

การจัดองค์การคอมพิวเตอร์

W5.3 ซีพียูแฮกค์

31110321 Computer Organization สำหรับนักศึกษาชั้นปีที่ 3 สาขาวิชาวิศวกรรมคอมพิวเตอร์

> ทรงฤทธิ์ กิติศรีวรพันธุ์ songrit@npu.ac.th สาขาวิชาวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัยนครพนม

Lecture plan

- •5.1 สถาปัตยกรรมฟอนนอยมันน์
- 5.2 Fetch-Execute Cycle
- 5.3 ซีพียูแฮกค์
- 5.4 แฮกค์คอมพิวเตอร์
- 5.5 ภาพรวมโปรเจ็ค 5

Hack Computer

Hack CPU

Hack CPU interface

- Inputs:
 - Data value
 - Instruction
 - Reset bit

- Outputs:
 - Data value
 - Write memory
 - Memory address
 - Address of next instruction

CPU interface

• C คือ control bit

• C คือ control bit

CPU: A-instruction

- •หลังจากถอด pneumonic เป็น instruction
- รหัสไบนารีขึ้นต้นด้วยบิท O (b₁₅)
- A-instruction มี 2 ส่วน
 - opcode (ขนาด 1 บิท)
 - operand (ขนาด 15 บิท)

HDL: A-instruction

```
CHIP CPU {
 IN ...;
 OUT ...;
 PARTS:
  Not(in=instruction[15], out=n);
  Mux16(a=outtM,b=instruction,sel=ni,out=i);
  Or(a=ni,b=instruction[5],out=intoA);
  ARegister(in=i,load=intoA,out=A,out[0..14]=addressM);
```

CPU: C-instruction

- รหัสใบนารีขึ้นต้นด้วยบิท 1 (b₁₅)
- A-instruction มี 2 ส่วน
 - opcode (ขนาด 1 บิท)
 - ALU control bits
 - Destination load bits

opcode

Jump bits

C-instruction

D=D+1; JMP

-ALU output-ALU control bit A register Mux16 instruction 11100111110101111

Destination

Jump bits

Operand

CPU operation : C-instruction

- CPU handling of C-instruction
 - กอด instruction bit
 - อ่าน ALU control bits
 - อ่าน Destination bits
 - อ่าน Jump bits

- เชื่อมต่อแต่ละบิทกับ chip-part
- ALU, Aregister, ...

C-instruction

- ALU data input
 - ∘ Input 1 : จาก Dregister
 - Input 2 : จาก
 - Aregister
 - data memory

- ALU control bit
 - Control bits
 - ∘ จาก Instruction

ALU Output

11100111110101111

Destination

คำสั่ง ALU : Output

ALU Output

CPU: control

• ปุ่ม reset

CPU: reset

- ขณะคอมพิวเตอร์กำลังรัน
 โปรแกรม
- เมื่อกด reset ทำให้
 โปรแกรมเริ่มต้นรันใหม่

CPU : ส่วนเกี่ยวข้องการ reset

CPU operation: control

- goto: PC=A
- Condition goto:
- if(condition) PC=A else PC++

CPU operation: control

Coming up: W5.4 แฮกคอมพิวเตอร์