```
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

/kaggle/input/d/sobhanmoosavi/us-accidents/US_Accidents_Dec20_Updated.csv
```

US Accidents Analysis

Importing Required Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as mn
import plotly.graph_objects as go
```

Data Handeling

Loading Dataset into Pandas Dataframe

```
data_filepath = "/kaggle/input/d/sobhanmoosavi/us-accidents/US_Accidents_Dec20_Updated.csv"
data = pd.read_csv(data_filepath)
data
```

₹		ID	Severity	Start_Time	End_Time	Start_Lat	Start_Lng	End_Lat	End_Lng	Dista
	0	A-1	2	2019-05-21 08:29:55	2019-05- 21 09:29:40	34.808868	-82.269157	34.808868	-82.269157	
	1	A-2	2	2019-10-07 17:43:09	2019-10- 07 19:42:50	35.090080	-80.745560	35.090080	-80.745560	
	2	A-3	2	2020-12-13 21:53:00	2020-12- 13 22:44:00	37.145730	-121.985052	37.165850	-121.988062	
	3	A-4	2	2018-04-17 16:51:23	2018-04- 17 17:50:46	39.110390	-119.773781	39.110390	-119.773781	
	4	A-5	3	2016-08-31 17:40:49	2016-08- 31 18:10:49	26.102942	-80.265091	26.102942	-80.265091	
	2906605	A- 2906606	2	2018-06-28 08:49:01	2018-06- 28 09:18:51	29.813824	-95.399437	29.813824	-95.399437	
	2906606	A- 2906607	2	2019-01-10 02:01:01	2019-01- 10 02:30:32	34.068890	-117.342010	34.068890	-117.342010	
	2906607	A- 2906608	2	2020-11-23 12:52:00	2020-11- 24 00:47:37	25.702200	-80.335556	25.703040	-80.334099	
	2906608	A- 2906609	2	2019-12-29 22:38:00	2019-12- 29 23:38:00	40.660140	-111.952460	40.660140	-111.952460	
	2906609	A- 2906610	2	2018-03-26 13:35:03	2018-03- 26 14:39:00	38.831749	-104.748161	38.831749	-104.748161	

2906610 rows × 47 columns

✓ Information

data.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 2906610 entries, 0 to 2906609
 Data columns (total 47 columns):

Column Dtype
--- ---0 ID object
1 Severity int64

```
2
    Start_Time
                          object
 3
    End_Time
                          object
    Start Lat
                          float64
 4
 5
    Start_Lng
                          float64
 6
    End_Lat
                          float64
7
    End_Lng
                          float64
 8
    Distance(mi)
                          float64
9
    Description
                          object
 10 Number
                          float64
11 Street
                          object
 12 Side
                          object
 13 City
                          object
14 County
                          object
 15 State
                          object
16 Zipcode
                          object
17 Country
                          object
18 Timezone
                          object
19 Airport_Code
                          object
 20 Weather_Timestamp
                          object
 21 Temperature(F)
                          float64
 22 Wind_Chill(F)
                          float64
23 Humidity(%)
                          float64
 24 Pressure(in)
                          float64
25 Visibility(mi)
                         float64
 26 Wind_Direction
                          object
 27 Wind_Speed(mph)
                          float64
 28 Precipitation(in)
                          float64
 29 Weather_Condition
                          object
 30 Amenity
                          bool
31 Bump
                          bool
 32 Crossing
                          hoo1
33 Give_Way
                          bool
 34 Junction
                          hoo1
 35 No Exit
                          hoo1
36 Railway
                          bool
37 Roundabout
                          hoo1
 38 Station
                          hoo1
39 Stop
                          bool
40 Traffic_Calming
                          hoo1
41 Traffic_Signal
                          bool
42 Turning_Loop
                          bool
43 Sunrise_Sunset
                          object
44 Civil Twilight
                          object
45 Nautical_Twilight
                          object
46 Astronomical Twilight object
dtypes: bool(13), float64(13), int64(1), object(20)
memory usage: 790.0+ MB
```

Columns in dataframe

data.columns

Statistical Description of each column

data.describe().T

•		7
-		A
	<u> </u>	-

	count	mean	std	min	25%	
Severity	2906610.0	2.288649	0.554162	1.000000	2.000000	2.0
Start_Lat	2906610.0	36.530271	5.013964	24.555269	33.664527	36.0
Start_Lng	2906610.0	-96.426758	17.754125	-124.623833	-117.823219	-91.1
End_Lat	2623789.0	36.517333	5.016609	24.555269	33.646589	36.0
End_Lng	2623789.0	-96.203669	17.659713	-124.623833	-117.701990	-91.0
Distance(mi)	2906610.0	0.398054	1.592556	0.000000	0.000000	0.0
Number	1014938.0	6789.727574	16972.246955	0.000000	965.000000	3093.0
Temperature(F)	2839386.0	60.988730	18.452580	-89.000000	48.900000	63.0
Wind_Chill(F)	1722751.0	54.990478	22.195422	-89.000000	39.000000	58.0
Humidity(%)	2835340.0	65.377577	22.878537	1.000000	49.000000	68.0
Pressure(in)	2849702.0	29.656850	0.909413	0.000000	29.590000	29.9
Visibility(mi)	2834532.0	9.116766	2.837271	0.000000	10.000000	10.0
Wind_Speed(mph)	2599447.0	7.818111	5.431171	0.000000	4.600000	7.0
Precipitation(in)	1605284.0	0.011195	0.154081	0.000000	0.000000	0.0

→ Numerical Columns to deal with

```
# int, float and boolean data
print(data.count(numeric_only=True))
print("Total No. of Numerical Columns:", len(data.count(numeric_only=True)))
```

\rightarrow	Severity	2906610
	Start Lat	2906610
	Start Lng	2906610
	End Lat	2623789
	End_Lng	2623789
	Distance(mi)	2906610
	Number	1014938
	Temperature(F)	2839386
	Wind Chill(F)	1722751
	Humidity(%)	2835340
	Pressure(in)	2849702
	Visibility(mi)	2834532
	Wind_Speed(mph)	2599447
	Precipitation(in)	1605284
	Amenity	2906610
	Bump	2906610
	Crossing	2906610
	Give_Way	2906610
	Junction	2906610
	No_Exit	2906610
	Railway	2906610
	Roundabout	2906610
	Station	2906610
	Stop	2906610
	Traffic_Calming	2906610
	Traffic_Signal	2906610
	Turning_Loop	2906610
	dtype: int64	

Total No. of Numerical Columns: 27

Percentage of Missing Values

```
missing_values = data.isna().sum().sort_values(ascending=False)
missing_percentage = missing_values[missing_values!=0]/len(data)*100
print(" Percentage of Missing Values \n", missing_percentage)
```

→ *	Percentage of Missing Number Precipitation(in) Wind_Chill(F) Wind_Speed(mph) End_Lat End_Lng Visibility(mi) Weather_Condition	Values 65.081728 44.771263 40.729888 10.567740 9.730270 9.730270 2.479796 2.471986
	Humidity(%)	2.451997
	Temperature(F)	2.312797
	Wind_Direction	2.183781
	Pressure(in)	1.957882
	Weather_Timestamp	1.614148
	Airport_Code	0.227344
	Timezone	0.118007
	Zipcode	0.038326
	Sunrise_Sunset	0.003784
	Civil_Twilight	0.003784
	Nautical_Twilight	0.003784
	Astronomical_Twilight	0.003784
	City dtype: float64	0.003716

Getting List of Columns Having Null Values

Checking Missing Values Pattern in Dataframe

```
mn.matrix(data[null_cols]);
```


Drop Four Columns [End_Lng, End_Lat, Number, TMC] having high no. of Missing Values

```
new_data_a = data.drop(columns=["End_Lng", "End_Lat", "Number"], axis=0)
```

Drop Rows w.r.t to columns having least percentage of missing values (do not effect much to data with 4.2 million records)

new_data_b = new_data_a.dropna(subset = ['Visibility(mi)','Weather_Condition','Humidity(%)','Temperature
new_data_b.isnull().sum()

_	ID	0
	Severity	0
	Start_Time	0
	End_Time	0
	Start_Lat	0
	Start_Lng	0
	Distance(mi)	0
	Description	0
	Street	0
	Side	0
	City	0
	County	0
	State	0
	Zipcode	0
	Country	0
	Timezone	0
	Airport_Code	0
	Weather_Timestamp	0
	Temperature(F)	0
	<pre>Wind_Chill(F)</pre>	1090741
	<pre>Humidity(%)</pre>	0
	Pressure(in)	0
	<pre>Visibility(mi)</pre>	0
	Wind_Direction	0
	<pre>Wind_Speed(mph)</pre>	229916
	Precipitation(in)	1228285
	Weather_Condition	0
	Amenity	0
	Bump	0

```
0
Crossing
Give_Way
                              0
Junction
                              0
No_Exit
                              0
                              0
Railway
Roundabout
                              0
Station
                              0
Stop
                              0
Traffic_Calming
                              0
Traffic_Signal
                              0
Turning_Loop
                              0
Sunrise_Sunset
                              0
Civil_Twilight
                              0
Nautical_Twilight
                              0
Astronomical_Twilight
                              0
dtype: int64
```

final_data = new_data_b.drop(columns = 'ID', axis=0)

final_data.isnull().sum()

$\overline{\Rightarrow}$	Severity	0
	Start_Time	0
	End_Time	0
	Start_Lat	0
	Start_Lng	0
	Distance(mi)	0
	Description	0
	Street	0
	Side	0
	City	0
	County	0
	State	0
	Zipcode	0
	Country	0
	Timezone	0
	Airport_Code	0
	Weather_Timestamp	0
	Temperature(F)	0
	Wind_Chill(F)	1090741
	Humidity(%)	0
	Pressure(in)	0
	<pre>Visibility(mi)</pre>	0
	Wind_Direction	0
	<pre>Wind_Speed(mph)</pre>	229916
	Precipitation(in)	1228285
	Weather_Condition	0
	Amenity	0
	Bump	0
	Crossing	0
	Give_Way	0
	Junction	0
	No_Exit	0
	Railway	0
	Roundabout	0
	Station	0
	Stop	0
	Traffic_Calming	0
	Traffic_Signal	0
	Turning_Loop	0
	Sunrise_Sunset	0
	Civil_Twilight	0
	Nautical_Twilight	0
	Astronomical_Twilight	0
	dtype: int64	

Exploratory Data Analysis

Location

```
state_counts = final_data["State"].value_counts()
fig = go.Figure(data=go.Choropleth(locations=state_counts.index, z=state_counts.values.astype(float), loca
fig.update_layout(title_text="Number of Accidents for each State", geo_scope="usa")
fig.show()
```

```
→
```

- Total No. of State in Dataset: 49
- · There are 50 states in US
- · New York not in dataset

```
fig, ax = plt.subplots(figsize = (20,5))
c = sns.countplot(x="State", data=final_data, orient = 'v', palette = "crest_r", order = final_data['Stac.set_title("States with No. of Accidents");
```


- . California (CA) is the 3rd most largest state of US after Texas (TX) and Alaska (AL)
- Also California (CA) is the most populated among all, followed by Texas (TX)
- Alaska (AL) is the largest state but least populated state at 48th rank

```
print("City Code: ", final_data.City.unique())
print("Total No. of Cities in Dataset: ", len(final_data.City.unique()))

City Code: ['Greenville' 'Charlotte' 'Los Gatos' ... 'Allons' 'Adolphus' 'Gowanda']
    Total No. of Cities in Dataset: 11537
```

- Total No. of Cities in Dataset: 11537
- There were 19,502 incorporated places registered in the United States

```
fig, ax = plt.subplots(figsize = (20,5))
c = sns.countplot(x="City", data=final_data, order=final_data.City.value_counts().iloc[:50].index, orien
c.set_title("Top 50 Cities with Highest No. of Accidents")
c.set_xticklabels(c.get_xticklabels(), rotation=90)
plt.show()
```


Timestamp

```
final_data.Start_Time = pd.to_datetime(final_data.Start_Time)
final_data.Start_Time[0]

Timestamp('2019-05-21 08:29:55')

final_data['Month'] = final_data['Start_Time'].dt.month
```

```
final_data['Year'] = final_data['Start_Time'].dt.year
final_data['Hour'] = final_data['Start_Time'].dt.hour
final_data['Weekday'] = final_data['Start_Time'].dt.weekday
#yearly data subset
data_2016 = final_data[final_data.Start_Time.dt.year == 2016]
data_2017 = final_data[final_data.Start_Time.dt.year == 2017]
data_2018 = final_data[final_data.Start_Time.dt.year == 2018]
data_2019 = final_data[final_data.Start_Time.dt.year == 2019]
data_2020 = final_data[final_data.Start_Time.dt.year == 2020]
data_2017_2019 = final_data[(final_data["Year"] >= 2017) & (final_data["Year"] <= 2019)]</pre>
```

Yearly

```
fig, ax = plt.subplots(figsize = (10,5))
c = sns.countplot(x="Year", data=final_data, orient = 'v', palette = "crest")
plt.annotate('Data Not Available',xy=(-0.4,500000), fontsize=11)
c.set_title("No. of Accidents in Year")
for i in ax.patches:
    count = '{:,.0f}'.format(i.get_height())
    x = i.get_x()+i.get_width()-0.60
    y = i.get_height()+10000
    ax.annotate(count, (x, y))
plt.show()
```


Monthly

```
fig, ax = plt.subplots(figsize = (10,5))
c = sns.countplot(x="Month", data=data_2016, orient = 'v', palette = "crest")
plt.annotate('Data Not Available',xy=(2,50000), fontsize=11)
c.set_title("No. of Accidents in Months of Year 2016")
plt.show()
```


fig, ax = plt.subplots(figsize = (10,5))
c = sns.countplot(x="Month", data=data_2017_2019, orient = 'v', palette = "crest")
c.set_title("No. of Accidents in Month of Year 2017 to 2019")
plt.show()

fig, ax = plt.subplots(figsize = (10,5))
c = sns.countplot(x="Month", data=data_2020, orient = 'v', palette = "crest")
plt.annotate('Covid-19 Pandemic',xy=(2,150000), fontsize=12)
plt.annotate("[",xy=(0,0),xytext=(1.9,150000),arrowprops={'arrowstyle':'-|>'}, fontsize=12)
plt.annotate("]",xy=(10,0),xytext=(4.5,150000),arrowprops={'arrowstyle':'-|>'}, fontsize=12)
c.set_title("No. of Accidents in Month of Year 2020")
plt.show()

Weekly

All Weeks of Year 2016

```
fig, ax = plt.subplots(figsize = (15,5))
c = sns.countplot(x=data_2016.Start_Time.dt.isocalendar().week, data=data_2016, orient = 'v', palette =
plt.annotate('Data Not Available',xy=(5,6000), fontsize=11)
c.set_title("No. of Accidents in Month of Year 2020")
plt.show()
```


All Weeks of Year 2017 to 2019

```
fig, ax = plt.subplots(figsize = (15,5))
c = sns.countplot(x=data_2017_2019.Start_Time.dt.isocalendar().week, data=data_2017_2019, orient = 'v',
c.set_title("No. of Accidents in Month of Year 2020")
plt.show()
```


All Weeks of Year 2020

```
fig, ax = plt.subplots(figsize = (15,5))
c = sns.countplot(x=data_2020.Start_Time.dt.isocalendar().week, data=data_2020, orient = 'v', palette = "c
plt.annotate('Covid-19 Pandemic',xy=(9,30000), fontsize=12)
plt.annotate("[",xy=(0,0),xytext=(8.5,30000),arrowprops={'arrowstyle':'-|>'}, fontsize=12)
plt.annotate("]",xy=(41,0),xytext=(16.5,30000),arrowprops={'arrowstyle':'-|>'}, fontsize=12)
c.set_title("No. of Accidents in Month of Year 2020")
plt.show()
```


Weekdays

```
fig, ax = plt.subplots(figsize = (10,5))
c = sns.countplot(x="Weekday", data=final_data, orient = 'v', palette = "crest_r")
plt.annotate('Weekdays',xy=(2,728000), fontsize=12)
plt.annotate('Weekend',xy=(5.1,300000), fontsize=12)
c.set_title("No. of Accidents in Weekdays")
plt.show()
```



```
fig, ax = plt.subplots(figsize = (10,5))
sns.countplot(x="Hour", data=final_data, orient = 'v', palette = "icefire_r")
plt.annotate('Morning Peak',xy=(6,350000), fontsize=12)
plt.annotate('Afternoon Peak',xy=(15,350000), fontsize=12)
plt.annotate('go to work',xy=(6,0),xytext=(3,250000),arrowprops={'arrowstyle':'-|>'}, fontsize=12)
plt.annotate('get off work',xy=(16,0),xytext=(18,250000),arrowprops={'arrowstyle':'-|>'}, fontsize=12)
plt.show()
```


Severity

```
fig, ax = plt.subplots(figsize = (10,5))
c = sns.countplot(x="Severity", data=final_data, orient = 'v', palette = "crest_r")
c.set_title("Degree of Severity")
for i in ax.patches:
    count = "{:.2%}".format(i.get_height()/len(final_data.Severity))
    x = i.get_x()+i.get_width()-0.50
    y = i.get_height()+20000
    ax.annotate(count, (x, y))
plt.show()
```



```
df_state = final_data.groupby('State').sum('Severity')[['Severity']]
df_state = df_state.reset_index().sort_values('Severity', ascending = False)[:50]
fig, ax = plt.subplots(figsize = (20,5))
c = sns.barplot(x = 'State', y = 'Severity', data = df_state, orient = 'v', palette = "crest_r")
c.set_title("Top State with Highest Severity")
plt.show()
```



```
df_city = final_data.groupby('City').sum('Severity')[['Severity']]
df_city = df_city.reset_index().sort_values('Severity', ascending = False)[:50]
fig, ax = plt.subplots(figsize = (20,5))
c = sns.barplot(x = 'City', y = 'Severity', data = df_city, orient = 'v', palette = "crest_r")
c.set_title("Top 50 Cities with Highest Severity")
c.set_xticklabels(c.get_xticklabels(), rotation=90)
plt.show()
```


→ Weather Stimuli Impact

Related Columns

final_data.iloc[:10, 17:26]

→		Temperature(F)	Wind_Chill(F)	Humidity(%)	Pressure(in)	Visibility(mi)	Wind_Direction	Wind_Sp
	0	76.0	76.0	52.0	28.91	10.0	N	
	1	76.0	76.0	62.0	29.30	10.0	VAR	
	2	51.0	51.0	80.0	30.17	10.0	W	
	3	53.6	NaN	16.0	30.16	10.0	SSW	
	4	84.2	NaN	84.0	29.92	10.0	SSE	
	5	73.4	NaN	33.0	30.17	10.0	NNW	
	6	28.0	28.0	88.0	24.67	2.0	NE	
	7	55.0	55.0	40.0	29.86	10.0	E	
	8	87.1	NaN	43.0	30.04	10.0	NE	
	9	57.0	57.0	77.0	29.08	5.0	VAR	

Location Impact

Related Columns

final_data.iloc[:10, 27:39]

→		Bump	Crossing	Give_Way	Junction	No_Exit	Railway	Roundabout	Station	Stop	Traffic_Calming
	0	False	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	True	False	False	False	False	False	False
	5	False	False	False	False	False	False	False	False	False	False

f,ax=plt.subplots(4,3,figsize=(25,25))

 $ax[0,1] = final_data['Bump'].value_counts().plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],colors=["cornflowerblu"]).plot.pie(autopct='\%1.1f\%',ax=ax[0,1],ax$