Lecture 4: Data-Flow Analysis & Abstract Interpretation Framework

17-355/17-655/17-819: Program Analysis
Rohan Padhye
Jan 27, 2022

* Course materials developed with Jonathan Aldrich Claire Le Goues

Administrivia

- HW1 is due tonight
- Recitation 2 (tomorrow) and HW2 is on semantics
 - Make sure to read through text. Feel free to use Piazza

Review: Zero Analysis with Branching

```
1: if x = 0 goto 4
```

2: y := 0

3: goto 6

4: y := 1

5: x := 1

6: z := y

	x	y	\mathbf{Z}
P1	?	?	?
P2	Z_T, N_F	?	?
P3	N	\boldsymbol{Z}	?
P4	N	\mathbf{Z}	?
P5	Z	?	?
P6	Z	N	?
P7	N	Т	?
P8	N	Т	Т

Partial Order & Join on set L

```
l_1 \sqsubseteq l_2: l_1 is at least as precise as l_2 reflexive: \forall l: l \sqsubseteq l transitive: \forall l_1, l_2, l_3: l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_3 \Rightarrow l_1 \sqsubseteq l_3 anti-symmetric: \forall l_1, l_2: l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_1 \Rightarrow l_1 = l_2
```

 $l_1 \sqcup l_2$: **join** or *least-upper-bound*... "most precise generalization" L is a *join-semilattice* iff: $l_1 \sqcup l_2$ always exists and is unique $\forall l_1, l_2 \in L$ $\forall l_1 \in L$ $\forall l_2 \in L$ $\forall l_3 \in L$

Lattice for Zero Analysis

What would this look like?

Data-Flow Analysis

- a lattice (L, \sqsubseteq)
- an abstraction function α
- a flow function *f*
- initial dataflow analysis assumptions, σ_0

Example of Zero Analysis: Looping Code

1: x := 10

2: y := 0

3: if x=0 goto 7

4: y := 1

5: x := x - 1

6: goto 3

Example of Zero Analysis: Looping Code

1: x := 10

2: y := 0

3: if x=0 goto 7

4: y := 1

5: x := x - 1

6: goto 3

	x	y	
P0	Т	T	
P1	N	T	
P2	N	\mathbf{Z}	
P3	N	\boldsymbol{Z}	first time through
P4	N_F	\boldsymbol{Z}	
P5	N	N	
P6	Т	N	
P7	Т	N	
P8	Z_t	N	first time through
P9	N	N	first time through

Example of Zero Analysis: Looping Code

1: x := 10

2: y := 0

3: if x=0 goto 7

4: y := 1

5: x := x - 1

6: goto 3

	X	y	
P0	Т	Т	
P1	N	T	
P2	N	\boldsymbol{Z}	
P3	Т	Т	join
P4	N_F	Т	updated
P5	N	N	already at fixed point
P6	Т	N	already at fixed point
P7	Т	N	already at fixed point
P8	Z_T	Т	updated
P9	Т	Т	updated
,			

Fixed point of Flow Functions

1: x := 10

2: y := 0

3: if x=0 goto 7

4: y := 1

5: x := x - 1

6: goto 3

$$(\sigma_{0}, \sigma_{1}, \sigma_{2}, \dots, \sigma_{n}) \xrightarrow{f_{z}} (\sigma'_{0}, \sigma'_{1}, \sigma'_{2}, \dots, \sigma'_{n})$$

$$\sigma'_{0} = \sigma_{0}$$

$$\sigma'_{1} = f_{z} \llbracket x \coloneqq 10 \rrbracket (\sigma_{0})$$

$$\sigma'_{2} = f_{z} \llbracket y \coloneqq 0 \rrbracket (\sigma_{1})$$

$$\sigma'_{3} = \sigma_{2} \sqcup \sigma_{7}$$

$$\sigma'_{4} = f_{z} \llbracket \text{if } x = 10 \text{ goto } 7 \rrbracket_{F}(\sigma_{3})$$

$$\vdots$$

$$\sigma'_{8} = f_{z} \llbracket \text{if } x = 10 \text{ goto } 7 \rrbracket_{T}(\sigma_{3})$$

$$\sigma'_{9} = f_{z} \llbracket x \coloneqq y \rrbracket (\sigma_{8})$$

Fixed point of Flow Functions

Fixed point!

$$(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_n) = f_z(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_n)$$

Correctness theorem:

If data-flow analysis is well designed*, then any fixed point of the analysis is sound.

* we will define these properties and prove this theorem in two weeks!

$$(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_n) \xrightarrow{f_z} (\sigma'_0, \sigma'_1, \sigma'_2, \dots, \sigma'_n)$$

$$\sigma'_0 = \sigma_0$$

$$\sigma'_1 = f_z \llbracket x \coloneqq 10 \rrbracket (\sigma_0)$$

$$\sigma'_2 = f_z \llbracket y \coloneqq 0 \rrbracket (\sigma_1)$$

$$\sigma'_3 = \sigma_2 \sqcup \sigma_7$$

$$\sigma'_4 = f_z \llbracket \text{if } x = 10 \text{ goto } 7 \rrbracket_F (\sigma_3)$$

$$\vdots$$

$$\sigma'_8 = f_z \llbracket \text{if } x = 10 \text{ goto } 7 \rrbracket_T (\sigma_3)$$

 $\sigma'_9 = f_z [x := y](\sigma_8)$

 $(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_n) \xrightarrow{f_z} (\sigma'_0, \sigma'_1, \sigma'_2, \dots, \sigma'_n)$

Hold up! How do you

$$\sigma'_{0} = \sigma_{0}$$

$$\sigma'_{1} = f_{z}[x := 10](\sigma_{0})$$

$$\sigma'_{2} = f_{z}[y := 0](\sigma_{1})$$

$$\sigma'_{3} = \sigma_{2} \sqcup \sigma_{7}$$

$$\sigma'_{4} = f_{z}[if x = 10 \text{ goto } 7]_{F}(\sigma_{3})$$

$$\vdots$$

$$\sigma'_{8} = f_{z}[if x = 10 \text{ goto } 7]_{T}(\sigma_{3})$$

$$\sigma'_{9} = f_{z}[x := y](\sigma_{8})$$

	i		
	X	y	
P0	Т	Т	
P1	N	Т	
P2	N	7	
P3	N	\boldsymbol{Z}	first time through
P4			
P5			$\sigma'_3 = \sigma_2 \sqcup \sigma_7$
P6			
P7	What	should	be the initial value for σ_7 ????
P8			
P9			
	l.		

Enter: ⊥ ("bottom")

What would the **complete lattice** for Zero Analysis look like?

for all $l \in L$:

$$\bot \sqsubseteq l \qquad \qquad l \sqsubseteq \top$$

$$\bot \sqcup l = l \qquad \qquad l \sqcup \top = \top$$

A lattice with both \bot and \top defined is called a *Complete Lattice*

$$\sigma: Var \rightarrow L \text{ where } L = \{Z, N, \bot, \top\} \text{ and } Var = \{x, y\}$$

$$\sigma_1 \sqcup \sigma_2 = \{ x \mapsto \sigma_1(x) \sqcup \sigma_2(x), \quad y \mapsto \sigma_1(y) \sqcup \sigma_2(y) \}$$

Exercise: Define lifted \sqsubseteq in terms of ordering on L

$$\sigma_1 \sqsubseteq \sigma_2 = ???$$

Lifting a complete lattice gives another complete lattice

i	
X	y
Т	T
Τ	\perp
\perp	\perp
Т	\perp
Т	\perp
\perp	\perp
	T

	x	y	
P0	T	Т	
P1	N	Τ	
P2	N	<u>Z</u>	
P3	N	\mathbf{Z}	first time through
P4	1	1	
P5		\perp	$\sigma'_3 = \sigma_2 \sqcup \sigma_7$
P6	上	\perp	
P7		\perp	
P8		\perp	
P9	上	\perp	

	x	y	
P0	Т	T	
P1	N	Т	
P2	N	7	
P3	N	Z	first time through
P4	N_F	Z	
P5	N	N	$\sigma'_3 = \sigma_2 \sqcup \sigma_7$
P6	T	N	
P7	T	N	
P8	Z_t	N	first time through
P9	N	N	first time through

	1		
	X	y	
P0	Т	Т	
P1	N	T	
P2	N	<u>Z</u>	
P3	Т	Т	join
P4	N_F	Z	
P5	N	N	$\sigma'_3 = \sigma_2 \sqcup \sigma_7$
P6	Т	N	
P7	Т	N	
P8	Z_t	N	first time through
P9	N	N	first time through

	v	T 7	
	X	<u>y</u>	
P0	Т	Т	
P1	N	Τ	
P2	N	Z	
P3	Т	Т	join
P4	N_F	Т	updated
P5	N	N	already at fixed point
P6	Т	N	already at fixed point
P7	T	N	already at fixed point
P8	Z_T	T	updated
P9	T	Т	updated

WHAT'S THE ALGORITHM?

Analysis Execution Strategy

```
for Node n in cfg
    input[n] = \bot
input[0] = initialDataflowInformation
while not at fixed point
    pick a node n in program
    output = flow(n, input[n])
    for Node j in sucessors(n)
        input[j] = input[j] ⊔ output
```

Kildall's Algorithm

```
worklist = \emptyset
for Node n in cfg
    input[n] = output[n] = \bot
    add n to worklist
input[0] = initialDataflowInformation
while worklist is not empty
    take a Node n off the worklist
    output[n] = flow(n, input[n])
    for Node j in succs(n)
          newInput = input[j] ⊔ output[n]
          if newInput ≠ input[j]
                 input[j] = newInput
                 add j to worklist
```

What order to process worklist nodes in?

- Random? Queue? Stack?
- Any order is valid (!!)
- Some orders are better in practice
 - Topological sorts are nice
 - Explore loops inside out
 - Reverse postorder!

Exercise: Apply Kildall's Worklist Algorithm for Zero Analysis

Performance of Kildall's Algorithm

- Why is it guaranteed to terminate?
- What is its complexity?