QF621 Quantitative Trading Strategies

Pairs Trading:

Application of Machine Learning and GARCH Model in the Foreign Exchange Market

Group Member:

CHEN Liangrui; JIANG Zihan; MAI Jialing; WONG Keat Ye; XUE Yuanhuang

CONTENT

- 1 Introduction
- 2 Pairs Selection
- 3 Trading Signal
- 4 Back-testing Result
- 5 Conclusion

INTRODUCTION

Pairs Trading in Forex

- Simultaneous long and short positions in two correlated currency pairs.
- Profits from the relative price movements rather than absolute price levels.
- Exploits mean reversion in correlated currency pairs.

Data Source

- > 35 historical Forex rates sourced from Yahoo Finance.
- > Time frame: From 2014.01.01 to 2024.05.25

Pairs Selection

Method

Introduction

Pure PCA Analysis

- A dimensionality reduction technique that transforms a large set of variables into a smaller one that still contains most of the information.
- It identifies the *directions* (principal components) in which the data varies the most.

PCA + OPTICS Clustering

- Combine PCA with OPTICS to *leverage the strengths* of both techniques for finding trading pairs.
- OPTICS is a clustering algorithm that identifies clusters with varying densities, which helps in finding groups of assets that behave similarly.

Method	Suitable for	Advantages
Pure PCA Analysis	 Markets with high volatility Markets with significant linear relationships Markets with large data scales 	 Effectively captures the primary directions of variance
PCA + OPTICS Clustering	 Diversified markets Complex markets with significant nonlinear relationships Markets with strong local correlations 	 Identifies intricate market structures Uncovers potential trading opportunities

Trading Signal

Method

Introduction

Traditional Methods

• Often involves *simple statistical techniques* to identify deviations from historical relationships between asset prices.

GARCH

• To model and *forecast time-varying volatility* in financial time series.

Trading Signal

Method

Suitable for

Advantages

Traditional Methods

- Markets with *stable* volatility patterns
- Markets with fewer data points

- Simple and easy to implement
- Quick computation
- Less computational intensive

GARCH

- Markets with high and variable volatility
- Markets with *large* datasets and high-frequency data
- Markets where *capturing volatility is crucial*

- Models time-varying volatility explicitly
- More accurate spread estimation under conditions
- Provides a more realistic measure of risk

PAIRS SELECTION

Pairs Selection

Check for Cointegration & Stationarity

Step 2

Log-Transform the Prices

 To stabilize variance and convert multiplicative relationships into additive relationships.

Step 4

Perform Engle-Granger Cointegration Test

Reject if p-value > 0.5.

Step 1

Identify the Most Influential Assets

• Identify the assets with the highest and lowest absolute loading in the principal component.

Step 3

Perform OLS Regression

Step 5

Perform ADF Test for Stationarity

- Performed on the residuals.
- Reject if p-value > 0.5.

PCA Results

CAD=X and CHF = X (US Dollar / Canadian Dollar and US Dollar / Swiss Franc)

Economic Intuition

- > Different Economic Drivers:
 - 1.CAD = X: Heavily influenced by the commodity market, particularly oil.
 - 2.CHF = X: Often considered a *safe-haven currency*.
- Correlation and Diversification:
 - **1.Correlation:** Low correlation (0.3160) due to the different economic factors.
 - Opportunity for pairs trading, as the spread between them might offer mean-reverting characteristics.
 - 2.Diversification: The trader can potentially hedge against sector-specific risks.

List of Noisy Points:

SGDMYR=X, EURSGD=X, SGDHKD=X, SGDIDR=X, SGDCNY=X, SGDTHB=X, SGDINR=X, SGDKRW=X, AUDSGD=X, NZDSGD=X, JPY=X, HKD=X, MYR=X, INR=X, CNY=X, PHP=X, IDR=X, CHF=X, MXN=X, VND=X, EURGBP=X, EURSEK=X, EURCHF=X, EURHUF=X

Cluster	Currency		
,,,	SGD = X		
0	THB = X		
0	KRW = X		
	CAD = X		
	AUDUSD = X		
1	NZDUSD = X		
2	SGDJPY = X		
	EURJPY = X		
	GBPSGD = X		
3	GBPJPY = X		
	GBPUSD = X		
Total	11 pairs		

Cluster	Currency	Economic Explanation for the Clusters			
0	SGD = X				
	THB = X	Based on <i>USD pairings</i> , with significant trade relations with the US			
	KRW = X	and influences from US economic data.			
	CAD = X				
1	AUDUSD = X	Due to geographic proximity and similar economic structures,			
	NZDUSD = X	heavily influenced by commodities and USD.			
2	SGDJPY = X	Based on the common involvement of the Japanese Yen, influenced			
	EURJPY = X	by its safe-haven status and interest rate differentials.			
	GBPSGD = X				
3	GBPJPY = X	Due to the common involvement of the <i>British Pound</i> , reflecting its global economic influence and diverse economic links.			
	GBPUSD = X	giobai economic innuence and diverse economic inns.			

SGD=X and CAD = X

(US Dollar / Singapore Dollar and US Dollar / Canadian Dollar)

Economic Intuition

Economic Divergence:

1.SGD: A highly developed and open economy, heavily reliant on *trade* and *services*.

2.CAD: Heavily influenced by the commodity market, particularly oil.

> Interest Rate Differentials:

- **1.SGD:** MAS uses the *exchange rate* as the main tool of monetary policy rather than interest rates.
 - Interest rates in Singapore are influenced by *global interest rates* and the *domestic economy's performance*.
- **2.CAD:** Bank of Canada's *interest rate decisions* directly impact the CAD.
 - Higher interest rates in Canada attract foreign investment, strengthening the CAD, while lower rates can weaken it.

AUDUSD=X and NZDUSD = X

(Australian Dollar / US Dollar and New Zealand Dollar / US Dollar)

Economic Intuition

Economic Structures:

- 1. Australia: A diverse economy with key sectors including mining, agriculture, services, and manufacturing.
- 2.New Zealand: A smaller, open economy heavily reliant on agriculture and dairy products.

Geopolitical Factors:

 Both countries have relatively stable political environments, but they can be affected by global geopolitical events that impact trade, commodity prices, and investor sentiment.

TRADING SIGNAL

Traditional Method

1 Generate Spread Series

Decentralization

Calculation of Mean and Standard Deviation

$$\mu = \frac{1}{N} \sum_{t=1}^{N} MSPREAD_{t}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (MSPREAD_t - \mu)^2}$$

Construction of Trading Signals

$$Buy \, Signal = MSPREAD_t < \mu - k\sigma$$

$$Sell \, Signal = MSPREAD_t > \mu + k\sigma$$

In our project, we set k = 1.

Traditional Method

Descriptive Statistics of Decentralized Spread Series

Mean = 0

Std. Dev. = 0.0272

Skewness = 0.0584

Kurtosis = 2.5515

Jarque-Bera Stats.: 19.4320

P-value (JB Test): 0

AUDUSD = X and NZDUSD = X

Mean = 0

Std. Dev. = 0.0205

Skewness = -0.1962

Kurtosis = 2.9459

Jarque-Bera Stats.: 14.1902

P-value (JB Test): 0.0008

CAD = X and CHF = X

Mean = 0

Std. Dev. = 0.0318

Skewness = 0.4245

Kurtosis = 2.7480

Jarque-Bera Stats.: 70.9398

P-value (JB Test): 0.0000

Traditional Method

Construction of Trading Signals

SGD = X and CAD = X

Holding: 365

Sell: 141

Buy: 37

AUDUSD = X and NZDUSD = X

Holding: 400

Sell: 78

Buy: 65

CAD = X and CHF = X

Holding: 316

Sell: 140

Buy: 87

GARCH Model Method

- 1 Generate Spread Series
- Fitting an AR Model

$$MSPREAD_{t} = c + \sum_{i=1}^{p} \phi_{i}MSPREAD_{t-1} + \epsilon_{t}$$

Fitting a GARCH Model

$$\epsilon_t = \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2$$

4 Construction of Trading Signals

$$Buy \, Signal = MSPREAD_{t} < -k\sigma$$

$$Sell \, Signal = MSPREAD_{t} > k\sigma$$

In our project, we set k = 1.

GARCH Model Method

Autocorrelation Test (All the pairs have the same results.)

PACF

Significant spikes at lags 1 and 2 and then fluctuates around zero.

ACF

A slow decay.

AR(2)

GARCH Model Method

ARCH-Lagrange Multiplier Test

• To indicate evidence of heteroskedasticity in the residuals of the GARCH(1,1) model.

P-value > 0.05 : Homoskedasticity

P-value < 0.05 : Heteroskedasticity

SGD=X and CAD=X

AUDUSD = X and NZDUSD = X

CAD = X and CHF = X

Lagrange Multiplier Test Statistic: 24.1818

p-value: 0.0071

Lagrange Multiplier Test Statistic: 30.9759

p-value: 0.0006

Lagrange Multiplier Test Statistic: 42.6111

p-value: 0.0

Heteroskedasticity

GARCH Model Method Construction of Trading Signals

SGD = X and CAD = X

Holding: 315

Sell: 38

Buy: 75

AUDUSD = X and NZDUSD = X

Holding: 347

Sell: 28

Buy: 53

CAD = X and CHF = X

Holding: 299

Sell: 84

Buy: 45

BACK-TESTING RESULT

Back Testing Metrics

Cumulative Return

Sharpe Ratio

Sortino Ratio

Max Drawdown (%)

Cumulative of daily return

$$\sqrt{252} imes rac{ ext{Average Value of Daily Return}}{ ext{Standard Deviation of Daily Return}} \ \sqrt{252} imes rac{ ext{Average value of daily return}}{ ext{$\sum Daily Return}^2}} \ \sqrt{ ext{Number of Days}} \ \cdot \left(rac{ ext{Maximum Drawdown (\$)}}{ ext{Cumulative Maximum portfolio value}} imes 100\%
ight)$$

**Assume initial capital = 100,000

Methods	Pairs	Cumulative Return	Sharpe Ratio	Sortino Ratio	Maximum Drawdown (%)
Traditional	SGD = X and CAD = X	6,011.54	0.51	0.05	-37.85
	AUDUSD = X and $NZDUSD = X$	57,878.88	1.08	0.11	-0.66
	CAD = X and CHF = X	1,108.41	-0.14	-0.01	-0.95
GARCH Model	SGD = X and CAD = X	84,053.84	6.32	0.98	-0.18
	AUDUSD = X and NZDUSD = X	90,915.98	4.80	0.95	-0.03
	CAD = X and CHF = X	46,785.76	6.31	0.99	-0.22

CONCLUSION

THANK YOU

Call Now. +123-456-7890

