Lesson 7 coloring planar graphs

Recall:

X - chromatic #, minimum # of alors needed

δ - m:n:mum dance

△ - maximum degree

clique # - size of largest complete subgraph

clique # $\leq \times \leq \Delta + 1$

if G connected, planar:

V-e+f=Z

3f = 2e

e = 3v - 6

8 4 5

+ inductive proofs, trees, etc.

lets start by finding the chromatic # for some planar graphs

Now try some of your own examples. whats the highest chamatic # you an find?

Assuming you colored correctly, you wont find anythings higher than four colors...

Four Color Theorem: Every planar graph has X= 4.

This proof, however, is keyond the sope of our class. Instead we will look at the next best thing.

Six Glor theorem: Every planar graph has X
eq G.

we will proceed by induction on the number of Vertices.

Base Case: V=1, V=2 are trivial

Inductive Hyp: Assume any planer graph with K Vertices has X = 6

Inductive Step: let G have V=k+1. let V_0 be a variety of degree ≤ 5 . $G'=G_0-V_0$. G' has K variety so it is G' colorable. Color G_1 according to G'. V_0 can be adjacent to at most G' other variety so we can often it with the remaining obsertions. G' is G' colorable so $X \subseteq G$.

Five orlor theorem: Horder but double.

Do some experimenting with edge aloning and face aloning.

Make a statement about face coloring specifically.

Applications of the four color Heorem: Map coloring

Any "Map" (i.e. division of the plane into Contiguous regions) can be colored in (the regions) with 4 colors. How? The dual graph!

Given a planer graph G, the dual of G call it D, has a vertex to represent each face of G and edges represent when faces are adjacent. D will also be planer. Since D is 4-colorable on vertices (by 4 colorable. theorem) he have G is 4-face-colorable.

generalizing planocty...

Let Sg be the surface with g holes...

The plane is equivalent to the sphere So

The genus of a graph G is the smallest number of such that G an be down non-crossing on Sg

Fact: planar graphs are graphs with genus O

So, we can use glavs to put nonplanar graphs into different Categories based on when we can draw them crossing free

so k=13 has genus g=1.

$$V = 6$$
 $f = 3$

eulers formula does not hold in S.... is there a diff one?

Try drawing Ks in Si and counting faces.

Genus g=2 graphs get pretty complicated: K8 embedded on double tows Sz

$$V = 8$$

 $e = 28$
 $f = 18$
 $g = 2$

So we've seen that:

$$V-e+f=2$$
 for $g=0$
 $V-e+f=0$ for $g=1$
 $V-e+f=-2$ for $g=2$

which gives...

Eulers second formula: V-e+f=2-2g