

planetmath.org

Math for the people, by the people.

metric spaces are Hausdorff

 ${\bf Canonical\ name} \quad {\bf Metric Spaces Are Hausdorff}$

Date of creation 2013-03-22 14:21:29 Last modified on 2013-03-22 14:21:29

Owner waj (4416) Last modified by waj (4416)

Numerical id 4

Author waj (4416) Entry type Proof

Classification msc 54D10 Classification msc 54E35 Related topic MetricSpace

Related topic SeparationAxioms

Suppose we have a space X and a metric d on X. We'd like to show that the metric topology that d gives X is Hausdorff.

Say we've got distinct $x, y \in X$. Since d is a metric, $d(x, y) \neq 0$. Then the open balls $B_x = B(x, \frac{d(x,y)}{2})$ and $B_y = B(y, \frac{d(x,y)}{2})$ are open sets in the metric topology which contain x and y respectively. If we could show B_x and B_y are disjoint, we'd have shown that X is Hausdorff.

We'd like to show that an arbitrary point z can't be in both B_x and B_y . Suppose there is a z in both, and we'll derive a contradiction. Since z is in these open balls, $d(z,x) < \frac{d(x,y)}{2}$ and $d(z,y) < \frac{d(x,y)}{2}$. But then d(z,x) + d(z,y) < d(x,y), contradicting the triangle inequality.

So B_x and B_y are disjoint, and X is Hausdorff. \square