UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Tatiane Fernanda de Souza Silva

Modelagem molecular: predição de estruturas de peptídeos pelo método *ab initio*

Uberlândia, Brasil 2019

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Tatiane Fernanda de Souza Silva

Modelagem molecular: predição de estruturas de peptídeos pelo método *ab initio*

Trabalho de conclusão de curso apresentado à Faculdade de Computação da Universidade Federal de Uberlândia, Minas Gerais, como requisito exigido parcial à obtenção do grau de Bacharel em Ciência da Computação.

Orientador: Prof. Dr. Anderson Rodrigues dos Santos

Universidade Federal de Uberlândia – UFU
Faculdade de Computação
Bacharelado em Ciência da Computação

Uberlândia, Brasil 2019

Tatiane Fernanda de Souza Silva

Modelagem molecular: predição de estruturas de peptídeos pelo método *ab initio*

Trabalho de conclusão de curso apresentado à Faculdade de Computação da Universidade Federal de Uberlândia, Minas Gerais, como requisito exigido parcial à obtenção do grau de Bacharel em Ciência da Computação.

Trabalho aprovado. Uberlândia, Brasil, 10 de julho de 2019:

Prof. Dr. Anderson Rodrigues dos Santos

Orientador

Prof. Dr Eduardo de Faria Franca Instituto de Química - UFU

Dino Rogério Coinete Franklin FACOM - UFU

> Uberlândia, Brasil 2019

Dedico este trabalho aos meu pais,

Marquilandes e Enilza,
que me apoiaram em todos os momentos da minha vida.

E ao meu namorado,

Rodrigo,
que me apresentou o mundo da computação.

Amo vocês.

Agradecimentos

Quero agradecer Deus e a todos aqueles que me apoiaram de forma direta e indiretamente a concluir este trabalho, dentre os quais são:

Meu orientador, que me instruiu e me apoiou em todos os momentos de dúvida, acompanhando sempre o meu progresso.

Meus professores do curso de Ciência da Computação que, através dos seus ensinamentos, permitiram que eu pudesse concluir este trabalho.

Minha família, meu namorado e amigos que tiveram paciência comigo nos momentos difíceis, me apoiando e me dando força.

Resumo

Os programas que são considerados o estado da arte conseguem fazer predições de estruturas tridimensionais de até 56 aminoácidos utilizando conceitos de campos de força como: atração eletrostática, van der Waals, restrições de ângulos de torção de carbonos cadeias alfa e beta de aminoácidos e comprimento da ligação. Estudamos uma forma alternativa para fazer a predição da estrutura tridimensional aproximada de peptídeos e desenvolvemos um programa que faz essa predição com uma sequência aminoácidos utilizando Algoritmo Genético(AG). Comparamos os resultados obtidos através do programa com estruturas conhecidas, extraídas da base de dados PubChem, comparando a energia eletrônica total e monitorando o tempo de execução de acordo com que aumentamos o tamanho da molécula. Obtivemos resultados bem próximos em termos de energia, mas o tempo de execução aumenta significativamente da entrada de dois para três aminoácidos. Isso já era esperado, pois o problema da Modelagem Molecular pertence à classe NP-Completo e o tempo para resolver o mesmo aumenta exponencialmente à medida que aumentamos o tamanho da molécula.

Palavras-chave: Modelagem Molecular. Peptídeos. Método *ab initio*. Algoritmos Genéticos. Química Computacional.

Abstract

Programs that are considered the state of art can predict three-dimensional structures of up to 56 amino acids using force field concepts such as electrostatic attraction, van der Waals, torsion angle constraints of carbon alpha and beta chains of amino acids and bond length. We studied an alternative way to predict the approximate three-dimensional structure of peptides and developed a program that makes this prediction with an amino acid sequence using Genetic Algorithm (GA). We compared the results obtained through the program with known structures, extracted from the PubChem database, comparing the total electronic energy and monitoring the execution time as we increase the size of the molecule. We get very close results in terms of energy, but the runtime increases significantly from the input of two to three amino acids. This is already expected because the problem of Molecular Modeling belongs to the NP-Complete class and the time to solve it increases exponentially as we increase the size of the molecule.

Key-words: Molecular Modeling. Peptides. *Ab initio* method. Genetic Algorithms. Computational Chemistry.

Lista de ilustrações

Figura 1 – Conformações que podem ser geradas de um mesmo peptídeo variando	
os ângulos diedro ϕ e $\psi.$ Fonte: Adaptada de (NELSON; COX, 2014) $$.	14
Figura 2 – Variações de energia das rotações que surgem em torno da ligação C2	
e C3 do butano. Fonte: Adaptada de (SOLOMONS; FRYHLE, 2000) .	18
Figura 3 — Ilustração 3D da molécula do butano com os respectivos carbonos nu-	
merados	19
Figura 4 – Isomeria do but-2-eno. Fonte Adaptada de (ISOMERIA, 2018)	19
Figura 5 – Estrutura geral de um aminoácido. Fonte: Adaptada de (AMINOÁCI-	
DOS, 2017)	20
Figura 6 – Formação de uma ligação peptídica por condensação. Fonte: Extraída	
de (NELSON; COX, 2014)	21
Figura 7 – Níveis de estrutura. Fonte: Extraída de (NELSON; COX, 2014) $\ \ldots \ \ldots$	21
Figura 8 – Exemplo de dois aminoácidos formando um dipeptídeo	25
Figura 9 — Exemplo 1 de três aminoácidos formando um tripeptídeo	25
Figura 10 – Exemplo 2 de três aminoácidos formando um tripeptídeo	26
Figura 11 – Exemplo de rotações das ligações peptídicas utilizadas no Algoritmo	
$Gen\'etico(AG)$	26
Figura 12 – Fluxograma do Algoritmo Genético(AG) implementado no programa	28
Figura 13 – Projeção 3D da molécula Ala-Gly	31
Figura 14 — Projeção 3D da molécula Ala-Gly-Ser	34
Figura 15 — Projeção 3D da molécula Ala-Gly-Ser-Glu	37
Figura 16 – Gráfico que mostra o tempo de execução para cada entrada do programa.	40

Lista de tabelas

Tabela 1 – Funções de polarização para vários átomos(cc-pVDZ). Fonte: adap-	
tado de (GAUSSIAN, 2017)	17
Tabela 2 – Simbologia dos aminoácidos. Fonte: extraído de (AMINOÁCIDOS, 2017)	20
Tabela 3 – Resultande do programa	32
Tabela 4 – Base PubChem	32
Tabela 5 – Matriz das coordenadas da molécula Ala-Gly	32
Tabela 6 – Ligações da molécula Ala-Gly	33
Tabela 7 – Resultande do programa	35
Tabela 8 – Base PubChem	35
Tabela 9 — Matriz normalizada das coordenadas da molécula Ala-Gly-Ser	35
Tabela 10 – Ligações da molécula Ala-Gly-Ser	36
Tabela 11 – Resultande do programa.	38
Tabela 12 – Base PubChem	38
Tabela 13 – Matriz normalizada das coordenadas da molécula Ala-Gly-Ser-Glu	38
Tabela 14 – Ligações da molécula Ala-Gly-Ser-Glu	36

Lista de abreviaturas e siglas

3D Tridimensional

A Alanina

AEs Algoritmos Evolutivos

AGs Algoritmos Genéticos

AHP Analytical Hierarchy Process

C Carbono

CASP Critical Assessment of Structural Prediction

CNTP Condições Normais de Temperatura e Pressão

COOH Ácido Carboxílico

G Glicina

HF Hartree-Fock

HMM Hidden Markov Model

IA Inteligência Artificial

IUPAC International Union of Pure and Applied Chemistry

MM Modelagem Molecular

N Nitrogênio

SA Structural Alphabet

SCF Self-Consistent Field

UML Unified Modeling Language

Lista de símbolos

 $m \AA$ Ångström

 C_{α} Carbono alfa

 $\phi,\!\psi$ Ângulos diedro ou de torção

Sumário

1	INTRODUÇÃO 1	4
1.1	Objetivos	4
1.1.1	Objetivo Geral	.4
1.1.2	Objetivo Específico	.5
1.2	Justificativa	5
2	FUNDAMENTAÇÃO TEÓRICA	6
2.1	Modelagem Molecular	6
2.1.1	Método de Hartree-Fock	.6
2.1.2	Método ab initio	.7
2.1.3	Análise Conformacional	7
2.2	Isomerismo	9
2.3	Aminoácidos	9
2.4	Peptídeos	0
2.4.1	Classificação estrutural	1
2.5	Algoritmos Evolutivos	2
3	DESENVOLVIMENTO	3
3.1	Sistema Operacional e Hardware	3
3.2	Bibliotecas de Terceiros	3
3.2.1	Psi4NumPy	!3
3.2.2	SciPy	!3
3.3	Estratégia para a modelagem	4
3.4	Implementação	6
3.5	Resultados	1
4	CONCLUSÃO	1
	REFERÊNCIAS 4	2
	ANEXOS 4	4
	ANEXO A – INSTALAÇÃO DAS BIBLIOTECAS NESCESSÁRIAS	
	PARA A UTILIZAÇÃO DO PROGRAMA 4	5
A.1	Psi4NumPy	5
A .2	SciPy	5

1 46
NTADO NESSE
47
47
57
69
EI

1 Introdução

A pesquisa em busca de métodos computacionais mais eficientes para problemas complexos é de grande importância, como o problema da predição da estrutura tridimensional(3D) de peptídeos. A busca pela solução ótima, no caso da predição das estruturas 3D dos peptídeos, é algo que pode ser difícil de encontrar, pois esses problemas são considerados NP-completo(BERGER; LEIGHTON, 1998), onde os métodos de otimização tradicionais não costumam ter um bom resultado.

Os progressos na área de bioinformática que estuda a predição da estrutura 3D das proteínas são monitorados com um teste bianual chamado de competição CASP (Critical Assessment of Structural Prediction, ou Avaliação Crítica de Predição Estrutural)(NELSON; COX, 2014). Um dos métodos utilizados para essa predição é o método ab initio. Eles são soluções aproximadas baseadas na equação de Schrödinger em que não utilizam dados experimentais(JENSEN, 2007). Uma combinação de métodos podem gerar resultados ainda mais eficientes, com isso, podemos associar o método ab initio com o uso de algoritmos genéticos(AGs), uma solução interessante, pois são baseados no princípio da Evolução de Darwin.

Os algoritmos genéticos podem ser utilizados na etapa de busca das conformações de menor energia dos peptídeos. Depois de gerado uma estrutura aproximada pelo método ab initio, variações nos ângulos diedro ou de torção (ϕ,ψ) geram várias conformações de uma mesma molécula.

Figura 1 – Conformações que podem ser geradas de um mesmo peptídeo variando os ângulos diedro ϕ e ψ . Fonte: Adaptada de (NELSON; COX, 2014)

1.1 Objetivos

1.1.1 Objetivo Geral

Desenvolver um programa que faça a predição da estrutura tridimensional aproximada de peptídeos e estudar métodos alternativos para resolver o problema da predição.

1.1.2 Objetivo Específico

Os objetivos específicos desse trabalho são:

- Estudo da Modelagem Molecular.
- Estudo do método ab initio para a predição de peptídeos.
- Utilização de Algoritmos Genéticos para obter a estrutura 3D de peptídeos com conformações de menor energia.
- Comparar resultados com estruturas já conhecidas na literatura.

1.2 Justificativa

Atualmente, existem muitos trabalhos que investigam as estruturas das moléculas, utilizando diferentes metodologias, para ser aplicada na predição das estruturas 3D de peptídeos e proteínas.

Por exemplo, o trabalho que criou a ferramenta PEP-FOLD1 (MAUPETIT; DER-REUMAUX; TUFFERY, 2009) utilizou o método de novo com auxílio de um Hidden Markov Model(HMM) para predição de uma estrutura inicial e uma modificação do algoritmo guloso para obter as estruturas 3D aproximadas que serão refinadas por uma simulação Monte Carlo de 300 mil passos.

Em PEP-FOLD2 (THÉVENET et al., 2012), o sistema foi melhorado para tratar peptídeos cíclicos, lineares e com ligações dissulfeto.

Já em Sun (SUN, 1995), a busca pela melhor conformação de peptídeos e proteínas foi feita usando um método baseado em algoritmos genéticos(AGs).

Na Otimização Combinatória e Teoria da Complexidade, o problema de predição de cadeia de aminoácidos é classificado como um problema NP-Completo, devido às limitações de predições experimentais das estruturas 3D dos peptídeos e a grande necessidade de conhecer essas estruturas (CRESCENZI et al., 1998). Isso significa que o tempo para o cálculo depende do tamanho da cadeia de aminoácidos, e ele cresce de forma exponencial impedindo a predição de estruturas complexas.

Assim, a principal justificativa deste trabalho é estudar alternativas para a prediçãos das estruturas dos peptídeos e implementar um protótipo de programa com uma dessas alternativas para que seja possível analisar seus resultados.

2 Fundamentação Teórica

Neste capítulo é apresentado os conceitos básicos necessários para compreensão deste trabalho.

2.1 Modelagem Molecular

A Modelagem Molecular, segundo a IUPAC (International Union of Pure and Applied Chemistry), consiste na investigação das estruturas e das propriedades moleculares pelo uso de química computacional, visando fornecer uma representação tridimensional, sob dadas circunstâncias(CARVALHO et al., 2003)(MODELAGEM..., 2016).

2.1.1 Método de Hartree-Fock

O método Hartree–Fock(HF) foi criado pelo matemático Douglas Hartree e o físico Vladimir Fock, tendo como objetivo produzir Orbitais Moleculares otimizados(SMITH et al., 2018). Ele é utilizado como base para calcular a energia do estado fundamental de átomos e moléculas.

Infelizmente, o método HF possui várias dificuldades em sua aplicação. Por exemplo, é necessário um conjunto completo de funções de onda de partículas únicas para calcular o potencial não-local de um único elétron. E também é necessário seguir um procedimento bastante complexo para incluir as correções de correlação que estão além da estrutura de HF (AMUSIA; MSEZANE; SHAGINYAN, 2003). Com isso, o cálculo da energia de sistemas que possuem muitos elétrons, como moléculas com vários átomos, se tornam muito complexos.

A função de Hartree-Fock é dada por,

$$E_{HF} = \left\langle \psi_0 | \widehat{H} | \psi_0 \right\rangle = \sum_i \left\langle i | \widehat{h} | i \right\rangle + \frac{1}{2} \sum_{ij} \left[ii | jj \right] - \left[ij | ji \right]$$
 (2.1)

onde \widehat{H} é o Hamiltoniano molecular
(SMITH et al., 2018).

A teoria do Campo Autoconsistente(self-consistent field, SCF) forma a base da química quântica ab initio(SMITH et al., 2018), conduzindo as equações de HF, também conhecido como HF-SCF. Assim, procuramos por uma solução convergente que calcule iterativamente o potencial elétrico produzido pela distribuição de cargas dada a densidade de probabilidade obtida dos orbitais espaciais.

A maioria dos métodos HF-SCF requer que um conjunto de base seja especificado, nesse trabalho utilizamos o conjunto de funções base duplo zeta **cc-pvdz**, que possui o dobro de funções mínimas para descrever cada orbital. Esse conjunto base inclui funções de polarização por definição.

Átomos	Orbitais
Н	2s,1p
He	2s,1p
Li-Be	3s,2p,1d
B-Ne	3s,2p,1d
Na-Ar	4s, 3p, 1d
Ca	5s,4p,2d
$\operatorname{Sc-Zn}$	6s,5p,3d, 1f
Ga-Kr	5s,4p,2d

Tabela 1 – Funções de polarização para vários átomos(**cc-pVDZ**). Fonte: adaptado de (GAUSSIAN..., 2017).

2.1.2 Método ab initio

Os métodos *ab initio*, são descritos como métodos da química computacional baseados na química quântica(LEVINE, 1991)(MÉTODOS..., 2017). Eles são derivados diretamente de princípios teóricos, como a equação de Schrödinger, sem inclusão de dados experimentais.

Esse método, de fato, pode ser visto como um método aproximado da mecânica quântica. As aproximações feitas geralmente são aproximações matemáticas, como usar uma forma funcional mais simples para uma função ou obter uma solução aproximada para uma equação diferencial(RAMACHANDRAN; DEEPA; NAMBOORI, 2008).

Uma modelagem ab initio bem-sucedida depende de três fatores (RIGDEN, 2017):

- Uma função de energia precisa, equação 2.1, com a qual a estrutura nativa de uma molécula corresponde ao estado mais termodinamicamente estável, em comparação com todas as possíveis estruturas;
- Um método de busca eficiente que pode identificar rapidamente os estados de baixa energia através da busca conformacional;
- Seleção de modelos nativos de um conjunto de estruturas;

2.1.3 Análise Conformacional

Uma mesma molécula pode assumir mais de uma estrutura 3D, mas nem todas são estáveis em condições normais de temperatura e pressão(CNTP). Essas formas estruturais,

resultados das rotações dos grupos funcionais em torno de ligações simples, são chamadas **conformações** da molécula(SOLOMONS; FRYHLE, 2000). Cada conformação possui uma energia potencial associada.

A análise conformacional é o estudo da variação de energia que a molécula sofre com os grupos funcionais girando sobre uma ligação simples(SOLOMONS; FRYHLE, 2000).

Para exemplificar isso, podemos observar a análise conformacional do butano na figura 2:

Figura 2 – Variações de energia das rotações que surgem em torno da ligação C2 e C3 do butano. Fonte: Adaptada de (SOLOMONS; FRYHLE, 2000)

Ao fazer rotações em torno da ligação C2 e C3 do butano, a torção entre os átomos é alterada. Com isso, as forças intermoleculares mudam precisando de uma maior ou menor energia para manter a molécula naquela conformação.

A figura 3 representa o butano em sua forma 3D, onde as esferas de cor cinza são os átomos de carbono e as de cor branca são os átomos de hidrogênio. Os carbonos foram numerados de acordo com as regas da IUPAC.

Assim, podemos observar na figura 2, que a conformação do tipo **anti** é a mais estável, pois é a que necessita de menor energia para manter a geometria no espaço 3D. Isso porque os grupos metila (CH_3) estão em posições opostas, então não existe tensão torsional nessa conformação.

Figura 3 – Ilustração 3D da molécula do butano com os respectivos carbonos numerados

2.2 Isomerismo

O isomerismo ou isomeria é um fenômeno no qual dois ou mais compostos químicos diferentes denominados isômeros apresentam a mesma fórmula molecular (mesmo conjunto de átomos) e diferentes fórmulas estruturais (diferente arranjo entre os átomos) (GARCIA CLEVERSON FERNANDO; FERREIRA LUCAS, 2015).

Na **isomeria cis-trans** os isômeros possuem a mesma fórmula molecular e também a mesma fórmula estrutural plana, o que diferencia é apenas as fórmulas estruturais geométrica. Os isômeros também apresentam propriedades físicas e químicas diferentes por apresentar estruturas espaciais diferentes.

Figura 4 – Isomeria do but-2-eno. Fonte Adaptada de (ISOMERIA..., 2018).

2.3 Aminoácidos

Aminoácidos são moléculas que contém em sua estrutura um grupo amina (NH_2) e um grupo carboxila(COOH), ambos ligados ao carbono α (C_{α}) , que é o carbono adjacente ao grupo funcional. O C_{α} também é ligado a um hidrogênio(H) e a uma cadeia lateral R(radical).

Eles se diferem uns dos outros em suas cadeias laterais, que variam em estrutura, tamanho e carga elétrica, e que influenciam a solubilidade dos aminoácidos em água (NELSON; COX, 2014).

Figura 5 – Estrutura geral de um aminoácido. Fonte: Adaptada de (AMINOÁCIDOS, 2017)

Nome	Símbolo	Abreviação
Glicina ou Glicocola	Gly, Gli	G
Alanina	Ala	A
Leucina	Leu	${ m L}$
Valina	Val	V
Isoleucina	Ile	I
Prolina	Pro	P
Fenilalanina	Phe ou Fen	\mathbf{F}
Serina	Ser	S
Treonina	Thr, Tre	T
Cisteina	Cys, Cis	C
Tirosina	Tyr, Tir	Y
Asparagina	Asn	N
Glutamina	Gln	Q
Aspartato ou Ácido aspártico	Asp	D
Glutamato ou Ácido glutâmico	Glu	E
Arginina	Arg	R
Lisina	Lys, Lis	K
Histidina	His	H
Triptofano	Trp, Tri	W
Metionina	Met	M

Tabela 2 – Simbologia dos aminoácidos. Fonte: extraído de (AMINOÁCIDOS, 2017)

A ligação de vários aminoácidos gera uma macromolécula chamada de proteína. Elas são construídas a partir do mesmo conjunto onipresente de 20 aminoácidos (Tabela 2). Cada um desses aminoácidos possui uma cadeia lateral com propriedades químicas características, esse grupo de 20 moléculas precursoras pode ser considerado o alfabeto no qual a linguagem da estrutura proteica é lida. (NELSON; COX, 2014)

2.4 Peptídeos

Os peptídeos são compostos formados por dois ou mais aminoácidos. Para produzir um **dipeptídeo**, duas moléculas de aminoácidos podem ser ligadas de modo covalente

por meio de uma ligação amida substituída, denominada ligação peptídica. Essa ligação é formada pela remoção de elementos de água (desidratação) do grupo α -carboxila de um aminoácido e do grupo α -amino do outro (NELSON; COX, 2014).

Figura 6 – Formação de uma ligação peptídica por condensação. Fonte: Extraída de (NELSON; COX, 2014)

A estrutura de um peptídeo formada por ligações de alguns aminoácidos é chamada de **oligopeptídeo**, já a formada pela ligação de muitos aminoácidos é chamada de **polipeptídeo**.

2.4.1 Classificação estrutural

Dependendo da quantidade de aminoácidos e as interações entres eles, podemos classificar os peptídeos em quatro estruturas, figura 7.

Figura 7 – Níveis de estrutura. Fonte: Extraída de (NELSON; COX, 2014)

• Estrutura Primária: cadeia linear que possui somente ligações peptídicas.

- Estrutura Secundária: α -hélices, fitas β e voltas são formadas por meio de um padrão regular de pontes de hidrogênio entre os grupos N—H e C=O dos aminoácidos que estão próximos uns dos outros na sequência linear do peptídeo (BERG; TY-MOCZKO; STRYER, 2014).
- Estrutura Terciária: formas obtidas a partir das estruturas secundárias.
- Estrutura Quaternária: formas obtidas a partir das estruturas terciárias.

2.5 Algoritmos Evolutivos

Os Algoritmos Evolucionários (AEs) usam modelos computacionais baseados na evolução natural, segundo a teoria de Darwin, como o objetivo de resolver problemas.

Eles funcionam mantendo uma população de estruturas que evoluem de forma semelhante à evolução das espécies. A estas estruturas são aplicados os chamados operadores genéticos, como recombinação e mutação, entre outros. Cada indivíduo da população recebe uma avaliação que é uma quantificação da sua qualidade como solução do problema em abordado, e baseado nesta avaliação são aplicados operadores de forma a simular a sobrevivência do mais apto.(LINDEN, 2008)

Além da grande variedade de modelos computacionais propostos, todos eles têm em comum o conceito de simulação da evolução das espécies através de seleção, mutação e reprodução, processos estes que dependem do desempenho dos indivíduos desta espécie dentro do "ambiente".(LINDEN, 2008)

Como exemplo desses algoritmos temos os Algoritmos Genéticos(AGs), que são consideradas técnicas heurísticas de otimização global(LINDEN, 2008). Eles funcionam realizando uma busca não determinística abstraindo o conceito da Evolução.

O conceito é criar uma "população" inicial de estruturas, cada uma caracterizada por um conjunto de "genes". As estruturas "pai" podem gerar "filhos" com uma mistura dos genes pai, permitindo que "mutações" ocorram no processo. As melhores espécies de uma população são selecionadas com base no princípio de Darwin, a sobrevivência do mais apto, e continuam para a próxima "geração", enquanto as estruturas menos ajustadas são descartadas.(JENSEN, 2007)

3 Desenvolvimento

Este capítulo descreve o processo de estratégia, implementação e experimentos realizados com base na aplicação que foi desenvolvida utilizando a linguagem de programação Python na versão 3.6. Também especifica a máquina em que foi executado o programa e as bibliotecas de terceiros.

3.1 Sistema Operacional e Hardware

O Sistema Operacional (SO) utilizado foi o macOS High Sierra 10.13.6. O computador usado para execução da aplicação é um MacBook Air (13-inch, 2017) com processador 1,8 GHz Intel Core i5, 8 GB 1600 MHz DDR3 de memória RAM e 128 GB de espaço em disco SSD.

3.2 Bibliotecas de Terceiros

3.2.1 Psi4NumPy

É um módulo em python baseado na biblioteca Psi
4 que possui implementação em $\mathrm{C/C}++.$

O Psi4NumPy fornece uma estrutura de química quântica interativa para implementações de referência, prototipagem rápida, desenvolvimento e educação. Para fazer isso, as quantidades relevantes para a química quântica são calculadas com o pacote de estrutura eletrônica Psi4 e, posteriormente, manipuladas usando o pacote Numérico Python (NumPy). Essa combinação fornece uma interface que é simples de usar e relativamente rápida de executar. (SMITH et al., 2018)

A instalação e utilização da biblioteca estão nos anexos A e B respectivamente.

3.2.2 SciPy

O ecossistema SciPy inclui ferramentas gerais e especializadas para gerenciamento e computação de dados, experimentação produtiva e computação de alto desempenho.(JONES et al., 2001–)

3.3 Estratégia para a modelagem

Foram utilizados arquivos contendo a estrutura 3D de 20 aminoácidos conhecidos, extraídos da base de dados PubChem.(KIM et al., 2018)

Validamos a sequência de entrada com o alfabeto de aminoácidos conhecidos e em seguida é feita a condensação dos mesmos, dando origem ao peptídeo resultante e eliminando a molécula de água (desidratação).

Por padrão, determinamos que a ligação peptídica entre os aminoácidos possui 1.32 Å, pois é a distância de ligação peptídica típica entre um Carbono(C) e um Nitrogênio(N).(SKERN, 2018)

A sequência de entrada é uma referência de como os aminoácidos serão condensados, pois a cadeia peptídica é formada por sequências de aminoácidos e a ordem deve ser respeitada. Por exemplo, se é digitado uma sequência "AG", isso significa que é uma Alanina seguida por uma Glicina, invertendo isso é formado um peptídeo diferente.

Como existe uma posição no espaço 3D pré-definida para cada aminoácido, precisamos fazer o ajuste da posição dos aminoácidos subsequentes antes que a condensação ocorra. Para isso, utilizamos a **translação** da matriz de posições com base no vetor resultande entre dois átomos.

O vetor resultante entre os pontos a e b é dado por

$$a = (x_a, y_a, z_a)$$

$$b = (x_b, y_b, z_b)$$

$$v = (x_a - x_b, y_a - y_b, z_a - z_b)$$
(3.1)

Seja um ponto P(x,y,z) sobre o qual será efetuada uma operação de translação e seja P' as coordenadas do ponto após a translação. Podemos definir a função T como

$$T(P) = T(x_p, y_p, z_p) = (x_p + d_x, y_p + d_y, z_p + d_z)$$
(3.2)

$$P' = P + T, \text{ onde } T = \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix}$$
(3.3)

Na figura 8, temos um exemplo de como fazemos o ajuste das posições para a condensação de dois aminoácidos. Com as posições 3D dos dois aminoácidos, calculamos o vetor resultante entre os átomos que vão ficar ligados pela ligação peptídica (figura 8a). E em seguida, realizamos a translação da matriz de posições do segundo aminoácido e a condensação entre eles (figura 8b), formando assim um dipeptídeo.

- (a) Separados no espaço e o vetor resultante(v).
- (b) Unidos após a translação.

Figura 8 – Exemplo de dois aminoácidos formando um dipeptídeo

Outro exemplo é a condensação de três aminoácidos (figuras 9 e 10). Com as posições 3D pré-definidas temos os três aminoácidos em qualquer posição do espaço (figura 9a). Fazemos a condensação entre o primeiro e o segundo aminoácido seguindo o mesmo exemplo anterior, não considerando os aminoácidos seguintes para a translação (figura 9b).

- (a) Separados no espaço 3D antes da junção.
- (b) Dois aminoácidos unidos após a primeira translação.

Figura 9 – Exemplo 1 de três aminoácidos formando um tripeptídeo

Em seguida, calculamos o vetor resultante entre os átomos que vão ficar ligados na segunda ligação peptídica (figura 10a). E finalmente, realizamos a translação da matriz de posições do terceiro aminoácido e a condensação com o dipeptídeo gerado anteriormente (figura 10b), formando assim um tripeptídeo.

Se a quantidade de aminoácidos for maior, continuamos o processo sucessivamente até que o peptídeo desejado seja formado.

Após a formação do peptídeo em sua conformação inicial, aplicamos o Algoritmo Genético(AG) com o objetivo de obtermos a conformação de menor energia.

Na mutação do Algoritmo Genético(AG), fazemos a rotação de parte da molécula em torno da ligação peptídica, ou seja, realizamos a torção. Se a molécula possui mais

(a) Calcula o vetor unitário(v) para a segunda (b) Três aminoácidos unidos após a segunda translação.

translação.

Figura 10 – Exemplo 2 de três aminoácidos formando um tripeptídeo

que uma ligação peptídica, rotacionamos toda a parte de um lado da ligação, que no caso do exemplo da figura 11 são as partes roxa e laranja. E em seguida, passamos para a próxima ligação peptídica e rotacionamos a parte seguinte da ligação, que é a parte laranja. Fazemos isso até que não haja mais ligações peptídicas. Como resultado disso, temos uma conformação diferente para o mesmo peptídeo resultando em uma energia diferente para ser avaliada.

Figura 11 – Exemplo de rotações das ligações peptídicas utilizadas no Algoritmo Genético(AG).

3.4 Implementação

O programa recebe uma entrada de uma sequência de aminoácidos utilizando as letras de abreviação. Abaixo segue um exemplo de entrada do programa, nesse caso, a entrada **AG** significa uma Alanina(A) seguida de uma Glicina(G).

Listagem 3.1 – Exemplo de entrada

A entrada é analisada verificando se cada caractere existe entre os 20 aminoácidos utilizados como base do programa. Se não tiver nenhum erro, buscamos as coordenadas de cada aminoácido e suas ligações fazendo a leitura dos arquivos com os dados dos aminoácidos extraídos da base de dados PubChem.

Após cada aminoácido ser instanciado, fazemos o processo de condensação seguindo a ideia explicada na estratégia para a modelagem. Fazemos a translação utilizando a seguinte implementação.

Listagem 3.2 - code.py

```
1 def resulting_vector(a, b):
      ab = [a[0] - b[0], a[1] - b[1], a[2] - b[2]]
      return ab
3
5 def resulting_vector_with_distance(a, b, distance):
      v = resulting_vector(a, b)
      v[0] = (a[0] - v[0]) + distance
7
      v[1] = (a[1] - v[1]) + distance
      v[2] = (a[2] - v[2]) + distance
9
      return v
10
11
12 def translation(m, xyz):
      for v in m:
13
          v[0] = v[0] + xyz[0]
14
15
           v[1] = v[1] + xyz[1]
           v[2] = v[2] + xyz[2]
16
      return m
17
```

Na condensação eliminamos água, e precisamos remover uma hidroxila(OH) de um aminoácido e um hidrogênio do outro, fazendo o ajuste das posições a casa ligação peptídica formada.

Listagem 3.3 - code.py

```
1 @staticmethod
2 def generate_peptide_molecule(amino_acid_sequence):
      peptide = []
3
      for a in amino_acid_sequence:
5
          amino_acid = AminoAcid.generate_amino_acid_molecule(a)
6
          if len(peptide) > 0:
              last_amino_acid: AminoAcid = peptide[-1]
8
              carbon = last_amino_acid.eliminate_hydroxyl_radical()
9
              amino_acid.eliminate_hydrogen(carbon)
10
              amino_acid = Molecule.__update_position(last_amino_acid.
11
                  atoms[-1], amino_acid)
          peptide.append(amino_acid)
12
```

```
13
14
      return peptide
15
16 Ostaticmethod
17 def __update_position(atom_a: Atom, amino_acid: AminoAcid):
18
      matrix = []
      for atom in amino_acid.atoms:
19
           matrix.append(atom.position)
20
      v = resulting_vector_with_distance(atom_a.position, matrix[0],
22
          PEPTIDE_BOND_LENGTH)
23
      result = translation(matrix, v)
24
25
      # update positions
26
      for i in range(len(amino_acid.atoms)):
27
           amino_acid.atoms[i].position = result[i]
28
29
      return amino_acid
30
```

Com o peptídeo formado, podemos criar a população inicial e executar o Algoritmo Genético(AG) seguindo o fluxo da figura 12.

Figura 12 – Fluxograma do Algoritmo Genético(AG) implementado no programa.

A seleção é feita ordenando os indivíduos pela energia, e se a população estiver maior do que o tamanho estipulado, são eliminados os indivíduos com maior energia.

O fitness é calculado baseado na energia eletrônica total do indivíduo, e buscamos sempre o de menor energia. Essa energia é calculada utilizando a biblioteca Psi4, com a configuração de cálculo base para otimização "scf/cc-pvdz", que é o conjunto de funções base utilizada no método HF-SCF. Também é possível limitar a memória do computador que será utilizada nesse cálculo, que nesse caso foi de 500MB. Isso quer dizer que, se o cálculo da energia não convergir até os dados armazenados na memória chegarem ao limite máximo de 500MB, então a execução do cálculo encerra. Exemplo de utilização da biblioteca no anexo B.

A mutação é feita variando a torção em torno da ligação peptídica conforme a implementação abaixo.

Listagem 3.4 – mutation.py

```
1 def mutate(self):
      if len(self.chromosome) == 1:
3
           return
4
      for i in range(1, len(self.chromosome)):
5
           first_part: [AminoAcid] = self.chromosome[:i]
           second_part: [AminoAcid] = self.chromosome[i:]
          part_to_rotate = []
9
           if len(second_part) == 1:
10
               items = reduce(lambda x, y: x + y, second_part)
11
12
               for atom in items.atoms:
                   part_to_rotate.append(atom.position)
13
          else:
14
               atoms = []
15
               for x in second_part:
16
                   atoms.append(x.atoms)
17
18
               items = reduce(lambda x, y: x + y, atoms)
19
20
               for atom in items:
21
                   part_to_rotate.append(atom.position)
22
23
           # calculates resulting vector
24
          v = calculates_xyz_to_rotate(first_part[-1].atoms[-1].
25
              position, part_to_rotate[0])
26
          # move positions
27
          new_part = rotation_euler(part_to_rotate, v)
28
29
          # update values by reference
30
          for j in range(len(second_part)):
31
               for k in range(len(second_part[j].atoms)):
32
```

```
second_part[j].atoms[k].position = new_part[0]

del new_part[0]

# calculate fitness

self.fitness = self.__calculates_fitness()

print( Fitness: + str(self.fitness))
```

O crossover é uniforme. Fazemos a seleção de dois indivíduos da população para gerar um filho onde os genes são a combinação das coordenadas de cada átomo dos peptídeos dos pais feitas de forma aleatória.

$\underline{\text{Listagem 3.5 - crossover.py}}$

```
1 def __crossover(self):
      offsprings = []
      for i in range(0, POPULATION_SIZE-1, 2):
          offspring = self._uniform_crossover(self.population[i], self
4
              .population[i+1])
          offsprings.append(offspring)
      self.population += offsprings
6
8 @staticmethod
9 def __uniform_crossover(parent_a: Individual, parent_b: Individual):
      genes = []
10
      for i in range(len(parent_a.chromosome)):
11
12
          choice = random.randrange(2)
          if choice == 0:
13
               genes.append(parent_a.chromosome[i])
14
          else:
15
               genes.append(parent_b.chromosome[i])
16
17
      return Individual(genes)
```

Após o AG rodar um número determinado de gerações, é selecionado o indivíduo com a menor energia para retornar como resultado final. Esse indivíduo contém a matriz de posições 3D utilizada para gerar a imagem da molécula a partir do arquivo de extensão ".mol".

Como não encontrei nenhuma forma genérica para gerar o arquivo com as informações necessárias para gerar a imagem, utilizei o arquivo da base de dados PubChem e alterei manualmente a matriz de posições de cada átomo e as respectivas ligações entre eles. Após o arquivo ser atualizado, eu utilizei o site "http://www.cheminfo.org" para gerar as imagens a partir do arquivo ".mol".

3.5 Resultados

Realizamos o cálculo do da energia da molécula Ala-Gly a partir da estrutura 3D conhecida pela base de dados PubChem(Figura 13a), com auxílio da biblioteca Psi4 para comparar com o resultado obtido através do programa. A energia eletrônica total da estrutura conhecida possui o valor de -528.7141214858434 kcal/mol e a biblioteca Psi4 executou em 14.66 segundos.

Ao executar o programa desenvolvido nesse trabalho e inserir a entrada "AG", que é a forma abreviada de Ala-Gly, criou-se uma população inicial com cinco indivíduos que passaram pelo processo de mutação e *crossover* por cinco gerações. O melhor *fitness* para essa execução com um tempo de 16.67 minutos foi o de -528.323779795162 kcal/mol, que é um valor bem próximo do obtido na execução anterior, e foram necessárias 13 interações de HF-SCF para o cálculo da energia convergir. Podemos ver a conformação resultante na Figura 13b.

(a) Base de dados PubChem.

- (b) Resultante do programa.
- (c) Resultante da biblioteca Psi4.

Figura 13 – Projeção 3D da molécula Ala-Gly.

A biblioteca Psi4 gera um arquivo com vários dados, e também com a matriz 3D que sofre uma pequena alteração durante os cálculos de energia, essa alteração não

modifica significativamente os ângulos entre os átomos, e ao plotar a molécula temos a Figura 13c.

Há algumas diferenças geométricas entre as moléculas das figuras 13a e 13b, como a posição do grupos funcional Ácido Carboxílico(COOH), que pode mudar dependendo da torção que fazemos em torno de uma ligação simples.

As coordenadas que utilizamos para gerar as imagens das moléculas foram normalizadas seguindo a normalização de vetores, com o objetivo de obtermos o vetor unitário, que é o vetor cujo comprimento é 1 (equação 3.4).

$$u = \frac{v}{\|v\|}, \text{ onde } \|v\| = \sqrt{x^2 + y^2 + z^2}$$
 (3.4)

Átomo	x	у	$\overline{\mathbf{z}}$
O_1	0.7247	0.6477	-0.2347
N_2	-0.7710	0.6289	0.0995
$\overline{C_3}$	-0.8656	-0.1387	0.4810
C_4	-0.7193	-0.6468	-0.2534
C_5	0.9919	0.1199	0.0408
H_6	-0.4543	-0.2214	0.8628
H_7	-0.3649	-0.9229	-0.1224
H_8	-0.8738	-0.4774	-0.0917
H_9	-0.5574	-0.4459	-0.7002
H_{10}	-0.9041	0.3939	0.1654
H_{11}	-0.6588	0.6496	-0.3792
O_{12}	0.7206	-0.6339	-0.2807
O_{13}	0.3509	-0.6546	-0.6695
N_{14}	0.6357	0.4335	-0.6385
C_{15}	0.8578	0.0211	-0.5135
C_{16}	0.7347	-0.4590	-0.4993
H_{17}	0.9714	0.0785	-0.2240
H_{18}	0.7866	-0.0343	-0.6164
H_{19}	0.3746	0.3447	-0.8606
H_{20}	0.5402	-0.8168	-0.2024

Tabela 3 – Resultande do programa.

Tabela 4 – Base PubChem.

Tabela 5 – Matriz das coordenadas da molécula Ala-Gly

$$\rho = \frac{cov(X,Y)}{\sqrt{var(X) \times var(Y))}}$$
(3.5)

Comparamos os coeficientes de correlação de Pearson (equação 3.5) para cada eixo do resultado do programa com a de referência e obtivemos os seguintes coeficientes:

- eixo y = 0.75
- eixo z = -0.01

Para o dipeptídeo Ala-Gly, existe uma forte correlação para os eixos x e y. Já o eixo z não possui correlação.

Átomo	Átomo	Ligação
O_1	C_5	dupla
N_2	C_3	simples
N_2	H_{10}	simples
N_2	H_{11}	simples
C_3	C_4	simples
C_3	C_5	simples
C_3	H_6	simples
C_4	H_7	simples
C_4	H_8	simples
C_4	H_9	simples
O_{12}	C_{16}	simples
O_{12}	H_{20}	simples
O_{13}	C_{16}	dupla
N_{14}	C_{15}	simples
N_{14}	C_5	peptídica
N_{14}	H_{19}	simples
C_{15}	H_{17}	simples
C_{15}	H_{18}	simples
C_{16}	C_{15}	simples

Tabela 6 – Ligações da molécula Ala-Gly

Realizamos também o teste do programa com o peptídeo Ala-Gly-Ser, composto por três aminoácidos que são Alanina, Glicina e Serina respectivamente. O resultado da execução do Psi4 para calcular a energia eletrônica total da molécula conhecida, extraída da PubChem(Figura 14a), foi de **-849.4371377028903680 kcal/mol** e o tempo de **47.63 segundos**.

Ao executar o programa desenvolvido nesse trabalho e inserir a entrada "AGS", que é a forma abreviada de Ala-Gly-Ser, criou-se uma população inicial com cinco indivíduos que passaram pelo processo de mutação e *crossover* por cinco gerações. O melhor *fitness* para essa execução foi o de -848.7900243556691 kcal/mol, que também é um valor bem próximo do obtido na execução anterior, com um tempo de 55.80 minutos. Podemos ver a conformação resultante na Figura 14b. E foram necessárias 23 interações de HF-SCF para o cálculo da energia convergir.

(a) Base de dados PubChem.

- (b) Resultante do programa.
- (c) Resultante da biblioteca Psi4.

Figura 14 – Projeção 3D da molécula Ala-Gly-Ser.

A figura 14a, que utilizamos como base, possui uma cadeia mais linear do que a figura 14b que foi resultante e alguns comprimentos de ligação sofreram deformação por causa da mutação durante a execução do algoritmo genético.

As coordenadas que utilizamos para gerar as imagens das moléculas também foram normalizadas seguindo a normalização de vetores (equação 3.4). E assim obtemos os dados da tabela 9.

Comparamos os coeficientes de correlação de Pearson (equação 3.5) para cada eixo do resultado do programa com a de referência e obtivemos os seguintes coeficientes:

- eixo x = -0.01
- eixo y = -0.03
- eixo z = -0.04

Para o tripeptídeo Ala-Gly-Ser, não existe correlação para nenhum dos eixos.

Por último, realizamos também o teste do programa com o peptídeo Ala-Gly-Ser-Glu, composto por três aminoácidos que são Alanina, Glicina, Serina e Ácido Glutâmico respectivamente. O resultado da execução do Psi4 para calcular a energia eletrônica total

Átomo	x	у	\mathbf{z}	$\overline{ ext{ iny Atomo}}$	x	у	\mathbf{z}
O_1	0.7247	0.6477	-0.2347	$\overline{O_1}$	0.8587	-0.4275	0.2825
N_2	-0.7710	0.6289	0.0995	N_2	0.9826	-0.1563	0.0999
C_3	-0.8656	-0.1387	0.4810	C_3	0.9991	0.0332	-0.0240
C_4	-0.7193	-0.6468	-0.2534	C_4	0.9343	-0.0074	-0.3562
C_5	0.9919	0.1199	0.0408	C_5	0.9870	-0.0342	0.1567
H_6	-0.4543	-0.2214	0.8628	H_6	0.9690	0.2447	0.0336
H_7	-0.3649	-0.9229	-0.1224	H_7	0.8507	0.1643	-0.4991
H_8	-0.8738	-0.4774	-0.0917	H_8	0.9324	0.0215	-0.3605
H_9	-0.5574	-0.4459	-0.7002	H_9	0.8736	-0.2318	-0.4278
H_{10}	-0.9041	0.3939	0.1654	H_{10}	0.9936	-0.1094	0.0276
H_{11}	-0.6588	0.6496	-0.3792	H_{11}	0.9393	-0.3396	0.0472
O_{12}	0.5694	-0.8191	-0.0689	O_{12}	0.0015	0.6966	-0.7174
N_{13}	0.2064	-0.2240	-0.9524	N_{13}	0.8680	0.4467	0.2164
C_{14}	0.6327	-0.2693	-0.7259	C_{14}	0.4363	0.6644	0.6067
C_{15}	0.7984	-0.5075	-0.3237	C_{15}	-0.2497	0.9597	-0.1284
H_{16}	0.7300	0.0285	-0.6828	H_{16}	0.3156	0.1842	0.9308
H_{17}	0.5922	-0.3975	-0.7008	H_{17}	0.2135	0.8043	0.5544
H_{18}	0.0132	-0.5066	-0.8620	H_{18}	0.7876	0.6132	0.0592
O_{19}	0.1805	0.7676	0.6149	O_{19}	-0.7305	-0.6825	-0.0197
O_{20}	0.0708	0.4020	0.9128	O_{20}	-0.9840	0.1486	-0.0979
O_{21}	-0.1466	0.5860	0.7969	O_{21}	-0.9379	-0.0126	0.3464
N_{22}	0.6373	0.6527	0.4094	N_{22}	-0.9512	0.2222	0.2137
C_{23}	0.4120	0.6531	0.6352	C_{23}	-0.9769	0.0233	-0.2121
C_{24}	0.2944	0.8186	0.4930	C_{24}	-0.8155	-0.4429	-0.3724
C_{25}	0.1187	0.5566	0.8222	C_{25}	-0.9955	0.0629	0.0698
H_{26}	0.5058	0.5099	0.6958	H_{26}	-0.8487	0.2685	-0.4555
H_{27}	0.4212	0.8191	0.3892	H_{27}	-0.5672	-0.5373	-0.6241
H_{28}	0.1524	0.9149	0.3737	H_{28}	-0.8166	-0.3823	-0.4322
H_{29}	0.7675	0.4094	0.4932	H_{29}	-0.7573	0.0397	0.6518
H_{30}	0.2746	0.6881	0.6715	H_{30}	-0.8212	-0.5633	0.0901
H_{31}	-0.1002	0.3041	0.9473	H_{31}	-0.9894	0.1443	0.0079

Tabela 7 – Resultande do programa.

Tabela 8 – Base PubChem.

Tabela 9 – Matriz normalizada das coordenadas da molécula Ala-Gly-Ser

da molécula conhecida, extraída da PubChem(Figura 15a), foi de **-1321.9687202425043** kcal/mol e o tempo de **2.05 minutos**.

Executamos o programa com a entrada "AGSE", que é a forma abreviada de Ala-Gly-Ser-Glu, criou-se uma população inicial com cinco indivíduos que passaram pelo processo de mutação e *crossover* por cinco gerações. O melhor *fitness* para essa execução foi o de -1320.0956240984865 kcal/mol, que também é um valor bem próximo do obtido na execução anterior, com um tempo de 7.11 horas. Foram necessárias 20 interações de HF-SCF para o cálculo da energia convergir.

Átomo	Átomo	Ligação
O_1	C_5	dupla
N_2	C_3	simples
N_2	H_{10}	simples
N_2	H_{11}	simples
C_3	C_4	simples
C_3	C_5	simples
C_3	H_6	simples
C_4	H_7	simples
C_4	H_8	simples
C_4	H_9	simples
O_{12}	C_{15}	dupla
N_{13}	C_{14}	simples
N_{13}	C_5	peptídica
N_{13}	H_{18}	simples
C_{14}	C_{15}	simples
C_{14}	C_{16}	simples
C_{14}	H_{17}	simples
O_{19}	C_{24}	simples
O_{19}	H_{30}	simples
O_{20}	C_{25}	simples
O_{20}	H_{31}	simples
O_{21}	C_{25}	dupla
O_{21}	C_{23}	simples
N_{22}	C_{15}	peptídica
N_{22}	H_{29}	simples
C_{23}	C_{24}	simples
C_{23}	C_{25}	simples
C_{23}	H_{26}	simples
C_{24}	H_{27}	simples
C_{24}	H_{28}	simples

Tabela 10 – Ligações da molécula Ala-Gly-Ser

Podemos observar uma forte deformação da molécula no resultado do programa, figura 15b. Isso devido ao processo de *crossover* que é uma das etapas do Algoritmo Genético utilizada para gerar novos indivíduos. Apesar disso, a energia eletrônica total é bem próxima comparada com a energia da molécula de referência.

As coordenadas que utilizamos para gerar as imagens das moléculas também foram normalizadas seguindo a normalização de vetores (equação 3.4). E assim obtemos os dados da tabela 13.

Comparamos os coeficientes de correlação de Pearson para cada eixo do resultado do programa com a de referência e obtivemos os seguintes coeficientes:

(a) Base de dados PubChem.

(b) Resultante do programa.

(c) Resultante da biblioteca Psi4.

Figura 15 – Projeção 3D da molécula Ala-Gly-Ser-Glu.

- eixo y = -0.58
- \bullet eixo z = -0.59

Para o tetrapeptídeo Ala-Gly-Ser-Glu, existe uma forte correlação moderada para os eixos x, y e z.

Todos os logs de saída da execução do programa estão no anexo C.

Átomo	X	У	\mathbf{z}	Átomo	x	у	${f z}$
O_1	0.7247	0.6477	-0.2347	O_1	-0.9776	-0.1810	-0.1068
N_2	-0.7710	0.6289	0.0995	N_2	-0.9996	-0.0182	-0.0199
C_3	-0.8656	-0.1387	0.4810	C_3	-0.9935	0.1054	0.0417
C_4	-0.7193	-0.6468	-0.2534	C_4	-0.9603	0.1017	0.2594
C_5	0.9919	0.1199	0.0408	C_5	-0.9974	0.0379	-0.0605
H_6	-0.4543	-0.2214	0.8628	H_6	-0.9702	0.2418	-0.0084
H_7	-0.3649	-0.9229	-0.1224	H_7	-0.9466	-0.0437	0.3193
H_8	-0.8738	-0.4774	-0.0917	H_8	-0.9498	0.1334	0.2828
H_9	-0.5574	-0.4459	-0.7002	H_9	-0.9179	0.2117	0.3355
H_{10}	-0.9041	0.3939	0.1654	H_{10}	-0.9993	0.0198	0.0290
H_{11}	-0.6588	0.6496	-0.3792	H_{11}	-0.9894	-0.0075	-0.1444
O_{12}	0.5689	-0.8194	-0.0685	O_{12}	-0.8164	0.4578	0.3518
N_{13}	0.4463	-0.2104	0.8697	N_{13}	-0.9579	0.2584	-0.1250
C_{14}	0.2760	-0.6384	0.7184	C_{14}	-0.9032	0.2784	-0.3263
C_{15}	0.3026	-0.9044	0.3006	C_{15}	-0.9459	0.3213	-0.0431
H_{16}	-0.0338	-0.6250	0.7798	H_{16}	-0.8713	0.0437	-0.4887
H_{17}	0.3947	-0.6482	0.6510	H_{17}	-0.7580	0.4817	-0.4395
H_{18}	0.7294	-0.1377	0.6699	H_{18}	-0.9088	0.4120	-0.0643
O_{19}	-0.9565	0.0286	-0.2900	O_{19}	-0.2349	-0.9678	0.0900
O_{20}	-0.8251	-0.0137	-0.5647	O_{20}	0.4613	-0.2540	-0.8500
N_{21}	-0.6352	0.7510	-0.1798	N_{21}	-0.9192	-0.0562	-0.3896
C_{22}	-0.8030	0.5111	-0.3063	C_{22}	-0.2389	-0.8186	0.5221
C_{23}	-0.6655	0.5452	-0.5096	C_{23}	-0.1987	-0.8186	0.5388
C_{24}	-0.9036	0.1748	-0.3910	C_{24}	0.7719	-0.4464	-0.4524
H_{25}	-0.8600	0.4919	-0.1349	H_{25}	0.0843	0.3793	0.9214
H_{26}	-0.5936	0.6743	-0.4390	H_{26}	0.1596	-0.7324	0.6618
H_{27}	-0.5340	0.5162	-0.6695	H_{27}	-0.4856	-0.5785	0.6552
H_{28}	-0.7072	0.7005	0.0947	H_{28}	-0.6488	-0.2338	-0.7240
H_{29}	-0.9370	-0.1698	-0.3052	H_{29}	0.0466	-0.9963	-0.0717
O_{30}	0.9982	-0.0072	-0.0586	O_{30}	0.9176	-0.3929	-0.0589
O_{31}	0.5343	-0.6138	-0.5811	O_{31}	0.8576	0.4698	0.2089
O_{32}	0.9291	0.1912	-0.3163	O_{32}	0.8193	-0.5014	0.2777
O_{33}	0.7176	-0.6963	0.0118	O_{33}	0.8787	0.4564	-0.1395
N_{34}	0.8338	0.5020	-0.2295	N_{34}	0.9378	-0.3454	0.0345
C_{35}	0.9957	0.0838	-0.0387	C_{35}	0.9807	0.0803	-0.1779
C_{36}	0.9549	0.2866	-0.0764	C_{36}	0.9525	-0.2659	-0.1480
C_{37}	0.9134	-0.1266	-0.3867	C_{37}	0.9655	0.2384	0.1038
C_{38}	0.9726	0.1495	-0.1777	C_{38}	0.9079	-0.4151	0.0568
C_{39}	0.7711	-0.5266	-0.3578	C_{39}	0.9069	0.4195	0.0379
H_{40}	0.9610	0.2482	0.1210	H_{40}	0.9034	0.2445	-0.3522
H_{41}	0.9862	-0.0959	0.1343	H_{41}	0.9679	0.0311	-0.2491
H_{42}	0.9353	0.3369	0.1076	H_{42}	0.8470	-0.3671	-0.3844
H_{43}	0.7978	0.0655	-0.5992	H_{43}	0.9062	0.3338	0.2592
H_{44}	0.8923	-0.1889	-0.4098	H_{44}	0.9730	0.0992	0.2082
H_{45}	0.7500	0.6433	-0.1533	H_{45}	0.8515	-0.3124	0.4210
H_{46}	0.9922	-0.0502	-0.1140	H_{46}	0.8936	-0.4480	0.0257
H_{47}	0.3592	-0.7825	-0.5084	H_{47}	0.8294	0.5342	0.1631
				41			

 ${\it Tabela} \ 11 - {\it Resultande} \ {\it do} \ {\it programa}.$

Tabela 12 – Base PubChem.

Tabela 13 – Matriz normalizada das coordenadas da molécula Ala-Gly-Ser-Glu

Átomo	Átomo	Ligação
O_1	C_5	dupla
N_2	C_3	simples
N_2	H_{10}	simples
N_2	H_{11}	simples
C_3	C_4	simples
C_3	C_5	simples
C_3	H_6	simples
C_4	H_7	simples
C_4	H_8	simples
C_4	H_9	simples
O_{12}	C_{15}	dupla
N_{13}	C_{14}	simples
N_{13}	C_5	peptídica
N_{13}	H_{18}	simples
C_{14}	C_{15}	simples
C_{14}	C_{16}	simples
C_{14}	H_{17}	simples
O_{19}	C_{23}	simples
O_{19}	H_{29}	simples
O_{19}	C_{24}	dupla
O_{20}		simples
N_{21}	C_{22}	
N_{21}	C_{29}	peptídica
N_{21}	H_{28}	simples
C_{22}	C_{23}	simples
C_{22}	C_{24}	simples
C_{22}	H_{25}	simples
C_{23}	H_{26}	simples
C_{23}	H_{27}	simples
O_{30}	C_{38}	simples
O_{30}	H_{46}	simples
O_{31}	C_{39}	simples
O_{31}	H_{47}	simples
O_{32}	C_{38}	dupla
O_{33}	C_{39}	dupla
N_{34}	C_{36}	simples
N_{34}	C_{24}	peptídica
N_{34}	H_{45}	simples
C_{35}	C_{36}	simples
C_{35}	C_{37}	simples
C_{35}	H_{40}	simples
C_{35}	H_{41}	simples
C_{36}	C_{38}	simples
C_{36}	H_{42}	simples
C_{37}	C_{39}	simples
C_{37}	H_{43}	simples
C_{37}	H_{44}	simples
~ 31	44	

Tabela 14 – Ligações da molécula Ala-Gly-Ser-Glu

Nos quatro experimentos com o programa, podemos observar que a conformação da molécula resultante não é exatamente igual à molécula de referência conhecida. Mesmo assim a energia eletrônica total está bem próxima, pois a biblioteca Psi4 recebe como parâmetro de entrada as coordenadas de cada átomo, e a energia de uma interação pode compensar a outra fazendo com que a energia total do sistema tenha resultados parecidos mesmo com conformações diferentes.

O tempo de execução do programa aumentou significativamente da entrada "AG" para a entrada "AGS", e ainda mais para a entrada "AGSE". Isso já era esperado, pois o problema pertence a NP-Completo e possui tempo exponencial, figura 16.

Figura 16 – Gráfico que mostra o tempo de execução para cada entrada do programa.

4 Conclusão

Ainda há muito a ser explorado nesta área de predição de estruturas tridimensionais(3D) de peptídeos e proteínas, principalmente pela complexidade dos cálculos envolvidos. Com o avanço dos Algoritmos Evolutivos(AEs) e suas diversas vertentes, podemos descobrir maneiras diferentes de tratar esse problema.

Utilizando os aminoácidos existentes, que são a base de qualquer peptídeo ou proteína no programa, temos uma molécula pré-definida que facilita muito para que não seja necessário fazer grandes modificações na matriz 3D. Podemos observar isso nos resultados obtidos com dois e três aminoácidos, pois o cálculo da energia eletrônica total ficou bem próximo ao de uma estrutura conhecida.

Para a continuação deste trabalho, é necessário ajustar o algoritmo de *crossover* para evitar a deformação da molécula e manter as distâncias de ligação.

Seria interessante, utilizar uma base de dados com as estruturas 3D maior para utilizar a maior cadeia conhecida do peptídeo, pois acredito que não seria necessário tantas interações e grandes modificações nos ângulos, pois já estariam bem próximos à sua forma estável e o resultado iria a convergir mais rápido. E também testar outros conjuntos de funções base no método HF-SCF para analisar o desempenho do tempo de processamento e nos resultados dos cálculos da energia.

Então, esse trabalho proporcionou uma visão do quão complexo é o problema da Modelagem Molecular e que existem muitos fatores que influenciam no resultado. E por fazer parte da classe dos problemas NP-Completo, torna o avanço nessa área bem mais lento porque o tempo computacional é um fator limitante e não possuímos computadores quânticos para resolvermos esse problema em tempo polinomial.

Referências

AMINOÁCIDOS. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2017. Disponível em: https://pt.wikipedia.org/wiki/Amino%C3%A1cido#cite_note-ucalgary.27.0-1. Citado 3 vezes nas páginas 8, 9 e 20.

AMUSIA, M.; MSEZANE, A. Z.; SHAGINYAN, V. The hartree fock method within density functional theory. 05 2003. Citado na página 16.

BERG, J. M.; TYMOCZKO, J. L.; STRYER, L. *Bioquímica*. 7. ed. Rio de Janeiro: Guanabara Koogan, 2014. ISBN 978-8-5277-2387-9. Citado na página 22.

BERGER, B.; LEIGHTON, T. Protein folding in the hydrophobic-hydrophilic (hp) model is np-complete. *Journal of Computational Biology*, v. 5, p. 27–40, 1998. Citado na página 14.

CARVALHO, I. et al. Introdução a modelagem molecular de fármacos no curso experimental de química farmacêutica. *Química Nova*, scielo, v. 26, p. 428 – 438, 05 2003. ISSN 0100-4042. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422003000300023&nrm=iso. Citado na página 16.

CRESCENZI, P. et al. On the complexity of protein folding. *Journal of Computational Biology*, v. 5, n. 3, p. 423–465, 1998. Disponível em: https://doi.org/10.1089/cmb.1998.5.423. Citado na página 15.

GARCIA CLEVERSON FERNANDO; FERREIRA LUCAS, E. M. B. I. *Química orgânica: Estrutura e propriedades.* 6. ed. Porto Alegre: Bookman Editora, 2015. 78 p. ISBN 8582602448, 9788582602447. Citado na página 19.

GAUSSIAN Basis Sets. In: EXPANDING the limits of computational chemistry. Gaussian, 2017. Disponível em: https://gaussian.com/basissets. Citado 2 vezes nas páginas 9 e 17.

ISOMERIA geométrica. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2018. Disponível em: https://pt.wikipedia.org/wiki/Isomeria_geom%C3%A9trica. Citado 2 vezes nas páginas 8 e 19.

JENSEN, F. Introduction to computational chemistry. 2. ed. West Sussex PO19 8SQ, England: WILEY, 2007. ISBN 13 978-0-470-01186-7. Citado 2 vezes nas páginas 14 e 22.

JONES, E. et al. *SciPy: Open source scientific tools for Python*. 2001–. Acessado em: 2019. Disponível em: http://www.scipy.org/>. Citado na página 23.

KIM, S. et al. PubChem 2019 update: improved access to chemical data. *Nucleic Acids Research*, v. 47, n. D1, p. D1102–D1109, 10 2018. ISSN 0305-1048. Disponível em: https://doi.org/10.1093/nar/gky1033>. Citado na página 24.

LEVINE, I. N. *Quantum Chemistry*. Englewood Cliffs, New Jersey: Prentice Hall: Springer, Dordrecht, 1991. ISBN 0-205-12770-3. Citado na página 17.

Referências 43

LINDEN, R. Algoritmos Geneticos: Teoria e Implementação. 2. ed. Rio de Janeiro: BRASFORT, 2008. ISBN 978-85-7452-373-6. Citado na página 22.

MAUPETIT, J.; DERREUMAUX, P.; TUFFERY, P. Pep-fold: an online resource for de novo peptide structure prediction. *Nucleic Acids Research*, v. 37, p. W498–W503, 2009. Disponível em: http://dx.doi.org/10.1093/nar/gks323. Citado na página 15.

MÉTODOS ab initio. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2017. Disponível em: https://pt.wikipedia.org/wiki/M%C3%A9todos_ab_initio. Citado na página 17.

MODELAGEM molecular. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2016. Disponível em: https://pt.wikipedia.org/wiki/Modelagem_molecular>. Citado na página 16.

NELSON, D. L.; COX, M. M. *Princípios de Bioquímica de Lehninger*. 6. ed. Porto Alegre: artmed, 2014. ISBN 978-85-8271-073-9. Citado 5 vezes nas páginas 8, 14, 19, 20 e 21.

RAMACHANDRAN, K. I.; DEEPA, G.; NAMBOORI, K. Computational Chemistry and Molecular Modeling: Principles and Applications. Coimbatore, India: Springer-Verlag Berlin Heidelberg, 2008. ISBN 978-3-540-77302-3. Citado na página 17.

RIGDEN, D. J. From Protein Structure to Function with Bioinformatics. 1. ed. United Kingdom: Springer, Dordrecht, 2017. ISBN 978-1-4020-9057-8. Citado na página 17.

SKERN, T. Exploring Protein Structure: Principles and Practice. 1. ed. [S.l.]: Springer International Publishing, 2018. ISBN 978-3-319-76858-8. Citado na página 24.

SMITH, D. G. A. et al. Psi4numpy: An interactive quantum chemistry programming environment for reference implementations and rapid development. *Journal of Chemical Theory and Computation*, v. 14, n. 7, p. 3504–3511, 2018. PMID: 29771539. Disponível em: https://doi.org/10.1021/acs.jctc.8b00286. Citado 2 vezes nas páginas 16 e 23.

SOLOMONS, T. W. G.; FRYHLE, C. B. *Química Orgânica*. 7. ed. Rio de Janeiro: LTC, 2000. v. 1. ISBN 8521612826. Citado 2 vezes nas páginas 8 e 18.

SUN, S. A genetic algorithm that seeks native states of peptides and proteins. *Biophysical journal*, Elsevier, v. 69, n. 2, p. 340–355, 1995. Citado na página 15.

THÉVENET, P. et al. Pep-fold: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. *Nucleic Acids Research*, v. 40, n. W1, p. W288–W293, 2012. Disponível em: http://dx.doi.org/10.1093/nar/gks419>. Citado na página 15.

ANEXO A – Instalação das bibliotecas nescessárias para a utilização do programa

A.1 Psi4NumPy

Para instalar, basta seguir os seguintes passos:

Listagem A.1 – Terminal

A.2 SciPy

Para instalar, basta digitar o seguinte comando no terminal:

Listagem A.2 – Terminal

1 \$ python -m pip install numpy scipy matplotlib

ANEXO B – Utilização da biblioteca Psi4

Listagem B.1 – code.py

```
1 import psi4
3 \text{ total\_energy} = 0
4 geometry = """
     0.000000 -0.667578 -2.124659
6 C
      0.000000 0.667578 -2.124659
    0.923621 -1.232253 -2.126185
    -0.923621 -1.232253
                           -2.126185
9 H
    -0.923621 1.232253 -2.126185
     0.923621 1.232253 -2.126185
10 H
11 """
12 try:
      psi4.core.set_output_file("output.dat", False)
      psi4.set_memory("500 MB")
14
15
      psi4.geometry(geometry)
16
17
      psi4.energy("scf/cc-pvdz")
18
      total_energy = psi4.core.get_variable("SCF TOTAL ENERGY")
19
20 except RuntimeError:
      # Iterations did not converge.
21
22
      pass
```

ANEXO C – Saídas do programa implementado nesse trabalho

C.1 Ala-Gly

Listagem C.1 – Log

```
1 Enter an amino acid sequence: AG
3 Generates Population
5 Fitness: -527.7803265267446
6 Fitness: -527.6776932763687
7 Fitness: -527.0522166171982
8 Fitness: -528.2659376789261
9 Fitness: -528.2807625975083
11 GENERATION O
12 Fitness: -527.8325001357168
13 Fitness: -528.2046184793761
14 Fitness: -528.0332323598259
15 Fitness: -528.2720018154023
16 Fitness: -528.2651706839677
17 Fitness: -528.1628077206278
18 Fitness: -527.7780622610587
20 GENERATION 1
21 Fitness: -528.3422254907148
22 Fitness: -528.0304790449172
23 Fitness: -528.0620327079089
24 Fitness: -528.3400780939115
25 Fitness: -528.2396622020563
26 Fitness: -527.9126030997212
27 Fitness: -528.2111578094529
29 GENERATION 2
30 Fitness: -528.0686838504043
31 Fitness: -528.1264525525735
32 Fitness: -528.2706526403547
33 Fitness: -528.253510738619
34 Fitness: 0
35 Fitness: -527.3271472997753
36 Fitness: -528.2103042030304
```

```
37
38 GENERATION 3
39 Fitness: -528.0649666612246
40 Fitness: -528.2709404573242
41 Fitness: -528.268292892008
42 Fitness: -528.1680579018376
43 Fitness: -527.6182987927125
44 Fitness: -528.321031909251
45 Fitness: -527.9977306496576
47 GENERATION 4
48 Fitness: -528.2085618711468
49 Fitness: -528.323779795162
50 Fitness: -528.2327206560506
51 Fitness: -527.7966275124737
52 Fitness: -528.2936018701213
53 Fitness: -528.0277999845953
54 Fitness: -528.1257268005738
55
56
57 The best fitness: -528.323779795162
59 The best geometry:
61 0 1.2492 1.1165 -0.4047
62 N -1.4105 1.1507 0.1821
63 C -0.7085 -0.1136 0.3937
64 C -1.3345 -1.2000 -0.4702
65 C 0.7470 0.0903 0.0308
66 H -0.7666 -0.3737 1.4558
67 H -0.8580 -2.1695 -0.2878
68 H -2.4023 -1.3127 -0.2521
69 H -1.2248 -0.9797 -1.5384
70 H -2.3916 1.0420 0.4376
71 H -1.4071 1.3875 -0.8099
72 0 2.5516 -2.2446 -0.9942
73 0 0.5915 -1.1035 -1.1285
74 N 1.7707 1.2076 -1.7786
75 C 2.6493 0.0652 -1.5860
76 C 1.8114 -1.1318 -1.2310
77 H 3.3505 0.2709 -0.7726
78 H 3.2005 -0.1396 -2.5078
79 H 1.0947 1.0073 -2.5146
80 H 1.9913 -3.0108 -0.7463
81 THE END
82
83 Process finished with exit code 0
```

Listagem C.2 – output.dat

```
Memory set to 476.837 MiB by Python driver.
3 *** tstart() called on Tatianes-MacBook-Air.local
4 *** at Thu Jun 20 14:03:04 2019
     => Loading Basis Set <=
6
7
      Name: CC-PVDZ
      Role: ORBITAL
10
      Keyword: BASIS
      atoms 1, 12-13
                                        line 190 file /Users/
11
                      entry O
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
12
      atoms 2, 14
                       entry N
                                        line
                                               160 file /Users/
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 3-5, 15-16 entry C
                                               130 file /Users/
13
                                        line
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 6-11, 17-20 entry H
                                        line
                                                20 file /Users/
14
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
15
      There are an even number of electrons - assuming singlet.
16
      Specify the multiplicity in the molecule input block.
17
18
19
20
                                    SCF
21
             by Justin Turney, Rob Parrish, and Andy Simmonett
22
                               RHF Reference
23
                         1 Threads,
                                      476 MiB Core
24
25
26
    ==> Geometry <==
27
28
      Molecular point group: c1
29
      Full point group: C1
30
31
32
      Geometry (in Angstrom), charge = 0, multiplicity = 1:
33
                            Х
                                                                   Z
         Center
34
                         Mass
                    -----
35
         -----
                       0.469665327601
                                          1.352425119829
36
                0.312281858816
                                15.994914619560
                      -2.190034672399
                                         1.386625119829
37
                0.899081858816 14.003074004780
                      -1.488034672399
             С
                                         0.122325119829
38
```

```
1.110681858816
                                12.000000000000
             С
                       -2.114034672399
                                         -0.964074880171
39
                0.246781858816 12.00000000000
             С
                       -0.032534672399
                                          0.326225119829
40
                0.747781858816
                                12.000000000000
41
             Н
                       -1.546134672399 -0.137774880171
                2.172781858816
                                 1.007825032070
                       -1.637534672399
             Н
                                         -1.933574880171
42
                0.429181858816 1.007825032070
                       -3.181834672399
                                         -1.076774880171
43
             Н
                0.464881858816
                                  1.007825032070
                      -2.004334672399 -0.743774880171
44
             Η
                -0.821418141184
                                  1.007825032070
                       -3.171134672399
             Η
                                          1.277925119829
45
                1.154581858816 1.007825032070
                       -2.186634672399
                                         1.623425119829
46
             Н
                -0.092918141184
                                   1.007825032070
                       1.772065327601 -2.008674880171
             n
47
                -0.277218141184
                                 15.994914619560
             0
                       -0.188034672399
                                         -0.867574880171
48
                -0.411518141184 15.994914619560
                       0.991165327601
                                          1.443525119829
             N
49
                -1.061618141184
                                  14.003074004780
                        1.869765327601
                                         0.301125119829
50
             C
                -0.869018141184
                                  12.000000000000
             С
                        1.031865327601
                                         -0.895874880171
51
                -0.514018141184
                                  12.000000000000
             Η
                        2.570965327601
                                          0.506825119829
52
                                  1.007825032070
                -0.055618141184
             Η
                        2.420965327601
                                          0.096325119829
53
                -1.790818141184
                                    1.007825032070
                       0.315165327601
                                         1.243225119829
             Η
54
                -1.797618141184 1.007825032070
             Η
                        1.211765327601
                                         -2.774874880171
55
                -0.029318141184 1.007825032070
56
    Running in c1 symmetry.
57
58
    Rotational constants: A = 0.07487 B =
                                                    0.04055 C =
59
       0.02972 [cm^-1]
    Rotational constants: A = 2244.52566 B =
                                                 1215.77934
60
       890.83818 [MHz]
    Nuclear repulsion = 606.712782605637358
61
62
63
    Charge
    Multiplicity = 1
64
    Electrons = 78
65
```

```
66
    Nalpha
                = 39
    Nbeta
                = 39
67
68
    ==> Algorithm <==
69
70
71
    SCF Algorithm Type is DF.
    DIIS enabled.
72
    MOM disabled.
73
    Fractional occupation disabled.
74
    Guess Type is SAD.
75
    Energy threshold = 1.00e-06
76
    Density threshold = 1.00e-06
77
    Integral threshold = 0.00e+00
78
79
    ==> Primary Basis <==
80
81
    Basis Set: CC-PVDZ
82
      Blend: CC-PVDZ
83
      Number of shells: 90
84
      Number of basis function: 190
85
      Number of Cartesian functions: 200
86
      Spherical Harmonics?: true
87
      Max angular momentum: 2
88
89
     => Loading Basis Set <=
90
91
92
      Name: (CC-PVDZ AUX)
      Role: JKFIT
93
      Keyword: DF_BASIS_SCF
94
      atoms 1, 12-13
                       entry O
                                       line 220 file /Users/
95
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
                                              170 file /Users/
      atoms 2, 14
                       entry N
                                       line
96
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 3-5, 15-16 entry C
                                       line
                                              120 file /Users/
97
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 6-11, 17-20 entry H
                                       line
                                               50 file /Users/
98
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
99
    ==> Pre-Iterations <==
100
101
102
                            Nalpha Nbeta Ndocc Nsocc
103
      Irrep Nso
                    Nmo
     -----
104
105
              190
                      190
                               0
                                       Ω
                                                0
     _____
106
              190
107
      Total
                      190
                              39
                                      39
                                              39
108
```

```
109
     ==> Integral Setup <==
110
111
112
     ==> DFJK: Density-Fitted J/K Matrices <==
113
114
       J tasked:
                                     Yes
       K tasked:
                                     Yes
115
       wK tasked:
116
                                      Νo
       OpenMP threads:
                                       1
117
       Integrals threads:
                                       1
118
       Memory (MB):
                                     357
119
       Algorithm:
120
                                   Core
121
       Integral Cache:
                                   NONE
       Schwarz Cutoff:
122
                                  1E-12
       Fitting Condition:
                                  1E-12
123
124
      => Auxiliary Basis Set <=
125
126
     Basis Set: (CC-PVDZ AUX)
127
128
       Blend: CC-PVDZ-JKFIT
       Number of shells: 330
129
       Number of basis function: 930
130
       Number of Cartesian functions: 1060
131
       Spherical Harmonics?: true
132
133
       Max angular momentum: 3
134
135
     Minimum eigenvalue in the overlap matrix is 1.8767339376E-03.
136
     Using Symmetric Orthogonalization.
137
138
     SCF Guess: Superposition of Atomic Densities via on-the-fly atomic
        UHF.
139
140
     ==> Iterations <==
141
                                Total Energy
                                                      Delta E
142
                                                                   RMS | [F, P
                                    ] [
143
      @DF-RHF iter
                      0:
                           -533.54061727183250
                                                   -5.33541e+02
                                                                   3.25189e
144
         -02
      @DF-RHF iter
                           -528.00911812942081
                                                   5.53150e+00
                                                                   3.57812e
                      1:
145
         -03
      @DF-RHF iter
                      2:
                           -528.25567839698795
                                                   -2.46560e-01
                                                                   1.86138e
146
         -03 DIIS
      @DF-RHF iter
                           -528.30986368160279
                                                   -5.41853e-02
147
                      3:
                                                                   5.23246e
         -04 DIIS
      @DF-RHF iter
                      4: -528.32003224868868
                                                   -1.01686e-02
                                                                   2.09826e
148
         -04 DIIS
```

149	@DF-RHF iter	5: -5	28.32217	854696523	-2.14630e	-03 9.73489e
	-05 DIIS					
150	@DF-RHF iter	6: -5	28.32311	451905150	-9.35972e	-04 6.05739e
151	-05 DIIS @DF-RHF iter	7: -5	28.32353	641182920	-4.21893e	-04 3.31284e
101	-05 DIIS	1. 0	20.02000	011102020	1.210000	0.012010
152	@DF-RHF iter	8: -5	28.32372	577622971	-1.89364e	-04 1.61351e
	-05 DIIS					
153	@DF-RHF iter -06 DIIS	9: -5	28.32377	323680885	-4.74606e	-05 6.50710e
154	QDF-RHF iter	10: -5	28.32377	886243069	-5.62562e	-06 2.90056e
	-06 DIIS					
155	@DF-RHF iter	11: -5	28.32377	964076602	-7.78335e	-07 1.23740e
	-06 DIIS					
156	@DF-RHF iter	12: -5	28.32377	979516195	-1.54396e	-07 4.26318e
157	-07 DIIS					
158	==> Post-Iter	ations <=:	=			
159						
160	Orbital Ene	rgies (a.	u .)			
161						
162						
163	Doubly Occu	pied:				
164	200229 0000	r-ou.				
165	1A -2	0.651757	2 A	-20.596898	3 A	-20.583467
166		5.653116	5 A	-15.51671		-11.446196
167		1.306631	8 A	-11.24870		-11.229938
168	10A -1	1.194000	11A	-1.52934	3 12A	-1.469285
169	13A -	1.418115	14A	-1.206179		-1.158292
170		1.017699	17 A	-0.98895	1 18A	-0.876682
171		0.850070	20 A			
172		0.753486	23 A			
173		0.651983	26 A	-0.63144		-0.606800
174		0.595029	29 A	-0.58649		
175		0.556577	32A			
176		0.494839		-0.47939		
177	37A -	0.448204		-0.36531		-0.229218
178						
179	Virtual:					
180						
181	40A	0.125223	41A	0.142840	O 42A	0.161885
182		0.197619	44 A			
183		0.250645	47 A			0.263785
184		0.287565	50A			
185		0.337526	53A	0.35780		0.408050
186		0.431685	56A	0.43897		0.452801
187		0.512037	59A	0.53831		0.585788

188	61A	0.638310	62A	0.653164	63A	0.666632
189	64A	0.689624	65 A	0.700580	66 A	0.715276
190	67A	0.723628	68A	0.735767	69 A	0.757730
191	70A	0.775341	71A	0.809209	72A	0.820838
192	73A	0.842135	74A	0.843690	75A	0.857445
193	76A	0.865420	77 A	0.874326	78A	0.901197
194	79A	0.914333	80A	0.915335	81A	0.930348
195	82A	0.941026	83A	0.946505	84A	0.976694
196	85A	0.998162	86A	1.011478	87 A	1.045281
197	88A	1.046918	89A	1.064866	90 A	1.083998
198	91A	1.111849	92A	1.145594	93A	1.165090
199	94A	1.186099	95A	1.195909	96 A	1.206784
200	97A	1.242409	98A	1.280994	99A	1.311702
201	100A	1.337177	101A	1.352528	102A	1.370438
202	103A	1.386534	104A	1.432435	105A	1.484624
203	106A	1.497420	107A	1.519316	108A	1.536736
204	109A	1.559236	110A	1.593629	111A	1.606132
205	112A	1.620473	113A	1.632828	114A	1.635787
206	115A	1.678752	116A	1.701215	117A	1.750897
207	118A	1.770998	119A	1.790315	120A	1.823278
208	121A	1.857499	122A	1.881797	123A	1.884430
209	124A	1.894787	125A	1.902542	126A	1.922912
210	127A	1.940313	128A	1.951659	129A	1.965389
211	130 A	1.973800	131A	1.993035	132A	2.007791
212	133A	2.026074	134A	2.034663	135A	2.061889
213	136A	2.083289	137A	2.097789	138A	2.144060
214	139A	2.153020	140A	2.165679	141A	2.171982
215	142A	2.226995	143A	2.247218	144A	2.256733
216	145A	2.296705	146A	2.310719	147A	2.339128
217	148A	2.361784	149A	2.370685	150A	2.410102
218	151A	2.416419	152A	2.421380	153A	2.441824
219	154A	2.489561	155A	2.542825	156A	2.571045
220	157A	2.577635	158A	2.589245	159A	2.615163
221	160A	2.658924	161A	2.700617	162A	2.708384
222	163A	2.779545	164A	2.787644	165A	2.819008
223	166A	2.843379	167A	2.870168	168A	2.887230
224	169A	2.918238	170A	2.982293	171A	3.004436
225	172A	3.056454	173A	3.111051	174A	3.178622
226	175A	3.208370	176A	3.230784	177A	3.233736
227	178A	3.310014	179A	3.365354	180 A	3.426525
228	181A	3.458411	182A	3.479476	183A	3.484834
229	184A	3.554891	185A	3.631752	186A	3.817471
230	187A	3.866359	188A	3.897391	189A	3.948736
231	190A	4.088810				
232						

Final Occupation by Irrep:

234 A

```
235
       DOCC [
                  39 ]
236
     Energy converged.
237
238
     @DF-RHF Final Energy: -528.32377979516195
239
240
      => Energetics <=
241
242
       Nuclear Repulsion Energy =
                                                  606.7127826056373578
243
       One-Electron Energy =
                                               -1927.3193335674816353
244
       Two-Electron Energy =
                                                 792.2827711666823234
245
       DFT Exchange-Correlation Energy =
                                                   0.0000000000000000
246
247
       Empirical Dispersion Energy =
                                                    0.000000000000000
                                                    0.0000000000000000
248
       PCM Polarization Energy =
                                                    0.000000000000000
       EFP Energy =
249
                                                -528.3237797951619541
       Total Energy =
250
251
252
253
254 Properties will be evaluated at
                                       0.000000,
                                                      0.000000,
                                                                   0.00000
      Bohr
255
256\ \mbox{Properties} computed using the SCF density matrix
257
     Nuclear Dipole Moment: (a.u.)
258
259
        X:
               -6.7446
                             Y:
                                    -1.8146
                                                   Z:
                                                         -0.3447
260
261
     Electronic Dipole Moment: (a.u.)
                7.1380
                             Y:
262
        X:
                                     0.3986
                                                   Z:
                                                         -1.2883
263
264
     Dipole Moment: (a.u.)
        X:
                0.3934
                             Y:
                                    -1.4160
                                                  Z:
                                                         -1.6330
265
                                                                      Total:
                2.1969
266
     Dipole Moment: (Debye)
267
        X:
                                                   Z:
                0.9999
                             Y:
                                    -3.5990
                                                         -4.1507
                                                                      Total:
268
                5.5840
269
270
271 *** tstop() called on Tatianes-MacBook-Air.local at Thu Jun 20
      14:03:20 2019
272 Module time:
     user time
                          20.10 seconds =
                                                   0.33 minutes
273
                           0.55 \text{ seconds} =
                                                   0.01 minutes
274
     system time =
     total time
                             16 seconds =
                                                   0.27 minutes
275
276 Total time:
     user time
                         798.70 \text{ seconds} =
277
                                                 13.31 minutes
                  =
```

```
278 system time = 22.28 seconds = 0.37 minutes
279 total time = 624 seconds = 10.40 minutes
```

${\bf Listagem~C.3-timer.dat}$

```
1 Host: Tatianes-MacBook-Air.local
3 Timers On : Thu Jun 20 13:52:50 2019
4 Timers Off: Thu Jun 20 14:09:30 2019
6 Wall Time: 1000.00 seconds
8 JK: (A|mn) :
                   351.28u
                                0.75s
                                         212.10w
                                                   200 calls
9 JK: (A|Q)^-1/2:
                    120.57u
                                 2.68s
                                            60.17w
                                                    200 calls
10 JK: (Q|mn) :
                  143.38u
                                0.73s
                                          23.67w
                                                   200 calls
11 HF: Form H :
                                0.17s
                                                    40 calls
                    0.05u
                                       0.173638w
                               0.02s
                                       0.631288w
                                                    40 calls
12 HF: Form S/X:
                    1.08u
13 HF: Guess
                    8.57u
                               0.12s 5.266284w
                                                   40 calls
14 SAD Guess :
                    8.45u
                                0.12s 5.159809w
                                                    40 calls
                                                1520 calls
15 JK: D
                    0.20u
                                0.03s
                                       0.125210w
16 JK: USO2AO :
                    0.00u
                              0.00s 0.034458w 1520 calls
17 JK: JK
                               26.95s
                                         637.17w 1520 calls
                  797.10u
            :
18 JK: J
                                          10.34w 1520 calls
                   33.15u
                               0.23s
19 JK: J1
                              0.12s 5.232191w 2400 calls
            :
                   16.82u
20 JK: J2
                                       4.982653w 2400 calls
                   16.15u
                               0.10s
            :
21 JK: K
                  754.18u
                              16.55s
                                         615.17w 1520 calls
             :
22 JK: K1
                   640.93u
                              16.20s
                                        580.47w 2320 calls
            :
23 JK: K2
                   113.20u
                                0.35s
                                          34.67w
                                                  2320 calls
            :
24 JK: A02USO :
                    0.00u
                                0.00s
                                       0.003373w
                                                  1520 calls
25 DIISManager::add_entry:
                              0.07u
                                         0.20s
                                                0.278112w 1480
     calls
26 DIISManager::extrapolate: 0.68u 1.00s
                                                  0.977797w
                                                             1440
     calls
27 DIISManager::extrapolate: bMatrix setup: 0.18u
                                                        0.55s
     0.488405w
                1440 calls
28 DIISManager::extrapolate: bMatrix pseudoinverse:
            0.035510w 1440 calls
29 DIISManager::extrapolate: form new data:
                                              0.37u
                                                         0.45s
     0.438143w
                1440 calls
30 HF: Form G :
                  797.38u
                              27.03s
                                         637.37w
                                                   640 calls
31 HF: Form F :
                    0.00u
                               0.00s 0.045055w
                                                   640 calls
                               1.38s
32 HF: DIIS
                    3.82u
                                       2.394890w
                                                   640 calls
            :
33 HF: Form C :
                  16.47u
                               0.17s 9.445859w
                                                   640 calls
34 HF: Form D :
                    0.17u
                                0.02s
                                       0.114420w
                                                   640 calls
35
36 **********************
```

C.2 Ala-Gly-Ser

Listagem C.4 – Log

```
1 Enter an amino acid sequence: AGS
3 Generates Population
5 Fitness: -846.3830882731716
6 Fitness: -846.0706046134601
7 Fitness: -839.2166319125993
8 Fitness: -848.2767413591066
9 Fitness: -848.4628586178002
11 GENERATION O
12 Fitness: -848.0544173576209
13 Fitness: -848.5715760591886
14 Fitness: -847.4228379747836
15 Fitness: -848.0889970162556
16 Fitness: -848.5030199849069
17 Fitness: -848.7907306374677
18 Fitness: -847.9813451674539
19
20 GENERATION 1
21 Fitness: -848.4294580634481
22 Fitness: -848.5417432377287
23 Fitness: -847.3553365558872
24 Fitness: -847.8756690835153
25 Fitness: -848.7304757529168
26 Fitness: -848.5875372267864
27 Fitness: -848.7896508548256
29 GENERATION 2
30 Fitness: -848.7642078021361
31 Fitness: -848.3379051435824
32 Fitness: -847.8172532959155
33 Fitness: -848.7516754683762
34 Fitness: -848.0128849165753
35 Fitness: -847.9618665998814
36 Fitness: -848.6445946509956
37
38 GENERATION 3
39 Fitness: -848.7352089781205
40 Fitness: -847.9835169523552
41 Fitness: -848.0481310278327
42 Fitness: -848.4686272912074
43 Fitness: -848.3916479171955
44 Fitness: -848.6940267231785
```

```
45 Fitness: -848.7755377064457
47 GENERATION 4
48 Fitness: -848.5738255118922
49 Fitness: -847.9527506000068
50 Fitness: -848.480961256966
51 Fitness: -847.3987093248422
52 Fitness: -848.4477822678394
53 Fitness: -848.7141484055456
54 Fitness: -848.7900243556691
55
56
57 The best fitness: -848.7900243556691
58
59 The best geometry:
60
61 0 1.2492 1.1165 -0.4047
62 N -1.4105 1.1507 0.1821
63 C -0.7085 -0.1136 0.3937
64 C -1.3345 -1.2000 -0.4702
65 C 0.7470 0.0903 0.0308
66 H -0.7666 -0.3737 1.4558
67 H -0.8580 -2.1695 -0.2878
68 H -2.4023 -1.3127 -0.2521
69 H -1.2248 -0.9797 -1.5384
70 H -2.3916 1.0420 0.4376
71 H -1.4071 1.3875 -0.8099
72 0 0.9598 -1.3807 -0.1162
73 N 0.5750 -0.6240 -2.6527
74 C 1.9543 -0.8319 -2.2422
75 C 1.9685 -1.2512 -0.7982
76 H 2.5179 0.0983 -2.3551
77 H 2.4093 -1.6175 -2.8514
78 H 0.0386 -1.4802 -2.5186
79 0 1.1245 4.7820 3.8308
80 0 0.3416 1.9398 4.4038
81 0 -0.4194 1.6761 2.2792
82 N 2.1655 2.2177 1.3911
83 C 1.7394 2.7571 2.6815
84 C 1.5343 4.2652 2.5691
85 C 0.4410 2.0678 3.0546
86 H 2.4975 2.5178 3.4357
87 H 2.4558 4.7760 2.2697
88 H 0.7519 4.5137 1.8437
89 H 2.2579 1.2046 1.4510
90 H 1.8283 4.5818 4.4712
91 H -0.4940 1.4991 4.6685
```

```
92 THE END
93
94 Process finished with exit code 0
```

Listagem C.5 – output.dat

```
Memory set to 476.837 MiB by Python driver.
3 *** tstart() called on Tatianes-MacBook-Air.local
4 *** at Thu Jun 20 15:10:40 2019
     => Loading Basis Set <=
6
      Name: CC-PVDZ
8
      Role: ORBITAL
9
10
      Keyword: BASIS
      atoms 1, 12, 19-21
                               entry O
                                                 line
                                                       190 file /Users/
11
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 2, 13, 22
                               entry N
                                                        160 file /Users/
12
                                                 line
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 3-5, 14-15, 23-25 entry C
                                                 line
                                                        130 file /Users/
13
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 6-11, 16-18, 26-31 entry H
                                                         20 file /Users/
14
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
15
      There are an even number of electrons - assuming singlet.
16
      Specify the multiplicity in the molecule input block.
17
18
19
20
                                      SCF
21
              by Justin Turney, Rob Parrish, and Andy Simmonett
22
23
                                RHF Reference
                                        476 MiB Core
24
                          1 Threads,
25
26
27
    ==> Geometry <==
28
      Molecular point group: c1
29
      Full point group: C1
30
31
      Geometry (in Angstrom), charge = 0, multiplicity = 1:
32
33
         Center
                             Х
                                                 Y
                                                                     Ζ
34
                          Mass
                     -----
35
```

36	0	0.596906740839 0.036596034586
		-1.334948760147 15.994914619560
37	N	-2.062793259161 0.070796034586
		-0.748148760147 14.003074004780
38	C	-1.360793259161 -1.193503965414
		-0.536548760147 12.00000000000
39	C	-1.986793259161 -2.279903965414
		-1.400448760147 12.00000000000
40	C	0.094706740839 -0.989603965414
		-0.899448760147 12.00000000000
41	Н	-1.418893259161 -1.453603965414
		0.525551239853 1.007825032070
42	Н	-1.510293259161 -3.249403965414
		-1.218048760147 1.007825032070
43	Н	-3.054593259161 -2.392603965414
		-1.182348760147 1.007825032070
44	Н	-1.877093259161 -2.059603965414
		-2.468648760147 1.007825032070
45	Н	-3.043893259161 -0.037903965414
		-0.492648760147 1.007825032070
46	Н	-2.059393259161 0.307596034586
		-1.740148760147 1.007825032070
47	0	0.307506740839 -2.460603965414
		-1.046448760147 15.994914619560
48	N	-0.077293259161 -1.703903965414
		-3.582948760147 14.003074004780
49	C	1.302006740839 -1.911803965414
		-3.172448760147 12.00000000000
50	С	1.316206740839 -2.331103965414
		-1.728448760147 12.00000000000
51	Н	1.865606740839 -0.981603965414
		-3.285348760147 1.007825032070
52	Н	1.757006740839 -2.697403965414
		-3.781648760147 1.007825032070
53	Н	-0.613693259161 -2.560103965414
		-3.448848760147 1.007825032070
54	0	0.472206740839 3.702096034586
		2.900551239853 15.994914619560
55	0	-0.310693259161
	0	3.473551239853 15.994914619560
56	0	-1.071693259161 0.596196034586
F 77	NT	1.348951239853 15.994914619560
57	N	1.513206740839 1.137796034586
EO	С	0.460851239853 14.003074004780
58	C	1.087106740839 1.677196034586 1.751251239853 12.00000000000
50	С	0.882006740839 3.185296034586
59	C	0.002000140033 3.100290034580

```
1.638851239853
                                12.000000000000
             С
                       -0.211293259161
                                          0.987896034586
60
                Н
                       1.845206740839
                                         1.437896034586
61
                2.505451239853
                                   1.007825032070
                        1.803506740839
62
                                         3.696096034586
                1.339451239853
                                  1.007825032070
                        0.099606740839
            Н
                                          3.433796034586
63
                0.913451239853
                                  1.007825032070
                       1.605606740839
                                         0.124696034586
64
                0.520751239853
                                   1.007825032070
                       1.176006740839
                                         3.501896034586
            Н
65
                3.540951239853
                                  1.007825032070
                       -1.146293259161
                                          0.419196034586
             Η
66
                3.738251239853
                                  1.007825032070
67
    Running in c1 symmetry.
68
69
                                                    0.00936 C =
    Rotational constants: A = 0.03440 B =
70
       0.00847 [cm^-1]
    Rotational constants: A = 1031.22492 B =
                                                  280.66287 C =
71
       253.81490 [MHz]
    Nuclear repulsion = 1208.145979741552310
72
73
    Charge
74
75
    Multiplicity = 1
    Electrons
              = 124
76
    Nalpha
                = 62
77
78
    Nbeta
                = 62
79
80
    ==> Algorithm <==
81
    SCF Algorithm Type is DF.
82
    DIIS enabled.
83
    MOM disabled.
84
    Fractional occupation disabled.
85
    Guess Type is SAD.
86
    Energy threshold
                     = 1.00e-06
87
    Density threshold = 1.00e-06
88
    Integral threshold = 0.00e+00
89
90
    ==> Primary Basis <==
91
92
    Basis Set: CC-PVDZ
93
      Blend: CC-PVDZ
94
      Number of shells: 141
95
      Number of basis function: 299
96
```

```
97
      Number of Cartesian functions: 315
      Spherical Harmonics?: true
98
      Max angular momentum: 2
99
100
     => Loading Basis Set <=
101
102
      Name: (CC-PVDZ AUX)
103
      Role: JKFIT
104
      Keyword: DF_BASIS_SCF
105
      atoms 1, 12, 19-21
                             entry O
                                             line
                                                    220 file /Users/
106
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 2, 13, 22
                                                    170 file /Users/
                             entry N
                                             line
107
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 3-5, 14-15, 23-25 entry C
108
                                             line
                                                    120 file /Users/
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 6-11, 16-18, 26-31 entry H
                                             line
                                                     50 file /Users/
109
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
110
    ==> Pre-Iterations <==
111
112
      113
114
      Irrep Nso
                           Nalpha Nbeta Ndocc Nsocc
                   Nmo
     _____
115
              299
                      299
                              0
                                      0
                                               0
116
117
                                     62
                                             62
118
               299
                       299
                              62
     ______
119
120
121
    ==> Integral Setup <==
122
123
    ==> DFJK: Density-Fitted J/K Matrices <==
124
      J tasked:
125
                               Yes
      K tasked:
                               Yes
126
      wK tasked:
127
                                Νo
      OpenMP threads:
                                 1
128
      Integrals threads:
129
                                 1
      Memory (MB):
                               357
130
      Algorithm:
                              Disk
131
      Integral Cache:
                              NONE
132
      Schwarz Cutoff:
                             1E-12
133
      Fitting Condition:
                             1E-12
134
135
136
     => Auxiliary Basis Set <=
137
    Basis Set: (CC-PVDZ AUX)
138
      Blend: CC-PVDZ-JKFIT
139
```

-05 DIIS

```
140
       Number of shells: 519
       Number of basis function: 1465
141
       Number of Cartesian functions: 1671
142
       Spherical Harmonics?: true
143
       Max angular momentum: 3
144
145
     Minimum eigenvalue in the overlap matrix is 2.1022888044E-03.
146
147
     Using Symmetric Orthogonalization.
148
     SCF Guess: Superposition of Atomic Densities via on-the-fly atomic
149
        UHF.
150
     ==> Iterations <==
151
152
                               Total Energy
                                                   Delta E
                                                                 RMS | [F, P
153
                                  ] [
154
                      0: -854.34626729106083
      @DF-RHF iter
                                                 -8.54346e+02
                                                                 2.37108e
155
         -02
      @DF-RHF iter
                          -847.81759515928195
                                                  6.52867e+00
                                                                 3.99879e
156
         -03
                          -843.59030907205442
                                                  4.22729e+00
      @DF-RHF iter
                      2:
                                                                 8.25865e
157
         -03 DIIS
      @DF-RHF iter
                      3:
                          -848.40657278539231
                                                 -4.81626e+00
                                                                 2.56848e
158
         -03 DIIS
      @DF-RHF iter
                      4:
                          -848.64797758006068
                                                 -2.41405e-01
                                                                 1.12694e
159
         -03 DIIS
      @DF-RHF iter
                      5:
                          -848.73486452160080
                                                 -8.68869e-02
                                                                 5.08480e
160
         -04 DIIS
161
      @DF-RHF iter
                      6:
                          -848.75909310825364
                                                 -2.42286e-02
                                                                 2.70194e
         -04 DIIS
      @DF-RHF iter
                      7:
                          -848.76217913627158
                                                 -3.08603e-03
162
                                                                 5.24500e
         -04 DIIS
      @DF-RHF iter
                      8:
                          -848.76443789872565
                                                 -2.25876e-03
                                                                 5.07575e
163
         -04 DIIS
      @DF-RHF iter
                          -848.76811526739971
                                                                 4.96730e
                      9:
                                                 -3.67737e-03
164
         -04 DIIS
      @DF-RHF iter 10:
                          -848.77647410861721
                                                 -8.35884e-03
                                                                 3.98385e
165
         -04 DIIS
      @DF-RHF iter
                          -848.78342535775880
                                                 -6.95125e-03
                    11:
                                                                 2.77003e
166
         -04 DIIS
      @DF-RHF iter 12:
                          -848.78806691013654
                                                 -4.64155e-03
                                                                 9.16556e
167
         -05 DIIS
      @DF-RHF iter 13:
                          -848.78849650439292
                                                 -4.29594e-04
                                                                 1.37360e
168
         -04 DIIS
      @DF-RHF iter 14: -848.78935236215875
                                                 -8.55858e-04
                                                                 8.37474e
169
```

170	@DF-RHF iter	15: -8	48.78979	694419002	-4.44582e	-04 4.72388e
	-05 DIIS					
171	@DF-RHF iter	16: -8	48.78992	942406421	-1.32480e	-04 3.82842e
	-05 DIIS					
172	@DF-RHF iter	17: -8	48.78997	840933505	-4.89853e	-05 1.52494e
	-05 DIIS					
173	@DF-RHF iter	18: -8	48.79000	970081051	-3.12915e	-05 6.43972e
	-06 DIIS					
174	@DF-RHF iter	19: -8	48.79001	935877181	-9.65796e	-06 3.04995e
	-06 DIIS					
175	@DF-RHF iter	20: -8	48.79002	259432343	-3.23555e	-06 2.47646e
	-06 DIIS					
176	@DF-RHF iter	21: -8	48.79002	404903679	-1.45471e	-06 1.08091e
	-06 DIIS					
177	@DF-RHF iter	22: -8	48.79002	435566906	-3.06632e	-07 9.84833e
	-07 DIIS					
178						
179	==> Post-Itera	ations <==	=			
180						
181	Orbital Ener	gies (a.	u.)			
182						
183						
184	Doubly Occup	oied:				
185						
186	1A -20	0.684139	2 A	-20.639556	3 A	-20.605307
187	4 A - 20	0.547183	5 A	-20.540613	8 6 A	-15.587449
188	7A -15	5.558788	8 A	-15.526817	9 A	-11.440179
189	10A -11	1.381538	11A	-11.373779) 12A	-11.290913
190	13A -11	1.283139	14A	-11.275363	3 15 A	-11.268248
191	16A -11	1.229514	17 A	-1.574789	9 18A	-1.447574
192	19A -:	1.444756	20 A	-1.349715	5 21A	-1.346896
193		1.190474	23 A	-1.177056	5 24A	-1.151072
194	25 A - :	1.045703	26 A	-0.968613	3 27 A	-0.953340
195	28A -0	0.935268	29 A	-0.889489	9 30A	-0.832150
196	31A -0	0.811730	32A	-0.781564	1 33A	-0.749557
197	34A -0	0.728621	35 A	-0.707404	1 36A	-0.695873
198	37A -0	0.677905	38A	-0.675583		-0.648474
199	40A -0	0.641117	41A	-0.631028	3 42A	-0.625607
200		0.614472	44 A	-0.595916		-0.582216
201	46A -0	0.577241	47 A	-0.572187		-0.560137
202	49A -0	0.554598	50A	-0.544044		-0.535150
203	52A -0	0.512502	53A	-0.484323	3 54A	-0.479649
204	55A - (0.470689	56A	-0.453104	1 57 A	-0.449402
205	58A -0	0.434035	59A	-0.405656	60 A	-0.370141
206	61A - 0	0.336483	62A	-0.209253	3	
207						
	** * * *					

208

Virtual:

209						
210	63A	-0.082202	64A	0.072540	65 A	0.105681
211	66A	0.167519	67 A	0.174196	68 A	0.186118
212	69A	0.200736	70 A	0.204992	71A	0.219088
213	72A	0.223029	73A	0.240894	74A	0.242691
214	75A	0.250084	76 A	0.260325	77 A	0.274518
215	78A	0.279083	79A	0.286715	80A	0.290233
216	81A	0.311709	82A	0.329955	83A	0.351125
217	84A	0.381502	85A	0.396052	86A	0.401436
218	87A	0.410026	88A	0.424726	89A	0.435208
219	90A	0.462200	91 A	0.487854	92A	0.510578
220	93A	0.520472	94 A	0.552775	95 A	0.558900
221	96 A	0.616144	97 A	0.641492	98 A	0.655189
222	99A	0.664515	100A	0.679985	101A	0.692455
223	102A	0.698708	103A	0.702466	104A	0.712918
224	105A	0.721785	106A	0.730316	107A	0.739386
225	108A 111A	0.745090 0.781573	109A 112A	0.759686 0.788652	110A 113A	0.774328 0.793846
226 227	111A 114A	0.817979	112A 115A	0.826386	116A	0.836650
228	117A	0.838885	118A	0.846134	119A	0.850653
229	120 A	0.854664	121A	0.866609	122A	0.874732
230	123A	0.878303	124A	0.881970	125A	0.887510
231	126A	0.898621	127A	0.905827	128A	0.910325
232	129A	0.926642	130A	0.928268	131A	0.932999
233	132A	0.957671	133A	0.978702	134A	1.002990
234	135A	1.008486	136A	1.026895	137A	1.031603
235	138A	1.054965	139A	1.064960	140A	1.087506
236	141A	1.097111	142A	1.116645	143A	1.121442
237	144A	1.149761	145A	1.157507	146A	1.166537
238	147A	1.183722	148A	1.189032	149A	1.207263
239	150A	1.219608	151A	1.230519	152A	1.250287
240	153A	1.259329	154A	1.272248	155A	1.293650
241	156A	1.296944	157A	1.302585	158A	1.322957
242	159A	1.334791	160A	1.347069	161A	1.361597
243	162A	1.378009	163A	1.395626	164A	1.415763
244	165A	1.420590	166A	1.431139	167A	1.443124
245	168A	1.464600	169A	1.480514	170A	1.492259
246	171A	1.500298	172A	1.525757	173A	1.530902
247	174A	1.551513	175A 178A	1.578809	176A	1.601395 1.631840
248	177A	1.610499 1.641430	178A 181A	1.628768	179A	
249 250	180 A 183 A	1.697601	184A	1.666885 1.714693	182A 185A	1.669657 1.729426
251	186A	1.772070	187A	1.714093	188A	1.783992
252	189A	1.798902	190A	1.801374	191A	1.815014
253	192A	1.831701	193A	1.846430	194A	1.853306
254	195A	1.875423	196A	1.882666	197A	1.896862
255	198A	1.902560	199A	1.925818	200A	1.929869

```
203A
256
         201A
                     1.933295
                                  202A
                                              1.946746
                                                                       1.948277
                                                           206A
257
         204A
                     1.960755
                                  205A
                                              1.969864
                                                                       1.983493
                     1.989966
                                  208A
                                                           209A
                                                                       2.009621
258
         207A
                                              2.003290
                     2.013477
                                  211A
                                              2.020991
                                                           212A
                                                                       2.037531
259
         210A
                     2.049824
                                  214A
                                              2.058620
                                                           215A
                                                                       2.067519
260
         213A
261
         216A
                     2.080405
                                  217A
                                              2.096766
                                                           218A
                                                                       2.113677
262
         219A
                     2.131242
                                  220A
                                              2.138188
                                                           221A
                                                                       2.151339
         222A
                     2.157301
                                  223A
                                              2.182918
                                                           224A
                                                                       2.184933
263
                     2.197307
264
         225A
                                  226A
                                              2.220168
                                                           227A
                                                                       2.243645
                     2.271548
                                  229A
                                                           230A
                                                                       2.303046
265
         228A
                                              2.291100
266
         231A
                     2.326541
                                  232A
                                              2.335286
                                                           233A
                                                                       2.353899
                     2.363791
                                  235\,\text{A}
                                              2.379725
                                                           236A
                                                                       2.390717
267
         234A
         237A
                     2.409673
                                  238A
                                              2.431220
                                                           239A
                                                                       2.441598
268
         240A
                     2.464785
                                  241A
                                              2.475696
                                                           242A
                                                                       2.498455
269
                     2.512894
                                  244A
                                              2.534368
                                                           245A
                                                                       2.562776
         243A
270
                     2.569459
                                                                       2.606432
271
         246A
                                  247A
                                              2.591480
                                                           248A
                                                                       2.658403
272
         249A
                     2.616240
                                  250A
                                              2.634025
                                                           251A
         252A
                     2.675441
                                  253A
                                              2.703498
                                                           254A
                                                                       2.712331
273
         255A
                     2.742209
                                  256A
                                              2.777695
                                                           257A
                                                                       2.784589
274
         258A
                     2.793539
                                  259A
                                              2.812332
                                                           260A
                                                                       2.818947
275
         261A
                     2.842105
                                  262A
                                              2.851785
                                                           263A
                                                                       2.861123
276
                     2.876513
                                  265A
                                                           266A
277
         264A
                                              2.899744
                                                                       2.930248
278
         267A
                     2.960915
                                  268A
                                              2.962696
                                                           269A
                                                                       2.975990
                     2.986928
                                                           272A
                                                                       3.054497
279
         270A
                                  271A
                                              3.013126
         273A
                     3.077354
                                  274A
                                              3.095321
                                                           275A
                                                                       3.108892
280
                     3.211778
                                  277\,\text{A}
                                              3.226412
                                                           278A
                                                                       3.284701
281
         276A
         279A
                     3.322929
                                  280A
                                              3.329245
                                                           281A
                                                                       3.333523
282
         282A
                     3.354226
                                  283A
                                              3.408144
                                                           284A
                                                                       3.430993
283
         285A
                     3.443377
                                  286A
                                              3.458920
                                                           287A
                                                                       3.466055
284
         288A
                     3.473636
                                  289A
                                              3.552718
                                                           290A
                                                                       3.569361
285
286
         291A
                     3.577116
                                  292A
                                              3.655876
                                                           293A
                                                                       3.657170
287
         294A
                     3.859448
                                  295A
                                              3.876518
                                                           296A
                                                                       3.945231
288
         297A
                     3.951347
                                  298A
                                              4.096823
                                                           299A
                                                                       4.108175
289
        Final Occupation by Irrep:
290
291
                    Α
        DOCC [
                    62 ]
292
293
294
     Energy converged.
295
     @DF-RHF Final Energy:
                                 -848.79002435566906
296
297
       => Energetics <=
298
299
300
        Nuclear Repulsion Energy =
                                                    1208.1459797415523099
        One-Electron Energy =
                                                   -3564.5620784896968871
301
```

1507.6260743924756298

Two-Electron Energy =

302

```
303
       DFT Exchange-Correlation Energy =
                                                  0.000000000000000
       Empirical Dispersion Energy =
                                                  0.000000000000000
304
       PCM Polarization Energy =
                                                  0.000000000000000
305
       EFP Energy =
                                                  0.000000000000000
306
       Total Energy =
                                               -848.7900243556689475
307
308
309
310
311 Properties will be evaluated at 0.000000, 0.000000,
                                                                 0.00000
      Bohr
312
313 Properties computed using the SCF density matrix
314
     Nuclear Dipole Moment: (a.u.)
315
              -4.2839
                            Y: -2.3395
                                                 Z:
        X:
                                                       -4.2134
316
317
     Electronic Dipole Moment: (a.u.)
318
        X:
               4.1341
                            Y:
                                    0.3065
                                                 Z:
                                                         4.5563
319
320
321
     Dipole Moment: (a.u.)
        X:
               -0.1498
                           Y:
                                   -2.0329
                                                 Z:
                                                         0.3429
322
                                                                     Total:
                2.0671
323
     Dipole Moment: (Debye)
324
        X:
               -0.3808
                            Y:
                                   -5.1672
                                                 Z:
                                                         0.8715
                                                                    Total:
325
                5.2540
326
327
328 *** tstop() called on Tatianes-MacBook-Air.local at Thu Jun 20
      15:11:55 2019
329 Module time:
    user time
                        114.54 seconds =
                                                 1.91 minutes
330
                          7.64 \text{ seconds} =
                                                 0.13 minutes
331
     system time =
     total time =
                            75 \text{ seconds} =
                                                 1.25 minutes
332
333 Total time:
     user time
                      4012.23 seconds =
                                                66.87 minutes
334
                        258.48 seconds =
                                                4.31 minutes
335
     system time =
     total time
                          3342 \text{ seconds} =
                                                55.70 minutes
336
```

Listagem C.6 – timer.dat

```
1 Host: Tatianes-MacBook-Air.local
2
3 Timers On : Thu Jun 20 14:16:07 2019
4 Timers Off: Thu Jun 20 15:11:55 2019
5
6 Wall Time: 3348.00 seconds
7
```

```
8 JK: (A|Q)^-1:
                517.85u
                          34.83s 249.00w
                                            40 calls
9 JK: (A|mn) :
                473.10u
                           1.20s
                                   279.68w
                                            240 calls
10 JK: (Q|mn) :
                762.72u
                           2.97s
                                   556.53w
                                             240 calls
11 JK: (Q|mn) Write: 0.57u
                             10.65s 9.330220w
                                               80 calls
                         0.35s 0.682354w 40 calls
12 HF: Form H :
                0.22u
13 HF: Form S/X:
                 4.22u
                          0.23s 2.444666w
                                            40 calls
14 HF: Guess :
                 9.10u
                          0.13s 5.442978w
                                            40 calls
15 SAD Guess :
                          0.12s 5.320051w
                                            40 calls
                 8.95u
                  2.35u
                            0.02s 1.434192w
16 JK: (A|Q)^-1/2:
                                              160 calls
17 JK: D
        :
                 0.68u
                          0.05s 0.308862w 1624 calls
18 JK: USO2AO :
                0.18u
                          0.00s 0.088586w 1624 calls
                         353.30s 1939.63w 1624 calls
              4675.28u
19 JK: JK :
20 JK: J
                                    40.30w 2408 calls
          :
               128.52u
                          0.65s
          :
                          0.37s
21 JK: J1
                                    20.36w 3288 calls
                65.25u
22 JK: J2
                                    19.29w 3288 calls
          :
                62.37u
                          0.27s
              4427.67u
                          65.93s 1653.10w 2408 calls
23 JK: K
          :
24 JK: K1
          :
              2769.98u
                          61.13s
                                  1214.68w 3208 calls
              1657.53u
25 JK: K2
          :
                          4.80s
                                   438.30w 3208 calls
26 JK: A02USO :
                 0.02u
                          0.00s 0.003713w 1624 calls
27 DIISManager::add_entry: 0.35u 0.78s 0.674346w 1584
    calls
28 DIISManager::extrapolate: 1.80u 3.00s 2.897846w 1544
    calls
29 DIISManager::extrapolate: bMatrix setup:
                                      0.68u
                                                 1.78s
    1.559466w 1544 calls
30 DIISManager::extrapolate: bMatrix pseudoinverse: 0.03u
    0.00s 0.043117w 1544 calls
31 DIISManager::extrapolate: form new data: 1.07u 1.22s
    1.276245w 1544 calls
32 HF: Form G : 4676.73u 353.55s 1940.31w
                                             744 calls
33 JK: (Q|mn) Read:
                 5.22u 144.92s
                                       90.96w 1528 calls
                         0.00s 0.140554w 744 calls
34 HF: Form F :
                0.18u
35 HF: DIIS :
                          4.18s 7.824059w
                                            744 calls
                16.95u
                                  41.08w
36 HF: Form C :
                74.40u
                          2.58s
                                            744 calls
37 HF: Form D : 0.62u 0.07s 0.276748w 744 calls
38
39 ********************************
```

C.3 Ala-Gly-Ser-Glu

Listagem C.7 – Log

```
1 Enter an amino acid sequence: AGSE
3 Generates Population
5 Fitness: -1314.5322358300832
6 Fitness: -1318.2445169216492
7 Fitness: -1319.4036808054686
8 Fitness: -1320.2491615184488
9 Fitness: -1311.9971133079182
11 GENERATION O
12 Fitness: -1314.4774096124097
13 Fitness: -1319.1729666265478
14 Fitness: -1318.256819441998
15 Fitness: -1319.35256456108
16 Fitness: 0
17 Fitness: -1320.5842688474065
18 Fitness: -1319.0596645647854
19
20 GENERATION 1
21 Fitness: -1314.0133361925934
22 Fitness: -1300.6473461830562
23 Fitness: -1293.3423883634364
24 Fitness: -1314.6747056647775
25 Fitness: -1316.7277528688442
26 Fitness: -1312.7067370592856
27 Fitness: -1315.1593021783635
29 GENERATION 2
30 Fitness: -1319.8111715352545
31 Fitness: -1320.1979365139189
32 Fitness: -1320.092123197193
33 Fitness: -1320.4350487075149
34 Fitness: -1319.8067951307096
35 Fitness: -1319.97929252328
36 Fitness: -1315.5373725715153
37
38 GENERATION 3
39 Fitness: -1319.4737511483606
40 Fitness: -1318.8879570034928
41 Fitness: -1314.9886462399982
42 Fitness: -1316.4801925602019
43 Fitness: -1315.8942698662195
44 Fitness: -1299.8282371017074
```

```
45 Fitness: -1319.508184138544
47 GENERATION 4
48 Fitness: -1318.5523473344301
49 Fitness: 0
50 Fitness: -1319.7261592897798
51 Fitness: -1320.0956240984865
52 Fitness: -1319.6743915695727
53 Fitness: -1296.0534312912594
54 Fitness: -1318.1876367722057
55
56
57 The best fitness: -1320.0956240984865
58
59 The best geometry:
60
61 0 1.2492 1.1165 -0.4047
62 N -1.4105 1.1507 0.1821
63 C -0.7085 -0.1136 0.3937
64 C -1.3345 -1.2000 -0.4702
65 C 0.7470 0.0903 0.0308
66 H -0.7666 -0.3737 1.4558
67 H -0.8580 -2.1695 -0.2878
68 H -2.4023 -1.3127 -0.2521
69 H -1.2248 -0.9797 -1.5384
70 H -2.3916 1.0420 0.4376
71 H -1.4071 1.3875 -0.8099
72 0 0.9591 -1.3813 -0.1156
73 N 1.2432 -0.5861 2.4224
74 C 0.8527 -1.9719 2.2189
75 C 0.7461 -2.2297 0.7413
76 H -0.1168 -2.1558 2.6898
77 H 1.6060 -2.6375 2.6488
78 H 2.1313 -0.4024 1.9574
79 0 -4.6148 0.1384 -1.3991
80 0 -2.3600 -0.0394 -1.6152
81 N -2.1583 2.5518 -0.6110
82 C -3.3898 2.1575 -1.2930
83 C -3.4678 2.8407 -2.6554
84 C -3.3569 0.6496 -1.4527
85 H -4.2469 2.4291 -0.6665
86 H -3.4612 3.9318 -2.5600
87 H -2.6345 2.5469 -3.3031
88 H -2.0808 2.0609 0.2788
89 H -4.6177 -0.8370 -1.5042
90 0 6.6398 -0.0485 -0.3901
91 0 2.0139 -2.3135 -2.1904
```

```
92 0 6.4116 1.3200 -2.1831
93 0 1.9072 -1.8507 0.0315
94 N 4.2140 2.5375 -1.1600
95 C 3.7360 0.3147 -0.1453
96 C 4.7670 1.4310 -0.3818
97 C 3.2753 -0.4540 -1.3867
98 C 6.0062 0.9238 -1.0979
99 C 2.3395 -1.5977 -1.0856
100 H 2.8572 0.7381 0.3598
101 H 4.1618 -0.4050 0.5671
102 H 5.0896 1.8336 0.5858
103 H 2.7585 0.2268 -2.0720
104 H 4.1437 -0.8774 -1.9034
105 H 3.3859 2.9040 -0.6923
106 H 7.4387 -0.3769 -0.8551
107 H 1.4005 -3.0502 -1.9820
108 THE END
109
110 Process finished with exit code 0
```

${\bf Listagem~C.8-output.dat}$

```
Memory set to 476.837 MiB by Python driver.
3 *** tstart() called on Tatianes-MacBook-Air.local
4 *** at Thu Jun 20 21:35:06 2019
5
     => Loading Basis Set <=
      Name: CC-PVDZ
8
9
      Role: ORBITAL
10
      Keyword: BASIS
      atoms 1, 12, 19-20, 30-33
                                       entry O
                                                                 190 file
11
                                                         line
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 2, 13, 21, 34
                                       entry N
                                                         line
12
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 3-5, 14-15, 22-24, 35-39 entry C
                                                         line
13
                                                                 130 file
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 6-11, 16-18, 25-29, 40-47 entry H
                                                                  20 file
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
15
      There are an even number of electrons - assuming singlet.
16
      Specify the multiplicity in the molecule input block.
17
18
19
20
                                      SCF
21
              by Justin Turney, Rob Parrish, and Andy Simmonett
22
```

```
RHF Reference
23
24
                        1 Threads,
                                   476 MiB Core
25
26
   ==> Geometry <==
27
28
29
     Molecular point group: c1
     Full point group: C1
30
     Geometry (in Angstrom), charge = 0, multiplicity = 1:
32
33
                          Х
                                            Y
                                                               Z
34
        Center
                       Mass
35
                      0.274287675591 0.995303931038
36
               0.167074482057 15.994914619560
                     -2.385412324409 1.029503931038
            N
37
               0.753874482057 14.003074004780
                                    -0.234796068962
                     -1.683412324409
38
               0.965474482057 12.00000000000
            С
                     -2.309412324409 -1.321196068962
39
               -0.227912324409 -0.030896068962
            С
40
               0.602574482057 12.00000000000
                     -1.741512324409
                                     -0.494896068962
41
            Η
               2.027574482057 1.007825032070
            Η
                     -1.832912324409
                                    -2.290696068962
42
               0.283974482057 1.007825032070
                     -3.377212324409 -1.433896068962
            Η
43
               0.319674482057 1.007825032070
                     -2.199712324409 -1.100896068962
            Η
44
               -0.966625517943 1.007825032070
                     -3.366512324409 0.920803931038
45
            Η
               1.009374482057 1.007825032070
                     -2.382012324409 1.266303931038
46
            Н
               -0.238125517943 1.007825032070
                     -0.015812324409 -1.502496068962
            0
47
               0.456174482057 15.994914619560
                     0.268287675591
                                     -0.707296068962
48
            N
               2.994174482057 14.003074004780
                     -0.122212324409
                                      -2.093096068962
            C
49
               -0.228812324409
            C
                                     -2.350896068962
50
               1.313074482057 12.00000000000
                     -1.091712324409
                                     -2.276996068962
            Η
51
               3.261574482057 1.007825032070
```

52	Н	0.631087675591 -2.758696068962
E 9	Н	3.220574482057 1.007825032070 1.156387675591 -0.523596068962
53	п	2.529174482057 1.007825032070
54	0	-5.589712324409 0.017203931038
		-0.827325517943 15.994914619560
55	0	-3.334912324409 -0.160596068962
	3.7	-1.043425517943 15.994914619560
56	N	-3.133212324409 2.430603931038 -0.039225517943 14.003074004780
57	С	-4.364712324409 2.036303931038
•		-0.721225517943 12.00000000000
58	C	-4.442712324409 2.719503931038
		-2.083625517943 12.00000000000
59	С	-4.331812324409 0.528403931038
		-0.880925517943 12.00000000000
60	Н	-5.221812324409 2.307903931038
0.4		-0.094725517943 1.007825032070
61	Н	-4.436112324409 3.810603931038 -1.988225517943 1.007825032070
62	Н	-3.609412324409 2.425703931038
02	-11	-2.731325517943 1.007825032070
63	Н	-3.055712324409 1.939703931038
		0.850574482057 1.007825032070
64	Н	-5.592612324409 -0.958196068962
		-0.932425517943 1.007825032070
65	0	5.664887675591 -0.169696068962
		0.181674482057 15.994914619560
66	0	1.038987675591 -2.434696068962
	_	-1.618625517943 15.994914619560
67	0	5.436687675591 1.198803931038 -1.611325517943 15.994914619560
68	0	0.932287675591 -1.971896068962
08	U	0.603274482057 15.994914619560
69	N	3.239087675591 2.416303931038
		-0.588225517943 14.003074004780
70	С	2.761087675591 0.193503931038
		0.426474482057 12.00000000000
71	C	3.792087675591 1.309803931038
		0.189974482057 12.00000000000
72	С	2.300387675591 -0.575196068962
7 0	~	-0.814925517943 12.00000000000
73	С	5.031287675591 0.802603931038
74	С	-0.526125517943 12.00000000000 1.364587675591 -1.718896068962
ı ±	J	-0.513825517943 12.00000000000
75	Н	1.882287675591 0.616903931038

```
0.931574482057
                                     1.007825032070
              Η
                         3.186887675591
                                           -0.526196068962
76
                 1.138874482057
                                    1.007825032070
77
              Н
                         4.114687675591
                                            1.712403931038
                                    1.007825032070
                 1.157574482057
78
              Η
                         1.783587675591 0.105603931038
                 -1.500225517943
                                    1.007825032070
                                           -0.998596068962
                         3.168787675591
              Н
79
                 -1.331625517943 1.007825032070
              Н
                         2.410987675591
                                            2.782803931038
80
                 -0.120525517943
                                     1.007825032070
                         6.463787675591 -0.498096068962
              Н
81
                                    1.007825032070
                 -0.283325517943
                         0.425587675591
                                            -3.171396068962
              Η
82
                 -1.410225517943 1.007825032070
83
     Running in c1 symmetry.
84
85
                                 0.01236 B =
     Rotational constants: A =
                                                       0.00406 C =
86
        0.00357 [cm^-1]
     Rotational constants: A = 370.60871 B =
                                                     121.59453 C =
87
        107.03434 [MHz]
     Nuclear repulsion = 2542.091749210775561
88
89
     Charge
90
     Multiplicity = 1
91
     Electrons
                = 192
92
93
     Nalpha
                  = 96
94
     Nbeta
                  = 96
95
96
     ==> Algorithm <==
97
     SCF Algorithm Type is DF.
98
     DIIS enabled.
99
     MOM disabled.
100
     Fractional occupation disabled.
101
     Guess Type is SAD.
102
     Energy threshold
                      = 1.00e-06
103
     Density threshold = 1.00e-06
104
     Integral threshold = 0.00e+00
105
106
     ==> Primary Basis <==
107
108
     Basis Set: CC-PVDZ
109
       Blend: CC-PVDZ
110
       Number of shells: 216
111
       Number of basis function: 460
112
```

```
113
      Number of Cartesian functions: 485
      Spherical Harmonics?: true
114
      Max angular momentum: 2
115
116
     => Loading Basis Set <=
117
118
      Name: (CC-PVDZ AUX)
119
      Role: JKFIT
120
      Keyword: DF_BASIS_SCF
121
      atoms 1, 12, 19-20, 30-33
                                    entry O
                                                    line
                                                           220 file
122
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 2, 13, 21, 34
                                    entry N
                                                    line
                                                           170 file
123
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 3-5, 14-15, 22-24, 35-39 entry C
                                                    line
                                                           120 file
124
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 6-11, 16-18, 25-29, 40-47 entry H
                                                    line
                                                            50 file
125
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
126
    ==> Pre-Iterations <==
127
128
      129
      Irrep Nso
                            Nalpha Nbeta Ndocc Nsocc
130
                   Nmo
     _____
131
              460
                      460
                               0
                                        0
                                               0
132
133
134
      Total
              460
                      460
                              96
                                     96
                                              96
     ______
135
136
137
    ==> Integral Setup <==
138
139
    ==> DFJK: Density-Fitted J/K Matrices <==
140
      J tasked:
141
                               Yes
      K tasked:
                               Yes
142
      wK tasked:
143
                                Νo
      OpenMP threads:
                                 1
144
      Integrals threads:
                                 1
145
      Memory (MB):
                               357
146
      Algorithm:
                              Disk
147
      Integral Cache:
                              NONE
148
      Schwarz Cutoff:
                             1E-12
149
      Fitting Condition:
                             1E-12
150
151
152
     => Auxiliary Basis Set <=
153
    Basis Set: (CC-PVDZ AUX)
154
      Blend: CC-PVDZ-JKFIT
155
```

-06 DIIS

```
Number of shells: 798
156
       Number of basis function: 2256
157
       Number of Cartesian functions: 2575
158
       Spherical Harmonics?: true
159
       Max angular momentum: 3
160
161
     Minimum eigenvalue in the overlap matrix is 1.4362535599E-03.
162
163
     Using Symmetric Orthogonalization.
164
     SCF Guess: Superposition of Atomic Densities via on-the-fly atomic
165
        UHF.
166
     ==> Iterations <==
167
168
                               Total Energy
                                                   Delta E
                                                                 RMS | [F, P
169
                                  ] [
170
      @DF-RHF iter
                     0: -1333.78170959988620
                                                 -1.33378e+03
                                                                 2.21445e
171
         -02
      @DF-RHF iter
                     1: -1317.64488842040009
                                                  1.61368e+01
                                                                 4.07826e
172
         -03
      @DF-RHF iter
                      2: -1283.70457811250799
                                                  3.39403e+01
                                                                 1.47012e
173
         -02 DIIS
      @DF-RHF iter
                      3: -1319.36085841447675
                                                 -3.56563e+01
                                                                 1.83155e
174
         -03 DIIS
      @DF-RHF iter
                      4: -1318.87319523789824
                                                 4.87663e-01
                                                                 2.54663e
175
         -03 DIIS
      @DF-RHF iter
176
                      5: -1319.03443789973062
                                                 -1.61243e-01
                                                                 2.25214e
         -03 DIIS
177
      @DF-RHF iter
                      6: -1319.97453766082481
                                                 -9.40100e-01
                                                                 9.02436e
         -04 DIIS
      @DF-RHF iter
                     7: -1320.06818939339996
                                                 -9.36517e-02
178
                                                                 2.81218e
         -04 DIIS
      @DF-RHF iter
                      8: -1320.08215912150490
                                                 -1.39697e-02
                                                                 2.89657e
179
         -04 DIIS
      @DF-RHF iter
                      9: -1320.09001636903008
                                                 -7.85725e-03
                                                                 1.30093e
180
         -04 DIIS
      @DF-RHF iter 10: -1320.09307865010965
                                                 -3.06228e-03
                                                                 1.01471e
181
         -04 DIIS
      @DF-RHF iter 11: -1320.09422252943614
                                                 -1.14388e-03
                                                                 7.21758e
182
         -05 DIIS
      @DF-RHF iter 12: -1320.09497217895023
                                                 -7.49650e-04
                                                                 4.96405e
183
         -05 DIIS
      QDF-RHF iter 13: -1320.09539896204615
                                                 -4.26783e-04
                                                                 2.74450e
184
         -05 DIIS
      @DF-RHF iter 14: -1320.09558812059640
                                                -1.89159e-04
                                                                 6.90670e
185
```

186	ODF-RHF		0.09560	780714946	-1.96866e	-05 4.26508e
187	-06 D	iter 16: -132	0.09561	445509758	-6.64795e	-06 3.22618e
188	-06 D	iter 17: -132	0.09562	044510130	-5.99000e	-06 1.96979e
189	-06 D @DF-RHF : -06 D	iter 18: -132	0.09562	333424628	-2.88914e	-06 1.01554e
190	@DF-RHF :	iter 19: -132	0.09562	409848650	-7.64240e	-07 7.24414e
191		~				
192	==> Post-1	Iterations <==				
193						
194	Orbital	Energies (a.u	.)			
195						
196						
197	Doubly (Occupied:				
198						
199	1 A	-20.889287	2 A	-20.870954	3 A	-20.729351
200	4 A	-20.652285	5 A	-20.644339		-20.599621
201	7 A	-20.585348	8.8	-20.526181		-15.630442
202	10A	-15.620256	11A	-15.493024		-15.492759
203	13A	-11.517085	14A	-11.487661		-11.429579
204 205	16A 19A	-11.387198 -11.307663	17 A 20 A	-11.365826 -11.305384		-11.336185 -11.288597
206	22A	-11.258027	23 A	-11.248222		-11.243974
207	25 A	-11.209086	26 A	-2.176731		-1.568318
208	28A	-1.508638	29 A	-1.497666	30A	-1.475138
209	31A	-1.436537	32A	-1.424760	33A	-1.388891
210	34A	-1.328421	35A	-1.322686	36A	-1.209720
211	37A	-1.181040	38A	-1.143404	39A	-1.138045
212	40A	-1.098620	41A	-1.087622	42A	-1.050945
213	43A	-1.012296	44 A	-0.968279	45 A	-0.936841
214	46A	-0.915659	47 A	-0.906737	48A	-0.896635
215	49 A	-0.867321	50 A	-0.859251	51 A	-0.831340
216	52A	-0.809712	53 A	-0.799415	54 A	-0.770046
217	55 A	-0.764887	56A	-0.755307	57 A	-0.739295
218	58A	-0.723263 -0.688663	59 A 62 A	-0.708363 -0.677096	60 A 63 A	-0.694887 -0.676773
219 220	61A 64A	-0.673325	65 A	-0.660123		-0.676773 -0.654964
221	67A	-0.652288	68 A	-0.640090	69 A	-0.629845
222	70 A	-0.622521	71A	-0.616895	72A	-0.607051
223	73A	-0.596707	74A	-0.587945	75 A	-0.579269
224	76A	-0.561443	77 A	-0.551029	78A	-0.543757
225	79A	-0.540159	80A	-0.531239	81A	-0.530186
226	82A	-0.524190	83A	-0.509265	84A	-0.495298
227	85A	-0.489515	86A	-0.467818	87 A	-0.460803

222	204	0.440000	004	0.40000	004	0 404040
228	88A	-0.449830	89 A	-0.436888	90 A	-0.421249
229	91A	-0.416544	92A	-0.365458	93 A	-0.362105
230	94A	-0.297810	95 A	-0.249788	96 A	-0.204465
231	W					
232	Virtual:					
233	074	0.00000	004	0.000046	004	0.000450
234	97A	-0.060623	98 A	0.006946	99 A	0.066458
235	100A	0.100386	101A	0.109059	102A	0.126229
236	103A	0.140293	104A	0.155220	105A	0.164055
237	106A	0.174026	107A	0.184099	108A	0.192612
238	109A	0.206768	110A	0.208847	111A	0.221153
239	112A 115A	0.224525	113A	0.237340	114A	0.240494
240		0.250954 0.275659	116A 119A	0.258559 0.284971	117A 120A	0.267281 0.291119
241 242	118A 121A	0.273039	119A 122A	0.298767	120A 123A	0.304191
242	121A 124A	0.294070	125A	0.325187	126A	0.332545
244	124A 127A	0.317713	128A	0.356964	120A	0.352943
245	130 A	0.340223	131A	0.330304	132A	0.380832
246	133A	0.390430	131A	0.404497	135A	0.422093
247	136 A	0.432066	137A	0.437893	138A	0.438771
248	139 A	0.462421	140 A	0.474779	141A	0.486117
249	142A	0.496151	143A	0.501932	144A	0.517409
250	145A	0.532302	146A	0.535213	147A	0.548000
251	148A	0.558728	149A	0.581462	150A	0.596065
252	151A	0.600879	152A	0.615656	153A	0.635388
253	154A	0.648511	155A	0.655719	156A	0.665240
254	157A	0.668751	158A	0.673467	159A	0.689058
255	160A	0.694877	161A	0.701849	162A	0.703700
256	163A	0.714918	164A	0.718374	165A	0.728668
257	166A	0.732765	167A	0.737161	168A	0.747178
258	169A	0.759583	170A	0.766564	171A	0.767597
259	172A	0.780153	173A	0.780870	174A	0.787811
260	175A	0.791845	176A	0.794157	177A	0.802886
261	178A	0.808655	179A	0.816705	180A	0.821344
262	181A	0.826160	182A	0.831130	183A	0.843524
263	184A	0.849630	185A	0.851844	186A	0.863658
264	187A	0.868425	188A	0.871826	189A	0.877441
265	190A	0.881042	191A	0.884215	192A	0.889373
266	193A	0.894999	194A	0.900662	195A	0.902261
267	196A	0.907447	197A	0.911946	198A	0.921018
268	199A	0.924423	200A	0.938628	201A	0.944233
269	202A	0.950257	203A	0.952373	204A	0.969993
270	205A	0.971429	206A	0.990242	207A	0.998148
271	208A	1.003551	209A	1.028403	210A	1.039541
272	211A	1.042464	212A	1.058939	213A	1.069746
273	214A	1.084066	215A	1.088608	216A	1.102513
274	217A	1.105467	218A	1.110336	219A	1.115227

275	220 A	1.124940	221A	1.133738	222A	1.150891
276	223A	1.155683	224A	1.161340	225A	1.170932
277	226A	1.175139	227A	1.181833	228A	1.194923
278	229A	1.204578	230A	1.212711	231A	1.214982
279	232A	1.229799	233A	1.233000	234A	1.241900
280	235A	1.257279	236A	1.259465	237A	1.267560
281	238A	1.274358	239A	1.281362	240A	1.289094
282	241A	1.294924	242A	1.307271	243A	1.323576
283	244A	1.337041	245A	1.343166	246A	1.350767
284	247A	1.365089	248A	1.373311	249A	1.379651
285	250A	1.400896	251A	1.407133	252A	1.411038
286	253A	1.425350	254A	1.430060	255A	1.438098
287	256A	1.442697	257A	1.447987	258A	1.455727
288	259A	1.479356	260A	1.484923	261A	1.493926
289	262A	1.511834	263A	1.523191	264A	1.527734
290	265A	1.536180	266A	1.557280	267A	1.566947
291	268A	1.575676	269A	1.590447	270A	1.593478
292	271A	1.599591	272A	1.605298	273A	1.611056
293	274A	1.624511	275A	1.636304	276A	1.639180
294	277A	1.645939	278A	1.654205	279A	1.673934
295	280 A	1.685834	281A	1.692294	282A	1.701953
296	283A	1.721198	284A	1.726767	285A	1.742017
297	286A	1.751987	287A	1.757617	288A	1.767740
298	289A	1.776955	290A	1.794203	291A	1.802432
299	292A	1.810798	293A	1.819943	294A	1.826199
300	295A	1.830412	296A	1.835301	297A	1.842822
301	298A	1.845406	299A	1.858138	300A	1.860002
302	301A	1.883289	302A	1.884629	303A	1.889511
303	304A	1.896250	305A	1.907156	306A	1.920479
304	307A	1.923102	308A	1.928161	309A	1.935809
305	310A	1.939939	311A	1.951521	312A	1.959070
306	313A	1.971490	314A	1.973267	315A	1.983304
307	316A	1.987305	317A	1.992242	318A	2.001097
308	319A	2.001914	320A	2.011870	321A	2.016332
309	322A	2.018881	323A	2.024666	324A	2.039702
310	325A	2.047510	326A	2.054500	327A	2.059547
311	328A	2.061344	329A	2.080053	330A	2.081053
312	331A	2.091100	332A	2.094245	333A	2.103579
313	334A	2.113127	335A	2.120863	336A	2.135612
314	337A	2.139959	338A	2.149846	339A	2.151265
315	340A	2.169817	341A	2.186649	342A	2.200196
316	343A	2.209283	344A	2.216745	345A	2.231006
317	346A	2.236017	347A	2.253008	348A	2.259138
318	349A	2.266845	350A	2.276379	351A	2.279761
319	352A	2.300608	353A	2.305677	354A	2.312536
320	355A	2.330275	356A	2.341157	357A	2.350038
321	358A	2.354914	359A	2.370839	360A	2.384780

322	361A	2.397674	362A	2.409610	363A	2.420307	
323	364A	2.427844	365A	2.441844	366A	2.447282	
324	367A	2.470384	368A	2.477641	369A	2.480440	
325	370A	2.489786	371A	2.503652	372A	2.532417	
326	373A	2.546238	374A	2.551563	375A	2.559205	
327	376A	2.565374	377A	2.577609	378A	2.586994	
328	379A	2.596908	380A	2.602752	381A	2.617035	
329	382A	2.628251	383A	2.643278	384A	2.658649	
330	385A	2.666474	386A	2.680028	387A	2.686577	
331	388A	2.691765	389A	2.708611	390A	2.722698	
332	391A	2.731686	392A	2.757730	393A	2.762307	
333	394A	2.771267	395A	2.783622	396A	2.800378	
334	397A	2.801997	398A	2.817636	399A	2.837475	
335	400A	2.842960	401A	2.854461	402A	2.867389	
336	403A	2.878199	404A	2.887639	405A	2.900460	
337	406A	2.928076	407A	2.939950	408A	2.951114	
338	409A	2.960562	410A	2.980920	411A	3.001066	
339	412A	3.008576	413A	3.010936	414A	3.037227	
340	415A	3.043174	416A	3.059947	417A	3.082868	
341	418A	3.094042	419A	3.123341	420A	3.125590	
342	421A	3.131399	422A	3.148782	423A	3.192612	
343	424A	3.226474	425A	3.229874	426A	3.235066	
344	427A	3.247602	428A	3.287497	429A	3.297844	
345	430A	3.312552	431A	3.341624	432A	3.354757	
346	433A	3.371891	434A	3.397810	435A	3.420641	
347	436A	3.432834	437A	3.449448	438A	3.465697	
348	439A	3.474243	440A	3.523583	441A	3.533080	
349	442A	3.557602	443A	3.573176	444A	3.582800	
350	445A	3.598443	446A	3.608253	447A	3.666238	
351	448A	3.715515	449A	3.797974	450A	3.824942	
352	451A	3.843372	452A	3.850326	453A	3.914544	
353	454A	3.947828	455A	3.985284	456A	4.030516	
354	457A	4.069648	458A	4.103402	459A	4.118220	
355	460A	4.395972					
356							
357	Final Oc	cupation by	Irrep:				
358		A					
359	DOCC [96]					
360							
361	Energy con	verged.					
362							
363	@DF-RHF Fi	nal Energy:	-1320.09	562409848650			
364							
365	=> Energe	tics <=					
366							
367	Nuclear	Repulsion En	ergy =	2542.	09174921	107755606	
	- 5,						

-6860.2002168259050450

One-Electron Energy =

368

```
369
       Two-Electron Energy =
                                               2998.0128435166429881
       DFT Exchange-Correlation Energy =
                                                  0.000000000000000
370
       Empirical Dispersion Energy =
                                                  0.000000000000000
371
372
       PCM Polarization Energy =
                                                  0.000000000000000
       EFP Energy =
                                                  0.000000000000000
373
374
       Total Energy =
                                              -1320.0956240984864962
375
376
377
378 Properties will be evaluated at 0.000000, 0.000000,
                                                                 0.00000
      Bohr
379
380 Properties computed using the SCF density matrix
381
     Nuclear Dipole Moment: (a.u.)
382
        X:
             -11.8631
                            Y:
                                    0.7687
                                                Z:
                                                        4.7854
383
384
     Electronic Dipole Moment: (a.u.)
385
               9.7602
        X:
                            Y:
                                   -5.9257
                                                 Z:
                                                       -3.8827
386
387
     Dipole Moment: (a.u.)
388
        X:
              -2.1028
                           Y:
                                                        0.9027
                                   -5.1570
                                                Z:
                                                                    Total:
389
               5.6420
390
     Dipole Moment: (Debye)
391
        X:
              -5.3448
                           Y:
                                 -13.1079
                                                Z:
                                                        2.2944
                                                                    Total:
392
               14.3405
393
394
395 *** tstop() called on Tatianes-MacBook-Air.local at Thu Jun 20
      21:39:13 2019
396 Module time:
                       386.87 \text{ seconds} =
                                                6.45 minutes
397
     user time =
     system time =
                         14.56 seconds =
                                                0.24 minutes
398
     total time =
                           247 seconds =
                                                 4.12 minutes
399
400 Total time:
                     18523.43 seconds =
     user time
                                              308.72 minutes
401
                        754.50 seconds =
                                               12.57 minutes
402
    system time =
                         22580 seconds =
                                              376.33 minutes
     total time =
403
```

Listagem C.9 – timer.dat

```
1 Host: Tatianes-MacBook-Air.local
2
3 Timers On: Thu Jun 20 15:22:45 2019
4 Timers Off: Thu Jun 20 22:29:18 2019
5
6 Wall Time: 25593.00 seconds
```

```
8 JK: (A|Q)^-1: 1912.50u 149.65s 1202.59w 40 calls
9 \text{ JK}: (A | mn) :
               1497.62u
                           5.15s
                                   1312.92w
                                              363 calls
10 JK: (Q|mn) : 3772.47u 15.62s 669.36w
                                              363 calls
11 JK: (Q|mn) Write: 4.42u 97.98s 1853.83w 203 calls
                         0.68s 1.342858w 40 calls
12 HF: Form H :
                 0.42u
13 HF: Form S/X:
                14.03u
                           0.58s 7.730587w
                                             40 calls
14 HF: Guess :
                                             40 calls
                11.12u
                           0.67s
                                   6.374783w
                           0.33s 5.943290w
15 SAD Guess :
                10.82u
                                              40 calls
16 JK: (A|Q)^-1/2:
                2.43u
                             0.02s 1.465496w
                                              160 calls
                           0.40s 1.249754w 1965 calls
17 JK: D
                 3.22u
        :
18 JK: USO2AO :
                           0.08s 0.355863w 1965 calls
                 0.48u
          : 25159.38u 1007.32s 19849.36w 1965 calls
19 JK: JK
                            3.42s
                                   214.49w 8527 calls
20 JK: J
           :
               591.27u
21 JK: J1
                                   112.15w 9407 calls
          :
               277.15u
                           1.62s
22 JK: J2
          :
                                    95.13w 9407 calls
               302.73u
                           1.57s
           : 24382.20u 116.67s 18091.65w 8527 calls
23 JK: K
24 JK: K1
          : 11878.50u
                          76.12s 14260.19w 9327 calls
25 JK: K2
          : 12501.73u
                          40.45s
                                   3830.28w
                                             9327 calls
26 JK: AO2USO :
                  0.03u
                           0.02s
                                   0.004958w
                                             1965 calls
                                   2.62s 2.588620w 1925
27 DIISManager::add_entry:
                         1.55u
    calls
28 DIISManager::extrapolate: 8.10u 25.53s 21.42w
                                                       1885
    calls
29 DIISManager::extrapolate: bMatrix setup: 3.17u
                                                 16.13s
        12.49w
               1885 calls
30 DIISManager::extrapolate: bMatrix pseudoinverse:
    0.00s 0.069099w 1885 calls
31 DIISManager::extrapolate: form new data: 4.73u
                                                   9.38s
    8.834411w 1885 calls
                       1008.03s 19852.19w 1085 calls
32 HF: Form G : 25164.93u
33 JK: (Q|mn) Read: 25.32u
                            695.23s 1129.63w 7647 calls
                 0.93u
                           0.00s 0.608197w 1085 calls
34 HF: Form F :
35 HF: DIIS
                92.93u
                          29.68s
                                    45.67w 1085 calls
          :
36 HF: Form C :
               374.27u
                          11.88s 193.03w 1085 calls
37 HF: Form D :
                  2.80u
                           0.07s 1.077366w 1085 calls
39 ********************************
```