Health Insurance Cross Sell Prediction

Team o3
(Bruce) Chang-Hung Hou |
Chenli Qiu | Lequn Yu | Qiqi
Tang | Yuchen Feng | Shamika
Kalwe

Problem Statement

To build a model to predict whether the existing health insurance customers will also be interested in Vehicle Insurance provided by the same company.

Data Source

<u>link</u>

The kaggle link mentions **Analytics Vidhya** as its source for this dataset and problem. It also mentions relevant license for public sharing.

Structure of the Dataset (1/2)

Rows	381,109	Columns	12	
------	---------	---------	----	--

No.	Variable	Definition
1	id	Unique ID for the customer
2	Gender	Gender of the customer
3	Age	Age of the customer
4	Driving_License	0 : No, 1 : Yes
5	Region_Code	Unique code for the region of the customer
6	Previously_Insured	0 : No, 1 : Yes
7	Vehicle_Age	Age of the Vehicle
8	Vehicle_Damage	0 : No, 1 : Yes (damaged in the past)
9	Annual_Premium	Health Insurance Premium per year
10	Policy Sales Channel	Anonymized Code for the channel of outreaching to the customer ie. Different Agents, Over Mail, Over Phone, In Person, etc.
11	Vintage	Number of Days, Customer has been associated with the company
12	Response	0 : Not Interested, 1 : Interested

Target Variable

Stakeholders in the problem

Company

- Targeted marketing
- Increase ticket size per customer
- Save marketing cost
- Know and understand their customers better

Customer

 Having multiple services from one company reduces hassel

Exploratory Analysis

Distribution of Response by Vehicle Age

 Top 9 sales channel which customers prefer to buy insurances

Different Responses of People whether they have accidents

- People who do not have accidents in the past are unwilling to buy insurances
- People who have accidents in the past are willing to buy insurances

- Young people want to buy insurances may because of few driving experiences
- 40-50 years old people's responses to purchase insurances are the strongest

The variances of annual premium

 Elderly people prefer to spend money on their insurances

 Vehicles which are used more than 2 years have the highest annual payments among other vehicles

Customer Profiling

Feature	Target Variable = 0 Not Interested in Vehicle Insurance (popular/mean value)	Target Variable = 1 Interested in Vehicle Insurance (popular/mean value)
Gender	Male	Male
Age	38 years	43 years
Driving_License	Present	Present
Region_Code	28	28
Previously_Insured	Yes	No
Vehicle_Age	1-2 Year	1-2 Year
Vehicle_Damage	No	Yes
Annual_Premium	INR 30,419	INR 31,604
Policy_Sales_Channel	152	26
Vintage	154	154

Modeling

- No sampling
- Down sampling
- SMOTE sampling

Lasso with vs. without SMOTE

```
Without SMOTE:
                                                  With SMOTE:
Confusion Matrix and Statistics
                                                             Reference
           Reference
                                                   Prediction
                                                                       1
Prediction 0
                                                            0 46212
                                                                     965
          0 66959 9262
                                                            1 20691 8390
        1 1
                                                                 Accuracy: 0.716
              Accuracy : 0.8785
                                                                   95% CI: (0.7128, 0.7192)
                95% CI: (0.8761, 0.8808)
                                                       No Information Rate: 0.8773
   No Information Rate: 0.8785
                                                       P-Value [Acc > NIR] : 1
   P-Value [Acc > NIR] : 0.5072
                                                                    Kappa: 0.3081
                 Kappa: 0
                                                    Mcnemar's Test P-Value : <2e-16
Mcnemar's Test P-Value : <2e-16
                                                               Sensitivity: 0.8968
           Sensitivity: 0.000e+00
                                                               Specificity: 0.6907
           Specificity: 1.000e+00
                                                            Pos Pred Value: 0.2885
        Pos Pred Value : 0.000e+00
                                                            Neg Pred Value: 0.9795
        Neg Pred Value: 8.785e-01
                                                                Prevalence: 0.1227
            Prevalence: 1.215e-01
                                                            Detection Rate: 0.1100
        Detection Rate: 0.000e+00
                                                      Detection Prevalence: 0.3814
  Detection Prevalence: 1.312e-05
                                                         Balanced Accuracy: 0.7938
     Balanced Accuracy: 5.000e-01
                                                          'Positive' Class: 1
      'Positive' Class: 1
```

Modeling: Lasso Regression

ROC curve:

Area under the curve(AUC): 0.838

Ridge with vs. without SMOTE

```
Without SMOTE:
                                                     With SMOTE:
                                                                     Reference
         Reference
                                                          Prediction
                                                                          0
Prediction
                                                                    0 46525 1050
        0 66960 9262
                                                                    1 20378 8305
              Accuracy: 0.8785
                                                                          Accuracy: 0.719
                95% CI: (0.8761, 0.8808)
   No Information Rate: 0.8785
   P-Value [Acc > NIR] : 0.5028
                                                                        95% CI: (0.7158, 0.7222)
                                                            No Information Rate: 0.8773
                                                            P-Value [Acc > NIR] : 1
                 Kappa: 0
                                                                         Kappa: 0.3088
Mcnemar's Test P-Value : <2e-16
                                                         Mcnemar's Test P-Value : <2e-16
           Sensitivity: 0.0000
                                                                   Sensitivity: 0.8878
           Specificity: 1.0000
                                                                   Specificity: 0.6954
        Pos Pred Value :
                                                                 Pos Pred Value: 0.2895
        Neg Pred Value: 0.8785
                                                                 Neg Pred Value: 0.9779
            Prevalence: 0.1215
                                                                    Prevalence: 0.1227
        Detection Rate: 0.0000
                                                                 Detection Rate: 0.1089
  Detection Prevalence: 0.0000
                                                           Detection Prevalence: 0.3761
     Balanced Accuracy: 0.5000
                                                             Balanced Accuracy: 0.7916
                                                               'Positive' Class: 1
      'Positive' Class: 1
```

4

Modeling: Ridge Regression

ROC curve:

Area under the curve(AUC): 0.837

Comparison: Lasso vs. Ridge

	Lasso	Ridge
Sensitivity	89.68%	88.78%
Area under the curve(AUC)	83.8%	83.7%

Modeling: Decision Tree (rpart)

Before balancing the data

Confusion matrix:

Actual

After balancing the data

Confusion matrix:

Actual

Predicted 0 1

0 48335 1412

1 18439 7932

Accuracy Overall (%): 73.92075

Sensitivity (1) (%): 84.8887

Specificity (0) (%): 72.38596

Feature importance:

Vehicle Damage

Previously Insured

Age

Policy Sales Channel

Vehicle Age

Region Code

Annual Premium

Driving License

Gender

Modeling: Random Forest

No Sampling

Accuracy: 87.78%

Specificity 0: 99.93% Sensitivity 1: 0.42%

AUC: 0.502

Down Sampling

Accuracy: 79.84%

Specificity 0: 66.6% Sensitivity 1: 93.08%

AUC: 0.798

Confusion matrix:

0 1 class.error 0 234022 175 0.0007472342 1 32434 145 0.9955492802

Confusion matrix:

0 1 class.error 0 21686 10893 0.33435649 1 2256 30323 0.06924706

SMOTE

Accuracy: 82.26%

Specificity 0: 70.24% Sensitivity 1: 94.29%

AUC: 0.797

Confusion matrix:

0 1 class.error 0 45764 19394 0.29764572 1 3721 61437 0.05710734

Modeling: Boosting with SMOTE

Logistic without & with SMOTE

Confusion matrix:

Actual
Predicted 0 1
0 66929 9256
1 31 6

Accuracy Overall (%): 87.82 Sensitivity (1) (%): 00.064781

Specificity (0) (%): 99.953704

Confusion matrix:

Actual
Predicted 0 1
0 49473 1870
1 17291 7474

Accuracy Overall (%): 74.82393 Sensitivity (1) (%): 79.98716 Specificity (0) (%): 74.10131

Challenges and Possible Solutions

Area	Challenges	Solutions	
Dataset	The size of the train dataset was too high, thus modeling was time consuming	Using methods like SMOTE we were able to reduce the size and remove the imbalance	
	Dataset was highly imbalanced (88%-12%)		
	Policy_Sales_Channel and Region_Code were categorical variables with many categories (150+, 50+ respectively) which resulted in many columns after one-hot encoding. This resulted in poor model performance	We converted the categorical variables into 'factor' class and then fed the data to the models	
Modeling	Coding in R, as we had little experience with it		
	Difficulty in choosing models as Y was categorical	We decided to use: DT, RF, Boosting, Linear, lasso, ridge, Log R	

Conclusions

- From EDA we observe some key differences between the two profiles of customers
- Imbalance can disturb modeling a lot. So depending on how important is to correctly classify 1 or 0, the imbalance must be treated.
- Removing imbalance in the data and using Random Forest model gives us the most decent model, with Sensitivity of 95% (overall accuracy: 82%, Specificity: 70%).
- Top 5 features are:
 - Vehicle_Damage
 - Previously_Insured
 - Age
 - Annual_Premium
 - Policy_Sales_Channel

Thank you!
Any Questions?