Now consider a data set of inputs $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ with corresponding target values t_1, \dots, t_N . We group the target variables $\{t_n\}$ into a column vector that we denote by \mathbf{t} where the typeface is chosen to distinguish it from a single observation of a multivariate target, which would be denoted \mathbf{t} . Making the assumption that these data points are drawn independently from the distribution (4.8), we obtain an expression for the likelihood function, which is a function of the adjustable parameters \mathbf{w} and σ^2 :

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \sigma^2)$$
(4.9)

where we have used (4.3). Taking the logarithm of the likelihood function and making use of the standard form (2.49) for the univariate Gaussian, we have

$$\ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \sigma^2)$$
$$= -\frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi) - \frac{1}{\sigma^2} E_D(\mathbf{w})$$
(4.10)

where the sum-of-squares error function is defined by

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2.$$
 (4.11)

The first two terms in (4.10) can be treated as constants when determining w because they are independent of w. Therefore, as we saw previously, maximizing the likelihood function under a Gaussian noise distribution is equivalent to minimizing the sum-of-squares error function (4.11).

4.1.3 Maximum likelihood

Having written down the likelihood function, we can use maximum likelihood to determine w and σ^2 . Consider first the maximization with respect to w. The gradient of the log likelihood function (4.10) with respect to w takes the form

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}}.$$
 (4.12)

Setting this gradient to zero gives

$$0 = \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n)^{\mathrm{T}} - \mathbf{w}^{\mathrm{T}} \left(\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\mathrm{T}} \right). \tag{4.13}$$

Solving for w we obtain

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t},\tag{4.14}$$

Section 2.3.4