FUNDAMENTOS PARA EL ANALISIS DE DATOS Y LA INVESTIGACION

PRACTICA: SIMULACION MC
-PROYECTO INVERSION-

Simulación de la rentabilidad de un proyecto de inversión

Determinar la probabilidad de que un proyecto resulte rentable, así como su valor esperado y la desviación típica.

Será necesario conocer:

- -Todas las variables que componen la rentabilidad (por ejemplo, desembolso inicial, flujos de caja, unidades vendidas, costes fijos, costes variables, duración del proyecto,....).
- Relaciones funcionales entre dichas variables.

Proyecto de inversión: Variables

- -Invesión inicial: Se distribuye normalmente con esperanza de 1.000 euros y desviación típica de 200.
- -Los flujos de caja obtenidos anualmente se calculan como el número de productos vendidos por el margen obtenido por cada uno de ellos. Las ventas anuales se distribuyen uniformemente entre 500 y 800 unidades. El margen se distribuye de manera normal con media 5 euros y desviación típica de 1 euro.
- La duración es aleatoria según la siguiente distribución de probabilidad: Será de 2 años con probabilidad 0,30, 3 años con probabilidad de 0,50 y 4 años con probabilidad 0,20.

Proyecto de inversión: relaciones funcionales

Se conoce que la duración y el desembolso inicial del proyecto están directamente relacionadas, y que el margen y el número de unidades vendidas están negativamente relacionadas.

Proyecto de inversión:

- 1. Definir todas las variables aleatorias relacionadas en la rentabilidad del proyecto.
- 2. Simulación de valores de las diferentes v.a.
- Simulación del Desembolso inicial:

- Simulación de la duración:

La duración está relacionada con la variable Desembolso Inicial, por tanto la simulación se realizará con el mismo número aleatorio inicial.

Es necesario obtener la función de probabilidad acumulada F(X):

Duración	Probabilidad	F(X)		
2	0,30	0,30		
3	0,50	0,80		
4	0,20	1,00		

Interpretación de F(X):

- -Si el nº aleatorio es $\leq 0,30$, el valor será 2
- -Si el nº aleatorio está entre 0,30 y 0,80; 3
- -Si el nº aleatorio es > que 0,80, el valor será 4

- Simulación de la duración:

Simulación de la duración:

-Simulación de las ventas 1er año:

Las ventas anuales se distribuyen según una v.a. Uniforme (no existe func. de distribución inversa).

Siendo "X" el valor de la variable buscado. Utilizaremos:

"X" = Mín. valor + n^o aleatorio * (Max. Valor – Mín. valor)

- Simulación del margen del 1er año:

-El margen se distribuye de manera **normal**, y está **inversamente relacionada** con las ventas, por lo que utilizaremos el número aleatorio complementario obtenido en la simulación de las ventas

 $(1-n^{\circ} aleatorio (V))$

- Simulación del margen del 1er año:

- Simulación del margen de los siguientes años

En la simulación de los flujos de caja para los años 2, 3 y 4, como las v. a. que los componen están **directamente relacionadas** entre sí a lo largo del tiempo utilizaremos el mismo nº aleatorio. También son igualmente distribuidas de existir.

El flujo de caja de 4 existirá sólo si la duración es igual a 4 años, y el de 3 sólo si la duración es 3.

- Calculo de la TIR:

La formula de la TIR exige que los datos estén consecutivos (se debe incluir el desembolso inicial)

- Simulación de "n" valores:

Tenemos el valor de la rentabilidad del proyecto (TIR), pero no conocemos si puede valor más o menos, si es un valor extremo o bastante probable. (Repetir la simulación 1.000 veces)

А	В	С	D	E	F	G	Н	I I	J	K	L
¹º aleatorio (DI)	Desembolso inicial (DI)	Duración (T)	Nº aleatorio (V)	Ventas 1er año (V1)	Margen año 1	Desembolso inicial (DI)	Flujo caja 1	Flujo caja 2	Flujo caja 3	Flujo caja 4	TIR
0,430442999	964,95	3	0,757832575	727,3497726	4,300652437	-964,95	3128,078572	3128,078572	3128,078572	0	320%
0,510263125	1005,15	3	0,874154314	762,2462942	3,853749147	-1005,15	2937,506006	2937,506006	2937,506006	0	287%
0,521535866	1010,80	3	0,468133553	640,4400658	5,07996247	-1010,80	3253,411498	3253,411498	3253,411498	0	317%
0,815565753	1179,72	4	0,749130644	724,7391931	4,32824348	-1179,72	3136,847687	3136,847687	3136,847687	3136,847687	264%
0,779394855	1154,03	3	0,65299342	695,8980259	4,606585228	-1154,03	3205,713566	3205,713566	3205,713566	0	272%
0,001443113	404,08	2	0,89139347	767,4180411	3,766027253	-404,08	2890,117257	2890,117257	0	0	704%
0,758054063	1140,01	3	0,082210976	524,6632928	6,390352207	-1140,01	3352,783231	3352,783231	3352,783231	0	289%
0,522751528	1011,41	3	0,134614776	540,3844329	6,10483855	-1011,41	3298,959718	3298,959718	3298,959718	0	322%
0,249316078	864,67	2	0,857588633	757,2765898	3,930451827	-864,67	2976,439156	2976,439156	0	0	325%
0,709709536	1110,51	3	0,801862465	740,5587394	4,151707459	-1110,51	3074,583242	3074,583242	3074,583242	0	271%
0,608980927	1055,33	3	0,183478004	555,0434011	5,902189885	-1055,33	3275,971548	3275,971548	3275,971548	0	306%
0,888020075	1243,21	4	0,501282781	650,3848344	4,996784538	-1243,21	3249,832885	3249,832885	3249,832885	3249,832885	260%
0,265514953	874,71	2	0,119918637	535,9755911	6,175393621	-874,71	3309,860247	3309,860247	0	0	361%
0,876308258	1231,35	4	0,649888239	694,9664717	4,614981248	-1231,35	3207,257235	3207,257235	3207,257235	3207,257235	259%
0,320595422	906,79	3	0,687533829	706,2601486	4,511128032	-906,79	3186,029954	3186,029954	3186,029954	0	347%
0,86103626	1217,00	4	0,213708397	564,1125192	5,793619812	-1217,00	3268,253468	3268,253468	3268,253468	3268,253468	267%
0,255908826	868,80	2	0,992638032	797,7914096	2,560901058	-868,80	2043,064865	2043,064865	0	0	211%
0,048310521	667,71	2	0,607925762	682,3777285	4,726083091	-667,71	3224,973844	3224,973844	0	0	468%
0,771347581	1148,66	3	0,279811524	583,9434571	5,583401501	-1148,66	3260,390775	3260,390775	3260,390775	0	279%
0,307446326	899,38	3	0,355426922	606,6280765	5,370709595	-899,38	3258,023231	3258,023231	3258,023231	0	358%
0,354632198	925,43	3	0,655730177	696,719053	4,599162336	-925,43	3204,324027	3204,324027	3204,324027	0	342%
0,550342763	1025,31	3	0,307728075	592,3184226	5,50230051	-1025,31	3259,113959	3259,113959	3259,113959	0	313%
0,572112466	1036,35	3	0,685129421	705,5388263	4,517908796	-1036,35	3187,560069	3187,560069	3187,560069	0	303%
0,347098759	921,37	3	0,716629211	714,9887634	4,427143082	-921,37	3165,357558	3165,357558	3165,357558	0	340%
0,826710847	1188,25	4	0,446948759	634,0846276	5,133374113	-1188,25	3254,993613	3254,993613	3254,993613	3254,993613	273%

Prof. Sonia de Paz Cobo

3. Cálculos de esperanza y desviación típica:

4. Calculo de probabilidades:

Con el fin de determinar la probabilidad de que el proyecto sea **rentable**, se fija un valor \mathbf{K} a partir del cual si la TIR es superior el proyecto será rentable. (K=5,3%,....)

5. Distribución de probabilidad

Existen varios test para conocer si la distribución de la medida de rentabilidad se asemeja a alguna de las distribuciones conocidas. También se puede construir el histograma de los datos obtenidos.

