



Caderno 1: 8 Páginas

#### Prova Final de Matemática

3.º Ciclo do Ensino Básico

Decreto-Lei n.º 139/2012, de 5 de julho

## Prova 92/Época Especial

Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos.

#### 2016

**Caderno 1:** 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

A prova é constituída por dois cadernos (Caderno 1 e Caderno 2).

Utiliza apenas caneta ou esferográfica de tinta azul ou preta.

Só é permitido o uso de calculadora no Caderno 1.

Não é permitido o uso de corretor. Risca o que pretendes que não seja classificado.

Para cada resposta, identifica o item.

Apresenta as tuas respostas de forma legível.

Apresenta apenas uma resposta para cada item.

A prova inclui um formulário e uma tabela trigonométrica.

As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.

Nos termos da lei em vigor, as provas de avaliação externa são obras protegidas pelo Código do Direito de Autor e dos Direitos Conexos. A sua divulgação não suprime os direitos previstos na lei. Assim, é proibida a utilização destas provas, além do determinado na lei ou do permitido pelo IAVE, I.P., sendo expressamente vedada a sua exploração comercial.

### Formulário

#### Números

Valor aproximado de  $\pi$  (pi): 3,14159

#### Geometria

Áreas

**Losango:**  $\frac{Diagonal\ maior \times Diagonal\ menor}{2}$ 

**Trapézio:**  $\frac{Base\ maior + Base\ menor}{2} \times Altura$ 

**Superfície esférica:**  $4\pi r^2$ , sendo r o raio da esfera

Volumes

Prisma e cilindro: Área da base × Altura

Pirâmide e cone:  $\frac{\acute{A}rea\ da\ base \times Altura}{3}$ 

**Esfera:**  $\frac{4}{3}\pi r^3$ , sendo r o raio da esfera

Trigonometria

**Fórmula fundamental:**  $sen^2 x + cos^2 x = 1$ 

Relação da tangente com o seno e o cosseno:  $tgx = \frac{sen x}{cos x}$ 

# Tabela Trigonométrica

| Graus | Seno   | Cosseno | Tangente | Graus | Seno   | Cosseno | Tangente |
|-------|--------|---------|----------|-------|--------|---------|----------|
| 1     | 0,0175 | 0,9998  | 0,0175   | 46    | 0,7193 | 0,6947  | 1,0355   |
| 2     | 0,0349 | 0,9994  | 0,0349   | 47    | 0,7314 | 0,6820  | 1,0724   |
| 3     | 0,0523 | 0,9986  | 0,0524   | 48    | 0,7431 | 0,6691  | 1,1106   |
| 4     | 0,0698 | 0,9976  | 0,0699   | 49    | 0,7547 | 0,6561  | 1,1504   |
| 5     | 0,0872 | 0,9962  | 0,0875   | 50    | 0,7660 | 0,6428  | 1,1918   |
| 6     | 0,1045 | 0,9945  | 0,1051   | 51    | 0,7771 | 0,6293  | 1,2349   |
| 7     | 0,1219 | 0,9925  | 0,1228   | 52    | 0,7880 | 0,6157  | 1,2799   |
| 8     | 0,1392 | 0,9903  | 0,1405   | 53    | 0,7986 | 0,6018  | 1,3270   |
| 9     | 0,1564 | 0,9877  | 0,1584   | 54    | 0,8090 | 0,5878  | 1,3764   |
| 10    | 0,1736 | 0,9848  | 0,1763   | 55    | 0,8192 | 0,5736  | 1,4281   |
| 11    | 0,1908 | 0,9816  | 0,1944   | 56    | 0,8290 | 0,5592  | 1,4826   |
| 12    | 0,2079 | 0,9781  | 0,2126   | 57    | 0,8387 | 0,5446  | 1,5399   |
| 13    | 0,2250 | 0,9744  | 0,2309   | 58    | 0,8480 | 0,5299  | 1,6003   |
| 14    | 0,2419 | 0,9703  | 0,2493   | 59    | 0,8572 | 0,5150  | 1,6643   |
| 15    | 0,2588 | 0,9659  | 0,2679   | 60    | 0,8660 | 0,5000  | 1,7321   |
| 16    | 0,2756 | 0,9613  | 0,2867   | 61    | 0,8746 | 0,4848  | 1,8040   |
| 17    | 0,2924 | 0,9563  | 0,3057   | 62    | 0,8829 | 0,4695  | 1,8807   |
| 18    | 0,3090 | 0,9511  | 0,3249   | 63    | 0,8910 | 0,4540  | 1,9626   |
| 19    | 0,3256 | 0,9455  | 0,3443   | 64    | 0,8988 | 0,4384  | 2,0503   |
| 20    | 0,3420 | 0,9397  | 0,3640   | 65    | 0,9063 | 0,4226  | 2,1445   |
| 21    | 0,3584 | 0,9336  | 0,3839   | 66    | 0,9135 | 0,4067  | 2,2460   |
| 22    | 0,3746 | 0,9272  | 0,4040   | 67    | 0,9205 | 0,3907  | 2,3559   |
| 23    | 0,3907 | 0,9205  | 0,4245   | 68    | 0,9272 | 0,3746  | 2,4751   |
| 24    | 0,4067 | 0,9135  | 0,4452   | 69    | 0,9336 | 0,3584  | 2,6051   |
| 25    | 0,4226 | 0,9063  | 0,4663   | 70    | 0,9397 | 0,3420  | 2,7475   |
| 26    | 0,4384 | 0,8988  | 0,4877   | 71    | 0,9455 | 0,3256  | 2,9042   |
| 27    | 0,4540 | 0,8910  | 0,5095   | 72    | 0,9511 | 0,3090  | 3,0777   |
| 28    | 0,4695 | 0,8829  | 0,5317   | 73    | 0,9563 | 0,2924  | 3,2709   |
| 29    | 0,4848 | 0,8746  | 0,5543   | 74    | 0,9613 | 0,2756  | 3,4874   |
| 30    | 0,5000 | 0,8660  | 0,5774   | 75    | 0,9659 | 0,2588  | 3,7321   |
| 31    | 0,5150 | 0,8572  | 0,6009   | 76    | 0,9703 | 0,2419  | 4,0108   |
| 32    | 0,5299 | 0,8480  | 0,6249   | 77    | 0,9744 | 0,2250  | 4,3315   |
| 33    | 0,5446 | 0,8387  | 0,6494   | 78    | 0,9781 | 0,2079  | 4,7046   |
| 34    | 0,5592 | 0,8290  | 0,6745   | 79    | 0,9816 | 0,1908  | 5,1446   |
| 35    | 0,5736 | 0,8192  | 0,7002   | 80    | 0,9848 | 0,1736  | 5,6713   |
| 36    | 0,5878 | 0,8090  | 0,7265   | 81    | 0,9877 | 0,1564  | 6,3138   |
| 37    | 0,6018 | 0,7986  | 0,7536   | 82    | 0,9903 | 0,1392  | 7,1154   |
| 38    | 0,6157 | 0,7880  | 0,7813   | 83    | 0,9925 | 0,1219  | 8,1443   |
| 39    | 0,6293 | 0,7771  | 0,8098   | 84    | 0,9945 | 0,1045  | 9,5144   |
| 40    | 0,6428 | 0,7660  | 0,8391   | 85    | 0,9962 | 0,0872  | 11,4301  |
| 41    | 0,6561 | 0,7547  | 0,8693   | 86    | 0,9976 | 0,0698  | 14,3007  |
| 42    | 0,6691 | 0,7431  | 0,9004   | 87    | 0,9986 | 0,0523  | 19,0811  |
| 43    | 0,6820 | 0,7314  | 0,9325   | 88    | 0,9994 | 0,0349  | 28,6363  |
| 44    | 0,6947 | 0,7193  | 0,9657   | 89    | 0,9998 | 0,0175  | 57,2900  |
| 45    | 0,7071 | 0,7071  | 1,0000   |       |        |         |          |

Na resposta aos itens de escolha múltipla, seleciona a opção correta. Escreve na folha de respostas o número do item e a letra que identifica a opção escolhida.

**1.** Na Figura 1, estão representadas duas semirretas,  $\dot{O}C$  e  $\dot{O}D$ , e duas retas paralelas, r e s.

Sabe-se que:

- a reta r intersecta as semirretas  $\dot{O}C$  e  $\dot{O}D$  nos pontos A e B, respetivamente;
- a reta s intersecta as semirretas  $\dot{O}C$  e  $\dot{O}D$  nos pontos C e D, respetivamente;
- o ponto A pertence ao segmento de reta [OC];
- $\overline{OA} = 9.8 \text{ cm}$ ,  $\overline{AB} = 5.6 \text{ cm}$  e  $\overline{CD} = 8.4 \text{ cm}$ .

A figura não está desenhada à escala.

Determina  $\overline{AC}$ .

Apresenta o resultado em centímetros.

Apresenta todos os cálculos que efetuares.



Figura 1

**2.** Considera o intervalo de números reais  $A = [\pi, \sqrt{60} + \sqrt{\pi}]$ .

Escreve todos os números naturais que pertencem ao conjunto A.

3. O Manuel fez análises ao sangue. Os resultados revelaram que tinha  $4,7\,$  milhões de glóbulos brancos por mililitro (ml) de sangue.

Escreve, utilizando notação científica, o número de glóbulos brancos que existiam em 1,5 litros de sangue do Manuel, quando ele fez as análises.

Apresenta todos os cálculos que efetuares.

4. Em São Torpes, no concelho de Sines, encontra-se uma central termoelétrica com duas chaminés.

A Figura 2 é uma fotografia dessa central termoelétrica e a Figura 3 é uma representação das duas chaminés.

A Figura 3 não está desenhada à escala.



Figura 2



Figura 3

Na Figura 3, os segmentos de reta [AP] e [BR] correspondem às duas chaminés. O ponto O corresponde a uma posição a partir da qual se observa o topo da chaminé representada por [AP] segundo um ângulo com  $55^{\circ}$  de amplitude.

Ambas as chaminés têm 225 metros de altura e a distância entre elas é igual a 132 metros.

Assim, relativamente à Figura 3, sabe-se que:

- o ponto *P* pertence ao segmento de reta [*OR*]
- $A\hat{O}P = 55^{\circ}$
- $\overline{AP} = \overline{BR} = 225 \text{ m}$
- $\overline{PR} = 132 \text{ m}$

Determina a amplitude do ângulo BOR.

**Sugestão**: Começa por determinar  $\overline{OP}$ .

Apresenta o resultado em graus, arredondado às unidades.

Sempre que, em cálculos intermédios, procederes a arredondamentos, conserva, no mínimo, duas casas decimais.

Apresenta todos os cálculos que efetuares.

**5.** Na Figura 4, está representado um sólido composto por um cone reto de vértice V e uma semiesfera.

A base do cone e a semiesfera têm centro no ponto  $\,C\,$  e têm raio  $\,\overline{AC}\,$ .



Figura 4

Sabe-se que:

- $\overline{AC} = 6 \text{ cm}$
- $\overline{VA} = 15 \text{ cm}$

A figura não está desenhada à escala.

**5.1.** Determina o volume do sólido representado na figura.

Apresenta o resultado em centímetros cúbicos, arredondado às unidades.

Sempre que, em cálculos intermédios, procederes a arredondamentos, conserva, no mínimo, três casas decimais.

Apresenta todos os cálculos que efetuares.

**5.2.** Considera a superfície esférica de centro no ponto V e que passa no ponto A (esta superfície esférica não está representada na figura).

Qual é, em centímetros, o raio dessa superfície esférica?

- (A) 6 cm
- **(B)** 9 cm
- (C) 12 cm (D) 15 cm

**6.** Na Figura 5, está representado, em referencial cartesiano, o gráfico de uma função de proporcionalidade inversa.



Figura 5

Os pontos de coordenadas (4,8;30) e (a;a), sendo a um número real positivo, pertencem ao gráfico da função.

Qual é o valor de a?

Fim do Caderno 1

## COTAÇÕES (Caderno 1)

| Item                |    |    |    |      |      |    |    |  |  |  |  |
|---------------------|----|----|----|------|------|----|----|--|--|--|--|
| Cotação (em pontos) |    |    |    |      |      |    |    |  |  |  |  |
| 1.                  | 2. | 3. | 4. | 5.1. | 5.2. | 6. |    |  |  |  |  |
| 6                   | 4  | 6  | 7  | 7    | 3    | 4  | 37 |  |  |  |  |