Лабораторная работа № 1

Построение и анализ аналитических моделей систем массового обслуживания.

Задания.

Задание 1 (7 баллов).

Выполнить математическое моделирование процесса обслуживания клиентов банка, найти основные функциональные характеристики системы обслуживания, а также проанализировать возможность повышения эффективности обслуживания при следующих условиях:

- банк имеет n операторов для обслуживания клиентов;
- моменты прихода клиентов в банк образуют простейший поток с плотностью λ ;
- длительность деловых операций с одним клиентом имеет показательное распределение с математическим ожиданием, равным τ_0 ;
- вновь поступивший клиент обслуживается любым свободным оператором;
- клиент, заставший всех операторов занятыми, становится в очередь и ожидает, пока не освободится какой-либо оператор;
- время ожидания клиента не ограничено (чистая система с ожиданием).

В ходе работы выполнить следующие действия.

- 1. Построить математическую модель представленной СМО. Изобразить схему СМО.
- 2. Разработать программу (язык программирования С#), обеспечивающую выполнение следующих функций: для заданных значений параметров n, λ и τ_0 (вводятся пользователем) получение ответа на вопрос о существовании в СМО установившегося режима; в случае положительного ответа определение следующих характеристик СМО:
 - 1) вероятностей $p_0, p_1, ..., p_n$;
 - 2) вероятности наличия очереди;
 - 3) средней длины очереди;
 - 4) среднего времени ожидания клиента в очереди;
 - 5) среднего числа занятых операторов.
- 3. Выбрав значения параметров n, λ и τ_0 в соответствии с номером своего варианта (таблица 1.1), выполнить программу и получить все указанные в п. 2 характеристики СМО.
- 4. Предположим: руководитель отделения банка хочет, чтобы среднее время ожидания клиента в очереди не превышало au_{max} . Модифицировать разработанную при выполнении п. 2 программу для получения ответов на вопросы:
 - 1) сколько операторов необходимо иметь банку в зале обслуживания для обеспечения этого условия;
 - 2) какова при этом условии вероятность того, что в каждый момент времени будет свободен более чем 1 оператор.
- 5. Выполнить расчеты и получить ответы на вопросы п. 4, выбрав значения n, λ , τ_0 и τ_{max} в соответствии с номером своего варианта (таблица 1.1).

6. Оформить отчет.

Таблица 1.1

№ варианта	n	λ , клиентов/час	$ au_0$, мин	$ au_{max}$, мин
1	4	45	5	7
2	3	40	4	6
3	4	39	6	7
4	3	33	5	8

Задание 2 (7 баллов).

Выполнить математическое моделирование процесса функционирования автомобильной стоянки вблизи некоторого учреждения и найти основные функциональные характеристики системы при следующих условиях:

- автостоянка имеет n мест для автомобилей;
- возможно размещение дополнительно K автомобилей на пешеходных дорожках возле автостоянки;
- автомобили, размещенные на пешеходных дорожках, не могут там оставаться постоянно и должны ожидать, пока на стоянке освободится место;
- моменты приезда автомобилей на стоянку образуют простейший поток с плотностью λ ;
- время пребывания автомобилей на стоянке имеет показательное распределение с математическим ожиданием, равным τ_0 .

В ходе работы выполнить следующие действия.

- 1. Построить математическую модель представленной СМО.
- 2. Разработать программу (язык программирования С#), обеспечивающую выполнение следующих функций: для заданных значений параметров n, K, λ и τ_0 (вводятся пользователем) определение следующих характеристик СМО:
 - 1) процента автомобилей (от общего числа прибывших на стоянку), которые вынуждены искать другое место для парковки;
 - 2) процента автомобилей (от общего числа прибывших на стоянку), которые вынуждены ожидать на пешеходной дорожке;
 - 3) среднего числа занятых мест на стоянке;
 - 4) среднего числа занятых мест на пешеходных дорожках;
 - 5) среднего числа посетителей учреждения, не нашедших места на стоянке в течение 8-часового рабочего дня.
- 3. Выбрав значения параметров n, K, λ и τ_0 в соответствии с номером своего варианта (таблица 1.2), выполнить программу и получить все указанные в п. 2 характеристики СМО.
- 4. Используя полученные результаты, оценить качество обслуживания в рассматриваемой СМО и, в случае необходимости, сформулировать рекомендации по его повышению.
- 5. Оформить отчет.

Таблица 1.2

№ варианта	n	K	λ, авт./час	$ au_0$, мин
1	15	6	20	60
2	20	5	25	55
3	12	3	16	45
4	24	4	18	55

Содержание отчета.

- 1. Название работы.
- 2. По заданию 1.
 - 2.1. Математическая модель и графическое представление описанной в задании СМО.
 - 2.2. Обоснование ответа на вопрос о существовании установившегося режима.
 - 2.3. Алгоритм выполнения расчетов, указанных в п. 2 а) д) (с подстановкой числовых значений).
 - 2.4. Результаты вычислений для указанных в условии входных данных (в соответствии с номером своего варианта).
 - 2.5. Алгоритм выполнения расчетов, указанных в п. 4 а), б) (с подстановкой числовых значений).
 - 2.6. Результаты вычислений для указанных в условии входных данных (в соответствии с номером своего варианта).
- 3. По заданию 2.
 - 3.1. Математическая модель описанной в задании СМО.
 - 3.2. Алгоритм выполнения расчетов, указанных в п. 2 a) д).
 - 3.3. Результаты вычислений для указанных в условии входных данных (в соответствии с номером своего варианта).
 - 3.4. Результаты анализа и рекомендации, указанные в п. 4.