Employee Attrition Prediction

Case Study Batch 2

Aishwarya B

Agenda

Problem Statement

Implementation Details

Results

Inferences

Problem Statement

- Employee attrition refers to an employee's voluntary or involuntary resignation.
- Attrition prediction model would act as a HR Analysis tool specially for companies with a large workforce.
- Help companies to prepare for future employee-loss.
- The goal of the project is to identify key features that are contributing towards attrition and use them to predict future attrition.

Data- Employee Attrition Dataset

Methodology

Results of EDA

Results after Modelling

Imbalanced Dataset

Data after Balancing

			Accuracy	F1-score	ROC_AUC Score					Accurac	y F1-score	ROC_AUC Score
	Without Scaling		0.853061	0.813656	0.77707	2		Without	Scaling	0.8081	63 0.813059	0.759964
Logistic Regression		With Standardization	0.870068	0.846544					dardization	0.8312	93 0.836802	0.827469
		With Normalization	0.870748	0.845583	Random F	orest	has performed b	<mark>better</mark>	malization	0.8394	56 0.842764	0.826367
		Without Scaling	0.838776	0.765232	<u>afte</u>	er Bal	lancing the data		caling	0.8387	76 0.765232	0.62407
Support Vector		With Standardization	0.870068	0.841798	U.O	_			dardization	0.8530	0.848969	0.80886
Na		Without Scaling	0.863265	0.831857	0.805951			Without!	Scaling	0.848299	0.835478	05566 0,704375 22857 64573
	Random Forest	With Standardization	0.857823	0.82635	<u>0.</u> 794833		Random Forest	With Standardization		0.863265	0.847947	0.000409 13715 42193
	Classifier	With Normalization	0.860544	0.836548	0.78 <mark>1263</mark>		Classifier	With Nor	malization	0.861224	<mark>0.845412</mark>	0.013044 84375
Ra	muom rorest	with Standardization	0.037 023	0.02033	0.7 9400	3	Random Forest	VVIIII Sta	nuaruization	0.0032	03 0.04/94/	0.8 06469
	Classifier	With Normalization	0.860544	0.836548	0.78126	3	Classifier	With No	rmalization	0.8612	24 0.845412	0.813044
		Without Scaling	0.819728	0.809779	0.68771	1		Without	Scaling	0.799	32 0.769657	0.624425
		With Standardization	0.860544	0.829695	0.79600	4		With Sta	ndardization	0.823	81 0.824485	0.760683
Adal	Boost Classifier	With Normalization	0.848299	0.808819	0.74764	1	AdaBoost Classifier	With No	rmalization	0.8190	48 0.821914	0.768572
		Without Scaling	0.721769	0.709049	0.6309	2		Without	Scaling	0.7721	09 0.743746	0.61995
Multi Layer Perceptron		With Standardization	0.871429	0.851897	0.82995	7	Multi Layer	With Sta	ndardization	0.825	85 0.82628	0.760852
		With Normalization	0.868707	0.8469	0.82960	3	Perceptron	With No	rmalization	0.8204	0.822997	0.791904

EMPLOYEE ATTRITION DASHBOARD

13K-14..

15K-16..

16K-17..

17K-18.

12K-13..

10K-11..

9K-10K

11K-12..

6K-7K

7K-8K

8K-9K

18K-19..

19K-20..

Non-Travel Travel_Frequ.. Travel_Rarely

PERSONAL ASPECTS: Employess who are Single, below 25 age mo..

Conclusion

Considering the following Aspects:

- Personal Aspects Age, Work Life Balance, Gender, Marital Status.
- Credential Based Aspects Education, Performance Rating, Department, Job Role, Total Number of years worked.
- Professional Obligations Aspects Years since last promotion, Overtime,
 Travel for work, Years with current manager, Years in current role
- Professional Benefits Aspects Daily rate of payment, Salary hike, Training time last year, Hourly rate of payment

To have a low attrition rate, it is important for companies to:

Fairly pay their employees in the same job level, same job involvement, same job role with almost equal monthly income. Ensure that employees working OverTime are paid well.

Hence, companies should remember to appreciate their employees and work on the harmonic balance of their company.

Streamlit Employee Attrition Predictor ML App

Age 34 Gender MonthlyIncome 3400 PerformanceRating 3 Total_Satisfaction 2 Predict The output is [0] About

Thank you

