

Material Streams										
		Stream_1_inlet	Stream_1_outlet	Stream_2_inlet	Stream_2_outlet	Stream_3_inlet	Stream_3_outlet			
Vapour Fraction		0.6000	0.8000	1.0000	0.0000	1.0000	0.0000			
Temperature	С	150.0	150.0	250.0	170.4	250.0	250.0			
Pressure	kPa	476.0	476.0	800.0	800.0	800.0	3978			
Molar Flow	kgmole/h	5.551e-002	5.551e-002	5.551e-002	5.551e-002	5.551e-002	5.551e-002			
Mass Flow	kg/h	1.000	1.000	1.000	1.000	1.000	1.000			
Liquid Volume Flow	m3/h	1.002e-003	1.002e-003	1.002e-003	1.002e-003	1.002e-003	1.002e-003			
Heat Flow	kJ/h	-1.403e+004	-1.360e+004	-1.297e+004	-1.520e+004	-1.297e+004	-1.484e+004			

Energy Streams								
		Heater1_duty	Heater_2_duty	Heater_3_duty				
Heat Flow	kJ/h	422.8	-2230	-1865				

2.6d: 1 kg/h = 1/60 kg/s, 422.8 kJ/h = 7.046 kW; $deltaH_{specific} = (7.046 \text{ kJ/s})/(1/60 \text{ kg/s}) = 422.8 \text{ kJ/kg}$ $deltaH = m*deltaH_{specific} = (3 \text{ kg})(422.8 \text{ kJ/kg}) = 1268 \text{ kJ}$

 $2.6e: 1 \text{ kg/h} = 1/60 \text{ kg/s}, -2230 \text{ kJ/h} = -37.16 \text{ kW}; \\ \text{deltaH}_{\text{specific}} = (-37.16 \text{ kJ/s})/(1/60 \text{ kg/s}) = -2230 \text{ kJ/kg} \\ \text{deltaH} = m*\text{deltaH}_{\text{specific}} = (3 \text{ kg})(-2230 \text{ kJ/kg}) = -6690 \text{ kJ}$

 $2.6f: 1 \text{ kg/h} = 1/60 \text{ kg/s}, -1865 \text{ kJ/h} = -31.08 \text{ kW}; \\ \text{deltaH}_{\text{specific}} = (-31.08 \text{ kJ/s})/(1/60 \text{ kg/s}) = -1865 \text{ kJ/kg} \\ \text{deltaH} = m*\text{deltaH}_{\text{specific}} = (3 \text{ kg})(-2230 \text{ kJ/kg}) = -5595 \text{ kJ}$