Comment on "Peierls Gap in Mesoscopic Ring Threated by a Magnetic Flux"

Yi et al. [1] have recently considered the stability of a Charge Density Wave (CDW) in a clean mesoscopic 1D ring pierced by an Aharonov-Bohm flux. Although this letter rises very interesting questions, some results are incorrect or incomplete.

The main result is that a threading flux tends to suppress the Peierls instability, as also claimed in another recent work [2]. This interesting result is only partly correct because it does not properly take into account the parity effect essential in a 1D ring: the thermodynamics depends crucially on the parity of the number N_e of electrons (forgetting the spin) [3,4].

The stability of the CDW is studied through the calculation of the polarization function χ which, in a finite system, is a discrete sum where the wave vector and the nesting vector can take only quantized values. To account for the finite size, the nesting vector is indeed quantized in ref. [1] but the sum is calculated as an integral which does not exhibit the parity effect. The sum (4) of ref. [1] can be indeed calculated exactly. At the best nesting vector $q = 2k_F$, one gets, using the same notations as in ref. [1]:

$$\chi_{2k_F} = \frac{mR}{N_e \hbar^2 k_F} \left(\psi(2k_F R) - \frac{1}{2} [\psi(|f|) + \psi(1 - |f|)] \right)$$

for an even number N_e of electrons and -1/2 < f < 1/2. f is the dimensionless flux ϕ/ϕ_0 . ψ is the digamma function. χ_{2k_F} does not vary logarithmically when $f \rightarrow 0$, as claimed in ref. [1], but as a power law. The critical flux f_c does not vary linearly with the size as claimed in ref. [1].

More important, the limits of the discrete sum depend on the parity, as mentioned in the footnote [11] of ref. [1]. Performing the same summation when N_e is odd gives a similar expression for χ_{2k_F} as above where f is changed into f-1/2. Consequently, for a small ring, the Peierls phase does not exist for zero flux and it is *stabilized* above the critical flux $f'_c = 1/2 - f_c$.

More generally, the variation of the order parameter Δ is given by a general equation of the form $\chi(\Delta,T)=1/Cte$ where the constant is proportional to the interaction parameter. The generalized polarization function $\chi(\Delta,T)$ has the structure of a discrete sum $\sum_n F(n+f)$ which is periodic. The limits of the sum depend on the parity. Using the Poisson summation formula, this sum can be replaced by an integral plus an harmonic expansion in $f\colon \chi=\int_{-\infty}^{\infty} F(y)dy+2\sum_{m>0} G_m\cos 2\pi mf$ where G_m has the sign of $(-1)^{N_e m}$. One immediately deduces that changing the parity is equivalent to a shift of the flux by half a period. The complete dependence of the critical temperature and of the gap with the flux and the size are calculated in ref. [4].

Two other comments are of importance concerning the persistent current. First, it is true that the current is a priori weak in the Peierls phase and recovers its metallic value above the critical flux f_c (for even N_e). However, the CDW gap vanishes continuously at the critical flux (as agreed by the authors on their fig.1), so that the current cannot be discontinuous at f_c . Indeed the current, very weak at small flux, increases with the flux due to the decrease of the gap and varies continuously at f_c . It is found to vary almost linearly below f_c [4] (fig.1a). Secondly, The current shown on the fig.2b of ref. [1] does not present the correct parity effect: the slope has to be always negative in the normal phase, whatever the parity [3]. Indeed, when N_e is odd, the CDW does not exist for small rings and it is restored above the critical flux $f_c' = 1/2 - f_c$. Thus, the current for both parities are simply shifted by half a period (fig.1b).

FIG. 1. Persistent current (a) for even N_e , (b) for odd N_e .

G. Montambaux,

Laboratoire de Physique des Solides, associé au CNRS Université Paris–Sud 91405 Orsay, France

^[1] J. Yi et al, Phys. Rev. Lett. 78, 3523 (1997).

^[2] M.I. Visscher et al., Europhys. Lett. 36, 613 (1996).

^[3] H.F. Cheung et al., Phys. Rev. B 37, 6050 (1988)

^[4] G. Montambaux, Eur. Phys. J. 1, 377 (1998); similar conclusions have been also found in B. Nathanson et al., Phys. Rev. B 45, 3499 (1992)