AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1-21. (Cancelled)
- 22. (Currently Amended) In a data processing system that executes a program of instructions, a method for inverting a point X on a distorted surface in a detail-in-context presentation for display on a display screen, comprising the steps of:
 - (a) locating a first approximation point P_i for an inversion of the point X, wherein the point P_i is on an undistorted surface: and.
 - (b) obtaining a point P_i^D by displacing the point P_i onto the distorted surface by applying a distortion function D; calculating a magnitude of the difference $|P_i^D X|$ between the point X and the point P_i^D ; -and, determining whether the point P_i is acceptable for the inversion of the point X by comparing the magnitude of the difference to a tolerance δ _: and, displaying the point P_i on the display screen if the point P_i is acceptable for the inversion of the point X.
- 23. (Previously Presented) The method of claim 22 and further comprising the steps of :
 - (c) locating a next approximation point P_{i+1} for the inversion of the point X if the approximation point P_i is not acceptable for the inversion of the point X; and,
 - (d) repeating steps (b) and (c) until the approximation point is acceptable for the inversion of the point X.
- 24. (Previously Presented) The method of claim 23 and further comprising the step of selecting the tolerance δ
- 25. (Previously Presented) The method of claim 24 wherein the tolerance δ is a fraction of a width of a pixel for a computer display surface.

- 26. (Previously Presented) The method of claim 25 wherein the fraction includes one-half.
- 27. (Previously Presented) The method of claim 22 wherein the undistorted surface is included in the detail-in-context presentation.
- 28. (Previously Presented) The method of claim 23 and further comprising the step of constructing a line RVP-X from a point RVP above the undistorted surface, through the point X, and through the undistorted surface to locate the first approximation point P_i at a point of intersection of the line RVP-X and the undistorted surface.
- 29. (Previously Presented) The method of claim 28 wherein the point RVP is a reference viewpoint for the detail-in-context presentation.
- 30. (Previously Presented) The method of claim 29 and further comprising the steps of: projecting the point P_I^D onto the line RVP-X to locate a point P_I^P, wherein the point P_I^P is a closest point to the point P_I^D on the line RVP-X; and, projecting the point P_I^P onto the undistorted surface in a direction opposite to that of a displacement due to distortion to locate the next approximation point P_{I+1} for the inversion of the point X, wherein the displacement due to distortion is given by a line F₀ F constructed through the undistorted surface and a focus F of the distorted surface, and wherein the point P_{I+1} is located on the undistorted surface at a point of intersection of the undistorted surface and a line constructed parallel to the line F₀ F and passing through the point P_I^P.
- 31. (Previously Presented) The method of claim 23 and further comprising the step of bisecting the point P_i to counter divergence in successive approximations of the point P_i due to folds or discontinuities in the distorted surface.
- 32. (Previously Presented) The method of claim 22 wherein the undistorted surface is a plane.

- 33. (Previously Presented) The method of claim 22 wherein the distorted surface is defined by the distortion function D
- 34. (Previously Presented) The method of claim 33 wherein the distortion function D is an ndimensional function, wherein n is an integer greater than zero.
- 35. (Previously Presented) The method of claim 34 wherein the distortion function D is a threedimensional function.
- 36. (Previously Presented) The method of claim 33 wherein the distortion function D is a lens function.
- 37. (Currently Amended) A system for inverting a point X on a distorted surface in a detail-incontext presentation, the system having memory, a display, and an input device, the system comprising:
 - a processor coupled to the memory, display, and input device and adapted for:
 - (a) locating a first approximation point P_i for an inversion of the point X, wherein the point P_i is on an undistorted surface; and,
 - (b) obtaining a point P_i^D by displacing the point P_i onto the distorted surface by applying a distortion function D; calculating a magnitude of the difference $|P_i^D X|$ between the point X and the point P_i^D ; and; determining whether the point P_i is acceptable for the inversion of the point X by comparing the magnitude of the difference to a tolerance δ ; and, displaying the point P_L on the display if the point P_L is acceptable for the inversion of the point X.
- 38. (Previously Presented) The system of claim 37 wherein said processor is further adapted for:
 - (c) locating a next approximation point P_{i+1} for the inversion of the point X if the approximation point P_i is not acceptable for the inversion of the point X; and,
 - (d) repeating (b) and (c) until the approximation point is acceptable for the inversion of the point X.

39. (Currently Amended) A computer program product having a computer readable medium tangibly embodying computer executable code for directing a data processing system to invert a point X on a distorted surface in a detail-in-context presentation <u>for display on a display screen</u>, the computer program product comprising:

code for (a) locating a first approximation point P_i for an inversion of the point X, wherein the point P_i is on an undistorted surface; and,

code for (b) obtaining a point P_i^D by displacing the point P_i onto the distorted surface by applying a distortion function D; calculating a magnitude of the difference $|P_i^D - X|$ between the point X and the point P_i^D ; and_r determining whether the point P_i is acceptable for the inversion of the point X by comparing the magnitude of the difference to a tolerance δ ; and, displaying the point P_i on the display screen if the point P_i is acceptable for the inversion of the point X.

40. (Previously Presented) The computer program product of claim 39 and further comprising: code for (c) locating a next approximation point P_{i+1} for the inversion of the point X if the approximation point P_i is not acceptable for the inversion of the point X; and, code for (d) repeating (b) and (c) until the approximation point is acceptable for the inversion of the point X.

41-42. (Cancelled)

43. (Currently Amended) In a data processing system that executes a program of instructions, a method for determining a distance on an undistorted surface between a first point X_1 and a second point X_2 on a distorted surface in a detail-in-context presentation for display on a display screen, comprising:

inverting the point X_1 by:

locating a first approximation point P_{i1} for an inversion of the point X_1 , wherein the point P_{i1} is on the undistorted surface; and,

obtaining a point P_{II}^D by displacing the point P_{i1} onto the distorted surface by applying a distortion function D; calculating a magnitude of the difference $|P_{II}^D - X_1|$ between the point X_1 and the point P_{II}^D ; and, determining whether the point P_{II} is acceptable for the inversion of the point X_1 by comparing the magnitude of the difference $|P_{II}^D - X_1|$ to a tolerance δ :

inverting the point X2 by:

locating a first approximation point P_{12} for an inversion of the point X_2 , wherein the point P_{12} is on the undistorted surface: and.

obtaining a point P_{12}^D by displacing the point P_{12} onto the distorted surface by applying a distortion function D; calculating a magnitude of the difference $|P_{12}^D - X_2|$ between the point X_2 and the point P_{12}^D ; and, determining whether the point P_{12} is acceptable for the inversion of the point X_2 by comparing the magnitude of the difference $|P_{12}^D - X_2|$ to the tolerance δ : and

calculating a magnitude of the difference $|P_{i1} - P_{i2}|$ between the approximation points P_{i1} and P_{i2} : and

displaying the magnitude of the difference | Pi1 - Pi2 | on the display screen .

44. (Previously Presented) The method of claim 43 wherein the first point X₁ is on a first disported surface defined by a first distortion function D₁ and the second point X₂ is on a second distorted surface defined by a second distortion function D₂.

- 45. (Currently Amended) In a data processing system that executes a program of instructions, a method for inverting a point X on a distorted surface in a detail-in-context presentation for display on a display screen, comprising the steps of:
 - (a) locating a first approximation point P_i for an inversion of the point X, wherein the point P_i is on an undistorted surface;
 - (b) obtaining a point P_i^D by displacing the point P_i onto the distorted surface by applying a distortion function D_i ; calculating a magnitude of the difference $|P_i^D X|$ between the point X and the point P_i^D ; and, determining whether the point P_i is acceptable for the inversion of the point X by comparing the magnitude of the difference to a tolerance δ ;
 - (c) locating a next approximation point P_{i+1} for the inversion of the point X if the approximation point P_i is not acceptable for the inversion of the point X by: constructing a line RVP-X from a point RVP above the undistorted surface, through the point X, and through the undistorted surface to locate the first approximation point P_i at a point of intersection of the line RVP-X and the undistorted surface, wherein the point P_i onto the line RVP-X to locate a point P_i , wherein the point P_i is a closest point to the point P_i onto the line RVP-X; and, projecting the point P_i onto the undistorted surface in a direction opposite to that of a displacement due to distortion to locate the next approximation point P_{i+1} for the inversion of the point P_i , wherein the displacement due to distortion is given by a line P_i F constructed through the undistorted surface and a focus F of the distorted surface, and wherein the point P_{i+1} is located on the undistorted surface at a point of intersection of the undistorted surface and a line constructed parallel to the line P_i F and passing through the point P_i P_i and P_i P_i and P_i P_i P_i and P_i P_i -
 - (d) repeating steps (b) and (c) until the approximation point is acceptable for the inversion of the point X; and,
 - (e) displaying the approximation point on the display screen .

46. (Currently Amended) A computer program product having a computer readable medium tangibly embodying computer executable code for directing a data processing system to invert a point X on a distorted surface in a detail-in-context presentation <u>for display on a display screen</u>, the computer program product comprising:

code for (a) locating a first approximation point P_i for an inversion of the point X, wherein the point P_i is on an undistorted surface;

code for (b) obtaining a point P_i^D by displacing the point P_i onto the distorted surface by applying a distortion function D; calculating a magnitude of the difference $\mid P_i^D - X \mid$ between the point X and the point P_i^D ; and, determining whether the point P_i is acceptable for the inversion of the point X by comparing the magnitude of the difference to a tolerance δ ;

code for (c) locating a next approximation point P_{i+1} for the inversion of the point X if the approximation point P_i is not acceptable for the inversion of the point X; and,

code for (d) repeating (b) and (c) until the approximation point is acceptable for the inversion of the point X ; and,

code for (e) displaying the approximation point on the display screen.

- 47. (Currently Amended) In a data processing system that executes a program of instructions, a method for inverting a point X on a distorted surface in a detail-in-context presentation for display on a display screen, comprising the steps of:
 - (a) locating a first approximation point P_i for an inversion of the point X, wherein the point P_i
 is on an undistorted surface;
 - (b) obtaining a point P_i^D by displacing the point P_i onto the distorted surface by applying a distortion function D; calculating a magnitude of the difference $|P_i^D X|$ between the point X and the point P_i^D ; and, determining whether the point P_i is acceptable for the inversion of the point X by comparing the magnitude of the difference to a tolerance δ ;
 - (c) locating a next approximation point P_{i+1} for the inversion of the point X if the approximation point P_i is not acceptable for the inversion of the point X; and,
 - (d) repeating steps (b) and (c) until the approximation point is acceptable for the inversion of the point X: and,
 - (e) displaying the approximation point on the display screen .

- 48. (Currently Amended) A system for inverting a point X on a distorted surface in a detail-incontext presentation, the system having memory, a display, and an input device, the system comprising:
 - a processor coupled to the memory, display, and input device and adapted for:
 - (a) locating a first approximation point P_i for an inversion of the point X, wherein the point P_i
 is on an undistorted surface;
 - (b) obtaining a point P_i^D by displacing the point P_i onto the distorted surface by applying a distortion function D; calculating a magnitude of the difference $|P_i^D X|$ between the point X and the point P_i^D ; and, determining whether the point P_i is acceptable for the inversion of the point X by comparing the magnitude of the difference to a tolerance δ ;
 - (c) locating a next approximation point P_{i+1} for the inversion of the point X if the approximation point P_i is not acceptable for the inversion of the point X; and,
 - (d) repeating (b) and (c) until the approximation point is acceptable for the inversion of the point X : and.
 - (e) displaying the approximation point on the display .

49. (Cancelled)