第五讲物理内存管理: 非连续内存分配 第 6 节 RISC-V 页映射机制

向勇、陈渝

清华大学计算机系

xyong,yuchen@tsinghua.edu.cn

2020年5月5日

回顾

• 通过页表来实现隔离与共享

- 运行的应用程序之间的隔离与共享
- 应用与内核之间的隔离与共享
- 便于非连续内存管理
- RISC-V Privileged Architecture Version 1.10 (RV32/64)
- The RISC-V Reader 第 10.6 节

• RISC-V 对页表的硬件支持

• RISC-V 32 的 Sv32 虚地址与物理地址

• RISC-V 对页表的硬件支持

• RISC-V 64 的 Sv39 虚地址与物理地址

3	8 30	29	21 20	12 11	0
	VPN[2]	VPN[1]	VPN[0]	page offset	
	9	9	9	12	
55	5	30 29	21 20	12 11	0
	PPN[2]	PPN[1]	PPN[0]	page offse	et
	26	9	9	12	

- 页表基址: satp in RISC-V 32
- Supervisor Address Translation and Protection (satp) Register

RV32 Supervisor address translation and protection register satp

- 页表基址: satp in RISC-V 64
- Supervisor Address Translation and Protection (satp) Register

 $\ensuremath{\mathsf{RV64}}$ Supervisor address translation and protection register satp

- 页表基址: satp in RV32/64
- Supervisor Address Translation and Protection (satp) Register

	RV32					
Value	Name	Name Description				
0	Bare	No translation or protection.				
1	Sv32	Page-based 32-bit virtual addressing.				
RV64						
Value	Name Description					
0	Bare	No translation or protection.				
1-7	_	Reserved				
8	Sv39	Page-based 39-bit virtual addressing.				
9	Sv48	Page-based 48-bit virtual addressing.				
10	Sv57	Reserved for page-based 57-bit virtual addressing.				
11	Sv64	Reserved for page-based 64-bit virtual addressing.				
12-15		Reserved				

- 地址保护
- 页表项(page table entry)

X	W	R	Meaning
0	0	0	Pointer to next level of page table.
0	0	1	Read-only page.
0	1	0	Reserved for future use.
0	1	1	Read-write page.
1	0	0	Execute-only page.
1	0	1	Read-execute page.
1	1	0	Reserved for future use.
1	1	1	Read-write-execute page.

- 地址保护
- 页表项(page table entry)

- 地址保护
- 页表项(page table entry)

RISC-V 地址转换

• Sv32 in RV32

- 当在 satp 寄存器中启用了分页时,虚拟地址 映射启动。
- 1. satp.PPN 给出一级页表基址,VA[31:22] VPN[1] 给出一级页号,CPU 会读取位于地址 (satp. PPN × 4096 + VA[31: 22] × 4) 的页 表项。
- 2. 该 PTE 包含二级页表的基址,VA[21:12]
 给出二级页号,CPU 读取位于地址 (PTE.
 PPN × 4096 + VA[21: 12] × 4) 的叶节点页表项。
- 3. 叶节点页表项的 PPN 字段和页内偏移 (原始虚址的最低 12 个有效位) 组成了最终 结果: 物理地址就是 (LeafPTE. PPN × 4096 + VA[11: 0])

RISC-V 地址转换

Sv39 in RV64

- 地址映射要计算三次
- (satp.PPN × 4K + L2 × 8) 的页目录项
- (PTE.PPN \times 4K + L1 \times 8) 的二级页目录项
- (LeafPTE.PPN × 4K +L0 x 8) 叶节点页表项
- 叶节点页表项的 PPN 字段 \times 4K + Offset

第五讲物理内存管理: 非连续内存分配 第7节使能 RISC-V 页表

向勇、陈渝

清华大学计算机系

xyong,yuchen@tsinghua.edu.cn

2020年5月5日

使能 RISC-V 页表

OS 配置页表的流程

• 为页表分配物理内存

• 确定映射的物理空间与虚拟空间

• 创建页表

• 设置 satp, 刷新 TLB, 使能页表

Talk is cheap. Show me the code.
(Linus Torvalds)