Math 63: Real Analysis

Winter 2024

Student: Amittai Siavava

PSET
$$8 - 02/28/2024$$

Prof. Erchenko

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

1. Introduction to Analysis by Maxwell Rosenlicht

Problem 1.

Prove that $\int_{0}^{1} f(x) dx = 0$ if $f(\frac{1}{n}) = 1$ for all $n \in \mathbb{N}$ and f(x) = 0 for all other x.

Claim 1.1. f is Rieman integrable on [0,1].

Proof. Since f=0 at all points $x\in[0,1]\setminus\{1/n:n\in\mathbb{N}\}$, f is continuous at all such x. Therefore, we can consider the points of the form $1/n,n\in\mathbb{N}$ as discontinuities of f. However, since \mathbb{N} has measure zero (since it is countable), $\{1/n:n\in\mathbb{N}\}$ also has measure zero. By the Lebesgue criterion for Riemann integrability, f is Riemann integrable, so $\int_{0}^{1}f(x)\,\mathrm{d}x$ exists.

Claim 1.2.
$$\int_{0}^{1} f(x) dx = 0.$$

Proof. Given a partition P_n of [0,1] into n subintervals,

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i \le \int_{0}^{1} f(x) dx \le \sum_{i=1}^{n} M_i \Delta x_i = U(f, P),$$

where $m_i = \inf \{ f(x) : x \in [x_{i-1}, x_i] \}$ and $M_i = \sup \{ f(x) : x \in [x_{i-1}, x_i] \}$. Furthermore;

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i = \sum_{i=1}^{n} 0 \cdot \Delta x_i = 0$$

and

$$U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i.$$

Since the set of points where f is nonzero has measure zero, as we make the partitions finer and finer, $M_i \Delta x_i$ will either be zero or approach 0 for all i, so U(f, P) will also approach 0. On the other hand,

L(f,P) will always be 0. Thus, we can make U(f,P)-L(f,P) arbitrarily small, so $\int_{0}^{1}f(x) dx=0$. \square

Problem 2.

Prove that if f is a continuous real-valued function on the interval [a,b] such that $f(x) \ge 0$ for all $x \in [a,b]$ and f(x) > 0 for some $x \in [a,b]$, then $\int_a^b f(x) \, \mathrm{d}x > 0$.

Claim 2.1.
$$\int_{a}^{b} f(x) dx > 0$$
.

Proof. First, note that f is Riemann integrable on [a,b] since it is continuous on [a,b] and [a,b] is a closed interval. We are given that f(x) > 0 for some $x \in [a,b]$. Since f is continuous over [a,b], for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x_1, x_2 \in [a,b]$, if $|x_1 - x_2| < \delta$ then $|f(x_1) - f(x_2)| < \varepsilon$. Let $y = \inf\{f(x) \mid x \in [a,b]\}$, with ξ as the corresponding value for x. Since f > 0 at some point over [a,b], y > 0. Pick $\varepsilon = y/2$, and pick δ as above. Then, for all $x \in [\xi - \delta, \xi + \delta] \cap [a,b]$, $f(x) > y - \varepsilon = y/2 > 0$. Therefore,

Therefore,
$$\int_{\max(a,\xi-\varepsilon)}^{\min(b,\xi+\varepsilon)} f(x) \, dx > 0.$$

Since $f(x) \ge 0$ for all $x \in [a, b]$, and [a, b] is a superset of $[\mathbf{max}(a, \xi - \varepsilon), \mathbf{min}(b, \xi + \varepsilon)]$, it follows that

$$\int_{a}^{b} f(x) dx \ge \int_{\max(a,\xi-\epsilon)}^{\min(b,\xi+\epsilon)} f(x) dx > 0.$$

Therefore,
$$\int_{a}^{b} f(x) dx > 0$$
.

Problem 3.

Let $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \text{ (i.e. not rational).} \\ \frac{1}{q} & \text{if } x := \frac{p}{q} \in \mathbb{Q} \text{ with } p, q \text{ coprime and } q > 0. \end{cases}$$

Show that $\int_{0}^{1} f(x) dx$ exists and is equal to 0.

<u>Hint:</u> Use the Lebesgue criterion for integrability. In particular, you need to determine at what points f is continuous.

Claim 3.1.
$$\int_{0}^{1} f(x) dx$$
 exists.

Proof. We are given that f is only nonzero for rational numbers of the form p/q, where $p,q \in \mathbb{N}$ and p,q are coprime. Since the rational numbers are countable, \mathbb{Q} has Lebesgue measure zero, meaning that the set of points where f is nonzero, which is a subset of \mathbb{Q} , also has measure zero. By the Lebesgue criterion, f is Riemann integrable on [0,1] since the set of points where f is discontinuous has measure zero, so $\int_{0}^{1} f(x) \, \mathrm{d}x$ exists.

Claim 3.2.
$$\int_{0}^{1} f(x) dx = 0.$$

Proof. Given a partition P_n of [0,1] into n subintervals,

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i \le \int_{0}^{1} f(x) dx \le \sum_{i=1}^{n} M_i \Delta x_i = U(f, P),$$

where $m_i = \inf \{ f(x) : x \in [x_{i-1}, x_i] \}$ and $M_i = \sup \{ f(x) : x \in [x_{i-1}, x_i] \}$. Furthermore;

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i = \sum_{i=1}^{n} 0 \cdot \Delta x_i = 0$$

and

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i.$$

Since the set of points where f is nonzero has measure zero, as we make the partitions finer and finer, $M_i \Delta x_i$ will approach 0 for all i, so U(f, P) will also approach 0 (since only a smaller subset will have nonzero M_i). On the other hand, L(f, P) will always be 0. For any $\varepsilon > 0$, take P_{ε} to be a partition such

that
$$U(f, P_{\varepsilon}) < \varepsilon$$
, then $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$. Therefore, $\int_{0}^{T} f(x) dx = 0$.

4

Problem 4.

Prove that if the real-valued function f on the interval [a, b] is integrable on [a, b], then so is |f|, and

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx.$$

Claim 4.1. Suppose f is integrable on [a, b], then so is |f|.

Proof. Since f is integrable on [a, b], for any $\varepsilon > 0$, there exists a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] such that

$$U(f, P) - L(f, P) < \varepsilon.$$

Since $|a| - |b| \le |a - b|^a$ for all $a, b \in \mathbb{R}$, we have $U(|f|, P) - L(|f|, P) \le U(f, P) - L(f, P) < \varepsilon$, so |f| is also integrable on [a, b].

^aThis can be shown using Cauchy-Schwarz inequality:

$$\begin{aligned} |a| &= |(a-b)+b| \leq |a-b| + |b| & \text{(triangle inequality)} \\ |a| &- |b| & \leq |a-b| & \text{(deduct } |b| \text{ to both sides)} \end{aligned}$$

Claim 4.2. Given that both f and |f| are integrable on [a, b], then $\left|\int_a^b f(x) dx\right| \leq \int_a^b |f(x)| dx$.

Proof. Since f is integrable on [a,b], for any $\varepsilon > 0$, there exists a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a,b] such that

$$U(f, P) - L(f, P) < \varepsilon,$$

and

$$L(f, P) \le R(f, P) \le U(f, P),$$

with $R(f,P) = \sum_{i=1}^{n} f(c_i)$ for some $c_i \in [a_{i-1},a_i]$. As $||P|| \to 0$, $\varepsilon \to 0$, so the Riemann sum R(f,P) converges to the integral;

$$\lim_{\|P\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i = \int_{a}^{b} f(x) \, dx \qquad \text{and} \qquad \lim_{\|P\| \to 0} \sum_{i=1}^{n} |f(c_i)| \, \Delta x_i = \int_{a}^{b} |f(x)| \, dx.$$

Thus, our original claim is equivalent to:

$$\left| \int_{a}^{b} f(x) \, dx \right| = \left| \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i} \right| \qquad \text{(for some } c_{i} \in [x_{i-1}, x_{i}])$$

$$\leq \lim_{\|P\| \to 0} \sum_{i=1}^{n} |f(c_{i})| \, \Delta x_{i} \qquad \text{(triangle inequality)}$$

$$= \int_{a}^{b} |f(x)| \, \mathrm{d}x,$$

Problem 5.

Prove integration by parts. That is, suppose F and G are continuously differentiable functions on [a, b]. Then, prove that

$$\int_{a}^{b} F(x)G'(x) dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} F'(x)G(x) dx.$$

Proof. Since F and G are continuously differentiable on [a,b], they are also continuous on [a,b]. Thus, by the fundamental theorem of calculus, we have Let H(x) = F(x)G(x), then

$$H'(x) = \frac{d}{dx} [F(x)G(x)]$$

$$= F'(x)G(x) + F(x)G'(x)$$
 (by the product rule).

What happens if we integrate both sides of this equation?

$$\int_{a}^{b} H'(x) dx = \int_{a}^{b} [F'(x)G(x) + F(x)G'(x)] dx$$

$$H(b) - H(a) = \int_{a}^{b} F'(x)G(x) dx + \int_{a}^{b} F(x)G'(x) dx$$

Rearranging this gives us

$$H(b) - H(a) - \int_{a}^{b} F'(x)G(x) dx = \int_{a}^{b} F(x)G'(x) dx$$

Since H(x) = F(x)G(x), we have

$$\int_{a}^{b} F(x)G'(x) dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} F'(x)G(x) dx$$

Problem 6.

Let $g, f : \mathbb{R} \to \mathbb{R}$ be Riemann integrable on any interval $[a, b] \subset \mathbb{R}$. Is it true that $g \circ f$ is also Riemann integrable on any interval $[a, b] \subset \mathbb{R}$?

<u>Hint:</u> Consider g such that g(x) = 0 if x = 0 and g(x) = 1 if $x \neq 0$, and f as in Problem 3:

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \text{ (i.e. not rational).} \\ \frac{1}{q} & \text{if } x := \frac{p}{q} \in \mathbb{Q} \text{ with } p, q \text{ coprime and } q > 0. \end{cases}$$

Claim 6.1. The composition of two Riemann integrable functions is not necessarily Riemann integrable.

Proof. Consider the functions $g, f : \mathbb{R} \to \mathbb{R}$ as defined anove, and their composition $g \circ f$. Both g and f are Riemann integrable on any interval $[a, b] \subset \mathbb{R}$, as priorly shown. However, Let's look at $g \circ f$:

$$(g \circ f)(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \text{ (i.e. not rational).} \\ 1 & \text{if } x := \frac{p}{q} \in \mathbb{Q} \text{ with } p, q \text{ coprime and } q > 0. \end{cases}$$

Note that $g \circ f$ is not continuous at any point $x \in \mathbb{Q}$, since there exists a rational number between any two distinct irrationals a and there exists an irrational number between any two distinct rationals b. Consequently, if we take any $0 < \varepsilon < 1$, then there is no value for $\delta > 0$ that satisfies the ε - δ criterion for continuity at any point $x \in \mathbb{R}$ since. Take x_2 to be any number in the interval $(x - \delta, x + \delta)$, then:

1. If $x \in \mathbb{Q}$ and $x_2 \in \mathbb{R} \setminus \mathbb{Q}$, then $(g \circ f)(x) = 1$ and $(g \circ f)(x_2) = 0$, so

$$|(g \circ f)(x) - (g \circ f)(x_2)| = 1 > \varepsilon.$$

2. If $x \in \mathbb{Q}$ and $x_2 \in \mathbb{Q}$, then there exists some irrational number x_3 between x and x_2 , then $(g \circ f)(x) = 1$ and $(g \circ f)(x_3) = 0$. Therefore,

$$|(q \circ f)(x) - (q \circ f)(x_3)| = 1 > \varepsilon.$$

3. If $x \in \mathbb{R} \setminus \mathbb{Q}$ and $x_2 \in \mathbb{Q}$, then $(g \circ f)(x) = 0$ and $(g \circ f)(x_2) = 1$, so

$$|(q \circ f)(x) - (q \circ f)(x_2)| = 1 > \varepsilon.$$

4. If $x \in \mathbb{Q}$ and $x_2 \in \mathbb{Q}$, then there exists some irrational number x_3 between x and x_2 , then $(g \circ f)(x) = 1$ and $(g \circ f)(x_3) = 0$. Therefore,

$$|(g \circ f)(x) - (g \circ f)(x_3)| = 1 > \varepsilon.$$

Thus, $g \circ f$ is not continuous at any point $x \in \mathbb{R}$, therefore not Riemann integrable on any interval $[a,b] \subset \mathbb{R}$.

a Proof that there exists a rational number between any two distinct irrationals.

Let $a, b \in \mathbb{R} \setminus \mathbb{Q}$ with a < b. Let c = b - a. By the properties of \mathbb{R} , there exists $n \in \mathbb{N}$ such that n > 1/c, which implies that cn > 1. Since we took c = b - a, this implies that nb - na > 1. Therefore, there exists some integer N such that na < N < nb. Dividing by n, we get a < N/n < b. Thus, N/n is a rational number between a and b.

 b Proof that there exists an irrational number between any two distinct rationals. Let $a,b\in\mathbb{Q}$ with a< b. Then b-a>0, $b-a>\frac{b-1}{\sqrt{2}},$ and $\frac{b-a}{\sqrt{2}}\not\in\mathbb{Q}$. Therefore $a+\frac{b-a}{\sqrt{2}}\in\mathbb{R}\setminus\mathbb{Q},$ and it is contained in the interval (a, b).