Clustering

Hierarchical clustering et Kmeans

Anne Badel, Frédéric Guyon & Jacques van Helden 2020-03-10

Contents

Les données	3
Les données dans l'ordinateur (1) Les iris de Fisher	4
Les données dans l'ordinateur (2)	4
Les données dans l'ordinateur (2)	4
Représentons ces données : une fleur (1)	5
Représentons ces données : une fleur (2)	5
Représentons ces données : une fleur (3)	6
Représentons ces données : toutes les fleurs (4)	6
Représentons ces données : une variable à la fois (1)	7
Représentons ces données : deux variables à la fois (2)	7
Il faut tenir compte de toutes les dimensions	7
Clustering et classification (termes anglais)	8
Clustering et classification (termes anglais)	8
Clustering	9
Méthodes	9
Géométrie et distances (1)	9
Géométrie et distances (2)	9
Géométrie et distances (3)	9
Distances	10
Distances utilisées dans R (1)	10
Distances utilisées dans R (2)	10
Autres distances non géométriques (pour information)	10
Distances plus classiques en génomique	11

Avec R (1)	11
Avec R (2)	11
Distances entre groupes (1)	12
Distances entre groupes (2)	12
Distances entre groupes (3)	12
Distances entre groupes (4)	13
Les données	13
Visualisation des données	14
Visualisation des données - coloration par espèces	14
Visualisation des données	15
Nettoyage des données (1) : données manquantes	16
Nettoyage des données (2) : variables constantes	16
Normalisation	16
On peut visuellement regarder l'effet de la normalisation : par un plot des données	16
par une boîte à moustaches (boxplot)	17
par une image	17
La matrice de distances	18
La classification hiérarchique : principe	18
Notion importante, cf distances	19
L'algorithme : étape 1	19
au départ	19
identification des individus les plus proches	20
construction du dendrogramme	20
étape j :	20
calcul des nouveaux représentants 'BE' et 'CD'	21
calcul des distances de l'individu restant 'A' aux points moyens	21
A est plus proche de	22
dendrogramme	22
pour finir	23

dendrogramme final	23
Je ne fais pas attention à ce que je fais	23
En utilisant une autre métrique	25
En utilisant un autre critère d'aggrégation	26
En conclusion	26
Les heatmap	26
Les k-means	27
L'algorithme étape 1: Choix des centres provisoires Calcul des distances aux centres provisoires Affectation à un cluster Calcul des nouveaux centres de classes Etape j: Fin: Arrêt: Un premier k-means en 5 groupes	27 28 28 29 29 29 29 29 30
Comment déterminer le nombre de clusters ? (1)	30
Comment déterminer le nombre de clusters ? (2)	31
Comment déterminer le nombre de clusters ? avec la classification hiérarchique	31
Comment déterminer le nombre de clusters ? avec les kmeans	32
Comparaison de clustering: Rand Index	32
Comparaison de clustering: Adjusted Rand Index	32
Comparaison des résultats des deux clustering	32
Comparaison de clustering: Rand Index	33
Comparaison de clustering: Adjusted Rand Index	33
Comparaison des résultats des deux classifications	33
Pros et cons des différents algorithmes par une projection sur une ACP	33 34
Cas d'étude : TCGA Breast Invasive Cancer (BIC)	35
TP : analyse de données d'expression	35

Les données

- $\bullet\,$ Comment sont représentées les données dans l'ordinateur ?
- Comment représenter les données dans l'espace ?
- Comment découvrir des "clusters" dans les données ?

- classification hiérarchique
- kmeans
- comment déterminer le nombre de groupe optimal ?
- comment comparer deux classifications ?

Les données dans l'ordinateur (1)

Les iris de Fisher

Ces données sont un classique des méthodes d'apprentissage

Les données dans l'ordinateur (2)

	~	~		
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4

Les données dans l'ordinateur (2)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2

3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4

- 1 ligne = 1 fleur = 1 vecteur
- 1 colonne = 1 variable = 1 vecteur
- l'ensemble des données = 1 échantillon = 1 data.frame

Représentons ces données : une fleur (1)

mes.iris[1,]

Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2

Comment représenter cette fleur ?

• par un point!

Dans quel espace de réprésentation ?

Représentons ces données : une fleur (2)

plot(mes.iris[1,1:2])

Dans le plan, un point de coordonnées :

- x = 5.1
- y = 3.5

représenté par un vecteur $v2=(\ 5.1\ ,\ 3.5)\ \mathrm{dans}\ \mathbb{R}^2$

Représentons ces données : une fleur (3)

Dans l'espace, un point de coordonnées :

- x = 5.1
- y = 3.5
- z = 1.4

représenté par un vecteur v3 = (5.1, 3.5, 1.4) dans \mathbb{R}^3

Représentons ces données : toutes les fleurs (4)

- = un nuage de points dans un espace à 4 dimensions
 - chaque point est représenté par un vecteur dans \mathbb{R}^4
 - le nuage de points est représenté par une matrice à n et p (= 4 dimensions)
 - n = nombre de lignes = nombre d'individus = taille de l'échantillon
 - p = nombre de colonnes = nombre de variables décrivant l'échantillon
- = PAS de représentation possible (pour l'instant)

Représentons ces données : une variable à la fois (1)

Représentons ces données : deux variables à la fois (2)

Il faut tenir compte de toutes les dimensions

c'est à dire de toutes les variables à notre disposition

Figure 1: Y a-t-il des groupes ?

Clustering et classification (termes anglais)

On a une **information** sur nos données

• variables quantitatives = vecteur de réels

Clustering : on cherche à mettre en évidence des groupes dans les données

• le clustering appartient aux méthodes dites non supervisées, ou descriptives

Clustering et classification (termes anglais)

On a une **information** sur nos données

Clustering : on cherche à mettre en évidence des groupes dans les données

Classification:

- on connaît le partitionnement de notre jeu de données
 - variables quantitatives = vecteur de réels
 - ET
 - variable qualitative = groupe (cluster) d'appartenance = vecteurs de entiers / niveau d'un facteur
 - on cherche à prédire le groupe (la classe) de nouvelles données
- la classification appartient aux méthodes dites supervisées, ou prédictives

Clustering

Méthodes

Trois grands principes de méthodes basées sur:

- La géométrie
- Les probabilités (statistique)
- Les graphes

En fait, trois façons de voir les mêmes algorithmes

Géométrie et distances (1)

On considère les données comme des points de \mathbb{R}^n

 \mathbb{R}^n : espace Euclidien à n dimensions, où

- chaque dimension représente une des variables observées;
- \bullet un individu est décrit comme un vecteur à n valeurs, qui correspond à un point dans cet espace.

Géométrie et distances (2)

On considère les données comme des points de \mathbb{R}^n (*)

- géométrie donnée par distances
- distances = dissimilarités imposées par le problème
- ullet dissimilarités \longrightarrow permettent visualisation de l'ensemble des points

Géométrie et distances (3)

Sur la base d'une distance (souvent euclidienne)

- Clustering:
 - Méthode agglomérative ou hierarchical clustering
 - Moyennes mobiles ou K-means : séparation optimale des groupes connaissant le nombre de groupes

Distances

Définition d'une distance : fonction positive de deux variables

- 1. $d(x,y) \ge 0$
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) = 0 \iff x = y$
- 4. Inégalité triangulaire : $d(x,z) \le d(x,y) + d(y,z)$

Si 1,2,3 : dissimilarité

Distances utilisées dans R (1)

- distance euclidienne ou distance L_2 : $d(x,y) = \sqrt{\sum_i (x_i y_i)^2}$
- distance de manahattan ou distance L_1 : $d(x,y) = \sum_i |x_i y_i|$
- distance du maximum ou L-infinis, $L_{\infty} \colon d(x,y) = \max_{i} |x_i y_i|$

Distances utilisées dans R (2)

• distance de Minkowski l_p :

$$d(x,y) = \sqrt[p]{\sum_{i} (|x_i - y_i|^p)}$$

• distance de Canberra (x et y valeurs positives):

$$d(x,y) = \sum_{i} \frac{x_i - y_i}{x_i + y_i}$$

• distance binaire ou distance de Jaccard ou Tanimoto: proportion de propriétés communes

10

Autres distances non géométriques (pour information)

Utilisées en bio-informatique:

• Distance de Hamming: nombre de remplacements de caractères (substitutions)

• Distance de Levenshtein: nombre de substitutions, insertions, deletions entre deux chaînes de caractères

$$d("BONJOUR", "BONSOIR") = 2$$

- Distance d'alignements: distances de Levenshtein avec poids (par ex. matrices BLOSSUM)
- Distances d'arbre (Neighbor Joining)
- Distances ultra-métriques (phylogénie UPGMA)

Distances plus classiques en génomique

Il existe d'autres mesures de distances, plus ou moins adaptées à chaque problématique :

- Jaccard (comparaison d'ensembles): $J_D = \frac{A \cap B}{A \cup B}$
- Distance du χ^2 (comparaison de tableau d'effectifs)

Ne sont pas des distances, mais indices de dissimilarité :

- Bray-Curtis (en écologie, comparaison d'abondance d'espèces)
- Jensen-Shannon (comparaison de distributions)

Note : lors du TP, sur les données d'expression RNA-seq, nous utiliserons le coefficient de corrélation de Spearman et la distance dérivée, $d_c = 1 - r$ ou $d_c = \sqrt{2 \times (1 - r)}$

Avec R (1)

• on utilise la fonction dist() avec l'option method = "euclidean", "manhattan", ...

4.32	1.48	1.83	4.71	3.10
3.42	2.13	2.28	2.37	3.93

distance euclidienne: 4.07

distance de manhattan = 10.73

Avec R (2)

• ou pour des distances particulières, par exemple l'indice de Jaccard :

v.a	0	1	0	0	0	0	0
v.b	0	1	0	0	0	1	0
v.c	0	1	0	0	0	0	0

v.a v.b

v.b 0.3333333

v.c 0.0000000 0.3333333

Distances entre groupes (1)

Distances entre groupes (2)

• Single linkage : élements les plus proches des 2 groupes

$$D(C_1, C_2) = \min_{i \in C_1, j \in C_2} D(x_i, x_j)$$

• Complete linkage : éléments les plus éloignés des 2 groupes

$$D(C_1, C_2) = \max_{i \in C_1, j \in C_2} D(x_i, x_j)$$

Distances entre groupes (3)

• Group average : distance moyenne

$$D(C_1, C_2) = \frac{1}{N_1 N_2} \sum_{i \in C_1, j \in C_2} D(x_i, x_j)$$

• Ward

$$\begin{split} d^2(C_i, C_j) &= I_{intra}(C_i \cup C_j) - I_{intra}(C_i) - I_{intra}(C_j) \\ D(C_1, C_2) &= \sqrt{\frac{N_1 N_2}{N_1 + N_2}} \|m_1 - m_2\| \end{split}$$

Distances entre groupes (4)

Les données

Ces données sont un classique des méthodes d'apprentissage

Dans un premier temps, regardons les données

dim(mes.iris)

[1] 150 4

head(mes.iris)

	Sepal.Length	Sepal.Width	${\tt Petal.Length}$	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4

str(mes.iris)

```
'data.frame': 150 obs. of 4 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

$ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
```

summary(mes.iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300
Median :5.800	Median :3.000	Median :4.350	Median :1.300
Mean :5.843	Mean :3.057	Mean :3.758	Mean :1.199
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800
Max ·7 900	May .4 400	Max ·6 900	Max ·2 500

Visualisation des données

On peut ensuite essayer de visualiser les données

• par un plot

plot(mes.iris)

Visualisation des données - coloration par espèces

```
species.colors <- c(setosa = "#BB44DD", virginica = "#AA0044", versicolor = "#4400FF")
plot(mes.iris, col = species.colors[iris$Species], cex = 0.7)</pre>
```


Visualisation des données

• par la fonction image()

Nettoyage des données (1) : données manquantes

Avant de commencer à travailler, il est nécessaire de commencer par vérifier que :

• il n'y a pas de données manquantes

```
sum(is.na(mes.iris))
```

[1] 0

Nettoyage des données (2) : variables constantes

• aucune variable n'est constante (aucune variable n'a une variance nulle)

```
iris.var <- apply(mes.iris, 2, var)
kable(iris.var, digits = 3, col.names = "Variance")</pre>
```

	Variance
Sepal.Length	0.686
Sepal.Width	0.190
Petal.Length	3.116
Petal.Width	0.581

```
sum(apply(mes.iris, 2, var) == 0)
```

[1] 0

Normalisation

Afin de pouvoir considérer que toutes les variables sont à la même échelle, il est parfois nécessaire de normaliser les données.

- soit
 - en centrant (ramener la moyenne de chaque variable à 0)

```
mes.iris.centre <- scale(mes.iris, center=TRUE, scale=FALSE)</pre>
```

- soit
 - en centrant (ramener la moyenne de chaque variable 0)
 - et mettant à l'échelle (ramener la variance de chaque variable à 1)

mes.iris.scaled <- scale(mes.iris, center=TRUE, scale=TRUE)</pre>

On peut visuellement regarder l'effet de la normalisation :

par un plot des données

```
plot(mes.iris, main = "Raw variables")
```


! ne pas faire si "grosses" données

... par une boîte à moustaches (boxplot)

```
par(mfrow = c(1,2))
par(mar = c(7, 4.1, 4.1, 1.1)) # adapt margin sizes for the labels
boxplot(mes.iris, main = "Raw data", las = 2)
boxplot(mes.iris.scaled, main = "scaled", las = 2)
```


par(mar = c(5.1, 4.1, 4.1, 2.1)) # Restore original margin sizes

... par une image

```
par(mfrow=c(1,2))
image(1:nb.var, 1:nb.iris, t(as.matrix(mes.iris)), main="Raw data")
image(1:nb.var, 1:nb.iris, t(as.matrix(mes.iris.scaled)), main="Scaled data")
```


La matrice de distances

Nous utilisons ici la distance euclidienne sur données normalisées.

Données normalisées

La classification hiérarchique : principe

classification hiérarchique : mettre en évidence des liens hiérarchiques entre les individus

- classification hiérarchique ascendante : partir des individus pour arriver à des classes / cluster
- classification hiérarchique **descendante** : partir d'un groupe qu'on subdivise en sous-groupes /clusters jusqu'à arriver à des individus.

Notion importante, cf distances

- ressemblance entre individus = distance
- ressemblance entre groupes d'invidus = critère d'aggrégation
 - lien simple
 - lien complet
 - lien moyen
 - critère de Ward

L'algorithme : étape 1

- \bullet départ : n individus = n clusters distincts
- calcul des distances entre tous les individus
 - choix de la métrique à utiliser en fonction du type de données
- regroupement des 2 individus les plus proches => (n-1) clusters

au départ

identification des individus les plus proches

construction du dendrogramme

étape j :

- calcul des dissemblances entre chaque groupe obtenu à l'étape (j-1)
- regroupement des deux groupes les plus proches =>(n-j) clusters

calcul des nouveaux représentants 'BE' et 'CD'

calcul des distances de l'individu restant 'A' aux points moyens

A est plus proche de ...

${f dendrogramme}$

pour finir

• à l'étape (n-1), tous les individus sont regroupés dans un même cluster

dendrogramme final

Je ne fais pas attention à ce que je fais ...

... c'est à dire aux options des fonctions dist() et hclust()

Cluster Dendrogram

iris.euc hclust (*, "complete")

Cluster Dendrogram

iris.scale.euc hclust (*, "complete")

```
par(mfrow = c(2, 1))
plot(iris.hclust, hang = -1, cex = 0.5, main = "Données brutes")
plot(iris.scale.hclust, hang = -1, cex = 0.5, main = "Normalisées")
```


iris.euc hclust (*, "complete")

Normalisées

iris.scale.euc hclust (*, "complete")

En utilisant une autre métrique

Euclidian dist

iris.scale.euc hclust (*, "complete")

Manhattan dist

iris.scale.max hclust (*, "complete")

En utilisant un autre critère d'aggrégation

En conclusion

- Faire attention au données
 - données manquantes
 - données invariantes
 - données normalisées
- $\bullet\,$ Choisir la distance et le critère d'aggrégation adaptés à nos données

Les heatmap

pheatmap::pheatmap(mes.iris.scaled)

Les k-means

Les individus dans le plan

=> faire apparaitres des classes / des clusters

L'algorithme

étape 1 :

- $\bullet \;\; k$ centres provisoires tirés au hasard
- ullet k clusters créés à partir des centres en regroupant les individus les plus proches de chaque centre
- obtention de la partition P_0

Choix des centres provisoires

Calcul des distances aux centres provisoires

 $\, \cdot \,$ calcul des distances de chaque point aux centres G_1 et G_2 ,

Affectation à un cluster

Calcul des nouveaux centres de classes

Etape j:

- construction des centres de gravité des k clusters construits à l'étape (j-1)
- k nouveaux clusters créés à partir des nouveaux centres suivant la même règle qu'à l'étape 0
- obtention de la partition P_j

Fin:

• l'algorithme converge vers une partition stable

Arrêt:

• lorsque la partition reste la même, ou lorsque la variance intra-cluster ne décroit plus, ou lorsque le nombre maximal d'itérations est atteint.

Un premier k-means en 5 groupes

```
iris.scale.kmeans5 <- kmeans(mes.iris.scaled, center=5)
iris.scale.kmeans5</pre>
```

K-means clustering with 5 clusters of sizes 29, 48, 28, 23, 22

```
Cluster means:
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
     1.3926646
                0.2323817
                              1.1567451 1.21327591
2
    0.3804044 -0.3896455
                              0.6067908 0.56390985
3
   -0.7467198
                1.4252951
                            -1.2932659 -1.21734309
   -0.3516137
               -1.3285553
                             0.1026061 0.01228268
   -1.3477916
                0.1187465
                             -1.3100027 -1.29316224
```

Clustering vector:

```
Within cluster sum of squares by cluster:

[1] 26.891293 27.830133 13.761588 13.686590 8.032603

(between_SS / total_SS = 84.9 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size"
```

Comment déterminer le nombre de clusters ? (1)

Ces méthodes non supervisées, sont sans a priori sur la structure, le nombre de groupe, des données.

rappel: un cluster est composé

- d'individus qui se ressemblent
- d'individus très différents des individus de ceux des autres clusters

Comment déterminer le nombre de clusters ? (2)

- si les individus d'un même cluster sont proches
 - homogénéité maximale à l'intérieur de chaque cluster => variance intra faible
- si les individus de 2 clusters différents sont éloignés => variance inter forte
 - hétérogénéité maximale entre chaque cluster

Comment déterminer le nombre de clusters ? avec la classification hiérarchique

La coupure de l'arbre à un niveau donné construit une partition. la coupure doit se faire :

- après les agrégations correspondant à des valeurs peu élevées de l'indice
- avant les agrégations correspondant à des niveaux élevés de l'indice, qui dissocient les groupes bien distincts dans la population.

iris.scale.euc hclust (*, "ward.D2")

Comment déterminer le nombre de clusters ? avec les kmeans variance intra en fonction du nombre de cluster

Comparaison de clustering: Rand Index

Mesure de similarité entre deux clustering

à partir du nombre de fois que les classifications sont d'accord

$$R = \frac{m+s}{t}$$

- m=nombre de paires dans la même classe dans les deux classifications
- s=nombre de paires séparées dans les deux classifications
- t=nombre de paires totales

Comparaison de clustering: Adjusted Rand Index

$$ARI = \frac{RI - ExpectedRI}{MaxRI - ExpectedRI}$$

- ARI=RI normalisé
- Prend en compte la taille des classes
- ARI=1 pour classification identique
- ARI $\simeq 0$ pour classification aléatoire (peut être <0)
- Adapté pour nombre de classe différent entre les deux classifications et taille de classe différente

Comparaison des résultats des deux clustering

• par une table de confusion

0	0	29
0	0	20
0	29	1
21	24	0
26	0	0

Comparaison de clustering: Rand Index

Mesure de similarité entre deux clustering

à partir du nombre de fois que les classifications sont d'accord

$$R = \frac{m+s}{t}$$

- $\bullet \,$ m = nombre de paires dans la même classe dans les deux classifications
- s = nombre de paires séparées dans les deux classifications
- t = nombre de paires totales

Comparaison de clustering: Adjusted Rand Index

$$ARI = \frac{RI - ExpectedRI}{MaxRI - ExpectedRI}$$

- ARI=RI normalisé
- Prend en compte la taille des classes
- ARI=1 pour classification identique
- ARI $\simeq 0$ pour classification aléatoire (peut être <0)
- Adapté pour nombre de classe différent entre les deux classifications et taille de classe différente

Comparaison des résultats des deux classifications

• rand index et adjusted rand index

clues::adjustedRand(cluster.hclust5, cluster.kmeans3)

Rand HA MA FM Jaccard 0.7848770 0.4637776 0.4730527 0.6167001 0.4299265

Pros et cons des différents algorithmes

Algorithme	Pros	Cons
Hiérarchique	L'arbre reflète la nature imbriquée de tous les sous-clusters	Complexité quadratique (mémoire et temps de calcul) → quadruple chaque fois qu'on double le nombre d'individus
	Permet une visualisation couplée dendrogramme (groupes) + heatmap (profils individuels) Choix a posteriori du nombre de clusters	

Algorithme	Pros	Cons
K-means	Rapide (linéaire en temps), peut traiter des jeux de données énormes (centaines de milliers de pics ChIP-seq)	Positions initiales des centres est aléatoire → résultats changent d'une exécution à l'autre Distance euclidienne (pas appropriée pour transcriptome par exemple)

Print the complete list of libraries + versions used in this session
sessionInfo()

R version 3.6.1 (2019-07-05)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: macOS Mojave 10.14.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/c/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] pheatmap_1.0.12 vegan_2.5-6 lattice_0.20-38 permute_0.9-5 rgl_0.100.30

RCo

di

Ma pk gr to

loaded via a namespace (and not attached):

[1]	ggrepel_0.8.1	Rcpp_1.0.2	assertthat_0.2.1	zeallot_0.1.0
[13]	rlang_0.4.0	lazyeval_0.2.2	rstudioapi_0.10	miniUI_0.1.1.1
[25]	shiny_1.4.0	compiler_3.6.1	httpuv_1.5.2	xfun_0.10
[37]	dplyr_0.8.3	later_1.0.0	MASS_7.3-51.4	leaps_3.1
[49]	promises_1.1.0	scatterplot3d_0.3-41	xml2_1.2.2	vctrs_0.2.0
[61]	yam1_2.2.0	colorspace_1.4-1	cluster_2.1.0	rvest_0.3.4

... par une projection sur une ACP

Cas d'étude : TCGA Breast Invasive Cancer (BIC)

• Présentation du cas d'étude (Jacques van Helden A COMPLETER)

TP : analyse de données d'expression

• TP clustering : [html] [pdf] [Rmd]

• Première partie : chargement des données

 $Contact:\ anne.badel@univ-paris-diderot.fr$