การประมาณค่าของ \log_{10} a ด้วย bisection (แบบที่ 1)

เราสามารถหาค่าประมาณของ \sqrt{a} ได้ด้วยวิธี bisection ดังนี้

- 1. ให้ L = 0, U = a
- 2. เริ่มให้คำตอบอยูในช่วง [L, U]
- x =จุดกึ่งกลางของช่วง
- 4. ทำข้างล่างนี้ซ้ำ ถ้า x^2 ยังมีค่าไม่ใกล้กับ a ("ใกล้กัน" เมื่อ $|a-x^2| \leq 10^{-10} \max{(a,x^2)}$)
 - ถ้า $x^2 > a$ ก็เปลี่ยนช่วงเป็น [L, x]
 - ถ้า $x^2 < a$ ก็เปลี่ยนช่วงเป็น [x, U]
 - $x = q q \tilde{n}$ งกลางของช่วง
- 5. x คือค่าประมาณของ \sqrt{a}

จงนำแนวคิดของ bisection ข้างต้นมาใช้หาค่าประมาณของ $\log_{10} a$ โดยที่ $a \geq 1$

ข้อมูลนำเข้า

จำนวนจริง a (a ที่ใช้ในการทดสอบมีค่าระหว่าง 1 ถึง 600)

ข้อมูลส่งออก

ค่าประมาณของ $\log_{10} a$ โดยแสดงเลขหลังจุดทศนิยม 6 ตำแหน่ง

ตัวอย่าง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
1	0.0
100	2.0
250.0	2.39794
500.0	2.69897