

No. X 4088

LC7471

On-screen Display Controller for NTSC-format Video

Preliminary

OVERVIEW

The LC7471 is a video display controller for superimposing text and low-level graphics onto an NTSC-format television receiver. The LC7471 incorporates a 64 character internal character generator ROM, a 24-character × 64-line display ROM and an 176-character display RAM. Up to 288, 12 × 18-pixel characters can be displayed under microprocessor control on a 24-character by 12-line display.

The LC7471 features selectable pixel width and pixel height, and 64 vertical and 64 horizontal display start positions. It also features a flashing enable bit for each character position.

The LC7471 operates from a 5 V supply and is available in 22-pin shrink DIPs.

FEATURES

- · Complete text and graphics video overlay circuitry
- 64-character internal character generator ROM
- 24-character × 64-line display ROM
- 176-character display RAM
- 288-character display capability
- 12 × 18-pixel characters
- · Four pixel widths
- · Four pixel heights
- · Selectable background color
- Approximately 0.5 or 1 s period character flashing option
- 25, 50 or 75% flashing duty cycle
- Internal or external synchronization
- Serial data control
- 5 V supply
- 22-pin shrink DIP

PINOUT

PACKAGE DIMENSIONS

Unit: mm

3059-DIP22S

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	Description			
1	VS\$1	Digital circuit ground			
2	XIN	Crystal oscillator input			
3	XOUT	Crystal oscillator output			
4	TEST	Test output			
5	RST	Active-LOW reset input with hysteresis			
6	SCLK	Serial data clock input with hysteresis			
7	SIN	Serial data input with hysteresis			
8	CS	Active-LOW chip select input with hysteresis			
9	LVBK	Blanking-level adjustment input			
10	LVCHA	Character-level adjustment input			
11	VDD2	Analog circuit supply			
12	CVOUT	Composite video output			
13	VSS2	Analog circuit ground			
14	CVIN	Composite video input			
15	VDD1	5 V logic supply			
16	SYNI	Sync separator input			
17	SEPC	Sync separator capacitor connection			
18	SEPOUT	Sync separator output			
19	SEPIN	Vertical sync input			
20	OSCOUT	Pivel sheet I C assillate a should be a			
21	OSCIN	Pixel-clock LC oscillator network connections			
22	VDD1	5 V logic supply			

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	V _{SS} - 0.3 to V _{SS} + 7.0	V
Input voltage range	Vı	V_{SS} - 0.3 to V_{DD} + 0.3	V
Output voltage range	Vo	V _{SS} - 0.3 to V _{DD} + 0.3	V
Power dissipation	PD	300 (Ta = 25 °C)	mW
Operating temperature range	Торг	-30 to 70	°C
Storage temperature range	T _{stg}	-40 to 125	°C

Recommended Operating Conditions

 $T_a = 25 \, ^{\circ}C$

Parameter	Symbol	Rating	Unit
Logic supply voltage	V _{DD1}	5	٧
Analog supply voltage	V _{DD2}	5	٧

Parameter	Symbol	Rating	Unit
Logic supply voltage range	V _{DD1}	4.5 to 5.5	٧
Analog supply voltage range	V _{DD2}	4.5 to 1.27V _{DD1}	٧

Electrical Characteristics

 V_{DD1} = 5 V, T_a = -30 to 70 °C unless otherwise noted

Parameter	Symbol	Condition		Rating		Unit	
r ai aijietoj	Зупью	Condition	min	typ	max	Onit	
Supply current	loo	VRST = VDD1, txtal = 14.31 MHz, tlc = 7 MHz. VDD2 and all outputs are open.		-	15	mA	
CS, SIN, AST and SCLK LOW-level input voltage	VIL		V _{SS} - 0.3	-	0.2V _{DO1}	٧	
CS, SIN, RST and SCLK HIGH-level input voltage	V _{IH}		0.8V _{DD1}	_	V _{DD1} + 0.3	٧	
SYNI composite video input voltage	V _{IN1}		-	2.0	2.5	V _{P-P}	
CVIN composite video input voltage	V _{IN2}		-	2	-	V _{p-p}	
OSCIN LOW-level input current	I _{IL}	V _I = V _{SS}	-1	_	-	μΑ	
CS, SIN, RST, SCLK and SEPIN HIGH-level input current	IIH	V _I = V _{DD}	-	-	1	μА	
SEPOUT LOW-level output voltage	Vol	V _{DD1} = 4.5 V, I _{QL} = 1 mA	-	-	1.0	٧	
SEPOUT HIGH-level output voltage	V _{OH}	V _{DD1} = 4.5 V, I _{OH} = 1 mA	3.5	-	-	V	
		fxtal = 4fsc	-	14.318	-	·	
Oscillator frequency	tosc	fxtal = 2fsc	_	7.159	-	MHz	
		LC oscillator	5	7	10		
CVOUT leakage current	lL		-	- '	10	μА	

Timing Characteristics

 $V_{DD1} = 5 \pm 0.5 \text{ V}, T_a = -30 \text{ to } 75 \text{ °C}$

Parameter	Symbol		11-4			
- admoto.	Syllibor	min	typ	max	Unit	
SCLK input pulsewidth	tw(scuk)	200	-	-	ns	
CS HIGH-level input pulsewidth	tw(cs)	1	_	-	μз	
CS data enable input setup time	tsu(cs)	200		_	ns	
SIN data input setup time	tsu(sin)	200	_	_	ns	
CS data enable input hold time	t _{H(CS)}	2	-	_	μs	
SIN data input hold time	t _H (sin)	200	-	_	ns	
16-bit data word write time	tword	10	-	_	μs	
RAM data write time	twт	1	_		μs	

INPUT TIMING

Data and address words are input in serial format on SIN. A 16-bit address word followed by 16-bit data words is input after the falling edge of \overline{CS} . The address

automatically increments after each data word. The data input timing is shown in the following figure.

Only the lower eight bits of the address word are significant. Only the lower eight bits of data words at addresses 000H to 0AFH, the lower 11 bits of data

words at addresses 0B0H to 0BBH and the lower 12 bits of data words at addresses 0BCH to 0BFH are significant. All non-significant bits should be set to 0.

RAM MEMORY CONFIGURATION

RAM memory is organized as 16-bit words as shown in the following table. Locations 000H to 0AFH are display RAM, locations 0B0H through to 0BBH are display line address registers, locations 0BCH to 0BDH are

display control registers, location OBEH is the video signal control register and location OBFH is the general control register.

Address		Memory contents															
	F	E	D	c	В	A	9	В	7	6	5	4	3	2	1	0	Description
OOOH to CAFH	0	0	0	0	0	0	a	0	FL	0	C ₅	C4	C3	C ₂	C1	C ₀	Display RAM with 6-bit character code and flashing enable bit
овон	0	0	a	0	0	ADRA	ADR9	ADF18	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	Address in display ROM of first character of line 1
081H	0	0	0	0	0	ADRA	ADR9	ADR8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADRO	Address in display ROM of first character of line 2
0B2H	0	0	0	0	0	ADRA	ADR9	ADR8	ADR7	ADR6	ADRS	ADR4	ADR3	ADR2	ADR1	ADRO	Address in display ROM of first character of fine 3
0ВЗН	0	0	0	0	0	ADRA	ADRO	ADR8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADRt	ADRO	Address in display ROM of first character of line 4

Addresa								Memory	contents				-			•	
Mudicas	F	E.	D	С	В	A	0	8	7	6	5	4	з	2	1	0	Description
0В4Н	0	0	0	0	0	ADRA	ADR9	ADR8	ADR7	ADRe	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	Address in display ROM of first character of line 5
ОВ5Н	0	0	0	0	0	ADRA	ADR9	ADR8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADRO	Address in display ROM of first character of line 6
086H	0	0	0	0	0	ADRA	ADR9	ADR8	ADR7	ADR6	ADRS	ADR4	ADR3	ADR2	ADR1	ADR0	Address in display ROM of first character of line 7
0 0 7H	0	0	0	0	0	ADRA	ADR9	ADR8	AOR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	Address in display FIOM of first character of line 8
088H	0	0	0	0	0	ARA	ADRO	ADA8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	Address in display ROM of first character of line 9
ОВЭН	0	0	0	0	0	ADRA	ADR9	ADAB	ADR7	ADR6	ADR5	ADR4	ADR3	ADRi2	ADR1	ADR0	Address in display ROM of first character of line 10
0BAH	0	0	0	0	0	ADRA	ADR9	ADR8	ADR7	ADR6	ADRS	ADR4	ADR3	ADR2	ADR1	ADR0	Address in display ROM of first character of line 11
оввн	0	0	0	0	0	ADRA	ADR9	ADA8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	Address in display ROM of first character of line 12
0BCH	0	0	0	0	HSZ31	HSZ30	HSZ21	HSZ20	HSZ11	HSZ10	HP5	HP4	HP3	HP2	HP1	HP0	Horizontal display start position and pixel width
овон	0	0	0	0	VSZ31	VSZ30	VSZ21	VSZ20	VSZ11	VSZ10	VP5	VP4	VP3	VP2	VPI	VP0	Vertical display start position and pixel height
0BEH	0	0	0	0	INT/ NON	×	×	OSC STP	DSP ON	×	SYS AST	×	×	×	PH1	РНО	Video signal phase, display blanking, oscillator control and system reset selection
08FH	0	0	0	0	TST MOD	×	×	BLKI	BLKO	×	FL2	FL1	FLO	EXT	×	BCOL	Character blanking, flashing, and test mode selection

Note

 \times = don't care

Horizontal Display Control Register (0BCH)

The function of each bit in the horizontal display control register is shown in the following table. Note that a LOW-level pulse on \overline{RST} resets all bits to 0.

Data bit	Name	Function			
0	HP0				
1	HP1	Selects the horizontal start position of the display on the screen, HS, as given by the following			
2	HP2	equation			
3	НРЗ	$HS = T_C \times \left(4 \times \sum_{n=0}^{5} 2^n HP_n\right)$			
4	HP4	where Tc is the period of the dot clock oscillator. Note that HS increments in multiples of 4Tc			
5	HP5				
6	HSZ10	Colorto Branco and additional additional and additional and additional additi			
7	HSZ11	Selects line 1 pixel width as shown in table 1.			
8	HSZ20	Colorby Size Ordered width			
9	HSZ21	Selects line 2 pixel width as shown in table 2.			
A	HSZ30				
В	HSZ31	Selects line 3 to line 12 pixel width as shown in table 3.			
С	_	No function			

Table 1. Line 1 pixel width

HSZ11	HSZ10	Width
0	0	1T ₀ /pixel
0	1	2T _c /pixel
1	0	3T _C /pixel
1	1	4T _C /pixel

Table 2. Line 2 pixel width

HSZ21	HSZ20	Width		
0	0	1Tc/pixel		
0	1	2T _C /pixel		
1	0	3T₀/pixel		
1	1	4Tc/pixel		

Table 3. Line 3 to line 12 pixel width

HSZ31	HSZ30	Width
0	0	1Tc/pixel
0	1	2T _c /pixel
1	0	3T⊘pixel
1	1	4Tc/pixel

Vertical Display Control Register (0BDH)

The function of each bit in the vertical display control register is shown in the following table. Note that a LOW-level pulse on \overline{RST} resets all bits to 0.

Data bit	Name	Function					
0	VP0						
1	VP1	Selects the vertical start position of the display on the screen, VS, as given by the following equation					
2	VP2	······································					
3	VP3	$VS = H \times \left(4 \times \sum_{n=0}^{5} 2^{n} VP_{n}\right)$					
4	VP4	where H is the horizontal sync pulsewidth. Note that VS increments in multiples of 4 I line 0 to line 64.					
5	VP5						
6	VSZ10						
7	VSZ11	Selects line 1 pixel height as shown in table 4.					
8	VSZ20						
9	V\$Z21	Selects line 2 pixel height as shown in table 5.					
A	VSZ30						
В	VSZ31	Selects line 3 to line 12 pixel height as shown in table 6.					
С	_	No function					

Table 4. Line 1 pixel height

HSZ11	HSZ10	Height	
0	0	1H/pixel	
0	1	2H/pixel	
1	0	3H/pixel	
1	1	4H/pixel	

Table 5. Line 2 pixel height

HSZ21	HSZ20	Height
0	0	1H/pixel
0	1	2H/pixel
1	0	3H/pixel
1	1	4H/pixel

Table 6. Line 3 to line 12 pixel height

VSZ31	VSZ30	Height
0	0	1H/pixel
0	1	2H/pixel
1	0	3H/pixel
1	1	4H/pixel

The relationships between the vertical sync and horizontal sync pulses and between the horizontal and vertical display start positions are shown in the following figure.

Video Signal Control Register (0BEH)

The function of each bit in the video signal control register is shown in the following table. Note that a LOW-level pulse on \overline{RST} resets all bits to 0.

Data bit	Name	Function			
0 PH0					
1	PH1	Selects the phase, and hence the background color, in the color burst as shown in table 7.			
2	-	No function			
3	-	No function			
4	-	No function			
5	SYS RST	Resets all registers and turns the display OFF when 1. Note that the device remains r CS goes HIGH again.			
6	_	No function			
7	DSP ON	Selects character display OFF when 0, and ON, when 1.			
8	OSC STP	Turns the crystal oscillator and LC oscillator ON when 0, and OFF, when 1. Note that the oscillators can be turned OFF only when external synchronization is selected and the character display is OFF.			
9	- "	No function			
A	-	No function			
В	ĪNT/NON	Selects 262.5 lines/field, interfaced display when 0, and 263 lines/field, non-interfaced display, when 1.			
С	-	No function			

Table 7. Phase selection

PH1	PH0	Phase
0	0	π/2
0	1	π
1	0	3π/2
1	1	In phase

General Control Register (0BFH)

The function of each bit in the general control register is shown in the following table. Note that a LOW-level pulse on RST resets all bits to 0.

Data bit	Name	Function			
0	BCOL	Selects background color ON when 0 (valid for internal synchronization only), and OFF, when 1.			
1	-	No function			
2	EXT	Selects external horizontal and vertical synchronization when 0, and internal, when 1.			
3	FLO				
4	FL1	Selects the display flashing duty cycle as shown in table 8.			
5	FL2	Selects a flashing period of approximately 1 s when 0, and of approximately 0.5 s, when 1.			
6	_	No function			
7	BLK0				
8	BLK1	Selects the blanking area of the display as shown in table 9.			
9	-	No function			
A	_	No function			
В	TST MOD	Selects normal operation when 0, and test mode, when 1. Note that test mode should not be selected during normal operation.			
С	_	No function			

Table 8. Flashing duty cycle selection

FL1	FL0	Duty cycle
0	0	Flashing OFF
0	1	25%
1	0	50%
1	1	75%

Table 9. Blanking area selection

BLK1	BLK0	Blanking area			
0	0	Blanking OFF			
0	1	Character size			
1	0	Frame size			
1	1	Total area			

DISPLAY ROM CONFIGURATION

The display ROM is configured as 1,536 words from address 000H to 5FFH as shown in the following table. Each 16-bit word contains a 7-bit character code and a single control bit. When the control bit is 0, the 7-bit character code is significant and is used to address the character generator ROM, and when 1, the 7-bit character

ter code in ROM is ignored and the character code is read from display RAM. The display RAM address automatically increments by one each time a character code is read from RAM. Note that your local Sanyo representative can offer advice on how to specify the generator character ROM.

Address							Vic	ieo signa	1 control l	olts							
Average	F	E	D	c	В	A	9	0	7	6	5	4	3	2	1	0	Description
000H	۰	0	0	0	0	0	0	0	ROM/ RAM	0	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	Address of first character of line 1
									lo		•		<u>. </u>				,
01 <i>7</i> H	0	0	0	0	0	0	0	0	ROM/ RAM	0	ADRS	ADR4	ADR3	ADR2	ADR1	ADR0	Address of twenty-fourth character of line 1
018H	0	0	0	0	0	0	0	0	ROM/ RAM	0	ADRS	ADR4	ADR3	ADR2	ADRI	ADR0	Address of first character of line 2
		_							to						····		·
SFFH	0	0	0	0	0	0	0	0	ROM/ RAM	0	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	Address of twenty-fourth character of line 64

The function of each significant bit in a display ROM word is shown in the following table.

Data bit	Name	Description				
0	ADRO					
1	ADR1					
2	ADR2	Specifies the character generator ROM address. ADRO to ADR5 should be set to 0				
3	ADR3	when bit 7 is 1.				
4	ADR4					
5	ADR5	7				
6	ADR6	Should be set to 0.				
7	ROWRAM	Selects direct ROM addressing.				
	HOWHAM	Selects indirect ROM addressing from RAM.				

The line addresses in display ROM are shown in the following table.

Line	Address (hex)	Цпе	Address (hex)
1	00	33	300
2	18	34	318
3	30	35	330
4	48	36	348
5	60	37	360
6	78	38	378
7	90	39	390
8	A8	40	3A8
9	Со	41	3C0
10	D8	42	3D8
11	FO	43	3F0
12	108	44	408
13	120	45	420
14	138	46	438
15	150	47	450
16	168	48	468

Line	Address (hex)	Line	Address (hex)
17	180	49	480
18	198	50	498
19	1B0	51	4B0
20	1C8	52	4C8
21	1E0	53	4E0
22	1F8	54	4F8
23	210	55	510
24	228	56	528
25	240	57	540
26	258	58	558
27	270	59	570
28	288	60	588
29	2A0	61	5A0
30	2B8	62	5B8
31	2D0	63	5D0
32	2E8	64	5E8

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

SCREEN CONFIGURATION

The character screen display is configured as 12 lines \times 24 characters, making a maximum number of 288 characters when the smallest character size is used. The

number of characters that can be displayed reduces as character size is increased. The character screen configuration is shown in the following table.

Line											(haracte	r numb	er										
1	00	01	02	03	04	05	06	07	08	09	10	11	12	. 13	14	15	16	17	18	19	20	21	22	23
2	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
а	48	49	50	51	52	53	54	55	56	57	58	59	60	61	.62	63	64	65	66	67	68	69	70	71
4	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	80	91	92	93	94	95
5	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
6	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
7	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167
В	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
8	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215
10	216	217	218	219	220	221	222	223	224	225	226	227	228	220	230	231	232	233	234	235	236	237	238	239
11	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263
12	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287

The start address for each of the twelve display lines is specified in the display line address registers in RAM. An example arrangement of ROM and RAM addresses

is shown in the following table. Note how both the RAM and ROM addresses increment.

Line		Character RAM and ROM configuration (hex)																						
FILLE	1	2	3	4	5	6	7	6	9	10	11	12	13	14	15	16	17	16	19	20	21	22	23	24
1	ROM	ROM	ROM	ROM	ROM	ROM	ВОМ	ROM	ROM	FIOM	ROM	ROM	ROM	ROM	ROM	ROM	RAM	RAM:	RAM	RAM	FIAM	RAM	ROM	ROM
	00	01	02	03	04	05	06	07	08	09	0A	0B	OC	OD	OE	OF	00	01	02	03	04	05	16	17
2	ROM	RAM	RAM	RAM	RAM	ROM	ROM	ROM	ROM	ROM	FLAM	RAM	RAM	RAM	RAM	RAM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM
	18	06	07	08	09	1D	1E	1F	20	21	OA	0B	0C	0D	OE	OF	28	29	2A	2B	2C	2D	2E	2F
3	ROM	RAM	RAM	RAM	RAM	RAM	ROM	ROM	ROM	ROM	FLAM	FIAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	ROM	ROM	ROM	ROM
	30	10	11	12	13	14	36	37	38	39	15	16	17	18	19	1A	1B	1C	1D	1E	44	45	46	47
4	HOM	ROM	ROM	ROM	ROM	RAM	RAM	RAM	RAM	ROM	RAM	RAM	ROM	RAM	RAM	ROM	RAM	RAM	ROM	ROM	ROM	ROM	ROM	ROM
	48	49	4A	4B	4C	1F	20	21	22	51	23	24	54	25	26	57	27	28	5A	58	5C	5D	5E	5F
5	ROM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	ROM	RAM	RAM	ROM	RAM	FLAM	ROM	RAM	RAM	ROM	ROM	ROM	ROM	ROM	ROM
	60	29	2A	2B	2C	2D	2E	2F	30	69	31	32	6C	33	34	6F	35	36	72	73	74	75	76	77
6	ROM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	ROM	RAM	RAM	RAM	RAM	ROM	RAM	RAM	RAM	RAM	RAM	ROM	RAM	RAM	ROM	ROM
	78	37	38	39	3A	38	3C	3D	80	3E	3F	40	41	85	42	43	44	45	46	BB	47	48	BE	8F
7	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	FLAM	RAM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM
	49	4A	4B	4C	40	4E	4F	50	51	52	53	54	BC	9D	9E	9F	A0	A1	A2	A3	A4	A5	A6	A7
8	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM
	55	56	57	58	59	SA	58	5C	5D	SE	5F	60	B4	B5	B6	B7	B8	B9	BA	BB	BC	BD	BE	BF
9	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM
	CO	· C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	61	62	63	64	65	66	67	68	69	6A	6B	6C
10	POM	ROM	ROM	ROM	ROM	RAM	RAM	FIAM	RAM	RAM	RAM	RAM	RAM	RAM	FLAM	RAM	RAM	RAM	RAM	ROM	ROM	ROM	ROM	ROM
	D8	D9	DA	DB	DC	6D	6E	6F	70	71	72	73	74	75	76	77	78	79	7A	EB	EC	ED	EE	EF
11	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	ROM	RAM	RAM	ROM	RAM	RAM	ROM	RAM	RAM	ROM
	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	F8	FC	FD	FE	7B	7C	101	7D	7E	104	7F	80	107
12	RAM	RAM	RAM	FLAM	FIAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	RAM	ROM
	81	82	83	84	85	86	87	88	89	BA	6B	BC	8D	8E	8F	90	91	92	93	94	95	96	97	11F

COMPOSITE VIDEO OUTPUT

The character and background images are superimposed onto the composite video signal.

The composite video signal output levels when the sync pulse level is 1.2 V and $V_{DD} = 5.000$ V are shown in the

following figure and the voltages corresponding to the relative carrier amplitudes in the following table.

Relative carrier amplitude (IRE)	Output voltage amplitude (V)
100	3.200
85	2.986
50	2.485
20	2.057
5.6	1.851
0	1.771
-20	1.486
– 40	1.200

The composite video signal output levels when the sync pulse level is 1.2 V and $V_{\rm DD}=5.000$ V are shown in the following figure, and the voltages corresponding to the relative carrier amplitudes in the following table.

Relative carrier amplitude (IRE)	Output voltage amplified (V)
100	2.800
]88	2.628
51	2.100
20	1.657
7.6	1.480
0	1.375
-20	1.075
-40	0.800