

1/31

a. TMSOTf, Et₂O, -35°C → rt; b. MeONa, MeOH-CH₂Cl₂, rt; c. Sn(OTf)₂, CH₃CN, rt; d. i. H₂NCH₂CH₂NH₂, EtOH, 60°C, ii. Ac₂O, EtOH; iii. MeONa, MeOH-CH₂Cl₂, rt; e. Me₂C(OMe)₂, PTSA, acetone, rt; f. see ref (L. A. Mulard, C. Costachel, P. J. Sansonetti, *J. Carbohydr. Chem.* **2000**, *19*, 849-877); g. 4Å-MS, TfOH, CH₂Cl₂, -15°C → rt; h. 90% aq TFA, 0°C; i. MeONa, MeOH-CH₂Cl₂, rt; j. H₂, 10% Pd/C, EtOH-AcOH, rt.

FIGURE 1

2/31

FIGURE 2

3/31

a. see ref. (F. Segat, L. A. Mular, *Tetrahedron: Asymmetry* 2002, 13, 2211-2222); b. $(ClAc)_2O$, Pyridine- CH_2Cl_2 , $0^\circ C$; c. i. $(COD)Ir^+(P(MePh_2)_2)PF_6^-$, THF, ii. I_2 , THF, rt; d. CCl_3CN , DBU, CH_2Cl_2 , $0^\circ C$; e. 4\AA-MS , TMSOTf, CH_2Cl_2 , $-60^\circ C \rightarrow$ rt; f. thiourea, $MeOH$ -pyridine, $65^\circ C$.

FIGURE 3

4/31

a. i. $(COD)Ir^+(P(MePh_2)_2)PF_6^-$, THF, ii. I_2 , THF, rt; b. CCl_3CN , K_2CO_3 , CH_2Cl_2 , $0^\circ C$; c. $TMSOTf$, Et_2O , $-60^\circ C \rightarrow 0^\circ C$; d. thiourea, $MeOH$ -pyridine, $65^\circ C$; e. guanidine, $EtOH$ - CH_2Cl_2 , rt; f. 4\AA -MS, $TMSOTf$, Et_2O , $-60^\circ C \rightarrow rt$; g. 50% aq TFA, CH_2Cl_2 , $0^\circ C$; h. 0.5M $MeONa$, $MeOH$, $55^\circ C$; i. 10% Pd/C, $EtOH$ - $EtOAc$, 1M aq HCl , rt.

FIGURE 4

5/31

FIGURE 5

a. 50% aq TFA, CH_2Cl_2 , 0°C; *b.* MeONa, MeOH, 55°C; *c.* 10% Pd/C, EtOH-EtOAc, 1M aq HCl, rt.

FIGURE 6

6/31

	R ¹	R ³
201	Ali	Ali
202	Ali	H
203	TCA	Ac

FIGURE 7

FIGURE 8

7/31

FIGURE 9

FIGURE 10

8/31

FIGURE 11

9/31

(a) cat. TMSOTf, anhydrous DCM, 0.5 h, 0°C, 97% (308), 99% (317); (b) i. cat. $[\text{Ir}(\text{COD})\{\text{PCH}_3(\text{C}_6\text{H}_5)_2\}_2]^+\text{PF}_6^-$, THF, rt, 20 h, ii. HgO, HgCl_2 , acetone/water, rt, 2 h, 81% (318), 69% (320); (c) CCl_3CN , DBU, DCM, 0°C, 1 h, 78% (306), 86% (7); (d) i. NH_3 , MeOH, 20h, 0°C, ii. Ac_2O , MeOH, iii. Ac_2O , Py, 90%; (e) cat. TMSOTf, CH_3CN , 0°C, 41% (2); (f) cat. TfOH, NIS, Et_2O , DCE, 0°C, 10% (304).

FIGURE 12

10/31

(a) cat. TMSOTf, anhydrous Et₂O, 3 h, -55 → -20°C, 92%; (b) MeONa, MeOH, 3 h, rt, 93%; (c) cat. TMSOTf, 4 Å molecular sieves, DCE, 3 h, -20 → 0°C, 96%; (d) cat. TMSOTf, anhydrous Et₂O, 4 h, 0°C → rt, 65%; (e) i. MeONa, MeOH, Et₃N, rt, 18 h, rt, ii. Ac₂O, 0.5 h, 0°C → rt, 45%; (f) Py, Ac₂O, 18 h, 0°C → rt, 94%; (g) i. cat. [Ir(COD){PCH₃(C₆H₅)₂}₂]⁺PF₆⁻, THF, rt, 20 h, ii. HgO, HgCl₂, acetone/water, rt, 2 h, 83%; (h) CCl₃CN, DBU, DCM, 0°C, 40 min, 94%; (i) i. ethylenediamine, THF, EtOH, 55°C, 4 h, ii. Ac₂O, rt, 1.5 h, iii. Py, Ac₂O, 0°C, overnight, 68%; (j) i. PhC(OMe)₃, CSA, DCM, ii. 50% aq. TFA, DCM, 87%; (k) i. MeC(OMe)₃, CSA, DCM, ii. 50% aq. TFA, DCM, 90%; (l) BF₃·Et₂O, anhydrous Et₂O, 4 Å molecular sieves, 0°C → rt, 18 h, 44%.

FIGURE 13

11/31

(a) ClAc_2O , Py, $0^\circ\text{C} \rightarrow \text{rt}$, overnight, 57%; (b) $p\text{MeOBnCl}$, NaH , DMF, rt , overnight, 97%; (c) i. cat. $[\text{Ir}(\text{COD})\{\text{PCH}_3(\text{C}_6\text{H}_5)_2\}_2]^+\text{PF}_6^-$, THF, rt , 20 h, ii. HgO , HgCl_2 , acetone/water, rt , 2 h, 84% (333), 73% (336); (d) CCl_3CN , DBU, DCM, 0°C , 1 h, 83% (334), 82% (337); (e) cat. TMSOTf, anhydrous Et_2O , $-60^\circ\text{C} \rightarrow \text{rt}$, overnight, 22% (338), 44% (339).

FIGURE 14

12/31

(a) cat. TMSOTf, anhydrous Et_2O , $-50^\circ\text{C} \rightarrow \text{rt}$, overnight, 84% (342), 90% (344); (b) $\text{HBF}_4/\text{Et}_2\text{O}$, MeOH , rt, 4 days, 84% (310), 84% (340); (c) Guanidine, DCM, rt; (d) cat. TMSOTf, anhydrous DCM, 4 \AA molecular sieves, $0^\circ\text{C} \rightarrow \text{rt}$, 3 h, 98%; (e) i. cat. $[\text{Ir}(\text{COD})\{\text{PCH}_3(\text{C}_6\text{H}_5)_2\}_2]^+\text{PF}_6^-$, THF, rt, 20 h, ii. HgO , HgCl_2 , acetone/water, rt, 2 h; (f) CCl_3CN , DBU, DCM, 0°C, 1 h, 66% (2 steps).

FIGURE 15

13/31

(a) MeONa, MeOH, rt, 0.5 h; (b) 2-methoxypropene, CSA, DMF, 72% (2 steps); (c) cat. TfOH, anhydrous DCE, 4 Å molecular sieves, $-35^{\circ}C \rightarrow -10^{\circ}C$, 2.5 h; (d) TFA, water/DCM, $0^{\circ}C$, 3 h, 72% (2 steps); (e) MeONa, MeOH, DCM, $55^{\circ}C$; (f) i. H_2 , Pd/C, EtOH, EtOAc, 1M HCl, rt, 72 h, ii. H_2 , Pd/C, MeOH, Et_3N , rt, 24 h. (g) MeONa, MeOH, DCM, $55^{\circ}C$, overnight, 37% (3 steps).

FIGURE 16

14/31

FIGURE 17

15/31

FIGURE 18

16/31

FIGURE 19

17/31

FIGURE 20

18/31

FIGURE 21

19/31

FIGURE 22

20/31

FIGURE 23

21/31

FIGURE 24

FIGURE 25

22/31

FIGURE 26

23/31

FIGURE 27

24/31

FIGURE 28

25/31

FIGURE 28bis

2)- α L_Rhap-(1,2)- α L_Rhap-(1,3)-[α DGlcP-(1,4)]- α L_Rhap-(1,3)- β DGlcNAcp-(1)

Figure 29

27/31

Figure 30

28/31

Figure 32

30/31

Figure 33

31/31

Figure 34