* Title: Balanced Search Trees, Hashing and Graphs

* Author : Munib Emre Sevilgen

* ID: 21602416 * Section: 1 * Assignment: 4

* Description: Question 1, 2, and 3

*/

Question 1:

(a)

Question 2:

Data Structure	insert	extractMin
unsorted array	O(1)	O(n)
red-black tree	O(logn)	O(logn)
hashing	O(1)	O(n)
min-heap	O(1)	O(logn)
sorted linked list	O(n)	O(1)

Question 3:

(a)
$$2^h - 1 \le N \le \frac{3^{(h+1)} - 3}{2}$$

(b) If the right child is a red node then the right sub-tree has red node at the root; due to the fact that the root of the red-black tree cannot be a red node, the right sub-tree is not a red-black tree.

(c) We can insert all the integers to a hash table at $O(N)$. We select every element A in the array one by one at $O(N)$ and look for its complement target-A in the hash table at $O(1)$. Therefore the time complexity of the algorithm is $O(N)$.		