## PDF's Videos Repaso Esperanza - Varianza Variables Aleatorias Continuas

Mariela Sued (marielasued@gmail.com)
Manuela Cerdeiro (cerdeiro@dm.uba.ar)
Florencia Statti (florencia.statti@ic.fcen.uba.ar)

2020

Videos Clase 4 - Esperanza y Varianza

### Ruleta

http://www.casinosantafe.com.ar/casino/reglamento-ruleta-americana/



## ¿Apostamos una ficha?

- Si acierto: me devuelven 36 fichas (35+la mía)
- Si pierdo: se llevan mi ficha

# ¿Apostamos una ficha?

• Si acierto: Gano 35

• Si pierdo: Gano -1

#### Ganancia

| Ganancia     | -1    | 35   |
|--------------|-------|------|
| Probabilidad | 36/37 | 1/37 |

- ullet  $m_{-1}$  cantidad de veces que pierdo en m jugadas.
- $m_{35}$  cantidad de veces que gano en m jugadas.

$$\frac{m_{-1}}{m} \longrightarrow \dots$$

$$\frac{m_{35}}{m} \longrightarrow \dots$$

## Una larga noche en el casino...

## Ganancia media en m=29 partidas

• Resultado en cada jugada:

$$r_1 = -1, r_2 = -1, r_3 = -1, \dots, r_{27} = -1, \dots, r_{28} = 35, r_{29} = -1$$

- Suma de los ganado:  $r_1 + r_2 + \cdots + r_{29} = (-1) \times 28 + 35 \times 1$
- Ganancia promedio:

$$\frac{1}{29}(r_1 + r_2 + \dots + r_{29}) = (-1) \times \frac{28}{29} + 35 \times \frac{1}{29}$$

• 
$$m = 29$$
,  $m_{-1} = 28$ ,  $m_{35} = 1$ 

$$(-1) \times \frac{m_{-1}}{m} + 35 \times \frac{m_{35}}{m}$$

¿Qué esperamos que pase con el límite de la ganancia promedio?

$$\begin{array}{rcl} promedio(m) & = & \frac{1}{m} \left[ (-1) \times m_{-1} + 35 \times m_{35} \right] \\ & = & (-1) \times \frac{m_{-1}}{m} + 35 \times \frac{m_{35}}{m} \\ \\ \frac{m_{-1}}{m} & \longrightarrow & p(-1) = \frac{36}{37} \quad \text{y} \quad \frac{m_{35}}{m} & \longrightarrow & p(35) = \frac{1}{37} \\ \\ promedio(m) & \longrightarrow & (-1) \times p(-1) + 35 \times p(35) \\ & = & (-1) \times \frac{36}{37} + 35 \times \frac{1}{37} \\ & = & \frac{-1}{37} \end{array}$$

### Esperanza - Definición

- X variable aleatoria: valor del experimento (X : Ganancia)
- $x_i$  posibles valores que toma X.  $(\{-1,35\})$
- ullet  $p(x_i)$  probabilidad de obtener el valor  $x_i$

• 
$$p(x_i) \ge 0$$
,  $p(x_1) + p(x_2) + \cdots = \sum p(x_i) = 1$ 

| Posibles valores | $x_1$      | $x_2$      | $x_3$      |  |
|------------------|------------|------------|------------|--|
| Probabilidad     | $p_X(x_1)$ | $p_X(x_2)$ | $p_X(x_3)$ |  |

$$\mathbb{E}(X) \qquad := x_1 p_X(x_1) + x_2 p_X(x_2) + \dots$$
$$= \sum_{i>1} x_i p_X(x_i)$$

#### Vocabulario

$$\mathbb{E}(X) = \mu_X = \sum_{i \ge 1} x_i p(x_i) \quad (\mu)$$

- Esperanza
- Media
- "Valor esperado "\*
- \*  $\mathbb{E}(X)$  puede no estar en el rango de X.

### Esperanza- Definición

Dada una variable aleatoria discreta X con  $\mathbb{R}g(X)=\{x_1,x_2,\cdots\}$  y función de probabilidad puntual  $p_X(x_i)$ , definimos la esperanza de X mediante la fórmula,

$$\mathbb{E}(X) = \sum_{i \ge 1} x_i \, p_X(x_i) \,,$$

siempre que  $\sum_{i\geq 1} |x_i| \; p_X(x_i) < \infty.$ 

### Esperanza - Ejemplo

• Dada la v.a. X con función de probabilidad dada por la siguiente tabla, calcule  $\mathbb{E}(X)$ .

| t        | -5   | -2   | -1   | 1    | 2    | 6    |
|----------|------|------|------|------|------|------|
| $p_X(t)$ | 2/24 | 6/24 | 4/24 | 1/24 | 7/24 | 4/24 |

### Esperanza - Ejemplo

• Dada la v.a. X con función de probabilidad dada por la siguiente tabla, calcule  $\mathbb{E}(X)$ .

|   | t        | -5   | -2   | -1   | 1    | 2    | 6    |
|---|----------|------|------|------|------|------|------|
| í | $p_X(t)$ | 2/24 | 6/24 | 4/24 | 1/24 | 7/24 | 4/24 |

Veamos como hacerlo en R

rango 
$$<$$
  $c(-5, -2, -1, 1, 2, 6)$   
puntuales  $<$   $c(2/24, 6/24, 4/24, 1/24, 7/24, 4/24)$   
esperanza  $<$  sum (rango\*puntuales)

# $\mathbb{E}\{g(X)\}$ - Ejemplo

| t        | -5   | -2   | -1   | 1    | 2    | 6    |
|----------|------|------|------|------|------|------|
| $p_X(t)$ | 2/24 | 6/24 | 4/24 | 1/24 | 7/24 | 4/24 |

$$Y := X^2$$

| u        | 1    | 4     | 25   | 36   |
|----------|------|-------|------|------|
| $p_Y(u)$ | 5/24 | 13/24 | 2/24 | 4/24 |

## Lema (The Rule of the Lazy Statistician, L. W.)

Sea X una variable aleatoria que toma los valores  $x_i$  con función de probabilidad puntual dada por  $p_X(x_i)$ . Entonces, para toda función g tenemos que

$$\mathbb{E}\{g(X)\} = \sum_{i>1} g(x_i) \ p_X(x_i) \ .$$

### **Ejemplos**

• Dada la v.a. X con función de probabilidad dada por la siguiente tabla, calcule  $\mathbb{E}(X)$ .

| t        | -5   | -2   | -1   | 1    | 2    | 6    |
|----------|------|------|------|------|------|------|
| $p_X(t)$ | 2/24 | 6/24 | 4/24 | 1/24 | 7/24 | 4/24 |

### **Ejemplos**

• Dada la v.a. X con función de probabilidad dada por la siguiente tabla, calcule  $\mathbb{E}(X)$ .

| t        | -5   | -2   | -1   | 1    | 2    | 6    |
|----------|------|------|------|------|------|------|
| $p_X(t)$ | 2/24 | 6/24 | 4/24 | 1/24 | 7/24 | 4/24 |

Veamos como hacerlo en R

```
\begin{array}{lll} {\sf rango} & <& {\bf c} \left(-5,-2,-1,1,2,6\right) \\ {\sf puntuales} & <& {\bf c} \left(2/24,6/24,4/24,1/24,7/24,4/24\right) \\ {\sf esperanza\_del\_cuadrado} & <& {\bf sum} \ \left({\sf rango}^2*{\sf puntuales}\right) \\ {\sf esperanza\_del\_cubo} & <& {\bf sum} \ \left({\sf rango}^3*{\sf puntuales}\right) \\ {\sf esperanza\_del\_seno} & <& {\bf sum} \ \left({\sf sin} \left({\sf rango}\right)*{\sf puntuales}\right) \\ \end{array}
```

## Propiedades de la Esperanza

#### Corolario 1:

$$\mathbb{E}[aX + b] = a\mathbb{E}(X) + b$$

Más en general, aún:

#### Corolario 2:

$$\mathbb{E}[(g_1(X) + g_2(X))] = \mathbb{E}[(g_1(X))] + \mathbb{E}[g_2(X)].$$

#### Destaquemos que:

- $\mathbb{P}(X=c)=1$ , entonces  $\mathbb{E}(X)=c$ .
- si  $X \ge 0$ , entonces  $\mathbb{E}(X) \ge 0$ .
- si  $X \ge 0$  y  $\mathbb{E}(X) = 0$ , entonces X = 0.

## Esperanza de famosas

- $X \sim \mathcal{B}(n,p)$  entonces  $\mathbb{E}(X) = np$
- $X \sim \mathcal{P}(\lambda)$ , entonces  $\mathbb{E}(X) = \lambda$

## Esperanza- Otra Interpretación

- Dada X discreta que toma valores  $\{x_1, x_2, \cdots, x_k\}$ . queremos resumir en único número a la variable aleatoria.
- Buscamos entonces la 'mejor'constante a que 'resuma'o 'aproxime'a nuestra variable aleatoria.
- ¿Qué quiere decir 'mejor aproxime '? ¿Cómo comparo diferentes valores de *a*?

## Esperanza- Otra Interpretación

- Dada X discreta que toma valores  $\{x_1, x_2, \cdots, x_k\}$ . queremos resumir en único número a la variable aleatoria.
- Buscamos entonces la 'mejor'constante a que 'resuma'o 'aproxime'a nuestra variable aleatoria.
- ¿Qué quiere decir 'mejor aproxime '? ¿Cómo comparo diferentes valores de *a*?

| t        | -1   | 1    | 4    | 5    | 7    | 10   |
|----------|------|------|------|------|------|------|
|          |      |      |      |      |      |      |
| $p_X(t)$ | 2/24 | 6/24 | 4/24 | 1/24 | 7/24 | 4/24 |

#### Problema

- Dada X discreta que toma valores  $\{x_1, x_2, \cdots, x_k\}$ , con puntual  $p_X$ , queremos resumir en único número a la variable aleatoria.
- Buscamos entonces la 'mejor'constante a que 'resuma'a nuestra variable aleatoria.
- ¿Qué quiere decir 'mejor aproxime '? ¿Cómo comparo diferentes valores de *a*?

| t        | -1     | 1    | 4     | 5    | 7     | 10     |
|----------|--------|------|-------|------|-------|--------|
| t-a      | -1 - a | 1-a  | 4 - a | 5-a  | 7 - a | 10 - a |
| $p_X(t)$ | 2/24   | 6/24 | 4/24  | 1/24 | 7/24  | 4/24   |

#### Problema

- Dada X discreta que toma valores  $\{x_1, x_2, \cdots, x_k\}$ . queremos resumir en único número a la variable aleatoria.
- Buscamos entonces la 'mejor'constante a que 'resuma'o 'aproxime'a nuestra variable aleatoria.
- ¿Qué quiere decir 'mejor aproxime '? ¿Cómo comparo diferentes valores de a?
   Reemplazamos al valor absoluto por algo más suave

| x           | -1         | 1         | 4         | 5         | 7         | 10         |
|-------------|------------|-----------|-----------|-----------|-----------|------------|
| $(x - a)^2$ | $(-1-a)^2$ | $(1-a)^2$ | $(4-a)^2$ | $(5-a)^2$ | $(7-a)^2$ | $(10-a)^2$ |
| $p_X(x)$    | 2/24       | 6/24      | 4/24      | 1/24      | 7/24      | 4/24       |

#### Problema

| x         | -1         | 1         | 4         | 5         | 7         | 10           |
|-----------|------------|-----------|-----------|-----------|-----------|--------------|
| $(x-a)^2$ | $(-1-a)^2$ | $(1-a)^2$ | $(4-a)^2$ | $(5-a)^2$ | $(7-a)^2$ | $(10 - a)^2$ |
| $p_X(x)$  | 2/24       | 6/24      | 4/24      | 1/24      | 7/24      | 4/24         |

#### Consideremos

$$H(a) = (-1-a)^{2} \frac{2}{24} + (1-a)^{2} \frac{6}{24} + (4-a)^{2} \frac{4}{24} + (5-a)^{2} \frac{1}{24} + (7-a)^{2} \frac{7}{24} + (10-a)^{2} \frac{4}{24}$$

• Implementar la función H(a) y graficarla entre -3 y 11. ¿Qué forma tiene H(a)? ¿Dónde alcanza su mínimo?

## Gráfico de H(a)



#### En general

Dada X discreta que toma valores  $\{x_1, x_2, \cdots, x_k\}$  con probabilidad  $p_X(x_i)$ 

$$H(a) = \sum_{i=1}^{k} (x_i - a)^2 p_X(x_i) .$$

Buscamos entonces el valor de a que minimiza la función H(a).

### En general

Dada X discreta que toma valores  $\{x_1, x_2, \cdots, x_k\}$  con probabilidad  $p_X(x_i)$ 

$$H(a) = \sum_{i=1}^{k} (x_i - a)^2 p_X(x_i) .$$

Buscamos entonces el valor de a que minimiza la función H(a).  $H^{\prime}(a)=0$ .

$$H'(a) = \sum_{i=1}^{k} -2(x_i - a) p_X(x_i) ,$$

por lo tanto, H se minimiza en

$$a = \sum_{i=1}^k x_i \, p_X(x_i) \, .$$

Tenemos así que  $a = \mathbb{E}(X)$  es la constante que mejor aproxima a nuestra variable aleatoria X.

## ¿Qué precio pagamos?

$$H(a) = \sum_{i=1}^{k} (x_i - a)^2 p_X(x_i) .$$

¿Cuánto se paga por reemplazar a X por  $\mu_X = \mathbb{E}(X)$ ?

$$H(\mu_X) = \sum_{i=1}^k (x_i - \mu_X)^2 p_X(x_i) .$$

Notemos que usando The Rule of the Lazy Statistician

$$H(\mu_X) = \mathbb{E}[(X - \mu_X)^2]$$

que recibe el nombre de varianza de X.

#### Varianza

• X v.a.  $\mathbb{E}(X) = \mu$ . La varianza de X, está definida mediante la fórmula

$$\mathbb{V}(X) = \mathbb{E}\left[ (X - \mu)^2 \right].$$

Fórmula alternativa:

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \left(\mathbb{E}(X)\right)^2.$$

X v.a. Desvío estandar:

$$SD(X) = \sqrt{\mathbb{V}(X)}$$

### Varianza - Ejemplo

• Dada la v.a. X con función de probabilidad dada por la siguiente tabla, calcule  $\mathbb{E}(X)$ .

| ſ | t        | -5   | -2   | -1   | 1    | 2    | 6    |
|---|----------|------|------|------|------|------|------|
| Ì | $p_X(t)$ | 2/24 | 6/24 | 4/24 | 1/24 | 7/24 | 4/24 |

### Varianza - Ejemplo

• Dada la v.a. X con función de probabilidad dada por la siguiente tabla, calcule  $\mathbb{E}(X)$ .

|   | t        | -5   | -2   | -1   | 1    | 2    | 6    |
|---|----------|------|------|------|------|------|------|
| İ | $p_X(t)$ | 2/24 | 6/24 | 4/24 | 1/24 | 7/24 | 4/24 |

Veamos como hacerlo en R

```
rango <- \mathbf{c}(-5,-2,-1,1,2,6) puntuales <- \mathbf{c}(2/24,6/24,4/24,1/24,7/24,4/24) esperanza <- \mathbf{sum} (rango*puntuales) esperanza_del_cuadrado <- \mathbf{sum} (rango^2*puntuales) varianza <- esperanza_del_cuadrado - esperanza^2
```

## Esperanza y Varianza de famosas

• 
$$X \sim \mathcal{B}(n,p)$$
 entonces  $\mathbb{E}(X) = np$ ,  $\mathbb{V}(X) = np(1-p)$ 

$$\bullet \ \, X \sim \mathcal{P}(\lambda) \text{, entonces } \mathbb{E}(X) = \lambda \text{, } \mathbb{V}(X) = \lambda$$

# $\mathbb{V}(X) = 0.3333 \text{ y } \mathbb{V}(Y) = 0.020833$



## **Propiedades**

1. 
$$\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$$
.

2. 
$$\mathbb{V}(X) = 0 \rightarrow X = \mathbb{E}(X)$$

3. 
$$SD(aX) = |a|SD(X)$$

Videos Clase 5 - Variables Aleatorias Continuas

#### Densidad

 $f: \mathbb{R} \to \mathbb{R}$  se dice densidad si

- $\bullet \ f(u) \geq 0 \ {\rm para} \ {\rm todo} \ u \in \mathbb{R}$
- $\bullet \int_{-\infty}^{+\infty} f(u) \, du = 1$

En esta materia, las densidades integran uno.

### Densidades



### Densidades



#### **Densidades**



#### Variables Aleatorias Continuas

Una variable aleatoria X se dice continua sii existe una densidad

$$f_X: \mathbb{R} \to \mathbb{R}_{\geq 0}$$

tal que

$$\mathbb{P}(X \in A) = \int_A f_X(u) \, du.$$

En particular,

$$F_X(t) = \mathbb{P}(X \le t) = \int_{-\infty}^t f_X(u) \ du$$
.

En tal caso, diremos que  $f_X$  es la función de densidad de la variable aleatoria X.

#### Variables Aleatorias Continuas

Una variable aleatoria X se dice continua sii existe una densidad

$$f_X:\mathbb{R} o \mathbb{R}_{\geq 0}$$
 tal que  $\mathbb{P}(X \in A) = \int_A f_X(u) \, du.$ 

Dibujamos?

#### Variables aleatorias continuas

- Función de densidad:  $f_X: \mathbb{R} \to \mathbb{R}_{>0}$
- $\mathbb{P}(X=t)=0$  para todo t.
- $\mathbb{P}(X \in A) = \int_A f_X(u) du$ .
- Función de distribución acumulada:

$$F_X(t) = \mathbb{P}(X \le t) = \int_{-\infty}^t f_X(u) \ du$$





## Importante: $F_X$ vs. $f_X$ - ida y vuelta a mano

- 1. Si conozco  $f_X$  recupero la acumulada haciendo  $F_X(t) = \int_{-\infty}^{\infty} f_X(u) \ du$
- 2. Si conozco  $F_X$ , recupero la densidad  $f_X$  haciendo  $f_X(x) = F_X^\prime(x)$

Dibujamos?

### Ejemplo:

Una barra de 12 pulgadas sujeta por ambos extremos, debe someterse a una creciente cantidad de esfuerzo hasta que se rompa. Sea Y= distancia desde el extremo izquierdo hasta dónde ocurre la rotura. Supongamos que la densidad de Y es la siguiente

$$f_Y(y) = \begin{cases} ay\left(1 - \frac{y}{12}\right) & \text{si } 0 \le y \le 12 \\ 0 & \text{en otro caso.} \end{cases}$$

- 1. Hallar a.
- 2. Calcular  $P(Y \le 4), P(6 < Y); P(4 \le Y < 6)$ .
- 3. Hallar  $F_Y(y)$ .

## Densidades - Histogramas (¿Qué? - Volveremos...)



#### Percentiles

Dada una variable aleatoria continua X y dado  $p\in (0,1)$  definimos el 100p- (o p-ésimo) ésimo percentil de X como el valor  $x_p$  que verifica

$$F_X(x_p) = p.$$

- Cuando p=1/2, el valor para el cual la acumulada vale 1/2 se dice mediana.
- Los percentiles asociados a p=1/4 y p=3/4 se dicen cuartiles.

#### **Percentiles**

Dada una variable aleatoria continua X y dado  $p\in (0,1)$  definimos el 100p- ésimo percentil de X como el valor  $x_p$  que verifica

$$F_X(x_p) = p.$$

Dibujamos?

### Esperanza

Dada una variable aleatoria continua X con función de densidad  $f_X$ , definimos la esperanza de X como

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} u \, f_X(u) \, du \, .$$

siempre que  $\int_{-\infty}^{\infty} |u| f_X(u) du < \infty$ .

## Ejemplo de Esperanza

$$f_Y(y) = \begin{cases} \frac{1}{24}y\left(1 - \frac{y}{12}\right) & \text{si } 0 \le y \le 12\\ 0 & \text{en otro caso.} \end{cases}$$

Calcular  $\mathbb{E}(Y)$ 

### Esperanza - Propiedad

Lema (The Rule of the Lazy Statistician, L. W.) Sea X una variable aleatoria continua con función de densidad  $f_X$ . Entonces, para toda función g tenemos que

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du.$$

## **Aplicación**

$$f_Y(y) = \begin{cases} \frac{1}{24}y\left(1 - \frac{y}{12}\right) & \text{si } 0 \le y \le 12\\ 0 & \text{en otro caso.} \end{cases}$$

Calcular  $\mathbb{E}(Y^2)$ .

## Esperanza y Varianza: sigue todo igual

- Definición:  $\mathbb{E}(X) = \int u f_X(u) du$ .
- Propiedad:  $\mathbb{E}[g(X)] = \int g(u) f_X(u) du$ .
- Corolario: Linealidad  $\mathbb{E}[aX + b] = a\mathbb{E}(X) + b$ .
- Definición:  $\mathbb{V}(X) = \mathbb{E}[(X \mu_X)^2]$ , donde  $\mu_X = \mathbb{E}(X)$ , medida de dispersión.
- $\bullet \ \operatorname{Propiedad:} \ \mathbb{V}(X) = \mathbb{E}[X^2] \mu_X^2$

$$\mathbb{V}(aX+b) = a^2 \mathbb{V}(X)$$

 Desvío estandar:  $SD(X) = \sqrt{V(X)}$ , SD(aX+b) = |a|SD(X)

## La función indicadora - Ejemplo

$$f_Y(y) = \begin{cases} \frac{1}{24}y\left(1 - \frac{y}{12}\right) & \text{si } 0 \le y \le 12\\ 0 & \text{en otro caso.} \end{cases}$$

Función Indicadora (del intervalo [0, 12])

$$I_{[0,12]}(y) = \left\{ \begin{array}{ll} 1 & \text{ si } y \in [0,12] \\ \\ 0 & \text{ en otro caso.} \end{array} \right.$$

Escribimos  $f_Y$  de manera simplificada

$$f_Y(y) = \frac{1}{24}y\left(1 - \frac{y}{12}\right)I_{[0,12]}(y)$$

## La función indicadora - Ejemplo

#### Función Indicadora (del intervalo A)

$$I_A(x)=\left\{egin{array}{ll} 1 & ext{ si } x\in A \ \\ 0 & ext{ en otro caso.} \end{array}
ight.$$
  $I_{\{x\in A\}}=\left\{egin{array}{ll} 1 & ext{ si } x\in A \ \\ 0 & ext{ en otro caso.} \end{array}
ight.$ 

Videos Clase 6 - Variables Aleatorias Continuas Famosas

#### Continuas famosas: Motivación Uniforme

¿Qué hace el comando rnd (random) de la calculadora?

#### Continuas famosas: Uniforme

• Densidad: existen a < b de forma tal que

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{si } a \le x \le b \\ 0 & \text{caso contrario.} \end{cases}$$

Notación con indicadora  $f_X(x) = \frac{1}{b-a}I_{[a,b]}(x)$ 



#### Uniforme - Acumulada

- Densidad:  $f_X(x) = \frac{1}{b-a} I_{[a,b]}(x)$ , a < b.
- La acumulada:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

Dibujamos?

#### Uniforme - Acumulada

• densidad: existen a < b de forma tal que

$$f_X(x) = \frac{1}{b-a} I_{[a,b]}(x)$$

$$F_x(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } a \le x \le b \\ 1 & \text{si } x > b. \end{cases}$$





### Uniforme - Esperanza y Varianza

• Densidad: existen a < b de forma tal que

$$f_X(x) = \frac{1}{b-a} I_{[a,b]}(x)$$

• Esperanza y varianza del uniforme.

## Uniforme - Esperanza y Varianza

### Uniforme - Percentiles





#### Uniforme - Resumen.

• densidad: existen a < b de forma tal que

$$f_X(x) = \frac{1}{b-a} I_{[a,b]}(x)$$

$$\mathbb{E}(X) = \frac{a+b}{2} \quad \mathbb{V}(X) = \frac{(b-a)^2}{12}$$

• Notación:  $X \sim \mathcal{U}[a,b]$ .





#### La uniforme en R

- densidad: dunif(x,a,b)=  $f_X(x)$ , cuando  $X \sim \mathcal{U}(a,b)$ .
- acumulada: punif(x,a,b)=  $\mathbb{P}(X \leq x)$
- simulación I : runif(1,a,b) genera un posible resultado de X, cuando  $X \sim \mathcal{U}(a,b)$
- runif(1,0,1) es un random en el (0,1)
- simulación II (muchas): runif(N,a,b) genera N posibles resultados de X,  $X \sim \mathcal{U}(a,b)$

## Continuas famosas: Exponencial

• Densidad: $\lambda > 0$  de forma tal que

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x).$$



### Exponencial - Acumulada

ullet Densidad: existe  $\lambda>0$  tal que

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x).$$

• La acumulada:

$$F_X(x) = \int_{-\infty}^x f_X(t) \ dt$$

Dibujamos?

### Exponencial - Acumulada

• Densidad: existe  $\lambda > 0$  tal que

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x).$$

• La acumulada:

$$F_x(x) = \left\{ \begin{array}{ll} 0 & \text{si } x < 0 \\ 1 - e^{-\lambda x} & \text{si } x \geq 0 \end{array} \right.$$





## Propiedad - pérdida de memoria

Propiedad: perdida de memoria. P(X>s+t|X>t)=P(X>s)

### Exponencial - Esperanza y Varianza

ullet Densidad: existen a < b de forma tal que

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x).$$

• Esperanza y varianza de la exponencial.

## Exponencial - Esperanza y Varianza

# Exponencial - Percentiles





### Exponencial - Resumen

• densidad: $\lambda > 0$  de forma tal que

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x).$$

•  $X \sim \mathcal{E}(\lambda)$ .





• Notación:  $X \sim \mathcal{E}(\lambda)$ ,

$$\mathbb{E}(X) = \frac{1}{\lambda} \quad \mathbb{V}(X) = \frac{1}{\lambda^2}$$

• Propiedad: perdida de memoria.

$$P(X > s + t | X > t) = P(X > s)$$

### La exponencial en R

- densidad:  $dexp(x,lambda) = f_X(x)$ , cuando  $X \sim \mathcal{E}(lambda)$ .
- acumulada:  $pexp(x,lambda) = \mathbb{P}(X \leq x)$
- ullet simulación I : rexp(1,lambda) genera un posible resultado de X, cuando  $X\sim \mathcal{E}(\mathsf{lambda})$
- simulación II (muchas): rexp(N,lambda) genera N posibles resultados de X,  $X \sim \mathcal{E}(\text{lambda})$

### Normal: Ejemplos (Miller)

- Nivel de iones de sodio en orina (usando un electrodo selectivo)
- Concentración de mercurio en una gas comercial
- Concentración de plomo en el torrente sanguíneo de niños de una escuela cercana a ruta de gran caudal
- El producto de solubilidad del sulfato de bario

# LA normal (estandar)

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$



# LA normal (estandar)

Densidad Normal estandar

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

Función de distribución acumulada

$$F_Z(z) = \int_{-\infty}^z f_Z(u) du$$

no se puede calcular analíticamente!!!!!

- Hay tabla con valores de  $F_Z(u)$  (con aproximaciones numéricas)
- $\phi(z) = F_Z(z)$  se llama función phi.

# Normal estandar: densidad y acumulada





#### Distribucion Normal

Z normal estandart si

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$

- $f_Z$  simétrica en el origen:  $f_Z(z) = f_Z(-z)$
- Siendo  $f_Z$  simétrica, tenemos que  $F_Z(-u) = 1 F_Z(u)$
- $F_Z(z) = \int_{-\infty}^z f_Z(u) du$  no se puede calcular.
- Hay tabla con valores de  $F_Z(u)$  para u > 0.
- $\phi(z) = F_Z(z)$  se llama función phi.
- $\mathbb{E}(Z) = 0$ ,  $\mathbb{V}(Z) = 1$ .

X=3Z+1 - Hallar la densidad de X

X=3Z+1 - Hallar la densidad de X



$$X = 3Z + 1$$

• 
$$F_X(x) =$$

• 
$$f_X(x) =$$

• 
$$\mathbb{E}(X) =$$

$$\bullet$$
  $V(X) =$ 

# Normal $\mathcal{N}(\mu, \sigma^2)$

ullet Z normal estandar, Sea  $X:=\sigma Z+\mu$ 

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

- $F_X(x) = \phi\left((x-\mu)/\sigma\right)$
- $\mathbb{E}(X) = \mu$ ,  $\mathbb{V}(X) = \sigma^2$ .
- X normal con media  $\mu$  y desvío  $\sigma$  (o varianza  $\sigma^2$ ) :  $X \sim \mathcal{N}(\mu, \sigma^2)$ .
- $dnorm(x, mu, sigma) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- $pnorm(x, mu, sigma) = P(X \le x)$ .
- $X \sim \mathcal{N}(\mu, \sigma^2)$

#### Continuas famosas: Normal



#### Continuas famosas: Normal





### Regla Normal



### Para pensar

Si  $X \sim \mathcal{N}(\mu, \sigma^2)$ , ¿qué distribución tiene Y = aX + b?

#### Estandarización: Z- scores

- $X \sim \mathcal{N}(\mu, \sigma^2)$
- express X in terms of its deviation from the mean in units of the standard deviation (Miller)
- expresar X en términos de su desviación respecto de su media en unidades de desvío estandard

$$\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1) \equiv \frac{X-\mu}{\sigma} = Z, \ Z \sim \mathcal{N}(0,1)$$

# Ojo! no toda campana es normal



#### Modelo de mediciones

- 1.  $\mu$ : magnitud que se desea determinar.
- 2. X: resultado de una medición.
- 3.  $\varepsilon$  representa el error de la medición.
- 4. La medición se relaciona con el error y la magnitud de interés mediante el modelo

$$X=\mu+\varepsilon$$

- 5. Error (solo) aleatorio :  $\mathbb{E}(\varepsilon) = 0$ .
- 6.  $\sigma^{2}=Var\left( \varepsilon\right)$  representa la precisión del método de medición empleado.

Para pensar: Halle  $\mathbb{E}(X)$  y Var(X).

# Modelo de medición - Errores Normales- Ejemplo Juguete

$$X = \mu + \varepsilon$$
,  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ 

1. Obtenga la distribución de X, su esperanza y su varianza.

Asuma que la desviación estándar  $\sigma = 0.2$  y que  $\mu = 3$ 

- 2. Calcule la probabilidad de que la medición X diste de la verdadera magnitud  $\mu=3$  en menos de 0.3 unidades.
- 3. ¿Fué necesario conocer el valor de  $\mu$  para realizar este cálculo?

#### Modelo de medición - Errores Normales

$$X = \mu + \varepsilon$$
,  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ 

- 1. Obtenga la distribución de X, su esperanza y su varianza.
- 2. Asuma que la desviación estándar  $\sigma=0.2$ . Calcule la probabilidad de que la medición diste de la verdadera magnitud  $\mu$  en menos de 0.3 unidades. Note que no fue necesario conocer el valor de  $\mu$  para realizar este cálculo.
- 3. Obtenga una expresión para la probabilidad de que la medición diste de la verdadera magnitud  $\mu$  en menos de 0.3 unidades en función de  $\sigma$ . Estudie su monotonía. Interprete este comportamiento.