Predicting energy expectation values for one-dimensional non-linear Schrödinger Equation in random harmonic potentials using artificial neural network

Hüseyin Talha Şenyaşa 090120132

Advanced Physic Project Presentation

January 5, 2018

Outline

- Machine Learning
 - Machine Learning
 - Deep Learning and Schrödinger Equation
 - Applying Machine Learning to the NLSE
- Neural Network
 - Neural Network
- Training Results
 - Ground State Energy Predictions
 - Predicting Interaction Parameter
- Conclusion and Future Plans

Machine Learning

• Artificial neural networks used in machine learning can approximate any continuous function within desired accuracy.

ullet It is guaranteed that there exists a network that satisfies the relation $|g(x)-f(x)|<\epsilon.$

• Many different kind of applications of machine learning have already been implemented in physics.

Machine Learning

Figure 1: An example of artificial neural network (Multi-layer perceptron)

Deep Learning and Schrödinger Equation

• Application of machine learning to a 2D Schrödinger Equation with random potential.

Figure 2: Deep Learning and Schrödinger Equation.

Applying ML to the non-linear Schrödinger Equation

$$i\hbar \frac{\partial \Psi}{\partial t} = \frac{-\hbar^2}{2m} \nabla^2 \Psi + V(\boldsymbol{r}, t) \Psi + g |\Psi|^2 \Psi$$

- Non-linear term results from the interactions between bosons.
- Analytic solutions are known for only few cases.
- Generally solved by numerically or by approximation.

Numerical Solution

$$\mu'\psi_z = \frac{-\hbar^2}{2m} \frac{d^2\psi_z}{dz^2} + \frac{1}{2}m\omega_z^2(z - z_0)^2\psi_z + g'|\psi_z|^2\psi_z$$

 GPE is solved with random harmonic trapping potential including shift while interaction parameter is kept fixed.

Interaction Parameter $g: \{0, 0.1, 1, 10, 20\}$

Shift z_0 : [-5, 5]

Angular Frequency ω_z : [0.5, 2]

 Solved by using imaginary time propagation and re-normalization in XMDS Framework.

Numerical Solution

Figure 3: Density

Neural Network

- Implemented in Pytorch Framework.
- Two different neural network: Fully Connected, Convolutional.
- Trained to predict ground state energy of a Bose-Einstein Condensate.
- FCN is also trained to predict interaction, kinetic, potential, and total energy of the system.

Neural Network

Fully Connected Network:

- 1 input layer, 3 hidden layers, 1 output layer.
- Adaptive Learning Rate (Adam)
- ReLU activation function

Convolution Network:

- 2 convolution layers, 2 maxpool layers, 3 fully connected layer.
- Adaptive Learning Rate (Adam)
- Rel U activation function

Choosing Hyperparameters

Figure 4: Hyperparameters

Ground State Energy Predictions

Figure 5: FCN[128, 30, 30, 10, 1] results for g = 1

Ground State Energy Predictions

Figure 6: CNN results for g = 1

Ground State Energy Predictions

Figure 7: FCN[128, 30, 30, 10, 4], Separate energy predictions for g = 1.

Inverse Problem: Predicting interaction parameter

Figure 8: Prediction of interaction parameter

Conclusion and Future Plan

• Machine learning methods can also be applied to non-linear Schrödinger equation.

• Working with different potential types including random while the interaction parameter is also random.

Applying this study to the 2D GPE.