Universidad nacional amazónica de madre de dios

Carrera profesional: Ingeniería en sistemas e

informática

Nombre y apellido: Jin alexander Olmedo

Paredes

Curso: Algoritmos

Código: 22221042

Docente: Holgado Apaza Luis Alberto

Guía de laboratorio 3

Actividad 1

Descripción del problema

1) En una empresa, los salarios de los empleados se van aumentar según el sueldo actual:

Sueldo actual	Aumento%
0 a 800	20
801 a 1000	10
1001 a 1500	5
Más de 1500	0

Desarrolle un programa que solicite el sueldo actual de un empleado, calcule y visualice el nuevo sueldo.

1 Analisis

1.1 Entender el problema

entrada	proceso	salida
Sueldo actual	aumento	sueldo final
1000	10%	1100
1234	5%	1295.7
3422	0%	3422

1.2 Modelo

"0%", sueldo actual>=1500
"5%", sueldo actual>=1001
Aumento = "20%", sueldo actual>=0
"10%", sueldo atual>=801

1.3 Especificacion del algoritmo

1.3.1 Diccionario de variables

variables de entrada:

sueldo (tipo real)

variables de proceso:

aumento (tipo cadena)

variables de salida:

sueldoFinal (tipo real)

1.3.2 Pre condición

(Sueldo>0)

1.3.3 Accion del algoritmo

Tiene que calcular el porcentaje de aumento dependiendo de cuanto es el sueldo del empleado y luego sumar el aumento con el sueldo base

1.3.4 Post condición (SueldoFinal>0)

2 Diseño

2.1 Descripcion del algoritmo primera fase

Inicio

Primera fase

{determiner el sueldo del empleado en forma de numero}

{Declaracion e inicialización de valores}

{leer sueldo}

{si el sueldo es mayor que 0 pero menor o igual a 800 entonces el aumento es del 20%}

{si el sueldo es mayor o igual que 801 pero menor o igual a 1000 entonces el aumento es del 10%}

{si el sueldo es mayor o igual que 1001 pero menor o igual a 1500 entonces el aumento es del 5%}

{si el sueldo es mayor que 1500 entonces el aumento es del 0%}

{calcular el sueldo final}

Segunda fase

Diagrama de flujo

Codificación en pseint

```
Algoritmo sin_titulo
Definir sueld, aumento, sueldFin Como Real
Escribir "digite el sueldo del empleado"
Leer sueld

si sueld≥0 y sueld≤800 Entonces
aumento=sueld*0.20
SiNo
si sueld≥801 y sueld≤1000 Entonces
aumento=sueld*0.10
SiNo
SiNo
si sueld≥1001 y sueld≤1500 Entonces
aumento=sueld*0.05
SiNo
SiNo
FinSi
```

Codificación en c++

```
#include <iostream>
using namespace std;
int main() {
    float sueld, aumento, sueldFin;
    cout << "Digite el sueldo del empleado: ";</pre>
    cin >> sueld;
    if (sueld >= 0 && sueld <= 800) {
        aumento = sueld * 0.20;
    } else if (sueld >= 801 && sueld <= 1000) {
        aumento = sueld * 0.10;
    } else if (sueld >= 1001 && sueld <= 1500) {
        aumento = sueld * 0.05;
        aumento = 0;
    sueldFin = sueld + aumento;
    cout << "El sueldo final del empleado con el aumento del: " << aumento</pre>
       << " es de: " << sueldFin << " nuevos soles" << endl;</pre>
    return 0;
```

Actividad 2)

Descripción del problema

2) La comisión sobre las ventas realizadas por un vendedor se calcula según las siguientes condiciones:

Venta realizada	% de comisión
0 a 200	0
Mas de 200 a 1000	10
Mas de 1000 a 2000	15
Mas de 2000 a 3000	20
Mas de 3000 a 4000	25
Mas de 4000	30

Desarrolle una aplicación que calcule las comisiones del vendedor.

1. Análisis

1.1. Entender el problema

entrada	proceso	salida
ventas	% de comisión	comisión
800	10%	80
1200	15%	180
4323	30%	1296.9

Comisión=ventas*(porcentaje/100)

1.2. Modelo

"0%", si ventas>=0 y ventas<=200

"10%", si ventas>=200 y ventas<=1000

"15%", si ventas>=1000 y ventas<=2000

Comisión= "20%", si ventas>=2000 y ventas<=3000

"25%", si ventas>=3000 y ventas<=4000

"30%", si ventas>4000

1.3. Especificación del algoritmo

1.3.1. Diccionario de variables

Variable de entrada

{ventas}: tipo Real

Variable de proceso

{comisión, ventas}: tipo real

Variable de salida

{comisión}: tipo real

1.3.2. Pre condición

{Sueldo>0}

1.3.3. Acción del algoritmo

Calcular la comisión en base a las ventas realizadas

1.3.4. Post condición

{Comisión de tipo real}

- 2. Diseño
 - 2.1. Descripción del algoritmo

Inicio

{determina la comisión}

{declarar variables de tipo real}

{leer ventas}

{determinar la comisión dependiendo de las ventas realizadas}

{mostrar la comisión}

Fin

Segunda fase

Diseño del diagrama de flujo

Definición del algoritmo

```
Algoritmo sin_titulo
   Definir ventas, comision Como Real
   Escribir "ingrese el numero de ventas"
   Leer ventas
   si ventas\geq 0 y ventas\leq 200 Entonces
       comision=0
       si ventas≥200 y ventas≤1000 Entonces
           comision=ventas*0.10
           si ventas≥1000 y ventas≤2000 Entonces
              comision=ventas*0.15
               si ventas≥2000 y ventas≤3000 Entonces
                   comision=ventas*0.20
               SiNo
                   si ventas≥3000 y ventas≤4000 Entonces
                      comision=ventas*0.25
                      comision=ventas*0.30
   Escribir "la comision total es de: ",comision " nuevos soles"
FinAlgoritmo
```

Codificación en c++

```
#include <iostream>
using namespace std;
int main() {
    float ventas, comision;
    cout << "Ingrese el número de ventas: ";</pre>
    cin >> ventas;
    if (ventas >= 0 && ventas <= 200) {
        comision = 0;
    } else if (ventas >= 200 && ventas <= 1000) {
        comision = ventas * 0.10;
    } else if (ventas >= 1000 && ventas <= 2000) {
       comision = ventas * 0.15;
    } else if (ventas >= 2000 && ventas <= 3000) {
        comision = ventas * 0.20;
    } else if (ventas >= 3000 && ventas <= 4000) {
        comision = ventas * 0.25;
        comision = ventas * 0.30;
    cout << "La comision total es de: " << comision << " nuevos soles" << endl;</pre>
    return 0;
```

Actividad 3)

Descripción del problema

- 3) Sin usar estructuras repetitivas, lea 5 números y determine el mayor.
 - 1. Análisis

Entender el problema

entrada	proceso	salida
5 números enteros	mayor	mayor
14,7,5,4,19	<i>"</i>	19
12,11,23,2,1		23
11,6,9,42,45		45

1.1. Modelo

```
"a", si a>b y a>c y a>d y a>e
"b", si b>a y b>c y b>d y b>e
"c", si c>b y c>a y c>d y c>e
"d", si d>b y d>c y d>a y d>e
"e", si d>b y d>c y d>a y d>e
```

1.2. Especificaciones del algoritmo

1.2.1. Diccionario de variables

Variables de entrada

num1, num2, num3, num4, num5, {Representa el valor de cincos números}: tipo mayor como Entero

Variables de proceso

Si num1 > num2 Entonces; mayor <- num1 {Representa la determinación del número mayor}: tipo mayor como entero Variables de salida

Escribir "El número mayor es: ", mayor; {Representa el valor del número mayor}: tipo Entero

1.2.2. Pre condición

Si num1 > num2 Entonces

1.2.3. Acción del algoritmo

Calcular el numero mayor

1.2.4. Post condición

(num1, num2, num3, num4, num5, son tipo mayor como entero)

2. Diseño

2.1. Descripción del algoritmo

Primera fase

Inicio {a, b, c, d, e}

{Declaración e inicialización de variables}

{Leer dato}

{"determine del número mayor"}

{Escribir "el número mayor es:"}

Fin

Representación de diagrama de flujo

Representación del algoritmo en pseint

```
Algoritmo sin_titulo
   Definir a,b,c,d,e,max Como Entero
   Escribir "digite los 5 numeros enteros"
   Leer a,b,c,d,e
   si a>b y a>c y a>d y a>e Entonces
      max=a
       si b>a y b>c y b>d y b>e Entonces
          max=b
       SiNo
           si c>a y c>b y c>d y c>e Entonces
              max=c
               si d>a y d>c y d>b y d>e Entonces
                  max=d
                  si e>a y e>c y e>d y e>b Entonces
                   max=e
              FinSi
           FinSi
       FinSi
   Escribir "el numero mayor es: ",max
FinAlgoritmo
```

Representación del algoritmo en c++

```
#include <iostream>
  using namespace std;
vint main() {
      int a, b, c, d, e, max;
      cout << "Digite los 5 numeros enteros: ";</pre>
      cin >> a >> b >> c >> d >> e;
      if (a > b && a > c && a > d && a > e) {
          max = a;
      } else if (b > a && b > c && b > d && b > e) {
          max = b;
      } else if (c > a && c > b && c > d && c > e) {
          max = c;
      } else if (d > a && d > b && d > c && d > e) {
          max = d;
          max = e;
      cout << "El numero mayor es: " << max << endl;</pre>
      return 0;
```

Ejercicio 4

4) En una universidad tienen como política considerar 3 notas en cada curso la nota de trabajo T, la nota de medio ciclo M y la nota de fin de ciclo F, cada una tiene un peso de 50%, 20% y 30% respectivamente. Un alumno es calificado según lo siguiente:

Bueno	Si su promedio esta entre 16 y 20
Regular	Si su promedio esta entre 11 y 15
Malo	Si su promedio esta entre 6 y 10
Pésimo	Si su promedio esta entre 0 y 5

Escriba un programa que lea 3 notas de un alumno y en un curso y diga cómo ha sido catalogado el alumno.

1. Análisis

Entender el problema

entrada	proceso	salida
Notas	Nota final	Clasificación del alumno
12,16,11	(12*0.5)+(16*0.2)+(11*0.3)=11.5	regular
14,19,11	(14*0.5)+(19*0.2)+(11*0.3)=14.1	regular
16,17,15	(16*0.5)+(17*0.2)+(15*0.3)=15.9	bueno

1.1. Modelo

"Pesimo", si NotaFin>=0 y NotaFin<=5
"malo", si NotaFin>=6 y NotaFin<=10
"regular" si NotaFin>=11 y NotaFin<=15
"bueno" si NotaFin>15 y NotaFin<=20

1.2. Especificaciones del algoritmo

1.2.1. Diccionario de variables

Variables de entrada

T, M, F, promedio {Representa el valor de las notas}: tipo real Variables de proceso

promedio <- (T * 0.5) + (M * 0.2) + (F * 0.3); {Representa el valor de promedio}: tipo real

Variables de salida

Escribir "Ingrese notas válidas en el rango de 0 a 20" {Representa el valor de las notas}: tipo real

1.2.2. Pre condición

promedio <- (T * 0.5) + (M * 0.2) + (F * 0.3

1.2.3. Acción del algoritmo

Calcular 3 notas de un curso y diga cómo está catalogado el alumno

1.2.4. Post condición

(T, M, F, promedio son de tipo real)

2. Diseño

2.1. Descripción del algoritmo

Primera fase

Inicio {T, M, F, promedio}

{Declaración e inicialización de variables}

{Leer dato}

{"ingrese notas validas en el rango de 0 a 20"}

Fin

Diagrama de flujo

Representación del algoritmo en pseint

```
1 Algoritmo ejercicio4
2 Definir T, M, F, promedio Como Real
3 Escribir "Ingrese la nota de trabajo (T):"
4 Leer T
5 Escribir "Ingrese la nota de medio ciclo (M):"
6 Leer M
7 Escribir "Ingrese la nota de fin de ciclo (F):"
8 Leer F
9
10 promedio ← (T + 0.5) + (M + 0.2) + (F + 0.3)
11
12 Si promedio ≥ 16 y promedio ≤ 20 Entonces
13 Escribir "El alumno ha sido catalogado como BUENO"
14 Sino Si promedio ≥ 11 y promedio ≤ 15 Entonces
15 Escribir "El alumno ha sido catalogado como REGULAR"
16 Sino Si promedio ≥ 6 y promedio ≤ 10 Entonces
17 Escribir "El alumno ha sido catalogado como MALO"
18 Sino Si promedio ≥ 0 y promedio ≤ 5 Entonces
19 Escribir "El alumno ha sido catalogado como PÉSIMO"
20 Escribir "El alumno ha sido catalogado como PÉSIMO"
21 Escribir "Ingrese notas válidas en el rango de 0 a 20"
22 FinSi
23 FinSi
24 EinSi
24 EinSi
```

Representación del algoritmo en c++

```
#include <iostream>
using namespace std;

int main() {
    float T, M, F, promedio;
    cout << "ingrese la nota de trabajo (T): ";
    cin >> T;
    cout << "ingrese la nota de medio ciclo (M): ";
    cin >> T;
    cout << "ingrese la nota de medio ciclo (F): ";
    cin >> M;
    cout << "ingrese la nota de fin de ciclo (F): ";
    cin >> F;

promedio = (T * 0.5) + (M * 0.2) + (F * 0.3);

if (promedio > 16 && promedio < 20) {
    cout << "el alumno ha sido catalogado como BUENO" << endl;
    } elas if (promedio > 16 && promedio < 15) {
    cout << "el alumno ha sido catalogado como BESULAR" << endl;
    } elas if (promedio > 6 & promedio < 10) {
    cout << "el alumno ha sido catalogado como BUENO" << endl;
    } elas if (promedio > 6 & promedio < 6) {
    cout << "el alumno ha sido catalogado como BUENO" << endl;
    } elas if (promedio > 0 & Bueno de o e 10) {
    cout << "el alumno ha sido catalogado como PÉSINO" << endl;
    } elas if (promedio > 0 & Bueno de o e 10) {
    cout << "el alumno ha sido catalogado como PÉSINO" << endl;
    } elas if (promedio > 0 & Bueno de o e 10) {
    cout << "el alumno ha sido catalogado como PÉSINO" << endl;
    } elas if (promedio > 0 & Bueno de o e 10) {
    cout << "ingrese notas válidas en el rango de 0 a 20" << endl;
    }
}
```

Ejercicio 5

Representación del algoritmo en pseint

5) Lea 2 enteros a,b y obtenga el valor numérico de la función:

$$f(x) = \begin{cases} 2a+b & , \text{ si } a^2-b^2 < 0\\ a^2-2b & , \text{ si } a^2-b^2 = 0\\ a+b & , \text{ si } a^2-b^2 > 0 \end{cases}$$

entrada	proceso	salida
A,b	condicion	resultado
4,6	Si 4^2-6^2<0 = 2(4) +6 Si 4^2-6^2=0 = (4) ^2 -6 Si 4^2-6^2>0 = 4=6	14
3,2	Si 3^2-2^2<0 = 2(3) +2 Si 3^2-2^2=0 = (3) ^2 -2 Si 3^2-2^2>0 = 3=2	5
7,4	Si 7^2-4^2<0 = 2(7) +4 Si 7^2-4^2=0 = (7) ^2 -4 Si 7^2-4^2>0 = 7+4	11

1.1. Modelo

1.2. Especificaciones del algoritmo

1.2.1. Diccionario de variables

Variables de entrada

a, b {Representa el valor de las variables a,b }: tipo Entero resultados {representa el valor de los resultados} tipo de real Variables de proceso

Si a 2 - b 2 < 0 {Representa el valor de los resultados}: tipo real

Variables de salida

Escribir "El valor de la función es:", resultado {Representa el de la función}: tipo real

1.2.2. Pre condición $a^2 - b^2 < 0$

1.2.3. Acción del algoritmo

Calcular el valor numérico de la funciona

1.2.4. post condición (a, b Como Entero) (resultado Como Real)

2. Diseño

2.1. Descripción del algoritmo
Primera fase
Inicio { a, b }
{Declaración e inicialización de variables}
{Leer dato}
{ "escribir el valor de a"}
{ "escribir el valor de b"}
{Escribir "El valor de la función es:", resultado}
Fin

Diagrama de flujo

Codificación en pseint

```
Algoritmo sin_titulo
Definir a,b Como Entero
Definir resultado Como Real
Escribir "digite los 2 valores enteros"
Leer a,b
si a†2-b†2<0 Entonces
resultado=2*a+b
SiNo
si a†2-b†2=0 Entonces
resultado=a†2-2*b
SiNo
si a†2-b†2>0 Entonces
resultado=a†2-2*b
FinSi
FinSi
FinSi
FinSi
FinSi
FinSi
FinSi
FinSi
FinAlgoritmo
FinAlgoritmo
```

Representación del algoritmo en c++

```
v #include <iostream>
     using namespace std;
6 v int main() {
         int a, b;
        double resultado;
         cout << "Digite los 2 valores enteros: ";</pre>
         cin \gg a \gg b;
         if (pow(a, 2) - pow(b, 2) < 0) {
B
             resultado = 2*a + b;
15 🗸
16 🗸
            if (pow(a, 2) - pow(b, 2) == 0) {
17
18
                 resultado = pow(a, 2) - 2*b;
20
                 resultado = a + b;
22
         cout << "El valor de la funcion f(x) es de: " << resultado << endl;</pre>
         return 0;
```