CS188 Fall 2017 Section 10: HMMs and Naive Bayes

HMMs

Consider the following Hidden Markov Model.

$P(W_1)$
0.3
0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	A	0.9
0	В	0.1
1	Α	0.5
1	В	0.5

Suppose that we observe $O_1 = A$ and $O_2 = B$. Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = A, O_2 = B)$ one step at a time.

1. Compute $P(W_1, O_1 = A)$.

2. Using the previous calculation, compute $P(W_2, O_1 = A)$.

3. Using the previous calculation, compute $P(W_2, O_1 = A, O_2 = B)$.

4. Finally, compute $P(W_2|O_1=A,O_2=B)$.

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1=A,O_2=B)$. Here's the HMM again:

W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	A	0.9
0	В	0.1
1	A	0.5
1	В	0.5

We start with two particles representing our distribution for W_1 .

 $P_1: W_1 = 0$ $P_2: W_1 = 1$

Use the following random numbers to run particle filtering:

[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

- 1. **Observe**: Compute the weight of the two particles after evidence $O_1 = A$.
- 2. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.
- 3. Elapse Time: Now let's compute the elapse time particle update. Sample P_1 and P_2 from applying the time update.
- 4. **Observe**: Compute the weight of the two particles after evidence $O_2 = B$.
- 5. **Resample**: Using the random numbers, resample P_1 and P_2 based on the weights.
- 6. What is our estimated distribution for $P(W_2|O_1 = A, O_2 = B)$?

2 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

A	1	1	1	1	0	1	0	1	1	1
B	1	0	0	1	1	1	1	0	1	1
Y	1	1	0	0	0	1	1	0	0	0

1. What are the maximum likelihood estimates for the tables P(Y), P(A|Y), and P(B|Y)?

P(Y)

A	Y	P(A Y)
0	0	
1	0	
0	1	
1	1	

В	Y	P(B Y)
0	0	
1	0	
0	1	
1	1	

2. Consider a new data point (A = 1, B = 1). What label would this classifier assign to this sample?

3. Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for P(A|Y) given Laplace Smoothing with k=2.

A	Y	P(A Y)
0	0	
1	0	
0	1	
1	1	