Государственное образовательное учреждение высшего профессионального образования «Московский Государственный Технический Университет имени Н.Э. Баумана»

Отчет

По лабораторной работе №2 По курсу «Анализ Алгоритмов» На тему «Исследование сложности алгоритмов умножения матриц»

Оглавление

Постановка задачи	2
Листинг	2
Временные эксперименты	5
Рассчет сложности алгоритмов	6
Выводы	7
Заключение	7

Постановка задачи

Реализовать алгоритмы умножения матриц:

- 1. Классический алгоритм умножения
- 2. Алгоритм Винограда

9

3. Улучшенный Алгоритм Винограда

Рассчитать сложность алгоритмов и провести временные эксперименты

Листинг

```
CLASSIC MULTI MATRIX:
1
            def classic_multi(A, B):
2
                     if len(B) != len(A[0]) :
3
                             print("Different_dimension_of_the_matrics")
4
                             return
5
6
                    n = len(A)
7
                    m = len(A[0])
8
                     t = len(B[0])
9
10
                     answer = [[0 \text{ for i in } range(t)] \text{ for j in } range(n)]
                     for i in range(n):
11
                             for j in range(m):
12
13
                                      for k in range(t):
                                               answer[i][k] += A[i][j] * B[
14
                                                  j ] [ k ]
15
                     return answer
                         IMPRV_CLASSIC_MULTI MATRIX:
1
            def imprv_classic_multi(A, B):
2
                     if len(B) != len(A[0]) :
                             print("Different_dimension_of_the_matrics")
3
4
                     return [[sum(x * B[i][col] for i, x in enumerate(row
5
                        )) for col in range(len(B[0])) for row in A
                           WINOGRAD MULTI MATRIX:
            def winograd_multi(G, H):
1
2
                     a = len(G)
3
                     b = len(H)
                     c = len(H[0])
4
5
6
                     if b != len(G[0]) :
                              print("Different_dimension_of_the_matrics")
7
8
                             return
```

d = b // 2

```
10
                     row factor = [0 for i in range(a)]
                     col_factor = [0 \text{ for i in } range(c)]
11
12
13
                     # Row Factor calc
14
                     for i in range(a):
15
                              for j in range(d):
                                       row_factor[i] += G[i][2 * j] * G[i
16
                                          [2 * j + 1]
17
18
                     # Col Factor calc
19
                     for i in range(c):
20
                              for j in range(d):
21
                                       col_factor[i] += H[2 * j][i] * H[2 *
                                           j + 1][i]
22
23
                     answer = [[0 \text{ for i in } range(c)] \text{ for j in } range(a)]
24
                     for i in range(a):
25
                              for j in range(c):
                                       answer[i][j] = -row_factor[i] -
26
                                          col factor [j]
                                       for k in range(d):
27
28
                                               answer [i][j] += ((G[i][2 *
                                                   k + H[2 * k + 1][j]) * (
                                                  G[i][2 * k + 1] + H[2 * k]
                                                   ][j]))
29
                    # For odd matrix
30
                      if b % 2:
31
32
                              for i in range(a):
33
                                       for j in range(c):
                                               answer[i][j] += G[i][b - 1]
34
                                                   * H[b - 1][j]
35
36
                     return answer
                       IMPRV WINOGRAD MULTI MATRIX:
            def winograd_multi(G, H):
1
2
                     a = len(G)
3
                     b = len(H)
4
                     c = len(H[0])
5
6
                     if b != len(G[0]) :
                              print("Different_dimension_of_the_matrics")
7
8
                              return
9
10
                     d = b // 2
11
12
                     row factor = [0 for i in range(a)]
13
                     col_factor = [0 \text{ for i in } range(c)]
14
```

```
# Row Factor calculation
15
16
                    for i in range(a):
                             row factor[i] = sum(G[i][2 * j] * G[i][2 * j]
17
                                 + 1 for j in range(d))
18
19
                    # Column Factor calculation
20
                    for i in range(c):
                             col_factor[i] = sum(H[2 * j][i] * H[2 * j +
21
                                1][i] for j in range(d))
22
23
                    answer = [[0 \text{ for i in } range(c)] \text{ for j in } range(a)]
24
                    for i in range(a):
25
                             for j in range(c):
                                      answer [i][j] = sum((G[i][2 * k] + H)
26
                                         [2 * k + 1][j]) * (G[i][2 * k +
                                         1 + H[2 * k][j] for k in range(
                                         d)) - row_factor[i] - col_factor[
                                         j ]
27
28
29
                    # For odd matrix
30
                    if b % 2:
31
                             for i in range(a):
32
                                      answer[i][j] = sum(G[i][b-1] * H[b]
                                         - 1][j] for j in range(c))
33
34
                    return answer
```

Временные эксперименты

Измерения проводились для квадратных целочисленных матриц

Size	Classic	Winorgad	Imprv Wino	Impv Classic
100 X 100	289.29400	347.95396	308.35764	185.55133
200 X 200	2249.77104	2667.67335	2386.45252	1452.55574
300 X 300	7694.16459	9144.59101	8145.12467	4935.43498
400 X 400	19090.08535	23198.14332	20572.56937	12945.18161
500 X 500	39005.07371	49364.15362	44845.09722	25241.92643
600 X 600	65456.91530	81830.84361	74260.43487	41960.06060
700 X 700	102072.69907	129947.46137	112226.29603	65716.18597
800 X 800	153583.53043	212627.15220	175107.29798	98817.42128
900 X 900	221113.73512	330751.41374	245380.58599	232635.11229
1000 X 1000	406853.16269	11982363.83335	388187.53799	199652.61801
101 X 101	326.57305	333.71878	335.29170	204.09226
201 X 201	2392.49770	2521.40872	2550.49467	1565.36229
301 X 301	8099.13405	8669.51084	8660.02146	5329.34825
401 X 401	19334.84364	20847.18029	21109.95770	12768.70171
501 X 501	39099.78644	42218.83734	42990.08997	25950.81258
601 X 601	66953.78153	76705.70691	73623.31589	44612.77151
701 X 701	106413.49713	118806.99031	119424.25927	70488.59978
801 X 801	158038.50412	184507.87044	176529.40289	103068.77263
901 X 901	223332.16429	4727406.52212	280284.77335	151464.52729
1001 X 1001	301034.56863	339312.07355	340042.95230	197018.43810

Замеры времени в миллисекундах (среднее из 5 замеров)

Рассчет сложности алгоритмов

Алгоритм Винограда:

- 1. Paccyet row_factor: 2 + n * (2 + 2 + d * (2 + 10)) = 12 * n * d + 4 * n + 2
- 2. Paccyet col factor: 2 + q * (2 + 2 + d * (2 + 10)) = 12 * q * d + 4 * n + 2
- 3. Вычисление матрицы:

$$2 + n * (2 + 2 + q * (2 + 6 + 2 + d * 19)) = 19 * d * n * q + 10 * n * q + 4 * n + 2$$

4. Вычисление последнего столбца (худший случай):

$$1 + 2 + n * (2 + 2 + q * 10) = 10 * n * q + 4 * n + 3$$

Итого:

- 1. Лучший случай : $19*d*n*q+12*d*n+12*d*q+8*n+4*q+10*n+6 \sim O(n^3)$
- 2. Худший случай:

$$19*d*n*q+12*d*n+12*d*q+20*n*q+4*q+12*n+9 \sim O(n^3)$$

Улучшенный Алгоритм Винограда:

- 1. Paccyet row factor: $2 + n * (2 + (n-1) * (2+8)) = 10 * n^2 8 * n + 2$
- 2. Paccyet col factor: 2 + q * (2 + (n-1) * (2+8)) = 10 * n * q 8 * q + 2
- 3. Вычисление матрицы:

$$(2 + n * (2 + q * (2 + 6 + 2 + (n - 1) * (2 + 14) + 3))) = 2 + 2 * n - 3 * n * q + 16 * n^2 * q)$$

4. Вычисление последнего столбца (худший случай):

$$1 + 2 + n * (2 + 2 + q * 10) = 10 * n * q + 4 * n + 3$$

Итого:

- 1. Лучший случай : $6-6*n+10*n^2-8*q+7*n*q+16*n^2*q\sim O(n^3)$
- 2. Худший случай : 9 2 * n + 10 * n^2 8 * q + 17 * n * q + 16 * n^2 * q ~ $O(n^3)$

Классический алгоритм и улучшенный Классический алгоритм:

1. Вычисление матрицы:

$$(2 + n * (2 + 2 + q * (2 + 2 + m * 9))) = 9 * m * n * q + 4 * n * q + 4 * n + 2 \sim O(n^3)$$

Выводы

В результате проведенных испытаний алгоритмов было установлено, что:

- 1. Алгоритм Винограда начинает выигрывать в быстродействии у других известных алгоритмов только для матриц, размер которых превышает память современных компьютеров.
- 2. В классическом алгоритме разница времени между выполнением умножения матриц размером, отличающимся на единицу, незначительна, тогда как в алгоритме Винограда разница больше из-за дополнительной проверки на нечетное кол-во элементов

Заключение

В ходе лабораторной работы были реализованы и улучшены 2 алгоритма умножения матриц: классический и алгоритм Винограда. Были получены навыки отпимизации кода на python, а так же работа с LaTeX. Изучен подход к вычислению сложности алгоритмов.