§12.1 - Parametric Equations

Definition. A **cartesian equation** for a curve is an equation in terms of *x* and *y* only.

Definition. Parametric equations for a curve give both x and y as functions of a third variable (usually t). The third variable is called the **parameter**.

283

Example. Graph
$$x = 1 - 2t$$
, $y = t^2 + 4$

t	x	y
-2	5 3	8
- 1	3	5 4
0	1	4
1	-1	5
2	-3	8

Find a Cartesian equation for this curve.

$$y=t^2 + 4$$

 $y=(x-1/-2)^2 + 4$
 $y=(x-1)^2/4 + 4$

Example. Plot each curve and find a Cartesian equation:

(a)
$$x = \cos(t)$$
, $y = \sin(t)$, for $0 \le t \le 2\pi$

(b)
$$x = \cos(-2t)$$
, $y = \sin(-2t)$, for $0 \le t \le 2\pi$

T	x=cos	y=sin	T	x=cos(-2t)	$y=\sin(-2t)$
0	1	0	0	1	0
pi/2	0	1	pi/4	0	-1
pi	-1	0	pi/2	-1	0
3pi/2	2 0	-1	pi	1	0
2pi	1	0	2pi	1	0

Unit Circle

Unit Circle but twice as quick

$$Sin^2t + cos^2t = 1$$
 $y^2+x^2=1$
 $sin^2(t)+cos^2(t)=1$
 $sin^2(-2t)+cos^2(-2t)=1$
 $y^2+x^2=1$
 $y^2+x^2=1$
 $x^2+y^2=1$

Example. Write the following in parametric equations:

(a)
$$y = \sqrt{x^2 - x}$$
 for $x \le 0$ and $x \ge 1$

Try simple sub: let t=x polynomial/root

$$x=t$$
 $y=sqrt(t^2-t)$

(b)
$$25x^2 + 36y^2 = 900$$

Circle/ellipse -> set eq=1

$$25x^2 / 900 + 36y^2/900 = 1$$

 $x^2/36 + y^2/25 = 1$
 $(x/6)^2 + (y/5)^2 = 1$
 $x=6cost$ $y=5sint$

Example. Describe a circle with radius r and center (h, k):

- a) with a Cartesian equation
- b) with parametric equations

$$(x-h)^2 + (y-k)^2 = r^$$

$$(x-h)^2/r^2 + (y-k)^2/r^2 = 1$$

$$(x-h/r)^2 + (y-k/r)^2 = 1$$

$$cost sint$$

$$cost = x-h/r$$
 $sint=y-k/r$

$$x = rcost + h$$

 $y = rsint+k$

Create a Cartesian and parametric with (-3,2) with a radius of 5

Cartesian eq
$$(x+3)^2 + (y-2)^2 = 25$$

Parametric

$$x = 5\cos t - 3$$
$$y = 5\sin t + 2$$

Example. Find a Cartesian equation for the curve.

(a)
$$x = 5\sqrt{t}$$
, $y = 3 + t^2$

Methods:

Poly like -> sub

$$x/5 = sqrt(t)$$
$$x^2/25 = t$$

$$y = 3+(x^2/25)^2$$

 $y=3+x^4/25^2$

(b)
$$x = e^t, y = e^{-t}$$

(c)
$$x = 5\cos(t) + 3$$
, $y = 2\sin(t) - 7$

 $\sin/\cos -> \text{ellipse/circle Pythagorean theorem } \sin^2(x) + \cos^2(x) = 1$

$$x-3/5 = cost$$

 $y+7/2 = sint$
 $(x-3/5)^2 + (y+7/2)^2 = 1$
 $(x-3)^2/25 + (y+7)^2/4 = 1$

Example. Find parametric equations for the curve.

(a)
$$x = -y^2 - 6y - 9$$

let $y = t$
 $x = -t^2 - 6t - 9$

(b)
$$4x^2 + 25y^2 = 100$$

 $x^2/25 + y^2/4 = 1$
 $(x/5)^2 + (y/2)^2 = 1$
 $\cos t = x/5$, $\sin t = x/2$
 $x = 5\cos t$
 $y = 2\sin t$

(c) $4(x-2)^2 + 25(y+1)^2 = 100$

$$(x-2)^2/25 + (y+1)^2/4 = 1$$

 $(x-2/5)^2 + (y+1/2)^2 = 1$
 $cost = x-2/5$, $sint = y+1/2$
 $x = 5cost + 2$
 $y = 2sint - 1$

Methods:

ellipse/circle ->
$$sin/cos$$

 $sin^2(x)+cos^2(x) = 1$

ellipse/circle ->
$$sin/cos$$

 $sin^2(x)+cos^2(x) = 1$

Example. What is the equation for a circle of radius 8 centered at the point (5, -2)

(a) in Cartesian coordinates?

$$(x-5)^2 + (y+2)^2 = 64$$

(b) in parametric equations?

$$x = 8cost + 5$$

$$y = 8sint - 2$$

Example. Find parametric equations for a line through the points (2, 5) and (6, 8).

(a) any way you want. Find equation, pt slope, y=mx+b, or y-y1=m(x-x1) m=8-5/6-2

$$=3/4$$

$$5 = 3/4(2) + b$$

$$5 = 3/2 + b$$

$$b = 7/2$$

$$y = 3x/4 + 7/2$$

$$let x = t$$

$$y=3t/4 + 7/2$$

(b) so that the line is at (2,5) when t = 0 and at (6,8) when t = 1.

$$x = x0 + at$$

$$2=x0 + a(0)$$

$$t=0$$
 2=x0

(2,5)

$$x=2+at$$

$$(6,8)$$
 $6=2+a1$

$$t=1$$
 $4=a$ $x=2+4t$

$$y=y0 + bt$$

$$5=y0+b(0)$$

$$y=2+bt$$

$$y=5+bt$$

$$b=3$$

$$y = 5 + 3t$$

Example. A sailboat's position at time t is given by the equations x = 3 - t, y = 2 - 4t. A rowboat's position is give by the equations x = 5 - 3t, y = -2 + t.

(a) Do the boats collide? same place, same time

Cross Path?

(b) Do the boats' paths cross? same place, but not the same time

Sail Boat x = 3-t t = -x+3 y = 2-4t y = 2-4(-x+3) y = 2+4x-12	Cross Path: 4x-10 = -x/3 - 1/3 4x+1/3x = -1/3 + 10 13x/3 = 29/3 x=29/13 They do intersect	
y=4x-10 Row Boat x=5-3t x-5=-3t t=-x/3 + 5/3	Collide? t = -x+3 t = -29/13 + 3 t = 10/13	
y = -2+t $y=-2+(-x/3+5/3)$ $y = -2 - x/3 + 5/3$ $y = -x/3 - 1/3$	t = -x/3 + 5/3 $t = -1/3(29/13) + 5/3$ $t = -29/39 + 5/3$ $= 36/39$ $= 12/13$ No Collision	29

ARC LENGTH

Example. Find the length of this curve.

Note. In general, it is possible to approximate the length of a curve x = f(t), y = g(t) between t = a and t = b by dividing it up into n small pieces and approximating each curved piece with a line segment.

Arc length formula
$$L = \int (b,a) \operatorname{sqrt}(f'(x) - g'(x))$$

Arc length is given by the formula:

Set up an integral to express the arclength of the Lissajous figure

$$x = \cos(t), y = \sin(2t)$$

$$x1 = -sint$$
$$y1 = 2cos(2t)$$

$$L = \int (b,a) \operatorname{sqrt}(\sin^2(t) + 4\cos^2(2t))$$

Review. The length of a parametric curve x = f(t), y = g(t) from t = a to t = b is given by:

Example. Find the exact length of the curve $x = \cos(t) + t\sin(t)$, $y = \sin(t) - t\cos(t)$, from the point (1,0) to the point $(-1,\pi)$.

s.w

$$x1 = -\sin(t) + \sin(t) + \cos(t) * t = t\cos(t)$$

 $y1 = \cos(t) - \cos(t) + t\sin(t) = t\sin(t)$

$$L = \int (b,a) \operatorname{sqrt}(t^2 \cos^2(t) + t^2 \sin^2(t)) dt$$

$$\int (b,a) t dt$$

$$t^2 / 2 [b,a]$$

$$x = cost + tsint$$

$$1 = \cos t + t \sin t$$

$$0 = \sin t - t \cos t$$

$$-1 = \cos t + t \sin t$$

$$pi = sint - tcost$$

$$a = 0$$

$$b = tbd$$
295

TANGENT LINES

The slope of the tangent line for a curve y = p(x) (given in Cartesian coordinates) is:

If the curve is given by parametric equations x = f(t), y = g(t), then the slope of its tangent line is:

$$y' = p'(x)$$

 dy/dx
 $dy/dt = dy/dx * dx/dt$

Example. For the Lissajous figure:

$$x = \cos(t), y = \sin(2t)$$
$$0 \le t \le 2\pi$$

- (a) Find the slopes of the tangent lines at the center point (0,0).
- (b) Find where the tangent line is horizontal.

$$dy/dx = dy/dt / dx/dt$$

= $2\cos 2t / -\sin t$
formula for slope of tangent lines in terms of t

$$x=0$$

$$0=cost$$

$$t = pi/2, 3pi/2$$

$$dy/dx$$
, $t = pi/2 = 2cost2pi/2 / -sin(pi/2) = -2/-1 = 1$
 dy/dx , $t = 3pi/2 = 2cost6pi/2 / -sin(3pi/2) = -2/1 = -2$

y=-x+1

Review. The slope of the tangent line for a parametric curve x = f(t), y = g(t) is given by:

dy/dx = dy/dt / dx/dt

Example. The graph of the curve $x(t) = 2\cos(t) + \cos(2t)$, $y(t) = \sin(2t)$ for $0 \le t \le 2\pi$ is drawn below.

(a) Find the equations of the tangent lines at the point (-1,0) on the curve.

t = 0,pi/2,pi,3pi/2,2pi

(b) Find the coordinates of all the points on the curve where the tangent line is vertical. dy/dx = dy/dt / dx/dt = 2cost2t/-2sint - 2sin(2t)

Only Part A