Enabling Memory-intensive Network Functions on Programmable Switches

Daehyeok Kim

Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Antonin Bas Vyas Sekar, Srini Seshan

Example: Enabling DC Scale Virtual Switching on ToR Switch

Limited SRAM space is bottleneck for memory-intensive applications!

Status Quo

- Fixed-function switch chips built with fixed-function external memory
- These aren't very useful
 - Inflexible: Usage fixed at design time
 - Fixed and small scale: Memory size and bandwidth fixed at design time
 - **Expensive**: Chip getting larger and complex

Is programmable switch chip + general-purpose memory possible?

Opportunities

1. Underutilized servers' memory

Memory usage trace from Google's data centers

2. Underutilized network bandwidth

In a production data center network, ToR switch-server link utilization is ~1% on average and ~10% in mostly loaded case.

Our Work: Generic External Memory (GEM)

General-purpose DRAM pool

Match	Action
20.0.0.1:80	10.0.0.1:20

C1: Remote Memory Access Channel

- Goal: Enable programmable switch chip to directly access memory
 - Purely access DRAM: No impact to the server's existing compute and networking workloads
 - Minimal latency between the chip and memory

Challenge: How to generate RDMA requests from the data plane?

Accessing Remote Memory via RDMA

C2: Packet Management during Remote Memory Access

Depositing Packets on Remote Buffer

C3: Remote Lookup Table and APIs

GEM Lookup Table

- Two-way cuckoo hash table guaranteeing one memory access per lookup
- Idea: Maintain a "summary" of which table the entries are stored in.
 - Summary(key) tells you which table (H1 or H2) contains the key.

GEM Lookup Table in Action

GEM with Multiple Servers

Implementation and Results

Prototype implementation

• Tofino-based programmable switch + 8 servers with RDMA NICs

End-to-end latency overhead

• 2.4 – 2.75 μs added latency (in NAT case) due to external memory lookup

Lookup throughput

- Single server with caching: 20 millions lookup per second
- Scalability: Achieving near line-rate (i.e., traffic rate to NFs) with four servers

Summary

- Limited memory space on programmable switches is problematic.
- Our solution: Generic External Memory for Programmable Switches
 - Allows programmable switches to access external DRAM
 - Provides an external memory abstraction to developers
 - Can be applied to existing NF implementations
- **Result:** NFs can utilize lookup tables on external DRAM without much performance degradation (~0.55% throughput reduction).