

Complete Data Science and Machine Learning Using Python

By Jitesh Khurkhuriya

# Vectors

#### What is a vector?



#### What is a vector?

#### Cartesian:

$$\overrightarrow{V} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Polar:

$$\vec{V} = (r, \theta)$$





#### Vectors in Machine Learning

| Rating | Area sq. mtr |
|--------|--------------|
| 5      | 200          |
| 7      | 300          |
| 5      | 325          |
| 8      | 250          |
| 6      | 300          |
| 7      | 350          |
| 7.5    | 250          |
| 9      | 350          |



Ratings

#### Vector Arithmetic

Addition

Subtraction

Multiplication

#### **Vector Addition**

$$\overrightarrow{V}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\vec{V}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\overrightarrow{V}_1 + \overrightarrow{V}_2 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$



#### **Vector Subtraction**

$$\overrightarrow{V}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\overrightarrow{V}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\overrightarrow{V}_1 - \overrightarrow{V}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

|   |    | 10 | 5  |   | Q |   |   |
|---|----|----|----|---|---|---|---|
|   |    | 4  |    | j | 1 |   |   |
|   | 50 | 3  |    | 1 | K | P |   |
|   |    | 2  | Q- |   | 7 | 1 |   |
|   |    | 1  | X  |   |   |   |   |
| 6 |    | 0  | 1  | 2 | 3 | 4 | 5 |
|   |    | -1 |    |   |   |   |   |
|   |    | -2 |    |   |   |   |   |
|   |    | -3 |    |   |   |   |   |

#### Vector Multiplication



# Matrices

#### What is a Matrix?

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$
 Rows Columns

#### Why should we learn Matrices?





#### Some more examples of Vectors and Matrices



#### Matrix Addition

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 & 8 & -1 \\ 5 & -2 & -3 \end{bmatrix}$$

$$X + Y = \begin{bmatrix} 2+1 & 3+8 & 4+(-1) \\ 1+5 & 6+(-2) & 7+(-3) \end{bmatrix} = \begin{bmatrix} 3 & 11 & 3 \\ 6 & 4 & 4 \end{bmatrix}$$

#### **Matrix Subtraction**

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 & 8 & -1 \\ 5 & -2 & -3 \end{bmatrix}$$

$$X - Y = \begin{bmatrix} 2 - 1 & 3 - 8 & 4 - (-1) \\ 1 - 5 & 6 - (-2) & 7 - (-3) \end{bmatrix} = \begin{bmatrix} 1 & -5 & 5 \\ -4 & 8 & 10 \end{bmatrix}$$

#### Matrix Multiplication – Scalar

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X.A = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X.A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X.A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 15 & 36 \\ 22 & 60 \end{bmatrix}$$

$$(1*3) + (6*6) + (7*3) = 60$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$X \cdot A = \begin{bmatrix} 15 & 36 \\ & & \\ 22 & 60 \end{bmatrix}$$

(2)X 3 3 X (2)

2 X 2

#### Matrix Division

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 7 & -3 & 2 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix}$$

$$\frac{A}{X} = A \cdot X^{-1}$$

### Important Matrix Terms

#### **Identity Matrix**

rix
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

#### **Identity Matrix**

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 1 \\ 2 & 3 & 8 \end{bmatrix}$$

$$A * I = A$$

#### Determinant of a Matrix



Determinant = ad - bc

#### Inverse of a Matrix

$$A = \begin{bmatrix} a & b \\ \\ c & d \end{bmatrix}$$

$$1/A = Inverse of A = \bar{A}^1$$

$$A^{-1} = \frac{1}{\text{ad - bc}} \begin{bmatrix} d - b \\ -c a \end{bmatrix}$$

#### Transpose of a matrix

$$X = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 6 & 7 \end{bmatrix} \qquad X^{\mathsf{T}} = \begin{bmatrix} 2 & 1 \\ 3 & 6 \\ 4 & 7 \end{bmatrix}$$

### Vector Transformation using Matrix

#### **Vector Transformation**



#### **Vector Transformation**

$$T = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

$$\overrightarrow{V} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\mathbf{T} \cdot \overrightarrow{\mathbf{V}} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

$$1.5.\overrightarrow{V} = \begin{bmatrix} 4.5 \\ 3 \end{bmatrix}$$



#### **Vector Transformation**

$$T = \begin{bmatrix} 2 & -1 \\ 1 & -0.5 \end{bmatrix}$$

$$\overrightarrow{V} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$

$$\mathbf{T} \cdot \overrightarrow{\mathbf{V}} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$



## Change of Basis



$$\overrightarrow{V} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

$$\overrightarrow{V} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

$$b_1 = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \quad b_2 = \left(\begin{array}{c} -1 \\ 1 \end{array}\right)$$

$$\overrightarrow{W} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2b_1 + b_2$$

$$\overrightarrow{V} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2-1 \\ 2+1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$







$$b_1 = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \quad b_2 = \left(\begin{array}{c} -1 \\ 1 \end{array}\right)$$

$$\overrightarrow{W} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2b_1 + b_2$$

$$\overrightarrow{V} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \overrightarrow{W}$$
 Matrix Transformation of  $\overrightarrow{W}$ 



#### Why we are learning this?



ev2

Spread of data

eigenvalue1

ev1

**Linear Discriminant Analysis** 

**Principal Component Analysis** 

## Eigenvectors and Eigenvalues

#### Eigenvector and Eigenvalues?

• A non-zero vector that changes by a scalar during linear transformation.

Scalar value by which it changes its magnitude is eigenvalue

Note: Only thing that's changing is our perception of the coordinates.

#### What is an Eigenvector and Eigenvalues?

 A non-zero vector that changes by a scalar during linear transformation

$$\overrightarrow{T.V} = \lambda \overrightarrow{N}$$







|    |    |    |    |    |    |    | 6        |     |   |    |    |             |   |     |
|----|----|----|----|----|----|----|----------|-----|---|----|----|-------------|---|-----|
|    |    |    |    |    |    |    | 5        |     |   |    |    |             |   | 165 |
|    |    |    |    |    |    |    | 4        |     |   |    |    |             |   |     |
|    |    |    |    |    |    |    | 3        |     |   |    | 7  | $\zeta = 3$ | 3 |     |
|    |    |    |    |    |    |    | 2        |     |   | 0/ |    |             |   |     |
|    |    |    |    |    |    |    | 1        |     |   |    | λ= | = 2         |   | 13  |
| -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0        | 1   | 2 | 3  | 4  | 5           | 6 | 7   |
|    |    |    |    |    |    |    | <b>1</b> |     |   |    |    |             |   |     |
|    |    |    |    |    |    |    | -2       |     |   |    |    |             |   |     |
|    |    |    |    |    |    |    | -3       | 0,5 |   |    |    |             |   |     |
|    |    |    |    |    |    |    | -4       |     |   |    |    |             |   |     |
|    | i  |    |    |    |    |    | -5       | Ī   |   |    |    |             |   |     |

$$\overrightarrow{T.V} = \lambda \overrightarrow{N}$$

#### Complete Data Science and Machine Learning Using Python



## Thank You!