Lecture 15:

Nested Recursive Lexicographical Search: Structural Estimation of Dynamic Directional Games with Multiple Equilibria

> Fedor Iskhakov, Australian National University Anders Munk-Nielsen, University of Copenhagen John Rust, Georgetown University Bertel Schjerning, University of Copenhagen

Empirical IO: Dynamic Structural Models Department of Economics (NHH) 29 Nov - 3 Dec., 2021 Background Nested RLS Monte Carlo Wrap-up

Estimation of stochastic dynamic games

- Several decision makers (players)
- Maximize discounted expected lifetime utility
- Anticipate consequences of their current actions
- Anticipate actions by other players in current and future periods (strategic interaction)
- Operate in a stochastic environment (state of the game) whose evolution depend on the collective actions of the players
 - Estimate structural parameters of these models
 - Data on M independent markets over T periods
 - Multiplicity of equilibria

Markov Perfect Equilibrium

- MPE is a pair of strategy profile and value functions:
- Bellman Optimality
 Each players solves their Bellman equiation for values V taking other players choice probabilities P into account
- Bayes-Nash Equilibrium
 The choice probabilities P are determined by the values V
- In compact notation

$$V = \Psi^{V}(V, P, \theta)$$

 $P = \Psi^{P}(V, P, \theta)$

Set of all Markov Perfect Equilibria

$$SOL(\Psi, \theta) = \left\{ (P, V) \left| \begin{array}{c} V = \Psi^{V}(V, P, \theta) \\ P = \Psi^{P}(V, P, \theta) \end{array} \right. \right\}$$

Maximum Likelihood

- Data from M independent markets from T periods $Z = \{\bar{a}^{mt}, \bar{x}^{mt}\}_{m \in \mathcal{M}, t \in \mathcal{T}}$ Usually assume only one equilibrium is played in the data.
- For a given θ , let $\left(\mathsf{P}^\ell(\theta),\mathsf{V}^\ell(\theta)\right)\in SOL(\Psi,\theta)$ denote the ℓ -the equilibrium
- Log-likelihood function is

$$\mathcal{L}(Z,\theta) = \max_{(\mathsf{P}^{\ell}(\theta),\mathsf{V}^{\ell}(\theta)\in SOL(\Psi,\theta)} \frac{1}{M} \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{T} \log P_{i}^{\ell}(\bar{a}_{i}^{mt}|\bar{\mathsf{x}}^{mt};\theta)$$

• The ML estimator is $\theta^{ML} = \arg \max_{\theta} \mathcal{L}(Z, \theta)$

Estimation methods for stochastic games

Maximum likelihood estimator

- Efficient, but expensive: need full solution method
- No problem with multiple equilibria

Borkovsky, Doraszelsky and Kryukov (2010) All solution homotopy; Iskhakov, Rust and Schjerning (2016) RLS

Two-step estimators

• Fast, but potentially large finite sample biases

Bajari, Benkard, Levin (2007); Pakes, Ostrovsky, and Berry (2007); Pesendorfer and Schmidt-Dengler (2008)

$$\max_{\theta} \mathcal{L}(\mathsf{Z}, \Psi^{\mathsf{P}}(\Gamma(\theta, \hat{\mathsf{P}}), \hat{\mathsf{P}}, \theta))$$

Estimation methods for stochastic games

Nested psuedo-likelihood (recursive two-step)

- Bridges the gap between efficiency and tractability
- Unstable under multiplicity

Aguirregabiria and Mira (2007); Pesendorfer and Schmidt-Dengler (2010); Kasahara and Shimotsu (2012)

Math Programming with Equilibrium Constraints (MPEC)

- Reformulates ML problem as constrained optimization
- Should not be affected by multiplicity

Su (2013); Egesdal, Lai and Su (2015)

$$\max_{(\theta,P,V)} \mathcal{L}(\mathsf{Z},\mathsf{P}) \text{ subject to } \mathsf{V} = \Psi^\mathsf{V}(\mathsf{V},\mathsf{P},\theta), \mathsf{P} = \Psi^\mathsf{P}(\mathsf{V},\mathsf{P},\theta)$$

Background Nested RLS Monte Carlo Wrap-up

Summary of this paper

- Propose robust and computationally feasible MLE estimator for directional dynamic games (DDG), finite state stochastic games with particular transition structure
- Rely of full solution algorithm that provably computes all MPE under certain regularity conditions
- Employ smart discrete programming method to maximize likelihood function over the finite set of equilibria
- Provide Monte Carlo evidence of the performance
- Fully robust to multiplicity of MPE
- Relax single-equilibrium-in-data assumption
- Path to estimation of equilibrium selection rules

Nested Recursive Lexicographical Search (NRLS)

- Outer loop Maximization of the likelihood function w.r.t. to structural parameters θ
 - $heta^{ extit{ML}} = rg \max_{ heta} \mathcal{L}(Z, heta)$
- Inner loop Maximization of the likelihood function w.r.t. equilibrium selection

$$\mathcal{L}(Z,\theta) = \max_{(\mathsf{P}^{\ell}(\theta),\mathsf{V}^{\ell}(\theta) \in SOL(\Psi,\theta)} \frac{1}{M} \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{T} \log P_{i}^{\ell}(\bar{a}_{i}^{mt} | \bar{\mathsf{x}}^{mt}; \theta)$$

Max of a function on a discrete set organized into RLS tree

Background Nested RLS Monte Carlo Wrap-up

Branch and bound (BnB) method

Land and Doig, 1960 *Econometrica*

- Old method for solving discrete programming problems
- Form a tree of subdivisions of the set of admissible plans
- Specify a bounding function representing the best attainable objective on a given subset (branch)
- Oismiss the subsets of the plans where the bound is below the current best attained value of the objective

Theory of BnB: branching

$$\max f(x)$$
 s.t. $x \in \Omega$

$$f(x)$$
 objective function Ω set of feasible x
$$\mathcal{P}_j(\Omega) \text{ partition of } \Omega \text{ into } k_j \text{ subsets, } \mathcal{P}_1(\Omega) = \Omega$$

$$\mathcal{P}_j(\Omega) = \{\Omega_{i1}, \dots, \Omega_{ik_i}: \ \Omega_{ji} \cap \Omega_{ji'} = \varnothing, i \neq i', \ \cup_{i=1}^{k_j} \Omega_{ji} = \Omega\}$$

$$\{\mathcal{P}_j(\Omega)\}_{j=1,\ldots,J}$$
 a sequence of J gradually refined partitions
$$k_1 \leq \cdots \leq k_j \leq \cdots \leq k_J$$
 $\forall j=1,\ldots,J, \forall i=1,\ldots,k_j: \ \forall j' < j \ \exists \emph{i}'_{j'} \ \text{such that} \ \Omega_{ij} \subset \Omega_{i'j'}$

Theory of BnB: branching

$$\max f(x)$$
 s.t. $x \in \Omega$

Theory of BnB: bounding

$$\max f(x)$$
 s.t. $x \in \Omega$

$$g(\Omega_{ij})$$
 bounding function: from subsets of Ω to real line $g(\Omega_{ij}) = f(x)$ for singletons, i.e. when $\Omega_{ij} = \{x\}$

Monotonicity of bounding function

$$\forall j \ \forall \Omega_{i_1 1} \supset \Omega_{i_2 2} \supset \cdots \supset \Omega_{i_j j}$$
 $g(\Omega_{i_1 1}) \geq g(\Omega_{i_2 2}) \geq \cdots \geq g(\Omega_{i_j j})$

Inequalities are reversed for the minimization problem

BnB with NRLS

- Branching: RLS tree
- Bounding: The bound function is partial likelihood calculated on the subset of states that

$$\mathcal{L}^{\mathsf{Part}}(Z, \theta, \mathcal{S}) = \frac{1}{M} \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{T} \log P_{i}^{\ell}(\bar{a}_{i}^{mt} | \bar{\mathbf{x}}^{mt}; \theta)$$
s.t. $(\bar{\mathbf{x}}^{mt}, \bar{a}_{i}^{mt}) \in \mathcal{S}$

- Monotonically declines as more data is added
- Equals to the full log-likelihood at the leafs of RLS tree

 $\boxed{14} \cdot \boxed{13} \cdot \boxed{12} \cdot \boxed{11} \cdot \boxed{10} \text{ Partial loglikelihood} = -3.2$

$BnB \ on \ RLS \ tree, \ step \ 2$

9 pll=-5.1

Refinements of the BnB for NRLS

- Bounding criterion is deterministic → may use statistical criterion to decide whether to extend a given branch or not
- Have to assess potential likelihood contribution of the branches that are not fully extended → choice probabilities are not known (the goal is not to compute them)
- Bounds for choice probabilities? Model specific
- $\ensuremath{\mathbf{9}}$ Yet, comparing two equilibria based on the already extended parts is possible \to LR type test
- ⇒ Poly-algorithm with dichotomous decision rule

Battery of MC tests

Α

Single equilibrium in the model Single equilibrium in the data

В

Multiple equilibria in the model Single equilibrium in the data

(

Multiple equilibria in the model Multiple equilibria in the data

- Two-step CCP estimator
- Nested pseudo-likelihood
- Several flavors of MPEC

vs. NRLS estimator

Battery of MC tests: preliminary results

Α

В

- Fastest, small sample bias
- Approaching MLE
- MLE

- Two-step CCP estimator
- Nested pseudo-likelihood
- MPEC

Small sample bias

- Failing due to multiplicity
- Local extrema

(

- Huge data requirements
- Failing due to multiplicity
- Curse of dimensionality

Monte Carlo setup (A and B)

- n = 3 points on the grid on the grid of costs
- 14 points in state space of the model
- 100 random samples from a single equilibrium (one market)
- 10,000 observations per market/equilibrium
- Uniform distribution over state space ↔ "ideal" data
- Data contains simulated discrete investment choices only
- Estimating one parameter in cost function

Monte Carlo A: no multiplicity

Number of equilibria in the model: 1 Number of equilibria in the data: 1 True value of parameter k1: 1.0

	mle-mpec	pml2step	npl	mle-bnb
Parameter: k1	4.0745	1.0146	1.0203	1.0206
MCSD	3.4974	0.0221	0.0237	0.0212
Bias	3.0745	0.0146	0.0203	0.0206
Log-likelihood	-12,989.73	-12,991.88	-12,987.10	-12,987.37
$ \Psi(P)-P $	0.00	0.04	0.01	0.00
$ \Gamma(v)-v $	0.00	0.27	0.15	0.00
Runs converged,	92.00	100.00	100.00	100.00
CPU time, sec	4.03	0.05	0.17	7.22
K-L divergence	4.78	0.00	0.00	0.00
abs deviation	0.38	0.02	0.01	0.00

Monte Carlo B, run 1: moderate multiplicity

Number of equilibria in the model: 5 Number of equilibria in the data: 1 True value of parameter k1: 1.0

	mle-mpec	pml2step	npl	mle-bnb
Parameter: k1	1.1090	0.9985	1.0009	0.9815
MCSD	0.0000	0.0000	0.0000	0.0000
Bias	0.1090	-0.0015	0.0009	-0.0185
Log-likelihood	-11,102.91	-11,102.91	-11,101.19	-11,092.05
$ \Psi(P)-P $	0.00	0.03	0.01	0.00
$ \Gamma(v) - v $	0.00	0.54	0.13	0.00
Runs converged,	100.00	100.00	100.00	100.00
CPU time, sec	2.35	0.04	0.23	11.13
K-L divergence	0.01	0.01	0.01	0.00
Abs deviation	0.03	0.03	0.04	0.01

Monte Carlo B, run 2: larger multiplicity

Number of equilibria in the model: 95 Number of equilibria in the data: 1 True value of parameter k1: 1.0

	mle-mpec	pml2step	npl	mle-bnb
Parameter: k1	1.0910	0.9948	1.0045	0.9970
MCSD	0.3202	0.0113	0.0094	0.0065
Bias	0.0910	-0.0052	0.0045	-0.0030
Log-likelihood	-6,714.92	-6,714.32	-6,722.46	-6,695.74
$ \Psi(P)-P $	0.00	0.10	0.12	0.00
$ \Gamma(v)-v $	0.00	1.22	0.94	0.00
Runs converged,	100.00	100.00	5.00	100.00
CPU time, sec	7.72	0.04	0.32	13.79
Mean K-L divergence	0.27	0.01	0.02	0.00
Mean abs deviation	0.06	0.04	0.06	0.00

Monte Carlo B, run 3: moderate multiplicity, bad start points

Number of equilibria in the model: 5 Number of equilibria in the data: 1 True value of parameter k1: 1.0

	mle-mpec	pml2step	npl	mle-bnb
Parameter: k1	6.7685	0.9948	1.0045	0.9970
MCSD	11.3401	0.0113	0.0094	0.0065
Bias	5.7685	-0.0052	0.0045	-0.0030
Log-likelihood	-6,709.38	-6,714.32	-6,722.46	-6,695.74
$ \Psi(P)-P $	0.00	0.10	0.12	0.00
$ \Gamma(v)-v $	0.00	1.22	0.94	0.00
Runs converged,	30.00	100.00	5.00	100.00
CPU time, sec	10.43	0.06	0.37	18.47
Mean K-L divergence	8.63	0.01	0.02	0.00
Mean abs deviation	0.25	0.04	0.06	0.00

NRLS Monte Carlo setup (C)

- n = 3 points on the grid on the grid of costs
- 14 points in state space of the model
- 109 MPE in total
- 1000 random samples from 3 different equilibria (3 markets)
- 100 observations per market/equilibrium
- Uniform distribution over state space ↔ "ideal" data
- Data contains simulated discrete investment choices only
- Estimating one parameter in cost function

Distribution of estimated k_1 parameter

MC results and numerical performance of NRLS

 Average bias and RMSE of the estimates of the cost of investment parameter (true value is 10.0)

Bias =
$$0.0737$$

RMSE = 0.8712

- Average fraction of MPE computed by BnB relative to RLS
 0.321 (std=0.11635)
- Average fraction of stages solved by BnB relative to RLS 0.263 (std=0.09725)
- \bullet All 3 MPE correctly identified by BnB in 98.4% of runs

Distribution of computational reduction factor

Conclusions

- Full solution MLE estimator for dynamic games of a particular type, namely directional dynamic games (DDGs)
- Nested loop: outer likelihood max + inner model solver
- Need to maximize over the set of all equilibria ↔ daunting computational task
- Smart BnB algorithm not to waste time on unlikely MPE
- Further refinement of BnB bounding function based on statistical argument
- Horse race with existing estimators