$\mathbf{NAME} \rightarrow$

This test is 105 minutes. You're allowed three cheat sheets. Just show your extremely neat answers — any intermediate steps, multiple answers, or untidiness will be penalized. All questions are 3 points, except #1 (1 fabulous point). Good luck!

1. What is the secret word?

Solution: Loyalty. \Diamond

2. Use Monte Carlo simulation with PRN's $U_1 = 0.75$, $U_2 = 0.21$, $U_3 = 0.57$, and $U_4 = 0.39$ to approximate $\int_0^3 e^{-x^2/9} dx$.

Solution:

$$\hat{I}_n = \frac{b-a}{n} \sum_{i=1}^n f(a+(b-a)U_i) = \frac{3}{4} \sum_{i=1}^4 f(3U_i) = \frac{3}{4} \sum_{i=1}^4 e^{-U_i^2} = 2.332. \quad \diamondsuit$$

3. If X and Y have joint p.d.f. f(x,y) = xy, $0 \le x \le y \le c$, for some appropriate constant c, find E[X].

Solution: First, get c.

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = \int_{0}^{c} \int_{0}^{y} xy \, dx \, dy = \frac{c^{4}}{8},$$

so that $c = 8^{1/4}$. Now,

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy = \int_{x}^{8^{1/4}} xy \, dy = \frac{\sqrt{8} x - x^3}{2}, \quad 0 < x < 8^{1/4}.$$

Finally, we have

$$\mathsf{E}[X] \ = \ \int_{-\infty}^{\infty} x f_X(x) \, dx \ = \ \int_{0}^{8^{1/4}} \frac{\sqrt{8} \, x^2 - x^4}{2} \, dx \ = \ \frac{8^{5/4}}{15} \ = \ 0.897. \quad \diamondsuit$$

4. A tool crib has exponential interarrival and service times, and it serves a very large group of mechanics. The mean time between arrivals is 3 minutes. It takes 2 minutes on average for the single tool-crib attendant to serve a mechanic. What is L, the long-run number of customers (mechanics) in the system?

Solution: Model the crib as an M/M/c queue with $\lambda = 1/3$, $\mu = 1/2$, and c = 1. We have traffic intensity $\rho = \lambda/\mu = 2/3$, and so the M/M/1 queueing table gives

$$L = \frac{\rho}{1-\rho} = 2.$$
 \diamondsuit

5. Same as Question #4, except assume that there are now two tool-crib attendants.

Solution: Model the crib as an M/M/c queue with $\lambda = 1/3$, $\mu = 1/2$, and c = 2. For this case c = 2, we have $\rho = \lambda/(c\mu) = 1/3$, and so the M/M/2 queueing table gives

$$P_0 = \left\{ \left[\sum_{n=0}^{c-1} \frac{(c\rho)^n}{n!} \right] + \left[\frac{(c\rho)^c}{(c!)(1-\rho)} \right] \right\}^{-1} = 0.5,$$

and then

$$L = c\rho + \frac{(c\rho)^{c+1}P_0}{c(c!)(1-\rho)^2} = 0.75.$$
 \diamondsuit

6. Consider Questions #4 and #5. Suppose that an attendant is paid \$8 per hour and mechanics are paid \$10 per hour. Would it be advisable to have one or two tool-crib attendants?

Solution: The expected cost per hour to run this system is 8c + 10L.

For the case c=1, we have

$$8c + 10L = 8(1) + 10(2) = 28.$$

For the case c=2, we have

$$8c + 10L = 8(2) + 10(0.75) = 23.5.$$

So we take c=2.

7. TRUE or FALSE? The runs up-and-down test is used to see if i.i.d. data follow a certain distribution.

Solution: FALSE. It's an independence test. \Diamond

8. Suppose that we conduct a Kolmogorov-Smirnov test for a Unif(0,1) distribution and that we observe the three numbers $U_1 = 0.75$, $U_2 = 0.21$, and $U_3 = 0.57$. Find the K-S statistic D. (You do not have to perform the test itself.)

Solution: Here's our usual table.

$$\begin{array}{c|cccc} R_{(i)} & 0.210 & 0.570 & 0.750 \\ \frac{i}{n} & 0.333 & 0.667 & 1 \\ \frac{i-1}{n} & 0 & 0.333 & 0.667 \\ \frac{i}{n} - R_{(i)} & 0.123 & 0.097 & 0.250 \\ R_{(i)} - \frac{i-1}{n} & 0.210 & 0.237 & 0.083 \end{array}$$

Then
$$D^+ = \max_i \{ \frac{i}{n} - R_{(i)} \} = 0.250, D^- = \max_i \{ R_{(i)} - \frac{i-1}{n} \} = 0.237$$
, and finally, $D = \max(D^+, D^{-1}) = 0.250$. \diamondsuit

9. Find the mean of the random variable generated by the Arena function DISC(0.3,3,0.8,5,1,10).

Solution: 3(0.3) + 5(0.5) + 10(0.2) = 5.4.

10. TRUE or FALSE? If you SEIZE a member of an Arena resource set, it is possible to RELEASE that *specific* member of the set later on.

Solution: TRUE. \Diamond

11. The c.d.f. of the Cauchy distribution is $F(x) = \frac{1}{2} + \frac{\tan^{-1}(x)}{\pi}$ for $-\infty < x < \infty$. Write out the appropriate inverse transform equation to generate a Cauchy RV from a Unif(0,1).

Solution: Set $F(X) = \frac{1}{2} + \frac{\tan^{-1}(X)}{\pi} = U$ and solve for X to obtain $X = \tan(\pi(U - 0.5))$. \diamondsuit

12. Demonstrate your Cauchy generator from Question #11 by using it on U = 0.95.

Solution:

$$X = \tan(\pi(0.95 - 0.5)) = 6.314.$$
 \diamondsuit

13. Consider a first-order moving average process, $X_i = \epsilon_i + \theta \epsilon_{i-1}$, $i \geq 1$, where the ϵ_i 's are i.i.d. standard normal. Find the lag-1 covariance, $R_1 = \text{Cov}(X_{i+1}, X_i)$.

Solution: From class notes (and it's easy to show anyway), $R_1 = \theta$. \diamondsuit

14. Consider the 2×2 covariance matrix

$$\Sigma = \left(\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array}\right).$$

Find the Cholesky matrix C such that $\Sigma = CC'$.

Solution: This might be a bit of overkill, but the following algorithm (from class) computes the $k \times k$ matrix C:

For
$$i=1,\ldots,k$$
,
$$\text{For } j=1,\ldots,i-1\text{,}$$

$$c_{ij} \leftarrow \left(\sigma_{ij} - \sum_{\ell=1}^{j-1} c_{i\ell}c_{j\ell}\right)/c_{jj}$$

$$c_{ji} \leftarrow 0$$

$$c_{ii} \leftarrow \left(\sigma_{ii} - \sum_{\ell=1}^{i-1} c_{i\ell}^2\right)^{1/2}$$

We simply need to substitute k = 2, $\sigma_{11} = \sigma_{22} = 1$, and $\sigma_{12} = 0.5$ and then run the algorithm.

For the case i = 1, the "For j = 1, ..., i - 1" loop becomes "For j = 1, 0", and so does not execute. Thus, for this case, we skip down to the last assignment and set

$$c_{11} \leftarrow \left(\sigma_{11} - \sum_{\ell=1}^{0} c_{1\ell}^2\right)^{1/2} = \sigma_{11}^{1/2} = 1.$$

With this result in hand, we can go to the i=2 case. Now the "For $j=1,\ldots,i-1$ " loop becomes "For j=1", and we can proceed with the following assignments:

$$c_{ij} = c_{21} \leftarrow \left(\sigma_{21} - \sum_{\ell=1}^{0} c_{i\ell} c_{1\ell}\right) / c_{11} = \sigma_{21} / c_{11} = 0.5$$

$$c_{ii} = c_{12} \leftarrow 0$$

and then the last assignment:

$$c_{ii} = c_{22} \leftarrow \left(\sigma_{22} - \sum_{\ell=1}^{1} c_{2\ell}^{2}\right)^{1/2} = \left(\sigma_{22} - c_{21}^{2}\right)^{1/2} = (1 - 0.25)^{1/2} = 0.866.$$

So after all of this, here's our final matrix:

$$C = \left(\begin{array}{cc} 1 & 0\\ 0.5 & 0.866 \end{array}\right).$$

(As a check, you'll see that $CC' = \Sigma$, as desired.) \diamondsuit

Alternatively, if you remembered from class notes that C has to be a lower triangular matrix, then you could have solved

$$CC' = \begin{pmatrix} c_{11} & 0 \\ c_{21} & c_{22} \end{pmatrix} \begin{pmatrix} c_{11} & c_{21} \\ 0 & c_{22} \end{pmatrix} = \begin{pmatrix} c_{11}^2 & c_{11}c_{21} \\ c_{11}c_{21} & c_{21}^2c_{22}^2 \end{pmatrix} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} = \Sigma$$

to obtain the same answer as before. \Diamond

- 15. What is the name of the method that one usually uses to generate RV's from a nonhomogeneous Poisson process?
 - (a) thinning
 - (b) independent increment sampling
 - (c) antithetic variates

(d) exponential smoothing

Solution: (a) thinning. \Diamond

16. Suppose that X(t), $t \geq 0$, is a stochastic process with the following properties: (i) X(0) = 0, (ii) $X(t) \sim \text{Nor}(0, t)$, and (iii) X(t) has stationary and independent increments. What is the colorful name of the X(t) process?

Solution: Brownian motion. \Diamond

17. Find the sample variance of 0, 5, and 10.

Solution: $S^2 = 25$. \diamondsuit

18. If X_1, \ldots, X_{10} are i.i.d. Pois($\lambda = 3$), what is the expected value of the sample variance S^2 ?

Solution: $E[S^2] = Var(X_i) = 3.$ \diamondsuit

19. If X_1, \ldots, X_{10} are i.i.d. Pois $(\lambda = 3)$, what is the expected value of the maximum likelihood estimator for the variance $Var(X_i)$?

Solution: By the above problem, $\mathsf{E}[\widehat{\sigma^2}] = \frac{n-1}{n} \mathsf{E}[S^2] = \frac{9}{10} \, 3 = 2.7.$

20. Suppose we observe the $\text{Exp}(\lambda)$ realizations $X_1 = 1.0, X_2 = 3.2, X_3 = 0.5$, and $X_4 = 1.3$. What is the maximum likelihood estimate of λ ?

Solution: By the class notes, $\hat{\lambda} = 1/\bar{X} = 2/3$.

21. Consider the set-up of Question #20, where $X \sim \text{Exp}(\lambda)$. What is the MLE of P(X > 2)?

Solution: By invariance and the previous problem,

$$\hat{P}(X > x) = e^{-\hat{\lambda}x} = e^{-(2/3)2} = e^{-4/3} = 0.264.$$
 \diamondsuit

22. TRUE or FALSE? The MLE's for the gamma distribution require an evaluation of the digamma function.

Solution: TRUE. \Diamond

23. Find the MLE for θ if X has p.d.f.

$$f(x) = (\theta + 1)x^{\theta}, \quad 0 \le x \le 1, \text{ where } \theta > 0.$$

Solution: The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f(x_i) = (\theta + 1)^n \prod_{i=1}^{n} x_i^{\theta}.$$

Thus,

$$\ell n(L(\theta)) = n \ell n(\theta + 1) + \theta \ell n \left(\prod_{i=1}^{n} x_i \right).$$

This implies that

$$\frac{d}{d\theta} \ln(L(\theta)) = \frac{n}{\theta+1} + \ln\left(\prod_{i=1}^{n} x_i\right).$$

Setting the derivative to 0 and solving yields

$$\hat{\theta} = \frac{-n}{\ln(\prod_{i=1}^n x_i)} - 1.$$
 \diamondsuit

24. Suppose we obtain sample data $X_1 = 0.30$, $X_2 = 0.78$, and $X_3 = 0.11$ from the distribution described in Question #23. What is the value of the MLE?

Solution:

$$\hat{\theta} = \frac{-n}{\ln(\prod_{i=1}^{n} x_i)} - 1 = -0.180.$$
 \diamondsuit

25. Suppose we're conducting a χ^2 goodness-of-fit test to determine whether or not 50 i.i.d. observations are from the distribution described in Question #23. If we divide the observations into 5 equal-probability intervals, how many degrees of freedom will our test have?

Solution: We have k=5 intervals and s=1 unknown parameter. Thus, $\nu=k-1-s=3$. \diamondsuit

26. Generally speaking, does output analysis for terminating simulation most-often use the method of independent replications or the method of batch means?

Solution: IR. \Diamond

27. Consider the following 9 observations arising from a simulation:

Use the method of batch means to calculate a two-sided 95% confidence interval for the mean μ . In particular, use three batches of size three.

Solution: The batch size is m = 3, the number of batches is b = 3, and the total number of observations is n = 9. The grand sample mean is $\bar{Y}_9 = 177.89$. The batch means are

$$\bar{Y}_{1.3} = 172.33, \quad \bar{Y}_{2.3} = 179.00, \quad \bar{Y}_{3.3} = 182.33.$$

The batch means variance estimator is

$$\hat{V}_B = \frac{m}{b-1} \sum_{i=1}^{b} (\bar{Y}_{i,3} - \bar{Y}_n)^2 = 77.79.$$

The batch means confidence interval is

$$\mu \in \bar{Y}_n \pm t_{\alpha/2,b-1} \sqrt{\hat{V}_B/n}$$

$$= 177.89 \pm t_{0.025,2} \sqrt{77.79/9}$$

$$= 177.89 \pm 4.30(2.94)$$

$$= 177.89 \pm 12.64 = [165.25, 190.53]. \diamondsuit$$

28. Suppose [-1, 1] is a 95% nonoverlapping batch means confidence interval for the mean μ based on 5 batches of size 500. Now the boss has decided that she wants a 90% CI based on those same 5 batches of size 500. What is it?

Solution: The confidence interval is of the form

$$[-1,1] = \bar{Y}_n \pm t_{\alpha/2,b-1} \sqrt{\hat{V}_B/n}.$$

This implies that $\bar{Y}_n = 0$ and the half-length is $t_{0.025,4}\sqrt{\hat{V}_B/n} = 1$. Thus, the new 90% confidence interval is

new CI =
$$\bar{Y}_n \pm t_{0.05,4} \sqrt{\hat{V}_B/n}$$

= $\pm \frac{t_{0.05,4}}{t_{0.025,4}} t_{0.025,4} \sqrt{\hat{V}_B/n}$
= $\pm \frac{2.13}{2.78} \times 1$
= ± 0.766 . \diamondsuit

29. Consider the output analysis method of nonoverlapping batch means. Assuming that you have a sufficiently large batch size, it can be shown that when the number of batches b is even, the expected width of the 95% two-sided confidence interval for μ is proportional to

$$\frac{t_{0.025,b-1}}{\sqrt{b-1}} \frac{\left(\frac{b-1}{2}\right)\left(\frac{b-3}{2}\right)\cdots\frac{1}{2}}{\left(\frac{b-2}{2}\right)!}.$$

Using the above equation, determine which of b=4 or b=6 or b=8 gives the smallest expected width.

Solution: Let h(b) denote the value of the above expression as a function of b. Then easy calculations reveal that h(4) = 1.377, h(6) = 1.078, and h(8) = 0.976. So the answer is b = 8. \diamondsuit

30. Consider the 9 observations from Question #27. If we choose a batch size of 7, calculate all of the *overlapping* batch means for me.

Solution:

$$\bar{Y}_{1,7}^{\text{o}} = \frac{1}{7} \sum_{i=1}^{7} Y_i = 175.29,$$

$$\bar{Y}_{2,7}^{\text{o}} = \frac{1}{7} \sum_{i=2}^{8} Y_i = 176.43$$
, and $\bar{Y}_{3,7}^{\text{o}} = \frac{1}{7} \sum_{i=3}^{9} Y_i = 180.57$. \diamondsuit

31. Consider a particular data set of 30000 stationary waiting times obtained from a large queueing system. Suppose we choose a batch size of m = 1000. Approximately how many degrees of freedom would the corresponding *overlapping* batch means confidence interval have?

Solution: Define the quantity b = n/m = 30. From class notes, the approximate d.f. is about $\frac{3b}{2} = 45$. \diamondsuit

32. Suppose that X_1, X_2, \ldots is a stationary stochastic process with covariance function $R_0 = 3$, $R_{\pm 1} = 2$, $R_{\pm 2} = 1$, and $R_k = 0$ for all other values of k. If $\bar{X}_n = \frac{1}{10} \sum_{i=1}^{10} X_i$ is the sample mean based on the first 10 observations, find $\text{Var}(\bar{X}_n)$.

Solution: From class, we know that

$$\begin{aligned} \mathsf{Var}(\bar{X}_n) &= \frac{1}{n} \left[R_0 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) R_k \right] \\ &= \frac{1}{10} \left[R_0 + 2 \sum_{k=1}^{9} \left(1 - \frac{k}{10} \right) R_k \right] \\ &= \frac{1}{10} \left[3 + 2 \left(1 - \frac{1}{10} \right) (2) + 2 \left(1 - \frac{2}{10} \right) (1) \right] \\ &= 0.82 \quad \diamondsuit \end{aligned}$$

33. Suppose that I'm using simulation to compare the waiting-time results from two alternative configurations of a certain service system. For Configuration A, I simulate 4 independent replications, and I'm willing to assume that the following replicate means are approximately i.i.d. normal:

These answers are bouncing all over the place, eh? I also run 4 independent replications of Configuration B, though I try to make an apples-to-apples comparison with the runs from Configuration A by keeping the same arrivals and service times. The corresponding results for Configuration B are:

These runs also bounce around a lot. In any case, I'd like you to give me a two-sided 95% paired-t confidence interval for the difference in the means of Configurations A and B.

Solution: The CI is based on the differences between corresponding observations, $D_1 = -10.0$, $D_2 = -9.5$, $D_3 = -10.5$, and $D_4 = -9.6$.

$$\mu_A - \mu_B \in \bar{D} \pm t_{\alpha/2, n-1} \sqrt{S_D^2/n}$$

$$= -9.9 \pm t_{0.025, 3} \sqrt{0.207/4}$$

$$= -9.9 \pm 3.18(0.227)$$

$$= -9.9 \pm 0.72 = [-10.62, -9.18]. \diamondsuit$$

34. Let's estimate the mean of an exponential distribution via MC simulation. As we know, you can write an Exp(1) RV as $X = -\ell n(1 - U)$ using inversion. Similarly, we know that the antithetic version, $Y = -\ell n(U)$, is also Exp(1). As we explained in class, X and Y are negatively correlated; and this fact can be put to good use in estimating the mean. In order to do this, consider the following 4 Unif(0,1) PRN's:

$$0.18 \quad 0.77 \quad 0.83 \quad 0.55$$

I want you to calculate and report 3 estimators for the mean: \bar{X} , \bar{Y} , and $\bar{Z} = (\bar{X} + \bar{Y})/2$. Also, which is the best? (Note that plenty of room has been provided on the answer sheet for you to report these 4 items.)

Solution: After some easy algebra, we find that

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{-1}{n} \sum_{i=1}^{n} \ln(1 - U_i) = \frac{-1}{4} \ln\left[\prod_{i=1}^{4} (1 - U_i)\right] = 1.0596. \quad \diamondsuit$$

Similarly,

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{-1}{4} \ln \left[\prod_{i=1}^{4} U_i \right] = 0.6901.$$
 \diamondsuit

And then we have

$$\bar{Z} \ = \ \frac{\bar{X} + \bar{Y}}{2} \ = \ 0.8749. \quad \diamondsuit$$

Of course, the actual mean of the Exp(1) is 1. All of the estimators are unbiased, but estimator \bar{X} comes closest to the right answer in this instance. This is just bad luck, since estimator \bar{Z} has the smallest variance — it will usually win, but not this time. \diamondsuit

Table 1: Standard normal values

/-	1	±. <u>-</u> 0	2.0	1.010	2.00	_
$P(Z \le z)$	0.8413	0.9000	0.9332	0.9500	0.9750	0.9773

Table 2: $\chi^2_{\alpha,\nu}$ values

$\nu \setminus \alpha$	0.10	0.05	0.025
1	2.71	3.84	5.02
2	4.61	5.99	7.38
3	6.25	7.81	9.35
4	7.78	9.49	11.14
5	9.24	11.07	12.83
6	10.65	12.59	14.45

Table 3: $t_{\alpha,\nu}$ values

$\nu \setminus \alpha$	0.10	0.05	0.025
1	3.08	6.31	12.71
2	1.89	2.92	4.30
3	1.64	2.35	3.18
4	1.53	2.13	2.78
5	1.48	2.02	2.57
6	1.44	1.94	2.45
7	1.42	1.90	2.36
8	1.40	1.86	2.31
9	1.38	1.83	2.26
10	1.37	1.81	2.23

Table 4: $F_{0.025,m,n}$ values

$n \setminus m$	3	4	5
3	15.44	15.10	14.88
4	9.98	9.60	9.36
5	7.76	7.39	7.15