	Homework 3 - Pedestrian Detection using Histogram of Oriented Gradients Topics:
	 Data Preparation Feature extraction: Histogram of Oriented Gradients Classification: Support Vector Machine Object Detection: Sliding Window + Non Maximum Supression Sources & Material
	 Datasets: https://www.cis.upenn.edu/~jshi/ped_html/ http://pascal.inrialpes.fr/data/human/ Dataset preprocessed: https://github.com/RashadGarayev/PersonDetection Paper: Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR05 https://hal.inria.fr/inria-00548512/document/
	Further Reading • https://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/ 1. Import Libraries • OpenCV • scikit-image
In [57]:	• scikit-learn import cv2 as cv import matplotlib.pyplot as plt from skimage.feature import hog from skimage import exposure import os from sklearn import svm import numpy as np from sklearn.metrics import accuracy_score, confusion_matrix, average_precision_score, fl_score, recall_score,
	2. Prepare Data 1. Create a dataset by loading all images • positive samples that contain pedestrians • negative samples that contain background objects 2. Split data into training and test data
In [58]:	<pre> • split positive examples • split negative examples # Read Image files from local file system positive_files = utils.ls("dataset/positive/") negative_files = utils.ls("dataset/negative/") split_pos = int(0.7*len(positive_files)) split_neg = int(0.7*len(negative_files)) train_positive_files, test_positive_files = positive_files[:split_pos], positive_files[split_pos:] train_negative_files, test_negative_files = negative_files[:split_neg], negative_files[split_neg:] </pre>
In [59]:	<pre># TODO: # Read the images and store them in their corresponding lists train_positive = [cv.imread(train_positive_files[i]) for i in range(len(train_positive_files))] train_negative = [cv.imread(train_negative_files[i]) for i in range(len(train_negative_files))] test_positive = [cv.imread(test_positive_files[i]) for i in range(len(test_positive_files))] test_negative = [cv.imread(test_negative_files[i]) for i in range(len(test_negative_files))] # You can visualize the examples:</pre>
	utils.showImages(train_positive[:6]) utils.showImages(train_negative[:6]) ### The provided HTML Representation of the provided HTML Repre
	3. Feature Extraction
	1. Apply Histogram of Oriented Gradients on all data 2. Create Training Labels HOG - Example from skimage import data
	<pre>img = data.astronaut() fd, hog_image = hog(img, orientations=8, pixels_per_cell=(16, 16),</pre>
	<pre>ax1.imshow(img, cmap=plt.cm.gray) ax1.set_title('Input image') # Rescale histogram for better display hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10)) ax2.axis('off') ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray) ax2.set_title('Histogram of Oriented Gradients') plt.show()</pre>
	Input image Histogram of Oriented Gradients Histogram of Oriented Gradients
In [61]:	<pre>3.1 Compute HOG for each Image def feature_extraction(img, ppc = 8, cpb = 2): """ img: A coloured image ppc: Pixels per cell cpb: Cells per block return: HOG feature vector The """ # TODO: compute HOG feature vector # - try different parameters # - the output should be a one-dimensional array fd, hog image = hog(img, orientations=8, pixels per cell=(ppc, ppc), cells per block=(cpb, cpb), visualize</pre>
	<pre># Training Samples train_positive_hog = np.array([feature_extraction(img) for img in train_positive]) train_negative_hog = np.array([feature_extraction(img) for img in train_negative]) # Testing Samples test_positive_hog = np.array([feature_extraction(img) for img in test_positive]) test_negative_hog = np.array([feature_extraction(img) for img in test_negative])</pre>
	<pre># Combine positive and negative samples into data matrices X = np.concatenate((train_positive_hog,train_negative_hog)) X_test = np.concatenate((test_positive_hog,test_negative_hog)) # Create array of corresponding labels Y = np.zeros(len(X)) Y[:len(train_positive_hog)] = 0 Y[len(train_positive_hog):] = 1 Y_test = np.zeros(len(X_test)) Y_test[:len(test_positive_hog):] = 0 Y_test[len(test_positive_hog):] = 1</pre>
	4. Classifier 1. Initialize Model 2. Train Model 3. Evaluate Model 4.1 & 4.2
In [63]: Out[63]:	
	<pre>confusion_matrix(Y_test,Y_pred) array([[651, 74],</pre>
In [67]:	<pre>F1: 0.9460981496379728 5. How to use the classifier on real images img = cv.imread("Images/FudanPed00036.png")[:,:,::-1] scale = 0.4 img = cv.resize(img, (int(scale*img.shape[1]),int(scale*img.shape[0]))) plt.imshow(img) plt.show()</pre>
	50 - 100 - 150 - 150
In [68]:	height, width = 128, 64 import utils def detect(img, svc, step = 10, height = 128, width = 64): """ img: any image svc: Support Vector Classifier step: Step size of window operation
	<pre>return: result: a matrix with the predicted labels result[i,j] != 0 means that at the given window a pedestriar bounding_boxes [N, 4]: A matrix of bounding boxes corresponding to found pedestrians. bounding_boxes[i,0:2] describe the upper left corner and bounding_boxes[i,2:4] describe the bottom right # Iterate over image and apply classifier result = np.zeros(img.shape[:2])-1 for i in range(0,img.shape[0]-height, step): for j in range(0,img.shape[1]-width, step): result[i,j] = svc.predict(feature_extraction(img[i:i+height,j:j+width]).reshape(1, -1))[0] y,x = np.nonzero(result==0) bounding_boxes = np.stack([x,y,x+width,y+height],1)</pre>
In [69]:	<pre>return result, bounding_boxes result, bounding_boxes = detect(img, svc) bounding_boxes_filtered = utils.non_max_suppression_fast(bounding_boxes, 0.5) res = img.copy() for i in range(len(bounding_boxes_filtered)): x_1, y_1 = bounding_boxes_filtered[i,0],bounding_boxes_filtered[i,1] x_2, y_2 = bounding_boxes_filtered[i,2],bounding_boxes_filtered[i,3] res = cv.rectangle(res.astype(np.float32), (x_1, y_1), (x_2, y_2), (0,255,0), 3).astype(np.uint8)</pre>
	plt.imshow(res) plt.show()
	6 Deploy Model on Multiple Scales The model only detects pedestrians in a specific resolution (64x128). Extend the application of the model to any resolution.
In [70]:	 Scale the images Detect people apply nonmaxima supression over multiple scales scales = [cv.GaussianBlur(img,(101,101),s) for s in range(1,10)] utils.showImages(scales)
In [71]:	<pre>plt.figure(figsize=(10,6)) for I in scales: result, bounding_boxes = detect(I, svc) bounding_boxes_filtered = utils.non_max_suppression_fast(bounding_boxes, 0.5) res = I.copy() for i in range(len(bounding_boxes_filtered)):</pre>
	<pre>x_1, y_1 = bounding_boxes_filtered[i,0], bounding_boxes_filtered[i,1] x_2, y_2 = bounding_boxes_filtered[i,2], bounding_boxes_filtered[i,3] res = cv.rectangle(res.astype(np.float32),(x_1, y_1),(x_2, y_2),(0,255,0),3).astype(np.uint8) plt.subplot(3,3,sub_ind) plt.imshow(res) sub_ind +=1</pre>
	0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
	100 - 100 200 300 400 0 100 200 300 400 0 100 200 300 400