Grundbegriffe der Informatik Aufgabenblatt 10

Aufgabe 10.1 (1+1+2=4 Punkte)

- a) Für welche $a \in \mathbb{R}_+$ ist $2^n \in O(a^n)$?
- b) Für welche $a \in \mathbb{R}_+$ ist $2^n \in \Omega(a^n)$?
- c) Beweisen Sie Ihre Aussage aus Teil a).

Aufgabe 10.2 (3 Punkte)

Beweisen oder widerlegen Sie: Für alle Funktionen $f_1 : \mathbb{N}_0 \to \mathbb{R}_0^+$ und $f_2 : \mathbb{N}_0 \to \mathbb{R}_0^+$ gilt:

$$\Omega(f_1) + \Omega(f_2) = \Omega(f_1 + f_2)$$

Aufgabe 10.3 (1+2+3+2+1+1 = 10 Punkte)

Für $n \in \mathbb{N}_0$ und $k \in \mathbb{Z}_{n+1}$ sei B(n,k) definiert als die Anzahl verschiedener Teilmengen der Größe k, die man von einer endlichen Menge mit n Elementen bilden kann.

Es sei *M* eine Menge, die genau *n* Elemente enthält.

- a) Welche Teilmengen von M der Größe 0 gibt es? Welche Teilmengen von M der Größe n gibt es?
- b) Begründen Sie, dass für jedes $n \in \mathbb{N}_0$ und $k \in \mathbb{N}_0$ mit $1 \le k \le n-1$ gilt:

$$B(n,k) = B(n-1,k-1) + B(n-1,k)$$

Hinweis: Sie müssen nicht unbedingt vollständige Induktion machen. Eine Argumentation, die direkt auf obige Definition Bezug nimmt, ist auch möglich.

- c) Geben Sie eine geschlossene Formel für die Funktion $B2 : \mathbb{N}_0 \to \mathbb{N}_0 : n \mapsto B(n,2)$ an und zeigen Sie: $B2(n) \in O(n^2)$.
- d) Beweisen Sie: Für die Funktion $Bm: \mathbb{N}_0 \to \mathbb{N}_0: k \mapsto B(2k, k)$ gilt: $Bm(k) \in \Omega(2^k)$.
- e) Für $n \in \mathbb{N}_0$ sei $P_n = (V_n, E_n)$ der gerichtete Graph mit $V_n = \mathbb{Z}_{n+1} \times \mathbb{Z}_{n+1}$ und $E_n = (V_n \times V_n) \cap \{((i,j), (i+1,k)) \mid k=j \vee k=j+1\}.$ Zeichnen Sie P_4 so, dass der Knoten (0,0) am weitesten oben auf dem Papier ist und die Pfeile für die Kanten (senkrecht oder diagonal) nur "nach unten" zeigen.
- f) Wieviele Pfade gibt es in P_n im allgemeinen von Knoten (0,0) zu einem Knoten $(i,j) \in V_n$?

*Aufgabe 10.4 (1+1+2 = 4 Extrapunkte)

Es sei $n \in \mathbb{N}_0$ und $0 \le k \le n$.

- a) Wieviele verschiedene Pfade gibt es im Graph P_{2n} (siehe Aufgabe 10.3) von Knoten (n,k) zu Knoten (2n,n)?
- b) Begründen Sie Ihre Antwort aus Teilaufgabe a).
- c) Beweisen Sie:

$$\sum_{k=0}^{n} B(n,k)^{2} = B(2n,n)$$