

MOSFET

500V CoolMOS™ CE Power Transistor

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. CoolMOS™ CE is a price-performance optimized platform enabling to target cost sensitive applications in Consumer and Lighting markets by still meeting highest efficiency standards. The new series provides all benefits of a fast switching Superjunction MOSFET while not sacrificing ease of use and offering the best cost down performance ratio available on the market.

PG-SOT223

Features

- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- Very high commutation ruggedness
- Easy to use/drive
- · Pb-free plating, Halogen free mold compound
- Qualified for standard grade applications

Applications

Adapter, Charger and Lighting

Please note: For MOSFET paralleling the use of ferrite beads on the gate or seperate totem poles is generally recommended.

Table 1 Hog I diretinance I aranicione							
Parameter	Value	Unit					
V _{DS} @ T _{j,max}	550	V					
R _{DS(on),max}	0.8	Ω					
I _D	7.6	A					
$Q_{g,typ}$	12.4	nC					
I _{D,pulse}	15.5	A					
E _{oss} @ 400V	1.46	μJ					

Type / Ordering Code	Package	Marking	Related Links
IPN50R800CE	PG-SOT223	50S800	see Appendix A

Table of Contents

Description	1
Maximum ratings	3
Thermal characteristics	3
Electrical characteristics	4
Electrical characteristics diagrams	6
Test Circuits	0
Package Outlines	1
Appendix A	
Revision History	3
Trademarks	3
Disclaimer	3

IPN50R800CE

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Davamatan	Ol		Value	s		Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	-	-	7.6 4.8	А	T _C = 25°C T _C = 100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	15.5	Α	T _C = 25°C	
Avalanche energy, single pulse	E AS	-	-	83	mJ	I _D = 1.9A; V _{DD} = 50V	
Avalanche energy, repetitive	E AR	-	-	0.13	mJ	$I_D = 1.9A$; $V_{DD} = 50V$	
Avalanche current, repetitive	<i>I</i> _{AR}	_	-	1.9	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	50	V/ns	V _{DS} = 0400V	
Gate source voltage	V _{GS}	-20 -30	-	20 30	V	static; AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	5.0	W	T _C = 25°C	
Operating and storage temperature	T _j , T _{stg}	-40	-	150	°C	-	
Continuous diode forward current	I _S	-	-	1.6	Α	T _C = 25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	15.5	Α	T _C = 25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	15	V/ns	$V_{DS} = 0400V$, $I_{SD} <= I_S$, $T_j = 25$ °C $t_{cond} < 2\mu s$	
Maximum diode commutation speed ³⁾	di _f /dt	-	-	500	A/μs	$V_{DS} = 0400V$, $I_{SD} <= I_S$, $T_j = 25$ °C $t_{cond} < 2\mu s$	

Thermal characteristics 2

Table 3 **Thermal characteristics**

Downwater	Cymphal	Values			l lmi4	Note / Took Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - solder point	R _{thJS}	-	-	23.2	°C/W	-
Thermal resistance, junction - ambient for minimal footprint	R _{thJA}	-	-	160	°C/W	minimal footprint
Thermal resistance, junction - ambient soldered on copper area	R_{thJA}	-	-	75	°C/W	Device on 40mm*40mm*1.5 epoxy PCB FR4 with 6cm² (one layer 70μm thick) copper area for drain connection and cooling. PCB is vertical without blown air.
Soldering temperature, wavesoldering only allowed at leads	T _{sold}	-	-	260	°C	reflow MSL3

 $^{^{1)}}$ DPAK equivalent. Limited by T_{j max}. Maximum duty cycle D=0.5 $^{2)}$ Pulse width t_p limited by T_{j,max} $^{3)}$ V_{DClink}=400V; V_{DS,peak}<V_{(BR)DSS}; identical low side and high side switch with identical $R_{\rm G}$

500V CoolMOS™ CE Power Transistor IPN50R800CE

3 Electrical characteristics

Table 4 Static characteristics

Parameter	Oh a l	Values			11	Nata / Tank Canadition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	500	-	-	V	$V_{\rm GS}$ =0V, $I_{\rm D}$ =1mA	
Gate threshold voltage	V _{GS(th)}	2.50	3	3.50	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 0.13 {\rm mA}$	
Zero gate voltage drain current	I _{DSS}	-	- 10	1	μΑ	V _{DS} =500V, V _{GS} =0V, T _j =25°C V _{DS} =500V, V _{GS} =0V, T _j =150°C	
Gate-source leakage curent	I _{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V	
Drain-source on-state resistance	R _{DS(on)}	-	0.72 1.87	0.80	Ω	V _{GS} =13V, I _D =1.5A, T _j =25°C V _{GS} =13V, I _D =1.5A, T _j =150°C	
Gate resistance	R _G	-	3	-	Ω	f=1 MHz, open drain	

 Table 5
 Dynamic characteristics

Davamatav	Cymahal	Values			1114	Nata / Tank Oam Hilliam	
Parameter	Symbol	Min.	lin. Typ. Max.		Unit	Note / Test Condition	
Input capacitance	Ciss	-	280	-	pF	V _{GS} =0V, V _{DS} =100V, f=1MHz	
Output capacitance	Coss	-	23	-	pF	V _{GS} =0V, V _{DS} =100V, f=1MHz	
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	18	-	pF	V _{GS} =0V, V _{DS} =0400V	
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	67	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0400V	
Turn-on delay time	t _{d(on)}	-	6.2	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =1.9A, $R_{\rm G}$ =5.3 Ω	
Rise time	e $t_{\rm r}$ - $t_{\rm r}$		$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =1.9A, $R_{\rm G}$ =5.3 Ω				
Turn-off delay time	$t_{ m d(off)}$	-	26	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =1.9A, $R_{\rm G}$ =5.3 Ω	
Fall time	t_{f}	-	15.9	-	ns	V_{DD} =400V, V_{GS} =13V, I_{D} =1.9A, R_{G} =5.3 Ω	

Table 6 Gate charge characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition	
raidilletei	Symbol	Min.	Тур.	Max.	Ullit	Note / Test Condition	
Gate to source charge	Q _{gs}	-	1.5	-	nC	V_{DD} =400V, I_{D} =1.9A, V_{GS} =0 to 10V	
Gate to drain charge	Q_{gd}	-	6.8	-	nC	V_{DD} =400V, I_{D} =1.9A, V_{GS} =0 to 10V	
Gate charge total	Q g	-	12.4	-	nC	V_{DD} =400V, I_{D} =1.9A, V_{GS} =0 to 10V	
Gate plateau voltage	V _{plateau}	-	5.3	_	V	V_{DD} =400V, I_{D} =1.9A, V_{GS} =0 to 10V	

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

IPN50R800CE

Table 7 Reverse diode characteristics

Doromotor	Cymbal	Values			11	Note / Test Condition	
Parameter	Symbol	Min. Typ.		Max.	Unit	Note / Test Condition	
Diode forward voltage	V _{SD}	-	0.83	-	V	V _{GS} =0V, I _F =1.9A, T _f =25°C	
Reverse recovery time	t _{rr}	-	158	-	ns	V _R =400V, I _F =1.9A, d <i>i</i> _F /d <i>t</i> =100A/μs	
Reverse recovery charge	Qrr	-	0.84	-	μC	V _R =400V, I _F =1.9A, d <i>i</i> _F /d <i>t</i> =100A/μs	
Peak reverse recovery current	I _{rrm}	-	9.6	-	Α	V _R =400V, I _F =1.9A, d <i>i</i> _F /d <i>t</i> =100A/μs	

4 Electrical characteristics diagrams

IPN50R800CE

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

6 Package Outlines

NUTES:	
1. ALL DIMENSIONS REFER TO STANDARD TO-261	JEDEC

DIM	MILLI	METERS	INCI	HES	
DIW	MIN	MAX	MIN	MAX	
Α	1.52	1.80	0.060	0.071	
A1	-	0.10	-	0.004	
A2	1,50	1.70	0.059	0.067	
b	0.60	0.80	0.024	0.031	
b2	2.95	3.10	0.116	0.122	
С	0.24	0.32	0.009	0.013	
D	6.30	6.70	0.248	0.264	
E	6.70	7.30	0.264	0.287	
E1	3.30	3.70	0.130	0.146	
е	2.3 E	BASIC	0.091	BASIC	
e1	4.6 E	BASIC	0.181	BASIC	
L	0.75	1.10	0.030 0		
N		3	3	3	
0	0°	10°	0°	10°	

Figure 1 Outline PG-SOT223, dimensions in mm/inches

500V CoolMOS™ CE Power Transistor IPN50R800CE

7 Appendix A

Table 11 Related Links

• IFX CoolMOS Webpage: www.infineon.com

• IFX Design tools: www.infineon.com

IPN50R800CE

Revision History

IPN50R800CE

Revision: 2016-06-13, Rev. 2.1

Previous Revision

Revision	Date	Subjects (major changes since last revision)
2.0	2016-04-29	Release of final version
2.1	2016-06-13	Updated ID ratings

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSiC™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.