time: 3 Hours

MATHS - 2B

Max.Marks: 75

Į.	Answer	ALL of	the	following Ve	SECTION-

If
$$x^2 + y^2 - 4y + c$$

$$10 \times 2 = 20$$

If $x^2 + y^2 - 4x + 6y + a = 0$ represents a circle with radius 4, find a Find the equation of the circle passing through the point (-2,14) and concentric with $x^2+y^2-6x-4y-12=0$

S.T the circles $x^2+y^2-2x-2y-7=0$, $3x^2+3y^2-8x+29y=0$ are orthogonal.

Find the coordinates of point on parabola y²=8x, whose focal distance is 10. If e,e, are the eccentricities of a hyperbola and its conjugate hyperbola, then prove that $\frac{1}{e^2} + \frac{1}{e^2} = 1$

Evaluate $\int \sec^2 x \cdot \csc^2 x dx$

Evaluate $\int e^x (\sin x + \cos x) dx$

Evaluate $\int_{0}^{1} \frac{x^2}{1+x^2} dx$

Evaluate $\int_{\Lambda}^{\pi/2} \sin^5 x \cos^4 x dx$

10. Find the order & degree to the differential equation $\left[\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3\right]^{\frac{9}{5}} = 6y$ [\$\text{\$\sigma}\$ P 95(181)]

SECTION-B

$$5 \times 4 = 20$$

11. Find the pole of the line
$$x+y+2=0$$
 w.r.t the circle $x^2+y^2-4x+6y-12=0$.

12. Find the radical centre of circles
$$x^2+y^2+4x-7=0,2x^2+2y^2+3x+5y-9=0,x^2+y^2+y=0$$

13. Find the length of major axis, minor axis, latus rectum, eccentricity of the ellipse of $9x^2+16y^2=144$

14. Find the equations of the tangents to 9x2+16y2=144, which make equal intercepts on the coordinate axes.

15. Find the equations of the tangents to the hyperbola $3x^2-4y^2=12$ which are (a) Parallel to and (b) Perpendicular to the line y = x-7 Ans-Page Index

[P 79(103.1)]

æP 80(109.1)[

[P 82(117.1)]

[→ P 84(121.1)]

P 86(130)]

[P 89(145)]

[P 88(139.1)]

P 92(169)

[arP 55(51.1)]

[P 56(53.2)]

P 59(58)

[P 61(63)]

[P 68(79.2)]

110

BABY BULLET-Q *

16. Evaluate
$$\int_{0}^{\pi/2} \frac{a \sin x + b \cos x}{\sin x + \cos x} dx$$

[P 70(82)]

17. Solve $(xy^2+x)dx+(yx^2+y)dy=0$

[P 74(92)]

SECTION-C

III. Answer any FIVE of the following LAQ:

 $5 \times 7 = 35$

18. Find the equation of circle passing through the points A(1,2), B(3,-4), C(5,-6)

[P 16(1.1)]

Show that the circles x²+y²-6x-2y+1=0 and x²+y²+2x-8y+13=0 touch each other. Find the point of contact and common tangent.

[P 21 (5.3)]

20. Derive the standard form of the parabola.

P 24(9)]

Evaluate the reduction formula for I_n=∫sinⁿxdx and hence find ∫sin⁴xdx

[P 28(16.1)]

22. Evaluate $\int \frac{2\cos x + 3\sin x}{4\cos x + 5\sin x} dx$

[P 33(24.2)]

23. Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$

[P 40(32.1)]

24. Solve the differential equation $(x^2+y^2)dx=2xydy$

[P 46(39.1)]

I-QUOTES

Simple Maths:

"2get" and 2give"
creates many problems.
So, just double it
"4get" and "4give"
solves many problems.

EL PAPER -2

Time: 3 Hours

MATHS - 2B

Max.Marks: 75

Answer	ALL of	the	follows	2	ECTION-A

$$10 \times 2 = 20$$

If $x^2+y^2+2gx+2fy=0$ is a circle with centre (-4,-3) find (g,f) & radius.

[P 79(104.1)] [P 81(110.1)]

Find k if the length of the tangent from (5,4) to
$$x^2+y^2+2ky=0$$
 is 1

Find the equation of the radical axis of the circles
$$2x^2+2y^2+3x+6y-5=0$$
, $3x^2+3y^2-7x+8y-11=0$

Find the value of k if the line
$$2y=5x+k$$
 is a tangent to the parabola $y^2=6x$.

7. Evaluate
$$\int e^x (\sec x + \sec x \tan x) dx$$

8. Evaluate
$$\int_{0}^{4} \frac{x^2}{1+x} dx$$

6. Evaluate $\int \frac{1}{1 + \cos x} dx$

9. Evaluate
$$\int_{-\pi/2}^{\pi/2} \sin^2 x \cos^4 x \, dx$$

10. Form the differential equation corresponding to
$$y = A \cos 3x + B \sin 3x$$
, (A,B)

SECTION-B

Answer any FIVE of the following SAQ:

$$5 \times 4 = 20$$

11. Find the value of k if
$$kx+3y-1=0$$
 and $2x+y+5=0$ are conjugate with respect to the circle $x^2+y^2-2x-4y-4=0$

$$x^2+y^2+2x+2y+1=0$$
 and $x^2+y^2+4x+3y+2=0$
13. Find the eccentricity, coordinates of foci, Length of latus rectum and equations of directrices of the ellipse $9x^2+16y^2-36x+32y-92=0$.

[P 65(72)]

to an ellipse lie on a circle

15. Prove that the point of intersection of two perpendicular tangents to the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$$
 lies on the circle $x^2 + y^2 = a^2 - b^2$.

P 69(80)

BABY BULLET-Q *

	Evaluate	$\pi/2$	dx	
16.		0	$4 + 5\cos x$	

P 72(86)]

17. Solve
$$\frac{dy}{dx} - x \tan(y - x) = 1$$

[P 74(93)]

SECTION-C

112

 $5 \times 7 = 35$

18. If
$$(2,0)$$
, $(0,1)$, $(4,5)$, $(0,c)$ are concyclic then find c.

[**P** 19(4)] [**P** 22(6)]

[~P 25(10)]

20. Find the equation of the parabola passing through the points
$$(-1,2)$$
, $(1,-1)$, $(2,1)$ and having its axis parallel to the x-axis.

21. Evaluate the reduction formula for
$$I_n = \int \cos^n x dx$$
 and hence find $\int \cos^4 x dx$

[P 28(16.2)]

22. Evaluate
$$\int \frac{dx}{3\cos x + 4\sin x + 6}$$

[P 32(23)]

23. Evaluate
$$\int_{0}^{\pi} \frac{x \sin^{3} x}{1 + \cos^{2} x} dx$$

[P 40(32.2)]

24. Solve
$$(x^2y-2xy^2)dx=(x^3-3x^2y)dy$$

[P 48(41.1)]

(1132

MODEL PAPER -3

fime: 3 Hours

MATHS - 2R

Max.Marks: 75

THE - 2B	Max.Marks: 75
Allswei ALL of the Car	
Find the Parametric equations of the size 2 2 2 2 2 2 2 2 2 2	
Find the Parametric equations of the circle $x^2+y^2-6x+4y-12=0$ Find the angle between $x^2+y^2-12x-6y+41=0$ and x^2+y^2-35 .	@P 80(106.1)]
	[arP 81(113.1)]
Find the angle between $x^2+y^2-6x+4y-12=0$ Find the angle between $x^2+y^2-12x-6y+41=0$ and $x^2+y^2+4x+6y-59=0$ Find the coordinates of the parabola $x^2+y^2+4x+6y-59=0$	[P 83(119.2)]
If $(1/2,2)$ is one extremity of a focal chord of the parabola $y^2 = 8x$. Find the value of k if $3x = 4x + 1$.	P 84(125)
Find the value of k if $3x-4y+k=0$ is a tangent to the hyperbola $x^2-4y^2=5$. Evaluate $\int \frac{\sin(\log x)}{x} dx$	1 3 3 (122)
Evaluate $\int \frac{\sin(\log x)}{x^2 - 4v^2} dx$	[P 87(137)]
6. Evaluate J x dx [c-P 89(149.1)] 7 Fuel ()	
8. Evaluate $\int 1-x dx = 0$	[P 88(140.1)]
$\int 1-x dx \left(-P 93(173.1) \right) = F_{10} \int_{0.15}^{2\pi} dx$	
Staluate sin ² xcos ⁴ xdx	[P 94(180.2)]
Evaluate $\int \frac{\sin(\log x)}{x} dx$ [P 89(149.1)] 7. Evaluate $\int \frac{e^x}{(\tan x + \log \sec x)} dx$ [P 93(173.1)] 9. Evaluate $\int_0^{2\pi} \sin^2 x \cos^4 x dx$ 10. Find the order and degree of the D.E $\int_0^{2\pi} \sin^2 x \cos^4 x dx$ 11. Answer any FIVE of the following SAO:	
	[~P 95(182)]
11. Answer any FIVE of the following SAQ:	(0.1.75(10.2))
The chord in	
If $x+y=3$ is the equation of the chord AB of the circle $x^2+y^2-x+3y-22=0$ on $y=x-3$ find the equation of circle having \overline{AB} as diameter.	[P 52(45.2)]
find the equation of circle having \overline{AB} as diameter.	[P 57(55.1)]
and additions of the tangents to the	
	[P 61(62)]
	1 Determine
	[-P 64(71)]
15. Find the centre, eccentricity, foci, length of latus rectum and equations	1 D (0000
of the directrices of the Hyperbolo w/ 4/	[-P 68(78.1)]
16. Evaluate $\int \frac{\cos^{5/2} x}{\cos^{5/2} x} dx = R \cdot 70/9231 + 7 \cdot 9 + 10 \cdot 9 \cdot 10$	
16. Evaluate $\int_{0}^{\pi/2} \frac{\cos^{5/2} x}{\sin^{5/2} x + \cos^{5/2} x} dx [-P 70(83)] 17. \text{Solve } \frac{dy}{dx} + \text{ytanx} = \cos^{3} x$	[3-P 74(94)]
SECTION-C	
III. Answer any FIVE of the following LAQ: $5 \times 7 = 35$	
18. Find the equation of the circle passing through (4,1), (6,5) and having the centre on	l=P 20(5.1)
the line $4x+3y-24=0$	(4. 20(2:1))
 Find the equation to the pair of transverse common tangents 	[#P 23(7)]
to the circles $x^2+y^2-4x-10y+28=0$ and $x^2+y^2+4x-6y+4=0$	1
20. If y ₁ , y ₂ , y ₃ are the y-coordinates of the vertices of the triangle inscribed	[-P 27(14)]
in the parabola $y^2 = 4ax$ then show that area of the triangle is $\frac{1}{8a} (y_1 - y_2)(y_2 - y_3)(y_3) $	-y ₁) sq. units.
21. Evaluate ∫ tan ⁿ xdx and hence evaluate ∫ tan ⁵ xdx, ∫ tan ⁶ xdx	[JP 29(17.1)]
22. Evaluate $\int \frac{x+1}{x^2+3x+12} dx$ [P 36(28)] 23. Evaluate $\int_{0}^{\pi/2} \frac{\sin^2 x}{\cos x + \sin x} dx$	[@P 42(34)]
24. Solve $\frac{dy}{dx} = \frac{x - y + 3}{2x - 2y + 5}$	[œP 50(44.2)]

Time: 3 Hours

MATHS - 2B

Max.Marks: 75

	-		_	M 1 A	
51	SC.	П	O	N-A	١

I. Answer ALL of the following VSAQ: $10 \times 2 = 20$

- 1. Find the equation of the circle with (4,2), (1,5) as ends of a diameter.
- Find the power of the point P(-1,1) w.r.to the circle $x^2+y^2-6x+4y-12=0$.
- Find k if $x^2+y^2-5x-14y-34=0$, $x^2+y^2+2x+4y+k=0$ are orthogonal. 3.
- Find the equation of tangent to the parabola $y^2=16x$, inclined at 60^0 to 4. the X-axis.
- Find the angle between the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 5.
- Evaluate $\int \frac{x^8}{1+x^{18}} dx$ [P 91(160)] 7. Evaluate $\int e^x \left(\frac{1+x \log x}{x}\right) dx$
- Evaluate $\int_{0}^{4} |2-x| dx$ [P 93(173.2)] 9. Evaluate $\int_{0}^{\pi/2} \sin^{6} x \cos^{4} x dx$ Find the general solution of $\frac{dy}{dx} = e^{x+y}$

- Answer any FIVE of the following SAQ: II.
- Find the mid point of the chord intercepted by $x^2+y^2-2x-10y+1=0$ on the line x-2y+7=0. Also find the length of the chord.
- 12. Find the equation of the circle which passes through the origin and intersects the circles $x^2+y^2-4x+6y+10=0$, $x^2+y^2+12y+6=0$ orthogonally.
- Find the equation of the ellipse in the standard form whose distance between foci is 2 and the length of latus rectum is 15/2.
- Find the equation of ellipse, if focus=(1,-1), e = 2/3 and directrix is x+y+2=0.
- Find the centre, eccentricity, foci, length of latus rectum and equations of the directrices of the Hyperbola 16y2-9x2=144.
- 16. Find $\int_{0}^{a} x^{2} (a^{2} x^{2})^{3/2} dx$ [P 72(88)] 17. Solve $(1 + x^{2}) \frac{dy}{dx} + y = e^{Tan^{-1}x}$ SECTION-C
- III. Answer any FIVE of the following LAQ:

 $5 \times 4 = 20$

- 18. Show that the points (1, 1), (-6, 0), (-2, 2) and (-2, -8) are concyclic. 19. Show that the circles $x^2+y^2-6x-9y+13=0$, $x^2+y^2-2x-16y=0$ touch each other. Find the point of contact and the equation of the common tangent at that point.
- 20. P.T the area of the triangle formed by the tangents at $(x_1,y_1),(x_2,y_2),(x_3,y_3)$ to the parabola $y^2 = 4ax$ is $\frac{1}{16a}|(y_1 - y_2)(y_2 - y_3)(y_3 - y_1)|$ sq. units.
- 21. Obtain reduction formula for $I_n = \int \cot^n x \, dx$ and hence find $\int \cot^4 x \, dx$
- 22. Evaluate $\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx. \quad [P \ 36(27)] \ 23.S.T \int_{0}^{\pi/2} \frac{x}{\sin x + \cos x} dx = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2}+1)$
 - 24. Solve the D.E (2x + y + 1) dx + (4x + 2y 1) dy = 0

P 99(199) 1

[P 81(111)]

P 82(116.1)]

[P 84(124)]

P 86(132)]

P 88(141)

[P 94(177)]

P 96(188)]

[P 52(46)]

[P 58(57.1)]

P 62(64)

[P 63(67)]

P 68(78.2)]

- P 18(3)
- P 21(5.4)]

P 27(15)

P 50(44.1)