

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta038

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Militar$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se determine conjugatul numărului complex $z = i^{10} + i^{11}$.
- (4p) b) Să se determine valorile lui $a \in \mathbf{R}$ din egalitatea de numere complexe $1 + (a \cdot i)^2 = 0$.
- (4p) c) Să se calculeze $\sin 2\pi + \sin 4\pi$.
- (4p) d) Să se calculeze $\sin 2\pi \cdot \sin 4\pi$.
- (2p) e) Să se determine $c, d \in \mathbb{R}$ știind că punctele A(c,1), B(2,d) sunt situate pe dreapta de ecuație 2x y 3 = 0.
- (2p) f) Să se dea un exemplu de punct M(a,b) situat pe parabola de ecuație $y^2 = 4x$.

SUBIECTUL II (30p)

1.

- (3p) a) Știind că $a = \log_2 3$ și $b = \log_2 6$, să se arate că $b a \in \mathbb{N}$.
- (3p) b) Să se calculeze determinantul $\begin{vmatrix} \sqrt{1} & \sqrt{2} \\ \sqrt{3} & \sqrt{6} \end{vmatrix}$.
- (3p) c) Dacă $A = \begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix}$ și $B = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$ să se arate că det $A = \det B$.
- (3p) d) Dacă $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^3 x$, să se calculeze f(f(1)).
- (3p) e) Să se dea un exemplu de mulțime care are exact 8 submulțimi.

2.

- (3p) a) Să se calculeze $\lim_{n\to\infty} \left(\frac{2n-1}{3n+2}\right)^n$.
- (3p) b) Dacă $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 2^x$, să se calculeze f'(0).
- (3p) c) Dacă $f : \mathbf{R} \to \mathbf{R}$, $f(x) = (x-1)^2$, să se arate că funcția f are un singur punct de extrem local
- (3p) d) Dacă $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^4 + 3x^2 1$, să se arate că funcția f este convexă pe \mathbf{R} .
- (3p) e) Să se dea un exemplu de funcție continuă $f:[0,\infty)\to \mathbf{R}$ pentru care $\int_0^1 f(x) dx < 1$.

SUBIECTUL III (20p)

Se consideră matricele $A=\begin{pmatrix} a & b \\ b & a \end{pmatrix},\ a,b\in\mathbf{R}$, $I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $U=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$

- (4p) a) Să se determine $x, y \in \mathbf{R}$ astfel ca $A = xI_2 + yU$.
- (4p) b) Să se calculeze determinantul și rangul matricei U.
- (4p) c) Să se calculeze U^2 și U^3 .
- (2p) d) Să se calculeze U^{2007} .

(2p) e) Să se arate că
$$A^n = \frac{(a+b)^n + (a-b)^n}{2} I_2 + \frac{(a+b)^n - (a-b)^n}{2} U, n \in \mathbb{N}^*.$$

- (2p) **f**) Să se arate că dacă $X \in M_2(\mathbf{R})$ și $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ $X = X \cdot \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, atunci există $u, v \in \mathbf{R}$ astfel ca $X = \begin{pmatrix} u & v \\ v & u \end{pmatrix}$.
- (2p) g) Să se rezolve în $M_2(\mathbf{R})$ ecuația $X^{2007} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.

SUBIECTUL IV (20p)

Se consideră șirurile $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 1}$, $a_n=\int\limits_0^\pi\!\!\left(\frac{1}{2\pi}x^2-x\right)\!\!\cos nx\;dx$,

$$b_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$
 și funcțiile $f:[0,\pi] \to \mathbb{R}$, $g:[0,\pi] \to \mathbb{R}$, $f(x) = \frac{1}{2\pi}x^2 - x$,

$$g(x) = f(x) \cdot ctg \frac{x}{2}, \ \forall x \in (0,\pi] \text{ si } g(0) = -2.$$

- (4p) a) Să se calculeze a_0 .
- (4p) b) Să se arate că $a_n = \frac{1}{n^2}$, $\forall n \in \mathbb{N}^*$.

(4p) c) Să se arate că
$$b_n = \int_0^{\pi} \left(\frac{1}{2\pi}x^2 - x\right) \sum_{k=1}^n \cos kx dx, \quad \forall n \in \mathbb{N}^*.$$

(2p) d) Utilizând metoda inducției matematice și formula $2 \sin a \cos b = \sin(a+b) + \sin(a-b), \forall a,b \in \mathbf{R}$, să se arate că

$$\sum_{k=1}^{n} \cos kx = \frac{1}{2} \left(\sin nx \cot g \, \frac{x}{2} + \cos nx - 1 \right), \quad \forall n \in \mathbf{N}^*, \quad \forall x \in \mathbf{R} \setminus 2\pi \mathbf{Z}.$$

(2p) e) Să se arate că, dacă $h:[0,\pi]\to \mathbf{R}$ este o funcție derivabilă și cu derivata

continuă, atunci avem:
$$\lim_{n\to\infty} \int_{0}^{\pi} h(x) \cos nx \, dx = \lim_{n\to\infty} \int_{0}^{\pi} h(x) \sin nx \, dx = 0.$$

- (2p) f) Să se arate că funcția g este derivabilă și cu derivata continuă pe intervalul $[0,\pi]$.
- (2p) g) Să se arate că $\lim_{n\to\infty} b_n = \frac{\pi^2}{6}$.