Homework 4 Honors Analysis I

Homework 4

ALECK ZHAO

October 1, 2017

Chapter 3: Metrics and Norms

6. If d is any metric on M, show that $\rho(x,y) = \sqrt{d(x,y)}$, $\sigma(x,y) = \frac{d(x,y)}{1+d(x,y)}$, and $\tau(x,y) = \min\{d(x,y),1\}$ are also metrics on M.

Proof. ρ : Clearly ρ is non-negative since d is non-negative by being a metric, and

$$\rho(x,y) = 0 = \sqrt{d(x,y)} \iff d(x,y) = 0 \iff x = y$$

It is also symmetric because d is symmetric, and finally

$$\begin{split} \rho(x,y) + \rho(y,z) &= \sqrt{d(x,y)} + \sqrt{d(y,z)} \\ \Longrightarrow \left[\rho(x,y) + \rho(y,z) \right]^2 &= d(x,y) + d(y,z) + 2\sqrt{d(x,y)}d(y,z) \\ &\geq d(x,z) + 2\sqrt{d(x,y)}d(y,z) \geq d(x,z) \\ \Longrightarrow \rho(x,y) + \rho(y,z) \geq \sqrt{d(x,z)} = \rho(x,z) \end{split}$$

 σ : Clearly σ is non-negative since d is non-negative, and

$$\sigma(x,y) = 0 = \frac{d(x,y)}{1 + d(x,y)} \iff d(x,y) = 0 \iff x = y$$

It is also symmetric because d is symmetric. Now, define $F(t) = \frac{t}{1+t}$. Then $F'(t) = \frac{1}{(1+t)^2} > 0$ so F is increasing, and we have

$$F(t) + F(s) = \frac{t}{1+t} + \frac{s}{1+s} = \frac{t+ts+s+st}{(1+t)(1+s)} = \frac{s+t+2st}{1+s+t+st}$$
$$= \frac{s+t+st}{1+s+t+st} + \frac{st}{1+s+t+st} = F(s+t+st) + \frac{st}{1+s+t+st}$$
$$\ge F(s+t)$$

since F is increasing since $F'(t) = (1+t)^{-2} > 0$. Thus,

$$\sigma(x,y) + \sigma(y,z) = F(d(x,y)) + F(d(y,z)) \ge F(d(x,y) + d(y,z))$$

$$\ge F(d(x,z)) = \sigma(x,z)$$

 τ : Clearly τ is non-negative since d and 1 are non-negative, and

$$\tau(x,y) = 0 = \min \{d(x,y), 1\} \iff d(x,y) = 0 \iff x = y$$

It is also symmetric because d is symmetric. Suppose that

$$\begin{split} \tau(x,y) + \tau(y,z) &< \tau(x,z) \\ \min \left\{ d(x,y), 1 \right\} + \min \left\{ d(y,z), 1 \right\} &= m_1 + m_2 < \min \left\{ d(x,z), 1 \right\} \\ &\implies m_1 + m_2 < 1, \quad m_1 + m_2 < d(x,z) \end{split}$$

If $m_1 + m_2 < 1$, then we must have $m_1 = d(x,y)$ and $m_2 = d(y,z)$, but since d is a metric, $m_1 + m_2 = d(x,y) + d(y,z) \ge d(x,z)$, so it is impossible for both conditions to be true. Contradiction, so $\tau(x,y) + \tau(y,z) \ge \tau(x,z)$, and τ is a metric.

Homework 4 Honors Analysis I

15. We define the diameter of a nonempty subset A of M by $\operatorname{diam}(A) = \sup \{d(a,b) : a,b \in A\}$. Show that A is bounded if and only if $\operatorname{diam}(A)$ is finite.

Proof. (\Longrightarrow): If A is bounded, then $\exists x_0 \in M$ and $C < \infty$ such that $d(a, x_0) \le C$ for all $a \in A$. Then $\operatorname{diam}(A) = \sup \{d(a, b) : a, b \in A\} \le \sup \{d(a, x_0) + d(x_0, b) : a, b \in A\} \le 2C < \infty$

(\iff): If diam(A) is finite, say s = diam(A). Then take any $x_0 \in A \subset M$, and take C = s. Since s is the supremum, it follows that

$$C = s = \sup \{d(a, b) : a, b \in A\} \ge d(a, x_0)$$

for any $a \in A$, so A is bounded, as desired.

- 22. Show that $||x||_{\infty} \leq ||x||_2$ for any $x \in \ell_2$, and that $||x||_2 \leq ||x||_1$ for any $x \in \ell_1$.
- 23. The subset of ℓ_{∞} consisting of all sequences that converge to 0 is denoted by c_0 . (Note that c_0 is actually a linear subspace of ℓ_{∞} ; thus c_0 is also a normed vector space under $\|\cdot\|_{\infty}$.) Show that we have the following proper set inclusions: $\ell_1 \subset \ell_2 \subset c_0 \subset \ell_{\infty}$.
- 25. The same techniques can be used to show that $||f||_p = \left(\int_0^1 |f(t)|^p dt\right)^{1/p}$ defines a norm on C([0,1]) for any 1 . State and prove the analogues of Lemma 3.7 and Theorem 3.8 in this case. (Does Lemma 3.7 still hold in this setting for <math>p = 1 and $q = \infty$?)
- 31. Give an example where $\operatorname{diam}(A \cup B) > \operatorname{diam}(A) + \operatorname{diam}(B)$. If $A \cap B \neq \emptyset$, show that $\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B)$.
- 37. A Cauchy sequence with a convergent subsequence converges.