Entregables Espacios Topologías Topología

Juan Rodríguez

Ejercicio 1: ¿Son una topología?

1. $X = \{a, b, c\}, T_1 = \{\emptyset, \{a\}, \{b\}, \{a, c\}, \{a, b, c\}, \{a, b\}\}.$

Solución. Comprobamos axiomas: (i) $\emptyset, X \in T_1$ (sí). (ii) Intersección finita: por ejemplo, $\{a\} \cap \{b\} = \emptyset \in T_1, \{a\} \cap \{a,c\} = \{a\} \in T_1, \{a,b\} \cap \{a,c\} = \{a\} \in T_1,$ etc. (iii) Unión arbitraria: $\{a\} \cup \{b\} = \{a,b\} \in T_1, \{b\} \cup \{a,c\} = X \in T_1,$ etc. Como todos los casos cierran,

$$T_1$$
 es topología en X .

2. $X = \mathbb{R}, \ \mathcal{T} = \{(a, +\infty) : a \in \mathbb{R}\}.$

Solución. No es topología tal como está escrita porque $\emptyset \notin \mathcal{T}$. (Obs.: estas semirrectas forman *base* de una topología —la de semirrectas derechas—, pero la familia dada no incluye \emptyset ni garantiza que toda unión de ellas siga estando en \mathcal{T} como *un solo elemento*.)

$$\mathcal{T}$$
 no es topología (falta \varnothing).

3. $X = \mathbb{R}, \ \mathcal{S} = \{[a, b) : a, b \in \mathbb{R}, \ a < b\}.$

Solución. Tampoco es topología como *colección* final, porque (i) $\emptyset \notin \mathcal{S}$ ni $X \in \mathcal{S}$; (ii) una unión arbitraria de intervalos de la forma [a,b) no tiene por qué ser nuevamente un único intervalo [a,b). (En realidad, \mathcal{S} es *base* de la topología de Sorgenfrey.)

$$\mathcal{S}$$
 no es topología (sí es base).

Ejercicio 2: ¿Son una topología?

1. $X = \{a, b, c\}, T_2 = \{\emptyset, \{a\}, \{c\}, \{b, c\}, \{a, b, c\}, \{a, b\}\}.$

Solución. No cierra por uniones: $\{a\} \cup \{c\} = \{a, c\} \notin T_2$.

$$T_2$$
 no es topología.

2. $X = \mathbb{R}, \ \mathcal{C} = \{U \subset \mathbb{R} : |\mathbb{R} \setminus U| < \infty\}.$

Solución. La topología cofinita estándar es $\mathcal{C} \cup \{\emptyset\}$. Tal como está escrita (sin \emptyset explícita), $\emptyset \notin \mathcal{C}$ porque $|\mathbb{R} \setminus \emptyset| = |\mathbb{R}| = \infty$. Luego la familia dada no es topología, aunque basta añadir \emptyset para que sí lo sea (y, de hecho, lo es): las uniones arbitrarias de cofinito siguen siendo cofinito, y las intersecciones finitas de cofinito también lo son.

 ${\mathcal C}$ no es topología tal como está (falta \varnothing).

Ejercicio 3

Halla un ejemplo de topología heredada de un espacio que no coincida con la topología "usual" (interior/inferior).

Ejemplo claro con Sorgenfrey. Sea (\mathbb{R}, τ_S) la topología de Sorgenfrey (base [a, b)). Considérese el subespacio $X = \mathbb{R} \subset (\mathbb{R}, \tau_S)$: la topología heredada en X coincide con τ_S , pero no coincide con la topología usual canonica τ_C en \mathbb{R} . Por ejemplo, [0, 1) es abierto en τ_S y no es abierto en τ_C . Así, en el mismo conjunto $X = \mathbb{R}$ tenemos dos topologías distintas: la heredada de Sorgenfrey y la canonica.

Conclusión: la topología heredada de Sorgenfrey en X no coincide con la canonica de X.

Ejercicio 4

Determinar el interior, la frontera y la clausura de los siguientes conjuntos.

- 1. (0,2) en \mathbb{R} (topología usual). $Int((0,2)) = (0,2), \quad \overline{(0,2)} = [0,2], \quad Fr((0,2)) = \{0,2\}.$
- 2. $\{1/n: n \in \mathbb{Z}^+\}$ en \mathbb{R} . Todo punto 1/n es aislado $\to \operatorname{Int}(A) = \varnothing$. El punto 0 es límite porque $1/n \to 0$. $\overline{A} = \{1/n: n \in \mathbb{Z}^+\} \cup \{0\}, \quad Fr(A) = \{1/n: n \in \mathbb{Z}^+\} \cup \{0\}.$
- 3. (0,2) en (0,4) con la topología subespacio. $Int(A)=(0,2), \quad \overline{A}=(0,2], \quad Fr(A)=\{2\}.$

Ejercicio 5

Determinar el interior, la frontera y la clausura de los siguientes conjuntos.

- 1. $A = \{-3 \frac{1}{n} : n \in \mathbb{N}\} \cup (1, 2) \cup \{4 + \frac{1}{n} : n \in \mathbb{N}\}$ en la recta de Sorgenfrey (base de abiertos [a, b)).
 - Interior: las partes discretas no contienen abiertos, mientras que (1, 2) sí es abierto.
 Int_S(A) = (1, 2).
 - Clausura: $\overline{(1,2)}^{\mathbb{S}} = [1,2)$, el punto 4 se añade porque $[4,4+\varepsilon)$ corta $\{4+\frac{1}{n}\}$, mientras que -3 no pertenece a la clausura (no hay puntos de A a su derecha). $\overline{A}^{\mathbb{S}} = \{-3-\frac{1}{n}: n \in \mathbb{N}\} \cup [1,2) \cup \{4+\frac{1}{n}: n \in \mathbb{N}\} \cup \{4\}.$
 - Frontera: $Fr(A) = \{-3 \frac{1}{n}\} \cup \{1\} \cup \{4 + \frac{1}{n}\} \cup \{4\}.$
- 2. $[1,2] \cup \{3\}$ en \mathbb{R} (topología usual). Int($[1,2] \cup \{3\}$) = (1,2), $\overline{[1,2] \cup \{3\}}$ = $[1,2] \cup \{3\}$, $Fr([1,2] \cup \{3\})$ = $\{1,2,3\}$.

Ejercicio 6

Determinar el interior, la frontera y la clausura de los siguientes conjuntos.

1. \mathbb{Q} en \mathbb{R} (topología usual).

$$\operatorname{Int}(\mathbb{Q}) = \emptyset, \quad \overline{\mathbb{Q}} = \mathbb{R}, \quad Fr(\mathbb{Q}) = \mathbb{R}.$$

2. $(\mathbb{R} \setminus \mathbb{Z}) \times (\mathbb{R} \setminus \mathbb{Q})$ como subconjunto de \mathbb{R}^2 (topología usual).

Int =
$$\emptyset$$
 (pues $\mathbb{R} \setminus \mathbb{Q}$ no tiene interior),
 $\overline{A} = \mathbb{R}^2$

$$Fr(A) = \mathbb{R}^2$$
.

Ejercicio 7

1. $\operatorname{Fr}(A) = \overline{A} \cap \overline{A^c}$

Verdadero. Si $x \in \operatorname{Fr}(A)$, todo abierto de x corta A y A^c , luego $x \in \overline{A}$ y $x \in \overline{A^c}$. Recíprocamente, si $x \in \overline{A} \cap \overline{A^c}$, todo abierto de x corta ambos conjuntos, así que $x \notin \operatorname{Int}(A)$ ni en $\operatorname{Int}(A^c)$ y, por tanto, $x \in \operatorname{Fr}(A)$. También: $\operatorname{Fr}(A) = \overline{A} \setminus \operatorname{Int}(A) = \overline{A} \cap \overline{A^c}$.

2. $Int(A \cup B) = Int(A) \cup Int(B)$

Falso en general. Siempre vale la inclusión $\operatorname{Int}(A) \cup \operatorname{Int}(B) \subseteq \operatorname{Int}(A \cup B)$, pero la igualdad puede fallar. Contraejemplo en $\mathbb R$ usual: $A = \mathbb Q$, $B = \mathbb R \setminus \mathbb Q$. Entonces $A \cup B = \mathbb R$ y $\operatorname{Int}(A \cup B) = \mathbb R$, mientras que $\operatorname{Int}(A) = \operatorname{Int}(B) = \emptyset$.

3. $Int(A \cap B) = Int(A) \cap Int(B)$

Verdadero. Vía dualidad con clausura:

$$Int(A) = X \setminus \overline{A^c}.$$

Así,

$$\operatorname{Int}(A \cap B) = X \setminus \overline{(A \cap B)^c} = X \setminus \overline{A^c \cup B^c} = X \setminus \left(\overline{A^c \cup B^c}\right) = \left(X \setminus \overline{A^c}\right) \cap \left(X \setminus \overline{B^c}\right) = \operatorname{Int}(A) \cap \operatorname{Int}(B).$$

4. $Int(Fr(A)) = \emptyset$

Falso en general. En \mathbb{R} con la topología usual, si $A=\mathbb{Q}$, entonces $\overline{A}=\mathbb{R}$ y $\operatorname{Int}(A)=\varnothing$, así que $\operatorname{Fr}(A)=\mathbb{R}$ y, por tanto, $\operatorname{Int}(\operatorname{Fr}(A))=\mathbb{R}\neq\varnothing$. (Sí puede ocurrir que sea vacía para muchos A, pero no es una verdad general.)