

Coupled Markov chains with applications to Approximate Bayesian Computation for model based clustering

E. Bertoni, M. Caldarini, F. Di Filippo, G. Gabrielli, E. Musia 10 January 2022

Unbiased Markov chain Monte Carlo methods with couplings

Approximate Bayesian Computation

Unbiased Markov chain Monte Carlo methods

with couplings

Unbiased Markov chain Monte Carlo methods with couplings

The road to parallelization: coupling of Markov chains

Faster MCMC ⇒ Parallelization

Unbiased Markov chain Monte Carlo methods with couplings

The road to parallelization: coupling of Markov chains

Faster MCMC \implies Parallelization \iff Unbiased estimator

Faster MCMC \implies Parallelization \iff Unbiased estimator

Exact estimations algorithms using coupling of Markov chain.

The goal is to estimate

$$\mathbb{E}_{\pi}[h(X)] = \int h(x)\pi(\mathsf{d}x).$$

The estimator we are going to construct is based on a coupled pair of Markov chains, $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 1}$, which marginally start from π_0 and evolve accordingly to P.

We consider some assumptions:

 $oldsymbol{0}$ as $t \to \infty$,

$$\mathbb{E}[h(X_t)] \to \mathbb{E}_{\pi}[h(X)];$$

and there exists $\eta > 0$ and $D < \infty$ such that $\mathbb{E}[|h(X_t)|^{2+\eta}] \leq D$ for all $t \geq 0$;

We consider some assumptions:

 $oldsymbol{1}$ as $t \to \infty$,

$$\mathbb{E}[h(X_t)] \to \mathbb{E}_{\pi}[h(X)];$$

and there exists $\eta>0$ and $D<\infty$ such that $\mathbb{E}[|h(X_t)|^{2+\eta}]\leq D$ for all $t\geq 0$;

2 the chains are such that the meeting time

$$\tau = \inf\{t \ge 1 : X_t = Y_{t-1}\}$$

satisfies $\mathbb{P}(\tau > t) \leq C\delta^t$ for all $t \geq 0$, for some constants $C < \infty$ and $\delta \in (0,1)$;

We consider some assumptions:

 $oldsymbol{1}$ as $t \to \infty$,

$$\mathbb{E}[h(X_t)] \to \mathbb{E}_{\pi}[h(X)];$$

and there exists $\eta > 0$ and $D < \infty$ such that $\mathbb{E}[|h(X_t)|^{2+\eta}] \leq D$ for all $t \geq 0$;

2 the chains are such that the meeting time

$$\tau = \inf\{t \ge 1 : X_t = Y_{t-1}\}$$

satisfies $\mathbb{P}(\tau > t) \leq C\delta^t$ for all $t \geq 0$, for some constants $C < \infty$ and $\delta \in (0,1)$;

3 the chains stay together after meeting:

$$X_t = Y_{t-1}$$
 for all $t \ge \tau$.

Thanks to the previous assumptions we can prove that:

$$\mathbb{E}_{\pi}[h(X)] = \mathbb{E}[h(X_k) + \sum_{t=k+1}^{\tau-1} \{h(X_t) - h(Y_{t-1})\}];$$

Thanks to the previous assumptions we can prove that:

$$\mathbb{E}_{\pi}[h(X)] = \mathbb{E}[h(X_k) + \sum_{t=k+1}^{\tau-1} \{h(X_t) - h(Y_{t-1})\}];$$

and we define the Rhee-Glynn estimator as:

$$H_k(X,Y) = h(X_k) + \sum_{t=k+1}^{\tau-1} \{h(X_t) - h(Y_{t-1})\}$$

which is unbiased by construction.

$$H_{k:m}(X,Y) = \frac{1}{m-k+1} \sum_{l=k}^{m} h(X_l) + \sum_{l=k+1}^{\tau-1} \min(1, \frac{l-k}{m-k+1}) \{h(X_l) - h(Y_{l-1})\}$$

$$H_{k:m}(X,Y) = \underbrace{\frac{1}{m-k+1} \sum_{l=k}^{m} h(X_l)}_{MCMG_{k:m}} + \sum_{l=k+1}^{\tau-1} \min(1, \frac{l-k}{m-k+1}) \{h(X_l) - h(Y_{l-1})\}$$

■ MCMC_{k:m} is the standard MCMC average;

$$H_{k:m}(X,Y) = \underbrace{\frac{1}{m-k+1} \sum_{l=k}^{m} h(X_l)}_{MCMC_{k:m}} + \underbrace{\sum_{l=k+1}^{\tau-1} \min(1, \frac{l-k}{m-k+1}) \{h(X_l) - h(Y_{l-1})\}}_{BC_{k:m}}$$

- $MCMC_{k:m}$ is the standard MCMC average;
- $BC_{k:m}$ is the bias correction;

- **1** draw X_0 and Y_0 from an initial distribution π_0 and draw $X_1 \sim P(X_0, \cdot)$;
- 2 set t=1: while $t<\max\{m,\tau\}$ and: a draw $(X_{t+1},Y_t)\sim \bar{P}\{(X_t,Y_{t-1}),\cdot\};$ b set $t\leftarrow t+1;$
- 3 compute the time-averaged estimator:

$$H_{k:m}(X,Y) = \frac{1}{m-k+1} \sum_{l=k}^{m} h(X_l) + \sum_{l=k+1}^{\tau-1} \min(1, \frac{l-k}{m-k+1}) \{h(X_l) - h(Y_{l-1})\}.$$

- **1** draw X_0 and Y_0 from an initial distribution π_0 and draw $X_1 \sim P(X_0, \cdot)$;
- 2 set t = 1: while $t < \max\{m, \tau\}$ and:
 - a draw $(X_{t+1}, Y_t) \sim \bar{P}\{(X_t, Y_{t-1}), \cdot\};$ \bar{P} must be evaluated before
 - b set $t \leftarrow t + 1$:
- 3 compute the time-averaged estimator:

$$H_{k:m}(X,Y) = \frac{1}{m-k+1} \sum_{l=k}^{m} h(X_l) + \sum_{l=k+1}^{\tau-1} \min(1, \frac{l-k}{m-k+1}) \{h(X_l) - h(Y_{l-1})\}.$$

Metropolis–Hasting algorithm allow us to calculate the coupled kernel $\bar{P}\{(X_t, Y_{t-1}), \cdot\}$:

- **1** sample $(X^*, Y^*)|(X_t, Y_{t-1})$ from a maximal coupling of $q(X_t, \cdot)$ and $q(Y_{t-1}, \cdot)$;
- 2 sample $U \sim \mathcal{U}([0,1])$;
- 3 if

$$U \leq \min \left\{ 1, \frac{\pi(X^*)q(X^*, X_t)}{\pi(X_t)q(X_t, X^*)} \right\}$$

then $X_{t+1} = X^*$; otherwise $X_t = X_{t-1}$;

4 if

$$U \leq \min \left\{ 1, \frac{\pi(Y^{\star})q(Y^{\star}, Y_t)}{\pi(Y_t)q(Y_t, Y^{\star})} \right\}$$

then $Y_{t+1} = Y^*$; otherwise $Y_t = Y_{t-1}$.

Metropolis–Hasting algorithm allow us to calculate the coupled kernel $\bar{P}\{(X_t, Y_{t-1}), \cdot\}$:

- 1 sample $(X^*, Y^*)|(X_t, Y_{t-1})$ from a maximal coupling of $q(X_t, \cdot)$ and $q(Y_{t-1}, \cdot)$;
- 2 sample $U \sim \mathcal{U}([0,1]);$
- 3 if

$$U \leq \min \left\{ 1, \frac{\pi(X^*)q(X^*, X_t)}{\pi(X_t)q(X_t, X^*)} \right\}$$

then $X_{t+1} = X^*$; otherwise $X_t = X_{t-1}$;

4 if

$$U \leq \min \left\{ 1, \frac{\pi(Y^*)q(Y^*, Y_t)}{\pi(Y_t)q(Y_t, Y^*)} \right\}$$

then $Y_{t+1} = Y^*$; otherwise $Y_t = Y_{t-1}$.

Approximate Bayesian Computation

ABC rejection sampling algorithm

Inputs:

- a target posterior density $\pi(\theta|y_{obs}) \propto p(y_{obs}|\theta)\pi(\theta)$, consisting of a prior distribution $\pi(\theta)$ and a procedure of generating data under the model $p(y_{obs}|\theta)$;
- a proposal density $g(\theta)$, with $g(\theta) > 0$ if $\pi(\theta|y_{obs}) > 0$;
- \blacksquare an integer N > 0;
- a kernel function $K_h(u)$ and a scale parameter h > 0;
- **a** low dimensional vector of summary statistics s = S(y).

ABC rejection sampling algorithm

Sampling for i = 1, ..., N:

- **1** generate $\theta^{(i)} \sim g(\theta)$ from sampling density g;
- **2** generate $y \sim p(y|\theta^{(i)})$ from the likelihood;
- 3 compute summary statistic s = S(y);
- **4** accept $\theta^{(i)}$ with probability $\frac{K_h(\|s-s_{obs}\|)\pi(\theta^{(i)})}{K_g(\theta^{(i)})}$, where $K \geq K_h(0) \max_{\theta} \frac{\pi(\theta)}{\sigma(\theta)}$; else go to 1.

Output:

a set of parameter vectors $\theta^{(1)}, ..., \theta^{(N)} \sim \pi_{ABC}(\theta|S_{obs})$.

E. Bertoni, M. Caldarini, F. Di Filippo, G. Gabrielli, E. Musiari POLITECNICO MILANO 1863

E. Bertoni, M. Caldarini, F. Di Filippo, G. Gabrielli, E. Musiari POLITECNICO MILANO 1863

E. Bertoni, M. Caldarini, F. Di Filippo, G. Gabrielli, E. Musiari POLITECNICO MILANO 1863

Conclusions

The next step will be the conclusion of the separate multivariate implementation of both solution to be tested on simulated data and the parallelized multivariate implementation.

Further steps will be testing on more complex data.

Pierre Jacob, John O'Leary, and Yves Atchadé.

Unbiased markov chain monte carlo with couplings.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82, 08 2017.

Peter W. Glynn and Chang han Rhee.

Exact estimation for markov chain equilibrium expectations, 2014.

Jeffrey S. Rosenthal.

Faithful couplings of markov chains: Now equals forever.

Advances in Applied Mathematics, 18(3):372-381, 1997.

Dylan Cordaro.

Markov chain and coupling from the past.

2017.

Jinming Zhang.

Markov chains, mixing times and coupling methods with an application in social learning. 2020.

S. A. Sisson, Y. Fan, and M. A. Beaumont.

Overview of approximate bayesian computation, 2018.

Y. Fan and S. A. Sisson.

Abc samplers, 2018.

Dennis Prangle.

Summary statistics in approximate bayesian computation, 2015.