Практическая работа №1. Введение в алгоритмы и структуры данных

Задача 1. Симметрическая разность.

Ограничение по времени: 2 секунды

Ограничение по памяти: 64 мегабайта

На вход подается множество чисел в диапазоне от 1 до 20000, разделенных пробелом. Они образуют множество А. Затем идет разделитель — число 0 и на вход подается множество чисел В, разделенных пробелом, 0 — признак конца описания множества (во множество не входит). Необходимо вывести множество $A\Delta B$ — симметрическую разность множеств A и B в порядке возрастания элементов. В качестве разделителя используйте пробел. В случае, если множество пусто, вывести 0.

Формат входных данных:

12345017580

Формат выходных данных:

23478

Примеры:

Стандартный ввод	Стандартный вывод
12687304162390	4789

<u>Замечание.</u> Для вывода можно использовать любой алгоритм сортировки.

Задача 2. Два массива.

Ограничение по времени: 2 секунды

Ограничение по памяти: 64 мегабайта

Даны два упорядоченных по неубыванию массива. Требуется найти количество таких элементов, которые присутствуют в обоих массивах. Например, в массивах (0, 0, 1, 1, 2, 3) и (0, 1, 1, 2) имеется четыре общих элемента -(0, 1, 1, 2).

Первая строка содержит размеры массивов N1 и N2. В следующих N1 строках содержатся элементы первого массива, в следующих за ними N2 строках – элементы второго массива.

Программа должна вывести ровно одно число – количество общих элементов.

Формат входных данных:

 N_a , N_b

 a_1

 a_2

. . .

 a_{Na}

 b_1

 b_2

. . .

 b_{Nb}

Формат выходных данных:

Одно целое число – количество общих элементов

Примеры:

Стандартный ввод	Стандартный вывод
5 5	2
1	
1	
2	
2	
3	
0	
1	
3	
3	
4	

Задача 3. Вычисление полинома.

Ограничение по времени: 1 секунда

Ограничение по памяти: 16 мегабайт

Вычисление полинома — необходимая операция для многих алгоритмов. Нужно вычислить значение полинома

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0$$

Так как число n может быть достаточно велико, требуется вычислить значение полинома по модулю M. Сделать это предлагается для нескольких значений аргумента.

Формат входных данных:

Первая строка файла содержит три числа — степень полинома $2 \le N \le 100000$, количеств вычисляемых значений аргумента $1 \le M \le 10000$ и модуль $10 \le \text{MOD} \le 10^9$.

Следующие N+1 строк содержат значения коэффициентов полинома $0 \le a_{\rm i} \le 10^9$

В очередных M строках содержатся значения аргументов $0 \le x_i \le 10^9$.

Формат выходных данных:

Выходной файл должен состоять из ровно M строк — значений данного полинома при заданных значениях аргументов по модулю MOD.

Примеры:

Стандартный ввод	Стандартный вывод
2 5 10	4
1	0
5	8
4	8
0	0
1	
2	
3	
4	
5 9 10	1
1	2
0	3
0	4
0	5
0	6
0	7
1	8
2	9
3	
4	
5	

6	
7	
8	
9	

Задача 4. Считаем комментарии.

Ограничение по времени: 1 секунда

Ограничение по памяти: 256 мегабайт

Комментарием в языке Object Pascal является любой текст, находящийся между последовательностью символов, начинающих комментарий определенного вида и последовательностью символов, заканчивающей комментарий этого вида.

Виды комментариев могут быть следующие:

- 1. Начинающиеся с набора символов (* и заканчивающиеся набором символов *).
 - 2. Начинающиеся с символа { и заканчивающиеся символом }.
- 3. Начинающиеся с набора символов // и заканчивающиеся символом новой строки.

Еще в языке Object Pascal имеются литеральные строки, начинающиеся с символа одиночной кавычки и заканчивающиеся этим же символом. В корректной программе строки не могут содержать символа перехода на новую строку.

Будьте внимательны, в задаче используются только символы с кодами до 128, то есть, кодировка ASCII. При тестировании своего решения будьте внимательны. Код одиночной кавычки – 39, двойной – 34.

Формат входных данных:

На вход программы подается набор строк, содержащих фрагмент корректной программы на языке Object Pascal.

Формат выходных данных:

Выходом программы должно быть 4 числа – количество комментариев первого, второго и третьего типов, а также количество литеральных строк.

Примеры:

Стандартный ввод	Стандартный вывод
program test;	3022
(*just for testing *)	
var	
(* variables	
note that	
// here is not comment	
and (* here is	
not a begin of	
another comment	
*)	
x: integer; (* *)	
begin	
<pre>write('(*is not comment//');</pre>	
write(' and (*here*) '	
,x //y);	
End. // It is comment	

Задача 5. Две кучи.

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайт

Имеется $2 \le N \le 23$ камня с целочисленными весами $W_1, W_2, \dots W_N$. Требуется разложить их на две кучи таким образом, чтобы разница в весе куч была минимальной. Каждый камень должен принадлежать ровно одной куче.

Формат входных данных:

N

W1 W2 W3 ... WN

Формат выходных данных:

Минимальная неотрицательная разница в весе куч

Примеры:

Стандартный ввод	Стандартный вывод
5	4
89698	
6	2
14 2 12 9 9 8	