Laufzeitanalyse

Definitionen

- B: Anzahl der Banken
- N_j : Anzahl der Münzen in Bank j
- $C_{\text{total}} = \sum_{j} N_{j}$: Gesamtzahl aller Münzen über alle Banken
- runs: Anzahl der Greedy-Starts (z. B. 10)
- K: Schranke für die Gesamtzahl der eingesammelten Münzen

Laufzeitkomplexität

Für konstante Anzahl an Starts (runs = const = 10) ergibt sich die Gesamtlaufzeit in O-Notation zu:

$$T = O\left(\sum_{j=1}^{B} N_j \log N_j + B \log B + C_{\text{total}}\right). \tag{1}$$

Durch Ausnutzen des Durchschnittswerts $\overline{N} = C_{\text{total}}/B$ kann man weiter vereinfachen:

$$T = O(C_{\text{total}} \log \overline{N} + B \log B + C_{\text{total}}). \tag{2}$$

Praktische Abschätzung

Für typische Parameter:

- $B \approx 10^5$,
- $C_{\text{total}} \le 10^6$,
- $\overline{N} \approx 10$,

ergibt sich eine Gesamtlaufzeit im Bereich von etwa 10^7 bis 10^8 Operationen, was auf modernen CPUs in wenigen Sekunden realisierbar ist.

NP-Komplexität

Entscheidungsproblem

Wir definieren das zu betrachtende Entscheidungsproblem wie folgt:

• Greedy-Start-Entscheidung: Gegeben eine Familie von B Banken mit je N_j Münzen und eine Schranke K, gibt es eine Auswahl von Greedy-Starts (jeweils Startbank), sodass die Gesamtanzahl der eingesammelten Münzen mindestens K beträgt?

Mitgliedschaft in NP

Ein Zertifikat besteht aus einer Auswahl der Startbanken für jeden der runs Greedy-Starts. Die Verifikation kann in polynomieller Zeit erfolgen, indem man für jeden Start den Greedy-Ablauf simuliert (Laufzeit $O(C_{\text{total}})$) und die Gesamtzahl summiert. Somit ist Greedy-Start-Entscheidung in NP.

NP-Härte (NP-Schwer)

Wir zeigen NP-Härte durch eine polynomzeitliche Reduktion von Partition, das bekannt NP-vollständig ist.

- Partition: Gegeben eine multiset $S = \{a_1, \ldots, a_n\}$ mit $\sum_i a_i = 2T$, gibt es eine Teilmenge $S' \subseteq S$ mit $\sum_{a \in S'} a = T$?
- Reduktionskonstruktion: Wir setzen B = n + 1 Banken. Für j = 1, ..., n befüllen wir Bank j mit $N_j = a_j$ Münzen. Die Bank n + 1 erhält $N_{n+1} = T$ Münzen. Wähle runs = 1 und setze K = 2T.
- Korrektheit: Ein Greedy-Start auf Bank n+1 sammelt zunächst T Münzen und wechselt dann zu einer der restlichen Banken. Um insgesamt $\geq 2T$ Münzen zu sammeln, muss die folgende Bank genau T Münzen enthalten, d. h. eine Teilmenge der ersten n Banken mit Summe T existiert. Somit gibt es eine Lösung für Partition genau dann, wenn die Greedy-Start-Entscheidung mit diesen Parametern lösbar ist.

Da Partition NP-vollständig ist, ist auch Greedy-Start-Entscheidung NP-hart. Zusammen mit Zugehörigkeit zu NP erhält man NP-Vollständigkeit.