Intro

En F

Ejercicio

Principios de Estadística

Leonardo Collado Torres y María Gutiérrez Arcelus Licenciatura en Ciencias Genómicas, UNAM www.lcg.unam.mx/~lcollado/index.php www.lcg.unam.mx/~mgutierr/index.php

> Cuernavaca, México Febrero - Junio, 2009

ANOVA

Principios de Estadística

En R

Ejercicio

1 Intro

2 En R

3 Ejercicios

Objetivos

Principios de Estadística

Intro

En 1

Ejercicio

- Hoy vamos a ver como resolver una ANOVA en R
- Terminaremos con unos problemas para que los resuelvan:)

Definiendo ANOVA

Principios de Estadística

Intro

Ejercicio

- Es un método para comparar medias basado en variaciones de la media.
- La sencilla, one-way, es una generalización de la prueba t para dos muestras independientes que nos permite comparar varias muestras independientes.
- Tenemos k poblaciones con una muestra de cada una, siendo las poblaciones independientes. Si la media de la población i es μ_i y la desviación estándar es σ_i ¹, nuestro modelo estadísto es:

$$X_{ij} = \mu_i + \varepsilon_{ij}$$

• donde los términos de error, ε_{ij} , son independientes con una distribución Normal (o, σ)

 $^{^{1}}$ Si son iguales usamos solo σ

Hipótesis en prueba

Principios de Estadística

Intro

En l

Ejercicio

Los modelos se van a hacer más complicados, pero por ahora nuestras hipótesis son las siguientes:

1 *H*0:
$$\mu_1 = \mu_2 \dots = \mu_k$$

2 HA: $\mu_i \neq \mu_j$ para al menos un par i y j.

¿Por qué? Simplemente porque estamos asumiendo que todas nuestras poblaciones se distribuyen normalmente.

²En wiki viene como el "modelo de efectos fijos".

ANOVA como Fisher

Principios de Estadística

Intro

_. . . .

■ En sí una ANOVA es una prueba que utiliza la estadística F de Fisher. Para esto, tenemos los siguientes términos³:

- ▶ Suma total de cuadrados, STC = $\sum_i \sum_j (x_{ij} \bar{x})^2$
 - Mide la cantidad de variación desde el centro de todos los datos.
- ▶ Suma de errores cuadrados, SEC = $\sum i \sum j(x_{ij} \bar{x}_i)^2$
 - Mide la variación dentro del grupo i.
- ▶ Suma de tratamientos cuadrados, STrC = $\sum_i n_i (\bar{x}_i \bar{x})^2$
 - Compara la media de cada grupo con la media total.
- La estadística *F* como tal es así:

$$F = \frac{STrC/(k-1)}{SEC/(n-k)}$$

³SST, SSE y SSTr en inglés

oneway.test

Principios de Estadística

Intro

Eiercicio

Todo el rollo de la ANOVA es que no sabemos si la variación que observamos está dada porque nuestra H0 es falsa o porque se deba a la variación entre las muestras.

- Es por eso que usamos la F, y bueno, ya conociendo nuestras hipótesis, la función más directa para este tipo de ANOVA es la oneway.test. Chequen la ayuda :)
 - > `?`(oneway.test)
- Como ven, el objeto resultante es de clase htest.
- Fíjense bien que los datos se los pasamos en tipo "formula". Claro, si quieren siempre pueden hacerlo paso a paso con las fórmulas que les puse anteriormente :p

En R

Example (Primera ANOVA)

Supongamos que medimos el tiempo (en segundos) que 15 personas toman para completar la misma entrevista de trabajo. Por cuestiones logísticas, los dividieron en grupos de 5 para entrevistarlos en 3 días diferentes y estos fueron sus tiempos:

- **1** 2166, 1568, 2233, 1882, 2019
- 2 2279, 2075, 2131, 2009, 1793
- **3** 2226, 2154, 2583, 2010, 2190

Asumimos que nuestros datos se distribuyen normalmente con la misma varianza. Nuestras H0 y HA son iguales a las que acabamos de ver. Hagan una prueba de ANOVA y encuentren el valor p.

```
Principios de
Estadística
```

Intro

En R

Ejercicio

```
Así lo podemos resolver:
```

```
> datos <- stack(list(dia1 = c(2166,
      1568, 2233, 1882, 2019), dia2 = c(2279)
     2075, 2131, 2009, 1793), dia3 = c(2226,
      2154. 2583. 2010. 2190)))
> names(datos)
[1] "values" "ind"
> oneway.test(values ~ ind, data = datos,
      var.equal = T)
One-way analysis of means
data: values and ind
```

F = 1.7862, num df = 2, denom df =

12, p-value = 0.2094

Intro

Ejercicio

¿Qué concluímos?

- Noten que usamos una nueva función, stack, para agrupar nuestros datos en un data.frame pero manteniendo la información de nuestros 3 días.
- Les recomiendo que luego chequen como se ve el objeto datos con y sin stack.

Intro

En R

 Existe otra función para hacer ANOVAs sencillas, oneway, aunque también sirve para otras más complicadas. Se llama aov.

Si checan la ayuda se van a dar cuenta de que es mucho más complicada, así que mejor sigamos con nuestro ejemplo. Es que usa modelos lineales que no hemos visto, los 1m.

```
> `?` (aov)
```

> dos <- aov(values ~ ind, data = datos)</pre>

Utilidad de aov

Deg. of Freedom

Principios de Estadística

Intro

En R

Ejercicios

```
■ ¿Para que usamos aov? Simplemente porque podemos
  imprimir más datos con ella. Podemos ver cierta info
  usando print o llamando el objeto. Además podemos
  obtener la tabla de resumen usando summary.
  > dos
  Call:
     aov(formula = values ~ ind, data = datos)
  Terms:
                         ind Residuals
  Sum of Squares 174664.1 586719.6
```

12

Utilidad de aov

Principios de Estadística

Intro

En R

Ejercicio

Residual standard error: 221.1183 Estimated effects may be unbalanced

> summary(dos)

Df Sum Sq Mean Sq F value

ind 2 174664 87332 1.7862

Residuals 12 586720 48893

Pr(>F)

ind 0.2094

Residuals

"Residuals" es lo mismo que "Error".

Principios de Estadística

Intro En F

Ejercicios

- Ahora quiero que resuelvan los siguientes ejercicios. Tienen que subir a la página de Cursos su script con comentarios⁴. Por problema, deben hacer un boxplot u otra gráfica antes para ver si pueden asumir varianzas iguales o no.
- Problema 1. El set de datos de morley contiene mediciones de la velocidad de la luz hechas por Michaelson y Morley. Hicieron 5 experimentos, cada uno con varias repeticiones. Hagan una ANOVA simple para ver si los 5 experimentos tienen la misma media poblacional.
- Les recomiendo que usen head y tail para explorar sus datos en cada problema.
 - > head(morley)

Principios de Estadística

Intro

En K

Ejercicio:

	Expt	Run	Speed
001	1	1	850
002	1	2	740
003	1	3	900
004	1	4	1070
005	1	5	930
006	1	6	850

⁴No olviden sus conclusiones!!

Principios de Estadística

Intro

Ejercicios

Usando el set de datos Cars93 del paquete MASS, hagan una ANOVA simple para las variables MPG.highway y DriveTrain. ¿Sus datos apoyan a la H0 de medias poblacionales iguales?

- Tienen que cargar la librería MASS con el siguiente comando para poder usar Cars93.
 - > library(MASS)

Principios de Estadística

Intro

Ejercicios

Una compañía necesita de cierto químico como materia prima y está buscando donde mandarlo a hacer. Antes de tomar una decisión, le pide a 4 laboratorios que le hagan 5 muestras. Vemos los resultados en alguna métrica en la siguiente tabla.

■ ¿Hay una diferencia entre las medias de las poblaciones?

Lab 1	4.13	4.07	4.04	4.07	4.05
Lab 2	3.86	3.85	4.08	4.11	4.08
Lab 3	4.00	4.02	4.01	4.01	4.04
Lab 4	3.88	3.89	3.91	3.96	3.92

Table 1: Producción de un químico