Orthogonal Subspaces:

Two Subspaces W₁ and W₂ of a vector space V are said to be *orthogonal* if every vector $v_1 \in W_1$ is perpendicular to every vector $v_2 \in W_2$. i.e., their inner product is zero. $v_1^T v_2 = 0$.

E.g.
$$W_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \end{bmatrix} \right\}, \quad W_2 = \left\{ \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right\}$$
 are orthogonal to each other.

Example 1 : Find the vector perpendicular to the row space
$$\begin{bmatrix} 1 & 3 & 4 \\ 5 & 2 & 7 \end{bmatrix}$$
 Ans: $\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$

Example 2 : Find the vector perpendicular to the row space
$$\begin{bmatrix} 1 & -2 & 5 \\ 3 & -1 & 5 \end{bmatrix}$$
 Ans: $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$

Orthogonal Complement:

The orthogonal complement of a subspace V contains every vector that is perpendicular to V. This orthogonal subspace is denoted by V^{\perp} .

Example 1: Calculate
$$V^{\perp}$$
 if $V = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 5 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 7 \\ 3 \\ 12 \end{bmatrix} \right\}$. Ans: $V^{\perp} = \operatorname{span} \left\{ \begin{bmatrix} -29 \\ 12 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -9 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

Example 2: Calculate V^{\perp} if $V = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 6 \\ -9 \end{bmatrix} \right\}$. Ans: $V^{\perp} = \operatorname{span} \left\{ \begin{bmatrix} 13 \\ 17 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \right\}$.

Example 2: Calculate
$$V^{\perp}$$
 if $V = \text{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 6 \\ -9 \end{bmatrix} \right\}$. Ans: $V^{\perp} = \text{span} \left\{ \begin{bmatrix} 13 \\ 17 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$.

Cosines and Projections onto lines

Suppose we want to find the distance from a point b to the line in the direction of the vector a. We are looking along that line for the point p closest to b. The line connecting b to p is perpendicular to a. This fact will allow us to find the projection p.

So the projection matrix is $P = \frac{a^T a}{\|aa^T\|}$. To project b onto a at point p, $p^T = Pb^T$.

Example 1: Find the projection matrix that projects onto the line through a = (1, 1, 1). Hence find projection point p that projects b = (2, 3, 4) onto a. Ans: p = (3, 3, 3)

Example 2: Find the projection matrix that projects onto the line through a = (0, 1, 4). Hence find projection point p that projects b = (-1, 3, -2) onto a.

Ans: p = (0, -5/17, -20/17)

Projection Operator

We define the *projection operator* by, $proj_u(v) = \frac{\langle u, v \rangle}{\langle u, u \rangle} u$

where $\langle u, v \rangle$ denotes the inner product of the vectors **u** and **v**. This operator projects the vector **v** orthogonally onto the line spanned by vector **u**. If $\mathbf{u} = \mathbf{0}$, we define $proj_0(v) = 0$, i.e., the projection map $proj_0$ is the zero map, sending every vector to the zero vector.

Gram-Schmidt process

A finite, linearly independent set of vectors $S = \{v_1, ..., v_k\}$ for $k \le n$ and generates an orthogonal set $S' = \{u_1, ..., u_k\}$ that spans the same k-dimensional subspace of \mathbb{R}^n as S.

The Gram-Schmidt process then works as follows:

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{v}_1, & \mathbf{e}_1 &= \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \\ \mathbf{u}_2 &= \mathbf{v}_2 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_2), & \mathbf{e}_2 &= \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \\ \mathbf{u}_3 &= \mathbf{v}_3 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_3) - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_3), & \mathbf{e}_3 &= \frac{\mathbf{u}_3}{\|\mathbf{u}_3\|} \\ \mathbf{u}_4 &= \mathbf{v}_4 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_4) - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_4) - \operatorname{proj}_{\mathbf{u}_3}(\mathbf{v}_4), & \mathbf{e}_4 &= \frac{\mathbf{u}_4}{\|\mathbf{u}_4\|} \\ &\vdots & \vdots & \vdots & \\ \mathbf{u}_k &= \mathbf{v}_k - \sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_j}(\mathbf{v}_k), & \mathbf{e}_k &= \frac{\mathbf{u}_k}{\|\mathbf{u}_k\|}. \end{aligned}$$

The sequence $\mathbf{u}_1,...,\mathbf{u}_k$ is the required system of orthogonal vectors, and the normalized vectors $\mathbf{e}_1,...,\mathbf{e}_k$ form an orthonormal set. The calculation of the sequence $\mathbf{u}_1,...,\mathbf{u}_k$ is known as Gram–Schmidt orthogonalization, while the calculation of the sequence $\mathbf{e}_1,...,\mathbf{e}_k$ is known as Gram–Schmidt orthonormalization as the vectors are normalized.

Example 1: Consider the following set of vectors in \mathbb{R}^2

$$S = \left\{ \mathbf{v}_1 = \left[egin{array}{c} 3 \ 1 \end{array}
ight], \mathbf{v}_2 = \left[egin{array}{c} 2 \ 2 \end{array}
ight]
ight\}.$$

Perform Gram-Schmidt, to obtain an orthogonal and orthonormal set of vectors.

$$\mathbf{u}_1 = \mathbf{v}_1 = egin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\mathbf{u}_2 = \mathbf{v}_2 - \mathrm{proj}_{\mathbf{u}_1}(\mathbf{v}_2) = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \mathrm{proj}_{\begin{bmatrix} 3 \\ 1 \end{bmatrix}} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \frac{8}{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 6/5 \end{bmatrix}.$$

We check that the vectors \mathbf{u}_1 and \mathbf{u}_2 are indeed orthogonal:

$$\langle \mathbf{u}_1,\mathbf{u}_2
angle = \left\langle \left[rac{3}{1}
ight], \left[rac{-2/5}{6/5}
ight]
ight
angle = -rac{6}{5} + rac{6}{5} = 0,$$

For non-zero vectors, we can then normalize the vectors by dividing out their sizes as shown above:

$$egin{align*} \mathbf{e}_1 &= rac{1}{\sqrt{10}} iggl[rac{3}{1} iggr] \ \mathbf{e}_2 &= rac{1}{\sqrt{rac{40}{25}}} iggl[rac{-2/5}{6/5} iggr] = rac{1}{\sqrt{10}} iggl[rac{-1}{3} iggr]. \end{split}$$

Orthogonal Set = $\{u_1, u_2\}$ and Orthonormal Set = $\{e_1, e_2\}$.

Example 2: Consider the following set of vectors in \mathbb{R}^4 . $x_1 = (1, 0, 1, 0)$, $x_2 = (1, 1, 1, 1)$, $x_3 = (-1, 2, 0, 1)$. Perform Gram–Schmidt, to obtain an orthogonal and orthonormal set of vectors.

Example 3: Consider the following set of vectors in \mathbb{R}^4 . $\{(1,3,-1,1),(-1,1,1,-1),(1,0,2,1)\}$

Perform Gram-Schmidt, to obtain an orthogonal and orthonormal set of vectors.

Example 4: Consider the following set of vectors in \mathbb{R}^3 . $\{(2,-1,1),(1,1,-1),(0,1,1)\}$.

Perform Gram-Schmidt, to obtain an orthogonal and orthonormal set of vectors.