Tree-based methods classification and regression trees

Motivation

Training data

Type of fruit	Diameter	Colour	•••	
Apple	3	Green	•••	
Apple	3	Yellow	•••	
Grape	1	Red	•••	
Grape	1	Red	•••	
Lemon	3	Yellow	•••	
•••	•••	•••	•••	

Not perfectly separable!

Decision tree learning

- Family of algorithms
 - ID3, C4.5, C5.0, **CART**
- Common concept: When to ask which questions?

Classification and Regression Tree (CART)

Root node

Terminal node/ leaf

Internal node

and when to ask which question

- Computationally costly/infeasible to consider all possible splits
- Top-down and greedy
 - Top-down: starting with root node, all observations belong to one region
 - Greedy: at current node we make the best split, we don't look ahead
- Which questions to ask?

Fruit	Diam.	Colour
Apple	3	Green
Apple	3	Yellow
•••	•••	

Possible questions

```
diameter >= 3; colour = Green
diameter >= 3; colour = Yellow
```

• •

and when to ask which question

- Regression trees (continuous response)
 - Prediction: mean of each region
- select predictor X_j and splitting criteria/cutpoint s
- For any *j* and *s* define half-planes:

$$R_1(j, s) = \{X \mid X_j < s\}$$
 and $R_2(j, s) = \{X \mid X_j >= s\}$

Minimize RSS

$$\sum_{i: xi \in R_1(j,s)} (yi - \hat{y}_{R1})^2 + \sum_{i: x_i \in R_2(j,s)} (yi - \hat{y}_{R2})^2$$

and when to ask which question

- Classification trees (qualitative, categorical response)
 - Prediction: mode of each region
- select predictor X_i and splitting criteria/cutpoint s
- For any *j* and *s* define half-planes:

$$R_1(j, s) = \{X \mid X_j < s\}$$
 and $R_2(j, s) = \{X \mid X_j >= s\}$

and when to ask which question

- Classification trees (qualitative, categorical response)
 - Prediction: mode of each region
- Minimise Gini impurity:

$$G = 1 - \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

- \hat{p}_{mk} is the proportion of observations in the *m*th region of class *k*
- Gini index small if proportion is close to 0 or 1
- Gini index: measure of node impurity

Gini impurity

Chance of being incorrect if you randomly assign a class label to an observation in the same set

Information gain

- Calculate impurity for root node (e.g. $n_0 = 5$, $G_0 = 0.8$)
- Try each possible question and calculate impurity for resulting child nodes (e.g. n_1 = 4, G_1 0.63 and n_2 = 1, G_2 = 0.1)
- Take weighted average:
 - higher weight on large set
 - E.g. 4/5*0.63 + 1/5*0.1 = 0.52
- And subtract from root node impurity:

Information Gain = 0.8 - 0.52 = 0.28

• Ask question with highest information gain at current node

R

What's next?

- Splitting until information gain is zero leads to overfitting
 - Pruning
 - Cross-validation
- Single decisions trees are easy to interpret, but usually result in poor predictive power
- Random forests (next session)