THE SOLUTION OF NONLINEAR EQUATIONS f(x) = 0

THE SOLUTION OF NONLINEAR EQUATIONS f(x) = 0

• The root of an equation is the value of x that f(x) = 0.

Roots are called the zeros of equation.

 There are many functions for which the root cannot be determined so easily.

Methods for Determining Roots

Noncomputer methods.

- 1. Graphical method
- 2. Analytical method

Computer methods.

- 1. Bisection method
- 2. False Position method
- 3. Fixed point iteration
- 4. Newton's method
- 5. Secant Method

NONCOMPUTER METHODS

Separation of roots

To separate the roots of f(x) = 0 is to divide the whole domain of permissible values into intervals in each of which there is only one root.

For the solution of the roots, we will use,

- 1. Graphical method
- 2. Analytical method

GRAPHICAL METHOD OF SEPARATING ROOTS

1ST TECHNIQUE: It is easy to separate the roots if the graph of the function is constructed

2nd TECHNIQUE: Given y = f(x) and f(x) = r(x) - s(x) = 0, we can write $f(x) = r(x) - s(x) = 0 \quad \Rightarrow \quad r(x) = s(x)$

Then sketch the graph of y = r(x) and y = s(x), the points of intersection of the graph of these functions are the roots of the given equation as follows

Example: Use graphical method to find the interval(s) in which the roots of the equation $x^3 - 3x - 1 = 0$ are included.

where, $x^3 = 3x + 1$ let $g(x) = x^3$ and s(x) = 3x + 1

Roots lies on $x_0 \in [-2, -1]$, $x_1 \in [-1, 0]$ and $x_2 \in [1, 2]$

NOTE: Graphical methods is not very precise. It makes it possible to roughly determine the interval.

ANALYTICAL METHOD OF SEPARATING OF ROOTS

Theorem : Assume we want to find a root of equation f(x) = 0. Assume that $f: R \to R$ and f is continuous. Let $[a,b] \subset R$ be such that

Then, by the intermediate value theorem, there exists $\bar{x} \in [a, b]$ such that $f(\bar{x}) = 0$.

Now, we can recommend the following sequence of operations to separate the roots using the analytic method.

- 1. Find the critical values of f(x), that is f'(x) = 0.
- 2. Compute a table of signs of the function f(x) setting α equal to
 - a) The critical values of the derivative or the values close them
 - b) The boundaries of the interval [a, b]
- 3. Determine the intervals at the endpoints of which the function assumes values of opposite signs. These intervals contain only one root each in its interior.

Example: Separate the roots of $f(x) = 2^x - 5x - 3 = 0$ using the analytical method.

Solution:

$$f(x) = 2^x - 5x - 3$$
 , $D: (-\infty, \infty)$

$$f'(x) = 2^x \ln 2 - 5 = 0 \implies 2^x = \frac{5}{\ln 2} \implies \ln(2^x) = \ln\left(\frac{5}{\ln 2}\right)$$

$$x\ln(2) = \ln\left(\frac{5}{\ln 2}\right) \Rightarrow x = \frac{\ln 5 - \ln \ln 2}{\ln 2} \approx 2.85$$
 (2.85 close to 3)

$f(x) = 2^x - 5x - 3$	-∞	-2	-1	0	1	2	3	4	5	∞
	+	+	+	_	-	_	_	_	+	+
			/					/	/	

The roots of the equation are in the interval (-1,0) and (4,5).

Example: Separate the roots of the equation $x^3 + 3x^2 - 3 = 0$.

$$f(x) = x^3 + 3x^2 - 3, D: (-\infty, \infty)$$

$$f'(x) = 3x^2 + 6x = 0$$
 then $3x(x + 2) = 0$
 $x = 0$ and $x = -2$

	-∞	-3	-2	-1	0	1	2	3	∞
$f(x) = x^3 + 3x^2 - 3$	_	-	+	_	_	+	+	+	+
		\w/							

Roots lie on (-3,-2), (-2,-1) and (0,1)

COMPUTER METHODS

BRACKETING METHODS (Or, two point methods for finding roots)

- Bracketing methods consider the fact that a function typically changes sign in the vicinity of the root.
- In this process two initial guesses for the root are required.
- These two initial guesses are called x_{min} (lower) (or x=a) and x_{max} (upper) (or x=b).

Definition:

Assume that f(x) is a continuous function . Any number r for which f(r)=0 is called a root of the equation f(x)=0 . Also we say that r is a zero of the function f(x).

For example,

No answer (No root)

Nice case (one root)

Oops!! (two roots!!)

Three roots
(Might work for a while!!)

Two roots
(Might work for a while!!)

Discontinuous function.

Need special method

BISECTION METHOD

BISECTION METHOD

In this section, we develop our first bracketing method for finding a zeros of continuous function.

BISECTION METHOD

Algorithm

Step1: The decision step for this process of interval halving is first to choose the midpoint

$$c = \frac{a+b}{2} \quad (1)$$

where, f(a)f(b) < 0 and then to analyse the three possibilities that might arise

Step 2:

a. If f(a) and f(c) have opposite signs (f(a)f(c) < 0) a zero lies in [a, c].

Therefore, set b=c and return equation (1).

b. If f(b) and f(c) have opposite signs (f(b)f(c) < 0) a zero lies in [c,b] ($or\ f(a)f(c) > 0$)

Therefore, set a = c and return equation (1).

c. If f(c) = 0, then the zero is c.

Interval halving (bisection) is an iterative procedure. The solution is not obtained directly by a single calculation. The iteration are continued until the size of an interval decreases below a prescribed tolerance ε_1 , that is $|b_i - a_i| \le \varepsilon_1$, or the value of f(x) decreases a prescribed tolerance ε_2 , that is $|f(c_i)| \le \varepsilon_2$, or both.

Example: Let $f(x) = x^3 + x^2 - 3x - 3$

- a) Find the location of the root(s).
- b) Find an approximation for the positive root using Bisection method with accuracy $\varepsilon < 1 \times 10^{-2}$

Solution:

a) where $f(x) = x^3 + x^2 - 3x - 3$, then the roots are

$$f'(x) = 0 \implies 3x^2 + 2x - 3 = 0$$

$$x_1 = -2 + \frac{\sqrt{40}}{6} \approx 0.72$$
 (take $x_1 = 1$) and $x_1 = -2 - \frac{\sqrt{40}}{6} \approx -1.38$ (take $x_2 = -1.5$)

	–∞	-4	-3	-2	-1.5	0	1	2	3	∞
$x^3 + x^2 - 3x - 3$					+			+	+	+

Roots lies in (-2, -1.5), (-1.5, 0) and (1,2), positive root lie in (1,2)

b) Use bisection method to approximate positive root

a	c=(<u>a+b</u>)/2	b	f(a)	f(c)	f(a) f(c)	$\varepsilon_1 = b-a $	$\varepsilon_2 = f(c) $
1	1.5	2	-4	-1.875	>0	1	1.875
1.5	1.75	2	-1.875	0.171	<0	0.5	0.171
1.5	1.625	1.75	-1.875	-0.943359	>0	0.25	0.943359
1.625	1.6875	1.75	-0.943359	-0.409424	>0	0.125	0.409424
1.6875	1.71875	1.75	-0.409424	-0.124786	>0	0.0625	0.124786
1.71875	1.734375	1.75	-0.124786	0.02203	<0	0.03125	0.02203
1.71875	/ 1.726563	1.734375	-0.124786		>0	0.015625	0.051755
1.726563	_ 1.730469	1.734375	-0.051755	-0.014957	>0	0.007813	0.014957
1.730469	1.732422	1.734375	-0.014957	-0.003513	>0	0.003906	0.003513

$$x \approx 1.730469$$
 if $\varepsilon = |b - a| = 0.007813$ is used or
$$x \approx 1.732422$$
 if $\varepsilon = |f(c)| = 0.003513$ is used

Theorem (Bisection Theorem)

Assume that $f \in [a,b]$ and that there exist a number $r \in [a,b]$ such that f(r)=0. If f(a) and f(b) have opposite signs, and $\{c_n\}_{n=0}^{\infty}$ represents the sequence of midpoints generated by the bisection process

$$a_0 \le a_1 \le \dots = a_n \le \dots \le r \le \dots \le b_n \le \dots \le b_1 \le b_0$$

and

$$[a_{n+1}, b_{n+1}] = [a_n, c_n]$$
 and $[a_{n+1}, b_{n+1}] = [c_n, b_n]$

then

$$|r - c_n| \le \frac{b-a}{2^{n+1}}$$
 for $n = 0,1,...$ (2)

And therefore the sequence $\{c_n\}_{n=0}^{\infty}$ converges to the zero x=r; that is

$$\lim_{n \to \infty} c_n = r \tag{3}$$

Proof:

Since both zero r and the midpoint c_n lie in the interval $[a_n, b_n]$, the distance between c_n and r cannot be greater than half the width of this interval (see fig. below).

Thus,

$$|r - c_n| \le \frac{b_n - a_n}{2} \qquad for \quad all \quad n \quad (4)$$

Observe that the successive interval width form the pattern

$$b_1 - a_1 = \frac{b_0 - a_0}{2}$$

$$b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{b_0 - a_0}{2^2}$$

then,
$$b_n - a_n = \frac{b_0 - a_0}{2^n}$$
 (5)

Combining (4) and (5) result in

$$|r - c_n| \le \frac{b_0 - a_0}{2^{n+1}} \quad for \ all \quad n$$

• The number N of repeated bisection needed to guarantee that the Nth midpoint c_n is an approximation to a zero and has an error less than the pre assigned value ε is

$$N = \operatorname{int}\left(\frac{\ln(b-a) - \ln\varepsilon}{\ln 2}\right) \tag{6}$$

Proof: Use

$$\frac{|b-a|}{2^{n+1}} < \varepsilon \qquad \text{then}$$

$$\ln\left(\frac{|b-a|}{2^{n+1}}\right) < \ln\varepsilon \quad \Rightarrow \ln(b-a) - (N+1)\ln 2 < \ln\varepsilon$$

$$N > \frac{\ln(b-a) - \ln\varepsilon}{\ln 2} - 1$$

Therefore, the smallest value of N is

$$N = \operatorname{int}\left(\frac{\ln(b-a) - \ln\varepsilon}{\ln 2}\right)$$

Example: The bisection method is used to find a zeros of f(x) in the interval [2,7]. How many times must this interval be bisected to guarantee that the approximation c_n has an accuracy of 5×10^{-9} .

Given
$$a=2$$
 , $b=7$ and $\varepsilon=5\times 10^{-9}$

$$N = \inf\left(\frac{\ln(7-2) - \ln(5 \times 10^{-9})}{\ln 2}\right) = \inf(29.83) \quad take \quad N = 30$$

If the given interval 30 times bisected we obtain an accuracy $5 imes 10^{-9}$

Advantage:

A global method: it always converges no matter how far you start from the actual root.

Disadvantage:

It cannot be used to find roots when the function is tangent is the axis and does not pass through the axis.

For example: $f(x) = x^2$

It converges slowly compared with other methods.

Example: Let $f(x) = 2\sqrt{x} + 2x - 5$

- a) Find the location of the root(s).
- b) Find an approximation for the root using Bisection method by 6 times.

Solution:

- a) We can use two methods to find the location of the root(s).
- 1. Graphical Method
- 2. Analytical Method
- 1. Graphical Method

$$f(x) = 2\sqrt{x} + 2x - 5 = 0$$

$$y_1 = 2\sqrt{x} \qquad \text{and} \qquad y_2 = 5 - 2x$$

Roots lies on $x_0 \in [1,2]$, where f(1) = -1 < 0, f(2) = 1.81 > 0 f(1)f(2) < 0

2. Analytical Method

$$f(x) = 2\sqrt{x} + 2x - 5 = 0$$

$$f(x) = 2\sqrt{x} + 2x - 5 = 0$$
 $f'(x) = \frac{1}{\sqrt{x}} + 2 = 0$

$$x = \frac{1}{4}$$

x	0	1/8	$\frac{1}{4}$	1	$\frac{3}{2}$	2
Sign of $f(x)$	-	-	-	-	+	+

b) Now we can find an approximation root of $f(x) = 2\sqrt{x} + 2x - 5$ on the interval [1,2] by using Bisection Method

1.
$$x_0 = \frac{a+b}{2} = \frac{1+2}{2} = 1.5$$

x	1	1.5	2					
Sign of $f(x)$	1.	+	+					

2. Now the new interval is [1, 1.5]

$$x_0 = \frac{a+b}{2} = \frac{1+1.5}{2} = 1.25$$

ī	X	1	1.25	1.5
	Sign of $f(x)$	1	1	+
				[

3. The new interval is [1.25, 1.5]

$$x_0 = \frac{a+b}{2} = \frac{1.25+1.5}{2} = 1.375$$

4. The new interval is [1.25, 1.375]

$$x_0 = \frac{a+b}{2} = \frac{1.25+1.375}{2} = 1.3125$$

x	1.25	1.3125	1.375	
Sign of $f(x)$	-	-	+	

5. The new interval is [1.3125, 1.375]

$$x_0 = \frac{a+b}{2} = \frac{1.3125 + 1.375}{2} = 1.34375$$

x	1.3125	1.34375	1.375
Sign of $f(x)$		+	+

6. The new interval is [1.3125, 1.34375]

$$x_0 = \frac{a+b}{2} = \frac{1.3125 + 1.34375}{2} = 1.328125$$

x	1.3125	1.328125	1.34375
Sign of $f(x)$	-	•	+

Bisection Method for $f(x) = 2\sqrt{x} + 2x - 5$ to find approximation root for 6 steps

n	а	b	$x_0 = \frac{a+b}{2}$	$f(x_0)$	b-a	$\left r-x_0\right < \frac{b-a}{2^{n+1}}$
0	1	2	1.5	0.4495	1	0.5
1	1	1.5	1.25	-0.2639	0.5	0.25
2	1.25	1.5	1.375	0.0952	0.25	0.125
3	1.25	1.375	1.3125	-0.0837	0.125	0.0625
4	1.3125	1.375	1.34375	0.0059	0.0625	0.03125
5	1.3125	1.34375	1.328125	-0.03886	0.03125	0.015625
6	1.328125	1.34375	1.3359375	-0.01647	0.015625	0.0078125

FALSE POSITION METHOD

FALSE POSITION METHOD (REGULA FALSI)

Another popular algorithm is the method of false position method. It was developed because the bisection method converges at a fairly slow speed.

In the false position method, the nonlinear function f(x) is assumed to be linear function g(x) in the interval (a,b) as follows

False-Position Method

To find the value of c, we write down two versions of the slope m of the line L = g(x)

$$m = \frac{f(b) - f(a)}{b - a} \tag{1}$$

Where, the points (a, f(a)) and (b, f(b)) are used, and

$$m = \frac{0 - f(b)}{c - b} \tag{2}$$

Where, the points (c,0) and (b,f(b)) are used . Equating the slopes (1) and (2), we have

$$\frac{f(b) - f(a)}{b - a} = \frac{0 - f(b)}{c - b}$$
 which easily solved for c to get

$$c = b - \frac{f(b)(b-a)}{f(b)-f(a)} \tag{3}$$

The three possibilities are the same as before (bisection method)

- 1. If f(a)f(c) < 0 the root lies in [a, c]
- 2. If f(a)f(c) > 0 the root lies in [c,b]
- 3.. If f(c) = 0 then x = c

Example: Use False Position Method to approximate $\sqrt{5}$ to 3 decimal places.

$$(i.e \ 0.5 \times 10^{-3})$$

Solution:

First find f(x) where

$$x = \sqrt{5}$$
 \Rightarrow $x^2 = 5$ \Rightarrow $x^2 - 5 = 0$ that is $f(x) = x^2 - 5$

Use $f(x) = x^2 - 5$ to locate the root(s)

$$f'(x) = 2x = 0 \Rightarrow x = 0$$

	-∞	-3	-2	-1	0	1	2	3	4	∞
$x^2 - 5$	+	+						+	+	+

 $\sqrt{5}$ locate in [2,3]

<u>a</u> .	$c = b - \frac{f(b)(b-a)}{f(b) - f(a)}$	<u>b</u>	f(a)	f(c)	f(a)f(c)	$\varepsilon = f(c) $
2	2.2	3	-1	-0.16	>0	0.16
2.2	2.2307	3	-0.16	-0.023	>0	0.023
2.2307	2.235	3	-0.023	-4.775×10 ⁻³	>0	4.775×10 ⁻³
2.235	2.2359	3	-4.775×10 ⁻³	-7.012×10 ⁻⁴	>0	7.012×10 ⁻⁴

Approximation of the root $x = \sqrt{5} \approx 2.2359$ with accuracy 7.012×10^{-4}

Exercises:

Exercise1. Given $lnx - x^2 + 2x = 0$

Solve above equation, using

- a) Bisection Method
- b) False Position Method correct up to at least 2 decimal places i.e. $\varepsilon = 0.5 \times 10^{-2}$
- c) Compare the two methods according to the number of iterations performed.

Exercise2. Given $e^x + x - 2 = 0$

Solve above equation, using

- a) Bisection Method
- b) False Position Method correct up to at least 2 decimal places i.e $\varepsilon = 0.5 \times 10^{-2}$
- c) Compare the two methods according to the number of iterations performed.

NOTE:

- 1. To compare between two methods you should start by the same interval for both of them.
- 2. You must use same error calculation for both of methods.
- 3. The termination criteria used in the Bisection Method ($\varepsilon \leq |b_n a_n|$) is not useful for the False Position method and may result in infinite loop. The best choice is to use $\varepsilon \leq |f(c_n)|$ to compare the two methods.

Example: Let $f(x) = 2\sqrt{x} + 2x - 5$

- a) Find the location of the root(s).
- b) Find an approximation for the root using False Position method by 6 times.

Solution:

- a) We can use two methods to find the location of the root(s).
- 1. Graphical Method
- 2. Analytical Method
- 1. Graphical Method

$$f(x) = 2\sqrt{x} + 2x - 5 = 0$$

$$y_1 = 2\sqrt{x} \qquad \text{and} \qquad y_2 = 5 - 2x$$

Roots lies on $x_0 \in [1,2]$, where f(1) = -1 < 0, f(2) = 1.81 > 0 f(1)f(2) < 0

2. Analytical Method

$$f(x) = 2\sqrt{x} + 2x - 5 = 0$$

$$f(x) = 2\sqrt{x} + 2x - 5 = 0$$
 $f'(x) = \frac{1}{\sqrt{x}} + 2 = 0$

$$x = \frac{1}{4}$$

x	0	$\frac{1}{8}$	$\frac{1}{4}$	1	$\frac{3}{2}$	2
Sign of $f(x)$	-	-	-	-	+	+

Roots lies on [1,2] or [1,3/2]

b) Now we can find an approximation root of $f(x) = 2\sqrt{x} + 2x - 5$ on the interval [1,2] by using False Position Method

$$x_i = b - f(b) \frac{b - a}{f(b) - f(a)}, \quad i = 1, 2, 3, 4, \dots$$

1.
$$a = 1, b = 2, f(1) = -1, f(2) = 1.828427$$

$$x_1 = 2 - (1.828427) \frac{2 - 1}{1.828427 + 1} = 1.353553$$

х	1	1.353553	2
Sign of $f(x)$	-	+	+

2.
$$a = 1, b = 1.353553, f(1) = -1, f(1.353553) = 0.033952$$

$$x_2 = 1.353553 - (0.033952) \frac{1.353553 - 1}{0.033952 + 1} = 1.341943$$

x	1	1.341943	1.353553
Sign of $f(x)$		+	+

3.
$$a = 1, b = 1.341943, f(1) = -1, f(1.341943) = 0.000731$$

$$x_3 = 1.341943 - (0.000731) \frac{1.341943 - 1}{0.000731 + 1} = 1.341693$$

4.
$$a = 1, b = 1.341693, f(1) = -1, f(1.341943) = 0.000015$$

$$x_4 = 1.341693 - (0.000015) \frac{1.341693 - 1}{0.000015 + 1} = 1.3416879$$

x	1	1.3416879	1.341693
Sign of $f(x)$	•	+	+

5.
$$a = 1, b = 1.3416879, f(1) = -1, f(1.3416879) = 0.00000845$$

$$x_5 = 1.3416879 - (0.0000000845) \frac{1.3416879 - 1}{0.000000845 + 1}$$
$$= 1.3416876$$

x	1	1.3416876	1.3416879
Sign of $f(x)$	-	-	+

6.
$$a = 1.3416876, b = 1.3416879, f(1.3416876) = -0.0000000138, f(1.3416879) = 0.00000845$$

$$x_6 = 1.3416879 - (-1.38 \times 10^{-8}) \frac{1.3416879 - 1.3416876}{8.45 \times 10^{-7} + 1.38 \times 10^{-8}} = 1.341687905$$

х	1.3416876	1.341687905	1.3416879
Sign of	-		
f(x)		+	+

False Position Method for $f(x) = 2\sqrt{x} + 2x - 5$ to find approximation root for 6 steps

n	X_k	x_{k+1}	$x_k = b - f(b) \frac{b - a}{f(b) - f(a)}$	$f(x_k)$	$\left x_{k+1}-x_{k}\right $
0	1	2	1.353553	0.033952	1
1	1	1.353553	1.341943	0.000731	0.353553
2	1	1.341943	1.341693	0.000015	0.341943
3	1	1.341693	1.3416879	0.000000845	0.341693
4	1	1.3416879	1.3416876	-0.000000138	0.3416879
5	1.3416876	1.3416879	1.341687905	0.0000008595	0.0000003