

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и сист	емы управления»									
КАФЕДРА «Компьютерные системы	и сети»									
НАПРАВЛЕНИЕ ПОДГОТОВКИ <u>«</u> 0	99.03.01 Информатика и вычисл	ительная техника»								
	OTHER									
	ОТЧЕТ									
по лабор	раторной работе № 3									
Название: «Арифметическая обработка данных.»										
Дисциплина: «Микропроцессор	оные системы.»									
Вариант № 5										
G HIVE COP		A 73.16								
Студент <u>ИУ6-62Б</u> (Группа)	(Подпись, дата)	А.Е.Медведев (И. О. Фамилия)								
Преподаватель	(,, ,, , , , , , , , , , , , , , , , ,	Б.И.Бычков								
	(Подпись, дата)	(И. О. Фамилия)								

1 Цель работы:

- изучение способов представления числовых данных в микроконтроллерах,
- изучение двоичных арифметических операций,
- программирование арифметических процедур.

2 Задание 1.

Изучить программу для исследования арифметических операций в стартовом наборе STK500, приведенную ниже. Программой предусмотрен ввод кода операции, операндов, выполнение заданной операции и показ результатов. В стартовом наборе STK500 всего восемь кнопок общего назначения (SW7...SW0). При тестировании арифметических операций эти кнопки используются следующим образом: кнопки SW0...SW2 – для ввода младшего (AL) и старшего байта (АН) первого операнда и одного байта второго операнда (BL), SW3...SW6 – для выполнения операций сложения, вычитания, умножения и деления, SW7 – для просмотра. Ввести в таблицу операндов в конце программы вместо приведенных в тексте программы 10 операндов из таблицы вариантов (Таблица – 2.1).

Таблица 2.1 – Таблица вариантов программируемых операндов в шестнадцатеричном коде

	№ вар.	Беззна	аковые	Число	Числовые операнды со знаком в дополнительном коде								
		AL_0	BL_0	AL_1	BL_1	AL_2	BL_2	AL_3	BL_3	AL_4 BL_4			
	5	0xD8	0xA5	0xB3	0x6E	0x4C	0x3C	0x9F	0x7D	0xB0	0xB8		

После загрузки программы в микроконтроллер проверить работу программы на плате, перебирая операнды таблицы с помощью кнопок SW0, SW2 и наблюдая выбираемые операнды в двоичном коде на светодиодной линейке.

3 Выполнение:

Схема алгоритма работы программы представлена на рисунках 3.1-3.3.

Рисунок 3.1 – Первая схема алгоритма

Рисунок 3.2 – Первая схема алгоритма

Рисунок 3.3 – Первая схема алгоритма

4 Код программы:

Листинг 4.1 – Код программы

```
; Программа тестирования в STK500 двоичных арифметических операций
; сложения, вычитания, умножения, деления
;Порт PD - порт управления для выбора операндов и операций
;Порт РВ - порт индикации исходных операндов и результатов операции
; Соединения шлейфами: порт PB-LED, порт PD-SW
.include "m8515def.inc" ;файл определений для ATmega8515
; назначение входов порта PD
                   ;кнопка выбора операнда ор_AL
.equ SW_op_AL = 0
                   ;кнопка выбора операнда ор_АН
.equ SW_op_AH = 1
.equ SW_op_BL = 2
                   ;кнопка выбора операнда ор_BL
.equ SW_ADD = 3 ;кнопка операции сложения res=op_AL+op_BL
```

```
.equ SW_SUB = 4 ; кнопка операции вычитания res=op_AL-op_BL
.equ SW_MUL = 5 ; кнопка операции умножения shov.res=op_AL х
  op_BL
.equ SW_DIV = 6 ; кнопка операции деления res=op_AH.op_AL/op_BL
                  ;кнопка для просмотра признаков
.equ SW_SHOW = 7
  сложения-вычитания,
               ; старшего байта произведения или остатка при
                  делении
.def op_AL = r16
                      ;1-й операнд AL
.def op_AH = r17
                      ;старший байт делимого АН
.def op_BL = r18
                      ;2-й операнд BL
.def res = r1 ; результат операции (сумма, разность,
              ; младший байт произведения или частное)
.def show = r31 ; регистр признаков сложения-вычитания,
               ; старшего байта произведения или остатка при
                 делении
                      ;младший байт произведения
.def mul_l = r21
.def mul_h = r22 ; старший байт произведения
.def copy_AH = r23 ;копия старшего байта делимого
.def copy_AL = r24 ; копия младшего байта делимого
.def copy_BL = r25 ; копия множителя
.def temp = r26 ;временный регистр
.def sw_reg = r27
                  ;регистр состояния кнопок
.def count = r28
                      ; число операндов в таблице операндов
.def c_bit = r29 ; счетчик циклов умножения (деления)
.macro vvod
                  ;ввод операнда
          ;считывание байта из flash-памяти в r0
   lpm
   mov @0,r0
                  ; и пересылка в регистр операнда
   mov res, r0
   adiw zl, 1
                      ; увеличение указателя адреса на 1
   dec count
   brne exit
   ldi ZL,low(tabl_op*2) ;перезагрузка начала таблицы операндов
   ldi ZH, high(tabl_op*2) ; в регистр Z
                   ; число заданных операндов в таблице 10
   ldi count, 10
exit: nop
.endmacro
.org $000
```

```
;Инициализация стека, портов, адресного регистра Z
    ldi temp,low(RAMEND)
                                ;установка
                           ; указателя стека
    out SPL, temp
    ldi temp, high (RAMEND)
                               ; на последнюю
    out SPH, temp
                           ; ячейку ОЗУ
    ser temp
                            ; настройка
    out DDRB, temp
                            ; порта РВ
    out PORTB, temp
                            ; на вывод
    clr temp
                            ; настройка
   out DDRD, temp
                            ; порта PD
   ser temp
                            ; на
                   ; ввод
    out PORTD, temp
   ldi ZL,low(tabl_op*2) ; загрузка адреса таблицы операндов
ldi ZH,high(tabl_op*2) ; в регистр Z
                          ; число операндов 10
    ldi count, 10
;Опрос кнопок и выполнение заданных действий
        in sw_reg,PIND
    sbrs sw_reg,0
   rjmp f_op_AL
    sbrs sw_reg,1
   rjmp f_op_AH
    sbrs sw_reg,2
   rjmp f_op_BL
   sbrs sw_reg,3
   rjmp add_bin
    sbrs sw_reg,4
   rjmp sub_bin
    sbrs sw_reg,5
   rjmp mul_bin
    sbrs sw_reg,6
   rjmp div_bin
    sbrc sw_reg,7
    rjmp loop
   mov res, show
    rjmp outled
;Выборка 1-го операнда из таблицы операндов
f_op_AL: vvod op_AL
        rjmp outled
;Выборка старшего байта 1-го операнда (при делении)
```

```
f_op_AH: vvod op_AH
      rjmp outled
;Выборка 2-го операнда
f_op_BL: vvod op_BL
       rjmp outled
;Сложение 8-разрядных операндов
add_bin: mov res,op_AL
       add res,op_BL
       in show, SREG ;выборка из регистра SREG
       rjmp outled
;Вычитание 8-разрядных операндов
sub_bin: mov res,op_AL
       sub res,op_BL
       in show, SREG ;выборка из регистра SREG
       rjmp outled
;Умножение 8-разрядных операндов
mul_bin: mul op_AL,op_BL
mov show, r1 ; копируем старший и
          mov res,r0 ; младший байт произведения
         rjmp outled
;Деление 16-разрядного числа на 8-разрядное
div_bin: sbrc op_AH,7 ; ошибки исходных данных
   rjmp error
   sbrc op_BL,7
   rjmp error
               ;ошибка при делении на 0
   tst op_BL
   breq error
   ср ор_АН, ор_ВL ; ошибка при переполнении
   brge error
   clr res ;обнуляем частное
   ldi c_bit,8
                 ; число итераций
   mov copy_AH, op_AH
   mov copy_AL,op_AL
L4: clc
   rol copy_AL ;сдвиг
   rol copy_AH ; делимого lsl res ; сдвиг частного влево
   rol copy_AH
   sub copy_AH,op_BL ;вычитание делителя
   brcs recov ; если остаток < 0, переход
```

```
inc res ; иначе добавить 1 в частное
   rjmp L5
recov: add copy_AH, op_BL ; восстановление остатка
L5: dec c_bit
   brne L4
   mov show, copy_AH ; пересылка остатка
   rjmp outled
error: clr temp
                  ; сигнал об ошибке деления
   out PORTB, temp
   rcall delay
   ser temp
   out PORTB, temp
   rjmp wait
outled: com res
    out portb, res
   rcall delay
wait: in sw_reg, PIND ; ждать, пока кнопка не отпущена
   com sw_reg
   brne wait
   rjmp loop
; Задержка
DELAY: ldi r19,10
m1: ldi r20,250
m3: ldi r21,250
m2: dec r21
   brne m2
   dec r20
   brne m3
   dec r19
   brne m1
   ret
; Таблица операндов в шестнадцатеричном представлении
tabl_op: .db 0xD8,0xA5,0xB3,0x6E,0x4C,0x3C,0x9F,0x7D,0xB0,0xB8
```

5 Задание 2.

Выполнить ряд примеров на сложение и вычитание, выбирая операнды слагаемых AL и BL нажатием кнопок SW0 и SW2. Объяснить результаты операций при нажатиях кнопки SW3 (сложение) и SW4 (вычитание), рассматривая операнды как беззнаковые числа, затем как числа со знаком. В последнем случае загружаемые из таблицы операндов программы отрицательные числа, содержащие единицу в старшем разряде, следует рассматривать в дополнительном коде. Нажатие кнопки SW7 показывает признаки результата операции, формируемые в регистре SREG (табл.2): С – перенос при сложении (заем при вычитании), Z – признак нулевого результата, N – знак результата при операциях с числами со знаком, V – переполнение разрядной сетки, $S = N \oplus V$ – знак результата вне зависимости от переполнения, H – межтетрадный перенос (заем).

Таблица 5.1 – Байт признаков результата

№ разряда	7	6	5	4	3	2	1	0
Флаг	_	_	Н	S	V	N	Z	С

Результаты наблюдений (исходные операнды, результаты операций и признаки) привести в табл. 3 в двоичном (A_2, B_2) и десятичном $({}_10, {}_10)$ виде. При оценке результатов соблюдать типы обрабатываемых переменных (беззнаковые целые или целые со знаком).

6 Выполнение:

Для вычислений используем беззнаковые числа и первые четыре знаковых числа от AL1 до BL2. Результаты выполнения операций сложения и вычитания, а также значения признаков в регистре SREG приведены в таблице 6.1.

Таблица 6.1 – Результаты операций сложения и вычетания

Число A_2/A_{10}	Число B_2/B_{10}	A + B / A - B	Признаки: Н S V N Z C
1101.1000/+216	1010.0101/+165	$ \boxed{ 0111.1101 \ (+125) \ / } $	0 1 1 0 0 1
Беззнаковое	Беззнаковое	$0011.0011 \ (+51)$	0 0 0
1011.0011/-77	0110.1110/+110	$0010.0001 \; (+33) \; / \;$	1 0 0 0 0 1
Со знаком	Со знаком	$0100.0101 \; (+37)$	1 1 1 0 0 0
0100.1100/+76	0011.1100/+60	1000.1000 (-120) /	1 0 1 1 0 0
Со знаком	Со знаком	$0100.0101\ (+16)$	0 0 0 0 0 0
1001.1111/-98	0111.1101/+125	0001.1100 (+28) /	1 0 0 0 0 1
Со знаком	Со знаком	$0010.0010 \; (+34)$	0 1 1 0 0 0
1011.0000/-88	1011.1000/-72	0110.1000 (+104) /	0 1 1 0 0 1
Со знаком	Со знаком	1111.1000 (-8)	1 1 0 1 0 1

7 Умножение и деление целых чисел

Задание 3.

Выполнить ряд примеров умножения 8-разрядных двоичных чисел с разными операциями умножения, выбирая соответствующие им операнды из таблицы операндов и проверяя результаты с помощью калькулятора. Нажатие кнопки SW5 показывает младший байт произведения, SW7 – старший байт.

Выполнение: На рисунке 7.1 изображена схема алгоритма операции умножения.

Рисунок 7.1 – Схема умножение двоичных чисел

Для демонстрации примера выполнения умножения используем числа AL_1 до BL_1 , не учитывая знаки.

Таблица 7.1 – Входные данные для умножения

Число А2/А10	Число В2/В10
1011.0011 = 179	0110.1110 = 110

Таблица 7.2 – Произведение двух чисел равно:

						*	1	0	1	1	0	0	1	1
														_
							0	1	1	0	1	1	1	0
							0	0	0	0	0	0	0	0
						1	0	1	1	0		1	1	
					1	0	1	1	0	0	1	1		
				1	0	1	1	0	0	1	1			
			0	0	0	0	0	0	0	0				
		1	0	1	1	0	0	1	1					
	1	0	1	1	0	0	1	1						
0	0	0	0	0	0	0	0							
1	0	0	1	1	0	0	1	1	1	0	1	0	1	0

Результат: 0100110011101010 = 19690. Проверка = 179 * 110 = 19690 В таблице 7.3 приведены результаты выполнения операций умножения.

Таблица 7.3 – Результаты операции умножения

Число A_2/A_{10}	Число B_2/B_{10}	Результат
1101.1000/+216	1010.0101/+165	1001101101000000
Беззнаковое	Беззнаковое	(39744)
1011.0011/-77	0110.1110/+110	1101 1110 1110 1010
Со знаком	Со знаком	(-8470)
0100.1100/+76	0011.1100/+60	0001011010010000
Со знаком	Со знаком	(5776)

При перемножении знаковых чисел в код были внесены изменения, а именно:

- 1. При перемножении двух знаковых чисел операция mul была заменена на muls
- 2. При перемножении знакового и беззнакового числа операция mul была заменена на mulsu.

8 Задание 4.

Выполнить деление беззнаковых чисел, 16-разрядного делимого на 8-разрядный делитель, с восстановлением остатка при условиях, что делитель не равен 0 и его значение не вызовет переполнения, а также делимое и делитель заданы с нулевыми значениями старших разрядов. Если деление невозможно, выводится предупреждение путем зажигания и гашения всех светодиодов. Нажатие кнопки SW6 показывает частное, SW7 – остаток.

Выполнить 2-3 примера на деление двоичных чисел, самостоятельно подобрав делимое и делитель. Подобрать пример с максимальными значениями делимого АН.АL и делителя В, при которых частное С будет равно 0b11111111, изменив в случае необходимости программную таблицу операндов.

Запротоколировать деление двух операндов по шагам по образцу примера из описания алгоритма, указывая промежуточные значения в регистрах делимого (остатка) АН.АL и частного С.

Выполнение:

На рисунке 8.1 изображена схема алгоритма операции деления. В таблице 8.1 приведены результаты выполнения операций деления.

Таблица 8.1 – Результаты операции умножения

AH_2AL_2/A_{10}	BL_{2}/B_{10}	Частное	Остаток
0000.0100 0110.1110/1134	0100.1100/76	00001100/14	01000110/70
0111.1010 0111.1010/7A7A	1010.1010/AA	10111000/184	01001010/74
0111.1110 1111.1111/7EFF	0111.1111/7F	11111111/255	01111111/126

Рисунок 8.1 – Схема алгоритма деления

Далее пошагово расписано деление чисел из первой строчки таблицы 8.1:

Таблица 8.2 – Результаты операции умножения

0	0	0	0	0	1	0	0	0	1	1	0	1	1	1	0		
1	0	1	1	0	1	0	0										
1	0	1	1	1	0	0	0									>0 Переполнения нет!	
0	0	0	0	1	0	0	0	1	1	0	1	1	1	0	X	$<0 => c_7 = 0$	
1	0	1	1	0	1	0	0									Востановление!	
1	0	1	1	1	1	0	0										
0	0	0	1	0	0	0	1	1	0	1	1	1	0	X	X	$<0 => c_6 = 0$	
1	0	1	1	0	1	0	0									Востановление!	
1	1	0	0	0	1	0	1										
0	0	1	0	0	0	1	1	0	1	1	1	0	X	X	X	$ < 0 => c_5 = 0$	
1	0	1	1	0	1	0	0									Востановление!	
1	1	0	1	0	1	1	1										
0	1	0	0	0	1	1	0	1	1	1	0	X	X	X	X	$<0 => c_4 = 0$	
1	0	1	1	0	1	0	0									Востановление!	
1	1	1	1	1	0	1	0										
1	0	0	0	1	1	0	1	1	1	0	X	X	X	X	X	$ >0 => c_3 = 1$	
1	0	1	1	0	1	0	0									Сдвиг!	
0	1	0	0	0	0	0	1									одын.	
1	0	0	0	0	0	1	1	1	0	X	X	X	X	X	X	$ > 0 = > c_2 = 1$	
1	0	1	1	0	1	0	0									Сдвиг!	
0	0	1	1	0	1	1	1									Одвиг.	
0	1	1	0	1	1	1	1	0	X	X	X	X	X	X	X	$ >0 => c_1 = 1$	
1	0	1	1	0	1	0	0									Сдвиг!	
0	0	1	0	0	0	1	1									Одвиг.	
0	1	0	0	0	1	1	0	X	X	X	X	X	X	X	X		
1	0	1	1	0	1	0	0									$<0 => c_0 = 0$	
1	1	1	1	1	0	1	0										
1	1	1	1	1	0	1	0										
0	1	0	0	1	1	0	0		_	_		_	_	_		Остаток	
0	1	0	0	0	1	1	0										

После деления A на B получам число C=00001110 в двоичной системе. Переведя его в десятичную получим, что при делениии 1134 на 76 получаем 14 целых и 70 в остатке.

В третьей строке таблицы 8.1 подобран пример с максимальными значениями делимого АН.АL и делителя В, при которых частное С будет равно 11111111 = 255. В соответствии с условием задачи, делитель не может начинаться с 0, тогда наибольшим делителем будет число 01111111 = 127, а его остатком – 01111110 = 126. Тогда наибольшим значением делимого будет число 127 * 255 + 126 = 32511 = 01111110111111111, что удовлетворяет условию задания.

9 Вывод

В ходе данной лабораторной работы были изучены способы представления целых чисел, дробных чисел, чисел со знаком и без знака в микроконтроллерах: целые числа имеют формат с фиксированной точкой справа, дробные числа меньше единицы имеют формат с точкой слева. При целочисленном представлении старший разряд используется для представления знака: 0 – положительный, а 1 – отрицательный. Изучены предназначения битов регистра SREG: C – перенос при сложении, Z –признак нулевого результата, N – знак результата при операциях с числами со знаком, V – переполнение разрядной сетки, $S = N \oplus V$ – знак результата вне зависимости от переполнения, H – межтетрадный перенос. Также были изучены двоичные арифметические операции и описаны программы арифметических процедур.