Davide Catta

catta@lipn.univ-paris13.fr U. Sorbonne Paris Nord, France Aniello Murano

aniello.murano@unina.it U. of Naples Federico II, Italy

Rustam Galimullin

Davide Catta

catta@lipn.univ-paris13.fr U. Sorbonne Paris Nord, France Aniello Murano

aniello.murano@unina.it U. of Naples Federico II, Italy

Rustam Galimullin

Davide Catta

catta@lipn.univ-paris13.fr U. Sorbonne Paris Nord, France Aniello Murano

aniello.murano@unina.it U. of Naples Federico II, Italy

Rustam Galimullin

Davide Catta

catta@lipn.univ-paris13.fr U. Sorbonne Paris Nord, France Aniello Murano

aniello.murano@unina.it U. of Naples Federico II, Italy

Rustam Galimullin

Concurrent Game Models

Concurrent Game Models

A CGM M is $\langle n, Ac, \mathcal{D}, S, R, \mathcal{V} \rangle$, where $n \geqslant 1$ is the number of agents, $Ac \neq \emptyset$ is a set of action, $\mathcal{D} = Act^n$ is a set of decision, $S \neq \emptyset$ is a set of states, $R: S \times \mathcal{D} \to S$ is a transition function, $\mathcal{V}: Ap \to 2^S$ is a valuation function

Concurrent Game Models

A CGM M is $\langle n, Ac, \mathcal{D}, S, R, \mathcal{V} \rangle$, where $n \geqslant 1$ is the number of agents, $Ac \neq \emptyset$ is a set of action, $\mathcal{D} = Act^n$ is a set of decision, $S \neq \emptyset$ is a set of states, $R: S \times \mathcal{D} \to S$ is a transition function, $\mathcal{V}: Ap \to 2^S$ is a valuation function

Logics interpreted on CGMs are used for specification and verification of such MAS as voting protocols, autonomous submarines, manufacturing robots, etc.

 $\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$

 $\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$

$$\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$$

$$CL \ni \varphi := p |\neg \varphi| (\varphi \land \varphi) |\langle\langle C \rangle\rangle X \varphi$$

$$\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$$

$$\mathsf{CL} \ni \varphi := p \, | \, \neg \varphi \, | \, (\varphi \land \varphi) \, | \, \langle \! \langle C \rangle \! \rangle \mathsf{X} \varphi$$

$$\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$$

$$\mathsf{CL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi$$

$$M, s \models \langle \langle \{1,2\} \rangle \rangle \times \neg p$$

$$\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$$

$$\mathsf{CL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi$$

 $\langle\!\langle C \rangle\!\rangle \varphi$: coalition C has a strategy to ensure φ no matter what agents outside of the coalition do

$$M, s \models \langle \langle \{1,2\} \rangle \rangle \times \neg p$$

 $M, s \models \neg \langle \langle \{1\} \rangle \rangle \times \neg p$

M $\begin{array}{c}
 & aa,bb \\
 & p \\
 & aa,bb
\end{array}$ $\begin{array}{c}
 & aa,bb \\
 & ab,ba
\end{array}$

Alur, Henzinger, Kupferman Alternating-time Temporal Logic, 2002 Pauly A Modal Logic for Coalitional Power in Games, 2002

 $\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$

 $CL \ni \varphi := p |\neg \varphi| (\varphi \land \varphi) |\langle\langle C \rangle\rangle X \varphi$

$$\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$$

$$\mathsf{CL} \ni \varphi := p \, | \, \neg \varphi \, | \, (\varphi \land \varphi) \, | \, \langle \! \langle C \rangle \! \rangle \mathsf{X} \varphi$$

$$\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$$

$$\mathsf{CL} \ni \varphi := p \, | \, \neg \varphi \, | \, (\varphi \land \varphi) \, | \, \langle \! \langle C \rangle \! \rangle \mathsf{X} \varphi$$

 $\langle \langle C \rangle \rangle \varphi$: coalition C has a strategy to ensure φ no matter what agents outside of the coalition do

 $[\![C]\!] \varphi$: whatever coalition C does, agents outside of the coalition $\forall \exists$ have a strategy to ensure φ

$$\mathsf{ATL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\langle\!\langle C\rangle\!\rangle\mathsf{X}\varphi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{U}\psi\,|\,\langle\!\langle C\rangle\!\rangle\varphi\mathsf{R}\psi$$

$$\mathsf{CL} \ni \varphi := p \, | \, \neg \varphi \, | \, (\varphi \land \varphi) \, | \, \langle \! \langle C \rangle \! \rangle \mathsf{X} \varphi$$

 $\langle \langle C \rangle \rangle \varphi$: coalition C has a strategy to ensure φ no matter what agents outside of the coalition do

 $[\![C]\!] \varphi$: whatever coalition C does, agents outside of the coalition $\forall \exists$ have a strategy to ensure φ

Fixed quantification and no way to reference strategies (and hence no NE)

 $\mathsf{SL}\ni\varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\mathsf{X}\varphi\,|\,\varphi\mathsf{U}\varphi\,|\,\varphi\mathsf{R}\varphi\,|\,\forall x\varphi\,|\,\exists x\varphi\,|\,(i,x)\varphi$

 $\mathsf{SL} \ni \varphi := p \,|\, \neg \varphi \,|\, (\varphi \land \varphi) \,|\, \mathsf{X} \varphi \,|\, \varphi \,\mathsf{U} \varphi \,|\, \varphi \,\mathsf{R} \varphi \,|\, \forall x \varphi \,|\, \exists x \varphi \,|\, (i, x) \varphi$

 $\forall x \varphi$: for all strategies x, φ holds

 $\mathsf{SL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\mathsf{X}\varphi\,|\,\varphi\mathsf{U}\varphi\,|\,\varphi\mathsf{R}\varphi\,|\,\forall x\varphi\,|\,\exists x\varphi\,|\,(i,x)\varphi$

 $\forall x \varphi$: for all strategies x, φ holds

 $\exists x \varphi$: there exists strategy x such that φ holds

 $\mathsf{SL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\mathsf{X}\varphi\,|\,\varphi\mathsf{U}\varphi\,|\,\varphi\mathsf{R}\varphi\,|\,\forall x\varphi\,|\,\exists x\varphi\,|\,(i,x)\varphi$

 $\forall x \varphi$: for all strategies x, φ holds

 $\exists x \varphi$: there exists strategy x such that φ holds

 $(i, x)\varphi$: after assigning strategy x to agent i, φ holds

 $\mathsf{SL} \ni \varphi := p \,|\, \neg \varphi \,|\, (\varphi \land \varphi) \,|\, \mathsf{X} \varphi \,|\, \varphi \,\mathsf{U} \varphi \,|\, \varphi \,\mathsf{R} \varphi \,|\, \forall x \varphi \,|\, \exists x \varphi \,|\, (i, x) \varphi$

 $\forall x \varphi$: for all strategies x, φ holds

 $\exists x \varphi$: there exists strategy x such that φ holds

 $(i, x)\varphi$: after assigning strategy x to agent i, φ holds

Temporal goal Nash Equilibrium

$$\exists x_1 \dots \exists x_n (1, x_1) \dots (n, x_n) \left(\bigwedge_{i=1}^n \exists y (i, y) \psi_i \to \psi_i \right)$$

 $\mathsf{SL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\mathsf{X}\varphi\,|\,\varphi\mathsf{U}\varphi\,|\,\varphi\mathsf{R}\varphi\,|\,\forall x\varphi\,|\,\exists x\varphi\mid(i,x)\varphi$

 $\mathsf{SL} \ni \varphi := p \,|\, \neg \varphi \,|\, (\varphi \land \varphi) \,|\, \mathsf{X} \varphi \,|\, \varphi \,\mathsf{U} \varphi \,|\, \varphi \,\mathsf{R} \varphi \,|\, \forall x \varphi \,|\, \exists x \varphi \,|\, (i, x) \varphi$

Strategy Sharing

$$\exists x(1,x)(2,x) \mathsf{X} \neg p$$

 $\mathsf{SL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\mathsf{X}\varphi\,|\,\varphi\mathsf{U}\varphi\,|\,\varphi\mathsf{R}\varphi\,|\,\forall x\varphi\,|\,\exists x\varphi\mid(i,x)\varphi$

Strategy Sharing

$$\exists x(1,x)(2,x) \mathsf{X} \neg p$$

 $\mathsf{SL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\mathsf{X}\varphi\,|\,\varphi\mathsf{U}\varphi\,|\,\varphi\mathsf{R}\varphi\,|\,\forall x\varphi\,|\,\exists x\varphi\mid(i,x)\varphi$

Strategy Sharing

$$\exists x(1,x)(2,x) \mathsf{X} \neg p$$

 $\mathsf{SL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\mathsf{X}\varphi\,|\,\varphi\mathsf{U}\varphi\,|\,\varphi\mathsf{R}\varphi\,|\,\forall x\varphi\,|\,\exists x\varphi\mid(i,x)\varphi$

 $\mathsf{SL} \ni \varphi := p \,|\, \neg \varphi \,|\, (\varphi \land \varphi) \,|\, \mathsf{X} \varphi \,|\, \varphi \,\mathsf{U} \varphi \,|\, \varphi \,\mathsf{R} \varphi \,|\, \forall x \varphi \,|\, \exists x \varphi \,|\, (i, x) \varphi$

Very expressive: more expressive than CL, ATL, and ATL*

 $\mathsf{SL} \ni \varphi := p \,|\, \neg \varphi \,|\, (\varphi \land \varphi) \,|\, \mathsf{X} \varphi \,|\, \varphi \mathsf{U} \varphi \,|\, \varphi \mathsf{R} \varphi \,|\, \forall x \varphi \,|\, \exists x \varphi \,|\, (i, x) \varphi$

Very expressive: more expressive than CL, ATL, and ATL*

Model checking: decidable. NonElementarySpace-hard for the full language; from NonElementrayTime to PTime for fragments

 $\mathsf{SL} \ni \varphi := p \,|\, \neg \varphi \,|\, (\varphi \land \varphi) \,|\, \mathsf{X} \varphi \,|\, \varphi \mathsf{U} \varphi \,|\, \varphi \mathsf{R} \varphi \,|\, \forall x \varphi \,|\, \exists x \varphi \,|\, (i, x) \varphi$

Very expressive: more expressive than CL, ATL, and ATL*

Model checking: decidable. NonElementarySpace-hard for the full language; from NonElementrayTime to PTime for fragments

Satisfiability: highly undecidable for the full language

 $\mathsf{SL}\ni \varphi:=p\,|\,\neg\varphi\,|\,(\varphi\wedge\varphi)\,|\,\mathsf{X}\varphi\,|\,\varphi\mathsf{U}\varphi\,|\,\varphi\mathsf{R}\varphi\,|\,\forall x\varphi\,|\,\exists x\varphi\mid(i,x)\varphi$

Very expressive: more expressive than CL, ATL, and ATL*

Model checking: decidable. NonElementarySpace-hard for the full language; from NonElementrayTime to PTime for fragments

Satisfiability: highly undecidable for the full language

Axiomatisations: non-axiomatisable for the full language; nothing on fragments

 $\mathsf{SL} \ni \varphi := p \,|\, \neg \varphi \,|\, (\varphi \land \varphi) \,|\, \mathsf{X} \varphi \,|\, \varphi \,\mathsf{U} \varphi \,|\, \varphi \,\mathsf{R} \varphi \,|\, \forall x \varphi \,|\, \exists x \varphi \,|\, (i, x) \varphi$

Very expressive: more expressive than CL, ATL, and ATL*

Model checking: decidable. NonElementarySpace-hard for the full language; from NonElementrayTime to PTime for fragments

Satisfiability: highly undecidable for the full language

Axiomatisations: non-axiomatisable for the full language; nothing on fragments

Why axiomatising (fragments of) SL is hard

Why axiomatising (fragments of) SL is hard

Strategy Logic

Why axiomatising (fragments of) SL is hard

Quantification over strategies

Why axiomatising (fragments of) SL is hard

Why axiomatising (fragments of) SL is hard

We focus on the unbounded quantification prefix and consider only next-time strategies

FOCL $\ni \varphi := p | \neg \varphi | (\varphi \land \varphi) | ((t_1, \dots, t_n)) \varphi | \forall x \varphi$

FOCL
$$\ni \varphi := p | \neg \varphi | (\varphi \land \varphi) | ((t_1, \dots, t_n)) \varphi | \forall x \varphi$$

 $((t_1,\ldots,t_n))\varphi$: after agents execute actions assigned to t_1,\ldots,t_n, φ holds

FOCL
$$\ni \varphi := p | \neg \varphi | (\varphi \land \varphi) | ((t_1, \dots, t_n)) \varphi | \forall x \varphi$$

 $((t_1,\ldots,t_n))\varphi$: after agents execute actions assigned to t_1,\ldots,t_n, φ holds

Each t_i is either a **variable** or an **explicit action** from Ac

FOCL
$$\ni \varphi := p | \neg \varphi | (\varphi \land \varphi) | ((t_1, \dots, t_n)) \varphi | \forall x \varphi$$

 $((t_1, \ldots, t_n))\varphi$: after agents execute actions assigned to $t_1, \ldots, t_n, \varphi$ holds

Each t_i is either a **variable** or an **explicit action** from Ac

Temporal goal Nash Equilibrium

$$\exists x_1 \dots \exists x_n \left(\bigwedge_{i=1}^n \exists y_i ((x_1, \dots, y_i, \dots, x_n)) \psi_i \to ((x_1, \dots, x_i, \dots, x_n)) \psi_i \right)$$

FOCL
$$\ni \varphi := p | \neg \varphi | (\varphi \land \varphi) | ((t_1, \dots, t_n)) \varphi | \forall x \varphi$$

Strategy Sharing

$$\exists x ((x, x)) \neg p$$

Expressivity: strictly more expressive than coalition logics in the literature

Expressivity: strictly more expressive than coalition logics in the literature

Expressivity: strictly more expressive than coalition logics in the literature

Expressivity: strictly more expressive than coalition logics in the literature

Model checking: PSPACE-complete

Expressivity: strictly more expressive than coalition logics in the literature

Model checking: PSPACE-complete

Axiomatisation: a sound and complete finitary axiomatisation. Akin to the one of FOML but on serial and functional frames

Expressivity: strictly more expressive than coalition logics in the literature

Model checking: PSPACE-complete

Axiomatisation: a sound and complete finitary axiomatisation. Akin to the one of FOML but on serial and functional frames

Satisfiability: undecidable via tiling

First axiomatisation of any variant of SL, a basis for future axiomatisations of more expressive fragments

First axiomatisation of any variant of SL, a basis for future axiomatisations of more expressive fragments

While proving the undecidability of SAT, we uncovered a gap in the proof of the high undecidability of SAT for SL

First axiomatisation of any variant of SL, a basis for future axiomatisations of more expressive fragments

While proving the undecidability of SAT, we uncovered a gap in the proof of the high undecidability of SAT for SL

(Re)Open(ed) question 1: is SL indeed not finitely axiomatisable?

First axiomatisation of any variant of SL, a basis for future axiomatisations of more expressive fragments

While proving the undecidability of SAT, we uncovered a gap in the proof of the high undecidability of SAT for SL

(Re)Open(ed) question 1: is SL indeed not finitely axiomatisable?

Open question 2: axiomatisations of more expressive variants of SL based on the one for FOCL