Relación de problemas nº2: Conductores y dieléctricos

- 1. Una carga puntual q = 3.4 nC se encuentra a una distancia de 2.5 cm del centro O de un conductor esférico no cargado de radio interior R1= 5 cm y exterior R2 = 8 cm. Hallar el potencial en el centro. *Solución:* 994.5 V
- 2. Dos conductores esféricos descargados, de radios $R_1 = 6$ cm y $R_2 = 2$ cm, están separados por una distancia mucho mayor de 6 cm y conectados por un alambre conductor. Una carga total Q = 80 nC se sitúa sobre una de las esferas. ¿Cuál es el campo eléctrico próximo a la superficie de cada esfera? (Suponer despreciables los efectos introducidos por el cable conductor.) Solución: $1.5 \cdot 10^5$ N/C; $4.5 \cdot 10^5$ N/C
- 3. Cinco condensadores idénticos de capacidad C₀ están conectados en un circuito puente tal y como indica la figura. ¿Cuál es la capacidad equivalente entre los puntos a y b?

Solución: 2C₀

- 4. **a)** Calcular la capacidad de un condensador de placas paralelas de área 0.02 m², separadas en el vacío una distancia de 1 cm. **b)** Determinar la distancia de separación en el vacío entre las placas paralelas de área 15 cm² de un condensador, para que su capacidad sea de 6.7 pF.

 Solución: **a)** 17.7 pF **b)** 1.98 mm
- 5. Dos condensadores, CI=2 μF y C2=4 μF, se conectan en serie. Si a la asociación se le aplica una tensión de 18 v, determinar la carga, tensión y energía en cada condensador. Solución: QI=Q2=24 μC, VI=12 v, V2=6 v, UI=144 μJ, U2=72 μJ
- 6. Dos condensadores, CI=2 μ F y C2=4 μ F, se conectan en paralelo. Si a la asociación se le aplica una tensión de 8 v, determinar la carga, tensión y energía en cada condensador. Solución: QI=16 μ C, Q2=32 μ C, VI=V2=8 v, UI=64 μ J, U2=128 μ J
- 7. Para cada uno de los circuitos de la Figura, determinar la carga, potencial y energía almacenada en cada condensador.

a)

b)

Solución:

a)	Q(µC)	V(v)	$U(\mu J)$
C_{I}	2.42	8.067	9.76
C_2	1.933	1.933	1.868
C_3	0.483	1.933	0.467

b)	Q(mC)	<i>V</i> (v)	U(mJ)
C_{I}	0.6316	157.9	49.86
C_2	0.6316	42.1	13.30
C ₃	2.4	200	240

8. Un condensador está formado por dos placas rectangulares de área $0.2~\text{cm}^2$ separadas paralelamente una distancia de 6 mm. Si entre las placas se coloca un dieléctrico con ϵ_r =30 y se carga con 0.65 nC, determinar: a) Campo eléctrico; b) Diferencia de potencial entre las placas; c) Capacidad; d) Energía almacenada.

Solución: **a)** 122.4 kv/m **b)** 734.5 v **c)** 0.88 pF **d)** 0.24 μJ

9. El espacio entre las placas de un condensador de láminas de área A = 0.4 cm² separadas una distancia de d = 2 mm, se llena con dos dieléctricos de constantes relativas 30 y 40, tal y como se muestra en la figura. Al aplicar entre las placas una ddp de 12 V, calcular, en cada caso, la carga almacenada y su capacidad.

10. Un condensador de 20 pF se carga hasta 3000 v y luego se conecta en paralelo con un condensador descargado de 50 pF. Determinar: a) Carga que adquiere cada uno de los condensadores; b) Energías inicial y final almacenadas en los dos condensadores.

Solución:__**a**) 17.14 nC y 42.86 nC **b**) 90 μJ y 25.7 μJ