Lab 6

Solutions of trigonometric equations

Aim:

• To use graphs of trigonometric functions to find solutions of trigonometric equations.

Concepts:

• Principal and general solutions of trigonometric functions

Discussion:

The point at which the graph of the function f(x) meets the **x** axis gives the solutions of the equation f(x) = 0.

The solutions of f(x) = a are given by the x coordinates of the points of intersection of the curves y = f(x) and y = a or the x coordinates of the points of intersection of the curve y = f(x) - a with the x axis. For the convenience of finding the x coordinate, we use the second method.

Activity 6.1 Solution of $\sin x = a$

Procedure:

- Initial settings to change the distance marking on the x axis

 Create an integer slider n, with min=1 and max=6. Right click anywhere on the graphics

 view-Graphics→x axis→distance→ Type pi/n in the box
- Create a slider a with increment 0.01
- Draw the graph of $f(x) = \sin x \mathbf{a}$
- The points at which this graph cuts or touches the x axis gives the solution of the equation $\sin x = \mathbf{a}$
- Set a=0 and find the solutions of the equation $\sin x = 0$
- Gradually increase the value of \mathbf{a} , and observe how the above points deviate from multiples of π
- \bullet Create an input box for f

• Find the principal and general solutions of the equations given in the following table. If needed, you can change the distance on the x axis using the slider \mathbf{n} . (Use input box of f to change the function.)

Sl.	Trig.Equation	Principal Solutions	General Solution
No			
1	$\sin x = \frac{1}{2}$		
2	$\sin x = \frac{\sqrt{3}}{2}$		
3	$\sin x = \frac{-1}{2}$		
4	$\sin 2x = \frac{1}{2}$		
5	$\sin 3x = \frac{-\sqrt{3}}{2}$		
6	$\sin x = \frac{1}{\sqrt{2}}$		
7	$\sin(\frac{x}{3}) = \frac{\sqrt{3}}{2}$		

Activity 6.2 Solution of $\cos x = a$

Procedure:

- In the above applet, change the function to $\cos x \mathbf{a}$
- By observing the points at which the graph cuts or touches the x axis, find the principal and general solutions of the equations given in the following table.

Sl.	Trig.Equation	Principal Solutions	General Solution
No			
1	$\cos x = \frac{1}{2}$		
2	$\cos x = \frac{\sqrt{3}}{2}$		
3	$\cos x = \frac{-1}{2}$		
4	$\cos 2x = \frac{1}{2}$		
5	$\cos 3x = \frac{-\sqrt{3}}{2}$		
6	$\cos(\frac{x}{2}) = \frac{1}{\sqrt{2}}$		
7	$\cos(\frac{x}{3}) = \frac{1}{2}$		

Activity 6.3 Solution of $\tan x = a$

Procedure:

Using the above applet, find the principal and general solutions of the following equations.

Sl.	Trig.Equation	Principal Solutions	General Solution
No			
1	$\tan x = 1$		
2	$\tan x = \sqrt{3}$		
3	$\tan 2x = \frac{1}{\sqrt{3}}$		
4	$\tan 3x = -1$		
5	$\tan x = -\sqrt{3}$		
6	$\tan(\frac{x}{2}) = -\sqrt{3}$		
7	$\tan(\frac{x}{4}) = \sqrt{3}$		

Save the applet as Activity 6.3

Activity 6.4 Solution of trigonometric equations in general

Procedure:

- ullet Create an integer slider n
- Change the distance mark on the x-axis as $\frac{\pi}{n}$
- Input $f(x) = \sin x$ and $g(x) = \cos x$
- Create input boxes for f and g.
- Using input command f g, draw the graph of f(x) g(x).
- ullet Hide the graphs of f and g

Observe the points of intersection of the graph of f(x) - g(x) with the x axis, which gives the solution of the equation f(x) = g(x). Hence find the principal and general solutions of the following equations (To confirm your answer, you may change the distance on the x axis using slider n)

Sl.	Trig.Equation	Principal Solutions	General Solution
No			
1	$\sin x = \cos x$		
2	$\sin 2x = \cos x$		
3	$\cos 2x = \sin x$		
4	$\cos 2x = \cos x$		
5	$\sin 2x + \cos x = 0$		
6	$\sin 2x + \sin 3x = 0$		