NASA Ames Legacy Mars GCM Software Requirements Document

1. Introduction	3
1.1 Purpose	3
1.2 System Description	3
2. Requirements Specification	3
2.1 External Library Requirements	3
2.2 Input Data Requirements	3
2.3 Namelist Requirements	4
2.4 Software Quality Requirements	5

1. Introduction

1.1 Purpose

This Software Requirements Document (SRD) establishes the requirements for the NASA Ames Legacy Mars Global Climate Model; hereinafter referred to as the "GCM."

1.2 System Description

The GCM is software which simulates the climate of the planet Mars using the primitive equations to predict the global atmosphere given various planetary parameters and physical parameters.

2. Requirements Specification

2.1 External Library Requirements

- Fortran Compiler. GNU Fortran and Intel Fortran are supported
- IDL access for included analysis routines

2.2 Input Data Requirements

- The GCM shall include the files Dust_ir_wolff2010_JD_12bands.dat, and Dust vis wolff2010 JD 12bands.dat for dust optical properties
- The GCM shall include the file topog37x60.mola_intel for the Mars topography
- The GCM shall include the files waterCoated_ir_JD_12bands.dat, and waterCoated_vis_JD_12bands.dat for the water ice cloud optical properties
- The GCM shall include the files CO2H2O_IR_12_95_INTEL, and CO2H2O_V_12_95_INTEL for the CO2 and H2O gas correlated-k optical properties
- The GCM shall include the file npcflag_osu_550_intel for the north polar residual cap map
- The GCM shall include the file osu_albedo_5x6_2011 for the surface albedo
- The GCM shall include the file osu ti 5x6 2011 for the surface thermal inertia
- The GCM shall include the file TES_my24_dustscenario_zvary_37x60_6ls_intel for the annual dust cycle

2.3 Namelist Requirements

- The GCM shall include a namelist file at execution time
- The GCM shall use runnumx to identify the model version
- The GCM shall use dlat to define the step size of the latitude dimension
- The GCM shall use jm to define the number of latitude points
- The GCM shall use im to define the number of longitude points
- The GCM shall use nlay to define the number of vertical sigma layers
- The GCM shall use psf to define the average surface pressure in millibars
- The GCM shall use ptrop to define the pressure at the top of the model in millibars
- The GCM shall use dtm to define the dynamical time step in minutes
- The GCM shall use nc3 to define the number of dynamical time steps per physics time step
- The GCM shall use tautot to define the global average dust opacity if varying dust is off
- The GCM shall use rptau to define the reference pressure where tautot is defined
- The GCM shall use conrnu to define the conrath nu parameter for the vertical distribution of dust when active dust is false
- The GCM shall use taue to define the length of the simulation in model hours
- The GCM shall use tauh to define the frequency of history output
- The GCM shall use tauid to define the starting day of the model run
- The GCM shall use tauih to define the starting hour of the model run
- The GCM shall use rsetsw to define if the simulation will cold start or warm start
 - If warm start, the GCM shall require fort.11, fort.51, and fort.91 files for input
- The GCM shall use cloudon to define the radiatively active state of water ice clouds
- The GCM shall use active dust to define the radiatively active state of advected dust
- The GCM shall use active water to define the radiatively active state of gaseous H2O
- The GCM shall use microphysics to define the state of dust and ice microphysics
- The GCM shall use co2scav to define if atmospheric co2 condensation removes aerosols
- The GCM shall use timesplit to define if the microphysics will have a shorter time step than the physics
- The GCM shall use albfeed to define if surface water ice will affect the surface albedo
- The GCM shall use latent_heat to define if atmospheric water phase transitions will contribute to the heat
- The GCM shall use vdust to define if a varying dust map will be used for dust lifting
- The GCM shall use icealb to define the water ice albedo no the surface
- The GCM shall use icethresh_depth to define the minimum water ice depth for albedo feedback
- The GCM shall use dtsplit to define the microphysics time step when timesplit is on

2.4 Software Quality Requirements

- The data produced by the GCM shall match the results published in the article: Haberle, R. M., Kahre, M. A., Hollingsworth, J. L., Montmessin, F., Wilson, R. J., Urata, R. A., Brecht, A. S., Wolff, M. J., Kling, A. M., & Schaeffer, J. R. (2019). Documentation of the NASA/Ames Legacy Mars Global Climate Model: Simulations of the present seasonal water cycle. *Icarus*, 333. https://doi.org/10.1016/j.icarus.2019.03.026
- The GCM has reached End-of-Life and will no longer be receiving version updates