Recap: Positive values in feature map indicate patterns in the input image

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

-1	1	-1	
-1	1	-1	
-1	1	-1	

Filter size: 3x3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
	_	_			
0	1	0	0	1	0

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

- <u>1</u>	-1	-1	-1
-1	-1	-2	1
-1	-1	-2	1
-1	0	-4	3

Degree of activation of the kth filter

MNIST images The output of the k-th filter is a 11 x 11 matrix. input Degree of the activation of the k-th filter: 25 3x3 Convolution filters $x^* = arg \max a^k$ (gradient ascent) 11 **Max Pooling** -1 50 3x3 Convolution filters 50 x 11 x 11 11 **Max Pooling**

Reference: 李弘毅 ML Lecture 10 https://youtu.be/FrKWiRv254g

What input images result in higher activation degree?

Input images that make the first 14 filters activate most

Find an image maximizing the output of neuron: $x^* = arg \max a^j$

Each figure corresponds to a neuron

input Convolution **Max Pooling** Convolution Max Pooling flatten

Input images that make the first 9 nodes in the fully connected layer activate the most

What input images result in higher activation degree?

Deep Neural Networks are Easily Fooled https://www.youtube.com/watch?v=M2lebCN9Ht4

Input images that make the 9 output classes activate the most

Force x_{ij} = 0, i.e., force most pixels to NO INK (as only small part of the image has ink)

Neural networks are easily fooled

Gradient-weighted class activation map (Grad-CAM)

6.5 GradCAM.ipynb

Gradient-weighted class activation map (Grad-CAM)

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Ramprasaath R. Selvaraju · Michael Cogswell · Abhishek Das · Ramakrishna Vedantam · Devi Parikh · Dhruv Batra

Grad-CAM

https://arxiv.org/pdf/1610.02391.pdf

Overall architecture

http://gradcam.cloudcv.org/

Gradient of output versus bottom layers of a CNN

$$A \in \mathbb{R}^{K \times W \times H}$$
$$A^k \in \mathbb{R}^{W \times H}, 1 \le k \le K$$

$$\frac{\partial y^{cat}}{\partial A^k}$$

$$\frac{\partial y^{cut}}{\partial A_{i,j}^{k}}$$

$$1 \le i \le W$$

$$1 \le j \le H$$

Generate a score for each feature map

$$A \in \mathbb{R}^{K \times W \times H}$$

 $A^k \in \mathbb{R}^{W \times H}, 1 \le k \le K$

$$\frac{\partial y^{cat}}{\partial A_{i,j}^{k}}, 1 \le i \le W, 1 \le j \le H$$

$$\alpha_{k}^{C} = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y^{cat}}{\partial A_{i,j}^{k}}$$

$$Z = W \times H$$

Generating the Grad-CAM heat map

$$A \in \mathbb{R}^{K \times W \times H}$$
$$A^k \in \mathbb{R}^{W \times H}, 1 \le k \le K$$

$$\frac{\partial y^{cat}}{\partial A_{i,j}^k}$$
, $1 \le i \le W$, $1 \le j \le H$

$$\alpha_k^C = \frac{1}{Z} \sum_i \sum_j \frac{\partial y^{cat}}{\partial A_{i,j}^k}, Z = W \times H$$

$$s = \sum_{k=1}^{K} \alpha_k^C A^k$$

$$L_{GradCAM}^{C} = RELU(s)$$

Won't the Grad-CAM Heat map Be Too Small?

 12×12 heat map

Same heat map upsampled to 420×420 using the Python package cv2

https://glassboxmedicine.com/2020/05/29/grad-cam-visual-explanations-from-deep-networks/

Use GradCAM to visualize focused area

Ref: 1061307林家禾 (2021)