JOURNAL OF

THE ROYAL SOCIETY

WESTERN AUSTRALIA

VOLUME 64

PART 4

JANUARY, 1982

PRICE THREE DOLLARS

THE

ROYAL SOCIETY

OF

WESTERN AUSTRALIA

PATRON

Her Majesty the Queen

VICE-PATRON

His Excellency Rear Admiral Sir Richard Trowbridge, K.C.V.O., K.St.J., Governor of Western Australia

COUNCIL 1981-1982.

President	••••	••••	J. F. Loneragan, B.Sc., Ph.D., F.T.S.
Vice-Presidents		••••	A. E. Cockbain, B.Sc., Ph.D.
			S. J. J. F. Davies, M.A., Ph.D.
Past President	••••		J. R. de Lacter, B.Ed. (Hons.), B.Sc. (Hons.), Ph.D., F.Inst.P., F.A.I.P.
Joint Hon. Secretaries			E. D. Kabay, B.Ag.Sci. (Hons.) J. T. Tippett, B.Sc., Ph.D.
Hon. Treasurer	••••		S. J. Curry, M.A.
Hon. Librarian	••••		H. E. Balme, M.A., Grad. Dip. Lib. Stud.
Hon. Editor	••••		A. E. Cockbain, B.Sc., Ph.D.
	1	D. T. I	Bell, B.A., Ph.D.

- D. T. Bell, B.A., Ph.D.
- S. J. Hallam, M.A.
- C. F. H. Jenkins, M.B.E., M.A., M.A.I.A.S.
- L. E. Koch, M.Sc., Ph.D.
- M. J. Mulcahy, B.Sc. (For.), Ph.D.
- L. J. Pect, B.Sc., Dip. Val., Dip. R.E.M., F.G.S., A.R.E.I.
- P. E. Playford, B.Sc. (Hons.), Ph.D., M.A.I.M.M.
- P. R. Wycherley, O.B.E., B.Sc., Ph.D., F.L.S.

Hair structure of some Western Australian mammals

by A. Valente and P. A. Woolley
Zoology Department, La Trobe University, Bundoora, Vic. 3083
(communicated by B. K. Bowen)
Manuscript received 19 February 1980; accepted 17 February 1981

Abstract

The technique of identification of hair in predator scats has been used in an attempt to locate areas in which the Dibbler, Antechians apicalis, lives. A photographic reference system of the diagnostic features of the structure of the hair of 15 species of mammals indigenous to the south of Western Australia has been compiled. This has been used in conjunction with the photographs in Brunner and Coman (1974) of the hair structure of other species found in the 3 regions where the scats were collected. No Dibbler remains were found.

Introduction

The method of identification of mammalian hair developed by Brunner and Coman (1974) has been found useful in mammal surveys. Uncommon or inconspicuous species which are not often registered hy conventional techniques may be detected hy analysis of hair remains in predator scats (Brunner and Bertuch 1976, Friend 1978). It was considered that this technique might be useful in the search for the Dihbler, Autechiaus apicalis, which is now considered to be extremely rare. The Dibbler has been found in recent times in only two localities, Cheyne Beach and Jerdacuttup, in the south of Western Australia. Morcombe (1967) trapped the first two specimens seen for 83 years at Cheyne Beach and his discovery, together with the finding of two Dibblers on farms near Jerdacuttup, led to further searches being made (Woolley 1977, 1980). Trapping has been carried out in a number of localities in the vicinity of Cheyne Beach and Jerdaeuttup, and also in the Fitzgerald River National Park which lies within the present known range of the Dihhler. However, the only area in which Dihblers have been trapped is the one in which they were found by Morcomhe and only 9 individuals have been captured (Woolley 1980). Because attempts to locate other populations of the Dihhler by conventional trapping methods have been unsuccessful predator seats have been collected from the three regions in the south of Western Australia in which trapping for the Dibbler has been carried out.

In order to identify the hair found in the prodator scats it was necessary to prepare a reference set of photographs of the most diagnostic features of the

Figure 1.—Map showing the three regions (Cheyne Beach, Fitzgerald River National Park = F.R.N.P. and Jerdacuttup) in which scats were collected. Drawn from map R201, sheet 111, Australia S.W. sheet 2nd ed. Division of National Mapping, Canberra, A.C.T.

hair of mammals which might be found in the regions in which the scats were collected. This paper reports on the structure of the hair of some mammals from the south of Western Australia; the mammalian prey items, identified by reference to the structure of hair and skeletal remains, found in the scats collected will he reported elsewhere.

Reference photographs of hair structure

The 3 localities (Cheyne Beach, Jerdacuttup and Fitzgerald River National Park) in which trapping for the Dibbler has been carried out are shown in Figure 1. A list of the indigenous and introduced mammals which might be found in the degree squares encompassing the trapping areas was compiled from the following sources: Ride (1970); records of the Western Australian Museum (computer printout of mammalian species recorded by one degree squares dated 12 June 1978); information provided by Dr. A. N. Start, National Parks Board of Western Australia. The 38 mammals listed comprised the following 28 indigenous and 10 introduced species:— Autechinus apicalis*, A. flavipes leucogaster*, Ante-chinomys lauiger*, Smiuthopsis crassicaudata, S. granulipes*, S. hirtipes*, Phascogale calura*, Dasyurus geoffroii*, Myrniccobius fasciatus*, Isoodon obesulus, Tarsipes speucerae*, Cercatetus conciunus, Trichosurus vulpecula, Bettongia penicillata*, Macropus eugenii*, M. fuliginosus, M. irma*, Potorous platyops*, P. tridactylus, Setonix brachyurus*, Tachyglossus aculeatus, Hydromys chrysogaster, Notomys mitchellii, Pseudomys albocinereus, P. occidentalis*, P. shortvidgei, Rattus fuscipes, R. rattus, Mus musculus, Oryctolagus cuniculus, Felis catus, Canis familiaris, Vulpes vulpes, Sus scrofa, Ovis aries, Bos taurns and Equus caballus.

The structure of the hair of 13 of the indigenous species and of the 10 introduced species is illustrated in Brunner and Coman (1974). Samples of hair of the 15 indigenous species not illustrated (asterisked in the above list) were obtained from either museum specimens (Western Australian Museum, WAM; Macleay Museum New South Wales, MM) or live animals (Murdoch University Colony MU) and a set of photographs of the structure of the hairs of each prepared (Figs 2-16). Hair profiles were drawn to scale. Whole mounts, cross sections and cuticular scale casts were prepared as described in Brunner and Coman (1974) and photographed using a Zeiss photomicroscope. Prints were all made to one standard magnification (x308).

The hairs found in the scats were identified using a photographic reference system as described in Brunner and Coman (1974). To make identification easier the 38 species listed above were grouped according to various characteristics of the primary guard Hair profiles:- O = over hair, G = guard hair.

- A, B Cross sections of hairs.

 Maximum diameter of primary guard hairs 30 μ m.
- C-G Whole mounts of hairs.
 C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, primary guard hair near base; F, smaller guard hair in shield region; G, smaller guard hair in mid-shaft region.
- II-J Scale patterns of guard hairs.H, shield; I, transition between shield and shaft region;J, lower-shaft.

Figure 2.-Antechinomys laniger WAM M1546.

- A, B Cross sections of hairs.

 Maximum diameter of primary guard hairs 40 μ m.
- C-G Whole mounts of hairs.
 C, primary guard hair in mid-shield region; D, primary guard hair in proximal shield region; E, primary guard hair in mid-shaft region; F, primary guard hair near base; G, under hair in proximal 1/3.
- II-K Scale patterns of guard hairs.H, shield; I, transition between shield and shaft regions;J, shaft; K, near base.

Figure 3.—Sminthopsis granulipes WAM M2333.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 40 μm .
- C-G Whole mounts of hairs.
 C, primary guard hair in shield region; D, primary guard hair showing transition between shield and shaft; E, primary guard hair in shaft region; F, smaller guard hair in shield region; G, under hair in proximal 1/2.
- H-J Scale patterns of guard hairs.
 H, shield; I, transition between shield and shaft regions;
 J, shaft.

Figure 4. -Sminthopsis hirtipes WAM M1577.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 80 μ m.
- C-G Whole mounts of hairs.
 C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, F, smaller guard hairs in shield region; G, under hair in proximal 1/2.
- H-K Scale patterns of guard hairs.
 H, shield; I, transition between shield and shaft regions;
 J, shaft; K, near base.

Figure 5.-Tarsipes spencerae WAM M15460.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 45 μ m.
- C-G Whole mounts of hairs.
 C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, F, smaller guard hairs in shield region; G, under hair in proximal 1/2.
- II-L Seale patterns of guard hairs.H, I, shield; J, transition between shield and shaft regions;K, mid-shaft; L, near base.

Figure 6.—Antechinus flavipes leucogaster WAM M5559.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 65 μm .
- C-H Whole mounts of hairs.
 C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, F, smaller guard hairs in shield region; G, smaller guard hair in mid-shaft region; H, under hair in proximal 1/2.
- I-L Scale patterns of guard hairs.I, mid-shield; J, lower shield; K, transition between shield and shaft regions; L, shaft.

Figure 7.—Antechinus apicalis WAM M15471-2.

- A, B Cross sections of hairs.
 - Maximum diameter of primary guard hairs 50 μm.
- C-G Whole mounts of hairs.
 C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, smaller guard hair in shield region; F, smaller guard hair in mid-shaft region;
 - G, under hair in proximal 1/3.
- H-K Scale patterns of guard hairs.
 - H, shield; I, transition between shield and shaft regions;
 - J, mid-shaft; K, near base.

Figure 8.—Phascogale calura WAM M5311.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 80 μm .
- C-H Whole mounts of hairs.
 C, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, smaller guard hair in widest region; F, smaller guard hair in mid-shaft region; G, smaller guard hair near base; H, under hair in proximal 1/3.
- I-L Scale patterns of guard hairs.
 I, J, distal 1/3; K, transition between distal and proximal regions; L, proximal 1/3.

Figure 9.—Dasyurus geoffroii WAM M1106,

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 165 μ m.
- C-F Whole mounts of hairs.
 C, primary guard hair in widest region; D, primary guard hair in proximal 1/3; E, primary guard hair near base;
 F, under hair in proximal 1/2.
- G-I Seale patterns of guard hairs.
 G, distal 1/3; II, proximal 1/3; I, near base.

Figure 10.—Myrmecobius fasciatus WAM M918.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 40 μm .
- C-G Whole mounts of hairs.
 C, primary guard hair in shield region; D, primary guard hair in mid-shaft region; E, smaller guard hair in shield region; F, smaller guard hair in mid-shaft region, G, under hair in proximal 1/2.
- II-KScale patterns of guard hairs.H, shield; I, transition between shield and shaft regions;J, mid-shaft; K, near base.

Figure 11.—Pseudomys occidentalis WAM M10093.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 120 μ m.
- C-G Whole mounts of hairs.
 C, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, smaller guard hair in widest region; F, smaller guard hair in mid-shaft region; G, under hair in proximal 1/2.
- H-K
 Scale patterns of guard hairs.
 H, distal 1/3; I, transition between distal and proximal regions; J, mid-shaft; K. near base.

Figure 12.—Bettongia penicillata WAM 1366.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 95 μm .
- C-G Whole mounts of hairs.
 C, primary guard hair in widest region; D. primary guard hair in mid-shaft region; E, smaller guard hair in widest region; F, smaller guard hair in mid-shaft region; G, under hair in proximal 1/2.
- H-J Seale patterns of guard hairs. H, distal 1/3; I, mid-shaft; J, proximal 1/3.

Figure 13.—Macropus eugenii MU.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 105 μm .
- C-G Whole mounts of hairs.
 C, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, smaller guard hair in widest region; F, smaller guard hair in mid-shaft region; G, under hair in proximal 1/2.
- H-J Scale patterns of guard hairs. H, distal 1/3; I, mid-shaft; J, near base.

Figure 14.-Macropus irma MU.

- A, B. Cross sections of hairs. Maximum diameter of primary guard hairs 120 μm .
- C-F Whole mounts of hairs.
 C, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, primary guard hair near base; F, under hair in distal 1/3.
- G-I Scale patterns of guard hairs.
 G, distal 1/3; H, mid-shaft; I, proximal 1/3.

Figure 15.—Potorous platyops MM Q.

- A, B Cross sections of hairs. Maximum diameter of primary guard hairs 145 μm .
- C-F Whole mounts of hairs.
 C, primary guard hair in widest region; D, primary guard hair in mid-shaft region; E, smaller guard hair in mid-shaft region; F, under hair in proximal 1/2.
- G-J Scale patterns of guard hairs. G, H, distal 1/3; I, mid-shaft; J, near base.

Figure 16.—Setonix brachyurus MU.

hairs (Table 1). In addition to the photographs hair samples from most of the species were available so that direct comparisons could be made if necessary.

Discussion

The species to which a sample of unknown hair belongs can be identified by comparison with the photographs of the structure of hairs in a reference collection. Some species are very easily identified because the hairs have very obvious distinguishing characters while others lack such obvious characters and may show only small differences from related forms.

Among the species illustrated examples with obvious distinguishing characters include Antechinus apicalis, Myrmecobius fasciatus. Tarsipes spencerae,

Table 1 A grouping of terrestrial mammals from the south of Western Australia based on the structure of the primary guard hairs Hairs predominantly circular in cross section.

Dasyuridae

*Antechinomys laniger

*Sminthopsis granulipes

*Sminthopsis hirtipes

*Tarsipedidae

*Tarsipes spencerae Group 1 Burramyidae Cercatetus concinnus Hairs predominantly oval in cross section. Hairs with medulla much reduced or absent. Bovidae Ovis aries Group 2 Sub-group (a) Snidae Sus scrota Maximum diameter of guard hairs 45um, with a distinct constriction before shield. Dasyuridae *Antechinus flavipes Sub-group (b) ominthopsis crassicaudata
Sminthopsis murina
Maximum diameter of guard bairs greater
than 45um, with a distinct constriction
before shield.
Dasyuridae
• Antechinus lencoyaster Sub-group (c) *Dasyurus geoffroii
*Mrmecobius fasciatus
Sub-group (d) Maximum diameter of guard bairs greater tban 45um, no constriction before shield.
ovidae Bos taurus Bovidae Canis Jamiliaris Vulpes vulpes Canidac Equus caballus Equidae Felidae Felis catus Hairs lenticular (double convex) in cross Group 3 section. Phalangeridae Trichosurus vulpecula Hairs predominantly ohlong in cross section. Group 4 Sub-group (a) Medulla ahsent. Tachyglossidae Tachyglossus aculeatus Maximum diameter of guard hairs 45um, with a distinct constriction before shield. Sub-group (b) Notomys mitchellii Pseudomys albocinere Pseudomys albocinereus
*Pseudomys occidentalis

Maximum diameter of guard hairs greater
than 45um, with a distinct constriction
before shield.
Muridan Sub-group (c) Muridae Hydromys chrysogaster
Maximum diameter of guard hairs greater
tban 45um, with no constriction before Sub-group (d) shield *Bettongia penicillata *Macropus engenii Macropus Juliginosus *Macropus irma Macropodidae *Potorous platyops Potorous tridactylus *Setonix brachyurus Hairs predominantly reniform (concave-con-Group 5 vex) in cross section.

Hairs with divided medulla.

Peramelidae Isoodon obesulus Sub-group (a) Hairs with bilobed or targe medulla.

Muridae

Mus musculus Sub-group (b) Pseudomys shortridgei Rattus fuscipes Rattus rattus Group 6 Hairs predominantly dumb-bell shaped in cross section. Leporidae Oryctolagus cuniculus Species illustrated in Figures 2-16, remainder illustrated in Brunner and Coman (1974). Setonix brachynrus and Antechinomys laniger. apicalis displays a globular arrangement of the medulla which is very distinctive in cross section. The hairs of both M. fasciatus and T. spencerae can he easily recognised by the appearance of the medulla in whole mounts and cross sections. S. brachyurus has thick, long hair which displays a very distinctive scale pattern along the proximal half of the hair. Many of the guard hairs of A. laniger show an uncommon profile, with constrictions at several points along the length of the hair.

Some of the marsupials illustrated are difficult to distinguish from closely related forms illustrated in Brunner and Coman (1974). These include:— Antechinus flavipes leucogaster, the western form of A. flavipes; Sminthopsis hirtipes, which appears to differ from S. crassicaudata only in the width of the primary guard hairs and Potorous platyops and P. triductylus, in which there are only subtle differences in the appearance of the medulla, best appreciated by examining hairs rather than photographs. Among the murids, hair from Pseudomys occidentalis differs little from other species of Pseudomys illustrated in Brunner and Coman (1974), P. shortridgei being the exception.

The grouping of species in Table 1 shows some discrepancies with the grouping in Brunner and Coman (1974). We have placed Sminthopsis crassicanduta in Group 2 (hairs predominantly oval in cross section) and not in Group 1 (hairs predominantly circular in cross section) on the basis of the illustration in Brunner and Coman which shows mainly oval hairs, and on the examination of reference hairs. Macropus fuliginosus and Potorous tridactylus have been placed in Group 4 (hairs predominantly ohlong in cross section) whereas Brunner and Coman place them in Group 2 (hairs predominantly oval in cross section). The difficulty in this case appears to lie in the rather subjective interpretation of the difference hetween oval and oblong sections.

The primary aim in preparing this reference collection of photographs was to provide a method for identifying the hair of the Dibbler, Antechinus apicalis. The distinctive character of the hair of this species makes it unlikely that any samples of it would be misidentified, and none was found in any of the predator scats examined.

Acknowledgements.—We wish to thank Mr. H. Brunner (Keitb Turnbull Research Institute) for instruction in the techniques involved in the identification of hair and Dr. D. J. Kitchener (Western Australian Museum), Dr. P. Stanbury (Macleay Museum) and Dr. M. B. Renfree (Murdoch University) for bair samples.

References

- Brunner, H. and Bertuch, I. (1976).—The broad-toothed rat still in Sherbrooke Forest. A successful search for Mastacomy's fuscus Thomas, Vict. Nat., 93: for M 55-56.
- Brunner, H. and Coman, B. (1974).—"The Identification of Mammalian Hair". Inkata Press, Melbourne.
- Friend, G. R. (1978).—A comparison of predator scat analysis with conventional techniques in a mammat survey of contrasting babitats in Gippsland, Victoria. Aust. Wildl. Res., 5: 75-83.
- Morcombe, M. K. (1967).—The rediscovery after 83 years of the Dibbler Antechinus apicalis (Marsupialia, Dasyuridae). W. Aust. Nat., 10; 103-111.
- Ride, W. D. L. (1970),—"A Guide to the Native Mammals of Australia". Oxford University Press, Melbourne.
- Woolley, P. (1977).—In search of the Dibbler, Antechinus apicalis (Marshpialia; Dasyuridae). J. Roy. Soc. West Anst., 59: 111-117.
- Woolley, P. (1980).—Further searches for the Dibbler, Ante-chinus apicalis (Marsupialia: Dasyuridae). J. Roy. Soc. West Anst., 63: 47-52.

INSTRUCTIONS TO AUTHORS

Contributions to this Journal should be sent to *The Honorary Editor*, *Royal Society of Western Australia*, *Western Australian Museum*, *Francis Street*, *Perth*, *Western Australia* 6000. Publication in the Society's Journal is available to all categories of members and to non-members residing outside Western Australia. Where all authors of a paper live in Western Australia at least one author must be a member of the Society. Papers by non-members living outside the State must be communicated through an Ordinary or an Honorary Member. Council decides whether any contribution will be accepted for publication. All papers accepted must be read either in full or in abstract or be tabled at an ordinary meeting before publication.

Papers should be accompanied by a table of contents, on a separate sheet, showing clearly the status of all headings; this will not necessarily be published. Authors should maintain a proper balance between length and substance, and papers longer than 10 000 words would need to be of exceptional importance to be considered for publication. The Abstract (which will probably be read more than any other part of the paper) should not be an expanded title, but should include the main substance of the paper in a condensed form.

Typescripts should be double-spaced on opaque white paper; the original and one copy should be sent. Tables and captions for Figures should be on separate sheets. All pages should be serially numbered. Authors are advised to use recent issues of the Journal as a guide to the general format of their papers, including the preparation of references; journal titles in references may be given in full or may follow any widely used conventional system of abbreviation.

Note that *all* illustrations are Figures, which are numbered in a single sequence. In composite Figures, made up of several photographs or diagrams, each of these should be designated by letter (e.g. Figure 13B). Illustrations should include all necessary lettering, and must be suitable for direct photographic reproduction. No lettering should be smaller than 1 mm on reduction. To avoid unnecessary handling of the original illustrations, which are usually best prepared between $1\frac{1}{2}$ and 2 times the required size, authors are advised to supply extra prints already reduced. Additional printing costs, such as those for folding maps or colour blocks, will normally be charged to authors.

The metric system (S.I. units) must be used in the paper. Taxonomic papers must follow the appropriate International Code of Nomenclature, and geological papers must adhere to the International Stratigraphic Guide. Spelling should follow the Concise Oxford Dictionary.

Extensive sets of data, such as large tables or long appendices, may be classed as Supplementary Publications and not printed with the paper. Supplementary Publications will be lodged with the Society's Library (c/- Western Australian Museum, Perth, W.A. 6000) and with the National Library of Australia (Manuscript Section, Parkes Place, Barton, A.C.T. 2600) and photocopies may be obtained from either institution upon payment of a fee.

Fifty reprints of each paper are supplied free of charge. Further reprints may be ordered at cost, provided that orders are submitted with the returned galley proofs.

Authors are solely responsible for the accuracy of all information in their papers, and for any opinion they express.

Journal

of the

Royal Society of Western Australia

Volume 64 1982

Part 4

Contents

		Page
Hair structure of some Western Australian mammals.	By A. Valente and	
P. A. Woolley (communicated by B. K. Bowen)		101

Editor: A. E. Cockbain

Journal Manager: J. Backhouse

No claim for non-receipt of the Journal will be entertained unless it is received within 12 months after publication of part 4 of each volume.

The Royal Society of Western Australia, Western Australian Museum, Perth