main

September 23, 2024

```
[3]: # Shankar Haridas
     # New York Stock Exchange Stock Price Analysis
     # Datasets from: https://www.kaggle.com/datasets/dgawlik/nyse?
     ⇔resource=download&select=fundamentals.csv
     import pandas as pd
     import matplotlib.pyplot as plt
     # Load the datasets
     prices_split_adjusted = pd.read_csv('/Users/shankarharidas/Documents/2024 Fall/
      →Personal Projects/NYSE/prices-split-adjusted.csv')
     # Data Cleaning: Check for missing values and drop if any
     prices_split_adjusted = prices_split_adjusted.dropna()
     # Select some popular stock symbols for analysis
     selected stocks = ['AAPL', 'GOOGL', 'MSFT']
     # Filter the data for the selected stocks
     filtered_stocks = prices_split_adjusted[prices_split_adjusted['symbol'].
      ⇔isin(selected_stocks)]
     # Use .loc[] to modify the 'date' column in place safely
     filtered_stocks.loc[:, 'date'] = pd.to_datetime(filtered_stocks['date'])
     # Plot the closing prices of the selected stocks
     plt.figure(figsize=(10, 6))
     for stock in selected_stocks:
         stock_data = filtered_stocks[filtered_stocks['symbol'] == stock]
         plt.plot(stock_data['date'], stock_data['close'], label=stock)
     # Add labels, title, and grid
     plt.title('Stock Price Trends (Adjusted Closing Prices)')
     plt.xlabel('Date')
     plt.ylabel('Adjusted Close Price')
     plt.legend()
     plt.grid(True)
```

plt.show()

The history saving thread hit an unexpected error (OperationalError('attempt to write a readonly database')). History will not be written to the database.

[]: """

GOOGL (Google):

- Price Level: GOOGL shows the highest adjusted closing prices among the three $_{\sqcup}$ $_{\hookrightarrow}$ stocks, consistently above the \$200 range.
- Between 2010 and mid-2012, GOOGL experienced some fluctuations, mostly \neg ranging between \$200 and \$300.
- From 2013 to 2016, GOOGL's price climbed steadily, showing strong gains and $_{\!\!\!\perp}$ -reaching around \$800 by the end of the chart.

AAPL (Apple):

- Price Level: AAPL's prices range from \$20 to just over \$100 during the period.
- Apple's growth appears more gradual that Google's, this is especially \rightarrow noticeable around 2012-2013 and in 2015.

```
- After 2015, AAPL's price seems to stabilize somewhat around $100, suggesting \Box
sthat it may have reached a temporary equilibrium during that period.
MSFT (Microsoft):
- Price Level: MSFT's stock prices are lower than both GOOGL and AAPL, ranging,
⇒between $20 and $60 during the observed period.
- MSFT shows relatively stable performance between 2010 and 2012, hovering _{\sqcup}
→around $20-$30.
- Starting in 2013, MSFT's price shows a clear upward trend similar to AAPL, ...
\hookrightarrow indicating steady growth.
- Compared to the other two stocks, MSFT exhibits a more moderate rise in \Box
⇔price, reaching around $60 by the end of 2016.
General Takeaways:
- Overall Market Growth: All three stocks show significant growth over the \Box
 ⇔period (especially GOOGL)
- Major Shifts Around 2013: Both GOOGL and MSFT seem to experience sharp upward \Box
⇔trends beginning around 2013
- GOOGL shows higher volatility, especially during periods of growth, while \Box
→AAPL and MSFT appear more stable, particularly after 2015.
n n n
```

```
[4]: # Make a copy of the filtered DataFrame to avoid SettingWithCopyWarning
     filtered_stocks = filtered_stocks.copy()
     # Calculate daily percentage change in stock prices using .loc[]
     filtered_stocks.loc[:, 'pct_change'] = filtered_stocks.
      →groupby('symbol')['close'].pct_change() * 100
     # Plot the percentage change for the selected stocks
     plt.figure(figsize=(10, 6))
     for stock in selected_stocks:
         stock_data = filtered_stocks[filtered_stocks['symbol'] == stock]
         plt.plot(stock_data['date'], stock_data['pct_change'], label=stock)
     # Add labels, title, and grid
     plt.title('Daily Percentage Change in Stock Prices')
     plt.xlabel('Date')
     plt.ylabel('Percentage Change (%)')
     plt.legend()
     plt.grid(True)
     plt.show()
```


[]: """

This graph measures the daily percentage change in stock prices for AAPL, $_{\sqcup}$ $_{\hookrightarrow}GOOGL$, and MSFT from 2010 to 2017

This is a better metric to get a sense of relative volatility of the stocks, a_ \cup strong measure for determining the risk associated with investing in a particular stock.

- All three companies show regular fluctuations in daily stock prices, with $_{\!\!\!\perp}$ +changes typically ranging from -5% to 5%
- GOOGL exhibits the highest volatility, with percentage changes frequently \hookrightarrow exceeding 10% both upward and downward
- AAPL and MSFT appear more stable than GOOGL

Now, I want to compare these behaviors of to companies in industries other than \hookrightarrow tech.

[5]: # Import necessary libraries

import pandas as pd

import matplotlib.pyplot as plt

Load datasets (prices-split-adjusted.csv and securities.csv)

```
securities = pd.read_csv('/Users/shankarharidas/Documents/2024 Fall/Personal_
 ⇔Projects/NYSE/securities.csv')
# Select a few companies from the Healthcare sector
healthcare_companies = securities[securities['GICS Sector'] == 'Health Care']
healthcare symbols = healthcare companies['Ticker symbol'].head(3).values
# Filter the adjusted prices dataset for the selected healthcare companies
healthcare_filtered_stocks =_
 →isin(healthcare_symbols)]
# Convert 'date' to datetime format
healthcare_filtered_stocks.loc[:, 'date'] = pd.
 oto_datetime(healthcare_filtered_stocks['date'])
# Plot the adjusted closing prices for the healthcare companies
plt.figure(figsize=(10, 6))
for stock in healthcare_symbols:
   stock_data =_
 healthcare_filtered_stocks[healthcare_filtered_stocks['symbol'] == stock]
   plt.plot(stock_data['date'], stock_data['close'], label=stock)
# Add labels, title, and grid
plt.title('Stock Price Trends (Healthcare Sector - Adjusted Closing Prices)')
plt.xlabel('Date')
plt.ylabel('Adjusted Close Price')
plt.legend()
plt.grid(True)
plt.show()
```



```
[23]: # Ensure that healthcare_filtered_stocks is a copy to avoid_
       \hookrightarrow SettingWithCopyWarning
      healthcare_filtered_stocks = healthcare_filtered_stocks.copy()
      # Calculate daily percentage change in stock prices for healthcare companies
      healthcare_filtered_stocks.loc[:, 'pct_change'] = healthcare_filtered_stocks.
       ⇒groupby('symbol')['close'].pct_change() * 100
      # Plot the percentage change for the healthcare stocks
      plt.figure(figsize=(10, 6))
      for stock in healthcare_symbols:
          stock_data =
       healthcare_filtered_stocks[healthcare_filtered_stocks['symbol'] == stock]
          plt.plot(stock_data['date'], stock_data['pct_change'], label=stock)
      # Add labels, title, and grid
      plt.title('Daily Percentage Change in Stock Prices (Healthcare Sector)')
      plt.xlabel('Date')
      plt.ylabel('Percentage Change (%)')
      plt.legend()
      plt.grid(True)
      plt.show()
```


[]: """

Healthcare Sector Analysis:

General Upward Trend:

- ABBV (AbbVie) and ABT (Abbott Laboratories) also show solid growth, $_{\Box}$ with ABBV increasing from around \$40 to over \$100 and ABT growing from \$20 $_{\Box}$ $_{\ominus}$ to around \$60.

Periods of Especially Steep Growth:

- AET shows rapid growth starting around 2013, with a sharp increase ⊔ continuing into 2016. This could correspond to industry-specific factors.

Comparison to the Tech Sector (AAPL, GOOGL, MSFT):

Price Levels:

For example, GOOGL was trading in the \$600 to \$800 range While the highest-priced healthcare stock, AET, reached around \$140.

Growth Rates:

- Healthcare companies such as AET saw substantial growth, especially $_{\!\!\!\perp}$ after 2013, but the tech companies were more aggressive in terms of their $_{\!\!\!\perp}$ apprice acceleration

Volatility:

- Tech sector stocks are generally more volatile GOOGL, in particular, experienced large fluctuations
- Healthcare stocks were much more stable, with fewer significant peaks $_{\!\!\!\perp}$ and troughs

Conclusion:

- Healthcare companies experienced less volatility and had lower overall $_{\sqcup}$ $_{\hookrightarrow}$ price levels during the same time period.
- AET in the healthcare sector and GOOGL in the tech sector are standout $_{\sqcup}$ $_{\to}performers$ in terms of price growth during this period

Both sectors showed strong growth during the 2010-2017 period, but the tech \rightarrow sector displayed higher risk-reward dynamics compared to the healthcare \rightarrow sector.

Now, I want to fit a linear regression model to try and predict the prices of the stocks in the future.

```
[6]: # Separate Plots by Sector (Tech and Healthcare)
# Function to plot actual vs predicted prices by sector
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

# Function to plot actual vs predicted prices by sector
def plot_by_sector(sector_symbols, sector_name):
    # Filter for the sector symbols
    sector_stocks = filtered_stocks[filtered_stocks['symbol'].

sisin(sector_symbols)]

# Create the features again (moving averages) for this sector
```

```
sector_stocks['7_day_MA'] = sector_stocks.groupby('symbol')['close'].

¬rolling(window=7).mean().reset_index(0, drop=True)
  sector_stocks['30_day_MA'] = sector_stocks.groupby('symbol')['close'].
Grolling(window=30).mean().reset_index(0, drop=True)
  # Drop NaN rows (part of data cleaning)
  sector_stocks = sector_stocks.dropna()
  # Check if we have enough samples to split the data
  if len(sector_stocks) == 0:
      print(f"Not enough data available for {sector_name} sector.")
      return
  # Features and target
  X = sector_stocks[['7_day_MA', '30_day_MA', 'volume']]
  y = sector_stocks['close']
  # Check if the dataset is large enough to split
  if len(X) < 2:
      print(f"Not enough data available for {sector_name} sector.")
      return
  # Train-test split
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
⇔shuffle=False)
  # Train Linear Regression model
  lr_model = LinearRegression()
  lr_model.fit(X_train, y_train)
  # Make predictions
  y_pred = lr_model.predict(X_test)
  # Plot the actual vs predicted prices
  plt.figure(figsize=(10, 6))
  plt.plot(y_test.values, label="Actual Stock Prices", color='blue', u
→linestyle='-', alpha=0.7)
  plt.plot(y_pred, label="Predicted Stock Prices", color='red',u
→linestyle='--', alpha=0.7)
  plt.title(f"Actual vs Predicted Stock Prices ({sector_name} Sector - Linear_
→Regression)")
  plt.xlabel("Test Data Points")
  plt.ylabel("Stock Price")
  plt.legend()
  plt.grid(True)
```

```
plt.show()

# Separate by tech sector and healthcare sector
tech_symbols = ['AAPL', 'GOOGL', 'MSFT']
healthcare_symbols = ['ABT', 'ABBV', 'AET']

# Plot Tech Sector
plot_by_sector(tech_symbols, "Tech")

# Plot Healthcare Sector
plot_by_sector(healthcare_symbols, "Healthcare")
```


Not enough data available for Healthcare sector.

This model looks very accurate, however there are some points to keep in mind:

1. All of the data for those years is included in the training dataset

2. We are using 7-day and 30-day averages to smooth out the graph which

makes the prediction seem less volatile

Now I want to fit a model for the specific stocks in the tech sector (GOOGL, AAPL, MSFT)

After training the model with the data from 2010 - 2017, I am going to use the model to predict stock price from 2017 - 2022.

```
I am going to mark take actual data of what the stock were in 2022 and plot _{\sqcup} _{\hookrightarrow} those points on the graph as well to see how accurate the graph was.
```

```
[8]: import numpy as np
     # Ensure plots show in Jupyter
     %matplotlib inline
     1. Filter Data up to 2017:
         - We filter the stock data to include only data prior to 2017_{\!\scriptscriptstyle \sqcup}
      \Rightarrow (stock_data['date'] < pd. Timestamp(f'{start_year}-01-01')).
     2. Generate Future Dates (2017-2022):
         - We use pd.date range() to generate business days (freg='B') from 2017 to,
      →2022. This gives us the future dates for predictions.
     3. Plot with Years:
         - The x-axis will display years from 2017 to 2022
     # Function to predict future prices for a specific stock from 2017 to 2022
     def predict_future_prices_for_stock(stock_symbol, start_year=2017,_
      ⇔future_years=5):
         # Filter for the specific stock and create a copy to avoid_
      \hookrightarrow SettingWithCopyWarning
         stock_data = filtered_stocks[filtered_stocks['symbol'] == stock_symbol].
      →copy()
         # Filter the data to only include data up to 2017
         stock_data = stock_data[stock_data['date'] < pd.</pre>
      →Timestamp(f'{start_year}-01-01')]
         # Debugging: Print shape of the data to make sure it's being loaded
         print(f"Processing {stock_symbol}: {stock_data.shape[0]} rows")
         # Create the features again (moving averages) for this stock
         stock_data.loc[:, '7_day_MA'] = stock_data['close'].rolling(window=7).mean()
         stock_data.loc[:, '30_day_MA'] = stock_data['close'].rolling(window=30).
      →mean()
         # Drop NaN rows (data cleaning)
         stock_data = stock_data.dropna()
         # Debugging: Print shape after dropping NaN values
         print(f"After dropping NaN: {stock_data.shape[0]} rows")
```

```
if stock_data.shape[0] == 0:
       print(f"No valid data for {stock_symbol}")
       return
   # Features (7-day MA, 30-day MA, volume) and target (Adjusted Close)
   X = stock_data[['7_day_MA', '30_day_MA', 'volume']]
   y = stock_data['close']
   # Train the Linear Regression model on the full dataset up to 2017
   lr_model = LinearRegression()
   lr model.fit(X, y)
   # Predict future prices from 2017 to 2022
   last_row = X.iloc[-1].copy() # Start with the last row in the dataset
   future_prices = []
   future_dates = pd.date_range(start=f'{start_year}-01-01',__
 operiods=future_years*252, freq='B') # Business days
   for date in future_dates:
       # Reshape last row and retain feature names using a DataFrame
       future_features = pd.DataFrame([last_row], columns=['7_day_MA',__
 next_price = lr_model.predict(future_features)
       # Update the moving averages (7-day and 30-day)
       last row['7 day MA'] = (last row['7 day MA'] * 6 + next price[0]) / 7
       last_row['30_day_MA'] = (last_row['30_day_MA'] * 29 + next_price[0]) /
 →30
       # Append the predicted price
       future_prices.append(next_price[0])
   # Plot the future predicted prices for this stock with years on the x-axis
   plt.figure(figsize=(10, 6))
   plt.plot(future_dates, future_prices, label=f"Predicted Future Prices for⊔
 plt.title(f"Predicted Stock Prices for {stock_symbol} (2017 - 2022)")
   plt.xlabel("Years")
   plt.ylabel("Predicted Stock Price")
   plt.legend()
   plt.grid(True)
   plt.show()
# Predict future prices for GOOGL, AAPL, and MSFT from 2017 to 2022
predict_future_prices_for_stock('GOOGL') # Google
predict_future_prices_for_stock('AAPL') # Apple
```

```
predict_future_prices_for_stock('MSFT') # Microsoft
```

Processing GOOGL: 1762 rows After dropping NaN: 1733 rows

Processing AAPL: 1762 rows After dropping NaN: 1733 rows

Processing MSFT: 1762 rows After dropping NaN: 1733 rows


```
[]: '''
     Now I am going to try to learn a new method of prediction. I have learned about \Box
      →Linear Regression Models in the
     classroom but I am going to try to implement a method of prediction I have not_{\sqcup}
      ⇔yet learned in the classroom:
     Random Forest
     From my readings and learning online, my understanding of Random Forest is as_{\sqcup}
      ⇔follows:
         - Random Forest is a method that builds multiple decision trees and
      →averages their predictions to improve accuracy and reduce overfitting
              - Overfitting is when a model is overly trained on the training dataset \sqcup
      ⇔and becomes inaccurate when predicting actual information
         - It's well-suited for non-linear relationships and can handle more complex
      \hookrightarrowpatterns in the data
              - this makes it particularly useful when stock prices have volatility ⊔
      \hookrightarrow and non-linear trends
     Plan for model:
         1. Train a Random Forest Regressor model using historical stock data (same\sqcup
      \hookrightarrow data we have been using)
              2. Predict future stock prices for the next 5 years (2017-2022)
              3. Plot the results to compare predictions from Random Forest with \sqcup
      ⇔those from Linear Regression
     111
```



```
# Debugging: Print shape of the data to make sure it's being loaded
  print(f"Processing {stock_symbol}: {stock_data.shape[0]} rows")
  # Create the features again (moving averages) for this stock
  stock_data.loc[:, '7_day_MA'] = stock_data['close'].rolling(window=7).mean()
  stock_data.loc[:, '30_day_MA'] = stock_data['close'].rolling(window=30).
→mean()
  # Drop NaN rows
  stock_data = stock_data.dropna()
  # Debugging: Print shape after dropping NaN values
  print(f"After dropping NaN: {stock_data.shape[0]} rows")
  if stock_data.shape[0] == 0:
      print(f"No valid data for {stock symbol}")
      return
  # Features (7-day MA, 30-day MA, volume) and target (Adjusted Close)
  X = stock_data[['7_day_MA', '30_day_MA', 'volume']]
  y = stock_data['close']
  # Train the Random Forest Regressor on the full dataset up to 2017
  rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
  rf_model.fit(X, y)
  # Predict future prices from 2017 to 2022
  last_row = X.iloc[-1].copy() # Start with the last row in the dataset
  future_prices = []
  future_dates = pd.date_range(start=f'{start_year}-01-01',__
→periods=future_years*252, freq='B') # Business days
  for date in future_dates:
      # Reshape last row and retain feature names using a DataFrame
      future_features = pd.DataFrame([last_row], columns=['7_day_MA',_
next_price = rf_model.predict(future_features)
      # Update the moving averages (7-day and 30-day)
      last_row['7_day_MA'] = (last_row['7_day_MA'] * 6 + next_price[0]) / 7
      last_row['30_day_MA'] = (last_row['30_day_MA'] * 29 + next_price[0]) /
→30
      # Append the predicted price
      future_prices.append(next_price[0])
```

```
# Plot the future predicted prices for this stock with years on the x-axis
   plt.figure(figsize=(10, 6))
   plt.plot(future_dates, future_prices, label=f"Predicted Future Prices for⊔

stock_symbol} (RF)", color='blue', linestyle='--')

   plt.title(f"Predicted Stock Prices for {stock symbol} (2017 - 2022) using
 →Random Forest")
   plt.xlabel("Years")
   plt.ylabel("Predicted Stock Price")
   plt.legend()
   plt.grid(True)
   plt.show()
# Predict future prices for GOOGL, AAPL, and MSFT using Random Forest from 2017u
 →to 2022
predict_future_prices_with_rf('GOOGL')
                                       # Google
predict_future_prices_with_rf('AAPL')
                                       # Apple
predict_future_prices_with_rf('MSFT') # Microsoft
```

Processing GOOGL: 1762 rows After dropping NaN: 1733 rows

Processing AAPL: 1762 rows After dropping NaN: 1733 rows

Processing MSFT: 1762 rows After dropping NaN: 1733 rows

[]:

Comparison of Predictions Using Linear Regression and Random Forest

1. Google (GOOGL)

Linear Regression:

The linear regression model predicted a steady upward trend for Google ⇒stock, starting from about \$810 and rising steadily to \$870 by 2022.

Random Forest:

Once the initial fluctuations are over, the price remains mostly flat, $_{\!\sqcup}$ $_{\!\dashv}$ not showing much variation for the rest of the period.

2. Apple (AAPL):

Linear Regression:

The linear regression model forecasts that Apple's stock price will $_{\Box}$ $_{\ominus}$ grow steadily from \$117 in early 2017 to around \$122 by 2022.

Random Forest:

Similar to the GOOGL prediction, after the initial volatility, the $_{\sqcup}$ $_{\ominus}$ price stabilizes and becomes flat, hovering around \$114.

3. Microsoft (MSFT):

Linear Regression:

The linear regression model predicted Microsoft's stock price to rise $_{\sqcup}$ $_{\hookrightarrow}$ slightly from \$63.4 to around \$64.4 before declining by 2022 to around \$63.8.

Random Forest:

The random forest model predicts a very different behavior for $_{\sqcup}$ $_{\hookrightarrow}$ Microsoft's stock, showing a sharp drop from \$62.5 to \$62.48 right at the $_{\sqcup}$ $_{\hookrightarrow}$ beginning, followed by an almost completely flat line.

Overall Comparison:

Linear Regression:

Predicts steady, continuous growth for all three stocks.

Does not account for stock price fluctuations or volatility, resulting \Box in smooth upward or slightly downward trends over time.

It works well when stocks follow relatively linear growth patterns over \cup old periods time but may miss short-term volatility or sudden changes.

Random Forest:

Shows early volatility in all three stocks, particularly in the first $_{\!\!\!\!\!\sqcup}$ -year (2017).

Predictions stabilize quickly after initial fluctuations, leading to $_{\!\sqcup}$ $\!_{\!\hookrightarrow}\!$ flat trends for most of the future period (2018-2022)

This is likely due to overfitting the short-term patterns and $_{\!\sqcup}$ $_{\!\dashv}$ struggling to predict long-term trends

The model may be better at capturing short-term noise or fluctuations $_{\sqcup}$ $_{\hookrightarrow} but$ does not generalize well over longer-term trends.

Conclusion:

- Linear Regression is better suited for modeling long-term $_{\sqcup}$ $_{\hookrightarrow}$ trends, showing smooth and predictable growth for all stocks.
- Random Forest, while capturing some short-term volatility, \Box \Rightarrow struggles with making meaningful long-term predictions.