Hydraulische - Berechnungen

Balázs Maitz

2021-06-15

Contents

0.1	Schmutzwasser Entwässerung		
	0.1.1	Fallleitungen	2
0.2	Regen	wasser Entwässerung	3
	0.2.1	Fallleitungen	3
	0.2.2	Grundleitungen	3
	0.2.3	Maßgebende Regenspende	3
	0.2.4	Versickerung	3

0.1 Schmutzwasser Entwässerung

0.1.1 Fallleitungen

Schmutzwasser Fallleitungen. Noch Leitungen Noch Leitungen Noch Leitungen

0.2 Regenwasser Entwässerung

0.2.1 Fallleitungen

Regenwasser Fallleitungen.

Noch Leitungen

Noch Leitungen

Noch Leitungen

0.2.2 Grundleitungen

Noch Leitungen

Noch Leitungen

0.2.3 Maßgebende Regenspende

Noch Leitungen

0.2.4 Versickerung

Zufluss

$$A_u = 858.23 \ m^2$$

$$r_{Dn} = 266.67 \ \frac{l}{s*ha}$$

$$Q_{dr} = q_{dr} * 1000 = 1.82e + 04 \frac{m^3}{s}$$
 (1)

$$Q_{zu} = A_u * r_{Dn} * 1e - 7 = 2.29e - 02 \frac{m^2}{s}$$
 (2)

Versickerungsret

$$A_s = 150 \ m^2$$
$$z = 0.3 \ m$$

 $k_f = k_f \ 1e - 05$

$$Q_S = A_s * k_f/2 = 7.50e - 04 \frac{m^3}{s}$$
 (3)

Volumen

$$V_{erf} = (Q_{zu} - Q_s - Q_{dr}) * D_{vs-5} * 60 * f_z = -3.01e + 08 m^3$$
 (4)

$$V_{vs} = A_s * z = 4.50e + 01 \ m^3 \tag{5}$$

$$-3.01e + 08 m^3 < 4.50e + 01 m^3$$
 (6)