CS 577- Intro to Algorithms

Randomness (Part 2)

Dieter van Melkebeek

December 10, 2020

Idea

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

Simpler algorithms

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

- Simpler algorithms
- ► More time and/or space efficient algorithms

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

- Simpler algorithms
- ► More time and/or space efficient algorithms

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

- Simpler algorithms
- ► More time and/or space efficient algorithms

Applications

Selection

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

- Simpler algorithms
- ► More time and/or space efficient algorithms

- Selection
- Sorting

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

- Simpler algorithms
- More time and/or space efficient algorithms

- Selection
- Sorting
- Dynamic dictionary problem

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

- Simpler algorithms
- More time and/or space efficient algorithms

- Selection
- Sorting
- Dynamic dictionary problem: hashing

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

- Simpler algorithms
- More time and/or space efficient algorithms

- Selection
- Sorting
- Dynamic dictionary problem: hashing
- Finding a closest pair of points in the plane

Idea

Make a random choice when there are many good choices but it is hard to deterministically find one.

Benefits

- Simpler algorithms
- More time and/or space efficient algorithms

- Selection
- Sorting
- Dynamic dictionary problem: hashing
- Finding a closest pair of points in the plane
- Polynomial identity testing

Goal

ightharpoonup Maintain a small subset S of a huge universe U.

- ightharpoonup Maintain a small subset S of a huge universe U.
- Supported operations:

- ightharpoonup Maintain a small subset S of a huge universe U.
- Supported operations:
 - $\circ\,$ Insertion: adding an element to S

- ightharpoonup Maintain a small subset S of a huge universe U.
- Supported operations:
 - \circ Insertion: adding an element to S
 - \circ Deletion: removing an element from S

- ightharpoonup Maintain a small subset S of a huge universe U.
- Supported operations:
 - \circ Insertion: adding an element to S
 - \circ Deletion: removing an element from S
 - \circ Lookup: checking whether an element belongs to S (and retrieving information about that element)

Goal

- \blacktriangleright Maintain a small subset S of a huge universe U.
- Supported operations:
 - \circ Insertion: adding an element to S
 - \circ Deletion: removing an element from S
 - \circ Lookup: checking whether an element belongs to S (and retrieving information about that element)

Goal

- Maintain a small subset S of a huge universe U.
- Supported operations:
 - \circ Insertion: adding an element to S
 - \circ Deletion: removing an element from S
 - \circ Lookup: checking whether an element belongs to S (and retrieving information about that element)

Realizations

Characteristic vector

Goal

- Maintain a small subset S of a huge universe U.
- Supported operations:
 - \circ Insertion: adding an element to S
 - \circ Deletion: removing an element from S
 - \circ Lookup: checking whether an element belongs to S (and retrieving information about that element)

Realizations

▶ Characteristic vector: time O(1), space O(|U|)

Goal

- ightharpoonup Maintain a small subset S of a huge universe U.
- Supported operations:
 - \circ Insertion: adding an element to S
 - \circ Deletion: removing an element from S
 - \circ Lookup: checking whether an element belongs to S (and retrieving information about that element)

- ▶ Characteristic vector: time O(1), space O(|U|)
- Balanced search tree

Goal

- Maintain a small subset S of a huge universe U.
- Supported operations:
 - \circ Insertion: adding an element to S
 - \circ Deletion: removing an element from S
 - \circ Lookup: checking whether an element belongs to S (and retrieving information about that element)

- ▶ Characteristic vector: time O(1), space O(|U|)
- ▶ Balanced search tree: time $O(\log |S|)$, space O(|S|)

Goal

- ightharpoonup Maintain a small subset S of a huge universe U.
- Supported operations:
 - \circ Insertion: adding an element to S
 - \circ Deletion: removing an element from S
 - \circ Lookup: checking whether an element belongs to S (and retrieving information about that element)

- ▶ Characteristic vector: time O(1), space O(|U|)
- ▶ Balanced search tree: time $O(\log |S|)$, space O(|S|)
- Hash table

Goal

- Maintain a small subset S of a huge universe U.
- Supported operations:
 - \circ Insertion: adding an element to S
 - \circ Deletion: removing an element from S
 - \circ Lookup: checking whether an element belongs to S (and retrieving information about that element)

- ▶ Characteristic vector: time O(1), space O(|U|)
- ▶ Balanced search tree: time $O(\log |S|)$, space O(|S|)
- ▶ Hash table: expected time O(1), space O(|S|)

Idea

Idea

▶ Pick a random function $h: U \to [m]$ for $m = \Theta(|S|)$.

Idea

- ▶ Pick a random function $h: U \to [m]$ for $m = \Theta(|S|)$.
- ▶ Store each $x \in S$ in cell h(x) of a table of size m.

Idea

- ▶ Pick a random function $h: U \to [m]$ for $m = \Theta(|S|)$.
- ▶ Store each $x \in S$ in cell h(x) of a table of size m.

Issues

Idea

- ▶ Pick a random function $h: U \to [m]$ for $m = \Theta(|S|)$.
- ▶ Store each $x \in S$ in cell h(x) of a table of size m.

Issues

Succinct description of h

Idea

- ▶ Pick a random function $h: U \to [m]$ for $m = \Theta(|S|)$.
- ▶ Store each $x \in S$ in cell h(x) of a table of size m.

Issues

- Succinct description of h
 - Small universal families of hash functions (pairwise independence)

Idea

- ▶ Pick a random function $h: U \to [m]$ for $m = \Theta(|S|)$.
- ▶ Store each $x \in S$ in cell h(x) of a table of size m.

Issues

- Succinct description of h
 - Small universal families of hash functions (pairwise independence)
 - Example: $h(x) = ax + b \mod m$ for m prime

Hashing

Idea

- ▶ Pick a random function $h: U \to [m]$ for $m = \Theta(|S|)$.
- ▶ Store each $x \in S$ in cell h(x) of a table of size m.

Issues

- Succinct description of h
 - Small universal families of hash functions (pairwise independence)
 - Example: $h(x) = ax + b \mod m$ for m prime
- Collision resolution

Hashing

Idea

- ▶ Pick a random function $h: U \to [m]$ for $m = \Theta(|S|)$.
- ▶ Store each $x \in S$ in cell h(x) of a table of size m.

Issues

- Succinct description of h
 - Small universal families of hash functions (pairwise independence)
 - Example: $h(x) = ax + b \mod m$ for m prime
- Collision resolution
 - Chaining

Hashing

Idea

- ▶ Pick a random function $h: U \to [m]$ for $m = \Theta(|S|)$.
- ▶ Store each $x \in S$ in cell h(x) of a table of size m.

Issues

- Succinct description of h
 - Small universal families of hash functions (pairwise independence)
 - Example: $h(x) = ax + b \mod m$ for m prime
- Collision resolution
 - Chaining
 - Open addressing (linear, quadratic, double)

Definition

Two distinct elements $x, x' \in S$ with h(x) = h(x').

Definition

Two distinct elements $x, x' \in S$ with h(x) = h(x').

Fact

For any two distinct $x, x' \in U$,

$$\Pr[h(x) = h(x')] = \frac{1}{m}$$

when $h: U \rightarrow [m]$ is picked uniformly at random.

Definition

Two distinct elements $x, x' \in S$ with h(x) = h(x').

Fact

For any two distinct $x, x' \in U$,

$$\Pr[h(x) = h(x')] = \frac{1}{m}$$

when $h: U \rightarrow [m]$ is picked uniformly at random.

Corollary

For any fixed $x \in S$, the expected number of collisions with x equals $\frac{|S|-1}{m}$.

Problem

Input: $p_i \doteq (x_i, y_i) \in \mathbb{R}^2$ for $i \in [n]$

Problem

```
Input: p_i \doteq (x_i, y_i) \in \mathbb{R}^2 for i \in [n]
Output: \delta \doteq \min\{d(p_i, p_j) : i, j \in [n] \text{ with } i \neq j\} where d(p_i, p_j) \doteq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
```

Problem

```
Input: p_i \doteq (x_i, y_i) \in \mathbb{R}^2 for i \in [n]
Output: \delta \doteq \min\{d(p_i, p_j) : i, j \in [n] \text{ with } i \neq j\} where d(p_i, p_j) \doteq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
```

Algorithms

Problem

```
Input: p_i \doteq (x_i, y_i) \in \mathbb{R}^2 for i \in [n]
Output: \delta \doteq \min\{d(p_i, p_j) : i, j \in [n] \text{ with } i \neq j\} where d(p_i, p_j) \doteq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
```

Algorithms

► Trivial: $O(n^2)$

Problem

```
Input: p_i \doteq (x_i, y_i) \in \mathbb{R}^2 for i \in [n]
Output: \delta \doteq \min\{d(p_i, p_j) : i, j \in [n] \text{ with } i \neq j\} where d(p_i, p_j) \doteq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
```

Algorithms

- ► Trivial: $O(n^2)$
- ▶ Divide & Conquer: $O(n \log n)$

Problem

Input:
$$p_i \doteq (x_i, y_i) \in \mathbb{R}^2$$
 for $i \in [n]$
Output: $\delta \doteq \min\{d(p_i, p_j) : i, j \in [n] \text{ with } i \neq j\}$ where $d(p_i, p_j) \doteq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

Algorithms

- ► Trivial: $O(n^2)$
- ▶ Divide & Conquer: $O(n \log n)$
- ▶ Randomized: O(n) in expectation

▶ Process points $p_1, p_2, ..., p_n$ one by one.

- Process points p_1, p_2, \ldots, p_n one by one.
- ightharpoonup Maintain shortest pairwise distance δ among processed points.

- ▶ Process points $p_1, p_2, ..., p_n$ one by one.
- lacktriangle Maintain shortest pairwise distance δ among processed points.
- ▶ To process new point p_i , find all processed points p that are within δ from p_i , and update δ to min $(\delta, \min_p(d(p_i, p)))$.

- ▶ Process points $p_1, p_2, ..., p_n$ one by one.
- ightharpoonup Maintain shortest pairwise distance δ among processed points.
- ▶ To process new point p_i , find all processed points p that are within δ from p_i , and update δ to min $(\delta, \min_p(d(p_i, p)))$.

▶ Dictionary of cells in grid with side $\delta/2$ that contain a processed point.

- ▶ Dictionary of cells in grid with side $\delta/2$ that contain a processed point.
- ▶ Uses hash function $h: U \rightarrow [m]$ where U is the set of all cells.

- ▶ Dictionary of cells in grid with side $\delta/2$ that contain a processed point.
- ▶ Uses hash function $h: U \rightarrow [m]$ where U is the set of all cells.
- ▶ To process a new point p_i :

- ▶ Dictionary of cells in grid with side $\delta/2$ that contain a processed point.
- ▶ Uses hash function $h: U \rightarrow [m]$ where U is the set of all cells.
- ▶ To process a new point p_i :
 - Insert cell of p_i in the dictionary.

- ▶ Dictionary of cells in grid with side $\delta/2$ that contain a processed point.
- ▶ Uses hash function $h: U \rightarrow [m]$ where U is the set of all cells.
- ▶ To process a new point p_i :
 - Insert cell of p_i in the dictionary.
 - Check each of the neighboring cells for a processed point that is closer to p_i than δ .

- ▶ Dictionary of cells in grid with side $\delta/2$ that contain a processed point.
- ▶ Uses hash function $h: U \rightarrow [m]$ where U is the set of all cells.
- ▶ To process a new point p_i :
 - Insert cell of p_i in the dictionary.
 - Check each of the neighboring cells for a processed point that is closer to p_i than δ .
 - \circ If so, update δ and rehash.

Comparisons, insertions, and lookups

Comparisons, insertions, and lookups

Expected number of points that are checked in each step is O(1) provided $m = \Theta(n)$.

Comparisons, insertions, and lookups

- Expected number of points that are checked in each step is O(1) provided $m = \Theta(n)$.
- \triangleright O(n) in total.

Comparisons, insertions, and lookups

- Expected number of points that are checked in each step is O(1) provided $m = \Theta(n)$.
- \triangleright O(n) in total.

Comparisons, insertions, and lookups

- Expected number of points that are checked in each step is O(1) provided $m = \Theta(n)$.
- \triangleright O(n) in total.

Rehashing

▶ Takes time O(i) if needed in step i.

Comparisons, insertions, and lookups

- Expected number of points that are checked in each step is O(1) provided $m = \Theta(n)$.
- \triangleright O(n) in total.

- ▶ Takes time O(i) if needed in step i.
- ▶ Rehash in *i*-th step only needed if *i*-th point is involved in closest pair among the first *i* points.

Comparisons, insertions, and lookups

- Expected number of points that are checked in each step is O(1) provided $m = \Theta(n)$.
- \triangleright O(n) in total.

- ▶ Takes time O(i) if needed in step i.
- ▶ Rehash in *i*-th step only needed if *i*-th point is involved in closest pair among the first *i* points.
- ▶ If we consider points in random order, i-th point is involve in closest pair among first i points with probability at most 2/i.

Comparisons, insertions, and lookups

- Expected number of points that are checked in each step is O(1) provided $m = \Theta(n)$.
- \triangleright O(n) in total.

- ▶ Takes time O(i) if needed in step i.
- ▶ Rehash in *i*-th step only needed if *i*-th point is involved in closest pair among the first *i* points.
- ▶ If we consider points in random order, *i*-th point is involve in closest pair among first *i* points with probability at most 2/*i*.
- ► Total expected time for rehashing then becomes $O(\sum_{i=1}^{n} \frac{2}{i} \cdot i) = O(n)$.

Problem

Problem

Input: Multivariate polynomials p_1 and p_2

Problem

Input: Multivariate polynomials p_1 and p_2

Output: Is $p_1 \equiv p_2$?

Problem

Input: Multivariate polynomials p_1 and p_2

Output: Is $p_1 \equiv p_2$?

Examples

- $p_1 = (x_1 + x_2) \cdot (x_1 x_2)$
- $p_2 = x_1 \cdot x_1 x_2 \cdot x_2$

Problem

Input: Multivariate polynomials p_1 and p_2

Output: Is $p_1 \equiv p_2$?

Examples

- $p_1 = (x_1 + x_2) \cdot (x_1 x_2)$
- $p_2 = x_1 \cdot x_1 x_2 \cdot x_2$
- $p_3 = (x_1 + x_2) \cdot (x_3 + x_4) \cdot \cdots \cdot (x_{2n-1} + x_{2n})$

Deterministic

▶ All known algorithms for general case run in exponential time.

Deterministic

▶ All known algorithms for general case run in exponential time.

Deterministic

▶ All known algorithms for general case run in exponential time.

Randomized

► Try random assignment:

Deterministic

▶ All known algorithms for general case run in exponential time.

- Try random assignment:
 - 1. Pick $x_1^*, x_2^*, \dots, x_n^* \in [m]$ uniformly at random.
 - 2. Output whether $p_1(x_1^*, ..., x_n^*) = p_2(x_1^*, ..., x_n^*)$

Deterministic

All known algorithms for general case run in exponential time.

- Try random assignment:
 - 1. Pick $x_1^*, x_2^*, \dots, x_n^* \in [m]$ uniformly at random.
 - 2. Output whether $p_1(x_1^*, ..., x_n^*) = p_2(x_1^*, ..., x_n^*)$
- Probability of false positive is at most d/m, where $d = \max(\deg(p_1), \deg(p_2))$.

Deterministic

All known algorithms for general case run in exponential time.

- Try random assignment:
 - 1. Pick $x_1^*, x_2^*, \dots, x_n^* \in [m]$ uniformly at random.
 - 2. Output whether $p_1(x_1^*, ..., x_n^*) = p_2(x_1^*, ..., x_n^*)$
- Probability of false positive is at most d/m, where $d = \max(\deg(p_1), \deg(p_2))$.
- Yields polynomial-time algorithm.