

FCC LISTED, REGISTRATION

NUMBER: 720267

Test report No:

IC LISTED REGISTRATION NUMBER IC 4621A-1

NIE: 43480RRF.004

Test report REFERENCE STANDARD: USA FCC Part 22 & Part 24 CANADA IC RSS-132, RSS-133

	110 100 102, 100 100
Identificación del objeto ensayado: Identification of item tested	SmartPhone
Marca Trade	YotaPhone
Modelo y/o referencia tipo	YD201
Other identification of the product:	Commercial name: YOTAPHONE2 FCC ID: 2ADHW201 IC ID: 12469A-201
Final HW version:	P2
Final SW version:	3.9
IMEI TAC	004402600038271 / 004402600038222
Características: Features	Bluetooth EDR+LE, WiFi b/g/n20, NFC and 2G/3G cellular
Peticionario: Applicant	YOTA DEVICES LTD Arch. Makariou & Kalograion, 4, Nicolaides Sea View City, 9th Floor, Flat/Offices 903 -904, Block A-B, 6016, Larnaca, Cyprus. Contact person: Jukka Ollila Telephone: +358405433264 e-mail: jollila@yotadevices.com
Método de ensayo solicitado, norma: Test method requested, standard	USA FCC Part 22 10-01-13 Edition. USA FCC Part 24 10-01-13 Edition. CANADA IC RSS-132 Issue 3, Jan. 2013. CANADA IC RSS-133 Issue 6, Jan. 2013. Measurement Guidance 971168 D01 v02r01 for certification of Licensed Digital Transmitters
Resultado: Summary	IN COMPLIANCE
Aprobado por (nombre / cargo y firma)	A. Llamas RF Lab. Manager
Fecha de realización	2014-12-04
Formato de informe No: Report template No	FDT08_15

Page 1 of 92 2014-12-04

Index

Competences and guarantees	3
General conditions	3
Uncertainty	3
Usage of samples	
Test sample description	
Test samples supplier	
Testing period	
Environmental conditions	
Remarks and comments	
Testing verdicts	
Appendix A – Test result for FCC Part 22 & 24	
Appendix 11 - 10st 10suit 101 1 CC 1 art 22 & 27	

Competences and guarantees

AT4 wireless is a laboratory with a measurement facility in compliance with the requirements of Section 2.948 of the FCC rules and has been added to the list of facilities whose measurements data will be accepted in conjuction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Registration Number: 720267.

AT4 wireless is a laboratory with a measurement site in compliance with the requirements of RSS 212, Issue 1 (Provisional) and has been added to the list of filed sites of the Canadian Certification and Engineering Bureau. Reference File Number: IC 4621A-1.

In order to assure the traceability to other national and international laboratories, AT4 wireless has a calibration and maintenance program for its measurement equipment.

AT4 wireless guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at AT4 wireless at the time of performance of the test.

AT4 wireless is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of AT4 wireless.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of AT4 wireless.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of AT4 wireless and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the AT4 wireless internal document PODT000.

Usage of samples

Samples undergoing test have been selected by: the client.

Sample M/01 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
43116/027	Smartphone with integral antenna	YD201	IMEI: 004402600038271	2014-07-11

1. Sample M/01 has undergone the test(s).

All radiated tests indicated in appendix A.

Sample M/02 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
43480/001	Smartphone with an antenna connector	YD201	IMEI: 004402600038222	2014/09/29

1. Sample M/01 has undergone the test(s).

All conducted tests indicated in appendix A.

Test sample description

The test sample consists of a smartphone with Bluetooth EDR+LE, WiFi b/g/n20, NFC and 2G/3G cellular.

Test samples supplier

YOTA DEVICES LTD

Arch. Makariou & Kalograion, 4, Nicolaides Sea View City, 9th Floor, Flat/Offices 903 -904, Block A-B, 6016, Larnaca, Cyprus.

Contact person: Jukka Ollila Telephone: +358405433264 e-mail: jollila@yotadevices.com

Testing period

The performed test started on 2014-10-02 and finished on 2014-10-10.

The tests have been performed at AT4 wireless.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 21.7 °C Max. = 22.2 °C
Relative humidity	Min. = 43.7 % Max. = 44.3 %
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω

In the semianechoic chamber the following limits were not exceeded during the test.

Temperature	Min. = 19.9 °C Max. = 20.2 °C
Relative humidity	Min. = 41.6 % Max. = 44.1 %
Air pressure	Min. = 1007 mbar Max. = 1012 mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω
Normal site attenuation (NSA)	< ±4 dB at 10 m distance between item under test and receiver antenna, (30 MHz to 1000 MHz)
Field homogeneity	More than 75% of illuminated surface is between 0 and 6 dB (26 MHz to 1000 MHz).

In the chamber for conducted measurements the following limits were not exceeded during the test:

TED .	3.6: 22.5.00
Temperature	Min. = 23.7 °C
	Max. = 24.5 °C
Relative humidity	Min. = 47.9 %
	Max. = 48.1 %
Air pressure	Min. = 1008 mbar
	Max. = 1013 mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω

Remarks and comments

1: Used instrumentation.

Conducted Measurements

		Last Cal. date	Cal. due date
1.	Spectrum analyser Agilent PSA E4440A	2014/05	2016/05
2.	Climatic chamber HERAEUS VM 07/100	2012/10	2015/10
3.	DC power supply R&S NGPE 40/40	2011/11	2014/11
4.	Wideband Power sensor R&S NRP- Z81	2014/03	2016/03
5.	Universal Radio communication Tester R&S CMU200	2014-02	2016-02

Radiated Measurements

		Last Cal. date	Cal. due date
1.	Semianechoic Absorber Lined Chamber ETS FACT3 200STP	N.A.	N.A.
2.	BiconicalLog antenna ETS LINDGREN 3142E	2014/03	2017/03
3.	Multi Device Controller EMCO 2090	N.A.	N.A.
4.	Double-ridge Guide Horn antenna 1-18 GHz SCHWARZBECK BBHA 9120 D	2013/11	2016/11
5.	SHF-EHF Horn antenna 15-40 GHz Schwarbeck BBHA 9170	2014/03	2017/03
6.	EMI Test Receiver R&S ESU 26	2013/08	2015/08
7.	Spectrum analyser Rohde & Schwarz FSW50	2013/10	2015/10
8.	RF pre-amplifier 10 MHz-6 GHz SCHWARZBECK BBV9743	2014/02	2015/02
9.	RF pre-amplifier 1-18 GHz Schwarzbeck BBV 9718	2014/02	2015/02
10.	RF pre-amplifier BONN BLMA 1840-1M 18-40 GHz.	2014/02	2016/02
11.	Universal Radio communication Tester R&S CMU200	2014-02	2016-02

2. GSM mode has not been tested to prove USA FCC Part 22 and Part 24 and Canada IC RSS-132 and RSS-133 compliance because the modulation scheme and the power maximum levels are the same as for GPRS mode.

Taking into account the above comments, testing in GSM mode is redundant for FCC Parts 22 and Part 24 and IC RSS-132 and RSS-133 as it is the same as GPRS mode. GPRS mode has been tested as indicated on the present test report.

3. HSDPA modulation mode has not been tested to prove USA FCC Part 22 and Part 24 and Canada IC RSS-132 and RSS-133 compliance because it is an improved mode of operation only for Downlink (UE reception), but using the normal WCDMA mode for UL (Up Link, UE transmission). Therefore HSDPA has no associated a Power class or modulation scheme different than WCDMA mode for the UL transmission.

Taking into account the above comments, testing in HSDPA modulation mode is redundant for FCC Parts 22 and Part 24 and IC RSS-132 and RSS-133 as it is the same as WCDMA mode as long as UE transmission is concerned. WCDMA modulation mode has been tested as indicated on the present test report.

Testing verdicts

Not applicable:	N/A
Pass:	P
Fail:	F
Not measured:	N/M

FCC PART 22/IC RSS-132 PARAGRAPH		VERDICT			
	NA	P	F	NM	
Clause 22.913/RSS-132 Clause 4.4: RF output power		P			
Clause 2.1047/RSS-132 Clause 4.2: Modulation characteristics		P			
Clause 22.355/RSS-132 Clause 4.3: Frequency stability		P			
Clause 2.1049: Occupied Bandwidth		P			
Clause 22.917/RSS-132 Clause 4.5: Spurious emissions at antenna terminals		P			
Clause 22.917/RSS-132 Clause 4.5: Radiated emissions		P			

FCC PART 24/IC RSS-133 PARAGRAPH	VERDICT			
	NA	P	F	NM
Clause 24.232/RSS-133 Clause 6.4: RF output power		P		
Clause 2.1047/RSS-133 Clause 6.2: Modulation characteristics		P		
Clause 24.235/RSS-133 Clause 6.3: Frequency stability		P		
Clause 2.1049: Occupied Bandwidth		P		
Clause 24.238/RSS-133 Clause 6.5: Spurious emissions at antenna terminals		P		
Clause 24.238/RSS-133 Clause 6.5: Radiated emissions		P		

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

Appendix A – Test result for FCC Part 22 & 24

2014-12-04

INDEX

TEST RESULTS FOR FCC PART 22 AND IC RSS-132	
TEST CONDITIONS	10
RF Output Power (conducted and E.R.P.)	11
Modulation Characteristics	13
Frequency Stability	16
Occupied Bandwidth	18
Spurious emissions at antenna terminals	25
Spurious emissions at antenna terminals at Block Edges	33
Radiated emissions	38
TEST RESULTS FOR FCC PART 24 AND RSS-133	50
TEST CONDITIONS	50
RF Output Power (conducted and E.I.R.P.)	51
Modulation Characteristics	54
Frequency Stability	57
Occupied Bandwidth	59
Spurious emissions at antenna terminals	66
Spurious emissions at antenna terminals at Block Edges	74
Padjated emissions	70

TEST RESULTS FOR FCC PART 22 AND IC RSS-132

TEST CONDITIONS

Power supply (V):

 $V_{nom} = 3.8 \text{ Vdc}$

 $V_{max} = 4.2 \text{ Vdc (*)}$

 $V_{min} = 3.4 \text{ Vdc} (*)$

The subscripts nom, min and max indicate voltage test conditions (nominal, minimum and maximum respectively, as declared by the applicant).

(*): Declared by applicant

Type of power supply = DC Voltage from rechargeable battery

Type of antenna = Integral antenna

TEST FREQUENCIES:

GPRS AND EDGE MODULATION

Lowest channel (128): 824.2 MHz

Middle channel (190): 836.6 MHz

Highest channel (251): 848.8 MHz

WCDMA AND HSUPA MODULATION

Lowest channel (4132): 826.4 MHz

Middle channel (4182): 836.4 MHz

Highest channel (4233): 846.6 MHz

Report No: (NIE) 43480RRF.004

Page 10 of 92 2014-12-04

RF Output Power (conducted and E.R.P.)

SPECIFICATION

§2.1046 and §22.913.

The Effective Radiated Power (E.R.P.) of mobile transmitter and auxiliary test transmitter must not exceed 7 Watts (38.45 dBm).

METHOD

The conducted RF output power measurements were made at the RF output terminals of the EUT using an attenuator, a power splitter and a calibrated wideband power sensor. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

The maximum effective radiated power e.r.p. is calculated by adding the declared maximum antenna gain (dBd).

RESULTS

MAXIMUM OUTPUT POWER (CONDUCTED). See plots in next pages.

GPRS MODULATION

Channel	Lowest	Middle	Highest
Measured maximum average power (dBm) at antenna port	33.77	33.34	33.76
Maximum declared antenna gain (dBd)	-5.15	-5.15	-6.35
Maximum effective radiated power E.R.P. (dBm)	28.62	28.19	27.41
Measurement uncertainty (dB)		±0.5	

EDGE MODULATION

Channel	Lowest	Middle	Highest
Measured maximum average power (dBm) at antenna port	29.79	30.07	30.04
Maximum declared antenna gain (dBd)	-5.15	-5.15	-6.35
Maximum effective radiated power E.R.P. (dBm)	24.64	24.92	23.69
Measurement uncertainty (dB)		±0.5	

WCDMA MODULATION

Channel	Lowest	Middle	Highest
Measured maximum average power (dBm) at antenna port	23.15	22.82	22.78
Maximum declared antenna gain (dBd)	-5.95	-5.65	-5.55
Maximum effective radiated power E.R.P. (dBm)	17.20	17.17	17.23
Measurement uncertainty (dB)		±0.5	

HSUPA MODULATION

Channel	Lowest	Middle	Highest
Measured maximum average power (dBm) at antenna port	22.49	22.30	22.33
Maximum declared antenna gain (dBd)	-5.95	-5.65	-5.55
Maximum effective radiated power E.R.P. (dBm)	16.54	16.65	16.78
Measurement uncertainty (dB)		±0.5	

Modulation Characteristics

SPECIFICATION

§2.1047

METHOD

The EUT operates with GPRS (GMSK), EDGE (8-PSK), WCDMA (QPSK) and HSUPA (QPSK) modes, in which the information is digitised and coded into a bit stream.

RESULTS

The following plot shows the modulation schemes in the EUT.

GPRS MODULATION

EDGE MODULATION

WCDMA MODULATION

HSUPA MODULATION

Frequency Stability

SPECIFICATION

§2.1055 and §22.355

METHOD

The frequency tolerance measurements over temperature variations were made over the temperature range of -30° C to $+50^{\circ}$ C. The EUT was placed inside a climatic chamber and the temperature was raised hourly in 10° C steps from -30° C up to $+50^{\circ}$ C.

For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

The EUT was set in "call mode" in the middle channel using the Universal Radio Communication tester R&S CMU200 and the maximum frequency error was measured using the built-in calibrated frequency meter of CMU200.

RESULTS

Frequency stability over temperature variations.

GPRS AND EDGE MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	31	0.0371	0.00000371
+40	29	0.0347	0.00000347
+30	31	0.0371	0.00000371
+20	27	0.0322	0.00000322
+10	31	0.0371	0.00000371
0	29	0.0347	0.00000347
-10	17	0.0203	0.00000203
-20	18	0.0215	0.00000215
-30	18	0.0215	0.00000215

2014-12-04

WCDMA AND HSUPA MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	-4	-0.0048	-0.00000048
+40	-4	-0.0048	-0.00000048
+30	-4	-0.0048	-0.00000048
+20	-3	-0.0036	-0.00000036
+10	-3	-0.0036	-0.00000036
0	-3	-0.0036	-0.00000036
-10	7	0.0084	0.00000084
-20	-4	-0.0048	-0.00000048
-30	4	0.0048	0.00000048

Frequency stability over voltage variations.

GPRS AND EDGE MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	4.4	32	0.0383	0.00000383
Vmin	3.4 (*)	55	0.0657	0.00000657

WCDMA AND HSUPA MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	4.4	-10	-0.0120	-0.00000120
Vmin	3.4 (*)	-11	-0.0132	-0.00000132

(*): Operating end point specified by the manufacturer.

Occupied Bandwidth

SPECIFICATION

§2.1049

METHOD

The EUT was configured to transmit a modulated carrier signal. An IF bandwidth of 3 kHz was used to determined the occupied bandwidth of the modulated emission for GPRS and EDGE modulation and 51 kHz for WCDMA and HSUPA modulation. The 99% occupied bandwidth and the -26 dBc bandwidth were measured directly using the built-in bandwidth measuring option of spectrum analyser E4440A.

The occupied Bandwidth was measured according to point 4.2 of Guidance 971168 D01 Power Meas License Digital Systems v02r01.

RESULTS

GPRS MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	244.42	243.60	245.58
-26 dBc bandwidth (kHz)	312.15	309.95	313.45
Measurement uncertainty (kHz)		<±1.67	

EDGE MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	245.51	244.23	243.77
-26 dBc bandwidth (kHz)	315.61	313.16	311.13
Measurement uncertainty (kHz)		<±1.67	

WCDMA MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	4167.5	4157.4	4169.1
-26 dBc bandwidth (kHz)	4629	4635	4633
Measurement uncertainty (kHz)	<±13.3		

HSUPA MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	4168.8	4165.4	4165.3
-26 dBc bandwidth (kHz)	4635	4646	4638
Measurement uncertainty (kHz)		<±13.3	

43480RRF.004 Page 18 of 92 2014-12-04

AT4 Wireless

GPRS MODULATION

Lowest Channel

Middle Channel

AT4 Wireless

Highest Channel

EDGE MODULATION

Lowest Channel

Middle Channel

Highest Channel

AT4 Wireless

WCDMA MODULATION

Lowest Channel

Transmit Freq Error -1.877 kHz x dB Bandwidth 4.629 MHz

Middle Channel

Highest Channel

HSUPA MODULATION

Lowest Channel

Middle Channel

Highest Channel

Spurious emissions at antenna terminals

SPECIFICATION

§2.1051 and §22.917

METHOD

The EUT RF output connector was connected to an spectrum analyser using an 50 ohm attenuator and the resolution bandwidth of the spectrum analyser was set to at least 100 kHz. The spectrum was investigated from 9 kHz to 10 GHz.

The reading of the spectrum analyser is corrected with the attenuation loss of connection between output terminal of EUT and input of the spectrum analyser.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

RESULTS (see plots in next pages)

GPRS MODULATION

1. CHANNEL: LOWEST

No spurious signals were found at less than 20dB respect to the limit in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found at less than 20dB respect to the limit in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found at less than 20dB respect to the limit in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

Page 25 of 92 2014-12-04

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.l.F. A29 507 456

WCDMA MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

HSUPA MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

Verdict: PASS

2014-12-04

AT4

GPRS MODULATION

1. CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

2. CHANNEL: MIDDLE

3. CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

EDGE MODULATION

1. CHANNEL: LOWEST

Page 28 of 92

2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

AT4

WCDMA MODULATION

1. CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

2. CHANNEL: MIDDLE

3. CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

HSUPA MODULATION

1. CHANNEL: LOWEST

AT4 Wireless

2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

Spurious emissions at antenna terminals at Block Edges

SPECIFICATION

§2.1051 and §22.917

METHOD

As indicated in FCC part 22. in the 1 MHz bands immediately outside and adjacent to the frequency block or band a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A resolution bandwidth of 3.3 kHz was used for GPRS and EDGE modulations and 51 kHz for WCDMA and HSUPA modulations.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

RESULTS (see plots in next pages)

MODULATION:	GPRS	EDGE	WCDMA	HSUPA
Maximum measured level at lowest Block Edge at antenna port (dBm)	-18.84	-26.78	-25.55	-26.30

MODULATION:	GPRS	EDGE	WCDMA	HSUPA
Maximum measured level at highest Block Edge at antenna port (dBm)	-18.81	-24.92	-28.20	-28.87

Measurement uncertainty = ± 1.57 dB.

AT4

GPRS MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

AT4

EDGE MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

AT4 Wireless

WCDMA MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

AT4

HSUPA MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

Verdict: PASS

Radiated emissions

SPECIFICATION

§ 22.917

METHOD

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to at least the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a 1 meter high non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum meter reading was recorded. The radiated emissions were measured with peak detector and 1 MHz bandwidth.

Each detected emission is substituted by the Substitution method. in accordance with the ANSI/TIA/EIA-603-C: 2004.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

RESULTS

GPRS AND EDGE MODULATION

A preliminary scan determined the GPRS modulation as the worst case. The following tables and plots show the results for GPRS modulation.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-12.75 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-12.75 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Page 38 of 92 2014-12-04

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-12.75 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

WCDMA AND HSUPA MODULATION

A preliminary scan determined the WCDMA modulation as the worst case. The following tables and plots show the results for WCDMA modulation.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-12.75 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-12.75 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-12.75 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Verdict: PASS

2014-12-04

FREQUENCY RANGE 30 MHz-1000 MHz.

GPRS MODULATION

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

AT4 Wireless

WCDMA MODULATION

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

FREQUENCY RANGE 1 GHz to 3 GHz.

GPRS MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

Page 44 of 92 2014-12-04

CHANNEL: HIGHEST

WCDMA MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

CHANNEL: HIGHEST

Page 46 of 92 2014-12-04

FREQUENCY RANGE 3 GHz to 12.75 GHz.

GPRS MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

CHANNEL: HIGHEST

WCDMA MODULATION

CHANNEL: LOWEST

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

CHANNEL: MIDDLE

CHANNEL: HIGHEST

Page 49 of 92 2014-12-04

TEST RESULTS FOR FCC PART 24 AND RSS-133

TEST CONDITIONS

Power supply (V):

$$V_{nom} = 3.8 \text{ Vdc}$$

$$V_{max} = 4.2 \text{ Vdc (*)}$$

$$V_{min} = 3.4 \text{ Vdc} (*)$$

The subscripts nom, min and max indicate voltage test conditions (nominal, minimum and maximum respectively, as declared by the applicant).

(*): Declared by applicant

Type of power supply = DC Voltage from rechargeable battery

Type of antenna = Integral antenna

TEST FREQUENCIES:

GPRS AND EDGE MODULATION

Lowest channel (512): 1850.2 MHz

Middle channel (662): 1880.2 MHz

Highest channel (810): 1909.8 MHz

WCDMA AND HSUPA MODULATION

Lowest channel (9262): 1852.4 MHz Middle channel (9400): 1880.0 MHz

Highest channel (9538): 1907.6 MHz

Page 50 of 92 2014-12-04

RF Output Power (conducted and E.I.R.P.)

SPECIFICATION

§2.1046 and 24.232

Mobile/portable stations are limited to 2 Watts (33 dBm) Effective Isotropic Radiated Power (E.I.R.P.) peak power.

METHOD

The conducted RF output power measurements were made at the RF output terminals of the EUT using an attenuator, a power splitter and a calibrated wideband power sensor. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

The maximum equivalent isotropic radiated power e.i.r.p. is calculated by adding the declared maximum antenna gain (dBi).

RESULTS

MAXIMUM OUTPUT POWER (CONDUCTED). See plots in next pages.

GPRS MODULATION

Channel	Lowest	Middle	Highest
Maximum declared antenna gain (dBi)	-0.60	-1.10	-1.30
Measured maximum peak power (dBm) at antenna port	30.53	30.64	30.61
Maximum effective isotropic radiated peak power E.I.R.P. (dBm)	29.93	29.54	29.31
Measured maximum average power (dBm) at antenna port	30.21	30.36	30.34
Maximum effective isotropic radiated average power E.I.R.P. (dBm)	29.61	29.26	29.04
Peak-to-average ratio (PAR) (dB)	0.32	0.28	0.27
Measurement uncertainty (dB)		±0.5	

EDGE MODULATION

Channel	Lowest	Middle	Highest
Maximum declared antenna gain (dBi)	-0.60	-1.10	-1.30
Measured maximum peak power (dBm) at antenna port	27.99	28.25	28.48
Maximum effective isotropic radiated peak power E.I.R.P. (dBm)	27.39	27.15	27.18
Measured maximum average power (dBm) at antenna port	25.38	25.77	26.11
Maximum effective isotropic radiated average power E.I.R.P. (dBm)	24.78	24.67	24.81
Peak-to-average ratio (PAR) (dB)	2.61	2.48	2.37
Measurement uncertainty (dB)		±0.5	

WCDMA MODULATION

Channel	Lowest	Middle	Highest
Maximum declared antenna gain (dBi)	-1.30	-2.00	-2.50
Measured maximum peak power (dBm) at antenna port	26.82	27.75	26.90
Maximum effective isotropic radiated peak power E.I.R.P. (dBm)	25.52	25.75	24.40
Measured maximum average power (dBm) at antenna port	22.75	23.52	22.95
Maximum effective isotropic radiated average power E.I.R.P. (dBm)	21.45	21.52	20.45
Peak-to-average ratio (PAR) (dB)	4.07	4.23	3.95
Measurement uncertainty (dB)		±0.5	

HSUPA MODULATION

Channel	Lowest	Middle	Highest
Maximum declared antenna gain (dBi)	-1.30	-2.00	-2.50
Measured maximum peak power (dBm) at antenna port	26.22	27.06	26.55
Maximum effective isotropic radiated peak power E.I.R.P. (dBm)	24.92	25.06	24.05
Measured maximum average power (dBm) at antenna port	21.95	22.66	22.16
Maximum effective isotropic radiated average power E.I.R.P. (dBm)	20.65	20.66	19.66
Peak-to-average ratio (PAR) (dB)	4.27	4.40	4.39
Measurement uncertainty (dB)		±0.5	

Verdict: PASS

Modulation Characteristics

SPECIFICATION

§2.1047

METHOD

The EUT operates with GPRS (GMSK). EDGE (8-PSK). WCDMA (QPSK) and HSUPA (QPSK) modes. in which the information is digitised and coded into a bit stream.

RESULTS

The following plot shows the modulation schemes in the EUT.

GPRS MODULATION

EDGE MODULATION

WCDMA MODULATION

HSUPA MODULATION

Frequency Stability

SPECIFICATION

§2.1055 and §24.235

METHOD

The frequency tolerance measurements over temperature variations were made over the temperature range of -30° C to $+50^{\circ}$ C. The EUT was placed inside a climatic chamber and the temperature was raised hourly in 10° C steps from -30° C up to $+50^{\circ}$ C.

For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

The EUT was set in "call mode" in the middle channel using the Universal Radio Communication tester R&S CMU200 and the maximum frequency error was measured using the built-in calibrated frequency meter of CMU200.

RESULTS

Frequency stability over temperature variations.

GPRS AND EDGE MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	72	0.0383	0.00000383
+40	70	0.0372	0.00000372
+30	78	0.0415	0.00000415
+20	79	0.0420	0.00000420
+10	77	0.0410	0.00000410
0	73	0.0388	0.00000388
-10	74	0.0394	0.00000394
-20	74	0.0394	0.00000394
-30	77	0.0410	0.00000410

WCDMA AND HSUPA MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	7	0.0037	0.00000037
+40	8	0.0043	0.00000043
+30	7	0.0037	0.00000037
+20	7	0.0037	0.00000037
+10	8	0.0043	0.00000043
0	8	0.0043	0.00000043
-10	8	0.0043	0.00000043
-20	8	0.0043	0.00000043
-30	8	0.0043	0.00000043

Frequency stability over voltage variations.

GPRS AND EDGE MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	4.2	64	0.0340	0.00000340
Vmin	3.4 (*)	80	0.0425	0.00000425

WCDMA AND HSUPA MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	4.2	5	0.0027	0.00000027
Vmin	3.4 (*)	6	0.0032	0.00000032

(*): Operating end point specified by the manufacturer.

Occupied Bandwidth

SPECIFICATION

§2.1049

METHOD

The EUT was configured to transmit a modulated carrier signal. An IF bandwidth of 3 kHz was used to determined the occupied bandwidth of the modulated emission for GPRS and EDGE modulation and 51 kHz for WCDMA and HSUPA modulation. The 99% occupied bandwidth and the -26 dBc bandwidth were measured directly using the built-in bandwidth measuring option of spectrum analyser E4440A.

RESULTS

GPRS MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	244.55	242.98	242.46
-26 dBc bandwidth (kHz)	319.92	311.92	309.29
Measurement uncertainty (kHz)		<±1.67	

EDGE MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	244.57	251.14	252.11
-26 dBc bandwidth (kHz)	304.98	316.67	318.14
Measurement uncertainty (kHz)		<±1.67	

WCDMA MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	4148.6	4168.9	4168.2
-26 dBc bandwidth (kHz)	4640	4644	4650
Measurement uncertainty (kHz)		<±13.3	

HSUPA MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	4167.4	4154.1	4161.9
-26 dBc bandwidth (kHz)	4628	4630	4633
Measurement uncertainty (kHz)		<±13.3	

Report No: (NIE) 43480RRF.004

AT4 Wireless

GPRS MODULATION

Lowest Channel

Transmit Freq Error 1.050 kHz x dB Bandwidth 319.921 kHz

Middle Channel

AT4 Wireless

Highest Channel

EDGE MODULATION

Lowest Channel

Middle Channel

Highest Channel

AT4 Wireless

WCDMA MODULATION

Lowest Channel

Middle Channel

Highest Channel

HSUPA MODULATION

Lowest Channel

Middle Channel

Transmit Freq Error -1.302 kHz x dB Bandwidth 4.630 MHz

Highest Channel

Spurious emissions at antenna terminals

SPECIFICATION

§2.1051 and §24.238

METHOD

The EUT RF output connector was connected to a spectrum analyser using an 50 ohm attenuator and the resolution bandwidth of the spectrum analyser was set to 1 MHz. The spectrum was investigated from 9 kHz to 20 GHz.

The reading of the spectrum analyser is corrected with the attenuation loss of connection between output terminal of EUT and input of the spectrum analyser.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

RESULTS (see plots in next pages)

GPRS MODULATION

1. CHANNEL: LOWEST

No spurious signals were found at less than 20dB respect to the limit in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found at less than 20dB respect to the limit in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found at less than 20dB respect to the limit in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST

No spurious signals were found at less than 20dB respect to the limit in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found at less than 20dB respect to the limit in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found at less than 20dB respect to the limit in all the range.

Page 66 of 92 2014-12-04

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

WCDMA MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

HSUPA MODULATION

1. CHANNEL: LOWEST

No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

Verdict: PASS

Page 67 of 92

2014-12-04

AT4

GPRS MODULATION

1. CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

2. CHANNEL: MIDDLE

3. CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

EDGE MODULATION

1. CHANNEL: LOWEST

2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

AT4 Wireless

WCDMA MODULATION

1. CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

2. CHANNEL: MIDDLE

3. CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

HSUPA MODULATION

1. CHANNEL: LOWEST

2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

Spurious emissions at antenna terminals at Block Edges

SPECIFICATION

§2.1051 and §24.238

METHOD

As indicated in FCC part 24, in the 1 MHz bands immediately outside and adjacent to the frequency block or band a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A resolution bandwidth of 5 kHz/3.3 kHz was used for GPRS and EDGE modulations, and 51 kHz for WCDMA and HSUPA modulations.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS (see plots in next pages)

MODULATION:	GPRS	EDGE	WCDMA	HSUPA
Maximum measured level at lowest Block Edge at antenna	-22.41	-30.36	-33.23	-32.13
port (dBm)				

MODULATION:	GPRS	EDGE	WCDMA	HSUPA
Maximum measured level at highest Block Edge at antenna	-21.44	-31.63	-31.14	-31.90
port (dBm)				

Measurement uncertainty = ± 1.57 dB.

AT4 Wireless

GPRS MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

AT4

EDGE MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

AT4

WCDMA MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

AT4 WIRELESS

HSUPA MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

Radiated emissions

SPECIFICATION

§ 24.238

METHOD

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a 1 meter high non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum meter reading was recorded. The radiated emissions were measured with peak detector and 1 MHz bandwidth.

Each detected emissions were substituted by the Substitution method. in accordance with the ANSI/TIA/EIA-603-C: 2004.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

RESULTS

GPRS AND EDGE MODULATION

A preliminary scan determined the GPRS modulation as the worst case. The following plots show the results for GPRS modulation.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Page 80 of 92 2014-12-04

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

WCDMA AND HSUPA MODULATION

A preliminary scan determined the WCDMA modulation as the worst case. The following plots show the results for WCDMA modulation.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Verdict: PASS

Report No: (NIE) 43480RRF.004

Page 81 of 92 2014-12-04

FREQUENCY RANGE 30 MHz-1000 MHz.

GPRS MODULATION

(This plot is valid for all three channels)

WCDMA MODULATION

(This plot is valid for all three channels)

FREQUENCY RANGE 1 GHz to 3 GHz.

GPRS MODULATION

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

WCDMA MODULATION

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

FREQUENCY RANGE 3 GHz to 12.75 GHz.

GPRS MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

Report No: (NIE) 43480RRF.004

Page 88 of 92 2014-12-04

CHANNEL: HIGHEST

WCDMA MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

CHANNEL: HIGHEST

Page 90 of 92 2014-12-04

18.0 GHz

FREQUENCY RANGE 12.75 GHz TO 18 GHz.

525.0 MHz/

30000 pts

(This plot is valid for all three channels)

WCDMA MODULATION

12.75 GHz

(This plot is valid for all three channels)

FREQUENCY RANGE 18 GHz TO 20 GHz.

GPRS MODULATION

(This plot is valid for all three channels)

WCDMA MODULATION

(This plot is valid for all three channels)

Report No: (NIE) 43480RRF.004

Page 92 of 92 2014-12-04