EXERCÍCIOS

- 484. Prove que cada função abaixo é bijetora e determine sua inversa:
 - a) f: $\mathbb{R} \to \mathbb{R}$ tal que f(x) = 2x 5
 - b) g: $\mathbb{R} \{4\} \rightarrow \mathbb{R} \{1\}$ tal que g(x) = $\frac{x+1}{x-4}$
 - c) h: $\mathbb{R} \to \mathbb{R}$ tal que h(x) = x^5
- **485.** Considere a função f: $\mathbb{R} \to \mathbb{R}$ tal que f(x) = |x 1|.

Calcule a soma dos números associados à(s) alternativa(s) correta(s).

- 01) A função f não é sobrejetiva.
- 02) A função f é injetiva.
- 04) A função f possui uma inversa.
- 08) $f(x) \le 1$ se, e somente se, $0 \le x \le 2$.
- 16) f é uma função par, isto é, f(-x) = f(x).
- 32) f é uma função ímpar, isto é, f(-x) = -f(-x).
- 64) f é uma função periódica de período 1.
- **486.** Nas funções bijetoras abaixo, de $\mathbb R$ em $\mathbb R$, obtenha a lei de correspondência que define a função inversa.

a)
$$f(x) = 2x + 3$$

e)
$$q(x) = \sqrt[3]{x+2}$$

b)
$$g(x) = \frac{4x - 1}{3}$$

f)
$$r(x) = \sqrt[3]{x - 1}$$

c)
$$h(x) = x^3 + 2$$

g)
$$s(x) = \sqrt[3]{1 - x^3}$$

d)
$$p(x) = (x - 1)^3 + 2$$

- **487.** O gráfico de uma função f é o segmento de reta que une os pontos (-3, 4) e (3, 0). Se f^{-1} é a função de f, determine $f^{-1}(2)$.
- **488.** Dada a função f: $\mathbb{R} \to \mathbb{R}$, bijetora, definida por f(x) = $x^3 + 1$, determine sua inversa f^{-1} : $\mathbb{R} \to \mathbb{R}$.
- **489.** A função f em \mathbb{R} , definida por $f(x)=x^2$, admite função inversa? Justifique.
- 490. Julgue os itens abaixo.
 - a) Sendo y = f(x) uma função real, se f(x) = x para algum x, dizemos que x é um ponto fixo de f.

Com base nessa definição, pode-se concluir que a função $f(x) = 2 + \frac{1}{x}$ possui um único ponto fixo.

FUNÇÃO COMPOSTA — FUNÇÃO INVERSA

b) Os zeros da função $f(x) = 5^{x^2} - 5^{3x}$ são x = 0 e x = 3.

c) O domínio da função real h(x) = $\frac{\sqrt{x^2 + 1}}{\log x}$ é o conjunto dos números reais com exceção do zero.

d) Se f: A \rightarrow B e g: B \rightarrow C são funções injetoras, então a composta g \circ f: A \rightarrow C também é uma função injetora.

e) Toda função real é inversível.

491. Seja a função f de \mathbb{R}_- em \mathbb{R}_+ , definida por $f(x)=x^2$. Qual é a função inversa de f?

Solução

A função dada é $f(x) = y = x^2$, com $x \le 0$ e $y \ge 0$. Aplicando a regra prática, temos:

I) permutando as variáveis:

$$x = y^2$$
 com $y \le 0$ e $x \ge 0$

expressando y em função de x:

$$x = y^2 \implies y = \sqrt{x}$$
 ou $y = -\sqrt{x}$

Considerando que na função inversa f^{-1} devemos ter $y \le 0$ e $x \ge 0$, a lei de correspondência da função inversa será $f^{-1}(x) = -\sqrt{x}$.

Resposta: É a função f⁻¹ de \mathbb{R}_+ em \mathbb{R}_- , definida por f⁻¹(x) = $-\sqrt{x}$.

492. Obtenha a função inversa das seguintes funções:

a)
$$f: \mathbb{R}_+ \to \mathbb{R}_+$$

 $f(x) = x^2$

b) f: A
$$\rightarrow \mathbb{R}_+$$
, em que A = $\{x \in \mathbb{R} \mid x \le 1\}$
f(x) = $(x - 1)^2$

c) f: A
$$\rightarrow \mathbb{R}_{-}$$
, em que A = $\{x \in \mathbb{R} \mid x \le 2\}$
f(x) = $-(x - 2)^2$

d) f: A
$$\rightarrow \mathbb{R}_-$$
, em que A = $\{x \in \mathbb{R} \mid x \le -1\}$
f(x) = $-(x + 1)^2$

e) f:
$$\mathbb{R}_- \to B$$
, em que $B = \{y \in \mathbb{R} \mid y \ge 1\}$
f(x) = $x^2 + 1$

f) f:
$$\mathbb{R}_+ \to B$$
, em que $B = \{y \in \mathbb{R} \mid y \le 4\}$
f(x) = 4 - x²

g) f:
$$\mathbb{R}_- \to B$$
, em que $B = \{y \in \mathbb{R} \mid y \ge -1\}$
f(x) = $x^2 - 1$

493. Considere a função f:
$$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \rightarrow [-1, 1]$$
 tal que f(x) = $2 - \frac{2}{\pi}x$.

Esboce o gráfico correspondente e decida quais das afirmações abaixo são verdadeiras e quais são falsas.

- a) f é crescente.
- b) f é sobrejetora.
- c) f possui inversa e $f^{-1}(0) = \pi$.
- d) f possui inversa e $f^{-1}(0) = 0$.
- e) f não possui inversa.
- **494.** Considerando a função real $f(x) = 3 + 2^{x-1}$ e sendo g: A $\to \mathbb{R}$ a sua inversa, pode-se afirmar:
 - a) A imagem de f é A.
 - b) O gráfico de f está acima da reta y = 4.
 - c) $g(\frac{11}{2}) = \log_2 5$.
 - d) Se f(h(x)) = 3 + 2x, então $h(\frac{1}{4}) = 0$.
 - e) O conjunto solução da inequação f(2x + 1) $< 1 + 3 \cdot 2^x$ é o intervalo]0, 1[.
 - f) O gráfico da função g intercepta o eixo Ox no ponto (1, 0).
- **495.** Seja a função bijetora f, de $\mathbb{R}-\{2\}$ em $\mathbb{R}-\{1\}$, definida por $f(x)=\frac{x+1}{x-2}$. Qual é a função inversa de f?

Solução

A função dada é
$$f(x) = y = \frac{x+1}{x-2}$$
, com $x \neq 2$ e $y \neq 1$.

Aplicando a regra prática, temos:

$$x = \frac{y+1}{y-2} \implies xy - 2x = y+1 \implies xy - y = 2x+1 \implies$$

$$\implies y(x-1) = 2x+1 \implies y = \frac{2x+1}{x-1}$$

Resposta: É a função f^{-1} , de $\mathbb{R}-\{1\}$ em $\mathbb{R}-\{2\}$, definida por

$$f^{-1}(x)=\frac{2x+1}{x-1}\cdot$$

FUNÇÃO COMPOSTA — FUNÇÃO INVERSA

496. Obtenha a função inversa das seguintes funções:

a) f:
$$\mathbb{R} - \{3\} \rightarrow \mathbb{R} - \{1\}$$

$$f(x) = \frac{x+3}{x-3}$$

b)
$$f: \mathbb{R} - \{-1\} \to \mathbb{R} - \{2\}$$

$$f(x) = \frac{2x+3}{x+1}$$

c)
$$f: \mathbb{R} - \{3\} \rightarrow \mathbb{R} - \{-1\}$$

$$f(x) = \frac{4-x}{x-3}$$

d) f:
$$\mathbb{R} - \left\{ \frac{1}{3} \right\} \rightarrow \mathbb{R} - \left\{ \frac{5}{3} \right\}$$

$$f(x) = \frac{5x + 2}{3x - 1}$$

e)
$$f: \mathbb{R}^* \to \mathbb{R} - \{4\}$$

$$f(x) = \frac{4x + 2}{x}$$

f)
$$f: \mathbb{R} - \{3\} \rightarrow \mathbb{R} - \{3\}$$

$$f(x) = \frac{3x+2}{x-3}$$

- **497.** Sendo f e g funções reais definidas pelas sentenças $f(x) = 3^x 1$ e $g(x) = \log_4 (x 1)$, determine $(f \circ g^{-1})(0)$.
- **498.** A função f definida em $\mathbb{R} \{2\}$ por $f(x) = \frac{2+x}{2-x}$ é inversível. O seu contradomínio é $\mathbb{R} \{a\}$. Calcule a.
- **499.** Seja a função f de $\mathbb{R}-\{-2\}$ em $\mathbb{R}-\{4\}$ definida por $f(x)=\frac{4x-3}{x+2}$. Qual é o valor do domínio de f^{-1} com imagem 5?

Solução

Queremos determinar a $\in \mathbb{R} - \{4\}$ tal que f⁻¹(a) = 5; para isso, basta determinar a tal que f(5) = a:

$$a = f(5) = \frac{4 \cdot 5 - 3}{5 + 2} = \frac{17}{7} \implies a = \frac{17}{7}$$

- **500.** Seja a função f de $A = \{x \in \mathbb{R} \mid x \le -1\}$ em $B = \{y \in \mathbb{R} \mid y \ge 1\}$ definida por $f(x) = \sqrt{x^2 + 2x + 2}$. Qual é o valor do domínio de f^{-1} com imagem 3?
- **501.** Sejam os conjuntos $A = \{x \in \mathbb{R} \mid x \ge 1\}$ e $B = \{y \in \mathbb{R} \mid y \ge 2\}$ e a função f de A em B definida por $f(x) = x^2 2x + 3$. Obtenha a função inversa de f.

Solução

A função dada é $f(x) = y = x^2 - 2x + 3$, com $x \ge 1$ e $y \ge 2$.

Aplicando a regra prática, temos:

$$x = y^2 - 2y + 3$$
 com $y \ge 1$ e $x \ge 2$

11) expressando y em função de x:

$$x = y^2 - 2y + 3 \implies x = y^2 - 2y + 1 + 3 - 1 \implies x = (y - 1)^2 + 2 \implies (y - 1)^2 = x - 2 \implies y - 1 = \sqrt{x - 2} \text{ ou}$$

 $y - 1 = -\sqrt{x - 2} \implies y = 1 + \sqrt{x - 2} \text{ ou} \quad y = 1 - \sqrt{x - 2}$

Considerando que na função inversa f^{-1} devemos ter $y \ge 1$ e $x \ge 2$, a sentença que define a função inversa é $f^{-1}(x) = 1 + \sqrt{x-2}$.

Resposta: f^{-1} : $B \rightarrow A$

$$f^{-1}(x) = 1 + \sqrt{x-2}$$

502. Obtenha a função inversa das seguintes funções:

a)
$$A = \{x \in \mathbb{R} \mid x \ge 1\}$$
 e $B = \{y \in \mathbb{R} \mid y \ge -1\}$

$$e \qquad B = \{ y \in \mathbb{R} \mid y \ge -1 \}$$

f: A
$$\rightarrow$$
 B
f(x) = x² - 2x

b)
$$A = \{x \in \mathbb{R} \mid x \ge -1\}$$
 e $B = \{y \in \mathbb{R} \mid y \ge 1\}$

$$\mathsf{B} = \{\mathsf{y} \in \mathbb{R} \mid \mathsf{y} \ge \mathsf{1}\}$$

$$f: A \rightarrow B$$

 $f(x) = x^2 + 2x + 3$

$$f(x) = x^2 + 2x + 2$$

c)
$$A = \{x \in \mathbb{R} \mid x \le 2\}$$

$$\mathsf{e} \qquad \mathsf{B} = \{ \mathsf{y} \in \mathbb{R} \mid \mathsf{y} \geqslant -1 \}$$

f: A
$$\rightarrow$$
 B
f(x) = x² - 4x + 3

$$f(x) = x^2 - 4x + 3$$

d)
$$A = \left\{ x \in \mathbb{R} \mid x \ge \frac{3}{2} \right\}$$
 e $B = \left\{ y \in \mathbb{R} \mid y \ge -\frac{1}{4} \right\}$

$$B = \left\{ y \in \mathbb{R} \mid y \geqslant -\frac{1}{4} \right\}$$

$$f: A \to B$$

$$f(x) = x^2 - 3x + 2$$

e
$$B = \{y \in \mathbb{R} \mid y \leq 9\}$$

e)
$$A = \{x \in \mathbb{R} \mid x \ge 2\}$$

f: $A \to B$

$$f(x) = -x^2 + 4x + 5$$

f)
$$A = \{x \in \mathbb{R} \mid x \leq -1\}$$

e
$$B = \{y \in \mathbb{R} \mid y \le 5\}$$

$$f: A \rightarrow B$$

$$f(x) = -x^2 - 2x + 4$$

g)
$$A = \left\{ x \in \mathbb{R} \mid x \ge \frac{5}{4} \right\}$$
 e $B = \left\{ y \in \mathbb{R} \mid y \ge -\frac{9}{8} \right\}$

$$f: A \rightarrow B$$

$$f(x) = 2x^2 - 5x + 2$$

503. Seja a função bijetora de \mathbb{R} em \mathbb{R} definida por $f(x) = \begin{cases} x^2 - 1 & \text{se } x \ge 0 \\ x - 1 & \text{se } x < 0 \end{cases}$ Determine f^{-1} .

Solução

Notemos que:

1º) se
$$x \ge 0$$
, então $f(x) = y = x^2 - 1$; logo, $y \ge -1$.

2º) se
$$x < 0$$
, então $f(x) = y = x - 1$; logo, $y < -1$.

A função proposta é:

$$y = x^2 - 1$$
, com $x \ge 0$ e $y \ge -1$, ou $y = x - 1$, com $x < 0$ e $y < -1$.

Aplicando a regra prática:

- I) permutando as variáveis, temos: $x = y^2 - 1$, com $y \ge 0$ e $x \ge -1$, ou x = y - 1, com y < 0 e x < -1.
- II) expressando y em função de x, temos:

$$y = \sqrt{x + 1}$$
, com $y \ge 0$ e $x \ge -1$, ou $y = x + 1$, com $y < 0$ e $x < -1$.

Logo, a função inversa f $^{-1}$ é de $\mathbb R$ em $\mathbb R$ e definida por:

$$f^{-1}(x) = \begin{cases} \sqrt{x+1} \text{ se } x \ge -1 \\ x+1 \text{ se } x < -1 \end{cases}$$

504. Nas seguintes funções em \mathbb{R} , determine a função inversa.

a)
$$f(x) = \begin{cases} 2x + 3 \text{ se } x \ge 2 \end{cases}$$

b)
$$f(x) = \begin{cases} 5 - 3x \text{ se } x \ge -1 \\ 4 - 3x \text{ se } x \le -1 \end{cases}$$

c)
$$f(x) = \begin{cases} x^2 \text{ se } x \ge 0 \\ 2x \text{ se } x < 0 \end{cases}$$

d)
$$f(x) = \begin{cases} x^3 - 2 \text{ se } x < -1 \\ 4x + 1 \text{ so } x > -1 \end{cases}$$

Nas seguintes funções em
$$\mathbb{R}$$
, determir
a) $f(x) = \begin{cases} 2x + 3 \text{ se } x \ge 2 \\ 3x + 1 \text{ se } x < 2 \end{cases}$
b) $f(x) = \begin{cases} 5 - 3x \text{ se } x \ge -1 \\ 4 - 4x \text{ se } x < -1 \end{cases}$
c) $f(x) = \begin{cases} x^2 \text{ se } x \ge 0 \\ 2x \text{ se } x < 0 \end{cases}$
d) $f(x) = \begin{cases} x^3 - 2 \text{ se } x < -1 \\ 4x + 1 \text{ se } x \ge -1 \end{cases}$
e) $f(x) = \begin{cases} \sqrt{x - 3} \text{ se } x \ge 3 \\ (3 - x)^3 \text{ se } x < 3 \end{cases}$
 $(x^2 - 4x + 7 \text{ se } x \ge 2)$

$$(3 - x)^3 \text{ se } x < 3$$

 $(x^2 - 4x + 7 \text{ se } x \ge 2)$

f)
$$f(x) = \begin{cases} x^2 - 4x + 7 \text{ se } x \ge 2\\ 2x - 1 \text{ se } -1 < x < 2\\ -x^2 - 2x - 4 \text{ se } x \le -1 \end{cases}$$

- **505.** A função f em \mathbb{R} , definida por f(x) = |x + 2| + |x 1|, admite função inversa?
- **506.** Seja a função f em $\mathbb R$ definida por f(x) = 2x + |x + 1| |2x 4|. Determine a função inversa de f. Calcule $f^{-1}(42)$.
- **507.** Seja a função f em \mathbb{R} definida por f(x) = 2x 3. Construa num mesmo plano cartesiano os gráficos de f e f^{-1} .

Solução

$$f(x) = 2x - 3$$

$$f(x) = 2x - 3$$
 $f^{-1}(x) = \frac{x + 3}{2}$

	A STATE OF THE PARTY OF THE PAR		
1	X	у	1
ſ	-1	-5 -3	
September 1	0	-3	
	1	-1	
Sept Sept	1 2 3	1	
	3	1 3 5	
	4	5	,

X	у
-5	-1
-3	0
-1	1
1	1 2 3
3 5	3
5	4

508. Nas funções que seguem, construa num mesmo plano cartesiano os gráficos de f e f^{-1} .

a)
$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = 2x + 1$$

b)
$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \frac{2x + 4}{3}$$

c)
$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = 1 - x^3$$

d) f:
$$\mathbb{R}_- \to B = \{y \in \mathbb{R} \mid y \le 1\}$$

$$f(x) = 1 - x^2$$

e) f: A
$$\to$$
 A = {x \in R | x \geq -1}
f(x) = x² + 2x

f)
$$f: \mathbb{R}^* \to \mathbb{R}^*$$

$$f(x) = \frac{1}{x}$$

g) f:
$$\mathbb{R}^* \xrightarrow{\wedge} \mathbb{R} - \{1\}$$

$$f(x) = \frac{x-1}{x}$$

h) f:
$$\mathbb{R} \to \mathbb{R}_+$$

$$f(x) = 2^x$$

i)
$$f: \mathbb{R} \to \mathbb{R}_+$$

i)
$$f: \mathbb{R} \to \mathbb{R}_+$$

 $f(x) = \left(\frac{1}{2}\right)^x$

509. Dadas as funções $f \in g$ em \mathbb{R} , definidas por f(x) = 3x - 2 e g(x) = 2x + 5, determine a função inversa de g \circ f.

Solução

1º processo

Determinamos inicialmente $g \circ f$ e em seguida $(g \circ f)^{-1}$:

$$(g \circ f)(x) = g(f(x)) = 2f(x) + 5 = 2(3x - 2) + 5 = 6x + 1$$

Aplicando a regra prática, temos: $x = 6y + 1 \implies y = \frac{x-1}{6}$;

portanto, $(g \circ f)^{-1}(x) = \frac{x-1}{6}$.

2º processo

Determinamos inicialmente f^{-1} e g^{-1} e em seguida $f^{-1} \circ g^{-1}$, pois $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Aplicando a regra prática em f(x) = 3x - 2 e g(x) = 2x + 5, temos:

$$f^{-1}(x) = \frac{x+2}{3}$$
 e $g^{-1}(x) = \frac{x-5}{2}$

$$(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = \frac{g^{-1}(x) + 2}{3} = \frac{\frac{x - 5}{2} + 2}{3} = \frac{x - 1}{6}$$

portanto, $(g \circ f)^{-1}(x) = \frac{x-1}{6}$.

Resposta: $(g \circ f): \mathbb{R} \to \mathbb{R}$

$$(g \circ f)^{-1}(x) = \frac{x-1}{6}$$

510. Dadas as funções f e g, determine a função inversa de $g \circ f$:

- a) $f: \mathbb{R} \to \mathbb{R}$
- $g: \mathbb{R} \to \mathbb{R}$
- f(x) = 4x + 1
- g(x) = 3x 5

- b) $f: \mathbb{R} \to \mathbb{R}$ $f(x) = x^3$
- $g: \mathbb{R} \to \mathbb{R}$
- g(x) = 2x + 3c) f: $\mathbb{R}_+ \to \mathbb{R}_+$ e g: $\mathbb{R}_+ \to \mathbb{C} = \{x \in \mathbb{R} \mid x \le 4\}$ g(x) = A - y

- d) $A = \left\{ x \in \mathbb{R} \mid x \ge \frac{3}{2} \right\}, B = \left\{ x \in \mathbb{R} \mid x \ge -\frac{9}{4} \right\}$ e g: B $ightarrow \mathbb{R}_+$
 - $f(x) = x^2 3x$
- g(x) = 4x + 9
- e) $A = \{x \in \mathbb{R} \mid x \geqslant 1\}, C = \{x \in \mathbb{R} \mid x \geqslant 2\}$
- g: $\mathbb{R}_+ \to C$ g(x) = $\sqrt{x+4}$
- f: $A \to \mathbb{R}_+$ e $f(x) = x^2 1$
- **511.** Sejam os conjuntos $A = \{x \in \mathbb{R} \mid x \ge -2\}, B = \{x \in \mathbb{R} \mid x \ge -4\}$ e $C = \{x \in \mathbb{R} \mid x \ge -1\}$ e as funções f de A em B, definida por $f(x) = x^2 + 4x$, e g de B em C, definida por g(x) = $x^2 - 1$. Responda: existe (g o f)⁻¹? Justifique a resposta.
- 512. Sejam os conjuntos A = $\left\{x \in \mathbb{R} \mid x \leq \frac{1}{2}\right\}$ e B = $\left\{x \in \mathbb{R} \mid x \geq -1\right\}$ e as funções: f de A em \mathbb{R}_- , definida por f(x) = 2x - 1, g de \mathbb{R}_- em \mathbb{R}_+ , definida por $g(x) = x^2$, e h
 - de \mathbb{R}_+ em B, definida por h(x) = 4x 1. Determine a função inversa de h \circ (g \circ f).