Instituto Tecnológico de Costa Rica Área Académica Ingeniería en Computadores CE-3201: Análisis Numérico para Ingeniería

Manual Funtras

Integrantes

Josué Araya García Jonathan Guzmán Araya Mariano Muñoz Masís Daniel Prieto Sibaja

Cartago, Costa Rica 27 Marzo, 2021

$\mathbf{\acute{I}ndice}$

1.	Intr	ión es Funtras?	3			
2.	\mathbf{Req}	Requisitos e Instalación				
	2.1.	Requis	${ m sitos}$	4		
	2.2.		ación	4		
3.	Func	ciones	implementadas en Funtras	4		
			o multiplicativo a^{-1}	4		
		3.1.1.		4		
		3.1.2.	Valores iniciales	4		
		3.1.3.		4		
		3.1.4.	Ejemplos numérico	5		
	3.2.	-	encial de Euler e^x	5		
	J	3.2.1.		5		
		3.2.2.	Condición de parada	5		
		3.2.3.		5		
	3.3.		$\sin(x)$	5		
	0.0.	3.3.1.		5		
		3.3.2.		6		
		3.3.3.	<u>-</u>	6		
	3.4.		o $\cos(x)$	6		
	0.1.	3.4.1.		6		
		3.4.2.		6		
		3.4.3.	Ejemplo numérico	6		
	3.5.		nte $ an(x)$	6		
	J.J.	3.5.1.	Formulación matemática	7		
		3.5.1.	Ejemplo numérico	7		
	3.6.		tmo natural $\ln(x)$	7		
	5.0.	_	Formulación matemática	7		
				7		
		3.6.2.	- r	7		
	0.7	3.6.3.	Ejemplo numérico	7		
	3.7.	_	$\operatorname{Eng}_a(x)$	8		
		3.7.1.				
	0.0	3.7.2.	J 1	8		
	3.8.	•	encial a^x	8		
		3.8.1.	Formulación matemática	8		
			Valores iniciales	8		
		3.8.3.	Condición de parada	8		
		3.8.4.	Ejemplo numérico	8		
	3.9.		niperbólico $\sinh(x)$	8		
		3.9.1.	Formulación matemática	9		
		3.9.2.	Condición de parada	9		
	_	3.9.3.	Ejemplo numérico	9		
	3.10.		o hiperbólico $\cosh(x)$	9		
			Formulación matemática	9		
			Condición de parada	9		
		3.10.3.	Ejemplo numérico	9		

3.11.	Tangente hiperbólico $tanh(x)$.0
	3.11.1. Formulación matemática	.0
	9	.0
3.12.	Raíz cuadrada \sqrt{x}	0
		.0
	3.12.2. Valore inicial	. 1
	3.12.3. Condición de parada	. 1
		. 1
3.13.	V	. 1
	3.13.1. Formulación matemática	. 1
	3.13.2. Valores iniciales	. 1
	3.13.3. Condición de parada	2
	9-19-1	2
3.14.		2
	3.14.1. Formulación matemática	2
	3.14.2. Condición de parada	2
	5.2.2.9. —J	2
3.15.	Arcotangente $tan^{-1}(x)$	2
	3.15.1. Formulación matemática	3
	3.15.2. Condición de parada	.3
	3.15.3. Eiemplo numérico	3

1. Introducción

En las matemáticas existen diversos tipos de funciones como lo pueden ser:

- Algebraicas
- Trascendentes

Para este desarrollo nos enfocaremos en las funciones trascendentes, estas son las funciones que no satisfacen una ecuación polinomial cuyos coeficientes sean a su vez polinomios; esto contrasta con las funciones algebraicas, las cuales satisfacen dicha ecuación.

1.1. ¿Qué es Funtras?

Funtras es una biblioteca de funciones trascendentes desarrolladas en el lenguaje C^{++} con el objetivo de aproximar dichas funciones mediante el uso de métodos iterativos utilizando únicamente operaciones de suma, resta, multiplicación y potencia con una cantidad de iteraciones máximas de 2500 y una tolerancia de 10^{-8} .

2. Requisitos e Instalación

En esta sección se abarcarán los requisitos mínimos para su ejecución así como una breve guía de instalación de la misma.

2.1. Requisitos

El desarrollo y las pruebas de esta biblioteca se realizaron en el SO Windows 10, por lo tanto como requisitos se tiene:

- Sistema operativo Windows 10
- MinGW
- CLion

2.2. Instalación

3. Funciones implementadas en Funtras

A continuación se detallan las funciones implementadas en la biblioteca funtras.

3.1. Inverso multiplicativo a^{-1}

Esta función calcula el inverso multiplicativo, recíproco o inverso de un número x real positivo, el uso de la misma se realiza de la siguiente manera:

3.1.1. Formulación matemática

El cálculo se realiza mediante el método iterativo que se describe a continuación.

$$x_{k+1} = x_k(2 - a \cdot x_k) \tag{1}$$

3.1.2. Valores iniciales

El valor de x_0 esta dado por:

$$x_0 = \begin{cases} eps^{15} \ si \ 80! < a \le 100! \\ eps^{11} \ si \ 60! < a \le 80! \\ eps^{8} \ si \ 40! < a \le 60! \\ eps^{4} \ si \ 20! < a \le 40! \\ eps^{2} \ si \ 0! < a \le 20! \end{cases}$$

donde eps es una constante ya definida con valor de:

$$eps = 2,2204x10^{-16} (2)$$

3.1.3. Condición de parada

La condición de parada de la iteración está dada por:

$$\left| \frac{x_{k+1} - x_k}{x_{k+1}} \right| \tag{3}$$

Cuando la tolerancia dada sea mayor que esta, entonces devuelve el resultado obtenido.

3.1.4. Ejemplos numérico

double expe = $\exp_t(11)$; cout << " El resultado de e^{11} es: "<< expe; El resultado de e^{11} es: 59874.1

3.2. Exponencial de Euler e^x

Esta función calcula el exponencial de e elevado a un número natural x, el uso de la misma se realiza de la siguiente manera:

$$\exp_{\mathbf{t}}(\mathbf{x})$$

3.2.1. Formulación matemática

El cálculo se realiza mediante la sumatoria que se describe a continuación.

$$S_k(a) = \sum_{n=0}^k \frac{a^n}{n!} \tag{4}$$

3.2.2. Condición de parada

La condición de parada de la iteración está dada por:

$$|S_{k+1}(a) - S_k(a)| < tol (5)$$

3.2.3. Ejemplo numérico

double expoNUNO = varM1(144); cout <<" El resultado de 144 $^{-1}$ es: "<< expoNUNO; El resultado de 144 $^{-1}$ es: 0.00694444

3.3. Seno $\sin(x)$

Esta función calcula el seno de un número x, el uso de la misma se realiza de la siguiente manera:

$$\sin_{t}(x)$$

3.3.1. Formulación matemática

El cálculo se realiza mediante la sumatoria que se describe a continuación.

$$S_k(a) = \sum_{n=0}^k (-1)^n \frac{a^{2n+1}}{(2n+1)!}$$
 (6)

3.3.2. Condición de parada

La condición de parada de la iteración está dada por:

$$|S_{k+1}(a) - S_k(a)| < tol \tag{7}$$

3.3.3. Ejemplo numérico

double seno = $\sin_t(2.33)$; cout << " El resultado de sen(2,33) es: "<< seno; El resultado de sen(2,33) es: 0.725384

3.4. Coseno cos(x)

Esta función calcula el coseno de un número x, el uso de la misma se realiza de la siguiente manera:

$$\cos_{\mathbf{t}}(\mathbf{x})$$

3.4.1. Formulación matemática

El cálculo se realiza mediante la sumatoria que se describe a continuación.

$$S_k(a) = \sum_{n=0}^k (-1)^n \frac{a^{2n}}{(2n)!}$$
 (8)

3.4.2. Condición de parada

La condición de parada de la iteración está dada por:

$$|S_{k+1}(a) - S_k(a)| < tol (9)$$

3.4.3. Ejemplo numérico

double coseno = $\cos_t(3.78)$; cout << " El resultado de $\cos(3.78)$ es: "<< coseno; El resultado de $\cos(3.78)$ es: -0.803046

3.5. Tangente tan(x)

Esta función calcula la tangente de un número x, el uso de la misma se realiza de la siguiente manera:

$$an_t(x)$$

3.5.1. Formulación matemática

La función tangente se puede componer a partir de otras como lo son *seno* y *coseno*, es por ello que el calculo de la misma se realiza mediante la siguiente ecuación:

$$tan(x) = sen(x) \cdot cos(x)^{-1} \tag{10}$$

3.5.2. Ejemplo numérico

double tangente = $\tan_t(7)$; cout << " El resultado de $\tan(7)$ es: "<< tangente; El resultado de $\tan(7)$ es: 0.871449

3.6. Logaritmo natural ln(x)

Esta función calcula el logaritmonatural de un número x, el uso de la misma se realiza de la siguiente manera:

$$\ln_{ ext{t}}(ext{x})$$

3.6.1. Formulación matemática

El cálculo se realiza mediante la sumatoria que se describe a continuación.

$$S_k(a) = \frac{2(a-1)}{a+1} \sum_{n=0}^k \frac{1}{2n+1} \left(\frac{a-1}{a+1}\right)^{2n}$$
 (11)

3.6.2. Condición de parada

La condición de parada de la iteración está dada por:

$$|S_{k+1}(a) - S_k(a)| < tol \tag{12}$$

3.6.3. Ejemplo numérico

double logan = $\ln_t(45)$; cout << " El resultado de $\ln(45)$ es: "<< logan; El resultado de $\ln(45)$ es:3.80666

3.7. Logaritmo $\log_a(x)$

Esta función calcula el logaritmo de base a a un número x, el uso de la misma se realiza de la siguiente manera:

$$\log_{-}t(x)$$

3.7.1. Formulación matemática

La función logaritmo se puede componer a partir de otra como logaritmonatural, es por ello que el calculo de la misma se realiza mediante la siguiente ecuación:

$$\log_a(x) = \ln(x) \cdot (\ln(a))^{-1} \tag{13}$$

3.7.2. Ejemplo numérico

double logb = $\log_t(33, 43)$; cout << " El resultado de logaritmo en base 33 de 43 es: es: "<< logb; El resultado de logaritmo en base 33 de 43 es: 1.0757

3.8. Exponencial a^x

Esta función calcula el exponencial de un número a elevado a un número x, el uso de la misma se realiza de la siguiente manera:

$$power_t(x)$$

3.8.1. Formulación matemática

Esta función se compone de funciones ya programadas anteriormente, de esta forma podemos ver la siguiente relación:

$$a^x = e^{a \cdot \ln(x)} \tag{14}$$

Por lo tanto para esta función se aplican la función de logaritmo natural y exponencial de euler anteriormente explicadas.

3.8.2. Valores iniciales

Está función no tiene valores iniciales, solo los dependientes a las funciones que la componen.

3.8.3. Condición de parada

Esta función no tiene condición de parada como tal, solo las dependientes a las funciones que la componen.

3.8.4. Ejemplo numérico

double powert = power_t(2, 11); cout << " El resultado de 2 elevado a la 11 es: "<< powert; El resultado de 2 elevado a la 11 es: 2048

3.9. Seno hiperbólico sinh(x)

Esta función calcula el senohiperblico de un número x, el uso de la misma se realiza de la siguiente manera:

$$\sinh t(x)$$

3.9.1. Formulación matemática

El cálculo se realiza mediante la sumatoria que se describe a continuación.

$$S_k(a) = \sum_{n=0}^k \frac{a^{2n+1}}{(2n+1)!}$$
 (15)

3.9.2. Condición de parada

La condición de parada de la iteración está dada por:

$$|S_{k+1}(a) - S_k(a)| < tol$$
 (16)

3.9.3. Ejemplo numérico

double senoh = $\sinh_t(2.1)$; cout << " El resultado de $\sinh(2.1)$ es: "<< senoh; El resultado de $\sinh(2.1)$ es: 4.02186

3.10. Coseno hiperbólico cosh(x)

Esta función calcula el cosenohiperblico de un número x, el uso de la misma se realiza de la siguiente manera:

$$\cosh_{t}(x)$$

3.10.1. Formulación matemática

El cálculo se realiza mediante la sumatoria que se describe a continuación.

$$S_k(a) = \sum_{n=0}^k \frac{a^{2n}}{(2n)!} \tag{17}$$

3.10.2. Condición de parada

La condición de parada de la iteración está dada por:

$$|S_{k+1}(a) - S_k(a)| < tol$$
 (18)

3.10.3. Ejemplo numérico

double cosenoh = $\cosh_t(0.89)$; cout << " El resultado de $\cosh(0.89)$ es: "<< cosenoh; El resultado de $\cosh(0.89)$ es: 1.42289

3.11. Tangente hiperbólico tanh(x)

Esta función calcula la tangente hiperblica de un número x, el uso de la misma se realiza de la siguiente manera:

$$tanh_t(x)$$

3.11.1. Formulación matemática

La función tangente hiperbólico se puede componer a partir de otras como lo son senohiperblico y cosenohiperblico, es por ello que el calculo de la misma se realiza mediante la siguiente ecuación:

$$tanh(x) = senh(x) \cdot cosh(x)^{-1} \tag{19}$$

3.11.2. Ejemplo numérico

double tanoh = tanh_t(0.22); cout << " El resultado de tanh(0.22) es: "<< tanoh; El resultado de tanh(0.22) es: 0.216518

3.12. Raíz cuadrada \sqrt{x}

Esta función calcula la razcuadrada de un número x mediante el método de Newton-Raphson, el uso de la misma se realiza de la siguiente manera:

$$\operatorname{sqrt}_{t}(x)$$

3.12.1. Formulación matemática

El método de Newton-Raphson se define como:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \ x_0 = \alpha$$
 (20)

Donde para encontrar la p-ésima raíz de a:

$$\sqrt[p]{a}$$
 (21)

El cero de la función está dado por:

$$g(x) = x^p - a, \ x_0 = \frac{a}{2}$$
 (22)

Por lo que resulta en la siguiente iteración:

$$\begin{cases} x_0 = \frac{a}{2} \\ x_{k+1} = x_k - \frac{x_k^2 - a}{2 \cdot x_k} \end{cases}$$

3.12.2. Valore inicial

El valor inicial está dado por: $x_{0=\frac{a}{2}}$.

3.12.3. Condición de parada

$$|(S_{k+1}(a) - S_k(a))/S_{k+1}(a)| < tol$$
(23)

3.12.4. Ejemplo numérico

double raiz = sqrt_t(144); cout << " El resultado de la raíz cuadrada de 144 es: "<< raiz; El resultado de la raíz cuadrada de 144 es:12

3.13. Raíz $\sqrt[a]{x}$

Esta función calcula la raza - sima de un número x mediante el método de Newton-Raphson, el uso de la misma se realiza de la siguiente manera:

$$\mathrm{root}_{-}\mathrm{t}(\mathrm{x})$$

3.13.1. Formulación matemática

El método de Newton-Raphson se define como:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \ x_0 = \alpha$$
 (24)

Donde para encontrar la p-ésima raíz de a:

$$\sqrt[p]{a}$$
 (25)

El cero de la función está dado por:

$$g(x) = x^p - a, \ x_0 = \frac{a}{2}$$
 (26)

Por lo que resulta en la siguiente iteración:

$$\begin{cases} x_0 = \frac{a}{2} \\ x_{k+1} = x_k - \frac{x_k^p - a}{2 \cdot x_k} \end{cases}$$

3.13.2. Valores iniciales

El valor inicial está dado por: $x_{0=\frac{a}{2}}$.

3.13.3. Condición de parada

$$|(S_{k+1}(a) - S_k(a))/S_{k+1}(a)| < tol$$
(27)

3.13.4. Ejemplo numérico

double raizx = $\text{root_t}(45, 7)$; cout << " El resultado de la raíz 7 de 45 es: "<< raizx; El resultado de la raíz 7 de 45 es:1.72256

3.14. Arseno $\sin^{-1}(x)$

Esta función calcula el arcoseno de un número x, el uso de la misma se realiza de la siguiente manera:

$$asin_t(x)$$

3.14.1. Formulación matemática

El cálculo se realiza mediante la sumatoria que se describe a continuación.

$$S_k(a) = \sum_{n=0}^k \frac{2n!}{4^n(n!)^2(2n+1)} a^{2n+1}$$
 (28)

3.14.2. Condición de parada

La condición de parada de la iteración está dada por:

$$|S_{k+1}(a) - S_k(a)| < tol$$
 (29)

3.14.3. Ejemplo numérico

double aseno = $asin_t(0.33)$; cout << " El resultado de aseno(0.33) es: "<< aseno; El resultado de aseno(0.33) es: 0.336304

3.15. Arcotangente $tan^{-1}(x)$

Esta función calcula el arcotangente de un número x, el uso de la misma se realiza de la siguiente manera:

$$\operatorname{atan}_{t}(x)$$

3.15.1. Formulación matemática

El cálculo se realiza mediante la sumatoria que se describe a continuación.

$$S_k(a) = \sum_{n=0}^k (-1)^n \frac{a^{2n+1}}{2n+1}$$
(30)

3.15.2. Condición de parada

La condición de parada de la iteración está dada por:

$$|S_{k+1}(a) - S_k(a)| < tol$$
 (31)

3.15.3. Ejemplo numérico

double atan = atan_t(0.67); cout << " El resultado de atan(0.67) es: "<< atan; El resultado de atan(0.67) es: 0.590307