

L2 Informatique	
-----------------	--

Nom:		
Prénom:		

EA4 – Éléments d'algorithmique Interrogation n° 2 – Sujet A

Durée : 1h30

Aucun document autorisé, appareils électroniques éteints et rangés.

Le sujet est (trop) long, il en sera tenu compte dans la notation. Les exercices sont indépendants et ne sont absolument pas classés par ordre de difficulté.

Sauf mention contraire, on s'intéresse à la complexité dans le pire des cas.

Exercice 1 : On considère les permutations $\sigma=3~4~6~8~5~7~1~2~$ et $\tau=5~3~4~2~1~6~8~7.$ Donner les représentations en produit de cycles disjoints de σ et τ .
Calculer les inverses de σ et τ , ainsi que les produits $\sigma\tau$ et $\tau\sigma$ (sous la forme que vous préférez).
Donner deux décompositions différentes de σ en produit de transpositions.

Exercice 2:

Cocher les assertions exactes.

		$f\in\Theta(g)$	$f\not\in\Theta(g)$	$f\in\Omega(g)$	$f \in O(g)$
f = n	$g = n^2$				
$f = \log n$	$g = \log(n^2)$				
$f = \log(n^2)$	$g = (\log n)^2$				
$f = 2^n$	$g = 2^{(n^2)}$				
f = n!	$g = 2^n$				
f = n!	$g = n^n$				
$f = \log(n!)$	$g = \log(2^n)$				
$f = \log(n!)$	$g = \log(n^n)$				

Exercice 3:
On s'intéresse au problème suivant : étant donné une liste L de n entiers, déterminer si L contient trois valeurs consécutives, $i.e.$ s'il existe un entier i tel que L contient i , $i+1$ et $i+2$.
Décrire un algorithme naïf permettant de résoudre ce problème et donner sa complexité.
Proposer un algorithme de complexité en temps strictement meilleure. Justifier.

Exercice 4:

du maximum de T?

On dit qu'un tableau T d'entiers est unimodal s'il est constitué d'une première partie croissante, suivie d'une deuxième décroissante, chacune pouvant éventuellement être vide ; autrement dit, si T est de longueur n, il existe $m \in [0, n-1]$ tel que :

Étant donné une position i de T, comment tester en temps constant si i < m, où m est la position

L2 Informatique Année 2014-2015

	algorithme $\mathtt{maximum}(\mathtt{T})$ de $complexit\'e$ optimale qui renvoie le plus grand élément
de T. Justifier	rapidement sa correction et sa complexité.
Exercice 5:	
doublon. Écrire	cice, on manipule des ensembles d'entiers représentés par des listes triées san e un algorithme est_inclus_dans(E, F) aussi efficace que possible qui teste si F, c'est-à-dire si tous les éléments de E appartiennent à F.
Quelle est la co	omplexité (en temps et en espace) de cet algorithme?

Exercice 6:
Soit T le tableau suivant : $ \boxed{14 \ \ 7 \ \ 4 \ \ 13 \ \ 8 \ \ 5 \ \ 11 \ \ 1 } $
Appliquer l'algorithme de tri fusion $(MergeSort)$ à T. Combien de comparaisons d'éléments son effectuées (exactement)?
Appliquer l'algorithme de tri rapide (<i>QuickSort</i>) à T dans sa version simple (pas en place, avec T[0] comme pivot). Combien de comparaisons d'éléments sont effectuées (exactement)?

Exercice 7:		
Écrire un algorithme petitsElements(L, k), inspiré de QuickSort et QuickSelect, retournant la liste des k plus petits éléments de la liste L (non nécessairement triée). Cet algorithme devra avoir une complexité en temps linéaire en moyenne (démonstration non demandée).		

Exercice 8:
Dessiner l'arbre binaire de recherche obtenu par insertion successive des éléments :
6, 14, 2, 5, 10, 7, 15, 12, 4, 9.
Proposer un autre ordre d'insertion qui aurait mené au même ABR.
Supprimer successivement les éléments 10 et 6 (dessiner l'ABR obtenu à chaque étape).

L2 Informatique	Annee 2014-2013