

PECoP: Parameter Efficient Continual Pretraining for Action Quality Assessment

Amirhossein Dadashzadeh, Shuchao Duan, Alan Whone, Majid Mirmehdi University of Bristol, UK

Overview

Problem

Current AQA models face generalization issues due to limited labeled data and reliance on pretraining with general datasets, leading to significant domain shifts.

Key Contributions

- We introduce PECoP, a novel workflow for parameter-efficient continual pretraining, enhancing the transfer of knowledge from largescale datasets to AQA tasks and efficiently reducing the domain gap.
- We integrate 3D-Adapter layer for the first time in 3D CNNs for video analysis.
- We introduce a new annotated AQA dataset, PD4T, for the vision community to evaluate various actions performed by actual Parkinson's disease patients.

Sample frames from the PD4T dataset, from top to bottom, showing: gait, finger tapping, leg agility, and hand movement.

PECoP

> PECoP vs Baseline

Enhancing AQA with domain-specific pretraining.

Pretraining and Fine-tuning pipeline

- Supervised pretraining on domain-general data e.g. Kinetics-400.
- Self-supervised continual pretraining on domainspecific data e.g. target AQA dataset.
- Fine-tuning the pretrained model on AQA target task using SOTA AQA methods (e.g. CoRe [I], USDL/MUSDL [2], and TSA [3]).

3D-Adapter

The inception module (in I3D model) equipped with 3D-Adapter.

Experiments

Results

Summary of Spearman Rank Correlation (S) improvements for baseline methods with HPT [4] and PECoP.

Dataset	Baseline	S	+HPT	+PECoP
MTL-AQA [6]	MUSDL [2]	92.73	93.49 (†0.76%)	93.72 (10.99%)
JIGSAWS [5] (Avg)	MUSDL [2]	70	72 (†2%)	76 (†6%)
JIGSAWS [5] (Avg)	CoRe [1]	85	80 (↓5%)	89 (†4%)
PD4T (Avg)	CoRe [1]	60.31	63.05 (†2.74%)	63.87 (13.56%)
FineDiving [3]	CoRe [1]	90.61	=	93.15 (2.54%)
FineDiving [3]	TSA [3]	92.03	-	93.13 (1.1%)

Efficiency (PECoP vs HPT)

Continual Pretraining	#trainble parameters	#epochs	Size
HPT [4]	~13M	16	~54MB
PECoP	~1 M	8	∼4MB

Ablation Study

Comparison of PECoP with Domain-Specific SSL Pretraining (Dom-S), Domain-General Pretraining (Dom-G), and BatchNorm Tuning (HPT+BN) [4].

References

- [1] Yu, Xumin, et al. "Group-aware contrastive regression for action quality assessment." Proceedings of the IEEE/CVF international conference on computer vision. 2021.
- [2] Tang, Yansong, et al. "Uncertainty-aware score distribution learning for action quality assessment." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.
- [3] Xu, Jinglin, et al. "Finediving: A fine-grained dataset for procedure-aware action quality assessment." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- [4] Reed, Colorado J., et al. "Self-supervised pretraining improves self-supervised pretraining." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022.

