Master theorem

$$T(n) = aT(n/b) + f(n)$$
, where $a \ge 1$, $b > 1 \& f(n) = \theta(n^k log^p n)$

- **Case 1:** if $log_b a > k$, then $T(n) = \theta(n^{log_b^a})$
- **Case 2:** if log a = k, then

> **2.1** if
$$p > -1$$
, $T(n) = \theta(n^k \log^{p+1} n)$

$$ightharpoonup$$
 2.2 if $p = -1$, $T(n) = \theta(n^k \log \log n)$

> **2.3** if
$$p < -1$$
, $T(n) = \theta(n^k)$

 Case 3: if $\log_b^a < k$, then

> **3.1** if
$$p \ge 0$$
, $T(n) = \theta(n^k \log^p n)$

> **3.2** if
$$p < 0$$
, $T(n) = \theta(n^k)$