In [32]:	import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns
In [3]:	Time V1 V2 V3 V4 V5 V6 V6 V7 V8 V9 V2 V3 0.0 0.1.191857 0.266151 0.166480 0.448154 0.060018 0.082361 0.078803 0.085102 0.255425 0.225775 0.638672 0.101288 0.32794 0.095921 0.592941 0.247676 1.387024 0.108300 0.05274 0.19321 0.15575 0.64736 0.327642 0.139059 0.095921 0.592941 0.270533 0.81739 0.009431 0.798278 0.141267 0.206010 0.50229 0.219422 0.215153 69.99 0
Out[4]: _	Time V1 V2 V3 V3 V4 V5 V6 V6 V7 V8 V9 V3 V3 V4 V5 V6 V6 V7 V8 V9 V6 V6 V7 V8 V8 V9 V6 V6 V7 V8 V8 V9 V6 V6 V7 V8 V8 V9 V7 V8 V8 V9 V8
In [6]:	**Calase* Jandas.core.frame.bataFrame's RangeIndex: 284807 non-null float64 1 V1 284807 non-null float64 1 V1 284807 non-null float64 2 V8 284807 non-null float64 4 V4 284807 non-null float64 5 V5 284807 non-null float64 6 V6 284807 non-null float64 7 V7 284807 non-null float64 8 V8 284807 non-null float64 1 V1 2 284807 non-null float64 2 V2 284807 non-null float64
out[o].	Time 0 V1 0 V2 0 V3 0 V4 0 V5 0 V6 0 V7 0 V8 0 V9 0 V1 0 V9 0 V1
In [7]: Out[7]:	Amount 0 Class 0 dtype: int64 # distribution of legit transactions & fraudulent transactions credit_card_data['Class'].value_counts() 0 284315 1 492 Name: Class, dtype: int64
	fig, ax = plt.subplots(figsize = (6,4)) ax = sns.countplot(x= 'class', data = credit_card_data) plt.tight_layout() 250000
In [8]: In [9]:	Dataset is highly unblanced # separating the data for analysis legit = credit_card_data[credit_card_data.Class == 0] fraud = credit_card_data[credit_card_data.Class == 1] print(legit.shape) print(fraud.shape)
In [10]: Out[10]:	(284315, 31) (492, 31) legit.Amount.describe() count
In [11]: Out[11]:	75% 77.050000 max 25691.160000 Name: Amount, dtype: float64 fraud.Amount.describe() count 492.000000 mean 122.211321 std 256.683288 min 0.000000 25% 1.000000
In [12]: Out[12]:	9.250000 75% 105.890000 max 2125.870000 Name: Amount, dtype: float64 credit_card_data.groupby('Class').mean() Time V1 V2 V3 V4 V5 V6 V7 V8 V9 V20 V21 V22 V23 V24 V25 V26 V27 V28 Amo Class 0 94838.202258 0.008258 -0.006271 0.012171 -0.007860 0.005453 0.002419 0.009637 -0.000987 0.0044670.000644 -0.001235 -0.000024 0.000070 0.000182 -0.000072 -0.000089 -0.000295 -0.000131 88.2919
	1 80746.806911 -4.771948 3.623778 -7.033281 4.542029 -3.151225 -1.397737 -5.568731 0.570636 -2.581123 0.372319 0.713588 0.014049 -0.040308 -0.105130 0.041449 0.051648 0.170575 0.075667 122.21152 or one of the company of the com
In [13]:	Number of Fraudulent Transactions> 492 legit_sample = legit.sample(n=492) Concatenating two DataFrames new_dataset = pd.concat([legit_sample, fraud], axis=0)
Out[15]:	Time V1 V2 V3 V3 V4 V5 V6 V6 V6 V6 V6 V6 V6 V7 V8 V9 V6 V6 V7 V8 V9 V6 V6 V7 V8 V9 V6 V6 V7 V8 V8 V9 V6
In [16]: Out[16]:	13984 24847.0 1.100239 0.191058 0.456758 1.239196 -0.219356 -0.219356 -0.219351 -0.130156 0.045394 1.2345130.034779 0.058715 -0.046182 0.132083 0.470556 -0.364423 -0.015183 0.003027 27.95 0.0570WS × 31 columns Time V1 V2 V3 V4 V5 V6 V7 V8 V9 V21 V22 V23 V24 V25 V25 V26 V27 V28 Amount Class Cl
In [17]: Out[17]:	281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695 0.223050 -0.068384 0.5778290.164350 -0.295135 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309 42.53 1 income in the content of t
Out[18]:	Time V1 V2 V3 V4 V5 V6 V6 V7 V8 V9 V8 V9 V7 V8 V9 V8 V9 V9 V8 V9
In [19]:	Splitting the data into Features & Targets X = new_dataset.drop(columns='Class', axis=1) Y = new_dataset['Class'] print(X) Time V1 V2 V3 V4 V5 V6 \ 238819 149836.0 2.094767 -0.641661 -1.579913 -0.421893 -0.172272 -0.610978
	28336 168884 0 - 0.851774
In [21]:	1 1 1 1 1 1 1 1 1 1
In [22]:	Split the data into Training data & Testing Data X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2) print(X.shape, X_train.shape, X_test.shape) (984, 30) (787, 30) (197, 30) Model Training
In [24]: In [25]:	Logistic Regression model = LogisticRegression() # training the Logistic Regression Model with Training Data model.fit(X_train, Y_train) LogisticRegression()
In [26]:	Model Evaluation Accuracy Score # accuracy on training data X_train_prediction = model.predict(X_train)
In [27]:	training_data_accuracy = accuracy_score(X_train_prediction, Y_train) print('Accuracy on Training data : ', training_data_accuracy) Accuracy on Training data : 0.9479034307496823 # accuracy on test data X_test_prediction = model.predict(X_test) test_data_accuracy = accuracy_score(X_test_prediction, Y_test) print('Accuracy score on Test_Data : ', test_data_accuracy)
In [74]:	print('Accuracy score on Test Data : ', test_data_accuracy) Accuracy score on Test Data : 0.9187817258883249 Random Forest from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=10, criterion="entropy", random_state=0) classifier.fit(X_train, Y_train)
Out[74]: In [75]: In [76]: In [77]:	RandomForestClassifier(criterion='entropy', n_estimators=10, random_state=0) y_pred = classifier.predict(X_test) test_data_accuracy = accuracy_score(y_pred, Y_test) test_data_accuracy 0.9187817258883249
In [78]: In [79]: In [80]:	<pre>0.918/81/258883249 Y_pred = classifier.predict(X_train) test_data_accuracy = accuracy_score(Y_pred, Y_train) test_data_accuracy 0.9936467598475223</pre>
In [82]:	Decision Tree from sklearn.tree import DecisionTreeClassifier DT = DecisionTreeClassifier(max_depth = 8, criterion = 'entropy') DT.fit(X_train, Y_train) dt_yhat = DT.predict(X_test)
In [88]:	print('Accuracy score of the Decision Tree model is {}'.format(accuracy_score(Y_test, dt_yhat))) Accuracy score of the Decision Tree model is 0.8883248730964467 dt_xhat = DT.predict(X_train) print('Accuracy score of the Decision Tree model is {}'.format(accuracy_score(Y_train, dt_xhat))) Accuracy score of the Decision Tree model is 0.98856416772554
In []:	