(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-213660

(43)公開日 平成8年(1996)8月20日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
H01L 33	/00 N			
	Α			
	E			

審査請求 未請求 請求項の数7 OL (全 14 頁)

(21)出願番号	特願平7-142202	(71)出顧人	000005049
			シャープ株式会社
(22)出顧日	平成7年(1995)6月8日		大阪府大阪市阿倍野区長池町22番22号
		(72)発明者	岡崎 淳
(31)優先権主張番号	特爾平6-302329		大阪府大阪市阿倍野区長池町22番22号 シ
(32)優先日	平6 (1994)12月6日		ャープ株式会社内
(33)優先権主張国	日本 (JP)	(74)代理人	
(33) 實乃德土政国	p本(Jr)	(14)164)	TAL AN KW

(54) 【発明の名称】 発光デパイスおよびその製造方法

(57)【要約】

【目的】小型で信頼性に優れた発光デバイスを容易に製造することができる。

【構成】絶縁基板17に設けられた一対の電極バターン12上には、p型半導体層14aとn型半導体層14bとがp-n接合されたLEDチップ14が、そのp-n接合面14cを絶縁基板17に対して垂直状態で架設されている。そして、LEDチップ14のp側電極14dおよびn側電極14eと、各電極パターン12とが、導電性ペースト15によって、それぞれ導電状態で接着されている。絶縁基板17上のLEDチップ14と各導電性ペースト15とが透光性樹脂16によって封止されている。各電極バターン12は、スルーホール11の内周面を覆って、絶縁基板11の裏面に達しているが、スルーホール11には、導電性ペースト13が充填されている。

【特許請求の範囲】

【請求項1】 相互に分離した一対の電極が設けられた

1

p側半導体層およびn側半導体層とがp-n接合されて おり、そのp-n接合面が前記絶縁基板に対して垂直状 態になるように、絶縁基板上の各電極間に架設状態で配 置されたLEDチップと、

このLEDチップのp側半導体層およびn側半導体層 と、絶縁基板上の各電極とを導電状態で接着する導電性 ペーストと、

前記LEDチップおよび各導電性ペーストを封止する透 光性樹脂と、

を具備することを特徴とする発光デバイス。

【請求項2】 前記各電極は、絶縁基板に設けられた各 スルーホールをそれぞれ通って絶縁基板の裏面に達して おり、各スルーホールに導電ベーストがそれぞれ充填さ れている請求項1に記載の発光デバイス。

【請求項3】 前記各電極は、絶縁基板に設けられた各 スルーホールをそれぞれ覆っており、各スルーホールを 覆う電極の裏面に金属層がそれぞれ接着されて絶縁基板 20 れ導電状態で接着する工程と、 の裏面に達している請求項1に記載の発光デバイス。

【請求項4】 スルーホールが設けられた絶縁基板と、 絶縁基板のスルーホール内にて各端部同士が相互に分離 するように絶縁基板の裏面にそれぞれ設けられた一対の 電極と、

p側半導体層およびn側半導体層とがp-n接合されて おり、そのp-n接合面が前記絶縁基板に対して垂直状 態になるように、絶縁基板のスルーホール内にて各電極 間に架設状態で配置されたLEDチップと、

このLEDチップのp側半導体層およびn側半導体層 と、絶縁基板上の各電極とを導電状態で接着する導電性 ペーストと、

前記LEDチップおよび各導電性ペーストを封止する透 光性樹脂と、

を具備することを特徴とする発光デバイス。

【請求項5】 多数のスルーホールが形成された絶縁基 板に、各スルーホールの内周面を覆うとともに絶縁基板 の表面を覆う電極を、各スルーホール毎に分離した状態 でそれぞれ形成する工程と、

各スルーホールに導電性ペーストをそれぞれ充填する工 40 程と、

p側半導体層およびn側半導体層とがp-n接合された LEDチップを、p-n接合面が絶縁基板に対して垂直 状態になるように、相互に隣接する一対の電極間にそれ ぞれ架設する工程と、

各LEDチップのp側半導体層およびn側半導体層と絶 縁基板上の各電極とを、導電性ペーストによってそれぞ れ導電状態で接着する工程と、

絶縁基板上の全てのLEDおよび導電性ペーストが封止

覆う工程と、

その透光性樹脂によって覆われた絶縁基板を、各スルー ホールが分割されるようにダイシングカットするととも に、1または複数のLEDチップ毎にダイシングカット する工程と、

を包含することを特徴とする発光デバイスの製造方法。 【請求項6】 多数のスルーホールが形成された絶縁基 板の表面に、相互に分離された電極を、それぞれが各ス ルーホールの開口部を覆うように形成する工程と、

10 各スルーホールを覆う電極の裏面にそれぞれが接着され そのスルーホール内を通って絶縁基板の裏面にそれぞれ 達する金属層を、各スルーホール毎に分離した状態でそ れぞれ形成する工程と、

p側半導体層およびn側半導体層とがp-n接合された LEDチップを、p-n接合面が絶縁基板に対して垂直 状態になるように、相互に隣接する一対の電極間にそれ ぞれ架設する工程と、

各LEDチップのp側半導体層およびn側半導体層と絶 縁基板上の各電極とを、導電性ペーストによってそれぞ

絶縁基板上の全てのLEDおよび導電性ペーストが封止 されるように、その絶縁基板全体を透光性樹脂によって 覆う工程と、

その透光性樹脂によって覆われた絶縁基板を、各スルー ホールが分割されるようにダイシングカットするととも に、1または複数のLEDチップ毎にダイシングカット する工程と、

を包含することを特徴とする発光デバイスの製造方法。 【請求項7】 表裏全面に金属層を有する基板の裏面側 30 のスルーホール形成予定領域における金属層をエッチン グ除去する工程と、

そのエッチング除去された部分にレーザー光を照射して 前記基板に複数のスルーホールを形成する工程と、

形成されたスルーホールの内壁を含む基板の表裏全面に 金属メッキにより金属層を形成する工程と、

基板の表裏全面の金属層を、それぞれ、各スルーホール 毎に分離して電極を形成するようにパターニングする工 程と

p側半導体層およびn側半導体層とがp-n接合された LEDチップを、p-n接合面が基板に対して垂直状態 になるように、相互に隣接する一対の電極間にそれぞれ 架設する工程と、

各LEDチップのp側半導体層およびn側半導体層と基 板上の各電極とを、導電性ペーストによってそれぞれ導 電状態で接着する工程と、

基板上の全てのLEDおよび導電性ペーストが封止され るように、その基板全体を透光性樹脂によって覆う工程

その透光性樹脂によって覆われた基板を、各スルーホー されるように、その絶縁基板全体を透光性樹脂によって 50 ルが分割されるようにダイシングカットするとともに、

1または複数のLEDチップ毎にダイシングカットする 工程と、

を包含することを特徴とする発光デバイスの製造方法。 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、各種表示バネルの光 源、液晶表示装置のバックライト、あるいは照光スイッ チの光源として使用される表面実装型の発光デバイスお よびその製造方法に関し、特に、小さな寸法であって外 的応力に対して高強度であるLED(発光ダイオード) チップを用いた発光デバイスおよびその製造方法に関す る。

[0002]

【従来の技術】各種表示バネルの光源、液晶表示装置の バックライト、あるいは照光スイッチの光源として使用 される表面実装型の発光デバイスは、通常、p形半導体 層とn形半導体層とがp-n接合されたLED(発光ダ イオード)チップが使用されている。このようなチップ 部品型発光デバイスの一例を図13に示す。

【0003】との発光デバイス60は、リードフレーム 20 61上に、LEDチップ62がマウントされている。C のLEDチップ62は、n形の半導体層62aと、p形 の半導体層62bとが、相互にp-n接合されており、 n形半導体層62aがリードフレーム61上に接着され ている。

【0004】LEDチップ62の上面は、リードフレー ム61に隣接して配置されたアノード側のフレーム63 に、金線等のボンディングワイヤー64によって、電気 的に接続されている。ボンディングワイヤー64は、L EDチップ62のエッジ等によって断線しないように、 LEDチップ62の上方にてループ状になっている。そ して、LEDチップ62がマウントされたリードフレー ム61の一部と、ボンディングワイヤー64が接続され たアノード側のフレーム63の一部とが、透光性樹脂6 5によって封止されている。

【0005】図14は、チップ部品型発光デバイスの他 の例を示す側面図である。この発光デバイス70は、絶 縁基板71の各側部に、それぞれ、金属メッキによる電 極パターン72および73が形成されており、一方の電 極パターン72上に、LEDチップ74がマウントされ 40 ている。このLEDチップ74も、n形の半導体層74 aと、p形の半導体層74bとが、相互にp-n接合さ れており、p形の半導体層74bが一方の電極パターン 72上に接着されている。

【0006】LEDチップ74の上面は、絶縁基板71 の他方の電極パターン73に、金線等のボンディングワ イヤー75によって電気的に接続されている。ボンディ ングワイヤー75は、LEDチップ74のエッジ等によ って断線しないように、LEDチップ74の上方にてル ープ状になっている。LEDチップ74は、ボンディン 50 込むおそれがあるために、それぞれのスルーホールの周

グワイヤー75とともに、透光性樹脂76によって封止 されている。

[0007]

【発明が解決しようとする課題】いずれのチップ部品型 発光デバイス60および70も、LEDチップ62とア ノード側のフレーム63とが、また、LEDチップ74 と電極パターン73とが、直径10~40μm程度の金 線等のボンディングワイヤー64 および75 によってそ れぞれ接続されている。このようなボンディングワイヤ 10 -64および75は、外的応力によって容易に破断する ために、透光性樹脂65および76によって封止されて いる。しかしながら、発光デバイス60および70の製 造に際して、ボンディングワイヤー64および75をフ レーム63または電極パターン73に半田付けする際に は、ボンディングワイヤー64および75は断線するお それがある。また、半田付けされた後にフレーム63や 基板71の反り等の外的応力によっても、ボンディング ワイヤー64および75は断線するおそれがある。

【0008】さらに、ボンディングワイヤー64および 75は、LEDチップ62および74のエッジ等によっ て断線しないように、LEDチップ62および74の上 方に、100~200μm程度のループを形成する必要 がある。その結果、透光性樹脂65および76は、ボン ディングワイヤー64および75によって形成されるル ープも封止するように、そのループの上方に100 µm 程度の厚さの透光性樹脂を形成しなければならず、透光 性樹脂65および76が厚くなって発光デバイス60お よび70が大型化するという問題もある。

【0009】また、絶縁基板71上に設けられたLED チップ74を透光性樹脂76によって封止する際に、溶 30 融状態になった透光性樹脂76が、絶縁基板71の裏面 に付着するおそれがある。絶縁基板71の裏面に付着し た透光性樹脂76は、絶縁基板71の裏面に設けられる 配線等に悪影響を及ぼす。このために、溶融状態になっ た透光性樹脂76が絶縁基板71の裏面に回り込むこと を防止しなければならず、通常、LEDチップ74を透 光性樹脂76によって封止する際に、絶縁基板71の周 縁部に、溶融状態の透光性樹脂76が絶縁基板71の側 面を通って裏面に回り込むことを防止する治具や金型等 が強く圧接されるようになっている。その結果、絶縁基 板71の周縁部には、治具等を配置するための領域が必 要になり、これによっても、発光デバイス70が大型化 するという問題がある。

【0010】特に、発光デバイスを量産するために、絶 縁基板に多数のスルーホールを設けて、絶縁基板に多数 のLEDチップを配置して透光性樹脂にて封止した後 に、絶縁基板および透光性樹脂を各LEDチップ毎にダ イシングカットする場合には、溶融状態になった透光性 樹脂が、スルーホールを通って、絶縁基板の裏面に回り

10

30

辺部に、治具等を配置するための領域が必要になる。 【0011】図15に、図14に示すチップ部品型の発 光デバイスの最小寸法の一例を示す。この発光デバイス では、300μm角のLEDチップ74を使用してお り、この場合には、基板71の厚さは少なくとも200 μm、LEDチップ74の厚さが300μm、ボンディ ングワイヤー75のループの厚さが200μm、ボンデ ィングワイヤー75のループに対する透光性樹脂76の 被り(厚さ)が100μmとなり、発光デバイスの厚さ は、必要最小限で800μm程度になる。

【0012】また、発光デバイス70の長手方向長さと なる基板71の長手方向長さは、LEDチップ74をマ ウントするために必要な領域が600μm、電極パター ン73と72との分離のために必要な領域が200μ m、ボンディングワイヤー75と電極パターン73との 接続に必要な領域が400μm、そして、絶縁基板71 上に設けられる透光性樹脂76が絶縁基板71から裏面 側に回り込むことを防止するための治具等を配置するた めに必要な領域として、絶縁基板71の周縁部全体に2 00μmがそれぞれ必要になり、絶縁基板71は、必要 最小限でも長手方向に1400 µm(1.4mm)の長 さが必要になる。

【0013】最近では、各種表示パネル、照光スイッチ 等の小型化が推進されており、発光デバイスも小型化す ることが要望されている。そのために、透光性樹脂65 および76が厚くなることは好ましいことではない。し かし、透光性樹脂65および76を薄くすると、ボンデ ィングワイヤー64および75が断線する確率が高くな り、製造される発光デバイスの信頼性が低下するという 問題が発生する。

【0014】本発明は、このような問題を解決するもの であり、その目的は、小型であって、外的応力に対して 容易に破損するおそれのない発光デバイスを提供するこ とにある。本発明の他の目的は、そのような発光デバイ スを容易に製造することができる方法を提供することに ある。

[0015]

【課題を解決するための手段】本発明の発光デバイス は、相互に分離した一対の電極が設けられた絶縁基板 と、p側半導体層およびn側半導体層とがp-n接合さ れており、そのp-n接合面が前記絶縁基板に対して垂 直状態になるように、絶縁基板上の各電極間に架設状態 で配置されたLEDチップと、このLEDチップのp側 半導体層およびn側半導体層と、絶縁基板上の各電極と を導電状態で接着する導電性ペーストと、前記LEDチ ップおよび各導電性ペーストを封止する透光性樹脂と、 を具備することを特徴とするものであり、そのことによ り上記目的が達成される。

【0016】前記各電極は、絶縁基板に設けられた各ス

り、各スルーホールに導電ペーストが充填されている。 【0017】前記各電極は、絶縁基板に設けられた各ス ルーホールをそれぞれ覆っており、各スルーホールを覆 う電極の裏面に金属層がそれぞれ接着されて絶縁基板の 裏面に達している。

【0018】本発明の発光デバイスは、スルーホールが 設けられた絶縁基板と、絶縁基板のスルーホール内にて 各端部同士が相互に分離するように絶縁基板の裏面にそ れぞれ設けられた一対の電極と、p側半導体層およびn 側半導体層とがp-n接合されており、そのp-n接合 面が前記絶縁基板に対して垂直状態になるように、絶縁 基板のスルーホール内にて各電極間に架設状態で配置さ れたLEDチップと、このLEDチップのp側半導体層 およびn側半導体層と、絶縁基板上の各電極とを導電状 態で接着する導電性ペーストと、前記LEDチップおよ び各導電性ペーストを封止する透光性樹脂と、を具備す ることを特徴とするものであり、そのことにより上記目 的が達成される。

【0019】本発明の発光デバイスの製造方法は、多数 20 のスルーホールが形成された絶縁基板に、各スルーホー ル内周面を覆うとともに絶縁基板の表面を覆う電極を、 各スルーホール毎に分離した状態でそれぞれ形成する工 程と、各スルーホールに導電性ペーストをそれぞれ充填 する工程と、p側半導体層およびn側半導体層とがpn接合されたLEDチップを、p-n接合面が絶縁基板 に対して垂直状態になるように、相互に隣接する一対の 電極間にそれぞれ架設する工程と、各LEDチップのp 側半導体層およびn側半導体層と絶縁基板上の各電極と を、導電性ペーストによってそれぞれ導電状態で接着す る工程と、絶縁基板上の全てのLEDおよび導電性ペー ストが封止されるように、その絶縁基板全体を透光性樹 脂によって覆う工程と、その透光性樹脂によって覆われ た絶縁基板を、各スルーホールが分割されるようにダイ シングカットするとともに、1または複数のLEDチッ プ毎にダイシングカットする工程と、を包含することを 特徴とするものであり、そのことにより上記目的が達成 される。

【0020】また、本発明の発光デバイスの製造方法 は、多数のスルーホールが形成された絶縁基板の表面 40 に、相互に分離された電極を、それぞれが各スルーホー ルの開口部を覆うように形成する工程と、各スルーホー ルを覆う電極の裏面にそれぞれが接着されそのスルーホ ール内を通って絶縁基板の裏面にそれぞれ達する金属層 を、各スルーホール毎に分離した状態でそれぞれ形成す る工程と、p側半導体層およびn側半導体層とがp-n 接合されたLEDチップを、p-n接合面が絶縁基板に 対して垂直状態になるように、相互に隣接する一対の電 極間にそれぞれ架設する工程と、各LEDチップのp側 半導体層およびn側半導体層と絶縁基板上の各電極と

ルーホールをそれぞれ通って絶縁基板の裏面に達してお 50 を、導電性ペーストによってそれぞれ導電状態で接着す

る工程と、絶縁基板上の全てのLEDおよび導電性ペー ストが封止されるように、その絶縁基板全体を透光性樹 脂によって寝う工程と、その透光性樹脂によって寝われ た絶縁基板を、各スルーホールが分割されるようにダイ シングカットするとともに、1または複数のLEDチッ プ毎にダイシングカットする工程と、を包含することを 特徴とするものであり、そのことにより上記目的が達成 される。

【0021】さらに、本発明の発光デバイスの製造方法 は、表裏全面に金属層を有する基板の裏面側のスルーホ 10 ール形成予定領域における金属層をエッチング除去する 工程と、そのエッチング除去された部分にレーザー光を 照射して前記基板に複数のスルーホールを形成する工程 と、形成されたスルーホールの内壁を含む基板の表裏全 面に金属メッキにより金属層を形成する工程と、基板の 表裏全面の金属層を、それぞれ、各スルーホール毎に分 離して電極を形成するようにパターニングする工程と、 p側半導体層およびn側半導体層とがp-n接合された LEDチップを、p-n接合面が基板に対して垂直状態 になるように、相互に隣接する一対の電極間にそれぞれ 20 架設する工程と、各LEDチップのp側半導体層および n側半導体層と基板上の各電極とを、導電性ペーストに よってそれぞれ導電状態で接着する工程と、基板上の全 てのLEDおよび導電性ペーストが封止されるように、 その基板全体を透光性樹脂によって覆う工程と、その透 光性樹脂によって覆われた基板を、各スルーホールが分 割されるようにダイシングカットするとともに、1また は複数のLEDチップ毎にダイシングカットする工程 と、を包含することを特徴とするものであり、そのこと により上記目的が達成される。

[0022]

【作用】本発明の発光デバイスでは、p-n接合された LEDチップが、絶縁基板に対してp-n接合面が垂直 状態となるように、絶縁基板上に設けられた一対の電極 間に架設状態になっているために、ボンディングワイヤ ーを使用することなく、導電性ペーストによって各電極 とLEDチップとを導電状態にすることができる。その 結果、LEDチップを封止する透光性樹脂の厚さを小さ く抑制することができ、発光デバイス全体を小型化する ことができる。

【0023】絶縁基板に設けられるスルーホールは、導 電ペーストが充填されていることにより、あるいは、電 極によって覆われた状態になっていることにより、透光 性樹脂を封止する際に、溶融状態になった透光性樹脂が スルーホールを通って絶縁基板の裏面に回り込むことを 防止するための治具等が圧接される特別の領域が不要に なり、これによっても、発光デバイスは小型化される。

【0024】本発明の発光デバイスの製造方法では、絶 縁基板に設けられたスルーホールを電極が貫通した状態 填された状態で、LEDチップが各電極間に架設され て、絶縁基板全体が透光性樹脂によって封止される。従 って、LEDチップを透光性樹脂によって封止する際 に、溶融状態の透光性樹脂が絶縁基板の各スルーホール 内に流入するおそれがない。その結果、溶融状態の透光 性樹脂が絶縁基板の各スルーホール内に流入することを 防止するための治具等を、絶縁基板における各スルーホ ールの周辺部に配置する必要がなく、透光性樹脂による 封止作業が容易に行える。そして、各スルーホールを分 割するようにダイシングカットするとともに、透光性樹 脂によって封止された1または複数のLEDチップ毎に ダイシングカットすることにより、1または複数のLE Dチップを有する発光デバイスが容易に量産される。 【0025】各スルーホールは電極によって覆って、ス ルーホール内を通る金属層によって、絶縁基板の裏面に も、電気的な導通を得られるようにすることによって も、LEDチップを透光性樹脂によって封止する際に、 溶融状態になった樹脂が各スルーホール内に流入するお

【0026】絶縁基材の表裏全面に金属層が設けられた 基板を使用してスルーホールを形成する場合には、基板 裏面のスルーホール形成領域における金属層をエッチン グ除去しておいて、レーザー光を照射すればよい。

[0027]

それがない。

【実施例】以下、本発明の実施例を、図面に基づいて詳 細に説明する。

【0028】図1(a)は、本発明の発光デバイスの一 例を示す縦断面図、図1(b)はその平面図である。

【0029】この発光デバイス10は、ガラスエポキシ 30 樹脂、コンポジット等によって構成された長方形状の絶 縁基板17と、この絶縁基板17上に配置されたLED チップ14とを有している。

【0030】絶縁基板17の長手方向(以下、この長手 方向をX方向、幅方向をY方向とする)の各端部には、 半円状のスルーホール11が設けられている。また、絶 縁基板17の表面には、長手方向の中央部にて分離され た一対の電極バターン12が設けられている。各電極バ ターン12は、金属メッキによって構成されており、絶 縁基板 17の各端部に設けられたスルーホール 11の内 周面を覆っている。そして、各電極パターン12は、ス 40 ルーホール 1 1 を通って絶縁基板 1 7 の裏面に達してお り、絶縁基板17の裏面に沿うように折り曲げられてい

【0031】各電極パターン12にて覆われたスルーホ ール11内には、半田、Ag、Cu等の導電性ペースト 13がそれぞれ充填されている。

【0032】絶縁基板17の表面を覆う各電極パターン 12上には、LEDチップ14が架設状態で配置されて いる。このLEDチップ14は、n形半導体層14aと になっているが、各スルーホールに導電性ペーストが充 50 p形半導体層14bとが、p-n接合面14cによって 相互に積層された状態になっており、 n形半導体層 1 4 aの表面にn側電極14dが設けられるとともに、p形 半導体層 14 b の表面に p 側電極 14 e が設けられてい る。そして、p-n接合面14cが絶縁基板17に対し て垂直状態になるように、一対の電極パターン12間に 架設状態で配置されている。n側電極14dおよびp側 電極14 e は、それぞれ、各電極パターン12上に垂直 状態で配置されている。

【0033】各電極パターン12と、その上方に配置さ れたLEDチップ14のn側電極14dおよびp側電極 10 14 e とは、半田、Ag、Cu等の導電性ペースト15 によって導電状態で接着されている。

【0034】絶縁基板17上のLEDチップ14および 各導電性ペースト15は、エポキシ樹脂、フェノキシ樹 脂、アクリル樹脂、PES樹脂等の透光性樹脂16によ って封止されている。この透光性樹脂16は、絶縁基板 17のスルーホール11が設けられた各端面に沿った直 方体状に成形されている。

【0035】図2(a)~(f)は、このような発光デ の製造工程では、1枚の絶縁基板17によって、多数の 発光デバイス10が製造されるようになっている。ま ず、図2(a)に示すように、ガラスエポキシ樹脂、コ ンポジット等の絶縁基板17に、円形状になった多数の スルーホール11が、X方向およびY方向にそれぞれ所 定のピッチでマトリクス状に形成される。

【0036】このような状態になると、図2(h)に示 すように、絶縁基板 1 7表面および裏面の全体、およ び、絶縁基板17の各スルーホール11の内周面に、メ ッキ処理等によって金属層が形成される。そして、絶縁 30 基板17表面において隣接するスルーホール11の間の 中央部分にて金属層が分断されるようにパターニングさ れるとともに、絶縁基板17の裏面において各スルーホ ール11の周辺部にのみ金属層が残るようにパターニン グされる。これにより、絶縁基板17には、各スルーホ ール11毎に分離された電極パターン12がそれぞれ形 成される。

【0037】その後、図2(c)に示すように、電極バ ターン12にて覆われたスルーホール11内に、半田、 Ag、Cu等の導電性ペースト13が充填される。 【0038】このような状態になると、図2(d)に示 すように、絶縁基板 1 7表面において隣接するスルーホ ール11間にて分離された一対の電極バターン12間 に、LEDチップ14が架設状態でマウントされる。L EDチップ14は、前述したように、n形半導体層14 aとp形半導体層14bとが、p-n接合面14cによ って相互に積層されており、n形半導体層14aの表面 にn側電極14dが設けられるとともに、p形半導体層 14bの表面にp側電極14eが設けられている。この LEDチップ14は、p-n接合面14cが絶縁基板1 50 局、発光デバイス10は、必要最小限で、1000μm

7に対して垂直状態になるように、隣接する―対の電極 パターン12間に架設される。

10

【0039】その後、LEDチップ14が架設された各 電極パターン12と、LEDチップ14のn側電極14 d および p 側電極 1 4 e とが、半田、Ag、Cu等の導 電性ペースト15によってそれぞれ導電状態で接着され

【0040】次に、図2(e)に示すように、絶縁基板 17の表面に、エポキシ樹脂、フェノキシ樹脂、アクリ ル樹脂、PES樹脂等の透光性樹脂16のシートが積層 されて、真空加熱雰囲気内にて加圧される。これによ り、各LEDチップ14がこの透光性樹脂16によって 封止される。この場合、絶縁基板17に設けられた各ス ルーホール11内には、導電性ペースト13が充填され た状態になっているために、溶融状態の透光性樹脂は、 各スルーホール11内に流入して絶縁基板17の裏面に 回り込むおそれがない。従って、溶融状態の透光性樹脂 16を絶縁基板17上にて加圧する際に、絶縁基板17 の周縁部に、溶融状態になった透光性樹脂16が絶縁基 バイス10の製造工程をそれぞれ示す断面図である。と 20 板17の各側面を通って裏面に回り込まないように、金 型、治具等を配置するだけでよい。その結果、絶縁基板 17の各スルーホール11の周縁部には、スルーホール 11内に溶融樹脂が流入することを防止するための治具 等を配置する必要がなく、また、絶縁基板17上に、そ のような治具を配置するための領域を設ける必要もな 43

> 【0041】透光性樹脂16が硬化して、絶縁基板17 上の各LEDチップ14が封止された状態になると、図 2 (f) に示すように、Y方向に並んだ各スルーホール 11の中心部を通るダイシングライン19aに沿って、 絶縁基板17および透光性樹脂14をダイシングカット するとともに、Y方向に隣接する各LEDチップ14の 間もX方向にダイシングカットする。これにより、それ ぞれが1つのLEDチップ14を有する多数の発光デバ イス10が製造される。

> 【0042】とのようにして製造された発光デバイス1 0の寸法の一例を図3に示す。本実施例の発光デバイス 10は、300 µm角のLEDチップ14を使用してお り、絶縁基板17および各電極パターン12の厚さは2 00 μm、LEDチップ14の厚さが300 μm、透光 性樹脂16のLEDチップ14に対する被り(厚さ)が 100μmとなる。従って、本実施例の発光デバイス1 0は、必要最小限で、600 µm程度の厚さになる。 【0043】また、この発光デバイス10の長手方向 (X方向)の寸法は、LEDチップ14の半導体層14 aおよび14bの積層方向の長さ300μmと、各電極 パターン12と各電極14 dおよび14 e とをそれぞれ 導電性ペースト15によって電気的に接続するために必 要な長さ350μmの領域とがそれぞれ必要であり、結

(1.0mm)程度の長さになる。

【0044】従って、本実施例の発光デバイス10では、図8に示す従来の発光デバイスに対して、厚さを、800 μ mから600 μ mに200 μ m薄くすることができるとともに、長手方向長さを、1600 μ mから1000 μ mと600 μ m短くすることができる。

【0045】図4は、本発明の発光デバイスの他の実施例を示す正面図である。本実施例の発光デバイス20では、1枚の絶縁基板27の各側部に、表面および裏面にわたる電極パターン22がそれぞれ設けられており、この電極パターン22上にLEDチップ24が、前記実施例と同様に、p-n接合面24cが絶縁基板27に対して垂直状態になるようにマウントされている。そして、LEDチップ24と各電極パターン22とが、導電性ペースト25によって、それぞれ導電状態で接着されており、各導電性ペースト25およびLEDチップ24が、絶縁基板27上に設けられた透光性樹脂26によって封止されている。

【0046】本実施例の発光デバイス20は、予め所定の大きさに成形された1枚の絶縁基板27上に1つのLEDチップ24をマウントして製造されるようになっており、従って、絶縁基板27の各側部には、スルーホールが設けられていない。

【0047】この発光デバイス20は、絶縁基板27上に透光性樹脂26を設けるための領域が、絶縁基板27の周縁部全体にわたって必要になるために、長手方向長さおよび幅方向長さは、前記実施例の発光デバイス10よりも若干大きくなる。しかし、前記実施例と同様に、ボンディングワイヤーを使用する必要がなく、従来の発光デバイスよりも、透光性樹脂26の厚さが小さく、小30型化されている。

【0048】なお、本発明の発光デバイスは、このように、LEDチップ14および24が1つのものに限らず、図5(a)に示すように、1枚の絶縁基板17上に2つのLEDチップ14が設けられた発光デバイス30であってもよい。このような発光デバイス30は、例えば、図2(a)~(f)に示すように、1枚の絶縁基板17上に多数のLEDチップ14をマウントして、透光性樹脂16によって絶縁基板17全体を封止した状態で、Y方向に延びるダイシングライン19aに沿ってダイシングカットした後に、Y方向に隣接する2つのLEDチップ14が一体となるようにダイシングカットすることによって製造される。

【0049】また、との場合には、図5(b)に示すように、発光デバイス30は、2つのLEDチップ14が設けられる絶縁基板17の角部に対応させて、予めスルーホールを形成しておき、絶縁基板17の裏面に、各スルーホールを通して、絶縁基板17の表面の電極パターン12と電気的に導通させるようにしてもよい。

【0050】この場合にも、予め、所定の形状に形成さ 50 極パターン42の裏面に接着されている。

12

れた絶縁基板上に、2つのLEDチップをマウントして 製造してもよい。さらに、本発明の発光チップは、3つ 以上のLEDチップが設けられていてもよく、この場合 にも、多数のLEDチップを絶縁基板にマウントして透 光性樹脂によって封止した後に、所定個数ずつにダイシ ングカットして製造してもよく、また、予め所定形状に 形成された1枚の絶縁基板上に、所定個数のLEDチップをマウントして製造してもよい。

【0051】さらに、本発明の発光デバイスでは、図6に示すように、絶縁基板17上に設けられる透光性樹脂16を種々のレンズ形状に成形してもよい。透光性樹脂16は、例えば、図6(a)に示すように、半球状の突出部を有する凸レンズ形状、図6(b)に示すように、内部に半球状の突出部が設けられたインナーレンズ形状にしてもよく、また、図7(a)および(b)に示すように、半円筒形のロッドレンズ形状に成形してもよい。【0052】透光性樹脂16をレンズ形状にする場合には、LEDチップ14が配置された絶縁基板17に透光性樹脂16のシートを積層して加熱状態で加圧する際20に、各レンズ形状に対応した加圧治具が透光性樹脂16のシートに圧接される。

【0053】また、各LEDチップ14を透光性樹脂16によって封止する際に、透光性樹脂16のシートを使用する替わりに、絶縁基板17を所定形状の金型内に配置して、金型内に溶融状態の透光性樹脂16を注入するようにしてもよい。この場合にも、絶縁基板17の各スルーホール11内に導電性ペースト13が充填されているために、溶融状態の透光性樹脂16が、絶縁基板17の裏面に回り込むおそれがない。

0 【0054】図8(a)は、本発明の発光デバイスの他の実施例を示す平面図、図8(b)はその縦断面図である。

【0055】この発光デバイス40も、ガラスエポキシ樹脂、コンポジット等によって構成された長方形状の絶縁基板47と、この絶縁基板47上に配置されたLEDチップ44とを有している。

【0056】絶縁基板47の長手方向(X方向とし、幅方向をY方向とする)の各端部は、半円状に切欠されたスルーホール41がそれぞれ設けられている。絶縁基板47の表面には、一対の長方形状の電極パターン42がそれぞれ設けられている。両電極パターン42は、絶縁基板47の長手方向中央部にて、適当な間隔をあけて相互に分離されている。各電極パターン42の各端部は、絶縁基板47の各スルーホール41を覆った状態になっている。

【0057】絶縁基板47の裏面における長手方向の各端部には、金属層43がそれぞれ積層されている。各金属層43は、絶縁基板47に設けられた各スルーホール41の内周面を通って、各スルーホール41を覆う各電板パカーに42の異常に接着されている

【0058】絶縁基板47の表面に配置された各電極バ ターン42上には、LEDチップ44が架設状態で配置 されている。このLEDチップ44も、前記各実施例と 同様に、n形半導体層44aとp形半導体層44bと が、p-n接合面44cによって相互に積層された状態 になっており、n形半導体層44aの表面にn側電極4 4dが設けられるとともに、p形半導体層44bの表面 にp側電極44eが設けられている。そして、p-n接 合面44 cが絶縁基板47に対して垂直状態になるよう に、一対の電極パターン42間に架設されている。n側 10 電極44dおよびp側電極44eは、それぞれ、各電極 パターン42上に垂直状態で配置されている。

【0059】各電極バターン42とLEDチップ44の n側電極44dおよびp側電極44eとは、半田、A g、Cu等の導電性ペースト45によって導電状態で接 着されている。

【0060】絶縁基板47上のLEDチップ44および 各導電性ペースト45は、エポキシ樹脂、フェノキシ樹 脂、アクリル樹脂、PES樹脂等の透光性樹脂46によ って封止された状態になっている。この透光性樹脂46 は、絶縁基板47の各端面とに沿った直方体状に成形さ れている。

[0061]図9(a)~(c)は、それぞれ、その発 光デバイス40の製造工程における絶縁基板47の一部 を示す拡大断面図である。 図9 (a) に示すように、発 光デバイス40の製造に使用される絶縁基板47は、ガ ラスエポキシ樹脂、コンポジット等によって構成されて おり、この絶縁基板47には、X方向およびY方向に、 それぞれ、1. 1mmおよび0. 6mmのピッチで、円 形状のスルーホール41がマトリクス状に形成されてい る。そして、絶縁基板47の表面には、銅箔等の金属箔 42aが全体にわたってラミネートされている。従っ て、絶縁基板47の各スルーホール41は、金属箔42 aによって覆われた状態になる。

【0062】このような状態になると、図9(b)に示 すように、絶縁基板47に設けられた各スルーホール4 1毎に、金属箔42aが長方形状にパターニングされ て、各スルーホール41をそれぞれ同心状態で覆う長方 形状の電極パターン42が、相互に分離された状態でそ れぞれ形成される。

【0063】その後、絶縁基板47の裏面の全体にわた って、銅メッキ処理が施されるとともに、ニッケルおよ び金メッキ処理(あるいは銀メッキ処理、パラジウムメ ッキ処理)が施される。この場合、各スルーホール41 の内周面および各スルーホール41を覆う各電極パター ン42の裏面の全体にもメッキ処理が施されて、絶縁基 板47の裏面全体、各スルーホール41の内周面、およ び各スルーホール41を覆う電極パターン42の裏面に 金属層43が形成される。

すように、絶縁基板47の裏面における相互に隣接する 各スルーホール41の中央部にて、金属層43が分離状 態となるようにパターンニングされる。これにより、絶 縁基板47の表面に設けられた電極パターン42の裏面 と、銅、ニッケル、および金によって構成された金属層 43とが、各スルーホール41内にて接着されて、その 金属層43は各スルーホール41の内周面を覆うととも に、各スルーホール41の周囲の絶縁基板47の裏面を 長方形状に覆う。

【0065】図9(c)に示す構造を得るためには、次 のような方法によってもよい。まず、アラミド樹脂等の 絶縁基材の表裏に銅箔が設けられた両面基板を準備し、 この両面基板の裏面側におけるスルーホール形成予定領 域の銅箔をエッチング除去する。そして、銅箔を除去し たスルーホール形成予定領域に対して、レーザー光を照 射してスルーホールを形成する。銅箔が残っている部分 は、レーザー光を照射しても銅箔が除去されないため に、銅箔が除去されたスルーホール形成予定領域では、 レーザー光の照射によって基材のみが分解し、スルーホ ールが容易に形成される。

【0066】その後、スルーホールの内壁を含む基板の 表裏全面に銅メッキを施す。そして、必要に応じて各ス ルーホール毎に表裏のメッキ層をパターニングし、ニッ ケルおよび金メッキ処理することにより、図9(c)に 示す構造が得られる。

【0067】なお、スルーホールの形成は、レーザー光 の照射に替えて、樹脂エッチングによってもよい。

【0068】図10(a)は、このような状態の絶縁基 板47の平面図、図10(c)はその断面図である。絶 縁基板47の表面には、円形状になったスルーホール4 1を覆う長方形状の電極パターン42が、相互に分離さ れた状態で、X方向およびY方向に所定のピッチで設け られている。また、絶縁基板47の裏面には、各スルー ホール41の周囲を長方形状に覆うとともに、各スルー ホール41内周面を覆って、各スルーホール41を覆う 各電極パターン42の裏面に接着された各金属層43 が、各スルーホール41毎に、それぞれ、相互に分離し た状態で設けられている。

【0069】 このような状態になると、図10(a) お よび(b)に二点鎖線で示すように、X方向に隣接する 各電極パターン42間に、LEDチップ44が架設状態 でマウントされる。LEDチップ44は、前述したよう に、n形半導体層44aとp形半導体層44bとが、p - n接合面44cによって相互に積層されており、 n 形 半導体層44aの表面にn側電極44dが設けられると ともに、p形半導体層44bの表面にp側電極44eが 設けられている。このLEDチップ44は、p-n接合 面44 cが絶縁基板47に対して垂直になるように、隣 接するスルーホール41間の絶縁基板47表面に配置さ 【0064】とのような状態になると、図9(c)に示 50 れた一対の電極パターン42間に架設された状態になっ

てもよい。

ている。

【0070】その後、LEDチップ44が架設された各電極パターン42とLEDチップ44のn側電極44d およびp側電極44eとが、半田、Ag、Cu等の導電性ペースト45によってそれぞれ導電状態で接着される。

【0071】次に、図11(a)に示すように、絶縁基 板47の表面に、エチレン-酢酸ピニル共重合体(EV A) フェノキシ樹脂、アクリル樹脂、PES樹脂等の透 光性樹脂シート46aが積層されて、真空加熱雰囲気内 10 にて加圧する。これにより、図11(b)に示すよう に、各LEDチップ44がこの透光性樹脂46によって 封止された状態になる。この場合、絶縁基板47に設け られた各スルーホール41が電極パターン42によって 覆われた状態になっているために、溶融状態の透光性樹 脂46は、各スルーホール41内に流入して絶縁基板4 7の裏面に回り込むおそれがない。従って、溶融状態の 透光性樹脂46を絶縁基板47上にて加圧する際に、絶 縁基板47の周縁部に、溶融状態の透光性樹脂46が絶 縁基板47の各側面を通って裏面に回り込まないように する治具等を配置するだけでよい。その結果、絶縁基板 47の各スルーホール41の周縁部には、スルーホール 41内に溶融樹脂が流入することを防止するための治具 等を、絶縁基板47に対して強く圧接させる必要がな く、また、絶縁基板47上に、そのような治具を配置す るための領域を設ける必要もない。

【0072】透光性樹脂46が硬化して、絶縁基板47上の各LEDチップ44が封止された状態になると、図10(a) および(b) に示すように、Y方向に並んだ各スルーホール41の中心部を通過するダイシングライン49aに沿って、絶縁基板47および透光性樹脂44がダイシングカットされるとともに、Y方向に並んだ電極パターン42間にてX方向に沿って延びるダイシングライン49bに沿ってダイシングカットされる。これにより、図11(c)に示すように、それぞれが1つのしEDチップ44を有する図8に示す発光デバイス40が、多数製造される。

【0073】 このようにして製造された発光デバイス40の寸法の一例を、図8(b)に併記する。本実施例の発光デバイス40は、300μm角のLEDチップ4440を使用しており、絶縁基板47、各電極バターン42、および各金属層43の厚さは100μm、LEDチップ14の厚さが300μm、透光性樹脂16のLEDチップ14に対する被り(厚さ)が100μmとなる。従って、本実施例の発光デバイス10は、厚さは、必要最小限で500μm程度になる。

【0074】また、この発光デバイス40の長手方向の たって貼り付ける。そして、不要部分をエッチングによ 寸法は、LEDチップ44の半導体層44aおよび44 って除去して、各スルーホール51内にて相互に分離し bの積層方向の長さ300μmと、各電極バターン42 た一対の電極バターン52をそれぞれ形成する。その と各電極44dおよび44eとを導電性ペースト45に 50 後、各スルーホール51内にて分離した各電極バターン

16

よって電気的に接続するために必要な350μmの領域とが必要であり、結局、発光デバイス40の長さは、必要最小限で1000μm(1.0mm)程度になる。【0075】なお、本実施例の発光デバイスも、1枚の絶縁基板47に複数のLEDチップ44が設けられてい

【0076】図12(a)は、本発明のさらに他の実施例の発光デバイス50の平面図、図12(b)はその断面図である。この発光デバイス50は、ポリイミド、ガラスエポキシ等の絶縁基板57にスルーホール51が設けられており、絶縁基板57の裏面に、金属フィルムによって構成された一対の電極パターン52が設けられている。各電極パターン52の各端部は、スルーホール51内にて、適当な間隔をあけた状態で配置されている。そして、スルーホール51内に、各電極パターン52間にLEDチップ54が架設状態で配置されている。

【0077】とのLEDチップ54も、前記各実施例と20 同様に、n形半導体層54aとp形半導体層54bとが、p-n接合面54cによって相互に積層された状態になっており、n形半導体層54aの表面にn側電極54dが設けられるとともに、p形半導体層54bの表面にp側電極54eが設けられている。そして、p-n接合面54cが絶縁基板57に対して垂直状態になるように、一対の電極パターン52間に架設されている。n側電極54dおよびp側電極54eは、それぞれ、各電極パターン52上に垂直状態で配置されている。

【0078】各電極パターン52と、LEDチップ54 30 のn側電極54dおよびp側電極54eとは、半田、A g、Cu等の導電性ペースト55によって、導電状態で 接着されている。

【0079】相互に分離された各電極パターン52の間には、レジスト53が充填されており、各電極パターン52を絶縁状態に保持している。このレジスト53は、各電極パターン52の端部裏面に積層された状態になっている。

【0080】絶縁基板57上のLEDチップ54および 各導電性ペースト55は、エポキシ樹脂、フェノキシ樹脂、アクリル樹脂、PES樹脂等の透光性樹脂56によって封止されている。この透光性樹脂56は、絶縁基板57の各端面に沿った直方体状に成形されている。

【0081】このような構成の発光デバイス50は、次のように製造される。長方形状のスルーホール51がX方向およびY方向にマトリクス状に形成されたポリイミド等の絶縁基板57の裏面に、金属フィルムを全体にわたって貼り付ける。そして、不要部分をエッチングによって除去して、各スルーホール51内にて相互に分離した一対の電極パターン52をそれぞれ形成する。その

52間にレジスト53を充填する。

【0082】このような状態になると、LEDチップ5 4が、スルーホール51内に挿入されて、スルーホール 51内にて相互に分離された状態の一対の電極パターン 52間に架設される。そして、LEDチップ54が、導 電ベースト55によって、各電極バターン52に導電状 態で接着される。その後、前記各実施例と同様に、各し EDチップ54が透光性樹脂56によって封止され、各 LEDチップ54毎にダイシングカットされる。これに より、図12に示す発光デバイス50が得られる。

【0083】本実施例の発光デバイス50は、このよう に、製造が容易であり、ローコストで製造することがで

【0084】なお、本実施例の発光デバイスも、1枚の 絶縁基板57に複数のLEDチップ54が設けられてい てもよい。

[0085]

【発明の効果】本発明の発光デバイスは、このように、 LEDチップのp-n接合面が、絶縁基板に対して垂直 状態になっており、LEDチップと絶縁基板上に設けら 20 れた各電極とが、導電性ペーストによって導電状態で接 着されているために、ボンディングワイヤーを使用する 必要がなく、絶縁基板の反り等の外的応力によって損傷 するおそれがない。しかも、ボンディングワイヤーを保 護するために透光性樹脂を厚くする必要がなく、発光デ バイスは著しく小型化される。また、絶縁基板に設けら れたスルーホールが、導電性ペーストによって、あるい は電極によって閉鎖された状態になっているために、ス ルーホールの周辺部に、溶融状態の透光性樹脂がスルー ホール内に流入することを防止するための治具等を配置 30 するための領域が不要になり、発光デバイスは、より一 層小型化される。

【0086】本発明の発光デバイスの製造方法は、絶縁 基板に設けられたスルーホールが、導電性ペーストによ って、あるいは電極によって閉鎖された状態になってい るために、絶縁基板全体を透光性樹脂によって封止する 際に、透光性樹脂がスルーホールを通って絶縁基板の裏 面に回り込むおそれがなく、そのような樹脂の回り込み を防止するための作業が不要になって、作業性は著しく 向上する。

【0087】絶縁基材の表裏両面に金属層が設けられた 基板を使用する場合には、裏面側のスルーホール形成予 定領域の金属層を除去して、レーザー光を照射すること により、容易にスルーホールを形成することができる。

【図面の簡単な説明】 【図1】(a)は本発明の発光デバイスの一例を示す断 面図、(b)はその平面図である。

【図2】(a)~(f)は、それぞれ、その発光デバイ スの製造工程を示す断面図である。

【図3】図1に示す発光デバイスの寸法を示す正面図で 50 56 透光性樹脂

ある。

【図4】本発明の発光デバイスの他の実施例を示す正面

【図5】(a)および(b)は、それぞれ、本発明の発 光デバイスの他の実施例を示す平面図である。

【図6】(a)および(b)は、それぞれ、本発明の発 光デバイスの他の実施例を示す概略正面図である。

【図7】(a)は本発明の発光デバイスのさらに他の実 施例を示す概略正面図、(b)はその側面図である。

【図8】(a)は本発明の発光デバイスのさらに他の実 10 施例を示す平面図、(b)はその断面図である。

【図9】(a)~(c)は、それぞれ、その発光デバイ スの製造工程を示す絶縁基板の断面図である。

【図10】(a)は、その製造工程における絶縁基板の 平面図、(b)はその断面図である。

【図11】(a)~(c)は、それぞれ、その発光デバ イスのその後の製造工程を示す絶縁基板等の断面図であ

【図12】(a)は本発明の発光デバイスのさらに他の 実施例を示す平面図、(b)はその断面図である。

【図13】従来の発光デバイスの一例を示す断面図であ

【図14】従来の発光デバイスの他の例を示す正面図で

【図15】図14に示す発光デバイスの寸法を示す正面 図である。

【符号の説明】

- 10 発光デバイス
- スルーホール 1 1
- 12 電極パターン
 - 13 導電性ペースト
 - 14 LEDチップ
 - 15 導電性ペースト
 - 16 透光性樹脂
 - 17 絶縁基板
 - 40 発光デバイス
 - 41 スルーホール
 - 42 電極パターン
 - 43 金属層
- 44 LEDチップ
 - 45 導電性ペースト
 - 46 透光性樹脂
 - 47 絶縁基板
 - 50 発光デバイス
 - 5 1 スルーホール
 - 52 電極パターン
 - 53 レジスト
 - 54 LEDチップ
 - 55 導電性ペースト

57 絶縁基板

【図1】

【図3】

[図2]

[図7]

【図4】

【図6】

【図11】

【図12】

【図13】

【図14】

【図15】

