CS528

Power and Energy Aware Design and Scheduling

A Sahu

Dept of CSE, IIT Guwahati

A Sahu

Energy Efficient System: Design and Management

- Point to consider
- ✓ Energy efficient Infrastructure
- ✓ Energy Model of Infrastructure
 - Blades/Server Machine CPU, Memory
- 1. Energy Efficient Scheduling
 - How to manage the Jobs

Outline

- Power/Energy Consumption Model
- Power Aware Computing
- Thermal Aware Computing
- Power Aware Scheduling in Cloud
- Migration and Management

Data Center Power Consumption

- Currently it is estimated that servers consume
 0.5% of the world's total electricity usage.
 - Closer to 1.2% when data center systems are factored into the equation.
- Server energy demand doubles every 4-6 years.
- This results in large amounts of CO₂ produced by burning fossil fuels.
- What if we could reduce the energy used with minimal performance impact?

Percentage of Power Consumption in DC

Motivation for Green Data Centers

Economic

- New data centers run on the Megawatt scale, requiring millions of dollars to operate.
- Recently institutions are looking for new ways to reduce costs, no more "blank checks."
- Many facilities are at their peak operating envelope, and cannot expand without a new power source.

Motivation for Green Data Centers

Environmental

- 70% of the U.S. energy sources are fossil fuels. In India 66% is from Coal Plant (NTPC)
- –2.8 billion tons of CO₂ emitted each year from U.S. power plants.
- Sustainable energy sources are not ready.
- Need to reduce energy dependence until a more sustainable energy source is deployed.

Green Cloud Goal Shift: "performance" → "energy efficiency"

- As energy costs are increasing while availability dwindles
- Need to shift focus optimising data center Resource management
 - From pure performance alone to optimising for energy efficiency
 - While maintaining high service level performance.
- Green Cloud computing model that achieves
 - not only efficient processing and utilisation of computing infrastructure,
 - but also minimise energy consumption.

Green Computing

- In the past 15-20 years of supercomputers
 - performance has doubled > 3000 times
 - o performance per watt has doubled 300 times
 - o performance per square foot has doubled 65 times

Green Cloud Computing

Cloud Usage Model

Cloud Usage Model

Cloud Computing

- Features of Clouds
 - Scalable, Enhanced Quality of Service (QoS)
 - Specialized and Customized, Cost Effective
 - Simplified User Interface

System model

- Considered IaaS paradigm
- Consists of *m* homogenous hosts (*m* is large)

System Model

- Every Task comes with
 - Execution time (e_i), deadline (d_i)
 - CPU requirement (c_i), memory requirement (m_i)
 - and any other
- SLA (Service Level Agreement) Violation
 - SLAV
 - If the task do not get require amount CPU, memory
 - If competition time extend the deadline
 - Cloud service provide may need to pay penalty

System Model

- Some time SLA comes with
 - Infra oriented: Amount of CPU, memory, bandwidth
 - Service oriented: number of request/task per time, throughput: #web/db request per time
- SLA (Service Level Agreement) Violation (SLAV)
 - If the task do not get require amount CPU, memory
 - If competition time extend the deadline
 - Not able to provide required throughput
 - Cloud service provide may need to pay penalty

Green Cloud Computing Framework

Green Cloud Framework (cont.)

- Goal : Maximize performance per watt in Cloud
 - VM Scheduling
 - -VM Image Management
 - Data Center Design
- Scheduling
 - Placement within cloud infrastructure
 - Energy use of server equipment
 - datacenter temperature important

Green Cloud Framework (cont.)

- Image Management
 - -Small Size
 - Few unnecessary processes/services
 - Migration
 - Dynamic Shutdown

- Data Center Design
 - More efficient A/C, power supplies
 - Hot and cold aisles
 - Utilizing external cooling

Virtual Machine Scheduling

- Power-Aware Scheduling (PAS)
 - Minimize total power used by servers
 - Power to servers is the larger cost
- Thermal-Aware Scheduling (TAS)
 - Minimize overall temperature
 - Reduces energy used for cooling

Virtual Machine Scheduling

Power consumption curve on an Intel Core i7 920 Server (4 cores, 8 virtual cores with Hyperthreading)

Power Aware (PA) Computing

- Objective of PA computing/communications is
 - To improve power management and consumption
 - Using the awareness of power consumption of devices.
- Power consumption is most important considerations
 - In mobile devices due to limitation battery life.

485 Watts vs. 552 Watts

VS.

Node 2 @ 105W

105*3+170=485

Node 3 @ 105W

Node 4 @ 105W

M

Node 1 @ 138W

M M

138*4=552

Node 2 @ 138W

M M

M

Node 3 @ 138W

Node 4 @ 138W

Scheduling EARH

for each task t_i in set Q do

```
findTag \leftarrow FALSE; findVM \leftarrow NULL;
for each VM v_{ik} in the system do
 Calculate the start time st_{ijk} and execution time et_{ijk}
 If st_{ijk} + et_{ijk} \le d_i then findTag \leftarrow TRUE; Compute ec_{ijk}
if findTag == FALSE scaleUpResource();
if findTag == TRUE then
   Select v_{ck} with min energy consumption to execute t_i
   findVM \leftarrow v_{sk}
 else Reject task t;
 Update scheduling decision of t_i and remove it from Q
```