Model SIR oraz SIRD

Czerwiec, 2020

1 Model SIR

Model SIR (Susceptible - Infectious - Recovered), model w którym agent może przechodzić miedzy stanami: Podatny (S), Zarażony (I), Ozdrowiały (R) (agent wyzdrowiał i uodpornił się lub zmarł).

$$S \to I \to R$$
 (1)

Model opisany jest dwoma parametrami β - podatność na zarażenie, oraz γ - tempo ozdrawiania. Zakładamy iż okres inkubacji jest na tyle krótki, że pomijalny oraz każdy osobnik ma szansę napotkać osobę w każdym stadium z równym prawdopodobieństwem.

$$\dot{S} = \frac{dS}{dt} = -\beta I \frac{S}{N} \tag{2}$$

$$\dot{I} = \frac{dI}{dt} = \beta I \frac{S}{N} - \gamma I \tag{3}$$

$$\dot{R} = \frac{dR}{dt} = \gamma I \tag{4}$$

W celu wyznaczenia parametrów modelu posłużono się przekształceniem:

$$\gamma = \frac{\dot{R}}{I} \tag{5}$$

$$\beta = (\dot{I} + \gamma I) \frac{N}{SI} \approx \frac{\dot{I}}{I} + \gamma \tag{6}$$

Gdzie \dot{I} liczba nowych zarażony , a \dot{R} liczba ozdrowiałych + zmarłych.

2 Model SIRD

Rozwinięciem modelu SIR jest dodanie stany Zmarły (Deceased) - rozróżnienie od osób wyzdrowiałych (Recovered).

$$S \to I \stackrel{D}{\stackrel{}{<}}_R \tag{7}$$

Dochodzi również nowy parametr opisujący śmiertelność δ .

$$\dot{S} = \frac{dS}{dt} = -\beta I \frac{S}{N} \tag{8}$$

$$\dot{I} = \frac{dI}{dt} = \beta I \frac{S}{N} - \gamma I - \delta I = \beta I \frac{S}{N} - (\gamma - \delta)I \tag{9}$$

$$\dot{R} = \frac{dR}{dt} = \gamma I \tag{10}$$

$$\dot{D} = \frac{dD}{dt} = \delta I \tag{11}$$

W przypadku wyznaczania parametrów maja miejsce drobne zmiany:

$$\gamma = \frac{\dot{R}}{I} \tag{12}$$

$$\delta = \frac{\dot{D}}{I} \tag{13}$$

$$\beta = [\dot{I} + (\gamma - \delta)I]\frac{N}{SI} \approx \frac{\dot{I}}{I} + \gamma - \delta \tag{14}$$

Gdzie \dot{I} liczba nowych zarażony, \dot{R} liczba ozdrowiałych, a \dot{D} liczba zmarłych. Wartości te zostaną wyliczone po dopasowaniu krzywej do zebranych danych, odpowiednio funkcji eksponent (w momentach szybkiego wzrostu) lub sigmoid.

Założenia na potrzeby projektu - w chwili t=0 cała populacja danego kraju jest podatna na zarażenie.

3 Założenia

Przyjęte założenia na bazie [3]:

- Czas inkubacji (zarażenie wystąpienie pierwszych symptomów) 5 dni,
- Czas do wyzdrowienia lub śmierci od wystąpienia symptomów 15 dni.

4 Polska

W przypadku Polski skorzystano z modelu SIRD, przy obliczaniu parametrów, podzielono sytuację na 4 okresy [2]:

- 1. 15.02-16.03 okres do wprowadzenia pierwszych ograniczeń,
- 2. 17.03-24.03 okres pomiędzy wprowadzeniem pierwszych, a drugich ograniczeń,
- 3. 25.03-31.03 okres pomiędzy wprowadzeniem drugich, a trzecich ograniczeń,
- 4. po 31.03 okres po wprowadzeniu ostatnich ograniczeń.

Od tego momentu obserwuje się fluktuacje wokół stałej wartości, znoszenie kolejnych obostrzeń nie przyniosło też znaczącej zmiany kształtu krzywej liczby osób zarażonych dziennie.

Rysunek 1: Wykres liczy nowo zarażonych danego dnia z zaznaczonymi datami wprowadzeń nowych obostrzeń oraz ich znoszenia

Rysunek 2: Wykres liczy wszystkich zarażonych danego dnia z zaznaczonymi datami wprowadzeń nowych obostrzeń oraz ich znoszenia

4.1 Dopasowanie krzywych

Rysunek 3: Wykres dla czterech okresów liczby nowych przypadków wyzdrowień oraz śmierci danego dnia dla Polski z dopasowanymi krzywymi, czerwone - punkty nie brane pod uwagę przy wyliczeniach (pokazujące przyszły przebieg epidemii)

	dR	dD
R^2	0.77	0.73
χ^2	3298	450
DOF	101	101
p-value	< 0.001	< 0.001

Rysunek 4: Wykres dla czterech okresów liczby nowych zarażonych danego dnia dla Polski z dopasowanymi krzywymi

Okresy:	1	2	3	4
R^2	0.84	0.96	0.97	0.87
χ^2	27	83	68	1130
DOF	27	35	41	101
p-value	0.45	< 0.001	0.005	< 0.001

Wartość dI_1 wyliczono z dopasowania dla okresu 2, ze względu na lepsze dopasowanie.

4.2 Wyliczenie parametrów modelu

Po dopasowaniu punktów do odpowiednich krzywych uzyskane wartości to:

Okresy:	1	2	3	4
dI	32 ± 15	116 ± 65	222 ± 21	356 ± 8
dR	0 ± 0.01	3 ± 3	9 ± 8	266 ± 15
dD	2 ± 24	4 ± 55	8 ± 98	5 ± 55

Liczba śmierci danego dnia różni się o rząd wielkości od niepewności.

Okresy:	1	2	3	4
I_{0-5dni}	31	337	1198	11348
$R_{0-15dni}$	1	1	13	6930
$D_{0-15dni}$	1	1	4	97

Dni z zerową liczbą przypadków pozamieniano na wartości równe 1. Natomiast wartości parametrów to:

Okresy:	1	2	3	4
β	1 ± 28	0.4 ± 5	0.2 ± 0.6	0.054 ± 0.006
γ	0 ± 0.05	0.01 ± 0.01	0.008 ± 0.003	0.023 ± 0.001
δ	0 ± 24	0 ± 3	0.1 ± 0.6	0 ± 0.006

Wartość delty można przyjąć zerową ze względu na niepewności kilkukrotnie większe o estymowanych wartości. Dopiero wyniki mieszczące się w ramach niepewności otrzymujemy dla ostatniego okresu - ze względu na dużą liczbę danych.

4.3 Wyniki modelu

Rysunek 5: Wykres dla modelu SIRD z danymi wejściowymi dla każdego z 4rech okresów

Rysunek 6: Wykres dla czterech modeli SIRD z danymi wejściowymi z okresów 1,2,3 w zestawieniu z danymi rzeczywistymi

Nawet mimo najlepszej dokładności parametrów ze wszystkich okresów, wykorzystanie parametrów obliczonych na podstawie danych z całego okresu daje słabe dopasowanie do krzywej z danych rzeczywistych.

5 Belgia

W przypadku Belgi użyto modelu SIR oraz rozpatrywano trzy punkty jako początek: dzień 40, 60, 80.

Rysunek 7: Wykres liczy I oraz R

Rysunek 8: Wykres wartości dI i dR

Dni początkowe wybrano z racji na różne dynamiki przyrostów liczy zarażonych oraz wyzdrowiałych.

Wartości parametrów dla poszczególnych dni jako punktów wyjściowy, gdzie dla każdego dnia liczono odpowiednio średnią z trzech dni (-1, 0, 1).

Dzień:	40	60	80
β	0 ± 0.1	0.01 ± 0.01	0.008 ± 0.004
γ	0 ± 0.0003	0 ± 0.004	0 ± 0.004

Rysunek 9: Wykres dla modelu SIR z danymi wejściowymi odpowiednio dla dnia $40,\!60,\!80$

Rysunek 10: Wykres dla trach modeli SIR z danymi wejściowymi z dnia 40,60,80 w zestawieniu z danymi rzeczywistymi

6 Malezja

Tak samo jak w przypadku Belgi, tak w przypadku Malezji użyto modelu SIR oraz rozpatrywano cały okres epidemii bez dzielenia na podokresy.

Rysunek 11: Wykres dla I oraz R

Rysunek 12: Wykres wartości dI i dR

Wartości parametrów dla poszczególnych dni jako punktów wyjściowy:

Dzień:	30	50	70
β	0.3 ± 0.5	0.059 ± 0.004	0.11 ± 0.02
γ	0 ± 0.005	0.001 ± 0.001	0 ± 0.02

Rysunek 13: Wykres dla modelu SIR z danymi wejściowymi odpowiednio dla dnia $30,\!50,\!70$

Rysunek 14: Wykres dla trach modeli SIR z danymi wejściowymi z dnia 30,50,70 w zestawieniu z danymi rzeczywistymi

7 Wnioski

Zarówno model SIR jak i SIRD uzależnione są od danych wejściowych oraz mają sens tylko w momencie wzrostu liczby zachorowań. Jak ma to miejsce dla Malezji (30 dzień) albo Belgii (80 dzień). Przy korzystaniu z liczby

nowych zarażonych, wyzdrowiałych dziennie do obliczenia parametrów ma to tylko sens w fazie wzrostu - ponieważ przyjmując cała populacje jako podatną model będzie dążył aż do "zarażenia wszystkich" - liczba nowych przypadków zarażeń będzie zazwyczaj większa niż wyzdrowień - zarejestrowane wyzdrowienia i tak najpierw muszą być zarejestrowanymi zarażeniami, wiec dI ¿ dR.

W przypadku Polski żaden model nie oddawał poprawnie wartości - zapewne z powodu dość radykalnych kroków, małej liczby testów, a co za tym idzie zaniżanej liczby nowych zarażonych. Cały czas trzeba też pamiętać że badamy liczbę zarejestrowanych przypadków a ich rzeczywista liczba może być większa - co przy założeniach iż N= całej populacji prowadzi do przekłamać i wzrostu liczby zarażeń w przyszłości aż osiągnie maksimum (które już mogło już minąć).

Literatura

- [1] COVID-19 Coronavirus Pandemic Data https://www.worldometers.info/coronavirus/
- [2] Koronawirus obostrzenia w Polsce. Etapy znoszenia ograniczeń https://www.medonet.pl/koronawirus-pytania-i-odpowiedzi/sa rs-cov-2,koronawirus---obostrzenia-w-polsce--etapy-znoszeni a-ograniczen--aktualne-dane-,artykul,98382723.html
- [3] Tomas Pueyo Coronavirus: Why You Must Act Now https://medium.com/@tomaspueyo/coronavirus-act-today-or-people-will-die-f4d3d9cd99ca
- [4] COVID-19 Portal parameter estimates https://github.com/midas-network/COVID-19/tree/master/parameter_estimates/2019_novel_coronavirus
- [5] COVID-19 dynamics with SIR model https://www.lewuathe.com/covid-19-dynamics-with-sir-model.html