

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1 Claim 1 (currently amended): A method for calibrating
2 parameters of sensor elements in a sensor array, comprising
3 the steps of:

4 receiving ~~an output signal signals~~ of at least two
5 sensor elements ~~signal~~ in reaction to an input signal from a
6 signal source;

7 estimating a cross-correlation between the output
8 signals of at least two of said sensor elements;

9 optimising a difference between the estimated
10 cross-correlation and a cross-correlation model; and

11 ~~thereby~~-estimating said parameters from the optimised
12 difference;

13 wherein ~~a~~the cross-correlation model is used as
14 represented by the following mathematical equation:

$$R = G B G^H + D$$

16 in which~~equation~~:

17 R represents a cross-correlation matrix,

18 G represent a gain matrix comprising gain parameters,

19 G^H represents ~~the~~an Hermitian conjugate of the gain matrix,

20 D represents a ((block) diagonal) noise matrix comprising
21 noise parameters and

22 B represents a matrix comprising information about the
23 signal source.

1 Claim 2 (original): A method as claimed in claim 1, wherein
2 said difference is a least square difference.

1 Claim 3 (previously presented): A method as claimed in
2 claim 1, wherein the cross-correlation is obtained by
3 determining a time-averaged covariance matrix from the
4 output signals.

1 Claim 4 (previously presented): A method as claimed in
2 claim 1, wherein the sensor array is a single polarization
3 or non-polarized sensor array.

1 Claim 5 (previously presented): A method as claimed in
2 claim 1, wherein the sensor elements are dual polarization
3 sensor elements for receiving a dual polarised signal.

1 Claim 6 (previously presented): A method as claimed in
2 claim 1, wherein said method is performed for output signals
3 of the sensor elements generated in reaction to input
4 signals from at least three signal sources with different
5 polarizations.

1 Claim 7 (original): A method as claimed in claim 4, wherein
2 said optimising comprises:
3 minimising a difference between a weighted logarithm of the
4 estimated cross-correlation and a weighted logarithm of the
5 cross-correlation and
6 estimating the gain of at least one of the sensor elements
7 from said difference.

1 Claim 8 (original): A method as claimed in claim 7, wherein
2 the logarithm is weighted by a weighting matrix with matrix
3 values relating to said gain parameters.

1 Claim 9 (previously presented): A method as claimed in
2 claim 7, wherein said optimising and said estimating gain
3 parameters are performed at least a first time and a second
4 time, wherein in the first time an uniform weight is used
5 for all output signals and in the second time the weight is
6 used in dependence on the gain estimated in the first time
7 for the respective output signals.

1 Claim 10 (previously presented): A method as claimed in
2 claim 7, wherein said optimising comprises an operation as
3 represented by the mathematical equation:

4
5 $\{g_{est}\} = \text{argmin}_{g,k} (\| W J \text{vec}(\ln(R_{est}) - \ln(g g^H) + 2\pi k i) \|_F)^2,$
6 in which equation:
7 g_{est} represents the parameter to be estimated;
8 g represents a variable;
9 g^H represents the Hermitian conjugate of the variable;
10 J represent a selection matrix which puts zeros on the main
11 diagonal;
12 k represents a phase unwrapping vector containing integer
13 values;
14 W represents a weighting matrix; and
15 R_{est} represents the estimated cross-correlation.

1 Claim 11 (previously presented): A method as claimed in
2 claim 1, wherein the signal source is a satellite in orbit
3 around a celestial body.

1 Claim 12 (previously presented): A method as claimed in
2 claim 1, wherein the signal source is a pulsar.

1 Claim 13 (previously presented): A method as claimed in
2 claim 1, wherein the output signals have a low signal to
3 noise ratio.

1 Claim 14 (previously presented): A method as claimed in
2 claim 1, wherein the sensor elements are antennas in a
3 phased array antenna.

1 Claim 15 (previously presented): A method as claimed in
2 claim 1, wherein the sensor elements are electro-magnetic
3 sensors elements.

1 Claim 16 (previously presented): A method as claimed in
2 claim 1, wherein the sensor elements are acoustical sensor
3 elements.

1 Claim 17 (currently amended): A calibration system for
2 calibrating parameters of sensor elements in a sensor array,
3 the system comprising:

4 at least two inputs, each connectable to an output of
5 an—a sensor element in a sensor array;

6 a correlation estimator device for estimating a
7 correlation between the—output signals of at least two of
8 said sensor elements;

9 an optimiser device for optimising a difference between
10 the estimated cross-correlation and a cross-correlation
11 model and ~~thereby~~-estimating said parameters from the
12 optimised difference; and

13 a memory device containing the cross-correlation model,
14 ~~which~~the model is being represented by the following
15 mathematical equation:

$$R = G B G^H + D$$

16 in whichequation:

17 R represents a cross-correlation matrix,

18 G represent a gain matrix comprising gain parameters,

19 G^H represents ~~the~~an Hermitian conjugate of the gain matrix,

20 D represents a noise matrix comprising noise parameters and

21 B represents a matrix comprising information about the
22 signal sourceand.

1 Claim 18 (previously presented): A calibration system as
2 claimed in claim 17, wherein the sensor array is a dual
3 polarised sensor array.

1 Claim 19 (original): A calibration system as claimed in
2 claim 17, wherein the sensor array is a single polarization
3 or non-polarized sensor array.

Claim 20-22 (cancelled).

1 Claim 23 (new): An array signal processing system having
2 sensor elements and a calibration system for calibrating the
3 sensor elements, the calibration system comprising:

4 a device for receiving output signals of at least two
5 sensor elements in reaction to an input signal from a signal
6 source;

7 a correlation estimator device for estimating a
8 cross-correlation between the output signals of at least two
9 of said sensor elements;

10 an optimiser device for optimising a difference between
11 the estimated cross-correlation and a cross-correlation
12 model; and

13 an estimator device for estimating said parameters from
14 the optimised difference;

15 wherein the cross-correlation model is represented by
16 the following mathematical equation:

$$R = G B G^H + D$$

17 in which:

18 R represents a cross-correlation matrix,

19 G represent a gain matrix comprising gain parameters,

20 G^H represents an Hermitian conjugate of the gain matrix,

21 D represents a ((block) diagonal) noise matrix comprising
22 noise parameters, and

23 B represents a matrix comprising information about the
24 signal source.

26 Claim 24 (new): A computer program having computer
27 executable instructions and stored in a computer readable
28 medium and which, when the instructions are executed by a
29 programmable computer, perform the steps of:

30 receiving output signals of at least two sensor
31 elements in reaction to an input signal from a signal
32 source;

34 estimating a cross-correlation between the output
35 signals of at least two of said sensor elements;

36 optimising a difference between the estimated
37 cross-correlation and a cross-correlation model; and

38 estimating said parameters from the optimised
39 difference;

40 wherein the cross-correlation model is used as
41 represented by the following mathematical equation:

42
$$R = G B G^H + D$$

43 in which:

44 R represents a cross-correlation matrix,

45 G represent a gain matrix comprising gain parameters,

46 G^H represents an Hermitian conjugate of the gain matrix,

47 D represents a ((block) diagonal) noise matrix comprising
48 noise parameters and

49 B represents a matrix comprising information about the
50 signal source.

51
52 Claim 25 (new): A computer readable medium having computer
53 executable instructions stored therein, said instructions,
54 when being executed by a computer, perform the steps of:

55 receiving output signals of at least two sensor
56 elements in reaction to an input signal from a signal
57 source;

58 estimating a cross-correlation between the output
59 signals of at least two of said sensor elements;

60 optimising a difference between the estimated
61 cross-correlation and a cross-correlation model; and

62 estimating said parameters from the optimised
63 difference;

64 wherein the cross-correlation model is used as
65 represented by the following mathematical equation:

66 $R = G B G^H + D$

67 in which:

68 **R** represents a cross-correlation matrix,

69 **G** represent a gain matrix comprising gain parameters,

70 **G^H** represents an Hermitian conjugate of the gain matrix,

71 **D** represents a ((block) diagonal) noise matrix comprising
72 noise parameters and

73 **B** represents a matrix comprising information about the
74 signal source.