Homework7

陈淇奥 21210160025

2021年11月22日

Lemma 1. 1. -0 = 1

2.
$$-1 = 0$$

3.
$$a \cdot 1 = a$$

4.
$$a + 0 = a$$

5.
$$a + a = a$$

6.
$$a \cdot a = a$$

7.
$$1 + a = 1$$

8.
$$0 \cdot a = 0$$

9.
$$a+b=1 \land a \cdot b=0 \Rightarrow b=-a$$

10.
$$-(a \cdot b) = (-a) + (-b)$$

证明. 1.
$$1 = 0 + (-0) = (0 \cdot (-0)) + (-0) = -0$$

2.
$$0 = 1 \cdot (-1) = (1 + (-1)) \cdot (-1) = -1$$

3.
$$a \cdot 1 = a \cdot (a + (-a)) = a$$

5.
$$a + a = a + (a \cdot 1) = a$$

- 7. $1+a=(a+1)\cdot 1=(a+1)\cdot (a+-a)=a\cdot a+0+a+-a=a+-a=1$
- 8. $0 \cdot a = (a \cdot (-a)) \cdot a = a \cdot a \cdot (-a) = a \cdot (-a) = 0$
- 9. $-a = (-a) \cdot 1 = (-a) \cdot (a+b) = (-a) \cdot a + (-a) \cdot b = (-a) \cdot b.$ ab + (-a)b = -a. b(a + (-a)) = b = -a
- 10. $ab + (-a) + (-b) = ab + (-a) + (-b) \cdot 1 = ab + (-a) + (-b)a + (-b)(-a) = a(b + (-b)) + (-a) + (-b)(-a) = 1 + (-b)(-a) = 1$

Exercise 1. 证明不存在基数为3的布尔代数

证明. 若存在基数为 3 的布尔代数 \mathcal{B} , 则令 $B = \{0,1,a\}$ 。

如果 -a = 0, 那么 $a + (-a) = a + 0 = a + (a \cdot (-a)) = a \neq 1$, 矛盾。如果 -a = 1, 那么 $a \cdot (-a) = a \cdot 1 = a \cdot (a + (-a)) = a \neq 0$, 矛盾。如果 -a = a, 那么 $a = a \cdot 1 = a \cdot (a + a) = a \cdot a + a \cdot a = 0 + 0 = 0$, 矛盾。

因此不存在基数为3的布尔代数。

Exercise 2 (3.1.10). 令 B 为任意布尔代数

- 1. 证明任意布尔代数 𝔞 在关系 ≤ 下是偏序
- 4. 对任意 $a, b \in \mathcal{B}$, $a \cdot (-b) = 0$ 当且仅当 $a \leq b$
- 证明. 1. 因为 x = x, 因此 x = x

若 $x \le y \land y \le x$ 则存在 c,d 使得 $c \ne 0 \land d \ne 0 \land x + c = y \land y + d = x$, 于是 x = y + d = y + y + d = x + y = x + x + c = x + c = y。

若 $x \le y \land y \le z$,则存在 c,d 使得 $c \ne 0 \land d \ne 0 \land x + c = y \land y + d = z$,因此 x + c + d = z。

4. $a \cdot (-b) = 0 \Rightarrow a = ab \Rightarrow b = (a+1)b = a+b$ 若存在 $c \neq 0 \land a + c = b$,则 a + b = a + a + c = a + c = b,因此 a(-b) = a(-b) + 0 = b(-b) = 0。若 a = b,则 $a \cdot (-b) = 0$ 。

Exercise 3 (3.1.13). 任意有穷的布尔代数都是原子化的

证明. 给定一个有限布尔代数 \mathcal{B} ,对任意 $b \in \mathcal{B}$,任选一条 b 的最长下降链 $C = \{c_0, c_1, \dots, c_n\}$ 使得 $0 = c_0 < c_1 < \dots < c_n = b$,若 c_1 不是原子,则存在 $0 < c' < c_1$,于是 C 不是最长的,矛盾。因此 $c_1 \le b$ 是原子

Exercise 4 (3.1.16). 证明 f 是同态映射

证明. 因为 0 不是原子,于是 $f(0) = \emptyset$ 。有因为所有原子都小于等于 1,因此 f(1) = A。

对于任意 $b_1, b_2 \in B$,因为 $b_1 \leq b_1 + b_2$ 且 $b_2 \leq b_1 + b_2$,因此 $f(b_1 + b_2) \supseteq f(b_1)$ 且 $f(b_1 + b_2) \supseteq f(b_2)$,于是 $f(b_1 + b_2) \supseteq f(b_1) \cup f(b_2)$ 。对于任意原子 $a \leq b_1 + b_2$,由引理 3.1.14, $a \leq b_1$ 或 $a \leq b_2$,于是 $a \in f(b_1) \cup f(b_2)$ 。因此 $f(b_1 + b_2) = f(b_1) \cup f(b_2)$ 。

对于任意 $b_1, b_2 \in B$,有 $b_1b_2 \leq b_1 \wedge b_1b_2 \leq b_2$,因此 $f(b_1b_2) \subseteq f(b_1) \cap f(b_2)$ 。对于任意原子 $a \in f(b_1) \cap f(b_2)$,则 $a \leq b_1 \wedge a \leq b_2$,若 $a \leq -(b_1b_2) = (-b_1) + (-b_2)$,则 $a \leq -b_1$ 或 $a \leq -b_2$,矛盾。因此 $a \leq b_1b_2$,于是 $a \in f(b_1b_2)$ 对于任意 $b \in B$, $x \in f(-b) \Leftrightarrow x \leq -b \Leftrightarrow x \nleq b \Leftrightarrow x \notin f(b) \Leftrightarrow x \in \mathcal{P}(A) - f(b)$ 。

Exercise 5 (3.1.22). 若 \mathcal{B} 完全且是原子化的,A 是 \mathcal{B} 中所有原子的集合,则 $f: B \to \mathcal{P}(A)$ 是一个同构

证明. 对于任意 $Y \subseteq A$ 与原子 a, 若 $a \in Y$, 则 $a \le \sum Y$; 若 $a \le \sum Y$, 假设 $a \notin Y$, 那么对于任意 $b \in Y$ 都有 $a \le -b$ 等价于 $b \le -a$, 于是 $-a \ge \sum Y \ge a$, 因此 -a = a + (-a) = 1, 而 a = 0, 与 a 是原子矛盾。因 此存在 $b \in Y$ 使得 $a \le b$, 因为 a, b 都是原子,因此 $a = b \in Y$ 。

因此对于任意原子 $a, a \in Y$ 当且仅当 $a \leq \sum Y$,所以 $f(\sum Y) = Y$,于是 f 是满射,于是 f 是双射