Comparativa entre Puertas Lógicas Clásicas y Cuánticas

Beatriz Fresno Naumova

September 6, 2024

Introducción

En este documento, exploramos las diferencias entre las puertas lógicas clásicas y cuánticas, y describimos cómo actúan sobre bits y qubits, respectivamente. También discutiremos la representación de algunos estados cuánticos específicos y analizaremos el comportamiento de un circuito cuántico que emplea las puertas Hadamard (H), Z, y H.

Puertas Lógicas Clásicas

En la computación clásica, las puertas lógicas operan sobre bits, que pueden ser 0 o 1. A continuación, se presentan las puertas lógicas más comunes:

Puerta NOT

La puerta NOT invierte el valor de un bit:

$$\mathrm{NOT}(0) = 1, \quad \mathrm{NOT}(1) = 0$$

Puerta AND

La puerta AND toma dos bits de entrada y devuelve 1 si ambos bits son 1, y 0 en cualquier otro caso:

$$AND(0,0) = 0$$
, $AND(1,0) = 0$, $AND(1,1) = 1$

Puerta OR

La puerta OR toma dos bits de entrada y devuelve 1 si al menos uno de los bits es 1:

$$OR(0,0) = 0$$
, $OR(1,0) = 1$, $OR(1,1) = 1$

Puertas Cuánticas

En la computación cuántica, las puertas cuánticas operan sobre qubits, que pueden estar en una superposición de los estados $|0\rangle$ y $|1\rangle$. Las puertas cuánticas se representan como matrices unitarias y preservan las propiedades cuánticas del qubit.

Puerta X (Puerta NOT Cuántica)

La puerta X, también conocida como puerta NOT cuántica, actúa de manera similar a la puerta NOT clásica, intercambiando $|0\rangle$ y $|1\rangle$:

$$X |0\rangle = |1\rangle$$
, $X |1\rangle = |0\rangle$

Su representación matricial es:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Puerta Hadamard (Puerta H)

La puerta Hadamard crea una superposición de los estados $|0\rangle$ y $|1\rangle$:

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Su representación matricial es:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Puerta Z (Puerta de Fase)

La puerta Z cambia la fase del estado $|1\rangle$ pero no afecta el estado $|0\rangle$:

$$Z|0\rangle = |0\rangle$$
, $Z|1\rangle = -|1\rangle$

La matriz que representa la puerta Z es:

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Comparación

La principal diferencia entre las puertas lógicas clásicas y las cuánticas es que las puertas cuánticas pueden manejar superposiciones y entrelazamientos, mientras que las puertas clásicas solo operan sobre bits en estados definidos.

Puertas Clásicas	Puertas Cuánticas
NOT	X (NOT Cuántica)
AND	CNOT
OR	Puerta Hadamard (H)

Circuito Cuántico Simple

Dibujemos ahora un circuito cuántico sencillo que combine varias puertas cuánticas, utilizando la puerta Hadamard y la puerta CNOT:

En este circuito: - El primer qubit pasa por una puerta Hadamard, que lo pone en superposición. - El segundo qubit está inicialmente en $|0\rangle$, pero pasa por una puerta CNOT controlada por el primer qubit, lo que puede cambiar su estado.

Análisis del Circuito Cuántico: $H \rightarrow Z \rightarrow H$

Ahora vamos a analizar un circuito cuántico que utiliza las puertas Hadamard $(H),\,Z,\,\mathrm{y}\,H.$ El circuito se representa como sigue:

$$|\psi\rangle$$
 — H — Z — H — $|\psi_{\rm final}\rangle$

Este circuito consiste en los siguientes pasos:

1. Aplicación de la puerta Hadamard (H):

La puerta Hadamard crea una superposición entre $|0\rangle$ y $|1\rangle$. Si el qubit inicialmente está en $|0\rangle$, entonces:

$$H|0\rangle = |+\rangle$$

Si el qubit está en $|1\rangle$, la puerta Hadamard lo transforma en:

$$H|1\rangle = |-\rangle$$

2. Aplicación de la puerta Z:

La puerta Z no afecta el estado $|+\rangle$, pero cambia el signo de $|-\rangle$ a $-|-\rangle$. Así, si el estado es $|+\rangle$, se mantiene igual, mientras que si es $|-\rangle$, se convierte en:

$$Z|+\rangle = |+\rangle$$

$$Z\left|-\right\rangle = -\left|-\right\rangle$$

3. Aplicación de la puerta Hadamard nuevamente:

Cuando aplicamos otra puerta H sobre $|+\rangle$ o $-|-\rangle$, volvemos a obtener los estados $|0\rangle$ o $|1\rangle$, respectivamente. En resumen:

$$HZH |0\rangle = |1\rangle$$

$$HZH |1\rangle = |0\rangle$$

Este circuito cuántico equivale a una puerta X (NOT cuántica), ya que intercambia los estados $|0\rangle$ y $|1\rangle$.

Conclusión

Este análisis demuestra cómo las puertas cuánticas $H,\,Z,\,y\,H$ pueden implementarse en un circuito cuántico simple que actúa como una puerta X o NOT cuántica. La capacidad de manipular qubits utilizando matrices unitarias como estas es fundamental para el diseño de circuitos cuánticos y para el desarrollo de algoritmos cuánticos avanzados.