USP Cheat-Sheet

Institut für Strukturelle Integrität – version uspcheatsheet-20-05-25-1b – (CC BY-SA 4.0)

This document remaps foundational concepts across scientific and engineering disciplines using the Unified Substrate Principle (USP):

"A configuration is physically real if and only if its internal phases are mutually compatible. Incompatible configurations self-erase."

Each domain is reframed through the lens of structural coherence, supplemented with minimal formal mappings, empirical anchors, and citations to support or falsify claims.

Section 1: Thermodynamics (Phase Dispersion Logic)

Concept	Classical Interpretation	USP Reframe	Core Formula	Empirical Anchor	Citation
Entropy	Disorder or microstate count (Boltzmann)	Coherence loss across a region	$S_\phi = \log\left(rac{\Delta\phi_{ ext{max}}}{\delta\phi_{ ext{min}}} ight)$	Interference contrast decay in Bose–Einstein condensates	USP Appendix A
Heat Flow	Thermal energy transfer	Substrate-mediated coherence dissipation	$ec{J}_\phi = -\lambda_\phi abla \phi$	Thermal relaxation in ultracold atom traps	J. Schmiedmayer et al., <i>Nature Phys.</i> , 2021
Equilibrium	State with no net energy exchange	Minimum-tension stable phase configuration	$ abla \phi = 0 \Rightarrow ec{J}_\phi = 0$	Thermodynamic plateaus in optical lattice systems	USP Appendix A

Time Arrow Irreversible entropy increase Directional pruning of incoherent structures $\phi(t+\Delta t) < \phi(t)$ Decoherence trajectory in open quantum systems A: Math. Theor., 2016 (where decoherent)

Notes:

- ullet $\Delta\phi_{
 m max}$: Observed phase spread across region
- ullet Coherence resolution limit imposed by substrate tension
- Coherence current (phase-tension driven flow)
- λ_{ϕ} : Substrate elasticity coefficient for phase propagation

Section 2: Quantum Mechanics (Veto Dynamics and Interference Logic)

Concept	Classical Interpretation	USP Reframe	Core Formula / Mapping	Empirical Anchor	Citation
Superposition	System in multiple potential states	Multiple phase-branches under substrate evaluation	Substrate coherence test loop: passing branches persist	Delayed-choice quantum eraser experiments	USP Appendix E

Collapse	Wavefunction reduces on measurement	Incoherent branches structurally vetoed	$P_i = \psi_i ^2 \Rightarrow ext{survival rate}$	QED collapse timing in cavity QED	Bassi et al., Rev. Mod. Phys., 2013
Entanglement	Instantaneous nonlocal correlation	Persistent nonlocal phase-locking	$\phi_A - \phi_B = { m const}$	Bell inequality violations (CHSH)	Aspect et al., <i>Nature</i> , 1982
Born Rule	Postulated outcome probability rule	Statistical outcome from repeated substrate evaluations	$P_i = \lim_{N o \infty} rac{n_i}{N}$	Ensemble photonic interference experiments	USP Appendix E

Notes:

- ullet : Amplitude of quantum state $oldsymbol{i}$
- $oldsymbol{P_i}$: Observed outcome frequency derived as survival probability
- Collapse is not observer-induced but coherence-failure enforced

Section 3: Spacetime and Gravity (Elastic Phase Geometry)

Concept	Classical	USP Reframe	Core Formula /	Empirical Anchor	Citation
	Interpretation		Mapping		Oltation

Gravity	Curved spacetime due to mass-energy	Elastic deformation of substrate phase coherence	$\Box \phi = rac{ ho}{\lambda}$	Gravitational lensing, Mercury precession	USP Appendix C
Lorentz Symmetry	Invariant speed of light under transformation	Emergent from wave propagation in isotropic coherence substrate	$c=\sqrt{rac{\lambda}{ ho}}$	Fermi/INTEGRAL photon timing constraints	Amelino-Camelia et al., <i>Nature</i> , 1998
Spacetime	Fundamental geometric background	Indexing map of long-term phase-lock structures	Emerges from global coherence alignment	GPS frame corrections, gravitational redshift	USP Appendix C
Curvature	Ricci tensor field derived from Einstein equations	Geometric record of elastic coherence under stress	$R_{\mu u} \propto abla_{\mu} abla_{ u} \phi$	Frame dragging in rotating masses	Gravity Probe B results

- ϕ : Substrate phase field
- D'Alembertian (wave operator)
- λ : Phase elasticity modulus
- Phase-mass density
- $R_{\mu\nu}$: Substrate-based curvature tensor (geometric memory of phase tension)

Section 4: Biology & Evolution (Coherence-Based Adaptation)

Concept	Classical Interpretation	USP Reframe	Core Formula / Mapping	Empirical Anchor	Citation
Life	Self-organizing system with metabolism, replication	Stable, self-replicating coherence basin	Stability condition: $ abla \cdot ec{J}_{\phi} = 0$ (closed coherence loop)	Morphogenetic field stabilization in embryogenesis	USP Appendix H
Mutation	Random genetic change	Phase perturbation of structural lock	$\delta \phi \Rightarrow$ new compatibility or rejection	CRISPR-induced expression variability in cell lines	Jinek et al., Science, 2012
Natural Selection	Fitness-based survival over time	Substrate permission filter: only compatible coherence persists	$\lim_{t o\infty}\phi(t)\in\{ ext{allowed manifolds}\}$	Longitudinal bacterial evolution experiments	Lenski et al., Nature, 1991
DNA	Molecular storage of genetic information	Coherence-preserving phase-encoding substrate	Information = nested phase instructions $\phi_i(x)$	DNA topology and transcriptional phase alignment studies	Wang et al., Cell, 2008

- $oldsymbol{ar{J_{\phi}}}$: Coherence current (propagation of constructive phase)
- $\delta \phi$: Phase perturbation due to mutation
- $oldsymbol{\phi(t)}$: Phase configuration across evolutionary time
- $oldsymbol{\phi_i(x)}$: Local phase instruction at position $oldsymbol{x}$

Section 5: Neuroscience & Consciousness (Phase-Locked Dynamics)

Concept	Classical Interpretation	USP Reframe	Core Formula / Mapping	Empirical Anchor	Citation
Brainwaves	Oscillatory neural activity (EEG rhythms)	Local phase-locked interference patterns in coherence substrate	$\phi(t,x) \sim \sin(\omega t - kx)$	EEG coherence during focused attention	Klimesch et al., Brain Research Reviews, 1999

Consciousness	Awareness; subjective state	Global phase coherence across nested neural regions	$C \sim \sum_i \phi_i(t) \cdot w_i$	MEG/EEG synchrony peaks during conscious state shifts	Dehaene et al., Neuron, 2014
Sleep & Dreams	Restorative offline state / symbolic simulation	Low-inhibition phase exploration within permitted lock spaces	$\phi_{ ext{dream}} \in$ meta-stable lock manifolds	Sleep-stage specific phase patterns (REM vs. NREM)	Tononi & Cirelli, Nature Rev. Neurosci., 2014
Psychedelics	Perception-alteri ng molecules	Temporary loosening of structural coherence constraints	Reduced precision in lock conditions $\delta\phi\uparrow$	fMRI studies showing desynchronized DMN connectivity	Carhart-Harris et al., PNAS, 2012

- $oldsymbol{\phi(t,x)}$: Time-dependent substrate phase at neural location xxx
- **w**i: Regional weighting (based on neural integration)
- $\delta \phi$: Phase variance tolerance (loosening leads to altered states)

Section 6: Psychology & Human Experience (Coherence Perception and Stability)

Concept	Classical Interpretation	USP Reframe	Core Formula / Mapping	Empirical Anchor	Citation
Intuition	Immediate understanding without reasoning	Implicit substrate-sensed phase instability	$\delta\phi_{ m internal} > \delta_{ m threshold} \Rightarrow { m discomfort}$	Somatic markers preceding conscious conflict	Bechara et al., Science, 1997
Flow State	Full immersion and task alignment	Maximal dynamic internal phase lock	$rac{d\phi}{dt}pprox 0 \;\; ext{across task-relevant networks}$	EEG beta/gamma synchronization during high performance	Csikszentmihalyi , <i>Flow</i> , 1990
Trauma	Lasting emotional imprint after stress	Persistent hysteresis in phase-scars	$\phi(t) ightarrow \phi(t+\Delta t) eq \ \phi_0 ext{(chronic offset)}$	Amygdala-hippocam pus overcoupling in PTSD	van der Kolk, The Body Keeps the Score, 2014
Anxiety	Anticipatory unease	Pre-conscious detection of coherence drift	$rac{d^2\phi}{dt^2}> ext{stability limit}\Rightarrow ext{alert response}$	HRV and EEG phase instability during anticipatory stress	Thayer et al., Biol. Psych., 2012

Resonance

Feeling of connection or harmony

Multi-agent phase match across perception layers

Heart rate & gaze synchrony in social bonding

Feldman, Science, 2007

Key Formula Components:

- ϕ : Neural or experiential phase configuration
- $\delta \phi$: Localized phase deviation
- $\frac{d\phi}{dt}$: Phase stability over time (flow \rightarrow minimized drift)
- ϕ_0 : Reference stable state prior to traumatic perturbation
- Resonance occurs when inter-agent phase trajectories converge

Section 7: Engineering & Systems Design (Coherence as a System Constraint)

Concept Classical USP Reframe Core Formula / Mapping Empirical Anchor Citation Interpretation

Feedback Loop	Output informs input to maintain stability	Continuous substrate re-evaluation for coherence permission	$e(t) = \phi_{ ext{desired}} - \phi(t) \Rightarrow \Delta\phi o 0$	Error minimization in control systems (PID, adaptive)	Åström & Murray, Feedback Systems, 2008
System Stability	Resistance to failure under perturbation	Persistence of coherent phase configurations under stress	$rac{d\phi}{dt} \leq \epsilon$ for all nodes	Bifurcation thresholds in nonlinear dynamic systems	Strogatz, <i>Nonlinear</i> <i>Dynamics</i> , 1994
Synchronization	Timed coordination of system components	Phase-locked dynamics across distributed agents	$\phi_i(t) - \phi_j(t) o 0$	Swarm robotics and oscillator network experiments	Strogatz & Mirollo, Physica D, 1991
Self-Healing	System restores function after damage	Incoherent nodes are pruned and phase-locked state self-realigns	$\phi_{ m damaged} \Rightarrow { m veto} \Rightarrow \phi_{ m local}' = \ \min(\Delta\phi)$	Fault-tolerant mesh networks and redundancy logic	Leitão et al., ACM Comp. Surveys, 2013
Optimization	Configuration that minimizes cost / maximizes output	Coherence-maximal arrangement under constraint surface	$\min \Delta \phi ext{subject to} f(\phi) \leq C$	Signal timing optimization in traffic or circuit design	Boyd & Vandenberghe, Convex Optimization, 2004

- $\phi(t)$: Local system phase state at time ttt
- $\Delta \phi$: Phase error or misalignment
- $\phi_i(t),\phi_j(t)$: Phase states of distributed system components
- $f(\phi)$: Cost or constraint function
- Self-healing = structural re-stabilization via real-time coherence reevaluation