# STAT 626: Outline of Lecture 10

(Partial) Correlogram: ACF and PACF of ARMA Models (§3.4)

### 1. Review:

One-Sided MA( $\infty$ ) or Causal Process: Is a time series involving only the past and present values of a white noise (shocks, inputs):

$$x_t = \sum_{j=0}^{\infty} \psi_j w_{t-j}$$

with absolutely summable coefficients. Its autocovariance function is given by

$$\gamma(h) = \sigma_w^2 \sum_{j=0}^{\infty} \psi_{j+h} \psi_j.$$

2. Autoregressive and Moving Average (ARMA (p,q)) Models:

$$x_t = \phi_1 x_{t-1} + \ldots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \ldots + \theta_q w_{t-q}.$$

OR

$$\phi(B)x_t = \theta(B)w_t,$$

where  $\phi(z)$ ,  $\theta(z)$  are the AR and MA polynomials, respectively.

Focus on ARMA(1,1) Models:  $x_t = \phi x_{t-1} + w_t + \theta w_{t-1}$ .

3. Causal Solution: When  $x_t$  can be written as a one-sided MA or linear process, i.e. in terms of the past and present values of the WN:

$$w_t, w_{t-1}, \ldots$$

This is important for computing the ACF of various ARMA models.

4. Invertible ARMA:  $w_t$  can be written in terms of the past and present values, i.e.

$$x_t, x_{t-1}, \ldots,$$

OR

$$w_t = x_t + \pi_1 x_{t-1} + \pi_2 x_{t-2} + \ldots = \sum_{j=0}^{\infty} \pi_j x_{t-j}.$$

This is important for parameter estimation and computing predictors.

- 5. What is the partial correlation between X and Y adjusted for the effect of Z?
- 6. What is the partial autocorrelation function (PACF) of a stationary time series?

The correlation coefficient between  $x_t$  and  $x_{t+h}$  after removing the linear effects of the intervening variables  $\{x_{t+1}, \ldots, x_{t+h-1}\}$  is called the **lag-**h **partial autocorrelation** of a stationary time series and denoted by  $\phi_{hh}$ ,  $h = 1, 2, \ldots$ .

The sequence or the function  $\phi_{hh}$ , h = 1, 2, ..., is called the **partial autocorrelation** function (PACF) of the time series.

The plot of  $\phi_{hh}$  vs h = 1, 2, ... is call the **partial correlogram** of the time series.

What is the shape of the partial correlogram of an AR(1)? AR(p)?

What is the shape of the partial correlogram of and MA(q)?

What is the shape of the partial correlogram of and ARMA(p,q)?

with initial conditions

$$\psi_j - \sum_{k=1}^j \phi_k \psi_{j-k} = \theta_j, \quad 0 \le j < \max(p, q+1).$$
 (3.41)

The general solution depends on the roots of the AR polynomial  $\phi(z) = 1 - \phi_1 z - \cdots - \phi_p z^p$ , as seen from (3.40). The specific solution will, of course, depend on the initial conditions.

Consider the ARMA process given in (3.27),  $x_t = .9x_{t-1} + .5w_{t-1} + w_t$ . Because  $\max(p, q+1) = 2$ , using (3.41), we have  $\psi_0 = 1$  and  $\psi_1 = .9 + .5 = 1.4$ . By (3.40), for  $j = 2, 3, \ldots$ , the  $\psi$ -weights satisfy  $\psi_j - .9\psi_{j-1} = 0$ . The general solution is  $\psi_j = c.9^j$ . To find the specific solution, use the initial condition  $\psi_1 = 1.4$ , so 1.4 = .9c or c = 1.4/.9. Finally,  $\psi_j = 1.4(.9)^{j-1}$ , for  $j \geq 1$ , as we saw in Example 3.7.

To view, for example, the first 50  $\psi$ -weights in R, use:

```
1 ARMAtoMA(ar=.9, ma=.5, 50) # for a list
2 plot(ARMAtoMA(ar=.9, ma=.5, 50)) # for a graph
```

## 3.4 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process,  $x_t = \theta(B)w_t$ , where  $\theta(B) = 1 + \theta_1 B + \cdots + \theta_q B^q$ . Because  $x_t$  is a finite linear combination of white noise terms, the process is stationary with mean

$$E(x_t) = \sum_{j=0}^{q} \theta_j E(w_{t-j}) = 0,$$

where we have written  $\theta_0 = 1$ , and with autocovariance function

$$\gamma(h) = \cot(x_{t+h}, x_t) = \cot\left(\sum_{j=0}^{q} \theta_j w_{t+h-j}, \sum_{k=0}^{q} \theta_k w_{t-k}\right)$$

$$= \begin{cases} \sigma_w^2 \sum_{j=0}^{q-h} \theta_j \theta_{j+h}, & 0 \le h \le q \\ 0 & h > q. \end{cases}$$
(3.42)

Recall that  $\gamma(h) = \gamma(-h)$ , so we will only display the values for  $h \geq 0$ . The cutting off of  $\gamma(h)$  after q lags is the signature of the MA(q) model. Dividing (3.42) by  $\gamma(0)$  yields the ACF of an MA(q):

$$\rho(h) = \begin{cases} \frac{\sum_{j=0}^{q-h} \theta_j \theta_{j+h}}{1 + \theta_1^2 + \dots + \theta_q^2} & 1 \le h \le q \\ 0 & h > q. \end{cases}$$
(3.43)

For a causal ARMA(p,q) model,  $\phi(B)x_t = \theta(B)w_t$ , where the zeros of  $\phi(z)$  are outside the unit circle, write

$$x_t = \sum_{j=0}^{\infty} \psi_j w_{t-j}.$$
 (3.44)

It follows immediately that  $E(x_t) = 0$ . Also, the autocovariance function of  $x_t$  can be written as

$$\gamma(h) = \text{cov}(x_{t+h}, x_t) = \sigma_w^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}, \quad h \ge 0.$$
(3.45)

We could then use (3.40) and (3.41) to solve for the  $\psi$ -weights. In turn, we could solve for  $\gamma(h)$ , and the ACF  $\rho(h) = \gamma(h)/\gamma(0)$ . As in Example 3.9, it is also possible to obtain a homogeneous difference equation directly in terms of  $\gamma(h)$ . First, we write

$$\gamma(h) = \text{cov}(x_{t+h}, x_t) = \text{cov}\left(\sum_{j=1}^{p} \phi_j x_{t+h-j} + \sum_{j=0}^{q} \theta_j w_{t+h-j}, x_t\right)$$

$$= \sum_{j=1}^{p} \phi_j \gamma(h-j) + \sigma_w^2 \sum_{j=h}^{q} \theta_j \psi_{j-h}, \quad h \ge 0,$$
(3.46)

where we have used the fact that, for  $h \geq 0$ ,

$$cov(w_{t+h-j}, x_t) = cov(w_{t+h-j}, \sum_{k=0}^{\infty} \psi_k w_{t-k}) = \psi_{j-h} \sigma_w^2.$$

From (3.46), we can write a general homogeneous equation for the ACF of a causal ARMA process:

$$\gamma(h) - \phi_1 \gamma(h-1) - \dots - \phi_p \gamma(h-p) = 0, \quad h \ge \max(p, q+1),$$
 (3.47)

with initial conditions

$$\gamma(h) - \sum_{j=1}^{p} \phi_j \gamma(h-j) = \sigma_w^2 \sum_{j=h}^{q} \theta_j \psi_{j-h}, \quad 0 \le h < \max(p, q+1).$$
 (3.48)

Dividing (3.47) and (3.48) through by  $\gamma(0)$  will allow us to solve for the ACF,  $\rho(h) = \gamma(h)/\gamma(0)$ .

# Example 3.12 The ACF of an AR(p)

In Example 3.9 we considered the case where p=2. For the general case, it follows immediately from (3.47) that

$$\rho(h) - \phi_1 \rho(h-1) - \dots - \phi_p \rho(h-p) = 0, \quad h \ge p.$$
 (3.49)

Let  $z_1, \ldots, z_r$  denote the roots of  $\phi(z)$ , each with multiplicity  $m_1, \ldots, m_r$ , respectively, where  $m_1 + \cdots + m_r = p$ . Then, from (3.39), the general solution is

#### Example 3.10 An AR(2) with Complex Roots

Figure 3.3 shows n = 144 observations from the AR(2) model

$$x_t = 1.5x_{t-1} - .75x_{t-2} + w_t$$

with  $\sigma_w^2=1$ , and with complex roots chosen so the process exhibits pseudocyclic behavior at the rate of one cycle every 12 time points. The autoregressive polynomial for this model is  $\phi(z)=1-1.5z+.75z^2$ . The roots of  $\phi(z)$  are  $1\pm i/\sqrt{3}$ , and  $\theta=\tan^{-1}(1/\sqrt{3})=2\pi/12$  radians per unit time. To convert the angle to cycles per unit time, divide by  $2\pi$  to get 1/12 cycles per unit time. The ACF for this model is shown in §3.4, Figure 3.4.

To calculate the roots of the polynomial and solve for arg in R:

```
z = c(1,-1.5,.75)
                         # coefficients of the polynomial
                         # print one root: 1+0.57735i = 1 + i/sqrt(3)
_2 (a = polyroot(z)[1])
3 \operatorname{arg} = \operatorname{Arg}(a)/(2*pi)
                         # arg in cycles/pt
                          # = 12, the pseudo period
4 1/arg
 To reproduce Figure 3.3:
1 set.seed(90210)
_{2} ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
g plot(1:144/12, ar2, type="l", xlab="Time (one unit = 12 points)")
4 abline(v=0:12, lty="dotted", lwd=2)
 To calculate and display the ACF for this model:
_{1} ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
2 plot(ACF, type="h", xlab="lag")
3 abline(h=0)
```

We now exhibit the solution for the general homogeneous difference equation of order p:

$$u_n - \alpha_1 u_{n-1} - \dots - \alpha_p u_{n-p} = 0, \quad \alpha_p \neq 0, \quad n = p, p+1, \dots$$
 (3.38)

The associated polynomial is

$$\alpha(z) = 1 - \alpha_1 z - \dots - \alpha_p z^p.$$

Suppose  $\alpha(z)$  has r distinct roots,  $z_1$  with multiplicity  $m_1, z_2$  with multiplicity  $m_2, \ldots$ , and  $z_r$  with multiplicity  $m_r$ , such that  $m_1 + m_2 + \cdots + m_r = p$ . The general solution to the difference equation (3.38) is

$$u_n = z_1^{-n} P_1(n) + z_2^{-n} P_2(n) + \dots + z_r^{-n} P_r(n),$$
(3.39)

where  $P_j(n)$ , for  $j=1,2,\ldots,r$ , is a polynomial in n, of degree  $m_j-1$ . Given p initial conditions  $u_0,\ldots,u_{p-1}$ , we can solve for the  $P_j(n)$  explicitly.

### Example 3.11 The $\psi$ -weights for an ARMA Model

For a causal ARMA(p,q) model,  $\phi(B)x_t = \theta(B)w_t$ , where the zeros of  $\phi(z)$  are outside the unit circle, recall that we may write

#### THE PARTIAL AUTOCORRELATION FUNCTION (PACF)

We have seen in (3.43), for MA(q) models, the ACF will be zero for lags greater than q. Moreover, because  $\theta_q \neq 0$ , the ACF will not be zero at lag q. Thus, the ACF provides a considerable amount of information about the order of the dependence when the process is a moving average process. If the process, however, is ARMA or AR, the ACF alone tells us little about the orders of dependence. Hence, it is worthwhile pursuing a function that will behave like the ACF of MA models, but for AR models, namely, the partial autocorrelation function (PACF).

To motivate the idea, consider a causal AR(1) model,  $x_t = \phi x_{t-1} + w_t$ . Then,

$$\gamma_x(2) = \operatorname{cov}(x_t, x_{t-2}) = \operatorname{cov}(\phi x_{t-1} + w_t, x_{t-2})$$
$$= \operatorname{cov}(\phi^2 x_{t-2} + \phi w_{t-1} + w_t, x_{t-2}) = \phi^2 \gamma_x(0).$$

This result follows from causality because  $x_{t-2}$  involves  $\{w_{t-2}, w_{t-3}, \ldots\}$ , which are all uncorrelated with  $w_t$  and  $w_{t-1}$ . The correlation between  $x_t$  and  $x_{t-2}$  is not zero, as it would be for an MA(1), because  $x_t$  is dependent on  $x_{t-2}$  through  $x_{t-1}$ . Suppose we break this chain of dependence by removing (or partial out) the effect  $x_{t-1}$ . That is, we consider the correlation between  $x_t - \phi x_{t-1}$  and  $x_{t-2} - \phi x_{t-1}$ , because it is the correlation between  $x_t$  and  $x_{t-2}$  with the linear dependence of each on  $x_{t-1}$  removed. In this way, we have broken the dependence chain between  $x_t$  and  $x_{t-2}$ . In fact,

$$cov(x_t - \phi x_{t-1}, x_{t-2} - \phi x_{t-1}) = cov(w_t, x_{t-2} - \phi x_{t-1}) = 0.$$

Hence, the tool we need is partial autocorrelation, which is the correlation between  $x_s$  and  $x_t$  with the linear effect of everything "in the middle" removed.

To formally define the PACF for mean-zero stationary time series, let  $\widehat{x}_{t+h}$ , for  $h \geq 2$ , denote the regression<sup>3</sup> of  $x_{t+h}$  on  $\{x_{t+h-1}, x_{t+h-2}, \dots, x_{t+1}\}$ , which we write as

$$\widehat{x}_{t+h} = \beta_1 x_{t+h-1} + \beta_2 x_{t+h-2} + \dots + \beta_{h-1} x_{t+1}. \tag{3.53}$$

No intercept term is needed in (3.53) because the mean of  $x_t$  is zero (otherwise, replace  $x_t$  by  $x_t - \mu_x$  in this discussion). In addition, let  $\widehat{x}_t$  denote the regression of  $x_t$  on  $\{x_{t+1}, x_{t+2}, \dots, x_{t+h-1}\}$ , then

$$\widehat{x}_t = \beta_1 x_{t+1} + \beta_2 x_{t+2} + \dots + \beta_{h-1} x_{t+h-1}. \tag{3.54}$$

Because of stationarity, the coefficients,  $\beta_1, \ldots, \beta_{h-1}$  are the same in (3.53) and (3.54); we will explain this result in the next section.

<sup>&</sup>lt;sup>3</sup> The term regression here refers to regression in the population sense. That is,  $\widehat{x}_{t+h}$  is the linear combination of  $\{x_{t+h-1}, x_{t+h-2}, \dots, x_{t+1}\}$  that minimizes the mean squared error  $E(x_{t+h} - \sum_{j=1}^{h-1} \alpha_j x_{t+j})^2$ .

Definition 3.9 The partial autocorrelation function (PACF) of a stationary process,  $x_t$ , denoted  $\phi_{hh}$ , for h = 1, 2, ..., is

$$\phi_{11} = \operatorname{corr}(x_{t+1}, x_t) = \rho(1) \tag{3.55}$$

and

$$\phi_{hh} = \text{corr}(x_{t+h} - \hat{x}_{t+h}, x_t - \hat{x}_t), \quad h \ge 2.$$
 (3.56)

Both  $(x_{t+h} - \widehat{x}_{t+h})$  and  $(x_t - \widehat{x}_t)$  are uncorrelated with  $\{x_{t+1}, \dots, x_{t+h-1}\}$ . The PACF,  $\phi_{hh}$ , is the correlation between  $x_{t+h}$  and  $x_t$  with the linear dependence of  $\{x_{t+1}, \dots, x_{t+h-1}\}$  on each, removed. If the process  $x_t$  is Gaussian, then  $\phi_{hh} = \operatorname{corr}(x_{t+h}, x_t \mid x_{t+1}, \dots, x_{t+h-1})$ ; that is,  $\phi_{hh}$  is the correlation coefficient between  $x_{t+h}$  and  $x_t$  in the bivariate distribution of  $(x_{t+h}, x_t)$  conditional on  $\{x_{t+1}, \dots, x_{t+h-1}\}$ .

#### Example 3.14 The PACF of an AR(1)

Consider the PACF of the AR(1) process given by  $x_t = \phi x_{t-1} + w_t$ , with  $|\phi| < 1$ . By definition,  $\phi_{11} = \rho(1) = \phi$ . To calculate  $\phi_{22}$ , consider the regression of  $x_{t+2}$  on  $x_{t+1}$ , say,  $\hat{x}_{t+2} = \beta x_{t+1}$ . We choose  $\beta$  to minimize

$$E(x_{t+2} - \widehat{x}_{t+2})^2 = E(x_{t+2} - \beta x_{t+1})^2 = \gamma(0) - 2\beta\gamma(1) + \beta^2\gamma(0).$$

Taking derivatives with respect to  $\beta$  and setting the result equal to zero, we have  $\beta = \gamma(1)/\gamma(0) = \rho(1) = \phi$ . Next, consider the regression of  $x_t$  on  $x_{t+1}$ , say  $\hat{x}_t = \beta x_{t+1}$ . We choose  $\beta$  to minimize

$$E(x_t - \hat{x}_t)^2 = E(x_t - \beta x_{t+1})^2 = \gamma(0) - 2\beta\gamma(1) + \beta^2\gamma(0).$$

This is the same equation as before, so  $\beta = \phi$ . Hence,

$$\phi_{22} = \operatorname{corr}(x_{t+2} - \hat{x}_{t+2}, x_t - \hat{x}_t) = \operatorname{corr}(x_{t+2} - \phi x_{t+1}, x_t - \phi x_{t+1})$$
$$= \operatorname{corr}(w_{t+2}, x_t - \phi x_{t+1}) = 0$$

by causality. Thus,  $\phi_{22} = 0$ . In the next example, we will see that in this case,  $\phi_{hh} = 0$  for all h > 1.

# Example 3.15 The PACF of an AR(p)

The model implies  $x_{t+h} = \sum_{j=1}^{p} \phi_j x_{t+h-j} + w_{t+h}$ , where the roots of  $\phi(z)$  are outside the unit circle. When h > p, the regression of  $x_{t+h}$  on  $\{x_{t+1}, \dots, x_{t+h-1}\}$ , is

$$\widehat{x}_{t+h} = \sum_{j=1}^{p} \phi_j x_{t+h-j}.$$

We have not proved this obvious result yet, but we will prove it in the next section. Thus, when h > p,

$$\phi_{hh} = \operatorname{corr}(x_{t+h} - \hat{x}_{t+h}, x_t - \hat{x}_t) = \operatorname{corr}(w_{t+h}, x_t - \hat{x}_t) = 0,$$



**Fig. 3.4.** The ACF and PACF of an AR(2) model with  $\phi_1 = 1.5$  and  $\phi_2 = -.75$ .

because, by causality,  $x_t - \hat{x}_t$  depends only on  $\{w_{t+h-1}, w_{t+h-2}, \ldots\}$ ; recall equation (3.54). When  $h \leq p$ ,  $\phi_{pp}$  is not zero, and  $\phi_{11}, \ldots, \phi_{p-1,p-1}$  are not necessarily zero. We will see later that, in fact,  $\phi_{pp} = \phi_p$ . Figure 3.4 shows the ACF and the PACF of the AR(2) model presented in Example 3.10.

To reproduce Figure 3.4 in R, use the following commands:

```
1 ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]
2 PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)
3 par(mfrow=c(1,2))
4 plot(ACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)
5 plot(PACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)
```

# Example 3.16 The PACF of an Invertible MA(q)

For an invertible MA(q), we can write  $x_t = -\sum_{j=1}^{\infty} \pi_j x_{t-j} + w_t$ . Moreover, no finite representation exists. From this result, it should be apparent that the PACF will never cut off, as in the case of an AR(p).

For an MA(1),  $x_t = w_t + \theta w_{t-1}$ , with  $|\theta| < 1$ , calculations similar to Example 3.14 will yield  $\phi_{22} = -\theta^2/(1+\theta^2+\theta^4)$ . For the MA(1) in general, we can show that

$$\phi_{hh} = -\frac{(-\theta)^h (1 - \theta^2)}{1 - \theta^{2(h+1)}}, \quad h \ge 1.$$

In the next section, we will discuss methods of calculating the PACF. The PACF for MA models behaves much like the ACF for AR models. Also, the PACF for AR models behaves much like the ACF for MA models. Because an invertible ARMA model has an infinite AR representation, the PACF will not cut off. We may summarize these results in Table 3.1.

|      | AR(p)                  | $\mathrm{MA}(q)$       | ARMA(p,q) |
|------|------------------------|------------------------|-----------|
| ACF  | Tails off              | Cuts off after lag $q$ | Tails off |
| PACF | Cuts off after lag $p$ | Tails off              | Tails off |

Table 3.1. Behavior of the ACF and PACF for ARMA Models

### Example 3.17 Preliminary Analysis of the Recruitment Series

We consider the problem of modeling the Recruitment series shown in Figure 1.5. There are 453 months of observed recruitment ranging over the years 1950-1987. The ACF and the PACF given in Figure 3.5 are consistent with the behavior of an AR(2). The ACF has cycles corresponding roughly to a 12-month period, and the PACF has large values for h=1,2 and then is essentially zero for higher order lags. Based on Table 3.1, these results suggest that a second-order (p=2) autoregressive model might provide a good fit. Although we will discuss estimation in detail in §3.6, we ran a regression (see §2.2) using the data triplets  $\{(x; z_1, z_2) : (x_3; x_2, x_1), (x_4; x_3, x_2), \ldots, (x_{453}; x_{452}, x_{451})\}$  to fit a model of the form

$$x_t = \phi_0 + \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$$

for t = 3, 4, ..., 453. The values of the estimates were  $\hat{\phi}_0 = 6.74_{(1.11)}$ ,  $\hat{\phi}_1 = 1.35_{(.04)}$ ,  $\hat{\phi}_2 = -.46_{(.04)}$ , and  $\hat{\sigma}_w^2 = 89.72$ , where the estimated standard errors are in parentheses.

The following R code can be used for this analysis. We use the script acf2 to print and plot the ACF and PACF; see Appendix R for details.

```
1 acf2(rec, 48)  # will produce values and a graphic
2 (regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
3 regr$asy.se.coef  # standard errors of the estimates
```

# 3.5 Forecasting

In forecasting, the goal is to predict future values of a time series,  $x_{n+m}$ , m = 1, 2, ..., based on the data collected to the present,  $\mathbf{x} = \{x_n, x_{n-1}, ..., x_1\}$ . Throughout this section, we will assume  $x_t$  is stationary and the model parameters are known. The problem of forecasting when the model parameters are unknown will be discussed in the next section; also, see Problem 3.26. The minimum mean square error predictor of  $x_{n+m}$  is

$$x_{n+m}^n = E(x_{n+m} \mid \boldsymbol{x}) \tag{3.57}$$

because the conditional expectation minimizes the mean square error



Fig. 3.5. ACF and PACF of the Recruitment series. Note that the lag axes are in terms of season (12 months in this case).

$$E\left[x_{n+m} - g(\boldsymbol{x})\right]^2,\tag{3.58}$$

where  $g(\mathbf{x})$  is a function of the observations  $\mathbf{x}$ ; see Problem 3.14.

First, we will restrict attention to predictors that are linear functions of the data, that is, predictors of the form

$$x_{n+m}^{n} = \alpha_0 + \sum_{k=1}^{n} \alpha_k x_k, \tag{3.59}$$

where  $\alpha_0, \alpha_1, \ldots, \alpha_n$  are real numbers. Linear predictors of the form (3.59) that minimize the mean square prediction error (3.58) are called best linear predictors (BLPs). As we shall see, linear prediction depends only on the second-order moments of the process, which are easy to estimate from the data. Much of the material in this section is enhanced by the theoretical material presented in Appendix B. For example, Theorem B.3 states that if the process is Gaussian, minimum mean square error predictors and best linear predictors are the same. The following property, which is based on the Projection Theorem, Theorem B.1 of Appendix B, is a key result.

#### Property 3.3 Best Linear Prediction for Stationary Processes

Given data  $x_1, \ldots, x_n$ , the best linear predictor,  $x_{n+m}^n = \alpha_0 + \sum_{k=1}^n \alpha_k x_k$ , of  $x_{n+m}$ , for  $m \ge 1$ , is found by solving

$$E\left[\left(x_{n+m} - x_{n+m}^{n}\right)x_{k}\right] = 0, \quad k = 0, 1, \dots, n,$$
(3.60)

 $where |x_0| = 1, for |\alpha_0, \alpha_1, \dots |\alpha_n|$ 

The equations specified in (3.60) are called the prediction equations, and they are used to solve for the coefficients  $\{\alpha_0, \alpha_1, \dots, \alpha_n\}$ . If  $E(x_t) = \mu$ , the first equation (k = 0) of (3.60) implies

$$E(x_{n+m}^n) = E(x_{n+m}) = \mu.$$

Thus, taking expectation in (3.59), we have

$$\mu = \alpha_0 + \sum_{k=1}^{n} \alpha_k \mu$$
 or  $\alpha_0 = \mu \left(1 - \sum_{k=1}^{n} \alpha_k\right)$ .

Hence, the form of the BLP is

$$x_{n+m}^n = \mu + \sum_{k=1}^n \alpha_k (x_k - \mu).$$

Thus, until we discuss estimation, there is no loss of generality in considering the case that  $\mu = 0$ , in which case,  $\alpha_0 = 0$ .

First, consider one-step-ahead prediction. That is, given  $\{x_1, \ldots, x_n\}$ , we wish to forecast the value of the time series at the next time point,  $x_{n+1}$ . The BLP of  $x_{n+1}$  is of the form

$$x_{n+1}^n = \phi_{n1}x_n + \phi_{n2}x_{n-1} + \dots + \phi_{nn}x_1,$$
 (3.61)

where, for purposes that will become clear shortly, we have written  $\alpha_k$  in (3.59), as  $\phi_{n,n+1-k}$  in (3.61), for k = 1, ..., n. Using Property 3.3, the coefficients  $\{\phi_{n1}, \phi_{n2}, ..., \phi_{nn}\}$  satisfy

$$E\left[\left(x_{n+1} - \sum_{i=1}^{n} \phi_{nj} x_{n+1-j}\right) x_{n+1-k}\right] = 0, \quad k = 1, \dots, n,$$

or

$$\sum_{i=1}^{n} \phi_{nj} \gamma(k-j) = \gamma(k), \quad k = 1, \dots, n.$$
 (3.62)

The prediction equations (3.62) can be written in matrix notation as

$$\Gamma_n \phi_n = \gamma_n, \tag{3.63}$$

where  $\Gamma_n = \{\gamma(k-j)\}_{j,k=1}^n$  is an  $n \times n$  matrix,  $\phi_n = (\phi_{n1}, \dots, \phi_{nn})^n$  is an  $n \times 1$  vector, and  $\gamma_n = (\gamma(1), \dots, \gamma(n))^n$  is an  $n \times 1$  vector.

The matrix  $\Gamma_n$  is nonnegative definite. If  $\Gamma_n$  is singular, there are many solutions to (3.63), but, by the Projection Theorem (Theorem B.1),  $x_{n+1}^n$  is unique. If  $\Gamma_n$  is nonsingular, the elements of  $\phi_n$  are unique, and are given by

$$\phi_n = \Gamma_n^{-1} \gamma_n. \tag{3.64}$$