$$\begin{array}{c|c} \text{Key chunk } k^{\star} \\ \hline \\ \textbf{Plaintext } p_{\textbf{a}} & \begin{array}{c} \textbf{Sbox} \end{array} \end{array}$$

 $y_a = \mathsf{Sbox}\left(p_a, k^\star\right)$

 $y_a = \mathsf{Sbox}(p_a, k^\star)$

$$\begin{array}{c|c} \text{Key chunk } k^{\star} \\ \hline & I_{a} & \text{Model} \\ \hline & \text{Pr}(\mathbf{Y} + \mathbf{L}) \end{array}$$
 Plaintext p_{a} $\begin{array}{c|c} \mathbf{Sbox} \end{array}$

 $y_a = \mathbf{Sbox}(p_a, k^*)$

If, the adversary gets:

If, the adversary gets:

Exact prediction of the sensitive computation Success rate of 100% with *one* trace Device not secure at all

Exact prediction of the sensitive computation Success rate of 100% with *one* trace Device not secure at all

In general, the adversary gets:

Exact prediction of the sensitive computation Success rate of 100% with *one* trace Device not secure at all

In general, the adversary gets:

How does this translate into SCA security metrics ?

SR: probability to succeed the attack within N_a queries to the target

SR: probability to succeed the attack within N_a queries to the target Secured device with prob. $\geq 1 - \beta$, \Longrightarrow refresh secret every $N_a(\beta)$ use \checkmark

SR: probability to succeed the attack within N_a queries to the target Secured device with prob. $\geq 1-\beta$, \Longrightarrow refresh secret every $N_a(\beta)$ use \checkmark Naive est. of $N_a(\beta)$ is expensive: complexity depends on $N_a(\beta)$ itself x

Can we find surrogate metrics characterizing $N_a(\beta)$?

¹Mangard, Oswald, and Popp, *Power analysis attacks - revealing the secrets of smart cards*²Chérisey et al., "Best Information is Most Successful: Mutual Information and Success Rate in Side-Channel Analysis"

Can we find surrogate metrics characterizing $N_a(\beta)$?

CPA

Using correlation coeff.

$$N_a(\beta) pprox rac{f(\beta)}{
ho^2}$$

Easy to estimate ρ \checkmark Only for univariate, linear \nearrow

¹Mangard, Oswald, and Popp, *Power analysis attacks - revealing the secrets of smart cards*

²Chérisey et al., "Best Information is Most Successful: Mutual Information and Success Rate in Side-Channel Analysis"

Can we find surrogate metrics characterizing $N_a(\beta)$?

CPA

Using correlation coeff.

$$N_a(\beta) \approx \frac{f(\beta)}{\rho^2}$$

Easy to estimate ρ \checkmark Only for univariate, linear \nearrow

General case ²

Using the Mutual Information (MI),

$$N_{\mathsf{a}}(eta) \geq rac{f(eta)}{\mathsf{MI}(\mathrm{Y};\mathbf{L})}$$

MI generalizes ρ \checkmark MI hard to estimate \times

¹Mangard, Oswald, and Popp, *Power analysis attacks - revealing the secrets of smart cards*²Chérisey et al., "Best Information is Most Successful: Mutual Information and Success Rate in Side-Channel Analysis"

Each share y_i drawn uniformly, such that $y = y_0 \star \ldots \star y_d$

Masking amplifies the noise ... exponentially with #shares

MI very hard to compute naively with masking

Curse of dimensionality increases with #shares

Higher #shares \improx lower MI \improx harder est.