Guía 14: Teorema de Completitud

Teorema del filtro primo

- **Definición**: Un filtro de un reticulado terna (L, s, i) será un subconjunto $F \subseteq L$ tal que:
 - 1. $F \neq \emptyset$
 - 2. $x, y \in F \Rightarrow x \ i \ y \in F$
 - 3. $x \in F$ y $x \le y \Rightarrow y \in F$
- Filtro generado por S:
 - Dado un conjunto $S \subseteq L$, consideraremos $[S] = \{y \in L : y \geq s_1 \ i \ \dots \ i \ s_n, \text{ para algunos } s_1, \dots, s_n \in S, n \geq 1\}$
 - Lema: Supongamos S no vacío. Entonces S0 es un filtro. Más aún, si S0 es un filtro y S1 es decir, S3 es el menor filtro que contiene a S5.
 - Llamaremos a [S) el filtro generado por S
- Cadena: Sea (P, \leq) un poset. Un subconjunto $C \subseteq P$ será llamado una cadena si $\forall x, y \in C, (x \leq y \lor y \leq x)$
- Lema de Zorn: Sea (P, \leq) un poset y supongamos que cada cadena de (P, \leq) tiene al menos una cota superior. Entonces hay un elemento maximal en (P, <)
- Filtro primo: Un filtro F de un reticulado terna (L, s, i) será llamado primo cuando se cumplan:
 - 1. $F \neq L$
 - 2. $x s y \in F \Rightarrow (x \in F \lor y \in F)$
- Teorema del Filtro Primo: Sea (L, s, i) un reticulado terna distributivo y F un filtro. Supongamos $x_0 \in L F$. Entonces hay un filtro primo P tal que $x_0 \notin P$ y $F \subseteq P$

Teorema de Rasiova Sikorski

- **Teorema**: Sea $(B, s, i, {}^c, 0, 1)$ un álgebra de Boole. Sea $a \in B, a \neq 0$. Supongamos que $(A_1, A_2, ...)$ es una infinitupla de subconjuntos de B tal que existe $\inf(A_j)$, para cada j = 1, 2... Entonces hay un filtro primo P el cual cumple:
 - 1. $a \in P$
 - 2. $P \supseteq A_j \Rightarrow P \ni \inf(A_j)$ para cada j = 1, 2, ...

Lema del ínfimo

• Lema: Sea $T = (\Sigma, \tau)$ una teoría y supongamos que τ tiene una cantidad infinita de nombres de constante que no ocurren en las sentencias de Σ . Entonces para cada fórmula $\varphi =_d \varphi(v)$, se tiene que en el álgebra de Lindembaum \mathcal{A}_T :

$$[\forall v \varphi(v)]_T = \inf(\{[\varphi(t)]_T : t \in T_c^\tau\})$$

Lema de coincidencia

• Lema: Sean τ y τ' dos tipos cualesquiera y sea $\tau_{\cap} = (\mathcal{C}_{\cap}, \mathcal{F}_{\cap}, \mathcal{R}_{\cap}, a_{\cap})$ donde

$$C_{\cap} = C \cap C'$$

$$\mathcal{F}_{\cap} = \{ f \in \mathcal{F} \cap \mathcal{F}' : a(f) = a'(f) \}$$

$$\mathcal{R}_{\cap} = \{ r \in \mathcal{R} \cap \mathcal{R}' : a(r) = a'(r) \}$$

$$a_{\cap} = a|_{\mathcal{F}_{\cap} \cup \mathcal{R}_{\cap}}$$

Entonces τ_{\cap} es un tipo tal que $T^{\tau_{\cap}} = T^{\tau} \cap T^{\tau'}$ y $F^{\tau_{\cap}} = F^{\tau} \cap F^{\tau'}$. Sean **A** y **A**' modelos de tipo τ y τ' respectivamente. Supongas que A = A' y que $c^{\mathbf{A}} = c^{\mathbf{A}'}$ para cada $c \in \mathcal{C}_{\cap}$, $f^{\mathbf{A}} = f^{\mathbf{A}'}$ para cada $f \in \mathcal{F}_{\cap}$ y $r^{\mathbf{A}} = r^{\mathbf{A}'}$ para cada $r \in \mathcal{R}_{\cap}$. Entonces:

- 1. Para cada $t=_d t(\vec{v})\in T^{\tau_\cap}$ se tiene que $t^{\bf A}[\vec{a}]=t^{{\bf A}'}[\vec{a}]$ para cada $\vec{a}\in A^n$
- 2. Para cada $\varphi =_d \varphi(\vec{v}) \in F^{\tau_{\cap}}$ se tiene que $\mathbf{A} \models \varphi[\vec{a}]$ sii $\mathbf{A}' \models \varphi[\vec{a}]$
- 3. Si $\Sigma \cup \{\varphi\} \subseteq S^{\tau_{\cap}}$, entonces $(\Sigma, \tau) \vDash \varphi$ sii $(\Sigma, \tau') \vDash \varphi$

Lema de enumeración

- Lema: Sea τ un tipo. Hay una infinitupla $(\gamma_1, \gamma_2, \dots) \in F^{\tau N}$ tal que:
 - 1. $|Li(\gamma_j)| \leq 1$ para cada $j = 1, 2, \dots$
 - 2. Si $|Li(\gamma)| \leq 1$ entonces $\gamma = \gamma_j$ para algún $j \in N$

Lema de tipos parecidos

- Lema: Sean $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a)$ y $\tau' = (\mathcal{C}', \mathcal{F}', \mathcal{R}', a')$ tipos. Entonces:
 - 1. Si $\mathcal{C} \subseteq \mathcal{C}', \mathcal{F} \subseteq \mathcal{F}', \mathcal{R} \subseteq \mathcal{R}'$ y $a = a'|_{\mathcal{F} \cup \mathcal{R}}$, entonces $(\Sigma, \tau) \vdash \varphi$ implies $(\Sigma, \tau') \vdash \varphi$
 - 2. Si $\mathcal{C} \subseteq \mathcal{C}', \mathcal{F} = \mathcal{F}', \mathcal{R} = \mathcal{R}'$ y a = a', entonces $(\Sigma, \tau') \vdash \varphi$ implies $(\Sigma, \tau) \vdash \varphi$ cada vez que $\Sigma \cup \{\varphi\} \subseteq S^{\tau}$

Teorema de Completitud

- Teorema: Sea $T=(\Sigma,\tau)$ una teoría de primer orden. Si $T \vDash \varphi$, entonces $T \vdash \varphi$
- Corolario: Toda teoría consistente tiene un modelo
- Corolario Teorema de Compacidad: Sea (Σ, τ) una teoría. Entonces:
 - 1. Si (Σ, τ) es tal que (Σ_0, τ) tiene un modelo para cada subconjunto finito $\Sigma_0 \subseteq \Sigma$, entonces (Σ, τ) tiene un modelo
 - 2. Si $(\Sigma, \tau) \vDash \varphi$, entonces hay un subconjunto finito $\Sigma_0 \subseteq \Sigma$ tal que $(\Sigma_0, \tau) \vDash \varphi$

Interpretación semántica del álgebra de Lindenbaum

- **Definición**: Sea $T = (\Sigma, \tau)$ una teoría. Dada $\varphi \in S^{\tau}$ definamos $\mathrm{Mod}_T(\varphi) = \{\mathbf{A} : \mathbf{A} \text{ es modelo de } T \text{ y } \mathbf{A} \models \varphi\}$
- Lema: Dadas $\varphi, \psi \in S^{\tau}$ se tiene:
 - 1. $[\varphi]_T \leq^T [\psi]_T$ sii $\operatorname{Mod}_T(\varphi) \subseteq \operatorname{Mod}_T(\psi)$

 - 2. $[\varphi]_T = [\psi]_T \text{ sii } \operatorname{Mod}_T(\varphi) = \operatorname{Mod}_T(\psi)$ 3. $[\varphi]_T <^T [\psi]_T \text{ sii } \operatorname{Mod}_T(\varphi) \subsetneq \operatorname{Mod}_T(\psi)$