

Algoritmia y Programación

Contenido

- Estructuras de Control
- if-else
- switch-case
- Ejercicios

La forma de tomar decisiones en un programa es a través de las Estructuras de Control.

- La forma de tomar decisiones en un programa es a través de las Estructuras de Control.
- Problema: Desarrollar un programa que solicite la edad de una persona e indique si es mayor de edad o no

Problema: Desarrollar un programa que solicite la edad de una persona e indique si es mayor de edad o no

1.Análisis del problema

Entradas: ??

Salidas: ??

Proceso:??

Problema: Desarrollar un programa que solicite la edad de una persona e indique si es mayor de edad o no

1.Análisis del problema

Entradas: edad

Salidas: ??

Proceso:??

Problema: Desarrollar una aplicación Java que solicite la edad de una persona e indique si es mayor de edad o no

1.Análisis del problema

- Entradas: edad
- Salidas: impresión de mensaje de texto (anuncio)
- Proceso:??

Conceptos preliminares

Análisis del problema

Problema: Desarrollar una aplicación Java que solicite la edad de una persona e indique si es mayor de edad o no

1.Análisis del problema

Entradas: edad

Salidas: mensaje de texto

Proceso:

SI la edad es mayor o igual que 18

Problema: Desarrollar una aplicación Java que solicite la edad de una persona e indique si es mayor de edad o no

1.Análisis del problema

Entradas: edad

Salidas: mensaje de texto

Proceso:

SI la edad es mayor o igual que 18 Mostrar el mensaje "Usted es mayor de edad".

Problema: Desarrollar una aplicación que solicite la edad de una persona e indique si es mayor de edad o no

1.Análisis del problema

Entradas: edad

Salidas: mensaje de texto

Proceso:

SI la edad es mayor o igual que 18 Mostrar el mensaje "Usted es mayor de edad".

SI NO

Problema: Desarrollar una aplicación que solicite la edad de una persona e indique si es mayor de edad o no

1.Análisis del problema

- Entradas: edad
- Salidas: mensaje de texto
- Proceso:

SI la edad es mayor o igual que 18 Mostrar el mensaje "Usted es mayor de edad".

SI NO

mostrar el mensaje "Usted es menor de edad"

Conceptos preliminares

Análisis del problema

- Problema: Desarrollar un programa que solicite la edad de una persona e indique si es mayor de edad o no
- 1.Diseñar el algoritmo y escribirlo en pseudocódigo

```
Inicio
  edad: entero

edad = leer ("Digite su edad")

???
```

Fin

- Problema: Desarrollar una aplicación que solicite la edad de una persona e indique si es mayor de edad o no
- 1.Diseñar el algoritmo y escribirlo en pseudocódigo

```
Inicio
edad: entero

edad = leer ("Digite su edad")
??
```

Como expresar la condición "la edad es mayor que 18" en pseudocódigo??

Fit

- Problema: Desarrollar una aplicación que solicite la edad de una persona e indique si es mayor de edad o no
- 1.Diseñar el algoritmo y escribirlo en pseudocódigo

```
Inicio
```

edad: entero

leer (edad)

SI edad >= 18

Fit

- Problema: Desarrollar una aplicación que solicite la edad de una persona e indique si es mayor de edad o no
- 1.Diseñar el algoritmo y escribirlo en pseudocódigo

```
Inicio
edad: entero

edad = leer ("Digite su edad")

SI edad > =18

imprimir("Usted es mayor de edad")
```

Fin

- Problema: Desarrollar una aplicación que solicite la edad de una persona e indique si es mayor de edad o no
- 1.Diseñar el algoritmo y escribirlo en pseudocódigo

```
Inicio
edad: entero

edad = leer ("Digite su edad")

SI edad > =18

imprimir("Usted es mayor de edad")

SINO
```

Slide 18

- Problema: Desarrollar una aplicación que solicite la edad de una persona e indique si es mayor de edad o no
- 1.Diseñar el algoritmo y escribirlo en pseudocódigo

```
Inicio
edad: entero

edad = leer ("Digite su edad")

SI edad > =18

imprimir("Usted es mayor de edad")

SINO
imprimir("Usted es menor de edad")
```

- Problema: Desarrollar una aplicación que solicite la edad de una persona e indique si es mayor de edad o no
- 1.Codificar el algoritmo usando algún lenguaje de programación

pseudocódigo

SI edad >= 18

imprimir("Usted es mayor de edad")

imprimir("Usted es menor de edad")

Python


```
SI (edad >= 18)
```

imprimir("Usted es mayor de edad")

SINO

imprimir("Usted es menor de edad")

Ejercicio if-else

Pasando a Python....

Pensando en Python

```
if (edad >= 18):
    print("Usted es mayor de edad")
else:
    print("Usted es menor de edad")
```

La estructura de control **if-else** permite ejecutar una serie de instrucciones solo cuando se cumple una condición establecida

La estructura de control **if-else** permite ejecutar una serie de instrucciones solo cuando se cumple una condición establecida

```
if (condicion):
    Instrucciones si la condición es verdadera
else:
    Instrucciones si la condición es falsa
```

Nota: En Python la *identación* tiene significado. Es muy importante tenerla en cuenta al momento de escribir una estructura *if-else*.

Ejercicio

Problema: Se requiere de un programa que permita leer: dos números enteros y la opción de la operación matemática que deseen realizar:

opción	operación
1	Suma
2	Resta
3	Multiplicación
4	División

Según la opción elegida se debe mostrar el resultado de la operación sobre los dos números

Actúan sobre valores enteros, reales y caracteres. Estos operadores retorna un valor booleano.

Relacionales		
Operador	Formato	Descripción
<	op1 < op2	Devuelve true si op1 es menor que op2, sino devuelve false
>	op1 > op2	Devuelve true si op1 es mayor que op2, sino devuelve false
<=	op1 <= op2	Devuelve true si op1 es menor o igual que op2, sino devuelve false
>=	op1 >= op2	Devuelve true si op1 es mayor o igual que op2, sino devuelve false
==	op1 == op2	Devuelve true si op1 es igual op2, sino devuelve false
!=	op1 != op2	Devuelve true si op1 diferente a op2, sino devuelve false

Ejercicio:

Exprese las siguientes condiciones en Python:

≻n es menor que 30

>n es igual que 60

≻n es mayor o igual que 90

Ejercicio:

Exprese las siguientes condiciones en Python:

- **>n es menor que 30** n < 30
- ≻n es igual que 60
- ≻n es mayor o igual que 90

Ejercicio:

Exprese las siguientes condiciones en Python:

- ▶ n es menor que 30
 n < 30</pre>
- >n es igual que 60 n==60
- >n es mayor o igual que 90 n>=90

Actúan sobre operadores o expresiones lógicas, como las tablas de verdad.

Operador	Descripción
Y (AND)	Devuelve true si los dos operandos son verdaderos
O (OR)	Devuelve true si alguno de los dos operandos es verdadero
Negación (NOT)	Devuelve lo contrario a lo especificado por el operando

Ejercicio:

Exprese las siguientes condiciones en Python:

- n pertenece al rango [-10,30]
- >n es menor o igual que 40
- ≻n es diferente de 30 ó mayor que 100

Ejercicio:

Exprese las siguientes condiciones en Python:

- n pertenece al rango [-10,30]
 ((n>=-10) and (n<=30))</pre>
- >n es menor o igual que 40
- >n es diferente de 30 ó mayor que 100

Ejercicio:

int n;

Exprese las siguientes condiciones en Python:

n pertenece al rango [-10,30]

$$((n \ge -10) \text{ and } (n \le 30))$$

n es menor o igual que 40

$$n < = 40$$

n es diferente de 30 ó mayor que 100

Ejercicio:

int n;

Exprese las siguientes condiciones en Python:

n pertenece al rango [-10,30]

$$((n \ge -10) \text{ and } (n \le 30))$$

n es menor o igual que 40

$$n < = 40$$

>n es diferente de 30 ó mayor que 100

$$((n!=30) \text{ or } (n>100))$$

Ejercicio Estructura de control

Problema: Se requiere de un programa que permita leer: la cédula, salario básico y año de vinculación de un empleado y que permita calcular su salario neto sabiendo que:

Si gana más de \$1200000 y entro a trabajar después de 1990 se le debe descontar un 8%.

Si gana menos de 550000 ó entró a trabajar en 1990 se le descuenta 2%.

En cualquier otro caso se descontará el 5% del salario.

El programa debe imprimir la cédula y salario neto del empleado.

1.Análisis del problema

Entradas: cedula, ahno, salarioBasico

Salidas: salarioNeto

Proceso:

??

1.Análisis del problema

Entradas: cedula, ahno, salarioBasico

Salidas: salarioNeto

Proceso:

SI el salarioBasico es mayor que 1200000, y el ahno es mayor 1990 salarioNeto= salarioBasico - salarioBasico *0.08

SI el salarioBasico es menor que 550000, o el ahno es igual 1990

salarioNeto= salarioBasico - salarioBasico *0.02

SINO

salarioNeto= salarioBasico - salarioBasico *0.05

Pasando a Python....

Conceptos preliminares

Análisis del problema

1.Diseñar el algoritmo y escribirlo en pseudocódigo inicio

```
cedula, ahno: entero salarioBasico, salarioNeto: real
```

```
cedula = leer("Digite la cédula")
anho = leer("Digite el ahno")
salarioBasico = leer("Digite el salario Básico")
```

???

imprimir(cedula)
imprimir(salarioNeto)
fin

1.Diseñar el algoritmo y escribirlo en pseudocódigo inicio

```
cedula, ahno: entero
salarioBasico, salarioNeto: real
cedula = leer("Digite la cédula")
anho = leer("Digite el ahno")
salarioBasico = leer("Digite el salario Básico")
     SI (salarioBasico > 1200000) Y (ahno>1990)
       salarioNeto = salarioBasico - (salarioBasico *0.08)
     SI (salarioBasico < 550000) O (ahno==1990)
            salarioNeto = salarioBasico - (salarioBasico *0.02)
     SINO
          salarioNeto = salarioBasico - (salarioBasico *0.05)
imprimir(cedula)
imprimir(salarioNeto)
```

fin

1.Realizar una prueba de escritorio para el algoritmo

Cédula	Año vinculación	Salario Bruto	Salario Neto
11301245	2000	1.300.000	1.170.000
3036978	1990	400.000	392.000
5045893	1985	2.000.000	1.900.000

1.Diseñar el algoritmo y escribirlo en pseudocódigo inicio

```
cedula, ahno: entero
salarioBasico, salarioNeto: real
leer(cedula)
leer(ahno)
Leer(salarioBasico)

SI (salarioBasico > 1200000) Y (ahno>1990)
salarioNeto= salarioBasico - salarioBasico *0.08
```

imprimir(cedula)
imprimir(salarioNeto)

1.Codificar el algoritmo usando algún lenguaje de programación

Código Python

```
if ((salarioBasico > 1200000) and (ahno>1990)):
    salarioNeto= salarioBasico - salarioBasico*0.08

if((salarioBasico < 550000) or (ahno==1990)):
        salarioNeto= salarioBasico - salarioBasico*0.02

else:
        salarioNeto= salarioBasico - salarioBasico*0.05</pre>
```

1. Codificar el algoritmo usando algún lenguaje de programación

```
cedula = input("Digite la cédula")
anho = int (input ("Digite el año de ingreso"))
salarioBasico = int (input ("Digite el salario básico"))
if ((salarioBasico > 1200000) and (ahno>1990)):
   salarioNeto= salarioBasico - salarioBasico*0.08
if((salarioBasico < 550000) or (ahno==1990)):
        salarioNeto= salarioBasico - salarioBasico*0.02
else:
        salarioNeto= salarioBasico - salarioBasico*0.05
```

print ("El salario neto es ", salarioNeto)

Una versión un poco modificada

```
if ((salarioBasico > 1200000) and (ahno>1990)):
    salarioNeto= salarioBasico - salarioBasico*0.08

else:
    if((salarioBasico < 550000) or (ahno==1990)):
        salarioNeto= salarioBasico - salarioBasico*0.02

else:
        salarioNeto= salarioBasico - salarioBasico*0.05</pre>
```

1.Codificar el algoritmo usando algún lenguaje de programación

Ver código fuente Nomina.py en el campus del curso...

Más estructuras de control....

IF-else Anidados

Permite manejar varias opciones de forma sencilla, resumiendo cuando se tengan varios if-else anidados

IF-else Anidados

Permite manejar varias opciones de forma sencilla, permitiendo resumir cuando se tengan varios if-else anidados

```
n= int (input ("Digite un número entero"))
```

```
if ( n == 1):
   #instrucciones
elif n==2:
   #instrucciones
elif n==3:
   #instrucciones
elif n==4:
  #instrucciones
elif n==5:
 #instrucciones
else:
# si no es ninguna de las anteriores
```

IF-else Anidados

Problema: Desarrollar una aplicación que reciba un entero correspondiente a una categoría y el total de ventas de un empleado y retorne la comisión que recibe.

Tome en cuenta la siguiente tabla.

categoría	Comisión
1	10%
2	20%
3	35%
4	45%
5	50%
6	60%

1.Análisis del problema

Entradas: ??

Salidas: ??

Proceso:??

1.Análisis del problema

Entradas: categoria, ventas

Salidas: comision

Proceso:??

1.Análisis del problema

Entradas: categoria, ventas

Salidas: comision

Proceso:

SEGÚN SEA categoria

1.Análisis del problema

Entradas: categoria, ventas

Salidas: comision

Proceso:

SEGÚN SEA categoria

caso 1 : comision = ventas * 0.1

1.Análisis del problema

Entradas: categoria, ventas

Salidas: comision

Proceso:

SEGÚN SEA categoria

caso 1 : comision = ventas * 0.1

caso 2 : comision = ventas * 0.2

1.Análisis del problema

Entradas: categoria, ventas

Salidas: comision

Proceso:

SEGÚN SEA categoria

caso 1 : comision = ventas * 0.1

caso 2 : comision = ventas * 0.2

caso 3 : comision = ventas * 0.35

caso 4 : comision = ventas * 0.45

caso 5 : comision = ventas * 0.5

caso 6 : comision = ventas * 0.6

Por defecto: imprimir("Categoría inexistente")

Estructura if-else

```
ventas = int (input ("Digite el valor de la venta: "))
cat= int (input ("Digite la categoria del vendedor: "))
comision = 0
if (cat == 1):
   comision= ventas *0.1
elif cat==2:
    comision= ventas *0.2
elif cat==3:
    comision= ventas *0.35
elif cat==4:
    comision= ventas *0.45
elif cat==5:
    comision= ventas *0.5:
elif cat==6:
    comision= ventas *0.6:
else:
    print ("Esta categoría no existe")
print ("Venta: ", ventas, " La Comision es: ", comision)
```


Ejercicio

Problema: Emcali requiere recalcular la factura de energía de los consumidores. Para ello, se necesita de un programa que lea el estrato social y el valor de consumo del cliente, y determine el valor básico a adicionar para establecer el nuevo valor de la factura.

El programa debe reportar el nuevo valor de la factura. Para saber los valores básicos que corresponde a cada categoría use la siguiente tabla:

Estrato	Valor Base
1	500
2	700
3	4800
4	6700

Si se digita una categoría que no esté en la tabla se debe mostrar un mensaje indicando que la categoría no es válida.

Problema: Emcali requiere recalcular la factura de energía de los consumidores. Para ello, se necesita de un programa que lea el estrato social y el valor de consumo del cliente, y determine el valor básico a adicionar para establecer el nuevo valor de la factura. Para saber los valores básicos que corresponde a cada categoría use la siguiente tabla:

Estrato	Valor Base
1	500
2	700
3	4800
4	6700

Si se digita una categoría que no esté en la tabla se debe mostrar un mensaje indicando que la categoría no es válida.

1.Análisis del problema

Entradas: estrato, consumo

• Salidas: valorFactura

Proceso:

??

1.Análisis del problema

- Entradas: estrato, consumo
- Salidas: valorFactura

Proceso:

```
Si estrato es 1, valorFactura = consumo + 500
```

1.Diseñar el algoritmo y escribirlo en pseudocódigo

```
inicio
estrato: entero
consumo, valorFactura: real
leer(categoria)
leer(consumo)
según sea categoria
   caso 1: valorFactura = consumo + 500
    caso 2: valorFactura = consumo + 700
    caso 3: valorFactura = consumo + 4800
    caso 4: valorFactura = consumo + 5700
    Por defecto: imprimir("categoría no válida")
   fin según sea
imprimir(valorFactura)
fin
```

1.Realizar una prueba de escritorio para el algoritmo

inicio estrato: entero consumo, valorFactura: real leer(categoria) leer(consumo)

Estrato		Valor Factura
1	20000	20500
2	79000	79700
3	200100	20490
4	600540	607240

```
según sea categoria
    caso 1: valorFactura = consumo + 500
    caso 2: valorFactura = consumo + 700
    caso 3: valorFactura = consumo + 4800
    caso 4: valorFactura = consumo + 5700
    por defecto : imprimir("categoría no válida")
    fin según_sea
imprimir(valorFactura)
fin
```