

Sentiment Analysis

감정사전 & 감정점수 만들기

김형준 Analytic Director / (주) 퀀트랩 / kim@mindscale.kr

퀀트랩 소개

퀀트랩 소개

- 2011년 설립
- 데이터 분석, 직무역량평가, 전문성 개발 전문 컨설팅 기업

members

유재명

서울대학교 산업공학과 서울대학교 인지과학 박사(수료)

황창주

서울대학교 심리학과 서울대학교 심리학 박사(수료)

김형준

서울대학교 인류학과 / 심리학과 서울대학교 인지과학 석사

clients

- LG생활건강
- LG U+
- NC소프트
- SK플래닛
- 교통안전공단
- 삼성전자
- 이지웰페어
- 웅진씽크빅
- 중소기업진흥공단
- 한화
- 현대자동차

4

워크숍 관련 온라인 사이트

http://course.mindscale.kr/course/text-analysis

Facebook 아이디에 연결되어 있습니다 연결 해제

코스

현재 수강 중인 코스입니다.

제목

텍스트에서 여론과 감정을 발견하기: R을 이용한 텍스트 데이터 분석 (05/30)

텍스트에서 여론과 감정을 발견하기: R을 이용한 텍스트 데이터 분석

토픽 분석

R을 이용한 웹 크롤링

오늘의 목표

- 감정 사전 만들기
- 감정 점수 만들기
- 상관관계 이해하기
- 회귀분석 이해하기
- 모형평가 이해하기

왜 감정분석을 하는가?

설문지의 단점

- 1) 조사 비용 발생
- 2) 미리 정해진 문항만 측정 가능
- 3) 사회적 바람직성 등 편향 발생

감정분석

텍스트에서 감정 단어를 추출하여 점수화

- 1) 기계 학습 (Machine Learning)
- 2) 단어 사전 기반

사전 기반 분석

장점

- 사용하기 간편

단점

- 주제에 따라 사전이 달라 짐
- 동음이의어 처리 힘듦 e.g) bank

기계학습 기반 분석

장점

- 높은 정확도

단점

- Over-fitting 해결
- 많은 데이터 필요

예) 나이브 베이즈 / 최대 엔트로피 / 서포트지지벡터머신 /

랜덤 포레스트 / 토픽 모델

감정 분석 예시

감정 분석 예시

사전 지식

예측이란 무엇?

자기자신(Y): Y가 변화하는 추세

다른변수(X,Y): X가 Y를 예측

- 키로 몸무게를 예측!

- 키로 성적을 예측?

예측이 잘 되려면 서로 상관(관련성)이 높아야 함

-> 감정단어로 영화 평점을 예측

회귀분석(선형(직선) 모형)

예시

- 키가 1cm 증가할 때마다 몸무게가 1kg 증가
- 월 소득이 100만원 증가할 때마다 몸무게가 1kg 감소
- 부정단어가 1개 증가할 때 마다 평점 .1점 감점
- 긍정단어가 1개 증가할 때 마다 평점 .1점 증가

상관관계

[1] 1

[1] 0.4885042

상관관계

x가 증가(혹은 감소)할때 y가 선형적으로 증가(혹은 감소)하는 정도

scale

키가 만약 cm라면, 키가 1cm 증가하면 몸무게는 1kg증가 키가 만약 mm라면, 키가 1mm 증가하면 몸무게는 0.1kg 증가

-> 표준화해야 한다

둘 중 무엇이 상관이 더 클까요?

상관관계 및 회귀분석

ESTIMATE STD. ERROR T VALUE PR(>|T|)

(Intercept)	-8.29	11.74	-0.71	0.49
heights	0.49	0.07	7.56	0.00

cor(weights, heights)

[1] 0.8194181

상관관계 및 회귀분석

ESTIMATE STD. ERROR T VALUE PR(>|T|)

(Intercept)	69.17	1.17	58.93	0.00
heights	0.05	0.01	7.56	0.00

cor(weights, heights)

[1] 0.8194181

상관관계 및 회귀분석

X가 2개라면?

[1] 0.8194181

[1] 0.09818667

다중회귀분석

	ESTIMATE	STD. ERROR	T VALUE	PR(> T)
(Intercept)	-27.49	12.81	-2.15	0.04
iq	0.15	0.06	2.68	0.01
heights	0.52	0.06	8.72	0.00

예측력

MSE(Mean of Square Error)

$$MSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

정확도(Accracy)

		실제 라벨	
		긍정 문서	부정 문서
모형이 예측한 라벨	긍정 문서	True	False
		Positive	Positive
	부정 문서	False	True
		Negatives	Negatives

정확도 = (TP + TN) / (TP + FP + TN + FN)

Traninig Vs Test

Over-fitting

Over-fitting(과적합)

How to avoid Over-fitting

- Penality of Model Complexity (MSE 보정)
- Regulization (Lasso, Ridge, Elastic Net)
- Bayesian
- Drop Out, Bagging, Feature Bagging

Lasso Vs Ridge

Lasso Vs Ridge

감정분석

Data

25,000 IMDB movie reviews 중에서 1,000개만

Training Vs Test = 7 Vs 3

Traing Set 과 Test Set 분할

```
fileName <- "data/IMDBmovie/labeledTrainData.tsv"
data <- read.csv(fileName, header=T, sep="\t", quote="")
nrow(data)</pre>
```

```
## [1] 25000
```

```
data <- data[1:1000, ]
```

Traing Set 과 Test Set 분할

```
totalNum <- 1:nrow(data)
set.seed(12345)
shuffledNum <- sample(totalNum, nrow(data), replace = F)
trainingNum <- shuffledNum[1:700]
testNum <- shuffledNum[701:1000]
data.train <- data[trainingNum, ]
data.test <- data[testNum, ]</pre>
```

Term-DocumentMatrix

```
library(tm)
```

주요 단어 10000개 사용

```
library(slam)
word.count = as.array(rollup(tdm.train, 2))
word.order = order(word.count, decreasing = T)
freq.word = word.order[1 : 10000]
tdm.train <- tdm.train[freq.word, ]</pre>
```

LASSO Regression

LASSO Regression

plot(cv.lasso)

LASSO Regression

```
plot(cv.lasso$glmnet.fit, "lambda", label=TRUE)
```


Ridge Regression

RIDGE Regression

plot(cv.ridge)

RIDGE Regression

```
plot(cv.ridge$glmnet.fit, "lambda", label=TRUE)
```


ElasticNet Regression

ElasticNet Regression

plot(cv.elastic)

ElasticNet Regression

```
plot(cv.elastic$glmnet.fit, "lambda", label=TRUE)
```



```
coef.lasso <- coef(cv.lasso, s = "lambda.min")[,1]
coef.ridge <- coef(cv.ridge, s = "lambda.min")[,1]
coef.elastic <- coef(cv.elastic, s = "lambda.min")[,1]</pre>
```

```
pos.lasso <- sort(coef.lasso[coef.lasso > 0])
neq.lasso <- sort(coef.lasso[coef.lasso < 0])</pre>
pos.lasso[1:5]
##
    hilarious
                   drama
                         life world
                                                       bit
## 0.004800054 0.008611723 0.038371849 0.044125055 0.051063664
neg.lasso[1:5]
##
                 waste save wouldnt whatsoever
       worst
## -1.0178384 -0.8242384 -0.6190533 -0.5708966 -0.5378581
```

```
pos.ridge <- sort(coef.ridge[coef.ridge > 0])
neq.ridge <- sort(coef.ridge[coef.ridge < 0])</pre>
pos.ridge[1:5]
##
                               scripted frequently obsession
         hints
                    fathers
## 2.801103e-06 1.891073e-05 4.397610e-05 4.478976e-05 5.434588e-05
neg.ridge[1:5]
##
              binks
                              coughed
                                            betterhard bottomofthebarrel
##
         -0.1925666
                           -0.1925665
                                            -0.1845028
                                                             -0.1845024
##
        capturelike
##
         -0.1835726
```

```
pos.elastic <- sort(coef.elastic[coef.elastic > 0])
neq.elastic <- sort(coef.elastic[coef.elastic < 0])</pre>
pos.elastic[1:5]
##
    brilliant
                     dark
                             american naive
                                                      humour
## 0.002717850 0.005426420 0.008651522 0.008926515 0.010264251
neq.elastic[1:5]
                  waste wouldnt whatsoever
##
       worst
                                                   save
## -0.8711227 -0.7880778 -0.6300778 -0.6222940 -0.6193373
```

감정 단어 점수화

library(tm.plugin.sentiment)

```
score.lasso <- polarity(tdm.train, names(pos.lasso), names(neg.lasso))
score.ridge <- polarity(tdm.train, names(pos.elastic), names(neg.elastic))
score.elastic <- polarity(tdm.train, names(pos.elastic), names(neg.elastic))</pre>
```

CUT-POINT

```
findCutpoint(data.train$sentiment, score.lasso)
## [1] 0.2
findCutpoint(data.train$sentiment, score.ridge)
## [1] 0.05882353
findCutpoint(data.train$sentiment, score.elastic)
## [1] 0.05882353
cut.lasso <- findCutpoint(data.train$sentiment, score.lasso)</pre>
cut.ridge <- findCutpoint(data.train$sentiment, score.ridge)</pre>
cut.elastic <- findCutpoint(data.train$sentiment, score.elastic)</pre>
```

```
score.lasso <- polarity(tdm.test, names(pos.lasso), names(neg.lasso))
score.ridge <- polarity(tdm.test, names(pos.elastic), names(neg.elastic))
score.elastic <- polarity(tdm.test, names(pos.elastic), names(neg.elastic))</pre>
```

```
library(caret)
```

```
score.lasso.b <- rep(0, length(score.lasso))
score.lasso.b[score.lasso >= cut.lasso] <- 1
confusionMatrix(score.lasso.b, data.test$sentiment)</pre>
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 0 1
##
      0 131 59
##
           1 36 74
##
##
                 Accuracy: 0.6833
##
                   95% CI: (0.6274, 0.7356)
##
      No Information Rate: 0.5567
##
      P-Value [Acc > NIR] : 4.879e-06
##
                                                                                49/55
```

```
score.ridge.b <- rep(0, length(score.ridge))
score.ridge.b[score.ridge >= cut.ridge] <- 1
confusionMatrix(score.ridge.b, data.test$sentiment)</pre>
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 0 1
##
       0 130 45
##
     1 37 88
##
##
                 Accuracy: 0.7267
##
                   95% CI: (0.6725, 0.7763)
##
      No Information Rate: 0.5567
##
      P-Value [Acc > NIR] : 9.443e-10
##
##
                   Kappa : 0.4428
##
   Mcnemar's Test P-Value: 0.4395
                                                                                50/55
##
```

```
score.elastic.b <- rep(0, length(score.elastic))
score.elastic.b[score.elastic >= cut.elastic] <- 1
confusionMatrix(score.elastic.b, data.test$sentiment)</pre>
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 0 1
##
        0 130 45
##
           1 37 88
##
##
                 Accuracy: 0.7267
##
                   95% CI: (0.6725, 0.7763)
##
      No Information Rate: 0.5567
##
      P-Value [Acc > NIR] : 9.443e-10
##
##
                    Kappa : 0.4428
##
   Mcnemar's Test P-Value: 0.4395
                                                                                  51/55
##
```

glmnet 활용

```
score.lasso <- predict(cv.lasso, as.matrix(t(tdm.train)), s = "lambda.min")</pre>
score.ridge <- predict(cv.ridge, as.matrix(t(tdm.train)), s = "lambda.min")</pre>
score.elastic <- predict(cv.elastic, as.matrix(t(tdm.train)), s = "lambda.min")</pre>
findCutpoint(data.train$sentiment, score.lasso)
## [1] 0.1043392
findCutpoint(data.train$sentiment, score.ridge)
## [1] 0.03085342
findCutpoint(data.train$sentiment, score.elastic)
## [1] 0.1470654
```

glmnet 활용

```
score.lasso <- predict(cv.lasso, as.matrix(t(tdm.test)), s = "lambda.min")
score.ridge <- predict(cv.ridge, as.matrix(t(tdm.test)), s = "lambda.min")
score.elastic <- predict(cv.elastic, as.matrix(t(tdm.test)), s = "lambda.min")</pre>
```

```
score.lasso.b <- rep(0, length(score.lasso))
score.lasso.b[score.lasso >= cut.lasso] <- 1
confusionMatrix(score.lasso.b, data.test$sentiment)</pre>
```

```
## Confusion Matrix and Statistics

##

## Reference

## Prediction 0 1

## 0 3 3

## 1 164 130

##

##

Accuracy: 0.4433
```

```
score.ridge.b <- rep(0, length(score.ridge))
score.ridge.b[score.ridge >= cut.ridge] <- 1
confusionMatrix(score.ridge.b, data.test$sentiment)</pre>
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 0 1
##
       0 90 74
##
     1 77 59
##
##
                 Accuracy: 0.4967
##
                   95% CI: (0.4387, 0.5547)
##
      No Information Rate: 0.5567
##
      P-Value [Acc > NIR] : 0.9840
##
##
                    Kappa : -0.0174
##
   Mcnemar's Test P-Value: 0.8707
                                                                                 54/55
##
```

```
score.elastic.b <- rep(0, length(score.elastic))
score.elastic.b[score.elastic >= cut.elastic] <- 1
confusionMatrix(score.elastic.b, data.test$sentiment)</pre>
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 0 1
##
        0 120 100
##
        1 47 33
##
##
                 Accuracy: 0.51
##
                   95% CI: (0.4519, 0.5679)
##
      No Information Rate: 0.5567
##
      P-Value [Acc > NIR] : 0.9537
##
##
                    Kappa : -0.0347
##
   Mcnemar's Test P-Value: 1.796e-05
                                                                                 55/55
##
```