Chapter 1

Sets and Relations

2.1 Explain why $2 \in \{1, 2, 3\}$.

Solution: $2 \in \{1, 2, 3\}$ by definition: 2 is an element of $\{1, 2, 3\}$.

2.2 Is $\{1,2\} \in \{\{1,2,3\},\{1,3\},1,2\}$? Justify your answer.

Solution: $\{1,2\} \notin \{\{1,2,3\},\{1,3\},1,2\}$ since it does not appear as a member of the given set.

2.3 Try to devise a set which is a member of itself.

Solution: The set of all sets.

2.4 Give an example of sets A, B, and C such that $A \in B$, $B \in C$, and $A \notin C$.

Solution: $A = \{1\}$. $B = \{1, \{1\}\}$. $C = \{1, \{1, \{1\}\}\}$. Then $A \in B$, $B \in C$, but $A \notin C$.

2.5 Describe in prose each of the following sets.

Solution:

(a) $\{x \in \mathbb{Z} \mid x \text{ is divisible by 2 and } x \text{ is divisible by 3} \}$

Solution: All integer multiples of 6.

(b) $\{x \mid x \in A \text{ and } x \in B\}$

Solution: All elements common to sets A and B.

(c) $\{x \mid x \in A \text{ or } x \in B\}$

Solution: All elements from set A and from set B.

(d) $\{x \in \mathbb{Z}^+ \mid x \in \{x \in \mathbb{Z} \mid \text{ for some integer } y, x = 2y\} \text{ and } x \in \{x \in \mathbb{Z} \mid \text{ for some integer } y, x = 3y\}\}$

Solution: All positive integer multiples of 6.

(e) $\{x^2 \mid x \text{ is a prime}\}$

Solution: The squares of all prime numbers.

(f) $\{a/b \in \mathbb{Q} \mid a+b=1 \text{ and } a,b \in \mathbb{Q}\}$

Solution: All ratios of rational numbers whose numerator and denominator sum to 1; i.e. all rational numbers.

(g) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

Solution: All points on the unit circle.

(h) $\{(x,y) \in \mathbb{R}^2 \mid y = 2x \text{ and } y = 3x\}$

Solution: The single point (0,0).

2.6 Prove that if a, b, c, and d are any objects, not necessarily distinct from one another, then $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\}$ iff both a = c and b = d.

Solution: (\$\Rightarrow\$) Let $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}\}$. Then $\{\{a\}, \{a,b\}\} \subseteq \{\{c\}, \{c,d\}\}\}$ and so in particular $\{a\} \in \{\{c\}, \{c,d\}\}\}$. Suppose c = d. Then $\{\{c\}, \{c,d\}\} = \{\{c\}, \{c,c\}\} = \{\{c\}, \{c\}\}\} = \{\{c\}\}\}$ and therefore $\{a\} \in \{\{c\}\} \Rightarrow \{a\} = \{c\} \Rightarrow \{a\} \subseteq \{c\} \Rightarrow a \in \{c\} \Rightarrow a = c$. Then since $\{\{a\}, \{a,b\}\} \subseteq \{\{c\}, \{c,d\}\} = \{\{c\}\} = \{\{a\}\}\}$ we also have that $\{a,b\} \in \{\{a\}\} \Rightarrow \{a,b\} = \{a\} \Rightarrow \{a,b\} \subseteq \{a\} \Rightarrow b \in \{a\} \Rightarrow a = b$. Now suppose $c \neq d$. Since $\{a\} \in \{\{c\}, \{c,d\}\} \Rightarrow \{a\} = \{c\} \Rightarrow a = c$. By $\{\{a\}, \{a,b\}\} \subseteq \{\{c\}, \{c,d\}\}\}$ we also have that $\{a,b\} = \{c,b\} \in \{\{c\}, \{c,d\}\}\}$ and so $\{c,b\} = \{c,d\} \Rightarrow b = d$.

- (\Leftarrow) Let a = c and b = d. Then $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$.
- 3.1 Prove each of the following, using any properties of numbers that may be needed.
 - (a) $\{x \in \mathbb{Z} \mid \text{ for an integer } y, x = 6y\} = \{x \in \mathbb{Z} \mid \text{ for integers } u \text{ and } v, x = 2u \text{ and } x = 3v\}.$

Solution: Let $a \in \{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 6y\}$. Then a = 6b for an integer b. Then $a = 2 \cdot 3b$ and $a = 3 \cdot 2b$. Since b is an integer, 3b and 2b are also integers. Therefore $a \in \{x \in \mathbb{Z} \mid \text{ for integers } u \text{ and } v, \ x = 2u \text{ and } x = 3v\}$ and so $\{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 6y\} \subseteq \{x \in \mathbb{Z} \mid \text{ for integers } u \text{ and } v, \ x = 2u \text{ and } x = 3v\}$. Now let $a \in \{x \in \mathbb{Z} \mid \text{ for integers } u \text{ and } v, \ x = 2u \text{ and } x = 3v\}$. Then there is an m and n such that a = 2m and a = 3n. Then $m - n = \frac{a}{6}$ and so a = 6(m - n). Since m and n are integers, m - n is also an integer and so $a \in \{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 6y\}$. Therefore $\{x \in \mathbb{Z} \mid \text{ for integers } u \text{ and } v, \ x = 2u \text{ and } x = 3v\} \subseteq \{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 6y\}$.

Thus $\{x \in \mathbb{Z} \mid \text{ for an integer } y, \, x = 6y\} = \{x \in \mathbb{Z} \mid \text{ for integers } u \text{ and } v, \, x = 2u \text{ and } x = 3v\}.$

(b) $\{x \in \mathbb{R} \mid \text{for a real number } y, \ x = y^2\} = \{x \in \mathbb{R} \mid x \ge 0\}$

Solution: Let $a \in \{x \in \mathbb{R} \mid \text{ for a real number } y, x = y^2\}$. Then $a = b^2$ for some $b \in \mathbb{R}$. If b = 0 then a = 0. Otherwise, a > 0 since the square of a nonzero real number is positive. Thus $a \in \{x \in \mathbb{R} \mid x \geq 0\}$ and therefore $\{x \in \mathbb{R} \mid \text{ for a real number } y, x = y^2\} \subseteq \{x \in \mathbb{R} \mid x \geq 0\}$.

Now let $a \in \{x \in \mathbb{R} \mid x \geq 0\}$. Then $a \geq 0$. Then we may find a $b \in \mathbb{R}$ such that $a = b^2$: simply pick $b = \sqrt{a} \in \mathbb{R}$. (The square root of any nonnegative real number is again a real number.) Then $a \in \{x \in \mathbb{R} \mid \text{for a real number } y, x = y^2\}$ and therefore $\{x \in \mathbb{R} \mid x \geq 0\} \subseteq \{x \in \mathbb{R} \mid \text{for a real number } y, x = y^2\}$.

Thus $\{x \in \mathbb{R} \mid \text{ for a real number } y, \ x = y^2\} = \{x \in \mathbb{R} \mid x \ge 0\}. \blacksquare$

- (c) $\{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 6y\} \subseteq \{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 2y\}.$ **Solution**: Let $a \in \{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 6y\}$. Then a = 6b for some integer b. Then $a = 2 \cdot 3b$. Since b is an integer, 3b is also an integer. Therefore $a \in \{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 2y\}$. Thus $\{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 6y\} \subseteq \{x \in \mathbb{Z} \mid \text{ for an integer } y, \ x = 2y\}.$
- 3.2 Prove each of the following for sets A, B, and C.
 - (a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. **Solution**: Suppose $A \subseteq B$ and $B \subseteq C$. Then for any $a \in A$ we have that $a \in B$ and since $a \in B$ we have that $a \in C$. Thus $a \in C$ whenever $a \in A$ and therefore $A \subseteq C$.
 - (b) If $A \subseteq B$ and $B \subset C$, then $A \subset C$. **Solution**: Suppose $A \subseteq B$ and $B \subset C$. Take the case when A = B. Since $B \subset C$ we have that $A \subset C$. Now take the case when $A \subset B$. For any $a \in A$ we have that $a \in B$. Since $B \subset C$ we have that $a \in C$. Then $A \subseteq C$. Since $B \subset C$, we know that there is some element $c \in C$ such that $c \notin B$ and since $A \subset B$ we know that $c \notin A$ and so $A \neq C$. Therefore $A \subset C$.
 - (c) If $A \subset B$ and $B \subseteq C$, then $A \subset C$. **Solution**: Suppose $A \subset B$ and $B \subseteq C$. Take the case when B = C. Since $A \subset B$ we have that $A \subset C$. Now take the case when $B \subset C$. For any $a \in A$ we have that $a \in B$. Since $B \subset C$ we have that $a \in C$. Then $A \subseteq C$. Since $B \subset C$, we also know that there is some element $c \in C$ such that $c \notin B$ and since $A \subset B$ we know that $c \notin A$ and so $A \neq C$. Therefore $A \subset C$.
 - (d) If $A \subset B$ and $B \subset C$, then $A \subset C$. **Solution**: Suppose $A \subset B$ and $B \subset C$. For any $a \in A$ we have that $a \in B$. Since $B \subset C$ we have that $a \in C$. Then $A \subset C$. Since $B \subset C$, we know that there is some element $c \in C$ such that $c \notin B$ and since $A \subset B$ we know that $c \notin A$ and so $A \neq C$. Therefore $A \subset C$.
- 3.3 Give an example of sets A, B, C, D, and E which satisfy the following conditions simultaneously: $A \subset B$, $B \in C$, $C \subset D$, and $D \subset E$. Solution: Let $A = \emptyset$, $B = \{\emptyset\}$, $C = \{\{\emptyset\}\}$, $D = \{\emptyset, \{\emptyset\}\}$, and $E = \{\emptyset, \{\emptyset\}\}$.
- 3.4 Which of the following are true for all sets A, B, and C?
 - (a) If $A \notin B$ and $B \notin C$, then $A \notin C$. Solution: False: Let $A = \emptyset$, $B = \{0\}$ and $C = \{\emptyset\}$.
 - (b) If $A \neq B$ and $B \neq C$, then $A \neq C$. Solution: False: Let $A = \mathbb{R}$, $B = \mathbb{Z}$ and $C = \mathbb{R}$.
 - (c) If $A \in B$ and $B \not\subseteq C$, then $A \notin C$. Solution: False: Let $A = \emptyset$, $B = \{\emptyset, 0\}$ and $C = \{\emptyset, 1\}$.

- (d) If $A \subset B$ and $B \subseteq C$, then $C \not\subseteq A$. **Solution**: True: Suppose $A \subset B$ and $B \subseteq C$. Since $A \subset B$, there is some $b \in B$ such that $b \notin A$. Since $B \subseteq C$ we have that this $b \in C$ and thus there is a $c \in C$ such that $c \notin A$. Therefore $C \not\subseteq A$.
- (e) If $A \subset B$ and $B \subset C$, then $A \subset C$. **Solution**: True: Suppose $A \subset B$ and $B \subset C$. Then for any $a \in A$ we have that $a \in B$. Since $a \in B$ we have that $a \in C$. Therefore $A \subseteq C$. Since $B \subset C$ we have that there is some $c \in C$ such that $c \notin B$. Since $A \subset B$ we have that $c \notin A$. Therefore $A \neq C$ and so $A \subset C$.
- 3.5 Show that for every set $A, A \subseteq \emptyset$ iff $A = \emptyset$. Solution: (\Rightarrow) Suppose $A \subseteq \emptyset$. Then for any $a \in A$ we have that $a \in \emptyset$. But since the empty set has no members, no such a can exist. Therefore A has no members and so $A = \emptyset$. (\Leftarrow) Suppose $A = \emptyset$. Then A has no members and so, certainly, for all $a \in A$ we have that $a \in B$, for any set B. Therefore $A \subseteq B$. Letting $B = \emptyset$, we conclude that $A \subseteq \emptyset$.
- 3.6 Let A_1, A_2, \ldots, A_n be n sets. Show that

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq A_1$$
 iff $A_1 = A_2 = \cdots = A_n$.

Solution: (\Leftarrow) Suppose sets $A_1 = A_2 = \cdots = A_n$. Then clearly $A_i \subseteq A_{i+1}$ for all $1 \le i \le n-1$ and $A_n \subseteq A_1$. Therefore $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq A_1$. (\Rightarrow) Suppose $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq A_1$. Then for any $a \in A_1$ we have that $a \in A_2$, $a \in A_3, \ldots, a \in A_n$ and so $A_1 \subseteq A_n$. But since $A_n \subseteq A_1$ we must have that $A_1 = A_n$. Therefore $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{n-1} \subseteq A_1$. Repeating this argument n-2 times for $j = n-1, n-2, \ldots, 2$ we find that for any $a \in A_1$ we have that $a \in A_j$ and therefore $A_1 \subseteq A_j$. But we also have that $A_j \subseteq A_1$ and so $A_1 = A_j$. Finally, we conclude that $A_1 = A_2 = \cdots = A_n$.

- 3.7 Give several examples of a set X such that each element of X is a subset of X. Solution: $X_1 = \emptyset$. $X_2 = \{\emptyset\}$. $X_3 = ?$
- 3.8 List the members of $\mathcal{P}(A)$ if $A = \{\{1,2\}, \{3\}, 1\}$. Solution: $\mathcal{P}(A) = \{A, \{\{1,2\}, \{3\}\}, \{\{1,2\}, 1\}, \{\{3\}, 1\}, \{\{1,2\}\}, \{\{3\}\}, \{1\}, \emptyset\}$
- 3.9 For each positive integer n, give an example of a set A_n of n elements such that for each pair of elements of A_n , one member is an element of the other. Solution: Let $A_0 = \emptyset$ and $A_1 = \{A_0\}$. For $n \ge 2$, let $A_n = \{A_0, A_1, \dots, A_{n-1}\}$.

4.1 Prove that for all sets A and B, $\emptyset \subseteq A \cap B \subseteq A \cup B$.

Solution: Let A and B be any sets. Since the empty set has no members, it's clear

that for all $x \in \emptyset$ we have that $x \in C$ for any set C. Since $A \cap B$ is a set, we have that $\emptyset \subseteq A \cap B$. Now take any $x \in A \cap B$. Then $x \in A$ and $x \in B$ and so, clearly, $x \in A$ or $x \in B$. Therefore $x \in A \cup B$ and so $A \cap B \subseteq A \cup B$. Thus $\emptyset \subseteq A \cap B \subseteq A \cup B$.

4.2 Let \mathbb{Z} be the universal set, and let

$$A = \{x \in \mathbb{Z} \mid \text{for some positive integer } y, \ x = 2y\},$$

$$B = \{x \in \mathbb{Z} \mid \text{for some positive integer } y, \ x = 2y - 1\},$$

$$C = \{x \in \mathbb{Z} \mid x < 10\}.$$

Describe \overline{A} , $\overline{A \cup B}$, $A - \overline{C}$, and $C - (A \cup B)$, either in prose or by a defining property. **Solution**:

- $\overline{A} = \{x \in \mathbb{Z} \mid x < 1\} \cup B$
- $\overline{A \cup B} = \{x \in \mathbb{Z} \mid x < 1\}$
- $A \overline{C} = \{2, 3, 6, 8\}$
- $\bullet \ C (A \cup B) = \{x \in \mathbb{Z} \mid x < 1\}$

4.3 Consider the following subsets of \mathbb{Z}^+ , the set of positive integers:

$$A = \{x \in \mathbb{Z}^+ \mid \text{for some integer } y, \ x = 2y\},$$

 $B = \{x \in \mathbb{Z}^+ \mid \text{for some integer } y, \ x = 2y + 1\},$
 $C = \{x \in \mathbb{Z}^+ \mid \text{for some integer } y, \ x = 3y\}.$

(a) Describe $A \cap C$, $B \cup C$, and B - C.

Solution:

- $A \cap C = \{x \in \mathbb{Z}^+ \mid \text{ for some integer } y, \ x = 6y\}$. This is the set of all positive multiples of both 2 and 3 (i.e. all positive multiples of 6).
- $B \cup C = B \cup \{x \in \mathbb{Z}^+ \mid \text{ for some integer } y, x = 6y\}$. This is the set of all positive odd integers along with all even positive multiples of 3 (i.e. all positive multiples of 6).
- $B C = \{x \in \mathbb{Z}^+ \mid \text{ for some integer } y, x = 3y + 1 \text{ or } x = 3y + 2\}$. This is the set of all positive integers which are not divisible by 3.
- (b) Verify that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Solution: In this example:

- $A \cap (B \cup C) = A \cap C$
- $A \cap B = \emptyset \Rightarrow (A \cap B) \cup (A \cap C) = A \cap C$

A general proof:

Assume $x \in A \cap (B \cup C)$. Then by definition of set intersection, $x \in A$ and $x \in B \cup C$. By the definition of set union, $x \in B$ or $x \in C$. If $x \in B$ then we have that $x \in A \cap B$ since $x \in A$. Otherwise, if $x \in C$ then we have that

 $x \in A \cap C$ since $x \in A$. In both cases we know that $x \in (A \cap B) \cup (A \cap C)$ since both $A \cap B \subseteq (A \cap B) \cup (A \cap C)$ and $A \cap C \subseteq (A \cap B) \cup (A \cap C)$. Therefore $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Now assume $x \in (A \cap B) \cup (A \cap C)$. By the definition of set union, $x \in A \cap B$ or $x \in A \cap C$. If $x \in A \cap B$ then by the definition of set intersection, we have that $x \in A$ and $x \in B$. Since $B \subseteq B \cup C$ we know that $x \in B \cup C$. Thus $x \in A \cap (B \cup C)$. Otherwise if $x \in A \cap C$ then by the definition of set intersection, we have that $x \in A$ and $x \in C$. Since $C \subseteq B \cup C$ we know that $x \in B \cup C$. Thus $x \in A \cap (B \cup C)$. Therefore $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

- 4.4 If A is any set, what are each of the following sets? $A \cap \emptyset$, $A \cup \emptyset$, $A \emptyset$, A A, $\emptyset A$. Solution:
 - $A \cap \emptyset = \{x \mid x \in A \text{ and } x \in \emptyset\} = \emptyset.$
 - $A \cup \emptyset = \{x \mid x \in A \text{ or } x \in \emptyset\} = A.$
 - $A \emptyset = \{x \mid x \in A \text{ and } x \notin \emptyset\} = A.$
 - $A A = \{x \mid x \in A \text{ and } x \notin A\} = \emptyset.$
 - $\emptyset A = \{x \mid x \in \emptyset \text{ and } x \notin A\} = \emptyset.$
- 4.5 Determine $\emptyset \cap \{\emptyset\}, \{\emptyset\} \cap \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \emptyset, \{\emptyset, \{\emptyset\}\} \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \{\{\emptyset\}\}\}$ Solution:
 - $\emptyset \cap \{\emptyset\} = \{x \mid x \in \emptyset \text{ and } x \in \{\emptyset\}\} = \emptyset.$
 - $\{\emptyset\} \cap \{\emptyset\} = \{x \mid x \in \{\emptyset\} \text{ and } x \in \{\emptyset\}\} = \{x \mid x \in \{\emptyset\}\} = \{\emptyset\}.$
 - $\{\emptyset, \{\emptyset\}\}\} \emptyset = \{x \mid x \in \{\emptyset, \{\emptyset\}\}\} \text{ and } x \notin \emptyset\} = \{\emptyset, \{\emptyset\}\}\}.$
 - $\bullet \ \{\emptyset, \{\emptyset\}\} \{\emptyset\} = \{x \mid x \in \{\emptyset, \{\emptyset\}\} \text{ and } x \notin \{\emptyset\}\} = \{\{\emptyset\}\}.$
 - $\bullet \ \{\emptyset, \{\emptyset\}\} \{\{\emptyset\}\} = \{x \mid x \in \{\emptyset, \{\emptyset\}\} \text{ and } x \notin \{\{\emptyset\}\}\} = \{\emptyset\}.$
- 4.6 Suppose A and B are subsets of U. Show that in each of (a), (b), and (c) below, if any one of the relations stated holds, then each of the others holds.
 - (a) $A \subseteq B, \overline{A} \supseteq \overline{B}, A \cup B = B, A \cap B = A.$
 - (b) $A \cap B = \emptyset, A \subseteq \overline{B}, B \subseteq \overline{A}$.
 - (c) $A \cup B = U, \overline{A} \subseteq B, \overline{B} \subseteq A$. Solution:
 - (a) i. Assume $A \subseteq B$.
 - Take $x \notin B$. Assume $x \in A$. Since $A \subseteq B$ we have that $x \in B$. Then by contradiction we must have that $x \notin A$. Therefore $\overline{B} \subseteq \overline{A}$ or $\overline{A} \supseteq \overline{B}$.
 - Take $x \in A \cup B$. Then $x \in A$ or $x \in B$. Assume $x \in A$. Then since $A \subseteq B$ we have that $x \in B$. Therefore $A \cup B \subseteq B$. But since $B \subseteq A \cup B$ we have that $A \cup B = B$.

- Take $x \in A$. Because $A \subseteq B$ we have that $x \in B$. Since $x \in A$ and $x \in B$ we have that $x \in A \cap B$ and therefore $A \subseteq A \cap B$. But since $A \cap B \subseteq A$, we have $A \cap B = A$.
- ii. Assume $\overline{A} \supseteq \overline{B}$.
 - Take $x \in A$. Assume $x \notin B$. Then because $\overline{A} \supseteq \overline{B}$ we have that $x \notin A$. Then by contradiction we must have that $x \in B$. Therefore $A \subseteq B$.
 - Take $x \in A \cup B$. Then by the definition of set union, $x \in A$ or $x \in B$. Assume $x \notin B$. Then because $\overline{A} \supseteq \overline{B}$ we have that $x \notin A$. But then since $x \notin A$ and $x \notin B$ we have that $x \notin A \cup B$. By contradiction we must have that $x \in B$ and thus $A \cup B \subseteq B$. But since $B \subseteq A \cup B$ we have $A \cup B = B$.
 - Take $x \in A$. Assume $x \notin B$. Then because $\overline{A} \supseteq \overline{B}$ we have that $x \notin A$. By contradiction, $x \in B$. Thus $A \subseteq A \cap B$. But since $A \cap B \subseteq A$ we have $A \cap B = A$.
- iii. Assume $A \cup B = B$.
 - Take $x \in A$. Then $x \in A \cup B = B$ and therefore $A \subseteq B$.
 - Take $x \notin B$. Then $x \notin A \cup B$ and so $x \notin A$. Therefore $\overline{A} \supseteq \overline{B}$.
 - Take $x \in A$. Then $x \in A \cup B = B$. Since $x \in A$ and $x \in B$ then $x \in A \cap B$ and so $A \subseteq A \cap B$. But since $A \cap B \subseteq A$ we have $A \cap B = A$.
- iv. Assume $A \cap B = A$.
 - Take $x \in A$. Then $x \in A \cap B$ and so $x \in B$. Therefore $A \subseteq B$.
 - Take $x \notin B$. Then $x \notin A \cap B$ and so $x \notin A$. Therefore $\overline{A} \supseteq \overline{B}$.
 - Take $x \in A \cup B$. Then $x \in A$ or $x \in B$. Assume $x \notin B$. Then $x \notin A \cap B = A$ and so $x \notin A \cup B$. By contradiction, we must have the $x \in B$. Then $A \cup B \subseteq B$. But since $B \subseteq A \cup B$ we have that $A \cup B = B$.
- (b) i. Assume $A \cap B = \emptyset$.
 - Take $x \in A$. Since $A \cap B = \emptyset$, $x \notin B$. Then $A \subseteq \overline{B}$.
 - Take $x \in B$. Since $A \cap B = \emptyset$, $x \notin A$. Then $B \subseteq \overline{A}$.
 - ii. Assume $A \subseteq \overline{B}$.
 - Take $x \in A$. Then since $A \subseteq \overline{B}$ we have $x \notin B$. Now take $x \in B$. Assume $x \in A$. But then since $A \subseteq \overline{B}$ we have $x \notin B$. By contradiction we must have that $x \notin A$. Thus $x \in A \Rightarrow x \notin B$ and $x \in B \Rightarrow x \notin A$ and so $A \cap B = \emptyset$.
 - Take $x \in B$. Assume $x \in A$. Then since $A \subseteq \overline{B}$ we have that $x \notin B$. Then by contradiction, we must have $x \notin A$ and so $B \subseteq \overline{A}$.
 - iii. Assume $B \subseteq \overline{A}$.
 - Take $x \in B$. Then since $B \subseteq \overline{A}$ we have $x \notin A$. Now take $x \in A$ and assume $x \in B$. But since $B \subseteq \overline{A}$ we have $x \notin A$. Then by contradiction, we must have that $x \notin B$. Thus $x \in A \Rightarrow x \notin B$ and $x \in B \Rightarrow x \notin A$ and so $A \cap B = \emptyset$.

- Take $x \in A$. Assume $x \in B$. Then since $B \subseteq \overline{A}$ we have $x \notin A$. Then by contradiction we must have that $x \notin B$. Therefore $A \subseteq \overline{B}$.
- (c) i. Assume $A \cup B = U$.
 - Take $x \notin A$. Assume $x \notin B$. Then since $x \notin A$ and $x \notin B$, we have that $x \notin A \cup B = U$. But since $A \subseteq U$ this is a contradiction. So we must have that $x \in B$. Therefore $\overline{A} \subseteq B$.
 - Take $x \notin B$. Assume $x \notin A$. Then since $x \notin A$ and $x \notin B$, we have that $x \notin A \cup B = U$. But since $B \subseteq U$ this is a contradiction. So we must have that $x \in A$. Therefore $\overline{B} \subseteq A$.
 - ii. Assume $\overline{A} \subseteq B$.
 - Take $x \in U$. Then either $x \in A$ or $x \notin A$. Assume that $x \in A$. Then $x \in A \cup B$. Now assume that $x \notin A$. Then since $\overline{A} \subseteq B$ we have that $x \in B$. Then $x \in A \cup B$. Therefore $U \subseteq A \cup B$. But since $A \cup B \subseteq U$ we must have that $A \cup B = U$.
 - Take $x \notin B$. Assume $\overline{B} \subseteq A$
 - iii. Assume $\overline{B} \subseteq A$.
 - Take $x \in U$. Then $x \in B$ or $x \notin B$. If $x \in B$ then $x \in A \cup B$. If $x \notin B$ then since $\overline{B} \subseteq A$ we have that $x \in A$ and so $x \in A \cup B$. Therefore $U \subseteq A \cup B$. But since $A \cup B \subseteq U$ we must have that $A \cup B = U$.
 - Take $x \notin A$ and assume $x \notin B$. Then since $\overline{B} \subseteq A$ we have that $x \in A$. Then by contradiction we must have that $x \in B$ and so $\overline{A} \subseteq B$.
- 4.7 Prove that for all sets A, B, and C,

$$(A \cap B) \cup C = A \cap (B \cup C)$$
 iff $C \subseteq A$.

Solution: (\Rightarrow) Assume $(A \cap B) \cup C = A \cap (B \cup C)$. Let $x \in C$. Then $x \in (A \cap B) \cup C$. Since $(A \cap B) \cup C = A \cap (B \cup C)$ we have that $x \in A \cap (B \cup C)$ and thus $x \in A$. Therefore $C \subseteq A$.

- (⇐) Assume $C \subseteq A$. Let $x \in (A \cap B) \cup C$. Then $x \in A \cap B$ or $x \in C$. Assume $x \in A \cap B$. Then $x \in A$ and $x \in B$. Since $x \in B$ then $x \in B \cup C$. Since $x \in A$ and $x \in B \cup C$ we have that $x \in A \cap (B \cup C)$. Now assume $x \in C$. Then $x \in B \cup C$. Since $C \subseteq A$ we also have that $x \in A$. Thus $x \in A \cap (B \cup C)$. Therefore $(A \cap B) \cup C \subseteq A \cap (B \cup C)$. Now let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. Then $x \in B$ or $x \in C$. Assume $x \in B$. Then since $x \in A$ and $x \in B$ we have that $x \in A \cap B$. Therefore $x \in (A \cap B) \cup C$. Now assume $x \in C$. Then $x \in (A \cap B) \cup C$. Therefore $x \in (A \cap B) \cup C$ and so we can conclude that $x \in A \cap B \cup C$. ■
- 4.8 Prove that for all sets A, B, and C,

$$(A - B) - C = (A - C) - (B - C).$$

Solution: Let $x \in (A - B) - C$. Then $x \in A - B$ and $x \notin C$. Since $x \in A - B$ we have that $x \in A$ and $x \notin B$. Then since $x \in A$ and $x \notin C$ we have that $x \in A - C$. Since $x \notin B$ we have that $x \notin B - C$. Then since $x \in A - C$ and $x \notin B - C$ we have that $x \in (A - C) - (B - C)$. Now let $x \in (A - C) - (B - C)$. Then $x \in A - C$ and $x \notin B - C$. Then since $x \in A - C$ we have that $x \in A$ and $x \notin C$. Since $x \notin B - C$ we have that either $x \notin B$ or $x \in C$. But $x \in C$ is a contradiction because $x \notin C$. Therefore $x \notin B$. Then since $x \in A$ and $x \notin B$ we have that $x \in A - B$ and since $x \notin C$ we have that $x \in (A - B) - C$. Therefore $(A - C) - (B - C) \subseteq (A - B) - C$ and thus (A - B) - C = (A - C) - (B - C).

- 4.9 (a) Draw the Venn diagram of the symmetric difference, A + B, of sets A and B. Solution:
 - (b) Using a Venn diagram, show that the symmetric difference is a commutative and associative operation.

Solution: .

 $A + \emptyset = A$.

(c) Show that for every set A, $A + A = \emptyset$ and $A + \emptyset = A$ Solution: Let A be a set. Let $x \in A + A = (A - A) \cup (A - A)$. Then $x \in A - A = \{x \mid x \in A \text{ and } x \notin A\} = \emptyset$. Therefore $A + A \subseteq \emptyset$. Then since $\emptyset \subseteq A + A$ we have that $A + A = \emptyset$. \blacksquare Let $x \in A + \emptyset = (A - \emptyset) \cup (\emptyset - A)$. Then $x \in A - \emptyset$ or $x \in \emptyset - A$. Assume $x \in \emptyset - A$. Then $x \in \emptyset$. But this is a contradiction and so we have that $x \in A - \emptyset$. Then $x \in A$. Therefore $A + \emptyset \subseteq A$. Now let $x \in A$. Since $x \notin \emptyset$ we have that $x \in A - \emptyset$. Then $x \in A - \emptyset$. Thus $x \in A - \emptyset$ and therefore