Álgebra 1 - Turma C $-1^{\circ}/2020$

Lista de Exercícios – Semana 04

Prof. José Antônio O. Freitas

Exercício 1: Quais das relações abaixo são relações de equivalência sobre $E = \{a, b, c\}$?

- a) $R_1 = \{(a, a); (a, b); (b, a); (b, b); (c, c)\}$
- b) $R_2 = \{(a, a); (a, b); (b, a); (b, b); (b, c)\}$
- c) $R_3 = \{(a, a); (b, b); (b, c); (c, b); (a, c); (c, a)\}$
- d) $R_4 = E \times E$
- e) $R_5 = \emptyset$

Exercício 2: Seja $m \in \mathbb{Z}, m > 1$. Defina $R \subseteq \mathbb{Z} \times \mathbb{Z}$ como

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x - y = km, \text{ para algum } k \in \mathbb{Z}\}.$$

Mostre que R é uma relação de equivalência sobre \mathbb{Z} .

Exercício 3: Determinar todas as relações de equivalência R sobre A e os respectivos conjuntos quocientes A/R para:

- a) $A = \{a\};$
- b) $A = \{a, b\};$
- c) $A = \{a, b, c\};$
- d) $A = \{a, b, c, d\}.$

Exercício 4: Quais das seguintes sentenças definem uma relação de equivalência no conjunto A dado?

- a) aRb se, e só se, existe $k \in \mathbb{N}$ tal que $a-b=3k,\,A=\mathbb{N}.$
- b) aRb quando existe $k \in \mathbb{N}$ tal que $b = ka, A = \mathbb{N}$.
- c) aRb quando $a \leq b$, $A = \mathbb{Z}$.
- d) xRy quando xy > 0, $A = \mathbb{R}$.
- e) xRy quando $xy \ge 0$, $A = \mathbb{R}$.
- f) $x \sim y$ quando x + y é par, onde $x, y \in \mathbb{Z}$.

- g) $x \sim y$ quando x + y é impar, onde $x, y \in \mathbb{Z}$.
- h) $x \sim y$ quando $\frac{x}{y} \in \mathbb{Q}$, onde $x, y \in \mathbb{R}^* = \mathbb{R} \{0\}$.
- i) $x \sim y$ quando $\frac{x}{y} \in \mathbb{Z}$, onde $x, y \in \mathbb{R}^* = \mathbb{R} \{0\}$.

Exercício 5: Seja $A = \mathbb{N} \times \mathbb{N}^*$. Considere a seguinte relação sobre A:

$$(a,b)R(c,d)$$
 quando $a+b=c+d$.

Mostre que R é uma relação de equivalência sobre A.

Exercício 6: Seja $A = \mathbb{R}$ e considere o conjunto definido por

$$(a,b)R(c,d)$$
 quando $2a-b=2c-d$.

Mostre que R é uma relação de equivalência sobre \mathbb{R} .

Exercício 7: Seja $A = \mathbb{R}^3$. Dados (x, y, z), $(\alpha, \beta, \gamma) \in \mathbb{R}^3$, defina $(x, y, z)R(\alpha, \beta, \gamma)$ quando $z = \gamma$. Mostre que R é uma relação de equivalência sobre \mathbb{R}^3 .

Exercício 8: Seja $A = \mathbb{R}^3$. Dados $u = (x_1, y_1, z_1), v = (x_2, y_2, z_2) \in \mathbb{R}^3$ defina

$$u \cdot v = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

Tome um elemento fixo $w=(\alpha,\beta,\gamma)\in\mathbb{R}^3$ e defina

$$u \sim v$$
 quando $u \cdot w = v \cdot w$.

Mostre que \sim é uma relação de equivalência sobre \mathbb{R}^3 .

Exercício 9: Para pontos (a,b), $(c,d) \in \mathbb{R}^2$ defina (a,b)S(c,d) quando $a^2+b^2=c^2+d^2$.

- a) Prove que S é uma relação de equivalência em \mathbb{R}^2 .
- b) Liste todos os elementos no conjunto $\{(x,y) \in \mathbb{R} \mid (x,y)S(0,0)\}.$
- c) Liste cinco elementos distintos no conjunto $\{(x,y) \in \mathbb{R} \mid (x,y)S(1,0)\}.$

Exercício 10: Sejam $E = \{-3, -2, -1, 0, 1, 2, 3\}$ e $R = \{(x, y) \in E \times E : x + |x| = y + |y|\}$. Mostrar que R é uma relação de equivalência e descrever E/R.

Exercício 11: Seja $A = \mathbb{Z} \times \mathbb{Z}^*$, onde $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Para $(a, b), (c, d) \in A$, considere a seguinte relação

$$(a,b)R(c,d)$$
 quando $ad=bc$.

- a) Mostre que R é uma relação de equivalência sobre ${\cal A}.$
- b) Descreva a classe de equivalência $\overline{(0,1)}$, $\overline{(1,1)}$, $\overline{(1,2)}$, $\overline{(2,1)}$, $\overline{(2,2)}$, $\overline{(2,3)}$.

Exercício 12: Considere a seguinte relação sobre C:

$$(x+yi)R(r+si)$$
 quando $x^2 + y^2 = r^2 + s^2$.

- a) Mostre que R é relação de equivalência.
- b) Descreva a classe de equivalência de 1 + i.

Exercício 13: Considere a seguinte relação sobre \mathbb{Z} :

$$x \sim y$$
 quando $x^2 - y^2 = 4k$, para algum $k \in \mathbb{Z}$.

Mostre que \sim é relação de equivalência.

Exercício 14: Seja \sim uma relação sobre $\mathbb Q$ definida da seguinte forma:

$$x \sim y$$
 quando $x - y \in \mathbb{Z}$.

- a) Prove que \sim é uma relação de equivalência sobre $\mathbb Q.$
- b) Descreva a classe $\bar{1}$.
- c) Descreva a classe $\overline{1/2}$.

Exercício 15: Defina

$$H = \{2^m \mid m \in \mathbb{Z}\} \in \mathbb{Q}^+ = \{x \in \mathbb{Q} \mid x > 0\}.$$

Seja R dado por

$$R = \left\{ (x, y) \in \mathbb{Q}^+ \times \mathbb{Q}^+ : \frac{x}{y} \in H \right\}.$$

- a) Mostre que R é uma relação de equivalência em $\mathbb{Q}^+.$
- b) Determine a classe de equivalência de 3.

Exercício 16: A divisibilidade (ou seja, a relação definida por xRy se, e só se, $x \mid y$) é uma relação de equivalência sobre \mathbb{Z} ?

Exercício 17: Seja R a seguinte relação sobre \mathbb{Z}^* :

$$xRy$$
 quando existem $k,l\in\mathbb{Z}$ tais que $y=kx$ e $x=ly.$

Mostre que R é uma relação de equivalência sobre \mathbb{Z}^* .

Exercício 18: Seja $R = \{(x,y) \in \mathbb{R}^2 \mid x-y \in \mathbb{Q}\}$. Prove que R é uma relação de equivalência e descrever as classes representadas por 1/2 e $\sqrt{2}$.

Exercício 19: Seja A um conjunto não vazio. Suponha que $R \subseteq A \times A$ é tal que:

- a) Para todo $x \in A$, $(x, x) \in R$;
- b) Para todos $x, y, z \in A$ se $(x, y) \in R$ e $(x, z) \in R$, então $(y, z) \in R$.

Mostre que R é uma relação de equivalência sobre A.