RÉCIDIVISME DANS LES PRISONS DE L'ETAT DE

LE JEU DE DONNEES

Analyse de survie sur les données de récidivisme dans l'Etat de l'Iowa, aux USA.

Durée du jeu de données : 5 années fiscales

Particularité des observations : les enregistrements de récidives s'étalent sur une durée de 3 ans

Année choisie : 2013

Taille du jeu : 3716 observations, 17 variables

Quels facteurs influent sur le récidivisme ?

L'analyse

- Préparation des données
- Estimation non paramétrique de Kaplan-Meier
- Modèle de Cox

■ Vérification : critère d'Akaike

PRÉPARATION DES DONNÉES

```
#Charger <u>les libraires</u>
library(readr)
library(dplyr)
library(survival)
library(survminer)
```

- Chargement des libraires

```
#Charger les données
recidive <- read_csv("C:/Users/Fujistone/Documents/LOcole/Cours/Statistiques
2/Recidivism_stats_project/Recidive.csv")

#Retirer les colonnes non pertinentes
recidive = recidive[,-c(1,2,3,17)]</pre>
```

- Lecture du jeu de données
- Retrait des colonnes non pertinentes
- Renommer les colonnes(cf fichier .Rmd)

```
#Numériser la colonne "Return to Prison"
recidive$`Return to Prison`[recidive$`Return to Prison` == "Yes"] = 1 #Qui récidive
recidive$`Return to Prison`[recidive$`Return to Prison` == "No"] = 0 #non pas récidive
recidive$`Return to Prison` = as.numeric(recidive$`Return to Prison`)
```

- Numérisation de la variable de statut
- -Transformer les variables en facteur(cf fichier .Rmd)
- #Transformer les entrées de la colonne "Days to Return"
 recidive = mutate_if(recidive, is.numeric, ~replace(., is.na(.), 365*3))
 recidive\$`Days to Return` = as.numeric(recidive\$`Days to Return`)
- Retrait des NA de la variable temps

CENSURE

> library(asaur)
> table(recidive\$return_prison)/nrow(recidive)

0.6967169 0.3032831

Censure à 69% -> fort taux

30% de suivis sur les 3 ans

Estimation non paramétrique de Kaplan-Meier

Fonction de survie globale de Kaplan-Meier

- -> Moins de 50% de prisonniers libérés ont récidivé au cours des 3 ans de suivi.
- -> Risque décroissant constant
- -> Récidive diminue en fonction du temps


```
library(survival)
KMO <- survfit(Surv(recidive$return_time, recidive$return_prison)~1,data = recidive)
print(KMO)
summary(KMO, times= seq(0,500,50))</pre>
```


- -> pas de diminution drastique de la survie au cours de la période de suivi (1095 jours)
- -> Courbe décroissante quasi horizontale
- -> Plus forte diminution aux alentours de 250 jours

Strata + age=25-34 + age=35-44 + age=45-54 + age=55 and Older + age=Under 25

Estimation de Kaplan-Meier selon différentes variables

Estimation de Kaplan-Meier en fonction des autres variables du jeu données(cf fichier .Rmd)

- -> la plupart ne sont pas significatives, on choisit de n'en garder que deux :
- l'âge au moment de libération
- le sexe

Selon l'âge

- -> les moins de 55 ans sont plus susceptibles de récidiver
- -> les moins 34 ans récidives le plus

Selon le sexe

- -> les hommes récidivent plus que les femmes, mais l'écart est faible
- -> l'écart se creuse aux environs de 200 jours

Selon le ciblage préalable des individus par le système carcéral

-> voir fichier .Rmd

TEST DU LOG-RANK

```
On pose l'hypothèse H0 = S_female(t) = S_male(t)
```

```
survdiff(formula = Surv(return_time, return_prison) ~ sex, data = recidive)
```

```
N Observed Expected (O-E)^2/E (O-E)^2/V
sex=Female 407 102 128 5.431 6.13
sex=Male 3309 1025 999 0.698 6.13
```

Chisq= 6.1 on 1 degrees of freedom, p= 0.01

- p-value(sex) = 0.01<0.05
- $Chi^2 = 6.1$
- -> H0 rejetée

```
• p-value(age) = 4^-05<0.05
```

- $Chi^2 = 25.6$
- -> H0 rejetée

```
survdiff(formula = Surv(return_time, return_prison) ~ age, data = recidive)
```

```
N Observed Expected (O-E)^2/E (O-E)^2/V
age=25-34
                                402.5 4.07e+00 6.33e+00
                          443
                1346
age=35-44
                 948
                          290
                                289.9 7.54e-05 1.02e-04
age=45-54
                 632
                         152
                                199.1 1.11e+01 1.35e+01
age=55 and Older
                161
                          32
                                50.7 6.89e+00 7.21e+00
age=Under 25
                 629
                          210
                                184.8 3.43e+00 4.11e+00
```

Chisq= 25.6 on 4 degrees of freedom, p= 4e-05

REGRESSION DE COX

Variable	Units	HazardRatio	CI.95	p-value
age	25-34	Ref		
_	35-44	0.92	[0.79;1.06]	0.24520
	45-54	0.69	[0.58; 0.83]	< 0.001
	55 and Older	0.57	[0.40; 0.81]	0.00204
	Under 25	1.03	[0.87;1.21]	0.74945
sex	Female	Ref		
	Male	1.30	[1.06; 1.60]	0.01130
>				

- L'âge(la jeunesse) est facteur de récidive
- Le sexe (masculin) est facteur de récidive

-> la figure confirme les
résultats du tableau cidessus

CRITÈRE D'AKAIKE ET VERIFICATION

Optimisation du modèle de Cox grâce au critère d'Akaike (Akaike Information Criterion)

Résidus de Schoenfeld sont constant en fonction du temps -> variable sex et age sont indépendantes

Conclusion

- Le sexe masculin est facteur de récidive
- Les jeunes (moins de 34 ans) sont également plus susceptibles de récidiver
- Le fait d'être ciblé au préalable par le système carcéral avant incarcération augmente de risque de récidive