Ime in priimek: Liva Jurhovio Razred: 4.a

	<	-	-	
1	7)		-	-
-	1			1
	"		-,,	-

dosežene točke	možne točke	odstotki	ocena
30	44	68	3

1. Dana je funkcija fs predpisom $f(x)=\left\{\begin{array}{ll} \frac{2}{3}x-\frac{4}{3}; & x<-1\\ \sqrt[3]{x}-1; & -1\leq x<2\\ \log_2 x; & x\geq 2 \end{array}\right.$

a) Nariši graf funkcije f in določi točke nezveznosti.

[4t] 4

tothe nervernosti
×=2

-23.33 - 13 -63 - 13 = -103 5(-1) - 1 = -1 - 1 = -1

log_2 = log_2 = 1

b) Zapiši predpis inverzne funkcije f^{-1} .

[5t] 4

Q x=2/3 y-1/3 x+1/3 = 2/3 y /: 2/3 x+1/3 = 2/3 y /: 2/3 3×1/2 +2> y

@ x=log2y

y=2x

 $\mathcal{L}^{-1}(x) = \begin{cases} \frac{3}{2} \times +2; & x < -1 \\ (x+1)^{3}; & -1 < x < 2 \\ 2^{x}; & x > 2 \end{cases}$

4/3/2

3

2 x=35g-1 x+1=35g/()3 y=(x+1)3

$$ardicot \times y = -\frac{1}{x^2+1}$$

$$\frac{-3x+6}{x^{3}-8x^{2}+16x} = \frac{-3(x+2)}{x(x^{2}-8x+16)} = \frac{-3(x+2)}{x(x-4)^{2}}$$

a)
$$\lim_{x \to 4} \frac{-3x+6}{x^3-8x^2+16x} = \lim_{x \to h} \frac{-3}{3x^2-\lambda6x+\lambda6} = \lim_{x \to h} \frac{-3(x+2)}{3x^2-\lambda6x+\lambda6} = \lim_{x \to h} \frac{-3(x+2)}{x(x-h)^2} = \lim_{x \to h} \frac{-3(x+2)}{x(x^2-\lambda6)} = \lim_{x \to h} \frac{-3x^3-30x^2-96x-96}{x^3-\lambda6x} = \lim_{x \to h} \frac{-9x^2-60x-96}{3x^2-\lambda6} = \frac{-480}{32} = -15$$

b)
$$\lim_{x\to 0} \frac{4x^2 \cot(3x)}{\sqrt[3]{x+8-2}} = \sqrt{\frac{8}{3}} + \sqrt{\frac{3}{3}} = \sqrt{\frac{3}{3}} + \sqrt{\frac{3}{3}} = \sqrt{\frac{3}{3}}$$

[4t] 1

$$(cot 3x)' = \frac{1}{5ix^3x}$$

$$(cot 3x)' = \frac{1}{5ix^3x}$$

 $8^{-\frac{2}{3}} = \frac{1}{12}$ $(x+8)^{\frac{2}{3}} \Rightarrow$ $(x+8)^{-\frac{2}{3}}$ $(x+8)^{-\frac{2}{3}}$ $(x+8)^{-\frac{2}{3}}$ $(x+8)^{-\frac{2}{3}}$ $(x+8)^{-\frac{2}{3}}$

3. Odvajaj funkcijo
$$f(x) = \frac{\sin(2x) - x^5}{4 - \ln x} + 3^{2x^4 - 5} \cdot (\tan^2(3x) - \sqrt[5]{x^2})$$
. Odvoda ni potrebno poenostaviti.

+
$$(2x^{n} - 5) \cdot 3^{2x^{n} - 6} \cdot (8x^{3}) \cdot (\tan^{2}(3x) - 5x^{2}) + 3^{2x^{n} - 5} \cdot (2\tan(3x) - \frac{2}{5}x^{-\frac{3}{2}})$$

4. Dani sta funkciji $f(x) = \frac{1-x}{x}$ in $g(x) = \frac{x+1}{x^{2}-4x+5}$.

4. Dani sta funkciji $f(x) = \frac{1-x}{x}$ in $g(x) = \frac{x+1}{x^2-4x+5}$

a) Izračunaj in poenostavi funkcijo
$$f \circ g$$
.

$$(f \circ g)(x) = \frac{1 - \left(\frac{x+\Lambda}{x^2 - hx + 6}\right)}{\frac{x+\Lambda}{x^2 - hx + 5}} = \frac{\frac{x^2 - hx + 5 - x - \Lambda}{x^2 - hx + 6}}{\frac{x+\Lambda}{x^2 - hx + 5}}$$

$$= \frac{\frac{x^2 - 5x + h}{x^2 - hx + 6}}{\frac{x+\Lambda}{x^2 - hx + 6}} = \frac{(x - h)(x - \Lambda)}{x + \Lambda}$$

$$=\frac{\frac{x^2-hx+5-x-\lambda}{x^2-hx+5}}{\frac{x+\lambda}{x^2-hx+5}}$$

$$=\frac{\frac{x^2-hx+5-x-\lambda}{x^2-hx+5}}{\frac{x+\lambda}{x+\lambda}}$$

asimptota:
$$y=x-6$$

 $(x^2-5x+h):(x+1)=x-6$
 $-x^2-x$
 $-6x+h$
 $+6x+6$
 $2/0$

5. Zapiši enačbo tiste tangente na graf funkcije $f(x)=4\ln\frac{1}{x+7}$, ki ima naklonski kot $\alpha=\arctan(-4)$. [6t] 3

sencapha
$$x + T = \Lambda$$

enere

nezultet $y = 4 \cdot \ln \frac{\Lambda}{-6+1} = 4 \cdot \ln \Lambda = 0$

naperi)

6. Na minuto natančno izračunaj kot med krivuljama $y = \sin^2 x$ in $y = \cos^2 x - \cos x$ v tistem presečišču, ki ima od vseh presečišč najmanjšo pozitivno absciso.

4, = (sin2x) = 12 sin2x / (cos2x = cos2(last)= 1 (cos2(23)=(-2)2 42= MALOSTA - SINX = 5 - SINX = 5 - SINZ (3) + SINZ = 3 45

25 in x = 1 took

1-cos2x=cos2x-cosx 1 + cosx = 2 cos2 x 20052x-cosx-1=0 a= com 2a2-a-1=0 $a_{\lambda} = \frac{1 + \sqrt{\lambda + 8}}{u} = \frac{\lambda + 3}{1} = \lambda$ az= -1

cosx = 1 x= lut -> 4= sin2 (lut) = 0 $\cos x = -\frac{1}{2}$

tang= | hatha | = | 1 / 1+0 | = 1 φ= 45° 0'

