Convecção – Análise Dimensional e Correlações

Isabel Coelhoso

imrc@fct.unl.pt

Engenharia Química e Biológica

Fenómenos de Transferência II

Coeficiente de transferência de massa

$$N_A = k_C (C_{AS} - C_A)$$

Coeficiente de transferência de massa

Avaliação de Kc:

- ☐ Análise Dimensional
- ☐ Correlações experimentais
- □Analogias entre tansferência de massa, calor e quantidadede movimento
- Modelos
- ☐ Camada limite

Análise Dimensional

Variável	Símbolo	Dimensão
diâmetro	D	
massa esp. fluido	e	M L-3
viscosidade fluido	ju.	M L-1 T-1
velocidade fluido	v	LT-1
coeficiente difusai	DAB	L2 T-1
coef. transf= masse		LT-1

Teorema II de Buckingham

Números adimensionais: 3

n° grupos
adimensionais n° variáveis

Análise Dimensional

$$\pi_1 = D_{AB}^{a} \rho^b D^c k_c$$

$$\pi_1 = \frac{k_c D}{D_{AB}}$$

N° Sherwood

Razão entre a resistência à transferência de massa por convecção e por difusão

Para o 1º Número adimensional

$$1 = \left(\frac{L^2}{t}\right)^a \left(\frac{M}{L^3}\right)^b (L)^c \left(\frac{L}{t}\right)$$

$$L: 0 = 2a - 3b + c + 1$$

$$t : 0 = -a - 1$$

M:
$$0 = b$$

$$a = -1$$
, $b = 0$ $c = 1$

Análise Dimensional

Para os restantes números adimensionais

$$\pi_2 = D_{AB}^d \rho^e D^f v$$

$$\pi_2 = \frac{Dv}{D_{AB}}$$

$$\frac{\pi_2}{\pi_3} = \left(\frac{Dv}{D_{AB}}\right) / \left(\frac{\mu}{\rho D_{AB}}\right) = \frac{Dv \rho}{\mu} = \text{Re}$$

Nº Reynolds

Razão entre as forças cinéticas e as forças viscosas

$$\pi_3 = D_{AB}^g \rho^h D^i \mu$$

$$\pi_3 = \frac{\mu}{\rho D_{AB}} = Sc$$

N° Schmidt

Razão entre a difusão molecular de quantidade de movimento e de massa

Correlações experimentais

Transferência de massa:

$$Sh = \psi$$
 (Re, Sc)

Transferência de calor:

$$Nu = \psi$$
 (Re, Pr)

Correlações - condutas

Regime turbulento

Gilliland and Sherwood

$$Sh \frac{p_{B,lm}}{P} = 0.023 \text{ Re}^{0.83} Sc^{0.44}$$

$$2000 < \text{Re} < 35000$$

 $0.6 < \text{Sc} < 2.5$

Linton and Sherwood

$$Sh = 0.023 \text{ Re}^{0.83} Sc^{1/3}$$

Regime laminar

$$Sh = 1.86 \left(\text{Re} \, Sc \, \frac{d}{L} \right)^{1/3}$$

Correlações

Colunas com enchimento

a = anea interfacial / vol. leito

ka = coef. de capacidade.

Sherwood e Holloway (absorção)

anéis	Ra	eschig	2"	80	0.22
Selas	de	Berl	1 "	170	0.28
espira	امُن	les	3"	110	0.28

Table 8.3-2 Selected mass transfer correlations for fluid-fluid interfaces^a

Physical situation	Basic equation ^b	Key variables	Remarks
Liquid in a packed $k\left(\frac{1}{vg}\right)^{1/3} = 0.0051 \left(\frac{v^0}{av}\right)^{1/3}$	$k\left(\frac{1}{vg}\right)^{1/3} = 0.0051 \left(\frac{v^0}{av}\right)^{0.67} \left(\frac{D}{v}\right)^{0.50} (ad)^{0.4}$	a = packing area per bed volume $d = $ nominal packing size	Probably the best available correlation for liquids; tends to give lower values than other correlations
	$\frac{kd}{D} = 25 \left(\frac{dv^0}{v}\right)^{0.45} \left(\frac{v}{D}\right)^{0.5}$	d = nominal packing size	The classical result, widely quoted; probably less successful than above.
	$\frac{k}{v^0} = \alpha \left(\frac{dv^0}{v}\right)^{-0.3} \left(\frac{D}{v}\right)^{0.5}$	d = nominal packing size	Based on older measurements of height of transfer units (HTU's); \alpha is of order one.
Gas in a packed tower	$\frac{k}{aD} = 3.6 \left(\frac{v^{\theta}}{av}\right)^{0.70} \left(\frac{v}{D}\right)^{1/3} (ad)^{-2.0}$	a = packing area per bed volume $d = $ nominal packing size	Probably the best available correlation for gases.
	$\frac{kd}{D} = 1.2(1 - \epsilon)^{0.36} \left(\frac{dv^0}{v}\right)^{0.64} \left(\frac{v}{D}\right)^{1/3}$	$d = \text{nominal packing size}$ $\varepsilon = \text{bed void fraction}$	Again, the most widely quoted classical result.
Pure gas bubbles in a stirred tank	$\frac{kd}{D} = 0.13 \left(\frac{(P/V)d^4}{\rho v^3} \right)^{-1/4} \left(\frac{v}{D} \right)^{1/3}$	d = bubble diameter $P/V = stirrer power per volume$	Note that k does not depend on bubble size.
Pure gas bubbles in an unstirred liquid	$\frac{kd}{D} = 0.31 \left(\frac{d^3 g \Delta \rho / \rho}{v^2} \right)^{1/3} \left(\frac{v}{D} \right)^{1/3}$	d = bubble diameter $\Delta \rho = \text{density difference between}$	For small swarms of bubbles rising in a liquid.
Large liquid drops rising in unstirred solution	$\frac{kd}{D} = 0.42 \left(\frac{d^3 \Delta \rho g}{\rho v^2} \right)^{1/3} \left(\frac{v}{D} \right)^{0.5}$	gas and liquid $d = \text{bubble diameter}$ $\Delta \rho = \text{density difference between}$ bubbles and surrounding fluid	Drops 0.3-cm diameter or larger.
Small liquid drops rising in unstirred solution	$\frac{kd}{D} = 1.13 \left(\frac{dv^0}{D}\right)^{0.8}$	d = drop diameter $v^0 = \text{drop velocity}$	These small drops behave like rigid spheres.
Falling films	$\frac{kz}{D} = 0.69 \left(\frac{zv^0}{D}\right)^{0.5}$	z = position along film $v^0 = \text{average film velocity}$	Frequently embroidered and embellished.

Notes: ^aThe symbols used include the following: D is the diffusion coefficient; g is the acceleration due to gravity; k is the local mass transfer coefficient; v^0 is the superficial fluid velocity; and v is the kinematic viscosity.

^bDimensionless groups are as follows: dv/v and v/av are Reynolds numbers; v/D is the Schmidt number; $d^3g(\Delta\rho/\rho)/v^2$ is the Grashoff number, kd/D is the Sherwood number; and $k/(vg)^{1/3}$ is an unusual form of Stanton number.

Table 8.3-3 Selected mass transfer correlations for fluid-solid interfaces^a

Physical situation	Basic equation ^b	Key variables	Remarks Often applied even where membrane is hypothetical.	
Membranc	$\frac{kl}{D} = 1$	I = membrane thickness		
Laminar flow along flat plate ^c	$\frac{kL}{D} = 0.646 \left(\frac{Lv^0}{v}\right)^{1/2} \left(\frac{v}{D}\right)^{1/2}$	v — outk velocity	Solid theoretical foundation, which is unusual.	
Turbulent flow through horizontal slit	$\frac{kd}{D} = 0.026 \left(\frac{dv^0}{v}\right)^{0.8} \left(\frac{v}{D}\right)$	$a = [z/\pi] \text{ (sin width)}$	Mass transfer here is identical with that in a pipe of equal wetted perimeter.	
Turbulent flow through circular tube	$\frac{kd}{D} = 0.026 \left(\frac{dv^0}{v}\right)^{0.8} \left(\frac{v}{D}\right)$	v^0 = average velocity in tube d = pipe diameter	Same as slit, because only wall regime is involved.	
Laminar flow through circular tube	$\frac{kd}{D} = 1.62 \left(\frac{d^2v^0}{LD}\right)^{1/3}$	d = pipe diameter L = pipe length $v^0 = \text{average velocity in tube}$	Very strong theory and experiment	
Flow outside and parallel to a capillary bed	$\frac{kd}{D} = 1.25 \left(\frac{d_e^2 v^0}{vl} \right)^{0.93} \left(\frac{v}{D} \right)$	$v^{o} = superficial velocity$	Not reliable because of channeling in bed.	
Flow outside and perpendi- cular to a capillary bed	$\frac{kd}{D} = 0.80 \left(\frac{dv^0}{v}\right)^{0.47} \left(\frac{v}{D}\right)^{1}$	$d=$ capillary diameter $v^0=$ velocity approaching bed	Reliable if capillaries evenly spaced.	
Forced convection around a solid sphere	$\frac{kd}{D} = 2.0 + 0.6 \left(\frac{dv^0}{v}\right)^{1/2} \left(\frac{dv^0}{v}\right)^{1/2}$	$v^{\circ} = \text{velocity of sphere}$	Very difficult to reach $(kd/D) = 2$ experimentally; no sudden laminar-turbulent transition.	
Free convection around a solid sphere	$\frac{kd}{D} = 2.0 + 0.6 \left(\frac{d^3 \Delta \rho g}{\rho v^2}\right)^{1/4}$	r — Flavitational acceleration	For a 1-cm sphere in water, free convection is important when $\Delta \rho = 10^{-9} \mathrm{g/cm^3}$.	
acked beds	$\frac{k}{v^0} = 1.17 \left(\frac{dv^0}{v}\right)^{-0.42} \left(\frac{D}{v}\right)$	v = superficial velocity	The superficial velocity is that which would exist without packing.	
pinning disc	$\frac{kd}{D} = 0.62 \left(\frac{d^2\omega}{v}\right)^{1/2} \left(\frac{v}{D}\right)^{1}$	d = disc diameter $\omega = \text{disc rotation (radians/time)}$	Valid for Reynolds numbers between 100 and 20,000,	

Note: ^aThe symbols used include the following: D is the diffusion coefficient of the material being transferred; k is the local mass transfer coefficient; ρ is the fluid density; ν is the kinematic viscosity. Other symbols are defined for the specific situation.

^bThe dimensionless groups are defined as follows: (dv^0/v) and $(d^2\omega/v)$ are the Reynolds number; v/D is the Schmidt number; $(d^3\Delta\rho g/\rho v^2)$ is the Grashöf number; k/D is the Sherwood number; k/v is the Stanton number.

 $^{\circ}$ The mass transfer coefficient given here is the value averaged over the length L.

Correlações

Faz-se escoar ar a 10°C e à pressão de 1 atm ao longo de uma conduta feita em naftaleno com diâmetro interno igual a 2.5 cm e 183 cm de comprimento. Supondo que a variação de pressão ao longo do tubo é desprezável e que a superfície do naftaleno está a 10°C, determine o teor de naftaleno do ar que sai da conduta e a velocidade de sublimação, se a velocidade média do ar for:

- a) 61 cm/s
- b) 15.25 m/s

Propriedades do ar: $v = 1.5 \times 10^{-5} \text{ m}^2/\text{s}$

Propriedades do naftaleno: Pressão de vapor = 0.0209 mmHg

Coeficiente de difusão no ar = 5.16×10^{-2} cm²/s

Massa molecular = 128.2 g/mol

Sh = 1.86 Re Sc
$$\frac{d}{L}$$
 Regime laminar Sh = 0.023 Re^{0.83} Sc^{0.44} Regime turbulento

$$\begin{array}{c|c} \mathbf{Air} & & & \\ \hline & & & \\ \hline & & & \\ \hline \Delta X & & V= velocidade \end{array}$$

$$c_A V \frac{\pi d^2}{4} \Big|_x + k_c (c_{A_S} - c_A) \pi d\Delta x = c_A V \frac{\pi d^2}{4} \Big|_{x + \Delta x}$$

$$\div \frac{\pi d^2}{4} \Delta x$$

$$\frac{c_A \Big|_{x + \Delta x} - c_A \Big|_x}{\Delta x} = \frac{4 k_c}{d V} (c_{A_S} - c_A)$$

Take the limits as Δx approaches zero

$$\frac{dc_A}{dx} = \frac{4}{d} \frac{k_c}{V} \left(c_{A_s} - c_A \right)$$
$$- \int_{c_{A_o}}^{c_{A_L}} \frac{-dc_A}{\left(c_{A_s} - c_A \right)} = \frac{4}{d} \frac{k_c}{V} \int_0^L dx$$

$$ln\left(\frac{c_{A_s}-c_{A_o}}{c_{A_s}-c_{A_L}}\right) = \frac{4}{d}\frac{k_c}{V}L$$

$$W=V \quad \frac{\pi d^2}{4} \text{ (Cal-CA0)}$$

a)

Re= 1017

Sc = 2.91

 $kc = 1.32 \times 10^{-3} \text{ m/s}$

 $Cas = C^* = P^*/RT = 1.17x10^{-3} \text{ mol/m}^3$

CAL= $5.5 \times 10^{-4} \text{ mol/m}^3$

 $W = 1.65 \times 10^{-7} \text{ mol/s}$

b)

Re= 25417

Sc = 2.91

 $kc = 3.44 \times 10^{-2} \text{ m/s}$

 $Cas = C^* = P^*/RT = 1.17x10^{-3} \text{ mol/m}^3$

CAL= $5.7 \times 10^{-4} \text{ mol/m}^3$

 $W = 4.21 \times 10^{-6} \text{ mol/s}$

Correlações

Uma esfera de glucose com 0.5 cm de diâmetro é dissolvida numa corrente de água, que se desloca a uma velocidade de 15 cm/s, à temperatura de 25°C. Calcule o coeficiente de transferência de massa e o tempo necessário para que o volume da esfera se reduza a metade.

Dados:
$$D_{glucose-\acute{a}gua}$$
 = 6.0x10⁻⁶ cm²/s $\rho_{\acute{a}gua}$ = 1x10³ kg/m³ $\mu_{\acute{a}gua}$ = 1x10⁻³ Ns/m² $\rho_{glucose}$ = 1.4x10³ kg/m³ M (glucose) = 180.16 g/mol

$$Sh = 2 + 0.6 Re^{1/2} Sc^{1/3}$$

$$Re = 750$$

$$Sc = 1667$$

$$kc = 2.36 \times 10^{-5} \text{ m/s}$$

Esfera glucose

Massa dissolvida = $\frac{1}{2}$ Volume* ρ/M = 2.54x10⁻⁴ mol

$$W = Kc A CAs = 5.56x10^{-6} mol/s$$

$$t=45.7 \text{ s}$$