

实验三——感知机学习算法 Perceptron Learning Algorithm

PPT制作: 陈昱夫 郑铠奇

上节课的一些问题

- 1. 什么是过拟合
- 2. 什么是归一化/标准化
- 3.实验原理写的不是怎么实现的流程,而是对算法的分析和理解
- 4. 伪代码的规范
- 5. 思考题从网上粘贴复制

用来解决二元分类问题(+1 和-1)。

样本
$$x = \{x_1, x_2, ..., x_d\}$$
 权重向量 $w = \{w_1, w_2, ..., w_d\}$ 阈值 θ

If
$$\sum_{i=1}^d w_i x_i >= \theta$$
,预测为+1

If
$$\sum_{i=1}^d w_i x_i < \theta$$
,预测为-1

用一个符号函数表示
$$y = sign(\sum_{i=1}^{d} w_i x_i - \theta)$$

int sign(int x) {return x>0? +1 : -1)

为简便计算

$$sign(\sum_{i=1}^{d} w_i x_i - \theta)$$

$$= sign(\sum_{i=1}^{d} w_i x_i + (-\theta)(+1))$$

$$= sign(\sum_{i=0}^{d} w_i x_i)$$

$$= sign(w^T x)$$

样本
$$x = \{+1, x_1, x_2, ..., x_d\}$$
 权重向量 $w = \{w_0, w_1, w_2, ..., w_d\}$

步骤 1: 给每一个样本前加常数项 1。

样本 1:
$$x_1 = \{+1, x_{11}, x_{12}, \dots x_{1d}\}$$
 label= y_1

样本 2:
$$x_2 = \{+1, x_{21}, x_{22}, \dots x_{2d}\}$$
 label=y₂

样本 3:
$$x_3 = \{+1, x_{31}, x_{32}, \dots x_{3d}\}$$
 label=y3

步骤 2: 初始化权重向量 wo=0 或者其他值。

步骤 3: 遍历所有样本,

每当找到一个预测错误的样本,即 $sign(w_t^T x_n) \neq y_n$

就更新 $w_{t+1} \leftarrow w_t + y_n x_n$

重复步骤 3 直至所有预测正确。 此时得到的 w 就是我们要求的值, 用此 w 来预测测试集的 label。

• $W_{t+1} \leftarrow W_t + [y_n \neq sign(W^TX)] * (y_n X_n)$

• 正样例被预测为负的情况下:

• $W_{t+1} \leftarrow W_t + [y_n \neq sign(W^TX)] * (y_n X_n)$

• 负样例被预测为正的情况下:

实验三: 线性感知机

• PLA不适用非线性的问题,很多时候w 无法满足全部点,这时候有两种方法:

- -1. 设置迭代次数,到一定程度就返回此时的w,不管它到底满不满足所有训练集。
- -2. 找一个w,使得在训练集里以此w来划分后,分类错误的样本最少。即相当于有一个口袋放着一个w,把算到的w跟口袋里的w比对,放入比较好的一个w,这种算法又被称为口袋(pocket)算法。

思考题: 有什么其他的手段据,有什么可以,我们是不是的一个,我们是不是不是,我们是不是不是,我们是不是不是,我们是不是不是。

口袋算法

步骤 1: 给每一个样本前加常数项 1。

步骤 2: 初始化权重向量 w₀=0 或者其他值,

以及一个全局最优向量 w。

步骤 3: 遍历所有样本,

每当找到一个预测错误的样本,即 $sign(w_t^T x_n) \neq y_n$

就更新 $w_{t+1} \leftarrow w_t + y_n x_n$

若 w_{t+1} 错误率小于 w, 则 w_{t+1} 赋给 w。

重复步骤 3 直至达到指定迭代次数。

此时得到的w就是我们要求的值,用此w来预测测试集的label。

简单的例子

编号	特征1	特征2	标签
Train1	-4	-1	+1
Train2	0	3	-1
Test1	-2	3	?

步骤1: 样本数据加常数项1

train1: $x_1 = \{1, -4, -1\}$

train2: $x_2 = \{1, 0, 3\}$

test1: $x_3 = \{1, -2, 3\}$

简单的例子

train1:
$$x_1 = \{1, -4, -1\}$$
 $y_1 = +1$

train2:
$$x_2 = \{1, 0, 3\}$$
 $y_2 = -1$

test1:
$$x_3 = \{1, -2, 3\}$$
 $y_3 = ?$

步骤2: 初始化向量w = {1, 1, 1}

步骤3: 计算sign(**w**^Tx₁) = -1 ≠ y₁ → train1错误

更新**w**得**w** = **w** + y_1x_1 = {2, -3, 0}

计算sign($\mathbf{w}^T \mathbf{x}_2$) = +1 \neq $\mathbf{y}_2 \rightarrow$ train2错误

更新**w**得**w** = **w** + y_2x_2 = {1, -3, -3}

计算得sign($\mathbf{w}^\mathsf{T} \mathbf{x}_1$) = $\mathbf{y}_1 \perp \mathbf{g} \mathbf{x}_1$ = \mathbf{y}_2

预测全正确,停止迭代

预测: 计算sign($\mathbf{w}^\mathsf{T} \mathbf{x}_3$) = -1,所以 \mathbf{y}_3 预测为-1

评测指标

- 本次实验共有四个指标:
 - Accuracy(准确率)
 - Precision(精确率)
 - Recall(召回率)
 - F1(F值)

评测指标

• 对于二元分类:

- TP: 本来为+1, 预测为+1

-FN: 本来为+1, 预测为-1

-TN: 本来为-1, 预测为-1

- FP: 本来为-1, 预测为+1

T: True F: False

N: negative P: positive

评测指标

• 四个指标:

-TP: 本来为+1, 预测为+1

-FN: 本来为+1, 预测为-1

-TN: 本来为-1, 预测为-1

- FP: 本来为-1, 预测为+1

思考题:请查询相关资料,解释为什么要用这四种评测指标,各自的意义是什么。

Accuracy=
$$\frac{TP+TN}{TP+FP+TN+FN}$$
 Recall= $\frac{TP}{TP+FN}$
Precision= $\frac{TP}{TP+FP}$ F1= $\frac{2*Precision*Recall}{Precision*Recall}$

实验任务

- 1. 实现PLA原始算法和口袋算法
- 2. 采用4种指标评价并分析你的实验结果
- 3. 尝试优化,并对优化后的结果进行分析
- 4. 在报告中回答两个思考题
- 5. 验收使用的模型是: 权重全部初始化为一的PLA原始算法。

提交要求

- 一份报告
- 两份代码:
 - 1. 原始PLA算法(若有优化,请交最优版本)
 - 2. 口袋PLA算法(若有优化,请交最优版本)
 - 3. 命名格式为PLA_initial_1535XXXX.xxx和PLA_pocket_1535XXXX.xxx
- 一份结果:
 - 1. 你认为最优的模型下,对test数据的预测结果。
 - 2. 命名格式为学号_姓名拼音_PLA.csv

注意事项

1、作业提交地址

FTP地址: ftp://39.108.233.34

登录用户名与密码均为 student

2、命名方式

查询"实验课须知",实验报告,所有代码文件以及结果文件都需要上交。

- 3、编程语言可用 C++, python, matlab, java等,不能使用现成库(如 sklearn 等),否则扣分
- 4、提交截止时间

2017年10月25日23: 59: 59前