Computer Aided Diagnosis

Project 1: Classical Machine Learning for Skin Lesion Classification.

Muhammad Kabir Hamzah Faisal Farhan

Erasmus Mundus Joint Masters in Medical Imaging and Applications

Introduction

Objective: Develop a computer aided algorithm for the diagnosis in dermoscopic images.

Challenges:

- #1. The binary problem of classifying Nevus images vs all the others.
- **#2.** A three-class problem consisting on the classification of cancers: melanoma vs basal cell carcinoma vs squamous cell carcinoma.

Dataset

Total Training Data: 15195 Total Validation Data: 3796

Total Test Data: 6340

Total Training Data: 5760 Total Validation Data: 1270

Total Test Data: 2121

Classification Pipeline: #Challenge 1

Classification Pipeline: #Challenge 2

Image Preprocessing

- Hair Removal: Remove hair-like structures from an image using morphological operations and inpainting.
- Region of interest: Crop the image to get the region of interest. Remove the vignette frame.
- Color Normalization: Normalize the colors of the images using the Shades of Gray algorithm with gamma correction.

Preprocessors

Hair Removal ROI Normalization

Image Preprocessing

Data Imbalance

Augmentation

Zoom Horizontal Flip **Class Weights**

mel: 0.142 bcc: 0.104

scc: 0.753

We used Class Weights to deal with the data imbalance problem in #Challenge 2 as it gave better accuracy than augmentation.

Feature Extraction iter 1

Features

Gray Level Co-occurrence Matrix (GLCM)

Distances: 1-5 Angle: 0 - 135°

Statistics: contrast, correlation, energy, homogeneity, dissimilarity

Local Binary Pattern (LBP)

Radius: 5

Number of points: 8 & 16

Feature Extraction iter 2

Features

Gray Level Co-occurrence Matrix (GLCM)

Distances: 1-5 Angle: 0 - 135°

Statistics: contrast, correlation, energy, homogeneity, dissimilarity

Local Binary Pattern (LBP)

Radius: 5 & 10

Number of points: 8 & 16

Feature Extraction iter 3

Features

Gray Level Co-occurrence Matrix (GLCM)

Distances: 1-5 Angle: 0 - 135°

Statistics: contrast, correlation, energy, homogeneity, dissimilarity

Local Binary Pattern (LBP)

Radius: 5 & 10

Number of points: 8 & 16

Gabor Features

theta: 0 - 180° Sigma: (1, 3)

Frequency: (0.05, 0.25)

Feature Extraction Final Pipeline

Color Features

Color Moments: Extracting Color Moments of the images.

Color Histogram: Extracting Color Histogram of the images.

RGB: color image

- mean, variance, standard deviation, skewness for each channel.
 - histogram for each channel.

HSV: color image

- mean, variance, standard deviation, skewness for each channel.
 - histogram for each channel.

LAB: color image

- mean, variance, standard deviation, skewness for each channel.
 - histogram for each channel.

Feature Extraction Final Pipeline

Texture Features

Gray Level Co-occurrence Matrix (GLCM)

Distances: 1-5 Angle: 0 - 135°

Statistics: contrast, correlation, energy, homogeneity, dissimilarity

Local Binary Pattern (LBP)

Radius: 5 & 10

Number of points: 8 & 16

Summary of Feature Extraction Iterations

Trials	Features	Best Accuracy	
Iteration 1	GLCM, LBP	0.78	
Iteration 2	GLCM, LBP	0.795	
Iteration 3	GLCM, LBP, GABOR	0.795	
Final Pipeline	GLCM, LBP, Color Features	0.84	

We implemented Feature Extraction Final pipeline for both #Challenge 1 and #Challenge 2.

Feature Visualization (#Challenge 1)

Feature Visualization (#Challenge 2)

Machine Learning Models

Single Classifiers

Random Forest KNN XGBoost LightGBM SVM CatBoost

Ensemble

Majority Voting among classifiers using the best parameters obtained from the grid search.

Hyperparameter Tuning

#Challenge 1

We used Grid Search to find the best parameters, using a subset of the training set as validation and the provided validation set as test set. The best model is selected based on accuracy.

Models	Best Parameters	Validation accuracy	Test accuracy
Random Forest	max_depth: 20, n_estimators: 300	0.831	0.824
KNN	metric: manhattan, n_neighbors: 9, weights: distance	0.692	0.669
XGBoost	max_depth: 30, n_estimators: 200	0.833	0.826
LightGBM	boosting_type: gbdt, learning_rate: 0.2, num_leaves: 50	0.833	0.822
SVM	c: 10, gamms: 0.1, kernel: rbf	0.510	0.498
CatBoost	depth: 10, iterations: 300	0.825	0.826

Hyperparameter Tuning

#Challenge 2

We used Grid Search to find the best parameters. The best model is selected based on accuracy and Kappa score.

Models	Best Parameters	Validation accuracy	Kappa Score	Test accuracy	Kappa Score
Random Forest	max_depth: 20, n_estimators: 200	0.798	0.620	0.795	0.623
KNN	metric: manhattan, n_neighbors: 11, weights: distance	0.752	0.535	0.735	0.508
XGBoost	max_depth: 30, n_estimators: 200	0.829	0.680	0.818	0.665
LightGBM	boosting_type: gbdt, learning_rate: 0.2, num_leaves: 50	0.830	0.682	0.831	0.690
SVM	c: 10, gamma: 0.001, kernel: rbf	0.697	0.409	0.675	0.385
CatBoost	depth: 10, iterations: 300	0.830	0.685	0.827	0.687

Classification Reports

Models	Class	Accuracy	Precision	Recall	F1-score
Random	nevus	0.83	0.81	0.86	0.83
Forest	others	0.83	0.84	0.79	0.82
KNN	nevus	0.70	0.70	0.71	0.71
	others	0.70	0.70	0.69	0.69
XGBoost	nevus	0.84	0.83	0.86	0.84
	others	0.84	0.85	0.82	0.83
LightGBM	nevus	0.83	0.82	0.85	0.84
	others	0.83	0.84	0.81	0.83
SVM	nevus	0.51	0.51	1.00	0.68
	others	0.51	1.00	0.01	0.02
CatBoost	nevus	0.83	0.82	0.85	0.84
	others	0.83	0.84	0.81	0.83

Classification Reports

Models	Class	Accuracy	Precision	Recall	F1-score	Kappa
Random Forest	bcc	0.81	0.75	0.87	0.80	0.64
	mel	0.81	0.86	0.86	0.86	
	scc	0.81	0.67	0.09	0.15	
KNN	bcc	0.76	0.70	0.81	0.75	0.55
	mel	0.76	0.81	0.82	0.82	
	scc	0.76	0.40	0.04	0.08	
XGBoost	bcc	0.83	0.78	0.89	0.83	0.68
	mel	0.83	0.88	0.89	0.89	
	scc	0.83	0.61	0.12	0.20	
LightGBM	bcc	0.85	0.80	0.89	0.84	0.72
	mel	0.85	0.89	0.89	0.89	
	scc	0.85	0.73	0.29	0.41	
SVM	bcc	0.62	0.67	0.67	0.67	0.39
	mel	0.62	0.88	0.62	0.73	
	scc	0.62	0.11	0.34	0.16	
CatBoost	bcc	0.84	0.80	0.87	0.83	0.70
	mel	0.84	0.89	0.89	0.89	
	scc	0.84	0.66	0.31	0.42	

Ensemble of best models

Majority Voting	Precisio n	Recall	F1 score	Kappa	Acc
LightGBM, XGB, RandomForest	0.8388	0.8382	0.8380	0.6761	0.84
XGB, LightGBM, GradBoost, AdaBosst	0.8369	0.8366	0.8365	0.6730	0.84

Ensemble of best models

Majority Voting	Precision	Recall	F1 score	Kappa	Acc
LightGBM, XGB, RandomForest, CatBoost	0.8369	0.8409	0.8253	0.7036	0.84
XGB, LightGBM, RandomForest	0.8348	0.8401	0.8248	0.7023	0.84

Best Classifier Result

#Challenge 1

XGBoost Accuracy: 0.84

Best Classifier Result

#Challenge 2

LightGBM

Accuracy: 0.85 Kappa: 0.72

