设备用户手册

一、文档更新时间

二、简介

主要特性:

三、使用和连接方法

- 1、设备接线实例
- 2、供电
- 3、多模式输入

模拟模式

数字模式

- 4、DI5和DI6数字输入
- 5、模拟输出
- 6、继电器数字输出
- 7、RS-485串口
- 8、EERAM
- 9、引脚映射

四、结构框图

五、技术参数

电源

控制结构

通讯接口

AV1-AV4: 模拟电压输入

AV1-AV4: 模拟电流输入

AO1: 模拟电压输出

DI1-DI4: 数字输入

DI5-DI6: 数字输入

DI5-DI6: 数字输入/输出

继电器

EEPROM

环境

六、软件开发

兼容Arduino IDE

编程接口

一、文档更新时间

版本	时间	更新内容
0.1.0	2023年2月17日	

二、简介

Inon设备参考 (lono RP) 设计,该设备使用树莓派 RP2040 微控制器,使用简单,带有多输入、输出接口; 是具有稳定,安全,可靠和易安装等特性的设备模块,适合安装于工业及住宅环境中。

该设备的微控制器为 RP2040,双核 Arm Cortex M0+ 处理器,时钟频率高达 133 MHz,芯片内置有 264KB的 SRAM,板上另有一个16M bit 的外部闪存。

该设备有一个USB1.1端口用于设备固件更新,也可以用于连接其他USB设备。

主要特性:

- ✓ 10-32V直流电源输入,带浪涌和反接保护,1.1A可复位保险丝
- ☑ RP2040,双核 Arm Cortex M0+处理器,时钟频率高达133 MHz,有264KB的SRAM
- ✓ 16M bit 板载闪存
- ✓ 4路多模式输入:可作为数字电压输入使用,输入范围为: 0-30V;或作为模拟电流输入使用,输入范围为: 0-20mA
 - ✓ 2路可作为不确定电压数字输入或作为TTL输入/输出
 - ✓ 输入保护,防静电和瞬时过压
 - ✓ 1路缓冲模拟电压输出0-10V,由RP2040 PWM控制输出
 - ✓ 4路电源继电器输出,最大切换电压为277V@AC 30V@DC,最大切换电流为5A
 - ✓ 标准RS-485接口连接至RP2040 UART串口引脚,具有静电放电保护
 - ✓ 支持1-Wire, I2C 和 Wiegand
 - ✓ 可增加蓝牙模块
 - ✓ 可增加 6 轴姿态角度传感器
 - ✓ 定制外壳

三、使用和连接方法

1、设备接线实例

上板接口:

下板接口:

继电器接口:

2、供电

lono设备只能使用直流供电,供电范围为:

●典型工作范围在 10V 到 32V (min = 9V, max = 33V)

注意接线示意图中(+ -)所示的正确极性。电源供电电路使用自动复位保险丝和高达 ±500V/2欧姆 1.2/50μs 的浪涌保护来实现防反接保护。

3、多模式输入

lono设备具有4路多模式输入功能。根据端子接线,可以输入数字 (ON/OFF) 、电压 (0-30V) 或电流 (0-25mA) 信号。

模拟模式

当使用模拟输入(AV1-4、Al1-4)时,将 0-30V 和 0-25mA 转换为 0-3.3V 电平,目的是为了与RP2040模拟输入引脚兼容。使用VSO输出端作为电源,可连接有源或无源 0-20mA(或4-20mA)发送器;上述连接示例图中所示的 0-20mA 发送器为2线无源型。

数字模式

在数字模式下,外部的自由端可以连接到端子 VSO 和 DI1-4 之间;或者,DIx 端子可以连接到外部电压信号(在 0-40V 范围内)。

4、DI5和DI6数字输入

在端子 VSO 和 DI5-6 之间可以连接外部的自由端;或者,DI5-6 端子可以连接到外部电压信号(在 0-40V 范围内)。

DI5-6 通过保护网络连接到 RP2040 GPIO 输入端。如果您需要绕过保护网络,使用 DI5 或 DI6 作为通用的 TTL级(0-5V)输入/输出线,或使用 1-Wire 或 Wiegand,您可以根据下表设置JP2跳线。

请注意:

当跳线处于BYP位置时,应该将加到 DI5 或 DI6 的电压限制在+0V和+5V之间(TTL电平)。超过这个电压范围将导致RP2040 和 Iono设备的损坏。

5、模拟输出

lono 设备具有0-10V输出(AO1),可由RP2040的GPIO8引脚控制,配置为PWM输出;PWM输出的0% -100%占空比转换为0-10V输出电压。

这是一个 灌电流/拉电流 输出(此输出的电流方向可以是正的,也可以是负的)。

6、继电器数字输出

Iono 设备有四个单极单掷功率继电器,具有常开触点。这些继电器是由RP2040的不同的GPIO引脚驱动的。

7、RS-485串口

Iono 设备使用RP2040 UART0 TX/RX引脚(分别为GPIO16和GPIO17)来实现一个标准的RS-485串口。

只需将其他RS-485 设备的 A、B和GND连接到Iono 设备端子对应的的RS-485引脚即可(A-A,B-B,GND-SH)。

RS-485端口有防ESD和电压浪涌功能,并支持高达115200 bps的半双工通信。

RS-485 TX/RX开关是由RP2040 (GPIO25) 的一个数字输出引脚控制的。您应该将GPIO25设置为低,以 启用RS-485上的传输,并将其设置为高,以允许接收传入的数据。

如果GPIO25保持高,或者在传输过程中没有配置为输出,Iono RP RS-485驱动程序将自动驱动处于主导状态的RS-485线路,因此不会严格要求控制GPIO25来传输数据。

RS-485线路在线路A和B线上有620欧姆的上拉和下拉电阻。偏置电阻确保在空闲期间数据线保持在稳定的电压电平,并防止接收错误。在A和B之间的120欧姆终端电阻也可以启用。

A PULL-UP	B PULL-DOWN	TERMNATION
Œ M ×	← m ×	← ™ ×

8, EERAM

lono 设备有一个芯片AT24C16 16 Kbit SRAM与EEPROM备份。芯片擦写寿命为100万次。它连接到RP2040 I2C总线(I2C0,引脚2和3,地址: SRAM 0x50,控制寄存器 0x18) 。

9、引脚映射

下表显示了Iono 设备的输入和输出到RP2040微控制器的相关引脚的映射。

Iono RP inputs and outputs	RP2040 pins
DI1 – AV1 – AI1	38 (GPIO26)
DI2 – AV2 – AI2	39 (GPIO27)
DI3 – AV3 – AI3	40 (GPIO28)
DI4 – AV4 – AI4	41 (GPIO29)
DI5 (digital input mode)	35 (GPIO23)
DI6 (digital input mode)	36 (GPIO24)
DI5 (BYP - TTL I/O mode)	9 (GPIO7)
DI6 (BYP - TTL I/O mode)	8 (GPIO6)
01	16 (GPIO13)
O2	15 (GPIO12)
O3	14 (GPIO11)
O4	13 (GPIO10)
RS-485 RX	28 (GPIO17)
RS-485 TX	27 (GPIO16)
RS-485 TX-ENABLE (active low)	37 (GPIO25)
I2C SDA for EERAM	2 (GPIO0)
I2C SCL for EERAM	3 (GPIO1)
MCU_LED	17 (GPIO14)
BLE_RX	6 (GPIO4)
BLE_TX	7 (GPIO5)

四、结构框图

五、技术参数

电源

参数	典型值
正常工作供电电压 (VS)	1032 V= nom. (933 V=) 带浪涌和反接保护,1.1A可复位保险丝
VS=12V,无输入且继电器关闭时的电流	43 mA
VS=12V,数字输入接近VSO且开启继电器时的电流	122 mA
VS=24V,无输入且继电器关闭时的电流	28 mA
VS=24V,数字输入接近VSO且开启继电器时的电流	66 mA
VSO输出电压(最小值)	VS - 1 V
VSO输出电流(最大值)	300 mA
5VO输出电压(典型值)	5.0 V (空载)
5VO输出电流(最大值)	1000 mA
5VO过流保护阈值	1200 mA
USB端口输出电流(最大值)	450 mA

控制结构

参数	典型值	
微控制器型号	树莓派RP2040双核Arm Cortex M0+, 133 MHz, 264KB SRAM, 16M bit板载闪存	

通讯接口

参数	典型值
串口	RS-485半双工控制系统,具有手动或自动收/发管理功能
波特率	1200 到 115200
RS-485 A/B 的ESD保护电 压	±15 kV 人体模型; ±8 kV 接触放电
RS-485 A/B 的防浪涌保护	浪涌保护高达±500 V / 2欧姆1.2/50 μs; 10/1000 μs波形峰值600 W脉冲功率
USB接口	Micro-USB B插座USB 1.1,支持主机和设备模式

AV1-AV4: 模拟电压输入

参数	典型值
输入电压范围	0-30V
输入阻抗	> 450 kOhm
ADC特性	SAR ADC 500kS/s max, with 48MHz clock 12-bit with 8.7 ENOB
最大线缆长度	15 m

AV1-AV4: 模拟电流输入

参数	典型值
输入电流范围	0-25mA
输入阻抗	120 Ohm
ADC特性	SAR ADC 500kS/s max, with 48MHz clock 12-bit with 8.7 ENOB
最大线缆长度	15 m

AO1: 模拟电压输出

参数	典型值
输入电压范围	0-10V
最大输出电流	30 mA
总误差	±2 % (MAX)
最大线缆长度	15 m

DI1-DI4: 数字输入

参数	典型值
输入电压范围	0-40V
输入阻抗	49 kOhm
电压阈值	VIH: 4.9 V VIL: 3.4 V
最大线缆长度	30 m

DI5-DI6: 数字输入

参数	典型值
输入电压范围	0-40V
输入阻抗	6.5 kOhm
电压阈值	VIH: 5.1 V VIL: 3.4 V
最大线缆长度	30 m

DI5-DI6: 数字输入/输出

参数	典型值
输出电压	VOL: 0.1 V VOH: 5.0 V
上拉电阻 (5V)	10 kOhm
输入电压阈值	VIH: 1.4 V VIL: 1.1 V
最大线缆长度	10 m

继电器

参数	典型值
最大输出触点额定值	电阻负载: 7A 250VAC/ 28VDC 10A 277VAC/ 30VDC (MAX)
额定负载AC1下的电气寿命	30000 cycles
机械寿命	5000000 cycles

EEPROM

参数	典型值
容量	16 Kbit (2048 x 8 bits)
EEPROM擦写次数	> 100000
数据保存时间	> 20 years

环境

参数	典型值
工作温度	-20 to +60 °C
相对湿度	5% to 90%
储存温度	-30 to +80 °C
防护等级	IP20

六、软件开发

编程Iono RP和任何其他基于RP2040的板一样简单,就像树莓派Pico板一样。

您可以使用C/C++或微PicroPython,使用任何IDE或工具可为RP2040微控制器或Pico板。

有关如何开始使用RP2040编程的概述,请参阅以下链接:

https://www.raspberrypi.org/documentation/rp2040/getting-started/

有关lono RP板卡的特定资源和示例,请访问:

https://github.com/sfera-labs/iono-rp

兼容Arduino IDE

如果使用Arduino IDE,可以访问仓库获取支持库: https://github.com/sfera-labs/iono。

编程接口

Iono 设备具有与树莓派Pico板相同的编程接口: USB和SWD。

