

Applicazioni dell'algoritmica alla biologia: alberi evolutivi

Matteo Tortoli

Relatrice Prof.ssa Maria Cecilia Verri

Concetti base di biologia

DNA ed allineamento di sequenze

Il DNA o acido desossiribonucleico è una macromolecola contenente il patrimonio genetico degli esseri viventi.

- Struttura a doppia elica di lunghezza variabile;
- 4 tipi di basi azotate:
 - Timina (T)
 - Adenina (A)
 - Guanina (G)
 - Citosina (C)

Una successione di basi azotate prende il nome di sequenza.

Che cos'è la bioinformatica?

X-Informatics ———— Il risultato dell'incontro tra l'informatica ed altre scienze di base.

Bioinformatica

La bioinformatica è un campo multidisciplinare della scienza che coinvolge la genetica, la biologia molecolare, l'informatica, la matematica e la statistica, rivolta a studiare sistemi biologici utilizzando metodi e modelli informatici e computazionali.

Filogenetica Studia le relazioni evolutive tra le entità biologiche attraverso la costruzione di alberi evolutivi (o alberi filogenetici).

Albero Evolutivo

È un albero che rappresenta le relazioni evolutive tra le entità biologiche, dove i nodi (o vertici) rappresentano tali entità, mentre gli archi mostrano le loro relazioni.

Matrice delle distanze

Algoritmi basati sulla distanza: prendono in input una matrice delle distanze.

Date n unità, calcolando la distanza per ogni coppia di elementi si ottiene una matrice delle distanze D $n \times n$.

Esempio:

SPECIE	ALLINEAMENTO	MATRICE DELLE DISTANZE			
		Umano	Scimpanzé	Foca	Balena
Umano	ATGTAAGACT	0	3	7	5
Scimpanzé	ACGTAGGCCT	3	0	6	4
Foca	TCGAGAGCAC	7	6	0	2
Balena	TCGAAAGCAT	5	4	2	0

Problema degli alberi basati sulla distanza

Proprietà dell'albero:

- Numero non negativo su ogni arco ->
 distanza tra i nodi;
- Tutti i vertici hanno grado diverso da 2 → Albero semplice;
- L'albero si adatta alla matrice.

Un albero T si *adatta* ad una matrice delle distanze D se $\longrightarrow \forall i, j \in V, D_{ij} = d_{ij}(T)$

Sia *T* che *D* si definiscono *additivi*, altrimenti si parla di *non additivit*à.

Problema degli alberi basati sulla distanza:

Data in **input** una matrice delle distanze additiva restituire in **output** un albero evolutivo semplice.

Algoritmo per il problema degli alberi basati sulla distanza

Parte 1

$$min \rightarrow D_{fb} = 2$$

 d_{fp} e d_{bp} ? Aggiungi u ed sa T e scrivi le distanze in funzione di p.

$$d_{fp} = d_{fu} - d_{up}$$

$$d_{bp} = d_{bu} - d_{up}$$

Si ottiene che $d_{fp} = 2$ e $d_{bp} = 0$

Algoritmo per il problema degli alberi basati sulla distanza

Parte 2

Algoritmo per il problema degli alberi basati sulla distanza

Parte 3

Complessità temporale

2 Step:

• Trovare il minimo in *D* di dimensione $n \times n$:

$$T(step1) = O(n^2)$$

 Calcolare la distanza dei vertici genitori ed aggiornare la matrice D.

$$T(step2) = O(n)$$

 $T(totale) = T(step1) + T(step2) \simeq O(n^2)$

Criticità dell'algoritmo

L'algoritmo costruisce *T* se e solo se:

- L'elemento più piccolo in D corrisponde a due foglie vicine in T;
 - D è additiva.

Per definizione di non additività, non c'è modo che un albero si adatti ad una matrice non additiva.

In tal caso possiamo costruire un albero T che approssimi D non additiva.

Algoritmo che risolve entrambe le criticità: Neighbor-Joining

Parte 1

Matrice non additiva in input
$$D = \begin{cases} f & b & u & s \\ f & \begin{pmatrix} 0 & 3 & 4 & 3 \\ 3 & 0 & 4 & 5 \\ 4 & 4 & 0 & 2 \\ 3 & 5 & 2 & 0 \end{cases}$$
Objettivo: costruire *T* che approssimi al meglio *D*.

1. Costruisci la matrice $D^* \rightarrow D$ ata in input D si definisce D^* :

$$\forall f, b \in D, \ D^{*}(f, b) = (n - 2) \cdot D(f, b) - \sum_{k=1}^{n} D(f, k) - \sum_{k=1}^{n} D(b, k)$$

$$\text{specie } f \quad b \quad u \quad s$$

$$f \quad \begin{pmatrix} 0 & -16 & -12 & -14 \\ -16 & 0 & -14 & -12 \\ -12 & -14 & 0 & -16 \\ -14 & -12 & -16 & 0 \end{pmatrix}$$

Parte 2

2. Cerca l'elemento minimo in $D^\star \to D^\star_{fb} = -16$.

3. Calcola il *delta* tra
$$f$$
 e b . $\longrightarrow \Delta_{fb} = \frac{\sum_{k=1}^n D(f,k) - \sum_{k=1}^n D(b,k)}{n-2} = -1$

 $edgeweight(f) = \frac{D_{fb} + \Delta_{fb}}{2} = 1$ 4. Calcola edgeweight(f) e edgeweight(b) $edgeweight(b) = \frac{D_{fb} - \Delta_{fb}}{2} = 2$

5. Aggiorna la matrice $D \rightarrow$ Aggiungi il genitore di f e b, ovvero una riga ed una colonna p tale che:

$$\forall u \in D \setminus \{f,b\}, \ D_{up} = \frac{D_{fu} + D_{bu} - D_{fb}}{2}$$
 Elimina f e b da D .

Parte 3

 $p \in k$ nodi interni \rightarrow arco di peso 1,5. Costruisci T.

L'algoritmo è terminato!

Parte 4 - Calcolo discrepanza tra $D \in D(T)$

specie f b u s
$$D(T) = \begin{cases} f & 0 & 3 & 3,5 & 3,5 \\ b & 3 & 0 & 4,5 & 4,5 \\ 3,5 & 4,5 & 0 & 2 \\ 3,5 & 4,5 & 2 & 0 \end{cases} \longrightarrow Discrepancy(D(T),D) = \sum_{i=1}^{j-1} \sum_{j=i+1}^{n} (D_{ij}(T) - D_{ij})^2 = 1$$

Poca discrepanza tra $D \in D(T)$.

Complessità Temporale

2 step:

- Crea D^* e cerca l'elemento minimo $\longrightarrow T(step1) = O(n^2)$
- Calcola il peso degli archi delle foglie ed aggiorna la matrice $extit{D}$ \longrightarrow T(step2) = O(n)

$$T(NJ) = T(step1) + T(step2) = O(n^2)$$

Eseguito tante volte quante sono le foglie in D, quindi n volte

$$T(Totale) = T(NJ) \times O(n) = O(n^3)$$

Parte 1

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) → data in input una matrice delle distanze *additiva* o *non*, restituisce un albero *radicato* in cui tutte le foglie sono alla stessa distanza dalla radice.

- Foglie → entità biologiche attualmente esistenti;
- Nodi interni → speciazioni;
- Ogni vertice ha associato un numero non negativo → età del vertice;
- Peso degli archi → differenza tra le età dei nodi;

Matrice non additiva in input
$$D = \begin{cases} specie & f & b & u & s \\ f & \begin{pmatrix} 0 & 3 & 4 & 3 \\ 3 & 0 & 4 & 5 \\ 4 & 4 & 0 & 2 \\ 3 & 5 & 2 & 0 \end{pmatrix}$$
1. A partire da D crea un cluster per foglia D and D crea un cluster per foglia D and D crea un cluster per foglia D and D are D and D are D

Parte 2

- Scegli i due cluster X e Y più vicini secondo la seguente definizione di distanza: $D_{X,Y} = \frac{1}{|X| \cdot |Y|} \cdot \sum_{i \in X} D_{i,j} \longrightarrow D_{u,s} = 2$
- Crea un cluster $\{u, s\}$ tale che $\rightarrow \{u, s\} = \{u\} \cup \{s\}$
- Crea in T un nodo interno per $\{u, s\}$, calcola la sua età ed il peso degli archi di u e s

L'albero risultante:

Parte 3

5. Aggiorna $D \rightarrow$ elimina $u \in S$ ed aggiungi $\{u, s\}$ calcolando la distanza media tra coppie di cluster

$$D_{f,\{u,s\}} = \frac{D_{f,u} + D_{f,s}}{2} = 3,5$$
 specie f b $\{u,s\}$
$$D_{b,\{u,s\}} = \frac{D_{b,u} + D_{b,s}}{2} = 4,5$$
 specie f b $\{u,s\}$
$$0 = 3 + 3,5$$

$$3 = 4,5$$
 Esegui gli step fino a che non ottieni una matrice 1×1 .
$$\{u,s\} = \frac{D_{b,u} + D_{b,s}}{2} = 4,5$$

specie $\{f, b, u, s\}$ $D = \{f, b, u, s\} \quad 2$ Il cluster $\{f, b, u, s\}$ è la radice in T.

L'algoritmo è terminato!

Parte 4 – Complessità temporale

Ad ogni iterazione vengono effettuate una serie di operazioni, tra cui aggiornare $D \to T(UPGMA) = O(n)$. Queste operazioni vengono iterate n volte, ovvero fino a che non si ottiene una matrice $1 \times 1 \to O(n)$

$$T(Totale) = T(UPGMA) \times O(n) = O(n^2)$$

La discussione è terminata, grazie per l'attenzione!