Figure 1

TST10088 Protein Sequence:

1	EAEA IFPKQY	PIIQFTTAGA	TVQSYTNFIR	AVRGRLTTGA	DVRHEIPVLP
51	NRVGLPINQR	FILVELSNHA	ELSVTLALDV	TNAYVVGYRA	GNSAYFFHPD
101	NQEDAEAITH	LFTDVQNRYT	FAFGGNYDRL	EQLAGNLREN	IELGNGPLEE
151	AISALYYYST	GGTQLPTLAR	SFIICIQMIS	EAARFQYIEG	EMRTRIRYNR
201	RSAPDPSVIT	LENSWGRLST	AIQESNQGAF	ASPIQLQRR N	GSKFSVYDVS
251	ILIPIIALMV	YRCSPQGIAG	Q CMDPEPIVR	IVGRNGLCVD	VRDGRFHNGN
301	AIQLWPCKSN	TDANQLWTLK	RDNTIRSNGK	CLTTYGYSPG	VYVMIYDCNT
351	AATDATRWQI	WD N GTIINPR	SSLVLAATSG	NSGTTLTVQT	NIYAVSQGWL
401	PTQNTQPFVT	TIVGLYGLCL	QANSGQVWIE	DCSSEKAEQQ	WALYADGSIR
451	PQQNRDNCLT	SDSNIRETVV	KILSCGPASS	GQRWMFKNDG	TILNLYSGLV
501	LDVRASDPSL	KOIILYPLHG	DPNOIWLPLF		

^{2/25} Figure 2

TST10092 Protein Sequence:

1	EAEA IFPKQY	PIIQFTTAGA	TVQSYTNFIR	AVRGRLTTGA	DVRHEIPVLP
51	NRVGLPINQR	FILVELSNHA	ELSVTLALDV	TNAYVVGYRA	GNSAYFFHPD
101	NQEDAEAITH	LFTDVQNRYT	FAFGGNYDRL	EQLAGNLREN	IELGNGPLEE
151	AISALYYYST	GGTQLPTLAR	SFIICIQMIS	EAARFQYIEG	EMRTRIRYNR
201	RSAPDPSVIT	LENSWGRLST	AIQESNQGAF	${\tt ASPIQLQRR} {\bf N}$	GSKFSVYDVS
251	ILIPIIALMV	YRC SPQGIAG	Q CMDPEPIVR	IVGRNGLCVD	VRDGRFHNGN
301	AIQLWPCKSN	TDANQLWTLK	RDNTIRSNGK	CLTTYGYSPG	VYVMIYDCNT
351	AATDATRWQI	WDNGTIINPR	SSLVLAATSG	NSGTTLTVQT	NIYAVSQGWL
401	PTNNTQPFVT	TIVGLYGLCL	QANSGQVWIE	DCSSEKAEQQ	WALYADGSIR
451	PQQNRDNCLT	SDSNIRETVV	KILSCGPASS	GQRWMFKNDG	TILNLYSGLV
501	LDVRASDPSL	KQIILYPLHG	DPNQIWLPLF		

Figure 3

3.83 C

TST10147 Protein Sequence:

1	EAEA IFPKQY	PIIQFTTAGA	TVQSYTNFIR	AVRGRLTTGA	DVRHEIPVLP
51	NRVGLPINQR	FILVELSNHA	ELSVTLALDV	TNAYVVGYRA	GNSAYFFHPD
101	NQEDAEAITH	LFTDVQNRYT	FAFGGNYDRL	EQLAGNLREN	IELGNGPLEE
151	AISALYYYST	GGTQLPTLAR	SFIICIQMIS	EAARFQYIEG	EMRTRIRYNR
201	RSAPDPSVIT	LENSWGRLST	AIQESNQGAF	ASPIQLQRR N	GSKFSVYDVS
251	ILIPIIALMV	YRCGSPQGIA	GQ CMDPEPIV	RIVGRNGLCV	DVRDGRFHNG
301	NAIQLWPCKS	NTDANQLWTL	KRDNTIRSNG	KCLTTYGYSP	GVYVMIYDCN
351	TAATDATRWQ	IWD N GTIINP	RSSLVLAATS	GNSGTTLTVQ	TNIYAVSQGW
401	LPT Q NTQPFV	TTIVGLYGLC	LQANSGQVWI	EDCSSEKAEQ	QWALYADGSI
451	RPQQNRDNCL	TSDSNIRETV	VKILSCGPAS	SGQRWMFKND	GTILNLYSGL
501	VLDVRASDPS	LKQIILYPLH	GDPNQIWLPL	F	

Figu **re** 4

TST10088 DNA Insert Sequence:

		-			
-117	ATGAAACCGG	GAGGAAATAC	TATTGT ZATA	TGGGTGTATG	CAGTGGCAAC
-67	TACTTTGGCC ATGGCTTTGT	CTCCTTTATG TTTGGATCCA	ATAACATTAT CCTCAG GGTG	ACCCACATAC GTCTTTCACA	GTCACCGTTG TTAGAGGATA
0,	TACCGAAACA	AAACCTAGGT	GGAGTC CCAC	CAGAAAGTGT	AATCTCCTAT
-17	ACAACCTCGA	GAAAAGAGAG	GCTGAAGCTA	TATTCCCCAA	ACAATACCCA
34	TGTTGGAGCT ATTATACAGT	CTTTTCTCTC TTACCACAGC	CGACTT CGAT	ATAAGGGGTT GTGCAAAGCT	TGTTATGGGT ACACAAACTT
34	TAATATGTCA	AATGGTGTCG	CCCACGGTGA	CACGTTTCGA	TGTGTTTGAA
8 4	TATCAGAGCT	GTTCGCGGTC	GTTTAA CAAC	TGGAGCTGAT	GTGAGACATG
124	ATAGTCTCGA	CAAGCGCCAG	CAAATT GTTG	ACCTCGACTA	CACTCTGTAC
134	AAATACCAGT TTTATGGTCA	GTTGCCAAAC CAACGGTTTG	AGAGTT GGTT	TGCCTATAAA ACGGATATTT	CCAACGGTTT GGTTGCCAAA
184	ATTTTAGTTG	AACTCTCAAA	TCATGC.ZAGAG	CTTTCTGTTA	CATTAGCGCT
	TAAAATCAAC	TTGAGAGTTT	AGTACG TCTC	GAAAGACAAT	GTAATCGCGA
234	GGATGTCACC CCTACAGTGG	AATGCATATG TTACGTATAC	TGGT CG GCTA ACCAGC CGAT	CCGTGCTGGA GGCACGACCT	AATAGCGCAT TTATCGCGTA
284	ATTTCTTTCA	TCCTGACAAT	CAGGAA GATG	CAGAAGCAAT	CACTCATCTT
	TAAAGAAAGT	AGGACTGTTA	GTCCTT CTAC	GTCTTCGTTA	GTGAGTAGAA
334	TTCACTGATG	TTCAAAATCG	ATATAC ATTC	GCCTTTGGTG	GTAATTATGA
384	AAGTGACTAC TAGACTTGAA	AAGTTTTAGC CAACTTGCTG	TATATG TAAG GTAATC TGAG	CGGAAACCAC AGAAAATATC	CATTAATACT GAGTTGGGAA
	ATCTGAACTT	GTTGAACGAC	CATTAG ACTC	TCTTTTATAG	CTCAACCCTT
434	ATGGTCCACT	AGAGGAGGCT	ATCT CA GCGC	TTTATTATTA	CAGTACTGGT
191	TACCAGGTGA GGCACTCAGC	TCTCCTCCGA TTCCAACTCT	TAGAGT CGCG	AAATAATAAT TTTATAATTT	GTCATGACCA GCATCCAAAT
484	CCGTGAGTCG	AAGGTTGAGA	CCGAGC_AAGG	AAATATTAAA	CGTAGGTTTA
534	GATTTCAGAA	GCAGCAAGAT	TCCAAT_ATAT	TGAGGGAGAA	ATGCGCACGA
	CTAAAGTCTT	CGTCGTTCTA	AGGTTA TATA	ACTCCCTCTT	TACGCGTGCT
584	GAATTAGGTA CTTAATCCAT	CAACCGGAGA GTTGGCCTCT	TCTGCA CCAG AGACGT GGTC	ATCCTAGCGT TAGGATCGCA	AATTACACTT TTAATGTGAA
634	GAGAATAGTT	GGGGGAGACT	TTCCAC TGCA	ATTCAAGAGT	CTAACCAAGG
	CTCTTATCAA	CCCCCTCTGA	AAGGTG_ACGT	TAAGTTCTCA	GATTGGTTCC
684	AGCCTTTGCT TCGGAAACGA	AGTCCAATTC TCAGGTTAAG	AACTGC_AGAG TTGACG TCTC	ACGTAATGGT TGCATTACCA	TCCAAATTCA AGGTTTAAGT
734	GTGTGTACGA	TGTGAGTATA	TTAATC CCTA	TCATAGCTCT	CATGGTGTAT
	CACACATGCT	ACACTCATAT	AATTAG GGAT	AGTATCGAGA	GTACCACATA
784	AGATGCTCTC	CGCAAGGAAT	TGCAGG GCAG	TGTATGGATC	CTGAGCCCAT
834	TCTACGAGAG AGTGCGTATC	GCGTTCCTTA GTAGGTCGAA	ACGTCC CGTC ATGGTC TATG	ACATACCTAG TGTTGATGTT	GACTCGGGTA AGGGATGGAA
001	TCACGCATAG	CATCCAGCTT	TACCAG ATAC	ACAACTACAA	TCCCTACCTT
884	GATTCCACAA	CGGAAACGCA	ATACAG TTGT	GGCCATGCAA	GTCTAATACA
934	CTAAGGTGTT GATGCAAATC	GCCTTTGCGT AGCTCTGGAC	TATGTC AACA	CCGGTACGTT GACAATACTA	CAGATTATGT TTCGATCTAA
934	CTACGTTTAG	TCGAGACCTG	AAACTT TTCT	CTGTTATGAT	AAGCTAGATT
984	TGGAAAGTGT	TTAACTACTT	ACGGGT ACAG	TCCGGGAGTC	TATGTGATGA
1024	ACCTTTCACA	AATTGATGAA	TGCCCA TGTC GCAACT GATG	AGGCCCTCAG CCACCCGCTG	ATACACTACT GCAAATATGG
1034	TCTATGATTG AGATACTAAC	CAATACTGCT GTTATGACGA	CGTTGA CTAC	GGTGGGCGAC	CGTTTATACC
1084	GAT AAT GGAA	CCATCATAAA	TCCCAG ATCT	AGTCTAGTTT	TAGCAGCGAC
1104	CTATTACCTT	GGTAGTATTT	AGGGTC TAGA	TCAGATCAAA	ATCGTCGCTG
1134	ATCAGGGAAC TAGTCCCTTG	AGTGGTACCA TCACCATGGT	CACTTA CAGT GTGAAT GTCA	GCAAACCAAC CGTTTGGTTG	ATTTATGCCG TAAATACGGC
1184	TTAGTCAAGG		ACTCAG AATA	CACAACCTTT	TGTGACAACC
	AATCAGTTCC	AACCGAAGGA	TGAGTC TTAT	GTGTTGGAAA	ACACTGTTGG
1234	ATTGTTGGGC TAACAACCCG	TATATGGTCT ATATACCAGA	GTGCTT GCAA CACGAA CGTT	GCAAATAGTG CGTTTATCAC	GACAAGTATG CTGTTCATAC
1284	GATAGAGGAC	TGTAGCAGTG		ACAACAGTGG	GCTCTTTATG
	CTATCTCCTG		TTTTCC GACT	TGTTGTCACC	CGAGAAATAC
1334	CAGATGGTTC	AATACGTCCT TTATGCAGGA	CAGCAA AACC GTCGTT TTGG	GAGATAATTG	CCTTACAAGT GGAATGTTCA
1384	GTCTACCAAG GATTCTAATA	TACGGGAAAC	AGTTGT CAAG	CTCTATTAAC ATCCTCTCTT	GTGGCCCTGC
-	CTAAGATTAT	ATGCCCTTTG	TCAACA GTTC	TAGGAGAGAA	CACCGGGACG
1434	ATCCTCTGGC	CAACGATGGA	TGTTCA AGAA	TGATGGAACC	ATTTTAAATT
1484	TAGGAGACCG TGTATAGTGG	GTTGCTACCT GTTGGTGTTA	ACAAGT TCTT GATGTG AGGG	ACTACCTTGG CATCAGATCC	TAAAATTTAA GAGCCTTAAA
	ACATATCACC	CAACCACAAT	CTACAC TCCC	GTAGTCTAGG	
1534	CAAATCATTC	TTTACCCTCT	CCATGG TGAC	CCAAACCAAA	TATGGTTACC
1584	GTTTAGTAAG ATTATTT	AAATGGGAGA	GGTACC ACTG	GGTTTGGTTT	ATACCAATGG
1004	TAATAAA				

5/25 Figure **5**

TST10092 DNA Insert Sequence:

-117	ATGAAACCGG	GAGGAAATAC	TATTGTAATA	TGGGTGTATG	CAGTGGCAAC
	TACTTTGGCC	CTCCTTTATG	ATAACATTAT	ACCCACATAC	GTCACCGTTG
-67	ATGGCTTTGT	TTTGGATCCA	CCTCAGGGTG	GTCTTTCACA	TTAGAGGATA
	TACCGAAACA	AAACCTAGGT	GGAGTCCCAC	CAGAAAGTGT	AATCTCCTAT
-17	ACAACCTCGA	GAAAAGAGAG	GCTGAAGCTA	TATTCCCCAA	ACAATACCCA
 ,					
	TGTTGGAGCT	CTTTTCTCTC	CGACTTCGAT	ATAAGGGGTT	TGTTATGGGT
3 4	ATTATACAGT	TTACCACAGC	GGGTGCCACT	GTGCAAAGCT	ACACAAACTT
	TAATATGTCA	AATGGTGTCG	CCCACGGTGA	CACGTTTCGA	TGTGTTTGAA
8 4	TATCAGAGCT	GTTCGCGGTC	GTTTAACAAC	TGGAGCTGAT	GTGAGACATG
• •					
	ATAGTCTCGA	CAAGCGCCAG	CAAATTGTTG	ACCTCGACTA	CACTCTGTAC
134	AAATACCAGT	GTTGCCAAAC	AGAGTTGGTT	TGCCTATAAA	CCAACGGTTT
	TTTATGGTCA	CAACGGTTTG	TCTCAACCAA	ACGGATATTT	GGTTGCCAAA
184	ATTTTAGTTG	AACTCTCAAA	TCATGCAGAG	CTTTCTGTTA	CATTAGCGCT
	TAAAATCAAC	TTGAGAGTTT	AGTACGTCTC		GTAATCGCGA
0.0.4				GAAAGACAAT	
234	GGATGTCACC	AATGCATATG	TGGTCGGCTA	CCGTGCTGGA	AATAGCGCAT
	CCTACAGTGG	TTACGTATAC	ACCAGCCGAT	GGCACGACCT	TTATCGCGTA
284	ATTTCTTTCA	TCCTGACAAT	CAGGAAGATG	CAGAAGCAAT	CACTCATCTT
	TAAAGAAAGT	AGGACTGTTA	GTCCTTCTAC	GTCTTCGTTA	GTGAGTAGAA
224					
334	TTCACTGATG	TTCAAAATCG	ATATACATTC	GCCTTTGGTG	GTAATTATGA
	AAGTGACTAC	AAGTTTTAGC	TATATGTAAG	CGGAAACCAC	CATTAATACT
384	TAGACTTGAA	CAACTTGCTG	GTAATCTGAG	AGAAAATATC	GAGTTGGGAA
	ATCTGAACTT	GTTGAACGAC	CATTAGACTC	TCTTTTATAG	CTCAACCCTT
124					
434	ATGGTCCACT	AGAGGAGGCT	ATCTCAGCGC	TTTATTATTA	CAGTACTGGT
	TACCAGGTGA	TCTCCTCCGA	TAGAGTCGCG	AAATAATAAT	GTCATGACCA
484	GGCACTCAGC	TTCCAACTCT	GGCTCGTTCC	TTTATAATTT	GCATCCAAAT
	CCGTGAGTCG	AAGGTTGAGA	CCGAGCAAGG	AAATATTAAA	CGTAGGTTTA
534	GATTTCAGAA	GCAGCAAGAT			
224			TCCAATATAT	TGAGGGAGAA	ATGCGCACGA
	CTAAAGTCTT	CGTCGTTCTA	AGGTTATATA	ACTCCCTCTT	TACGCGTGCT
584	GAATTAGGTA	CAACCGGAGA	TCTGCACCAG	ATCCTAGCGT	AATTACACTT
	CTTAATCCAT	GTTGGCCTCT	AGACGTGGTC	TAGGATCGCA	TTAATGTGAA
634	GAGAATAGTT	GGGGGAGACT	TTCCACTGCA	ATTCAAGAGT	CTAACCAAGG
034					
	CTCTTATCAA	CCCCCTCTGA	AAGGTGACGT	TAAGTTCTCA	GATTGGTTCC
684	AGCCTTTGCT	AGTCCAATTC	AACTGCAGAG	ACGTAATGGT	TCCAAATTCA
	TCGGAAACGA	TCAGGTTAAG	TTGACGTCTC	TGCATTACCA	AGGTTTAAGT
734	GTGTGTACGA	TGTGAGTATA	TTAATCCCTA	TCATAGCTCT	CATGGTGTAT
	CACACATGCT	ACACTCATAT			
=0.4			AATTAGGGAT	AGTATCGAGA	GTACCACATA
784	AGATGCTCTC	CGCAAGGAAT	TGCAGGGCAG	TGTATGGATC	CTGAGCCCAT
	TCTACGAGAG	GCGTTCCTTA	ACGTCCCGTC	ACATACCTAG	GACTCGGGTA
834	AGTGCGTATC	GTAGGTCGAA	ATGGTCTATG	TGTTGATGTT	AGGGATGGAA
	TCACGCATAG	CATCCAGCTT	TACCAGATAC	ACAACTACAA	TCCCTACCTT
004					
884	GATTCCACAA	CGGAAACGCA	ATACAGTTGT	GGCCATGCAA	GTCTAATACA
	CTAAGGTGTT	GCCTTTGCGT	TATGTCAACA	CCGGTACGTT	CAGATTATGT
934	GATGCAAATC	AGCTCTGGAC	TTTGAAAAGA	GACAATACTA	TTCGATCTAA
	CTACGTTTAG	TCGAGACCTG	AAACTTTTCT	CTGTTATGAT	AAGCTAGATT
984	TGGAAAGTGT	TTAACTACTT	ACGGGTACAG	TCCGGGAGTC	TATGTGATGA
J0 4					
	ACCTTTCACA	AATTGATGAA	TGCCCATGTC	AGGCCCTCAG	ATACACTACT
1034	TCTATGATTG	CAATACTGCT	GCAACTGATG	CCACCCGCTG	GCAAATATGG
	AGATACTAAC	GTTATGACGA	CGTTGAČTAC	GGTGGGCGAC	CGTTTATACC
1084	GAT AAT GGAA	CCATCATAAA	TCCCAGATCT	AGTCTAGTTT	TAGCAGCGAC
·	CTATTACCTT	GGTAGTATTT	AGGGTCTAGA	TCAGATCAAA	ATCGTCGCTG
7 7 7 4					
1134	ATCAGGGAAC	AGTGGTACCA	CACTTACAGT	GCAAACCAAC	ATTTATGCCG
	TAGTCCCTTG	TCACCATGGT	GTGAATGTCA	CGTTTGGTTG	TAAATACGGC
1184	TTAGTCAAGG	TTGGCTTCCT	ACTAATAATA	CACAACCTTT	TGTGACAACC
	AATCAGTTCC	AACCGAAGGA	TGATTATTAT	GTGTTGGAAA	ACACTGTTGG
1234	ATTGTTGGGC	TATATGGTCT	GTGCTTGCAA	GCAAATAGTG	
12,04					GACAAGTATG
	TAACAACCCG	ATATACCAGA	CACGAACGTT	CGTTTATCAC	CTGTTCATAC
1284	GATAGAGGAC	TGTAGCAGTG	AAAAGGCTGA	ACAACAGTGG	GCTCTTTATG
	CTATCTCCTG	ACATCGTCAC	TTTTCCGACT	TGTTGTCACC	CGAGAAATAC
1334	CAGATGGTTC	AATACGTCCT	CAGCAAAACC	GAGATAATTG	CCTTACAAGT
			GTCGTTTTGG	CTCTATTAAC	
	GTCTACCAAG	TTATGCAGGA			GGAATGTTCA
1384	GATTCTAATA	TACGGGAAAC	AGTTGTCAAG	ATCCTCTCTT	GTGGCCCTGC
	CTAAGATTAT	ATGCCCTTTG	TCAACAGTTC	TAGGAGAGAA	CACCGGGACG
1434	ATCCTCTGGC	CAACGATGGA	TGTTCAAGAA	TGATGGAACC	ATTTTAAATT
	TAGGAGACCG	GTTGCTACCT	ACAAGTTCTT	ACTACCTTGG	
1 4 0 4					TAAAATTTAA
1484	TGTATAGTGG	GTTGGTGTTA	GATGTGAGGG	CATCAGATCC	GAGCCTTAAA
	ACATATCACC	CAACCACAAT	CTACACTCCC	GTAGTCTAGG	CTCGGAATTT
1534	CAAATCATTC	TTTACCCTCT	CCATGGTGAC	CCAAACCAAA	TATGGTTACC
	GTTTAGTAAG	AAATGGGAGA	GGTACCACTG	GGTTTGGTTT	ATACCAATGG
1584	ATTATTT				
1004					
	TAATAAA				

6/25 **Figure 6**

TST10147 DNA Insert Sequence:

-117	ATGAAACCGG	GAGGAAATAC	TATTGTAATA	TGGGTGTATG	CAGTGGCAAC
	TACTTTGGCC	CTCCTTTATG	ATAACATTAT	ACCCACATAC	GTCACCGTTG
-67	ATGGCTTTGT	TTTGGATCCA	CCTCAGGGTG	GTCTTTCACA	TTAGAGGATA
	TACCGAAACA	AAACCTAGGT	GGAGTCCCAC	CAGAAAGTGT	AATCTCCTAT
4 77					
-17	ACAACCTCGA	GAAAAGAGAG	GCTGAAGCTA	TATTCCCCAA	ACAATACCCA
	TGTTGGAGCT	CTTTTCTCTC	CGACTTCGAT	ATAAGGGGTT	TGTTATGGGT
34	ATTATACAGT		GGGTGCCACT		ACACAAACTT
34		TTACCACAGC		GTGCAAAGCT	
	TAATATGTCA	AATGGTGTCG	CCCACGGTGA	CACGTTTCGA	TGTGTTTGAA
8 4	TATCAGAGCT	GTTCGCGGTC	GTTTAACAAC	TGGAGCTGAT	GTGAGACATG
0.					
	ATAGTCTCGA	CAAGCGCCAG	CAAATTGTTG	ACCTCGACTA	CACTCTGTAC
134	AAATACCAGT	GTTGCCAAAC	AGAGTTGGTT	TGCCTATAAA	CCAACGGTTT
	TTTATGGTCA	CAACGGTTTG	TCTCAACCAA	ACGGATATTT	GGTTGCCAAA
184	ATTTTAGTTG	AACTCTCAAA	TCATGCAGAG	CTTTCTGTTA	CATTAGCGCT
	TAAAATCAAC	TTGAGAGTTT	AGTACGTCTC	GAAAGACAAT	GTAATCGCGA
004					
234	GGATGTCACC	AATGCATATG	TGGTCGGCTA	CCGTGCTGGA	AATAGCGCAT
	CCTACAGTGG	TTACGTATAC	ACCAGCCGAT	GGCACGACCT	TTATCGCGTA
284	ATTTCTTTCA	TCCTGACAAT	CAGGAAGATG	CAGAAGCAAT	CACTCATCTT
204					
	TAAAGAAAGT	AGGACTGTTA	GTCCTTCTAC	GTCTTCGTTA	GTGAGTAGAA
334	TTCACTGATG	TTCAAAATCG	ATATACATTC	GCCTTTGGTG	GTAATTATGA
	AAGTGACTAC	AAGTTTTAGC	TATATGTAAG	CGGAAACCAC	CATTAATACT
384	TAGACTTGAA	CAACTTGCTG	GTAATCTGAG	AGAAAATATC	GAGTTGGGAA
	ATCTGAACTT	GTTGAACGAC	CATTAGACTC	TCTTTTATAG	CTCAACCCTT
434	ATGGTCCACT	AGAGGAGGCT	ATCTCAGCGC	TTTATTATTA	CAGTACTGGT
	TACCAGGTGA	TCTCCTCCGA	TAGAGTCGCG	AAATAATAAT	GTCATGACCA
484	GGCACTCAGC	TTCCAACTCT	GGCTCGTTCC	TTTATAATTT	GCATCCAAAT
	CCGTGAGTCG	AAGGTTGAGA	CCGAGCAAGG	AAATATTAAA	CGTAGGTTTA
E 5 4					
534	GATTTCAGAA	GCAGCAAGAT	TCCAATATAT	TGAGGGAGAA	ATGCGCACGA
	CTAAAGTCTT	CGTCGTTCTA	AGGTTATATA	ACTCCCTCTT	TACGCGTGCT
584	GAATTAGGTA	CAACCGGAGA	TCTGCACCAG	ATCCTAGCGT	AATTACACTT
304					
	CTTAATCCAT	GTTGGCCTCT	AGACGTGGTC	TAGGATCGCA	TTAATGTGAA
634	GAGAATAGTT	GGGGGAGACT	TTCCACTGCA	ATTCAAGAGT	CTAACCAAGG
	CTCTTATCAA	CCCCCTCTGA	AAGGTGACGT	TAAGTTCTCA	GATTGGTTCC
684	AGCCTTTGCT	AGTCCAATTC	AACTGCAGAG	ACGTAATGGT	TCCAAATTCA
	TCGGAAACGA	TCAGGTTAAG	TTGACGTCTC	TGCATTACCA	AGGTTTAAGT
734	GTGTGTACGA	TGTGAGTATA	TTAATCCCTA	TCATAGCTCT	CATGGTGTAT
	CACACATGCT	ACACTCATAT	AATTAGGGAT	AGTATCGAGA	GTACCACATA
704					
784	AGATGC GGTT	CTCCGCAAGG	AATTGCAGGG	CAGTGTATGG	ATCCTGAGCC
	TCTACGCCAA	GAGGCGTTCC	TTAACGTCCC	GTCACATACC	TAGGACTCGG
834	CATAGTGCGT	ATCGTAGGTC	GAAATGGTCT	ATGTGTTGAT	GTTAGGGATG
0.5 4					
	GTATCACGCA	TAGCATCCAG	CTTTACCAGA	TACACAACTA	CAATCCCTAC
884	GAAGATTCCA	CAACGGAAAC	GCAATACAGT	TGTGGCCATG	CAAGTCTAAT
	CTTCTAAGGT	GTTGCCTTTG	CGTTATGTCA	ACACCGGTAC	GTTCAGATTA
934	ACAGATGCAA	ATCAGCTCTG	GACTTTGAAA	AGAGACAATA	CTATTCGATC
	TGTCTACGTT	TAGTCGAGAC	CTGAAACTTT	TCTCTGTTAT	GATAAGCTAG
004					
984	TAATGGAAAG	TGTTTAACTA	CTTACGGGTA	CAGTCCGGGA	GTCTATGTGA
	ATTACCTTTC	ACAAATTGAT	GAATGCCCAT	GTCAGGCCCT	CAGATACACT
1034	TGATCTATGA	TTGCAATACT	GCTGCAACTG	ATGCCACCCG	CTGGCAAATA
1024					
	ACTAGATACT	AACGTTATGA	CGACGTTGAC	TACGGTGGGC	GACCGTTTAT
1084	TGGGATAATG	GAACCATCAT	AAATCCCAGA	TCTAGTCTAG	TTTTAGCAGC
	ACCCTATTAC	CTTGGTAGTA	TTTAGGGTCT	AGATCAGATC	AAAATCGTCG
1134	GACATCAGGG	AACAGTGGTA	CCACACTTAC	AGTGCAAACC	AACATTTATG
	CTGTAGTCCC	TTGTCACCAT	GGTGTGAATG	TCACGTTTGG	TTGTAAATAC
1184	CCGTTAGTCA	AGGTTGGCTT	CCTACTCAGA	ATACACAACC	TTTTGTGACA
	GGCAATCAGT	TCCAACCGAA	GGATGAGTCT	TATGTGTTGG	AAAACACTGT
1234					
1234	ACCATTGTTG	GGCTATATGG	TCTGTGCTTG	CAAGCAAATA	GTGGACAAGT
	TGGTAACAAC	CCGATATACC	AGACACGAAC	GTTCGTTTAT	CACCTGTTCA
1284	ATGGATAGAG	GACTGTAGCA	GTGAAAAGGC	TGAACAACAG	TGGGCTCTTT
1201					
	TACCTATCTC	CTGACATCGT	CACTTTTCCG	ACTTGTTGTC	ACCCGAGAAA
1334	ATGCAGATGG	TTCAATACGT	CCTCAGCAAA	ACCGAGATAA	TTGCCTTACA
· -			GGAGTCGTTT		
	TACGTCTACC	AAGTTATGCA		TGGCTCTATT	AACGGAATGT
1384	AGTGATTCTA	ATATACGGGA	AACAGTTGTC	AAGATCCTCT	CTTGTGGCCC
	TCACTAAGAT	TATATGCCCT	TTGTCAACAG	TTCTAGGAGA	GAACACCGGG
1 10 1					
1434	TGCATCCTCT	GGCCAACGAT	GGATGTTCAA	GAATGATGGA	ACCATTTTAA
	ACGTAGGAGA	CCGGTTGCTA	CCTACAAGTT	CTTACTACCT	TGGTAAAATT
1 4 0 4				•	
1484	ATTTGTATAG	TGGGTTGGTG	TTAGATGTGA	GGGCATCAGA	TCCGAGCCTT
	TAAACATATC	ACCCAACCAC	AATCTACACT	CCCGTAGTCT	AGGCTCGGAA
1534	AAACAAATCA	TTCTTTACCC	TCTCCATGGT	GACCCAAACC	AAATATGGTT
	TTTGTTTAGT	AAGAAATGGG	AGAGGTACCA	CTGGGTTTGG	TTTATACCAA
1584	ACCATTATTT				
	TGGTAATAAA				

Figure 7

Figure 8

1 2 3 4 5 6 7 8 9

- 1) TST10007
- 2) TST10063
- 3) TST10062 LA
- 4) TST10061
- 5) TST10040
- 6) TST10039
- 7) TST10038
- 8) TST10008
- 9) TST10007 standard

Glycosylation Pattern from Glycosylation Variants

 $\mathbf{Figure}^{9/25}\mathbf{9}$

Efficacy of Glycoform 0 against P388

Figure 10

Efficacy of Glycoform 1 against P388

Figure 11

Efficacy of Glycoform 2 against P388

Figure 12

Weight loss data after treatment with different Glycoforms

Figure 13

Glycosylation Pattern from Glycosylation Iterative Refinement Variants

Figure 14

Comparison of TST10088 and Ricin Cytotoxicities

Figure 15

Efficacy of TST10007 in Combination with Cisplatin against P388

Figure 16

A & B: Combination Efficacy of TST10007/Dox in P388 Model

Figure 17

A & B: Combination Efficacy of TST10088/Dox in P388 Model

Figure 18

A & B: Combination Efficacy of TST10088/Cis in P388 Tumour Model

Figure 19

Efficacy of TST10088 in Combination with Cyclophosphamide against P388

Combination Efficacy of TST10088/CPA in P388 Tumor Model.

Combination Efficacy of TST10088/CPA in P388 Tumor Model.

Figure 21

Kinetics of TST10088 Clearance from Mouse Serum

Figure 22

Distribution of ¹²⁵I Labelled TST10088 (Day 4 Injection)

Figure 23

Distribution of ¹²⁵I Labelled TST10088 at 60 Minutes Post Injection (Day 4 Injection)

^{*} In monotherapy study TST10088 was injected on Day 4, not Day 3

Levels of TST10088 in Tumours with and without Doxorubicin

Figure 25

Presence of Serum Antibodies after Treatment with TST10007 and Doxorubicin