

PROJET N° 3. ANTICIPEZ LES BESOINS EN CONSOMMATION ÉLECTRIQUE DE BÂTIMENTS

AUTEUR: IRINA MASLOWSKI

PLAN

- Ville neutre en émissions de carbone
 - Objectifs de la ville de Seattle
 - Objectifs de notre équipe
 - Objectifs personnels
- Données :
 - Nettoyage
 - Feature engineering
 - Exploration
 - Transformation des variables asymétriques
- Pistes de modélisation
- Modèle final
- Conclusion

VILLE NEUTRE EN ÉMISSIONS DE CARBONE. OBJECTIFS DE LA VILLE DE SEATTLE

- à long terme :
 - ville neutre en émissions de carbone en 2050
- à court terme :
 - Connaitre les émissions de CO₂ des bâtiments non destinés à l'habitation
 - Économiser le budget sur les relevés des émissions de CO₂ et la consommation totale d'énergie

VILLE NEUTRE EN ÉMISSIONS DE CARBONE. OBJECTIFS DE NOTRE ÉQUIPE

- Etudier les émissions de CO₂ et la consommation totale d'énergie des bâtiments non destinés à l'habitation
- Prédire ces valeurs pour les bâtiments pour lesquels elles n'ont pas encore été mesurées

VILLE NEUTRE EN ÉMISSIONS DE CARBONE. OBJECTIFS DE NOTRE ÉQUIPE

- Augmenter l'efficacité de l'équipe:
 - évaluer l'intérêt de l'"ENERGY STAR Score" pour la prédiction d'émissions

VILLE NEUTRE EN ÉMISSIONS DE CARBONE. OBJECTIFS PERSONNELS

- Réaliser une courte analyse exploratoire
- Tester différents modèles de prédiction
- Faire attention à:
 - la fuite de données
 - le traitement des différentes variables
 - effectuer une évaluation rigoureuse des performances des modèles

PLAN

- Ville neutre en émissions de carbone
 - Objectifs de la ville de Seattle
 - Objectifs de notre équipe
 - Objectifs personnels
- Données :
 - Nettoyage
 - Feature engineering
 - Exploration
 - Transformation des variables asymétriques
- Pistes de modélisation
- Modèle final
- Conclusion

DONNÉES

SEA Building Energy
 Benchmarking: Open Data
 from the City of Seattle

année	2015	2016
Nombre des observations	3340	3376
Nombre de variables	47	46

DONNÉES

- Fusion de deux dataframes:
 - combine_first
- Completion de données de l'années 2016 par les données du 2015 :
 - Ajout de 56 batiments manquants

DONNÉES. NETTOYAGE

- Homogénéisation des noms des colonnes
 - 2015 : GHGEmissions(MetricTonsCO2e)
 - 2016: TotalGHGEmissions

- TotalGHGEmissions(MetricTonsCO2e)
- Homogénéisation de la casse
- Correction du type des variables
 - ZipCode : float64 → category
- Suppressions:
 - Outlier: 'Bullitt Center' (consommation négative de l'énergie)
 - Bâtiments résidentiels et mixtes
- Correction des valeurs erronées:
 - Seattle Chinese Baptist Church, nombre d'étage: 99 → 2

DONNÉES. FEATURE ENGINEERING

- Introduction de nouvelles variables:
 - distance par rapport au centre-ville
 - la surface du sol par étage de bâtiment :
 - GFA (gross floor area) d'un étage = GFA de propriété/ nombre de bâtiments / nombre d'étages
 - type d'énergie utilisée (valeurs binaires)
 - proportion des sources d'énergie utilisées > n'est pas utilisé pour éviter la fuite des données
 - nombre de différents types d'énergie utilisés

Distribution des données qualitatifs dans la colonne 'LargestPropertyUseType'

DONNÉES. EXPLORATION

- Analyse univarié :
 - Les bureaux et les entrepôts prévalent

Distribution des données qualitatifs dans la colonne 'enrgy_type_nb'

- Analyse univarié:
 - Un bâtiment utilisant 4 types de l'énergies (électricité, gaz, géothermique et autre carburant) est rare

- Analyse univarié :
 - Les données sont très dissymétriques

- Analyse bivariée:
 - Les émissions de gaz à effet de serre sont corrélées avec la consommation de l'énergie
 - La quantité annuelle d'énergie consommée par le bien à partir de toutes les sources d'énergie est corrélée avec la superficie totale de la surface entre l'extérieur des murs d'un bâtiment
 - ENERGY STAR Score est anti-corrélé avec l'intensité des émissions de CO₂
 - L'année de construction n'a pas de corrélation avec l'intensité des émissions de CO₂

Variable cible: « émission de gaz à effet de serre »

Distribution d'une variable quantitative au sein des catégories

Le type majoritaire de propriété a un effet similaire sur la variable cible « consommatio n de l'énergie » :

p = 3.5881020154105 57e-164, eta = 0.4491855001308 5207

DONNÉES. TRANSFORMATION DES VARIABLES ASYMÉTRIQUES

- Les transformations testées:
 - Log, racine carrée, 1/x, box-cox, yeo-johnson
- Transformation finale choisie: yeo-johnson

PLAN

- Ville neutre en émissions de carbone
- Données
- Pistes de modélisation
 - Division des données
 - Création de pipeline
 - Configuration des tests
 - Processus d'apprentissage des modèles
 - Modèles testés et optimisation des hyperparamètres
 - Résultats de la validation croisée
 - Learning curves
- Modèle final
- Conclusion

PISTES DE MODÉLISATION DIVISION DE DONNÉES

PISTES DE MODÉLISATION CRÉATION DE PIPELINE

PISTES DE MODÉLISATION CONFIGURATION DES TESTS

PISTES DE MODÉLISATION PROCESSUS D'APPRENTISSAGE DES MODÈLES

		Paramètres du modèle à optimiser							
	Nom du modèle	Avant optimisation	Meilleurs paramètres						
Type de modèles		(par défaut) Le paramètre à	Variable: Consommation d'ér	nergie	Variable: Emission de gaz à l'effet de serre				
		optimiser est en gras	Sans EnergyStarScore	Avec EnergySt arScore	Sans EnergyStarScore	Avec EnergyStarScore			
Baseline	Dummy Regressor	mean							
	Regression linéaire								
Modèles linéaires	Régression Ridge	$\alpha = 0.5$			α = 1				
	Régression Lasso	α = 0,1			α = 0,001				

		Paramètres du modèle à optimiser							
		Avant optimisation	Meilleurs paramètres						
Type de modèles	Nom du modèle	(par défaut) Le paramètre à	Variable: Consommatio	n d'énergie	Variable: Emission de gaz à l'effet de serre				
inodeles	modele	optimiser est en gras	Sans EnergyStarSco re	Avec EnergyStarScore	Sans EnergyStarScore	Avec EnergyStarScore			
Arbres de décision	Decision Tree Regressor	max_depth=None, min_samples_split=2, min_samples_leaf=1	max_depth=20, min_samples_split=0,1, min_samples_leaf=4		max_depth=20, min_samples_split= 0,1, min_samples_leaf= 2	max_depth=20, min_samples_spl it=0,1, min_samples_lea f=1			
Forêts aléatoires	Random Forest Regressor	n_estimators=500, max_depth=None	max_depth=	max_depth =30	max_depth=40	max_depth=20			
Support Vector Machine	SVR (Linear Support Vector Regression)	C=1.0, dual=False, loss='squared_epsilon _insensitive'	C=0,1	C=1.0	C=0,1				

			Paramètres du modèle à optimiser						
			Avant optimisation	Meilleurs paramètres					
Type de modèles	Nom du modèle	(par défaut) Le paramètre à	Variable cible : Consommation d'énergie		Variable cible : Emission de gaz à l'effet de serre				
		optimiser est en gras	Sans EnergyStarSco re	Avec EnergyStarScore	Sans EnergyStarScore	Avec EnergyStarScore			
Ved	oport ctor ichine	Epsilon- Support Vector Regression (SVM SVR)	C=1.0 , epsilon=0.2, gamma=0.01	C=100, gamma=0.01					
	thodes semblis	Gradient Boosting Regressor	<pre>n_estimators=100, max_depth=3, min_samples_split=2</pre>	max_depth= min_sample n_estimator	s_split=0,1,	max_depth=2, min_samples_s n_estimators =	•		

PISTES DE MODÉLISATION RÉSULTATS DE LA VALIDATION CROISÉE

	Dummy Regressor	Decision Tree Regressor	GBR	Linear SVR	Random Forest Regressor	Regression Lasso	Regres sion Linéaire	Regres sion Ridge	SVM SVR	
Variable cible : Consommation d'énergie, sans EnergyStarScore										
Score de validation	-0.000083	0.591806	0.755285	0.698051	0.706606	0.704974	0.687599	0.702385	0.750089	
fit_time	0.010970	42.413607	540.15638 0	0.378985	113.933814	0.455782	0.030916	0.490688	9.695037	
		Variable o	ible : Conso	mmation d'	énergie, avec	EnergyStarS	core			
Score de validation	-0.000083	0.585452	0.795356	0.727563	0.743545	0.730595	0.707665	0.734799	0.789572	
fit_time	0.021942	39.086434	622.94943 2	0.695175	114.887013	0.887662	0.050862	0.888658	10.462023	

PISTES DE MODÉLISATION RÉSULTATS DE LA VALIDATION CROISÉE

Modèle choisi

	Dummy Regressor	Decision Tree Regressor	GBR	Linear SVR	Random Forest Regressor	Regression Lasso	Regres sion Linéaire	Regres sion Ridge	SVM SVR	
Variable cible: Emission de gaz à effet de serre, sans EnergyStarScore										
Score de validation	-0.000044	0.596497	0.716335	0.675687	0.681986	0.676511	0.66738 7	0.674224	0.745679	
fit_time	0.022939	45.906229	522.3552 60	0.659201	136.71574 3	0.709100	0.05286 1	0.916552	9.859664	
		Variable cibl	e: Emission	de gaz à effo	et de serre, a	vec EnergySt	arScore			
Score de validation	-0.000044	0.613540	0.760884	0.696672	0.714335	0.700187	0.68883 9	0.696888	0.766443	
fit_time	0.022939	40.880631	565.8371 29	0.750997	173.07045 6	0.682141	0.05385 5	0.867644	13.68865 6	

PISTES DE MODÉLISATION LEARNING CURVES

200

Training examples

Variable cible : Consommation d'énergie

1000

200

400

600

Training examples

800

1000

200

Learning Curves (GBR, max_depth=1, n_estimators=700) Learning Curves (SVM_SVR, C=100.0, γ = 0.01) Learning Curves (GBR, max_depth=2, n_estimators=500) Learning Curves (SVM_SVR, C=100.0, γ = 0.01) 1.0 Training score Training score Training score Training score Cross-validation score Cross-validation score Cross-validation score Cross-validation score 0.9 0.9 0.9 0.9 0.8 0.8 0.8 50 07 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 1000 200 600 1000 200 600 200 400 600 800 1000 200 400 600 1000 Training examples Training examples Training examples Training examples Scalability of the model Scalability of the model Scalability of the model Scalability of the model 1.0 1.2 0.20 0.20 0.9 1.0 0.8 0.15 0.15 times 0.7 **≝** 0.6 0.10 0.10 0.6 0.5 0.4 0.05 0.05 0.4 0.3

Variable cible: Emission de gaz CO2

800

Training examples

1000

200

600

Training examples

800

PLAN

- Ville neutre en émissions de carbone
- Données
- Pistes de modélisation
- Modèle final
 - Prédiction
 - Résultats de prédiction
- Conclusion

MODÈLE FINAL PRÉDICTION

MODÈLE FINAL RÉSULTAT DE PRÉDICTION

Variable cible : Consommation d'énergie

Résultats de prédiction du modèle SVM SVR avec un noyau gaussien et sans utilisation d'ENERGYSTARScore

SVM SVR: R2 = 0,73; MSE = 0,26

Dummy Regressor: R2 = -0.02; MSE = 0.97

Variable cible: Emission de gaz CO2

Résultats de prédiction du modèle SVM SVR avec un noyau gaussien et sans l'utilisation de l'ENERGYSTARScore

SVM SVR: R2 = 0,69; MSE = 0,30

Dummy Regressor: R2 = -0.02; MSE = 0.99

MODÈLE FINAL RÉSULTAT DE PRÉDICTION

Variable cible : Consommation d'énergie

Résultats de prédiction du modèle SVM SVR avec un noyau gaussien et avec l'utilisation d'ENERGYSTARScore

SVM SVR: R2 = 0,75; MSE = 0,24

Dummy Regressor: R2 = -0.02; MSE = 0.97

Variable cible: Emission de gaz CO2

Résultats de prédiction du modèle SVM SVR avec un noyau gaussien et avec l'utilisation de l'ENERGYSTARScore

SVM SVR: R2 = 0.71; MSE = 0.28

Dummy Regressor: R2 = -0.02; MSE = 0.99

CONCLUSION

- L'analyse exploratoire a montré que les données sont très dissymétriques et demande une transformation avant d'être fournies aux modèles.
- L'utilisation de pipeline permet d'éviter la fuite de donnée du corpus test vers le corpus d'apprentissage.
- La création de nouvelles variables permet d'éviter l'utilisation des variables corrélées avec la variable cible, ainsi que la fuite de donnée.
- 8 modèles ont été testés et évalués grâce à la validation croisée.
- Le modèle choisi est SVM avec un noyau gaussien (SVM SVR).

CONCLUSION

Modèle	Score									
	R2				MSE					
	Variable cible : Consommation d'énergie		Variable cible : Emission de gaz CO2		Variable cible : Consommation d'énergie		Variable cible : Emission de gaz CO2			
	Sans Energy Star Score	Avec Energy Star Score	Sans Energy Star Score	Avec Energy Star Score	Sans Energy Star Score	Avec Energy Star Score	Sans Energy Star Score	Avec Energy Star Score		
Dummy Regressor	-0,02	-0,02	-0,02	-0,02	0,97	0,97	0,99	0,99		
SVM SVR	0,73	0,75	0,69	0,71	0,26	0,24	0,30	0,28		

L'utilisation de la variable Energy Star Score améliore les résultats pour les deux variables cible.

MERCI

Comparaison de l'effet de recherche de meilleurs paramètres sur les coefficients des variables.

