Analysis in \mathbb{R}^n : Section 1 Professor: Shabani

August 1, 2023

Analysis in \mathbb{R}^n Homework 7

Problem 1 Let $R \subset \mathbb{R}^n$ be a rectangle and $f: R \to \mathbb{R}$ continuous. Prove that f is integrable on R.

Solution.

Since R is a rectangle, it is closed and bounded in \mathbb{R}^n and thus compact. Thus, since f is continuous, we have shown in class that it is also uniformly continuous. So there exists a $\delta > 0$ such that for all $\varepsilon > 0$ with the standard metric in \mathbb{R}^n ,

$$d(x,y) < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{2\operatorname{Vol}(R)}.$$

Let P_k be a uniform partition of R, with each dimension subdivided into k intervals, and \mathcal{P}_k be the sub-rectangles of P_k . Then, we have $|\mathcal{P}_k| = k^n$, and thus $\operatorname{Vol}(S) = \frac{\operatorname{Vol}(R)}{k^n}$ for all $S \in \mathcal{P}_k$. Additionally, $|f(x) - f(y)| < \frac{\varepsilon}{2\operatorname{Vol}(R)}$ for all $x, y \in S$, so we have $M_S(f) - m_S(f) \le \frac{\varepsilon}{2\operatorname{Vol}(R)} < \frac{\varepsilon}{\operatorname{Vol}(R)}$.

Choose a $k \in \mathbb{N}$ such that any two points x, y in a sub-rectangle of P_k satisfy $d(x, y) < \delta$ (clearly, this can always be achieved for a sufficiently high k). Let $\varepsilon > 0$. Then,

$$\begin{split} U(f,P) - L(f,P) &= \sum_{S \in \mathcal{P}_k} M_S(f) \operatorname{Vol}(S) - \sum_{S \in \mathcal{P}_k} m_S(f) \operatorname{Vol}(S) \\ &= \sum_{S \in \mathcal{P}_k} (M_S(f) - m_S(f)) \operatorname{Vol}(S) \\ &< \sum_{S \in \mathcal{P}_k} \frac{\varepsilon}{\operatorname{Vol}(R)} \frac{\operatorname{Vol}(R)}{k^n} & \text{(justified above)} \\ &= \frac{\varepsilon}{k^n} \sum_{S \in \mathcal{P}_k} 1 & \text{(pulling out constants)} \\ &= \frac{\varepsilon}{k^n} k^n = \varepsilon. & (k^n \text{ subrectangles)} \end{split}$$

Therefore, f is integrable on R by the theorem we proved in class.

Problem 2 Let $R \subset \mathbb{R}^n$ be a rectangle.

- (a) Prove that any rectangle $S \subset R$ is measurable.
- (b) Prove that any finite subset of R is measurable.
- (c) Suppose that $A, B \subset R$ are measurable. Prove that $A \cap B$ and $A \cup B$ are measurable too, and that

$$Vol(A \cup B) = Vol(A) + Vol(B) - Vol(A \cap B).$$

(d) Deduce that if $A_1, \ldots, A_m \subset R$ are measurable, then $\bigcup_{j=1}^m A_j$ and $\bigcap_{j=1}^m A_j$ are measurable.

Solution.

(a) Let

$$[a'_1, b'_1] \times [a'_2, b'_2] \times \cdots \times [a'_n, b'_n] = S \subset R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$$

be a rectangle. Then,

$$P = \{a_1, a'_1, b'_1, b_1\} \times \{a_2, a'_2, b'_2, b_2\} \times \cdots \times \{a_n, a'_n, b'_n, b_n\}$$

is a partition of R where $S \in \mathcal{P}$, and there is a rectangle on either side of S in each dimension with other rectangles filling in the rest of R. We can then write

$$\begin{split} U(\mathbb{1}_S,P) - L(\mathbb{1}_S,P) &= \sum_{T \in \mathcal{P}} M_T \operatorname{Vol}(T) - \sum_{T \in \mathcal{P}} m_T \operatorname{Vol}(T) \\ &= M_S \operatorname{Vol}(S) - m_s \operatorname{Vol}(S) \\ &= 1 \operatorname{Vol}(S) - 1 \operatorname{Vol}(S) = 0. \end{split} \qquad (\mathbb{1}_S \text{ is 0 outside } S) \end{split}$$

So $U(\mathbb{1}_S, P) - L(\mathbb{1}_S, P) < \varepsilon$ for all $\varepsilon > 0$, and thus $\mathbb{1}_S$ is integrable on R. Therefore, S is measurable.

(b) Let $S \subset R$ be finite. Let P_k be a uniform partition of R, with each dimension subdivided into k intervals, and \mathcal{P}_k be the sub-rectangles of P_k . Then, we have $|\mathcal{P}_k| = k^n$, and thus $\operatorname{Vol}(S) = \frac{\operatorname{Vol}(R)}{k^n}$ for all $S \in \mathcal{P}_k$. Let $\varepsilon > 0$, let k be such that $k^n \geq \frac{|S| \operatorname{Vol}(R)}{\varepsilon}$, and let $S \subset \mathcal{P}$ be the subrectangles in \mathcal{P} that contains points in S (so $|S| \leq |S|$). Then, we have

$$U(\mathbb{1}_{S}, P) - L(\mathbb{1}_{S}, P) = \sum_{T \in \mathcal{P}} M_{T} \operatorname{Vol}(T) - \sum_{T \in \mathcal{P}} m_{T} \operatorname{Vol}(T)$$

$$= \sum_{T \in S} M_{T} \operatorname{Vol}(T) - \sum_{T \in S} m_{T} \operatorname{Vol}(T) \qquad (\mathbb{1}_{S} \text{ is constant outside } \mathcal{S})$$

$$= \sum_{T \in S} \operatorname{Vol}(T) \qquad (M_{T} = 1 \text{ and } m_{T} = 0)$$

$$= \sum_{T \in S} \frac{\operatorname{Vol}(R)}{k^{n}}$$

$$\leq |S| \frac{\operatorname{Vol}(R)}{k^{n}} \qquad (|\mathcal{S}| < |S|)$$

$$\leq \frac{|S| \operatorname{Vol}(R)}{\frac{|S| \operatorname{Vol}(R)}{s}} = \varepsilon. \qquad (\text{by choice of } k)$$

So for all $\varepsilon > 0$, there exists a partition P such that $U(\mathbb{1}_S, P) - L(\mathbb{1}_S, P) < \varepsilon$.

(c) We first consider $A \cap B$. We can write $\mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$, because this product will be 1 if and only if $\mathbb{1}_A(x) = \mathbb{1}_B(x) = 1$ for all $x \in R$. This means x is in both A and B, and thus is in $A \cap B$, which is how $\mathbb{1}_{A \cap B}$ is defined. Since $\mathbb{1}_A$ and $\mathbb{1}_B$ are both integrable in R, we know that $\mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$ is also integrable, and therefore $A \cap B$ is measurable.

Now, we consider $A \cup B$. We can write $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cap B}$, because $\mathbb{1}_{A \cup B} = \mathbb{1}_A(x) + \mathbb{1}_B(x)$ will be 1 for all $x \in A \cup B$ except for $A \cap B$, where it will be 2. Thus, we can subtract $\mathbb{1}_{A \cap B}$ to make the function 1 everywhere on $A \cup B$. Then, since this is the sum of integrable functions, it is integrable. Moreover, by the properties we proved in class, we have

$$\operatorname{Vol}(A \cup B) = \int_R (\mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cap B}) = \int_R \mathbb{1}_A + \int_R \mathbb{1}_B - \int_R \mathbb{1}_{A \cap B} = \operatorname{Vol}(A) + \operatorname{Vol}(B) - \operatorname{Vol}(A \cap B).$$

(d) We will induct on m. First, let m = 1. Then, we are given that $A_1 = \bigcap_{j=1}^{1} A_j = \bigcup_{j=1}^{1} A_j$ is measurable. Next, let $m \in \mathbb{N}$, and assume that $\bigcap_{j=1}^{m-1} A_j$ and $\bigcup_{j=1}^{m-1} A_j$ are measurable. Then, $\bigcap_{j=1}^{m} A_j = \bigcap_{j=1}^{m-1} A_j \cap A_m$

is measurable by (c), and similarly so is $\bigcup_{j=1}^{m} A_j = \bigcup_{j=1}^{m-1} A_j \cup A_m$. Thus, the statement is true for any $m \in \mathbb{N}$.

Problem 3 Let $R \subset \mathbb{R}^n$ be a rectangle and $A \subset R$ a measurable set. Prove that $\operatorname{Vol}(A) = 0$ if and only if for every $\varepsilon > 0$ there exist finitely many rectangles $R_1, \ldots, R_m \subset R$ such that $A \subset \bigcup_{j=1}^m R_j$ and $\sum_{j=1}^m \operatorname{Vol}(R_j) < \varepsilon$.

Solution.

 (\Longrightarrow) Suppose $\operatorname{Vol}(A) = \int_R \mathbb{1}_A = 0$. Then, we have shown in class that for all $\varepsilon > 0$, there exists a partition P of R such that $U(\mathbb{1}_A, P) < \varepsilon$. Since $\mathbb{1}_A \le 1$ by definition, each rectangle $S \in \mathcal{P}$ that contains a point in A will have $M_S(\mathbb{1}_A) = 1$ and all other rectangles $S \in \mathcal{P}$ will have $M_S(\mathbb{1}_A) = 0$. So we have $\sum_{S \in \mathcal{P}} \operatorname{Vol}(S) < \varepsilon$, and since the partition is finite, there exist finitely many rectangles $R_1, \ldots, R_m \subset R$ such that $A \subset \bigcup_{j=1}^m R_j$ and $\sum_{j=1}^m \operatorname{Vol}(R_j) < \varepsilon$.

 (\Leftarrow) Let $\varepsilon > 0$ and suppose there exist finitely many rectangles $R_1, \ldots, R_m \subset R$ such that

$$A \subset \bigcup_{j=1}^{m} R_j$$
 and $\sum_{j=1}^{m} \operatorname{Vol}(R_j) < \varepsilon$.

Since A is covered by the rectangles, we have

$$\operatorname{Vol}(A) \le \operatorname{Vol}\left(\bigcup_{j=1}^{m} R_j\right) \le \sum_{j=1}^{m} \operatorname{Vol}(R_j) < \varepsilon.$$

Since this is true for every positive ε , we must have Vol(A) = 0.

Problem 4 Let $R \subset \mathbb{R}^n$ be a rectangle, $A \subset R$ a measurable set with Vol(A) = 0, and $f : R \to \mathbb{R}$ a bounded function that is integrable in R. Prove that

$$\int_A f = 0.$$

Solution.

Assume that $\operatorname{Vol}(A) = \int_R \mathbb{1}_A = 0$. Then, from the theorem in class there exists a partition P such that for all $\varepsilon > 0$, $U(\mathbb{1}_A, P) < \frac{\varepsilon}{M}$ and $-L(\mathbb{1}_A, P) < \frac{\varepsilon}{m}$, where M is the supremum of f over R and m is the infinum. Then, we have

$$\frac{\varepsilon}{M} > U(\mathbb{1}_A, P)$$

$$\implies \varepsilon > MU(\mathbb{1}_A, P)$$

$$= U(M\mathbb{1}_A, P) \qquad \text{(sum property)}$$

$$\geq U(f\mathbb{1}_A, P) \qquad (M \geq f \text{ by definition)}$$

and similarly

$$\frac{\varepsilon}{m} > -L(\mathbb{1}_A, P)$$

$$\implies \varepsilon > -mL(\mathbb{1}_A, P)$$

$$= -L(m\mathbb{1}_A, P)$$

$$\geq -L(f\mathbb{1}_A, P).$$

$$(m \le f \implies -m \ge -f)$$

We have shown in class that this implies that $\int_A f = 0$.