MTH 511 HW 1

Brandyn Tucknott

Due 8 October 2025

- 1. **Exercise 3.22:** Show that $\|x\|_{\infty} \leq \|x\|_2$ for any $x \in \ell_2$, and that $\|x\|_2 \leq \|x\|_1$ for any $x \in \ell_1$. We split this proof into two parts: (a) $\|x\|_{\infty} \leq \|x\|_2$ and (b) $\|x\|_2 \leq \|x\|_1$.
 - (a) $||x||_{\infty} \le ||x||_2$

Proof. Fix $k \in \mathbb{N}$. Then clearly

$$|x_k|^2 \le \sum_{i=1}^{\infty} |x_i|^2$$

$$|x_k| \le \sqrt{\sum_{i=1}^{\infty} |x_i|^2}$$

$$||x||_{\infty} = \sup_{j \in \mathbb{N}} |x_j| \le \sqrt{\sum_{i=1}^{\infty} |x_i|^2} = ||x||_2$$

(b) $||x||_2 \le ||x||_1$

Proof. Recall that

$$||x||_1^2 = (|x_1| + |x_2| + \dots + |x_n|)^2 = \left(\sum_{i=1}^{\infty} |x_i|\right)^2.$$
 (1)

By considering the multinomial expansion of (1), we see that

$$\left(\sum_{i=1}^{\infty} |x_i|\right)^2 \ge \sum_{i=1}^{\infty} |x_i|^2$$

$$\sum_{i=1}^{\infty} |x_i| \ge \sqrt{\sum_{i=1}^{\infty} |x_i|^2}$$

$$\|x\|_1 \ge \|x\|_2.$$

2. Exercise 3.23: The subset of ℓ_{∞} consisting of all sequences that converge to 0 is denoted by c_0 . (Note that c_0 is actually a linear subspace of ℓ_{∞} ; thus c_0 is also a normed vector space under $\|\cdot\|_{\infty}$.) Show that we have the following proper set inclusions: $\ell_1 \subset \ell_2 \subset c_0 \subset \ell_{\infty}$.

Proof. Recall the following:

- By definition: $c_0 \subset \ell_{\infty}$.
- By 3.22a: $\ell_2 \subset c_0$.
- By 3.22b: $\ell_1 \subset \ell_2$.

Note: recognize our proof of 3.22a relies on the fact that (x_n) converges, but is independent of what the sequence converges to. For this reason we are able to conclude that $\ell_2 \subset c_0$ by 3.22a.

Chaining these results together, we conclude that

$$\ell_1 \subset \ell_2 \subset c_0 \subset \ell_\infty$$
.

Page 2

3. **Exercise 3.25:** Using $||f||_p = \left(\int_0^1 |f(t)|^p dt\right)^{1/p}$, state and prove lemma 3.7 and theorem 3.8 (also cover $p = 1, q = \infty$ for lemma 3.7).

Lemma 3.7 (Holder's Inequality). Let 1 and let <math>q be defined by 1/p + 1/q = 1. Given $x \in \ell_p$ and $y \in \ell_q$, we have $\sum_{i=1}^{\infty} |x_i y_i| \le \|x\|_p \|y\|_q$.

Theorem 3.8 (Minkowski's Inequality). Let $1 . If <math>x, y \in \ell_p$, then $x + y \in \ell_p$ and $||x + y||_p \le ||x||_p + ||y||_p$.

4. Exercise 3.36: Given a metric space (M,d), prove a convergent sequence is Cauchy and a Cauchy

sequence is bounded.

5. **Exercise 3.37:** A Cauchy sequence with a convergent subsequence converges.

6.	Exercise 3.39 converges to x .	: If every subsequence of (x_n) has a further subsequence that converges to x , then (x_n)