Лабораторная работа №2

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ И КОНСТРУКТИВНЫХ РАЗМЕРОВ ВЕНТИЛЯТОРА ОЧИСТКИ ЗЕРНОУБОРОЧНЫХ КОМБАЙНОВ

Цель работы: Определить параметры и конструктивные размеры вентилятора очистки зерноуборочных комбайнов

Теоретическая часть

Очистка зерноуборочного комбайна предназначается для выделения зерна из вороха, поступающего из—под молотильного аппарата и соломотряса. Качество работы очистки зависит от воздушного потока, размеров решет и их отверстий и от кинематики решет.

Выделение зерна из вороха в очистках комбайнов в основном производится по парусности, а поэтому материал (ворох), находящийся на решете очистки, должен обдуваться воздушным потоком.

В зависимости от качества вороха силу и направление воздушного потока, создаваемого вентилятором, приходится менять, что осуществляется щитками, расположенными внутри канала вентилятора, открытием входных окон вентиляторов или изменением числа его оборотов.

В зерноуборочных комбайнах применяются центробежные вентиляторы сельскохозяйственного типа, а в отличие от вентиляторов общего назначения имеют четное количество лопастей (4–12).

Рисунок 2.1. Схема спирали кожуха вентилятора

Рисунок 2.2. Схема центробежного вентилятора

					Лабораторная работа №2					
Изм.	Лист	№ докум.	Подпись	Дата						
Разраб.					Определение параметров и		n.	Лист	Листов	
Пров	ер.	Тюрин			1 1			1	5	
					конструктивных размеров					
					1		ГГТУ им. П.О.Сухого гр.3С-			
					ноуборочных комбайнов					

Практическая часть

Таблица 2.1. Исходные данные для расчета параметров и размеров центробежного вентилятора

	Параметры										
Номер вари- анта	Подача хлебной массы в молостилку, Q , кг/с	Соотно- шение зерна к соломе, с	Коэффи- циент q, м ³ /кг	Угол наклона воздуш- ного по- тока к планкам решета, б	Коорди- ната e_1 , мм	Количе- ство ло- паток Z , шт					
1	6	1÷1,75	1,5	22	100	4					
2	9	1÷1,5	1,6	24	110	6					
3	8	1÷2,0	1,8	23	130	8					
4	10	1÷2,5	1,7	25	120	4					
5	13	1÷1,75	2,0	27	105	10					
6	15	1 ÷ 2,25	1,9	26	115	6					
7	14	1÷1,0	2,1	30	125	8					
8	7	1÷1,75	2,2	29	130	4					
9	12	1÷1,5	1,5	31	135	4					
10	16	1 ÷ 2,0	1,7	30	140	4					
11	14	1÷2,5	2,0	32	145	4					
12	15	1÷1,75	1,6	26	150	6					
13	12	$1 \div 2,25$	1,8	33	155	8					
14	9	1÷1,0	1,7	28	160	8					
15	10	1 ÷ 1,75	1,5	34	100	8					
16	12	1÷1,5	1,6	22	110	6					
17	11	1 ÷ 2,0	1,8	25	130	6					
18	18	1 ÷ 2,5	1,7	27	120	6					
19	14	1 ÷ 1,75	2,0	26	105	10					
20	11	$1 \div 2,25$	1,9	30	115	12					
21	6	1 ÷ 1,0	1,5	29	125	6					
22	7	$1 \div 1,75$	1,6	31	130	4					
23	8	1÷1,5	1,8	26	160	10					
24	9	$1 \div 2,0$	1,7	25	150	8					
25	12	1 ÷ 2,5	2,0	22	120	6					
26	13	1÷1,75	1,9	23	110	8					
27	14	$1 \div 2,25$	2,2	33	100	10					
28	12	1 ÷ 1,0	1,5	30	125	8					
29	10	1 ÷ 2,5	1,6	29	130	6					
30	8	1 ÷ 1,75	1,8	31	160	8					

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 2.2. Размеры кожухов вентиляторов в зависимости от разворота спирали

	Размеры в $\%$ от \mathcal{I}_2										
A_k	а	R_1	R_2	R_3	L	M	С	l	α_1	α_2	
20	5,0	67,5	62,5	57,5	130	120	15	8	0	0	
30	7,5	76,25	68,75	61,25	145	130	15	10	25	15	
40	10	85,0	75,0	65,0	160	140	15	8	0	0	
50	12,5	93,75	81,25	68,75	175	150	15	10	25	15	
60	15,0	102,5	87,5	72,5	190	160	15	10	25	10	
70	17	111,25	93,75	76,25	205	170	15	10	0	0	

Параметры вентилятора определяют в следующем порядке:

1. Определить количество воздуха, которое должен подать вентилятор, по формуле:

$$Q_B = q \cdot \varepsilon \cdot Q = 1,7 \cdot 0,2 \cdot 18 = 6,12 \text{ m}^3 / c,$$

где Q_B — количество воздуха в M^3 / c; q — коэффициент, т. е. количество воздуха в M^3 , которое должно подаваться на килограмм средней подачи вороха (берется из таблицы 2.1); ϵ — коэффициент, показывающий количество половы и мякины, которое необходимо удалить воздушным потоком из очистки $\epsilon = (0, 2 \div 0, 25)$; Q — подача хлебной массы в молотильный барабан в кг/с при соотношении зерна к соломе с 1:1,5.

Коэффициент соломистости при c=1,5 будет равен:

$$\lambda = \frac{c}{c+3} = \frac{1,5}{1,5+1} = 0,6.$$

При c=2,5

$$\lambda_1 = \frac{c}{c+3} = \frac{2,5}{2,5+1} = 0,714.$$

При другом соотношении зерна к соломе λ подача хлебной массы $Q_{\rm I}$ меняется и ее подсчитывают из условия сохранения неизменной подачи соломы в молотилку по формуле:

$$Q_1 = Q \cdot \frac{\lambda}{\lambda_1} = 18 \cdot \frac{0.6}{0.714} = 15,126,$$

где Q — заданная подача хлебной массы в молотилку; λ — коэффициент соломистости при соотношении зерна к соломе 1:1,5; λ_1 — коэффициент соломистости при другом соотношении.

2. Определить скорость воздушного потока в выходном отверстии

Скорость воздушного потока в выходном отверстии вентилятора выбирается с учетом критических скоростей фракций вороха (зерно, семена сорняков, частицы половы и соломы) и определяется по формуле:

$$V_{\kappa p} = a \cdot V_{\kappa p} = 2 \cdot 2 = 4 \ \text{M} / c$$

						Лисп
					Лабораторная работа №2	2
Изм.	Лист	№ докум.	Подпись	Дата		3

где $V_{\rm вых}$ — скорость воздушного потока в выходном отверстии в м/с; a — коэффициент, учитывающий увеличение критической скорости (a = 2); $V_{\kappa p}$ — критическая скорость в м/с (для половы $V_{\kappa p}$ = 2 м/с, для сбоины $V_{\kappa p}$ = 4 м/с);

3. Определить динамический напор, создаваемый вентилятором по формуле:

$$h_{\partial} = \frac{V_{\text{BblX}}^2 \cdot \gamma_{\text{B}}}{2 \cdot g} = \frac{4^2 \cdot 1{,}12}{2 \cdot 9{,}8} = 0{,}914 \text{ Ke/M}^2,$$

где h_{o} — динамический напор в кг/м²; γ_{e} — удельный вес воздуха в кг/м³ ($\gamma_{e} = 1,12$); V_{eblx} — скорость воздуха в выходном отверстии вентилятора в м/с (берется из п.2); g — ускорение силы тяжести в м/с².

4. Определить статический напор h_{cm}

Статический напор расходуется на сопротивление в сети и зависит от множества факторов, в том числе от конструкции, размеров, решет и т. д. и определяется по формуле:

$$h_{cm} = \frac{1 - K^2}{K^2} \cdot h \cdot q = \frac{1 - 0.24^2}{0.24^2} \cdot 0.2 \cdot 1.7 = 5.56 \text{ kg/m}^2,$$

где K – коэффициент, характеризующийся отношением динамического давления к полному и определяется по формуле:

$$K = \frac{F_2}{F},$$

где F — площадь выходного отверстия вентилятора; F_2 — площадь эквивалентного отверстия.

Под эквивалентным отверстием понимают отверстие площадью F_2 , через которое при том же статическом давлении h_{cm} подается такое же количество воздуха, как и через сеть (трубопровод) при наличии потерь. Для расчета можно принять $K = (0, 22 \div 0, 26)$.

При данных расчетах можно принять, что статический напор в $3 \div 5$ раз больше динамического.

5. Определить полный действительный напор, создаваемый вентилятором:

$$H_{\partial} = h_{cm} + h_{\partial} = 5,56 + 0,914 = 6,48 \text{ kg/m}^2.$$

6. Определить теоретический напор:

$$H_m = \frac{H_{\partial}}{\eta} = \frac{6.48}{0.5} = 12.95 \text{ kg/m}^2,$$

где H_m – теоретический напор, кг/м²; η – коэффициент полезного действия вентилятора ($\eta = 0.3 \div 0.6$).

7. Определить высоту выходного отверстия вентилятора по формуле:

						Лис
					Лабораторная работа №2	1
Изм.	Лист	№ докум.	Подпись	Дата		4

$$S \ge \frac{L_p + e_1}{\frac{\cos \beta}{\sin(\delta - \beta)} - K_0} = \frac{1250 + 120}{\frac{\cos 14}{\sin(27 - 14)} - 0.5} = 316,397,$$

где S — высота выходного канала в мм; δ — угол наклона воздушного потока к плоскости решета; β — угол расширения воздушного потока (β = $12 \div 16^0$); e_1 координата переднего конца решета относительно верхнего ребра канала, мм; L_p - длина решета в мм, ($L=1200 \div 1350$); K_0 - коэффициент отклонения воздушного потока решетом, $(K_0 = 0.5 \div 0.6)$.

8. Определить диаметр входного отверстия для двухстороннего вентилятора по формуле:

$$\mathcal{A}_{ex} = \sqrt{\frac{2 \cdot Q_B}{\pi \cdot V_{ex}}} = \sqrt{\frac{2 \cdot 6,12}{3,14 \cdot 8}} = 0,698 \text{ M},$$

где Q_B — количество подаваемого воздуха в м³/с (берется из п.1); V_{ex} — скорость воздушного потока во входном отверстии $(V_{ex}=8\ {\it M}\,/\,c)$.

- 9. Определить внутренний диаметр лопастного колеса по формуле: $\mathcal{J}_1 = 0.95 \cdot \mathcal{J}_{ex} = 0.95 \cdot 0.698 = 0.663 \text{ m}.$
- 10.Определить наружный диаметр лопастного колеса по формуле: $\mathcal{I}_2 = 1, 6 \cdot \mathcal{I}_{ex} = 1, 6 \cdot 0, 698 = 1,117 \text{ m}.$

11. Определить число оборотов вентилятора по формуле:
$$n = \frac{30}{\pi} \sqrt{\frac{H_m \cdot q}{\gamma_s \cdot (r_2^2 - r_1^2)}} = \frac{30}{3,14} \sqrt{\frac{12,95 \cdot 1,7}{1,12 \cdot (0,559^2 - 0,332^2)}} = 94,187 \text{ об/мин}$$

где r_1 , r_2 — соответственно, наружный и внутренний радиус лопастного колеса в M.

12.Определить мощность двигателя для работы вентилятора по формуле:

$$N_{\partial B} = \frac{Q_B \cdot H_m}{\eta \cdot 102} = \frac{6,12 \cdot 12,95}{0,97 \cdot 102} = 0,801 \text{ kBT}$$

где $\eta - K\Pi Д$ передачи ($\eta = 0.95 \div 0.98$)..

Вывод: в ходе работы определили основные параметры и конструктивные размеры вентилятора очистки зерноуборочных комбайнов.

Изм.	Лист	№ докум.	Подпись	Дата