Круговой многочлен

Определение: Комплексное число z называется **примитивным корнем** степени n из 1, если $z^n = 1$, но $z^k \neq 1$ при $1 \leqslant k < n$.

1 Докажите, что

- (a) Любой корень степени n из 1 является степенью примитивного корня;
- (b) Число $\varepsilon_1 = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ примитивный корень степени n из 1;
- (c) Все примитивные корни степени n из 1 имеют вид $\varepsilon_d = \cos\frac{2\pi d}{n} + i\sin\frac{2\pi d}{n}$, где HOД(d,n)=1;
- (d) Если ε примитивный корень степени n из 1, то все примитивные корни степени n из 1 имеют вид ε^d , где HOД(d,n)=1

Определение: Круговой многочлен (или многочлен деления круга, или циклотомический многочлен) — это многочлен $\Phi_n(x) = \prod (x - \varepsilon_k)$, где ε_k — все примитивные корни степени n из 1. Ясно, что $\Phi_n(x) = \prod_{d,(d,n)=1} (x - \varepsilon^d)$, где ε — любой примитивный корень степени n из 1.

- [2] (a) Найдите явно $\Phi_n(x)$ для n=2,3,5.
 - (b) Чему равна степень $\Phi_n(x)$?
 - (c) Докажите, что $x^n 1 = \prod_{d|n} \Phi_d(x)$.
 - (d) Найдите явно $\Phi_{81}(x)$; $\Phi_n(x)$, если $n=p^k, p$ простое.
 - (e) Докажите, что $\Phi_n(x) \in \mathbb{Z}[x]$.

Замечание. Во всех примерах коэффициенты $\Phi_n(x)$ принадлежат множеству $\{-1,0,1\}$. Однако это не всегда так! Наименьшее n, при котором это не так -n=105. Вообще, любое целое число встречается среди коэффициентов.

- |3| Пусть p- простое число. Докажите, что:
 - (a) Если p|n, то $\Phi_n(x^p) = \Phi_{np}(x)$;
 - (b) Если *p* не делит *n*, то $\Phi_n(x^p) = \Phi_{np}(x)\Phi_n(x)$;
 - (c) Если n нечётно, то $\Phi_n(-x) = \Phi_{2n}(x)$;

 Π одсказка: воспользоваться задачей 2(b).

- [4] Докажите, что если (n,a)=1, то $\Phi_n(x^a)=\prod_{d|a}\Phi_{nd}(x)$.
- $\boxed{5}$ Даны натуральные n,k>1. Докажите, что $\Phi_n(k)\geq 2$.

[6] Докажите, что в следующей бесконечной последовательности нет простых чисел:

$10001, 100010001, 1000100010001, \dots$

- 7 Докажите, что число $2^{2^n} + 2^{2^{n-1}} + 1$ раскладывается в произведение по крайней мере n простых чисел (не обязательно различных).
- 8 Докажите, что $\Phi_n(x)$ возвратный многочлен. (Многочлен $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ называется возвратным, если $a_k = a_{n-k}, 0 \le k \le n$.)
- $\lfloor 9 \rfloor$ Найдите $\Phi_n(1)$.
- 10 Докажите, что для каждого многочлена $f(x) \in \mathbb{Z}[x]$ найдётся такой ненулевой многочлен $g(x) \in \mathbb{Z}[x]$, что $g(x^{10})$ делится на f(x).

Теорема 1. Если $\Phi_n(a) \, \vdots \, p$, то:

- или показатель a по модулю p равен в точности n (в частности, $p-1 \, \vdots \, n$);
- ullet или $n \ dots \ p.$
- 11 Что означает эта теорема при n = 4?
- 12 Верно ли, что если выполнен один из пунктов заключения теоремы, то $\Phi_n(a)$: p?
- Докажите, что все простые делители числа m^2+m+1 или равны 3, или имеют вид 6k+1.
- [14] Докажите частный случай теоремы Дирихле: для любого натурального n существует бесконечно много простых чисел вида nk+1.

Докажем теорему 1.

- Та Рассмотрим сначала случай p=2. Чему равно (a) $\Phi_n(0)$? (b) $\Phi_n(1)$? (c) Докажите, что $\Phi_n(a)$ чётно только при $n=2^k$.
- [16] (а) Докажите, что $x^n 1 = \Phi_n(x)Q(x)$, где $Q(x) : x^d 1$ для всех d|n, d < n.
 - (b) Пусть в условии теоремы 1 показатель a по модулю p равен d < n. Докажите, что тогда $\frac{n}{d}$: p. Завершите доказательство теоремы 1.

Теорема 2. Если $\Phi_n(a)$: p, $\Phi_m(a)$: p, то $\frac{m}{n} = p^l$. В частности, при $m \neq n$ верно, что $(\Phi_n(a), \Phi_m(a)) = p^s$.

17 Докажем теорему 2.

(a) Докажите её для p=2.

(b) Докажите усиление **16(b)** при $p \neq 2$: пусть показатель a по модулю p равен d и $\Phi_n(a)$: p. Тогда $\frac{n}{d} = p^k$.

Завершите доказательство теоремы 2.

- 18 Докажите, что при a>1 число $a^{10}+a^5+1$ не является степенью простого числа.
- 19 Докажите, что число $2^{2^n} + 2^{2^{n-1}} + 1$ раскладывается в произведение по крайней мере n различных простых чисел.
- [20] Даны попарно различные простые числа p_1, p_2, \ldots, p_n . Докажите, что число $2^{p_1p_2\dots p_n}+1$ имеет хотя бы $2^{2^{n-1}}$ делителей.