Entrega 2

Andoni Latorre Galarraga

Proposición:

Sean $\tilde{\Phi_1}, \tilde{\Phi}_2 : X \longrightarrow \mathbb{R}$ dos elevaciones de una aplicación continua $\Phi : X \longrightarrow \mathbb{S}^1$, donde X es un espacio topológico conexo, entonces $\exists k \in \mathbb{Z} : \tilde{\Phi}_2 - \tilde{\Phi}_1 = 2k\pi$.

Dem:

Por ser $\tilde{\Phi}_1$, $\tilde{\Phi}_2$ elevaciones de Φ , tenemos que $\Phi = \exp \circ \tilde{\Phi}_1 = \exp \circ \tilde{\Phi}_2$. Por la periodicidad de \exp , tenemos que $\tilde{\Phi}_1 - \tilde{\Phi}_2 = 2\pi k(x)$ donde $k: X \to \mathbb{Z}$. Como X es conexo, $(\frac{\tilde{\Phi}_1 - \tilde{\Phi}_2}{2\pi})(X) = k(X)$ es conexo ya que $\frac{\tilde{\Phi}_1 - \tilde{\Phi}_2}{2\pi}(x) = k(x)$ es continua. Pero los únicos conexos en \mathbb{Z} son los puntos por lo tanto, k es contante.