## Cuadrados mágicos y matrices de permutación

Alexey Beshenov (cadadr@gmail.com)

13 de agosto de 2016

Un **cuadrado mágico** es una tabla de  $n \times n$  llenada con números naturales arbitrarios (posiblemente 0) tal que las sumas de filas y columnas son iguales al mismo número m. Por ejemplo:

$$15 = 4 + 9 + 2 = 3 + 5 + 7 = 8 + 1 + 6$$
 (sumas de filas)  
=  $4 + 3 + 8 = 9 + 5 + 1 = 2 + 7 + 6$  (sumas de columnas)

Notemos que si m=1, entonces en cada cuadrado mágico de  $n \times n$  con suma 1, los elementos de cada fila y cada columna deben ser 0, excepto uno, que debe ser igual a 1. Cuadrados de esta forma son conocidos como **matrices de permutación**.

Por ejemplo, para n=2 tenemos 2 posibilidades,  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  y  $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ , y para n=3 tenemos 6 posibilidades:

| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |

**Ejercicio**. Demuestre que hay n! matrices de permutación de  $n \times n$ .

Hay una biyección

matrices de permutación de  $n \times n \longleftrightarrow S_n := \{\text{permutaciones de } n \text{ elementos}\}.$ 

Entonces a cada permutación  $\sigma \in S_n$  corresponde una matriz de permutación  $P_{\sigma}$ .

Cuando tenemos dos tablas de  $n \times n$ , tiene sentido tomar su suma o diferencia (elemento por elemento, por ejemplo  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ) o multiplicar por algún número (por ejemplo,  $2 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ ).

Hoy deseo demostrar la siguiente propiedad curiosa:

Teorema. Cada cuadrado mágico es una suma de matrices de permutación.

Aquí hay un ejemplo de esta descomposición:

En general, esta expresión no es única. Por ejemplo, el cuadrado  $\begin{bmatrix} 4 & 9 & 2 \\ 3 & 5 & 7 \\ \hline 8 & 1 & 6 \end{bmatrix}$  tiene dos descomposiciones

diferentes:

$$\begin{vmatrix} 4 & 9 & 2 \\ 3 & 5 & 7 \\ 8 & 1 & 6 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} + 7 \cdot \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} + 2 \cdot \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} + 4 \cdot \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= 2 \cdot \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} + 6 \cdot \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

**Ejercicio**. Demuestre que la suma de matrices de permutación es siempre mágica. (Es la implicación fácil del teorema.)

Por ciertas razones (que voy a explicar en otra lección), es útil normalizar cada cuadrado mágico: si su suma es m, dividimos sus elementos por m. Luego, tenemos una tabla donde suma de fila y cada columna es 1. Por ejemplo,

Una tabla que satisface esta condición se llama **matriz doblemente estocástica**. En particular, cada matriz de permutación es doblemente estocástica. Se ve que nuestro teorema es una consecuencia del siguiente:

**Teorema de Birkhoff-von Neumann**. Cada matriz doblemente estocástica A puede ser escrita como una combinación de matrices de permutación  $P_{\sigma}$  con coeficientes  $\lambda_{\sigma} \geq 0$  tales que  $\sum_{\sigma \in S_n} \lambda_{\sigma} = 1$ :

$$A = \sum_{\sigma \in S_n} \lambda_{\sigma} P_{\sigma} \quad \text{para algunos coeficientes } \lambda_{\sigma} \geq 0 \text{ y } \sum_{\sigma \in S_n} \lambda_{\sigma} = 1.$$

En general, una suma  $\sum\limits_{1\leq i\leq n}\lambda_i\mathbf{x}_i$  con coeficientes no negativos  $\lambda_i\geq 0$  tales que  $\sum\limits_{1\leq i\leq n}\lambda_i=1$  se llama una **combinación convexa** de  $\mathbf{x}_1,\ldots,\mathbf{x}_n$ .

**Ejercicio**. Si  $A_1, \ldots, A_n$  son matrices doblemente estocásticas, entonces cada combinación convexa  $\sum\limits_{1 \leq i \leq n} \lambda_i A_i$ , donde  $\lambda_i \geq 0$  y  $\sum_i \lambda_i = 1$ , es también doblemente estocástica. En particular, combinaciones convexas de matrices de permutación son matrices doblemente estocásticas.

La parte difícil es de ver que para cada matriz doblemente estocástica A se puede encontrar matrices de permutación  $P_{\sigma}$  y coeficientes apropiados  $\lambda_{\sigma} \geq 0$ ,  $\sum_{\sigma} \lambda_{\sigma} = 1$ , de tal manera que  $A = \sum_{\sigma} \lambda_{\sigma} P_{\sigma}$ . Este va a ser nuestro objetivo de hoy. Primero veamos que es suficiente de demostrar el

**Lema clave**. Sea  $A = [x_{ij}]$  una matriz doblemente estocástica. Entonces existe una matriz de permutación  $P = [p_{ij}]$  tal que  $p_{ij} = 1 \Rightarrow x_{ij} \neq 0$ .

Veamos que este resultado es suficiente para demostrar el teorema de Birkhoff–von Neumann. Si para una matriz doblemente estocástica *A* tenemos tal matriz de permutación *P*, consideramos

$$\lambda := \min_{1 \le i,j \le n} \{ x_{ij} \mid p_{ij} \ne 0 \}.$$

Notamos que es un número positivo. Sean p,q índices tales que  $\lambda = x_{pq}$ . Si  $\lambda = 1$ , entonces A es una matriz de permutación y la afirmación del teorema es trivial. Si  $\lambda \neq 1$ , consideramos la matriz doblemente estocástica

$$A' := \frac{1}{1 - \lambda} (A - \lambda P).$$

Tenemos la combinación convexa

$$A = (1 - \lambda) A' + \lambda P,$$

donde P es una matriz de permutación y A' es una matriz doblemente estocástica y observamos que  $x'_{pq} = 0$  porque  $x_{pq} = \lambda$ , entonces A' tiene un coeficiente nulo más que A. Esto significa que podemos aplicar el mismo procedimiento a A' y el proceso se termina en cierto punto porque cada vez la matriz A' va a tener más ceros.

Por ejemplo, consideremos la matriz  $\begin{pmatrix} 1/5 & 4/5 & 0 \\ 2/5 & 1/5 & 2/5 \\ 2/5 & 0 & 3/5 \end{pmatrix}$ . Según la demostración de arriba, para escri-

birla como una combinación convexa de matrices de permutación, tenemos que escoger una matriz de permutación cuyos coeficientes no nulos corresponden a coeficientes no nulos en nuestra matriz. El lema

(que todavía no hemos demostrado) nos dice que es siempre posible. Tomemos por ejemplo  $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ .

Tenemos la combinación convexa

$$\begin{pmatrix} 1/5 & 4/5 & 0 \\ 2/5 & 1/5 & 2/5 \\ 2/5 & 0 & 3/5 \end{pmatrix} = \frac{4}{5} \begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

De la misma manera, para la primera matriz de la suma se obtiene una descomposición convexa

$$\begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Entonces,

$$\begin{pmatrix} 1/5 & 4/5 & 0 \\ 2/5 & 1/5 & 2/5 \\ 2/5 & 0 & 3/5 \end{pmatrix} = \frac{2}{5} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} + \frac{2}{5} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

## Demostración del lema clave

Nuestro lema sobre matrices de permutación se demuestra usando un famoso resultado combinatorio. Les recuerdo que un **grafo bipartito** G = (V, E) es un grafo tal que su conjunto de vértices es una unión disjunta  $V = X \sqcup Y$  tal que todas las aristas son de la forma (x, y) donde  $x \in X$  e  $y \in Y$ .

Para un subconjunto  $W \subset V$  su **entorno**  $N_G(W)$  es el conjunto de los vértices adyacentes a los vértices de W:

$$N_G(W) := \{ v \in V \mid (u, v) \in E \text{ para algún } u \in W \}.$$

**Teorema del matrimonio**. Sea  $G = (X \sqcup Y, E)$  un grafo bipartito con |X| = |Y|. Supongamos que

$$|N_G(W)| \ge |W|$$
 para cada  $W \subset X$ .

Entonces existe un **emparejamiento perfecto**, es decir una biyección  $\phi: X \to Y$  tal que  $(x, \phi(x)) \in E$  para cada  $x \in X$ .

Por ejemplo, si tenemos dos grupos de personas X e Y, ponemos una arista entre  $x \in X$  e  $y \in Y$  si x e y se gustan y quieren casarse.



El teorema de Hall dice que si a cada grupo de personas  $W \subset X$  le gustan por lo menos |W| personas del grupo Y, entonces todos del grupo X pueden casarse. En nuestro caso tenemos la siguiente solución:



No voy a recordar la demostración; voy a aplicar el teorema a nuestra situación. Para una matriz doblemente estocástica  $A = [x_{ij}]$  consideramos el grafo bipartito cuyos vértices representan las filas y columnas:

$$V := F \sqcup C := \{f_1, \ldots, f_n\} \sqcup \{c_1, \ldots, c_n\}.$$

Las aristas corresponden a coeficientes no nulos en el grafo:

$$E := \{ (f_i, c_i) \mid x_{ij} \neq 0 \}.$$

Primero verifiquemos que este grafo satisface la condición  $|N(I)| \ge |I|$  para cada  $I \subset F$ , es decir, si escogemos  $\ell$  filas  $I = \{f_{i_1}, \ldots, f_{i_\ell}\}$ , entonces hay por lo menos  $\ell$  columnas diferentes con coeficientes no nulos en las intersecciones con I. En efecto, notamos que

$$\sum_{\substack{i \in I \\ j \in N(I)}} x_{ij} = \sum_{i \in I} \sum_{j \in N(\{i\})} x_{ij} = \sum_{i \in I} \sum_{1 \le j \le n} x_{ij} = |I|,$$

porque la matriz es doblemente estocástica. De la misma manera, para cada  $J \subset C$  tenemos

$$|J| = \sum_{\substack{j \in J \\ i \in N(J)}} x_{ij}$$

Para  $I \subset F$  notamos que  $I \subseteq N(N(I))$ , y por lo tanto

$$|N(I)| = \sum_{\substack{j \in N(I) \\ i \in N(N(I))}} x_{ij} \ge \sum_{\substack{j \in N(I) \\ i \in I}} x_{ij} = |I|.$$

Entonces  $|N(I)| \ge |I|$  y podemos aplicar el teorema del matrimonio para demostrar que existe un emparejamiento perfecto  $M \subset E$ . Consideramos la matriz  $P = [p_{ij}]$  definida por

$$p_{ij} := \left\{ \begin{array}{ll} 1, & (f_i, c_j) \in M, \\ 0, & (f_i, c_j) \notin M. \end{array} \right.$$

Si M es un emparejamiento perfecto, entonces cada fila y cada columna de P tiene exactamente un coeficiente 1; es decir, P es una matriz de permutación. Si  $x_{ij}=0$ , entonces por la definición del grafo,  $(f_i,c_j) \notin E$  y  $p_{ij}=0$ , como deseamos.