

作业 1

例 1: 假定要在一台处理器上执行如下图所示的作业,它们在 0 时刻

以 1, 2, 3, 4, 5 的顺序到达。给出采用下列调度算法时的调度顺序、

平均周转时间(turnaround time)和平均响应时间(response time)

- (1) FCFS
- (2) RR(时间片为 1, 不考虑优先级)
- (3) 非抢占式 SJF(shortest job first)
- (4) 非抢占式优先级调度(数字小的优先级大)

作业	执行时间	优先级
1	10	3
2	1	1
3	2	2
4	3	4
5	5	2

作业 2

There are five tasks P_1-P_5 in a single processor system. Assuming that the arrival time and the burst time is shown in the table below. Assuming that all five tasks need only CPU and do not need I/O processing.

- 1) If the system uses HRRF to schedule, please draw a Gantt chart and calculate the average waiting time and the average turnaround time.
- 2) If the system uses preemptive SJF schedule (if the shortest remaining job time is the same, using first come first serve), please draw a Gantt chart and calculate the average waiting time and the average turnaround time

process	Arrival time	Burst time
P_1	0	16
P ₂	4	5
P_3	1	8
P_4	3	3
P ₅	6	4

• As shown below, OS takes a two-level feedback-queue scheme to allocate CPU for concurrent processes. A process entering the system is at first put in queue 0, and sequentially given a CPU time slice of 10 milliseconds. If it does not finish within this time, it is moved to the tail of queue 1. Processes in queue 1 run on FCFS scheduling, but are permitted to run only when there is no process in queue 0. When a process P_i in queue 1 is running on CPU and a new process P_j enters the system, P_i will preempt the CPU occupied by P_i.

作业 3

• Consider the processes P_0 , P_1 , P_2 , P_3 . For $0 \le i \le 3$, the arrival time, the length of the CPU burst time, and the priority of each P_i are given as below

Proces	Arrival time	Burst Time	Priority
S			
P ₀	0.0	6.0	10
P ₁	4.0	15.0	8
P ₂	8.0	4.0	6
P_3	12.0	13.0	4

- For the snapshot shown above, suppose that two-level feedback-queue scheduling is employed
 - (1) Draw the Gantt chart that illustrates the execution of these processes.
 - (2) What are the turnaround times for the four processes?

作业提交方式

- 使用电子版提交作业,可以提交word或者pdf格式的文档
- 邮件和作业文件命名方式: 学号-姓名-操作系统第1次作业
- 电子版作业发送至课程邮箱: kcsjbupt@126.com
- 作业提交截止时间: 2022年10月30日