Desítková soustava (decimální)

- užívaná většinou lidí na naší planetě
- číslo je složeno z jednoho či více číslic
- číslice mohou nabývat hodnot:

 pokud by mělo dojít k "přetečení" čísla přes hodnotu 9, přičteme +1 k číslici o jedna vyšší (carry)

$$\circ$$
 9 + 2 = 12

Dvojková soustava (binární)

- použitá v naprosté většině elektroniky
- číslo je složeno z jednoho či více číslic
- číslice mohou nabývat hodnot:

 pokud by mělo dojít k "přetečení" čísla přes hodnotu 1, přičteme +1 k číslici o jedna vyšší (carry)

$$\circ$$
 1 + 1 = 10

Hlavní rozdíl mezi desítkovou a dvojkovou soustavou je počet hodnot jednotlivých číslic. Pro počítače je výhodné využít pouze 2 hodnot 0 či 1 (nesvítí / svítí; <1,5V / >1,5V). Rozlišování mezi více hodnotami je pro elektroniku velmi složité (využívá se například u SSD disků, kdy jedna buňka může nabývat několika hodnot, např.: <0,2V; 0,2-0,4V; 0,4-0,8V; >0,8V => 0,1,2,3, ale takovéto hodnoty jsou vždy rychle převedeny na binární).

U desítkových číslic máme dány řády:

$$1. \rightarrow jednotky$$

$$2. \rightarrow desítky$$

$$3. \rightarrow stovky$$

4.
$$\rightarrow$$
 tisíce

U dvojkových číslic je vyšší řád vždy dvojnásobkem řádu předchozího:

$$1. \rightarrow 2^0 = 1$$

$$2. \rightarrow 2^1 = 2$$

$$3. \rightarrow 2^2 = 4$$

4.
$$\rightarrow 2^3 = 8$$

$$5. \rightarrow 2^4 = 16$$

číslo 237 se tedy dá rozložit na 200 + 30 + 7.

Kromě dvojkové a desítkové soustavy se můžeme setkat ještě s šestnáctkovou či osmičkovou soustavou. Těmi si ale dnes nebudeme plést hlavu, jen zmíním, že šestnáctková soustava je přímo konvertovatelná do binární a proto je používána při programování (číslice nabývají hodnot 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f)

Porovnání čísel

I UI UVIIUI	TT CISCI						1		
dec	bin	dec	bin	dec	bin	dec	bin	dec	bin
0	0	10	1010	20	1 0100	30	1 1110	40	10 1000
1	1	11	1011	21	1 0101	31	1 1111	41	10 1001
2	10	12	1100	22	1 0110	32	10 0000	42	10 1010
3	11	13	1101	23	1 0111	33	10 0001	43	10 1011
4	100	14	1110	24	1 1000	34	10 0010	44	10 1100
5	101	15	1111	25	1 1001	35	10 0011	45	10 1101
6	110	16	1 0000	26	1 1010	36	10 0100	46	10 1110
7	111	17	1 0001	27	1 1011	37	10 0101	47	10 1111
8	1000	18	1 0010	28	1 1100	38	10 0110	48	11 0000
9	1001	19	1 0011	29	1 1101	39	10 0111	49	11 0001

<u>Obrázky</u>										
1;8					7;14					
1;8					8;1					
3;12					10;5					
7;14					8;1					
15;15					10;5					
9;9					9;9					
1;8					8;1					
3;12					7;14					
0;0					1;4					
6;6					0;8					
9;9					1;4					
9;9					0;8					
4;2					0;8					
2;4					3;14					
1;8					1;12					
0;0					1;12					
			<u> </u>			1				

Registry počítače

Registry počítače slouží k uložení čísel a hlavním parametrem je jejich bitová šířka, tj. kolik číslic hodnot 0 či 1 mohou uložit. Typické šířky jsou:

- 4bit používalo se u prvních čipů pro kalkulačky, umí pracovat s čísly 0 15
- 8bit první herní konzole a první PCčka (XT); pracují s čísly 0 255
- 16bit PC/AT, zpravidla DOS či win 3.11; pracují s čísly 0 65535
- 32bit éra windows 95 win XP; pracují s čísli 0 4294967295
- 64bit moderní PC; pracují s čísli 0 18446744073709551615
- 128/256bit některé DSP čipy

Reprezentace hodnot

Uložená čísla mohou reprezentovat různé věci a je na nás, abychom se k nim správně chovali. Zkusme například vzít počítadlo, standardně má 10 kuliček na řádku. Jedna plná řádka je tudíž 10, 2 řádky jsou 20, 3 řádky 30.

My si ale můžeme představit, že jednotlivé řádky jsou "řády" v naší desítkové soustavě. Jednu kuličku si budeme muset vyndat (či nepoužívat), neboť v desítkové soustavě mohou být pouze hodnoty 0-9. Jedna plná řádka pak bude 9, 2 plné řádky 99 a 3 plné řádky 999.

Sčítání

Sčítání na klasickém počítadle funguje tak, že postupně přidáváme požadovaný počet kuliček.

Při sčítání na desítkovém počítadle musíme postupovat po cifrách, čili jednotky sečteme s jednotkami, desítky s desítkami a podobně. Při "přetečení" (dojdou nám kuličky u jedné cifry) vynulujeme aktuální cifru a zvýšíme cifru vyššího řádu (podobně jako u sčítání pod sebou).

Záporná čísla

Pokud potřebujeme počítat se zápornými čísly (menšími než 0), musíme se domluvit, jak je reprezentovat. Jedna z možností je využít nejvyššího řádu k identifikaci záporného čísla:

$$2 == 0010$$
 $-2 == 1010$

Nevýhodou je, že máme dvě nuly (0000 a 1111) a počítání nefunguje úplně jednoduše (0010 + 1010 => 1100). Proto se spíš používá druhý doplněk, kdy znegujeme (prohodíme 0 za 1 a naopak) hodnotu a přičteme 1:

$$2 == 0010$$

 $-2 == -0010 \rightarrow 1101 + 1 \rightarrow 1110$

Nyní máme pouze jednu nulu (0000) a aritmetika funguje (0010 + 1101 => 0000).

Všimněte si, že použitím nejvyššího řádu jako znaménka omezíme rozsah našeho 4 bitového čísla z 0 - 15 na -8 – 7.

Čísla s plovoucí desetinou čárkou

Pro počítání s opravdu velikými čísly buď potřebujeme širší registry, nebo můžeme využít méně přesná čísla, která následně vynásobíme určitou hodnotou. Takovým číslům se říká čísla s plovoucí desetinou čárkou. Matematika s nimi je o mnoho složitější, pomalejší, ale umožní nám kombinovat různě velká čísla. Podobně jako u záporných čísel i zde je na nás, abychom si rozmysleli, jak rozdělíme naše číslo. Pokud například máme 8bitové číslo, můžeme si říci, že první 4 číslice využijeme pro "exponent" a druhé 4 číslice pro vlastní hodnotu.:

```
\begin{array}{c}
0000\ 0000 \rightarrow 0 * 10^{0} == 0 \\
0000\ 0010 \rightarrow 2 * 10^{0} == 2 \\
0010\ 0010 \rightarrow 2 * 10^{2} == 200 \\
0010\ 0000 \rightarrow 2 * 10^{0} == 0
\end{array}
```

Oproti obyčejným 8 bitovým číslům omezíme rozsah z 0-255 na 0-15, ale můžeme si číslo "posunout" o 0-15 řádů, čili můžeme mít čísla 0-150000000000000000, ale vždy jen složené z jednoho čísla 0-15 doplněným o určitý počet nul. Pokud tedy budeme vždy přičítat jedničku, vyjde nám řada: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 13, 14, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 200, 300, 400, ...

Opět bychom mohli využít dvojkový doplněk a uvažovat záporná čísla (-8 – 7), případně pro reprezentaci malých hodnot i záporný exponent a vyjádřit čísla -0,00000008 – 70000000. Zde by došlo k ještě většímu zaokrouhlení hodnot, neboť přičítáním jedničky dostaneme řadu 1, 2, 3, 4, 5, 6, 7, 10, 20, 30, 40, 50, 60, 70, 100, 110, 120, 130, 140, ...

Čísla s plovoucí desetinou čárkou se využívají zpravidla v 16 a více bitových počítačích, kde již udávaná přesnost stačí a nedochází k tak markantním skokům.

Písmena

Registry mohou obsahovat nejen čísla, ale i písmena. Nejrozšířenějším formátem je kódování ASCII, které se rozšířilo na 8 bitových počítačích. Písmena A-Z jsou definovány jako čísla 65 – 90 bez diakritiky. Celou tabulku si můžeme prohlédnout níže:

0 NUL	NULL character	32 SP	64 @	96`
1 SOH	Start of Header	33!	65 A	97 a
2 STX	Start of Text	34 "	66 B	98 b
3 ETX	End of Text	35 #	67 C	99 c
4 EOT	End of Transmission	36 \$	68 D	100 d
5 ENQ	Enquiry	37 %	69 E	101 e
6 ACK	Acknowledge	38 &	70 F	102 f
7 BEL	Bell	39 '	71 G	103 g
8 BS	Backspace	40 (72 H	104 h
9 HT	Horizontal Tab	41)	73 I	105 i
10 LF	Line feed	42 *	74 J	106 j
11 VT	Vertical Tab	43 +	75 K	107 k
12 FF	Form Feed	44,	76 L	108 l
13 CR	Carriage return	45 -	77 M	109 m
14 SO	Shift Out	46.	78 N	110 n
15 SI	Shift In	47 /	79 O	111 o
16 DLE	Data Link Escape	48 0	80 P	112 p
17 DC1	Device Control (XOn)	49 1	81 Q	113 q
18 DC2	Device Control	50 2	82 R	114 r
19 DC3	Device Control (XOff)	51 3	83 S	115 s
20 DC4	Device Control	52 4	84 T	116 t
21 NAK	Negative Acknowledge	53 5	85 U	117 u
22 SYN	Synchronous Idle	54 6	86 V	118 v
23 ETB	End of Transmission Block	55 7	87 W	119 w
24 CAN	Cancel	56 8	88 X	120 x
25 EM	End of Medium	57 9	89 Y	121 y
26 SUB	Substitute	58:	90 Z	122 z
27 ESC	Escape	59;	91 [123 {
28 FS	File Separator	60 <	92 \	124
29 GS	Group Separator	61 =	93]	125 }
30 RS	Record Separator	62 >	94 ^	126 ~
31 US	Unit Separator	63 ?	95 _	127 DEL

```
LF = Line feed = Odřádkování = Enter (někdy nutno LF+CR)
SP = Space = Mezera
```

Pokud bychom tedy chtěli přečíst hodnotu 4 registrů o kterých víme, že obsahují znaky v ASCII kódu, nahradíme jejich hodnotu odpovídajícím znakem:

1000001, 1001000, 1001111, 1001010, == 65, 72, 79, 74 == AHOJ