EE270 Large scale matrix computation, optimization and learning

Instructor: Mert Pilanci

Stanford University

Tuesday, Feb 18 2020

Randomized Linear Algebra and Optimization Lecture 15: Randomized Newton's Method

Recap: Gradient Descent for Convex Optimization Problems

Strong convexity

A convex function f is called strongly convex if there exists two positive constants $\beta_- \le \beta_+$ such that

$$\beta_{-} \leq \lambda_{i} \left(\nabla^{2} f(x) \right) \leq \beta_{+}$$

for every x in the domain of f

Equivalent to

$$\lambda_{\min}(\nabla^2 f(x)) \ge \beta_-$$

 $\lambda_{\max}(\nabla^2 f(x)) < \beta_+$

Gradient Descent for Strongly Convex Functions

- Suppose that f is strongly convex with parameters β_-, β_+ let $f^* := \min_x f(x)$

Theorem

- Set constant step-size $\mu_t = \frac{1}{\beta_+}$ $f(x_{t+1}) f^* \le (1 \frac{\beta_-}{\beta_+})(f(x_t) f^*)$ recursively applying we get
- $f(x_M) f^* \le (1 \frac{\beta_-}{\beta_+})^M (f(x_0) f^*)$

Gradient Descent for Strongly Convex Functions

- step-size $\mu = \frac{1}{\beta_+}$
- $f(x_M) f^* \le (1 \frac{\beta_-}{\beta_+})^M (f(x_0) f^*)$
- For optimizing functions f(Ax) computational complexity $O(\kappa nd \log(\frac{1}{\epsilon}))$ where $\kappa = \frac{\beta_+}{\beta_-}$

Gradient Descent with Momentum (Heavy Ball Method) for Strongly Convex Functions

- $> x_{t+1} = x_t \mu \nabla f(x_t) + \beta(x_t x_{t-1})$
- step-size parameter $\mu = \frac{4}{(\sqrt{\beta_+} + \sqrt{\beta_-})^2}$
- lacktriangle momentum parameter $eta=\max\left(|1-\sqrt{\mueta_-}|,|1-\sqrt{\mueta_+}|
 ight)^2$
- For optimizing functions f(Ax) computational complexity $O(\sqrt{\kappa} nd \log(\frac{1}{\epsilon}))$ where $\kappa = \frac{\beta_+}{\beta_-}$

Newton's Method

Suppose f is twice differentiable, and consider a second order Taylor approximation at a point x_t

$$f(y) \approx f(x_t) + \nabla f(x_t)^T (y - x_t) + \frac{1}{2} (y - x^t) \nabla^2 f(x^t) (y - x^t)$$

- minimizing the approximation yields $x_{t+1} = x_t + (\nabla^2 f(x))^{-1} \nabla f(x)$
- $ightharpoonup x_{t+1} = x_t t\Delta_t \text{ where } \Delta_t := \left(\nabla^2 f(x) \right)^{-1} \nabla f(x)$
- ▶ for functions f(Ax) where $A \in \mathbb{R}^{n \times d}$ complexity $O(nd^2)$ to form the Hessian and $O(d^3)$ to invert or alternatively $O(nd^2)$ for factorizing the Hessian

Choosing step-sizes: backtracking (Armijo) line search

given a descent direction Δx for f at $x \in \operatorname{dom} f$, $\alpha \in (0, 0.5)$, $\beta \in (0, 1)$. t := 1. while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^T \Delta x$, $t := \beta t$.

Newton's Method with Line Search

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

$$\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.

Newton's Method for Strongly Convex Functions

- Strong convexity with parameters β_-, β_+
- ▶ Additional condition: Lipschitz continuity of the Hessian

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2^2$$

for some constant L > 0

▶ **Theorem** The number of iterations for ϵ approximate solution in objective value is bounded by

$$T := \operatorname{constant} imes rac{f(x_0) - f^*}{eta_-/eta_+^2} + \log_2\log_2\left(rac{\epsilon_0}{\epsilon}
ight)$$

where $\epsilon_0 = 2\beta_-^3/L^2$.

▶ Computational complexity: $O((nd^2 + nd)T)$

Self-concordant Functions in \mathbb{R}

▶ A function $f : \mathbb{R} \to \mathbb{R}$ is self-concordant when f is convex and

$$f'''(x) \le 2f''(x)^{3/2}$$

for all x in the domain of f.

- examples: linear and quadratic functions, negative logarithm
- ▶ One can use a constant k other than 2 in the definition

Self-concordant Functions in \mathbb{R}^d

- ▶ A function $f: \mathbb{R}^d \to \mathbb{R}$ is self-concordant when it is self-concordant along every line, i.e.,
 - (i) f is convex
 - (ii) g(t) := f(x + tv) is self-concordant for all x in the domain of f and all v

Self-concordant Functions in \mathbb{R}^d

► Scaling with a positive factor of at least 1 preserves self-concordance:

f is self concordant $\implies \alpha f$ is self concordant for $\alpha \geq 1$

► Addition preserves self-concordance

 f_1 and f_2 is self concordant $\implies f_1 + f_2$ is self concordant

▶ if f(x) is self-concordant, affine transformations g(x) := f(Ax + b) are also self-concordant

Newton's Method for Self-concordant Functions

- ► Suppose *f* is a self-concordant function
- ▶ Theorem

Newton's method with line search finds an ϵ approximate point in less than

$$T := \operatorname{constant} \times (f(x_0) - f^*) + \log_2 \log_2 \frac{1}{\epsilon}$$

iterations.

 Computational complexity: T× (cost of Newton Step) (Nesterov and Nemirovski)

Interior Point Programming

Logarithmic Barrier Method Goal:

$$\min_{x} f_0(x)$$
 s.t. $f_i(x) \le 0, i = 1, ..., n$

Indicator penalized form

$$\min_{x} f_0(x) + \sum_{i=1}^{n} \mathbb{I}(f_i(x))$$

where \mathbb{I} is a $\{0,\infty\}$ valued indicator function

Interior Point Programming

Logarithmic Barrier Method Goal:

$$\min_{x} f_0(x) \text{ s.t. } f_i(x) \leq 0, i = 1, ..., n$$

Indicator penalized form

$$\min_{x} f_0(x) + \sum_{i=1}^{n} \mathbb{I}(f_i(x))$$

where \mathbb{I} is a $\{0,\infty\}$ valued indicator function

▶ Approximation via $-t - \log(-\cdot)$

$$\min_{x} f_0(x) - t \sum_{i=1}^{n} \log(-f_i(x))$$

ightharpoonup t > 0 is the barrier parameter

Interior Point Programming

Linear Programming

▶ LP in standard form where $A \in R^{n \times d}$

$$\min_{Ax \le b} c^T x$$

Logarithmic barrier approximation

$$\min_{x} c^{T}x - t \sum_{i=1}^{n} \log(b_i - a_i^{T}x)$$

• scaling with $\mu = \frac{1}{t}$

$$\min_{\mathbf{x}} \mu \mathbf{c}^T \mathbf{x} - \sum_{i=1}^n \log(b_i - a_i^T \mathbf{x})$$

self-concordant function

Linear Programming

▶ LP in standard form where $A \in R^{n \times d}$

$$\min_{Ax \leq b} c^T x$$

Logarithmic barrier approximation

$$\min_{x} c^{T}x - t \sum_{i=1}^{n} \log(b_i - a_i^{T}x)$$

ightharpoonup scaling with $\mu = \frac{1}{t}$

$$\min_{x} \mu c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)$$

- self-concordant function
- ► Hessian $\nabla^2 f(x) = A^T diag\left(\frac{1}{(b_i a_i^T x)^2}\right) A$ takes $O(nd^2)$ operations

$$\mu c^{\scriptscriptstyle T} x - \sum_{i=1}^n \log(b_i - a_i^{\; T} x)$$

Randomized Newton's Method

- ► Suppose we want to find $\min_{x \in C} g(x)$
- Randomized Newton's Method

$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \langle \nabla g(x^t), x - x^t \rangle + \frac{1}{2} (x - x^t)^T \tilde{\nabla}^2 g(x^t) (x - x^t)$$

- ullet $ilde{
 abla}^2 g(x^t) pprox
 abla^2 g(x^t)$ is an approximate Hessian
- lacktriangle e.g., sketching $\tilde{\nabla}^2 g(x^t) = (\nabla^2 g(x^t))^{1/2} S^T S(\nabla^2 g(x^t))^{1/2}$

Randomized Newton's Method: Row Sampling Setch

We may pick a row sampling matrix S as in Approximate Matrix Multiplication $A^T S^T S A \approx A^T A$

$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \ \langle \nabla g(x^t), \, x - x^t \rangle + \frac{1}{2} (x - x^t)^T \tilde{\nabla}^2 g(x^t) (x - x^t)$$

- $ightharpoonup ilde{
 abla}^2 g(x^t) pprox
 abla^2 g(x^t)$ is a subsampled Hessian
- $\tilde{\nabla}^2 g(x^t) = (\nabla^2 g(x^t))^{1/2} S^T S(\nabla^2 g(x^t))^{1/2}$
- also called Subsampled Newton's Method¹

¹On the use of stochastic hessian information in optimization methods for machine learning, 2011, Byrd et al.

Interior Point Methods for Linear Programming

► Hessian of $f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)$

$$\nabla^2 f(x) = A^T \operatorname{diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A$$
,

Interior Point Methods for Linear Programming

► Hessian of $f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)$

$$\nabla^2 f(x) = A^T \operatorname{diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A$$
,

Root of the Hessian

$$(\nabla^2 f(x))^{1/2} = diag\left(\frac{1}{|b_i - a_i^T x|}\right) A$$
,

Interior Point Methods for Linear Programming

► Hessian of $f(x) = c^T x - \sum_{i=1}^n \log(b_i - a_i^T x)$

$$\nabla^2 f(x) = A^T \operatorname{diag}\left(\frac{1}{(b_i - a_i^T x)^2}\right) A ,$$

Root of the Hessian

$$(\nabla^2 f(x))^{1/2} = diag\left(\frac{1}{|b_i - a_i^T x|}\right) A$$
,

Sketch of the Hessian

$$S^t(\nabla^2 f(x))^{1/2} = S^t diag\left(\frac{1}{|b_i - a_i^T x|}\right) A$$

takes $O(md^2)$ operations

Convergence of the Randomized Newton's Method

 Suppose f is a self-concordant function and S is a random projection matrix (e.g. Randomized Hadamard, Gaussian, CountSketch)

Theorem

Randomized Newton's method with line search finds an ϵ approximate point in less than

$$T := \operatorname{constant} \times (f(x_0) - f^*) + \log_2 \frac{1}{\epsilon}$$

iterations.

▶ Computational Complexity: $nd \log n + nd \log_2 \frac{1}{\epsilon}$

References

- On the use of stochastic hessian information in optimization methods for machine learning, Byrd et al, SIAM Journal on Optimization, 2011
- Newton sketch: A near linear-time optimization algorithm with linear-quadratic convergence Pilanci and Wainwright -SIAM Journal on Optimization, 2017
- Sub-sampled Newton methods Roosta-Khorasani and Mahoney - Mathematical Programming, 2019 - Springer

Questions?