

Partially-Coherent Transport:

Computational Analysis and Overcoming Anderson Localization Alexandra Q. Nilles **Advisor: Dr. Mark Lusk**

Motivation

- In solar cells and other applications, hopping transport of electrons is slow
- **Coherent motion is faster:** coherent = wavelike
- Coherence lifetimes are usually very short: electrons localized by environment interactions
- How to design systems to control transport?

Image from Mark Lusk

Background and Model

Hamiltonian: Sum of Electronic, Phonon, Electron-Phonon Coupling, Reorganization Energy

$$\mathcal{H} = \mathcal{H}_{ex} + \mathcal{H}_{phon} + \mathcal{H}_{ex-ph} + \mathcal{H}_{reorg}$$

- The Heirarchical Equations of Motion (HEOM) model time evolution of the reduced density operator, $\rho(t)$.
- ρ (t) includes information on exciton population and coherence.

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = -\frac{\mathrm{i}}{\hbar}\mathcal{L}_{\mathrm{ex}}\rho(t) + \sum_{m} \frac{\mathrm{i}}{\hbar}V_{m}^{\times}\sigma^{(0,\dots,n_{m}=1,\dots,0)}(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\sigma^{(n_1,\dots,n_N)}(t) = \left(-\frac{\mathrm{i}}{\hbar}\mathcal{L}_{\mathrm{ex}} - \sum_{m} n_m \nu\right)\sigma^{(n_1,\dots,n_N)}(t)
+ \sum_{m} \frac{\mathrm{i}}{\hbar}V_m^{\times}\sigma^{(n_1,\dots,n_{m+1},\dots,n_N)}(t)
+ \sum_{m} n_m \theta_m \sigma^{(n_1,\dots,n_{m-1},\dots,n_N)}(t).$$

Parameter Analysis

- •Reorganization energy (λ) is dissipated as the first excited state relaxes
- Spectral density quantifies electron-phonon coupling

Maximize coherence with:

- Low reorganization energy
- A spectral density that is coupled narrowly to phonon modes, skewed to high frequencies

Vary parameters in Drude Lorentz peak, which approximates spectral density:

Anderson Localization

- In systems with disorder, exciton will localize at disorder
- ·Simulated a long chain of sites, with random site excitation energies
- If reorganization energy was zero, the exciton would localize immediately
- Plot of average exciton position (with exciton starting at site 0) shows that increasing λ increases transport speed.
- Found that electron-phonon coupling is necessary to delay localization
- Energy is transferred between phonons and excitons

Modelling Naphthalene

- Density functional theory provides spectrally resolved reorganization energies
- Fit Drude-Lorentz peak to discrete spectral density
- Use resulting parameters in **HEOM** to model naphthalene chain

Future Work

- Use electronic coupling from DFT to model bridges between sites
- Investigate better site geometries for creating desired transport characteristics

Acknowledgements

 My advisor, Dr. Mark Lusk, and my group members Keith Schumacher and Jonathan McBride were invaluable resources during this project.

References

[1] Ishizaki, Fleming. J. Chem. Phys. 130, 234111 (2009)

[2] C. Kreisbeck, "Quantum transport through complex networks - from light-harvesting proteins to semiconductor devices," Dissertation. (Universität Regensburg, 2012).