ITE6010 Machine Learning

LTPJC 3 0 044

Pre-requisite: Nil

Objectives:

- This course gives an overview of many concepts, techniques, and algorithms in machine learning.
- The course would provide students the basic ideas and intuition of modern machine learning techniques.

Expected Outcome:

On completion of this course, student should be able to

- Demonstrate a wide variety of learning algorithms and how to apply learning algorithms to data.
- Realize how to perform evaluation of learning algorithms and model selection
- Justify why a given model is appropriate for the situation or why it is not appropriate.

Module	Topics	L Hrs	SLO
1	Basics : Introduction to machine learning - different forms of learning; Basics of probability theory, linear algebra and optimization	6	1
2	Regression Analysis: Linear regression, Ridge regression, Lasso, Bayesian regression, Regression with Basis functions.	6	1
3	Classification Methods: Linear Discriminant Analysis, Logistic regression, Perceptrons, Large margin classification, Kernel methods, Support Vector Machines. Classification and Regression Trees, Multi-layer Perceptrons and Back propagation	8	2
4	Graphical Models: Bayesian Belief Networks, Markov Random Fields, Hidden Markov Models, Exact inference methods, Approximate inference methods.	6	7
5	Ensemble Methods : Boosting - Adaboost, Gradient Boosting; Bagging - Simple methods, Random Forest.	6	7
6	Computational Learning Theory: PAC Learning, VC Dimension, Bias/Variance Tradeoff.	5	2
7	Unsupervised Learning: Clustering - k-means, EM-Mixture of Gaussians, Factor Analysis, PCA, ICA, LDA	5	7
8	Deep Learning in Neural Network - Guest Lecture	3	2,7
# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts		45	

Text Books

1. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2013.

Reference Books

- 1. T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd Edition, Springer, 2008.
- 2. Mitchell, Tom. Machine Learning. McGraw-Hill, 2013.

Prepared by: Dr. Tapan Kumar Das

Date of approval by the Academic Council: 18.03.16