CS412 Office Hours

April 5, 2019

Decision Tree Induction: Algorithm

- Basic algorithm
 - Tree is constructed in a top-down, recursive, divide-and-conquer manner
 - At start, all the training examples are at the root
 - Examples are partitioned recursively based on selected attributes
 - On each node, attributes are selected based on the training examples on that node, and a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning
 - There are no samples left
- Prediction
 - Majority voting is employed for classifying the leaf

Key issue: How to select the best attribute to partition on?

Three Attribute Selection Measures

- □ Information gain: $Gain(A) = Info(D) Info_A(D)$
 - \Box difference between entropy of the response variable H(Y) and the conditional entropy H(Y|A)
 - biased towards multivalued attributes
- Gain ratio: $SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$
 - normalized information gain
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
- □ Gini index: $\Delta gini(A) = gini(D) gini_A(D)$
 - is biased to multivalued attributes; has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

Information Gain: An Attribute Selection Measure

- Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3)
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Example: Attribute Selection with Information Gain

- Class P: buys_computer = "yes"
- Class N: buys computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit\ rating) = 0.048$$

Gain Ratio: A Refined Measure for Attribute Selection

- □ Information gain measure is biased towards attributes with a large number of values
- ☐ Gain ratio: Overcomes the problem (as a normalization to information gain)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- The attribute with the maximum gain ratio is selected as the splitting attribute
- ☐ Gain ratio is used in a popular algorithm C4.5 (a successor of ID3) by R. Quinlan
- Example
 - □ SplitInfo_{income}(D) = $-\frac{4}{14}\log_2\frac{4}{14} \frac{6}{14}\log_2\frac{6}{14} \frac{4}{14}\log_2\frac{4}{14} = 1.557$
 - \Box GainRatio(income) = 0.029/1.557 = 0.019

Gini Index

- ☐ Gini index: Used in CART, and also in IBM IntelligentMiner
- lacktriangle If a data set D contains examples from n classes, gini index, gini(D) is defined as
 - $\square gini(D) = 1 \sum_{i=1}^{n} p_i^2$
 - \square p_i is the relative frequency of class j in D
- \square If a data set D is split on A into two subsets D_1 and D_2 , the gini index gini(D) is defined as
 - $\square gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$
- □ Reduction in Impurity:
- The attribute which provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Computation of Gini Index

■ Example: D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

- □ Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂

$$= \frac{10}{14} \left(1 - \left(\frac{7}{10} \right)^2 - \left(\frac{3}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right) = 0.443$$

$$= Gini_{income \in \{high\}}(D)$$

- ☐ Gini_{low, high} is 0.458; Gini_{medium, high} is 0.450
- □ Thus, split on $income \in \{low, medium\}$ (i.e., also $\{high\}$) has the lowest Gini index

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

How to Handle Continuous-Valued Attributes?

- Method 1: Discretize continuous values and treat them as categorical values
 - E.g., age: < 20, 20..30, 30..40, 40..50, > 50
- Method 2: Determine the best split point for continuous-valued attribute A
 - Sort the value A in increasing order:, e.g., 15, 18, 21, 22, 24, 25, 29, 31, ...
 - Possible split point: the midpoint between each pair of adjacent values
 - \Box $(a_i + a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - \bigcirc e.g., (15+18)/2 = 16.5, 19.5, 21.5, 23, 24.5, 27, 30, ...
 - The point with the maximum information gain for A is selected as the split-point for A
- Split: Based on split point P
 - ☐ The set of tuples in D satisfying $A \le P$ vs. those with A > P

Tree Pruning

- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - You can experiment with different thresholds for the programming assignment
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

4.0 / https://goo.gl/3R7xZ0

Using Decision Trees for Large Datasets: RainForest

- Our goal is to reduce the number of times we read/write from the disk where the database resides.
- RainForest decouples the "counting" process and the split criteria computation process.
- Database access only happens during the construction of the AVC-groups
- After we get the AVC-groups, we do not need to refer to the original data points anymore

RainForest: A Scalable Classification Framework

- The criteria that determine the quality of the tree can be computed separately
- Builds an AVC-list: AVC (Attribute, Value, Class_label)
- **AVC-set** (of an attribute X)
 - Projection of training dataset onto the attribute X and class label where counts

of individual class label are aggregated

- **AVC-group** (of a node *n*)
 - Set of AVC-sets of all predictor attributes at node *n*
- Then read the data again & do it similarly to generate the next level of the tree

2 2.00. 202.222				
age	income	student	redit rating	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

AVC-set on Age				AVC-set on <i>Income</i>		
Age	Buy_Computer		ļГ	income	Buy_	Comp
	yes	no	Ш		yes	nc
<=30	2	3	JF	high	2	2
3140	4	0	JГ	medium	4	2
>40	3	2		low	3	1

AVC-set	AVC-set		
student	Buy_	Computer	Credit
	yes	no	rating
yes	6	1	fair
no	3	4	excellent

medium	4	2		
low	3	1		
AVC-set on Credit Rating				

Buy Computer

no

Buy Computer ves