Evaluating Performance II

Modeling Considerations

Accuracy

Computational Efficiency

Interpretability

Accuracy Supervised Learning Performance Evaluation

Regression

Classification Binary

Multiclass

Cost / Loss Functions

- Mean squared error (MSE)
- Mean absolute error (MAE)
- Huber loss

Cross entropy / log loss

Performance Evaluation Metrics and Tools

- Root mean squared error (RMSE)
- R², coefficient of determination

- Classification accuracy
- True positive rate (Recall)
- False positive rate
- Precision
- F₁ Score
- Area under the ROC curve (AUC)
- Receiver Operating Characteristic (ROC) curves

- Classification accuracy
- Micro-averaged F₁ Score
- Macro-averaged F₁ Score
- Confusion matrices
- Per class metrics (recall, precision, etc.)

We can always compute our accuracy metrics of a trained model on our test set...

...BUT, they may not be valid (i.e. may not reflect generalization performance) if:

1. The underlying data are NOT representative of what we will encounter in practice

2. The test data set DOES NOT remain separate from our model training process

Goal: estimate generalization performance

Spot the misstep

1

- 1. Your train a logistic regression algorithm on training data
- 2. You evaluate the generalization performance of your trained algorithm on the training data
- 3. Your estimated performance is exceptional!

NEVER USE THE SAME DATA
USED FOR TRAINING FOR
ESTIMATING GENERALIZATION
PERFORMANCE

- 1. Goal: predict the exchange rate for the U.S. Dollar vs British Pound (using 20 past observations)
- 2. You take your historical data, normalize it, then split it randomly into a training and test set **DATA SNOOPING!**
- 3. You train on the training data, test on the test data

Results:

Your predictions are correct 56% of the time

Estimate your profits...

All preprocessing should be based on the training data alone

Abu-Mostafa, Learning From Data

- 1. Goal: predict the Dow Jones Industrial average
- 2. You randomly split your data into a training and test dataset
- 3. Choose a model with lots of flexibility

- 4. You iterate on the following process hundreds of times:
 - 1. Train your model on the training data
 - 2. Test your model on the test data
 - 3. Evaluate performance on the test data

DATA SNOOPING!

5. Report that you were able to achieve 75% accuracy on your test set!

4

1. Goal: predict long-term performance of a "buy and hold" strategy in stocks

- 2. You collect 50 years of historical data and include all companies that are currently traded in the S&P500 SAMPLING BIAS!
- 3. You randomly split your data into a training and test dataset.
- 4. You assume you will strictly follow the "buy and hold" strategy
- 5. You then use apply your model on the current portfolio and predict that you will be rich in retirement!

 Abu-Mostafa, Learning From Data

Data snooping / leakage

If a test data set has affected **any step** in the learning process, its ability to assess the generalization performance has been **compromised**.

Sampling bias

Are the data we're using for machine learning representative of the population you will apply on in practice?

This work by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

Setosa

Versicolor

Virginica

All: 50 Setosa, 50 Versicolor, 50 Virginica

Train: 38 Setosa, 28 Versicolor, 34 Virginica

Test: 12 Setosa, 22 Versicolor, 16 Virginica

One form of sampling bias

Ideally training and test sets are independent and statistically representative of the population

Dividing up your dataset we violate independence assumptions

Reduce this bias with stratified sampling

Images from Sebastian Raschka (https://sebastianraschka.com/blog/2016/model-evaluation-selection-part1.html)

Sample Size

Ideally, we would use infinite samples in our training set representing the population

In practice, we try to use as much data as possible

Larger datasets may also reduce overfit

This work by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

Images from Sebastian Raschka (https://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html)

How do we use the metrics to evaluate performance?

Basic ML Experimental Design

Generalization Performance Evaluation

Model Comparison (experiment to determine the bestperforming algorithm)

Compare models according to metrics Only vary the model!

(don't vary the data, evaluation framework, etc. for a fair comparison)

Kyle Bradbury Evaluating Performance II Lecture 07 15

Train-Test Split

Learning model parameters and evaluating performance

- 1. If our test split is too small, our estimate of generalization performance will have high variance
- 2. Not using all data for training produces an algorithm that is pessimistically biased
- 3. For small datasets, this reduction in dataset size may be detrimental

What are Hyperparameters?

Parameters: Configuration variable that control model predictions that are adjusted during the training process based on data

Hyperparameters: parameters set prior to model training; they are not modified during the training procedure, but often impact the training procedure.

Hyperparameter Examples

- k in KNN
- Learning rates for gradient descent of your model fitting procedure
- Model architectures (e.g. number and types of layers in neural networks)

What happens if we re-evaluate the model with different

hyperparameters?

We may overfit to our held-out test data!

cannot use test data to select model

Training, Validation, Test Split

Learning model parameters AND hyperparameters and evaluating performance

Hyperparameters: parameters that control how your algorithm learns; typically set before training begins (e.g. k in KNN, learning rate, etc.)

What if you have a small dataset?

K-folds cross-validation

K-fold cross validation K = 3

train on first (total num of sample)*(k-1)/k test on last (total num of sample)/k

1 Performance evaluation: Train your model K times, once for each fold

Typical choices for k are 5 or 10

Average performance metrics across the splits

If k = N (number of samples): Leave-one-out cross validation

The number of splits impacts the bias-variance tradeoff of your performance estimates

(larger k means lower bias on the performance estimate, but with higher variance)

What if you need to select hyperparameters for a small dataset?

Nested cross-validation with hyperparameters

When to use each technique for performance evaluation?

none of these help with hyperparameter optimization only help with model generalization performance hyperparameter optimized between/among trainings not inside of the training

how to pick: optimize the generalizationn accessment

no hyperparameter optimization hyperparameter optimization

Large Dataset

Train-test split

Train-validation-test split

Small Dataset

Note: hyperparameter optimization can be considered a form of model comparison

Cross-validation

Nested Cross-validation

Kyle Bradbury Evaluating Performance II Lecture 07

K-folds cross validation results in k models

How do we pick which to use?

After performance has been validated, train on all the data you have before you apply the model in practice

1 Performance evaluation: Train your model K times, once for each fold

Model application: Once you've evaluated model performance and are ready apply the model then retrain the model on ALL of your data to prepare it for unseen data

Training Data

(this is not a model evaluation step, but only when you're ready to apply in practice)

Basic ML Experimental Design

Generalization Performance Evaluation

Compare models according to metrics

Kyle Bradbury Evaluating Performance II Lecture 07 27

2 How do we use the metrics to compare models?

But is the performance "better"?

2 Model Comparison

Is Model C actually better than A and B?

or just noises make it look slightly better

Is the comparison fair?

Model	Learning Rate	Batch Size	Training data size	Test data size
A (ResNet)	0.001	16	500	100
B (Inception v3)	0.001	32	500	100
C (VGG16)	0.010	32	505	100

at least training and test data need to be exactly the same

What other questions do I need to ask here?

Are my metrics uncertain?

Model-based uncertainty (Inherent stochasticity in the model training process)

- Order of training data
- Random initializations of model weights

Data-based uncertainty

- Train/test split sampling
- Noise in the data
- Errors in the target variable

Solution: retrain the model multiple times, varying the variable components; evaluate the variation of the estimates

Different data splits produce different results

Each bar represents test performance for model trained on different random splits of data

Smaller test datasets lead to greater variance in the estimate of generalization performance

Lecture 07

This work by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

Images from Sebastian Raschka (https://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html)

Iris dataset, KNN, k=3

Performance metrics have uncertainty

Bouthillier, X., Delaunay, P., Bronzi, M., Trofimov, A., Nichyporuk, B., Szeto, J., Sepah, N., Raff, E., Madan, K., Voleti, V., Kahou, S.E., Michalski, V., Serdyuk, D., Arbel, T., Pal, C., Varoquaux, G., Vincent, P., 2021. Accounting for Variance in Machine Learning Benchmarks. https://doi.org/10.48550/arXiv.2103.03098

Performance metric distributions

Sebastian Raschka

evaluation framework

are unchanged

Confidence intervals via bootstrap sampling

Sampling with replacement

Often used to estimate standard errors and confidence intervals

Integral part of model ensembles (i.e. bagging in random forests)

3 Other performance analyses?

Sensitivity / robustness analysis - vary one model hyperparameter and evaluate its effect on performance

Ablation study – remove one or more aspect of a model and compare performance before and after

Example Experimental Design

- Enables us to answer questions, typically related to comparing models (e.g. does Model A or Model B perform better)
- Requires that you ONLY vary one characteristic at a time (e.g. model architecture, hyperparameters, training data)
 (unless you are actively looking to estimate the variation induced by that characteristic)
- Requires that you control for uncertainty (in the model AND in the data)

Experimental Design Example

How well do models transfer to new domains?

Kyle Bradbury Evaluating Performance II Lecture 07 38

Experimental Design

What do we need to check to make sure that there is only one change between experimental conditions?

- Train/validation/test split
 - How it was split
 - The split itself
- Data imputation
- Feature selection
- Scaling
- Dimensionality reduction
- Feature transformations

- Model architecture
- Hyperparameters
 (e.g. learning rate,
 batch size, stopping
 criterion, choice of
 regularization)

Validation / test data should be the same for each model evaluation instance

Kyle Bradbury Evaluating Performance II Lecture 07 39

Experimental Design Example

Experimental Design

The only change between experimental conditions was the content of the training data

Training Procedure

Kornfein, C., Willard, F., Tang, C., Long, Y., Jain, S., Malof, J., Ren, S. and Bradbury, K., 2023. Closing the domain gap: blended synthetic imagery for climate object detection. *Environmental Data Science*, 2, p.e39.

Kornfein, C., Willard, F., Tang, C., Long, Y., Jain, S., Malof, J., Ren, S. and Bradbury, K., 2022. "Closing the Domain Gap-Blended Synthetic Imagery for Climate Object Detection." In 2022 Neural Information Processing Systems (NeurIPS) Climate Change Al Workshop.

Experimental Design Example

How well do models transfer to new domains?

Results shown in units of mean average precision (mAP)

Source domain	Target domain	Baseline $\pm 2\sigma$	Adding synthetic $\pm 2\sigma$	Average improvement%
EM NE NW SW	EM	0.822 ± 0.067 0.567 ± 0.019 0.358 ± 0.061 0.449 ± 0.160	$\begin{array}{c} \textbf{0.919} \pm 0.016 \\ \textbf{0.698} \pm 0.038 \\ \textbf{0.424} \pm 0.114 \\ \textbf{0.626} \pm 0.180 \end{array}$	11.8% 23.1% 18.4% 39.4%
EM NE NW SW	NE	0.387 ± 0.031 0.812 ± 0.028 0.666 ± 0.061 0.412 ± 0.045	$0.487 \pm 0.114 \\ 0.842 \pm \boxed{0.013} \\ 0.709 \pm 0.049 \\ 0.521 \pm 0.089$	25.8% $3.7%$ $6.5%$ $26.5%$
EM NE NW SW	NW	0.485 ± 0.064 0.746 ± 0.018 0.895 ± 0.071 0.659 ± 0.111	$\begin{array}{c} \textbf{0.521} \pm 0.054 \\ \textbf{0.770} \pm 0.032 \\ \textbf{0.915} \pm 0.023 \\ \textbf{0.693} \pm 0.066 \end{array}$	7.4% $3.2%$ $2.2%$ $5.2%$
EM NE NW SW	SW	0.093 ± 0.016 0.121 ± 0.029 0.149 ± 0.029 0.566 ± 0.035	$\begin{array}{c} \textbf{0.113} \pm 0.008 \\ \textbf{0.134} \pm 0.030 \\ \textbf{0.197} \pm 0.024 \\ \textbf{0.568} \pm 0.104 \end{array}$	20.9% $10.7%$ $32.2%$ $0.4%$
Within-domain average Cross-domain average		0.774 ± 0.050 0.425 ± 0.054	0.811 ± 0.039 0.491 ± 0.067	4.8% $15.7%$

Bolded items represent best model (comparing a baseline model and experimental condition model)

Standard deviations contextualize model uncertainty

- This represents retraining the model multiple times to measure performance variability
- For a result to be significant, the performance change needs to be large enough to be unlikely to be due to model variability

Kornfein, C., Willard, F., Tang, C., Long, Y., Jain, S., Malof, J., Ren, S. and Bradbury, K., 2023. Closing the domain gap: blended synthetic imagery for climate object detection. *Environmental Data Science*, 2, p.e39.

Kornfein, C., Willard, F., Tang, C., Long, Y., Jain, S., Malof, J., Ren, S. and Bradbury, K., 2022. "Closing the Domain Gap-Blended Synthetic Imagery for Climate Object Detection." In 2022 Neural Information Processing Systems (NeurIPS) Climate Change AI Workshop.

Modeling Considerations

Accuracy (and techniques to measure it)

Computational Efficiency

Interpretability

Computational Efficiency

Measure of how an algorithm's run time (or space requirements) grows as the input size grows

Complexity of making predictions with kNN

(compare an unseen sample to the training samples)

Assume we have n = 10,000, p = 2

The Euclidean distance between $\begin{bmatrix} x_{1,1} \\ x_{1,2} \end{bmatrix}$ and $\begin{bmatrix} x_{2,1} \\ x_{2,2} \end{bmatrix}$ can be measured as:

$$\sqrt{(x_{2,1}-x_{1,1})^2+(x_{2,2}-x_{1,2})^2}$$

That's two (p) distinct sets of operations dependent on the data We repeat that n times – once for each sample in the training dataset

O(np)

Computational Efficiency

Training time efficiency?

Test time efficiency?

How do each change with the size of our data?

Interpretability

Transparency (can I tell how the model works)

- Simulatability: can I contemplate the whole model at once?
- **Decomposability**: is there an intuitive explanation for each part of the model? (e.g. all patients with diastolic blood pressure over 150)

Explainability (post-hoc explanations)

Visualization, local explanations, explanations by example

(e.g. this tumor is classified as malignant because to the model it looks a lot like these other tumors)

Lipton, Zachary C. "The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability Is Both Important and Slippery." Queue 16, no. 3 (2018): 31–57.

Recidivism prediction algorithm

Performance as good as a black box model with 130+ factors; might include socio-economic info; expensive (software license); within software used in US justice system

IF	age between 18-20 and sex is male	THEN predict arrest (within 2 years)
ELSE IF	age between 21–23 and 2–3 prior offences	THEN predict arrest
ELSE IF	more than three priors	THEN predict arrest
ELSE	predict no arrest	

Rudin, Cynthia. "Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead." Nature Machine Intelligence 1, no. 5 (2019): 206–15.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Model-Agnostic Interpretability of Machine Learning." ArXiv Preprint ArXiv:1606.05386, 2016.

For further reading...

Raschka, Sebastian. "Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning." *ArXiv:1811.12808* [Cs, Stat], November 10, 2020. http://arxiv.org/abs/1811.12808.

Kohavi, Ron. "A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection." In *IJCAI*, 14:1137–45. Montreal, Canada, 1995. (<u>link</u>)