Микроэкономика-І

Павел Андреянов, PhD 24 января 2024 г.

Максимизация полезности

Максимизация полезности

На прошлой лекции мы обсудили как максимизировать полезность (репрезентативного) агента при каких то (например, бюджетных) ограничениях.

Результатом этой максимизации являются:

- координаты потребления x^*, y^*
- ullet соответствующие уровень полезности U^* или можно еще сказать V.

Максимизация полезности

Заметим, что задача зависит от параметров: цен p,q и бюджета W.

Естественно возникают следующие функции:

- координаты потребления $x^*(p, q, W), y^*(p, q, W)$
- ullet соответствующие уровень полезности V(p,q,W)

В экономике они называются традиционно кривыми спроса и косвенной полезностью.

Кривые спроса

Кривые спроса

Нас будут интересовать координаты потребления $x^*(p,q,W)$, $y^*(p,q,W)$ в задаче максимизации полезности при бюджетном ограничении, как функции (кривые) от цен p,q и бюджета W.

Они также называются функциями (кривыми) спроса.

Definition 1

Кривые спроса делятся на

- кривые цена-потребление $x^*(p)$, $y^*(q)$
- кривые доход-потребление $x^*(I)$, $y^*(I)$

Последние иногда называемые кривыми Энгеля. В учебниках тайкже можно найти термин кривой расходов Энгеля: $px^*(I)$, $qy^*(I)$ или $px^*(I)/I$, $qy^*(I)/I$ в процентах.

Эрнст Энгель (Ernst Engel) немецкий математик и статистик 19 века, автор закона Энгеля, утверждающего, что расходы на продукты питания растут с доходом, а доля этих расходов в общем бюджете, наоборот, падает.

Ernst Engel.

Annual food expenditure per person vs. GDP per capita, 2015

Average annual food expenditure per person, versus gross domestic product per capita, both measured in US\$. Food expenditure relates only to food bought for consumption at home (i.e. it excludes out-of-home food purchases).

Более того, люди более охотно отвечают на вопрос о доле, чем об их доходе, поэтому это просто классная мера бедности населения с точки зрения проведения соц. опроса.

Доля расходов на продукты питания в бюджете называется коэффициентом Энгеля и используется для категоризации уровня жизни стран:

- > 50% низкий уровень жизни
- 40-50% средний уровень жизни
- 30-40% хороший уровень жизни
- < 30% высокий уровень жизни

Пока богатые развитые страны таргетируют инфляцию, бедные и развивающиеся страны таргетирут коэффициент Энгеля.

Косвенная полезность

Косвенная полезность

Definition 2

Назовем косвенной полезностью значение целевой функции в оптимуме в задаче максимизации полезности:

$$V(p,q,I)=U(x^*,y^*).$$

Иногда я могу также использовать символ U^* .

На самом деле, не столь важно какой буквой обозначается косвенная полезность: U^* или V. Гораздо важнее набор аргументов: p,q,I, подсказывающий, что координатам x,y были присвоены какие-то значения в процессе оптимизации.

Косвенная полезность

Внимание! В отличие от координат оптимума, косвенная полезность, конечно же зависит от всех монотонных преобразований, которые вы наложили на свою полезность.

Если вы применили преобразование, например, $\log x$, чтобы быстрее решить задачу, и получили косвенную полезность, то вам придется все откатить обратно, то есть применить к ней обратное преобразование e^x .

Непрерывность спроса

Непрерывность спроса

В большей часть примеров, которые мы будем рассматривать, спросы а также косвенная полезность будут выражаться через элементарные функции, такие как $x^2, \log x, 1/x...$ Все эти функции непрерывны.

Совпадение? Не думаю.

На самом деле, есть Теорема, которая это гарантирует.

Непрерывность

Вольное изложение Теоремы Максимума

В выпуклой задаче оптимизации, непрерывно зависящей от параметров, координаты оптимума (если он, конечно, существует) а также значение целевой функции непрерывны по параметрам.

Напомню, в контексте задачи потребителя, задача выпукла если целевая функция U(x,y) квазивогнута, а бюджетное ограничение выпукло.

Непрерывность

90% времени экономисты занимаются тем, что говорят о рыночных равновесиях: частичного, общего, Нэша. Поэтому, хорошо было бы, чтобы это равновесие существовало.

Единственным известным способом убедиться в этом является проверка непрерывности кривых на пересечении которых лежит равновесие. Поэтому, непрерывность спроса - это «маст».

А единственно известным способом убедиться в непрерывности спроса является выпуклость оптимизационной задачи. Поэтому, в экономике все задачи обязательно должны быть выпуклыми.

Какие бывают полезности

Какие бывают полезности

Будут два больших класса полезностей:

Классические

- $\log x + \log y + \log z$
- $\sqrt{x} + \sqrt{y} + \sqrt{z}$
- min(x, y, z)

Квазилинейные

- $\log x + \log y + z$
- $\bullet \ \sqrt{x} + \sqrt{y} + z$
- min(x, y) + z

Техники решения их немного будут отличаться

Классические

Начнем с n = 2.

Definition 3

Полезностью Кобба-Дугласа называется:

$$U(x, y) = x^{\alpha} y^{\beta}, \quad \alpha, \beta > 0$$

Вспомним, что монотонные преобразования полезности не меняют поведение потребителя. Тогда можно применить логарифм и получить:

$$U(x,y) = \alpha \log x + \beta \log y.$$

Заметим, что эта функция вогнута, а значит КД квазивогнутый при всех $\alpha, \beta > 0$.

Задача выпуклая, решение внутреннее, осталось только найти его координаты.

Выпишем Лагранжиан:

$$\mathcal{L} = \alpha \log x + \beta \log y - \lambda (px + qy - W).$$

Бездумно выпишем три уравнения:

$$\mathcal{L}_{x}' = \alpha/x - \lambda p = 0$$

$$\mathcal{L}_{v}' = \beta/y - \lambda q = 0$$

$$\mathcal{L}'_{\lambda} = W - px - qy = 0$$

Поднимем все в числитель

$$\alpha - \lambda px = 0$$

$$\beta - \lambda qy = 0$$

$$px + qy - W = 0$$

Обозначим доли бюджета как $\mathit{s}_{\mathit{x}} := \mathit{px}$ и $\mathit{s}_{\mathit{y}} := \mathit{qy}$.

Тогда уравнения становятся еще проще:

$$\alpha = \lambda s_{x}$$

$$\beta = \lambda s_y$$

$$s_x + s_v = W$$

Эту систему можно уже решить в уме.

Получается, что множитель равен $\lambda = (\alpha + \beta)/W$, а доли бюджета, потраченные на x,y постоянны и пропорциональны α,β . То есть, кривые расходов Энгеля в процентах - постоянны.

Собственно спрос и косвенную полезность выпишем на доске (не забудьте про обратное преобразование).

Теперь для
$$n = 3 ...$$

Пусть полезность имеет следующий вид:

$$U(x, y, z) = \alpha \log x + \beta \log y + \gamma \log z$$

а цены равны p, q, r соответственно.

Спрос на каждый товар в Коббе-Дугласе описывается следующими уравнениями:

$$x^* = \frac{\alpha}{\alpha + \beta + \gamma} \frac{W}{p}, \quad y^* = \frac{\beta}{\alpha + \beta + \gamma} \frac{W}{q}, \quad z^* = \frac{\gamma}{\alpha + \beta + \gamma} \frac{W}{r}$$

Такое лучше запомнить наизусть.

Нампомним, что косвенная полезность чувствительна к монотонным преобразованиям, поэтому тут важно какая именно спецификация была изначально дана в задаче.

Для простоты давайте считать, что это спецификация в логарифмах.

Сосчитаем логарифм спроса на первый товар:

$$\log x^* = \log \alpha - \log(\alpha + \beta + \gamma) + \log W - \log p$$

Аналогично считается логарифм спроса на другие товары. Теперь надо просто подставить их в полезность.

Косвенная полезность в Коббе-Дугласе (с точностью до преобразования) имеет вид

$$V(p, q, r, I) = (\alpha + \beta + \gamma) \log W - \alpha \log p - \beta \log q - \gamma \log r + C_1$$

Если полезность была не в логарифмах то

$$V(p,q,r,I) = W^{\alpha+\beta+\gamma}p^{-\alpha}q^{-\beta}r^{-\gamma}*C_2$$

Эта формула нам будет очень полезна в будущем...

Константы C_1 и $C_2 = e^{C_1}$ можно, как правило, не запоминать и не выписывать.

Definition 4

Полезностью Леонтьева называется:

$$U(x,y) = \min(x/a, y/b)$$

Интерпретация полезности такая, что для извлечения одной единицы полезности необходимо ровно а и b единиц потребительских товаров. Иногда такая полезность называется совершенными комплементами.

Поскольку задача негладкая, то геометрический метод проще и быстрее. Решение лежит в пересечении линии изломов с бюджетной линей.

Соответственно, достаточно решить систему уравнений:

$$px + qy = W$$
, $bx = ay$

Собственно спрос и косвенную полезность выпишем на доске.

Пусть
$$n=3$$

Пусть полезность имеет следующий вид:

$$U(x, y, z) = \min(x/a, y/b, z/c)$$

а цены равны p, q, r соответственно.

Спрос на каждый товар в Леонтьеве описывается следующими уравнениями (просто моя догадка):

$$x^* = \frac{ap}{ap + bq + cr} \frac{W}{p}, \quad y^* = \frac{bq}{ap + bq + cr} \frac{W}{q}, \quad z^* = \frac{cr}{ap + bq + cr} \frac{W}{r}$$

Зато косвенная полезность будет попроще...

Леонтьев

Заметим, что в оптимуме полезности в обоих позициях аргумента одинаковые. То есть косвенная полезность равна, например, левому аргументу.

Косвенная полезность в Леонтьеве имеет вид

$$V(p,q,I) = \frac{W}{ap + bq + cr}$$

Это тоже очень полезная формула.

Простая с виду, но очень неудобная на практике:

Definition 5

Линейной полезностью называется:

$$U(x,y) = x/a + y/b,$$

интерпретируется как способность извлекать одну и туже полезность из разных источников. Конкретно вы можете получить одну единицу полезности либо из a единиц товара x, либо из b единиц товара y.

Решение в этой задаче не похоже на предыдущие, оно вообще всегда краевое. Почему так?

Посмотрим внимательно на бюджетное ограничение:

$$B(x,y) = px + qy - W \leqslant 0$$

Вы можете менять товар x на y по курсу p к q. А в полезности товары учитываются по курсу 1/a к 1/b.

За исключением редкого случая, когда ap=bq вам выгодно менять один товар на другой до упора.

Осталось понять, каким будет краевое решение...

Интуитивно понятно, что вы будете тратить все на x, когда его вес в полезности относительно большой, а его цена относительно маленькая. То есть, когда ap относительно маленький.

Относительно чего? Конечно же, относительно bq.

Спрос на каждый товар описывается так:

если
$$ap < bq$$
, то $x^* = W/p, y^* = 0$

если
$$ap>bq$$
, то $x^*=0, y^*=W/q$

Мы знаем, что решение либо в одном углу, либо в другом. Соответственно, ответ это наибольшая из двух полезностей этих кандидатов, то есть

$$V(p,q,W) = W \cdot \max(\frac{1}{ap}, \frac{1}{bq}).$$

И дальше это особо не упростить.

Разве что, пользуясь тем, что максимум взаимодействует с монотонно убывающими преобразованиями вот так:

$$\psi'(x) < 0 \quad \Rightarrow \quad \max(\psi(x), \psi(x)) = \psi(\min(x, y))$$

я могу переписать косвенную полезность так:

$$V(p,q,W) = W/\min(ap,bq),$$

но это знать не обязательно.

Корни (CES)

Корни (CES)

Definition 6

Частный случай **CES полезности** это:

$$U(x,y)=a\sqrt{x}+b\sqrt{y},$$

На самом деле CES называется следующая полезность $U(x,y)=(ax^r+by^r)^{1/r}$, но мы решать в общем виде не будем.

В прошлый раз я уже выводил такое на доске, сделаем еще раз и выведем заодно косвенную полезность.

нормировкой) на доске.

Квази-линейные ($\lambda=1$ с

Конец