(5) Int.Cl.

1

62日本分類

日本国特許庁

⑪特許出願公告

昭47—31773

B 60 k F 16 h

D 031 80 80 D 032 Α 54 80 Α 02

許

(4)公告 昭和47年(1972)8月15日

発明の数 4

(全19頁)

1

60差動型無段電動変速機

願 昭43-37230 ②)特

昭43(1968)5月31日 220出 顖

者 毛利陽一 明 72)発

横浜市鶴見区馬場町402

日産自動車株式会社 顖 勿出 人 横浜市神奈川区宝町2

代 理 人 弁理士 清瀬三郎 外1名

図面の簡単な説明

第1図は本発明の一実施例の骨子図、第2~4 図はその特性図で、第2図は出力軸回転速度に対 する各部の回転速度図、第3図はトルク特性図、 第4図は動力特性図である。第5~8図はそれぞ 15 れ変型実施例を示し、第9図は第7, 8図の速度 線図である。第10、11図も変型実施例を示し、 第12図は第10図の速度線図である。第13~ 20図はモーターを2速減速した場合の説明図で、 第13図はその場合のトルク特性図、第14~ 20図はそれぞれ変型実施例を示す。第21~ 27図はエンジンに対してオーバードライブので きる型式の説明図で、第21,22図はその実施例、 第23図はその速度線図、第24図は車速に対す るトルク関係図、第25,26図は他の実施例、第25力軸より高速回転を行なうので発電機は小型化す 27図は他のトルク特性図例を示す。第28,29 図は本発明に適用され得る内歯車のない遊星歯車 組の2例を示し、各図のイは正面図、口は側面図 であり、第30~32図はその実施例を示す。尚 第33図は本発明の電気収受関係図例を示すもの 30 低速走行の時にモーターを高速で回し、大きい出 である。

発明の詳細な説明

本発明は差動型無段電動変速機であつて元来電 気式の自動変速機としての考え方から出発してい るが適当な蓄電池を用いることによりハイブリツ 35 ド式電気自動車として利用出来る。しかも動力伝 達は分割方式を用い、1 つの経路は電気的に発電

2

機、電気モーターによりエネルギーの転換を行な うが、他の1つの経路は機械的に直接エネルギー 伝達を行なうのでほとんど損失がない。しかも普 通の走行では主に機械的伝達のみを用いることも 5 可能である。これを普通のガソリン自動車に比較 すると、エンジンは小容量のものを用いスロツト 、ルバルプは常時全開のまま用いるので排気による 大気の汚染は少ない。全出力はエンジン出力とモ ーター出力の和になるので、モーター出力のみに 10 よる普通のハイブリット方式より小さいモーター ですむ。エンジン出力に対し電気的出力を併用す るのは発進、登坂、最高速のみで普通の平地**走行** には電気を使わないので蓄電池容量は小型ですむ 等の利点がある。

本発明の第1の実施例に就き述べるとエンジン よりの入力は単純遊星歯車のキヤリアーに加えら れてサンギヤーとリングギヤーに2分される。サ ンギヤーのエネルギーは発電機のローターを回し 発電作用を起す。リングギヤーは直接に出力軸へ 20 つながるので機械的に車両を動かす動力を伝える。

しかしこのトルクは発進及び登坂には不充分な ので、発電されたエネルギーが出力軸に直結され たモーターに加えられて大きなトルクになつて再 生される。車両が止つている時はサンギヤーは入 ることができる。モーターから出力軸に至る経路 も減速することによつてモーターの高速化が可能 でありこれも一層小型にできる。

さらにこれを2速に変速することにより車両が 力を得ることができる。又エンジンより出力軸に 至る間をオーバードライブの状況にして、エンジ ン側を出力軸より低速回転として走行抵抗に合つ たエンジン出力を得ることができる。

第1図は本発明実施例の骨子図を示す。エンジ ンから入力軸Iに伝わつた動力Pは遊星歯車のキ ヤリア C,に 伝わり 2 分割される。 遊星歯車のサン

ギヤーSiは発電機のローターGRを回し、リング ギヤーR₁はフイールドGFを回す。発電機のフィ ールドGFは中間軸(出力軸)O」に直結しこれと 同時に回転する。入力軸Iと中間軸O₁及び発電機 た通りである。

中間軸OıにはモーターのローターMRが取付け られる。モーターのフィールドMFは車体Bに固 定され、ローターMRは出力軸O₂に結合される。 コントローラCTは発電機のフィールド電流を制 10 を示す。 御して発電機の吸収トルクを加減してフィールド とローターの回転速度差を一定に保ちつつ発電さ*

*せ、その電流を蓄電池Eへ送る。そのために入力 軸 I (又はエンジン)と出力軸 O₂にはガバナG,及 びGoを備える。アクセルレーターペダルAにより コントローラーCTに指示をあたえ、出力軸回転 のローターGRの回転速度の関係は第2図に示し 5 速度を比較してモーターの駆動トルクを制御する。 アクセルを踏めばモーターの発生トルクが増大し て車輛を加速し、放した時はモーターをも発電機 として電力を回収して制動することが出来る。尚 CLは直結クラツチ、PBはパーキングブレーキ

> 尚コントローラーCT及び各部電気の収受関係 図を第33図に例示し、又下表に例記した。

	転	条		l	ン	ンジ	・ン	ガバ	ナー	発 電	横	, ···	ンテ	テ充電量	モーター		出力軸 ガバナー信号		アクセル ペイル信号		
運			件		rp	pm	l	信	号	rpm	作用	1	- 用	信号	rpm		対発 電機	対モー ター	対発 電機	対モ ター	摘 要
アノ	(ド	りこ	ノグ	2	0	0	0	0	発	6000	発	3	Ī	充	0	停止		速		速	
中			·速 ——	4	0	0	0	差	電	8000				電	2000	1 .		度		度	
高			速	6	0	0	0	維持	機	0000	電		電		4000	1 .		維		指	
最	7	高	速	6	0	0	0			6000	直	放	電		6000	カ	直結指示	持		示	直接クラツ チ結合
発	電	制	御	4	0	0	0			4000	結	充法	文電		4000	発電~ モーター			直結 指示		直接クラツ チ結合

30

上記に於いてその機能説明を下記する。

(I) 回転速度

遊星歯車のキヤリア、リングギヤー及びサンギ ヤーの各回転速度をNi, No及びNoとすると、

 $(\ell+1)$ $N_i = \ell N_0 + N_s$

(ℓはリングギヤー歯数のサンギヤー歯数に 対する比を表わす。)

となる。第2図はこれ等の回転速度がNoと共に どの様に変化するかを示した。図に於いてaー b間は発電機のフィールドとローターの回転差 $N_s = N_s - N_o$ を6000rpm に保ち、 $\ell = 2.0$ とした時を示す。この時ローターはf-gの変 化を示し、入力軸はd-eの変化を示す。ここ でエンジンは最高速度に達するのでこれより高 速側でエンジンの回転速度を一定に保つために 発電機のローターの回転速度を g - c の様に変 化させると入力軸は図のe-cに示す様に一定

(II) トルク及び動力のNoに対する変化を第3図及

び第4図に示す。第3図の縦軸は入力軸トルク Tiに対する各トルクの比を示す。入力軸より入 つたトルクは遊星歯車でリングギヤートルク T. と発電機ロータトルクTgに2分される。この時 $TR/TG=\ell$ $TR+TG=T_i$ であるので

$$T R = \frac{\ell}{\ell + 1} T_i$$

$$T G = \frac{1}{\ell + 1} T_i \qquad \geq \zeta \delta.$$

発電機ではTcはローターよりフィールドに引 張りトルクとなつて伝わるので中間軸O、にはTR +TG=T,なるトルクが発生する。即ち入力軸 から得た動力NoTR、サンギヤーにはNoTcだ け伝わる。リングギヤーに伝わつた動力はそのま **40** ま中間軸 O₁に伝わつた動力は N C T C だけ発電 エネルギとなり、残りの

 $(NS-NG)TG (=N_aTG)$ は機械的に間中軸へ伝達されるので中間軸のト ルクはNoTRと加わつてNoTiなる。これは第

3 図及び第4 図の a - b - c で表わされる。 モータートルクは第3図のa-h-f-u-c

となるので全出力はo-h-f-u-pになる。 この時の動力は第4図において全出力pーuに 対してモーター出力はcluでありエンジン出 5 力はp-cとなる。もし動力公割を用いない時 はモーター、エンジン共にpーuの出力が必要 なわけである。発電機で電力に転換されたエネ ルギは第4図でh-d-e-c-に示される。 このうちモーターで直接再生されうるものは h 10 ーi-e-cであり、そのトルクは第3図の ā ーhーiーeーcとなる。曲線iーeーcは充 放電の平衡を保つ線で、走行抵抗がこの線より 下の時は充電され、上の時は放電される。

(III) 発電制御

自動車が平地走行を行なつている時の抵抗を第 3図のj-k-u線にあるとするとj-k間は そのエネルギーはエンジンのみで充分供給出来 る。kーl間はこれに発電機のエネルギを加え ただけで充分である。蓄電池のエネルギを放出 20 本装置の物徴をまとめると下記の通りである。 するのは l-u間だけであるが、この区間は車速 120km/h以上であり、普通の走行では余り 使われない。この放電域の使われるのはこの様 な特殊な高速又は登坂、加速時のみであるので 方が長くなるのでこれを制限する必要がある。 その時には蓄電池の充電状況に応じてエンジン の制御回転速度を設定し、例えば第2図のm点 点に達すればそれ以降はm+n線に沿つて制御 することも可能である。この時は発電機のロー 30 夕回転迭度は s - n に沿つて制御される。又制 御装置を簡単にするためにはエンジン回転速度 はm-t、発電機ロータはs-tに沿うように 制御しても差支えない。その時はエンジンの最 電機ローターはgーbに沿つて制御されること になるであろう。この制御は直結クラツチCL を電磁的に作用させるのが便利である。

(IV) 電力回収

これはエンジンのスロツトルバルブを閉めない 40 2等の遊星歯車組を示す。 のでエンジンブレーキを利用出来ない。しかしモ ーターに発電機能をもたせることによつて電気 ブレーキを用いることが出来る。又第4図から、 もわかるように低速においては機械伝達動力だ

けでも走行抵抗より大きいので速度制御のため にもモーターによる電気ブレーキが必要となる。

(V) その他

低速の時はエンジンを用いなくてもモーターだ けで充分に走行出来る。もしエンジンのスター ターモーターが利かないか、無い時にはモータ 一走行を行なつてその後に発電機に電流を流し てエンジンを始動することも出来る。

後退時はモーターのみで走つても良いので逆転 歯車は不要である。

車両を止める時はフートプレーキと電気ブレー キを併用すればモーターの制動力を出力軸の回 転速度に関連ずけて制御出来るため高速走行時 のスキツド防止に役立ち得る。この装置のつい た車両は停車中にエンジンより入力トルクを受 *15* けクリープする心配があるのでパーキングブレ ーキを用い常時は機械的にこれがロツクして発 進に際して自動明に解除する方法を用いると良 619

- (1) 動力分割式であるので損失が少なく効率が良
- (2) 無段変速であるので変速ショツクの心配がな
- これを使用する時間は比較的短かく充電時間の 25(3) 電気系統には一部の動力しか伝わらないので 発電機、モーターが小さい。
 - (4) 比較的小さいエンジンで大きい駆動力が得ら れる。
 - (5) 適当な蓄電池を用いると短時間は電気のみで 動く。
 - (6) 低速時でもエンジンのスロツトルバルブは閉 めないので排気による大気の汚染は少ない。
 - (7) 電気制動によるエネルギーの一部回収あるい はスキツド防止が出来る。
- 高速度制御は e 点よりエンジンは e ー b に、発 35 (8) 蓄電池の状況に応じてエンジンの常用回転速 度の制御を行なつて充電の調整が出来る。

尚第1図実施例の変型配置例として第5~12図 を掲げる。添加符号は第1図のそれに対応するも のである。尚追加符号として ℓ_1 、 ℓ_2 等は第1、第

第5図は寸法の大きいモーターをエンジンに近 く置くので配置が良い。

第6図は游星歯車を発電機の後部に配置するの でそれに対する潤滑油の供給が容易で、かつ油の

8

温度を下げ得る。

第7図では発電機は入力軸 I に対して増速され 出力軸O2はモーターに対して減速される。第8図 の如く発電機を前置すればフラツシュの配置も都 合が良く、発電機とモーターを分離してプロペラ 5 $R_2=3.0$, $R_1/R_2=3.0$ となる。 軸でつなぐこともできる。

第9図は ℓ_1 =3, ℓ_2 =2とした時の第7、8図 の速度線図であり(N_i max = 5000 rpm, N。 max = 15000 rpm とした) 、各縦線は 各状態における歯車の速度関係が一直線上にある ことを示す。

第1 0図はモーターの回転方向は反対になるが モーターの減速比を小さくすることができる。

C₂, S₃を用いるとモーターは正方向の回転で減速 比は小さくなる。

第12図は ℓ_1 =3, ℓ_2 =2.5とした時の第10 図の速度線図である(発電機とモーターの最髙回 転速度が一致する)。

上記各実施例では急坂で始動する様な場合には 充分な力がでない心配がある。その対策としては モーターから出力軸に至る動力伝達経路を2速減 装置とし、発進及び登坂には低速域を用い、平地 走行には高速域を用いると良い。

第13図はこの場合は性能曲線でohfupは 高速域、Ohfupは低速域の性能曲線を示す。 トルクの大きさαhはcuの3倍であるが減速比 2.5と仮定してあるので a h は c u の 7.5倍で o hはpu の3倍となる。p点の車速を150km/h と仮定するとp点は60km/hンなる。

このような性能をもつ減速歯車付のモーターを もつ配列は色々ある。第14図に示す実施例は2 つの単純遊星歯車を直列したものである。モータ ーから出力軸0₂に至る伝動経路は低速及び後退の 35 合も点線の位置にワンウエークラツチCOを用い 時はハイクラッチCHを開放し、ローブレーキLB を結合して第3遊星歯車組ℓ3のリングギヤーを固 定する。低速ではモーターを正転し、後退では逆 転する。高速ではローブレーキLBを開放しハイ クラツチCHを結合する。今仮に第2遊星歯車組 40 ℓ &と第3遊星歯車組ℓ ぬの寸法を同じとし、両者の リングギヤーのピツチ円半径がサンギヤーのピッ チ円半径のℓ倍であるとすると各速域に於ける出 力軸のモーターのローターに対する域速比は

低速: $R_1 = (\ell + 1)^2$ 高速: R₂=(ℓ+1)

 $\therefore R_1 / R_2 = (\ell + 1)$ となる。

例えば l = 2.0であるとすると、R₁= 9.0.

この図では発電機GFとモーターMRの間はプロ ペラ軸Pで継いである。それは発電機をエンジン と一体にし、モーターはこれと分離して後車軸に 近く配置すること で車両の重量分布を改善するの それぞれの歯車の回転速度を示す関数尺で傾線は 10 に役立たせることができる。第15~17図は他 の減速歯車組の配列を示す。この3つの例は何れ もプロペラ軸Pは第2遊星歯車組ℓ2のリングギヤ - 、第3遊星歯車ℓ。のキヤリアと結合し出力軸に 接続する。又第2遊星歯車組のサンギヤーと第3 第11図の如くダブルピニオン遊星歯車組R₂, 15 遊星歯車組のリングギヤーは結合し、ハイブレー キHBと接続する。第2遊星歯車の組キャリアは ローブレーキLBに接続し、第3遊星歯車組のサ ンギヤーはモーターのロータMRに接続する。車 両が低速又は後退運動をする時はハイブレーキH B 20 を開放してローブレーキLBを結合して第2遊星 歯車のキヤリアを固定する。車両を高速で前進さ せる時はローブレーキLBを開放し、ハイブレー キHBを結合して第3遊星歯車組のリングギヤー を固定する。この時は第2遊星歯車組のキャリア 25 は低速で生転するのでローブレーキと並列に図の 点線で示す様な一方向クラツチCOを用い、第2 遊星歯車のキヤリアは正転を許すが逆方向にロッ クされる様にすると低速前進では何れのブレーキ も固定せずに開放しても第2遊星歯車は反力を受 けて逆転しようとするのを止められてローブレー 30キを作用させたと同じ条件になつて出力軸は低速 前進する。高速になる時はハイブレーキを作用さ せると直ちに高速状態となり低速から高速に移る 時の変速ショックを防止できる。 (第14図の場 同様にできる)。

> これ等の歯車組のリングギヤーのサンギヤーに 対する歯数比を第2遊星歯車組ではℓ2、第3遊星 歯車組ではℓ。とすると、各減速比は

低速: $R_1 = \ell_3 (\ell_3 + 1) + 1$

高速: R₂= ℓ₃+1

 $\therefore R_{1}/R_{2} = (\ell_{2}\ell_{3} + \ell_{5} + 1) / (\ell_{3} + 1)$ 例として $\ell_2 = \ell_3 = 2.4$ と仮定すると $R_1 = 9.16$ 、 $R_2 = 3.4$, $R_1 / R_2 = 2.7$ ϵ_0

第18~20図まではモーターを車両の最後部に 配置し減速歯列とモーターの中間にハイポイドギ ヤーHPG、HCGを用いて後車軸RSを回転さ せる場合を示す。減速歯車列の配列はそれぞれ第 であるが、出力軸O2は第3遊星歯車組のキヤリア に対しプロペラ軸とは反対側に取りつけられてい る点が相違している。これ等の図はエンジンより の入力軸、発電機その他は省略してあるがその機 中空軸となり、その中にはモーターよりの伝導軸 があつて後方もりモーターのトルクを第3遊星歯 車組のサンギヤーに伝える。出力軸にはハイポイ ドピニオルギヤーHPGを取りつけ、これに嚙み 合うクラウンギャーHCGに動力を伝え後車軸R 15 平 地における走行抵抗をikℓとするとその線と Sを回転させる。第1~15図の実施例では第3 図に示す横に走行抵抗が機械的伝達トルクと平衡 を保つた点における出力軸の回転速度は4.000 rpmになり、これを車速に直すとほぼ100km/h 行には早すぎるので市内では常にその余裕馬力は 発電に消費しなければならないので発電が過剰に なる心配がある。その1つの対策はエンジンを比 較的小さくしてモーターの負担する馬力を大きく することである。他の一つの対策はエンジンに対 し出力軸をオーバードライブの状況にして発進、 25 になるとオーバードライブプレーキを解除して平 登坂、最高速走行の時はエンジン出力を充分に利 用し、市内走行の時は出力軸よりもエンジン回転 速度を低くしてエンジンの発生馬力を切限してそ の出力のみをもつて走行抵抗と平衡を保つ方法で 30 ものも可能であるが、これ等の図を比較すれば容 ある。以下その内容について説明を行なう。第 21図はその基本型となるもので、第1図に対し 遊星歯車組と発電機を反対配置とし、発電機のロ ータGRをオーバードライブプレーキOBによつ て停止する時はエンジンに対し出力軸はオーバー 35 た歯車例も可能であることは容易に理解できる ドライブの関係になる。第22図はさらにモータ 一側のロータより出力軸O₂に対して減速して伝導 するようにし、モーターを髙速軽量化するもので モーターの作用は第8図と同じである。第9, 10図の配置も可能であるがその作用も同じであ 40 及び一点鎖線は第13図に示す低速域と高速域 るので説明は省略する。この両者における出力軸 回転速度に対する各メンバーの回転速度の関係を 第23図に示す。点線はオーバードライブにしな

い時のサンギヤーの回転速度N,とキヤリアの回転

速度N_iであるが、オーバードライブにするために プレーキを作用させるとサンギヤーは止まり N. dに 示す様になる。さらに入力軸につながるキャリア の回転速度はNibとなり、出力軸よりは低い速度で 15~17図と同様であり、各歯車の作動も同じ 5 回転する。これ等のトルクの関係はオーバードラ イブにしない時は第3図と同じであるが、オーバ ードライブにした時は第24図に示した様に機械 的伝達トルクは減少する。モータートルクはその 上に加えられるが全体としては第3図より小さい 能も前例と同じである。この場合の出力軸02は 10 出力トルクとなる。又この時は発電機には発電作 用を行なわせていないので電気的にはモータート ルクは全域が放電域になる。もしこの時に発電機 に発電作用を行なわせるとそれに消費された動力 に相当する分だけ機械的伝達トルクは減少する。 機械的伝達トルク線acの交点kが機械的伝達ト ルクと走行抵抗の平衡する点である。図ではこの 点の走行速度は約50㎞/ h 附近になつているが もしこれより低速で走る時は発電機を作用させ、 に近い。これは郊外を走るには丁度良いが市内走 20 高速にする時はモーターを作用させる様にアクセ ルペダルの指示によりコントローラーを操作する

> この状態ではエンジンは常に出力軸より低速回 転を行なうので静かな運転を期待出来るが、もし その回転が下がりすぎてエンジンがノツクする位 常の状態にすることができる。第25図はモータ ー側に2速減速装置をつけた場合で第14図に相 当する歯車列である。第15~17図に相当する 易に理解できるので省略する。第26図は最終減 速歯車をハイポイドギヤーにして減速歯車列とモ ーターの中間に頭した場合でも第18図に相当し た歯車列の場合を示す。第19,20図に相当し ので説明は省略する。第27図はこの場合のト ルク曲線を示す。横軸に出力軸の回転速度を取 り、縦軸に各種の運転条件に応じた出力軸トル クをエンジントルクにする対比で示した。点線 と同じである。実線は市内走行に適する中速域 で発電機側はオーバードライブの状況にしてモー ターは第25図ではハイクラツチCGを結合し、 第26図の時はハイブレーキHBを結合して高速

と良い。

状態にした場合である。この構造では発進及び登 坂の時は低速域の状態とし、市内走行では中速域、 最高性能を要求される時は高速域の状況にアクセ ルペダルと車速ガバナーの信号によりコントロー ラーCTを作用させ、それぞれオーバートライブ 5 出力軸に結合し、モーターのフィールドは車両に ブレーキOB、ローブレーキLB又はハイブレー キHBを作動させ発電機及びモーターの制復を行 なえるあらゆる走行条件に適合した運転操作が可 能であり、現在の強力なエンジンによる走行運動 性をそれより小さいエンジンと蓄電池エネルギー 10 速度の差で発電を行ない、別に備えられた蓄電池 によつて達成出来る。尚前記各種実施例中に示さ れた遊星歯車装置は第28,29図に示す如き内 歯歯車のない游星歯車組装置に変更実施すること もできる。第28,29図に於いてCはキヤリア、 S₁, S₂, S₃は第1、第3のサンギヤー、P₁, P₂, 15 2 Paは第1、第2、第3のプラネツトギヤーに相当 し、単純遊星歯車組と同様の作用をする。

第30図に示すものはその基本的なもので、第 8 図に相当するものである。

であつて、その第2遊星歯車組は第29図に示し たものである。

第32図は終減速歯車をハイポイドギヤーにし てモーターをとの後に配列した例である。その作 用は第30図と同一であるので特に説明しない。 25 する差動型無段電動変速機。 又この場合に第2遊星歯車組を第29図と同様に することも可能なことは前列より容易に理解でき

又これ等の配列は前記したようにプロペラ軸を エンジンに対してオーバードライブすることも可 30 られた原動機のトルクと電気モーターのトルクの 能である。特にそのためには図示しなあが一例と して第30図の場合は車両が高速になつた場合に ロータリーフィールドGFを固定すればアーマチ ユアー側な キャリアより高速に回転する。即ち第 14図の回転フィールドと発電機ローターの関係 35 キを作用させて原動機に対して出力軸を高速で回 を第30図では置き換えて発電機アーマチユアー と回転フィールドにすれば良いので、このために は回転フィールドにオーパードライブブレーキを 付け、プロペラ軸にはパーキルグブレーキを取り 付ければ容易に構成できる。

特許請求の範囲

内燃機関を原動機とし発電機と電気モーター 組を合せて変速機とする車両用伝動装置において、

内燃機関よりの入力軸は単純遊星歯車組のキヤリ アに結合し、単純遊星歯車組のサンギヤーは発電 機のアーマチュアーに結合し、その単純遊星歯車 組のリングギヤーは発電機の回転フイールド及び 固定し、モーターのアーマチュアーは前記の出力 軸に結合し、この出力軸に与えられた原動機のト ルクとモーターのトルクの和で車両を駆動し、前 記遊星歯車組のサンギヤーとリングギヤーの回転 に電力を一時貯え、発進、急加速、登坂、高速高 速時等においてこの電力を再生して電気モーター に送り高出力を得ることを特徴とする差動型無段 電動変速機。

内燃機関を原動機とし発電機と電気モータ ーを組合せて変速機とする車両用伝動装置にお いて内燃機関よりの入力軸は単純遊星歯車組の キヤリアーに結合し、該単純遊星歯車組のサン ギャーは発電機のアーマチュアーに結合し、そ 第31図はモーターの減速を2速に変える場合 20 の単純遊星歯車組のリングギヤーは発電機の回転 フイールド及び出力軸に結合し、モーターのフイ ールドは車両に固定し、モーターのアーマチュア ーは前記の出力軸に減速装置を介し結合して電気 モーターを高速回転させて小型化する事を特徴と

> 3 請求範囲1.2において発電機の第1回転子に オーバードライブブレーキをケースとの間にもう け、この回転部分を回転又は停止の何れの作用も 可能とし、通常の運転ではこの出力軸にあたえら 和で車両を駆動し、発電出力は蓄電池に電力を一 時貯え、発進、急加速、登坂、高速時等にこの電 力を再生して電気モーターに送つて高出力を得る と共に経済運転の時にはオーバードライブブレー 転させ、同一車両速度に対し原動機の回転速度を 低下させて出力を減少させ、その出力と車両走行 抵抗の過不足は発電機で吸収させるか、電気モー ターによつて出力を発生させるかによつて調整す 40 ることを特徴とする差動型無段電動変速機。

4 請求範囲1~3に於いて単純遊星歯車組を内 歯歯車のない遊星歯車組に置きかえたことを特徴 とする差動型無段電動変速機。

才 13 图

才18图

719 🛭

7 20 2

7 23 Z

7 24 🛭

才 27 図

≯ 28 ②

× 29 🗵

才 3 2 图

THIS PAGE LEFT BLANK