Package 'spatsurv'

March 23, 2017

Type Package	
Title Bayesian Spatial Survival Analysis with Parametric Proportional Hazards Models	
Version 1.1	
Date 2017-03-23	
Author Benjamin M. Taylor and Barry S. Rowlingson Additional contributions Ziyu Zheng	
Maintainer Benjamin M. Taylor <b. taylor1@lancaster.ac.uk=""></b.>	
Description Bayesian inference for parametric proportional hazards spatial survival models; flexible spatial survival models.	
License GPL-3	
Imports survival, sp, spatstat, raster, iterators, RandomFields, fields, rgl, Matrix, stringr, rgeos, RColorBrewer, geostatsp, OpenStreetMap, methods, lubridate	
Suggests rgdal, gpclib	
RoxygenNote 5.0.1	
NeedsCompilation no	
Depends R (>= 2.10)	
Repository CRAN	
Date/Publication 2017-03-23 13:45:39 UTC	
R topics documented:	
allocate alpha	5 6 7 8 8 9

paselinehazard	. 9
petapriorGauss	. 10
olockDiag	. 11
ooxplotRisk	
Bspline.construct	
BsplineHaz	
checkSurvivalData	
circulant	
circulant.matrix	
circulant.numeric	
riculantij	
covmodel	
CSplot	
cumbasehazard	
cumbasehazard.basehazardspec	
cumulativeBspline.construct	
lensityquantile	
lensityquantile.basehazardspec	
lensityquantile_PP	
lensity_PP	
lerivindepGaussianprior	
lerivindepGaussianpriorST	
lerivpsplineprior	
listinfo	
listinfo.basehazardspec	
estimateY	
etapriorGauss	
Et_PP	
EvalCov	
ExponentialCovFct	
exponentialHaz	
FFTgrid	
ixedpars	
ixmatrix	
ixParHaz	
railtylag1	
·s	. 30
stimes	. 31
gamma2risk	. 31
GammafromY	. 32
GammaFromY_SPDE	. 32
gencens	. 33
getBackground	. 33
getbb	. 34
getBbasis	. 34
getcov	. 35
zetgrd	. 36
getGrid	

getleneta	37
getOptCellwidth	37
getparranges	38
getsurvdata	38
gompertzHaz	39
gradbasehazard	40
gradbasehazard.basehazardspec	40
gradcumbasehazard	41
gradcumbasehazard.basehazardspec	42
grid2spdf	42
grid2spix	43
grid2spts	43
gridY	44
gridY_polygonal	44
guess_t	45
hasNext	45
hasNext.iter	46
hazardexceedance	46
hazardpars	47
hazard_PP	47
hessbasehazard	48
hessbasehazard.basehazardspec	48
hesscumbasehazard	49
hesscumbasehazard.basehazardspec	49
imputationModel	50
Independent	50
indepGaussianprior	51
indepGaussianpriorST	51
inference.control	52
insert	53
invtransformweibull	54
is.burnin	54
is.retain	55
iteration	55
logPosterior	56
logPosterior_gridded	57
logPosterior_polygonal	
logPosterior_SPDE	59
loop.mcmc	60
makehamHaz	60
maxlikparamPHsurv	61
MCE	62
	63
mcmcLoop	63
memcPriors	64
mcmcProgressNone	65
mcmcProgressPrint	65
memoProgressTavtPor	66

midpts														
multiWayHaz														
neighLocs														
neighOrder			 	 	 		 							
nextStep														
NonSpatialLogLikelihood_o	r_grac	lient	 	 	 		 							
omegapriorGauss			 	 	 		 							
omegapriorGaussST			 	 	 		 							
optifix														
plot.FFTgrid														
plotsury			 	 	 		 							
polyadd			 	 	 		 							
polymult														
posteriorcov														
predict.mcmcspatsurv														
print.meme														
_														
print.mcmcspatsurv														
print.mlspatsurv														
print.textSummary														
priorposterior														
proposalVariance														
proposalVariance_gridded														
proposalVariance_polygona														
proposalVariance_SPDE .			 	 	 		 							
PsplineHaz			 	 	 		 							
psplineprior			 	 	 		 							
psplineRWprior			 	 	 		 							
QuadApprox			 	 	 		 							
quantile.mcmcspatsurv														
quantile.mlspatsurv														
randompars														
reconstruct.bs														
reconstruct.bs.coxph														
reconstruct.bs.mcmcspatsur														
resetLoop														
residuals.mcmcspatsurv													٠	•
setTxtProgressBar2													٠	•
setupHazard														
setupPrecMatStruct														
showGrid			 	 	 	•	 							
simsurv			 	 	 		 							
spatialpars			 	 	 		 							
spatsurvVignette			 	 	 		 							
SPDE														
SPDEprec														
SpikedExponentialCovFct														
spplot1														
~ p p = ~ t = 1			 	 	 	•	 	•	•	 •	•	 •	•	•

C:	patsurv-packa	kaga	5
0	ратвиту-раска	Kage	J

	Summarise		 	 	 	 	 99
	summary.mcmc		 	 	 	 	 99
	summary.mcmcspatsurv		 	 	 	 	 100
	surv3d		 	 	 	 	 100
	survival_PP						
	survspat		 	 	 	 	 102
	survspatNS						
	textSummary						
	timevaryingPL						
	tpowHaz						
	transformweibull						
	txtProgressBar2						
	urlTemplate						
	vcov.mcmcspatsurv						
	vcov.mlspatsurv						
	weibullHaz						
	YfromGamma						
	YFromGamma_SPDE						
Index							113
spats	surv-package spatsi	ırv					

Description

An R package for spatially correlated parametric proportional hazards survial analysis.

Usage

spatsurv

Format

An object of class logical of length 1.

Details

Package: spatsurv Version: 0.9-11 Date: 2015-06-24 License: GPL-3

sectionDependencies The package spatsurv depends upon some other important contributions to CRAN in order to operate; their uses here are indicated:

6 allocate

survival, sp, spatstat, raster, iterators, RandomFields, fields, rgl, Matrix, stringr, RColorBrewer, geostatsp, rgeos.

sectionCitation To cite use of spatsurv, the user may refer to the following work:

Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. references X

Author(s)

Benjamin Taylor, Health and Medicine, Lancaster University, Barry Rowlingson, Health and Medicine, Lancaster University

|--|

Description

A function to allocate coordinates to an observation whose spatial location is known to the regional level

Usage

```
allocate(poly, popden, survdat, pid, sid, n = 2, wid = 2000)
```

Arguments

poly	a SpatialPolygonsDataFrame, on which the survival data exist in aggregate form
popden	a sub-polygon raster image of population density
survdat	data.frame containing the survival data
pid	name of the variable in the survival data that gives the region identifier in poly
sid	the name of the variable in poly to match the region identifier in survdat to
n	the number of different allocations to make. e.g. if n is 2 (the default) two candidate sets of locations are available.
wid	The default is 2000, interpreted in metres ie 2Km. size of buffer to add to window for raster cropping purposes: this ensures that for each polygon, the cropped raster covers it completely.

Value

matrices x and y, both of size (number of observations in survdat x n) giving n potential candidate locations of points in the columns of x and y.

alpha 7

alpha alpha function

Description

A function used in calculating the coefficients of a B-spline curve

Usage

```
alpha(i, j, knots, knotidx)
```

Arguments

i index ij index jknots knot vectorknotidx knot index

Value

a vector

B B function

Description

A recursive function used in calculating the coefficients of a B-spline curve

Usage

```
B(x, i, j, knots)
```

Arguments

X	locations at which to evaluate the B-spline
i	index i
j	index j
knots	a knot vector

Value

a vector of polynomial coefficients

basehazard

basehazard function

Description

Generic function for computing the baseline hazard

Usage

```
basehazard(obj, ...)
```

Arguments

obj an object

... additional arguments – currently there are none, but this is for extensibility

Value

method basehazard

See Also

basehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

basehazard.basehazardspec

basehazard.basehazardspec function

Description

A function to retrieve the baseline hazard function

Usage

```
## S3 method for class 'basehazardspec'
basehazard(obj, ...)
```

Arguments

obj an object of class basehazardspec

... additional arguments – currently there are none, but this is for extensibility

Value

a function returning the baseline hazard

baseHazST 9

See Also

exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

|--|

Description

A function to

Usage

```
baseHazST(bh1 = NULL, survobj, t0, nbreaks = 5, breakmethod = "quantile",
    MLinits = NULL)
```

Arguments

```
bh1 X
survobj X
t0 X
nbreaks X
breakmethod X
MLinits X
```

Value

...

function	baselinehazard j	baselinehazard
----------	------------------	----------------

Description

A function to compute quantiles of the posterior baseline hazard or cumulative baseline hazard.

Usage

```
baselinehazard(x, t = NULL, n = 100, probs = c(0.025, 0.5, 0.975), cumulative = FALSE, plot = TRUE, bw = FALSE, ...)
```

10 betapriorGauss

Arguments

x an object inheriting class mcmcspatsurv

t optional vector of times at which to compute the quantiles, Defult is NULL, in

which case a uniformly spaced vector of length n from 0 to the maximum time

is used

n the number of points at which to compute the quantiles if t is NULL

probs vector of probabilities

cumulative logical, whether to return the baseline hazard (default i.e. FALSE) or cumulative

baseline hazard

plot whether to plot the result

bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot.

Useful for producing plots for journals that do not accept colour plots.

. . . additional arguments to be passed to plot

Value

the vector of times and quantiles of the baseline or cumulative baseline hazard at those times

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, spatialpars, hazardpars, fixedpars, randompars, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

betapriorGauss betapriorGauss function

Description

A function to define Gaussian priors for beta. This function simply stores a vector of means and standard deviations to be passed to the main MCMC function, survspat.

Usage

betapriorGauss(mean, sd)

Arguments

mean the prior mean, a vector of length 1 or more. 1 implies a common mean.

sd the prior standard deviation, a vector of length 1 or more. 1 implies a common

standard deviation.

Value

an object of class "betapriorGauss"

blockDiag 11

See Also

 $surv spat,\ beta prior Gauss,\ omega prior Gauss,\ et a prior Gauss,\ in dep Gaussian prior,\ derivin dep Gaussian prior$

blockDiag

A function to

Description

A function to

Usage

blockDiag(matlist)

Arguments

matlist

X

Value

•••

boxplotRisk

 $boxplotRisk\ function$

Description

A function to

Usage

boxplotRisk(g2r)

Arguments

g2r

X

Value

...

12 BsplineHaz

Description

A function to construct a B-spline basis matrix for given data and basis coefficients. Used in evaluating the baseline hazard.

Usage

```
Bspline.construct(x, basis)
```

Arguments

x a vector, the data

basis an object created by the getBbasis function

Value

a basis matrix

BsplineHaz	BsplineHaz function	
------------	---------------------	--

Description

A function to define a parametric proportional hazards model where the baseline hazard is modelled by a basis spline. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'

Usage

```
BsplineHaz(times, knots = quantile(times), degree = 3, MLinits = NULL)
```

Arguments

times vector of survival times (both censored and uncensored)	times	vector of survival	times (both censore	ed and uncensored)
---	-------	--------------------	---------------------	--------------------

knots vector of knots in ascending order, must include minimum and maximum values

of 'times'

degree of the spline basis, default is 3

MLinits optional starting values for the non-spatial maximisation routine using optim.

Note that we are working with the log of the parameters. Default is -10 for each

parameter.

BsplineHaz 13

Details

The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv only allows the use of functions where the parameters are transformed independently.

The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull model for the baseline hazard, it can be shown that the q-th quantile is:

Value

an object inheriting class 'basehazardspec'

See Also

exponentialHaz, gompertzHaz, makehamHaz, weibullHaz

14 circulant

checkSurvivalData

 $check Survival Data\ function$

Description

A function to check whether the survival data to be passed to survspat is in the correct format

Usage

```
checkSurvivalData(s)
```

Arguments

s

an object of class Surv, from the survival package

Value

if there are any issues with data format, these are returned with the data an error message explaining any issues with the data

circulant

circulant function

Description

generic function for constructing circulant matrices

Usage

```
circulant(x, ...)
```

Arguments

x an object

... additional arguments

Value

method circulant

circulant.matrix 15

circulant.matrix

circulant.matrix function

Description

If x is a matrix whose columns are the bases of the sub-blocks of a block circulant matrix, then this function returns the block circulant matrix of interest.

Usage

```
## S3 method for class 'matrix'
circulant(x, ...)
```

Arguments

x a matrix object

... additional arguments

Value

If x is a matrix whose columns are the bases of the sub-blocks of a block circulant matrix, then this function returns the block circulant matrix of interest.

circulant.numeric

circulant.numeric function

Description

returns a circulant matrix with base x

Usage

```
## S3 method for class 'numeric' circulant(x, ...)
```

Arguments

x an numeric object
... additional arguments

Value

a circulant matrix with base x

16 covmodel

circulantij

circulantij function

Description

A function to return the "idx" i.e. c(i,j) element of a circulant matrix with base "base".

Usage

```
circulantij(idx, base)
```

Arguments

idx vector of length 2 th (i,j) (row,column) index to return

base the base matrix of a circulant matrix

Value

the ij element of the full circulant

covmode1

covmodel function

Description

A function to define the spatial covariance model, see also ?CovarianceFct. Note that the parameters defined by the 'pars' argument are fixed, i.e. not estimated by the MCMC algorithm. To have spatsurv estimate these parameters, the user must construct a new covariance function to do so, see the spatsurv vignette.

Usage

```
covmodel(model, pars)
```

Arguments

model correlation type, a string see ?CovarianceFct

pars vector of additional parameters for certain classes of covariance function (eg

Matern), these must be supplied in the order given in ?CovarianceFct and are

not estimated

Value

an object of class covmodel

See Also

CovarianceFct

CSplot 17

CSplot CSplot function

Description

A function to produce a diagnostic plot for model fit using the Cox-Snell residuals.

Usage

```
CSplot(mod, plot = TRUE, bw = FALSE, ...)
```

Arguments

mod an object produced by the function survspat plot whether to plot the result, default is TRUE

bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot.

Useful for producing plots for journals that do not accept colour plots.

... other arguments to pass to plot

Value

the x and y values used in the plot

cumbasehazard

cumbasehazard function

Description

Generic function for computing the cumulative baseline hazard

Usage

```
cumbasehazard(obj, ...)
```

Arguments

obj an object

... additional arguments – currently there are none, but this is for extensibility

Value

method cumbasehazard

See Also

cumbasehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpow-Haz

cumbasehazard.basehazardspec

cumbasehazard.basehazardspec function

Description

A function to retrieve the cumulative baseline hazard function

Usage

```
## S3 method for class 'basehazardspec'
cumbasehazard(obj, ...)
```

Arguments

obj an object of class basehazardspec

... additional arguments – currently there are none, but this is for extensibility

Value

a function returning the cumulative baseline hazard

See Also

exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

```
cumulativeBspline.construct
```

cumulativeBspline.construct function

Description

A function to construct the integral of a B-spline curve given data and basis coefficients. Used in evaluating the cumulative baseline hazard.

Usage

```
cumulativeBspline.construct(x, basis)
```

Arguments

x a vector, the data

basis an object created by the getBbasis function

Value

an object that allows the integral of a given B-spline curve to be computed

densityquantile 19

densityquantile dens

densityquantile function

Description

Generic function for computing quantiles of the density function for a given baseline hazard. This may not be analytically tractable.

Usage

```
densityquantile(obj, ...)
```

Arguments

obj an object

... additional arguments – currently there are none, but this is for extensibility

Value

method densityquantile

See Also

densityquantile.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpow-Haz

```
densityquantile.basehazardspec
```

densityquantile.basehazardspec function

Description

A function to retrieve the quantiles of the density function

Usage

```
## S3 method for class 'basehazardspec'
densityquantile(obj, ...)
```

Arguments

obj an object of class basehazardspec

... additional arguments – currently there are none, but this is for extensibility

20 density_PP

Value

a function returning the density quantiles

See Also

exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

densityquantile_PP

densityquantile_PP function

Description

A function to compute quantiles of the density function

Usage

```
densityquantile_PP(inputs)
```

Arguments

inputs

inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model

Value

quantiles of the density function for the individual

density_PP

density_PP function

Description

A function to compute an individual's density function

Usage

```
density_PP(inputs)
```

Arguments

inputs

inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model

Value

the density function for the individual

derivindepGaussianprior

derivindepGaussianprior function

Description

A function for evaluating the first and second derivatives of the log of an independent Gaussian prior

Usage

```
derivindepGaussianprior(beta = NULL, omega = NULL, eta = NULL, priors)
```

Arguments

beta a vector, the parameter beta omega a vector, the parameter omega eta a vector, the parameter eta

priors an object of class 'mcmcPrior', see ?mcmcPrior

Value

returns the first and second derivatives of the prior

See Also

survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior

derivindepGaussianpriorST

 $derivindep Gaussian prior ST\ function$

Description

A function to

Usage

```
derivindepGaussianpriorST(beta = NULL, omega = NULL, eta = NULL, priors)
```

22 derivpsplineprior

Arguments

beta	X
omega	X
eta	X
priors	X

Value

...

ı	
---	--

Description

A function for evaluating the first and second derivatives of the log of an independent Gaussian prior

Usage

```
derivpsplineprior(beta = NULL, omega = NULL, eta = NULL, priors)
```

Arguments

beta a vector, the parameter beta omega a vector, the parameter omega eta a vector, the parameter eta

priors an object of class 'mcmcPrior', see ?mcmcPrior

Value

returns the first and second derivatives of the prior

See Also

survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior

distinfo 23

distinfo

distinfo function

Description

Generic function for returning information about the class of baseline hazard functions employed.

Usage

```
distinfo(obj, ...)
```

Arguments

obj an object

... additional argument – currently there are none, but this is for extensibility

Value

method distinfo

See Also

distinfo.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

```
distinfo.basehazardspec
```

distinfo.basehazardspec function

Description

A function to retrive information on the baseline hazard distribution of choice

Usage

```
## S3 method for class 'basehazardspec'
distinfo(obj, ...)
```

Arguments

obj an object of class basehazardspec

... additional arguments – currently there are none, but this is for extensibility

Value

a function returning information on the baseline hazard distribution of choice

24 etapriorGauss

See Also

exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

estimateY estimateY function	estimateY	estimateY function	
------------------------------	-----------	--------------------	--

Description

A function to get an initial estimate of Y, to be used in calibrating the MCMC. Not for general use

Usage

```
estimateY(X, betahat, omegahat, surv, control)
```

Arguments

X the design matrix containing covariate information

betahat an estimate of beta omegahat an estimate of omega surv an object of class Surv

control a list containg various control parameters for the MCMC and post-processing

routines

Value

an estimate of Y, to be used in calibrating the MCMC

!	
---	--

Description

A function to define Gaussian priors for eta. This function simply stores a vector of means and standard deviations to be passed to the main MCMC function, survspat.

Usage

```
etapriorGauss(mean, sd)
```

Arguments

mean the prior mean, a vector of length 1 or more. 1 implies a common mean.

sd the prior standard deviation, a vector of length 1 or more. 1 implies a common

standard deviation.

Et_PP 25

Value

an object of class "etapriorGauss"

See Also

survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior

Et_PP

Et_PP function

Description

A function to compute an individual's approximate expected survival time using numerical integration. Note this appears to be unstable; the function is based on R's integrate function. Not intended for general use (yet!).

Usage

Et_PP(inputs)

Arguments

inputs

inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model

Value

the expected survival time for the individual, obtained by numerical integration of the density function

EvalCov

EvalCov function

Description

This function is used to evaluate the covariance function within the MCMC run. Not intended for general use.

Usage

```
EvalCov(cov.model, u, parameters)
```

26 exponentialHaz

Arguments

cov.model an object of class covmodel

u vector of distances
parameters vector of parameters

Value

method EvalCov

ExponentialCovFct ExponentialCovFct function

Description

A function to declare and also evaluate an exponential covariance function.

Usage

ExponentialCovFct()

Value

the exponential covariance function

See Also

SpikedExponentialCovFct, covmodel, CovarianceFct

 $exponential Haz \ \ exponential Haz \ function$

Description

A function to define a parametric proportional hazards model where the baseline hazard is taken from the exponential model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'

Usage

exponentialHaz()

exponentialHaz 27

Details

The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv only allows the use of functions where the parameters are transformed independently.

The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull model for the baseline hazard, it can be shown that the q-th quantile is:

Value

an object inheriting class 'basehazardspec'

See Also

tpowHaz, gompertzHaz, makehamHaz, weibullHaz

28 fixedpars

FFTgrid

FFTgrid function

Description

A function to generate an FFT grid and associated quantities including cell dimensions, size of extended grid, centroids,

Usage

```
FFTgrid(spatialdata, cellwidth, ext, boundingbox = NULL)
```

Arguments

spatialdata a SpatialPixelsDataFrame object cellwidth width of computational cells

ext multiplying constant: the size of the extended grid: ext*M by ext*N

boundingbox optional bounding box over which to construct computational grid, supplied as

an object on which the function 'bbox' returns the bounding box

Value

a list

fixedpars

fixedpars function

Description

A function to return the mcmc chains for the covariate effects

Usage

fixedpars(x)

Arguments

Х

an object of class mcmcspatsurv

Value

the beta mcmc chains

fixmatrix 29

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, spatialpars, hazardpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

fixmatrix

fixmatrix function

Description

```
!! THIS FUNCTION IS NOT INTENDED FOR GENERAL USE !!
```

Usage

```
fixmatrix(mat)
```

Arguments

mat

a matrix

Details

A function to fix up an estimated covariance matrix using a VERY ad-hoc method.

Value

the fixed matrix

fixParHaz

fixParHaz function

Description

A function to

Usage

```
fixParHaz(bh, idx, fixval)
```

Arguments

```
\begin{array}{ccc} \text{bh} & & X \\ \text{idx} & & X \\ \text{fixval} & & X \end{array}
```

Value

...

30 fs

frailt	tylag1	

frailtylag1 function

Description

A function to produce a plot of, and return, the lag 1 (or higher, see argument 'lag') autocorrelation for each of the spatially correlated frailty chains

Usage

```
frailtylag1(object, plot = TRUE, lag = 1, ...)
```

Arguments

object an object inheriting class mcmcspatsurv

plot logical whether to plot the result, default is TRUE

lag the lag to plot, the default is 1

... other arguments to be passed to the plot function

Value

the lag 1 autocorrelation for each of the spatially correlated frailty chains

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, spatial-pars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

fs

London Fire Brigade property

Description

London Fire Brigade property

Usage

fs

Format

data.frame

fstimes 31

Source

http://data.london.gov.uk/

References

http://data.london.gov.uk/,http://www.nationalarchives.gov.uk/doc/open-government-licence/

fstimes

London Fire Brigade response times to dwelling fires, 2009

Description

London Fire Brigade response times to dwelling fires, 2009

Usage

fstimes

Format

data.frame

Source

http://data.london.gov.uk/

References

http://data.london.gov.uk/,http://www.nationalarchives.gov.uk/doc/open-government-licence/

gamma2risk

gamma2risk function

Description

A function to

Usage

gamma2risk(mod)

Arguments

mod

X

Value

...

GammafromY

GammafromY function

Description

A function to change Ys (spatially correlated noise) into Gammas (white noise). Used in the MALA algorithm.

Usage

```
GammafromY(Y, rootQeigs, mu)
```

Arguments

Y Y matrix

rootQeigs square root of the eigenvectors of the precision matrix

mu parameter of the latent Gaussian field

Value

Gamma

GammaFromY_SPDE

GammaFromY_SPDE function

Description

A function to go from Y to Gamma

Usage

```
GammaFromY_SPDE(Y, U, mu)
```

Arguments

 \mathbf{Y}

U upper Cholesky matrix

mu the mean

Value

the value of Gamma for the given Y

gencens 33

References

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

2. Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4)

gencens

gencens function

Description

A function to generate observed times given a vector of true survival times and a vector of censoring times. Used in the simulation of survival data.

Usage

```
gencens(survtimes, censtimes, type = "right")
```

Arguments

survtimes a vector of survival times

censtimes a vector of censoring times for left or right censored data, 2-column matrix of

censoring times for interval censoring (number of rows equal to the number of

observations).

type the type of censoring to generate can be 'right' (default), 'left' or 'interval'

Value

an object of class 'Surv', the censoring indicator is equal to 1 if the event is uncensored and 0 otherwise for right/left censored data, or for interval censored data, the indicator is 0 uncensored, 1 right censored, 2 left censored, or 3 interval censored.

getBackground

getBackground function

Description

A function to

Usage

```
getBackground(poly, type = "stamen-toner")
```

34 getBbasis

Arguments

poly a spatial object that can be transformed and the extent obtained using the bbox

function.

type see ?openmap

Value

••

getbb getbb function

Description

A function to get the bounding box of a Spatial object

Usage

```
getbb(obj)
```

Arguments

obj

a spatial object e.g. a SpatialPolygonsDataFrame, SpatialPolygons, etc ... anything with a bounding box that can be computed with bbox(obj)

Value

a SpatialPolygons object: the bounding box

getBbasis

getBbasis function

Description

A function returning the piecewise polynomial coefficients for a B-spline basis function i.e. the basis functions.

Usage

```
getBbasis(x, knots, degree, force = FALSE)
```

getcov 35

Arguments

x a vector of data

knots a vector of knots in ascending order. The first and last knots must be respectively

the minimum and maximum of x.

degree the degree of the spline

force logical: skip check on knots? (not recommended!)

Value

the knots and the piecewise polynomial coefficients for a B-spline basis function i.e. the basis functions.

getcov getcov function

Description

A function to return the covariance from a model based on the randomFields covariance functions. Not intended for general use.

Usage

```
getcov(u, sigma, phi, model, pars)
```

Arguments

u distance

sigma variance parameter
phi scale parameter

model correlation type, see ?CovarianceFct

pars vector of additional parameters for certain classes of covariance function (eg

Matern), these must be supplied in the order given in ?CovarianceFct and are

not estimated

Value

this is just a wrapper for CovarianceFct

36 getGrid

getgrd	getgrd function	

Description

A function to create a regular grid over an observation window in order to model the spatial randome effects as a Gaussian Markov random field.

Usage

```
getgrd(shape, cellwidth)
```

Arguments

shape an object of class SpatialPolygons or SpatialPolygonsDataFrame

cellwidth a scalar, the width of the grid cells

Value

a SpatialPolygons object: the grid on which prediction of the spatial effects will occur

References

- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.
- 2. Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4)

|--|--|

Description

A function to extract and return the computational grid from a gridded analysis.

Usage

```
getGrid(mod, returnclass = "SpatialPolygonsDataFrame")
```

Arguments

an object of class mcmcspatsurv, returned by the function survspat

returnclass the class of object to return, default is a'SpatialPolygonsDataFrame'. Other

options are 'raster', which returns a raster brick; or 'SpatialPixelsDataFrame'

getleneta 37

Value

a SpatialPolygonsDataFrame in which Monte Carlo expectations can be stored and later plotted.

getleneta getleneta function

Description

A function to compute the length of eta

Usage

```
getleneta(cov.model)
```

Arguments

cov.model a covariance model

Value

the length of eta

getOptCellwidth getOptCellwidth function

Description

A function to compute an optimal cellwidth close to an initial suggestion. This maximises the efficiency of the MCMC algorithm when in the control argument of the function survspat, the option gridded is set to TRUE

Usage

```
getOptCellwidth(dat, cellwidth, ext = 2, plot = TRUE, boundingbox = NULL)
```

Arguments

dat any spatial data object whose bounding box can be computed using the function

bbox.

cellwidth an initial suggested cellwidth

ext the extension parameter for the FFT transform, set to 2 by default plot whether to plot the grid and data to illustrate the optimal grid

boundingbox optional bounding box over which to construct computational grid, supplied as

an object on which the function 'bbox' returns the bounding box

38 getsurvdata

Value

the optimum cell width

getparranges

getparranges function

Description

A function to extract parameter ranges for creating a grid on which to evaluate the log-posterior, used in calibrating the MCMC. This function is not intended for general use.

Usage

```
getparranges(priors, leneta, mult = 1.96)
```

Arguments

priors an object of class mcmcPriors

leneta the length of eta passed to the function

mult defaults to 1.96 so the grid formed will be mean plus/minus 1.96 times the stan-

dard deviation

Value

an appropriate range used to calibrate the MCMC: the mean of the prior for eta plus/minus 1.96 times the standard deviation

getsurvdata

getsurvdata function

Description

A function to return the survival data from an object of class mcmcspatsurv. This function is not intended for general use.

Usage

```
getsurvdata(x)
```

Arguments

Х

an object of class memespatsurv

Value

the survival data from an object of class memespatsurv

gompertzHaz 39

gompertzHaz

gompertzHaz function

Description

A function to define a parametric proportional hazards model where the baseline hazard is taken from a Gompertz model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'

Usage

gompertzHaz()

Details

The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv only allows the use of functions where the parameters are transformed independently.

The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull model for the baseline hazard, it can be shown that the q-th quantile is:

Value

an object inheriting class 'basehazardspec'

See Also

tpowHaz, exponentialHaz, makehamHaz, weibullHaz

gradbasehazard

gradbasehazard function

Description

Generic function for computing the gradient of the baseline hazard

Usage

```
gradbasehazard(obj, ...)
```

Arguments

obj an object

. . . additional arguments – currently there are none, but this is for extensibility

Value

method gradbasehazard

See Also

gradbasehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpow-Haz

```
{\tt gradbase} haz ard. base haz ard {\tt spec}
```

gradbasehazard.basehazardspec function

Description

A function to retrieve the gradient of the baseline hazard function

Usage

```
## S3 method for class 'basehazardspec'
gradbasehazard(obj, ...)
```

gradcumbasehazard 41

Arguments

obj an object of class basehazardspec

... additional arguments – currently there are none, but this is for extensibility

Value

a function returning the gradient of the baseline hazard

See Also

exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

gradcumbasehazard

gradcumbasehazard function

Description

Generic function for computing the gradient of the cumulative baseline hazard

Usage

```
gradcumbasehazard(obj, ...)
```

Arguments

obj an object

... additional arguments – currently there are none, but this is for extensibility

Value

method gradcumbasehazard

See Also

gradcumbasehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpow-Haz

42 grid2spdf

```
gradcumbasehazard.basehazardspec 
gradcumbasehazard.basehazardspec function
```

Description

A function to retrieve the gradient of the cumulative baseline hazard function

Usage

```
## S3 method for class 'basehazardspec'
gradcumbasehazard(obj, ...)
```

Arguments

obj an object of class basehazardspec

... additional arguments – currently there are none, but this is for extensibility

Value

a function returning the gradient of the cumulative baseline hazard

See Also

exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

```
grid2spdf grid2spdf function
```

Description

A function to convert a regular (x,y) grid of centroids into a SpatialPoints object

Usage

```
grid2spdf(xgrid, ygrid, proj4string = CRS(as.character(NA)))
```

Arguments

xgrid vector of x centroids (equally spaced)
ygrid vector of x centroids (equally spaced)

proj4string an optional proj4string, projection string for the grid, set using the function CRS

Value

a SpatialPolygonsDataFrame

grid2spix 43

Description

A function to convert a regular (x,y) grid of centroids into a SpatialPixels object

Usage

```
grid2spix(xgrid, ygrid, proj4string = CRS(as.character(NA)))
```

Arguments

xgrid vector of x centroids (equally spaced)
ygrid vector of x centroids (equally spaced)

proj4string an optional proj4string, projection string for the grid, set using the function CRS

Value

a SpatialPixels object

grid2spts	grid2spts function

Description

A function to convert a regular (x,y) grid of centroids into a SpatialPoints object

Usage

```
grid2spts(xgrid, ygrid, proj4string = CRS(as.character(NA)))
```

Arguments

xgrid vector of x centroids (equally spaced)
ygrid vector of x centroids (equally spaced)

proj4string an optional proj4string, projection string for the grid, set using the function CRS

Value

a SpatialPoints object

44 gridY_polygonal

gridY

gridY function

Description

A function to put estimated individual Y's onto a grid

Usage

```
gridY(Y, control)
```

Arguments

Υ

estimate of Y

control

control parameters

Value

...

gridY_polygonal

gridY_polygonal function

Description

A function to put estimated individual Y's onto a grid

Usage

```
gridY_polygonal(Y, control)
```

Arguments

Υ

estimate of Y

control

control parameters

Value

...

guess_t 45

guess_t

guess_t function

Description

A function to get an initial guess of the failure time t, to be used in calibrating the MCMC. Not for general use

Usage

```
guess_t(surv)
```

Arguments

surv

an object of class Surv

Value

a guess at the failure times

hasNext

generic hasNext method

Description

test if an iterator has any more values to go

Usage

hasNext(obj)

Arguments

obj

an iterator

46 hazardexceedance

hasNext.iter

hasNext.iter function

Description

method for iter objects test if an iterator has any more values to go

Usage

```
## S3 method for class 'iter'
hasNext(obj)
```

Arguments

obj

an iterator

hazardexceedance

hazardexceedance function

Description

A function to compute exceedance probabilities for the spatially correlated frailties.

Usage

```
hazardexceedance(threshold, direction = "upper")
```

Arguments

threshold vector of thresholds

direction default is "upper" which will calculate P(Y>threshold), alternative is "lower",

which will calculate P(Y<threshold)

Value

a function that can be passed to the function MCE in order to compute the exceedance probabilities

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE,

hazardpars 47

hazardpars

hazardpars function

Description

A function to return the mcmc chains for the hazard function parameters

Usage

hazardpars(x)

Arguments

Х

an object of class memespatsurv

Value

the omega meme chains

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, spatialpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

hazard_PP

hazard_PP function

Description

A function to compute an individual's hazard function.

Usage

hazard_PP(inputs)

Arguments

inputs

inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model

Value

the hazard function for the individual

hessbasehazard

hessbasehazard function

Description

Generic function for computing the hessian of the baseline hazard

Usage

```
hessbasehazard(obj, ...)
```

Arguments

obj an object

. . . additional arguments – currently there are none, but this is for extensibility

Value

method hessbasehazard

See Also

hessbasehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpow-Haz

hessbasehazard.basehazardspec

hessbasehazard.basehazardspec function

Description

A function to retrieve the Hessian of the baseline hazard function

Usage

```
## S3 method for class 'basehazardspec'
hessbasehazard(obj, ...)
```

Arguments

obj an object of class basehazardspec

... additional arguments – currently there are none, but this is for extensibility

Value

a function returning the Hessian of the baseline hazard

hesscumbasehazard 49

See Also

exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

hesscumbasehazard

hesscumbasehazard function

Description

Generic function for computing the Hessian of the cumulative baseline hazard

Usage

```
hesscumbasehazard(obj, ...)
```

Arguments

obj an object

... additional arguments – currently there are none, but this is for extensibility

Value

method hesscumbasehazard

See Also

hess cumba se hazard. base hazard spec, exponential Haz, weibull Haz, gompertz Haz, make ham Haz, tpow-Haz

hesscumbasehazard.basehazardspec

hesscumbasehazard.basehazardspec function

Description

A function to retrieve the hessian of the cumulative baseline hazard function

Usage

```
## S3 method for class 'basehazardspec'
hesscumbasehazard(obj, ...)
```

Arguments

obj an object of class basehazardspec

... additional arguments – currently there are none, but this is for extensibility

50 Independent

Value

a function returning the hessian of the cumulative baseline hazard

See Also

exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz

imputation Model

imputationModel function

Description

A function to

Usage

```
imputationModel(formula, offset, covariateData, priors)
```

Arguments

```
\begin{array}{ll} \text{formula} & X \\ \text{offset} & X \\ \text{covariateData} & X \\ \text{priors} & X \end{array}
```

Value

•••

Independent

Independent function

Description

A function to declare and also evaluate an exponential covariance function.

Usage

Independent()

Value

the exponential covariance function

See Also

SpikedExponentialCovFct, covmodel, CovarianceFct

indepGaussianprior 51

indepGaussianprior indepGaussianprior function

Description

A function for evaluating the log of an independent Gaussian prior for a given set of parameter values

Usage

```
indepGaussianprior(beta = NULL, omega = NULL, eta = NULL, priors)
```

Arguments

beta	parameter beta at which prior is to be evaluated
omega	parameter omega at which prior is to be evaluated
eta	parameter eta at which prior is to be evaluated
priors	an object of class mcmcPriors, see ?mcmcPriors

Value

the log of the prior evaluated at the given parameter values

See Also

 $surv spat,\ beta prior Gauss,\ omega prior Gauss,\ et a prior Gauss,\ in dep Gaussian prior,\ derivin dep Gaussian prior$

 ${\tt indepGaussianpriorST} \quad indepGaussian priorST \ function$

Description

A function to

Usage

```
indepGaussianpriorST(beta = NULL, omega = NULL, eta = NULL, priors)
```

Arguments

```
\begin{array}{ccc} \text{beta} & & X \\ \text{omega} & & X \\ \text{eta} & & X \\ \text{priors} & & X \end{array}
```

52 inference.control

Value

•••

inference.control inference.control function

Description

A function to control inferential settings. This function is used to set parameters for more advanced use of spatsurv.

Usage

```
inference.control(gridded = FALSE, cellwidth = NULL, ext = 2,
  imputation = NULL, optimcontrol = NULL, hessian = FALSE,
  plotcal = FALSE, timeonlyMCMC = FALSE, nugget = FALSE,
  savenugget = FALSE, split = 0.5, logUsigma_priormean = 0,
  logUsigma_priorsd = 0.5, nis = NULL, olinfo = NULL)
```

Arguments

gridded	logical. Whether to perform computation on a grid. Default is FALSE.
cellwidth	the width of computational cells to use
ext	integer the number of times to extend the computational grid by in order to perform computation. The default is 2 .
imputation	for polygonal data, an optional model for inference at the sub-polygonal level, see function imputation $Model$
optimcontrol	a list of optional arguments to be passed to optim for non-spatial models
hessian	whether to return a numerical hessian. Set this to TRUE for non-spatial models. equal to the number of parameters of the baseline hazard
plotcal	logical, whether to produce plots of the MCMC calibration process, this is a technical option and should onyl be set to TRUE if poor mixing is evident (the printed h is low), then it is also useful to use a graphics device with multiple plotting windows.
timeonlyMCMC	logical, whether to only time the MCMC part of the algorithm, or whether to include in the reported running time the time taken to calibrate the method (default)
nugget	whether to include a nugget effect in the estimation. Note that only the mean and variance of the nugget effect is returned.
savenugget	whether to save the MCMC chain for the nugget effect

logUsigma_priormean

split

prior mean for log standard deviation of nugget effect

ance assigned to the spatial effect apriori. Default is 0.5

how to split the spatial and nugget proposal variance as a the proportion of vari-

insert 53

logUsigma_priorsd

prior sd for log standard deviation of nugget effect

nis list of cell counts, each element being a matrix, with attributes "x" and "y" giving

grid centroids in x and y directions. Used to impute locations of aggregated

data:.

olinfo to be supplied with nis, if continuous inference from aggregated data is required

Value

returns parameters to be used in the function survspat

See Also

survspat

insert insert function

Description

A function to

Usage

```
insert(pars, idx, val)
```

Arguments

 $\begin{array}{ccc} \text{pars} & & X \\ \text{idx} & & X \\ \text{val} & & X \end{array}$

Value

...

54 is.burnin

invtransformweibull

invtransformweibull function

Description

A function to transform estimates of the (alpha, lambda) parameters of the weibull baseline hazard function, so they are commensurate with R's inbuilt density functions, (shape, scale).

Usage

```
invtransformweibull(x)
```

Arguments

Х

a vector of paramters

Value

the transformed parameters. For the weibull model, this transforms 'shape' 'scale' (see ?dweibull) to 'alpha' and 'lambda' for the MCMC

is.burnin

is this a burn-in iteration?

Description

if this mcmc iteration is in the burn-in period, return TRUE

Usage

```
is.burnin(obj)
```

Arguments

obj

an mcmc iterator

Value

TRUE or FALSE

is.retain 55

is.retain

do we retain this iteration?

Description

if this mcmc iteration is one not thinned out, this is true

Usage

```
is.retain(obj)
```

Arguments

obj

an mcmc iterator

Value

TRUE or FALSE

iteration

iteration number

Description

within a loop, this is the iteration number we are currently doing.

Usage

```
iteration(obj)
```

Arguments

obj

an mcmc iterator

Details

get the iteration number

Value

integer iteration number, starting from 1.

56 logPosterior

logPosterior logPosterior function

Description

A function to evaluate the log-posterior of a spatial parametric proportional hazards model. Not intended for general use.

Usage

```
logPosterior(surv, X, beta, omega, eta, gamma, priors, cov.model, u, control,
  gradient = FALSE, hessian = FALSE)
```

Arguments

surv	an object of class Surv
Χ	the design matrix, containing covariate information
beta	parameter beta
omega	parameter omega
eta	parameter eta
gamma	parameter gamma
priors	the priors, an object of class 'mcmcPriors'
cov.model	the spatial covariance model
u	vector of interpoint distances
control	a list containg various control parameters for the MCMC and post-processing routines
gradient	logical whether to evaluate the gradient
hessian	logical whether to evaluate the Hessian

Value

evaluates the log-posterior and the gradient and hessian, if required.

References

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

logPosterior_gridded 57

logPosterior_gridded logPosterior_gridded function

Description

A function to evaluate the log-posterior of a spatial parametric proportional hazards model using gridded Y. Not intended for general use.

Usage

```
logPosterior_gridded(surv, X, beta, omega, eta, gamma, priors, cov.model, u,
  control, gradient = FALSE, hessian = FALSE)
```

Arguments

surv	an object of class Surv
Χ	the design matrix, containing covariate information
beta	parameter beta
omega	parameter omega
eta	parameter eta
gamma	parameter gamma
priors	the priors, an object of class 'mcmcPriors'
cov.model	the spatial covariance model
u	vector of interpoint distances
control	a list containg various control parameters for the MCMC and post-processing routines
gradient	logical whether to evaluate the gradient

Value

evaluates the log-posterior and the gradient and hessian, if required.

logical whether to evaluate the Hessian

References

hessian

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

logPosterior_polygonal

logPosterior_polygonal function

Description

A function to evaluate the log-posterior of a spatial parametric proportional hazards model. Not intended for general use.

Usage

```
logPosterior_polygonal(surv, X, beta, omega, eta, gamma, priors, cov.model, u,
  control, gradient = FALSE, hessian = FALSE)
```

Arguments

surv an object of class Surv X the design matrix, containing covariate information beta parameter beta omega parameter omega	
beta parameter beta omega parameter omega	
omega parameter omega	
eta parameter eta	
gamma parameter gamma	
priors the priors, an object of class 'mcmcPriors'	
cov.model the spatial covariance model	
u vector of interpoint distances	
control a list containg various control parameters for the MCMC and post-procroutines	essing
gradient logical whether to evaluate the gradient	
hessian logical whether to evaluate the Hessian	

Value

evaluates the log-posterior and the gradient and hessian, if required.

References

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

logPosterior_SPDE 59

logPosterior_SPDE	logPosterior_SPDE function	

Description

A function to evaluate the log-posterior of a spatial parametric proportional hazards model. Not intended for general use.

Usage

```
logPosterior_SPDE(surv, X, beta, omega, eta, gamma, priors, cov.model, u,
  control, gradient = FALSE, hessian = FALSE)
```

Arguments

surv	an object of class Surv
Χ	the design matrix, containing covariate information
beta	parameter beta
omega	parameter omega
eta	parameter eta
gamma	parameter gamma
priors	the priors, an object of class 'mcmcPriors'
cov.model	the spatial covariance model
u	vector of interpoint distances
control	a list containg various control parameters for the MCMC and post-processing routines $% \left(1\right) =\left(1\right) \left($
gradient	logical whether to evaluate the gradient
hessian	logical whether to evaluate the Hessian

Value

evaluates the log-posterior and the gradient and hessian, if required.

References

- 1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.
- 2. Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4)

60 makehamHaz

loop.mcmc

loop over an iterator

Description

useful for testing progress bars

Usage

```
loop.mcmc(object, sleep = 1)
```

Arguments

object an mcmc iterator

sleep pause between iterations in seconds

makehamHaz

makehamHaz function

Description

A function to define a parametric proportional hazards model where the baseline hazard is taken from the Gompertz-Makeham model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'

Usage

makehamHaz()

Details

The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv only allows the use of functions where the parameters are transformed independently.

The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

maxlikparamPHsurv 61

The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull model for the baseline hazard, it can be shown that the q-th quantile is:

Value

an object inheriting class 'basehazardspec'

See Also

tpowHaz, exponentialHaz, gompertzHaz, weibullHaz

maxlikparamPHsurv

maxlikparamPHsurv function

Description

A function to get initial estimates of model parameters using maximum likelihood. Not intended for general purose use.

Usage

```
maxlikparamPHsurv(surv, X, control)
```

Arguments

surv an object of class Surv

X the design matrix, containing covariate information

control a list containg various control parameters for the MCMC and post-processing

routines

MCE

Value

initial estimates of the parameters

References

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

MCE

MCE function

Description

A function to compute Monte Carlo expectations from an object inheriting class mcmcspatsurv

Usage

```
MCE(object, fun)
```

Arguments

object an object inheriting class mcmcspatsurv

fun a function with arguments beta, omega, eta and Y

Value

the Monte Carlo mean of the function over the posterior.

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, hazardexceedance

mcmcLoop 63

mcmcLoop	iterator for MCMC loops	

Description

control an MCMC loop with this iterator

Usage

```
mcmcLoop(N, burnin, thin, trim = TRUE, progressor = mcmcProgressPrint)
```

Arguments

N number of iterations burnin length of burn-in thin frequency of thinning

trim whether to cut off iterations after the last retained iteration

progressor a function that returns a progress object

mcmcpars	memepars function	

Description

A function for setting MCMC options.

Usage

```
mcmcpars(nits, burn, thin, inits = NULL, adaptivescheme = NULL)
```

Arguments

nits numer of iterations, burn length of burnin

thin thinning parameter eg operated on chain every 'thin' iteration (eg store output

or compute some posterior functional)

inits NOT CURRENTLY IN USE adaptivescheme NOT CURRENTLY IN USE

Value

meme parameters

64 mcmcPriors

mcmcPriors function

Description

A function to define priors for the MCMC.

Usage

```
mcmcPriors(betaprior = NULL, omegaprior = NULL, etaprior = NULL,
  call = NULL, derivative = NULL)
```

Arguments

betaprior prior for beta, the covariate effects

omegaprior prior for omega, the parameters of the baseline hazard

etaprior prior for eta, the parameters of the latent field

call function to evaluate the log-prior e.g. logindepGaussianprior derivative function to evaluate the first and second derivatives of the prior

Details

The package spatsurv only provides functionality for the built-in Gaussian priors. However, the choice of prior is extensible by the user by creating functions similar to the functions betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior and derivindepGaussianprior: the first three of which provide a mechanism for storing and retrieving the parameters of the priors; the fourth, a function for evaluating the log of the prior for a given set of parameter values; and the fifth, a function for evaluating the first and second derivatives of the log of the prior. It is assumed that parameters are a priori independent. The user interested in using other priors is encouraged to look at the structure of the five functions mentioned above.

Value

an object of class mcmcPriors

See Also

survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior

mcmcProgressNone 65

mcmcProgressNone

null progress monitor

Description

a progress monitor that does nothing

Usage

```
mcmcProgressNone(mcmcloop)
```

Arguments

mcmcloop

an meme loop iterator

Value

a progress monitor

 ${\tt mcmcProgressPrint}$

printing progress monitor

Description

a progress monitor that prints each iteration

Usage

```
mcmcProgressPrint(mcmcloop)
```

Arguments

mcmcloop

an meme loop iterator

Value

a progress monitor

66 midpts

mcmcProgressTextBar

text bar progress monitor

Description

a progress monitor that uses a text progress bar

Usage

```
mcmcProgressTextBar(mcmcloop)
```

Arguments

 ${\tt mcmcloop}$

an meme loop iterator

Value

a progress monitor

 ${\tt midpts}$

midpts function

Description

A function to compute the midpoints of a vector

Usage

```
midpts(x)
```

Arguments

Χ

a vector

Value

the midpoints, a vector of length length(x)-1

multiWayHaz 67

multiWayHaz	multiWayHaz function		
-------------	----------------------	--	--

Description

A function to

Usage

```
multiWayHaz(bhlist, bhtime, bhfix, MLinits = NULL)
```

Arguments

bhlist	X
bhtime	X
bhfix	X
MLinits	X

Value

•••

neighLocs	neighLocs function

Description

A function used in the computation of neighbours on non-rectangular grids. Not intended for general use.

Usage

```
neighLocs(coord, cellwidth, order)
```

Arguments

coord coordinate of interest

cellwidth a scalar, the width of the grid cells

order the order of the SPDE approximation: see Lindgren et al 2011 for details

Value

coordinates of centroids of neighbours

68 nextStep

References

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

2. Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4)

neighOrder

neighOrder function

Description

A function to compute the order of a set of neighbours. Not intended for general use.

Usage

neighOrder(neighlocs)

Arguments

neighlocs

an object created by the function neighLocs

Value

the neighbour orders

References

- 1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.
- 2. Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4)

nextStep

next step of an MCMC chain

Description

just a wrapper for nextElem really.

Usage

nextStep(object)

Arguments

object

an mcmc loop object

 $NonSpatialLogLikelihood_or_gradient$

NonSpatialLogLikelihood_or_gradient function

Description

A function to evaluate the log-likelihood of a non-spatial parametric proportional hazards model. Not intended for general use.

Usage

```
NonSpatialLogLikelihood_or_gradient(surv, X, beta, omega, control,
  loglikelihood, gradient)
```

Arguments

surv an object of class Surv

X the design matrix, containing covariate information

beta parameter beta omega parameter omega

control a list containg various control parameters for the MCMC and post-processing

routines

loglikelihood logical whether to evaluate the log-likelihood gradient logical whether to evaluate the gradient

Value

•••

References

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

omegapriorGauss omegapriorGauss function

Description

A function to define Gaussian priors for omega. This function simply stores a vector of means and standard deviations to be passed to the main MCMC function, survspat.

70 omegapriorGaussST

Usage

```
omegapriorGauss(mean, sd)
```

Arguments

mean the prior mean, a vector of length 1 or more. 1 implies a common mean.

sd the prior standard deviation, a vector of length 1 or more. 1 implies a common

standard deviation.

Value

an object of class "omegapriorGauss"

See Also

survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior

 ${\it omegaprior} Gauss ST$

 $omegaprior Gauss ST\ function$

Description

A function to

Usage

```
omegapriorGaussST(basehaz, fmean, fsd, taumean, tausd, thetamean, thetasd)
```

Arguments

basehaz	X
fmean	X
fsd	X
taumean	X
tausd	X
thetamean	X
thetasd	X

Value

...

optifix 71

ix optifix function

Description

optifix. Optimise with fixed parameters

Usage

```
optifix(par, fixed, fn, gr = NULL, ..., method = c("Nelder-Mead", "BFGS",
   "CG", "L-BFGS-B", "SANN"), lower = -Inf, upper = Inf, control = list(),
   hessian = FALSE)
```

Arguments

par	X
fixed	X
fn	X
gr	X
	X
method	X
lower	X
upper	X
control	X
hessian	X

Details

its like optim, but with fixed parameters.

specify a second argument 'fixed', a vector of TRUE/FALSE values. If TRUE, the corresponding parameter in fn() is fixed. Otherwise its variable and optimised over.

The return thing is the return thing from optim() but with a couple of extra bits - a vector of all the parameters and a vector copy of the 'fixed' argument.

Written by Barry Rowlingson <b.rowlingson@lancaster.ac.uk> October 2011

This file released under a CC By-SA license: http://creativecommons.org/licenses/by-sa/3.0/ and must retain the text: "Originally written by Barry Rowlingson" in comments.

Value

•••

72 plotsurv

plot.FFTgrid

plot.FFTgrid function

Description

A function to

Usage

```
## S3 method for class 'FFTgrid'
plot(x, y = NULL, ...)
```

Arguments

Х	X
у	X
	X

Value

•••

plotsurv

plotsurv function

Description

A function to produce a 2-D plot of right censored spatial survival data.

Usage

```
plotsurv(spp, ss, maxcex = 1, transform = identity, background = NULL,
    eventpt = 19, eventcol = "red", censpt = "+", censcol = "black",
    xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, add = FALSE,
    ...)
```

Arguments

spp A spatial points data frame ss A Surv object (with right-censoring)

maxcex maximum size of dots default is equavalent to setting cex equal to 1
transform optional transformation to apply to the data, a function, for example 'sqrt'
a background object to plot default is null, which gives a blamk background note

that if non-null, the parameters xlim and ylim will be derived from this object.

polyadd 73

eventpt	The type of point to illustrate events, default is 19 (see ?pch)	
eventcol	the colour of events, default is black	
censpt	The type of point to illustrate events, default is "+" (see ?pch)	
censcol	the colour of censored observations, default is red	
xlim	optional x-limits of plot, default is to choose this automatically	
ylim	optional y-limits of plot, default is to choose this automatically	
xlab	label for x-axis	
ylab	label for y-axis	
add	logical, whether to add the survival plot on top of an existing plot, default is FALSE, which produces a plot in a new device	
	other arguments to pass to plot	

Value

Plots the survival data non-censored observations appear as dots and censored observations as crosses. The size of the dot is proportional to the observed time.

|--|

Description

A function to add two polynomials in the form of vectors of coefficients. The first element of the vector being the constant (order 0) term

Usage

```
polyadd(poly1, poly2)
```

Arguments

poly1	a vector of coefficients for the first polynomial of length degree plus 1
poly2	a vector of coefficients for the second polynomial of length degree plus 1

Value

the coefficients of the sum of poly1 and poly2

74 posteriorcov

polymult	polymult function	
----------	-------------------	--

Description

A function to multiply two polynomials in the form of vectors of coefficients. The first element of the vector being the constant (order 0) term

Usage

```
polymult(poly1, poly2)
```

Arguments

poly1	a vector of coefficients for the first polynomial of length degree plus 1
poly2	a vector of coefficients for the second polynomial of length degree plus 1

Value

the coefficients of the product of poly1 and poly2

posteriorcov	posteriorcov function

Description

A function to produce a plot of the posterior covariance function with upper and lower quantiles.

Usage

```
posteriorcov(x, probs = c(0.025, 0.5, 0.975), rmax = NULL, n = 100, plot = TRUE, bw = FALSE, corr = FALSE, ...)
```

Arguments

X	an object of class mcmcspatsurv	
probs	vector of probabilities to be fed to quantile function	
rmax	maximum distance in space to compute this distance up to	
n	the number of points at which to evaluate the posterior covariance.	
plot	whether to plot the result	
bw	Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.	
corr	logical whether to return the correlation function, default is FALSE i.e. returns the covariance function	
	other arguments to be passed to matplot function	

predict.mcmcspatsurv 75

Value

produces a plot of the posterior spatial covariance function.

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, MCE, hazardexceedance

```
predict.mcmcspatsurv predict.mcmcspatsurv function
```

Description

A function to produce predictions from MCMC output. These could include quantiles of the individual density, survival or hazard functions or quantiles of the density function (if available analytically).

Usage

```
## S3 method for class 'mcmcspatsurv'
predict(object, type = "density", t = NULL,
   n = 110, indx = NULL, probs = c(0.025, 0.5, 0.975), plot = TRUE,
   pause = TRUE, bw = FALSE, ...)
```

Arguments

object	an object of class memespatsurv
type	can be "density", "hazard", "survival" or "densityquantile". Default is "density". Note that "densityquantile" is not always analytically tractable for some choices of baseline hazard function.
t	optional vector of times at which to compute the quantiles, Defult is NULL, in which case a uniformly spaced vector of length n from 0 to the maximum time is used
n	the number of points at which to compute the quantiles if t is NULL
indx	the index number of a particular individual or vector of indices of individuals for which the quantiles should be produced
probs	vector of probabilities
plot	whether to plot the result
pause	logical whether to pause between plots, the default is TRUE
bw	Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
	other arguments, not used here

76 print.mcmcspatsurv

Value

the required predictions

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, priorposterior, posteriorcov, MCE, hazardexceedance

print.mcmc

print.mcmc function

Description

print method print an mcmc iterator's details

Usage

```
## S3 method for class 'mcmc'
print(x, ...)
```

Arguments

x a mcmc iterator
... other args

print.mcmcspatsurv

print.mcmcspatsurv function

Description

A function to print summary tables from an MCMC run

Usage

```
## S3 method for class 'mcmcspatsurv'
print(x, probs = c(0.5, 0.025, 0.975), digits = 3,
    scientific = -3, ...)
```

Arguments

x an object inheriting class mcmcspatsurv
probs vector of quantiles to return
digits see help file ?format
scientific see help file ?format
... additional arguments, not used here

print.mlspatsurv 77

Value

prints summary tables to the console

See Also

quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

print.mlspatsurv

print.mlspatsurv function

Description

A function to print summary tables from an MCMC run

Usage

```
## S3 method for class 'mlspatsurv'
print(x, probs = c(0.5, 0.025, 0.975), digits = 3,
    scientific = -3, ...)
```

Arguments

```
x an object inheriting class mcmcspatsurv
probs vector of quantiles to return
digits see help file ?format
scientific see help file ?format
... additional arguments, not used here
```

Value

prints summary tables to the console

See Also

quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

78 priorposterior

print.textSummary

print.textSummary function

Description

A function to print summary tables from an MCMC run

Usage

```
## S3 method for class 'textSummary'
print(x, ...)
```

Arguments

x an object inheriting class textSummary
... additional arguments, not used here

Value

prints a text summary of 'x' to the console

priorposterior

priorposterior function

Description

A function to produce plots of the prior (which shows as a red line) and posterior (showing as a histogram)

Usage

```
priorposterior(x, breaks = 30, ylab = "Density", main = "",
   pause = TRUE, bw = FALSE, ...)
```

Arguments

x	an object inheriting class	s memespatsurv
X	an object inheriting class	s memespatsur

breaks see ?hist
ylab optional y label
main optional title

pause logical whether to pause between plots, the default is TRUE

bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot.

Useful for producing plots for journals that do not accept colour plots.

... other arguments passed to the hist function

proposal Variance 79

Value

plots of the prior (red line) and posterior (histogram).

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, posteriorcov, MCE, hazardexceedance

proposalVariance

proposalVariance function

Description

A function to compute an approximate scaling matrix for the MCMC algorithm. Not intended for general use.

Usage

```
proposalVariance(X, surv, betahat, omegahat, Yhat, priors, cov.model, u,
  control)
```

Arguments

X the design matrix, containing covariate information

surv an object of class Surv
betahat an estimate of beta
omegahat an estimate of omega
Yhat an estimate of Y

priors the priors

cov.model the spatial covariance model
u a vector of pairwise distances

control a list containg various control parameters for the MCMC and post-processing

routines

Value

an estimate of eta and also an approximate scaling matrix for the MCMC

```
proposalVariance_gridded
```

proposalVariance_gridded function

Description

A function to compute an approximate scaling matrix for the MCMC algorithm. Not intended for general use.

Usage

```
proposalVariance_gridded(X, surv, betahat, omegahat, Yhat, priors, cov.model, u,
    control)
```

Arguments

X the design matrix, containing covariate information

 $\begin{array}{lll} \text{surv} & \text{an object of class Surv} \\ \text{betahat} & \text{an estimate of beta} \\ \text{omegahat} & \text{an estimate of omega} \\ \text{Yhat} & \text{an estimate of } Y \end{array}$

priors the priors

cov.model the spatial covariance model u a vector of pairwise distances

control a list containg various control parameters for the MCMC and post-processing

routines

Value

an estimate of eta and also an approximate scaling matrix for the MCMC

```
proposalVariance_polygonal
```

proposalVariance_polygonal function

Description

A function to compute an approximate scaling matrix for the MCMC algorithm. Not intended for general use.

Usage

```
\label{lem:proposalVariance_polygonal} \begin{subarray}{ll} X, & surv, & betahat, & omegahat, & Yhat, & priors, & cov.model, \\ & u, & control) \end{subarray}
```

Arguments

X the design matrix, containing covariate information

surv an object of class Surv betahat an estimate of beta omegahat an estimate of omega Yhat an estimate of Y

priors the priors

cov.model the spatial covariance model u a vector of pairwise distances

control a list containg various control parameters for the MCMC and post-processing

routines

Value

an estimate of eta and also an approximate scaling matrix for the MCMC

```
proposalVariance_SPDE proposalVariance_SPDE function
```

Description

A function to compute an approximate scaling matrix for the MCMC algorithm. Not intended for general use.

Usage

```
proposalVariance_SPDE(X, surv, betahat, omegahat, Yhat, priors, cov.model, u,
   control)
```

Arguments

X the design matrix, containing covariate information

surv an object of class Surv betahat an estimate of beta omegahat an estimate of Y an estimate of Y

priors the priors

cov.model the spatial covariance model u a vector of pairwise distances

control a list containg various control parameters for the MCMC and post-processing

routines

Value

an estimate of eta and also an approximate scaling matrix for the MCMC

82 PsplineHaz

Description

A function to define a parametric proportional hazards model where the baseline hazard is modelled by a basis spline and where the coefficients of the model follow a partially imporper random walk prior. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'

Usage

```
PsplineHaz(times, knots = quantile(times), degree = 3, MLinits = NULL)
```

parameter.

Arguments

times	vector of survival times (both censored and uncensored)	
knots	vector of knots in ascending order, must include minimum and maximum values of 'times' $$	
degree	degree of the spline basis, default is 3	
MLinits	optional starting values for the non-spatial maximisation routine using optim. Note that we are working with the log of the parameters. Default is -10 for each	

Details

The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv only allows the use of functions where the parameters are transformed independently.

The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

psplineprior 83

The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull model for the baseline hazard, it can be shown that the q-th quantile is:

Value

an object inheriting class 'basehazardspec'

See Also

exponentialHaz, gompertzHaz, makehamHaz, weibullHaz

psplineprior	psplineprior function	

Description

A function for evaluating the log of an independent Gaussian prior for a given set of parameter values.

Usage

```
psplineprior(beta = NULL, omega = NULL, eta = NULL, priors)
```

Arguments

beta	parameter beta at which prior is to be evaluated
omega	parameter omega at which prior is to be evaluated
eta	parameter eta at which prior is to be evaluated
priors	an object of class mcmcPriors, see ?mcmcPriors

Value

the log of the prior evaluated at the given parameter values

84 psplineRWprior

See Also

survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior

psplineRWprior psp

psplineRWprior function

Description

A function to define Gaussian priors for omega. This function simply stores a vector of means and standard deviations to be passed to the main MCMC function, survspat.

Usage

```
psplineRWprior(taumean, tausd, basehaz, order = 2)
```

Arguments

taumean the prior mean, a vector of length 1 or more. 1 implies a common mean.

tausd the prior standard deviation, a vector of length 1 or more. 1 implies a common

standard deviation.

basehaz an object inheriting class "basehazardspec", specifically, this function was used

for such objects created by a call to the function PsplineHaz

order the order of the random walk, default is 2

Value

an object of class "omegapriorGauss"

See Also

survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior

QuadApprox 85

учачарргох учистоп	QuadApprox	QuadApprox function	
--------------------	------------	---------------------	--

Description

A function to compute the second derivative of a function (of several real variables) using a quadratic approximation on a grid of points defined by the list argRanges. Also returns the local maximum.

Usage

```
QuadApprox(fun, npts, argRanges, plot = FALSE, ...)
```

Arguments

```
fun a function

npts integer number of points in each direction

argRanges a list of ranges on which to construct the grid for each parameter

plot whether to plot the quadratic approximation of the posterior (for two-dimensional parameters only)

... other arguments to be passed to fun
```

Value

a 2 by 2 matrix containing the curvature at the maximum and the (x,y) value at which the maximum occurs

```
quantile.mcmcspatsurv quantile.mcmcspatsurv function
```

Description

A function to extract quantiles of the parameters from an mcmc run

Usage

```
## S3 method for class 'mcmcspatsurv' quantile(x, probs = c(0.025, 0.5, 0.975), \ldots)
```

Arguments

```
    x an object inheriting class memespatsurv
    probs vector of probabilities
    other arguments to be passed to the function, not used here
```

86 quantile.mlspatsurv

Value

quantiles of model parameters

See Also

print.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazard-pars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

quantile.mlspatsurv

quantile.mlspatsurv function

Description

A function to extract quantiles of the parameters from an mcmc run

Usage

```
## S3 method for class 'mlspatsurv' quantile(x, probs = c(0.025, 0.5, 0.975), \ldots)
```

Arguments

x an object inheriting class mcmcspatsurv

probs vector of probabilities

... other arguments to be passed to the function, not used here

Value

quantiles of model parameters

See Also

print.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazard-pars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

randompars 87

randompars

randompars function

Description

A function to return the mcmc chains for the spatially correlated frailties

Usage

```
randompars(x)
```

Arguments

Х

an object of class memespatsurv

Value

the Y mcmc chains

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, spatialpars, hazardpars, fixedpars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

reconstruct.bs

reconstruct.bs function

Description

Generic function for reconstructing B-spline covariate effects. See ?reconstruct.bs.mcmcspatsurv and ?reconstruct.bs.coxph

Usage

```
reconstruct.bs(mod, ...)
```

Arguments

mod an object

... additional arguments

Value

method reconstruct.bs

```
reconstruct.bs.coxph reconstruct.bs.coxph function
```

Description

When bs(varname) has been used in the formula of a coxph model, this function can be used to reconstruct the predicted relative risk of that parameter over time.

Usage

```
## S3 method for class 'coxph'
reconstruct.bs(mod, varname, fun = NULL, probs = c(0.025,
    0.975), bw = FALSE, xlab = NULL, ylab = NULL, plot = TRUE, ...)
```

Arguments

mod	model output, created by function survspat
varname	name of the variable modelled by a B-spline
fun	optional function to feed in. Default is to plot relative risk against the covariate of interest. Useful choices include "identity" (but with no quotes), which plots the non-linear effect on the scale of the linear predictor.
probs	upper and lower quantiles for confidence regions to plot> The default is $c(0.025,0.975)$.
bw	Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
xlab	label for x axis, there is a sensible default
ylab	label for y axis, there is a sensible default
plot	logical, whether to plot the effect of varname over time
•••	other arguments to be passed to the plotting function.

Value

median, upper and lower confidence bands for the effect of varname over time; the funciton also produces a plot.

```
reconstruct.bs.mcmcspatsurv
```

reconstruct.bs.mcmcspatsurv function

Description

When bs(varname) has been used in the formula of a model, this function can be used to reconstruct the posterior relative risk of that parameter over time.

Usage

```
## S3 method for class 'mcmcspatsurv'
reconstruct.bs(mod, varname, probs = c(0.025, 0.975),
  bw = FALSE, xlab = NULL, ylab = NULL, plot = TRUE, ...)
```

Arguments

mod	model output, created by function survspat
varname	name of the variable modelled by a B-spline
probs	upper and lower quantiles for confidence regions to plot> The default is $c(0.025,0.975)$.
bw	Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
xlab	label for x axis, there is a sensible default
ylab	label for y axis, there is a sensible default
plot	logical, whether to plot the effect of varname over time
	other arguments to be passed to the plotting function.

Value

median, upper and lower confidence bands for the effect of varname over time; the funciton also produces a plot.

resetLoop reset iterator

Description

call this to reset an iterator's state to the initial

Usage

```
resetLoop(obj)
```

Arguments

obj an mcmc iterator

90 setTxtProgressBar2

```
residuals.mcmcspatsurv
```

resuiduals.mcmcspatsurv function

Description

A function to compute Cox-Snell / modeified Cox-Snell / Martingale or Deviance residuals

Usage

```
## S3 method for class 'mcmcspatsurv'
residuals(object, type = "Cox-Snell", ...)
```

Arguments

object an object produced by the function survspat

type type of residuals to return. Possible choices are 'Cox-Snell', 'modified-Cox-

Snell', 'Martingale' or 'deviance'.

... other arguments (not used here)

Value

the residuals

setTxtProgressBar2 set the progress bar

Description

update a text progress bar. See help(txtProgressBar) for more info.

Usage

```
setTxtProgressBar2(pb, value, title = NULL, label = NULL)
```

Arguments

pb text progress bar object

value new value title ignored

label text for end of progress bar

setupHazard 91

|--|

Description

A function to set up the baseline hazard, cumulative hazard and derivative functions for use in evaluating the log posterior. This function is not intended for general use.

Usage

```
setupHazard(dist, pars, grad = FALSE, hess = FALSE)
```

Arguments

dist	an object of class 'basehazardspec'
pars	parameters with which to create the functions necessary to evaluate the log posterior
grad	logical, whetether to create gradient functions for the baseline hazard and cumulative hazard
hess	logical, whetether to create hessian functions for the baseline hazard and cumulative hazard

Value

a list of functions used in evaluating the log posterior

|--|

Description

A function to set up the computational grid and precision matrix structure for SPDE models.

Usage

```
setupPrecMatStruct(shape, cellwidth, no)
```

Arguments

shape	an object of class SpatialPolygons or SpatialPolygonsDataFrame
cellwidth	a scalar, the width of the grid cells

no the order of the SPDE approximation: see Lindgren et al 2011 for details

92 showGrid

Value

the computational grid and a function for constructing the precision matrix

References

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

2. Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4)

showGrid showGrid function	showGrid	showGrid function	
----------------------------	----------	-------------------	--

Description

A function to show the grid that will be used for a given cellwidth

Usage

```
showGrid(dat, cellwidth, ext = 2, boundingbox = NULL)
```

Arguments

dat any spatial data object whose bounding box can be computed using the function

bbox.

cellwidth an initial suggested cellwidth

ext the extension parameter for the FFT transform, set to 2 by default

boundingbox optional bounding box over which to construct computational grid, supplied as

an object on which the function 'bbox' returns the bounding box

Value

a plot showing the grid and the data. Ideally the data should only just fit inside the grid.

simsury 93

simsurv

Description

A function to simulate spatial parametric proportional hazards model. The function works by simulating candidate survival times using MCMC in parallel for each individual based on each individual's covariates and the common parameter effects, beta.

Usage

```
simsurv(X = cbind(age = runif(100, 5, 50), sex = rbinom(100, 1, 0.5), cancer = rbinom(100, 1, 0.2)), beta = c(0.0296, 0.0261, 0.035), omega = 1, dist = exponentialHaz(), coords = matrix(runif(2 * nrow(X)), nrow(X), 2), cov.parameters = c(1, 0.1), cov.model = covmodel(model = "exponential", pars = NULL), mcmc.control = mcmcpars(nits = 1e+05, burn = 10000, thin = 90), savechains = TRUE)
```

Arguments

Χ	a matrix of covariate information
beta	the parameter effects
omega	vector of parameters for the baseline hazard model
dist	the distribution choice: exp or weibull at present
coords	matrix with 2 columns giving the coordinates at which to simulate data
cov.parameters	a vector: the parameters for the covariance function
cov.model	an object of class covmodel, see ?covmodel
mcmc.control	meme control paramters, see ?memepars
savechains	save all chains? runs faster if set to FALSE, but then you'll be unable to conduct convergence/mixing diagnostics

Value

in list element 'survtimes', a vector of simulated survival times (the last simulated value from the MCMC chains) in list element 'T' the MCMC chains

See Also

covmodel, survspat, tpowHaz, exponentialHaz, gompertzHaz, makehamHaz, weibullHaz

94 spatsurv Vignette

spatialpars

spatialpars function

Description

A function to return the mcmc chains for the spatial covariance function parameters

Usage

```
spatialpars(x)
```

Arguments

Х

an object of class memespatsurv

Value

the eta meme chains

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailty-lag1, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

spatsurvVignette

spatsurvVignette function

Description

Display the introductory vignette for the spatsurv package.

Usage

```
spatsurvVignette()
```

Value

displays the vignette by calling browseURL

SPDE 95

SPDE SPDE function

Description

A function to declare and evaluate an SPDE covariance function.

Usage

SPDE(ord)

Arguments

ord

the order of the model to be used, currently an integer between 1 an 3. See Lindgren 2011 paper.

Value

an covariance function based on the SPDE model

See Also

ExponentialCovFct, covmodel, CovarianceFct

SPDEprec

SPDEprec function

Description

A function to used in entering elements into the precision matrix of an SPDE model. Not intended for general use.

Usage

```
SPDEprec(a, ord)
```

Arguments

a parameter a, see Lindgren et al 2011.

ord the order of the SPDE model, see Lindgren et al 2011.

Value

a function used for creating the precision matrix

96 spplot1

References

 Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

2. Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4)

SpikedExponentialCovFct

SpikedExponentialCovFct function

Description

A function to declare and also evaluate a spiked exponential covariance function. This is an exponential covariance function with a nugget.

Usage

```
SpikedExponentialCovFct()
```

Value

the spiked exponential covariance function

See Also

ExponentialCovFct, covmodel, CovarianceFct

spplot1

spplot1 function

Description

A function to provide spplot-like plotting capability but NOT using trellis graphics. This function also acts as an interface for fast plotting of SpatialPolygonsDataFrame or SpatialPixelsDataFrame objects using leaflet HTML plotting capabilities to get zoomable plots with real-world context: transformation to the correct projection is done automatically.

Usage

```
spplot1(x, what, palette = brewer.pal(5, "Oranges"), breaks = NULL,
  legpos = "topleft", fun = identity, include.lowest = TRUE, bty = "n",
  bg = NULL, printlegend = TRUE, bw = FALSE, useLeaflet = FALSE,
  urltemplate = urlTemplate("Stamen_Toner"), fillOpacity = 0.5,
  legendOpacity = 0.5, OSMbg = NULL, leafletLegend = TRUE,
  alpha.f = 0.5, ...)
```

spplot1 97

Arguments

x a SpatialPolgonsDataFrame or a SpatialPointsDataFrame

what the name of the variable to plot

palette the palette, can either be a vector of names of colours, or a vector of colours

produced for example by the brewer.pal function.

breaks optional breaks for the legend, a vector of length 1 + length(palette)

legpos the position of the legend, options are 'topleft', 'topright', 'bottomleft', 'bot-

tomright'

fun an optional function of the data to plot, default is the identity function

include.lowest see ?cut
bty see ?legend
bg see ?legend

printlegend logical: print the legend?

bw Logical. Plot in black/white/greyscale? Default is to produce a colour plot.

Useful for producing plots for journals that do not accept colour plots.

useLeaflet whether to use leaflet to produce a zoomable map this requires the leaflet pack-

age, available by issuing the command "devtools::install_github('rstudio/leaflet')"

urltemplate template for leaflet map background, default is urlTemplate('Stamen-Toner'),

but any valid web address for leaflet templates will work here. See ?urlTemplate.

fillOpacity see ?addPolygons

legendOpacity see opacity argument in function addLegend

OSMbg optional OpenStreetMap background to add to plot, obtain this using the func-

tion getBackground

leafletLegend logical, display the leaflet legend?

alpha.f point transparency, see ?adjustcolor, default is 0.5

... other arguments to be passed to plot

Details

See http://leaflet-extras.github.io/leaflet-providers/preview/ for examples of leaflet templates.

Instructions on installing the leaflet R package are available from https://rstudio.github.io/leaflet/

Value

either produces a plot or if useLeaflet is TRUE, returns a leaflet map widget to which further layers can be added

See Also

urlTemplate, getBackground, brewer.pal

98 spplot_compare

spplot_compare	spplot_compare function

Description

A function to compare two SpatialPolgonsDataFrame or SpatialPointsDataFrame objects using a unified legend for the variable of interest in both

Usage

```
spplot_compare(x, y, what, what1 = what, palette = brewer.pal(9, "Oranges"),
  legpos = "topleft", border = NA, fun = identity, t1 = "", t2 = "",
  bw = FALSE, ...)
```

Arguments

X	a SpatialPolgonsDataFrame or a SpatialPointsDataFrame
У	a SpatialPolgonsDataFrame or a SpatialPointsDataFrame
what	the name of the variable from x to plot
what1	the name of the variable from y to plot. default is to plot the variable of the same name
palette	the palette, can either be a vector of names of colours, or a vector of colours produced for example by the brewer.pal function.
legpos	the position of the legend, options are 'topleft', 'topright', 'bottomleft', 'bottomright'
border	see ?spplot
fun	an optional function of the data to plot, default is the identity function
t1	title for the plot of x
t2	title for the plot of y
bw	Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots.
	other arguments to be passed to the plot function

Value

```
produces a plot comparing x[[what]] and y[[what1]]
```

Summarise 99

Description

A function to completely summarise the output of an object of class mcmcspatsurv.

Usage

```
Summarise(obj, digits = 3, scientific = -3, inclIntercept = FALSE,
    printmode = "LaTeX", displaymode = "console", ...)
```

Arguments

obj	an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars
digits	see the option "digits" in ?format
scientific	see the option "scientific" in ?format
inclIntercept	logical: whether to summarise the intercept term, default is FALSE.
printmode	the format of the text to return, can be 'LaTeX' (the default) or 'text' for plain
	text.
displaymode	default is 'console' alternative is 'rstudio'
	other arguments passed to the function "format"

Value

A text summary, that can be pasted into a LaTeX document and later edited.

summary.mcmc	summary.mcmc function

Description

summary of an mcmc iterator print out values of an iterator and reset it. DONT call this in a loop that uses this iterator - it will reset it. And break.

Usage

```
## S3 method for class 'mcmc'
summary(object, ...)
```

Arguments

```
object an meme iterator ... other args
```

100 surv3d

```
summary.mcmcspatsurv summary.mcmcspatsurv function
```

Description

A function to return summary tables from an MCMC run

Usage

```
## S3 method for class 'mcmcspatsurv'
summary(object, probs = c(0.5, 0.025, 0.975), ...)
```

Arguments

```
object an object inheriting class mcmcspatsurv
probs vector of quantiles to return
... additional arguments
```

Value

summary tables to the console

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazard-pars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

surv3d

Spatial Survival Plot in 3D

Description

Do a 3d plot of spatial survival data

Usage

```
surv3d(spp, ss, lwd = 2, lcol = "black", lalpha = 1, pstyle = c("point",
  "text"), psize = c(20, 10), pcol = c("red", "black"), ptext = c("X",
  ""), palpha = 1, title = "Spatial Survival", basegrid = TRUE,
  baseplane = TRUE)
```

surv3d 101

Arguments

spp	A spatial points data frame
ss	A Surv object (with right-censoring)
lwd	Line width for stems
lcol	Line colour for stems
lalpha	Opacity for stems
pstyle	Point style "point" or "text"
psize	Vector of length 2 for uncensored/censored points size
pcol	Vector of length 2 for uncensored/censored points colours
ptext	Vector of length 2 for uncensored/censored text characters
palpha	Opacity for points/text
title	Main title for plot
basegrid	add a grid at t=0
baseplane	add a plane at t=0

Details

Uses rgl graphics to make a spinny zoomy plot

Value

nothing

Author(s)

Barry S Rowlingson

Examples

```
## Not run:
require(sp)
require(survival)
d = data.frame(
    x=runif(40)*1.5,
    y = runif(40),
    age=as.integer(20+30*runif(40)),
    sex = sample(c("M","F"),40,TRUE)
)
coordinates(d)=~x+y
d$surv = Surv(as.integer(5+20*runif(40)),runif(40)>.9)
clear3d();surv3d(d,d$surv,baseplane=TRUE,basegrid=TRUE)
clear3d();surv3d(d,d$surv,baseplane=TRUE,basegrid=TRUE,pstyle="t",lalpha=0.5,lwd=3,palpha=1)
## End(Not run)
```

102 survspat

	survival_PP	survival_PP function	
--	-------------	----------------------	--

Description

A function to compute an individual's survival function

Usage

```
survival_PP(inputs)
```

Arguments

inputs

inputs for the function including the model matrix, frailties, fixed effects and the

parameters of the baseline hazard derived from this model

Value

the survival function for the individual

survspat function

Description

A function to run a Bayesian analysis on censored spatial survial data assuming a proportional hazards model using an adaptive Metropolis-adjusted Langevin algorithm.

Usage

```
survspat(formula, data, dist, cov.model, mcmc.control, priors, shape = NULL,
  ids = list(shpid = NULL, dataid = NULL),
  control = inference.control(gridded = FALSE), boundingbox = NULL)
```

Arguments

formula	the model formula in a format compatible with the function flexsurvreg from the flexsurv package
data	a SpatialPointsDataFrame object containing the survival data as one of the columns OR for polygonal data a data.frame, in which case, the argument shape must also be supplied
dist	choice of distribution function for baseline hazard. Current options are: exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
cov.model	an object of class covmodel, see ?covmodel ?ExponentialCovFct or ?SpikedExponentialCovFct

survspatNS 103

mcmc.control	mcmc control parameters, see ?mcmcpars
priors	an object of class Priors, see ?mcmcPriors
shape	when data is a data.frame, this can be a SpatialPolygonsDataFrame, or a SpatialPointsDataFrame, used to model spatial variation at the small region level. The regions are the polygons, or they represent the (possibly weighted) centroids of the polygons.
ids	named list entry shpid character string giving name of variable in shape to be matched to variable dataid in data. dataid is the second entry of the named list.
control	additional control parameters, see ?inference.control
boundingbox	optional bounding box over which to construct computational grid, supplied as an object on which the function 'bbox' returns the bounding box

Value

an object inheriting class 'mcmcspatsurv' for which there exist methods for printing, summarising and making inference from.

References

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

See Also

tpowHaz, exponentialHaz, gompertzHaz, makehamHaz, weibullHaz, covmodel, linkExponentialCovFct, SpikedExponentialCovFct, mcmcpars, mcmcPriors, inference.control

survspatNS survspatNS function

Description

A function to perform maximun likelihood inference for non-spatial survival data.

Usage

```
survspatNS(formula, data, dist, control = inference.control())
```

Arguments

formula	the model formula in a format compatible with the function flexsurvreg from the flexsurv package
data	a SpatialPointsDataFrame object containing the survival data as one of the columns
dist	choice of distribution function for baseline hazard. Current options are: exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
control	additional control parameters, see ?inference.control

104 textSummary

Value

an object inheriting class 'mcmcspatsurv' for which there exist methods for printing, summarising and making inference from.

References

1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.

See Also

tpowHaz, exponentialHaz, gompertzHaz, makehamHaz, weibullHaz, covmodel, linkExponentialCovFct, SpikedExponentialCovFct, mcmcpars, mcmcPriors, inference.control

mary textSummary function	ummary
---------------------------	--------

Description

A function to print a text description of the inferred paramerers beta and eta from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars

Usage

```
textSummary(obj, digits = 3, scientific = -3, inclIntercept = FALSE,
    printmode = "LaTeX", ...)
```

Arguments

obj	an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitype-SpatialPlusPars
digits	see the option "digits" in ?format
scientific	see the option "scientific" in ?format
inclIntercept	logical: whether to summarise the intercept term, default is FALSE.
printmode	the format of the text to return, can be 'LaTeX' (the default) or 'text' for plain text.
	other arguments passed to the function "format"

Value

A text summary, that can be pasted into a LaTeX document and later edited.

timevaryingPL 105

nction

Description

A function to

Usage

```
timevaryingPL(formula, t0, t, delta, dist, data, ties = "Efron",
  optimcontrol = NULL)
```

Arguments

formula	a formula of the form 'S \sim coef1 + coef2' etc the object S will be created
t0	X
t	X
delta	censoring indicator a vector of 1 for an event and 0 for censoring
dist	X
data	X
ties	X default is Efron
optimcontrol	X

Value

•••

tpowHaz	tpowHaz function	

Description

A function to define a parametric proportional hazards model where the baseline hazard is taken from the 'powers of t' model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'

Usage

```
tpowHaz(powers)
```

106 tpowHaz

Arguments

powers

a vector of powers of t. These are powers are treated as fixed in estimation routines and it is assumed that the log cumulatice baseline hazard is a linear combination of these powers of t

Details

The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv only allows the use of functions where the parameters are transformed independently.

The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull model for the baseline hazard, it can be shown that the q-th quantile is:

Value

an object inheriting class 'basehazardspec'

See Also

exponentialHaz, gompertzHaz, makehamHaz, weibullHaz

transformweibull 107

transformweib	. 1 1

transformweibull function

Description

A function to back-transform estimates of the parameters of the weibull baseline hazard function, so they are commensurate with R's inbuilt density functions. Transforms from (shape, scale) to (alpha, lambda)

Usage

```
transformweibull(x)
```

Arguments

Χ

a vector of paramters

Value

the transformed parameters. For the weibull model, this is the back-transform from 'alpha' and 'lambda' to 'shape' 'scale' (see ?dweibull).

txtProgressBar2

A text progress bar with label

Description

This is the base txtProgressBar but with a little modification to implement the label parameter for style=3. For full info see txtProgressBar

Usage

```
txtProgressBar2(min = 0, max = 1, initial = 0, char = "=", width = NA,
  title = "", label = "", style = 1)
```

Arguments

min	min value for bar
max	max value for bar
initial	initial value for bar
char	the character (or character string) to form the progress bar.
width	progress bar width
title	ignored
label	text to put at the end of the bar
stvle	bar style

108 vcov.mcmcspatsurv

urlTemplate

urlTemplate function

Description

A function to return a url for a leaflet template for use as map backgrounds with the spplot1 function.

Usage

```
urlTemplate(name = "Stamen_Toner")
```

Arguments

name

name of the template to use, the default is 'Stamen_Toner'

Details

Possible templates are: OpenStreetMap_Mapnik, OpenStreetMap_BlackAndWhite, OpenStreetMap_DE, OpenStreetMap_France, OpenStreetMap_HOT, OpenTopoMap, Thunderforest_OpenCycleMap, Thunderforest_Transport, Thunderforest_Landscape, Thunderforest_Outdoors, OpenMapSurfer_Roads, OpenMapSurfer_Grayscale, Hydda_Full, Hydda_Base, MapQuestOpen_OSM, Stamen_Toner, Stamen_TonerBackground, Stamen_TonerLite, Stamen_Watercolor, Stamen_Terrain, Stamen_TerrainBackground, Stamen_TopOSMRelief, Esri_WorldStreetMap, Esri_WorldTopoMap, Esri_WorldImagery, Esri_WorldTerrain, Esri_WorldShadedRelief, Esri_WorldPhysical, Esri_OceanBasemap, Esri_NatGeoWorldMap, Esri_WorldGrayCanvas, Acetate_all, Acetate_terrain, HERE_satelliteDay, HERE_hybridDayMobile, HERE_hybridDay

See http://leaflet-extras.github.io/leaflet-providers/preview/ for other leaflet templates

Value

url for the leaflet template

vcov.mcmcspatsurv

vcov.mcmcspatsurv function

Description

A function to return the variance covariance matrix of the parameters beta, omega and eta

Usage

```
## S3 method for class 'mcmcspatsurv'
vcov(object, ...)
```

vcov.mlspatsurv 109

Arguments

object an object inheriting class mcmcspatsurv

... other arguments, not used here

Value

the variance covariance matrix of the parameters beta, omega and eta

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

vcov.mlspatsurv

vcov.mlspatsurv function

Description

A function to return the variance covariance matrix of the parameters beta, omega and eta

Usage

```
## S3 method for class 'mlspatsurv'
vcov(object, ...)
```

Arguments

object an object inheriting class mcmcspatsurv

... other arguments, not used here

Value

the variance covariance matrix of the parameters beta, omega and eta

See Also

print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance

110 weibullHaz

weibullHaz

weibullHaz function

Description

A function to define a parametric proportional hazards model where the baseline hazard is taken from the Weibull model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'

Usage

weibullHaz()

Details

The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv only allows the use of functions where the parameters are transformed independently.

The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector.

The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. It returns a function that accepts as input a vector of times, t and returns a vector

The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.

The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.

The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull model for the baseline hazard, it can be shown that the q-th quantile is:

YfromGamma 111

Value

an object inheriting class 'basehazardspec'

See Also

tpowHaz, exponentialHaz, gompertzHaz, makehamHaz

YfromGamma

YfromGamma function

Description

A function to change Gammas (white noise) into Ys (spatially correlated noise). Used in the MALA algorithm.

Usage

```
YfromGamma(Gamma, invrootQeigs, mu)
```

Arguments

Gamma matrix

invrootQeigs inverse square root of the eigenvectors of the precision matrix

mu parameter of the latent Gaussian field

Value

Y

YFromGamma_SPDE

YFromGamma_SPDE function

Description

A function to go from Gamma to Y

Usage

```
YFromGamma_SPDE(gamma, U, mu)
```

Arguments

gamma Gamma

U upper Cholesky matrix

mu the mean

Value

the value of Y for the given Gamma

References

- 1. Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.
- 2. Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4)

Index

*Topic datasets	derivpsplineprior, 22
fs, 30	distinfo, 23
fstimes, 31	distinfo.basehazardspec, 23, 23
*Topic package	415 tim 6.545 ch42ar 45pcc, 25, 25
spatsurv-package, 5	estimateY, 24
spatisar v package, s	Et_PP, 25
allocate, 6	etapriorGauss, 11, 21, 22, 24, 25, 51, 64, 70,
alpha, 7	84
	EvalCov, 25
В, 7	ExponentialCovFct, 26, 95, 96
basehazard, 8	exponentialHaz, 8, 9, 13, 17-20, 23, 24, 26,
basehazard.basehazardspec, 8, 8	40–42, 48–50, 61, 83, 93, 103, 104,
baseHazST, 9	106, 111
baselinehazard, 9, 29, 30, 46, 47, 62, 75–77,	FFT 11.00
79, 86, 87, 94, 100, 109	FFTgrid, 28
betapriorGauss, 10, 11, 21, 22, 25, 51, 64,	fixedpars, 10, 28, 30, 46, 47, 62, 75–77, 79,
70, 84	86, 87, 94, 100, 109
blockDiag, 11	fixmatrix, 29
boxplotRisk, 11	fixParHaz, 29
Bspline.construct, 12	frailtylag1, <i>10</i> , <i>29</i> , <i>30</i> , <i>46</i> , <i>47</i> , <i>62</i> , <i>75</i> – <i>77</i> ,
BsplineHaz, 12	79, 86, 87, 94, 100, 109
bsprinenaz, 12	fs, 30
checkSurvivalData, 14	fstimes, 31
circulant, 14	gamma2risk, 31
circulant.matrix, 15	GammafromY, 32
circulant.numeric, 15	GammaFromY_SPDE, 32
circulantij, 16	gencens, 33
covmodel, 16, 26, 50, 93, 95, 96, 103, 104	getBackground, 33, 97
CSplot, 17	getbb, 34
cumbasehazard, 17	getBbasis, 34
cumbasehazard.basehazardspec, 17, 18	getcov, 35
cumulativeBspline.construct, 18	getgrd, 36
density DD 20	getGrid, 36
density_PP, 20	getleneta, 37
densityquantile, 19	getOptCellwidth, 37
densityquantile.basehazardspec, 19, 19	getparranges, 38
densityquantile_PP, 20	getsurvdata, 38
derivindepGaussianprior, 11, 21, 21, 22,	gompertzHaz, 8, 9, 13, 17–20, 23, 24, 27, 39,
25, 51, 64, 70, 84	40–42, 48–50, 61, 83, 93, 103, 104,
derivindepGaussianpriorST, 21	106, 111

114 INDEX

gradbasehazard, 40	mcmcLoop, 63
gradbasehazard.basehazardspec, 40, 40	mcmcpars, 63, 103, 104
gradcumbasehazard, 41	mcmcPriors, 64, 103, 104
gradcumbasehazard.basehazardspec,41,	mcmcProgressNone, 65
42	mcmcProgressPrint, 65
grid2spdf, 42	mcmcProgressTextBar, 66
grid2spix, 43	midpts, 66
grid2spts, 43	multiWayHaz, 67
gridY,44	•
gridY_polygonal,44	neighLocs, 67
guess_t, 45	neighOrder, 68
	nextStep, 68
hasNext, 45	NonSpatialLogLikelihood_or_gradient,
hasNext.iter, 46	69
hazard_PP, 47	0)
hazardexceedance, 10, 29, 30, 46, 47, 62,	omogannianCause 11 21 22 25 51 64 60
75–77, 79, 86, 87, 94, 100, 109	omegapriorGauss, 11, 21, 22, 25, 51, 64, 69,
hazardpars, 10, 29, 30, 46, 47, 62, 75–77, 79,	70, 84
86, 87, 94, 100, 109	omegapriorGaussST, 70
hessbasehazard, 48	optifix, 71
hessbasehazard.basehazardspec, 48, 48	1 (557 : 1.70
hesscumbasehazard, 49	plot.FFTgrid,72
hesscumbasehazard.basehazardspec, 49,	plotsurv, 72
49	polyadd, 73
	polymult, 74
imputationModel, 50	posteriorcov, 10, 29, 30, 46, 47, 62, 74, 76,
Independent, 50	77, 79, 86, 87, 94, 100, 109
indepGaussianprior, 11, 21, 22, 25, 51, 51,	predict.mcmcspatsurv, 10, 29, 30, 46, 47,
64, 70, 84	62, 75, 75, 77, 79, 86, 87, 94, 100,
indepGaussianpriorST, 51	109
inference.control, 52, 103, 104	print.mcmc, 76
insert, 53	print.mcmcspatsurv, 10, 29, 30, 46, 47, 62,
invtransformweibull, 54	75, 76, 76, 79, 86, 87, 94, 100, 109
is.burnin, 54	print.mlspatsurv,77
is.retain, 55	print.textSummary, 78
iteration, 55	priorposterior, 10, 29, 30, 46, 47, 62,
,	75–77, 78, 86, 87, 94, 100, 109
logPosterior, 56	proposalVariance,79
logPosterior_gridded, 57	proposalVariance_gridded, 80
logPosterior_polygonal, 58	proposalVariance_polygonal, 80
logPosterior_SPDE, 59	proposalVariance_SPDE,81
loop.mcmc, 60	PsplineHaz, 82
	psplineprior, 83
makehamHaz, 8, 9, 13, 17–20, 23, 24, 27,	psplineRWprior,84
40–42, 48–50, 60, 83, 93, 103, 104,	
106, 111	QuadApprox, 85
maxlikparamPHsurv, 61	quantile.mcmcspatsurv, 10, 29, 30, 46, 47,
MCE, 10, 29, 30, 46, 47, 62, 75–77, 79, 86, 87,	62, 75–77, 79, 85, 87, 94, 100, 109
94, 100, 109	quantile.mlspatsurv,86

INDEX 115

```
randompars, 10, 29, 30, 46, 47, 62, 75–77, 79,
                                                   YfromGamma, 111
         86, 87, 94, 100, 109
                                                   YFromGamma_SPDE, 111
reconstruct.bs, 87
reconstruct.bs.coxph, 88
reconstruct.bs.mcmcspatsurv, 89
resetLoop, 89
residuals.mcmcspatsurv, 90
setTxtProgressBar2, 90
setupHazard, 91
setupPrecMatStruct, 91
showGrid, 92
simsurv, 93
spatialpars, 10, 29, 30, 46, 47, 62, 75-77,
         79, 86, 87, 94, 100, 109
spatsurv (spatsurv-package), 5
spatsurv-package, 5
spatsurvVignette, 94
SPDE, 95
SPDEprec, 95
SpikedExponentialCovFct, 26, 50, 96
spplot1, 96
spplot_compare, 98
Summarise, 99
summary.mcmc, 99
summary.mcmcspatsurv, 10, 29, 30, 46, 47,
         62, 75–77, 79, 86, 87, 94, 100, 109
surv3d, 100
survival_PP, 102
survspat, 11, 21, 22, 25, 51, 53, 64, 70, 84,
         93. 102
survspatNS, 103
textSummary, 104
timevaryingPL, 105
tpowHaz, 8, 9, 17-20, 23, 24, 27, 40-42,
         48-50, 61, 93, 103, 104, 105, 111
transformweibull, 107
txtProgressBar2, 107
urlTemplate, 97, 108
vcov.mcmcspatsurv, 10, 29, 30, 46, 47, 62,
         75–77, 79, 86, 87, 94, 100, 108
vcov.mlspatsurv, 109
weibullHaz, 8, 9, 13, 17-20, 23, 24, 27,
         40-42, 48-50, 61, 83, 93, 103, 104,
         106, 110
```