Géométrie pour la 3D

Se donner des outils pour résoudre des problèmes géométriques. Concevoir des algorithmes **efficaces** et **robustes** :

- Complexité
- Précision numérique
- Strucure et certification

I - Polygone et Polyèdre

- 1 Polygone (2D)
- a Définition

définition:

Soient $P_0, P_1, \ldots, P_{n+1}$, une suite de points ordonnés et cyclique $(P_n=P_0)$.

Soient $E_0 = P_0 P_1, \ldots, E_i = P_i P_{i+1}, \ldots, E_{n-1} = E_{n-1} E_0$ et E l'ensemble ordonné des segments fermés, incluant des points d'extrémité. Les segments définissent un polygone P.

Si et seulement si,

• L'intersection de deux segments adjacents est un point :

$$E \ i \ \cap E \ i-1 \ = P \ i+1 \ , i=0 \to n-1$$

• L'intersection de deux segments non adjacents est vide :

$$E \ i \ \cap E \ j = \varnothing, i \neq i+1$$

Pour la suite, un polygone est un bord de la région.

Orientation: On prendra le sens trigonométrique dans ce cours.

Propriété:

- *Théorème de Jordan :* Une courbe fermée simple divise le plan en deux régions, ou en deux composantes, son intérieur et sont extérieur.
- Concavité:
 - concave : Ange intérieur inférieur à pi rad(180 deg)
 - convexe : tout ce qui n'est pas concave

Figure 1: Polygone concave

b - Localisation d'un point dpar rapport à un polygone

1. Méthode des angles

Figure 2: Localisation d'un point par les anges

- La somme des angles est égale à 360 si le point est à l'intérieur du polygone
- La somme des angles est égale à 0 si le point est à l'extérieur

2. Méthode de l'index

Théorème: Soit un polygone et D une droite ne passant ni par un sommet ni par un arrête. Alors la droite D coupe P en un nombre de point pair, Q_1, \ldots, Q_{n-1} , tous distincts

Définition : Soit $M(x,y)\in\mathbb{R}^2, \notin P$ On appelle **index** de M par apport à P. Selon une demi-droite Δ issue de M et passant par P

Théorème : La parité de I p(M) ne dépends pas du choix de la demi-droite Δ :

- M est à l'intérieur de P si I P $(M)[2] \equiv 1$
- M est à l'extérieur de P si I P $(M)[2] \equiv 0$
- Cas d'exception :
 - comptage de 1 si le point B est au dessus de Δ
 - comptage de ${\bf 0}$ si le point B est au dessous de Δ
 - -comptage de ${\bf 0}$ si le point B est ${\tt sur}\ \Delta$

Figure 3: Localisation d'un point par index

Figure 4: Exception de la méthode par l'index

c - Algorithme de localisation par test de parité

Soit un point M qui n'est pas sur le polygone P, Δ une demi-droite horizontale issue de M vers P.

- Initialisation: $0 \rightarrow I$
- Pour tout, coté C du polygone P
 - faire : calculer $card(C \cap \Delta)$
 - répéter : $I = I + card(C \cap \Delta)$
- Si I est impair alors $M \in P$, sinon $M \notin P$

2 - Polygone (3D)

Théorème de Jordan:

Le complémentaire dans \mathbb{R}^3 d'un polyèdre à deux composantes connexes, l'une bornée (intérieur) et l'autre infini (extérieur).

Définition : Un polyèdre est un ensemble de polygones $P_1,\,\dots,\,P_f$ de \mathbb{R}^3 tel que

1. La condition géométrique est $int(P\ i\)\cap int(P\ j\), i\neq j\ (nb:int(P\ i\)$ est une face)

${\it 2.}$ Conditions topologique :

- \bullet Toute arrête de polygone P_i appartientà exactement deux polygones adjacents.
- \bullet Tout sommet de tout polygone P_i appartient à au moins deux polygones

a - Localisation d'un point dpar rapport à un polygone

1. Méthode des angles

Si un point est dans le polyèdre, la somme des angles est égale à 0

2. Méthode de l'index

Idem que pour les polygones 2D

b - Représentation du polyèdre

les polyèdres sont représentés par les faces, ces faces sont représentées par les somets et arrêtes.

$$F 1 = (S 1, ..., S j), ..., F i = ...$$

 $E = E 1 (S 1 S 2), ..., E n (S n - 1S 0)$