## BASIC MODULE ISOMORPHISMS

COLTON GRAINGER (MATH 6140 ALGEBRA 2)

## Assignment due 2019-02-03

We assume R is a unital ring.

[1, No. 10.3.1]. Given. Let R be a unital ring. Consider sets A and B with cardinality |A| = |B|.

To prove. The free R-modules F(A) and F(B) are isomorphic in the category Rmod.

*Proof.* Let  $f: A \to B$  be a bijection of sets. Now, F(A) is universal in the category of modules M for which each set map  $A \xrightarrow{f} M'$  into any module M' induces a short exact sequence (of R-linear maps)

$$0 \to A \to M \xrightarrow{\Phi} M' \to 0$$

such that the following diagram commutes:



Likewise, F(B) is universal for B. Since  $f^{-1}$  is a well defined set map, the following diagram commutes:

Note the inclusion of A into F(A) induces the identity on F(A), e.g.,

$$A \longrightarrow F(A)$$

$$\downarrow_{\iota_A} \qquad \qquad \downarrow_{\mathrm{id}}$$

$$F(A)$$

Similarly, the inclusion of B into F(B) induces the identity on F(B). Chasing  $f^{-1} \circ f = \mathrm{id}_A$  and  $f \circ f^{-1} = \mathrm{id}_B$ , uniqueness of the induced maps  $F(A) \xrightarrow{\mathrm{id}} F(A)$  and  $F(B) \xrightarrow{\mathrm{id}} F(B)$  forces

$$\Psi \circ \Phi = \mathrm{id}_{F(A)}$$
 and  $\Phi \circ \Psi = \mathrm{id}_{F(B)}$ ,

which demonstrates that  $\Phi$  is a morphism in Rmod with a left and right inverse. We conclude that

$$\Phi \colon F(A) \to F(B)$$

is an isomorphism.  $\Box$ 

 $Date:\ 2019-02-03.$ 

1

[1, No. 10.3.3]. Given.

a. A linear transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  with associated matrix

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, w.r.t. the standard basis,

and  $V = \mathbf{R}^2$  as an  $\mathbf{R}[x]$ -module where x acts by the linear transformation x.v = Av.

b. A linear transformation  $T \colon \mathbf{R}^2 \to \mathbf{R}^2$  with associated matrix

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, w.r.t. the standard basis,

and  $W = \mathbb{R}^2$  as an  $\mathbb{R}[x]$ -module where x acts by the linear transformation x.w = Av.

To prove. Both the above modules V and W are cyclic.

*Proof.* I claim that

$$V = \left\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\rangle,$$

because  $x \in \mathbf{R}[x]$  acts by  $x \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$  to force at least a pair of linearly independent vectors into  $\left\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\rangle$ . Since  $\mathbf{R}^2$  as a real vector space has dimension 2, scalar multiplication takes care of the rest.

Analogously, I claim

$$W = \left\langle \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\rangle$$

for  $x \in \mathbf{R}[x]$  acts by  $x \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$  to force two linearly independent vectors into  $\left\langle \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\rangle$ .  $\Box$ 

[1, No. 10.3.4]. Given. Let A be a finite abelian group with |A| = m.

To prove. A is a torsion **Z**-module.

*Proof.* If  $a \in A$ , the order of the element divides the order of the group, so ma = 0.  $\square$ 

To demonstrate. The infinite direct sum of cyclic groups  $\bigoplus_{k=1}^{\infty} \mathbf{Z}/k\mathbf{Z}$  is a torsion **Z**-module.

*Demo.* Let  $(a_k)$  be an element of the direct sum  $\bigoplus_{k=1}^{\infty} \mathbf{Z}/k\mathbf{Z}$ . Now, all but finitely many coordinates of  $(a_k)$  are zero. So the annihilating integer

$$m = \text{lcm}\{k : a_k = 0 \text{ in } (a_k)\}$$

is well defined. In each coordinate, the order of the element divides the order of the group, whence

$$m(a_k) = (ma_k) = 0.$$

We've shown  $\bigoplus_{k=1}^{\infty} \mathbf{Z}/k\mathbf{Z}$  is an infinite abelian torsion module.  $\square$ 

[1, No. 10.3.5]. Given. Let R be an entire ring. Say M is a finitely generated torsion R-module. Let G be a finite generating set for M.

To prove. There's an  $r \in R$  such that for all  $m \in M$ , rm = 0.

*Proof.* We construct such an annihilating element r. Note first G is a finite subset of an R-torsion module. So there's a finite collection of nonzero ring elements

$$\{r_g \in R \setminus \{0\} : r_g g = 0, g \in G\}.$$

Now form the (nonzero, as R is entire) product

$$r = \prod_{g \in G} r_g \in R,$$

which I claim will kill each  $m \in M$ .

So say  $m \in M$ . Because G generates M, there's a surjection

$$\bigoplus_{g \in G} R \to M \quad \text{ such that } \quad s_g \mapsto s_g g.$$

Thence  $m = \sum_{k \in G} s_g g$ ; this with commutativity sets up the right action by r:

$$rm = r\left(\sum_{q} s_g g\right) = \sum_{q} s_g rg = \sum_{q} s_g(0) = 0.$$

We conclude there's a nonzero element r in the entire ring R that kills every element of the finitely generated module M.  $\square$ 

[1, No. 10.3.6]. Given. Let M be a finitely generated R-module, with finite generating set G. Say  $\varphi \colon M \to N$  is an epimorphism.

To prove. Quotients of M may be finitely generated by a set with |G| (or fewer) elements.

*Proof.* Because there's a bijective correspondence between quotients of M and isomorphism classes of R-linear images of M, it suffices to argue that  $N \cong M/\ker \varphi$  is generated finitely generated by  $\varphi(G)$ .

By assumption  $\varphi$  is surjective. If  $n \in N$ , there's  $m \in M$  such that  $\varphi(m) = n$ . Moreover, because G is a generating set for M, there's another surjection

$$\bigoplus_{g \in G} R \to M, \quad \text{ defined by } \quad r_g \mapsto r_g g.$$

We may choose an R-linear combination  $\sum_{g \in G} r_g g$  that's equal to m, then map it through  $\varphi$  to find

$$n = \sum_{g \in G} r_g \varphi(g).$$

We have demonstrated that  $\varphi(G)$  is a generating set for N. Because  $\varphi$  is a well defined function,  $|\varphi(G)| \leq |G|$ . We conclude that N may be finitely generated by |G| elements or less.  $\square$ 

[1, No. 10.3.7]. Given. Let M and N be R-modules, with M/N and N finitely generated. Say G and H are finite subsets of M for which

$$N = R\{G\}$$
 and  $M/N = R\{h + N : h \in H\}.$ 

To prove. M is finitely generated.

*Proof.* I claim  $M = R\{G \cup H\}$ . We proceed to express an arbitrary  $m \in M$  as an R-linear combinations of  $G \cup H$ . It's convenient to work with the natural projection  $\pi \colon M \to M/N$ . By hypothesis,

$$\pi(m) = \sum_{h \in H} r_h(h+N).$$

Then, in the fiber, we find

$$m = \sum_{h \in H} \left( h + \sum_{g \in G} r_g g \right)$$
$$= \sum_{h} r_h h + \sum_{h} \sum_{g} r_h r_g g.$$

We conclude  $m \in R\{G \cup H\}$ .  $\square$ 

[1, No. 10.3.8]. Given. The direct sum of countably many copies of the integers,  $\bigoplus_{1}^{\infty} \mathbf{Z}$ .

To prove.  $\bigoplus_{1}^{\infty} \mathbf{Z}$  is not a finitely generated **Z**-module.

Proof by contradiction. Suppose G is a finite generating set such that

$$\mathbf{Z}\{G\} = \bigoplus_{1}^{\infty} \mathbf{Z}.$$

Find the (well-defined) maximum, taken over finite G and finite nonzero coordinates of each element of G,

$$k := \max\{i : g_i \neq 0, (g_i) \in G\}.$$

Now consider  $(h_i) \in \bigoplus_{1}^{\infty} \mathbf{Z}$  where  $h_k = 1$  and  $h_i = 0$  for all other indices  $i \neq k$ . It is visible that  $(h_i) \notin \mathbf{Z}\{G\}$ , which is absurd. Our supposition that  $\bigoplus_{1}^{\infty} \mathbf{Z}$  could be finitely generated must have been false.  $\square$ 

[1, No. 10.3.9]. Given. An R-module M and the definition of irreducibility in the category Rmod.

To prove. M is irreducible if and only if  $M \neq 0$  and M is a cyclic module with any nonzero element as a generator.

*Proof.* ( $\Rightarrow$ ) Let M be irreducible. Then  $M \neq 0$ . If m is a nonzero element of M, then the nontrivial submodule  $R\{m\}$  must be M.

(⇐) Let  $M \neq 0$  and say any nonzero  $m \in M$  does generate M. Let  $N \subset M$  be a submodule. Either N is trivial or not. If not, then the nonzero element  $n \in N$  generates M. In particular,  $M = R\{n\} \subset N \subset M$ . Because a nontrivial submodule N of M must be M itself, we conclude M is irreducible.  $\square$ 

To exhibit. We exhaustively list all irreducible **Z**-modules.

Exhibition.

| kind of <b>Z</b> -module      | isomorphism class rep             | parameter                                                           |
|-------------------------------|-----------------------------------|---------------------------------------------------------------------|
| cyclic                        | $\mathbf{Z}/(k)$                  | $k \in \mathbf{Z}_{\geq 0}$                                         |
| nontrivial cyclic irreducible | $\mathbf{Z}/(n)$ $\mathbf{Z}/(p)$ | $n \in \mathbf{Z}_{\geq 0} \setminus \{1\}$<br>p is a prime integer |

[1, No. 10.3.10]. Given. Let R be a commutative unital ring. Let M be an R-module.

To prove. M is irreducible if and only if  $M \cong R/\mathfrak{m}$  where  $\mathfrak{m}$  is a maximal ideal of R.

*Proof.* ( $\Rightarrow$ ) Let M be irreducible. By [1, No. 10.3.9], there's a unique surjective R-linear map

$$\varphi\colon R\to M$$

such that  $\varphi(r) = rm$ , where m is any nonzero element. (If m is zero, then  $\varphi \colon R \to 0$  is trivial.) In particular  $R/\ker \varphi \cong M$ . By the lattice isomorphism theorem for modules,  $R/\ker \varphi$  has no nontrivial proper submodules.

Motivated by the fact that R is an object in both Rmod and CRing, we set out the following thesaurus.

| description                          | in CRing         | in Rmod                        |
|--------------------------------------|------------------|--------------------------------|
| "normal" subobjects "simple" objects | ideals<br>fields | submodules irreducible modules |

Because  $R/\ker\varphi$  has no nontrivial proper submodules, it is a field. Thence  $\ker\varphi$  is a maximal ideal.

 $(\Leftarrow)$  Say that  $\varphi \colon R \to M$  and  $\ker \varphi$  is a maximal ideal of R. Then  $R/\ker \varphi$  is a field. In particular,  $R/\ker \varphi$  is nonempty and has no nontrivial proper submodules. So  $M \cong R/\ker \varphi$  is irreducible.  $\square$ 

[1, No. 10.3.10]. Given. Let M and N be irreducible R-modules.

To prove. Any nontrivial R-linear map from  $M \to N$  is an isomorphism of R-modules.

*Proof.* Say  $\varphi \colon M \to N$  is a nontrivial R-linear map. Then  $\ker \varphi \neq M$ . Since M is irreducible, the submodule  $\ker \varphi = 0$ . So

$$0 \to M \xrightarrow{\varphi} N$$
 is exact.

Now nontrivial M embeds as  $\varphi(M) \subset N$ . Because N is irreducible,  $\varphi(M) = N$ . So

$$0 \to M \xrightarrow{\varphi} N \to 0$$
 is exact.

Given. Say M is irreducible.

To prove. (Shur's Lemma)  $\operatorname{End}_R(M)$  is a division ring.

Proof by contrapositive. We take the ring structure on  $\operatorname{End}_R(M)$  for granted. Here we'll focus on (the lack of) zero divisors. So suppose  $\alpha$  and  $\beta$  are nontrivial R-endomorphisms of M. The composition  $\beta \circ \alpha$  is a nontrivial endomorphism. Because M is irreducible  $\beta \circ \alpha$  is an isomorphism. Because  $M \neq 0$ ,  $\beta \circ \alpha$  is not the zero homomorphism. So  $\operatorname{End}_R(M)$  has no zero divisors, and thence is a division ring.  $\square$ 

## References

[1] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.