Machine learning I, supervised learning: risks

Notion of risks

- ► We are ready to introduce an important notion that is specific to machine learning and optimization : the risk
- there are several types of risks and several denominations for each.
- this denomination "risk" might seem counter-intuitive at first, as there is no notion of danger involved. However, this is a classical term in optimization and ML.

Setting

We consider

- lacktriangle an input space \mathcal{X} (e.g. $\mathcal{X}=\mathbb{R}^d$)
- ightharpoonup an output space ${\cal Y}.$

In supervised learning, we predict outputs $y \in \mathcal{Y}$ from inputs $x \in \mathcal{X}$.

- ▶ classification : discrete \mathcal{Y} , e.g. $\mathcal{Y} = \{0, 1\}$, $\mathcal{Y} = \{-1, 1\}$, $\mathcal{Y} = \{0, 1, 2\}$.
- ▶ regression : continuous \mathcal{Y} , e.g. $\mathcal{Y} = \mathbb{R}$, $\mathcal{Y} = [a, b]$.

The couples (x, y) are called **samples** and are considered to be sampled from a joint random variable (X, Y).

Supervised learning

- Assumption : there exists a joint probability law ρ , such that $(X,Y)\sim \rho$. However, ρ is unknown.
- ▶ Hence there exists a map $f: \mathcal{X} \mapsto \mathcal{Y}$, such that Y = f(X).
- f is most of the time non deterministic.

Supervised Learning : from a finite dataset of samples, produce an estimate \tilde{f} of f.

Figure – Finite dataset in 1 dimension

Loss functions

A **loss function** *I* is a map that measures the discrepancy between to elements of a set.

$$I: \left\{ \begin{array}{l} \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+ \\ (y, y') \mapsto I(y, y') \end{array} \right.$$

We use it in order to evaluate the quality of our prediction $\tilde{f}(x)$, that should be close to the label y that corresponds to x.

Common loss functions

Examples: The most common loss functions are the following:

▶ "0-1" loss (for classification.)

$$I(y,z) = 1_{y \neq z} \tag{1}$$

squared loss (for regression)

$$ightharpoonup \mathcal{Y} = \mathbb{R}.$$

$$I(y,z) = (y-z)^2 \tag{2}$$

$$\mathcal{Y} = \mathbb{R}^d$$

$$I(y,z) = ||y - z||_2^2 \tag{3}$$

▶ absolute loss (for **regression**). $\mathcal{Y} = \mathbb{R}$.

$$I(y,z) = |y-z| \tag{4}$$

Prerequisite: expected value

Let Z be a real random variable. If it is correctty defined, the expected value is

▶ for a discrete random variable (that can take the values $\{z_i, i \in \mathbb{N}\}$.

$$E[Z] = \sum_{i=1}^{+\infty} z_i P(Z = z_i)$$
 (5)

for a continuous random variable

$$E[Z] = \int_{-\infty}^{+\infty} z p(z) dz \tag{6}$$

p(z) is the density of probability of Z, assumed to exist.

Expected values

Expected value of an unbiased dice game :

$$E[Z] = \frac{1}{6}[1 + 2 + 3 + 4 + 5 + 6] = 3.5 \tag{7}$$

Exepected value of a cheated dice game :

$$E[Z] = \frac{1}{100}(1+2+3+4) + \frac{48}{100}(5+6) = 5.38$$
 (8)

Risks

- lacktriangle We call "estimator" a map $\mathcal{X}\mapsto\mathcal{Y}$
- ▶ We note $D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ the dataset. From D_n , we want to estimate f.

To measure the quality of some estimator g, we consider the **risks**:

Risk / generalization error ("risque réel" in french)

$$R(g) = E_{(X,Y)\sim\rho}[I(Y,g(X))] \tag{9}$$

► Empirical risk ("risque empirique" in french)

$$R_n(g) = \frac{1}{n} \sum_{i=1}^n I(y_i, g(x_i))$$
 (10)

Both risks depend on the loss function /!

Risks

Risk / generalization error :

$$R(g) = E_{(X,Y)\sim\rho}[I(Y,g(X))]$$
 (11)

Problem: we cannot compute R(g)!

Risks

Risk / generalization error :

$$R(g) = E_{(X,Y)\sim\rho}[I(Y,g(X))]$$
 (12)

Problem: we cannot compute R(g)! We **only** have access to the empirical risk.

$$R_n(g) = \frac{1}{n} \sum_{i=1}^n I(y_i, g(x_i))$$
 (13)

given the finite dataset $D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

Optimization problem : empirical risk minimization

- ▶ The smaller the generalization error R(g) is, the better g is.
- ▶ The situation is more tricky for $R_n(g)$: it is not obvious that as estimator that has a very small empirical risk $R_n(g)$ has a small generalization error R(g)! This is the problem of **overfitting**.

Figure – Overfitting : the green estimator has a small empirical risk, but it a large generalization.

Figure – Very simple estimator

Figure – Very simple estimator

Figure – Relevant estimator

Figure - Relevant estimator

Figure - Too complex estimator

Figure – Too complex estimator

Figure – Too complex estimator

Figure – Too complex estimator

Randomness

If the data were deterministic (Y = f(X) is determinisic), there would be no overfitting!

Randomness might come from several sources, such as :

- measurement errors
- ▶ hidden variables (not represented in *X*)

Optimization problem : empirical risk minimization

Empirical risk minimization (ERM): finding the estimator f_n that minimizes the empirical risk R_n .

This raises important questions :

- ▶ 1) does f_n have a good generalization error $R(f_n)$?
- ▶ 2) how can we have guarantees on the generalization error $R(f_n)$?
- ▶ 3) how can we find the empirical risk minimizer f_n ?
- ▶ 4) is it even interesting to strictly minimize R_n ?

Generalization error

Question 1) Does f_n have a good generalization error $R(f_n)$? This will depend on :

- the number of samples n
- ▶ the shape of f (the map such that Y = f(X)), in particular on its **regularity**
- \blacktriangleright the distribution ρ
- the dimensions of the input space and of the output space.
- ▶ the space of functions where f_n is taken from.

Statistical bounds

Questions 2) How can we have guarantees on the generalization error $R(f_n)$?

By making assumptions on the problem (learning is impossible without making assumptions), for instance assumptions on ρ .

Optimization

Question 3) how can we find the empirical risk minimizer f_n ? By using an optimization algorithm or by solving the minimization in closed-form.

Convex functions

Convex functions are easier to minimize.

Non convex functions

What is convex here?

In this context, the convexity that is involved is the dependence of R_n in g. More precisely, for instance if g depends on $\theta \in \mathbb{R}^d$, e.g. $g(x) = \langle \theta, x \rangle$, the convexity is that of

$$\theta \mapsto R_n(\theta) \tag{14}$$

Example (ordinary least squares) :

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n (\langle \theta, x_i \rangle - y_i)^2$$
 (15)

with $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$.

Optimization error

Question 4) is it even interesting to strictly minimize R_n ?

Most of the time it is **not**, as we are interested in R, not in R_n , so we should not try to go to machine precision in the minimization of a quantity that is itsself an approximation!

This is linked to the **estimation error** (advanced concept) that is often of order $\mathcal{O}(1/\sqrt{n})$.

Nearest neighbors algorithms

Not all supervised learning methods consist in Empirical risk minimization (ERM).

For instance the nearest neighbors algorithm is not an ERM.

