L3 A, intégration: M363

- I - Exercices préliminaires

On présente ici quelques méthodes de raisonnement qui seront utilisées en théorie de la mesure.

Exercice 1 Pour tout entier naturel non nul n, on définit les fonctions symétriques élémentaires $\sigma_{n,k}: \mathbb{R}^n \to \mathbb{R}$, l'entier k étant compris entre 0 et n, par :

$$\forall \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n, \ \sigma_{n,k}(\alpha) = \begin{cases} 1 \ si \ k = 0 \\ \sum_{1 \le i_1 < \dots < i_k \le n} \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_k} \ si \ k \in \{1, \dots, n\} \end{cases}$$

Soit $P(X) = \prod_{k=1}^{n} (X - \alpha_k)$ un polynôme scindé unitaire de degré $n \ge 1$ dans $\mathbb{R}[X]$.

Montrer que l'on a $P(X) = \sum_{k=0}^{n} a_k X^{n-k}$ avec :

$$\forall k \in \{0, 1, \dots, n\}, \ a_k = (-1)^k \, \sigma_{n,k} \, (\alpha_1, \dots, \alpha_n)$$

Solution. Ces expressions sont qualifiées de symétriques, car pour toute permutation τ de $\{1, \dots, n\}$, on a :

$$\sigma_{n,k}\left(\alpha_{\tau(1)},\cdots,\alpha_{\tau(n)}\right) = \sigma_{n,k}\left(\alpha_{1},\cdots,\alpha_{n}\right)$$

On procède par récurrence sur $n = \deg(P) \ge 1$.

Pour n = 1, on a $P(X) = X - \alpha_1 = a_0 X + a_1$ avec $a_0 = 1 = \sigma_{1,0}(\alpha_1)$ et $a_1 = -\alpha_1 = -\sigma_{1,1}(\alpha_1)$.

Supposons le résultat acquis pour les polynômes scindés unitaires de degré $n-1 \ge 1$ et soit P(X) =

$$\prod \left(X - \alpha_k \right)$$
 un polynôme scindé unitaire de degré $n.$

En notant $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, $\alpha' = (\alpha_1, \dots, \alpha_{n-1}) \in \mathbb{R}^{n-1}$, on a:

$$\sigma_{n,0}\left(\alpha\right) = \sigma_{n-1,0}\left(\alpha'\right) = 1$$

$$\sigma_{n,n}\left(\alpha\right) = \prod_{i=1}^{n} \alpha_i = \alpha_n \sigma_{n-1,n-1}\left(\alpha'\right)$$

et pour k compris entre 1 et n-1:

$$\sigma_{n,k}(\alpha) = \sum_{1 \le i_1 < \dots < i_k \le n} \alpha_{i_1} \cdots \alpha_{i_k} = \sum_{1 \le i_1 < \dots < i_k \le n-1} \alpha_{i_1} \cdots \alpha_{i_k} + \alpha_n \sum_{1 \le i_1 < \dots < i_{k-1} \le n-1} \alpha_{i_1} \cdots \alpha_{i_{k-1}}$$
$$= \sigma_{n-1,k}(\alpha') + \alpha_n \sigma_{n-1,k-1}(\alpha')$$

En utilisant l'hypothèse de récurrence, on a :

$$\prod_{k=1}^{n-1} (X - \alpha_k) = \sum_{k=0}^{n-1} a'_k X^{n-1-k}$$

avec $a'_k = (-1)^k \sigma_{n-1,k}(\alpha')$ pour $0 \le k \le n-1$, ce qui nous donne :

$$P(X) = (X - \alpha_n) \prod_{k=1}^{n-1} (X - \alpha_k) = (X - \alpha_n) \sum_{k=0}^{n-1} a_k' X^{n-1-k}$$

$$= (X - \alpha_n) \sum_{k=0}^{n-1} (-1)^k \sigma_{n-1,k} (\alpha') X^{n-1-k}$$

$$= \sum_{k=0}^{n-1} (-1)^k \sigma_{n-1,k} (\alpha') X^{n-k} + \sum_{k=0}^{n-1} (-1)^{k+1} \alpha_n \sigma_{n-1,k} (\alpha') X^{n-(k+1)}$$

$$= \sum_{k=0}^{n-1} (-1)^k \sigma_{n-1,k} (\alpha') X^{n-k} + \sum_{k=1}^{n} (-1)^k \alpha_n \sigma_{n-1,k-1} (\alpha') X^{n-k}$$

$$= X^n + \sum_{k=1}^{n-1} (-1)^k (\sigma_{n-1,k} (\alpha') + \alpha_n \sigma_{n-1,k-1} (\alpha')) X^{n-k} + (-1)^n \alpha_n \sigma_{n-1,n-1} (\alpha')$$

$$= \sum_{k=0}^{n} (-1)^k \sigma_{n,k} (\alpha) X^{n-k} = \sum_{k=0}^{n} a_k X^{n-k}$$

avec $a_k = (-1)^k \sigma_{n,k}(\alpha)$ pour tout k comprisentre 0 et n.

Exercice 2 Soit Ω un ensemble non vide.

À toute partie A de Ω , on associe la fonction indicatrice (ou caractéristique) de A définie par :

$$\mathbf{1}_A: \ \Omega \to \left\{ \begin{array}{l} \{0,1\} \\ x \mapsto \left\{ \begin{array}{l} 1 \ si \ x \in A \\ 0 \ si \ x \notin A \end{array} \right. \end{array} \right.$$

On note $\mathcal{P}(\Omega)$ l'ensemble de toutes les parties de Ω .

- 1. Montrer que l'application qui associe à une partie A de Ω sa fonction indicatrice $\mathbf{1}_A$ réalise une bijection de $\mathcal{P}(\Omega)$ sur $\{0,1\}^{\Omega}$ (ensemble des applications de Ω dans $\{0,1\}$). Préciser son inverse
- 2. Soient A, B deux parties de Ω . Exprimer $\mathbf{1}_{\Omega\setminus A}$, $\mathbf{1}_{A\cap B}$, $\mathbf{1}_{AUB}$, $\mathbf{1}_{B\setminus A}$, $\mathbf{1}_{A\Delta B}$, en fonction de $\mathbf{1}_A$ et $\mathbf{1}_B$.
- 3. Plus généralement, pour toute suite finie $(A_k)_{1 \leq k \leq n}$ de parties de Ω , exprimer $\mathbf{1}_{\bigcap_{k=1}^{n} A_k}$ et $\mathbf{1}_{\bigcap_{k=1}^{n} A_k}$ en fonction des $\mathbf{1}_{A_k}$.
- 4. Montrer qu'il n'existe pas de bijection de Ω sur $\mathcal{P}(\Omega)$ (théorème de Cantor). On en déduit en particulier que $\mathcal{P}(\mathbb{N})$ et $\{0,1\}^{\mathbb{N}}$ ne sont pas dénombrables.
- 5. Soient $(A_k)_{1 \leq k \leq n}$ une suite finie de parties de Ω et A une partie de Ω . Montrer que :

$$((A_k)_{1 \le k \le n} \text{ est une partition de } A) \Leftrightarrow \left(\mathbf{1}_A = \sum_{k=1}^n \mathbf{1}_{A_k}\right)$$

Solution. Les fonctions indicatrices permettent de transformer des opérations ensemblistes en opérations algébriques sur des fonctions.

1. Notons:

$$\chi: \mathcal{P}(\Omega) \rightarrow \{0,1\}^{\Omega}$$
 $A \mapsto \mathbf{1}_A$

Si A, B dans $\mathcal{P}(\Omega)$ sont tels que $\mathbf{1}_A = \mathbf{1}_B$, on a alors pour tout $x \in \Omega$:

$$(x \in A) \Leftrightarrow (\mathbf{1}_A(x) = 1) \Leftrightarrow (\mathbf{1}_B(x) = 1) \Leftrightarrow (x \in B)$$

soit, A = B.

L'application χ est donc injective.

Pour toute application $\gamma \in \{0,1\}^{\Omega}$, en notant $A = \gamma^{-1}\{1\}$, on a $\mathbf{1}_A = \gamma$, donc χ est surjective. En conclusion, χ est bijective d'inverse :

$$\chi^{-1}: \begin{array}{ccc} \left\{0,1\right\}^{\Omega} & \rightarrow & \mathcal{P}\left(\Omega\right) \\ \gamma & \mapsto & \gamma^{-1}\left\{1\right\} \end{array}$$

2. De la partition $\Omega = A \cup (\Omega \setminus A)$, on déduit que pour tout $x \in \Omega$, on a :

$$\mathbf{1}_{A}(x) + \mathbf{1}_{\Omega \setminus A}(x) = 1$$

donc $\mathbf{1}_{\Omega \setminus A} = 1 - \mathbf{1}_A$.

Pour tout $x \in \Omega$, on a :

$$\mathbf{1}_{A\cap B}\left(x\right) = \begin{cases} 1 \text{ si } x \in A \text{ et } x \in B \\ 0 \text{ si } x \notin A \text{ ou } x \notin B \end{cases} = \mathbf{1}_{A}\left(x\right) \mathbf{1}_{B}\left(x\right) = \min\left(\mathbf{1}_{A}\left(x\right), \mathbf{1}_{B}\left(x\right)\right)$$

donc $\mathbf{1}_{A \cap B} = \mathbf{1}_A \mathbf{1}_B = \min (\mathbf{1}_A, \mathbf{1}_B)$.

De ces deux formules, on déduit toutes les autres.

Avec:

$$\Omega \setminus (AUB) = (\Omega \setminus A) \cap (\Omega \setminus B)$$

on déduit que :

$$\mathbf{1}_{\Omega\setminus(AUB)} = \mathbf{1}_{\Omega\setminus A}\mathbf{1}_{\Omega\setminus B}$$

soit:

$$1 - \mathbf{1}_{AUB} = (1 - \mathbf{1}_A)(1 - \mathbf{1}_B)$$

ou encore:

$$\mathbf{1}_{AUB} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B = \max(\mathbf{1}_A, \mathbf{1}_B)$$

Avec:

$$B \setminus A = (\Omega \setminus A) \cap B$$

on déduit que :

$$\mathbf{1}_{B \setminus A} = \mathbf{1}_B (1 - \mathbf{1}_A) = \max (\mathbf{1}_B - \mathbf{1}_A, 0)$$

Avec:

$$A\Delta B = (AUB) \setminus A \cap B$$

on déduit que :

$$\mathbf{1}_{A\Delta B} = \mathbf{1}_{AUB} (1 - \mathbf{1}_{A\cap B}) = (\mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B) (1 - \mathbf{1}_A \mathbf{1}_B)$$

$$= \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B + \mathbf{1}_A \mathbf{1}_B$$

$$= \mathbf{1}_A + \mathbf{1}_B - 2\mathbf{1}_A \mathbf{1}_B$$

$$= (\mathbf{1}_A - \mathbf{1}_B)^2 = |\mathbf{1}_A - \mathbf{1}_B|$$

3. Pour tout $x \in \Omega$, on a :

$$\left(\mathbf{1}_{\sum_{k=1}^{n} A_{k}}^{n}(x) = 1\right) \Leftrightarrow \left(x \in \bigcap_{k=1}^{n} A_{k}\right) \Leftrightarrow (\forall k \in \{1, \dots, n\}, \ x \in A_{k})$$

$$\Leftrightarrow (\forall k \in \{1, \dots, n\}, \ \mathbf{1}_{A_{k}}(x) = 1)$$

$$\Leftrightarrow \left(\prod_{k=1}^{n} \mathbf{1}_{A_{k}}(x) = 1\right) \Leftrightarrow \left(\min_{1 \le k \le n} \mathbf{1}_{A_{k}}(x) = 1\right)$$

donc:

$$\mathbf{1}_{igcap_{k=1}^n A_k}^n = \prod_{k=1}^n \mathbf{1}_{A_k} = \min_{1 \leq k \leq n} \mathbf{1}_{A_k}$$

puisque ces fonctions sont à valeurs dans $\{0,1\}$.

Avec:

$$\Omega \setminus \bigcup_{k=1}^{n} A_k = \bigcap_{k=1}^{n} (\Omega \setminus A_k)$$

on déduit que :

$$1 - \mathbf{1} \bigcup_{k=1}^{n} A_{k} = \min_{1 \le k \le n} (1 - \mathbf{1}_{A_{k}}) = 1 - \max_{1 \le k \le n} \mathbf{1}_{A_{k}} (x)$$

soit:

$$\mathbf{1}_{\bigcup\limits_{k=1}^{n}A_{k}}=\max_{1\leq k\leq n}\mathbf{1}_{A_{k}}$$

On peut aussi généraliser la formule $\mathbf{1}_{AUB}=\mathbf{1}_A+\mathbf{1}_B-\mathbf{1}_A\mathbf{1}_B$ en utilisant l'exercice 1.

Avec:

$$\Omega \setminus \bigcup_{k=1}^{n} A_k = \bigcap_{k=1}^{n} (\Omega \setminus A_k)$$

on déduit que :

$$\mathbf{1}_{\bigcup_{k=1}^{n} A_{k}}^{n} = 1 - \prod_{k=1}^{n} (1 - \mathbf{1}_{A_{k}})$$

avec:

$$\prod_{k=1}^{n} (1 - \mathbf{1}_{A_k}) = 1 + \sum_{k=1}^{n} (-1)^k \sum_{1 \le i_1 < \dots < i_k \le n} \mathbf{1}_{A_{i_1}} \mathbf{1}_{A_{i_2}} \cdots \mathbf{1}_{A_{i_k}}$$

$$= 1 + \sum_{k=1}^{n} (-1)^k \sum_{1 \le i_1 < \dots < i_k \le n} \mathbf{1}_{A_{i_1} \cap A_{i_2} \dots A_{i_k}}$$

ce qui nous donne la formule de Poincaré :

$$\mathbf{1}_{\bigcup_{k=1}^{n} A_{k}}^{n} = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < \dots < i_{k} \le n} \mathbf{1}_{A_{i_{1}} \cap A_{i_{2}} \dots A_{i_{k}}}$$

4. Supposons qu'il existe une surjection φ de Ω sur $\mathcal{P}(\Omega)$.

Le sous-ensemble A de Ω défini par :

$$A = \{ x \in \Omega \mid x \notin \varphi(x) \}$$

a alors un antécédent x_0 par φ et on a :

$$(x_0 \in A) \Leftrightarrow (x_0 \in \varphi(x_0)) \Leftrightarrow (x_0 \notin A)$$

ce qui n'est pas possible.

En particulier, $\widehat{\mathcal{P}}(\mathbb{N})$ n'est pas équipotent à \mathbb{N} et il en est de même de $\{0,1\}^{\mathbb{N}}$ qui est équipotent à $\mathcal{P}(\mathbb{N})$.

On peut aussi vérifier, en utilisant les développements dyadiques (en base 2), que $\{0,1\}^{\mathbb{N}}$ est équipotent à [0,1].

5. Supposons que $(A_k)_{1 \le k \le n}$ soit une partition de A, c'est-à-dire que $A = \bigcup_{k=1}^{n} A_k$, les A_k étant deux à deux disjoints.

Dans ce ce cas, pour tout entier k compris entre 2 et n et tout multi-indice (i_1, \dots, i_k) tel que $1 \leq i_1 < \dots < i_k \leq n,$ l'intersection $A_{i_1 \cap} A_{i_2} \cdots A_{i_k}$ est vide, ce qui nous donne :

$$\mathbf{1}_A = \sum_{k=1}^n \mathbf{1}_{A_k}$$

Réciproquement supposons que $\mathbf{1}_A = \sum_{k=1}^{n} \mathbf{1}_{A_k}$.

Les A_k sont alors deux à deux disjoints

En effet, s'il existe $k \neq j$ tels que $A_k \cap A_j \neq \emptyset$, on a alors pour $x \in A_k \cap A_j$:

$$\mathbf{1}_{A}(x) = \sum_{k=1}^{n} \mathbf{1}_{A_{k}} \ge \mathbf{1}_{A_{k}}(x) + \mathbf{1}_{A_{j}}(x) = 2$$

ce qui est impossible.

Si $x \in \bigcup_{k=1}^{n} A_k$, il existe alors un indice j compris entre 1 et n tel que $x \in A_j$, donc $\mathbf{1}_A(x) = \sum_{k=1}^{n} \mathbf{1}_{A_k}(x) \ge 1$ $\mathbf{1}_{A_j}(x) = 1$, ce qui impose $\mathbf{1}_{A_k}(x) = 0$ pour $k \neq j$ et $\mathbf{1}_{A_j}(x) = \mathbf{1}_{A_j}(x) = 1$, ce qui prouve que $\bigcup_{k=1}^{n} A_k \subset A.$

Pour $x \in A$, on a $1 = \mathbf{1}_A(x) = \sum_{k=1}^n \mathbf{1}_{A_k}(x)$, donc il existe un unique j compris entre 1 et n tel que $\mathbf{1}_{A_j}(x)=1$, ce qui signifie que x est dans A_j et $x\in\bigcup_{k=1}^nA_k$, donc $A\subset\bigcup_{k=1}^nA_k$ et on a l'égalité $A = \bigcup_{k=1}^{n} A_k$, les A_k étant deux à deux disjoints.

Exercice 3 On dit qu'une série numérique (réelle ou complexe) $\sum u_n$ est commutativement convergente si, pour toute permutation σ de \mathbb{N} , la série $\sum u_{\sigma(n)}$ est convergente. Montrer qu'une série $\sum u_n$ absolument convergente est commutativement convergente et que pour toute permutation σ de \mathbb{N} , on a $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$ (cela justifie l'écriture $\sum_{n\in\mathbb{N}} u_n$ dans le cas d'une

série absolument convergente, ce qui est utilisé implicitement dans la définition d'une mesure).

Solution. Soient $\sum u_n$ une série absolument convergente et σ une permutation de \mathbb{N} .

Pour tout $n \in \mathbb{N}$, en notant $\varphi(n) = \max_{0 \le k \le n} \sigma(k)$, on a :

$$\sum_{k=0}^{n} |u_{\sigma(k)}| \le \sum_{j=0}^{\varphi(n)} |u_{j}| \le \sum_{n=0}^{+\infty} |u_{n}| = S$$

donc la série $\sum u_{\sigma(n)}$ est absolument convergente.

Il reste à montrer que $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$. On montre tout d'abord le résultat pour les séries réelles à termes positifs.

On vient de voir que $\sum u_{\sigma(n)}$ converge et que :

$$\sum_{n=0}^{+\infty} u_{\sigma(n)} \le \sum_{n=0}^{+\infty} u_n$$

En appliquant le résultat précédent à la série de terme général $v_n = u_{\sigma(n)}$ et à la permutation σ^{-1} , on a aussi :

$$\sum_{n=0}^{+\infty} v_{\sigma^{-1}(n)} = \sum_{n=0}^{+\infty} u_{\sigma(\sigma^{-1}(n))} = \sum_{n=0}^{+\infty} u_n \le \sum_{n=0}^{+\infty} v_n = \sum_{n=0}^{+\infty} u_{\sigma(n)}$$

ce qui nous donne l'égalité $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$.

Pour le cas général d'une série réelle ou complexe, on a déjà $\sum_{n=0}^{+\infty} |u_{\sigma(n)}| = \sum_{n=0}^{+\infty} |u_n|$.

En utilisant les notations précédentes, on a $\varphi(n) \geq n$ pour tout $n \in \mathbb{N}$ et

$$\left| \sum_{j=0}^{\varphi(n)} u_j - \sum_{k=0}^n u_{\sigma(k)} \right| = \left| \sum_{j \in E_n} u_j \right| \le R_n = \sum_{j \in E_n} |u_j|$$

où on a noté:

$$E_{n} = \{0, 1, \cdots, \varphi(n) - 1, \varphi(n)\} \setminus \{\sigma(0), \cdots, \sigma(n)\}$$

avec:

$$R_n = \sum_{j=0}^{\varphi(n)} |u_j| - \sum_{k=0}^n |u_{\sigma(k)}| \underset{n \to +\infty}{\to} 0$$

L'égalité
$$\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$$
 s'en déduit alors.

Exercice 4

- 1. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite de réels positifs ou nuls indexée par (n,m) dans \mathbb{N}^2 . On suppose que :
 - pour tout $n \in \mathbb{N}$, la série $\sum_{m} u_{n,m}$ est convergente de somme S_n ;
 - la série $\sum_{n} S_n$ étant convergente de somme S.

Montrer alors que dans ces conditions :

- pour tout $m \in \mathbb{N}$, la série $\sum_{n} u_{n,m}$ est convergente de somme T_m ;
- la série $\sum_{m} T_{m}$ est convergente de somme S, soit :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

 $Dans\ le\ cas\ où\ l'une\ des\ sommes \sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m}\right)\ ou \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m}\right)\ est\ finie,\ on\ dit\ que\ la\ série$

double $\sum u_{n,m}$ est convergente et on note $\sum_{(n,m)\in\mathbb{N}^2} u_{n,m}$ la valeur commune de $\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m}\right)$

$$et \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right).$$

Étant donnée une suite double $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ de nombres complexes, on dit que la série double $\sum u_{n,m}$ est absolument convergente (ou que la suite $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ est sommable) si la série double $\sum |u_{n,m}|$ est convergente.

2. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite double telle que la série double $\sum u_{n,m}$ soit absolument conver-

Montrer alors que dans ces conditions, pour tout $n \in \mathbb{N}$ [resp. pour tout $m \in \mathbb{N}$], la série $\sum_{m} u_{n,m}$ [resp. $\sum_{m} u_{n,m}$] est absolument convergente et en notant S_n [resp. T_m] la somme de

cette série, la série $\sum S_n$ [resp. $\sum T_m$] est absolument convergente et on a $\sum_{n=0}^{+\infty} S_n = \sum_{n=0}^{+\infty} T_m$, soit:

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

- 3. En justifiant la convergence, calculer la somme $\sum_{m=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^m}.$
- 4. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^*\times\mathbb{N}^*}$ la suite double définie par :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^*, \ u_{n,m} = \begin{cases} 0 \ si \ n = m \\ \frac{1}{n^2 - m^2} \ si \ n \neq m \end{cases}$$

Montrer, en les calculant, que les sommes $\sum_{n=1}^{+\infty} \left(\sum_{m=1}^{+\infty} u_{n,m}\right)$ et $\sum_{m=1}^{+\infty} \left(\sum_{n=1}^{+\infty} u_{n,m}\right)$ sont définies et différentes.

Solution.

1. Pour tous les entiers n et m, on a :

$$0 \le u_{n,m} \le S_n = \sum_{k=0}^{+\infty} u_{n,k}$$

avec $\sum_{n=0}^{+\infty} S_n = S < +\infty$, ce qui entraı̂ne la convergence de la série $\sum_n u_{n,m}$ avec, pour tout entier m:

$$T_m = \sum_{n=0}^{+\infty} u_{n,m} \le \sum_{n=0}^{+\infty} S_n = S$$

Pour tout entier m, on a:

$$\sum_{k=0}^{m} T_k = \sum_{k=0}^{m} \sum_{n=0}^{+\infty} u_{n,k} = \sum_{n=0}^{+\infty} \sum_{k=0}^{m} u_{n,k}$$

$$\leq \sum_{n=0}^{+\infty} S_n = S$$

donc la série $\sum T_m$ est convergente de somme $T = \sum_{m=0}^{+\infty} T_m \le S$. En permutant les rôles de n et m, on aboutit de manière analogue à $S \le T$ et en conséquence, T = S.

2. La série $\sum |u_{n,m}|$ étant convergente, on a pour tous les entiers n, m:

$$S'_n = \sum_{k=0}^{+\infty} |u_{n,k}| < +\infty, \ T'_m = \sum_{j=0}^{+\infty} |u_{j,m}| < +\infty$$

et:

$$\sum_{n=0}^{+\infty} S_n' = \sum_{m=0}^{+\infty} T_m'$$

Les séries $\sum_{m} u_{n,m}$, pour tout $n \in \mathbb{N}$ et $\sum_{n} u_{n,m}$ pour tout $m \in \mathbb{N}$ sont donc absolument convergentes de sommes respectives S_n et T_m .

Pour tout entier n, on a:

$$\left| \sum_{k=0}^{n} T_k - \sum_{j=0}^{n} S_j \right| = \left| \sum_{k=0}^{n} \sum_{j=0}^{+\infty} u_{j,k} - \sum_{j=0}^{n} \sum_{k=0}^{+\infty} u_{j,k} \right|$$

$$= \left| \sum_{j=0}^{+\infty} \sum_{k=0}^{n} u_{j,k} - \sum_{k=0}^{+\infty} \sum_{j=0}^{n} u_{j,k} \right|$$

$$= \left| \sum_{j=n+1}^{+\infty} \sum_{k=0}^{n} u_{j,k} - \sum_{k=n+1}^{+\infty} \sum_{j=0}^{n} u_{j,k} \right|$$

$$\leq \sum_{j=n+1}^{+\infty} \sum_{k=0}^{+\infty} |u_{j,k}| + \sum_{k=n+1}^{+\infty} \sum_{j=0}^{+\infty} |u_{j,k}|$$

$$\leq \sum_{j=n+1}^{+\infty} S_j' + \sum_{k=n+1}^{+\infty} T_k' = R_n$$

avec $\lim_{n\to+\infty}R_n=0$ puisque chacune des séries $\sum S_n'$ et $\sum T_m'$ converge.

On a donc bien l'égalité $\sum_{n=0}^{+\infty} S_n = \sum_{m=0}^{+\infty} T_m$.

3. Dans $\mathbb{R}^+ \cup \{+\infty\}$, on a :

$$\sum_{m=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^m} = \sum_{n=2}^{+\infty} \sum_{m=2}^{+\infty} \left(\frac{1}{n}\right)^m = \sum_{n=1}^{+\infty} \frac{1}{n^2} \frac{1}{1 - \frac{1}{n}}$$
$$= \sum_{n=1}^{+\infty} \frac{1}{n(n-1)} = 1$$

(en écrivant que $\frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$).

On peut donc calculer $\sum_{m=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^m}$ alors qu'on ne connaît pas toutes les valeurs de $\sum_{n=2}^{+\infty} \frac{1}{n^m}$ pour $m \ge 2$.

4. Pour k entier naturel non nul fixé et n > k, on a

$$\sum_{j=1}^{n} u_{j,k} = \sum_{\substack{j=1\\j\neq k}}^{n} \frac{1}{j^2 - k^2} = \frac{1}{2k} \sum_{\substack{j=1\\j\neq k}}^{n} \left(\frac{1}{j - k} - \frac{1}{j + k}\right)$$

$$= \frac{1}{2k} \left(\sum_{\substack{j=1-k\\j\neq 0}}^{n-k} \frac{1}{j} - \sum_{\substack{j=k+1\\j\neq 2k}}^{n+k} \frac{1}{j}\right)$$

$$= \frac{1}{2k} \left(\sum_{j=1}^{n-k} \frac{1}{j} - \sum_{j=1}^{n+k} \frac{1}{j} - \sum_{j=k+1}^{n+k} \frac{1}{j} + \frac{1}{2k}\right)$$

$$= \frac{1}{2k} \left(\sum_{j=1}^{n-k} \frac{1}{j} - \sum_{j=1}^{n+k} \frac{1}{j} + \frac{1}{k} + \frac{1}{2k}\right)$$

$$= \frac{1}{2k} \left(\frac{3}{2} \frac{1}{k} - \sum_{j=n-k+1}^{n+k} \frac{1}{j}\right)$$

avec:

$$0 < \sum_{i=n-k+1}^{n+k} \frac{1}{j} \le 2k \frac{1}{n-k+1} \underset{n \to +\infty}{\to} 0$$

et donc:

$$\forall k \ge 1, \lim_{n \to +\infty} \sum_{j=1}^{n} u_{j,k} = \frac{3}{4} \frac{1}{k^2}$$

ce qui signifie que :

$$\forall k \ge 1, \ T_k = \sum_{n=1}^{+\infty} u_{n,k} = \frac{3}{4} \frac{1}{k^2}$$

La série $\sum T_m$ est donc convergente avec $\sum_{m=1}^{+\infty} T_m = \frac{3}{4} \sum_{m=1}^{+\infty} \frac{1}{m^2}$, ce qui signifie que :

$$\sum_{m=1}^{+\infty} \left(\sum_{n=1}^{+\infty} u_{n,m} \right) = \frac{3}{4} \sum_{m=1}^{+\infty} \frac{1}{m^2} = \frac{3}{4} \frac{\pi^2}{6}$$

De manière analogue, on a:

$$\sum_{n=1}^{+\infty} \left(\sum_{m=1}^{+\infty} u_{n,m} \right) = -\frac{3}{4} \frac{\pi^2}{6}$$

et
$$\sum_{n=1}^{+\infty} \left(\sum_{m=1}^{+\infty} u_{n,m}\right) \neq \sum_{m=1}^{+\infty} \left(\sum_{n=1}^{+\infty} u_{n,m}\right)$$
.
La série double $\sum u_{n,m}$ n'est donc pas absolument convergente.

Exercice 5 Soient E un espace vectoriel normé complet et a < b deux réels.

Une fonction $f:[a,b] \to E$ est dite réglée si elle admet une limite à droite en tout point de [a,b] et une limite à gauche en tout point de [a,b].

On notera $f(x^-)$ [resp. $f(x^+)$] la limite à gauche [resp. à droite] en $x \in [a, b]$ [resp. en $x \in [a, b]$].

- 1. Montrer qu'une fonction réglée est bornée.
- 2. Montrer qu'une limite uniforme de fonctions réglées de [a, b] dans E est réglée.
- 3. Soit $f:[a,b] \to E$ une fonction réglée et $\varepsilon > 0$. On note :

$$E_{\varepsilon} = \left\{ x \in \left] a, b \right] \mid il \text{ existe } \varphi \text{ en escaliers sur } \left[a, x \right] \text{ telle que } \sup_{t \in \left[a, x \right]} \left\| f \left(t \right) - \varphi \left(t \right) \right\| < \varepsilon \right\}$$

Montrer que $E_x \neq \emptyset$, puis que $b = \max(E_{\varepsilon})$.

- 4. Montrer qu'une fonction $f:[a,b] \to E$ est réglée si, et seulement si, elle est limite uniforme sur [a, b] d'une suite de fonctions en escaliers.
- 5. Rappeler comment ce résultat est utilisé pour définir l'intégrale de Riemann d'une fonction réglée $f:[a,b]\to E$.

Solution.

1. Soit $f:[a,b]\to E$ réglée.

Si elle n'est pas bornée, pour tout entier $n \ge 1$, on peut trouver un réel $x_n \in [a, b]$ tel que $||f(x_n)|| \ge n$. Dans le compact [a,b], on peut extraire de la suite $(x_n)_{n\in\mathbb{N}}$ une sous-suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge vers $\alpha \in [a, b]$.

Supposons que $\alpha \in [a, b[$. Il existe un réel $\eta > 0$ tel que :

$$\forall x \in [a, b] \cap]\alpha - \eta, \alpha[, \|f(x) - f(\alpha^{-})\| < 1$$

et:

$$\forall x \in [a, b] \cap]\alpha, \alpha + \eta[, \|f(x) - f(\alpha^{+})\| < 1$$

Il existe aussi un entier $n_0 \ge 1$ tel que :

$$\forall n \geq n_0, \ x_{\varphi(n)} \in]\alpha - \eta, \alpha + \eta[$$

ce qui nous donne pour tout $n \ge n_0$:

$$||f(x_{\varphi(n)}) - f(\alpha^{-})|| < 1 \text{ ou } ||f(x_{\varphi(n)}) - f(\alpha^{+})|| < 1$$

et en conséquence :

$$||f(x_{\varphi(n)})|| < 1 + ||f(\alpha^{-})|| \text{ ou } ||f(x_{\varphi(n)})|| < 1 + ||f(\alpha^{+})||$$

en contradiction avec $||f(x_{\varphi(n)})|| \ge \varphi(n) \ge n$.

Pour $\alpha = a$ [resp. $\alpha = b$], on procède de manière analogue en utilisant seulement la limite à droite [resp. à gauche].

La fonction f est donc bornée.

2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions réglées de [a,b] dans E qui converge uniformément vers une fonction f.

Pour tout réel $\varepsilon>0,$ on peut trouver un entier n_{ε} tel que :

$$\forall n \geq n_{\varepsilon}, \sup_{x \in [a,b]} \|f_n(x) - f(x)\| < \varepsilon$$

La fonction $f_{n_{\varepsilon}}$ ayant une limite à gauche en $\alpha \in [a,b]$, il existe un réel $\eta > 0$ tel que :

$$\forall x \in [a, b] \cap]\alpha - \eta, \alpha[, ||f_{n_{\varepsilon}}(x) - f_{n_{\varepsilon}}(\alpha^{-})|| < \varepsilon$$

ce qui nous donne, pour tout x, y dans $[a, b] \cap]\alpha - \eta, \alpha[$:

$$||f(x) - f(y)|| \le ||f(x) - f_{n_{\varepsilon}}(x)|| + ||f_{n_{\varepsilon}}(x) - f_{n_{\varepsilon}}(\alpha^{-})|| + ||f_{n_{\varepsilon}}(\alpha^{-}) - f_{n_{\varepsilon}}(y)|| + ||f_{n_{\varepsilon}}(y) - f(y)||$$

$$< 4\varepsilon$$

On déduit alors du critère de Cauchy que f admet une limite à gauche en α .

De plus avec:

$$\left\| f_n\left(\alpha^-\right) - f\left(\alpha^-\right) \right\| = \lim_{x \to \alpha^-} \left\| f_n\left(x\right) - f\left(x\right) \right\| \le \sup_{x \in [a,b]} \left\| f_n\left(x\right) - f\left(x\right) \right\|$$

on déduit que :

$$f\left(\alpha^{-}\right) = \lim_{n \to +\infty} f_n\left(\alpha^{-}\right)$$

On procède de même pour la limite à droite.

3. Comme f admet une limite à droite en a, il existe un réel $\eta_a \in]0, b-a[$ tel que :

$$\forall t \in]a, a + \eta_a], \|f(t) - f(a^+)\| < \varepsilon$$

donc en désignant par φ la fonction en escaliers définie sur $[a, a + \eta_a]$ par $\varphi(a) = f(a)$ et $\varphi(t) = f(a^+)$ pour tout $t \in]a, a + \eta_a]$, on a $\sup_{t \in [a, a + \eta_a]} ||f(t) - \varphi(t)|| < \varepsilon$, ce qui signifie que $a + \eta_a \in E_{\varepsilon}$.

L'ensemble E_{ε} est donc non vide majorée par b, donc il admet une borne supérieure $\beta \in]a,b]$ (on a $a + \eta_a \leq \beta$).

Supposons que $\beta < b$. Comme f admet une limite à droite et à gauche en β , il existe un réel $\eta > 0$ tel que $[\beta - \eta, \beta + \eta] \subset]a, b[$ et :

$$\forall t \in [\beta - \eta, \beta[, \|f(t) - f(\beta^{-})\| < \varepsilon$$

$$\forall t \in \left[\beta, \beta + \eta\right], \left\|f(t) - f(\beta^{+})\right\| < \varepsilon$$

Par définition de la borne supérieure β , il existe $x \in [\beta - \eta, \beta] \cap E_{\varepsilon}$. On désigne alors par φ une fonction en escaliers sur [a,x] telle que sup $||f(t)-\varphi(t)|| < \varepsilon$ et on la prolonge en une fonction en

escaliers sur $[a, \beta + \eta]$ en posant $\varphi(t) = f(\beta^{-})$ pour $t \in]x, \beta[, \varphi(\beta) = f(\beta)]$ et $\varphi(t) = f(\beta^{+})$ pour $t \in [\beta, \beta + \eta]$.

 $\sup_{\in [a,\beta+\eta]} \|f(t) - \varphi(t)\| < \varepsilon, \text{ soit } \beta + \eta \in E_x, \text{ ce qui contredit le fait que } \beta \text{ est la borne}$ On a donc supérieure de E_{ε} .

En définitive, on a $\beta = b$.

Comme f admet une limite à gauche en b, il existe un réel $\eta_b > 0$ tel que $[b - \eta_b, b] \subset [a, b]$ et :

$$\forall t \in [b - \eta_b, b[, \|f(t) - f(b^-)\| < \varepsilon$$

Prenant $x \in]b - \eta_b, b] \cap E_{\varepsilon}$, on désigne par φ une fonction en escaliers sur [a, x] telle que $\sup \|f(t) - \varphi(t)\| < \varepsilon$

 ε et on la prolonge en une fonction en escaliers sur [a,b] en posant $\varphi(t)=f(b^-)$ pour $t\in]x,b[$ et $\varphi(b) = f(b)$ (si x = b, il n'y a rien à faire), ce qui nous donne φ en escaliers sur [a, b] telle que $||f(t) - \varphi(t)|| < \varepsilon \text{ pour tout } t \in [a, b].$

On a donc $b \in E_{\varepsilon}$ et $\beta = b$.

4. Si f est limite uniforme sur [a, b] d'une suite de fonctions en escaliers, elle est réglée comme limite uniforme d'une suite de fonctions réglées (une fonction en escaliers est réglée).

Réciproquement, soit $f:[a,b]\to E$ une fonction réglée.

Pour tout entier $n \geq 1$, on a $b \in E_{\frac{1}{n}}$, donc il existe φ_n en escaliers sur [a,b] telle que $\sup_{t \in [a,b]} \|f(t) - \varphi_n(t)\| < \infty$

 $\frac{1}{n}.$ La suite $(\varphi_n)_{n\geq 1}$ converge donc uniformément vers f sur [a,b]. 5. Le résultat de la question précédente peut être utilisé pour définir lintégrale de Riemann d'une fonction réglée f sur [a, b].

On définit d'abord l'intégrale des fonctions en escaliers de la façon usuelle.

On vérifie ensuite que pour toute suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers qui converge uniformément

vers f, la suite $(I_n)_{n\in\mathbb{N}}=\left(\int_a^bf_n\left(x\right)dx\right)_{n\in\mathbb{N}}$ est convergente, ce qui résulte des inégalités :

$$\left| \int_{a}^{b} f_{m}(x) dx - \int_{a}^{b} f_{n}(x) dx \right| \leq (b - a) \sup_{x \in [a,b]} \left| f_{m}(x) - f_{n}(x) \right|$$

desquelles on déduit que la suite $(I_n)_{n\in\mathbb{N}}$ est de Cauchy, donc convergente.

La limite d'une telle suite ne dépend que f puisque si $(g_n)_{n\in\mathbb{N}}$ est une autre suite de fonctions en escaliers qui converge uniformément vers f, on a pour tout entier n:

$$\left| \int_{a}^{b} g_{n}(x) dx - \int_{a}^{b} f_{n}(x) dx \right| \leq (b - a) \sup_{x \in [a,b]} \left| g_{n}(x) - f_{n}(x) \right| \underset{n \to +\infty}{\longrightarrow} 0$$

On peut donc définir l'intégrale f sur [a, b] par :

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \int_{a}^{b} f_{n}(x) dx$$

où $(f_n)_{n\in\mathbb{N}}$ est n'importe quelle suite de fonctions en escaliers qui converge uniformément vers f sur [a,b].

Exercice 6 [a,b] est un intervalle fermé borné fixé avec a < b réels.

1. Montrer que les fonctions en escaliers positives sur [a,b] sont exactement les fonctions du type :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $n \in \mathbb{N}^*$, les a_k sont des réels positifs ou nuls et les I_k sont des intervalles contenus dans [a,b].

- 2. Montrer que si $(\varphi_k)_{1 \le k \le n}$ est une suite finie de fonctions en escaliers sur [a,b], alors la fonction $\varphi = \max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.
- 3. Soit f une fonction réglée définie sur [a,b] et à valeurs positives.
 - (a) Montrer qu'il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escaliers qui converge uniformément vers f sur [a,b] et telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in [a, b], \ \varphi_n(x) \le f(x)$$

(b) On désigne par $(\psi_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [a,b] par $\psi_0=0$ et pour tout $n\geq 1$:

$$\psi_n = \max(0, \varphi_1, \cdots, \varphi_n)$$

Monter que $(\psi_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions en escaliers qui converge uniformément vers f sur [a,b].

- (c) Montrer qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].
- 4. Montrer que les fonctions réglées à valeurs positives sur [a, b] sont exactement les fonctions de la forme :

$$f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$$

où les $(a_n)_{n\in\mathbb{N}}$ est une suite de réels positifs ou nuls, $(I_n)_{n\in\mathbb{N}}$ est une suite d'intervalles contenus dans [a,b] et la série considérée converge uniformément sur [a,b].

Solution.

1. Si φ est une fonction en escaliers sur [a,b], il existe alors un entier $p \in \mathbb{N}^*$ et une subdivision :

$$a_0 = a < a_1 < \dots < a_p = b$$

telle que φ soit constante sur chacun des intervalles $]a_k, a_{k+1}[\ (0 \le k \le p-1),$ ce qui peut s'écrire :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $(I_k)_{1 \le k \le n}$ est une partition de [a,b] en n intervalles (les I_k sont les $]a_j, a_{j+1}[$, pour j compris entre 0 et p-1 et les $\{a_j\} = [a_j, a_j]$, pour j compris entre 0 et p, les a_k étant les valeurs constantes prises par φ sur chacun de ces intervalles).

Si φ est à valeurs positives, les a_k sont tous positifs ou nuls.

Réciproquement une telle fonction est en escaliers puisque l'ensemble des fonctions en escaliers sur [a,b] est un espace vectoriel et elle est à valeurs positives si les a_k sont tous positifs ou nuls (en dehors de la réunion des I_k , la fonction φ est nulle).

2. Si $\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$ est une fonction en escaliers sur [a, b], alors la fonction $|\varphi| = \sum_{k=1}^{n} |a_k| \mathbf{1}_{I_k}$ est aussi en escaliers.

Il en résulte que, si ψ est une autre fonction en escaliers sur [a,b], la fonction :

$$\max(\varphi, \psi) = \frac{\varphi + \psi}{2} + \frac{|\psi - \varphi|}{2}$$

en escaliers, puis par récurrence on en déduit que si $(\varphi_k)_{1 \le k \le n}$ est une suite de fonctions en escalier sur [a,b], alors la fonction $\max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.

3.

(a) Comme f réglée sur [a,b], pour tout entier $n \in \mathbb{N}$, on peut trouver une fonction en escaliers f_n telle que :

$$\sup_{x \in [a,b]} \left| f(x) - f_n(x) \right| < \frac{1}{n+1}$$

La fonction $\varphi_n = f_n - \frac{1}{n+1}$ est aussi en escaliers et pour tout $x \in [a,b]$, on a :

$$-\frac{1}{n+1} < f(x) - f_n(x) < \frac{1}{n+1}$$

donc:

$$0 < f(x) - \varphi_n(x) < \frac{2}{n+1}$$

donc $\varphi_n < f$ et :

$$\sup_{x \in [a,b]} |f(x) - \varphi_n(x)| = \sup_{x \in [a,b]} (f(x) - \varphi_n(x)) \le \frac{2}{n+1}$$

ce qui signifie que $(\varphi_n)_{n\in\mathbb{N}^*}$ converge uniformément vers f par valeurs inférieures.

(b) Pour tout entier $n \in \mathbb{N}^*$, la fonction :

$$\psi_n = \max(0, \varphi_1, \cdots, \varphi_n)$$

est en escaliers et pour tout $x \in [a, b]$, on a :

$$\psi_0 = 0 \le \psi_n(x) \le \psi_{n+1}(x) < f(x)$$

(puisque $f \ge 0$ et $f \ge \varphi_k$ pour tout entier k) et :

$$0 < f(x) - \psi_n(x) \le f(x) - \varphi_n(x) < \frac{2}{n+1}$$

donc $(\psi_n)_{n\in\mathbb{N}}$ converge uniformément en croissant vers f sur [a,b] .

(c) On pose $f_0 = 0$ et $f_n = \psi_n - \psi_{n-1}$ pour tout $n \in \mathbb{N}^*$, ce qui définit une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions en escaliers à valeurs positives.

Avec:

$$\sum_{k=0}^{n} f_k = \sum_{k=1}^{n} (\psi_k - \psi_{k-1}) = \psi_n - \psi_0 = \psi_n$$

on déduit que la série $\sum f_n$ converge uniformément vers f sur [a,b].

4. Si $f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$, où la série est uniformément convergentes, les a_n sont positifs et les I_n des intervalles contenus dans [a, b], la fonction :

$$f = \lim_{n \to +\infty} \sum_{k=0}^{n} a_k \mathbf{1}_{I_k}$$

est alors limite uniforme d'une suite de fonctions réglées positives et en conséquence, elle est réglée positive.

Soit f une fonction réglée positive sur [a, b].

Il existe alors une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].

En écrivant chaque fonction en escaliers f_n sous la forme :

$$f_n = \sum_{k=1}^{p_n} a_{n,k} \mathbf{1}_{I_{n,k}}$$

où les $a_{n,k}$ sont des réels positifs ou nuls et les $I_{n,k}$ sont des intervalles contenus dans [a,b], en notant $p_0 = 0$, on utilise la partition :

$$\mathbb{N}^* = \bigcup_{n>1} \{ p_1 + \dots + p_{n-1} + 1, \dots, p_1 + \dots + p_{n-1} + p_n \}$$

et le fait qu'il s'agit d'une séries de fonctions positives pour écrire que :

$$f = \sum_{j=1}^{+\infty} a_j \mathbf{1}_{I_j}$$

où pour $j = p_1 + \cdots + p_{n-1} + k$ avec $1 \le k \le p_n$, on note :

$$a_j \mathbf{1}_{I_j} = a_{n,k} \mathbf{1}_{I_{n,k}}$$

ce qui définit bien une suite $(a_j)_{j\in\mathbb{N}}$ de réels positifs ou nuls et une suite $(I_j)_{j\in\mathbb{N}}$ d'intervalles contenus dans [a,b].

A priori la convergence de cette série est simple.

Pour tout entier $m \ge 1$ il existe un unique entier $n \ge 1$ tel que $m \in \{p_1 + \dots + p_{n-1} + 1, \dots, p_1 + \dots + p_{n-1} + p_n\}$ et on a :

$$R_m = \sum_{j=m}^{+\infty} a_j \mathbf{1}_{I_j} \le \sum_{j=p_1 + \dots + p_{n-1} + 1}^{+\infty} a_j \mathbf{1}_{I_j} = \sum_{p=n}^{+\infty} f_p = R'_n$$

ce qui assure la convergence uniforme (pour $\varepsilon > 0$, il existe $n_{\varepsilon} \in \mathbb{N}^*$ tel que $R'_n < \varepsilon$ pour tout $n \ge n_{\varepsilon}$, donc pour tout $m \ge m_{\varepsilon} = p_1 + \dots + p_{n_{\varepsilon}-1} + 1$, on aura $R_m < \varepsilon$).

Exercice 7 La longueur d'un intervalle réel I est définie par :

$$\ell\left(I\right) = \sup\left(I\right) - \inf\left(I\right) \in \left[0, +\infty\right] = \mathbb{R}^+ \cup \left\{+\infty\right\}$$

1. Soient I = [a, b] un intervalle fermé, borné et $(I_k)_{1 \le k \le n}$ une famille finie d'intervalles telle que :

$$I \subset \bigcup_{k=1}^{n} I_k$$

Montrer que:

$$\ell\left(I\right) \le \sum_{k=1}^{n} \ell\left(I_{k}\right)$$

2. Soient I = [a, b] un intervalle fermé, borné et $(I_n)_{n \in \mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

3. Soient I un intervalle et $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que:

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

4. Soit $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles deux à deux disjoints inclus dans un intervalle I. Montrer que :

$$\ell\left(I\right) \ge \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

Solution. Si I est un intervalle borné d'extrémités a < b, on a alors :

$$\ell\left(I\right) = b - a$$

En particulier, on a pour tout réel a:

$$\ell(\emptyset) = \ell([a, a]) = 0 \text{ et } \ell([a, a]) = 0$$

Si I est non bornée, on a alors $a=-\infty$ ou $b=+\infty$ et $\ell(I)=+\infty$.

1. Si l'un des intervalles I_j , pour j compris entre 1 et n, est non borné, on a alors $\ell(I_j) = +\infty$ et :

$$\ell\left(I\right) = b - a \le \sum_{k=1}^{n} \ell\left(I_{k}\right) = +\infty$$

On suppose donc que chaque intervalle I_k , pour k compris entre 1 et n, est borné et on note $\alpha_k \leq \beta_k$ ses extrémités.

On raisonne par récurrence sur $n \ge 1$.

Pour n = 1, on a $I \subset I_1$, donc $\alpha_1 \le a \le b \le \beta_1$ et :

$$\ell(I) = b - a \le \beta_1 - \alpha_1 = \ell(I_1)$$

Supposons le résultat acquis pour $n-1 \ge 1$ et soit $I \subset \bigcup_{k=1}^n I_k$ un recouvrement fini de l'intervalle

I = [a, b] par des intervalles I_k bornés.

L'extrémité b de I est contenue dans l'un des I_k et, en modifiant au besoin la numérotation, on peut supposer que k = n.

Si $\alpha_n \leq a$, on a alors $\alpha_n \leq a \leq b \leq \beta_n$, soit $I \subset I_n$ et :

$$\ell(I) \le \ell(I_n) \le \sum_{k=1}^{n} \ell(I_k)$$

Sinon, on a $a < \alpha_n \le b \le \beta_n$, donc :

$$[a, \alpha_n[\subset \bigcup_{k=1}^{n-1} I_k]$$

et par hypothèse de récurrence, on a :

$$\alpha_n - a \le \sum_{k=1}^{n-1} \ell(I_k)$$

et tenant compte de :

$$b - \alpha_n \le \beta_n - \alpha_n = \ell(I_n)$$

on déduit que :

$$\ell(I) = b - a = (b - \alpha_n) + (\alpha_n - a) \le \sum_{k=1}^n \ell(I_k)$$

2. Si l'un des I_n est non borné, le résultat est évident.

On suppose que chaque intervalle I_n , pour $n \in \mathbb{N}$, est borné et on note $\alpha_n \leq \beta_n$ ses extrémités. Pour $\varepsilon > 0$ donné, on désigne par $(I_n(\varepsilon))_{n \in \mathbb{N}}$ la suite d'intervalles ouverts définie par :

$$\forall n \in \mathbb{N}, \ I_n(\varepsilon) = \left[\alpha_n - \frac{\varepsilon}{2^{n+2}}, \beta_n + \frac{\varepsilon}{2^{n+2}} \right]$$

et on a un recouvrement ouvert du compact I = [a, b]:

$$I\subset\bigcup_{n\in\mathbb{N}}I_{n}\left(\varepsilon\right)$$

duquel on peut extraire un sous-recouvrement fini:

$$I \subset \bigcup_{k=1}^{n_{\varepsilon}} J_k$$

On déduit alors de la question précédente que :

$$\ell\left(I\right) \leq \sum_{k=1}^{n_{\varepsilon}} \ell\left(J_{k}\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_{n}\left(\varepsilon\right)\right)$$

avec:

$$\forall n \in \mathbb{N}, \ \ell\left(I_n\left(\varepsilon\right)\right) = \beta_n - \alpha_n + \frac{\varepsilon}{2^{n+1}} = \ell\left(I_n\right) + \frac{\varepsilon}{2^{n+1}}$$

ce qui nous donne :

$$\ell(I) \le \sum_{n \in \mathbb{N}} \ell(I_n) + \varepsilon \sum_{n \in \mathbb{N}} \frac{1}{2^{n+1}} = \sum_{n \in \mathbb{N}} \ell(I_n) + \varepsilon$$

Faisant tendre ε vers 0, on en déduit que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

3. Si $\ell(I) = 0$ ou si $\sum_{n \in \mathbb{N}} \ell(I_n) = +\infty$, le résultat est alors évident.

Si $\ell(I) > 0$ et la série $\sum_{n \in \mathbb{N}} \ell(I_n)$ est convergente, tous les I_n et I sont bornés. En notant a < b les

extrémités de I, pour tout segment I' = [a', b'] contenu dans I, on a $I' \subset \bigcup_{n \in \mathbb{N}} I_n$ et de la question précédente, on déduit que :

$$\ell\left(I'\right) = b' - a' \le \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

Faisant tendre (a',b') vers (a,b), on en déduit le résultat annoncé.

4. Si $\ell\left(I\right)=+\infty,$ le résultat est alors évident.

On suppose que I est borné d'extrémités $a \leq b$.

Comme $I_n \subset I$ pour tout $n \in \mathbb{N}$, tous ces intervalles sont bornés et on a $\bigcup_{k=0}^n I_k \subset I$ pour tout $n \in \mathbb{N}^*$.

En modifiant au besoin la numérotation et en notant $\alpha_n \leq \beta_n$ les extrémités de chaque intervalle I_n , comme ils sont deux à deux disjoints, on peut supposer que :

$$a \le \alpha_0 \le \beta_0 < \alpha_1 \le \beta_1 < \dots < \alpha_{n-1} \le \beta_{n-1} < \alpha_n \le \beta_n \le b$$

et on a:

$$\sum_{k=0}^{n} \ell(I_k) = \sum_{k=0}^{n} (\beta_k - \alpha_k) \le \sum_{k=0}^{n-1} (\alpha_{k+1} - \alpha_k) + (\beta_n - \alpha_n)$$

$$\le \alpha_n - \alpha_0 + b - \alpha_n \le b - a = \ell(I)$$

Faisant tendre n vers l'infini, on en déduit le résultat annoncé.

Exercice 8 Pour tous réels a < b, on désigne par $C^0([a,b],\mathbb{R})$ l'espace des fonctions continues de [a,b] dans \mathbb{R} .

- 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite croissante dans $C^0([a,b],\mathbb{R})$ qui converge simplement vers une fonction $f\in C^0([a,b],\mathbb{R})$.
 - Montrer que la convergence est uniforme sur [a, b] (théorème de Dini). On donnera deux démonstrations de ce résultat, l'une utilisant la caractérisation des compacts de Bolzano-Weierstrass et l'autre utilisant celle de Borel-Lebesgue.
- 2. Le résultat précédent est-il encore vrai dans $C^0(I,\mathbb{R})$ si on ne suppose plus l'intervalle I compact?
- 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $C^0([a,b],\mathbb{R}^+)$ telle que la série de fonctions $\sum f_n$ converge simplement vers une fonction $f \in C^0([a,b],\mathbb{R})$.

 Montrer que:

$$\int_{a}^{b} f(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt$$

4. On désigne par A la famille des parties de \mathbb{R}^2 de la forme :

$$A(f,g) = \{(x,y) \in [a,b] \times \mathbb{R} \mid f(x) \le y \le g(x)\}$$

où f, g sont dans $C^{0}([a, b], \mathbb{R})$ telles que $f \leq g$ et on note :

$$\mu\left(A\left(f,g\right)\right) = \int_{a}^{b} \left(g\left(t\right) - f\left(t\right)\right) dt$$

Montrer que cette application μ est σ -additive sur A.

Solution.

1.

(a) Solution utilisant la caractérisation des compacts de Bolzano-Weierstrass : « un espace métrique E est compact si et seulement si de toute suite de points de E on peut extraire une sous suite convergente ».

Pour tout $x \in I$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge en croissant vers f(x). On a donc $f(x) - f_n(x) \ge 0$ pour tout $x \in I$ et tout $n \in \mathbb{N}$.

De la continuité de chaque fonction f_n sur le compact [a,b], on déduit que :

$$\forall n \in \mathbb{N}, \ \exists x_n \in [a, b] \mid ||f - f_n||_{\infty} = f(x_n) - f_n(x_n)$$

et pour tout $n \in \mathbb{N}$:

$$||f - f_{n+1}||_{\infty} = f(x_{n+1}) - f_{n+1}(x_{n+1})$$

$$\leq f(x_{n+1}) - f_n(x_{n+1}) \leq ||f - f_n||_{\infty}$$

donc la suite $(\|f - f_n\|_{\infty})_{n \in \mathbb{N}}$ est décroissante et minorée et elle converge vers un réel $\lambda \geq 0$. Il s'agit alors de montrer que $\lambda = 0$.

Dans le compact [a,b], on peut extraire de la suite $(x_n)_{n\in\mathbb{N}}$ une sous suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge vers $x\in[a,b]$.

Soit p un entier positif. La fonction φ étant strictement croissante de \mathbb{N} dans \mathbb{N} , on peut trouver un entier n_p tel que $\varphi(n) \geq p$ pour tout $n \geq n_p$. On a alors pour tout $n \geq n_p$:

$$0 \le \lambda \le \|f - f_{\varphi(n)}\|_{\infty} = f(x_{\varphi(n)}) - f_{\varphi(n)}(x_{\varphi(n)})$$

$$\le f(x_{\varphi(n)}) - f_p(x_{\varphi(n)})$$

En faisant tendre n vers l'infini (à p fixé) et en utilisant la continuité de f, on déduit que :

$$\forall p \in \mathbb{N}, \ 0 \le \lambda \le f(x) - f_p(x)$$

Enfin, en faisant tendre p vers l'infini, en utilisant la convergence de $(f_n(x))_{n\in\mathbb{N}}$ vers f(x), on déduit que $\lambda=0$.

(b) Solution utilisant la caractérisation de Borel-Lebesgue : « un espace métrique E est compact si et seulement si de tout recouvrement ouvert de E on peut extraire un sous recouvrement fini ». Pour tout $x \in [a,b]$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge en croissant vers f(x). Donc, pour tout $\varepsilon > 0$, on a :

$$\forall x \in I, \ \exists n_x \in \mathbb{N} \mid \forall n \ge n_x, \ 0 \le f(x) - f_n(x) \le \varepsilon$$

De la continuité de f et f_{n_x} , on déduit qu'il existe un voisinage ouvert V_x de x dans [a,b] tel que :

$$\forall t \in V_x, \quad |f(x) - f(t)| \le \varepsilon, \quad |f_{n_x}(x) - f_{n_x}(t)| \le \varepsilon$$

On déduit alors que pour tout $t \in V_x$:

$$0 \le f(t) - f_{n_x}(t) \le |f(t) - f(x)| + |f(x) - f_{n_x}(x)| + |f_{n_x}(x) - f_{n_x}(t)| \le 3\varepsilon$$

Du recouvrement de [a, b] par les ouverts V_x , on peut extraire un sous recouvrement fini $\bigcup_{i=1}^p V_{x_i}$.

On pose alors $n_0 = \max_{1 \le i \le p} n_{x_i}$ et on a :

$$\forall n \geq n_0, \ \forall t \in I, \quad 0 \leq f(t) - f_n(t) \leq f(t) - f_{n_{x_i}}(t) \leq 3\varepsilon$$

l'indice i étant tel que $t \in V_{x_i}$. Ce qui prouve bien la convergence uniforme de $(f_n)_{n \in \mathbb{N}}$ vers f sur I.

- 2. La suite $(f_n)_{n\in\mathbb{N}}$ définie sur]0,1[par $f_n(x)=\frac{-1}{1+nx}$ converge en croissant vers la fonction nulle et la convergence n'est pas uniforme sur]0,1[puisque $f_n\left(\frac{1}{n}\right)=\frac{-1}{2}.$
- 3. La suite $(S_n)_{n\in\mathbb{N}}$ des sommes partielles de la série de fonctions $\sum f_n$ est croissante (puisque les f_n sont à valeurs positives) et converge simplement vers la fonction $f\in\mathcal{C}^0([a,b],\mathbb{R})$. Le théorème de Dini nous dit alors que la convergence est uniforme et :

$$\int_{a}^{b} f(t) dt = \lim_{n \to +\infty} \int_{a}^{b} S_n(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt$$

4. Pour f, g dans $C^{0}([a, b], \mathbb{R})$ telles que $f \leq g$ on a :

$$\mu(A(f,g)) = \int_{a}^{b} (g(t) - f(t)) dt = \int_{a}^{b} \ell([f(t), g(t)]) dt$$

Soient $(f_n)_{n\in\mathbb{N}}$, $(g_n)_{n\in\mathbb{N}}$ deux suites dans $\mathcal{C}^0([a,b],\mathbb{R})$ telles que $f_n\leq g_n$ pour tout $n\in\mathbb{N}$, et f,g dans $\mathcal{C}^0([a,b],\mathbb{R})$ telles que $f\leq g$ et :

$$A(f,g) = \bigcup_{n \in \mathbb{N}} A(f_n, g_n)$$

étant deux à deux disjoints.

Dans ces conditions, on a:

$$\forall t \in [a, b], [f(t), g(t)] = \bigcup_{n \in \mathbb{N}} [f_n(t), g_n(t)]$$

En effet, pour tout $t \in [a, b]$ et tout $y \in [f(t), g(t)]$, on a $(t, y) \in A(f, g)$, donc il existe un unique entier $n \in \mathbb{N}$ tel que $(t, y) \in A(f_n, g_n)$, ce qui signifie que $y \in [f_n(t), g_n(t)]$. Réciproquement

si $y \in \bigcup_{n \in \mathbb{N}} [f_n(t), g_n(t)]$, il existe alors un unique entier $n \in \mathbb{N}$ tel que $y \in [f_n(t), g_n(t)]$, donc $(t, y) \in A(f_n, g_n) \subset A(f, g)$ et $y \in [f(t), g(t)]$. On en déduit alors que :

$$\forall t \in [a, b], \ \ell\left(\left[f\left(t\right), g\left(t\right)\right]\right) = \sum_{n \in \mathbb{N}} \ell\left(\left[f_n\left(t\right), g_n\left(t\right)\right]\right)$$

les fonctions $t \mapsto \ell\left(\left[f_n\left(t\right), g_n\left(t\right)\right]\right)$ étant continues et positives. Il en résulte que :

$$\mu\left(A\left(f,g\right)\right) = \int_{a}^{b} \ell\left(\left[f\left(t\right),g\left(t\right)\right]\right) dt = \sum_{n \in \mathbb{N}} \int_{a}^{b} \ell\left(\left[f_{n}\left(t\right),g_{n}\left(t\right)\right]\right) dt = \sum_{n \in \mathbb{N}} \mu\left(A\left(f_{n},g_{n}\right)\right)$$

La fonction μ est donc σ -additive sur \mathcal{A} .

19