## ADS TEST TIME--45min ,40 question Sign in to Google to save your progress. Learn more \*Required

NAME \*

Khan Uzma Vikar Ahamad

EMAIL \*

uzmakhanvikar@gmail.com

CENTRE \*

KHARGHAR ▼

| Which of the following is the correct way to declare a min Java? | ultidimensional array 1 point |
|------------------------------------------------------------------|-------------------------------|
| a) int[] arr;                                                    |                               |
| b) int arr[[]];                                                  |                               |
| o int[[[arr;                                                     |                               |
| d) int[[]] arr;                                                  |                               |
|                                                                  | Clear selection               |
|                                                                  |                               |
| In general, the index of the first element in an array is        | 1 point                       |
| <ul><li>a) 0</li></ul>                                           |                               |
| O b) -1                                                          |                               |
| O c) 2                                                           |                               |
|                                                                  |                               |
| O d) 1                                                           |                               |
| ( a) 1                                                           | Clear selection               |

| Elements in an array are accessed | 1 point         |
|-----------------------------------|-----------------|
| a) randomly                       |                 |
| b) sequentially                   |                 |
| C) exponentially                  |                 |
| d) logarithmically                |                 |
|                                   | Clear selection |
|                                   |                 |

1 point

```
public class array
{
     public static void main(String args[])
     {
        int []arr = {1,2,3,4,5};
        System.out.println(arr[5]);
     }
}
```

- (a) 4
- ( b) 5
- o c) ArrayIndexOutOfBoundsException
- d) InavlidInputException

```
public boolean isBalanced(String exp)
        int len = exp.length();
        Stack<Integer> stk = new Stack<Integer>();
        for(int i = 0; i < len; i++)</pre>
                char ch = exp.charAt(i);
                if (ch == '(')
                stk.push(i);
                else if (ch == ')')
                1
                        if(stk.peek() == null)
                                return false;
                        stk.pop();
        return true;
```

- a) O(logn)
- **b**) O(n)
- C) O(1)
- d) O(nlogn)

| In a stack, if a user tries to remove an element from an empty stack it is 1 point called |
|-------------------------------------------------------------------------------------------|
| a) Underflow                                                                              |
| b) Empty collection                                                                       |
| C) Overflow                                                                               |
| d) Garbage Collection                                                                     |
| Clear selection                                                                           |
|                                                                                           |
| Entries in a stack are "ordered". What is the meaning of this statement?                  |
| a) A collection of stacks is sortable                                                     |
| b) Stack entries may be compared with the '<' operation                                   |
| c) The entries are stored in a linked list                                                |
| d) There is a Sequential entry that is one by one                                         |
| Clear selection                                                                           |

| Which of the following is not the application of stack?    | 1 point         |
|------------------------------------------------------------|-----------------|
| a) A parentheses balancing program                         |                 |
| b) Tracking of local variables at run time                 |                 |
| c) Compiler Syntax Analyzer                                |                 |
| d) Data Transfer between two asynchronous process          |                 |
|                                                            | Clear selection |
|                                                            |                 |
| What is the value of the postfix expression 6 3 2 4 + - *? | 1 point         |
| (a) 1                                                      |                 |
| O b) 40                                                    |                 |
| O c) 74                                                    |                 |
| <b>o</b> d) -18                                            |                 |
|                                                            | Clear selection |
|                                                            |                 |

The postfix form of the expression (A+B)\*(C\*D-E)\*F / G is?

1 point

- a) AB+ CD\*E FG /\*\*
- b) AB + CD\* E F \*\*G /
- o AB + CD\* E \*F \*G /
- d) AB + CDE \* \* F \*G /

Clear selection

What data structure would you mostly likely see in non recursive implementation of a recursive algorithm?

1 point

- a) Linked List
- **b)** Stack
- c) Queue
- d) Tree

. The prefix form of A-B/ ( $C * D ^ E$ ) is?

1 point

- a) -/\*^ACBDE
- b) -ABCD\*^DE
- (a) -A/B\*C^DE
- d) -A/BC\*^DE

Clear selection

The prefix form of an infix expression (p + q) - (r \* t) is?

1 point

- a) + pq \*rt
- (b) +pqr \* t
- ( c) +pq \* rt
- $\bigcirc$  d) + \* pqrt

| The data structure required for Breadth First Traversa    | I on a graph is? 1 po |
|-----------------------------------------------------------|-----------------------|
| a) Stack                                                  |                       |
| O b) Array                                                |                       |
| o c) Queue                                                |                       |
| O d) Tree                                                 |                       |
|                                                           | Clear selectio        |
|                                                           |                       |
|                                                           |                       |
| Circular Queue is also known as                           | 1 po                  |
| Circular Queue is also known as  a) Ring Buffer           | 1 po                  |
|                                                           | 1 pc                  |
| a) Ring Buffer                                            | 1 pc                  |
| <ul><li>a) Ring Buffer</li><li>b) Square Buffer</li></ul> | 1 pc                  |

| If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one 1 point at a time, in what order will they be removed? |
|----------------------------------------------------------------------------------------------------------------------------------------|
| a) ABCD                                                                                                                                |
| O b) DCBA                                                                                                                              |
| C) DCAB                                                                                                                                |
| O d) ABDC                                                                                                                              |
| Clear selection                                                                                                                        |
| A data structure in which elements can be inserted or deleted at/from both 1 point ends but not in the middle is?                      |
| a) Queue                                                                                                                               |
| b) Circular queue                                                                                                                      |
| o c) Dequeue                                                                                                                           |
| d) Priority queue                                                                                                                      |
| Clear selection                                                                                                                        |

A normal queue, if implemented using an array of size MAX\_SIZE, gets full 1 point when? a) Rear = MAX\_SIZE - 1 b) Front = (rear + 1)mod MAX\_SIZE c) Front = rear + 1 d) Rear = front Clear selection A linear collection of data elements where the linear node is given by means 1 point of pointer is called? a) Linked list b) Node list c) Primitive list d) Unordered list

| In linked list each node contains a minimum of two fields. One field is data field to store the data second field is?                                                | ooint |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| a) Pointer to character                                                                                                                                              |       |  |
| b) Pointer to integer                                                                                                                                                |       |  |
| c) Pointer to node                                                                                                                                                   |       |  |
| O d) Node                                                                                                                                                            |       |  |
| Clear se <b>l</b> ecti                                                                                                                                               | on    |  |
| What would be the asymptotic time complexity to add a node at the end of singly linked list, if the pointer is initially pointing to the head of the list?  (a) 0(1) |       |  |
| <b>(b)</b> O(n)                                                                                                                                                      |       |  |
|                                                                                                                                                                      |       |  |
| C) θ(n)                                                                                                                                                              |       |  |

| . What would be the asymptotic time complexity to find an elemen linked list? | t in the 1 point |
|-------------------------------------------------------------------------------|------------------|
| (a) O(1)                                                                      |                  |
| <b>(a)</b> b) O(n)                                                            |                  |
| O c) O(n2)                                                                    |                  |
| O d) O(n4)                                                                    |                  |
|                                                                               | Clear selection  |
|                                                                               |                  |
|                                                                               |                  |
| Linked lists are not suitable for the implementation of                       | 1 point          |
| Linked lists are not suitable for the implementation of  a) Insertion sort    | 1 point          |
|                                                                               | 1 point          |
| a) Insertion sort                                                             | 1 point          |
| <ul><li>a) Insertion sort</li><li>b) Radix sort</li></ul>                     | 1 point          |

Which of the following code is used to create new node?

1 point

```
struct node
{
    int data;
    struct node * next;
}
typedef struct node NODE;
NODE *ptr;
```

- a) ptr = (NODE\*)malloc(sizeof(NODE));
- b) ptr = (NODE\*)malloc(NODE);
- c) ptr = (NODE\*)malloc(sizeof(NODE\*));
- d) ptr = (NODE)malloc(sizeof(NODE));

| Which of the following sorting algorithms can be used to sort a random linked list with minimum time complexity?       | 1 point |
|------------------------------------------------------------------------------------------------------------------------|---------|
| a) Insertion Sort                                                                                                      |         |
| b) Quick Sort                                                                                                          |         |
| c) Heap Sort                                                                                                           |         |
| d) Merge Sort                                                                                                          |         |
| Clear sele                                                                                                             | ection  |
|                                                                                                                        |         |
| In the worst case, the number of comparisons needed to search a singly linked list of length n for a given element is? | 1 point |
| a) log 2 n                                                                                                             |         |
| b) n/₂                                                                                                                 |         |
| C) log 2 n – 1                                                                                                         |         |
| <b>(a)</b> d) n                                                                                                        |         |
|                                                                                                                        |         |

| You are given pointers to first and last nodes of a singly linked list, which of 1 point the following operations are dependent on the length of the linked list? |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Delete the first element                                                                                                                                       |
| b) Insert a new element as a first element                                                                                                                        |
| c) Delete the last element of the list                                                                                                                            |
| d) Add a new element at the end of the list                                                                                                                       |
| Clear selection                                                                                                                                                   |
|                                                                                                                                                                   |
| How do you calculate the pointer difference in a memory efficient double 1 point linked list?                                                                     |
|                                                                                                                                                                   |
| a) head xor tail                                                                                                                                                  |
| <ul><li>a) head xor tail</li><li>b) pointer to previous node xor pointer to next node</li></ul>                                                                   |
|                                                                                                                                                                   |
| b) pointer to previous node xor pointer to next node                                                                                                              |

1 point

What is the functionality of the following piece of code?

```
public int function()
{
     Node temp = tail.getPrev();
     tail.setPrev(temp.getPrev());
     temp.getPrev().setNext(tail);
     size--;
     return temp.getItem();
}
```

- a) Return the element at the tail of the list but do not remove it
- b) Return the element at the tail of the list and remove it from the list
- c) Return the last but one element from the list but do not remove it
- d) Return the last but one element at the tail of the list and remove it from the list

| The optimal data structure used to solve Tower of Hanoi is | 1 point         |
|------------------------------------------------------------|-----------------|
| a) Tree                                                    |                 |
| O b) Heap                                                  |                 |
| C) Priority queue                                          |                 |
| o d) Stack                                                 |                 |
|                                                            | Clear selection |
| Which among the following is not a palindrome?             | 1 point         |
| a) Madam                                                   |                 |
| O b) Dad                                                   |                 |
| C) Malayalam                                               |                 |
| o d) Maadam                                                |                 |
|                                                            | Clear selection |

| How many children does a binary tree have?                                | 0 points |
|---------------------------------------------------------------------------|----------|
| (a) 2                                                                     |          |
| b) any number of children                                                 |          |
| (a) 0 or 1 or 2                                                           |          |
| O d) 0 or 1                                                               |          |
| Clears                                                                    | election |
|                                                                           |          |
| What is/are the disadvantages of implementing tree using normal arrays?   | 1 point  |
| a) difficulty in knowing children nodes of a node                         |          |
| b) difficult in finding the parent of a node                              |          |
| c) have to know the maximum number of nodes possible before creation of t | trees    |
| d) difficult to implement                                                 |          |
| Clear s                                                                   | election |

| Can a tree stored in an array using either one of inorder or post order or pre 1 point order traversals be again reformed? |  |  |
|----------------------------------------------------------------------------------------------------------------------------|--|--|
| a) Yes just traverse through the array and form the tree                                                                   |  |  |
| b) No we need one more traversal to form a tree                                                                            |  |  |
| C) No in case of sparse trees                                                                                              |  |  |
| d) Yes by using both inorder and array elements                                                                            |  |  |
| Clear selection                                                                                                            |  |  |
|                                                                                                                            |  |  |
| Disadvantages of linked list representation of binary trees over arrays? 1 point                                           |  |  |
| a) Randomly accessing is not possible                                                                                      |  |  |
| b) Extra memory for a pointer is needed with every element in the list                                                     |  |  |
| c) Difficulty in deletion                                                                                                  |  |  |
| d) Random access is not possible and extra memory with every element                                                       |  |  |
| Clear selection                                                                                                            |  |  |

| Which of the following traversing algorithm is not used to traverse in a tree?  1 point  a) Post order  b) Pre order |                 |  |                 |  |
|----------------------------------------------------------------------------------------------------------------------|-----------------|--|-----------------|--|
|                                                                                                                      |                 |  | C) Post order   |  |
|                                                                                                                      |                 |  | o d) Randomized |  |
|                                                                                                                      | Clear selection |  |                 |  |
|                                                                                                                      |                 |  |                 |  |
| Level order traversal of a tree is formed with the help of                                                           | 1 point         |  |                 |  |
| a) breadth first search                                                                                              |                 |  |                 |  |
|                                                                                                                      |                 |  |                 |  |
| b) depth first search                                                                                                |                 |  |                 |  |
| <ul><li>b) depth first search</li><li>c) dijkstra's algorithm</li></ul>                                              |                 |  |                 |  |
|                                                                                                                      |                 |  |                 |  |

9. What must be the missing logic below so as to print mirror of a tree as below as an example?



```
if(rootnode):
    mirror(rootnode-->left)
    mirror(rootnode-->right)

//missing
end
```

- a) swapping of left and right nodes is missing
- b) swapping of left with root nodes is missing
- c) swapping of right with root nodes is missing
- d) nothing is missing

1 point

1. For the tree below, write the pre-order traversal.



- a) 2, 7, 2, 6, 5, 11, 5, 9, 4
- b) 2, 7, 5, 2, 6, 9, 5, 11, 4
- C) 2, 5, 11, 6, 7, 4, 9, 5, 2
- d) 2, 7, 5, 6, 11, 2, 5, 4, 9

| What is the time complexity of pre-order traversal in the iterative fashion? | 1 point |
|------------------------------------------------------------------------------|---------|
| a) O(1)                                                                      |         |
| O b) O(n)                                                                    |         |
| C) O(logn)                                                                   |         |
| O d) O(nlogn)                                                                |         |
|                                                                              |         |
| To obtain a prefix expression, which of the tree traversals is used?         | 1 point |
| a) Level-order traversal                                                     |         |
| b) Pre-order traversal                                                       |         |
| C) Post-order traversal                                                      |         |
| d) In-order traversal                                                        |         |
|                                                                              |         |

Submit Clear form

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms