René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Belevant Users for an Item Semantic User Profiles

Content-based Recommendations

Motivation

Evaluation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Lecture 6

Recommender Systems

Personalization, Collaborative Filtering & Content-based recommendation

个性化、协同过滤和基于内容的推荐。

COMP 474/6741. Winter 2021

René Witte Department of Computer Science and Software Engineering Concordia University

Outline

1 Introduction Modeling Users

2 Collaborative Filtering

Introduction
Computing with Words
Item Recommendation
Items Related to other Items
Items of Interest to a User
Relevant Users for an Item
Semantic User Profiles
Evaluation

3 Content-based Recommendations

Motivation TF*IDF weighting Term Vector Space Model Summary

4 Notes and Further Reading

Concordia

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting Term Vector Space Model Summary

Notes and Further Reading

Slides Credit

Includes slides by Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze [MRS08]

Copyright © 2008 Cambridge University Press

Recommender Systems and Collaborative Filtering

René Witte

ntroduction

Modeling Users

Collaborative Filtering Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Belevant Users for an Item Semantic User Profiles

Content-based Recommendations

Evaluation

Motivation TF*IDF weighting Term Vector Space Model Summary

Notes and Further Reading

Hello Rene Witte. We have recommendations for you. (Not Rene?)

Rene's Store | Deals Store | Gift Certificates

LOOK INSIDE!

why does Esme?

Shop All Departments Search All Departments Your Store Page You Made Recommended For You Rate These Items Improve Your Recommendatio

Rene, Welcome to Your Amazon.ca (If you're not Rene Witte, click here.)

Today's Recommendations For You

LOOK INSIDE

Clean Code

amazon.ca

Here's a daily sample of items recommended for you, Click here to see all recommendations,

How We Decide JONAH LEHRER

Page 1 of 44

Clean Code: A Handbook of Ag... (Paperback) by Robert C. Martin

(7) CDN\$ 39.43 Fix this recommendation

Why Does E=mc2?: (And Why Should We... (Paperback) by Brian Cox

*** (2) CDN\$ 14.44 Fix this recommendation

How We Decide (Paperback) by Jonah Lehrer *** (10) CDN\$ 13.68 Fix this recommendation

ANSI Common LISP (Paperback) by Paul Graham **** (18) CDN\$ 96.95

Fix this recommendation

Collecting User Interactions

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles

Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Item Metadata

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

ımmary

Notes and Further Reading

Copyright 2009 by Manning Publications Co., [Ala09]

Netflix Recommendations

Why Netflix's Algorithm Is So Binge-Worthy | Mach | NBC News

https://www.youtube.com/watch?v=nq2QtatuF7U

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Content-based Recommendations

Motivation

TF*IDF weighting
Term Vector Space Model

Summary

Notes and Further

Notes and Furthe Reading

Introduction Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

2 Collaborative Filtering

Introduction
Computing with Words
Item Recommendation
Items Related to other Items
Items of Interest to a User
Relevant Users for an Item
Semantic User Profiles
Evaluation

- **3** Content-based Recommendations
- 4 Notes and Further Reading

Making Recommendations

Given Information about a User...

- ... we want to be able to have a system
 - recommending items (books, movies, music, photos, videos, etc.)
 - find users interested in a new item
 - find similar items, based on interests of other users

Customers who bought this item also bought

Hands-On Unsupervised Learning Using Python: How to Build Applied... Ankur A. Patel ***** 2 Paperback CDN\$55.67

Foundations of Deep Reinforcement Learning: Theory and Practice in... Laura Graesser ★★★★★1 Paperback CDN\$48.59

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:... Aurélien Géron ★★★★★ 13

Paperback CDN\$69.16

Reinforcement Learning: An Introduction Richard S. Sutton *****9 Hardcover

CDN\$86.18

Practical Time Series Analysis: Prediction with Statistics and Machine... Aileen Nielsen ******* 1 Paperback

CDN\$42.60

René Witte

Concordia

Introduction

Modeling Users

Collaborative Filtering

Introduction

Evaluation

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Belevant Users for an Item Semantic User Profiles

Content-based Recommendations Motivation

TF*IDF weighting Term Vector Space Model Summary

Notes and Further Reading

Collaborative Filtering

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Content-based Recommendations

Motivation

Evaluation

TF*IDF weighting
Term Vector Space Model
Summary

Notes and Further Reading

Copyright 2016 by Manning Publications Co., [TB16]

Data Collection

René Witte

Introduction

Modeling Users Collaborative Filtering

Introduction Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations Motivation

TF*IDF weighting Term Vector Space Model Summary

Notes and Further Reading

Date	User	Item	
2015-01-24 15:01:29	Allison	Tunisia Sadie dress	
2015-01-26 05:13:58	Christina	Gordon Monk stiletto	
2015-02-18 10:28:37	David	Ravelli aluminum tripod	
2015-03-17 14:29:23	Frank	Nikon digital camera	
2015-03-26 18:11:01	Christina	Georgette blouse	
2015-04-06 21:50:18	David	Canon 24 mm lens	
2015-04-15 10:21:44	Frank	Canon 24 mm lens	
2015-04-15 21:53:25	Brenda	Tunisia Sadie dress	
2015-07-26 08:08:25	Elise	Nikon digital camera	

Copyright 2016 by Manning Publications Co., [TB16]

Fun with Flags Vectors

Vectors

A vector \vec{v} is an element of a vector space. 矢量 \vec{v} 是一个矢量空间的元素。

• For example, $\vec{v} \in \mathbb{R}^n$ with

$$\vec{V} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$

Visualization

We can visualize vectors, e.g., in 2D:

René Witte

Introduction

Modeling Users

Collaborative Filtering

Computing with Words Item Recommendation

Items Related to other

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Vectors of words, users, products, ...

We can represent (users, documents, products) as vectors, e.g., using the count of tags or the weight of words. This is called a <u>vector space model</u>.

Vector operations on entities, e.g., to compute their similarity

Introduction Modeling Users

Collaborative Filtering
Introduction

Computing with Words Item Recommendation

Items Related to other

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Evaluation

Content-based

Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Movies as Vectors

René Witte

Introduction Modeling Users

Collaborative Filtering

Introduction Computing with Words

Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Evaluation
Content-based

Content-based Recommendations

Motivation

TF*IDF weighting
Term Vector Space Model
Summary

Notes and Further Reading

pyright 2016 by Manning Publications Co., [1816]

How do we compute the length of a vector?

- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- · This maps vectors onto the unit sphere ...
- ... since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- As a result, longer and shorter vectors (more/fewer tags) have weights of the same order of magnitude.

Concordia

Introduction
Modeling Users

Collaborative Filtering
Introduction

Computing with Words Item Recommendation

Items Related to other

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting Term Vector Space Model

Summary

Notes and Further Reading

→ Worksheet #5: Tasks 1, 2

How do we formalize vector space similarity?

First cut: (negative) distance between two points

(= distance between the end points of the two vectors)

Computing the similarity

Euclidean distance?

René Witte

Introduction

Modeling Users

Collaborative Filtering Introduction Computing with Words

Item Recommendation

Items Related to other Items

Items of Interest to a User

Belevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Euclidean distance is a bad idea . . .

... because Euclidean distance is large for vectors of different lengths.

Why Euclidian distance is a bad idea

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

虽然查询。中的术语分布和文档。2中的术语分布非常相似,但。和62的欧氏距离很大。

René Witte

Introduction
Modeling Users

Collaborative Filtering

Computing with Words
Item Recommendation
Items Related to other

Items of Interest to a User Relevant Users for an Item

Relevant Users for an Iter Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting Term Vector Space Model

Summary

Notes and Further Reading

From angles to cosines

René Witte

Introduction

Modeling Users

Collaborative Filtering Introduction

Computing with Words Item Recommendation

Items Related to other

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles

Content-based Recommendations

Motivation

Evaluation

TF*IDF weighting
Term Vector Space Model

Summary

Notes and Further Reading

Comparing vectors

- · The following two notions are equivalent.
 - Compare item vectors according to the <u>angle</u> between them, in <u>decreasing order</u>
 - Rank item vectors according to cosine(item1, item2) in increasing order
- Cosine is a monotonically decreasing function of the angle for the interval [0°, 180°]

Cosine

René Witte

Introduction

Modeling Users

Collaborative Filtering

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Content-based Recommendations

Evaluation

Motivation TF*IDF weighting Term Vector Space Model

Summary

Notes and Further

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Computing similarity

• For normalized vectors, the cosine is equivalent to the <u>dot product or scalar</u> product.

- $\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$
 - (if \vec{q} and \vec{d} are length-normalized).

→ Worksheet #5: Task 3

Item Recommendation

René Witte

Introduction

Modeling Users

Collaborative Filtering Introduction

Computing with Words Item Recommendation

Items Related to other

Items of Interest to a User Relevant Users for an Item

Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Simple Tag-based Recommendation

Collaborative tagging gives rise to simple recommender approaches:

- show other items (products, photos, videos, music) that were tagged similar by other users 显示被其他用户标记为类似的其他物品(产品、照片、视频、音乐)。
- exploited in many e-commerce/social networking web sites

Tags Customers Associate with This Product (What's this?) Search Products Tagged with Click on a tag to find related items, discussions, and people. GO tagging (20) social software (7) semantic web (3) >See most metadata (16) findability (6) interaction design (2) popular Tags folksonomy (15) ia (4) See all 28 tags... information social media (4)

Your tags: Add your first tag

architecture (11)

Collaborative Filtering

Finding related content

When multiple users tag the same resource, content can be discovered based on the most frequent tags (example: Last.fm).

Tags

Including Bob Dylan, Johnny Cash and Iron & Wine

Including Bob Dylan, Tom Waits and Elliott Smith

Including The Beatles, Led Zeppelin and Pink Floyd

+ Add Tags

Including Bob Dylan, Jethro Tull and Neil Young

Introduction Modeling Users

Collaborative Filtering

Introduction Computing with Words Item Recommendation

Items Related to other Items Items of Interest to a User Belevant Users for an Item Semantic User Profiles

Content-based Recommendations Motivation

Evaluation

TF*IDF weighting Term Vector Space Model Summary

Notes and Further Reading

Recommendations based on tags

We can now exploit tags for a number of use cases:

- · Recommend items related to other items
- Recommend items based on user's interest
- Find users interested in a new item.

General Approach

- Represent users/items as (normalized) term vectors
- Compute cosine similarity between vectors; i.e., the angle between them (for normalized vectors, this is simply their dot product)

Concordia

Introduction

Modeling Users

Collaborative Filtering Introduction

Computing with Words

Items Related to other

Items
Items of Interest to a User

Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Items related to other items

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction
Computing with Words

Items

Evaluation

Item Recommendation

Items Related to other

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Simple point-to-point recommendation engine

- Create item vectors using raw count
- · Normalize vectors
- · Compute cosine similarity

Result is a similarity matrix

Items of interest to a user

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words
Item Recommendation
Items Related to other

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting
Term Vector Space Model

Term Vector Space N Summary

Notes and Further

Personalization

- Item-to-item is the same for all users
- How can we recommend items for a particular user?

Solution: build user-specific similarity matrix

- · computation of vectors, normalization as before
- this time, we calculate the cosine similarity between a user vector and article vector

→ Worksheet #5: Tasks 4, 5

Finding relevant users for an item

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting
Term Vector Space Model

Term Vector Space N Summary

immary

Notes and Further Reading

Recommending items to users

- New item comes in (blog post, photo, article, product, ...)
- Which users would be interested in it?

Similar to before, compute similarity matrix between metadata of new item and metadata of users.

Cold-Start Problem

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words
Item Recommendation
Items Related to other

Items of Interest to a User

Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Recommendation

Motivation

TF*IDF weighting

Term Vector Space Model

Summary

Notes and Further Reading

General issue in recommender system deployment

- New user ⇒ no user profile for recommendations
- New item ⇒ no user interactions for this item

No general solution...

Some strategies:

- Ask user for preferences during sign-up
- Recommend top-n items (e.g., currently most popular movies/songs/products)

Semantic Vocabularies for User Modeling

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Belevant Users for an Item Semantic User Profiles

Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Semantic User Profiles

Idea: Use vocabularies instead of keywords in the vector representation of a user profile 在用户资料的向量表示中使用词汇表而不是关键词。

Motivation

- Semantic recommendations (remember the "tree" example)
- Open knowledge bases:
 - interoperable between applications
 - controlled by users, not corporations

Introduction

Modeling Users

Collaborative Filtering Introduction

Introduction
Computing with Words

Item Recommendation Items Related to other Items

Items of Interest to a User

Relevant Users for an Item

Semantic User Profiles

Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

bullillary

Notes and Further Reading

Generic user modeling vocabularies

FOAF

- The most popular generic user model offering descriptions for basic user information
- · No comprehensive classes for describing preferences or interests

GUMO

- A generic user model that offers several classes for users' characteristics
- Basic user dimensions like Emotional States, Characteristics and Personality

IntelLEO

- Several ontologies strongly focused on personalization
- Enables describing user and team modelling, preferences, tasks and interests

The \$1m Netflix Prize Competition

NETFLIX

Dank

René Witte

Introduction Modeling Users

COMPLETED

Pact Tact Scare V Improvement Pact Submit Time

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Belevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Netflix Prize

Home Rules Leaderboard Update

Leaderboard

Showing Test Score. Click here to show guiz score

T---- N----

Rank	ream Name	Best lest Score	<u>1 improveme</u>	nt Best Submit Time		
<u>Grand Prize</u> - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos						
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28		
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22		
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40		
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31		
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20		
6	<u>PragmaticTheory</u>	0.8594	9.77	2009-06-24 12:06:56		
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09		
8	<u>Dace</u>	0.8612	9.59	2009-07-24 17:18:43		
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51		
10	<u>BigChaos</u>	0.8623	9.47	2009-04-07 12:33:59		
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07		

General machine learning process

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles

Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting
Term Vector Space Model
Summary

Notes and Further Reading

Performance Evaluation

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction
Computing with Words

Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles

Content-based Recommendations

Motivation

TF*IDF weighting Term Vector Space Model

Summary

Notes and Further Reading

Measuring performance

- Is our fancy model better than giving out random recommendations?
- We need metrics to evaluate and compare the performance of different approaches

Precision and Recall

https://www.jianshu.com/p/54ed63a7f816

The precision provides a measure of the quality of the generated recommendations:

 $precision = \frac{\text{\#relevant system recommendations}}{\text{\#all generated recommendations}}$

The recall indicates how many relevant recommendations were found by a system:

 $recall = \frac{\text{#correctly found recommendations}}{\text{#all relevant recommendations}}$

Generally, there is a trade-off between precision and recall.

→ Worksheet #5: Task 6

Concordia

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles

Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

TF*IDF weighting Term Vector Space Model

Summary

Notes and Further

Precision at cutoff k

- Return a ranked list of recommendations (based on cosine similarity)
- Evaluate only top-k recommendations (e.g., top-10)

$$precision@k = \frac{1}{k} \cdot \sum_{c=1}^{k} rel(c),$$

where rel(c) tells us if item at rank c was relevant (1) or not (0).

Intuitively...

The percentage of correct recommendations in the top-k.

Wait, what happened to Recall?

Well... in this application scenario, we don't really care (there are millions of potentially relevant items on Amazon or movies on Netflix)

→ Worksheet #5: Task 7

Average Precision

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles

Evaluation

Content-based

Recommendations Motivation

TF*IDF weighting
Term Vector Space Model

Summary

Notes and Further Reading

→ Worksheet #5: Task 8

If we recommend N items to a user, where there are at most m relevant items in $1 \dots N$,

$$AP@N = \frac{1}{m} \sum_{k=1}^{N} precision@k \cdot rel(k)$$

again, rel(c) is 1 if the recommendation at rank c is relevant, 0 otherwise

Note

AP "rewards" (gives a higher score to) higher-ranked, correct recommendations

Introduction

Modeling Users

Collaborative Filtering

Introduction
Computing with Words

Item Recommendation
Items Related to other
Items

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles

Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

MAP

- So far, everything was calculated for one user $u \in U$
- But we want to know how well the system works across all users
- · Hence, average the AP for all users:

MAP@N =
$$\frac{1}{|U|} \sum_{u=1}^{|U|} AP@N(u)$$

But wait, there's more...

- Accuracy, Sensitivity, F-measure, . . .
- Non-binary ranked results (i.e., not just correct or wrong, but a Likert-scale):
 Compute the discounted cumulative gain (DCG),

$$DCG_u = rel_1 + \sum_{c=2}^{|C|} \frac{rel_c}{\log_2 c}$$

René Witte

Introduction

Modeling Users

Introduction

Item Recommendation Items Related to other Items

Items of Interest to a User

Content-based

Summary

Notes and Further

Collaborative Filtering Computing with Words

Relevant Users for an Item Semantic User Profiles Evaluation

Recommendations Motivation

TF*IDF weighting Term Vector Space Model

Reading

2 Collaborative Filtering

3 Content-based Recommendations

Motivation TF*IDF weighting Term Vector Space Model Summary

4 Notes and Further Reading

Content-based Recommendations

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction
Computing with Words

Item Recommendation

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model

Summary

Notes and Further Reading

Motivation

- So far, we build our model using vectors of concepts (e.g., tags, movie categories, etc.)
- What if we want to create recommendations based on the content
 - Movie description/summary
 - · Blog post
 - · News article
 - · Research publication
 - .

Approach

Same idea, but now we have to build vectors out of whole documents

- Basic idea of information retrieval (IR)
- Used in Internet search engines

Binary incidence matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
ANTHONY	i	1	0	0	0	1	
BRUTUS	1	1	0	1	0	0	
CAESAR	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0, 1\}^{|V|}$.

[from Introduction to Information Retrieval]

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Evaluation

Content-based

Recommendations Motivation

TF*IDF weighting

Term Vector Space Model

Summary

Count matrix

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
ANTHONY	157	73	0	0	0	1	
BRUTUS	4	157	0	2	0	0	
CAESAR	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

. . .

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Evaluation Content-based

Recommendations Motivation

TF*IDF weighting

Term Vector Space Model Summary

Bag of words model

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model

Summary

- John is quicker than Mary and Mary is quicker than John are represented the same way.
- · This is called a bag of words model.

Term frequency tf

The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.

Frequency in document vs. frequency in collection

- In addition, to term frequency (the frequency of the term in the document) ...
- ... we also want to use the frequency of the term in the collection for weighting and ranking.
- Rare terms are more informative than frequent terms.
 - Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC).
 - A document containing this term is very likely to be relevant.
 - → We want high weights for rare terms like ARACHNOCENTRIC.

Introduction Modeling Users

Modeling Users

Collaborative Filtering Introduction

Introduction Computing with Words

Item Recommendation

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation Content-based

Recommendations Motivation

TF*IDF weighting

Term Vector Space Model Summary

Desired weight for frequent terms

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Belated to other

Items of Interest to a User Belevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further

Weighting scheme

- · Frequent terms are less informative than rare terms.
- Consider a term in the query that is frequent in the collection (e.g., GOOD, INCREASE, LINE).
- A document containing this term is more likely to be relevant than a document that doesn't
- ... but words like GOOD, INCREASE and LINE are not sure indicators of relevance.
- \rightarrow For frequent terms like GOOD, INCREASE, and LINE, we want positive weights . . .
- ... but lower weights than for rare terms.

Document Frequency

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Belevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

TF*IDF weighting

Term Vector Space Model

Summary

Notes and Further Reading

Document Frequency (df)

- · We want high weights for rare terms like ARACHNOCENTRIC.
- We want low (positive) weights for frequent words like GOOD, INCREASE, and LINE.
- We will use document frequency to factor this into computing the matching score.
- The document frequency is the number of documents in the collection that the term occurs in.

idf weight

René Witte

Introduction Modeling Users

Callabaration File

Collaborative Filtering

Introduction

dt是术语的信息量的反向度量。

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

inverse document frequency (idf)

- df_t is the document frequency, the number of documents that t occurs in.
- df_t is an inverse measure of the informativeness of term t.
- We define the idf weight of term *t* as follows:

 $idf_t = log_{10} \frac{N}{df_t}$

(N is the number of documents in the collection.)

- idf_t is a measure of the informativeness of the term.
- $\lceil \log N/\mathrm{df}_t \rceil$ instead of $\lceil N/\mathrm{df}_t \rceil$ to "dampen" the effect of idf
- Note that we use the log transformation for both term frequency and document frequency.

Compute idf_t using the formula: $idf_t = log_{10} \frac{1,000,000}{df_t}$

■此单词只出现在一个document中droduction

Modeling Users

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

Collaborative	Filtering
Introduction	

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Evaluation

Content-based

Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Effect of idf on ranking

- · idf affects the ranking of documents for queries with at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.
- idf has little effect on ranking for one-term queries.

tf-idf weighting

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Belevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

Computing tf-idf

The tf-idf weight of a term is the product of its tf weight and its idf weight:

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

- Best known weighting scheme in information retrieval
- Note: the "-" in tf-idf is a hyphen, not a minus sign!
- Alternative names: tf.idf, tf x idf

Summary: tf-idf

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Belevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

 Assign a tf-idf weight for each term t in each document d: $\mathbf{w}_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$

- The tf-idf weight . . .
 - ...increases with the number of occurrences within a document. (term frequency)
 - ...increases with the rarity of the term in the collection. (inverse document frequency)

→ Worksheet #5: Task 9

Binary incidence matrix

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
ANTHONY	i	1	0	0	0	1	
BRUTUS	1	1	0	1	0	0	
CAESAR	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$. [from Introduction to Information Retrieval]

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Evaluation

Content-based

Recommendations Motivation

TF*IDF weighting

Term Vector Space

Term Vector Space Model

Summary

. . .

P	Con	c	c	,	r	ċ	4	i	a	

Introduction

Modeling Users

Items

Collaborative Filtering Introduction

Computing with Words Item Recommendation Items Related to other

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Evaluation Content-based

Recommendations Motivation

TF*IDF weighting

Term Vector Space Model

Summary

Notes and Further Reading

Anthony Julius The Hamlet Othello Macbeth and Caesar Tempest Cleopatra 73 ANTHONY 157 0 0 0 BRUTUS 4 157 CAESAR 232 227 CALPURNIA 0 10 **CLEOPATRA** 57 0 8 MERCY 0 2 0 WORSER

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

$\textbf{Binary} \rightarrow \textbf{count} \rightarrow \textbf{weight matrix}$

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
ANTHONY	5.25	3.18	0.0	0.0	0.0	0.35	
BRUTUS	1.21	6.10	0.0	1.0	0.0	0.0	
CAESAR	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

. . .

Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Content-based Recommendations

Evaluation

Motivation TF*IDF weighting

Term Vector Space Model

Summary

Introduction Modeling Users

wodeling osers

Collaborative Filtering Introduction

Computing with Words Item Recommendation

Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item

Semantic User Profiles Evaluation

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model

Term Vector Space Mode Summary

Notes and Further

Documents as vectors

- Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to web search engines
- Each vector is very sparse most entries are zero.

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model

Summary

Notes and Further Reading

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- · Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity ≈ negative distance
- Recall: We're doing this because we want to get away from the you're-either-in-or-out, feast-or-famine Boolean model.
- Instead: rank relevant documents higher than nonrelevant documents

回顾一下。我们之所以这么做是因为我们想摆脱非进即退、非快即退的布尔模型。

- 取而代之的是: 将相关文档排在比非相关文档更高的位置。

Cosine similarity between query and document

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{-|V|}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term i in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- This is the cosine similarity of \vec{q} and \vec{d} or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction
Computing with Words

Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Evaluation

Content-based

Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model

Summary

Cosine similarity illustrated

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Relevant Users for an Item Semantic User Profiles

Evaluation

Content-based
Recommendations

Motivation TF*IDF weighting

Term Vector Space Model

Summary

Notes and Further Reading

RICH

Basic Recommender Engine using Vector Space Model

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

orm Vester Cases M

Term Vector Space Model

Summary

Notes and Further Reading

Approach

- Represent all documents (movie descriptions, blog posts, research articles, ...) as a weighted tf-idf vector
- Compute the cosine similarity between the target vector and each document vector
- Rank documents with respect to the target
- Return the top k (e.g., k = 10) to the user
 - 将所有文档(电影描述、博客文章、研究文章......)表示为一个加权的_{lf-idf}向量。
 - 计算目标向量和每个文档向量之间的余弦相似性。
 - 根据目标对文件进行排序
 - 将前k名(如k=10)返回给用户。

- A mathematical model to portray an n-dimensional space
- Entities are described by vectors with n coordinates in a real space \mathbb{R}^n
- Given two vectors, we can compute a similarity coefficient between them
- Cosine of the angle between two vectors reflects their degree of similarity

$$tf = 1 + \log(tf_{t,d}) \tag{1}$$

$$idf = \log \frac{N}{df}$$
 (2)

$$\cos(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{|\nu|} q_i \cdot d_i}{\sqrt{\sum_{i=1}^{|\nu|} q_i^2} \cdot \sqrt{\sum_{i=1}^{|\nu|} d_i^2}}$$
(3)

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User Belevant Users for an Item Semantic User Profiles

Content-based Recommendations Motivation

Evaluation

TF*IDF weighting Term Vector Space Model Summary

CORE (JAVA) SOLR PYLUCENE

Ultra-fast Search Library and Server

Apache Lucene and Solr set the standard for search and indexing performance

Welcome to Apache Lucene

The Apache LuceneTM project develops open-source search software, including:

 Lucene Core, our flagship sub-project, provides Java-based indexing and search technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities.

DOWNLOAD

Apache Lucene 8.4.1

DOWNI OAD

Outline

René Witte

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting

Term Vector Space Model Summary

Notes and Further Reading

1 Introduction

- 2 Collaborative Filtering
- **3** Content-based Recommendations
- 4 Notes and Further Reading

Reading Material

René Witte

Concordia

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Semantic User Profiles Evaluation

Relevant Users for an Item

Content-based Recommendations

Motivation TF*IDF weighting

Term Vector Space Model Summary

Notes and Further

Required

- [Ala09, Chapters 2, 3] (Recommendations)
- [MRS08, Chapter 8] (Evaluation)

Supplemental

• [MRS08, Chapter 6] (Vector Space Model, tf-idf)

References

René Witte

[Ala09] Satnam Alag.

Collective Intelligence in Action.

Manning, 2009.

https://concordiauniversity.on.worldcat.org/oclc/314121652.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.

Introduction to Information Retrieval. Cambridge University Press, 2008.

http://informationretrieval.org.

[TB16] Doug Turnbull and John Berryman.

Relevant Search.

Manning, 2016.

https://concordiauniversity.on.worldcat.org/oclc/954339855.

Introduction

Modeling Users

Collaborative Filtering

Introduction

Computing with Words Item Recommendation Items Related to other Items

Items of Interest to a User

Relevant Users for an Item Semantic User Profiles Evaluation

Content-based Recommendations

Motivation

TF*IDF weighting
Term Vector Space Model

Term Vector Space Mod Summary