

Instituto Federal do Espírito Santo – Campus Serra Rodovia ES-010 – Km 6,5 – Manguinhos – 29173-087 – Serra – ES

Bacharelado em Sistemas de Informação Álgebra Linear - 05/02/2025 - SIMULADO PARA A PROVA 3

Professor: Fidelis Zanetti de Castro

NT.

Questão:	1	2	3	4	5	Total
Pontos:	20	20	20	20	20	100
Nota:				·		

- 1. (20 pts) Considere os vetores $\vec{u} = 2\vec{i} + 2\vec{j} + \vec{k}$, $\vec{v} = 3\vec{i} + \vec{j} 2\vec{k}$ e $\vec{w} = 9\vec{i} + 21\vec{j} + 24\vec{k}$.
 - a) Encontre um vetor \vec{z} que seja ortogonal a \vec{u} e \vec{v} ao mesmo tempo.
 - b) Determine a área do paralelogramo de lados \vec{u} e \vec{v} .
 - c) $\{\vec{u}, \vec{v}, \vec{w}\}$ é uma base do \mathbb{R}^3 ? Se é uma base, ela é positiva ou negativamente orientada? **Observação:** Para determinar se uma base é positiva ou negativamente orientada, usamos o conceito de determinante. Considere uma base $B = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ no espaço vetorial \mathbb{R}^n . Formamos uma matriz A cujas colunas são os vetores da base:

$$A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n].$$

Se det(A) > 0, a base B é positivamente orientada. Se det(A) < 0, a base B é negativamente orientada.

2. (20 pts) Seja ABC um triângulo tal que:

$$\|\overrightarrow{AB}\| = 2$$
, $\|\overrightarrow{AC}\| = \sqrt{3}$, e $\overrightarrow{AB} \cdot \overrightarrow{AC} = \sqrt{6}$.

- a) Calcule a área do triângulo.
- b) Determine a medida, em radianos, do maior ângulo do triângulo ABC. Justifique sua resposta.
- 3. (20 pts) Dados os pontos A = (1,0,2), B = (2,1,3), C = (1,2,1) e o vetor $\vec{v} = (0,1,2)$:
 - a) Determine a equação paramétrica da reta r que passa pelo ponto A e é paralela ao vetor \vec{v} .
 - b) Determine a equação vetorial do plano α que passa pelos pontos A e B e é paralelo ao vetor \vec{v} .

- c) Determine a equação do plano β que passa pela origem, pelo ponto C e cujo vetor normal \vec{n}_{β} é perpendicular ao vetor \vec{n}_{α} (o vetor normal ao plano α da letra b). Observação: Dado um plano em \mathbb{R}^3 , o vetor normal ao plano satisfaz a seguinte propriedade: para qualquer vetor \mathbf{v} pertencente ao plano, o produto escalar entre ele e \mathbf{v} é zero. Isso significa que o vetor normal é ortogonal a qualquer direção dentro do plano.
- 4. (20 pts) Mostre que o produto escalar de dois vetores é igual ao produto de suas normas vezes o cosseno do ângulo entre eles.
- 5. (20 pts) Seja θ o ângulo entre os vetores $\vec{u}=(x,y,z)$ e $\vec{v}=(a,b,c)$. Use a relação $\sin^2\theta=1-\cos^2\theta$ para mostrar que

$$\sin \theta = \frac{\sqrt{(bz - cy)^2 + (cx - az)^2 + (ay - bx)^2}}{\|\vec{u}\| \|\vec{v}\|}.$$