Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Adatszerkezetek

09. Kupacok

Vekov Géza

2023. április 26.

Adatszerkezetek

Vekov Géza

Kupac

Abrázolás Műveletek Alkalmazások Elsőbbségi sor

Kupac

Adatszerkezetek

Kupac

Adatok

- Olyan elemeket kell eltárolni, amelyek egy kulccsal rendelkeznek.
- Fontos: a kulcsokat össze lehet hasonlítani egymással (<, >, = operátorokkal).

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások

Adatok

- Olyan elemeket kell eltárolni, amelyek egy kulccsal rendelkeznek.
- Fontos: a kulcsokat össze lehet hasonlítani egymással (<, >, = operátorokkal).

Cél

■ Határozzuk meg gyorsan a minimális / maximális kulcsú elemet!

Adatszerkezetek

Kupac

Adatok

- Olyan elemeket kell eltárolni, amelyek egy kulccsal rendelkeznek.
- Fontos: a kulcsokat össze lehet hasonlítani egymással (<, >, = operátorokkal).

Cél

■ Határozzuk meg gyorsan a minimális / maximális kulcsú elemet!

Műveletek

- Beszúrás
- Törlés
- Minimum VAGY maximum keresés

Adatszerkezetek

Kupac

Adatok

- Olyan elemeket kell eltárolni, amelyek egy kulccsal rendelkeznek.
- Fontos: a kulcsokat össze lehet hasonlítani egymással (<, >, = operátorokkal).

Cél

■ Határozzuk meg gyorsan a minimális / maximális kulcsú elemet!

Műveletek

- Beszúrás
- Törlés
- Minimum VAGY maximum keresés O(1)

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások Elsőbbségi so

Kupac szerkezet

Majdnem teljes bináris fa.

- Minden csomópontnak max. két gyereke van
- Minimális magasságú
- Ha a legalsó szint nincs teljesen kitöltve, akkor azon a szinten a csomópontok balról jobbra kerülnek feltöltésre

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások Elsőbbségi so

Kupac szerkezet

Majdnem teljes bináris fa.

- Minden csomópontnak max. két gyereke van
- Minimális magasságú
- Ha a legalsó szint nincs teljesen kitöltve, akkor azon a szinten a csomópontok balról jobbra kerülnek feltöltésre

Kupactulajdonság

Minden szülő nagyobb / kisebb, mint a gyermekei.

- Bármely adatelem kulcsa kisebb vagy egyenlő az adatelem szülőjének a kulcsával (maximum-kupac).
- A gyökérelem mindig a legnagyobb elem.
- A csomópontok sorrendje nincs meghatározva, ezért ezek tetszőlegesen felcserélhetőek, ha nem sértik a kupactulajdonságot.

Adatszerkezetek

Vekov Géza

Kupac

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Kupac AAT

A továbbiakban:

kupac ⇒ bináris kupac

Adatszerkezetek

Vekov Géz

Kupac

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Adatszerkezetek

Vekov Géza

Kupac

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Példa 2.

Adatszerkezetek

Vekov Géz

Kupac

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Példa 2.

■ NEM kupac: sérül a kupactulajdonság

Példa 3.

Adatszerkezetek

Vekov Géz

Кирас

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Adatszerkezetek

Vekov Géza

Kupac

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Példa 3.

■ NEM kupac: sérül a kupac szerkezet

Adatszerkezetek

Vekov Géza

Kupa

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Adatszerkezetek

Vekov Géza

Kupac

Ábrázolás Műveletek Alkalmazások Elsőbbségi so

Példa 4.

a csomópontok sorrendje tetszőleges, ha teljesül a kupac tulajdonság

Kupactípusok

Adatszerkezetek

Vekov Géza

Kupac

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Bináris maximumkupac

- minden elemnek legfeljebb két gyereke van
- kupactulajdonság: szülő nagyobb a gyerekeinél

Kupactípusok

Adatszerkezetek

Vekov Géza

Kupac

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Bináris maximumkupac

- minden elemnek legfeljebb két gyereke van
- kupactulajdonság: szülő nagyobb a gyerekeinél

Bináris minimumkupac

- minden elemnek legfeljebb két gyereke van
- kupactulajdonság: szülő kisebb a gyerekeinél

Kupactípusok

Adatszerkezetek

Vekov Géza

Kupac

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Bináris maximumkupac

- minden elemnek legfeljebb két gyereke van
- kupactulajdonság: szülő nagyobb a gyerekeinél

Bináris minimumkupac

- minden elemnek legfeljebb két gyereke van
- kupactulajdonság: szülő kisebb a gyerekeinél

Egyéb kupactípusok

■ binomiális kupac, Fibonacci-kupac, intervallumkupac, párosító kupac, stb.

Kupac: ábrázolás

Adatszerkezetek

Vekov Géza

Kupac **Ábrázolás** Műveletek Alkalmazások Elsőbbségi sor

Ábrázolás

 Szerkezete miatt a kupacot leggyakrabban egy egydimenziós tömbben tároljuk

Kupac: ábrázolás

Adatszerkezetek

Vekov Géza

Kupac **Ábrázolás** Műveletek Alkalmazások Elsőbbségi sor

Ábrázolás

- Szerkezete miatt a kupacot leggyakrabban egy egydimenziós tömbben tároljuk
- Nincs szükség mutatókra
- bármely adatelem szülőjének és gyerekének az indexe egyszerű számtani műveletekkel meghatározható
 - szülő(i): [*i*/2]*
 - gyerek(i): $2 \cdot i, 2 \cdot i + 1*$
- * 0-ás indexelésnél kis változtatással ugyanúgy meg lehet kapni az indexeket.

Adatszerkezetek

Vekov Géz

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Beszúrás

- Beszúrjuk az elemet az utolsó helyre
- Visszaállítjuk a kupactulajdonságot
 - A szülőre ellenőrizzük a tulajdonság teljesülését
 - Ha nem teljesül, akkor szintenként "felemeljük" az új elemet, és újraellenőrizzük, amíg visszaáll nem áll a tulajdonság

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sor

Beszúrás

- Beszúrjuk az elemet az utolsó helyre O(1)
- Visszaállítjuk a kupactulajdonságot $O(\log n)$
 - A szülőre ellenőrizzük a tulajdonság teljesülését
 - Ha nem teljesül, akkor szintenként "felemeljük" az új elemet, és újraellenőrizzük, amíg visszaáll nem áll a tulajdonság

Futási idő: összesítve

■ Futási idő: $O(\log n)$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Beszúrás: 2-es

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Beszúrás: 2-es

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Beszúrás: 2-es

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Beszúrás: 60-as

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sor

Beszúrás

- Beszúrjuk az elemet az utolsó helyre O(1)
- Visszaállítjuk a kupactulajdonságot O(log n)
 - A szülőre ellenőrizzük a tulajdonság teljesülését
 - Ha nem teljesül, akkor szintenként "felemeljük" az új elemet, és újraellenőrizzük, amíg visszaáll nem áll a tulajdonság

Futási idő: összesítve

■ Futási idő: $O(\log n)$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi son

Kulcs növelése / csökkentése (i)

A beszúráshoz hasonlóan:

- Módosítjuk az i. kulcs értékét O(1)
- Visszaállítjuk a kupactulajdonságot $O(\log n)$
 - A szülőre ellenőrizzük a tulajdonság teljesülését
 - Ha nem teljesül, akkor szintenként "felemeljük" a módosított értékű elemet, és újraellenőrizzük, amíg visszaáll nem áll a tulajdonság

Megjegyzés

■ Gyakorlatilag a beszúrást úgy is lehet értelmezni, mint $-\infty$ értékű elem hozzáfűzése, majd *Kulcs növelése* (n)

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sol

Törlés: legnagyobb / legkisebb elem törlése

■ NEM kupac: sérül a kupac szerkezet

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sor

- NEM kupac: sérül a kupac szerkezet
- NEM jó a fenti törlés "algoritmus"

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sor

Kupacol:

- Legyen *i.* egy elem indexe
- Az *i*-dik elem baloldali és jobboldali részfái kupacok
- Az i. elem kisebb mint a gyerekei, vagyis sérül a kupactulajdonság

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sor

Kupacol:

- Legyen *i.* egy elem indexe
- Az *i*-dik elem baloldali és jobboldali részfái kupacok
- Az i. elem kisebb mint a gyerekei, vagyis sérül a kupactulajdonság
- Kupacol művelet:
 - Visszaállítja a kupactulajdonságot
 - Az i-dik elemet lefele görgeti a kupacban

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sor

Kupacol:

- Legyen i. egy elem indexe
- Az *i*-dik elem baloldali és jobboldali részfái kupacok
- Az i. elem kisebb mint a gyerekei, vagyis sérül a kupactulajdonság
- Kupacol művelet:
 - Visszaállítja a kupactulajdonságot
 - Az *i*-dik elemet lefele *görgeti* a kupacban

Megjegyzés

A kupacol műveletet felhasználhatjuk a maximum elem törlésénél is.

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sor

Kupacol:

```
Kupacol(i)
                                        // i csomópont, A kupacot tároló tömb
- Ha A[i] levél \Rightarrow művelet vége
                                        // a levél egyelemű kupac
-i = bal_gyerek(i), k=jobb_gyerek(i)
-m = \max (i, j, k)
                                            maximum értékű elem a szülő
                                        // és a két gyerek közül
- Ha m = i \Rightarrow művelet vége
                                            ha a szülő a legnagyobb, akkor teljesül
                                        // a kupactulaidonság
- Csere(A[i], A[m])
                                        // különben felcseréljük a szülőt
                                        // a nagvobb gverekével
- kupacol(m)
                                        // tovább lépünk a következő szintre
```

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

- Maximum/minimum: gyökérelem
- Másoljuk az utolsó elemet a gyökér helyére
- Visszaállítjuk a kupac tulajdonságot: **kupacol(1)**:

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

- Maximum/minimum: gyökérelem
- Másoljuk az utolsó elemet a gyökér helyére
- Visszaállítjuk a kupac tulajdonságot: **kupacol(1)**:
 - Amennyiben a kupac tulajdonság sérül, szintenként fel kell cserélni a szülőt a nagyobb kulcsú gyerekével
 - A műveletek eredményeképpen a tulajdonságot sértő elem "lesüllyed" a helyére

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Törlés: legnagyobb / legkisebb elem törlése

- Maximum/minimum: gyökérelem
- Másoljuk az utolsó elemet a gyökér helyére O(1)
- Visszaállítjuk a kupac tulajdonságot: **kupacol(1)**: $O(\log n)$
 - Amennyiben a kupac tulajdonság sérül, szintenként fel kell cserélni a szülőt a nagyobb kulcsú gyerekével
 - A műveletek eredményeképpen a tulajdonságot sértő elem "lesüllyed" a helyére

Futási idő: összesítve

■ Futási idő: $O(\log n)$

Adatszerkezetek

Vekov Géza

Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sol

Kupac építése 1

■ A kupacba beszúrjuk valamennyi elemet.

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Kupac építése 1

■ A kupacba beszúrjuk valamennyi elemet.

Futási idő: összesítve

■ Futási idő: $O(n \log n)$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Megjegyzés

A kupacol művelet segítségével egy tetszőleges tömb kupaccá alakítható.

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Megjegyzés

A kupacol művelet segítségével egy tetszőleges tömb kupaccá alakítható.

Kupac építése 2.

- Lentről felfele haladunk
 - A leveleket egyelemű kupacnak tekintunk
 - Minden köztes csomópontra meghívjuk a kupacol eljárást → beállítjuk a kupactulajdonságot az i. csomópont gyökerű kupacra
 - A lentről felfele sorrend biztosítja, hogy amikor egy *i*. csomópontra hívjuk meg a **kupacol** algoritmust, az *i* gyerekei már kupacot alkotnak.

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi so

Megjegyzés

A kupacol művelet segítségével egy tetszőleges tömb kupaccá alakítható.

Kupac építése 2.

- Lentről felfele haladunk
 - A leveleket egyelemű kupacnak tekintunk
 - Minden köztes csomópontra meghívjuk a **kupacol** eljárást → beállítjuk a kupactulajdonságot az *i*. csomópont gyökerű kupacra
 - A lentről felfele sorrend biztosítja, hogy amikor egy *i*. csomópontra hívjuk meg a **kupacol** algoritmust, az *i* gyerekei már kupacot alkotnak.

Futási idő: összesítve

■ Futási idő: O(n) (bizonyításhoz ld. Cormen, Leiserson, Rivest, Stein Új algoritmusok)

Adatszerkezetek

Műveletek

Kupac építése 2.:

Kupacot Épít (A, n, kupac_méret)

- Kupac_méret = n

Minden i = n/2, 1

Vége(Minden)

- Vége(algoritmus)

// A kupacot tároló tömb, // n a tömb elemeinek a száma,

// Alapértelemezetten a kupac mérete // a tömb méretével egyenlő

// kupac_méret a kupac végső mérete

// az első nem levél csomóponttól a gyökérig

Kupacol (i)

Adatszerkezetek

Vekov Géza

Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sol

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sol

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi son

$$n = 9$$

$$t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi son

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi son

$$n = 9$$

 $t = \{17, 2, 50, 36, 19, 25, 1, 7, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sol

$$n = 9$$

 $t = \{17, 2, 50, 36, 19, 25, 1, 7, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi son

$$n = 9$$

 $t = \{17, 2, 50, 36, 19, 25, 1, 7, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sol

$$n = 9$$

 $t = \{17, 2, 50, 36, 19, 25, 1, 7, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sol

$$n = 9$$

 $t = \{17, 36, 50, 2, 19, 25, 1, 7, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sol

$$n = 9$$

 $t = \{17, 36, 50, 7, 19, 25, 1, 2, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sol

$$n = 9$$

$$t = \{17, 36, 50, 7, 19, 25, 2, 7, 3\}$$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi sor

$$n = 9$$

 $t = \{50, 36, 17, 7, 19, 25, 1, 2, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás **Műveletek** Alkalmazások Elsőbbségi son

$$n = 9$$

 $t = \{50, 36, 25, 7, 19, 17, 1, 2, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

Megjegyzés

Kupacot akkor érdemes használni, ha a feladat során gyakran van szükségünk minimum- vagy maximum keresésre.

- Kiválasztásos rendezés:
 - Minden lépésben megkeressük a maximumot
 - Futási idő: $O(n^2)$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sol

Megjegyzés

Kupacot akkor érdemes használni, ha a feladat során gyakran van szükségünk minimum- vagy maximum keresésre.

- Kiválasztásos rendezés:
 - Minden lépésben megkeressük a maximumot
 - Futási idő: O(n²)
- Kupacrendezés:
 - Hozzunk létre egy maximum-kupacot a bemeneti tömbből
 - Minden lépésben keressük meg és töröljük ki a maximum elemet.
 - Futási idő: n lépés, egy lépés $O(\log n) \Rightarrow O(n \log n)$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

- Kiválasztásos rendezés:
 - Minden lépésben megkeressük a maximumot
 - Futási idő: O(n²)
- Kupacrendezés:
 - Hozzunk létre egy maximum-kupacot a bemeneti tömbből
 - Minden lépésben keressük meg és töröljük ki a maximum elemet.
 - Futási idő: n lépés, egy lépés $O(\log n) \Rightarrow O(n \log n)$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

Példa

- Kiválasztásos rendezés:
 - Minden lépésben megkeressük a maximumot
 - Futási idő: $O(n^2)$
- Kupacrendezés:
 - Hozzunk létre egy maximum-kupacot a bemeneti tömbből
 - Minden lépésben keressük meg és töröljük ki a maximum elemet.
 - Futási idő: n lépés, egy lépés $O(\log n) \Rightarrow O(n \log n)$

Kérdés

■ Lehet-e jobban/gyorsabban?

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

Példa

- Kiválasztásos rendezés:
 - Minden lépésben megkeressük a maximumot
 - Futási idő: O(n²)
- Kupacrendezés:
 - Hozzunk létre egy maximum-kupacot a bemeneti tömbből
 - Minden lépésben keressük meg és töröljük ki a maximum elemet.
 - Futási idő: n lépés, egy lépés $O(\log n) \Rightarrow O(n \log n)$

Kérdés

■ Lehet-e jobban/gyorsabban? NEM

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

Példa

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

- Felépítjük a maximum-kupacot.

	50	36	25	7	19	17	1	2	3
--	----	----	----	---	----	----	---	---	---

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi son

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

 ${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

 ${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

 ${\bf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi son

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Kupacrendezés

${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

Példa

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Kupacrendezés

${\sf Adatszerkezetek}$

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

Példa

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

Kupacrendezés

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek **Alkalmazások** Elsőbbségi sor

Példa

$$n = 9$$

 $t = \{17, 2, 50, 7, 19, 25, 1, 36, 3\}$

(]

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Feladatok ütemezése

- Az elvégzendő feladatokat és relatív prioritásukat egy elsőbbségi sorban tárolják
- Ha egy feladat elkészült a várakozó feladatok közül a *legnagyobb prioritású* feladatot választja ki az ütemező algoritmus.
- Bármely feladatnak nőhet a prioritása.

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások **Elsőbbségi sor**

Feladatok ütemezése

- Az elvégzendő feladatokat és relatív prioritásukat egy elsőbbségi sorban tárolják
- Ha egy feladat elkészült a várakozó feladatok közül a *legnagyobb prioritású* feladatot választja ki az ütemező algoritmus.
- Bármely feladatnak nőhet a prioritása.

Elsőbbségi sor

Maximum-kupac

- elemek: a feladat objektumai
- kulcs: prioritás

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások **Elsőbbségi sor**

Esemény-vezérelt szimuláció

- a prioritási sor elemei a szimulálandó események
- minden eseménynek adott a bekövetkezési időpontja
- az eseményeket a bekövetkezési idejüknek megfelelő sorrendben kell szimulálni, mivel egy esemény bekövetkezése egy másik esemény jövőbeli bekövetkezését okozhatja

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások **Elsőbbségi sor**

Esemény-vezérelt szimuláció

- a prioritási sor elemei a szimulálandó események
- minden eseménynek adott a bekövetkezési időpontja
- az eseményeket a bekövetkezési idejüknek megfelelő sorrendben kell szimulálni, mivel egy esemény bekövetkezése egy másik esemény jövőbeli bekövetkezését okozhatja

Elsőbbségi sor

Minimum-kupac

- elemek: az esemény objektumai
- kulcs: bekövetkezési idő

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Elsőbbségi sor

Az elsőbbségi sor leghatékonyabb implementációja a minimum/maximum-kupac.

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Medián keresése

- Adott: egy $x_1,...,x_n$ sorozat, amelyet elemenként kapunk meg
- **Feladat**: Minden i. lépésben határozzuk meg az $x_1,...,x_i$ sorozat mediánját.
- Megengedett futási idő: $O(\log i)$.

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Medián keresése

- Adott: egy $x_1,...,x_n$ sorozat, amelyet elemenként kapunk meg
- **Feladat**: Minden *i*. lépésben határozzuk meg az $x_1, ..., x_i$ sorozat mediánját.
- Megengedett futási idő: $O(\log i)$.

Megoldás

- Használjunk két kupacot
 - K_{kis} maximumkupac
 - K_{nagy} minimumkupac
- Minden lépésben mindkét kupacban $\approx i/2$ elem legyen.

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások **Elsőbbségi sor**

Megoldás

- Használjunk két kupacot:
 - K_{kis} maximumkupac
 - K_{nagy} minimumkupac
- Minden lépésben mindkét kupacban $\approx i/2$ elem legyen.
- Minden i. Lépésben:
 - Ha $x_i \leq \max(K_{kis})$, szúrjuk be x_i -t a K_{kis} kupacba
 - Különben (ha $x_i \ge \min(K_{nagy})$) szúrjuk be x_i -t a K_{nagy} kupacba
 - Ha egyik kupacban több mint egy elemmel több van mint a másikban: tegyük át a gyökérelemet a másikba.

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások **Elsőbbségi sor**

Megoldás

- Használjunk két kupacot:
 - K_{kis} maximumkupac
 - K_{nagy} minimumkupac
- Minden lépésben mindkét kupacban $\approx i/2$ elem legyen.
- Minden i. Lépésben:
 - Ha $x_i \leq \max(K_{kis})$, szúrjuk be x_i -t a K_{kis} kupacba
 - Különben (ha $x_i \ge \min(K_{nagy})$) szúrjuk be x_i -t a K_{nagy} kupacba
 - Ha egyik kupacban több mint egy elemmel több van mint a másikban: tegyük át a gyökérelemet a másikba.

Eredmény

■ Medián: $max(K_{kis})$ és/vagy $min(K_{nagy})$

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Gráfalgoritmusok

- Dijkstra algoritmus
- Kruskal algoritmus

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Gráfalgoritmusok

- Dijkstra algoritmus
- Kruskal algoritmus

Egyéb

■ k. legkisebb elem meghatározása

Adatszerkezetek

Vekov Géza

Kupac Ábrázolás Műveletek Alkalmazások **Elsőbbségi sor**

Gráfalgoritmusok

- Dijkstra algoritmus
- Kruskal algoritmus

Egyéb

■ k. legkisebb elem meghatározása

Megjegyzés

■ A kupac használható minden olyan feladatnál, ahol sorozatos minimum vagy maximum számításra van szükség.

 ${\sf Adatszerkezetek}$

Vekov Géza

Ábrázolás Műveletek Alkalmazások Elsőbbségi sor

Kérdések

Kérdések? ©