Ce problème propose deux démonstrations probabilistes de la formule de Stirling

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2n\pi}$$

Partie I: Première preuve

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes suivant la loi exponentielle de paramètre 1. Pour $n\in\mathbb{N}$, on pose $S_n=\sum_{k=0}^n X_k$ et pour tout $n\geqslant 1$ on pose $S_n^*=\frac{S_n-n}{\sqrt{n}}$.

On admet que S_n^* converge en loi vers la loi $\mathcal{N}\left(0,1\right)$

- 1. Énoncer le théorème central limite
- 2. (a) Montrer, par récurrence sur n, que S_n est de loi $\Gamma(n+1,1)$.
 - (b) En déduire que la densité de S_n^* s'écrit $g_n(x) = a_n h_n(x)$, avec

$$a_n = \frac{n^{n+\frac{1}{2}}e^{-n}\sqrt{2\pi}}{n!}$$

et

$$h_n(x) = \frac{1}{\sqrt{2\pi}} e^{-\sqrt{n}x} \left(1 + \frac{x}{\sqrt{n}}\right)^n \chi_{]-\sqrt{n}, +\infty[}$$

3. Montrer que

$$\lim_{n \to +\infty} \int_0^1 g_n(x) \, \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \int_0^1 e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

4. En utilisant le théorème de la convergence dominée, montrer que

$$\lim_{n \to +\infty} \int_0^1 h_n(x) \, \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \int_0^1 e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

5. En déduire la formule de Stirling :

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Partie II: Deuxième preuve

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant la loi de poisson de paramètre 1. On pose $S_n = \sum_{k=1}^n X_k \text{ et } S_n^* = \frac{S_n - n}{\sqrt{n}}$

- 6. Soit X une variable aléatoire réelle qui suit une loi de Poisson de paramètre $\lambda > 0$
 - (a) Caractériser la loi de X
 - (b) Donner l'espérance, la variance et la fonction génératrice de X
- 7. Soit X et Y deux variables aléatoires indépendantes suivant les lois de poisson de paramètres respectifs λ et μ . Quelle est la loi de X+Y
- 8. Montrer que S_n est de loi $\mathcal{P}(n)$.
- 9. Montrer que S_n^* converge en loi vers S suivant la loi $\mathcal{N}\left(0,1\right)$. En déduire que

$$\forall t \in \mathbb{R}, \quad \mathbb{P}\left(S_{n}^{*} > t\right) \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{2\pi}} \int_{t}^{+\infty} e^{-\frac{x^{2}}{2}} dx = \mathbb{P}\left(S > t\right)$$

10. Soit $t \in \mathbb{R}_+^*$

(a) Montrer que
$$\mathbb{P}\left(S_{n}^{*}>t\right)\leqslant\frac{\mathbb{E}\left(S_{n}^{*2}\right)}{t^{2}}$$

(b) En utilisant le théorème de la convergence dominée, montrer que

$$\int_{0}^{+\infty} \mathbb{P}\left(S_{n}^{*} > t\right) \, \mathrm{d}t \xrightarrow[n \to +\infty]{} \int_{0}^{+\infty} \mathbb{P}\left(S > t\right) \, \mathrm{d}t$$

- 11. On admet que $\int_0^{+\infty} \left(\int_t^{+\infty} e^{-\frac{x^2}{2}} \, \mathrm{d}x \right) \, \mathrm{d}t = \int_0^{+\infty} \left(\int_0^x e^{-\frac{x^2}{2}} \, \mathrm{d}t \right) \, \mathrm{d}x.$ Montrer que $\int_0^{+\infty} \mathbb{P}(S > t) \, \mathrm{d}t = \frac{1}{\sqrt{2\pi}}$
- 12. Soit $n \in \mathbb{N}^*$. En appliquant le TCVD à la série du terme général $\mathbb{P}(S_n = k) \chi_{\left]0, \frac{k-n}{\sqrt{n}}\right[}$, montrer que

$$\int_0^{+\infty} \mathbb{P}\left(S_n^* > t\right) \, \mathrm{d}t = \frac{1}{\sqrt{n}e^n} \frac{n^{n+1}}{n!}$$

13. En déduire la formule de Stirling

Partie I: Première preuve

1. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles définies sur un espace probabilisé (Ω, T, P) indépendantes, de même loi, possédant une espérance m = E(X) et une variance $\sigma^2 = \mathbb{V}(X) > 0$. On pose

$$\overline{X_n} = \frac{\sum_{i=1}^n X_i}{n}$$
 et $Z_n = \frac{\overline{X_n} - m}{\sigma/\sqrt{n}} = \frac{\sum_{i=1}^n X_i - nm}{\sigma\sqrt{n}}$.

Alors $(Z_n)_{n\geq 1}$ converge en loi vers une variable aléatoire réelle de loi $\mathcal{N}(0,1)$.

- 2. (a) Par récurrence sur $n \in \mathbb{N}^*$
 - Pour $n=0, S_0=X_0$ est de loi $\mathcal{E}(1)=\Gamma(1,1)$
 - Soit $n \in \mathbb{N}$. Supposons que S_n est de loi $\Gamma(n+1,1)$, c'est-à-dire de densité

$$s_n: x \in \mathbb{R} \longmapsto \begin{cases} \frac{x^n}{n!}e^{-x} & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

 S_n et X_{n+1} sont indépendantes, donc $S_{n+1} = S_n + X_{n+1}$ est une variable aléatoire à densité de densité est définie par

$$s_{n+1}: x \in \mathbb{R} \longmapsto \int_{-\infty}^{+\infty} s_n(t) s(x-t) dt$$

Avec $s: x \in \mathbb{R} \longmapsto \begin{cases} e^{-x} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$ la densité de X_{n+1} .

Les variables S_n et X_{n+1} sont positives et indépendantes, donc pour tout $x \leq 0$ on a $s_{n+1}(x) = 0$, et pour tout x > 0

$$s_{n+1}(x) = \int_0^x s_n(t)s(x-t) dt$$
$$= \int_0^x \frac{t^n}{n!} e^{-t} e^{-x+t} dt$$
$$= \frac{x^{n+1}}{(n+1)!} e^{-x}$$

Récurrence achevée.

(b) Soit $x \in \mathbb{R}$, on a:

$$\mathbb{P}\left(\frac{S_n - n}{\sqrt{n}} \leqslant x\right) = \mathbb{P}\left(S_n \leqslant n + x\sqrt{n}\right)$$
$$= \int_{-\infty}^{n + x\sqrt{n}} s_n(t) dt$$

 s_n est nulle sur \mathbb{R}_+ , donc l'intégrale précédente est nulle si $x \leqslant -\sqrt{n}$.

Pour $x > -\sqrt{n}$, on obtient par la relation de Chasles et la nullité de s_n sur \mathbb{R}_- , puis par le changement de variable $t = n + u\sqrt{n}$: $u = \frac{t-n}{\sqrt{n}}$

$$\mathbb{P}\left(\frac{S_n - n}{\sqrt{n}} \leqslant x\right) = \int_0^{n+x\sqrt{n}} \frac{t^n}{n!} e^{-t} dt$$

$$= \int_{-\sqrt{n}}^x \frac{(n + u\sqrt{n})^n}{n!} e^{-(n+u\sqrt{n})} \sqrt{n} du$$

$$= \frac{n^{n+\frac{1}{2}} e^{-n}}{n!} \int_{-\sqrt{n}}^x \left(1 + \frac{u}{\sqrt{n}}\right)^n e^{-u\sqrt{n}} du$$

$$= \frac{n^{n+\frac{1}{2}} e^{-n}}{n!} \int_{-\infty}^x \left(1 + \frac{u}{\sqrt{n}}\right)^n e^{-u\sqrt{n}} \chi_{]-\sqrt{n},+\infty[}(u) du$$

Ainsi la densité de $\frac{S_n - n}{\sqrt{n}}$ est la fonction

$$g_n: x \longmapsto \frac{n^{n+\frac{1}{2}}e^{-n}}{n!} \left(1 + \frac{x}{\sqrt{n}}\right)^n e^{-x\sqrt{n}} \chi_{]-\sqrt{n},+\infty[}(x)$$

qui s'écrit $g_n(x) = a_n h_n(x)$, avec

$$a_n = \frac{n^{n+\frac{1}{2}}e^{-n}\sqrt{2\pi}}{n!}$$

et

$$h_n: x \longmapsto \frac{1}{\sqrt{2\pi}} e^{-\sqrt{n}x} \left(1 + \frac{x}{\sqrt{n}}\right)^n \chi_{]-\sqrt{n}, +\infty[}(x)$$

3. Par hypothèse $\frac{S_n-n}{\sqrt{n}}$ converge en loi une variable de loi $\mathcal{N}(0,1)$, donc

$$\int_0^1 g_n(x) \, \mathrm{d}x = \mathbb{P}\left(0 \leqslant \frac{S_n - n}{\sqrt{n}} \leqslant 1\right) \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{2\pi}} \int_0^1 e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

- 4. (h_n) est une suite de fonctions continues sur [0,1]
 - Pour tout $x \in [0, 1]$

$$h_n(x) = \frac{1}{\sqrt{2\pi}} e^{-\sqrt{n}x} \left(1 + \frac{x}{\sqrt{n}} \right)^n$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\sqrt{n}x + n \ln\left(1 + \frac{x}{\sqrt{n}}\right)}$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\sqrt{n}x + n\left(\frac{x}{\sqrt{n}} - \frac{x^2}{2n} + o\left(\frac{1}{n}\right)\right)}$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2} + o(1)}$$

 (h_n) converge simplement vers $x \longmapsto \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ qui est continue sur [0,1]

• Pour tout $x \in [0,1]$ et $n \in \mathbb{N}^*$, par l'inégalité de convexité de l'exponentielle : $1 + \frac{x}{\sqrt{n}} \leqslant e^{\frac{x}{\sqrt{n}}}$

$$|h_n(x)| = \frac{1}{\sqrt{2\pi}} e^{-\sqrt{n}x} \left(1 + \frac{x}{\sqrt{n}}\right)^n \leqslant \frac{1}{\sqrt{2\pi}}$$

Et $t \longmapsto \frac{1}{\sqrt{2\pi}}$ est continue positive et intégrable sur le segment [0,1]

D'après le théorème de convergence dominée

$$\lim_{n \to +\infty} \int_0^1 h_n(x) \, \mathrm{d}x = \frac{1}{\sqrt{2}\pi} \int_0^1 e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

5. D'après les questions 3 et 4, $a_n \xrightarrow[n \to +\infty]{} 1$, et alors

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Partie II: Deuxième preuve

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes suivant la loi de poisson de paramètre 1. On pose $S_n=\sum_{k=1}^n X_k$ et $S_n^*=\frac{S_n-n}{\sqrt{n}}$

6. Soit X une variable aléatoire réelle qui suit une loi de Poisson de paramètre $\lambda > 0$

(a)
$$X(\Omega) = \mathbb{N}$$
 et $\forall n \in \mathbb{N}, \mathbb{P}(X = n) = \frac{\lambda^n}{n!} e^{-\lambda}$

(b) $\mathbb{E}(X) = \mathbb{V}(X) = \lambda$ et sa fonction génératrice est donnée par : $\forall t \in [-1,1]$

$$G_X(t) = \mathbb{E}\left(t^X\right) = \sum_{n=0}^{+\infty} t^n \mathbb{P}(X=n) = \sum_{n=0}^{+\infty} t^n \frac{\lambda^n}{n!} e^{-\lambda} = e^{\lambda(t-1)}$$

7. Par indépendance,

$$G_{X+Y}(t) = E(t^{X+Y}) = E(t^{X}.t^{Y}) = E(t^{X}).E(t^{Y})G_{X}(t)G_{Y}(t) = e^{(\lambda+\mu)(t-1)}$$

Pour tout $n \in \mathbb{N}$, on a $\mathbb{P}(X + Y = n) = \frac{G_{X+Y}^{(n)}(0)}{n!} = \frac{(\lambda + \mu)^n}{n!} e^{-(\lambda + \mu)}$. Autrement-dit $X + Y \hookrightarrow \mathcal{P}(\lambda + \mu)$

- 8. Par récurrence sur $n \in \mathbb{N}^*$
 - Pour n = 1, $S_n = X_1$ suit la loi $\mathcal{P}(1)$
 - Soit $n \in \mathbb{N}^*$. Supposons que S_n suit la loi $\mathcal{P}(n)$. Comme S_n et X_{n+1} sont indépendantes, donc $S_{n+1} = S_n + X_{n+1}$ est une variable aléatoire suivant la loi $\mathcal{P}(n+1)$

Récurrence achevée.

9. La suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires indépendantes suivant la loi de poisson de paramètre 1, cette dernière admet une espérance et une variance qui valent 1.

D'après le théorème de la limite centrée $\frac{\frac{S_n}{n}-1}{1/\sqrt{n}}$ converge en loi vers S suivant la loi $\mathcal{N}(0,1)$. Soit $S_n^*=\frac{S_n-n}{\sqrt{n}}\xrightarrow{\mathcal{L}}$ $\mathcal{N}(0,1)$. En déduire que pour tout $t\in\mathbb{R}$

$$\mathbb{P}(S_n^* > t) = 1 - F_{S_n^*}(t) \xrightarrow[n \to +\infty]{} 1 - F_S(t) = \frac{1}{\sqrt{2\pi}} \int_t^{+\infty} e^{-\frac{x^2}{2}} dx = \mathbb{P}(S > t)$$

- 10. Soit $t \in \mathbb{R}_+^*$
 - (a) Comme $[S_n^* > t] \subset [S_n^{*2} > t^2] \subset [S_n^{*2} \geqslant t^2]$, on a

$$\mathbb{P}\left(S_{n}^{*} > t\right) \geqslant \mathbb{P}\left(S_{n}^{*2} \geqslant^{2}\right) \leqslant \frac{\mathbb{E}\left(S_{n}^{*2}\right)}{t^{2}}$$

Par inégalité de Markov appliquée à $S_n^{*2} \ge 0$.

(b) • Pour tout $n \in \mathbb{N}^*$, l'application $t \in]0, +\infty[\longmapsto \mathbb{P}(S_n^* > t)$ est continue par morceaux sur $]0, +\infty[$. En effet

$$P(S_n^* > t) = 1 - P(S_n^* \leqslant t)$$

$$= 1 - P(S_n \leqslant t\sqrt{n} + n)$$

$$= 1 - P(S_n \leqslant [t\sqrt{n} + n])$$

$$= 1 - F_{S_n}(\leqslant [t\sqrt{n} + n])$$

 F_{S_n} est continue par morceaux car $S_n(\Omega) = \mathbb{N}$ et la fonction partie entière est continue par morceaux sur \mathbb{R} , donc par composition de fonctions continues par morceaux l'application considérée est continue par morceaux

- D'après la question 9, une telle suite converge simplement vers une fonction continue sur $]0, +\infty[$.
- Pour tout $n \in \mathbb{N}^*$, on a bien, d'après la formule de Huygens kœing, $\mathbb{E}(S_n^{*2}) = \mathbb{V}(S_n^*) + \mathbb{E}(S_n^*)^2 = 1$. On conclut, d'après la question précédente que

$$\forall t \in]0, +\infty[, \quad \mathbb{P}(S_n^* > t) \leqslant \begin{cases} 1 & \text{si } t \leqslant 1\\ \frac{1}{t^2} & \text{si } t > 1 \end{cases}$$

Ainsi, on a majoré les termes de la suite par la fonction $\varphi: t \longmapsto \begin{cases} 1 & \text{si } t \leqslant 1 \\ \frac{1}{t^2} & \text{si } t > 1 \end{cases}$ qui est continue positive et intégrable sur \mathbb{R}_+^*

Par le théorème de convergence dominée, on obtient

$$\int_{0}^{+\infty} \mathbb{P}\left(S_{n}^{*} > t\right) dt \xrightarrow[n \to +\infty]{} \int_{0}^{+\infty} \mathbb{P}\left(S > t\right) dt$$

11. On admet que
$$\int_0^{+\infty} \left(\int_t^{+\infty} e^{-\frac{x^2}{2}} \, \mathrm{d}x \right) \, \mathrm{d}t = \int_0^{+\infty} \left(\int_0^x e^{-\frac{x^2}{2}} \, \mathrm{d}t \right) \, \mathrm{d}x. \text{ On a}$$

$$\int_0^{+\infty} \mathbb{P}(S > t) \, \mathrm{d}t = \int_0^{+\infty} \left(\frac{1}{\sqrt{2\pi}} \int_t^{+\infty} e^{-\frac{x^2}{2}} \, \mathrm{d}x \right) \, \mathrm{d}t$$

$$= \int_0^{+\infty} \left(\int_0^x e^{-\frac{x^2}{2}} \, \mathrm{d}t \right) \, \mathrm{d}x$$

$$= \int_0^{+\infty} x e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

$$= \frac{1}{\sqrt{2\pi}} \left[-e^{-\frac{x^2}{2}} \right]_0^{+\infty}$$

$$= \frac{1}{\sqrt{2\pi}}$$

- 12. Soit $n \in \mathbb{N}^*$
 - Pour tout $k \in \mathbb{N}$, l'application $t \longmapsto \mathbb{P}(S_n = k) \chi_{\left[0, \frac{k-n}{\sqrt{n}}\right[}$ est positive, continue par morceaux sur $[0, +\infty[$ et intégrable
 - La série $\sum_{k\geqslant 0}\mathbb{P}\left(S_n=k\right)\chi_{\left[0,\frac{k-n}{\sqrt{n}}\right[}$ converge normalement, puisque $([S_n=k])_{k\in\mathbb{N}}$ est un système complet d'événements, donc elle converge simplement, de somme $t\longmapsto \mathbb{P}\left(S_n>t\sqrt{n}+n\right)=\mathbb{P}\left(S_n^*>t\right)=1-F_{S_n^*}(t)$ qui est continue par morceaux sur $]0,+\infty[$. En effet $\chi_{\left[0,\frac{k-n}{\sqrt{n}}\right[}(t)=1$ équivaut à k>n et $t<\frac{k-n}{\sqrt{n}}$ ou encore $k>t\sqrt{n}+n$
 - Pour k > n, on a

$$\int_0^{+\infty} \mathbb{P}(S_n = k) \chi_{\left[0, \frac{k-n}{\sqrt{n}}\right]}(t) dt = \int_0^{\frac{k-n}{\sqrt{n}}} \mathbb{P}(S_n = k) dt$$
$$= \frac{k-n}{\sqrt{n}} \mathbb{P}(S_n = k)$$
$$= \frac{k-n}{\sqrt{n}} \frac{n^k}{k!} e^{-n} \sim \frac{e^{-n}}{\sqrt{n}} \frac{n^k}{(k-1)!}$$

Or la série $\sum \frac{n^k}{(k-1)!}$ converge

Donc, d'après le théorème de convergence dominée pour les séries,

$$\int_{0}^{+\infty} \mathbb{P}(S_{n}^{*} > t) dt = \int_{0}^{+\infty} \mathbb{P}\left(S_{n} > t\sqrt{n} + n\right) dt$$

$$= \int_{0}^{+\infty} \left(\sum_{k=0}^{+\infty} \mathbb{P}\left(S_{n} = k\right) \chi_{\left[0, \frac{k-n}{\sqrt{n}}\right]}(t)\right) dt$$

$$= \sum_{k=0}^{+\infty} \int_{0}^{+\infty} \mathbb{P}\left(S_{n} = k\right) \chi_{\left[0, \frac{k-n}{\sqrt{n}}\right]}(t) dt$$

$$= \sum_{k=n+1}^{+\infty} \int_{0}^{\frac{k-n}{\sqrt{n}}} \mathbb{P}\left(S_{n} = k\right) dt$$

$$= \sum_{k=n+1}^{+\infty} \frac{k-n}{\sqrt{n}} \mathbb{P}\left(S_{n} = k\right)$$

$$= \frac{1}{\sqrt{n}} \sum_{k=n+1}^{+\infty} (k-n) e^{-n} \frac{n^{k}}{k!}$$

$$= \frac{1}{e^{n} \sqrt{n}} \sum_{k=n+1}^{+\infty} \left(\frac{n^{k}}{(k-1)!} - \frac{n^{k+1}}{k!}\right)$$

$$= \frac{1}{e^{n} \sqrt{n}} \frac{n^{n+1}}{n!} \quad \text{Par télescopage}$$

Ainsi

$$\int_0^{+\infty} \mathbb{P}\left(S_n^* > t\right) \, \mathrm{d}t = \frac{1}{\sqrt{n}e^n} \frac{n^{n+1}}{n!}$$

13. Enfin

$$\int_0^{+\infty} \mathbb{P}\left(S_n^* > t\right) \, \mathrm{d}t = \frac{1}{\sqrt{n}e^n} \frac{n^{n+1}}{n!} \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{2\pi}}$$

Ce qui nous donne la formule de Stirling.