Messbericht Digitaltechnik Teil 1

Felix Schiller Sebastian Littau E1FS2

Reutlingen, am 10.05.2016

Schiller, Felix Littau, Sebastian		Messbericht	2	
		Digitaltechnik Teil 1		
In	haltsverzeichnis			
1	Messaufgabe			
2		usteine OR		
3	Bausteine mit mehrer	en Eingängen	5	
1	Messaufgabe			
Di	e verschiedenen Logisch	en Grundbausteine UND, ODER, NICHT, NA	ND und NOR	

sollen auf ihre Funktionsweise untersucht werden.

2.1 Messschaltung

Typ	NOT	AND	OR	NAND
Symbol	E_1 — Q_1	E_1 Q_1 E_2	E_1 E_2 $\supseteq 1$ $\supseteq 1$ $\supseteq 1$ $\supseteq 1$	E_1 E_2 E_2 E_1 E_2
Wahrheitstabelle	$\begin{array}{c c c} E_1 & Q \\ \hline 0 & 1 \\ \hline 1 & 0 \\ \end{array}$	$\begin{array}{c cccc} E_1 & E_2 & Q \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} E_1 & E_2 & Q \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} E_1 & E_2 & Q \\ \hline 0 & 0 & 1 \\ \hline 1 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$
Funktionsgleichung	$\overline{E_1} = Q$	$E_1 \wedge E_2 = Q_1$	$ \begin{array}{c c} E_1 \lor E_2 = Q_1 \\ \overline{E_1} \lor \overline{E_2} = Q_1 \end{array} $	$\overline{E_1 \wedge E_2} = Q_1$
Schalteräquivalent	$1 - Q_1$	$ \begin{array}{c cccc} E_1 & E_2 \\ 1 & & -Q_1 \end{array} $	$1 \xrightarrow{E_1} Q_1$	$1 \xrightarrow{E_1} Q_1$

Тур	NOR	XOR	XNOR
Symbol	E_1 E_2 E_2 Q_1	E_1 E_2 $=1$ $=1$ $=1$ $=1$	E_1 E_2 Q_1
Wahrheitstabelle	$\begin{array}{c cccc} E_1 & E_2 & Q \\ \hline 0 & 0 & 1 \\ \hline 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 1 & 0 \\ \end{array}$	$\begin{array}{c cccc} E_1 & E_2 & Q \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$	$\begin{array}{c cccc} E_1 & E_2 & Q \\ \hline 0 & 0 & 1 \\ \hline 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$
Funktionsgleichung	$\begin{vmatrix} \overline{E_1} \wedge \overline{E_2} = Q_1 \\ \overline{E_1} \vee \overline{E_2} = Q_1 \end{vmatrix}$	$(E_1 \wedge \overline{E_2}) \vee (\overline{E_1} \wedge E_2) = Q_1$	$(\overline{E_1} \wedge \overline{E_2}) \vee (E_1 \wedge E_2) = Q$
Schalteräquivalent	$E_1 E_2 \\ 1 Q_1$	$1 - \underbrace{E_2}_{E_1} - Q_1$	$1 - \underbrace{\begin{array}{c} E_1 \\ E_2 \\ \end{array}} Q_1$

2.2 Beispielaufbau XOR

Um die Schaltfunktion der einzelnen Bausteine überprüfen und die Wahrheitstabellen ausfüllen zu können lassen sich eine vielzahl einfacher Schaltungen aufbauen. Die Schalteräquivalente stellen diese Schaltungen dar. Etwas spannender ist es das Exklusiv Oder aus einzelnen Invertieren, AND-Gattern und einem OR-Gatter aufzubauen.

3 Bausteine mit mehreren Eingängen