The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-II ■ Assignment#2

- 1. Which of the following are vector space:
 - (a) R(Q)
- (b) C(Q)

- (c) R(C)
- (d) R(R)

Where, Q: set of all rational numbers; R: set of all real numbers; C: set of all complex numbers.

- 2. Prove that the set C[a,b] of all real valued continuous functions defined on the closed interval [a, b] forms a real vector space if (i) addition is defined by (f+q)(x) = f(x) + g(x), $f, g \in C[a, b]$, (ii) Multiplication by a real number r is defined by $(rf)(x) = rf(x), f \in C[a, b]$ C[a,b]. Prove that the subset D[a,b] of all real valued differentiable functions defined on [a,b] is a subspace of C[a,b].
- 3. Which of the following are the subspaces of \mathbb{R}^3 :
 - (a) $\{(x,y,z)|x \ge 0\}$; (b) $\{(x,y,z)|x+y=z\}$; (c) $\{(x,y,z)|x=y^2\}$; (d) $\{(x,y,z)|xy=0\}$.
- 4. Express the polynomial $v = x^2 + 4x 3$ in P(x) as a linear combination of the polynomials $p_1 = x^2 - 2x + 5$, $p_2 = 2x^2 - 3x$, $p_3 = x - 1$.
- 5. Determine whether the following sets of vectors are linearly independent or not
 - (a) $S = \{(1,0,2,1), (1,3,2,1), (4,1,2,2)\}$ of \mathbb{R}^4 ,
 - (b) $S = \{(1,2,6), (-1,3,4), (-1,-4,-2)\}\ \text{of }\mathbb{R}^3,$
 - (c) $S = \{u+v, v+w, w+u\}$ in a vector space V given that $\{u, v, w\}$ is linearly independent.
 - (d) $S = \{(1,2,0), (3,-1,1), (4,1,1)\}$
- 6. Let V be the vector space of functions from R into R. Show that the functions f(x) = $\sin(x)$, $q(x) = e^x$, $h(x) = x^2$ are linearly independent.
- 7. If the set of the vectors $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ in a vector space V over a field F be linearly dependent, then at least one of them is a linear combination of the remaining others.
- 8. Check whether the following four vectors in \mathbb{R}^4 form a basis of \mathbb{R}^4 : (1,1,1,1), (0,1,1,1), (0,0,1,1), (0,0,0,1).
- 9. Check which of the following polynomials in $P_2(x)$ form a basis of $P_2(x)$:
 - (a) $\{1, x, x^2\}$ (b) $\{1+x+x^2\}$ (c) $\{1, x, x^2, 1+x+x^2\}$ (d) $\{1, 1+x, 1+x+x^2\}$.
- 10. Find the dimension of the following vector spaces
 - (a) $\{A : A \text{ is } 2 \times 3 \text{ real matrices}\}.$
 - (b) $\{A : A \text{ is } 3 \times 3 \text{ real upper triangular matrices}\}$.
 - (c) $\{A: A \text{ is } 3 \times 3 \text{ real symmetric matrices}\}$
 - (d) $\{A: A \text{ is } 2 \times 2 \text{ real skey-symmetric matrices}\}$
- 11. Find the dimension and basis of the subspace W of $M_{2,3}$ spanned by

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 4 & 3 \\ 7 & 5 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 4 & 3 \\ 7 & 5 & 6 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 7 & 6 \end{bmatrix}$$

- 12. For what value of k, the matrix A has rank 2 if

(I)
$$A = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 2 & 2 & 0 & 1 \\ 5 & 4 & 3 & k \end{bmatrix}$$
 (II) $B = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 3 & 0 & 9 & 3 \\ 2 & 2 & 0 & 1 \\ 4 & 2 & 6 & k \end{bmatrix}$.