

Final Project: GNN for Multiclass Enzyme Classification

Iswara Jay Junior 23.05.2025

Outline

- 1. Motivation
- 2. Objectives
- 3. Methods
- 4. Conclusion & Recommendations

Motivation

EuroTe Engineering University

Enzyme engineering

In general screening 1 AA modification in 1 position

= screening ~ 260.000 gene variants

Modify enzyme structures (primary) via **mutagenesis** to get the **best fitness** in its sequence space.

Scherer (2021) [DOI]

Motivation

EuroTe Engineering University

What tasks do Neural Networks can achieve in computational enzyme design?

Published model:

- TopEC (~800 EC)
- CLEAN-CONTACT (~5200 EC)
- DeepECTransformer (~5300 EC)

Objectives

Model Objective

Formulate a GNN-based architecture for a **multiclass graph-level classification** of enzyme tertiary structures dataset (ENZYMES from TUDataset)

Success Criteria

- 1. Overall accuracy (test) ≥ 0.75
- 2. Class wise F1-score > 0.7
- 3. Model max. training memory ≤ 100 MB

Dataset ENZYMES from TUDataset

Description

Public graph dataset of **tertiary enzyme structures. Labels encode** the first number to one of the 6 EC top-level classes (EC 1.X.X.X - 6.X.X.X)

Properties

- Static graph $G = (V, \mathcal{E})$, $\mathbf{n} = 600$
- 21 Node features
 - 3 one-hot encoding for secondary structures
 - 18 physico-chemical properties of secondary structures
- Edge = neighbors along the AA sequence or one of three nearest neighbors in space
- No edge and graph attributes

EC 2.X.X.X Enzyme (Transferase)

EuroTe Engineering University

Model Screening

Objective: Get the most optimal algorithm for a base model layout

Method: Try out different algorithm for static graph (5 runs)

- 1. (spectral) GCN
- 2. (spatial) GraphSAGE
- 3. (spatial) GATv2
- 4. (spatial) GIN

Base layout

Max. training memory

GraphSAGE: 38.5 MB

GATv2: 144.6 MB

Design Space Optimization (GraphSAGE)

Objective: Get the most optimal model design by modifying design space.

Method: Sequential tuning, 5-run experiment, 100 epochs

 (1^{st}) Dropout $\in \{0.0, 0.2, 0.3, 0.5\}$

(2nd) Normalization ∈ {None, Batch, Layer, Graph}

(3rd) Jumping Knowledge ∈ {None, cat, max}

You, 2021 [DOI]

Design Space Optimization (GraphSAGE)

Design Space Optimization (GraphSAGE)

Xu, 2018 [DOI]

Jumping knowledge

May be beneficial for:

- Oversmoothing for deep GNN
- Vanishing gradient for deep GNN
- Leveraging close neighbor and distant representation

Performance-Memory Tradeoff (GraphSAGE)

Objective: Get the most optimal model design by modifying the number of parameters. (GNN hidden channels, layers)

Conclusion

Best Model

GraphSAGE + MLP head

Utilizes dropout, normalization, and jumping knowledge.

Test set performance (200 epochs)

Class	f1-score
EC 1.X.X.X	0.706
EC 2.X.X.X	0.823
EC 3.X.X.X	0.800
EC 4.X.X.X	0.667
EC 5.X.X.X	0.818
EC 6.X.X.X	0.833
accuracy	0.783

Success Criteria

- 1. Overall accuracy (test) ≥ 0.75
- 2. Class wise F1-score > 0.7
- 3. Model max. memory allocation ≤ 100 MB

Recommendations

- 1. Enrich the dataset to potentially develop deeper classification task
 - Geometric graph
 - More samples
 - More complex graph
- 2. Feature engineering
- 3. Benchmark more algorithm/architecture
- 4. More complex learning methods (self-supervised, ensemble, ...)