Eötvös Loránd University (ELTE) Faculty of Informatics (IK) Pázmány Péter sétány 1/c 1117 Budapest, Hungary

VISUALIZATION SOLUTIONS

Open-source Technologies for Real-Time Data Analytics Imre Lendák, PhD, Associate Professor

Introduction

- Visualization types
 - Scientific viz
 - Information viz
 - Visual analytics
- Graph types
 - Line, bar, stacked bar, pie
 - Choropleth, scatter, heat
- Interactive visualization
- Viz tools: Tableau, Plotly, Datawrapper, Kibana, etc.

Data Visualization Process

Goals and data

- What is the goal of the visualization?
- What data do you have available?
- What level of detail does it go down to?
- How can you use other data to supplement your data?

Audience

- How detailed do they want to see the data?
- Do they have a technical background?
- How will the visualization(s) be viewed? (desktop, mobile, print)

Data visualization goals (selection!)

- Reporting automation
- Executive reporting and presentation
- Customer reporting
- Self-service BI and visual data analysis
- Visual status monitoring
- Geo data visualization
- Visual data preparation
- Data journalism
- Math visualization
- Visual social media

Viz building blocks

- Collection → data acquisition
- Cleaning → data preprocessing
- Integration → merge data from different sources
- Visualization → create visual representations
- Analysis
- Presentation → create reports
- Dissemination → communicate

Pre-history of viz

- Selected figures
 - William Playfair (1821) line, bar charts, etc.
 - Charles Joseph Minard (<u>1869</u>) Napoleon's march, etc.
 - Jacques Bertin (1967) "semiology of graphics"
 - John Tukey (1977) "exploratory data analysis"
 - Edward Tufte (1983) statistical graphics standards/practices
- 1985 NSF Workshop on Scientific Visualization
- 1990: S.K.Card, et al. <u>Readings in Information</u>
 <u>Visualization: Using Vision to Think</u>

VISUALIZATION TYPES

Type #1: Scientific visualization

- DEF: Scientific visualization focuses on the 2D or 3D visualization of scientific data.
- Used in:
 - architecture
 - meteorology
 - medicine
 - biological systems

• ...

Type #2: Information Visualization

- DEF: Information
 visualization is the study of
 interactive visual
 representations of abstract
 data to enhance human
 cognition.
- Transforms abstracts concepts into visually consumable information.
- Includes: histograms, trend graphs, flow charts, and tree diagrams

Type #3: Visual Analytics

 DEF: Visual analytics solutions allow analytical reasoning (usually about data) through an interactive visual interface (aka dashboard)

Dashboards in viz analytics

Introduction

- DEF: A data dashboard is an information management tool that visually tracks, analyzes and displays key performance indicators (KPI), metrics and key data points to monitor the health of a business, department or specific process
- A key goal of dashboards in general is to control performance, especially in a business environment, i.e. company
- Features:
 - Customizable to meet the specific needs of a department and company

Functionalities

- Strategic planning, e.g. impacts of new business line opened
- Monitor efficiency, e.g. lines of source code produced
- Identify bottlenecks, e.g. 3rd party supplier always late in delivery
- Identify negative trends, e.g. lower sales volume
- Monitor efficiency of changes made, e.g. new management installed

3 dashboard types

Strategic

- Develop, view and align company or institutional strategy
- Used by business developers and top managers

Tactical

- Measure the progress of important projects
- Used by project managers and mid- to top management

Operational

- Detailed
 monitoring of
 activities in
 (near) real-time
- Used by data analysts and up to midmanagement, e.g. security analyst
- E.g. SIEM in a SOC

Dashboard in Windows OS

VISUALIZATION GRAPH TYPES

Line Graph

Bar Graph

Usefulness of Weapons to Fight Zombies

Pie Chart

Stacked Bar Graph

^{*} Information Security Services Education in Serbia, Erasmus+ CBHE Project, www.isses.etf.bg.ac.rs

Histogram

Heat Map

Scatterplot

Bubble chart

- > Cart Additions
 Sum of Cart Additions

 M1
- > Checkouts
 Sum of Checkouts
- MEASURE (SIZE)SpendM3
- VIEW BY

 ABC City
- CONFIGURATION

Choropleth Map

https://www.reddit.com/r/dataisbeautiful/comments/6q811t/choropleth_world_map_of_internet_users100/

[Data from www.worldbank.org]

Graph functions, i.e. use cases

- Line → view trends (over time)
- Bar → compare categorical or time series points
- Pie → compare parts to a whole (up to 4-5 classes!)
- Stacked bar → pie chart alternative, supports more classes
- Histogram → view frequency/distribution
- Heat Map → color-coded frequency
- Scatterplot → relation of (at least) two variables
- Bubble → compare or rank
- Choropleth Map → shade/color on a geo map

CUSTOM VISUALIZATIONS

Eötvös Loránd University (ELTE) Faculty of Informatics (IK) Pázmány Péter sétány 1/c 1117 Budapest, Hungary

Olin Fellowship Alumnae in Law Cecily StewartHawksworth

Eötvös Loránd University (ELTE) Faculty of Informatics (IK) Pázmány Péter sétány 1/c 1117 Budapest, Hungary

AAUDE 2017 Our Timeline Our Meetings Engagement Over Time Tableau Bootcamp

Tableau Bootcamp 2017: bringing together all seven schools and all four campuses

Survey and Attendance Data Erin Daugherty

INTERACTIVE VISUALIZATION

Interactive Visual Analytics

Data preprocessing through visual approaches

- Data mining
- Machine learning
- Statistical methods

- patterns
- outliers
- clusters
- gaps

Interactive visualization

- Browse
- search
- monitor

- Discover the most interesting
- relationships among data
- Investigate what-if scenarios
- Verify the presence of biases
- Simulate changes impact

Dissemination tools

Show the data

- Enlighten the sense of data
- Tell stories about them

Interactive visualization

- Select (mark something as interesting)
- Explore (show me something else)
- Reconfigure (show me a different arrangement)
- Encode (show me a different representation)
- Abstract/elaborate (show me more or less detail)
- Filter (show me something conditionally)
- Connect (show me related items)

Interactive visualization

Select	Ability to mark data items of interest to highlight them	Outlier values		
Explore	Enabling users to examine the different subsets in which the data can be divided	Panning across the data		
Reconfigure	Provide users with different data perspectives	Revelation of hidden patternsvisual rearrangements of a series		
Encode	Capability of a visualization system to handle and transform the basic elements of human vision	Pre-attentive processing, colours, shapes, dimensions		
Abstract/ elaborate	Capability of reduce or increase the details of the visualization Highlight some visual elements that are compliant with specific conditions defined by users			
Filter				
Connect	Enables users to better emphasize relationships and associations already known or discover the hidden patterns of the data			

Select (mark something as interesting)

Explore (show me something else)

Abstract/
elaborate
(show me
more or less
detail)

Filter (show me something conditionally)

VIZ TOOLS

Tableau

Introduction

- DEF: Data visualization software that allows developers to build interactive dashboards that are easily updated with new data and can be shared with a wider audience
 - Developer: Tableau Software Inc, California, USA
 - License: commercial, available for academic use
 - Link: https://www.tableau.com
 - Good: usable for data analysists with minimum programming experience
 - Bad: some licenses paid

Licensing

- Instructors and Researchers
 - Free Desktop license for a year (renewable)
 - Some caveats apply
 - https://www.tableau.com/aca demic/teaching/courselicenses
- Students
 - Free Desktop license for a year (renewable)
 - https://www.tableau.com/aca demic/students

Plotly

- DEF: Web-based platform for operationalizing Python & R models
- Product: Plotly Dash
- Features:
 - 2D and 3D charts
 - Designer input, i.e. visual customizability
 - Analytics language integrations: Python, R and Matlab
 - Built-in APIs
- License: open source, MIT license
- Used by: Amazon, Shell, Cisco, Pirelli
- Link: https://plot.ly

Datawrapper

 DEF: Datawrapper is an opensource web tool for basic interactive charts.

Features:

- Free and no sign-up needed
- 19 chart types, 3 maps + tables (all interactive)
- Minimum coding skills required
- Minimum design skills required
- Interactive charts
- License: MIT license
- Used by: Fortune, The New York Times, Wired, Süddeutsche Zeitung
- Link: https://www.datawrapper.de

D3.js

- DEF: D3.js is a JavaScript library for web-based visualizations
 - Data-Driven Documents
- Features:
 - Web-based
 - Interactive viz
 - Downloadable from Github
- License: BSD
- Formats: Scalable Vector
 Graphics (SVG), HTML5, and
 Cascading Style Sheets (CSS)
- Used by: Coursera, Akamai
- Link: https://d3js.org

Google chart

- DEF: Google Charts is Google's big data visualization platform
- Features:
 - Completely free
 - Web-based
 - Supported by Google
 - Simple viz types
 - Multi-dimensional viz types
 - Interactive viz
- License: Apache 2.0
- Used by: BBC, Esquire
- Link:

https://developers.google.com/c

hart

Donuts eaten per person

Age Filter: 3.0 54.0

Gender Selection:

Male 🕇

	Name	Gender	Age	Donuts eaten
	Michael	Male	12	5
	Robert	Male	7	3
	John	Male	54	2
	Aaron	Male	3	1

Kibana (part of Elasticsearch)

Kibana features

- Open source data visualization tool
- Visualize ES documents
- Real-time dashboard
- Supports advanced data analytics
- Historical data visualization

Additional features

- Alerting solutions
 - Yelp's ElastAlert
 - Elastic's Watcher
- Shield authentication and authorization for Kibana

More viz tools (A to Z)

- Chartio, https://chartio.com
- Domo, https://www.domo.com
 - Used by: TripAdvisor, Cisco, etc.
- Geckoboard, https://www.geckoboard.com
- Klipfolio, https://www.klipfolio.com
- Sisense, https://www.sisense.com
 - Used by: NASA, NASDAQ, Samsung
 - Merged with: Periscope Data

Summary

- Visualization types
 - Scientific viz
 - Information viz
 - Visual analytics
- Graph types
 - Line, bar, stacked bar, pie
 - Choropleth, scatter, heat
- Interactive visualization
- Viz tools: Tableau, Plotly, Datawrapper, etc.
 - + other viz tools in 2020 listed in the OST intro

Thank you for your attention!