

Hexagonal Territory

ปัก เด็งเคล็ก ยืนอยู่ในช่อง (cell) ที่เรียกว่าช่องเริ่มต้นในตารางขนาดอนันต์ที่เกิดจากการนำกระเบื้องรูปหกเหลี่ยมมาวาง ต่อกัน จะกล่าวว่าช่องหกเหลี่ยมสองช่องในตารางนั้นติดกันถ้ามีการใช้ด้านร่วมกัน ในการเดินหนึ่งก้าว ปัก เด็งเคล็ก สามารถย้ายตำแหน่งจากช่องหนึ่ง ๆ ไปยังช่องที่ติดกันได้ โดยเคลื่อนที่ไปในทิศทางหนึ่งจากหกทิศทางที่เป็นไปได้ ตาม หมายเลขตั้งแต่ 1 ถึง 6 ดังแสดงในรูปด้านล่าง

ปัก เด็งเคล็ก จะสร้างอาณาเขตโดยการเดินไปตามเส้นทางที่ประกอบไปด้วยลำดับของช่องในตารางที่เดินผ่านจากลำดับ ของการเคลื่อนที่ N ครั้ง การเคลื่อนที่ครั้งที่ i จะระบุด้วยทิศทาง D[i] จากนั้นจะมีการเดินไป L[i] ก้าวในทิศทางที่ เลือกดังกล่าว เส้นทางที่ได้จะมีคุณสมบัติดังต่อไปนี้:

- เส้นทางจะเป็นเส้นทาง *ปิด* (closed) นั่นคือช่องสุดท้ายของลำดับจะเป็นช่องเดียวกันกับช่องที่เป็นจุดเริ่มต้นของ ลำดับ
- เส้นทางจะเป็นเส้นที่ที่ *ง่าย* (simple) นั่นคือทุก ๆ ช่องในตารางอนันต์จะถูกเดินผ่านไม่เกินหนึ่งครั้ง ยกเว้นที่ช่อง เริ่มต้นที่จะถูกเดินไปถึงสองครั้ง (เมื่อเริ่มต้นและเมื่อสิ้นสุด)
- เส้นทางจะเป็นเส้นทางที่ *เปิดเผย* (exposed) นั่นคือทุก ๆ ช่องในเส้นทางจะติดกับช่องอีกอย่างน้อยหนึ่งช่องที่ไม่ ได้อยู่ในเส้นทางและไม่ได้เป็น *ช่องภายใน* (inside).
 - เราจะเรียกว่าช่องเป็นช่อง ภายใน ถ้าช่องนั้นไม่ได้อยู่ในเส้นทางและจากช่องดังกล่าวคุณจะสามารถไปถึง ช่องอื่น ๆ ได้เป็นจำนวนจำกัดโดยผ่านลำดับการเดินแบบใดก็ได้ที่ไม่ผ่านช่องใด ๆ ที่อยู่ในเส้นทาง

้ด้านล่างเป็นตัวอย่างของเส้นทางที่ปัก เด็งเคล็กสามารถเดินไปได้

- ช่องที่มีหมายเลข 1 (ระบายสีชมพู) เป็นช่องเริ่มต้น (และช่องสุดท้าย)
- ช่องที่มีการระบุหมายเลข (ระบายสีฟ้า) เป็นช่องบนเส้นทาง มีหมายเลขตามลำดับที่เดินผ่าน
- ช่องที่มีเครื่องหมายกากบาท (ระบายสีน้ำเงินเข้ม) คือช่องภายใน

อาณาเขตที่สร้างขึ้นมาได้จะประกอบด้วยช่องในเส้นทางและช่องภายในทั้งหมด ระยะห่างของช่อง c ใด ๆ ในอาณาเขตจะ เท่ากับจำนวนก้าวที่น้อยที่สุดที่จะเดินจากช่องเริ่มต้นไปยังช่อง c โดยที่จะต้องเดินผ่านเฉพาะช่องในอาณาเขตเท่านั้น คะแนนของแต่ละช่องในอาณาเขตจะเท่ากับ $A+d\times B$ โดยที่จำนวน A และ B จะเป็นค่าคงที่ที่ปัก เด็งเคล็กได้กำหนด ไว้ และ d คือระยะห่างของช่องนั้นในอาณาเขต ด้านล่างเป็นตัวอย่างแสดงระยะห่างของทุก ๆ ช่องในอาณาเขตที่เกิดจาก เส้นที่ตามตัวอย่างด้านบน

ช่วยปัก เด็งเคล็กคำนวณคะแนนรวมของทุก ๆ ช่องในอาณาเขตที่เกิดจากการเคลื่อนที่ N ครั้งที่เขาจะได้ทำ เนื่องจาก คะแนนรวมอาจจะมีค่ามาก ให้คำนวณโดยหารปัดเศษ (modulo) ด้วย 10^9+7

Implementation Details

คุณจะต้องเขียนฟังก์ชันต่อไปนี้

int draw_territory(int N, int A, int B, int[] D, int[] L)

- N: จำนวนครั้งของการเคลื่อนที่
- *A*, *B*: ค่าคงที่สำหรับคำนวณคะแนน
- ullet D: อาร์เรย์ขนาด N ที่ D[i] ระบุทิศทางการเคลื่อนที่ของการเคลื่อนที่ครั้งที่ i
- ullet L: อาร์เรย์ขนาด N ที่ L[i] ระบุจำนวนก้าวที่เคลื่อนที่ไปในการเคลื่อนที่ครั้งที่ i
- ullet ฟังก์ชันนี้จะต้องคืนคะแนนรวมจากการสร้างอาณาเขตตามที่ระบุ modulo 10^9+7
- ฟังก์ชันนี้จะถูกเรียกครั้งเดียวเท่านั้น

Examples

พิจารณาตัวอย่างการเรียกใช้ต่อไปนี้:

การเคลื่อนที่จะเหมือนกับที่แสดงในตัวอย่างตอนต้น ตารางด้านล่างแสดงรายการคะแนนของช่องที่มีระยะห่างต่าง ๆ ใน อาณาเขต

Distance	Number of cells	Score of each cell	Total score
0	1	2+0 imes 3=2	1 imes 2 = 2
1	4	2+1 imes 3=5	4 imes 5=20
2	5	2+2 imes 3=8	$5 \times 8 = 40$
3	6	2+3 imes 3=11	$6 \times 11 = 66$
4	4	2+4 imes 3=14	4 imes 14 = 56
5	3	2+5 imes 3=17	3 imes 17 = 51
6	4	2+6 imes 3=20	$4 \times 20 = 80$
7	4	2+7 imes 3=23	4 imes23=92
8	5	2+8 imes 3=26	5 imes26=130
9	3	2+9 imes 3=29	3 imes 29 = 87
10	4	2+10 imes 3=32	4 imes32=128
11	5	2+11 imes 3=35	5 imes35=175
12	2	2+12 imes 3=38	2 imes 38 = 76

คะแนนรวมคือ 2+20+40+66+56+51+80+92+130+87+128+175+76=1003 ดังนั้น ฟังก์ชัน draw_territory จะต้องคืนค่า 1003

Constraints

- 3 < N < 200000
- $0 \le A, B \le 10^9$
- $1 \le D[i] \le 6$ (for all $0 \le i \le N-1$)
- $1 \leq L[i]$ (for all $0 \leq i \leq N-1$)
- ullet ผลรวมทั้งหมดของจำนวนใน L จะไม่เกิน 10^9
- เส้นทางจะเป็นเส้นทางปิด, ง่าย และเปิดเผย (closed, simple, exposed)

Subtasks

- 1. (3 points) N = 3, B = 0
- 2. (6 points) N=3

- 3. (11 points) ผลรวมของจำนวนทั้งหมดใน L ไม่เกิน 2000.
- 4. (12 points) B=0, ผลรวมของจำนวนทั้งหมดใน L ไม่เกิน $200\,000$.
- 5. (15 points) B=0
- 6. (19 points) ผลรวมของจำนวนทั้งหมดใน L ไม่เกิน $200\,000$.
- 7. (18 points) L[i] = L[i+1] (สำหรับทุก ๆ $0 \leq i \leq N-2$)
- 8. (16 points) ไม่มีเงื่อนไขเพิ่มเติมอื่น ๆ

Sample Grader

เกรดเดอร์ตัวอย่างอ่านข้อมูลนำเข้าในรูปแบบต่อไปนี้:

- line 1: *N A B*
- line 2 + i ($0 \le i \le N 1$): D[i] L[i]

เกรดเดอร์ตัวอย่างพิมพ์คำตอบของคุณในรูปแบบต่อไปนี้:

• line 1: ค่าที่คืนจาก draw_territory