Anexo 4 — Métrica e Topologia Ressonante no Espaço ERIЯЗ

1. Introdução

Este anexo introduz uma estrutura métrica e topológica para o domínio multiplanar $\mathbb{E}=\mathbb{C}_i\oplus\mathbb{C}_j\oplus\mathbb{C}_k\subset\mathbb{H}$, a fim de fornecer base analítica e geométrica para o espaço ressonante da Teoria ERIA3. Essa estrutura é essencial para definir continuidade, limites, derivadas e integrais em sistemas rotacionais ressonantes.

2. Definição de Métrica Ressonante

Sejam
$$Z_1=z_i^{(1)}+z_j^{(1)}+z_k^{(1)}$$
 e $Z_2=z_i^{(2)}+z_j^{(2)}+z_k^{(2)}$ dois elementos de $\mathbb E$.

2.1 Métrica Euclidiana Induzida

$$d_E(Z_1,Z_2) := \sqrt{\sum_{I \in \{i,j,k\}} |z_I^{(1)} - z_I^{(2)}|^2}$$

2.2 Métrica de Fase Ressonante

$$d_R(Z_1,Z_2) := \sum_{I \in \{i,j,k\}} \left| rg(z_I^{(1)}) - rg(z_I^{(2)})
ight|$$

Essa métrica é sensível apenas à diferença angular, independentemente do módulo.

2.3 Métrica Composta (Generalizada)

$$d_{ERI ext{MH}}(Z_1,Z_2) := \sqrt{\sum_I \left[lpha |r_I^{(1)} - r_I^{(2)}|^2 + eta | heta_I^{(1)} - heta_I^{(2)}|^2
ight]}$$

Com $z_I=r_Ie^{I heta_I}$, e $lpha,eta\in\mathbb{R}_+$ são pesos de contribuição da magnitude e da fase.

3. Topologia Interna de ${\mathbb E}$

3.1 Base de Vizinhança

Definimos uma bola ressonante aberta:

$$B^R_arepsilon(Z_0) := \{Z \in \mathbb{E} : d_{\mathit{ERISH}}(Z, Z_0) < arepsilon \}$$

para $\varepsilon > 0$, induzindo uma topologia \mathcal{T}_{ERISH} sobre \mathbb{E} .

3.2 Continuidade

Uma função $f:\mathbb{E} o \mathbb{E}$ é dita **ressonantemente contínua** se:

$$orall arepsilon > 0, \exists \delta > 0: d_{ERISH}(Z_1,Z_2) < \delta \Rightarrow d_{ERISH}(f(Z_1),f(Z_2)) < arepsilon$$

3.3 Derivadas e Limites

O limite ressonante é definido da forma clássica usando a métrica d_{ERIRH} , e a derivada direcional de uma função $f:\mathbb{E} o \mathbb{E}$ é:

$$D_v f(Z) := \lim_{h o 0} rac{f(Z+hv)-f(Z)}{h}, \quad v\in \mathbb{E}$$

4. Espaço Vetorial Ressonante

Definimos $\mathbb E$ como um espaço vetorial real com produto interno:

$$\langle Z_1,Z_2
angle := \sum_{I\in\{i,j,k\}} \mathrm{Re}(z_I^{(1)}\cdot \overline{z_I^{(2)}})$$

Esse produto é positivo-definido e induz uma norma:

$$\|Z\| := \sqrt{\langle Z, Z
angle}$$

5. Implicações Físicas e Computacionais

- A métrica ressonante permite definir trajetórias suaves, campo de fases e gradientes rotacionais;
- A topologia induzida permite aplicar **métodos diferenciais**, integrais e computação numérica;
- Permite conexão com teorias de campos, variedades rotacionais e dinâmica física quântica.

6. Conclusão

A construção de uma métrica e topologia para o espaço $\mathbb E$ eleva a Teoria ERI $\mathfrak A$ 3 a um patamar funcional analiticamente robusto. Estão agora definidos os instrumentos para:

- Análise local de sistemas rotacionais;
- · Modelagem diferencial;
- Estabilidade de trajetórias;
- Formulação de dinâmica temporal (Anexo 5).

Essas ferramentas abrem caminho para a expansão formal da teoria para geometrias diferenciais, variedades ressonantes e dinâmicas hamiltonianas complexas.