Estudio del núcleo no ligado ¹⁰Li con ACTAR TPC Este es el subtítulo

Daniel Vázquez Lago

8 de julio de 2025

- 1 Introducción
- 2 Objetivos
- 3 Metodología
- 4 Simulacion
- 5 Resultados
- 6 Conclusiones

Introducción

Cerca de la dripline \rightarrow Núcleos exóticos.

- Reordenamiento de las capas.
- Núcleos halo

Introducción

Reordenamiento de las capas ightarrow Diferentes estados excitados, momentos angulares...

Introducción

El ¹¹Li se describe como una interacción entre ¹⁰Li y un neutrón:

$$|^{11}\operatorname{Li}_{g.s}\rangle = \alpha|^{10}\operatorname{Li}\otimes\nu(2s_{1/2})\rangle + \beta|^{10}\operatorname{Li}\otimes\nu(1p_{1/2})\rangle + \cdots$$
 (1)

 α y β indican la contribución de cada componente al estado fundamental.

Objetivos

Experimento:

 \blacksquare Medir factores espectroscópicos para hallar $\alpha, \beta...$

Simulacion:

- Resolver el espectro de energías de excitación.
- Comprobar la capacidad del experimento.
- Identificar las principales fuentes de incertidumbre en el espectro.

Reacción

Estudio experimental 11 Li $(d,t)^{10}$ Li TRIUMF, Canada.

Características:

- Cinemática inversa.
- Albo gaseoso.

ACTAR TPC

- Detector gaseoso (90 % D₂, 10 % CF₄).
- \blacksquare Seguimiento de partículas 3D \to Conocemos vértice de interacción y dirección.
- Silicios en las paredes.
- Trigger L1 para detección de eventos con baja energía.

Flujo de la simulación

Resultados: σ_0

45000		п.		П	_=0.00 NeV
40000		Ш		- ñ.	,-0.20 NeV
40000		LI	-7	H	eten
35000		14	ᄮ	Ľ	
30000	-	4 N	J 9		
		\	1 К		
25000		ſΙ,	ן נ		
20000	Г]	4		
15000	۲,	Ų		1	
10000	7	儿		ኒ	
5000	, Go	۱ ۲	ι,	٦	١.
E.	والسالية	بليسلي			uluu
-0.3	-0.2 -0.1	0 0.1	0.2 0.3	3 0.4	0.5 0.6
					E _x [MeV]

σ (0.0) [keV]	σ (0.20) [keV]
10.2(90)	2.8(25)
78.60(63)	62.50(93)
202.40(91)	171.3(10)
218.80(98)	182.2(10)
	78.60(63) 202.40(91)

	Γ(0.0) [keV]	Γ(0.20) [keV]
Го	97.30(95)	177.10(81)
Γ_{str}	99.70(93)	197.2(10)
Γ_{θ}	98.0(13)	195.9(14)
Γ_{tot}	96.0(14)	194.2(14)

troducción Objetivos Metodología Simulacion **Resultados** Conclusione ○O O O O O O O

Resultados: σ_{str}

	σ (0.0) [keV]	σ (0.20) [keV]
σ_0	10.2(90)	2.8(25)
$\sigma_{\sf str}$	78.60(63)	62.50(93)
$\sigma_{ heta}$	202.40(91)	171.3(10)
σ_{tot}	218.80(98)	182.2(10)

	$\Gamma(0.0)$ [keV]	$\Gamma(0.20)$ [keV]
Го	97.30(95)	177.10(81)
Γ_{str}	99.70(93)	197.2(10)
Γ_{θ}	98.0(13)	195.9(14)
Γ_{tot}	96.0(14)	194.2(14)

troducción Objetivos Metodología Simulacion **Resultados** Conclusione ○O O O O O O O

Resultados: σ_{θ}

	σ (0.0) [keV]	σ (0.20) [keV]
σ_0	10.2(90)	2.8(25)
σ_{str}	78.60(63)	62.50(93)
$\sigma_{ heta}$	202.40(91)	171.3(10)
σ_{tot}	218.80(98)	182.2(10)

	$\Gamma(0.0)$ [keV]	Γ(0.20) [keV]
Γ ₀	97.30(95)	177.10(81)
Γ_{str}	99.70(93)	197.2(10)
Γ_{θ}	98.0(13)	195.9(14)
Γ_{tot}	96.0(14)	194.2(14)

troducción Objetivos Metodología Simulacion **Resultados** Conclusione ○O O O O O OOO●O O

Resultados: σ_{tot}

	σ (0.0) [keV]	σ (0.20) [keV]
σ_0	10.2(90)	2.8(25)
σ_{str}	78.60(63)	62.50(93)
$\sigma_{ heta}$	202.40(91)	171.3(10)
σ_{tot}	218.80(98)	182.2(10)

	$\Gamma(0.0)$ [keV]	Γ(0.20) [keV]
Γο	97.30(95)	177.10(81)
Γ_{str}	99.70(93)	197.2(10)
Γ_{θ}	98.0(13)	195.9(14)
Γ_{tot}	96.0(14)	194.2(14)

Recuperación de eventos a baja energía con trigger L1

Recuperación de eventos de baja energía sobre todos los que se paran ($L_{XY} > 20$ mm).

$E_{\times} = 0.0 \text{ MeV}$	$E_{\scriptscriptstyle X}=0.20~{ m MeV}$
36.50 %	64.23 %

$E_{x} = 0.0$

Conclusiones

Las conclusiones aquí obtenidas son:

- Se puede resolver el espectro de energía con los silicios.
- Resolución angular como mayor fuente de incertidumbre.
- Obtención de gran parte de los eventos de baja energía con trigger L1.
- Los valores σ que se pueden usar en TRIUMF.

