ALGEBRA

Scheda di esecizi n.2.

Determinanti, rango e sistemi lineari.

Esercizio 1. Si considerino i seguenti vettori di \mathbb{R}^3 :

$$\mathbf{a}^1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \ \mathbf{a}^2 = \begin{pmatrix} 0 \\ h \\ h \end{pmatrix}, \ \mathbf{a}^3 = \begin{pmatrix} 1 \\ 1 - h^2 \\ 1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 0 \\ h \\ 1 \end{pmatrix}, \ \mathbf{c} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}.$$

Sia

$$\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

e sia infine A la matrice ottenuta incolonnando \mathbf{a}^1 , \mathbf{a}^2 , \mathbf{a}^3 in quest'ordine.

(a) Stabilire al variare di h in \mathbb{R} quando i due sistemi

$$S_1: A\mathbf{x} = \mathbf{b}, \ S_2: A\mathbf{x} = \mathbf{c}$$

risultano compatibili e calcolare esplicitamente le soluzioni (ove possibile) in corrispondenza di h=0.

- (b) Per quali valori di h risulta $\mathbf{b} \in \langle \mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3 \rangle$?
- (c) Calcolare, al variare di h in \mathbb{R} , le dimensioni dei seguenti sottospazi di \mathbb{R}^3 .

$$\langle \mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3 \rangle$$
, $\langle \mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3, \mathbf{b} \rangle$, $\langle \mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3, \mathbf{c} \rangle$, $\langle \mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3, \mathbf{b}, \mathbf{c} \rangle$

Esercizio 2. In \mathbb{R}^3 siano dati i vettori:

$$\mathbf{u} = \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \, \mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Sia poi W il sottospazio di \mathbb{R}^3 descritto dalle equazioni:

$$\begin{cases} 2x + y + z = 0 \\ y + 5z = 0 \end{cases}.$$

- (a) Si determini $W \cap \langle \mathbf{u}, \mathbf{v} \rangle$.
- (b) Si descriva:

$$\langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \rangle$$

come l'insieme delle soluzioni di un sistema lineare omogeneo (equazioni cartesiane).

Esercizio 3. Sia f l'endomorfismo di \mathbb{R}^4 dato da:

$$f\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} (1-h)x + 2y - hw \\ y \\ hx - y + (1+h)w \\ (h-2)z \end{pmatrix}.$$

Determinare i valori reali di h per i quali f è non invertibile e in corrispondenza di tali valori determinare basi di ker f e im f.

Esercizio 4. Sia $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici di ordine 2. Determinare basi del nucleo e dell'immagine di ciascuna delle due seguenti applicazioni lineari:

$$f: M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R}) \ A \mapsto A + A^T$$

$$g: M_2(\mathbb{R}) \longrightarrow \mathbb{R} \ A \mapsto \operatorname{traccia}(A).$$

Si ricordi che A^T denota la trasposta di A mentre la traccia di una matrice quadrata è la somma dei suoi elementi diagonali.