2022 年上海市嘉定区中考数学一模试卷

2022.1

一、选择题: (本大题共6题, 每题4分, 满分24分)

【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答 题纸的相应位置上】

1. 下列函数中是二次函数的是(▲)

(A)
$$y = x - 1$$
;

(B)
$$y = \frac{1}{x^2}$$
;

(C)
$$y = (x-2)^2 - x^2$$
;

(D)
$$y = x(x-1)$$
.

2. 已知抛物线 $v = (a-1)x^2 + 2$ 的顶点是此抛物线的最低点,那么 a 的取值范围是 (\triangle)

(A)
$$a \neq 0$$
; (B) $a \neq 1$; (C) $a > 1$;

(B)
$$a \neq 1$$
:

(C)
$$a > 1$$

(D)
$$a < 1$$
.

3. 在 $\triangle ABC$ 中, $\angle C = 90^{\circ}$,AC = 6,BC = 2,那么下列各式中正确的是(\triangle)

(A)
$$\tan A = \frac{1}{3}$$
;

(B)
$$\cot A = \frac{1}{3}$$

(A)
$$\tan A = \frac{1}{3}$$
; (B) $\cot A = \frac{1}{3}$; (C) $\sin A = \frac{1}{3}$; (D) $\cos A = \frac{1}{3}$.

(D)
$$\cos A = \frac{1}{3}$$
.

4. 在 $\triangle ABC$ 中,AB = AC = 10, $\cos B = \frac{2}{5}$,那么BC的长是(\blacktriangle)

(C)
$$2\sqrt{21}$$

(B) 8; (C)
$$2\sqrt{21}$$
; (D) $4\sqrt{21}$.

5. 已知一个单位向量 $\stackrel{\rightarrow}{e}$,设 $\stackrel{\rightarrow}{a}$ 、 $\stackrel{\rightarrow}{b}$ 是非零向量,那么下列等式中一定正确的是(\blacktriangle)

(A)
$$|\vec{e}|\vec{a} = \vec{a}$$

(B)
$$|\vec{b}|\vec{e} = \vec{b}$$
;

(C)
$$\frac{1}{|\vec{b}|}\vec{b} = \vec{e}$$

(A)
$$|\vec{e}|\vec{a} = \vec{a}$$
; (B) $|\vec{b}|\vec{e} = \vec{b}$; (C) $\frac{1}{|\vec{b}|}\vec{b} = \vec{e}$; (D) $\frac{1}{|\vec{a}|}\vec{a} = \frac{1}{|\vec{b}|}\vec{b}$.

6. 如图 1,已知 $AB \parallel CD \parallel EF$, AC:AE=3:5,那么下列结论正确的是(\triangle)

(A)
$$BD: DF = 2:3$$
;

(B)
$$AB:CD=2:3$$
;

(C)
$$CD : EF = 3:5$$
;

(D)
$$DF : BF = 2 : 5$$
.

二、填空题: (本大题共12题, 每题4分, 满分48分)

【请将结果直接填入答题纸的相应位置】

7. 抛物线 $v = ax^2 + 2$ 经过点 (-2,6) , 那么 $a = _$ ___.

8. 抛物线
$$y = -x^2 - 2x + 1$$
 的对称轴是 ___.

9. 抛物线 $y = (m+3)x^2 + x - 1$ 在对称轴右侧的部分是上升的,那么 m 的取值范围是 \triangle .

10. 将抛物线 $v = x^2 - 2x$ 向左平移 2 个单位,得到一条新抛物线,这条新抛物线的表达式

是▲_.

- 11. 在 \triangle ABC 中, $\angle C = 90^{\circ}$, $\cos B = \frac{1}{4}$, BC = 4 , 那么 $AB = \underline{\blacktriangle}$.
- 12. 在菱形 ABCD 中,对角线 AC 与 BD 之比是 3:4,那么 $\sin \angle BAC = _$.
- 13. 如图 2,飞机在目标 B 的正上方 A 处,飞行员测得地面目标 C 的俯角 $\alpha = 30^{\circ}$,如果地面目标 B 、 C 之间的距离为 6 千米,那么飞机离地面的高度 AB 等于 <u></u>千米. (结果保留根号)

- 14. 已知 x: y = 2:3, 那么 (x + y): y =____.
- 15. 已知向量 \vec{a} 、 \vec{b} 、 \vec{x} 满足 $2(\vec{a}-\vec{x})=3(\vec{b}-\vec{x})$,试用向量 \vec{a} 、 \vec{b} 表示向量 \vec{x} ,那么 $\vec{x}=$
- 16. 如图 3, 在△ *ABC* 中, *DE ∥ BC* , *DF ∥ AC* , *AD* = 3 , *BD* = 2 , 那么 *BF* : *DE* 的 值是▲_.
- 17. 在梯形 ABCD 中,AD//BC ,对角线 AC 与 BD 相交于点 O ,如果 \triangle AOD 、 \triangle BOC 的面积分别是 $1cm^2$ 、 $4cm^2$,那么梯形 ABCD 的面积等于 \triangle cm^2 .
- 18. 如图 4, 在 \triangle ABC 中, $\angle C = 90^{\circ}$, BC = 2 , $AB = 2\sqrt{5}$, 点 D 在边 AC 上, CD: AD = 1:3 , 联结 BD , 点 E 在线段 BD 上, 如果 $\angle BCE = \angle A$, 那么 $CE = _$.
- 三、解答题: (本大题共7题,满分78分)
- 19. (本题满分 10 分)

计算:
$$\tan 60^{\circ} \cdot \cot 30^{\circ} + \frac{\tan 45^{\circ}}{\cot 45^{\circ} + 2\sin 45^{\circ}} + 2|\cos 60^{\circ} - 1|$$
.

20. (本题满分 10 分)

如图 5,在梯形 ABCD 中,AD//BC,点 E 在线段 AD 上,CE 与 BD 相交于点 H,CE 与 BA 的延长线相交于点 G,已知 DE : AE = 2:3,BC = 4DE ,CE = 10.求 EH 、 GE 的长.

21. (本题满分 10 分, 第(1)小题满分 6 分, 第(2)小题满分 4 分)

已知二次函数 $y = ax^2 + bx + c$ 的图像经过点 A(3,-2) 、 B(2,-3) 、 C(0,1) .

- (1) 求这个二次函数的解析式;
- (2) 用配方法求出这个二次函数图像的顶点坐标.

22. (本题满分 10 分, 第(1)小题满分 4 分, 第(2)小题满分 6 分)

如图 6,在航线 l 的两侧分别有两个灯塔 A 和 B ,灯塔 A 到航线 l 的距离为 AC=3 千米,灯塔 B 到航线 l 的距离为 BD=4 千米,灯塔 B 位于灯塔 A 南偏东 60° 方向.现有一艘轮船从位于灯塔 B 北偏西 53° 方向的 N (在航线 l 上)处,正沿该航线自东向西航行,10 分钟后该轮船行至灯塔 A 正南方向的点 C (在航线 l 上)处.

(1) 求两个灯塔 A和 B之间的距离;

better offer, better future

(2) 求该轮船航行的速度(结果精确到 0.1 千米/小时).(参考数据: $\sqrt{3}\approx 1.73$, $\sin 53^{\circ}\approx 0.80$, $\cos 53^{\circ}\approx 0.60$, $\tan 53^{\circ}\approx 1.33$)

23. (本题满分12分,每小题满分各6分)

如图 7,已知正方形 ABCD 和正方形 BEFG,点 E 在边 BC 上,点 G 在边 AB 的延长 线上,联结 AE,并延长 AE 交 CG 于点 K .

- (1) 求证: $\triangle ABE \hookrightarrow \triangle CKE$;
- (2) 如果 CG 与 EF 交于点 H, 求证: $BE^2 = FH \cdot AB$.

24. (本题满分12分,每小题满分各4分)

在平面直角坐标系 xOy 中,点 A 、 B 两点在直线 $y = \frac{1}{2}x$ 上,如图 8. 二次函数 $y = ax^2 + bx - 2$ 的图像也经过点 A 、 B 两点,并与y 轴相交于点 C ,如果 $BC \parallel x$ 轴,点 A 的横坐标是 2 .

- (1) 求这个二次函数的解析式;
- (2) 设这个二次函数图像的对称轴与BC交于点D,点E在x轴的负半轴上,如果以点E、O、B 所组成的三角形与 \triangle OBD 相似,且相似比不为1,求点E 的坐标;
 - (3) 设这个二次函数图像的顶点是M,求 $\tan \angle AMC$ 的值.

25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)

在平行四边形 ABCD 中,对角线 AC 与边 CD 垂直, $\frac{AB}{AC} = \frac{3}{4}$,四边形 ABCD 的周长 是16,点 E 是在 AD 延长线上的一点,点 F 是在射线 AB 上的一点, $\angle CED = \angle CDF$.

- (1) 如图 9, 如果点 F 与点 B 重合, 求 $\angle AFD$ 的余切值;
- (2) 如图 10, 点 F 在边 AB 上的一点. 设 AE=x, BF=y, 求 y 关于 x 的函数关系式并写出它的定义域;
 - (3) 如果 BF: FA = 1:2,求 $\triangle CDE$ 的面积.

2022 年上海市嘉定区中考数学一模试卷

二、7.1; 8.直线
$$x = -1$$
; 9. $m > -3$; 10. $y = x^2 + 2x$; 11.16; 12. $\frac{4}{5}$; 13. $2\sqrt{3}$;

14.5:3; **15**.
$$3\vec{b} - 2\vec{a}$$
; **16**. $\frac{2}{3}$; **17**.9; **18**. $\frac{\sqrt{5}}{2}$.

三、19. 解:
$$\tan 60^{\circ} \cdot \cot 30^{\circ} + \frac{\tan 45^{\circ}}{\cot 45^{\circ} + 2\sin 45^{\circ}} + 2|\cos 60^{\circ} - 1|$$

$$= \sqrt{3} \times \sqrt{3} + \frac{1}{1 + 2 \times \frac{\sqrt{2}}{2}} + 2 \left| \frac{1}{2} - 1 \right|$$
 6 \$\frac{1}{2}\$

$$= 3 + \sqrt{2} \qquad \qquad 1 / 3$$

$$BC = 4DE$$
, $DE : AE = 2:3$

$$\therefore CE = 10 \therefore GC = 10 + GE \quad \cdots \quad 1 \text{ }$$

$$\therefore \frac{3}{8} = \frac{GE}{10 + GE} \qquad \dots 1 \, \text{ }$$

22.解: (1) 由题意, 得
$$\angle ACM = \angle BDM = 90^{\circ}$$
, $AC = 3$, $BD = 4$

$$\angle CAM = \angle DBM = 60^{\circ} \cdots 1 \, \%$$

在
$$Rt \triangle ACM$$
 中, $\cos \angle CAM = \frac{AC}{AM}$, $\therefore \cos 60^\circ = \frac{3}{AM}$ $\therefore AM = 6$ ··········· 分

在
$$Rt \triangle BDM$$
中, $\cos \angle DBM = \frac{BD}{BM}$, $\therefore \cos 60^\circ = \frac{BD}{BM}$

$$\therefore BM = 8$$
 ·········1 分

答:两个灯塔 A 和 B 之间的距离为14千米.

$$\therefore \tan 60^\circ = \frac{MC}{3} \therefore MC = 3\sqrt{3} \qquad \dots 1 \text{ }$$

在
$$Rt \triangle BDM$$
 中, $\tan \angle DBM = \frac{DM}{DB}$, $\therefore \tan 60^\circ = \frac{DM}{4} \therefore DM = 4\sqrt{3} \cdots 1$ 分

$$\therefore CD = MC + DM = 7\sqrt{3} \qquad \cdots 1$$

在
$$Rt \triangle BDN$$
 中, $tan \angle DBN = \frac{DN}{DR}$, 由题意,得 $\angle DBN = 53^{\circ}$

∴
$$\tan 53^\circ = \frac{DN}{4}$$
 ∴ $DN = 4 \tan 53^\circ$ ······1 分

∴
$$CN = CD - DN = 7\sqrt{3} - 4 \tan 53^\circ$$
 ······1 分

设该轮船航行的速度是1/千米/小时

图 7

由题意,得 $V = (7\sqrt{3} - 4\tan 53^\circ) \div \frac{10}{60}$

- ∴ V ≈ 40.7 (千米/小时)
- ……1分

答: 该轮船航行的速度是40.7千米/小时.

23.证明 (1) :: 四边形 ABCD 是正方形

$$\therefore AB = CB$$
, $\angle ABC = 90^{\circ}$

……1分

::四边形 BEFG 是正方形

$$\therefore FG = BG = BE$$
, $\angle CBG = 90^{\circ}$ 1 $\frac{1}{2}$

$$\therefore \angle ABE = \angle CBG = 90^{\circ}$$

……1分

$$\therefore \triangle ABE \cong \triangle CBG$$

……1分

$$\therefore \angle BAE = \angle ECK$$

.....1 分

$$\therefore \angle AEB = \angle CEK$$

$$\therefore \triangle ABE \leadsto \triangle CKE$$

……1 分

(2) 由题意,得 $\angle CEF = \angle F = \angle ABE = 90^{\circ}$

$$\therefore FG \parallel BC$$

…1 分

$$\therefore \angle ECK = \angle FGH$$

…1分

$$\therefore \angle BAE = \angle ECK$$

$$\therefore \angle BAE = \angle FGH$$

…1分

$$\therefore \triangle ABE \leadsto \triangle GFH$$

…1 分

$$\therefore \frac{AB}{FG} = \frac{BE}{FH}$$

…1分

$$\therefore FG = BE \therefore \frac{AB}{BE} = \frac{BE}{FH}$$

$$\therefore BE^2 = FH \cdot AB$$

…1分

24. 解: (1) ::二次函数 $y = ax^2 + bx - 2$ 的图像与 y 轴相交于点 C

$$\therefore$$
点 C 的坐标为 $(0,-2)$,

……1分

- :: BC // x轴 :: 点 B 的纵坐标是 -2,
- \therefore 点 A、 B 两点在直线 $y = \frac{1}{2}x$ 上,点 A 的横坐标是 2

 \therefore 点 A 的坐标为 (2,1) , 点 B 的坐标为 (-4,-2)

由这个二次函数的图像也经过点 A(2,1)、 B(-4,-2), 得

(2) 根据 (1) 得,二次函数 $y = \frac{1}{4}x^2 + x - 2$ 图像的对称轴是直线 x = -2

∴ 点 D 的坐标为 (-2,-2)

·····1 4

$$\therefore OB = 2\sqrt{5}$$
, $BD = 2$

 $\therefore BC //x$ 轴 ∴ $\angle OBD = \angle BOE$

∴以点E、O、B 组成的三角形与 \triangle OBD 相似有可能以下两种:

① 当 $\frac{BO}{OB} = \frac{BD}{OE}$ 时 \triangle $BOD \sim \triangle$ OBE ,显然这两相似三角形的相似比为 1

与已知相似比不为1矛盾,这种情况应舍去1 9

②
$$\stackrel{BO}{=} \frac{BD}{OE} = \frac{BD}{OB}$$
 时 $\triangle BOD \hookrightarrow \triangle OEB$, $\therefore \frac{2\sqrt{5}}{OE} = \frac{2}{2\sqrt{5}}$

又点E在x轴的负半轴上

$$\therefore$$
 点 E 的坐标为 $(-10,0)$

……1分

(3) 过点C作 $CH \perp AM$,垂足为H

根据 (1) 得, 二次函数的解析式是 $y = \frac{1}{4}x^2 + x - 2$ 的顶点坐标为 M(-2, -3)

设直线 AM 的解析式为 y = kx + b , 易得 k = 1 , b = -1

$$\therefore$$
 直线 AM 的解析式为 $y = x - 1$

……1分

设直线 AM 与 x 轴、 y 轴的交点分别为点 P 、 Q ,

则点 P 的坐标为 (1,0) ,点 Q 的坐标为 (0,-1)

∴ \triangle *OPO* 是等腰直角三角形, \angle *OOP* = 45°

$$\therefore \angle OOP = \angle HOC \therefore \angle HOC = 45^{\circ}$$

::点 C 的坐标为 (0,-2),:: CQ = 1

$$\therefore HC = HQ = \frac{\sqrt{2}}{2}$$

……1分

$$\chi MQ = 2\sqrt{2}$$

$$\therefore MH = MQ - HQ = \frac{3}{2}\sqrt{2}$$

……1分

$$\therefore \tan \angle AMC = \frac{HC}{MH} = \frac{1}{3}$$

……1分

25. (1) 解: 如果点F与点B重合,设DF与AC交于点M

$$\therefore AC \perp CD \therefore \angle DCA = 90^{\circ}$$

∵四边形 ABCD 是平行四边形∴ $CD \parallel AB$ ∴ $\angle CAB = \angle DCA = 90^{\circ}$

在 $Rt \triangle CAB$ 中,设 AB = 3k

$$\therefore \frac{AB}{AC} = \frac{3}{4} \qquad \therefore \qquad AC = 4k$$

∵四边形 ABCD 的周长是16 ∴ 2(AB + BC) = 16

$$2(3k+5k)=16$$

图 9

$$AB = 3, BC = 5, AC = 4 \cdots 1 \text{ }$$

::四边形 ABCD 是平行四边形

$$\therefore \cot \angle AFD = \frac{AB}{AM} = \frac{3}{2} \qquad \dots 1 \text{ }$$

(2) \mathbf{M} : \therefore \mathbf{CD} \parallel \mathbf{AB} \therefore $\angle \mathbf{EDC} = \angle \mathbf{FAD}$, $\angle \mathbf{CDF} = \angle \mathbf{AFD}$

$$\therefore$$
 ∠CED = ∠CDF \therefore ∠CED = ∠AFD \therefore △ CDE \backsim △ DAF \dots 1 分

$$\therefore \frac{DE}{AF} = \frac{DC}{AD} \qquad \dots \dots 1 \text{ }$$

由题意, 得 AD = BC = 5, DE = x - 5,

$$DC = AB = 3$$
, $AF = 3 - y$

图 10

$$\therefore y = -\frac{5}{3}x + \frac{34}{3} \qquad \dots 1$$

(3) 解:点F在射线AB上都能得到: $\triangle CDE \hookrightarrow \triangle DAF$

$$\therefore \frac{S_{\triangle CDE}}{S_{\triangle DME}} = (\frac{DC}{AD})^2 \qquad \cdots 1 \, \mathcal{T}$$

①当点 F 在边 AB 上

$$\therefore BF : FA = 1:2$$
, $AB = 3$ $\therefore AF = 2$,

由题意,得
$$S_{\Delta DAF} = \frac{1}{2}AF \cdot AC$$

$$\therefore AC = 4 \therefore S_{\Delta DAF} = \frac{1}{2}AF \cdot AC = \frac{1}{2} \times 2 \times 4 = 4$$

$$\therefore \frac{S_{\triangle CDE}}{4} = (\frac{3}{5})^2 \therefore S_{\triangle CDE} = \frac{36}{25}$$

……2 分

②当点 F 在 AB 的延长线上

$$\therefore BF : FA = 1 : 2$$
, $AB = 3$ $\therefore AF = 6$

由题意, 得
$$S_{\Delta DAF} = \frac{1}{2}AF \cdot AC$$
 : $S_{\Delta DAF} = \frac{1}{2}AF \cdot AC = 12$

$$\therefore \frac{S_{\triangle CDE}}{12} = (\frac{3}{5})^2 \therefore S_{\triangle CDE} = \frac{108}{25} \qquad \cdots 2 \%$$

综上所述, $\triangle CDE$ 的面积是 $\frac{36}{25}$ 或 $\frac{108}{25}$.