1 Diferencial

$6^{\underline{a}}$ Lista de Exercícios - Cálculo 1 - Ciências da Computação

1 Diferencial

Na notação de Liebnitz para derivada de uma função $f'(x) = \frac{dy}{dx}$, sendo y = f(x), os termos dy e dx são usados apenas como símbolos representativos. O objetivo do conceito chamado "diferencial" é dar uma definição para tais termos de tal forma que a razão $\frac{dy}{dx}$ tenha o mesmo significado que a derivada, em relação à variável x.

Para esse fim, considere y = f(x) uma função diferenciável. Assim a seguinte propriedade é válida:

$$\frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + \alpha(h), \tag{1}$$

sendo $\alpha(h) \to 0$ quando $h \to 0$.

Assim, tomando $\Delta f(x_0) = f(x_0 + h) - f(x_0)$ e $h = x - x_0 = \Delta x$ temos:

$$\Delta y = f'(x)\Delta x + \alpha(\Delta x)\Delta x,\tag{2}$$

sendo y = f(x) e $\alpha(\Delta x) \to 0$, quando $\Delta x \to 0$ e $\alpha(0) = 0$.

Desse modo o incremento Δy de uma função consiste de duas parcelas:

- $f'(x)\Delta x$ que é chamado **diferencial de uma função** e denotado por dy ou df(x), isto é, $dy = f'(x)\Delta x$.
- $\alpha(\Delta x)\Delta x$, que para Δx suficientemente pequeno implica em um valor menor que dy.

Observe que se y = f(x) = x então $\frac{dy}{dx} = f'(x) = 1$ e portanto, o diferencial dy é dado por $dy = \Delta x$, o que sugere adotar o símbolo $dx = \Delta x$ para o diferencial de x. Podemos escrever então dy = f'(x)dx, ou seja,

$$f'(x) = \frac{dy}{dx} = \frac{\text{diferencial de y}}{\text{diferencial de x}}.$$

Exemplo: Seja $f(x) = x^2$, determinemos os valores de dy e Δy quando x = 10 e $\Delta x = 0,01$. Solução:

$$\Delta y = f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2 = 2x\Delta x + (\Delta)^2$$

$$dy = f'(x)\Delta x = 2x\Delta x$$

No ponto x = 10 e com $\Delta x = 0,01$, temos:

$$\Delta y = 2(10)(0,01) + (0,01)^2 = 0,2001$$

 $dy = 2(10)(0,01) = 0,2$

Nesse caso, se usarmos dy no lugar de Δy então estaríamos cometendo um erro de 0,0001.

De modo geral, em cálculos aproximados podemos tomar $dy \approx \Delta y$, isto é, $f(x + \Delta x) \approx f(x) + f'(x)dx$.

Exercício 1.1: Prove a igualdade dada na Equação (1).

Exercício 1.2: A partir da Equação (1), mostre que a igualdade dada em (2) é válida.

Exercício 1.3: Seja f(x) = sen(x). Mostre que a função sen(x) pode ser aproximada pela reta y = x numa vizinhança da origem x = 0, isto é, demonstre que:

$$sen(k) \approx k$$
,

para k próximo de 0.

2 Taxas Relacionadas 2

Exercício 1.4: Demonstre as seguintes propriedades do diferencial de funções reais. Sejam f e g funções reais, então:

1.
$$d(f+g) = df + dg$$

$$2. d(f-g) = df - dg$$

3.
$$d(fg) = gdf + fdg$$

4.
$$d\left(\frac{f}{g}\right) = \frac{gdf - fdg}{g^2}$$

2 Taxas Relacionadas

Os problemas de taxas relacionadas são aqueles que envolvem diversas variáveis por meio de algum parâmetro como o tempo t, por exemplo, onde se dá para alguma condição inicial t_0 , valores dessas variáveis, bem como taxas de variações de algumas delas, e pede-se para determinar outras taxas de variações quando $t=t_0$. A melhor explicação para esse tipo de problema pode ser o próprio problema.

Exemplo: Seja a área de um quadrado de lado a. Qual a relação entre as variações dos lados $\frac{da}{dt}$ com a variação da área $\frac{dA}{dt}$?

Solução: Considere um quadrado de lado a que varia com o tempo, isto é, a(t). Desse modo, também temos que a área depende do tempo e portanto A(t). Como $A = a^2$, segue que:

$$\frac{dA}{dt} = 2a\frac{da}{dt}$$

dessa forma obtemos uma relação entre os crescimentos (decrescimentos) da área com as variações dos lados.

Exercício 2.1: Considere um balão esférico que está enchendo à razão de $2m^3/min$. Determine a velocidade com que cresce o raio do balão no instante em que tal raio mede 3m. (Considere por simplicidade que a pressão do gás é constante em cada instante).

Exercício 2.2: Considere um reservatório cônico (com vértice para baixo) de a metros de diâmetro e b metros de altura que escoa água à razão constante de $\frac{a}{10}m^3/min$. Com que velocidade baixa o nível da água no reservatório no instante em que a altura vale $\frac{1}{5}b$?

Exercício 2.3: Dois carros A e B saem de um mesmo local no mesmo instante por estradas perpendiculares. O carro A desenvolve uma velocidade igual a metade da velocidade do carro B. Com que velocidade varia a distância entre os carros depois de 2 horas de percurso?

Exercício 2.4: Uma partícula se move ao longo de uma circunferência de raio 1, isto é, sua trajetória é descrita por $x^2 + y^2 = 1$. A velocidade de sua projeção sobre o diâmetro horizontal é $\frac{dx}{dt} = y$, onde y é a projeção da partícula sobre o diâmetro vertical. Calcule $\frac{dy}{dt}$.