MA 114 Worksheet #02: Special Trigonometric Integrals

1. Compute the following integrals:

(a)
$$\int \sin(x) \sec^2(x) dx$$
 (e) $\int_0^{2\pi} \sin^2(\frac{1}{3}\theta) d\theta$

(b)
$$\int \sin^3(x) dx$$
 (f) $\int_0^{\pi/2} (2 - \sin(\theta))^2 d\theta$

(c)
$$\int_0^{\pi/2} \cos^2(x) dx$$
 (g) $\int 4 \sin^2(x) \cos^2(x) dx$

(d)
$$\int \sqrt{\cos(x)} \sin^3(x) dx$$
 (h) $\int \cos^5(x) dx$.

- 2. Find the anti-derivative $\int \cot(x) dx$. Hint: Substitute $u = \sin(x)$.
- 3. Evaluate $\int \sin x \cos x \, dx$ by four methods:
 - (a) the substitution $u = \cos(x)$;
 - (b) the substitution $u = \sin(x)$;
 - (c) the identity $\sin 2x = 2\sin(x)\cos(x)$;
 - (d) integration by parts

Explain the different appearances of the answers.

4. Find the area of the region bounded by the curves $y = \sin^2(x)$ and $y = \sin^3(x)$ for $0 \le x \le \pi$.

MA 114 MathExcel Worksheet # 02: Special Trigonometric Integrals

- 1. Evaluate the following integrals
 - (a) $\int x \sin^2(x^2) dx$
 - (b) $\int \tan^2(x) \cos^3(x) dx$
 - (c) $\int \tan^2(x) + \tan^4(x) dx$
- 2. Evaluate $\int \sin(4x)\cos(5x) \ dx$ using the identity $\sin A\cos B = \frac{1}{2}\left(\sin(A-B) + \sin(A+B)\right)$