

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Deep Learning

Día 3

EXPOSITOR: Ing. Giorgio Morales Luna

Junio 2018

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.8. AlexNet from scratch

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.8. AlexNet from scratch

Resultado

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.9. VGG16 with Keras

keras.applications.vgg16.VGG16

Carga el modelo VGG16 para Keras:

- Include_top: Si es True, incluye las 3 capas fullyconnected al final de la red.
- Weights: Si es 'None', inicializa los pesos con valores aleatorios. Si es 'imagenet', carga los pesos de una red VGG16 entrenada en Imagenet.
- input_shape: (224,224,3) por defecto

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	98 MB	0.749	0.921	25,636,712	-
ResNet101	171 MB	0.764	0.928	44,707,176	-
ResNet152	232 MB	0.766	0.931	60,419,944	-
ResNet50V2	98 MB	0.760	0.930	25,613,800	-
ResNet101V2	171 MB	0.772	0.938	44,675,560	-
ResNet152V2	232 MB	0.780	0.942	60,380,648	-
ResNeXt50	96 MB	0.777	0.938	25,097,128	-
ResNeXt101	170 MB	0.787	0.943	44,315,560	-
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMobile	23 MB	0.744	0.919	5,326,716	-
NASNetLarge	343 MB	0.825	0.960	88,949,818	-

The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation dataset.

https://keras.io/applications/

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.9. VGG16 with Keras

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.9. VGG16 with Keras

Entrenamiento VGG16 sin Transfer Learning

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.9. VGG16 with Keras

Entrenamiento VGG16 con Transfer Learning

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.9. VGG16 with Keras

Resultado

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.9. VGG16 with Keras

Resultado

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Mirroring

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Mirroring

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Mirroring

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Mirroring

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Mirroring

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Mirroring

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Rotación

Rotación + Mirroring

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Rotación + Cropping

DIRECCIÓN DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

¿En qué momento se aplica Data Augmentation?

En el momento en el que se lee cada batch de entrenamiento.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

¿En qué momento se aplica Data Augmentation?

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

¿En qué momento se aplica Data Augmentation?

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

¿En qué momento se aplica Data Augmentation?

• En el momento en el que se lee cada batch de entrenamiento.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

¿En qué momento se aplica Data Augmentation?

• En el momento en el que se lee cada batch de entrenamiento.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

¿En qué momento se aplica Data Augmentation?

En el momento en el que se lee cada batch de entrenamiento.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

¿En qué momento se aplica Data Augmentation?

• En el momento en el que se lee cada batch de entrenamiento.

Antes de crear los sets de entrenamiento, validación y test

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.10. Data Augmentation

¿En qué momento se aplica Data Augmentation?

• En el momento en el que se lee cada batch de entrenamiento.

Antes de crear los sets de entrenamiento, validación y test

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.11. Dropout

Dropout (Srivastava et al., 2014) may be the first instance of a human curated artisanal regularization technique that entered wide scale use in machine learning. Dropout, simply described, is the concept that if you can learn how to do a task repeatedly whilst drunk, you should be able to do the task even better when sober. This insight has resulted in numerous state of the art results and a nascent field dedicated

http://smerity.com/arxiv.org/abs/1804.404/1804.404.pdf?fbclid=lwAR313y1aTjBWThO8A71EDallOt6tlmZVyn6BhzegkXHyyGU9dUY1jPaTlnU

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.11. Dropout

Implementación: Inverted Dropout

Aplicamos Dropout a la tercera capa de una red neuronal con probabilidad de 0.8 de mantener cada neurona:

$$l = 3$$
, $keep_{prob} = 0.8$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.11. Dropout

Implementación: Inverted Dropout

Aplicamos Dropout a la tercera capa de una red neuronal con probabilidad de 0.8 de mantener cada neurona: $l=3, keep_{prob}=0.8$

 $d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.11. Dropout

Implementación: Inverted Dropout

Aplicamos Dropout a la tercera capa de una red neuronal con probabilidad de 0.8 de mantener cada neurona: l = 3, $keep_{prob} = 0.8$

 $d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob$

Crea matriz dropout

Distribución uniforme Mismas dimensiones que a3

Binariza resultados

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.11. Dropout

Implementación: Inverted Dropout

Aplicamos Dropout a la tercera capa de una red neuronal con probabilidad de 0.8 de mantener cada neurona: l = 3, $keep_{prob} = 0.8$

 $d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob$

Crea matriz dropout

Distribución uniforme Mismas dimensiones que a3

Binariza resultados

a3 = np. multiply(a3, d3) #Multiplicación punto a punto

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.11. Dropout

Implementación: Inverted Dropout

Aplicamos Dropout a la tercera capa de una red neuronal con probabilidad de 0.8 de mantener cada neurona: l = 3, $keep_{prob} = 0.8$

 $d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob$

Crea matriz dropout

Distribución uniforme Mismas dimensiones que a3

Binariza resultados

$$a3 = np. multiply(a3, d3)$$
 #Multiplicación punto a punto

$$a3 = a3 / keep_{prob}$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.11. Dropout

Dropout en Keras

```
from keras.layers import Input, Dense, BatchNormalization, Flatten, Conv2D, MaxPooling2D, Dropout
from keras.models import Model
def alex net(input shape=(227, 227, 3), classes=2):
  # Define the input as a tensor with shape input_shape
  x_input = Input(input_shape)
  # Stage 1
  x = Conv2D(96, (11, 11), strides=(4, 4), padding='valid', activation='relu', name='conv 1')(x input)
  x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2))(x)
  x = BatchNormalization(axis=3, name='bn conv1')(x)
# Stage 4
  x = Flatten(name="flatten")(x)
  x = Dense(4096, activation='relu', name='FC_1')(x)
  x = Dropout(0.5)(x)
  x = Dense(4096, activation='relu', name='FC 2')(x)
  x = Dropout(0.5)(x)
  if classes == 2:
    x = Dense(1, activation='sigmoid', name='FC 3')(x)
  else:
    x = Dense(classes, activation='softmax', name='FC_3')(x)
  # Create model
  model = Model(input=x input, output=x)
```

return model

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3. Special Convolutions

3.3.1. Atrous Convolution

Conocidaambién como "Convolución Dilatada". Es básicamente una convolución con filtros dilatados. Permite tincrementar el campo de visión de los filtros sin necesidad de incrementar el número de parámetros o reducir el tamaño original del canal (pooling). Esto permite agregar varios filtros con distintos niveles de dilatación para un análisis multi-escala.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.1. Atrous Convolution

(a) Going deeper without atrous convolution.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.1. Atrous Convolution

(a) Going deeper without atrous convolution.

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when *output_stride* = 16.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.1. Atrous Convolution

Atrous Spatial Pyramid Pooling (ASPP)

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.1. Atrous Convolution

Atrous Convolution in Keras

Conv2D

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=**None**, **dilation_rate**=(1, 1),)

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.2. Depthwise Convolution

Se aplica un filtro 2D a cada canal ("depth level") del tensor de entrada.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.2. Depthwise Convolution

Convolución normal

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.2. Depthwise Convolution

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Consiste en una Depthwise Convolution seguida de una Poitwise Convolution (N filtros de 1x1):

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

$$\#Op.por\ filtro = Dk \times Dk \times 1$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

$$\#Op.por\ filtro = Dk \times Dk \times 1$$

 $\#Op.por\ canal = D_G^2 \times Dk^2$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

#
$$Op.por\ filtro = Dk \times Dk \times 1$$
$Op.por\ canal = D_G^2 \times Dk^2$
$Op.total1 = M \times D_G^2 \times Dk^2$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Paso 1: Depthwise. Cálculo del costo computacional

#
$$Op.por\ filtro = Dk \times Dk \times 1$$
$Op.por\ canal = D_G^2 \times Dk^2$
$Op.total1 = M \times D_G^2 \times Dk^2$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Paso 1: Depthwise. Cálculo del costo computacional

#
$$Op.por\ filtro = Dk \times Dk \times 1$$
$Op.por\ canal = D_G^2 \times Dk^2$
$Op.total1 = M \times D_G^2 \times Dk^2$

Paso 2: Pointwise.

 $\#Op. por filtro = 1 \times 1 \times M$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Paso 1: Depthwise. Cálculo del costo computacional

#
$$Op.por\ filtro = Dk \times Dk \times 1$$
$Op.por\ canal = D_G^2 \times Dk^2$
$Op.total1 = M \times D_G^2 \times Dk^2$

#
$$Op.por\ filtro = 1 \times 1 \times M$$

$Op.por\ canal = D_G^2 \times M$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Paso 1: Depthwise. Cálculo del costo computacional

#
$$Op.por\ filtro = Dk \times Dk \times 1$$
$Op.por\ canal = D_G^2 \times Dk^2$
$Op.total1 = M \times D_G^2 \times Dk^2$

#
$$Op. por filtro = 1 \times 1 \times M$$
$Op. por canal = D_G^2 \times M$
$Op. total2 = N \times D_G^2 \times M$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Paso 1: Depthwise. Cálculo del costo computacional

#
$$Op.por\ filtro = Dk \times Dk \times 1$$
$Op.por\ canal = D_G^2 \times Dk^2$
$Op.total1 = M \times D_G^2 \times Dk^2$

#
$$Op.por\ filtro = 1 \times 1 \times M$$
$Op.por\ canal = D_G^2 \times M$
$Op.total2 = N \times D_G^2 \times M$

$$Total = D_G^2 \times M \times (Dk^2 + N)$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Cálculo del costo computacional de una convolución normal (ver Día 2, Sección 3.2.5)

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Cálculo del costo computacional de una convolución normal (ver Día 2, Sección 3.2.5)

#Operaciones por filtro = Dk x Dk x M

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

Cálculo del costo computacional de una convolución normal (ver Día 2, Sección 3.2.5)

 $\#Operaciones\ por\ filtro = Dk\ x\ Dk\ x\ M$

#Operaciones en total = (DG x DG x N) x (Dk x Dk x M) = $N \times M \times D_G^2 \times Dk^2$)

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

$$\frac{\#Op.\,Depthwise}{\#Op.\,conv.\,normal} = \frac{D_G^2 \times M \times (Dk^2 + N)}{N \times M \times D_G^2 \times Dk^2)}$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

$$\frac{\#Op.\,Depthwise}{\#Op.\,conv.\,normal} = \frac{D_G^2 \times M \times (Dk^2 + N)}{N \times M \times D_G^2 \times Dk^2}$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

$$\frac{\#Op.\,Depthwise}{\#Op.\,conv.\,normal} = \frac{D_G^2 \times M \times (Dk^2 + N)}{N \times M \times D_G^2 \times Dk^2}$$

$$\frac{\#Op.\,Depthwise}{\#Op.\,conv.\,normal} = \frac{Dk^2 + N}{Dk^2 \times N} = \frac{1}{N} + \frac{1}{Dk^2}$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

$$\frac{\#Op.\,Depthwise}{\#Op.\,conv.\,normal} = \frac{D_G^2 \times M \times (Dk^2 + N)}{N \times M \times D_G^2 \times Dk^2}$$

$$\frac{\#Op.\,Depthwise}{\#Op.\,conv.\,normal} = \frac{Dk^2 + N}{Dk^2 \times N} = \frac{1}{N} + \frac{1}{Dk^2}$$

$$N = 1024$$
 $Dk = 3$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Separable Convolution

$$\frac{\#Op.\,Depthwise}{\#Op.\,conv.\,normal} = \frac{D_G^2 \times M \times (Dk^2 + N)}{N \times M \times D_G^2 \times Dk^2}$$

$$\frac{\#Op.\,Depthwise}{\#Op.\,conv.\,normal} = \frac{Dk^2 + N}{Dk^2 \times N} = \frac{1}{N} + \frac{1}{Dk^2}$$

$$N = 1024$$
 $Dk = 3$

$$\frac{\#Op.\,Depthwise}{\#Op.\,conv.\,normal} = \frac{1}{1024} + \frac{1}{3k^2} = 0.112$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.3.3. Atrous Separable Convolution (ASC)

Depthwise con filtros dilatados + Pointwise Convolution

SeparableConv2D

keras.layers.SeparableConv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True)

https://keras.io/layers/convolutional/

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.4. Training with Generators

ImageGenerator in Keras

- •featurewise_center: Boolean. Normaliza a 0 el promedio de todo el dataset.
- •samplewise_center: Boolean. Setea a 0 el promedio de cada muestra.
- •featurewise_std_normalization: Boolean. Divide los input por la std de todo el dataset.
- •samplewise_std_normalization: Boolean. Divide cada input por su std.
- •rotation_range: Int. Rango de grados para rotaciones aleatorias.
- •width_shift_range / height_shift_range : Float, Rangos (fracciones del ancho o alto totals) en los que aleatoriamente se moverán las imágenes horizontalmente o verticalmente.
- shear_range: Float. Rango de ángulo de corte en grados.
- •zoom_range: Float. Rango de zoom.
- •horizontal_flip / vertical_flip: Boolean. Voltea horizontal y verticalmente aleatoriamente.

_

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.4. Training with Generators

ImageGenerator in Keras

•featurewise_center: Boolean. Normaliza a 0 el promedio de to

•samplewise_center: Boolean. Setea a 0 el promedio de cada i

•featurewise_std_normalization: Boolean. Divide los input por

•samplewise_std_normalization: Boolean. Divide cada input p

rotation_range: Int. Rango de grados para rotaciones aleatoria;

•width_shift_range / height_shift_range : Float, Rangos (fracc

aleatoriamente se moverán las imágenes horizontalmente o vert

•shear_range: Float. Rango de ángulo de corte en grados.

•zoom_range: Float. Rango de zoom.

•horizontal_flip / vertical_flip: Boolean. Voltea horizontal y vert

https://keras.io/preprocessing/image/

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.4. Training with Generators

ImageGenerator in Keras

- •featurewise_center: Boolean. Normaliza a 0 el promedio de todo el dataset.
- •samplewise_center: Boolean. Setea a 0 el promedio de cada muestra.
- •featurewise_std_normalization: Boolean. Divide los input por la std de todo el dataset.
- •samplewise_std_normalization: Boolean. Divide cada input por su std.
- •rotation_range: Int. Rango de grados para rotaciones aleatorias.
- •width_shift_range / height_shift_range : Float, Rangos (fracciones del ancho o alto totals) en los que aleatoriamente se moverán las imágenes horizontalmente o verticalmente.
- shear_range: Float. Rango de ángulo de corte en grados.
- •zoom_range: Float. Rango de zoom.
- •horizontal_flip / vertical_flip: Boolean. Voltea horizontal y verticalmente aleatoriamente.

_

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.4. Training with Generators

ImageGenerator in Keras

•featurewise_center: Boolean. Normaliza a 0 el promedio de toc •samplewise_center: Boolean. Setea a 0 el promedio de cada n •featurewise_std_normalization: Boolean. Divide los input por l •samplewise_std_normalization: Boolean. Divide cada input pc rotation_range: Int. Rango de grados para rotaciones aleatorias •width_shift_range / height_shift_range : Float, Rangos (fracci) aleatoriamente se moverán las imágenes horizontalmente o verti •shear range: Float. Rango de ángulo de corte en grados. •zoom_range: Float. Rango de zoom.

https://keras.io/preprocessing/image/

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.4. Training with Generators

ImageGenerator in Keras

- •featurewise_center: Boolean. Normaliza a 0 el promedio de todo el dataset.
- •samplewise_center: Boolean. Setea a 0 el promedio de cada muestra.
- •featurewise_std_normalization: Boolean. Divide los input por la std de todo el dataset.
- •samplewise_std_normalization: Boolean. Divide cada input por su std.
- •rotation_range: Int. Rango de grados para rotaciones aleatorias.
- •width_shift_range / height_shift_range : Float, Rangos (fracciones del ancho o alto totals) en los que aleatoriamente se moverán las imágenes horizontalmente o verticalmente.
- shear_range: Float. Rango de ángulo de corte en grados.
- •zoom_range: Float. Rango de zoom.
- •horizontal_flip / vertical_flip: Boolean. Voltea horizontal y verticalmente aleatoriamente.

_

INICITEL-LINU

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.4. Training with Generators

Flow

Toma la data "x" y sus target "y" y genera batches de data aumentada

datagen.flow(x_train, y_train, batch_size=32)

Flow from directory

Toma como entrada la carpeta donde están los datos separados en subcarpetas (1 por clase) y genera los batches con data augmentation.

```
train_generator = datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary',
    subset='training')
```

```
data/
    train/
        dogs/
            dog001.jpg
            dog002.jpg
        cats/
            cat001.jpg
            cat002.jpg
    validation/
        dogs/
            dog001.jpg
            dog002.jpg
        cats/
            cat001.jpg
             cat002.ipg
```

https://keras.io/preprocessing/image/

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.4. Training with Generators

ImageGenerator in Keras: CatsvsDogAugmentation.py