Introduction to Machine Learning

DATAMAX

1 Introduction

2 Python 101

3 Intro into ML

4 Linear Regression - Theory

5 Linear Regression - Practice

M L W O R K S H O P

Today's Agenda

Introductions

BUJAR BAKIU

Bujar Bakiu

- MD & Machine Learning Engineer, Data Max
- Graduated 2016, MSc, RWTH Aachen University
- Passionate about Machine Learning, Software Engineering and running
- Find me in Twitter: @bujarbakiu

LinkedIn: linkedin.com/in/bbakiu

Email: bujar@data-max.io

Python 101

Intro into ML

What is Machine Learning

Goal

Machines that *learn* to *perform* a *task* from *experience*

Why?

- Task cannot be well defined
- Volume of data is just too big to analyze
- Environment changes
- New knowledge become available

Learning

Machines that *learn* to *perform* a *task* from *experience*

- Learning to perform a task from experience
- We don't want to encode knowledge
- Machine should discover and learn automatically from past
- Statistics, Probability Theory, Decision Theory, Information Theory, Optimization Theory

Task

Machines that *learn* to *perform* a *task* from *experience*

- Usually, a function y = f(x, w)
- X: input aka. features
 W: parameters aka. weight
- y: output aka, target (label)
- Classification vs. Regression vs. Reinforcement Learning

DATAMAX

M L W O R K S H O P

Perform

Machines that *learn* to *perform* a *task* from *experience*

- V
- "99% correct classification"
 - Of what?
 - What was the training data set? What about testing?
 - Is it matching real world?
- V

Performance Measurement:

- Numbers
- One or more metrics
- Different for classification vs. regression

Experience

Machines that *learn* to *perform* a *task* from *experience*

- When labelled data available:
 - Supervised Learning
- No labelled data:
 - Unsupervised learning
- Some labelled data:
 - Semi-supervised learning
- Feedback/rewards:
 - Reinforcement Learning

Basic Algorithms

Linear Regression

Naïve Bayes

Logistic Regression

K-Nearest Neighbours

✓ SVM

- K-Means Clustering
- Decision Tree / Random Forest
- DBSCA

DBSCAN Clustering

Linear Regression

Linear Regression

Relationship between target and features

Which line best fits the data?

Linear Regression

$$y = wx + w_0$$

 $y \rightarrow target$
 $x \rightarrow feature$
 $w \rightarrow weight$
 $y = f(x_1, x_2, x_3, x_4, ..., x_n)$
 $y_k = w_1x_{1k} + w_2x_{2k} + w_3x_{3k} + w_4x_{4k} + ... + w_nx_{nk} + w_0$

DATAMAX

M L W O R K S H O P

Linear Regression

- Goal:
 Reduce residuals (loss)
- Least square method
 - Try to minimize the sumof-squares error
- **LS**

$$E(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n)^2$$

Hands-On Time

Feedback

THANK YOU!

- www.data-max.io
- ◆ bujar@data-max.io