# Klasifikacija

Jure Žabkar

jure.zabkar@fri.uni-lj.si



#### Vsebina

- Nadzorovano učenje
- Odločitvena drevesa
- Ocenjevanje verjetnosti
- Rezanje

#### Literatura



Razdelek 8.1



Razdelek 9.2.3



Strani: 162-168

# Strojno učenje











### Nadzorovano učenje

- Množica učnih primerov
- Atributi, x<sub>i</sub>
- Razred, y
- Hipoteza, h

## Atributna predstavitev podatkov

|    | iris        | sepal length | sepal width | petal length | petal width |
|----|-------------|--------------|-------------|--------------|-------------|
| 1  | Iris-setosa | 5.1          | 3.5         | 1.4          | 0.2         |
| 2  | Iris-setosa | 4.9          | 3.0         | 1.4          | 0.2         |
| 3  | Iris-setosa | 4.7          | 3.2         | 1.3          | 0.2         |
| 4  | Iris-setosa | 4.6          | 3.1         | 1.5          | 0.2         |
| 5  | Iris-setosa | 5.0          | 3.6         | 1.4          | 0.2         |
| 6  | Iris-setosa | 5.4          | 3.9         | 1.7          | 0.4         |
| 7  | Iris-setosa | 4.6          | 3.4         | 1.4          | 0.3         |
| 8  | Iris-setosa | 5.0          | 3.4         | 1.5          | 0.2         |
| 9  | Iris-setosa | 4.4          | 2.9         | 1.4          | 0.2         |
| 10 | Iris-setosa | 4.9          | 3.1         | 1.5          | 0.1         |

## Primeri klasifikacijskih problemov

- napovedovanje vremena (sončno, oblačno, deževno)
- diagnosticiranje pacientov (bolan, zdrav)
- klasifikacija neželene e-pošte

## Prostor hipotez

Če imamo binarno klasifikacijo in n binarnih atributov, je možnih največ 2<sup>n</sup> učnih primerov in 2<sup>2^n</sup> hipotez (recimo, da hipotezo opišemo s tabelo napovedi za vse primere).

- zavedati se moramo **pristranskosti** hipotez
- kako dobiti dobre hipoteze?
- kako dobro ocenjevati hipoteze?

#### Odločitvena drevesa

- Zelo vsestranska:
  - klasifikacija,
  - o regresija,
  - naključni gozdovi
- Močan izrazni jezik
- Razumljivi modeli
- Učinkovita implementacija

## Gradnja klasifikacijskih dreves

Cilj:

zgraditi čim manjše drevo, ki je konsistentno z učnimi podatki.

Kombinatoričen prostor iskanja - vsa možna drevesa; neučinkovito

## Gradnja klasifikacijskih dreves

Hevristični požrešni algoritem TDIDT:

- 1. izberi najbolj pomemben atribut glede na razred.
- 2. razdeli primere v poddrevesa
- ponovi rekurzivno na poddrevesih; ustavi gradnjo, ko vozlišča ni možno deliti naprej (vsi primeri pripadajo istemu razredu)

### Izbor najbolj pomembnega atributa

Najboljši atribut je tisti, ki - glede na razred - razdeli množico na najbolj čiste podmnožice.

### Oblike likov











#### Mere nečistoče

Delež primerov z razredom k v vozlišču m Delež večinskega razreda v vozlišču m

Klasifikacijska napaka

$$\frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 - \hat{p}_{mk(m)}$$

Gini indeks 
$$\sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

Entropija 
$$-\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$
.

# Informacijski prispevek

I=H(C) ... Entropija pred delitvijo po vrednostih atributa (v vozlišču n)

I\_res=Sum p\_vi H(C | vi)

 $InfoGain(A) = I - I_res(A)$ 

najbolj informativen atribut ima max InfoGain

# Informacijski prispevek

precenjuje kakovost večvrednostnih atributov; možne rešitve:

- relativni InfoGain (delimo ga z entropijo atributa)
- binarizacija večvrednostnih atributov
- uporaba alternativnih mer

## Težave pri učenju dreves

- manjkajoče vrednosti: v splošnem imputacija (npr. manjkajoče vrednosti nadomestimo s povprečjem prisotnih vrednosti atributa). Lahko vpeljemo vrednost "manjkajoč", ki nam morda pomaga razložiti, kaj se dogaja s primeri, kjer meritev atributa manjka.
- binarna delitev boljša kot večvrednostna, ki preveč drobi na majhne podmnožice
- kratkovidnost požrešnega algoritma (XOR)
- šumni podatki...

## Rezanje dreves

- Nepopolni podatki, (merske) napake v podatkih
- Učenje šuma, namesto učenja dejanske funkcije, ki generira podatke
- Slaba razumljivost dreves
- pretirano prilagajanje => nižja klasifikacijska točnost na testnih podatkih

#### Rezanje naprej

- omejevanje št. primerov v vozlišču
- ustavljanje gradnje pri doseženi želeni točnosti v vozlišču

#### Rezanje nazaj

Postopek MEP (Minimal Error Pruning)

Cilj: poreži drevo tako, da bo ocenjena klasifikacijska točnost maksimalna

Za vsako vozlišče v izračunamo:

- statično napako
- vzvratno napako

Režemo pod v, če je statična napaka manjša od vzvratne.

### Ocenjevanje verjetnosti

Točnost T = verjetnost pravilne klasifikacije.

Napaka = 1 - T

N ... število vseh primerov, n ... število uspešnih poskusov

- relativna frekvenca: p = n/N
- m-ocena: p = (n + pa\*m)/(N+m)

ekspert zaupa v pa => velik m, sicer majhen m (tipično m=2)

- Laplace: p = (n+1)/(N+k)