Höhere Analysis I

Sommersemester 2015

Prof. Dr. D. Lenz

Blatt 9

Abgabe Dienstag 30.06.2015

(1) Sei V ein Vektorraum über \mathbb{K} und seien $a, b: V \times V \longrightarrow \mathbb{K}$ symmetrische Sesquilinearformen mit $|a(u, u)| \leq b(u, u)$ für alle $u \in V$. Zeigen Sie

$$|a(u,v)| \le b(u,u)^{1/2}b(v,v)^{1/2}$$

für alle $u, v \in V$.

Hinweis: Betrachten Sie zunaechst den Fall $\mathbb{K} = \mathbb{R}$ und nutzen Sie

$$a(u,v) = \frac{1}{4}(a(u+v, u+v) - a(u-v, u-v)).$$

(2) Seien (X, A, μ) und (Y, B, ν) Massräume, (e_j) eine Orthonormalbasis von $L^2(Y, \nu)$ und $K: L^2(Y, \nu) \longrightarrow L^2(X, \mu)$ ein linearer Operator mit $\sum_j \|Ke_j\|^2 < \infty$. Zeigen Sie, dass es ein messbares $k: X \times Y \longrightarrow \mathbb{C}$ mit

$$\int_{X\times Y} |k(x,y)|^2 d\mu d\nu < \infty$$

gibt mit

$$Kf = \int k(\cdot, y) f(y) dnu(y)$$

für alle $f \in L^2(Y, \nu)$.

<u>Hinweis:</u> Sei (f_k) eine Orthonormalbasis von $L^2(X,\mu)$. Zeigen Sie $\sum_{j,k} |\langle f_k, Ke_j \rangle|^2 < \infty$ und definieren Sie $k := \sum \langle f_k, Ke_j \rangle f_k e_j$ und zeigen Sie $k \in L^2(X \times Y, \mu \times \nu)$.

(3) Sei $(H, \langle \cdot, \cdot \rangle)$ ein komplexer Hilbertraum und $s: H \times H \to \mathbb{C}$ eine stetige Sesquilinearform, d.h. es existiert ein M > 0 so dass für alle $x, y \in H$ gilt

$$|s(x,y)| \le M||x|| ||y||.$$

Zeigen Sie, dass dann ein stetiger Operator T existiert, so dass für alle $x, y \in H$ gilt

$$s(x,y) = \langle Tx, y \rangle.$$

Hinweis: Darstellungssatz von Riesz.

(4) Für einen separablen Hilbertraum H sei ein selbstadjungierter, linearer, kompakter Operator $A: H \to H$ gegeben. Zeigen Sie, dass eine Folge von endlichen Projektionen $P_n: H \to H, \ n \in \mathbb{N}$ existiert mit $\lim_{n \to \infty} AP_n = A$ in der Operatornorm.

Zusatzaufgabe.

Für einen Hilbertraum H sei ein linearer Operator $A: H \to H$ gegeben. Zeigen Sie, dass A genau dann kompakt ist, wenn eine Folge von endlichen Projektionen $P_n: H \to H, n \in \mathbb{N}$ existiert mit $\lim_{n\to\infty} AP_n = A$ in der Operatornorm.