Covering bulk material for covering liquid pig iron or steel in metallurgical vessels

Patent number:

DE3742415

Publication date:

1988-12-01

Inventor:

ALLENSTEIN JOCHEN ING; SCHRAMM KLAUS DIPL-

ING

Applicant:

FRANK & SCHULTE GMBH

Classification:

- international:

B22D1/00; C21C1/00; C21C7/076

- european:

B22D11/111; C21C7/00S; C21C7/076

Application number: DE19873742415 19871215 Priority number(s): DE19873742415 19871215

Report a data error here

Abstract of DE3742415

Covering bulk material for covering liquid pig iron or steel in metallurgical vessels, consisting of pellets which are formed from a finely granular covering material and a binder. The covering material used is finely ground olivine which, in the mixture with the binder, has a porously non-compact structure in the pellets. The bulk density of the pellets is, compared to the bulk density of the raw olivine of approximately 1.9 kp/dm<3>, reduced by at least 30%. A preparation method is also described.

Data supplied from the esp@cenet database - Worldwide

[®] Patentschrift[®] DE 3742415 C1

(5) Int. Cl. 4: B 22 D 1/00

> C 21 C 1/00 C 21 C 7/076

DEUTSCHES PATENTAMT

(21) Aktenzeichen:

P 37 42 415.7-24

② Anmeldetag:

15. 12. 87

Offenlegungstag:

Veröffentlichungstag der Patenterteilung:

1. 12. 88

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Frank & Schulte GmbH, 4300 Essen, DE

(4) Vertreter:

Andrejewski, W., Dipl.-Phys. Dr.rer.nat.; Honke, M., Dipl.-Ing. Dr.-Ing.; Masch, K., Dipl.-Phys. Dr.rer.nat., Pat.-Anwälte, 4300 Essen

(72) Erfinder:

Allenstein, Jochen, Ing.(grad.), 4130 Moers, DE; Schramm, Klaus, Dipl.-Ing., 4300 Essen, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

NICHTS ERMITTELT

COPY

Abdeckschüttgut zum Abdecken von flüssigem Roheisen oder Stahl in metallurgischen Gefäßen

Abdeckschüttgut zum Abdecken von flüssigem Roheisen oder Stahl in metallurgischen Gefäßen bestehend aus Pellets, die aus einem feinkörnigen Abdeckstoff und einem Binder geformt sind. Als Abdeckstoff ist feingemahlener Olivin eingesetzt, welcher in der Mischung mit dem Binder in den Pellets eine porig aufgelockerte Struktur aufweist. Das Schüttgewicht der Pellets ist, bezogen auf das Schüttgewicht des Roholivins von etwa 1,9 kp/dm³, um zumindest 30% reduziert. Auch ein Verfahren zur Herstellung wird angegeben.

EST AVAILABLE C

 Abdeckschüttgut zum Abdecken von flüssigem Roheisen oder Stahl in metallurgischen Gefäßen, bestehend aus Pellets, die aus einem feinkörnigen Abdeckstoff und einem Binder geformt sind, dadurch gekennzeichnet, daß als Abdeckstoff feingemahlener Olivin eingesetzt ist, welcher in der Mischung mit dem Binder in den Pellets eine porig aufgelockerte Struktur aufweist, und daß das 10 Schüttgewicht der Pellets, bezogen auf das Schüttgewicht des körnigen Roholivins von etwa 1,9 kp/ dm3, um zumindest 30% reduziert ist.

2. Abdeckschüttgut nach Anspruch 1, dadurch gekennzeichnet, daß der feingemahlene Olivin eine 15 Körnung von > 0 bis 1 mm, vorzugsweise bis

0,2 mm, aufweist.

3. Abdeckschüttgut nach einem der Ansprüche 1 oder 2, daß das Schüttgewicht der Pellets im Bereich von 0,4 bis 1,3 kp/dm3 liegt.

4. Abdeckschüttgut nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Binder ein Stärkebinder eingesetzt ist.

Abdeckschüttgut nach einem der Ansprüche 1 bis luloseetherbinder eingesetzt ist.

Abdeckschüttgut nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Binder ein hydraulischer Binder eingesetzt ist.

7. Abdeckschüttgut nach einem der Ansprüche 1 bis 30 6, dadurch gekennzeichnet, daß die Pellets einen Durchmesser von 1 bis 20 mm, vorzugsweise von 1 bis 5 mm, aufweisen.

8. Abdeckschüttgut nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in die Pellets spezi- 35 fisch leichte Stoffe, wie feinteiliges Holzmehl, Papiermehl, Palit, Vermiculit, Blähton, Polystyrol, Styropor u. dgl. eingemischt sind.

9. Abdeckschüttgut nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß in die Pellets fein- 40 teilige Stoffe aus der Gruppe Kalkstein, Dolomit, Magnesit, Tone, Betonite oder Mischungen davon

eingemischt sind.

10. Verfahren zur Herstellung von Pellets nach einem der Ansprüche 1 bis 9, wobei die feinkörnigen 45 Anteile und der Binder gemischt und die Mischung mit Hilfe eines rotierenden Pelletiertellers unter Zugabe von Wasser, z.B. in Form von Wassernebel, zu Pellets geformt sind, dadurch gekennzeichnet, daß die Mischung vor dem Pelletieren, z. B. mit 50 Hilfe eines Wirblers porig aufgelockert und die porig aufgelockerte Mischung pelletiert sowie danach getrocknet wird.

Beschreibung

Die Erfindung bezieht sich gattungsgemäß auf ein Abdeckschüttgut zum Abdecken von flüssigem Roheisen oder Stahl in metallurgischen Gefäßen. Die Erfindung bezieht sich fernerhin auf ein Verfahren zur Her- 60 stellung eines solchen Abdeckschüttgutes. - Metallurgische Gefäße bezeichnet insbesondere Pfannen, Stranggießverteiler und Kokillen.

Bei dem (aus der Praxis) bekannten Abdeckschüttgut, yon dem die Erfindung ausgeht, wird als Abdeckstoff 65 Flugasche von Kraftwerkskesselanlagen oder Reisschalenasche eingesetzt. Dabei arbeitet man mit verschiedenen Bindern. Die aus Flugasche hergestellten Pellets

sind zwar leicht und das Abdeckschüttgut insgesamt hat als Abdeckung auf flüssigem Roheisen oder flüssigem Stahl eine geringe Wärmeleitfähigkeit. Das bekannte Abdeckschüttgut ist jedoch sauer eingestellt und reagiert stark mit der basischen Feuerfestauskleidung der metallurgischen Gefäße. Die basische Feuerfestauskleidung der metallurgischen Gefäße nimmt daher vorzeitig Schaden, was aufwendige Reparatur- oder Erneuerungsmaßnahmen zur Folge hat. Außerdem enthalten saure Abdeckmittel große Mengen an freiem Siliciumdioxid. Das kann Stahlverunreinigungen sowie Analysenverschlechterungen hervorrufen. Die Abdeckung von flüssigem Roheisen oder flüssigem Stahl muß im übrigen häufig die metallurgische Funktion einer Schlacke erfüllen und sogenannte Schlackenarbeit leisten. Diese ist bei dem bekannten Abdeckschüttgut in starkem Maße verbesserungsbedürftig.

Im übrigen kennt man im Gießereibetrieb feinkörnigen Olivin, der dort als silikoseverhindernder Formsand

eingesetzt wird.

Aufgrund seiner hohen Dichte von etwa 3,3 g/cm³ und wegen seines hohen Schüttgewichtes im feinkörnigen Zustand, welches bei etwa 1,9 kg/dm³ liegt, ist das Mineral Olivin als Abdeckschüttgut praktisch nicht brauch-3, dadurch gekennzeichnet, daß als Binder ein Cel- 25 bar. - Olivin ist bekanntlich ein gesteinsbildendes Nesosilicat, d.h. Silicat mit isolierten, inselartigen [SiO₄]4--Tetraedern, die durch Metallionen zusammengehalten werden. Die Olivin-Reihe hat die Zusammensetzung (Mg,Fe)₂[SiO₄]. Zwischen den Endgliedern Forsterit Mg2[SiO4] und Fayalit Fe2[SiO4] liegt eine unbeschränkt isomorphe Mischungsreihe vor. Ölivin ist eine frühe Ausscheidung in magmatischen Gestein. Als typisches und vorherrschendes Mineral ist Olivin in ultrabasischen Tiefengesteinen enthalten. Olivin ist häufiger Bestandteil feuerfester Magnesia-Produkte, besonders von feuerfesten Chrommagnesitsteinen, und ist Hauptbestandteil der feuerfesten Forsteritsteine und Forsteritmassen.

Der Erfindung liegt die Aufgabe zugrunde, ein Abdeckschüttgut anzugeben, welches bei guter Wärmeisolationsfähigkeit die Feuerfestauskleidung der metallurgischen Gefäße schont und, nach bevorzugter Ausführungsform der Erfindung, auch eine ausreichende

Schlackearbeit leistet.

Zur Lösung dieser Aufgabe lehrt die Erfindung, daß als Abdeckstoff feingemahlener Olivin eingesetzt ist, welcher mit dem Binder in den Pellets eine Mischung mit porig aufgelockerter Struktur aufweist, und daß das Schüttgewicht der Pellets, bezogen auf das Schüttgewicht des körnigen Roholivins von 1,9 kg/dm³, um zumindests 30% reduziert ist. Der Ausdruck Schüttgewicht der Pellets bezieht sich auf eine Schüttung aus den Pellets. Olivin bezeichnet im Rahmen der Erfindung insbesondere den Forsterit oder Olivin mit hohem Anteil an Forsterit. Nach bevorzugter Ausführungsform der Erfindung besitzt der feingemahlene Olivin eine Körnung von > 0 bis 1 mm, vorzugsweise bis 0,2 mm. Das Schüttgewicht der Pellets soll vorzugsweise im Bereich von 0,4 bis 1,3 kp/dm³ liegen. Im allgemeinen werden die Pellets nach der Formung mit Heißluft bei 150° bis 200° C getrocknet und danach mit Luft gekühlt.

Im Rahmen der Erfindung kann mit den verschiedensten Bindern gearbeitet werden. Um die porig aufgelokkerte Struktur bei der Herstellung der Pellets sicherstellen zu können, empfiehlt es sich, als Binder einen Stärkebinder oder einen Celluloseetherbinder einzusetzen. Man kann auch mit hydraulischen Bindern arbeiten. Die Pellets des erfindungsgemäßen Abdeckschüttgutes be-

10

sitzen zweckmäßigerweise einen Durchmesser von 1 bis 20 mm. Vorzugsweise wird aus Gründen der Wärmeisolation mit Pellets gearbeitet, deren Durchmesser im Bereich von 1 bis 5 mm liegen. Im Rahmen der Erfindung liegt es, in die Pellets spezifisch leichte Stoffe, wie feinteiliges Holzmehl, Papiermehl, Perlit, Vermiculit, Blähton, Polystyrol, Styropor u. dgl. einzumischen. Soweit diese brennbar sind, brennen diese aus. Das erfindungsgemäße Abdeckschüttgut des beschriebenen Aufbaus leistet ohne weiteres bereits eine gute Schlackenarbeit. Um sie zu verbessern, können in die Pellets Stoffe aus der Gruppe Kalkstein, Dolomit und Magnesit, oder Mischungen davon, eingemischt werden.

Mit anderen Worten wird im Rahmen der Erfindung feingemahlener Olivin, insbesondere feingemahlener 15 Forsterit, im Kornbereich von 0 bis 1 mm, vorzugsweise von 0 bis 2 mm, als Abdeckstoff verwendet, jedoch zu diesem Zweck besonders eingestellt, nämlich mit einem geeigneten Binder porig aufgelockert, und danach pelletiert und mit Heißluft getrocknet.

Durch Zugabe von spezifisch leichten Stoffen, aber auch Stoffen leichten Schüttgewichtes, kann das Schüttgewicht der Pellets in sehr weiten Grenzen beeinflußt werden. Da die Pellets auch andere Stoffe metallurgischer Zweckbestimmungen aufnehmen können, erfüllt 25 das erfindungsgemäße Abdeckschüttgut die eingangs erwähnten komplexen Forderungen. Von besonderem Vorteil ist die Tatsache, daß das erfindungsgemäße Abdeckschüttgut auch auf einfache Weise hergestellt werden kann. Insoweit ist Gegenstand der Erfindung auch 30 ein Verfahren zur Herstellung der Pellets für das erfindungsgemäße Abdeckschüttgut. Dabei werden die feinkörnigen Anteile und der Binder gemischt und die Mischung wird mit Hilfe eines Pelletiertellers unter Zugabe von Wasser, z. B. in Form von Wassernebel, zu Pel- 35 lets geformt. Erfindungsgemäß wird die Mischung vor dem Pelletieren, z. B. mit Hilfe eines Wirblers, porig aufgelockert. Die porig aufgelockerte Mischung wird pelletiert, die Pellets werden wie angegeben getrocknet. Die feinkörnigen Anteile und der Binder können mit 40 etwa 50% des erforderlichen Wassers angemacht werden. Der Rest des Wassers wird dann beim Pelletieren

Bewährt haben sich Pellets der folgenden Zusammensetzungen:

Beispiel 1

93-98% Olivinsand

0,5-6% Bindemittel auf Basis kaltwasserlöslicher 50 Stärkebinder bzw. Celluloseetherbinder

 $H_2O < 0.5\%$

Rest sonst. Verunreinigungen, wobei das Schüttgewicht bei 0,4-1,3 kp/dm³ liegt.

Beispiel 2

40-90% Olivinsand 0,5-6% Bindemittel wie in Beispiel 1

5-55% Kalksteinmehl

 $H_2O \leq 1\%$

Rest sonst. Verunreinigungen, wobei das Schüttgewicht zwischen 0,4 und 1,3 kp/dm³ liegt.

Beispiel 3

90-97% Olivin

0,5-3% Bindemittel auf Basis von Stärkebindern

0,05-1% Ausbrennmittel in Form von Polystyrol H₂O < 0,5%

Rest sonst. Verunreinigungen, wobei das Schüttgewicht bei 0,4-1,3 kp/dm³ liegt.

Beispiel 4

40	90%	Olivinsand
40 —	หมหก	Univinsana

0,5-2% Bindemittel in Form von Celluloseether

5-50% Magnesit

0,05-1% Ausbrennmittel in Form von Holzmehl, Pa-

piermehl, Kunststoffschnitzel

Rest sonst. Verunreinigungen, wobei das Schüttgewicht zwischen 0,4 und 1,3 kp/dm³ liegt.

BEST AVAILABLE COPY