

Universidad Nacional Autónoma de México Facultad de Ciencias Fundamentos de Bases de Datos

Normalización de Bases de Datos

Gerardo Avilés Rosas gar@ciencias.unam.mx

Aspectos de diseño de BD

- Uno de los principales problemas que se presentan cuando se convierten directamente diseños de BDs del modelo E/R → Modelo Relacional es la redundancia.
- La redundancia consiste en que un hecho se repita en más de una tupla.
- Una de las causas más común en redundancia es intentar agrupar en una relación las propiedades multivaluadas y univaluadas de un objeto.

...Aspectos de diseño de BD

Vamos a suponer que tenemos la siguiente relación:

nombre_suc	delegación	activo	nom_cliente	nPréstamo	importe
Centro	Cuauhtémoc	1,800 M	Santos	P – 17	200,000
Copilco	Coyoacán	420 M	Gómez	P – 23	400,000
Viveros	Coyoacán	340 M	López	P – 15	300,000
Centro	Cuauhtémoc	1,800 M	Toledo	P – 14	300,000
Eugenia	Benito Juárez	80 M	Santos	P – 93	100,000
Zapata	Benito Juárez	1,600 M	Abril	P – 11	180,000
San Ángel	Álvaro	60 M	Vázquez	P – 29	240,000
Tlalpan	Obregón	740 M	López	P – 16	260,000
Centro	Tlalpan	1,800 M	González	P – 23	400,000
Viveros	Coyoacán	340 M	Rodríguez	P – 25	500,000

¿Existe algún tipo de redundancia?

...Aspectos de diseño de BD

Redundancia de información:

agregar un nuevo préstamo o cambiar la dirección de una sucursal (duplicar información).

Incapacidad para representar cierta información:

¿Cómo dar de alta una nueva sucursal?

¿Qué sucede si no hubiera préstamos?

Es decir, existen **anomalías** en la base de datos.

Una **anomalía** es un problema que surge en una Base de Datos. Las principales anomalías que se pueden encontrar son:

- Redundancia: La información puede repetirse innecesariamente en varias tuplas.
- Anomalías de actualización: Podemos cambiar información en una tupla y dejarla inalterada en otra.
- Anomalías de eliminación: Si un conjunto de valores queda vacío, podemos perder información adicional como efecto secundario.

Dependencias funcionales

- Las dependencias funcionales ayudan a especificar formalmente cuándo un diseño es correcto.
- Se trata de una relación unidireccional entre 2 atributos de tal forma que en un momento dado, para cada valor único de A, sólo un valor de B se asocia con él a través de la relación.

■ Una **DF** que denotaremos por $X \rightarrow Y$, sucede entre dos conjuntos de atributos X e Y que son subconjuntos de R.

...Dependencias funcionales

Por ejemplo, vamos a suponer que tenemos la relación:

Pedidos (idCliente, nombre, paterno, materno, calle, ciudad, estado, CP, teléfono, noPedido fechaOrden, noArticulo, producto, precio, ¿enviado?)

Se espera, por ejemplo que:

idCliente → nombre, paterno, materno, calle, ciudad, estado, CP, teléfono
 noPedido → idCliente, fechaOrden
 noArticulo → producto, precio
 noPedido + noArticulo → ¿enviado?

Aunque los valores de los atributos pueden cambiar, en cualquier momento, sólo hay uno.

Las DFs se utilizan para:

- Especificar restricciones sobre el conjunto de relaciones.
- Examinar las relaciones y determinar si son legales bajo un conjunto de dependencias funcionales dado.

...Dependencias funcionales

- Si X es una llave de R esto implica que X→Y para cualquier subconjunto de atributos Y de R.
- Si $X \rightarrow Y$ en R, esto no implica que $Y \rightarrow X$
- Una DF es una propiedad semántica de los atributos, la cual se debe cumplir para la extensión en una relación.
- Las extensiones que satisfacen las restricciones de DFs se denominan extensiones legales o estados legales debido a que obedecen las restricciones de la DF.

	D	С	В	Α
¿A → B?	d1	c1	bl	al
¿A → C?	d2	c1	b2	al
ZA / C:	d2	c2	b2	a2
SAB → CD?	d3	c2	b3	a2
	d4	c2	b3	a3

Llaves de las relaciones

Una **llave** puede definirse como un conjunto de atributos $\{A_1, A_2, ..., A_n\}$ tales que:

- Determinan funcionalmente cualquier otro atributo de la relación. Es decir, es imposible para dos *tuplas* distintas de R coincidir en todos los atributos $\{A_1, A_2, ..., A_n\}$.
- Ningún subconjunto propio de $\{A_1, A_2, ..., A_n\}$ determina funcionalmente a los otros atributos de R, es decir, debe ser mínimo.
- Una superllave es un conjunto de atributos que contiene una llave.

Reglas de inferencia de Armstrong

- Fueron desarrolladas por William W. Armstrong en 1974: Dependency Structures of Data Base Relationships.
- Se trata de un conjunto de reglas que permiten deducir todas las dependencias funcionales que tienen lugar en un conjunto de atributos dados, como consecuencia de aquellas que se asumen como ciertas a partir del conocimiento del problema.
- Este resultado permite establecer un conjunto de algoritmos sencillos para:
 - 1. Encontrar el conjunto cerrado de un conjunto de dependencias funcionales.
 - 2. Encontrar la equivalencia lógica de esquemas.
 - 3. Deducir dependencias funcionales.
 - 4. Calcular las llaves de un esquema.

...Reglas de inferencia de Armstrong

- 1. Regla de la **reflexividad**: Si $Y \subseteq X$, entonces $X \rightarrow Y$
- 2. Regla del **aumento**: $\{X \rightarrow Y\} \Rightarrow XZ \rightarrow YZ$
- 3. Regla de la transitividad: $\{X \rightarrow Y, Y \rightarrow Z\} \Rightarrow X \rightarrow Z$
- 4. Regla de la **descomposición**: $\{X \rightarrow YZ\} \Rightarrow X \rightarrow Y y X \rightarrow Z$
- 5. Regla de la unión: $\{X \rightarrow Y, X \rightarrow Z\} \Rightarrow X \rightarrow YZ$
- 6. Regla de la **pseudo-transitividad**: $\{X \rightarrow Y, WY \rightarrow Z\} \Rightarrow WX \rightarrow Z$

Ejemplo

Sean

$$\mathbf{R} = (A, B, C, G, H, I) \ y \ \mathbf{F} = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$$

Algunos miembros de F+ serían:

- Unión: A → BC, CG → HI
- Pseudo-transitividad: AG → I, AG → H
- Aumento: AG → CG
- Transitividad: A → H

Cerradura del conjunto de atributos

- Para crear las dependencias funcionales de un esquema, requerimos:
 - ☐ Especificar a partir de la semántica de los atributos de R, el conjunto F de DFs.
 - ☐ Usando las reglas de inferencia de Armstrong obtener otras DFs.
- Para obtener todas las dependencias funcionales de manera sistemática:
 - □ Determinar el conjunto de atributos X del lado izquierdo de alguna DF en F.
 - \square Determinar el conjunto X+ de todos los atributos que son dependientes de X.
- Dado {A₁,A₂,...,A_n} un conjunto de atributos y F un conjunto de DFs, la cerradura del conjunto de atributos ({A₁,A₂,...,A_n}+) bajo las dependencias en F es el conjunto de atributos B tales que cada relación que satisface todas las dependencias en F también satisface:

$$A_1, A_2, ..., A_n \rightarrow B$$

Algoritmo para calcular X+ bajo F

Repetir

```
anteriorX+ = X+;
Para cada Y → Z en F hacer
Sí Y ⊆ X+ entonces X+ = X+ ∪ Z;
hasta que anteriorX+ = X+;
```

Ejemplos:

1. Sean R = {A,B,C,G,H,I} y F = {A \rightarrow B,A \rightarrow C,CG \rightarrow H,CG \rightarrow I,B \rightarrow H}, se tiene que:

1. Sea R = {A,B,C,D,E,F} y F = {AB \rightarrow C,BC \rightarrow D,D \rightarrow E,CF \rightarrow B}, se tiene que {AB} += {ABCDE}, lo que implica que:

Dependencias deducidas

Si queremos probar si una dependencia funcional $A_1, A_2, ..., A_n \rightarrow B$, se deduce de un conjunto de dependencias F, debemos calcular $\{A_1, A_2, ..., A_n\}$ +, si B esta ahí, entonces la DF si es deducida del conjunto F, en caso contrario no es deducida de F.

Por ejemplo, sea $R = \{A,B,C,D,E,F\} y F = \{AB \rightarrow C,BC \rightarrow D,D \rightarrow E,CF \rightarrow B\}$

Probar que AB → D

Se empieza por calcular $\{A,B\}$ += $\{A,B,C,D,E\}$, como $D \in \{A,B\}$ + entonces ésta si es deducida.

Probar que D → A

Se tiene que **D** += {**D**,**E**}, como **A** no está en **D**+, entonces la DF no se deduce de F.

Y ahora... ¿Cómo normalizo una Base de Datos?

Una forma de acabar con anomalías como la redundancia es la descomposición de relaciones.

Dada una relación $R(A_1,A_2,...,A_n)$, se puede descomponer R en dos relaciones $S(B_1,B_2,...,B_i)$ y $T(C_1,C_2,...,C_i)$, tales que:

- 1. $\{A_1, A_2, ..., A_n\} = \{B_1, B_2, ..., B_i\} \cup \{C_1, C_2, ..., C_i\}$
- 2. Las tuplas en la relación S son la proyección sobre $\{B_1, B_2, ..., B_i\}$ de las tuplas en R.
- 3. De manera similar, las *tuplas* en T son la proyección de $\{C_1, C_2, ..., C_i\}$ sobre R.

Veamos un ejemplo:

nombre_suc	delegación	activo	nom_cliente	nPréstamo	importe
Centro	Cuauhtémoc	1,800 M	Santos	P – 17	200,000
Copilco	Coyoacán	420 M	Gómez	P – 23	400,000
Viveros	Coyoacán	340 M	López	P – 15	300,000
Centro	Cuauhtémoc	1,800 M	Toledo	P – 14	300,000
Eugenia	Benito Juárez	80 M	Santos	P – 93	100,000
Zapata	Benito Juárez	1,600 M	Abril	P – 11	180,000
San Ángel	Álvaro Obregón	60 M	Vázquez	P – 29	240,000
Tlalpan	Tlalpan	740 M	López	P – 16	260,000
Centro	Cuauhtémoc	1,800 M	González	P – 23	400,000
Viveros	Coyoacán	340 M	Rodríguez	P – 25	500,000

Si se descompone la relación en:

- 1. Una relación **Sucursa**l (nombre_suc, delegación, activo, nom_cliente) y
- 2. Una relación **Préstamo** (nom_cliente, nPréstamo, importe)

nombre_suc	Delegación	activo	nom_cliente
Centro	Cuauhtémoc	1,800 M	Santos
Copilco	Coyoacán	420 M	Gómez
Viveros	Coyoacán	340 M	López
Centro	Cuauhtémoc	1,800 M	Toledo
Eugenia	Benito Juárez	80 M	Santos
Zapata	Benito Juárez	1,600 M	Abril
San Ángel	Álvaro Obregón	60 M	Vázquez
Tlalpan	Tlalpan	740 M	López
Centro	Cuauhtémoc	1,800 M	González
Viveros	Coyoacán	340 M	Rodríguez

nom_cliente	nPréstamo	importe
Santos	P – 17	200,000
Gómez	P – 23	400,000
López	P – 15	300,000
Toledo	P – 14	300,000
Santos	P – 93	100,000
Abril	P – 11	180,000
Vázquez	P – 29	240,000
López	P – 16	260,000
González	P – 23	400,000
Rodríguez	P – 25	500,000

 Encontrar todas las sucursales que tienen préstamos con importe menos a \$200,000:

Con el esquema original:

nombre_suc	delegación	activo	nom_cliente	nPréstamo	importe
Centro	Cuauhtémoc	1,800 M	Santos	P – 17	200,000
Copilco	Coyoacán	420 M	Gómez	P – 23	400,000
Viveros	Coyoacán	340 M	López	P – 15	300,000
Centro	Cuauhtémoc	1,800 M	Toledo	P – 14	300,000
Eugenia	Benito Juárez	80 M	Santos	P – 93	100,000
Zapata	Benito Juárez	1,600 M	Abril	P – 11	180,000
San Ángel	Álvaro Obregón	60 M	Vázquez	P – 29	240,000
Tlalpan	Tlalpan	740 M	López	P – 16	260,000
Centro	Cuauhtémoc	1,800 M	González	P – 23	400,000
Viveros	Coyoacán	340 M	Rodríguez	P – 25	500,000

Eugenia y Zapata

Con el esquema fraccionado:

nombre_suc	Delegación	activo	nom_cliente
Centro	Cuauhtémoc	1,800 M	Santos
Copilco	Coyoacán	420 M	Gómez
Viveros	Coyoacán	340 M	López
Centro	Cuauhtémoc	1,800 M	Toledo
Eugenia	Benito Juárez	80 M	Santos
Zapata	Benito Juárez	1,600 M	Abril
San Ángel	Álvaro Obregón	60 M	Vázquez
Tlalpan	Tlalpan	740 M	López
Centro	Cuauhtémoc	1,800 M	González
Viveros	Coyoacán	340 M	Rodríguez

Eugenia, Zapata y Centro

nom_cliente	nPréstamo	importe
Santos	P – 17	200,000
Gómez	P – 23	400,000
López	P – 15	300,000
Toledo	P – 14	300,000
Santos	P – 93	100,000
Abril	P – 11	180,000
Vázquez	P – 29	240,000
López	P – 16	260,000
González	P – 23	400,000
Rodríguez	P – 25	500,000

2. Indicar los préstamos que se tienen en cada sucursal el cliente Santos:

nom_suc	delegación	nom_cliente	nPréstamo	importe
Centro	Cuauhtémoc	Santos	P – 17	200,000
Centro	Cuauhtémoc	Santos	P – 93	100,000
Eugenia	Coyoacán	Santos	P – 17	200,000
Eugenia	Coyoacán	Santos	P – 93	100,000

Ambas relaciones tienen a *nom_cliente* en común, así que para juntarlas se usa este atributo que no es adecuado puesto que cliente puede tener varios préstamos no necesariamente en la misma sucursal.

- La Normalización es una técnica desarrollada inicialmente por E.F. Codd en 1972, para diseñar la estructura lógica de una BD en el modelo relacional.
- Se trata de un proceso en el cual se van comprobando el cumplimiento de una serie de reglas (restricciones) por parte de un esquema de relación.
- Cada regla que se cumple, aumenta el grado de normalización del esquema.
- Cuando una regla no cumple, el esquema de relación se debe descomponer en varios esquemas que sí la cumplan por separado.

Objetivos de la normalización

Para normalizar una BD se desea:

- Eliminar la duplicidad de información.
- Que las relaciones fraccionadas tengan un join sin pérdida.
- Conservar las dependencias funcionales.

Forma Normal de Boyce-Codd

Una relación R está en BCNF si y sólo si en toda DF no trivial $A_1, A_2, ..., A_n \rightarrow B$ para R, se tiene que $\{A_1, A_2, ..., A_n\}$ es superllave de R.

Por ejemplo:

La relación C(nombre, calle, ciudad) con

La relación S(nombre,no_préstamo) con

...Forma Normal de Boyce-Codd

Cualquier relación de dos atributos A y B está en BCNF:

- 1. Si no hay DF *no triviales* entonces se mantiene la condición BCNF, debido a que sólo una DF no trivial puede violar esta condición (notar que {A,B} es la única llave).
- Si se tiene A → B, pero no B → A, entonces A es la única llave y cada dependencia no trivial contiene A en la izquierda, por tanto no hay violación a la condición BCNF.
- 3. Si B \rightarrow A y no se tiene A \rightarrow B es un caso simétrico al anterior.
- 4. Si se tiene A → B y B → A. Entonces tanto A como B son llaves, y cualquier dependencia tiene al menos uno de ellos en su lado izquierdo, por tanto no puede haber violación de la norma BCNF.

...Forma Normal de Boyce-Codd

Es posible dividir cualquier relación en otras con las siguientes propiedades:

- Son esquemas de relaciones en BCNF.
- Los datos en la relación original se representan fielmente por las relaciones que son resultado de la descomposición.

La estrategia a seguir es:

- 1. Buscar una DF no trivial $X \rightarrow B$ que viole BCNF.
- 2. Calcular X+.
- 3. Fraccionar R en R1(X+) \cup R2((R-X+) \cup X).
- 4. Encontrar las DF para las nuevas relaciones.

Se debe aplicar la regla de descomposición tantas veces como sea necesario hasta que todas las relaciones estén en BCNF.

La relación

P(nombreSuc, nombre_cliente, no_préstamo, importe)

DF = {no_prestamo → importe nombreSuc}

se descompone en:

P1(no_prestamo, importe, nombreSuc)

P2(nombre_cliente, no_préstamo)

Sea R una relación descompuesta en S y otra más. Sea F el conjunto de DFs para R. Para calcular las DF mantenidas en S, hacer:

- 1. Para cada conjunto X de atributos contenidos en S calcular X+.
- Para cada atributo B tal que:
 - B es un atributo de S,
 - B no esta en X, y
 - B está en X+

se tiene la DF $X \rightarrow B$ en S

Recuperación de información

Interesa que la descomposición preserve la información contenida en la relación original.

Consideremos R(A,B,C) con $B \rightarrow C$ que suponemos es una violación a la BCNF,

- 1. Al descomponer R obtenemos S(B,C) y T = (A,B).
- 2. Sea t = (a,b,c) una tupla de R.
- 3. Al proyectarla en la descomposición se obtienen (a,b) para T y (b,c) para S.
- 4. Al hacer un join sobre el atributo común, en este caso B, obtenemos nuevamente t.

Sin embargo, regresar a las *tupla*s iniciales no es suficiente para asegurar que la relación original está realmente representada por la descomposición.

Problemas con la recuperación

Si se tiene la relación con la siguiente extensión:

ésta se descompone en las 2 siguientes con su respectiva proyección:

¿Son correctas las proyecciones?

La justificación de la no pérdida ni ganancia de información es debido a que se están considerando a las DFs.

Tercera Forma Normal

En ocasiones se puede encontrar que un esquema de relación y sus DF no están en BCNF pero no se desea descomponer más, por ejemplo:

Reservaciones (película, cine, ciudad) con **DF** = {cine → ciudad, película ciudad → cine}

Ningún atributo por sí solo es una llave; por otro lado, la pareja {cine, película} sí son llaves, de manera que **cine** → **ciudad**, viola la **BCNF**.

Si normalizamos esta relación obtenemos:

	cine	ciudad
S =	Real cinema	D.F.
	Linterna mágica	D.F.

	cine	película
T =	Real cinema	La vida es bella
	Linterna mágica	La vida es bella

...Tercera Forma Normal

Ambas relaciones son permisibles de acuerdo a las DF de cada relación, pero al unirlas obtenemos:

	cine	Ciudad	película
S ⋈ T =	Real cinema	D.F.	La vida es bella
	Linterna mágica	D.F.	La vida es bella

que viola la DF **película ciudad** → cine.

La solución al problema anterior es relajar la condición para la BCNF.

...Tercera Forma Normal

Una relación R está en **Tercer Forma Normal (3NF)** con respecto a F, si para toda dependencia no trivial $A_1, A_2, ..., A_n \rightarrow B$, se tiene que:

- 1. El lado izquierdo $(A_1, A_2, ..., A_n)$ es una superllave o bien,
- 2. El lado derecho, B, es miembro de alguna llave candidata de R

El segundo punto es el que permite una dependencia como cine → ciudad del ejemplo anterior, porque ciudad es miembro de una llave.

Siempre es posible descomponer un esquema de relación sin pérdida de información en esquemas que están en 3NF y permiten que se verifiquen todas las DFs.

Si estas relaciones no están en BCNF, se tendrá un poco de redundancia en el esquema.

Atributos superfluos

A es un **atributo superfluo** si se puede eliminar de la DF sin que se altere la cerradura de F.

Sea $\alpha \rightarrow \beta$ una DF en F y A un atributo, A es superfluo si:

- 1. Si A esta en α (superfluo por la izquierda).
- 2. Si A esta en β (superfluo por la derecha)

Equivalencia de conjuntos de DFs

Dos conjuntos de dependencias funcionales, $\mathbf{F_1}$ y $\mathbf{F_2}$ son equivalentes si:

$$F_1 \vDash F_2 \lor F_2 \vDash F_1$$

Por ejemplo:

Sea
$$F = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$$

■ Si $F_1 = \{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$ es equivalente a F, ya que:

$${A}+ = {ABCD} y {AC}+ = {ABCD}$$

■ Si $F_2 = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$ no es equivalente a F, ya que:

$$\{C\}+=\{CD\}$$

Conjunto mínimo

Un conjunto F de dependencia funcionales es **mínimo** si

- No tiene atributos superfluos
- 2. Cada lado izquierdo de las DF de F es único, es decir, no existen $\alpha_1 \rightarrow \beta_1$, $\alpha_2 \rightarrow \beta_2$ tales que $\alpha_1 = \alpha_2$.

El algoritmo para calcular el conjunto F' equivalente a F que sea mínimo es:

Repetir

- 1. Aplicar la regla de la unión a relaciones tales que $\alpha_1 \rightarrow \beta_1$, $\alpha_1 \rightarrow \beta_2$, para obtener $\alpha_1 \rightarrow \beta_1\beta_2$ y sustituir con esta última las dependencias funcionales con igual lado izquierdo.
- Eliminar los atributos superfluos de las dependencias funcionales.

Hasta que ya no haya ningún cambio.

Algoritmo de síntesis: 3NF

Su objetivo es descomponer **R** con dependencias funcionales **F**, en relaciones que satisfagan la **3NF**.

- Hacer F mínimo
- 2. Para toda DF en F mínimo:
 - a. Crear una relación que contenga sólo los atributos de las DF.
 - b. Eliminar un esquema si es subconjunto de otro.
- Si no existen esquemas que contengan llaves candidatas, crear una relación con esos atributos.

Sea R(A,B,C,D) y $F = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$. Normalizar con 3NF:

Vamos a encontrar el conjunto mínimo equivalente:

- Podemos observar que no hay lados izquierdos en común, entonces comenzamos por determinar atributos superfluos
- Tomamos la DF AC → D y verificamos si C es superfluo del lado izquierdo:

$$A \rightarrow D \Rightarrow \{A\} + = \{ABCD\} \therefore C \text{ es superfluo}$$

 $\Rightarrow F' = \{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$

Unimos lados izquierdos en común:

$$F' = \{A \rightarrow BD, B \rightarrow C\}$$

Verificamos ahora atributos superfluos, pero, ahora del lado derecho.

¿B es superfluo?
$$A \to BD \Rightarrow A \to D \Rightarrow F' = \{A \to D, B \to C\}$$

{A}+ = {AD} :: B no es superfluo
¿D es superfluo? $A \to BD \Rightarrow A \to B \Rightarrow F' = \{A \to B, B \to C\}$
{A}+ = {ABC} :: D no es superfluo

Por lo tanto,

$$F' = \{A \rightarrow BD, B \rightarrow C\}$$
 es un conjunto mínimo

El siguiente paso consiste en crear una relación que contenga solo los atributos de cada una de las DF:

$$S(A,B,D)$$
 y $T(B,C)$

De lo anterior podemos observar que no existen esquemas que sean subconjunto de otro, entonces, calculamos la llave:

$${A}+ = {ABCD}$$

Como **A** ya esta contenida en la **S**, ya no es necesario llegar al paso tres del algoritmo y la normalización en **3NF** es:

$$R1(A,B,D)$$
 y $R2(B,C)$

Dependencias Multivaluadas

Sea R(nombre, dirección, teléfono, afición) con:

nombre → dirección

nombre	dir	tel	afición
n1	d1	†1	h1
n1	d1	†1	h2
n1	d1	†1	h3
n1	d1	†2	h1
n1	d1	†2	h2
n1	d1	†2	h3

Como se puede observar, la llave es **nombre teléfono afición**, de manera que una violación a la BCNF es **nombre** → **dirección**. Podemos dividir la relación en **S(nombre, dirección)** y **T(nombre, teléfono, afición)** las cuales se encuentran en BCNF:

nombre	dir
n1	d1

nombre	tel	afición
n1	†1	h1
n1	†1	h2
n1	†1	h3
n1	†2	h1
n1	†2	h2
n1	†2	h3

...Dependencias Multivaluadas

Existe una **dependencia multivaluada** (DMV) $A_1A_2...A_n \rightarrow B_1B_2...B_m$ si para cada par de tuplas t_1 y t_2 de la relación R, que coinciden en todos los valores de las A's, podemos encontrar una tupla t_3 tal que coincida con:

- 1. t_1 y t_2 en las **A**'s
- 2. t_1 en las **B's** y
- 3. t_2 en todos los atributos de **R** que no están ni en **A** ni en **B**

- Las DF excluyen ciertas tuplas de una relación, si A → B entonces no puede haber dos tuplas con el mismo valor de A y diferente de B.
- Las DMV's permiten que otras tuplas de esta forma se presenten en la relación. Por ejemplo:

préstamo	nombre_cliente	calleNum	Ciudad
P23	Gómez	Clavel 25-A-205	Cuernavaca
P23	Gómez	Insurgentes 4141	México D.F.
P93	Pérez	Juárez 85	Oaxaca

Si el cliente Gómez obtuviera otro préstamo, digamos el **P27**, se tendrían que agregar dos tuplas:

préstamo	nombre_cliente	calleNum	Ciudad
P23	Gómez	Clavel 25-A-205	Cuernavaca
P23	Gómez	Insurgentes 4141	México D.F.
P27	Gómez	Clavel 25-A-205	Cuernavaca
P27	Gómez	Insurgentes 4141	México D.F.
P93	Pérez	Juárez 85	Oaxaca

Se requiere que esta relación tenga la **DMV**:

nombre -> calleNum ciudad

Se debe verificar está condición para **TODOS** los pares de tuplas que coincidan con el nombre, no solo con un par.

Reglas para las DMV

Sean $A = \{A_1A_2...A_n\}$ y $B = \{B_1B_2...B_n\}$ conjuntos de atributos de una relación R, las **DMVs** satisfacen las siguientes reglas:

Complemento:

Si se tiene A -> B para alguna relación, entonces se debe tener A -> C, donde C son todos los atributos de R que no son ni As, ni Bs.

Transitividad:

Si se tienen las **DMVs A** -> **B**, **B** -> **C**, entonces también se tiene que **A** -> **C**.

Replicación. Toda DF es una DMV.

NOTA:

Las DMV no obedecen las reglas de división/combinación.

Sea R = (A, B, C, D, G, H, I) \vee DMV = {A \rightarrow B, B \rightarrow HI, CG \rightarrow H}

Aplicando las reglas se puede obtener:

- A → CDGHI; por la regla del complemento.
- A → HI; por la regla de transitividad aplicada a la primera y segunda dependencias.
- ¿B → H, B → I?

 No es posible pues no hay división.

Una **DMV** $A_1A_2...A_n \rightarrow B_1B_2...B_n$ es **no trivial** si:

- 1. Ninguna de las B's está contenida en las A's
- 2. R tiene más atributos que las A's y las B's.

Cuarta Forma Normal

- La redundancia que proviene de las DMV, puede eliminarse si utilizamos en un nuevo algoritmo de descomposición para las relaciones.
- La Cuarta Forma Normal elimina todas las DMV no triviales, lo mismo que las DF que violan la BCNF. En consecuencia, las relaciones descompuestas resultantes no tienen ni la redundancia de las DF ni de las DMV.
- Criterio para 4NF:
 - Una relación **R** está en **4FN** si toda DMV no trivial $A_1A_2...A_n woheadrightarrow B_1B_2...B_m$ tiene que $\{A_1A_2...A_n\}$ es una superllave
- Es importante hacer notar que las nociones de llave y superllave dependen sólo de las DFs. La 4NF es una generalización de la BCNF debido a que toda DF es una DMV.
- Por lo tanto, toda violación a la BCNF es una violación a la 4NF, pero al revés no es cierto.

...Cuarta Forma Normal

Objetivo: Eliminar la redundancia debida al efecto multiplicativo de las DMVs.

- 1. Encontrar una violación a la 4NF, es decir, $A_1A_2...A_n woheadrightarrow B_1B_2...B_m$ donde el conjunto de las A's no forma una superllave.
- 2. Dividir la relación en dos esquemas:
 - El que contiene las A's y las B's
 - El que contiene las A's y los atributos de R que no están entre las B's.
- 3. Si alguno de los esquemas no estuviera en 4NF, regresar al paso 1.

En este caso, no hay pruebas análogas a las de la cerradura de atributos para DFs.

Sea BC(préstamo, nombre, calleNum, ciudad) con las dependencias: {nombre → préstamo, nombre → calleNum ciudad}

 Buscamos una DMV que viole la 4NF (lado izquierdo no es una superllave. Para determinar la llave, solo consideramos las DF)

Para este caso, la llave es **nombre calleNum ciudad** (esto es porque **nombre** ya determina a **préstamo** y solo falta considerar **calleNum** y **ciudad**)

Por lo tanto, la DMV que viola es: nombre --> calleNum ciudad

- 2. Dividimos la relación en:
 - S(nombre, calleNum, ciudad) se cumple nombre → calleNum ciudad

 T(nombre, préstamo) se cumple nombre → préstamo
- 3. Como se puede observar, en **S**, la DMV **nombre » calleNum ciudad** es trivial y además no hay más DMV que violen la **4FN**, por lo tanto, esta relación ya está normalizada.
- En el caso de T, la dependencia nombre → préstamo es trivial y no hay DMV que violen la 4FN.

Relación entre Formas Normales

Propiedad	3NF	BCNF	4NF
Elimina la redundancia por dependencias funcionales	La mayor parte	Sí	Sí
Elimina la redundancia debida a dependencias multivaluadas	No	No	Sí
Conserva las dependencias funcionales	Sí	Quizá	Quizá
Conserva las dependencias multivaluadas	Quizá	Quizá	Quizá