Project 2: Cellular Response to Drug Perturbations

Analysis of the effects of Gemcitabine

Group 3

Sophie Zhu, Tabita Häßner, Shivani Nundoo, Diego Montero Solano

Available Data Sets

- **Gene expression** of 819 samples, 13299 entries
 - treated
 - untreated
- Metadata: cell, drug, dose, time and tissue
- **Somatic mutations** from cell lines
- **GI50** values of 61 cancer cell lines treated with 15 drugs
- Gene copy-number alterations
- Basal gene expression of the cell lines
- Annotation charts with additional information about the cell lines and drugs

- Two paired samples test (treated and untreated) are available.
- → Ensure that they are normalised.
- → Reduce dimensions to eliminate data redundancy. (using PCA)

Is a batch effect or any relation between the sets of data identified?

Broad Analysis Part 1

Normalisation

PCA associated with metadata

Paired two samples t-test

Broad analysis Part 2 - Influence of drug treatment

- → Fold Change
- → Heatmap (Sample = celllines, rows = mean of gene expression difference after drug treatment): Are there drugs with a similar pattern?
- \rightarrow PCA of all genes (for example tissue associated?)

Gemcitabine

- Chemotherapy medication
- Faulty base
- Incorporated into DNA with normal nucleoside added next to it → base-excision repair cannot recognize it → irreparable error
- inhibition of further DNA synthesis
- Ultimately leads to cell death

https://en.wikipedia.org/wiki/Gemcitabine

Finding drug response biomarkers

Comparison of gene expression

- Databases used: treated and untreated
- Look at difference between cell lines
- Filter out the 20 Genes with the biggest difference → Biomarkers
- Which genes are up or downregulated by Gemcitabine?

Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets (Chen et al., 2017)

Does microsatellite instability (MSI) affect the impact of gemcitabine?

- 1. High Gl_{50} Values \rightarrow rather MSI-H (High)? \rightarrow Violinplots
- MSI-H celllines → more mutations? (2 Violinplots: MSI-H, MSI-L/mutations)
- 3. Heatmap separated by MSI-H/L; colour→ Fold change of biomarkers

What is the effect of the somatic mutation type on gemcitabine sensitivity?

Sub Question: Is the drug sensitivity for gemcitabine dependend on the cell line?

- Using NegLogGI50.rds data
- Values are -log10 transformes -> higher values indicate higher sensitivity
- mean graph plot of GI50 values for Gemcitabine
- coding according to tissue of origin

2. Sub Question: Is there a relation between mutation type and cell line?

- Using CCLE_mutations.rds data
- several variables as criteria for mutation type eg: Hugo symbol, codon_change, protein_change
- create a matrix which counts of the same type of mutation
- Chi square test to investigate relationship between variables and different cell lines

CCRF-CBM

Holbeck, Susan L et al. "Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines." *Molecular cancer therapeutics* vol. 9,5 (2010): 1451-60. doi:10.1158/1535-7163.MCT-10-0106

Can the drug sensitivity be predicted based on gene expression and gene copy-number?

- Check correlation between gene expression and gene copy number
- Predict drug sensitivity using **linear regression**
 - Two separate LR if correlation is low
 - Only one LR if correlation is high

Clinical implications of Gene Dosage and Gene Expression Patterns in Diploid Breast Carcinoma (Parris *et al.*, 2010)

Specific analysis - Final step

- Conduct extra tests if the results give rise to any new interesting questions.
- Analyze results, compare with literature and solve any unforeseen problems that come up.

Timeline

