Сдать задание нужно до 1 апреля 9:00.

Контест: https://contest.yandex.ru/contest/12173/enter/

Ведомость:

https://docs.google.com/spreadsheets/d/1YOw6mLCwHihoDzg9Ot7SahguiY1dx3Y4BkEpynn6z2s

Задача 1. «Города» (3 балла)

Требуется отыскать самый выгодный маршрут между городами. Требуемое время работы O((N+M)logN), где N-количество городов, M-известных дорог между ними.

Оптимизируйте ввод

Формат входных данных.

Первая строка содержит число N – количество городов.

Вторая строка содержит число М - количество дорог.

Каждая следующая строка содержит описание дороги (откуда, куда, время в пути).

Последняя строка содержит маршрут (откуда и куда нужно доехать).

Формат выходных данных.

Вывести длину самого выгодного маршрута.

in	out
6	9
9	
0 3 1	
0 4 2	
127	
1 3 2	
1 4 3	
153	
253	
3 4 4	
3 5 6	
0 2	

Задача 2. «Trade Arbitrage» (3 балла)

Необходимо написать торгового советника для поиска арбитража.

Определение

Арбитраж - это торговля по цепочке различных валют в надежде заработать на небольших различиях в коэффициентах. Например, есть следующие курсы валют (на 03.05.2015):

GBP/USD: 0.67 RUB/GBP: 78.66 USD/RUB: 0.02

Имея 1\$ и совершив цикл USD->GBP->RUB->USD, получим 1.054\$. Таким образом заработав

5.4%.

Время работы – O(VE).

Формат входных данных.

Первая строка содержит число N – количество возможных валют (размер таблицы котировок) Далее следует построчное представление таблицы. Диагональные элементы (i, i) пропущены (подразумевается, что курс валюты к себе же 1.0).

В элементе таблицы (i, j) содержится обменный курс i->j.

Если обмен в данном направлении не производится, то -1.

Формат выходных данных.

Выведите YES, если арбитраж есть, и NO, иначе.

in			out
4			YES
	32.1	1.50 78.66	
0.03		0.04 2.43	
0.67	21.22	51.89	
0.01	-1	0.02	

Задача 3. Восьминашки. (3 балла)

«Восьминашки» – упрощенный вариант известной головоломки «Пятнашки». Восемь костяшек, пронумерованных от 1 до 8, расставлены по ячейкам игровой доски 3 на 3, одна ячейка при этом остается пустой. За один ход разрешается передвинуть одну из костяшек, расположенных рядом с пустой ячейкой, на свободное место. Цель игры – для заданной начальной конфигурации игровой доски за минимальное число ходов получить выигрышную конфигурацию (пустая ячейка обозначена нулем):

123

456

780

Формат входного файла

Во входном файле содержится начальная конфигурация головоломки – 3 строки по 3 числа в каждой.

Формат выходного файла

Если решение существует, то в первой строке выходного файла выведите минимальное число перемещений костяшек, которое нужно сделать, чтобы достичь выигрышной конфигурации, а во второй строке выведите соответствующую последовательность ходов: L означает, что в результате перемещения костяшки пустая ячейка сдвинулась влево, R − вправо, U − вверх, D − вниз. Если таких последовательностей несколько, то выведите любую из них. Если же выигрышная конфигурация недостижима, то выведите в выходной файл одно число −1.

in	out
	8 RDRULDDR
	22 RDLDRRULLDRUURDDLLURRD

1 2 3 8 0 4 7 6 5	-1
8 0 4	
7 6 5	

Задача 4 а). «Пятнашки» (3 баллов)

Написать алгоритм для решения игры в "пятнашки". Решением задачи является приведение к виду:

```
[ 1 2 3 4 ]
[ 5 6 7 8 ]
[ 9 10 11 12]
[ 13 14 15 0 ]
```

где 0 задает пустую ячейку.

Достаточно найти хотя бы какое-то решение. Число перемещений костяшек не обязано быть минимальным.

Формат входных данных

Начальная расстановка.

Формат выходных данных

Если решение существует, то в первой строке выходного файла выведите минимальное число перемещений костяшек, которое нужно сделать, чтобы достичь выигрышной конфигурации, а во второй строке выведите соответствующую последовательность ходов: L означает, что в результате перемещения костяшки пустая ячейка сдвинулась влево, R − вправо, U − вверх, D − вниз. Если таких последовательностей несколько, то выведите любую из них. Если же выигрышная конфигурация недостижима, то выведите в выходной файл одно число −1.

in	out
1 2 3 4 5 6 7 8 9 10 11 0 13 14 15 12	1
5678	U
9 10 11 0	
13 14 15 12	

Задача является соревновательной. Для участия в соревновании необходимо предоставить решение проходящее контест и выдающее путь максимально близкий к кратчайшему.

15 лучших решений будут награждены дополнительными баллами (максимум +15 баллов).

Задача 4 б). «Пятнашки» (5 баллов)

Как и 3 а), но требуется найти минимальное решение, то есть число перемещений костяшек должно быть минимально.

Задача является соревновательной. Для участия в соревновании необходимо

предоставить решение проходящее контест и выдающее кратчайший путь за минимальное время.

15 лучших решений будут награждены дополнительными баллами (максимум +15 баллов).

Задача 5. Алгоритм Флойда (3 балла)

Полный ориентированный взвешенный граф задан матрицей смежности. Постройте матрицу кратчайших путей между его вершинами. Гарантируется, что в графе нет циклов отрицательного веса.

Формат входного файла

В первой строке вводится единственное число N (1 $\leq N \leq$ 100) — количество вершин графа. В следующих N строках по N чисел задается матрица смежности графа (j-ое число в i-ой строке — вес ребра из вершины i в вершину j). Все числа по модулю не превышают 100. На главной диагонали матрицы — всегда нули.

Формат выходного файла

Выведите N строк по N чисел — матрицу расстояний между парами вершин, где j-ое число в i-ой строке равно весу кратчайшего пути из вершины i в j.

in	out
4	0 5 7 13
0 5 9 100	12 0 2 8
100 0 2 8	11 16 0 7
100 100 0 7	4 9 11 0
4 100 100 0	