Technical Team

Nature of Invention: Process Flow Diagram and Mass Balance

Applicant: ChemEverse

Inventors: Tanvi Manhas, Harshvardhan Agarwal

Chemical Formula: CH2=C(R)-CO0-(CH2CH2O)nR'

[R = H or CH₃ (from acrylic or methacrylic acid backbone)]

[R' = End group, often an alkyl or ether group]

Chemical Name: Polycarboxylate Ether

Process Title: Two-Step Synthesis of Polycarboxylate Ether with Neutralization

Process Description:

1. Block Diagram

Unit Operations and Process Conditions:

• R101 - Polymerisation Reaction

Process Conditions: Requires controlled temperature (around 70°C) and N2 atmosphere to prevent oxidation. The synthesis temperature is critical, with optimal conditions typically around 70°C for the main chain formation.

R102 - Esterification Reaction

Process Conditions : Requires controlled heating & continuous N_2 purge to remove byproduct water.

R103 - Neutralisation Reaction

Process Conditions: Requires pH control to ensure complete ionization of the polycarboxylate groups, typically around pH 6-7.

- S101 Phase Separation (Decantation)
- S102 Phase Separation (Decantation)
- S201 Filtration (Solid-Liquid Filtration)
- S202 Evaporation (Vacuum Distillation)
- S203 Purification (Membrane Filtration)
- M101 Condenser

Material Naming Convention:

- AA Acrylic Acid
- CMP 3-Chloro-2-methyl-1-propene
- MA Methacrylic Acid
- AIBN Azobisisobutyronitrile
- MPEG Methoxy Poly Ethylene Glycol

Time: Reaction times can vary from 6 to 8 hours depending on the specific step and conditions.

2. Material Balance for a scaled-up Process Plant with capacity of 1000 kg/day

i) Material Balance about R101

Input Streams:

- Stream 101 100 g CMP
- Stream 102 0.5 g AIBN
- Stream 103 300 g AA
- Stream 104 100 g MA

CHE261A Patent Application

Reaction:

 $4\,\mathrm{C_3H_4O_2} + \mathrm{CH_2} = \mathrm{C(CH_3)} - \mathrm{CH_2Cl} + \mathrm{CH_2} = \mathrm{C(CH_3)} - \mathrm{COOH} \xrightarrow{\mathrm{AIBN, \, Heat}} \left[-\mathrm{CH_2} - \mathrm{CH(COOH)} - \right]_4 - \left[-\mathrm{CH_2} - \mathrm{C(CH_3)} - \mathrm{CH_2Cl} \right] - \left[-\mathrm{CH_2} - \mathrm{C(CH_3)} - \mathrm{COOH} \right] - \left[-\mathrm{CH_2} - \mathrm{C(CH_3)} - \mathrm{COOH} - \right]_4 - \left[-\mathrm{CH_2} - \mathrm{C(CH_3)} - \mathrm{CH_2Cl} \right] - \left[-\mathrm{CH_2} - \mathrm{C(CH_3)} - \mathrm{COOH} - \right]_4 - \left[-\mathrm{CH_2} - \mathrm{C(CH_3)} - \mathrm{COOH} - \right]_4 - \left[-\mathrm{CH_2} - \mathrm{C(CH_3)} - \mathrm{COOH} - \right]_4 - \left[-\mathrm{CH_2} - \mathrm{C(CH_3)} - \mathrm{COOH} - \right]_4 - \left[-\mathrm{CH_2} - \mathrm{C(CH_3)} - \right]_4 -$

Calculations:

Conversion of AA = 96%

Unreacted AA = 300 - 0.96*300 = 12 g

AA reacted = 288 g = 288/72 = 4 mol

AA is the limiting reagent. 4 mol AA will react with 1 mol CMP and 1 mol MA to give 1 mol of Intermediate Polymer.

1 mol CMP = 90.5 g

1 mol AA = 72 g

1 mol MA = 86 g

Total mass of reactants = $288 + 90.5 + 86 = 464.5 \,\mathrm{g}$

Total mass of Reactants = Mass of Intermediate Polymer = 464.5g

Unreacted compounds:

• AA: 300 - 288 = 12 g

• MA: 100 - 86 = 14 g

• CMP: 100 - 90.5 = 9.5 g

Output Streams:

Stream 201 : m2 = 0.5g

Stream 202:

• Intermediate Polymer: 464.5 g

AA: 12 g

• MA:14 g

• CMP: 9.5 g

m1 = 464.5 + 12 + 14 + 9.5 = 500 g

ii) Material Balance about R102

Input Streams:

- Stream 301 10,000 g MPEG
- Stream 302 2.5 g K2CO3

- Stream 303 500 g Ethanol
- Stream 304 N2 (continuous purge stream)
- Stream 202 500 g

Reaction:

$$\text{-COOH} + \text{CH}_3\text{O-}(\text{CH}_2\text{CH}_2\text{O})_{\text{n}}\text{-H} \xrightarrow{\text{K}_2\text{CO}_3} \text{-COO-}(\text{CH}_2\text{CH}_2\text{O})_{\text{n}}\text{-CH}_3 + \text{H}_2\text{O}$$

Calculations:

In each Intermediate Polymer, there are 5 -COOH groups. 1 mol Polymer will require 5 mol MPEG to esterify it, giving 1 mol PCE, and 4 mol H2O

Efficiency of esterification = 80%

Moles of Intermediate Polymer esterified = 0.8 * 1 = 0.8 mol. Mass = 0.8 * 464.5 = 371.6 g.

Moles of Intermediate Polymer unreacted = 1 - 0.8 = 0.2 mol. Mass = 464.65 - 371.6 = 92.9 g

Mols of MPEG required = 0.8 * 5 = 4 mol. Molar mass of MPEG = 2000 g/mol. Total mass = 4 * 2000 = 8000 g. Now, we can see that we have excess MPEG. Therefore, unreacted MPEG = 10,000 - 8000 = 2000 g.

Moles of H2O formed = 4 * 0.8 = 3.2 mol. Mass = 3.2 * 18 = 57.6 g.

Moles of PCE formed = 0.8 mol. Mass = Mass (Reactants) - Mass(H2O) = 371.6 + 8000 - 57.6 = 8314 g.

Output Streams:

Stream 304:

- PCE = 8314 g
- H20 = 57.6 g
- Intermediate Polymer = 92.9 g
- MPEG = 2000 g
- Ethanol = 500 g
- K2CO3 = 2.5 g
- AA = 12 g
- CMP = 9.5g
- MA = 14 g

m3 = 8314 + 57.6 + 92.9 + 2000 + 500 + 2.5 + 12 + 9.5 + 14 = 11002.5 g

iii) Material Balance about S101

Input Streams: Stream 304

All water is removed from this stream.

Output Streams:

- Stream 401 : m5 = 57.6 g H20
- Stream 402 : m4 = 11002.5 57.6 = 10944.9 g

iv) Material Balance about R103

Input Streams:

- Stream 402 10,944.9 g
- Stream 403 m6 g

Reaction:

$$-\text{COOH} + \text{NaOH} \rightarrow -\text{COONa} + \text{H}_2\text{O}$$

Calculations:

Intermediate Polymer = 92.9 g = 0.2 mol. Each polymer molecule has 5 -COOH groups. 1 mol of Polymer will react with 5 mol NaOH to give 1 mol Sodium Polycarboxylate and 5 mol H2O.

Moles of NaOH required = 0.2 * 5 = 1 mol. Mass = 40 g = m6

Moles of H2O formed = 0.2 * 5 = 1 mol. Mass = 18 g

Moles of Sodium Polycarboxylate formed = 0.2. Mass = 92.9 + 40 - 18 = 114.9 g

Output Streams:

Stream 404

- PCE = 8314 g
- H2O = 18 g
- Sodium Polycarboxylate = 114.9 g
- MPEG = 2000 g
- Ethanol = 500 g
- K2CO3 = 2.5 g
- AA = 12 g
- CMP = 9.5 g
- MA = 14 g

$$m7 = 10,984.9 g$$

v) Material Balance about S102

Input Streams: Stream 404

All water is removed from this stream.

Output Streams:

- Stream 502: m8 = 18 g H20
- Stream 501 : m9 = 10,984.9 18 = 10,966.9 g

v) Material Balance about M101

Input Streams:

- Stream 401 : m5 = 57.6 g H20
- Stream 502 : m8 = 18 g H20

All water is condensed and removed from the plant.

Output Streams:

Stream 603: m16 = 75.6 g

vi) Material Balance about S201

Input Streams: Stream 501

K2CO3 is filtered out from this stream.

Output Streams:

- Stream 602: m10 = 2.5 g K2CO3
- Stream 601 : m11 = 10.966.9 2.5 = 10,964.4 g

vii) Material Balance about S202

Input Streams: Stream 601

Ethanol is evaporated from the stream.

Output Streams:

- Stream 702: m12 = 500 g Ethanol
- Stream 701 : m13 = 10,964.4 500 = 10,464.4 g

viii) Material Balance about S203

Input Streams: Stream 701

Stream is purified, removing all the monomeric impurities and unreacted compounds.

Output Streams:

Stream 802:

- MPEG = 2000 g
- AA = 12 g
- CMP = 9.5 g
- MA = 14 g

m14 = 2035.5 g

Stream 801:

- PCE = 8314 g
- Sodium Polycarboxylate = 114.9 g

m15 = 8428.9 g

ix) Scaling up for 1000 kg/day product

Scaling Factor = 1000 kg / 8428.9 g = 118.64

We will scale the process up by a factor of 118.64

x) Final Input Streams Required for the production of 1000 kg/day

Stream 101: 0.1 * 118.64 = 11.864 kg/day CMP

Stream 102: 0.0005 * 118.64 = 0.05932 kg/day AIBN

Stream 103: 0.3 * 118.64 = 35.502 kg/day AA

Stream 104: 0.1 * 118.64 = 11.864 kg/day MA

Stream 301 : 10 * 118.64 = 118.64 kg/day MPEG

Stream 302: 0.0025 * 118.64 = **0.2966 kg/day K2CO3**

Stream 303 : 0.5 * 118.64 = **59.32 kg/day Ethanol**

Stream 403: 0.04 * 118.64 = 4.7456 kg/day NaOH

xi) Final Product Streams

Stream 801: 1000 kg/day

- 986.37 kg/day PCE
- 13.63 kg/day Sodium Polycarboxylate

3. Energy Balance for a scaled-up Process Plant with capacity of 1000 kg/day

1) Balance Across Co-Polymerization Unit

Assumption:- Superheated Steam (200C and 1 atm) is used to heat up the reactors. The energy associated with temperature change is miniscule compared to the heat of reactions so they will be ignored.

Input Streams :- AA :- 4.304 x 10⁻⁴ kg/s

CMP :- $1.435 \times 10^{-4} \text{ kg/s}$

MA: $-1.435 \times 10^{-4} \text{ kg/s}$

AIBN :- 7.135 x 10⁻⁷ kg/s

Output Streams: Intermediate Polymer: - 6.664 x 10⁻⁴ kg/s

Unreacted AA: - 1.7216 x 10⁻⁵ kg/s

Unreacted CMP :- $1.363 \times 10^{-5} \text{kg/s}$

AIBN :- $7.135 \times 10^{-7} \text{ kg/s}$

Heat of Reaction = $\Delta H^{\circ} rxn = -55 \text{ kJ/mol}$

 $Cp_{steam} = 1.996 \text{ kJ/kg-K}$

Extent of Reaction = Reacted Quantity of CMP = 1.434 x 10⁻³ mol/s

So :- Overall Heat of Reaction = ΔH° rxn * Extent = -78.87 J/s

2) Energy Required to Keep the reactor at 70°C

 $Cp_{carbon steel} = 0.49 \text{ kJ/kg-K}$

So, on a unit mass basis, Q = Cp * (70-25) = 22.05 kJ/kg

Temperature Drop of Per Mass Superheated Steam,

T = 200 - Q/Cp, T = 188.95 °C/kg

3) Balance Across Esterification Unit

No Temperature Changes are Involved in this Reaction

Heat of Reaction = $\Delta H^{\circ} rxn_{=} + 15kJ/mol$

Extent = 496 mols/day

Total Heat Required for Reaction = $\Delta H^{\circ} rxn * Extent = 7440 \text{ kJ/day}$

Change in Temperature of Steam

Assumption :- Assuming Steam Flow to be 100 kg/day

7440 = 1.996 * 100 * (200-T)

T = 162.725 °C

4) Balance Across Neutralization Unit

Once Again, No Temperature change involved in this Reaction

Heat of Reaction = $\Delta H^{\circ} rxn = -60 \text{ kJ/mol}$

Extent = NaOH consumed = 24.8 mols/day

Total Heat Lost by Reaction = $\Delta H^{\circ} rxn * Extent = -1488 kJ/day$

4. Reactor Volumes

Design of Reactor R101:- This is a relatively small scale reactor only producing 59.32 kg of Effluent per day. Dividing by the value of density (1.051 kg/L) gives us 56.44 L of required space. Assuming that only 70% of the reactor can be filled at a time, we go with a reactor space of 80.62 L.

Design of Reactor R102:- The effluent of this reactor contains about 1305.3366 kg of components per day, majorly consisting of Non-Neutralised PCE. The density of PCE is found to be about 1.11 kg/L. So the approximate volume required for this reactor would be 1175.98 L. Assuming that only 70% of the reactor can be filled at a time, we go with a reactor space of 1679.97 L

Design of Reactor R103:- 1000 kg of PCE with density of 1.11 kg/L would require 900.9 L of Reactor space. Since we are assuming only 70% of the reactor can be filled at a time, we go with a reactor space of 1285.714 L

Capital cost (only for the reactor):

Equipment	Design Capacity (L)	No. of units	Cost/unit (\$ for year 2014)	Total Cost (\$ for year 2014)
	Capacity (L)	units	year 2014)	loi yeai 2014)
Reactor R101 :-	80.62	1	6,100	6,100
(Jacketed reactor, agitated,				
Glass Lined Carbon steel,				
atm. pressure)				
Reactor R102 :-	1679.97	1	30,500	30,500
(Jacketed reactor, agitated,				
Glass Lined Carbon steel,				
atm. pressure)				
Reactor R103 :-	1285.714	1	4,800	4,800
(Jacketed reactor, non				
agitated, Glass Lined				
Carbon steel, atm. pressure)				
Total				41,400 USD
Total				41,400 000

References:

- 1. http://www.matche.com/equipcost/Reactor.html
- 2. "Concrete Admixtures Handbook Properties, Science and Technology" by V.S. Ramachandran
- 3. Production of Modified Superplasticizer by Two-Step Synthesis of Polycarboxylate Ether, Advanced Journal of Chemistry, Section B, 2024.
- 4. POLY CARBOXYL ETHER (PCE) PROJECT OF 18,000 T/Y, Environmental Clearance Document.
- 5. Ether polycarboxylate superplasticizer and preparation method thereof, Patent CN104261720A.

List the contributions of each author:

Tanvi Manhas:

- Researched the upscaling of the process and determined optimal process conditions.
- Studied and verified the exact reactions involved based on previous reports.
- Identified the specific unit operations and equipment required for the process.
- Designed a feasible Process Flow Diagram integrating reactions and unit operations.
- Analyzed reaction efficiencies and yields to optimize production.
- Performed the Material Balance, accounting for all catalysts, solvents, side products, and impurities.

Harshvardhan Agarwal:

- Using the stream data from Mass Balance, derived an Energy Balance with appropriate approximations.
- Researched the values of various physical quantities of PCE in order to determine Energy and Reactor Costs.
- Estimated the Volume requirements of each Reactor.
- Researched the types of Reactors that would suit the needs of our Industrial Process making sure that it is Cost-Effective.
- Found out the estimated costs of all reactors suited to the needs of this Process.

Sign the pdf and upload.

Name	Roll No	Signature
Anshika Agrawal (CEO)	230160	Anshika
Tanvi Manhas	231084	Manhay
Harshvardhan Agarwal	230466	Harsh