Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого» Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Лабораторная работа №1,2: "Сигналы телекомуникационных систем. Ряд Фурье. Преобразование Фурье. Корреляция"

Работу выполнил: Сергеев А.А. Группа: 33531/2 **Преподаватель:**

Богач Н.В.

Содержание

1	Цель работы	2
2	Постановка задачи	2
3	Теоретический раздел 3.1 Сигнал. Виды сигналов	2
	3.2 Ряд Фурье. Преобразование Фурье	
	3.3 Свойства преобразования Фурье	
	3.4 Корреляция сигналов	
4	Ход работы	4
	4.1 Сигналы и их спектры	4
	4.1.1 Синусоидальный сигнал. Спектр синусоидального сигнала	4
	4.1.2 Прямоугольный сигнал. Спектр прямоугольного сигнала	6
	4.1.3 Треугольный сигнал. Спектр треугольного сигнала	7
	4.2 Преобразования Фурье для сигналов	8
	4.2.1 Синусоидальный сигнал	9
	4.2.2 Прямоугольный сигнал	10
	4.2.3 Треугольный сигнал	10
	4.3 Корреляция прямым методом и быстрая корреляция	11
5	Вывод	12

1 Цель работы

Получить представление о спектрах телекоммуникационных сигналов.

2 Постановка задачи

- 1. Для сигналов, построенных в лабораторной работе M 1, выполните расчет преобразования Фурье. Перечислите свойства преобразования Фурье.
- 2. С помощью функции корреляции найдите позицию синхропосылки [101] в сигнале [0001010111000010]. Получите пакет данных, если известно, что его длина составляет 8 бит без учета синхропосылки. Вычислите корреляцию прямым методом, воспользуйтесь алгоритмом быстрой корреляции, сравните время работы обоих алгоритмов.
- 3. Быстрая корреляция

3 Теоретический раздел

3.1 Сигнал. Виды сигналов

Сигнал – это функция, несущая сообщение (данные) о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды.

Спектр сигнала – это результат разложения сигнала на более простые в базисе ортогональных функций. В качестве разложения обычно используются преобразование Фурье и другие. Виды сигналов:

- 1. Аналоговый сигнал
- 2. Дискретный сигнал
- 3. Цифровой сигнал

Сигналы можно классифицировать:

- 1. По точности:
 - детерминированные: сигнал полностью известен
 - случайные: в любой момент времени сигнал представляет собой случайную величину
- 2. Сигнал с интегрируемым квадратом $\int_{-\infty}^{+\infty} s^2(t) dt < \infty$
- 3. По периодичности:
 - сигналы с периодом Т
 - непериодичные
- 4. Сигналы конечной длительности (отличны от нуля только на ограниченном промежутке времени)
- 5. Тестовые:
 - гармонические: $s(t) = A\cos(\omega t + \phi)$
 - функция Дирака: дельта-функция $\delta(t)$
 - \bullet функция Хевисайда: функция единичного скачка $\sigma(t)$

Aнализ – это один из ключевых компонентов обработки сигналов. Основной целью анализа определяют сравнение сигналов друг с другом для определения их сходств и различий.

- Выделяют три основные составляющие анализа сигналов:

 1. измерение числовых параметров сигналов
 - 2. разложение сигнала на элементарные составляющие
 - 3. количественное измерение степени «похожести» различных сигналов

Ряд Фурье. Преобразование Фурье

Ряд Фурье — представление произвольной функции f с периодом au в виде ряда:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{+\infty} A_k \cos(2\pi \frac{k}{\tau} x + \theta_k)$$

. Этот ряд может быть также записан в виде $f(x) = \sum_{k=1}^{+\infty} \widehat{f}_k e^{i2\pi \frac{k}{\tau}x},$

где A_k – амплитуда k-го гармонического колебания,

 $2\pi \frac{k}{\tau} = k\omega$ – круговая частота гармонического колебания,

 θ_k – начальная фаза k-го колебания,

 $f_k - k$ -я комплексная амплитуда.

Разложение функции в ряд Фурье является мощным инструментом при решении самых разных задач благодаря тому, что ряд Фурье прозрачным образом ведёт себя при дифференцировании, интегрировании, сдвиге функции по аргументу и свёртке функций.

Тригонометрическим рядом Фурье функции $f \in L_2([-\pi,\pi])$ называют функциональный ряд вида

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

где $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$,

 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx,$

числа $a_0, a_n, b_n (n = 1, 2, ...)$ называются коэффициентами Фурье функции f.

Определим прямое и обратное преобразование Фурье:

прямое $\hat{f}(\omega) = \int_{-\infty}^{+\infty} f(x)e^{-2x\pi i}dx$ обратное $\hat{f}(x) = \int_{-\infty}^{+\infty} f(\omega)e^{2x\pi i}d\omega$

С помощью обратного преобразования можно получить изначальный сигнал, то есть до и после – взаимозаменяемы и несут одну и ту же информацию. Однако потеря участка начального сигнала во времени может внести сильные изменения в спектр, в то время как потеря информации о некоторых частотах может быть не так значительна.

Свойства преобразования Фурье 3.3

Рассмотрим сигналы: f(t) и g(t). Их спектральные функции: $\dot{F}(\omega)$ и $\dot{G}(\omega)$ соответственно.

- Линейность: линейная комбинация преобразованных равна результату преобразования линейных комбинаций. Если $s(t) = \alpha f(t) + \beta g(t)$, то $\dot{S}(\omega) = \alpha \dot{F}(t) + \beta \dot{G}(t)$
- Задержка сигнала: можно двигать сигнал по оси времени, это изменит его фазовый спектр на известную величину τ .

Если $s(t) = f(t - \tau)$, то $\dot{S}(\omega) = \dot{F}(\omega)e^{-j\omega\tau}$.

• Масштабирование: спектр исходной функции изменяется в ширине обратно пропорционально сиг-

Если $s(t) = f(\alpha t)$, то $\dot{S}(\omega) = \frac{1}{|\alpha|} \dot{F}(\alpha), \ \alpha \neq 0.$

• Спектр свертки: произведение спектров может сказать о том, как система воздействует на сигнал.

$$\dot{S}(\omega) = \dot{F}(\omega)\dot{G}(\omega)$$

- Умножение сигнала на гармоническую функцию: в итоге имеем слагаемые уменьшенной амплитуды, разнесенных на частоту гармоники в разные стороны от начального спектра. Если мы хотим отрезать какую-то часть частот, это удобно использовать. $s(t) = f(t)\cos(\omega_0 t + \phi_0)$
- Спектр сигнала: в радиотехнике это результат разложения сигнала на более простые в базисе ортогональных функций. В качестве разложения обычно используем преобразование Фурье. $\dot{S}(\omega) = \frac{1}{2}e^{i\phi_0}\dot{F}(\omega - \omega_0) + \frac{1}{2}e^{-i\phi_0}\dot{F}(\omega + \omega_0)$

3

3.4 Корреляция сигналов

Корреляция применяется для измерения степени схожести двух сигналов. Взаимная корреляция:

$$r_{12}(i) = \frac{1}{N} \sum_{n=0}^{N-1} x_2(n) x_1(n+i)$$

где n – временные отсчеты, i – задержка (число отсчетов, на которые сигнал x_2 отстает от сигнала x_1). Для непрерывных сигналов с периодом T функция взаимной корреляции определяется следующим образом:

$$r_{12}(\tau) = \frac{1}{T} \int_0^T x_1(t) x_2(\tau + t) dt$$

Для сигналов конечной длительности:

$$r_{12}(\tau) = \frac{1}{T} \int_{-\infty}^{+\infty} x_1(t) x_2(\tau + t) dt$$

Теорема о корреляции:

$$r_{12} = \frac{1}{N} F_D^{-1} [\overline{X}_1(k) X_2(k)]$$

где $X_1(k) = F_D[x_1(n)], X_2(k) = F_D[x_2(n)], F_D$ и F_D^{-1} – прямое и обратное ДПФ, которые вычисляются с использованием алгоритма БПФ.

Если число элементов в последовательностях $x_1(n)$ и $x_2(n)$ достаточно велико, то быстрой корреляцией ответ будет получен быстрее, чем при расчете с помощью взаимной корреляции.

4 Ход работы

4.1 Сигналы и их спектры

4.1.1 Синусоидальный сигнал. Спектр синусоидального сигнала

```
function sin_sig
global amplitude frequency time fs tau

%инусоидальный с сигнал

y = amplitude * sin(2 * pi * frequency * time);

draw_img(time * fs , y)

%спектр синусоидального сигнала

sp = abs(fft(y));

fplot = 0:1/tau:fs;

draw_img(fplot , sp)

draw_spectrums(time , y)

end

function sin_sig

global amplitude frequency time fs tau

%инусоидальной с игнал

sp = abs(fft(y));

fplot = 0:1/tau:fs;

draw_img(fplot , sp)

draw_spectrums(time , y)
```

Синусоидальный сигнал

Спектр синусоидального сигнала

4.1.2 Прямоугольный сигнал. Спектр прямоугольного сигнала

```
function square_sig
global amplitude frequency time fs tau

%прямоугольный сигнал
duty = 50;
amp = 1;
x = amp*square(2*pi*time, duty);
draw_img(time,x);

%спектр прямоугольного сигнала
sp = abs(fft(x));
draw_img(time, sp);
draw_spectrums(time, x)
draw_spectrums(time, x)
end

function square_sig
global amplitude frequency time fs tau

%прямоугольный сигнал
duty = 50;
amp = 1;
x = amp*square(2*pi*time, duty);
draw_img(time,x);
```

Прямоугольный сигнал

Спектр прямоугольного сигнала

4.1.3 Треугольный сигнал. Спектр треугольного сигнала

```
function triangle_sig
global amplitude frequency time fs tau

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7 \\
    8 \\
    9
  \end{array}

             %треугольный сигнал
             tau = 5;
                       = tau ;
            \mathbf{T}
                      = (0:(N-1)) * T;
= 1/100;
            d
             f\,s
10
             time = 0: fs : (N-1)*T; %время
11
                       = A * pulstran(time, d, 'tripuls', tau);
12

\frac{\text{draw}_{\text{img}}(\text{time}, s);}{\text{sp1} = \text{fft}(s, 2500);}

13
14
15
             %спектр треугольного сигнала
16
17
             \operatorname{draw\_img}(\operatorname{\mathbf{abs}}(\operatorname{sp1}));
18
             draw_spectrums(time,s);
19
    \mathbf{end}
```

Треугольный сигнал

Спектр треугольного сигнала

4.2 Преобразования Фурье для сигналов

Зададим различные сигналы так же, как делали это в лабораторной работе 1. Затем посмотрим их спектры. Формирование сигналов происходит по тому же принципу что в лабораторной работе 1. Затем получим преобразование Фурье для всех заданных сигналов и построим графики самих функций, амплитудные спектры и фазовые:

```
\mathbf{function} \ [ \ ] \ = \ \mathrm{draw\_spectrums}(\,\mathrm{t}\,\,,\ \mathrm{sig}\,)
             temp_figure = figure;
hold on
%% Signal

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7 \\
    8 \\
    9
  \end{array}

                     \mathrm{Fs} \, = \, 8\,\mathrm{e}3 \ ;
                    FN = 2^nextpow2(length(t));
                     % Spectrum
                     spc = fft(sig);
                     subplot(2, 1, 1);
%% Amplitude spectrum
10
11
                     \mathbf{plot}\left(\mathbf{abs}\left(\operatorname{spc}\right)\right);
                     \operatorname{grid}
12
                     subplot(2, 1, 2);
13
14
                     %% Phase spectrum
15
                     plot(atan(imag(spc)./real(spc)));
16
                     grid
17
             hold off
             print_figure(temp_figure);
18
19
    end
```

4.2.1 Синусоидальный сигнал

Амплитудный и фазовый спектры синусоидального сигнала:

4.2.2 Прямоугольный сигнал

Амплитудный и фазовый спектры прямоугольного сигнала:

4.2.3 Треугольный сигнал

Амплитудный и фазовый спектры треугольного сигнала:

4.3 Корреляция прямым методом и быстрая корреляция

Сравним время вычисления с помощью обычной корреляции (xcorr) и быстрой корреляции (cm. формулу в теор. разделе).

```
function normal_correlation
global signal sin_signal;
tic;

[cross, lags] = xcorr(signal, sin_signal);
time = toc;

draw_stem(lags, cross);
disp('Normal_correlation:_');
disp(time);
end
```

```
function fast_correlation
global signal sin_signal;
tic;
fast_corr = ifft(fft(signal).*conj(fft(sin_signal, length(signal))));
time = toc;

draw_stem(fast_corr);
disp('Fast_correlation:_');
disp(time);
end
```

Обычная корреляция:

Быстрая корреляция:

Время вычисления обычной корреляции 0.2245, быстрой – 0.0069.

5 Вывод

В результате работы, были промоделированы синусоидальный, прямоугольный и треугольный сигналы В зависимости от известных параметров и требований сигналы подразделяются на группы:

- 1. Если сигнал известен полностью, то он является детерминированным.
- 2. Если в любой момент времени сигнал представляет собой случайную величину, то он называется случайным.
- 3. Сигналы, у которых есть период, являются периодическими.

Преобразование Фурье нашло широкое применение в телекоммуникационных технологиях. При исследовании сигналов его использование позволяет совершать переход из временной области в частотную и наоборот. Рассматривая сигналы во времени, мы не всегда можем определить все необходимые нам их характеристики. В то время как их частотное представление позволяет идентифицировать недостающий ряд параметров.

Так же были исследованы функции корреляции прямым и быстрым методами, и была найдена позиция синхропосылки в сигнале.