Università degli studi di Bergamo

Anno Accademico 2023/2024

MODELLI E ALGORITMI DI OTTIMIZZAZIONE

Introduzione alle Esercitazioni +

Modelli di Pianificazione della

Produzione – Esercizi 1 e 2 (E1)

Giovanni Micheli

Programma della lezione

Introduzione

Installazione di GAMS

- Modellazione in GAMS
 - Esercizio 1.1
 - Esercizio 1.2

Programma della lezione

Introduzione

Installazione di GAMS

- Modellazione in GAMS
 - Esercizio 1.1
 - Esercizio 1.2

Introduzione

Corso di Modelli e Algoritmi di Ottimizzazione

- Studio Teorico
 - ✓ Conoscenza di modelli di programmazione matematica per la risoluzione di problemi decisionali in vari ambiti.
 - ✓ Studio degli algoritmi di soluzione.

- Sperimentazione
 - ✓ Conoscenza del linguaggio di modellazione GAMS per la codifica e la risoluzione dei modelli di ottimizzazione.

Introduzione

- Esempi applicativi
 - ✓ Pianificazione industriale
 - Production planning
 - Gestione del magazzino
 - Project planning
 - Supply chain management
 - ✓ Assegnamento
 - Allocazione di risorse ad attività
 - Assegnamento di lavori a macchine
 - ✓ Logistica
 - Trasporto
 - Vehicle routing

- ✓ Network design
 - Progettazione di reti di telecomunicazione
 - Urban planning
 - Localizzazione di impianti
- Energia
 - Capacity expansion
 - Unit commitment
 - Ottimizzazione della produzione di idrogeno per elettrolisi
 - Demand Response

Materiale didattico

- Tutto il materiale didattico disponibile nella pagina Elearning di Modelli e Algoritmi di Ottimizzazione a.a. 2023-24
 - Lezioni
 - Slide delle lezioni teoriche
 - Testi delle esercitazioni
 - Modelli matematici
 - Codici GAMS (condivisi al termine delle esercitazioni)
 - > Esami
 - Esiti
 - Tracce e soluzioni dei precedenti esami
 - Raccolte di esercizi addizionali
 - Annunci relativi al corso

Modalità d'esame

Prova scritta

- ✓ Gestionali: esercizi di modellazione GAMS (~ 1 h 45 min)
- ✓ Informatici: esercizi algebrici e di modellazione GAMS (~ 2 h 15 min).

Colloquio orale

- ✓ Obbligatorio
- ✓ Sostenuto esclusivamente dagli studenti sufficienti nello scritto
- ✓ Strettamente collegato alla prova scritta
 - Da sostenere nella stessa sessione
 - L'esito negativo dell'orale comporta l'obbligo di ripetere la prova scritta.

Introduzione

Corso di Modelli e Algoritmi di Ottimizzazione

- Studio Teorico
 - ✓ Conoscenza di modelli di programmazione matematica per la risoluzione di problemi decisionali in vari ambiti.
 - ✓ Studio degli algoritmi di soluzione.

- Sperimentazione
 - ✓ Conoscenza del linguaggio di modellazione GAMS per la codifica e la risoluzione dei modelli di ottimizzazione.

Introduzione

Cos'è GAMS?

- ✓ GAMS (General Algebraic Modeling System) è un software sviluppato per la risoluzione di problemi di programmazione matematica del seguente tipo: lineare, intero, misto-intero, non-lineare
- ✓ Consente di modellare in forma compatta problemi di grandi dimensioni
- ✓ La versione demo può essere scaricata gratuitamente al link www.gams.com/download/ dopo aver completato la procedura di richiesta di una licenza

Programma della lezione

Introduzione

Installazione di GAMS

- Modellazione in GAMS
 - Esercizio 1.1
 - Esercizio 1.2

Installazione

- Collegarsi al link https://www.gams.com/try_gams/ per richiedere una licenza Demo
- Compilare il form con i propri dati personali e selezionare Submit

 Attendere la mail con mittente <u>noreply@gams.com</u> contenente il link per la verifica dell'indirizzo di posta fornito (~15 min)

Installazione

 Dopo aver verificato l'indirizzo di posta, attendere una nuova mail con mittente noreply@gams.com contenente il testo della licenza (~1 min)

- Al link <u>www.gams.com/download/</u> scaricare la versione di GAMS compatibile con il sistema operativo del proprio PC.
- Aprire il file .exe ed avviare la procedura di installazione.

Installazione

- Nella procedura di installazione prediligere l'utilizzo di GAMS IDE rispetto a GAMS Studio, se tale scelta è applicabile.
- Copiare il testo della licenza dall'email ricevuta.
- Durante l'installazione, al momento di selezionare una licenza: selezionare la voce License from clipboard terminare l'installazione.

Programma della lezione

Introduzione

Installazione di GAMS

- Modellazione in GAMS
 - Esercizio 1.1
 - Esercizio 1.2

Modellazione in GAMS

- Fornire la risoluzione ad un problema decisionale implica lo svolgimento di due attività sequenziali:
 - Modellazione (i.e., trasformazione del problema decisionale in un modello matematico)
 - Insiemi
 - Dati (scalari vs vettori vs matrici)
 - Variabili decisionali
 - Equazioni (funzioni obiettivo e vincoli)
 - 2. Implementazione GAMS (i.e., traduzione del modello matematico in una sequenza di istruzioni eseguibili da GAMS)

Modellazione in GAMS

- Struttura della soluzione di un problema decisionale
 - ✓ Insiemi e indici
 - ✓ Dati (scalari, vettori e matrici)
 - ✓ Variabili
 - ✓ Vincoli
 - ✓ Modello
 - ✓ Risoluzione del modello
 - ✓ Visualizzazione/analisi dei risultati

Insiemi

✓ *J* : insieme dei prodotti

$$J = \{P1, P2, P3, P4\}$$

✓ I : insieme dei reparti

$$I = \{A, B, C, D\}$$

Dati - Vettori

- Pr_j Profitto unitario [\$] del prodotto j
- Pen_i Penalità unitaria [\$] del prodotto j
- D_j Domanda del prodotto j

Dati - Matrici

• tl_{ij} Tempo di lavorazione [h] del prodotto j nel reparto i

Dati - Scalari

C Capacità [h] di ciascun reparto
 1000

 La configurazione dei processi produttivi determina la tipologia di variabili decisionali da introdurre.

Reparti in serie

 La configurazione dei processi produttivi determina la tipologia di variabili decisionali da introdurre.

Reparti in serie

Variabili Decisionali (Serie)

• x_i Quantità del prodotto j realizzata

 S_j Quantità di domanda del prodotto j non soddisfatta

z Variabile obiettivo : profitti totali [\$]

Funzione obiettivo (Serie)

Penalità per il non soddisfacimento della domanda

Ricavi derivanti dal soddisfacimento della domanda

Vincoli (Serie)

✓ Capacità

Il tempo di lavorazione di ogni reparto non deve eccedere la rispettiva capacità produttiva

Vincoli (Serie)

✓ Capacità

$$\sum_{j} t l_{ij} x_j \le C \quad \forall i$$

Vincoli (Serie)

✓ Capacità

$$\sum_{j} t l_{ij} x_j \le C \quad \forall i$$

✓ Domanda

La domanda di ciascun prodotto è pari alla quota soddisfatta più la quota non soddisfatta

Vincoli (Serie)

✓ Capacità

$$\sum_{j} t l_{ij} x_j \le C \quad \forall i$$

✓ Domanda

$$x_j + s_j = D_j \quad \forall j$$

Vincoli sulle variabili decisionali (Serie)

•
$$x_j \ge 0 \quad \forall j$$

•
$$s_j \ge 0 \quad \forall j$$

- Un modello di programmazione matematica
 - ✓ Vincoli e variabili inclusi in un modello determinano la classe del modello stesso

Solo operazioni lineari sulle variabili decisionali

Presenza di operazioni non lineari sulle variabili decisionali

Vincoli sulle variabili decisionali (Serie)

•
$$x_j \ge 0 \quad \forall j$$
 \longrightarrow LP

•
$$s_j \ge 0 \quad \forall j$$

Vincoli sulle variabili decisionali (Serie)

•
$$x_j \ge 0 \quad \forall j$$
 \longrightarrow LP

•
$$s_j \geq 0 \quad \forall j$$

Gap di ottimalità

- I modelli MIP possono richiedere un enorme impegno di risorse per la determinazione della soluzione ottima
 - Rilassamento continuo (tempo polinomiale)
 - Branch-and bound (tempo esponenziale)
- Di default GAMS nella risoluzione di un modello MIP non determina l'ottimo, ma una soluzione intera (SI) che si trova sufficientemente vicina ad una stima della soluzione ottima (SO)
- Si definisce gap di ottimalità la distanza tra le due soluzioni:
 - ✓ |SO SI| è il gap assoluto di ottimalità
 - $\sqrt{\frac{|SO-SI|}{\max(|SO|,|SI|)}}$ è il gap relativo di ottimalità
- I gap di ottimalità sono controllabili mediante le estensioni optca e optcr (e.g. *Model_Name.optcr = 0 ;* → soluzione ottima)

- Post-processamento (Serie)
 - ✓ A valle della risoluzione del modello, introduciamo
 - \bullet Un nuovo scalare X_{tot}

$$X_{tot} = \sum_{i} x_{j}$$

 \bullet Un nuovo vettore Sat_i

$$Sat_i = \frac{\sum_j t l_{ij} x_j}{C}, \qquad \forall i$$

 La configurazione dei processi produttivi determina la tipologia di variabili decisionali da introdurre.

Variabili Decisionali (Parallelo)

- y_{ij} Quantità del prodotto j realizzata nel reparto i
- s_j Quantità di domanda del prodotto j non soddisfatta
- z Variabile obiettivo : profitti totali [\$]

Funzione obiettivo (Parallelo)

Penalità per il non soddisfacimento della domanda

Ricavi derivanti dal soddisfacimento della domanda

Vincoli (Parallelo)

✓ Capacità

$$\sum_{i} t l_{ij} y_{ij} \le C \quad \forall i$$

✓ Domanda

$$\sum_{i} y_{ij} + s_j = D_j \quad \forall j$$

Vincoli sulle variabili decisionali (Parallelo)

•
$$y_{ij} \ge 0 \quad \forall i, j$$
 \longrightarrow LP

•
$$s_j \ge 0 \quad \forall j$$

•
$$y_{ij} \in \mathbb{N}$$
 $\forall i, j$ — MIP — Controllo del gap di ottimalità

- Post-processamento (Parallelo)
 - ✓ A valle della risoluzione del modello, introduciamo
 - \bullet Un nuovo scalare Y_{tot}

$$Y_{tot} = \sum_{i} \sum_{j} y_{ij}$$

 \bullet Un nuovo vettore Sat_i^2

$$Sat_i^2 = \frac{\sum_j t l_{i,j} y_{ij}}{C}, \qquad \forall i$$

Insiemi

 $\checkmark T$: insieme dei mesi dell'orizzonte di pianificazione

$$T = \{1,2,3,4,5,6\}$$

Dati - Vettori

• D_t Domanda al mese t

• cp_t Costo unitario di produzione [\$] al mese t

Dati - Scalari

cs Costo unitario di stoccaggio [\$]

I0 Giacenza iniziale del magazzino

IF Giacenza finale del magazzino 60

IM Capacità massima del magazzino
 100

Variabili Decisionali

• x_t Produzione al mese t

• I_t Livello del magazzino alla fine del mese t

Z Variabile obiettivo : costi totali [\$]

Funzione obiettivo

Vincoli

✓ Livello finale del magazzino

Alla fine dell'orizzonte di pianificazione, il livello delle scorte deve essere superiore al minimo valore finale

Vincoli

✓ Livello finale del magazzino

$$I_6 \ge IF$$

Vincoli

✓ Livello finale del magazzino

$$I_6 \ge IF$$

✓ Livello massimo del magazzino
In ogni mese il livello del magazzino non può eccedere la massima capacità

Vincoli

✓ Livello finale del magazzino

$$I_6 \ge IF$$

✓ Livello massimo del magazzino

$$I_t \leq IM \quad \forall t$$

Vincoli

✓ Bilancio

In ogni mese la quantità resa disponibile deve eguagliare la quantità utilizzata

Vincoli

- ✓ Bilancio
 - Mese 1

$$I0 + x_1 = D_1 + I_1$$

Vincoli

- ✓ Bilancio
 - Mese 1

$$I0 + x_1 = D_1 + I_1$$

$$I_1 + x_2 = D_2 + I_2$$

Vincoli

✓ Bilancio

Mese 1

$$I0 + x_1 = D_1 + I_1$$

Mese 2

$$I_1 + x_2 = D_2 + I_2$$

•

•

Mese 6

$$I_5 + x_6 = D_6 + I_6$$

Vincoli

✓ Bilancio

$$I_{t-1} + I0|_{t=1} + x_t = D_t + I_t \quad \forall t$$

Vincoli

✓ Bilancio

$$I_{t-1} + I_{0|_{t=1}} + x_{t} = D_{t} + I_{t} \quad \forall t$$

Variabile decisionale (definita solo per t > 1)

Parametro in input (da includere nell'equazione solo per t=1)

Vincoli sulle variabili decisionali

•
$$x_t \ge 0 \quad \forall t$$
 \longrightarrow LP

•
$$I_t \ge 0 \quad \forall t$$

Vincoli sulle variabili decisionali

•
$$x_t \ge 0 \quad \forall t$$
 \longrightarrow LP

•
$$I_t \ge 0 \quad \forall t$$

Takeaway

1. Pianificazione della produzione

2. Regole di modellazione

Takeaway

1. Pianificazione della produzione

- La struttura dei processi produttivi (serie vs parallelo) determina la tipologia di variabili decisionali da introdurre nel problema.
- In presenza di più fonti di disponibilità di un prodotto (e.g., produzione ordinaria, produzione straordinaria, magazzino, outsourcing) e/o impieghi (e.g., vendita su canali diversi, stoccaggio) è indispensabile la scrittura di un vincolo di bilancio che eguagli disponibilità e utilizzi.

Takeaway

- 2. Regole di modellazione
 - Tutti i modelli formulati dovranno essere lineari.
 - Per ottenere risultati interi non è sufficiente modificare l'attributo Positive Variables in Integer Variables
 - > Va modificata la classe di ottimizzazione (MIP)
 - Va controllato il gap di ottimalità
 - Va controllato l'upper bound.

