAAATGAGGA	283	38	ŧ.	. 58	_	Neuroblastoma RAS viral (v-ras) oncogene homolog
TGTAAGTCTG	284	21	8	. 33	1.19	Human p62 mRNA, complete cds
ACCAAGGAGG	285	8	52		_	ESTS
ACCAAGGAGG	286	63	52		_	DNA-DIRECTED RNA POLYMERASE II 23 KD POLYPEPTIDE
AGGAGG	287	63	52	- 100	_	Human mRNA for transcription elongation factor S-II, hS-II-T1, complete cds
TGAGGCAGGG	288	17	,	. 27	-	Syntaxin 5A
TCCACGCACC	289	39	<u>‡</u>	. 61	-	ESTs
TAGGGCAATC	290	40	7	. 62	•	H.sapiens mRNA for SMT3B protein
GGTAGCCTGG	291	63	52	. 98	_	Damage-specific DNA binding protein 1 (127 kD)
TCAACAGCCA	292	7	90		-	Human translation initiation factor 3 47 kDa subunit mRNA, complete cds
CTCTGTGTGG	293	18	~	£	-	Homo saplens EB1 mRNA, complete cds
CCTATTTACT	294	115	54	. 193		Cytochrome c oxidase subunit IV
TGCATCTGGT	295	104	32	. 162	-	78 KD GLUCOSE REGULATED PROTEIN PRECURSOR
GCTCTCTATG	296	72	5		-	H.sapiens mRNA for rat translocon-associated protein delta homolog
GAAGGCATCC	297	99	16	. 64	•	PROBABLE 26S PROTEASE SUBUNIT TBP-1
CCACTCCTCA	298	89	6	. 93	•	DEFENDER AGAINST CELL DEATH 1
GCTGTCATCA	299	31	æ	. 47	_	26S PROTEASE REGULATORY SUBUNIT 4
CGGCTGGTGA	300	ß	54	. 105	-	Proteasome component C5
AAGCCAGGAC	301	65	92	. 110	_	Homo sapiens chromosome 19, cosmid R32469
TGAGAGGGTG	302	32	15	. 57	-	14-3-3 PROTEIN TAU
GCGTGATCCT	303	ន	₽		-	ALCOHOL DEHYDROGENASE
CTGCCAACTT	304	5	Ξ	. 78	_	COFILIN, NON-MUSCLE ISOFORM
CCAAACGTGT	305	148	28	. 254	-	HISTONE H3.3
GCGGGAGGGC	306	45	42	. 72	-	ADP-RIBOSYLATION FACTOR-LIKE PROTEIN 2
GGCCAGCCCT	307	02	20		1.34	ESTS

_:
Ξ
ទូ
O
٩.
-
훓
ᅐ
╗

GGCCAGCCCT	308	0,	2		=	1.34	
TGGGCAAAGC	309	608	189		1014	1.36	Translation elongation factor 1 gamma
GCAAAACCAG	310	ጼ	5 5		25	1.36	Human mkna for kidaduuz gene, complete cus
ACLIACCIGC	34.5	<u>)</u> :	3 :		2.3	36	INST.8
TOCTACTOCT	313	, E	: ~		33	38	Surfeit
GACGACACGA	314	401	۲.		618	1.37	Ribosomal protein S28
CAAGTGGCAA	315	€	'n			1.37	Homo sapiens Grf40 adaptor protein (Grf40) mRNA, complete cds
TACTCTTGGC	316	72	16		=	1.37	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN L
GACTGTGCCA	317	57	5		118	1.37	Human cytoplasmic dynein light chain 1 (hdlc1) mRNA, complete cds
TTGCCGGTTA	318	. 61	æ		ಸ	1:37	Homo sapiens clone 24592 mRNA sequence
CATTGCAGGA	319	<u>\$</u>	٤n		55	1.38	Homo sapiens Chromosome 16 BAC clone CIT987SK-A-152E5
CAGGAACGGG	320	46	58		159	1.38	DUAL SPECIFICITY MITOGEN-ACTIVATED PROTEIN KINASE KINASE 2
AATAGGTCCA	321	219	2		37.1	1.40	Ribosomal protein S25
ACCTCAGGAA	322	67	33		128	1,41	Human high density lipoprotein binding protein (HBP) mRNA, complete cds
ATGACTCAAG	323	58	12		48	1.4	Human mRNA for protein tyrosine phosphatase (PTP-BAS, type 2), complete cds
ATGACTCAAG	324	56	7		48	1.41	Homo sapiens mRNA, chromosome 1 specific transcript KIAA0488
GCCTCTGCCA	325	56	7		48	1.41	Human mRNA for KIAA0272 gene, partial cds
TGCTTGTCCC	326	62	52		112	1.42	ADP-ribosylation factor 1
GGTGGCACTC	327	112	7		199	1.42	Aplysia ras-related homolog 12
GGGCTGGGGT	328	629	168		1102	1.42	H.sapiens mRNA for ribosomal protein L29
GGCTGGGGT	329	659	168		1102	1 42	Homo sapiens sperm acrosomal protein mRNA, complete cds
CACAAACGGT	330	844	252		1449	1.42	HOUS KIBUSUMAL PROTEIN 52/
	131	ŧ	:		98	1 42	The septence of the carter of
GTGACTGCCA	332	S 89	ត		69	1.42	DPH2L=candidate tumor suppressor gene (ovarian cancer critical region of deletion)
GTGACTGCCA	333	88	ž		69	1.42	Homo sapiens clone 24722 unknown mRNA, partial cds
AAGACAGTGG	334	678	222		1190	1.43	Ribosomal protein L37a
SGCTGCAA	335	98	24		147	1.43	Cytochrome c oxidase subunit Vb
ACCGGGAGGT	336	6	vo		30	1.43	Human DNA from chromosome 19-specific cosmid R27090, genomic sequence
ATGGAGACTT	337	56	€		46	1.43	Homo sapiens citrate synthase mRNA, complete cds
CAGCTCATCT	338	9	1,		74	1.44	Homo sapiens hJTB mRNA, complete cds
ACGTGGTGAT	339	25	60		26	1.44	ESTs, Highly similar to LEYDIG CELL TUMOR 10 KD PROTEIN [Kattus norvegicus]
GCGGTGAGGT	340	37	65		62	1.44	Homo sapiens small glutamine-rich tetratricopeptide repeat (TPR) containing protein
GTGGCACACG	341	105	5		176	1.44	Eukaryotic translation initiation factor 3 (eIF-3) p36 subunit
GTGACACAC	342	45	Ξ		7	1.45	Voltage-dependent anion channel 1
CTGCTATACG	343	226	2		396	1.45	Ribosomal protein L5
ACTGGCTGCT	344	27	9		S,	1.46	ESTS
GGAAGCACGG	345	S	16		93	1.46	Human antisecretory factor-1 mRNA, complete cds
GGAAGCACGG	346	53	9		83	1.46	Tag matches nbosomal RNA sequence
CTGTTGGTGA	347	295	88	•	516	1.46	
TCAGATCTTT	348	358	141		663	1.46	Ribosomal protein S4, X-linked
-							Homo sapiens NADH:ubiquinone dehydrogenase 51 kDa subunit (NDUFV1) mRNA,
TGGAATGCTG	349	87	37		151	1.46	nuclear gene encoding mitochondrial protein, complete cds
TAAGGAGCTG	350	289	Z	٠	493	1.46	Ribosomal protein S26

							GCN5-like 1=GCN5 homolog/putative regulator of transcriptional activation (clone
GCACCATTG	352	\$	-		74	1.46	GCN5L1}
SCTGGTTCC	353	443	171		952	1.46	Homo sapiens ribosomal protein L11 mRNA, complete cds
Secercess	354	62	5		105	1.46	ESTs
TCGAGGAGG	355	43	9		7.3	1.47	Human ribosomal protein L23-related mRNA, complete cds
гестст	356	1233	363		2177	1.47	60S RIBOSOMAL PROTEIN L41
CCTGGCAT	357	15	vo		27	1.47	Heterogeneous nuclear ribonucleoprotein K
зевестест	. 358	-	80		23	1.47	ESTS
SGGCTGCT	359	Ξ	9		23	1.47	Human lysyl oxidase-related protein (WS9-14) mRNA, complete cds
CACCCGAA	360	109	7		174	1.48	Testis enhanced gene transcript
TGCTAGGAA	361	. 21	0		9	1.48	H.sapiens mRNA for TRAMP protein
ACTGCGGCA	362	51	۷		39	1.48	
SGAGTGGAG	363	134	8		254	1.48	Human guanylate kinase (GUK1) mRNA, complete cds
SAAGGAGCC	364	107	33		191	1.48	ATP SYNTHASE LIPID-BINDING PROTEIN P2 PRECURSOR
GGGACTGAA	365	11	24		138	1.48	Homo sapiens mRNA for low motecular mass ubliquinone-binding protein, complete cds
GCACGTTTT	366	526	196		979	1.49	Human mRNA for antileukoprotease (ALP) from cervix uterus
TGGATGCCG	367	33	Ξ		29	1.49	Radin blood group
CCCCTCGTG	368	54	80	:	44	1.49	Adrenergic, beta, receptor kinase 1
TGATGCGGT	369	Ţ	5		74	1.49	Cytoplasmic antiproteinase=38 kda intracellular serine proteinase inhibitor
TTCTCCAGT	370	356	98	•	618	1.50	Ribosomal protein L17
CCCAGTTGC	371	219	8	•	418	1.50	Calpain, small polypeptide
CAAGGATTG	372	23	9		38	1.50	Solute carrier family 5 (sodium/glucose cotransporter), member 2
ACCGAGGTG	373	52	9		£3	1.50	
ACTCTCTCA	374	13	up.		25	1.50	
ACTCTGGGA	375	24	9		37	1.51	ESTs, Moderately similar to T13H5.2 [C.elegans]
ACTCTGGGA	376	21	ø		37	1.51	
SCCCCGGTG	377	207	2		368	1.51	Chromosome 16 BAC clone CIT987SK-A-761H5
CAGAACAGA	378	361	119		999	1.52	60S RIBOSOMAL PROTEIN L30
CAGAACAGA	379	361	119		999	1.52	
Germinge	380	28	49		43	1.52	Homo saplens acyl-protein thioesterase mRNA, complete cds
TTTGTACA	381	38	ţ		71	1.52	ER LUMEN PROTEIN RETAINING RECEPTOR 1
TTCTCCCAC	382	65	24		122	1.52	ESTs, Highly similar to PROTEIN TRANSPORT PROTEIN SEC61 ALPHA SUBUNIT
ACCCTGCCC	383	192	ဗ္ဂ		323	1.52	Human FK-506 binding protein homologue (FKBP38) mRNA, complete cds
CCCCCTTG	384	49	92		91	1.52	Homo sapiens (clone mf.18) RNA polymerase II mRNA, complete cds
STGCTGGAG	385	54	80		45	1.53	Homo saplens mRNA for putalive methyltransferase
TACCTCCTT	386	78	77		141	1.53	Homo sapiens 3-phosphoglycerate dehydrogenase mRNA, complete cds
AACCAGGGC	387	18	S		33	1.53	ESTS
тстевствс	388	98	=		141	1.53	rotein l
тстеестес	386	8	£		141	1.53	Human BAC clone RG114A06 from 7q31
TTCTCACCG	390	ន	80		58	1.54	Ubiquitin-conjugating enzyme E2I (homologous to yeast UBC9)
AGAACCGTA	391	49	13		87	<u>7</u> .	ESTs, Moderately similar to regulatory protein
CGACCGTCA	392	658	51		9201	1.56	
TCAAGACCA	393	28	Ξ		25	1.56	(Adaptin, beta 1 (beta prime)
TGGGTCTCC	394	42	7		78	1.56	60S RIBOSOMAL PROTEIN L13
GATTCTGGA	395	27	Ξ		53	1.56	į
AGGAGGAGT	396	2	19		132	1.56	PROBABLE PROTEIN DISULFIDE ISOMERASE ER-60 PRECURSOR
AAAATCAGG	397	‡	5			1.56	

_:
ξ
8
4
ē
유

CTGGGTTAAT	398	615	116	. 108	1.57	40S RIBOSOMAL PROTEIN S19
· · · · · · · · · · · · · · · · · · ·						Hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-
TTTCTGCTG	399	8	Ф	9	-	Coenzyme A hydratase (trifunctional protein), beta subunit
CCCTGGCAAT	400	8	2	6	1.57	ESTS
AGGCTACGGA	401	807	199	. 14	1.58	60S RIBOSOMAL PROTEIN L13A
GAGGCCATCC	402	23	60		-	Homo sapiens chromosome 19, cosmid R30783
СТТСАТСТТ	403	56	Ξ	un ,	52 1.58	Homo saplens mRNA for NORI-1, complete cds FSTs. Waakly similar to MALONYL COA-ACYL CARRIER PROTEIN TRANSACYLASE
TTGGACCTGG	404	113	53	×	1.58	
TTGGACCTGG	405	5 5	3 8	. *		ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit
GTTCGTGCCA	406	213	3		•	Ribosomal protein L35a
GATGCTGCCA	407	154	8		_	Human mRNA for Epstein-Barr virus small RNAs (EBERs)associated protein (EAP)
ACGGCTCCGA	408	27	60		•	ESTs
GAGTCAGGAG	409	29	80	•	63 1.59	ESTs, Highly similar to COATOMER ZETA SUBUNIT [Bos taurus]
GGAGGCTGAG	410	8	33	÷	•	Homo sapiens mRNA for KIAA0792 protein, complete cds
GGAGGCTGAG	411	8	37		•	Homo saplens putative fatty acid desaturase MLD mRNA, complete cds
GTGATGGTGT	412	75	24	÷	143 1.59	Thyroid autoantigen 70kD (Ku antigen)
TCAGATGGCG	413	45	9		1.59	Homo saplens hD54+ins2 isoform (hD54) mRNA, complete cds
ATGCGAAAGG	414	32	6	٠,	59 1.59	Dodecenoyi-Coenzyme A delta Isomerase (3,2 trans-enoyi-Coenzyme A isomerase)
						ESTS, Highly similar to NADH-UBIQUINONE OXIDOREDUCTASE ASHI SUBUNIT
тестееетее	415	49	58	÷	1.60	PRECURSOR (Bos taurus)
тестесетес	416	87	58	-	133 1.60	Homo sapiens folylpolyglutamate synthetase mRNA, complete cds
TCAAATGCAT	417	37	o	9	1,60	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEINS C1/C2
TCCAAGGAAG	418	13	ĸ		28 1.60	Homo saplens DBI-related protein mRNA, complete cds
						Homo saplens chaperonin containing t-complex polypeptide 1, delta subunit (Cctd)
CCCAGGGAGA	419	64	Ξ		1.60	mRNA, complete cds
тевсствссс	420	35	ā	-	1.60	ESTS
Тевсствссс	421	5. 4.	õ	÷		ESTs, Moderately similar to PEANUT PROTEIN [Drosophila melanogaster]
GGCCAAAGGC	422	38	=		77 1.60	Human mRNA for KIAA0064 gene, complete cds
GECCTECTEC	423	69	5			ESTs, Highly similar to C10 (H.saplens)
						ESTS, Highly similar to HYPOTHETICAL 6.3 KD PROTEIN ZK652.2 IN CHROMOSOME
GTGAAGCTGA	424	22	٧	•	•	III (Caenorhabdilis elegans)
GTGAAGCTGA	425	22	7	•		ESTs, Highly similar to thymic epithelial cell surface antigen (M.musculus)
GAAATGTAAG	426	20	12		93 1.62	ESTS
GAAATGTAAG	427	8	12		•	H.sapiens hnRNP-E2 mRNA
CGTGTTAATG	428	73	5		•	CELLULAR NUCLEIC ACID BINDING PROTEIN
AGGGGATTCC	429	6	ø	•	-	Human arginine-rich protein (ARP) gene, complete cds
CAGCTCACTG	430	186	23	ຕ	326 1.63	Homo sapiens CAG-isl 7 mRNA, complete cds
GTTTGGCAGT	431	35	5		70 1.63	Homo sapiens mRNA for EDF-1 protein
						ESTs, Moderately similar to NADH-UBIQUINONE OXIDOREDUCTASE B15 SUBUNIT
GGAGCTCTGT	432	84	5		92 1.63	(Bos taurus)
TGGAACTGTG	433	22	ĸ	•	•	ESTS, Weakly similar to IIII ALU SUBFAMILY SU WAKNING EN I KY IIII (II Sapiens)
TCTGCTTACA	434	58	₽		114 1.63	Human ribosomal protein L 10 mRNA, complete cds
			•		i	UBIQUINOL-CYTOCHROME C REDOCTASE COMPLEX SOBONITY NEGOTING
AGGCCTTCCA	435	643	202	<u>ت</u>		PROTEIN
GAGCAAACGG	436	2	w			Homo saplens chromosome 19, cosmid K26445
TGTGATCAGA	437	88	27		171 1.64	Homo sapiens F1F0-type ATP synthase subunit g mKNA, complete cos

ESTs, Weakly similar to putative progesterone binding protein [H.sapiens]	11.34 July 11 III. 12 III. 13 III. 13 III. 14 III. 15	Fore Westly similar to PAH10 & one product (C. plegans)	Ecra, really aming or region professes complete and	Human translation initiation factor eIF3 p40 subunit mRNA, complete cds	MSCACSI AHG IA TIMI BLIS YOUR BEALL ATORY STUDIES IN TORONO WITH THE PROPERTY OF THE PROPERTY	PROTEIN PRODUPLIANTE TITAL SOLD ON SUBGRILL ALTER SOLD ON	Human clathrin assembly protein 50 (AP50) mRNA, complete cds	ATP synthase, n+ transporting, mitographen r i complex, o second (oilgoinyen)	sensitivity conferring protein)	ESTS		ADENYLYL CYCLASE-ASSOCIATED PROTEIN 1	Heterogeneous nuclear ribonucleoprotein A1	40S RIBOSOMAL PROTEIN S20	ESTS	Proteasome (prosome, macropain) subunit, beta type, б	Calcineurin B	ESTS, Highly similar to HYPOTHETICAL 38.2 KD PROTEIN IN BEMZ-SPT2	INTERGENIC REGION (Saccharomyces cerevisiae)	Human mRNA for KIAA0315 gene, partial cds	Human p97 mRNA, complete cds	Human ribosomal protein L10 mRNA, complete cds	0S RIBOSOMAL PROTEIN L36 [Rattus norvegicus]	ADP-ribosylation factor 5	xin	ESTS	CURSOR		ESTS, Weakly similar to HYPOTHETICAL 21.5 KD PROTEIN IN SEC15-SAP4	IN ENGENIO AEGION (S.Celeviside)	TOUGHT ATIONALLY CONTROLLED THIMOR PROTEIN	Human mitochondrial ATP synthase subunit 9, P3 gene copy, mRNA, nuclear gene	encoding mitochondriat protein, complete cds	ESTS		al protein L33-like protein mRNA, complete cds		Human mRNA for reticulocalbin, complete cds	Hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/encyl-	Coenzyme A hydratase (trifunctional protein), alpha subunit	Homo sapiens SPF31 (SPF31) mRNA, complete cds	Human hASNA-I mRNA, complete cds	Homo saplens clone 24775 mRNA sequence
1.64	 	9. 4.	5 4	. 69.	4	0.00	1.65	,	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.67		1.67	1.67	1.67	1.67	1.68	1.68	1.68	1.68	1.68	1.69		80.		3	1.70	1.70	1.70	1.70	1.70	1.70		1.70	1.70	1.71	1.71
99 9	2 1	25 25	2 8	94	;	8	92		8	46	824	95	276	312	28	118	107		46	86	99	599	948	8	48	36	83	98	ļ	47	8 9	ē	187	38	136	35	722	5		83	S	64	5
•	•	•	•			•	•		•	•		•	•		٠	•	•		٠	•	•	•		•	•	•	•			•	•			•	•	•		•		•	•	•	•
φ;	7 '	n;	2 (D 🕇	'	00	=		5	•	119	16	49	2	Ф	2	13		8	7	12	73	162	60	u)	ß	ĸ	47		c o :	F 8	,	23	•		6	88	9		7	S	2	_
37	19	9 t	, i	č 3	:	4	84		9	23	425	94	137	171	£	57	95		23	5	8	314	469	31	8	18	7	47	,	5 5	£ 8	76	g,	+	75	18	374	27		7	16	35	±
438	954	0 4 4	- 5	443	;	444	445	•	446	447	448	449	450	451	452	453	454		455	456	457	458	459	460	461	462	463	464 464	ţ	0 0 0 0	400	ò	468	469	470	471	472	473		474	475	476	477
ACACTACGGG	AGCCAAAAAA	000000000000000000000000000000000000000	TIGG AGAGG	AACTCTTGAA		GICTGACCCC	ATGTCATCAA		TCTGTCAAGA	GCCCAGCGA	GGCAAGCCCC	CTCATCAGCT	CTGTTGATTG	GCTTTTAAGG	GCCTGAGCCT	GAGCGGGATG	TTCACAGTGG		GCCGTGCCA	CCCTAGGTTG	CCCTGATTTT	GTGTTAACCA	AGGAAAGCTG	TCTCTCTGT	TTACTAAATG	GGGTGTGGTG	CCACTGCAGT	AGCCTGGACT		G1666616AC	いというというと	00000	GGAATGTACG	CTGAGGGTGG	AAGGTCGAGC	GAATCACTGC	ACATCATCGA	GAATGAGGAC		CCTCGCTCAG	TCCTAGCCTG	AGGTGCGGG	CTCCAATAAA

ç	ì
`	
4	Ì
9	
2	

GCGCTGGAGT AATTTGCAAC AACGCGGCCA	7.0		23	147	77	[] Pladane
AATTTGCAAC AACGCGGCCA	6/4			È	:	(Celegaris)
AACGCGGCCA	479	. 5	10	9	1.71	Homo sapiens histone macroH2A1.2 mRNA, complete cds
	480	_	. 22	790	1.71	Macrophage migration inhibitory factor
GGTGTATATG	481			45	1.71	Homo sapiens chromosome 9, P1 clone 11659
GGCAACAAAA	482			89	1.71	Human (clone E5.1) RNA-binding protein mRNA, complete cds
GGCAACAAAA	483			99	1.71	
TTTGTGACTG	484	28	£.	62	1.71	Homo sapiens phosphoprotein CtBP mRNA, complete cds
ATGAGGCCGG	485	23		47	1.72	Nomaich
	•					Human HS1 binding protein HAX-1 mRNA, nuclear gene encoding mitochondrial protein,
TCAGTTTGTC	486	39	15	6	1.72	complete cds
CCCTATTAAG	487	69	₽.	129	1.72	
TITCTAGTIT	488		. 28	123	1.72	Human mRNA for KIAA0108 gene, complete cds
GGCCCTTCC	489	20		â	1.72	Homo saplens clone 24684 mRNA sequence
GGCCCTTCC	490			Ş	1.72	Fibulin 1
ссттевтт	491			47	1.72	Homo sapiens DNA-binding protein (CROC-1B) mRNA, complete cds
GCTAAGGAGA	492		21	181	1.72	Human ras-related C3 botulinum toxin substrate (rac) mRNA, complete cds
TGAGGGTGA	493			8	1.72	Human Gps1 (GPS1) mRNA, complete cds
CCAGCTGCCA	494	63	19	128	1.73	Ubiquitin activating enzyme E1
зесстетте	495	16		8	1.73	
TGGACACAAG	496	6		38	1.73	Arginyl-tRNA synthetase
TCTCCAGGAA	497	44	12 .	89	1.73	ESTs, Weakly similar to PUTATIVE MITOCHONDRIAL CARRIER C16C10.1 [C.elegans]
TGATGTTTGA	498	24		6	1.73	Human mRNA for KIAA0058 gene, complete cds
GTGGTGCACG	499		£.	155	1.73	No match
GTCTGCACCT	200	32		3	1.73	ESTs, Weakly similar to NUCLEAR PROTEIN SNF7 (Saccharomyces cerevisiae)
GATGACCCCG	501		=	89	1.73	ESTs, Weakly similar to F08G12.1 [C.elegans]
ATCAAGGGTG	202			484	1.73	Ribosomal protein L9
TCTGGTCTGG	503		12	72	1.74	Human surface antigen mRNA, complete cds
AGGATGACCC	504			79	1.74	ESTs, Weakly similar to ion channel homolog RIC (M.musculus)
AAAGGGGGCA	505			88	1.74	H.sapiens mRNA for activin beta-C chain
GGCTTTACCC	506	178	. 99	365	1.74	Eukaryotic translation initiation factor 5A
GCTTTTAGA	507		₽.	78	1.74	nplete cds
ctctgctcgg	508	1 8		37	1.74	Homo sapiens clone 638 unknown mRNA, complete sequence
GCCTGGGACT	509		. 28	5	1.74	ESTs
GGTAGCAGGG	510	æ		8	1.74	
GCCGATCCTC	511	31		6	1.74	Homo sapiens cofactor A protein mRNA, complete cds
GCAGCTCAGG	512	80	. 51	5	1.74	Cathepsin D (iysosomal aspartyl protease)
CGCAGTGTCC	513	118	8	225	1.75	Vacuolar H+ ATPase proton channel subunit
CCCCTATTAA	514	62	. 61	121	1.75	:
TTGTAAAAGG	515	23		47	1,75	Homo sapiens chromosome 9, P1 clone 11659
CCACACCGGT	516	17	9	36	1.75	Heme oxygenase (decycling) 2
						Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), beta
CCTGGAAGAG	517	192	. 99	398	1.75	polypeptide (protein disulfide isomerase; thyroid hormone binding protein p55)
TAGCCGCTGA	518	37		72	1.75	Homo sapiens alpha SNAP mRNA, complete cds
CCTAGGACCT	519	10		33	1.75	Homo saplens Arp2/3 protein complex subunit p20-Arc (ARC20) mRNA, complete cds
GTGGACCCTG	520	28		Z	1.75	Surfeit 1

\boldsymbol{c}
О
ខ្ល
-
4
Φ
五
g

ESTs Weakly similar to R05G6 4 nene product iC elegans	Isoleucine-IRNA synthetase	ESTS	Homo sapiens nuclear chloride ion channel protein (NCC27) mRNA, complete cds	[ESTs, Weakly similar to Yel007c-ap [S.cerevisiae]	ESTS	ESTs, Weakly similar to alpha 2,6-sialytransferase (R.norvegicus)	Sorbitol dehydrogenase	LAMINA	ESTs, Highly similar to SEX-REGULATED PROTEIN JANUS-A [Orosophila	melanogaster]	MYOSIN LIGHT CHAIN ALKALI, SMOOTH-MUSCLE ISOFORM	ESTs, Highly similar to NADH-UBIQUINONE OXIDOREDUCTASE SUBUNIT B14.5A	[Bos taurus]	Eukaryotic translation initiation factor 4A (eIF-4A) isoform 1	Homo sapiens mRNA for RanBPM, complete cds	Protein phosphatase 1, catalytic subunit, alpha isoform	ESTS	Homo sapiens mRNA for Hrs, complete cds	Homo sapiens Bruton's tyrosine kinase (BTK), alpha-D-galactosidase A (GLA), L44-like	ribosomal protein (L44L) and FTP3 (FTP3) genes, complete cds	ESTs, Weakly similar to F49C12.12 (C.elegans)		SM22-ALPHA HOMOLOG	Human mRNA for 26S proteasome subunit p97, complete cds	H.saplens alpha NAC mRNA	Glycyl-tRNA synthetase	60S RIBOSOMAL PROTEIN L13	ESTs, Weakly similar to SEX-DETERMINING TRANSFORMER PROTEIN 1	[Caenorhabditis elegans]	Human SnRNP core protein Sm D2 mRNA, complete cds	Human enhancer of rudimentary homolog mRNA, complete cds	Human myosin regulatory light chain mRNA, complete cds	ESTS	Human calmodulin mRNA, complete cds		ESTs, Highly similar to ALPHA-ADAPTIN [Mus musculus]	ESTs, Weakly similar to similar to oxysterol-binding proteins: partial CDS (C.elegans)	Homo sapiens mRNA for putative seven transmembrane domain protein	H.sapiens mRNA for mediator of receptor-induced toxicity	•	ESTs, Weakly similar to transmembrane protein [H.sapiens]	ESTS	ESTS, Highly similar to GLUTATHIONE S-TRANSFERASE, MITOCHONDRIAL (Rattus	norvegicus)	Ribosomal protein L21	RNA-BINDING PROTEIN FUS/TLS
1.75	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.77		1.77	1.77		1.77	1.77	1.77	1.77	1.78	1.78		1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78		1.78	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.80	1.80	1.80		8.	8	.80
	8	49	225	23	61	47	47	t72		78	1031		75	351	ñ	113	ę	64		187	7.1.2	36	413	125	305	146	2564		208	187	Z	. 721	25	8	\$	36	. 22	92	4	918	2	23	•	82	286	98
							9	16		6	219 -		6	. 88	ro	=									. 25	÷	293		g			٠ 8			æ	9		S.		68					8	Ф
58	3 2	53	114	12	31	23	23	88		39	459		37	178	5	28	19	8		98	141	17	504	Z	142	5	1272		98	88	88	9	35	ŝ	43	47	35	ጸ	72	456	42	27		88	391	63
521	522	523	524	525	226	527	528	529		230	531		223	533	534	535	536	537		538	239	240	<u>2</u>	542	543	244 44	545	•	8 6	ž :	χ, Θ,	549	220	551	552	553	554	555	556	557	558	529		260	765 195	295
GTGGACCCTG	TTGGGAGCAG		GTACTGTGGC	AAGATAATGC	AATACCTCGT	ACCTTGTGCC	ACCTTGTGCC	GGAGGGGGCT		GCCTATGGTC	GTGCTGAATG	•	TCGTCGCAGA	GTGACAGAAG	TCAACGGTGT	GAGCCTTGGT	TACATCCGAA	GTCTGTGAGA		GTTAACGTCC	GTGCGCTAGG	CGGATAAGGC	GTCTGGGGCT	CATCCTGCTG	TCACAAGCAA	GGCTGATGTG	CCCGTCCGGA		ICCGCGAGAA	SIGCI GGAGA	ICCICAAGAI	CAACTTAGTT	GGGCAGCTGG	TTCAGAGAG	TTCAGAGAG	GACGCAGAAG	GGAAGTTTCG	GTIGCTGCCC	GCTGGGGTGG	CTCAACATCT	CAAGCAGGAC	TEGENTITIC		166CAACCI 1	SCALARIAGE SOCIETION	10000000000000000000000000000000000000

Ribosomal protein \$5	H.sapiens mRNA for Glyoxalase II	Ribosomal protein \$13	60S RIBOSOMAL PROTEIN L38	Myosin, light polypeptide 3, alkali; ventricular, skeletal, slow		Homo sapiens immunophilin homolog ARA9 mRNA, complete cds	Human mRNA for KIAA0190 gene, partial cds	Phosphodivoerate mutase 1 (brain)	Fukavotic translation elongation factor 2	Himse MA arabin month complete ode		819	i nosephosphate isomerase 1		Homo sapiens GC20 protein mRNA, complete cds	Homo saplens angio-associated migratory cell protein (AAMP) mRNA, complete cds	Homo sapiens integrin-linked kinase (ILK) mRNA, complete cds	PROTEASOME BETA CHAIN PRECURSOR	Ŧ		Cholinergic receptor, nicotinic, alpha polypeptide 3	Homo saplens growth suppressor related (DOC-1R) mRNA, complete cds	CYTOCHROME C OXIDASE POLYPEPTIDE VIA-LIVER PRECURSOR	No match	Human KH type splicing regulatory protein KSRP mRNA, complete cds	ESTs, Moderately similar to N-methyl-D-aspartate receptor glutamate-binding chain	R.norvegicus)	ESTs	ESIS	ESTS, Highly similar to HYPOTHETICAL 14.1 KD PROTEIN C31A2.02 IN	CHROMOSOME I [Schizosaccharomyces pombe]	ESTS, Highly similar to HYPOTHETICAL 68.7 KD PROTEIN ZK757.1 IN	CHROMOSOME III [Caenorhabditls elegans]	ESTs, Weakly similar to No definition line found (C.elegans)	Human protein-tyrosine phosphatase (HU-PP-1) mRNA, partial sequence	Hepatocyte growth factor (hepapoietin A; scatter factor)	ESTs, Highly similar to ATP SYNTHASE EPSILON CHAIN, MITOCHONDRIAL	PRECURSOR (Bos taurus)	Ribosomal protein L27a	Peptidyfprolyl isomerase B (cyclophilin B)	ESTs, Highly similar to CORONIN [Dictyostelium discoideum]	complete cds	PRE-MRNA SPLICING FACTOR SRP20	Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed (fox	derived)
1.80	8.	1.80	1.81	1.81	1.81	1.81	1.81	181	. 6	. <u>.</u>	5 6	20.	1.82	1.82	1.82	1.82	1.82	1.82	1.83	1.83	1.83	1.83	1.83	1.83	1.83		2 .8	2 .	<u>4</u> .		<u>8</u> .		2 .	2 .	2 .	2 .		<u>4</u>	2 .	2 8.	1.85	1.85	1.85		1.85
549	8	421	312	10	5	4	47	286	1487	2 6	70	8	397	962	9	35	79	143	121	121	91	37	165	69	5		103	169	46		8		8	7.	£3	187		187	1172	315	49	125	42		980
. 55		42 .	. 72	6					•	6 5	•	-						. 25	. 71	. 41			. 11		. 12		6	32 .						.					162 .	. 72		&			. 88
. 72		210	158	95	95	21	12	; ;	102	5 8	F 1	22	191	447	81	5	37	3	22	22	8	81	6	33	63		51	75	23		97		5	ន	8	87		97	548	158	:	27	8		320
563	564	565	566	267	568	269	570	571	572	573		5/4	575	576	577	578	579	580	581	582	583	584	585	286	587		588	589	290		591		265	593	594	282		296	297	598	599	009	601		602
CCTTCGAGAT	GGCCGTGC	GTGTTGCACA	STCGGAAAA	AATAAAGGCT	ATAAAGGCT	CTTCTGTGTA	гстетета	TCCAGTGT	AGCACCTCA	OTO POLO	0.0000000000000000000000000000000000000	200	TGAGGGAATA	AGCTCTCCCT	CGTTGCAG	GGGTGTGTAT	GGAGGGATCA	ATCAGTGGCT	CCCTGCCC	CCCCTGCCC	CAAAAAAAA	ACCTGCCGAC	GACCAGAAAA	AGCCACTGCG	TGAGCCAGC		TTTCAGGGGA	TCCGGCCGCG	GTGATCTCCG		CTGCTGAGTG		CTGCTTAAGG	тетеесстсс	CGTTTTCTGA	SAAAAAAAA		GGAAAAAAA	GAGGGAGTTT	GACTCACTTT	GAACGGGG	TGGCTAGTGT	CTGTCATTTG		GTTCCCTGGC

ESTs, Weakly similar to CASEIN KINASE I HOMOLOG HRR25 (Saccharomyces icenavisiae)		Human mRNA for U1 small nuclear RNP-specific C protein	CYTOCHROME C OXIDASE POLYPEPTIDE VIII-LIVER/HEART PRECURSOR	Human siah binding protein 1 (SiahBP1) mRNA, partial cds	ESTS	GLANINE NUCLEOTIDE BINDING PROTEIN BETA SUBLINIT-LIKE PROTEIN 12.3	Human transcriptional coactivator PCA mRNA complete ode	ESTE Weakly eimilar to HYDOTHETICAL 15 AND DEOTEIN C15C10 11 IN	CHECKLY WORNS STITING TO THE CONTROL THE CONTROL TO THE CONTROL TH	Lorno sociose sociologica de la constanta de l	nomo sapiens peroxisomai pnytanoyi-coa aipna-nytroxyiase (PANA) mkiva, complete	800	Cytochrome c oxidase subunit IV	H.sapiens mRNA for 1-acylglycerol-3-phosphate O-acyltransferase	Homo sapiens chromosome 1p33-p34 beta-1,4-galactosyittansterase mKNA, complete	cds	Cell division cycle 42 (GTP-binding protein, 25kD)	Homo sapiens phosphomevalonate kinase mRNA, complete cds	Homo sapiens mRNA for follistain-related protein (FRP), complete cds	ESTs	ESTs	ESTS	ESTs. Weakly similar to Y48E1B.1 IC. elegans!	Non-melastatic cells 2, protein (NM23B) expressed in	Human mRNA for ribosomal protein S12	Ubiquitin A-52 residue ribosomal protein fusion product 1	Homo sapiens mRNA for proteasome subunit p58, complete cds	Ribosomal protein S16	Billary glycoprotein	Homo sapiens malignancy-associated protein mRNA, partial cds	Homo sapiens mRNA for KIAA0565 protein, complete cds	Ribosomal protein L27	Homo sapiens Arp2/3 protein complex subunit p21-Arc (ARC21) mRNA, complete cds	60S RIBOSOMAL PROTEIN L13A	Human Bak mRNA, complete cds	Ribosomal protein S24	Human mRNA fragment encoding cytoplasmic actin. (isolated from cultured epidermal	cells grown from human foreskin)	ESTs, Highly similar to transcription factor ARF6 chain B [M.musculus]		Ribosomal protein S26	Нитал mRNA for PIG-B, complete cds	Human mRNA for proteasome subunit HsC7-I, complete cds	Human peptidyl-prolyl isomerase and essential mitotic regulator (PIN1) mRNA, complete	SDS	ESTS	DNAJ PROTEIN HOMOLOG 1
185	3 3	1.85	1.85	1.86	1.86	186	86	3	48	9.	•	98.	1.86	1.86	;	1.86	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88		1.88	1.88	1.88	1.88	1.88	1.89		1.89	1.89	1.89
144	•	29	253	46	39	64	3	3	ţ	77	;	8	49	55		67	89	4	ş	23	24	96	88	317	1570	182	£	1058	174	174	174	207	64	536	536	853		1203	8	1401	1401	1401	62		98	97	79
		•		•	•			•		•		•	•	•		•	•	•	•	•	•						٠	•	•	•	•	•	•		•				٠				•		•	•	•
Ç	-	9	38	0	•		; ·	,	3	•	•	co.	o	9		Φ.	€	•	^	80	60	16	12	53	113	7	9	69	21	21	2	35	8	28	99	116		147	ø	165	165	165	(C)		0	₩.	9
g	5	58	118	47	18	247	ę	3	9	8	;	55	22	92		ñ	22	6	81	56	8	1	42	154	778	8	5	532	18	81	81	252	23	255	255	392		260	22	656	658	656	ë		46	47	38
904	5	605	909	209	809	609	610	2	113	-	6	219	613	614	,	613 5	919	617	618	619	620	621	. 622	623	624	625	626	627	628	629	630	631	632	633	634	635		636	637	638	639	640	641		642	643	644
ATCCACATCG		CIGCIGIGAL	GTGACCTCCT	GTGGACCCCA	GACTAGTGCG	TTATGGGATC	TTCAGATTG		GTCTGAGCTC	 	+0+**0*0*0	CACACAAIGI	CACACAAIGI	ACCCCACCCA	3000	GGAGGCAGGI	ICICAATICI	CTCTTCAGGA	CTGGGACTGC	GCCCAGCAGG	GCCCAGCAGG	GGGCCAGGGG	GGGGACGGC	ACTGGGTCTA	GCCGAGGAAG	CAGATCTTTG	AGGTTTCCTC	CCGTCCAAGG	GTGGCGGGCG	GTGGCGGGCG	GTGGCGGGCG	GGCAAGAAGA	TCTTTACTTG	CTCCTCACCT	CTCCTCACCT	GCCTGTATGA		GCTTTATTG	CTTAAGGATT	GGATTTGGCC	GGATTTGGCC	GGATTTGGCC	TCCTCCCTCC		GGCCTCTGA	TGGCTGTGTG	AGACCAAAGT

ble 4. cor

÷
Ξ
ၓ
4
<u>•</u>
Ω
ی

ー・ラくくこうりつ	7	•	-	2		מימי
	3	8	•			
AGGAGCTGCT	646 0	26	2	. 165	5 1.89	ESTS
						Human mitochondrial NADH dehydrogenase-ubiquinone Fe-S protein 8, 23 kDa subunit
AGGAGCTGCT	647	16	12	. 165	_	precursor (NDUFS8) nuclear mRNA encoding mitochondrial protein, complete cds
TACCTGTA		245	80	. 473	1.90	Human alpha-tubulin mRNA, complete cds
GATCCCAACA	649	02	Ξ	. 143	_	ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide
CCATCTCT	650	BE	60		-	14-3-3 PROTEIN TAU
STGCAGAG	651	58	60	. 58	•	Homo sapiens pescadillo mRNA, complete cds
SCATCAC	652	32	^		_	
GTTGAGA	653	1663	321	. 3487	_	Translation elongation factor 1-alpha-1
SAGACAAA	654	98	7	. 199	-	Basic transcription factor 3
GCAACGGGCC	655	35	9	. 108	_	Homo sapiens mRNA for brain acyl-CoA hydrolase, complete cds
!	٠					Homo sapiens chaperonin containing t-complex polypeptide 1, eta subunit (Ccth) mRNA,
ССТЕСТЕСС	656	113	27	. 243	1.91	complete cds
GCCAAGATGC	657	55	=	. 116	_	ESTS
GCCAAGGGGC	658	82	æ		_	Oxoglutarate dehydrogenase (lipoamide)
SGTGATGT	629	37	Ξ			ESTs
CCCATCCGAA	099	353	7.2	. 753	•	Ribosomal protein L26
AAACTTAG	661	9	77	. 139	•	Human calmodulin mRNA, complete cds
GCCTCCTCCC	662	94	23	. 203	_	ESTs
GTGCCTGAGA	663	72	5	. 149	1.92	LAMINA
TCCAATACTG	6 6	22	w	. 47	1.92	Human dynamitin mRNA, complete cds
						Homo sapiens X-ray repair cross-complementing protein 2 (XRCC2) mRNA, complete
стестесете	665	38	Ξ	. 86	_	\$93
AAGCAGG	999	38	ž.		•	Homo saplens unknown mRNA, complete cds
TGGAGCC	299	42	ţ.	. 95	•	Human calmodulin mRNA, complete cds
CCGTGGTCAC	999	88	5	. 185	•	H.sapiens mRNS for clathrin-associated protein
GTGGGGA	699	83	Σ.	. 146	•	Human (p23) mRNA, complete cds
ACAAACTGTG	670	69	22	154	_	H.sapiens mRNA for Sop2p-like protein
GTCTTAACTC	671	23	မှ	ያ	_	Homo sapiens Dim1p homolog (hdim1+) mRNA, complete cds
TGCTCGG	672	3	Ξ			ENOYL-COA HYDRATASE, MITOCHONDRIAL PRECURSOR
GTGGCCTGCA	673	23	so.		-	ESTs, Weakly similar to K01G5.8 [C.elegans]
TACACGI	674	6	.	. 236	•	Human calmodulin mRNA, complete cds
GTACTGTATG	675	23	œ	· 2	•-	ESTS
CTGTATG	929	ន	co.		1.93	Homo sapiens importin beta subunit mRNA, complete cds
GGCCAGGTGG	677	\$2	w	. 53	1.93	Homo saplens calmodulin-stimulated phosphodiesterase PDE181 mRNA, complete cds
CAGGTGG	678	52	S	. 53	1.93	Metallopeptidase 1 (33 kD)
GAGAGGG	679	8	40	. 43	•	Homo sapiens forkhead protein FREAC-2 mRNA, complete cds
AGGGAGAGGG	680	8	v		Ψ-	Ferritin heavy chain
AGGGAGAGGG	681	8	ß	. 43	1.93	UBIQUITIN CARBOXYL-TERMINAL HYDROLASE T
GTGGCAGGTG	682	5	6	. 213	•	Human mRNA for KIAA0340 gene, partial cds
TCTTGTGCAT	683	143	92	. 302	2 1.93	L-LACTATE DEHYDROGENASE M CHAIN
						ESTS, Highly similar to HYPOTHETICAL 43.2 KD PROTEIN C34E10.1 IN
CCACACCG	684	2	89		`	CHROMOSOME III [Caenomabditis elegans]
MATCCTT	685	4 8	^	. 95	1.94	FK506-binding protein 1 (12kD)
AGACCCC	989	45	=		•	No match

Electron-transfer-flavoprotein, beta polypeptide			ESTs, Weakly similar to 50S RIBOSOMAL PROTEIN L20 [E.coli]	CYTOCHROME P450 IVF3		Human HXC-26 mRNA, complete cds	se (SULT1C) mRNA, complete cds	Ribosomal protein S9	Homo saplens chromosome 19, cosmid R32184		cytlc 1	ESTS	Human helix-loop-helix zipper protein mRNA	ESTs	ESTs, Highly similar to YME1 PROTEIN (Saccharomyces cerevistae)	ESTs	Homo sapiens clone lambda MEN1 region unknown protein mRNA, complete cds	COATOMER BETA' SUBUNIT		Human 54 kDa protein mRNA, complete cds	Human insulinoma rig-analog mRNA encoding DNA-binding protein, complete cds	H.sapiens mRNA for transmembrane protein mp24	Parathymosin	Homo saplens mRNA for KIAA0511 protein, partial cds	n translation initiation factor eIF3 p66 subunit mRNA, complete cds	ESTs	ESTS, Weakly similar to HYPOTHETICAL 16.8 KD PROTEIN IN SMY2-RPS101	INTERGENIC REGION (S. cerevislae)	Human mRNA for KIAA0029 gene, partial cds	H.sapiens HUNKI mRNA	Phosphofructokinase, platelet	Home sapiens mRNA for smallest subunit of ubiquinol-cytechrome c reductase, complete	spo	Homo sapiens poly(A) binding protein II (PABP2) gene, complete cds	ESTs, Highly similar to elastin like protein [O.melanogaster]	ESTs	Human nicotinic acetylcholine receptor alpha6 subunit precursor, mRNA, complete cds	Homo sapiens mRNA for PBK1 protein	Breast cancer 1, early onset		Homo saplens (clone s153) mRNA fragment		Human dystroglycan (DAG1) mRNA, complete cds	40S RIBOSOMAL PROTEIN S2	Homo saplens flotillin-1 mRNA, complete cds	ESTs
1.94	1.94	1.94	1.94	1.94	1.94	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96		1.97	1.97	1.97	1.97		1.97	1.97	1.97	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.99	1.99
29	65	107	37	88	38	83	ş	582	69	88	7	88	28	5	37	37	37	9	61	22	452	452	155	155	125	185		104	104	36	86		260	79	79	5	72	72	72	2894	£	114	88	2287	108	2
•			•	•	٠	•				٠		•	•	•	•	•	•	•	•		•	•	•	•					•	•	٠			•	•	•	•	•	٠		٠		٠		•	٠
5	12	15	v	Ŷ	9	6	72	48	Ξ	9	0	Φ	Ф	Ф	S	иŋ	•	wn	60	Ξ	40	40	÷	÷	45	4		=	=	w	Ž		ř	₩.	60	9	9	9	8	410	9	2	60	174	7	Ø.
58	22	47	91	11	17	9	9	274	8		32	78	88	84	16	18	81	8‡	27	33	210	210	22	72	20	90		47	47	16	4		117	36	38	19	33	33	33	1247	6	47	8	1064	97	8
687	688	689	069	691	692	693	694	695	969	697	698	669	200	701	702	703	704	705	206	707	708	709	710	711	712	713		714	715	7.16	717		718	719	720	721	722	723	724	725	726	727	728	729	730	731
AAAGCCAAGA	CAAGGATCTA	TGAGGCCAGG	TTTGTGTGA	ACAGTCTTGC	ACAGTCTTGC	CCAGGCACGC	AGTTTCCCAA	CCAGTGGCCC	босососст	TCTCTACTAA	CGGCTTTTCT	1660000000	TGGCCCCCGC	СТССТЕВЕВС	AAGGAGCTGG	AAGGAGCTGG	AAGGAGCTGG	GGCTTTGATT	ACTACCTTCA	CTGTGCATTT	ACTCCAAAAA	ACTCCAAAAA	TCCTGCCCCA	TCCTGCCCCA	AAGCTGGAGG	GCACAAGAAG		GAAACCGAGG	GAAACCGAGG	GCCCGCAAGC	CTTTCAGATG		GGCGCTGTG	GTATTCCCCT	GTATTCCCCT	CTGGCCATCG	GTGGTGGACA	GTGGTGGACA	GTGGTGGACA	CACCTAATTG	GACCCTGTC	CCCTTAGCTT	CAGAGACGTG	ATGGCTGGTA	TCAGCCTTCT	TCGTAACGAG

60S RIBOSOMAL PROTEIN L38 Human mRNA for pM5 protein	ALPHA-ACTININ 1, CYTOSKELETAL ISOFORM	Kibosomal protein 510	Signal sequence receptor, beta	ESTS, Highly similar to HYPOTHETICAL 13.6 KD PROTEIN IN NUP170-ILS1	INTERGENIC REGION (Saccharomyces cerevislae)	Human mRNA for ATP synthase gamma-subunit (L-type), complete cds	Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta	polypeptide	Tag matches mitochondrial sequence	Human ribosomal protein L10 mRNA, complete cds	ESTs	ESTs, Weakly similar to K04G2.2 [C.elegans]	INTERFERON-INDUCIBLE PROTEIN 1-8U	Homo sapiens clone 23675 mRNA sequence	ESTs, Weakly similar to weak similarity to rat TEGT protein [C.elegans]	Amyloid beta (A4) precursor-like protein 2	HEAT SHOCK FACTOR PROTEIN 1		No match	Human 100 kDa coactivator mRNA, complete cds	Homo saplens DNA sequence from cosmid ICK0721Q on chromosome 6.	Human ORF mRNA, complete cds	ESTS	Human 150 kDa oxygen-regulated protein ORP150 mRNA, complete cds	Homo sapiens chromosome 19, cosmid R33729	Ribosomal protein L3	TRANSCOBALAMIN I PRECURSOR	Ribosomal protein, large, P1	Human B-cell receptor associated protein (nBAP) mRNA, partial cds	l ag marches mitochondral sequence	ESTS, Weakly similar to ALBUMIN 8-32 PROTEIN [Zea mays]		ES1S, Highly similar to 50S KIBOSOMAL PROTEIN LZ Bacillus stearothermophilus	ESIS	Human SH3-containing protein EEN mRNA, complete cds	HEAT SHOCK PROTEIN HSP 90-ALPHA	Homo saplens NADH-ubiquinone oxidoreductase subunit CI-B14 mRNA, complete cds	H.sapiens mRNA for proc protein	ESTS	Human zinc finger protein (MAZ) mRNA	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE A	40S RIBOSOMAL PROTEIN S7	UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX 11 KD PROTEIN	IPRECURSOR
1.99	1.99	5 6	1.99		1.99	1.99		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.01	2.01	2.01	2.01	2.01	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.03	2.03 0.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.04		2.04
371	128	228	2 2		47	107		178	S	114	67	23	341	ę	Z	169	88	459	12977	9	142	88	8	78	147	1182	813	813	120	309	135	3	43	Š	67	69	Z	7.	132	132	1172	275		156
	•	•			•	٠		•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•		•
; ;	12	\$ \$	2 2		^	Ξ		5	S	=	æ	φ	54	9	S	27	80	75	987	9	5	0	6	œ	11	174	5	2	Φ.	23	7	3	00	9	60	9	5	5	17	11	132	5		7
178	88	107	8 %		8	48		80	83	52	58	56	158	17	39	7.	88	181	5970	7	\$	8	21	S	65	498	377	377	52	142	9	62	11	48	53	31		5	57	57	511	126		2
732	734	735	737		738	739		740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	797	763	\$ 1	765	99/	767	768	769	770	171	772	773	774		775
GCGACGAGGC	TCCTTCTCA	CAGICICA	ACCOTTOCOT		TGAGTGGTCA	GACAATGCCA		. ATCTTTCTGG	AGCTGTCCCC	TCTTCCAGGA	GTGCCTAGGA	TGGACCCCC	ACCTGTATCC	ACCTGCTGGT	AGTCTGATGT	TCTCTACCCA	TGATTAAGGT	CAGCAGAAGC	TCCCTATTAA	GTGGAGGTGC	AAGATCCCCG	GAGCGGCCTC	AACTACATAG	GTAAGATTTG	AGCCTGCAGA	GGACCACTGA	TTCAATAAAA	TTCAATAAAA	CGATGGTCCC	CALLIGIAAL	CCTGAGCCCG		AAGAGIIACG	GAAICCAACI	AGGGGCGCAG	GCTTAGAAGT	AAGTCATTCA	AAGTCATTCA	TACCCCACCC	TACCCCACCC	CCTAGCTGGA	TCGTCTTTAT		GGTTTGGCTT

cont.
-
4
Φ
Z
a
1

TAGGATGGGG	176	88	28		207 2.04	Sodium/potassium-transporting ATPase beta-3 subunit
GTGCATCCCG	777		18		105 2.04	Casein kinase 2, beta polypeptide
CAGCGCTGCA	778	37	Ξ			Human CDC37 homolog mRNA, complete cds
GGGAGCCCCT	779	55	12		125 2.04	ESTs, Highly similar to BETA-ARRESTIN 2 [Homo sapiens]
GGGAGCCCT	780	55	12			ESTS
GAAGATGTGG	781	28	ø		125 2.04	Homo sapiens clone 23967 unknown mRNA, partial cds
CCTACCACAG	782	21	σ	•	52 2.05	ESTs, Highly similar to GOLIATH PROTEIN (Drosophila melanogaster)
TGCTAAAAAA	783	92	თ			Myosin, heavy polypeptide 9, non-muscle
						Low density lipoprotein-related protein-associated protein 1 (alpha-2-macroglobulin
CACAGAGTCC	784	28	7		84 2.06	receptor-associated protein 1
GGGCCAATAA	785	န	80			Unitiled
всстестеве	786	22	4	•		Phospholipid hydroperoxide glutathlone peroxidase
ACTGCTTGCC	787	25	5			S-ADENOSYLMETHIONINE SYNTHETASE GAMMA FORM
ACTGCTTGCC	788	52	5			H.sapiens mRNA for Sop2p-like protein
						Homo sapiens NADH:ubiquinone oxidoreductase NDUFS6 subunit mRNA, nuclear gene
CGGTTACTGT	789	18	8		187 2.07	encoding mitochondrial protein, complete cds
AACCCGGGAG	790	179	S		420 2.07	Homo sapiens KIAA0408 mRNA, complete cds
AACCCGGGAG	791	179	99		420 2.07	Cytokine receptor family II, member 4
AACCCGGGAG	792	179	8		420 2.07	H.saplens mRNA for delta 4-3-oxosteroid 5 beta-reductase
ATTAACAAAG	793	98	₽			Guanine nucleotide binding protein (G protein), alpha stimulating activity polypeptide 1
TTCAGTGCCC	794	85	80			ESTs, Weakly similar to GLUCOSE-6-PHOSPHATASE (Rattus norvegicus)
CCGTGCTCAT	795	5	ā			ESTS, Highly similar to ADIPOCYTE P27 PROTEIN IMUS musculus
ATCCCTCAGT	796	7.8	34	•		Activating transcription factor 4 (tax-responsive enhancer element 867)
TACCATCAAT	797	198	184	. 1	1985 2.07	Giyceraldehyde-3-phosphate dehydrogenase
TGCACCACAG	798	8	4			Homo sapiens signal peotidase complex 18 kDa subunit mRNA, partial cds
GAACCCTGGG	799	97	6			ESTS
SCCGTGTCCG	800	542	8	-	1185 2.08	Human ribosomal protein S6 mRNA, complete cds
ATAGAGGCAA	801	28	^			
ATTGTTTATG	802	83	Ξ		184 2.08	Human non-histone chromosomal protein HMG-17 mRNA, complete cds
TAATAAAGGT	803	229	\$	uri	523 2.09	40S RIBOSOMAL PROTEIN S8
GGGATCAAGG	804	58	^		61 2.09	ESTs, Weakly similar to coded for by C. elegans cDNA yk157f8.5 (C.elegans)
CAAGGGCTTG	805	59	60		2.09	ESTS. Highly similar to BAS-RELATED PROTFIN RAP-18 (Homo sapiens: Bos famile)
TGGTGTTGAG	806	828	147		ω	Human DNA sequence from clone 1033B10 on chromosome 6o21 2-21 31
GAGTGAGTGA	807	19	80		48 2.09	ESTs, Weakly similar to C44C1.2 gene product [C.elegans]
GTGGCGCACA	808	42	6		98 2.09	j
ATGATCCGGA	808	23	ហ		52 2.10	
AACCTGGGAG	810	108	37	₹.	263 2.10	Human DNA fragmentation factor-45 mRNA, complete cds
AACCTGGGAG	811	108	37	⊼		Homo sapiens mRNA for KIAA0563 protein, complete cds
TGCTTCATCT	812	53	6	≅		Homo saplens androgen receptor associated protein 24 (ARA24) mRNA, complete cds
АТААПСПП	813	205	33	4		Ribosomal protein S29
GTTCAGCTGT	814	\	ø		95 2.10	
GGGAAGTCAC	815	22	s	•		
GGGTGCTTGG	816	26	60	9	63 2.10	Human mRNA for ORF, Xq terminal portion
	!					Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta
CAGTTACTTA	817	52	Ξ	-		polypeptide
GCGAAACCCC	818	207	2		506 2.10	Human G protein-coupled receptor (STRL22) mRNA, complete cds

Ξ
8
÷
9
ā
ā

O 44 (DEG DEGINERAL				2.12 Human SH3 domain-containing proline-rich kinase (sprk) mRNA, complete cds		2.12 Prothymosin alpha		_	2.12 Homo saplens mRNA for integral membrane protein Tmp21-1 (p23)				ESTs, Weakly similar to F46F6.1 [C.elegans]	<u>س</u>		HEAT SHOCK COGNATE 71 KD PROTEIN		1					2.15 ES1S, Weakly Similar to 108G11.1 (C.elegans)			2.15 Cholineralc receptor, nicotinic, delta polypeptide	•			2.16 Ribonuclease/angiogenin Inhibitor			2.10 Tag Indicates Introduction Inspecting (various proton plum) 31kD		2.16 CHROMOSOME ISchizosaccharomyces pombe	ESTs, Weakly similar to W08E3.1 [C.elegans]				L	2.17 IMP (inosine monophosphate) dehydrogenase 2	2.17 Ribosomal protein L4		Z.17 Complete cos
į	6	1056	6	69	55	108	150	69	- 6	. 6	; <u>=</u>	. ē	101	2	27	551	66	75	35 25	69	3	75	82 5	g :	45 592	14	4	14	130	175	i	7 5	2462	2	9	. .	98	46	46	46	68	1530		184
																										,	•						•						•					
;	= :	S	9	S	9	80	. .	9	• • • • • • • • • • • • • • • • • • • •		• •	ω	9	w	40	11	ø	^	7	60	œ	9	с ъ (o 6	12	12	5	C	28	•	œ ;	<u>.</u>	n	6		2	\$	9	ĸ	8	123		=
,	S2 .	485	2	21	23	2.	2	9	4	; ;	. 62	. 4 . 19	45	22	5	222	42	32	2	28	23	35	35	57 ⁽	. 258	59	. 6	61	79	99	;	၉ :	785 785	n o	23	S	35	49	6	6	39	848		78
9	818	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	25 25 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	841	240	\$ \$	845	846	847	848	849	Ċ	850 850	953	700	853	854	855	856	857	858	829	860	į	- G2
700044000	1 A CO	CCCCCTGGAT	GACCTCCTGC	GACCTCCTGC	CAGCAGTAGC	TTCATTATAA	CCCCACCTA	GGTGGATGTG	rcreerrrer	rcreerrer	CGCCTGTAAT	тсстестесс	тсствствсс	GTGTGGTGGT	TGATGTCCAC	CCAGGAGGAA	GTGAAGCCCC	GGGAGCCCGG	GCCATCCCCT	CAGTTGGTTG	ATCCATCTGT	GCCAGGAAGC	TCCAGCCCCT	SCCCCCCAC	TCCCGTACAT	GTGGTGGGCA	GTGGTGGGCA	GTGGTGGGCA	CTGTTAGTGT	CTCTCACCCT		919199199	200000000000000000000000000000000000000	000000000000000000000000000000000000000	GAAGTGTGTC	GTACCCGGAC	CCTCCCTGAT	TCATCTTCAA	TCATCTTCAA	TCATCTTCAA	ATGTACTCTG	CGCCGGAACA		AAGGGAGGG

Table 4, cont.

							Home saniens o 120 catanin isoform 14 (CTNNO1) mRNA alternatively solited complete.
	690	;	•		;	9 0	
AAAC C G G	200	77	Þ		Š	6.10	
ACACGCAA	864	22	0		99	2.18	ESIS
CCGCCGAAGT	865	20	7		116	2.18	Ribosomal protein L12
TGTGCTAAAT	966	169	46		415	2.18	
CGACCGTGGC	867	24	g	•	25	2.18	
GCCTGGGCTG	868	4	₽		114	2.18	Print title state i l'itiel Par el Ambre dispussible de l'itiel Par el la company de la compa
GCCTGGGCTG	698	4	8		114	2.18	Homo sapiens molybdopterin synthase sulfurylase (MOCS3) mRNA, complete cds
AAAGTCAGAA	870	24	12		92	2.19	Ublquinol-cytochrome c reductase core protein II
TO O O O O O O O O O O O O O O O O O O	974	;	u		;	2 10	ESTe Weakly similar to BITATIVE MITOCHONDRIAL CARRIER C16C10 1 (C elegans)
C C C C C C C C C C C C C C C C C C C	- 10	5	n		= 1	2 9	ESTS, Wearly Silling to FOLINE MITCOMODICATE COOLST (Concedent)
GAAATGATGA	872	2	7		167	2.19	Homo sapiens mKNA for c-myc binding protein, complete cds
TGTCGCTGGG	873	73	7		173	2.19	C4/C2 activating component of Ra-reactive factor
GCCCTGCCT	874	33	ø		91	2.19	Homo sapiens DNA-binding protein (CROC-1B) mRNA, complete cds
GCCCTGCCT	875	38	ø		16	2.19	
CAGGCCTGGC	876	8	7		8	2.19	
CAGGCCTGGC	877	8	^		S	2.19	ESTs
GCAAAAAAA	878	5	35		37.1	2.20	
AGCCACCACG	879	33	60	•	18	2.20	Human mRNA for KIAA0149 gene, complete cds
GAGGAAGAG	880	52	5	•	130	2.20	90
CAGCTGTAGT	881	8	æ		3	2.20	Human mRNA for KIAA0174 cene. complete cds
TOTOTOTOT	882	9	, <u>e</u>	•	; g	2.20	r. complete cds
TACATTOT	200	9 6	2 •		3 2	200	Mysloid cell laukemia seminance 1 (RC) 2, related)
	200	8	•	•		3	ESTE Moskly similar to HVDOTHETICAL AR 7 KD DBOTEIN 2K757 1 IN
	700	;				,	CADOMORAN SILING COLORS CONTROL COLORS COLOR
SOCIAL COLOR	9 40	n l	٠ ٦		9 1	7.6	CONCINICACIONE III (C. Biggalla)
A0017A1161A	600	4	3 0	•	Š	7.7	none sapient in the for the sound have the property
TAGTTGAAGT	988	55	5		136	2.21	UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX 14 KD PROTEIN
GCCAAGTTTG	887	17	S		Ş	2.24	Human mRNA for proteasome subunit p112, complete cds
							Excision repair cross-complementing rodent repair deficiency, complementation group 1
GGCGGCTGCA	888	98	Ø		68	2.21	(includes overlapping antisense sequence)
AAAAAAAAA	889	469	38	•	1078	2.21	
AAAAAAAAA	890	694	88		1076	2.21	Homo sapiens GPI-linked anchor protein (GFRA1) mRNA, complete cds
AAAAAAAAA	891	694	8		1076	2.21	Enclase 1, (alpha)
AAAAAAAAA	892	469	8		1076	2.21	Calcium channel, voltage-dependent, P/Q type, alpha 1A subunit
TGTTCCACTC	893	₽	κo		46	2.21	Homo sapiens CD39L2 (CD39L2) mRNA, complete cds
CTCGGTGATG	894	ဗ္ဗ	2		92	2.22	
							ESTS, Highly similar to PUTATIVE CYSTEINYL-TRNA SYNTHETASE C29E6.06C
CTTCTCAGGG	895	1	ĸ	•	43	2.23	[Schizosaccharomyces pombe]
GGTAGCCCAC	988	91	wn		9	2.22	ESTs
GGGTTTTTAT	897	65	^	•	150	2.22	Homo sapiens dbpB-like protein mRNA, complete cds
CCTGTAACCC	898	39	5	•	66	2.23	Human translation initiation factor eIF-2alpha mRNA, 3'UTR
GAAACAAGAT	668	88	2	•	133	2.23	
GATGAGTCTC	006	7	60	,	175	2.23	Homo sapiens proteasome subunit XAPC7 mRNA, complete cds
GGCCCTAGGC	901	\$	Ф	•	101	2.23	H.sapiens ERF-2 mRNA
TGGCCCCACC	905	440	29		1041	2.23	Pyruvate kinase, muscle
CAGCGCGCCC	903	99	¥O	•	(52	2.23	ESTs
AGGCGAGATC	904	5	77	•	231	2.24	Homo sapiens profeasome subunit XAPC7 mRNA, complete cds
	•	;	i		i	i	

: .			. :	:					 !		;			<u>-</u>			•	 : :	 :	 !		-	: 4		••••		-, :		.	 .		. <u>.</u>	;-		**										•			
H saplens FRF-1 mRNA 3' end	Home canions mDNA for NA14 amelia	FORTS SAPERING THE STATE OF THE	Lower series sleep 2466 mDNA secuesco	TOTILO Sapietis Gold A-600 Hilling Sequence	COPILIN NON-MUSCLE ISOFORM	No match	Human adult heart mRNA for neutral calponin, complete cds	Human translation initiation factor 3 47 kDa subunit mRNA, complete cds	ADENYLYL CYCLASE-ASSOCIATED PROTEIN 1	Protein kinase C substrate 80K-H	FSTs Weakly similar to sigh hinding protein 1 [H saniens]	Condocal January Company of the Condocal Street, Condocal	VINCUIIN	Dopachrome tautomerase (dopachrome delta-isomerase, tyrosine-related protein 2)	HEAT SHOCK PROTEIN HSP 90-ALPHA	Homo saplens chromosome 19, cosmid R29381	:	Homo sapiens KIAA0414 mRNA, partial cds	Human Tax1 binding protein mRNA, partial cds	H.saplens mRNA for urea transporter	rotein partial cds	No match	Homo saniens microsomal clittathione Satransferase 3 (MGST3) mRNA complete cds	ESTS. Highly similar to NEUROGENIC LOCUS NOTCH PROTEIN HOMOLOG	PRECURSOR (Xenopus faevis)	ESTS. Weakly similar to GOLIATH PROTEIN IDrosophila melanogasteri	ESTS. Highly similar to RAS-RELATED PROTEIN RAB-1A IH sapiens!	PROTEASOME ZETA CHAIN	Ribosomal protein S11	No match	Ribosomal protein 6	Prothymosin alpha	Human putative tumor suppressor (SNCS) mRNA complete ods	Ribosomal protein S11	COFILIN NON-MUSCLE ISOFORM	FSTs Moderately similar to nuclear autoantions IH saciens!	FSTe	Il Ironarhyringan dagarhovylaca	Upon capion missolithile based moter (LeVIEC3) mDNA complete ode	Como Sapieno Informació desde información de la completa del la completa de la completa del la completa de la c		Prostatic binding protein	INTERFERON GAMMA UP-REGULATED 1-5111 PROTEIN PRECURSOR	Ribosomal protein L27a	APOPTOSIS REGULATOR BCL-X		H factor (complement)-like 1	TRANSFORMATION-SENSITIVE PROTEIN IEF SSP 3521
2 24	200	2.5	77.7	2.24	2.24	2.25	2.25	2.25	2.25	2.25	2 25	3 6	2.25	2.26	2.26	2.26	2.26	2.26	2.26	2.27	2.27	2 27	200	ì	2.27	2.27	2.27	7.27	2 2 7	2.27	2 2 7	2.28	2.28	2.28	2.28	2 28	000	200	9 6	7.43	2.29	2.29	2.30	2.30	2.30	2.30	2.30	2.30
4	2	8 8	5 3	5	44	7.	159	147	143	. 081	ç	3	-	108	187	139	139	248	248	177	177	215	2 8	3	5	50	180	Ę	5 6	220	5	862	ğ	135	858	8	3 4	2 4	3 ;	315	312	255	153	115	59	465	74	74
•			•	•		•	•	•	•			•	•			٠			•			•		•			•	•				•		•	•	•				•	•	•					•	•
ţ	! ه		D (0	ιΩ	2	Ξ	42	11	10		יי	8	‡	5	9	9	9	16	4	9	.	? ∢	•	40		2.	, ~	. 7	; =	. 64	2 2		· =	3	, ur	, ,	4	P :	3	35	€	16	S	80	8	9	9
3		5 7	₹ ?	4	8	99	99	9	99	78	? ?	,	*	7	7	29	59	102	102	7		. 60	;	ā	20	9	9 5	55	245	; 6	308	9 F	٧	99	352	7.6		, r	3 3	7	121	93	28	48	22	190	53	59
200	900	900	200	000	606	910	911	912	913	914	7.10	2 6	D	917	918	919	920	921	922	923	924	925	926	3	927	928	626	028	931	932	933	934	935	936	937	938	020	. 080	4 6	- c	942	943	944	945	946	947	948	949
GCGGGTGGA	エノンノンフラフラ	0222220000	STOCK COCK	2112442544	AATTGCAAGC	CCTGTGATCC	CCCCGCCAAG	CTCAACAGCA	AAGGTAGCAG	AAGCCAGCCC	CAGOTTGGA	00101001	2012	CAACATTCCT	TACTAGTCCT	GACTCTGGTG	GACTCTGGTG	GTGGCTCACG	GTGGCTCACG	GTGGCGGGCA	GTGGCGGCA	COTGTGTCC	TACAGCACGG	2000	GTGGCACCTG	TACACGTGAG	TCAGGCATTT	TTCACAAAGG	тспетве	TCCCTATTAG	TACAAGAGGA	TCAGACGCAG	CAGGATCCAG	TCTGTACACC	GAAGCAGGAC	2222225	CCTCTTGG	TOOCOOL	00000000	000000000000000000000000000000000000000	GIGGIACAGG	GGTGAGACCT	GAGATCCGCA	TTGGCAGCCC	GCCTTTCCCT	GGAGTGGACA	TTATGGGGAG	TTATGGGGAG

FESTs. Highly similar to LYSOSOMAL PRO-X CARBOXYPEPTIDASE PRECURSOR	[Homo saplens]	No match		Femtin heavy chain	Clathrin, light polypeptide (Lcb)	EST		ESTS	Enolase 1, (alpha)	ESTS, Highly similar to HYPOTHETICAL 27.5 KD PROTEIN IN SPX19-GCR2	INTERGENIC REGION (Saccharomyces cerevislae)	Calmodulin 1 (phosphorylase kinase, delta)	Inhibitor 1	ESTs, Weakly similar to zinc finger protein [H.saplens]	mRNA, partial cds	Human mRNA for proteasome activator hPA28 subunit beta, complete cds	Human mRNA for ornithine decarboxylase antizyme, ORF 1 and ORF 2	Homo sapiens nuclear-encoded mitochondrial cytochrome c oxidase Va subunit mRNA,	COMDIBIBIO COS	Homo saplens clone 24703 beta-tubulin mRNA, complete cds	Human neuronal olfactomedin-related ER localized protein mRNA, partial cds	ESTs	60S RIBOSOMAL PROTEIN L18A	THE REPORT OF THE PARTY OF THE	Human BTK region clone ftp-3 mRNA	Homo saplens intrinsic factor-B12 receptor precursor, mRNA, complete cds	TRANSLATIONALLY CONTROLLED TUMOR PROTEIN	Human mRNA for KIAA0106 gene, complete cds	Tag matches mitochondrial sequence	Homo saplens NADH:ublquinone oxidoreductase B12 subunit mRNA, nuclear gene	encount mitochinana protein, comprate cus	Eukaryouc translation elongation factor 1 detta (guanine nucleotide exchange protein)	Lish mobility cross (contributed shows the contributed shows the cross (contributed shows the cross (contributed shows the cross contributed s	right-monnity group (nonnisione criomosomal) protein 1			Cuanine nucleotide binding protein (c protein), alpha inhibiting activity polypeptide 2	ES IS, Weakly similar to No definition line tound (C.elegans)	ES1s, Moderately similar to GTP-binding protein-associated protein [M.musculus]	THYMOSIN BETA-10	COLS, WEARLY SIMILAT TO OT, 1611, 109, CAT, U. 12 (3. CERVISIAE)	11 surking 70% antain	Human pancreatic zymoden granule membrane protein GP-2 mRNA, complete cds	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100)	Human non-muscle alpha-actinin mRNA, complete cds
	2.30	2.30	2.31	2.31	2.31	2.31	2.31	2.31	2.31		2.31	2.31	2.32	2.32	2.33	2.33	2.33	;	2.33	2.33	2.34	2.34	2.34	2.34	2.34	2.35	2.35	2.35	2.35	30.0	5.50	2.30 38 38	2.50	6.30	6.30	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.38
	108	479	331	3123	229	229	2	67	67		8	184	122	138	Ξ	162	540		78	369	49	64	2051	1228	105	297	1386	150	1463	;	5	432	9 9	8 9	30	9	198	139	149	1772	3 3	242	223	223	480
	•	•	•		•	•	•	•	٠		•		٠	•	•	•	•		•	٠	•	•	,		٠	•		•			•	•	•	•	•	•	•	•		•	•			•	•
	6	86	7	255	7		æ	9	\$			8	o	13	8	15	59		S.	9	7	^	156	132	63	ກັ	ţ	∞	118	•	0	2 3	- •	n •	0	ın ı	on i	*	7	8	2 9	2 6	. 42	5 9	ဗ
	43	192	126	1243	93	93	28	56	58		8	78	67	51	45	8	508		၉	156	1 8	18	809	467	4	Ξ	976	5	572	1	3	₽ \$	€ 5	3 :	7 1	⇒	S :	S	9	708	.	24	. 89	69	188
	950	951	952	953	954	955	956	957	958		929	960	961	962	963	964	965	. ·	996	967	968	696	920	971	972	973	974	975	976	723	- 6	9/6	6 6	9 6	- 6	385	983	20 0 40 0	982	9 6	000	0 686 686	066	991	992
	GAGTGGGGGC	GTGGCACGTG	CTGGGCGTGT	TTGGGGTTTC	GGCTGGGCCT	GGCTGGGCCT	CCTGTTCTCC	GTGTCTCATC	GTGTCTCATC		ACGATTGATG	TTGTTGTTGA	TGGCCTCCCC	ATCGGGCCCG	GCCGCCATCA	GTGCTGGACC	TTGTAATCGT		AA GG AAC	AACGACCTCG	GCCTGCACCC	GCCTGCACCC	AAGGTGGAGG	AAGGAGATGG	CAGTTCTCTG	GTGAAACCTC	TAGGTTGTCT	CCTGTGACAG	CTCATAAGGA	011000100	0010000000	GCICAGCIGG	TOTOTANA	0444100101	2000000	みらいことのよう	CIGAGICICC TOTAL	16C10C0A	2512215122	TOTOCTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	050000000000000000000000000000000000000	GAGTCTGAGG	GTGGCAGGCG	GTGGCAGGCG	CGAGGGGCCA

COC CACACACACACACACACACACACACACACACACACA	9		•	3.78	(Toponia DO) o year DINIOA DINIOE DOTA and One injury
- -		n		7.7	lapasin, RGLZ, REZ, BING4, BING5, ES IS and CPG Islands
	58	6 0	. 75	2.38	
GAGTGGCTAT 995	28	80	. 75	2.38	Homo sapiens mRNA for GDP dissociation inhibitor beta
		so.	99	2.38	LARGE PROLINE-RICH PROTEIN BAT2
		7	. 72	2.39	
	22	~	. 72	2.39	Homo sapiens mRNA for KIAA0632 protein, partial cds
	3108	714	. 8145	2.39	Tag matches mitochondrial sequence
· 	8	80	°.	2.40	
100	150	38	. 398	2.40	CYCLIN-DEPENDENT KINASE INHIBITOR 1
					Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta
CTTTTGTGC 1002	2 42	9	. 107	2.40	polypeptide
103	3 23	60	. 62	2.40	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b, isoform 1
_	21	•	- 57	2.40	Human male-enhanced antigen mRNA (Mea), complete cds
GTGGTGGGCG 1005	. 61	0.	. 158	2.40	No match
•	. 38	Ф	86 .	2.41	Human TNF-related apoptosis inducing ligand TRAIL mRNA, complete cds
TGACCCCACA 1007	7 29	=	. 81	2.41	ESTs, Weakly similar to F25H5.h [C.elegans]
TGATTTCACT 1008	803	132	- 2084	2.41	
TGATTTCACT 1009	9 803	132	- 2064	2.41	Tag matches mitochondrial sequence
_	142	96	- 379	2.41	TA T
CCTGTGTGTG 1011	32	ω	. 82	2.41	EST8
[]	514	135	. 1377	2.42	Ribosomal protein L8
	3 . 43	æ	. 112	2.42	Human mRNA for NADPH-flavin reductase, complete cds
<u>-</u>	43	^	Ξ.	2.42	Human Chromosome 16 BAC done CIT987SK-A-61E3
GTGGGGCTAG 1015	8	80		2.42	H.sapiens mRNA for protein phosphatase 5
_	28	S	. 75	2.43	n splicing factor SRp30c mRNA, complete cds
		22	. 728	2.43	ESTS
	3 270	22	. 728	2.43	
	55	ũ	. 147	2.44	Human plectin (PLEC1) mRNA, complete cds
	88	6	. 228	2.44	ed kinase (IRAK) mRNA, complete cds
, ;		35	. 295	2.44	Human mRNA for KIAA0088 gene, partial cds
AAGCCTTGCT 1022		φ	3	2.44	ESTS
_		5	-	2.45	ESTs, Weakly similar to neuroendocrine-specific protein C (H.sapiens)
-		\$. 234	2.45	Ubiquitin A-52 residue ribosomal protein fusion product 1
- - :	158	ន	419	2.45	
	3 45	~	. 118	2.45	Antigen identified by monoclonal antibodies 12E7, F21 and O13
ACTGGTACGT 1027	8	60	06	2.45	Homo sapiens F1Fo-ATPase synthase f subunit mRNA, complete cds
_	. 92	w	. 45	2.45	H.sapiens mRNA for alpha 4 protein
GGCTGGGGGC 1029	3 437	48	. 1124	2.46	Human profilin mRNA, complete cds
	925	181	. 2480	2.47	
CCACTGCACT 1031	958	181	. 2460	2.47	Enhancer of zeste (Drosophila) homolog 1
-	958	181	. 2460	2.47	İ
1033	3 925	181	- 2460	2.47	Human clone 23732 mRNA, partial cds
1034	952	181	. 2460	2.47	
1035	526	181	. 2460	2.47	Alkaline phosphatase, placental (Regan isozyme)
CCACTGCACT 1036	3 825	181	- 2460	2.47	i
1037	928	181	2480	2 47	Home earlone carbonic arbudrage procured (CA 42) mDNA complete ade

		ì
i	i	3
7	Ç	ì
1	C	ľ
		_
٠	r	٠
١	۲	ı

Homo sapiens methyl-CpG binding protein MBD4 (MBD4) mRNA, complete cds	riuspirautesterase 4C, cAMP-specific (dunce (Urosophila)-homolog phosphodiesterase (E1)	Human SNRPN mRNA, 3' UTR, partial sequence	Homo saplens brachyury variant A (TBX1) mRNA, complete cds	H.sapiens beta glucuronidase pseudogene	G PROTEIN-ACTIVATED INWARD RECTIFIER POTASSIUM CHANNEL 4	ESTs, Highly similar to ACETYL-COENZYME A SYNTHETASE [Escherichia coli]	ESTS, Highly similar to NADH-UBIQUINONE OXIDOREDUCTASE B22 SUBUNIT IBOS	taurus)	Tag matches mitochondrial sequence	Homo sablens clone 24703 beta-tubulin mRNA complete cds	Tag matches milochondrial sequence	Enolase 1 (alpha)	Himan mRNA for KIA40090 nene complete cde	Fukarvolic translation initiation factor 40 (old 40) lockom 4	TRANSAI DOI ASE	FSTs	40S BIRDSOMAI DEOTEIN S44	Limite MBMA for biglione Life consists	number of instance ATX, complete cds	nomo sapiens mknA for KIAAU529 protein, partial cds	60S RIBOSOMAL PROTEIN L24	Human signal-transducing guanine nucleotide-binding regulatory (G) protein beta subunit	mRNA, complete cds	S100 calcium-binding protein A10 (annexin li ligand, calpactin 1, light polypeptide (p.11))	ELONGATION FACTOR TU, MITOCHONDRIAL PRECURSOR	Basigin	ESTs, Weakly similar to neuroendocrine-specific protein C IH saniens	Tag matches milochondrial sequence	Human thymosin beta-4 mRNA, complete cds	Homo saplens mRNA for TRIP6 (thyroid receptor interacting protein)	Tag matches mitochondral sequence	Ribosomal protein L28	Basidin	Home sapiens mRNA for expandencin 2	No match	Wilman Didge Codes NEGO - DAM	Tidinal nucleal lactor in the Complete cos	. :	H.saplens mRNA for arginine methyltransferase, splice variant, 1262 bp	ESTs, Weakly similar to N-methyl-D-aspartate receptor glutamate-binding chain	[R.norvegicus]	Homo saplens breakpoint cluster region protein 1 (BCRG1) mRNA, complete cds	ESTS	ESTs, Highly similar to Surf-4 protein (M.musculus)	ESTs, Highly similar to deduced protein product shows significant homology to coactosin	from Dictyostellum discoldeum [H.sapiens]	Ribosomal protein S3A
2.47	2.47	2.47	2.47	2.47	2.47	2.47		2.47	2.47	2.47	2.47	2.48	2.48	2.48	2.48	2 48	2.48	. c	 	6.40	2.48	;	2.48	2.49	2.49	2.49	2.49	2.49	2.50	2.50	2.50	2.50	2.50	2.50	2.51	2 2 4 2	- C	7:27	2.52		2.52	2.52	2.52	2.52		2.53	2.53
2460	2460	2460	2460	2460	2460	280		280	284	\$	682	294	294	172	17.	6	2 5	. e	2 :	c C	1.5		159	1034	240	72	110	2089	1053	125	2055	2072	1798	142	5	;	;	62	161		177	159	52	8		112	1265
•	•	•	•	•	•	٠		•	•	•	٠	•		•	•			•		•	٠		•	•	•	•	•	•	•	•	•	•	•					•	•		•	•		•			
181	181	181	181	181	181	2		24	11	S	8	6	0					- 0		۰	S		+	65	ŧ	a	9	208	57	æ	125	96	128	æ	Œ	, a	•	9	7		7	Ξ	60	9		\$	8
925	928	928	925	925	925	109		109	0	6	251	115	116	8	98	7,	5 6	2 %	9 8	g :	4	;	52	390	90	25	42	755	389	46	772	790	899	S	39	¥	2 ;	22	59		65	29	27	30		42	467
1038	1039	1040	1041	1042	1043	1044		1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1050	2 5	SOL	0	8601	1059	1060	1061	1062	1063	1064	. 1065	1066	1067	1068	1069	1070	1071	104	7/01	10/3		1074	1075	1076	1077		1078	1079
CCACTGCACT	CCACTGCACT	CCACTGCACT	CCACTGCACT	CCACIGCACI	CCACTGCACT	CACTTGCCCT		CACTTGCCCT	GCAAGCCAAC	TAGATAATGG	TCGAAGCCCC	AGAAAAAAA	AGAAAAAAA	GGCGCCTCCT	GGCGCCTCCT	TAAACTGTTT	TAAACTGTTT	Вессини		01000000	ין יין יין יין יין יין יין יין יין יין	CAFO	CCCACACAC	AGCAGATCAG	GCATAGGCTG	GAGGCCGACC	AAATGCCACA	AGCCCTACAA	TTGGTGAAGG	CCGGGCCCAG	TTCATACACC	GCAGCCATCC	GCCGGGTGGG	GCTCCCAGAC	AGCCACCGTG	TCAGCTGGCC	エングラングラング	2000000	S S S S S S S S S S S S S S S S S S S		TGGCCATCTG	19000000	ACTTGTTCGC	AAGACTGGCT		AGCACATTTG	GTGAAGGCAG

2.54	ESTS, Highly similar to HYPOTHETICAL 52.8 KD PROTEIN T05E11.5 IN	25.0	2.54	2.54	2.55		2.55	2.55	GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR RECEPTOR		2.55	2.55	2.55	2.55		2.55	2.55	2.55	2.55		2.55	2.55	2.55	2.56	2.56	2.56	2.58 Chromosome 22q13 BAC Clone CIT987SK-384D8 complete sequence	80.7	2.36	6.29		00.7	2.60	2.61	261	2.5		2.62 taurus	2.62	2.63	2.63 (Ubiquitin-conjugating enzyme E2A (RAD6 homolog)	2.63	2.63
620	:	4 4	5 2	2	3963		3963	3963		3963	3963	3963	3963	3963	3963	3963	3963	3963	3963		3963	3963	122	247	461	124	6	8	92	-	<u> </u>	8 \$	5 6	527	323	3 5	5	171	88	290	290	290	199
43					514 .		514	514		514	514	514	514	514	514	514	514	514	514		514	514			. 84		· = ·		• ;	F :				. 28			•	. 8					. 61
227	9	2 6	32	\$2	1352		1352	1352		1352	1352								1352			•	£.	8	162	8	8	F 1	77	- (3 6	3 ¥	S 25	182	701		i	83	32	108	108	108	7
1080	1081	1082	1083	1084	1085		1086	1087		1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	,	1098	1099	100	1101	1102	1103	1104	100	100) (C	1108	110	111	1112	1113	1114	•	1115	1116	1117	1118	1119	1120
CAATAAATGT	GCCAGGGGGG	GTGTAATAAG	TTCTGCACTG	TTCTGCACTG	GTGAAACCCC	!	GTGAAACCCC	GTGAAACCCC	-	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GIGAAACCCC	GTGAAACCCC	GIGAAACCCC	GTGAAACCCC	GTGAAACCCC		GTGAAACCCC	GIGAAACCCC	GACACCTCCT	GACGTGTGGG	GCAAAACCCC	I ACCAGIGIA	CCCCCCA CCCCA CCCCCA CCCCCA CCCCCA CCCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCA CCCCCC	CTOTOTONA	GCTCCTCGA	TO 000000	CAGGGGGAG	CTGGGAGAGG	GAAAAATGGT	ATCACGCCCT	TAGCTCTATG	GTATTGGCCT		CCCGACGTGC	GAAGTTATGA	TAAAAAAAA	TAAAAAAAA	TAAAAAAAA	СССССТСС

≟
S
4. cont.
4
<u>•</u>
虿

																						_																								
MA PARAMETER DESIGNATION OF THE PROPERTY OF TH	CYSTEINE BEOTEIN	ECT Highly similarly DNC and IL series	60S RIBOSOMAL PROTEIN 1234	Human translational initiation factor 2 heta subunit (alf. 2 heta) mBNA complete ede	Tag matches mitochondrial sequence	Homo sabiens histone H2A F/Z variant (H2AV) mRNA complete cds	Human mRNA for ribosomal protein L39, complete cds	No match	Homo sapiens NADH:ublquinone oxidoreductase NDUFS3 subunit mRNA, nuclear gene	encoding mitochondrial protein, complete cds	Homo sapiens SKB1Hs mRNA, complete cds	S-adenosylhomocysteine hydrolase	ESTs	Human APRT gene for adenine phosphoribosyltransferase	ESTS	ESTs	Annexin (I (Ilpocortin II)	ESTS	Tag matches mitochondrial sequence	Annexin XI (56kD autoantigen)	Homo sapiens RNA polymerase Il transcription factor SIII p18 subunit mRNA complete	Spo	Cystatin C (amyloid anglopathy and cerebral hemorrhage)	ESTS	Homo saplens Arp2/3 protein complex subunit p34-Arc (ARC34) mRNA complete cds	Proteasome component C2	ESTS	Cathepsin D (lysosomal aspartyl protease)	ESTs, Highly similar to LATENT TRANSFORMING GROWTH FACTOR BETA BINDING	PROTEIN 1 PRECURSOR (Rattus norvegicus)	Homo saplens NF-AT4c mRNA, complete cds	Acid phosphatase, prostate	Ribosomal protein L17	ESTs, Weakly similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.sapiens]	Glycogen phosphorylase B (brain form)	ESTS, Highly similar to HYPOTHETICAL 6.3 KD PROTEIN 2K652.2 IN CHROMOSOME	III [Caenorhabditis elegans]	Human cell cycle protein p38-2G4 homolog (hG4-1) mRNA, complete cds	ESTs, Weakly similar to RNA-binding protein [H.sapiens]	Human mRNA for KIAA0134 gene, complete cds	H.sapiens F11 mRNA	Human mRNA for KIAA0159 gene, complete cds	Human calmodulin mRNA, complete cds	Human NADH:ubiquinone oxidoreductase MLRO subunit mRNA, complete cds	PROTEASOME IOTA CHAIN	Homo sapiens lysyl hydroxylase Isoform 3 (PLOD3) mRNA, complete cds
2 63	2 63	50.5	2.65	2.64	2.65	2.65	2.65	2.65		2.66	2.66	2.67	2.67	2.67	2.68	2.68	2.69	2.69	2.69	2.70		2.70	2.70	2.72	2.72	2.72	2.72	2.72		2.74	2.74	2.74	2.76	2.76	2.76		2.77	2.78	2.78	2.78	2.78	2.78	2.80	2.80	2.81	2.81
37.0	328		412	82	220	9	999	165		10	64	23.	96	167	28	2	1050	223	223	112		321	688	12	270	143	769	769		108	2 6	1 34	1167	1167	190		. 282	153	=	288	288	288	95	278	183	148
		•		•			•				٠	٠	•																						٠											
9	5 £	; ¢	: 2	^	6	9	48	Ø.		1	7	6	\$	5	60	60	18	ω	w	φ		7	5	4	R	٠n	20	20		60	80	50	Ξ	Ξ	2		7.	Ф	w)	22	22	23	60	8	5	ĸ
ä	8 8	128	152	22	8	32	186	29		28	23	83	30	29	50	2	358	80	8	Q		1.	232	42	16	51	264	784		æ	46	4	383	383	65		98	23	38	95	92	95	32	8	83	S
1122	1123	1124	1125	1126	1127	1128	1129	1130		1131	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	•	1142	1143	1144	1145	1146	1147	1148		1149	1150	1151	1152	1153	1154		1155	1156	1157	1158	1159	1160	1161	1162	1163	25.
GTGGCAGGCA	GGCTGTACCC	AGCAGGGCTC	AAGAAGATAG	TCTGGGGACG	GCTAGGTTTA	TGGTGACAGT	TTACCATATC	GTGGCGGGTG		TGGATCCTAG	GGGTTTGAAC	AATGCAGGCA	ACATCGTAGG	AACGCTGCCT	TGGAGGTGGG	TGCCTGCTCC	CTTCCAGCTA	GTAAGTGTAC	GTAAGTGTAC	GTGTCTCGCA		ATCCGGCGCC	TGCCTGCACC	TTCCTATTAA	CAGGAGTTCA	GTCTGCGTGC	GAAATACAGT	GAAATACAGT		TGAGCCCGGC	010101010	6166161616	CACCCACAC	TCACCCACAC	CIGGAICIGG		GAAGATGTGT	CGGATAACCA	TCAGAAGGTG	GAGAAACCCC	GAGAAACCCC	GAGAAACCCC	CTCGTTAAGA	TTGGAGATCT	GAGGTCCCTG	1 151929271

203

5 5 0

8 5 6

1207 1208 1209

ACTCAGAAGA GAACACATCC AACTAATACT

112 140 199 101 165 168

> 2130 2130 2130 2130 2130

> > 188 198

3	104	5	S	128	39	28	€	5	S	\$	9	8	6	320	23	6	4	46	544	37	37	43	27	ຮ	. 25	-8	664	664	664	664	664	664	8	7	2	43	8	162	9	7	8
1165	1166			1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204		1206
 CAGCCCAACC	GTGGCTCACA	TAGAAAGGCA	TAAGTAGCAA	GGTGAGACAC	CCCATCGTCT	CCGATCACCG	GAATCGGTTA	AACCCAGGAG	\sim	CACAGGCAAA	TCAGCTTCAC	TCAGCTTCAC	GAGGCCGGT	CCCCAGCCAG	GTGGTGGTG	CTGCCAAGTT		GAGAAACCCT		TTTGGGGGC	999	GTGAAACCCA	GCTTTCATTG	GTGGCACGCA	GGGTCAAAAG	GGGGTCACC	GTGAAACCCT	GTGAAACCCT	GTGAAACCCT	45 ₹	GTGAAACCCT	GTGAAACCCT	AGTTGAAATT	AGAATCGCTT	AGGTCAAGAG		GGGATGGCAG	AGACCCACAA	GAAGAAC	GAAATAAA	ACTGAGGTGC

176 314 144 144 1894

92

Table 4, cont.

- (U
i	õ
•	٥
3	3
1	Ф
1	0
-	σ

Hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A hydratase (trifunctional protein), beta subunit	Homo saplens RNA transcript from U17 small nucleolar RNA host gene, variant U17HG-	ESTs, Weakly similar to No definition line found (C.elegans)	No match	GUANINE NUCLEOTIDE-BINDING PROTEIN BETA SUBUNIT-LIKE PROTEIN 12.3	ESTs, Moderately similar to SULFATED SURFACE GLYCOPROTEIN 185 (Volvox	carterij	i		TIF1B mRNA, complete cds	ESTs	No match	Ataxia telangiectasia mutated (includes complementation groups A, C and D)		Calclum modulating ligand	Human melanoma antigen recognized by T-cells (MART-1) mRNA	Human mRNA for KIAA0123 gene, partial cds	Homo sapiens AIBC1 (AIBC1) mRNA, complete cds	Homo sapiens mRNA for MEGF8, partial cds	Human cytochrome P450-ilB (hilB3) mRNA, complete cds	Homo sapiens X-ray repair cross-complementing protein 2 (XRCC2) mRNA, complete	(SQS	Homo saplens oligodendrocyte-specific protein (OSP) mRNA, complete cds	ire til man tid \$1000 il 000 il 10000 kvalastettettettet deste kil videk i kalde kvalasta disk tig deste i videkste meter ette s	•	ible double stranded RNA dependent	Zinc finger protein 157 (HZF22)	irotein kinase B (RSK-B)	Ephosphate dehydrogenase		Breast cancer 2, early onset	Integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)	Transcription factor 1, hepatic; LF-B1, hepatic nuclear factor (HNF1), albumin proximal	factor	Homo saplens interferon induced tetratricopeptide protein IFI60 (IFIT4) mRNA, complete	\$50	H.saplens RBQ-3 mRNA	Human hVps41b (HVPS41) mRNA, complete cds	Human TNF-alpha converting enzyme precursor, mRNA, alternatively spliced, complete	503	Homo saplens mRNA for KIAA0526 protein, complete cds	SPS	Homo sapiens clone 23716 mRNA sequence	Homo sapiens mRNA for KIAA0538 protein, partial cds
2.96	700	2.98	2.98	2.99		2.99	2.99	2.99	3.00	3.00	3.00	3.02	3.02	3.05	3.05	3.05	3.06	3.06	3.07		3.07	3.07	3.07	3.07	3.07	3.07	3.08	3.09	3.09	3.10	3.10	-	3.10		3.10	3.10	3.10		3.10	3.10	3.10	3.10	3.10
86		172	152	184		₹	415	415	281	515	100	2773	122	419	419	98	228	228	1149		1149	1149	1149	1149	1149	1149	89	197	347	4484	4484		4484		44B4	4484	4484		4484	4484	4484	4484	4484
	a	, , 	· =	*		<u>.</u>	∓	7	5	8					24	9		5	. 48					. 48	. 48	. 78				453	453		453		453	453	453		453	453	453	453	453
S 30	ţ	. 22	47	57		57	134	134	08	160	36	237	38	129	129	30	02	02	346		346	346	346	346	346	346	8	19	107	1302	1302		1302		1302	1302	1302		1302	1302	1302	1302	1302
1210	1211	1212	1213	1214		1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	į	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239		1240		1241	1242	1243		1244	1245	1246	1247	1248
AGATGTGTGG	OTOTOTOTO	GGCGTCCTGG	CCTGCAATCC	GCCTGGCCAT		GCCTGGCCAT	естессстте	ССТСССТТС	GCCAGCCCAG	TCCTATTAAG	ATTGTGCCAC	CCATTGCACT	GCACCTCAGC	TTGGTCAGGC	TTGGTCAGGC	GGCCCCGCA	GTGGCACACA	GTGGCACACA	TTGGCCAGGC		TGGCCAGGC	TGGCCAGGC	TGGCCAGGC	TTGGCCAGGC	TTGGCCAGGC	TTGGCCAGGC	GTCACTGCCT	GCCACCCGT	TCCCTATAAG	CCTGTAATCC	CCTGTAATCC	•	CCTGTAATCC		CCTGTAATCC	CCTGTAATCC	CCTGTAATCC		CCTGTAATCC	CCTGTAATCC	CCTGTAATCC	CCTGTAATCC	CCTGTAATCC

1249 1302 453 4484 3.10 1250 1302 453 4484 3.10 1252 1302 453 4484 3.10 1253 1302 453 4484 3.10 1254 1302 453 4484 3.10 1254 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1255 1302 453 3.14 1255 1255 1302 453 3.14 1255 1255 1302 453 3.14 1255 1255 1302 453 3.14 1255 1255 1255 1302 1255 125	-							
1250 1302 453 4484 3.10 1251 1302 453 4484 3.10 1252 1302 453 4484 3.10 1253 1302 453 4484 3.10 1254 1302 453 4484 3.10 1256 1302 453 4484 3.10 1256 1302 453 4484 3.10 1256 1302 453 4484 3.10 1256 1302 453 4484 3.10 1257 1302 453 4484 3.10 1258 30 9 104 3.11 1259 30 9 104 3.11 1260 30 9 104 3.11 1261 31 21 106 104 3.14 1262 32 32 106 3.14 1263 33 31 32 3.14	I COTABLE	1240	****	Ş		,	6	HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, E E 0101/E 0102 ALPHA CHAIN BESCLIDSOD
1252 1302 453 4484 3.10 1253 1302 453 4484 3.10 1254 1302 453 4484 3.10 1255 1302 453 4484 3.10 1256 1302 453 4484 3.10 1256 1302 453 4484 3.10 1257 1302 453 4484 3.10 1258 30 9 104 3.11 1260 96 104 3.11 3.12 1260 96 104 3.11 3.14 1260 96 104 3.11 3.14 1260 96 104 3.11 3.12 1260 96 104 3.11 3.12 1261 11 27 3.12 3.14 1262 93 10 107 3.14 1270 35 10 107 3.14 1	TCTAATOO	1250	2001	3 5		D		
1252 1302 453 4484 3.10 1254 1302 453 4484 3.10 1255 1302 453 4484 3.10 1255 1302 453 4484 3.10 1256 1302 453 4484 3.10 1259 1302 453 4484 3.10 1259 1302 453 4484 3.10 1259 30 9 104 3.11 1260 9 104 3.11 1260 9 104 3.11 1260 9 104 3.11 1260 9 104 3.11 1261 111 27 3.12 1262 9 104 3.11 1263 37 10 108 3.14 1264 31 67 701 3.14 1265 92 106 118 3.14 1270	TGTAATCC	1251	1302	453		4484	ა ა 5 ნ	CATHEPSIN S PRECURSOR
1252 1302 453 4484 3.10 1253 1302 453 4484 3.10 1254 1302 453 4484 3.10 1255 1302 453 4484 3.10 1256 1302 453 4484 3.10 1259 30 9 104 3.11 1260 96 9 104 3.11 1260 96 9 104 3.11 1260 96 9 104 3.11 1260 96 9 104 3.11 1260 96 9 104 3.11 1260 96 9 104 3.11 1260 96 104 3.11 3.12 1260 96 104 3.13 3.14 1260 96 104 3.14 3.14 1260 96 106 104 3.14 1260 <								Homo sapiens type 6 nucleoside diphosphate kinase NM23-H6 (NM23-H6) mRNA,
1253 1302 453 484 3.10 1254 1302 453 4484 3.10 1256 1302 453 4484 3.10 1256 1302 453 4484 3.10 1256 1302 453 4484 3.10 1269 30 9 104 3.11 1269 30 9 104 3.11 1260 56 9 104 3.11 1261 111 27 372 3.11 1262 63 161 2105 3.11 1263 57 10 104 3.11 1264 231 67 10 104 3.11 1265 63 161 216 3.13 11 1266 62 62 9 104 3.11 1267 31 62 11 3.14 3.14 1268 62 12	TGTAATCC	1252	1302	453		44B4	3.10	complete cds
1254 1302 453 - 4484 3.10 1255 1302 453 - 4484 3.10 1256 1302 453 - 4484 3.10 1259 3918 290 12438 3.10 1259 30 9 104 3.11 1260 56 9 104 3.11 1261 111 27 372 3.11 1262 63 161 2105 3.12 1263 57 10 187 3.13 1264 35 161 2105 3.14 1265 63 161 2105 3.14 1266 62 9 104 3.14 1267 35 161 2105 3.14 1269 35 161 2105 3.14 1270 36 12 218 3.14 1271 35 13 124 3.18 1272 <td>TGTAATCC</td> <td>1253</td> <td>1302</td> <td>453</td> <td></td> <td>4484</td> <td>3.10</td> <td>5' nucleotidase (CD73)</td>	TGTAATCC	1253	1302	453		4484	3.10	5' nucleotidase (CD73)
1255 1302 463 - 4484 3.10 1256 1302 453 - 4484 3.10 1259 30 9 - 104 3.11 1259 30 9 - 104 3.11 1260 56 9 - 104 3.11 1261 111 27 - 372 3.11 1262 623 161 - 2105 3.12 1263 67 187 3.12 3.14 1264 231 67 - 104 3.11 1265 62 9 - 104 3.13 1266 62 9 - 104 3.13 1267 321 67 - 781 3.13 1266 62 9 - 108 3.14 1270 86 12 - 108 3.14 1271 87 21 203 3.14 1272 88 13 127 3.18 127	TGTAATCC	1254	1302	453		4484	3.10	Homo sapiens mRNA, chromosome 1 specific transcript KIAA0508
1256 1302 453 - 4444 3.10 1257 3918 290 - 12438 3.10 1269 30 9 - 104 3.11 1260 56 9 - 104 3.11 1261 111 27 - 372 3.12 1262 653 161 - 2105 3.12 1263 57 161 - 2105 3.12 1264 231 67 - 781 3.13 1265 62 9 - 108 3.14 1266 62 9 - 203 3.14 1276 32 67 - 781 3.13 1269 35 6 - 118 3.14 1277 35 6 - 12 3.14 1277 35 6 - 12 3.18 1277 35 13 - 12 3.18 1277 35 13 - 12 3.18 12	TGTAATCC	1255	1302	453		4484	3.10	H.sapiens mRNA for p85 beta subunit of phosphatidyl-inositol-3-kinase
1257 3918 290 12438 3.10 1259 30 9 104 3.11 1260 56 9 104 3.11 1261 111 27 372 3.11 1263 57 10 104 3.11 1264 231 67 104 3.11 1265 62 9 106 3.13 1266 62 9 108 3.14 1267 32 67 108 3.14 1270 35 6 108 3.14 1277 35 6 118 3.14 1277 36 12 138 3.14 1277 38 13 1274 3.18 1277 38 13 1274 3.18 1277 35 13 1274 3.18 1278 35 13 1274 3.18 1279 35	TGTAATCC	1256	1302	453		4484	3.10	Interleukin 12 receptor, beta-2
1258 30 9 104 3.11 1260 56 9 104 3.11 1261 62 9 104 3.11 1262 623 161 2105 3.12 1263 57 10 187 3.13 1264 231 67 10 118 3.14 1265 62 9 203 3.14 1266 62 9 203 3.14 1266 62 9 203 3.14 1267 32 67 7 781 3.13 1268 35 6 118 3.14 1270 35 6 118 3.14 1271 87 12 12 3.18 1272 35 13 12 45 3.18 1274 359 13 124 3.18 1275 359 13 124 45 3.18<	CCGTACA	1257	3918	280		12438	3.10	No match
1259 30 8 104 3.11 1260 56 9 104 3.11 1261 111 27 372 3.11 1262 623 161 2105 3.12 1264 231 67 10 167 3.13 1265 66 12 216 3.13 1266 92 9 203 3.14 1267 32 6 108 3.14 1269 35 6 118 3.14 1270 35 6 118 3.14 1271 65 12 203 3.14 1272 85 13 127 3.18 1273 359 13 127 3.18 1274 359 13 127 3.18 1275 359 13 127 3.18 1276 359 13 127 3.18 1277	SACACCAC	1258	93	œ		104	3.11	ESTS
1260 56 9 182 3.11 1261 111 27 372 3.11 1263 57 10 187 3.12 1264 231 67 781 3.12 1265 62 9 781 3.14 1266 92 10 10 3.14 1266 92 9 703 3.14 1267 35 12 703 3.14 1269 35 9 118 3.14 1270 35 9 118 3.14 1271 87 21 23 3.17 1273 35 13 127 3.18 1274 359 13 221 3.18 1275 359 13 27 3.18 1274 359 13 27 3.18 1275 359 13 27 3.18 1276 35 1	SACACCAC	1259	စွ	•		104	3.11	Prothymosin alpha
1261 111 27 372 3,11 1263 623 161 2105 3,12 1264 231 67 167 3,13 1266 62 9 203 3,14 1266 62 9 203 3,14 1266 95 12 218 3,14 1269 35 9 118 3,14 1270 56 12 203 3,14 1271 67 23 3,14 3,14 1270 56 12 190 3,16 1271 67 21 23 3,17 1272 68 13 22 3,18 1273 359 133 1274 3,18 1274 359 133 1274 3,18 1275 359 133 1274 3,18 1276 359 13 2 45 3,18 1279	GCAAGGG	1260	96	6		182	3.11	ESTs. Weakly similar to IIII ALU SUBFAMILY J WARNING ENTRY !!! [H.sapiens]
1262 623 161 2105 3.12 1263 57 161 2105 3.12 1264 231 67 187 3.12 1265 68 12 218 3.14 1266 62 9 203 3.14 1269 35 6 118 3.14 1269 35 6 118 3.14 1270 56 12 180 3.14 1271 67 21 233 3.17 1272 68 13 22 3.18 1274 359 13 1274 3.18 1275 359 133 1274 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1280 17<	STTGGCAT	1261	Ξ	21		372	3.11	Ribosomal protein L21
1263 57 10 187 3.12 1264 231 67 187 3.13 1265 62 9 203 3.14 1266 62 9 203 3.14 1269 35 8 118 3.14 1270 56 12 180 3.14 1271 87 13 8 118 3.14 1272 85 12 180 3.16 3.17 1273 38 11 126 3.18 3.17 1274 389 13 1274 3.18 1275 389 13 1274 3.18 1276 389 13 1274 3.18 1277 13 5 45 3.18 1276 359 133 1274 3.18 1277 31 5 45 3.18 1280 7 7 108 3.22 </td <td>GCCTCAC</td> <td>1262</td> <td>623</td> <td>161</td> <td></td> <td>2105</td> <td>3.12</td> <td>Actin, gamma 1</td>	GCCTCAC	1262	623	161		2105	3.12	Actin, gamma 1
1264 231 67 781 313 1265 86 12 218 3.13 1266 9 203 3.14 1268 35 8 118 3.14 1269 35 8 118 3.14 1270 35 12 198 3.14 1271 87 21 233 3.17 1273 36 13 221 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 359 133 1274 3.18 1276 359 133 1274 3.18 1277 359 133 1274 3.18 1277 359 133 1274 3.18 1278 31 5 45 3.18 1280 7 7<	GCAAGAC	1263	57	õ		187	3.12	Tag matches mitochondrial sequence
1265 86 12 218 313 1266 92 203 3.14 1269 35 8 118 3.14 1270 56 12 198 3.14 1270 56 12 198 3.14 1271 67 21 233 3.17 1272 65 13 221 3.18 1273 36 11 128 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1277 13 5 45 3.18 1280 7 21 228 3.22 1281 19 23	GTAGTCC	1264	231	67		781	3.13	No match
1266 62 9 203 3.14 1268 35 6 108 3.14 1269 35 6 118 3.14 1270 56 12 190 3.16 1271 67 21 221 3.17 1272 65 13 124 3.18 1273 38 13 127 3.18 1274 359 13 127 3.18 1275 359 13 127 3.18 1276 359 13 127 3.18 1276 359 13 127 3.18 1276 359 13 127 3.18 1277 13 6 45 3.18 1278 13 5 45 3.18 1280 7 21 269 3.22 1281 109 23 25 45 3.23 1282	TCTGAAA	1265	98	5		218	3.13	Thloredoxin
1267 32 6 108 3.14 1268 35 8 118 3.14 1270 56 12 190 3.16 1271 65 12 133 3.17 1272 65 12 120 3.18 1273 36 13 127 3.18 1274 359 133 127 3.18 1275 359 133 127 3.18 1276 359 133 127 3.18 1277 13 6 45 3.18 1280 77 21 26 3.18 1281 109 23 3.22 1282 31 7 108 3.22 1284 67 24 24 3.23 1286 67 24 24 3.25 1287 81 13 27 3.26 1290 16 5 5 6 3.26 1291 6 6 6 3.26 1291 6 6 6 3.26 1291 6 6 6 3.26 1292 16 6 <td< td=""><td>CCCTGCC</td><td>1266</td><td>62</td><td>G</td><td></td><td>203</td><td>3.14</td><td>Capping protein (actin filament), gelsolin-like</td></td<>	CCCTGCC	1266	62	G		203	3.14	Capping protein (actin filament), gelsolin-like
1268 35 8 118 3.14 1270 56 12 118 3.14 1271 67 21 233 3.17 1272 65 12 130 3.18 1273 36 13 221 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 6 45 3.18 1278 13 5 45 3.18 1280 77 21 26 3.22 1281 109 23 3.23 3.22 1282 67 9 224 3.23 1284 67 24 24 3.23 1289 67 24 24 3.25 1290 16 5 5 8 3.26 1290 <td< td=""><td>CTTTTC</td><td>1267</td><td>35</td><td>ဖာ</td><td></td><td>108</td><td>3.14</td><td>H.sapiens tissue specific mRNA</td></td<>	CTTTTC	1267	35	ဖာ		108	3.14	H.sapiens tissue specific mRNA
1269 35 8 118 3.14 1270 56 12 180 3.14 1271 65 13 221 3.17 1272 65 13 221 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1279 13 5 45 3.18 1281 19 23 21 3.18 1282 31 5 45 3.18 1281 19 23 26 3.21 1282 31 7 108 3.22 1284 67 24 24 3.23 1285 67 24 24 3.25 1289 16 5 58 3.26 1290 16 5<	GACGAGG	1268	35	6 0		118	3.14	Homo saplens TFAR19 mRNA, complete cds
1270 56 12 190 3.16 1272 65 13 21 233 3.17 1272 65 13 22 3.17 1273 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1279 13 5 45 3.18 1280 7 21 269 3.21 1281 109 23 3.22 3.22 1282 31 7 108 3.23 1284 28 67 24 224 3.23 1285 67 24 24 3.23 1289 16 5 24 3.25 1289 16 5 5 3.25 1290 16 5 58 3.26 129	GACGAGG	1269	38	80		118	3.14	Human tip associating protein (TAP) mRNA, complete cds
1277 67 21 233 3,17 1272 68 13 221 3,17 1274 359 13 1274 3,18 1275 359 133 1274 3,18 1276 359 133 1274 3,18 1277 13 5 45 3,18 1279 13 5 45 3,18 1280 77 21 269 3,22 1282 31 7 108 3,22 1283 59 15 26 3,23 1284 28 6 95 3,23 1286 67 24 24 3,23 1289 16 5 58 3,25 1290 16 5 58 3,26 1291 64 6 183 3,26 1292 109 17 370 3,26 1292 109 17 370 3,26	CALCALIG	1270	56	5		190	3.16	Human mRNA for proteasome subunit HsC10-II, complete cds
1273 36 11 221 3.17 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1278 13 5 45 3.18 1280 77 21 269 3.22 1281 109 23 3.75 3.22 1282 31 7 108 3.22 1284 28 6 95 3.23 1285 67 24 24 3.23 1286 67 24 24 3.25 1289 16 5 5 68 3.26 1290 16 5 5 68 3.26 1291 64 6 183 3.26 1292 16 5 5 8 3.26	001000	1271	67	5 :		233	2.17	Homo sapiens cargo selection protein TIP47 (TIP47) mRNA, complete cds
1274 359 133 1274 3.18 1275 359 133 1274 3.18 1277 13 5 45 3.18 1278 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.21 1282 31 7 108 3.22 1282 31 7 108 3.22 1284 28 6 95 3.23 1285 67 24 24 3.23 1289 16 5 58 3.26 1290 16 5 58 3.26 1291 64 183 3.26 1292 109 17 370 3.26	AAACCCG	1273	g #	2 =		128	3.18	No match
1275 359 133 1274 3.18 1276 359 133 1274 3.18 1278 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.21 1281 109 23 3.75 3.22 1283 59 15 206 3.22 1284 28 6 95 3.23 1285 67 24 24 3.23 1286 67 24 24 3.25 1289 16 5 58 3.26 1290 16 5 58 3.26 1291 64 183 3.26 1292 109 17 370 3.26	TCAGGAG	1274	359	. £		1274	3 5	
1276 359 133 1274 3.18 1277 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.21 1281 109 23 375 3.22 1283 59 15 206 3.22 1284 28 6 95 3.23 1285 67 24 24 3.23 1286 67 24 24 3.25 1289 16 5 58 3.26 1290 16 5 58 3.26 1291 64 6 183 3.26 1292 109 17 370 3.26	TCAGGAG	1275	359	\$		1274	3.18	
1277 13 6 . 45 3.18 1279 13 5 . 45 3.18 1280 77 21 . 268 3.21 1281 109 23 . 375 3.22 1283 59 15 . 206 3.22 1284 28 6 . 95 3.23 1286 67 24 . 24 3.23 1286 67 24 . 24 3.23 1289 16 5 . 58 3.26 1290 16 5 . 68 3.26 1291 64 6 . 183 3.26 1292 109 17 . 370 3.26	TCAGGAG	1276	359	55	•	1274	3.18	Human mRNA for KIAA0226 gene, complete cds
1278 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.21 1281 109 23 375 3.22 1283 59 15 206 3.22 1284 28 6 95 3.23 1285 67 24 24 3.23 1286 67 24 24 3.23 1289 16 5 58 3.26 1290 16 5 68 3.26 1292 109 17 370 3.26 1292 109 17 370 3.26	TGCAGTT	1277	5	40		45	3.18	
1279 13 5 . 45 3.18 1280 77 21 . 269 3.21 1281 109 23 . 375 3.22 1282 31 7 . 108 3.22 1283 59 15 . 206 3.23 1284 28 6 . 95 3.23 1286 67 24 . 224 3.23 1286 67 24 . 24 3.23 1289 16 13 . 27 3.25 1290 16 5 . 98 3.26 1291 64 6 . 183 3.26 1292 109 17 . 370 3.26	TGCAGTT	1278	£	\$		45	3.18	ESTS
1280 77 21 269 3.21 1281 109 23 375 3.22 1282 31 7 108 3.22 1283 59 15 206 3.22 1284 28 6 9 3.23 1285 67 24 224 3.23 1286 67 24 24 3.23 1286 67 24 275 3.25 1289 16 5 56 3.26 1290 16 5 56 3.26 1291 64 6 183 3.26 1292 109 17 370 3.26	TGCAGTT	1279	13	S		45	3.18	ESTs
1281 109 23 . 375 3.22 1283 59 15 . 206 3.22 1284 28 6 . 95 3.23 1285 67 9 . 224 3.23 1286 67 24 . 240 3.23 1289 16 5 . 98 3.25 1290 16 5 . 98 3.26 1291 64 6 . 183 3.26 1292 109 17 . 370 3.26	AGCCCAT	1280	7.	5		269	3.21	HEAT SHOCK PROTEIN HSP 90-BETA
1283 59 15 7 108 3.22 1284 28 6 8 3.23 1285 67 8 7 24 3.23 1286 67 24 275 3.23 1286 35 11 - 124 3.25 1290 16 5 8 3.26 1291 54 6 183 3.26 1292 109 17 370 3.26	ATCCTGC	1281	109	æ		375	3.22	Tag matches ribosomal RNA sequence
1283 59 15 . 206 3.22 1284 28 6 . 95 3.23 1285 67 9 . 224 3.23 1286 67 24 . 240 3.23 1289 16 5 . 58 3.25 1290 16 5 . 58 3.26 1291 54 6 . 183 3.26 1292 109 17 . 370 3.26	AGTAACA	1282	31	4		108	3.22	PROTEIN TRANSLATION FACTOR SUIT HOMOLOG
1284 28 6 . 95 3.23 1285 67 9 . 224 3.23 1287 81 13 . 275 3.25 1289 16 5 . 58 3.25 1290 16 5 . 58 3.26 1291 54 6 . 183 3.26 1292 109 17 . 370 3.26	CTGTAAT	1283	59	15		506	3.22	ISLET AMYLOID POLYPEPTIDE PRECURSOR
1285 67 8 . 224 3.23 1286 67 24 . 240 3.23 1288 35 11 . 124 3.25 1289 16 5 . 56 3.26 1291 64 6 . 183 3.26 1292 109 17 . 370 3.26	GCATAAA	1284	28	9		98	3.23	Human ubiquitin gene, complete cds
1286 67 24 240 3.23 1287 81 13 275 3.25 1288 35 11 124 3.25 1290 16 5 5 68 3.26 1291 54 6 183 3.26 1292 109 17 370 3.26	TGGTCGT	1285	67	Ø		224	3.23	Fibrillarin
1287 81 13 · 275 3.25 125 1288 35 11 · 124 3.25 1290 16 5 · 56 3.26 1291 54 6 · 183 3.26 1292 109 17 · 370 3.28	AAACCCC	1286	67	₹.		240	3.23	Homo sapiens mRNA expressed in osteoblast, complete cds
1288 35 11 · 124 3.25 126 1290 16 5 · 58 3.26 1291 64 6 · 183 3.26 1292 109 17 · 370 3.28	ATTGGTG	1287	.	5		275	3.25	CD9 antigen
1289 16 5 5 8 3.26 1290 16 5 5 8 3.26 1291 54 6 183 3.26 1292 109 17 370 3.28	CGTGCCC	1288	35	=		124	3.25	Human calmodulin mRNA, complete cds
1290 16 5 . 58 3.26 1291 54 6 . 183 3.26 1292 109 17 . 370 3.28	TCACTG	1289	Đ	S		28	3.26	ESTs, Moderately similar to III! ALU SUBFAMILY J WARNING ENTRY IIII [H.sapiens]
1292 109 17 · 370 3.26	TICACTG	1290	16	so.		28	3.26	ESTs
1292 109 (7 . 370 3.26	25555	1291	54	9		<u>\$</u>	3.26	Polypyrimidine tract binding protein (hnRNP I) (afternative products)
	CAGCCCCAC	1292	109	1		370	3.26	Human mRNA for caldizzarin, complete cds

Table 4, cont.

نـ
c
ទូ
٠
4
ف
虿
_

Human Rab5c-like protein mRNA, complete cds	Ribosomal protein L5	Human kpni repeat mrna (cona cione pcd-kpni-4), 3 end	Total Sapiens Intrive to Michael Discours and Discours an	Auman Line-1 repeat mKNA with 2 open reading frames	Human platelet-endothelial tetraspan antigen 3 mRNA, complete cds	No match		ans]		•	Cell division cycle 42 (GTP-binding protein, 25kD)	Human brain mRNA homologous to 3'UTR of human CD24 gene, partial sequence	Jun B proto-oncogene	Mannose-6-phosphate receptor (cation dependent)	Tag matches mitochondrial sequence	ESTs. Moderately similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.sapiens]	ESTs	Human copper transport protein HAH1 (HAH1) mRNA, complete cds	Prostatic binding protein	CD59 antigen p18-20 (antigen identified by monoclonal antibodies 16.3A5, EJ16, EJ30,	EL32 and G344)	H.sapiens mKNA for NADH dehydrogenase	CALPAIN 1, LARGE		Human chromosoma 1703 mRNA complete cds Himan chromosoma 1703 mRNA close E113	No maio	piens b(2)gcn homolog mRNA, complete cds	Tag matches mitochondrial sequence	Granulin	ESTs, Highly similar to 40S RIBOSOMAL PROTEIN S27 (Rattus norvegicus)	:	factor A)	Ubiquitin A-52 residue ribosomal protein fusion product 1	ad region	H.sapiens mRNA for metallothionein isoform 2	n cadmium-treated cells	Tag matches mitochondrial sequence	Homo sapiens beta 2 gene	Estrogen receptor	Tumor necrosis factor receptor 2 (75kD)	Homo sapiens mRNA for KIAA0632 protein, partial cds	Homo sapiens protease-activated receptor 4 mRNA, complete cds	Homo sapiens growth-arrest-specific protein (gas) mRNA, complete cds	ESTs
3.26	3.27	3.27	2.5	3.27	3.28	3.28	3.28	3.30	3.30	3.30	3.30	3.30	3.31	3.31	3.31			3.33	3.33		3.34	3.39	6. c	3 G	3.42	4	4	3.46	3.48	3.49	3.50	3.52	3.53	3.53	3.54	3.54	3.54	3.55	3.58	3.58	3.58	3.58		3.62
<u>\$</u>	5	33.		351	655	787	396	138	454	195	251	251	189	501	489	248	165	325	213		172	176	257	PC 7	2806	3 6	354	188	456	õ	288	27.1	386	138	1402	1402	1361	487	159	213	213	213	125	211
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•				•	•	٠	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
# 1	G)	₽ ;	₽ :	9	83	49	9	æ	15	φ	2	23	6	∞ `	₽	Ξ	100	8	9		7	-	φ :	o.	<u>4</u>	o	თ	ω	5	so.	=	ω	G)	en	27	27	66	2	٧n	₩	Φ	60	C D	60
25	35		3 9	103	175	18	115	39	133	57	69	69	55	8	142	7	47	95	62		49	47	2 i	ς ;	807	. 72	; <u>\$</u>	S	128	27	74	75	5	38	388	389	356	132	3	57	57	57	32	25
1294	1295	1296	1001	1290	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313		1314	1315	1316	25.5	1318	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338
TAACCAATCA	CACCIGIAGI	TACCCI MAN	**************************************	TOOM TOOM TO	9251212251	GCAAAACCCT	AAGGACCTTT	CTGGCGCCGA	GAAGCTTTGC	GCTCCGAGCG	TTGCCCAGGC	TTGCCCAGGC	ACCCACGTCA	GCTCCACTGG	TTTAACGGCC	CTTGTAATCC	CACTTTGGG	CCGGGTGATG	GGGGTAAGAA		TGACTGGCAG	CAAIGIGIIA	GGCTCGGGAT	19000000	GGTGGGGAGA	GTAAAACCCT	GGCTCCTGGC	AGTAGGTGGC	GGAGGTGGGG	CCTTTGGCTA	AGAAAGATGT	AGAACAAAAC	AACTAAAAAA	ATTGCACCAC	GATCCCAACT	GATCCCAACT	CACTACTCAC	CTGTACAGAC	TACCCTAGAA	GTAAAACCCC	GTAAAACCCC	GTAAAACCCC	CTGAGAGCTG	GGCTGGTCTG

Carried and the City of the State of the Control of	Tomo sapiens mkny for protein phosphatase 20 gamma	ESIS, Algary similar to COATOMEN ZETA SUBJUNIT [Bos taurus]	V-erb-b2 avian erythrobiastic leukemia viral oncogene homolog 3 (alternative products)	Glutathione-S-transferase pi-1	Human metargidin precursor mRNA, complete cds	PROTEASOME COMPONENT C13 PRECURSOR		Lectin, galactoside-binding, soluble, 1 (galectin 1)	Homo saplens mRNA for KIAA0706 protein, complete cds	ESTs, Weakly similar to allograft Inflammatory factor-1 [H.sapiens]	Jun D proto-oncogene	Homo saplens mRNA for CIRP, complete cds	Villin 2 (ezrin)	Homo sapiens clone 23565 unknown mRNA, partial cds	ESTs	Human Gps2 (GPS2) mRNA, complete cds	Human 53K Isoform of Type II phosphatidylinositol-4-phosphate 5-kinase (PIPK) mRNA,	complete cds	Human mRNA for KIAA0328 gene, partial cds	Homo saplens nephrin (NPHS1) mRNA, complete cds	H.sapiens mRNA for phosphorylase-kinase, beta subunit	Human syntaxin mRNA, complete cds	hosphoprotein PEA-15	PROTEASOME BETA CHAIN PRECURSOR	Signal recognition particle 14 kD protein	Tag matches mitochondrial sequence		Human aryl sulfotransferase mRNA, complete cds	No match	H.sapiens mRNA for phenylalkylamine binding protein	ESTS, Weakly similar to EPIDERMAL GROWTH FACTOR PRECURSOR, KIDNEY	Eukaryotic translation initiation factor 5A	No match	definition line found [C.elegans]	Retinoblastoma-like 1 (p107)	Cyclic nucleotide gated channel (photoreceptor), cGMP gated 2 (beta)		Homo sapiens Arp2/3 protein complex subunit p41-Arc (ARC41) mRNA, complete cds	Small nuclear ribonucleoprotein polypeptides B and B1	Homo sapiens mRNA for KIAA0591 protein, partial cds	Human HU-K4 mRNA, complete cds	Tag matches mitochondrial sequence	Ribosomal protein \$24	ESTS	SET translocation (myeloid leukemia-associated)	Human mRNA for collagen binding protein 2, complete cds	Human 14-3-3 epsilon mRNA, complete cds
6	5.0	4 10	3.65	3.66	3.68	3.68	3.71	3.73	3.74	3.75	3.76	3.80	3.80	3.80	3.80	3.80		3.81	3.81	3.81	3.81	3.84	3.84	3.85	3.86	3.87	3.87	3.87	3.90	3.91	3.93	3.93	3.94	3.95	4.01	4.01	4.01	4.05	4.07	4.07	4.07	4.08	4.09	4.10	4.11	4.13	4.17
į	165	8	323	1448	266	96	237	1601	193	103	251	120	120	120	118	118		569	569	201	201	92	138	136	119	2741	185	185	‡	97	1138	1138	134	118	452	452	452	323	233	201	351	2334	117	166	50	240	129
	•		•	•				•		•	•	•	•	•	•			•	٠	•			•	•	•	•		٠	•	•	٠	•	•	•		٠	•	•			•		•	٠	•	•	•
١	ın (an i	23	16	15	60	7	φ	Ф	ĸ	9	Ð	φ	9	^	^		19	16	5	12	45	S	40	60	20	60	0	w	ĸ	ន	ន	60	^	16	5	16	5	Ξ	80	7	83	2	80	9	9	თ
:	7 :	20	.	391	69	54	9	428	49	58	65	93		93	53	82	•	99	99	90	20	19	35	ř	29	704	97	94	27	24	281	281	32	28	109	109	109	7.7	35	48	48	551	27	39	35	57	59
0.70	045	140	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355		1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385
			CCIGIAAICI	AGGTCCTAGC	ACTGAAGGCG	AAGGAAGATG	CCGACGGGCG	GCCCCCAATA	AGGATGTGGG	GGAGGCCGAG	ACCCCCCGC	CTGGCCTGTG	стевсстете	стеесстете	CACCCCAGG	CACCCCAGG		GTGAAACTCC	GTGAAACTCC	AGAATTGCTT	AGAATTGCTT	ATGGCCTCCT	AACTGTCCTT	AAGGAATCGG	TCTGTTTATC	ACTITITICAA	TCTGTAATCC	TCTGTAATCC	GTGAAAACCC	GGCAGGCACA	GGGGCAGGGC	GGGGCAGGGC	GTGAAACTCT	TGGACCAGGC	CCTATAATCC	CCTATAATCC	CCTATAATCC	AACTGCTTCA	GGATTGTCTG	CCTGTAATTC	CTGGGCCTGG	ACCCTTGGCC	ATGGCGATCT	TTGTCTGCCT	TGAATCTGGG	АССТТСТ	CTTTTCAGCA

÷.
_
g
Ō
Ξ.
4
-
o
ਕ
=

ESTS	Homo sapiens dob8-like protein mRNA, complete cds	Fartita liah adisaasida	Torman, igni, pulypopino	lay matches mitochondrial sequence	ESTs, Highly similar to BRAIN PROTEIN 13 [Mus musculus]	Homo sapiens quiescin (Q6) mRNA, complete cds		Tao matches mitochondrial sequence	Tan matches militarhandial sociations		GELSOLIN PRECURSOR, PLASMA	Ribosomal protein S17	Tag matches mitochondrial sequence	E5T	ESTs	Homo capians close 24751 unknown mBNA	Moreother Control Carlot Carlo	NO MISICAL	lag matches noosomal KNA sequence	No maich	No match	islocation gene 1, anti-proliferative	No match			Sp	Vasodilator-stimulated phosphoprotein	Homo saplens Sox-like transcriptional factor mRNA, complete cds	saplens monocarboxylate transporter (MCT3) mRNA, complete cds	ESTs	ESTs, Weakly similar to TRANS-ACTING TRANSCRIPTIONAL PROTEIN ICPO	Neurotrophic tyrosine kinase, receptor, type 1	Fibroblast growth factor receptor 4			No match	Human LLGL mRNA, complete cds	•	!	Cytochrome c oxidase subunit VIIb	Homo sapiens Arp 2/3 protein complex subunit p41-Arc (ARC41) mRNA, complete cds	Human transcriptional activator mRNA, complete cds		CYSTATIN B	Ribosomal protein, large, P1	Human glutathione-S-transferase homolog mRNA, complete cds	Fag matches mitochondrial sequence	ESTs, Highly similar to 40S RIBOSOMAL PROTEIN S27 [Rattus norvegicus]	Heat shock 27kD protein 1
4.17	4.20	1				4.30			35					_																				_,						5.29			5.35	_					6.08
123	380	7777	7	2814	265	202	216	891		2 !	8 4 8	487	280	280	280	080	007	n n	314	444	155	238	260	1228	1228	170	284	284	647	647	598	109	109	311	539	194	129	2646	2910	217	337	629	963	571	202	214	1698	385	2698
w		8		E	φ		o	45		· ?	r R	'n	9			. «	,		· =		· =	₽	12	~	5				=	=	€.	œ.	vo.	n.	35	, m		£3.	86	æ	ъ	19		=	'n		8	co ·	2
28	87	1027	90	3	-69	45	48	194	4	;	143	110	48	3	98	. 2	; ;	77 1	/9	97	32	S	119	259	259	38	54	Z	133	133	121	21	72	85	100	37	23	496	547	38	8	52	171	104	36	38	308	2	435
1386	1387	1388	200	500	1390	1391	1392	1393	1394	1001	282	1396	1397	1398	1399	1400	200	- 6	1402	5041	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432
ccrecaeree	CGGAGACCT	CCTGGGTTC	000000000	000001110	ACAACTCAAT	CTTGATTCCC	GGCTGGTCTC	AGGTGGCAAG	CTAGCTTTTA	TO TO TO TO T	CACCEGICA	GGCGCGTTC	GAGAGCTCCC	GAGAGCTCCC	GAGAGCTCCC	GAGAGCTCCC	TACATOCCO	100010000	1000000E	いたいできないと	CCIGGCIAA	1CACAGC1G1	TCCCATTAAG	GTGCACTGAG	GTGCACTGAG	GCTTACCTTT	CTGGCCCGGA	CTGGCCCGGA	GGGCCTGTGC	GGGCCTGTGC	GCCCTCCGG	TTGTGATGTA	TTGTGATGTA	CATCTTCACC	TTGGCCAGGA	AGAATCACTT	TTAGCCAGGA	GTTGTGGTTA	CAAGCATCCC	GACATATGTA	AGTATCTGGG	ACCGCCTGTG	CTCTTCGAGA	ATGAGCTGAC	_ GCCTCTGTCT	AAGGAAGATC	AAAACATTCT	CTCAGACAGT	CCCAAGCTAG
							-	•												-				7	1	'								•						-	••		•					/	'

Table 4, cont.

CCCAAGCTAG	1433	435	35		2698	90.9	Tag matches ribosomal RNA sequence
:							Tyrosine 3-топоохудепазе/tryptophan 5-топоохудепазе activation protein, eta
TCAATCAAGA	1434	3 6	60		236	6.67	polypeptide
TGCAGCGCCT	1435	. 111	σ		762	6.80	
TTCACTGTGA	1436	223	^		1557	6.94	Lectin, galactoside-binding, soluble, 3 (galectin 3) (NOTE: redefinition of symbol)
CTGACCTGTG	1437	226	16		1683	7.38	HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, B-27 ALPHA CHAIN PRECURSOR
GGGGTCAGGG	1438	118	ø		882	7.43	Glycogen phosphorylase B (brain form)
GGCTTTAGGG	1439	125	5		1019	8.05	
TGGGTGAGCC	1440	304	45		2538	8.21	Cathepsin B
AGGGTGTTTT	1441	78	6 0		. 899	8.43	Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase
AGGGTGTTTT	1442	92	ю		668	8.43	Tag matches mitochondrial sequence
TGGTGTATGC	1443	93	Φ		910	8.62	
GAGTAGAGAA	1444	S	۵		465	9.15	
TGCAGGCCTG	1445	115	Ξ		1165	10.02	TRYPTOPHANYL.TRNA SYNTHETASE
GCGAAACCCT	1446	210	8	٠.	2242	10.51	V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3 (alternative products)
							Human N-methyl-D-aspartate receptor 2C subunit precursor (NMDAR2C) mRNA,
GTGACCACGG	1447	4374	53		47260	10.80	complete cds
CTGACTACTC	1448	7267	ç	,	47280	10,80	Tan matches phosomal RNA sequence

Table 5. Transcripts uniformly elevated in cancer tissues

Teg Staquarte SEQ ID NO. CLARACTICASANS NORTH I ISSN NORTH			ľ		ľ		1							
226 93 72 13 5 48 0 0 3 0 0 30 0 21 27 0 8 0 21 27 0 8 0 21 27 0 8 0 21 27 0 8 0 21 27 0 8 0 21 22 22 22 22 22 22 22 22 22 23 13 20 8 12 22 23 14 14 17 16 6 0	Tag Sequence	SEQ ID NO:	၂႘	BC.	9. S	SSUB LC	ຼ Σ		Norm:	al II	SSUE	× ×	AVB AN	
227 53 66 120 56 20 21 27 0 8 0 21 27 0 8 0 22 22 22 22 22 22 23	ATGTGTAACG	226	93	72	1				0	ິ	٥	0	ន	S100 calcium-binding protein A4 (calcium protein, calvasculin, metastasin)
228 85 103 380 23 58 59 0 30 58 0 8 18 229 28 19 53 16 25 3 1 0 56 0 8 14 231 13 201 59 3 1 29 0 0 3 3 1 1 5 232 13 201 16 25 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CCCTGCCTTG	227	8	.8					1 27	٥	80	0	51	Midkine (neunie growth-promoting factor 2)
229 26 19 53 16 25 3 1 0 0 5 11 230 38 40 54 31 6 25 3 1 0 0 5 12 231 13 201 8 40 54 31 29 8 7 3 3 0 12 232 16 14 17 18 6 0 0 0 0 0 0 0 0 0 0 234 52 34 81 64 78 3 12 22 5 30 8 235 16 13 20 73 178 9 21 64 13 60 8 236 4 151 30 9 30 73 178 9 21 64 13 60 7 237 22 6 16 18 18 14 7 0 1 12 22 5 30 8 238 20 10 26 18 18 19 7 0 1 12 10 0 0 13 6 0 0 13 240 4 151 30 8 30 0 0 13 6 0 0 0 0 0 0 13 244 23 13 52 18 14 8 18 8 8 8 0 0 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GTGCGCTGAG	228	82	50				æ	30	88	0	80	₽	Major histocompatibility complex, class I, C
230 38 40 54 31 29 9 7 3 3 10 12 231 13 201 8 24 336 0 3 3 19 9 7 3 3 19 12 23 3 19 19 2 3 19 19 2 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 3 3 19 9 9 11 12 11 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 <	CTGGCCGCTC	229	58						6	0	0	10	<u>=</u>	Apoplosis inhibitor 4 (survivin)
231 13 201 8 24 336 0 30 3 3 19 9 232 16 14 17 16 6 0 0 0 0 3 3 19 9 234 52 34 81 7 6 70 1 0 0 0 3 9 235 168 137 280 73 178 9 21 22 5 30 8 236 4 10 12 19 7 0 1 12 20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	600000000	230	38		5	9	ñ	æ	7	e	e	0	12	ESTs
232 16 14 17 16 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>TGGCCCCAGG</td><td>231</td><td>5</td><td></td><td>Ф</td><td>24</td><td>33</td><td>gn.</td><td>33</td><td>n</td><td>60</td><td>19</td><td>6</td><td>Apolipoprotein Cl</td></td<>	TGGCCCCAGG	231	5		Ф	24	33	gn.	33	n	60	19	6	Apolipoprotein Cl
233 5 8 37 8 7 0 1 0 3 0 8 234 52 34 81 64 78 3 12 22 5 30 8 235 48 13 64 78 3 12 22 5 30 8 236 4 10 12 13 14 16 12 15 16 16 17 16 17 16 17 16 17 16 17 16 18 16 18 16 17 18 16 18 16 17 18 16 18 16 17 18 16 18 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19	CCCTGGTGGG	232	9		-	5	_	ø	0	0	0	က	σ,	ESTs
234 52 34 81 64 78 3 12 22 5 30 81 235 168 137 290 73 178 9 21 64 13 60 8 236 23 2 63 74 28 14 8 16 15 60 9 9 7 1 0 0 0 7 7 13 60 8 6 7 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>AGTGACCGAA</td><td>233</td><td>S</td><td>80</td><td>37</td><td></td><td>.~</td><td>_</td><td>-</td><td>0</td><td>n</td><td>0</td><td>· 60</td><td>ESTs</td></td<>	AGTGACCGAA	233	S	80	37		.~	_	-	0	n	0	· 60	ESTs
235 188 137 290 73 178 9 21 64 13 60 236 4 10 12 19 7 0 1 0 0 0 0 7 238 20 10 26 18 14 6 18 6 8 8 0 7 239 4 151 30 6 18 18 3 4 0 8 8 6 0 7 240 10 61 15 19 23 0 13 6 0 13 6 0 6 5 241 8 16 16 22 3 0 22 8 5 0 6 5 242 13 8 11 11 6 0 0 0 0 0 0 3 8 6 0 244 23 13 52 16 17 3 4 6 3 6 6 245 14 6 13 12 6 0 0 0 0 0 0 3 6 6 246 14 6 15 17 7 9 0 1 0 0 0 3 6 250 10 5 12 11 0 0 0 3 0 3 6 251 14 7 3 8 58 15 1 0 0 1 0 0 3 3 6 252 11 14 7 3 8 58 15 3 0 0 1 0 0 0 3 3 6 253 11 14 7 3 8 58 15 3 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0	CTGCACTTAC	234	\$2	Š		-		en	3 12	22	S	ဓ္က	80	DNA REPLICATION LICENSING FACTOR CDC47 HOMOLOG
236	CTGGCGAGCG	235	168			5	17.		2	9	5	8	89	Human ubiquitin carrier protein (E2-EPF) mRNA, complete cds
237 22 63 74 28 14 6 16 6 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17 16	TTGCCGCTGC	236	4	5			-		-	٥	0	0	^	ESTs
238 20 10 26 18 18 3 4 0 8 5 6 6 240 10 61 15 30 9 30 0 13 6 0 5 6 5 6 24 24 13 8 11 11 11 11 11 11 11 11 11 11 11 12 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	тосостовос	237	22	63				_	9 18	φ	60	0	7	No match
239 4 151 30 9 30 0 13 6 0 5 6 240 10 61 15 19 23 0 22 6 5 0 6 243 14 6 23 22 3 0 22 6 5 0 6 244 23 13 52 16 17 3 4 5 3 0 3 6 245 11 6 19 12 6 0 0 3 0 3 6 247 248 249 7 14 15 12 11 0 8 3 0 0 0 6 250 10 5 12 11 8 0 1 0 0 0 0 0 251 7 13 5 11 12 0 1 0 0 0 0 0 252 31 14 73 38 58 15 3 8 0 0 0 0 0 254 7 8 12 8 10 0 0 0 0 0 0 0 255 7 8 12 11 14 7 7 0 3 0 0 0 0 0 255 7 8 12 11 14 7 7 0 3 0 0 0 0 0 256 7 8 12 11 14 7 7 0 0 0 0 0 0 0 257 7 8 12 14 7 7 0 0 0 0 0 0 0 258 7 8 12 14 7 7 0 0 0 0 0 0 0 259 7 8 12 14 7 7 0 0 0 0 0 0 0 259 7 8 12 14 7 7 0 0 0 0 0 0 0 0 259 7 8 12 15 16 9 0 0 0 0 0 0 0 0 260 9 13 24 12 38 3 1 11 5 11 5 11 4 7 260 9 13 24 12 38 3 1 11 5 11 5 11 4 7 261 262 6 10 7 11 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CTCCTGGAAC	238	8	5		_		•	4	٥	8	49	φ	ESTs, Highly similar to MYO-INOSITOL-1-PHOSPHATE SYNTHASE [Arabidopsis thaliana]
240 10 61 15 19 23 0 22 6 5 0 6 6 12 243 11 11 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CCCCGTCGT	239	4	151		0	ಸ		5 5	9	0	s.	•	No match
241 8 16 16 22 3 0 3 8 0 0 0 3 6 0 243 11 11 6 0 0 0 0 3 0 3 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TGCCCCCGT	240	2	9		6	ĸ	_	22	Ф	S	0	9	AXL receptor tyrosine kinase
242	TTGCTAAAGG	241	€	80	- 6	•		~	0	က	8	0	9	ESTs, Weakly similar to KIAA0005 (H.sapiens)
243 14 6 23 22 8 3 1 3 9 9 1 3 9 9 1 1 9 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	AGCCACGTTG	242	5	80	Ξ	Ξ	J		0	0	0	က	9	Acid phosphatase 1, soluble
244 23 13 52 16 17 3 4 6 3 5 6 245 14 6 15 6 4 0 3 0 3 6 3 3 6 247 7 13 6 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>CCTGGGCACT</td> <td>243</td> <td>7</td> <td>Ф</td> <td>ຂ</td> <td>22</td> <td>~</td> <td>_</td> <td>-</td> <td>c</td> <td>က</td> <td>0</td> <td>9</td> <td>ESTs, Highly similar to transcription factor ARF6 chain B (M.musculus)</td>	CCTGGGCACT	243	7	Ф	ຂ	22	~	_	-	c	က	0	9	ESTs, Highly similar to transcription factor ARF6 chain B (M.musculus)
245 11 6 19 12 6 0 0 3 0 3 6 2 6 2 6 2 2 7 7 7 13 5 11 12 0 1 1 0 0 0 5 5 5 5 5 6 2 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GGGCTCACCT	244	23	13	25		=	_	4	æ	n	NO.	9	Homo sapiens clone 24767 mRNA sequence / ESTs, Weakly similar to colt [O.melanogaster]
246 14 6 15 6 4 0 3 0 0 0 6 248 4 5 17 7 9 0 1 0 0 5 5 250 10 5 17 7 9 0 1 0 0 3 5 251 7 13 15 11 0 6 3 0 0 0 3 5 253 11 14 13 18 18 3 6 0	CTTACAGCCA	245	=	80	19	-	Ð		0	m	0	က	9	ESTs
247 7 13 5 11 12 0 1 0 0 5 5 248 4 5 17 7 9 0 1 0 0 3 5 250 10 5 12 11 0 6 3 3 0 5 5 251 7 13 5 11 10 6 3 3 0<	AGGCCCTCA	246	7	9	15	9	•	_		0	0	0	80	Homo sapiens mRNA, complete cds
248 4 5 17 7 9 0 1 0 0 3 5 250 10 5 12 11 0 6 3 3 0 5 251 7 13 5 4 9 0 1 3 0 3 3 0 0 3 0 0 0 2 2 5 1 14 19 16 0	GGGTAATGTG	247	^	5	ĸ	Ξ	7,	٠.	-	0	0	\$	40	ESTs, Moderately similar to unknown (M.musculus)
249 7 14 15 12 11 0 8 3 3 0 6 5 250 10 5 12 11 8 0 1 3 0 3 5 5 251 7 13 5 4 9 3 1 0 0 1 3 0 3 5 5 252 31 14 73 38 58 15 3 1 0 0 0 0 3 3 4 255 25 7 3 8 10 10 10 10 10 10 10 10 10 10 10 10 10	CTGACAGCCC	248	4	ĸ	17	^	U)		-	0	0	က	ß	Human mRNA for HsMcm6, complete cds
250 10 5 12 11 8 0 1 3 0 3 5 5 5 5 5 11 14 73 38 58 15 3 8 18 11 5 5 5 5 5 11 14 73 38 58 15 3 8 18 11 5 5 5 5 5 11 14 73 38 58 15 3 8 18 11 5 5 5 5 5 11 14 17 7 7 0 3 0 0 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	TGACCTCCAG	249	^	7	ţ,	5	Ξ	_	. 6	60	က	0	40	ESTs, Weakly simitar to No definition line found [C.elegans] / ESTs
251 7 13 5 4 9 3 1 0 0 0 5 5 5 5 5 5 6 15 3 8 19 11 5 5 5 5 5 11 14 73 38 58 15 3 8 19 11 5 5 5 5 5 11 14 11 19 18 3 6 0 3 8 4 4 5 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AAACCTCTTC	250	5	S	12	=	Ф		-	6	0	6	\$	ESTs. Highly similar to G2MITOTIC-SPECIFIC CYCLIN B2 (Mesocricetus auratus)
252 31 14 73 38 58 15 3 8 11 18 11 18 19 19 19 19 11	TCATTGCACT	251	^	5	us	4	on.		_	0	0	0	ď	ESTs, Highly similar to HYPOTHETICAL, 16.3 KD PROTEIN (Saccharomyces cerevisiae)
253 11 14 11 19 19 3 6 0 3 8 4 255 7 8 12 8 10 0 0 0 3 3 3 4 255 5 11 11 7 7 0 0 3 0 0 3 3 4 255 7 10 19 11 7 7 0 0 3 0 0 0 3 4 255 7 10 19 11 4 7 0 0 9 0 0 0 3 4 259 9 3 12 16 9 0 0 6 6 3 3 4 250 9 13 24 12 16 9 0 0 6 6 3 3 4 250 9 13 24 12 16 9 0 0 16 13 3 4 250 14 15 16 21 14 5 11 11 5 11 14 250 14 15 16 21 14 6 0 0 0 0 0 0 0 3 3 1 1 11 15 11 14 250 14 15 15 15 15 15 15 15 15 15 15 15 15 15	CCCCTCCGG	252	£	7	73	88	58	-	ار د	80	0	Ξ	S	Small nuclear ribonucleoprotein polypeptide N / B and B1
254 7 8 12 8 10 0 0 3 3 3 4 255 5 11 11 7 7 0 3 0 0 3 3 4 255 7 3 8 8 7 0 0 0 0 0 3 4 255 7 10 19 11 4 7 0 0 9 0 0 0 3 4 259 9 13 12 16 9 0 0 6 6 3 4 250 9 13 12 16 9 0 0 6 6 3 3 4 250 9 13 12 16 9 0 0 6 6 3 3 4 250 9 13 11 15 11 4 250 9 13 11 11 5 11 4 4 25 5 5 6 0 0 0 0 0 3 3 1 2 254 4 5 5 5 6 0 0 0 0 0 3 3 1 2 255 4 10 8 5 7 0 4 3 0 3 3 1 2 255 5 6 0 0 0 0 0 0 3 3 3 1 2 255 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GTAGGGGCCT	253	Ξ	7	Ξ	19	5		. 6	۰	ဂ	60	4	EST ₃
255 5 11 11 7 7 0 3 0 0 3 4 256 7 3 8 8 7 0 0 0 0 3 4 257 10 19 11 4 7 0 9 0 0 0 3 4 258 7 8 4 9 10 3 3 0 0 0 4 259 9 13 2 16 9 0 0 6 3 3 4 260 9 13 2 14 6 6 3 8 3 0 1 263 6 10 7 8 11 0 4 0 3 3 4 264 4 5 5 6 0 0 0 0 0 3 3 265 4 10 8 5 7 0 4 3 0 3	GAACCCAAAG	254	^	0	2		5	_	0	c	e	e	4	Plasminogen / PEPTIDYL-PROLYL CIS-TRANS ISOMERASE A
256 7 3 8 8 7 0 0 0 0 3 4 257 10 19 11 4 7 0 9 0 0 0 3 4 259	TGTGAGCCTC	255	S	Ξ	Ξ	7	~	_		0	0	r	4	Cyclin F
257 10 19 11 4 7 0 9 0 0 3 4 258 7 8 4 9 10 3 3 0 0 0 0 4 259 9 3 12 16 9 0 0 6 3 3 0 0 0 4 260 9 13 24 12 38 3 1 11 5 11 4 2 261 15 10 10 10 10 10 10 10 10 10 10 10 10 10	ATCTCTGGAG	256	^	es	6	80	_	_	0	0	0	en	4	ESTs
258	AAAGTGCATC	257	5	6	F	4	_		6	0	0	60	4	No match
259 9 3 12 16 9 0 0 6 3 3 4 2 6 2 6 0 9 13 24 12 38 3 1 11 5 11 4 2 2 6 1 15 16 21 14 6 6 3 8 3 0 4 2 6 3 6 10 7 8 11 0 4 0 3 3 4 2 6 3 6 3 4 7 4 0 0 0 0 0 0 3 3 2 6 4 10 8 5 7 0 4 3 0 3 3 2 6 5 6 10 8 5 7 0 4 3 0 3 3 3 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	GCCTTGGGTG	258	7	80	4	œ	5			0	0	0	4	Leukemia inhibitory factor (cholinergic differentiation factor)
260 9 13 24 12 38 3 1 11 5 11 4 2 261 15 16 21 14 6 6 3 8 3 0 4 262 6 10 7 8 11 0 4 0 3 3 4 263 8 3 4 7 4 0 0 0 0 0 0 3 3 264 4 5 5 5 6 0 0 0 0 0 3 3 265 6 10 8 5 7 0 4 3 0 3 3	ACCTCACTCT	259	o	က	12	5	co.		0	9	6	က	4	ES1s
3 261 15 16 21 14 6 6 3 8 3 0 4 263 6 10 7 8 11 0 4 0 3 3 4 264 4 5 5 5 6 0 0 0 3 3 265 4 10 8 5 7 0 4 3 0 3 3	TAAAGACTTG	260	6	5	24	7	38	_	_	Ξ	ĸ	Ξ	•	Adenylate kinase 2 (adk2)
262 6 10 7 8 11 0 4 0 3 3 4 263 6 3 4 7 4 0 0 0 0 0 3 264 4 5 5 5 6 0 0 0 0 3 265 4 10 8 5 7 0 4 3 0 3 3	TCGGCGCCGG	261	5	16	-	7	9			80	ო	0	4	SET translocation (myeloid leukemia-associated)
263 6 3 4 7 4 0 0 0 0 0 3 2 264 4 5 5 5 6 0 0 0 0 3 3 2 265 4 10 8 5 7 0 4 3 0 3 3	AACCTCGAGT	262	Φ	9	7	60	Ξ	_	4	0	က	n	4	ESTs, Moderately similar to putative [M.musculus]
264 4 5 5 5 6 0 0 0 0 3 3 2 265 4 10 8 5 7 0 4 3 0 3 3	GTTTACCCGC	263	Φ	60	*	7	*	_	0	0		0	ო	No match
265 4 10 8 5 7 0 4 3 0 3 3	GCCTCTGCCT	264	4	2	S	2	Ð		0	0	0	n	m	ESTs .
	CCTGGGTCCT	265	4	9	60	2	1		4	60	0	6	က	ESTs

Table 6. Transcripts expressed in Colon Cancer Cells (>500 coples per cell)

Tag	SEQ ID NO:	Copies/cell	Unigene Description
CCCATCGTCC	1449	2672	Tag matches mitochondrial sequence
TGTGTTGAGA	1450	1672	Translation elongation factor 1-alpha-1
GGATTTGGCC	1451	1663	Ribosomal protein, large P2 / Ribosomal protein S26 / Human mRNA for PIG-B, complete cds
CCCGTCCGGA	1452	1559	60S RIBOSOMAL PROTEIN L13
ATGGCTGGTA	1453	1555	40S RIBOSOMAL PROTEIN S2
GTGAAACCCC	1454	1482	[Multiple matches
CCTCCAGCTA	1455	1468	Keratin 8
ттестсстст	1456	1453	60S RIBOSOMAL PROTEIN L41
TGATTTCACT	1457	1434	EST / Tag matches mitochondrial sequence
CCTGTAATCC	1458	1372	Multiple matches
ACTITITICAA	1459	1367	Tag matches mitochondrial sequence
AAAAAAAAA	1460	1357	Multiple matches
GAGGGAGTTT	1461	1290	Ribosomal protein L27a
GCCGAGGAAG	1462	1141	Human mRNA for ribosomal protein S12
CACCTAATTG	1463	1137	Tag matches mitochondrial sequence
၁၅၁၁၁၁၁၁၁	1464	1098	Human ribosomal protein L35 mRNA, complete cds
GGGGAAATCG	1465	1092	THYMOSIN BETA-10
GAAAAATGGT	1466	1056	Laminin receptor (2H5 epitope)
<u> сеестеееет</u>	1467	1028	H.sapiens mRNA for ribosomal protein L29 / Homo sapiens sperm acrosomal protein mRNA
GCCGGGTGGG	1468	986	Basigin
AGCCCTACAA	1469	945	Tag matches mitochondrial sequence
CTGGGTTAAT	1470	943	40S RIBOSOMAL PROTEIN S19
CAAACCATCC			Keralin 18
TGCACGTTTT	1472	916	Human mRNA for antileukoprotease (ALP) from cervix ulerus
AGGCTACGGA	1473	905	60S RIBOSOMAL PROTEIN L13A
GCAGCCATCC	1474	861	Ribosomal protein L28
TTCAATAAAA	1475	851	Ribosomai protein, large, P1 / TRANSCOBALAMIN I PRECURSOR
CTAAGACTTC	1476	833	Tag matches mitochondrial sequence
TGGTGTTGAG	1477	830	Human DNA sequence from done 1033B10 on chromosome 6p21.2-21.31
TACCATCAAT	1478		Glyceraldehyde-3-phosphate dehydrogenase
TTCATACACC	1479	814	Tag matches mitochondrial sequence
CCACTGCACT	1480	800	Multiple matches
ACTAACACCC	1481	795	Tag matches mitochondrial sequence
AAGGTGGAGG	1482	794	60S RIBOSOMAL PROTEIN L18A
AGCACCTCCA	1483	787	Eukaryolic translation elongation factor 2
CACAAACGGT		761	40S RIBOSOMAL PROTEIN S27
AGGAAAGCTG	1485	732	ESTs, Highly similar to 60S RIBOSOMAL PROTEIN L36 [Rattus norvegicus]
GTGAAACCCT	1486	729	Multiple matches
AATCCTGTGG	1487		Ribosomal protein L8
тевеетте	1488	869	Fertlin heavy chain
AAGACAGTGG	1489	969	Ribosomal protein L37a
ATTTGAGAAG	1490	089	Tag matches mitochondrial sequence
GCCGTGTCCG	1491	629	Human ribosomal protein S6 mRNA, complete cds

able 6, cont

CGCCGGAACA	1492	678	Ribosomal protein L4	-
TCTCCATACC	1493	661	Tag matches mitochondrial sequence	:
ACATCATCGA	1494	661	Ribosomal protein L12	
AACGCGGCCA	1495	644	Macrophage migration inhibitory factor	<u> </u>
AGGCTTCCA	1496	643	UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX SUBUNIT VI REQUIRING PROTEIN	
CCGTCCAAGG	1497	631	Ribosomal protein S16	
CGCTGGTTCC	1498	929		 !
CTCAACATCT	1499	615	Ribosomal protein, large, P0	
ACTCCAAAAA	1500	809	H.sapiens mRNA for transmembrane protein mp24 / Human insulinoma rig-analog mRNA encoding DNA-binding protein	·
CCTAGCTGGA	1501	909	•	
GTGAAGGCAG	1502	596		; !
AGCTCTCCCT	1503	551	60S RIBOSOMAL PROTEIN L23	
TAGGTTGTCT	1504	537	TRANSLATIONALLY CONTROLLED TUMOR PROTEIN	; !
GGACCACTGA	1505	522	Ribosomal protein L3	
AAGGAGATGG	1506	521]-
AACTAAAAA	1507	510	Ubiqultin A-52 residue ribosomal protein fusion product 1	
GGCTGGGGGC	1508	507	Human profilin mRNA, complete cds	· ·
40000000	1004	503	Documentable bloce (600 DIDOCOMA) DDOTEIN 20	

Table 7. Expressed transcripts (>500 copies per cell)

Tag Sequence	SEQ ID NO:	Coples/Cell	Description
CCCATCGTCC	1508	3022	Tag matches mitochondrial sequence
GTGACCACGG	1509	2435	Tag matches ribosomal RNA sequence / Human N-methyl-D-asparate receptor 2 <u>C subunit precursor (NMDAR2C) mRNA</u>
TGTGTTGAGA	1510	1557	Translation elongation factor 1-alpha-1
GTGAAACCCC	1511	1466	Multiple matches
CCTGTAATCC	1512	1403	Multiple matches
CTAAGACTTC	1513	1349	Tag matches mitochondrial sequence
CACCTAATTG	1514	1333	Tag matches mitochondrial sequence
CCCGTCCGGA	1515	1282	60S RIBOSOMAL PROTEIN L13
TTGGTCCTCT	1516		60S RIBOSOMAL PROTEIN L41
ATGGCTGGTA	1517	1126	40S RIBOSOMAL PROTEIN 52
TTGGGGTTTC	1518	1099	Ferritin heavy chain
CCACTGCACT	1519	964	Multiple matches
TGATTTCACT	1520	942	Tag matches mitochondrial sequence / EST
ACTITICAA	1521	668	Tag matches mitochondrial sequence
GCAGCCATCC	1522	886	Ribosomal protein L28
TACCATCAAT	1523	874	Giyoeraldehyde-3-phosphate dehydrogenase
GGATTTGGCC	1524	854	Ribosomal protein, large P2 / Ribosomal protein S26 / Human mRNA for PIG-B
CCCTGGGTTC	1525	44	Ferritin, light polypeptide
GCCGAGGAAG	1526	836	Human mRNA for ribosomal protein S12
AGGCTACGGA	1527	820	60S RIBOSOMAL PROTEIN L13A
200200200	1528	805	Human ribosomal protein L35 mRNA, complete cds
TTCATACACC	1529	804	Tag matches mitochondrial sequence
AGCCCTACAA	1530	801	Tag matches mitochondrial sequence
CACAAACGGT	1531	799	40S RIBOSOMAL PROTEIN S27
AAGGTGGAGG	1532	786	60S RIBOSOMAL PROTEIN L18A
стсствсс	1533	777	Keratin 17
TGGTGTTGAG	1534	770	Human DNA sequence from clone 1033B10 on chromosome 6p21.2-21.31
GTGAAACCCT	1535	728	Multiple matches
GGGAAATCG	1536	724	THYMOSIN BETA-10
AGCACCTCCA	1537	718	Eukaryotic translation elongation factor 2
CCTCCAGCTA	1538	711	Keratin 8
AAGACAGTGG	1539	669	Ribosomal protein L37a
CTGGGTTAAT	1540	669	40S RIBOSOMAL PROTEIN S19
ATTTGAGAAG	1541	689	Tag matches mitochondrial sequence
GCCGGGTGGG	1542	687	Basigin
GGCTGGGGT	1543	683	H.saplens mRNA for ribosomal protein L29 / Homo saplens sperm acrosomal protein mRNA
AGGCCTTCCA	1544	663	UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX SUBUNIT VI REQUIRING PROTEIN
AAAAAAAAA	1545	650	Mulipje matches
GAGGGAGTTT	1546	648	Ribosomal protein L27a
GCGACCGTCA	1547	637	Aldolase A
ACTAACACCC	1548	631	Tag matches mitochondrial sequence
CGCCGGAACA	1549	616	Ribosomal protein L4
TGGGCAAAGC	1550	592	Translation elongation factor 1 gamma
TGCACGTTTT	1551	586	Human mRNA for antileukoprotease (ALP) from cervix uterus
**			d bengan in a see we der de

Table 7, cont.

AATCCTGTGG	1552	569	Ribosomal notien 1 8	:
CAAGCATCCC	1553	565	l ag matches mitochondrial sequence	-:
CCGTCCAAGG	1554	559	Ribosomal protein 516	
TAGGTTGTCT	1555	551	TRANSLATIONALLY CONTROLLED TUMOR PROTEIN	
GCCGTGTCCG	1556	540	Human ribosomal protein S6 mRNA, complete cds	T
GCTTTATTTG	1557	540	Human mRNA fragment encoding cytoplasmic actin	
CTAGCCTCAC	1558	539	Actin, gamma 1	1
CCTAGCTGGA	1559	537	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE A	
вссствств	1560	534	Keratin 5 (epidermolysis bullosa simplex. Dowling-Meara/Kobner/Nober-Cockavne types)	
ACCCTTGGCC	1561	526	Tag matches mitochondrial sequence	
AGGAAAGCTG	1562	513	ESTs. Highly similar to 60S RIBOSOMAL PROTEIN L36 IRatius norveoicus	γ
			The state of the s	-:

CLAIMS

1. A method of identifying a cell as either a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, or a kidney epithelial cell, comprising the step of:

determining expression in a test cell of a gene product of at least one gene comprising a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, and 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155;
 - (d) the sequences shown in SEQ ID NOS:156-159, and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166, and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225,

wherein expression of a gene product of at least one gene comprising a sequence shown in (a) identifies the test cell as a colon epithelial cell;

wherein expression of a gene product of at least one gene comprising a sequence shown in (b) identifies the test cell as a brain cell;

wherein expression of a gene product of at least one gene comprising a sequence shown in (c) identifies the test cell as a keratinocyte;

wherein expression of a gene product of at least one gene comprising a sequence shown in (d) identifies the test cell as a breast epithelial cell;

wherein expression of a gene product of at least one gene comprising a sequence shown in (e) identifies the test cell as a lung epithelial cell;

wherein expression of a gene product of at least one gene comprising a sequence shown in (f) identifies the test cell as a melanocyte;

wherein expression of a gene product of at least one gene comprising a sequence shown in (g) identifies the test cell as a prostate cell; and

wherein expression of a gene product of at least one gene comprising a sequence shown in (h) identifies the test cell as a kidney epithelial cell.

- 2. The method of claim 1 wherein expression of gene products of at least two of said genes is determined.
- 3. The method of claim 1 wherein expression of gene products of at least five of said genes is determined.
 - 4. The method of claim 1 wherein the gene product is protein.
 - 5. The method of claim 1 wherein the gene product is RNA.
- 6. The method of claim 5 wherein expression is determined using at least one oligonucleotide probe.
- 7. The method of claim 5 wherein expression is determined using at least two oligonucleotide probes.
- 8. The method of claim 6 wherein the at least one oligonucleotide probe is immobilized on a solid support.
- 9. The method of claim 8 wherein the at least one oligonucleotide probe is in an array.
 - 10. The method of claim 1 wherein the cell to be identified is a cancer cell.
- 11. An isolated polynucleotide comprising a sequence selected from the group consisting of SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-84, 98, 103, 113, 115, 122, 129, 132, 134, 135, 140, 144, 149, 150, 153-168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-213, 216-224, 237, 239, 257, 263, 485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.
- 12. A solid support comprising at least one polynucleotide comprising a sequence selected from at least one of the following groups:
- (a) the sequences shown in SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-83, and 84;
 - (b) the sequences shown in SEQ ID NOS:98, 103, 113, 115, 122, 129, 132,

134, 135, 140, 144, 149, and 150;

- (c) the sequences shown in SEQ ID NOS:153-154 and 155;
- (d) the sequences shown in SEQ ID NOS:156-157 and 160;
- (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-207 and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210;
 - (h) the sequences shown in SEQ ID NOS:211-213, 216-223, and 224;
 - (i) the sequences shown in SEQ ID NOS:237, 239, 257, and 263; or
- (j) the sequences shown in SEQ ID NOS:485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.

13. The solid support of claim 12 wherein:

if the at least one polynucleotide comprises a sequence selected from (a), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:1, 3, 4, 7, 9, 11, 14, 16, 19, 20, 22, 23, 27, 29, 32, 33, 37, 39, 41-46, 52, 58, 63, 64, 70, 77, 79, and 85;

if the at least one polynucleotide comprises a sequence selected from (b), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:86-97, 99-102, 104-112, 114, 116-121, 123-128, 130, 131, 133, 136-139, 141-143, 145-148, and 151;

if the at least one polynucleotide comprises a sequence selected from (c), then the solid support further comprises a polynucleotide comprising the sequence shown in SEQ ID NO:152;

if the at least one polynucleotide comprises a sequence selected from (f), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:169-173, 177-181, 183, 184, 187, 189, 191-199, 202, 203, and 204;

if the at least one polynucleotide comprises a sequence selected from (h), then

the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:214, 215, and 225;

if the at least one polynucleotide comprises a sequence selected from (i), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:226-236, 238, 240-256, 258-262, 264, and 265; and

if the at least one polynucleotide comprises a sequence selected from (j), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:266-484, 486, 488-494, 496-498, 500-513, 515-585, 587-685, 687-750, 752-834, 836-843, 845-877, 879-909, 911-924, 926-931, 933-950, 952-999, 1001-1004, 1006-1069, 1071-1121, 1123-1129, 1131-1169, 1171, 1174-1186, 1188, 1190-1199, 1201-1212, 1214-1219, 1221-1236, 1238-1256, 1258-1263, 1265-1272, 1274-1292, 1294-1299, 1301-1319, 1321-1366, 1368-1370, 1372-1400, 1402, 1405, 1407-1416, and 1417.

14. The solid support of claim 12, wherein:

if the at least one polynucleotide comprises a sequence selected from (a), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:1, 3, 4, 7, 9, 11, 14, 16, 19, 20, 22, 23, 27, 29, 32, 33, 37, 39, 41-46, 52, 58, 63, 64, 70, 77, 79, and 85;

if the at least one polynucleotide comprises a sequence selected from (b), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:86-97, 99-102, 104-112, 114, 116-121, 123-128, 130, 131, 133, 136-139, 141-143, 145-148, and 151;

if the at least one polynucleotide comprising a sequence selected from (c), then the at least one polynucleotide further comprises SEQ ID NO:152;

if the at least one polynucleotide comprises a sequence selected from (f), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:169-173, 177-181, 183, 184, 187, 189, 191-199, 202, 203, and 204;

if the at least one polynucleotide comprises a sequence selected from (h), then

the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:214, 215, and 225;

if the at least one polynucleotide comprises a sequence selected from (i), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:226-236, 238, 240-256, 258-262, 264, and 265; and

if the at least one polynucleotide comprises a sequence selected from (j), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:266-484, 486, 488-494, 496-498, 500-513, 515-585, 587-685, 687-750, 752-834, 836-843, 845-877, 879-909, 911-924, 926-931, 933-950, 952-999, 1001-1004, 1006-1069, 1071-1121, 1123-1129, 1131-1169, 1171, 1171, 1174-1186, 1188, 1190-1199, 1201-1212, 1214-1219, 1221-1236, 1238-1256, 1258-1263, 1265-1272, 1274-1292, 1294-1299, 1301-1319, 1321-1366, 1368-1370, 1372-1400, 1402, 1405, 1407-1416, and 1417.

- 15. The solid support of claim 12 wherein the at least one polynucleotide is in an array.
- 16. A method of identifying a test cell as a cancer cell, comprising the step of: determining expression in a test cell of a gene product of at least one gene comprising a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259-260, and 262-265, wherein an increase in said expression of at least two-fold relative to expression of the at least one gene in a normal cell identifies the test cell as a cancer cell.
- 17. The method of claim 16 wherein expression of gene products of at least two of said genes is determined.
- 18. The method of claim 16 wherein expression of gene products of at least five of said genes is determined.
 - 19. The method of claim 16 wherein the gene product is protein.
 - 20. The method of claim 16 wherein the gene product is RNA.
- 21. The method of claim 20 wherein expression is determined using at least one oligonucleotide probe.
 - 22. The method of claim 21 wherein expression is determined using at least two

oligonucleotide probes.

23. The method of claim 21 wherein the at least one oligonucleotide probe is immobilized on a solid support.

- 24. The method of claim 23 wherein the at least one oligonucleotide probe is in an array.
- 25. The method of claim 16 wherein the test cell is selected from the group consisting of a colon epithelial cell, a breast epithelial cell, a lung epithelial cell, a melanocyte, and a brain cell.
- 26. The method of claim 16 wherein the normal cell and the test cell are selected from a single cell type.
- 27. A method of reducing expression of a cancer-specific gene in a human cell, comprising the step of:

administering to the cell a reagent which specifically binds to an expression product of a cancer-specific gene comprising a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259-260, and 262-265, whereby expression of the cancer-specific gene is reduced relative to expression of the cancer-specific gene in the absence of the reagent.

- 28. The method of claim 27 wherein the reagent is an antisense oligonucleotide.
- 29. The method of claim 27 wherein the reagent is an antibody.
- 30. A method for comparing expression of a gene in a test sample to expression of a gene in a standard sample, comprising the steps of:

determining a first ratio and a second ratio, wherein the first ratio is an amount of an expression product of a test gene in a test sample to an amount of an expression product of at least one gene comprising a sequence selected from the group consisting of SEQ ID NOS:266-375, 377-652, 654-796, and 798-1448 in the test sample, and wherein the second ratio is an amount of an expression product of the test gene in a standard sample to an amount of an expression product of the at least one gene in the standard sample; and

comparing the first and second ratios, wherein a difference between the first and second ratios indicates a difference in the amount of the expression product of the test

gene in the test sample.

31. The method of claim 30 wherein the at least one gene comprises a sequence selected from the group consisting of SEQ ID NOS:282, 288, 300, 302, 308, 320, 323, 363, 368, 379, 381, 444, 453, 518, 531, 535, 538, 542, 579, 580, 594, 600, 604, 617, 626, 641, 650, 717, 728, 776, 777, 794, 818, 822, 842, 885, 887, 899, 900, 902, 904, 914, 930, 960, 964, 1001, 1015, 1020, 1027, 1035, 1090, 1113, 1119, 1146, 1151, 1163, 1233, 1235, 1252, 1255, 1270, 1340, 1345, 1356, 1359, 1360, 1362, 1385, 1415, and 1441.

- 32. The method of claim 30 wherein expression is determined using at least one oligonucleotide probe.
- 33. The method of claim 32 wherein the at least one oligonucleotide probe is immobilized on a solid support.
- 34. The method of claim 33 wherein the at least one oligonucleotide probe is in an array.
- 35. The method of claim 30 wherein the test sample is a cancer cell and the standard sample is a normal cell.
- 36. The method of claim 35 wherein the cancer cell is selected from the group consisting of a colon cancer cell, a breast cancer cell, a lung cancer cell, a melanoma cell, and a brain cancer cell.
- 37. The method of claim 30 wherein the test sample has been treated with a test compound and the standard sample has not been treated with the test compound.
- 38. The method of claim 37 wherein the test sample is a cancer cell and wherein the standard sample is a normal cell.
- 39. The method of claim 30 wherein the test sample and the standard sample are obtained from the same cell type.
 - 40. A method of screening candidate anti-cancer drugs, comprising the steps of: contacting a cancer cell with a test compound; and

measuring expression in the cancer cell of a gene product of at least one gene comprising a sequence selected from the group consisting of SEQ ID NOS: 228, 230-257, 259, 260, 262-263, and 265, wherein a decrease in expression of the gene product in the presence of a test compound relative to expression of the gene product in the absence of the

test compound identifies the test compound as a potential anti-cancer drug.

41. The method of claim 40 wherein the cancer cell is selected from the group consisting of a colon cancer cell, a breast cancer cell, a lung cancer cell, a melanoma cell, and a brain cancer cell.

- 42. The method of claim 40 in which expression of gene products of at least two of said genes is measured.
- 43. The method of claim 40 in which expression of gene products of at least five of said genes is measured.
 - 44. The method of claim 40 wherein the gene product is protein.
 - 45. The method of claim 40 wherein the gene product is RNA.
- 46. The method of claim 45 wherein expression of the at least one gene product is measured using at least one oligonucleotide probe.
- 47. The method of claim 46 wherein the at least one oligonucleotide probe is immobilized on a solid support.
- 48. The method of claim 47 wherein the at least one oligonucleotide probe is in an array.
- 49. The method of claim 46 wherein the at least one oligonucleotide probe comprises a sequence selected from the group consisting of SEQ ID NOS:237, 239, 257, and 263.
- 50. A method of screening test compounds for the ability to increase an organ or cell function, comprising the step of:

contacting a cell selected from the group consisting of a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, and a kidney cell with a test compound; and

measuring expression in the cell of a gene product of at least one gene comprising a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155;

- (d) the sequences shown in SEQ ID NOS:156-159 and 160;
- (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188,

190-207, and 208;

- (g) the sequences shown in SEQ ID NOS:209 and 210; and
- (h) the sequences shown in SEQ ID NOS:211-224 and 225,

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (a) identifies the test compound as a potential drug for increasing a function of a colon cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (b) identifies the test compound as a potential drug for increasing a function of a brain cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (c) identifies the test compound as a potential drug for increasing a function of a skin cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (d) identifies the test compound as a potential drug for increasing a function of a breast cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (e) identifies the test compound as a potential drug for increasing a function of a lung cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (f) identifies the test compound as a potential drug for increasing a function of a melanocyte;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (g) identifies the test compound as a potential drug for increasing a function of a prostate cell; and

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (h) identifies the test compound as a potential drug for increasing a function of a kidney cell.

51. The method of claim 50 wherein expression of gene products of at least two of said genes is determined.

- 52. The method of claim 50 wherein expression of gene products of at least five of said genes is determined.
 - 53. The method of claim 50 wherein the gene product is protein.
 - 54. The method of claim 50 wherein the gene product is RNA.
- 55. The method of claim 54 wherein expression is determined using at least one oligonucleotide probe.
- 56. The method of claim 54 wherein expression is determined using at least two oligonucleotide probes.
- 57. The method of claim 55 wherein the at least one oligonucleotide probe is immobilized on a solid support.
- 58. The method of claim 57 wherein the at least one oligonucleotide probe is in an array.
- 59. A method to restore function to a diseased tissue or cell comprising the step of:

delivering a gene to a diseased cell selected from the group consisting of a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, and a kidney cell, wherein the gene comprises a nucleotide sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155;
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEO ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225,

wherein expression of the gene in the diseased cell is less than expression of the gene in a corresponding cell which is normal,

wherein if the diseased cell is a colon epithelial cell, then the nucleotide sequence is selected from (a);

wherein if the diseased cell is a brain cell, then the nucleotide sequence is selected from (b);

wherein if the diseased cell is a keratinocyte, then the nucleotide sequence is selected from (c);

wherein if the diseased cell is a breast epithelial cell, then the nucleotide sequence is selected from (d);

wherein if the diseased cell is a lung epithelial cell, then the nucleotide sequence is selected from (e);

wherein if the diseased cell is a melanocyte, then the nucleotide sequence is selected from (f);

wherein if the diseased cell is a prostate cell, then the nucleotide sequence is selected from (g); and

wherein if the diseased cell is a kidney cell, then the nucleotide sequence is selected from (h).

60. The method of claim 59 wherein the diseased cell fails to express the gene in the diseased state.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 30

щ			5	/5
EXPRESSION CHANGE >= 10 FOLD (%)	43 (0.10)	390 (0.70) ^A	930 (1.49) ^B	1,047 (1.45) ^C
UNIQUE TRANSCRIPTS	42,673	56,061	62,216	72,239
TOTAL TRANSCRIPTS	0	0	0	0
DESCRIPTION	DLD1 CONDITION A vs DLD1 CONDITION B	DLD1 vs HCT116	COLON CANCER vs NORMAL BRAIN	COLON CANCER vs HEMANGIOPERICYTOMA
COMPARISON	-	5	့ က ·	4
ļ				3

A DIFFERENCE BETWEEN EXPRESSION CHANGE OF COMPARISON 1 AND 2, p < 0.0001 B DIFFERENCE BETWEEN EXPRESSION CHANGE OF COMPARISON 2 AND 3, p < 0.0001 C DIFFERENCE BETWEEN EXPRESSION CHANGE OF COMPARISON 2 AND 4, p < 0.0001

SUBSTITUTE SHEET (RULE 26)