T.D. n°3: Synthèse de filtres analogiques.

Exercice n°**1**: *Gabarit prototype d'un filtre.*

On donne les contraintes associées à chacun des filtres suivants. On demande de compléter le tableau ; représenter les gabarits prototypes de chacun des filtres et de classer ensuite les filtres du plus sélectif au moins sélectif :

	Type de filtre (L.P.,H.P.,B.P.,N.)	\mathbf{A}_{\min}	$\mathbf{A_{min}}$ (dB)	\mathbf{A}_{\max}	$\mathbf{A}_{\mathbf{max}}$ (dB)	$\mathbf{f_p}$ (kHz)	f _a (<i>kHz</i>)	Se
Filtre 1			40 dB		3 dB	50	100	
Filtre 2	L.P.	200		$\sqrt{2}$		8		0,2
Filtre 3	H.P.	1000			1 dB		0,5	25%
Filtre 4			24 dB	2		$f_{p-} = 12$ $f_{p+} = 15$	$f_{a-} = 4$ $f_{a+} = 45$	

Exercice n°2 : Fonctions de transfert normalisées.

Compléter le tableau suivant, correspondant à la réalisation de filtre passe-bas :

Fonction de transfert	Valeur de la pulsation de	Fonction de transfert normalisée		
	normalisation			
H(p) ou <u>H</u> (jω)	normansation	H _{PB} (s) ou <u>H</u> _{PB} (ju)		
$H(p) = \frac{1}{1 + \frac{p}{100}}$	$\omega_p=100 \ rad.s^{\text{-}1}$			
$H(p) = \frac{5}{5 + \frac{p}{100}}$	$\omega_p=20\ rad.s^{\text{-}1}$			
	$\omega_p=1000~rad.s^{\text{-}1}$	$H_{PB}(s) = \frac{1}{1+4s}$		
$H(p) = \frac{1}{\left(\frac{p}{800}\right)^2 + \frac{p}{8000} + 1}$	$\omega_p = 800 \ rad.s^{\text{-}1}$			
$H(p) = \frac{1}{\left(\frac{p}{500}\right)^2 + \frac{p}{500} + 1}$	$\omega_p = 250 \ rad.s^{\text{-}1}$			
	$\omega_p=1600~rad.s^{\text{-}1}$	$H_{PB}(s) = \frac{1}{4s^2 + s + 1}$		

Exercice n°3: Synthèse complète - gabarit / fonction de transfert / circuit du filtre.

3.1) On donne, pour le **Filtre 1**, les contraintes suivantes :

$$f_p = 3 \text{ kHz}$$
 $f_a = 30 \text{ kHz}$ $A_{max} = 3 \text{ dB}$ $A_{min} = 40 \text{ dB}$ $R_0 = 100 \ \Omega$.

- **3.1.a)** Représenter le gabarit réel (*Phase 1*) puis normalisé de ce filtre (*Phase 2*).
- **3.1.b**) Déterminer l'expression de la fonction de transfert normalisée $H_{PB}(s)$ pour obtenir une réponse de Butterworth (*Phase 3*).
- **3.1.c)** En déduire l'expression la fonction de transfert réelle (ou dénormalisée) H(p) du filtre à réaliser (Phase 4).
- **3.1.d**) Proposer un circuit et des valeurs de composants pour réaliser ce filtre à partir d'un circuit R, L, C (*Phase 5*).

3.2) On donne, pour le Filtre 2, les contraintes suivantes :

$$f_p = 2 \text{ kHz}$$
 $f_a = 5.4 \text{ kHz}$ $A_{max} = 1 \text{ dB}$ $A_{min} = 20 \text{ dB}$ $R_0 = 8.2 \text{ k}\Omega$.

- 3.2.a) Représenter le gabarit réel (Phase 1) puis normalisé de ce filtre (Phase 2).
- **3.2.b**) Déterminer l'expression de la fonction de transfert normalisée H_{PB}(s) pour obtenir une réponse de Butterworth (*Phase 3*).
- **3.2.c)** En déduire l'expression la fonction de transfert réelle (ou dénormalisée) H(p) du filtre à réaliser (*Phase 4*).
- **3.2.d)** Proposer un circuit et des valeurs de composants pour réaliser ce filtre à partir de cellule(s) de Sallen-Key (*Phase 5*).
- **3.3**) On donne, pour le **Filtre 3**, les contraintes suivantes :

Passe Haut de type Tchebychev:

- Gain minimum dans la bande passante = -2 dB (ondulation de 2 dB)
- Gain maximum dans la bande atténuée = 67 dB
- Fréquence limite de la bande passante = 300 kHz
- Fréquence limite de la bande atténuée = 100 kHz
- **3.3.a)** Représenter le gabarit réel (*Phase 1*) puis normalisé de ce filtre (*Phase 2*).
- **3.3.b**) Déterminer l'expression de la fonction de transfert normalisée H_{PB}(s) pour obtenir une réponse de Tchebychev (*Phase 3*).
- **3.3.c)** En déduire l'expression la fonction de transfert réelle (ou dénormalisée) H(p) du filtre à réaliser (*Phase 4*).
- **3.3.d)** Proposer un circuit et des valeurs de composants pour réaliser ce filtre à partir de cellule(s) de Sallen-Key (*Phase 5*).
- 3.4) On donne, pour le Filtre 4, les contraintes suivantes :

Passe-Bande Butterworth:

- Gain minimum dans la bande passante = -3 dB
- Gain maximum dans la bande atténuée = -10 dB
- Fréquence centrale = 250 kHz
- Bande passante 20 kHz (centrée sur la fréquence centrale)
- Fréquences limites de la bande atténuée = 250kHz ± 35 kHz
- **3.4.a)** Représenter le gabarit réel (*Phase 1*) puis normalisé de ce filtre (*Phase 2*).
- **3.4.b**) Déterminer l'expression de la fonction de transfert normalisée $H_{PB}(s)$ pour obtenir une réponse de Butterworth (*Phase 3*).
- **3.4.c)** En déduire l'expression la fonction de transfert réelle (ou dénormalisée) H(p) du filtre à réaliser (*Phase 4*).
- **3.4.d**) Proposer un circuit et des valeurs de composants pour réaliser ce filtre à partir de cellule(s) de Sallen-Key (*Phase 5*).