

		(2)
Lecture no:	Rectilinear Kinematics	
position as function $Ans: (2kt+(1/v_0^2))$	-1/2	locity and
The acceleration where s is in me	of a rocket traveling upward is given by a=(6 + 0 eters. Determine the rockets velocity when s = 2 lends altitude. Initially, V=0 & s= 0 when t=0.	.02s) m/s ² km & time
A particle moving	along a straight line such that its and a six	
=(-2v) m/s ² , where	along a straight line such that its acceleration is c e v is in meter/ seconds. If $v = 20$ m/s when sticle's position, velocity and acceleration as function.	=0 & t = 0.
If a= (s) m/s ² ,where Ans:V=3m/s	e 's' is in meter, determine v when $s = 5m$ if $v=0$	at s= 4m
=3s – 6s². Where 'a' Find (a)Velocity (b) the displacem	f a particle moving along a straight line is giver is m/s ² & 's' is in meter. The particles starts frow when the displacement is 3m. The nent when the velocity is again zero & the sent at maximum velocity.	n by the law, a
The acceleration o	of a particle is given by $a = -0.02v^{1.75}$ m	n/s² performi

rectilinear motion knowing at x=0, v=20 m/s. Determine () The position

where the velocity is 28m/s & (b) acceleration when x = 200m. Ans: $a=-0.043m/s^2$

(2) RCH/12·19/pg.632: on/s2 -> 1) a=6+(0.02)2 2000m a.da = v. dv $\int_{0}^{2000m} \left[6 + (0.02) \times \right] dx = \int_{0}^{2000} v \cdot dv$ V = 322.49 m, t = 19.27 = $\left[6.2 + (0.02)\frac{2e^2}{2}\right]^{2000} = \frac{\sqrt{2}}{2}$ $\frac{1}{2} \left[(6 \times 2000) + 40,000 \right] = (52,000 \times 2)$ Ans: $\sqrt{9} = 322.49 \text{ mb}$ NOW, $v^2 = 12 \cdot x + (0.02) x^2$ $v = [12 \cdot x + (0.02) x^2]^{1/2} \xrightarrow{\gamma_s} 0$ $\frac{\partial x}{\partial b} = \left[12 \cdot x + (0.02) z^2\right]^{1/2}$ $\int_{0}^{200} dt = \int_{0}^{200} \left[12 \cdot x + (0.02)x^{2}\right]^{-1/2} dx$ (600 /2/1/24

3)
$$RCH/12.25/Pg.632$$

$$\boxed{a=-2v} \quad m/s^2 \longrightarrow 0$$

$$At t=0, v=20 m/s^5, x=0$$

$$dv = a.dt$$

$$dv = -2v.dt$$

$$dv = -2.\int dt$$

$$\log v = -2t + C_1$$

A KCH/ F12·1(+)/Pg. 822

$$Q := S = 2 \text{ M/s} \rightarrow 0$$

 $A \cdot dz = y \cdot dv$
 $3z \cdot dz = \int y \cdot dv$

(5)
$$RCH/12.13/PJ 631:$$
 $a = 3x - 6x^{2}$ $m/s^{2} \rightarrow 1$

At $t = 0$, $v = 0$, $s = x = 0$
 $adx = v \cdot dv$
 $(3x - 6x^{2})dx = (v \cdot dv)$
 $(3x^{2} - 2x^{3}) = (\frac{v^{2}}{2} + c_{1})$
 $c_{1} = 0$
 $v^{2} = 3x^{2} - 4x^{2}$

(a) At $x = 3m$, $v = \sqrt{27 - 324}$

b) When $v = 0$, $3x^{2} - 4x^{3} = 0$
 $x^{2} - (3 - 4x) = 0$
 $x = 0$ or $x = 3/4 = 0.75m$
 $x = 0.75m$

(b) For \sqrt{max} , $\sqrt{dx} = 0 = \frac{1}{2}(3x^{2} - 4x^{3}) \cdot (6x - 12x^{2})$
 $\sqrt{3x^{2} - 4x^{3}} = 0$
 $\sqrt{3x^{2} - 6x^{2}} = 0$

(6)
$$RCH/12.26/pg.632$$
.

 $a = -(0.02) \times 1.75 m/s^2 \longrightarrow 0$
 $a \cdot dx = v \cdot dv$
 $-(0.02) \cdot v^{1.75} dx = v \cdot dv$
 $-(0.02) \int dx = \int v^{0.75} dv$
 $-(0.02) z = \left(\frac{v^{25}}{0.25}\right) + C_1$
 $-(0.02) z = f \cdot v^{1} + C_1$
 $x = -(200) \cdot v^{1} + C_1$

At $x = 0$, $v = 20 m/s$
 $v = -(200) \cdot v^{1} + 422.95$

Ans: (a) when, $v = 28 m/s$
 $v = -37.115 m/s$

(b) when $v = 200 m$
 $v = 1.544 m/s$
 $v = -0.043 m/s^2$