2.1 이론

2.1.1 분류 문제란?

분류(Classification)는 입력 데이터 $m{x}\in\mathbb{R}^d$ 가 주어졌을 때, 이를 미리 정의된 클래스 집합 중 하나에 할당하는 문제입니다. 여기서 입력 $m{x}$ 는 d 차원의 실수 벡터이며, 출력 클래스 y 는 이산적인 값입니다.

$$f: \mathbb{R}^d o \{1, 2, \dots, K\}$$

분류 문제는 목적에 따라 다음과 같이 나뉩니다:

- **이진 분류**: 클래스가 2개 (예: 스팸/정상)
- 다중 클래스 분류: 클래스가 3개 이상 중 하나 (예: 손글씨 숫자 인식)
- 다중 레이블 분류: 여러 클래스가 동시에 정답일 수 있음 (예: 영화 장르)

2.1.2 대표 분류 알고리즘 비교

로지스틱 회귀 (Logistic Regression)

선형 결합 후 시그모이드 함수로 확률을 계산하는 모델:

$$P(y=1\mid oldsymbol{x}) = rac{1}{1+e^{-(oldsymbol{w}^Toldsymbol{x}+b)}}$$

결정 경계는 선형: $oldsymbol{w}^Toldsymbol{x}+b=0$

K-최근접 이웃 (KNN)

새로운 입력이 들어왔을 때 가장 가까운 K개의 이웃을 기준으로 다수결 분류. 학습이 따로 없고 직관적이지만, 고차원에서는 성능이 급격히 떨어질 수 있습니다.

결정 트리 (Decision Tree)

입력을 조건문으로 분기하며 분류를 수행. 해석이 쉬우나 트리 깊이가 깊어지면 과적합 위험이 있습니다.

서포트 벡터 머신 (SVM)

두 클래스를 가장 넓은 마진으로 나누는 결정 경계를 학습합니다:

$$oldsymbol{w}^Toldsymbol{x}+b=0$$

커널 기법을 이용하면 비선형 경계도 가능하며 일반화 성능이 뛰어납니다. 단점은 학습 속도와 매개변수 조정의 어려움입니다.

2.1.3 결정 경계와 해석 가능성

각 모델은 입력 공간을 구분짓는 결정 경계(Decision Boundary)를 학습합니다. 이 경계는 예측 기준이 되며, 모델의 성격을 파악하는 핵심 요소입니다.

해석력: 모델이 어떻게 예측을 수행하는지, 어떤 변수가 어떤 경향을 미치는지, 사람이 이해할 수 있는 방식으로 설명 가능한 정도입니다.

모델	경계 형태	해석력	특이사항
로지스틱 회귀	선형	매우 높음	가중치로 변수 영향도 해석 가능
결정 트리	계단형	높음	조건 분기 구조 설명 가능
KNN	매우 유연	낮음	해석 어려움
SVM	선형/비선형	낮음	고차원 해석 어려움

2.1 이론

2.1.4 고려사항

특성 스케일링

거리 기반 모델(KNN, SVM)이나 내적(dot product) 기반 모델(로지스틱 회귀)은 스케일 차이에 민감합니다. 따라서 표준화를 통해 다음과 같이 조정합니다.

$$x_j' = rac{x_j - \mu_j}{\sigma_j}$$

기호	의미	설명
x_{j}	원래 특성값	예: 키 = 172cm
μ_j	변수 j 의 평균	해당 열 전체의 평균
σ_{j}	변수 j 의 표준편차	분산의 제곱근
x_j'	표준화된 값	평균 0, 표준편차 1로 변환된 값

클래스 불균형 대응

정확도(Accuracy)만으로는 불균형 문제를 파악할 수 없습니다.(클래스 불균형으로 왜곡이 될 수 있습니다.) 다음과 같은 대응이 필요합니다.

- 데이터: 오버샘플링(소수 클래스의 데이터를 인위적으로 늘리기), 언더샘플링(다수 클래스 일부 제거)
- 모델: class_weight='balanced'
- 평가: 정밀도(Precision), 재현율(Recall), F1 점수 활용

예측 성능 vs 해석 가능성

모델	성능	해석력	적합한 사용 예
로지스틱 회귀	보통	매우 높음	영향도 분석
결정 트리	보통	높음	조건 설명 필요할 때
SVM	높음	낮음	복잡한 결정 경계
KNN	낮음	없음	단순한 실험용
신경망	매우 높음	매우 낮음	설명 불필요, 고성능 예측 필요

2.2 수식

2.2.1 로지스틱 회귀 (Logistic Regression)

로지스틱 회귀는 이진 분류 문제를 풀기 위한 대표적인 지도 학습 모델입니다. 입력 벡터 $\mathbf{x} \in \mathbb{R}^d$ 가 주어졌을 때, 클래스 $y \in \{0,1\}$ 중 하나에 속할 확률을 예측합니다.

2.2.1.1 선형 결합과 시그모이드 함수

입력 벡터 \mathbf{x} 에 대해 먼저 선형 결합을 계산합니다.

$$z = \mathbf{w}^T \mathbf{x} + b$$

이 값을 시그모이드 함수에 통과시켜 확률로 변환합니다.

$$\sigma(z) = rac{1}{1+e^{-z}} \quad \Rightarrow \quad \hat{y} = \sigma(\mathbf{w}^T\mathbf{x} + b)$$

2.2.1.2 확률 분포 기반 모델링

출력 클래스 $y \in \{0,1\}$ 는 확률값 \hat{y} 를 따르는 베르누이 분포(Bernoulli Distribution)로 가정합니다.

베르누이 시행: 결과가 두 가지 중 하나로만 나오는 실험이나 시행(동전 던지기)을 말합니다.

베르누이 확률 변수: 베르누이 시행의 결과를 실수 0 또는 1로 바꾼 것을 말합니다.

베르누이 확률 분포: 베르누이 확률변수의 분포를 베르누이 확률분포 혹은 베루누이 분포라고 합니다.

$$P(y \mid \mathbf{x}) = \hat{y}^y (1-\hat{y})^{1-y}$$

위 수식은 **y가 1일 확률은** \hat{y} , **0일 확률은** $1 - \hat{y}$ 를 **하나의 공식으로 통합** 한 것입니다.

상황	수식 계산	의미
y = 1	$\hat{y}^1(1-\hat{y})^0=\hat{y}$	양성 클래스의 확률
y = 0	$\hat{y}^0(1-\hat{y})^1=1-\hat{y}$	음성 클래스의 확률

2.2.1.3 우도 함수 정의

훈련 데이터셋 $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^n$ 에 대해 전체 우도 함수는 다음과 같습니다.

우도(likelihood)란, 현재 주어진 모델 파라미터 (w,b)에 대해 우리가 관측한 데이터가 나올 확률이 얼마나 높은지를 나타내는 값입니다.

즉, 파라미터를 고정시키고 관측 데이터가 나올 확률을 계산해보고 그 확률을 최대화 시켜보자는 것입니다.

→ 파라미터를 바꾸어서 말입니다.

$$\mathcal{L}(\mathbf{w},b) = \prod_{i=1}^n \left[\hat{y}^{(i)}
ight]^{y^{(i)}} \left[1-\hat{y}^{(i)}
ight]^{1-y^{(i)}}$$

$$\hat{y}^{(i)} = \sigma(\mathbf{w}^{ op}\mathbf{x}^{(i)} + b) \quad ext{where} \quad \sigma(z) = rac{1}{1 + e^{-z}}$$

2.2.1.4 로그우도 함수 도출

계산을 용이하게 하기 위해 우도에 로그를 취하여 **로그우도 함수**로 변환합니다.

곱셈이 덧셈으로 바뀝니다.

미분도 간단해집니다.(곱셈의 미분보다 말입니다)

음수를 취해서 최소화 문제로 바꾸어도 상관없습니다.

$$J(\mathbf{w},b) = -\ell(\mathbf{w},b) = -\sum_{i=1}^n \left[y^{(i)} \log \hat{y}^{(i)} + (1-y^{(i)}) \log (1-\hat{y}^{(i)})
ight]$$

또는 평균 손실로 표현하는 것도 가능합니다. 평균을 구하기 위해서 전체 데이터 수로 나누어 줍니다.

$$J(\mathbf{w},b) = -rac{1}{n} \sum_{i=1}^n \left[y^{(i)} \log \hat{y}^{(i)} + (1-y^{(i)}) \log (1-\hat{y}^{(i)})
ight]$$

2.2.1.5 경사 하강법을 위한 미분

이 손실 함수를 최소화하기 위해, 각 파라미터에 대해 기울기를 계산합니다.

(1) 가중치 w에 대한 편미분:

$$rac{\partial J}{\partial \mathbf{w}} = rac{1}{n} \sum_{i=1}^n (\hat{y}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$$

(2) 편향 b 에 대한 편미분:

$$rac{\partial J}{\partial b} = rac{1}{n} \sum_{i=1}^n (\hat{y}^{(i)} - y^{(i)})$$

2.2.2 서포트 벡터 머신 (Support Vector Machine)

SVM은 데이터를 분류하기 위해 결정 경계(선/면)를 학습합니다.

그 과정에서 클래스 간 마진을 최대화함으로써 일반화 성능을 높이는 것이 핵심 아이디어입니다.

2.2.2.1 결정 경계와 선형 분리

SVM은 먼저 선형 결정 경계를 정의합니다. 이 경계는 다음과 같은 형태입니다.

$$\mathbf{w}^T\mathbf{x} + b = 0$$

- $\mathbf{x} \in \mathbb{R}^d$: 입력 벡터(예측하고자 하는 데이터 포인트)
- w: 경계면의 방향을 나타내는 법선 벡터(어떤 면에 수직인 방향을 가리키는 벡터입니다.)
- b: 절편

분류는 다음 규칙에 따릅니다:

$$oldsymbol{\cdot} \ y = egin{cases} +1 & ext{if } \mathbf{w}^T\mathbf{x} + b \geq 0 \ -1 & ext{if } \mathbf{w}^T\mathbf{x} + b < 0 \end{cases}$$

2.2.2.2 마진의 정의

마진(margin)이란, 두 클래스 데이터 사이에서 결정 경계로부터 가장 가까운 점까지의 거리입니다. SVM은 이 마진을 가능한 넓게 설정하려고 합니다. 마진의 수학적 표현은 다음과 같습니다.

$$\mathrm{Margin} = rac{2}{\|\mathbf{w}\|}$$

여기서 $\|\mathbf{w}\|$ 는 벡터 \mathbf{w} 의 유클리디안 노름입니다.

$$\| \mathbf{w} \| = \sqrt{w_1^2 + w_2^2 + \cdots + w_d^2}$$

2.2.2.3 하드 마진 최적화 문제

모든 데이터가 완벽하게 선형 분리 가능하다고 가정할 때, SVM은 다음과 같은 최적화 문제를 풉니다.

$$\min_{\mathbf{w},b} \quad rac{1}{2} \|\mathbf{w}\|^2$$

이때, 제약 조건은 다음과 같습니다.

$$y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)}+b) \geq 1 \quad orall i$$

이 구조는:

- $\frac{1}{2} ||\mathbf{w}||^2$: 마진 최대화를 위한 최소화 대상
- 제약 조건: 모든 샘플이 경계에서 마진 이상 떨어지도록 강제

2.2.2.4 소프트 마진과 패널티 C

현실에서는 데이터가 완벽하게 분리되지 않는 경우가 많습니다. 이럴 때는 슬랙 변수 ξ_i 를 도입해 **오류를 허용**하는 소프트 마진 모델을 사용합니다. 최적화 문제는 다음과 같이 바뀝니다.

$$\min_{\mathbf{w},b,oldsymbol{\xi}}\quad rac{1}{2}\|\mathbf{w}\|^2+C\sum_{i=1}^n \xi_i$$

제약 조건 역시 다음과 같이 바뀝니다.

$$y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)}+b)\geq 1-\xi_i, \quad \xi_i\geq 0$$

- ullet C>0: 마진 위반에 대한 패널티 계수(마진을 위반한 샘플에 얼마나 강하게 벌점을 줄지를 정합니다.)
- ξ_i : 각 데이터 포인트가 마진을 위반한 정도

Orange UI 항목	수식에서의 변수	설명
Cost	C	소프트 마진 SVM에서 마진 위반에 대 한 패널티 계수 입니다.

2.2.2.5 커널 함수 개념

SVM은 선형 분리 기준을 가지지만, 현실의 데이터는 종종 선형적으로 분리할 수 없습니다.

이런 경우, 입력 데이터를 **고차원 공간으로 매핑**해 선형 분리가 가능하도록 만드는데, 이 과정을 효율적으로 수행하기 위해 커널 함수(Kernel function)를 사용합니다.

커널 함수는 입력 벡터를 직접 고차원으로 올리지 않고도, 고차원에서의 내적 결과를 계산해주는 함수입니다.

가장 대표적인 커널:

• RBF 커널 (Radial Basis Function kernel):

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

항목	설명
$\ \mathbf{x}-\mathbf{x}'\ ^2$	두 벡터 사이의 거리 (유클리디안 거리 제곱)
$\exp(-\gamma \cdot$ 거리)	거리가 작으면 1에 가까워지고, 크면 0에 가까워짐
γ	얼마나 민감하게 거리 차이를 반영할지 조절하는 하이퍼파 라미터

Polynomial 커널: 입력 벡터를 고차 다항식 특성 공간으로 확장합니다.

$$K(\mathbf{x},\mathbf{x}') = (\mathbf{x}^T\mathbf{x}' + r)^d$$

2.2.3 KNN (K-Nearest Neighbors)

KNN은 **사전 학습이 없는** 알고리즘으로, 새로운 데이터가 들어올 때마다 **기존 학습 데이터와의 거리**를 계산하여 가장 가까운 K개의 이웃을 찾고, **다수결 혹은 평균**으로 결과를 결정합니다.

분류 문제에서는 **다수결**, 회귀 문제에서는 **평균값**을 기반으로 예측합니다.

2.2.3.1 거리 측정 방식 (Distance Metrics)

입력 벡터 두 개를 각각 $m{x}=(x_1,x_2,\ldots,x_d)$, $m{x'}=(x_1',x_2',\ldots,x_d')$ 라고 할 때, 다양한 거리 측정 방법은 다음과 같습니다.

(1) 유클리디안 거리 (Euclidean Distance)

가장 흔히 쓰이는 "직선 거리"입니다.

$$d(oldsymbol{x},oldsymbol{x'}) = \sqrt{\sum_{i=1}^d (x_i - x_i')^2}$$

(2) 맨해튼 거리 (Manhattan Distance)

$$d(oldsymbol{x},oldsymbol{x'}) = \sum_{i=1}^d |x_i - x_i'|$$

(3) 체비쇼프 거리 (Chebyshev Distance, Maximal Distance)

가장 큰 차이 하나를 기준으로 계산합니다.

$$d(\boldsymbol{x},\boldsymbol{x'}) = \max_i |x_i - x_i'|$$

(4) 마할라노비스 거리 (Mahalanobis Distance)

공분산 행렬 $oldsymbol{S}$ 를 고려한 거리로, 데이터의 분포를 반영합니다.

$$d(oldsymbol{x}, oldsymbol{x'}) = \sqrt{(oldsymbol{x} - oldsymbol{x'})^{ op} oldsymbol{S}^{-1} (oldsymbol{x} - oldsymbol{x'})}$$

2.2.3.2 가중치 방식 (Weights)

K개의 이웃에 대해 결과를 집계할 때 가중치를 줄 수도 있습니다.

- Uniform: 모든 이웃에 동일한 가중치 → 단순 다수결
- Distance-based: 가까운 이웃에게 더 큰 가중치를 부여

거리 기반 가중치의 예:

$$w_i = rac{1}{d(oldsymbol{x}, oldsymbol{x}_i) + arepsilon}$$

2.2.3.3 예측 수식

분류 (Classification)

가장 많이 등장한 클래스를 선택합니다.

$$\hat{y} = rg \max_{c \in \mathcal{C}} \sum_{i \in \mathcal{N}_b(oldsymbol{x})} w_i \cdot \mathbf{1}[y_i = c]$$

기호	의미
\hat{y}	최종 예측 클래스
\mathcal{C}	가능한 클래스 집합 (예: {0, 1})
$\mathcal{N}_k(oldsymbol{x})$	입력 $m{x}$ 의 주변 K개의 최근접 이웃의 인덱스 집합
y_i	이웃 i 의 실제 클래스 레이블
w_i	이웃 i 의 가중치 (예: 거리의 역수 등)
$1[y_i=c]$	y_i 가 클래스 c 일 경우 1, 아니면 0인 Indicator Function

이웃 번호	레이블 y_i	거리 d_i	가중치 $w_i=rac{1}{d_i}$
1	0	0.5	2.0
2	1	0.4	2.5
3	1	0.3	3.33

이웃 번호	레이블 y_i	거리 d_i	가중치 $w_i=rac{1}{d_i}$
4	0	0.6	1.67
5	1	0.2	5.0

클래스 0:

- 이웃 1: $y_1 = 0$, $w_1 = 2.0$
- 이웃 4: $y_4=0$, $w_4=1.67$

합계: 3.67

클래스 1:

- 이웃 2: $y_2=1,\quad w_2=2.5$
- 이웃 3: $y_3 = 1$, $w_3 = 3.33$
- 이웃 5: $y_5 = 1$, $w_5 = 5.0$

합계: 10.83

2.2.4 결정 트리 (Decision Tree)

결정 트리는 입력 특성에 대해 **조건 분기를 반복**하여 데이터를 분류하는 트리 기반 모델입니다.

루트 노드부터 시작해 **특정 속성의 조건**에 따라 데이터를 분할하며,

각 리프 노드는 최종 분류 결과 또는 예측값을 나타냅니다.

- 분류(Classification) 문제에서는 클래스 레이블이 리프 노드에 배정됩니다.
- 회귀(Regression) 문제에서는 리프 노드에 평균값이 배정됩니다

2.2.4.2 노드 분할 기준: 불순도 (Impurity)

결정 트리는 각 노드에서 불순도(impurity)가 가장 많이 줄어드는 방향으로 데이터를 분할합니다.

(1) 지니 불순도 (Gini Impurity)

$$G(t) = \sum_{k=1}^K p_k (1-p_k) = 1 - \sum_{k=1}^K p_k^2$$

여기서 p_k 는 노드 t에서 클래스 k가 등장할 확률입니다.

클래스	샘플 수	비율 p_k
0	4	$\frac{4}{10}=0.4$
1	6	$\frac{6}{10} = 0.6$

$$G(t) = \sum_{k=1}^{K} p_k (1-p_k) \ = 0.4(1-0.4) + 0.6(1-0.6) \ = 0.4 \cdot 0.6 + 0.6 \cdot 0.4 \ = 0.24 + 0.24 \ = 0.48$$

$$G(t) = 1 - \sum_{k=1}^{K} p_k^2 \;\; = 1 - (0.4^2 + 0.6^2) \;\; = 1 - (0.16 + 0.36) \;\; = 1 - 0.52 \;\; = 0.48$$

(2) 엔트로피 (Entropy)

$$H(t) = -\sum_{k=1}^K p_k \log_2 p_k$$

정보 이론에서 유래된 개념으로, 분포의 불확실성을 측정합니다.

2.2.4.3 정보 이득 (Information Gain)

2.2 수식

정보 이득은 부모 노드의 불순도에서 자식 노드들의 가중 평균 불순도를 뺀 값입니다.

즉, 이 분할로 얼마나 정돈됐는가를 수치화합니다.

$$IG = I(
ctilde{\display} 모 - \left(rac{N_L}{N}I(L) + rac{N_R}{N}I(R)
ight)$$

- $I(\cdot)$: 지니 또는 엔트로피
- N_L, N_R : 좌/우 자식 노드의 샘플 수
- N: 전체 샘플 수
- 정보 이득이 가장 높은 속성과 임계값을 찾아 분할(split)을 수행합니다.

example:

샘플	나이	클래스
A	22	0
В	25	0
С	28	1
D	30	0
Е	32	1
F	35	1
G	38	1
Н	40	1
1	42	1
J	45	0

$$p_0 = rac{4}{10} = 0.4 \ p_1 = rac{6}{10} = 0.6$$

전체 불순도

$$G(t) = 1 - \left(p_0^2 + p_1^2
ight)^- = 1 - \left(0.4^2 + 0.6^2
ight)^- = 1 - \left(0.16 + 0.36
ight)^- = 1 - 0.52^- = 0.48$$

분할 시도

나이 < 30

왼쪽 그룹 (나이 < 30): A, B, C → 클래스 0, 0, 1

→ 클래스 비율은

$$p_0=rac{2}{3},\quad p_1=rac{1}{3}$$
 $G_L=1-\left(\left(rac{2}{3}
ight)^2+\left(rac{1}{3}
ight)^2
ight)=1-\left(rac{4}{9}+rac{1}{9}
ight)=1-rac{5}{9}=rac{4}{9}pprox 0.444$

오른쪽 그룹 (나이 ≥ 30): D ~ J → 클래스 0, 1, 1, 1, 1, 1, 0

→ 클래스 비율은

$$p_0=rac{2}{7},\quad p_1=rac{5}{7}$$
 $G_R=1-\left(\left(rac{2}{7}
ight)^2+\left(rac{5}{7}
ight)^2
ight)=1-\left(rac{4}{49}+rac{25}{49}
ight)=1-rac{29}{49}=rac{20}{49}pprox 0.408$

2.2.4.5 과적합과 가지치기 (Overfitting & Pruning)

• 결정 트리는 과적합에 취약합니다. 모든 노드를 다 분할하면 훈련 데이터에 너무 잘 맞지만 일반화 성능이 낮아질 수 있습니다.

• 이를 방지하기 위해 다음과 같은 기법을 사용합니다.

	설명
사전 가지치기 (Pre-pruning)	트리 깊이 제한, 최소 샘플 수 제한 등 조건 미리 설정
사후 가지치기 (Post-pruning)	완성된 트리에서 덜 중요한 노드를 제거

2.2 수식

```
#1. 라이브러리 임포트 import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_moons

#2. 데이터 생성 및 시각화
# 샘플 수: 500, 노이즈: 0.1, 랜덤 시드: 42
dataset = make_moons(n_samples=500, noise=0.1, random_state=42)
X, y = dataset

plt.figure(figsize=(6,6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='bwr', edgecolor='k')
plt.title('make_moons (n=500, noise=0.1)')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.tight_layout()
plt.show()
```



```
#3. 로지스틱 회귀 – 결정 경계 · Seaborn Heatmap 혼동 행렬 · Classification Report import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, classification_report #모델 학습 model_Ir = LogisticRegression()
```

```
model_Ir.fit(X, y)
y_pred = model_Ir.predict(X)
acc = accuracy_score(y, y_pred)
# — 결정 경계 시각화 —
xx, yy = np.meshgrid(
  np.linspace(X[:,0].min()-0.5, X[:,0].max()+0.5, 200),
  np.linspace(X[:,1].min()-0.5, X[:,1].max()+0.5, 200)
grid = np.c_[xx.ravel(), yy.ravel()]
probs = model_lr.predict_proba(grid)[:,1].reshape(xx.shape)
plt.figure(figsize=(6,6))
plt.contourf(xx, yy, probs, levels=[0, 0.5, 1], alpha=0.2, cmap='bwr')
plt.scatter(X[:,0], X[:,1], c=y, edgecolor='k', cmap='bwr')
plt.title(f'Logistic Regression Decision Boundary\nAccuracy: {acc:.2f}')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
# — Seaborn Heatmap으로 혼동 행렬 —
cm = confusion_matrix(y, y_pred)
plt.figure(figsize=(5,4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
       xticklabels=['Class 0','Class 1'],
       yticklabels=['Class 0','Class 1'])
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.title('Confusion Matrix')
plt.show()
# — Classification Report —
print(f'Accuracy: {acc:.2f}\n')
print(classification_report(y, y_pred))
```


Accuracy: 0.84

precision recall f1-score support

0 0.83 0.86 0.85 100
1 0.86 0.83 0.84 100

accuracy 0.84 200

macro avg 0.85 0.84 0.84 200 weighted avg 0.85 0.84 0.84 200

SVM (Linear Kernel) – 결정 경계·혼동 행렬·Classification Report import numpy as np import matplotlib.pyplot as plt import seaborn as sns

```
from sklearn.svm import SVC
                                   # 또는: from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# --- 모델 학습 ---
model_svm_lin = SVC(kernel='linear', probability=True, random_state=42)
# 만약 LinearSVC를 쓰고 싶다면:
# from sklearn.svm import LinearSVC
# model_svm_lin = LinearSVC(random_state=42)
model_svm_lin.fit(X, y)
y_pred = model_svm_lin.predict(X)
acc = accuracy_score(y, y_pred)
# --- 결정 경계 시각화 ---
xx, yy = np.meshgrid(
  np.linspace(X[:,0].min()-0.5, X[:,0].max()+0.5, 200),
  np.linspace(X[:,1].min()-0.5, X[:,1].max()+0.5, 200)
grid = np.c_[xx.ravel(), yy.ravel()]
probs = model_svm_lin.predict_proba(grid)[:,1].reshape(xx.shape)
plt.figure(figsize=(6,6))
plt.contourf(xx, yy, probs, levels=[0, 0.5, 1], alpha=0.2, cmap='bwr')
plt.scatter(X[:,0], X[:,1], c=y, edgecolor='k', cmap='bwr')
plt.title(f'SVM (Linear) Decision Boundary\nAccuracy: {acc:.2f}')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
# — Seaborn Heatmap으로 혼동 행렬 —
cm = confusion_matrix(y, y_pred)
plt.figure(figsize=(5,4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
       xticklabels=['Class 0','Class 1'],
       yticklabels=['Class 0','Class 1'])
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.title('Confusion Matrix')
plt.show()
# — Classification Report —
print(f'Accuracy: {acc:.2f}\n')
print(classification_report(y, y_pred))
```


0

Feature 1

1

2

Accuracy: 0.84

precision recall f1-score support 0.83 0.87 0.85 100 0.86 0.82 0.84 100 0.84 200 accuracy

macro avg 0.84 0.85 0.84 200 weighted avg 0.85 0.84 0.84 200

#4. SVM (RBF 커널) – 결정 경계 · Seaborn Heatmap 혼동 행렬 · Classification Report import numpy as np import matplotlib.pyplot as plt import seaborn as sns

-2

```
from sklearn.svm import SVC #support vector classifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# --- 모델 학습 ---
model_svm = SVC(kernel='rbf', probability=True, gamma='scale')
model_svm.fit(X, y)
y_pred = model_svm.predict(X)
acc = accuracy_score(y, y_pred)
# — 결정 경계 시각화 —
xx, yy = np.meshgrid(
  np.linspace(X[:,0].min()-0.5, X[:,0].max()+0.5, 200),
  np.linspace(X[:,1].min()-0.5, X[:,1].max()+0.5, 200)
grid = np.c_[xx.ravel(), yy.ravel()]
probs = model_svm.predict_proba(grid)[:,1].reshape(xx.shape)
plt.figure(figsize=(6,6))
plt.contourf(xx, yy, probs, levels=[0, 0.5, 1], alpha=0.2, cmap='bwr')
plt.scatter(X[:,0], X[:,1], c=y, edgecolor='k', cmap='bwr')
plt.title(f'SVM (RBF) Decision Boundary\nAccuracy: {acc:.2f}')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
# — Seaborn Heatmap으로 혼동 행렬 —
cm = confusion_matrix(y, y_pred)
plt.figure(figsize=(5,4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
       xticklabels=['Class 0','Class 1'],
       yticklabels=['Class 0','Class 1'])
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.title('Confusion Matrix')
plt.show()
# — Classification Report —
print(f'Accuracy: {acc:.2f}\n')
print(classification_report(y, y_pred))
```


Accuracy: 0.94

precision recall f1-score support

0 0.96 0.92 0.94 100
1 0.92 0.96 0.94 100

accuracy 0.94 200

macro avg 0.94 0.94 0.94 200 weighted avg 0.94 0.94 0.94 200

#5. KNN (k=5) – 결정 경계 · Seaborn Heatmap 혼동 행렬 · Classification Report import numpy as np import matplotlib.pyplot as plt import seaborn as sns

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# --- 모델 학습 ---
model_knn = KNeighborsClassifier(n_neighbors=5)
model_knn.fit(X, y)
y_pred = model_knn.predict(X)
acc = accuracy_score(y, y_pred)
# — 결정 경계 시각화 —
xx, yy = np.meshgrid(
  np.linspace(X[:,0].min()-0.5, X[:,0].max()+0.5, 200),
  np.linspace(X[:,1].min()-0.5, X[:,1].max()+0.5, 200)
grid = np.c_[xx.ravel(), yy.ravel()]
probs = model_knn.predict_proba(grid)[:,1].reshape(xx.shape)
plt.figure(figsize=(6,6))
plt.contourf(xx, yy, probs, levels=[0, 0.5, 1], alpha=0.2, cmap='bwr')
plt.scatter(X[:,0], X[:,1], c=y, edgecolor='k', cmap='bwr')
plt.title(f'KNN (k=5) Decision Boundary\nAccuracy: {acc:.2f}')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
# — Seaborn Heatmap으로 혼동 행렬 —
cm = confusion_matrix(y, y_pred)
plt.figure(figsize=(5,4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
       xticklabels=['Class 0','Class 1'],
       yticklabels=['Class 0','Class 1'])
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.title('Confusion Matrix')
plt.show()
# — Classification Report —
print(f'Accuracy: {acc:.2f}\n')
print(classification_report(y, y_pred))
```


Accuracy: 0.94

precision recall f1-score support 0.93 0.96 0.95 100 0.96 0.93 0.94 100 200 accuracy 0.94 macro avg 0.95 0.95 0.94 200 weighted avg 0.95 0.94 0.94 200

#6. Decision Tree (max_depth=5) - 결정 경계 · Seaborn Heatmap 혼동 행렬 · Classification Report import numpy as np import matplotlib.pyplot as plt import seaborn as sns

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# --- 모델 학습 ---
model_dt = DecisionTreeClassifier(max_depth=5, random_state=42)
model_dt.fit(X, y)
y_pred = model_dt.predict(X)
acc = accuracy_score(y, y_pred)
# --- 결정 경계 시각화 ---
xx, yy = np.meshgrid(
  np.linspace(X[:,0].min()-0.5, X[:,0].max()+0.5, 200),
  np.linspace(X[:,1].min()-0.5, X[:,1].max()+0.5, 200)
grid = np.c_[xx.ravel(), yy.ravel()]
probs = model_dt.predict_proba(grid)[:,1].reshape(xx.shape)
plt.figure(figsize=(6,6))
plt.contourf(xx, yy, probs, levels=[0, 0.5, 1], alpha=0.2, cmap='bwr')
plt.scatter(X[:,0], X[:,1], c=y, edgecolor='k', cmap='bwr')
plt.title(f'Decision Tree (max_depth=5) Decision Boundary\nAccuracy: {acc:.2f}')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
# — Seaborn Heatmap으로 혼동 행렬 —
cm = confusion_matrix(y, y_pred)
plt.figure(figsize=(5,4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
       xticklabels=['Class 0','Class 1'],
       yticklabels=['Class 0','Class 1'])
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.title('Confusion Matrix')
plt.show()
# — Classification Report —
print(f'Accuracy: {acc:.2f}\n')
print(classification_report(y, y_pred))
#7. Decision Tree 구조 시각화
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 8))
plot_tree(
  model_dt,
  max_depth=2,
  feature_names=['Feature 1', 'Feature 2'],
  class_names=['Class 0', 'Class 1'],
  filled=True,
  rounded=True,
  fontsize=10
plt.title('Decision Tree Structure')
```


Accuracy: 0.98

	pr	ecision	recall	f1-score	support
(0	0.98	0.99	0.99	100
	1	0.99	0.98	0.98	100
асси	accuracy			0.98	200

macro avg 0.99 0.98 0.98 200 weighted avg 0.99 0.98 0.98 200

Decision Tree Structure

2.4 결과 해석

2.4.1 오차 행렬 (Confusion Matrix)

	예측 양성 (Pred +)	예측 음성 (Pred –)
실제 양성 (True +)	TP(True Positive)	FN(False Negative)
실제 음성 (True -)	FP(False Positive)	TN(True Negative)

• TP (True Positive): 실제 양성을 양성으로 맞춘 경우

• TN (True Negative): 실제 음성을 음성으로 맞춘 경우

• FP (False Positive): 실제 음성을 양성으로 잘못 예측

• FN (False Negative): 실제 양성을 음성으로 잘못 예측

2.4.2 정확도 (Accuracy)

모델이 전체 데이터 중에서 얼마나 많이 정답을 맞췄는지를 나타내는 지표입니다.

$$Accuracy = rac{TP + TN}{TP + TN + FP + FN}$$

이해하기 쉬워 널리 사용되지만, 클래스 불균형 상황에서는 신뢰하기 어려운 단점이 있습니다.

2.4.3 정밀도·재현율·F1 스코어 (Precision, Recall, F1-score)

정밀도(Precision): 양성으로 예측한 것 중 실제 양성의 비율

$$Precision = rac{TP}{TP + FP}$$

- 거짓 양성(FP)을 얼마나 줄였는지를 보여줍니다.
- 예: 이메일 스팸 필터에서 정상 메일을 스팸으로 잘못 분류하면 문제가 크므로 정밀도가 중요합니다.

재현율(Recall) 또는 민감도(Sensitivity): 실제 양성 중 양성으로 맞춘 비율

$$Recall = rac{TP}{TP + FN}$$

- 거짓 음성(FN)을 얼마나 줄였는지를 보여줍니다.
- 예: 암 진단 모델에서는 암 환자를 놓치지 않는 것이 중요하므로 재현율이 중요합니다.

F1 스코어: 정밀도와 재현율의 조화평균

$$F1 = 2 imes rac{Precision imes Recall}{Precision + Recall}$$

조화평균: $H=rac{2ab}{a+b}$ 두 값 중 작은 값에 더 민감, 두 값이 모두 클 때만 조화 평균이 크게 나옴.

- 정밀도와 재현율이 모두 중요한 경우 F1-score가 유용합니다.
- 불균형 데이터셋에서 특히 많이 사용됩니다.

2.4.4 ROC 커브와 AUC (Receiver Operating Characteristic & Area Under Curve)

ROC 곡선은 모델의 임계값(threshold)을 변화시킬 때의 민감도(Recall)와 **특이도의 보완 지표(FPR)** 사이의 관계를 시각화한 것입니다.

항목	정의	수식
민감도 (Sensitivity, Recall)	실제 양성 중 양성으로 맞춘 비율	$rac{TP}{TP+FN}$
특 이도 (Specificity)	실제 음성 중 음성으로 맞춘 비율	$rac{TN}{TN+FP}$

항목	정의	수식
FPR (False Positive Rate)	잘못 양성으로 예측한 비율	$rac{FP}{TN+FP} = 1 - ext{Specificity}$

2.4.4.1 ROC 커브란?

ROC (Receiver Operating Characteristic) 커브는 분류 모델의 성능을 임계값(threshold) 변화에 따라 시각화한 곡선입니다.

- x축: FPR (False Positive Rate) → 잘못 양성으로 예측한 비율
- y축: TPR (True Positive Rate) → 실제 양성 중에 양성으로 맞춘 비율 (Recall)

사용 이유:

이진 분류 모델은 일반적으로 확률을 출력하고, 그 값을 기준 임계값(예: 0.5)으로 양성/음성을 나눕니다.

- 임계값을 0.0 ~ 1.0 사이로 조금씩 변경해가며, 각 경우마다 TPR과 FPR을 계산합니다.
- 이 (FPR, TPR) 좌표를 잇는 선이 ROC 커브입니다.
- 좋은 모델은 ROC 커브가 **왼쪽 위 모서리에 가까울수록** 좋습니다 (높은 TPR, 낮은 FPR)

•

2.4.4.2 AUC(Area Under the Curve)

- ROC 커브 아래의 면적 (Area Under the Curve)
- 값의 범위: $0.5 \leq \mathrm{AUC} \leq 1.0$
 - 。 AUC = 1: 완벽한 분류기
 - AUC = 0.5: 무작위 분류기 수준
 - AUC < 0.5: 잘못된 방향으로 분류 (거꾸로 뒤집으면 더 좋음)

2.4 결과 해석