Amendments to the Claims

1	Claim 1 (previously presented): A computer program product for sending Transmission Control	
2	Protocol (TCP) messages through HyperText Transfer Protocol (HTTP) systems, the computer	
3	program product embodied on one or more computer-readable media and comprising:	
4	computer-readable program code means for establishing a send channel from a first	
5	component on a client side of a network, through one or more HTTP-based systems, to a second	
6	component on a remote side of the network;	
7	computer-readable program code means for establishing a receive channel from the first	
8	component, through the one or more HTTP-based systems, to the second component, wherein the	
9	receive channel is distinct from the send channel;	
10	computer-readable program code means for establishing a first TCP connection from a	
11	client on the client side to the first component;	
12	computer-readable program code means for establishing a second TCP connection from	
13	the second component to a target server on the remote side;	
14	computer-readable program code means for transmitting client-initiated TCP requests	
15	from the client to the target server by packaging the client-initiated TCP requests into HTTP	
16	messages which are transmitted on the send channel; and	
17	computer-readable program code means for transmitting server-initiated TCP requests	
18	from the target server to the client by packaging the server-initiated TCP requests into HTTP	
19	messages which are transmitted on the receive channel.	
1	Claim 2 (previously presented): The computer program product according to Claim 1, wherein	
	Serial No. 09/619,178 -2- Docket RSW9-2000-0054-US1	

2	the computer-readable program code means for transmitting client-initiated TCP requests nurmer		
3	comprises:		
4	computer-readable program code means for receiving a client-initiated TCP request from		
5	the client at the first component on the first TCP connection;		
6	computer-readable program code means for packaging the received client-initiated TCP		
7	request in an HTTP POST request message;		
8	computer-readable program code means for sending the HTTP POST request message to		
9	the second component on the send channel;		
1,0	computer-readable program code means for receiving the sent HTTP POST request		
11	message at the second component;		
1.2	computer-readable program code means for extracting the client-initiated TCP request		
13	from the received HTTP POST request message; and		
14	computer-readable program code means for forwarding the extracted client-initiated TCP		
15	request to the target server on the second TCP connection.		
1	Claim 3 (previously presented). The computer program product according to Claim 2, wherein		
2	the computer-readable program code means for transmitting client-initiated TCP requests further		
3	comprises computer-readable program code means for acknowledging the HTTP POST request		
4	by sending an HTTP POST response from the second component to the first component on the		
5	send channel.		
1	Claim 4 (original): The computer program product according to Claim 3, wherein the computer-		
	Serial No. 09/619.178 -3- Docket RSW9-2000-0054-US1		

2	readable program code means for establishing the send channel operates in response to the		
3	computer-readable program code means for receiving the client-initiated TCP request, and		
4	wherein the computer-readable program code means for transmitting client-initiated TCP		
5	requests further comprises:		
6 .	computer-readable program code means for receiving the HTTP POST response at the		
7	first component; and		
8	computer-readable program code means for closing the send channel, responsive to		
9	operation of the computer-readable program code means for receiving the HTTP POST response		
1	Claim 5 (previously presented): The computer program product according to Claim 1, wherein		
.2	the computer-readable program code means for transmitting server-initiated TCP requests further		
3	comprises:		
4	computer-readable program code means for sending an HTTP GET request message from		
5	the first component to the second component on the receive channel;		
6	computer-readable program code means for receiving the sent HTTP GET request		
7	message at the second component;		
8	computer-readable program code means for receiving a server-initiated TCP request from		
9	the target server at the second component on the second TCP connection;		
10	computer-readable program code means for packaging the received server-initiated TCP		
11	request in an HTTP GET response message which acknowledges the received HTTP GET		
12	request message;		
13	computer-readable program code means for sending the HTTP GET response message		
	Serial No. 09/619.178 -4- Docket RSW9-2000-0054-US1		

14	from the second component to the first component on the receive channel;
15	computer-readable program code means for receiving the sent HTTP GET response
16	message at the first component;
17	computer-readable program code means for extracting the server-initiated TCP request
18	from the received HTTP GET response message; and
19	computer-readable program code means for forwarding the extracted server-initiated TCP
20	request to the client on the first TCP connection.
1	Claim 6 (original): The computer program product according to Claim 5, wherein the computer-
2	readable program code means for transmitting server-initiated TCP requests further comprises:
3	computer-readable program code means for performing a read operation on the second
4	TCP connection, responsive to operation of the computer-readable program code means for
5	receiving the sent HTTP GET request message and prior to operation of the computer-readable
6	program code means for receiving the server-initiated TCP request; and
7	computer-readable program code means for using the received server-initiated TCP
8	request as a result of the read operation, thereby triggering operation of the computer-readable
9	program code means for packaging the received server-initiated TCP request in the HTTP GET
10	response message.
1	Claim 7 (original): The computer program product according to Claim 5, wherein the computer-
2	readable program code means for transmitting server-initiated TCP requests further comprises
3	computer-readable program code means for preparing to receive another server-initiated TCP
	Seriel No. 00/610 178 -5- Docket R SW9-2000-0054-US1

- 4 request by triggering operation of the computer-readable program code means for sending the
- 5 HTTP GET request message from the first component to the second component, responsive to
- operation of the computer-readable program code means for receiving the sent HTTP GET
- 7 response message at the first component.
- Claim 8 (original): The computer program product according to Claim 2, wherein a Multi-
- 2 Purpose Internet Mail Extensions (MIME) type of the HTTP POST request message is set to
- 3 "binary/tcp".
- 1 Claim 9 (original): The computer program product according to Claim 5, wherein a Multi-
- 2 Purpose Internet Mail Extensions (MIME) type of the HTTP GET request message is set to
- 3 "binary/tcp".
- 1 Claim 10 (previously presented): A system for sending Transmission Control Protocol (TCP)
- 2 messages through HyperText Transfer Protocol (HTTP) systems, comprising:
- means for establishing a send channel from a first component on a client side of a
- 4 network, through one or more HTTP-based systems, to a second component on a remote side of
- 5 the network;
- 6 means for establishing a receive channel from the first component, through the one or
- 7 more HTTP-based systems, to the second component, wherein the receive channel is distinct
- 8 from the send channel;
- 9 means for establishing a first TCP connection from a client on the client side to the first
 - Serial No. 09/619,178

-6-

10	component;
11	means for establishing a second TCP connection from the second component to a target
12	server on the remote side;
13	means for transmitting client-initiated TCP requests from the client to the target server by
14	packaging the client-initiated requests into HTTP messages which are transmitted on the send
15	channel; and
16	means for transmitting server-initiated TCP requests from the target server to the client by
17	packaging the server-initiated requests into HTTP messages which are transmitted on the receive
18	channel.
1	Claim 11 (previously presented): The system according to Claim 10, wherein the means for
2	transmitting client-initiated TCP requests further comprises:
3	means for receiving a client-initiated TCP request from the client at the first component
4	on the first TCP connection;
5	means for packaging the received client-initiated TCP request in an HTTP POST request
6	message;
7	means for sending the HTTP POST request message to the second component on the send
8	channel,
9	means for receiving the sent HTTP POST request message at the second component;
10	means for extracting the client-initiated TCP request from the received HTTP POST
11	request message; and
12	means for forwarding the extracted client-initiated TCP request to the target server on the
	Serial No. 09/619 178 -7- Docket RSW9-2000-0054-US1

FAX

1

3 56	econd	TCP	connection.
------	-------	-----	-------------

- Claim 12 (previously presented): The system according to Claim 11, wherein the means for 1
- transmitting client-initiated TCP requests further comprises means for acknowledging the HTTP 2
- 3 POST request by sending an HTTP POST response from the second component to the first
- 4 component on the send channel.
- Claim 13 (original): The system according to Claim 12, wherein the means for establishing the 1
- 2 send channel operates in response to the means for receiving the client-initiated TCP request, and
- 3 wherein the means for transmitting client-initiated TCP requests further comprises:
- means for receiving the HTTP POST response at the first component; and 4
- 5 means for closing the send channel, responsive to operation of the means for receiving the
- 6 HTTP POST response.
- Claim 14 (previously presented): The system according to Claim 10, wherein the means for 1
- 2 transmitting server-initiated TCP requests further comprises:
- 3 means for sending an HTTP GET request message from the first component to the second
- 4 component on the receive channel;
- 5 means for receiving the sent HTTP GET request message at the second component;
- б means for receiving a server-initiated TCP request from the target server at the second
- 7 component on the second TCP connection;
- 8 means for packaging the received server-initiated TCP request in an HTTP GET response
 - Serial No. 09/619,178

-8-

FAX

9	message which acknowledges the received HTTP GET request message;		
10	means for sending the HTTP GET response message from the second component to the		
11	first component on the receive channel;		
12	means for receiving the sent HTTP GET response message at the first component;		
13	means for extracting the server-initiated TCP request from the received HTTP GET		
14	response message; and		
15	means for forwarding the extracted server-initiated TCP request to the client on the first		
16	TCP connection.		
1	Claim 15 (original): The system according to Claim 14, wherein the means for transmitting		
2	server-initiated TCP requests further comprises:		
3	means for performing a read operation on the second TCP connection, responsive to		
4	operation of the means for receiving the sent HTTP GET request message and prior to operation		
5	of the means for receiving the server-initiated TCP request; and		
6	means for using the received server-initiated TCP request as a result of the read operation		
7	thereby triggering operation of the means for packaging the received server-initiated TCP request		
8	in the HTTP GET response message.		
1	Claim 16 (original): The system according to Claim 14, wherein the means for transmitting		
2	server-initiated TCP requests further comprises means for preparing to receive another server-		
3	initiated TCP request by triggering operation of the means for sending the HTTP GET request		
4	message from the first component to the second component, responsive to operation of the means		
	Serial No. 09/619,178 -9- Docket RSW9-2000-0054-US1		

Serial No. 09/619,178

5 for receiving the sent HTTP GET response message at the first component. 1 Claim 17 (original): The system according to Claim 11, wherein a Multi-Purpose Internet Mail 2 Extensions (MIME) type of the HTTP POST request message is set to "binary/top". Claim 18 (original): The system according to Claim 14, wherein a Multi-Purpose Internet Mail 1 2 Extensions (MIME) type of the HTTP GET request message is set to "binary/tcp". 1 Claim 19 (previously presented): A method for sending Transmission Control Protocol (TCP) 2 messages through HyperText Transfer Protocol (HTTP) systems, comprising the steps of: 3 establishing a send channel from a first component on a client side of a network, through one or more HTTP-based systems, to a second component on a remote side of the network; 4 5 establishing a receive channel from the first component, through the one or more HTTPб based systems, to the second component, wherein the receive channel is distinct from the send 7 channel; 8 establishing a first TCP connection from a client on the client side to the first component: 9 establishing a second TCP connection from the second component to a target server on 10 the remote side; transmitting client-initiated TCP requests from the client to the target server by packaging 11 12 the client-initiated requests into HTTP messages which are transmitted on the send channel; and 13 transmitting server-initiated TCP requests from the target server to the client by

packaging the server-initiated requests into HTTP messages which are transmitted on the receive

-10-

Docket RSW9-2000-0054-US1

1	ς.	channel	
1	ວ	Channel	

- Claim 20 (previously presented): The method according to Claim 19, wherein the step of
- 2 transmitting client-initiated TCP requests further comprises the steps of:
- receiving a client-initiated TCP request from the client at the first component on the first

 TCP connection:
- 5 packaging the received client-initiated TCP request in an HTTP POST request message;
- sending the HTTP POST request message to the second component on the send channel;
- 7 receiving the sent HTTP POST request message at the second component;
- 8 extracting the client-initiated TCP request from the received HTTP POST request
- 9 message; and
- forwarding the extracted client-initiated TCP request to the target server on the second
- 11 TCP connection.
 - Claim 21 (previously presented): The method according to Claim 20, wherein the step of
 - 2 transmitting client-initiated TCP requests further comprises the step of acknowledging the HTTP
 - 3 POST request by sending an HTTP POST response from the second component to the first
 - 4 component on the send channel.
 - Claim 22 (original): The method according to Claim 21, wherein the step of establishing the
 - 2 send channel operates in response to the step of receiving the client-initiated TCP request, and
 - 3 wherein the step of transmitting client-initiated TCP requests further comprises the steps of:
 - Serial No. 09/619,178

4	receiving the HTTP POST response at the first component; and		
5	closing the send channel, responsive to receiving the HTTP POST response.		
1	Claim 23 (previously presented): The method according to Claim 19, wherein the step of		
2	transmitting server-initiated TCP requests further comprises the steps of:		
3	sending an HTTP GET request message from the first component to the second		
4	component on the receive channel;		
5	receiving the sent HTTP GET request message at the second component;		
6	receiving a server-initiated TCP request from the target server at the second component		
7	on the second TCP connection;		
8	packaging the received server-initiated TCP request in an HTTP GET response message		
9	which acknowledges the received HTTP GET request message;		
10	sending the HTTP GET response message from the second component to the first		
11	component on the receive channel;		
12	receiving the sent HTTP GET response message at the first component;		
13	extracting the server-initiated TCP request from the received HTTP GET response		
14	message; and		
15	forwarding the extracted server-initiated TCP request to the client on the first TCP		
16	connection.		
1	Claim 24 (original): The method according to Claim 23, wherein the step of transmitting server		
2	initiated TCP requests further comprises the steps of:		
	Serial No. 09/610 178 12 Dooley DSN/0 2000 0054 1191		

performing a read operation on the second TCP connection, responsive to receiving the 3 sent HTTP GET request message and prior to receiving the server-initiated TCP request; and 4 using the received server-initiated TCP request as a result of the read operation, thereby 5 triggering the step of packaging the received server-initiated TCP request in the HTTP GET 6 7 response message. Claim 25 (original): The method according to Claim 23, wherein the step of transmitting server-1 initiated TCP requests further comprises the step of preparing to receive another server-initiated 2 TCP request by triggering the step of sending the HTTP GET request message from the first 3 component to the second component, responsive to receiving the sent HTTP GET response 4 5 message at the first component. Claim 26 (original); The method according to Claim 20, wherein a Multi-Purpose Internet Mail 1 Extensions (MIME) type of the HTTP POST request message is set to "binary/tcp". 2 Claim 27 (original): The method according to Claim 23, wherein a Multi-Purpose Internet Mail 1 2 Extensions (MIME) type of the HTTP GET request message is set to "binary/tcp". 1 Claim 28 (previously presented): A method for transporting bi-directional protocol traffic 2 through uni-directional protocol systems, comprising the steps of: 3 establishing a send channel from a first component on a client side of a network 4 connection, through one or more uni-directional protocol-based systems, to a second component Serial No. 09/619,178 -13-Docket RSW9-2000-0054-US1

establishing a receive channel from the first component, through the one directional protocol-based systems, to the second component, wherein the receive distinct from the send channel;	ve channel is
8 distinct from the send channel;	e client side to
	e client side to
establishing a first bi-directional protocol connection from a client on the	
10 the first component;	
establishing a second bi-directional protocol connection from the second	l component to a
12 target server on the remote side;	
transmitting client-initiated bi-directional protocol requests from the client	ent to the target
server by packaging the client-initiated bi-directional protocol requests into uni-	-directional
protocol messages which are transmitted on the send channel; and	
16 transmitting server-initiated bi-directional protocol requests from the target	get server to the
client by packaging the server-initiated bi-directional protocol requests into uni-	directional
protocol messages which are transmitted on the receive channel.	
Claim 29 (previously presented): The method according to Claim 28, wherein the	he step of
2 transmitting client-initiated bi-directional protocol requests further comprises the	e steps of:
receiving a client-initiated bi-directional protocol request from the client	at the first
4 component on the first bi-directional protocol connection;	
5 packaging the received client-initiated bi-directional protocol request in a	a uni-directional
6 protocol write request message;	
7 sending the uni-directional protocol write request message to the second	d component on
Serial No. 09/619,178 -14- Docket RSW9-2	-2000-0054-US1

ð	the send channel,	
9	receiving the sent uni-directional protocol write request message at the second	
10	component;	
11	extracting the client-initiated bi-directional protocol request from the received uni-	
12	directional protocol write request message; and	
13	forwarding the extracted client-initiated bi-directional protocol request to the target server	
14	on the second bi-directional protocol connection.	
1	Claim 30 (previously presented): The method according to Claim 28, wherein the step of	
1		
2	transmitting server-initiated bi-directional protocol requests further comprises the steps of:	
3	sending a uni-directional protocol read request message from the first component to the	
4	second component on the receive channel;	
5	receiving the sent uni-directional protocol read request message at the second component;	
6	receiving a server-initiated bi-directional protocol request from the target server at the	
7	second component on the second bi-directional protocol connection;	
8	packaging the received server-initiated bi-directional protocol request in a uni-directional	
9	protocol read response message which acknowledges the received uni-directional protocol read	
10	request message;	
11	sending the uni-directional protocol read response message from the second component to	
12	the first component on the receive channel;	
13	receiving the sent uni-directional protocol read response message at the first component;	
14	extracting the server-initiated bi-directional protocol request from the received uni-	
	Serial No. 09/619,178 -15- Docket RSW9-2000-0054-US1	

directional protocol read response message; and

16	forwarding the extracted server-initiated bi-directional protocol request to the client on
17	the first bi-directional protocol connection.
-	
1	Claim 31 (new): A system for providing bi-directional messaging over uni-directional protocol
2	systems, comprising:
3	a send channel established from a first component on a client side of a network
4	connection, through at least one uni-directional protocol-based system, to a second component on
5	a remote side of the network connection;
6	a receive channel established from the first component, through the at least one uni-
7	directional protocol-based system, to the second component, wherein the receive channel is
8	distinct from the send channel;
9	a first bi-directional protocol connection established between a client on the client side
10	and the first component; and
11	a second bi-directional protocol connection established between the second component
12	and a server on the remote side;
13	wherein the first component packages client-initiated bi-directional protocol requests,
14	which are sent from the client on the first bi-directional protocol connection and received at the
15	first component, into uni-directional protocol messages and forwards the packaged client-
16	initiated protocol requests to the second component using the send channel and upon receipt of
17	the forwarded client-initiated requests, the second component extracts the client-initiated bi-
18	directional protocol requests and forwards the extracted client-initiated bi-directional protocol
	Serial No. 09/619,178 -16- Docket RSW9-2000-0054-US1

-16-

Docket RSW9-2000-0054-US1

20

21

22

23

24

25

26

27

28

requests to the server on the second bi-direction protocol connection, thereby providing client-toserver messaging through the at least one uni-directional protocol-based system; and wherein the second component packages server-initiated bi-directional protocol requests,

which are sent from the server on the second bi-directional protocol connection and received at the second component, into uni-directional protocol messages and forwards the packaged server-initiated protocol requests to the first component using the receive channel and upon receipt of the forwarded server-initiated requests, the first component extracts the server-initiated bi-directional protocol requests and forwards the extracted server-initiated bi-directional protocol requests to the client on the first bi-direction protocol connection, thereby providing server-to-client messaging through the at least one uni-directional protocol-based system.