## COSC264 Introduction to Computer Networks and the Internet

# Introduction to Routing – Distance Vector Algorithm

Dr Barry Wu

Wireless Research Centre

University of Canterbury

barry.wu@canterbury.ac.nz

## Outline – today

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
- Summary

## Distance Vector Algorithm

- Dynamic
- Decentralised (Distributed)
- Load-sensitive/load-insensitive
- Asynchronous

## Routing Algorithms and Routing Protocols

**Intra-AS Routing** 

| <b>Routing Protocols</b> | Routing Algorithms                       |
|--------------------------|------------------------------------------|
| RIP                      | Bellman-Ford (Distance-vector) Algorithm |
| _ OSFP                   | Dijkstra's Algorithm                     |
| BGP                      | Bellman-Ford (Distance-vector) Algorithm |

**Inter-AS Routing** 

## **Bellman-Ford Equation**

#### Define

 $d_x(y) := cost of least-cost path from x to y$ Then

$$d_{x}(y) = min_{v}\{c(x,v) + d_{v}(y)\}$$

where *min* is taken over all neighbours of x

## Bellman-Ford example

To calculate  $d_u(z)$ , according to B-F equation:



Node that achieves minimum is next hop in shortest path.

$$d_{u}(z) = min \{ c(u,v) + d_{v}(z),$$
  
 $c(u,x) + d_{x}(z),$   
 $c(u,w) + d_{w}(z) \}$ 

Clearly, 
$$d_v(z) = 5$$
,  $d_x(z) = 3$ ,  $d_w(z) = 3$   
= min  $\{2 + 5$ ,  
 $1 + 3$ ,  
 $5 + 3\} = 4$ 

## Distance Vector Algorithm

#### Estimates:

- $D_x(y)$  = estimate of least cost from x to y
- Distance vector: D<sub>x</sub> = [D<sub>x</sub>(y): y ∈ N]
- Each node x:
  - Node x knows cost to each neighbor v: c(x,v)
  - Node x maintains  $D_x = [D_x(y): y \in N]$
  - Node x also maintains its neighbors' distance vectors
    - o For each neighbor v, x maintains  $D_v = [D_v(y): y \in N]$

#### An illustration



Distance vectors at node u







## Distance vector algorithm

#### Basic idea:

- Each node periodically sends its own distance vector estimate to neighbours
- When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\} \quad \text{for each node } y \in N$$

□ Amazingly, as long as all the nodes continue to exchange their distance vectors in an asynchronous fashion, the estimate  $D_x(y)$  converges the actual least cost  $d_x(y)$ 

## Distance Vector Algorithm

# Iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbour

#### Distributed:

- each node notifies neighbours only when its DV changes
  - neighbours then notify their neighbours if necessary
  - The algorithm doesn't know the entire path – only knows the next hop

#### Each node:



## Distance Vector Algorithm

#### At each node, x:

```
Initialization:
      for all destinations y in N:
3
          D_x(y) = c(x,y) / c(x,y) = \infty if y is not a neighbour*/
      for each neighbour w
4
5
          D_w(y) = \infty for all destinations y in N
6
      for each neighbor w
          send distance vector D_x = [D_x(y): y \text{ in } N] to w
8
   loop
      wait (until I see a link cost change to some neighbour w
9
    or until I receive a distance vector from some neighbour w)
11
      for each y in N:
          D_{x}(y) = min_{v}\{c(x,v) + D_{v}(y)\} / v is adjacent to x^{*}/
12
      if D_x(y) changed for any destination y
13
14
          send distance vector D_x = [D_x(y): y \text{ in } N] to all neighbours
15 forever
```

## A hidden assumption – N (all destinations)

Q: if all nodes exchange distance vectors with their neighbours only, can each of them know all the destination nodes (N, in the pseudocode)?



- Initially, x knows it has a path to y with cost 1; but it does not know the existence of z;
- y knows it has a path to x (and z) with cost 1;
- z knows it has a path to y with cost 1; but it does not know the existence of x;
- Then, y and x exchange distance vectors;
- x learned that there is a new destination z and it can reach z via y with cost 2;
- y and z exchange distance vectors;
- z learned that there is a new destination x and it can reach x via y with cost 2;
- Now both x and z know their destination nodes!



#### Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- ☐ if DV changes, notify neighbors
- We consider y and z's DVs only here.

 $D_y(x) = min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = min\{1+0, 1+5\} = 1;$ 



At time  $t_0$ , y detects the link-cost change (4  $\rightarrow$  1), updates its DV, and informs its neighbors.

"good news travels fast"

At time  $t_1$ , z receives the update from y and updates its table. It computes a new least cost to x (5  $\rightarrow$ 2) and sends its neighbors its DV.

At time  $t_2$ , y receives z's update and updates its distance table. y's least costs do not change and hence y does *not* send any message to z.

#### Link cost changes:

- Before the link cost changes
  - $D_v(x) = 4$ ,  $D_z(x) = 5$  (only y, z's DV to dest. x)
- At time t0, y detects the link-cost



- $D_{y}(x) = \min\{c(y,x) + D_{x}(x), c(y,z) + D_{z}(x)\} = \min\{60+0, 1+5\} = 6;$
- The assumption is that y stores its own DV and its neighbours' (and its link costs to its neighbours).

| y's DV table | y | x                                 | Z |
|--------------|---|-----------------------------------|---|
| У            | 0 | $4 \rightarrow 6 \text{ (via z)}$ | 1 |
| X            | 4 | 0                                 | 5 |
| Z            | 1 | 5 (via y)                         | 0 |

y's forwarding table

z's forwarding table

| Dest. | Next-hop | Dest. | Next-hop |
|-------|----------|-------|----------|
| Χ     | Z        | X     | у        |
| Z     | Z        | y     | y        |



False

#### Link cost changes:

- Before the link cost changes
  - $O_{y}(x) = 4$ ,  $D_{z}(x) = 5$  (again y, z's DV)
- At time t0, y detects the link-cost change and re-compute its dv



- $D_{y}(x) = \min\{c(y,x) + D_{x}(x), c(y,z) + D_{z}(x)\} = \min\{60+0, 1+5\} = 6;$
- At time t1, y sends its new dv to z; after z receives y's new dv; z can update  $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+6, 50+0\} = 7;$

| z's DV table | y  | x                                 | z  |
|--------------|----|-----------------------------------|----|
| У            | 0  | 6 (via z)                         | 1  |
| X            | 51 | 0                                 | 50 |
| Z            | 1  | $5 \rightarrow 7 \text{ (via y)}$ | 0  |

y's forwarding table

z's forwarding table

| Dest. | Next-hop | Dest. | Next-hop |
|-------|----------|-------|----------|
| X     | Z        | X     | у        |
| Z     | Z        | y     | у        |

#### Link cost changes:

- Before the link cost changes
  - $D_y(x) = 4$ ,  $D_z(x) = 5$  (again y, z's DV)
- At time t0, y detects the link-cost change and re-compute its dv



At time t1, y sends its new dv to z; after z receives y's new dv; z can update  $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+6, 50+0\} = 7;$ 

50

- O At time t2, z sends its new dv to y; similarly y can update  $D_y(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+7\} = 8;$
- Then  $D_z(x) = \min\{c(z,y) + D_y(x), c(z,x) + D_x(x)\} = \min\{1+8, 50+0\} = 9;$
- $D_v(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+9\} = 10;$
- **O** ...
- O  $D_y(x) = ...$
- $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+50, 50+0\} = 50,$
- $D_y(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+50\} = 51;$
- $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+51, 50+0\} = 50$

The bad news about the increase in link cost has travelled slowly!

= 50; -

60

50

Count-to-infinity problem!

Next-hop changes!

Converged!

10,Q00

9,999

#### Link cost changes:

- Before the link cost changes
  - $D_{y}(x) = 4$ ,  $D_{z}(x) = 5$
- At time t0, y detects the link-cost

#### Change and re-compute its dv

- $D_v(x)$ : 4 → 6 → 8 → 10, ..., → 9998;
- $D_z(x)$ : 5 → 7 → 9 → 11, ..., → 9999; (causing a routing loop!)
- $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+9998, 9999+0\} = 9999;$
- $D_{v}(x) = \min\{c(y,x) + D_{x}(x), c(y,z) + D_{z}(x)\} = \min\{10000 + 0, 1 + 9999\} = 10000;$
- $D_z(x) = \min\{c(z,y) + D_y(x), c(z,x) + D_x(x)\} = \min\{1 + 10000, 9999 + 0\} = 9999;$

Neighbours exchange distance vectors only!
Distance vectors provide limited information!
z tells y: "I have a path to x with a cost of 7."
It does NOT tell y that this path goes through y!

#### Link cost changes:

- Before the link cost changes
  - $D_y(x) = 4$ ,  $D_z(x) = 5$  (only y, z's DV)
- At time t0, y detects the link-cost



#### change and re-compute its dv

- $D_{y}(x) = \min\{c(y,x) + D_{x}(x), c(y,z) + D_{z}(x)\} = \min\{60+0, 1+5\} = 6;$
- The assumption is that y stores its own DV and its neighbours' (and its link costs to its neighbours).

| y's DV table | y | x                                 | z |
|--------------|---|-----------------------------------|---|
| у            | 0 | $4 \rightarrow 6 \text{ (via z)}$ | 1 |
| X            | 4 | 0                                 | 5 |
| Z            | 1 | 5 (via y)                         | 0 |

y's forwarding table

z's forwarding table

| Dest. | Next-hop | Dest. | Next-hop |
|-------|----------|-------|----------|
| X     | Z        | X     | У        |
| Z     | Z        | y     | у        |

False

#### Poisoned reverse:

- If z routes through y to get to x :
  - z tells y its (z's) distance to x is infinite (so y won't route to x via z)



- Before the link cost changes
  - $D_v(x) = 4$ ,  $D_z(x) = 5$ , but z will lie to y saying " $D_z(x) = \infty$ " (poisoned reverse)

| y's DV table | y | x        | z |
|--------------|---|----------|---|
| у            | 0 | 4        | 1 |
| X            | 4 | 0        | ∞ |
| Z            | 1 | <b>∞</b> | 0 |

#### Poisoned reverse:

- If z routes through y to get to x :
  - z tells y its (z's) distance to x is infinite (so y won't route to x via z)



- Before the link cost changes
  - $D_v(x) = 4$ ,  $D_z(x) = 5$ , but z will lie to y saying " $D_z(x) = \infty$ " (poisoned reverse)
- ☐ At time t0, y detects the link-cost

change and re-compute its dv

○ 
$$D_y(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+ \infty\} = 60;$$

| y's DV table | y | x                                  | Z |
|--------------|---|------------------------------------|---|
| у            | 0 | $4 \rightarrow 60 \text{ (via x)}$ | 1 |
| X            | 4 | 0                                  | ∞ |
| Z            | 1 | ∞                                  | 0 |

#### Poisoned reverse:

- If z routes through y to get to x :
  - z tells y its (z's) distance to x is infinite (so y won't route to x via z)



- Before the link cost changes
  - $D_y(x) = 4$ ,  $D_z(x) = 5$ , but z will lie to y saying " $D_z(x) = \infty$ " (poisoned reverse)
- At time t0, y detects the link-cost
- change and re-compute its dv
  - $D_v(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+ \infty\} = 60;$
  - Now y sends data directly to x;
  - At time t1, y sends its new dv to z; after z receives y's new dv; z can update  $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+60, 50+0\} = 50;$

| z's DV table | y | x          | Z |
|--------------|---|------------|---|
| У            | 0 | 60         | ∞ |
| X            | ∞ | 0          | ∞ |
| Z            | 1 | 50 (via x) | 0 |

#### Poisoned reverse:

- If z routes through y to get to x :
  - z tells y its (z's) distance to x is infinite (so y won't route to x via z)



Before the link cost changes

| O      | y's DV table | y  | x          | Z  | se) |
|--------|--------------|----|------------|----|-----|
| □ At   |              |    |            |    |     |
| chang  | у            | 0  | 51 (via z) | 1  |     |
| oriang | x            | 51 | 0          | 50 |     |
| 0      | Z            | 1  | 50 (via x) | 0  |     |

- At time t1, y sends its new dv to z; after z receives y's new dv; z can update  $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+60, 50+0\} = 50;$
- At time t2, z sends its new dv to y without lying since it will not route through y; similarly y can update

$$D_{v}(x) = \min\{c(y,x) + D_{x}(x), c(y,z) + D_{z}(x)\} = \min\{60+0, 1+50\} = 51;$$

#### Poisoned reverse:

- If z routes through y to get to x :
  - z tells y its (z's) distance to x is infinite (so y won't route to x via z)



- Before the link cost changes
  - $D_v(x) = 4$ ,  $D_z(x) = 5$ , but z will lie to y saying " $D_z(x) = \infty$ " (poisoned reverse)

|         |   | y | x          | Z |          |
|---------|---|---|------------|---|----------|
| chang   | y | 0 | ∞          | ∞ | 60       |
| 0       | X | ∞ | 0          | ∞ | 50       |
| $\circ$ | Z | 1 | 50 (via x) | 0 | n undate |

$$D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+60, 50+0\} = 50;$$

 At time t2, z sends its new dv to y without lying since it will not route through y; similarly y can update

$$D_v(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+50\} = 51;$$

○ Then  $D_z(x) = \min\{c(z,y) + D_y(x), c(z,x) + D_x(x)\} = \min\{1 + \infty, 50 + 0\} = 50; y$  lies to z this time because it routes through z;

## A little lie helps!



y uses z as its next-hop and will lie to z by saying that "I have a path to x with a cost of *infinity*."

(Do not count on me to route your traffic to x, --poisoned reverse.)

# But a little lie helps only a little; it does not solve the problem!

Consider y,z,w distance table entries to x only. Using poisoned reverse,  $z \rightarrow w$ ,  $D_z(x) = \infty$ ;  $z \rightarrow y$   $D_z(x) = 6$  (not lying);  $w \rightarrow y$ ,  $D_w(x) = \infty$ ;  $w \rightarrow z$   $D_w(x) = 5$  (not lying);  $y \rightarrow w$ ,  $D_y(x) = 4$  (not lying);  $y \rightarrow z$   $D_y(x) = 4$  (not lying); Then there is link-cost change  $(4\rightarrow60)$ ;



50

## But a little lie helps only a little;

it does not solve the problem!

```
Co y re-computes:

D_y(x)=\min\{c(y,z)+D_z(x), c(y,w)+D_w(x)\}=

z-\min\{3+11, 1+\infty\}=14 \text{ (via z);}

y = \min\{3+11, 1+\infty\}=14 \text{ (via z);}

y = \min\{0, 0, 0, 0\}=0 (lying);

y = \min\{0, 0, 0, 0\}=0 (lying);
```



At t1, y updates its  $D_v(x) = 9$  (via z, z did not lie:);

Now y notifies w and z;  $y \rightarrow w$ ,  $D_{y}(x) = 0$ ;  $y \rightarrow z$   $D_{y}(x) = 0$ ;

 $D_y(x) = \min\{c(y,z) + D_z(x), c(y,w) + D_w(x), c(y,x) + D_x(x)\} = \min\{3 + b, \infty, 60 + 0\} = 9 \text{ (via z)}$ 

#### w re-computes:

$$D_w(x)=\min\{c(w,y)+D_y(x), c(w,z)+D_z(x)\}\$$
=  $\min\{1+9,1+\infty\}=10 \text{ (via y);}\$ 
w notifies y and z;  $\rightarrow$ y  $D_w(x)=\infty$  (lying);
 $\rightarrow$ z  $D_w(x)=10$  (telling truth);

#### z re-computes:

 $D_z(x)=\min\{c(z,w)+D_w(x), c(z,y)+D_y(x)\}=\min\{1+10, 3+ \infty\}=11 \text{ (via w);}$  z notifies w and y;  $\rightarrow$  w  $D_z(x)=\infty$  (lying);  $\rightarrow$  y  $D_z(x)=11$  (telling truth);

## But a little lie helps only a little;

## it does not solve the problem!

Consider y,z,w distance table entries to x only. Using poisoned reverse,

$$z \rightarrow w$$
,  $D_z(x) = \infty$ ;  $z \rightarrow y D_z(x) = 6$  (not lying);

$$w \rightarrow y$$
,  $D_w(x) = \infty$ ;  $w \rightarrow z D_w(x) = 5$  (not lying);

$$y \rightarrow w$$
,  $D_y(x) = 4$  (not lying);  $y \rightarrow z D_y(x) = 4$  (not lying);

Then there is link-cost change  $(4\rightarrow60)$ ;

At t1, y updates its 
$$D_v(x) = 9$$
 (via z, z did not lie:);

Now y notifies w and z; y 
$$\rightarrow$$
 w,  $D_v(x) = 9$ ; y  $\rightarrow$  z  $D_v(x) = \infty$ ;

$$D_v(x) = \min\{c(y,z) + D_z(x), c(y,w) + D_w(x), c(y,x) + D_x(x)\} = \min\{3+6, 1+ \infty, 60+0\} = 9 \text{ (via z)}$$

|   | t0                                                                      | t1                                      | t2                                               | t3                                                                       | t4                                      |
|---|-------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|
| Z | $\rightarrow$ w, $D_z(x) = \infty$ ;<br>$\rightarrow$ y, $D_z(x) = 6$ ; |                                         | No change                                        | $\rightarrow$ w, $D_z(x) = \infty$ ;<br>$\rightarrow$ y, $D_z(x) = 11$ ; |                                         |
| W | $ → y, D_w(x) = ∞;  → z D_w(x) = 5; $                                   |                                         | ⇒ y, $D_w(x) = \infty$ ;<br>⇒ z, $D_w(x) = 10$ ; |                                                                          | No change                               |
| у | $\Rightarrow w, D_y(x) = 4;$<br>\(\righta\) z, D_y(x) = 4;              | $ → w, D_y(x) = 9;$ $ → z, D_y(x) = ∞;$ |                                                  | No change                                                                | $ → w, D_y(x) = 14;$ $ → z D_y(x) = ∞;$ |

50

This continues y-w-z-y-w-z-y-w-z; there is a routing loop (y-z, z-w, w-y). [ZL]

## Distance Vector Algorithm

# Iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbour

#### Distributed:

- each node notifies neighbours only when its DV changes
  - neighbours then notify their neighbours if necessary
  - The algorithm doesn't know the entire path – only knows the next hop

#### Each node:

wait for (change in local link cost or msg from neighbor) recompute estimates if DV to any dest has changed, *notify* neighbors

DV has the count-to-infinity problem and poisoned reverse does not solve it. *In RIP the maximum cost of a path is limited to 15*.

#### Comparison of LS and DV algorithms

#### Message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
  - convergence time varies

#### Speed of Convergence

- LS: O(n²) algorithm requires
   O(nE) msgs
  - may have oscillations
- DV: convergence time varies
  - may be routing loops
  - count-to-infinity problem

Robustness: what happens if router malfunctions?

#### LS:

- node can advertise incorrect link cost
- each node computes only its own table

#### DV:

- DV node can advertise incorrect path cost
- each node's table used by others
  - error propagates thru network

Neither is an obvious winner over the other; both are used in deed!

## Summary

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
  - B-F algorithm
  - Count-to-infinity problem and poisoned reverse
  - LS vs DV
- Summary

#### References

- [KR3] James F. Kurose, Keith W. Ross, Computer networking: a top-down approach featuring the Internet, 3<sup>rd</sup> edition.
- [LHBi]Y-D. Lin, R-H. Hwang, F. Baker, Computer network: an open source approach, International edition
- [ZL] Lilin Zhang, CSC358 Tutorial 9, University of Toronto, http://www.cs.toronto.edu/~ahchinaei/teaching/2016jan/csc358/Tut0 9-taSlides.pdf
- [Bellman] Richard Bellman, "On a routing problem," December 20, 1956. <a href="https://apps.dtic.mil/dtic/tr/fulltext/u2/606258.pdf">https://apps.dtic.mil/dtic/tr/fulltext/u2/606258.pdf</a>

## Acknowledgements

- Slides are developed based on slides from the following two sources:
  - Dr DongSeong Kim's slides for COSC264, University of Canterbury;
  - Prof Aleksandar Kuzmanovic's lecture notes for CS340,Northwestern University, <a href="https://users.cs.northwestern.edu/~akuzma/class">https://users.cs.northwestern.edu/~akuzma/class</a> es/CS340-w05/lecture notes.htm