LAMBERT SERIES IN ANALYTIC NUMBER THEORY

JORDAN BELL

1. Lambert series

Let d(n) denote the number of positive divisors of n. For |z| < 1,

$$\sum_{n=1}^{\infty} d(n)z^n = \sum_{n=1}^{\infty} \frac{z^n}{1 - z^n}.$$

The first use of the words "Lambert series" did not refer to this series, but were used by Euler to describe something to do with roots of an equation.

2. Lambert

Lambert [39, pp. 506–511, §875]

Monatsbuch, September 1764, "Singula haec in Capp. ult. Ontol. occurunt", and Anm. 5, Anm. 25, 1764, Anm. 12 1765, Anm. 19, 1765 [2].

Iohannis Henrici Lamberti Opera Mathematica. Volumen Secundum, no. 9 Youschkevitch [61]

Bullynck [7]

3. Krafft

Krafft [36, pp. 244–245]

4. Servois

Servois [52, p. 166].

5. Lacroix

Lacroix [37, pp. 465–466, §1195]

6. Klügel

Klügel [34, pp. 52-53, "Theiler einer Zahl", §12]:

Ist $N = \alpha^m \beta^n \gamma^p \cdots$, wo α, β, γ , Primzahlen sind; so erhellet auch leicht, daßalle Theiler von N, die Einheit und die Zahl selbst mit engeschlossen, durch die Glieder des Products

$$(1+\alpha+\alpha^2+\cdots+\alpha^m)(1+\beta+\beta^2+\cdots+\beta^n)(1+\gamma+\gamma^2+\cdots+\gamma^p)\cdots$$

argestelle werden. Die Anzahl der Glieder dieses Products, d. i. die Anzahl aller Theiler von N, ist offenbar = $(m+1)(n+1)(p+1)\cdots$. Für das obige Beispiel = $4\cdot 3\cdot 2=24$, wo die Einheit mit engeschlossen ist.

 $Date \hbox{: October 29, 2014.}$

In der aus der Entwickelung von

$$\frac{x}{1-x} + \frac{x^2}{1-x^2} + \frac{x^3}{1-x^3} + \dots + \frac{x^n}{1-x^n} + \dots$$

entspringenden Reihe:

$$x + 2x^2 + 2x^3 + 3x^4 + 2x^5 + 4x^6 + 2x^7 + \cdots$$

welche Lambert in seiner Architektonik S. 507. mittheilt, enthalt jeder Coefficient so viele Einheiten, als der Exponent der entsprechendenden Potenz von x Theiler hat.

7. Stern

Stern [54]

8. Clausen

Clausen [17] states that

$$\sum_{n=1}^{\infty} \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} x^{n^2} \left(\frac{1 + x^n}{1 - x^n} \right),$$

and that the right-hand series converges quickly for small x. Clausen does prove this expansion, and a proof is later given by Scherk [48]. Scherk's argument uses the fact

$$1 + 2t + 2t^{2} + 2t^{3} + 2t^{4} + \dots = (1 + t + t^{2} + t^{3} + t^{4} + \dots) + t(1 + t + t^{2} + t^{3} + t^{4} + \dots) = \frac{1 + t}{1 - t}.$$

We write

$$\sum_{n=1}^{\infty} \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} x^{nm}.$$

The series is

We sum the terms in the first row and column: the sum of these is

$$x + 2x^{2} + 2x^{3} + 2x^{4} + \text{etc.} = x\left(\frac{1+x}{1-x}\right).$$

Then, from what remains we sum the terms in the second row and column: the sum of these is

$$x^4 + 2x^6 + 2x^8 + 2x^{10} + \text{etc.} = x^4 \left(\frac{1+x^2}{1-x^2}\right).$$

Then, from what remains, we sum the terms in the third row and column: the sum of these is

$$x^9 + 2x^{12} + 2x^{15} + 2x^{18} + \text{etc.} = x^9 \left(\frac{1+x^3}{1-x^3}\right),$$

etc.

9. Eisenstein

Eisenstein [23] states that for |z| < 1,

$$\sum_{n=1}^{\infty} \frac{z^n}{1-z^n} = \frac{1}{(1-x)(1-x^2)(1-x^3)\cdots} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{nz^{n(n+1)/2}}{(1-x)\cdots(1-x^n)}.$$

For $t = \frac{1}{z}$, Eisenstein states that

$$\frac{z}{1-z} + \frac{z^2}{1-z^2} + \frac{z^3}{1-z^3} + \frac{z^4}{1-z^4} + \text{etc.}$$

is equal to

$$\frac{1}{t-1-\frac{(t-1)^2}{t^2-1-\frac{t(t-1)^2}{t^3-1-\frac{t(t^2-1)^2}{t^4-1-\frac{t^2(t^2-1)^2}{t^5-1-\frac{t^2(t^3-1)^2}{t^6-1-\frac{t^3(t^3-1)^2}{t^7-1-\text{etc.}}}}}$$

Expressing Lambert series using continued fractions is relevant to the irrationality of the value of the series. See Borwein [3]. In fact, Euler wrote in E25 about the particular value of a Lambert series.

10. Möbius

Möbius [44]

11. Jacobi

Jacobi's Fundamenta nova [33, §40 and p. 185]

12. Dirichlet's paper

Dirichlet [21]

13. Cauchy

Cauchy [12] and [13] two memoirs in the same volume.

14. Burhenne

Burhenne [8] says the following about Lambert series. For

$$F(x) = \sum_{n=1}^{\infty} d(n)x^n,$$

we have

$$d(n) = \frac{F^{(n)}(0)}{n!}.$$

Define

$$F_k(x) = \frac{x^k}{1 - x^k},$$

so that

$$F(x) = \sum_{k=1}^{\infty} F_k(x).$$

It is apparent that if k > n, then

$$F_k^{(n)}(0) = 0,$$

hence

$$F^{(n)}(0) = \sum_{k=1}^{n} F_k^{(n)}(0).$$

The above suggests finding explicit expressions for $F_k^{(n)}(0)$. Burhenne cites Sohncke [53, pp. 32–33]: for even k,

$$\frac{d^n \left(\frac{x^p}{x^k - a^k}\right)}{dx^n} = (-1)^n \frac{n!}{ka^{k-p-1}} \left(\frac{1}{(x-a)^{n+1}} - (-1)^p \frac{1}{(x+a)^{n+1}}\right) + (-1)^n \frac{n!}{\frac{1}{2}ka^{k-p-1}} \sum_{h=1}^{\frac{1}{2}k-1} \frac{\cos\left(\frac{2h(p+1)\pi}{k} + (n+1)\phi_h\right)}{\sqrt{\left(x^2 - 2xa\cos\frac{2h\pi}{k} + a^2\right)^{n+1}}}$$

and for odd k,

$$\frac{d^n \left(\frac{x^p}{x^k - a^k}\right)}{dx^n} = (-1)^n \frac{n!}{ka^{k-p-1}} \frac{1}{(x-a)^{n+1}} + (-1)^n \frac{n!}{\frac{1}{2}ka^{k-p-1}} \sum_{h=1}^{\frac{k-1}{2}} \frac{\cos\left(\frac{2h(p+1)\pi}{k} + (n+1)\phi_h\right)}{\sqrt{\left(x^2 - 2xa\cos\frac{2h\pi}{n} + a^2\right)^{n+1}}},$$

where

$$\cos \phi_h = \frac{x - a \cos \frac{2h\pi}{k}}{\sqrt{x^2 - 2xa \cos \frac{2h\pi}{k} + a^2}}, \quad \sin \phi_h = \frac{a \sin \frac{2h\pi}{k}}{\sqrt{x^2 - 2xa \cos \frac{2h\pi}{k} + a^2}}.$$

For a = 1 and x = 0,

$$\cos \phi_h = -\cos \frac{2h\pi}{k}, \qquad \sin \phi_h = \sin \frac{2h\pi}{k},$$

from which

$$\phi_h = \pi - \frac{2h\pi}{k},$$

and thus

$$\cos\left(\frac{2h(k+1)\pi}{k} + (n+1)\phi_h\right) = \cos\left(\frac{2h(k+1)\pi}{k} + (n+1)\left(\pi - \frac{2h\pi}{k}\right)\right)$$

$$= \cos\left(2h\pi + \frac{2h\pi}{k} + \pi - \frac{2h\pi}{k} + n\left(\pi - \frac{2h\pi}{k}\right)\right)$$

$$= \cos\left((n+1)\pi - \frac{2nh\pi}{k}\right)$$

$$= (-1)^{n+1}\cos\frac{2nh\pi}{k}.$$

For even k, taking p = k we have

$$\frac{d^n\left(\frac{x^k}{1-x^k}\right)}{dx^n} = (-1)^{n+1} \frac{n!}{k} \left(\frac{1}{(-1)^{n+1}} - 1\right) + (-1)^{n+1} \frac{n!}{\frac{1}{2}k} \sum_{k=1}^{\frac{1}{2}k-1} (-1)^{n+1} \cos\frac{2nh\pi}{k},$$

i.e.,

$$F_k^{(n)}(0) = \frac{n!}{k}(1 - (-1)^{n+1}) + \frac{2 \cdot n!}{k} \sum_{k=1}^{\frac{1}{2}k - 1} \cos \frac{2nh\pi}{k}.$$

For odd k, taking p = k we have

$$\frac{d^n\left(\frac{x^k}{1-x^k}\right)}{dx^n} = (-1)^{n+1} \frac{n!}{k} \frac{1}{(-1)^{n+1}} + (-1)^{n+1} \frac{n!}{\frac{1}{2}k} \sum_{k=1}^{\frac{k-1}{2}} (-1)^{n+1} \cos \frac{2nh\pi}{k},$$

i.e.,

$$F_k^{(n)}(0) = \frac{n!}{k} + \frac{2 \cdot n!}{k} \sum_{h=1}^{\frac{k-1}{2}} \cos \frac{2nh\pi}{k}.$$

Using the identity, for $h \notin 2\pi \mathbb{Z}$,

$$\sum_{h=1}^{M} \cos h\theta = -\frac{1}{2} + \frac{\sin\left(M + \frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}} = -\frac{1}{2} + \frac{1}{2}\left(\sin M\theta \cot\frac{\theta}{2} + \cos M\theta\right),$$

we get for even k,

$$F_k^{(n)}(0) = \begin{cases} \frac{n!}{k} \cot \frac{n\pi}{k} \sin n\pi & k \not | n \\ \frac{n!}{k} (1 - (-1)^{n+1}) + \frac{2 \cdot n!}{k} (\frac{1}{2}k - 1) & k | n \end{cases}$$
$$= \begin{cases} 0 & k \not | n \\ n! - \frac{n!}{k} (1 + (-1)^{n+1}) & k | n. \end{cases}$$

For odd k,

$$\begin{split} F_k^{(n)}(0) &= \begin{cases} \frac{n!}{k} \csc \frac{n\pi}{k} \sin n\pi & k \not | n \\ \frac{n!}{k} + \frac{2 \cdot n!}{k} \frac{k-1}{2} & k | n. \end{cases} \\ &= \begin{cases} 0 & k \not | n \\ n! & k | n. \end{cases} \end{split}$$

15. Zehfuss

Zehfuss [62]

16. Bernoulli numbers

The Bernoulli polynomials are defined by

$$\frac{te^{tx}}{e^t - 1} = \sum_{m=0}^{\infty} B_m(x) \frac{t^m}{m!}.$$

The Bernoulli numbers are defined by $B_m = B_m(0)$.

We denote by [x] the greatest integer $\leq x$, and we define $\{x\} = x - [x]$, namely, the fractional part of x. We define $P_m(x) = B_m(\{x\})$, the Bernoulli functions.

17. Euler-Maclaurin summation formula

Euler E47 and E212, §142, for the summation formula. Euler's studies the gamma function in E368. In particular, in §12 he gives Stirling's formula, and in §14 he obtains $\Gamma'(1) = -\gamma$. Euler in §142 of E212 states that

$$\gamma = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} B_{2n}}{2n}.$$

Bromwich [6, Chapter XII]

18. Schlömilch

Schlömilch [49] and [51, p. 238], [50] For $m \ge 1$,

(1)
$$\int_0^\infty \frac{t^{2m-1}}{e^{2\pi t} - 1} dt = (-1)^{m+1} \frac{B_{2m}}{4m}$$

For $\alpha > 0$,

(2)
$$\int_{0}^{\infty} \frac{\sin \alpha t}{e^{2\pi t} - 1} dt = \frac{1}{4} + \frac{1}{2} \left(\frac{1}{e^{\alpha} - 1} - \frac{1}{\alpha} \right)$$

and

(3)
$$\int_0^\infty \frac{1 - \cos \alpha t}{e^{2\pi t} - 1} \frac{dt}{t} = \frac{1}{4}\alpha + \frac{1}{2} \left(\log(1 - e^{-\alpha}) - \log \alpha \right).$$

For $\xi > 0$ and n > 1, using (2) with $\alpha = \xi, 2\xi, 3\xi, \dots, 2n\xi$ and also using

$$\sum_{k=1}^{N} \sin k\theta = \frac{1}{2} \cot \frac{\theta}{2} - \frac{\cos(N + \frac{1}{2})\theta}{2\sin\frac{\theta}{2}},$$

we get

$$\begin{split} \sum_{m=1}^{2n} \left(\frac{1}{e^{m\xi} - 1} - \frac{1}{m\xi} \right) &= \sum_{m=1}^{2n} \left(-\frac{1}{2} + 2 \int_0^\infty \frac{\sin m\xi t}{e^{2\pi t} - 1} dt \right) \\ &= -n + \int_0^\infty \frac{1}{e^{2\pi t} - 1} \sum_{m=1}^{2n} 2\sin m\xi t dt \\ &= -n + \int_0^\infty \frac{1}{e^{2\pi t} - 1} \left(\cot \frac{\xi t}{2} - \frac{\cos(2n + \frac{1}{2})\xi t}{\sin \frac{\xi t}{2}} \right) dt. \end{split}$$

Using $\cos(a+b) = \cos a \cos b - \sin a \sin b$, this becomes

(4)
$$\sum_{m=1}^{2n} \left(\frac{1}{e^{m\xi} - 1} - \frac{1}{m\xi} \right) = -n + \int_0^\infty \frac{1}{e^{2\pi t} - 1} (1 - \cos 2n\xi t) \cot \frac{\xi t}{2} dt + \int_0^\infty \frac{1}{e^{2\pi t} - 1} \sin 2n\xi t dt.$$

For $\alpha = 2n\xi$, (3) tells us

$$\int_0^\infty \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} \frac{dt}{t} = \frac{1}{4} \cdot 2n\xi + \frac{1}{2} \left(\log(1 - e^{-2n\xi}) - \log 2n\xi \right).$$

Rearranging.

(5)
$$\frac{\log 2n}{\xi} = n + \frac{\log(1 - e^{-2n\xi}) - \log \xi}{\xi} - \frac{2}{\xi} \int_0^\infty \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} \frac{dt}{t}$$

Adding (4) and (5) gives

$$\sum_{m=1}^{2n} \frac{1}{e^{m\xi} - 1} - \frac{1}{\xi} \left(-\log 2n + \sum_{m=1}^{2n} \frac{1}{m} \right)$$

$$= \frac{\log(1 - e^{-2n\xi}) - \log \xi}{\xi} - \int_0^\infty \left(\frac{2}{\xi t} - \cot \frac{\xi t}{2} \right) \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt$$

$$+ \int_0^\infty \frac{1}{e^{2\pi t} - 1} \sin 2n\xi t dt.$$

Writing

$$C_n = -\log n + \sum_{m=1}^n \frac{1}{m}$$

and using (2) this becomes

$$\sum_{m=1}^{2n} \frac{1}{e^{m\xi} - 1} - \frac{1}{\xi} C_{2n}$$

$$= \frac{\log(1 - e^{-2n\xi}) - \log \xi}{\xi} - 2 \int_0^\infty \left(\frac{1}{\xi t} - \frac{1}{2} \cot \frac{\xi t}{2}\right) \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt$$

$$+ \frac{1}{4} + \frac{1}{2} \left(\frac{1}{e^{2n\xi} - 1} - \frac{1}{2n\xi}\right).$$

We write

$$I_{2n}(\xi) = 2 \int_0^\infty \left(\frac{1}{\xi t} - \frac{1}{2}\cot\frac{\xi t}{2}\right) \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt,$$

and we shall obtain an asymptotic formula for $I_{2n}(\xi)$.

The Euler-Maclaurin summation formula [5, p. 280, Ch. VI, Eq. 35] tells us that for $f \in C^{\infty}([0,1])$,

$$f(0) = \int_0^1 f(t)dt + B_1(f(1) - f(0)) + \sum_{m=1}^k \frac{1}{(2m)!} B_{2m}(f^{(2m-1)}(1) - f^{(2m-1)}(0)) + R_{2k},$$

where

$$R_{2k} = -\int_{0}^{1} \frac{P_{2k}(1-\eta)}{(2k)!} f^{(2k)}(\eta) d\eta.$$

Let h > 0. For $f(t) = \cos ht$ we have $f'(t) = -h \sin ht$, and for $m \ge 1$ we have $f^{(2m)}(t) = (-1)^m h^{2m} \cos ht$ and $f^{(2m-1)}(t) = (-1)^m h^{2m-1} \sin ht$. Thus the Euler-Maclaurin formula yields

$$1 = \int_0^1 \cos ht dt - \frac{1}{2}(\cos h - 1) + \sum_{m=1}^k \frac{1}{(2m)!} B_{2m}(-1)^m h^{2m-1} \sin h + R_{2k}.$$

Using the identity $\cot \frac{\theta}{2} = \frac{1+\cos \theta}{\sin \theta}$ and dividing by $\sin h$, this becomes

(6)
$$\frac{1}{2}\cot\frac{h}{2} = \frac{1}{h} + \sum_{m=1}^{k} \frac{1}{(2m)!} B_{2m} (-1)^m h^{2m-1} + \frac{1}{\sin h} R_{2k}.$$

Because $P_m(1-\eta) = P_m(\eta)$ for even m,

$$R_{2k} = -\int_0^1 \frac{P_{2k}(\eta)}{(2k)!} (-1)^k h^{2k} \cos h\eta d\eta$$

$$= -B_{2k} \int_0^1 \frac{1}{(2k)!} (-1)^k h^{2k} \cos h\eta d\eta - \int_0^1 \frac{(P_{2k}(\eta) - B_{2k})}{(2k)!} (-1)^k h^{2k} \cos h\eta d\eta$$

$$= (-1)^{k+1} \frac{B_{2k} h^{2k}}{(2k)!} \frac{\sin h}{h} + (-1)^{k+1} \frac{h^{2k}}{(2k)!} \int_0^1 (P_{2k}(\eta) - B_{2k}) \cos h\eta d\eta.$$

Since $P_{2k}(\eta) - B_{2k}$ does not change sign on (0,1), by the mean-value theorem for integration there is some $\theta = \theta(h,k)$, $0 < \theta < 1$, such that (using $\int_0^1 P_{2k}(\eta) d\eta = 0$)

$$\int_0^1 (P_{2k}(\eta) - B_{2k}) \cos h\eta d\eta = \cos h\theta \int_0^1 (P_{2k}(\eta) - B_{2k}) d\eta = -B_{2k} \cos h\theta.$$

Therefore (6) becomes

$$\frac{1}{2}\cot\frac{h}{2} - \frac{1}{h} = \sum_{m=1}^{k} \frac{1}{(2m)!} B_{2m} (-1)^m h^{2m-1} + (-1)^{k+1} \frac{B_{2k} h^{2k-1}}{(2k)!} + (-1)^{k+2} \frac{h^{2k}}{(2k)! \sin h} B_{2k} \cos h\theta,$$

i.e.,

$$\frac{1}{2}\cot\frac{h}{2} - \frac{1}{h} = \sum_{k=1}^{k-1} \frac{1}{(2m)!} B_{2m} (-1)^m h^{2m-1} + (-1)^k \frac{h^{2k}}{(2k)! \sin h} B_{2k} \cos h\theta.$$

Write

$$E_k(h) = (-1)^{k+1} \frac{h^{2k}}{(2k)! \sin h} B_{2k} \cos h\theta.$$

We apply the above to $I_{2n}(\xi)$, and get, for any $k \geq 1$,

$$I_{2n}(\xi) = 2 \int_0^\infty \left(E_k(\xi t) - \sum_{m=1}^{k-1} \frac{1}{(2m)!} B_{2m}(-1)^m (\xi t)^{2m-1} \right) \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt$$

$$= -2 \sum_{m=1}^{k-1} \frac{1}{(2m)!} B_{2m}(-1)^m \xi^{2m-1} \int_0^\infty t^{2m-1} \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt$$

$$+ 2 \int_0^\infty E_k(\xi t) \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt.$$

Using (1).

$$\int_0^\infty t^{2m-1} \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt = \int_0^\infty \frac{t^{2m-1}}{e^{2\pi t} - 1} dt - \int_0^\infty \frac{t^{2m-1} \cos 2n\xi t}{e^{2\pi t} - 1} dt$$
$$= (-1)^{m+1} \frac{B_{2m}}{4m} - \int_0^\infty \frac{t^{2m-1} \cos 2n\xi t}{e^{2\pi t} - 1} dt.$$

Let

$$f(x) = \frac{1}{e^x - 1} - \frac{1}{x}.$$

By (2),

$$f(x) + \frac{1}{2} = 2 \int_0^\infty \frac{\sin xt}{e^{2\pi t} - 1} dt.$$

For $m \geq 1$,

$$f^{(2m-1)}(x) = 2 \int_0^\infty \frac{(-1)^{m-1} t^{2m-1} \cos xt}{e^{2\pi t} - 1} dt,$$

which for $x = 2n\xi$ becomes

$$\frac{(-1)^{m-1}}{2}f^{(2m-1)}(2n\xi) = \int_0^\infty \frac{t^{2m-1}\cos 2n\xi t}{e^{2\pi t} - 1}dt.$$

Therefore

$$2\int_0^\infty t^{2m-1} \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt = (-1)^{m+1} \frac{B_{2m}}{2m} + (-1)^m f^{(2m-1)}(2n\xi).$$

Thus $I_{2n}(\xi)$ is

$$I_{2n}(\xi) = -\sum_{m=1}^{k-1} \frac{1}{(2m)!} B_{2m}(-1)^m \xi^{2m-1} \left((-1)^{m+1} \frac{B_{2m}}{2m} + (-1)^m f^{(2m-1)}(2n\xi) \right)$$

$$+ 2 \int_0^\infty E_k(\xi t) \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt$$

$$= \sum_{m=1}^{k-1} \frac{B_{2m}^2}{(2m)! 2m} \xi^{2m-1} - \sum_{m=1}^{k-1} \frac{B_{2m}}{(2m)!} \xi^{2m-1} f^{(2m-1)}(2n\xi)$$

$$+ 2 \int_0^\infty E_k(\xi t) \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt.$$

But

$$\left| \int_0^\infty E_k(\xi t) \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt \right| = \left| \int_0^\infty (-1)^{k+1} \frac{(\xi t)^{2k}}{(2k)! \sin \xi t} B_{2k} \cos \xi t \theta \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt \right|$$

$$\leq \frac{|B_{2k}|}{(2k)!} \int_0^\infty \frac{(\xi t)^{2k}}{|\sin \xi t|} \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt.$$

Taking as given that for all $u \in \mathbb{R}$,

$$\frac{1 - \cos 2nu}{|\sin u|} \le \frac{\pi}{2} \frac{1 - \cos 2nu}{u},$$

we obtain

$$\left| \int_0^\infty E_k(\xi t) \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt \right|$$

$$\leq \frac{\pi}{2} \frac{|B_{2k}|}{(2k)!} \int_0^\infty (\xi t)^{2k - 1} \frac{1 - \cos 2n\xi t}{e^{2\pi t} - 1} dt$$

$$= \frac{\pi}{2} \frac{|B_{2k}|}{(2k)!} \xi^{2k - 1} \cdot \frac{1}{2} \left((-1)^{k + 1} \frac{B_{2k}}{2k} + (-1)^k f^{(2k - 1)}(2n\xi) \right).$$

Hence

$$I_{2n}(\xi) = \sum_{m=1}^{k-1} \frac{B_{2m}^2}{(2m)!2m} \xi^{2m-1} - \sum_{m=1}^{k-1} \frac{B_{2m}}{(2m)!} \xi^{2m-1} f^{(2m-1)}(2n\xi) + O\left(\frac{B_{2k}^2}{(2k)!2k} \xi^{2k-1}\right) + O\left(\frac{|B_{2k}|}{(2k)!} \xi^{2k-1} f^{(2k-1)}(2n\xi)\right).$$

Therefore we have

$$\begin{split} &\sum_{m=1}^{2n} \frac{1}{e^{m\xi} - 1} - \frac{1}{\xi} C_{2n} \\ &= \frac{\log(1 - e^{-2n\xi}) - \log\xi}{\xi} + \frac{1}{4} + \frac{1}{2} \left(\frac{1}{e^{2n\xi} - 1} - \frac{1}{2n\xi} \right) - I_{2n}(\xi) \\ &= \frac{\log(1 - e^{-2n\xi}) - \log\xi}{\xi} + \frac{1}{4} + \frac{1}{2} \left(\frac{1}{e^{2n\xi} - 1} - \frac{1}{2n\xi} \right) \\ &- \sum_{m=1}^{k-1} \frac{B_{2m}^2}{(2m)!2m} \xi^{2m-1} + \sum_{m=1}^{k-1} \frac{B_{2m}}{(2m)!} \xi^{2m-1} f^{(2m-1)}(2n\xi) \\ &+ O\left(\frac{B_{2k}^2}{(2k)!2k} \xi^{2k-1} \right) + O\left(\frac{|B_{2k}|}{(2k)!} \xi^{2k-1} f^{(2k-1)}(2n\xi) \right). \end{split}$$

Taking $n \to \infty$,

$$\sum_{m=1}^{\infty} \frac{1}{e^{m\xi} - 1} - \frac{\gamma}{\xi} = -\frac{\log \xi}{\xi} + \frac{1}{4} - \sum_{m=1}^{k-1} \frac{B_{2m}^2}{(2m)!2m} \xi^{2m-1} + O\left(\frac{B_{2k}^2}{(2k)!2k} \xi^{2k-1}\right).$$

19. VORONOI SUMMATION FORMULA

The Voronoi summation formula [18, p. 182] states that if $f:\mathbb{R}\to\mathbb{C}$ is a Schwartz function, then

$$\sum_{n=1}^{\infty} d(n)f(n) = \int_{0}^{\infty} f(t)(\log t + 2\gamma)dt + \frac{f(0)}{4} + \sum_{n=1}^{\infty} d(n) \int_{0}^{\infty} f(t)(4K_{0}(4\pi(nt)^{1/2}) - 2\pi Y_{0}(4\pi(nt)^{1/2}))dt,$$

where K_0 and Y_0 are Bessel functions.

Let 0 < x < 1. For $f(t) = e^{-tx}$, we compute using Mathematica that

$$\begin{split} & \int_0^\infty f(t) (4K_0 (4\pi (nt)^{1/2}) - 2\pi Y_0 (4\pi (nt)^{1/2})) dt \\ = & -\frac{2}{x} \exp\left(\frac{4\pi^2 n}{x}\right) \mathrm{Ei}\left(-\frac{4\pi^2 n}{x}\right) - \frac{2}{x} \exp\left(-\frac{4\pi^2 n}{x}\right) \mathrm{Ei}\left(\frac{4\pi^2 n}{x}\right). \end{split}$$

Then the Voronoi summation formula becomes

$$\sum_{n=1}^{\infty} d(n)e^{-nx}$$

$$= \frac{\gamma}{x} - \frac{\log x}{x} + \frac{1}{4}$$

$$+ \sum_{n=1}^{\infty} d(n) \left(-\frac{2}{x} \exp\left(\frac{4\pi^2 n}{x}\right) \operatorname{Ei}\left(-\frac{4\pi^2 n}{x}\right) - \frac{2}{x} \exp\left(-\frac{4\pi^2 n}{x}\right) \operatorname{Ei}\left(\frac{4\pi^2 n}{x}\right) \right).$$

Egger and Steiner [22] give a proof of the Voronoi summation formula involving Lambert series.

20. Curtze

Curtze [19]

21. Laguerre

Laguerre [38]

22. V. A. Lebesgue

V. A. Lebesgue [42]

23. Bouniakowsky

Bouniakowsky [4]

24. Catalan

Catalan [9, p. 89]

Catalan [10, p. 119, §CXXIV] and [11, pp. 38–39, §CCXXVI]

25. Pincherle

, Pincherle [45]

26. Glaisher

Glaisher [26, p. 163]

27. Günther

Günther [28, p. 83] and [29, p. 178]

28. Rogel

Rogel [46] and [47]

29. Cesàro

Cesàro [14]

Cesàro [15] and [16, pp. 181–184]

Bromwich [6, p. 201, Chapter VIII, Example B, 35]

30. de la Vallée-Poussin

de la Vallée-Poussin [20]

31. Torelli

Torelli [57]

32. FIBONACCI NUMBERS

Landau [40]

33. Knopp

Knopp [35]

34. Generating functions

Hardy and Wright [31, p. 258, Theorem 307]:

Theorem 1. For $f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ and $g(s) = \sum_{n=1}^{\infty} b_n n^{-s}$,

$$\sum_{n=1}^{\infty} a_n \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} b_n x^n, \qquad |x| < 1,$$

if and only if there is some σ such that

$$\zeta(s)f(s)=g(s),\qquad \Re(s)>\sigma.$$

For $f(s) = \sum_{n=1}^{\infty} \mu(n) n^{-s}$ and g(s) = 1, using [31, p. 250, Theorem 287]

$$\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \mu(n) n^{-s}, \quad \Re(s) > 1,$$

we get

$$\sum_{n=1}^{\infty} \frac{\mu(n)x^n}{1-x^n} = x.$$

For $f(s) = \sum_{n=1}^{\infty} \phi(n) n^{-s}$ and

$$g(s) = \zeta(s-1) = \sum_{n=1}^{\infty} n^{-s+1} = \sum_{n=1}^{\infty} nn^{-s},$$

using [31, p. 250, Theorem 288]

$$\frac{\zeta(s-1)}{\zeta(s)} = \sum_{n=1}^{\infty} \phi(n) n^{-s}, \qquad \Re(s) > 2,$$

we get

$$\sum_{n=1}^{\infty} \frac{\phi(n)x^n}{1 - x^n} = \sum_{n=1}^{\infty} nx^n = \frac{x}{(1 - x)^2}.$$

For $n = p_1^{a_1} \cdots p_r^{a_r}$, define $\Omega(n) = a_1 + \cdots + a_n$ and

$$\lambda(n) = (-1)^{\Omega(n)}.$$

For $f(s) = \sum_{n=1}^{\infty} \lambda(n) n^{-s}$ and

$$g(s) = \zeta(2s) = \sum_{n=1}^{\infty} n^{-2s} = \sum_{n=1}^{\infty} (n^2)^{-s},$$

using [31, p. 255, Theorem 300]

$$\frac{\zeta(2s)}{\zeta(s)} = \sum_{n=1}^{\infty} \lambda(n) n^{-s}, \qquad \Re(s) > 1,$$

we get

$$\sum_{n=1}^{\infty} \frac{\lambda(n)x^n}{1-x^n} = \sum_{n=1}^{\infty} x^{n^2}.$$

We define the von Mangoldt function $\Lambda: \mathbb{N} \to \mathbb{R}$ by $\Lambda(n) = \log p$ if n is some positive integer power of a prime p, and $\Lambda(n) = 0$ otherwise. For example, $\Lambda(1) = 0$,

 $\Lambda(12) = 0$, $\Lambda(125) = \log 5$. It is a fact [31, p. 254, Theorem 296] that for any n, the von Mangoldt function satisfies

(7)
$$\sum_{m|n} \Lambda(m) = \log n.$$

For $f(s) = \sum_{n=1}^{\infty} \Lambda(n) n^{-s}$ and

$$g(s) = -\zeta'(s) = \sum_{n=1}^{\infty} \log n n^{-s},$$

using [31, p. 253, Theorem 294]

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \Lambda(n) n^{-s},$$

we obtain

$$\sum_{n=1}^{\infty} \frac{\Lambda(n)x^n}{1-x^n} = \sum_{n=1}^{\infty} \log nx^n.$$

35. Preliminaries on prime numbers

We define

$$\vartheta(x) = \sum_{p \le x} \log p = \log \prod_{p \le x} p$$

and

$$\psi(x) = \sum_{p^m < x} \log p = \sum_{n < x} \Lambda(n).$$

One sees that

$$\psi(x) = \sum_{p \le x} [\log_p x] \log p = \sum_{p \le x} \left[\frac{\log x}{\log p} \right] \log p.$$

As well,

(8)
$$\psi(x) = \sum_{m=1}^{\infty} \sum_{n \le n!/m} \log p = \sum_{m=1}^{\infty} \vartheta(x^{1/m});$$

there are only finitely many terms on the right-hand side, as $\vartheta(x^{1/m}) = 0$ if $x < 2^m$.

Theorem 2.

$$\psi(x) = \vartheta(x) + O(x^{1/2}(\log x)^2).$$

Proof. For $x \ge 2$, $\vartheta(x) < x \log x$, giving

$$\sum_{2 \le m \le \frac{\log x}{\log 2}} \vartheta(x^{1/m}) < \sum_{2 \le m \le \frac{\log x}{\log 2}} x^{1/m} \frac{1}{m} \log x$$

$$\le x^{1/2} \log x \sum_{2 \le m \le \frac{\log x}{\log 2}} \frac{1}{m}$$

$$= O(x^{1/2} (\log x)^2).$$

Thus, using (8) we have

$$\psi(x) = \vartheta(x) + \sum_{2 \le m \le \frac{\log x}{\log 2}} \vartheta(x^{1/m}) = \vartheta(x) + O(x^{1/2} (\log x)^2).$$

We prove that if $\lim_{x\to\infty} \frac{\vartheta(x)}{x} = 1$ then $\frac{\pi(x)}{x/\log x} = 1$.

Theorem 3.

$$\liminf_{x \to \infty} \frac{\pi(x)}{x/\log x} = \liminf_{x \to \infty} \frac{\vartheta(x)}{x}$$

and

$$\limsup_{x \to \infty} \frac{\pi(x)}{x/\log x} = \limsup_{x \to \infty} \frac{\vartheta(x)}{x}.$$

Proof. From (8), $\vartheta(x) \leq \psi(x)$. And,

$$\psi(x) = \sum_{p \le x} \left[\frac{\log x}{\log p} \right] \log p \le \sum_{p \le x} \frac{\log x}{\log p} \log p = \log x \sum_{p \le x}.$$

Hence

$$\frac{\vartheta(x)}{r} \le \frac{\pi(x)\log x}{r},$$

whence

$$\liminf_{x \to \infty} \frac{\vartheta(x)}{x} \le \liminf_{x \to \infty} \frac{\pi(x)}{x/\log x}$$

and

$$\limsup_{x \to \infty} \frac{\vartheta(x)}{x} \le \limsup_{x \to \infty} \frac{\pi(x)}{x/\log x}.$$

Let $0 < \alpha < 1$. For x > 1,

$$\vartheta(x) = \sum_{p \le x} \log p \ge \sum_{x^{\alpha} \sum_{x^{\alpha}$$

As $\pi(x^{\alpha}) < x^{\alpha}$,

$$\vartheta(x) > \alpha \pi(x) \log x - \alpha x^{\alpha} \log x$$

i.e.,

$$\frac{\vartheta(x)}{x} > \alpha \frac{\pi(x) \log x}{x} - \alpha \frac{\log x}{x^{1-\alpha}}.$$

This yields

$$\liminf_{x\to\infty}\frac{\vartheta(x)}{x}\geq\alpha\liminf_{x\to\infty}\frac{\pi(x)\log x}{x}-\alpha\liminf_{x\to\infty}\frac{\log x}{x^{1-\alpha}}=\alpha\liminf_{x\to\infty}\frac{\pi(x)\log x}{x}$$

and

$$\limsup_{x \to \infty} \frac{\vartheta(x)}{x} \ge \alpha \limsup_{x \to \infty} \frac{\pi(x) \log x}{x} - \alpha \limsup_{x \to \infty} \frac{\log x}{x^{1-\alpha}} = \alpha \limsup_{x \to \infty} \frac{\pi(x) \log x}{x}.$$

Since these are true for all $0 < \alpha < 1$, we obtain respectively

$$\liminf_{x \to \infty} \frac{\vartheta(x)}{x} \ge \liminf_{x \to \infty} \frac{\pi(x) \log x}{x}$$

and

$$\limsup_{x \to \infty} \frac{\vartheta(x)}{x} \ge \limsup_{x \to \infty} \frac{\pi(x) \log x}{x}.$$

36. Wiener's Tauberian Theorem

Wiener [59, Chapter III].

We say that a function $s:(0,\infty)\to\mathbb{R}$ is slowly decreasing if

$$\liminf (s(\rho v) - s(v)) \ge 0, \quad v \to \infty, \quad \rho \to 1^+.$$

Widder [58, p. 211, Theorem 10b]: Wiener's tauberian theorem tells us that if $a \in L^{\infty}(0,\infty)$ and is slowly decreasing and if $g \in L^{1}(0,\infty)$ satisfies

$$\int_0^\infty t^{ix} g(t) dt \neq 0, \qquad t \in \mathbb{R},$$

then

$$\lim_{x \to \infty} \frac{1}{x} \int_0^\infty g\left(\frac{t}{x}\right) a(t) dt = A \int_0^\infty g(t) dt$$

implies that

$$\lim_{v \to \infty} a(v) = A$$

It is straightforward to check the following by rearranging summation.

Lemma 4. If $\sum_{n=1}^{\infty} a_n z^n$ has radius of convergence ≥ 1 , then for |z| < 1,

$$\sum_{n=1}^{\infty} a_n \frac{z^n}{1-z^n} = \sum_{n=1}^{\infty} \left(\sum_{m|n} a_m \right) z^n.$$

Using Lemma 4 with $a_n = \Lambda(n)$ and $z = e^{-x}$ and using (7), we get

(9)
$$\sum_{n=1}^{\infty} \Lambda(n) \frac{z^n}{1-z^n} = \sum_{n=1}^{\infty} \log(n) z^n.$$

Using (9) we have

$$\sum_{n=1}^{\infty} (\Lambda(n) - 1) \frac{e^{-nx}}{1 - e^{-nx}} = \sum_{n=1}^{\infty} (\log n - d(n)) e^{-nx}.$$

We follow Widder [58, p. 231, Theorem 16.6].

Theorem 5. $As x \rightarrow 0^+$,

$$\sum_{n=1}^{\infty} (\log n - d(n))e^{-nx} = -\frac{2\gamma}{x} + O(x^{-1/2}).$$

Proof. Generally,

$$(1-z)\sum_{n=1}^{\infty} z^n \sum_{m=1}^n a_m = (1-z)\sum_{m=1}^{\infty} a_m \sum_{n=m}^{\infty} z^n$$
$$= (1-z)\sum_{m=1}^{\infty} a_m \frac{z^m}{1-z}$$
$$= \sum_{m=1}^{\infty} a_m z^m.$$

Using this with $a_m = \log m - d(m)$ and $z = e^{-x}$ gives

$$\sum_{n=1}^{\infty} (\log n - d(n))e^{-nx} = (1 - e^{-x}) \sum_{n=1}^{\infty} e^{-nx} \left(\sum_{m=1}^{n} \log m - \sum_{m=1}^{n} d(m) \right)$$
$$= (1 - e^{-x}) \sum_{n=1}^{\infty} e^{-nx} \left(\log(n!) - \sum_{m=1}^{n} d(m) \right).$$

Using

$$\log(n!) = n \log n - n + O(\log n)$$

and

$$\sum_{m=1}^{n} d(m) = n \log n + (2\gamma - 1)n + O(n^{1/2}),$$

we get

$$\log(n!) - \sum_{m=1}^{n} d(m) = -2\gamma n + O(n^{1/2}).$$

Therefore,

$$\sum_{n=1}^{\infty} (\log n - d(n))e^{-nx} = (1 - e^{-x}) \sum_{n=1}^{\infty} e^{-nx} (-2\gamma n + O(n^{1/2})).$$

One proves that there is some K such that for all $0 \le y < 1$,

$$(1-y)\left(\log\frac{1}{y}\right)^{1/2}\sum_{n=1}^{\infty}n^{1/2}y^n \le K,$$

whence, with $y = e^{-x}$,

$$\sum_{n=1}^{\infty} n^{1/2} e^{-nx} \le K \frac{x^{-1/2}}{1 - e^{-x}}.$$

Also,

$$\sum_{n=1}^{\infty} ne^{-nx} = \frac{e^{-x}}{(1 - e^{-x})^2},$$

and thus we have

$$\sum_{n=1}^{\infty} (\log n - d(n))e^{-nx} = -2\gamma \frac{e^{-x}}{1 - e^{-x}} + O(x^{-1/2})$$
$$= -2\gamma \frac{1}{e^x - 1} + O(x^{-1/2}).$$

But

$$\frac{1}{e^x - 1} = \frac{1}{x} - \frac{1}{2} + O(x),$$

so

$$\sum_{n=1}^{\infty} (\log n - d(n))e^{-nx} = -\frac{2\gamma}{x} + O(x^{-1/2}).$$

Define

$$f(x) = \sum_{n=1}^{\infty} (\Lambda(n) - 1) \frac{e^{-nx}}{1 - e^{-nx}},$$

and

$$h(x) = \sum_{n \le x} \frac{\Lambda(n) - 1}{n}.$$

and

$$g(t) = \frac{d}{dt} \left(\frac{te^{-t}}{1 - e^{-t}} \right).$$

First we show that h is slowly decreasing.

Lemma 6. h(x) is slowly decreasing.

Proof. Using

$$\sum_{1 \le n \le x} \frac{1}{n} = \log x + \gamma + O(n^{-1}), \qquad x \to \infty,$$

we have, for $\rho > 1$,

$$h(\rho x) - h(x) = \sum_{x < n \le \rho x} \frac{\Lambda(n) - 1}{n}$$

$$\geq -\sum_{x < n \le \rho x} \frac{1}{n}$$

$$= -\sum_{1 \le n \le \rho x} \frac{1}{n} + \sum_{1 \le n \le x} \frac{1}{n}$$

$$= -\log(\rho x) + \log x + O((\rho x)^{-1}) + O(x^{-1})$$

$$= -\log \rho + O((\rho x)^{-1}) + O(x^{-1}).$$

Hence as $x \to \infty$ and $\rho \to 1^+$,

$$h(\rho x) - h(x) \to 0$$
,

which shows that h is slowly decreasing.

The following is from Widder [58, pp. 231–232].

Lemma 7. $As x \to \infty$,

$$\frac{1}{x} \int_0^\infty g\left(\frac{t}{x}\right) h(t) dt = 2\gamma + O(x^{-1/2}).$$

Proof. Let I(t) = 0 for t < 0 and I(t) = 1 for $t \ge 0$. Writing

$$h(x) = \sum_{n=1}^{\infty} I(x-n) \frac{\Lambda(n) - 1}{n},$$

we check that for x > 0,

$$\int_0^\infty \frac{te^{-xt}}{1 - e^{-xt}} dh(t) = \sum_{n=1}^\infty \int_0^\infty \frac{te^{-xt}}{1 - e^{-xt}} \frac{\Lambda(n) - 1}{n} d(I(t - n))$$

$$= \sum_{n=1}^\infty \int_0^\infty \frac{te^{-xt}}{1 - e^{-xt}} \frac{\Lambda(n) - 1}{n} d\delta_n(t)$$

$$= \sum_{n=1}^\infty \frac{ne^{-nx}}{1 - e^{-nx}} \frac{\Lambda(n) - 1}{n}$$

$$= f(x).$$

On the other hand, integrating by parts,

$$f(x) = \int_0^\infty \frac{te^{-xt}}{1 - e^{-xt}} dh(t)$$

$$= \int_0^\infty \frac{1}{x} \frac{xte^{-xt}}{1 - e^{xt}} dh(t)$$

$$= \int_0^\infty \frac{1}{x} \frac{xte^{-xt}}{1 - e^{-xt}} dh(t)$$

$$= \int_0^\infty \frac{1}{x} \frac{te^{-t}}{1 - e^{-t}} dh\left(\frac{t}{x}\right)$$

$$= \frac{1}{x} \frac{te^{-t}}{1 - e^{-t}} h\left(\frac{t}{x}\right) \Big|_0^\infty - \int_0^\infty \frac{1}{x} g(t) h\left(\frac{t}{x}\right) dt$$

$$= -\int_0^\infty \frac{1}{x} g(t) h\left(\frac{t}{x}\right) dt$$

$$= -\int_0^\infty g(xt) h(t) dt.$$

By Theorem 5, as $x \to 0^+$,

$$f(x) = -\frac{2\gamma}{x} + O(x^{-1/2}),$$

i.e., as $x \to 0^+$,

$$\int_0^\infty g(xt)h(t)dt = \frac{2\gamma}{x} + O(x^{-1/2}).$$

Thus, as $x \to \infty$,

$$\int_0^\infty g\left(\frac{t}{x}\right)h(t)dt = 2\gamma x + O(x^{1/2}).$$

The following is Widder [58, p. 232].

Lemma 8.

$$\int_0^\infty t^{-ix} g(t) dt = \begin{cases} -1 & x = 0\\ ix\zeta(1 - ix)\Gamma(1 - ix) & x \neq 0. \end{cases}$$

Proof.

$$\begin{split} \int_0^\infty t^{-ix} g(t) dt &= \int_0^\infty t^{-ix} \frac{d}{dt} \left(\frac{te^{-t}}{1-e^{-t}} \right) dt \\ &= \lim_{\delta \to 0} \int_0^\infty t^{-ix+\delta} \frac{d}{dt} \left(\frac{te^{-t}}{1-e^{-t}} \right) dt \\ &= \lim_{\delta \to 0} \left(t^{-ix+\delta} \frac{te^{-t}}{1-e^{-t}} \Big|_0^\infty + (ix-\delta) \int_0^\infty t^{-ix+\delta-1} \frac{te^{-t}}{1-e^{-t}} dt \right) \\ &= \lim_{\delta \to 0} (ix-\delta) \int_0^\infty t^{-ix+\delta-1} \frac{te^{-t}}{1-e^{-t}} dt \\ &= \lim_{\delta \to 0} (ix-\delta) \int_0^\infty \frac{t^{(-ix+\delta+1)-1}e^{-t}}{1-e^{-t}} dt. \end{split}$$

Using

$$\int_0^\infty \frac{t^{s-1}}{e^t - 1} dt = \zeta(s)\Gamma(s), \qquad \Re(s) > 1,$$

this becomes

$$\int_0^\infty t^{-ix} g(t) dt = \lim_{\delta \to 0^+} (ix - \delta) \zeta(1 + \delta - ix) \Gamma(1 + \delta - ix).$$

If x = 0, then using

$$\zeta(s) = \frac{1}{s-1} + \gamma + O(|s-1|), \quad s \to 1,$$

we get

$$\lim_{\delta \to 0+} (-\delta)\zeta(1+\delta)\Gamma(1+\delta) = -1.$$

If x > 0, then

$$\lim_{\delta \to 0^+} (ix - \delta)\zeta(1 + \delta - ix)\Gamma(1 + \delta - ix) = ix\zeta(1 - ix)\Gamma(1 - ix).$$

By Weiner's tauberian theorem, it follows that

$$\sum_{n=1}^{\infty} \frac{\Lambda(n) - 1}{n} = -2\gamma.$$

Lemma 9.

$$h(x) = \int_{\frac{1}{2}}^{x} \frac{d(\psi(t) - [t])}{t}.$$

Proof. Let I(t) = 0 for t < 0 and I(t) = 1 for $t \ge 0$. Writing

$$\psi(x) = \sum_{n=1}^{\infty} I(x-n)\Lambda(n), \qquad [x] = \sum_{n=1}^{\infty} I(x-n),$$

we have

$$\begin{split} \int_{\frac{1}{2}}^{x} \frac{d(\psi(t) - [t])}{t} &= \int_{\frac{1}{2}}^{x} \frac{1}{t} d\left(\sum_{n=1}^{\infty} I(t-n)(\Lambda(n) - 1)\right) \\ &= \int_{\frac{1}{2}}^{x} \frac{1}{t} \sum_{n=1}^{\infty} (\Lambda(n) - 1) d\delta_{n}(t) \\ &= \sum_{1 \leq n \leq x} \frac{\Lambda(n) - 1}{n} \\ &= h(x). \end{split}$$

Thus, we have established that

$$\int_{\frac{1}{2}}^{\infty} \frac{d(\psi(t) - [t])}{t} = -2\gamma.$$

37. Hermite

Hermite [32]:

38. Levi-Civita

Levi-Civita [43]

39. Franel

Franel [25] and [24]

The next theorem shows that the set of points on the unit circle that are singularities of $\sum_{n=1}^{\infty} \frac{z^n}{1-z^n}$ is dense in the unit circle. Titchmarsh [56, pp. 160–161, §4.71].

Theorem 10. For |z| < 1, define

$$f(z) = \sum_{n=1}^{\infty} \frac{z^n}{1 - z^n}.$$

Suppose that p > 0, q > 1 are relatively prime integers. As $r \to 1^-$,

$$(1-r)f(re^{2\pi i/q}) \to \infty.$$

Proof. Set $z = re^{2\pi i p/q}$ and write

$$\sum_{n=1}^{\infty} \frac{z^n}{1-z^n} = \sum_{n\equiv 0 \pmod{q}} \frac{z^n}{1-z^n} + \sum_{n\not\equiv 0 \pmod{q}} \frac{z^n}{1-z^n}.$$

On the one hand,

$$(1-r) \sum_{n \equiv 0 \pmod q} \frac{z^n}{1-z^n} = (1-r) \sum_{m=1}^{\infty} \frac{z^{mq}}{1-z^{mq}}$$

$$= (1-r) \sum_{m=1}^{\infty} \frac{(re^{2\pi i p/q})^{mq}}{1-(re^{2\pi i p/q})^{mq}}$$

$$= (1-r) \sum_{m=1}^{\infty} \frac{r^{mq}}{1-r^{mq}}$$

$$= \frac{1-r}{1-r^q} \sum_{m=1}^{\infty} \frac{r^{mq}}{1+r^q+\cdots+r^{(m-1)q}}$$

$$= \frac{1}{1+r+\cdots+r^{q-1}} \sum_{m=1}^{\infty} \frac{r^{mq}}{1+r^q+\cdots+r^{(m-1)q}}$$

$$\geq \frac{1}{q} \sum_{m=1}^{\infty} \frac{r^{mq}}{m}$$

$$= -\frac{1}{q} \log(1-r^q)$$

$$\to \infty$$

as $r \to 1$.

On the other hand, for $n \not\equiv 0 \pmod{q}$ we have

$$\begin{split} |1-z^n|^2 &= |1-r^n e^{2\pi i p n/q}|^2 \\ &= (1-r^n e^{2\pi i p n/q})(1-r^n e^{-2\pi i p n/q}) \\ &= 1-r^n (e^{2\pi i p n/q} + e^{-2\pi i p n/q}) + r^{2n} \\ &= 1-2r^n \cos 2\pi p n/q + r^{2n} \\ &= 1-2r^n + 4r^n \sin^2 \frac{\pi p n}{q} + r^{2n} \\ &= (1-r^n)^2 + 4r^n \sin^2 \frac{\pi p n}{q}. \end{split}$$

So far we have not used the hypothesis that $n \equiv 0 \pmod{q}$. We use it to obtain

$$\sin\frac{\pi pn}{q} \ge \sin\frac{\pi}{q}.$$

With this we have

$$|1 - z^n|^2 \ge 4r^n \sin^2 \frac{\pi}{q},$$

and therefore, as r < 1,

$$(1-r) \left| \sum_{n \not\equiv 0 \pmod q} \frac{z^n}{1-z^n} \right| \le (1-r) \sum_{n \not\equiv 0 \pmod q} \frac{|z|^n}{|1-z^n|}$$

$$\le (1-r) \sum_{n \not\equiv 0 \pmod q} \frac{r^n}{2r^{n/2} \sin \frac{\pi}{q}}$$

$$\le \frac{1-r}{2 \sin \frac{\pi}{q}} \sum_{n=0}^{\infty} r^{n/2}$$

$$= \frac{1-r}{2 \sin \frac{\pi}{q}} \cdot \frac{1}{1-\sqrt{r}}$$

$$= \frac{1+\sqrt{r}}{2 \sin \frac{\pi}{q}}$$

$$< \frac{1}{\sin \frac{\pi}{q}} .$$

40. Wigert

The following result is proved by Wigert [60]. Our proof follows Titchmarsh [55, p. 163, Theorem 7.15]. Cf. Landau [41].

Theorem 11. For $\lambda < \frac{1}{2}\pi$ and $N \ge 1$,

$$\sum_{n=1}^{\infty} d(n)e^{-nz} = \frac{\gamma}{z} - \frac{\log z}{z} + \frac{1}{4} - \sum_{n=0}^{N-1} \frac{B_{2n+2}^2}{(2n+2)!(2n+2)} z^{2n+1} + O(|z|^{2N})$$

as $z \to 0$ in any angle $|\arg z| \le \lambda$.

41. Unsorted

In 1892, in volume VII, no. 23, p. 296 of the weekly *Naturwissenschaftliche Rundschau*, it is stated that for the year 1893, one of the six prize questions for the Belgian Academy of Sciences in Brussels is to determine the sum of the Lambert series

$$\frac{x}{1-x} + \frac{x^2}{1-x^2} + \frac{x^3}{1-x^3} + \cdots,$$

or if one cannot do this, to find a differential equation that determines the function.

Gram [27] on distribution of prime numbers.

Hardy [30]

Bohr and Cramer [1, p. 820]

References

 Harald Bohr and Harald Cramér, Die neure Entwicklung der analytischen Zahlentheorie, Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band II, 3. Teil, 2. Hälfte (H. Burkhardt, W. Wirtinger, R. Fricke, and E. Hilb, eds.), B. G. Teubner, Leipzig, 1923–1927, pp. 722–849.

- Karl Bopp, Johann Heinrich Lamberts Monatsbuch mit den zugehörigen Kommentaren, sowie mit einem Vorwort über den Stand der Lambertforschung, Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften. Mathematisch-physikalische Klasse 27 (1916), 1–84, 6. Abhandlung.
- Peter B. Borwein, On the irrationality of certain series, Math. Proc. Camb. Phil. Soc. 112 (1992), 141–146.
- V. Bouniakowsky, Recherches sur quelques fonctions numériques, Mémoires de l'Académie impériale des sciences de St.-Pétersbourg, VIIe série 4 (1861), no. 2, 1–35.
- Nicolas Bourbaki, Elements of mathematics. Functions of a real variable: Elementary theory, Springer, 2004, Translated from the French by Philip Spain.
- T. J. I'A. Bromwich, An introduction to the theory of infinite series, second ed., Macmillan, London, 1959.
- Maarten Bullynck, Factor tables 1657–1817, with notes on the birth of number theory, Revue d'histoire des mathématiques 16 (2010), no. 2, 133–216.
- Heinrich Burhenne, Ueber das Gesetz der Primzahlen, Archiv der Mathematik und Physik 19 (1852), 442–449.
- 9. Eugène-Charles Catalan, Recherches sur quelques produits indéfinis, Mémoires de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique **40** (1873), 1–127.
- 10. ______, *Mélanges mathématiques*, Mémoires de la Société Royale des Sciences de Liège, deuxième série **13** (1886), 1–404.
- 11. _____, Mélanges mathématiques, Mémoires de la Société Royale des Sciences de Liège, deuxième série 14 (1888), 1–275.
- 12. Augustin Cauchy, Mémoire sur l'application du calcul des résidus au développement des produits composés d'un nombre infini de facteurs, Comptes rendus hebdomadaires des séances de l'Académie des sciences 17 (1843), 572–581, Oeuvres complètes, série 1, tome 8, pp. 55–64.
- Sur la réduction des rapports de factorielles réciproques aux fonctions elliptiques, Comptes rendus hebdomadaires des séances de l'Académie des sciences 17 (1843), 825–837, Oeuvres complètes, série 1, tome 8, pp. 97–110.
- Ernesto Cesáro, Sur les nombres de Bernoulli et d'Euler, Nouvelles annales de mathématiques, troisième série 5 (1886), 305–327.
- 15. ______, La serie di Lambert in aritmetica assintotica, Rendiconto delle adunanze e de' lavori dell' Accademia Napolitana delle Scienze 7 (1893), 197–204.
- Corso di analisi algebrica con introduzione al calcolo infinitesimale, Fratelli Bocca Editori, Turin, 1894.
- 17. Th. Clausen, Beitrag zur Theorie der Reihen, J. Reine Angew. Math. 3 (1828), 92-95.
- Henri Cohen, Number theory, volume II: Analytic and modern tools, Graduate Texts in Mathematics, vol. 240, Springer, 2007.
- 19. Maximilian Curtze, Notes diverses sur la série de Lambert et la loi des nombres premiers, Annali di Matematica Pura ed Applicata 1 (1867-1868), no. 1, 285-292.
- Charles-Jean de la Vallée Poussin, Sur la série de Lambert, Annales de la Société Scientifique de Bruxelles 20 (1896), 56–62.
- Gustav Lejeune Dirichlet, Über die Bestimmung asymptotischer Gesetze in der Zahlentheorie,
 Bericht über die Verhandlangen der Königlich Preussischen Akademie der Wissenschaften (1838), 13–15, Werke, Band I, pp. 351–356.
- Sebastian Egger né Endres and Frank Steiner, A new proof of the Voronoï summation formula,
 J. Phys. A 44 (2011), no. 22, 225302.
- 23. G. Eisenstein, *Transformations remarquables de quelques séries*, J. Reine Angew. Math. **27** (1844), 193–197, Mathematische Werke, Band I, pp. 35–44.
- 24. Jérôme Franel, Sur la théorie des séries, Math. Ann. 52 (1899), 529-549.
- Sur une formule utile dans la détermination de certaines valeurs asymptotiques, Math. Ann. 51 (1899), 369–387.
- J. W. L. Glaisher, On the square of the series in which the coefficients are the sums of the divisors of the exponents, Messenger of Mathematics 14 (1885), 156–163.
- 27. J. P. Gram, Undersøgelser angaaende Mængden af Primtal under en given Grænse, Det Kongelige Danske Videnskabernes Selskabs Skrifter, 6. Række, Naturvidenskabelig og Mathematisk Afdeling 2 (1881–1886), 183–308.
- Siegmund Günther, Ziele und Resultate der neueren mathematisch-historischen Forschung, Eduard Besold, Erlangen, 1876.

- Die Lehre von den gewöhnlichen und verallgemeinerten Hyperbelfunktionen, Louis Nebert, Halle a. S., 1881.
- 30. G. H. Hardy, Divergent series, second ed., AMS Chelsea Publishing, Providence, RI, 1991.
- 31. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fifth ed., Oxford University Press, 1979.
- 32. Ch. Hermite, Sur les valeurs asymptotiques de quelques fonctions numériques., J. Reine Angew. Math. 99 (1886), 324–328, Oeuvres, tome IV, pp. 209–214.
- 33. Carl Gustav Jacob Jacobi, Fundamenta nova theoriae functionum ellipticarum, Sumtibus Fratrum Borntraeger, Königsberg, 1829.
- 34. Georg Simon Klügel, Carl Brandan Mollweide, and Johann August Grunert (eds.), Mathematisches Wörterbuch oder Erklärung der Begriffe, Lehrsätze, Aufgaben und Methoden der Mathematik mit den nöthigen Beweisen und literarischen Nachrichten begleitet in alphabetischer Ordnung. Erste Abtheilung. Fünfter Theil. Erster Band. I und II, E. B. Schwickert, Leipzig, 1831.
- 35. Konrad Knopp, Über Lambertsche Reihen, J. Reine Angew. Math. 142 (1913), 283-315.
- W. L. Krafft, Essai sur les nombres premiers, Nova Acta Academiae Scientiarum Imperialis Petropolitanae 12 (1794), 217–245.
- 37. S. F. Lacroix, Traité du calcul différentiel et du calcul intégral, tome troisième, second ed., Veuve Courcier, Paris, 1819.
- 38. Edmond Laguerre, Sur quelques théorèmes d'arithmétique, Bulletin de la Société Mathématique de France 1 (1872–1873), 77–81.
- 39. Johann Heinrich Lambert, Anlage zur Architectonic, oder Theorie des Einfachen und des Ersten in der philosophischen und mathematischen Erkenntniß, 2. Band, Johann Friedrich Hartknoch, Riga, 1771.
- 40. Edmund Landau, Sur la série des inverses des nombres de Fibonacci, Bulletin de la Société Mathématique de France 27 (1899), 298–300.
- , Über die Wigertsche asymptotische Funktionalgleichung für die Lambertsche Reihe, Archiv der Mathematik und Physik, 3. Reihe 27 (1918), 144–146, Collected Works, volume 7, pp. 135–137.
- 42. Victor-Amédée Lebesgue, Démonstration d'une formule d'euler, sur les diviseurs d'un nombre, Nouvelles annales de mathématiques 12 (1853), 232–235.
- 43. Tullio Levi-Civita, Di una espressione analitica atta a rappresentare il numero dei numeri primi compresi in un determinato intervallo, Atti della Reale Accademia dei Lincei, serie quinta. Rendiconti: Classe di scienze fisiche, matematiche e naturali 4 (1895), 303–309, Opere matematiche, volume primo, pp. 153–158.
- 44. A. F. Möbius, Über eine besondere Art von Umkehrung der Reihen, J. Reine Angew. Math. 9 (1832), no. 2, 105–123.
- 45. Salvatore Pincherle, Sopra alcuni sviluppi in serie per funzioni analitiche, Memorie della Accademia delle Scienze dell'Istituto di Bologna, serie quarta 3 (1882), 149–180.
- Franz Rogel, Darstellung der harmonischen Reihen durch Factorenfolgen, Archiv der Mathematik und Physik (2) 9 (1890), 297–319.
- 47. ______, Darstellungen zalentheoretischer Functionen durch trigonometrische Reihen, Archiv der Mathematik und Physik (2) 10 (1891), 62–83.
- 48. H. F. Scherk, Bemerkungen über die Lambertsche Reihe $\frac{x}{1-x} + \frac{x^2}{1-x^2} + \frac{x^3}{1-x^3} + \frac{x^4}{1-x^4} + etc.$, J. Reine Angew. Math. 9 (1832), 162–168.
- Oskar Schlömilch, Ueber die Lambert'sche Reihe, Zeitschrift für Mathematik und Physik 6 (1861), 407–415.
- 50. ______, Extrait d'une Lettre adressée à M. Liouville par M. Schlömilch, Journal de Mathmatiques Pures et Appliquées (2) 8 (1863), 99–101.
- 51. ______, Compendium der höheren Analysis, zweiter Band, second ed., Friedrich Vieweg und Sohn, Braunschweig, 1874.
- 52. Francois-Joseph Servois, Réflexions sur les divers systèmes d'exposition des principes du calcul différentiel, et, en particulier, sur la doctrine des infiniment petits, Annales de Mathématiques pures et appliquées 5 (1814-1815), 141-170.
- L. A. Sohncke, Sammlung von Aufgaben aus der Differential- und Integralrechnung, H. W. Schmidt, Halle, 1850.
- M. Stern, Beiträge zur Combinationslehre und deren Anwendung auf die Theorie der Zahlen,
 J. Reine Angew. Math. 21 (1840), 177–192.

- 55. E. C. Titchmarsh, *The theory of the Riemann zeta-function*, second ed., Clarendon Press, Oxford, 1986.
- 56. _____, The theory of functions, second ed., Oxford University Press, 2002.
- 57. Gabriele Torelli, Sulla totalità dei numeri primi fino ad un limite assegnato, Atti dell'Accademia delle scienze fisiche e matematiche. Sezione della Società Reale di Napoli (2) **11** (1901), no. 1, 1–222.
- 58. David Vernon Widder, *The Laplace transform*, Princeton Mathematical Series, vol. 6, Princeton University Press, 1946.
- Norbert Wiener, The Fourier integral and certain of its applications, Cambridge University Press, 1933.
- 60. S. Wigert, Sur la série de Lambert et son application à la théorie des nombres, Acta Math. 41 (1916), 197–218.
- 61. A. P. Youschkevitch, *Lambert et Léonard Euler*, Colloque international et interdisciplinaire Jean-Henri Lambert, Mulhouse, 26–30 septembre 1977 (R. Oberle, A. Thill, and P. Levassort, eds.), Editions Ophrys, Paris, 1979, pp. 211–224.
- G. Zehfuss, Mathematische Miscellen, Zeitschrift für Mathematik und Physik 3 (1858), 247– 245.

E-mail address: jordan.bell@gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA