THEORY OF COMPUTATION Final Exam

Graduate Course College of Computer Science Zhejiang University Fall 2004

Class:	ID:	Name:	Score:	
	Time a	llowed: 2 Hours.		

- 1. (20%) Determine whether the following statements are true or false. If it is true write a \checkmark otherwise a \times in the bracket before the statement.
 - (a) () Every context-free language is recursive.
 - (b) () Language $\{a^mb^nc^l \mid m, n, l \in \mathbb{N}, m+n > 3l\}$ is context free.
 - (c) () All languages on an alphabet are recursively enumerable.
 - (d) () There's a language L such that L is undecidable, yet L and its complement are both semi-decided by the some Turing machine.
 - (e) () There's a function φ such that φ can be computed by some Turing machines, yet φ is not a primitive recursive function.
 - (f) () Let $L_1, L_2 \subseteq \Sigma^*$ be languages, recursive function τ is a reduction from L_1 to L_2 , if L_1 is decidable, then so is L_2 .
 - (g) () A language L is recursive if and only if it is Turing-enumerable.
 - (h) () Every language in \mathcal{NP} is recursive.
 - (i) () Suppose A, B are two languages and there is a polynomial-time reductions from A to B. If A is \mathcal{NP} -complete, then B is \mathcal{NP} -complete.
 - (j) () Every language in \mathcal{NP} -complete can be reducible to the 3-SAT problem in polynomial time.
- 2. (20%) FA and regular languages:
 - (a) Decide whether the following language is regular or not and provide a formal proof for your answer.

$$L = \{a^m b^n \mid m, n \in \mathbb{N}, (m-n) \mod 3 \neq 0\}$$

(b) Let Σ be an alphabet and let $L_1, L_2 \subseteq \Sigma^*$ be languages so that L_1 is not regular but L_2 is regular. Assume $L_1 \cap L_2$ is finite. Prove that $L_1 \cup L_2$ is not regular.

- 3. (20%) PDA and Context-free languages:
 - (a) Give a context-free grammar for the language

 $L_3 = \{xy \mid x, y \in \{a, b\}^*, |x| = |y| \text{ and } x \text{ and } y^R \text{ differ in one positions } \}.$

(b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_3 . **Solution:** (b) The PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ is defined below:

	$ (q, \sigma, \beta) (p, \gamma)$
K =	
$\Sigma = \{a, b\}$	
Γ =	
s =	
$F = \underline{\hspace{1cm}}$	

4. (10%) Numerical Functions:

Let P(x, y) be primitive recursive predicates. Prove the following predicate

$$\forall y \leq u P(x, y)$$

is also primitive recursive.

5. (10%) Turing Machines

Design a Turing machine for computing the following function.

$$f(x,y) = \begin{cases} 2x+1, & \text{if } y \text{ is even} \\ 4x, & \text{if } y \text{ is odd} \end{cases}$$

where x and y are represented by binary strings respectively and separated with the symbol ";", i.e. the initial configuration in form of $\triangleright \sqsubseteq x; y$.

6. (10%) Decidability and Undecidability

Show that the following language

$$\{ M'''w'' \mid M \text{ is a TM and } M \text{ halts on } w \}$$

is recursively enumerable. An informal description suffices.

7. $(10\%)\mathcal{P}$ and \mathcal{NP} Problems

Given n natural numbers x_1, x_2, \dots, x_n to test whether there exist distinct i_1, i_2, \dots, i_k such that $x_{i_1} + x_{i_2} + \dots + x_{i_k} = (x_1 + x_2 + \dots + x_n)/2$, and $x_{i_1} + x_{i_2} + \dots + x_{i_k}$ is not a prime number. Design a \mathcal{NP} algorithm for it, and estimate its time complexity.