PAMUKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2021 BAHAR

Biçimsel Diller ve Otomata Teorisi

Formal languages and automata theory

1.5 Temel İspat Yöntemleri Fundamental Proof Techniques

1. Tümevarım (mathematical induction)

tümevarım, matematiksel bir ispat biçimidir.

Bir kural, model veya formül *n*'nin birkaç değeri için işe yarıyor gibi göründüğü için, meşru bir ispattan geçmeden onun tüm *n* değerleri için geçerli olduğuna karar veremezsiniz.

The Principle of Mathematical Induction

Pn pozitif olanı içeren bir ifade olsun tamsayı Eğer

- 1. P1 doğru
- ise ve
- 2. Pk gerçeği, her pozitif tam sayı k için Pk + 1'in doğruluğunu gerektirir, ise
- o zaman
- Pn tüm n tamsayıları için doğru olmalıdır.

Örnek. Aşağıdaki formülü kanıtlamak için tümevarımı kullanın.

$$S_n = 1 + 3 + 5 + 7 + \cdots + (2n-1) = n^2$$

İlk olarak, formülün n = 1 için çalıştığını göstermeliyiz.

1. For
$$n = 1$$

 $S_1 = 1 = 1^2$

tümevarımın ikinci bölümünde iki adım vardır. İlk adım, formülün bir k tamsayısı için geçerli olduğunu varsaymaktır. İkinci adım, formülün bir sonraki tam sayı olan k + 1 için geçerli olduğunu kanıtlamak için bu varsayımı kullanmaktır.

2. $S_k = 1 + 3 + 5 + 7 + \cdots + (2k-1) = k^2 doğru olsun$ $S_{k+1} = (k+1)^2 doğru olduğunu gösterelim.$

$$\begin{split} S_{k+1} &= 1+3+5+7+\cdots + (2k-1) + [2(k+1)-1] \\ &= [1+3+5+7+\cdots + (2k-1)] + (2k+2-1) \\ &= S_k + (2k+1) \\ &= k^2 + 2k + 1 \\ &= (k+1)^2 \end{split}$$

Örn. Aşağıdaki formülü ispatlamak için tümevarımı kullanın.

$$S_n = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

1. n = 1 için doğru olduğunu gösterelim

$$\mathbf{S_n} = \mathbf{1}^2 = \frac{1(2)(3)}{6}$$

2. S_k doğru olsun

$$S_k = 1^2 + 2^2 + 3^2 + 4^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$$

$$S_{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$$

doğru olduğunu gösterelim

$$S_{k+1} = (1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + k^{2}) + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)[2k^{2} + 7k + 6]}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$$

1. Güvercin Yuvası (Pigeonhole) Prensibi Dirichlet's Box

(k + 1) veya daha fazla nesne k kutuya yerleştirilirse, iki veya daha fazla nesne içeren en az bir kutu vardır.

Bu ifadeyi kanıtlamak için, her kutunun 2'den az nesne içerdiğini varsayalım; o zaman toplam nesne sayısı k+1'den az olacaktır, bu çelişki.

Problem 1

15 turist Erciyes
 dağına tırmanmaya
 çalışıyor. Bunların en
 büyüğü 33, en küçüğü
 20 yaşında. Aynı
 yaştan 2 turist
 olduğunu ispatlayın.

Problem 2

-1	1	1	1	1	-1
1	-1	1	1	-1	1
1	1	-1	-1	1	1
1	1	-1	-1	1	1
1	-1	1	1	-1	1
-1	-1	1	1	1	-1

Sihirbaz Ali'ye, "+1" veya "-1" girişleriyle tüm dikey, yatay ve çapraz toplamları farklı olan sihirli bir 6x6 kare oluşturabilirse, eve gitmesine yardım edeceğini söylüyor.

Büyücünün Ali'ye yardım edemeyeceğini ispatlayın, çünkü böyle bir kare yok.

3. Diagonalization Principle

Main book: P.26

4. Inclusion-Exclusion Principle

Discrete Mathematics Key Notes