Applicazioni lineari I

Definizione di applicazione lineare

Siano V e W due spazi vettoriali sullo stesso campo K.

Una applicazione $f: V \to W$ si dice applicazione lineare o omomorfismo se

Osservazione

Le operazioni al I membro sono effettuate in V, mentre quelle al II membro sono effettuate in W

Esempi I

Siano V e W spazi vettoriali su K.

• La funzione $\mathbf{0}: V \to W$ tale che $\mathbf{0}(v) = \mathbf{0}$, $\forall v \in V$ è una funzione lineare.

$$\mathbf{0}(v_1 + v_2) \stackrel{\text{per def.}}{=} \mathbf{0}_W = \mathbf{0}_W + \mathbf{0}_W = \mathbf{0}(v_1) + \mathbf{0}(v_2)$$

$$\mathbf{0}(\alpha v) \stackrel{\text{per def.}}{=} \mathbf{0}_W = \alpha \mathbf{0}_W = \alpha \mathbf{0}(v)$$

Viene detta funzione nulla.

• La funzione $i: V \to V$ tale che $i(v) = v, \forall v \in V$ è una funzione lineare.

per def.

$$i(v_1 + v_2) \stackrel{\text{per def.}}{=} v_1 + v_2 = i(v_1) + i(v_2)$$

$$i(\alpha v) \stackrel{\text{per def.}}{=} \alpha v = \alpha i(v)$$

Viene detta funzione identità; viene indicata anche con i_V oppure con 1.

Esempi II

• La funzione $f: \mathbb{R}^2 \to \mathbb{R}^3$ definita da f(x,y) = (x,y,x+2y) è una funzione lineare.

Si può verificare nel seguente modo.

Posto $v_1 = (x_1, y_1)$, $v_2 = (x_2, y_2)$ e $\alpha \in \mathbb{R}$ risulta:

$$f((x_1, y_1) + (x_2, y_2)) = f((x_1 + x_2, y_1 + y_2)) =$$
per def.
$$= (x_1 + x_2, y_1 + y_2, x_1 + x_2 + 2(y_1 + y_2)) =$$

$$= (x_1 + x_2, y_1 + y_2, (x_1 + 2y_1) + (x_2 + 2y_2)) =$$

$$= (x_1, y_1, x_1 + 2y_1) + (x_2, y_2, x_2 + 2y_2) =$$

$$= f((x_1, y_1)) + f((x_2, y_2))$$

$$f(\alpha(x_1, y_1)) = f((\alpha x_1, \alpha y_1)) =$$
per def.
$$= (\alpha x_1, \alpha y_1, \alpha x_1 + 2(\alpha y_1)) =$$

$$= \alpha(x_1, y_1, x_1 + 2y_1) = \alpha f((x_1, y_1))$$

Esempi III

• $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, con $0 < m \le n$. La funzione $f : \mathbb{R}^n \to \mathbb{R}^m$ tale che $f(x_1, ..., x_m, ..., x_n) = (x_1, ..., x_m)$ è lineare. Infatti date due n-uple $(x_1, ..., x_n)$, $(y_1, ..., y_n)$ e $\alpha \in \mathbb{R}$, si ha:

$$f((x_{1},...x_{n}) + (y_{1},...,y_{n})) = f((x_{1} + y_{1},...,x_{n} + y_{n})) =$$
per def.
$$(x_{1} + y_{1},....,x_{m} + y_{m}) = (x_{1},....,x_{m}) + (y_{1},...,y_{m}) =$$

$$= f(x_{1},....,x_{n}) + f(y_{1},...,y_{n})$$

$$f(\alpha(x_{1},...,x_{n})) = f((\alpha x_{1},...,\alpha x_{n})) =$$
per def.
$$(\alpha x_{1},...,\alpha x_{m}) =$$

$$= \alpha(x_{1},...,x_{m}) = \alpha f((x_{1},....,x_{n}))$$

Tale funzione si dice proiezione.

Per esempio, se n=2, m=1, l'applicazione che associa ad ogni punto del piano la sua prima coordinata è la **proiezione** sull'asse x.

Se n=3 e m=2, l'applicazione che associa ad ogni punto dello spazio (terna ordinata di reali) le sue prime due coordinate è la **proiezione** sul piano coordinato xy, parallelamente all'asse z.

Esempi IV

• Sia $A \in \mathcal{M}_{m,n}(\mathbb{R})$. Si consideri la funzione $\mathcal{L}_A : \mathbb{R}^n \to \mathbb{R}^m$ tale che $\mathcal{L}_A(x) = Ax$. Si osservi che $x \in \mathbb{R}^n$ e $Ax \in \mathbb{R}^m$. La funzione \mathcal{L}_A è lineare. Infatti, per ogni $x, y \in \mathbb{R}^n$ e $\alpha \in \mathbb{R}$, si ha:

per def.
$$\mathcal{L}_{A}(x+y) \stackrel{\text{per def.}}{=} A(x+y) = Ax + Ay = \mathcal{L}_{A}(x) + \mathcal{L}_{A}(y)$$
per def.
$$\mathcal{L}_{A}(\alpha x) \stackrel{\text{per def.}}{=} A(\alpha x) = \alpha Ax = \alpha \mathcal{L}_{A}(x)$$

Dunque per ogni matrice $A \in \mathcal{M}_{m,n}(\mathbb{R})$ si può costruire una applicazione lineare.

Esempio

Sia
$$A = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$
.

L'applicazione lineare associata ad A è data da

Teorema 1 - Caratterizzazione di una applicazione lineare

Siano V e W spazi vettoriali su K. Allora

$$f:V \to W$$
 è lineare $\Leftrightarrow f(\alpha_1v_1+\alpha_2v_2)=\alpha_1f(v_1)+\alpha_2f(v_2), \ \forall \ \alpha_1,\alpha_2 \in K, v_1,v_2 \in V$

Dimostrazione.

 \Rightarrow Se f è lineare, usando le proprietà si ha:

$$f(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = f(\alpha_1 \mathbf{v}_1) + f(\alpha_2 \mathbf{v}_2) = \alpha_1 f(\mathbf{v}_1) + \alpha_2 f(\mathbf{v}_2)$$

 \Leftarrow Assumiamo che $f(\alpha_1v_1 + \alpha_2v_2) = \alpha_1f(v_1) + \alpha_2f(v_2)$, $\forall \alpha_1, \alpha_2 \in K, v_1, v_2 \in V$. Allora valgono le seguenti uguaglianze:

$$f(v_1 + v_2) = f(1 \ v_1 + 1 \ v_2) = 1 \ f(v_1) + 1 \ f(v_2) = f(v_1) + f(v_2)$$
 proprietà operazioni in W
 $f(\alpha_1 v_1) = f(\alpha_1 v_1 + 0 \ v_2) = \alpha_1 f(v_1) + 0 f(v_2) = \alpha_1 f(v_1)$

Quindi f è lineare.

Conseguenza. Sia $f: V \to W$. f è una applicazione lineare se e solo se

$$f(\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n) = \alpha_1 f(v_1) + \alpha_2 f(v_2) + ... + \alpha_n f(v_n)$$

 $\forall \alpha_1,...,\alpha_n \in K, v_1,...,v_n \in V.$

Composizione di applicazioni lineari

Composizione di applicazioni lineari

Siano U, V, W spazi vettoriali su K.

Sia $f: U \to V$ lineare, $g: V \to W$ lineare. L'applicazione $g \circ f: U \to W$ è lineare.

Dimostrazione.

Si ricorda che
$$g \circ f : U \to W$$
 e $(g \circ f)(u) = g(f(u))$.

Per ogni $u_1, u_2 \in U$ e $c_1, c_2 \in K$ vale che:

per def.
$$(g \circ f)(c_1u_1 + c_2u_2) \stackrel{\text{per def.}}{=} g(f(c_1u_1 + c_2u_2))$$
linearità di f

$$\stackrel{\text{linearità di } g}{=} g(c_1f(u_1) + c_2f(u_2))$$
linearità di g

$$\stackrel{\text{linearità di } g}{=} c_1g(f(u_1)) + c_2g(f(u_2))$$

$$= c_1(g \circ f)(u_1) + c_2(g \circ f)(u_2)$$

Un esempio

Data $A \in \mathcal{M}_{m,n}(\mathbb{R})$ e $B \in \mathcal{M}_{p,m}(\mathbb{R})$, si consideri $\mathcal{L}_A : \mathbb{R}^n \to \mathbb{R}^m$ tale che $\mathcal{L}_A(x) = Ax$ e $\mathcal{L}_B : \mathbb{R}^m \to \mathbb{R}^p$ tale che $\mathcal{L}_B(y) = By$.

L'applicazione composta $\mathcal{L}_B \circ \mathcal{L}_A : \mathbb{R}^n \to \mathbb{R}^p$ è lineare perchè composizione di applicazioni lineari.

Tale applicazione è data da:

$$(\mathcal{L}_B \circ \mathcal{L}_A)(x) = \mathcal{L}_B(\mathcal{L}_A(x)) =$$

= $\mathcal{L}_B(Ax) = B(Ax) = (BA)x$

Dunque $BA \in \mathcal{M}_{p,n}(\mathbb{R})$ è la matrice che definisce l'applicazione composta.

ATTENZIONE: dato che il prodotto matriciale è non commutativo, l'ordine con cui si moltiplicano le matrici è importante! Anche perché può accadere che il prodotto nell'ordine inverso sia non definito per incompatibilità dimensionale delle matrici: questo corrisponde al fatto che l'applicazione composta in odine inverso $\mathcal{L}_A \circ \mathcal{L}_B$ può essere non definita anche quando $\mathcal{L}_B \circ \mathcal{L}_A$ lo è.

Somma e prodotto per scalare di applicazioni lineari I

Siano V, W spazi vettoriali su K. Si denota l'insieme di tutte le applicazioni lineari da V a W con $\mathsf{Hom}(V, W)$ (gli elementi di questo insieme, quindi, sono funzioni fra spazi vettoriali, non numeri).

Siano $f: V \to W$ e $g: V \to W$ due applicazioni lineari $(f, g \in Hom(V, W))$. E' possibile definire una operazione di **somma** $f + g: V \to W$ ponendo

$$(f+g)(v) = f(v) + g(v) \quad \forall \ v \in V$$

e se $\alpha \in K$, una operazione di **prodotto per uno scalare** $\alpha f: V \to W$ ponendo

$$(\alpha f)(v) = \alpha f(v) \quad \forall \ v \in V$$

Dimostriamo che f+g e αf sono lineari (ossia che si tratta di leggi di composizione interna ed esterna per $\operatorname{Hom}(V,W)$).

Somma e prodotto per scalare di applicazioni lineari II

Infatti per ogni $v_1, v_2 \in V$, $\alpha_1, \alpha_2 \in K$, vale che

$$(f+g)(\alpha_1v_1 + \alpha_2v_2) \stackrel{\text{per def.}}{=} f(\alpha_1v_1 + \alpha_2v_2) + g(\alpha_1v_1 + \alpha_2v_2) =$$

$$f(\alpha_1v_1 + \alpha_2v_2) + g(\alpha_1v_1 + \alpha_2v_2) =$$

$$= \alpha_1f(v_1) + \alpha_2f(v_2) + \alpha_1g(v_1) + \alpha_2g(v_2) =$$

$$= \alpha_1(f(v_1) + g(v_1)) + \alpha_2(f(v_2) + g(v_2)) =$$

$$\text{def. di} +$$

$$= \alpha_1(f+g)(v_1) + \alpha_2(f+g)(v_2)$$

$$\text{per def.}$$

$$= \alpha_1(f+g)(v_1) + \alpha_2(f+g)(v_2)$$

$$\text{per def.}$$

$$= \alpha_1(\alpha_1v_1 + \alpha_2v_2) =$$

$$\text{f lineare}$$

$$= \alpha(\alpha_1f(v_1) + \alpha_2f(v_2)) = \alpha\alpha_1f(v_1) + \alpha\alpha_2f(v_2) =$$

$$\text{def. di} \cdot$$

$$= \alpha_1(\alpha_1f)(v_1) + \alpha_2(\alpha_1f)(v_2)$$

Somma e prodotto per scalare di applicazioni lineari III

Questo prova che la somma di applicazioni lineari è una legge di composizione interna:

$$\mathsf{Hom}(V,W) \times \mathsf{Hom}(V,W) \qquad o \qquad \mathsf{Hom}(V,W) \ (f,g) \qquad o f+g$$

e il prodotto di uno scalare per una applicazione lineare è una legge di composizione esterna:

$$K imes \mathsf{Hom}(V,W) \longrightarrow \mathsf{Hom}(V,W)$$

 $(\alpha,f) \longrightarrow \alpha f$

Hom(V, W) come spazio vettoriale

Hom(V, W) è uno spazio vettoriale su K.

Occorre far vedere che per le due operazioni valgono gli assiomi. Ciò segue dal fatto che le operazioni in V e W godono di tali proprietà.

Somma e prodotto per scalare di applicazioni lineari IV

Facciamo un esempio di come si possono dimostrare gli assiomi, dimostrando il primo.

$$(f + (g + h))(v) = f(v) + (g + h)(v) = f(v) + (g(v) + h(v)) =$$

= $(f(v) + g(v)) + h(v) = (f + g)(v) + h(v) = ((f + g) + h)(v)$

L'elemento neutro rispetto alla somma è la funzione $\mathbf{0}(v)=0$ per ogni $v\in V$. L'opposto di f è la funzione -f definita come (-f)(v)=-f(v) per ogni $v\in V$.

Composizione e operazioni tra applicazioni lineari

Siano U, V, W spazi vettoriali su K.

Sia $f, f' \in \text{Hom}(U, V), g, g' \in \text{Hom}(V, W).$

Valgono le seguenti proprietà:

- $(cg) \circ f = c(g \circ f), c \in K$

Teorema 2 - Proprietà delle funzioni lineari

Sia $f: V \to W$ una applicazione lineare. Allora:

- $\mathbf{0} \ f(\mathbf{0}_V) = \mathbf{0}_W$, ossia al vettore nullo di V corrisponde sempre il vettore nullo di W
- (-v) = -f(v)
- $(v_1 v_2) = f(v_1) f(v_2)$
- Se $v_1, ..., v_n \in V$ sono linearmente dipendenti, allora $f(v_1), ..., f(v_n)$ sono linearmente dipendenti in W
- **9** Se $f(v_1), ..., f(v_n)$ sono linearmente indipendenti in W, allora $v_1, ..., v_n$ sono linearmente indipendenti
- **③** Se $V' \sqsubseteq V$, allora $f(V') \sqsubseteq W$
- Se $W' \sqsubseteq W$, allora $f^{-1}(W') \sqsubseteq V$

Osservazione. Le funzioni lineari conservano la lineare dipendenza di un insieme di vettori, ma non, in generale, la lineare indipendenza.

Dimostrazione.

Dimostrazione.

• $f(\mathbf{0}_V) = \mathbf{0}_W$ $f(v) = f(v + \mathbf{0}_V) = f(v) + f(\mathbf{0}_V)$; dunque $f(\mathbf{0}_V) = \mathbf{0}_W$, perchè è elemento neutro in W rispetto alla somma e l'elemento neutro è unico.

Dimostrazione.

- $f(\mathbf{0}_V) = \mathbf{0}_W$ $f(v) = f(v + \mathbf{0}_V) = f(v) + f(\mathbf{0}_V)$; dunque $f(\mathbf{0}_V) = \mathbf{0}_W$, perchè è elemento neutro in W rispetto alla somma e l'elemento neutro è unico.
- ② f(-v) = -f(v)f(-v) = f((-1)v) = -1f(v) = -f(v)

Dimostrazione.

- $f(\mathbf{0}_V) = \mathbf{0}_W$ $f(v) = f(v + \mathbf{0}_V) = f(v) + f(\mathbf{0}_V)$; dunque $f(\mathbf{0}_V) = \mathbf{0}_W$, perchè è elemento neutro in W rispetto alla somma e l'elemento neutro è unico.
- ② f(-v) = -f(v)f(-v) = f((-1)v) = -1f(v) = -f(v)
- $f(v_1 v_2) = f(v_1) f(v_2)$ $f(v_1 - v_2) = f(v_1 + (-1)v_2) = f(v_1) + (-1)f(v_2) = f(v_1) - f(v_2)$

Dimostrazione.

- $f(\mathbf{0}_V) = \mathbf{0}_W$ $f(v) = f(v + \mathbf{0}_V) = f(v) + f(\mathbf{0}_V)$; dunque $f(\mathbf{0}_V) = \mathbf{0}_W$, perchè è elemento neutro in W rispetto alla somma e l'elemento neutro è unico.
- ② f(-v) = -f(v)f(-v) = f((-1)v) = -1f(v) = -f(v)
- $f(v_1 v_2) = f(v_1) f(v_2)$ $f(v_1 - v_2) = f(v_1 + (-1)v_2) = f(v_1) + (-1)f(v_2) = f(v_1) - f(v_2)$
- **Se** $v_1,...,v_n \in V$ sono linearmente dipendenti, allora $f(v_1),...,f(v_n)$ sono linearmente dipendenti in W.

Se $v_1,...,v_n \in V$ sono linearmente dipendenti, esistono scalari non tutti nulli $a_1,...,a_n$ tali che

$$a_1v_1 + ... + a_nv_n = \mathbf{0}_V$$

Allora dalla 1) segue

$$\mathbf{0}_W = f(\mathbf{0}_V) = f(a_1v_1 + ... + a_nv_n) = a_1f(v_1) + ... + a_nf(v_n)$$

Da cui $f(v_1), ..., f(v_n)$ sono linearmente dipendenti in W.

Dimostrazione.

S Se $f(v_1), ..., f(v_n)$ sono linearmente indipendenti in W, allora $v_1, ..., v_n$ sono linearmente indipendenti in V.

Se per assurdo $v_1, ..., v_n$ sono linearmente dipendenti in V, allora per 4) lo sono in W anche $f(v_1), ..., f(v_n)$. Cio è in evidente contraddizione con l'ipotesi.

Dimostrazione.

S Se $f(v_1), ..., f(v_n)$ sono linearmente indipendenti in W, allora $v_1, ..., v_n$ sono linearmente indipendenti in V.

Se per assurdo $v_1, ..., v_n$ sono linearmente dipendenti in V, allora per 4) lo sono in W anche $f(v_1), ..., f(v_n)$. Cio è in evidente contraddizione con l'ipotesi.

Se $V' \sqsubseteq V$ allora $f(V') \sqsubseteq W$. Sia $V' \sqsubseteq V$.

$$f(V') = \{ w \in W : \exists v' \in V', f(v') = w \} = \{ f(v') : v' \in V' \} \subseteq W$$

Si usa la II caratterizzazione dei sottospazi.

Siano $w_1, w_2 \in f(V')$ e $c \in \mathbb{R}$. Allora $w_1 = f(v_1), v_1 \in V'$, e $w_2 = f(v_2), v_2 \in V'$. Occorre provare che $cw_1 - w_2 \in f(V')$. Infatti

$$cw_1 - w_2 = cf(v_1) - f(v_2) = f(cv_1 - v_2)$$

Poichè $cv_1 - v_2 \in V'$ $(V' \sqsubseteq V)$, allora $f(cv_1 - v_2) = cw_1 - w_2 \in f(V')$. Segue $f(V') \sqsubseteq W$.

Dimostrazione.

Se $W' \sqsubseteq W$ allora $f^{-1}(W') \sqsubseteq V$. Sia $W' \sqsubseteq W$.

$$f^{-1}(W') = \{ \mathbf{v}' \in \mathbf{V} : f(\mathbf{v}') \in W' \} \subseteq \mathbf{V}$$

Si usa la II caratterizzazione dei sottospazi.

Siano $v_1, v_2 \in f^{-1}(W')$ e $c \in \mathbb{R}$. Allora $w_1 = f(v_1), \ w_1 \in W'$, e $w_2 = f(v_2), \ w_2 \in W'$. Poichè W' è un sottospazio di W, $cw_1 - w_2 \in W'$. Per la linearità di f, segue che

$$cw_1 - w_2 = cf(v_1) - f(v_2) = f(cv_1 - v_2)$$

Allora $cv_1 - v_2 \in f^{-1}(W')$ e $f^{-1}(W') \sqsubseteq V$.

Conseguenze

Sia $f: V \to W$ una applicazione lineare. Allora:

- $f(V) \sqsubseteq W$
- \bullet $f^{-1}(0) \sqsubseteq V$

Immagine e nucleo di una applicazione lineare

Sia $f: V \to W$ una applicazione lineare.

Il sottospazio f(V) di W si dice **immagine** di f e si indica con Imm(f).

Il sottospazio $f^{-1}(\mathbf{0}_W)$ di V si dice nucleo di f e si indica con $\ker(f)$.

$$\mathsf{Imm}(f) = \{f(v) : v \in V\} \sqsubseteq W$$

$$\ker(f) = \{v \in V : f(v) = \mathbf{0}_W\} \sqsubseteq V$$

 $\operatorname{Imm}(f)$ è il sottospazio di W di tutti gli elementi di W che provengono tramite f da tutti gli elementi di V.

 $\ker(f)$ è il sottospazio di V di tutti gli elementi di V che tramite f finiscono nello 0_W di W.

Osservazione - Collegamento con matrici

Sia $A \in \mathcal{M}_{m,n}(\mathbb{R})$ e $\mathcal{L}_A : \mathbb{R}^n \to \mathbb{R}^m$ l'applicazione lineare tale che $\mathcal{L}_A(x) = Ax$. Allora si ha che

$$\ker(\mathcal{L}_A) = \{x \in \mathbb{R}^n : Ax = \mathbf{0}\} = \ker(A)$$

Inoltre in questo caso le colonne di A sono generatori di

$$Imm(\mathcal{L}_A) = \{Ax\} = \{A^1x_1 + A^2x_2 + ... + A^nx_n\}$$

La dimensione del sottospazio $Imm(\mathcal{L}_A)$ è minore o uguale a min(m,n) ed è pari al rango della matrice (massimo numero di colonne linearmente indipendenti).

Una funzione è iniettiva se $\forall v', v''$ in V accade che

$$v' \neq v'' \Rightarrow f(v') \neq f(v'')$$
 o equivalentemente se $f(v') = f(v'') \Rightarrow v' = v''$

Teorema 3 - Caratterizzazione delle funzioni iniettive

Sia $f: V \to W$ una applicazione lineare.

Allora

$$f$$
 è iniettiva $\Leftrightarrow \ker(f) = \{\mathbf{0}_V\}$

Dimostrazione.

 \Rightarrow Sia f iniettiva. Sempre si verifica che $\{\mathbf{0}_V\} \subseteq \ker(f)$.

Sia $v \in \ker(f)$. Allora $f(v) = \mathbf{0}_W$. Ma anche $\mathbf{0}_V \in V$ ha come corrispondente lo $\mathbf{0}_W \in W$. Siccome f è iniettiva, allora $v = \mathbf{0}_V$. Dunque non solo $\{\mathbf{0}_V\} \subseteq \ker(f)$, ma anche $\ker(f) \subseteq \{\mathbf{0}_V\}$. Per cui i due insiemi coincidono.

 \Leftarrow Sia $\ker(f) = \{\mathbf{0}_V\}$. Supponiamo che $f(v_1) = f(v_2)$. Allora $f(v_1) - f(v_2) = f(v_1 - v_2) = \mathbf{0}_W \in W$. Pertanto $v_1 - v_2 \in \ker(f)$. Per ipotesi, $\ker(f) = \{\mathbf{0}_V\}$. Dunque $v_1 - v_2 = \mathbf{0}_V \Rightarrow v_1 = v_2$, da cui l'iniettività della f.

Teorema 4

Sia $f: V \to W$ una applicazione lineare iniettiva. Se $v_1, ..., v_n$ sono linearmente indipendenti in V allora $f(v_1), ..., f(v_n)$ lo sono in W.

Dimostrazione.

Data la combinazione lineare

$$a_1 f(v_1) + ... + a_n f(v_n) = \mathbf{0}_W$$

con $a_i \in K$, i = 1, ..., n, per la linearità di f , si ha che

$$\mathbf{0}_W = a_1 f(v_1) + ... + a_n f(v_n) = f(a_1 v_1 + ... + a_n v_n)$$

Dunque $a_1v_1 + ... + a_nv_n \in \ker(f)$. Per l'iniettività di f, $\ker(f) = \{\mathbf{0}_V\}$, e dunque $a_1v_1 + ... + a_nv_n = \mathbf{0}_V$. Per la lineare indipendenza di $v_1, ..., v_n$ segue $a_1 = ... = a_n = 0$.

Se Imm(f) = W, allora f è suriettiva.

Teorema 5

Sia $f: V \to W$ una applicazione lineare. Se $v_1, ..., v_n$ sono generatori di V allora $f(v_1), ..., f(v_n)$ sono generatori di Imm(f).

Dimostrazione.

Occorre provare che $[f(v_1), ..., f(v_n)] = \text{Imm}(f)$.

E' vero che $[f(v_1),...,f(v_n)] \subseteq \text{Imm}(f)$. Proviamo l'inclusione contraria.

Sia $w \in \text{Imm}(f)$. Allora esiste $v \in V$ tale che f(v) = w. Per l'ipotesi $[v_1, ..., v_n] = V$, si ha che esistono $a_1, ..., a_n \in K$ tale che

$$v = a_1 v_1 + ... + a_n v_n$$

Dalla linearità di f, si ha:

$$w = f(v) = f(a_1v_1 + ... + a_nv_n) = a_1f(v_1) + ... + a_nf(v_n)$$

Dunque $w \in [f(v_1), ..., f(v_n)].$

Segue che $\operatorname{Imm}(f)$ non può avere più generatori di V e quindi ha dimensione minore o uguale a $n = \dim V := \dim \operatorname{Imm}(f) \leq \dim V$.

Teoremi 6-7

Teorema 6

Sia $f: V \to W$ una applicazione lineare iniettiva. Se $v_1, ..., v_n$ sono una base di V allora $f(v_1), ..., f(v_n)$ sono una base di Imm(f).

E' una conseguenza immediata dei Teoremi 5 e 4: se $v_1, ..., v_n$ sono una base di V, essi sono generatori di V e sono linearmente indipendenti; allora $f(v_1), ..., f(v_n)$ sono generatori di Imm(f) (Teorema 5) e, poichè f è iniettiva, essi sono linearmente indipendenti (Teorema 4). Dunque sono una base di Imm(f).

Teorema 7

Sia $f: V \to W$ una applicazione lineare iniettiva e suriettiva. Se $v_1, ..., v_n$ sono una base di V allora $f(v_1), ..., f(v_n)$ sono una base di W.

Segue dal Teorema 6 e dalla suriettività di f.

Teorema 8 - Teorema di rappresentazione

Siano V e W spazi vettoriali su K.

Sia $v_1, ..., v_n$ una base di V e siano $w_1, ..., w_n$ elementi di W.

Allora esiste una e una sola funzione lineare $f: V \to W$ tale che $f(v_i) = w_i$, i = 1, ..., n.

Dimostrazione.

Sia $v \in V$. Allora

$$v = x_1v_1 + ... + x_nv_n$$

con $x_i \in K$ univocamente determinati perchè sono i coefficienti di v rispetto alla base scelta.

Si consideri la funzione $f: V \to W$ definita nel seguente modo:

$$f(v) = x_1w_1 + x_2w_2 + ... + x_nw_n \in W$$

per ogni $v \in V$.

f è una funzione ben definita: ad ogni $v \in V$, f associa uno e un solo elemento di W.

Inoltre essa è tale che $f(v_i) = w_i$, i = 1, ..., n.

Si può far vedere che f è lineare.

Teorema 8 II

Siano $u', u'' \in V$, $u' = a_1v_1 + ... + a_nv_n$ e $u'' = b_1v_1 + ... + b_nv_n$ e siano $\alpha_1, \alpha_2 \in K$. Si ha

$$\alpha_1 u' + \alpha_2 u'' = \alpha_1 (a_1 v_1 + \dots + a_n v_n) + \alpha_2 (b_1 v_1 + \dots + b_n v_n) =$$

$$= (\alpha_1 a_1 + \alpha_2 b_1) v_1 + \dots + (\alpha_1 a_n + \alpha_2 b_n) v_n$$

Segue che

$$f(\alpha_1 u' + \alpha_2 u'') = (\alpha_1 a_1 + \alpha_2 b_1) w_1 + \dots + (\alpha_1 a_n + \alpha_2 b_n) w_n =$$

= $\alpha_1 (a_1 w_1 + \dots + a_n w_n) + \alpha_2 (b_1 w_1 + \dots + b_n w_n) = \alpha_1 f(u') + \alpha_2 f(u'')$

Resta da provare che f è unica.

Assumiamo che esista una ulteriore applicazione lineare $g:V\to W$ tale che $g(v_i)=w_i,\ i=1,...,n.$ Allora dato $v=x_1v_1+...+x_nv_n\in V$, si ha

$$g(v) = g(x_1v_1 + ... + x_nv_n) = x_1g(v_1) + ... + x_ng(v_n) =$$

= $x_1w_1 + ... + x_nw_n = x_1f(v_1) + ... + x_nf(v_n) = f(x_1v_1 + ... + x_nv_n) = f(v)$

Perciò f = g.

Teorema 8 III

Osservazione

Una funzione lineare è univocamente determinata dalla conoscenza di una base del dominio e dei trasformati dei vettori di tale base.

Quindi due funzioni lineari f e g tra due spazi vettoriali V e W sono diverse se data una base $v_1, ..., v_n$ di V, esiste $k \in 1, ..., n$ tale che $f(v_k) \neq g(v_k)$.

Un caso importante l

Sia data una matrice $A \in \mathcal{M}_{mn}(\mathbb{R})$. Si è già visto che ad ogni matrice A è possibile associare una applicazione lineare

$$\mathcal{L}_A: \mathbb{R}^n \to \mathbb{R}^m$$

tale che $\mathcal{L}_A(x) = Ax$.

Questa applicazione lineare è quella per cui, considerata la base canonica in \mathbb{R}^n , essa è individuata da:

$$\mathcal{L}_{A}(e_{1}) = Ae_{1} = A^{1}$$
 $\mathcal{L}_{A}(e_{2}) = Ae_{2} = A^{2}$... $\mathcal{L}_{A}(e_{n}) = Ae_{n} = A^{n}$

Infatti ogni $x \in \mathbb{R}^n$ si esprime come:

$$x = x_1 e_1 + ... + x_n e_n$$

Dunque si ha

$$\mathcal{L}_{A}(x) = x_{1}\mathcal{L}_{A}(e_{1}) + ... + x_{n}\mathcal{L}_{A}(e_{n}) = x_{1}A^{1} + ... + x_{n}A^{n} = Ax$$

Un caso importante II

Viceversa ad ogni applicazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$, fissata la base canonica in \mathbb{R}^n , si può associare una matrice $A \in \mathcal{M}_{mn}(\mathbb{R})$ definita univocamente da $A = [f(e_1),...,f(e_n)]$. Infatti si ha

$$f(x) = f(x_1e_1 + ... + x_ne_n) = x_1f(e_1) + ... + x_nf(e_n) = x_1A^1 + ... + x_nA^n = [A^1, ..., A^n]x = Ax$$

Pertanto esiste una corrispondenza biunivoca tra lo spazio vettoriale delle matrici $\mathcal{M}_{mn}(\mathbb{R})$ e lo spazio vettoriale degli omomorfismi tra \mathbb{R}^n e \mathbb{R}^m : Hom $(\mathbb{R}^n, \mathbb{R}^m)$:

$$\mathcal{M}_{mn}(\mathbb{R}) \to \mathsf{Hom}(\mathbb{R}^n, \mathbb{R}^m)$$

Un caso importante III

Esempio

• Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ tale che

$$\left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) \to \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Cerchiamo la matrice associata. In tal caso la matrice è (basta vedere i corrispondenti della base canonica):

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

Infatti

$$Ax = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Si osservi che il rango di A è la dimensione di Imm(f) e ker(A) = ker(f).

Un caso importante IV

• Sia $f:\mathbb{R}^2 \to \mathbb{R}^3$ tale che $f(e_1)=(1,2,3)^T$ e $f(e_2)=(3,2,1)^T$. Allora

$$f\left(\left(\begin{array}{c}x\\y\end{array}\right)\right) = \left(\begin{array}{c}x+3y\\2x+2y\\3x+y\end{array}\right)$$

Infatti
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{pmatrix}$$
 e dunque $f \begin{pmatrix} x \\ y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$. Si osservi che il rango di A è la dimensione di $Imm(f)$ e $Imm(f)$ e $Imm(f)$ e $Imm(f)$ e $Imm(f)$.

Teorema dimensionale I

Teorema 9

Siano $V \in W$ spazi vettoriali di dimensione finita e sia $f: V \to W$ una applicazione lineare.

Allora

- dim(Imm(f)) è finita

Dimostrazione.

- Segue dal Teorema 5 (la dimensione di dim(Imm(f)) non può superare la dimensione di V.
- Sia dim(V) = n, dim(Imm(f)) = s e dim(ker(f)) = q. Si vuole provare che n = s + q.
 Consideriamo i seguenti due casi.
 - Sia $Imm(f) = \{0\}$, allora s = 0 e ker(f) = V. Dunque n = q.
 - Assumiamo s>0 e sia $w_1,...,w_s$ una base di Imm(f). Esistono $v_1,...,v_s\in V$ tali che $f(v_i)=w_i,\ i=1,...,s$. Per il Teorema 2 (punto 5), $v_1,...,v_s$ sono linearmente indipendenti.
 - Siano ora $u_1,...,u_q$ una base di $\ker(f)$. Basta provare che $v_1,...v_s,u_1,...,u_q$ sono una base di V.

Teorema dimensionale II

A. Dimostriamo prima che $v_1, \ldots v_s, u_1, \ldots, u_q$ sono un insieme di generatori di V. Sia $v \in V$ e, poichè $\{w_1, \ldots, w_s\}$ sono una base di $\mathsf{Imm}(f)$, vale che $f(v) = x_1w_1 + \ldots + x_sw_s$. Dungue

$$f(v) = x_1 w_1 + ... + x_s w_s = x_1 f(v_1) + ... + x_s f(v_s)$$

Ma per la linearità di f, si ha:

$$f(v) = x_1 f(v_1) + \dots + x_s f(v_s) = f(x_1 v_1 + \dots + x_s v_s)$$

$$\Rightarrow f(v) - f(x_1 v_1 + \dots + x_s v_s) = \mathbf{0}$$

$$\Rightarrow f(v - x_1 v_1 - \dots - x_s v_s) = \mathbf{0}$$

Dunque $z = v - x_1v_1 - \dots - x_sv_s \in \ker(f)$. Dunque esistono $y_1, \dots y_q \in K$ tali che $v - x_1v_1 - \dots - x_sv_s = v_1u_1 + \dots + v_qu_q$

Pertanto

$$v = x_1v_1 + ... + x_sv_s + y_1u_1 + ... + y_qu_q \in [v_1, ...v_s, u_1, ..., u_q]$$

Poichè questo accade per ogni $v \in V$, si ha $V = [v_1, ..., v_s, u_1, ..., u_q]$.

Teorema dimensionale III

B. Si prova ora che $v_1, ..., v_s, u_1, ..., u_q$ sono linearmente indipendenti. Data la combinazione lineare

$$x_1v_1 + ... + x_sv_s + y_1u_1 + ... + y_au_a = \mathbf{0}$$

applicando f a entrambe i membri e considerando la linearità di f e $f(u_i) = 0, i = 1, ..., q$, si ottiene

$$x_1 f(v_1) + \dots + x_s f(v_s) + y_1 f(u_1) + \dots + y_q f(u_q) = f(\mathbf{0}) = \mathbf{0}$$

 $x_1 w_1 + \dots + x_s w_s = \mathbf{0}$

Per la lineare indipendenza di w_1,\ldots,w_s , segue $x_1=\ldots=x_s=0$. Pertanto $y_1u_1+\ldots+y_qu_q=0$. Poichè u_1,\ldots,u_q sono linearmente indipendenti, si ha $y_1=\ldots=y_q=0$. Perciò, dalla definizione di lineare indipendenza, $v_1,\ldots,v_s,u_1,\ldots,u_q$ sono anche linearmente indipendenti e dunque costituiscono una base di V.

Conseguenze e esempi l

Teorema 10

Siano V e W spazi vettoriali di dimensione finita e sia $f:V\to W$ una applicazione lineare.

Se dim(V) = dim(W) e $ker(f) = \{0\}$, allora Imm(f) = W.

Infatti si ha

$$\dim(W) = \dim(V) = \dim(\operatorname{Imm}(f)) + \dim(\ker(f)) = \dim(\operatorname{Imm}(f))$$

Poichè $Imm(f) \sqsubseteq W$ che ha la sua stessa dimensione, W e Imm(f) coincidono.

Una applicazione lineare iniettiva tra due spazi vettoriali di uguale dimensione è anche suriettiva; dunque essa è biettiva.

Esempio

Sia
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, tale che $f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x - 2y \\ 2x - 4y \end{pmatrix}$.

Determinare la matrice associata all'applicazione, ker(f) e Imm(f) e stabilire se f è iniettiva o suriettiva.

La matrice associata è $A = \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix}$.

$$\ker(f) = \ker A = \{(x, y) : x - 2y = 0, 2x - 4y = 0\} = \left\{ \begin{pmatrix} 2y \\ y \end{pmatrix} \right\} = \left[\begin{pmatrix} 2 \\ 1 \end{pmatrix} \right].$$

Dunque il vettore $\binom{2}{1}$ genera il nucleo di f, è linearmente indipendente ed è una

base di ker(f). Pertanto dim(ker(f)) = 1 e la funzione non è iniettiva.

Segue che dim $(Imm(f)) = dim(\mathbb{R}^2) - 1 = 1$ e f non è suriettiva. 1 è anche il rango di A.

$$\operatorname{Imm}(f) = \left\{ \begin{pmatrix} x - 2y \\ 2x - 4y \end{pmatrix}, x, y \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} x + \begin{pmatrix} -2 \\ -4 \end{pmatrix} y; x, y \in \mathbb{R} \right\} = \begin{bmatrix} 1 \\ 2 \end{pmatrix}$$

$$\left[\begin{pmatrix}1\\2\end{pmatrix},\begin{pmatrix}-2\\-4\end{pmatrix}\right]. \text{ Pertanto } \begin{pmatrix}1\\2\end{pmatrix},\begin{pmatrix}-2\\-4\end{pmatrix} \text{ generano l'immagine di } f, \text{ ma non sono}$$

linearmente dipendenti; una base di Imm(f) è data da $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Relazione tra matrici e applicazioni lineari

Si consideri la corrispondenza biettiva tra $\operatorname{Hom}(\mathbb{R}^n,\mathbb{R}^m)$ e $\mathfrak{M}_{m,n}(\mathbb{R})$. Dal teorema 9 segue che la dimensione n per colonne di una matrice A di $m \times n$ è pari al rango di A più la dimensione del $\ker(A)$:

$$n = r(A) + \dim(\ker(A))$$

Si osservi che la dimensione di ker(A), ossia del sottospazio delle soluzioni del sistema omogeneo Ax = 0 è pari a

$$dim(ker(A)) = n - r(A)$$

come già visto in precedenza.

Endomorfismo - Isomorfismo - Automorfismo

Definizione di endomorfismo

Sia V uno spazio vettoriale su K. Una applicazione lineare $f:V\to V$ si dice endomorfismo.

Definizione di isomorfismo

Siano $V \in W$ spazi vettoriali su K. Una applicazione lineare biettiva $f: V \to W$ si dice isomorfismo.

In tal caso $V \in W$ si dicono **isomorfi** e si scrive $V \sim W$.

Definizione di automorfismo

Sia V uno spazio vettoriale su K. Una applicazione lineare biettiva $f:V\to V$ si dice automorfismo (endomorfismo biettivo).

Teorema dell'isomorfismo I

Teorema 11

Siano V e W spazi vettoriali su K di dimensione finita.

$$V \sim W \Leftrightarrow \dim V = \dim W$$

Dimostrazione.

 \Rightarrow Se $V \sim W$, esiste $f: V \rightarrow W$ lineare e biettiva. Poichè $\ker(f) = \{0\}$ e $\operatorname{Imm}(f) = W$, dal teorema 9 (dimensionale) segue che $\dim V = \dim W$.

 \Leftarrow Sia dim $V = \dim W = n$.

Sia $v_1, ..., v_n$ una base di V e $w_1, ..., w_n$ una base di W.

Per il Teorema 8 (di rappresentazione), esiste una e una sola applicazione lineare $f: V \to W$ tale che $f(v_i) = w_i$, i = 1, ..., n. Basta provare che l'applicazione è biettiva.

Per provare che f è iniettiva, mostriamo che $\ker(f) = \{\mathbf{0}\}$. Sia $v \in \ker(f)$; $v \in V$ e dunque $v = a_1v_1 + ... + a_nv_n$. Allora

$$\mathbf{0} = f(v) = f(a_1v_1 + ... + a_nv_n) = a_1f(v_1) + ... + a_nf(v_n) = a_1w_1 + ... + a_nw_n$$

Teorema dell'isomorfismo II

Per la lineare indipendenza di $w_1, ..., w_n$, segue $a_1 = ... = a_n = 0$. Per cui $v = \mathbf{0}$ e $\ker(f) = \{\mathbf{0}\}$. Per provare che f è suriettiva, proviamo che $\operatorname{Imm}(f) = W$; vale che $\operatorname{Imm}(f) \sqsubseteq W$.

Devo provare the vale l'inclusione $\text{Imm}(f) \supseteq W$, Vale the $\text{Imm}(f) \subseteq W$. Sia $w \in W$, $w = b_1w_1 + ... + b_nw_n$. Allora si ha

$$w = b_1 f(v_1) + ... + b_n f(v_n) = f(b_1 v_1 + + b_n v_n) = f(v)$$

con $v = b_1v_1 + + b_nv_n \in V$. Allora $w \in Imm(f)$.

Un esempio notevole l

Si è visto che esiste una corrispondenza biunivoca tra $\operatorname{Hom}(\mathbb{R}^n,\mathbb{R}^m)$ e le matrici $\mathfrak{M}_{mn}(\mathbb{R})$:

• ad ogni matrice $A \in \mathcal{M}_{mn}(\mathbb{R})$ corrisponde l'applicazione lineare $\mathcal{L}_A : \mathbb{R}^n \to \mathbb{R}^m$ tale che $\mathcal{L}_A(x) = Ax$;

$$\psi: \mathcal{M}_{mn}(\mathbb{R}) \to \mathsf{Hom}(\mathbb{R}^n, \mathbb{R}^m)$$

 $\operatorname{con}\,\psi(A)=\mathcal{L}_A.$

L'applicazione è lineare.

Infatti date $A, B \in \mathcal{M}_{mn}(\mathbb{R})$ e $\alpha_1, \alpha_2 \in \mathbb{R}$, si ha che $\psi(\alpha_1 A + \alpha_2 B)$ è l'applicazione lineare $\mathcal{L}_{\alpha_1 A + \alpha_2 B}$ tale che

$$\mathcal{L}_{\alpha_1 A + \alpha_2 B}(x) = (\alpha_1 A + \alpha_2 B)(x) = \alpha_1 A x + \alpha_2 B x = \alpha_1 \mathcal{L}_A(x) + \alpha_2 \mathcal{L}_B(x)$$

Dunque

$$\psi(\alpha_1 A + \alpha_2 B) = \alpha_1 \psi(A) + \alpha_2 \psi(B)$$

Un esempio notevole II

• ad ogni applicazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ corrisponde la matrice $A = [f(e_1), ..., f(e_n)]$ per cui f(x) = Ax

$$\varphi: \mathsf{Hom}(\mathbb{R}^n,\mathbb{R}^m) o \mathfrak{M}_{mn}(\mathbb{R})$$

Vale che $\varphi(f)=A$. L'applicazione è lineare. Infatti siano $f,g:\mathbb{R}^n\to\mathbb{R}^m$, tale che f(x)=Ax e g(x)=Bx; $\varphi(f)=A,\varphi(g)=B$. Si deve provare che

$$\varphi(\alpha_1 f + \alpha_2 g) = \alpha_1 \varphi(f) + \alpha_2 \varphi(g)$$

Sia C la matrice che corrisponde all'applicazione lineare $\alpha_1 f + \alpha_2 g$:

$$C = [(\alpha_1 f + \alpha_2 g)(e_1), ..., (\alpha_1 f + \alpha_2 g)(e_n)] =$$

$$= [\alpha_1 f(e_1) + \alpha_2 g(e_1), ..., \alpha_1 f(e_n) + \alpha_2 g(e_n)] =$$

$$= \alpha_1 [f(e_1), ..., f(e_n)] + \alpha_2 [g(e_1), ..., g(e_n)] = \alpha_1 A + \alpha_2 B$$

Segue che φ è lineare.

Un esempio notevole III

Inoltre ψ e φ sono l'una l'inversa dell'altra:

$$\forall A \in \mathcal{M}_{mn}(\mathbb{R}) \quad \psi(A) = \mathcal{L}_A \Rightarrow \varphi(\mathcal{L}_A) = [\mathcal{L}_A(e_1), ..., \mathcal{L}_A(e_n)] = A$$

ossia

$$\varphi \circ \psi = i_{\mathfrak{M}_{mn}(\mathbb{R})}$$

Inoltre

$$\forall f \in \mathsf{Hom}(\mathbb{R}^n, \mathbb{R}^m) \quad \varphi(f) = [f(e_1), ..., f(e_n)] = B \Rightarrow \psi(B) = \mathcal{L}_B = f$$

ossia

$$\psi \circ \varphi = i_{\mathsf{Hom}(\mathbb{R}^n,\mathbb{R}^m)}$$

Dunque i due spazi vettoriali sono isomorfi e pertanto hanno la stessa dimensione.

Una importante conseguenza

Isomorfismo tra $V \in K^n$

Sia V uno spazio vettoriale su K e sia dim(V) = n. Allora $V \sim K^n$.

Fissata una base $\{v_1,...,v_n\}$ in V e la base canonica $\{e_1,...,e_n\}$ in K^n , l'applicazione lineare $f: V \to K^n$ si può definire nel seguente modo:

dato $v = a_1v_1 + ... + a_nv_n$, allora $f(v) = a_1e_1 + ... + a_ne_n = (a_1, ..., a_n)$.

Quindi, fissata una base in V, la funzione che associa ad ogni $v \in V$, la n-upla delle sue coordinate rispetto alla base fissata è un isomorfismo.

Esempio

Sia $V=P_n$ lo spazio vettoriale dei polinomi di grado minore o uguale a n. Esso è isomorfo a \mathbb{R}^{n+1} .

Infatti, considerate le funzioni potenza reale intera non negativa di grado minore o uguale a n

$$x^{0} = 1, \quad x^{1} = x, \quad x^{2}, \quad x^{3}, \quad \dots \quad , \quad x^{n}, \quad x \in \mathbb{R},$$

esse sono la basa canonica di $P_n(\mathbb{R})$. Allora possiamo definire l'applicazione lineare biiettiva che fa corrispondere ad ogni polinomio reale $p_n(x) \in P_n(\mathbb{R})$, di grado minore o uguale ad n, la n+1-pla formata dai sui coefficienti:

$$f: P_n(\mathbb{R}) \to \mathbb{R}^{n+1}$$
$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n \mapsto (a_0, a_1, \dots, a_n)$$

Esempi:

- dato $p_3(x) = 2 3x^2 + 4x^3 \in P_3(\mathbb{R})$, è $f(p_3(x)) = (2, 0, -3, 4) \in \mathbb{R}^4$
- dato $p_5(x) = \frac{3}{7}x 0.763x^2 + 3\pi x^4 + \sqrt{2}x^5 \in P_5(\mathbb{R})$, è

$$f(p_5(x)) = (0, 3/7, -0.763, 0, 3\pi, \sqrt{2}) \in \mathbb{R}^6$$

$f: V \to W$ isomorfismo

- Se dim V = dim W, esistono infiniti isomorfismi tra V e W, in quanto essi dipendono dalle due basi che si scelgono.
 Tuttavia non è detto che tutte le applicazioni lineari tra V e W siano isomorfismi.
- ② Se $f: V \to W$ è un isomorfismo, anche $f^{-1}: W \to V$ lo è .
- La funzione $f: P_n(x) \to \mathbb{R}^{n+1}$ definita da $f(a_0 + a_1x + ... + a_nx^n) = (a_0, ..., a_n)$ è un isomorfismo; quindi due polinomi sono linearmente dipendenti/indipendenti se e solo se lo sono le n+1-uple associate.
- Un isomorfismo conserva la lineare dipendenza, la lineare indipendenza e la dimensione dei sottospazi.

Ancora qualche conseguenza

Teorema 12

Sia $f: V \to W$ una applicazione lineare e $\dim V = \dim W$. Sono equivalenti le seguenti affermazioni:

- f è isomorfismo
- f è iniettiva
- f è suriettiva

Dimostrazione.

 $1 \rightarrow 2$. Ovvio

 $2 \to 3$. Se f è iniettiva, $\ker(f) = \{0\}$; dal Teorema 9, $\dim V = \dim(\operatorname{Imm}(f))$ e dunque $\operatorname{Imm}(f)$ è un sottospazio di W che ha la sua stessa dimensione. Pertanto essi coincidono e f è suriettiva.

 $3 \to 1$. In tal caso per il Teorema 9, $\dim(\ker(f)) = \dim V - \dim W = 0$. Pertanto f è iniettiva. Pertanto l'applicazione lineare è biettiva e dunque è un isomorfismo.

Teorema 13

Siano V e W spazi vettoriali su K di dimensione finita e sia $\dim V > \dim W$. Allora non esiste alcuna funzione iniettiva lineare da V a W e non esiste alcuna funzione suriettiva lineare da W a V.

Dimostrazione.

Sia $f: V \to W$ lineare.

Per il Teorema 9,

$$\dim V = \dim(\operatorname{Imm}(f)) + \dim(\ker(f))$$

Quindi

$$\dim(\ker(f)) = \dim V - \dim(\operatorname{Imm}(f)) > \dim W - \dim(\operatorname{Imm}(f))$$

Poichè $\operatorname{Imm}(f) \sqsubseteq W$ e $\operatorname{dim}(\operatorname{Imm}(f)) \le \operatorname{dim} W < \operatorname{dim} V$, segue che $\operatorname{dim}(\ker(f)) > 0$. f non può essere iniettiva.

Sia $g: W \to V$ lineare.

Per il Teorema 9.

$$\dim W = \dim(\operatorname{Imm}(g)) + \dim(\ker(g))$$

Quindi

$$\dim(\operatorname{Imm}(g)) = \dim W - \dim(\ker(g)) < \dim V - \dim(\ker(g)) \le \dim V$$

Poichè $\dim(\operatorname{Imm}(g)) \leq \dim W < \dim V$, segue che $\operatorname{Imm}(g)$ è un sottospazio proprio di V e g non può essere suriettiva.

Teorema 14

Teorema 14

Sia f:V o W una applicazione lineare tra spazi di dimensione finita.

Sia $\dim V = n$, $\dim W = m$ e $\dim(\operatorname{Imm}(f)) = k$. Allora si ha che:

- **1** f è iniettiva se e solo se n = k
- 2 f è suriettiva se e solo se m = k
- § f è un isomorfismo se e solo se n = m = k

Le affermazioni seguono dal teorema 9.

Osservazione

Dato il sistema di m equazioni in n incognite Ax = b, la sua compatibilità si può studiare in termini dell'applicazione lineare:

$$\mathcal{L}_A: \mathbb{R}^n \to \mathbb{R}^m$$

tale che $\mathcal{L}_A(x) = Ax$. Infatti

$$r(A) = k = \dim(Imm(\mathcal{L}_A))$$
 $\ker(\mathcal{L}_A) = \ker(A)$

Allora si ha che il sistema è compatibile se e solo se $b \in Imm(\mathcal{L}_A)$, ossia r(A) = r(A|b); in tal caso l'insieme delle soluzioni ha la dimensione di $\ker(A) = n - k$. Inoltre si ha:

- se k = m (suriettività), il sistema ammette sempre almeno una soluzione
- se k = n (iniettività), si ha al più una soluzione ($ker(A) = \{0\}$)
- se k = n = m (biettiva), esiste una e una sola soluzione