Introducción al análisis de datos geoespaciales con QGIS y Python

María Janneth Rivera Reyna Universidad de Sonora Octubre 2025

Contenido

- Representación del espacio geográfico
- Ejemplo clásico
- Sistema de Información Geográfico (SIG)
- Datos geoespaciales
- Modelos de datos
- Formatos de datos ráster y vectoriales
- Operaciones básicas de geoprocesamiento
- Diseño cartográfico
- QGIS: manos a la obra
- Librerías Python
- Python: manos a la obra

Representación del espacio geográfico

Por naturaleza, vivimos en un mundo **espacial y temporal**, y estamos acostumbrados a interactuar con conceptos espaciales complejos:

Dónde? Cuándo? Cuánto?

Ejemplo clásico

En 1854, el Dr. John Snow cartografió un mapa con los casos de muerte por cólera en el Distrito de Soho, Londres.

Esto permitió encontrar el pozo que era la fuente de agua contaminada.

Sistema de Información Geográfica (SIG/GIS)

- Organizar
- Almacenar
- Manipular
- Analizar
- Visualizar
- Compartir

¿Qué son los datos geoespaciales?

Representación de un **objeto o entidad de la realidad** sobre la que se observa un fenómeno el cual tiene una **referencia geográfica** y un **atributo** que lo

describe y puede ser medido.

Algunas características:

- Posición absoluta
- Posición relativa
- Figura geométrica que lo representa/malla
- Atributos que lo describen

Modelos de datos

Datos ráster

Objetos continuos y discretos: elevación de un terreno, temperatura, uso de suelo.

Datos vectoriales

Objetos discretos: Una casa, un río, un bosque, municipios, etc.

Fuente: Eric Kleinjan, 2003

Formatos SIG ráster

GeoTIFF (.TIF, .TIFF)

- TFW es el archivo requerido para dar geolocalización al raster.
- XML es opcional y contiene los metadatos.
- AUX almacena las proyecciones y otra información.

Esri Grid (.adf)

- Dos tipos: enteros y puntos flotantes.
- Los atributos se almacenan en un valor de la tabla de atributos (VAT)

Formatos SIG vectoriales

Shapefile (.shp)

- .shp: guarda las entidades geométricas de los objetos
- .shx: guarda el índice de las entidades geométricas
- .dbf: guarda los atributos de cada entidad geométrica. Base de datos dBASE.
- Otros

Name	Туре	Size
26a.cpg	CPG File	1 KB
💶 26a.dbf	DBF File	85 KB
26a.prj	PRJ File	1 KB
26a.shp	SHP File	2,250 KB
26a.shx	SHX File	26 KB

CSV/GeoCSV (.csv)

- Variante Punto X/Y: columnas separadas para longitud y latitud. Sólo puntos.
- Variante WKT: una sola columna con un constructor de geometría Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, entre otros.

```
id; name; amount; city; geom
1; Andrés; 2.1; Londres; POINT(8.8249 47.2274)
2; Laura; 2.2; Berlín; POINT(8.5435 47.3768)
3; "Roberto; Bob"; 2.3; León; POINT(7.4397 46.9487)
```

GeoJSON (.json)

- Usa el estándar WKT
- Simple, ligero y sencillo. Muy utilizado en apps web.

```
"type": "Feature",
    "geometry": {
        "type": "Point",
        "coordinates": [125.6, 10.1]
    },
    "properties": {
        "name": "Dinagat Islands"
    }
}
```

Operaciones básicas de geoprocesamiento

Proyecciones y Sistema de Referencia de Coordenadas (SRC/CSR)

Una **Proyección cartográfica** es el método matemático que transforma la superficie curva de la tierra (3D) a un plano (2D).

Un **Sistema de Referencia de Coordenadas** (SRC) define como el mapa bidimensional representa las posiciones en la tierra:

- Sistemas de Coordenadas Geográficas (ubicar)
 - WGS84 (EPSG:4326): usa latitud y longitud en grados o decimales.
- Sistemas de Coordenadas Proyectadas (medir)
 - UTM Zona 12N (EPSG:32612): usa metros como unidad. Es adecuado para cálculos de áreas y distancias en el noroeste de México.
 - Mexico ITRF2008 / LCC (EPSG =6372): optimizado para México en metros. Oficial en INEGI.

Diseño cartográfico

• La semiótica cartográfica estudia cómo los mapas utilizan sistemas de signos y símbolos (colores, formas, líneas, texturas) para representar características geográficas, culturales y humanas, y cómo los usuarios interpretan esa información.

- Se enfoca en la **comunicación efectiva a través de elementos visuales** para transmitir un mensaje claro y comprensible.
- Es importante elegir símbolos, colores, transparencias, etc. que sean adecuados para nuestro mapa y que realmente se transmita el mensaje que queremos.

No existe una única forma de hacer un mapa, se trata de experimentar con distintas formas de diseño través del ejercicio creativo y la práctica del trabajo cotidiano.

¡Manos a la obra!

• **Práctica 1**: Crear puntos, líneas, polígonos en QGIS.

• **Práctica 2**: Explorar desigualdades espaciales en la ciudad de Hermosillo, Sonora.

Datos en Google Drive

Librerías Python

- GeoPandas: extensión de Pandas para el uso de datos geoespaciales
 - Pandas: estructura DataFrame
 - **Shapely**: operaciones de geometrías geoespaciales
 - Fiona: lectura y escritura de archivos geoespaciales
 - Pyproj: proyecciones cartográficas y transformaciones de coordenadas
- Rasterio: manipulación de datos ráster
- Geopy: geocodificación
- Folium: mapas interactivos
- **SciPy**: varias herramientas y algoritmos matemáticos, entre ellos el módulo stats (Estadística)

	BoroCode	BoroName	Shape_Leng	Shape_Area	geometry
0	5	Staten Island	330470.010332	1.623820e+09	MULTIPOLYGON (((970217.022 145643.332, 970227
1	4	Queens	896344.047763	3.045213e+09	MULTIPOLYGON (((1029606.077 156073.814, 102957
2	3	Brooklyn	741080.523166	1.937479e+09	MULTIPOLYGON (((1021176.479 151374.797, 102100
3	1	Manhattan	359299.096471	6.364715e+08	MULTIPOLYGON (((981219.056 188655.316, 980940
4	2	Bronx	464392.991824	1.186925e+09	MULTIPOLYGON (((1012821.806 229228.265, 101278

¡Manos a la obra!

• **Práctica 1**: Crear puntos, líneas, polígonos en QGIS.

Vámonos a Google Colab

• **Práctica 2**: Explorar desigualdades espaciales en la ciudad de Hermosillo, Sonora.

Vámonos a Google Colab

QGIS vs Python: ¿Cuándo usar cada herramienta?

Aspecto	QGIS	Python (GeoPandas / Folium)
Interfaz	Gráfica e intuitiva	Basada en código
Flujo de trabajo	Manual e interactivo	Reproducible y automatizable
Escalabilidad	Ideal para datasets pequeños o medianos	Eficiente con grandes volúmenes de datos
Personalización	Limitada a herramientas y plugins	Altamente flexible con librerías
Repetición de tareas	Manual	Automatizable con scripts
Presentación	Mapas estáticos listos para impresión	Mapas interactivos (web)
Integración	SIG tradicional	Ciencia de datos, estadística y machine learning

Bibliografía

- Repositorio CentroGeo. https://centrogeo.repositorioinstitucional.mx/jspui/
- Diplomado en Análisis de Información Geoespacial por CentroGeo. https://www.centrogeo.org.mx/
- Documentación QGIS.
 https://docs.qgis.org/3.40/es/docs/gentle_gis_introduction/index.html
- Documentación Geopandas. https://geopandas.org/en/stable/docs.html
- Documentación Folium. https://python-visualization.github.io/folium/latest/getting_started.html
- Índice de Marginación Urbana 2020, CONAPO.
 https://www.gob.mx/conapo/documentos/indices-de-marginacion-2020-284372

