

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160306202

# **FCC REPORT**

(BLE)

Applicant: SHENZHEN COOTEL FONE TECHNOLOGY CO., LTD

Address of Applicant: 5D-F, Buliding R1-A, MCM, Hi-tech Park, Nanshan District,

Shenzhen

**Equipment Under Test (EUT)** 

Product Name: smart phone

Model No.: S32

FCC ID: 2AHS2-CTF-S32

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 24 Mar., 2016

**Date of Test:** 24 Mar., to 11 Apr., 2016

Date of report issued: 12 Apr., 2016

Test Result: PASS \*

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.





# 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 12 Apr., 2016 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Tested by:

Test Engineer

Date: 12 Apr., 2016

Test Engineer

Reviewed by: Date: 12 Apr., 2016

Project Engineer



# 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | COV   | /ER PAGE                       | 1    |
| 2 | VER   | SION                           | 2    |
| 3 |       | ITENTS                         |      |
| 4 |       | T SUMMARY                      |      |
| 5 |       | IERAL INFORMATION              |      |
| 9 |       |                                |      |
|   | 5.1   | CLIENT INFORMATION             |      |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T.  |      |
|   | 5.3   | TEST ENVIRONMENT AND MODE      |      |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   |      |
|   | 5.5   | LABORATORY FACILITY            |      |
|   | 5.6   | LABORATORY LOCATION            |      |
|   | 5.7   | TEST INSTRUMENTS LIST          | 8    |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 9    |
|   | 6.1   | ANTENNA REQUIREMENT:           | 9    |
|   | 6.2   | CONDUCTED EMISSION             | 10   |
|   | 6.3   | CONDUCTED OUTPUT POWER         | 13   |
|   | 6.4   | OCCUPY BANDWIDTH               | 15   |
|   | 6.5   | Power Spectral Density         | 18   |
|   | 6.6   | BAND EDGE                      | 20   |
|   | 6.6.1 | Conducted Emission Method      | 20   |
|   | 6.6.2 |                                |      |
|   | 6.7   | Spurious Emission              |      |
|   | 6.7.1 |                                |      |
|   | 6.7.2 |                                |      |
| 7 | TES   | T SETUP PHOTO                  | 35   |
| R | FUT   | CONSTRUCTIONAL DETAILS         | 36   |





# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(3)     | Pass   |
| 6dB Emission Bandwidth           | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.



# **5** General Information

# **5.1 Client Information**

| Applicant:               | SHENZHEN COOTEL FONE TECHNOLOGY CO., LTD                                                                                              |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | 5D-F, Buliding R1-A, MCM, Hi-tech Park, Nanshan District, Shenzhen                                                                    |
| Manufacturer             | SHENZHEN COOTEL FONE TECHNOLOGY CO., LTD                                                                                              |
| Address of Manufacturer: | 5D-F, Buliding R1-A, MCM, Hi-tech Park, Nanshan District, Shenzhen                                                                    |
| Factory:                 | Dongguan Changhua Electronic Technology Co., Ltd.                                                                                     |
| Address of Factory:      | 2th floor, 1st industrial building of Dongxinwei, west Fuxing Road, Xiagang Community, Changan Town,Dongguan City, Guangdong Province |

# 5.2 General Description of E.U.T.

| Product Name:          | smart phone                                                                      |
|------------------------|----------------------------------------------------------------------------------|
| Model No.:             | S32                                                                              |
| Operation Frequency:   | 2402-2480 MHz                                                                    |
| Channel numbers:       | 40                                                                               |
| Channel separation:    | 2 MHz                                                                            |
| Modulation technology: | GFSK                                                                             |
| Data speed :           | 1Mbps                                                                            |
| Antenna Type:          | Internal Antenna                                                                 |
| Antenna gain:          | 0.5 dBi                                                                          |
| Power supply:          | Rechargeable Li-ion Battery DC3.8V-2910mAh                                       |
| AC adapter:            | Model: U0D2F0A050150<br>Input: AC100-240V 50/60Hz 250mA<br>Output: DC 5.0V, 1.5A |



| Operation Frequency each of channel |           |         |           |         |           |         |           |  |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|--|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |
| 0                                   | 2402MHz   | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |  |
| 1                                   | 2404MHz   | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |  |
| 2                                   | 2406MHz   | 12      | 2426MHz   | 22      | 2446MHz   | 32      | 2466MHz   |  |
| 3                                   | 2408MHz   | 13      | 2428MHz   | 23      | 2448MHz   | 33      | 2468MHz   |  |
| 4                                   | 2410MHz   | 14      | 2430MHz   | 24      | 2450MHz   | 34      | 2470MHz   |  |
| 5                                   | 2412MHz   | 15      | 2432MHz   | 25      | 2452MHz   | 35      | 2472MHz   |  |
| 6                                   | 2414MHz   | 16      | 2434MHz   | 26      | 2454MHz   | 36      | 2474MHz   |  |
| 7                                   | 2416MHz   | 17      | 2436MHz   | 27      | 2456MHz   | 37      | 2476MHz   |  |
| 8                                   | 2418MHz   | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |  |
| 9                                   | 2420MHz   | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |  |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2442MHz   |
| The Highest channel | 2480MHz   |



5.3 Test environment and mode

| Operating Environment: |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |

Report No: CCISE160306202

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

# 5.4 Description of Support Units

N/A

## 5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

### • FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

#### • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

# 5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



# 5.7 Test Instruments list

| Rad  | Radiated Emission:              |                                   |                             |                  |                         |                             |  |  |
|------|---------------------------------|-----------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|--|--|
| Item | Test Equipment                  | Manufacturer                      | Model No.                   | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |
| 1    | 3m SAC                          | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | 08-23-2014              | 08-22-2017                  |  |  |
| 2    | BiConiLog Antenna               | SCHWARZBECK                       | VULB9163                    | CCIS0005         | 03-25-2016              | 03-25-2017                  |  |  |
| 3    | Horn Antenna                    | SCHWARZBECK                       | BBHA9120D                   | CCIS0006         | 03-25-2016              | 03-25-2017                  |  |  |
| 4    | Pre-amplifier<br>(10kHz-1.3GHz) | HP                                | 8447D                       | CCIS0003         | 04-01-2016              | 03-31-2017                  |  |  |
| 5    | Pre-amplifier<br>(1GHz-18GHz)   | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | 04-01-2016              | 03-31-2017                  |  |  |
| 6    | Pre-amplifier<br>(18-26GHz)     | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | 04-01-2016              | 03-31-2017                  |  |  |
| 7    | Horn Antenna                    | ETS-LINDGREN                      | 3160                        | GTS217           | 04-01-2016              | 03-31-2017                  |  |  |
| 8    | Spectrum analyzer<br>9k-30GHz   | Rohde & Schwarz                   | FSP30                       | CCIS0023         | 03-28-2016              | 03-28-2017                  |  |  |
| 9    | EMI Test Receiver               | Rohde & Schwarz                   | ESRP7                       | CCIS0167         | 03-28-2016              | 03-28-2017                  |  |  |
| 10   | Loop antenna                    | Laplace instrument                | RF300                       | EMC0701          | 04-01-2016              | 03-31-2017                  |  |  |

| Con  | Conducted Emission: |                           |                       |                  |                         |                             |  |
|------|---------------------|---------------------------|-----------------------|------------------|-------------------------|-----------------------------|--|
| Item | Test Equipment      | nent Manufacturer Model N |                       | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 1    | Shielding Room      | ZhongShuo Electron        | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 08-23-2014              | 08-22-2017                  |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz           | ESCI                  | CCIS0002         | 03-24-2016              | 03-24-2017                  |  |
| 3    | LISN                | CHASE                     | MN2050D               | CCIS0074         | 03-26-2016              | 03-26-2017                  |  |
| 4    | Coaxial Cable       | CCIS                      | N/A                   | CCIS0086         | 04-01-2016              | 03-31-2017                  |  |
| 5    | EMI Test Software   | AUDIX                     | E3                    | N/A              | N/A                     | N/A                         |  |



### 6 Test results and Measurement Data

# 6.1 Antenna requirement:

# Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.5 dBi.







# 6.2 Conducted Emission

| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                |                                                                                                                                                               |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.4: 2009                                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                                                               |  |  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                               |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                               |  |  |  |  |
| Receiver setup:       | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                                                                                               |  |  |  |  |
| Limit:                |                                                                                                                                                                                                                                                                                              | Limit (c                                                                                                                                                         | IRuV)                                                                                                                                                         |  |  |  |  |
| Eiriit.               | Frequency range (MHz)                                                                                                                                                                                                                                                                        | Quasi-peak                                                                                                                                                       | Average                                                                                                                                                       |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                     | 66 to 56*                                                                                                                                                        | 56 to 46*                                                                                                                                                     |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                        | 56                                                                                                                                                               | 46                                                                                                                                                            |  |  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                               | 50                                                                                                                                                            |  |  |  |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                               |  |  |  |  |
| Test procedure        | <ol> <li>The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling important of the peripheral devices through a LISN that prompt with 50ohm termination. It is setup and photograph and photograph of the positions of equipment changed according to measurement.</li> </ol> | zation network (L.I.S.N pedance for the measure are also connected ovides a 500hm/50uH (Please refer to the hs).  e are checked for refind the maximum experies. | N.), which provides a uring equipment.  to the main power coupling impedance block diagram of the maximum conducted emission, the relative ace cables must be |  |  |  |  |
| Test setup:           | LISN 40cm                                                                                                                                                                                                                                                                                    |                                                                                                                                                                  | er — AC power                                                                                                                                                 |  |  |  |  |
| Test Uncertainty:     |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  | ±3.28 dB                                                                                                                                                      |  |  |  |  |
| Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                                                               |  |  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                                                               |  |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                       |                                                                                                                                                                  |                                                                                                                                                               |  |  |  |  |

### **Measurement Data**



#### Neutral:



Trace: 21

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT

: smart phone : S32 : BLE mode Model Test Mode

Power Rating: AC120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: steven

Remark

| Nemark                                    | Freq  | Read<br>Level |           | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |  |
|-------------------------------------------|-------|---------------|-----------|---------------|-------|---------------|---------------|---------|--|
|                                           | MHz   | dBu₹          | <u>dB</u> | <u>d</u> B    | dBu₹  | dBu₹          | <u>dB</u>     |         |  |
| 1                                         | 0.150 | 36.58         | 0.17      | 10.78         | 47.53 | 66.00         | -18.47        | QP      |  |
| 2                                         | 0.219 | 34.78         | 0.16      | 10.76         | 45.70 | 62.88         | -17.18        | QP      |  |
| 3                                         | 0.289 | 34.25         | 0.16      | 10.74         | 45.15 | 60.54         | -15.39        | QP      |  |
| 4                                         | 0.361 | 32.38         | 0.16      | 10.73         | 43.27 | 58.69         | -15.42        | QP      |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.361 | 24.74         | 0.16      | 10.73         | 35.63 | 48.69         | -13.06        | Average |  |
| 6                                         | 0.651 | 25.01         | 0.17      | 10.77         | 35.95 | 46.00         | -10.05        | Average |  |
| 7                                         | 0.938 | 25.67         | 0.18      | 10.85         | 36.70 | 46.00         | -9.30         | Average |  |
| 8                                         | 0.943 | 33.67         | 0.18      | 10.85         | 44.70 | 56.00         | -11.30        | QP      |  |
| 9                                         | 1.016 | 26.00         | 0.17      | 10.87         | 37.04 | 46.00         | -8.96         | Average |  |
| 10                                        | 1.160 | 35.01         | 0.19      | 10.89         | 46.09 | 56.00         | -9.91         | QP      |  |
| 11                                        | 1.160 | 27.14         | 0.19      | 10.89         | 38.22 | 46.00         | -7.78         | Average |  |
| 12                                        | 1.229 | 25.40         | 0.19      | 10.90         | 36.49 | 46.00         | -9.51         | Average |  |
|                                           |       |               |           |               |       |               |               |         |  |



#### Line:



Trace: 23

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : smart phone S32 Model

Test Mode : BLE mode

Power Rating : AC120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: steven

Remark

| CMAIR       | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss |        | Limit<br>Line | Over<br>Limit | Remark  |
|-------------|-------|---------------|----------------|---------------|--------|---------------|---------------|---------|
|             | MHz   | dBu∜          | <u>dB</u>      |               | dBu∜   | dBu∜          | <u>ab</u>     |         |
| 1           | 0.222 | 25.13         | 0.26           | 10.75         | 36.14  | 52.74         | -16.60        | Average |
| 2           | 0.361 | 39.10         | 0.26           | 10.73         | 50.09  | 58.69         | -8.60         | QP      |
| 2           | 0.361 | 25.32         | 0.26           | 10.73         | 36.31  | 48.69         | -12.38        | Average |
|             | 0.502 | 37.91         | 0.27           | 10.76         | 48.94  | 56.00         | -7.06         | QP      |
| 4<br>5<br>6 | 0.505 | 24.81         | 0.27           | 10.76         | 35.84  | 46.00         | -10.16        | Average |
| 6           | 0.943 | 38.12         | 0.28           | 10.85         | 49.25  | 56.00         | -6.75         | QP      |
| 7           | 0.943 | 24.73         | 0.28           | 10.85         | 35.86  | 46.00         | -10.14        | Average |
| 8<br>9      | 1.016 | 38.56         | 0.29           | 10.87         | 49.72  | 56.00         | -6.28         | QP      |
| 9           | 1.016 | 27.04         | 0.29           | 10.87         | 38.20  | 46.00         | -7.80         | Average |
| 10          | 1.160 | 25.68         | 0.29           | 10.89         | 36.86  | 46.00         | -9.14         | Average |
| 11          | 1.229 | 38.23         | 0.29           | 10.90         | 49.42  | 56.00         | -6.58         | QP      |
| 12          | 1.511 | 37, 08        | 0.30           | 10.92         | 48, 30 | 56,00         | -7.70         | ΩP      |

### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                   |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2                    |
| Limit:            | 30dBm                                                                 |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.7 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

### Measurement Data

| Test CH | Maximum Conducted Output Power (dBm) | Limit(dBm) | Result |
|---------|--------------------------------------|------------|--------|
| Lowest  | -6.34                                |            |        |
| Middle  | -3.87                                | 30.00      | Pass   |
| Highest | -7.77                                |            |        |

Test plot as follows:







# 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(2)                                   |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 8.1                      |
| Limit:            | >500kHz                                                               |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.7 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

### Measurement Data

| Test CH | 6dB Emission Bandwidth (MHz) | Limit(kHz) | Result |  |
|---------|------------------------------|------------|--------|--|
| Lowest  | 0.770                        |            |        |  |
| Middle  | 0.782                        | >500       | Pass   |  |
| Highest | 0.782                        |            |        |  |

| Test CH | 99% Occupy Bandwidth<br>(MHz) | Limit(kHz) | Result |  |
|---------|-------------------------------|------------|--------|--|
| Lowest  | 1.106                         |            | N/A    |  |
| Middle  | 1.100                         | N/A        |        |  |
| Highest | 1.100                         |            |        |  |

Test plot as follows:









Highest channel









Highest channel



# 6.5 Power Spectral Density

| Test Requirement: | FCC Part 15 C Section 15.247 (e)                                      |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 10.2                     |  |  |  |  |  |
| Limit:            | 8 dBm                                                                 |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |  |

#### Measurement Data

| Test CH | Power Spectral Density (dBm) | Limit(dBm) | Result |
|---------|------------------------------|------------|--------|
| Lowest  | -7.48                        |            |        |
| Middle  | -4.21                        | 8.00       | Pass   |
| Highest | -8.26                        |            |        |

Test plots as follow:









Highest channel



# 6.6 Band Edge

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074v03r03 section 13                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Test setup:       | Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                   | Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |

Test plots as follow:





#### Lowest channel



Highest channel



### 6.6.2 Radiated Emission Method

|   | Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |  |
|---|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | Test Method:          | ANSI C63.10: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2013 and KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B 558074v03r                                                                                                                                                                                                                                    | 03 section 1                                                                                                                                                                                                                                                                                                                    | 12.1                                                                                                                                                  |  |
|   | Test Frequency Range: | 2.3GHz to 2.5G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |  |
|   | Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Distance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |  |
|   | Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RBW                                                                                                                                                                                                                                             | VBW                                                                                                                                                                                                                                                                                                                             | Remark                                                                                                                                                |  |
|   |                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                                                                                                            | 3MHz                                                                                                                                                                                                                                                                                                                            | Peak Value                                                                                                                                            |  |
|   | Limit:                | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz<br>Limit (dBuV                                                                                                                                                                                                                             | 3MHz<br>(m @3m)                                                                                                                                                                                                                                                                                                                 | Average Value<br>Remark                                                                                                                               |  |
|   | LIIIII.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.0                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                 | Average Value                                                                                                                                         |  |
|   |                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.0                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                 | Peak Value                                                                                                                                            |  |
|   | Test Procedure:       | the ground to determing the EUT wantenna, watower.  3. The antennathe ground Both horizon make the rance of the EUT wantennathe ground Both horizon make the rance of the test-results of the EUT have 10 defined to determine the limit spond the EUT have 10 defined to determine the limit spond the EUT have 10 defined the surface of the EUT have 10 defined the EUT the surface of the EUT the EUT the surface of the EUT the E | I at a 3 meter ne the position was set 3 met which was more and height is value to determine ontal and vert measurement uspected emission the anterest of the rota table maximum reasonable maximum reasonable in the ceiver system and width with sion level of the region would be regional margin would set the sion would | camber. The control of the highesters away from unted on the transition of the maximum ical polarization. It is soon, the EU in a was turned to was turned to maximum Hamilton of the EUT in peatesting could be orted. Otherwild be re-tested. | table was rost radiation. The interferop of a variation are meter to form value of the properties of the area of the properties are to heights of the earth of the properties are to heights of the earth of the properties are to heights of the earth of the properties are stopped area to he properties the emit one by one | rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 thees to 360 degrees |  |
|   | Test setup:           | SOCM (TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | umtable) Gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Horn Ank                                                                                                                                                                                                                                        | Antenna To                                                                                                                                                                                                                                                                                                                      | wer                                                                                                                                                   |  |
| , | Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.7 for detai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ls                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |  |
|   | Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3 for detai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ls                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |  |
|   | Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |  |





Test channel: Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart Phone

: S32 Model

Test mode : BLE-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven

REMARK

| Freq                 |      | Antenna<br>Factor |            |           |        |                |           |  |
|----------------------|------|-------------------|------------|-----------|--------|----------------|-----------|--|
| MHz                  | dBu₹ | <u>dB</u> /m      | <u>d</u> B | <u>dB</u> | dBuV/m | dBuV/m         | <u>dB</u> |  |
| 2390.000<br>2390.000 |      |                   |            |           |        | 74.00<br>54.00 |           |  |





Test channel: Lowest

Vertical:



Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smart Phone : S32 Model

Test mode : BLE-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: steven REMARK :

1 2

| U | MA :                 |      | ·                 |           |              |                     | _      |           |  |
|---|----------------------|------|-------------------|-----------|--------------|---------------------|--------|-----------|--|
|   | Freq                 |      | Antenna<br>Factor |           |              |                     |        |           |  |
|   | MHz                  | dBu∜ |                   | <u>dB</u> | B            | $\overline{dBuV/m}$ | dBuV/m | <u>dB</u> |  |
|   | 2390.000<br>2390.000 |      |                   |           | 0.00<br>0.00 |                     |        |           |  |





Test channel: Highest

Horizontal:



Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart Phone : S32 Model Test mode : BLE-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: steven REMARK :

| EMAR | -                    |       | Antenna<br>Factor |               |                |        |            |                 |
|------|----------------------|-------|-------------------|---------------|----------------|--------|------------|-----------------|
|      | MHz                  | —dBu∇ | — <u>dB</u> /m    | <br><u>ab</u> | dBuV/m         | dBuV/m | <u>d</u> B |                 |
| 1 2  | 2483.500<br>2483.500 |       |                   |               | 60.44<br>48.37 |        |            | Peak<br>Average |





Test channel: Highest

Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : S32 EUT

Model

: BLE-H Mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven REMARK :

| CWWL | X :                  |      |                   |            |            |        |        |            |  |
|------|----------------------|------|-------------------|------------|------------|--------|--------|------------|--|
|      | Freq                 |      | Antenna<br>Factor |            |            |        |        |            |  |
| -    | MHz                  | dBuV | <u>dB</u> /m      | <u>d</u> B | <u>d</u> B | dBuV/m | dBuV/m | <u>d</u> B |  |
|      | 2483.500<br>2483.500 |      |                   |            |            |        |        |            |  |



# 6.7 Spurious Emission

### 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2009 and KDB558074 section 11                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

Test plot as follows:



#### Lowest channel



Date: 7.APR.2016 17:51:40

#### 30MHz~25GHz

### Middle channel



Date: 7.APR.2016 17:52:48

30MHz~25GHz



### Highest channel



Date: 7.APR.2016 17:53:12

30MHz~25GHz





### 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.10:2009                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                |  |  |  |  |
| Test Frequency Range: | 9KHz to 25GHz                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                |  |  |  |  |
| Test site:            | Measurement Distance: 3m                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                |  |  |  |  |
| Receiver setup:       | Frequency Detector RBW VBW Remark                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                |  |  |  |  |
| ·                     | 30MHz-1GHz                                                                                                                                                                                                                    | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300KHz                                                                                                                                                                                                                        | Quasi-peak Value               |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                    | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                          | Peak Value                     |  |  |  |  |
|                       | Above 1G112                                                                                                                                                                                                                   | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                          | Average Value                  |  |  |  |  |
| Limit:                | Frequency                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit (dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | @3m)                                                                                                                                                                                                                          | Remark                         |  |  |  |  |
|                       | 30MHz-88MHz                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               | Quasi-peak Value               |  |  |  |  |
|                       | 88MHz-216MHz                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               | Quasi-peak Value               |  |  |  |  |
|                       | 216MHz-960MH                                                                                                                                                                                                                  | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               | Quasi-peak Value               |  |  |  |  |
|                       | 960MHz-1GHz                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               | Quasi-peak Value               |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               | Average Value                  |  |  |  |  |
|                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               | Peak Value le 0.8 meters above |  |  |  |  |
| Test Procedure:       | the ground to determin 2. The EUT of antenna, we tower.  3. The antenry the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B for the EUT have 10 dB | at a 3 meter the the position was set 3 meter was set 3 meter was more to determine the anter the anter the anter the rota table maximum read the rota table the rota table maximum read the rota table the rota table maximum read the rota table the | camber. The nof the highest teters away funted on the trained from one the maximutical polarization in the Enna was turned ding.  In the Euther was set of the Euther Euther Euther Euther Euther Euther Could be ported. Other do be re-tested in the first teter to the set of the entert extend the extend the entert exten | table was a st radiation. Tom the in op of a variance meter to um value or ions of the EUT was and to height from 0 degrate Deak Dold Mode. The stopped wise the end one by one stopped to be stopped wise the end one by one | rotated 360 degrees            |  |  |  |  |









#### **Below 1GHz**

Horizontal:



Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163 (30M3G) HORIZONTAL

EUT

: Smart Phone : S32 Model Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: steven REMARK :

|   | Freq    |       | Antenna<br>Factor |      |            |                     |                     |            |    |
|---|---------|-------|-------------------|------|------------|---------------------|---------------------|------------|----|
| - | MHz     | dBu∇  | -dB/m             |      | <u>d</u> B | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>d</u> B |    |
| 1 | 46.178  | 35.95 | 17.08             | 1.28 | 29.85      | 24.46               | 40.00               | -15.54     | QP |
| 2 | 104.903 | 41.14 | 10.70             | 2.00 | 29.49      | 24.35               | 43.50               | -19.15     | QP |
| 2 | 194.453 | 48.29 | 9.93              | 2.83 | 28.87      | 32.18               | 43.50               | -11.32     | QP |
| 4 | 199.986 | 55.42 | 10.20             | 2.87 | 28.83      | 39.66               | 43.50               | -3.84      | QP |
| 5 | 226.894 | 46.49 | 11.57             | 2.84 | 28.67      | 32.23               | 46.00               | -13.77     | QP |
| 6 | 245.951 | 41.84 | 11.86             | 2.81 | 28.56      | 27.95               | 46.00               | -18.05     | QP |





### Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT

: Smart Phone : S32 Model Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: steven

REMARK

| CHICATAL |          |        |                   |            |           |        |               |           |        |
|----------|----------|--------|-------------------|------------|-----------|--------|---------------|-----------|--------|
|          | Freq     |        | Antenna<br>Factor |            |           |        | Limit<br>Line |           | Remark |
| _        | MHz      | dBuV   | <u>dB</u> /m      | <u>d</u> B | <u>dB</u> | dBuV/m | dBuV/m        | <u>dB</u> |        |
| 1        | 46.666   | 40.63  | 16.83             | 1.28       | 29.85     | 28.89  | 40.00         | -11.11    | QP     |
| 2        | 109.029  | 44.17  | 10.38             | 2.04       | 29.46     | 27.13  | 43.50         | -16.37    | QP     |
| 3        | 120.699  | 43.31  | 11.83             | 2.18       | 29.39     | 27.93  | 43.50         | -15.57    | QP     |
| 4        | 144.842  | 42.68  | 11.20             | 2.45       | 29.25     | 27.08  | 43.50         | -16.42    | QP     |
| 5        | 167.824  | 47.49  | 9.82              | 2.64       | 29.07     | 30.88  | 43.50         | -12.62    | QP     |
| 6        | 199, 986 | 55, 23 | 10.20             | 2.87       | 28, 83    | 39, 47 | 43, 50        | -4.03     | ΩP     |



### **Above 1GHz**

| Test channel:      |                         |                             | Lo                    | Lowest                   |                   | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 44.12                   | 35.99                       | 10.57                 | 40.24                    | 50.44             | 74.00                  | -23.56                | Vertical     |
| 4804.00            | 44.92                   | 35.99                       | 10.57                 | 40.24                    | 51.24             | 74.00                  | -22.76                | Horizontal   |
| Т                  | est channel             | •                           | Lowest                |                          | Le                | vel:                   | A                     | verage       |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 35.69                   | 35.99                       | 10.57                 | 40.24                    | 42.01             | 54.00                  | -11.99                | Vertical     |
| 4804.00            | 35.57                   | 35.99                       | 10.57                 | 40.24                    | 41.89             | 54.00                  | -12.11                | Horizontal   |

| Т                  | •                       | Mi                          | iddle                 | Le                       | vel:              | Peak                   |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 43.60                   | 36.38                       | 10.66                 | 40.15                    | 50.49             | 74.00                  | -23.51                | Vertical     |
| 4884.00            | 42.81                   | 36.38                       | 10.66                 | 40.15                    | 49.70             | 74.00                  | -24.30                | Horizontal   |
| Т                  | est channel             |                             | Middle                |                          | Le                | vel:                   | A                     | verage       |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 34.68                   | 36.38                       | 10.66                 | 40.15                    | 41.57             | 54.00                  | -12.43                | Vertical     |
| 4884.00            | 34.21                   | 36.38                       | 10.66                 | 40.15                    | 41.10             | 54.00                  | -12.90                | Horizontal   |

| Test channel:      |                         |                             | Hiç                   | ghest                    | Le                | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00            | 42.47                   | 36.71                       | 10.73                 | 40.03                    | 49.88             | 74.00                  | -24.12                | Vertical     |
| 4960.00            | 42.83                   | 36.71                       | 10.73                 | 40.03                    | 50.24             | 74.00                  | -23.76                | Horizontal   |
| Т                  | est channel             | •<br>•                      | Highest               |                          | Le                | vel:                   | A۱                    | verage       |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00            | 34.21                   | 36.71                       | 10.73                 | 40.03                    | 41.62             | 54.00                  | -12.38                | Vertical     |
| 4960.00            | 34.11                   | 36.71                       | 10.73                 | 40.03                    | 41.52             | 54.00                  | -12.48                | Horizontal   |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.