Syria covid SEIAQRD model

Jordan Klein 5/26/2020

The set of equations are:

$$\dot{S} = -\beta_A A - \beta_I I$$

$$\dot{E} = \beta_A A + \beta_I I - \delta_E E$$

$$\dot{A} = \sigma \delta_E E - \gamma_A A$$

$$\dot{I} = (1 - \sigma) \delta_E E - \gamma_I I - \alpha_I I - \eta q I$$

$$\dot{Q} = \eta q I - \gamma_Q Q - \alpha_Q Q$$

$$\dot{R} = \gamma_I I + \gamma_A A + \gamma_Q Q$$

$$\dot{D} = \alpha_I I + \alpha_Q Q$$

With the compartments \dot{S} , susceptibles, \dot{E} , exposed (latent), \dot{A} , infectious-asymptomatic, \dot{I} , infectious-symptomatic, \dot{Q} , quarantined, \dot{R} , recovered, \dot{D} , dead.

The parameters are:

Transmission rate- β_A (asymptomatic), β_I (symptomatic) Rate at which exposed become infectious- δ_E Proportion that are asymptomatic- σ Recovery rate- γ_A (asymptomatic), γ_I (symptomatic), γ_Q (quarantined) Fatality rate- α_I (symptomatic), α_Q (quarantined) Proportion that can be quarantined q, at rate η

Figure 1: Model schematic