LARGE SCALE AUDIO-VISUAL VIDEO ANALYTICS PLATFORM

FOR

FORENSIC INVESTIGATIONS

OF

TERRORISTIC ATTACKS

Alexander Schindler
Martin Boyer
Andrew Lindley
David Schreiber
Thomas Philipp

Alexander Schindler
Scientist
Information Management
Center For Digital Safety & Security

AIT Austrian Institute Of Technology Gmbh Alexander.schindler@ait.ac.at

LARGE SCALE AUDIO-VISUAL VIDEO ANALYTICS PLATFORM

FOR

FORENSIC INVESTIGATIONS

OF

TERRORISTIC ATTACKS

Alexander Schindler
Martin Boyer
Andrew Lindley
David Schreiber

Thomas Philipp

Alexander Schindler
Scientist
Information Management
Center For Digital Safety & Security

AIT Austrian Institute Of Technology Gmbh Alexander.schindler@ait.ac.at

FORENSIC INVESTIGATIONS

OF

TOMORROW TOI

TERRORISTIC ATTACKS

Context

- Forensic Investigation
- Investigating video data after a terroristic attack

Objectives

- Spot suspects
- Follow hints by civilian witnesses
- Collect and secure evidence
- Prevent immediate or subsequent attacks

FORENSIC INVESTIGATIONS

OF

TERRORISTIC ATTACKS

Obstacles

- Great increase in the number of public and private cameras
- Massively increasing volume of video data to be analysed
 - Boston Marathon Bombing 5.000h
 - Toulouse and Montauban:10.000h (35TB)
- Time pressure
 - Timely content evaluation of video mass data is of considerable importance

FORENSIC INVESTIGATIONS

OF

TERRORISTIC ATTACKS

- Initial Situation (before project)
 - manual viewing/processing of the video material
 - Personnel-intensive: time span from several hundred to several thousand hours
 - Technical, supporting tools necessary
- Projects Goals and Outcomes
 - 2 Projects
 - FLORIDA (Bi-Lateral funding Austria/Germany) => intial research
 - VICTORIA (H2020) => TRL 6 10
 - Large-scale computing platform
 - Analytical modules

Analytic Modules

Task

- Detect and predict audio-events into predefined categories
 - Gunshots, explosions, emergency vehicles, scream, speech, Alarm

Use-Case

- Content filter in mass video-data
- Example: attack with firearms
 - => initiate search by filtering all videos which contain *Gunshots* (sorted by confidence)

- Applied Technology
 - Recurrent Convolutional Neual Networks
 - With Attention Layer

- 1. Input representation
 - Common: Mel-Spectrograms

- 1. Input representation
 - Common: Mel-Spectrograms
- Attention Layer
 - Filter non-relevant information from Input
 - Help to learn faster
 - Better convergence
 - Better generalization
 - Smoother prediction signal

Input Layer **Attention Layer** Filter Noise **Convolution Layer Learn Spectral Features** Recurrent Layer **Learn Temporal Features Fully Connected Layer Interpret Events Output Layer**

- 1. Input representation
 - Common: Mel-Spectrograms
- 2. Convolutional Neural Network Block (CNN)
 - Learn audio embeddings

- Input representation
 - Common: Mel-Spectrograms
- 2. Convolutional Neural Network Block (CNN)
 - Learn audio embeddings
- 3. Recurrent Neural Network Block (RNN)
 - Learn Temporal dependencies of embeddings

- 1. Input representation
 - Common: Mel-Spectrograms
- 2. Convolutional Neural Network Block (CNN)
 - Learn audio embeddings
- 3. Recurrent Neural Network Block (RNN)
 - Learn Temporal dependencies of embeddings
- 4. Array of Fully Connected Layers
 - One Layer per temporal dimension (Time-Distributed)
 - Dimensionality of Layer = Number of classes

- 1. Input representation
 - Common: Mel-Spectrograms
- 2. Convolutional Neural Network Block (CNN)
 - Learn audio embeddings
- 3. Recurrent Neural Network Block (RNN)
 - Learn Temporal dependencies of embeddings
- 4. Array of Fully Connected Layers
 - One Layer per temporal dimension (Time-Distributed)
 - Dimensionality of Layer = Number of classes

5. Outputs

- Strong Labels Training & Inference
 - Output of Time-Distributed Fully Connected Layers
- Weak Labels Training
 - Output Layer aggregation (e.g. avg, max)
 - Multi label prediction

Google Audio Set

- 2M Videos
- 632 audio events
- annotaded according acoustic categories
- Weakly labelled (10s)
- Currently largest source of data

RECURRENT CONVOLUTIONAL NEURAL NETWORKS

AUDIO EVENTS VISUALIZED

User Interface Prototyp

AUDIO SIMILARITY

Analytic Modules

AUDIO SIMILARITY SEARCH

Task

- Searching for video-segments with similar audio-signature
- Sub-Segment video-search

Use-Case

- Suspect could not be identified in one video
- Select segment and search for others using audio-signature
- Instant localization (videos close to audio source)

Solution

- Select range in video
- Retrieve a list of similar sounding video segments
- Sorted by simlarity

AUDIO SIMILARITY SEARCH

- Audio features extracted for each 6s segment
 - Rhythm Patterns (repetitiveness in audio)
 - Statistical Spectrum Descriptors
- Nearest Neighbor search using late fusion in a normalized feature space

AUDIO SIMILARITY – INSTANT LOCALIZATION (WITHOUT GPS)

AUDIO-BASED VIDEO-SYNCHRONIZATION

Analytic Module

AUDIO-BASED VIDEO-SYNCHRONIZATION

Task

- Synchronize various video files with unreliable time metadata
- Use audio-signature to relatively align video files

Technology

- Audio-fingerprints (chromaprint)
- Noise invariant

VISUAL ANALYTICS

Analytic Modules

VISUAL CONCEPT DETECTION

- YOLO
- License Plate detection
- Vehicle Color detection
- Connected Vision framework
 - Modular
 - Serviceoriented
 - Distributed
 - Scalable
- Rest Interface

14.03.2019

LARGE SCALE **PLATFORM**

Integration

LARGE SCALE PLATFORM

04.07.2017

CONCLUSIONS

- Audio Modules facilitate a rapid start into an investigation
 - Audio Event Detection => Filter
 - Audio Simlarity => Search
- Visual Modules facilitate a broad search for certain objects
 - Follow hints
- Hadoop is not the best choice for multimedia processing
- Integration of audio algorithms into pre-existing visual analytics systems holds pitfalls

14.03.2019

THANK YOU

If you are interested in the demo ask me in the break!

