

SEQUENCE LISTING

<110> Anderson, John P.
Basi, Gurigbal
Doane, Minh Tam
Frigon, Normand
John, Varghese
Power, Michael
Sinha, Sukanto
Tatsuno, Gwen
Tung, Jay
Wang, Shuwen
McConlogue, Lisa

<120> Beta-Secretase Enzyme Compositions and Methods

<130> 228-US-NEW2C6

<140> 09/724,569
<141> 2000-11-28

<150> US 09/501,708
<151> 2000-02-10

<150> 60/119,571
<151> 1999-02-10

<150> 60/139,172
<151> 1999-06-15

<160> 104

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1503
<212> DNA
<213> Homo sapiens

<400> 1

atggcccaag ccctgccctg	gctcctgctg	tggatggcg	cgggagtgt	gcctgccac	60
ggcacccagc acggcatccg	gctgcccctg	cgcagcggcc	tggggggcgc	ccccctgggg	120
ctgcggctgc cccgggagac	cgacgaagag	cccgaggagc	ccggccggag	ggcagcttt	180
gtggagatgg tggacaacct	gagggcaag	tccgggcagg	gctactacgt	ggagatgacc	240
gtgggcagcc ccccgcagac	gctcaacatc	ctggtgata	caggcagcag	taactttgca	300
gtgggtgctg ccccccaccc	cttcctgcat	cgctactacc	agaggcagct	gtccagcaca	360
taccgggacc tccggaaggg	tgttatgtg	ccctacaccc	agggcaagtg	ggaaggggag	420
ctgggcaccc acctggtaag	catccccat	ggccccaacg	tcactgtgcg	tgccaaattt	480
gctgccatca ctgaatcaga	caagttttc	atcaacggct	ccaactggga	aggcatctg	540
gggctggcct atgctgagat	tgccaggcct	gacgactccc	tggagcctt	cttgactct	600
ctggtaaacgc agacccacgt	tcccaacctc	tttccctgc	agctttgtgg	tgctggcttc	660
cccctcaacc agtctgaagt	gctggctct	gtcggaggga	gcatgatcat	tggaggatc	720
gaccactcgc tgtacacagg	cagtctctgg	tatacaccca	tccggcggga	gttgtattat	780
gaggtgatca ttgtcggggt	ggagatcaat	ggacaggatc	taaaaatgg	ctgcaaggag	840
tacaactatg acaagagcat	tgtggacagt	ggcaccacca	acttcggtt	gcccaagaaa	900
gtgtttgaag ctgcagtcaa	atccatcaag	gcagcctcct	ccacggagaa	gttccctgat	960
gttttctggc taggagagca	gctgggtgc	tgcaagcag	gcaccacccc	ttgaaacatt	1020
ttccccagtc tctcactcta	cctaattgggt	gaggttacca	accagtcctt	ccgcatcacc	1080
atccttccgc agcaatacct	gcggccagtg	gaagatgtgg	ccacgtccca	agacgactgt	1140

tacaagtttgcacatccaca	gtcatccacggcactgtta	tgggagctgttatcatggag	1200
ggcttctacgttgtttga	tcgggcccgaaaacgaatttgc	ctttgtctgtcagcgcttgc	1260
catgtgcacgatgagtttag	gacggcagcggttgcac	cttgcacatgttgcacatgttgc	1320
gaagactgtgttgcacat	tccacagacaatgttgcacatgttgcacatgttgcacatgttgc	ccctcatgacatgcatgcatgttgcacatgttgcacatgttgc	1380
gtcatggcttgcacat	ccatctgcgccttgcacatgttgcacatgttgcacatgttgcacatgttgc	gttgcacatgttgcacatgttgcacatgttgcacatgttgc	1440
cgtgcctccgtgcctgcg	ccaggcgttgcacatgttgcacatgttgcacatgttgcacatgttgc	gttgcacatgttgcacatgttgcacatgttgc	1500
aag			1503

<210> 2
<211> 501
<212> PRT
<213> Homo sapiens

<400> 2			
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val			
1 5 10 15			
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser			
20 25 30			
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp			
35 40 45			
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val			
50 55 60			
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr			
65 70 75 80			
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser			
85 90 95			
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr			
100 105 110			
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val			
115 120 125			
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp			
130 135 140			
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile			
145 150 155 160			
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp			
165 170 175			
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp			
180 185 190			
Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro			
195 200 205			
Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln			
210 215 220			
Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile			
225 230 235 240			
Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg			
245 250 255			
Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln			
260 265 270			
Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val			
275 280 285			
Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala			
290 295 300			
Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp			
305 310 315 320			
Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr			
325 330 335			
Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val			
340 345 350			
Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg			
355 360 365			
Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala			

370 375 380
Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400
Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
 405 410 415
Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
 420 425 430
Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
 435 440 445
Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
 450 455 460
Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
465 470 475 480
Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp
 485 490 495
Ile Ser Leu Leu Lys
 500

<210> 3
<211> 24
<212> DNA
<213> Homo sapiens

<400> 3
gagagacgar garccwgagg agcc

24

<210> 4
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 4
gagagacgar garccwgaag agcc

24

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 5
gagagacgar garccwgaag aacc

24

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 6
gagagacgar garccwgagg aacc

24

<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 7
agagacgarg arccsgagga gcc 23

<210> 8
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 8
agagacgarg arccsgaaga gcc 23

<210> 9
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 9
agagacgarg arccsgaaga acc 23

<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 10
agagacgarg arccsgagga acc 23

<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 11
cgtcacagrt trtcaaccat ctc 23

<210> 12
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 12
cgtcacagrt trtctaccat ctc 23

<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 13
cgtcacagrt trtccaccat ctc 23

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 14
cgtcacagrt trtcgaccat ctc 23

<210> 15
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 15
cgtcacagrt trtcaaccat ttc 23

<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 16
cgtcacagrt trtctaccat ttc 23

<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 17
cgtcacagrt trtccaccat ttc 23

<210> 18
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 18
cgtcacagrt trtcgaccat ttc 23

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 19
gaggggcagc tttgtggaga 20

<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 20
cagcataggc cagccccagg atgcct 26

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 21
gtgatggcag caatgttggc acgc 24

<210> 22

```

<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)
<223> n = A,T,C or G

<400> 22
gaygargagc cngagga                                17

<210> 23
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)
<223> n = A,T,C or G

<400> 23
gaygargagc cngaaga                                17

<210> 24
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)
<223> n = A,T,C or G

<400> 24
gaygargaac cngagga                                17

<210> 25
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)
<223> n = A,T,C or G

<400> 25

```

```

gaygargaac cngaaga 17
<210> 26
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(15)
<223> n = A,T,C or G

<400> 26
rttrtcnacc atttc 15

<210> 27
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(15)
<223> n = A,T,C or G

<400> 27
rttrtcnacc atctc 15

<210> 28
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)
<223> n = A,T,C or G

<400> 28
tcnaccatyt cnacaaa 17

<210> 29
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)

```

```

<223> n = A,T,C or G

<400> 29
tcnaccatyt cnacgaa 17

<210> 30
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<400> 30
atattctaga gaygargagc cagaaga 27

<210> 31
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<400> 31
atattctaga gaygargagc cggaaga 27

<210> 32
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<400> 32
atattctaga gaygargagc ccgaaga 27

<210> 33
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<400> 33
atattctaga gaygargagc ctgaaga 27

<210> 34
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(30)
<223> n = A,T,C or G

```

<400> 34	
acacgaattc ttrtcnacca tytcaacaaa	30
<210> 35	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(30)	
<223> n = A,T,C or G	
<400> 35	
acacgaattc ttrtcnacca tytgcacaaa	30
<210> 36	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(30)	
<223> n = A,T,C or G	
<400> 36	
acacgaattc ttrtcnacca tytccacaaa	30
<210> 37	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(30)	
<223> n = A,T,C or G	
<400> 37	
acacgaattc ttrtcnacca tytctacaaa	30
<210> 38	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<400> 38	

aagagcccg	ccggagggc	a	21			
<210>	39					
<211>	21					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Degenerate oligonucleotide primer					
<400>	39					
aaagctgcc	ctccggccgg	g	21			
<210>	40					
<211>	26					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Degenerate oligonucleotide primer					
<400>	40					
agctcggtt	gtgaaccgtc	agatcg	26			
<210>	41					
<211>	26					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Degenerate oligonucleotide primer					
<400>	41					
acctacagg	ggggtctttc	attccc	26			
<210>	42					
<211>	1368					
<212>	DNA					
<213>	Homo sapiens					
<400>	42					
gagaccgac	aagagccga	ggagccggc	cggagggca	gctttgtgga	gatggtgac	60
aacctgagg	gcaagtccgg	gcagggctac	tacgtggaga	tgaccgtggg	cagccccccg	120
cagacgctca	acatcctgg	ggatacaggc	agcagtaact	ttgcagtggg	tgctgcccc	180
cacccttcc	tgcatacgta	ctaccagagg	cagctgtcca	gcacataccg	ggacctccgg	240
aagggtgt	atgtgcccta	cacccaggc	aagtggaaag	gggagctggg	caccgacctg	300
gtaagcatcc	cccatggccc	caacgtcact	gtgcgtgcca	acattgctgc	catcaactgaa	360
tcagacaagt	tcttcatcaa	cggctccaac	tgggaaggca	tcctgggct	ggcctatgt	420
gagattgcca	ggcctgacga	ctccctggag	cctttctttg	actctctgg	aaagcagacc	480
cacgttccca	acctcttctc	cctgcagctt	tgtggtgctg	gcttccccct	caaccagct	540
gaagtgctgg	cctctgtcgg	agggagcatg	atcattggag	gtatcgacca	ctcgctgtac	600

acaggcagtc tctggtatac acccatccgg cgggagtggt attatgaggt gatcatttg	660
cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag	720
agcattgtgg acagtggcac caccAACCTT cgTTGCCA agAAAGTGTG tgaagctgca	780
gtcaaATCCA tcaaggcagc cTCCTCCACG gagaAGTTCC ctGATGGTT CTGGCTAGGA	840
gagcagCTGG tgtgCTGGCA agcaggCACC ACCCCTTGGA acATTTCCC agtcatCTCA	900
ctctacctaA tgggtgaggt taccaaccAG tcCTTCCGCA tcaccatCCT tCCGCAGCAA	960
tacctgcggc cagtggaaga tgtggccacG tCCCAAGACG actgttacAA gtttGCCATC	1020
tcacagtcat ccacgggcac tgTTATGGGA gctgttatCA tggaggGCTT ctacgttGTC	1080
tttGatcgGGG cccgAAAACG aattggctt gctgtcAGCG ctGccatgt gcacgatgag	1140
ttcaggacgg cagcggtgga aggCCCTTT gtcacCTTGG acatggaaga ctgtggctac	1200
aacattccac agacagatga gtcaaccCTC atgaccatAG CCTATGTCAT ggctGCCATC	1260
tgcGCCCTCT tcAtgctGCC ACTCTGCCTC ATGGTGTGTC AGTGGCGCTG CCTCCGCTGC	1320
ctgcGCCAGC agcatgatga ctTGCTGAT gacatCTCCC tgctgaag	1368

<210> 43

<211> 456

<212> PRT

<213> Homo sapiens

<400> 43

Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val	
1 5 10 15	
Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val	
20 25 30	
Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp	
35 40 45	
Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu	
50 55 60	
His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg	
65 70 75 80	
Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu	
85 90 95	
Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg	
100 105 110	
Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly	
115 120 125	
Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg	
130 135 140	
Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr	
145 150 155 160	
His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro	
165 170 175	
Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile	
180 185 190	
Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro	
195 200 205	
Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile	
210 215 220	

Asn	Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys
225				230					235						240
Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val
				245					250						255
Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys
				260				265						270	
Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala
				275				280						285	
Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met
				290				295				300			
Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln
				305				310			315			320	
Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr
					325				330					335	
Lys	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val
					340				345					350	
Ile	Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile
					355			360						365	
Gly	Phe	Ala	Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala
					370			375				380			
Ala	Val	Glu	Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr
					385			390			395			400	
Asn	Ile	Pro	Gln	Thr	Asp	Glu	Ser	Thr	Leu	Met	Thr	Ile	Ala	Tyr	Val
						405			410					415	
Met	Ala	Ala	Ile	Cys	Ala	Leu	Phe	Met	Leu	Pro	Leu	Cys	Leu	Met	Val
						420			425					430	
Cys	Gln	Trp	Arg	Cys	Leu	Arg	Cys	Leu	Arg	Gln	Gln	His	Asp	Asp	Phe
						435			440					445	
Ala	Asp	Asp	Ile	Ser	Leu	Leu	Lys								
						450									

<210> 44
<211> 2348
<212> DNA
<213> Homo sapiens

<400> 44															
ccatgccggc	ccctcacagc	cccgccggga	gcccggccc	gctgccccagg	ctggccgcgc										60
ccgtgccat	gtacgggct	ccggatccca	gcctctcccc	tgctcccgta	ctctgcggat										120
ctccccctgac	cgctctccac	agcccgacc	cgggggctgg	cccaggcccc	tgcaggccct										180
ggcgtcctga	tgcccccaag	ctccctctcc	tgagaagcca	ccagcaccac	ccagacttgg										240
gggcaggcgc	caggacgga	cgtggccag	tgcgagccca	gagggcccgaa	aggccggggc										300
ccaccatggc	ccaagccctg	ccctggctcc	tgctgtggat	gggcgcggga	gtgctgcctg										360
cccacggcac	ccagcacggc	atccggctgc	ccctgcgcag	cggcctgggg	ggcgcggcccc										420
tgggctcgc	gctcccccg	gagaccgacg	aagagccgaa	ggagccggc	cgagggggca										480
gctttgtgga	gatgttggac	aacctgaggg	gcaagtccgg	gcagggtctac	tacgtggaga										540
tgaccgtgg	cagcccccgg	cagacgtca	acatccttgt	ggatacaggc	agcagtaact										600
ttgcagtgg	tgctgcccccc	cacccttcc	tgcatcgcta	ctaccagagg	cagctgtcca										660
gcacataccg	ggacctccgg	aagggtgtgt	atgtgcccta	cacccagggc	aagtggaaag										720
gggagctgg	caccgacctg	gtaagcatcc	cccatggccc	caacgtcact	gtgcgtgcca										780
acattgtgc	catcaactgaa	tcagacaagt	tcttcatcaa	cggtccaaac	tgggaaggca										840
tcctggggct	ggccttatgt	gagattggca	ggcctgacga	ctccctggag	ccttttttttgc										900
actctcttgt	aaagcagacc	cacgttccca	acctcttctc	cctgcagctt	tgtgtgtctg										960
gcttccccct	caaccagtct	gaagtgttgg	cctctgtcggt	agggagcatg	atcattggag										1020
gtatcgacca	ctcgctgtac	acaggcagtc	tctgttatac	acccatccgg	cgggagtggt										1080
attatgagg	gatcattgtg	cgggtggaga	tcaatggaca	ggatctgaaa	atggactgca										1140
aggagtacaa	ctatgacaag	agcattgtgg	acagtggcac	caccaacctt	cgtttgcctt										1200
agaaagtgtt	tgaagctgca	gtcaaattcca	tcaaggcagc	ctcctccacg	gagaagttcc										1260
ctgatggtt	ctggcttagga	gagcagctgg	tgtgttggca	agcaggcacc	accccttggaa										1320
acattttccc	agtcatctca	ctctaccaa	tgggtgaggt	taccaaccag	tccttccgca										1380
tcaccatccct	tcccgagcaa	tacctgcggc	cagtgaaaga	tgtggccacg	tcccaagacg										1440

actgttacaa	gtttgccatc	tcacagtcat	ccacgggcac	tgttatggga	gctgttatca	1500
tggagggctt	ctacgttgtc	tttgatcggt	cccgaaaaacg	aattggctt	gctgtcagcg	1560
cttgcgtatgt	gcacgatgag	ttcaggacgg	cagcgggtgga	aggcccttt	gtcaccttgg	1620
acatggaaga	ctgtggctac	aacattccac	agacagatga	gtcaaccctc	atgaccatag	1680
cctatgtcat	ggctgccatc	tgcgccctct	tcatgctgcc	actctgcctc	atggtgtgtc	1740
agtggcgctg	cctccgctgc	ctgcccagc	agcatgatga	ctttgtgtat	gacatctccc	1800
tgctgaagtg	aggaggccca	tgggcagaag	ataagagattc	ccctggacca	cacctccgtg	1860
gttcactttg	gtcacaagta	ggagacacag	atggcacctg	tggccagagc	acctcaggac	1920
cctccccacc	caccaaatgc	ctctgccttgc	atggagaagg	aaaaggctgg	caaggtgggt	1980
tccagggact	gtacctgttag	gaaacagaaa	agagaagaaa	gaagcactct	gctggcggt	2040
atactcttgg	tcacccatcaa	tttaagtccgg	gaaattctgc	tgcttggaaac	ttcagccctg	2100
aacctttgtc	caccattcct	ttaaatttctc	caacccaaag	tattcttctt	ttcttagtt	2160
cagaagtact	ggcatcacac	gcagggttacc	ttggcgtgtg	tccctgtgtt	accctggcag	2220
agaagagacc	aagcttgttt	ccctgtggc	caaagtcagt	aggagaggat	gcacagttt	2280
ctatttgctt	tagagacagg	gactgtataa	acaagctaa	cattggtgca	aagattgcct	2340
cttgaatt						2348

<210> 45
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Flag sequence

<400> 45
Asp Tyr Lys Asp Asp Asp Asp Lys
1 5

<210> 46
<211> 21
<212> PRT
<213> Homo sapiens

<400> 46
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15
Leu Pro Ala His Gly
20

<210> 47
<211> 24
<212> PRT
<213> Homo sapiens

<400> 47
Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala
1 5 10 15
Pro Leu Gly Leu Arg Leu Pro Arg
20

<210> 48
<211> 16080
<212> DNA
<213> Artificial Sequence

<220>
<223> Expression Vector pCEK

<220>
<221> misc_feature

<222> (1)...(16080)
<223> n = A,T,C or G

<400> 48	
ttctcatgtt tgacagctta tcatcgaga tccggcaac gttgtgcatt tgctgcaggc	60
gcagaactgg taggtatgga agatccgatg tacggccag atatacgcgt tgacattgat	120
tattgactag ttattaatag taatcaatta cgggtcatt agttcatagc ccatatatgg	180
agttccgcgt tacataactt acgtaaatg gcccgcctgg ctgaccgccc aacgaccccc	240
gcccatgtac gtcaataatg acgtatgttc ccatactaaac gccaataggg actttccatt	300
gacgtcaatg ggtggactat ttacggtaaa ctggccactt ggcagtacat caagtgtatc	360
atatgccaag tacgccccct attgacgtca atgacggtaa atggccgc tggcattatg	420
cccagtacat gaccttatgg gacttccta cttggcagta catctacgtt ttagtcatcg	480
ctattaccat ggtgatgcgg tttggcagtt acatcaatgg gcgtggatag cggttgact	540
cacgggatt tccaagtctc caccctt acgtcaatgg gagttgttt tggcaccaa	600
atcaacggga ctttccaaaaa tgcgttaaca actccgcggc attgacgca atggccgcgt	660
ggcgtgtacg gtgggaggc tatataagca gagctctcg gctaactaga gaacccactg	720
cttactggct tatcaaatt aatacgactc actataggg gacccaagct ctgttggt	780
cgcgggttag gacaaactct tcgcggctt tccactactt ttggatcgga aaccgcgtgg	840
cctccgaacg gtactccgccc accggggac ctgagcgagt ccgcacatcgac cggatcgaa	900
aacctctcgat ctgttggtt gaggactccc tctcaaaaaggc gggcatgact tctgcgtt	960
gattgtcagt ttccaaaaac gaggaggatt tgatattcac ctggccgcgt gtgatgcctt	1020
tgagggtggc cgcgtccatc tggtcagaaa agacaatctt ttgttgtca agcttgagg	1080
gtggcaggct tgagatctgg ccatacactt gagtgacaat gacatccact ttgccttct	1140
ctccacaggt gtccactccc aggtccaaact gcaggctcgac tctagaccccg gggattctg	1200
cagatatacca tcacactggc cgcactcgcc cccagccgc ccgggagctg cgagccgcga	1260
gctggattat ggtggcctga gcagccaacg cagccgcagg agccggcgc ccttgccc	1320
gcccgccgcg ccgccccccg gggggaccag ggaagccgc accggccgc catggcc	1380
cctcccgcc ccgccccggag cccgcgcgcg ctggccaggc tggccgcgc cgtggcgat	1440
taggggctc cggatcccag cctctccct gctccctgtc tctgggatc tccctgacc	1500
gctctccaca gccccggaccc gggggctggc ccaggccctg gcaggccctg gctgtctgt	1560
gcccccaagc tccctctctt gagaagccac cagcaccacc cagacttgg ggcaggccgc	1620
agggacggac gtgggcccgt gcgagcccg aggccccgaa ggccggggcc caccatggcc	1680
caagccctgc cctggcttctt gctgtggatg ggcgcgggag tgctgcctgc ccacggcacc	1740
cagcacggca tccggctgcc cctgcgcagc ggctctgggg ggcggccctt ggggctgcgg	1800
ctgccccggg agaccgacga agagcccgag gagccggcc ggagggcag ctttgtggag	1860
atggtgaca acctgagggg caagtgggg cagggtact acgtggagat gaccgtggc	1920
agccccccgc agacgctcaa catcctgtt gatacaggca gcagtaactt tgcaactgg	1980
gctgcccccc accccttctt gcatgcgtac taccagaggc agctgtccag cacataccgg	2040
gacctccgga agggtgtgtt tgcgtccatc acccaggcga agtgggaagg ggagctggc	2100
accgacctgg taagcatccc ccatggcccc aacgtcaactg tgcgtgcca cattgctgcc	2160
atcaactgaat cagacaagtt cttcatcaac ggctccaact gggaggcat cttggggctg	2220
gcctatgctg agattgcccgg gcctgacac tccctggagc ctttcttga ctctctggta	2280
aagcagaccc acgttcccaa cctcttctcc ctgcagctt gtgggtctgg cttccccctc	2340
aaccagtctg aagtgtggc ctctgtggc gggagcatga tcaattggagg tatcgaccac	2400
tcgctgtaca caggcagtct ctggatataca cccatccggc gggagtgta ttatgagg	2460
atcattgtgc gggtgagat caatggacag gatctgaaaa tggactgca ggagtacaac	2520
tatgacaaga gcattgtggc cagtgccacc accaaccttc gttggccaa gaaagtgtt	2580
gaagctgcag tcaaattccat caaggcagcc tcctccacgg agaagttccc tgatggttc	2640
tggctaggag agcagctggt gtgctggca gcaaggccacca ccccttggaa cattttccca	2700
gtcatctcac tctacctaattt gggtgagttt accaaccagt cttccgcattt caccatcattt	2760
ccgcagcaat acctgcggcc agtggaaatgtt gtggccacgt cccaaagacga ctgttacaag	2820
tttgcctatc cacagtcatc cacgggcactt gttatggag ctgttatcat ggagggcttc	2880
tacgttgcgtt ttgatcgggc ccgaaaacgaa attggcttttgcgtc tgcgtcgc ttgcctatgt	2940
cacgtgagt tcaggacggc agcgggtggaa ggcccttttgcgtc tgcgtcgc ttgcctatgt	3000
tgtggctaca acattccaca gacagatgg tcaaccctca tgaccatagc ctatgtcatg	3060
gctgcccattt gcgccttcatc catgctggca ctgcgttca tggtgtgtca gtggcgctgc	3120
ctccgctgcc tgcccccggca gcatgtatgac tttgtgtatg acatctccct gctgaagtg	3180
ggaggcccat gggcagaaga tagagatcc cctggaccac acctcgcgtt ttcactttgg	3240
tcacaagttag gagacacaga tggcacctgt ggccagagca cctcaggacc ctccccacc	3300
acccaaatgcc tctgccttgc tggagaagga aaaggctggc aaggctgggtt ccaggactg	3360

tacctgtagg	aaacagaaaa	gagaagaaaag	aagcaactctg	ctggcgggaa	tactcttggt	3420
cacctaataat	ttaagtccgg	aaattctgt	gctgaaact	tcagccctga	acctttgtcc	3480
accattcctt	taaattctcc	aacccaaagt	attcttctt	tcttagttc	agaagtactg	3540
gcatcacacg	caggttacct	tggcgtgtgt	ccctgtggta	ccctggcaga	gaagagagcca	3600
agcttgttcc	cctgctggcc	aaagtca	ggagaggatg	cacagttgc	tatttgcitt	3660
agagacaggg	actgtataaa	caagccta	attggtgcaa	agattgcctc	ttgaattaa	3720
aaaaaaaaact	agattgacta	tttataaaaa	tggggcgcc	tggaaagagg	agaaggagag	3780
ggagtacaaa	gacagggaa	agtggatca	aagctaggaa	aggcagaaac	acaaccactc	3840
accagtccct	gttttagacc	tcatctcaa	gatagcatcc	catctcagaa	gatgggttt	3900
gtttcaatg	ttttttttc	tgtggttgca	gcctgaccaa	aagtggatg	ggaagggtt	3960
atctagccaa	agagctttt	tttagctctc	tttaatgaag	tgcctactaa	gaagttccac	4020
ttaacacatg	aatttctgcc	atattaattt	cattgtctct	atctgaacca	ccctttattc	4080
tacatatgtat	aggcagca	gaaatatcc	aaccccctaa	gctccaggtg	ccctgtggga	4140
gagcaactgg	actatacgag	ggctgggctc	tgtcttcttg	gtcataggct	cactctttcc	4200
ccccaaatctt	cctctggagc	tttgcagcc	aggtgtctaa	aggaataggt	aggagacctc	4260
ttcttatctaa	tccttaaaaag	cataatgtt	aacattcatt	caacagctga	tgcctataaa	4320
ccccctgcctg	gatttttcc	tattaggcta	taagaagtag	caagatctt	acataattca	4380
gagtggtttc	attgccttcc	taccctctct	aatggccctt	ccattttattt	gactaaagca	4440
tcacacagt	gcactagcat	tataccaaga	gtatgagaaa	tacagtgc	tatggctcta	4500
acattactgc	cttcagtatc	aaggctgcct	ggagaaagga	tggcagcctc	agggcttcct	4560
tatgtcctcc	accacaagag	ctccttgatg	aaggctatct	ttttccctta	tccctgttctt	4620
cccccccccc	ctccaaatgg	tacgtgggta	cccaggctgg	ttcttgggt	aggttagtggg	4680
gaccaagttc	attacccc	tatcagtctt	agcatagtaa	actacggta	cagtgttagt	4740
gggaagagct	gggttttcc	agtataccca	ctgcatccta	ctcctacctg	gtcaacccgc	4800
tgcttccagg	tatgggacct	gctaagtgtg	gaattacctg	ataagggaga	gggaaataca	4860
aggagggcct	ctgggttcc	tggcctcagc	cagctgccc	caagccataa	accaataaaa	4920
caagaataact	gagtca	tttatctggg	ttcttctcat	tcccactgca	cttgggtctg	4980
cttggctga	ctgggaacac	cccataacta	cagagtctga	caggaagact	ggagactgtc	5040
cacttctagc	tcggaaactta	ctgtgttaat	aaactttcag	aactgttacc	atgaagtgaa	5100
aatgccacat	tttgc	taccat	catgttgggaa	aaaactggct	ttttccca	5160
cctttccagg	gcataaaaact	caaccccttc	gatagcaagt	cccatcagcc	tattat	5220
ttaaagaaaa	cttgacttg	tttttcttt	tacagtact	tccttctgc	ccaaaatata	5280
taaactctaa	gtgtaaaaaa	aagtcttaac	aacagttct	tgcttgtaaa	aatatgtatt	5340
atacatctgt	attttaat	tctgctctg	aaaaatgact	gtcccattct	ccactactg	5400
catttggggc	ctttccatt	ggtctgcatg	tctttatca	ttgcaggcca	gtggacagag	5460
ggagaaggg	gaacaggggt	cgccaaacact	tgtgttgctt	tctgactgt	cctgaacaag	5520
aaagagtaac	actgaggcgc	tcgctccat	gcacaactct	ccaaaacact	tatcctcc	5580
caagagtgg	ctttccgggt	cttactggg	aagcagttaa	gccccctcct	caccccttcc	5640
tttttctt	cttactcct	ttggcttcaa	aggattttgg	aaaagaaaaca	atatgcttta	5700
cactcattt	caatttctaa	atttgcaggg	gatactgaaa	aatacggcag	gtggccta	5760
gctgctgtaa	agttgagggg	agaggaatc	ttaagattac	aagataaaaa	acgaatcccc	5820
taaaca	gaacaataga	actggcttc	cattttgcca	cctttcctgt	tcatgacagc	5880
tactaacctg	gagacagtaa	catttcatta	accaaagaaa	gtgggtcacc	tgacctctg	5940
agagctgagt	actcaggcca	ctccaatcac	cctacaagat	gccaaggagg	tcccaggaa	6000
tccagctcct	taaactgacg	ctagtcaata	aacctgggca	agtgaggca	gagaatgag	6060
gaagaatcca	tctgtgaggt	gacaggcacg	gatgaaagac	aaagacggaa	aagagtatca	6120
aaggcagaaa	ggagatcatt	tagttggtc	tgaaggaaa	agtntttgc	atccgacatg	6180
tactgctagt	wcctgtaagc	attttagtgc	ccagaatgg	aaaaaaaatc	aagctatngg	6240
ttatataata	atgnnnnnnn	nnnnnnnnnn	nntcgagcat	gcatctagag	gcccatttc	6300
tatagtgtca	cctaaatgct	agagctcgct	gatcagcctc	gactgtgcct	tctagttgc	6360
agccatctgt	tgttgc	ccccccgtgc	cttccttgc	cctggaaagg	gccactccca	6420
ctgtccttc	ctaataaaat	gaggaaattt	catcgatttgc	tctgagtagg	tgtcattcta	6480
ttctgggggg	tgggtgggg	caggacagca	agggggagga	ttggaaagac	aatagcagc	6540
atgctgggg	tgcggtggc	tctatggctt	ctgaggcgga	aagaaccagc	tggggctcta	6600
gggggtatcc	ccacgcgccc	tgtagcgccg	cattaagcgc	ggcgggtgt	gtgggtacgc	6660
gcagcgtgac	cgctacactt	gccagcgccc	tagcggccgc	tccttcgc	ttcttcc	6720
cctttctcgc	cacgttgc	ggcttcccc	gtcaagctt	aaatcgggc	atccctttag	6780
ggttccgatt	tagtgc	tttgc	acccaaaaaa	acttgattag	gtgtatggtt	6840
cacgtatgg	gccatcgccc	tgtatagacgg	ttttcgccc	tttgacgtt	gagtccacgt	6900
tcttaatag	tggactcttgc	ttccaaactg	gaacaacact	caaccat	tcggcttatt	6960
cttttgcattt	ataagggattt	ttggggattt	cggcatttgc	gttaaaaaat	gagctgattt	7020

aacaaaatt	taacgcgaat	tctagagccc	cggccgcgga	cgaactaaac	ctgactacgg	7080
catctctgcc	ccttcttcgc	ggggcagtgc	atgtaatccc	ttcagtttgt	tggtacaact	7140
tgccaactgg	gccctgttcc	acatgtgaca	cggggggggga	ccaaacacaa	aggggttctc	7200
tgactgtagt	tgacatcctt	ataaatggat	gtgcacattt	gccaacactg	agtggctttc	7260
atcctggagc	agactttgca	gtctgtgac	tgcaacacaa	cattgcctt	atgtgttaact	7320
cttggctgaa	gctcttacac	caatgttggg	ggacatgtac	ctcccagggg	cccaggaaga	7380
ctacgggagg	ctacaccaac	gtcaatcaga	ggggcctgtg	tagtaccga	taagcggacc	7440
ctcaagaggg	cattagcaat	agtgttata	aggccccctt	gttaacccta	aacgggttagc	7500
atatgcttcc	cggtagtag	tataactat	ccagactaac	cctaattcaa	tagcatatgt	7560
tacccaacgg	gaagcatatg	ctatcgaatt	aggtagta	aaagggtcct	aaggaacagc	7620
gatatctccc	accccatgag	ctgtcacgg	tttattttaca	tggggtcagg	attccacgag	7680
ggttagtgaac	cattttagtc	acaaggccag	tggctgaaga	tcaaggagcg	ggcagtgaac	7740
tctcctgaat	cttcgcctgc	ttcttcattt	tccttcgttt	agctaata	agaatactgt	7800
agttgtgaac	agtaagggtgt	atgtgaggtg	ctcgaaaaaca	aggtttcagg	tgacgcccc	7860
agaataaaaat	ttggacgggg	ggttcagttg	tggcattgtg	ctatgacacc	aatataaccc	7920
tcacaaaccc	cttgggcaat	aaataactagt	gttaggaatga	aacattctga	atatctttaa	7980
caatagaaaat	ccatgggtg	gggacaagcc	gtaaagactg	gatgtccatc	tcacacgaat	8040
ttatggctat	gggcaacaca	taatcctagt	gcaatatgtat	actgggtta	ttaagatgt	8100
tcccaggcag	ggaccaagac	aggtgaacca	tgttgttaca	ctcttattgt	aacaagggga	8160
aagagagtgg	acgcccacag	cagcggactc	cactgggtgt	ctctaaccacc	cccgaaaatt	8220
aaacggggct	ccacgccaat	ggggccata	aacaaagaca	agtggccact	cttttttttg	8280
aaattgtgga	gtgggggcac	gctgcagggc	ccacacgccc	ccctgcgggt	ttggactgt	8340
aaataagggt	gtaataactt	ggctgatgtt	aaccccgcta	accactgcgg	tcaaaccact	8400
tgcccacaaa	accactaatg	gcaccccccgg	gaatacctgc	ataagtaggt	gggcgggcca	8460
agataggggc	gctgatgtcg	cgatctggag	gacaaattac	acacacttgc	gcctgagcgc	8520
caagcacagg	gttggggcgc	ctctatattca	cgaggtcgct	gagagcacgg	tgggctaattg	8580
ttgccatggg	tagcatatac	tacccaaata	tctggatago	atatgtatc	ctaatctata	8640
tctggtagc	ataggctatc	ctaatttata	tctgggttago	atatgtatc	ctaatctata	8700
tctggtagt	atatgtatc	ctaatttata	tctgggttago	ataggctatc	ctaatctata	8760
tctggtagc	atatgtatc	ctaatttata	tctgggttagt	atatgtatc	ctaatctgt	8820
tccggtagc	atatgtatc	ctaata	ttagggtagt	atatgtatc	ctaatttata	8880
tctggtagc	atataactacc	caaata	tctatatctg	gatagcatat	gctatcctaa	8940
ggtagcatat	gctatcctaa	tctatatctg	ggtagcatag	gctatcctaa	tctatatctg	9000
ggtagcatat	gctatcctaa	tctatatctg	ggtagtatat	gctatcctaa	tttataatctg	9060
ggtagcatag	gctatcctaa	tctatatctg	ggtagcatat	gctatcctaa	tctatatctg	9120
ggtagtatat	gctatcctaa	tctgtatccg	ggtagcatat	gctatcctca	tgcatataca	9180
gtcagcatat	gataccagt	agtagagtg	gagtgctatc	cttgcatat	gccgccacct	9240
cccaaggggg	cgtgaatttt	cgctgctgt	cctttcctg	catgctgggt	gtcccccattc	9300
tttaggtaat	ttaaggagc	caggctaaag	ccgtcgcatg	tctgattgt	caccaggtaa	9360
atgtcgctaa	tgtttccaa	cgcgagaagg	tgttgagcgc	ggagctgagt	gacgtgacaa	9420
catgggtatg	cccaattgcc	ccatgttggg	aggacgaaaa	tggtgacaa	acagatggcc	9480
agaaatacac	caacacgc	catgatgtct	actggggatt	tattctttag	tgcgggggaa	9540
tacacggc	ttaatacgat	tgagggcgtc	tcctaacaag	ttacatcact	cctgcccctc	9600
ctcacccctca	tctccatcac	ctccttcatc	tccgtcatct	ccgtcatcac	cctccgcggc	9660
agccccttcc	accataggt	gaaaccagg	aggcaatct	actccatctgt	caaagctgca	9720
cacagtccacc	ctgatattgc	aggttaggagc	gggctttgtc	ataacaaggt	ccttaatcgc	9780
atccttcaaa	acctcagcaa	atata	tgtaaaaag	accatgaaat	aacagacaat	9840
ggactccctt	agcgggcccag	gttggggcc	gggtccaggg	gccattccaa	aggggagacg	9900
actcaatggt	gtaagacgac	attgtgaaat	agcaaggc	gttcctcgcc	ttaggtt	9960
aagggagg	ttactaccc	catatac	acacccggc	acccaagttc	cttcgtcgt	10020
agtccttct	acgtgactcc	tagccaggag	agctctttaaa	ccttctgca	tgttctcaaa	10080
tttcgggtt	gaacccctt	gaccacgat	cttccaaac	caccctcctt	tttgcgcct	10140
gcctccatca	ccctgacccc	ggggtccagt	gcttgggcct	tctcctgggt	catctgcggg	10200
gccctgctc	atcgctcccg	ggggcacgtc	aggctcacca	tctggccac	cttcttgg	10260
gtattcaaaa	taatcggctt	ccctcacagg	gtggaaaaat	ggccttctac	ctggaggggg	10320
cctgcgcgg	ggagacc	atgatgtga	ctgactactg	ggactcctgg	gcctctttc	10380
tccacgtcca	cgacc	ccctggct	ttcacgactt	ccccccctgg	ctcttcacg	10440
tcctctaccc	cgggccctc	cactac	tcgaccccg	cctccactac	ctcctcgacc	10500
ccggccctcca	ctgcctc	gaccccg	tccacctc	gctcctgccc	ctcctgctcc	10560
tgccccctc	cctgc	ccccctc	ccctectg	cctgccc	ctgccc	10620
tgctcctgcc	cctc	ctc	tgccccctc	gcccctc	ctgctc	10680

ccctcctgcc	cctcctcctg	ctcctgcccc	tcctgcccct	cctgctcctg	cccctcctgc	10740
ccctcctgt	cctgcccctc	ctgccccctcc	tgctcctgcc	cctcctgctc	ctgccccctcc	10800
tgcctcctgcc	cctcctgctc	ctgccccctcc	tgccccctct	gcccctcctc	ctgctcctgc	10860
ccctcctgt	cctgcccctc	ctgccccctcc	tgccccctct	gctcctgccc	ctcctcctgc	10920
tcctgcccct	cctgcccctc	ctgccccctcc	tcctgctct	gcccctcctg	cccctcctcc	10980
tgcctcctgcc	cctcctcctg	ctcctgcccc	tcctgcccct	cctgcccctc	ctcctgctcc	11040
tgcctcctct	gcccctcctc	ctgctcctgc	ccctcctct	gctcctgccc	ctcctgcccc	11100
tcctgcccct	cctcctgctc	ctgccccctcc	tcctgctct	gcccctcctg	cccctcctgc	11160
ccctcctgcc	cctcctcctg	ctcctgcccc	tcctcctgtct	cctgcccctc	ctgctcctgc	11220
ccctcccgt	cctgetcctg	ctcctgttcc	accgtgggtc	cctttgcagc	caatgcaact	11280
tggacgtttt	tgggtctcc	ggacaccatc	tctatgtctt	gcccctgatc	ctgagccgcc	11340
cggggctctt	ggtcttccgc	ctcctcgicc	tcgtcctctt	ccccgtcctc	gtccatgggt	11400
atcacccct	cttcttttag	gtccactgccc	gcccggagcct	tctggtccag	atgtgtctcc	11460
cttctctctt	aggccatttc	caggctctgt	acctggggcc	tcgtcagaca	tgattcacac	11520
taaaagagat	caatagacat	cttttattaga	cgacgctcag	tgaatacagg	gagtgacagac	11580
tcctgcccccc	tccaacagcc	cccccacct	cateccccttc	atggtcgtc	ttagacagat	11640
ccaggtctga	aaattcccca	tcctccgaac	catectcgtc	ctcatcacca	attactcgca	11700
gccccggaaaa	ctcccgctga	acatectcaa	gatttgcgtc	ctgagcctca	agccaggcct	11760
caaattccctc	gtcccccttt	ttgctggacg	gtagggatgg	ggatttctcg	gaccctctt	11820
cttcctctt	aaggcacca	gacagagatg	ctactggggc	aacggaaagaa	aagctgggt	11880
cggcctgtga	ggatcagctt	atcgatgata	agctgtcaaa	catgagaatt	cttgaagacg	11940
aaagggcctc	gtgatcagcc	tattttata	ggttaatgtc	atgataataa	tggtttctta	12000
gacgtcagg	ggcactttt	ggggaaatgt	gcccggaaacc	cctatttgtt	tattttctta	12060
aatacattca	aatatgtatc	cgctcatgag	acaataacc	tgataaaatgc	ttcaataata	12120
ttgaaaagg	aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	cctttttgc	12180
ggcattttgc	cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	12240
agatcagtt	ggtgcacgag	tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	12300
tgagagttt	cgcggcgaag	aacgttttcc	aatgatgago	acttttaag	ttctgtatg	12360
tggcgcggta	ttatcccgt	ttgacgcgg	gcaagagcaa	ctcggcgtcc	gcatacacta	12420
ttctcagaat	gacttggtt	agtactcacc	agtcacagaaa	aagcatctta	cggtatggcat	12480
gacagtaaga	gaattatgca	gtgctgccc	aaccatgagt	gataacactg	cgcccaactt	12540
acttctgaca	acgatcgag	gaccgaagga	gctaaccgct	ttttgcaca	acatggggga	12600
tcatgttaact	cgccttgc	gttgggaacc	ggagctgaat	gaagccatac	caaacgcacga	12660
gcgtgacacc	acgatgcctg	cagcaatggc	aacaacgctt	cgcaactat	taactggcga	12720
actacttact	ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	12780
aggaccactt	ctgcgctcg	cccttccggc	tggctgggtt	attgctgata	aatctggagc	12840
cggtgagcgt	gggtctcg	gtatcatgc	agcactgggg	ccagatggta	agccctcccg	12900
tatcgtagt	atctacacga	cggggagtc	ggcaactatg	gatgaacgaa	atagacagat	12960
cgctgagata	ggtgcctcac	tgattaagca	ttgtaactg	tcagaccaag	tttactcata	13020
tatactttag	attgatttaa	aacttcattt	ttaattttaa	aggatctagg	tgaagatcct	13080
ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	13140
ccccgtagaa	aagatcaaag	gatcttctt	agatcctttt	tttctgcgc	taatctgctg	13200
cttgcaaaca	aaaaaaaccac	cgctaccagc	gggtggttgt	ttgcccgtc	aagagctacc	13260
aactctttt	ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgtccttct	13320
agtgtagcc	tagttaggcc	accacttcaa	gaactctgt	gcaccgccta	catacctcgc	13380
tctgctaattc	ctgttaccag	tggctgtgc	cagtggcgat	aagtctgtc	ttaccgggtt	13440
ggactcaaga	cgatagttac	cggataaggc	gcagcggcgt	ggctgaacgg	ggggttcgt	13500
cacacagccc	agcttggagc	gaacgaccta	caccgaactg	agataacctac	agcgtgagct	13560
atgagaaagc	gccacgctt	ccgaaggag	aaaggcggac	aggtatccgg	taagcggcag	13620
ggtcggaaaca	ggagagcgc	cgagggagct	tccaggggaa	aacgccttgt	atctttatag	13680
tcctgtcggg	tttcgcccacc	tctgacttgc	gcgtcgattt	ttgtatgtct	cgtcaggggg	13740
gcggagccta	tggaaaaaacg	ccagcaacgc	ggccttttta	cggttccctgg	ccttttgcgt	13800
cgcgcgtgc	ggctgctgg	gatggcggac	gcgtatggata	tgttctgcca	agggttgggt	13860
tgcgcattca	cagttctccg	caagaatgt	ttgctccaa	ttcttggagt	ggtgaatccg	13920
ttagcgaggt	ggcggccggct	tccattcagg	tcgagggtggc	ccggctccat	gcaccgcgac	13980
gcaacgcggg	gaggcagaca	aggtataagg	ccggccctac	aatccatgcc	aaccgcgttcc	14040
atgtgtctgc	cgaggcggca	taaatcgccc	tgacgatcag	cggtccagtg	atcgaagta	14100
ggctggtaag	agccgcgagc	gatccttggaa	gctgtccctg	atggtcgtca	tctacctgcc	14160
tggacagcat	ggcctgcaac	gcgggcattcc	cgatgcccgc	ggaagcgaga	agaatcataa	14220
tgggaaaggc	catccagcct	cgcgtcg	acggcagcaa	gacgtagccc	agcgcgtcg	14280
ccgccatgcc	ctgcttcatc	cccggtggccc	gttgcgtcg	tttgctggcg	gtgtccccgg	14340

aagaaatata	tttgcgtatgtc	tttagttcta	tgtacacaca	aaccccgccc	agcgtcttgt	14400
cattggcgaa	ttcgaacacg	cagatcgagt	cggggcggcg	cggtcccagg	tccacttcgc	14460
atattaagg	gacgcgtgtg	gcctcgaaca	ccgagcgacc	ctgcagcgac	ccgcttaaca	14520
gcgtcaacag	cgtccccag	atcccggca	atgagatatg	aaaaagcctg	aactcaccgc	14580
gacgtctgtc	gagaagttc	tgatcgaaaa	gttcgacagc	gtctccgacc	tgatgcagct	14640
ctcgaggggc	gaagaatctc	gtgtttcag	cttcgatgt	ggagggcgtg	gatatgtcct	14700
gcgggtaaat	agctgcgcg	atggttcta	caaagatcgt	tagtgggatc	ggcactttgc	14760
atcgccgcg	ctcccccatt	ccggaagtgc	ttgacattgg	ggaattcagc	gagagcctga	14820
cctattgcat	ctcccccgt	gcacagggtg	tcacggttgc	agacctgcct	gaaaccgaac	14880
tgcccgtgt	tctgcagccg	gtcgcgagg	ccatggatgc	gatgcgtgcg	gccgatctta	14940
gccagacgag	cgggttcggc	ccattcggac	cgcaaggaat	cggtaatac	actacatggc	15000
gtgatttcat	atgcgcgtt	gctgatcccc	atgtgtatca	ctggcaaact	gtgatggacg	15060
acaccgttag	tgcgtccgtc	gcgcaggctc	tcgatgagct	gatgcgttgg	gccgaggact	15120
gccccgaagt	ccggcacctc	gtgcacgcgg	atttcggctc	caacaatgtc	ctgacggaca	15180
atggccgcat	aacagcggtc	attgacttgg	gcgaggcgat	gttcggggat	tcccaatacg	15240
aggtcgccaa	catttcttc	tggaggccgt	ggttggcggg	tatggagcag	cagacgcgt	15300
acttcgagcg	gaggcatccg	gagcttgcag	gatgcgcgcg	gctccggcg	tatatgcctc	15360
gcatttggct	tgaccaactc	tatcagagct	tggttgcacgg	caatttcgt	gatgcagctt	15420
gggcgcagg	tcgatgcgc	gcaatcgcc	gatccggagc	cgggactgtc	gggcgtacac	15480
aaatcgcccg	cagaagcg	gccgtcttga	ccgatggctg	tgtagaagta	ctgcggata	15540
gtggaaacgg	gagatgggg	aggctaactg	aaacacggaa	ggagacaata	ccggaaggaa	15600
cccgcgctat	gacggcaata	aaaagacaga	ataaaacgca	cgggtgttgg	gtcggttttt	15660
cataaacgcg	gggttcggc	ccagggctgg	cactctgtc	atacccacc	gagaccccat	15720
tggggccaat	acgcccgcgt	ttcttcctt	tcccccaccc	accccccac	tgcgggtgaa	15780
ggcccagg	tcgcagccaa	cgtcggggcg	gcaggccctg	ccatagccac	tggcccccgt	15840
ggttagggac	ggggtcccc	atggggatg	gttatgggt	cgtgggggtt	attatttgg	15900
gcgttgcgt	gggtctggc	cacgacttga	ctgagcagac	agaccatgg	tttttggatg	15960
gcctgggcat	ggacccgcat	tactggcg	acacgaacac	cgggcgtctg	tggctgccaa	16020
acaccccccga	cccccaaaaa	ccaccgcgc	gatttctggc	gtgccaagct	agtgcaccaa	16080

<210> 49
<211> 32
<212> DNA
<213> Homo sapiens

<400> 49
cccgccgga gggcagctt tgtggagatg gt 32

<210> 50
<211> 11
<212> PRT
<213> Homo sapiens

<400> 50
Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
1 5 10

<210> 51
<211> 5
<212> PRT
<213> Homo sapiens

<400> 51
Val Asn Leu Asp Ala
1 5

<210> 52
<211> 9

<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic oligopeptide substrate

<400> 52
Ser Glu Val Asn Leu Asp Ala Glu Phe
1 5

<210> 53
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic oligopeptide substrate

<400> 53
Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile
1 5 10 15
Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Asp Ala Glu Phe
20 25 30

<210> 54
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<223> Wild type Amyloid Precursor Protein cleavage site
(fragment)

<400> 54
Val Lys Met Asp Ala
1 5

<210> 55
<211> 24
<212> PRT
<213> Homo sapiens

<400> 55
Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val
1 5 10 15
Glu Met Val Asp Asn Leu Arg Gly
20

<210> 56
<211> 15
<212> PRT
<213> Homo sapiens

<400> 56
Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg
1 5 10 15

<210> 57
<211> 419
<212> PRT
<213> Homo sapiens

<400> 57

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190
Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205
Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220
Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240
Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255
Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270
Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285
Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300
Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320
Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335
Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350
Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365
Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380
Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400
Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415
Val Ser Ala

<210> 58

<211> 407

<212> PRT

<213> Homo sapiens

<400> 58

Glu	Thr	Asp	Glu	Glu	Pro	Glu	Glu	Pro	Gly	Arg	Arg	Gly	Ser	Phe	Val
1			5						10					15	
Glu	Met	Val	Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln	Gly	Tyr	Tyr	Val
					20				25				30		
Glu	Met	Thr	Val	Gly	Ser	Pro	Pro	Gln	Thr	Leu	Asn	Ile	Leu	Val	Asp
					35				40			45			
Thr	Gly	Ser	Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu
					50				55			60			
His	Arg	Tyr	Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg
					65				70		75		80		
Lys	Gly	Val	Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu
									85		90		95		
Gly	Thr	Asp	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg
					100				105			110			
Ala	Asn	Ile	Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly
					115				120			125			
Ser	Asn	Trp	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg
					130				135			140			
Pro	Asp	Asp	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr
					145				150			155			160
His	Val	Pro	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro
									165		170			175	
Leu	Asn	Gln	Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile
					180				185			190			
Gly	Gly	Ile	Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro
					195				200			205			
Ile	Arg	Arg	Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile
					210				215			220			
Asn	Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys
					225				230			235			240
Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val
									245		250			255	
Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys
					260				265			270			
Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala
									275			280		285	
Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met
					290				295			300			
Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln
					305				310			315			320
Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr
									325		330			335	
Lys	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val
									340		345			350	
Ile	Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile
					355				360			365			
Gly	Phe	Ala	Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala
					370				375			380			
Ala	Val	Glu	Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr
					385				390			395			400
Asn	Ile	Pro	Gln	Thr	Asp	Glu									
					405										

<210> 59

<211> 452

<212> PRT

<213> Homo sapiens

<400> 59

Met	Ala	Gln	Ala	Leu	Pro	Trp	Leu	Leu	Leu	Trp	Met	Gly	Ala	Gly	Val
1				5					10				15		
Leu	Pro	Ala	His	Gly	Thr	Gln	His	Gly	Ile	Arg	Leu	Pro	Leu	Arg	Ser
				20				25					30		
Gly	Leu	Gly	Gly	Ala	Pro	Leu	Gly	Leu	Arg	Leu	Pro	Arg	Glu	Thr	Asp
				35				40				45			
Glu	Glu	Pro	Glu	Glu	Pro	Gly	Arg	Arg	Gly	Ser	Phe	Val	Glu	Met	Val
				50				55				60			
Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln	Gly	Tyr	Tyr	Val	Glu	Met	Thr
				65				70		75				80	
Val	Gly	Ser	Pro	Pro	Gln	Thr	Leu	Asn	Ile	Leu	Val	Asp	Thr	Gly	Ser
					85				90				95		
Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu	His	Arg	Tyr
				100				105				110			
Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg	Lys	Gly	Val
				115				120				125			
Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu	Gly	Thr	Asp
				130				135				140			
Leu	Val	Ser	Ile	Pro	His	Pro	Asn	Val	Thr	Val	Arg	Ala	Asn	Ile	
				145				150			155			160	
Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly	Ser	Asn	Trp
					165				170				175		
Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg	Pro	Asp	Asp
				180				185				190			
Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr	His	Val	Pro
				195				200				205			
Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro	Leu	Asn	Gln
				210				215				220			
Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile	Gly	Gly	Ile
				225				230			235			240	
Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro	Ile	Arg	Arg
					245				250				255		
Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile	Asn	Gly	Gln
				260				265				270			
Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys	Ser	Ile	Val
				275				280				285			
Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val	Phe	Glu	Ala
				290				295				300			
Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	Phe	Pro	Asp
				305				310			315			320	
Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	Gly	Thr	Thr
					325				330				335		
Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met	Gly	Glu	Val
				340				345				350			
Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln	Tyr	Leu	Arg
				355				360				365			
Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr	Lys	Phe	Ala
				370				375				380			
Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val	Ile	Met	Glu
				385				390			395			400	
Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile	Gly	Phe	Ala
					405				410				415		
Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala	Ala	Val	Glu
					420				425				430		
Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr	Asn	Ile	Pro
					435				440				445		
Gln	Thr	Asp	Glu												
				450											

<210> 60

<211> 420
<212> PRT
<213> Homo sapiens

<400> 60
Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140
Leu Val Ser Ile Pro His Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190
Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205
Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220
Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240
Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255
Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270
Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285
Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300
Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320
Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335
Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350
Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365
Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380
Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400
Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415
Val Ser Ala Cys
420

<210> 61

```

<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide inhibitor

<220>
<221> MOD_RES
<222> 4
<223> Xaa = hydroxyethylene

<400> 61
Glu Val Met Xaa Ala Glu Phe
 1           5

<210> 62
<211> 26
<212> PRT
<213> Homo sapiens

<400> 62
Leu Met Thr Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met
 1           5           10          15
Leu Pro Leu Cys Leu Met Val Cys Gln Trp
 20           25

<210> 63
<211> 33
<212> PRT
<213> Homo sapiens

<220>
<223> P26-P4'sw peptide substrate

<400> 63
Cys Gly Gly Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu
 1           5           10          15
Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Asp Ala Glu
 20           25          30
Phe

<210> 64
<211> 29
<212> PRT
<213> Homo sapiens

<220>
<223> P26-P1' peptide substrate with CGG linker

<400> 64
Cys Gly Gly Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu
 1           5           10          15
Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Asn Leu
 20           25

<210> 65
<211> 501
<212> PRT
<213> Mus musculus

```

<400> 65

Met Ala Pro Ala Leu His Trp Leu Leu Leu Trp Val Gly Ser Gly Met
1 5 10 15
Leu Pro Ala Gln Gly Thr His Leu Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30
Gly Leu Ala Gly Pro Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45
Glu Glu Ser Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140
Leu Val Ser Ile Pro His Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190
Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Ile Pro
195 200 205
Asn Ile Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220
Thr Glu Ala Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240
Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255
Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270
Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285
Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300
Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320
Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335
Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350
Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365
Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380
Val Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400
Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415
Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430
Gly Pro Phe Val Thr Ala Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445
Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
450 455 460
Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp

465	470	475	480
Arg Cys Leu Arg Cys	Leu Arg His Gln His	Asp Asp Phe Gly Asp Asp	
485	490	495	
Ile Ser Leu Leu Lys			
500			
<210> 66			
<211> 480			
<212> PRT			
<213> Homo sapiens			
<400> 66			
Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala			
1 5 10 15			
Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu			
20 25 30			
Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly			
35 40 45			
Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro			
50 55 60			
Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val			
65 70 75 80			
Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu			
85 90 95			
Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr			
100 105 110			
Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro			
115 120 125			
His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu			
130 135 140			
Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly			
145 150 155 160			
Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe			
165 170 175			
Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu			
180 185 190			
Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala			
195 200 205			
Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr			
210 215 220			
Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu			
225 230 235 240			
Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp			
245 250 255			
Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr			
260 265 270			
Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile			
275 280 285			
Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly			
290 295 300			
Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe			
305 310 315 320			
Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe			
325 330 335			
Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val			
340 345 350			
Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser			
355 360 365			
Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val			
370 375 380			
Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His			

385	390	395	400
Val His Asp Glu Phe Arg Thr Ala Ala Val	Glu Gly Pro Phe Val	Thr	
405	410	415	
Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile	Pro Gln Thr Asp	Glu Ser	
420	425	430	
Thr Leu Met Thr Ile Ala Tyr Val Met Ala	Ala Ile Cys Ala	Leu Phe	
435	440	445	
Met Leu Pro Leu Cys Leu Met Val Cys Gln	Trp Arg Cys	Leu Arg Cys	
450	455	460	
Leu Arg Gln Gln His Asp Asp Phe Ala Asp	Asp Ile Ser	Leu Leu Lys	
465	470	475	480

<210> 67

<211> 444

<212> PRT

<213> Homo sapiens

<400> 67

Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg	Gly Lys Ser Gly Gln	
1 5 10 15		
Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro	Pro Gln Thr Leu Asn	
20 25 30		
Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala	Val Gly Ala Ala Pro	
35 40 45		
His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln	Leu Ser Ser Thr Tyr	
50 55 60		
Arg Asp Leu Arg Lys Gly Val Tyr Val Pro	Tyr Thr Gln Gly Lys Trp	
65 70 75 80		
Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile	Pro His Gly Pro Asn	
85 90 95		
Val Thr Val Arg Ala Asn Ile Ala Ala Ile	Thr Glu Ser Asp Lys Phe	
100 105 110		
Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile	Leu Gly Leu Ala Tyr Ala	
115 120 125		
Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu	Pro Phe Asp Ser Leu	
130 135 140		
Val Lys Gln Thr His Val Pro Asn Leu Phe	Ser Leu Gln Leu Cys Gly	
145 150 155 160		
Ala Gly Phe Pro Leu Asn Gln Ser Glu Val	Leu Ala Ser Val Gly Gly	
165 170 175		
Ser Met Ile Ile Gly Gly Ile Asp His Ser	Leu Tyr Thr Gly Ser Leu	
180 185 190		
Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr	Tyr Glu Val Ile Ile Val	
195 200 205		
Arg Val Glu Ile Asn Gly Gln Asp Leu Lys	Met Asp Cys Lys Glu Tyr	
210 215 220		
Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly	Thr Thr Asn Leu Arg Leu	
225 230 235 240		
Pro Lys Lys Val Phe Glu Ala Ala Val Lys	Ser Ile Lys Ala Ala Ser	
245 250 255		
Ser Thr Glu Lys Phe Pro Asp Gly Phe	Trp Leu Gly Glu Gln Leu Val	
260 265 270		
Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile	Phe Pro Val Ile Ser	
275 280 285		
Leu Tyr Leu Met Gly Glu Val Thr Asn Gln	Ser Phe Arg Ile Thr Ile	
290 295 300		
Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu	Asp Val Ala Thr Ser Gln	
305 310 315 320		
Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln	Ser Ser Thr Gly Thr Val	
325 330 335		

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
 340 345 350
 Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
 355 360 365
 Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
 370 375 380
 Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr
 385 390 395 400
 Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu
 405 410 415
 Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln
 420 425 430
 His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys
 435 440

<210> 68
 <211> 395
 <212> PRT
 <213> Homo sapiens

<400> 68
 Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln
 1 5 10 15
 Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn
 20 25 30
 Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro
 35 40 45
 His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr
 50 55 60
 Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp
 65 70 75 80
 Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn
 85 90 95
 Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe
 100 105 110
 Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala
 115 120 125
 Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu
 130 135 140
 Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly
 145 150 155 160
 Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
 165 170 175
 Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
 180 185 190
 Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
 195 200 205
 Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
 210 215 220
 Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
 225 230 235 240
 Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
 245 250 255
 Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
 260 265 270
 Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
 275 280 285
 Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
 290 295 300
 Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln

305	310	315	320
Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val			
325	330	335	
Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala			
340	345	350	
Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu			
355	360	365	
Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu			
370	375	380	
Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu			
385	390	395	
<210> 69			
<211> 439			
<212> PRT			
<213> Homo sapiens			
<400> 69			
Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu			
1	5	10	15
Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr			
20	25	30	
Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His			
35	40	45	
Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys			
50	55	60	
Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly			
65	70	75	80
Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala			
85	90	95	
Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser			
100	105	110	
Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro			
115	120	125	
Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His			
130	135	140	
Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu			
145	150	155	160
Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly			
165	170	175	
Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile			
180	185	190	
Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn			
195	200	205	
Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser			
210	215	220	
Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe			
225	230	235	240
Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe			
245	250	255	
Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly			
260	265	270	
Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly			
275	280	285	
Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr			
290	295	300	
Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys			
305	310	315	320
Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile			
325	330	335	
Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly			

340	345	350
Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala		
355	360	365
Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn		
370	375	380
Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met		
385	390	395
Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys		
405	410	415
Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala		
420	425	430
Asp Asp Ile Ser Leu Leu Lys		
435		

<210> 70
<211> 390
<212> PRT
<213> Homo sapiens

<400> 70		
Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu		
1	5	10
Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr		
20	25	30
Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His		
35	40	45
Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys		
50	55	60
Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly		
65	70	75
Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala		
85	90	95
Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser		
100	105	110
Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro		
115	120	125
Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His		
130	135	140
Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu		
145	150	155
Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly		
165	170	175
Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile		
180	185	190
Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn		
195	200	205
Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser		
210	215	220
Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe		
225	230	235
Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe		
245	250	255
Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly		
260	265	270
Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly		
275	280	285
Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr		
290	295	300
Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys		
305	310	315
Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile		

	325	330	335													
Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile	Gly	
	340						345							350		
Phe	Ala	Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala	Ala	
	355						360							365		
Val	Glu	Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr	Asn	
	370						375							380		
Ile	Pro	Gln	Thr	Asp	Glu											
	385						390									
<210> 71																
<211> 374																
<212> PRT																
<213> Homo sapiens																
<400> 71																
Glu	Thr	Asp	Glu	Glu	Pro	Glu	Glu	Pro	Gly	Arg	Arg	Gly	Ser	Phe	Val	
	1			5				10						15		
Glu	Met	Val	Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln	Gly	Tyr	Tyr	Val	
	20						25							30		
Glu	Met	Thr	Val	Gly	Ser	Pro	Pro	Gln	Thr	Leu	Asn	Ile	Leu	Val	Asp	
	35						40							45		
Thr	Gly	Ser	Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu	
	50						55							60		
His	Arg	Tyr	Tyr	Gln	Arg	Gly	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg
	65						70				75				80	
Lys	Gly	Val	Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu	
	85						90							95		
Gly	Thr	Asp	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg	
	100						105							110		
Ala	Asn	Ile	Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly	
	115						120							125		
Ser	Asn	Trp	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg	
	130						135							140		
Pro	Asp	Asp	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr	
	145				150				155					160		
His	Val	Pro	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro	
	165						170							175		
Leu	Asn	Gln	Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile	
	180						185							190		
Gly	Gly	Ile	Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro	
	195						200							205		
Ile	Arg	Arg	Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile	
	210						215							220		
Asn	Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys	
	225				230				235					240		
Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val	
	245						250							255		
Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	
	260						265							270		
Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	
	275						280							285		
Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met	
	290						295							300		
Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln	
	305				310				315					320		
Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr	
	325						330							335		
Lys	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val	
	340				345				350					350		
Ile	Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile	

355	360	365
Gly Phe Ala Val Ser Ala		
370		

<210> 72
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> P10-P4'staD-V peptide inhibitor

<220>
<221> MOD_RES
<222> 10
<223> Xaa is statine moiety

<400> 72
Lys Thr Glu Glu Ile Ser Glu Val Asn Xaa Val Ala Glu Phe
1 5 10

<210> 73
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> P4-P4'staD-V peptide inhibitor

<220>
<221> MOD_RES
<222> 5
<223> Xaa is statine moiety

<400> 73
Ser Glu Val Asn Xaa Val Ala Glu Phe
1 5

<210> 74
<211> 431
<212> PRT
<213> Homo sapiens

<400> 74
Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala
1 5 10 15
Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu
20 25 30
Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly
35 40 45
Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro
50 55 60
Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val
65 70 75 80
Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu
85 90 95
Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr
100 105 110
Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro
115 120 125
His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu

130	135	140
Ser	Asp	Lys
Phe	Phe	Ile
Ile	Asn	Gly
Gly	Ser	Asn
Trp	Glu	Gly
Gly	Ile	Leu
Ile		Gly
145	150	155
160		
Leu	Ala	Tyr
Ala	Glu	Ile
Arg	Ala	Arg
Pro	Asp	Asp
Asp	Ser	Ser
Leu	Val	Lys
Gln	Thr	His
Thr	Val	Pro
Pro	Asn	Leu
Asn	Leu	Phe
Leu		Ser
Gly		Leu
165	170	175
175		
Phe	Asp	Ser
Ser	Leu	Val
Val	Lys	Gln
Gln	Thr	His
His	Val	Pro
Pro	Asn	Leu
Asn	Leu	Phe
Leu		Ser
Gly		Leu
180	185	190
190		
Gln	Leu	Cys
Cys	Gly	Ala
Ala	Gly	Phe
Phe	Pro	Leu
Leu	Asn	Gln
Gln	Ser	Glu
Glu	Val	Leu
Leu		Ala
Ala		
195	200	205
205		
Ser	Val	Gly
Gly	Ser	Met
Met	Ile	Ile
Ile	Gly	Gly
Gly	Ile	Asp
Asp	His	Ser
Ser	Leu	Tyr
Tyr		
210	215	220
220		
Thr	Gly	Ser
Ser	Leu	Trp
Trp	Tyr	Thr
Thr	Pro	Ile
Ile	Arg	Arg
Arg	Arg	Glu
Glu	Trp	Tyr
Tyr	Tyr	Glu
225	230	235
240		
Val	Ile	Ile
Ile	Val	Arg
Arg	Val	Glu
Glu	Ile	Asn
Asn	Gly	Gln
Gln	Asp	Leu
Leu	Lys	Met
Met	Asp	
Asp		
245	250	255
255		
Cys	Lys	Glu
Glu	Tyr	Asn
Asn	Tyr	Asp
Asp	Lys	Ser
Ser	Ile	Val
Val	Asp	Ser
Ser	Gly	Thr
Thr	Thr	Thr
260	265	270
270		
Asn	Leu	Arg
Arg	Leu	Pro
Pro	Lys	Lys
Lys	Val	Phe
Phe	Glu	Ala
Ala	Ala	Val
Val	Lys	Ser
Ser	Ile	
275	280	285
285		
Lys	Ala	Ala
Ala	Ser	Ser
Ser	Thr	Glu
Glu	Lys	Phe
Phe	Pro	Asp
Asp	Gly	Phe
Phe	Trp	Leu
Leu	Gly	
290	295	300
300		
Glu	Gln	Leu
Leu	Val	Cys
Cys	Trp	Gln
Gln	Ala	Gly
Gly	Thr	Thr
Thr	Pro	Trp
Trp	Asn	Ile
Asn	Ile	Phe
Phe		
305	310	315
320		
Pro	Val	Ile
Ile	Ser	Leu
Leu	Tyr	Leu
Leu	Met	Gly
Gly	Glu	Val
Val	Thr	Asn
Asn	Gln	Ser
Ser	Phe	
325	330	335
335		
Arg	Ile	Thr
Ile	Leu	Pro
Pro	Gln	Gln
Gln	Tyr	Leu
Leu	Arg	Pro
Arg	Val	Glu
Glu	Asp	Val
Val		
340	345	350
350		
Ala	Thr	Ser
Ser	Gln	Asp
Asp	Asp	Cys
Cys	Tyr	Lys
Lys	Phe	Ala
Ala	Ile	Ser
Ser	Gln	Ser
Ser	355	360
360		365
Thr	Gly	Thr
Thr	Val	Met
Met	Gly	Ala
Ala	Val	Ile
Ile	Met	Glu
Glu	Gly	Phe
Phe	Tyr	Val
Val	Val	
370	375	380
380		
Phe	Asp	Arg
Arg	Ala	Arg
Ala	Lys	Arg
Lys	Ile	Gly
Gly	Phe	Ala
Ala	Val	Ile
Ile	Met	Glu
Glu	Gly	Phe
Phe	Tyr	Val
Val	Val	
385	390	395
400		
Val	His	Asp
His	Glu	Phe
Phe	Arg	Thr
Thr	Ala	Ala
Ala	Val	Glu
Glu	Gly	Pro
Pro	Phe	Val
Val	Thr	
405	410	415
415		
Leu	Asp	Met
Asp	Glu	Asp
Cys	Gly	Tyr
Tyr	Asn	Ile
Ile	Pro	Gln
Gln	Thr	Asp
Asp	Glu	
420	425	430

<210> 75
<211> 361
<212> PRT
<213> Homo sapiens

<400> 75
Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu
1 5 10 15
Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr
20 25 30
Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His
35 40 45
Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys
50 55 60
Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly
65 70 75 80
Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala
85 90 95
Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser
100 105 110
Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro
115 120 125
Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His

130	135	140
Val Pro Asn Leu Phe Ser	Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu	
145	150	155
Asn Gln Ser Glu Val	Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly	160
	165	170
Gly Ile Asp His Ser	Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile	175
	180	185
Arg Arg Glu Trp Tyr Tyr	Glu Val Ile Ile Val Arg Val Glu Ile Asn	190
	195	200
Gly Gln Asp Leu Lys Met	Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser	205
	210	215
Ile Val Asp Ser Gly	Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe	220
	225	230
Glu Ala Ala Val Lys Ser	Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe	240
	245	250
Pro Asp Gly Phe Trp Leu Gly Glu Gln	Leu Val Cys Trp Gln Ala Gly	255
	260	265
Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser	Leu Tyr Leu Met Gly	270
	275	280
Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile	Leu Pro Gln Gln Tyr	285
	290	295
Leu Arg Pro Val Glu Asp Val Ala Thr Ser	Gln Asp Asp Cys Tyr Lys	300
	305	310
Phe Ala Ile Ser Gln Ser Ser Thr Gly	Thr Val Met Gly Ala Val Ile	320
	325	330
Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg	Lys Arg Ile Gly	335
	340	345
Phe Ala Val Ser Ala Cys His Val His		350
	355	360

<210> 76

<211> 63

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(63)

<223> n = A,T,C or G

<400> 76

garacngayg argarcnnga rgarcnngn mgnmgnnnw snttygtnga ratggtnay
aay

60

63

<210> 77

<211> 21

<212> PRT

<213> Homo sapiens

<400> 77

Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val
1 5 10 15
Glu Met Val Asp Asn
20

<210> 78

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Peptide inhibitor P3-P4' XD-V

<220>

<221> MOD_RES

<222> 3

<223> Xaa is hydroxyethylene or statine

<400> 78
Val Met Xaa Val Ala Glu Phe
1 5

<210> 79
<211> 11
<212> PRT
<213> Homo sapiens

<400> 79
Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val
1 5 10

<210> 80
<211> 419
<212> DNA
<213> Artificial Sequence

<220>

<223> nucleotide insert in vector pCF

<400> 80
ctgtgggtcgac gacaaacttc tcgcggcttt tccagtttcc ttggatcgga 60
aaccgtcggt cctccgaaacgt gtactccgccc accggggac ctgagcgagt ccgcac 120
cggatcgaa aacctctcgat ctgtgggtt gaggacttcc tctcaaaagc gggcatgact 180
tctcgctaa gattgtcgtt ttccaaaaac gaggaggatt tgatattcac ctggcccg 240
gtgatgcctt tgagggtggc cgcgtccatc tggcagaaa agacaatctt ttgttgta 300
agcttgggtt gtggcaggct tgagatctgg ccatacactt gagtgacaat gacatccact 360
ttgcctttctt ctccacaggt gtccactccc aggtccaact gcaggtcgac tctagaccc 419

<210> 81
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

<223> Peptide inhibitor P4-P4' XD-V

<220>

<221> MOD_RES

<222> 4

<223> Xaa is hydroxyethylene or statine

<400> 81
Glu Val Met Xaa Val Ala Glu Phe
1 5

<210> 82
<211> 9
<212> PRT
<213> Homo sapiens

<220>

<223> APP fragment P5-P4' wt

<400> 82
Ser Glu Val Lys Met Asp Ala Glu Phe
1 5

<210> 83
<211> 9
<212> PRT
<213> Homo sapiens

<220>

<223> APP fragment P5-P4'wt

<400> 83
Ser Glu Val Asn Leu Asp Ala Glu Phe
1 5

<210> 84
<211> 9
<212> PRT
<213> Artificial Sequence

<220>

<223> APP fragment

<400> 84
Ser Glu Val Lys Leu Asp Ala Glu Phe
1 5

<210> 85
<211> 9
<212> PRT
<213> Artificial Sequence

<220>

<223> APP fragment

<400> 85
Ser Glu Val Lys Phe Asp Ala Glu Phe
1 5

<210> 86
<211> 9
<212> PRT
<213> Artificial Sequence

<220>

<223> APP fragment

<400> 86
Ser Glu Val Asn Phe Asp Ala Glu Phe
1 5

<210> 87
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 87
Ser Glu Val Lys Met Ala Ala Glu Phe
1 5

<210> 88
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 88
Ser Glu Val Asn Leu Ala Ala Glu Phe
1 5

<210> 89
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 89
Ser Glu Val Lys Leu Ala Ala Glu Phe
1 5

<210> 90
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 90
Ser Glu Val Lys Met Leu Ala Glu Phe
1 5

<210> 91
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 91
Ser Glu Val Asn Leu Leu Ala Glu Phe
1 5

<210> 92
<211> 9
<212> PRT
<213> Artificial Sequence

<220>

<223> APP fragment

<400> 92
Ser Glu Val Lys Leu Leu Ala Glu Phe
1 5

<210> 93
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 93
Ser Glu Val Lys Phe Ala Ala Glu Phe
1 5

<210> 94
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 94
Ser Glu Val Asn Phe Ala Ala Glu Phe
1 5

<210> 95
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 95
Ser Glu Val Lys Phe Leu Ala Glu Phe
1 5

<210> 96
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 96
Ser Glu Val Asn Phe Leu Ala Glu Phe
1 5

<210> 97
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> APP-derived fragment P10-P4' (D-V)

<400> 97
Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Val Ala Glu Phe
1 5 10

<210> 98
<211> 35
<212> DNA
<213> Homo sapiens

<400> 98
cccgaaagac ccggccggag gggcagcttt gtcga 35

<210> 99
<211> 11
<212> PRT
<213> Homo sapiens

<400> 99
Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg
1 5 10

<210> 100
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Recombinant 293T cells

<400> 100
Thr Gln His Gly Ile Arg Leu Pro Leu Arg
1 5 10

<210> 101
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Recombinant 293T cells

<400> 101
Met Val Asp Asn Leu Arg Gly Lys Ser
1 5

<210> 102
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Recombinant CosA2 cells

<400> 102
Gly Ser Phe Val Glu Met Val Asp Asn Leu
1 5 10

<210> 103
<211> 4
<212> PRT

```
<213> Artificial Sequence  
  
<220>  
<223> APP substrate fragment:WT Sequence  
  
<400> 103  
Val Lys Met Asp  
1  
  
<210> 104  
<211> 4  
<212> PRT  
<213> Artificial Sequence  
  
<220>  
<223> APP substrate fragment:Swedish Sequence  
  
<400> 104  
Val Asn Leu Asp  
1
```