In-Nozzle Flow Investigations of Marine Diesel Injectors

R. Balz^{1,2}*, A. Schmid¹, D. Sedarsky²

¹Winterthur Gas & Diesel Ltd., Winterthur, Switzerland

²Chalmers University of Technology, Combustion Division, Gothenburg, Sweden

Abstract

Injector geometries of large marine two-stroke diesel engines differ extensively from configurations typically used in diesel engines for automotive applications. In marine engines, the fuel enters the combustion volume radially, supplied by multi-hole injectors with asymmetrically positioned orifices facing in similar directions. Due to this setup, the nominal direction of the orifice group is also eccentric with respect to the central axis of the injector. Experiments have shown that the sprays formed by this arrangement are asymmetric with respect to the axis at each orifice. These strong deviations can lead to wall wetting which increases fuel consumption, emissions, component temperatures and contributes to loss of lubrication at the cylinder wall. In order to investigate the in-nozzle flow and how it affects the spray morphology in this design, experiments were carried out using transparent nozzles at injection pressures and air densities of up to 50 MPa and 35 kg/m³, respectively. The experiments were performed with diesel fuel in a newly built ambient temperature spray chamber which was designed to cope with significant spray backsplash. The results discussed here were generated using an orthogonally arranged 0.75 mm diameter mono-hole injector which matches the hole size and geometry used in large marine two-stroke diesel engines. High-speed shadowgraphy using a far-field microscope was applied to visualize cavitation within the nozzle during the complete injection process. These imaging results are used to compute statistical evaluations of cavitation in the nozzle over a range of conditions.

^{*}reto.balz@wingd.com

Introduction

Maritime shipping currently represents the largest mode of supply for moving goods around the world. Sea transport of goods accounts for more than 53% of U.S. imports and 38% of exports (by value) [?]. The efficiency and prevalence of this transport network is due in large part to the advantages of large two-stroke marine diesel engines which have been designed to operate using a variety of highly variable, low cost liquid fuels. Much of the ongoing marine engine development is focused on meeting the requirements of the IMO (organisation maritime internationale) Tier III legislation which calls for an 80% reduction in $NO_{\rm x}$ engine out levels and places more stringent limits on the fuels which can be used near populated coastlines.

The realization of strategies for reducing NO_x production by modifying the in-cylinder combustion, e.g. water in fuel emulsion or dual fuel reaction control, requires a solid understanding of spray development and mixing during fuel injection. Past experimental work conducted at Winterthur Gas & Diesel Ltd. (Win G&D) using a constant volume spray combustion chamber (SCC) with dimensions representative of smaller two-stroke marine engines (ø500 x 150 mm) highlights some of the issues associated with fuel injection for large engines [?]. Investigations on the SCC have shown that the eccentric and offset nozzle designs utilized in two-stroke marine engines can exhibit spray deflections on the order of 10° or more [?]. In addition, preliminary work using CFD simulations with an advanced cavitation model indicates that the two-phase, highly compressible flow inside the nozzle may strongly influence the spray propagation [?].

A dimensionless cavitation number CN is often used as a metric to qualify the likelihood of cavitation for a given set of conditions. It is commonly defined as a ratio relating the pressures before and after the orifice and the vapor pressure of the liquid [?, ?]:

$$CN = \frac{p_{\rm i} - p_{\rm b}}{p_{\rm b} - p_{\rm v}} \tag{1}$$

Here, p_i is the pressure upstream of the orifice, and p_b the downstream pressure (also called back pressure). p_v is the vapor pressure of the fuel, which can be safely neglected for computing CN when the injection pressure is several orders of magnitude higher than the vapor pressure. Cavitation often occurs as "geometric cavitation", caused by the sudden reduction of static pressure in the fluid near the edges and walls of the nozzle geometry as the flow enters the passages; or as "string cavitation", appearing tran-

siently near the center of vortices in the flow [?]. Results from Schmid et al. [?] indicate that both of these cavitation forms are important to the internal flow of injectors designed for use in large two-stroke marine diesel engines. However, it is still unclear how the dynamics of these internal flows affect spray formation and thus spray breakup, fuel mixing, and combustion in a real marine engine during a cycle.

These cavitation modes and their effects with regard to primary breakup currently strain the capabilities of CFD simulation efforts, and models suitable for optimizing fuel mixing in large marine diesel engines have yet to be developed. This is not surprising, since primary breakup is often described as the least understood part of the combustion process [?, ?].

In-nozzle flow is a topic of considerable interest, and a variety detailed work using transparent nozzles to study flows related to fuel injection have been presented recently [?, ?, ?]. However, this work is most relevant to the injection strategies used in automotive applications. Hult, et al. [?] provided visualizations for hole sizes and flow rates related to marine diesel engines, but at fuel pressures limited to around 10 MPa.

Recent efforts at Chalmers University have led to the development of optically transmissive injector inserts, which can be designed to duplicate production nozzle geometries and withstand higher fuel pressures than former designs [?]. In this work we combine an adapted Win G&D nozzle geometry and a braced insert based on the Chalmers transparent nozzle design to study internal nozzle flow under engine-like conditions. This setup enables measurements which can lend insight for model development and be used in validation of cavitation modeling results for marine engines. Here, we utilize full-scale nozzle geometries, injection pressures, and engine-like back-pressure conditions designed to match setpoints for Win G&D marine diesel engines.

Ambient temperature spray chamber

Most spray chambers designed for measurements on automotive sprays are not well-suited for marine engine spray investigations. Typical nozzle dimensions for large two-stroke diesel engines often involve orifice diameters in the millimeter range.

A custom spray chamber was designed and constructed to deal with the rebounding fuel spray. For the sprays in this work, this rebound is an important design consideration, since the nozzle dimensions, and by extension the fuel flow, are substantially higher than flows typical in small engines.

A schematic of the newly built spray chamber

Figure 1. Isometric view schemata of new spray chamber: a) Win G&D injector, b) spray chamber, c) auxilliary tank, d) connection hose, e) drainage valve, f) fused silica window, g) safety relief valve and accessories.

at Chalmers is depicted in figure 1. The design of the chamber is based on standardized stainless steel flanges (EN 1092-1) that are welded to a main body formed by a section of stainless steel pipe with an inner diameter of approximately 200 mm. The use of standard flanges allows a measure of design versatility and reduces the amount of custom machining required to implement the system. The spray chamber is designed to operate at ambient temperature, primarily in conjunction with transparent nozzles for coupled measurements of internal flow and the nearnozzle spray formation region.

The transparent nozzle inserts used in the current work are made of PMMA (polymethylmethacrylate), a thermoplastic with a melting point around 140 to 160°C. A major objective of the system is to allow observation of the in-nozzle flow and how it influences the primary breakup of a non-reacting spray. From this standpoint, it is reasonable that the density and motion of the environment surrounding and interacting with the jet dominate the breakup behavior, especially near the orifice, and temperature effects can largely be neglected.

Incidentally, the flange design of the new chamber was chosen to match the specifications used in the high-pressure, high-temperature spray chamber at Chalmers. This allows for testing at high temperatures (up to 900 K) or even higher pressures (up to 10 MPa) without substantial redesign of the experiment if necessary.

The new spray chamber can be filled with nitrogen or air to pressures up to 3 MPa to match enginelike air densities at ambient temperatures which are around 35 kg/m³. The main chamber is coupled to a secondary pressure vessel that enables rapid flushing of the main chamber (see figure 1). This feature is necessary to reduce rebound and deal with the large amount of fuel injected into the main chamber, and also prevents window fouling by reducing the number of fine fuel droplets present in the system. The secondary tank is mounted at a position below the nozzle assembly as shown in figure 1, allowing gravity flow collection and disposal of residual fuel as well. A pneumatically driven angle valve is used to control the flushing action of the chamber. This valve is mounted near the bottom flange of the spray chamber and not visible in figure 1.

Figure 2. Schemata of injector setup: a) Win G&D injector, b) transparent nozzle holder, c) Kistler pressure sensor.

The chamber hardware and controls form a mobile rig that can be moved to accommodate different experiments. The spray chamber is mounted on a rigid frame, with the control and sensor wiring collected in an enclosure to simplify and organize connection to the data acquisition hardware. Pressure and temperature sensors are installed to control the desired air density conditions within the spray chamber and control the filling and flushing procedures.

Line-of-sight optical access through the center of the main chamber is provided by a pair of windows with optically usable diameters of 120 mm. These optical quality fused silica windows are clamped to the flange surfaces as depicted in figure 1. The two remaining flanges which are placed orthogonally with respect to the primary optical access are configured as a dummy window (blocked) and for mounting the injector, respectively.

The injector mount can be configured to allow a modest angle adjustment to further reduce rebound from the spray by controlling the impingement angle of the spray plume and the chamber wall.

Original marine diesel injector hardware was provided by Win G&D for this work. This nozzle was subsequently adapted and fitted to a transparent nozzle insert holder (see figure 2). To cope with the need for high diesel mass flows for the marine injectors, a piston accumulator with a total volume of 5 dm³ was used to stabilize the injection pressure for the duration of the injection event (approximately 8 ms).

Experimental setup

Focused shadow images of the diesel fuel flow inside the transparent nozzle were acquired over a series of cavitation numbers by varying the backpressure maintained by the spray chamber for a given injection pressure setting. Here, the refractive index of the nozzle material closely matches the index of the fuel such that undisturbed liquid in the channel transmits light with minimal refraction. When cavitation occurs it produces an immediate and large step in the refractive index as the fluid phase, pressure, and temperature vary. This index difference refracts source light causing a dark signature which indicates cavitation in the flow.

Source light in the experiments was supplied by a pulsed diode laser (Cavilux Smart, Cavitar) operating at 640 nm and set to deliver 10 ns pulses at a repetition rate of 20 kHz. The nozzle flow was imaged by a long distance microscope (QM100, Questar) and acquired by a high-speed CMOS camera (Phantom V1210, Vision Research). The resulting (512 x 800 pixel) digital images were recorded at a framerate of 20,000 fps, where each image corresponds to a field of view of approximately 2.5 x 3.9 mm (see figure 3).

National Instruments data acquisition hardware and a LabView interface were set up to run the spray chamber and compile time-resolved sensor data for the system during the experiments. A Kistler piezoresistive pressure sensor with a natural frequency over 200 kHz was used together with a National Instruments USB-6351 DAQ with 1.25 MS/s to measure the fuel pressure close to the transparent nozzle. The location of the pressure sensor is shown in figure 2(c). Here the proximity of the sensor to the nozzle allows for accurate measurements as fuel injectors

Figure 3. Section view of transparent nozzle made of PMMA with orifice diameter $\emptyset a = 0.75$ mm and sac diameter $\emptyset b = 3$ mm. The field of view (FOV) of the optical setup used is illustrated as dashed rectangle.

usually have high pressure loss. Accurate pressure information close to the orifice is important for understanding boundary conditions.

The transparent nozzle section used in the imaging, as shown in figure 3, follows the design developed at Chalmers for studying internal nozzle flow at elevated pressures [?]. For these initial investigations, the nozzle design was set up to coincide with the simple geometry used in the preliminary CFD simulations carried out at Win G&D. Here, the nozzle is a basic circular plain orifice, with sharp edges and no taper. The diameter of the sac volume is 3 mm and the orifice has a diameter of 0.75 mm and a length of 1.875 mm (see figure 3).

PMMA is used as transparent nozzle material since its refractive index is very similar to that of diesel fuel. This index matching allows visualization of the in-nozzle flow without optical distortion from the round orifice geometry. The diesel fuel used has a density of 815.9 kg/m^3 (at 20°C) and a viscosity of $2.112 \text{ mm}^2/\text{s}$ (at 40°C).

The high static pressure applied to the PMMA nozzles allows only a limited number of injections before failure [?]. This has the advantage that wear of the nozzle can be neglected, but the experimental effort is higher as the nozzles have to be replaced at regular intervals. Changing nozzle hardware also involves re-aligning and focusing the optical setup.

Small variations in the custom-made nozzles are also apparent due to manufacturing tolerances; this can introduce a small amount of systematic error when comparing images from different hardware and deriving statistical information across the data. The short life expectancy of the PMMA nozzles at high fuel pressures necessarily limits the utility of noz-

zle characterization methods that rely on many repeated measurements for accuracy, e.g. impingement force evaluations of mass flowrate.

Results

All images shown are acquired during the quasisteady state condition of the injection, where the needle of the injector is fully open and the fuel pressure and volume flow are constant. Figure 4(a) and 4(b) show the cavitation flow at 50 MPa injection pressure and an air density of approximately 1.2 kg/m^3 ($CN \approx 390$). Dark areas within the nozzle indicate multiphase/cavitating flow and bright areas indicate non-cavitating liquid fuel.

Figure 4. Cavitation in orifice at 50 MPa injection pressure and atmospheric back pressure ($CN \approx 390$): a) single shot image with transient, turbulent cavitation phenomena in the orifice center, b) averaged image.

By comparing the schematic of the nozzle in figure 3 and the images shown (e.g. in figure 4) the selected FOV can be interpreted. The flow direction of the diesel fuel is from top. It enters the orifice and flows to the right where at the end of the orifice the spray emerges. The spray that emerges the orifice of the transparent nozzle is unfocused in the shadow images due to the shallow depth of field of the imaging optics. The dark vertical line on the left side of the image in figure 4 indicates the sac hole wall. This line is visible since the refractive index of the diesel fuel and the PMMA are very similar but not identical.

The cavitation pockets along the orifice walls are visible over the entire length and the cavitation is highly asymmetrical as one can see in the averaged image (figure 4(b)). The cavitation pocket on the top side of the orifice is larger which is expected given the flow direction coming from the top of the sac bore.

To eliminate the transient turbulence phenomena in the orifice, the single images acquired during the steady-state injection process have been averaged over multiple injection cycles. An averaged image is depicted in figure 4(b). The transient cavitation phenomena that are visible between the cavitation pockets along the orifice walls fluctuate widely and differ from image to image. As the images are only acquired with 20,000 fps the timing between single events is 50 μ s which is too long at the given velocities to connect the transient events together for higher order evaluation (e.g. velocity information).

Figure 5. Cavitation in orifice at 50 MPa injection pressure and different back pressures of 1 MPa (left), 2 MPa (middle) and 3 MPa (right). Note that the images are rotated clockwise by 90° compared to figure 3 and 4.

Figure 5 shows the averaged in-nozzle flow with identical injection pressure (50 MPa) for different back pressures: 1 MPa ($CN \approx 38$), 2 MPa ($CN \approx 19$) and 3 MPa ($CN \approx 12$)). The images are rotated clockwise by 90° compared to figure 3 and 4. The flow enters the nozzle from the right side and leaves the orifice at the bottom. The images were acquired using the same transparent nozzle hardware.

The cavitation pocket sizes exhibit small changes with increasing back pressure (decreasing CN) and continue to fill the length of the orifice on both sides. Compared to the measurements with atmospheric back pressure ($CN \approx 390$, see figure 4)

the cavitation flow seems more symmetrical. The cavitation pocket on the right side is still slightly more developed compared to the left side of the orifice.

Conclusions

The developed and strongly cavitating flow depicted in the images is largely due to the sharp edge design of the nozzle. As this sharp edge between sac bore and orifice is not realistic for commercial injectors (as usually radii are machined by either electrochemical machining or hydro-erosive grinding), nozzle geometry variations (inlet radius, taper and angle) will be investigated in future work. The results with changing back pressure show that the in-nozzle flow cavitation is not strongly affected by back pressure variations in this particular nozzle design.

The transparent nozzle holder developed by [?] was able to withstand the desired fuel pressures of up to 50 MPa and the large orifice diameter of 0.75 mm. However, due to space limitations in the current design, a new transparent nozzle holder has to be developed. Especially for angled orifices and multi-hole nozzles, the current design is not feasible due to geometric restrictions. Additionally, to investigate the transient in-nozzle flow at the start of injection when the needle in the injector is moving, the design has to be altered to fit to the non-sac Win G&D injectors.

The newly developed spray chamber allows the observation of high volume flows and mitigates the spray rebound issues that frustrated earlier experimental efforts. The flushing procedure helps reduce fuel deposits on the windows significantly. The qualitative, averaged, quasi-steady state cavitation images can be reproduced with different PMMA nozzles from the same manufacturing batch. It can therefore be assumed that the manufacturing tolerances play an unimportant role for the used design.

The acquired images show small bubbles in the sac bore. Other experimental work has shown that the temperature and the amount of dissolved gas in the fuel can change the cavitation pocket size [?]. Further investigations will examine how dissolved gas and other fuel properties alter the internal nozzle flow.

Acknowledgment

The authors would like to thank the Combustion Engine Research Center (CERC), the Swedish Energy Agency and the Swiss Federal Office of Energy for funding. Special thanks to Mark Linne and Zachary Falgout for their support.

References

[1] U.s. department of commerce, census bureau, foreign trade division, merchandise trade.

- [2] K. Herrmann, B. von Rotz, R. Schulz, G. Weisser, B. Schneider, and K. Boulouchos. Proceedings of the International Symposium on Marine Engineering (ISME)2, Kobe, Japan, 2011.
- [3] A. Schmid, B. von Rotz, R. Schulz, K. Herrmann, G. Weisser, and R. Bombach. ILASS

 Europe 2013, 25th European Conference on Liquid Atomization and Spray Systems, pp. 1–8, Chania, Greece, sep 2013.
- [4] A. Schmid, C. Habchi, J. Bohbot, B. von Rotz, K. Herrmann, R. Bombach, and G. Weisser. ILASS - Europe 2014, 26th European Conference on Liquid Atomization and Spray Systems, pp. 1–11, Bremen, Germany, sep 2014.
- [5] J. Hult, P. Simmank, S. Matlok, S. Mayer, Z. Falgout, and M. Linne. Experiments in Fluids, 57(4):1–19, 2016.
- [6] E. Giannadakis, M. Gavaises, and C. Arcoumanis. *Journal of Fluid Mechanics*, 616(September):153, 2008.
- [7] A. Andriotis, M. Gavauses, and C. Arcoumanis. *Journal of Fluid Mechanics*, 610(August 2008):195–215, 2008.
- [8] T.D. Fansler and S.E. Parrish. *Measurement Science and Technology*, 26(1):012002, 2015.
- [9] M. Linne. Progress in Energy and Combustion Science, 39(5):403–440, 2013.
- [10] M. Blessing, G. König, C. Krüger, U. Michels, and V. Schwarz. SAE Technical Paper 2003-01-1358, 2003.
- [11] D. Duke, A. Swantek, Z. Tilocco, A. Kastengren, K. Fezzaa, K. Neroorkar, M. Moulai, C. Powell, and D. Schmidt. SAE Int. J. Engines, 7:1003-1016, 2014.
- [12] Z. Falgout and M. Linne. *ILASS Americas*, 27th Annual Conference on Liquid Atomization and Spray Systems, Raleigh, NC, USA, 2015.
- [13] Z. Falgout and M. Linne. Review of Scientific Instruments, 87(8), 2016.
- [14] S. Watanabe, K. Enomoto, Y. Yamamoto, and Y. Hara. 4th Joint US-European Fluids Engineering Summer Meeting, pp. 1–9, 2014.