1.

1

Claims

A submersible gas compressor comprising:

2	a ceramic high pressure piston in contact with a ceramic sleeve;											
3	a drive piston mounted to said ceramic high pressure piston such that											
4	movement of said drive piston simultaneously moves said ceramic high											
5	pressure piston; and											
6	a crank in mechanical connection with said drive piston.											
1	2. The compressor of claim 1 further comprising a thermal											
2	immersion tank comprising a liquid heat transfer fluid.											
1	3. The compressor of claim 1 further comprising a compliant											
2	coupling between said ceramic high pressure piston and said drive piston.											
1	4. The compressor of claim 1 wherein said crank has a double											
2	hung shaft operating independent of cantilever motion.											
1	5. The compressor of claim 1 wherein said ceramic high pressure											
2	piston contacts said ceramic sleeve independent of a lubricating liquid.											
	•											
1	6. The compressor of claim 1 wherein the reciprocating movement											
2	of said drive piston cycles between 600 and 800 cycles per minute.											

MMO-10002/38 10926jks

1	7. The compressor of claim 2 wherein the liquid heat transfer fluid										
2	is an aqueous solution.										
1	8. A gas delivery system comprising:										
2	a first stage compressor pressurizing an inlet gas to between 90 and										
3	500 psig;										
4	a first absorption bed comprising a molecular sieve material in fluid										
5	communication with said first stage compressor, said absorbent bed enriching										
6	an exiting gas stream in at least one inlet gas component;										
7	a second stage compressor immersed in a liquid heat transfer fluid,										
8	compressing the exiting gas stream to a pressurized gas stream having a										
9	pressure of between about 5000 and 10,000 psig;										
10	a cascade system for storing the pressurized gas stream at a pressure										
11	between about 3500 and 5000 psig;										
12	a control system in operational control of at least one of said first stage										
13	compressor, said absorbent bed, said second stage compressor and said cascade										
14	system; and										
15	an outlet for delivering said pressurized gas stream.										
1	9. The gas delivery system of claim 8 wherein said molecular sieve										
2	is type 5A and said at least one inlet gas component is oxygen.										

MMO-10002/38 10926jks

1	10.	The	gas	delivery	system	of	claim	8	further	comprisir	ıg	a
2	blending valv	e inte	rsper	sed betwe	en said	abso	orbent l	oed	and sai	d second s	stag	je
3	compressor fo	or del	iverii	ng in com	bination	the	exiting	g g	as strear	n and the	inle	et
4	gas.											

- 1 11. The gas delivery system of claim 8 further comprising at least 2 one monitoring device selected from the group consisting of: pressure gage, 3 oxygen concentration gage, and thermocouple, coupled to said cascade system 4 and providing data to said control system.
- 1 12. The gas delivery system of claim 8 further comprising a 2 blending valve in fluid communication with said outlet and the inlet gas for 3 delivering in combination pressurized gas stream and outlet gas.
- 1 13. The gas delivery system of claim 8 further comprising a second absorption bed.
- 1 14. The gas delivery system of claim 13 wherein the first absorption 2 bed is connected in series with the second adsorption bed.
- 1 15. The gas delivery system of claim 13 wherein the first absorption 2 bed is connected in parallel with the second adsorption bed.