MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012 Ilfov

Barem de evaluare şi de notare

Se punctează în mod corespunzător oricare altă modalitate de rezolvare, care conduce la rezultate corecte

Problema a V-a Un model simplu al nucleului atomic

Nr. item	Sarcina de lucru nr.1		Punctaj
1.a.	Pentru:		0,50p
	• expresia volumului ocupat de cei opt nucleoni într-un cub $V_8 = \frac{\pi}{6} \cdot a^3 = V_N$	0,20p	
	• expresia volumului cubului $V_{cub} = a^3 = 8 \cdot r_N^3$	0,10p	
	expresia factorului de împachetare $f = \frac{V_N}{V_{cub}} = \frac{V_N}{a^3} = \frac{V_N}{(2 \cdot r_N)^3}$	0,10p	
	■ <i>f</i> = 0,52	0,10p	
1.b.	Pentru:		0,40p
	Pentru:	0,20p	
	$\rho_m = 3.40 \cdot 10^{17} kg \cdot m^{-3}$	0,20p	
1.c.	Pentru:		0,50p
	expresia densității de sarcină electrică a nucleului $\begin{cases} \rho_s = \frac{e}{2} \cdot \frac{1}{V_{cub}} \\ \rho_s = \frac{f}{2} \cdot \frac{e}{V_N} \end{cases}$	0,30p	
	$\rho_{\rm s} = 1,63 \cdot 10^{25} \ {\rm C} \cdot {\rm m}^{-3}$ Pentru:	0,20p	
1.d.			0,70p
	expresia volumului ocupat de cei A nucleoni $\begin{cases} V = \frac{A \cdot V_N}{f} \\ V = \frac{A}{f} \cdot \frac{4 \cdot \pi}{3} \cdot r_N^3 \end{cases}$	0,20p	
	• expresia volumului nucleului considerat ca o sferă $V = \frac{4 \cdot \pi}{3} \cdot R^3$	0,10p	
	$R = r_N \cdot \left(\frac{A}{f}\right)^{\frac{1}{3}}$	0,20p	

$R = 1,06 \cdot A^{\frac{1}{3}}(fm)$	0,20p	
Sarcina de lucru nr.2		Punctaj
Pentru: expresia volumului păturii sferice $\begin{cases} V_{\text{suprafata}} = \frac{4 \cdot \pi}{3} \cdot (R)^3 - \frac{4 \cdot \pi}{3} \cdot (R - 2 \cdot r_N)^3 \\ V_{\text{suprafata}} = 8 \cdot \pi \left(R^2 \cdot r_N - 2 \cdot R \cdot r_N^2 + \frac{4}{3} \cdot r_N^3 \right) \end{cases}$	0,40p	1,70p
expresia numărului de nucleoni situați în pătura sferică de la suprafața nucleului $A_{\text{suprafata}} = \frac{V_{\text{suprafata}}}{\left(V_N/f\right)} = f \cdot \frac{8 \cdot \pi \left(R^2 \cdot r_N - 2 \cdot R \cdot r_N^2 + \frac{4}{3} \cdot r_N^3\right)}{\left(4\pi/3\right) \cdot r_N^3}$	0,40p	
$ A_{\text{suprafata}} = 4.84 \cdot A^{2/3} - 7.80 \cdot A^{1/3} + 4.19 $	0,40p	
$ \begin{cases} E_b = a_V \cdot (A - 3 \cdot f^{1/3} \cdot A^{2/3} + 6 \cdot f^{2/3} \cdot A^{1/3} - 4 \cdot f) \\ sau \\ E_b = (15.8 \cdot A - 38.2 \cdot A^{2/3} + 61.6 \cdot A^{1/3} - 33.1) \text{ MeV} \end{cases} $	0,50p	
Sarcina de lucru nr.3		Punctaj
Pentru: • expresia energiei electrostatice a nucleului $U_{nucleu} = \frac{3 \cdot Z \cdot (Z - 1) \cdot e^2}{20 \cdot \pi \cdot \varepsilon_0 \cdot R}$	0,40p	1,00p
	0,60p	
Pentru:		0,50p
	Pentru: expresia volumului păturii sferice $\begin{cases} V_{\text{suprafata}} = \frac{4 \cdot \pi}{3} \cdot (R)^3 - \frac{4 \cdot \pi}{3} \cdot (R - 2 \cdot r_N)^3 \\ V_{\text{suprafata}} = 8 \cdot \pi \left(R^2 \cdot r_N - 2 \cdot R \cdot r_N^2 + \frac{4}{3} \cdot r_N^3 \right) \\ \text{expresia numărului de nucleoni situați în pătura sferică de la suprafața nucleului} \\ A_{\text{suprafata}} = \frac{V_{\text{suprafata}}}{(V_N/f)} = f \cdot \frac{8 \cdot \pi \left(R^2 \cdot r_N - 2 \cdot R \cdot r_N^2 + \frac{4}{3} \cdot r_N^3 \right)}{(4\pi/3) \cdot r_N^3} \\ A_{\text{suprafata}} = 4.84 \cdot A^{2/3} - 7.80 \cdot A^{1/3} + 4.19 \\ \begin{cases} E_b = a_V \cdot \left(A - 3 \cdot f^{1/3} \cdot A^{2/3} + 6 \cdot f^{2/3} \cdot A^{1/3} - 4 \cdot f \right) \\ \text{sau} \\ E_b = \left(15.8 \cdot A - 38.2 \cdot A^{2/3} + 61.6 \cdot A^{1/3} - 33.1 \right) \text{MeV} \end{cases}$ Pentru: • expresia energiei electrostatice a nucleului $U_{nucleu} = \frac{3 \cdot Z \cdot (Z - 1) \cdot e^2}{20 \cdot \pi \cdot \varepsilon_0 \cdot R} \\ V_{nucleu} \cong \frac{3 \cdot A \cdot (A - 2) \cdot e^2 \cdot f^{1/3}}{80 \cdot \pi \cdot \varepsilon_0 \cdot r_N \cdot A^{1/3}} \\ V_{nucleu} \cong \frac{3 \cdot e^2 \cdot f^{1/3}}{20 \cdot \pi \cdot \varepsilon_0 \cdot r_N} \cdot \left(\frac{A^{5/3}}{4} - \frac{A^{2/3}}{2} \right) \\ \text{sau} \end{cases}$	Sarcina de fucru nr.2 Pentru: Sarcina de fucru nr.2 Pentru: O,40p expresia volumului păturii sferice $\begin{bmatrix} V_{\text{suprafata}} = \frac{4 \cdot \pi}{3} \cdot (R)^3 - \frac{4 \cdot \pi}{3} \cdot (R - 2 \cdot r_N)^3 \\ V_{\text{suprafata}} = 8 \cdot \pi \left(R^2 \cdot r_N - 2 \cdot R \cdot r_N^2 + \frac{4}{3} \cdot r_N^3 \right) \\ \text{expresia numărului de nucleoni situați în pătura sferică de la suprafața nucleului A_{\text{suprafata}} = \frac{V_{\text{suprafata}}}{(V_N/f)} = f \cdot \frac{8 \cdot \pi \left(R^2 \cdot r_N - 2 \cdot R \cdot r_N^2 + \frac{4}{3} \cdot r_N^3 \right)}{(4\pi/3) \cdot r_N^3}$ O,40p $\begin{bmatrix} E_b = 4 \cdot x \cdot (A - 3 \cdot f^{\sqrt{3}} \cdot A^{2/3} + 6 \cdot f^{2/3} \cdot A^{\sqrt{3}} - 4 \cdot f \right) \\ \text{sau} \\ E_b = (15.8 \cdot A - 38.2 \cdot A^{2/3} + 61.6 \cdot A^{\sqrt{3}} - 33.1) \text{MeV} \end{bmatrix}$ O,50p Pentru: • expresia energiei electrostatice a nucleului $U_{\text{nucleu}} = \frac{3 \cdot Z \cdot (Z - 1) \cdot e^2}{20 \cdot \pi \cdot \varepsilon_0 \cdot R}$ O,40p $\begin{bmatrix} U_{\text{nucleu}} \cong \frac{3 \cdot A \cdot (A - 2) \cdot e^2 \cdot f^{\sqrt{3}}}{80 \cdot \pi \cdot \varepsilon_0 \cdot r_N \cdot A^{\sqrt{3}}} \\ U_{\text{nucleu}} \cong \frac{3 \cdot e^2 \cdot f^{\sqrt{3}}}{80 \cdot \pi \cdot \varepsilon_0 \cdot r_N \cdot A^{\sqrt{3}}} \cdot \left(\frac{A^{5/3}}{4} - \frac{A^{2/3}}{2} \right) \\ \text{sau} \end{bmatrix}$ O,60p

Nr. item	Sarcina de lucru nr.4		Punctaj
4.a.	Pentru:		1,50p
	expresia energiei potențiale electrostatice repulsive, corespunzătoare $\begin{bmatrix} E_{el} = \frac{e^2 \cdot Z^2}{4 \cdot \pi \cdot \varepsilon_0 \cdot d} \\ E_{el} = \frac{e^2 \cdot A^2}{64 \cdot \pi \cdot \varepsilon_0 \cdot d} \end{bmatrix}$	0,40p	
	expresia energiei cinetice pentru cele două nuclee rezultate din dezintegrare $E_{cin}(d) = +(-E_{b,complet}(A)) - (-2 \cdot E_{b,complet}(A)) - \frac{e^2 \cdot A^2}{64 \cdot \pi \cdot \varepsilon_0 \cdot d}$	0,60p	
	$E_{cin}(d) = a_{V} \cdot \left(-3 \cdot f^{1/3} \cdot A^{2/3} \cdot \left(2^{1/3} - 1\right) + 6 \cdot f^{2/3} \cdot A^{1/3} \cdot \left(2^{2/3} - 1\right) - 4 \cdot f\right) - \frac{3 \cdot e^{2} \cdot f^{1/3}}{20 \cdot \pi \cdot \varepsilon_{0} \cdot r_{N}} \cdot \left(\frac{\cdot A^{5/3}}{4} \cdot \left(2^{-2/3} - 1\right) - \frac{\cdot A^{2/3}}{2} \cdot \left(2^{1/3} - 1\right)\right) - \frac{e^{2} \cdot A^{2}}{64 \cdot \pi \cdot \varepsilon_{0} \cdot d}$	0,50p	
4.b.	Pentru:		1,00p
	expresia energiei cinetice pentru cazul $d = 2R(A/2)$ $E_{cin}(A/2) = 2 \cdot E_{b, complet}\left(\frac{A}{2}\right) - E_{b, complet}(A) - \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{2^{1/3} \cdot f^{1/3} \cdot e^2 \cdot A^2}{\cdot 32 \cdot r_N \cdot A^{1/3}}$	0,40p	
	$E_{cin}(A/2) = a_{V} \cdot \left(-3 \cdot f^{1/3} \cdot A^{2/3} \cdot \left(2^{1/3} - 1\right) + 6 \cdot f^{2/3} \cdot A^{1/3} \cdot \left(2^{2/3} - 1\right) - 4 \cdot f\right) - \frac{e^{2} \cdot f^{1/3}}{\pi \cdot \varepsilon_{0} \cdot r_{N}} \cdot \left(\frac{3}{80} \cdot \left(2^{-2/3} - 1\right) - \frac{2^{1/3}}{128}\right) \cdot A^{5/3} - \frac{e^{2} \cdot f^{1/3}}{\pi \cdot \varepsilon_{0} \cdot r_{N}} \cdot \left(\frac{3}{40} \cdot \left(2^{1/3} - 1\right)\right) \cdot A^{2/3}$ sau $E_{cin}(A/2) = \left(0,02203A^{5/3} - 10,0365A^{2/3} + 36,175A^{1/3} - 33,091\right)MeV$	0,60p	
4.c.	Pentru: $A = 100$ $E_{cin} \cong -33,95 MeV$ $A = 150$ $E_{cin} \cong -30,93 MeV$ $A = 200$ $E_{cin} \cong -14,10 MeV$ $A = 250$ $E_{cin} \cong +15,06 MeV$	1,20p	1,20p
4.d.	Pentru:		1,00p
	$ E_{cin}(d=2R(A/2)) \ge 0 $	0,50p	
	■ A ≥ 227	0,50p	
TOT	AL Problema a V-a	-	10p

© Barem de evaluare şi de notare propus de: Dr. Delia DAVIDESCU – Centrul Național de Evaluare şi Examinare – M E C T S