

# **SCHOOL OF ENGINEERING**

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI – 682022, KERALA

# DIVISION OF COMPUTER SCIENCE AND ENGINEERING

# 19-202-0610 OPERATING SYSTEM LABORATORY

Name: MEENAKSHI M KUMAR

Register No.: 20222066

Batch: CS B

Academic Year: 2025

# **INDEX**

| Exp No. | Title                                            | Page No. |
|---------|--------------------------------------------------|----------|
| 1(C)    | IMPLEMENTATION OF LINUX COMMANDS                 | 3        |
| 3       | SHELL PROGRAMS                                   | 5        |
| 4       | PROCESS CREATION USING fork() SYSTEM CALL        | 15       |
| 5       | FAMILIARIZATION OF wait() & sleep() SYSTEM CALLS | 16       |
| 6       | FAMILIARIZATION OF execl() SYSTEM CALL           | 17       |
| 8       | COPY A FILE TO A NEW FILE USING SYSTEM CALLS     | 19       |
| 9       | COPY FILES IN REVERSE ORDER                      | 21       |
| 10      | FCFS SCHEDULING ALGORITHM                        | 23       |
| 11      | SJF SCHEDULING ALGORITHM                         | 25       |
| 12      | SRTF SCHEDULING ALGORITHM                        | 27       |
| 13      | RR SCHEDULING ALGORITHM                          | 29       |
| 14      | PRIORITY SCHEDULING ALGORITHM                    | 33       |
| 15      | FIFO PAGE REPLACEMENT ALGORITHM                  | 39       |
| 16      | OPR PAGE REPLACEMENT ALGORITHM                   | 42       |
| 17      | LRU PAGE REPLACEMENT ALGORITHM                   | 45       |
| 18      | MRU PAGE REPLACEMENT ALGORITHM                   | 48       |

#### **EXP 1(C): IMPLEMENTATION OF LINUX COMMANDS**

#### **AIM:** To Execute linux commands to perform:

- (a) Create a folder COMPUTER\_SCIENCE\_AND\_ENGINEERING(CSE).
- (b) Create two sub folders S3 and S4 inside CSE folder.
- (c) Inside S3 folder, create 3 files teacher and student using touch command.
- (d) Add name, roll no: and mark in student file.
- (e) In teacher file, add name.
- (f) View both files using cat command.
- (g) Add a new value department to teacher file using cat command.
- (h) Copy the data in teacher file to student file.
- (i) Search any word "Anu" in student file.
- (j) Display last 10 lines from student file.
- (k) List all the files.
- (1) Change teacher filename to staff.
- (m) Delete all the files.
- (n) Delete all the folders.

```
cs20222066@NOSLAB108:~/Desktop$ mkdir MEENAKSHI B2 62
 cs20222066@NOSLAB108:~/Desktop$ cd MEENAKSHI_B2_62
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ mkdir COMPUTER_SCIENCE_AND_ENGINEERING
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ cd COMPUTER_SCIENCE_AND_ENGINEERING
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$Cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$Cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$Cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$Cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$Cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$Cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$Cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$Cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$Cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$CS20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$CS20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$CS20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$CS202222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$CS202222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$CS202222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$CS202222066@NOSLAB108:~/Desktop/
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$ mkdir S3
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$ mkdir S4
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$ cd S3
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING$S$ touch teacher.txt
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ touch student.txt
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cat student.txt
 cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cat > student.txt
                                           ROLL_NO:
                                                                                                            MARK
NAME
Aaliya
                                                01
                                                                                                               45
                                                                                                               47
Bison
                                                02
Anu
                                                03
                                                                                                               36
Vishaka
                                                04
                                                                                                               42
                                                05
                                                                                                               39
Salman
 cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cat student.txt
                                                                                                             MARK
                                           ROLL NO:
NAME
Aaliya
                                                01
                                                                                                               45
                                                                                                               47
Bison
                                                02
                                                03
                                                                                                               36
Anu
Vishaka
                                                04
                                                                                                               42
Salman
                                                05
                                                                                                               39
 cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cat > teacher.txt
NAME
Anupama
Rajesh
Manu
Lena
Shekar
 cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cat teacher.txt
NAME
Anupama
Rajesh
Manu
Lena
Shekar
```

```
NG/S3S cat student.txt
NAME
                                   ROLL NO:
                                                                                         MARK
Aaliya
Bison
                                       01
02
                                                                                            45
47
                                                                                            36
42
39
Anu
Vishaka
                                       03
04
Salman
 NAME
Anupama
Rajesh
Manu
Lena
Shekar
DEPARTMENT
Anupama - C
Rajesh - EC
                      cs
Manu - ME
Lena - CS
Shekar
               - CE
 SHEKAT - CC
ses20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ grep "Anu" student.txt
Anu 03
      .
Ipama - CS
 s20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ tail student.txt:
Manu
Lena
Shekar
DEPARTMENT
Anupama - C
Rajesh - EC
                      cs
Manu - ME
Lena - CS
Shekar
               - CE
           22066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ ls -l
 total 8
 rw-r--r-- 1 cs20222066 CS2022 219 Jan 20 14:21 student.txt
rw-r--r-- 1 cs20222066 CS2022 106 Jan 20 14:09 teacher.txt
 cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ mv teacher.txt staff.txt
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ rm staff.txt
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ rm student.txt
 :s20222066@NOSLAB108:~
 cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/53$ cat >> teacher.txt
DEPARTMENT
Anupama - CS
Rajesh - EC
Manu - ME
Lena - CS
 Shekar - CE
 cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cp -n teacher.txt student.txt
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cat student.txt
 CS20222066@NOSLAB108:~/DC

CS20222066@NOSLAB108:~/DC

VAME ROLL_NO:

Aaliya 01

Bison 02

Anu 03
                                                                                       MARK
 NAME
Aaliya
Bison
                                                                                         45
47
 Vishaka
                                       04
                                                                                          42
                                                                                          39
 Salman
 cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cat teacher.txt
 Anupama
 Rajesh
 Manu
 Lena
Shekar
 DEPARTMENT
Anupama - CS
Rajesh - EC
 Manu - ME
Lena - CS
 Shekar - CE
 cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cat teacher.txt >> student.txt
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cat teacher.txt
 Anupama
 Rajesh
 Manu
 Lena
Shekar
 DEPARTMENT
Anupama - CS
Rajesh - EC
Manu - ME
Lena - CS
Shekar - CE

cs2022206660NOSLAB108:-/Desktop/MEENAKSHI_B2_62/COMPUTER_SCIENCE_AND_ENGINEERING/S3$ cd
cs2022206660NOSLAB108:-$ rm - d S3

rm: cannot remove 'S3': No such file or directory
cs202220660NOSLAB108:-$ ls -l
total 36

drwxr-xr-x 4 cs20222066 CS2022 4096 Jan 20 13:24 Desktop
drwxr-xr-x 2 cs20222066 CS2022 4096 Oct 22 13:10 Documents
drwxr-xr-x 2 cs20222066 CS2022 4096 Oct 22 13:10 Downloads
drwxr-xr-x 2 cs20222066 CS2022 4096 Oct 22 13:10 Music
drwxr-xr-x 3 cs20222066 CS2022 4096 Oct 22 13:10 Music
drwxr-xr-x 2 cs20222066 CS2022 4096 Oct 22 13:10 Public
drwxr-xr-x 2 cs20222066 CS2022 4096 Oct 22 13:10 Public
drwxr-xr-x 2 cs20222066 CS2022 4096 Oct 22 13:10 Vudeos
drwxr-xr-x 2 cs20222066 CS2022 4096 Oct 22 13:10 Videos
cs20222206660NOSLAB108:-$ cd Desktop/MEENAKSHI_B2_62
cs20222206660NOSLAB108:-> Desktop/MEENAKSHI_B2_62
total 4
 Shekar - CE
cs20222066@NOSLAB1US: //www.mosc.com/
total 4
drwxr-xr-x 4 cs20222066 CS2022 4096 Jan 20 13:26 COMPUTER_SCIENCE_AND_ENGINEERING
cs20222066@NOSLAB108: //Desktop/MEENAKSHI_82_62$ rm -d COMPUTER_SCIENCE_AND_ENIGINEERING
rm: cannot remove 'COMPUTER_SCIENCE_AND_ENIGINEERING': No such file or directory
cs20222066@NOSLAB108: -/Desktop/MEENAKSHI_82_62$ rm -d *
rm: cannot remove 'COMPUTER_SCIENCE_AND_ENGINEERING': Directory not empty
cs20222066@NOSLAB108: -/Desktop/MEENAKSHI_B2_62$ rm -r *
```

#### **EXP 3: SHELL PROGRAMS**

**AIM:** To write programs in shell script to do the following:

# (a) Perform basic arithmetic operations:

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit arithmetic.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x arithmetic.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI B2_62$ ./arithmetic.sh
Enter 2 numbers(space-separated):
5 6
Enter operator(1:+,2:-,3:*,4:/):
1
Sum: 11
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./arithmetic.sh
Enter 2 numbers(space-separated):
5 6
Enter operator(1:+,2:-,3:*,4:/):
2
Difference:-1
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI B2 62$ ./arithmetic.sh
Enter 2 numbers(space-separated):
Enter operator(1:+,2:-,3:*,4:/):
Product:30
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./arithmetic.sh
Enter 2 numbers(space-separated):
6 5
Enter operator(1:+,2:-,3:*,4:/):
Quotient:1
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./arithmetic.sh
Enter 2 numbers(space-separated):
Enter operator(1:+,2:-,3:*,4:/):
Division not possible!
```

# (b) Find Largest of 3 numbers

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit large3.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x large3.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./large3.sh
Enter 3 numbers(space-separated):
65 8 9
65 is the largest
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./large3.sh
Enter 3 numbers(space-separated):
8 65 7
65 is the largest
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./large3.sh
Enter 3 numbers(space-separated):
45 32 61
61 is the largest
```

# (c) Swap Two Numbers

```
echo "Enter 2 numbers(space-separated):"
read a b
echo "Before swapping:a=$a, b=$b"
temp=$a
a=$b
b=$temp
echo "After swapping:a=$a, b=$b"
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit swap.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x swap.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./swap.sh
Enter 2 numbers(space-separated):
45 36
Before swapping:a=45, b=36
After swapping:a=36, b=45
```

# (d) Check Even/Odd

```
echo "Enter a number:"
read num
if [\$((num\%2)) - eq 0]; then
     echo "$num is Even!"
else
     echo "$num is Odd!"
fi
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit evenodd.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x evenodd.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./evenodd.sh
Enter a number:
21
21 is Odd!
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI B2 62$ ./evenodd.sh
Enter a number:
36
```

#### (e) Find factorial of a Number

36 is Even!

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit factorial.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x factorial.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./factorial.sh
Enter a number:
5
Factorial of 5 :120
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./factorial.sh
Enter a number:
0
Factorial of 0 :1
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./factorial.sh
Enter a number:
6
Factorial of 6 :720
```

# (f) Check Prime/Not

```
echo "Enter a number:"
read num
is_prime=1
for ((i=2; i*i <= num; i++)); do
      if [\$((num\%i)) - eq 0]; then
            is_prime=0
            break
      fi
done
if [ $num -lt 2 ]; then
      is_prime=0
fi
if [$is_prime -eq 1]; then
      echo "$num is Prime"
else
      echo "$num is Not Prime"
fi
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit prime.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x prime.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./prime.sh
Enter a number:
13
13 is Prime
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./prime.sh
Enter a number:
6 is Not Prime
```

# (g) Find Sum of Digits

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit sum.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x sum.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./sum.sh
Enter a number:
256
Sum of digits of 256:13
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./sum.sh
Enter a number:
65
Sum of digits of 65:11
```

# (h) Display Fibonacci Series

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit fibonacci.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x fibonacci.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./fibonacci.sh
Enter the number of terms:
10
Fibonacci Series of 10 terms:
0 1 1 2 3 5 8 13 21 34
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./fibonacci.sh
Enter the number of terms:
5
Fibonacci Series of 5 terms:
0 1 1 2 3
```

# (i) Check Palindrome/Not in a Number

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit palindnum.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x palindnum.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./palindnum.sh
Enter a number:
151
151 is a Palindrome!
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./palindnum.sh
Enter a number:
253
253 is Not a Palindrome!
```

# (j) Sort a Given Array of Numbers:

```
echo "Enter the array elements(space-separated):"
read -a arr
n=${#arr[@]}
for ((i=0;i< n;i++)); do
      for ((j=0;j< n-i-1;j++)); do
            if [ ${arr[j]} -gt ${arr[j+1]} ]; then
                  temp=${arr[j]}
                  arr[i] = \{arr[i+1]\}
                  arr[i+1]=\$temp
            fi
      done
done
echo "Sorted array: ${arr[@]}"
  cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit sortarray.sh
  cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x sortarray.sh
  cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./sortarray.sh
  Enter the array elements(space-separated):
  45 2 15 68 32 45 78 12
  Sorted array: 2 12 15 32 45 45 68 78
```

# (k) Reverse a string

```
echo "Enter a string:"
read str
echo "Reversed String:$(echo $str|rev)"
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit revstring.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x revstring.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./revstring.sh
Enter a string:
Lion
Reversed String:noiL
```

# (l) Concatenate Two Strings

```
echo "Enter first string:"
read str1
echo "Enter second string:"
read str2
concat="$str1$str2"
echo "Concatenated string:$concat"
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit concatstr.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x concatstr.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./concatstr.sh
Enter first string:
Computer
Enter second string:
Science
Concatenated string:ComputerScience
```

#### (m) Count occurence of a character in a string

```
echo "Enter a string:"
read str
echo "Enter a character to count:"
read char
count=$(echo -n "$str"|grep -o "$char"|wc -l)
echo "Occurences of '$char':$count"
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit substrpos.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./charoccur.sh
Enter a string:
malAyalam
Enter a character to count:
a
Occurences of 'a':4
```

#### (n) Count occurence of a word in a file

```
echo "Enter the word to count:"
read word
echo "Enter the filename:"
read file
count=$(grep -iow $word $file |wc -l)
echo "Occurance of '$word' in $file:$count"
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./wordoccurfile.sh
Enter the word to count:
App
Enter the filename:
wordoccurfile.txt
Occurance of 'App' in wordoccurfile.txt:2
```

# (o) Check if two strings are equal

```
echo "Enter first string:"
read str1
echo "Enter second string:"
read str2
if [ "$str1" = "$str2" ]; then
echo "Strings are equal"
```

```
else
echo "Strings are not equal"
fi
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit strequal.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./strequal.sh
Enter first string:
Scool
Enter second string:
School
Strings are not equal
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./strequal.sh
Enter first string:
School
Enter second string:
School
Strings are equal
```

#### (p)Convert a string to uppercase

```
echo "Enter a string:"
read str
upper="${str^^}"
echo "Uppercase:"$upper
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit strupper.sh cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./strupper.sh Enter a string:
Melisa
Uppercase:MELISA
```

# (q) Replace a substring

```
echo "Enter original string:"
read str
echo "Enter substring to replace:"
read old
echo "Enter the new substring:"
read new
echo "Modified string:$(echo $str | sed "s/$old/$new/g")"
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./replstr.sh
Enter original string:
computer science
Enter substring to replace:
science
Enter the new substring:
engineer
Modified string:computer engineer
```

# (r) Check if a string is palindrome

echo "Enter a string:"

cs20222066@NOSLAB108:~/Desktop/MEENAKSHI\_B2\_62\$ ./palindstr.sh

# (s) Remove leading and trailing white spaces

```
echo "Enter string with spaces:"
read str
trimmed=$(echo "$str"|sed 's/^ *//; s/ *$//')
echo "Trimmed string:'$trimmed'"
```

a string:

Not Palindrome

liva

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit remleadtrailsp.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x remleadtrailsp.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./remleadtrailsp.sh
Enter string with spaces:
    Melisa
Trimmed string:'Melisa'
```

# (t) Find the position of a substring in a string

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit substrpos.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ chmod +x substrpos.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./substrpos.sh
Enter main string:
Computer
Enter substring to find:
mpu
Substring found at position:3
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./substrpos.sh
Enter main string:
Computer
Enter substring to find:
all
Substring not found
```

# EXP 4: PROCESS CREATION USING fork() SYSTEM CALL

**AIM:** To familiarize the fork() and getpid() system calls.

# **PROGRAM**

```
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
int main()
{
   int p=fork();
   if (p<0)
   {
      printf("Process creation failed\n");
   }
   else if (p==0)
   {
      printf("Child process created:%d\n",getpid());
   }
   else
   {
      printf("Parent process created:%d\n",getppid());
   }
   return(0);
}</pre>
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit procrefork.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc procrefork.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Parent process created:2898
Child process created:3123
```

# EXP 5: FAMILIARIZATION OF wait() & sleep() SYSTEM CALLS

**AIM:** To familiarise the wait() and sleep() system calls.

# **PROGRAM**

```
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
int main()
{
   int p=fork();
   if (p<0)
   {
      printf("Process creation failed\n");
   }
   else if (p==0)
   {
      sleep(5);
      printf("Child process is sleeping\n");
   }
   else
   {
      wait(NULL);
      printf("Parent process waiting\n");
   }
}</pre>
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit prowaitseek.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc prowaitseek.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Child process is sleeping
Parent process waiting
```

# **EXP 6: FAMILIARIZATION OF execl() SYSTEM CALL**

**AIM:** To familiarise with execl() system calls for

- (i) listing the running processes
- (ii) listing the files

#### **PROGRAM 1**

```
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
int main()
{
   execl("/bin/ps","ps",NULL);
   return(0);
}
```

#### **OUTPUT**

```
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
int main()
{
   execlp("ls","ls","-l",NULL);
   return(0);
}
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit proexec.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit proexeclp.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc proexeclp.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI B2 62$ ./a.out
total 1292
-rwxr-xr-x 1 cs20222066 CS2022
                                 15968 Feb 24 13:23 a.out
                                   313 Jan 27 13:59 arithmetic.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                   160 Feb 10 15:14 charoccur.sh
-rwxr-xr-x 1 cs20222066 CS2022
-rwxr-xr-x 1 cs20222066 CS2022
                                  130 Feb 10 13:12 concatstr.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                  113 Jan 27 13:58 evenodd.sh
-rw-r--r-- 1 cs20222066 CS2022
                                  3223 Jan 20 15:45 Exp 1C.txt
-rwxr-xr-x 1 cs20222066 CS2022
                                  149 Jan 27 14:02 factorial.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                   165 Jan 27 14:14 fibonacci.sh
                                   203 Jan 27 13:59 large3.sh
-rwxr-xr-x 1 cs20222066 CS2022
-rw-r--r-- 1 cs20222066 CS2022 1192719 Feb 10 15:31 OS FAIR.odt
                                   235 Jan 27 14:18 palindnum.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                   141 Feb 10 14:19 palindstr.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                  4096 Jan 27 14:39 PHOTOS
drwxr-xr-x 4 cs20222066 CS2022
-rwxr-xr-x 1 cs20222066 CS2022
                                   261 Jan 27 14:07 prime.sh
-rw-r--r-- 1 cs20222066 CS2022
                                   314 Feb 24 13:07 procrefork.c
-rw-r--r-- 1 cs20222066 CS2022
                                  140 Feb 24 13:19 proexec.c
-rw-r--r-- 1 cs20222066 CS2022
                                   141 Feb 24 13:23 proexeclp.c
                                   308 Feb 24 13:15 prowaitseek.c
-rw-r--r-- 1 cs20222066 CS2022
-rwxr-xr-x 1 cs20222066 CS2022
                                   121 Feb 10 14:22 remleadtrailsp.sh
                                   182 Feb 10 14:09 replstr.sh
-rwxr-xr-x 1 cs20222066 CS2022
-rwxr-xr-x 1 cs20222066 CS2022
                                   72 Feb 10 13:10 revstring.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                   274 Jan 27 14:24 sortarray.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                   171 Feb 10 15:15 strequal.sh
                                   73 Feb 10 14:04 strupper.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                   213 Feb 10 14:25 substrpos.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                   169 Jan 27 14:10 sum.sh
-rwxr-xr-x 1 cs20222066 CS2022
-rwxr-xr-x 1 cs20222066 CS2022
                                  138 Jan 27 13:54 swap.sh
-rwxr-xr-x 1 cs20222066 CS2022
                                  161 Feb 10 15:15 wordoccurfile.sh
-rw-r--r-- 1 cs20222066 CS2022 97 Feb 10 15:15 wordoccurfile.txt
```

# EXP 8: COPY A FILE TO A NEW FILE USING SYSTEM CALLS

**AIM:** To write a C program to copy files to a new file using system calls

```
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
int main(int argc,char*argv[])
char c;
int fd1,fd2;
ssize_t readit;
if (argc > = 4)
 printf("Error");
else
 fd1=open(argv[1],O_RDONLY);
 if (fd1==-1)
 perror("Error!Cannot open fd1");
 return 0;
 fd2=open(argv[2],O_WRONLY|O_CREAT,0644);
 if (fd2==-1)
 perror("Error!Cannot open fd2");
 close(fd1);
 return 0;
 while ((readit=read(fd1,&c,1))>0)
  write(fd2,&c,1);
 printf("Copied");
 close(fd1);
 close(fd2);
 return 0;
}
```

```
arithmetic.sh
  Open ~
            F
                                                                  Save
                                                                         ≡
                                                                                   ×
                                   ~/Desktop/MEENAKSHI_B2_62
 1 echo "Enter 2 numbers(space-separated):"
 2 read a b
 3 zero=0
 4 echo "Enter operator(1:+,2:-,3:*,4:/):"
 5 read op
 6 case $op in
           1)echo "Sum:$((a+b))";;
 7
 8
           2)echo "Difference:$((a-b))";;
           3)echo "Product:$((a*b))";;
 9
10
           4)if [ $b -ne $zero ]; then
                   echo "Quotient:$((a/b))"
11
12
             else
13
                   echo "Division not possible!"
14
             fi
15 esac
```

# **EXP 9: COPY FILES IN REVERSE ORDER**

**AIM:** To write a C program to copy files in a reverse order to a new file using system calls

```
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
int main(int argc,char*argv[])
char c;
int fd1,fd2;
int i=0;
if (argc > = 4)
 printf("Error");
else
 fd1=open(argv[1],O_RDONLY);
 if (fd1 = -1)
 perror("Error!Cannot open fd1");
 exit(EXIT_FAILURE);
 fd2=open(argv[2],O_WRONLY|O_CREAT,0666);
 if (fd2==-1)
 perror("Error!Cannot open fd2");
 close(fd1);
 exit(EXIT_FAILURE);
 int start=lseek(fd1,0,SEEK_CUR);
 int end=lseek(fd1,0,SEEK_END);
 int restart=lseek(fd1,0-end,SEEK_CUR);
 char data[end];
 read(fd1,data,end);
 for (i=0;i < end;i++)
 write(fd2,&data[end-(i+1)],1);
 close(fd1);
 close(fd2);
 return 0;
```

```
arithmetic.sh
  Open ~
                                                                         \equiv
            J+1
                                                                  Save
                                                                                  ~/Desktop/MEENAKSHI_B2_62
 1 echo "Enter 2 numbers(space-separated):"
 2 read a b
 3 zero=0
4 echo "Enter operator(1:+,2:-,3:*,4:/):"
 5 read op
 6 case $op in
           1)echo "Sum:$((a+b))";;
7
           2)echo "Difference:$((a-b))";;
8
           3)echo "Product:$((a*b))";;
9
10
           4)if [ $b -ne $zero ]; then
                   echo "Quotient:$((a/b))"
11
12
             else
                   echo "Division not possible!"
13
             fi
14
15 esac
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gedit filcopyrev.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc filcopyrev.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out arithmetic.sh arithrevcopy.sh
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ cat arithrevcopy.sh
case
if
"!elbissop ton noisiviD" ohce
esle
"))b/a(($:tneitouQ" ohce
neht ;] orez$ en- b$ [ fi)4
;;"))b*a(($:tcudorP" ohce)3
;;"))b-a(($:ecnereffiD" ohce)2
;;"))b+a(($:muS" ohce)1
ni po$ esac
po daer
":)/:4,*:3,-:2,+:1(rotarepo retnE" ohce
0=огеz
b a daer
```

# **EXP 10: FCFS SCHEDULING ALGORITHM**

**AIM:** Implementing First Come First Serve(FCFS) process scheduling in C program and diplay details.

```
#include <stdio.h>
typedef struct
int pid,at,bt,ct,tat,wt;
} Process;
void sortByArrival(Process p[],int n)
for (int i=0; i< n-1; i++)
 for (int j=0; j< n-i-1; j++)
 if (p[j].at > p[j+1].at)
  Process temp=p[j];
  p[j]=p[j+1];
  p[j+1]=temp;
}
void FCFS(Process p[],int n)
sortByArrival(p,n);
int time=0;
printf("\nGantt Chart: ");
for (int i=0; i< n; i++)
 if (time <p[i].at) time=p[i].at;
 p[i].ct = time + p[i].bt;
 time=p[i].ct;
 printf("|P%d",p[i].pid);
printf("|n");
printf("\nPID\tAT\tBT\tCT\tTAT\tWT\n");
float totalTAT=0, totalWT=0;
for (int i=0; i<n;i++)
{
 p[i].tat=p[i].ct-p[i].at;
 p[i].wt=p[i].tat-p[i].bt;
 totalTAT+=p[i].tat;
 totalWT+=p[i].wt;
 printf("\nAverage TAT:%.2f", totalTAT/n);
printf("\nAverage WT:%.2f\n",totalWT/n);
```

```
int main()
{
  int n;
  printf("Enter number of processes:");
  scanf("%d",&n);
  Process p[n];
  for (int i=0; i<n; i++)
  {
    printf("Enter AT, BT for P%d: ",i+1);
    scanf("%d%d", &p[i].at, &p[i].bt);
    p[i].pid=i+1;
  }
  FCFS(p,n);
  return 0;
}</pre>
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc fcfsalgo.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter number of processes:3
Enter AT, BT for P1: 0 24
Enter AT, BT for P2: 0 3
Enter AT, BT for P3: 0 3
Gantt Chart: |P1|P2|P3|
PID
        AT
                         \mathsf{CT}
                                  TAT
                                          WT
                 ВТ
1
        0
                 24
                         24
                                  24
                                          0
2
        0
                 3
                         27
                                  27
                                           24
        0
                 3
                         30
                                  30
                                          27
Average TAT:27.00
Average WT:17.00
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc fcfsalgo.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter number of processes:4
Enter AT, BT for P1: 1 2
Enter AT, BT for P2: 2 1
Enter AT, BT for P3: 3 4
Enter AT, BT for P4: 4 5
Gantt Chart: |P1|P2|P3|P4|
PID
        AT
                 вт
                         \mathsf{CT}
                                  TAT
                                          WT
        1
                 2
                         3
                                  2
                                          0
2
        2
                 1
                         4
                                  2
                                          1
3
                 4
                         8
                                  5
        3
                                          1
4
        4
                 5
                         13
                                  9
                                          4
Average TAT:4.50
Average WT:1.50
```

# **EXP 11: SJF SCHEDULING ALGORITHM**

**AIM:** Implementing Shortest Job First(SJF) process scheduling in C program and diplay details.

```
#include <stdio.h>
#include inits.h>
typedef struct
int pid,at,bt,ct,tat,wt;
} Process;
void SJF(Process p[],int n)
int time=0,completed=0, minIndex;
printf("SJF");
printf("\nGantt Chart: ");
while (completed < n)
 int minBT=INT_MAX;
 minIndex=-1;
 for (int i=0;i<n;i++)
 if (p[i].at \le time \&\& p[i].ct == 0 \&\& p[i].bt < minBT)
  minBT=p[i].bt;
  minIndex=i;
 if (minIndex==-1)
 time++;
  continue;
 time+=p[minIndex].bt;
 p[minIndex].ct=time;
 completed++;
 printf("|P%d", p[minIndex].pid);
printf("|n");
printf("\nPID\tAT\tBT\tCT\tTAT\tWT\n");
float totalTAT=0, totalWT=0;
for (int i=0; i< n; i++)
 p[i].tat=p[i].ct-p[i].at;
 p[i].wt=p[i].tat-p[i].bt;
 totalTAT+=p[i].tat;
 totalWT+=p[i].wt;
```

```
printf("%d\t%d\t%d\t%d\t%d\t%d\n", p[i].pid, p[i].at, p[i].bt, p[i].ct, p[i].tat, p[i].wt);
}
printf("\nAverage TAT:%.2f", totalTAT/n);
printf("\nAverage WT:%.2f\n",totalWT/n);
}
int main()
{
    int n;
    printf("Enter number of processes:");
    scanf("%d",&n);
Process p[n];
    for (int i=0; i<n; i++)
    {
        printf("Enter AT, BT for P%d: ",i+1);
        scanf("%d%d", &p[i].at, &p[i].bt);
        p[i].pid=i+1;
    }
    SJF(p,n);
    return 0;
}</pre>
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc sjfalgo.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter number of processes:3
Enter AT, BT for P1: 0 5
Enter AT, BT for P2: 2 9
Enter AT, BT for P3: 1 3
Gantt Chart: |P1|P3|P2|
PID
         AT
                  вт
                           CT
                                    TAT
                                              WT
1
         0
                  5
                           5
                                     5
                                              0
2
                  9
         2
                                              6
                           17
                                    15
3
         1
                  3
                           8
                                     7
                                              4
Average TAT:9.00
Average WT:3.33
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter number of processes:5
Enter AT, BT for P1: 0 5
Enter AT, BT for P2: 2 9
Enter AT, BT for
                   P3:
Enter AT, BT for P4: 3 5
Enter AT, BT for P5: 2
Gantt Chart: |P1|P5|P3|P4|P2|
PID
         AT
                  вт
                           CT
                                    TAT
                                              WT
1
         0
                  5
                           5
                                     5
                                              0
2
                  9
                                              13
         2
                           24
                                    22
3
                  3
         1
                           10
                                    9
                                              б
4
         3
                  5
                           15
                                     12
                                              7
5
         2
                           7
                                     5
                                              3
Average TAT:10.60
Average WT:5.80
```

# **EXP 12: SRTF SCHEDULING ALGORITHM**

**AIM:** Implementing Shortest Remaining Time First(SRTF) process scheduling in C program and diplay details.

```
#include <stdio.h>
#include inits.h>
typedef struct
int pid,at,bt,ct,tat,wt,remaining_bt;
} Process;
void SRTF(Process p[],int n)
int time=0,completed=0,minIndex,minBT;
for (int i=0;i<n;i++)
 p[i].remaining_bt=p[i].bt;
printf("\nGantt Chart: ");
while (completed <n)
 minBT=INT MAX;
 minIndex=-1;
 for (int i=0;i< n;i++)
 if (p[i].at <= time && p[i].remaining_bt>0 && p[i].remaining_bt < minBT)
  minBT=p[i].remaining_bt;
  minIndex=i;
 if (minIndex==-1)
 time++;
 continue;
 printf("|P%d", p[minIndex].pid);
 p[minIndex].remaining_bt--;
 time++;
 if (p[minIndex].remaining_bt==0)
 p[minIndex].ct=time;
 completed++;
 }
printf("|n");
printf("\nPID\tAT\tBT\tCT\tTAT\tWT\n");
```

```
float totalTAT=0, totalWT=0;
for (int i=0; i< n; i++)
 p[i].tat=p[i].ct-p[i].at;
 p[i].wt=p[i].tat-p[i].bt;
 totalTAT+=p[i].tat;
 totalWT+=p[i].wt;
 printf("\nAverage TAT:%.2f", totalTAT/n);
printf("\nAverageWT:%.2f\n",totalWT/n);
int main()
int n;
printf("Enter number of processes:");
scanf("%d",&n);
Process p[n];
for (int i=0; i< n; i++)
 printf("Enter AT, BT for P%d: ",i+1);
 scanf("%d%d", &p[i].at, &p[i].bt);
 p[i].pid=i+1;
SRTF(p,n);
return 0;
```

```
|P1|P1|P2|P2|P3|P2|P2|P4|P4|P4|P4|P1|P1|P1|P1|P1|
                   вт
          0
                                                 9
                             7
5
                                       5
3
                                                 0
          4
Average TAT:7.00
AverageWT:3.00
   20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
       number
               of
                   processes:4
                    P1: 1
P2: 4
       AT, BT
               for
       AT,
               for
           вт
                for
            вт
            вт
               |P1|P4|P4|P4|P2|P2|P2|P3|P3|P3|P3|P3|
Gantt Chart:
                   вт
1
2
3
                             2
8
                                                 0
          1
4
                                                 1
5
0
                   3
         3
                   5
                                       10
         2
Average TAT:4.50
AverageWT:1.50
```

# **EXP 13: RR SCHEDULING ALGORITHM**

**AIM:** Implementing Round Robin(RR) process scheduling in C program and diplay details.

```
#include <stdio.h>
#include <stdbool.h>
void queueUpdation(int queue[], int timer, int arrival[], int n, int maxProccessIndex) {
  int zeroIndex;
  for (int i = 0; i < n; i++) {
     if (queue[i] == 0) {
       zeroIndex = i;
       break;
     }
  queue[zeroIndex] = maxProccessIndex + 1;
}
void queueMaintainence(int queue[], int n) {
  for (int i = 0; (i < n - 1) && (queue[i + 1] != 0); i++) {
     int temp = queue[i];
     queue[i] = queue[i + 1];
     queue[i + 1] = temp;
  }
}
void checkNewArrival(int timer, int arrival[], int n, int *maxProccessIndex, int queue[]) {
  if (timer \le arrival[n - 1]) {
     bool newArrival = false;
     for (int j = (*maxProccessIndex + 1); j < n; j++) {
       if (arrival[j] <= timer) {</pre>
          if (*maxProccessIndex < j) {
             *maxProccessIndex = j;
            newArrival = true;
          }
        }
     if (newArrival)
       queueUpdation(queue, timer, arrival, n, *maxProccessIndex);
}
void printGanttChart(int process[], int startTime[], int endTime[], int count) {
  printf("\nGantt Chart:\n");
  for (int i = 0; i < count; i++) {
     if (startTime[i] != endTime[i]) {
```

```
printf("| P%d ", process[i]);
     }
  printf("|");
  printf("\n%d", startTime[0]);
  for (int i = 0; i < count; i++) {
     if (startTime[i] != endTime[i]) {
       printf("\t%d", endTime[i]);
     }
  printf("\n");
int main() {
  int n, tq, timer = 0, maxProccessIndex = 0;
  float avgWait = 0, avgTT = 0;
  printf("\nEnter the time quanta: ");
  scanf("%d", &tq);
  printf("\nEnter the number of processes: ");
  scanf("%d", &n);
  int arrival[n], burst[n], wait[n], turn[n], queue[n], temp_burst[n];
  bool complete[n];
  printf("\nEnter the arrival time of the processes: ");
  for (int i = 0; i < n; i++)
     scanf("%d", &arrival[i]);
  printf("\nEnter the burst time of the processes: ");
  for (int i = 0; i < n; i++) {
     scanf("%d", &burst[i]);
     temp_burst[i] = burst[i];
  }
  for (int i = 0; i < n; i++) {
     complete[i] = false;
     queue[i] = 0;
  }
  int process[1000], startTime[1000], endTime[1000], count = 0;
  while (timer < arrival[0])
     timer++;
  queue[0] = 1;
  while (1) {
     bool flag = true;
     for (int i = 0; i < n; i++) {
       if (temp\_burst[i] != 0) {
          flag = false;
```

```
break;
     }
  if (flag)
     break;
  for (int i = 0; (i < n) && (queue[i] != 0); i++) {
     int ctr = 0;
     int start = timer;
     while ((ctr < tq) \&\& (temp\_burst[queue[0] - 1] > 0)) {
       temp_burst[queue[0] - 1] -= 1;
       timer += 1;
       ctr++;
       checkNewArrival(timer, arrival, n, &maxProccessIndex, queue);
     }
     process[count] = queue[0];
     startTime[count] = start;
     endTime[count] = timer;
     count++;
     if ((temp\_burst[queue[0] - 1] == 0) && (complete[queue[0] - 1] == false)) {
       turn[queue[0] - 1] = timer;
       complete[queue[0] - 1] = true;
     bool idle = true;
     if (queue[n - 1] == 0) {
       for (int i = 0; i < n && queue[i] != 0; i++) {
          if (complete[queue[i] - 1] == false) {
            idle = false;
       }
     } else
       idle = false;
     if (idle) {
       timer++;
       checkNewArrival(timer, arrival, n, &maxProccessIndex, queue);
     queueMaintainence(queue, n);
for (int i = 0; i < n; i++) {
  turn[i] = turn[i] - arrival[i];
  wait[i] = turn[i] - burst[i];
```

}

}

```
for (int i = 0; i < n; i++) {
    printf("%d\t\t%d\t\t%d\t\t%d\t\t%d\n", i + 1, arrival[i], burst[i], wait[i], turn[i]);
}

for (int i = 0; i < n; i++) {
    avgWait += wait[i];
    avgTT += turn[i];
}

printf("\nAverage wait time: %.2f\nAverage Turn Around Time: %.2f\n", (avgWait / n), (avgTT / n));

printGanttChart(process, startTime, endTime, count);

return 0;
}</pre>
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc rralgo.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter the time quanta: 2
Enter the number of processes: 4
Enter the arrival time of the processes: 0 1 3 5
Enter the burst time of the processes: 3 3 2 4
Program No.
                Arrival Time
                                 Burst Time
                                                 Wait Time
                                                                  TurnAround Time
                                 3
                                                 4
                1
3
                                 2
                                                 2
                                                                  4
                3
                5
                                 4
                                                 3
Average wait time: 2.75
Average Turn Around Time: 5.75
Gantt Chart:
| P1 | P2 | P1 | P3 | P2 | P4 | P4 |
                                                          12
        2
                                                 10
```

# **EXP 14: PRIORITY SCHEDULING ALGORITHM**

**AIM:** Implementing Priority Scheduling(Both Preemptive & Non-Preemptive) process scheduling in C program and diplay details.

#### **PROGRAM**

#### **PREEMPTIVE:**

```
#include <stdio.h>
#include inits.h>
#include <stdbool.h>
struct process
  int pid, arrtime, burtime, remtime, comtime, waitime, turtime, priority;
};
void sortp(struct process p[], int n)
  for (int i = 0; i < n - 1; i++)
     for (int j = 0; j < n - i - 1; j++)
       if (p[j].arrtime > p[j + 1].arrtime)
          struct process temp = p[j];
          p[j] = p[j + 1];
          p[j + 1] = temp;
     }
}
void calc(struct process p[], int n, bool smallerIsHigher)
  int curtime = 0, complete = 0;
  int lastp = -1;
  printf("\nGantt Chart:\n|");
  int timestamps[1000];
  int tsIndex = 0;
  while (complete < n)
     int min = -1;
     int hpriority = smallerIsHigher ? INT_MAX : INT_MIN;
     for (int i = 0; i < n; i++)
```

```
if (p[i].remtime > 0 && p[i].arrtime <= curtime)
          if ((smallerIsHigher && p[i].priority < hpriority) || (!smallerIsHigher && p[i].priority >
hpriority))
            min = i;
            hpriority = p[i].priority;
       }
     }
     if (min == -1)
       curtime++;
       continue;
     if (p[min].pid != lastp)
       printf(" P%d |", p[min].pid);
       timestamps[tsIndex++] = curtime;
       lastp = p[min].pid;
     }
     p[min].remtime--;
     curtime++;
     if (p[min].remtime == 0)
       p[min].comtime = curtime;
       p[min].turtime = p[min].comtime - p[min].arrtime;
       p[min].waitime = p[min].turtime - p[min].burtime;
       complete++;
  timestamps[tsIndex++] = curtime;
  printf("\n");
  printf(" ");
  for (int i = 0; i < tsIndex; i++)
     printf("%d ", timestamps[i]);
     if (i < tsIndex - 1)
       printf(" ");
  printf("\n");
void disp(struct process p[], int n)
  float waitavg = 0, turnavg = 0;
```

```
printf("\nPID\tArrival\tBurst\tPriority\tCompletion\tTurnaround\tWaiting\n");
  for (int i = 0; i < n; i++)
    p[i].pid, p[i].arrtime, p[i].burtime, p[i].priority, p[i].comtime, p[i].turtime, p[i].waitime);
    waitavg += p[i].waitime;
    turnavg += p[i].turtime;
  printf("\nAverage Turnaround Time: %.2f\n", turnavg / n);
  printf("Average Waiting Time: %.2f\n", waitavg / n);
}
int main()
  int n, choice;
  printf("PREEMPTIVE PRIORITY SCHEDULING\n");
  printf("Enter the number of processes: ");
  scanf("%d", &n);
  struct process p[n];
  for (int i = 0; i < n; i++)
    printf("Arrival time for Process %d: ", i + 1);
    scanf("%d", &p[i].arrtime);
    printf("Burst time for Process %d: ", i + 1);
    scanf("%d", &p[i].burtime);
    printf("Priority for Process %d: ", i + 1);
    scanf("%d", &p[i].priority);
    p[i].pid = i + 1;
    p[i].remtime = p[i].burtime;
  }
  printf("\nChoose Priority Type:\n1. Smaller number = Higher Priority\n2. Larger number =
Higher Priority\nEnter choice: ");
  scanf("%d", &choice);
  bool smallerIsHigher = (choice == 1);
  sortp(p, n);
  calc(p, n, smallerIsHigher);
  disp(p, n);
  return 0;
}
NON-PREEMPTIVE:
#include <stdio.h>
struct Process {
```

```
int id;
  int arrivalTime;
  int burstTime;
  int priority;
  int completionTime;
  int turnaroundTime;
  int waitingTime;
};
void calculateTimes(struct Process p[], int n, int isHigherPriorityBetter) {
  int currentTime = 0, completed = 0;
  int isCompleted[n];
  for (int i = 0; i < n; i++) {
     isCompleted[i] = 0;
  printf("\nGantt Chart: \n");
  while (completed != n) {
     int bestPriority = isHigherPriorityBetter? -1: 1e9, index = -1;
     for (int i = 0; i < n; i++) {
       if (p[i].arrivalTime <= currentTime && !isCompleted[i]) {
          if ((isHigherPriorityBetter && p[i].priority > bestPriority) ||
            (!isHigherPriorityBetter && p[i].priority < bestPriority)) {
            bestPriority = p[i].priority;
            index = i;
          }
     }
     if (index == -1) {
       currentTime++;
     } else {
       printf("| P%d (%d) ", p[index].id, currentTime);
       currentTime += p[index].burstTime;
       p[index].completionTime = currentTime;
       p[index].turnaroundTime = p[index].completionTime - p[index].arrivalTime;
       p[index].waitingTime = p[index].turnaroundTime - p[index].burstTime;
       isCompleted[index] = 1;
       completed++;
  printf("| (%d)\n", currentTime);
void displayResults(struct Process p[], int n) {
  float totalTurnaroundTime = 0, totalWaitingTime = 0;
  printf("\nProcess\tArrival Time\tBurst Time\tPriority\tCompletion Time\tTurnaround Time\t
Waiting Time\n");
```

```
for (int i = 0; i < n; i++) {
     printf("P%d\t\t%d\t\t%d\t\t%d\t\t%d\t\t%d\t\t%d\t\thm", p[i].id, p[i].arrivalTime,
p[i].burstTime, p[i].priority, p[i].completionTime, p[i].turnaroundTime, p[i].waitingTime);
     totalTurnaroundTime += p[i].turnaroundTime;
     totalWaitingTime += p[i].waitingTime;
  }
  printf("\nAverage Turnaround Time: %.2f", totalTurnaroundTime / n);
  printf("\nAverage Waiting Time: %.2f\n", totalWaitingTime / n);
int main() {
  int n, isHigherPriorityBetter;
  printf("Enter number of processes: ");
  scanf("%d", &n);
  printf("Enter 1 if larger numbers have higher priority, or 0 if smaller numbers have higher
priority: ");
  scanf("%d", &isHigherPriorityBetter);
  struct Process p[n];
  for (int i = 0; i < n; i++) {
     p[i].id = i + 1;
     printf("Enter Arrival Time, Burst Time, and Priority for Process %d: ", i + 1);
     scanf("%d %d %d", &p[i].arrivalTime, &p[i].burstTime, &p[i].priority);
  calculateTimes(p, n, isHigherPriorityBetter);
  displayResults(p, n);
  return 0;
```

```
gcc priornonpre.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter number of processes: 4
Enter 1 if larger numbers have higher priority, or 0 if smaller numbers have higher priority: 0
Enter Arrival Time, Burst Time, and Priority for Process 1: 0 4 3
Enter Arrival Time, Burst Time, and Priority for Process 2: 1 2 2
Enter Arrival Time, Burst Time, and Priority for Process 3:
Enter Arrival Time, Burst Time, and Priority for Process 4: 4 2
Gantt Chart:
| P1 (0) | P4 (4) | P2 (6) | P3 (8) | (11)
Process Arrival Time
                        Burst Time
                                        Priority
                                                         Completion Time Turnaround Time
                                                                                                  0
                                                                 4
P2
                                2
                                                                 8
                                                                                                  5
Р3
                                                                 11
Average Turnaround Time: 5.50
Average Waiting Time: 2.75
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc priorpre.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
PREEMPTIVE PRIORITY SCHEDULING
Enter the number of processes: 4
Arrival time for Process 1: 0
Burst time for Process 1: 4
Priority for Process 1: 3
Arrival time for Process 2: 1
Burst time for Process 2: 2
Priority for Process 2: 2
Arrival time for Process 3: 2
Burst time for Process 3: 3
Priority for Process 3: 4
Arrival time for Process 4: 4
Burst time for Process 4: 2
Priority for Process 4: 1
Choose Priority Type:

    Smaller number = Higher Priority
    Larger number = Higher Priority
    Enter choice: 1

Gantt Chart:
| P1 | P2 | P1 | P4 | P1 | P3 |
0 1 3 4 6 8 11
                                                                                                               Waiting
PID
            Arrival Burst Priority
                                                             Completion
                                                                                      Turnaround
1
2
3
4
            1
                                     2
                                                                                      2
                                                                                                               0
                                                              11
                                     4
                                                                                                               0
Average Turnaround Time: 5.25
Average Waiting Time: 2.50
```

## **EXP 15: FIFO PAGE REPLACEMENT ALGORITHM**

**AIM:** Implementing First In First Out(FIFO) page replacement algorithm in C program and display details.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int *queue, front = -1, rear = -1, SIZE, pageFaults = 0, totalInputs = 0;
int isEmpty() {
  return front == -1;
}
int isFull() {
  return (rear + 1) % SIZE == front;
}
int exists(int value) {
  if (isEmpty()) return 0;
  for (int i = \text{front}; ; i = (i + 1) \% \text{ SIZE}) {
     if (queue[i] == value) {
        return 1;
     if (i == rear) break;
  return 0;
void enqueue(int value) {
  totalInputs++;
  if (exists(value)) {
     return;
  pageFaults++;
  if (isFull()) {
     front = (front + 1) % SIZE;
  if (isEmpty()) {
     front = rear = 0;
   } else {
     rear = (rear + 1) \% SIZE;
  queue[rear] = value;
```

```
void display() {
  if (isEmpty()) {
     printf("Queue is empty!\n");
     return;
  printf("Final Queue: ");
  for (int i = \text{front}; ; i = (i + 1) \% \text{ SIZE}) {
     printf("%d ", queue[i]);
     if (i == rear) break;
  printf("\n");
}
int main() {
  printf("Enter the frame size of the queue: ");
  scanf("%d", &SIZE);
  queue = (int *)malloc(SIZE * sizeof(int));
  if (queue == NULL) {
     printf("Memory allocation failed!\n");
     return 1;
  }
  printf("Enter page reference values separated by spaces (press ENTER to finish): ");
  while (getchar() != '\n');
  char input[1024];
  fgets(input, sizeof(input), stdin);
  char *token = strtok(input, " ");
  while (token != NULL) {
     int value = atoi(token);
     enqueue(value);
     token = strtok(NULL, " ");
  }
  display();
  printf("Total Page Faults: %d\n", pageFaults);
  if (totalInputs > 0) {
     float hitRatio = (float)(totalInputs - pageFaults) / totalInputs;
     float missRatio = (float)pageFaults / totalInputs;
     printf("Hit Ratio: %.2f\n", hitRatio);
     printf("Miss Ratio: %.2f\n", missRatio);
  free(queue);
  return 0;
```

}

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc fifopage.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter the frame size of the queue: 4
Enter page reference values separated by spaces (press ENTER to finish): 0 1 2 3 0 2 4 0 4 2 0 5 4 0 1
Final Queue: 4 0 5 1
Total Page Faults: 8
Hit Ratio: 0.47
Miss Ratio: 0.53
```

### **EXP 16: OPR PAGE REPLACEMENT ALGORITHM**

**AIM:** Implementing Optical Page Replacement(OPR) in C program and display details.

```
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
int *pageReferences, *pageFrames, *usage;
int NUM_FRAMES, NUM_PAGES, pageFaults = 0, pageHits = 0, totalInputs = 0;
int findOptimalPage(int index) {
  int farthestIndex = -1, farthest = -1;
  for (int i = 0; i < NUM_FRAMES; i++) {
    int j;
    for (j = index; j < NUM\_PAGES; j++) \{
       if (pageFrames[i] == pageReferences[j]) {
         if (j > farthest) {
            farthest = j;
            farthestIndex = i;
         break;
    if (j == NUM\_PAGES) {
       return i;
  return (farthestIndex == -1) ? 0 : farthestIndex;
int exists(int value) {
  for (int i = 0; i < NUM_FRAMES; i++) {
    if (pageFrames[i] == value) {
       usage[i] = totalInputs;
       return i;
     }
  return -1;
}
void processPages() {
  for (int i = 0; i < NUM_PAGES; i++) {
    totalInputs++;
    int page = pageReferences[i];
```

```
int index = exists(page);
    if (index != -1) {
       pageHits++;
       continue;
     }
    pageFaults++;
    int replaceIndex = -1;
    for (int j = 0; j < NUM_FRAMES; j++) {
       if (pageFrames[j] == -1) {
         replaceIndex = i;
         break;
       }
     }
    if (replaceIndex == -1) {
       replaceIndex = findOptimalPage(i + 1);
    pageFrames[replaceIndex] = page;
    usage[replaceIndex] = totalInputs;
  }
}
void displayResults() {
  printf("Final Frames: ");
  for (int i = 0; i < NUM FRAMES; i++) {
    printf("%d ", pageFrames[i]);
  printf("\nTotal Page Faults: %d\n", pageFaults);
  float hitRatio = (float)pageHits / totalInputs;
  float missRatio = (float)pageFaults / totalInputs;
  printf("Hit Ratio: %.2f\nMiss Ratio: %.2f\n", hitRatio, missRatio);
}
int main() {
  printf("Enter the frame size: ");
  scanf("%d", &NUM FRAMES);
  printf("Enter the number of pages: ");
  scanf("%d", &NUM_PAGES);
  pageReferences = malloc(NUM_PAGES * sizeof(int));
  pageFrames = malloc(NUM_FRAMES * sizeof(int));
  usage = malloc(NUM_FRAMES * sizeof(int));
  if (!pageReferences || !pageFrames || !usage) {
    printf("Memory allocation failed!\n");
    return 1;
  memset(pageFrames, -1, NUM_FRAMES * sizeof(int));
  printf("Enter the page reference string (space-separated): ");
```

```
for (int i = 0; i < NUM_PAGES; i++) {
    scanf("%d", &pageReferences[i]);
}

processPages();
displayResults();

free(pageReferences);
free(pageFrames);
free(usage);
return 0;
}</pre>
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc oprpage.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter the frame size: 4
Enter the number of pages: 15
Enter the page reference string (space-separated): 0 1 2 3 0 2 4 0 4 2 0 5 4 0 1
Final Frames: 0 1 5 4
Total Page Faults: 6
Hit Ratio: 0.60
Miss Ratio: 0.40
```

## **EXP 17: LRU PAGE REPLACEMENT ALGORITHM**

**AIM:** Implementing Least Recently Used(LRU) page replacement in C program and display details.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int *queue, *usage, SIZE, pageFaults = 0, totalInputs = 0, count = 0;
int isFull() {
  return count == SIZE;
}
int isEmpty() {
  return count == 0;
}
int findLRU() {
  int lruIndex = 0, minUsage = usage[0];
  for (int i = 1; i < count; i++) {
     if (usage[i] < minUsage) {</pre>
       minUsage = usage[i];
       lruIndex = i;
     }
  return lruIndex;
}
int exists(int value) {
  for (int i = 0; i < count; i++) {
     if (queue[i] == value) {
       usage[i] = totalInputs;
       return i;
     }
  return -1;
}
void enqueue(int value) {
  totalInputs++;
```

```
int index = exists(value);
  if (index != -1) {
     return;
  pageFaults++;
  if (isFull()) {
     int lruIndex = findLRU();
     queue[lruIndex] = value;
     usage[lruIndex] = totalInputs;
     return;
  }
  queue[count] = value;
  usage[count] = totalInputs;
  count++;
}
void display() {
  if (isEmpty()) {
     printf("Queue is empty!\n");
     return;
  }
  printf("Final Queue: ");
  for (int i = 0; i < count; i++) {
     printf("%d ", queue[i]);
  printf("\n");
}
int main() {
  printf("Enter the frame size of the queue: ");
  scanf("%d", &SIZE);
  queue = (int *)malloc(SIZE * sizeof(int));
  usage = (int *)malloc(SIZE * sizeof(int));
  if (queue == NULL || usage == NULL) {
     printf("Memory allocation failed!\n");
     return 1;
  }
  printf("Enter page reference values separated by spaces (press ENTER to finish): ");
  while (getchar() != '\n');
  char input[1024];
  fgets(input, sizeof(input), stdin);
  char *token = strtok(input, " ");
  while (token != NULL) {
     int value = atoi(token);
     enqueue(value);
     token = strtok(NULL, " ");
```

```
display();
printf("Total Page Faults: %d\n", pageFaults);
if (totalInputs > 0) {
    float hitRatio = (float)(totalInputs - pageFaults) / totalInputs;
    float missRatio = (float)pageFaults / totalInputs;
    printf("Hit Ratio: %.2f\n", hitRatio);
    printf("Miss Ratio: %.2f\n", missRatio);
}

free(queue);
free(queue);
free(usage);
return 0;
}
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc lrupage.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter the frame size of the queue: 4
Enter page reference values separated by spaces (press ENTER to finish): 0 1 2 3 0 2 4 0 4 2 0 5 4 0 1
Final Queue: 0 4 1 5
Total Page Faults: 7
Hit Ratio: 0.53
Miss Ratio: 0.47
```

## **EXP 18: MRU PAGE REPLACEMENT ALGORITHM**

**AIM:** Implementing Most Recently Used(MRU) page replacement in C program and display details.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int *queue, *timeStamp, front = -1, rear = -1, SIZE, pageFaults = 0, totalInputs = 0, currentTime =
0;
int isEmpty() {
  return front == -1;
}
int exists(int value) {
  if (isEmpty()) return -1;
  for (int i = \text{front}; ; i = (i + 1) \% \text{ SIZE}) {
     if (queue[i] == value) {
        return i;
     if (i == rear) break;
  return -1;
int findMRU() {
  int maxTime = -1, index = -1;
  for (int i = \text{front}; ; i = (i + 1) \% \text{ SIZE}) {
     if (timeStamp[i] > maxTime) {
        maxTime = timeStamp[i];
        index = i;
     if (i == rear) break;
  return index;
}
void enqueue(int value) {
  totalInputs++;
  int index = exists(value);
```

```
if (index != -1) {
     timeStamp[index] = currentTime++;
     return;
  }
  pageFaults++;
  if (isEmpty()) {
     front = rear = 0;
  } else if ((rear + 1) \% SIZE == front) {
     int mruIndex = findMRU();
     queue[mruIndex] = value;
     timeStamp[mruIndex] = currentTime++;
     return;
  } else {
     rear = (rear + 1) \% SIZE;
  queue[rear] = value;
  timeStamp[rear] = currentTime++;
}
void display() {
  if (isEmpty()) {
     printf("Queue is empty!\n");
     return;
  printf("Final Queue: ");
  for (int i = \text{front}; ; i = (i + 1) \% \text{ SIZE}) {
     printf("%d ", queue[i]);
     if (i == rear) break;
  printf("\n");
}
int main() {
  printf("Enter the frame size of the queue: ");
  scanf("%d", &SIZE);
  queue = (int *)malloc(SIZE * sizeof(int));
  timeStamp = (int *)malloc(SIZE * sizeof(int));
  if (queue == NULL || timeStamp == NULL) {
     printf("Memory allocation failed!\n");
     return 1;
  }
  printf("Enter page reference values separated by spaces (press ENTER to finish): ");
  while (getchar() != '\n'); // Clear input buffer
  char input[1024];
  fgets(input, sizeof(input), stdin);
  char *token = strtok(input, " ");
```

```
while (token != NULL) {
    int value = atoi(token);
    enqueue(value);
    token = strtok(NULL, " ");
  }
  display();
  printf("Total Page Faults: %d\n", pageFaults);
  if (totalInputs > 0) {
    float hitRatio = (float)(totalInputs - pageFaults) / totalInputs;
    float missRatio = (float)pageFaults / totalInputs;
    printf("Hit Ratio: %.2f\n", hitRatio);
    printf("Miss Ratio: %.2f\n", missRatio);
  }
  free(queue);
  free(timeStamp);
  return 0;
}
```

```
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ gcc mrupage.c
cs20222066@NOSLAB108:~/Desktop/MEENAKSHI_B2_62$ ./a.out
Enter the frame size of the queue: 4
Enter page reference values separated by spaces (press ENTER to finish): 0 1 2 3 0 2 4 0 4 2 0 5 4 0 1
Final Queue: 0 1 2 3
Total Page Faults: 9
Hit Ratio: 0.40
Miss Ratio: 0.60
```