

How to participate?

In welke volgorde moet je een Neuraal Netwerk trainen met tensorflow

Most frequent combinations:

- Kiezen tussen sequentieel model / functional
- Opstellen van de architectuur van het neuraal netwerk
- Toevoegen van preprocessing lagen
- Trainen van de gewichten in hClick on the projected screen to start the question van het model met keuze lossnetwerk
- Compileren van het model met keuze lossfunctie en learning rate optimizers
- Evaluation

- Kiezen tussen sequentieel model / functional
- 1. Toevoegen van essing lagen
- Opstellen van de architectuur van het neuraal netwerk
- functie en learning rate optimizers functie en learning rate optimizers
- Trainen van de gewichten in het neuraal netwerk
- 4. Evaluation

- Kiezen tussen sequentieel model / functional
- Opstellen van de architectuur van het neuraal netwerk
- 1. Toevoegen van preprocessing lagen
- Trainen van de gewichten in het neuraal netwerk
- Evaluation

Wat is GEEN hyperparameter van een convolutionele laag?

13 / 16 🚢

Welke lagen worden NIET gebruikt in het convolutioneel gedeelte van een CNN?

www.wooclap.com/DXPKPK

Transfer learning houdt in dat

Fine tuning houdt in dat

7% 1 🚨

Other computer vision problems

Jens Batens

Wat voor ML-probleem hebben we vorige week gezien?

Zijn deze problemen hetzelfde?

Zijn deze problemen hetzelfde?

En dit probleem?

Semantic Segmentation

Instance Segmentation

Overzicht van bovenstaande computer visie problemen

Object localization

Object Localization

- Ook wel vaak single-object localization genoemd.
- Kan maar 1 box tekenen per categorie

- Bij classificatie -> 1 neuron per klasse in laatste laag
 - Localization -> 4 neurons per klasse
 - Xmin, Ymin, Width, Height

Object detection

Object detection

- Typisch bestaat dit uit twee problemen
 - Wat zijn de bounding boxes van objecten in de figuur
 - Wat is de klasse van de figuur in een bounding box

R-CNN

■ Region-based Convolution Neural Network

- Find ROI (region selector) ongeveer 2000 per beeld
- CNN beelden to feature vector (AlexNet)
- Aparte classifier (SVM) voor classificatie

■ Problemen

- 2000 regio's vinden is rekenintensief
- Features van de 2000 regio's apart berekenen
- Drie aparte modellen waardoor het moeilijk te integreren is

Fast R-CNN

- Combineren van feature selection en regio selectie
 - ROI pooling layer
 - Input: Image + set van ROI's
 - Output: list of bounding boxes en klasses
- Regio's moeten nog op voorhand bepaald worden en gebruikt als input
 - Hierdoor niet klaar voor real-time object detectie

Faster R-CNN

- Ontwikkeld in 2016
- Integreert het regio zoeken in het object detectie network
 - Input is image
 - Output is bbx en classes

YOLO

- You only look once
 - Betere snelheid en accuraatheid
- Alles wordt gedaan in 1 keer
 - Geen concept van regio's meer

■ Object detectie mogelijk op video framerates

Oefening

- Laad een yolo netwerk in en bekijk de model-structuur
- Welke vorm heeft de output van het model en hoe kan je dit interpreteren?
- Kies een figuur en voer er object detectie op uit.
 - Toon/plot het resultaat

Image segmentation

Image segmentation

■ Hoe zou je dit aanpakken?

Typische architectuur voor segmentatie

- Convolutionele auto-encoder
- Auto-encoder bestaat uit
 - Encoder
 - Bottleneck
 - Decoder

U-Net

- **2015**
- Biomedische figuren

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Andere netwerken

- FastFCN —Fast Fully Convolutional Network
- Gated-SCNN
- DeepLab
- Mask R-CNN

Mask R-CNN

■ Uitbreiding op Faster R-CNN

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [19], achieving a mask AP of 35.7 and running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

- Maak voor dit type model de oefening in de notebook
 - Tip: Upsampling en Conv2dTranspose zijn de inverse lagen