$\int_{0.0}^{\infty} x(n) W_{mn}^{n} e^{j\frac{2\pi}{mn}n} \int_{0.0}^{\infty} \frac{1}{2m} e^{j\frac{2\pi}{mn}} \int_{0.0}^{\infty} \frac{1}{2m} e^{j\frac{2\pi}{mn}} e^{j\frac{2\pi$

全日制统招本科生 电子科学与工程学院 南京大学 《数字信号处理》期末考试试卷 团_卷

		任课	教师姓名:	李 晨 ?	<u> </u>			
	考试日期:	2020. 8. 18	3 考	试时长:_	2小印	す <i>5</i>	分钟	
	考生年级	考生专业	考生	:学号	考生效	挂名		
	题号 一	=	三	四	五	六	总分	7
	得分	8						
			1	The Maria	1.		1,5	
	一. (共 30=1 x 2	20+2 x 5 分)填空	50			本题得分		
	1. 序列 $x(n) = 2\cos(\frac{3\pi}{4}n - \frac{\pi}{4}) + 3\sin(\frac{1}{3}n - \frac{\pi}{3})$ 的周期是 入有者							
$\begin{cases} W_{4}^{0} = 1 \\ W_{4}^{1} = -j \\ W_{4}^{2} = -1 \\ W_{7}^{3} = j \end{cases}$	2. 有离散系统函数 $H(z) = \frac{2z-1}{(z+0.5)(z-0.25)}$, 对应的差分方程是							
	$y(n+2) + \frac{1}{4}y(n+1) - \frac{1}{3}y(n) = 2\pi(n+1) - \pi(n)$							
	3. 化简: $W_4^{-6} = W_2^{-1} - 1$, $W_8^{14} = W_4^3$ j 。 $e^{-\frac{1}{3}\frac{2}{3}3} = e^{-\frac{1}{3}j^{-\frac{3}{2}}\lambda} = cus^{\frac{3}{2}\lambda} - j m_{\frac{3}{2}\lambda}$							
	AF 11R OF 4. 将连续时间模拟滤波器转换为离散时间滤波器可用的两种基本方法是:							
WN = -1	冲放响应	いる	去和	性多換		÷.		
W" = 1	5. 用窗函数法设计线性相位 FIR 滤波器,通常根据 M T T T T T T T T T T T T T T T T T T							
ZIXUK)Ž								
= N Z x(v) ₃	6. 判断离散时间系统 $y(n) = \sum_{m=-\infty}^{n+1} x(m)$ 的性质: 线性($$),移不变($$),因果							
x(k) = x*(-k)	(义),稳;	定(X)。该系	统的单位抽机	羊响应: h(n) = u(nt)	— х	6)=1P
	(义),稳定(义)。该系统的单位抽样响应: $h(n) = u(nt)$ 7. 有限长序列 $x(n) = \{3, 1, 4, -1, -5, 9, 2, 6; n = 0, 1,, 7\}$,且 $X(k) = DFT[x(n)]$ 。计算: $X(k) = \frac{5}{10} - \frac{1}{10}$							(4)= 7/1
X(公)=5x X(全)=百	$X(4) = \frac{1}{12}$ $X(4) = \frac{1}{12}$ $X(4) = \frac{1}{12}$	$, \sum_{k=1}^{7} W_{0}^{4} + 4W_{0}^{3} =$	$X(k) = \underline{\qquad}$	24 X(0) = 8×3	\int_{x}^{x}	(1) + X(1) (1) + X(6) (3) + X(5) /	,	
1 连接 世 相同的	A8. 时域和频域的	的变换中,频域 <i>。</i>	序列是离散目	L周期,则时	域是	期见为为	<u>k</u> .	
· 內心 「內心								

 $N = \frac{T_{\bullet}}{T} = \frac{f_{S}}{F} =$

X(k) = DFT[x(n)],则 k = 800 对应的模拟信号频率)是 kh

10. 两个序列为 $x(n) = \{1,3,2,1; n=0,1,2,3\}, h(n) = \{1,2,1,2; p=0,1,2,3\},$ 计算:

线性卷积x(n) * h(n) = { → 5 P 10 10 5 ×

5点園園巻积x(n)(⑤h(n) = { 67 P 10 19

(2012 = 1 (2 1 (2)) S 点的 國 間 巻 积 x(n) (n) = { 15 P 10 10 5 2 0

 $|\sum_{k=1}^{\infty} (e^{\lambda k} - e^{\lambda k})|_{L^{\infty}} = -2\cos(\frac{2\pi k}{8}) + \sin(\frac{4\pi k}{8}), \qquad X(k) = \sum_{k=1}^{\infty} |X(k)| = \sum_{k$

 数字理想帶通滤波器的频率响应是 $H(e^{j\omega})=e^{-j3\omega}$ $0.3\pi\leq |\omega|\leq 0.6\pi$,其单位冲激响 $\widehat{\mathbb{W}}h(n) = \frac{1}{\pi(n-3)} \left[\sin \left(\frac{1}{n-3} \right) - \sin \left(\frac{1}{n-3} \right) \right]$

设定 设序列x(n)的博里叶变换为 $X(e^{i\omega})$,新序列 $y(n) = \begin{cases} x(n), & n$ 为奇数,则序列 $y(n) = \begin{cases} x(n), & n \end{pmatrix}$ 的傅里叶变换 $Y(e^{j\omega}) = \frac{1}{5} \left[\chi(e^{j\omega}) - \chi(-e^{j\omega}) \right]$

二 (10分)已知 x(n)和 y(n)均为 N 点序列,且 X(k) = DFT[x(n)], Y(k) = DFT[y(n)]。证明:

本题得分

 $\sum_{n=1}^{N-1} x(n) y^{*}(n) = \frac{1}{N} \sum_{n=1}^{N-1} X(k) Y^{*}(k)$

y(n) = 1 5 Y(k) Wn hk

 $\sum_{n=0}^{\infty} x(n) y^{*}(n) = \frac{1}{N} \sum_{n=0}^{\infty} x(n) \sum_{k=0}^{\infty} Y^{*}(k) W_{N}^{nk}$ $= \frac{1}{N} \sum_{k=0}^{\infty} Y^{*}(k) \sum_{n=0}^{\infty} x(n) W_{N}^{nk}$ = 1 × X(k) Y*(k)

三. (15分) 已知因果的 LTI 系统差分方程为

$$y(n) - \frac{5}{6}y(n-1) + \frac{1}{6}y(n-2) = \frac{1}{2}x(n-1)$$

本题得分

- $_{2}$ ① 求系统函数 H(z)和收敛区,画出 H(z)的极零图,求单位脉冲响应 h(n)。
 - 2. 若输入x(n) = u(n-1),初始条件为零,求系统的输出y(n)。

1.
$$Y(z) - z^{-1} \frac{5}{7} Y(z) + \frac{1}{7} z^{-2} Y(z) = \frac{1}{2} z^{-1} X(z) \qquad H(z) = \frac{3z}{(3z-1)(2z-1)}$$

$$n(n) = \frac{3}{2} \left(\frac{1}{7}\right)^{n} u(n) - \left(\frac{1}{3}\right)^{n} u(n) \qquad = \frac{3}{2} \frac{z}{z-\frac{1}{2}} - \frac{z}{z-\frac{1}{3}}$$

y(n) = x(n) * h(n)

$$H(z) = \frac{\frac{3}{3}z}{z-1} - \frac{3z}{z-\frac{1}{3}} + \frac{\frac{3}{3}z}{z-\frac{3}{3}}$$

$$y(n) = \left[\frac{3}{3} - \left(\frac{3}{3}\right)^{n} + \left(\frac{3}{3}\right)^{(\frac{1}{3})^{n}}\right] u(n)$$

$$-\frac{1}{3} + \frac{\frac{1}{3}}{2}$$

四. (15 分) 已知序列 $x_1(n)$ 如下图所示($0 \le n \le 8$)。

本题得分

- 1. 求 $X_{\mathbf{l}}(e^{j\omega}) = DTFT[x_{\mathbf{l}}(n)]$,并在 $[0\sim 2\pi)$ 上大致画出幅度频谱 $|X_{\mathbf{l}}(e^{j\omega})|$ 。
- 2. 计算 10 点的 $X_1(k) = DFT[x_1(n)]$ 。
- 3. 若对 X₁(e^{jω})在[0~2π)均匀采样 8 个点得到

 $X_2(k)$, 计算 $x_2(n) = IDFT[X_2(k)]$ 。

$$|X(e^{j\omega})| = |2 \frac{\sin 5\omega}{\sin 2\omega}|$$

2.
$$X(k) = X(e^{jw})|_{w=2} = 2e^{-ij\frac{2\pi}{8}k} = 2e^{-ij\frac{2\pi}{10}k} = 2e^{-j2k} = \frac{\sin 2\pi k}{\sin 2\pi k}$$

DIF 正乱大小 五下

$$\begin{cases} W_{4}^{\circ} = 1 \\ W_{4}^{1} = -j \\ W_{4}^{3} = j \end{cases}$$

五. (15分) 画出按频率抽取 (DIF)) 的 4点基 2 FFT 的信号流图。

本题得分

- 1. 若已知 X(k), 请写出调用 FFT 来计算 x(n) = IFFT[X(k)] 的步骤。
- 2. 若已知 $X(k) = \{10, -1+3j, 0, -1-3j\}$, 直接利用所画流图帮助计算, 求序列 x(n)

- " ①物 Y(K) 取失犯. 钨 X*(K)
 - @ NAFFT
 - ③ 始绿取失轭
 - ④ 再表示得 X(11)

2.
$$x^{\dagger}(k) = \{10, -1-3j, 0, -1+3j\}$$

DFT $[X^{*}(k)] = \{8, 12, 4, 16\}$
 $X(n) = \{2, 3, 1, 3, 4\}$

六. (15分)线性相位 FIR 数字滤波器,其频响

h(n) = h(N-1-n) $\theta(\omega) = -\frac{N-1}{3}\omega$ $H(e^{j\omega}) = H(\omega)e^{j\varphi(\omega)}$,其中

 $H(e^{j\omega}) = H(\omega)e^{j\varphi(\omega)}$,其中 $H(\omega)$ 为幅度函数(实函数), $\varphi(\omega)$

本题得分

 $\Theta(\omega) = -\frac{N-1}{5}\omega + \frac{2}{5}$ 为相位函数,若 $\varphi(\omega) = \frac{\pi}{2} - 3\omega$,且其h(n)前几个数值分别是: 1, 2, -2。求: N=7 $\Delta h(n) = -h(N-1-n)$

- 1. 完整的 h(n), 幅度函数 $H(\omega)$ 。
- =-h(b-n)
- 2. 该 FIR 系统**不适合**做何种类型的线性相位数字滤波器?说明判断依据。
- 3. 画出该 FIR 系统的线性相位型结构流图。

 $H(w) e^{j\theta(w)} = H(z) \Big|_{z=e^{jw}}$ $H(w) = \frac{3}{n} C_n \sin(nw) = -4 \sin w + 4 \sin 2w + 2 \sin 2w$ $C_n = 2h(3-n) = \frac{1}{2} C_n - 4, 4, 2$

J. 不适合的 低通, 高通, 帝阻濡服器, 因为至=1]金点 Hw)在 o. a. 如上以为6值

