Design & Simulate 14 ECE2204 CRN:82929

Jacob Abel

October 2, 2018

Problem 14.10-8.a.1:

Switched from NMOS to PMOS.

Design

Design a MOSFET current source circuit to meet the following specifications. The circuit to be designed has the configuration shown below with all NMOS transistors swapped with PMOS transistors and V^+ swaps places with V^- . The bias voltages are $V^+ = 2.5V$ and $V^- = 0$. Transistors are available with parameters $k_p' = 100\mu A/V^2$, $V_{TP} = 0.4V$. and $\lambda = 0$. Design the circuit such that $I_{REF} = 100\mu A$, $I_O = 60\mu A$, and $V_{SD2}(sat) = 0.4V$.

$$V_{SD2}(sat) = V_{SG2} + V_{TP}$$

$$V_{SG2} = V_{SG1} = V_{SD2}(sat) - V_{TP} = 0.4V + 0.4V = 0.8V$$

$$\frac{W}{L}_{2} = \frac{2I_{O}}{k'_{p}(V_{SG2} + V_{TP})^{2}} = \frac{2(60\mu A)}{(100\mu A/V^{2})(0.8V - 0.4V)^{2}} = 7.5$$

$$\frac{W}{L}_{1} = \frac{2I_{REF}}{k'_{p}(V_{SG1} + V_{TP})^{2}} = \frac{2(100\mu A)}{(100\mu A/V^{2})(0.8V - 0.4V)^{2}} = 12$$

$$V_{SG3} = V^{+} - V^{-} - V_{GS1} = 2.5V - 0V - 0.8V = 1.7V$$

$$\frac{W}{L}_{3} = \frac{2I_{REF}}{k'_{p}(V_{SG3} + V_{TP})^{2}} = \frac{2(100\mu A)}{(100\mu A/V^{2})(1.7V - 0.4V)^{2}} = 1.183$$

The final design values are $\frac{W}{L_1} = 12$, $\frac{W}{L_2} = 7.5$, and $\frac{W}{L_3} = 1.183$.

Validation

LTSpice Implementation (values within < 1%)

.model pmos1 PMOS(Kp=100u W=12 L=1u Vto=-0.4) .model pmos2 PMOS(Kp=100u W=7.5 L=1u Vto=-0.4) .model pmos3 PMOS(Kp=100u W=1.183 L=1u Vto=-0.4) .op

V(g):	1.69378	voltage
V(v+):	2.5	voltage
V(s2):	2.5	voltage
Id(M2):	-5.99248e-005	device_current
Ig(M2):	-0	device_current
Ib(M2):	2.72735e-019	device_current
Is(M2):	5.99248e-005	device_current
Id(M1):	-99.0091	device_current
Ig(M1):	-0	device_current
Ib(M1):	8.16221e-013	device_current
Is(M1):	99.0091	device_current
Id(M3):	-99.0091	device_current
Ig(M3):	-0	device_current
Ib(M3):	1.70378e-012	device_current
Is(M3):	99.0091	device_current
I(I0):	6e-005	device_current
I(V+):	-99.0091	device_current

$$Err_{V_{SG1}} = \frac{|1.7 - 1.69378|}{1.7} = 0.0037 = 0.37\%$$

$$Err_{I_{REF}} = \frac{|100 - 99.0091|}{100} = 0.0099 = 0.99\%$$

$$Err_{I_O} = \frac{|60 - 59.9248|}{60} = 0.00125 = 0.13\%$$

Problem 14.10-8.b.1:

Derived from Problem 10.54 from page 744 of the textbook by changing some values and adding a 5th transistor.

Design

The transistor circuit shown to the left is biased at $V^+=12V$ and $V^-=0V$. The transistor parameters are $V_{TP}=-1.2V$, $k_p'=80\mu A/V^2$, $\lambda=0$, $\frac{W}{L_1}=\frac{W}{L_2}=25$, and $\frac{W}{L_3}=\frac{W}{L_4}=\frac{W}{L_5}=4$. Determine I_{REF} , I_O , and $V_{SD2}(sat)$.

$$V_{SG1} = V_{SG2}, V_{GD1} = V_{GD2} = V_{GD3} = V_{GD4} = V_{GD5} = 0V$$

$$V^{+} = SG1 + V_{SG3} + V_{SG4} + V_{SG5}$$

$$\Longrightarrow V_{SG3} + V_{SG4} + V_{SG5} = 3V_{SG3}$$

$$\Longrightarrow V_{SG1} = V^{+} - 3V_{SG3}$$

Ran out of time and was unable to complete the second problem.

This assignment should demonstrate a basic understanding of designing basic MOSFET circuits by adapting the widths and lengths of the transistors.

I have neither given nor received unauthorized assistance on this assignment.