Welcome back to **CME 292**Advanced MATLAB for Scientific Computing

WINTER 2023

MATLAB File Exchange

https://www.mathworks.com/matlabcentral/fileexchange/

MATLAB File Exchange is a very useful forum for finding and sharing solutions to many MATLAB-related problems.

It contains many free, open-source MATLAB and Simulink code.

- Data Analysis
- Data Import/Export
- Desktop Tools and Development Environment
- External Interfaces
- GUI Development
- Graphics and Visualization
- Mathematics
- Object-Oriented Programming

- Programming and Data Types
- Clean integration of MATLAB figures in LATEX documents
- Plot formatting and manipulation
- Interfacing to iPhone, iPad, Android, Kinect devices
- Interfacing to Google Earth and Maps

...

Graphics and Data Visualization

CME 292 LECTURE 2

1/12/2023

Outline

Graphics and Data Visualization

- Graphic handles
- Advanced plotting
- Plots for publications
- Animations

Graphic Handles

Graphics and Data Visualization

Graphics Objects

Basic drawing elements used by MATLAB to display data

- Each object instance has unique identifier, the *handle*.
- Graphics objects behave like other MATLAB objects.
- Objects are organized in hierarchy.

Parent-Child Relationship

• E.g., the parent of an axes is a figure.

A handle refers to a specific instance of a graphics object used to set and query the values of the object properties.

Organization of Graphics Objects

Core graphics object

- axes, image, line, patch, rectangle, surface Composite graphics object
 - Plot objects: areaseries, barseries, contourgroup, errorbarseries, lineseries, quivergroup, scattergroup, staircase, stemseries, surfaceplot
 - Annotation objects: arrow, doublearrow, ellipse, line, rectangle, textarrow, textbox
 - Illustration objects: legend, colorbar
 - Group objects: hggroup, hgtransform
 - Group objects can contain any of the objects that axes can contain, such as lines, surfaces, text, etc., also other group objects.
 - User Interface objects

Images from MathWorks

Stanford University

Quiz

Run the following piece of code.

```
figure; axes(); hold on
x = linspace(0,2*pi,100);
for k = 1:10
    plot(x,sin(k*x));
end
hold off
```

Modify the code such that sin(k*x) is plotted versus x for even k's in one single figure, and for odd k's in another figure.

Solution

```
fH(1) = figure; aH(1) = axes(); hold on
fH(2) = figure; aH(2) = axes(); hold on
x = linspace(0, 2*pi, 100);
p1 = gobjects(5,1);
p2 = gobjects(5,1);
for k = 1:10
    if mod(k,2)==0 % even
        p1(ceil(k/2)) = plot(aH(1),x,sin(k*x));
    else
        p2(ceil(k/2)) = plot(aH(2),x,sin(k*x));
    end
end
% add legend and title
even k = strcat('k=',string(num2cell(2:2:10)));
legend(p1,even k);
title(aH(1), "even");
odd k = strcat('k=',string(num2cell(1:2:9)));
legend(p2,odd k);
title(aH(2), "odd");
```

```
figure; axes(); hold on
x = linspace(0,2*pi,100);
for k = 1:10
    plot(x,sin(k*x));
end
hold off
```

Working with Graphics Objects

There are 2 ways to access/modify object properties.

- 1. Use dot notation to refer to a particular object and property.
- 2. Use the set and get functions to access properties.
 - s,V: structure; pn, pv: cell array
 - Set property-value pairs: set(han,s)
 - Set value of property pn{i} to pv{i}: set(han,pn,pv)
 - Store all properties-value pairs in a structure: V = get(han)
 - Store property value in V: V = get(han, 'Property')

Property inspector

- Click the Property Inspector icon on Figure toolbar, or
- Use the command prompt inspect.

Properties of Figure, Axes, and Plot Objects

Type object name in command to see all properties and defaults.

Figure

Colormap, Position, PaperPositionMode

Axes (contain the lines, surfaces, and other objects that represent the data visualized in a graph)

XLim, YLim, ZLim, CLim, XGrid, YGrid, ZGrid, XTick, XTickLabel,
 YTick, YTickLabel, ZTick, ZTickLabel, XScale, YScale, ZScale

Plot (composite graphics objects of one or more core objects in a group)

XData, YData, ZData, Color, LineStyle, LineWidth

Properties Common to All Objects

Parent, Children, BeingDeleted (on when object's DeleteFcn is called),
 DeleteFcn (Callback rountine that excutes when object is deleted), CreateFcn,
 Selected, Visible, etc.

Legend

typical syntax

legend('First plotted', 'Second plotted', 'Location', 'Northwest')

fine-grained control

legend(han, 'han(1)label', 'han(2)label', 'Location', 'Northwest')

legend handle

- get the handle by leg = legend()
- use handle to control size/location (more control than 'Location'), font size/style, line style, etc.

Callback Routines

Function associated with graphics handle that gets called in response to a specific action applied to the associated graphics object

- Object creation, deletion
- Mouse motion, mouse press, mouse release, scroll wheel
- Key press, key release

All callback routines are automatically passed two inputs.

- Handle of component whose callback is being executed
- Event data

Callback routines can be specified in many possible forms.

- String: expression evaluated in base workspace
- Function handle
- Cell arrays to pass additional arguments to callback routine

Don't forget to reset root!

Advanced Plotting

Graphics and Data Visualization

Visualization is everywhere in scientific computing and data analysis,

. . .

and it is important!

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

from Internet

Line Plots	Scatter and Bubble Charts	Data Distribution Plots	Discrete Data Plots	Geographic Plots	Polar Plots	Contour Plots	Vector Fields	Surface and Mesh Plots	Volume Visualization	Animation	Images
plot	scatter	histogram	bar	geoplot	polarplot	contour	quiver	surf	streamline	animatedline	image
\sim	700		Il	\sim	(88)		1111		5/	\sim	20
plot3	scatter3	histogram2	barh	geoscatter	polarhistogram	contourf	quiver3	surfc	streamslice	comet	imagesc
							1				20
stairs	bubblechart	pie	bar3	geobubble	polarscatter	contour3	feather	surfl	streamparticles	comet3	
m,m,				💐 🥵			111		5.		
errorbar	bubblechart3	pie3	bar3h		polarbubblechart	contourslice		ribbon	streamribbon		
A. A						05 C			5		
area	swarmchart	scatterhistogram	pareto		compass	fcontour		pcolor	streamtube		
	* † †				*				.5-		
stackedplot	swarmchart3	swarmchart	stem		ezpolar			fsurf	coneplot		
	44111	+++			(X)				-==		
loglog	spy	swarmchart3	stem3					fimplicit3	slice		
		will									
semilogx		wordcloud	stairs					mesh			
\sim			Λ _ν Λ _ν								
semilogy		bubblecloud						meshc			
fplot		heatmap						meshz			
\sim											
fplot3		parallelplot						waterfall			
fimplicit		plotmatrix						fmesh			
\sim		* * ** * * **									

University

Line Plots

A useful way to compare sets of data or track changes over time.

Line Plots	plot	2-D line plot
	plot3	3-D point or line plot
	stairs	Stairstep graph
	errorbar	Line plot with error bars
	area	Filled area 2-D plot
	stackedplot	Stacked plot of several variables with common x-axis
Log Plots	loglog	Log-log scale plot
	semilogx	Semilog plot (x-axis has log scale)
	J	coming province made regional,
	semilogy	Semilog plot (y-axis has log scale)
	_	
Function	_	
Function Plots	semilogy	Semilog plot (y-axis has log scale)
	semilogy	Semilog plot (y-axis has log scale) Plot expression or function

Data Distribution Plots

E.g., histograms, pie charts, word clouds.

Distribution Charts

histogram Histogram plot

histogram2 Bivariate histogram plot

morebins Increase number of histogram bins

fewerbins Decrease number of histogram bins

histcounts Histogram bin counts

histcounts2 Bivariate histogram bin counts

boxchart Box chart (box plot)
swarmchart Swarm scatter chart

swarmchart3 3-D swarm scatter chart

Bubble Charts

bubblechartBubble chartbubblechart33-D bubble chartbubblelimMap bubble sizes to data rangebubblesizeSet minimum and maximum bubble sizes in pointsbubblelegendCreate legend for bubble chart

Scatter Plots

scatter Scatter plot

scatter3 3-D scatter plot

binscatter Binned scatter plot

scatterhistogram Create scatter plot with histograms

Spy Visualize sparsity pattern of matrix

plotmatrix Scatter plot matrix

parallelplot Create parallel coordinates plot

bubblecloud Create bubble cloud chart

wordcloud Create word cloud chart from text data

pie Pie chart

pie3 3-D pie chart

heatmap Create heatmap chart

sortx Sort elements in heatmap row

sorty Sort elements in heatmap column

Geographic Plots

Visualize latitude and longitude data over interactive maps.

geoplot	Plot line in geographic coordinates
geoscatter	Scatter chart in geographic coordinates
geobubble	Visualize data values at specific geographic locations

geodensityplot Geographic density plot

Polar Plots

Plots in polar coordinates

polarplot	Plot line in polar coordinates
polarpioc	Flot line in polar coordinates
polarscatter	Scatter chart in polar coordinates
polarbubblechart	Polar bubble chart
polarhistogram	Histogram chart in polar coordinates
compass	Arrows emanating from origin
ezpolar	Easy-to-use polar coordinate plotter

Contour, Surface, and Mesh Plots

Contour Plots

contour	Contour plot of matrix
contourf	Filled 2-D contour plot
contourc	Low-level contour matrix computation
contour3	3-D contour plot
contourslice	Draw contours in volume slice planes
clabel	Label contour plot elevation
fcontour	Plot contours

Surface Plots

surf	Surface plot
surfc	Contour plot under surface plot
surface	Primitive surface plot
surfl	Surface plot with colormap-based lighting
surfnorm	Surface normals
hidden	Remove hidden lines from mesh plot
fsurf	Plot 3-D surface

Mesh Plots

mesh	Mesh surface plot
meshc	Contour plot under mesh surface plot
meshz	Mesh surface plot with curtain
fmesh	Plot 3-D mesh
fimplicit3	Plot 3-D implicit function

10
5 0 -5 -10 5
-5 -5

waterfall	Waterfall plot
ribbon	Ribbon plot
peaks	Peaks function
cylinder	Create cylinder
ellipsoid	Create ellipsoid
sphere	Create sphere
pcolor	Pseudocolor plot
surf2patch	Convert surface data to patch data

Stanford University

Vector Fields

Vector fields are useful for modeling velocity, magnetic force, fluid motion, and gradients.

quiver	Quiver or vector plot
quiver3	3-D quiver or vector plot
compass	Arrows emanating from origin
feather	Arrows from x-axis
streamline	Plot streamlines from 2-D or 3-D vector data
streamslice	Plot streamlines in slice planes

Quiz

Start with the following piece of code.

```
s = linspace(0,2*pi,20);
[X,Y] = meshgrid(s,s);
F = sin(X.*Y);
v = -1:0.25:1; % levels
```

- Plot the filled contour plot using X, Y, F, v. Use a colormap of your choice, e.g., spring or autumn.
- Compute the gradient and plot the vector field on the same figure.
- Add streamlines starting at x=1 to 5 and y=0. Set line color to white, with line width = 3.

Solution

```
s = linspace(0, 2*pi, 20);
[X,Y] = meshgrid(s,s);
F = sin(X.*Y);
v = -1:0.25:1;
figure; colormap(spring)
[~,hc] = contourf(X,Y,F,v); colorbar; hold on
[Fx,Fy] = gradient(F);
qh = quiver(X(1:5:end, 1:5:end), Y(1:5:end, 1:5:end), ...
    Fx(1:5:end,1:5:end), Fy(1:5:end,1:5:end),...
    'Color', Blue', 'LineWidth',1);
startx = 1:5;
sh = streamline(X,Y,Fx,Fy,startx,zeros(size(startx)));
set(sh,'Color','white', 'LineWidth',3);
```

Volume Visualization of Data

Caalas Data

Visualize data defined on three-dimensional grids.

Scalar Data		Volume Data	
contourslice	Draw contours in volume slice planes	coneplot	Plot velocity vectors as cones in 3-D vector field
flow	Simple function of three variables	curl	Curl and angular velocity of vector field
isocaps	Compute isosurface end-cap geometry	divergence	Compute divergence of vector field
isocolors	Calculate isosurface and patch colors	interpstreamspeed	Interpolate stream-line vertices from flow speed
isonormals	Compute normals of isosurface vertices	stream2	Compute 2-D streamline data
isosurface	Extract isosurface data from volume data	stream3	Compute 3-D streamline data
reducepatch	Reduce number of patch faces	streamline	Plot streamlines from 2-D or 3-D vector data
reducevolume	Reduce number of elements in volume data set	streamparticles	Plot stream particles
shrinkfaces	Reduce size of patch faces	streamribbon	3-D stream ribbon plot from vector volume data
slice	Volume slice planes	streamslice	Plot streamlines in slice planes
smooth3	Smooth 3-D data	streamtube	Create 3-D stream tube plot
subvolume	Extract subset of volume data set		
volumebounds	Coordinate and color limits for volume data		

Valores Data

Generate Plots for Publications

Graphics and Data Visualization

Image from MathWorks

- Use graphics handles to deal with aesthetics
- Generate data in MATLAB and plot in document
- Save to a proper format
 - e.g., PNG, SVG, PDF, TikZ/PGF (popular choices for LATEX)
- Matlab2tikz (a popular script available via File Exchange)
 - Convert MATLAB figures into native TikZ/Pgfplots figures
- exportgraphics(ax, filename) (R2020a or later)
 - The graphics object can be any type of axes, a figure, a standalone visualization, a tiled chart layout, or a container within the figure. The resulting graphic is tightly cropped to a thin margin surrounding the content.
 - E.g., exportgraphics(gca, "myplot.jpg", "Resolution", 300)

Generate plot with all lines/labels/annotations/legends/etc Set properties (graphics handles or interactively)

- Figure width/height
- Axes line width, object line width, marker size
- Font sizes
- Adjust white space if necessary

Save figure to file

- WYSIWYG: 'PaperPositionMode' is 'auto' by default.
 You may also set it by f. PaperPositionMode = 'auto';
- Print to file for inclusion in document: print(gcf,'-depsc2',filename); saveas(gcf, filename); matlab2tikz(filename);

Publish MATLAB Code Files (.m)

Publishing a MATLAB Code file (.m) creates a formatted document that includes the code, comments, and output.

To publish your code:

- 1. Create a MATLAB script or function. Divide the code into steps or sections by inserting two percent signs (%%) at the beginning of each section.
- 2. Document the code by adding explanatory comments at the beginning of the file and within each section.
- Publish the code. On the Publish tab, click Publish, or Use publish(file, format)

Animation

Graphics and Data Visualization

3 basic techniques for creating animations in MATLAB

- 1. Update the properties of a graphics object and display the updates on the screen.
 - Useful for creating animations when most of the graph remains the same.
- 2. Apply transforms to objects.
 - Useful when operating on the position and orientation of a group of objects together.
 - Group the objects as children under a transform object. Create the transform object using hgtransform. Setting the Matrix property of the transform object adjusts the position of all its children.
- 3. Create a movie.
 - Useful for complex animation that does not draw quickly in real time, and for replay.
 - Use the getframe and movie functions to create a movie.

How to Create an Animation

Before entering loop

- Create figure and axes
- Modify object using handles to achieve desired appearance
- Use command set(gca, 'nextplot', 'replacechildren') to ensure only children of axes object will be replaced upon next plot command (will not modify axes properties)

During loop

- Plot command to generate data on plot
- Modify object using handle to achieve desired appearance
- Use command drawnow to draw object, otherwise it will not be drawn until execution is complete (MATLAB optimization, as plotting is expensive)

Alternatively, modify XData, YData, ZData properties of initial plot object Additionally, save sequence of plotting command as frames (getframe) and play back from MATLAB window (movie)

Fun with MATLAB

Type xpklein in Command Window.

Next Lecture

File Manipulation and System Interaction

- Search path
- Data import/export & file commands
- Operating system

Handling Big Data

- Efficient use of memory
- Datastore and tall arrays
- MapReduce

Integration with Other Languages