	Taylor's series to Newton method of optimization
	N > 2
	$f(x_1) = f(x) + f'(x)(x_1-x) + f''(x)(x_1-x) +$
	21
	Bay 24-x=h.
	$f(x_1) = f(x_1) + f'(x_1)(h) + f''(x_1)h^2 + \dots$
	2,
	differentiate both edes w.r.t.h.
	0 = 0 + f'(x) + f''(x) h
	(ignoring higher order terms)
	$P = -t_{i}(x)$
	f"(x) 0
	y = x + h
	x = x - f'(x)
	$\gamma_{i} = \kappa - f'(\kappa)$ $f''(\kappa)$
	Newton raphson:
	Newston raphson: $f(x) = f(x_0) + f'(x_0) (x - x_0) + \cdots$
	we want n such that f(x)=0
	$0 = f(n_0) + f'(n_0) (n - n_0)$.
	f'(no) (n-no) = -f(no)
	$k-k_0 = -f(x_0)$
	f'(x0)
	$x = x_0 - f(x_0)$
	f'(ro)
4	