CSC 244 Fall 2022 Homework 3

Karnaugh Maps

Due: Wednesday, Sept. 14 before 9 am to D2L

1. Calculate the minimal sum-of-products (SOP) and product-of-sums (POS) using Karnaugh Maps for the truth tables

a)

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1
		•

b)

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1
		l	1

c. What is the **cost** of the two circuits? State which is cheaper, SOP or POS.

2. Find minimal Boolean equations for the truth table below using both SOP and POS forms using K-maps.

Α	В	С	D	γ i.
0	0	0	0	χ ii.
0	0	0	1	Χ
0	0	1	0	Χ
0	0	1	1	0
0	1	0	0	0
0	1	0	1	Χ
0	1	1	0	0
0	1	1	1	Χ
1	0	0	0	1
1	0	0	1	0
1	0	1	0	Χ
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	Χ
1	1	1	1	1

Determine which circuit is cheaper

Draw the circuit for the **cheapest implementation** using only NAND gates (if sum-of-products form) or NOR gates (if product-of-sums form). You may also use inverters if needed.

- 3. Calculate the minimal SOP and POS for the following function using K-maps:
 - i. Write two sentences on your solution to SOP; is it unique?

$$F(A,B,C,D) = \Pi(0,1,2,4,8,15)$$