及格要求

初始化时间同步

精度评估时用 tum 格式的数据,可以不进行时间同步,但是初始化的时候,为了严谨起见,在原代码的基础上,参考前几节课的代码框架,增加了初始化时间同步的模块。主要修改了 readData 函数,HasData 函数以及数据文件 odom_data.hpp。

代码及仿真结果

函数 UpdatePose 中 index_prev 和 index_curr 的选取策略为:index_prev 选取 imu_data_buff 中的第一个元素,index_curr 选取最后一个元素,并且每次清空 imu_data_buff 后,再把之前的最后一个元素放回,作为下一次的第一个元素,如此循环,仿真结果如下:

良好要求

代码及仿真结果

参考 estimator/activity.cpp 中的函数 GetAngularDelta 和函数 GetVelocityDelta,将其中的中值 法公式换为欧拉法公式即可,新建的两个函数分别为 GetAngularDeltaEuler 和 GetVelocityDeltaEuler,仿真结果如下:

中值法和欧拉法对比

对于 VIO 课程中这种数据生成方式,运动相对剧烈和复杂,中值法的结果明显优于欧拉法,原因在于中值法用两个积分端点的平均加速度和平均角速度做积分,而欧拉法只用一个端点。这里不做定量分析,优秀要求中再做定量分析。

优秀要求

细节说明

为了使用 gnss_ins_sim 包,将其放置到如下图路径(目前还不理解),然后按照 readme 中的编译方式编译:

参考 recorder_node_allan_variance_analysis.py 写了程序 recorder_node_imu_gt_data.py,用于 生成 bag 包,其中包含 ground truth 数据和 IMU 数据。

对于 ground truth 数据中的位置数据,每个数据减去初始的位置。

对于 IMU 数据,选用 gnss_ins_sim 中没有噪声的惯性器件数据 ref_gyro 和 ref_accel,排除噪声影响,抓住问题核心,直接对比中值法和欧拉法的性能。

用 gnss_ins_sim 中的函数 geoparams.py 由初始经纬高计算出的重力参数(9.7942164704)替换掉原程序中的重力参数,用-9.794216470,消除重力参数不统一的影响。

为了完成精度评估,参考之前的代码框架,增加了放置在 tools 文件夹下的文件管理类 file_manager.cpp,在 estimator/activity.cpp 中增加了两个存放轨迹的函数,SaveTrajectoryKitti 和 SaveTrajectoryTum,一个存放 kitti 格式数据,一个存放 tum 格式数据。

为了方便是使用 gnss_ins_sim 生成的 rosbag,新建 launch 文件 imu_integration_no_generator.launch,在 imu_integration.launch 基层上去掉 generator 节点,运行 imu_integration_no_generator.launch 后,再手动播放 rosbag 包。

对于不同的运动状态,可用一个 rosbag 包含,播放的时候用 rosbag play 中的-s 和-u 选项来指定使用的时间段。

allan_variance_analysis.csv 中的运动定义如下表:

command	yaw	pitch	roll	vx_body	vy_body	vz_body	duration	GPS	Sum time
1	0	0	0	0	0	0	120	1	120
5	0	0	0	10	0	0	20	1	130.01
1	0	0	0	0	0	0	120	1	250.01
1	0	0	0	0.1	0	0	60	1	310.01
1	0	0	0	0	0	0	5	1	315.01
1	0	0	0	-0.2	0	0	60	1	375.01
3	90	0	0	0	0	0	60	1	394.09
1	0	0	0	0	0	0	30	1	424.09
1	0	0	0	10	0	0	60	1	484.09
1	0	0	0	0	0	0	5	1	489.09
1	0	0	0	-10	0	0	60	1	549.09

整个过程中的运行轨迹如下图:

三个方向上的移动距离如下图所示:

三个方向上的转动角度如下图所示:

对应播放参数如下:

运动状况	播放开始时间	播放时长	播放结束时间
静止	10	100	110
匀速	140	100	240
0.1m/s/s 加速	260	40	300
0.2m/s/s 减速	320	40	360
快速转弯	376	40	416
10m/s/s 加速	430	40	470
10m/s/s 减速	495	40	535

静止

匀速

匀加速(加速度很小)

匀减速 (加速度很小)

快速转弯 (变加速)

匀加速(加速度比较大)

匀减速(加速度比较大)

精度评价分析

从以上仿真结果可以看出:在静止,匀速,匀加速的情况下都是欧拉法略优于中值法;只有 在有转弯的情况下是中值法更性能更好。

理论上在静止,匀速,匀加速的情况下两种算法的结果应该一致,对于现在的仿真结果,我的理解是:变步长积分,从 buffer 里拿数据,那么运算量小的欧拉法采样频率会比中值法高一些,从而导致算法性能略高(还存在争议)。