1 | Implicit Differentiation

unit1::derivatives

1.1 | David's Summary

This is how I understand implicit differentiation.

Say you want to take a derivative of an implicit function like $x^2 + y^2 = 3$.

- 1. Take the derivative of everything with respect to x: $\frac{d}{dx}x^2 + \frac{d}{dx}y^2 = \frac{d}{dx}3$ With a little simplification this is just $2x + \frac{d}{dx}y^2 = 0$.
- 2. Cleverly apply the chain rule to get $\frac{d}{dx}y^2$. Chain rule states that $\frac{d}{du}\frac{du}{dx}=\frac{d}{dx}$. Define $u=y^2$. By chain rule $\frac{du}{dy}\frac{dy}{dx}=\frac{du}{dx}$.
- 3. Our formula is now $2x+(2y)\frac{dy}{dx}=0$. Time for some algebra! $\frac{dy}{dx}=\frac{-2x}{2y}=\frac{-x}{y}$

1.2 | Initial Example

Technique based on the Chain Rule that allows diffrentiation of more functions.

EXAMPLE $\frac{d}{dx}x^a=ax^{a-1}$ This holds true for $a=0,\pm 1,\pm 2...$ What about fractional powers? Take $a=\frac{m}{n}$ $y=x^{\frac{m}{n}}$ or $y^n=x^m$ We can apply derivative to equation 2 because the methods of diffrentiating the fractional exponent is unknown to us.

$$\begin{array}{l} \frac{d}{dx}y^n=\frac{d}{dx}x^m\\ \left(\frac{d}{dy}y^n\right)\frac{dy}{dx}=\frac{d}{dx}x^m \text{ or ... } ny^{n-1}\frac{dy}{dx}=mx^{m-1}\\ \text{dy}_{\overline{dx=}} \end{array}$$

1.3 | Another Example

 $x^2+y^2=1$ is an implicit function, explicitly it is $y=\pm\sqrt{1-x}$ (for convienience limit to positives for now). Solving it explicitly: $y'=\frac{1}{2}()^{-1/2}(-2x)$ NOTE: $\frac{1}{2}()^{-1/2}=\frac{d}{d()}()^{-1/2}$

Or implicitly:

- Diffrentiate function in the form $x^2 + y^2 = 1$.
- $\frac{d}{dx}(x^2+y^2=1)$ or 2x+2yy'=0
- Solve for y' which is $\frac{-2x}{2y} = \frac{-x}{y}$ (solve algebraically).

Compare $\frac{-x}{y}$ to explicit solution $\frac{1}{2}(1-x^2)^{-1/2}(-2x)=\frac{-x}{\sqrt{1-x^2}}$ and find they are the same as $y=\sqrt{1-x^2}$.

1.4 | A Trickier Example

$$y^4 + xy^2 - 2 = 0$$

- One can solve it explicitly by using the quadratic equation.
- Implicitly one can apply the product rule and the previous examples to diffrentiate this function.
- Writeup is left as an exercise for the reader.

Taproot • 2021-2022 Page 1

1.5 | Derivatives of Inverse Functions

EXAMPLE
$$y=\sqrt{x}, x>0, y^2=x$$
 $f(x)=\sqrt{x}, g(y)=x, g(y)=y^2$ NOTE: If $y=f(x)$ and $g(y)=x$, $g(f(x))=x$

STATEMENT Implicit differentiation allows computing derivatives of any inverse function provided we know the derivative of the function.

EXAMPLE $y = \tan^{-1} x$ and we'll use the equation $\tan y = x$

- Note that inverse functions are the function reflected over the line x=y.
- Recall that derivative of tangent is $\frac{d}{dy}\frac{\sin y}{\cos y}=\frac{1}{\cos^2 y}=\sec^2 y.$
- $\frac{d}{dy}\tan y = 1$ or $\sec^2 y * y' = 1$.
- $y' = \cos^2 y$ which leads to $\frac{d}{dx} \tan^{-1} x = \cos^2 (\tan^{-1} x)$.
 - Too complicated!
- Modelling as a right triangle and simplifying more yields $\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$.

2 | **Links**

Other techniques for differentiation as well as the topic of logarithms are covered in Exponentials and Logarithms. Further review can be found in MIT SVC Exam Review (Unit 1).

Taproot • 2021-2022 Page 2