Avaliação diagnóstica

1 Questões

Questão 1: $[\frac{1}{2} \text{ ponto}]$

Assinale a alternativa que NÃO corresponda a um exemplo de onda eletromagnética.

- A. Ondas de radiofrequência.
- B. Infravermelho.
- C. As vibrações de cordas e molas.
- D. Luz visível.
- E. Radiação gama.

Solução:

(c) As ondas geradas a partir de vibrações de cordas ou molas são mecânicas, e não eletromagnéticas.

Questão 2: $[\frac{1}{2} \text{ ponto}]$

Assinale verdadeiro (V) ou falso (F) para cada uma das afirmações a seguir.

- (a) <u>V</u> Dizemos que um material tem perdas quando ele atenua a amplitude de ondas que se propaguem nele.
- (b) <u>V</u> Amplitude é a diferença entre um valor máximo da intensidade de uma onda e a sua média.
- (c) V O período fundamental representa a repetição de uma onda no tempo.
- (d) $\underline{\mathbf{V}}$ O comprimento de onda simboliza a repetição de uma onda no espaço.
- (e) $\underline{\mathbf{F}}$ Medimos a frequência angular de uma onda em rad/m e a sua constante de fase em rad/s.

Solução:

(e) No Sistema Internacional (SI), a frequência angular de uma onda é medida em rad/s e a sua constante de fase, em rad/m.

Questão 3: $[\frac{1}{2} \text{ ponto}]$

Assinale verdadeiro (V) ou falso (F) para cada uma das afirmações a seguir.

- (a) <u>V</u> A alocação de frequências no Brasil é determinada pela Agência Nacional de Telecomunicações (ANATEL).
- (b) V A faixa VHF (very high frequency) se estende entre 30 MHz e 300 MHz.

- (c) <u>V</u> Uma onda monocromática é aquela para a qual os campos elétrico e magnético oscilam numa só frequência.
- (d) <u>F</u> A parcela do espectro eletromagnético relativa às ondas de rádio corresponde a todas as frequências menores do que aquelas de ultravioleta.
- (e) _V_ A banda de micro-ondas se localiza entre 300 MHz e 300 GHz, o que inclui as faixas UHF (ultra high frequency), SHF (super high frequency) e EHF (extremely high frequency).

Solução:

(d) As ondas de rádio correspondem à fatia do espectro eletromagnético cujas frequências se situam abaixo daquelas da faixa de infravermelho.

Questão 4: $[\frac{1}{2} \text{ ponto}]$

Sobre a propagação de ondas eletromagnéticas no espaço livre e em dielétricos perfeitos, assinale a alternativa INCORRETA.

- A. Um dielétrico (isolante) perfeito é um material que apresenta condutividade arbitrariamente elevada (idealmente, infinita).
- B. Se uma onda pudesse se propagar num meio sem qualquer obstáculo, não haveria uma componente refletida, mas apenas uma onda transmitida.
- C. Toda onda eletromagnética varia com o tempo e com o espaço.
- D. A velocidade de fase de uma onda é a razão entre frequência angular e constante de fase e, no Sistema Internacional (SI), é medida em metro por segundo (m/s).
- E. A propagação de uma onda eletromagnética num dielétrico perfeito apresenta as mesmas características da transmissão no vácuo (espaço livre).

Solução:

(a) Para ser considerado como um isolante perfeito, um material precisa ter condutividade nula, isto é, $\sigma = 0$ S/m.

Questão 5: $[\frac{1}{2} \text{ ponto}]$

Sobre a propagação de ondas eletromagnéticas em um dielétrico imperfeito (com perdas), assinale a alternativa CORRETA.

A. A tangente de perdas de um meio é uma grandeza que considera a permissividade elétrica, a condutividade e a frequência de operação e, quanto maior for o valor desse parâmetro, mais o material se assemelhará a um isolante perfeito.

- B. Uma constante de atenuação $\alpha=1$ Np/m significa que, quando uma onda se propaga numa distância de 1 m, a sua amplitude cai para cerca de 36,79% do valor que tinha antes.
- C. O comprimento de onda e a velocidade de fase no espaço livre são menores do que os valores desses parâmetros em um meio de transmissão com perdas.
- D. Quando a tangente de perdas de um dado material é muito maior do que 1, ele é classificado como meio de baixas perdas.
- E. Um dielétrico (isolante) com perdas é um material que apresenta uma condutividade exatamente igual a zero.

Questão 6: $[\frac{1}{2} \text{ ponto}]$

Assinale verdadeiro (V) ou falso (F) para cada uma das afirmações a seguir.

- (a) <u>V</u> Um forno de micro-ondas funciona em 2,45 GHz porque a água absorve a energia de ondas eletromagnéticas nessa frequência.
- (b) <u>V</u> Em um elevador, a recepção de sinal de telefonia celular é prejudicada por causa da atenuação elevada e da reflexão que as ondas eletromagnéticas sofrem nas paredes metálicas.
- (c) <u>V</u> Para um mesmo nível de potência transmitida, uma estação de rádio AM apresenta um alcance muito maior do que o de uma estação FM porque opera em frequências menores.
- (d) <u>V</u> A possibilidade de uso de maiores larguras de banda é um dos fatores mais atrativos para operação na faixa de micro-ondas.
- (e) <u>V</u> Como as micro-ondas conseguem atravessar a ionosfera, elas podem ser utilizadas na comunicação com satélites.

Questão 7: [1 ponto]

Sejam \mathbf{A} e \mathbf{B} dois campos vetoriais arbitrários, em que $\mathbf{A} \cdot \mathbf{B}$ e $\mathbf{A} \times \mathbf{B}$ representam, respectivamente, o produto escalar e o produto vetorial entre \mathbf{A} e \mathbf{B} . Considere as seguintes assertivas:

- I. O resultado de $\mathbf{A} \cdot (\mathbf{A} \times \mathbf{B})$ é um vetor diferente de zero e $\mathbf{A} \times \mathbf{A}$ é o vetor nulo.
- II. Se $\nabla \cdot \mathbf{A}$ e $\nabla \times \mathbf{A}$ simbolizam, respectivamente, o divergente e o rotacional de \mathbf{A} , então $\nabla \cdot (\nabla \times \mathbf{A}) = 0$.
- III. Se $\nabla \Psi$ é o gradiente de um campo escalar arbitrário Ψ , então $\nabla \times (\nabla \Psi) = 0$;
- IV. A operação $\nabla(\nabla \cdot \mathbf{B})$ resulta em um campo escalar.

- A. Todas as afirmativas são falsas.
- B. As afirmativas I e IV são falsas.
- C. As afirmativas II e III são verdadeiras.

- D. A afirmativa II é verdadeira.
- E. A afirmativa I é falsa.

Questão 8: [1 ponto]

Seja \mathbf{E} um campo vetorial qualquer, definido em um intervalo aberto, e admita a existência de seu divergente e seu rotacional, $\nabla \cdot \mathbf{E}$ e $\nabla \times \mathbf{E}$, respectivamente. Considere as seguintes assertivas: Considere as seguintes assertivas:

- I. Se $\nabla \times \mathbf{E} = \mathbf{0}$, então o campo vetorial \mathbf{E} se escreve como o gradiente de um campo escalar ϕ , isto é, $\mathbf{E} = -\nabla \phi$.
- II. Se $\nabla \times \mathbf{E} = \mathbf{0}$, então a integral de linha de \mathbf{E} independente do caminho escolhido para fazer tal operação, que é uma função apenas dos pontos inicial e final.
- III. Se $\nabla \cdot \mathbf{E} = 0$, então o campo vetorial \mathbf{E} pode ser dado como o rotacional de um campo vetorial \mathbf{A} , ou seja, $\mathbf{E} = \nabla \times \mathbf{A}$.
- IV. Se $\nabla \cdot \mathbf{E} = 0$, então o fluxo de \mathbf{E} através de qualquer superfície fechada é diferente de zero.

Com base nas proposições acima, assinale a opção INCORRETA:

- A. A afirmativa III é verdadeira.
- B. As afirmativas I e II são verdadeiras.
- C. As afirmativas I, II e IV são falsas.
- D. As afirmativas I e III são verdadeiras.
- E. A afirmativa IV é falsa.

Questão 9: [1 ponto]

Considere a seguinte equação diferencial em um sistema de coordenadas cartesianas denotadas por x, y, z:

$$\nabla^2 \varphi(x, y, z) = f(x, y, z), \tag{1}$$

em que ∇^2 é o operador de Laplace.

Sejam ϕ_1 ϕ_2 duas soluções distintas, linearmente independentes, da Eq. (1). Analise as proposições abaixo:

- I. Se a e b forem constantes arbitrárias, então $a\phi_1 + b\phi_2$ será uma solução da equação diferencial, independentemente da função f.
- II. A função dada por $\phi_0 = \phi_1 \phi_2$ é uma solução da respectiva equação homogênea, $\nabla^2 \Psi = 0$.
- III. A Eq. (1) é classificada como não linear.
- IV. Se c for uma constante qualquer, então a função ϕ_1 poderá ser escrita como $\phi_1 = c\phi_2$.

- A. A afirmativa II é verdadeira.
- B. As afirmativas III e IV são falsas.
- C. As afirmativas I, II e III são verdadeiras.
- D. A afirmativa IV é falsa.
- E. A afirmativa III é falsa.

Questão 10: [1 ponto]

Consideram-se uma esfera de raio R uniformemente carregada com uma densidade volumétrica de carga ρ e uma casca esférica de raio r uniformemente carregada com uma densidade superficial de carga σ e seja P um ponto exterior a ambas. A esfera e a casca esférica não estão espacialmente sobrepostas e as densidades de carga não variam com o tempo. Analise as proposições a seguir:

- I. Na ausência de outras cargas (também não haveria casca esférica), o campo elétrico no interior da esfera E é nulo.
- II. Se não existissem outras cargas elétricas no universo, o campo elétrico em P seria dado pelo produto vetorial dos campos individualmente produzidos pela esfera e pela casca esférica. Equivalentemente, o princípio de superposição não se aplica ao campo elétrico.
- III. Na ausência de outras cargas, inclusive a da esfera, o potencial elétrico num ponto Q do interior da casca esférica é nulo, definindo-se o potencial como a energia que uma carga unitária receberia ao ser deslocada, a partir de um ponto de referência, até o ponto especificado.
- IV. Se não houvesse demais cargas no universo, a carga total na esfera produziria um campo elétrico em P equivalente ao de uma carga pontual $4\pi R^3 \rho/3$ localizada no centro da esfera.

Com base nas proposições acima, assinale a opção INCORRETA:

- A. Todas as afirmativas são verdadeiras.
- B. As afirmativas I, II e III são falsas.
- C. A afirmativa IV é verdadeira.
- D. As afirmativas I e II são falsas.
- E. Existe apenas uma alternativa verdadeira.

Questão 11: [1 ponto]

Sejam **E** e **B** os campos elétrico e magnético, respectivamente, definidos com base na versão microscópica das equações de Maxwell. Considere as afirmações seguintes:

I. De acordo com a lei de Gauss, o fluxo do campo elétrico através de uma determinada superfície fechada é proporcional à carga elétrica líquida dentro do volume envolvido.

- II. Segundo a lei de Gauss para o magnetismo, o fluxo do campo magnético através de qualquer superfície fechada é nulo, o que decorre da inexistência de monopolos magnéticos.
- III. Conforme a lei de Faraday, a circulação do campo elétrico ao longo de uma curva é igual ao oposto da taxa de variação no tempo do fluxo magnético através de uma superfície que tenha a curva como borda.
- IV. A corrente de deslocamento, introduzida por Maxwell para corrigir a lei de Ampère, é proporcional à taxa de variação no tempo do fluxo de **E**.

Com base nas proposições acima, assinale a opção CORRETA:

- A. Apenas as afirmativas I e III são verdadeiras.
- B. As afirmativas II e IV são falsas.
- C. Todas as afirmações são falsas.
- D. A afirmativa IV é a única verdadeira.
- E. Todas as afirmações são verdadeiras.

Questão 12: [1 ponto]

Sejam \mathbf{E} e \mathbf{B} os campos elétrico e magnético, respectivamente, relativos a uma onda eletromagnética no espaço livre. Considere as afirmações seguintes:

- I. Os campos $E \in B$ são paralelos, ou seja, $E \times B = 0$.
- II. Os campos \mathbf{E} e \mathbf{B} são perpendiculares entre si, isto é, $\mathbf{E} \cdot \mathbf{B} = 0$.
- III. Sendo c o módulo da velocidade da luz no espaço livre, os campos ${\bf E}$ e ${\bf B}$ satisfazem a equação da onda:

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mathbf{0} \tag{2}$$

$$\nabla^2 \mathbf{B} - \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = \mathbf{0}.$$
 (3)

IV. A intensidade do campo ${\bf E}$, dada por ${\bf E}$ ou $|{\bf E}|$, é igual à magnitude do campo magnético ${\bf B}$, denotada por ${\bf B}$ ou $|{\bf B}|$.

- A. As afirmativas II e III são verdadeiras.
- B. As afirmativas I e IV são falsas.
- C. Todas as afirmações são falsas.
- D. A afirmativa II é verdadeira.
- E. A afirmativa IV é falsa.

Questão 13: [1 ponto]

Em um determinado circuito elétrico, que consiste de um gerador conectado a diversas impedâncias, há n elementos e seja V_n a diferença de potencial sobre o enésimo elemento de circuito. O campo magnético na região do espaço compreendida pelo circuito é nulo, exceto no interior do gerador. Todos os componentes são ideias. Analise estas afirmações:

- I. Com base na lei de Faraday, a soma das quedas de tensão em qualquer laço é nula;
- II. Pela lei de conservação da carga elétrica, a soma das correntes que entram em qualquer nó é igual à soma daquelas que saem.
- III. Para uma dada impedância Z = R + iX, em que $i = \sqrt{-1}$, a taxa de dissipação de energia com o tempo depende exclusivamente da parte imaginária da impedância.
- IV. A admitância do enésimo elemento de circuito é dada pela razão V_n/I_n , em que I_n é a corrente através desse componente.

- A. As afirmativas I e II são verdadeiras.
- B. As afirmativas II e III são verdadeiras.
- C. As afirmativas III e IV são falsas.
- D. A afirmativa III é falsa.
- E. A afirmativa I é verdadeira.

Questões	Total de pontos	Pontos obtidos
1	1/2	
2	1/2	
3	1/2	
4	1/2	
5	1/2	
6	1/2	
7	1	
8	1	
9	1	
10	1	
11	1	
12	1	
13	1	
Total	10	