§ 2.1 法奥官方文档与软件生态

0. 概要

本文系统整理了法奥机械臂相关的教程文档与软件开发资料。

§ 2.1 法奥官方文档与软件生态

- 0. 概要
- 1. 资料下载
- 2. 产品规格书
- 3. 机械臂使用说明
 - 3.1 教学视频
 - 3.2 使用文档
- 4. 示教器编程
- 5. 机械臂仿真机
- 6. Web插件开发FRCAP
- 5. 二次开发
 - 5.1 代码仓库主页
 - 5.2 C++
 - 5.3 Python
 - 5.4 C#
 - 5.5 JAVA
 - 5.6 RoboDK
 - 5.7 ROS1 & ROS2
- 6. 联系阿凯

作者: 阿凯爱玩机器人 | 微信: xingshunkai | 淘宝店铺: "阿凯爱玩机器人"

• 法奥机械臂购买链接: 法奥意威六轴协作工业机器人机械臂FR5焊接上下料搬运码垛机械手

https://item.taobao.com/item.htm?id=730461065093

• B站有基于法奥开发的案例视频, 阿凯的B站主页: https://space.bilibili.com/40344504

文档更新时间: 2025-01-05

1. 资料下载

法奥把所有跟机械臂相关的文件都贴心的整理到了一起了,在这里可以下载最新版本。

法奥资料下载页

https://fairino-doc-zhs.readthedocs.io/latest/

可下载的内容包括:

- 产品手册
- 图纸下载页面
- 机械臂3D模型(STEP格式)
- 认证证书(CE / CR)
- SDK下载页面

2. 产品规格书

如果你想知道法奥协作机械臂具体的规格参数,比如臂展、负载、重复定位精度等信息,可以下载这个产品规格数。

常规机型有 FR3、 FR5、 FR10。 FR 代表法奥, 后面的数字代表负载数。

产品规格书下载地址

ROBOT ARM TECHNICAL SPECIFICATION

机械臂规格参数

	FR3		FR5		FR10		FR16		FR20		FR30		
有效负载(Payload)	3kg		5kg		10kg		16kg		20kg		30kg		
工作半径(Reach)	622mm		922mm		1400mm		1034mm		1854mm		1403mm		
自由度(Degrees of freedom)	6个旋转关节 6 rot	ating joints	6个旋转关节 6 ro	tating joints	6个旋转关节 6 rot	ating joints	6个旋转关节 6 rot	ating joints	6个旋转关节 6 ro	tating joints	6个旋转关节 61	rotating joints	
人机交互(HMI)	10.1 英寸示教器或移动	动终端 Web App 10.1 inch	teach pendant or mobile terminal Web App				10.1 英寸示教器或移	动线端 Web App 10.1 inch	teach pendant or mobil	sch pendant or mobile terminal Web App			
符合ISO 9283的位姿可重复性 (Pose repeatability per ISO 9283)	±0.02mm		±0.03mm		±0.05mm		±0.03mm		±0.1mm		±0.1mm		
轴移动(Axis movement)	工作問題(Working range)	最大进度(Maximum speed)	工作范围(Working range)	最大进度(Haximum speed)	工作范围(Working range)	最大进度(Maximum speed)	工作范围(Working range)	最大进费(Haximum speed)	工作范围(Working range)	最大进度(Maximum speed)	工作問題(Working range)	最大速度(Maximum speed)	
基座 (Base)	±175*	±180°/s	±175°	±180*/s	±175*	±120°/s	±175°	±120°/s	±175*	±120*/s	±175°	±120°/s	
肩部 (Shoulder)	+ 85°/ - 265°	±180°/s	+ 85°/ - 265°	±180°/s	+ 85°/ - 265°	±120°/s	+ 85°/ - 265°	±120°/s	+85°/ - 265°	±120°/s	+ 85°/ - 265°	±120°/s	
財部 (Elbow)	±150°	±180°/s	±160°	±180°/s	±160°	±180°/s	±160°	±180°/s	±160°	±120°/s	±160°	±120°/s	
腕部 1 (Wrist 1)	+ 85°/ - 265°	±180°/s	+ 85°/ - 265°	±180°/s	+ 85°/ - 265°	±180°/s	+ 85°/ - 265°	±180°/s	+ 85°/ - 265°	±180°/s	+ 85°/ - 265°	±180°/s	
腕部 2 (Wrist 2)	±175°	±180°/s	±175*	±180°/s	±175°	±180°/s	±175°	±180°/s	±175*	±180°/s	±175°	±180°/s	
腕部 3 (Wrist 3)	±175*	±180°/s	±175*	±180*/s	±175*	±180°/s	±175*	±180°/s	±175*	±180°/s	±175°	±180°/s	
典型 TCP 速度(Typical TCP speed)	1m/s		1m/s		1.5m/s		1m/s		2m/s		2m/s		
防护等级(IP classification)	IP54 (可选 IP65)	(IP65 Optional)	IP54 (可选 IP65)	(IP65 Optional)	IP54 (可选 IP65)	(IP65 Optional)	IP54 (可透 IP65)	(IP65 Optional)	IP54 (可选 IP65)	(IP65 Optional)	IP54 (可透 IP65)	(IP65 Optional)	
噪音(Noise)	<65dB		<65dB		<65dB		<65dB		<70d8		<70dB		
安装方向(Robot mounting)	任何方向 Any orientation		任何方向 Any orientation		任何方向 Any orientation		任何方向 Any orientation		任何方向 Any orientation		任何方向 Any orientation		
I/O端口(I/O Ports)	数字输入(DI) 2 数	宇输出(DO) 2	数字输入(DI) 2	攻字输出(DO) 2	数字输入(DI) 2 数	字输出(DD) 2	数字输入(DI) 2 数	字输出(DO) 2	数字输入(DI) 2	t字输出(DO) 2	数字输入(DI) 2	数字输出(DO) 2	
	模拟输入(AI) 1 模	拟输出(AO) 1	模拟输入(AI) 1 8	联输出(AO) 1	模拟输入(AI) 1 模	拟输出(AO) 1	模拟输入(AI) 1 模	拟输出(AO) 1	模拟输入(AI) 1 8	视输出(AO) 1	模拟输入(AI) 1	模拟输出(AO) 1	
工具I/O电源(Tool I/O power supply)	24V/1.5A		24V/1.5A		24V/1.5A		24V/1.5A		24V/1.5A		24V/1.5A		
底座直径(Footprint)	128mm		149mm		190mm		190mm		240mm		240mm		
墊机重量(Weight)	≈15kg		=22kg		≃40kg		≈40kg		±85kg		±85kg		
工作温度(Operating temperature)	0-45	0-45		0-45°C		0-45		0-45°C		0-45°C		0-45°C	
工作温度(Operating humidity)	90%RH(non-conden	90%RH(non-condensing)		90%RH(non-condensing)		90%RH(non-condensing)		90%RH(non-condensing)		90%RH(non-condensing)		90%RH(non-condensing)	
设备材料(Materials)	铝、钢 Aluminium	铝、钢 Aluminium Steel		铝、铜 Aluminium、Steel		铝、钢 Aluminium、Steel		铝、铜 Aluminium Steel		铝、钢 Aluminium、Steel		铝、铜 Aluminium、Steel	

需要注意的是FR3跟FR5的重复定位精度是0.02mm,绝对定位精度为1mm。负载越大/臂展越大,对应的它的误差就要更大一些。默认机械臂是不做高精度激光标定的,高精度激光标定可以对关节零点以及连杆的尺寸做矫正,标定后绝对定位精度在0.5-0.8mm之间。

此外规格数里面还有每款机型的尺寸图,包括连杆尺寸,底部固定孔位,末端法兰尺寸等信息。

3. 机械臂使用说明

3.1 教学视频

B站视频主要侧重,上位机使用与示教相关的介绍。教学步骤都比较详细,入门相对比较容易。 在购买机械臂之前,你也可以先通过这些视频了解法奥协作机械臂是如何使用的。

B站-法奥学院

入门的时候不需要把所有的视频看过一遍, 先看最基础的。 这里先就把常用的必要的视频列出来:

1. 机器人开箱

https://www.bilibili.com/video/BV1rnknYMEMN/

- o 箱内配件介绍
- o 机械臂运动控制器接线说明
- o 网口接线说明
- o 网络配置教程
- o 机械臂激活流程
- o 末端LED灯

注意事项: 初次使用的时候, 记得要松开机械臂的急停开关。

2. FR机器人快速开始使用说明

https://www.bilibili.com/video/BV1BYzBYGE2M/

- 机械臂基座安装平台规格要求
- o 机械臂安装方式配置
- o 负载配置
- o 工具坐标系配置
- o 拖动示教方法
- o 机械臂遥控界面点动
- o 示教点保存
- o 示教点管理界面
- o 示教编程 PTP指令 编辑并运行示教程序

3. FR机器人介绍

https://www.bilibili.com/video/BV1gpzvYpEVq/

- o 各个轴的名称
- o 机械臂末端M12航空插孔介绍
- o 末端LED灯颜色所代表含义
- o 末端按钮用途介绍
- o Web APP坐标系可视化介绍
- o Web APP 机械臂遥控界面

4. FR机器人按钮盒使用教程

https://www.bilibili.com/video/BV18pzvYpEye/

- o 网口按钮
- o 拖动按钮
- ο 记点按钮
- o 运行模式切换按钮
- o 开始停止按钮
- o 恢复Web APP出厂IP按钮

5. FR机器人系统初始界面介绍

https://www.bilibili.com/video/BV1cLUGYwEVP/

- o Web APP 界面介绍,对每个菜单项都做了简要说明。
- 介绍了机械臂编程的几种方式:
 - 程序编程
 - 图形化编程(代码积木)
 - 节点图编程

6. FR机器人工具坐标系标定教程

https://www.bilibili.com/video/BV1uWzvYQEap

机械臂末端如果对精度要求比较高, 例如焊枪的场景。

在使用前需要做机械臂TCP标定,视频讲解了如何用六点法来做TCP标定。

注: 像夹爪这种对精度要求没那么高的,可以直接手动设置TCP,不需要做TCP标定。

7. FR机器人-三维模拟机器人区域介绍

对Web APP中三维模拟机器人区域做了更加详细新的介绍

- o 轨迹可视化
- o 导入工具模型文件(支持STL跟DAE格式)
- o 在机械臂基坐标系下遥控
- o 在工具坐标系下遥控
- o 遥控机械臂关节
- o 添加示教点, 可以配置关联IO
- o 外部轴配置
- o 力传感器坐标系
- o RCM远心不动点功能
- o 其他模块的功能介绍
- 8. FR机器人-运动指令-点到点命令、直线命令使用介绍

https://www.bilibili.com/video/BV1cjUGYhEEZ/

9. FR机器人运动指令--圆弧命令、整圆命令使用介绍

https://www.bilibili.com/video/BV1wVUGYYECk/

10. FR机器人控制箱接口使用说明

https://www.bilibili.com/video/BV1DpzvYpEJV/

- o 运动控制器 端口详细介绍
- o RS485接口
- o 传送带编码器接口
- o 模拟量接口
- o 数字IO接口
- 11. FR机器人-控制箱IO-使用教程
 - o 按钮输入
 - o 点亮LED
 - o 编写一个简单的LUA脚本

其他更多功能的探索, 就等着你自学视频教程跟使用手册啦。

3.2 使用文档

法奥机械臂使用手册(中文版)

https://fairino-doc-zhs.readthedocs.io/latest/CobotsManual/intro.html#id4

手册里面介绍了机械臂对固定基座铝板厚度等要求,硬件接线,运动控制器上的IO接口,以及Web APP 示教功能使用,指令讲解等。

使用机械臂之前,一定要阅读一下使用手册里面相关的注意事项,尤其是安全相关的。

你也可以下载离线版本中文手册PDF下载地址。

https://pan.baidu.com/s/10T-VdQ4P6WcTDqAZMxuQKw?pwd=f38v

通过阅读手册, 你就会发现法奥的运动控制指令是非常丰富的, 支持关节伺服、笛卡尔伺服、螺旋线、样条曲线等高阶运动控制模式, 同时也针对众多的细分应用领域做了对应的控制指令。 例如焊接、喷涂、打磨等。 法奥还内置了力控相关的运动控制指令, 不过需要加装额外的六维力传感器。

4. 示教器编程

法奥示教器上采用的编程语言为LUA, 跟Python类似LUA也是一种脚本语言。 通过Web示教器界面的功能模块的拖拽可以自动生成LUA脚本, 对于简单的逻辑这也够了。 但是大多数情况下, 我们会需要添加逻辑判断、循环等操作。 复杂一些的应用场景实现需要手动编写LUA脚本。 法奥有对应的LUA脚本入门以及机械臂编程用户手册。

LUA脚本存放在机械臂运动控制器内部,可以配置开机自启动。 我们大部分工业用户都是用这种开发方式进行部署的。

LUA编程入门可以看菜鸟教程: lua tutorial

法奥LUA编程手册下载

https://fairino-doc-zhs.readthedocs.io/latest/ downloads/5b18b273bf4ed872185f15f7862b8511/F RLua%E7%BC%96%E7%A8%8B%E8%84%9A%E6%9C%AC%E7%94%A8%E6%88%B7%E6%89%8B%E 5%86%8C-V1.0.pdf

5. 机械臂仿真机

在虚拟机里面运行机械臂的仿真软件, 真机跟仿真机接口一致。没有实物也可以访问Web APP软件。

使用手册 - FAIRINO SimMachine

https://fairino-doc-zhs.readthedocs.io/latest/VMMachine/vm_intro.html

FAIRINO SimMachine 下载链接

https://fairino-doc-zhs.readthedocs.io/latest/download.html#fairino-simmachine

6. Web插件开发FRCAP

FRCap是一个基于Web的插件,可集成到协作机器人WebApp中。FRCap通过基于Node.js和Vue3的 Element plus,frcap-ui和frcap-api等模块构建一个协作机器人WebApp配置页面或者应用来扩展机器人功能及应用场景。

https://fairino-doc-zhs.readthedocs.io/latest/FRCap/frcap_intro.html#frcap

FRCap下载链接

https://fairino-doc-zhs.readthedocs.io/latest/download.html#frcap

5. 二次开发

除了LUA以外,你还可以选择用其他编程语言进行编程,当然需要你额外配一台PC/工控机,机械臂跟电脑之间通过有线进行连接。建议使用电脑自动的有线网卡,不推荐使用USB转网口或者通过路由器桥接。

法奥在软件开发生态方面做的非常完善,目前支持了C++/C#/Python/ROS1/ROS2多种语言/开发平台。而且代码易用性方面,已经有了非常大的改进,同时文档也写的非常详细了。

5.1 代码仓库主页

• Gitee: https://gitee.com/fair-innovation

• Github: https://github.com/fair-innovation

5.2 C++

法奥的C++ SDK是动态链接库的形式提供的,不开放底层源码, example 文件夹下有提供C++ 示例代码。根据你的开发平台下载对应 linux 或 windows 的动态链接库。

- 代码仓库:
 - o Gitee: https://gitee.com/fair-innovation/fairino-cpp-sdk
 - Github: https://github.com/FAIR-INNOVATION/frcobot_cpp_sdk/
- C++ SDK编程手册

https://fairino-doc-zhs.readthedocs.io/latest/SDKManual/cpp_intro.html

5.3 Python

法奥的Python SDK也是动态链接库的版本, 在使用之前需要将动态链接库所在的路径添加的Python PATH中。

- 代码仓库
 - Gitee: https://gitee.com/fair-innovation/fairino-python-sdk
 - Github: https://github.com/FAIR-INNOVATION/fairino-python-sdk
- Python SDK 开发文档

注意事项

- 1. 如果执行SDK发现API调不通,大概率是因为需要升级机械臂控制系统的固件了。
- 2. Python动态链接库只支持 x64 架构的CPU,适配Windows跟Ubuntu。 目前适配的的Python版本包括:
 - o Python 3.8
 - Python 3.10
 - o Python 3.11
- 3. Python SDK有V1版本跟V2版本, 直接看V2版本就好。 V2版本用起来更加简单一些。 V1传参太冗余了。
- 4. 开发文档里面库导入相关的写法都是错的, 用的时候注意。

应该是

```
import os
import sys

# 法奥动态链接库路径
if os.name == 'nt':
    # Windows操作系统
    fairino_path = "./lib/fr/windows/"
elif os.name == 'posix':
    # Ubuntu操作系统
    fairino_path = "./lib/fr/linux/"
sys.path.append(fairino_path)

# 导入法奥机器人 动态链接库
import Robot
```

另外,为了方便客户入门, 我们也编写了一些法奥Python SDK的教学案例, 可以联系阿凯获取。

5.4 C#

做工业自动化软件的客户应该会比较喜欢C#, 另外Unity的玩家也可以用这个。

- 代码仓库:
 - Gitee: https://gitee.com/fair-innovation/fairino-csharp-sdk
 - Github: https://github.com/FAIR-INNOVATION/fairino-csharp-sdk
- C# SDK编程手册

https://fairino-doc-zhs.readthedocs.io/latest/SDKManual/c%23_intro.html

5.5 JAVA

- 代码仓库:
 - Gitee: https://gitee.com/fair-innovation/fairino-java-sdk
- JAVA SDK 编程手册

https://fairino-doc-zhs.readthedocs.io/latest/SDKManual/java_intro.html

5.6 RoboDK

RoboDK适配法奥机械臂的后处理器

https://gitee.com/fair-innovation/robo-dk-post-processor

5.7 ROS1 & ROS2

• ROS1代码仓库

法奥官方的ROS1包已经停止更新维护了,跟机械臂最新的固件已经不兼容了。

• Gitee: https://gitee.com/fair-innovation/frcobot ros

• Github: https://github.com/FAIR-INNOVATION/frcobot_ros/

• ROS2代码仓库

ROS2的生态还不那么完善,目前阿凯建议使用ROS1 Neotic。

• Gitee: https://gitee.com/fair-innovation/frcobot_ros2

• Github: https://github.com/FAIR-INNOVATION/frcobot ros2

• 编程手册

frcobot ros 编程手册

https://fairino-doc-zhs.readthedocs.io/latest/ROSGuide/index.html

frcobot ros2 编程手册

https://fairino-doc-zhs.readthedocs.io/latest/ROSGuide/index.html#frcobot-ros2

手册主要侧重 开发环境搭建与编译过程。文档部分还没有做的很详细。

Movelt2插件应用手册

https://fairino-doc-zhs.readthedocs.io/latest/ROSGuide/index.html#moveit2

注意事项

- 法奥旧版的机械臂是V5.0系列, 新版是V6.0系列。 他们的连杆尺寸不相同,对应的URDF模型也不一样。 因此在用ROS包的时候,注意版本是否匹配。新出货的都是V6.0版本。
- 机械臂URDF模型推荐使用ROS2包 fairino_description 文件夹下的URDF模型。
- 法奥官方的ROS1跟ROS2包都是基于ROS Control架构适配的驱动层, Movelt轨迹执行的时候, 不 是那么平滑。 同时, 也没有提供Python 示例代码。
- 目前阿凯自研的法奥ROS包适配的是ROS1 Neotic (Ubuntu 20.04), 兼容最新固件, 做了轨迹优化 方面的工作, 也提供基于Python的入门学习案例。 阿凯自研的法奥案例包是单独销售的, 详情请咨询阿凯(微信: xingshunkai)。

成都深感机器人科技有限责任公司

Chengdu DeepSense Robotics Technology Co.,Ltd

邢顺凯

ShunKai Xing

机器人工程师

Robot Engineer

(86) 13285816609

Q 244561792

xingshunkai@qq.com

deepsenserobot.com

扫码加微信好友

如果你有协作机械臂相关的应用需求,可以找我们来做项目评估,我们也可以协助做一些验证工作。