CS 5112 Closest Pair of Points TSlack T

Closest Pair of Points

Input: list P of
$$(x,y)$$
 points

Output: Points a onl b with

min $d(a,b)$

$$d(a,b) = ((a_x - b_x)^2 + (a_y - b_y)^2)^{1/2}$$

Ideas

n objects
$$\Rightarrow$$
 $\binom{n}{2}$ pairs of them
$$\binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$$

$$\binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$$

2. Pluide and Conque:

Algorithm

Closest-Pair1(P)

If
$$|P| = 2$$
 then return P
 $P_x = \text{sort } P$ by $x\text{-coord}$
 $L = \text{first } n/2 \text{ points in } P_x$
 $R = \text{remaining points in } P_x$
 $D = \text{vertical line dividing } L \text{ and } R$

$$(a_L, b_L) = \text{Closest-Pair1}(L)$$

$$(a_R, b_R) = \text{Closest-Pair1}(R)$$
 $\delta = \min(d(a_L, b_L), d(a_R, b_R))$
 $S = \text{points in } \delta\text{-strip around } D$
 $S_y = S \text{ sorted by } y\text{-coordinate}$

$$(a_S, b_S) = \text{closest points in } S$$

$$- O(1|y) = O(y)$$

(compare each point in S to next 11 positions) return closest pair from (a_L, b_L) , (a_R, b_R) , (a_S, b_S)

 $T(n) = 2T(\frac{n}{2}) + O(n\log n)$ $\longrightarrow O(n\log^2 n)$

A little bit better ...

Closest-Pair2(Px, Py)

Px is Psorted by x-coord

Py is Psorted by y-coord If $|P_x| = 2$ then return P_x $L_x = \text{first } n/2 \text{ points in } P_x$ $R_x = \text{remaining points in } P_x$ $L_y = L_x$ sorted by y-coord (filtered from P_y) $R_y = R_x$ sorted by y-coord (filtered from P_y) $D = \text{vertical line dividing } L_x \text{ and } R_x$ $(a_L, b_L) = \text{Closest-Pair2}(L_x, L_y)$ $(a_R, b_R) = \text{Closest-Pair2}(R_x, R_y)$ $\delta = \min(d(a_L, b_L), d(a_R, b_R))$ $S_{\nu} = \text{points in } \delta \text{-strip around } D$ sorted by y-coordinate (filtered from P_y) $(a_S, b_S) =$ closest points in S

(compare each point in S to next 11 positions) return closest pair from (a_L, b_L) , (a_R, b_R) , (a_S, b_S)

 $T(n) = 2T(\frac{1}{2}) + O(n)$ $O(n \log n)$

