

WO200279145

Publication Title:

No title available

Abstract:

Abstract not available for WO200279145 Data supplied from the esp@cenet database - Worldwide

Courtesy of <http://v3.espacenet.com>

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 October 2002 (10.10.2002)

PCT

(10) International Publication Number
WO 02/079145 A1

(51) International Patent Classification⁷: **C07C 257/18**, 279/18, C07D 213/46, 213/53, 333/20, 333/38, A61K 31/44, 31/38, A61P 7/02

(21) International Application Number: PCT/US02/10523

(22) International Filing Date: 1 April 2002 (01.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/279,696 30 March 2001 (30.03.2001) US

(71) Applicant (for all designated States except US): **MILLENNIUM PHARMACEUTICALS, INC.** [US/US]; 256 East Grand Avenue, South San Francisco, CA 94080 (US).

(71) Applicants and

(72) Inventors: **ZHU, Bin-Yan** [CA/US]; 3325 Adelaide Way, Belmont, CA 94002 (US). **ZHANG, Penglie** [CN/US]; 251 Winchester Court, Foster City, CA 94404 (US). **GOLDMAN, Erick, A.** [US/US]; 1520 Francisco Street, Berkeley, CA 94703 (US). **JIA, Zhaozhing, Jon** [CN/US]; 1576 E. Marina Court, San Mateo, CA 94404 (US). **BAUER, Shawn** [US/US]; 108 Quail Point Circle, San Bruno, CA 94066 (US). **HUANG, Wenrong** [CN/US]; 7723 Huntridge Lane, Cupertino, CA 95014 (US). **WOOLFREY, John** [US/US]; 1050 Carolan

Avenue #103, Burlingame, CA 94010 (US). **SCARBOROUGH, Robert, M.** [US/US]; 22 Greenbrier Court, Half Moon Bay, CA 94019 (US).

(74) Agents: **SNYDER, Joseph R & et al.**; Townsend and Townsend and Crew LLP, Two Embarcadero Center, 8th Floor, San Francisco, CA 94111 (US).

(81) Designated States (national): AF, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/079145 A1

(54) Title: BENZAMIDE INHIBITORS OF FACTOR Xa

(57) Abstract: Novel benzamide compounds of formula (I), their salts and compositions related thereto having activity against mammalian Factor Xa are disclosed. The compounds are useful *in vitro* or *in vivo* for preventing or treating coagulation disorders wherein: Ar1, Ar2 and Ar3 are each independently selected from the group consisting of formula (II).

BENZAMIDE INHIBITORS OF FACTOR Xa

Related Applications

This application claims the benefit of priority under 35 U.S.C.119(e) to U.S. Provisional Application No. 60/279,696 filed on March 30, 2001 which is herein incorporated in its entirety by reference.

Field of Invention

This invention relates to novel compounds which are potent and highly selective inhibitors of isolated factor Xa or when assembled in the prothrombinase complex. These compounds show selectivity for factor Xa versus other proteases of the coagulation (e.g. thrombin, fVIIa, fIXa) or the fibrinolytic cascades (e.g. plasminogen activators, plasmin). In another aspect, the present invention relates to novel monoamidino-containing compounds, their pharmaceutically acceptable salts, and pharmaceutically acceptable compositions thereof which are useful as potent and specific inhibitors of blood coagulation in mammals. In yet another aspect, the invention relates to methods for using these inhibitors as therapeutic agents for disease states in mammals characterized by coagulation disorders.

Background of the Invention

Hemostasis, the control of bleeding, occurs by surgical means, or by the physiological properties of vasoconstriction and coagulation. This invention is particularly concerned with blood coagulation and ways in which it assists in maintaining the integrity of mammalian circulation after injury, inflammation, disease, congenital defect, dysfunction or other disruption. Although platelets and blood coagulation are both involved in thrombus formation, certain components of the coagulation cascade are primarily responsible for the amplification or acceleration of the processes involved in platelet aggregation and fibrin deposition.

Thrombin is a key enzyme in the coagulation cascade as well as in hemostasis. Thrombin plays a central role in thrombosis through its ability to catalyze the conversion of fibrinogen into fibrin and through its potent platelet activation activity. Direct or indirect inhibition of thrombin activity has been the focus of a variety of recent anticoagulant strategies as reviewed by Claeson, G., "Synthetic Peptides and Peptidomimetics as Substrates and Inhibitors of Thrombin and Other Proteases in the Blood Coagulation System", *Blood Coag. Fibrinol.*, 5, 411-436 (1994). Several classes of anticoagulants currently used in the clinic directly or indirectly affect thrombin (i.e. heparins, low-molecular weight heparins, heparin-like compounds and coumarins).

A prothrombinase complex, including Factor Xa (a serine protease, the activated form of its Factor X precursor and a member of the calcium ion binding, gamma carboxyglutamyl (Gla)-containing, vitamin K dependent, blood coagulation glycoprotein family), converts the zymogen prothrombin into the active procoagulant thrombin. Unlike thrombin, which acts on a variety of protein substrates as well as at a specific receptor, factor Xa appears to have a single physiologic substrate, namely prothrombin. Since one molecule of factor Xa may be able to generate up to 138 molecules of thrombin (Elodi et al., *Thromb. Res.* 15, 617-619 (1979)), direct inhibition of factor Xa as a way of indirectly inhibiting the formation of thrombin may be an efficient anticoagulant strategy. Therefore, it has been suggested that compounds which selectively inhibit factor Xa may be useful as *in vitro* diagnostic agents, or for therapeutic administration in certain thrombotic disorders, see e.g., WO 94/13693.

Polypeptides derived from hematophagous organisms have been reported which are highly potent and specific inhibitors of factor Xa. United States Patent 4,588,587 describes anticoagulant activity in the saliva of the Mexican leech, *Haementeria officinalis*. A principal component of this saliva was shown to be the polypeptide factor Xa inhibitor, antistasin (ATS), by Nutt, E. et al., "The Amino Acid Sequence of Antistasin, a Potent Inhibitor of Factor Xa Reveals a Repeated Internal Structure", *J. Biol. Chem.*, 263, 10162-10167 (1988). Another potent and highly specific inhibitor of Factor Xa, called tick anticoagulant peptide (TAP), has been isolated from the whole body extract of the soft tick *Ornithodoros moubata*, as reported by Waxman, L., et al., "Tick

Anticoagulant Peptide (TAP) is a Novel Inhibitor of Blood Coagulation Factor Xa"
Science, 248, 593-596 (1990).

Factor Xa inhibitory compounds which are not large polypeptide-type inhibitors have also been reported including: Tidwell, R.R. *et al.*, "Strategies for Anticoagulation With Synthetic Protease Inhibitors. Xa Inhibitors Versus Thrombin Inhibitors", *Thromb. Res.*, 19, 339-349 (1980); Turner, A.D. *et al.*, "p-Amidino Esters as Irreversible Inhibitors of Factor IXa and Xa and Thrombin", *Biochemistry*, 25, 4929-4935 (1986); Hitomi, Y. *et al.*, "Inhibitory Effect of New Synthetic Protease Inhibitor (FUT-175) on the Coagulation System", *Haemostasis*, 15, 164-168 (1985); Sturzebecher, J. *et al.*, "Synthetic Inhibitors of Bovine Factor Xa and Thrombin. Comparison of Their Anticoagulant Efficiency", *Thromb. Res.*, 54, 245-252 (1989); Kam, C.M. *et al.*, "Mechanism Based Isocoumarin Inhibitors for Trypsin and Blood Coagulation Serine Proteases: New Anticoagulants", *Biochemistry*, 27, 2547-2557 (1988); Hauptmann, J. *et al.*, "Comparison of the Anticoagulant and Antithrombotic Effects of Synthetic Thrombin and Factor Xa Inhibitors", *Thromb. Haemost.*, 63, 220-223 (1990); and the like.

Others have reported Factor Xa inhibitors which are small molecule organic compounds, such as nitrogen containing heterocyclic compounds which have amidino substituent groups, wherein two functional groups of the compounds can bind to Factor Xa at two of its active sites. For example, WO 98/28269 describes pyrazole compounds having a terminal C(=NH)-NH₂ group; WO 97/21437 describes benzimidazole compounds substituted by a basic radical which are connected to a naphthyl group via a straight or branched chain alkylene, -C(=O) or -S(=O)₂ bridging group; WO 99/10316 describes compounds having a 4-phenyl-N-alkylamidino-piperidine and 4-phenoxy-N-alkylamidino-piperidine group connected to a 3-amidinophenyl group via a carboxamidealkyleneamino bridge; and EP 798295 describes compounds having a 4-phenoxy-N-alkylamidino-piperidine group connected to an amidinonaphthyl group via a substituted or unsubstituted sulfonamide or carboxamide bridging group.

There exists a need for effective therapeutic agents for the regulation of hemostasis, and for the prevention and treatment of thrombus formation and other pathological processes in the vasculature induced by thrombin such as restenosis and inflammation. In particular, there continues to be a need for compounds which

selectively inhibit factor Xa or its precursors. Compounds that have different combinations of bridging groups and functional groups than compounds previously discovered are needed, particularly compounds which selectively or preferentially bind to Factor Xa. Compounds with a higher degree of binding to Factor Xa than to thrombin are desired, especially those compounds having good bioavailability and/or solubility.

Summary of the Invention

The present invention relates to novel compounds which inhibit factor Xa, their pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives, and pharmaceutically acceptable compositions thereof which have particular biological properties and are useful as potent and specific inhibitors of blood coagulation in mammals.

One aspect of the invention relates to compounds having formula I which are inhibitors of factor Xa for the treatment of cardiovascular diseases:

wherein:

Ar1, Ar2 and Ar3 are each independently selected from the group consisting of:

Ar1 may be optionally substituted with 0-2 R;

each R is independently selected from the group consisting of halo, haloalkyl, alkyl, alkoxy, thioalkoxy, haloalkoxy, alkoxyalkoxy, dialkylaminoalkoxy,

(alkyl)₁₋₂amino, 1-pyrrolidinyl, 1-piperidinyl, hydroxy, cyano, (alkyl)₀₋₂aminocarbonyl, (alkyl)₀₋₂aminoalkyl, (alkyl)₀₋₂aminosulfonyl, alkylsulfonyl, alkynyl and C≡CH;

Ar3 may be optionally substituted with 0-2 R¹;
each R¹ is independently selected from the group consisting of halo, haloalkyl, alkenyl, alkoxy, haloalkoxy, alkenyl, alkenyl alkyl or C≡CH;

L1 is independently a direct link, (alkyl)₀₋₂aminocarbonyl, (alkyl)₁₋₂amino or (alkyl)₀₋₂aminocarbonyl;

L2 is independently (alkyl)₀₋₂aminocarbonyl, (alkyl)₁₋₂amino, or (alkyl)₀₋₂aminocarbonyl;

Ar2 may be optionally substituted with 0-3 R^{1d} groups,
each R^{1d} is independently selected from the group consisting of:
hydrogen, alkyl, halo, haloalkyl, aryl, heteroaryl, nitro, cyano, carboxyl alkyl, carboxylamino alkyl, carboxylamino (alkyl)₀₋₂, alkyl hydroxy, alkyl amino, alkylamino (alkyl)₀₋₂, carbonyl alkyl, -C(=NO-alkyl) alkyl, cyano, alkenylcarboxyl alkyl, formyl, alkenyl, alkynyl, and alkenyl carboxyl alkyl;

a radical having the formula:

-C(=NH)-X where X is independently an amino, amino alkyl, amino dialkyl, pyrrolidinyl or piperidinyl;

a radical having the formula:

Q-imidazolinyl; wherein Q is a direct bond, amino, alkylamino; wherein the imidazolinyl may be substituted on N with alkyl;

a radical having the formula:

wherein each R^2 and R^3 is independently selected from the group consisting of hydrogen, alkoxyalkyl, alkylsulfonyl(alkyl), alkylamino (alkyl)₀₋₃, alkyl; or R^2 and R^3 taken together to form a 6-membered saturated ring containing optionally O, N, or S where the N maybe substituted wherein alkyl and the S may be substituted with 1-2 oxygen;

hydroxy, alkoxy, halo alkoxy, alkoxycarboxy alkyl, alkoxy carbonyl amino (alkyl)₀₋₂, alkoxy alkoxy, alkoxy hydroxy, alkoxysulfonyl alkyl, alkoxy alkoxy alkoxy, alkoxy-S-alkyl, alkoxy sulfonyl alkyl, alkoxy amino (alkyl)₀₋₂, alkoxyamino (alkyl alkoxy)₁₋₂, alkoxy oxy acyl, alkoxy hydroxy, alkoxy amino alkyl alkyl hydroxy;

a radical of the formula:

-O-alkyl-O- alkyl-R⁴ wherein R⁴ is independently alkoxy, amino (alkyl)₀₋₂, or a 5-6 membered ring containing 1 or 2 N.

a radical of the formula:

alkoxy- R⁵, wherein R⁵ is independently amino (alkyl)₀₋₂, a 5 or 6 membered ring containing 1 to 4 N or 1N and 1O, the ring optionally substituted with alkyl;

a radical of the formula:

wherein R^x is independently hydrogen, cyano or nitro;
R^y is independently amino (alkyl), cycloalkyl, or phenyl;

X^1 is a direct bond or amino (alkyl)₀₋₁; or R^x and R^y taken together form an imidazolyl substituted on N with alkyl;

-S-, alkyl alkoxy, -S- alkyl, sulfonyl- alkyl alkoxy, S-Ph, SO₂Ph, sulfonylamino (alkyl)₀₋₂, sulfonyl alkyl amino (alkyl)₀₋₂, amino (alkyl)₀₋₂, aminosulfonyl alkyl, aminocarbonyl alkyl amino alkyl amino (alkyl)₀₋₂; amino (alkyl hydroxy)₁₋₂, amino (alkyl alkoxy)₁₋₂, amino alkyl carboxyl (alkyl)₀₋₁, amino alkyl carbonylamino (alkyl)₀₋₂, amino (alkyl) (alkylcarboxyl (alkyl)₀₋₁), amino (alkyl) (alkyl carbonyl amino (alkyl)₀₋₂), amino (alkyl) (alkylamino (alkyl)₀₋₂), amino (alkyl) (alkyl alkoxy), amino (alkyl) (alkyl hydroxy); or

a 5 or 6 membered saturated heterocyclic ring containing one or more N, O, S atoms; the heterocyclic ring optionally substituted by alkyl or N-protective group; N is optionally substituted by alkyl, carbonyl alkyl, sulfonyl alkyl or a N-protective group; or carbon substituted with a hydroxy, carboxy, carboxy alkyl, carbonylamino or amino; or S is optionally substituted with one or two O;

a radical of the formula:

amino (alkyl) (alkyl)-R⁶

where R⁶ is pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl wherein R⁶ is optionally substituted by dioxy;

an imidazolyl optionally substituted with alkyl on N, amino (alkyl) imidazolyl optionally substituted with alkyl on N;

a radical of the formula:

wherein X^2 is a direct link or amino (alkyl)₀₋₁ - alkyl-;

R^7 is hydrogen, or cyano;

R^{10} is independently hydrogen or alkyl;

Each R^8 and R^9 is independently hydrogen or alkyl;

an amino- alkyl-amino (alkyl)(imidazolyl optionally substituted with alkyl on N;

A is independently

I. phenyl, pyridinyl or imidazolyl optionally substituted with one or more R^{11} groups; each R^{11} independently halo, cyano, carbonylamino (alkyl)₀₋₂, alkyl amino, alkylamino (alkyl)₀₋₂, sulfonylamino, sulfonyl alkyl; alkyl which may be optionally substituted with 3-6 membered nitrogen containing ring; the 3-6 membered ring maybe substituted by alkyl hydroxy;

II. a radical of formula:

wherein R^{12} is independently hydrogen, alkyl or 3-4 membered N containing ring;

R^{13} is amino (alkyl)₀₋₂, or a 3-6 membered nitrogen containing ring;

III a 5-7 membered ring containing 1 to 4 N optionally substituted with alkyl, alkylamino (alkyl)₀₋₂, amino(alkyl)₀₋₂, oxy, carbonyl alkylamino (alkyl)₀₋₂, thio(alkyl), imino; or

IV. a radical of the formula:

wherein each R^{14} and R^{15} can be hydrogen, or alkyl;

V. a radical of the formula:

wherein $R^{X'}$ is independently hydrogen, cyano, nitro, alkyl, a 4-membered N containing ring, acyl, sulfonyl alkyl;

R^U is a direct bond, alkylamino (alkyl)₀₋₁;

each $R^{Y'}$ and $R^{Z'}$ is independently hydrogen, hydroxy, alkyl, alkoxy, alkoxyphenyl, halophenyl, alkyl piperidinyl, amino (alkyl)₀₋₂, phenyl, halo (alkyl), aminosulfonyl alkyl, pyrrolidinyl, pyrimidinyl, pyridinyl, alkylphenyl, alkylhalophenyl, alkylcyano, alkoxy alkyl, alkyl hydroxy, alkylsulfonyl alkyl, alkylamino acetyl, alkylamino sulfonyl alkyl, alkenyl, alkynyl, alkylcycloalkyl, cycloalkyl, or 5-6 membered N containing ring optionally substituted with alkyl, alkylcarboxyl, alkylcarboxyl (alkyl), alkylamino (alkyl)₀₋₂, alkylpyrrolidinyl, alkylpiperazinyl, alkylamino alkyl alkoxy, alkyl thiomorpholinyl optionally substituted with oxy or dioxy; $R^{Y'}$ and $R^{Z'}$ taken together to form a 3-7 membered ring containing one or more N, O, S atoms; said ring may be optionally substituted by alkyl, halo, hydroxy, alkylhydroxy, oxy, carboxyl, carboxyalkyl, carboxyalkyl, carboxylamino, alkylcarboxylamino, alkylamine, aminoacetyl, pyridinyl, pyrimidinyl, alkoxyphenyl, alkylpiperidyl,

VI. a radical of the formula:

wherein each R¹⁶ or R¹⁷ is independently hydrogen or alkyl;

R¹⁹ is independently alkyl; haloalkyl, phenyl, pyrimidyl, cycloalkyl, thiophenyl or alkylcyano;

R¹⁵ is alkyl;

VII. a radical of the formula:

wherein R²⁰ is alkyl;

X'' is independently C, O, or N; X is optionally substituted with alkyl; dioxy, amino (alkyl)₀₋₂, hydroxy, alkylcarboxy, alkylcarboxy alkyl, alkyl alkoxy, alkylmino(alkyl)₀₋₂, alkylpyrrolidinyl, alkylphenyl, alkylpyridinyl acetyl, carboxylalkyl, carbonylamino (alkyl)₀₋₂, sulfonylalkyl, carboxyl, pyridinyl, pyridinyl substituted with oxy, phenyl, halophenyl,

VIII.

wherein each R^{20} and R^{21} is independently alkyl;

IX. a radical of the formula:

$-\text{CH}_2-\text{N}(\text{R}^{21}\text{R}^{22})$;

wherein each R^{21} or R^{22} is independently:

alkyl, halo alkyl, alkylphenyl, alkylhydroxy, alkyl alkoxy, alkylsulfonyl alkyl, alkylcyano, alkylcarboxy, alkylcarbonylamino (alkyl)₀₋₂, alkylcarboxyl alkyl, alkylamino which may be optionally substituted with alkyl alkoxy, alkylpiperidinyl, alkylmorpholinyl, alkylpyrrolidinyl, piperazinyl substituted with C₀₋₃ alkyl or alkyl;

X. a cycloalkyl, cycloheteroalkyl containing one or more S, N, or O atoms which may be substituted with oxy, alkyl, acetyl, alkylalkylcarboxyl, alkylhydroxy, alkylcarboxy alkyl, alkylamino, alkyl alkoxy, carboxy, amino, phenyl, pyridinyl or pyrimidinyl; said pyrimidinyl maybe substituted with amino group;

Each R^{21} or R^{22} maybe independently a 5-6 membered ring containing 1 to 4 N, O, or S atoms which maybe optionally substituted with amino;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

In another aspect, the invention relates to methods of using these inhibitors as diagnostic reagents or as therapeutic agents for disease states in mammals characterized by undesired thrombosis or which have coagulation disorders, such as in the treatment or prevention of any thrombotically mediated acute coronary or cerebrovascular syndrome, any thrombotic syndrome occurring in the venous system, any coagulopathy, and any thrombotic complications associated with extracorporeal circulation or instrumentation, and for the inhibition of coagulation in biological samples.

In another aspect, the invention relates to novel compounds which are potent and highly selective inhibitors of isolated factor Xa when assembled in the prothrombinase complex. These compounds show selectivity for factor Xa versus other proteases of the coagulation cascade (e.g. thrombin, etc.) or the fibrinolytic cascade, and are useful as diagnostic reagents as well as antithrombotic agents.

In certain aspects of this invention, compounds are provided which are useful as diagnostic reagents. In another aspect, the present invention includes pharmaceutical compositions comprising a pharmaceutically effective amount of the compounds of this invention and a pharmaceutically acceptable carrier. In yet another aspect, the present invention includes methods comprising using the above compounds and pharmaceutical compositions for preventing or treating disease states characterized by undesired thrombosis or disorders of the blood coagulation process in mammals, or for preventing coagulation in stored blood products and samples. Optionally, the methods of this invention comprise administering the pharmaceutical composition in combination with an additional therapeutic agent such as an antithrombotic and/or a thrombolytic agent and/or an anticoagulant.

Other aspects, objects, features and advantages of the present invention would be apparent to one of ordinary skill in the art from the following detailed description illustrating the preferred embodiments of the invention.

Detailed Description of the Invention

Definitions

In accordance with the present invention and as used herein, the following terms are defined with the following meanings, unless explicitly stated otherwise.

The term "alkenyl" refers to a trivalent straight chain or branched chain unsaturated aliphatic radical. The term "alkinyl" (or "alkynyl") refers to a straight or branched chain aliphatic radical that includes at least two carbons joined by a triple bond. If no number of carbons is specified alkenyl and alkinyl each refer to radicals having from 1-12 carbon atoms, more preferably, 1-8 carbon atoms, most preferably, 1-3 carbon atoms.

The term "alkyl" refers to saturated aliphatic groups including straight-chain, branched-chain and cyclic groups having the number of carbon atoms specified, or if no number is specified, having up to 12 carbon atoms, preferably 1-9 carbon atoms, more preferably, 1-6 carbon atoms, most preferably 1-3 carbon atoms. The term "cycloalkyl" as used herein refers to a mono-, bi-, or tricyclic aliphatic ring having 3 to 14 carbon atoms and preferably 3 to 7 carbon atoms.

As used herein, the terms "carbocyclic ring structure" and "C₃₋₁₆ carbocyclic mono, bicyclic or tricyclic ring structure" or the like are each intended to mean stable ring structures having only carbon atoms as ring atoms wherein the ring structure is a substituted or unsubstituted member selected from the group consisting of: a stable monocyclic ring which is aromatic ring ("aryl") having six ring atoms; a stable monocyclic non-aromatic ring having from 3 to 7 ring atoms in the ring; a stable bicyclic ring structure having a total of from 7 to 12 ring atoms in the two rings wherein the bicyclic ring structure is selected from the group consisting of ring structures in which both of the rings are aromatic, ring structures in which one of the rings is aromatic and ring structures in which both of the rings are non-aromatic; and a stable tricyclic ring structure having a total of from 10 to 16 atoms in the three rings wherein the tricyclic ring structure is selected from the group consisting of: ring structures in which three of the rings are aromatic, ring structures in which two of the rings are aromatic and ring structures in which three of the rings are non-aromatic. In each case, the non-aromatic rings when present in the monocyclic, bicyclic or tricyclic ring structure may independently be saturated, partially saturated or fully saturated. Examples of such

carbocyclic ring structures include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl, cyclooctyl, [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), 2.2.2[bicyclooctane, fluorenyl, phenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin). Moreover, the ring structures described herein may be attached to one or more indicated pendant groups via any carbon atom which results in a stable structure. The term "substituted" as used in conjunction with carbocyclic ring structures means that hydrogen atoms attached to the ring carbon atoms of ring structures described herein may be substituted by one or more of the substituents indicated for that structure if such substitution(s) would result in a stable compound.

The term "aryl" which is included with the term "carbocyclic ring structure" refers to an unsubstituted or substituted aromatic ring, substituted with one, two or three substituents selected from loweralkoxy, loweralkyl, loweralkylamino, hydroxy, halogen, cyano, hydroxyl, mercapto, nitro, thioalkoxy, carboxaldehyde, carboxyl, carboalkoxy and carboxamide, including but not limited to carbocyclic aryl, heterocyclic aryl, and biaryl groups and the like, all of which may be optionally substituted. Preferred aryl groups include phenyl, halophenyl, loweralkylphenyl, naphthyl, biphenyl, phenanthrenyl and naphthacenyl.

The term "arylalkyl" which is included with the term "carbocyclic aryl" refers to one, two, or three aryl groups having the number of carbon atoms designated, appended to an alkyl group having the number of carbon atoms designated. Suitable arylalkyl groups include, but are not limited to, benzyl, picolyl, naphthylmethyl, phenethyl, benzyhydryl, trityl, and the like, all of which may be optionally substituted.

As used herein, the term "heterocyclic ring" or "heterocyclic ring system" is intended to mean a substituted or unsubstituted member selected from the group consisting of stable monocyclic ring having from 5-7 members in the ring itself and having from 1 to 4 hetero ring atoms selected from the group consisting of N, O and S; a stable bicyclic ring structure having a total of from 7 to 12 atoms in the two rings wherein

at least one of the two rings has from 1 to 4 hetero atoms selected from N, O and S, including bicyclic ring structures wherein any of the described stable monocyclic heterocyclic rings is fused to a hexane or benzene ring; and a stable tricyclic heterocyclic ring structure having a total of from 10 to 16 atoms in the three rings wherein at least one of the three rings has from 1 to 4 hetero atoms selected from the group consisting of N, O and S. Any nitrogen and sulfur atoms present in a heterocyclic ring of such a heterocyclic ring structure may be oxidized. Unless indicated otherwise the terms "heterocyclic ring" or "heterocyclic ring system" include aromatic rings, as well as non-aromatic rings which can be saturated, partially saturated or fully saturated non-aromatic rings. Also, unless indicated otherwise the term "heterocyclic ring system" includes ring structures wherein all of the rings contain at least one hetero atom as well as structures having less than all of the rings in the ring structure containing at least one hetero atom, for example bicyclic ring structures wherein one ring is a benzene ring and one of the rings has one or more hetero atoms are included within the term "heterocyclic ring systems" as well as bicyclic ring structures wherein each of the two rings has at least one hetero atom. Moreover, the ring structures described herein may be attached to one or more indicated pendant groups via any hetero atom or carbon atom which results in a stable structure. Further, the term "substituted" means that one or more of the hydrogen atoms on the ring carbon atom(s) or nitrogen atom(s) of the each of the rings in the ring structures described herein may be replaced by one or more of the indicated substituents if such replacement(s) would result in a stable compound. Nitrogen atoms in a ring structure may be quaternized, but such compounds are specifically indicated or are included within the term "a pharmaceutically acceptable salt" for a particular compound. When the total number of O and S atoms in a single heterocyclic ring is greater than 1, it is preferred that such atoms not be adjacent to one another. Preferably, there are no more than 1 O or S ring atoms in the same ring of a given heterocyclic ring structure.

Examples of monocyclic and bicyclic heterocyclic ring systems, in alphabetical order, are acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzothiazolyl, benzimidazalinyl, carbazolyl, 4aH-carbazolyl,

carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxythiinyl, phenoxyazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazoliny, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1,2,5-thiadazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl. Preferred heterocyclic ring structures include, but are not limited to, pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrrolidinyl, imidazolyl, indolyl, benzimidazolyl, 1H-indazolyl, oxazolinyl, or isatinoyl. Also included are fused ring and spiro compounds containing, for example, the above heterocyclic ring structures.

As used herein the term "aromatic heterocyclic ring system" has essentially the same definition as for the monocyclic and bicyclic ring systems except that at least one ring of the ring system is an aromatic heterocyclic ring or the bicyclic ring has an aromatic or non-aromatic heterocyclic ring fused to an aromatic carbocyclic ring structure.

The terms "halo" or "halogen" as used herein refer to Cl, Br, F or I substituents. The term "haloalkyl", and the like, refer to an aliphatic carbon radicals having at least one hydrogen atom replaced by a Cl, Br, F or I atom, including mixtures of different halo

atoms. Trihaloalkyl includes trifluoromethyl and the like as preferred radicals, for example.

The term "methylene" refers to -CH₂-.

The term "pharmaceutically acceptable salts" includes salts of compounds derived from the combination of a compound and an organic or inorganic acid. These compounds are useful in both free base and salt form. In practice, the use of the salt form amounts to use of the base form; both acid and base addition salts are within the scope of the present invention.

"Pharmaceutically acceptable acid addition salt" refers to salts retaining the biological effectiveness and properties of the free bases and which are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.

"Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium and magnesium salts. Salts derived from pharmaceutically acceptable organic nontoxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-diethylaminoethanol, trimethamine, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, theobromine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the

like. Particularly preferred organic nontoxic bases are isopropylamine, diethylamine, ethanolamine, trimethamine, dicyclohexylamine, choline, and caffeine.

"Biological property" for the purposes herein means an *in vivo* effector or antigenic function or activity that is directly or indirectly performed by a compound of this invention that are often shown by *in vitro* assays. Effector functions include receptor or ligand binding, any enzyme activity or enzyme modulatory activity, any carrier binding activity, any hormonal activity, any activity in promoting or inhibiting adhesion of cells to an extracellular matrix or cell surface molecules, or any structural role. Antigenic functions include possession of an epitope or antigenic site that is capable of reacting with antibodies raised against it.

In the compounds of this invention, carbon atoms bonded to four non-identical substituents are asymmetric. Accordingly, the compounds may exist as diastereoisomers, enantiomers or mixtures thereof. The syntheses described herein may employ racemates, enantiomers or diastereomers as starting materials or intermediates. Diastereomeric products resulting from such syntheses may be separated by chromatographic or crystallization methods, or by other methods known in the art. Likewise, enantiomeric product mixtures may be separated using the same techniques or by other methods known in the art. Each of the asymmetric carbon atoms, when present in the compounds of this invention, may be in one of two configurations (R or S) and both are within the scope of the present invention.

In one embodiment, the present invention provides a compound according to the formula I:

wherein:

Ar1, Ar2 and Ar3 are each independently selected from the group consisting of:

Ar1 may be optionally substituted with 0-2 R; each R is independently selected from the group consisting of halogen, haloalkyl, OMe, Me, CF₃, SMe, OCF₃, OCH₂CH₂OMe, OCH₂CH₂NMe₂, NMe₂, NHMe, 1-pyrrolidine, 1-piperidine, OH, CN, CONH₂, CH₂NH₂, SO₂NH₂, SO₂Me, C≡CH and C≡CH;

Ar3 may be optionally substituted with 0-2 R₁; each R₁ is independently selected from the group consisting of halogen, haloalkyl, OMe, Me, CF₃, OCF₃, C≡CH, C≡CH, -CH=CH₂ and CH=CHMe;

L1 is a direct link, -CONH-, -CON(Me)-, -CH₂NH₂, -NHCO-, or -N(Me)CO-;

L2 is -CONH, -NHCO, or -N(Me)CO-;

Ar2 is independently selected from the group consisting of:

and Ar2 may be optionally substituted with 0-3 R^{1d} groups;

each R^{1d} is independently selected from the group consisting of:

H, -Me, halogen, haloalkyl, aryl, heteroaryl, -CH₃, -Et, -isopropyl, -CF₃, -NO₂, -CN, -CO₂H, -CO₂Me, -CO₂Et, -CONH₂, -CONHMe, -CONMe₂, -CH₂OH, -CH₂NH₂, -CH₂NHMe, -CH₂NMe₂, -COMe, -C(=NOMe)Me, -C(=NOH)Me, -CH₂COOH, -CH₂COOEt, -CH₂CH₂COOEt, -CH₂CH₂COOH, -CH=CHCN, -CH=CHCOOEt, -CH=CHCOOH, -CH(OH)Me, -CHO, -CH=CH₂,

-OH, -OCH₃, -OCF₃, -OCH₂F, -OCH₂CF₃, -OCF₂CF₃,
 -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂,
 -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂OH, -OCH₂CH₂OEt,
 -OCH₂CH₂SO₂Me, -OCH₂CH₂OCH₂CH₂OMe, -OCH₂CH₂SMe,
 -OCH₂CH₂SO₂Me, -OCH₂CH₂NH₂, -OCH₂CH₂NHMe, -OCH₂CH₂NMe₂,
 -OCH₂CH₂N(CH₂CH₂OMe)₂, -OCH₂CH₂OAc, -OCH₂CH₂OH,
 -OCH₂CH₂OCH₂CH₂OMe, -OCH₂CH₂NH₂,
 -OCH₂CH₂CH₂N(Me)CH₂CH₂OH,

-SCH₂CH₂OMe, -SO₂CH₂CH₂OMe, -SCH₃, -SEt, -SPh, -SO₂Ph, -SO₂NH₂,
 -SO₂CH₃, -SO₂NMe₂, -SO₂CH₂CH₂NMe₂,
 -NH₂, -NMe₂, -NHMe, -NHSO₂Me, -NHCOMe,
 -NHCH₂CH₂NHMe, -NHCH₂CH₂NMe₂, -N(CH₂CH₂OH)₂, -N(CH₂CH₂OMe)₂,
 -NHCH₂CO₂H, -NHCH₂CO₂Et, -NHCH₂CO₂Et, -NHCH₂CONH₂,
 -NHCH₂CONMe₂, -NHCH₂CONHMe, -N(CH₃)CH₂CO₂H, -N(CH₃)CH₂CO₂Et,
 -(NMe)CH₂COOH, -N(Me)CH₂CONH₂, -N(Me)CH₂CH₂NMe₂,
 -N(Me)CH₂CH₂OMe, -N(Me)CH₂CH₂OH, -NHCH₂CH₂OMe,
 -NHCH₂CH₂OMe,

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides a compound of the following formula Ia:

wherein:

Ar1 is selected from the group consisting of:

each R is independently Cl, OMe, NMe₂, OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

L1 is a direct link, -CONH-, -CH₂NH-, or -NHCO-;

L2 is -CONH, or -NHCO;

Ar3 is independently selected from the group consisting of:

Ar2 is independently selected from the group consisting of:

And Ar2 may be optionally substituted with 0-3 R^{1d} group; each R^{1d} is independently selected from the group consisting of:

H, -Me, -F, -Cl, -Br, I, -CH₃, -CF₃, -CN, -CO₂H, -CO₂Me, -CO₂Et, -CONH₂, -CONHMe, -CONMe₂, -CH₂NHMe, -CH₂NMe₂, -COMe, -CH₂COOH,

-OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃, -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂, -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂NHMe, -OCH₂CH₂NMe₂,

-SCH₃, -SO₂NH₂, -SO₂CH₃, -SO₂NMe₂; -NMe₂,

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides a compound of the following formula:

wherein:

Ar1 is independently selected from:

each R is independently Cl, OMe, NHMe, NMe₂, OCH₂CH₂OMe, or
-OCH₂CH₂NMe₂;

Ar3 is independently selected from group consisting of:

Ar2 is independently selected from the group consisting of:

Ar2 may be optionally substituted with 0-3 R^{1d} groups; each R^{1d} is independently the group consisting of:

-OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃,
 -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂,
 -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

-NMe₂, -NHCH₂CH₂NMe₂, -N(CH₂CH₂OMe)₂, -NHCH₂CO₂H, -NHCH₂CO₂Et,
 -NHCH₂CO₂Et, -NHCH₂CONH₂, -NHCH₂CONMe₂, -N(Me)CH₂CH₂NMe₂, -
 N(Me)CH₂CH₂OMe, -NHCH₂CH₂OMe, -NHCH₂CH₂OMe,

H, -Me, -F, -Cl, -Br, I, -CH₃-CF₃, -CN, -CO₂H, -CO₂Me, -CO₂Et, -CONH₂, -CONHMe, -CONMe₂, -CH₂NH₂, -CH₂NHMe, -CH₂NMe₂, -COMe, -CH₂COOH, -CH₂COOEt,

---H

-OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃, -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂, -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

-SCH₃, -SO₂NH₂, -SO₂CH₃, -SO₂NMe₂,
 -NMe₂, -NHCH₂CH₂NMe₂, -N(CH₂CH₂OH)₂, -N(CH₂CH₂OMe)₂,
 -NHCH₂CO₂H, -NHCH₂CO₂Et, -NHCH₂CO₂Et, -NHCH₂CONH₂,
 -NHCH₂CONMe₂, -N(Me)CH₂CH₂NMe₂, -N(Me)CH₂CH₂OMe, -

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Still, a further embodiment of the invention provides a compound of the following formula:

wherein:

Ar1 is independently selected from the group consisting of:

each R is independently Me, OMe, NH₂, NHMe, NMe₂, -SMe, -SO₂Me, OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

Ar3 is independently selected from the group consisting of:

each R^{1d1} is independently selected from the group consisting of:

H, -Me, -Cl, -OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃,
 -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂,
 -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

-NMe₂, -NHCH₂CH₂NMe₂, -N(CH₂CH₂OMe)₂, -NHCH₂CO₂H, -NHCH₂CO₂Et, -NHCH₂CO₂Et, -NHCH₂CONH₂, -NHCH₂CONMe₂, -N(Me)CH₂CH₂NMe₂, -N(Me)CH₂CH₂OMe, -NHCH₂CH₂OMe, -NHCH₂CH₂OMe,

each R1d2 and R1d3 is independently selected from the group consisting of:

H, -Me, -F, -Cl, -Br, I, -CH₃-CF₃, -CN, -CO₂H, -CO₂Me, -CO₂Et, -CONH₂, -CONHMe, -CONMe₂, -CH₂NH₂, -CH₂NHMe, -CH₂NMe₂, -COMe, CH₂COOH, -CH₂COOEt,

-OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃,
 -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂,
 -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

-SCH₃, -SO₂NH₂, -SO₂CH₃, -SO₂NMe₂,

-NMe₂, -NHCH₂CH₂NMe₂, -N(CH₂CH₂OH)₂, -N(CH₂CH₂OMe)₂,
 -NHCH₂CO₂H, -NHCH₂CO₂Et, -NHCH₂CO₂Et, -NHCH₂CONH₂,
 -NHCH₂CONMe₂, -N(Me)CH₂CH₂NMe₂, -N(Me)CH₂CH₂OMe, -

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides the compounds of the following formula:

wherein:

Ar1 is independently selected from the group consisting of:

each R is independently Cl, OMe, NMe₂, OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

Ar3 is independently selected from the group consisting of:

each R^{1d1} is independently H, -Me, -Cl,

-OCH₃, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,
-NMe₂, -N(Me)CH₂CH₂NMe₂, -N(Me)CH₂CH₂OMe,

each R1d2 and R1d3 is independently selected from the group consisting of:

H, C≡CH, C≡CH, -Me, -F, -Cl, -Br, -CF₃, -CN, -CO₂H, -CO₂Me, -CO₂Et,
-CONH₂, -CH₂NMe₂, -COMe, -NMe₂, -SMe,
-SCH₂CH₂OMe, -SO₂CH₂CH₂OMe, -SCH₃, -SO₂NH₂, -SO₂CH₃, -SO₂NMe₂,
and -SO₂CH₂CH₂NMe₂;

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Still another embodiment of the invention provides the compounds of the following formula:

wherein:

Ar1 is independently selected from the group consisting of:

each R is independently Cl, OMe, NMe₂, OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

Ar3 is independently selected from the group consisting of:

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the present invention provides the compounds of the following formula:

wherein:

Ar1 is independently

each R is independently -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides the compounds of the following formula:

wherein:

Ar1 is independently

each R is independently -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides compounds of the following formula:

wherein:

Ar1 is independently

each R is independently -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides the compounds of the following formula:

wherein:

Ar1 is independently

each R is independently -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

A further embodiment of the invention provides the compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides the compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the present invention of the following formula:

wherein:

each R_{1d2} is independently H, F, Cl, Br, OMe or SMe;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides the compounds of the following formula:

wherein:

each R^{1d1} is independently H, OMe, or NMe₂;

each R^{1d3} is independently Cl or Br, $C\equiv CH$ or $C\equiv C-H$;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides the compounds of the following formula:

wherein:

each R^{1d3} is independently H, Cl, Br, SMe, $C\equiv CH$ or $C\equiv C-H$;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

A further embodiment of the present invention provides the compounds of the following formula:

wherein:

each R1d3 is independently Cl, Br, C≡CH or C=CH;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the present invention provides the compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe2, -OCH2CH2OMe, -OCH2CH2NMe2,

each R1d3 is independently Cl, Br, SMe, $\text{C}\equiv\text{CH}$ or $\text{C}\equiv\text{C}-\text{CH}_3$;
and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

A further embodiment of the present invention provides the compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R1d3 is independently -Cl, -Br, SMe, $\text{C}\equiv\text{CH}$ or $\text{C}\equiv\text{C}-\text{CH}_3$;

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides the compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R_{1d2} is independently H, Cl, Br, SMe, C≡CH or C≡CCH;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the present invention provides the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -SMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R1d3 is independently Cl, Br, SMe, $\text{C}\equiv\text{CH}$ or $\text{C}\equiv\text{C-CH}_3$;

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides the compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R1d3 is independently Cl, Br, SMe, C≡CH or C≡—CH;

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the present invention provides the compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R1d3 is independently Cl, Br, SMe, C≡CH or C≡C—CH₃;

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the invention provides compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R₁d₃ is independently Cl, Br, SMe, C≡CH or C≡CCH₃;

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the present invention provides the compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R1d3 is independently Cl, Br, SMe, $\text{C}\equiv\text{CH}$ or $\text{C}\equiv\text{CH}_2$.

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

Another embodiment of the present invention provides the compounds of the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R1d3 is independently Cl, Br, SMe, $\text{C}\equiv\text{CH}$ or $\text{C}=\text{CH}$;
and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

The invention also encompasses all pharmaceutically acceptable salts, hydrates, solvates, and prodrug derivatives of the above compounds. In addition, the above compounds can exist in various isomeric and tautomeric forms, and all such forms are meant to be included in the invention, along with pharmaceutically acceptable salts, hydrates, solvates, and prodrug derivatives of such isomers and tautomers.

The compounds of the invention may be isolated as the free acid or base or converted to salts of various inorganic and organic acids and bases. Such salts are within the scope of the invention. Non-toxic and physiologically compatible salts are particularly useful, but less desirable salts may have use in the processes of isolation and purification.

A number of methods are useful for the preparation of the salts described above and are known to those skilled in the art. For example, the free acid or free base form of a compound of one of the formulas above can be reacted with one or more molar equivalents of the desired acid or base in a solvent or solvent mixture in which the salt is insoluble, or in a solvent like water after which the solvent is removed by evaporation, distillation or freeze drying. Alternatively, the free acid or base form of the product may be passed over an ion exchange resin to form the desired salt or one salt form of the product may be converted to another using the same general process.

Prodrug Derivatives of Compounds

The invention also encompasses prodrug derivatives of the compounds contained herein. The term "prodrug" refers to a pharmacologically inactive derivative of a parent drug molecule that requires biotransformation, either spontaneous or enzymatic, within the organism to release the active drug. Prodrugs are variations or derivatives of the

compounds of the invention which have groups cleavable under metabolic conditions. Prodrugs become the compounds of the invention which are pharmaceutically active *in vivo*, when they undergo solvolysis under physiological conditions or undergo enzymatic degradation. Prodrug compounds of the invention may be called single, double, triple etc., depending on the number of biotransformation steps required to release the active drug within the organism, and indicating the number of functionalities present in a precursor-type form. Prodrug forms often offer advantages of solubility, tissue compatibility, or delayed release in the mammalian organism (see, Bundgard, Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985 and Silverman, The Organic Chemistry of Drug Design and Drug Action, pp. 352-401, Academic Press, San Diego, CA, 1992). Prodrugs commonly known in the art include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acids with a suitable alcohol, or amides prepared by reaction of the parent acid compound with an amine, or basic groups reacted to form an acylated base derivative. Moreover, the prodrug derivatives of the invention may be combined with other features herein taught to enhance bioavailability.

The compounds of the present invention may also be used alone or in combination or in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of the invention may be coadministered along with other compounds typically prescribed for these conditions according to generally accepted medical practice such as anticoagulant agents, thrombolytic agents, or other antithrombotics, including platelet aggregation inhibitors, tissue plasminogen activators, urokinase, prourokinase, streptokinase, heparin, aspirin, or warfarin. The compounds of the present invention may act in a synergistic fashion to prevent reocclusion following a successful thrombolytic therapy and/or reduce the time to reperfusion. These compounds may also allow for reduced doses of the thrombolytic agents to be used and therefore minimize potential hemorrhagic side-effects. The compounds of the invention can be utilized *in vivo*, ordinarily in mammals such as primates, (e.g. humans), sheep, horses, cattle, pigs, dogs, cats, rats and mice, or *in vitro*.

The biological properties of the compounds of the present invention can be

readily characterized by methods that are well known in the art such as, for example, by the *in vitro* protease activity assays and *in vivo* studies to evaluate antithrombotic efficacy, and effects on hemostasis and hematological parameters, such as are illustrated in the examples.

Diagnostic applications of the compounds of the invention will typically utilize formulations in the form of solutions or suspensions. In the management of thrombotic disorders, the compounds of the invention may be utilized in compositions such as tablets, capsules or elixirs for oral administration, suppositories, sterile solutions or suspensions or injectable administration, and the like, or incorporated into shaped articles. Subjects in need of treatment (typically mammalian) using the compounds of the invention can be administered dosages that will provide optimal efficacy. The dose and method of administration will vary from subject to subject and be dependent upon such factors as the type of mammal being treated, its sex, weight, diet, concurrent medication, overall clinical condition, the particular compounds employed, the specific use for which these compounds are employed, and other factors which those skilled in the medical arts will recognize.

As mentioned above, the compounds of this invention find utility as therapeutic agents for disease states in mammals which have disorders of coagulation such as in the treatment or prevention of unstable angina, refractory angina, myocardial infarction, transient ischemic attacks, thrombotic stroke, embolic stroke, disseminated intravascular coagulation including the treatment of septic shock, deep venous thrombosis in the prevention of pulmonary embolism or the treatment of reocclusion or restenosis of reperfused coronary arteries. Further, these compounds are useful for the treatment or prophylaxis of those diseases which involve the production and/or action of factor Xa/prothrombinase complex. This includes a number of thrombotic and prothrombotic states in which the coagulation cascade is activated which include but are not limited to, deep venous thrombosis, pulmonary embolism, myocardial infarction, stroke, thromboembolic complications of surgery and peripheral arterial occlusion.

Accordingly, a method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprises administering to the mammal a therapeutically effective amount of a compound of this invention. In addition to the disease states noted above, other diseases treatable or preventable by the administration of compounds of this invention include, without limitation, occlusive coronary thrombus formation resulting from either thrombolytic therapy or percutaneous transluminal coronary angioplasty, thrombus formation in the venous vasculature, disseminated intravascular coagulopathy, a condition wherein there is rapid consumption of coagulation factors and systemic coagulation which results in the formation of life-threatening thrombi occurring throughout the microvasculature leading to widespread organ failure, hemorrhagic stroke, renal dialysis, blood oxygenation, and cardiac catheterization.

The compounds of the invention also find utility in a method for inhibiting the coagulation biological samples, which comprises the administration of a compound of the invention.

The compounds of the present invention may also be used in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of this invention may be coadministered along with other compounds typically prescribed for these conditions according to generally accepted medical practice such as anticoagulant agents, thrombolytic agents, or other antithrombotics, including platelet aggregation inhibitors, tissue plasminogen activators, urokinase, prourokinase, streptokinase, heparin, aspirin, or warfarin. The compounds of the present invention may act in a synergistic fashion to prevent reocclusion following a successful thrombolytic therapy and/or reduce the time to reperfusion. These compounds may also allow for reduced doses of the thrombolytic agents to be used and therefore minimize potential hemorrhagic side-effects. The compounds of this invention can be utilized *in vivo*, ordinarily in mammals such as primates, (e.g. humans), sheep, horses, cattle, pigs, dogs, cats, rats and mice, or *in vitro*.

The biological properties of the compounds of the present invention can be readily characterized by methods that are well known in the art, for example by the *in vitro* protease activity assays and *in vivo* studies to evaluate antithrombotic efficacy, and effects on hemostasis and hematological parameters, such as are illustrated in the examples.

Diagnostic applications of the compounds of this invention will typically utilize formulations in the form of solutions or suspensions. In the management of thrombotic disorders the compounds of this invention may be utilized in compositions such as tablets, capsules or elixirs for oral administration, suppositories, sterile solutions or suspensions or injectable administration, and the like, or incorporated into shaped articles. Subjects in need of treatment (typically mammalian) using the compounds of this invention can be administered dosages that will provide optimal efficacy. The dose and method of administration will vary from subject to subject and be dependent upon such factors as the type of mammal being treated, its sex, weight, diet, concurrent medication, overall clinical condition, the particular compounds employed, the specific use for which these compounds are employed, and other factors which those skilled in the medical arts will recognize.

Formulations of the compounds of this invention are prepared for storage or administration by mixing the compound having a desired degree of purity with physiologically acceptable carriers, excipients, stabilizers etc., and may be provided in sustained release or timed release formulations. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical field, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co., (A.R. Gennaro edit. 1985). Such materials are nontoxic to the recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, acetate and other organic acid salts, antioxidants such as ascorbic acid, low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as serum albumin, gelatin, or immunoglobulins, hydrophilic polymers such as polyvinylpyrrolidinone, amino acids such as glycine, glutamic acid, aspartic acid, or arginine, monosaccharides,

disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose or dextrans, chelating agents such as EDTA, sugar alcohols such as mannitol or sorbitol, counterions such as sodium and/or nonionic surfactants such as Tween, Pluronics or polyethyleneglycol.

Dosage formulations of the compounds of this invention to be used for therapeutic administration must be sterile. Sterility is readily accomplished by filtration through sterile membranes such as 0.2 micron membranes, or by other conventional methods. Formulations typically will be stored in lyophilized form or as an aqueous solution. The pH of the preparations of this invention typically will be 3-11, more preferably 5-9 and most preferably 7-8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of cyclic polypeptide salts. While the preferred route of administration is by injection, other methods of administration are also anticipated such as orally, intravenously (bolus and/or infusion), subcutaneously, intramuscularly, colonically, rectally, nasally, transdermally or intraperitoneally, employing a variety of dosage forms such as suppositories, implanted pellets or small cylinders, aerosols, oral dosage formulations and topical formulations such as ointments, drops and dermal patches. The compounds of this invention are desirably incorporated into shaped articles such as implants which may employ inert materials such as biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers commercially available.

The compounds of the invention may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of lipids, such as cholesterol, stearylamine or phosphatidylcholines.

The compounds of this invention may also be delivered by the use of antibodies, antibody fragments, growth factors, hormones, or other targeting moieties, to which the compound molecules are coupled. The compounds of this invention may also be coupled with suitable polymers as targetable drug carriers. Such polymers can include

polyvinylpyrrolidinone, pyran copolymer, polyhydroxy-propyl-methacrylamide-phenol, polyhydroxyethyl-aspartamide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, compounds of the invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels. Polymers and semipermeable polymer matrices may be formed into shaped articles, such as valves, stents, tubing, prostheses and the like.

Therapeutic compound liquid formulations generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by hypodermic injection needle.

Therapeutically effective dosages may be determined by either *in vitro* or *in vivo* methods. For each particular compound of the present invention, individual determinations may be made to determine the optimal dosage required. The range of therapeutically effective dosages will be influenced by the route of administration, the therapeutic objectives and the condition of the patient. For injection by hypodermic needle, it may be assumed the dosage is delivered into the body's fluids. For other routes of administration, the absorption efficiency must be individually determined for each compound by methods well known in pharmacology. Accordingly, it may be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. The determination of effective dosage levels, that is, the dosage levels necessary to achieve the desired result, will be readily determined by one skilled in the art. Typically, applications of compound are commenced at lower dosage levels, with dosage levels being increased until the desired effect is achieved.

The "therapeutically effective amount" of a compound of the present invention will depend on the route of administration, the type of warm-blooded animal being treated, and the physical characteristics of the specific animal under consideration. These factors and their relationship to determining this amount are well known to skilled

practitioners in the medical arts. This amount and the method of administration can be tailored to achieve optimal efficacy but will depend on such factors as weight, diet, concurrent medication and other factors which as noted those skilled in the medical arts will recognize.

The "therapeutically effective amount" of the compound of the present invention can range broadly depending upon the desired affects and the therapeutic indication. Typically, dosages will be between about 0.01 mg/kg and 100 mg/kg body weight, preferably between about 0.01 and 10 mg/kg, body weight.

"Pharmaceutically acceptable carriers" for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remingtons Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985). For example, sterile saline and phosphate-buffered saline at physiological pH may be used. Preservatives, stabilizers, dyes and even flavoring agents may be provided in the pharmaceutical composition. For example, sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid may be added as preservatives. In addition, antioxidants and suspending agents may be used.

The compounds of the invention can be administered orally or parenterally in an effective amount within the dosage range of about 0.1 to 100 mg/kg, preferably about 0.5 to 50 mg/kg and more preferably about 1 to 20 mg/kg on a regimen in a single or 2 to 4 divided daily doses and/or continuous infusion.

Typically, about 5 to 500 mg of a compound or mixture of compounds of this invention, as the free acid or base form or as a pharmaceutically acceptable salt, is compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, dye, flavor etc., as called for by accepted pharmaceutical practice. The amount of active ingredient in these compositions is such that a suitable dosage in the range indicated is obtained.

Typical adjuvants which may be incorporated into tablets, capsules and the like are binders such as acacia, corn starch or gelatin, and excipients such as microcrystalline cellulose, disintegrating agents like corn starch or alginic acid, lubricants such as magnesium stearate, sweetening agents such as sucrose or lactose, or flavoring agents.

When a dosage form is a capsule, in addition to the above materials it may also contain liquid carriers such as water, saline, or a fatty oil. Other materials of various types may be used as coatings or as modifiers of the physical form of the dosage unit. Sterile compositions for injection can be formulated according to conventional pharmaceutical practice. For example, dissolution or suspension of the active compound in a vehicle such as an oil or a synthetic fatty vehicle like ethyl oleate, or into a liposome may be desired. Buffers, preservatives, antioxidants and the like can be incorporated according to accepted pharmaceutical practice.

Preparation of Compounds

The compounds of the present invention may be synthesized by either solid or liquid phase methods described and referenced in standard textbooks, or by a combination of both methods. These methods are well known in the art. See, Bodanszky, "The Principles of Peptide Synthesis", Hafner, *et al.*, Eds., Springer-Verlag, Berlin, 1984.

Starting materials used in any of these methods are commercially available from chemical vendors such as Aldrich, Sigma, Nova Biochemicals, Bachem Biosciences, and the like, or may be readily synthesized by known procedures.

Reactions are carried out in standard laboratory glassware and reaction vessels under reaction conditions of standard temperature and pressure, except where otherwise indicated.

During the synthesis of these compounds, the functional groups of the amino acid derivatives used in these methods are protected by blocking groups to prevent cross reaction during the coupling procedure. Examples of suitable blocking groups and their use are described in "The Peptides: Analysis, Synthesis, Biology", Academic Press, Vol.

3 (Gross, *et al.*, Eds., 1981) and Vol. 9 (1987), the disclosures of which are incorporated herein by reference.

Compounds according to the invention can be synthesized utilizing procedures well known in the art. The reaction products are isolated and purified by conventional methods, typically by solvent extraction into a compatible solvent. The products may be further purified by column chromatography or other appropriate methods.

Compositions and Formulations

The compounds of this invention may be isolated as the free acid or base or converted to salts of various inorganic and organic acids and bases. Such salts are within the scope of this invention. Non-toxic and physiologically compatible salts are particularly useful although other less desirable salts may have use in the processes of isolation and purification.

A number of methods are useful for the preparation of the salts described above and are known to those skilled in the art. For example, reaction of the free acid or free base form of a compound of the structures recited above with one or more molar equivalents of the desired acid or base in a solvent or solvent mixture in which the salt is insoluble, or in a solvent like water after which the solvent is removed by evaporation, distillation or freeze drying. Alternatively, the free acid or base form of the product may be passed over an ion exchange resin to form the desired salt or one salt form of the product may be converted to another using the same general process.

Diagnostic applications of the compounds of this invention will typically utilize formulations such as solution or suspension. In the management of thrombotic disorders the compounds of this invention may be utilized in compositions such as tablets, capsules or elixirs for oral administration, suppositories, sterile solutions or suspensions or injectable administration, and the like, or incorporated into shaped articles. Subjects in need of treatment (typically mammalian) using the compounds of this invention can be administered dosages that will provide optimal efficacy. The dose and method of

administration will vary from subject to subject and be dependent upon such factors as the type of mammal being treated, its sex, weight, diet, concurrent medication, overall clinical condition, the particular compounds employed, the specific use for which these compounds are employed, and other factors which those skilled in the medical arts will recognize.

Formulations of the compounds of this invention are prepared for storage or administration by mixing the compound having a desired degree of purity with physiologically acceptable carriers, excipients, stabilizers etc., and may be provided in sustained release or timed release formulations. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical field, and are described, for example, in *Remington's Pharmaceutical Sciences*, Mack Publishing Co., (A.R. Gennaro edit. 1985). Such materials are nontoxic to the recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, acetate and other organic acid salts, antioxidants such as ascorbic acid, low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as serum albumin, gelatin, or immunoglobulins, hydrophilic polymers such as polyvinylpyrrolidinone, amino acids such as glycine, glutamic acid, aspartic acid, or arginine, monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose or dextrans, chelating agents such as EDTA, sugar alcohols such as mannitol or sorbitol, counterions such as sodium and/or nonionic surfactants such as Tween, Pluronics or polyethyleneglycol.

Dosage formulations of the compounds of this invention to be used for therapeutic administration must be sterile. Sterility is readily accomplished by filtration through sterile membranes such as 0.2 micron membranes, or by other conventional methods. Formulations typically will be stored in lyophilized form or as an aqueous solution. The pH of the preparations of this invention typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of cyclic polypeptide salts. While the preferred route of administration is by injection, other

methods of administration are also anticipated such as intravenously (bolus and/or infusion), subcutaneously, intramuscularly, colonically, rectally, nasally or intraperitoneally, employing a variety of dosage forms such as suppositories, implanted pellets or small cylinders, aerosols, oral dosage formulations and topical formulations such as ointments, drops and dermal patches. The compounds of this invention are desirably incorporated into shaped articles such as implants which may employ inert materials such as biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers commercially available.

The compounds of this invention may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of lipids, such as cholesterol, stearylamine or phosphatidylcholines.

The compounds of this invention may also be delivered by the use of antibodies, antibody fragments, growth factors, hormones, or other targeting moieties, to which the compound molecules are coupled. The compounds of this invention may also be coupled with suitable polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxy-propyl-methacrylamide-phenol, polyhydroxyethyl-aspartamide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the factor Xa inhibitors of this invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels. Polymers and semipermeable polymer matrices may be formed into shaped articles, such as valves, stents, tubing, prostheses and the like.

Therapeutic compound liquid formulations generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by hypodermic injection needle.

Therapeutically effective dosages may be determined by either *in vitro* or *in vivo* methods. For each particular compound of the present invention, individual determinations may be made to determine the optimal dosage required. The range of therapeutically effective dosages will naturally be influenced by the route of administration, the therapeutic objectives, and the condition of the patient. For injection by hypodermic needle, it may be assumed the dosage is delivered into the body's fluids. For other routes of administration, the absorption efficiency must be individually determined for each inhibitor by methods well known in pharmacology. Accordingly, it may be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. The determination of effective dosage levels, that is, the dosage levels necessary to achieve the desired result, will be within the ambit of one skilled in the art. Typically, applications of compound are commenced at lower dosage levels, with dosage levels being increased until the desired effect is achieved.

A typical dosage might range from about 0.001 mg/kg to about 1000 mg/kg, preferably from about 0.01 mg/kg to about 100 mg/kg, and more preferably from about 0.10 mg/kg to about 20 mg/kg. Advantageously, the compounds of this invention may be administered several times daily, and other dosage regimens may also be useful.

Typically, about 0.5 to 500 mg of a compound or mixture of compounds of this invention, as the free acid or base form or as a pharmaceutically acceptable salt, is compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, dye, flavor etc., as called for by accepted pharmaceutical practice. The amount of active ingredient in these compositions is such that a suitable dosage in the range indicated is obtained.

Typical adjuvants which may be incorporated into tablets, capsules and the like are a binder such as acacia, corn starch or gelatin, and excipient such as microcrystalline cellulose, a disintegrating agent like corn starch or alginic acid, a lubricant such as

magnesium stearate, a sweetening agent such as sucrose or lactose, or a flavoring agent. When a dosage form is a capsule, in addition to the above materials it may also contain a liquid carrier such as water, saline, a fatty oil. Other materials of various types may be used as coatings or as modifiers of the physical form of the dosage unit. Sterile compositions for injection can be formulated according to conventional pharmaceutical practice. For example, dissolution or suspension of the active compound in a vehicle such as an oil or a synthetic fatty vehicle like ethyl oleate, or into a liposome may be desired. Buffers, preservatives, antioxidants and the like can be incorporated according to accepted pharmaceutical practice.

In practicing the methods of this invention, the compounds of this invention may be used alone or in combination, or in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of this inventions may be coadministered along with other compounds typically prescribed for these conditions according to generally accepted medical practice, such as anticoagulant agents, thrombolytic agents, or other antithrombotics, including platelet aggregation inhibitors, tissue plasminogen activators, urokinase, prourokinase, streptokinase, heparin, aspirin, or warfarin. The compounds of this invention can be utilized *in vivo*, ordinarily in mammals such as primates, such as humans, sheep, horses, cattle, pigs, dogs, cats, rats and mice, or *in vitro*.

The preferred compounds of the present invention are characterized by their ability to inhibit thrombus formation with acceptable effects on classical measures of coagulation parameters, platelets and platelet function, and acceptable levels of bleeding complications associated with their use. Conditions characterized by undesired thrombosis would include those involving the arterial and venous vasculature.

With respect to the coronary arterial vasculature, abnormal thrombus formation characterizes the rupture of an established atherosclerotic plaque which is the major cause of acute myocardial infarction and unstable angina, as well as also characterizing the

occlusive coronary thrombus formation resulting from either thrombolytic therapy or percutaneous transluminal coronary angioplasty (PTCA).

With respect to the venous vasculature, abnormal thrombus formation characterizes the condition observed in patients undergoing major surgery in the lower extremities or the abdominal area who often suffer from thrombus formation in the venous vasculature resulting in reduced blood flow to the affected extremity and a predisposition to pulmonary embolism. Abnormal thrombus formation further characterizes disseminated intravascular coagulopathy commonly occurs within both vascular systems during septic shock, certain viral infections and cancer, a condition wherein there is rapid consumption of coagulation factors and systemic coagulation which results in the formation of life-threatening thrombi occurring throughout the microvasculature leading to widespread organ failure.

The compounds of this present invention, selected and used as disclosed herein, are believed to be useful for preventing or treating a condition characterized by undesired thrombosis, such as (a) the treatment or prevention of any thrombotically mediated acute coronary syndrome including myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, (b) the treatment or prevention of any thrombotically mediated cerebrovascular syndrome including embolic stroke, thrombotic stroke or transient ischemic attacks, (c) the treatment or prevention of any thrombotic syndrome occurring in the venous system including deep venous thrombosis or pulmonary embolus occurring either spontaneously or in the setting of malignancy, surgery or trauma, (d) the treatment or prevention of any coagulopathy including disseminated intravascular coagulation (including the setting of septic shock or other infection, surgery, pregnancy, trauma or malignancy and whether associated with multi-organ failure or not), thrombotic thrombocytopenic purpura, thromboangiitis obliterans, or thrombotic disease associated with heparin induced thrombocytopenia, (e) the treatment or prevention of thrombotic complications associated with extracorporeal circulation (e.g. renal dialysis, cardiopulmonary bypass or other oxygenation procedure, plasmapheresis), (f) the

treatment or prevention of thrombotic complications associated with instrumentation (e.g. cardiac or other intravascular catheterization, intra-aortic balloon pump, coronary stent or cardiac valve), and (g) those involved with the fitting of prosthetic devices.

Anticoagulant therapy is also useful to prevent coagulation of stored whole blood and to prevent coagulation in other biological samples for testing or storage. Thus the compounds of this invention can be added to or contacted with any medium containing or suspected to contain factor Xa and in which it is desired that blood coagulation be inhibited, e.g., when contacting the mammal's blood with material such as vascular grafts, stents, orthopedic prostheses, cardiac stents, valves and prostheses, extra corporeal circulation systems and the like.

The following examples are provided to illustrate the invention. The examples are not intended to limit the scope of the present invention and they should not be so interpreted. Amounts are in weight parts or weight percentages unless otherwise indicated. Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods.

EXAMPLES

Examples of Chemical Production Process General Reaction Schemes

Scheme 1

Synthesis:

The compounds of the invention as described herein can be readily synthesized by following the intermediates and schemes from PCT application WO 01/19788, which is incorporated in its entirety by reference. More specifically,

EXAMPLES and PROCEDURES

Scheme 1

Example 1

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}-carboxamide (4)

Step 1:

To a stirring solution of 4-ethynylaniline (4.9 g, 42 mmol) and 5-chloro-2-nitrobenzoic acid (8.1 g, 40 mmol) in anhydrous pyridine (40 mL) at -0°C was added POCl₃ (12.0 g, 80 mmol) dropwise. Upon completion of addition, The reaction was quenched with ice water. The mixture was concentrated and diluted with EtOAc (150 mL). The organic solution was washed with 1N HCl (2x) and brine, dried and evaporated to give compound 1 (9.6 g, 80%) as a brownish solid. MS found for C₁₄H₈CIN₃O₃ as (M+Na)⁺: 323.0.

Step 2:

To a solution of compound 1 (9.6 g, 32 mmol) in THF (80 mL) and 1,4-dioxane (80 mL) was added an aqueous solution of Na₂S₂O₄ (27.8 g, 160 mmol in 160 mL water). The mixture was stirred at rt for 1h. The organic solvent was removed by rotavap. The aqueous solution was basified by NaHCO₃ to pH = 9 and extracted with EtOAc (150 mL). The organic layer was washed with brine, dried and evaporated to give compound 1 (8.2 g, 95%) as a yellow solid. MS found for C₁₄H₁₀CIN₃O as (M+H)⁺: 271.1.

Step 3:

To a solution of compound 2 (1.0 g, 3.7 mmol) in CH₂Cl₂ (20 mL) and pyridine (2 mL) was added 4-cyano-benzoylchloride (800 mg, 5.4 mmol). After stirring at ambient temperatures overnight, the mixture was concentrated. The product was precipitated out from a mixture of THF, MeOH and water. Upon filtration, 1.2 g of compound 3 was obtained (81% yield) as an offwhite solid. MS found for C₂₃H₁₄CIN₃O₂ as (M+Na)⁺: 422.0.

Step 4:

To a solution of compound 3 (150 mg) in 10% Et₃N/pyridine (5 mL) at 0°C was bubbled dry H₂S gas to saturation. The mixture was stirred at ambient temperatures overnight. The volatile was removed to dryness. The residue was suspended in anhydrous acetone (10 mL), followed by addition of MeI (0.2 mL). The reaction mixture was refluxed for 3 hour. The solvent was removed by rotary evaporation. The residue was dissolved in anhydrous MeOH (5 mL). A mixture of dimethylamine (0.32 mL, 2N in THF) and AcOH (37 µL) was added to the solution. The

resulting mixture was refluxed for 1 hour, concentrated and subjected to RP-HPLC purification to give the title compound **4**. MS found for $C_{25}H_{21}ClN_4O_2$ ($M+H$) $^+$: 445.1.

Example 2

N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl]{4-(1-methyl(2-imidazolin-2-yl))phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{26}H_{21}ClN_4O_2$ ($M+H$) $^+$: 457.1.

Example 3

Ethyl 1-[(4-(N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)phenyl]iminomethyl]-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{31}H_{29}ClN_4O_4$ as ($M+H$) $^+$: 557.2.

Example 4

1-[(4-(N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)phenyl]iminomethyl]-piperidine-4-carboxylic acid

To a solution of ethyl 1-{[4-(N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carbamoyl)-phenyl]iminomethyl}piperidine-4-carboxylate in EtOH was added 1N aq. LiOH (1 mL). The mixture was stirred for 3 hours, concentrated and purified by RP-HPLC to give the titled compound. MS found for C₂₉H₂₅ClN₄O₄ (M+1)⁺: 529.1.

Example 5

1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for C₂₉H₂₆ClN₅O₃ as (M+H)⁺: 528.1.

Example 6

N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)(4-[(4-(hydroxymethyl)piperidyl]imino-methyl)phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for C₂₉H₂₇ClN₄O₃ as (M+H)⁺: 515.2.

Example 7

[4-((2-dimethylamino)ethyl)methylamino]iminomethyl)phenyl]-N-(4-chloro-2-[N-(4-ethynyl-phenyl)carbamoyl]phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{28}H_{28}ClN_5O_2$ as $(M+H)^+$: 502.2.

Example 8

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{25}H_{20}ClFN_4O_2$ as $(M+H)^+$: 463.1.

Example 9

N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{26}H_{20}ClFN_4O_2$ as $(M+H)^+$: 475.1.

Example 10

Ethyl 1-{{4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)-3-fluorophenyl}iminomethyl}piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{31}H_{28}ClFN_4O_4$ as $(M+H)^+$: 575.2.

Example 11

1-{[4-(N-{4-chloro-2-[N-(4-ethynyl)phenyl]carbamoyl}phenyl)carbamoyl]-3-fluorophenyl]iminomethyl}piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 4.
MS found for $C_{29}H_{24}ClFN_4O_4$ as $(M+H)^+$: 547.1.

Example 12

1-{[4-(N-{4-chloro-2-[N-(4-ethynyl)phenyl]carbamoyl}phenyl)carbamoyl]-3-fluorophenyl]iminomethyl}piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{29}H_{25}ClFN_5O_3$ as $(M+H)^+$: 546.1.

Example 13

N-(4-chloro-2-[N-(4-ethynyl)phenyl]carbamoyl)phenyl](2-fluoro-4-{[4-(hydroxymethyl)piperidyl]iminomethyl}phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{20}H_{26}ClFN_4O_3$ as $(M+H)^+$: 533.2.

Example 14

[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]-2-fluorophenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{26}H_{27}ClFN_5O_2$ as $(M+H)^+$: 520.2.

Example 15

N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}{4-[(ethylmethylamino)iminomethyl]-2-fluorophenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{26}H_{22}ClFN_4O_2$ as $(M+H)^+$: 477.1.

Example 16

[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]-2-fluorophenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{29}H_{29}ClFN_5O_2$ as $(M+H)^+$: 534.2.

Example 17

{4-[(dimethylamino)iminomethyl]phenyl}-N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{26}H_{24}N_4O_3$ as $(M+H)^+$: 441.2.

Example 18

N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{27}H_{24}N_4O_3$ as $(M+H)^+$: 453.2.

Example 19

Ethyl 1-{[4-(N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carbamoyl)phenyl]iminomethyl}piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{32}H_{32}N_4O_5$ as $(M+H)^+$: 553.3.

Example 20

Methyl 1-[4-(N-{2-[N-(4-ethynylphenyl)carbamoyl]phenyl}iminomethyl)piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{31}H_{30}N_4O_5$ as $(M+H)^+$: 539.2.

Example 21

1-[4-(N-{2-[N-(4-ethynylphenyl)carbamoyl]phenyl}iminomethyl)piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{30}H_{28}N_4O_5$ as $(M+H)^+$: 525.2.

Example 22

1-[4-(N-{2-[N-(4-ethynylphenyl)carbamoyl]phenyl}iminomethyl)piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{30}H_{29}N_5O_4$ as $(M+H)^+$: 524.2.

Example 23

[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]phenyl]-N-(2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{29}H_{31}N_5O_3$ as $(M+H)^+$: 498.2.

Example 24

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-(2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{26}H_{23}FN_4O_3$ as $(M+H)^+$: 459.1.

Example 25

N-(2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl){[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide}

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{27}H_{23}FN_4O_3$ as $(M+H)^+$: 471.1.

Example 26

Ethyl 1-{[4-(N-[2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl]carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{32}H_{31}FN_4O_5$ as $(M+H)^+$: 571.2.

Example 27

Methyl 1-{[4-(N-[2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl]carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{31}H_{29}FN_4O_5$ as $(M+H)^+$: 557.2.

Example 28

1-{[4-(N-[2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl]carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 4.
MS found for $C_{30}H_{27}FN_4O_5$ as $(M+H)^+$: 543.2.

Example 29

1-[{4-(N-(2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl)carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{30}H_{28}FN_5O_4$ as $(M+H)^+$: 542.2.

Example 30

[4-({[3-(dimethylamino)propyl]methylamino}iminomethyl)-2-fluorophenyl]-N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{30}H_{32}FN_5O_3$ as $(M+H)^+$: 530.2.

Example 31

N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}[2-fluoro-4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{29}H_{27}FN_4O_3$ as $(M+H)^+$: 499.2.

Example 32

4-(N-(2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl)carbamoyl)-3-fluorobenzenecarboxamidine

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{24}H_{19}FN_4O_3$ as $(M+H)^+$: 431.2.

Scheme 2

Example 33

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carboxamide (**9**)

Step 1:

To a solution of 2-amino-5-chloropyridine (6.4 g, 50 mmol) in anhydrous THF (60 mL) at -78°C was added Lithium bis(trimethylsilyl)amide (1N solution in THF, 100 mL) via a double ended needle. The mixture was stirred at -78°C for 30 min. To this solution, a suspension of 5-bromoisoatoic anhydride (12.1 g, 50 mmol) in anhydrous THF (60 mL) was added via a double ended needle. The mixture was stirred at -78°C for 20 min and then warmed up to rt and stirred for 3 h. The reaction was quenched with sat. NH₄Cl (100 mL). The organic layer was diluted with EtOAc, washed with sat. NaHCO₃, sat. NaCl, 1N HCl, sat NaCl, dried and evaporated to give compound **5** as an offwhite solid (12 g, 73.6%). ¹H NMR (DMSO-d₆, 400 MHz): δ 10.77 (s, 1H), 8.39 (d, 1H), 8.07 (d, 1H), 7.9 (dd, 1H), 7.84 (d, 1H), 7.3 (dd, 1H), 6.7 (dd, 1H), 6.5 (s, 2H).

Step 2:

To a solution of compound **5** (5.0 g, 15 mmol) in BuNH₂ (20 mL) was added tetrakis(triphenylphosphine)Pd(0) (520 mg, 0.45 mmol), CuI (57 mg, 0.45 mmol) and (trimethylsilyl)acetylene (2.94 g, 30 mmol). The mixture was stirred under reflux for 2 h, then cooled down to rt. To the mixture was added water and EtOAc. The organic layer was washed with 1 N HCl, sat. NaCl, sat NaHCO₃, and sat. NaCl again, dried and evaporated. The crude product was passed through a short plug of silica gel to give compound **6** (4.8 g, 91%). MS found for C₁₇H₁₈ClN₃OSi as (M+H)⁺: 344.1.

Step 3:

To a suspension of 4-cyano-2-fluoro benzoic acid (650 mg, 3.9 mmol) in CH₂Cl₂ (20 mL) were added 2 drops of DMF and oxalyl chloride (0.7 mL, 7.8 mmol). The mixture was stirred at rt overnight and became a clear solution. The volatile was evaporated to dryness to give 4-cyano-2-fluoro-bezoyl chloride. To a solution of compound **6** (900 mg, 2.62 mmol) in THF (10 mL) was added a THF solution of 4-cyano-2-fluoro-bezoyl chloride. The mixture was stirred for 1 h, and concentrated. The residue was dissolved in EtOAc, washed with sat NaHCO₃ and water. The

organic layer was dried and evaporated to give compound **7** (1.2 g, 94% yield). MS found for $C_{25}H_{20}ClFN_4O_2Si$ as $(M+H)^+$: 491.1.

Step 4:

To a solution of compound **7** (1.2 g, 2.4 mmol) in THF (10 mL) was added tetrabutylammonium fluoride (1N solution in THF, 2.6 mL). The mixture was stirred for 1 h and concentrated. The residue was dissolved in EtOAc, washed with water, dried and evaporated to give compound **8** (1.0 g, 100% yield). MS found for $C_{24}H_{19}ClFN_5O_2$ as $(M+H)^+$: 419.1.

Step 5:

From compound **8**, following the procedure similar to that described in Step 4, Example 1, the titled compound **9** was prepared. MS found for $C_{24}H_{19}ClFN_5O_2$ as $(M+H)^+$: 464.1.

Example 34

N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl][2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 33. MS found for $C_{25}H_{19}ClFN_5O_2$ as $(M+H)^+$: 476.1.

Example 35

Ethyl 1-{[4-(N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl]carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 33. MS found for $C_{30}H_{27}ClFN_5O_4$ as $(M+H)^+$: 576.1.

Example 36

Methyl 1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{29}H_{25}ClFN_5O_4$ as $(M+H)^+$: 562.2.

Example 37

1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 4.

MS found for $C_{29}H_{23}ClFN_5O_4$ as $(M+H)^+$: 548.1.

Example 38

1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{28}H_{24}ClFN_6O_3$ as $(M+H)^+$: 547.1.

Example 39

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}(2-fluoro-4-[(4-hydroxymethyl)piperidyl]iminomethyl)phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{28}H_{25}ClFN_5O_3$ as $(M+H)^+$: 534.1.

Example 40

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}[2-fluoro-4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{27}H_{23}ClFN_5O_2$ as $(M+H)^+$: 504.1.

Example 41

[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]-2-fluorophenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{27}H_{26}ClFN_6O_2$ as $(M+H)^+$: 521.1.

Example 42

[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]-2-fluorophenyl]-N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{28}H_{28}ClFN_6O_2$ as $(M+H)^+$: 535.2.

Example 43

{4-[(dimethylamino)iminomethyl]phenyl}-N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{24}H_{20}ClN_5O_2$ as $(M+H)^+$: 446.1.

Example 44

N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl]-[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{25}H_{20}ClN_5O_2$ as $(M+H)^+$: 458.1.

Example 45

Ethyl 1-{[4-(N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]phenyl]iminomethyl)phenyl]carbamoyl}phenyl]iminoethyl)piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 33.
MS found for $C_{30}H_{28}ClN_5O_4$ as $(M+H)^+$: 558.1.

Example 46

Methyl 1-{[4-(N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]phenyl]iminomethyl)phenyl]carbamoyl}phenyl]iminoethyl)piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 33.
MS found for $C_{29}H_{26}ClN_5O_4$ as $(M+H)^+$: 544.1.

Example 47

1-{[4-(N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]phenyl]iminomethyl)phenyl]carbamoyl}phenyl]iminoethyl)piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 4.
MS found for $C_{28}H_{24}ClN_5O_4$ as $(M+H)^+$: 530.1.

Example 48

1-{[4-(N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl]carbamoyl)phenyl]iminomethyl}piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 33.
MS found for $C_{28}H_{25}ClN_6O_3$ as $(M+H)^+$: 529.1.

Example 49

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}(4-{[4-(hydroxymethyl)piperidy]iminomethyl}phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 33.
MS found for $C_{28}H_{26}ClN_5O_3$ as $(M+H)^+$: 516.1.

Example 50

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 33.
MS found for $C_{27}H_{24}ClN_5O_2$ as $(M+H)^+$: 486.1.

Example 51

[4-({[2-(dimethylamino)ethyl]methylamino}iminomethyl)phenyl]-N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{27}H_{27}ClN_6O_2$ as $(M+H)^+$: 503.1.

Example 52

[4-({[3-(dimethylamino)propyl]methylamino}iminomethyl)phenyl]-N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 33.

MS found for $C_{28}H_{29}ClN_6O_2$ as $(M+H)^+$: 517.2.

Scheme 3**Example 53**

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl]carboxamide (**9**)

Step 1:

To a stirring solution of 2-amino-5-chloropyridine (6.5 g, 51 mmol) and 3-methoxy-2-nitrobenzoic acid (10.0 g, 50.8 mmol) in anhydrous THF (40 mL) and pyridine (16 mL) at 0°C was added POCl₃ (15.3 g, 102 mmol) dropwise. The mixture was stirred at 0°C for 20 min. Water (150 mL) was added and precipitate formed. The solid was collected by filtration, washed with water and dried to give compound **10** as a white solid (13.6 g, 88%). MS found for C₁₃H₁₀CIN₃O₄ as (M+Na)⁺: 319.0.

Step 2:

To a solution of compound 10 (7.2 g, 23.5 mmol) in 1,4-dioxane (50 mL) and THF (50 mL) at 50°C was added an aqueous solution of Na₂S₂O₄ (20 g, 117 mmol in 100 mL water). The mixture was stirred at 50°C overnight. The two layers were separated. To the organic layer was added water and precipitate formed. The solid was collected by filtration and washed with water. After drying *in vacuo*, 5.4 g of compound 11 was obtained as a yellow solid in 83% yield. MS found for C₁₃H₁₂ClN₃O₂ as (M+H)⁺: 278.

Step 3:

To a solution of compound 11 (4.82 g, 17.4 mmol) in toluene (100 mL) at 70°C was added N-bromosuccinimide (3.3 g, 18.6 mmol) in portions. The mixture was stirred at 70°C – 75°C for 15 min, cooled down and filtered through celite. The filtrate was washed with sat. NaHCO₃, sat. NaCl, dried and evaporated to give the crude compound 12 as dark brown solid (4.0 g, 65%). ¹H NMR (DMSO-d₆, 400 MHz): δ 10.73 (s, 1H), 8.39 (d, 1H), 8.06 (d, 1H), 7.9 (dd, 1H), 7.56 (d, 1H), 7.04 (d, 1H), 6.24 (s, 2H). MS found for C₁₃H₁₁BrClN₃O₂ as (M+H)⁺: 355.95, 358.0.

Step 4:

To a solution of compound 12 (3.0 g, 8.4 mmol) in BuNH₂ (15 mL) was added tetrakis(triphenylphosphine)Pd(0) (291 mg, 0.25 mmol), CuI (32 mg, 0.17 mmol) and (trimethylsilyl)acetylene (1.23 g, 12.6 mmol). The mixture was stirred under reflux for 2 h and cooled down to rt. The mixture was concentrated and passed through a short column of silica gel to give 3.4 g of compound 13. ¹H NMR (DMSO-d₆, 400 MHz): δ 10.73 (s, 1H), 8.39 (d, 1H), 8.0 (d, 1H), 7.9 (dd, 1H), 7.56 (d, 1H), 6.91 (d, 1H), 6.51 (s, 2H), 3.81 (s, 3H), 0.18 (s, 9H). MS found for C₁₈H₂₀ClN₃O₂Si as (M+H)⁺: 374.1.

Step 5:

To a solution of compound 13 (2.6 g, 7.0 mmol) in THF (20 mL) was added 4-cyano-2-fluoro-bezoyl chloride (1.38 g, 7.5 mmol, prepared according to Step 4, Example 33). The mixture was stirred for 1 h. It was diluted with EtOAc, washed with sat NaHCO₃ and water. The organic layer was dried and evaporated to give compound 14 (2.5 g, 69% yield). MS found for C₂₆H₂₂ClFIN₄O₃Si as (M+H)⁺: 521.

Step 6:

To a solution of compound 14 (2.25 g, 4.3 mmol) in THF (30 mL) was added tetrabutylammonium fluoride (1N solution in THF, 4.7 mL, 4.7 mmol). The mixture was stirred for 1h, then concentrated. The residue was dissolved in EtOAc, washed with water, dried and

evaporated. The crude material was triturated with 50% EtOAc/hexane to give compound 15 (1.85 g, 95% yield) as a solid. MS found for $C_{23}H_{14}ClFIN_4O_3$ as $(M+H)^+$: 449.05.

Step 7:

From compound 15, following the procedure similar to that described in Step 4, Example 1, the titled compound 16 was prepared. MS found for $C_{25}H_{21}ClFN_5O_3$ as $(M+H)^+$: 494.1.

Example 54

N-(2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl)[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 53. MS found for $C_{26}H_{21}ClFN_5O_3$ as $(M+H)^+$: 506.1.

Example 55

Ethyl 1-[(4-(N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl]carbamoyl)-3-fluorophenyl)iminomethyl]piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 53. MS found for $C_{31}H_{29}ClFN_5O_5$ as $(M+H)^+$: 606.2.

Example 56

Methyl 1-[(4-(N-[2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl]carbamoyl)-3-fluorophenyl)iminomethyl]piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{30}H_{27}ClFN_5O_5$ as $(M+H)^+$: 592.2.

Example 57

1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 4.
MS found for $C_{29}H_{25}ClFN_5O_5$ as $(M+H)^+$: 578.1.

Example 58

1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{29}H_{26}ClFN_5O_4$ as $(M+H)^+$: 577.1.

Example 59

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}(2-fluoro-4-[(4-(hydroxymethyl)piperidyl)iminomethyl]phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{29}H_{27}ClFN_5O_4$ as $(M+H)^+$: 564.2.

Example 60

N-(2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl)[2-fluoro-4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{28}H_{25}ClFN_5O_3$ as $(M+H)^+$: 534.1.

Example 61

N-(2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl)[2-fluoro-4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{28}H_{28}ClFN_6O_3$ as $(M+H)^+$: 551.2.

Example 62

[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]-2-fluorophenyl-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for C₂₉H₃₀CIFN₆O₃ as (M+H)⁺: 565.2.

Example 63

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}{4-[(ethylmethylamino)iminomethyl]-2-fluorophenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for C₂₆H₂₃CIFN₅O₃ as (M+H)⁺: 508.1.

Example 64

[4-(azetidinyliminomethyl)-2-fluorophenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for C₂₆H₂₁CIFN₅O₃ as (M+H)⁺: 506.1.

Example 65

[4-(azetidinylazetidinylidenemethyl)-2-fluorophenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{29}H_{26}ClFN_5O_3$ as M^+ : 546.1.

Example 66

{4-[(dimethylamino)iminomethyl]phenyl}-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{25}H_{22}ClN_5O_3$ as $(M+H)^+$: 476.1.

Example 67

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{26}H_{22}ClN_5O_3$ as $(M+H)^+$: 488.1.

Example 68

Ethyl 1-{{4-([N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl]phenyl)iminomethyl}piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 53.
MS found for C₃₁H₃₀ClN₅O₅ as (M+H)⁺: 588.2.

Example 69

Methyl 1-[(4-{[N-(2-[N-(5-chloro(2-pyridyl))carbamoyl]4-ethynyl-6-methoxyphenyl)carbamoyl]phenyl}iminomethyl)piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 53.
MS found for C₃₀H₂₈ClN₅O₅ as (M+H)⁺: 574.2.

Example 70

1-[(4-{[N-(2-[N-(5-chloro(2-pyridyl))carbamoyl]4-ethynyl-6-methoxyphenyl)carbamoyl]phenyl}iminomethyl)piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 4.
MS found for C₂₉H₂₆ClN₅O₅ as (M+H)⁺: 560.1.

Example 71

1-[(4-{[N-(2-[N-(5-chloro(2-pyridyl))carbamoyl]4-ethynyl-6-methoxyphenyl)carbamoyl]phenyl}iminomethyl)piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{29}H_{27}ClN_6O_4$ as $(M+H)^+$: 559.1.

Example 72

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}(4-[(4-hydroxymethyl)piperidyl]imino)methylphenylcarboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{29}H_{28}ClN_5O_4$ as $(M+H)^+$: 546.1.

Example 73

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}[4-(imino)piperidylmethyl]phenylcarboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{28}H_{26}ClN_5O_3$ as $(M+H)^+$: 516.1.

Example 74

[4-((2-(dimethylamino)ethyl)methylamino)imino)methyl]phenyl-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for C₂₈H₂₉ClN₆O₃ as (M+H)⁺: 533.2.

Example 75

[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]phenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for C₂₉H₃₁ClN₆O₃ as (M+H)⁺: 547.2.

Example 76

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}{4-((ethylmethylamino)iminomethyl)phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for C₂₆H₂₄ClN₅O₃ as (M+H)⁺: 490.1.

Example 77

[4-(azetidinyliminomethyl)phenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{26}H_{22}ClN_5O_3$ as $(M+H)^+$: 488.1.

Example 78

[4-(azetidinylazetidinylidenemethyl)phenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 53.
MS found for $C_{29}H_{27}ClN_5O_3$ as M^+ : 528.1.

Scheme 4

Example 79

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

Step 1:

A solution of 2-amino-5-bromopyridine (10.0 g, 58.0 mmol) in 200 mL THF was treated with NaH (6.00 g, 145 mmol) in several small portions over which time the reaction became cloudy and yellow – brown. After 30 min 5-chloroisatoic anhydride (12.00 g, 61.0 mmol) was added resulting in a thick, white suspension. After 40 min the reaction was diluted with water, filtered and aspirated to dryness affording the desired product as a light violet powder containing trace impurities (no yield calculated). MS found for $C_{12}H_9BrClN_3O$ as $(M+H)^+$: 326.0.

Step 2:

Aryl bromide **17** (5.00 g, 15 mmol) was combined with $\text{Pd}(\text{PhCN})_2\text{Cl}_2$ (0.18 g, 0.46 mmol), CuI (0.59 g, 0.31 mmol) and $t\text{-Bu}_3\text{P}$ (0.23 g, 0.92 mmol) in 15 mL dioxane which was then degassed with argon for 3 min. The reaction mixture was then treated with trimethylsilylacetylene (2.6 mL, 18 mmol) and diisopropylamine (3.2 mL, 23 mmol), then stirred overnight at rt during which time the color changed from beige to black. The following day the mixture was concentrated, then filtered through a plug of silica gel (2 in x 3 in) and eluted with dichloromethane. Concentration of the filtrate afforded a brown solid which was used immediately for Step 3. MS found for $\text{C}_{17}\text{H}_{18}\text{N}_3\text{OSi}$ as $(\text{M}+\text{H})^+$: 344.1.

Step 3:

Aniline **18** (15 mmol theoretical) was diluted with 35 mL of THF then treated with 4-cyanobenzoyl chloride (2.50 g, 15 mmol) and stirred until the starting aniline was consumed (TLC). The reaction was then diluted with hexane until a flocculent precipitate was formed. The solid was then filtered, washed with hexanes and aspirated to dryness affording the desired product **19** as a brown powder (4.04 g, 56%).

Step 4:

Trimethylsilylalkene **19** (4.02 g, 8.50 mmol) was diluted with 10 mL of THF then treated with tetrabutylammonium fluoride (1 M solution in THF, 10 mL, 10 mmol) during which time the reaction changed from a beige suspension to a brown solution. The reaction was stirred until no starting material was present by TLC, then it was diluted with water (150 mL), the solid filtered, then washed sequentially with water, methanol and diethyl ether affording **20** (3.03 g, 89%) as a beige powder. MS found for $\text{C}_{22}\text{H}_{13}\text{ClN}_4\text{O}_2$ as $(\text{M}+\text{H})^+$: 401.1.

Step 5:

Nitrile **20** (1.6 g, 4.0 mmol) was diluted with dioxane (20 mL) and treated with triethyl amine (2.2 mL, 16 mmol) then placed under an atmosphere of hydrogen sulfide overnight. Then next day the reaction was determined to be complete by HPLC then concentrated *in vacuo*. The resulting solid was then diluted with acetone (20 mL) and methyl iodide (2.0 mL, 32 mmol), then refluxed until the starting material was consumed. The resulting imidate was the concentrated to a yellow powder, then diluted with THF (40 mL) affording an approximately 0.1 M solution.

Dimethyl amine (2 M in THF, 0.5 mL, 1 mmol) and acetic acid (0.44 mL, 1.5 mmol) were diluted with THF (2mL) and combined with 2.0 mL of the above imidate stock solution (0.2 mmol) and stirred overnight. The following day the reaction was determined to be complete by HPLC, then concentrated and the crude oil purified by preparative RP-HPLC affording amidine **4** as a TFA salt. MS found for $\text{C}_{24}\text{H}_{20}\text{ClN}_5\text{O}_2$ as $(\text{M}+\text{H})^+$: 446.1.

Example 80

N-[4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl][4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in example 79.

MS found for $C_{25}H_{20}ClN_5O_2$ as $(M+H)^+$: 458.1.

Example 81

N-[2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chlorophenyl][4-(iminopyrrolidinylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 79.

MS found for $C_{26}H_{22}ClN_5O_2$ as $(M+H)^+$: 472.1

Example 82

N-[2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chlorophenyl][4-(piperidyliminomethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $C_{27}H_{24}ClN_5O_2$ as $(M+H)^+$: 486.1

Example 83

ethyl 1-{[4-(N-(4-chloro-2-[N-(5-ethynyl)(2-pyridyl)carbamoyl]phenyl)carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 79.
MS found for $C_{30}H_{28}ClN_5O_4$ as $(M+H)^+$: 558.2.

Example 84

1-{[4-(N-(4-chloro-2-[N-(5-ethynyl)(2-pyridyl)carbamoyl]phenyl)carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $\text{C}_{28}\text{H}_{25}\text{ClN}_6\text{O}_{3\text{as}}(\text{M}+\text{H})^+$: 529.1.

Example 85

{4-[(N-ethylmethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $\text{C}_{25}\text{H}_{22}\text{ClN}_5\text{O}_{2\text{as}}(\text{M}+\text{H})^+$: 460.1.

Example 86

{4-[(N-methylpropylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
 MS found for $C_{28}H_{22}ClN_5O_2$ as $(M+H)^+$: 474.1.

Example 87

{4-[Azetidinylazetidinylidenemethyl]phenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
 MS found for $C_{28}H_{25}ClN_5O_2$ as $(M)^+$: 498.2.

Example 88

[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]phenyl]-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 79.
 MS found for $C_{27}H_{27}ClN_6O_2$ as $(M+H)^+$: 503.2.

Example 89

{4-[(N-methyl-2-propynylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $\text{C}_{26}\text{H}_{20}\text{ClN}_6\text{O}_2$ as $(\text{M}+\text{H})^+$: 470.1.

Example 90

{4-[(N-methyl-2-cyanoethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $\text{C}_{26}\text{H}_{21}\text{ClN}_6\text{O}_2$ as $(\text{M}+\text{H})^+$: 457.3.

Example 91

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $C_{24}H_{19}ClFN_5O_2$ as $(M+H)^+$: 464.1.

Example 92

N-(2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chlorophenyl)[4-(iminopyrrolidinylmethyl)-2-fluorophenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $C_{26}H_{21}ClFN_5O_2$ as $(M+H)^+$: 490.1

Example 93

ethyl 1-{[4-(N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 79.
 MS found for $C_{30}H_{27}ClFN_5O_4$ as $(M+H)^+$: 576.2.

Example 94

1-[{4-(N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)carbamoyl}-3-fluorophenyl]iminomethyl}piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
 MS found for $C_{28}H_{24}ClFN_6O_3$ as $(M+H)^+$: 547.1.

Example 95

N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))-2-fluorophenyl]-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for C₂₅H₁₈ClFN₅O₂ as (M+H)⁺: 476.1.

Example 96

{4-[{(N-methyl(phenylmethyl)amino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for C₃₀H₂₃ClFN₅O₂ as (M+H)⁺: 540.1.

Example 97

{4-[{(N-(2-methoxyethyl)methylamino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $C_{29}H_{23}ClFN_5O_3$ as $(M+H)^+$: 508.1.

Example 98

{4-[(N-methyl(furanylmethyl)amino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $C_{29}H_{21}ClFN_5O_3$ as $(M+H)^+$: 530.1.

Example 99

N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-(2-hydroxyethyl)(2-imidazolin-2-yl))-2-fluorophenyl]-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
 MS found for $C_{26}H_{21}ClFN_5O_3$ as $(M+H)^+$: 506.1.

Example 100

N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-[4-(1-propyl(2-imidazolin-2-yl))-2-fluorophenyl]-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
 MS found for $C_{27}H_{23}ClFN_5O_2$ as $(M+H)^+$: 504.1.

Example 101

{4-[(N-(2-[1,3]Dioxolan-2-yl-ethyl)methylamino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide

The titled compound was made by the procedure similar to that described in example 79.
MS found for $C_{28}H_{25}ClFN_5O_4$ as $(M+H)^+$: 550.2.

Example 102

1-[4-(N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)-3-fluorophenyl]iminomethyl]-4-phenylpiperazine

The titled compound was made by the procedure similar to that described in example 79.
MS found for $C_{32}H_{26}ClFN_6O_2$ as $(M+H)^+$: 581.2.

Scheme 5

Example 103

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

Step 1:

A stirring solution of 2-amino-5-bromopyridine (50 g, 290 mmol) in dioxane (300 mL) was treated with Pd(PPh₃)₄ (3.20 g, 8.70 mmol) and CuI (1.44 g, 7.60 mmol), then degassed with argon for 3 minutes. The solution was then treated with PBu₃ (4.20 g, 17.4 mmol), trimethylsilyl acetylene (48 mL, 346 mmol) and finally diisopropylamine (30.0 mL, 436 mmol) was added dropwise to the light beige suspension which changed to orange and finally dark brown as the reaction progressed. After one hour the reaction was concentrated to a volume of approximately 70 mL then filtered through a plug of silica gel and eluted with 2 L of diethyl ether. This was then concentrated at which time the desired product crystallized. The crystals were then diluted with

hexanes (to aid in transfer), filtered and washed with hexanes affording 40 g (73%) of **22** as beige crystalline solid. MS found for $C_{10}H_{14}N_2Si$ as $(M+H)^+$: 191.1.

Step 2:

Aniline **22** (10.00 g, 53 mmol) was dissolved in pyridine (20 mL), cooled to 0°C, then treated with $POCl_3$ dropwise during which time the reaction changed from colorless to light orange. The reaction was stirred 10 min then diluted with 10 volumes of water and 10 mL triethyl amine to give a light orange, filterable precipitate which was collected and dried overnight by aspiration (14.77 g, 76%). 1H NMR ($DMSO-d_6$, 400 MHz): δ 11.31 (s, 1H), 8.41 (s, 1H), 8.16 (m, 2H), 7.92 (m, 1H), 7.19 (m, 2H), 3.88 (s, 3H), 0.21 (s, 9H).

Step 3:

Nitroarene **23** (8.6 g, 23 mmol) was dissolved in ethyl acetate (50 mL) then treated with tin(II) chloride dihydrate (21 g, 93 mmol) and heated to 60°C for 30 min at which time it was found to be complete by TLC. The reaction was cooled to rt then treated slowly with saturated aqueous K_2CO_3 until no more precipitate formed. The mixture was then filtered through a pad of celite and concentrated *in vacuo* affording the desired aniline (**24**) as an orange semisolid (7.32 g, 94%). MS found for $C_{18}H_{21}N_3O_2Si$ as $(M+H)^+$: 340.1.

Step 4:

Aniline **24** (3.24 g, 9.56 mmol) was dissolved in THF (30 mL) and treated with 4-cyanobenzoyl chloride (1.73 g, 10.5 mmol) in one portion. After one hour the reaction was concentrated and diluted with a 1:1 mixture of diethyl ether and hexanes (50 mL) and filtered affording a quantitative yield of the desired amide as an orange solid. MS found for $C_{26}H_{24}N_4O_3Si$ as $(M+H)^+$: 469.2.

Step 5:

From compound **25**, following a procedure similar to that described in Step 4, Example 79, the titled compound **26** was prepared. MS found for $C_{23}H_{18}N_4O_3$ as $(M+H)^+$: 396.1.

Step 6:

From compound **26**, following a procedure similar to that described in Step 5, Example 79, the titled compound **27** was prepared. MS found for $C_{25}H_{23}N_5O_3$ as $(M+H)^+$: 442.1.

Example 104

{4-[(dimethylamino)iminomethyl]phenyl}-N-(4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{26}H_{23}N_5O_3$ as $(M+H)^+$: 454.2.

Example 105

N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-methoxyphenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{27}H_{25}N_5O_3$ as $(M+H)^+$: 468.2.

Example 106

N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-methoxyphenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₂₈H₂₇N₅O₃ as (M+H)⁺: 482.2.

Example 107

ethyl 1-{[4-(N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₃₁H₃₁N₅O₅ as (M+H)⁺: 554.2.

Example 108

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{25}H_{22}FN_5O_3$ as $(M+H)^+$: 460.1.

Example 109

N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))-2-fluorophenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{26}H_{22}FN_5O_3$ as $(M+H)^+$: 472.2.

Example 110

N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-methoxyphenyl}[4-(iminopyrrolidinylmethyl)-2-fluorophenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{27}H_{24}FN_5O_3$ as $(M+H)^+$: 486.2.

Example 111

N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chlorophenyl}[4-(iminopiperidinylmethyl)-2-fluorophenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{28}H_{26}FN_5O_3$ as $(M+H)^+$: 500.2.

Example 112

ethyl 1-{[4-(N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₃₁H₃₀FN₅O₅ as (M+H)⁺: 572.2.

Example 113

{4-[(N-methylethylamino)iminomethyl]-2-fluorophenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₂₆H₂₄FN₅O₃ as (M+H)⁺: 474.2.

Example 114

{4-[(N-propylmethylamino)iminomethyl]-2-fluorophenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₂₇H₂₆FN₅O₃ as (M+H)⁺: 488.2.

Example 115

{4-[Azetidinyiminomethyl]-2-fluorophenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₂₆H₂₂FN₅O₃ as (M+H)⁺: 473.1.

Scheme 6

Example 116

{4-[(dimethylamino)iminomethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

Step 1:

From 2-amino-5-bromopyridine and 3-methoxy-2-nitrobenzoic acid, following the procedure similar to that described in Step 2, Example 103, the titled compound **28** was prepared. ¹H NMR (DMSO-d₆, 400 MHz): δ 11.41 (s, 1H), 8.48 (s, 1H), 8.00 (s, 2H), 7.64 (t, 1H), 7.49 (d, 1H), 7.39 (d, 1H), 3.84 (s, 3H).

Step 2:

Nitrobenzamide **28** (15.83 g, 45 mmol) was diluted with THF (150 mL), dioxane (150 mL), and water (225 mL). To the stirring solution was added sodium hydrosulfite (39.0 g, 225 mmol) and the mixture heated to 60°C for 3 hrs. The reaction mixture was then diluted with ca. 500 mL of water and filtered. The solids were then diluted with aq sodium bicarbonate and extracted thrice with ethyl acetate, the combined organic fractions then dried over magnesium sulfate. After filtration of the drying agent the solution was concentrated affording desired aniline **29** (10.76 g, 74%) as an off white solid. MS found for C₁₃H₁₂BrN₃O₂ as (M+H)⁺: 322.0.

Step 3:

Aniline **29** (6.00 g, 19 mmol) was diluted with n-butylamine (30 mL) and trimethylsilylacetylene (6 mL, 38 mmol), then degassed with argon for 3 min. Tetrakis(triphenylphosphine)Pd(0) (0.14 g, 0.12 mmol) was then added and the reaction refluxed overnight. The next day the reaction was recharged with trimethylsilylacetylene (6 mL, 38 mmol) and heated overnight. The following day the starting material was completely consumed and the reaction was concentrated, partitioned between water and ethyl acetate, separated, and the organic phase concentrated. The crude brown oil was then purified by filtration through a 4 in. x 2 in. plug of silica gel eluted with 15% ethyl acetate / hexanes affording alkyne **30** (1.69 g) in 26% yield. MS found for C₁₈H₂₁N₃O₂Si as (M+H)⁺: 340.2.

Step 4:

From compound 30, following a procedure similar to that described in Step 3, Example 79, the titled compound 31 was prepared. MS found for $C_{26}H_{24}N_4O_3Si$ as $(M+H)^+$: 469.2.

Step 5:

From compound 31, following a procedure similar to that described in Step 4, Example 79, the titled compound 32 was prepared. MS found for $C_{23}H_{16}N_4O_3$ as $(M+H)^+$: 397.0.

Step 6:

From compound 32, following a procedure similar to that described in Step 5, Example 79, the titled compound 33 was prepared. MS found for $C_{25}H_{23}N_5O_3$ as $(M+H)^+$: 442.1.

Example 117

{4-[(dimethylamino)iminomethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 116. MS found for $C_{27}H_{26}N_5O_3$ as $(M+H)^+$: 454.1.

Example 118

N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-6-methoxyphenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 116. MS found for $C_{27}H_{25}N_5O_3$ as $(M+H)^+$: 468.1.

Example 119

N-[2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-6-methoxyphenyl][4-(iminopiperidyl)methyl]phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 116. MS found for $C_{28}H_{27}N_5O_3$ as $(M+H)^+$: 482.2.

Example 120

ethyl 1-{|[4-(N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in Example 116. MS found for C₃₁H₃₁N₅O₅ as (M+H)⁺: 554.2.

Example 121

{4-[{N-(ethylmethylamino)iminomethyl}phenyl]-N-[6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 116. MS found for C₂₆H₂₅N₅O₃ as (M+H)⁺: 456.1.

Example 122

{4-[{N-(methylpropylamino)iminomethyl}phenyl]-N-[6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 116. MS found for C₂₇H₂₇N₅O₃ as (M+H)⁺: 470.2.

Example 123

{4-[Azetidinyliminomethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 116. MS found for C₂₆H₂₃N₅O₃ as (M+H)⁺: 454.1.

Example 124

{4-[Azetidinylazetidinylidenemethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 116. MS found for C₂₈H₂₈N₅O₃ as (M)⁺: 494.1.

Example 125

[4-((2-(dimethylamino)ethyl)methylamino)iminomethylphenyl]-N-(6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)carboxamide

The titled compound was made by the procedure similar to that described in Example 116. MS found for C₂₈H₃₀N₆O₃ as (M+H)⁺: 499.2.

Example 126

{4-[(N-methyl-2-propynylamino)iminomethyl]phenyl}-N-(6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide

The titled compound was made by the procedure similar to that described in Example 116. MS found for C₂₇H₂₃N₅O₃ as (M+H)⁺: 466.1.

Scheme 7

Example 127

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

Step 1:

From amine **22** and 3-methoxy-2-nitrobenzoic acid, following the procedure similar to that described in Step 2, Example 103, the titled compound **34** was prepared. ^1H NMR (DMSO- d_6 , 400 MHz): δ 11.49 (s, 1H), 8.03 (m, 1H), 7.95 (m, 1H), 7.75 (m, 1H), 7.63 (m, 1H), 7.49 (m, 1H), 7.40 (m, 1H) 3.89 (s, 3H), 0.18 (s, 9H).

Step 2:

From compound **34**, following the procedure similar to that described in Step 2, Example 116, the titled compound **30** was prepared. MS found for $C_{16}H_{21}N_3O_5Si$ as $(M+H)^+$: 340.0.

Step 3:

Aniline **30** (6.25 g, 19.4 mmol) was diluted with toluene (80 mL), treated with N-chlorosuccinamide (2.71 g, 20.3 mmol) and heated to 60°C for 2 hrs during which time the appearance of the reaction changed from a light orange suspension to dark orange and finally black. The mixture was then concentrated and purified by filtration through a plug of silica gel (3 in. x 2 in.) eluting with dichloromethane affording 5.7 g (83%) of **35** as a beige solid. MS found for $C_{18}H_{20}ClN_3O_2Si$ as $(M+H)^+$: 374.0.

Step 4:

From compound **35**, following the procedure similar to that described in Step 3, Example 79, the titled compound **36** was prepared. MS found for $C_{26}H_{23}ClN_4O_3Si$ as $(M+H)^+$: 503.1.

Step 5:

From compound **36**, following the procedure similar to that described in Step 4, Example 79, the titled compound **37** was prepared. MS found for $C_{23}H_{15}ClN_4O_3$ as $(M+H)^+$: 431.1.

Step 6:

From compound **37**, following the procedure similar to that described in Step 5, Example 79, the titled compound **38** was prepared. MS found for $C_{25}H_{23}N_5O_3$ as $(M+H)^+$: 476.0.

Example 128

N-[4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl][4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{26}H_{22}ClN_5O_3$ as $(M+H)^+$: 488.1.

Example 129

N-[2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chloro-6-methoxyphenyl][4-(iminopyrrolidinylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found $C_{27}H_{24}ClN_5O_3$ as $(M+H)^+$: 502.1.

Example 130

N-[2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chloro-6-methoxyphenyl][4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{28}H_{26}ClN_5O_3$ as $(M+H)^+$: 516.1.

Example 131

ethyl 1-[(4-(N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl)carbamoyl]phenyl)carbamoyl)phenyl)iminomethyl]-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{31}H_{30}ClN_5O_5$ as $(M+H)^+$: 588.2.

Example 132

1-[(4-(N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl)carbamoyl]phenyl)carbamoyl)phenyl)iminomethyl]-piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{28}H_{26}ClN_5O_5$ as $(M+H)^+$: 560.1

Example 133

{4-[{(N-ethylmethylamino)iminomethyl]phenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{26}H_{24}ClN_5O_3$ as $(M+H)^+$: 490.1

Example 134

{4-[{(N-methylpropylamino)iminomethyl]phenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{27}H_{26}ClN_5O_3$ as $(M+H)^+$: 504.1.

Example 135

{4-[Azetidinylazetidinylidenemethyl]phenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{29}H_{27}ClN_5O_3$ as $(M)^+$: 528.1.

Example 136

1-{[4-(N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{29}H_{27}ClN_6O_4$ as $(M+H)^+$: 559.2.

Example 137

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-[4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{25}H_{21}ClFN_5O_3$ as $(M+H)^+$: 494.1.

Example 138

N-[4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl][4-(1-methyl(2-imidazolin-2-yl))-2-fluorophenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{28}H_{21}ClFN_5O_3$ as $(M+H)^+$: 506.1.

Example 139

N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chloro-6-methoxyphenyl}[4-(iminopyrrolidinylmethyl)-2-fluorophenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{27}H_{23}ClFN_5O_3$ as $(M+H)^+$: 520.1.

Example 140

N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))2-fluorophenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{28}H_{25}ClFN_5O_3$ as $(M+H)^+$: 534.1.

Example 141

ethyl 1-[4-(N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)-2-fluorophenyl]iminomethyl]-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{31}H_{29}ClFN_5O_5$ as $(M+H)^+$: 606.2.

Example 142

1-[4-(N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)-2-fluorophenyl]iminomethyl]-piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{29}H_{25}ClFN_5O_5$ as $(M+H)^+$: 578.1.

Example 143

{4-[azetidinyliminomethyl]-2-fluorophenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{26}H_{21}ClFN_5O_3$ as $(M+H)^+$: 506.1.

Example 144

{4-[Azetidinylazetidinylidenemethyl]-2-fluorophenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for C₂₉H₂₆ClFN₅O₃ as (M)⁺: 546.1.

Example 145

{4-[(N-ethylmethylamino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for C₂₆H₂₃ClFN₅O₃ as (M+H)⁺: 508.2.

Example 146

{4-[(N-methylpropylamino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for C₂₇H₂₅ClFN₅O₃ as (M+H)⁺: 522.1.

Example 147

[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]-2-fluorophenyl]-N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for C₂₈H₂₈ClFN₆O₃ as (M+H)⁺: 551.3.

Example 148

1-{[4-(N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{29}H_{26}ClFN_5O_4$ as $(M+H)^+$: 577.1.

Example 149

{4-[{N-methyl(furanylmethyl)amino}iminomethyl]-2-fluorophenyl}-N-[4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 127. MS found for $C_{29}H_{23}ClFN_5O_4$ as $(M+H)^+$: 560.0.

Example 150

{4-[{(dimethylamino)iminomethyl]phenyl}-N-[2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{24}H_{21}N_5O_2$ as $(M+H)^+$: 412.1.

Example 151

N-{2-[N-(5-ethynyl)(2-pyridyl)carbamoyl]phenyl}{4-(1-methyl(2-imidazolin-2-yl))phenyl}carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{25}H_{21}N_5O_2$ as $(M+H)^+$: 424.1.

Example 152

N-{2-[N-(5-ethynyl)(2-pyridyl)carbamoyl]}{4-(iminopyrrolidinylmethyl)phenyl}carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₂₆H₂₃N₅O₂ as (M+H)⁺: 438.2.

Example 153

N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]}[4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₂₇H₂₅N₅O₂ as (M+H)⁺: 452.2.

Example 154

ethyl 1-{[4-(N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₃₀H₂₉N₅O₄ as (M+H)⁺: 524.2.

Example 155

N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-propyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{27}H_{25}N_5O_2$ as $(M+H)^+$: 452.2.

Example 156

N-(4-chloro-2-{ N-(5-ethynyl(2-pyridyl))carbamoyl}phenyl){[4-(1-(2-hydroxy)ethyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{26}H_{23}N_5O_3$ as $(M+H)^+$: 454.1.

Example 157

{4-[(dimethylamino)iminomethyl]phenyl}-N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{25}H_{23}N_5O_2$ as $(M+H)^+$: 426.2.

Example 158

N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{26}H_{23}N_5O_2$ as $(M+H)^+$: 438.1.

Example 159

N-{2-[N-(5-(1-propynyl)(2-pyridyl)) carbamoyl)][4-(iminopyrrolidinylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₂₈H₂₈N₄O₂ as (M+H)⁺: 452.2.

Example 160

N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl]}[4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for C₂₉H₂₈N₄O₂ as (M+H)⁺: 466.2.

Example 161

ethyl 1-{[4-(N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl}phenyl)carbamoyl]phenyl]iminomethyl}-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{32}H_{32}N_4O_4$ as $(M+H)^+$: 538.2.

Example 162

{4-[(N-methyl(furanylmethyl)amino)iminomethyl]phenyl}-N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{30}H_{26}N_4O_3$ as $(M+H)^+$: 492.2.

Example 163

N-{2-[N-(5-(propynyl)(2-pyridyl))carbamoyl]phenyl}[4-(1-propyl(2-imidazolin-2-yl))phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{29}H_{28}N_4O_2$ as $(M+H)^+$: 466.2.

Example 164

N-{2-[N-(5-(propynyl)(2-pyridyl))carbamoyl]phenyl}[4-(1-(2-hydroxyethyl)(2-imidazolin-2-yl))phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 103. MS found for $C_{28}H_{26}N_4O_3$ as $(M+H)^+$: 468.2.

Example 165

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
 MS found for $C_{25}H_{23}ClN_4O_2$ as $(M+H)^+$: 447.2.

Example 166

N-(4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl)[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
 MS found for $C_{26}H_{23}ClN_4O_2$ as $(M+H)^+$: 459.2.

Example 167

N-{2-[N-(4-ethenylphenyl)carbamoyl]-4-chlorophenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
 MS found for $C_{27}H_{25}ClN_4O_2$ as $(M+H)^+$: 473.2.

Example 168

N-{2-[N-(4-ethenylphenyl)carbamoyl]-4-chlorophenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
MS found for C₂₈H₂₇ClN₄O₂ as (M+H)⁺: 487.2.

Example 169

ethyl 1-{[4-(N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}iminomethyl]-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in Example 79.
MS found for C₃₁H₃₁ClN₄O₄ as (M+H)⁺: 559.2.

Example 170

{4-[(N-ethylmethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide.

The titled compound was made by the procedure similar to that described in Example 79.
 MS found for $C_{26}H_{25}ClN_4O_2$ as $(M+H)^+$: 461.2.

Example 171

{4-[(N-methylpropylamino)iminomethyl]phenyl}-N-[4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
 MS found for $C_{27}H_{27}ClN_4O_2$ as $(M+H)^+$: 475.2.

Example 172

[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]phenyl]-N-[4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
 MS found for $C_{28}H_{30}ClN_5O_2$ as $(M+H)^+$: 504.2.

Example 173

1-{[4-(N-(4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl)iminomethyl]-piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
MS found for C₂₉H₂₈CIN₅O₃ as (M+H)⁺: 530.2.

Example 174

[4-((2-(methoxyethyl)methylamino)iminomethyl)phenyl]-N-(4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl)carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
MS found for C₂₇H₂₇CIN₄O₃ as (M+H)⁺: 491.2.

Example 175

{4-[(N-methyl-2-propynylamino)iminomethyl]phenyl}-N-(4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl)-carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
 MS found for $C_{27}H_{23}ClN_4O_2$ as $(M+H)^+$: 471.2.

Example 176

{4-[Azetidinylazetidinylidenemethyl]phenyl}-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
 MS found for $C_{29}H_{28}ClN_4O_2$ as $(M)^+$: 499.2.

Example 177

{4-[(N-methyl(furanylmethyl)amino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 79.
 MS found for $C_{29}H_{25}ClN_4O_3$ as $(M+H)^+$: 513.2.

Scheme 8:

Example 178

N-{2-[N-(5-ethenyl(2-pyridyl))carbamoyl]-4-chlorophenyl}[4-(imino(piperidyl)methyl)phenyl]carboxamide

Step 1:

Bromide 17 (1.00 g, 3.07 mmol) was diluted with toluene (10 mL) then degassed with argon for 5 min. Then, it was treated with tributyl vinyl tin (0.99 mL, 3.38 mmol) and tetrakis(triphenylphosphine)Pd(0) (0.32 g, 0.31 mmol) and stirred at 80°C overnight. The following day the reaction diluted with aqueous potassium fluoride and ethyl acetate, separated, and the aqueous phase extracted with ethyl acetate again. The combined organic layers were dried over magnesium sulfate, then concentrated and purified by filtration through a plug of silica

gel eluted with dichloromethane affording, after concentration, a quantitative amount of the desired alkene as a light yellow solid contaminated with a small amount of tin byproducts. ^1H NMR (DMSO- d_6 , 400 MHz): δ 10.12 (s, 1H), 7.64 (m, 3H), 7.39 (d, 2H), 7.20 (m, 1H), 6.75 (m, 1H), 6.67 (m, 1H), 6.44 (s, 2H), 5.72 (d, 1H), 5.18 (d, 1H).

Step 2:

From compound **38**, following a procedure similar to that described in Step 3, Example 79, the titled compound **39** was prepared. ^1H NMR (DMSO- d_6 , 400 MHz): δ 11.23 (m, 2H), 8.40 (s, 1H), 8.12 – 7.90 (m, 7H), 7.89 (s, 1H), 7.64 (m, 1H), 6.73 (m, 1H), 5.90 (d, 1H), 5.30 (d, 1H).

Step 3:

From compound **40**, following a procedure similar to that described in Step 5, Example 79, the titled compound **41** was prepared. MS found for $\text{C}_{27}\text{H}_{26}\text{ClN}_5\text{O}_2$ as $(\text{M}+\text{H})^+$: 488.2.

Example 179

ethyl 1-[{4-(N-{4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in Example 178. MS found for $\text{C}_{30}\text{H}_{30}\text{ClN}_5\text{O}_4$ as $(\text{M}+\text{H})^+$: 560.2.

Example 180

{4-[(N-ethylmethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 178. MS found for $C_{25}H_{24}ClN_5O_2$ as $(M+H)^+$: 462.2.

Example 181

[4-[(N-methyl(furanylmethyl)amino)iminomethyl]phenyl]-N-{4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 178. MS found for $C_{28}H_{24}ClN_5O_3$ as $(M+H)^+$: 514.2.

Example 182

[4-((2-methoxyethyl)methylamino)iminomethyl]phenyl-N-{4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 178. MS found for C₂₆H₂₆ClN₅O₃ as (M+H)⁺: 492.2.

Example 183

{4-[(N-methylpropylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

The titled compound was made by the procedure similar to that described in Example 178. MS found for C₂₆H₂₆ClN₅O₂ as (M+H)⁺: 476.2.

Scheme 9Example 184

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carboxamide

Step 1:

To a stirring solution of 4-bromoaniline (4.3 g, 25 mmol) and 3-methoxy-2-nitrobenzoic acid (5.0 g, 25 mmol) in anhydrous THF (20 mL) and pyridine (9.4 mL, 100 mmol) at 0°C was added POCl₃ (7.65 g, 50 mmol) dropwise. The mixture was stirred at 0°C for 20 min. Water (400 mL) was added and precipitate formed. The solid was collected by filtration, washed with water

and dried to give compound **41** as a light brown solid (8.5 g, 97%). MS found for $C_{14}H_{11}BrN_2O_4$ as $(M+Na)^+$: 373.1.

Step 2:

To a solution of compound **41** (8.1 g, 23 mmol) in 1,4-dioxane (40 mL) and THF (40 mL) at 50°C was added an aqueous solution of $Na_2S_2O_4$ (24 g, 174 mmol in 80 mL water). The mixture was stirred at 50°C overnight. The two layers were separated. To the organic layer was added water and precipitate formed. The solid was collected by filtration and washed with water. After dried in vacco, 4.1 g of compound **42** was obtained as a yellow solid in 55% yield. MS found for $C_{14}H_{13}BrN_2O_2$ as $(M+Na)^+$: 343.0.

Step 3:

To a solution of compound **42** (2.8 g, 8.7 mmol) in toluene (50 mL) at 70°C was added N-chlorosuccinimide (1.2 g, 9.0 mmol) in portions. The mixture was stirred at 70°C – 75°C for 20 min, cooled down and washed with sat. $NaHCO_3$, sat. $NaCl$, dried and evaporated to give 3.5 g of the crude compound **43** as a dark brown solid. MS found for $C_{14}H_{12}BrClN_2O_2$ as $(M+Na)^+$: 377.0.

Step 4:

To a solution of compound **43** (3.5 g, 10 mmol) in $BuNH_2$ (15 mL) was added tetrakis(triphenylphosphine)Pd(0) (231 mg, 0.2 mmol), CuI (57 mg, 0.3 mmol) and (trimethylsilyl)acetylene (1.47 g, 15 mmol). The mixture was stirred under reflux for 2 h and cooled down to rt. The mixture was concentrated and purified by silica gel chromatography (eluted with 20% EtOAc in Hexane) to give 2.4 g of compound **44** in 65% yield. MS found for $C_{19}H_{21}ClN_2O_2Si$ as $(M+H)^+$: 373.1.

Step 5:

To a solution compound **44** (1.0 g, 2.7 mmol) in THF (20 mL) was added 4-cyano-2-fluoro-bezoyl chloride (512 mg, 2.8 mmol, prepared according to Step 4, Example 33). The mixture was stirred for 1 h. Water (100 mL) was added. The resulted precipitate was collected by filtration and dried to give compound **45** (1.2 g, 91% yield). MS found for $C_{27}H_{23}ClFN_3O_3Si$ as $(M+Na)^+$: 542.0.

Step 6:

To a solution of compound **45** (1.0 g, 1.9 mmol) in THF (20 mL) was added tetrabutylammonium fluoride (1N solution in THF, 2.7 mL). The mixture was stirred for 1h. Water (100 mL) was added. The resulted precipitate was collected by filtration and dried to give 930 mg of compound **46**. MS found for $C_{24}H_{15}ClFN_3O_3$ as $(M+Na)^+$: 470.0.

Step 7:

From compound **46**, following the procedure similar to that described in Step 4, Example 1, the titled compound **47** was prepared. MS found for $C_{26}H_{22}ClFN_4O_3$ as $(M+H)^+$: 493.1.

Example 185

N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl][2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{27}H_{22}ClFN_4O_3$ as $(M+H)^+$: 505.1.

Example 186

Ethyl 1-[(4-(N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{32}H_{30}ClFN_4O_5$ as $(M+H)^+$: 605.2.

Example 187

Methyl 1-[(4-(N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{31}H_{28}ClFN_4O_5$ as $(M+H)^+$: 591.2.

Example 188

1-{[4-(N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{30}H_{26}ClFN_4O_5$ as $(M+H)^+$: 577.2.

Example 189

1-{[4-(N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{30}H_{27}ClFN_5O_4$ as $(M+H)^+$: 576.2.

Example 190

N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}(2-fluoro-4-{[4-(hydroxymethyl)piperidyl]iminomethyl}phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for C₃₀H₂₈CIFN₄O₄ as (M+H)⁺: 563.2.

Example 191

[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]-2-fluorophenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for C₂₉H₂₉CIFN₅O₃ as (M+H)⁺: 550.2.

Example 192

N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}{4-[(ethylmethylamino)iminomethyl]-2-fluorophenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for C₂₇H₂₄CIFN₄O₃ as (M+H)⁺: 507.1.

Example 193

[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]-2-fluorophenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{30}H_{31}ClFN_5O_3$ as $(M+H)^+$: 564.2.

Example 194

N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl][2-fluoro-4-(iminopiperidyl)methyl]phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{29}H_{26}ClFN_4O_3$ as $(M+H)^+$: 533.2.

Example 195

N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl][4-(azetidinyliminomethyl)-2-fluorophenyl]phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{27}H_{22}ClFN_4O_3$ as $(M+H)^+$: 505.1.

Example 196

N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl][4-(azetidinylazetidinylidenemethyl)-2-fluorophenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{30}H_{27}ClFN_4O_3$ as M^+ : 545.2.

Example 197

N-[4-chloro-2-{N-(4-ethynylphenyl)carbamoyl}-6-methoxyphenyl]-[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{27}H_{23}ClN_4O_3$ ($M+H$) $^+$: 487.1.

Example 198

Ethyl 1-{[4-(N-[4-chloro-2-{N-(4-ethynylphenyl)carbamoyl}-6-methoxyphenyl]carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{32}H_{31}ClN_4O_5$ as $(M+H)^+$: 587.2.

Example 199

Methyl 1-{[4-(N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{31}H_{28}ClN_4O_5$ as $(M+H)^+$: 573.2.

Example 200

1-{[4-(N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 4. MS found for $C_{30}H_{27}ClN_4O_5$ as $(M+H)^+$: 559.2.

Example 201

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{26}H_{23}ClN_4O_3$ as $(M+H)^+$: 475.1.

Example 202

N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}{4-[(ethylmethylamino)iminomethyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{27}H_{25}ClN_4O_3$ as $(M+H)^+$: 489.1.

Example 203

[4-({[2-(dimethylamino)ethyl]methylamino}iminomethyl)phenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{29}H_{30}ClN_5O_3$ as $(M+H)^+$: 532.2.

Example 204

[4-({[3-(dimethylamino)propyl]methylamino}iminomethyl)phenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{30}H_{32}ClN_5O_3$ as $(M+H)^+$: 546.2.

Example 205

N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl][4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{29}H_{27}ClN_4O_3$ as $(M+H)^+$: 515.2.

Example 206

N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl][4-(azetidinyliminomethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{27}H_{23}ClN_4O_3$ as $(M+H)^+$: 487.1.

Example 207

N-[4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl][4-(azetidinylazetidinylidenemethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 184. MS found for $C_{30}H_{28}ClN_4O_3$ as M^+ : 527.2.

Scheme 10Example 208

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide (52)

Step 1:

To a solution of 4- bromoaniline (3.4 g, 20 mmol) in anhydrous THF (40 mL) at -78°C was added Lithium bis(trimethylsilyl)amide (1N solution in THF, 42 mL) via a double ended needle. The mixture was stirred at -78°C for 30 min. To this solution, a suspension of 5-bromoisatoic anhydride (4.84 g, 20mmol) in anhydrous THF (30 mL) was added via a double ended needle. The mixture was stirred at -78°C for 20 min and then warmed up to rt and stirred overnight. The reaction was quenched with sat. NH₄Cl (100 mL). The organic layer was diluted with EtOAc, washed with sat. NH₄Cl, sat. NaCl, dried and evaporated to give compound 48 as an offwhite solid (7.1 g, 97%).

Step 2:

To a solution of compound **48** (3.67 g, 10 mmol) in BuNH₂ (15 mL) was added tetrakis(triphenylphosphine)Pd(0) (460 mg, 0.4 mmol), CuI (114 mg, 0.6 mmol) and (trimethylsilyl)acetylene (3.27 mL, 30 mmol). The mixture was stirred under reflux for 3 h and cooled down to rt. The mixture was concentrated and purified by silica gel chromatography (eluted with 20% EtOAc in Hexane) to give 1.2 g of compound **49** in 30% yield. ¹H NMR (DMSO-d₆, 400 MHz): δ 10.218 (s, 1H), 7.72-7.69 (m, 3H), 7.39 -7.37 (d, 2H), 7.24-7.21 (dd, 1H), 6.7 (s, 2H), 6.69-6.67 (d, 1H), 0.19 (s, 9H), 0.17 (s 9H). MS found for C₂₃H₂₈N₂OSi₂ as (M+H)⁺: 405.2.

Step 3:

To a solution compound **49** (610 mg, 1.5 mmol) in THF (20 mL) was added 4-cyano-2-fluoro-bezoyl chloride (304 mg, 1.7 mmol, prepared according to Step 4, Example 33). The mixture was stirred for 1 h before it was concentrated. The residue was dissolved in EtOAc, washed with sat. NaCl, dried and evaporated to give compound **50** (810 mg, 97% yield). MS found for C₃₁H₃₀FN₃O₂Si₂ as (M+Na)⁺: 574.2.

Step 4:

To a solution of compound **50** (800 mg, 1.47 mmol) in THF (20 mL) was added tetrabutylammonium fluoride (1N solution in THF, 1.5 mL). The mixture was stirred for 1h. The mixture was concentrated. The residue was dissolved in EtOAc, washed with sat. NaCl and dried. The organic solution was concentrated and during which time precipitate formed. The solid was collected by filtration to give compound **51** (430 mg, 73%). MS found for C₂₅H₁₄FN₃O₂ as (M+Na)⁺: 430.0.

Step 5:

From compound **51**, following the procedure similar to that described in Step 4, Example 1, the titled compound **52** was prepared. ¹H NMR (DMSO-d₆, 400 MHz): δ 11.43 (d, 1H), 10.74 (s, 1H), 9.40 (s, 1H), 9.06 (s, 1H), 8.37, (d, 1H), 8.01 (t, 1H), 7.96 (d, 1H), 7.43-7.67 (m, 4H), 7.56-7.54 (d, 1H), 7.45-7.43 (d, 2H), 4.31 (s, 1H), 4.12 (s, 1H), 3.18 (s, 3H), 2.95 (s, 3H). MS found for C₂₇H₂₁FN₄O₂ as (M+H)⁺: 453.1.

Example 209

N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for $C_{28}H_{21}FN_4O_2$ as $(M+H)^+$: 565.1.

Example 210

The titled compound was obtained from the preparation of the compound in example 209. MS found for $C_{28}H_{23}FN_4O_3$ as $(M+H)^+$: 583.1.

Example 211

Ethyl 1-[4-(N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)-3-fluorophenyljiminomethyl)piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 208. MS found for $C_{33}H_{29}FN_4O_4$ as $(M+H)^+$: 565.2.

Example 212

Methyl 1-[4-(N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)-3-fluorophenyljiminomethyl)piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 208. MS found for $C_{32}H_{29}FN_4O_4$ as $(M+H)^+$: 551.2.

Example 213

1-{[4-(N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 4. MS found for $C_{31}H_{25}FN_4O_4$ as $(M+H)^+$: 537.2.

Example 214

[4-({[2-(dimethylamino)ethyl]methylamino}iminomethyl)-2-fluorophenyl]-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for $C_{30}H_{28}FN_5O_2$ as $(M+H)^+$: 510.2.

Example 215

N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}{4-[(ethyl)methylamino]iminomethyl}-2-fluorophenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for $C_{28}H_{23}FN_4O_2$ as $(M+H)^+$: 467.1.

Example 216

[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]-2-fluorophenyl]-N-(4-ethynylphenyl)carbamoylphenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for $C_{31}H_{30}FN_5O_2$ as $(M+H)^+$: 524.2.

Example 217

N-[4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl]-[4-(azetidinyliminomethyl)-2-fluorophenyl]phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for $C_{28}H_{21}FN_4O_2$ as $(M+H)^+$: 465.2.

Example 218

N-[4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl]-[4-(azetidinylazetidinylidenemethyl)-2-fluorophenyl]phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for C₃₁H₂₆FN₄O₂ as M⁺: 505.2.

Example 219

(4-[(2-methoxyethyl)methylamino]iminomethyl)-2-fluorophenyl)-N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for C₂₉H₂₅FN₄O₃ as (M+H)⁺: 497.2.

Example 220

(4-[(2-methoxyethyl)methylamino]iminomethyl)-2-fluorophenyl)-N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for C₂₅H₁₇FN₄O₂ as (M+H)⁺: 425.1.

Example 221

N-[4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl][4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for $C_{28}H_{22}N_4O_2$ ($M+H$) $^+$: 447.2.

Example 222

Methyl 1-[[4-(N-[4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl]carbamoyl)phenyl]iminomethyl]-piperidine-4-carboxylate

The titled compound was made by the procedure similar to that described in example 208. MS found for $C_{32}H_{28}N_4O_4$ as ($M+H$) $^+$: 533.3.

Example 223

1-[[4-(N-[4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl]carbamoyl)phenyl]iminomethyl]-piperidine-4-carboxylic acid

The titled compound was made by the procedure similar to that described in example 4. MS found for $C_{31}H_{26}N_4O_4$ as ($M+H$) $^+$: 519.2.

Example 224

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for C₂₇H₂₂N₄O₂ as (M+H)⁺: 435.2.

Example 225

N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}{4-[(ethylmethylamino)iminomethyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for C₂₈H₂₄N₄O₂ as (M+H)⁺: 449.2.

Example 226

[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]phenyl]-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for C₃₀H₂₉N₅O₂ as (M+H)⁺: 492.3.

Example 227

[4-({[3-(dimethylamino)propyl]methylamino}iminomethyl)phenyl]-N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for C₃₁H₃₁N₅O₂ as (M+H)⁺: 506.2.

Example 228

N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)[4-(iminopiperidylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for C₃₀H₂₆N₄O₂ as (M+H)⁺: 475.2.

Example 229

N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)[4-(azetidinyliminomethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 208. MS found for C₂₈H₂₂N₄O₂ as (M+H)⁺: 447.2.

Scheme 11Example 230

{4-[dimethylamino]iminomethyl}-2-fluorophenyl)-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide

Step 1:

To a stirring solution of 4-bromoaniline (8.6 g, 50 mmol) and 3-methoxy-2-nitrobenzoic acid (10.0 g, 50 mmol) in anhydrous THF (40 mL) and pyridine (18.8 mL) at 0°C was added POCl₃ (15.3 g, 100 mmol) dropwise. The mixture was stirred at 0°C for 20 min. Water (500 mL) was added and precipitate formed. The solid was isolated by filtration and dissolved in a mixture of 1,4-dioxane (100 mL) and THF (100 mL). Then, an aqueous solution of Na₂S₂O₄ (48 g,

348 mmol in 200 mL water) was added to the mixture. It was stirred at overnight. The two layers were separated. To the organic layer was added water and precipitate formed. The solid was collected by filtration and washed with water. After dried in vacco, 9.5 g of compound 53 was obtained as a gray solid in 60% yield for two steps.

Step 2:

To a solution of compound 53 (5.0 g, 15.6 mmol) in toluene (90 mL) at 70°C was added N-bromosuccinimide (3.0 g, 17.1 mmol) in portions. The mixture was stirred at 70°C –75°C for 20 min, cooled down and washed with sat. NaHCO₃, sat. NaCl, dried and evaporated to give 6.3 g (100%) of the crude compound 54 as a dark brown solid. MS found for C₁₄H₁₂Br₂N₂O₂ as (M+H)⁺: 401.0.

Step 3:

To a solution of compound 54 (3.2 g, 8 mmol) in BuNH₂ (15 mL) was added tetrakis(triphenylphosphine)Pd(0) (370 mg, 0.32 mmol), CuI (91 mg, 0.5 mmol) and (trimethylsilyl)acetylene (5.2 mL, 48 mmol). The mixture was stirred under reflux for 2 h and cooled down to rt. The mixture was concentrated and purified by silica gel chromatography (eluted with 10% EtOAc in Hexane) to give 1.63 g of compound 55 in 47% yield. MS found for C₂₄H₃₀N₂O₂Si₂ as (M+H)⁺: 435.2.

Step 4:

To a solution compound 55 (1.5 g, 3.8 mmol) in THF (20 mL) was added 4-cyanobenzoyl chloride (627 mg, 3.8 mmol) and pyridine (530 mL, 6.9 mmol). The mixture was stirred for 1 h and then concentrated. The residue was dissolved in EtOAc, washed with sat. NaHCO₃, water, dried and evaporated to give compound 56 (2.0 g, 100% yield).

Step 5:

To a solution of compound 56 (1.8 g, 3.2 mmol) in MeOH (20 mL) was added K₂CO₃ (4.4 g, 32 mmol). The mixture was stirred for 1h and then concentrated. The residue was dissolved in EtOAc, washed with sat. NaHCO₃, water, 1 N HCl, sat. NaCl, dried and evaporated to give compound 57 (830 mg, 62% yield).

Step 6:

From compound 57, following the procedure similar to that described in Step 4, Example 1, the titled compound 58 was prepared. MS found for C₂₈H₂₄N₄O₃ as (M+H)⁺: 465.2.

Example 231

[4-({[2-(dimethylamino)ethyl] amino}iminomethyl)phenyl]-N-(4-ethynyl-2-[N-(4-ethynyl-phenyl)carbamoyl]-6-methoxyphenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 230. MS found for $C_{30}H_{29}N_5O_3$ as $(M+H)^+$: 508.3.

Example 232

N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}{4-[(ethylmethylamino)iminomethyl]phenyl}carboxamide

The titled compound was made by the procedure similar to that described in example 230. MS found for $C_{29}H_{26}N_4O_3$ as $(M+H)^+$: 479.2.

Example 233

{4-[(dimethylamino)iminomethyl]phenyl}-N-(2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carboxamide

The titled compound was made by the procedure similar to that described in example 1. MS found for $C_{26}H_{24}N_4O_3$ as $(M+H)^+$: 441.2.

Example 234

N-[2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl][4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{27}H_{24}N_4O_3$ as $(M+H)^+$: 453.2.

Example 235

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-[2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{26}H_{23}FN_4O_3$ as $(M+H)^+$: 459.1.

Example 236

N-[2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl][2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{27}H_{23}FN_4O_3$ as $(M+H)^+$: 471.1.

Scheme 11

Example 237

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-methyl(2-pyridyl))carbamoyl]phenyl}-carboxamide

Step 1:

From 5-chloroisatoic anhydride and 2-amino-5-methylpyridine, following the procedure similar to that described in Step 1, Example 79, the titled compound 59 was prepared. MS found for $C_{13}H_{12}ClN_3O$ as $(M+H)^+$: 262.0.

Step 2:

From compound 59, following the procedure similar to that described in Step 3, Example 79, the titled compound 60 was prepared. MS found for $C_{21}H_{15}ClN_4O_2$ as $(M+H)^+$: 391.1.

Step 3:

From compound **60**, following the procedure similar to that described in Step 3, Example 79, the titled compound **61** was prepared. MS found for $C_{23}H_{22}ClN_5O_2$ as $(M+H)^+$: 436.2.

Example 238

N-{4-chloro-2-[N-(5-methyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{24}H_{22}ClN_5O_2$ as $(M+H)^+$: 448.2.

Example 239

N-{2-[N-(5-methyl(2-pyridyl))carbamoyl]-4-chlorophenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide

The titled compound was made by the procedure similar to that described in example 1.
MS found for $C_{25}H_{24}ClN_5O_2$ as $(M+H)^+$: 462.2.

Example 240

The titled compound was made by the procedure similar to that described in example 1.
MS found for C₂₆H₂₆CIN₅O₂ as (M+H)⁺: 476.2.

BIOLOGICAL ACTIVITY EXAMPLES

Evaluation of the compounds of this invention is guided by in vitro protease activity assays (see below) and in vivo studies to evaluate antithrombotic efficacy, and effects on hemostasis and hematological parameters.

The compounds of the present invention are dissolved in buffer to give solutions containing concentrations such that assay concentrations range from 0 to 100 μ M. In the assays for thrombin, prothrombinase and factor Xa, a synthetic chromogenic substrate is added to a solution containing test compound and the enzyme of interest and the residual catalytic activity of that enzyme is determined spectrophotometrically. The IC₅₀ of a compound is determined from the substrate turnover. The IC₅₀ is the concentration of test compound giving 50% inhibition of the substrate turnover. The compounds of the present invention desirably have an IC₅₀ of less than 500 nM in the factor Xa assay, preferably less than 200 nM, and more preferred compounds have an IC₅₀ of about 100 nM or less in the factor Xa assay. The compounds of the present invention desirably have an IC₅₀ of less than 4.0 μ M in the prothrombinase assay, preferably less than 200 nM, and more preferred compounds have an IC₅₀ of about 10 nM or less in the prothrombinase assay. The compounds of the present invention desirably have an IC₅₀ of greater than 1.0 μ M in the thrombin assay, preferably greater than 10.0 μ M, and more preferred compounds have an IC₅₀ of greater than 100.0 μ M in the thrombin assay.

Amidolytic Assays for determining protease inhibition activity

The factor Xa and thrombin assays are performed at room temperature, in 0.02 M Tris-HCl buffer, pH 7.5, containing 0.15 M NaCl. The rates of hydrolysis of the para-nitroanilide substrate S-2765 (Chromogenix) for factor Xa, and the substrate Chromozym TH (Boehringer Mannheim) for thrombin following preincubation of the enzyme with inhibitor for 5 minutes at room temperature, and were determined using the Softmax 96-well plate reader (Molecular Devices), monitored at 405 nm to measure the time dependent appearance of p-nitroaniline.

The prothrombinase inhibition assay is performed in a plasma free system with modifications to the method described by Sinha, U. *et al.*, Thromb. Res., 75, 427-436 (1994). Specifically, the activity of the prothrombinase complex is determined by measuring the time course of thrombin generation using the p-nitroanilide substrate Chromozym TH. The assay consists of preincubation (5 minutes) of selected compounds to be tested as inhibitors with the complex formed from factor Xa (0.5 nM), factor Va (2 nM), phosphatidyl serine:phosphatidyl choline (25:75, 20 μ M) in 20 mM Tris-HCl buffer, pH 7.5, containing 0.15 M NaCl, 5 mM CaCl₂ and 0.1% bovine serum albumin. Aliquots from the complex-inhibitor mixture are added to prothrombin (1 nM) and Chromozym TH (0.1 mM). The rate of substrate cleavage is monitored at 405 nm for two minutes. Eight different concentrations of inhibitor are assayed in duplicate. A standard curve of thrombin generation by an equivalent amount of untreated complex are used for determination of percent inhibition.

Antithrombotic Efficacy in a Rabbit Model of Venous Thrombosis

A rabbit deep vein thrombosis model as described by Hollenbach, S. *et al.*, Thromb. Haemost. 71, 357-362 (1994), is used to determine the in-vivo antithrombotic activity of the test compounds. Rabbits are anesthetized with I.M. injections of Ketamine, Xylazine, and Acepromazine cocktail. A standardized protocol consists of insertion of a thrombogenic cotton thread and copper wire apparatus into the abdominal vena cava of the anesthetized rabbit. A

non-occlusive thrombus is allowed to develop in the central venous circulation and inhibition of thrombus growth is used as a measure of the antithrombotic activity of the studied compounds. Test agents or control saline are administered through a marginal ear vein catheter. A femoral vein catheter is used for blood sampling prior to and during steady state infusion of test compound. Initiation of thrombus formation begins immediately after advancement of the cotton thread apparatus into the central venous circulation. Test compounds are administered from time = 30 min to time = 150 min at which the experiment is terminated. The rabbits are euthanized and the thrombus excised by surgical dissection and characterized by weight and histology. Blood samples are analyzed for changes in hematological and coagulation parameters.

Effects of Compounds in Rabbit Venous Thrombosis model

Administration of compounds in the rabbit venous thrombosis model demonstrates antithrombotic efficacy at the higher doses evaluated. There are no significant effects of the compound on the aPTT and PT prolongation with the highest dose ($100 \mu\text{g/kg} + 2.57 \mu\text{g/kg/min}$). Compounds have no significant effects on hematological parameters as compared to saline controls. All measurements are an average of all samples after steady state administration of vehicle or (D)-Arg-Gly-Arg-thiazole. Values are expressed as mean \pm SD.

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. It should be understood that the foregoing discussion and examples merely present a detailed description of certain preferred embodiments. It will be apparent to those of ordinary skill in the art that various modifications and equivalents can be made without departing from the spirit and scope of the invention. All the patents, journal articles and other documents discussed or cited above are herein incorporated by reference.

The above examples have been depicted solely for the purpose of exemplification and are not intended to restrict the scope or embodiments of the invention. The invention is further illustrated with reference to the claims that follow thereto.

WHAT IS CLAIMED:

1. A compound of formula I:

wherein:

Ar1, Ar2 and Ar3 are each independently selected from the group consisting of:

Ar1 may be optionally substituted with 0-2 R;

each R is independently selected from the group consisting of halo, haloalkyl, alkyl, alkoxy, thioalkoxy, haloalkoxy, alkoxyalkoxy, dialkylaminoalkoxy, (alkyl)₁₋₂amino, 1-pyrrolidinyl, 1-piperidinyl, hydroxy, cyano, (alkyl)₀₋₂aminocarbonyl, (alkyl)₀₋₂aminoalkyl, (alkyl)₀₋₂aminosulfonyl, alkylsulfonyl, alkynyl and C≡CH;

Ar3 may be optionally substituted with 0-2 R¹;

each R¹ is independently selected from the group consisting of halo, haloalkyl, alkenyl, alkoxy, haloalkoxy, alkenyl, alkenyl alkyl or C≡CH;

L1 is independently a direct link, (alkyl)₀₋₂aminocarbonyl, (alkyl)₁₋₂amino or (alkyl)₀₋₂aminocarbonyl;

L2 is independently (alkyl)₀₋₂aminocarbonyl, (alkyl)₁₋₂amino, or (alkyl)₀₋₂aminocarbonyl;

Ar2 may be optionally substituted with 0-3 R^{1d} groups,

each R^{1d} is independently selected from the group consisting of:

hydrogen, alkyl, halo, haloalkyl, aryl, heteroaryl, nitro, cyano, carboxyl alkyl carboxylamino alkyl, carboxylamino (alkyl)₀₋₂, alkyl hydroxy, alkyl amino alkylamino (alkyl)₀₋₂, carbonyl alkyl, -C(=NO- alkyl) alkyl, cyano, alkenylcarboxyl alkyl, formyl, alkenyl, alkynyl, and alkenyl carboxyl alkyl;

a radical having the formula:

-C(=NH)-X where X is independently an amino, amino alkyl, amino dialkyl, pyrrolidinyl or piperidinyl;

a radical having the formula:

Q-imidazolinyl; wherein Q is a direct bond, amino, alkylamino; wherein the imidazolinyl may be substituted on N with alkyl;

a radical having the formula:

wherein each R² and R³ is independently selected from the group consisting of hydrogen, alkoxyalkyl, alkylsulfonyl(alkyl), alkylamino (alkyl)₀₋₃, alkyl; or R² and R³ taken together to form a 6-membered saturated ring containing optionally O, N, or S where the N maybe substituted wherein alkyl and the S may be substituted with 1-2 oxygen;

hydroxy, alkoxy, halo alkoxy, alkoxy carboxy alkyl, alkoxy carbonyl amino (alkyl)₀₋₂, alkoxy alkoxy, alkoxy hydroxy, alkoxy sulfonyl alkyl, alkoxy alkoxy alkoxy, alkoxy-S-alkyl, alkoxy sulfonyl alkyl, alkoxy amino (alkyl)₀₋₂, alkoxyamino (alkyl alkoxy)₁₋₂, alkoxy oxy acyl, alkoxy hydroxy, alkoxy amino alkyl alkyl hydroxy;

a radical of the formula:

-O-alkyl-O-alkyl-R⁴ wherein R⁴ is independently alkoxy, amino (alkyl)₀₋₂, or a 5-6 membered ring containing 1 or 2 N.

a radical of the formula:

alkoxy- R⁵, wherein R⁵ is independently amino (alkyl)₀₋₂, a 5 or 6 membered ring containing 1 to 4 N or 1N and 1O, the ring optionally substituted with alkyl;

a radical of the formula:

wherein R⁴ is independently hydrogen, cyano or nitro;
 R² is independently amino (alkyl), cycloalkyl, or phenyl;
 X¹ is a direct bond or amino (alkyl)₀₋₁; or R³ and R⁴ taken together form an imidazolyl substituted on N with alkyl;

-S-, alkyl alkoxy, -S- alkyl, sulfonyl- alkyl alkoxy, S-Ph, SO₂Ph, sulfonylamino (alkyl)₀₋₂, sulfonyl alkyl amino (alkyl)₀₋₂, amino (alkyl)₀₋₂, aminosulfonyl alkyl, aminocarbonyl alkyl amino alkyl amino (alkyl)₀₋₂; amino (alkyl hydroxy)₁₋₂, amino (alkyl alkoxy)₁₋₂, amino alkyl carboxyl (alkyl)₀₋₁, amino alkyl carbonylamino (alkyl)₀₋₂, amino (alkyl) (alkylcarboxyl (alkyl)₀₋₁), amino (alkyl)

(alkyl carbonyl amino (alkyl)₀₋₂), amino (alkyl) (alkylamino (alkyl)₀₋₂), amino (alkyl) (alkyl alkoxy), amino (alkyl) (alkyl hydroxy); or

a 5 or 6 membered saturated heterocyclic ring containing one or more N, O, S atoms; the heterocyclic ring optionally substituted by alkyl or N-protective group; N is optionally substituted by alkyl, carbonyl alkyl, sulfonyl alkyl or a N-protective group; or carbon substituted with a hydroxy, carboxy, carboxy alkyl, carbonylamino or amino; or S is optionally substituted with one or two O;

a radical of the formula:

amino (alkyl) (alkyl)-R⁶

where R⁶ is pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl wherein R⁶ is optionally substituted by dioxy;

an imidazolinyl optionally substituted with alkyl on N, amino (alkyl) imidazolinyl optionally substituted with alkyl on N;

a radical of the formula:

wherein X² is a direct link or amino (alkyl)₀₋₁ - alkyl-;

R⁷ is hydrogen, or cyano;

R¹⁰ is independently hydrogen or alkyl;

Each R⁸ and R⁹ is independently hydrogen or alkyl;

an amino- alkyl-amino (alkyl)(imidazolyl optionally substituted with alkyl on N;

A is independently

I. phenyl, pyridinyl or imidazolyl optionally substituted with one or more R¹¹ groups; each R¹¹ independently halo, cyano, carbonylamino (alkyl)₀₋₂, alkyl amino, alkylamino (alkyl)₀₋₂, sulfonylamino, sulfonyl alkyl; alkyl which may be optionally substituted with 3-6 membered nitrogen containing ring; the 3-6 membered ring maybe substituted by alkyl hydroxy;

II. a radical of formula:

wherein R¹² is independently hydrogen, alkyl or 3-4 membered N containing ring;

R¹³ is amino (alkyl)₀₋₂, or a 3-6 membered nitrogen containing ring;

III a 5-7 membered ring containing 1 to 4 N optionally substituted with alkyl, alkylamino (alkyl)₀₋₂, amino(alkyl)₀₋₂, oxy, carbonyl alkylamino (alkyl)₀₋₂, thio(alkyl), imino; or

IV. a radical of the formula:

wherein each R¹⁴ and R¹⁵ can be hydrogen, or alkyl;

V. a radical of the formula:

wherein R^{X'} is independently hydrogen, cyano, nitro, alkyl, a 4-membered N containing ring, acyl, sulfonyl alkyl;

R^u is a direct bond, alkylamino (alkyl)₀₋₁;

each R^{Y'} and R^{z'} is independently hydrogen, hydroxy, alkyl, alkoxy, alkoxyphenyl, halophenyl, alkyl piperidinyl, amino (alkyl)₀₋₂, phenyl, halo

(alkyl), aminosulfonyl alkyl, pyrrolidinyl, pyrimidinyl, pyridinyl, alkylphenyl, alkylhalophenyl, alkylcyano, alkoxy alkyl, alkyl hydroxy, alkylsulfonyl alkyl, alkylamino acetyl, alkylamino sulfonyl alkyl, alkenyl, alkynyl, alkylcycloalkyl, cycloalkyl, or 5-6 membered N containing ring optionally substituted with alkyl, alkylcarboxyl, alkylcarboxyl (alkyl), alkylamino (alkyl)₀₋₂, alkylpyrrolidinyl, alkylpiperazinyl, alkylamino alkyl alkoxy, alkyl thiomorpholinyl optionally substituted with oxy or dioxy; R^y and R^z taken together to form a 3-7 membered ring containing one or more N, O, S atoms; said ring may be optionally substituted by alkyl, halo, hydroxy, alkylhydroxy, oxy, carboxyl, carboxyalkyl, carboxyalkyl, carboxylamino, alkylcarboxylamino, alkylamine, aminoacetyl, pyridinyl, pyrimidinyl, alkoxyphenyl, alkylpiperidyl,

VI. a radical of the formula:

wherein each R¹⁶ or R¹⁷ is independently hydrogen or alkyl;
R¹⁹ is independently alkyl; haloalkyl, phenyl, pyrimidyl, cycloalkyl, thiophenyl or alkylcyano;
R¹⁵ is alkyl;

VII. a radical of the formula:

wherein R²⁰ is alkyl;

X'' is independently C, O, or N; X is optionally substituted with alkyl; dioxy, amino (alkyl)₀₋₂, hydroxy, alkylcarboxy, alkylcarboxy alkyl, alkyl alkoxy, alkylmino(alkyl)₀₋₂, alkylpyrrolidinyl, alkylphenyl, alkylpyridinyl acetyl, carboxylalkyl, carbonylamino (alkyl)₀₋₂, sulfonylalkyl, carboxyl, pyridinyl, pyridinyl substituted with oxy, phenyl, halophenyl,

VIII.

wherein each R²⁰ and R²¹ is independently alkyl;

IX. a radical of the formula:

wherein each R²¹ or R²² is independently:

alkyl, halo alkyl, alkylphenyl, alkylhydroxy, alkyl alkoxy, alkylsulfonyl alkyl, alkylcyano, alkylcarboxy, alkylcarbonylamino (alkyl)₀₋₂, alkylcarboxyl alkyl, alkylamino which may be optionally substituted with alkyl alkoxy, alkylpiperidinyl, alkylmorpholinyl, alkylpyrrolidinyl, piperazinyl substituted with alkyl;

X. a cycloalkyl, cycloheteroalkyl containing one or more S, N, or O atoms which may be substituted with oxy, alkyl, acetyl, alkylalkylcarboxyl, alkylhydroxy, alkylcarboxy alkyl, alkylamino, alkyl alkoxy, carboxy, amino, phenyl, pyridinyl or pyrimidinyl; said pyrimidinyl maybe substituted with amino group;

Each R²¹ or R²² maybe independently a 5-6 membered ring containing 1 to 4 N, O, or S atoms which maybe optionally substituted with amino; and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

2. The compound according to claim 1 wherein

Ar1 may be optionally substituted with 0-2 R; each R is independently selected from the group consisting of H, F, Cl, Br, I, haloalkyl, OMe, Me, CF₃, SMe, OCF₃, OCH₂CH₂OMe, OCH₂CH₂NMe₂, NMe₂, NHMe, 1-pyrrolidine, 1-piperidine, OH, CN, CONH₂, CH₂NH₂, SO₂NH₂, SO₂Me, C=CH and C≡CH;

Ar3 may be optionally substituted with 0-2 R¹; each R¹ is independently selected from the group consisting of F, Cl, Br, I, haloalkyl, OMe, Me, CF₃, OCF₃, C≡CH; -CH=CH₂ and CH=CHMe;

L1 is a direct link, -CONH-, -CON(Me)-, -CH₂NH₂, -NHCO-, or -N(Me)CO-;

L2 is -CONH, -NHCO, or -N(Me)CO-;

Ar2 may be optionally substituted with 0-3 R^{1d} groups;

each R^{1d} is independently selected from the group consisting of:

H, -Me, -F, -Cl, -Br, I, haloalkyl, aryl, heteroaryl, -CH₃, -Et, -isopropyl, -CF₃, -NO₂, -CN, -CO₂H, -CO₂Me, -CO₂Et, -CONH₂, -CONHMe, -CONMe₂, -CH₂OH, -CH₂NH₂, -CH₂NHMe, -CH₂NMe₂, -COMe, -C(=NOMe)Me, -C(=NOH)Me, -CH₂COOH, -CH₂COOEt, -CH₂CH₂COOEt, -CH₂CH₂COOH, -CH=CHCN, -CH=CHCOOEt, -CH=CHCOOH, -CH(OH)Me, -CHO, -CH=CH₂,

-OH, -OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃,
-OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂,
-OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂OH, -OCH₂CH₂OEt,
-OCH₂CH₂SO₂Me, -OCH₂CH₂OCH₂CH₂OMe, -OCH₂CH₂SMe,
-OCH₂CH₂SO₂Me, -OCH₂CH₂NH₂, -OCH₂CH₂NHMe, -OCH₂CH₂NMe₂,
-OCH₂CH₂N(CH₂CH₂OMe)₂, -OCH₂CH₂OAc, -OCH₂CH₂OH,
-OCH₂CH₂OCH₂CH₂OMe, -OCH₂CH₂NH₂,
-OCH₂CH₂CH₂N(Me)CH₂CH₂OH,

-SCH₂CH₂OMe, -SO₂CH₂CH₂OMe, -SCH₃, -SEt, -SPh, -SO₂Ph, -SO₂NH₂,
 -SO₂CH₃, -SO₂NMe₂, -SO₂CH₂CH₂NMe₂, -NH₂, -NMe₂, -NHMe, -HSO₂Me,
 -NHCOMe, -NHCH₂CH₂NHMe, -NHCH₂CH₂NMe₂, -N(CH₂CH₂OH)₂, -
 N(CH₂CH₂OMe)₂, -NHCH₂CO₂H, -NHCH₂CO₂Et, -NHCH₂CO₂Et,
 -NHCH₂CONH₂, -NHCH₂CONMe₂, -NHCH₂CONHMe, -N(CH₃)CH₂CO₂H,
 -N(CH₃)CH₂CO₂Et, -(NMe)CH₂COOH, -N(Me)CH₂CONH₂,
 -N(Me)CH₂CH₂NMe₂, -N(Me)CH₂CH₂OMe, -N(Me)CH₂CH₂OH,
 -NHCH₂CH₂OMe, -NHCH₂CH₂OMe,

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

3. The compound according to claim 2 wherein

Ar2 is independently selected from the group consisting of:

4. The compound according to claim 1 wherein A is selected from the group consisting of :

5. The compound according to claim 2 having formula Ia:

wherein:

Ar1 is independently selected from the group consisting of:

each R is independently Cl, OMe, NMe₂, OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

L1 is a direct link, -CONH-, -CH₂NH-, or -NHCO-;

L2 is -CONH, or -NHCO;

Ar3 is independently selected from the group consisting of:

Ar2 is independently selected from the group consisting of:

Ar2 may be optionally substituted with 0-3 R^{1d} group; each R^{1d} is independently selected from the group consisting of:

H, -Me, -F, -Cl, -Br, I, -CH₃, -CF₃, -CN, -CO₂H, -CO₂Me, -CO₂Et, -CONH₂, -CONHMe, -CONMe₂, -CH₂NHMe, -CH₂NMe₂, -COMe, -CH₂COOH,

-OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃, -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂, -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂NHMe, -OCH₂CH₂NMe₂,

-SCH₃, -SO₂NH₂, -SO₂CH₃, -SO₂NMe₂, -NMe₂;

A is independently selected from the groups consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

6. The compound according to claim 5 wherein L1 or L2 is -CONH.

7. The compound according to claim 5 wherein Ar1 is independently selected from the group consisting of:

each R is independently Cl, OMe, NHMe, NMe₂, OCH₂CH₂OMe, or -OCH₂CH₂NMe₂;

Ar3 is independently selected from group consisting of:

Ar2 is independently selected from the group consisting of:

Ar2 may be optionally substituted with 0-3 R^{1d} groups;

each R^{1d} is independently selected from the group consisting of:

H, -Me, -Cl, Br, -C≡CH, -OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃, -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂, -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

-NMe₂, -NHCH₂CH₂NMe₂, -N(CH₂CH₂OMe)₂, -NHCH₂CO₂H, -NHCH₂CO₂Et, -NHCH₂CO₂Et, -NHCH₂CONH₂, -NHCH₂CONMe₂, -N(Me)CH₂CH₂NMe₂, -N(Me)CH₂CH₂OMe, -NHCH₂CH₂OMe, -NHCH₂CH₂OMe,

H, -Me, -F, -Cl, -Br, I, -CH₃-CF₃, -CN, -CO₂H, -CO₂Me, -CO₂Et, -CONH₂, -CONHMe, -CONMe₂, -CH₂NH₂, -CH₂NHMe, -CH₂NMe₂, -COMe, -CH₂COOH, -CH₂COOEt,

-OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃,
- $\text{OCH}_2\text{CO}_2\text{H}$, - $\text{OCH}_2\text{CO}_2\text{Me}$, - $\text{OCH}_2\text{CO}_2\text{Et}$, - $\text{OCH}_2\text{CONH}_2$, - $\text{OCH}_2\text{CONM}e_2$,
- $\text{OCH}_2\text{CONHMe}$, - $\text{OCH}_2\text{CH}_2\text{OMe}$, - $\text{OCH}_2\text{CH}_2\text{NMe}_2$,

-SCH₃, -SO₂NH₂, -SO₂CH₃, -SO₂NMe₂,

-NMe₂, -NHCH₂CH₂NMe₂, -N(CH₂CH₂OH)₂, -N(CH₂CH₂OMe)₂,
 -NHCH₂CO₂H, -NHCH₂CO₂Et, -NHCH₂CO₂Et, -NHCH₂CONH₂,
 -NHCH₂CONMe₂, -N(Me)CH₂CH₂NMe₂, -N(Me)CH₂CH₂OMe, -

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates and prodrug derivatives thereof.

8. The compound according to claim 5 having the formula:

wherein:

Ar1 is independently selected from the group consisting of:

each R is independently Me, OMe, NH₂, NHMe, NMe₂, -SMe, -SO₂Me, OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

Ar3 is independently selected from the group consisting of:

each R^{1d} is independently selected from the group consisting of:

H, -Me, -Cl, -OC₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃,
 -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂,
 -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

$-NMe_2$, $-NHCH_2CH_2NMe_2$, $-N(CH_2CH_2OMe)_2$, $-NHCH_2CO_2H$, $-NHCH_2CO_2Et$,
 $-NHCH_2CO_2Et$, $-NHCH_2CONH_2$, $-NHCH_2CONMe_2$, $-N(Me)CH_2CH_2NMe_2$,
 $N(Me)CH_2CH_2OMe$, $-NHCH_2CH_2OMe$, $-NHCH_2CH_2OMe$,

each R^{1d2} and R^{1d3} is independently selected from the group consisting of:

H, -Me, -F, -Cl, -Br, I, -CH₃-CF₃, -CN, -CO₂H, -CO₂Me, -CO₂Et, -CONH₂, -CONHMe, -CONMe₂, -CH₂NH₂, -CH₂NHMe, -CH₂NMe₂, -COMe, CH₂COOH, -CH₂COOEt,

-OCH₃, -OCF₃, -OCH₂F, -OCHF₂, -OCH₂CF₃, -OCF₂CF₃, -OCH₂CO₂H, -OCH₂CO₂Me, -OCH₂CO₂Et, -OCH₂CONH₂, -OCH₂CONMe₂, -OCH₂CONHMe, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

9. The compound according to claim 5 having the formula:

wherein Ar1 is independently selected from the group consisting of:

each R is independently Cl, OMe, NMe₂, OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

Ar₃ is independently selected from the group consisting of:

each R^{1d1} is independently H, -Me, -Cl,

-OCH₃, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,
-NMe₂, -N(Me)CH₂CH₂NMe₂, -N(Me)CH₂CH₂OMe,

each R^{1d2} and R^{1d3} is independently selected from the group consisting of:

H, -H, -Me, -F, -Cl, -Br, -CF₃, -CN, -CO₂H, -CO₂Me, -CO₂Et, -CONH₂,
-CH₂NMe₂, -COMe, -NMe₂, -SMe,
-SCH₂CH₂OMe, -SO₂CH₂CH₂OMe, -SCH₃, -SO₂NH₂, -SO₂CH₃, -SO₂NMe₂,
and -SO₂CH₂CH₂NMe₂;

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

10. The compound according to claim 5 having the formula:

wherein:

Ar1 is independently selected from the group consisting of:

each R is independently Cl, OMe, NMe₂, OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

Ar3 is independently selected from the group consisting of:

11. The compound according to claim 5 having the formula:

wherein:

Ar1 is independently

each R is independently -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

and A is independently selected from group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

12. The compound according to claim 5 having the formula:

wherein:

Ar1 is independently

each R is independently -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

A is independently selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

13. The compound according to claim 5 having the formula

wherein

Ar1 is independently selected from the group consisting of:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

14. The compound according to claim 5 having the formula

wherein

Ar1 is independently selected from the group consisting of:

A is independently selected from the group consisting of:

15. The compound according to claim 5 having the formula

wherein

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

16. The compound according to claim 5 having the formula:

wherein

each R^{1d2} is independently selected from the group consisting of:

H, C≡CH, C≡—CH, -Me, -F, -Cl, -Br, -CF₃, -CN, -CO₂H, -CO₂Me, -CO₂Et,
 -CONH₂, -CH₂NMe₂, -COMe, -NMe₂, -SMe, -SCH₂CH₂OMe,
 -SO₂CH₂CH₂OMe, -SCH₃, -SO₂NH₂, -SO₂CH₃, -SO₂NMe₂, and -
 SO₂CH₂CH₂NMe₂.

17. The compound according to claim 5 having the following formula:

wherein:

each R^{1d1} is independently H, OMe, or NMe₂;

each R^{1d3} is independently Cl or Br, $C\equiv CH$ or $C\equiv C-H$;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

18. The compound according to claim 5 having the following formula:

wherein:

each R^{1d3} is independently H, Cl, Br, SMe, $C\equiv CH$ or $C\equiv C-H$;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

19. The compound according to claim 5 having the following formula:

wherein:

each R^{1d3} is independently Cl, Br, C≡CH or C≡—CH;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

20. The compound according to claim 5 having the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R1d3 is independently -Cl, -Br, SMe, C≡CH or C≡—CH.

21. The compound according to claim 5 having the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R1d2 is independently H, Cl, Br, SMe, $\text{C}\equiv\text{CH}$ or $\text{C}\equiv\text{C}-\text{CH}_3$;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

22. The compound according to claim 5 having the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -SMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R^{1d3} is independently Cl, Br, SMe, $\text{C}\equiv\text{CH}$ or $\text{C}\equiv\text{C}-\text{CH}_3$.

23. The compound according to claim 5 having the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -SMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R^{1d3} is independently Cl, Br, SMe, C≡CH or C≡—CH.

24. The compound according to claim 5 having the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R^{1d3} is independently Cl, Br, SMe, C≡CH or C≡—CH.

25. The compound according to claim 5 having the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R_{1d3} is independently Cl, Br, SMe, C≡CH or C≡—CH.

26. The compound according to claim 5 having the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R^{1d3} is independently Cl, Br, SMe, C≡CH or C≡—CH.

27. The compound according to claim 5 having the following formula:

wherein:

each R is independently -H, -F, -Cl, -OMe, -NMe₂, -OCH₂CH₂OMe, -OCH₂CH₂NMe₂,

each R^{1d3} is independently Cl, Br, SMe, C≡CH or C≡—CH;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

28. The compound according to claim 1 selected from the group consisting of:

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}-carboxamide;
 N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide;
 Ethyl 1-{[4-(N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate;
 1-{[4-(N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylic acid;
 1-{[4-(N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxamide;
 N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}(4-[[4-(hydroxymethyl)piperidyl]imino-methyl]phenyl)carboxamide;
 [4-({[2-(dimethylamino)ethyl]methylamino}iminomethyl)phenyl]-N-{4-chloro-2-[N-(4-ethynyl-phenyl)carbamoyl]phenyl}carboxamide;
 {4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-phenyl}carboxamide;
 N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}[2-fluoro-4-(1-methyl(2-imidazolin-2-y))phenyl]carboxamide;

Ethyl 1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate;
1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylic acid;
1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}(2-fluoro-4-[(4-hydroxymethyl)piperidyl]iminomethyl)phenyl)carboxamide;
[4-((2-dimethylamino)ethyl)methylamino]iminomethyl)-2-fluorophenyl]-N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carboxamide;
N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl){4-[(ethylmethylamino)iminomethyl]-2-fluorophenyl}carboxamide;
[4-((3-dimethylamino)propyl)methylamino]iminomethyl)-2-fluorophenyl]-N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carboxamide;
N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;
Ethyl 1-{[4-(N-(2-[N-(4-ethynylphenyl)carbamoyl]phenyl)iminomethyl)4-methoxyphenyl]carbamoyl}phenyl]iminomethyl}piperidine-4-carboxylate;
Methyl 1-{[4-(N-(2-[N-(4-ethynylphenyl)carbamoyl]4-methoxyphenyl)phenyl)iminomethyl]piperidine-4-carboxylate;
1-{[4-(N-(2-[N-(4-ethynylphenyl)carbamoyl]4-methoxyphenyl)phenyl)iminomethyl}piperidine-4-carboxylic acid;
1-{[4-(N-(2-[N-(4-ethynylphenyl)carbamoyl]4-methoxyphenyl)phenyl)iminomethyl}piperidine-4-carboxamide;
[4-((2-dimethylamino)ethyl)methylamino]iminomethyl)phenyl]-N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carboxamide;
{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carboxamide;
N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;
Ethyl 1-{[4-(N-(2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl)carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate;
Methyl 1-{[4-(N-(2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl)carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate;

1-{[4-(N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylic acid;

1-{[4-(N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxamide;

[4-({[3-(dimethylamino)propyl]methylamino}iminomethyl)-2-fluorophenyl]-N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carboxamide;

N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}[2-fluoro-4-(iminopiperidylmethyl)phenyl]carboxamide;

4-(N-{2-[N-(4-ethynylphenyl)carbamoyl]-4-methoxyphenyl}carbamoyl)-3-fluorobenzene carboxamide;

{4-((dimethylamino)iminomethyl)-2-fluorophenyl}-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;

Ethyl 1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate;

Methyl 1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate;

1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylic acid;

1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}[2-fluoro-4-((hydroxymethyl)piperidyl)iminomethyl]phenyl]carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}[2-fluoro-4-(iminopiperidylmethyl)phenyl]carboxamide;

[4-({[2-(dimethylamino)ethyl]methylamino}iminomethyl)-2-fluorophenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carboxamide;

[4-({[3-(dimethylamino)propyl]methylamino}iminomethyl)-2-fluorophenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carboxamide;

{4-((dimethylamino)iminomethyl)phenyl}-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;

Ethyl 1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)phenyl]iminomethyl}piperidine-4-carboxylate;

Methyl 1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)phenyl]iminomethyl}piperidine-4-carboxylate;

1-[(4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)phenyl]iminomethyl)piperidine-4-carboxylic acid;

1-[(4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carbamoyl)phenyl]iminomethyl)piperidine-4-carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}(4-[(4-(hydroxymethyl)piperidyl)iminomethyl]phenyl)carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide;

[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]phenyl)-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carboxamide;

[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]phenyl)-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynylphenyl}carboxamide;

{4-((dimethylamino)iminomethyl)-2-fluorophenyl}-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;

Ethyl 1-[(4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxylate;

Methyl 1-[(4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxylate;

1-[(4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxylic acid;

1-[(4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}(2-fluoro-4-[(4-(hydroxymethyl)piperidyl)iminomethyl]phenyl)carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}[2-fluoro-4-(iminopiperidylmethyl)phenyl]carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}[2-fluoro-4-(iminopiperidylmethyl)phenyl]carboxamide;

[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]-2-fluorophenyl)-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide;

N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}{4-[(ethylmethyleamino)iminomethyl]-2-fluorophenyl}carboxamide;

[4-(azetidinyliminomethyl)-2-fluorophenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide;

[4-(azetidinylazetidinylidenemethyl)-2-fluorophenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide;

{4-[(dimethylamino)iminomethyl]phenyl}-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide;
N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;
Ethyl 1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)phenyl]iminomethyl}piperidine-4-carboxylate;
Methyl 1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)phenyl]iminomethyl}piperidine-4-carboxylate;
1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)phenyl]iminomethyl}piperidine-4-carboxylic acid;
1-{[4-(N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carbamoyl)phenyl]iminomethyl}piperidine-4-carboxamide;
N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}[4-{(hydroxymethyl)piperidyl}iminomethyl]carboxamide;
N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide;
[4-({[2-(dimethylamino)ethyl]methylamino}iminomethyl)phenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide;
[4-({[3-(dimethylamino)propyl]methylamino}iminomethyl)phenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide;
N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}[4-((ethylmethylamino)iminomethyl)phenyl]carboxamide;
[4-(azetidinyliminomethyl)phenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide;
[4-(azetidinylazetidinylidenemethyl)phenyl]-N-{2-[N-(5-chloro(2-pyridyl))carbamoyl]-4-ethynyl-6-methoxyphenyl}carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chlorophenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chlorophenyl}[4-(piperidyliminomethyl)phenyl]carboxamide;
ethyl 1-{[4-(N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate;
1-{[4-(N-{4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxamide;

{4-[(N-ethylmethylamino)iminomethyl]phenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

{4-[(N-methylpropylamino)iminomethyl]phenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

{4-[Azetidinylazetidinylidenemethyl]phenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

{4-[(2-(dimethylamino)ethyl)methylamino)iminomethyl]phenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

{4-[(N-methyl-2-propynylamino)iminomethyl]phenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

{4-[(N-methyl-2-cyanoethylamino)iminomethyl]phenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chlorophenyl}[4-(iminopyrrolidinylmethyl)-2-fluorophenyl]carboxamide;

ethyl 1-{[4-(N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)carbamoyl]phenyl}carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxylate;

1-{[4-(N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)carbamoyl]phenyl}carbamoyl)-3-fluorophenyl]iminomethyl)piperidine-4-carboxamide;

N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)[4-(1-methyl(2-imidazolin-2-yl))-2-fluorophenyl]-carboxamide;

{4-[(N-methyl(phenylmethyl)amino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

{4-[(N-(2-methoxyethyl)methylamino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

{4-[(N-methyl(furanylmethyl)amino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)[4-(1-(2-hydroxyethyl)(2-imidazolin-2-yl))-2-fluorophenyl]-carboxamide;

N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)[4-(1-propyl(2-imidazolin-2-yl))-2-fluorophenyl]-carboxamide;

{4-[(N-(2-[1,3]Dioxolan-2-yl-ethyl)methylamino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;

1-{[4-(N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)carbamoyl]phenyl}carbamoyl)-3-fluorophenyl]iminomethyl)-4-phenylpiperazine;

{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-methoxyphenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-methoxyphenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide;
ethyl 1-{[4-(N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}iminomethyl)-piperidine-4-carboxylate;
{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))-2-fluorophenyl]carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-methoxyphenyl}[4-(iminopyrrolidinylmethyl)-2-fluorophenyl]carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chlorophenyl}[4-(iminopiperidinylmethyl)-2-fluorophenyl]carboxamide;
ethyl 1-{[4-(N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)-3-fluorophenyl]iminomethyl}piperidine-4-carboxylate;
{4-[(N-methylethylamino)iminomethyl]-2-fluorophenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(N-propylmethylamino)iminomethyl]-2-fluorophenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[Azetidinyiminomethyl]-2-fluorophenyl}-N-{4-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-6-methoxyphenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-6-methoxyphenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide;
ethyl 1-{[4-(N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}iminomethyl)-piperidine-4-carboxylate;

{4-[(N-ethylmethylamino)iminomethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(N-methylpropylamino)iminomethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[Azetidinyliminomethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[Azetidinylazetidinylidenemethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
[4-({[2-(dimethylamino)ethyl]methylamino}iminomethyl)phenyl]-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carboxamide;
{4-[(N-methyl-2-propynylamino)iminomethyl]phenyl}-N-{6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chloro-6-methoxyphenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chloro-6-methoxyphenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide;
ethyl 1-{{4-(N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl}iminomethyl}-piperidine-4-carboxylate;
1-{{4-(N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl}iminomethyl}-piperidine-4-carboxylic acid;
{4-[(N-ethylmethylamino)iminomethyl]phenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(N-methylpropylamino)iminomethyl]phenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[Azetidinylazetidinylidenemethyl]phenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
1-{{4-(N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl}iminomethyl}-piperidine-4-carboxamide;
{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))-2-fluorophenyl]-carboxamide;

N-[2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-4-chloro-6-methoxyphenyl][4-(iminopyrrolidinylmethyl)-2-fluorophenyl]carboxamide;
N-[4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl][4-(1-methyl(2-imidazolin-2-yl))2-fluorophenyl]-carboxamide;
ethyl 1-[[4-(N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)-2-fluorophenyl]iminomethyl]-piperidine-4-carboxylate;
1-[[4-(N-{4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)-2-fluorophenyl]iminomethyl]-piperidine-4-carboxylic acid;
{4-[azetidinyliminomethyl]-2-fluorophenyl}-N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;
{4-[Azetidinylationenemethyl]-2-fluorophenyl}-N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;
{4-[(N-ethylmethylethylamino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;
{4-[(N-methylpropylamino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;
[4-((2-dimethylamino)ethyl)methylamino]iminomethyl)-2-fluorophenyl]-N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)carboxamide;
1-[[4-(N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]-2-fluorophenyl)carbamoyl)phenyl]iminomethyl]-piperidine-4-carboxamide;
{4-[(N-methyl(furanylmethyl)amino)iminomethyl]-2-fluorophenyl}-N-(4-chloro-6-methoxy-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)-carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide;
N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]}[4-(iminopiperidylmethyl)phenyl]carboxamide;
ethyl 1-[[4-(N-{2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl]-piperidine-4-carboxylate;
N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)[4-(1-propyl(2-imidazolin-2-yl))phenyl]-carboxamide;
N-(4-chloro-2-[N-(5-ethynyl(2-pyridyl))carbamoyl]phenyl)[4-(1-(2-hydroxy)ethyl(2-imidazolin-2-yl))phenyl]-carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl]phenyl}-carboxamide;

N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide;
N-{2-[N-(5-(1-propynyl)(2-pyridyl)) carbamoyl]}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide;
N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl]}[4-(iminopiperidylmethyl)phenyl]carboxamide;
ethyl 1-[[4-(N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl]phenyl}carbamoyl)phenyl]iminomethyl]-piperidine-4-carboxylate;
{4-[(N-methyl(furanylmethyl)amino)iminomethyl]phenyl}-N-{2-[N-(5-(1-propynyl)(2-pyridyl))carbamoyl]phenyl}-carboxamide;
N-{2-[N-(5-(propynyl)(2-pyridyl))carbamoyl]phenyl}[4-(1-propyl(2-imidazolin-2-yl))phenyl]-carboxamide;
N-{2-[N-(5-(propynyl)(2-pyridyl))carbamoyl]phenyl}[4-(1-(2-hydroxyethyl)(2-imidazolin-2-yl))phenyl]-carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide;
N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide;
N-{2-[N-(4-ethenylphenyl)carbamoyl]-4-chlorophenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide;
N-{2-[N-(4-ethenylphenyl)carbamoyl]-4-chlorophenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide;
ethyl 1-[[4-(N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}iminomethyl)-piperidine-4-carboxylate;
{4-[(N-ethylmethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide;
{4-[(N-methylpropylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide;
[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]phenyl]-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}carboxamide;
1-[[4-(N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}iminomethyl)-piperidine-4-carboxamide;
[4-((2-(methoxyethyl)methylamino)iminomethyl)phenyl]-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}carboxamide;
{4-[(N-methyl-2-propynylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide;
(4-[Azetidinylazetidinylidenemethyl]phenyl)-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide;
{4-[(N-methyl(furanylmethyl)amino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethenylphenyl)carbamoyl]phenyl}-carboxamide;

N-{2-[N-(5-ethenyl(2-pyridyl))carbamoyl]-4-chlorophenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide;
ethyl 1-{[4-(N-(4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl)carbamoyl]phenyl}iminomethyl}-piperidine-4-carboxylate;
{4-[(N-ethylmethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(N-methyl(furanylmethyl)amino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
[4-((2-methoxyethyl)methylamino)iminomethyl]phenyl]-N-{4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(N-methylpropylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-ethenyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}-carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;
Ethyl 1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carbamoyl)-3-fluorophenyl}iminomethyl}-piperidine-4-carboxylate;
Methyl 1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carbamoyl)-3-fluorophenyl}iminomethyl}-piperidine-4-carboxylate;
1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carbamoyl)-3-fluorophenyl}iminomethyl}-piperidine-4-carboxylic acid;
1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carbamoyl)-3-fluorophenyl}iminomethyl}-piperidine-4-carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}(2-fluoro-4-[(4-hydroxymethyl)piperidyl]iminomethyl)phenyl]carboxamide;
[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]-2-fluorophenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}{4-[(ethylmethylamino)iminomethyl]-2-fluorophenyl}carboxamide;
[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]-2-fluorophenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[2-fluoro-4-(iminopiperidylmethyl)phenyl]carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[4-(azetidinyliminomethyl)-2-fluorophenyl]phenyl]carboxamide;

N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[4-(azetidinylazetidinylidenemethyl)-2-fluorophenyl]carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;
Ethyl 1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate;
Methyl 1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate;
1-{[4-(N-(4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl)carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylic acid;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[4-(ethylmethylamino)iminomethyl]phenyl]carboxamide;
[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]phenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide;
[4-((3-(dimethylamino)propyl)methylamino)iminomethyl]phenyl]-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[4-(azetidinyliminomethyl)phenyl]carboxamide;
N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[4-(azetidinylazetidinylidenemethyl)phenyl]carboxamide;
{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide;
N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;
Ethyl 1-{[4-(N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)phenyl]iminomethyl}-piperidine-4-carboxylate;
Methyl 1-{[4-(N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)phenyl]carbamoyl}-3-fluorophenyl]iminomethyl}-piperidine-4-carboxylate;
1-{[4-(N-(4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl)carbamoyl)phenyl]carbamoyl}-3-fluorophenyl]iminomethyl}-piperidine-4-carboxylic acid;
[4-((2-(dimethylamino)ethyl)methylamino)iminomethyl]-2-fluorophenyl]-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide;

N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}{4-[(ethylmethlamino)iminomethyl]-2-fluorophenyl}carboxamide;
[4-({[3-(dimethylamino)propyl]methylamino}iminomethyl)-2-fluorophenyl]-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide;
N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}[4-(azetidinyliminomethyl)-2-fluorophenyl]carboxamide;
N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}{4-(azetidinylazetidinylidenemethyl)-2-fluorophenyl}carboxamide;
(4-[(2-methoxyethyl)methylamino]iminomethyl)-2-fluorophenyl)-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide;
(4-[(2-methoxyethyl)methylamino]iminomethyl)-2-fluorophenyl)-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide;
N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;
Methyl 1-{{4-(N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carbamoyl)phenyl}iminomethyl}-piperidine-4-carboxylate;
1-{{4-(N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carbamoyl)phenyl}iminomethyl}-piperidine-4-carboxylic acid;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide;
N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}{4-[(ethylmethlamino)iminomethyl]phenyl}carboxamide;
[4-({[2-(dimethylamino)ethyl]methylamino}iminomethyl)phenyl]-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide;
[4-({[3-(dimethylamino)propyl]methylamino}iminomethyl)phenyl]-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}carboxamide;
N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}[4-(iminopiperidylmethyl)phenyl]carboxamide;
N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]phenyl}[4-(azetidinyliminomethyl)phenyl]carboxamide;
{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{4-chloro-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide;
[4-({[2-(dimethylamino)ethyl] amino}iminomethyl)phenyl]-N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide;
N-{4-ethynyl-2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}{4-[(ethylmethlamino)iminomethyl]phenyl}carboxamide;

{4-[(dimethylamino)iminomethyl]phenyl}-N-{2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide;
N-{2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;
{4-[(dimethylamino)iminomethyl]-2-fluorophenyl}-N-{2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}carboxamide;
N-{2-[N-(4-ethynylphenyl)carbamoyl]-6-methoxyphenyl}[2-fluoro-4-(1-methyl(2-imidazolin-2-yl))phenyl]carboxamide;
{4-[(dimethylamino)iminomethyl]phenyl}-N-{4-chloro-2-[N-(5-methyl(2-pyridyl))carbamoyl]phenyl}-carboxamide;
N-{4-chloro-2-[N-(5-methyl(2-pyridyl))carbamoyl]phenyl}[4-(1-methyl(2-imidazolin-2-yl))phenyl]-carboxamide; and
N-{2-[N-(5-methyl(2-pyridyl))carbamoyl]-4-chlorophenyl}[4-(iminopyrrolidinylmethyl)phenyl]carboxamide.

29. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound according to claim 1.

30. A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising administering to said mammal a therapeutically effective amount of a compound according to claim 1.

31. A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising administering to said mammal a therapeutically effective amount of a pharmaceutical composition according to claim 29.

32. The method according to claim 30, wherein the condition is selected from the group consisting of:

acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-

coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation, and thrombotic complications associated with the fitting of prosthetic devices.

33. A method for inhibiting the coagulation of biological samples, comprising the step of administering a compound according to claim 1.

34. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound of claim 5.

35. A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising administering to said mammal a therapeutically effective amount of a compound according to claim 5.

36. The method according to claim 35, wherein the condition is selected from the group consisting of:

acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated

intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation, and thrombotic complications associated with the fitting of prosthetic devices.

36. A method for inhibiting the coagulation of biological samples, comprising the step of administering a compound according to claim 5.

37. A pharmaceutical composition for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound according to claim 5.

38. A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising administering to said mammal a therapeutically effective amount of a compound according to claim 11.

39. The method according to claim 38, wherein the condition is selected from the group consisting of:

acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia,

thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation, and thrombotic complications associated with the fitting of prosthetic devices.

38. A method for inhibiting the coagulation of biological samples, comprising the step of administering a compound of claim 5.

39. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound according to claim 11.

40. A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising administering to said mammal a therapeutically effective amount of a compound of claim 11.

41. The method of claim 40, wherein the condition is selected from the group consisting of:

acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation, and thrombotic complications associated with the fitting of prosthetic devices.

42. A method for inhibiting the coagulation of biological samples, comprising the step of administering a compound of claim 11.

43. A compound of formula II:

wherein R^a is independently hydrogen, or C₁₋₃ alkoxy;

R^b is halogen or -≡H;

X is C or N.

44. The compound according to claim 2 wherein Ar1 is thiophene.

45. The compound according to claim 2 wherein R¹ is independently selected from the group consisting of halogen, haloalkyl, OMe, Me, CF₃, OCF₃, c≡CH, c≡CH₂, -CH=CH₂ and CH=CHMe.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 02/10523

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07C257/18 C07C279/18 C07D213/46 C07D213/53 C07D333/20
 C07D333/38 A61K31/44 A61K31/38 A61P7/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07C C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, CHEM ABS Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WILEY M R ET AL: "Structure-based design of potent, amidine-derived inhibitors of factor Xa: evaluation of selectivity, anticoagulant activity, and antithrombotic activity" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, vol. 43, no. 5, 9 March 2000 (2000-03-09), pages 883-899, XP002186966 ISSN: 0022-2623 *scheme 1* figure 1; examples 2,3,44-52,57,62,68; table 3 --- WO 01 19788 A (COR THERAPEUTICS INC) 22 March 2001 (2001-03-22) claims; examples 27-30,33-40,46-106,116-153,160-281,284-287 --- -/-/	1-46
X		1-46

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "8" document member of the same patent family

Date of the actual completion of the international search

23 July 2002

Date of mailing of the international search report

06/08/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL-2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Härtinger, S

INTERNATIONAL SEARCH REPORT

	International Application No PCT/US 02/10523
--	---

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 00127 A (BEIGHT DOUGLAS WADE ; GOODSON THEODORE JUNIOR (US); HERRON DAVID KE) 7 January 1999 (1999-01-07) claim 1; examples 4,15,18 ---	1-46
X	WO 99 00121 A (BEIGHT DOUGLAS WADE ; GOODSON THEODORE JR (US); HERRON DAVID KENT () 7 January 1999 (1999-01-07) claim 1; examples 40,42,43 ---	1-46
X	HERRON D K ET AL: "1,2-Dibenzamidobenzene Inhibitors of Human Factor Xa" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, vol. 43, 9 March 2000 (2000-03-09), pages 859-872, XP002181376 ISSN: 0022-2623 page 865, left-hand column, paragraph 2; example 39 ---	1-46
A	WO 99 42439 A (SAAL WOLFGANG VON DER ; STEGMEIER KARLHEINZ (DE); GRAMS FRANK (DE);) 26 August 1999 (1999-08-26) claims; example 3 ---	1-46
A	WO 98 28269 A (DU PONT MERCK PHARMA) 2 July 1998 (1998-07-02) cited in the application *formula N and O* page 333; claims ---	1-46
A	WO 97 30971 A (DU PONT MERCK PHARMA) 28 August 1997 (1997-08-28) claims -----	1-46

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US 02/10523**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 30–33 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

-- National Application No

PCT/US 02/10523

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
WO 0119788	A	22-03-2001	AU 7486600 A AU 7486700 A EP 1216231 A2 EP 1216228 A2 NO 20021229 A NO 20021230 A WO 0119798 A2 WO 0119788 A2 US 2002091116 A1 AU 4535301 A AU 5078301 A WO 0164642 A2 WO 0164643 A2 US 2002002183 A1	17-04-2001 17-04-2001 26-06-2002 26-06-2002 21-05-2002 21-05-2002 22-03-2001 22-03-2001 11-07-2002 12-09-2001 12-09-2001 07-09-2001 07-09-2001 03-01-2002
WO 9900127	A	07-01-1999	AU 8270698 A EP 1007037 A1 JP 2002510313 T WO 9900127 A1 US 6417200 B1	19-01-1999 14-06-2000 02-04-2002 07-01-1999 09-07-2002
WO 9900121	A	07-01-1999	AU 8270898 A EP 1014962 A1 JP 2002512633 T WO 9900121 A1 US 6313122 B1	19-01-1999 05-07-2000 23-04-2002 07-01-1999 06-11-2001
WO 9942439	A	26-08-1999	EP 0937711 A1 AU 2623899 A WO 9942439 A1 ZA 9901272 A	25-08-1999 06-09-1999 26-08-1999 18-08-1999
WO 9828269	A	02-07-1998	AU 730224 B2 AU 5602098 A CN 1246847 A EE 9900316 A EP 0946508 A1 HR 970698 A1 HU 0000735 A2 JP 2001509145 T LT 99076 A ,B LV 12430 A LV 12430 B NO 992633 A NZ 336162 A PL 334250 A1 SI 20017 A SK 86699 A3 WO 9828269 A1 US 6020357 A ZA 9711586 A BR 9714073 A	01-03-2001 17-07-1998 08-03-2000 15-02-2000 06-10-1999 31-10-1998 28-04-2001 10-07-2001 25-02-2000 20-02-2000 20-07-2000 20-08-1999 29-09-2000 14-02-2000 29-02-2000 07-11-2000 02-07-1998 01-02-2000 01-07-1999 09-05-2000
WO 9730971	A	28-08-1997	AU 2056197 A CA 2244851 A1 EP 0892780 A1 WO 9730971 A1 US 5942544 A	10-09-1997 28-08-1997 27-01-1999 28-08-1997 24-08-1999