

DEPARTAMENTO DE ESTATÍSTICA

09 setembro 2023

Lista 1

Prof. Dr. Antônio Eduardo Gomes Aluno: Bruno Gondim Toledo Matrícula: 15/0167636 Teoria de Resposta ao Item $2^{\circ}/2023$

1) Com base nos coeficientes estudados, você vê algum item que deva ser descartado? Justifique sua resposta.

Análise qualitativa

Observando o enunciado dos itens, estes aparentam discriminar bem pessoas muito altas de pessoas muito baixas. Outrossim, deve-se verificar se a discriminação é boa em pessoas de média estatura

Análise quantitativa

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.520 1.610 1.680 1.692 1.760 1.950
```

Observando brevemente a variável altura, percebemos que os dados abrangem uma variedade heterogênea de alturas, contendo de pessoas baixas a pessoas altas, passando por pessoas de estatura média. Portanto, é importante analisar os coeficientes específicos dos itens dadas as respostas para descobrir se os itens discriminam bem pessoas de todas as estaturas.

Correlação ponto-bisserial

```
##
          i 1
                     i 2
                               i3
                                          i4
                                                     i5
                                                               i6
                                                                          i7
                                                                                     i8
## 0.2469645 0.4787785 0.5458117 0.4268757 0.6221973 0.6104665 0.7003596 0.3418284
##
                    i10
                              i11
                                         i12
                                                    i13
## 0.4668594 0.7115912 0.5425708 0.6627509 0.6306598 0.7274669
```

Correlação bisserial

```
## [1] 0.1143967 0.3746564 0.4549973 0.3138965 0.5440253 0.5290392 0.6143726
## [8] 0.2694910 0.3505127 0.6279827 0.4303622 0.5704922 0.5426234 0.6536454
```

Alpha de Cronbach

```
## [1] 0.1143967 0.3746564 0.4549973 0.3138965 0.5440253 0.5290392 0.6143726
## [8] 0.2694910 0.3505127 0.6279827 0.4303622 0.5704922 0.5426234 0.6536454
```

Correlação de Pearson com a variável altura

statistic	p.value	id
-0.017	0.986	1
6.919	0.000	2
5.726	0.000	3
4.776	0.000	4
8.254	0.000	5
5.926	0.000	6
11.280	0.000	7
3.733	0.000	8
5.966	0.000	9
12.441	0.000	10
6.243	0.000	11
12.110	0.000	12
8.065	0.000	13
10.940	0.000	14

Analisando os coeficientes calculados, nota-se que os valores encontrados entre os coeficientes bisserial e ponto-bisserial apresentam comportamento monótono. Além disso, os valores encontrados para o alpha

de Cronbach são altos, indicando que os itens são homogêneos. Por fim, os valores encontrados para a correlação de Pearson entre as respostas e a variável altura são altos, indicando que os itens discriminam bem pessoas de todas as estaturas. Portanto, não há necessidade de descartar nenhum item.

2) Itens com valores maiores para o coeficiente de correlação ponto-bisserial tendem a apresentar maiores valores também para o coeficiente de correlação bisserial? Apresente um diagrama de dispersão com os valores dos dois coeficientes para os 14 itens.

Nota-se que existe correlação quase absoluta entre os coeficientes bisserial e ponto-bisserial. Portanto, itens com valores maiores para o coeficiente de correlação ponto-bisserial tendem a apresentar maiores valores também para o coeficiente de correlação bisserial.

3) Uma alternativa para o escore total como medida de proficiência (altura, neste caso) seria o escore padronizado:

$$Z_j = (T_j - \bar{T})/S_T, j = 1, ..., n$$

A partir dos valores do escore padronizado, obtenha uma estimativa da altura de cada indivíduo com a mesma média e desvio-padrão das alturas reais, isto é,

$$Hj = \mu + \sigma Z_j, j = 1, ..., n$$

, sendo μ a altura média real e σ o desvio-padrão da alturas reais.

Calcule a correlação entre as alturas reais e estimadas.

Elabore um diagrama de dispersão com as alturas reais e estimadas.

Notamos que foi possível estimar as alturas com uma precisão decente, obtendo uma correlação de 0.752 entre as alturas reais e estimadas.

4) Com base no coeficiente alpha de Cronbach, a consistência interna do questionário é satisfatória?

	value
All Items	0.8264329
Excluding i1	0.8393645
Excluding i2	0.8208836
Excluding i3	0.8156779
Excluding i4	0.8251010
Excluding i5	0.8102178
Excluding i6	0.8110140
Excluding i7	0.8031043
Excluding i8	0.8258060
Excluding i9	0.8231490
Excluding i10	0.8019874
Excluding i11	0.8176174
Excluding i12	0.8067220
Excluding i13	0.8093629
Excluding i14	0.8007482

Notamos que tanto para o questionário completo quanto avaliado item a item, o coeficiente α de Cronbach apresenta excelentes valores, indicando que os itens discriminam bem e não são redundantes. Portanto, a consistência interna do questionário é satisfatória.

5) Quais os itens com o menor e o maior índice de dificuldade?

	0	1	logit
i1	0.6777251	0.3222749	-0.7433369
i2	0.7582938	0.2417062	-1.1433482
i3	0.7914692	0.2085308	-1.3338042
i4	0.7345972	0.2654028	-1.0180734
i5	0.8056872	0.1943128	-1.4222264
i6	0.7962085	0.2037915	-1.3627639
i7	0.4691943	0.5308057	0.1233790
i8	0.9194313	0.0805687	-2.4346448
i9	0.3270142	0.6729858	0.7217206
i10	0.5260664	0.4739336	-0.1043600
i11	0.5971564	0.4028436	-0.3936307
i12	0.5876777	0.4123223	-0.3543734
i13	0.7251185	0.2748815	-0.9699949
i14	0.6824645	0.3175355	-0.7651207

Pela proporção das respostas, nota-se que os itens mais "difíceis", em ordem, são: Item 8; Item 6. Por outro lado, os três itens mais "fáceis" são, em ordem: Item 9; Item 7 e Item 10.

6) Quais itens apresentam maior índice de discriminação entre indivíduos altos e baixos?

	id	bisserial
i14	14	0.7274669
i10	10	0.7115912
i7	7	0.7003596
i12	12	0.6627509
i13	13	0.6306598
i5	5	0.6221973
i6	6	0.6104665
i3	3	0.5458117
i11	11	0.5425708
i2	2	0.4787785
i9	9	0.4668594
i4	4	0.4268757
i8	8	0.3418284
i1	1	0.2469645

Ordenando os valores do coeficiente ponto-bisserial, concluímos que os itens que apresentam maior índice de discriminação entre indivíduos altos e baixos são, em ordem: Item 14; 10 e 7.