Mark Merling – Project 2

Problem V	Search	number of actions	number of new node expansions	time to complete the search plan	ratio nodes expanded / actions	time / actions
1	breadth_first_search	20	43	0.007	2.15	0.00035
1	depth_first_search	20	21	0.004	1.05	0.0002
1	uniform_cost_search	20	60	0.011	3	0.00055
1	greedy_best_first_graph_search with h_unmet_goals	20	7	0.002	0.35	0.0001
1	greedy_best_first_graph_search with h_pg_levelsum	20	6	0.361	0.3	0.01805
1	greedy_best_first_graph_search with h_pg_maxlevel	20	6	0.273	0.3	0.01365
1	greedy_best_first_graph_search with h_pg_setlevel	20	6	0.479	0.3	0.02395
1	astar_search with h_unmet_goals	20	50	0.01	2.5	0.0005
1	astar_search with h_pg_levelsum	20	28	0.918	1.4	0.0459
1	astar_search with h_pg_maxlevel	20	43	0.943	2.15	0.04715
1	astar_search with h_pg_setlevel	20	33	1.114	1.65	0.0557
2	breadth_first_search	72	3343	2.392	46.43055556	0.033222222
2	depth_first_search	72	624	3.278	8.666666667	0.045527778
2	uniform_cost_search	72	5154	3.967	71.58333333	0.055097222
2	greedy_best_first_graph_search with h_unmet_goals	72	17	0.02	0.236111111	0.000277778
2	greedy_best_first_graph_search with h_pg_levelsum	72	9	8.561	0.125	0.118902778
2	greedy_best_first_graph_search with h_pg_maxlevel	72	27	17.211	0.375	0.239041667
2	greedy_best_first_graph_search with h_pg_setlevel	72	9	11.313	0.125	0.157125
2	astar_search with h_unmet_goals	72	2467	2.564	34.26388889	0.035611111
2	astar_search with h_pg_levelsum	72	357	220.636	4.958333333	3.064388889
2	astar_search with h_pg_maxlevel	72	2887	1273.953	40.09722222	17.69379167
2	astar_search with h_pg_setlevel	72	1037	1041.77	14.40277778	14.46902778
3	breadth_first_search	88	14663	12.419	166.625	0.141125
3	depth_first_search	88	408	1.258	4.636363636	0.014295455
3	uniform_cost_search	88	18510	16.667	210.3409091	0.189397727
3	greedy_best_first_graph_search with h_unmet_goals	88	25	0.041	0.284090909	0.000465909
3	greedy_best_first_graph_search with h_pg_levelsum	88	14	19.49	0.159090909	0.221477273
3	greedy_best_first_graph_search with h_pg_maxlevel	88	21	23.479	0.238636364	0.266806818
3	greedy_best_first_graph_search with h_pg_setlevel	88	35	63.585	0.397727273	0.722556818
3	astar_search with h_unmet_goals	88	7388	9.707	83.95454545	0.110306818
3	astar_search with h_pg_levelsum	88	369	356.814	4.193181818	4.054704545
	astar_search with h_pg_maxlevel	88	9580	6240.497	108.8636364	70.91473864
3	astar_search with h_pg_setlevel	88	3423	5532.933	38.89772727	62.87423864
	breadth_first_search	104	99736	108.83	959	1.046442308
4	depth_first_search	104	25174	4154.921	242.0576923	39.95116346
4	uniform_cost_search	104	113339	130.481	1089.798077	1.254625
	greedy_best_first_graph_search with h_unmet_goals	104	29	0.0677	0.278846154	0.000650962
4	greedy_best_first_graph_search with h_pg_levelsum	104	17	34.719	0.163461538	0.333836538
4	greedy_best_first_graph_search with h_pg_maxlevel	104	56	83.177	0.538461538	0.799778846
4	greedy_best_first_graph_search with h_pg_setlevel	104	107	287.12	1.028846154	2.760769231
4	astar_search with h_unmet_goals	104	34330	62.086	330.0961538	0.596980769
4	astar_search with h_pg_levelsum	104	1208	1975.552	11.61538462	18.99569231
4	astar_search with h_pg_maxlevel	104				
4	astar_search with h_pg_setlevel	104				

Above are the results from tall the tests being run except for A* search with the max level and set level heuristic in problem 4.

1) Which algorithm or algorithms would be most appropriate for planning in a very restricted domain (i.e., one that has only a few actions) and needs to operate in real time?

A: If we want to use an algorithm that has a few actions and needs to operate in real time, the best option is a greedy best first search that uses the unmet goals heuristic as it consistently has the lowest ratio or time/actions for each problem. See below.

Problem Search	number of actions	number of new node expansions	time to complete the search plan	ratio nodes expanded / actions	time / actions
1 greedy_best_first_graph_search with h_unmet_goals	20	7	0.002	0.35	0.000
1 depth_first_search	20	21	0.004	1.05	0.000
2 greedy_best_first_graph_search with h_unmet_goals	72	17	0.02	0.236111111	0.00027777
1 breadth_first_search	20	43	0.007	2.15	0.0003
3 greedy_best_first_graph_search with h_unmet_goals	88	25	0.041	0.284090909	0.00046590
1 astar_search with h_unmet_goals	20	50	0.01	2.5	0.000
1 uniform_cost_search	20	60	0.011	3	0.0005
4 greedy_best_first_graph_search with h_unmet_goals	104	29	0.0677	0.278846154	0.00065096
1 greedy_best_first_graph_search with h_pg_maxlevel	20	6	0.273	0.3	0.0136
3 depth_first_search	88	408	1.258	4.636363636	0.01429545
1 greedy_best_first_graph_search with h_pg_levelsum	20	6	0.361	0.3	0.0180
1 greedy_best_first_graph_search with h_pg_setlevel	20	6	0.479	0.3	0.0239

2) Which algorithm or algorithms would be most appropriate for planning in very large domains (e.g., planning delivery routes for all UPS drivers in the U.S. on a given day)

A: If we look at the ratio of nodes expanded per a given action, a greedy best search first approach with a level sum heuristic seems to be the best option. As can been below for a problem with a low number of actions, a greedy best first search with a level sum heuristic has similar efficiency when compared to a greedy best first search with a set level heuristic, but for more actions, we get better efficiency using a level sum heuristic.

Problem Sear	rch	number of actions	number of new node expansions	time to complete the search plan	ratio nodes expanded / actions 📶	time / actions
2 gree	edy_best_first_graph_search with h_pg_levelsum	72	9	8.561	0.125	0.118902778
2 gree	edy_best_first_graph_search with h_pg_setlevel	72	9	11.313	0.125	0.157125
3 gree	edy_best_first_graph_search with h_pg_levelsum	88	14	19.49	0.159090909	0.22147727
4 gree	edy_best_first_graph_search with h_pg_levelsum	104	17	34.719	0.163461538	0.333836538
2 gree	edy_best_first_graph_search with h_unmet_goals	72	17	0.02	0.236111111	0.000277778
3 gree	edy_best_first_graph_search with h_pg_maxlevel	88	21	23.479	0.238636364	0.266806818
4 gree	edy_best_first_graph_search with h_unmet_goals	104	29	0.0677	0.278846154	0.000650962
3 gree	edy_best_first_graph_search with h_unmet_goals	88	25	0.041	0.284090909	0.000465909
1 gree	edy_best_first_graph_search with h_pg_maxlevel	20	6	0.273	0.3	0.01365
1 gree	edy_best_first_graph_search with h_pg_levelsum	20	6	0.361	0.3	0.0180
1 gree	edy_best_first_graph_search with h_pg_setlevel	20	6	0.479	0.3	0.02395

3) Which algorithm or algorithms would be most appropriate for planning problems where it is important to find only optimal plans?

A: If we are only looking for optimal plans, A* searches are better than greedy best first searches given how it will try to lower the overall cost. Based on the results form the different heuristics with A* search, it seems like A* search with the level sum heuristic seems to find the best balance between ratio of nodes expanded given an action and the time it takes per action.

Problem ▼ Search •↑	number of actions	number of new node expansions	time to complete the search plan	ratio nodes expanded / actions	time / actions
1 astar_search with h_pg_levelsum	20	28	0.918	1.4	0.0459
3 astar_search with h_pg_levelsum	88	369	356.814	4.193181818	4.05470454
2 astar_search with h_pg_levelsum	72	357	220.636	4.958333333	3.064388889
4 astar_search with h_pg_levelsum	104	1208	1975.552	11.61538462	18.9956923