Algebra

Vorlesungsmitschrift

Prof. Dr. Damaris Schindler
LATEX-Version von Ben Arnold und Niklas Sennewald

 $\begin{array}{c} {\rm Mathematisches~Institut} \\ {\rm Georg\text{-}August\text{-}Universit"at~G\"{o}ttingen} \\ {\rm Wintersemester~2020/21} \end{array}$

Inhaltsverzeichnis

١.	Gruppen								1								
	§1.	Gruppen und Gruppenhomomorphismen															1

Dieses Skript stellt keinen Ersatz für die Vorlesungsnotizen von Prof. Schindler dar und wird nicht nochmals von ihr durchgesehen. Beweise werden wir i.d.R. nicht übernehmen (weil das in LATEX einfach keinen Spaß macht).

I. Gruppen

§1. Gruppen und Gruppenhomomorphismen

Datei 1

Motivation: aus dem ersten Jahr kennen wir viele Gruppen, z.B. $(\mathbb{R}, +), (\mathbb{Z}, +), \mathbb{Z}/m\mathbb{Z}$ für $m \in \mathbb{N}, \mathbb{R}^n, S_n$ = Permutationen auf n Elemente, Funktionen $f : \mathbb{R} \to \mathbb{C}$ mit punktweiser Addition

erstes Ziel:

- Wiederholung Grundbegriffe von Gruppen
- erste Resultate zur Theorie endlicher Gruppen

Definition (Monoid)

Ein Monoid ist eine Menge M zusammen mit einer Verknüpfung $\circ: M \times M \to M$, die folgende Eigenschaften erfüllt:

- i) $\forall a, b, c \in M$ gilt $(a \circ b) \circ c = a \circ (b \circ c)$
- ii) es gibt ein Einselement $e \in M$ mit $e \circ a = a = a \circ e \ \forall a \in M$

Bemerkung: $(\mathbb{N}_{\geq 0}, +), (\mathbb{Q}_{\geq 0}, +)$ sind Monoide aber keine Gruppe.

Definition (Inverselemente)

Sei (M, \circ) ein Monoid und $a \in M$. Wir nennen b invers zu a/inverses Element zu a, falls $b \circ a = a \circ b = e$.

Bemerkung: Sind $b, b' \in M$ invers zu a, dann ist b = b', denn $b = b \circ e = b \circ (a \circ b') = (b \circ a) \circ b' = e \circ b' = b'$

Beispiel: Im $(\mathbb{N}_{>0}, +)$ ist 0 das einzige Element, das ein inverses Element hat.

Notation: Ist $a \in M$ und $b \in M$ invers zu a, so schreiben wir $b = a^{-1}$.

Definition (Gruppe)

Wir nennen ein Monoid (G, \circ) eine Gruppe, falls jedes $a \in G$ ein inverses Element $a^{-1} \in G$ besitzt.

Beispiel: $GL_n(\mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) \mid \det(A) \neq 0, n \geq 0\}$ ist eine Gruppe unter Matrixmultiplikation. Für $n \geq 2$ gibt es Matrizen $A, B \in GL_n(\mathbb{R})$ mit $AB \neq BA$.

Definition (abelsche Gruppe)

Sei (G, \circ) eine Gruppe. G heißt kommutativ oder abelsch, falls gilt $a \circ b = b \circ a \ \forall \ a,b \in G$

2 Algebra

Definitionen

Gruppe, 1 Inverselemente, 1 abelsche, 2 Monoid, 1