

目录/Contents 第十二章 回归模型

第一节 牙膏的销售量

第二节 软件开发人员的薪金

数学建模的基本方法

机理分析

测试分析

由于客观事物内部规律的复杂及人们认识程度的限制,无法分析实际对象内在 的因果关系,建立合乎机理规律的数学模型。

通过对数据的统计分析,找出与数据拟合最好的模型

回归模型是用统计分析方法建立的最常用的一类模型

不涉及回归分析的数学原理和方法

通过实例讨论如何选择不同类型的模型

对软件得到的结果进行分析,对模型进行改进

建立牙膏销售量与价格、广告投入之间的模型 预测在不同价格和广告费用下的牙膏销售量 收集了30个销售周期本公司牙膏销售量、价格、广告费 用,及同期其它厂家同类牙膏的平均售价

销售 周期	本公司价 格(元)	其它厂家 价格(元)	广告费用 (百万元)	价格 差 (元)	销售量 (百万支)
1	3.85	3.80	5.50	-0.05	7.38
2	3.75	4.00	6.75	0.25	8.51
29	3.80	3.85	5.80	0.05	7.93
30	3.70	4.25	6.80	0.55	9.26

- ▶ y 本公司牙膏销售量(被解释变量)
- $> x_1$ 差价,解释变量,回归变量
- ▶ x₂ 广告费,解释变量,回归变量
- ▶ ε 均值为0的正太分布变量

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

牙膏的销售量

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

Matlab的统计工具箱, 回归函数 regress

[b,bint,r,rint,stats] = regress(y,x,alpha)

- ▶ y: n维数据
- ➤ x: nx4 数据矩阵
- ▶ alpha: 置信水平,通常设为0.05
- ▶ b, bint:参数的估计值及其区间
- ▶ r,rint: 残差的估计值及其区间

结果分析

参数	参数估计值	置信区间			
β_0	17.3244	[5.7282 28.9206]			
β_{1}	1.3070	[0.6829 1.9311] [-7.4989 0.1077]			
β_2	-3.6956				
β_3	0.3486	[0.0379 0.6594]			
	R ² =0.9054 F=82.940	9 <i>p</i> =0.0000			

- ✓ y 的 90.54% 可由模型确定
- ✓ p 远小于 α=0.05
- ✓ β₂ 的置信区间包含零点(右端点距零点很近)
- $\checkmark F$ 远超过 F 检验 的临界值

销售量预测
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2$$

价格差 x_i =其它厂家价格 x_i -本公司价格 x_i

调整 x_4 [控制 x_1] 通过 x_1, x_2 预测y

控制价格差 x_1 =0.2元,投入广告费 x_2 =650万元

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2 = 8.2933$$
 (百万支)

销售量预测区间为 [7.8230, 8.7636] (置信度95%)

上限用作库存管理的目标值 下限用来把握公司的现金流

若估计 x_3 =3.9,设定 x_4 =3.7,则可以95%的把握知道销售 额在 7.8320×3.7≈ 29(百万元)以上

模型改进

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

x_1 和 x_2 对y的影响独立

参数	参数估计值	置信区间			
β_0	17.3244	[5.7282 28.9206]			
$\beta_{\scriptscriptstyle 1}$	1.3070	[0.6829 1.9311]			
β_{2}	-3.6956	[-7.4989 0.1077]			
β_3	0.3486	[0.0379 0.6594]			
	R ² =0.9054 F=82.940	9 p=0.0000			

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 x_1 x_2 + \varepsilon$$
 x_1 和 x_2 对 y 的影响有交互作用

参数	参数估计值	置信区间
β_0	29.1133	[13.7013 44.5252]
$\beta_{\scriptscriptstyle 1}$	11.1342	[1.9778 20.2906]
β_2	-7.6080	[-12.6932 -2.5228]
β ₃	0.6712	[0.2538 1.0887]
β_4	-1.4777	[-2.8518 -0.1037]
	R ² =0.9209 F=72.7771	p=0.0000

目录/Contents 第十二章 回归模型

第一节 牙膏的销售量

第二节 软件开发人员的薪金

建立模型研究薪金与资历、管理责任、教育程度的关系

分析人事策略的合理性,作为新聘用人员薪金的参考

46名软件开发人员的档案资料

编号	薪金	资历	管 理	教育	编号	薪金	资历	管 理	教育
01	13876	1	1	1	42	27837	16	1	2
02	11608	1	0	3	43	18838	16	0	2
03	18701	1	1	3	44	17483	16	0	1
04	11283	1	0	2	45	19207	17	0	2
					46	19346	20	0	1

资历~从事专业工作的年数;

管理~1=管理人员,0=非管理人员;

教育~1=中学,2=大学,3=更高程度

分析与假设

y 薪金, x_1 资历 (年)

 $x_2=1$ 管理人员, $x_2=0$ 非管理人员

1=中学 2=大学

3=更高

$$x_3 = \begin{cases} 1, & \text{中学} \\ 0, & \text{其它} \end{cases}$$
 中学: $x_3 = 1, x_4 = 0$; 大学: $x_3 = 0, x_4 = 1$;

为什么不用

x₃=0,1,2 表示?

资历每加一年薪金的增长是常数:

管理、教育、资历之间无交互作用

线性回归模型
$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + \varepsilon$$

 $a_0, a_1, ..., a_4$ 是待估计的回归系数, ε 是随机误差

模型求解
$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + \varepsilon$$

参数	参数估计值	置信区间
a ₀	11032	[10258 11807]
a ₁	546	[484 608]
a ₂	6883	[6248 7517]
a ₃	-2994	[-3826 -2162]
a ₄	148	[-636 931]
	R ² =0.957 F=22	6 p=0.000

R²,F,p→ 模型整体上可用

解释

资历增加1年薪金增长546

管理人员薪金多6883

中学程度薪金比更高的少2994

大学程度薪金比更高的多148

 a_a 置信区间包含零点,解释不可靠!

结果分析 残差分析方法

$$\hat{y} = \hat{a}_0 + \hat{a}_1 x_1 + \hat{a}_2 x_2 + \hat{a}_3 x_3 + \hat{a}_4 x_4$$

残差 $e = y - \hat{y}$

e 与资历 x_1 的关系

残差大概分成3个水平, 6种管理—教育组合混在 一起,未正确反映。

管理与教育的组合

组合	1	2	3	4	5	6
管理	0	1	0	1	0	1
教育	1	1	2	2	3	3

e与管理—教育组合的关系

残差全为正,或全为负,管理——教育组合处理不当

应在模型中增加管理 x_2 与教育 x_3 , x_4 的交互项

进一步的模型 增加管理 x_2 与教育 x_3 , x_4 的交互项

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_2 x_3 + a_6 x_2 x_4 + \varepsilon$$

参数	参数估计值	置信区间
a_0	11204	[11044 11363]
a_1	497	[486 508]
a_2	7048	[6841 7255]
a_3	-1727	[-1939 -1514]
$a_{\scriptscriptstyle A}$	-348	[-545 -152]
a_5	-3071	[-3372 -2769]
a_6	1836	[1571 2101]
	R^2 =0.999 F =554	p=0.000

R²,F有改进,所有回归系数置信区 间都不含零点,模型完全可用

消除了不正常现象

异常数据(33号)应去掉

去掉异常数据后的结果

参数	参数估计值	置信区间							
a_0	11200	[11139 11261]							
a_1	498	[494 503]							
a_2	7041	[6962 7120]							
a_3	-1737	[-1818 -1656]							
$a_{\scriptscriptstyle \Delta}$	-356	[-431 -281]							
a_5	-3056	[-3171 –2942]							
a_6	1997	[1894 2100]							
-	R^2 = 0.9998 F =36701 p =0.0000								

 R^2 : $0.957 \rightarrow 0.999 \rightarrow 0.9998$

 $F: 226 \rightarrow 554 \rightarrow 36701$

置信区间长度更短

残差图十分正常

最终模型的结果可以应用

模型应用 $\hat{y} = \hat{a}_0 + \hat{a}_1 x_1 + \hat{a}_2 x_2 + \hat{a}_3 x_3 + \hat{a}_4 x_4 + \hat{a}_5 x_2 x_3 + \hat{a}_6 x_2 x_4$

制订6种管理—教育组合人员的"基础"薪金(资历为0)

$$x_1=0$$
; $x_2=1$ ~ 管理, $x_2=0$ ~ 非管理

组合	管理	教育	系数	"基础"薪金
1	0	1	$a_0 + a_3$	9463
2	1	1	$a_0 + a_2 + a_3 + a_5$	13448
3	0	2	$a_0 + a_4$	10844
4	1	2	$a_0 + a_2 + a_4 + a_6$	19882
5	0	3	a_0	11200
6	1	3	$a_0 + a_2$	18241

大学程度管理人员比更高程度管理人员的薪金高 大学程度非管理人员比更高程度非管理人员的薪金略低

硅酸盐(Si_3N_4)制陶材料是一种强度高、耐磨、抗氧化和耐高温的材料,它广泛应用于高温结构的材料中,如切割工具、齿轮、内燃机部件及航空、航天飞行器的有关部件等. 影响这种材料的强度的因素有:

- A. 加热方案, A1=两步, A2=一步, 其中``两步"包括``一步"上的预烧结阶段;
- B. 四种烧结添加剂CaO, Y₂O₃, MgO和Al₂O₃的总量, B1=14%摩尔, B2=16% 摩尔, B3=18%摩尔;
- C. CaO的含量, C1=0.0%摩尔, C2=1.0%摩尔, C3=2.0%摩尔;
- D. Y₂O₃的%摩尔与MgO的%摩尔的比率, D1=1:1, D2=1:2, D3=1:6;
- E. Y,O,的%摩尔与AI,O,的%摩尔的比率, E1=2:1, E2=1:1, E3=1:4;
- F. 烧结温度, F1=1800°C, F2=1850°C, F3=1900°C;
- G. 烧结时间, G1=1h, G2=2h, G3=3h.

为了寻找使得该种材料的强度达到最高的工艺条件, 特此安排了如下试验方案, 测量数据见表1.

因素栏中数字 i 表示因素在试验中处于第 i 水平.

- ✓ 根据该表的测量数据, 试建立合理的数学模型, 并对试验结果进行分析;
- ✓ 寻找使得强度最大的最优工艺条件:
- ✓ 对你所建立的模型进行误差分析并做出评价:
- ✓ 你能否提出一种更合理的试验设计计划及试验结果的分析方法?
- ✓ 就你的研究对有关部门试写一份申报科技进步奖的报告.

				因素								
试验号	Α	В	С	D	Ε	F	G			强度		
1	1	2	2	1	3	1	3	996.8	783.6	796.9		
2	1	2	1	2	2	3	1	843.8	816.2	714.3	824.4	
3	1	2	3	3	1	2	2	647.1	667.9	534.3	617.7	
4	1	3	2	1	2	3	2	616.3	552.3	552.6	596.0	
5	1	3	1	2	1	2	3	517.8	526.1	498.1	499,5	
6	1	3	3	3	3	1	1	1002.0	1097.0	882.9	940.1	
7	1	1	2	2	3	2	1	806.5	933.5	964.9	1046.0	
8	1	1	1	3	2	1	2	801.5	803.2	846.2	756.4	
9	1	1	3	1	1	3	3	739.2	863.3	797.0	929.6	
10	2	2	2	3	1	3	1	615.0	627.5	583.9	597.1	563.9
11	2	2	1	1	3	2	2	795.9	854.0	937.0	999.2	724.8
12	2	2	3	2	2	1	3	850.9	921.8	990.6	943.5	840.9
13	2	3	2	2	1	1	2	513.0	665.9	718.9	646.4	
14	2	3	1	3	3	3	3	831.3	981.4	912.5	950.7	987.3
15	2	3	3	1	2	2	1	806.1	908.1	627.6	855.0	
16	2	1	2	3	2	2	3	727.3	643.9	584.0	643.4	602.1
17	2	1	1	3	2	2	3	836.8	716.3	862.9	796.2	
18	2	1	3	1	1	1	1	1001.0	937.6	955.3	995.8	1009.0

