IT-Infrastrukturen – Rechnerstrukturen

Thema 1: Zahlendarstellung und Rechnerarithmetik

Prof. Dr.-Ing. Sebastian Schlesinger Professur für Wirtschaftsinformatik (Infrastruktur & Security

Lernziele

- Nach dieser Vorlesung sollten Sie in der Lage sein:
- Binär-/Oktal-/Hexadezimalzahlen zu Dezimalzahlen zu konvertieren und umgekehrt
- 2-Komplement-Zahlen zu berechnen und zu negieren
- m-Bit 2-Komplement-Zahlen zu n-Bit zu konvertieren
- Arithmetische Operationen mit Binärzahlen durchzuführen
- einen Überlauf (overflow) zu erklären und zu erläutern, wann er auftritt und wie er behandelt wird
- eine rationale Zahl in eine Gleitkommazahl (IEEE 754 Floating Point Standard) zu konvertieren und umgekehrt
- Arithmetische Operationen mit Gleitkommazahlen durchzuführen

Übersicht über die heutige Vorlesung

- Zahlensysteme und ihre Konvertierung
- Vorzeichenbehaftete und vorzeichenlose Zahlen
- Arithmetische Operationen
- Addition und Subtraktion
- Multiplikation
- Division
- Gleitkommazahlen (Floating Point)
- "Pentium Bug"

Übersicht über die heutige Vorlesung

- Zahlensysteme und ihre Konvertierung
- Vorzeichenbehaftete und vorzeichenlose Zahlen
- Arithmetische Operationen
- Addition und Subtraktion
- Multiplikation
- Division
- Gleitkommazahlen (Floating Point)
- "Pentium Bug"

Zahlenbasen

Natürliche Zahlen können in jeder Basis repräsentiert werden:

$$a_{n-1}a_{n-2}...a_1a_{0(Basis B)} = a_{n-1}B^{n-1} + ... + a_1B^1 + a_0B^0 = \sum_{i=0}^{n-1} a_iB^i$$

- B: Basis, z.B. 10 (dezimal), 2 (binär), 8 (oktal), 16 (hexadezimal)
- Bⁱ: Gewicht der i-ten Ziffer
- a_i: i-te Ziffer aus der Menge {0, 1, ..., B-1}

Zahlenbasen

Natürliche Zahlen können in jeder Basis repräsentiert werden:

$$a_{n-1}a_{n-2}...a_1a_{0(Basis B)} = a_{n-1}B^{n-1} + ... + a_1B^1 + a_0B^0 = \sum_{i=0}^{n-1}a_iB^i$$

- B: Basis, z.B. 10 (dezimal), 2 (binär), 8 (oktal), 16 (hexadezimal)
- Bⁱ: Gewicht der i-ten Ziffer
- a_i: i-te Ziffer aus der Menge {0, 1, ..., B-1}

Binärzahlen

Menschen benutzen Dezimalzahlen

$$2435 = 2 \cdot 10^3 + 4 \cdot 10^2 + 3 \cdot 10^1 + 5 \cdot 10^0$$

Rechner benutzen Binärzahlen

$$1011_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

- Hintergrund: Zwei Möglichkeiten einfach darstellbar
- ein / aus
- hohes / niedriges Potenzial
- Interpretation von Binärzahlen:

$$b_{n-1}b_{n-2}...b_1b_0 = b_{n-1}\cdot 2^{n-1} + b_{n-2}\cdot 2^{n-2} + ... + b_1\cdot 2^1 + b_0\cdot 2^0$$

Konvertierung

Hochschule für
Wirtschaft und Recht Berlin
Berlin School of Economics and Law

Zerlegung nach Horner-Schema:

$$\sum_{i=0}^{n-1} a_i B^i = ((...(a_{n-1}B + a_{n-2})B + ... + a_2)B + a_1)B + a_0$$

Dezimal nach dual / binär:

$$167_{D} \rightarrow 167 / 2 = 83$$
 Rest 1
 $83 / 2 = 41$ Rest 1
 $41 / 2 = 20$ Rest 1
 $20 / 2 = 10$ Rest 0
 $10 / 2 = 5$ Rest 0
 $5 / 2 = 2$ Rest 1
 $2 / 2 = 1$ Rest 0
 $1 / 2 = 0$ Rest 1

Niederwertigstes Bit (least significant bit (LSB))

Höchstwertigstes Bit (most significant bit (MSB))

Rechnen Sie 202_D in eine Binärzahl um!

Wie viele
Dezimalzahlen
lassen sich mit
einer 3-stelligen
Binärzahl
darstellen?

 \blacksquare 167_D = 10100111_B

Konvertierung: Beispiel

202 _D →	202 / 2 = 101	Rest 0	1
	101 / 2 = 50	Rest 1	
	50 / 2 = 25	Rest 0	
	25 / 2 = 12	Rest 1	
	12 / 2 = 6	Rest 0	
	6 / 2 = 3	Rest 0	
	3 / 2 = 1	Rest 1	
	1/2=0	Rest 1	ı

$$-202_D = 11001010_B$$

Bits und Bytes

- Alle Informationen werden im Rechner als Binärzahlen gespeichert
- kleinste Einheit: 1 Bit = eine Ziffer einer Dualzahl
- Beispiel:

höchstwertigstes (most significant) Bit

$$1Byte = 8bit = 1100 1010$$

niederwertigstes (least significant) Bit

• Mit einer n-Bit Zahl lassen sich die Werte von 0... 2ⁿ – 1 darstellen Beispiel für n= 3:

$$111_2 = 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 1 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 7 = 8 - 1 = 2^3 - 1$$

Weitere Zahlensysteme

Problem: Binärzahlen werden schnell sehr lang

Lösung: Verwendung von weiteren Zahlensystemen mit höheren Basen, in die leicht konvertiert werden kann:

- Oktale Zahlen (Basis 8)
- Hexadezimale Zahlen (Basis 16)

Konvertierung nach Oktal

- Oktalzahlen werden zur Basis 8 (= 2³) gebildet
- Dezimal nach oktal (Horner-Schema): $167_D \rightarrow 167/8 = 20$ Rest 7 20/8 = 2 Rest 4 2/8 = 0 Rest 2 $167_D = 247_O$
- Binär nach oktal: es werden 3 Binärziffern benötigt, um die Zahlen 0 ... 7 darzustellen $O_0*8^0 = b_2*2^2 + b_1*2^1 + b_0*2^0$
- > jeweils 3 Binärziffern können als eine Oktalziffer zusammengefasst werden

Hexadezimalzahlen

- Hexadezimalzahlen werden zur Basis 16 (= 2⁴) gebildet
- Ziffernmenge: { 0, 1, 2, ..., 8, 9, A, B, C, D, E, F}
- Dezimal nach hexadezimal: $167_D \rightarrow 167 / 16 = 10 \text{ Rest } 7$

$$10 / 16 = 0$$

 $167_D = A7_H$

Rest A (entspricht 10)

In C/Java: vorgestelltes "0x" kennzeichnet Hexadezimalzahlen (0xa7)

- Binär nach hexadezimal: es werden 4 Binärziffern benötigt, um die Zahlen 0 ... 15 darzustellen: $h_0*16^0 = b_3*2^3 + b_2*2^2 + b_1*2^1 + b_0*2^0$
- > jeweils 4 Binärziffern können als eine Hexadezimalziffer zusammengefasst werden
- Binär nach hexadezimal:

Übersicht über die heutige Vorlesung

- Zahlensysteme und ihre Konvertierung
- Vorzeichenbehaftete und vorzeichenlose Zahlen
- Arithmetische Operationen
- Addition und Subtraktion
- Multiplikation
- Division
- Gleitkommazahlen (Floating Point)
- "Pentium Bug"

Negative Zahlen

Möglichkeiten negative Zahlen binär zu repräsentieren:

- Vorzeichen-/Betrags-Zahlen (Sign-magnitude numbers)
- MSB zeigt Vorzeichen (sign) an (0: positiv, 1: negativ).
- Die übrigbleibenden (n-1) Bits bilden den Betrag (magnitude).
- Beispiel: 5 (dezimal) = 0101 (binär) \rightarrow 5 (dezimal) = 1101 (binär)
- 1-Komplement-Zahlen (One's complement numbers)
- Zahl wird durch die Invertierung aller Bits negiert.
- MSB impliziert das Vorzeichen.
- Beispiel: 5 (dezimal) = 0101 (binär) \rightarrow 5 (dezimal) = 1010 (binär)
- **2-Komplement-Zahlen** (*Two's complement numbers*)
- MSB hat ein negatives Gewicht (- 2ⁿ⁻¹).
- $b_{n-1}b_{n-2}...b_1b_0$ (binär) = $-b_{n-1}2^{n-1}+b_{n-2}2^{n-2}+...+b_12^1+b_02^0$ (dezimal)
- MSB impliziert das Vorzeichen.
- Beispiel: 5 (dezimal) = 8 + 3 = 1011 (binär)

Beispiel (3 Bit)

Dezimal	Vorzeichen- /Betrags-Zahlen (Sign-Magnitude)	1-Komplement- Zahlen (One's complement)	2-Komplement and Zahlen (Two's complement)
-4			100
-3	111	100	101
-2	110	101	110
-1	101	110	111
-0	100	111	
+0	000	000	000
+1	001	001	001
+2	010	010	010
+3	011	011	011

Hochschule für

Welche Darstellung würden Sie wählen? Was sind die kleinste und größte mit 8 Bit repräsentierbare Ganzzahl?

Und der Gewinner ist ...

2-Komplement-Zahlen

- Arithmetik ist einfacher (identisch zu vorzeichenlos!).
- Es gibt nur eine Möglichkeit die 0 zu repräsentieren.
- Beispiel 32bit:

•
$$b_{31}b_{30}...b_1b_0$$
 (binär) = $-b_{31}2^{31}+b_{30}2^{30}+...+b_12^1+b_02^0$ (dezimal)

- kleinste mit 8 Bit darstellbare Zahl: : 2⁷ = 128 (- 2ⁿ⁻¹)
- größte mit 8 Bit darstellbare Zahl: $2^6 + 2^5 + ... + 2^0 = 127 (= 2^{n-1} 1)$

Negation

- Negation von 2-Komplement-Zahlen:
- Invertiere alle Bits und addiere 1

8-Bit-Beispiel: 0110 1001_B = +105_D

invertieren: 1001 0110

1 addieren: $1001\ 0111 = -128 + 16 + 7 = -105$

Rückwärts:

invertieren: 0110 1000

1 addieren: 0110 1001

Übersicht über die heutige Vorlesung

- Zahlensysteme und ihre Konvertierung
- Vorzeichenbehaftete und vorzeichenlose Zahlen
- Arithmetische Operationen
- Addition und Subtraktion
- Multiplikation
- Division
- Gleitkommazahlen (Floating Point)
- "Pentium Bug"

Binäre Addition

- Addition von rechts nach links mit Übertrag (carry) wie in der Grundschule
- Beispiele (4-Bit):

Rechenregeln Addition

•
$$0 + 0 = 0$$

• $0 + 1 = 1$
• $1 + 0 = 1$
• $1 + 1 = 10$
 $carry$

Binäre Subtraktion

Hochschule für
Wirtschaft und Recht Berlin
Berlin School of Economics and Law

Beispiele (4-Bit):

Berechnen Sie jeweils 5 + 6 und - 3 - 6! Sind die Ergebnisse korrekt?

Binäre Addition

Addition von rechts nach links mit Übertrag (carry) wie in der Grundschule

5

Beispiele (4-Bit):

Rechenregeln:

•
$$0 + 0 = 0$$

• $0 + 1 = 1$

• $1 + 0 = 1$

• $1 + 1 = 10$
 $carry$

⇒ Überlauf (*overflow*)

Binäre Subtraktion

Hochschule für
Wirtschaft und Recht Berlin
Berlin School of Economics and Law

Beispiele (4-Bit):

⇒ Überlauf (*overflow*)

Überläufe müssen erkannt und angezeigt werden!

Subtraktion durch Addition der Negation

Beispiel (4-Bit):

Negiere 0011

• Invertieren: 1100

1 addieren: 1101

Addieren

■ Überlauf (overflow):

- Das Ergebnis ist zu groß um mit der gegebenen Anzahl an Bits gespeichert zu werden.
- z.B. Addition von zwei n-Bit-Zahlen muss keine n-Bit-Zahl ergeben.
- Kein Überlauf, wenn ...
- Addition von 2 Zahlen mit entgegengesetztem Vorzeichen
- Beispiel: -10 + 6 = -4
- Subtraktion von 2 Zahlen mit demselben Vorzeichen
- Überlauf tritt auf, wenn...

Operation	Α	В	Ergebnis
A+B	<u>≥</u> 0	<u>≥</u> 0	< 0
A+B	< 0	< 0	<u>≥</u> 0
A-B	<u>≥</u> 0	< 0	< 0
A-B	< 0	<u>></u> 0	<u>></u> 0

An welchen Bits können wir das erkennen?

• Ein Überlauf tritt genau dann auf, wenn das Übertragsbit (*carry in*) für das MSB ungleich dem entstehenden Übertragsbit (*carry out*) aus der Operation ist.

$$carry\ in \neq carry\ out\ \rightarrow \ddot{U}berlauf$$

■ Beispiel (4-Bit):

carry out

01 ← carry in

0111

+ 0001

1000

Operation	Α	В	Ergebnis	carry out	carry in
A+B	<u>≥</u> 0	<u>≥</u> 0	< 0	0	1
A+B	< 0	< 0	<u>></u> 0		
A-B	≥ 0	< 0	< 0		
A-B	< 0	≥ 0	<u>></u> 0		

• Ein Überlauf tritt genau dann auf, wenn das Übertragsbit (*carry in*) für das MSB ungleich dem entstehenden Übertragsbit (*carry out*) aus der Operation ist.

$carry\ in \neq carry\ out\ \rightarrow \ddot{U}berlauf$

Beispiel (4-Bit):
 carry out → 10 ← carry in
 1000
 + 1111

0111

Operation	Α	В	Ergebnis	carry out	carry in
A+B	<u>≥</u> 0	<u>≥</u> 0	< 0	0	1
A+B	< 0	< 0	<u>≥</u> 0	1	0
A-B	<u>≥</u> 0	< 0	< 0		
A-B	< 0	≥ 0	<u>></u> 0		

• Ein Überlauf tritt genau dann auf, wenn das Übertragsbit (*carry in*) für das MSB ungleich dem entstehenden Übertragsbit (*carry out*) aus der Operation ist.

$carry\ in \neq carry\ out\ \rightarrow \ddot{U}berlauf$

Beispiel (4-Bit):

carry out
$$\longrightarrow$$
 10 \longleftarrow carry in 0111 \bigcirc 1111 \bigcirc 1000

Operation	A	В	Ergebnis	carry out	carry in
A+B	<u>≥</u> 0	<u>≥</u> 0	< 0	0	1
A+B	< 0	< 0	<u>></u> 0	1	0
A-B	<u>≥</u> 0	< 0	< 0	1	0
A-B	< 0	<u>≥</u> 0	<u>≥</u> 0		

• Ein Überlauf tritt genau dann auf, wenn das Übertragsbit (*carry in*) für das MSB ungleich dem entstehenden Übertragsbit (*carry out*) aus der Operation ist.

$carry\ in \neq carry\ out\ \rightarrow \ddot{U}berlauf$

Beispiel (4-Bit):

carry out
$$\longrightarrow$$
 01 \leftarrow carry in 1000 $-$ 0001

Operation	A	В	Ergebnis	carry out	carry in
A+B	<u>≥</u> 0	<u>≥</u> 0	< 0	0	1
A+B	< 0	< 0	≥ 0	1	0
A-B	<u>≥</u> 0	< 0	< 0	1	0
A-B	< 0	<u>≥</u> 0	<u>≥</u> 0	0	1

Multiplikation

- Für den Moment betrachten wir nur positive Zahlen.
- Schulmathematik: Es wird immer die ganze linke Zahl mit einer Stelle der rechten Zahl multipliziert (oder umgekehrt).

	1101	• 1011	<u>13 · 11</u>	
		1101	13	
		1101	13	
		0000		
	1	101		
Pi	rodukt 10	0001111	143	

Produkt kann doppelte Stellenanzahl erfordern!

 Schulmathematik: Es wird immer ein Teil der linken Zahl (Dividend) durch die gesamte rechte Zahl (Divisor) geteilt.

Dividend		Divisor		Quotient
1001010	/	1000	=	

 Schulmathematik: Es wird immer ein Teil der linken Zahl (Dividend) durch die gesamte rechte Zahl (Divisor) geteilt.

Dividend		Divisor		Quotient
1001010	/	1000	=	1
1000				
1				

 Schulmathematik: Es wird immer ein Teil der linken Zahl (Dividend) durch die gesamte rechte Zahl (Divisor) geteilt.

 Schulmathematik: Es wird immer ein Teil der linken Zahl (Dividend) durch die gesamte rechte Zahl (Divisor) geteilt.

 Schulmathematik: Es wird immer ein Teil der linken Zahl (Dividend) durch die gesamte rechte Zahl (Divisor) geteilt.

Dividend		Divisor		Quotient
1001010	/	1000	=	1001
1000				
1010				

 Schulmathematik: Es wird immer ein Teil der linken Zahl (Dividend) durch die gesamte rechte Zahl (Divisor) geteilt.

Dividend		Divisor		Quotient	
1001010	/	1000	=	1001	74/8= 9 Rest 2
1000				Υ	
1010				= 9	
1000					
10	\rightarrow Re	st			
= 2					

Multiplikation und Division

Berechnen Sie:

101 • 011 1110 / 0010

Multiplikation und Division

Berechnen Sie:

101 • 011	10101 / 0111	= 11
101	0111	
101	00111	
1111	0111	
	0000	

Übersicht über die heutige Vorlesung

- Zahlensysteme und ihre Konvertierung
- Vorzeichenbehaftete und vorzeichenlose Zahlen
- Arithmetische Operationen
- Addition und Subtraktion
- Multiplikation
- Division
- Gleitkommazahlen (Floating Point)
- "Pentium Bug"

Rationale Zahlen

Darstellung rationaler Zahlen:

$$a_{n-1}a_{n-2}...a_{0}, a_{-1}a_{-2}...a_{-m}$$

$$= a_{n-1}B^{n-1} + ... + a_{0}B^{0} + a_{-1}B^{-1} + a_{-2}B^{-2} + ... + a_{-m}B^{-m}$$

$$= \sum_{i=0}^{n-1} a_{i}B^{i} + \sum_{i=-m}^{-1} a_{i}B^{i}$$

- Beispiel (dezimal): $12,48_D$ = $2 \cdot 10^1 + 2 \cdot 10^0 + 4 \cdot 10^{-1} + 8 \cdot 10^{-2}$
- Beispiel (binär): $11,1010_B$ = $2^1 + 2^0 + 2^{-1} + 2^{-3}$ = $3 + 0,5 + 0,125 = 3,625_D$

Konvertierung

Hochschule für
Wirtschaft und Recht Berlin
Berlin School of Economics and Law

- Dezimal nach Dual
- \bullet 2 · 0,b₋₁b₋₂...b_{-m} = b₋₁,b₋₂b₋₃...b_{-m}
- Beispiel: 0,24_D

$$0,24_{D}$$
 -> $0,24 \cdot 2 = 0,48 + 0$ $0,48 \cdot 2 = 0,96 + 0$ $0,96 \cdot 2 = 0,92 + 1$ $0,92 \cdot 2 = 0,84 + 1$ $0,84 \cdot 2 = 0,68 + 1$ $0,68 \cdot 2 = 0,36 + 1$ $0,36 \cdot 2 = 0,72 + 0$ $0,72 \cdot 2 = 0,44 + 1$ -> $0,00111101_{B}$

Abbruch nach 8 Stellen (Näherung mit 0,238...)

Gleitkommazahlen (floating point)

Näherung für reelle Zahlen:

$$(-1)^s \cdot 1.f \cdot 2^E$$

- s: Vorzeichen (sign): $0 \rightarrow$ positiv, $1 \rightarrow$ negativ
- 1.f: Mantisse (Betrag) als normalisierte Zahl
- Zahl wird so lange geschoben, bis sie führende 1 aufweist
- Binärpunkt wird rechts von dieser 1 festgelegt $(1.0 \le 1.f < 2.0)$
- f: nur der fraktionale Anteil f (fraction) wird gespeichert, führende 1 ist implizit (wird von Recheneinheit ergänzt)
- E: vorzeichenbehafteter Exponent, wird als transformierter Exponent e gespeichert
- e: e = E + bias

IEEE-754 Standard

Einfache Genauigkeit (single precision, 32 Bit)

1	8	23 Bit
S	е	f

- bias = 127
- C/Java: float

Doppelte Genauigkeit (double precision, 64 Bit)

1	11	52 Bit
S	е	f

- bias = 1023
- C/Java: double

Beispiel

- -0,75_D mit einfacher Genauigkeit
- s = 1
- 0,75_D als rationale Dualzahl ist 0,11_B
- Normalisiere: $0,11 = 1,1 \cdot 2^{-1}$
- führende 1 ist implizit $\rightarrow f = 10000...$
- transformierter Exponent e

$$e = E + bias = -1 + 127 = 126 = 0111 1110_B$$

1	8	23 Bit
1	0111 1110	100 0000 0000 0000 0000 0000

Sonderfälle

- Neben normalisierten Zahlen sind außerhalb des Zahlenraums definiert:
- ± Null
- ± Unendlich
- ± unnormalisierte (unnormalized) Zahlen: winzige (tiny) Zahlen
- Nichtzahlen (Not a Number, NaN): Ergebnis ungültiger Operation wie 0/0
- Codiert durch den größten und kleinsten Exponentwert e und f:

• normal.:
$$(-1)^s \cdot 1.f \cdot 2^{e-127 \text{ bzw. } -1023}$$

$$e = 0, f = 0$$

• Unendlich:
$$(-1)^s \cdot \infty$$

$$e = 255$$
 bzw.2047, $f = 0$

• unnorm.:
$$(-1)^s \cdot 0.f \cdot 2^{-126 \text{ bzw. } -1022}$$

$$e = 0, f \neq 0$$
; interpretiert mit $e = 1$

$$e = 255$$
 bzw. 2047, $f \neq 0$

Beispiel basiert auf 16-Bit Minifloat Format:

1	5	10 Bit
S	е	f

Exponentenbereich: $-14 \le E \le 15$

- Z = X + Y mit
- $X = 2,35_D = 10.0101\ 1001\ 1001\ \dots_B$
- $Y = 10,17_D = 1010.0010 1011 1000 0101 \dots_B$

$$Z = X + Y$$
 mit

$$X = 2.35_D = 10.0101 1001 1001 \dots_B$$

•
$$Y = 10,17_D = 1010.0010 1011 1000 0101 \dots_B$$

1. Schritt:

- Normalisieren und Anpassung an 16-Bit-Format:
- $X = 1.0010 \ 1100 \ 11 \cdot 2^{1}$
- $Y = 1.0100 \ 0101 \ 01 \cdot 2^3$
- **2. Schritt:** Vergleichen der beiden Exponenten *E*.
- Bei Ungleichheit kleineren Exponent an den größeren anpassen
- $X = 0.0100 \ 1011 \ 00 \ 11 \cdot 2^3$

Wie hoch ist jeweils im 1. und 2. Schritt der Genauigkeitsverlust?

- 7 = X + Y mit
- $X = 2,35_D = 10.0101\ 1001\ 1001\ \dots_B$
- $Y = 10,17_D = 1010.0010 1011 1000 0101 ..._B$
- 1. Schritt:
- Normalisieren und Anpassung an 16-Bit-Format: Mantisse umfasst nur 10 Bit, Rest geht verloren
- $X = 1.0010 \ 1100 \ 11 \cdot 2^1 = 2,349609375_D$ (Genauigkeitsverlust: 0,00039625)
- $Y = 1.0100\ 0101\ 01 \cdot 2^3 = 10,1640625_D$ (Genauigkeitsverlust: 0,0059375)
- **2. Schritt:** Vergleichen der beiden Exponenten *E*.
- Bei Ungleichheit kleineren Exponent an den größeren anpassen
- $X = 0.0100 1011 00 11 \cdot 2^3$
 - → rot dargestellten Stellen gehen verloren

 $X = 0.0100 \ 1011 \ 00 \cdot 2^3 = 2,34375_D$ (Genauigkeitsverlust: 0,005859375)

3. Schritt: Addieren der Mantissen:

```
0.0100 1011 00 (X)
+ 1.0100 0101 01 (Y)
1.1001 0000 01 (Z)
```

Ergebnis

- muss ggf. noch normalisiert werden (hier nicht)
- $Z = 1.1001\ 0000\ 01 \cdot 2^3 = 12,5078125$ (korrekt wäre: 12,52, Genauigkeitsverlust: 0,0121875).

Übersicht über die heutige Vorlesung

- Zahlensysteme und ihre Konvertierung
- Vorzeichenbehaftete und vorzeichenlose Zahlen
- Arithmetische Operationen
- Addition und Subtraktion
- Multiplikation
- Division
- Gleitkommazahlen (Floating Point)
- "Pentium Bug"

Pentium Bug

Fehler im Divisionsalgorithmus für Gleitpunktzahlen

- Juli 1994: Intel entdeckt Fehler. Geschätzte Kosten zum Beheben: einige 100K\$
- Sept. 1994: Matheprof Thomas Nicely entdeckt Fehler. Erhält keine offizielle Stellungnahme Intel, veröffentlicht Entdeckung im Internet
- 7. Nov. 1994: EE Times bringt Geschichte auf Titelseite
- 22. Nov. 1994: Pressemitteilung Intel: Pentium könne Fehler an 9. Stelle verursachen, nur wenige Benutzer könnten betroffen sein
- 5. Dez. 1994: Intel behauptet, Fehler würde nur einmal in 27000 Jahren auftreten bei typischer Anwendung
- 12. Dez. 1994: IBM Research ficht Intels Berechnung an: alle 24 Tage Fehler
- 21. Dez. 1994: Intel gibt zu: jeder Besitzer darf Pentium austauschen. Geschätzte Kosten: 500 M\$!

4195835.0/3145727.0 = 1.333 **8**20 449 136 241 002 (korrekter Wert) 4195835.0/3145727.0 = 1.333 **7**39 068 902 037 589 (fehlerhafter Pentium)

Zusammenfassung

- Computer benutzen Binärzahlen statt Dezimalzahlen
- $b_{n-1}b_{n-2}...b_1b_0 = b_{n-1}\cdot 2^{n-1} + b_{n-2}\cdot 2^{n-2} + ... + b_1\cdot 2^1 + b_0\cdot 2^0$
- Binärzahlen können leicht in oktale und hexadezimale Zahlen konvertiert werden
- 2-Komplement wird benutzt um vorzeichenbehaftete Zahlen darzustellen
- $b_{n-1}b_{n-2}...b_1b_0 = -b_{n-1}\cdot 2^{n-1} + b_{n-2}\cdot 2^{n-2} + ... + b_1\cdot 2^1 + b_0\cdot 2^0$
- Mit binären Zahlen kann man rechnen wie in der Schulmathematik.
- Durch limitierte Bitbreiten kann es zu Überläufen kommen.
- Rationale Zahlen können als Gleitkommazahlen dargestellt werden.
- Was kommt als Nächstes?
- Wir werden einen Prozessor implementieren.
- Dazu schauen wir uns zunächst die Grundlagen der Digitaltechnik an.