Fonction cube, fonction inverse

I. Fonction cube

1. Définition et représentation graphique

Définition.

La fonction *cube* est la fonction définie sur \mathbb{R} par $x \mapsto x^3$.

Remarque. la courbe est symétrique par rapport à l'origine du repère. En effet, f(-x) = -f(x), donc les points de coordonnées $\begin{pmatrix} -x \\ -x^3 \end{pmatrix}$ et $\begin{pmatrix} x \\ x^3 \end{pmatrix}$

sont sur la courbe et sont symétriques par rapport à O. On dit que la fonction f est impaire et sa courbe représentative est la suivante :

2. Variations

Propriété.

La fonction cube est strictement croissante sur $\mathbb R$:

x	$-\infty$	0	$+\infty$
x^3		_0_	<i></i>

Propriété.

Pour tous réels a et b, on a :

$$a^3 = b^3 \Leftrightarrow a = b$$
 et $a^3 > b^3 \Leftrightarrow a > b$

Exemple. Résoudre dans \mathbb{R} l'inéquation $x^3 > 27$.

II. Fonction inverse

Définition.

La fonction *inverse* est la fonction f définie sur $\mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[$ par $f(x) = \frac{1}{x}$.

Propriété.

La fonction inverse est décroissante sur $]-\infty;0[$ et encore décroissante sur $]0;+\infty[$.

Définition.

On appelle la courbe représentative de la fonction inverse une hyperbole.

Remarque. La courbe est de nouveau symétrique par rapport à l'origine du repère. En effet, f(-x) = -f(x), donc les points de coordonnées $\begin{pmatrix} x \\ \frac{1}{x} \end{pmatrix}$ et $\begin{pmatrix} -x \\ -\frac{1}{x} \end{pmatrix}$ sont situés sur l'hyperbole et sont symétriques par rapport à O.