**Python for Data Analysis** 

# **Tour de Python Level 2 ●**○○○

- Python stdlib
- import syntax
- Python packages

### built-in Python

- Everything we've talked about so far is referred to as part of the Python "built-in"s
- Every Python session has access to everything we've learned no matter what
- The built-ins are general purpose building blocks: "primitive" data types (like strings, integers, dictionaries), control flow statements, basic operators, etc

### moving on (briefly) to the Python stdlib

- every Python installation also comes with special data types, operators, functions, and methods to address specific types of problems
  - ex. datetime for storing time data that are cognizant of year/month/day/timezone
- by default these are not loaded into each Python session, but instead have to be imported
- stdlib = "standard library"

### Python modules

- any .py file can also be referred to as a "Python module"
- modules can be imported using one of four styles of import syntax. here's one of them:

```
In [1]: import math
```

- the list of modules already accessible to any vanilla Python installation because they are in the stdlib are listed online at <a href="https://docs.python.org/3/library/">https://docs.python.org/3/library/</a> (<a href="https://docs.python.org/3/library/">https://docs.python.org/3/library/</a>) ···>
- importing a module makes its code definitions accessible in whatever environment they are being imported to

### Variants of import syntax and namespaces

• Python provides 3 styles of import syntax that affect the namespacing of the imported module and its members

```
In [2]: import math
math.ceil(5)
Out[2]: 5
```

## Anatomy of import syntax 1

if import syntax is:

import module\_name

then call syntax is:

module\_name.member\_name

```
In [3]: import math as m
    m.ceil(5)
Out[3]: 5
```

# Anatomy of import syntax 2

if import syntax is:

import module\_name as alias

then call syntax is:

alias.member\_name

```
In [4]: from math import ceil
  ceil(5)
```

Out[4]: 5

# Anatomy of import syntax 3

if import syntax is:

from module\_name import member\_name, ...

then call syntax is:

member\_name

### stdlib greatest hits

- datetime
- random.seed, random.random
- os.path.exists,os.path.join,os.path.abspath
- csv.reader,csv.DictReader
- csv.writer
- json.loads, json.dumps

### Get your feet wet

In the Python interpreter, try using the 3 different styles of import syntax to import the following **functions**, and call them properly based on the type of import syntax you used. You will need to exit and re-enter your python session to clear your prior import syntax each time.

- random.random
- os.getcwd

### Going past the stdlib

- remember: the stdlib is maintained by the Python Software Foundation and comes with every installation of Python
- other members of the Python community write their own extensions to the Python built-ins called **packages** 
  - usually they are even more specialized than modules in the stdlib

### Introducing our data analysis packages

- Pandas
  - used for processing tabular data
  - core data type is the DataFrame
  - port of R's DataFrame paradigm
- Matplotlib
  - used to generate charts such as histograms or box plots from Python data structures
  - port of MATLAB's charting functionalilty

### **Installing** python packages

- lucky you you don't have to! For this class, since we used the Anaconda distribution of Python, the python packages we want to use are already installed!
  - the full list for your installation can be found at <u>https://docs.anaconda.com/anaconda/packages/pkg-docs</u> (<u>https://docs.anaconda.com/anaconda/packages/pkg-docs</u>) →
- more generally: there are many ways to find and download community-supported Python extensions, but the most popular way is via a package manager that downloads from PyPI at <a href="https://pypi.python.org/pypi">https://pypi.python.org/pypi</a>)

----

popular package managers include pip, pipenv, and conda

pandas

# **Tour de Python Level 2** ○●○○

- DataFrame
- Series
- Python attributes
- DataFrame indexing
- Querying DataFrames with boolean series

```
In [5]:
          import pandas as pd
In [6]: df = pd.read_csv("iris.csv")
In [7]:
          type(df)
          pandas.core.frame.DataFrame
Out[7]:
In [8]:
          df.head()
Out[8]:
             Sepal Length Sepal Width Petal Length Petal Width Species
           0 5.1
                       3.5
                                1.4
                                         0.2
                                                  setosa
```

setosa

setosa

setosa

setosa

**1** 4.9

**2** 4.7

**3** 4.6

4 5.0

3.0

3.2

3.1

3.6

1.4

1.3

1.5

1.4

0.2

0.2

0.2

0.2

```
In [9]: df.head(2)
```

#### Out[9]:

|   | Sepal Length | Sepal Width | Petal Length | Petal Width | Species |
|---|--------------|-------------|--------------|-------------|---------|
| 0 | 5.1          | 3.5         | 1.4          | 0.2         | setosa  |
| 1 | 4.9          | 3.0         | 1.4          | 0.2         | setosa  |

### The pandas dataframe

- a two dimensional data structure representing tabular data
- has columns and rows
- each column's data is of the same data type

### Creating a pandas dataframe

- use a convenience function against a file on disk
  - <u>pd.read\_csv (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read\_csv.html)</u>, for CSV data
  - <u>pd.read\_table (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read\_table.html)</u>, for general reading of tabular data, including .tsv files
  - <u>pd.read\_json (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read\_json.html)</u> for JSON data
  - <u>pd.read\_excel (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read\_excel.html)</u> for Excel files, particularly useful for excel files with many sheets
  - <u>pd.read\_html (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read\_html.html)</u> for reading HTML s

```
In [10]: df = pd.read_csv("iris.csv")
```

### Anatomy of a pandas dataframe convenience function

variable\_name = pd.convenience\_method(path\_as\_a\_string)

- read\_csv
- read table
- read\_json
- read\_excel
- read\_html

PS: Of course, remember that the path can be an absolute or relative path!

### Creating a pandas dataframe inline

- instantiate a dataframe instance directly, passing it a data parameter with something that can be cast into a dataframe shape
- the general format for something that can be cast to a dataframe shape takes a form like: [[row],[row],[row]]

### Anatomy of instantiating a DataFrame directly

variable\_name = pd.DataFrame(data=data\_castable\_to\_dataframe)

### Anatomy of instantiating a DataFrame directly

variable\_name = pd.DataFrame(data=data\_castable\_to\_dataframe,
columns=list\_of\_column\_names)

### Python attributes

- instances of more complex data types have **attributes** associated with them
- they are accessible using the dot notation like variable name.attribute name
- these are not callable in practical terms to us at this point, this means they don't need the parentheses () after them and simply return the static data that attribute refers to

### **DataFrame attributes**

- DataFrames are one case of a data type that has attributes associated with them
- three interesting ones for us are
  - DataFrame.columns
  - DataFrame.shape
  - DataFrame.values

```
In [16]: df.shape
```

Out[16]: (150, 5)

```
In [17]:
         df.values
          array([[5.1, 3.5, 1.4, 0.2, 'setosa'],
Out[17]:
                 [4.9, 3.0, 1.4, 0.2, 'setosa'],
                 [4.7, 3.2, 1.3, 0.2, 'setosa'],
                 [4.6, 3.1, 1.5, 0.2, 'setosa'],
                 [5.0, 3.6, 1.4, 0.2, 'setosa'],
                 [5.4, 3.9, 1.7, 0.4, 'setosa'],
                 [4.6, 3.4, 1.4, 0.3, 'setosa'],
                 [5.0, 3.4, 1.5, 0.2, 'setosa'],
                 [4.4, 2.9, 1.4, 0.2, 'setosa'],
                 [4.9, 3.1, 1.5, 0.1, 'setosa'],
                 [5.4, 3.7, 1.5, 0.2, 'setosa'],
                 [4.8, 3.4, 1.6, 0.2, 'setosa'],
                 [4.8, 3.0, 1.4, 0.1, 'setosa'],
                 [4.3, 3.0, 1.1, 0.1, 'setosa'],
                 [5.8, 4.0, 1.2, 0.2, 'setosa'],
                 [5.7, 4.4, 1.5, 0.4, 'setosa'],
                 [5.4, 3.9, 1.3, 0.4, 'setosa'],
                 [5.1, 3.5, 1.4, 0.3, 'setosa'],
                 [5.7, 3.8, 1.7, 0.3, 'setosa'],
                 [5.1, 3.8, 1.5, 0.3, 'setosa'],
                 [5.4, 3.4, 1.7, 0.2, 'setosa'],
                 [5.1, 3.7, 1.5, 0.4, 'setosa'],
                 [4.6, 3.6, 1.0, 0.2, 'setosa'],
                 [5.1, 3.3, 1.7, 0.5, 'setosa'],
                 [4.8, 3.4, 1.9, 0.2, 'setosa'],
                 [5.0, 3.0, 1.6, 0.2, 'setosa'],
                 [5.0, 3.4, 1.6, 0.4, 'setosa'],
                 [5.2, 3.5, 1.5, 0.2, 'setosa'],
                 [5.2, 3.4, 1.4, 0.2, 'setosa'].
                 [4.7, 3.2, 1.6, 0.2, 'setosa'].
                 [4.8, 3.1, 1.6, 0.2, 'setosa'],
                 [5.4, 3.4, 1.5, 0.4, 'setosa'].
                 [5.2, 4.1, 1.5, 0.1, 'setosa'],
                 [5.5, 4.2, 1.4, 0.2, 'setosa'].
```

```
[4.9, 3.1, 1.5, 0.1, 'setosa'],
[5.0, 3.2, 1.2, 0.2, 'setosa'],
[5.5, 3.5, 1.3, 0.2, 'setosa'],
[4.9, 3.1, 1.5, 0.1, 'setosa'],
[4.4, 3.0, 1.3, 0.2, 'setosa'],
[5.1, 3.4, 1.5, 0.2, 'setosa'],
[5.0, 3.5, 1.3, 0.3, 'setosa'],
[4.5, 2.3, 1.3, 0.3, 'setosa'],
[4.4, 3.2, 1.3, 0.2, 'setosa'],
[5.0, 3.5, 1.6, 0.6, 'setosa'],
[5.1, 3.8, 1.9, 0.4, 'setosa'],
[4.8, 3.0, 1.4, 0.3, 'setosa'],
[5.1, 3.8, 1.6, 0.2, 'setosa'],
[4.6, 3.2, 1.4, 0.2, 'setosa'],
[5.3, 3.7, 1.5, 0.2, 'setosa'],
[5.0, 3.3, 1.4, 0.2, 'setosa'],
[7.0, 3.2, 4.7, 1.4, 'versicolor'],
[6.4, 3.2, 4.5, 1.5, 'versicolor'],
[6.9, 3.1, 4.9, 1.5, 'versicolor'],
[5.5, 2.3, 4.0, 1.3, 'versicolor'],
[6.5, 2.8, 4.6, 1.5, 'versicolor'],
[5.7, 2.8, 4.5, 1.3, 'versicolor'],
[6.3, 3.3, 4.7, 1.6, 'versicolor'],
[4.9, 2.4, 3.3, 1.0, 'versicolor'],
[6.6, 2.9, 4.6, 1.3, 'versicolor'],
[5.2, 2.7, 3.9, 1.4, 'versicolor'],
[5.0, 2.0, 3.5, 1.0, 'versicolor'],
[5.9, 3.0, 4.2, 1.5, 'versicolor'],
[6.0, 2.2, 4.0, 1.0, 'versicolor'],
[6.1, 2.9, 4.7, 1.4, 'versicolor'],
[5.6, 2.9, 3.6, 1.3, 'versicolor'],
[6.7, 3.1, 4.4, 1.4, 'versicolor'],
[5.6, 3.0, 4.5, 1.5, 'versicolor'],
[5.8, 2.7, 4.1, 1.0, 'versicolor'],
[6.2, 2.2, 4.5, 1.5, 'versicolor'],
[5.6, 2.5, 3.9, 1.1, 'versicolor'],
[5.9, 3.2, 4.8, 1.8, 'versicolor'],
[6.1, 2.8, 4.0, 1.3, 'versicolor'],
```

```
[6.3, 2.5, 4.9, 1.5, 'versicolor'],
[6.1, 2.8, 4.7, 1.2, 'versicolor'],
[6.4, 2.9, 4.3, 1.3, 'versicolor'],
[6.6, 3.0, 4.4, 1.4, 'versicolor'],
[6.8, 2.8, 4.8, 1.4, 'versicolor'],
[6.7, 3.0, 5.0, 1.7, 'versicolor'],
[6.0, 2.9, 4.5, 1.5, 'versicolor'],
[5.7, 2.6, 3.5, 1.0, 'versicolor'],
[5.5, 2.4, 3.8, 1.1, 'versicolor'],
[5.5, 2.4, 3.7, 1.0, 'versicolor'],
[5.8, 2.7, 3.9, 1.2, 'versicolor'],
[6.0, 2.7, 5.1, 1.6, 'versicolor'],
[5.4, 3.0, 4.5, 1.5, 'versicolor'],
[6.0, 3.4, 4.5, 1.6, 'versicolor'],
[6.7, 3.1, 4.7, 1.5, 'versicolor'],
[6.3, 2.3, 4.4, 1.3, 'versicolor'],
[5.6, 3.0, 4.1, 1.3, 'versicolor'],
[5.5, 2.5, 4.0, 1.3, 'versicolor'],
[5.5, 2.6, 4.4, 1.2, 'versicolor'],
[6.1, 3.0, 4.6, 1.4, 'versicolor'],
[5.8, 2.6, 4.0, 1.2, 'versicolor'],
[5.0, 2.3, 3.3, 1.0, 'versicolor'],
[5.6, 2.7, 4.2, 1.3, 'versicolor'],
[5.7, 3.0, 4.2, 1.2, 'versicolor'],
[5.7, 2.9, 4.2, 1.3, 'versicolor'],
[6.2, 2.9, 4.3, 1.3, 'versicolor'],
[5.1, 2.5, 3.0, 1.1, 'versicolor'],
[5.7, 2.8, 4.1, 1.3, 'versicolor'],
[6.3, 3.3, 6.0, 2.5, 'virginica'],
[5.8, 2.7, 5.1, 1.9, 'virginica'],
[7.1, 3.0, 5.9, 2.1, 'virginica'],
[6.3, 2.9, 5.6, 1.8, 'virginica'],
[6.5, 3.0, 5.8, 2.2, 'virginica'],
[7.6, 3.0, 6.6, 2.1, 'virginica'],
[4.9, 2.5, 4.5, 1.7, 'virginica'],
[7.3, 2.9, 6.3, 1.8, 'virginica'],
[6.7, 2.5, 5.8, 1.8, 'virginica'],
[7.2, 3.6, 6.1, 2.5, 'virginica'],
```

```
[6.5, 3.2, 5.1, 2.0, 'virginica'],
[6.4, 2.7, 5.3, 1.9, 'virginica'],
[6.8, 3.0, 5.5, 2.1, 'virginica'],
[5.7, 2.5, 5.0, 2.0, 'virginica'],
[5.8, 2.8, 5.1, 2.4, 'virginica'],
[6.4, 3.2, 5.3, 2.3, 'virginica'],
[6.5, 3.0, 5.5, 1.8, 'virginica'],
[7.7, 3.8, 6.7, 2.2, 'virginica'],
[7.7, 2.6, 6.9, 2.3, 'virginica'],
[6.0, 2.2, 5.0, 1.5, 'virginica'],
[6.9, 3.2, 5.7, 2.3, 'virginica'],
[5.6, 2.8, 4.9, 2.0, 'virginica'],
[7.7, 2.8, 6.7, 2.0, 'virginica'],
[6.3, 2.7, 4.9, 1.8, 'virginica'],
[6.7, 3.3, 5.7, 2.1, 'virginica'],
[7.2, 3.2, 6.0, 1.8, 'virginica'],
[6.2, 2.8, 4.8, 1.8, 'virginica'],
[6.1, 3.0, 4.9, 1.8, 'virginica'],
[6.4, 2.8, 5.6, 2.1, 'virginica'],
[7.2, 3.0, 5.8, 1.6, 'virginica'],
[7.4, 2.8, 6.1, 1.9, 'virginica'],
[7.9, 3.8, 6.4, 2.0, 'virginica'],
[6.4, 2.8, 5.6, 2.2, 'virginica'],
[6.3, 2.8, 5.1, 1.5, 'virginica'],
[6.1, 2.6, 5.6, 1.4, 'virginica'],
[7.7, 3.0, 6.1, 2.3, 'virginica'],
[6.3, 3.4, 5.6, 2.4, 'virginica'],
[6.4, 3.1, 5.5, 1.8, 'virginica'],
[6.0, 3.0, 4.8, 1.8, 'virginica'],
[6.9, 3.1, 5.4, 2.1, 'virginica'],
[6.7, 3.1, 5.6, 2.4, 'virginica'],
[6.9, 3.1, 5.1, 2.3, 'virginica'],
[5.8, 2.7, 5.1, 1.9, 'virginica'],
[6.8, 3.2, 5.9, 2.3, 'virginica'],
[6.7, 3.3, 5.7, 2.5, 'virginica'],
[6.7, 3.0, 5.2, 2.3, 'virginica'],
[6.3, 2.5, 5.0, 1.9, 'virginica'],
[6.5, 3.0, 5.2, 2.0, 'virginica'],
```

```
[6.2, 3.4, 5.4, 2.3, 'virginica'],
[5.9, 3.0, 5.1, 1.8, 'virginica']], dtype=object)
```

### **Series**

The other important data type in the pandas package is that of a <class 'pandas.core.series | (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html), which is effectively the one-dimensional representation of a DataFrame axis - for example one row, or one column.

```
In [18]: sepal_length = df['Sepal Length']
In [19]: type(sepal_length)
Out[19]: pandas.core.series.Series
```

```
In [20]:
          sepal_length
                   5.1
Out[20]:
           1
                   4.9
                   4.7
           2
                   4.6
           3
                   5.0
           4
           5
                   5.4
           6
                   4.6
           7
                   5.0
           8
                   4.4
           9
                   4.9
           10
                   5.4
                   4.8
           11
           12
                   4.8
           13
                   4.3
           14
                   5.8
           15
                   5.7
           16
                   5.4
           17
                   5.1
           18
                   5.7
                   5.1
           19
                   5.4
           20
           21
                   5.1
           22
                   4.6
                   5.1
           23
           24
                   4.8
           25
                   5.0
           26
                   5.0
           27
                   5.2
                   5.2
           28
                   4.7
           29
           120
                   6.9
           121
                   5.6
           122
                   7.7
```

```
123
       6.3
       6.7
124
125
       7.2
126
       6.2
127
       6.1
       6.4
128
129
       7.2
       7.4
130
131
       7.9
132
       6.4
       6.3
133
134
       6.1
       7.7
135
136
       6.3
       6.4
137
138
       6.0
       6.9
139
       6.7
140
141
       6.9
142
       5.8
143
       6.8
144
       6.7
145
       6.7
146
       6.3
147
       6.5
       6.2
148
       5.9
149
Name: Sepal Length, Length: 150, dtype: float64
```

### **Series attributes**

```
In [21]: sepal_length.name
Out[21]: 'Sepal Length'
In [22]: sepal_length.dtype
Out[22]: dtype('float64')
In [23]: sepal_length.shape
Out[23]: (150,)
```

### Indexing a DataFrame

Index notation like we are used to with one-dimensions data structures like lists and dictionaries is modified a bit for two-dimensional DataFrames.

To illuminate series, we already saw the following:

```
In [24]: sepal_length = df['Sepal Length']
```

### Anatomy of basic indexing for columns

variable\_name[column\_label]

# Anatomy of one-dimensional iloc indexing for rows

variable\_name.iloc[row\_index]

```
In [26]: df.iloc[1,1]
Out[26]: 3.0
```

# Anatomy of two-dimensional iloc indexing for cells

variable\_name.iloc[row\_index,column\_index]

```
In [27]:
          df.loc[1]
          Sepal Length
                              4.9
Out[27]:
          Sepal Width
          Petal Length
          Petal Width
                              0.2
          Species
                           setosa
          Name: 1, dtype: object
In [28]:
          df.loc[1,'Sepal Width']
          3.0
Out[28]:
```

## Anatomy of one- and two-dimensional loc indexing

variable\_name.loc[row\_label]

variable\_name.loc[row\_label,column\_label]

# Basic querying with a dataframe

```
In [29]: # you can use expressions to slice and dice using logic
print(df[df['Sepal Length'] == 6.9])
```

|     | Sepal Length | Sepal Width | Petal Length | Petal Width | Species    |
|-----|--------------|-------------|--------------|-------------|------------|
| 52  | 6.9          | 3.1         | 4.9          | 1.5         | versicolor |
| 120 | 6.9          | 3.2         | 5.7          | 2.3         | virginica  |
| 139 | 6.9          | 3.1         | 5.4          | 2.1         | virginica  |
| 141 | 6.9          | 3.1         | 5.1          | 2.3         | virginica  |

# Anatomy of boolean array indexing

variable\_name[series\_wise\_boolean\_expression]

Use & and | to represent and or, respectively

Grouping data

```
In [33]: groups = df.groupby("Species")
```

```
print(key)
    print(group.head())
setosa
   Sepal Length Sepal Width Petal Length Petal Width Species
            5.1
                          3.5
                                        1.4
                                                     0.2 setosa
0
            4.9
                          3.0
                                        1.4
                                                     0.2 setosa
1
2
            4.7
                         3.2
                                        1.3
                                                     0.2 setosa
            4.6
                         3.1
                                        1.5
                                                     0.2 setosa
3
            5.0
                         3.6
                                        1.4
                                                     0.2 setosa
versicolor
                  Sepal Width Petal Length Petal Width
    Sepal Length
                                                              Species
50
             7.0
                           3.2
                                         4.7
                                                      1.4
                                                           versicolor
51
             6.4
                           3.2
                                         4.5
                                                      1.5
                                                           versicolor
             6.9
52
                           3.1
                                         4.9
                                                      1.5
                                                           versicolor
53
             5.5
                          2.3
                                         4.0
                                                      1.3
                                                           versicolor
54
             6.5
                          2.8
                                         4.6
                                                      1.5
                                                           versicolor
virginica
                   Sepal Width
                               Petal Length Petal Width
     Sepal Length
                                                              Species
100
              6.3
                            3.3
                                          6.0
                                                       2.5
                                                            virginica
101
              5.8
                            2.7
                                          5.1
                                                       1.9
                                                            virginica
102
              7.1
                            3.0
                                          5.9
                                                       2.1 virginica
103
              6.3
                           2.9
                                          5.6
                                                       1.8 virginica
```

3.0

5.8

2.2

virginica

In [34]:

104

for key, group in groups:

6.5

```
In [35]: # This gives you a convenient way to apply logic based on a group filter
# For example, use the DataFrame.describe method to easily get summary statistics
    on each species group
    for key, group in groups:
        print(key)
        print(group.describe())
```

| setosa |              |             |              |             |
|--------|--------------|-------------|--------------|-------------|
|        | Sepal Length | Sepal Width | Petal Length | Petal Width |
| count  | 50.00000     | 50.000000   | 50.000000    | 50.00000    |
| mean   | 5.00600      | 3.418000    | 1.464000     | 0.24400     |
| std    | 0.35249      | 0.381024    | 0.173511     | 0.10721     |
| min    | 4.30000      | 2.300000    | 1.000000     | 0.10000     |
| 25%    | 4.80000      | 3.125000    | 1.400000     | 0.20000     |
| 50%    | 5.00000      | 3.400000    | 1.500000     | 0.20000     |
| 75%    | 5.20000      | 3.675000    | 1.575000     | 0.30000     |
| max    | 5.80000      | 4.400000    | 1.900000     | 0.60000     |
| versic | olor         |             |              |             |
|        | Sepal Length | Sepal Width | Petal Length | Petal Width |
| count  | 50.000000    | 50.000000   | 50.000000    | 50.000000   |
| mean   | 5.936000     | 2.770000    | 4.260000     | 1.326000    |
| std    | 0.516171     | 0.313798    | 0.469911     | 0.197753    |
| min    | 4.900000     | 2.000000    | 3.000000     | 1.000000    |
| 25%    | 5.600000     | 2.525000    | 4.000000     | 1.200000    |
| 50%    | 5.900000     | 2.800000    | 4.350000     | 1.300000    |
| 75%    | 6.300000     | 3.000000    | 4.600000     | 1.500000    |
| max    | 7.000000     | 3.400000    | 5.100000     | 1.800000    |
| virgin | ica          |             |              |             |
|        | Sepal Length | Sepal Width | Petal Length | Petal Width |
| count  | 50.00000     | 50.000000   | 50.000000    | 50.00000    |
| mean   | 6.58800      | 2.974000    | 5.552000     | 2.02600     |
| std    | 0.63588      | 0.322497    | 0.551895     | 0.27465     |
| min    | 4.90000      | 2.200000    | 4.500000     | 1.40000     |
| 25%    | 6.22500      | 2.800000    | 5.100000     | 1.80000     |
| 50%    | 6.50000      | 3.000000    | 5.550000     | 2.00000     |

| 75% | 6.90000 | 3.175000 | 5.875000 | 2.30000 |
|-----|---------|----------|----------|---------|
| max | 7.90000 | 3.800000 | 6.900000 | 2.50000 |

```
In [36]:
         # You can chain an aggregation onto a groupby to get groupwise stats outside of wh
         at is in `describe`
         print(df.groupby("Species").sum())
                     Sepal Length Sepal Width Petal Length Petal Width
         Species
                            250.3
                                          170.9
                                                         73.2
         setosa
                                                                      12.2
         versicolor
                            296.8
                                          138.5
                                                        213.0
                                                                      66.3
         virginica
                            329.4
                                          148.7
                                                        277.6
                                                                     101.3
In [37]:
         print(df.groupby("Species").max())
                     Sepal Length Sepal Width Petal Length Petal Width
         Species
         setosa
                               5.8
                                            4.4
                                                          1.9
                                                                       0.6
         versicolor
                               7.0
                                            3.4
                                                          5.1
                                                                       1.8
                                                          6.9
         virginica
                                            3.8
                                                                       2.5
                               7.9
In [38]:
         print(df.groupby("Species").min())
                     Sepal Length Sepal Width Petal Length Petal Width
         Species
         setosa
                               4.3
                                            2.3
                                                          1.0
                                                                       0.1
                                            2.0
         versicolor
                               4.9
                                                          3.0
                                                                       1.0
```

2.2

4.5

1.4

4.9

virginica

### Get your feet wet

Choose any of the data sets I've provided in Canvas to begin practicing with these first 5 pandas tasks.

#### Try to:

- 1. Load the data as a pandas DataFrame.
  - HINT: Use a convenience method to pull the data into a DataFrame from a file path!
- 2. Describe the data in the DataFrame using the describe() method.
- 3. Select just row 5 from the DataFrame. Now how about the value from row 5, column
  - 2. How about selecting a whole column by its label?
- 4. Use the groupby() method against a categorial column in your data.

# **Tour de Python Level 2** ○○●○

- pandas based processing techniques for
  - dealing with duplicates
  - dealing with sparse data
  - applying custom logic
  - quick vis with just pandas

# **Dealing with duplicates**

```
In [39]: df[df.duplicated()]
```

#### Out[39]:

|     | Sepal Length | Sepal Width | Petal Length | Petal Width | Species   |
|-----|--------------|-------------|--------------|-------------|-----------|
| 34  | 4.9          | 3.1         | 1.5          | 0.1         | setosa    |
| 37  | 4.9          | 3.1         | 1.5          | 0.1         | setosa    |
| 142 | 5.8          | 2.7         | 5.1          | 1.9         | virginica |

```
In [40]: df[df.duplicated(keep=False)]
```

#### Out[40]:

|     | Sepal Length | Sepal Width | Petal Length | Petal Width | Species   |
|-----|--------------|-------------|--------------|-------------|-----------|
| 9   | 4.9          | 3.1         | 1.5          | 0.1         | setosa    |
| 34  | 4.9          | 3.1         | 1.5          | 0.1         | setosa    |
| 37  | 4.9          | 3.1         | 1.5          | 0.1         | setosa    |
| 101 | 5.8          | 2.7         | 5.1          | 1.9         | virginica |
| 142 | 5.8          | 2.7         | 5.1          | 1.9         | virginica |

```
In [41]: dropped_df = df.drop_duplicates()
In [42]: dropped_df.shape
Out[42]: (147, 5)
```

Dealing with sparse data

```
In [43]: sparse_df = pd.read_csv("hepatitis.csv", na_values="?", header=None)
In [44]:
        sparse_df.head()
```

#### Out[44]:

| _ |   | 0 | 1  | 2 | 3   | 4 | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15    | 16    | 17  | 18   | 19 |
|---|---|---|----|---|-----|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-----|------|----|
|   | 0 | 2 | 30 | 2 | 1.0 | 2 | 2.0 | 2.0 | 2.0 | 1.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 1.0 | 85.0  | 18.0  | 4.0 | NaN  | 1  |
|   | 1 | 2 | 50 | 1 | 1.0 | 2 | 1.0 | 2.0 | 2.0 | 1.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.9 | 135.0 | 42.0  | 3.5 | NaN  | 1  |
|   | 2 | 2 | 78 | 1 | 2.0 | 2 | 1.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.7 | 96.0  | 32.0  | 4.0 | NaN  | 1  |
| _ | 3 | 2 | 31 | 1 | NaN | 1 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.7 | 46.0  | 52.0  | 4.0 | 80.0 | 1  |
|   | 4 | 2 | 34 | 1 | 2.0 | 2 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 1.0 | NaN   | 200.0 | 4.0 | NaN  | 1  |

```
In [45]: sparse_df.shape
Out[45]: (155, 20)
In [46]: sparse_df.dropna().shape
Out[46]: (80, 20)
```

In [47]: sparse\_df.fillna(1000).head()

### Out[47]:

|   | 0 | 1  | 2 | 3      | 4 | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15     | 16    | 17  | 18     | 19 |
|---|---|----|---|--------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|-------|-----|--------|----|
| 0 | 2 | 30 | 2 | 1.0    | 2 | 2.0 | 2.0 | 2.0 | 1.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 1.0 | 85.0   | 18.0  | 4.0 | 1000.0 | 1  |
| 1 | 2 | 50 | 1 | 1.0    | 2 | 1.0 | 2.0 | 2.0 | 1.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.9 | 135.0  | 42.0  | 3.5 | 1000.0 | 1  |
| 2 | 2 | 78 | 1 | 2.0    | 2 | 1.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.7 | 96.0   | 32.0  | 4.0 | 1000.0 | 1  |
| 3 | 2 | 31 | 1 | 1000.0 | 1 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.7 | 46.0   | 52.0  | 4.0 | 80.0   | 1  |
| 4 | 2 | 34 | 1 | 2.0    | 2 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 1.0 | 1000.0 | 200.0 | 4.0 | 1000.0 | 1  |

In [48]: sparse\_df.interpolate().head()

### Out[48]:

|   | 0 | 1  | 2 | 3   | 4 | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15    | 16    | 17  | 18   | 19 |
|---|---|----|---|-----|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-----|------|----|
| 0 | 2 | 30 | 2 | 1.0 | 2 | 2.0 | 2.0 | 2.0 | 1.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 1.0 | 85.0  | 18.0  | 4.0 | NaN  | 1  |
| 1 | 2 | 50 | 1 | 1.0 | 2 | 1.0 | 2.0 | 2.0 | 1.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.9 | 135.0 | 42.0  | 3.5 | NaN  | 1  |
| 2 | 2 | 78 | 1 | 2.0 | 2 | 1.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.7 | 96.0  | 32.0  | 4.0 | NaN  | 1  |
| 3 | 2 | 31 | 1 | 2.0 | 1 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0.7 | 46.0  | 52.0  | 4.0 | 80.0 | 1  |
| 4 | 2 | 34 | 1 | 2.0 | 2 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 1.0 | 70.5  | 200.0 | 4.0 | 77.5 | 1  |

## Applying custom logic cellwise

Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz"

```
In [49]: import numpy as np
    num_df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=['A','B','C'
    ,'D'])
In [50]: num_df.head()
```

#### Out[50]:

|   | Α  | В  | С  | D  |
|---|----|----|----|----|
| 0 | 34 | 5  | 68 | 78 |
| 1 | 28 | 23 | 30 | 65 |
| 2 | 82 | 88 | 82 | 48 |
| 3 | 89 | 75 | 9  | 53 |
| 4 | 93 | 77 | 79 | 52 |

```
In [51]: def fizz_buzz_ify(cell):
    cell = float(cell)
    if (cell % 3.0 == 0) & (cell % 5.0 == 0):
        return "FizzBuzz"
    elif cell % 3.0 == 0:
        return "Fizz"
    elif cell % 5.0 == 0:
        return "Buzz"
    else:
        return cell
```

In [52]: | num\_df.applymap(fizz\_buzz\_ify).head()

### Out[52]:

|   | Α    | В        | С        | D    |
|---|------|----------|----------|------|
| 0 | 34   | Buzz     | 68       | Fizz |
| 1 | 28   | 23       | FizzBuzz | Buzz |
| 2 | 82   | 88       | 82       | Fizz |
| 3 | 89   | FizzBuzz | Fizz     | 53   |
| 4 | Fizz | 77       | 79       | 52   |

### Quick vis with just pandas

Pandas also includes some built-in visualization methods against dataframes for common plots. It is as simple as calling the hist() or plot() method on a dataframe to get a visualization.

```
In [54]: df.plot('Sepal Length', 'Sepal Width', kind="scatter")
Out[54]: <matplotlib.axes._subplots.AxesSubplot at 0x110841358>
```



```
In [55]: df.hist()
```



```
In [56]: df[df['Species'] == 'virginica'].hist(column=['Sepal Width'])
```



### **Exercises**

Using the chipotle.tsv file from Canvas, answer the following questions. (HINT: What convenience method works on .tsv s?)

- 1. What is the number of observations in this dataset?
  - HINT: (1) and (2) can be answered with the same DataFrame attribute!
- 2. What is the number of columns in the dataset?
- 3. What are the names of all the columns of this dataset?
- 4. What was the most ordered item?
  - HINT: Consider a groupby with an aggregation!
  - HINT: You will need to add up the quantity field across items of the same item\_name and look at the results. There is an aggregation method called sum().
- 5. How many times was a Veggie Salad Bowl ordered?

# Matplotlib

# **Tour de Python Level 2** ○○○●

- basic Matplotlib
- a realistic example



# A more realistic example

Take a look at the file "gdp\_time\_series" in your terminal with cat. You'll notice it's not so well formatted...

```
In [59]: | # first, our container list
         data list of lists = []
         # now open our file
         f = open("gdp time series", "r")
         # f that is my file "qdp time series" on disk
         # iterate through each row after row 3; if you look at the data you'll see there's
         # non-data in the first 3 lines
         for row in f.readlines()[3:]: # use slice notation to skip the first 3 lines
             # split on arbitrary amount of whitespace
             current row = row.split()
             # row.split is going to cause each row to turn into a list of strings
             # i.e. ['1950','0.02',...]
             # now add that list to our container list
             data list of lists.append(current row)
         f.close()
         # at the end of this for loop, in general, the data will look like:
         # [['YEAR', 'AUSTRIA', 'CANADA'....],['1950', '0.02'...]]
         # now that we have a bunch of data in our list of lists, instantiate a DataFrame d
         irectly
         # the first list in our list of lists is the header column
         # the rest are our actual data
         # so we slice the list of lists when we specify the data and the columns
         df = pd.DataFrame(data=data list of lists[1:],columns=data list of lists[0])
```

In [60]: | df.head()

### Out[60]:

|   | YEAR | AUSTRIA  | CANADA   | FRANCE    | GERMANY  | GREECE    | ITALY    | SWEDEN    | UK       | USA      |
|---|------|----------|----------|-----------|----------|-----------|----------|-----------|----------|----------|
| 0 | 1950 | 0.027523 | 3.651109 | 10.652861 | 5.725433 | 18.423605 | 0.799001 | 17.072701 | 1.033571 | 4.470303 |
| 1 | 1951 | 0.029406 | 3.734242 | 11.186672 | 6.256754 | 19.86624  | 0.829484 | 17.445339 | 1.060015 | 4.734335 |
| 2 | 1952 | 0.029357 | 3.932222 | 11.480235 | 6.70308  | 19.750938 | 0.859817 | 17.011088 | 1.104598 | 4.826502 |
| 3 | 1953 | 0.030603 | 4.019939 | 11.688318 | 7.256435 | 22.217731 | 0.916962 | 18.063728 | 1.152221 | 4.981746 |
| 4 | 1954 | 0.033678 | 3.860731 | 12.092329 | 7.72644  | 22.690231 | 0.942153 | 19.031748 | 1.191948 | 4.79081  |

In [61]: df.describe()

### Out[61]:

|        | YEAR | AUSTRIA | CANADA   | FRANCE    | GERMANY   | GREECE    | ITALY    | SWEDEN    | UK       | USA      |
|--------|------|---------|----------|-----------|-----------|-----------|----------|-----------|----------|----------|
| count  | 34   | 34      | 34       | 34        | 34        | 34        | 34       | 34        | 34       | 34       |
| unique | 34   | 34      | 34       | 34        | 34        | 34        | 34       | 34        | 33       | 33       |
| top    | 1983 | 0.06178 | 6.062678 | 13.194351 | 15.720841 | 77.985801 | 2.825328 | 34.391346 | 1.355527 | 5.160474 |
| freq   | 1    | 1       | 1        | 1         | 1         | 1         | 1        | 1         | 2        | 2        |

```
In [62]:
          df.dtypes
                     object
          YEAR
Out[62]:
                     object
          AUSTRIA
          CANADA
                     object
          FRANCE
                     object
                     object
          GERMANY
          GREECE
                     object
                     object
          ITALY
          SWEDEN
                     object
          UK
                     object
                     object
          USA
          dtype: object
```

```
In [63]: # we sent it all the data as strings, but we actually want to be able to do math o
    n them
# so let's set the dtype of the entire dataframe as float
# here we overwrite 'df'
    df = pd.DataFrame(data=data_list_of_lists[1:], columns=data_list_of_lists[0], dtype e=float)
In [64]: df.dtypes
Out[64]: YEAR float64
```

float64

float64

float64 float64

float64 float64

float64

float64

float64

AUSTRIA

GERMANY GREECE

ITALY

UK

USA

SWEDEN

dtype: object

CANADA FRANCE

In [65]: df.describe()

### Out[65]:

|       | YEAR        | AUSTRIA   | CANADA    | FRANCE    | GERMANY   | GREECE    | ITALY     | SWEDEN    | UK        | USA       |
|-------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| count | 34.000000   | 34.000000 | 34.000000 | 34.000000 | 34.000000 | 34.000000 | 34.000000 | 34.000000 | 34.000000 | 34.000000 |
| mean  | 1966.500000 | 0.065533  | 5.817088  | 20.957515 | 13.428460 | 50.932949 | 1.757668  | 28.073149 | 1.576265  | 6.241882  |
| std   | 9.958246    | 0.025962  | 1.611434  | 7.369126  | 4.476840  | 24.196637 | 0.649375  | 7.221651  | 0.325664  | 1.227840  |
| min   | 1950.000000 | 0.027523  | 3.651109  | 10.652861 | 5.725433  | 18.423605 | 0.799001  | 17.011088 | 1.033571  | 4.470303  |
| 25%   | 1958.250000 | 0.043910  | 4.369293  | 14.160714 | 9.814249  | 28.701115 | 1.141946  | 20.886017 | 1.284349  | 5.080982  |
| 50%   | 1966.500000 | 0.061104  | 5.578620  | 20.049311 | 12.990514 | 46.669707 | 1.720711  | 28.657428 | 1.558952  | 6.206709  |
| 75%   | 1974.750000 | 0.087410  | 7.371888  | 27.614323 | 16.959558 | 74.144169 | 2.340225  | 34.850870 | 1.884099  | 7.327845  |
| max   | 1983.000000 | 0.107894  | 8.382785  | 32.095989 | 19.985983 | 85.949501 | 2.825328  | 38.665154 | 2.079010  | 8.164851  |

```
In [66]: df = df.astype({"YEAR": object})
```

In [67]: | df.head()

### Out[67]:

| _ |   | YEAR | AUSTRIA  | CANADA   | FRANCE    | GERMANY  | GREECE    | ITALY    | SWEDEN    | UK       | USA      |
|---|---|------|----------|----------|-----------|----------|-----------|----------|-----------|----------|----------|
|   | 0 | 1950 | 0.027523 | 3.651109 | 10.652861 | 5.725433 | 18.423605 | 0.799001 | 17.072701 | 1.033571 | 4.470303 |
|   | 1 | 1951 | 0.029406 | 3.734242 | 11.186672 | 6.256754 | 19.866240 | 0.829484 | 17.445339 | 1.060015 | 4.734335 |
|   | 2 | 1952 | 0.029357 | 3.932222 | 11.480235 | 6.703080 | 19.750938 | 0.859817 | 17.011088 | 1.104598 | 4.826502 |
|   | 3 | 1953 | 0.030603 | 4.019939 | 11.688318 | 7.256435 | 22.217731 | 0.916962 | 18.063728 | 1.152221 | 4.981746 |
|   | 4 | 1954 | 0.033678 | 3.860731 | 12.092329 | 7.726440 | 22.690231 | 0.942153 | 19.031748 | 1.191948 | 4.790810 |

```
In [68]: plt.plot(df['YEAR'],df['AUSTRIA'])
    plt.ylabel('Per Capita Annual GDP')
    plt.show()
```

