Data Structures and Algorithms

Lecture 3: Sorting

Heikki Peura
h.peura@imperial.ac.uk

Last time

Searching and complexity

- ▶ Big-O notation
- ► Binary search vs linear search

Plan for today:

- Sorting algorithms
- Selection sort and merge sort

Asymptotic analysis

Principle 0: measure number of basic operations as function of input size

Principle 1: focus on worst-case analysis

Principle 2: ignore constant factors and lower-order terms

Principle 3: only care about large inputs

Formal way to describe this approach:

▶ Big-O notation: upper bound on worst-case running time

Big O: for **large enough inputs**, an O(n) algorithm will be slower than $O(\log(n))$

Basic operations

Operations that a **computer can perform** "quickly" (constant time O(1) for any input)

- ► Arithmetic operations (eg x*y) (for not too big numbers)
- ► Comparisons (eg x > 0)
- Assign a variable (eg x = 2), read/write memory

Basic operations

Operations that a **computer can perform** "quickly" (constant time O(1) for any input)

- ► Arithmetic operations (eg x*y) (for not too big numbers)
- ► Comparisons (eg x > 0)
- Assign a variable (eg x = 2), read/write memory

What if the data structure is more complicated?

- ► For example, if L is a list: L.append(), L[5]?
- Are these basic constant-time operations?
- Wait for Lecture 4... assume for now that list operations are constant time

Complexity classes

Fast algorithm: worst-case running time grows slowly with input size

- ► O(1): constant running time basic operations
- $ightharpoonup O(\log n)$: logarithmic running time binary search
- ► *O*(*n*): linear running time linear search
- \triangleright $O(n \log n)$: log-linear running time ??
- $ightharpoonup O(n^c)$: polynomial running time ??
- $ightharpoonup O(c^n)$: exponential running time ??

Sorting algorithms

So if we have an unsorted list, should we sort it first?

- ► Suppose complexity *O*(*sort*(*n*))
- Is it less work to sort and then do binary search than to do linear search?
- ▶ Is $sort(n) + \log(n) < n$?
- ► No...

But what if we need to search repeatedly, say *k* times?

- ▶ Is $sort(n) + k \log(n) < kn$?
- ▶ Depends on *k*...

56 24 99 32 9 61 57 79	56
--------------------------------------	----

56	24	99	32	9	61	57	79
9	24	99	32	56	61	57	79

56	3 24	99	32	9	61	57	79
9	24	99	32	56	61	57	79
9	24	99	32	56	61	57	79

56	3 24	1 99	32	9	61	57	79
9	24	99	32	56	61	57	79
9	24	99	32	56	61	57	79
9	24	32	99	56	61	57	79

56	3 24	1 99	32	9	61	57	79
9	24	99	32	56	61	57	79
9	24	99	32	56	61	57	79
9	24	32	99	56	61	57	79
9	24	32	56	99	61	57	79

56	3 24	1 99	32	9	61	57	79
9	24	99	32	56	61	57	79
9	24	99	32	56	61	57	79
9	24	32	99	56	61	57	79
9	24	32	56	99	61	57	79
9	24	32	56	57	61	99	79

56	3 24	99	32	9	61	57	79
9	24	99	32	56	61	57	79
9	24	99	32	56	61	57	79
9	24	32	99	56	61	57	79
9	24	32	56	99	61	57	79
9	24	32	56	57	61	99	79
9	24	32	56	57	61	99	79

56	24	99	32	2 9	61	57	79
9	24	99	32	56	61	57	79
9	24	99	32	56	61	57	79
9	24	32	99	56	61	57	79
9	24	32	56	99	61	57	79
9	24	32	56	57	61	99	79
9	24	32	56	57	61	99	79
9	24	32	56	57	61	79	99

In words: Find smallest item and move to front (swap with first unsorted item). Repeat with remaining unsorted items.

Selection sort algorithm

Selection sort list *L* of length *n*:

Selection sort algorithm

Selection sort list *L* of length *n*:

- ► Repeat *n* times:
 - Find smallest unsorted element
 - Swap its position with the first unsorted element

Selection sort algorithm

Selection sort list *L* of length *n*:

- Repeat n times:
 - Find smallest unsorted element
 - Swap its position with the first unsorted element

Python:

```
def selection_sort(L):
    M = L[:] # make a copy to preserve original list
    n = len(M)

for index in range(n):
    min_index = find_min_index(M, index) # index with smallest element
    M[index], M[min_index] = M[min_index], M[index] # swap positions
return M
```

Let's assume the function is implemented. What is its complexity?

Correctness (for those into math): can be proved by induction

Correctness (for those into math): can be proved by induction

Complexity:

- ▶ O(n) passes of main loop
- ightharpoonup Each pass: search for the smallest element in O(n)
- ► Total $O(n^2)$

Correctness (for those into math): can be proved by induction

Complexity

- ▶ O(n) passes of main loop
- ightharpoonup Each pass: search for the smallest element in O(n)
- ► Total $O(n^2)$

Can we do better?

Correctness (for those into math): can be proved by induction

Complexity:

- ▶ O(n) passes of main loop
- ▶ Each pass: search for the smallest element in O(n)
- ► Total $O(n^2)$

Can we do better?

- ▶ Yes! Merge sort is $O(n \log n)$
- But you can't do any better than that...

$$x = \begin{bmatrix} 24 & 32 & 56 \end{bmatrix}$$
 $i1 = 3$
 $y = \begin{bmatrix} 19 & 57 & 61 \end{bmatrix}$ $i2 = 3$
 $z = \begin{bmatrix} 19 & 24 & 32 & 56 & 57 & 61 \end{bmatrix}$

What is the complexity of this operation?

- ▶ Lengths of lists are n_1 and n_2
- ► Comparisons $O(\max\{n_1, n_2\})$
- ► Two lists of lengths n_1 and n_2 : $O(n_1 + n_2)$ copy operations (need to copy each item)

Sidebar: recursion

The factorial of n is the product of integers 1, ..., n.

- ► As a function: $fact(n) = n * (n-1) * (n-2) * \cdots * 2 * 1$
- ► By convention, fact(0) = 1

Sidebar: recursion

The factorial of n is the product of integers 1, ..., n.

- ► As a function: $fact(n) = n * (n-1) * (n-2) * \cdots * 2 * 1$
- ► By convention, fact(0) = 1

```
1  def fact(n):
2     result = 1
3     for i in range(1, n+1):
4         result = result * i
5     return result
6     print(fact(4))
```

Sidebar: recursion

The factorial of n is the product of integers 1, ..., n.

- ► As a function: $fact(n) = n * (n-1) * (n-2) * \cdots * 2 * 1$
- ▶ By convention, fact(0) = 1

```
1  def fact(n):
2    result = 1
3    for i in range(1, n+1):
4        result = result * i
5    return result
6  print(fact(4))
```

But we can also write the factorial as follows:

$$fact(n) = 1$$
, for $n = 0$
 $fact(n) = n * fact(n - 1)$, for $n > 0$

Sidebar: recursion

We can also write the factorial as follows:

$$fact(n) = 1$$
, for $n = 0$
 $fact(n) = n * fact(n - 1)$, for $n > 0$

Factorial can be expressed as a smaller version of itself:

Sidebar: recursion

We can also write the factorial as follows:

```
fact(n) = 1, for n = 0

fact(n) = n * fact(n - 1), for n > 0
```

Factorial can be expressed as a smaller version of itself:

```
1  def fact_rec(n):
2    if n == 0:
3        return 1
4    else:
5        return n*fact_rec(n-1)
6    print(fact_rec(4))
```

This is called recursion

- Function calls itself
- Can make some problems easier to define -> merge sort!

Divide and conquer:

- Identify smallest possible "base case" subproblems that are easy to solve
- ▶ Divide large problem and solve smaller subproblems
- Find a way to combine subproblem solutions to solve larger problems

Divide and conquer:

- Identify smallest possible "base case" subproblems that are easy to solve
- ▶ Divide large problem and solve smaller subproblems
- Find a way to combine subproblem solutions to solve larger problems

Divide and conquer:

- Identify smallest possible "base case" subproblems that are easy to solve
- ▶ Divide large problem and solve smaller subproblems
- Find a way to combine subproblem solutions to solve larger problems

Merge sort:

▶ Base case: if list length n < 2, the list is sorted

Divide and conquer:

- Identify smallest possible "base case" subproblems that are easy to solve
- ▶ Divide large problem and solve smaller subproblems
- Find a way to combine subproblem solutions to solve larger problems

- ▶ Base case: if list length n < 2, the list is sorted
- ▶ Divide: if list length $n \ge 2$, split into two lists and merge sort each

Divide and conquer:

- Identify smallest possible "base case" subproblems that are easy to solve
- Divide large problem and solve smaller subproblems
- Find a way to combine subproblem solutions to solve larger problems

- ▶ Base case: if list length n < 2, the list is sorted
- ▶ Divide: if list length $n \ge 2$, split into two lists and merge sort each
- ► Combine (merge) the results of the two smaller merge sorts

Dividing

56 24 9	99 32	9	61 57	79
---------	---------	---	-------	----

Dividing

56	2	4	99)	32	9	61		57		79	
56	24	!	99		32	9	6	1	57	,	79	

Merging

Merging

24 56

Merging

24 56

What is the complexity of merge? Two lists of lengths n_1, n_2 :

What is the complexity of merge? Two lists of lengths n_1 , n_2 :

ightharpoonup Comparisons $O(\max\{n_1, n_2\})$

What is the complexity of merge? Two lists of lengths n_1 , n_2 :

- ightharpoonup Comparisons $O(\max\{n_1, n_2\})$
- ▶ Two lists of lengths n_1 and n_2 : $O(n_1 + n_2)$ copy operations (need to copy each item)

What is the complexity of merge? Two lists of lengths n_1 , n_2 :

- ightharpoonup Comparisons $O(\max\{n_1, n_2\})$
- ► Two lists of lengths n_1 and n_2 : $O(n_1 + n_2)$ copy operations (need to copy each item)
- If original list length is n, total O(n) work for each round of merging

What is the complexity of merge? Two lists of lengths n_1 , n_2 :

- ► Comparisons $O(\max\{n_1, n_2\})$
- ▶ Two lists of lengths n_1 and n_2 : $O(n_1 + n_2)$ copy operations (need to copy each item)
- ▶ If original list length is n, total O(n) work for each round of merging

What is the complexity of merge? Two lists of lengths n_1 , n_2 :

- ► Comparisons $O(\max\{n_1, n_2\})$
- ▶ Two lists of lengths n_1 and n_2 : $O(n_1 + n_2)$ copy operations (need to copy each item)
- ▶ If original list length is n, total O(n) work for each round of merging

Merge sort complexity = merging * # number of divisions

► Number of division levels $O(\log n)$ (like binary search)

What is the complexity of merge? Two lists of lengths n_1 , n_2 :

- ► Comparisons $O(\max\{n_1, n_2\})$
- ► Two lists of lengths n_1 and n_2 : $O(n_1 + n_2)$ copy operations (need to copy each item)
- ▶ If original list length is n, total O(n) work for each round of merging

- ► Number of division levels $O(\log n)$ (like binary search)
- ▶ Log-linear: $O(n \log n)$

What is the complexity of merge? Two lists of lengths n_1 , n_2 :

- ► Comparisons $O(\max\{n_1, n_2\})$
- ▶ Two lists of lengths n_1 and n_2 : $O(n_1 + n_2)$ copy operations (need to copy each item)
- ▶ If original list length is n, total O(n) work for each round of merging

- Number of division levels $O(\log n)$ (like binary search)
- ▶ Log-linear: $O(n \log n)$
- Big improvement over selection sort!

What is the complexity of merge? Two lists of lengths n_1 , n_2 :

- ► Comparisons $O(\max\{n_1, n_2\})$
- ► Two lists of lengths n_1 and n_2 : $O(n_1 + n_2)$ copy operations (need to copy each item)
- ▶ If original list length is n, total O(n) work for each round of merging

- ► Number of division levels $O(\log n)$ (like binary search)
- ▶ Log-linear: $O(n \log n)$
- Big improvement over selection sort!
- Does need some more space due to copying lists

Complexity classes

Fast algorithm: worst-case running time grows slowly with input size

- ► O(1): constant running time primitive operations
- \triangleright $O(\log n)$: logarithmic running time binary search
- ► *O*(*n*): linear running time linear search
- $ightharpoonup O(n \log n)$: log-linear time merge sort
- $ightharpoonup O(n^c)$: polynomial running time selection sort
- $ightharpoonup O(c^n)$: exponential running time ??

Many algorithms exist: bubble sort, insertion sort, quick sort, radix sort, heap sort, ...

 Useful for developing algorithmic thinking – eg randomized algorithms

Many algorithms exist: bubble sort, insertion sort, quick sort, radix sort, heap sort, ...

 Useful for developing algorithmic thinking – eg randomized algorithms

Theoretical bound for worst-case performance is $O(n \log n)$ – we can't do better than merge sort

Many algorithms exist: bubble sort, insertion sort, quick sort, radix sort, heap sort, ...

 Useful for developing algorithmic thinking – eg randomized algorithms

Theoretical bound for worst-case performance is $O(n \log n)$ – we can't do better than merge sort

But other algorithms are better on average

- Python uses timsort (In 2002, a Dutch guy called Tim got frustrated with existing algorithms)
- Exploit the fact that lists tend to be partly sorted already

Many algorithms exist: bubble sort, insertion sort, quick sort, radix sort, heap sort, ...

 Useful for developing algorithmic thinking – eg randomized algorithms

Theoretical bound for worst-case performance is $O(n \log n)$ – we can't do better than merge sort

But other algorithms are better on average

- Python uses timsort (In 2002, a Dutch guy called Tim got frustrated with existing algorithms)
- Exploit the fact that lists tend to be partly sorted already

Review

Sorting is a canonical computer science problem

- ► We've looked at two (of many) algorithms
- Selection sort involves repeatedly finding minimum element – intuitive but slow
- Merge sort is blazingly fast and has a neat recursive structure

Workshop after the break

- Implement sorting
- More looping and function practice

Workshop

Workshop zip file on the Hub

- ► HTML instructions
- ➤ At some point, you'll need the .py-file with skeleton code (open in Spyder)