Rozpraszanie ramanowskie w próbkach objętościowych i cienkich warstwach ${\bf Ga_2S_3}$

Praca dotyczy badania widm polaryzacyjnych materiału Ga_2S_3 , który został wyhodowany na fosforku galu GaP.

Związek Ga_2S_3 należy do klasy materiałów półprzewodnikowych o dużym potencjale aplikacyjnym w obszarach nanoelektroniki, optoelektroniki, odnawialnych źródeł energii, fotoniki czy źródeł promieniowania terahercowego. Jego zdefektowana struktura daje temu materiału własności, które różnią się od własności znanego materiału GaS.

Widma - VH - VV 4 1 2 3 5 6 5 6 1 00 200 300 400 500

Widmo ramanowskie dla kryształku ${\bf Ga_2S_3}$ na płytce szklanej wykonanej dla konfiguracji VV i VH.

Na powyższym widmie ramanowskim zostało wyróżnionych 7 pików. $1 \rightarrow 117~cm^{-1}, 2 \rightarrow 143~cm^{-1}, 3 \rightarrow 149~cm^{-1}, 4 \rightarrow 235~cm^{-1}, 5 \rightarrow 309~cm^{-1}, 6 \rightarrow 330~cm^{-1}, 7 \rightarrow 390~cm^{-1}$. Dzięki eliminacji podłoża **GaP** uzyskano większa rozdzielczość w widmie ramanowskim ${\bf Ga_2S_3}$.

Układ pomiarowy

Zdjęcie układu pomiarowego na którym wykonywane były pomiary ramanowskie.

Badana próbka

Zdjęcie z mikroskopu optycznego kryształku ${\rm Ga_2S_3}$ na podłożu ${\rm GaP}$ - a) oraz podłożu szklanym - b)

110 90 80 70 120 60	Pik 1	110 100 90 80 70
130 140 150 160 170 180 200 210 220 230 240 250 260 270 280 300 301 301 302 303 303 303 303 303 303 303 303 303	— vv — vh	130 140 150 160 170 180 190 200 210 230 240 250 260 270 280 290 300 330 330 330 330 340 330 33

260 270 280		260 270 280
110 100 90 80 70 130 50 40	Pik 7	110 100 90 80 70 60 50 140 40
150 160 170 180	— VV	150 160 170 180
190 200 210 340 330 320		190 200 210 330 320
230 240 250 260 270 280 290 300		230 240 250 260 270 290 290

A'(x,y)		A"(z)			
а	d				е
d	b				f
		С	е	f	

Pik 1
$$a = 1; b = 078; d = 0.12$$
 Pik 7

a = 1; b = 067; d = 0.12

Tensory ramanowskie dla struktury jednoskośnej

Dla każdego piku na widmie ramanowskim zostało uzyskane 36 punktów na widmie polaryzacyjnym, obracając co 5 stopni polaryzacja ("półfalówka").

Dla pików 1,7 została dopasowana pojedyncza funkcja Voigt'a dla konfiguracji VV.

Dla konfiguracji VH nie udało się dopasować funkcji Voigt'a. Dopasowanie tej funkcji jest kwestią następnych badań.