复变函数论第七次作业 20234544 毛华豪

Task1:

解 用定义计算复积分。取分点 $a = z_0, z_1, z_2, \ldots, z_n = b$,在每一个小弧段上去任意的点 $\xi_1, \xi_2 \ldots, \xi_n$,考虑和式:

$$I_1 = \int_C dz = \lim_{||\Delta|| \to 0} \sum_{k=1}^n f(\xi_k) \Delta z_k = \lim_{||\Delta|| \to 0} \sum_{k=1}^n 1(z_k - z_{k-1}) = z_n - z_0 = b - a$$

其中 $||\Delta|| = max(|\Delta z_k|)$ 再考虑 I_2 我们有:

$$I_2 = \int_C z dz = \lim_{||\Delta|| \to 0} \sum_{k=1}^n f(\xi_k) \Delta z_k = \lim_{||\Delta|| \to 0} \sum_{k=1}^n \xi_k (z_k - z_{k-1})$$

取
$$\xi_k = z_{k-1}$$
 由于 $z_{k-1}(z_k - z_{k-1}) = \frac{z_k^2 - z_{k-1}^2}{2} - \frac{(\Delta z_k)^2}{2}$ 所有和式变为:

$$\lim_{||\Delta|| \to 0} \sum_{k=1}^n \xi_k(z_k - z_{k-1}) = \lim_{||\Delta|| \to 0} \sum_{k=1}^n \left(\frac{z_k^2 - z_{k-1}^2}{2} - \frac{(\Delta z_k)^2}{2} \right)$$

由于光滑函数的可求长的,所以有:

$$\sum_{k=1}^{n} |\Delta z_k| \le L$$

所以:

$$\sum_{k=1}^{n} |\Delta z_k|^2 \le ||\Delta z_k|| \cdot \sum_{k=1}^{n} |\Delta z_k| \le ||\Delta z_k|| \cdot L \xrightarrow{||\Delta z_k|| \to 0} 0$$

所以

$$\lim_{||\Delta|| \to 0} \sum_{k=1}^n \left(\frac{z_k^2 - z_{k-1}^2}{2} - \frac{(\Delta z_k)^2}{2} \right) = \frac{b^2 - a^2}{2} - 0 = \frac{b^2 - a^2}{2} = S_{left}$$

同理取 $\xi = z_k$ 由于 $z_k(z_k - z_{k-1}) = \frac{z_k^2 - z_{k-1}^2}{2} + \frac{(\Delta z_k)^2}{2}$ 同样有:

$$\lim_{||\Delta|| \to 0} \sum_{k=1}^n \left(\frac{z_k^2 - z_{k-1}^2}{2} + \frac{(\Delta z_k)^2}{2} \right) = \frac{b^2 - a^2}{2} + 0 = \frac{b^2 - a^2}{2} = S_{right}$$

对于弧段 $\xi \in \widehat{z_{k-1}z_k} \to \xi = mz_k + nz_{k-1}$, 当 $\Delta z_k = z_k - z_{k-1} \to 0$ 时,

$$\lim_{||\Delta|| \to 0} \sum_{k=1}^{n} \xi_k(z_k - z_{k-1}) = \lim_{||\Delta|| \to 0} \sum_{k=1}^{n} (mz_k + nz_{k-1})(z_k - z_{k-1})$$

$$= mS_{right} + nS_{left} \xrightarrow{S_{right} = S_{left} = \frac{b^2 - a^2}{2}, m+n \to 1} 1 \cdot \frac{b^2 - a^2}{2} = \frac{b^2 - a^2}{2}$$

所以对于所有的点在弧段上其和式的极限都为 $\frac{b^2-a^2}{2}$ 所以复积分存在为 $\frac{b^2-a^2}{2}$

Task2:

解 计算复积分
$$I = \int_{-1}^{1} |z| dz$$

解 计算复积分
$$I=\int_{-1}^{1}|z|dz$$
 (1): 对于连接-1 到 1 的直线段。 $I=\int_{-1}^{0}(-z)dz+\int_{0}^{1}zdz\to\int_{1}^{0}zd(-z)+\int_{0}^{1}zdz=2\int_{0}^{1}zdz=2\frac{1^{2}-0^{2}}{2}=1.$

(2): 对于连接-1 到 1 的上半单位圆周。
$$I=\int_{-1}^{i}|z|dz+\int_{i}^{1}|z|dz=\int_{-1}^{i}1dz+\int_{i}^{1}1dz=(i-(-1))+(1-i)=2$$
 因为 $|z|$ 不是解析的所以两个积分不同。

Task3:

解 计算复积分 $I = \int_C \frac{2z^2-z+1}{z-1} dz$,C 取逆时针方向的圆周 |z|=2。可以知道函数 $\frac{2z^2-z+1}{z-1}$ 在 z=1 处为奇点。取以 z=1 为圆心的 r 为半径的圆周 Ω ,取其逆时针为正方向。则原积分变为:

$$\int_{C \cup \Omega^- \cup \Omega^+} \frac{2z^2 - z + 1}{z - 1} dz = \int_{C \cup \Omega^-} \frac{2z^2 - z + 1}{z - 1} dz + \int_{\Omega^+} \frac{2z^2 - z + 1}{z - 1} dz$$

对于区域 $C \cup \Omega^-$ 由于可以在两个圆之间做一个通道,可以构造两个单连通区域,可以知道:

$$\int_{C \cup \Omega^{-}} \frac{2z^2 - z + 1}{z - 1} dz = 0$$

所以积分只要求:

$$\int_{\Omega^+} \frac{2z^2 - z + 1}{z - 1} dz$$

因为 |z-1|=r 令 $z-1=re^{i\theta}\to z=re^{i\theta}+1$ 。所以积分变成:

$$\int_0^{2\pi} \left(2re^{i\theta} + \frac{2}{r}e^{-i\theta} + 3 \right) ire^{i\theta} d\theta$$
$$= \left(r^2 e^{2i\theta} + 2i\theta + 3re^{i\theta} \right) \Big|_0^{2\pi} = 4\pi i$$

所以原来的积分为 4πi.

Task4:

证明 柯西积分定理的核心内容是如果函数 f(z) 在单连通区域 D 上解析,则沿着 D 内的一条可求长的封闭曲线 C 的积分 $\int_C f(z)dz = 0$. 因为 f 在 C 上每一点都解析,故存在一个开集 Ω : $\overline{D} \subset \Omega$ 使得 f 在 Ω 上解析,从而 C 为 Ω 上的一个闭曲线,所以由柯西积分定理有:

$$\int_C f(z)dz = 0$$

Task5:

证明 不一定成立,考虑反例,在复平面上的单位圆周 C,函数 f(z)=z 在复平面上解析,满足柯西积分公式 $\int_C f(z)dz=0$,但是其虚部 $Im(z)=Im(e^{i\theta})=\sin\theta$. 有:

$$\int_{C} Im(f)dz = \int_{C} \sin\theta \cdot ie^{i\theta}d\theta = i \int_{C} \sin\theta(\cos\theta + i\sin\theta)d\theta$$

$$= \frac{i}{2} \int_{C} (\sin 2\theta - \cos 2\theta + i) d\theta = \frac{i}{2} \int_{C} \left(e^{i(2\theta)} + i\right) d\theta$$

$$= \frac{i}{2} \left(\frac{e^{2i\theta}}{2i} + i\theta\right) \Big|_{0}^{2\pi} = \frac{i}{2} \left(\frac{e^{4i\pi}}{2i} + 2i\pi - \frac{e^{0}}{2i}\right) = -\pi \neq 0$$

Task6:

证明 考虑复合映射,先通过映射 $\xi=g(z)$ 把带型区域 $\Omega=\{z\in\mathbb{C}:0<Im(z)<\pi\}$ 映射成上半平面,再通过映射 $w=h(\xi)$ 把上半平面映射到单位圆盘 $\{w\in\mathbb{C}:|w|<1\}$

g(z) 可以取 $g(z)=e^z$ 有 $\forall z\in\Omega:z=x+i\theta,x\in\mathbb{R},\theta\in(0,\pi)$ 则 $f(z)=e^z=e^{x+i\theta}=e^x\cdot e^{i\theta}=e^x\cdot (\cos\theta+i\sin\theta)$,由 θ 的取值范围可以知道 $f(z)\in\{z|Im(z)>0\}$,另外,对于 $\forall Z\in\{z|Im(z)>0\}$,因 $g(z)\in\mathbb{R},\theta=arg(Z)\in(0,\pi)\to e^{\log|Z|}\cdot e^{iarg(Z)}=|Z|\cdot e^{i\theta}=Z$,因为 $\log|Z|+iarg(Z)\in\Omega$,所以 f 是双射。 $f(z)=e^z$ 把 D 映射为上半平面。已知把上半平面映射为单位圆盘的线性分式变换为 $h(\xi)=e^{i\theta}\frac{\xi-a}{\xi-\bar{a}}$,所以所要求的 $f(z)=e^{i\theta}\frac{e^z-a}{e^z-\bar{a}}$