МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ И ПРОГРАММНОЙ ИНЖЕНЕРИИ (КАФЕДРА № 43)

Е.О. Пятлина

КАЧЕСТВО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ. ОЦЕНКА КАЧЕСТВА ПРОГРАММНОГО ПРОДУКТА.

Методические указания к выполнению лабораторной работы

Составители: Пятлина Е. О.

Рецензент: проф. Шейнин Ю.Е., зав. каф. «Аэрокосмических компьютерных и программных систем» ГУАП.

Качество программного обеспечения. Оценка качества программного продукта. Методические указания к выполнению лабораторной работы — СПб ГУАП, 2019. — 8 с.

В методические указания включены краткие теоретические сведения, необходимые для выполнения лабораторной работы, требования к содержанию отчета и порядку выполнения работы, а также контрольные вопросы по теме.

Методические указания предназначены для выполнения лабораторной работы по дисциплинам «Технология программирования» и «Объектно-ориентированное проектирование информационных систем» студентами различных форм обучения по направлению 09.03.01 «Информатика и вычислительная техника», 09.03.04 «Программная инженерия» и 02.03.03 «Математическое обеспечение и администрирование информационных систем».

Подготовлены кафедрой компьютерных технологий и программной инженерии.

1. ЛАБОРАТОРНАЯ РАБОТА

«КАЧЕСТВО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ. Оценка качества

программного продукта»

1.1 Цель работы

Целью данной работы является изучение методологии оценки качества программного продукта на основе одной из существующих методик.

1.2 Задание на лабораторную работу

Оценить качество приложенного программного продукта по перечисленным в методике параметрам.

1.3 Порядок выполнения работы

- 1. Подобрать для исследования программный продукт (программу на языке Си), объемом не менее 5 страниц;
 - 2. Изучить теоретический материал, изложенный в подразделе 1.4;
 - 3. Оценить программный продукт по изложенным в методичке параметрам;
 - 4. Ознакомиться с требованиями по содержанию отчета в подразделе 1.5;
 - 5. Оформить отчет о работе.

1.4 Теоретический материал

Качество программного обеспечения — это на сегодняшний день один из важнейших показателей, требующий оценки и описания.

Разработаны и действуют несколько систем оценки качества готовых программ, к ним можно отнести метрики Холстеда и их модификации, показатели качества ГОСТ 28195-89 и т.д.

Перечислим основные показатели качества по метрикам зарубежной литературы.

1.4.1 Показатели качества

1.4.1.1 Показатели "завершенность"

- Средства отчистки ОЗУ перед началом работы.
- Начальная настройка устройств ввода вывода.
- Обработка неопределенностей (например, деление на 0).

- Проверка исходных данных на допустимый диапазон.
- Проверка переменных границ циклов на допустимый диапазон.
- Использование всех исходных данных в вычислениях.
- Исключение зависимости от конкретной системной библиотеки подпрограмм.

1.4.1.2 Показатели "стандартизация"

- Одинаковое представление физических и математических констант (например, не должно быть двух констант PI=3.14159 и 3.1416).
- Одинаковая структура арифметических выражений (либо везде X*X, либо sqr(x)).
- Не одинаковые имена для разных по смыслу переменных.
- Одинаковые имена для одинаковых по смыслу переменных.
- Общее функциональное назначение всех элементов массива.

1.4.1.3 Показатели "рациональность"

• Оптимизация часто используемых подпрограмм и фрагментов исходного кода.

1.4.1.4 Показатели "доступность"

• Исключение использования чисел, подверженных изменениям (например, A*3.14).

1.4.1.5 Показатели "коммуникативность"

- Не требование указания количества входных данных.
- Четкость и полезность сообщений об ошибках.

1.4.1.6 Показатели "структурированность"

- Стандартность передач управления между модулями.
- Ограничение на размер модуля.
- Существование хотя бы одной точки выхода из подпрограммы.
- Существование единственной точки выхода.
- Соответствие оверлейной структуры и последовательности выполнения программ.
- Соответствие подпрограмм их функциональному назначению.

1.4.1.7 Показатели "информативность"

- Существование комментария для каждого модуля (назначение, входывыходы, метод).
- Описание зависимостей модулей.
- Соответствие имен объектов их назначению.

1.4.1.8. Показатели "осмысленность"

- Все операторы выполнимы при тестировании.
- Выполнение вычислений, не относящихся к циклу ,вне его.
- Использование логических переменных для представления значений ИСТИ-НА, ЛОЖЬ.

1.4.1.9 Показатели "открытость"

- Использование отступов и пустых строк для выделения текста.
- Использование скобок для устранения неопределенности с приоритетами операций.
- Одно присваивание в одной строке.
- Один оператор в одной строке.

1.4.2 Расчетные показатели качества

В ГОСТ 28195-89 приводится несколько отличный набор показателей качества. Сначала можно перечислить расчетные показатели.

1.4.2.1 Показатели "надежность"

Устойчивость к искажающим воздействиям:

$$P(1)=1-D/K$$
 (2.1)

где:

D – число экспериментов, в которых искажающее воздействие приводило к отказу,

К – число экспериментов с искажающим воздействием.

Вероятность безотказной работы:

$$P=1-Q/N$$
 (2.2)

где:

Q – число зарегистрированных отказов,

N — число экспериментов.

Среднее время восстановления:

$$Q_b = T_b$$
 доп. / T_b , если $T_b > T_b$ доп. (2.3)

$$Q_b = 1$$
 , если $T_b \le T_b$ доп. (2.4)

где:

 $T_{\,b}^{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}$ — допустимое среднее время восстановления,

T_b – среднее время восстановления,

 $T_b = 1/N * \sum T_b$,

N – число восстановлений,

T_{bi} – время восстановления после отказа.

Оценка продолжительности преобразования входных данных в выходные :

$$Q_n = T_{ni}^{\text{доп.}} / T_{ni}$$
 если $T_{ni} > T_{ni}^{\text{доп.}}$ (2.5)

$$Q_{ni} = 1$$
 , если $T_{ni} \le T_{ni}$ доп. (2.6)

где:

 $T_{ni}^{\ \ Jon.}$ – допустимая продолжительность преобразования і-го входного набора данных,

 $T_{\,\mathrm{ni}}-$ фактическая продолжительность преобразования i-го входного набора данных.

1.4.2.2 Показатели "сопровождаемость"

Оценка простоты программы по числу точек входа и выхода:

$$W=1/(D+1)*(F+1)$$
 (2.7)

где:

D – общее число точек входа,

F – общее число точек выхода.

Оценка простоты по числу условных операторов :

$$K=(1-A/B)$$
 (2.8)

где:

A – общее число точек входа,

В – общее число точек выхода.

Отношение количества тестированных модулей к общему количеству модулей:

$$Q_{T}^{M}/Q_{O}^{M}$$
 (2.9)

где:

 ${Q_{T}}^{M}$ — количество тестированных модулей, ${Q_{O}}^{M}$ — общее количество модулей.

Отношение количества тестированных логических блоков к общему количеству логических блоков:

$$Q_T^B / Q_O^B$$
 (2.10)

где:

 ${\bf Q_T}^{\rm F}$ — количество тестированных модулей, ${\bf Q_O}^{\rm F}$ — общее количество модулей.

1.4.3 Экспериментальные показатели качества

1.4.3.1 Показатели "надежность"

- возможность обработки ошибочных ситуаций,
- контроль полноты входных данных,
- контроль корректности входных данных,
- контроль непротиворечивости входных данных,
- возможность восстановления при сбое информационной системы, процессора, внешних устройств,
- обработка неопределенностей (деление на 0).

1.4.3.2 Показатели "сопровождаемость"

- наличие комментариев,
- отсутствие передач данных из модуля через вызывающий модуль,
- проверка корректности входных данных модуля,
- наличие ограничений на размер модуля,
- количество циклов,
- количество циклов с одним входом и одним выходом.

1.4.3.3 Показатели "удобство применения"

• возможность освоения по документации,

- полнота, понятность, точность документации,
- описание интерфейса с пользователем,
- описание диагностических сообщений,
- грамматическая правильность, непротиворечивость документации,
- отсутствие неправильных ссылок в документации,
- возможность управления подробностью получаемых выходных данных.

1.4.3.4 Показатели "эффективность"

- время выполнения,
- время реакции на действия пользователя,
- оценка числа потенциальных пользователей,
- оценка числа функции,
- оценка зависимости от операционной системы и библиотек,
- оценка локализации непереносимой части программы.

1.4.3.5 Показатели "корректность"

- наличие описания и схемы иерархии модулей,
- отсутствие ошибок в описании действий пользователя, генерации, настройки.

1.5 Содержание отчета

Отчет о лабораторной работе должен содержать:

- 1. Титульный лист;
- 2. Цель работы;
- 3. Задание на лабораторную работу;
- 4. Оценки качества программного продукта по всем указанным в методичке параметрам;
 - 5. Выводы по работе;
 - 6. Список использованных источников.

ПРИЛОЖЕНИЕ: Листинг программного продукта

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Фильчаков В.В., Богословская Н.В., Бржезовский А.В., Жаков В.И., Путилов В.А., Автоматизированные методы спецификации программных систем. Учебное пособие. Апатиты, КФ ПетрГУ,1996 –147 с.
- 2 Иванова Г. С. Технология программирования: учебник для вузов, 2-е изд.: М.: ИД КноРус, 2013. 333 с.: ил.
- 3 Липаев В.В. Программная инженерия сложных заказных программных продуктов. Учебное пособие M, MAKC Пресс, 2014- 312 с.
- 4 Дюваль П. М. Непрерывная интеграция. Улучшение качества программного обеспечения и снижение риска / Поль М. Дюваль, Стивен Матиас, Эндрю Гловер. М.: Вильямс, 2016. 240 с.
- 5 Синицын, С.В. Верификация программного обеспечения / С.В. Синицын. М.: Бином. Лаборатория знаний, 2014. 370 с.