1 Handout-11

In this handout, we will relate complex differentiability with differentiability in multivariable calculus.

Definition. Let $f: D \to \mathbb{C}$, $D \subseteq \mathbb{C}$ be a function. We say that f is complex differentiable on D if f is differentiable at each $a \in D$.

If f is differentiable on D, then we can define a function $f': D \to \mathbb{C}$ by $z \mapsto f'(z)$. The function f' is called the complex derivative of f.

Remark. Assume that $D = [a, b] \subseteq \mathbb{R}$. By abusing notation, let us write f(x) with $x \in [a, b]$. Let f(x) = u(x) + iv(x). Then, one can show that f is differentiable if and only if u and v are differentiable. If f is differentiable, then f'(x) = u'(x) + iv'(x).

Example (Computing Complex Derivatives). (i) Let $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^n$, $n \in \mathbb{Z}^+$. Then $f'(z) = nz^{n-1}$. The result follows from

$$z^{n} - w_{n} = (z - w)(z^{n-1} + z^{n-2}w + \dots + zw^{n-2} + w^{n-1}).$$

(ii) Let $P(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n$ for $z \in \mathbb{C}$ and $a_0, \dots, a_n \in \mathbb{C}$ are constants and $n \in \mathbb{Z}^+$. Then

$$P'(z) = \sum_{k=1}^{n} k a_k z^{k-1}.$$

(iii) Power series: Let c_0, c_1, c_2, \ldots be a sequence of complex numbers and $a \in \mathbb{C}$. A series of the form $\sum_{n=0}^{\infty} c_n (z-a)^n$ is called a power series centered at a with coefficients $\{c_n\}_{n=0}^{\infty}$. Assume that the series converges on an open ball B(a,R) for some R; that is, for each $z \in B(a,R)$, the series $\sum_{n=0}^{\infty} c_n (z-a)^n$ exists. Then we can define $f: B(a,R) \to \mathbb{C}$ by

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n.$$

(iv) Let $f: \mathbb{C} \to \mathbb{C}$, $f(z) = \overline{z}$. We claim that f is not complex differentiable at z = 0. We have $f(z) - f(0) = \overline{z}$ and thus,

$$\lim_{z \to 0} \frac{f(z)}{z} = \lim_{z \to 0} \frac{\overline{z}}{z} = \begin{cases} 1 & \text{if } z \to 0 \text{ along the real axis} \\ -1 & \text{if } z \to 0 \text{ along the imaginary axis} \end{cases}$$

Consider the function Log : $\mathbb{C}^{\bullet} \to \mathbb{C}$. We say that it is NOT continuous along the negative real axis. Let

$$D = \mathbb{C}_{-} = \mathbb{C}^{\bullet} \setminus \{ z \in \mathbb{C} | z < 0 \}.$$

Then, $\operatorname{Log}:D\to\mathbb{C}$ is complex differentiable and

$$(\operatorname{Log} z)' = \frac{1}{z}$$

on D. Assuming complex differentiability, we can use $e^{\text{Log }z}=z$ and chain rule:

$$\implies e^{\operatorname{Log} z} \cdot (\operatorname{Log} z)' = 1$$
$$\implies (\operatorname{Log} z)' = \frac{1}{e^{\operatorname{Log} z}} = \frac{1}{z}.$$

(v)(vi) Show that $f: \mathbb{C} \to \mathbb{C}$, $f(z) = |z|^2 = z\overline{z}$ not complex differentiable except for z = 0. Also, show that f'(0) = 0.

1

Remark. When $D \subseteq \mathbb{C}$ is open, the notion of complex differentiability becomes interesting and has very different behavior from that of $f: U \to \mathbb{R}, U \subseteq \mathbb{R}$ open, f differentiable. We will expand on this later.

Let us start with recalling some multivariable calculus concepts. Let $D \subseteq \mathbb{R}^p$ be open and $f: D \to \mathbb{R}^q$ be a function. We say that f is differentiable at $\vec{a} \in D$ if we can find a linear function $A: \mathbb{R}^p \to \mathbb{R}^q$ such that

(i)
$$f(\vec{x}) = f(\vec{a}) + A(\vec{x} - \vec{a}) + \gamma(\vec{x})$$

(ii)
$$\lim_{\vec{x} \to \vec{a}} \frac{\gamma(\overline{x})}{\|\vec{x} - \vec{a}\| = 0}$$
.

The linear map is called the Jacobian of f at a and it is written as J(f;a). The following proposition gives us a connection between complex differentiability and differentiability in the multivariable sense when $D \subseteq \mathbb{C}$ is open.

Proposition. Let $D \subseteq \mathbb{C}$ be an open set and $f: D \to \mathbb{C}$. Let $a \in D$ and $\ell \in \mathbb{C}$. Then the following statements are equivalent.

- (i) f is complex differentiable at a and $f'(a) = \ell$.
- (ii) f is differentiable at $a \in D$ in the sense of multivariable calculus (here we think of $D \subseteq \mathbb{R}^2$ open and \mathbb{C} is identified with \mathbb{R}^2) and

$$J(f,a) = \begin{pmatrix} \Re(\ell) & -\Im(\ell) \\ \Im(\ell) & \Re(\ell) \end{pmatrix}.$$

In fact, if we indetify $\begin{pmatrix} x \\ y \end{pmatrix}$ with x + iy, then $J(f, a) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \Re(\ell)x - \Im(\ell)y \\ \Re(\ell)y + \Im(\ell)x \end{pmatrix}$; that is, $J(f, a)z = \ell \cdot z$.