Multi-model Maintenance Scheduling

Christian Brunbjerg Jespersen

Technical University of Denmark

Introduction

Current Operation Research methods have proven difficult to implement in operational settings. The poster presents a methodology to decompose a large-scale decision process into a series of modules that each represents the decisions taken by each individual stakeholder making up the scheduling process. The maintenance scheduling procees in its most general form is composed of a Scheduler, a set of Supervisors, and groups of technicians that are lead by the supervisors. It is generally believed that maintenance efficiency can be increased by up to 35% (Palmer 2019) by having a well organized maintenance scheduling system in place. This project will provide an implementable architecture that is able to model and optimize this system through the use of realtime optimization and user interactions.

Research Questions

- 1. How to create modular algorithm components that can solve well defined decision problems while also integrating into a larger decision making process?
- 2. What approaches can be used to implement a real-time scheduling system that coordinates multiple agents, each utilizing different mathematical models and metaheuristics?
- 3. In what ways can metaheuristics be integrated into existing scheduling workflows and business IT infrastructures, such as ERP systems, to address complex operational problems involving multiple stakeholders?
- 4. How to model a scheduling process where each decision affects the process itself?

Solution Method Modular Scheduling System Architecture Orchestrator Communication Type Channels Atomic Pointer Swap Sup Metaheurics 0 Mutex lock Channels persistence

Algorithm: Actor based Large Neighborhood Search

Results

Future Work

- 1. Validate effectiveness user-inputs into the Scheduling Application with case company
- 2. Assess feasibility of atomic pointer swaps to share state between metaheuristics

Methodology

Strategic: Variant of the knapsack problem	n
Meta variables:	
$s \in S$	(1)
$\beta(\tau)$ $\tau \in [0, \infty]$	(2) (3)
$T \in [0, \infty]$	(3)
Minimize:	
$\sum \sum strategic_value_{wp}(\tau) \cdot \alpha_{wp}(\tau)$	
$w \in W(\tau) \ p \in P(\tau)$	
$+ \sum_{p \in P(\tau)} \sum_{r \in R(\tau)} strategic_penalty \cdot \epsilon_{pr}(\tau)$	
$+\sum_{p\in P(\tau)}\sum_{r\in R(\tau)}\sum_{clustering_value_{w1,w2}\cdot\alpha_{w1p}(\tau)\cdot\alpha_{w2p}(\tau)}$	(4)
$p \in P(\tau) \ w1 \in W(\tau) \ w2 \in W(\tau)$	(.,
Subject to:	
$\sum work_order_work_{wr} \cdot \alpha_{wp}(\tau) \leq resource_{pr}(\tau,\beta(\tau)) + \epsilon_{pr}(\tau) \forall p \in P(\tau) \forall r \in R(\tau)$	(5)
$w \in W(\tau)$	(6)
$\sum_{w \in W(\tau)} \alpha_{wp}(\tau) = 1 \forall p \in P(\tau)$	(6)
$\alpha_{wp}(\tau) = 0 \forall (w, p) \in exclude(\tau)$	(7)
$\alpha_{wp}(\tau) = 1 \forall (w, p) \in include(\tau)$	(8)
$\alpha_{wp}(\tau) \in \{0,1\} \forall w \in W(\tau) \forall p \in P(\tau)$	(9)
$\epsilon_{pr}(\tau) \in \mathbb{R}^+ \forall p \in P(\tau) \forall r \in R(\tau)$	(10)

Tactical: Variant of the project scheduling problem

Meta variables:	
$s \in S$	(11)
lpha(au)	(12)
$ au \in [0, \infty]$	(13)
Minimize:	
$\sum_{o \in O(\tau, \alpha(\tau))} \sum_{d \in D(\tau)} tactical_value_{do}(\tau) \cdot \beta_{do}(\tau) + \sum_{r \in R(\tau)} \sum_{d \in D(\tau)} tactical_penalty \cdot \mu_{rd}(\tau)$	(14)
Subject to:	
$\sum_{o \in O(\tau, \alpha(\tau))} work_o(\tau) \cdot \beta_{do}(\tau) \leq tactical_resource_{dr}(\tau) + \mu_{rd}(\tau) \forall d \in D(\tau) \forall r \in R(\tau)$	(15)
$latest_finish_o(au)$	
$\sum \sigma_{do}(\tau) = duration_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(16)
$d = earliest_start_o(au)$	4 1
$\sum \qquad \sigma_{d^*o}(\tau) = duration_o(\tau) \cdot \eta_{do}(\tau) \forall o \in O(\tau, \alpha(\tau)) \forall d \in D(\tau)$	(17)
$d^* \in D_{duration_O(au)}(au)$	
$\sum \eta_{do}(\tau) = 1, \forall d \in D(\tau)$	
$\phi \in O(au, lpha(au))$,
$\sum d \cdot \sigma_{do1}(\tau) + \Delta_o(\tau) = \sum d \cdot \sigma_{do2}(\tau) \forall (o1, o2) \in finish_start_{o1, o2}$	(18
$d \in D(au)$	
$\sum_{\sigma \in \mathcal{S}} d \cdot \sigma_{do1}(\tau) = \sum_{\sigma \in \mathcal{S}} d \cdot \sigma_{do2}(\tau) \forall (o1, o2) \in start_start_{o1, o2}$	(19
$d \in D(\tau)$ $d \in D(\tau)$	(20
$eta_{do}(au) \leq number_o(au) \cdot operating_time_o \forall d \in D(au) \forall o \in O(au, lpha(au))$ $eta_{do}(au) \in \mathbb{R} \qquad \forall d \in D(au) \forall o \in O(au, lpha(au))$	(20 (21
$B_{do}(\tau) \in \mathbb{R} \qquad \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$ $u_{rd}(\tau) \in \mathbb{R} \qquad \forall r \in R(\tau) \forall d \in D(\tau)$	(22
$v_{rd}(\tau) \in \mathbb{R}$ $\forall t \in R(\tau)$ $\forall a \in D(\tau)$ $\forall a \in D(\tau)$ $\forall a \in D(\tau)$	(23
$ \eta_{do}(\tau) \in \{0, 1\} \qquad \forall a \in D(\tau) \forall o \in O(\tau, \alpha(\tau)) $ $ \eta_{do}(\tau) \in \{0, 1\} \qquad \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau)) $	(24
$\Delta_o(\tau) \in \{0,1\} \forall a \in D(\tau) \forall b \in O(\tau,\alpha(\tau))$	(25

Supervisor: Varient of the assignment problem

Meta variables:	
$z \in Z$	(26)
lpha(au)	(27)
heta(au)	(28)
$ au \in [0, \infty]$	(29)
Maximize:	
$\sum supervisor_value_{at}(\tau, \lambda_t(\tau), \Lambda_t(\tau)) \cdot \gamma_{at}(\tau)$	(30)
$a{\in}A(\tau,\!\alpha(\tau))t{\in}T(\tau)$	
Subject to:	
$\sum \rho_a(\tau) = work_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(31)
$a \in A_o(\tau, \alpha(\tau))$	
$\sum \qquad \gamma_{at}(\tau) = \phi_o(\tau) \cdot number_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(32)
$t \in T(\tau) \ a \in A_o(\tau, \alpha(\tau))$	
$\sum \phi_o(\tau) = O_w(\tau, \alpha(\tau)) \forall w \in W(\tau, \alpha(\tau))$	(33)
$o \in O_w(\tau, \alpha(\tau))$	
$\sum \gamma_{at}(\tau) \le 1 \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(34)
$a \in A_o(\tau, \alpha(\tau))$	
$\gamma_{at}(\tau) \le feasible_{at}(\theta(\tau)) \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(35)
$\gamma_{at}(\tau) \in \{0,1\} \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(36)
$ \rho_a(\tau) \in [lower_activity_work_a(\tau), work_a(\tau)] \forall a \in A(\tau, \alpha(\tau)) $	(37)

Operational: Variant of the sequencing problem

Meta variables:	
$t \in T(au)$	(38
lpha(au)	(39
$\gamma(au)$	(40) (41)
$ au \in [0,\infty]$	
Maximize:	
\sum $\delta_{ak}(au)$	(42
$a \in A(\tau, \gamma_t(\tau)) \ k \in K(\gamma(\tau))$	·
Subject to:	
$\sum_{k \in K(\gamma(\tau))} \delta_{ak}(\tau) \cdot \pi_{ak}(\tau) = activity_work_a(\tau, \rho(\tau)) \cdot \theta (\tau) \forall a \in A(\tau, \gamma_t(\tau))$	(43
$\lambda_{a21}(\tau) \ge \Lambda_{a1last(a1)}(\tau) + preparation_{a1,a2} \forall a1 \in A(\tau, \gamma_t(\tau)) \forall a2 \in A(\tau, \gamma_t(\tau))$	(44
	(11
$\lambda_{ak}(\tau) \ge \Lambda_{ak-1}(\tau) - constraint_limit \cdot (2 - \pi_{ak}(\tau) + \pi_{ak-1}(\tau))$	(45
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$ $\begin{cases} A(\tau, \gamma_t(\tau)) & \forall k \in K(\gamma(\tau)) \\ \forall k \in K(\gamma(\tau)) & \forall k \in K(\gamma(\tau)) \end{cases}$	•
$\delta_{ak}(\tau) = \Lambda_{ak}(\tau) - \lambda_{ak}(\tau) \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(46
$\lambda_{ak}(\tau) \ge event_{ie} + duration_{ie} - constraint_limit \cdot (1 - \omega_{akie}(\tau))$	(1.7
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(47
$ \Lambda_{ak}(\tau) \leq event_{ie} + constraint_limit \cdot \omega_{akie}(\tau) \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau) $	(48
$\lambda_{a1}(\tau) \ge time_window_start_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(49
	(50
$\Lambda_{alast(a)}(\tau) \leq time_window_finish_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	
$\pi_{ak}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(51
$\lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	(52
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(52
$\Lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	(5)
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$ $\begin{cases} (a) \in [0, \text{ and } k, $	(53
$\delta_{ak}(\tau) \in [0, work_{a_to_o(a)}(\tau)] \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(54
$\omega_{akie}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(55
$\theta_a(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau))$	(56

Contact Information:

- name:
- Jespersen
- Email: cbrje@dtu.dk
- **Phone:** 0045 28 43 39 74
- Website:

Supervisors:

- Christian Brunbjerg Niels Henrik Mortensen, DTU Construct
 - Thomas Riis Stidsen, DTU Management

Date of Completion:

• 2026-02-01

