Outline

- Course objective & roadmap
- Notation & references
- Dedication

Course Objectives

- You will learn
 - What is VLSI testing
 - Why is testing important
 - How do we achieve good testing
 - What are important issues in testing and their solutions
- This course focus on VLSI digital circuits

Course Roadmap (EDA Topics)

Course Roadmap (Design Topics)

Test in Semiconductor Pyramid

EDA

Logic Sim. ch2 Fault Sim. ch5 ATPG ch7,8,9

Design

DFT ch11, 15 Boundary Scan ch12 BIST ch13, 14

Manufacture

Production Test ch1
Diagnosis ch10
Memory Test ch16

Lecture Notes

- Important keywords highlighted in red Italic
- Important concepts highlighted in blue color
- Paper references [McCluskey 84]
- Book references (WWW) (BA)
- FFT (Food for Thoughts)
 - Encourage thinking and discussion
 - No fixed answer!

Quiz

Q: What does FFT stands for?

A:

Summary is Highlighted at Bottom

Reference Books

- (WWW) L.T. Wang, C.W. Wu, and X. Wen, "VLSI Test Principles and Architectures", Morgan Kaufmann, 2006.
- (BA) M.L. Bushnell and V.D. Agrawal, "Essentials of electronic testing," Kluwer Academic Publishers, 2000.
- (ABF) M. Abramovici, M. A. Breuer and A.D. Friedman, "Digital systems testing and testable design," IEEE Press,1994
- (BMS) P.H. Bardell, W.H. McAnney, J. Savior, "Built-in Test for VLSI: Pseudorandom Techniques," Wiely Interscience, 1987,

(BA)

Recommended Reading

Topics	Our Chapters	www	ВА
Introduction	1	1.1, 1.2	1.4, 2.1, 3.2, 3.3
Logic Simulation	2	3.2, 3.3	5.1 ~ 5.4
Fault Models	3	1.3	4
Fault Collapsing	4	-	4.5
Fault Simulation	5	3.4	5.5, 5.6
Testability Measure	6	2.2	6.1
Comb. ATPG	7	4.1 ~ 4.4	7.5
Seq. ATPG	8	4.5	8.2, 8.3
Delay Test	9	4.10	12
Diagnosis	10	7.2	-
Design for Test (DFT)	11, 12	2.3 ~ 2.5, 10.2	14, 16
BIST	13, 14	5.3 ~ 5.5	15
Test Compression	15	6	-
Memory Testing	16	8.2	9.5 ~ 9.7
SOC Testing	18	10.3	-

Classic Textbook

- The classic textbook of logic design (and testing)
- Logic Design Principles with emphasis on testable semicustom circuits, Prentice Hall 1986

Edward J. McCluskey (1929-2016)

- 1959-1967: Professor of Princeton University
- 1967~2008: Professor of Stanford University
- Trained 75 PhD
- Important contributions
 - 1. Quine-McCluskey Algorithm (video 15.2)
 - 2. Hazards (video 2.6)
 - 3. Pseudo Exhaustive Testing (video 17.3)
 - 4. Sequential circuits modes
- First President of IEEE Computer Society
- Founder of Stanford CS program
- IEEE Life Fellow
- IEEE Emanuel R. Piore Award
- IEEE John von Neuman Medal
- Member of National Academy of Engineering

Prof. McCluskey wearing NTU hat

Dedication

