Project: Packet Analysis with Wireshark - Analyzing google.com

Objective:

To capture and analyze the network packets generated while accessing **https://google.com**, with a focus on DNS resolution, TCP handshakes, and encrypted HTTPS traffic.

Tools Used:

• Wireshark (Network protocol analyzer)

• Web Browser: Google Chrome

• Website Visited: https://google.com

• Operating System: Windows

Steps Followed:

- 1. **Installed Wireshark** from https://www.wireshark.org and launched the tool.
- 2. Selected Network Interface (Wi-Fi) to capture live traffic.
- 3. Started Packet Capture and visited https://google.com in the browser.
- 4. Applied Filters:
 - \circ dns \rightarrow To capture the DNS request resolving google.com.
 - tcp.port == $443 \rightarrow$ To view HTTPS traffic.
 - \circ tls \rightarrow To view the TLS handshake packets.

Analyzed Captured Packets:

- DNS Lookup:
 - Observed DNS query and response for resolving google.com.
- TCP Handshake:
 - Captured 3-way TCP handshake between my system and Google's server.
- o TLS Handshake:
 - Observed the start of secure communication.
 - Captured "Client Hello", "Server Hello", and key exchange mechanisms.

Results:

1. Filter: dns

This filter displays all DNS traffic captured during browsing. It includes DNS queries and responses, showing how the domain name google.com was resolved to its IP address.

2. Filter: tcp.port == 443

This filter highlights TCP packets using port 443, indicating encrypted HTTPS traffic. It shows the secure communication channel established between the browser and google.com.

3. Filter: tls

This filter displays packets related to the TLS handshake process. It includes details like Client Hello and Server Certificate, confirming secure encrypted communication with google.com.

-DNS Packet Details for google.com:

This screenshot shows the breakdown of a DNS packet captured during access to google.com.

Screenshots Included:

- DNS query and response for google.com
- TCP 3-way handshake packets
- TLS handshake sequence
- Encrypted HTTPS traffic packets

Key Observations:

- **DNS resolution** is always the first step in accessing a domain, regardless of the protocol.
- TLS handshake ensures secure encryption between client and server.
- All application data was encrypted, confirming Google's HTTPS implementation is secure.

Conclusion:

This project demonstrated how HTTPS traffic is handled on a network level. Even though actual data isn't visible due to encryption, the initial DNS and TLS handshake packets still provide meaningful insight. This exercise strengthened my understanding of:

- DNS resolution process
- TCP and TLS handshake protocols
- The importance of HTTPS for secure communication

By analyzing google.com, I learned how modern websites ensure secure data transmission and how tools like Wireshark help in observing the underlying protocols.