CRoPS (Combined Roadmap and Potentials for Swarms)

Generated by Doxygen 1.8.4

Sun Dec 8 2013 00:48:05

Contents

1	Nam	espace	Index	1
	1.1	Names	pace List	1
2	Hier	archical	Index	3
	2.1	Class H	ilerarchy	3
3	Clas	s Index	į	5
	3.1	Class L	ist 5	5
4	File	Index	7	7
	4.1	File List	:	7
5	Nam	espace	Documentation	9
	5.1	boid Na	mespace Reference	9
		5.1.1	Function Documentation	9
			5.1.1.1 guassianFunc	9
		5.1.2	Variable Documentation	С
			5.1.2.1author	С
	5.2	boidsim	ulation Namespace Reference	С
		5.2.1	Variable Documentation	С
			5.2.1.1author	С
	5.3	configu	ration Namespace Reference	С
	5.4	dijkstra	Namespace Reference	С
		5.4.1	Function Documentation	1
			5.4.1.1 Dijkstra	1
			5.4.1.2 shortestPath	2
	5.5	gathers	tats Namespace Reference	3
		5.5.1	Function Documentation	3
			5.5.1.1 generateStats	3
		5.5.2	Variable Documentation	3
			5.5.2.1 mapList	3
			5.5.2.2 testList	3
	5.6	goal Na	mespace Reference	3

iv CONTENTS

		5.6.1	Variable I	Documentation	1	4
			5.6.1.1	author	1	4
	5.7	mappa	rser Name	espace Reference	1	4
		5.7.1	Function	Documentation	1	4
			5.7.1.1	mapVal	1	4
			5.7.1.2	mparse	1	4
	5.8	obstac	le Namesp	pace Reference	1	5
		5.8.1	Variable I	Documentation	1	5
			5.8.1.1	author	1	5
	5.9	priodic	t Namespa	ace Reference	1	5
	5.10	prm Na	amespace	Reference	1	5
	5.11	test_si	m Namesp	pace Reference	10	6
		5.11.1	Variable I	Documentation	10	6
			5.11.1.1	arg	10	6
			5.11.1.2	dynamicObstacleAutoGenerate	10	6
			5.11.1.3	endPoint	10	6
			5.11.1.4	flockSize	10	6
			5.11.1.5	fs	10	6
			5.11.1.6	generateTarget	10	6
			5.11.1.7	mapDict	1	7
			5.11.1.8	mapFilePath	1	7
			5.11.1.9	obstacleFilePath	1	7
			5.11.1.10	StartPoint	1	7
6	Clas	s Docu	mentation		19	9
	6.1			· Reference		
		6.1.1	Detailed I	Description	2	2
		6.1.2	Construc	ctor & Destructor Documentation	2	2
			6.1.2.1	init	2	2
		6.1.3	Member I	Function Documentation	2	2
			6.1.3.1	determineNewPath	2	2
			6.1.3.2	determine Decident Melli	2	2
				determineRandomWalk		
			6.1.3.3	draw	2	3
			6.1.3.3 6.1.3.4			
				draw	2	3
			6.1.3.4	draw	2	3
			6.1.3.4 6.1.3.5	draw	2	3 3 4
			6.1.3.4 6.1.3.5 6.1.3.6	draw	25 26 24	3 4 4
			6.1.3.4 6.1.3.5 6.1.3.6 6.1.3.7	draw	2: 2: 2: 2:	3 4 4 5

CONTENTS

	6.1.3.11	inGoal	27
	6.1.3.12	initFunctionParameters	28
	6.1.3.13	inWorld	28
	6.1.3.14	mag	28
	6.1.3.15	norm	29
	6.1.3.16	obstacleFunc	29
	6.1.3.17	pointAllowed	30
	6.1.3.18	reduceWeightValues	30
	6.1.3.19	setBoidList	31
	6.1.3.20	setNewGoal	31
	6.1.3.21	sigmoidFunc	31
	6.1.3.22	sumDivide	32
	6.1.3.23	update	33
	6.1.3.24	updatePositionBuffer	33
6.1.4	Member	Data Documentation	33
	6.1.4.1	bAlpha	33
	6.1.4.2	bBeta	33
	6.1.4.3	bConst	33
	6.1.4.4	bDelta	34
	6.1.4.5	bInfluenceR	34
	6.1.4.6	boidList	34
	6.1.4.7	color	34
	6.1.4.8	compWeightList	34
	6.1.4.9	$dim\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	34
	6.1.4.10	endIndex	34
	6.1.4.11	ePos	34
	6.1.4.12	gAlpha	34
	6.1.4.13	gammaFunc	34
	6.1.4.14	gBeta	35
	6.1.4.15	gConst	35
	6.1.4.16	gDelta	35
	6.1.4.17	goal	35
	6.1.4.18	goalCounter	35
	6.1.4.19	goalList	35
	6.1.4.20	goalNodes	35
	6.1.4.21	heading	35
	6.1.4.22	headWeightList	35
	6.1.4.23	neighborSize	36
	6.1.4.24	nStuckDAvg	36
	6.1.4.25	nStuckDSigma	36

<u>vi</u> CONTENTS

		6.1.4.26	obBeta	36
		6.1.4.27	obInfluenceR	36
		6.1.4.28	obstacleList	36
		6.1.4.29	position	36
		6.1.4.30	positionBuffer	36
		6.1.4.31	prmGen	36
		6.1.4.32	radius	37
		6.1.4.33	randomWalkX	37
		6.1.4.34	randomWalkY	37
		6.1.4.35	randWalkCount	37
		6.1.4.36	roadmap	37
		6.1.4.37	screen	37
		6.1.4.38	speed	37
		6.1.4.39	sPos	37
		6.1.4.40	stuck	37
		6.1.4.41	stuckConst	38
		6.1.4.42	stuckDAvg	38
		6.1.4.43	stuckDSigma	38
		6.1.4.44	ySize	38
6.2	goal.C	ircleGoal C	Class Reference	38
	6.2.1	Detailed	Description	39
	6.2.2	Construc	tor & Destructor Documentation	39
		6.2.2.1	init	39
	6.2.3	Member	Function Documentation	39
		6.2.3.1	draw	39
	6.2.4	Member	Data Documentation	39
		6.2.4.1	colors	39
		6.2.4.2	position	39
		6.2.4.3	radius	39
		6.2.4.4	screen	39
6.3	configu	uration.Cor	nfiguration Class Reference	40
	6.3.1	Detailed	Description	41
	6.3.2	Member	Data Documentation	41
		6.3.2.1	boidSpeed	41
		6.3.2.2	colorList	41
		6.3.2.3	dim	41
		6.3.2.4	goalRadius	41
		6.3.2.5	numNeighbours	41
		6.3.2.6	numSamplePoints	41
		6.3.2.7	screen	42

CONTENTS vii

6.4	dict Cla	lass Reference					
6.5	boidsin	nulation.FlockSim Class Reference					
	6.5.1	Detailed I	Description				
	6.5.2	Construct	tor & Destructor Documentation				
		6.5.2.1	init				
	6.5.3	Member I	Function Documentation				
		6.5.3.1	animate				
		6.5.3.2	avg				
		6.5.3.3	getBoidData				
		6.5.3.4	getStats				
		6.5.3.5	init_prm				
		6.5.3.6	play				
		6.5.3.7	render				
	6.5.4	Member I	Data Documentation				
		6.5.4.1	auto_gen_number				
		6.5.4.2	auto_gen_obst				
		6.5.4.3	BLACK				
		6.5.4.4	config				
		6.5.4.5	counter				
		6.5.4.6	dataFile				
		6.5.4.7	dim				
		6.5.4.8	done				
		6.5.4.9	ePos				
		6.5.4.10	flockSize				
		6.5.4.11	font				
		6.5.4.12	frameCounter				
		6.5.4.13	iterations				
		6.5.4.14	mapFile				
		6.5.4.15	numInGoal				
		6.5.4.16	obstacleFile				
		6.5.4.17	sPos				
		6.5.4.18	startTime				
		6.5.4.19	surfaceList				
		6.5.4.20	WHITE				
6.6	configu	uration.Poly	/FileConfiguration Class Reference				
	6.6.1	Detailed I	Description				
	6.6.2	Member I	Function Documentation				
		6.6.2.1	autoGenerateDynamicObstacles				
		6.6.2.2	initVars				
		6.6.2.3	parseDynamicObstacles				

viii CONTENTS

	6.6.3	Member	Data Documentation	51
		6.6.3.1	auto_gen_number	51
		6.6.3.2	auto_gen_obst	51
		6.6.3.3	boidList	51
		6.6.3.4	endPoint	52
		6.6.3.5	goalList	52
		6.6.3.6	nodes	52
		6.6.3.7	obstacleList	52
		6.6.3.8	prmGen	52
		6.6.3.9	startPoint	52
6.7	obstac	le.PolyObs	stacle Class Reference	52
	6.7.1	Detailed	Description	54
	6.7.2	Construc	tor & Destructor Documentation	54
		6.7.2.1	init	54
	6.7.3	Member	Function Documentation	54
		6.7.3.1	change_direction	54
		6.7.3.2	checkCollisionWithOtherObstacles	54
		6.7.3.3	detectCollision	54
		6.7.3.4	determine_last_direction	55
		6.7.3.5	draw	55
		6.7.3.6	estimatePoly	55
		6.7.3.7	getClosestPoint	55
		6.7.3.8	getPoint	56
		6.7.3.9	getRadius	56
		6.7.3.10	norm	57
		6.7.3.11	pointAllowed	57
		6.7.3.12	pointInPoly	58
		6.7.3.13	rayintersectseg	59
		6.7.3.14	removeSelfFromObstacleList	59
		6.7.3.15	translate	59
	6.7.4	Member	Data Documentation	60
		6.7.4.1	avgPoint	60
		6.7.4.2	boundary	60
		6.7.4.3	colors	60
		6.7.4.4	displacement	60
		6.7.4.5	dynamic	60
		6.7.4.6	max_displacement	60
		6.7.4.7	maxDist	60
		6.7.4.8	nodes	60
		6.7.4.9	obstacles	60

CONTENTS

		6.7.4.10	screen	61
		6.7.4.11	velocity	61
6.8	priodic	t.priorityDio	ctionary Class Reference	61
	6.8.1	Detailed I	Description	62
	6.8.2	Construc	tor & Destructor Documentation	62
		6.8.2.1	init	62
	6.8.3	Member I	Function Documentation	62
		6.8.3.1	iter	62
		6.8.3.2	setitem	62
		6.8.3.3	setdefault	63
		6.8.3.4	smallest	63
6.9	prm.PF	RMGenera	tor Class Reference	63
	6.9.1	Detailed I	Description	64
	6.9.2	Construc	tor & Destructor Documentation	64
		6.9.2.1	init	64
	6.9.3	Member I	Function Documentation	65
		6.9.3.1	draw	65
		6.9.3.2	drawPath	65
		6.9.3.3	filterSubGoal	65
		6.9.3.4	findNeighbors	65
		6.9.3.5	generate	66
		6.9.3.6	generatePositionList	66
		6.9.3.7	getRandom	67
		6.9.3.8	getShortestPath	67
		6.9.3.9	initOmega	67
		6.9.3.10	norm	68
	6.9.4	Member I	Data Documentation	68
		6.9.4.1	adjacentThresh	68
		6.9.4.2	dontDraw	69
		6.9.4.3	endPos	69
		6.9.4.4	goalNodes	69
		6.9.4.5	gPosList	69
		6.9.4.6	numNext	69
		6.9.4.7	obstacleList	69
		6.9.4.8	omegaDict	69
		6.9.4.9	roadmap	69
		6.9.4.10	screen	69
		6.9.4.11	startPos	70
		6.9.4.12	subGoalNumber	70
		6.9.4.13	subGoalPositionList	70

CONTENTS

		6.9.4.14 xSize	70
		6.9.4.15 ySize	70
7	File I	Documentation	71
	7.1	code/boid.py File Reference	71
	7.2	code/boidsimulation.py File Reference	71
	7.3	code/configuration.py File Reference	72
	7.4	code/dijkstra.py File Reference	72
	7.5	code/gatherstats.py File Reference	72
	7.6	code/goal.py File Reference	73
	7.7	code/mapparser.py File Reference	73
	7.8	code/obstacle.py File Reference	74
	7.9	code/priodict.py File Reference	74
	7.10	code/prm.py File Reference	74
	7.11	code/test_sim.py File Reference	75
Inc	dex		76

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

iid	9
oidsimulation	10
nfiguration	10
kstra	
utherstats	
p <mark>al</mark>	
apparser	
ostacle	
iodict	
m	15
st sim	16

Namespace Index

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

	19
al	38
Configuration	40
on.PolyFileConfiguration	49
	42
orityDictionary	61
n.FlockSim	42
Dbstacle	52
erator	63

Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

boid.Boid	
Class which represents one boid	19
goal.CircleGoal	
Object that holds data about a goal modelled as circular configuration space	38
configuration.Configuration	
Static class that holds important global variables	40
dict	42
boidsimulation.FlockSim	
Main class for that is used for the simulation and display of the flock	42
configuration.PolyFileConfiguration	
Extends the Configuration class	49
obstacle.PolyObstacle	
Object that represents the an obstacle represented by a series of points (in the node list) which	
make up a set of lines	52
priodict.priorityDictionary	61
prm.PRMGenerator	
Class used to hold methods and variables that are important for the global path planning problem	63

6 Class Index

Chapter 4

File Index

4.1 File List

Here	ic a	list of	all fi	les with	hrief	descriptions
Hele	is a	1151 01	all II	ies willi	Dilei	descriptions

e/boid.py	1
le/boidsimulation.py	1
e/configuration.py	2
e/dijkstra.py	2
e/gatherstats.py	2
le/goal.py	3
le/mapparser.py	3
le/obstacle.py	4
le/priodict.py	4
le/prm.py	4
le/test_sim.py	5

8 File Index

Chapter 5

Namespace Documentation

5.1 boid Namespace Reference

Classes

· class Boid

Class which represents one boid.

Functions

· def guassianFunc

Gamma function used to give a probability distribution of the flock in order to choose an appropriate neighbour.

Variables

• string __author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

5.1.1 Function Documentation

5.1.1.1 def boid.guassianFunc (dX, dAvg = 10, dSigma = 1)

Gamma function used to give a probability distribution of the flock in order to choose an appropriate neighbour.

Parameters

dX	Distance from the boid to the prospective neighbour
dAvg	Dynamic variable used to define the average prospective Distance
dSigma	Standard deviation of the average distances

Definition at line 21 of file boid.py.

Here is the caller graph for this function:

5.1.2 Variable Documentation

5.1.2.1 string boid.__author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

Definition at line 3 of file boid.py.

5.2 boidsimulation Namespace Reference

Classes

· class FlockSim

Main class for that is used for the simulation and display of the flock.

Variables

• string __author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

5.2.1 Variable Documentation

5.2.1.1 string boidsimulation.__author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

Definition at line 4 of file boidsimulation.py.

5.3 configuration Namespace Reference

Classes

· class Configuration

Static class that holds important global variables.

class PolyFileConfiguration

Extends the Configuration class.

5.4 dijkstra Namespace Reference

Functions

• def Dijkstra

Find shortest paths from the start vertex to all vertices nearer than or equal to the end.

· def shortestPath

Find a single shortest path from the given start vertex to the given end vertex.

5.4.1 Function Documentation

5.4.1.1 def dijkstra. Dijkstra (G, start, end = None)

Find shortest paths from the start vertex to all vertices nearer than or equal to the end.

The input graph G is assumed to have the following representation: A vertex can be any object that can be used as an index into a dictionary. G is a dictionary, indexed by vertices. For any vertex v, G[v] is itself a dictionary, indexed by the neighbors of v. For any edge v->w, G[v][w] is the length of the edge. This is related to the representation in <http://www.python.org/doc/essays/graphs.html> where Guido van Rossum suggests representing graphs as dictionaries mapping vertices to lists of neighbors, however dictionaries of edges have many advantages over lists: they can store extra information (here, the lengths), they support fast existence tests, and they allow easy modification of the graph by edge insertion and removal. Such modifications are not needed here but are important in other graph algorithms. Since dictionaries obey iterator protocol, a graph represented as described here could be handed without modification to an algorithm using Guido's representation.

Of course, G and G[v] need not be Python dict objects; they can be any other object that obeys dict protocol, for instance a wrapper in which vertices are URLs and a call to G[v] loads the web page and finds its links.

The output is a pair (D,P) where D[v] is the distance from start to v and P[v] is the predecessor of v along the shortest path from s to v.

Dijkstra's algorithm is only guaranteed to work correctly when all edge lengths are positive. This code does not verify this property for all edges (only the edges seen before the end vertex is reached), but will correctly compute shortest paths even for some graphs with negative edges, and will raise an exception if it discovers that a negative edge has caused it to make a mistake.

Parameters

	G	The graph dictionary to be searched
ſ	start	Starting node
ſ	end	End node

Returns

Something important

Definition at line 53 of file dijkstra.py.

Here is the caller graph for this function:

5.4.1.2 def dijkstra.shortestPath (G, start, end)

Find a single shortest path from the given start vertex to the given end vertex.

```
The input has the same conventions as Dijkstra(). The output is a list of the vertices in order along the shortest path.
```

Parameters

G	The graph dictionary to be searched
start	The starting node
end	The ending node

Returns

A list of the nodes that lie on the shortest path from start to end in G

Definition at line 89 of file dijkstra.py.

Here is the call graph for this function:

Here is the caller graph for this function:

5.5 gatherstats Namespace Reference

Functions

· def generateStats

Generates the statistics and saves them in a well known location.

Variables

· list mapList

A list of dictionaries used to store the map files, starting and ending points of the boids.

testList = mapList

5.5.1 Function Documentation

5.5.1.1 def gatherstats.generateStats (mapFile, iterations, startPoint, endPoint)

Generates the statistics and saves them in a well known location.

Parameters

mapFile	The file that stores information about the environment
iterations	the number of experiments to run per number of bots
startPoint,end-	Defines the starting and ending points of the flock
Point	

Definition at line 14 of file gatherstats.py.

5.5.2 Variable Documentation

5.5.2.1 list gatherstats.mapList

A list of dictionaries used to store the map files, starting and ending points of the boids.

Definition at line 47 of file gatherstats.py.

5.5.2.2 gatherstats.testList = mapList

Definition at line 81 of file gatherstats.py.

5.6 goal Namespace Reference

Classes

· class CircleGoal

Object that holds data about a goal modelled as circular configuration space.

Variables

string __author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

5.6.1 Variable Documentation

5.6.1.1 string goal.__author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

Definition at line 3 of file goal.py.

5.7 mapparser Namespace Reference

Functions

• def mapVal

Maps a value that is between in_min and in_max to a value between out_min and out_max.

def mparse

Parses a map file into a list of obstacles.

5.7.1 Function Documentation

5.7.1.1 def mapparser.mapVal (x, in_min, in_max, out_min, out_max)

Maps a value that is between in_min and in_max to a value between out_min and out_max.

Parameters

in_min	The minimum value that the input value could be
in_max	The maximum value that the input value could be
out_min	The minimum value that the output value could be
out_max	The maximum value that the output value could be

Returns

A scaled value based on a given input

Definition at line 16 of file mapparser.py.

Here is the caller graph for this function:

5.7.1.2 def mapparser.mparse (filename, staticObstacleList = list(), kwargs)

Parses a map file into a list of obstacles.

Parameters

filename	The file name of the map file
----------	-------------------------------

Returns

A list of obstacles

Definition at line 31 of file mapparser.py.

Here is the call graph for this function:

5.8 obstacle Namespace Reference

Classes

class PolyObstacle

Object that represents the an obstacle represented by a series of points (in the node list) which make up a set of lines.

Variables

• string __author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

5.8.1 Variable Documentation

5.8.1.1 string obstacle.__author__ = "Alex Wallar < aw204@st-andrews.ac.uk>"

Definition at line 4 of file obstacle.py.

5.9 priodict Namespace Reference

Classes

class priorityDictionary

5.10 prm Namespace Reference

Classes

class PRMGenerator

Class used to hold methods and variables that are important for the global path planning problem.

5.11 test_sim Namespace Reference

Variables

dictionary mapDict

Main module to run for testing purposes.

- tuple flockSize = int(sys.argv[2])
- list startPoint = mapDict[sys.argv[1]]
- list endPoint = mapDict[sys.argv[1]]
- list mapFilePath = sys.argv[1]
- obstacleFilePath = None
- dynamicObstacleAutoGenerate = False
- int generateTarget = 0
- list arg = sys.argv[3]
- tuple fs

5.11.1 Variable Documentation

```
5.11.1.1 list test_sim.arg = sys.argv[3]
```

Definition at line 54 of file test_sim.py.

5.11.1.2 test_sim.dynamicObstacleAutoGenerate = False

Definition at line 50 of file test sim.py.

5.11.1.3 list test_sim.endPoint = mapDict[sys.argv[1]]

Definition at line 47 of file test_sim.py.

5.11.1.4 tuple test_sim.flockSize = int(sys.argv[2])

Definition at line 45 of file test sim.py.

5.11.1.5 tuple test_sim.fs

Initial value:

Definition at line 61 of file test_sim.py.

5.11.1.6 tuple test_sim.generateTarget = 0

Definition at line 51 of file test_sim.py.

5.11.1.7 dictionary test_sim.mapDict

Initial value:

```
"maps/scene2.map": {
    "startPoint": (494, 213),
    "endPoint": (404, 20)
4
5
                "maps/scene3.map": {
    "startPoint": (356, 42),
    "endPoint": (852, 450)
6
8
                  "maps/scene1.map": {
    "startPoint": (50, 50), # (50, 600)
    "endPoint": (980, 30)
10
11
12
13
                  "maps/empty.map": {
    "startPoint": (50, 50), # (50, 600)
14
15
                        "endPoint": (980, 590)
16
                 },
"maps/s.map": {
    "startPoint": (80, 80), # (50, 600)
    "endPoint": (980, 30)
17
18
19
20
                  "maps/maze.map": {
    "startPoint": (50, 50), # (50, 600)
23
                        "endPoint": (950, 30)
24
2.5
                  "maps/maze2.map": {
    "startPoint": (50, 70), # (50, 600)
26
                         "endPoint": (950, 30)
28
29
30
           }
```

Main module to run for testing purposes.

Definition at line 10 of file test_sim.py.

5.11.1.8 list test_sim.mapFilePath = sys.argv[1]

Definition at line 48 of file test_sim.py.

5.11.1.9 test_sim.obstacleFilePath = None

Definition at line 49 of file test_sim.py.

5.11.1.10 list test_sim.startPoint = mapDict[sys.argv[1]]

Definition at line 46 of file test_sim.py.

Namespace	\mathbf{D}	ocument	at	tion

Chapter 6

Class Documentation

6.1 boid.Boid Class Reference

Class which represents one boid.

Public Member Functions

def __init__

Initializes all of the variables given as input to the constructor used by the boid.

· def sumDivide

Special sort of reduce that sums components in a list of vectors and divides each final component with a certain number.

• def norm

Gets the distance between two points.

def getVar

Gets multiple variables from a list with one call.

· def obstacleFunc

Defines the potential between a boid and an obstacle.

def mag

Gets the magnitude of a vector.

· def sigmoidFunc

Defines a sigmoidal curve used for goal attraction and for boid repulsion.

def inGoal

Checks if a piont is in the current goal.

· def inWorld

Checks if a point is in the world.

def pointAllowed

Checks if a point is inside or collides with any of the obstacles.

- · def initFunctionParameters
- · def setBoidList

Setter method used to set the list of boids.

· def updatePositionBuffer

Updates the position buffer.

def findMax

Gets the n maximum values from a list.

• def reduceWeightValues

Works in cohesion with sumDivide.

20 Class Documentation

· def getDirectionVector

Gets a scaled direction vector from an unscaled vector.

· def getObstacleVectorList

Gets the potential vectors to a boid due to the repulsive obstacle field.

· def getGoalVector

Gets the potential vectors to a boid due to the attractive goal field.

• def getBoidVectorList

Gets the potential vectors to a boid due to the repulsive boid field.

def getNeighborVectorList

Gets the heading vectors of the neighbours.

def setNewGoal

Sets the new goal.

• def determineRandomWalk

Increments the random walk counter, changes the current goal if necessary.

· def determineNewPath

When the boid is stuck, it reweights the roadmap and finds a new suitable path.

· def update

Updates the boid's heading and position due to the potential fields.

· def draw

Draws the boid as a pygame circle in the pygame screen.

Public Attributes

• gammaFunc

Function used to choose a neighbour.

• prmGen

Class which holds the details about the global path planner.

• screen

PyGame screen.

• radius

Radius of the boid.

heading

Initial random heading.

• dim

Dimensions of the screen.

- ySize
- neighborSize

Number of neighbours that will influence the boid.

color

Unique color used to distinguish the boid (only used in debugging and visualization)

• speed

Maximum speed of the boid.

obstacleList

List of obstacles that were parsed by mapparser.

goalList

Goals used by the boid.

goalCounter

Used to store what goal the boid is currently looking at.

goal

Initializes the current goal.

stuck

Defines if the boid is stuck.

sPos

Starting position of the boid.

ePos

Position of the boids.

position

Sets the position of the boid.

· positionBuffer

Used to tell if the boid is stuck or not.

- goalNodes
- roadmap
- endIndex
- obInfluenceR

The radius of influence used when filtering the number of obstacles it needs to check.

bInfluenceR

The radius of influence used when filtering the number of boids it needs to check.

obBeta

Priori constant for obstacle repulsion (increasing it gives more priority to the repulsive obstacle field)

• gAlpha

Scales the value returned by the sigmoid function for goal attraction.

• gBeta

Helps scale the value returned by the sigmoid function for goal attraction.

gDelta

Constant that is used in the sigmoidal curve for goal attraction.

gConst

Priori constant for goal attraction (increasing it gives more priority to the attractive goal field)

• bAlpha

Scales the value returned by the sigmoid function for boid repulsion.

• bBeta

Helps scale the value returned by the sigmoid function for boid repulsion.

• bDelta

Constant that is used in the sigmoid curve for boid repulsion.

bConst

Priroi constant for boid repulsion (increasing it gives more priority to the repulsive boid field)

stuckConst

Amount of movement in the position buffer needs to be less that this value for a boid to be considered stuck.

stuckDAvg

The average distance from a neighbour when a boid is stuck.

stuckDSigma

The standard deviation for a neighbour probability distribution Helps boid pick closer neighbours when it is stuck.

nStuckDAvg

The average distance from a neighbour when a boid is not stuck.

nStuckDSigma

The standard deviation in a neighbour distance distribution when the boid is not stuck.

randomWalkX

Maximum x random walk.

randomWalkY

Maximum y random walk.

· randWalkCount

Stores the number of times a random walk has occurred.

22 Class Documentation

· headWeightList

Weights how much the previous heading affects the new heading.

- · boidList
- compWeightList

6.1.1 Detailed Description

Class which represents one boid.

Definition at line 30 of file boid.py.

6.1.2 Constructor & Destructor Documentation

```
6.1.2.1 def boid.Boid.__init__ ( self, _sPos, _ePos, _speed, _xSize, _ySize, _neighborSize, _gammaFunc, _obstacleList, _goalList, _prmGen, _screen, _color )
```

Initializes all of the variables given as input to the constructor used by the boid.

Parameters

self	The object pointer
_sPos	The starting position of the boid (some noise added when initializing the flock)
_ePos	The ending position of the flock
_xSize	The size of the x axis of the pygame screen
_neighbourSize	The number of neighbours that will influence the boid's heading
_obstacleList	List of obstacles generated by mapparser
_goalList	List of goals used by the boid
_prmGen	Object that stores all of the data about the global planner
_screen	PyGame screen
_color	Unique color used for debugging purposes

Returns

An instance of a boid

Definition at line 55 of file boid.py.

6.1.3 Member Function Documentation

6.1.3.1 def boid.Boid.determineNewPath (self)

When the boid is stuck, it reweights the roadmap and finds a new suitable path.

Definition at line 653 of file boid.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.1.3.2 def boid.Boid.determineRandomWalk (self)

Increments the random walk counter, changes the current goal if necessary.

Returns

New random walk vectors where the maximum component value is determeined by the randomWalk fields

Definition at line 626 of file boid.py.

6.1.3.3 def boid.Boid.draw (self)

Draws the boid as a pygame circle in the pygame screen.

Definition at line 768 of file boid.py.

6.1.3.4 def boid.Boid.findMax (self, searchThrough, counter)

Gets the n maximum values from a list.

Parameters

searchThrough	The list that the maximums will be extracted from
counter	The number of values to be extracted

Returns

A list of the counter maximum values from searchThrough

Definition at line 392 of file boid.py.

Here is the caller graph for this function:

6.1.3.5 def boid.Boid.getBoidVectorList (self)

Gets the potential vectors to a boid due to the repulsive boid field.

Returns

A list of scaled vectors that will be used to determine the influence of the boids on the heading. ALso returns the sum of the potential

Definition at line 521 of file boid.py.

Here is the call graph for this function:

24 Class Documentation

Here is the caller graph for this function:

6.1.3.6 def boid.Boid.getDirectionVector (self, vector)

Gets a scaled direction vector from an unscaled vector.

Parameters

vector	Vector to be scaled

Returns

A vector whose maximum magnitude is less than the specified maximum speed

Definition at line 425 of file boid.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.1.3.7 def boid.Boid.getGoalVector (self)

Gets the potential vectors to a boid due to the attractive goal field.

Returns

A list of scaled vectors that will be used to determine the influence of the goal on the heading. Also returns the sum of the potential values

Definition at line 490 of file boid.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.1.3.8 def boid.Boid.getNeighborVectorList (self)

Gets the heading vectors of the neighbours.

26 Class Documentation

Returns

A list of scaled vectors that represent the neighbour headings. Also returns the indicies in the boid list in which the neighbours are stored

Definition at line 576 of file boid.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.1.3.9 def boid.Boid.getObstacleVectorList (self)

Gets the potential vectors to a boid due to the repulsive obstacle field.

Returns

A list of scaled vectors that will be used to determine the influence of obstacles on the heading. Also returns the sum of the potential values

```
for ob in self.obstacleList:
    pygame.draw.circle(
self.screen,
(255,0,255),
map(int, ob.getPoint(self.position)),
2
```

Definition at line 438 of file boid.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.1.3.10 def boid.Boid.getVar (self, searchList, ind)

Gets multiple variables from a list with one call.

Parameters

searchList	The list that the values will be taken from
ind	the indicies that will be queried

Returns

A list of values from search list

Definition at line 189 of file boid.py.

Here is the caller graph for this function:

6.1.3.11 def boid.Boid.inGoal (self, p)

Checks if a piont is in the current goal.

Parameters

р	The point that is going to be checked

Returns

A boolean value representing if the point is in the current goal

Definition at line 250 of file boid.py.

Here is the caller graph for this function:

6.1.3.12 def boid.Boid.initFunctionParameters (self)

Definition at line 286 of file boid.py.

6.1.3.13 def boid.Boid.inWorld (self, p)

Checks if a point is in the world.

Parameters

p The point that is going to be checked

Returns

A boolean value representing if the point is in the world

Definition at line 265 of file boid.py.

6.1.3.14 def boid.Boid.mag (self, vec)

Gets the magnitude of a vector.

Parameters

vec	A vector represented as a list

Returns

The magnitude of the vector

Definition at line 218 of file boid.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.1.3.15 def boid.Boid.norm (self, p1, p2)

Gets the distance between two points.

Parameters

p1,p2	points whose distance will be returned

Returns

The Euclidean distance between p1 and p2

Definition at line 170 of file boid.py.

Here is the caller graph for this function:

6.1.3.16 def boid.Boid.obstacleFunc (self, beta, b, o)

Defines the potential between a boid and an obstacle.

Parameters

	beta	Constant used to increase the weight of the function
	b	The boid that is being comapred
ľ	0	The obstacle that is being compared

Returns

A value representing the potential between b and o

Definition at line 200 of file boid.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.1.3.17 def boid.Boid.pointAllowed (self, p)

Checks if a point is inside or collides with any of the obstacles.

Parameters

р	The point that will be checked

Definition at line 278 of file boid.py.

6.1.3.18 def boid.Boid.reduceWeightValues (self, wList, vList)

Works in cohesion with sumDivide.

Weights values in a list and divides by the sum of those weights

Parameters

wList	List of Weights
*vList	Values that will be weighted

Returns

An average vector that represents the average heading due to the potential fields

Definition at line 412 of file boid.py.

Here is the call graph for this function:

6.1.3.19 def boid.Boid.setBoidList (self, _boidList)

Setter method used to set the list of boids.

Parameters

_boidList	The list of boids in the flock

Definition at line 370 of file boid.py.

6.1.3.20 def boid.Boid.setNewGoal (self)

Sets the new goal.

Definition at line 606 of file boid.py.

Here is the call graph for this function:

6.1.3.21 def boid.Boid.sigmoidFunc (self, alpha, beta, delta, const, b_r, g_r, b_pos, g_pos)

Defines a sigmoidal curve used for goal attraction and for boid repulsion.

Parameters

	al-	Constants that are used to modify the shape of the curve
pha,beta,delta,const		
	b_r,b_pos	The radius and position of the boid

g_r,g_pos	The radius and position of a goal / boid
9,9_pcc	The radial and position of a goal / sola

Definition at line 231 of file boid.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.1.3.22 def boid.Boid.sumDivide (self, lt, s)

Special sort of reduce that sums components in a list of vectors and divides each final component with a certain number.

Parameters

self	The object pointer
lt .	List of vectors that will be summed over and divided
S	Number that will divide each component by at the end

Definition at line 149 of file boid.py.

Here is the caller graph for this function:

6.1.3.23 def boid.Boid.update (self)

Updates the boid's heading and position due to the potential fields.

Definition at line 690 of file boid.py.

Here is the call graph for this function:

6.1.3.24 def boid.Boid.updatePositionBuffer (self)

Updates the position buffer.

Returns

The displacement of a boid over a certain number of frames

Definition at line 378 of file boid.py.

6.1.4 Member Data Documentation

6.1.4.1 boid.Boid.bAlpha

Scales the value returned by the sigmoid function for boid repulsion.

Definition at line 319 of file boid.py.

6.1.4.2 boid.Boid.bBeta

Helps scale the value returned by the sigmoid function for boid repulsion.

Definition at line 323 of file boid.py.

6.1.4.3 boid.Boid.bConst

Priroi constant for boid repulsion (increasing it gives more priority to the repulsive boid field)

Definition at line 331 of file boid.py.

6.1.4.4 boid.Boid.bDelta

Constant that is used in the sigmoid curve for boid repulsion.

Definition at line 327 of file boid.py.

6.1.4.5 boid.Boid.blnfluenceR

The radius of influence used when filtering the number of boids it needs to check.

Definition at line 295 of file boid.py.

6.1.4.6 boid.Boid.boidList

Definition at line 371 of file boid.py.

6.1.4.7 boid.Boid.color

Unique color used to distinguish the boid (only used in debugging and visualization)

Definition at line 87 of file boid.py.

6.1.4.8 boid.Boid.compWeightList

Definition at line 731 of file boid.py.

6.1.4.9 boid.Boid.dim

Dimensions of the screen.

Definition at line 80 of file boid.py.

6.1.4.10 boid.Boid.endIndex

Definition at line 136 of file boid.py.

6.1.4.11 boid.Boid.ePos

Position of the boids.

Definition at line 111 of file boid.py.

6.1.4.12 boid.Boid.gAlpha

Scales the value returned by the sigmoid function for goal attraction.

Definition at line 303 of file boid.py.

6.1.4.13 boid.Boid.gammaFunc

Function used to choose a neighbour.

Definition at line 58 of file boid.py.

6.1.4.14 boid.Boid.gBeta

Helps scale the value returned by the sigmoid function for goal attraction.

Definition at line 307 of file boid.py.

6.1.4.15 boid.Boid.gConst

Priori constant for goal attraction (increasing it gives more priority to the attractive goal field)

Definition at line 315 of file boid.py.

6.1.4.16 boid.Boid.gDelta

Constant that is used in the sigmoidal curve for goal attraction.

Definition at line 311 of file boid.py.

6.1.4.17 boid.Boid.goal

Initializes the current goal.

Definition at line 102 of file boid.py.

6.1.4.18 boid.Boid.goalCounter

Used to store what goal the boid is currently looking at.

Definition at line 99 of file boid.py.

6.1.4.19 boid.Boid.goalList

Goals used by the boid.

Definition at line 96 of file boid.py.

6.1.4.20 boid.Boid.goalNodes

Definition at line 132 of file boid.py.

6.1.4.21 boid.Boid.heading

Initial random heading.

Definition at line 70 of file boid.py.

6.1.4.22 boid.Boid.headWeightList

Weights how much the previous heading affects the new heading.

Definition at line 363 of file boid.py.

6.1.4.23 boid.Boid.neighborSize

Number of neighbours that will influence the boid.

Definition at line 83 of file boid.py.

6.1.4.24 boid.Boid.nStuckDAvg

The average distance from a neighbour when a boid is not stuck.

Definition at line 347 of file boid.py.

6.1.4.25 boid.Boid.nStuckDSigma

The standard deviation in a neighbour distance distribution when the boid is not stuck.

Definition at line 351 of file boid.py.

6.1.4.26 boid.Boid.obBeta

Priori constant for obstacle repulsion (increasing it gives more priority to the repulsive obstacle field)

Definition at line 299 of file boid.py.

6.1.4.27 boid.Boid.obInfluenceR

The radius of influence used when filtering the number of obstacles it needs to check.

Definition at line 291 of file boid.py.

6.1.4.28 boid.Boid.obstacleList

List of obstacles that were parsed by mapparser.

Definition at line 93 of file boid.py.

6.1.4.29 boid.Boid.position

Sets the position of the boid.

Definition at line 114 of file boid.py.

6.1.4.30 boid.Boid.positionBuffer

Used to tell if the boid is stuck or not.

Definition at line 125 of file boid.py.

6.1.4.31 boid.Boid.prmGen

Class which holds the details about the global path planner.

Definition at line 61 of file boid.py.

6.1.4.32 boid.Boid.radius Radius of the boid. Definition at line 67 of file boid.py. 6.1.4.33 boid.Boid.randomWalkX Maximum x random walk. Definition at line 354 of file boid.py. 6.1.4.34 boid.Boid.randomWalkY Maximum y random walk. Definition at line 357 of file boid.py. 6.1.4.35 boid.Boid.randWalkCount Stores the number of times a random walk has occurred. Definition at line 360 of file boid.py. 6.1.4.36 boid.Boid.roadmap Definition at line 135 of file boid.py. 6.1.4.37 boid.Boid.screen PyGame screen. Definition at line 64 of file boid.py. 6.1.4.38 boid.Boid.speed Maximum speed of the boid. Definition at line 90 of file boid.py. 6.1.4.39 boid.Boid.sPos Starting position of the boid. Definition at line 108 of file boid.py. 6.1.4.40 boid.Boid.stuck

Defines if the boid is stuck.

Definition at line 105 of file boid.py.

6.1.4.41 boid.Boid.stuckConst

Amount of movement in the position buffer needs to be less that this value for a boid to be considered stuck. Definition at line 335 of file boid.py.

6.1.4.42 boid.Boid.stuckDAvg

The average distance from a neighbour when a boid is stuck.

Used to pick closer neighbours when stuck to help get out of the situation

Definition at line 340 of file boid.py.

6.1.4.43 boid.Boid.stuckDSigma

The standard deviation for a neighbour probability distribution Helps boid pick closer neighbours when it is stuck. Definition at line 344 of file boid.py.

6.1.4.44 boid.Boid.ySize

Definition at line 80 of file boid.py.

The documentation for this class was generated from the following file:

· code/boid.py

6.2 goal.CircleGoal Class Reference

Object that holds data about a goal modelled as circular configuration space.

Public Member Functions

def init

Creates an instance of the CircleGoal.

• def draw

Draws the circle onto the pygame screen.

Public Attributes

screen

PyGame screen used to draw the circle goal.

colors

List of colors given by PyGame.

· radius

The radius of the circle goal.

· position

The position of the circle goal.

6.2.1 Detailed Description

Object that holds data about a goal modelled as circular configuration space.

Definition at line 12 of file goal.py.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 def goal.CircleGoal.__init__ (self, _radius, _position, _screen)

Creates an instance of the CircleGoal.

Parameters

_radius	The radius of the circle goal
_position	The position of the circle goal
_screen	The pygame screen used to draw the circle

Definition at line 20 of file goal.py.

6.2.3 Member Function Documentation

6.2.3.1 def goal.CircleGoal.draw (self)

Draws the circle onto the pygame screen.

Definition at line 38 of file goal.py.

6.2.4 Member Data Documentation

6.2.4.1 goal.CircleGoal.colors

List of colors given by PyGame.

Definition at line 26 of file goal.py.

6.2.4.2 goal.CircleGoal.position

The position of the circle goal.

Definition at line 32 of file goal.py.

6.2.4.3 goal.CircleGoal.radius

The radius of the circle goal.

Definition at line 29 of file goal.py.

6.2.4.4 goal.CircleGoal.screen

PyGame screen used to draw the circle goal.

Definition at line 23 of file goal.py.

The documentation for this class was generated from the following file:

· code/goal.py

6.3 configuration.Configuration Class Reference

Static class that holds important global variables.

Inheritance diagram for configuration. Configuration:

Collaboration diagram for configuration. Configuration:

Static Public Attributes

• int dim = 1000

Dimensions of the screen.

• int numSamplePoints = 300

Number of sample points to use in the PRM.

• int goalRadius = 20

Defines the radius of all goals.

• int boidSpeed = 30

Maximum speed of the boids.

• int numNeighbours = 3

Number of neighbours the boids will influence a boid's heading.

• tuple screen = pygame.display.set_mode(dim)

The screen used to draw the simluation.

· tuple colorList

The list of colors (used for debugging purposes)

6.3.1 Detailed Description

Static class that holds important global variables.

Definition at line 16 of file configuration.py.

6.3.2 Member Data Documentation

```
6.3.2.1 int configuration.Configuration.boidSpeed = 30 [static]
```

Maximum speed of the boids.

Definition at line 28 of file configuration.py.

6.3.2.2 tuple configuration.Configuration.colorList [static]

Initial value:

The list of colors (used for debugging purposes)

Definition at line 38 of file configuration.py.

```
6.3.2.3 int configuration.Configuration.dim = 1000 [static]
```

Dimensions of the screen.

Definition at line 19 of file configuration.py.

6.3.2.4 int configuration.Configuration.goalRadius = 20 [static]

Defines the radius of all goals.

Definition at line 25 of file configuration.py.

6.3.2.5 int configuration.Configuration.numNeighbours = **3** [static]

Number of neighbours the boids will influence a boid's heading.

Definition at line 32 of file configuration.py.

6.3.2.6 int configuration.Configuration.numSamplePoints = 300 [static]

Number of sample points to use in the PRM.

Definition at line 22 of file configuration.py.

6.3.2.7 tuple configuration.Configuration.screen = pygame.display.set_mode(dim) [static]

The screen used to draw the simluation.

Definition at line 35 of file configuration.py.

The documentation for this class was generated from the following file:

· code/configuration.py

6.4 dict Class Reference

Inheritance diagram for dict:

The documentation for this class was generated from the following file:

• code/priodict.py

6.5 boidsimulation.FlockSim Class Reference

Main class for that is used for the simulation and display of the flock.

Public Member Functions

def init

Initializes the flock and the display mechanism (PyGame)

· def avg

Gets the average of a list.

def getStats

Gets runtime statistics about the simulation and writes it to a file.

· def getBoidData

Writes all of the boid positions to a file.

• def animate

Renders and then allows interactive playback of the swarm simulation data.

· def init_prm

Initializes the PRM generator used for the global planner.

def render

Renders the scene.

· def play

Plays the scene after it has rendered.

Public Attributes

• done

Tells if the flock has reached the end goal (used again to see if the escape or space bar were hit to stop the rendering)

BLACK

Defines the color black.

WHITE

Defines the color white.

· font

The font that is used for displaying the frame number.

• dim

The dimensions of the PyGame screen.

config

The configuration object (in this case the configuration is defined by an exterior file)

sPos

The starting point of the flock.

• ePos

The position of the last goal for the flock.

surfaceList

Variable used to store the list of surfaces for simulation playback.

· iterations

Maximum number of iterations.

frameCounter

Counts which frame the user is on for the playback (don't know why it is set to -2, it just works)

· counter

Global counter used for the rendering and the playback.

• flockSize

The size of the flock (number of boids)

mapFile

The file that contains the data about the obstacles.

dataFile

The file that the statistics data will be written to.

obstacleFile

File containing the obstacles map points.

auto_gen_obst

Auto Generate Random obstacles Flag.

auto_gen_number

Number of random dynamic obstacles to generate.

- startTime
- numInGoal

6.5.1 Detailed Description

Main class for that is used for the simulation and display of the flock.

It also is used to gather statistics about the flock and present them in a useful manner.

Definition at line 17 of file boidsimulation.py.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 def boidsimulation.FlockSim.__init__ (self, flockSize, startPoint, endPoint, kwargs)

Initializes the flock and the display mechanism (PyGame)

Parameters

flockSize	The size of the flock (number of boids)
startPoint	The macro starting position of the flock
endPoint	The last goal point for the flock
_mapFile	The file containing details about the obstacles
_dataFile	The file that the data will be exported to

Definition at line 33 of file boidsimulation.py.

6.5.3 Member Function Documentation

6.5.3.1 def boidsimulation.FlockSim.animate (self)

Renders and then allows interactive playback of the swarm simulation data.

Definition at line 167 of file boidsimulation.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.5.3.2 def boidsimulation.FlockSim.avg (self, I)

Gets the average of a list.

Parameters

1	The list to be averaged

Returns

I The average value in list I

Definition at line 99 of file boidsimulation.py.

Here is the caller graph for this function:

6.5.3.3 def boidsimulation.FlockSim.getBoidData (self)

Writes all of the boid positions to a file.

Definition at line 143 of file boidsimulation.py.

6.5.3.4 def boidsimulation.FlockSim.getStats (self)

Gets runtime statistics about the simulation and writes it to a file.

Currently, the statistics being gathered are the current time that has passed, the average distance between the boids, the average minimum distance between the boids, and the number of boids that have finished

Definition at line 112 of file boidsimulation.py.

Here is the call graph for this function:

6.5.3.5 def boidsimulation.FlockSim.init_prm (self)

Initializes the PRM generator used for the global planner.

Also sets the boid list for the rest of the flock

Definition at line 176 of file boidsimulation.py.

Here is the caller graph for this function:

6.5.3.6 def boidsimulation.FlockSim.play (self)

Plays the scene after it has rendered.

Iterates through surfaces that have been stored in surfaceList and blits the new surface on the screen Definition at line 264 of file boidsimulation.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.5.3.7 def boidsimulation.FlockSim.render (self, forPlay = False)

Renders the scene.

This means that the time taken for the boids to reach the goal in this function is that actual amount of computational time needed.

Parameters

forPlay | Specifies if the surface data should be recorded for animation

Definition at line 205 of file boidsimulation.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.5.4 Member Data Documentation

6.5.4.1 boidsimulation.FlockSim.auto_gen_number

Number of random dynamic obstacles to generate.

Definition at line 91 of file boidsimulation.py.

6.5.4.2 boidsimulation.FlockSim.auto_gen_obst

Auto Generate Random obstacles Flag.

Definition at line 88 of file boidsimulation.py.

6.5.4.3 boidsimulation.FlockSim.BLACK

Defines the color black.

Definition at line 41 of file boidsimulation.py.

6.5.4.4 boidsimulation.FlockSim.config

The configuration object (in this case the configuration is defined by an exterior file)

Definition at line 54 of file boidsimulation.py.

6.5.4.5 boidsimulation.FlockSim.counter

Global counter used for the rendering and the playback.

Definition at line 73 of file boidsimulation.py.

6.5.4.6 boidsimulation.FlockSim.dataFile

The file that the statistics data will be written to.

Definition at line 82 of file boidsimulation.py.

6.5.4.7 boidsimulation.FlockSim.dim

The dimensions of the PyGame screen.

Definition at line 50 of file boidsimulation.py.

6.5.4.8 boidsimulation.FlockSim.done

Tells if the flock has reached the end goal (used again to see if the escape or space bar were hit to stop the rendering)

Definition at line 38 of file boidsimulation.py.

6.5.4.9 boidsimulation.FlockSim.ePos

The position of the last goal for the flock.

Definition at line 60 of file boidsimulation.py.

6.5.4.10 boidsimulation.FlockSim.flockSize

The size of the flock (number of boids)

Definition at line 76 of file boidsimulation.py.

6.5.4.11 boidsimulation.FlockSim.font

The font that is used for displaying the frame number.

Definition at line 47 of file boidsimulation.py.

6.5.4.12 boidsimulation.FlockSim.frameCounter

Counts which frame the user is on for the playback (don't know why it is set to -2, it just works)

Definition at line 70 of file boidsimulation.py.

6.5.4.13 boidsimulation.FlockSim.iterations

Maximum number of iterations.

Definition at line 66 of file boidsimulation.py.

6.5.4.14 boidsimulation.FlockSim.mapFile

The file that contains the data about the obstacles.

Definition at line 79 of file boidsimulation.py.

6.5.4.15 boidsimulation.FlockSim.numlnGoal

Definition at line 228 of file boidsimulation.py.

6.5.4.16 boidsimulation.FlockSim.obstacleFile

File containing the obstacles map points.

Definition at line 85 of file boidsimulation.py.

6.5.4.17 boidsimulation.FlockSim.sPos

The starting point of the flock.

Definition at line 57 of file boidsimulation.py.

6.5.4.18 boidsimulation.FlockSim.startTime

Definition at line 209 of file boidsimulation.py.

6.5.4.19 boidsimulation.FlockSim.surfaceList

Variable used to store the list of surfaces for simulation playback.

Definition at line 63 of file boidsimulation.py.

6.5.4.20 boidsimulation.FlockSim.WHITE

Defines the color white.

Definition at line 44 of file boidsimulation.py.

The documentation for this class was generated from the following file:

code/boidsimulation.py

6.6 configuration.PolyFileConfiguration Class Reference

Extends the Configuration class.

Inheritance diagram for configuration. PolyFileConfiguration:

Collaboration diagram for configuration. PolyFileConfiguration:

Public Member Functions

• def parseDynamicObstacles

Parses the obstacle map file and creates polygon objects with random behaviour by default.

• def autoGenerateDynamicObstacles

Auto generate dynamic obstacles.

def initVars

Parses the file to get the obstacle list.

Public Attributes

- nodes
- obstacleList

List of obstacles parse static obstalces.

- auto_gen_obst
- · auto_gen_number
- startPoint

Starting point.

• endPoint

Ending point.

• prmGen

Object containing variables and mehtods for the global planner.

goalList

List of intermediate goals derived by the global planner.

· boidList

List of boids in the flock.

Additional Inherited Members

6.6.1 Detailed Description

Extends the Configuration class.

This configuration gets the obstacles from .map files that have been created.

Definition at line 49 of file configuration.py.

6.6.2 Member Function Documentation

6.6.2.1 def configuration.PolyFileConfiguration.autoGenerateDynamicObstacles (self)

Auto generate dynamic obstacles.

Definition at line 105 of file configuration.py.

6.6.2.2 def configuration.PolyFileConfiguration.initVars (self, startPoint, endPoint, flockSize, kwargs)

Parses the file to get the obstacle list.

Creates a PRM generator to create a global map of the environment. Gets the list of intermediate goals. Also, creates the list of boids used in the simulation

Parameters

startPoint	The starting point for the boids
endPoint	The ending point for the boids
flockSize	The size of the flock (number of boids)
filename	The name of the file that contains the environment map

Definition at line 171 of file configuration.py.

 $6.6.2.3 \quad def \ configuration. PolyFile Configuration. parse Dynamic Obstacles \left(\begin{array}{c} \textit{self, dynamic_obstacles_fp} \end{array} \right)$

Parses the obstacle map file and creates polygon objects with random behaviour by default.

All obstacles (static/dynamic) obtains a list each other in the form of a list.

Definition at line 57 of file configuration.py.

6.6.3 Member Data Documentation

6.6.3.1 configuration.PolyFileConfiguration.auto_gen_number

Definition at line 180 of file configuration.py.

 $6.6.3.2 \quad configuration. PolyFile Configuration. auto_gen_obst$

Definition at line 179 of file configuration.py.

6.6.3.3 configuration.PolyFileConfiguration.boidList

List of boids in the flock.

Definition at line 205 of file configuration.py.

6.6.3.4 configuration.PolyFileConfiguration.endPoint

Ending point.

Definition at line 188 of file configuration.py.

6.6.3.5 configuration.PolyFileConfiguration.goalList

List of intermediate goals derived by the global planner.

Definition at line 202 of file configuration.py.

6.6.3.6 configuration.PolyFileConfiguration.nodes

Definition at line 112 of file configuration.py.

6.6.3.7 configuration.PolyFileConfiguration.obstacleList

List of obstacles parse static obstalces.

Definition at line 174 of file configuration.py.

6.6.3.8 configuration.PolyFileConfiguration.prmGen

Object containing variables and mehtods for the global planner.

Definition at line 191 of file configuration.py.

6.6.3.9 configuration.PolyFileConfiguration.startPoint

Starting point.

Definition at line 185 of file configuration.py.

The documentation for this class was generated from the following file:

· code/configuration.py

6.7 obstacle.PolyObstacle Class Reference

Object that represents the an obstacle represented by a series of points (in the node list) which make up a set of lines.

Public Member Functions

def __init__

Creates a PolyObstacle instance and initializes certain global variables.

def removeSelfFromObstacleList

Removes self from obstacle list.

• def norm

Gets the Eulidean distance between p1 and p2.

· def estimatePoly

Tries to estimate the polygon as a circle (very useful for environments with many obstacles i.e.

· def detectCollision

Detects a if there is a collision with the obstacle and the line <pStart, pEnd>

· def getClosestPoint

Gets the closest point on line $\langle a, b \rangle$ to point p.

· def rayintersectseg

Determines if a ray from point p intersects with an edge, edge.

· def pointInPoly

Determines if a point p is inside the polygon represented by this PolyObstacle object.

def pointAllowed

Checks if a point is allowed, meaning no collisions occur.

def getPoint

Gets the closest point from the polygon to p.

· def getRadius

Gets the 'radius' of the checking point.

· def checkCollisionWithOtherObstacles

Check to see if there is a collision with a static obstacle.

· def translate

Translate obstacle.

- def determine_last_direction
- · def change_direction

Change direction.

• def draw

Draws the polygon on the PyGame screen.

Public Attributes

• nodes

A list of nodes used to represent the vertices.

• colors

A dictionary of colors defined in pygame.

• screen

The PyGame screen that is used to draw the obstacle.

boundary

Bondaries of the simualation.

• dynamic

Defines wether the obstacle is dynamic or not.

velocity

Velocity of the obstacle.

· displacement

The displacement of the obstacle.

max_displacement

Max displacement allowed.

· obstacles

List of static obstacles.

avgPoint

The average point in the polygon.

maxDist

The maximum distance from any vertex and the average point.

6.7.1 Detailed Description

Object that represents the an obstacle represented by a series of points (in the node list) which make up a set of lines.

These lines represent the exterior of an obstacle

Definition at line 18 of file obstacle.py.

6.7.2 Constructor & Destructor Documentation

```
6.7.2.1 def obstacle.PolyObstacle.__init__ ( self, _nodes, _screen, kwargs )
```

Creates a PolyObstacle instance and initializes certain global variables.

Parameters

_nodes	A list of nodes used to represent the vertices of the polygon
_screen	The PyGame screen that is used to draw the obstacle

Definition at line 27 of file obstacle.py.

6.7.3 Member Function Documentation

6.7.3.1 def obstacle.PolyObstacle.change_direction (self, force_change = False, direction = None)

Change direction.

Definition at line 434 of file obstacle.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.7.3.2 def obstacle.PolyObstacle.checkCollisionWithOtherObstacles (self, node)

Check to see if there is a collision with a static obstacle.

Definition at line 359 of file obstacle.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.7.3.3 def obstacle.PolyObstacle.detectCollision (self, pStart, pEnd)

Detects a if there is a collision with the obstacle and the line <pStart, pEnd>

Parameters

pStart	The starting point of the line
pEnd	The ending point of the line

Returns

A boolean value representing if a collision occurred

Definition at line 114 of file obstacle.py.

6.7.3.4 def obstacle.PolyObstacle.determine_last_direction (self)

Definition at line 418 of file obstacle.py.

Here is the caller graph for this function:

6.7.3.5 def obstacle.PolyObstacle.draw (self)

Draws the polygon on the PyGame screen.

Definition at line 478 of file obstacle.py.

Here is the call graph for this function:

6.7.3.6 def obstacle.PolyObstacle.estimatePoly (self)

Tries to estimate the polygon as a circle (very useful for environments with many obstacles i.e.

a random field of obstacles)

Definition at line 81 of file obstacle.py.

6.7.3.7 def obstacle.PolyObstacle.getClosestPoint (self, a, b, p)

Gets the closest point on line $\langle a, b \rangle$ to point p.

Parameters

а	The starting point on the line
b	The ending point of the line
р	The point in which the closest distance will be checked

Returns

The closest point on line <a, b> to point p

Definition at line 171 of file obstacle.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.7.3.8 def obstacle.PolyObstacle.getPoint (self, p)

Gets the closest point from the polygon to p.

Parameters

р	The point to be checked

Returns

The closest point that lies on the polygon exterior to p

Definition at line 323 of file obstacle.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.7.3.9 def obstacle.PolyObstacle.getRadius (self)

Gets the 'radius' of the checking point.

Only used for conformity with circle obstacles that have not been included in this repository

Returns

1

Definition at line 352 of file obstacle.py.

6.7.3.10 def obstacle.PolyObstacle.norm (self, p1, p2)

Gets the Eulidean distance between p1 and p2.

Parameters

p1,p2	Points in space

Returns

The distance between p1 and p2

Definition at line 73 of file obstacle.py.

Here is the caller graph for this function:

6.7.3.11 def obstacle.PolyObstacle.pointAllowed (self, b, p)

Checks if a point is allowed, meaning no collisions occur.

Parameters

b	The boid object that will be checked
р	The point that will be checked

Returns

True if allowed, false otherwise

Definition at line 303 of file obstacle.py.

Here is the call graph for this function:

6.7.3.12 def obstacle.PolyObstacle.pointlnPoly (self, p)

Determines if a point p is inside the polygon represented by this PolyObstacle object.

It does this by checking the number ray intersections that occur is odd or even. If the number is odd, the point is inside the polygon, otherwise it is not.

Parameters

р	The point to be checked

Returns

True if the point is in the polygon and false otherwise

Definition at line 286 of file obstacle.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.7.3.13 def obstacle.PolyObstacle.rayintersectseg (self, p, edge)

Determines if a ray from point p intersects with an edge, edge.

Used to determine if a point p in inside the polygon

Parameters

р	The point to be checked
edge	The edge that will be checked

Returns

True if a ray from point p intersects with edge and false otherwise

Definition at line 239 of file obstacle.py.

Here is the caller graph for this function:

6.7.3.14 def obstacle.PolyObstacle.removeSelfFromObstacleList (self)

Removes self from obstacle list.

Definition at line 62 of file obstacle.py.

6.7.3.15 def obstacle.PolyObstacle.translate (self)

Translate obstacle.

Definition at line 372 of file obstacle.py.

Here is the call graph for this function:

Here is the caller graph for this function:

6.7.4 Member Data Documentation

6.7.4.1 obstacle.PolyObstacle.avgPoint

The average point in the polygon.

Represents the center of the enclosing circle

Definition at line 85 of file obstacle.py.

6.7.4.2 obstacle.PolyObstacle.boundary

Bondaries of the simualation.

Definition at line 39 of file obstacle.py.

6.7.4.3 obstacle.PolyObstacle.colors

A dictionary of colors defined in pygame.

Definition at line 33 of file obstacle.py.

6.7.4.4 obstacle.PolyObstacle.displacement

The displacement of the obstacle.

Definition at line 48 of file obstacle.py.

6.7.4.5 obstacle.PolyObstacle.dynamic

Defines wether the obstacle is dynamic or not.

Definition at line 42 of file obstacle.py.

6.7.4.6 obstacle.PolyObstacle.max_displacement

Max displacement allowed.

Definition at line 51 of file obstacle.py.

6.7.4.7 obstacle.PolyObstacle.maxDist

The maximum distance from any vertex and the average point.

Definition at line 97 of file obstacle.py.

6.7.4.8 obstacle.PolyObstacle.nodes

A list of nodes used to represent the vertices.

Definition at line 30 of file obstacle.py.

6.7.4.9 obstacle.PolyObstacle.obstacles

List of static obstacles.

Definition at line 54 of file obstacle.py.

6.7.4.10 obstacle.PolyObstacle.screen

The PyGame screen that is used to draw the obstacle.

Definition at line 36 of file obstacle.py.

6.7.4.11 obstacle.PolyObstacle.velocity

Velocity of the obstacle.

Definition at line 45 of file obstacle.py.

The documentation for this class was generated from the following file:

• code/obstacle.py

6.8 priodict.priorityDictionary Class Reference

Inheritance diagram for priodict.priorityDictionary:

Collaboration diagram for priodict.priorityDictionary:

Public Member Functions

def __init__

Initialize priorityDictionary by creating binary heap of pairs (value,key).

· def smallest

Find smallest item after removing deleted items from heap.

def __iter__

Create destructive sorted iterator of priorityDictionary.

def __setitem__

Change value stored in dictionary and add corresponding pair to heap.

· def setdefault

Reimplement setdefault to call our customized setitem.

6.8.1 Detailed Description

Definition at line 6 of file priodict.py.

6.8.2 Constructor & Destructor Documentation

6.8.2.1 def priodict.priorityDictionary.__init__ (self)

Initialize priorityDictionary by creating binary heap of pairs (value,key).

Note that changing or removing a dict entry will not remove the old pair from the heap until it is found by smallest() or until the heap is rebuilt.

Definition at line 12 of file priodict.py.

6.8.3 Member Function Documentation

6.8.3.1 def priodict.priorityDictionary.__iter__ (self)

Create destructive sorted iterator of priorityDictionary.

Definition at line 39 of file priodict.py.

Here is the call graph for this function:

6.8.3.2 def priodict.priorityDictionary.__setitem__ (self, key, val)

Change value stored in dictionary and add corresponding pair to heap.

Rebuilds the heap if the number of deleted items grows too large, to avoid memory leakage.

Definition at line 51 of file priodict.py.

6.8.3.3 def priodict.priorityDictionary.setdefault (self, key, val)

Reimplement setdefault to call our customized setitem.

Definition at line 69 of file priodict.py.

6.8.3.4 def priodict.priorityDictionary.smallest (self)

Find smallest item after removing deleted items from heap.

Definition at line 18 of file priodict.py.

Here is the caller graph for this function:

The documentation for this class was generated from the following file:

· code/priodict.py

6.9 prm.PRMGenerator Class Reference

Class used to hold methods and variables that are important for the global path planning problem.

Public Member Functions

def __init__

Creates a new instance of the PRMGenerator.

def norm

Gets the distance between p1 and p2.

def generatePositionList

Generates the random positions for the sample points.

def initOmega

Initiates the omega function which holds the node weights.

def filterSubGoal

Filters out sample points that are inside of obstacles or otherwise inadequate.

· def findNeighbors

Finds suitable neighbours for a sample point.

def getRandom

Gets a random number and cathes the ValueError if the two numbers are the same.

def generate

Generates a series of random points that will become the roadmap and connects them and weights them into a graph.

- · def getShortestPath
- def draw

Draws the graph.

def drawPath

Draws the selected shortest path.

Public Attributes

· obstacleList

List of obstacles.

startPos

Position of the first goal.

endPos

Position of the last goal.

screen

PyGame screen that is will be drawn on.

xSize

Horizontal size of the PyGame screen.

ySize

Vertical size of the PyGame screen.

adjacentThresh

Distance that the PRM is willing to check when connecting sample points.

numNext

Maximum number of sample points that can be connected.

subGoalNumber

Number of initial sample points.

subGoalPositionList

Initial positions of the sample points.

roadmap

The global roadmap.

• gPosList

Holds the positions of the intermediate goals that were selected by the global path planner.

goalNodes

Indexes of the goal positions.

omegaDict

Dictionary (for easy access) that holds the weights for the nodes.

dontDraw

6.9.1 Detailed Description

Class used to hold methods and variables that are important for the global path planning problem.

This class generates the roadmap and finds the shortest path to the goals by determining intermediate goals for the boids to be attracted to

Definition at line 16 of file prm.py.

6.9.2 Constructor & Destructor Documentation

```
6.9.2.1 def prm.PRMGenerator.__init__ ( self, _startPos, _endPos, _obstacleList, _xSize, _ySize, _subGoalNumber, _screen )
```

Creates a new instance of the PRMGenerator.

Intializes key variables used in the generation of the global planner.

Parameters

The starting position of the boids
The final goal position of the boids
The list of obstacles that the global planner needs to avoid
The size of the x component of the screen
The size of the y component of the screen
The initial number of sample points for the global planner
The PyGame screen that the PRMGenerator will draw to

Definition at line 38 of file prm.py.

6.9.3 Member Function Documentation

6.9.3.1 def prm.PRMGenerator.draw (self)

Draws the graph.

Definition at line 306 of file prm.py.

6.9.3.2 def prm.PRMGenerator.drawPath (self)

Draws the selected shortest path.

Definition at line 330 of file prm.py.

$6.9.3.3 \quad def \ prm. PRMGenerator. filter SubGoal \left(\ \ \textit{self} \ \right)$

Filters out sample points that are inside of obstacles or otherwise inadequate.

Definition at line 135 of file prm.py.

Here is the call graph for this function:

6.9.3.4 def prm.PRMGenerator.findNeighbors (self, point)

Finds suitable neighbours for a sample point.

Definition at line 158 of file prm.py.

Here is the call graph for this function:

6.9.3.5 def prm.PRMGenerator.generate (self, subGoalRadius)

Generates a series of random points that will become the roadmap and connects them and weights them into a graph.

If the goal and the starting point are not connected, more points are added. The roadmap is then searched for the shortest weighted distance which become the intermediate goals.

Parameters

subGoalRadius	The radius of the intermediate goals
---------------	--------------------------------------

Returns

A list of sub goals from the roadmap connecting the starting point and the end goal

Definition at line 223 of file prm.py.

6.9.3.6 def prm.PRMGenerator.generatePositionList (self, num)

Generates the random positions for the sample points.

Parameters

num	The number of points to generate

Returns

A list of random subgoals (sample points)

Definition at line 105 of file prm.py.

Here is the call graph for this function:

6.9.3.7 def prm.PRMGenerator.getRandom (self, p, q)

Gets a random number and cathes the ValueError if the two numbers are the same.

Parameters

р	Lower bound for the random number
q	upper bound for the random number

Returns

A random number

Definition at line 206 of file prm.py.

Here is the caller graph for this function:

6.9.3.8 def prm.PRMGenerator.getShortestPath (self, roadmap, fromNode, toNode)

Definition at line 295 of file prm.py.

Here is the call graph for this function:

6.9.3.9 def prm.PRMGenerator.initOmega (self, posList)

Initiates the omega function which holds the node weights.

Parameters

posList	The list of positions for the sample points	

Definition at line 118 of file prm.py.

Here is the call graph for this function:

6.9.3.10 def prm.PRMGenerator.norm (self, p1, p2)

Gets the distance between p1 and p2.

Parameters

p1	The first point
p2	The second point

Returns

The Eulidean distance from p1 to p2

Definition at line 96 of file prm.py.

Here is the caller graph for this function:

6.9.4 Member Data Documentation

6.9.4.1 prm.PRMGenerator.adjacentThresh

Distance that the PRM is willing to check when connecting sample points.

Definition at line 60 of file prm.py.

6.9.4.2 prm.PRMGenerator.dontDraw

Definition at line 226 of file prm.py.

6.9.4.3 prm.PRMGenerator.endPos

Position of the last goal.

Definition at line 47 of file prm.py.

6.9.4.4 prm.PRMGenerator.goalNodes

Indexes of the goal positions.

Definition at line 82 of file prm.py.

6.9.4.5 prm.PRMGenerator.gPosList

Holds the positions of the intermediate goals that were selected by the global path planner.

Definition at line 79 of file prm.py.

6.9.4.6 prm.PRMGenerator.numNext

Maximum number of sample points that can be connected.

Definition at line 63 of file prm.py.

6.9.4.7 prm.PRMGenerator.obstacleList

List of obstacles.

Definition at line 41 of file prm.py.

6.9.4.8 prm.PRMGenerator.omegaDict

Dictionary (for easy access) that holds the weights for the nodes.

Definition at line 84 of file prm.py.

6.9.4.9 prm.PRMGenerator.roadmap

The global roadmap.

It will be a graph represented as a dictionary

Definition at line 75 of file prm.py.

6.9.4.10 prm.PRMGenerator.screen

PyGame screen that is will be drawn on.

Definition at line 50 of file prm.py.

6.9.4.11 prm.PRMGenerator.startPos

Position of the first goal.

Definition at line 44 of file prm.py.

6.9.4.12 prm.PRMGenerator.subGoalNumber

Number of initial sample points.

Definition at line 66 of file prm.py.

6.9.4.13 prm.PRMGenerator.subGoalPositionList

Initial positions of the sample points.

Definition at line 69 of file prm.py.

6.9.4.14 prm.PRMGenerator.xSize

Horizontal size of the PyGame screen.

Definition at line 53 of file prm.py.

6.9.4.15 prm.PRMGenerator.ySize

Vertical size of the PyGame screen.

Definition at line 56 of file prm.py.

The documentation for this class was generated from the following file:

code/prm.py

Chapter 7

File Documentation

7.1 code/boid.py File Reference

Classes

· class boid.Boid

Class which represents one boid.

Namespaces

• boid

Constant Groups

• boid

Functions

• def boid.guassianFunc

Gamma function used to give a probability distribution of the flock in order to choose an appropriate neighbour.

Variables

• string boid.__author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

7.2 code/boidsimulation.py File Reference

Classes

• class boidsimulation.FlockSim

Main class for that is used for the simulation and display of the flock.

Namespaces

· boidsimulation

72 File Documentation

Constant Groups

· boidsimulation

Variables

string boidsimulation. author = "Alex Wallar <aw204@st-andrews.ac.uk>"

7.3 code/configuration.py File Reference

Classes

· class configuration. Configuration

Static class that holds important global variables.

• class configuration.PolyFileConfiguration

Extends the Configuration class.

Namespaces

· configuration

Constant Groups

· configuration

7.4 code/dijkstra.py File Reference

Namespaces

dijkstra

Constant Groups

· dijkstra

Functions

· def dijkstra.Dijkstra

Find shortest paths from the start vertex to all vertices nearer than or equal to the end.

• def dijkstra.shortestPath

Find a single shortest path from the given start vertex to the given end vertex.

7.5 code/gatherstats.py File Reference

Namespaces

· gatherstats

Constant Groups

· gatherstats

Functions

• def gatherstats.generateStats

Generates the statistics and saves them in a well known location.

Variables

• list gatherstats.mapList

A list of dictionaries used to store the map files, starting and ending points of the boids.

• gatherstats.testList = mapList

7.6 code/goal.py File Reference

Classes

· class goal.CircleGoal

Object that holds data about a goal modelled as circular configuration space.

Namespaces

• goal

Constant Groups

• goal

Variables

• string goal.__author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

7.7 code/mapparser.py File Reference

Namespaces

· mapparser

Constant Groups

· mapparser

74 File Documentation

Functions

def mapparser.mapVal

Maps a value that is between in_min and in_max to a value between out_min and out_max.

· def mapparser.mparse

Parses a map file into a list of obstacles.

7.8 code/obstacle.py File Reference

Classes

· class obstacle.PolyObstacle

Object that represents the an obstacle represented by a series of points (in the node list) which make up a set of lines.

Namespaces

· obstacle

Constant Groups

· obstacle

Variables

• string obstacle.__author__ = "Alex Wallar <aw204@st-andrews.ac.uk>"

7.9 code/priodict.py File Reference

Classes

· class priodict.priorityDictionary

Namespaces

priodict

Constant Groups

priodict

7.10 code/prm.py File Reference

Classes

• class prm.PRMGenerator

Class used to hold methods and variables that are important for the global path planning problem.

Namespaces

• prm

Constant Groups

• prm

7.11 code/test_sim.py File Reference

Namespaces

· test_sim

Constant Groups

test_sim

Variables

dictionary test_sim.mapDict

Main module to run for testing purposes.

- tuple test_sim.flockSize = int(sys.argv[2])
- list test_sim.startPoint = mapDict[sys.argv[1]]
- list test_sim.endPoint = mapDict[sys.argv[1]]
- list test sim.mapFilePath = sys.argv[1]
- test_sim.obstacleFilePath = None
- test_sim.dynamicObstacleAutoGenerate = False
- int test_sim.generateTarget = 0
- list test_sim.arg = sys.argv[3]
- tuple test_sim.fs

Index

author	guassianFunc, 9
boid, 10	boid.Boid, 19
boidsimulation, 10	boid::Boid
goal, 14	init, <mark>22</mark>
obstacle, 15	bAlpha, 33
init	bBeta, 33
boid::Boid, 22	bConst, 33
boidsimulation::FlockSim, 44	bDelta, 33
goal::CircleGoal, 39	bInfluenceR, 34
obstacle::PolyObstacle, 54	boidList, 34
priodict::priorityDictionary, 62	color, 34
prm::PRMGenerator, 64	compWeightList, 34
iter	determineNewPath, 22
priodict::priorityDictionary, 62	determineRandomWalk, 22
setitem	dim, 34
priodict::priorityDictionary, 62	draw, 22
	ePos, 34
adjacentThresh	endIndex, 34
prm::PRMGenerator, 68	findMax, 23
animate	gAlpha, 34
boidsimulation::FlockSim, 44	gBeta, 34
arg	gConst, 35
test_sim, 16	gDelta, 35
auto_gen_number	gammaFunc, 34
boidsimulation::FlockSim, 47	getBoidVectorList, 23
configuration::PolyFileConfiguration, 51	getDirectionVector, 24
auto_gen_obst	getGoalVector, 24
boidsimulation::FlockSim, 47	getNeighborVectorList, 25
configuration::PolyFileConfiguration, 51	getObstacleVectorList, 26
autoGenerateDynamicObstacles	getVar, 27
configuration::PolyFileConfiguration, 51	goal, 35
avg	goalCounter, 35
boidsimulation::FlockSim, 44	goalList, 35
avgPoint	goalNodes, 35
obstacle::PolyObstacle, 60	headWeightList, 35
	heading, 35
bAlpha	inGoal, 27
boid::Boid, 33	inWorld, 28
bBeta	initFunctionParameters, 28
boid::Boid, 33	
bConst	mag, 28
boid::Boid, 33	nStuckDAvg, 36 nStuckDSigma, 36
bDelta	•
boid::Boid, 33	neighborSize, 35
bInfluenceR	norm, 29
boid::Boid, 34	obBeta, 36
BLACK	obInfluenceR, 36
boidsimulation::FlockSim, 47	obstacleFunc, 29
boid, 9	obstacleList, 36
author . 10	pointAllowed, 30

position, 36	surfaceList, 49
positionBuffer, 36	WHITE, 49
prmGen, 36	boundary
radius, 36	obstacle::PolyObstacle, 60
randWalkCount, 37	
randomWalkX, 37	change_direction
randomWalkY, 37	obstacle::PolyObstacle, 54
reduceWeightValues, 30	checkCollisionWithOtherObstacles
roadmap, 37	obstacle::PolyObstacle, 54
sPos, 37	code/boid.py, 71
screen, 37	code/boidsimulation.py, 71
setBoidList, 31	code/configuration.py, 72
setNewGoal, 31	code/dijkstra.py, 72
sigmoidFunc, 31	code/gatherstats.py, 72
speed, 37	code/goal.py, 73
stuck, 37	code/mapparser.py, 73
stuckConst, 37	code/obstacle.py, 74
stuckDAvg, 38	code/priodict.py, 74
stuckDSigma, 38	code/prm.py, 74
sumDivide, 32	code/test_sim.py, 75
update, 32	color
updatePositionBuffer, 33	boid::Boid, 34
ySize, 38	colorList
boidList	configuration::Configuration, 41
boid::Boid, 34	colors
configuration::PolyFileConfiguration, 51	goal::CircleGoal, 39
boidSpeed	obstacle::PolyObstacle, 60
configuration::Configuration, 41	compWeightList
boidsimulation, 10	boid::Boid, 34
author, 10	config
boidsimulation.FlockSim, 42	boidsimulation::FlockSim, 47
boidsimulation::FlockSim	configuration, 10
init, 44	configuration. Configuration, 40
animate, 44	configuration.PolyFileConfiguration, 49
auto_gen_number, 47	configuration::Configuration
auto_gen_obst, 47	boidSpeed, 41
avg, 44	colorList, 41
BLACK, 47	dim, 41
config, 47	goalRadius, 41
counter, 47	numNeighbours, 41
dataFile, 47	numSamplePoints, 41
dim, 47	screen, 41
done, 47	configuration::PolyFileConfiguration
ePos, 48	auto_gen_number, 51
flockSize, 48	auto_gen_obst, 51
font, 48	autoGenerateDynamicObstacles, 51
	boidList, 51
frameCounter, 48	endPoint, 51
getBoidData, 45	goalList, 52
getStats, 45	initVars, 51
init_prm, 45	nodes, 52
iterations, 48	obstacleList, 52
mapFile, 48	parseDynamicObstacles, 51
numInGoal, 48	prmGen, 52
obstacleFile, 48	startPoint, 52
play, 46	counter
render, 46	boidsimulation::FlockSim, 47
sPos, 48	
startTime, 49	dataFile

boidsimulation::FlockSim, 47	font
detectCollision	boidsimulation::FlockSim, 48
obstacle::PolyObstacle, 54	frameCounter
determine_last_direction	boidsimulation::FlockSim, 48
obstacle::PolyObstacle, 54	fs
determineNewPath	test_sim, 16
boid::Boid, 22	gAlpha
determineRandomWalk	boid::Boid, 34
boid::Boid, 22	gBeta
dict, 42	boid::Boid, 34
Dijkstra	gConst
dijkstra, 11 dijkstra, 10	boid::Boid, 35
Dijkstra, 11	gDelta
shortestPath, 12	boid::Boid, 35
dim	gPosList
boid::Boid, 34	prm::PRMGenerator, 69
boidsimulation::FlockSim, 47	gammaFunc
configuration::Configuration, 41	boid::Boid, 34
displacement	gatherstats, 13
obstacle::PolyObstacle, 60	generateStats, 13
done	mapList, 13
boidsimulation::FlockSim, 47	testList, 13
dontDraw	generate
prm::PRMGenerator, 69	prm::PRMGenerator, 66
draw	generatePositionList
boid::Boid, 22	prm::PRMGenerator, 66
goal::CircleGoal, 39	generateStats
obstacle::PolyObstacle, 55	gatherstats, 13 generateTarget
prm::PRMGenerator, 65	test_sim, 16
drawPath	getBoidData
prm::PRMGenerator, 65	boidsimulation::FlockSim, 45
dynamic	getBoidVectorList
obstacle::PolyObstacle, 60 dynamicObstacleAutoGenerate	boid::Boid, 23
test sim, 16	getClosestPoint
test_siiii, 10	obstacle::PolyObstacle, 55
ePos	getDirectionVector
boid::Boid, 34	boid::Boid, 24
boidsimulation::FlockSim, 48	getGoalVector
endIndex	boid::Boid, 24
boid::Boid, 34	getNeighborVectorList
endPoint	boid::Boid, 25
configuration::PolyFileConfiguration, 51	getObstacleVectorList
test_sim, 16	boid::Boid, 26
endPos	getPoint
prm::PRMGenerator, 69	obstacle::PolyObstacle, 56
estimatePoly	getRadius
obstacle::PolyObstacle, 55	obstacle::PolyObstacle, 56
filterSubGoal	getRandom
prm::PRMGenerator, 65	prm::PRMGenerator, 67 getShortestPath
findMax	prm::PRMGenerator, 67
boid::Boid, 23	getStats
findNeighbors	boidsimulation::FlockSim, 45
prm::PRMGenerator, 65	getVar
flockSize	boid::Boid, 27
boidsimulation::FlockSim, 48	goal, 13
test_sim, 16	author, 14
_ ,	

L 11 B 11 65	D' :
boid::Boid, 35	maxDist
goal.CircleGoal, 38	obstacle::PolyObstacle, 60
goal::CircleGoal	mparse
init, 39	mapparser, 14
colors, 39	
draw, 39	nStuckDAvg
position, 39	boid::Boid, 36
radius, 39	nStuckDSigma
screen, 39	boid::Boid, 36
goalCounter	neighborSize
boid::Boid, 35	boid::Boid, 35
goalList	nodes
boid::Boid, 35	configuration::PolyFileConfiguration, 52
configuration::PolyFileConfiguration, 52	obstacle::PolyObstacle, 60
	norm
goalNodes	boid::Boid, 29
boid::Boid, 35	obstacle::PolyObstacle, 57
prm::PRMGenerator, 69	prm::PRMGenerator, 68
goalRadius	numInGoal
configuration::Configuration, 41	
guassianFunc	boidsimulation::FlockSim, 48
boid, 9	numNeighbours
	configuration::Configuration, 41
headWeightList	numNext
boid::Boid, 35	prm::PRMGenerator, 69
heading	numSamplePoints
boid::Boid, 35	configuration::Configuration, 41
inGoal	obBeta
boid::Boid, 27	boid::Boid, 36
inWorld	obInfluenceR
boid::Boid, 28	boid::Boid, 36
init_prm	obstacle, 15
boidsimulation::FlockSim, 45	author, 15
initFunctionParameters	obstacle.PolyObstacle, 52
boid::Boid, 28	obstacle::PolyObstacle
initOmega	init, 54
prm::PRMGenerator, 67	avgPoint, 60
initVars	boundary, 60
configuration::PolyFileConfiguration, 51	change_direction, 54
iterations	checkCollisionWithOtherObstacles, 54
boidsimulation::FlockSim, 48	colors, 60
boldsimulation lookoim, 40	detectCollision, 54
mag	determine_last_direction, 54
boid::Boid, 28	displacement, 60
mapDict	draw, 55
test sim, 16	dynamic, 60
mapFile	estimatePoly, 55
boidsimulation::FlockSim, 48	-
	getClosestPoint, 55
mapFilePath	getPoint, 56
test_sim, 17	getRadius, 56
mapList	max_displacement, 60
gatherstats, 13	maxDist, 60
mapVal	nodes, 60
mapparser, 14	norm, 57
mapparser, 14	obstacles, 60
mapVal, 14	pointAllowed, 57
mparse, 14	pointInPoly, 58
max_displacement	
obstacle::PolyObstacle, 60	rayintersectseg, 59 removeSelfFromObstacleList, 59

screen, 60	numNext, 69
translate, 59	obstacleList, 69
velocity, 61	omegaDict, 69
obstacleFile 51 10: 40	roadmap, 69
boidsimulation::FlockSim, 48	screen, 69
obstacleFilePath	startPos, 69
test_sim, 17	subGoalNumber, 70
obstacleFunc	subGoalPositionList, 70
boid::Boid, 29	xSize, 70
obstacleList	ySize, 70
boid::Boid, 36	prmGen
configuration::PolyFileConfiguration, 52	boid::Boid, 36
prm::PRMGenerator, 69	configuration::PolyFileConfiguration, 52
obstacles	configuration Gryf fle Configuration, 32
	radius
obstacle::PolyObstacle, 60	
omegaDict	boid::Boid, 36
prm::PRMGenerator, 69	goal::CircleGoal, 39
	randWalkCount
parseDynamicObstacles	boid::Boid, 37
configuration::PolyFileConfiguration, 51	randomWalkX
play	boid::Boid, 37
boidsimulation::FlockSim, 46	randomWalkY
pointAllowed	boid::Boid, 37
boid::Boid, 30	rayintersectseg
obstacle::PolyObstacle, 57	obstacle::PolyObstacle, 59
pointInPoly	
obstacle::PolyObstacle, 58	reduceWeightValues
	boid::Boid, 30
position haid Daid 00	removeSelfFromObstacleList
boid::Boid, 36	obstacle::PolyObstacle, 59
goal::CircleGoal, 39	render
positionBuffer	boidsimulation::FlockSim, 46
boid::Boid, 36	roadmap
priodict, 15	boid::Boid, 37
priodict.priorityDictionary, 61	prm::PRMGenerator, 69
priodict::priorityDictionary	,
init, 62	sPos
, 62	boid::Boid, 37
setitem, 62	boidsimulation::FlockSim, 48
setdefault, 62	screen
smallest, 63	boid::Boid, 37
prm, 15	configuration::Configuration, 41
prm.PRMGenerator, 63	goal::CircleGoal, 39
prm::PRMGenerator	obstacle::PolyObstacle, 60
init, 64	prm::PRMGenerator, 69
adjacentThresh, 68	setBoidList
dontDraw, 69	boid::Boid, 31
draw, 65	setNewGoal
drawPath, 65	boid::Boid, 31
endPos, 69	setdefault
filterSubGoal, 65	priodict::priorityDictionary, 62
findNeighbors, 65	shortestPath
_	
gPosList, 69	dijkstra, 12
generate, 66	sigmoidFunc
generatePositionList, 66	boid::Boid, 31
getRandom, 67	smallest
getShortestPath, 67	priodict::priorityDictionary, 63
goalNodes, 69	speed
initOmega, 67	boid::Boid, 37
norm, 68	startPoint

```
configuration::PolyFileConfiguration, 52
    test_sim, 17
startPos
    prm::PRMGenerator, 69
startTime
    boidsimulation::FlockSim, 49
stuck
    boid::Boid, 37
stuckConst
    boid::Boid, 37
stuckDAvg
    boid::Boid, 38
stuckDSigma
    boid::Boid, 38
subGoalNumber
    prm::PRMGenerator, 70
subGoalPositionList
    prm::PRMGenerator, 70
sumDivide
    boid::Boid, 32
surfaceList
    boidsimulation::FlockSim, 49
test_sim, 16
     arg, 16
    dynamicObstacleAutoGenerate, 16
    endPoint, 16
    flockSize, 16
    fs, 16
    generateTarget, 16
    mapDict, 16
     mapFilePath, 17
    obstacleFilePath, 17
     startPoint, 17
testList
    gatherstats, 13
translate
    obstacle::PolyObstacle, 59
update
    boid::Boid, 32
updatePositionBuffer
    boid::Boid, 33
velocity
    obstacle::PolyObstacle, 61
WHITE
    boidsimulation::FlockSim, 49
xSize
    prm::PRMGenerator, 70
ySize
    boid::Boid, 38
    prm::PRMGenerator, 70
```