Statistics Review

junyan.xu*

April 9, 2019

Contents

1	Sup	pport Vector Machine and Regression	
	1.1	Separable	
	1.2	Non Separable	
	1.3	Solver	
	1.4	Dual Problem	
	1.5	Regression	
	1.6	Summary	
2	Kalman Filter and Hidden Markov Model		
	2.1	Basic Definition	
	2.2	EM Algorithm	
	2.3	HMM vs Kalman (State Space Model)	
3	Fac	tor Selection	
	3.1	Stepwise Selection	
	3.2	Stagewise Selection	

^{*}junyanxu5513@gmail.com

1 Support Vector Machine and Regression

1.1 Separable

A distance of a point a to a plane $w \cdot x + b = 0$ is $\frac{a \cdot w + b}{\|w\|}$. Define margin ζ to be the value that all (x_i, y_i) are having distance larger that this.

$$\frac{x_i \cdot w + b}{\|w\|} \ge \zeta \tag{1}$$

Then if we fix ζ to be 1, mathematically the margin is $\frac{1}{\|w\|}$. The we are actually minimize $\frac{1}{2} \|w\|^2$

1.2 Non Separable

If the data is not separable, then we add penalty to the optimization function (constant muliply soft margin).

$$loss = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i$$

s.t.\forall i, y_i(w.x_i + b) >= 1 - \xi_i

The x_i represent the hinge loss, an "option" style loss function. Which could be rewrite as $max\{0, 1 - y(w \cdot x + b)\}$

1.3 Solver

Currently according to Stanford course this one should use SGD to solve.

1.4 Dual Problem

According to representer theorem the w can be a linear combination of x_i and is $w = \sum_{i=1}^{n} \alpha_i x_i$. Then we have $f(x_i) = y_i \sum_{j=1}^{n} \alpha_j x_j^T x_i + b$ The primal problem of this is minimize:

$$\frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k(x_j^{\top}) + \sum_{i=1}^n C \cdot max(0, 1 - y_i \sum_{j=1}^n \alpha_j x_j^T x_i + b)$$
 (3)

The dual problem is maximize

$$-\frac{1}{2}\sum_{jk}\alpha_{j}\alpha_{k}y_{j}y_{k}(x_{j}^{\top}) + \sum_{i=1}^{n}\alpha_{i}$$

$$0 \le \alpha_{i} \le C$$

$$\sum_{i}\alpha_{i}y_{i} = 0$$

$$(4)$$

1.5 Regression

For regression part. The we assume the regression lies in range ϵ . Also the penalty of upper ϵ is ξ_u and down is ξ_d So the primal problem is

$$loss = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\infty} (max\{f(x_i) - y_i - \epsilon, 0\} + max\{y_i - f(x_i) - \epsilon, 0\})$$
 (5)

1.6 Summary

1. GOOD: SVM is good for handling high dimensional data

2. GOOD: SVM has customize kernal

3. BAD: No probability estimate

2 Kalman Filter and Hidden Markov Model

2.1 Basic Definition

Kalman filter has definition x_t and the transition matrix A_t . The x_t follows the formula

$$x_{t+1} = A_t \cdot x_t + Normal(0, Q_t) + b_t$$

$$z_t = C_t \cdot x_t + Normal(0, R_t) + d_t$$
(6)

All the state transitions and observations are linear with Gaussian distributed noise, then the estimation can be represented by a mean plus a Gaussian distribution.

The kalman gain is a critical term in Kalman Filter. In the formula above, kalman gain can be defined as the coeffcient of innovation error that we need to update our prior estimation of x_t based on the current observation z_t . The idea is quite straight forward

$$\hat{x}_t | t = \hat{x}_t | t - 1 + K_t \cdot (z_t - C_t \cdot \hat{x}_t | t - 1)$$

The solving of kalman gain can be defined as minimize covariance of time t posterior estimation of x. Which is actually minize the trace of error matrix.

$$K_t = \underset{K}{\operatorname{arg\,min}} \operatorname{trace}(\operatorname{cov}(x_t - x_t | t - 1 - K(C \cdot x_t + v_t - C_t \cdot x_t | t - 1))) \tag{7}$$

2.2 EM Algorithm

Two step, the E step of this algorithm first assumed we have θ , then we can get distribution of hidden x. Then we calculate the expectation $E_x(l)$ of the likelyhood under hidden variable x. Next step is the M step, calculate the max E to get theta

2.3 HMM vs Kalman (State Space Model)

1. HMM has discrete hidden state, while Kalman has continuous hidden state (Gaussian transition).

3 Factor Selection

3.1 Stepwise Selection

For stepwise selection, we have forward and backward type. Backward start from the full model and remove the least impact variable. Forward start from 0 and add most impact model. They are greedy algorithm

3.2 Stagewise Selection

It should be properly named as (Error Correlation Gradient Descent). Because the algo is adding variable selected by their correlation with the error term (with small step ϵ)

$$\hat{c} = c(\hat{\mu}) = X^{\top}(y - \hat{\mu}) \tag{8}$$

The next μ is $\hat{j} = argmax|\hat{c}_j|$ then $\mu = \mu + \epsilon \cdot sign(\hat{c}_j) \cdot x_j$