ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

BOYLESTAD

Chapter 3 & 4: Bipolar Junction Transistors and Applications

© Modified by Yuttapong Jiraraksopakun ENE. KMUTT 2009

Transistor Construction

There are two types of transistors:

- pnp
- npn

The terminals are labeled:

- E Emitter
- B Base
- C Collector

pnp

Transistor Operation

With the external sources, V_{EE} and V_{CC} , connected as shown:

- The emitter-base junction is forward biased
- The base-collector junction is reverse biased

Currents in a Transistor

Emitter current is the sum of the collector and base currents:

$$I_E = I_C + I_B$$

The collector current is comprised of two currents:

$$I_C = I_{C_{majority}} + I_{CO_{minority}}$$

Common-Base Configuration

The base is common to both input (emitter-base) and output (collector-base) of the transistor.

Common-Base Amplifier

Input Characteristics

This curve shows the relationship between of input current (I_E) to input voltage (V_{BE}) for three output voltage (V_{CB}) levels.

Common-Base Amplifier

Output Characteristics

This graph demonstrates the output current (I_C) to an output voltage (V_{CB}) for various levels of input current (I_E) .

Operating Regions

- Active Operating range of the amplifier.
- Cutoff The amplifier is basically off. There is voltage, but little current.
- Saturation The amplifier is full on. There is current, but little voltage.

Regions	Base-Emitter	Collector-Base
Active	Forward-biased	Reverse-biased
Cutoff	Reverse-biased	Reverse-biased
Saturation	Forward-biased	Forward-biased

Approximations

Emitter and collector currents:

$$I_C \cong I_E$$

Base-emitter voltage:

$$V_{BE} = 0.7 V$$
 (for Silicon)

Alpha (α)

Alpha (α) is the ratio of I_C to I_E :

$$\alpha_{\rm dc} = \frac{I_C}{I_E}$$

Ideally: $\alpha = 1$

In reality: α is between 0.9 and 0.998

$$I_C = \alpha I_E + I_{CBO}$$

Alpha (α) in the AC mode:

$$a_{ac} = \frac{\Delta I_C}{\Delta I_E}\Big|_{V_{CB} = \text{constant}}$$

Transistor Amplification

Omit DC biasing to demonstrate AC response

Assume R_i and R_o from input & output characteristic curves

Currents and Voltages:

$$I_E = I_i = \frac{V_i}{R_i} = \frac{200 \text{mV}}{20\Omega} = 10 \text{mA}$$

$$I_C \cong I_E$$

$$I_L \cong I_i = 10 \,\mathrm{mA}$$

$$V_L = I_L R = (10 \text{ ma})(5 \text{ k}\Omega) = 50 \text{ V}$$

Voltage Gain:

$$A_{V} = \frac{V_{L}}{V_{i}} = \frac{50V}{200mV} = 250$$

Common-Emitter Configuration

The emitter is common to both input (base-emitter) and output (collector-emitter).

The input is on the base and the output is on the collector.

Common-Emitter Characteristics

 $V_{CE} = 1 \text{ V}$ $V_{CE} = 10 \text{ V}$ $V_{CE} = 20 \text{ V}$

Collector Characteristics

Base Characteristics

Common-Emitter Amplifier Currents

Ideal Currents

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E$$

Actual Currents

$$I_C = \alpha I_E + I_{CBO}$$
 where $I_{CBO} =$ minority collector current

 I_{CBO} is usually so small that it can be ignored, except in high power transistors and in high temperature environments.

When $I_B = 0$ μA the transistor is in cutoff, but there is some minority current flowing called I_{CEO} .

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha} \Big|_{I_B = 0 \, \mu A}$$

Beta (β)

 β represents the amplification factor of a transistor. (β is sometimes referred to as h_{fe} , a term used in transistor modeling calculations)

In DC mode:

$$\beta_{\rm dc} = \frac{I_C}{I_R}$$

In AC mode:

$$\beta_{\rm ac} = \frac{\Delta I_C}{\Delta I_B}\Big|_{V_{CE} = \text{constant}}$$

Beta (β)

Determining β from a Graph

$$\beta_{AC} = \frac{(3.2 \,\text{mA} - 2.2 \,\text{mA})}{(30 \,\mu\text{A} - 20 \,\mu\text{A})}$$
$$= \frac{1 \,\text{mA}}{10 \,\mu\text{A}} \Big|_{V_{CE} = 7.5}$$
$$= 100$$

$$\beta_{DC} = \frac{2.7 \text{ mA}}{25 \mu \text{A}} |_{V_{CE}} = 7.5$$
= 108

Both β values are usually reasonably close and are often used interchangeably

Beta (β)

Relationship between amplification factors β and α

$$\alpha = \frac{\beta}{\beta + 1} \qquad \beta = \frac{\alpha}{\alpha - 1}$$

$$\beta = \frac{\alpha}{\alpha - 1}$$

Relationship Between Currents

$$I_{\mathbf{C}} = \beta I_{\mathbf{B}}$$

$$I_C = \beta I_B$$
 $I_E = (\beta + 1)I_B$

Common-Collector Configuration

The input is on the base and the output is on the emitter.

Common-Collector Configuration

The characteristics are similar to those of the common-emitter configuration, except the vertical axis is I_E .

Operating Limits for Each Configuration

 V_{CE} is at maximum and I_{C} is at minimum $(I_{Cmax} = I_{CEO})$ in the cutoff region.

 I_C is at maximum and V_{CE} is at minimum $(V_{CE max} = V_{CEsat} = V_{CEO})$ in the saturation region.

The transistor operates in the active region between saturation and cutoff.

Power Dissipation

Common-base:

$$P_{Cmax} = V_{CB}I_{C}$$

Common-emitter:

$$P_{Cmax} = V_{CE}I_{C}$$

Common-collector:

$$P_{Cmax} = V_{CE}I_{E}$$

Transistor Specification Sheet

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Einster Voltage	V _{CSEY}	30	Vdc
Collector-Base Voltage	Vcao	40	Vdc
Emitter-Base Voltage	V _{EBO} :	5.0	Vdc
Collector Current - Continuous	le.	200	mAde
Total Device Dissipation @ T _A = 25°C Derate above 25°C	Po	625 5.0	mW mW C
Operating and Storage Junction Temperature Range	T _j ,T _{ng}	-55 to +150	,C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	Rioc	83,3	°C W
Thermal Resistance, Junction to Ambient	Reits	200	"C W

Transistor Specification Sheet

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (1) (Ic = 1.0 mAdc, I _E = 0)	Vouceo	-30		Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)	Voiroceo	40		Vde
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	V _{(BR)EB()}	5.0	55	Vde
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	Icao	-	50	nAde
Emitter Cutoff Current $(V_{BB} = 3.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	50	nAde
ON CHARACTERISTICS				33
DC Current Gain(1) (I _C = 2.0 mAde, V _{CE} = 1.0 Vdc) (I _C = 50 mAde, V _{CE} = 1.0 Vdc)	ben	50 25	150	- 8
Collectur-Emitter Sanaration Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	Velous	-	0.3	Vde
Base-Emitter Saturation Voltage(1) (I _C = 50 mAde, I _B = 5.0 mAde)	Various	-	0.95	Vde
SMALL-SIGNAL CHARACTERISTICS	32			411
Current-Gain – Bandwidth Product (I _C = 10 mAde, V _{CE} = 20 Vdc, f = 100 MHz)	· f _T	250		MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 100 \text{ MHz})$	Ciho	-	34,0	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$	Circ	*:	8.0	рF
Collector-Base Capacitance (I _E = 0, V _{CB} = 5.0 V, f = 100 kHz)	C _{ib}	5=	4,0	p#²
Small-Signal Current Gain ($I_C = 2.0 \text{ mAde}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h ₀	50	200	81
Current Gain – High Frequency ($I_C = 10 \text{ mAdc}$, $V_{CL} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$) ($I_C = 2.0 \text{ mAdc}$, $V_{CL} = 10 \text{ V}$, $f = 1.0 \text{ kHz}$)	h _{fe}	2.5 50	200	-
Noise Figure $(I_C = 100 \mu Adc, V_{CE} = 5.0 \text{ Vdc}, R_S = 1.0 \text{ k ohm}, f = 1.0 \text{ kHz})$	NF	5	0.0	dB

⁽¹⁾ Pulse Test: Pulse Width = 300 μs . Duty Cycle = 2.0%

Transistor Terminal Identification

Biasing

Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.

$$V_{BE} = 0.7 V$$

$$I_{E} = (\beta + 1)I_{B} \cong I_{C}$$

$$I_{C} = \beta I_{B}$$

Operating Point

The DC input establishes an operating or quiescent point called the Q-point.

The Three States of Operation

Active or Linear Region Operation

Base–Emitter junction is forward biased Base–Collector junction is reverse biased

- Cutoff Region Operation
 Base–Emitter junction is reverse biased
- Saturation Region Operation

 Base–Emitter junction is forward biased

 Base–Collector junction is forward biased

DC Biasing Circuits

- Fixed-bias circuit
- Emitter-stabilized bias circuit
- Collector-emitter loop
- Voltage divider bias circuit
- DC bias with voltage feedback

Fixed Bias

The Base-Emitter Loop

From Kirchhoff's voltage law:

$$+\mathbf{V}_{CC}-\mathbf{I}_{B}\mathbf{R}_{B}-\mathbf{V}_{BE}=\mathbf{0}$$

Solving for base current:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

Collector-Emitter Loop

Collector current:

$$I_{C} = \beta I_{B}$$

From Kirchhoff's voltage law:

$$V_{CE} = V_{CC} - I_C R_C$$

Saturation

When the transistor is operating in saturation, current through the transistor is at its *maximum* possible value.

$$I_{Csat} = \frac{V_{CC}}{R_{C}}$$

$$V_{CE} \cong 0 V$$

This approximation is equivalent to move the region below V_{CEsat} of the output curves to align on the output current axis.

Load Line Analysis

The end points of the load line are:

$$I_C = V_{CC} / R_C$$

$$V_{CE} = 0 V$$

V_{CEcutoff}

$$V_{CE} = V_{CC}$$

$$I_C = 0 \text{ mA}$$

The *Q*-point is the operating point:

- where the value of $R_{\rm B}$ sets the value of $I_{\rm B}$
- that sets the values of V_{CE} and I_{C}

Circuit Values Affect the Q-Point

more ...

Circuit Values Affect the Q-Point

more ...

Circuit Values Affect the Q-Point

Emitter-Stabilized Bias Circuit

Adding a resistor (R_E) to the emitter circuit stabilizes the bias circuit.

Base-Emitter Loop

$$+ \mathbf{V}_{CC} - \mathbf{I}_{B} \mathbf{R}_{B} - \mathbf{V}_{BE} - \mathbf{I}_{E} \mathbf{R}_{E} = \mathbf{0}$$

Since
$$I_E = (\beta + 1)I_B$$
:

$$\mathbf{V}_{CC} - \mathbf{I}_{B} \mathbf{R}_{B} - \mathbf{V}_{BE} - (\beta + 1) \mathbf{I}_{B} \mathbf{R}_{E} = \mathbf{0}$$

Solving for I_B:

$$I_{\mathbf{B}} = \frac{V_{\mathbf{CC}} - V_{\mathbf{BE}}}{R_{\mathbf{B}} + (\beta + 1)R_{\mathbf{E}}}$$

Collector-Emitter Loop

From Kirchhoff's voltage law:

$$I_{\mathbf{E}}\mathbf{R}_{\mathbf{E}} + \mathbf{V}_{\mathbf{C}\mathbf{E}} + I_{\mathbf{C}}\mathbf{R}_{\mathbf{C}} - \mathbf{V}_{\mathbf{C}\mathbf{C}} = \mathbf{0}$$

Since $I_E \cong I_C$:

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

Also:

$$\begin{aligned} \mathbf{V_E} &= \mathbf{I_E} \mathbf{R_E} \\ \mathbf{V_C} &= \mathbf{V_{CE}} + \mathbf{V_E} = \mathbf{V_{CC}} - \mathbf{I_C} \mathbf{R_C} \\ \mathbf{V_B} &= \mathbf{V_{CC}} - \mathbf{I_R} \mathbf{R_B} = \mathbf{V_{BE}} + \mathbf{V_E} \end{aligned}$$

Improved Biased Stability

Stability refers to a circuit condition in which the currents and voltages will remain fairly constant over a wide range of temperatures and transistor Beta (β) values.

Adding RE to the emitter improves the stability of a transistor.

Fixed-bias circuit

Emitter-stabilized bias circuit

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)R_{E}}$$

$$I_{C} = \beta I_{B}$$

 I_B in fixed-bias circuit cannot change, so change in β results in large change in output current and voltage.

Saturation Level

The endpoints can be determined from the load line.

$$V_{CE} = V_{CC}$$

$$I_C = 0 \text{ mA}$$

I_{Csat}:

$$V_{CE} = 0 V$$

$$I_{\mathbf{C}} = \frac{V_{\mathbf{CC}}}{R_{\mathbf{C}} + R_{\mathbf{E}}}$$

Voltage Divider Bias

This is a very stable bias circuit.

The currents and voltages are nearly independent of any variations in β .

Approximate Analysis

Where $I_B \ll I_1$ and $I_1 \cong I_2$:

$$V_{B} = \frac{R_2 V_{CC}}{R_1 + R_2}$$

Where $\beta R_E > 10R_2$:

$$I_{E} = \frac{V_{E}}{R_{E}}$$
$$V_{E} = V_{B} - V_{BE}$$

From Kirchhoff's voltage law:

$$\begin{aligned} \mathbf{V}_{\mathrm{CE}} &= \mathbf{V}_{\mathrm{CC}} - \mathbf{I}_{\mathrm{C}} \mathbf{R}_{\mathrm{C}} - \mathbf{I}_{\mathrm{E}} \mathbf{R}_{\mathrm{E}} \\ \mathbf{I}_{\mathrm{E}} &\cong \mathbf{I}_{\mathrm{C}} \\ \mathbf{V}_{\mathrm{CE}} &= \mathbf{V}_{\mathrm{CC}} - \mathbf{I}_{\mathrm{C}} (\mathbf{R}_{\mathrm{C}} + \mathbf{R}_{\mathrm{E}}) \end{aligned}$$

Voltage Divider Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_C + R_E}$$

Load Line Analysis

Cutoff:

$$V_{CE} = V_{CC}$$
 $I_C = 0mA$

Saturation:

$$I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$$
$$V_{CE} = 0V$$

Voltage Divider Bias

$$V_{\rm B} = \left(\frac{R_2}{R_1 + R_2}\right) V_{\rm cc}$$
$$= \left(\frac{12 \text{ k}\Omega}{27 \text{ k}\Omega + 12 \text{ k}\Omega}\right) (+15 \text{ V}) = 4.62 \text{ V}$$

 $V_{\rm E}$ is one diode drop less than $V_{\rm B}$: $V_{\rm E} = 4.62 \text{ V} - 0.7 \text{ V} = 3.92 \text{ V}$

Applying Ohm's law:

$$I_{\rm E} = \frac{V_{\rm E}}{R_{\rm E}} = \frac{3.92 \text{ V}}{680 \Omega} = 5.76 \text{ mA}$$

Voltage Divider Bias (Exact)

= 3.69 V

DC Bias with Voltage Feedback

Another way to improve the stability of a bias circuit is to add a feedback path from collector to base.

In this bias circuit the Q-point is only slightly dependent on the transistor beta, β .

Base-Emitter Loop

From Kirchhoff's voltage law:

$$V_{CC} - I_C'R_C - I_BR_B - V_{BE} - I_ER_E = 0$$

Where $I_R \ll I_C$:

$$I'C = IC + IB \cong IC$$

Knowing $I_C = \beta I_B$ and $I_E \cong I_C$, the loop equation becomes:

$$\mathbf{V_{CC}} - \beta \mathbf{I_R} \mathbf{R_C} - \mathbf{I_R} \mathbf{R_R} - \mathbf{V_{RE}} - \beta \mathbf{I_R} \mathbf{R_E} = \mathbf{0}$$

Solving for I_B:

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + \beta(R_{C} + R_{E})}$$

Collector-Emitter Loop

Applying Kirchoff's voltage law:

$$I_E + V_{CE} + I'_C R_C - V_{CC} = 0$$

Since $I'_C \cong I_C$ and $I_C = \beta I_B$:

$$I_{C}(R_{C} + R_{E}) + V_{CE} - V_{CC} = 0$$

Solving for V_{CE} :

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

Base-Emitter Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_C + R_E}$$

Load Line Analysis

Cutoff:

$$V_{CE} = V_{CC}$$
$$I_{C} = 0 \text{ mA}$$

Saturation:

$$I_{C} = \frac{V_{CC}}{R_{C} + R_{E}}$$
$$V_{CE} = 0 V$$

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

Switching Circuit Calculations

Saturation current:

$$I_{Csat} = \frac{V_{CC}}{R_C}$$

To ensure saturation:

$$I_B > \frac{I_{Csat}}{\beta_{dc}}$$

Emitter-collector resistance at saturation and cutoff:

$$R_{sat} = \frac{V_{CEsat}}{I_{Csat}}$$

$$R_{cutoff} = \frac{V_{CC}}{I_{CEO}}$$

Switching Time

Transistor switching times:

$$t_{on} = t_r + t_d$$

$$t_{off} = t_s + t_f$$

Troubleshooting Hints

- Approximate voltages
 - V_{BE} \cong .7 V for silicon transistors
 - $V_{CE}\cong 25\%$ to 75% of V_{CC}
- Test for opens and shorts with an ohmmeter.
- Test the solder joints.
- Test the transistor with a transistor tester or a curve tracer.
- Note that the load or the next stage affects the transistor operation.

PNP Transistors

The analysis for *pnp* transistor biasing circuits is the same as that for *npn* transistor circuits. The only difference is that the currents are flowing in the opposite direction.

Homework 3 (Chapter 3)

- Common-Base Configuration
 - 3.4 (13)
- Transistor Amplifying Action
 - **3.5 (18)**
- Common-Emitter Configuration
 - **3.6 (23)**

Homework 3 (Chapter 4)

- Fixed-Bias Configuration
 - **4.3 (1)**
- Emitter-Bias Configuration
 - **4.4 (8)**
- Voltage Divider Configuration
 - **4.5 (13)**
- Collector-Feedback Configuration
 - **4.6 (23)**
- Miscellaneous Bias Configuration
 - **4.59 (30)**