University of Asia Pacific (UAP) Department of CSE

CSE 403 Course Outline

Program: Bachelor of Science in CSE

Course Title: Artificial Intelligence and Expert Systems

Course Code: CSE 403

Semester: Spring 22

4th year, 1st Semester (4-1) Level:

Credit Hour: 3.0

Name & Designation of Teacher: Dr. Nasima Begum (DNB), Associate Professor

Office/Room: 7th Floor, Teacher's Compound

Class Hours: Sec A: Sunday (3:30 – 4:50) PM (R: 702), Thursday (12:30 – 1:50) PM (R: 713)

Sec B: Sunday (2:00 – 3:20) PM (R: 714), Tuesday (12:30 – 1:50) PM (R: 714)

Consultation Hours: Sec A: Tuesday (11:00 – 12:20), **Sec B:** Tuesday (2:00 – 3:20) PM

E-mail: nasima.cse@uap-bd.edu

Mobile: +8801816203075

Rationale: Required course to Pattern Recognition in the CSE program. This knowledge is very

important for the field of Pattern Recognition and Machine Learning professional.

Pre-requisite (if any): CSE 205, CSE 207

Course Synopsis: Introduction, Definition, Foundation, Agent: Characteristics, Environments, Agent Types, First Order

> Logic: Basic Elements, Quantifiers, Proof Tree, Forward Chaining, Backward Chaining, Resolution, Searching: Uninformed Search: Breadth-First Search (BFS), Depth-First Search (DFS), Uniform-Cost Search (UCS), Depth-Limited Search (DLS), Iterative Deepening Search (IDS), Bi-Directional Search (BDS), Informed Search: Greedy Best-First Search, A* Search, Memory Bounded Heuristic Search, Local Search: Hill-Climbing Search, Simulated Annealing, Local Beam Search, Genetic Algorithm, Game Playing: Game Definition, Game Theory, Zero Sum Game, Minimax Algorithm, AlphaBeta Pruning, Planning and Acting: Action Schema, Preconditions and Effects, PDDL Description, Uncertainty and Reasoning: Rational Decision, Probability Theory, Utility Theory, Decision Theory, Bayes' Rule, Decision Making: Axioms of Utility Theory, Allais Paradox, Ellsberg Paradox, Learning: Factors, Components, Types, Unsupervised Learning, Supervised Learning, Semi-

supervised Learning, Deductive Learning, Inductive Learning, Reinforcement Learning.

Course Objectives:

The objectives of this course are to:

- 1. Provide the fundamental knowledge of AI, history, success, achievement, inference, intelligent agent, types of agent, expert system, knowledge representation technique and analyze them in various practical scenarios.
- 2. Explain various AI search techniques and game theory for different real life problems.
- 3. Demonstrate different probabilistic reasoning technique for various cases.
- 4. Explain different advanced AI topics (Artificial Neural Network (ANN), and different learning technique (supervised, unsupervised, reinforcement) to build AI agents.

Course Outcomes (CO) and their mapping with Program outcomes (PO) and Teaching-Learning Assessment methods:

CO	CO Statements:	Corresponding	Bloom's	Delivery	Assessment
No.	Upon successful	POs	taxonomy	methods	Tools
	completion of the	(Appendix-1)	domain/level	and	
	course, students should		(Appendix-2)	activities	
	be able to:				
CO1	Understand the	2	1/Understand	Lecture,	Quiz, Problem
	fundamental concepts of			Multimedia,	solving, Written
	AI and Intelligent Agent			Problem	exam, Mid Exam
	in various practical			solving	
	scenarios.				
CO2	Analyze various AI	4	1/Analyze	Lecture,	Quiz,
	search techniques and			Multimedia,	Presentation
	Game Theory for			Problem	Mid Exam
	different real life			Solving,	
	problems.				
CO3	Apply different	1	1/Apply	Lecture,	Assignment,
	knowledge			Multimedia,	Problem solving,
	representation &			Group	Final Exam
	reasoning (KRR)			Discussion,	
	techniques and Fuzzy			Problem	
	Logic in different			solving	
	scenarios.				
CO4	Interpret Markov	3	1/Analyze	Lecture,	Assignment,
	Model, Bayesian Rule			Problem	Problem solving,
	in uncertainty and			Solving,	Final Exam
	probabilistic reasoning.			Group	
				discussion	
CO5	Design and implement	3	1/Evaluate	Lecture,	Case study,
	AI agents based on			Multimedia,	assignment,
	ANN and different			Problem	project
	types of Learning			solving	
	techniques.				

Weighting COs with Assessment Methods:

Assessment Type		Marks	CO1	CO2	CO3	CO4	CO5
		Distribution					
Final Exam (50%)	Written Exam	50		20	10	10	10
Mid Term (20%)	Written Exam	20	8.33	11.67			
Assessment (30%)	Assignment/Viva /Presentation	10			5		5
	Quiz	20	10	10			
Total		100	18.33	41.67	15	10	15

Course Content Outline and mapping with Cos

Weeks	Topics / Content	Course	Delivery Methods	Reading Materials			
		Outcome	and Activities				
1	Introduction to AI	CO1	Lecture, multimedia	AIMA: ch 1, Lecture Slides			
2	Intelligent Agent	CO1	Lecture, multimedia, Group discussion	AIMA: ch 2, Lecture Slides			
	CT-1						
3	Uninformed Search (BFS, DFS, UCS, IDS)	CO2	Lecture, multimedia, Case Study	AIMA: ch 3, Lecture Slides			
4-5	Informed Search (Best-First, Greedy Best-First, A*, Heuristics)	CO2	Lecture, multimedia, Case Study	AIMA: ch 3, Lecture Slides			
		(CT-2				
6	Local Search, Genetic Algorithm	CO2	Lecture, multimedia,, Problem Solving	AIMA: ch 4, Lecture Slides			
6-7	Adversarial Search, Game Theory	CO2	Lecture, multimedia, Case Study	AIMA: ch 5, Lecture Slides			
CT-3							
Mid Term Exam							
8-9	KRR, Fuzzy Logic	CO3	Lecture, multimedia	AIMA: ch 7-8, Lecture Slides			
10-11	Understand probabilistic reasoning,	CO4	Lecture, multimedia, Problem Solving	AIMA: ch 13-14, Lecture Slides			

	Interpret Bayesian Rule, basics of Markov Model					
	CT-4					
12	Intro to Artificial Neural Networks and different Learning Techniques	CO5	Lecture, multimedia, Case Study	AIMA: ch 18, Lecture Slides		
13	Intro to multilayer Neural Networks and different problems	CO5	Lecture, multimedia, problem solving	AIMA: ch 18, Lecture Slides		
14	Presentation , Review	CO1-CO5	Lectures, multimedia	AIMA all ch, Lecture Slides		
	Final Exam					

Minimum attendance: 70% class attendance is mandatory for a student in order to appear at the

final examination.

Textbook: AIMA = Artificial Intelligence: A Modern Approach-by Stuart Russell

and Peter Norving (3rd / 4th Edition)

Recommended References: Artificial Intelligence-by Patrick Henry Winston (3rd Edition)

Other References: http://ai.berkeley.edu/lecture-slides.html

Grading System: As per the approved grading scale of University of Asia Pacific

(Appendix-3).

Special Instructions: Late attendance: Students who will enter the class after the attendance

call will be marked as absent.

Assignment: Assignment (Written and/or presentation.) will be given throughout the semester. **Copied** assignments will be graded as zero.

Late submission will result in a 50% deduction in score.

Class Test: There will be no make-up quizzes. 3 out of 4 class tests will be considered. CT1, best of CT2 & CT3, and CT4 will be considered.

Student's responsibilities: Students must come to the class prepared for the course material covered

in the previous class (es). They must submit their assignments on time.

Prepared by	Checked by	Approved by	
Dr. Nasima Begum	Chairman, PSAC committee	Head of the Department	

<u>Appendix-1:</u>
Washington Accord Program Outcomes (PO) for engineering programs:

No.	PO	Differentiating Characteristic
1	Engineering Knowledge	Breadth and depth of education and type of knowledge, both theoretical and
		practical
2	Problem Analysis	Complexity of analysis
3	Design/ development of solutions	Breadth and uniqueness of engineering problems i.e. the extent to which problems
		are original and to which solutions have previously been identified or codified
4	Investigation	Breadth and depth of investigation and experimentation
5	Modern Tool Usage	Level of understanding of the appropriateness of the tool
6	The Engineer and Society	Level of knowledge and responsibility
7	Environment and Sustainability	Type of solutions.
8	Ethics	Understanding and level of practice
9	Individual and Team work	Role in and diversity of team
10	Communication	Level of communication according to type of activities performed
11	Project Management and Finance	Level of management required for differing types of activity
12	Lifelong learning	Preparation for and depth of Continuing learning.

Generic Skills (Detailed):

PO	Details
1. Engineering Knowledge (T)	Apply knowledge of mathematics, sciences, engineering fundamentals and manufacturing engineering to the solution of complex engineering problems.
2. Problem Analysis (T)	Identify, formulate, research relevant literature and analyze complex engineering problems, and reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
3. Design/Development of Solutions (A)	Design solutions, exhibiting innovativeness, for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, economical, ethical, environmental and sustainability issues.
4. Investigation (D)	Conduct investigation into complex problems, displaying creativeness, using research-based knowledge, and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
5. Modern Tool Usage (A & D)	Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering activities, with an understanding of the limitations.
6. The Engineer and Society (ESSE)	Apply reasoning based on contextual knowledge to assess societal, health, safety, legal, cultural, contemporary issues, and the consequent responsibilities relevant to professional engineering practices.
7. Environment and Sustainability (ESSE)	Understand the impact of professional engineering solutions in societal, global, and environmental contexts and demonstrate knowledge of and need for sustainable development.

8. Ethics (ESSE)	Apply professional ethics with Islamic values and commit to responsibilities and norms of professional engineering code of practices.
9. Communication (S)	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
10.Individual and Team Work (S)	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
11. Life Long Learning (S)	Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.
12. Project Management and Finance (S)	Demonstrate knowledge and understanding of engineering management and financial principles and apply these to one's own work, as a member and/or leader in a team, to manage projects in multidisciplinary settings, and identify opportunities of entrepreneurship.

Appendix-2

Appendix-3

UAP Grading Policy:

01== 01##===g = 0===j:					
Numeric Grade	Letter Grade	Grade Point			
80% and above	A+	4.00			
75% to less than 80%	A	3.75			
70% to less than 75%	A-	3.50			
65% to less than 70%	B+	3.25			
60% to less than 65%	В	3.00			
55% to less than 60%	B-	2.75			
50% to less than 55%	C+	2.50			
45% to less than 50%	С	2.25			
40% to less than 45%	D	2.00			
Less than 40%	F	0.00			