

Generative Adversarial Networks in Cancer Imaging: Applications, Challenges, Solutions

Richard Osuala¹, Kaisar Kushibar¹, Lidia Garrucho¹, Akis Linardos¹, Zuzanna Szafranowska¹, Stefan Klein², Ben Glocker³, Oliver Diaz¹, Karim Lekadir¹

> 1. Artificial Intelligence in Medicine Lab (BCN-AIM), Faculty of Mathematics and Computer Science, University of Barcelona, Spain 2. Biomedical Imaging Group Rotterdam, Departments of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands 3. Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK

Abstract

In this review, we assess the potential of GANs to address a number of key challenges of cancer imaging, including data scarcity and imbalance, domain and dataset shifts, data access and privacy, data annotation and quantification, as well as cancer detection, tumour profiling and treatment planning

We analyse and discuss 126 papers that apply adversarial training techniques in the context of cancer imaging and elaborate their methodologies, advantages and limitations.

This poster will discuss

- > Generative Adversarial Networks and their use cases in **Cancer Imaging**
- > The challenge of early cancer detection with current imaging modalities
- Research inspired by the GAN review: Conditional

The theoretical underpinnings of **Generative Adversarial Networks** (GANs)

Two-Player MinMax Game

In zero-sum games, what is won on one side is a loss on the other.

≻One Player (G) tries to minimize the same function (D) tries to maximise

Image Generation

→ Player D (discriminator) receives an image and needs to decide where it came from **≻It could be from the source** data or generated by G (generator) > D uses binary-cross-

entropy loss for this classification

Binary-Cross-Entropy Loss of D:

$$L_D = -\mathbb{E}_{x \sim p_{data}}[logD(x)] + \mathbb{E}_{z \sim p_z}[log(1 - D(G(z)))]$$

MinMax Value function of both D and G:

$$\min_{G} \max_{D} V(D, G) = \min_{G} \max_{D} [\mathbb{E}_{x \sim p_{data}} [log D(x)]]$$

 $+\mathbb{E}_{z\sim p_z}[log(1-D(G(z)))]]$

The Vanilla GAN Architecture

Goodfellow et al (2014)

- > Distributions of GANs papers per organ, and modality
- Mammogram Synthesis

Cancer imaging modalities and early

Cancer Imaging **Organs of Interest**

Research, Diagnosis, **Treatment** of cancer

A large proportion of the global burden of cancer deaths could be prevented due to treatment and early detection in cancer imaging modalities.

detection

We define Cancer

Imaging as the

approaches for

based on medical

entirety of

images.

Gompertzian Tumour Growth Curve, source Frangioni (2008)

Solid tumours become detectable by radiological imaging only at an approx. size of 10^9 cells = 1cm^3 after evolving from a single cell (= 10^0). \rightarrow **Better detection** methods are urgently

needed.

Most common GAN use-cases in cancer imaging for detection

Data Augmentation improve detection, segmentation, etc model performance with more training data source

translate image to other (e.g. seen/unseen domain shifts are common in clinical practice) source B G

Anomaly Detection

e.g. encode lesion images into latent space to find anormal (malignant) ones

Image Inpainting

Cross Modal Image

Translation

e.g. add/remove artifacts, facial features, tumours etc

Invariant Feature Representations e.g. make deep learning models

robust against biases and domain shifts

Super-Resolution e.g. better diagnostic image analysis

Distribution of GANs per year, organ, and modality

Leading

to

Conclusions

- Most work on detection and segmentation challenges, much less on privacy preservation and cancer treatment
- > An extensive amount of research is devoted to organs and modalities with publicly available benchmark datasets
- > e.g. BRATS, LIDC/IDRI, DDSM
- Many of the challenges of cancer imaging are not yet addressed by the current GAN literature.
 - > e.g. genotype-phenotype linked synthesis, BIRADS conditioned mammogram synthesis,

My current research: BIRADs conditioned mammogram generation to improve tumour detection models

Mammography Example of a Mass with annotated ROI mask from **INbreast Dataset**

Data System.

BIRADs Classification Framework, source: Von Schantz et al (2016)

Solution Architecture: Improving cancer detection by training deep learning detection models with controlled synthetic training data