Introduction

- What Is Testing
- Types of Testing
- Test Quality
- Test Economics
 - Why and Who Invests in Test?
 - Global Semiconductor Industry
 - How to Make Optimal Test Decision?
- Important Research Topics
- Conclusion

Why Invest in Testing?

- Although testing is expensive
 - Repair cost is even more expensive!
- Rule of Tens [Davis 82]

A Stitch in Time Saves Nine

15% Semiconductor Market Goes to Test

- 2019 global semiconductor market \$412.3B USD WSTS)
 - Packing and test about 15%
- 2019 Taiwan \$86.3B USD, ~21% of global market
 - Fabless design \$22.4B USD
 - Manufacture \$42.5B USD
 - Packaging \$11.2B USD
 - Testing \$5.0B USD

Source TSIA

單位:億新台幣

7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3										
億新台幣	2016	2016 成長率	2017	2017 成長率	2018	2018 成長率	2019	2019 成長率	2020 (e)	2020 (e) 成長率
IC 產業產值	24,493	8.2%	24,623	0.5%	26,199	6.4%	26,656	1.7%	27,742	4.1%
IC 設計業	6,531	10.2%	6,171	-5.5%	6,413	3.9%	6,928	8.0%	7,227	4.3%
IC 製造業	13,324	8.3%	13,682	2.7%	14,856	8.6%	14,721	-0.9%	15,285	3.8%
晶圓代工	11,487	13.8%	12,061	13.8%	12,851	6.6%	13,125	2.1%	13,649	4.0%
記憶體與其他製造	1,837	-16.8%	1,621	-11.8%	2,005	23.7%	1,596	-20.4%	1,636	2.5%
IC 封裝業	3,238	4.5%	3,330	2.8%	3,445	3.5%	3,463	0.5%	3,615	4.4%
IC 測試業	1,400	6.5%	1,440	2.9%	1,485	3.1%	1,544	4.0%	1,615	4.6%
IC 產品產值	8,368	2.9%	7,792	-6.9%	8,418	8.0%	8,524	1.3%	8,863	4.0%
全球半導體市場(億美元)及成長率(%)	3,389	1.1%	4,122	21.6%	4,688	13.7%	4,121	-12.1%	4,330	5.1%

Many Companies Invest Heavily in Test

BIST, DFT Boundary Scan

Manufacture

Fabrication, Assembly, Test Physical Failure analysis

World's Top EDA Companies

- 2019 global EDA market is about \$10B USD
 - Growing ~10% each year

Company	Rank	Revenue	Country	
Synopsys	1	\$3.36 B	USA	
Cadence	2	\$2.33 B	USA	
Mentor Graphics (now Siemens EDA)	3	\$1.28 B (*2017)	Europe	

cādence™

EDA Market by Tool

Test-related tools are about 5~10% EDA revenue

World's Top OSAT Companies

- OSAT = outsourced semiconductor assembly and test
- About 1/2 IC tested by Taiwan

Analysis, 2020

Company	Rank	Market	Country
日月光 ASE	1	21.8%	Taiwan
艾克爾 Amkor	2	18.5%	USA
矽品 SPIL	3	14.4%	Taiwan
長電科技JCET	4	13.4%	China
力成 PTI	5	10.3%	Taiwan

Test Important for IC Industry

Introduction

- What Is Testing
- Types of Testing
- Test Quality
- Test Economics
 - Why and Who Invests in Test?
 - How to Make Optimal Test Decision?
- Important Research Topics
- Conclusion

How to Make Optimal Decision?

- Optimal test not only technical issue, but also economics issue
 - Trade off between test cost and repair cost
- Different product has different optimal decision
 - No single best decision for all products!

What Cost Can We Optimize?

- EDA: ATPG, fault simulator ...
 - Typically 10K ~ 100K USD
- Design: insert DFT/BIST circuitry
 - Area/power/delay overhead about 5~10%
- OSAT:
 - Equipment
 - Tester (Automatic Testing Equipment, ATE)
 - Typically 0.5~3 M USD
 - Handler, probe station, Burn-in oven
 - Test application time (TAT)
 - Around \$50 to \$300 USD per hour
 - * ASIC takes 2~3 seconds. CPU can be 0.5~1 minute
 - load board, probe card
 - * \$1K ~ 20K USD

Many Decisions to Make

Case 1: DFT or Not?

Q1: Without DFT

Y=98%, FC=70%. DL=?

$$DL = 1 - Y^{(1-FC)}$$

A: 6,043 DPM

Q2: With DFT

Y=97%, FC=99%. DL=?

A: 304 DPM

Technically, DFT Improves DPM Economically, Is DFT Worth Doing?

Case 1: DFT or Not? (Cont'd)

- Q: Is it economical to insert DFT?
- A: Yes. This is true for many products.

- $DL = 1 Y^{(1-FC)}$
- Although Y drops, DL improves significantly

Item	w/o DFT	with DFT
Total # of Dies	1,000,000	900,000
Yield	98%	97%
FC fault coverage	70%	99%
DL =1-Y ^(1-FC)	6,043 DPM	304 DPM
Sales=D x Y x \$1	980,000	873,000
Repair cost=D x Y x DL x \$100	592,163	26,587
Profit = S – R	387,837	846,413

DFT Is Worth Doing!

Case 2: Wafer Test or Not?

Item	bad yield = 6	34%	good yield = 81%		
	with WT	no WT	with WT	no WT	
Total # of Dies	1,000,000	1,000,000	1,000,000	1,000,000	
$C_{WT} = D \times \$0.02$	20,000	0	20,000	0	
Y _{WT}	80%	100%	90%	100%	
$C_{PK} = D \times Y_{WT} \times \0.1	80,000	100,000	90,000	100,000	
$C_{FT} = D \times Y_{WT} \times \0.06	48,000	60,000	54,000	60,000	
Y _{FT}	80%	64%	90%	81%	
Sales=DxY _{WT} xY _{FT} x \$1	640,000	640,000	810,000	810,000	
Cost=C _{WT} +C _{PK} +C _{FT}	148,000	160,000	164,000	160,000	
Profit=S - C	492,000	480,000	646,000	650,000	

WT or not Depends on Yield

Case 3: To Burn or Not To Burn?

Q: Is it worth doing burn-in (BI)?
BI cost is \$2 per die. BI improves quality by 1,000DPM.
Fabrication cost is 30% of price. Repair cost is 30 times price.

Item	ASIC, Price po	er die= \$10	CPU, Price per die= \$100		
	with BI	no BI	with BI	no BI	
D _F =# of Dies fab	1,000,000	1,000,000	1,000,000	1,000,000	
D _s =# of dies sold	999,000	1,000,000	999,000	1,000,000	
D _B =# of bad dies sold	0	1,000	0	1,000	
Sales = D _S x P	9,990,000	10,000,000	99,900,000	100,000,000	
C _{FB} = D _F x P x 30%	3,000,000	3,000,000	30,000,000	30,000,000	
C _{BI} =D _F x \$2	2,000,000	0	2,000,000	0	
C _{RP} =D _B x P x 30	0	300,000	0	3,000,000	
Profit=S-C _{FB} -C _{BI} -C _{RP}	4,990,000	6,700,000	?	?	

Introduction

- What Is Testing
- Types of Testing
- Test Quality
- Test Economics
- Important Research Topics
- Conclusion

Test Needs Continuing Improvements

- NTRS 1997 predicted test cost will be greater than manufacturing cost
 - assume that historical trends continued
- ITRS 2001 revised the prediction
 - Significant research efforts applied to push test cost down

Important Research Topics

- Reduce test cost
 - Reduce test equipment cost
 - Built-in Self Test (BIST)
 - Reduce test data volume, test application time
 - * Test compression, ATPG, Memory tests
- Improve test quality
 - Better fault models, delay tests
 - Design for testability (DFT)
- Improve yield
 - Diagnosis
- Better/faster EDA tools
 - ATPG, Fault simulator, optimization algorithms

Major Conferences and Journals

- International Conferences
 - IEEE Int'l Test Conference (ITC)
 - IEEE/ACM Design Automation Conference (DAC)
 - IEEE VLSI Test Symposium (VTS)
 - IEEE Asian Test Symposium (ATS)
 - IEEE European Test Symposium (ETS)
 - IEEE Design and Test in Europe (DATE)
 - IEEE Int'l Conference on CAD (ICCAD)
- Journals
 - IEEE Trans. On Computer-Aided Design (TCAD)
 - IEEE Trans. On VLSI Systems (TVLSI)
 - IEEE Trans. On Computers (TC)
 - ACM Trans. On Design Auto. of Electronic Systems (TODAES)
 - Journal of Electronic Testing: Theory and Application (JETTA)
- IEEE Design & Test Magazine (D&T)

Introduction

- What Is Testing
- Types of Testing
- Test Quality
- Test Economy
- Important Research Topics
- Conclusion

Conclusion

- WHY test?
 - It is important to invest in test because of rule of ten
- HOW to test?
 - Optimal test not only technical issue, but also economics issue
 - No single best test solution for all products!
- WHO responsible?
 - Testing is joint responsibility of everybody

Without Testing, It Is a Gamble!

Testing Does, and Also Will, Play Very Important Role in High-tech Industry.

References

- [Agrawal 82] V. D. Agrawal, S. C. Seth, P. Agrawal, "Fault Coverage Requirement in Production Testing of LSI Circuits," IEEE J. Solid-State Circuits, vol. SC-17, no. 1, pp. 57-61, Feb. 1982.
- [Davis 82] B. Davis, The Economics of Automated Testing. McGraw-Hill: London, UK
- [McCluskey 88] E.J. McCluskey; F. Buelow, "IC quality and test transparency," Int'l Test Conf., 1988.
- [Williams 81] T. W. Williams, N. C. Brown, "Defect Level as a Function of Fault Coverage," IEEE Trans. on Computers, vol. C-30, no. 12, pp. 987-988, Dec.1981.