In [10]:	<pre>df = pd.read_csv("WeatherDataP.csv") df</pre>
Out[10]:	Pressure Humidity 0 1014.40 0.62
	1 1014.20 0.66 2 1014.47 0.79
	3 1014.45 0.82 4 1014.49 0.83
	5 1014.52 0.85 6 1014.16 0.83
	7 1014.24 0.78 8 1014.25 0.72
	9 1013.96 0.61 10 1013.85 0.52 11 1013.04 0.46
	12 1012.22 0.40 13 1011.44 0.40
	14 1010.52 0.37 15 1009.83 0.40
	16 1009.26 0.36 17 1008.76 0.43
	18 1008.36 0.50 19 1008.11 0.53
	20 1008.15 0.55 21 1007.85 0.58
	22 1007.89 0.59 23 1007.36 0.60
	24 1007.26 0.63 Why you want to apply regression on selected dataset?
	Why you want to apply regression on selected dataset? Because our Y which is target variable is of continuous type so we can apply regression
	How many total observations in data? There are total 25 observations
	There are total 25 observations. How many independent variables?
	In This dataset,we could say pressure is the independent variables.
	Which is dependent variable? Humidity is the dependent variable.
	Which are most useful variable in estimation? Prove using correlation.
In [6]:	In this dataset there is only one independent variable. So there is no selection of most useful variable. But following is correlation between independent and dependent variable. df.corr()
Out[6]:	
	Pressure 1.00000 0.55263 Humidity 0.55263 1.00000
In [7]:	<pre>df.describe()</pre>
Out[7]:	Pressure Humidity count 25.00000 25.0000
	mean 1011.481600 0.5932 std 2.873799 0.1590
	min 1007.260000 0.3600 25% 1008.360000 0.4600
	50% 1012.220000 0.5900 75% 1014.240000 0.7200 max 1014.520000 0.9500
In [8]:	max 1014.520000 0.8500
۱۱۰ [۵]: ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ - ۱۱۰ -	<pre>df.info() <class 'pandas.core.frame.dataframe'=""> PangeIndex: 25 entries 0 to 24</class></pre>
	RangeIndex: 25 entries, 0 to 24 Data columns (total 2 columns): # Column Non-Null Count Dtype
	0 Pressure 25 non-null float64 1 Humidity 25 non-null float64 dtypes: float64(2)
In [9]:	memory usage: 528.0 bytes
Out[9]:	Pressure 0 Humidity 0
In [75]:	dtype: int64 # why we are not taking series and using .values we are taking array ?
	# bcz reshape will not work in pandas series , why actually reshape() is numpy method so x must be a array x = df['Pressure'].values y = df['Humidity'].values
	x #x=df.Pressure #x
Out[75]:	array([1014.4 , 1014.2 , 1014.47, 1014.45, 1014.49, 1014.52, 1014.16, 1014.24, 1014.25, 1013.96, 1013.85, 1013.04, 1012.22, 1011.44,
	1010.52, 1009.83, 1009.26, 1008.76, 1008.36, 1008.11, 1008.15, 1007.85, 1007.89, 1007.36, 1007.26])
In [76]:	<pre>x= x.reshape(-1,1) # reshape(rows, columns) x</pre>
	#Unknown Dimension #You are allowed to have one "unknown" dimension. #Meaning that you do not have to specify an exact number for one of the dimensions in the reshape method.
	#Pass -1 as the value, and NumPy will calculate this number for you. # Note: We can not pass -1 to more than one dimension.
Out[76]:	array([[1014.4],
	[1014.47], [1014.45], [1014.49],
	[1014.52], [1014.16], [1014.24], [1014.25],
	[1014.23], [1013.96], [1013.85], [1013.04],
	[1012.22], [1011.44], [1010.52],
	[1009.83], [1009.26], [1008.76],
	[1008.36], [1008.11], [1008.15], [1007.85],
	[1007.85], [1007.89], [1007.36], [1007.26]])
In [77]:	<pre>poly = PolynomialFeatures(degree=1) poly</pre>
Out[77]:	PolynomialFeatures(degree=1)
In [78]:	<pre>x_poly = poly.fit_transform(x) #this function return valueerror if we have store x values in series instead of array x_poly</pre>
	#Often, the input features for a predictive modeling task interact in unexpected and often nonlinear ways.
	#These interactions can be identified and modeled by a learning algorithm. Another approach is to engineer new features that expose these interacti #These features are called interaction and polynomial features and allow the use of simpler modeling algorithms as some of the complexity of interp
Out[78]:	array([[1.00000e+00, 1.01440e+03],
	[1.00000e+00, 1.01445e+03], [1.00000e+00, 1.01449e+03], [1.00000e+00, 1.01452e+03],
	[1.00000e+00, 1.01416e+03], [1.00000e+00, 1.01424e+03], [1.00000e+00, 1.01425e+03],
	[1.00000e+00, 1.01396e+03], [1.00000e+00, 1.01385e+03], [1.00000e+00, 1.01304e+03],
	[1.00000e+00, 1.01222e+03], [1.00000e+00, 1.01144e+03], [1.00000e+00, 1.01052e+03], [1.00000e+00, 1.00983e+03],
	[1.00000e+00, 1.00926e+03], [1.00000e+00, 1.00876e+03], [1.00000e+00, 1.00836e+03],
	[1.00000e+00, 1.00811e+03], [1.00000e+00, 1.00815e+03], [1.00000e+00, 1.00785e+03],
	[1.00000e+00, 1.00789e+03], [1.00000e+00, 1.00736e+03], [1.00000e+00, 1.00726e+03]])
In [85]:	poly.fit(x_poly,y) # TO FIND OUT BEST FIT CO-EFFICENT / BEST LINE FIT CURVE FOR THE LINE OF INPUT(X_POLY), DEPENDS ON Y
Out[85]: In [80]:	<pre>PolynomialFeatures(degree=5) reg = LinearRegression()</pre>
	reg.fit(x_poly,y)
Out[80]: In [81]:	<pre>y_preg = reg.predict(x_poly)</pre>
In [82]:	plt.scatter(x,y,color='black')
Out[82]:	plt.plot(x, y_preg, color='red') [<matplotlib.lines.line2d 0x1f13c520190="" at="">]</matplotlib.lines.line2d>
[04] :	0.8
	0.7
	0.6
	0.5
	1007 1008 1009 1010 1011 1012 1013 1014
In [83]:	<pre>#polynomial of degree 3 poly = PolynomialFeatures(degree=3)</pre>
	<pre>x_poly = poly.fit_transform(x) poly.fit(x_poly,y) reg.fit(x_poly,y)</pre>
	<pre>y_preg = reg.predict(x_poly) plt.scatter(x,y,color='black') plt.plot(x, y_preg, color='red')</pre>
Out[83]:	[<matplotlib.lines.line2d 0x1f13c58c2e0="" at="">]</matplotlib.lines.line2d>
	0.8
	0.6
	0.5
	0.4
In [84]:	1007 1008 1009 1010 1011 1012 1013 1014 #polynomial of degree 5
	<pre>poly = PolynomialFeatures(degree=5) x_poly = poly.fit_transform(x)</pre>
	<pre>poly.fit(x_poly,y) reg.fit(x_poly,y) y_preg = reg.predict(x_poly) plt.scatter(x,y,color='black')</pre>
0	plt.plot(x, y_preg, color='red')
Out[84]:	••
	0.7
	0.6
	0.5
	1007 1008 1009 1010 1011 1012 1013 1014

#19IT016

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures

In [4]: