Python Final Group Project

"Breast Cancer Detection"

Class: Python Programming (CS-661)

Professor: Agar John Richard

Group 8 Members:

Lolyna de la Fuente Ordaz

Ibrahim Mohammed Hamed

Abhayrajsinh Rana

Chukwuebuka Ozoh

Niyati Patil

Sunny Ma

1. Topic

: "Breast Cancer Detection"

2. Summary

Dataset: Kaggle

Dataset: https://www.kaggle.com/code/faresmohammad/breast-cancer-detection

• Purpose:

The purpose of our project is to predict with accuracy if a tumor cell is malignant or benign by utilizing machine learning algorithms with various predictive models for breast cancer detection. By employing different classification algorithms, we aim to explore and compare their performance in accurately identifying whether a tumor is malignant or benign based on the provided attributes.

- -Independent Variable (X) = All the columns except for the 'Diagnosis' variable
- -Dependent Variable(y) = 'Diagnosis' (Predicting if a patient has cancer (1=M) or not (0=B))

The analysis involved data preprocessing, exploratory analysis, outlier detection, model building, evaluation, and comparison. Each step contributes to understanding the dataset and evaluating the performance of various machine learning algorithms in breast cancer detection.

- **1. Exploratory Analysis**: Conduct exploratory data analysis (EDA) to understand the distribution and relationships between different features within the dataset. This will involve visualizations and statistical summaries to gain insights into the data.
- **2. Feature Importance:** Evaluate the importance of features in determining the nature of the tumor (malignant or benign) using various algorithms such as Decision Trees, Random Forests, and others to identify which attributes have the most significant impact on the classification.
- **3. Model Development:** Implement different classification algorithms including Logistic Regression, Naive Bayes, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Decision Trees, and Random Forests. Compare and evaluate their performance in terms of accuracy, precision, recall, F1-score, and area under the ROC curve.
- **4. Model Comparison:** Analyze and compare the performance metrics of each model to identify the most effective algorithm for breast cancer detection based on the dataset.
- **5. Optimization and Validation:** Optimize the selected models by tuning hyperparameters and conduct cross-validation to ensure robustness and reliability of the chosen algorithm(s) for accurate prediction.

3. Predictive Models

1. EDA - Lolyna / 2. Logistic Regression (Scikit-learn) - Ebukka/

- 3. Support Vector Machine (Linear) (Scikit-learn) Abhay / 4. K-Nearest Neighbours (Scikit-learn) Sunny
 - 5. Decision Tree (Scikit-learn) Ibrahim/ 6. Random Forest (Scikit-learn) Niyati

Data Visualization

Accuracy of model

Logistic Regression

					62.280/01/543859/ %	ie negression			
Accuracy: 0.9385964912280702 Decision Tree Model Classification Report:				# classification report target_names = ['Patient has Cancer', 'Patient DOES NOT have Cancer'] print('Classification report: \n', classification report(y test, y pred					
	precision	recall	f1-score	support	Classification report:			0	7
В	0.96	0.94	0.95	71		precision	recall	f1-score	support
М	0.91	0.93	0.92	43	Patient has Cancer	0.62	1.00	0.77	71
					Patient DOES NOT have Cancer	0.00	0.00	0.00	43
accuracy			0.94	114	accuracy			0.62	114
macro avg	0.93	0.94	0.93	114	macro ave	0.31	0.50	0.38	114
weighted avg	0.94	0.94	0.94	114	weighted avg	0.39	0.62	0.48	114

	Forest	Random	core: 96.49	The accuracy so
st is:	andom Fores	using R	ore achieved	The predict sco
support	f1-score	recall	orecision	ţ
71	0.97	0.99	0.96	В
43	0.95	0.93	0.98	М
114	0.96			accuracy
114	0.96	0.96	0.97	macro avg
114	0.96	0.96	0.97	weighted avg

Support Vector Machine Algorithm

K-NN/ Accuracy: 81.82%

Accuracy: 0.6667 Precision: 0.6667 Recall: 2.0000 Specificity: 0.6667

	precision	recall	f1-score	support	
В	0.80	0.97	0.87	93	
M	0.90	0.54	0.68	50	
accuracy			0.82	143	
macro avg	0.85	0.75	0.77	143	
weighted avg	0.83	0.82	0.80	143	