## Seminar 8

## Automate push-down (APD)

- 1. Construiti APD care accepta urmatoarele limbaje dupa criteriul stivei vide:
  - a)  $L = \{a^nb^{2n} \mid n \ge 0\}$
  - b)  $L = \{a^n b^m \mid m, n \ge 0\}$
  - c)  $L = \{a^n b^m \mid n >= m >= 0\}$
  - d)  $L = \{a^m b^n \mid n >= m >= 0\}$
  - e)  $L = \{ww^{tilda} \mid w \in \{a,b\}^*, w^{tilda} \text{ este inversul lui } w\}$
  - f)  $L = \{w \mid w \in \{a, b\}^*, nr_a(w) = nr_b(w) \}$
  - g)  $L = \{a^{2n}b^{2n} \mid n \ge 0\}$
  - h)  $L = \{a^n b^n \mid n \ge 0\} \cup \{b^n a^n \mid n \ge 0\}$

  - i)  $L = \{a^nb^n \mid n \ge 0\} \cup \{a^nb2^n \mid n \ge 1\}$ j)  $\{w \mid x \mid w^{tilda} \text{ is a substring of } x, \text{ where } x \in \{a, b\}^*, w \in \{a, b\}^*, |w| \ge 1\}$
- 2. Pentru limbajul de la punctul f, dati o gramatica independenta de context (GIC) ce il genereaza. Construit APD echivalent cu GIC data (aplicand algoritmul de constructie).
- 3. Pentru APD de la punctele e si f, dati APD care accepta acelasi limbaj dupa criteriul starii finale.

## LFTC-SEMINAR 8

Il Construit automatul puch down care accepta vernatourele limbaje dupa viitorial divi vide:

e) L= {www|we{a,63\*, w-oglimated bui w} ex: abb bba eL Limbaj similar regular: L'= {w|we{a,63\*}}



· CRITERIUL STIVE VIDE (rapr. talelore)

| - | Sari | dina | a       | f       | 8      |
|---|------|------|---------|---------|--------|
|   |      | 2    | (2, A2) | (2, 82) | (p,2)  |
| 1 | 2    | A    | (g, AA) | (g,BA)  | (p,A)  |
|   |      | В    | (2,AB)  | (9,BB)  | (p,B)  |
|   |      | 7    | ( -     |         | (p, E) |
|   | P    | A    | (p,E)   | _       |        |
|   |      | В    |         | (p, E)  |        |

(2, a6666a, 2) - (2, 6666a, A2) - (2, 666a, BA2) - (2, 666a, BBAX)

 $\vdash (p, bba, BbAZ) \vdash (p, ba, BAZ) \vdash (p, a, AZ) \vdash (p, \mathcal{E}, \mathcal{E}) \vdash (p, \mathcal{E}, \mathcal{E})$ 

=> abbbba ELE(M)

barroa de intrave s-a gold

· MODIFICAM SA AVEM CRITERIUL STARII FINALE

a,2/A2 a,A/AA a,B/AB

a,A/E e,B/E

3

£,2/2 AlA,3

6, 2/02

E,BIB

6, A/BA 6, B/BB

| عالم المحاصل |      |         |         |       |      |
|--------------|------|---------|---------|-------|------|
| stara        | dina | a       | b       | 3     |      |
|              | 2    | (g, A2) | (2,82)  | (p,2) | M.F. |
| 2            | A    | (2, AA) | (2, BA) | (P,A) | 0    |
| 20           | В    | (2, AB) | (9,33)  | (P,B) |      |
|              | 2    |         | -       | (3,E) |      |
| P            | A    | (3,9)   |         |       | 0    |
|              | B    |         | (3,9)   |       |      |
|              | 2    | 12=17   |         |       |      |
| 1            | A    |         |         |       | 1    |
| 1            | 2    | (0,9)   |         |       |      |

 $(g, abbbba, 2) \mapsto (g, bbbba, A2)$   $\mapsto (g, bbba, BA2) \mapsto (g, bbba, BBA2)$   $\mapsto (p, bba, BBA2) \mapsto (g, ba, BA2)$  $\mapsto (p, a, A2) \mapsto (p, e, 2) \mapsto (f, e, 2)$ 

am ajuns îm staru fimală, dinra mu trib. Să je meapărat goda



ficcara a il scot cu un b, dupa a se termino a-urili mu mo pra interessazi cate b-uri mai sunt



· CRITERUUL STIVE VIDE

· CRITERIOL STARIN FINALE ( &) STIVA VIDA)

a, 2/A2 b, 2/B2 a, A/AA b, A/E a, B/E b, D/BB b, 2/E

6, A, 18 6, A, 18 6, 218

| 3 < 2  |
|--------|
| 5->a56 |
| S→63a  |
| 5 > 55 |
| î. C.  |

|      |       | 1      |                    |                                    |
|------|-------|--------|--------------------|------------------------------------|
| dari | Sliva | a      | e                  | E                                  |
| 0    | S     | -      |                    | (g, E), (g, asb), (g, bsa), (g, s) |
| 1    | Q.    | (2, E) | -                  |                                    |
|      | C     |        | $(2, \mathcal{E})$ |                                    |

| a, 2/A2<br>5, A1/A2A1<br>0, A2/A1A2 |                                                                                                                                             |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| (2)                                 | $\begin{array}{c} \mathcal{E}, 2/2 \\ \mathcal{E}, A_2/A_2 \end{array} \rightarrow \begin{array}{c} \mathcal{E} \\ \mathcal{E} \end{array}$ |

|   | C, A2/A2 |              |        |        |  |
|---|----------|--------------|--------|--------|--|
|   |          | a            | e      | 3      |  |
|   | 2        | (2, (A, 2))  |        | (p,2)  |  |
| 2 | A,       | (2, (A2, A1) |        |        |  |
|   | Az       | (2,(A1,A2))  |        | (chiq) |  |
|   | 2        |              |        | (P, E) |  |
| P | A,       | _            | (AE)   |        |  |
|   | Az       |              | (p, E) |        |  |
|   |          |              |        |        |  |