Лекция №1

ВВЕДЕНИЕ В КУРС

Дисциплина: Архитектура вычислительных систем и компьютерные сети

Преподаватель: Миронов Константин Валерьевич

Поток: ПРО-3

Учебный год: 2024/25

Содержание лекции

- Структура курса
- Вычислительные системы
- Компьютерные сети

Структура Курса

- Осенний семестр:
 - 14 лекций
 - 5 лабораторных работ
 - Экзамен

Содержание лекции

- Структура курса
- Вычислительные системы
- Компьютерные сети

- **Система** это совокупность элементов, взаимодействующих друг с другом, образующих определенную целостность, единство.
- Элемент системы часть системы, имеющая определенное функциональное назначение. Сложные элементы систем, в свою очередь состоящие из более простых взаимосвязанных элементов, часто называют подсистемами.
- **Вычислительная система** совокупность одного или нескольких компьютеров или процессоров, программного обеспечения и периферийного оборудования, организованная для совместного выполнения информационно-вычислительных процессов.
- Системы делят на материальные и абстрактные. Вычислительная система является материальной.

(В. Л. Бройдо «Вычислительные системы, сети и телекоммуникации»)

1950-60-е

Компьютер как **вычислительная машина**, т.е. единое устройство, используемое для вычислений

1970-е

Компьютер как **вычислительные система**, т.е. совокупность устройств, используемая для вычислений

Один процессор – много терминалов «Умный терминал» – по сути менее мощный компьютер, взаимодействующий с основным Разделение времени между процессами

1980-е и далее

Компьютер как информационная система, т.е. совокупность устройств, используемая для обработки информации в широком смысле

Принципы вычислительных систем переродились в использование серверных и облачных мощностей

- Вычислительные системы бывают:
 - однородными (составлены из одинаковых устройств) и неоднородными (составлены из разнообразных устройств)
 - оперативными [online] (взаимодействие устройств в реальном времени) и неоперативными [offline] (возможны существенные задержки)
 - территориально-сосредоточенными и распределенными
 - одноуровневыми и многоуровневыми (или иерархическими; в таких системах функции разных устройств могут отличаться)
 - одномашинными (один процессор + много периферии), многопроцессорными (несколько процессоров в рамках одного компьютера с общей операционной системой) и многомашинными (составлены из отдельных устройств)

Классификация по Флинну

Одиночный поток

SISD

Последовательное выполнение команд «Обычные» процессоры

Одиночный поток

SIMD

Команды выполняются над батчами данных Видеокарты

MISD

Разные команды над одними данными параллельно В чистом виде не встречается

команды

Множественный поток

данные

MIMD

Разные команды над разными данными параллельно *Многопоточные системы*

Брокер — узел, который организует работу топиков (может отсуствовать)

Архитектура «Peer-to-peer» (одноранговая сеть)

Содержание лекции

- Структура курса
- Вычислительные системы
- Компьютерные сети

Модель OSI

Семиуровневая эталонная сетевая модель взаимодействия открытых систем [Open Systems Interconnection]

Host Layers

Media Layers

Прикладной уровень

[Application Layer]

Уровень представления данных

[Presentation Layer]

Сеансовый уровень

[Session Layer]

Транспортный уровень

[Session Layer]

Сетевой уровень

[Network Layer]

Канальный уровень

[Datalink Layer]

Физический уровень

[Physical Layer]

Модель TCP/IP

Прикладной уровень

[Application Layer]

Транспортный уровень

[Session Layer]

Межсетевой уровень

[Internet Layer]

Канальный уровень

[Link Layer]

Прикладной уровень

[Application Layer]

Уровень представления данных

[Presentation Layer]

Сеансовый уровень

[Session Layer]

Транспортный уровень

[Session Layer]

Сетевой уровень

[Network Layer]

Канальный уровень

[Datalink Layer]

Физический уровень

[Physical Layer]

Модель TCP/IP

Прикладной уровень

[Application Layer]

Транспортный уровень

[Session Layer]

Межсетевой уровень

[Internet Layer]

Канальный уровень

[Link Layer]

Ethernet, WiFi, ...

Модель TCP/IP

Прикладной уровень

[Application Layer]

Транспортный уровень

[Session Layer]

Межсетевой уровень

[Internet Layer]

Канальный уровень

[Link Layer]

Сообщение прикладного уровня

Заголовок Тело

Сегмент или датаграмма транспортного уровня

Заголовок

Пакет сетевого уровня

Заголовок

Кадр канального уровня

Заголовок Хеш

Сигнал на физическом уровне

Модель TCP/IP

Прикладной уровень

[Application Layer]

Транспортный уровень

[Session Layer]

Межсетевой уровень

[Internet Layer]

Канальный уровень

[Link Layer]

Адресация зависит от приложения. Пример: Единообразный указатель местонахождения ресурса Uniform Resource Locator (URL)

Глобальная сеть (Интернет)

Коммутационное оборудование

Прикладной уровень

[Application Layer]

Транспортный уровень

[Session Layer]

Межсетевой уровень

[Internet Layer]

Канальный уровень

[Link Layer]

Маршрутизатор

[Router]

Коммутатор

[Switch]

Повторитель

Концентратор

Сетевой шлюз

[Repeater] [Hub]

Прикладной уровень

[Application Layer]

Уровень представления данных

[Presentation Layer]

Сеансовый уровень

[Session Layer]

Транспортный уровень

[Session Layer]

Сетевой уровень

[Network Layer]

Канальный уровень

[Datalink Layer]

Физический уровень

[Physical Layer]

