Introduction of Nanomaterials

Introduction

A material with

- any external dimension in the nanoscale (size range from approximately $1 100 \ nm$).
- having internal structure or surface structure in the nanoscale.

At nanoscale, materials exhibit very unusual and very interesting properties. Examples: Graphene has very high young's modulus and very high carrier mobility.

Nano object

An object with any external dimension is in the nanoscale.

Examples: carbon nanotube, bucky ball.

Nano structured material

A material where its internal or surface structure is in the nano scale.

Examples: TiO_2 nanotube films.

Nano in nature

- Lotus leaves being superhydrophobic
- · Gecko adhesive system

Nanoscience

Study of structures and materials on the nanoscale.

Nanotechnology

Development of materials and devices by exploiting the characteristics of particles on the nanoscale.

Applications

- Nanoscale transistors
 - Higher-performance
 - Improved energy efficiency
- Magnetic data storage
 - High data density and data capacity
 - Ultra compact
- · Nanomedicine and drug delivery
- Energy storage

Preparation of nanomaterials

Top-down approach

Nanoscale dimensions are created using larger components, by externally controlled devices.

Examples: Lithography, Etching techniques.

Photolithography

Can be used to create nanoscale patterns in thin films or bulk substrates.

The steps:

- Coat Si wafer with a photosensitive material.
 A material which changes its properties when exposed to electromagnetic radiation
- 2. Allow the radiation to pass through the mask on to photosensitive material.
- 3. Developer solution removes either reacted or unreacted material.
- 4. The silicon wafer is etched to transfer the pattern onto silicon wafer.
- 5. Photosensitive material is removed.

Bottom-up approach

Molecular components arrange themselves into more complex nano materials/objects.

Examples: Molecular self-assembly, Chemical vapour deposition

Graphene

Carbons arranged to a hexagonal network. 2D crystal based.

Unit Cell

- A rhombus with $120\degree$.
- Lattice parameter is $2d\cos 30\,^\circ$ where d is the C-C bond length.
- 2 atoms per unit cell.

(i) Note

Single layer of graphene was discovered using scotch tape method and the discovery won a Nobel prize in 2010.

Synthesis

- Top-down approaches
 - Exfoliation (eg: Scotch tape method)
- Bottom-up approaches
 - Chemical vapor deposition

(i) Note

Graphene has a band gap of 0.

Carbon Nanotubes

A rolled up sheet of graphene.

Properties:

- Extraordinary electrical and heat conductivity
- · High mechanical strength

Classifications

Based on :

- Single wall carbon nanotubes (SWNT)
- Multi wall carbon nanotubes (MWNT)

Based on Chirality

This PDF is saved from https://s1.sahithyan.dev