Homework 2: Symplectic Volume

1. Given a vector space V, the exterior algebra of its dual space is

$$\wedge^*(V^*) = \bigoplus_{k=0}^{\dim V} \wedge^k(V^*) ,$$

where $\wedge^k(V^*)$ is the set of maps $\alpha: \overbrace{V \times \cdots \times V}^k \to \mathbb{R}$ which are linear in each entry, and for any permutation π , $\alpha(v_{\pi_1}, \dots, v_{\pi_k}) = (\operatorname{sign} \pi) \cdot \alpha(v_1, \dots, v_k)$. The elements of $\wedge^k(V^*)$ are known as **skew-symmetric** k-linear maps or k-forms on V.

- (a) Show that any $\Omega\in \wedge^2(V^*)$ is of the form $\Omega=e_1^*\wedge f_1^*+\ldots+e_n^*\wedge f_n^*$, where $u_1^*,\ldots,u_k^*,e_1^*,\ldots,e_n^*,f_1^*,\ldots,f_n^*$ is a basis of V^* dual to the standard basis $(k+2n=\dim V)$.
- (b) In this language, a symplectic map $\Omega: V \times V \to \mathbb{R}$ is just a nondegenerate 2-form $\Omega \in \wedge^2(V^*)$, called a **symplectic form** on V. Show that, if Ω is any symplectic form on a vector space V of dimension 2n, then the nth exterior power $\Omega^n = \underbrace{\Omega \wedge \ldots \wedge \Omega}_{n}$ does not vanish.
- (c) Deduce that the nth exterior power ω^n of any symplectic form ω on a 2n-dimensional manifold M is a volume form. 2

Hence, any symplectic manifold (M,ω) is canonically oriented by the symplectic structure. The form $\frac{\omega^n}{n!}$ is called the **symplectic volume** or the **Liouville volume** of (M,ω) .

Does the Möbius strip support a symplectic structure?

(d) Conversely, given a 2-form $\Omega\in \wedge^2(V^*)$, show that, if $\Omega^n\neq 0$, then Ω is symplectic.

Hint: Standard form.

- 2. Let (M, ω) be a 2n-dimensional symplectic manifold, and let ω^n be the volume form obtained by wedging ω with itself n times.
 - (a) Show that, if M is compact, the de Rham cohomology class $[\omega^n]\in H^{2n}(M;\mathbb{R})$ is non-zero.

Hint: Stokes' theorem.

- (b) Conclude that $[\omega]$ itself is non-zero (in other words, that ω is not exact).
- (c) Show that if n>1 there are no symplectic structures on the sphere S^{2n} .

²A **volume form** is a nonvanishing form of top degree.