$$u = x^{2} + \cos y + (t+1)^{2};$$

$$f = 2(t+1) - \lambda(2 - \cos y) - 3u^{2}$$

Вариационная постановка метода простой итерации:

$$\int_{\Omega} u^{i+1} \cdot v dx - \tau \lambda \int_{\Omega} \nabla^2 u^{i+1} \cdot v dx - 3\tau \int_{\Omega} u^{i+1} u^i v dx = \int_{\Omega} \left(\tau f^{i+1} + u^i \right) v dx$$

Вариационная постановка метода Ньютона:

$$\int_{\Omega} u^{i+1} \cdot v dx - \tau \lambda \int_{\Omega} \nabla^2 u^{i+1} \cdot v dx - 6\tau \int_{\Omega} u^i u^{i+1} v dx + 3\tau \int_{\Omega} u_i^2 v dx = \int_{\Omega} \left(\tau f^{i+1} + u^i\right) v dx$$

Эксперементы

$$\tau = 0.02$$

h	h_{max}	Погрешность метода	Погрешность метода
h_{min}		простой итерации	Ньютона
0.1	0.2	0.00253	0.000860
0.02	0.04	0.00229	0.000409
0.0015	0.005	0.00212	0.0000628

$$\tau = 0.01$$

h	h	Погрешность метода	Погрешность метода
h_{min}	h_{max}	простой итерации	Ньютона
0.1	0.2	0.00164	0.000855
0.02	0.04	0.00129	0.000406
0.0015	0.005	0.00108	0.0000581

Вывод: При уменьшении τ и размера конечных элементов точность увеличивается. Метод простой итерации более чувствителен к изменениям τ , а метод Ньютона – изменения размера конечных элементов.