ECE132: Basic Electrical and Electronics Engineering Lab

Experiment 6:

To understand use of diodes for half wave and full wave rectifiers

Introduction

- A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which is in only one direction, a process known as rectification.
- We can classify rectifiers into two types:
 - Half Wave Rectifier
 - Full Wave Rectifier

Half Wave Rectifier

- In half wave rectification, either the positive or negative half of the AC wave is passed, while the other half is blocked.
- Because only one half of the input waveform reaches the output, it is very inefficient if used for power transfer.

Half Wave Rectifier

• The output DC voltage of a half wave rectifier can be calculated with the following two ideal equations

$$V_{rms} = \frac{V_{peak}}{2}$$
$$V_{dc} = \frac{V_{peak}}{\pi}$$

Half Wave Rectifier

Halfwave Rectifier Experiment

Instructions

- 1. Observe the circuit diagram of the fullwave rectifier
- 2. Click on the **Power** Button.
- 3. Select the Amplitide(A) of the input sine wave signal(V_i).
- 4. Select the frequency of the signal(f) for the input signal(V_i).
- 5. Select the "Channel 1" to observe the input signal on graph
- 6. Select the "Channel 2" to observe the rectified output signal on graph
- 7. Select the "Dual" to observe the input signal and rectified output signal on graph
- 8. Change the values of A, f to observe the variation in the input and output signals.
- 9. Hover on the graph to observe the value of the V_i and V_o at that instatnt of time T.
- 10. Save the graph if you are done with your experiment.

11. Note:

- o Ideal diode is considered
- Make sure always Input Signal Amplitude>0 v
- Make sure always Input Signal Frequency>0 Hz
- \circ Load resistance $R=1k\Omega$
- To change the values just scroll by hovering on it.

Full Wave Rectifier

- In Full wave rectification current flow through the load in same direction for both half cycle of input ac.
- This can be achieved with two diodes working alternatively.
- For one half cycle one diode supplies current to load and for next half cycle another diode works

Full Wave Rectifier

- For single-phase AC, if the transformer is **center-tapped**, then two diodes back-to-back (i.e. anodes-to-anode or cathode-to-cathode) can form a full-wave rectifier.
- In a circuit with a **non center tapped** transformer, four diodes are required instead of the one needed for halfwave rectification, it is also known as bridge rectifier.

Full Wave Rectifier – Center Tapped T/F

Full Wave Rectifier – Center Tapped T/F

• The average and root-mean-square output voltages of an ideal single phase full wave rectifier can be calculated as:

$$V_{dc} = V_{av} = \frac{2V_p}{\pi}$$
$$V_{rms} = \frac{V_p}{\sqrt{2}}$$

Full Wave Rectifier – Bridge Rectifier

• A bridge rectifier makes use of four diodes in a bridge arrangement to achieve full-wave rectification.

Full Wave Rectifier – Bridge Rectifier

• A bridge rectifier makes use of four diodes in a bridge arrangement to achieve full-wave rectification.

Full Wave Rectifier

Instructions

- 1. Observe the circuit diagram of the fullwave rectifier
- 2. Click on the Power Button.
- 3. Select the Amplitide(A) of the input sine wave signal(V_i).
- 4. Select the frequency of the signal(f) for the input signal(V_i).
- 5. Select the "Channel 1" to observe the input signal on graph
- 6. Select the "Channel 2" to observe the rectified output signal on graph
- 7. Select the "Dual" to observe the input signal and rectified output signal on graph
- 8. Change the values of A, f to observe the variation in the input and output signals.
- 9. Hover on the graph to observe the value of the V_i and V_o at that instatnt of time T.
- 10. Save the graph if you are done with your experiment.
- 11. Note:
 - V₂ is 180° in phase to V₁
 - o Ideal diode is considered
 - o Make sure always Input Signal Amplitude>0 v
 - Make sure always Input Signal Frequency>0 Hz
 - \circ Load resistance $R=1k\Omega$
 - To change the values just scroll by hovering on it.

THANKS TO ALL