Ejercicios 11/08, álgebra lineal I

Elsa Fernanda Torres Feria

Semestre 2020-4

1. Sea V un espacio vectorial sobre \mathbb{R} . Sean u, v y w vectores de V. Justifica la siguiente igualdad enunciando de manera explícita todos los axiomas de espacio vectorial que uses

$$u + 5v - 3w + 2u - 8v = -3(w + v - u)$$

Solución

Obtengamos el lado derecho del igual a partir del lado izquierdo enunciando todos los axiomas:

a) Conmutatividad de la suma: La usamos para mover el elemento -3w hasta que se encuentre al inicio

$$u + 5v - 3w + 2u - 8v = u - 3w + 5v + 2u - 8v = -3w + u + 5v + 2u - 8v$$

b) Conmutatividad de la suma: Para dejar los elementos u juntos así como los v

$$-3w + u + 5v + 2u - 8v = -3w + u + 2u + 5v - 8v$$

c) Asociatividad de la suma:

$$-3w + u + 2u + 5v - 8v = -3w + (u + 2u) + (5v - 8v) = -3w + 3u - 3v$$

d) Distributividad para la suma vectorial: Sabemos que para cualquier escalar $a \in \mathbb{R}$ y $h, x, y, z \in V$, por V ser un campo se cumple que a(h+x) = ah + ax, en especial si h = y + z, antonces tenemos: a((y+z) + x) = a(y+z) + ax = ay + az + ax. Podríamos decir que nosotros nos encontramos en la última igualdad y nuestra a = -3, entonces

$$-3w + 3u - 3v = -3(w - u + v)$$

e) Por último tenemos de nuevo la conmutatividad de la suma dentro del paréntesis

$$-3(w - u + v) = -3(w + v - u)$$

2. Demuestra que los sisguientes conjuntos W son subespacios del espacio vectorial indicado.

a) El subcojunto W de vectores (w,x,y,z) de \mathbb{C}^4 tales que w+x+y+z=0 Solución

Para mostrar que es subespacio debemos ver que el conjunto no es vacío y probar alguna de las definiciones alternativas enunciadas en la entrada de *subespacios vectoriales*.

Usemos la 3: Para cualesquiera vectores u y v en W y cualquier escalar $c \in F$, se tiene que cu + v está en W.

Definamos u=(w,x,y,z) y v=(w',x',y',z') en W y $c\in\mathbb{C}.$

P.D. $cu + v \in W$

$$cu + v = c(w, x, y, z) + (w', x', y', z') = (cw + w', cx + x', cy + y', cz + z')$$

Ahora, la suma de las entradas de cu + v:

$$(cw + w') + (cx + x') + (cy + y') + (cz + z')$$

$$= (cw + cx + cy + cz) + (w' + x' + y' + z')$$

$$= c(w + x + y + z) + (w' + x' + y' + z')$$

$$= c(0) + 0 = 0$$

Pues $u, v \in W$.

 $\therefore cu + v = 0$ y W es un subespacio.

b) La colección W de funciones continuas $f:[0,1]\to\mathbb{R}$ tales que $\int_0^1 f(x)dx=0$ es un subespacio del espacio de funciones de [0,1] a \mathbb{R} . Solución

Usemos nuevamente la definición 3. Para ello, establezcamos $f,g\in W$ y $c\in \mathbb{R}.$

P.D. $cf + g \in W$

$$(cf+g)(x) = cf(x) + g(x)$$

$$\int_0^1 (cf+g)(x)dx = \int_0^1 (cf(x) + g(x))dx$$

$$= \int_0^1 cf(x)dx + \int_0^1 g(x)dx$$

$$= c\int_0^1 f(x)dx + \int_0^1 g(x)dx$$

$$= c(0) + 0 = 0$$

Pues $f, g \in W$.

 \therefore W es un subespacio del espacio de funciones de [0,1] a \mathbb{R} .

- 3. Demuestra que los siguientes conjuntos W no son subespacios del espacio vectorial indicado.
 - a) Cuando W es un subconjunto finito y con al menos dos polinomios con coeficientes complejos y de grado a lo más 3, es imposible que sea un subespacio de $\mathbb{C}_3[x]$. Solución

Sea P(x) un polinomio en el subcojunto W; no puede ser subespacio pues si lo fuera, pudieramos tomar cualquier $a \in \mathbb{C}$ y multiplicarlo por P(x) y este debería estar en W, pero W dejaría de ser un subconjunto finito.