Midterm Project Loan Approval Prediction

11th August 2023

Project Goals

To develop a model that will predict the likelihood of loan approval based on customer details such as gender, marital status, education, number of dependents, income, loan amount, credit history and others.

Project Execution Data Collection

Data Preprocessing

EDA

Data Visualization

Hypothesis Testing

Modelling

Getting Started

Data Collection Data - Kaggle prepr

https://www.kaggle. com/datasets/archit sharma01/loan-appr oval-prediction-dat aset

Data preprocessing

Check data info, null values, data types and column names

Describe ()

	count	mean	std	min	25%	50%	75%	max
loan_id	4269.0	2.135000e+03	1.232498e+03	1.0	1068.0	2135.0	3202.0	4269.0
no_of_dependents	4269.0	2.498712e+00	1.695910e+00	0.0	1.0	3.0	4.0	5.0
income_annum	4269.0	5.059124e+06	2.806840e+06	200000.0	2700000.0	5100000.0	7500000.0	9900000.0
loan_amount	4269.0	1.513345e+07	9.043363e+06	300000.0	7700000.0	14500000.0	21500000.0	39500000.0
loan_term	4269.0	1.090045e+01	5.709187e+00	2.0	6.0	10.0	16.0	20.0
cibil_score	4269.0	5.999361e+02	1.724304e+02	300.0	453.0	600.0	748.0	900.0
residential_assets_value	4269.0	7.472617e+06	6.503637e+06	-100000.0	2200000.0	5600000.0	11300000.0	29100000.0
commercial_assets_value	4269.0	4.973155e+06	4.388966e+06	0.0	1300000.0	3700000.0	7600000.0	19400000.0
luxury_assets_value	4269.0	1.512631e+07	9.103754e+06	300000.0	7500000.0	14600000.0	21700000.0	39200000.0
bank_asset_value	4269.0	4.976692e+06	3.250185e+06	0.0	2300000.0	4600000.0	7100000.0	14700000.0

EDA

Shape - 4269 -rows, 13 - columns

Identifying outliers

Visualization using Tableau

Visualization using Tableau

										and the constant and
no_of_dependents	1	0.0073	-0.0034	-0.02	-0.01	0.0074	-0.0015	0.0028	0.011	1.0
income_annum	0.0073		0.93	0.011	-0.023	0.64	0.64	0.93	0.85	- 0.8
loan_amount	-0.0034	0.93		0.0084	-0.017	0.59	0.6	0.86	0.79	
loan_term	-0.02	0.011	0.0084	1	0.0078	0.008	-0.0055	0.012	0.017	- 0.6
cibil_score	-0.01	-0.023	-0.017	0.0078	1	-0.02	-0.0038	-0.029	-0.015	
residential_assets_value	0.0074	0.64	0.59	0.008	-0.02	1	0.41	0.59	0.53	- 0.4
commercial_assets_value	-0.0015	0.64	0.6	-0.0055	-0.0038	0.41	1	0.59	0.55	
luxury_assets_value	0.0028	0.93	0.86	0.012	-0.029	0.59	0.59	1	0.79	- 0.2
bank_asset_value	0.011	0.85	0.79	0.017	-0.015		0.55	0.79	1	- 0.0
	no_of_dependents	income_annum	loan_amount	loan_term	dbil_score	residential_assets_value	commercial_assets_value	luxury_assets_value	bank_asset_value	

EDA

Using heat map to check the correlation between features

Correlation test

Question: does annual income has correlation with loan amount?

```
1 from scipy.stats import pearsonr
      # Convert dataframe into series
   4 loan_amount = df['loan_amount']
   5 income annum = df['income_annum']
   7 # Apply the pearsonr()
   8 corr, = pearsonr(loan amount, income annum)
   9 print('Pearsons correlation: %.3f' % corr)
Pearsons correlation: 0.927
```

Hypothesis Testing

T-Test


```
1  from scipy.stats import ttest_ind
2
3  #define samples
4  approved = df[df['loan_status']=='Approved']
5  rejected = df[df['loan_status']=='Rejected']
6
7  #perform independent two sample t-test
8  ttest_ind(approved['cibil_score'], rejected['cibil_score'])
9  #Ttest_indResult(statistic=78.96236186015597, pvalue=0.)
10

10

10

10

Note:

• p value less than .05 so we reject the null hypothesis of t-test
• The different in the loan_status has related to different of mean values of cibil_score
```

Cibil Score has statistic significantly impact to the loan_status

Hypothesis Testing

• Chi-Squared Test: testing the relationship between two categorical variables

Chi2ContingencyResult(statistic=0.08395754138250573, pvalue=0.7720042291016309, dof=1, expected_freq=array([[1333.91051769, 810.08948231],

[1322.08948231, 802.91051769]]))

Since the pvalue is 0.77 so we can't reject the Null Hypothesis which means that there is a relationship between education and loan_status

Modelling

Multiple Linear Regression – Backward Selection

Dep. Variable:	lo	an_amount	R-squ	uared:	0.86	11	
Model:		OLS	Adj. R-squ	uared:	0.86	10	
Method:	Lea	st Squares	F-sta	tistic:	328	5.	
Date:	Tue, 0	8 Aug 2023	Prob (F-stat	tistic):	0.0	0	
Time:		20:04:29	Log-Likeli	hood:	-7023	1.	
No. Observations:		4269		AIC:	1.405e+0	5	
Df Residuals:		4260		BIC:	1.405e+0	5	
Df Model:		8					
Covariance Type:		nonrobust					
		coef	std err	1	t P> t	[0.025	0.975]
	const	5.792e+04	2.45e+05	0.238	0.813	-4.23e+05	5.39e+05
no_of_depe	ndents	-5.351e+04	3.05e+04	-1.753	0.080	-1.13e+05	6343.373
income_	annum	2.9727	0.063	47.447	0.000	2.850	3.096
loa	n_term	-3513.4551	9069.352	-0.387	0.698	-2.13e+04	1.43e+04
cibil	_score	214.5227	300.325	0.714	0.475	-374.271	803.316
residential_assets	_value	0.0089	0.010	0.865	0.387	-0.011	0.029
commercial_assets	_value	0.0318	0.015	2.073	0.038	0.002	0.062
luxury_assets	_value	-0.0058	0.015	-0.374	0.708	-0.036	0.024
bank_asse	_value	-0.0118	0.030	-0.388	0.698	-0.071	0.048
Omnibus: 2	.588	Durbin-Wat	son: 1.	980			
Prob(Omnibus): 0	.274 J	arque-Bera (JB): 2.	698			
Skew: 0	.003	Prob(JB): 0.	260			
Kurtosis: 3	.123	Cond	No. 1.04e	+08			

Dep. Variable: loan_amount R-squared: 0.862 Model: OLS Adj. R-squared: 0.862 Method: Least Squares F-statistic: 4446. Date: Tue, 08 Aug 2023 Prob (F-statistic): 0.00 Time: 21:26:06 Log-Likelihood: -70205. No. Observations: 4269 AIC: 1.404e+05 Df Residuals: 4262 BIC: 1.405e+05 Df Model:		0	LS Regression	Poculte		_			
Method: Least Squares F-statistic: 4446. Date: Tue, 08 Aug 2023 Prob (F-statistic): 0.00 Time: 21:26:06 Log-Likelihood: -70205. No. Observations: 4269 AIC: 1.404e+05 Df Residuals: 4262 BIC: 1.405e+05 Df Model: 6 Covariance Type: nonrobust const 2.022e+06 3.6e+05 5.620 0.000 1.32e+06 2.73e+06 no_of_dependents -4.883e+04 3.03e+04 -1.610 0.108 -1.08e+05 1.06e+04 income_annum 2.9578 0.024 123.951 0.000 2.911 3.005 loan_term 9140.7209 9171.128 0.997 0.319 -8839.466 2.71e+04 cibil_score -2509.3260 473.235 -5.302 0.000 -3437.113 -1581.539 commercial_assets_value 0.0302 0.015 1.977 0.048 0.000 0.060 loan_status -1.256e+06 1.69e+05	Dep. Variable						0.862		
Date: Tue, 08 Aug 2023 Prob (F-statistic): 0.00 Time: 21:26:06 Log-Likelihood: -70205. No. Observations: 4269 AIC: 1.404e+05 Df Residuals: 4262 BIC: 1.405e+05 Df Model: 6 6 Covariance Type: nonrobust coef std err t P> t [0.025] 0.975] const 2.022e+06 3.6e+05 5.620 0.000 1.32e+06 2.73e+06 no_of_dependents -4.883e+04 3.03e+04 -1.610 0.108 -1.08e+05 1.06e+04 income_annum 2.9578 0.024 123.951 0.000 2.911 3.005 loan_term 9140.7209 9171.128 0.997 0.319 -8839.466 2.71e+04 cibil_score -2509.3260 473.235 -5.302 0.000 -3437.113 -1581.539 commercial_assets_value 0.0302 0.015 1.977 0.048 0.000 0.060 loan_status -1.256e+06 1.69e+05 -7.413 0.000 -1.59e+06 -9.24e+05 Omnibus: 5.003 <t< td=""><td>Mode</td><td>l:</td><td>OLS</td><td>Adj. R-sq</td><td>uared:</td><td></td><td>0.862</td><td></td><td></td></t<>	Mode	l:	OLS	Adj. R-sq	uared:		0.862		
Time: 21:26:06 Log-Likelihood: -70205. No. Observations: 4269 AIC: 1.404e+05 1.404e+05 Df Residuals: 4262 BIC: 1.405e+05 1.405e+05 Df Model: 6 6 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 2.022e+06 3.6e+05 5.620 0.000 1.32e+06 2.73e+06 no_of_dependents -4.883e+04 3.03e+04 -1.610 0.108 -1.08e+05 1.06e+04 income_annum 2.9578 0.024 123.951 0.000 2.911 3.005 loan_term 9140.7209 9171.128 0.997 0.319 -8839.466 2.71e+04 cibil_score -2509.3260 473.235 -5.302 0.000 -3437.113 -1581.539 commercial_assets_value 0.0302 0.015 1.977 0.048 0.000 -0.060									

Interpretation

R-squared and Adjusted R-squared values are close to 0.860, 86%

R-squared values in last model with fewer variables might be preferred due to simplicity and fewer non-significant variables.

'income_annum'
appears to be
statistically
significant and
positively associated
with 'loan_amount'

Both models have similar R-squared values, the last model with fewer variables might be preferred due to simplicity and fewer non-significant variables.

Modelling

Logistics Regression for loan_status

```
Logistic Regression model accuracy (in %): 77.24719101123596
X train:
      loan id no of dependents education self employed income annum
1158
         1159
                                                               5700000
                                                       0
          80
                                                                700000
2441
         2442
                                                       0
                                                               6800000
454
         455
                                                               1800000
870
         871
                                                               4800000
      loan_amount loan_term cibil_score residential_assets_value \
1158
         16900000
                                      656
         1400000
                         14
                                      639
                                                           1900000
         20100000
2441
                                     839
                                                           1900000
454
                                      792
         4700000
                                                           4500000
870
         14700000
                                      356
                                                           7100000
      commercial_assets_value luxury_assets_value bank_asset_value
1158
                      7400000
                                          22000000
                                                            8400000
79
                      700000
                                          2400000
                                                             900000
2441
                                         15600000
                      600000
                                                            7500000
454
                      1200000
                                          4100000
                                                            2200000
870
                      8800000
                                         13400000
                                                            5500000
X test :
      loan_id no_of_dependents education self_employed income_annum \
       0
3780
2967
868
Name: loan_status, dtype: int64
```

Model accuracy 77%

Conclusion

- Produced two models with 86% and 77% accuracy of predicting loan approval status
- Loan term, cibil score have major effects on the approval

Challenges & Future Goals

Challenges

- Trying to optimize models
 - Selecting the "perfect" combination of features
- Using advanced features of Tableau
 - Forecasting: not available since the dataset does not contain temporal data
 - Casting data to correct data types

Future Goals

- Stretch: determining whether the loan can be paid back in time
- Getting a more detailed dataset

Thank you!