Modelo Matemático para Diseño Óptimo de Red de Distribución de Agua: Grupo 6

Javier Sola, Martín Caballero, Bastián Jiménez, Agustín Venegas

1. Conjuntos

- \mathcal{N} : conjunto de todos los nodos, con $|\mathcal{N}| = N$
 - $-\mathcal{P}\subset\mathcal{N}$: nodos plantas de tratamiento
 - $-\mathcal{T}\subset\mathcal{N}$: nodos tanques
 - $-\mathcal{C}_t \subset \mathcal{N}$: nodos clientes de transbordo
 - $-\mathcal{C}_f \subset \mathcal{N}$: nodos clientes finales
- $A \subseteq \mathcal{N} \times \mathcal{N}$: conjunto de arcos posibles (únicamente entre columnas adyacentes), con |A| = A
- $\mathcal{D} = \{1, 3, 4\}$: conjunto de diámetros permitidos para tuberías, con $|\mathcal{D}| = D$
- $\mathcal{K} = \{a, b\}$: tipos de costos de instalación, con $|\mathcal{K}| = K$

2. Parámetros

• Cap_d: capacidad máxima de flujo para diámetro $d \in \mathcal{D}$ [l/min]

$$Cap_1 = 353$$
, $Cap_3 = 1414$, $Cap_4 = 2036$

• Cost_{dk}: costo de instalación para diámetro d y tipo $k \in \mathcal{K}$, según la tabla siguiente:

Diámetro		Costo tipo a	Costo tipo b
3	(50 mm)	16	45
	(100 mm)	24	62
	(120 mm)	27	68

- c_{ij} , para $i=1,\ldots,N,\ j=1,\ldots,N$: costo de transporte por unidad de flujo entre nodo i y nodo j
- d_j , para $j \in \mathcal{C}_f$: demanda de agua en nodo cliente final j
- S_i , para $i \in \mathcal{P}$: capacidad de suministro en planta i

3. Variables de Decisión

• $x_{ij}^d \in \{0,1\}$, para $i=1,\ldots,N,\ j=1,\ldots,N,\ d=1,\ldots,D$: variable binaria que indica si se instala tubería de diámetro d en arco (i,j)

$$x_{ij}^{d} = \begin{cases} 1 & \text{si se instala tuber\'ia de diámetro } d \text{ en arco } (i, j), \\ 0 & \text{en caso contrario.} \end{cases}$$

• $f_{ij} \geq 0$, para $i=1,\ldots,N,\,j=1,\ldots,N$: flujo de agua que circula por el arco (i,j)

4. Función Objetivo

Minimizar el costo total de la red, que incluye costos de instalación y transporte:

$$\min \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{d=1}^{D} \sum_{k=1}^{K} \operatorname{Cost}_{dk} \cdot x_{ijd} + \sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} \cdot f_{ij}$$

5. Restricciones

1. Capacidad máxima por tubería:

$$f_{ij} \leq \sum_{d=1}^{D} \operatorname{Cap}_{d} \cdot x_{ij}^{d}, \quad \forall i = 1, \dots, N, \quad j = 1, \dots, N$$

2. Una única tubería por arco:

$$\sum_{d=1}^{D} x_{ij}^{d} \le 1, \quad \forall i = 1, \dots, N, \quad j = 1, \dots, N$$

- 3. Conservación de flujo (balance nodal):
 - Para tanques y nodos clientes de transbordo $i \in \mathcal{T} \cup \mathcal{C}_t$:

$$\sum_{j=1}^{N} f_{ji} = \sum_{j=1}^{N} f_{ij}$$

• Para plantas $i \in \mathcal{P}$:

$$\sum_{j=1}^{N} f_{ij} \le S_i$$

• Para nodos clientes finales $i \in \mathcal{C}_f$:

$$\sum_{i=1}^{N} f_{ji} = d_i$$

4. Restricción de conectividad: solo se permiten arcos entre columnas adyacentes:

$$\mathcal{P} \to \mathcal{T}, \quad \mathcal{T} \to \mathcal{C}_t, \quad \mathcal{C}_t \to \mathcal{C}_f$$

5. Dominio y no negatividad:

$$x_{ij}^d \in \{0, 1\}, \quad f_{ij} \ge 0, \quad \forall i = 1, \dots, N, \quad j = 1, \dots, N, \quad d = 1, \dots, D$$

Código generador de instancias

En el link a continuación puede ver el código para la generación de instancias: https://github.com/RepublicaDePirque/Codigo-Proyecto-opti.git