Politechnika Warszawska

Informatyka II Iteracyjne metody rozwiązywania równań nieliniowych

Prowadzący: Michał Stachura

Funkcja

1.
$$cos(x) = x$$

2.
$$cos(x) = w * x$$

Przyjęte dolne i górne granice przedziału : $a=-1\ b=5\ oraz$: $a=-5\ b=5$

Przedstawienia graficzne

Czerwone kropki: Metoda siecznych

Żółte kropki: Metoda Newtona

Niebieskie kropki: Metoda bisekcji

Dokladnos	Iteracja-B	Iteracja-N	Iteracja-S
0.000001	23	6	4
0.000002	22	6	4
0.000004	21	6	4
0.000008	20	6	4
0.000015	19	6	4
0.000031	18	6	4
0.000061	17	6	4
0.000122	16	6	4
0.000244	15	6	3
0.000488	14	5	3
0.000977	13	5	3
0.001953	12	5	3
0.003906	11	5	3
0.007813	10	5	3
0.015625	9	5	2
0.031250	9	5	2
0.062500	7	4	2
0.125000	6	4	2

Dokladnos	Iteracja-B	Iteracja-N	Iteracja-S
0.000001	24	148	5
0.000002	23	148	5
0.000004	22	148	4
0.000008	21	148	4
0.000015	20	148	4
0.000031	19	148	4
0.000061	18	148	4
0.000122	17	148	4
0.000244	16	148	4
0.000488	15	148	4
0.000977	14	147	3
0.001953	13	147	3
0.003906	12	147	3
0.007813	11	147	3
0.015625	10	147	3
0.031250	9	147	2
0.062500	8	147	2
0.125000	7	146	2

Opis programu

Program rozpoczynam od załączenia pliku nagłówkowego oraz źródłowego z funkcją bisec załączonych w zadaniu. Deklaruję niezbędne biblioteki oraz prototypy funkcji. Otwieram plik w którym będę przechowywał ilość iteracji oraz dokładność obliczeń. Zabezpieczam program przed ewentualnym niepoprawnym otwarciem lub błędem przy otwieraniu. Następnie proszę użytkownika o podanie z klawiatury dolnej i górnej granicy badanego przedziału. Program jest wyposażony w zabezpieczenie przeciw niepoprawnemu formatowi danych to jest np. znak zamiast cyfry. Używam do tego funkcji wyczyscbufor. Program od razu sprawdza czy zadany przedział spełnia warunek f(a)*f(b)<0

Osiąga to poprzez wywołanie funkcji bisec i sprawdzenie wartości zmiennej iter, której przypisywane jest wartość -1 gdy przedział nie spełnia warunku. Następnie zostaje otwarte okno graficzne oraz przeskalowanie przedziałki na wykresie zgodnie z wymaganiami (logarytmiczna skala dla dokładności). W pętli for wywoływane są funkcje bisec, newton i siecz, które realizują poszczególne metody rozwiązywania równań nieliniowych. Funkcja bisec podana w zadaniu, natomiast newton oraz siecz są napisane tak by zwracały wartość miejsca zerowego wyliczanego metodami Newtona i Siecznych gdy osiągnięta zostanie dana dokładność. W funkcjach tych narzucona jest maksymalna ilość iteracji po której zostanie zwrócony otrzymany wynik niezależnie od dokładności. Przy dużych przedziałach może to być problemem i trzeba by odpowiednio te liczbę zwiększyć. Niestety nie da się jej przewidzieć przed rozwiązaniem równania daną metodą.

Wyniki funkcji są wypisywane na ekranie zgodnie z poleceniem dla dokładności idących $od\ 2^{-20}\ do\ 2^{-3}$. Ponadto ilość iteracji jest zapisywana do pliku. Przed każdym wywołaniem funkcji zmieniany jest kolor punktu na wykresie by odróżnić poszczególne metody. Ostatecznie stawiany na wykresie jest punkt dla każdej metody o współrzędnych (numer iteracji, zadana dokładność).

W następnej części programu rozwiązywane jest równanie $\cos(x) = w * x$. Funkcje zostały odpowiednio zmienione by możliwe było obliczanie tej funkcji. Zostało to zrealizowane przez dodanie zmiennej globalnej w, której na początku programu przypisywana jest wartość 1. Po rozwiązaniu pierwszej funkcji w drugiej pętli for, zmieniane są zgodnie z poleceniem wartości w=0.5,0.6,...,15.0 i obliczane jest miejsce zerowe funkcji wszystkimi trzema metodami. Wyniki wypisywane są na ekranie. Na końcu programu zamykany jest plik.

Wnioski

Przy dużym przedziale, szczególnie zawierającym zarówno liczby dodatnie oraz ujemne, ilość iteracji w metodzie Newtona zdecydowanie się zwiększa. Widać to na drugim zamieszczonym wykresie. Natomiast metoda siecznych ma stosunkowo niewielką ilość iteracji i dużą dokładność.