Effects of Learned Spatial Probability are Suspended, but not Eliminated, During Parallel Search

Ryan S. Williams, Jay Pratt, & Susanne Ferber
University of Toronto

1. BACKGROUND

- Individuals implicitly learn to prioritize regions of space most likely to contain targets (i.e., learned spatial probability effect).¹
- This bias for the high-probability region can be observed well after the initial learning period.²
- However, persistence of this effect requires that both training and transfer contexts involve a serial form of search, as opposed to parallel search.³
- Here, we examine what happens to the spatial bias following exposure to parallel search; i.e., is the prior learning undone or is it simply suspended during parallel search?

2. GENERAL METHOD

A) Search Task Number of Blocks = 24; Trials/Block = 48

Participants performed a "T" among "L's" visual search task, responding to the direction of the target "T".

B) Spatial Probability/Phase

Training Blocks (1-12)		Test Blocks (13-24)	
Rich 50%	Sparse 16.7%	Rich 25%	Sparse 25%
Sparse 16.7%	Sparse 16.7%	Sparse 25%	Sparse 25%

Training Phase: target more likely to appear at a (rich) high-probability quadrant than at a (sparse) low-probability quadrant.

Test Phase: target equiprobable at each quadrant.

C) Search-Type Serial Parallel

Serial search: targets and nontargets were all the same color (e.g., green).

Parallel search: the target "popped-out" as it was a different color than the nontarget items.

D) Set Size

Set sizes of 12 and 20 items were randomly interleaved to obtain a measure of search slope, used to assess the nature of search.

3. EXPERIMENT 1

GOAL: Replicate previous findings related to persistence/transfer of spatial probability effect under conditions of serial and parallel search.

Training

N = 30

Test

Test

N = 30

Spatial probability effect always present during training. Transfer to test phase only when trained with serial search (even when test is parallel).

4. EXPERIMENT 2

GOAL: Examine whether exposure to parallel search affects persistence of spatial probability effect for serial search.

Reemergence of spatial probability effect when serial search reinstated.

5. EXPERIMENT 3

GOAL: Examine persistence of spatial probability effect when serial and parallel search conditions are unpredictable.

Spatial probability effect limited to serial search displays at test.

6. DISCUSSION

- We believe that an additive bias⁴ enhances the gain of items in the previously rich quadrant, regardless of the nature of search present at test.
- However, because the sensory strength of the target outweighs this additive bias during parallel search, the target item is at a competitive advantage regardless of its location (masking the spatial probability effect).
- As such, while prior spatial learning may exert minimal influence on performance during parallel search (at test), the bias itself is unaffected by the search environment.

