METR4202

Robotics & Automation

TUT 2: Tutorial - Rigid-body Motions

Representing Rotations as Matrices

Rotations in 2D

$$R = egin{bmatrix} \cos{(heta)} & -\sin{(heta)} \ \sin{(heta)} & \cos{(heta)} \end{bmatrix}$$

Rotations in 3D

$$R(\theta_x, \theta_y, \theta_z) = R_x(\theta_x) R_y(\theta_y) R_z(\theta_z)$$

$$R_x(heta_x) = egin{bmatrix} \cos{(heta_x)} & -\sin{(heta_x)} & 0 \ \sin{(heta_x)} & \cos{(heta_x)} & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$R_y(heta_y) = egin{bmatrix} \cos{(heta_y)} & 0 & \sin{(heta_y)} \ 0 & 1 & 0 \ -\sin{(heta_y)} & 0 & \cos{(heta_y)} \end{bmatrix}$$

$$R_z(heta_z) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos{(heta_z)} & -\sin{(heta_z)} \ 0 & \sin{(heta_z)} & \cos{(heta_z)} \end{bmatrix}$$

Rotations in 3D

Other representations? (not assessable)

ullet Special Orthogonal Group: $\mathrm{SO}(3)$

$$R \in \mathrm{SO}(3) \subset R^{3 imes 3} \ \mathrm{SO}(3) : \{ R \in R^{3 imes 3} | R^ op R = I \wedge \det{(R)} = 1 \}$$

• Unit Quaternions: $\hat{\mathbb{H}}$

$$\hat{\mathbb{H}}: \{q=a+bi+cj+dk \in \mathbb{H} | q^*q=a^2+b^2+c^2+d^2=1\}$$

ullet 2x2 Unitary Matrices: $\mathrm{SU}(2)$

$$\mathrm{SU}(2):\left\{U\in\mathbb{C}^{2 imes2}|U^HU=I\wedge|\mathrm{det}\left(U
ight)|=1
ight\}$$

$$U = egin{bmatrix} a+bi & c+di \ -c+di & a-bi \end{bmatrix},$$

- Note: all of these are equivalent to each other and represent the same topological spaces.
- ullet In METR4202, you will mostly use the ${
 m SO}(3)$ representation.
- Most software implementations of rotations use quaternions for the time and space advantages, since it requires fewer variables and is easy to normalise which SO(3) lacks.
- ullet However, quaternions and $\mathrm{SU}(2)$ are not assessable for the course.

Exercise 1: Basics of Rotation Matrices

Exercise 3.1, Modern Robotics, K. Lynch & F. Park, 2019 In terms of the $\hat{x}_s,\hat{y}_s,\hat{z}_s$ coordinates of a fixed space frame $\{s\}$

- ullet The frame $\{a\}$ has
 - \circ The \hat{x}_a -axis pointing in the direction $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{ dag{1}}$
 - \circ The \hat{y}_a -axis pointing in the direction $egin{bmatrix} -1 & 0 & 0\end{bmatrix}^ op$
- The frame \${b} gas
 - \circ The \hat{x}_b -axis pointing in the direction $egin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{ op}$
 - \circ The \hat{y}_b -axis pointing in the direction $egin{bmatrix} 0 & 0 & -1 \end{bmatrix}^ op$

Questions

- a) Draw the three frames by hand (Note: frame origins can be anywhere)
- ullet b) Write down the rotation matrices R_{sa} and R_{sb}
- ullet c) Given R_{sa} , how do you easily calculate R_{sb}^{-1} without calculating the standard matrix inverse?
- ullet d) Given R_{sa} and R_{sb} , how can you calculate R_{ab} ?

Exercise 1e)

- Let $R=R_{sb}$ be considered as a transformation operator consisting of a rotation about \hat{x} by $-90\,^\circ$.
 - Calculate $R_1=RR_{sa}$ and think of:
 - $\circ \; R_{sa}$ as a representation of an **orientation**,
 - \circ R as a representation of a rotation transformation
 - lacktriangle We can also use R as a change of basis
 - $\circ R_1$ as a transformed orientation.
- ullet Does the new orientation R_2 correspond to the rotation of R_{sa} by
 - $-90\degree$ around
 - \circ the **world**-fixed \hat{x}_s -axis, or
 - \circ the **body**-fixed \hat{x}_a axis?

Exercise 1f)

- ullet Use R_{sb} to change the representation of the point $p_b = egin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{oldsymbol{ iny}}$ from the $\{b\}$ frame to the representation in the $\{s\}$ frame.
 - \circ Note: we are not transforming the point, only changing the representation. ($[p_b]_{\{b\}} o [p_s]_{\{s\}}$)
 - o This is the same as a change of basis (Recall MATH2000/2001).

Solution 1f)

• We can use the following:

$$p_s = R_{sb}p_b =$$

- We use the rotation from the $\{s\}$ frame to the $\{b\}$ frame, to change the *representation* of the point p from the $\{b\}$ frame to the $\{s\}$ frame.
- For more explanation see:
 - Change of basis, 3Blue1Brown: https://youtu.be/P2LTAUO1TdA

Exercise 1g)

- ullet Choose a point represneted by $p_s = egin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{ op}$
- ullet Calculate $p'=R_{sb}p_s$
 - How do we interpret the result of this?
 - Is this a change of coordinates or a transformation of a point within a certain frame?
- ullet Calculate $p^{\prime\prime}=R_{sb}^ op p_s$
 - Our How do we interpret the result of this?
 - Is this a change of coordinates or a transformation of a point within a certain frame?

Angular Velocities

- An angular velocity (in 3D) is a 'pseudo-vector'
 - For the purposes of robotics, and in this course, you can treat it as a vector.
 - \circ In 2D, we usually treat it as a scalar about the axis perpendicular to the plane, and for an angle theta, we have $\omega=\dot{ heta}$
- It defines the instantaneous rate at which an object rotates about a particular axis.
- Like other vectors such as position and velocity, it needs to be defined with respect to a reference frame.
- We typically use ω (vector) to represent angular velocity, and $\hat{\omega}$ to represent the axis of rotation, such that: $\omega=\hat{\omega}\dot{\theta}$

Exercise 1h)

- ullet An angular velocity ω is represented in $\{s\}$ as $\omega_s = egin{bmatrix} 3 & 2 & 1\end{bmatrix}^ op$
- ullet What is its representation ω_a in $\{a\}$?
- (from Q1) In terms of the $\hat{x}_s, \hat{y}_s, \hat{z}_s$ coordinates of a fixed space frame $\{s\}$
 - \circ The frame $\{a\}$ has
 - lacktriangle The \hat{x}_a -axis pointing in the direction $egin{bmatrix} 0 & 0 & 1\end{bmatrix}^ op$
 - lacksquare The \hat{y}_a -axis pointing in the direction $egin{bmatrix} -1 & 0 & 0 \end{bmatrix}^ op$

Matrix Logarithm

$$heta=rccos\left(rac{\mathrm{tr}(R)-1}{2}
ight)$$

Exercise 1i)

- ullet By hand, calculate the matrix logarithm $[\hat{\omega}] heta$ of R_{sa} .
- ullet Extract the unit angular velocity $\hat{\omega}$ and the rotation angle heta.

Matrix Exponentials

Rodrigues' Formula:

$$R(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta} = I + \sin(\theta)[\hat{\omega}] + (1 - \cos(\theta))[\hat{\omega}]^2$$

Exercise 1j)

ullet Calculate the matrix exponential corresponding to the exponential coordinates of rotation $\hat{\omega} heta=egin{bmatrix}1&2&0\end{bmatrix}^ op$

Transformations

$$T = egin{bmatrix} R & p \ 0 & 1 \end{bmatrix} \in \mathrm{SE}(3), \quad R \in SO(3), \quad p \in \mathbb{R}^3 \ T^{-1} = egin{bmatrix} R^ op & -R^ op p \ 0 & 1 \end{bmatrix}$$

Exercise 2: Rigid-body motions

- ullet a) Find T_{01} and T_{02} as a function of time t
- ullet b) Find T_{12} as a function of time t

Figure 1 - Positions of the two cars at t = 0 (exercise 2.1) [Image source: K. Lynch and F. Park, Modern Robotics, 2019]

Bonus!

For some cool python libraries about screw theory check out this GitHub repo by Raghav Mishra (and me)

https://github.com/LaVieEstDure/ScrewRobotics