1. Найдите предел функции

N	f(x)	a	N	f(x)	a
1	$\frac{(x^2-1)(x+3)}{x-1}$	1	3	$\frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$	4
2	$\frac{\ln \operatorname{tg} x}{\cos 2x}$	$\frac{\pi}{4}$	4	$\frac{(x^3-1)(x+3)}{x-1}$	1

N	f(x)	a	N	f(x)	a
5	$\frac{\sqrt[3]{x-6}+2}{x^3+8}$	-2	13	$\frac{\arctan(x^2 - 2x)}{\sin 3\pi x}$	2
6	$\frac{2^x - 2}{\ln x}$	1	14	$\frac{1-x^2}{\sin \pi x}$	1
7	$\frac{(x^4-1)(x+5)}{x-1}$	1 .	15	$\frac{\sqrt[3]{16x} - 4}{\sqrt{4 + x} - \sqrt{2x}}$	4
8	$\frac{\sin 7x - \sin 3x}{e^{x^2} - e^{4\pi^2}}$	2π	16	$\frac{5^x - 5}{\ln x}$	1
9	$\frac{(x^3+1)(x^2+3)}{x+1}$	-1	17	$\frac{\sqrt[3]{8+3x-x^2}-2}{\sqrt[3]{x^2+x^3}}$	0
10	$\frac{\cos 3x - \cos x}{\operatorname{tg}^2 2x}$	π	18	$\frac{\ln\sin 3x}{(6x-\pi)^2}$	$\frac{\pi}{6}$
11	$\frac{\operatorname{tg} x - \operatorname{tg} 2}{\sinh(x-1)}$	2	19	$\frac{\ln(2x-5)}{e^{\sin\pi x}-1}$	3
12	$\frac{a^x - a^b}{x - b}$	b	20	$\frac{(x^2-4)(x+2)}{x-2}$	2

2. Вычислите неопределенный интеграл $\int f(x)dx$ и проверьте правильность вычислений, постройте графики семейства первообразных.

N	f(x)	N	f(x)
1	$\frac{1}{\sin^2 x (1 - \cos x)}$	úı	$\frac{1+\cos x}{1+\cos x+\sin x}$
2	$\frac{\cos x - \sin x}{(1 + \sin x)^2}$	12	$\frac{\sin x}{1 + \cos x + \sin x}$
3	$\frac{1}{\sin x(1-\sin x)}$	13	$\frac{\cos x}{1 + \cos x + \sin x}$
4	$\frac{\cos x}{5 + 4\cos x}$	14	$\frac{\cos x}{1 + \cos x - \sin x}$
5	$\frac{\cos x}{1 + \sin x - \cos x}$	15	$\frac{\cos x}{(1+\cos x+\sin x)^2}$
6	$\frac{\cos x}{2 + \sin x}$	16	$\frac{\sin x}{(1+\sin x)^2}$
7	$\frac{\cos x}{(1-\cos x)^2}$	17	$\frac{\sin x}{(1+\cos x-\sin x)^2}$
8	$\frac{1}{\cos x(1-\cos x)}$	18	$\frac{\sin^2 x}{(1+\cos x + \sin x)^2}$
9	$\frac{1}{(1+\sin x - \cos x)^2}$	19	$\frac{1}{\sin x(1+\sin x)}$
10	$\frac{1+\sin x}{1+\sin x-\cos x}$	20	$\frac{\sin x}{2 + \sin x}$

3. Вычислите определенный интеграл $\int_a^b f(x)dx$.

N	f(x)	[a, b]	N	f(x)	[a, b]
1	$\sqrt{256-x^2}$	[0, 16]	11	$\frac{1}{(64-x^2)^{3/2}}$	$[0, 4\sqrt{3}]$
2	$x^2\sqrt{1-x^2}$	[0, 1]	12	$\frac{x^4}{(16-x^2)^{3/2}}$	$[0,2\sqrt{2}]$

3	$\frac{1}{(25+x^2)\sqrt{25+x^2}}$	[0, 5]	13	$\frac{1}{(1+x^2)^{3/2}}$	$[0, \sqrt{3}]$
4	$\sqrt{\frac{2-x}{x-6}}$	[3, 5]	14	$\sqrt{\frac{9-2x}{2x-21}}$	[6, 9]
5	$\frac{1}{(5-x^2)^{3/2}}$	$\left[0,\frac{\sqrt{5}}{2}\right]$	15	$\sqrt{\frac{6-x}{x-14}}$	[8, 12]
6	$\frac{x^4}{(1-x^2)^{3/2}}$	$\left[0, \frac{\sqrt{2}}{2}\right]$	16	$\sqrt{\frac{4-x}{x-12}}$	[6, 10]
7	$\frac{\exp\left(\sqrt{\frac{4-x}{4+x}}\right)}{(4+x)\sqrt{16-x^2}}$	[0, 4]	17	$\frac{1}{(9+x^2)^{3/2}}$	[0, 3]
8	$\sqrt{4-x^2}$	[0, 2]	18	$\frac{1 - \sqrt[6]{x} + 2\sqrt[3]{x}}{x + 2\sqrt{x^3} + \sqrt[3]{x^4}}$	[1, 64]
9	$x^2\sqrt{16-x^2}$	[0, 4]	19	$\frac{\exp\left(\sqrt{\frac{3-x}{3+x}}\right)}{(3+x)\sqrt{9-x^2}}$	[0, 3]
10	$x^2\sqrt{25-x^2}$	[0, 5]	20	$\frac{x^4}{(2-x^2)^{3/2}}$	[0, 1]

4. Найдите (аналитически и графически) точки, в которых достигаются наибольшее и наименьшее значения заданной на отрезке непрерывной функции. Найдите нуль функции на заданном отрезке. Решите уравнение f(x)=0.

N	f(x)	Отрезок
1	$\sqrt[3]{2(x-2)^2(8-x)-1}$	[0, 6]
2	$4-x-rac{4}{x^2}$	[1, 4]
3	$x^2 + \frac{16}{x} - 16$	[1, 4]
4	$\frac{2(x^2+3)}{x^2-2x+5}-1$	[-3, 3]
5	$2\sqrt{x} - x - 0.5$	[0, 4]
6	$1 + \sqrt[3]{2(x-1)^2(x-7)}$	[-1, 5]
7	$x-4\sqrt{x}+3$	[1, 9]
8	$\frac{10x}{x^2+1}-3$	[0, 3]
9	$-2+\sqrt[3]{2(x+1)^2(5-x)}$	[-3, 3]
10	$2x^2 + \frac{108}{x^2} - 59$	[2, 4]

	at .	
11	$2-x-\frac{4}{(x+2)^2}$	[-1, 2]
12	$\sqrt[3]{2x^2(x-3)}$	[-1, 6]
13	$\frac{2(-x^2+7x-7)}{x^2-2x+2}-1$	[1, 4]
14	$x - 4\sqrt{x+2} + 5.5$	[-1, 7]
15	$1-\sqrt[3]{2(x-2)^2(5-x)}$	[1, 5]
16	$\frac{4x}{x^2+4}$	[-4, 2]
17	$8 + \frac{8}{x} - \frac{x^2}{2}$	[-4, -1]
18	$1 + \sqrt[3]{2x^2(x-6)}$	[-2, 4]

N	f(x)	Отрезок	
19	$\frac{2x(2x+3)}{x^2+4x+5}$	[-2, 1]	
20	$-\frac{2(x^2+3)}{x^2+2x+5}+2$	[-5, -2.8]	

5. Изобразите линию заданную в декартовых координатах явно y=f(x). Запишите уравнения касательной и нормали к кривой в указанной точке и изобразите их на графике.

N	f(x)	x_0	
1	$\operatorname{sh} x$	1	
2	$\ln x$	2	
3	$1+\frac{1}{x}$	1	
4	$1 + \frac{1}{x}$	-1	
5	$\frac{ x (x-1)}{x+1}$	2	
6	$\frac{ x (x-1)}{x+1}$	-2	

7	$\frac{x^3 - 32}{x^2}$	1	
8	$\frac{x^3-32}{x^2}$	-5	
9	$\sqrt[3]{x(x+6)^2}$	5	
10	$\sinh 3x$	0.5	
11	$\ln(-3x)$	-1	
12	$2 + \frac{1}{x}$	-1	
13	$2+\frac{1}{x}$	1	
14	$\frac{ x (x-2)}{x+2}$	3	
15	$\frac{ x (x-2)}{x+2}$	-3	

N	f(x)	x_0
16	$\sqrt[3]{x(x+6)^2}$	-8
17	$\frac{x^2+8}{\sqrt{x^2-4}}$	3
18	$\frac{x^2+8}{\sqrt{x^2-4}}$	-3
19	$\frac{10x^2 - 9}{\sqrt{4x^2 - 1}}$	10
20	$\frac{10x^2 - 9}{\sqrt{4x^2 - 1}}$	-10

6. Вычислите несобственный интеграл по неограниченному промежутку непосредственно и через предел.

$$1. \int_{1}^{\infty} \frac{1}{x^4 + 5}$$

1.
$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 5}$$
 2. $\int_{-\infty}^{\infty} \frac{\sqrt{x}}{(1 + x)^2}$ 3. $\int_{-\infty}^{\infty} xe^{-2x^2}$ 4. $\int_{-\infty}^{\infty} \frac{e^{-x}}{\sqrt{x}}$

3.
$$\int_{-2x^2}^{\infty} xe^{-2x^2}$$

4.
$$\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}}$$

5.
$$\int_{1}^{\infty} \frac{1}{x^2 + 2x + 2}$$

6.
$$\int_{1}^{\infty} \frac{1}{(x^2+1)^2}$$

5.
$$\int_{0}^{\infty} \frac{1}{x^2 + 2x + 2}$$
 6. $\int_{1}^{\infty} \frac{1}{(x^2 + 1)^2}$ 7. $\int_{2}^{\infty} \frac{1}{x\sqrt{\ln x}}$ 8. $\int_{0}^{\infty} x^2 e^{-x}$

9.
$$\int_{0}^{\infty} \frac{1}{2} e^{-x^2}$$

10.
$$\int_{1}^{\infty} \frac{\arctan x}{1+x^2}$$

11.
$$\int_{0}^{\infty} xe^{-x}$$

9.
$$\int_{0}^{\infty} \frac{1}{2} e^{-x^2}$$
 10. $\int_{0}^{\infty} \frac{\arctan x}{1+x^2}$ 11. $\int_{0}^{\infty} x e^{-x}$ 12. $\int_{0}^{\infty} x^2 e^{-x^2}$

13.
$$\int_{0}^{\infty} \frac{1}{x^4 + 2}$$

14.
$$\int_{0}^{\infty} \frac{x}{(1+x)^3}$$

13.
$$\int_{0}^{\infty} \frac{1}{x^4 + 2}$$
 14. $\int_{0}^{\infty} \frac{x}{(1+x)^3}$ 15. $\int_{2}^{\infty} \frac{1}{x^2 \ln x}$ 16. $\int_{0}^{\infty} x^2 e^{-x}$

16.
$$\int_{0}^{\infty} x^{2}e^{-x}$$

17.
$$\int_{0}^{\infty} \frac{x^2 + 1}{x^4 + 1}$$

17.
$$\int_{0}^{\infty} \frac{x^2 + 1}{x^4 + 1}$$
 18. $\int_{\sqrt{2}}^{\infty} \frac{1}{x\sqrt{x^2 - 1}}$ 19. $\int_{0}^{\infty} \frac{x}{1 + x^3}$ 20. $\int_{0}^{\infty} x^{10} e^{-x^2}$

19.
$$\int_{0}^{\infty} \frac{x}{1+x^3}$$

20.
$$\int_{0}^{\infty} x^{10} e^{-x^2}$$