Software Engineering Lab 10

Name : Dhairya Bhanavadia

ID: 202101436

Group: 5

Q1)

Equivalence Partitioning:

Input Data	Expected Outcome
day = 15, month = 6, year = 2000	day = 14, month = 6, year = 2000
day = 1, month = 1, year = 1990	day = 31, month = 12, year = 1989
day = 31, month = 12, year = 2015	day = 30, month = 12, year = 2015
day = 25, month = 10, year = 2000	day = 24, month = 10, year = 2000
day = 200, month = 12, year = 2015	An error message
day = 15, month = 20, year = 2000	An error message
day = 15, month = 6, year = 1800	An error message
day = 15, month = 6, year = 2030	An error message

Boundary Value Analysis:

Input Data	Expected Outcome
day = 1, month = 6, year = 2000	day = 31, month = 5, year = 2000
day = 31, month = 6, year = 2000	day = 30, month = 6, year = 2000
day = 1, month = 1, year = 1900	day = 1, month = 1, year = 1899
day = 31, month = 12, year = 2015	day = 30, month = 12, year = 2015
day = 0, month = 13, year = 2001	An error message
day = 15, month = 6, year = 2016	An error message
day = 15, month = 6, year = 1899	An error message

Q2)

a) Identify the equivalence classes for the system:

- 1. Equilateral Triangle: A = B = C
- 2. Isosceles Triangle: $A = B \neq C$ or $A = C \neq B$ or $B = C \neq A$
- 3. Scalene Triangle: $A \neq B \neq C$
- 4. Right-Angled Triangle: $A^2 + B^2 = C^2$ (Pythagorean Theorem)
- 5. Non-triangle (A, B, or C is invalid): $A + B \le C$ or $A + C \le B$ or $B + C \le A$
- 6. Non-positive input: A, B, or C is less than or equal to 0

b) Identify test cases to cover the identified equivalence classes:

- 1. Equilateral Triangle:
 - -(A = 3, B = 3, C = 3)
 - (A = 5.5, B = 5.5, C = 5.5)

- 2. Isosceles Triangle:
 - -(A = 4, B = 4, C = 5)
 - -(A = 5, B = 6, C = 5)
- 3. Scalene Triangle:
 - -(A = 3, B = 4, C = 5)
 - -(A = 7.5, B = 6, C = 8)
- 4. Right-Angled Triangle:
 - -(A = 3, B = 4, C = 5)
 - -(A = 5, B = 12, C = 13)
- 5. Non-triangle (A, B, or C is invalid):
 - (A = 1, B = 2, C = 3) # Does not form a triangle
 - (A = 6, B = 6, C = 12) # Does not form a triangle
- 6. Non-positive input:
 - -(A = -2, B = 3, C = 4)
 - -(A = 2, B = 0, C = 3)
 - -(A = 4, B = 5, C = -1)
- c) For the boundary condition A + B > C case (scalene triangle):
 - -(A = 1, B = 1, C = 2) # A + B = 2 (Boundary)
 - (A = 1, B = 2, C = 3) # A + B = 3 (Inside the boundary)
 - -(A = 2, B = 2, C = 4) # A + B = 4 (Outside the boundary)
- d) For the boundary condition A = C case (isosceles triangle):
 - (A = 3, B = 4, C = 3) # A = C (Boundary)
 - (A = 4, B = 4, C = 5) # A = C (Inside the boundary)
 - (A = 2, B = 5, C = 2) # A = C (Outside the boundary)
- e) For the boundary condition A = B = C case (equilateral triangle):
 - (A = 5, B = 5, C = 5) # A = B = C (Boundary)
 - (A = 6, B = 6, C = 6) # A = B = C (Inside the boundary)
 - (A = 4, B = 4, C = 4.1) # A = B = C (Outside the boundary)
- f) For the boundary condition $A^2 + B^2 = C^2$ case (right-angle triangle):

- $-(A = 3, B = 4, C = 5) \# A^2 + B^2 = C^2 (Boundary)$
- $(A = 5, B = 12, C = 13) # A^2 + B^2 = C^2 (Inside the boundary)$
- $(A = 7, B = 24, C = 25) \# A^2 + B^2 = C^2$ (Outside the boundary)

g) For the non-triangle case, identify test cases to explore the boundary:

- (A = 1, B = 1, C = 1) # Does not form a triangle (Boundary)
- (A = 1, B = 2, C = 5) # Does not form a triangle (Inside the boundary)
- (A = 3, B = 4, C = 8) # Does not form a triangle (Outside the boundary)

h) For non-positive input, identify test points:

- (A = -1, B = 2, C = 3)# Non-positive A
- (A = 4, B = 0, C = 5) # Non-positive B
- (A = 6, B = 7, C = -2) # Non-positive C