No Vein No Gain: Modeling Angiogenesis

Group 13Fabian Ivulic, Costanza D'Ercole,
Noa Roebersen, and Sophie Engels

What to examine?

Angiogenesis: the growth of blood vessels.

- → Scale-invariance
- → Power law
- → Various control parameters

VEGF and Tumor Growth

→ Vascular endothelial growth factor (**VEGF**)

- → Signaling molecule
- → VEGF-based bias

→ Eventually tumor growth

Modeling Angiogenesis:
Understanding Tumor Growth through VEGF Dynamics

Initialization

Initial VEGF values on background grid

The Model

Vessel Growth and Gaussian VEGF Decay

Probability of growing to neighbor cell x,y

P(x,y) = U(0,1) * (1 - bias_factor) + VEGF(x,y) * bias_factor

$$w(d) = e^{-\frac{d^2}{2\sigma^2}}$$
 $\sigma = 10/2, \quad d = 10$
 $VEGF(x,y) = max(0, VEGF(x,y) * (1 - w(d) * 0.01)$

Growth and Death of Proliferating Tumor Cells

$$P(static) = 1 - p$$

$$P(death) = p \times (1 - blood_bias)$$

$$P(division) = p \times blood_bias$$

$$blood_bias(N) = \frac{1}{1 + e^{-(N - midpoint)}}$$

Image Processing and Vessel Network Creation

Binary Image

Skeletonized Image

Estimated Network

Network Measures over Time

Tumor density VS Network Metrics

Varying Sigmoid Midpoint

Sigmoid Midpoint VS Network Metrics

$$P(death) = p \times (1 - blood_bias)$$

$$blood_bias(N) = \frac{1}{1 + e^{-(N-midpoint)}}$$

Tumor density VS Network metrics

Varying Bias Factor

Bias factor VS Network Metrics

Tumor and Vessel Growth: clustering behavior over time

Tumor Growth: clustering behavior over time

Minimum cluster size = 1

- → Before the breakpoint, many small clusters exist.
- → After the breakpoint, clusters start to merge.

Tumor Growth: clustering behavior over time

Power law? Truncated power law?

- → 100 simulations.
- → 10 combined datasets per simulation.

Proportion of Power Law: 0.00%

Proportion of Truncated Power Law: 97.00%

Tumor Growth: clustering behavior over time

Tumor cells clusters follow a truncated power law distribution.

Truncated Power law VS	R	p-value
Exponential	5.56	<<0.05
Lognormal	3.30	<<0.05
Power law	3.99	<<0.05

Vessel Growth: clustering behavior over time

- → Study the cluster distribution of vessel cells.
- → Restrict the view **only in the tumor** area.

Is the tumor clusters' power law distribution influenced by the same distribution in the vessels?

Vessel Growth: clustering behavior over time

- → 100 simulations.
- → 10 combined datasets per simulation.

Proportion of Power Law: 0.00% Proportion of Truncated Power Law: 0.00%

Vessel cluster sizes do not follow a power law distribution around the tumor.

Vessel Growth: clustering behavior over time

Example of vessel cluster sizes fit. All p-values >> 0.05.

Power law VS	R	p-value
Exponential	0.04	0.97
Lognormal	-0.35	0.73
Truncated power law	-0.47	0.55

Truncated Power law VS	R	p-value
Exponential	0.45	0.65
Lognormal	0.89	0.37
Power law	0.47	0.55

Bias Factor and Tumor Clusters

Appendix

Varying the probability of tumor cell growth/death

Proliferation Probability VS Network Metrics

Gaussian Decay -0.998 -0.996 -0.994 0.992 0.990

decay_factor = 0.99

 $\sigma = 10/2, \qquad d = 10$

Gaussian Decay of VEGF due to Vessel Growth

$$egin{aligned} VEGF(x,y) &= \max\left(0, VEGF(x,y) imes (1-w(d) imes (1- ext{decay_factor}))
ight) \ w(d) &= e^{-rac{d^2}{2\sigma^2}} \end{aligned}$$

