Sprawozdanie

IDENTYFIKACJA I MODELOWANIE STATYSTYCZNE

Modelowanie i identyfikacja

Marcin Bober, 249426

 Prowadzący:
 Mgr inż. Maciej Filiński

Spis treści

1	Generator liczb pseudolosowych						
	1.1	Opis	2				
	1.2	2 Wpływ wartości początkowej X na własności generatora					
	1.3						
	1.4						
	1.5	Podobieństwo histogramu ciągu wygenerowaych liczb, a gęstość rozkładu jednostajnego	6				
2	Generator dany równaniem						
	2.1	Opis	7				
	2.2	Zależność od współczynnika m	7				
	2.3	Zależność od współczynnika k	8				
3	Met	Metoda odwracania dystrybuanty 10					
	3.1	Opis	10				
	3.2	Rozkład numer 1	10				
	3.3	Rozkład numer 2	11				
	3.4	Rozkład wykładniczy	11				
	3.5	Rozkład Laplace'a	12				
4	Pod	Isumowanie	13				

1 Generator liczb pseudolosowych

1.1 Opis

Zadanie polega na implementacji generatora liczb pseudolosowych z rozkładu jednostajnego oraz analizie wyników uzyskanych z jego udziałem. Generator oparty jest na przekształceniu piłokształtnym o równaniu $X_{n+1}=X_n\cdot z-[X_n\cdot z]$

1.2 Wpływ wartości początkowej X na własności generatora

Wartość Z ustawiona została na wartość 51. Wykorzystano 1000 próbek.

Wartość początkowa 0.01

Wartość początkowa 0.1

Wartość początkowa 0.99

Wartość początkowa 1.0

- Ustawienie wartości początkowej równej zero powoduje że wszystkie wygenerowane próbki są zerowe. (Patrz wykres 1.2) Dzieje się tak ponieważ algorytm opiera się o obliczenie iloczynu liczb, których jednym ze składników jest zero.
- Wybór liczby całkowitej spowoduje że pierwsza próbka jest równa tej wartości, a
 wszystkie kolejne są zerowe (Patrz wykres 1.2). Wynika to z faktu że obliczana
 jest reszta z dzielenia wartości przez jeden, która w taki wypadku zawsze równa
 jest zero.
- Zalecanym zakresem wyboru wartości początkowej jest przedział zawierający liczby większe od zera, z pominięciem liczb całkowitych.

1.3 Wpływ parametru Z na własności generatora

Wartość X_0 ustawiona została na wartość 0,01. Wykorzystano 1000 próbek.

Wartość współczynnika Z = 2

Wartość współczynnika Z = 3

- \bullet Dla zerowego współczynnika Zpierwsza próbka uzyskuje wartość początkowa, a kolejne są zerami. Wynika to z mnożenia tych wyników przez współczynnik Zczyli zero.
- \bullet Gdy wartość Zjest równa jedności, wszystkie otrzymane wyniki są identyczne z wartością startową.
- W przypadku wykorzystania liczb parzystych, uzyskiwane wyniki szybko trafiają na wartość zero, która powoduje zatrzymanie generowania kolejnych wartości losowych.
- \bullet Najlepsze wyniki otrzymywane są dla współczynnika Z będącego dużą liczbą pierwszą.

X_0	Z	okres generatora
0,1	1	1
0,1	2	4
0,1	3	4
0,1	4	2
0,1	5	1
0,1	6	1
0,1	7	4
0,1	8	4

Tabela 1: Okres generatora w zależności od wartości Z

1.4 Okres generatora dla wybranych wartości Z

1.5 Podobieństwo histogramu ciągu wygenerowaych liczb, a gęstość rozkładu jednostajnego

Rysunek 1: Ilość wygenerowanych próbek - 20

Rysunek 2: Ilość wygenerowanych próbek - 200

Rysunek 3: Ilość wygenerowanych próbek - 2000

Rysunek 4: Ilość wygenerowanych próbek - 20000

• Im więcej wygenerowaych próbek tym mocniej histogram upodabnia się do gęstości prawdopodobieństwa rozkładu jednostajnego.

2 Generator dany równaniem

2.1 Opis

Zadanie polega na implementacji generatora liczb pseudolosowych oraz analizie wyników uzyskanych z jego udziałem. Generator oparty jest na równaniu:

$$X_{n+1} = (a_0 X_n + a_1 X_{n-1} + \ldots + a_k X_{n-k} + C) \mod m$$

2.2 Zależność od współczynnika m

Współczynnik m odpowiada za zakres generowanych wartości.

Rysunek 5: Zakres generowania liczb [0, 0.0174]

Rysunek 6: Zakres generowania liczb [0, 1]

2.3 Zależność od współczynnika k

Współczynnik k odpowiada za ilość poprzednich próbek używanych podczas generowania nowych wartości.

Rysunek 7: Współczynnik k=1

Rysunek 8: Współczynnik k=2

Rysunek 9: Współczynnik k=3

- Współczynnik m odpowiada za zakres generowanych wartości. Wybór liczby całkowitej może spowodować zatrzymanie generatora.
- \bullet Ustawienie współczynnika kna wartość równą jeden uniemożliwia generowanie wartości losowych.
- \bullet Im większa wartość współczynnika k tym lepsze wyniki generatora.

3 Metoda odwracania dystrybuanty

3.1 Opis

Metoda odwracania dystrybuanty polega na odwróceniu funkcji dystrybuanty. Do uzyskania funkcji dystrybuanty posłużymy się całkowaniem funkcji opisującej gęstość prawdopodobieństwa analizowanego rozkładu.

3.2 Rozkład numer 1

Równanie funkcji rozkładu gęstość prawdopodobieństwa:

$$f(x) = \begin{cases} 2x & dla \quad x \in [0, 1] \\ 0 & dla \quad x \in (-\infty, 0) \cup (1, \infty) \end{cases}$$
 (1)

Dystrybuanta:

$$F(x) = \begin{cases} 0 & dla & x \in (-\infty, 0) \\ x^2 & dla & x \in [0, 1] \\ 1 & dla & x \in (1, \infty) \end{cases}$$
 (2)

Odwrotna dystrybuanta:

$$F^{-1}(y) = \sqrt{y}. (3)$$

3.3 Rozkład numer 2

Równanie funkcji rozkładu gęstość prawdopodobieństwa:

$$f(x) = \begin{cases} x+1 & dla & x \in (-1,0) \\ -x+1 & dla & x \in [0,1) \\ 0 & dla & x \notin (-1,1) \end{cases}$$
 (4)

Dystrybuanta:

$$F(x) = \begin{cases} \frac{1}{2} - \frac{x^2}{2} + x & dla \quad x \in [0, 1) \\ \frac{1}{2} + \frac{x^2}{2} + x & dla \quad x \in (-1, 0) \\ 0 & dla \quad x \in (-\infty, -1] \\ 1 & dla \quad x \in [1, \infty) \end{cases}$$
 (5)

Odwrotna dystrybuanta:

$$F^{-1}(y) = \begin{cases} \sqrt{2y} - 1 & dla & x \in [0, \frac{1}{2}] \\ 1 - \sqrt{2 - 2y} & dla & x \in (\frac{1}{2}, 1] \end{cases}$$
 (6)

3.4 Rozkład wykładniczy

Równanie funkcji rozkładu gęstość prawdopodobieństwa:

$$f(x) = e^{-x} \quad dla \quad x \in [0, \infty) \tag{7}$$

Dystrybuanta:

$$F(x) = 1 - e^{-x} \quad dla \quad x \in [0, \infty)$$
(8)

Odwrotna dystrybuanta:

$$F^{-1}(y) = -\ln(1-y) \quad dla \quad x \in [0, \infty)$$
(9)

3.5 Rozkład Laplace'a

Równanie funkcji rozkładu gęstość prawdopodobieństwa:

$$F(x) = \frac{1}{2}e^{-|x|} \tag{10}$$

Dystrybuanta:

$$F^{-1}(y) = \begin{cases} \frac{1}{2} + \frac{1}{2}(1 - e^{-x}) & dla & x \in [0, \infty) \\ \frac{1}{2} - \frac{1}{2}(1 - e^{-x}) & dla & x \in (-\infty, 0) \end{cases}$$
(11)

Odwrotna dystrybuanta:

$$F^{-1}(y) = \begin{cases} -ln(1-y) & dla & x \in [0,\infty) \\ ln(1+y) & dla & x \in (-\infty,0) \end{cases}$$
 (12)

4 Podsumowanie