Docket No.: 434299-705

In the Claims

The following Listing of Claims replaces all prior versions in the application:

LISTING OF CLAIMS

- 1-2. (Canceled)
- (Currently amended) Method set forth in claim 14, characterised in that the keys CW, KRc and KPc are encrypted by three different service keys, namely Ks, Ks and Ksp respectively.
- 4. (Currently amended) <u>Access control method controlling access to a broadcast digital dataflow previously scrambled using an encryption key CW transmitted in encrypted form in an entitlement control message ECM also including at least one access control criterion CA, said numeric data possibly being recorded as such in a receiving terminal or decrypted during transfer, wherein:</u>
 - on transmission:
- generating an entitlement control message R-ECM_g for recording the content of the flow as a function of a recording key KR_g and at least one criterion CRR defining a right to record,
- generating an entitlement control message P-ECM_c controlling access to play back the
 content of the recorded flow as a function of a playback key KP_c and at least one criterion
 CRP defining a right to play back, and
 - on reception:
 - analyzing the message R-ECMc, and
 - authorizing the recording if the criterion CRR is verified, otherwise prohibiting recording,
 - analyzing the message P-ECMc, and
 - authorizing the playback if the criterion CRP is verified, otherwise prohibiting the playback,

wherein the keys CW, KR_C and KP_C are encrypted by a first service key K_S, and wherein for a Method set forth in claim 2, characterised in that the sending phase and

for each dataflow:

- breakdowning the breaking down a scrambling period into a sequence of cryptoperiods CF_ECP_L each defining a validity duration of an individual key CW_E, and at each crypto-period change,
- scrambling the content of the flow using the key CW_1 , and $\frac{memorise-memorizing}{memorizing}$ a value p(i) representative of the parity of i,
- <u>- calculatinging</u> an entitlement control message <u>SC-ECM</u>_iSC—<u>ECM</u>_i as a function of the previously defined encryption keys CW_{i-1}, CW_i, CW_{i+1}, the value p(i) and the criterion CA_i, said message <u>SC-ECM</u>_iSC—<u>ECM</u>_i being intended to transport access rights to a data segment S_i corresponding to at least two crypto-periods,
 - encrypting the keys CWi-1, CWi, CWi+1, using the playback key KPc,
- encrypting the result of the encryption in the previous step using a second service key K^{\prime}_{s} ,
- encrypting the result of the encryption in the previous step using the recording key KRc.
- 5. (Currently Amended) Access control method controlling access to a broadcast digital dataflow previously scrambled using an encryption key CW transmitted in encrypted form in an entitlement control message ECM also including at least one access control criterion CA, said numeric data possibly being recorded as such in a receiving terminal or decrypted during transfer, wherein:
 - on transmission:
 - generating an entitlement control message R-ECM_c for recording the content of the flow as a function of a recording key KR_c and at least one criterion CRR defining a right to record.
 - generating an entitlement control message P-ECM_c controlling access to play back the
 content of the recorded flow as a function of a playback key KP_c and at least one criterion
 CRP defining a right to play back, and
 - on reception:
 - analysing the message R-ECMc, and
- authorizing the recording if the criterion CRR is verified, otherwise prohibiting recording,
 - analyzing the message P-ECMc, and

 authorizing the playback if the criterion CRP is verified, otherwise prohibiting the playback,

wherein the keys CW, KR_C and KP_C are encrypted by a first service key K_S , and wherein for a sending phase and that includes the following steps: for each dataflow:

- breakdowning the breaking down a scrambling period into a sequence of crypto—
 periods CP_i each defining a validity duration of an individual key CW_i, and at each crypto-period change,
- scrambling the content of the flow using the key CW_{is} and memorise-memorizing a value p(i) representative of the parity of i,
- calculating an entitlement control message SC- ECM_i as a function of the previously defined encryption keys CW_{i+1} , CW_i , CW_{i+1} , the value p (i) and the criterion CA_i , said message SC-ECM₁ being intended to transport access rights to a data segment $\underline{S_i}$ —4 corresponding to at least two crypto-periods,
 - encrypting the keys CWi+1, CWi, CWi+1 using a second service key K's,
 - encrypting the result of the encryption in the previous step using the key KPc,
 - encrypting the result of the encryption in the previous step using the recording

key KRc.

- 6. (Previously presented) Method set forth in claim 4, characterised in that the emission phase also includes the following steps:
- calculating the entitlement control message $ECM_i = f[(ECW_i, OCW_i, CA)]$ wherein ECW_i and $0CW_i$ represent the even and odd control words previously encrypted using a first service key K_5 , respectively

ECWi=CWi if i is even, otherwise ECWi=CWi+1;

OCW_i=CW_i if i is odd, otherwise OCW_i=CW_{i+1}

- broadcasting parameters in the ECM signal, identifying the ECM channels attached to the service broadcasting the content of messages ECM_i, P-ECM_c, R- ECM_c, SC-ECM_i
 - providing the ECM_i, P-ECM_c, R-ECM_c, SC-ECM_i messages to the receiving terminal.
- (Original) Method set forth in claim 6, characterised in that the ECM_i, P-ECM_c, R-ECM₀,
 SC-ECM_i messages are broadcast on ECM channels associated with the content of segment S_i

- 8. (Original) Method set forth in claim 6, characterised in that the R-ECM message is output to the receiving terminal on request from an Authorisation Server at the network entry.
- (Original) Method set forth in claim 6, characterised in that the P-ECM message is output to the receiving terminal on request from an Authorisation Server at the network entry.
- 10. (Original) Method set forth in claim 7, characterised in that the reception phase includes the following steps:
 - recovering the ECM channel from the ECM₁ message, using the signal attached to the service broadcasting the dataflow, and at each change of i,
 - analysing the message ECM₁ so as to recover the even control word OCW and the odd control word ECW, to descramble the content of the broadcast flow so as to obtain direct access to this content.
- 11. (Original) Method set forth in claim 7, characterised in that the reception phase includes the following steps:
 - recovering the ECM channel from the P-ECM_c, R-ECM_c, SC-ECM_t messages, from the signal attached to the service broadcasting the content;
 - analysing the R-ECMc message to verify record access criteria CRR,
 - memorising the recording key KRc
 - recovering the message $P\text{-}ECM_e$ and store it with the content; and for each crypto-period i:
 - recovering the message SC-ECMi,
 - decrypting the message SC-ECM using the recording key $\mbox{KR}_{\mbox{\tiny c}},$ and
 - recording the decrypted message $SC\text{-}ECM_I$ with the content.
- 12. (Original) Method set forth in claim 7, characterised in that playback access to the content in the recorded flow is obtained according to the following steps:
- -recovering the message $P\text{-}ECM_c$ in the content and analyse it to verify read access criteria CRP,
 - -memorising the playback key KPc and

- recovering the current SC-ECM₁ message in the content;
- -decrypting the SC-ECM message with the playback key KP_{c} and verify access criteria.
- recovering the encrypted keys CW_{i+1} , CW_i , CW_{i+1} and the value p(i) indicating the parity of i, and
- decrypting said keys depending on the read direction to deduce ECW and OCW from them; then
 - applying either ECW or OCW to descramble the content when playing back.
- 13. (Original) Method set forth in claim 7, characterised in that access to play back the content of the flow is obtained according to the following steps:
 - recovering the message P-ECMc in the content,
 - analysing the message P-ECMc to verify read access criteria CRP,
 - memorising KPc, and
 - recovering the current SC-ECMi message in the content,
 - decrypting the SC-ECM_i message with the second service key K'_s and verify access criteria.
 - recovering the encrypted keys CW_{i+1} , CW_i , CW_{i+1} and the value p(i) indicating the parity of i, and
 - decrypting said keys depending on the direction of reading to deduce ECW and OCW; then
 - applying either ECW or OCW to descramble the content.
- 14. (Previously presented) Method set forth claim 11,

characterised in that the reception phase also includes

the following steps:

receiving terminal,

- generating a local key K_1 from attributes contained in the message R-ECM and at least one parameter related to the identity of the
 - locally over-encrypting the content to be recorded with this key K₁.
 - when playing back, regenerating the key K_l using attributes contained in the message P-ECM and at least one parameter related to the identity of the receiving

terminal,

- decrypting the recorded content using the 10 regenerated key K₁.
- 15. (Currently amended) <u>Access control method controlling access to a broadcast digital</u> dataflow previously scrambled using an encryption key CW transmitted in encrypted form in an entitlement control message ECM also including at least one access control criterion CA, said numeric data possibly being recorded as such in a receiving terminal or decrypted during transfer, wherein:
 - on transmission:
 - generating an entitlement control message R-ECM_c for recording the content of the flow as a function of a recording key KR_c and at least one criterion CRR defining a right to record.
 - generating an entitlement control message P-ECM_c controlling access to play back the
 content of the recorded flow as a function of a playback key KP_c and at least one criterion
 CRP defining a right to play back, and
 - on reception:
 - analysing the message R-ECMc, and
- authorizing the recording if the criterion CRR is verified, otherwise prohibiting recording,
 - analyzing the message P-ECMc, and
- authorizing the playback if the criterion CRP is verified, otherwise prohibiting the playback,

Method set forth in claim 1, characterised in that wherein the broadcast digital dataflow is of represent audiovisual programs.

- 16. (Currently amended) Access control system controlling access to a digital dataflow dataflow including a scrambling platform (2) including at least one generator of entitlement control messages ECM and at least one descrambling descrambling receiver (4) provided with a security processor-(14), characterized in that the scrambling platform (2) also includes:
 - a generator of entitlement control messages R-ECM_c when recording the content
 of the received flow and a generator of entitlement control messages P-ECM_c when
 playing back the content of a recorded flow, and in that the descrambling receiver-(4).

includes:

- means of recovering the ECM channel from P-ECMc, R-ECMc messages,
- means of decrypting the content of a received flow to record it, and
- means of decrypting the content of a recorded flow to play it back,
- means for breaking down a scrambling period into a sequence of crypto-periods
 CP₁ each defining a validity duration of an individual key CW_{ix} and at each crypto-period change.
- means for scrambling the content of the flow using a key CW_b, and memorizing a
 value p(i) representative of the parity of i,
- calculating an entitlement control message SC-ECM_i as a function of previously defined encryption keys CW_{i-1}, CW_{i-1}, CW_{i-1}, the value p(i) and a criterion CA_{i-1}, said message SC-ECM_i being intended to transport access rights to a data segment S_i corresponding to at least two crypto-periods,
 - encrypting the keys CW_{i-1}, CW_i, CW_{i+1}, using the playback key KP_c,
- encrypting the result of the encryption in the previous step using a second service key K'ss
- -encrypting the result of the encryption in the previous step using the recording $\underline{key}\ KR_c.$
- 17. (Currently amended) System set forth in claim 16, characterised in S-that that the descrambling receiver (4) also includes means of generating a local key K₁ from attributes contained in the R-ECM_c message and the identity of the receiving terminal to locally encrypt/decrypt the content of the received flow.

18. (Canceled)

19. (Currently amended) <u>Scrambling platform including at least one generator of entitlement control messages ECM controlling access to a dataflow broadcast in scrambled form, characterised in that it also includes a generator of entitlement control messages R-ECM_s to control recording the content of a received flow and a generator of entitlement control messages P-ECM_s to control play back the content of a recorded flow, and further including Scrambling platform set forth in claim 18, characterised in that it includes:</u>

- means of breaking down the scrambling period into a sequence of crypto-periods CP, each defining a validity duration of an individual key CW_i,
- means of encrypting the content of the flow at each change of the crypto-period i using the key $CW_{\mathbf{i}}$
- means of calculating an entitlement control message SC-ECM, as a function of the keys CW_{11},CW_{1},CW_{1-} corresponding to crypto-periods CP_n , CP_{i-1} and CP_{i+1} respectively, a parity parameter p(i) and the access control criterion CA_1 , said message SC-ECM, being intended to carry access rights to a data segment ~ 1 corresponding to at least two crypto-periods,
 - means of encrypting the keys CWi-1, CWi, CWi+1 using a playback key KPc,
- means of encrypting the encryption result in the previous step using a second service key K'_s ,
- means of encrypting the result of the encryption in the previous step using a record key KR_e .
- 20. (Currently amended) <u>Scrambling platform including at least one generator of entitlement control messages ECM controlling access to a dataflow broadcast in scrambled form, characterised in that it also includes a generator of entitlement control messages R-ECM_c to control recording the content of a received flow and a generator of entitlement control messages P-ECM_c to control play back the content of a recorded flowPlatform set forth in elaim 18, characterised in that it also includes, and further including:</u>
 - means of breaking down the scrambling period into a sequence of crypto-periods ${\rm CP}_i$ each defining a validity duration of an individual key ${\rm CW}_b$
 - means of encrypting the content of the flow at each change of the crypto—period i using the key CW_i,
 - means of calculating an entitlement control message SC-ECM₁ as a function of
 the keys CW_{i-1}, CW_i, CW_{i+1} corresponding to crypto-periods CP_i, CP_{i-1} and CP_{i+1}
 respectively, a parity parameter p(i) and the access control criterion CA_i, said message
 SC-ECM₁ being intended to carry access rights to a data segment Si corresponding to at
 least two crypto-periods.
 - means of encrypting the encryption result in the previous step using a second service key K'_{ss}

- means of encrypting the control words $CW_{i+1},\,CW_i,\,CW_{i+1}$ using a playback key
- means of encrypting the encryption result in the previous step using a record key KRc.

KP.

- 21. (Currently amended) Descrambling receiver (4) of a dataflow broadcast in scrambled form using a scrambling key CW₁ including a security processor including at least one key KR_c intended to descramble record entitlement control messages R-ECM_c and at least one key KP_c intended to descramble the play back entitlement control messages P—ECM₀, receiver characterised in that it includes:
- -means of recovering the ECM channel from P-ECM_c messages, and R-ECM_c messages from the signal attached to the service broadcasting the content;
 - means of decrypting messages $R\text{-ECM}_c$ using the record key KR_c to verify the right to record the content of a received flow,
 - -means of decrypting messages P-ECM_e using the key KP_e to verify the right to play back the content of a recorded flow,
 - means for breaking down a scrambling period into a sequence of crypto-periods
 CP₁ each defining a validity duration of an individual key CW_{ix} and at each crypto-period change,
 - means for scrambling the content of the flow using a key CW₁, and memorizing a
 value p(i) representative of the parity of i,
 - calculating an entitlement control message SC-ECM₁ as a function of previously defined encryption keys CW_{t-1}, CW_i, CW_{i+1}, the value p(i) and a criterion CA₁, said message SC-ECM₁ being intended to transport access rights to a data segment S₁ corresponding to at least two crypto-periods,
 - encrypting the keys CW_{i-1}, CW_i, CW_{i+1}, using the playback key KP_c,
- encrypting the result of the encryption in the previous step using a second service key K'₅
- encrypting the result of the encryption in the previous step using the recording key KRc.

Docket No.: 434299-705

- 22. (Original) Receiver set forth in claim 21, characterized in that it also includes means of generating a local key K₁ from attributes contained in the receiver identity message R-ECM and locally decrypt the content of the received flow.
- 23. (Original) Receiver set forth in claim 21, characterised in that the security processor is a smart card.
- 24. (Currently amended) Access control method controlling access to a broadcast digital dataflow previously scrambled using an encryption key CW transmitted in encrypted form in an entitlement control message ECM also including at least one access control criterion CA, said numeric data possibly being recorded as such in a receiving terminal or decrypted during transfer, wherein:
- on transmission:
 - generating an entitlement control message R-ECM_c for recording the content of the flow as a function of a recording key KR_c and at least one criterion CRR defining a right to record.
 - generating an entitlement control message P-ECM_c controlling access to play back the content of the recorded flow as a function of a playback key KP_c and at least one criterion
 - CRP defining a right to play back, and
 - on reception:
 - analysing the message R-ECMc, and
- authorizing the recording if the criterion CRR is verified, otherwise prohibiting recording.
 - analyzing the message P-ECMc, and
- authorizing the playback if the criterion CRP is verified, otherwise prohibiting the playback,
- wherein the keys CW, KR_c and KP_c are encrypted by three different service keys, namely K_s , K_{st} and K_{sp} respectively, and
- wherein for a Method set-forth claim 3, characterised in that the sending phase and for includes the following steps:
 - ——for-each dataflow:
 - breakdowning breaking down a the scrambling period into a sequence of crypto-

periods CF₁ each defining a validity duration of an individual key CW₁, and at each crypto—period change,

- scrambling the content of the flow using the key CW_i , and memorise a value p(i) representative of the parity of i,ing an entitlement control message SC— ECM_i as a function of the previously defined encryption keys CW_{i-1} , CW_i , CW_{i+1} , the value p(i) and the criterion CA_i , said message SC— ECM_i being intended to transport access rights to a data segment S_i corresponding to at least two crypto-periods,
 - encrypting the keys CWi-1, CWi, CWi+1, using the playback key KPc,
- encrypting the result of the encryption in the previous step using a second service key K'_{s_0}
- encrypting the result of the encryption in the previous step using the recording key KR_c.
- 25. (Currently amended) Access control method controlling access to a broadcast digital dataflow previously scrambled using an encryption key CW transmitted in encrypted form in an entitlement control message ECM also including at least one access control criterion CA, said numeric data possibly being recorded as such in a receiving terminal or decrypted during transfer, wherein:

on transmission:

- generating an entitlement control message R-ECM_c for recording the content of the flow as a function of a recording key KR_c and at least one criterion CRR defining a right to record.
 - generating an entitlement control message P-ECM_s controlling access to play back the
 content of the recorded flow as a function of a playback key KP_c and at least one criterion
 CRP defining a right to play back, and
 - on reception:
 - analysing the message R-ECMc, and
- <u>authorizing</u> the recording if the criterion CRR is verified, otherwise prohibiting recording,
 - analyzing the message P-ECMc, and
- authorizing the playback if the criterion CRP is verified, otherwise prohibiting the playback,

wherein the keys CW, KR_c and KP_c are encrypted by three different service keys, namely K_{ss} , K_{sf} and K_{sp} respectively, and wherein for a Method set-forth claim 3, characterised in that the sending phase includes the following steps: and

for each dataflow:

- breakdowning-breaking down the scrambling period into a sequence of crypto—periods
 CP₁ each defining a validity duration of an individual key CW₁, and at each crypto-period change,
- scrambling the content of the flow using the key CW_i , and memorise a value p(i) representative of the parity of i,
- calculating an entitlement control message SC- ECM_i as a function of the previously defined encryption keys CW_{i+1} , CW_i , CW_{i+1} , the value p (i) and the criterion CA_i , said message SC-ECM₁ being intended to transport access rights to a data segment ~ 1 corresponding to at least two crypto-periods,
 - encrypting the keys CWi+1, CWi, CWi+1 using a second service key K's,
 - encrypting the result of the encryption in the previous step using the key KPc,
 - encrypting the result of the encryption in the previous step using the recording key KRc.
- 26. (Previously presented) Method set forth claim 5, characterised in that the emission phase also includes the following steps:
- calculating the entitlement control message $ECM_i = f[(ECW_i, OCW_i, CA)]$ wherein ECW_i and $0CW_i$ represent the even and odd control words previously encrypted using a first service key K_5 , respectively

ECWi=CWi if i is even, otherwise ECWi=CWi+1:

OCW_i=CW_i if i is odd, otherwise OCW_i=CW_{i+1}

- broadcasting parameters in the ECM signal, identifying the ECM channels attached to the service broadcasting the content of messages ECM_i, P-ECM_e, R- ECM_e, SC-ECM_i
 - providing the ECM_i, P-ECM_c, R-ECM_c, SC-ECM_i messages to the receiving terminal.
- 27. (Previously presented) Method set forth claim 12,

characterised in that the reception phase also includes

the following steps:

generating a local key K₁ from attributes
 contained in the message R-ECM and at least one parameter related to the identity of the

receiving terminal,

- locally over-encrypting the content to be recorded with this key K_{I} .
- when playing back, regenerating the key K_1 using attributes contained in the message P-ECM and at least one parameter related to the identity of the receiving terminal,
 - decrypting the recorded content using the 10 regenerated key K_{1} .