PRESSURE VESSELS

Pressure Vessels: Vessels Contains fluids (G + L) under pressure.

Purpose of design: Identify the size parameters.

Pressure Vessels Types				
Thin Pressure Vessels (D/t \geq 20) (GATE+ESE)		Thick Pressure Vessels (D/t $<$ 20) (ESE)		
Thin Cylinder	Thin Sphere	Thick Cylinder	Thick Sphere	
Eg. Boiler PV, Gas Storage Tank		Eg. Gun Barrel, Normal Water Pipe		
Stress Distribution constant over thickness		Stress Distribution is non uniform and maximum at inner		
		radius and zero a	t outer radius	

Due to Pressure(P) the Stresses in the cylinder is generated				
Circumferential/ Tangential / Hoop Stress (σ _h)	Longitudinal Stress (σ _i)	Radial Stress (σ_r)		
Acts Along Circumference and perpendicular to	Acts perpendicular to Circumference	Acts In radial		
longitudinal section plane	plane and along longitudinal direction	Direction		
Bursting force = Resisting force	Bursting force = Resisting force	Ignored for thin		
$Pdl = \sigma_h(2lt)$	$P(\pi/4) d^2 = \sigma_1(\pi dt)$	cylinder case		
$\sigma_h = Pd / 2t \text{ (for safety } \sigma_h \leq \sigma_{allowable})$	$\sigma_l = Pd / 4t \text{ (for safety } \sigma_l \leq \sigma_{allowable})$	$\sigma_{\rm r} <<< \sigma_{\rm l}$, $\sigma_{\rm h}$		
$\sigma_h = 2 \sigma_l$ (Valid only for Constant Pressure)	If ends are open $\sigma_1 = 0$			

Strain in Thin Cylinder:

```
\begin{split} &\epsilon_1 = \delta d \ / \ d = (Pd \ / \ 4tE) \ (2 - \upsilon) \qquad (Because \ \epsilon_1 = (1/E) \ [\sigma_1 - \upsilon(\sigma_2 + \sigma_3)] \\ &\epsilon_2 = \delta l \ / \ l = (Pd \ / \ 4tE) \ (1 - 2\upsilon) \\ &\epsilon_v = \delta V \ / \ V = \epsilon_2 + 2 \ \epsilon_1 = (Pd \ / \ 4tE) \ (5 - 4\upsilon) \ (here \ V = L \ (\pi/4) \ d^2) \end{split}
```

Special Case (Hydrostatic Pressure):

Always possible $\sigma_h > \sigma_l$			
Yes, When Pressure distribution is constant	No, When Pressure is varying, we can't judge		

Built Up Cylinder-Joint Efficiency:

Built Up Cylinder: Cylinder made of multiple metal sheets Joined by Riveted Joints.

Riveted Joints			
Longitudinal Riveted Joints	Circumferential Riveted Joints		
Used in increase Diameter of cylinder	Used to increase Length of cylinder		
$\eta_1 \sigma_h = Pd / 2t$	$\eta_h \sigma_l = Pd / 4t$		

Joint Efficiency (η) = Effective Area / Gross Area

Thin Spherical Pressure Vessels:

```
Bursting force = Resisting force
```

$$P(\pi/4) d^2 = \sigma_h(\pi dt)$$

$$\sigma_h = Pd / 4t \text{ (for safety } \sigma_h \leq \sigma_{allowable})$$

Here
$$\varepsilon_3 = \varepsilon_2 = \varepsilon_1 = \delta d / d = (Pd / 4tE) (1 - \upsilon)$$
 (Because $\varepsilon_1 = (1/E) [\sigma_1 - \upsilon(\sigma_2 + \sigma_3)]$
 $\varepsilon_V = \delta V / V = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = (3Pd / 4tE) (1 - \upsilon)$ (here $V = (4/3) \pi r^3$)

Thin Cylindrical Pressure Vessels with Hemi-Spherical Ends):

To Avoid Deformation at junction,
$$\epsilon_{hc} = \left\lceil \delta d \, / \, d \right\rceil_{Cylinder} = \left\lceil \delta l \, / \, l \right\rceil_{Sphere} = \epsilon_{hs}$$

$$\left(Pd \, / \, 4t_c E\right) \left(2 - \upsilon\right) = \left(Pd \, / \, 4t_s E\right) \left(1 - \upsilon\right)$$

$$\left(t_s / t_c\right) = \left(1 - \upsilon\right) / \left(2 - \upsilon\right)$$

$$t_s \leq t_c \quad \text{(Condition to avoid Deformation at junction for same deformation)}$$
 To Avoid Deformation at junction,
$$\left[\sigma_{max}\right]_{Cylinder} = \left[\sigma_{max}\right]_{Sphere}$$

$$\left(t_s / t_c\right) = 0.5 \text{ (Condition to avoid Deformation at junction for same maximum stress)}$$

$$\tau_{max} = \max \left\{ \text{ mod} \left[\left(\sigma_1 - \sigma_2\right) / 2 \right], \text{ mod} \left[\left(\sigma_2 - \sigma_3\right) / 2 \right], \text{ mod} \left[\left(\sigma_3 - \sigma_1\right) / 2 \right] \right\}$$

$$\tau_{max} = \max \left\{ 0, Pd / 4t, Pd / 8t \right\} = Pd / 4t \qquad \text{(For Sphere)}$$

$$\tau_{max} = \max \left\{ 0, Pd / 8t, Pd / 8t \right\} = Pd / 8t \qquad \text{(For Cylinder)}$$