Matrix Operation Cheat Sheet

Definitions

Let $\mathbb K$ be a field of real $\mathbb R$ or complex numbers $\mathbb C.$ Then we can define matrix A a table of numbers

$$A = (a_{ij}) = \begin{bmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{bmatrix} \in \mathbb{K}^{n \times m}$$

Inverse matrix

A matrix $A\in\mathbb{C}^{n\times n}$ is called invertible if exists an inverse matrix $B\in\mathbb{C}^{n\times n}$ such that:

$$AB = BA = I_n$$

numpy.linalg.inv() / INV()

Hermitian matrix

For matrix $(a_{ij}) = A \in \mathbb{C}^{n \times m}$ a hermitian is A^*

$$A^* = \overline{A}^\top = (\overline{a}_{ji})$$

Often denoted as conjugate transpose.

A.H or A.getH() / A'

Unitary matrix

A matrix $U \in \mathbb{C}^{n \times m}$ is unitary if its hermitian is its inverse.

$$U^*U = UU^* = I$$

Moore-Penrose inverse

For $A\in\mathbb{C}^{n\times m}$ a pseudo-inverse of A is defined as a matrix $A^{\dagger}\in\mathbb{C}^{m\times n}$ satisfying:

1.
$$AA^{\dagger}A = A$$

$$3. (AA^{\dagger})^* = AA^{\dagger}$$

2.
$$A^{\dagger}AA^{\dagger} = A^{\dagger}$$

4.
$$(A^{\dagger}A)^* = A^{\dagger}A$$

When A has linearly independent columns:

$$A^{\dagger} = (AA^*)^{-1}A^* = A^{\dagger}A = I$$

When A has linearly independent rows:

$$A^{\dagger} = A^* (AA^*)^{-1} => AA^{\dagger} = I$$

numpy.linalg.pinv() / PINV()

Matrix decomposition Singular value decomposition (SVD)

Copyright © 2021 Matej Kerekrety