

CONSTRUCTION ACCIDENT IREPORT CLASSIFICATION

Andrea Vagnoli Università di Pisa A. Y. 2024 - 2025

INTRODUCTION

According to the ILO, about 2.78 million workers die annually from occupational accidents, with one in six occurring in the construction industry.

Following an accident, detailed **reports** are usually compiled, which include also unstructured narrative data. Their unstructured nature poses considerable challenges for analysis and knowledge extraction.

The objective of this project is to develop a classification model capable of assigning construction accident reports to their correct category.

Accident: 114404.015 - Employee Falls From Roof And Dies From Multiple Injuries					
Open Date Establishment Name End-Use Project Type				•••	
03/13/2019	Hough Roofing, Inc.	Commercial	Maintenance or		
		building	repair		

At 4:00 p.m. on March 12, 2019, Employee #1, employed by a roofing company, was engaged in roofing work at a two-story commercial building... It began to rain slightly. Employee #1 fell, a fall height of 23.5 feet… Employee #1 died later that night from his injuries.

Keywords: roofer	, fall, fall	protection,	construction,	•••
------------------	--------------	-------------	---------------	-----

Employee #	Age	Sex	··· Construction		Inspection
1	52	M	•••	FatCause: Fall from roof	1384743.015

Inspection: 1384743.015 - Hough Roofing, Inc.

Violation Items ID Type Standard Curr\$ Init\$ \$13,260 01001 Serious 19260501 B11 \$11,934 01002 Serious 19260503 A01 \$2,652 \$5,304

• • •

DATASET

4,770 construction accident reports from the Occupational Safety and Health Administration (OSHA).

There are several fields, but we are interested in the following:

- title and SUMMARY: The title and the narrative text describing the details of the accident;
- TaggedL1: This is the primary label of the accident. There are seven distinct categories:
- 1 VIOLENCE AND OTHER INJURIES BY PERSONS OR ANIMALS
- 2 TRANSPORTATION INCIDENTS
- 3 FIRES AND EXPLOSIONS
- 4 FALLS, SLIPS, TRIPS
- 5 EXPOSURE TO HARMFUL SUBSTANCES OR ENVIRONMENTS
- 6 CONTACT WITH OBJECTS AND EQUIPMENT
- 7 OVEREXERTION AND BODILY REACTION

CLASS DISTRIBUTION

- Highly imbalanced problem;
- Class overlap, especially for minority classes (harder to recognize them) [1][2].

DATA PREPARATION

- Combined the title and SUMMARY fields to create the input texts (X);
- Used TaggedL1 as the target labels (y);
- Performed a 70/30 train test split.

PIPELINE BUILD

- Tokenization;
- Convert to lowercase;
- Removal of punctuation and stopwords;
- Stemming.

PIPELINE BUILD

- Word Embedding: Word2Vec
- Text Vectorizer: Weighted Class TF-IDF[3]

TEXT REPRESENTATION

WCTF-IDF Algorithm:

- 1. Set `f` as the maximum total number of features.
- 2. Sort the classes in descending order of document frequency.
- 3. For each class `i`:
 - Compute the number of features to assign: $f_i = f \times (n_i / n)$

```
where n_i = number of documents in class i, and n = total number of documents.
```

- Fit a TF-IDF vectorizer on the documents of class i using $f_{\tt i}$ as the max_features parameter.
- Pass the selected terms as stopwords to the next class to reduce vocabulary overlap.
- 4. Merge all resulting vocabularies to form the final TF-IDF vectorizer.

MODEL EVALUATION

- Several different classifiers;
- Nested 5-fold crossvalidation: (Inner and outer loops);
- Stratified sampling to ensure balanced classes.

Model	WCTF-IDF		Word2Vec		
	Accuracy	Weighted F1-score	Accuracy	Weighted F1-score	
Random Forest	0.883 ± 0.007	0.879 ± 0.007	0.817 ± 0.010	0.815 ± 0.012	
Logistic Regression	0.903 ± 0.007	$\boldsymbol{0.903 \pm 0.007}$	0.808 ± 0.005	0.818 ± 0.003	
Linear SVM	0.901 ± 0.008	0.901 ± 0.008	0.820 ± 0.009	0.826 ± 0.007	
XGBoost	0.891 ± 0.006	0.889 ± 0.006	0.826 ± 0.008	0.825 ± 0.007	
Bagging	0.824 ± 0.015	0.829 ± 0.012	0.786 ± 0.019	0.787 ± 0.017	
Decision Tree	0.794 ± 0.014	0.798 ± 0.013	0.680 ± 0.016	0.688 ± 0.015	
KNN	0.680 ± 0.007	0.705 ± 0.008	0.727 ± 0.013	0.744 ± 0.012	
MultinomialNB	0.856 ± 0.017	0.856 ± 0.016			

MODEL SELECTION

SVM WCTF-IDF vs SVM word2vec (Wilcoxon Test)

p-value = $0.0000000019 \rightarrow Statistical evidence of difference.$

SVM WCTF-IDF vs LR WCTF-IDF (Wilcoxon Test)

p-value = $0.36 \rightarrow$ No statistical evidence of difference.

PERFORMANCE EVALUATION (Test set)

SVM

Class	Precision	Recall	F1-Score	Support
Class 1	1.00	0.50	0.67	4
Class 2	0.70	0.76	0.73	72
Class 3	0.93	0.94	0.93	67
Class 4	0.95	0.92	0.93	469
Class 5	0.93	0.95	0.94	279
Class 6	0.88	0.88	0.88	436
Class 7	0.83	0.71	0.77	14
Accuracy	0.90			1341
Macro Average	0.89	0.81	0.83	1341
Weighted Average	0.90	0.90	0.90	1341

Logistic Regression

Class	Precision	Recall	F1-Score	Support
Class 1	1.00	0.75	0.86	4
Class 2	0.74	0.74	0.74	72
Class 3	0.91	0.94	0.93	67
Class 4	0.93	0.93	0.93	469
Class 5	0.93	0.95	0.94	279
Class 6	0.90	0.88	0.89	436
Class 7	0.71	0.71	0.71	14
Accuracy	0.91			1341
Macro avg	0.87	0.84	0.86	1341
Weighted avg	0.91	0.91	0.91	1341

COMPARISON WITH OTHER STUDIES

Reference paper results[2]:

- Best model: SVM with 8,423 features (vs. 1,000 features in our case);
- Overall Accuracy and Weighted F1-score around 0.91 (same as our best model);
- Class-wise F1-score for the most imbalanced classes (1 and 7):

Paper: 0.40 and 0.62

Our best results: 0.86 and 0.77

INTERFACE

REFERENCES

- [1] Cheng, M. Y., Kusoemo, D., & Gosno, R. A. (2020). Text mining-based construction site accident classification using hybrid supervised machine learning. Automation in Construction, 118, 103265.
- [2] Qiao, J., Wang, C., Guan, S., & Liu, S. (2022). Construction-accident narrative classification using shallow and deep learning. Journal of Construction Engineering and Management, 148(9).
- [3] Deepwiz AI. (2023). How to correctly use TF-IDF with imbalanced data. Retrieved from https://www.deepwizai.com/projects/ how-to-correctly-use-tf-idf-with-imbalanced-data

THANK YOU FOR YOUR ATTENTION

