NLP and the Web - WS 2024/2025

Lecture 7
Information Retrieval V

Dr. Thomas Arnold Hovhannes Tamoyan Kexin Wang

Ubiquitous Knowledge Processing Lab Technische Universität Darmstadt

Syllabus (tentative)

Nr.	<u>Lecture</u>
01	Introduction / NLP basics
02	Foundations of Text Classification
03	IR – Introduction, Evaluation
04	IR – Word Representation
05	IR – Transformer/BERT
06	IR – Dense Retrieval
07	IR – Neural Re-Ranking
08	LLM – Language Modeling Foundations
09	LLM – Neural LLM, Tokenization
10	LLM – Adaption, LoRa, Prompting
11	LLM – Alignment, Instruction Tuning
12	LLM – Long Contexts, RAG
13	LLM – Scaling, Computation Cost
14	Review & Preparation for the Exam

Today

IR – Word Representation / Neural IR

- 1 Neural Re-Ranking
 - Basic Workflow, training & evaluation
 - Basic MatchPyramid approach
- Re-Ranking with BERT
 - Efficient Models (PreTTR, ColBERT)

Neural Re-Ranking Models

- Re-rankers: They change the ranking of a pre-selected list of results
 - Same interface as classical ranking methods: score(q, d)
- Query Workflow:

Inside Neural Re-ranking Models

- Core part of re-ranking models is a matching module
 - Operating on a word interaction level

Training (same as Dense Reteival)

- Training is independent from the rest of the search engine operations
 - But it could be done repeatedly to account for temporal shift in the data
- Neural IR models are typically trained with triples (pairwise +,-)
 - Triple: 1 query, 1 relevant, 1 non-relevant document
 - Generate embeddings for query, relevant doc, non-relevant doc
 - Loss function: Maximize margin between rel/non-rel document
- All model components are trained end-to-end
 - Of course we could decide to freeze some parts for more efficient training

Re-Ranking Evaluation

- Scoring per tuple (1 query, 1 document)
- List of tuples is then sorted & evaluated with ranking metric per query (for example: MRR@10)
 - MRR@10 = Mean Reciprocal Rank, stop to look at position 10 or first relevant
- Mismatch: You can't really compare training loss and IR evaluation metric
 - Training loss is only good for checking at the beginning if your network is not completely broken :) it should go down very quick and then not change

Today

IR – Word Representation / Neural IR

- 1 Neural Re-Ranking
 - Basic Workflow, training & evaluation
 - Basic MatchPyramid approach
- Re-Ranking with BERT
 - Efficient Models (PreTTR, ColBERT)

The encoding layer

- Starting point for text processing neural network models
- Word token (id/piece/char based) to dense representation
 - Having word boundaries is important in IR
- <2019: a word embedding
 - Pre-trained Word2vec/Glove
 - Fine-tuned (= trained with the rest of the model)
- 2019+: BERT (huge transformer based model, only pre-trained)
 - Shows very strong results

The match matrix

 The core of many early neural IR models*

 Matrix of similarities of individual word combinations

Only a transformation –
 not parameterized by itself

^{*} Of course there are other approaches, but we focus on models based on the match matrix

Cosine similarity

$$sim(d,q) = cos(\theta)$$
$$= \frac{d \cdot q}{|d||q|}$$

- Cosine similarity measures direction of vectors, but not the magnitude
- Not a distance but equivalent to Euclidean distance of unit (length=1) vectors

- θ Angle between two vectors
- q Vector of query
- d Vector of document
- $d \cdot q$ Dot product

$$=\sum_{1=1,n}d_i*q_i$$

MatchPyramid

- Apply a set of 2D convolutional layers on top of the match matrix
 - Inspired by computer vision: match matrix = image
- Each Conv Layer: 2D-CNN & 2D-Dynamic-Pooling
 - Dynamic Pooling takes care of variable length input to fixed output
- Architecture & effectiveness strongly depends on configuration
 - How many layers
 - Which CNN & pooling kernel sizes
 - Generally: Pooling output becomes gradually smaller (like the Pyramid)

MatchPyramid

- Conv-layers extract local interaction features
 - Max pooling only keeps strong interaction signals (better matches)
 - Different channels can learn different interaction patterns
- Finally a multi-layered feed forward module (MLP) scores the extracted feature vectors

Simplified architecture illustration: Omitted zero-padding (at the start of the pyramid), more layers & channels in practice, last layer can be >1D (nD can be flattened to 1D)

Today

IR – Word Representation / Neural IR

- 1 Neural Re-Ranking
 - Basic Workflow, training & evaluation
 - Basic MatchPyramid approach
- Re-Ranking with BERT
 - Efficient Models (PreTTR, ColBERT)

Context of this Lecture

- We are studying ad-hoc re-ranking models
 - Many other applications of Transformers in IR:
 - Document & query expansion
 - QA pipelines
 - Conversational search, using the query history
 - Dense retrieval
 - Knowledge graph-based search
- We are focusing on the efficiency-effectiveness tradeoff
 - How fast or slow is a model compared to the result quality
 - Many other aspects can be studied, f.e.: social biases, domain adaption, or multilingual models (and many more)

BERT Re-Ranking: BERT_{CAT}

- Also know as monoBERT, vanilla BERT re-ranking, or simply BERT
- Concatenating the two sequences to fit BERT's workflow
 - [CLS] query [SEP] passage
 - Pool [CLS] token
 - Predict the score with a single linear layer
- Needs to be repeated for every passage

BERT_{CAT}

• Simple formula (as long as we abstract BERT):

We still have the choice of BERT-model

Query tokens

Passage tokens

Pre-trained BERT

model

 $q_{1..n}$

 $p_{1..m}$

BERT

The Impact of BERT_{CAT}

- This model (first shown by Nogueira and Cho) jumpstarted the current wave of neural IR
- Works awesome out of the box
 - Concatenating the two sequences to fit BERT's workflow
 - As long as you have time or enough compute it trains easily
- Major jumps in effectiveness across collections and domains
 - But, of course, comes at the cost of performance and virtually no interpretability
 - Larger BERT models roughly translate to slight effectiveness gains at high efficiency cost
 - The problem is we need to repeat the inference by the re-ranking depth!

So how good is BERT_{CAT}?

- MSMARCO-Passage
 - MRR@10 from .194 (BM25) to .385 (ALBERT-Large)
 - BERT basically doubles the result quality
- MSMARCO-Document
 - MRR@10 from .252 (BM25) to .384 (DistilBERT with 2K tokens)

- Similar results for TREC-DL '19, '20, TripClick
 - Large Training Data Settings

The Mono-Duo Pattern

- Mono-Duo is a multi-stage process:
 - Mono = score(q, p) f.e. Top-1000
 - Duo = score(q, p1, p2) f.e. Top-50 (but needs to be done for all 50^2 pairs)
 - Pairwise comparison: is p1 or p2 more relevant for query q?
- Improves on the single "mono" stage
 - Good for leaderboard settings, showing high performance
- Can use BERT or T5 as base model
 - T5 is also a Transformer based language model, even larger but of course even slower

BERT_{CAT} for Longer Documents

- BERT is capped at max. 512 input tokens (query + document)
- Simplest solution: just cap the document at 512-query length
 - Works surprisingly well already (for MSMARCO-Documents)
 - But might not work well in other domains, where documents are really long, or contain a variety of topics at different depths
- Still simple, but working on full documents: Sliding window over the document -> take max window score as document score
 - Now, we can also make smaller sliding windows
 - Might be useful to use in the UI -> highlight the most relevant passage as snippet

BERT_{CAT} In-Efficiency

- Evaluated on 250 docs / query on short MSMARCO-Passage (max 200 tokens)
- Basic IR-specific networks are fast, but moderately effective
- Transformer-based BERT is very effective, but very slow
 - + Infrastructure cost (blocking 1 GPU for 2 seconds at a time)

Sebastian Hofstätter and Allan Hanbury. 2019. Let's measure runtime! Extending the IR replicability infrastructure to include performance aspects. In OSIRRC @ SIGIR.

Achieving Efficiency

- Multiple paths to reduce query latency
 - Query latency is our focus today, but full lifecycle efficiency also a concern
 - Lifecycle efficiency includes training, indexing and retrieval steps
- 1 Reduce model size
 - Smaller models run faster, duh!
 - Only possible until a certain threshold after which quality reduces drastically
- 2 Move computation away from query-time
 - Pre-compute passage representation, so they become a simple lookup
 - Lightweight aggregation, that can be done at query time

Splitting BERT for Efficiency

- BERT_{CAT} needs x (re-ranking depth) full evaluations at query time
 - Bad for query latency, deep re-ranking implausible
- Most of that computation is spent on passage encoding
 - If we can move the passage encoding to the indexing phase
 - Encode each passage exactly 1 time
 - At query time only need to encode 1 query (with few words, so it's fast)
- Multiple approaches have been proposed to then glue the query and passage representations back together
 - With only a small reduction in effectiveness

Splitting BERT: PreTTR

- PreTTR splits BERT layers:
 - The first *n* layers are separated
 - The following layers are concatenated again
 - *n* is a hyperparameter
- We can pre-compute the first-n layers of the passages
- Pro: ≈ quality as BERT_{CAT}
- Neg: Still low query latency + storage requirements

Splitting BERT: ColBERT

- ColBERT creates a matchmatrix of BERT termrepresentations
- Then uses a simple maxpooling for the doc-dim & sum for the query dim
- Pro: Very fast query latency
- Con: Need to save all passage term vectors (huge storage cost)

ColBERT

• Simple formula (as long as we abstract BERT):

Encoding

$$\hat{q}_{1..n} = BERT([CLS]; q_{1..n})$$

$$\hat{p}_{1..n} = BERT([CLS]; p_{1..n})$$

$$\hat{p}_{1..n} = BERT([CLS]; p_{1..n})$$

Can be done at indexing time

Aggregation

$$s = \sum_{i=1..n} \max_{t=1..m} \hat{q}_i \cdot \hat{p}_t$$

Quite efficient at query time

Query tokens $q_{1..n}$

Passage tokens $p_{1..m}$

Pre-trained BERT BERT model

Special tokens [CLS]

Output score S

Summary: Neural Re-Ranking for IR

Word level match matrix: core building block of Neural IR models

2 BERT_{CAT}: Slow but effective

Large Efficiency Gains with more pre-computing (Pre-TTR, ColBERT)

Did we Reach the State-of-the-art?

Almost!

- Current research is heavily based on LLMs:
 - IR for LLM: Retrieval-Augmented Generation
 - LLM for IR: e.g. query expansion, reformulation...

- Many questions are open
 - Context-awareness, Explainability, Generalization across domains...
- General direction: More computation = better results,
 possible by better hardware & more data

More Resources

 Pretrained Transformers for Text Ranking: BERT and Beyond Jimmy Lin et al

https://arxiv.org/abs/2010.06467

- Great Survey on different techniques using Transformers in Ranking
- Large Language Models for Information Retrieval: A Survey https://arxiv.org/abs/2308.07107
 - Survey on using LLMs
- Running list of new papers in the field: https://arxiv.org/list/cs.IR/recent
 - ~20 new papers a day; the fastest source to get info about pre-prints

Next Stop:

Large Language Models