INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

4 - Introd. à Análise Combinatória

- 4.1) Arranjos (permutações)
- 4.2) Combinações
- 4.3) O Princípio do Pombal
- 4.4) Relações de Recorrência

ANÁLISE COMBINATÓRIA

- Técnicas para a contagem de conjuntos são importantes na Ciência da Computação.
 - Especialmente na análise de algoritmos.

- Resultado auxiliar:
- Teorema 1 ("Princípio da Multiplicação para a Contagem"):

Suponha que duas tarefas devem ser executadas em seqüência:

- se há n_1 modos de executar a tarefa T_1
- e se, para um destes modos, T_2 pode ser realizada de n_2 maneiras

então a sequência T_1T_2 pode ser realizada de n_1n_2 formas diferentes.

Prova:

- ullet cada escolha de método para T_1 resulta em um caminho diferente para a sequência
 - existem n₁ destes métodos
 - $m{\wp}$ para cada um deles, podemos escolher n_2 maneiras de realizar T_2
- logo, no todo, serão n_1n_2 opções para a seqüência T_1T_2 .

• Ilustração ($n_1 = 3$ e $n_2 = 4$):

modos possíveis para a tarefa 1

modos possíveis para a tarefa 2

modos possíveis para realizar a tarefa 1 e depois a tarefa 2

- Este teorema pode ser facilmente estendido...
- **▶ Teorema 2:** suponha que as tarefas $T_1, T_2, ..., T_k$ devem ser realizadas em seqüência:
 - se T_1 pode ser realizada de n_1 maneiras,
 - e para cada uma destas maneiras, T_2 pode ser realizada de n_2 maneiras,
 - e para cada um dos n_1n_2 modos de realizar T_1T_2 em seqüência, T_3 pode ser realizada de n_3 maneiras,
 - e assim por diante,

então a sequência $T_1T_2\cdots T_k$ pode ser realizada de exatamente $n_1n_2\cdots n_k$ modos.

Prova: indução sobre k.

■ Exemplo: Um certo esquema de rotulagem para identificação de equipamentos consiste de uma letra seguida por 3 dígitos. Quantos identificadores distintos são possíveis, se for permitido que haja repetição?

Solução:

pelo princípio da multiplicação estendido, existem:

$$26 \times 10 \times 10 \times 10 = 26000$$
 possibilidades

Exemplo: Seja A um conjunto com n elementos. Quantos subconjuntos A possui?

Solução:

- ullet cada subconjunto é formado por alguns dos n elementos de A
- a participação de cada elemento em um dado subconjunto pode ser representada como um "0" ou um "1" em um vetor de comprimento n
- ora, pelo princípio visto, existem:

$$\underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{n \ fatores} = 2^n$$

modos de preencher o vetor

• e, portanto, 2^n subconjuntos de A.

Questão:

- Seja A qualquer conjunto com n elementos e $1 \le r \le n$.
- Quantas sequências diferentes de comprimento r podem ser formadas usando elementos de A se:
 - (a) elementos na sequência podem ser repetidos?
 - (b) todos os elementos na seqüência devem ser distintos?
- ullet Nota: qualquer sequência de comprimento r pode ser formada pelo preenchimento de r "caixas", em ordem, da esquerda para a direita:

- Seja T_i a tarefa: "preencha a caixa i".
- Então, $T_1T_2\cdots T_r$ representa a formação da sequência.

QUESTÃO (CONTINUAÇÃO)

Caso (a):

- para cada posição "i", podemos copiar qualquer elemento de A
- ou seja, há sempre n modos de realizar cada tarefa
- então, pelo princípio da multiplicação estendido, o número de seqüências que podem ser formadas é:

$$\underbrace{n \cdot n \cdot \dots \cdot n}_{r \ fatores} = n^r$$

Teorema 3:

- Seja A um conjunto com n elementos e seja $1 \le r \le n$.
- Então o número de seqüências de comprimento r que podem ser formadas com elementos de A, permitindo repetições, é n^r .
- **Exemplo:** Quantas "palavras" de 3 letras podem ser formadas com letras do conjunto $\{a, b, y, z\}$, se for permitido repetição?

QUESTÃO (CONTINUAÇÃO)

Caso (b):

- T_1 ainda pode ser realizada de n modos
- ullet mas aí, qualquer que seja o escolhido, restam só (n-1) opções
 - ullet ou seja: há apenas (n-1) maneiras de realizar T_2
- isto continua até vermos que T_r pode ser realizada de (n-(r-1))=(n-r+1) modos
- portanto, pelo princípio da multiplicação, uma seqüência de r elementos distintos de A pode ser montada de $n(n-1)(n-2)\cdots(n-r+1)$ modos
- Uma sequência de r elementos distintos de A é chamada de "arranjo (ou permutação) de A tomado r a r".
 - Note que a quantidade destas seqüências depende apenas de n.

QUESTÃO (CONTINUAÇÃO)

Teorema 4: Se $1 \le r \le n$, então o número de arranjos de n objetos tomados r a r é dado por:

$$_{n}P_{r} = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-r+1) = \frac{n!}{(n-r)!}$$

- Nota: na verdade, está fórmula vale para $n \ge 0$ e $0 \le r \le n$
- **Exemplo:** Seja A dado por $\{1, 2, 3, 4\}$.
 - ▲ Alguns arranjos de A tomados 3 a 3: 124,421,341,243,...
 - Nro total de arranjos de A tomados 3 a 3:

$$_{4}P_{3}=4\cdot 3\cdot 2=24$$

- \blacksquare Alguns arranjos de A tomados 2 a 2: 12,43,31,24,21,...
- Nro total de arranjos de A tomados 2 a 2:

$$_4P_2 = 4 \cdot 3 = 12$$

- Quando r = n, estamos contando todos os distintos arranjos de A em seqüências de comprimento n.
 - Estas seqüências são chamadas de permutações.
 - ullet Número de permutações de A:

$$_{n}P_{n}=n!$$

Exemplo: As possíveis permutações de $A = \{a, b, c\}$ são:

abc, acb, bac, bca, cab e cba.

• Note que o número destas permutações é 3! = 6.

- **Exemplo:** A consiste de todas as 52 cartas de um baralho.
 - Assuma que elas foram embaralhadas e que foi distribuída uma "mão" de 5 cartas.
 - Uma lista de cartas nesta "mão", na ordem em que foram dadas, é um arranjo de A 5 a 5.
 - Exemplos de mãos:
 - \blacksquare $A\heartsuit$, $3\diamondsuit$, $5\clubsuit$, $2\heartsuit$, $J\spadesuit$

 - Note que a 1^a e a última mãos são arranjos diferentes.
 - Quantidade destes arranjos:

$$_{52}P_5 = \frac{52!}{47!} = 52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 = 311875200$$

■ Exemplo: Quantas "palavras" com 3 letras distintas podem ser formadas das letras da palavra CASO?

• O número é
$$_4P_3 = \frac{4!}{(4-3)!} = 24$$

■ Exemplo: E se a palavra chave do exemplo anterior tivesse sido CASA?

- ${}_4P_3$ contaria como distntos alguns arranjos que não podem ser distinguidos:

 - mas, sem os rótulos, são a mesma palavra...
- Isto leva a um último exemplo a considerar: permutações com repetições limitadas...

Exemplo (1/2): Quantos permutações distinguíveis existem com as letras da palavra BANANA?

- Começar rotulando os A's e os N's.
- ▶ Para $B, A_1, N_1, A_2, N_2, A_3$ existem 6! = 720 permutações.
- Só que algumas destas permutações são idênticas, exceto pela ordem em que os N's aparecem:
 - ullet exemplo: $A_1A_2A_3BN_1N_2$ e $A_1A_2A_3BN_2N_1$
 - de fato, as 720 podem ser listadas em pares que diferem apenas na ordem dos dois N's
 - isto significa que, tirando os rótulos dos N's, restam apenas $\frac{720}{2}=360$ permutações distinguíveis

Exemplo (2/2): Quantos permutações distinguíveis existem com as letras da palavra BANANA?

- De modo similar, notamos que estas 360 podem ser agrupadas em grupos de 3! = 6 que diferem apenas na ordem dos 3 A's
 - um destes grupos de 6 seria: $BNNA_1A_2A_3, BNNA_1A_3A_2, BNNA_2A_1A_3, BNNA_2A_3A_1, BNNA_3A_1A_2, BNNA_3A_2A_1$
 - tirando os rótulos, estas 6 ficam, simplesmente: BNNAAA
- Portanto, existem $\frac{360}{6} = 60$ permutações distinguíveis das letras de BANANA.

- Teorema: O números de permutações distintas que pode ser formado com uma coleção de n objetos, aonde:
 - o 1^o objeto aparece k_1 vezes
 - o 2^o objeto aparece k_2 vezes
 - etc...

é dado por:

$$\frac{n!}{k_1!k_2!\cdots k_t!}$$

• aonde: $k_1 + k_2 + \cdots + k_t = n$

Exemplo: O número de "palavras" distintas que podem ser formadas a partir das letras de *MISSISSIPI* é:

$$\frac{11!}{1!.4!.4!.2!} = 34650$$