Chapitre 5

Les nombres premiers

I. <u>Définition et existence</u>

1) Nombre premier dans N

Définition:

Dire qu'un **nombre entier naturel** est **premier** signifie qu'il admet exactement deux diviseurs dans **N** : 1 et lui-même.

Exemples:

- 0 n'est pas premier car il admet une infinité de diviseurs dans **N**.
- 1 n'est pas premier car il a un seul diviseur dans N : lui-même.
- 2 est le plus petit nombre premier et le seul qui soit pair.

Remarque:

Un entier naturel n non premier (autre que 1 et 0) est un **nombre composé**. Il admet au moins un diviseur d, autre que 1 et lui-même, qui vérifie 1 < d < n. Un tel diviseur est dit **diviseur strict** de l'entier n.

2) Critère de primalité

Propriétés:

n désigne un nombre entier naturel supérieur ou égal à 2.

- *n* admet un diviseur premier.
- Si *n* n'est pas premier alors il admet un diviseur premier *p* inférieur ou égal à \sqrt{n} .

Démonstration:

- Soit *n* un entier naturel, $n \ge 2$. Si *n* est premier, il est un diviseur premier de lui-même.
- Si *n* n'est pas premier, il admet un diviseur positif autre que 1 et lui-même.

L'ensemble E des diviseurs positifs, autre que 1 et n, est donc un ensemble d'entiers naturels non vide. Il a donc un plus petit élément que l'on note p.

On raisonne par l'absurde.

Si p n'était pas premier, il existerait un diviseur propre d de p qui serait plus petit que p; comme d diviserait p avec p qui divise n, d diviserait n.

Donc d serait un élément de E plus petit que p. C'est impossible.

Donc p est premier et divise n; par suite il existe un entier q tel que n = pq avec 1 < q < n.

Donc q est un diviseur propre de n et par conséquent $p \leq q$.

On en déduit que $p^2 \le pq$ soit $p^2 \le n$ et donc $p \le \sqrt{n}$.

Propriété (test de primalité) :

n désigne un nombre entier naturel $n \ge 2$.

Si *n* n'est divisible par aucun nombre premier *p* tel que $2 \le p \le \sqrt{n}$, alors *n* est premier.

Démonstration :

Il s'agit de la contraposée de la propriété précédente.

Exemple:

Pour n=157, $\sqrt{n} \approx 12.5$.

Les nombres premiers inférieurs à $\sqrt{157}$ sont 2; 3; 5; 7; 11.

157 n'est divisible par aucun de ces nombres.

Donc 157 est premier.

• Calculatrice:

Crible Ératosthène	Test de primalité	
PROGRAM: CRIBLE :EffListe L1,L2 :Prompt N :suite(K,K,2,N)→ L1 :2→I :While I≤ent(√(N)) :For(J,I,ent(N/I)) :For(J,I,ent(N/I)) :End :I+1→I :End :I+1→I :End :I+1→R :For(P,1,N-1) :If L1(P)→L2(R) :R+1→R :End :End :End :Disp L2	PROGRAM: TEST : Prompt N : 0 + T : For (K, 2, ent (J(N))) : If N/K=ent (N/K) : Then : 1 + T : End : End : If T=1 : Then : Disp "NON PREMIER" : Else : Disp "PREMIER" : End	PROGRAM: TEST2 *pr9mCRIBLE *0+T *1+I *Uhile L2(I) \lent(\f(N)) *If N/L2(I) = ent(\formalfont N/L2(I)) *Then *1+T *End *I+1+I *End *If T=0 *Then *Disp "PREMIER" *Else *Disp "NON PREMIER" *End *End *End
N=?7 (2 3 5 7) Done Pr9mCRIBLE N=?15 (2 3 5 7 11 13) Done	N=?100 NON PREMIER Done Pr9mTEST N=?103 PREMIER Done	Pr9mTEST2 N=?103 {2 3 5 7 11 13 PREMIER Done

3) Ensemble des nombres premiers

Propriété:

Il existe une **infinité** de nombres premiers.

Démonstration :

On raisonne par l'absurde.

On suppose qu'il existe un nombre fini de nombres premiers $p_1, p_2, ..., p_n$.

On considère le nombre $a = p_1 p_2 \dots p_n + 1$. Ce nombre est supérieur ou égal à 2, il admet donc au moins un diviseur premier p_i parmi les nombres p_1 , p_2 , ..., p_n . Cet entier p_i divise a et divise $p_1 p_2 \dots p_n$, donc il divise la différence soit 1. C'est impossible.

Ainsi, il existe une infinité de nombres premiers.

4) <u>Divisibilité d'un nombre premier</u>

Propriété:

p est un nombre premier et a est un entier non divisible par p.

Alors p et a sont **premiers entre eux**.

Démonstration :

p est un nombre premier donc ses seuls diviseurs sont 1 et p. a n'étant pas divisible par p, des deux diviseurs de p, seul 1 est un diviseur commun à a et p: a et p sont donc premiers entre eux.

Propriété:

p est un nombre **premier**.

- Si p divise le produit ab de deux entiers alors p divise a ou p divise b.
- Si p divise le produit ab de deux nombres premiers alors p=a ou p=b.

Démonstrations:

- Si p divise a, le résultat est acquis.
 Si p ne divise pas a, alors d'après le théorème précédent, p est premier avec a. Il divise donc b d'après le théorème de Gauss.
- On a vu que p divise a ou p divise b qui n'admettent que deux diviseurs 1 et eux-mêmes. Comme p est différent de 1, p=a ou p=b.

Cas particuliers:

- Si p (premier) divise a^2 , alors p divise a et pour tout entier naturel non nul n, si p (premier) divise a^n , alors p divise a.
- Il résulte de cette propriété, par contraposition, qui si p (premier) ne divise pas a, alors p ne divise pas, par exemple a^p .

II. <u>Décomposition en facteurs premiers</u>

1) Existence et unicité d'une décomposition

Théorème fondamental:

Tout entier naturel *n* supérieur ou égal à 2 se **décompose** en un **produit** de **nombres premiers**.

Cette décomposition est unique à l'ordre des facteurs près.

On écrira $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ où $n \ge 2$, p_1 , p_2 , ..., p_k sont des nombres premiers deux à deux distincts et α_1 , α_2 , ..., α_k sont des entiers naturels non nuls.

Démonstration:

Existence

Soit n un entier, $n \ge 2$. On sait qu'il admet un diviseur premier p_1 . Alors $n = p_1 n_1$ où $1 \le n_1 < n$.

Si $n_1=1$ alors $n=p_1$ et la propriété est démontrée.

Si $n_1 \neq 1$ alors n_1 admet un diviseur premier p_2 et on a donc $n = p_1 p_2 n_2$ où $1 \leq n_2 < n_1$.

On continue de la même façon tant que le quotient n_i est supérieur à 1.

On forme ainsi une liste d'entiers n_1 , n_2 , ... strictement décroissante et minorée par 1.

Elle est donc finie (principe de descente infinie), c'est-à-dire qu'à un certain rang on a $n_m=1$ et donc $n=p_1\,p_2...\,p_m$ où les p_i sont des nombres premiers, pas nécessairement distincts. En regroupant les facteurs égaux entre eux on obtient l'écriture $n=p_1^{\alpha_1}\,p_2^{\alpha_2}...\,p_k^{\alpha_k}$.

• Unicité

On suppose qu'un certain nombre premier p apparaît avec l'exposant $\alpha \ge 1$ dans une décomposition de n, et l'exposant $\beta \ge 0$ dans une autre (on envisage $\beta = 0$ pour le cas où p ne figurerait pas dans la deuxième décomposition). On a alors $n = p^{\alpha} a = p^{\beta} b$, où a et b sont des produits de nombres premiers distincts de p. Si $\alpha > \beta$, $p^{\alpha - \beta} a = b$, ce qui contredit que p et b sont premiers entre eux.

Si $\alpha < \beta$, $a = p^{\beta - \alpha}b$, ce qui contredit que p et a sont premiers entre eux. Donc $\alpha = \beta$.

Exemples:

- $300=2\times150=2\times15\times10=2\times3\times5\times2\times5=2^2\times3\times5^2$
- $36=2^2\times3^2$
- $92 = 2^2 \times 23$
- $210=2\times3\times5\times7$
- $125=5^3$

Calculatrice:

Décomposition en facteurs premiers			
PROGRAM: CRIBLE :EffListe L1,L2 :Prompt N :suite(K,K,2,N)+ L1 :1+R :For(I,1,N-1) :If L1(I)+0 :Then :L1(I)+L2(R) :If L2(R)≤ent(√(N)) :Then :For(J,L2(R),ent(N/L2(R))) :0+L1(L2(R)*J-1) :End :End :R+1+R :End :End :Disp L2	PROGRAM: DECOMP : pr9mCRIBLE : EffListe L3,L4 : 1	PROGRAM: DECOMP2 EffListe L1,L2 Prompt N 1	
Pr9mCRIBLE N=?16 {2 3 5 7 11 13} Done	Pr9MDECOMP N=?900 {2 3 5 7 11 13 {2 3 5} {2 2 2} Done	Pr9mDECOMP2 N=?254 {2 127} {1 1} Done ■	
	Pr9mDECOMP N=?168 {2 3 5 7 11 13 {2 3 7) {3 1 1} Done	Pr9mDECOMP2 N=?48 (2 3) (4 1) Done	

2) Conséquences

Propriété:

Si l'entier naturel n, supérieur ou égal à 2, admet pour décomposition en produit de facteurs premiers $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, les diviseurs positifs de n sont les entiers $p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ où r_1 , r_2 , ..., r_k sont des entiers naturels tels que $0 \le r_i \le \alpha_i$ pour $1 \le i \le k$.

Démonstration :

- Les nombres de la forme $p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ où r_1 , r_2 , ..., r_k sont des entiers tels que $0 \le r_i \le \alpha_i$ pour $1 \le i \le k$ sont clairement des diviseurs de $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$.
- Réciproquement, en notant d un diviseur de $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, tout facteur premier de d divise n, donc appartient à la liste p_1 , p_2 , ..., p_k . On en déduit que la décomposition en produit de facteurs premiers de d peut s'écrire par extension $p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ avec $0 \le r_i \le \alpha_i$, le cas où $r_i = 0$ correspondant à l'absence de facteur p_i .

Propriété:

a et b désignent deux nombres entiers naturels supérieurs ou égaux à 2.

Le PGCD de *a* et *b* est égal au produit des facteurs premiers communs aux décompositions de *a* et *b*, chacun d'eux étant affecté du plus petit exposant avec lequel il figure dans *a* et *b*.

Exemples:

- $300=2^2\times3^1\times5^2$ alors le nombre $2^1\times3^0\times5^2=50$ est un diviseur de 300.
- $24=2^3\times3^1$ donc 24 a pour diviseurs les entiers $2^\alpha\times3^\beta$ avec $0\leq\alpha\leq3$ et $0\leq\beta\leq1$.
- $2^2 \times 3^1 = 12$ est donc le PGCD de 300 et 24.

On peut lister tous les diviseurs de 24 à l'aide d'un arbre.

Cet arbre possède 4×2 branches donc 24 a 8 diviseurs.

Propriété:

Si un entier n, $n \ge 2$, admet la décomposition en produit de facteurs premiers $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, n admet $(\alpha_1 + 1)(\alpha_2 + 1) \times \dots \times (\alpha_k + 1)$ diviseurs positifs.

Annexe: Théorèmes d'arithmétique

Petit théorème de Fermat

Petit théorème de Fermat :

Si p est un nombre premier et a est un en entier naturel non multiple de p alors $a^{p-1} \equiv 1 \lceil p \rceil$.

Démonstration:

Soit p un nombre premier et a un entier naturel non multiple de p. Les entiers a et p sont donc premiers entre eux.

• Considérons l'ensemble des multiples de *a* suivants :

$$A = \{a; 2a; ...; (p-1)a\}$$

Ce sont p-1 multiples non nuls de a. L'entier p ne divise aucun d'eux. En effet, si p divisait ka (avec k entier, $1 \le k \le p-1$), puisque p est premier avec a, il diviserait k d'après le théorème de Gauss, ce qui est impossible puisque k < p.

Donc leurs restes dans la division euclidienne par p sont non nuls et sont, par conséquent, des éléments de $\{1; 2; ...; (p-1)\}$.

Ces restes sont tous distincts : en effet, si deux entiers k et k' appartenant à $\{1;2;...;(p-1)\}$, avec k>k', étaient tels que $ka\equiv k'a[p]$ alors p diviserait (k-k')a. Or $1\leqslant k-k'\leqslant p-2$ donc (k-k')a est élément de A et aucun élément de A n'est divisible par p.

On a donc p-1 multiples de a dont les restes dans la division euclidienne par p sont exactement, à l'ordre près, les entiers 1;2;...;p-1.

• Considérons maintenant le produit P de ces multiples de *a*.

On a donc $P \equiv 1 \times 2 \times ... \times (p-1)[p]$, c'est-à-dire $P \equiv (p-1)![p]$.

Donc p divise P-(p-1)!.

Or en réordonnant les facteurs de P, on obtient $P = (p-1)! \times a^{p-1}$.

Donc $P-(p-1)!=(p-1)!\times a^{p-1}-(p-1)!=(p-1)!\times (a^{p-1}-1)$.

p divise $(p-1)! \times (a^{p-1}-1)$. Or p est premier et ne divise aucun des facteurs de (p-1)!. Il est donc premier avec (p-1)!.

Donc d'après le théorème de Gauss p divise $(a^{p-1}-1)$.

Propriété:

Si p est un nombre premier et a un entier naturel alors $a^p \equiv a[p]$.

Démonstration:

On remarque que $a^p - a = a \times (a^{p-1} - 1)$, donc $(a^{p-1} - 1)$ divise $(a^p - p)$ et si a est non nul, a divise $(a^p - p)$.

- Si a n'est pas un multiple de p alors p divise $(a^{p-1}-1)$ et $(a^{p-1}-1)$ divise (a^p-p) donc par transitivité p divise (a^p-p)
- Si a est un multiple non nul de p alors p divise a et a divise $(a^p p)$ donc par transitivité p divise $(a^p p)$. Si a est nul, le résultat est clairement vrai.

Remarque:

Le petit théorème de Fermat permet d'effectuer des tests de primalité.

On souhaite savoir si le nombre n est premier. On choisit un nombre a et si a^n et a n'ont pas le même reste dans la division euclidienne par n alors, d'après la contraposée, n n'est pas premier.

La réciproque n'est pas vraie : il existe des nombres composés n tels que $a^n \equiv a[n]$, mais ceux-ci sont « rares ». Ces nombres sont appelés des nombres pseudopremiers. Il y en a deux types :

• Les nombres de Poulet

Pour une valeur de a (ou quelques valeurs de a) n vérifie $a^n \equiv a[n]$ et est composé. On dit alors que n est un nombre de Poulet ou un pseudopremier de base a.

Les nombres de Carmichaël

Pour toutes valeurs de a comprise entre 2 et n-1, n vérifie $a^n \equiv a[n]$ et est composé. On dit alors que n est un nombre de Carmichaël ou un pseudopremier absolu.

Le test de primalité consiste donc à choisir quelques valeurs de a et « teste » le nombre n en comparant les restes de a^n et a dans la division euclidienne par n. Si $a^n \equiv a[n]$ le test conclut que n est probablement premier.

Théorème de Wilson

Théorème de Wilson:

p est **premier** si et seulement si $(p-1)! \equiv -1[p]$.

Démonstration:

- Par contraposition : si $(p-1)! \equiv -1[p]$ alors p est premier. $(p-1)! \equiv -1[p] \Leftrightarrow (p-1)! + 1 \equiv 0[p] \Leftrightarrow (p-1)! + 1$ est divisible par p Si p n'est pas premier, il possède un diviseur d tel que 1 < d < p. Alors (p-1)! + 1 n'est pas divisible par d (puisque (p-1)! est divisible par d) ni par p.
- Réciproquement : si p est premier alors $(p-1)! \equiv -1[p]$
 - o Soit p un nombre premier et x un entier naturel vérifiant $1 \le x \le p-1$. On considère les produits $x \times 1$, $x \times 2$, $x \times 3$, $x \times 4$, ..., $x \times (p-1)$. Puisque p est premier, le reste de ces produits dans la division par p est non nul (p ne divise aucun de ces produits).
 - Montrons que ces restes sont distincts (par l'absurde). Soit a et b entiers avec $1 \le a < b < p$ et $ax \equiv bx[p]$. On aurait $(b-a)x \equiv 0[p]$, ce qui est impossible. Les restes sont dont deux à deux distincts.
 - ∘ If y a p-1 restes distincts parmi p-1 valeurs. L'un d'entre eux est donc 1 et il est unique. Ainsi pour x compris entre 1 et p-1, il existe y unique entre 1 et p-1 tel que $xy \equiv 1 \lceil p \rceil$.
 - $1 \times 1 \equiv 1[p]$ et $(p-1) \times (p-1) \equiv 1[p]$ donc pour x=1 et x=p-1, on a x=y (puisque l'on sait que y est unique).

Pour 1 < x < p-1, montrons (par l'absurde) que $x \neq y$.

Si x=y alors $x^2 \equiv 1[p]$. Donc il existe k tel que $x^2-1=kp$ soit (x-1)(x+1)=kp. Comme $x \neq 1$, $k \neq 0$ et p divise (x+1)(x-1). p est premier et x < p-1. Donc c'est impossible. Ainsi si 1 < x < p-1 alors il existe un unique y ($x \neq y$) tel que $xy \equiv 1[p]$.

o Si p=2, on a bien $1!\equiv -1[2]$. Donc la propriété est vérifiée pour p=2. Si p est premier et p>2, p est impair, il y a (p-3) facteurs de (p-1)! compris entre 1 et (p-1) exclus et dont les produits sont congrus à 1 modulo p.

On a donc
$$\prod_{i=2}^{p-2} i \equiv 1[p]$$
 et donc $\prod_{i=1}^{p-1} i \equiv p-1 \equiv -1[p]$. Ainsi on a bien $(p-1)! \equiv -1[p]$