### Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З лабораторної роботи №1 по курсу "Основи теорії кіл"

Виконав:

Ст. гр. ДК-81

Шунь Павло

Перевірив:

ас. Короткий  $\in$  В.

# 1 варіант досліджуваної схеми:



За допомогою Analog Discovery 2 була виміряна амплітуда напруги на резисторі послідовного коливального контуру:



# 2 схема лабораторної роботи



За допомогою Analog Discovery 2 була виміряна амплітуда напруги на котушці послідовного коливального контуру:



## 3 варіант досліджуваної схеми



За допомогою Analog Discovery 2 була виміряна амплітуда напруги на конденсаторі послідовного коливального контуру:



# Параметри вхідного сигналу:

$$f_{
m pes.} = rac{1}{2\pi\sqrt{L*C}} = rac{1}{2\pi\sqrt{0.9*10^{-3}*147*10^{-9}}} = 13837 \Gamma$$
ц

Вхідний сигнал повинен мати частоту близьку до резонансної, тому я взяв 13кГц і амплітудою 1В.



## Таблиці з результатами вимірюваннь:

Таблиця №1

| <b>Uвх,В</b> | Δφ,° | U <sub>R</sub> ,B | Δφ,°  | U <sub>L</sub> ,B | Δφ,°   | U <sub>C</sub> ,B | Δφ,° | I <sub>BX</sub> ., MA |
|--------------|------|-------------------|-------|-------------------|--------|-------------------|------|-----------------------|
| 1            | 0    | 0,97              | 77,22 | 0,0782            | -91,12 | 0,105             | 0    | 1                     |

#### Таблиця №2

| R,Om Z <sub>C</sub> ,Om |                | Z <sub>L</sub> ,OM | Х <sub>вх</sub> ,Ом | Z <sub>BX</sub> .,OM | Y <sub>BX</sub> ,CM |
|-------------------------|----------------|--------------------|---------------------|----------------------|---------------------|
| 1000                    | 105*e(-91,12°) | 78*e(77,22°)       | (-124,36)+77i       | 1000                 | 0,001               |

#### Таблиця №3

|           | S,BA       | Р,Вт       |            |          | Q,BAP |   |           |              |
|-----------|------------|------------|------------|----------|-------|---|-----------|--------------|
| R         | L          | С          | R          | L        | С     | R | L         | С            |
| 0,485*10^ | 0,0391*10^ | 0,0525*10^ | 0,485*10^- | 8,6*10^- | 10^   |   |           |              |
| -3        | -3         | -3         | 3          | 6        | -6    | 0 | 3,8*10^-5 | (-5.4)*10^-5 |

## Розрахунки схеми:

UBX = 1 V.  $U_R$  = 0.97 V.  $U_C$  = 0.105 V.  $U_L$  = 0.0782.  $p_n$  = 0°;  $\phi_c$  = -19.48\*10^-6\* 2\* $\pi$ \*13000 = -91.12°  $\phi_L$  = 16.5\*10^-6\* 2\* $\pi$ \*13000 = 77.22°  $\dot{U}_R$  = 0.97;  $\dot{U}_C$  = 0.105\* exp(-91.12°);  $\dot{U}_L$  = 0.0782\* exp(77.22°)

Так як маємо послідовне з'єднання:

$$\hat{I}_{BX} = \hat{I}_{C} = \hat{I}_{R} = \hat{I}_{L}$$

$$\hat{I}_R = \frac{\hat{U}R}{R} = 1/1000 = 10^-3 A = \hat{I}_{BX}$$

Опори:

$$Z_L = \mathring{U}_L / \mathring{I}_L = 0.0782* \exp(77.22^\circ) / 10^-3 = 78.2* \exp(77.22^\circ)$$
 Ohm.

$$Z_C = \dot{U}_C / \dot{I}_C = 0.105 * \exp(-91.12°) / 10^-3 = 105 * \exp(-91.12°) Ohm.$$

$$Z_{BX} = \dot{U}_{BX} / \dot{I}_{BX} = 1 / 10^{-3} = 1000 \text{ Ohm.}$$

## Реактивний опір:

$$X_{peak.} = Z_C + Z_L = -124.36 + 77.006j$$

$$|X_{\text{peak.}}| = \sqrt{-124.36^2 + 77.006^2} = 146.27 \text{ Ohm.}$$

$$Y_{BX} = 1 / Z_{BX} = 1/1000 = 10^{-3} \text{ Cm}.$$

## Потужності:

$$S_R = (U_R * I_R) / 2 = 0.485 * 10^-3 BA$$

$$S_C = (U_C * I_C) / 2 = 0.0525 * 10^-3 BA$$

$$S_L = (U_L * I_L) / 2 = 0.0391 * 10^-3 BA$$

$$P_R = S_R * cos(\phi_R) = 0.485 * 10^-3 BT.$$

$$P_C = S_C * \cos(\phi_C) = 0.0525 * 10^{-3} * 0.019 = 10^{-6} BT.$$

$$P_L = S_L * cos(\phi_L) = 0.0391 * 10^-3 * 0.221 = 8.6*10^6 Bt.$$

$$Q_R = S_R * \sin(\phi_R) = 0$$

$$Q_C = S_C * \sin(\phi_C) = 0.0525 * 10^-3 * (-0.99) = -5.4 * 10^-5$$

$$Q_L = S_L * \sin(\phi_L) = 0.0391 * 10^{-3} * 0.98 = 3.8*10^{-5}$$

## Векторні діаграми:

# Векторна діаграма опорів



Векторна діаграма потужності на резисторі (розмірність 10^(-3))



## Векторна діаграма потужності на конденсаторі (розмірність 10^(-6))



Векторна діаграма потужності на котушці (розмірність 10^(-6))



# Векторна діаграма всіх потужностей (розмірність 10^(-6))



$$\begin{split} &P_{\text{sum}} = P_{\text{c}} + P_{\text{L}} + P_{\text{R}} + Q_{\text{C}} + Q_{\text{L}} = &(-1 + 8.6 + 485 - 54 + 38) * 10^{\circ} - 6 = 0.000476 \text{ BA} \\ &P_{\text{sum.theory}} = &\sqrt{492.6^{\circ}2 + 16^{\circ}2} = 0.000492 \text{ BA} \end{split}$$

**Висновок:** на цій лабораторній роботі я провів розрахунки послідовного коливального контуру методом комплексних амплітуд, а також розрахував потужності, які виділяються на окремих компонентах кола. Відносно невелика похибка у розрахунку сумарної потужності є свідком того, що усі розрахунки були проведені коректно.