15 de mayo de 2010 Total: 36 puntos Tiempo: 2 h. 20 m.

SEGUNDO EXAMEN PARCIAL

Este es un examen de desarrollo, por tanto, debe aparecer todos los pasos, y sus respectivas justificaciones, que sean necesarios para obtener su respuesta.

1. Considere las dos relaciones \mathcal{R} y \mathcal{S} definidas sobre el conjunto $A = \{1, 2, 3, 4\}$, donde \mathcal{R} está definida por

$$a\mathcal{R}b \Leftrightarrow (a-b)^2 \in A$$

y el par ordenado (i, j) pertenece al gráfico de S si y solo si $i - j \ge 1$

- (a) Determine el gráfico de $(S \cup S^{-1}) \mathcal{R}$. (2 puntos)
- (b) Determine la matriz asociada a $(\mathcal{R} \circ \mathcal{S}) \overline{\mathcal{R}}$ (3 puntos)
- 2. Sobre Q, el conjunto de los números racionales, se define la relación \mathcal{R} de la siguiente manera:

$$x\mathcal{R}y \iff \left[\exists h \in \mathbb{Z} \text{ tal que } x = y + \frac{h}{5}\right]$$

- (a) Demuestre que \mathcal{R} es una relación de equivalencia. (4 puntos)
- (b) Calcule la clase de equivalencia de $\frac{1}{2}$ y encuentre tres elementos de esta clase. (2 puntos)
- 3. Sean \mathcal{R} y \mathcal{S} dos relaciones definidas sobre un conjunto A, con A no vacío. Si \mathcal{R} es transitiva y se cumple que $a(\mathcal{R} \cup \mathcal{S})b$ y $b\mathcal{R}c$ entonces, demuestre que $a \left[\mathcal{R} \cup (\mathcal{R} \circ \mathcal{S}) \right] c.$

(4 puntos)

4. Considere las dos funciones f y g, definidas sobre sus respectivos dominios de

números reales, con criterios
$$g(x) = \frac{x}{x+2}$$
, $f(x) = x-1$.
Verifique que $(g^{-1} \circ f \circ g)(x) = \frac{-4}{x+4}$. (3 puntos)

- 5. Considere la función $f: \mathbb{R} \longrightarrow \mathbb{R}$ con criterio $f(x) = 8x^3 5$, además, sea $g: \mathbb{R} \longrightarrow \mathbb{R}$ otra función que cumple $(f \circ g)(x) = 35 8x$. Determine el criterio g(x). (3 puntos)
- 6. Pruebe que la función $f: \mathbb{R} \{-2\} \longrightarrow \mathbb{R} \{\frac{2}{3}\}$ definida por $f(x) = \frac{2x}{3x+6}$ es una función biyectiva. (5 puntos)
- 7. Sean $A = \{8\}$ y $B = \{1, 3, 9\}$. Considere la función $g: A \times B \to \{3, 4\}$ definida por:

$$g((a,b)) = \begin{cases} 3 & \text{si } a < b \\ 4 & \text{si } a > b \end{cases}$$

Además, considere la función $f: P(B) \to \{0, 1, 2, 3, 4\}$ de manera que f(X) es igual a la cardinalidad de X.

- (a) Determine si f es inyectiva y si es sobreyectiva. (2 puntos)
- (b) Determine si g es inyectiva y si es sobreyectiva. (2 puntos)
- (c) Calcule $f^{-1}(\{2\})$. (1 punto)
- (d) Calcule $g^{-1}(g(\{(8,1)\}))$. (1 punto)
- 8. Sean A, B y C conjuntos no vacíos, suponga que f es una función de A en B y además, que g es una función de B en C.

Demuestre que si $g \circ f$ es inyectiva y f es sobreyectiva, entonces g es inyectiva. (4 puntos)