國立中山大學九十七學年度第二學期資工系數位系統期中考試

學號: 姓名:

_	`	選擇與是非題	(毎題4分	, 20 分)
			\ \text{\tint{\text{\tin}\exitt{\text{\tin}\xi}\\ \text{\text{\text{\text{\text{\text{\text{\tin}\xi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\xi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\tex{\tex	- 40 //

- () 1. 對於 Boolean n-cube 而言,下列何者錯誤? ① represent a Boolean function of n variables ② each vertex represents a minterm ③ each m-subcube of 1-minterms represents a product of n-m literals ④ each m-subcube represents 2m minterms。
- 2. 給一個truth table,使用 map method 進行 Boolean simplification 包含以下四個步驟: ●Generate map ②Find minimal cover ⑤ Select essential prime implicants ④ Determine prime implicants,實行順序為①●⑥ ②●⑥ ②●⑥ ③●⑥ ③●⑥ ③●⑥ ●
- () 3. 關於 XOR 以及 XNOR,何者錯誤? ① x⊕y = (x⊙y)'② x⊕y' = (y⊕x)'③ x⊕1 = x'④ x⊕x' = 0。
- () 4. A prime implicant is a subcube not contained in any other prime implicant.
 -) 5. 對於 three-bit message x, y, z 而言,假如 parity bit $P = x \oplus y \oplus z$ 且 parity check $C = x \oplus y \oplus z \oplus P$,則 C = 1 代表奇數個資料位元發生錯誤。

二、問答題(80分)

- 1. Prove by algebraic manipulation that the following expressions are equivalent. xy+xz+yz=(x+y)(x+z)(y+z) (6%)
- 2. Derive the sum-of-minterms and the product-of-maxterms canonical forms for Boolean function F(w, x, y, z) = (w+x+y'+z)(w'+x'+z)(y+z). Find the standard sum-of-products of this Boolean function. (10%)
- **3.** (1) Using the map method to find the standard sum-of-products and product-of-sums forms of Boolean function F(w, x, y, z) = w'y'z' + xy'z + wyz + x'yz' + wxyz. (12%)
 - (2) Using the map method to find the standard sum-of-products of Boolean function $F(v, w, x, y, z) = \sum m(0, 1, 3, 7, 8, 9, 11, 14, 15, 16, 17, 19, 24, 25, 27, 30).$ (12%)
- **4.** (1) Convert the function F(x, y, z) = xy'z' + x'yz' + x'y'z + xyz into three-input NAND gates. (10%) (2) Convert the function F(x, y, z) = xy + xz + yz into two-input NOR gates. (10%)
- 5. Using the tabulation method, find all the prime implicants, all the essential prime implicants, and all the minimal covers for Boolean function $F(w, x, y, z) = \sum m(0, 1, 5, 6, 8, 9, 12, 13, 14)$. (20%)

	Subcube Minterms	Sub	cub			
ID		W	Χ	у	Z	Covered
G_0	(0)	0	0	0	0	
G ₁	(1)	0	0	0	1	
	(8)	1	0	0	0	
G ₂	(5)	0	1	0	1	
	(6)	0	1	1	0	
	(9)	1	0	0	1	
	(12)	1	1	0	0	
G ₃	(13)	1	1	0	1	
	(14)	1	1	1	0	

Group Subcube	Subcube value Subcube	Group	Subcube	Subcube value Subcube
	w x y z Covered			

Prime Implicant	Prime Implicant Expression Implicant	Implicant	Function Minterms								
Name		Minterms	0	1	5	6	8	9	12	13	14