$\mbox{Sparse Optimization} \\ \mbox{Lecture: Dual Certificate in ℓ_1 Minimization} \\$

Instructor: Wotao Yin

July 2013

Note scriber: Zheng Sun

Those who complete this lecture will know

- ullet what is a dual certificate for ℓ_1 minimization
- a strictly complementary dual certificate guarantees exact recovery
- it also guarantees stable recovery

What is covered

- ► A review of dual certificate in the context of conic programming
- \blacktriangleright A condition that guarantees recovering a set of sparse vectors (whose entries have the same signs), *not* for all k-sparse vectors \odot
- ightharpoonup The condition depends on $sign(\mathbf{x}^o)$, but not \mathbf{x}^o itself or \mathbf{b}
- ► The condition is sufficient and necessary ©
- ▶ It also guarantees robust recovery against measurement errors ☺
- ► The condition can be numerically verified (in polynomial time) ⊕

The underlying techniques are Lagrange duality, strict complementarity, and LP strong duality.

Results in this lecture are drawn from various papers. For references, see: H. Zhang, M. Yan, and W. Yin, One condition for all: solution uniqueness and robustness of ℓ_1 -synthesis and ℓ_1 -analysis minimizations

Lagrange dual for conic programs

Let K_i be a first-orthant, second-order, or semi-definite cone. It is self-dual. (Suppose $\mathbf{a}, \mathbf{b} \in K_i$. Then, $\mathbf{a}^T \mathbf{b} \ge 0$. If $\mathbf{a}^T \mathbf{b} = 0$, either $\mathbf{a} = 0$ or $\mathbf{b} = 0$.)

► Primal:

$$\min \mathbf{c}^T \mathbf{x}$$
 s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}, \ \mathbf{x}_i \in \mathcal{K}_i \ \forall i.$

► Lagrangian relaxation:

$$\mathcal{L}(\mathbf{x}; \mathbf{s}) = \mathbf{c}^T \mathbf{x} + \mathbf{s}^T (\mathbf{A} \mathbf{x} - \mathbf{b})$$

Dual function:

$$d(\mathbf{s}) = \min_{\mathbf{x}} \{ \mathcal{L}(\mathbf{x}; \mathbf{s}) : \mathbf{x}_i \in \mathcal{K}_i \ \forall i \} = -\mathbf{b}^T \mathbf{s} - \iota_{\{(\mathbf{A}^T \mathbf{s} + \mathbf{c})_i \in \mathcal{K}_i \ \forall i \}}$$

Dual problem:

$$\min_{\mathbf{s}} -d(\mathbf{s}) \iff \min_{\mathbf{s}} \mathbf{b}^T \mathbf{s} \quad \text{s.t. } (\mathbf{A}^T \mathbf{s} + \mathbf{c})_i \in \mathcal{K}_i \ \forall i$$

One problem might be simpler to solve than the other; solving one might help solve the other.

Dual certificate

Given that \mathbf{x}^* is *primal feasible*, i.e., obeying $\mathbf{A}\mathbf{x}^* = \mathbf{b}, \ \mathbf{x}_i^* \in \mathcal{K}_i \ \forall i$.

Question: is x^* optimal?

Answer: One does *not* need to compare \mathbf{x}^* to all other feasible \mathbf{x} .

A dual vector \mathbf{y}^* will certify the optimality of \mathbf{x}^* .

Dual certificate

Theorem

Suppose \mathbf{x}^* is feasible (i.e., $\mathbf{A}\mathbf{x}^* = \mathbf{b}, \ \mathbf{x}_i^* \in \mathcal{K}_i \ \forall i$). If \mathbf{s}^* obeys

- 1. vanished duality gap: $-\mathbf{b}^T\mathbf{s}^* = \mathbf{c}^T\mathbf{x}^*$, and
- 2. dual feasibility: $(\mathbf{A}^T\mathbf{s}^* + \mathbf{c})_i \in \mathcal{K}_i$,

then x^* is primal optimal.

Pick any primal feasible \mathbf{x} (i.e., $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x}_i \in \mathcal{K}_i \ \forall i$), we have

$$(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)^T \mathbf{x} = \sum_i \underbrace{(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T}_{\in \mathcal{K}_i} \underbrace{\mathbf{x}_i}_{\in \mathcal{K}_i} \ge 0$$

and thus due to Ax = b,

$$\mathbf{c}^T\mathbf{x} = (\mathbf{c} + \mathbf{A}^T\mathbf{s}^*)^T\mathbf{x} - (\mathbf{A}^T\mathbf{s}^*)^T\mathbf{x} \ge -(\mathbf{A}^T\mathbf{s}^*)^T\mathbf{x} = -\mathbf{b}^T\mathbf{s}^* = \mathbf{c}^T\mathbf{x}^*.$$

Therefore, x^* is optimal.

Corollary: $(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)^T \mathbf{x}^* = 0$ and $(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T \mathbf{x}_i^* = 0$, $\forall i$.

Bottom line: dual vector $\mathbf{y}^* = \mathbf{A}^T \mathbf{s}^*$ <u>certifies</u> the optimality of \mathbf{x}^* .

Dual certificate

A related claim:

Theorem

If any primal feasible \mathbf{x}^* and dual feasible \mathbf{s}^* have no duality gap, then \mathbf{x} is primal optimal and \mathbf{s} is dual optimal.

Reason: the primal objective value of any primal feasible $\mathbf{x} \geq$ the dual objective value of any dual feasible \mathbf{s} . Therefore, assuming both primal and dual feasibilities, a pair of primal/dual objectives must be optimal.

Complementarity and strict complementarity

From

$$\sum_{i} (\mathbf{c} + \mathbf{A}^{T} \mathbf{s}^{*})_{i}^{T} \mathbf{x}_{i}^{*} = (\mathbf{c} + \mathbf{A}^{T} \mathbf{s}^{*})^{T} \mathbf{x}^{*} = \mathbf{c}^{T} \mathbf{x}^{*} + \mathbf{b}^{T} \mathbf{s}^{*} = 0$$

and

$$\underbrace{(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T}_{\in \mathcal{K}_i} \underbrace{\mathbf{x}_i^*}_{\in \mathcal{K}_i} \ge 0, \ \forall i.$$

we get

$$(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T \mathbf{x}_i^* = 0, \ \forall i.$$

Hence, at least one of $(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T$ and \mathbf{x}_i^* is 0 (but they can be both zero.)

▶ If exactly one of $(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T$ and \mathbf{x}_i^* is zero (the other is nonzero), then they are strictly complementary.

Certifying the uniqueness of x^* requires a strictly complementary s^* .

ℓ_1 duality and dual certificate

Primal:

$$\min \|\mathbf{x}\|_1 \quad \text{s.t. } \mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

Dual:

$$\max \mathbf{b}^T \mathbf{s}$$
 s.t. $\|\mathbf{A}^T \mathbf{s}\|_{\infty} \leq 1$

- \blacktriangleright Given a feasible $\mathbf{x}^*,$ if \mathbf{s}^* obeys
 - 1. $\|\mathbf{A}^T\mathbf{s}^*\|_{\infty} \leq 1$, and
 - 2. $\|\mathbf{x}^*\|_1 \mathbf{b}^T \mathbf{s}^* = 0$,

then $\mathbf{y}^* = \mathbf{A}^T \mathbf{s}^*$ certifies the optimality of \mathbf{x}^* .

 $\blacktriangleright \ \ \text{Any primal optimal } \mathbf{x}^* \ \text{must satisfy} \ \|\mathbf{x}^*\|_1 - \mathbf{b}^T \mathbf{s}^* = 0.$

ℓ_1 duality and complementarity

$$lackbox{} |a| \leq 1 \implies ab \leq |b|. \ lackbox{} If \ ab = |b|, \ then$$

- 1. $|a| < 1 \implies b = 0$
- $2. \ a=1 \ \Rightarrow \ b \ge 0$
- 3. $a = -1 \implies b \le 0$
- From $\|\mathbf{A}^T\mathbf{s}^*\|_{\infty} \le 1$, we get $\|\mathbf{x}^*\|_1 = \mathbf{b}^T\mathbf{s}^* = (\mathbf{A}^T\mathbf{s}^*)^T\mathbf{x}^* \le \|\mathbf{x}^*\|_1$ and

$$(\mathbf{A}^T \mathbf{s}^*)_i \cdot x_i = |x_i|, \quad \forall i.$$

Therefore,

- 1. if $|(\mathbf{A}^T \mathbf{s}^*)_i| < 1$, then $\mathbf{x}_i^* = 0$
- 2. if $(\mathbf{A}^T \mathbf{s}^*)_i = 1$, then $\mathbf{x}_i^* \geq 0$
- 3. if $(\mathbf{A}^T \mathbf{s}^*)_i = -1$, then $\mathbf{x}_i^* \leq 0$

Strict complementarity holds if for each i, $1 - |(\mathbf{A}^T \mathbf{s}^*)_i|$ or \mathbf{x}_i is zero but not both.

Uniqueness of x*

Suppose \mathbf{x}^* is a solution to the basis pursuit model.

Question: Is it the unique solution?

Define $I := \operatorname{supp}(\mathbf{x}^*) = \{i : \mathbf{x}_i^* \neq 0\}$ and $J = I^c$.

- ▶ If \mathbf{s}^* is a dual certificate and $\|(\mathbf{A}^T\mathbf{s}^*)_J\|_{\infty} < 1$, $\mathbf{x}_J = 0$ for all optimal \mathbf{x} .
- ▶ For $i \in I$, $(\mathbf{A}^T \mathbf{s}^*)_i = \pm 1$ cannot determine $x_i \stackrel{?}{=} 0$ for optimal \mathbf{x} . It is possible that $(\mathbf{A}^T \mathbf{s}^*)_i = \pm 1$ yet $x_i = 0$ (this is called *degenerate*.)
- ▶ On the other hand, if $\mathbf{A}_I \mathbf{x}_I = \mathbf{b}$ has a *unique* solution, denoted by \mathbf{x}_I^* , then since $\mathbf{x}_J^* = 0$ is unique, $\mathbf{x}^* = [\mathbf{x}_I^*; \mathbf{x}_J^*] = [\mathbf{x}_I^*; \mathbf{0}]$ is the unique solution to the basis pursuit model.
- ▶ $\mathbf{A}_I \mathbf{x}_I = \mathbf{b}$ has a *unique* solution provided that \mathbf{A}_I has independent columns, or equivalently, $\ker(\mathbf{A}_I) = \{0\}$.

Optimality and uniqueness

Condition

For a given $\bar{\mathbf{x}}$, the index sets $I = \operatorname{supp}(\bar{\mathbf{x}})$ and $J = I^c$ satisfy

- 1. $\ker(\mathbf{A}_I) = \{0\}$
- 2. there exists y such that $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$, $\mathbf{y}_I = \operatorname{sign}(\bar{\mathbf{x}}_I)$, and $\|\mathbf{y}_J\|_{\infty} < 1$.

Comments:

- part 1 guarantees unique \mathbf{x}_I^* as the solution to $\mathbf{A}_I\mathbf{x}_I=\mathbf{b}$
- part 2 guarantees $\mathbf{x}_J^* = 0$
- ullet $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$ means $\mathbf{y} = \mathbf{A}^T\mathbf{s}$ for some \mathbf{s}
- the condition involves I and $\operatorname{sign}(\bar{\mathbf{x}}_I)$, not the values of $\bar{\mathbf{x}}_I$ or \mathbf{b} ; but different I and $\operatorname{sign}(\bar{\mathbf{x}}_I)$ require a different condition
- ullet RIP guarantees the condition hold for all small I and arbitrary signs
- the condition is easy to verify

Optimality and uniqueness

Theorem

Suppose $\bar{\mathbf{x}}$ obeys $A\bar{\mathbf{x}} = \mathbf{b}$ and the above Condition, then $\bar{\mathbf{x}}$ is the unique solution to $\min\{\|\mathbf{x}\|_1 : A\mathbf{x} = \mathbf{b}\}.$

In fact, the converse is also true, namely, the Condition is also necessary.

Uniqueness of x^*

Part 1 $ker(\mathbf{A}_I) = \{0\}$ is necessary.

Lemma

If $0 \neq \mathbf{h} \in \ker(\mathbf{A}_I)$, then all $\mathbf{x}_{\alpha} = \mathbf{x}^* + \alpha[\mathbf{h}; \mathbf{0}]$ for small α is optimal.

Proof.

- \mathbf{x}_{α} is feasible since $\mathbf{A}\mathbf{x}_{\alpha} = \mathbf{A}\mathbf{x}^* = \mathbf{b}$.
- We know $\|\mathbf{x}_{\alpha}\|_{1} \geq \|\mathbf{x}^{*}\|_{1}$, but for small α around 0, we also have $\|\mathbf{x}_{\alpha}\|_{1} = \|\mathbf{x}_{I}^{*} + \alpha \mathbf{h}\|_{1} = (\mathbf{A}^{T}\mathbf{s}^{*})_{I}^{T}(\mathbf{x}_{I}^{*} + \alpha \mathbf{h}) = \|\mathbf{x}^{*}\|_{1} + \alpha(\mathbf{A}^{T}\mathbf{s}^{*})_{I}^{T}\mathbf{h}.$
- $\bullet \ \ \text{Hence, } (\mathbf{A}^T\mathbf{s}^*)_I^T\mathbf{h} = 0 \ \text{and thus} \ \|\mathbf{x}_\alpha\|_1 = \|\mathbf{x}^*\|_1. \ \ \text{So, } \mathbf{x}_\alpha \ \text{is also optimal.}$

▶ Is part 2 necessary?

Introduce

$$\min_{\mathbf{y}} \|\mathbf{y}_J\|_{\infty} \quad \text{s.t.} \quad \mathbf{y} \in \mathcal{R}(\mathbf{A}^T), \ \mathbf{y}_I = \operatorname{sign}(\bar{\mathbf{x}}_I). \tag{2}$$

If the optimal objective value < 1, then there exists ${\bf y}$ obeying part 2, so part 2 is also necessary.

We shall translate (2) and rewrite $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$.

Define $\mathbf{a} = [\operatorname{sign}(\bar{\mathbf{x}}_I); \mathbf{0}]$ and basis \mathbf{Q} of $\operatorname{Null}(\mathbf{A})$.

- ▶ If $\mathbf{a} \in \mathcal{R}(\mathbf{A}^T)$, set $\mathbf{y} = \mathbf{a}$. done.
- ightharpoonup Otherwise, let y = a + z. Then

•
$$\mathbf{y} \in \mathcal{R}(\mathbf{A}^T) \Leftrightarrow \mathbf{Q}^T \mathbf{y} = 0 \Leftrightarrow \mathbf{Q}^T \mathbf{z} = -\mathbf{Q}^T \mathbf{a}$$

•
$$\mathbf{y}_I = \operatorname{sign}(\bar{\mathbf{x}}_I) = \mathbf{a}_I \iff \mathbf{z}_I = 0$$

•
$$\mathbf{a}_J = 0 \Rightarrow \|\mathbf{y}_J\|_{\infty} = \|\mathbf{z}_J\|_{\infty}$$

Equivalent problem:

$$\min_{\mathbf{z}} \|\mathbf{z}_J\|_{\infty} \quad \text{s.t. } \mathbf{Q}^T \mathbf{z} = -\mathbf{Q}^T \mathbf{a}, \ \mathbf{z}_I = 0.$$
 (3)

If the optimal objective value < 1, then part 2 is necessary.

Theorem (LP strong duality)

If a linear program has a finite solution, its Lagrange dual has a finite solution. The two solutions achieve the same primal and dual optimal objective.

Problem (3) is feasible and has a finite objective value. The dual of (3) is

$$\max_{\mathbf{p}} (\mathbf{Q}^T \mathbf{a})^T \mathbf{p}$$
 s.t. $\|(\mathbf{Q} \mathbf{p})_J\|_1 \le 1$.

If its optimal objective value < 1, then part 2 is necessary.

Lemma

If \mathbf{x}^* is unique, then the optimal objective of the following primal-dual problems is strictly less than 1.

$$\min_{\mathbf{z}} \|\mathbf{z}_J\|_{\infty} \quad \text{s.t. } \mathbf{Q}^T \mathbf{z} = -\mathbf{Q}^T \mathbf{a}, \ \mathbf{z}_I = 0.$$
$$\max_{\mathbf{p}} (\mathbf{Q}^T \mathbf{a})^T \mathbf{p} \quad \text{s.t. } \|(\mathbf{Q} \mathbf{p})_J\|_1 \le 1.$$

Proof.

Define $\mathbf{a} = \mathrm{sign}(\mathbf{x}^*)$. Uniqueness of $\mathbf{x}^* \Longrightarrow$ for $\forall \, \mathbf{h} \in \mathrm{ker}(\mathbf{A}) \setminus \{0\}$, we have $\|\mathbf{x}^*\|_1 < \|\mathbf{x}^* + \mathbf{h}\|_1 \implies \mathbf{a}_I^T \mathbf{h}_I < \|\mathbf{h}_J\|_1$

Therefore,

- if $\mathbf{p}^* = 0$, then $\|\mathbf{z}_J^*\|_{\infty} = (\mathbf{Q}^T \mathbf{a})^T \mathbf{p}^* = 0$.
- if $\mathbf{p}^* \neq 0$, then $\mathbf{h} := \mathbf{Q}\mathbf{p}^* \in \ker(\mathbf{A}) \setminus \{0\}$ obeys $\|\mathbf{z}_J^*\|_{\infty} = (\mathbf{Q}^T\mathbf{a})^T\mathbf{p}^* = \mathbf{a}_I^T\mathbf{h}_I < \|\mathbf{h}_J\|_1 \le \|(\mathbf{Q}\mathbf{p})_J\|_1 \le 1$.

In both cases, the optimal objective value < 1.

Theorem

Suppose $\bar{\mathbf{x}}$ obeys $A\bar{\mathbf{x}} = \mathbf{b}$. Then, $\bar{\mathbf{x}}$ is the unique solution to $\min\{\|\mathbf{x}\|_1 : A\mathbf{x} = \mathbf{b}\}$ if and only if the Condition holds.

Comments:

- ullet the uniqueness requires strong duality result for problems involving $\|\mathbf{z}_J\|_{\infty}$
- strong duality does not hold for all convex programs
- strong duality does hold for convex polyhedral functions $f(\mathbf{z}_J)$, as well as those with constraint qualifications (e.g., the Slater condition)
- ullet indeed, the theorem generalizes to analysis ℓ_1 minimization: $\|\Psi^T\mathbf{x}\|_1$
- does it generalize to $\sum \|\mathbf{x}_{\mathcal{G}_i}\|_2$ or $\|\mathbf{X}\|_*$? the key is strong duality for $\|\cdot\|_2$ and $\|\cdot\|_*$
- also, the theorem generalizes to the noisy ℓ_1 models (next part...)

Noisy measurements

Suppose \mathbf{b} is contaminated by noise: $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{w}$

Appropriate models to recover a sparse ${\bf x}$ include

$$\min \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \tag{4}$$

$$\min \|\mathbf{x}\|_1 \quad \text{s.t. } \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \delta \tag{5}$$

Theorem

Suppose $\bar{\mathbf{x}}$ is a solution to either (4) or (5). Then, $\bar{\mathbf{x}}$ is the unique solution if and only if the Condition holds for $\bar{\mathbf{x}}$.

Key intuition: reduce (4) to (1) with a specific \mathbf{b} . Let $\hat{\mathbf{x}}$ be any solution to (4) and $\mathbf{b}^* := \mathbf{A}\hat{\mathbf{x}}$. All solutions to (4) are solutions to

$$\min \|\mathbf{x}\|_1 \quad \text{s.t. } \mathbf{A}\mathbf{x} = \mathbf{b}^*.$$

The same applies to (5). Recall that the Condition does not involve b.

Assumptions:

- \bar{x} and y satisfy the Condition. \bar{x} is the *original signal*.
- $\mathbf{b} = \mathbf{A}\bar{\mathbf{x}} + \mathbf{w}$, where $\|\mathbf{w}\|_2 \leq \delta$
- x* is the solution to

$$\min \|\mathbf{x}\|_1 \quad \text{s.t. } \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \delta.$$

Goal: obtain a bound $\|\mathbf{x}^* - \bar{\mathbf{x}}\|_2 \leq C\delta$.

Constant C shall be independent of δ .

Lemma

Define $I = \operatorname{supp}(\bar{\mathbf{x}})$ and $J = I^c$.

$$\|\mathbf{x}^* - \bar{\mathbf{x}}\|_1 \le C_3 \delta + C_4 \|\mathbf{x}_J^*\|_1,$$

where $C_3 = 2\sqrt{|I|} \cdot r(I)$ and $C_4 = ||\mathbf{A}||\sqrt{|I|} \cdot r(I) + 1$.

Proof.

- $||\mathbf{x}^* \bar{\mathbf{x}}||_1 = ||\mathbf{x}_I^* \bar{\mathbf{x}}_I||_1 + ||\mathbf{x}_J^*||_1$
- $\|\mathbf{x}_{I}^{*} \bar{\mathbf{x}}_{I}\|_{1} \leq \sqrt{|I|} \cdot \|\mathbf{x}_{I}^{*} \bar{\mathbf{x}}_{I}\|_{2} \leq \sqrt{|I|} \cdot r(I) \cdot \|\mathbf{A}_{I}(\mathbf{x}_{I}^{*} \bar{\mathbf{x}}_{I})\|_{2}$, where

$$r(I) := \sup_{\text{supp}(\mathbf{u}) = I, \mathbf{u} \neq 0} \frac{\|\mathbf{u}\|}{\|\mathbf{A}\mathbf{u}\|}$$

(r(I) is related to one side of the RIP bound)

- ightharpoonup introduce $\hat{\mathbf{x}} = [\mathbf{x}_I^*; \mathbf{0}].$
- $\|\mathbf{A}_{I}(\mathbf{x}_{I}^{*} \bar{\mathbf{x}}_{I})\|_{2} = \|\mathbf{A}(\hat{\mathbf{x}} \bar{\mathbf{x}})\|_{2} \leq \|\mathbf{A}(\hat{\mathbf{x}} \mathbf{x}^{*})\|_{2} + \underbrace{\|\mathbf{A}(\mathbf{x}^{*} \bar{\mathbf{x}})\|_{2}}_{\leq 2\delta}$

$$\|\mathbf{A}(\hat{\mathbf{x}} - \mathbf{x}^*)\|_2 \le \|\mathbf{A}\| \|\hat{\mathbf{x}} - \mathbf{x}^*\|_2 \le \|\mathbf{A}\| \|\hat{\mathbf{x}} - \mathbf{x}^*\|_1 = \|\mathbf{A}\| \|\mathbf{x}_J^*\|_1$$

Recall in the Condition, $\mathbf{y}_I = \mathrm{sign}(\bar{\mathbf{x}})$ and $\|\mathbf{y}_J\|_{\infty} < 1$

- $\blacktriangleright \|\mathbf{x}_I^*\|_1 \ge \langle \mathbf{y}_I, \mathbf{x}_I^* \rangle$
- $\|\mathbf{x}_{J}^{*}\|_{1} \leq (1 \|\mathbf{y}_{J}\|_{\infty})^{-1}(\|\mathbf{x}_{J}^{*}\|_{1} \langle \mathbf{y}_{J}, \mathbf{x}^{*} \rangle)$

Therefore,

 $\|\mathbf{x}_J^*\|_1 \le (1 - \|\mathbf{y}_J\|_{\infty})^{-1} (\|\mathbf{x}^*\|_1 - \langle \mathbf{y}, \mathbf{x}^* \rangle) = (1 - \|\mathbf{y}_J\|_{\infty})^{-1} d_y(\mathbf{x}^*, \bar{\mathbf{x}}),$ where

$$d_{\mathbf{y}}(\mathbf{x}^*, \bar{\mathbf{x}}) = \|\mathbf{x}^*\|_1 - \|\bar{\mathbf{x}}\|_1 - \langle \mathbf{y}, \mathbf{x}^* - \bar{\mathbf{x}} \rangle$$

is the *Bregman distance* induced by $\|\cdot\|_1$.

Recall in the Condition, $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$ so $\mathbf{y} = \mathbf{A}^T \boldsymbol{\beta}$ for some vector $\boldsymbol{\beta}$.

 $d_{\mathbf{y}}(\mathbf{x}^*, \bar{\mathbf{x}}) \le 2\|\beta\|_2 \delta.$

Lemma

Under the above assumptions,

$$\|\mathbf{x}_{J}^{*}\|_{1} \leq 2(1 - \|\mathbf{y}_{J}\|_{\infty})^{-1} \|\beta\|_{2} \delta.$$

Theorem

Assumptions:

- $\bar{\mathbf{x}}$ and \mathbf{y} satisfy the Condition. $\bar{\mathbf{x}}$ is the original signal. $\mathbf{y} = \mathbf{A}^T \boldsymbol{\beta}$.
- $\mathbf{b} = \mathbf{A}\bar{\mathbf{x}} + \mathbf{w}$, where $\|\mathbf{w}\|_2 \leq \delta$
- x* is the solution to

$$\min \|\mathbf{x}\|_1 \quad s.t. \ \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \delta.$$

Conclusion:

$$\|\mathbf{x}^* - \bar{\mathbf{x}}\|_1 \le C\delta,$$

where

$$C = 2\sqrt{|I|} \cdot r(I) + \frac{2\|\beta\|_2(\|\mathbf{A}\|\sqrt{|I|} \cdot r(I) + 1)}{1 - \|\mathbf{y}_J\|_{\infty}}$$

Comment: a similar bound can be obtained for $\min \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ with a condition on λ .

Generalization

All the previous results (exact and stable recovery) generalize to the following models:

$$\begin{aligned} &\min \|\boldsymbol{\Psi}^T \mathbf{x}\|_1 \quad \text{s.t. } \mathbf{A} \mathbf{x} = \mathbf{b} \\ &\min \lambda \|\boldsymbol{\Psi}^T \mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A} \mathbf{x} - \mathbf{b}\|_2^2 \\ &\min \|\boldsymbol{\Psi}^T \mathbf{x}\|_1 \quad \text{s.t. } \|\mathbf{A} \mathbf{x} - \mathbf{b}\|_2 \le \delta \end{aligned}$$

Assume that ${f A}$ and ${f \Psi}$ each has independent rows, the update conditions are

Condition

For a given $\bar{\mathbf{x}}$, the index sets $I = \operatorname{supp}(\Psi^T \bar{\mathbf{x}})$ and $J = I^c$ satisfy

- 1. $\ker(\Psi_J^T) \cap \ker(\mathbf{A}_I) = \{0\}$
- 2. there exists \mathbf{y} such that $\Psi \mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$, $\mathbf{y}_I = \operatorname{sign}(\Psi_I^T \bar{\mathbf{x}})$, and $\|\mathbf{y}_J\|_{\infty} < 1$.