Série Technologique

La voie technologique, une approche concrète pour matérialiser les concepts! Un enseignement général et transversal renforcé en première pour permettre les réorientations.

Bac. STI2D

La formation s'articule autour d'un enseignement technologique composé de 2 parties :

 l'enseignement transversal commun à tous les élèves

• un enseignement spécifique au choix, afin d'approfondir un des 3 domaines technologiques:

OBJECTI

É,

- Innovation Technologique & Eco-Conception
- Energie & Environnement
- Systèmes d'Information & Numériques

Ces 2 enseignements s'appuient sur 4 activités pédagogiques :

- · démarche d'investigation
- · activités pratiques
- · études de cas
- projet

L'enseignement transversal:

- une formation technologique polyvalente en vue de la poursuite d'études.
- dans les domaines ingénierie industrielle, innovation technologique, préservation de l'environnement,
- par une démarche d'analyse fondée sur 3 champs technologiques complémentaires :

matière, énergie, information

Le Bac STI2D:

Dominance de l'enseignement technologique en groupe à effectif réduit

Une approche concrète et active qui s'appuie sur la technologie pour acquérir les bases scientifiques nécéssaires à la réussite dans l'enseignement supérieur

Un profil d'élève qui se destine à des études courtes (Bac+2, Bac+3) et pour les plus motivés Bac+5 (Ingénieur) approfondir un champ technologique

CTIVITES

logique de projet

calculer

valider une solution

MATIÈRE

dimensionner

Simuler

imaginer une solution démarche d'investigation

Energie & Environnement

L'énergie... un enjeu majeur !

- Analyser et créer des solutions techniques relatives à l'énergie et à sa gestion,
- Prendre en compte l'efficacité énergétique des systèmes, et leur impact sur l'environnement.

Innovation Technologique & Eco-Conception

Matériaux intélligents... produits innovants!

- CTIFS Analyser et créer des solutions techniques relatives à la structure et à la matière,
 - Prendre en compte des contraintes techniques, économiques et environnementales.

Systèmes d'Information et Numérique

information... le numérique... l'intelligence artificielle!

- Analyser et créer des solutions techniques relatives aux flux d'informations (données, voix, images),
- · Gérer l'information, le développement de systèmes virtuels, la transmission et la restitution.

Transporter, distribuer, utiliser, gérer l'énergie, PRATIOU

- Appréhender l'efficacité énergétique de tous les systèmes,
- Expérimenter des procédés de stockage, de production, de transport, de transformation et de contrôle de l'énergie,
- Concevoir une chaîne d'énergie,

Energie renouvelables : solaire, éolien

- Renseigner un logiciel de simulation du comportement énergétique,
- Réaliser des prototypes (câblage et configuration de systèmes),
- Mettre en œuvre des équipements de mesures, d'essais, de tests et de contrôles.

PRATIOUES Rechercher et étudier des solutions techniques innovantes,

- Intégrer la solution du design et de l'ergonomie.
- Expérimenter les procédés d'obtention de pièces (prototypage rapide, usinage, fonderie, thermoformage, injection),
- Paramétrer un logiciel de simulation mécanique,
- Mettre en œuvre des équipements de mesure, d'essais, de tests et de contrôles,
- Interpréter les résultats pour valider ou modifier une pièce ou un mécanisme.

· Mettre en œuvre la chaîne d'acquisition et de traitement de l'information (voix, données, images),

- Appréhender le développement de systèmes virtuels,
- · Installer, configurer et instrumenter un système réel,
- Rechercher et choisir une solution logicielle ou matérielle.
- Etablir pour une fonction précédemment identifiée, un modèle de comportement à partir de mesures faites sur le système,
- Mettre en œuvre des équipements de mesures, d'essais, de tests et de contrôles.

Production, transport et distribution de l'énergie : La performance dans le sport grâce à la technologie : «du pylône à la maison» « de l'athlétisme aux sports mécaniques » L'innovation dans le médical :

- « Les prothèses, une technologie bénéfique»
- L'éco-conception dans les véhicules : « du vélo à la F1 »
- · Les structures du futur : « du châssis à la coque »

- Les communications : « du téléphone au satellite »
- Les réseaux numérique : « interconnexion »
- Les systèmes intelligents :

« du smartphone à l'ordinateur embarqué »

Les systèmes virtuels: « les interfaces utilisateur intuitives »

Exemple: Le scooter hubride

Pile à combustible

Pompe à chaleur

Véhicule électrique

