

Jiliang Tang

Privacy

Xiaorui Liu

Yaxin Li

Explainability

Non-discrimination & Fairness

Haochen Liu

Wenqi Fan

Accountability & Auditability

Dimension Interactions

Yiqi Wang

Real World Threaten for Al

Unlock Your Phone

Self-driving

Safety and Robustness

By examining **Adversarial Robustness**, we expect the Al system to:

• not only work "most of the time", but be stable under worst case and achieve sustained high accuracy.

Outline

- ☐ Concepts and Taxonomy
- ☐ Adversarial Attack
- ☐ Adversarial Defense
- ☐ Robustness in Graph and Text Domains
- ☐ Real World Adversarial Attack
- ☐ Adversarial Learning Surveys and Tools
- ☐ Future Directions

Taxonomy

Adversarial Attack

- ☐ Poisoning Attacks vs. Evasion Attacks.
 - happen in training phase/ happen in test phase.
- ☐ White-box attacks vs. Black-box attacks.
 - have all knowledge of the victim model/ have no knowledge or limit knowledge.
- ☐ Targeted Attacks vs. Non-Targeted Attacks.
 - require specified target prediction label/ expect arbitrary wrong label.

Adversarial in Different Domains

□ Image	Data
----------------	------

- ☐Graph Data
- ☐Text Data
- ☐ Audio Data

	1		
$\overline{}$	_	_	_

Original Input	Connoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Positive (77%)
Adversarial example [Visually similar]	Aonnoisseurs of Chinese film will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Negative (52%)
Adversarial example [Semantically similar]	Connoisseurs of Chinese <u>footage</u> will be pleased to discover that Tian's meticulous talent has not withered during his enforced hiatus.	Prediction: Negative (54%)

Video		Visibility
	original	🙋 Draft
	Add description	Copyright claim
	0:33	
	adversarial example	🔖 Draft
	Add description	
	0:33	

Adversarial Victims

Traditional Machine Learning Models

Convolutional Neural Network

Recurrent Neural Network

Graph Neural Network

Visual Transformer

Generative Network
...

Deep Learning Models

Robustness and Regularization of Support Vector Machines, JMLR 2009
Robustness Verification of Tree-based Models, NeurIPS 2019
On the Adversarial Robustness of Visual Transformers, arxiv 2021

Adversarial Defenses

☐Adversarial Training/Robust Optimization.
☐ Certified Defense/Provable Robustness.
☐Adversarial Example Detection.
□Data Preprocessing.

Outline

- ☐ Concepts and Taxonomy
- ☐ Adversarial Attack
- ☐ Adversarial Defense
- ☐ Robustness in Graph and Text Domains
- ☐ Real World Adversarial Attack
- ☐ Adversarial Learning Surveys and Tools
- ☐ Future Directions

Adversarial Attacks

White-Box Attack

☐Attacker's knowledge:

Suppose model F with parameter θ is given to attacker;

☐Attacker's Goal:

For a test sample x with true label y, find a small perturbation δ such that $F(x + \delta) \neq y$.

White-Box Attack: Optimization

□ Optimization Objective:

$$\max_{\delta} Loss (F(x + \delta; \theta), y)$$
Subject to $||\delta||_{p} \le \epsilon$

- \square Projected Gradient Descent (PGD attack, l_{∞}):
 - Start from the original sample x
 - Calculate iteratively:

$$x + \delta = clip_{(x,\epsilon)}\{x + \alpha \cdot \text{sign} (\nabla_x Loss (F(x;\theta), y))\}\$$

Black-Box Attack

If the model parameter is unknow, how to calculate perturbation?

Black-Box Attack

☐Attacker's knowledge:

Attacker can only get the prediction or output score of model F for a sample x.

- ☐Attacker's Strategies:
 - Substitute model
 - Approximate gradient:

Zeroth Order Optimization Attack (Zoo attack):

$$\frac{\partial F(x)}{\partial x_i} \approx \frac{F(x + he_i) - F(x - he_i)}{2h}$$

Reliability of White-Box Attack

☐ Gradient Masking

A defense is said to cause gradient masking if it "does not have useful gradients" for generating adversarial examples.

- Shattered gradients: caused by non-differentiable
- Stochastic gradients: caused by randomization
- Exploding and vanishing gradients: loss function, deep network

AutoAttack

- ☐ Ensemble Attack: AutoAttack
 - Gather four diverse attacks:
 - 1) APGD-CE and APGE-DLR: solve the gradient vanishing problem.
 - 2) FAB: white box attack for minimal perturbation.
 - 3) Square Attack: random search based black-box adversarial attack.
 - Reliable Robust Evaluation

Outline

- ☐ Concepts and Taxonomy
- ☐ Adversarial Attack
- ☐ Adversarial Defense
- ☐ Robustness in Graph and Text Domains
- ☐ Real World Adversarial Attack
- ☐ Adversarial Learning Surveys and Tools
- ☐ Future Directions

Adversarial Training

☐ Goal of adversarial training:

Training model to minimize (empirical) adversarial risk:

$$\min_{\theta} \sum_{(x,y)\sim D} \max_{||\delta||\leq \epsilon} Loss(F(x+\delta;\theta),y)$$

☐ Adversarial Training:

For each batch of samples:

- 1. Solve the inner maximization problem to find optimal δ^*
- 2. Update model parameters θ the to minimize the loss value on $x + \delta^*$

Provable Robustness

- ☐ Adversarial training only achieve limited robustness empirically.
- ☐ Strong Vanilla Attacks:

PGD, CW

☐ Adaptive Attacks:

BPDA, EOT, Black Box Attacks, Auto Attack

How can a defense model guaranteed to be safe?

Randomized Smoothing

☐ Goal: Guarantee robustness in a bounded neighborhood.

- ☐ Strength:
 - Smoother classifier.
 - Proved to be robust in a certain radius.

- ☐ Training with Gaussian Noise:
- 1. Given training inputs x
- 2. Generate k samples with gaussian noise:

$$\delta \sim N(0 \sigma^2 I)$$

3. Train with noise samples.

- □ *Prediction:*
- 1. Given test input x
- 2. Generate n Gaussian noise, create $x_0 ... x_n$
- 3. For each x_i , the neural network will give a prediction label c.
- 4. Count the prediction labels and find the most frequent one to assign as prediction.

Outline

- ☐ Concepts and Taxonomy
- ☐ Adversarial Attack for Machine Learning
- □ Adversarial Defense for Machine Learning
- ☐ Robustness in Graph and Text Domains
- ☐ Real World Adversarial Attack
- ☐ Adversarial Learning Surveys and Tools

Graph Attack

Different types of Modifications for Graph Data.

Graph Defense

- ☐ Adversarial Training
- ☐ Graph Purification
- ☐ Attention Mechanism

Graph Purification: Pro-GNN

☐ Recover clean graph with graph Properties: Low-rank, Sparsity, Feature smoothness

☐ Training GNN with purified graph.

Text Attack

- ☐ What is different from Image?
 - Discrete Input
 - Perceivable Modification
 - Change of Semantic Meaning
- ☐ Different types of Modification for Text Data.
 - Character level/ word level/ sentence level.

Text Defense

- ☐ Adversarial Training
 - Data Argumentation
 - Model Regularization

Outline

- ☐ Concepts and Taxonomy
- ☐ Adversarial Attack for Machine Learning
- □ Adversarial Defense for Machine Learning
- ☐ Robustness in Graph and Text Domains
- ☐ Real World Adversarial Attack
- ☐ Adversarial Learning Surveys and Tools
- ☐ Future Directions

Backdoor Attack for Face Recognition

Backdoor Attack for Face Recognition System

Adversarial T-shirt

Adversarial t-shirt

Adversarial T-shirt! Evading Person Detectors in A Physical World

Adversarial mug

Stop Sign

Outline

- ☐ Concepts and Taxonomy
- ☐ Adversarial Attack for Machine Learning
- □ Adversarial Defense for Machine Learning
- ☐ Robustness in Other Domain
- ☐ Real World Adversarial Attack
- ☐ Adversarial Learning Surveys and Tools
- ☐ Future Directions

Adversarial Learning Surveys

- ☐ Chakraborty, Anirban, et al. "Adversarial attacks and defences: A survey." *arXiv preprint arXiv:1810.00069* (2018).
- ☐ Xu, Han, et al. "Adversarial attacks and defenses in images, graphs and text: A review." *International Journal of Automation and Computing* 17.2 (2020): 151-178.
- Akhtar, Naveed, and Ajmal Mian. "Threat of adversarial attacks on deep learning in computer vision: A survey." *leee Access* 6 (2018): 14410-14430
- ☐ Jin, Wei, et al. "Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies." *arXiv preprint arXiv:2003.00653* (2020).
- ☐ Zhang, Wei Emma, et al. "Adversarial attacks on deep-learning models in natural language processing: A survey." *ACM Transactions on Intelligent Systems and Technology (TIST)* 11.3 (2020): 1-41.

Adversarial Learning Tools

Cleverhans

• https://github.com/cleverhans-lab/cleverhans

DeepRobust

https://github.com/DSE-MSU/DeepRobust

Advertorch

https://github.com/BorealisAI/advertorch

RobustBench

• https://github.com/RobustBench/robustbench

DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses

RobustBench: a standardized adversarial robustness benchmark

Outline

- ☐ Concepts and Taxonomy
- ☐ Adversarial Attack for Machine Learning
- □ Adversarial Defense for Machine Learning
- ☐ Robustness in Other Domain
- ☐ Real World Adversarial Attack
- ☐ Adversarial Learning Surveys and Tools
- ☐ Future Directions

Future Directions

☐ Unsatisfied robust performance of adversarial training
☐Robust generalization gap
☐Adversarial robustness under multiple types of attack
☐Adversarial attack on large scale datasets
☐Fairness issue under adversarial attack
☐More efficient provable defense