

Schema Diagram for University Database





# Extended Operations





# Generalized Projection

·Notation

$$\prod_{\mathsf{F1},\mathsf{F2},\mathsf{...},\mathsf{Fn}}(E)$$

E is any relational-algebra expression Each of  $F_1$ ,  $F_2$ , ...,  $F_n$  are arithmetic expressions

٠E.g.

Given relation *credit-info(customer-name, limit, credit-balance)* find how much more each person can spend

 $\Pi_{customer-name, \ limit-credit-balance}$  (credit-info)





### Aggregate Functions and Operations (1)

#### Aggregate function

o avg: average value

• min: minimum value

• max: maximum value

• **sum**: sum of values

• count: number of values

Notation

G1, G2, ..., Gn  $\boldsymbol{\mathcal{G}}$  F1(A1), F2(A2),..., Fn(An) (E)





# Aggregate Functions and Operations – Example 1

R

| А           | В         | С  |
|-------------|-----------|----|
| α           | α         | 7  |
| $\alpha$    | β         | 7  |
| $eta \ eta$ | eta $eta$ | 3  |
| β           | β         | 10 |



sum-C 27





# Aggregate Functions and Operations – Example 2

#### INSTRUCTOR (ID, NAME, DEPT\_NAME, SALARY)

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 76766 | Crick      | Biology    | 72000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 12121 | Wu         | Finance    | 90000  |
| 76543 | Singh      | Finance    |        |
| 32343 | El Said    | History    | 60000  |
| 58583 | Califieri  | History    | 62000  |
| 15151 | Mozart     | Music      | 40000  |
| 22222 | Einstein   | Physics    | 95000  |
| 33456 | Gold       | Physics    | 87000  |

#### dept\_name $\boldsymbol{\mathcal{G}}$ avg(salary) (INSTRUCTOR)

| dept_name                | avg-salary     |
|--------------------------|----------------|
| Biology                  | 72000          |
| Comp. Sci.<br>Elec. Eng. | 77333<br>80000 |
| Finance                  | 85000          |
| History                  | 61000          |
| Music                    | 40000          |
| Physics                  | 91000          |





# Data Modifications





#### Deletion

Notation

$$r \leftarrow r - E$$

Example

prereq (course id, prereq id)

Delete all prerequisites of course "IF2240"

$$prereq \leftarrow prereq - \sigma_{course\_id = "IF2240"} (prereq)$$





# Deletion Examples



@Silberschatz et.al. (2020)

Delete the study plan of student with ID "13518000" for 1-2019 semester.

```
takes \leftarrow takes - \sigma_{ID="13518000" \land sem=1 \land year=2019} (takes)
```

Delete all sections that was taught by instructor with ID "132132132" for 2-2019 semester.

```
r_1 \leftarrow \sigma_{ID} = "132132132" \land sem=2 \land year=2019  (teaches)
r_2 \leftarrow \prod_{course\_id, sec\_id, sem, year} (r_1) \bowtie takes
r_3 \leftarrow \prod_{course\_id, sec\_id, sem, year} (r_1) \bowtie section
teaches \leftarrow teaches - r_1
takes \leftarrow takes - r_2
section \leftarrow section - r_3
```





#### Insertion

#### Types

1.specify a tuple to be inserted

2.write a query whose result is a set of tuples to be inserted

Notation

$$r \leftarrow r \cup E$$





#### Insertion – Example 1



Insert information in the database specifying that a transfer student, Abdul, with ID 13518600 was enrolled to Comp. Sci. department with 36 total credit transfer and instructor 132132132 as his advisor.

```
student ← student ∪ {(13518600, "Abdul", "Comp. Sci.", 36)}

advisor ← advisor ∪ {(13518600, 132132132)}
```





#### Insertion – Example 2



All students from Comp. Sci. dept with less than 130 total credits are automatically enrolled to course IF4000 in 2-2019 semester (evenly distributed to 3 available section IDs: 1, 2, 3)

```
r_1 \leftarrow \sigma_{dept\_name="Comp.Sci." \land tot\_cred<130} (student)
takes \leftarrow takes \cup \prod_{ID, "IF4000", ((ID-1) \bmod 3)+1, 2, 2019, null} (r_1)
```





# Updating

Use the generalized projection operator to do this task

$$r \leftarrow \prod_{F1, F2, ..., Fn} (r)$$

Each  $F_i$  is either

- $\circ$  the i th attribute of r, if the i th attribute is not updated, or,
- $\circ$  if the attribute is to be updated  $F_i$  is an expression, involving only constants and the attributes of r, which gives the new value for the attribute





# Update Examples

#### instructor

name
dept\_name
salary

Give a 5% salary raise to all instructors.

```
instructor \leftarrow \prod_{ID, name, dept_name, salary * 1.05} (instructor)
```

Give a 5% salary raise to those instructors who earn less than 70000.

```
instructor \leftarrow \prod_{ID, name, dept_name, salary * 1.05} (\sigma_{salary < 70000} (instructor))
```

$$\cup$$
  $\sigma$ <sub>salary  $\geq$  70000</sub> (instructor)

Increase salaries of instructors whose salary is over \$70,000 by 3%, and all others receive a 5% raise.

```
instructor \leftarrow \prod_{ID, name, dept_name, salary * 1.05} (\sigma_{salary \leq 70000} (instructor))
\cup \prod_{ID, name, dept_name, salary * 1.03} (\sigma_{salary > 70000} (instructor))
```



