$\begin{array}{c} {\rm CSM} \ 61C \\ {\rm Spring} \ 2020 \end{array}$

Number Representation

Exam Question Compilation

This document is a PDF version of old exam questions by topic, ordered from least difficulty to greatest difficulty.

Questions:

- Summer 2019 Midterm 1 Q1
- Fall 2019 Quest Q1, Q2, Q3
- $\bullet\,$ Spring 2015 Final M1-1AB
- Fall 2018 Quest Q1
- Spring 2018 Midterm 1 Q1
- Spring 2018 Final Q1A, Q1B
- \bullet Summer 2018 Midterm 1 Q1
- Fall 2018 Midterm Q1 A-D
- \bullet Fall 2015 Final MT2-5
- Fall 2019 Final Q2

Question 1: We're bored of Euclid. (Number Representation) - 17 pts

Morgan, Nick, and Branden are disappointed in the selection of food available near Soda, so they open a store selling many different kinds of products. They need YOUR help to come up with a barcode scheme for everything they sell.

	Product Number					
	Barcode = bits					
2. When the store runs out of a particular item, it would be helpful to see what other kinds of that are in stock. Morgan proposes adding a "product group" field to the barcode in addition to the product number. Note that now each product number does not need to be globally unique and just needs to be unique within its product group. If there are 5 unique product groups, what is smallest number of bits they can use for the product group field?						
		Product Number				

Summer 2019 Midterm 1 cont.

3.	We expand to have 12 product groups. The largest has 15 items in it while the smallest has one item. Nick argues the entire barcode can now be condensed to only 6 bits without losing product grouping or unique identifiers. Is he correct? If yes, explain why, if no, what is the actual minimum size?							
	[] Yes, he is corr	rect	[] No,	he is in	correct			
4.	The team decides on the above).	e following barco	ode field sizes	(which ma	y or may not reflect yo	our answers		
	Product Group	(4 bits)	F	roduct Nur	mber (5 bits)			
	Morgan loads all the babarcode of all zeros (so stock. Assuming there a implement the all-zero left). Yes, she can	, product group = are 8 product gro	= 000, produups holding badding bits to	ict number etween 1 a	= 000) for products and 31 products each, e? Explain.	that are out of		
5.	Business is booming ar modify the barcode to k				• •	w store and		
	Store Code (1 bit)	Product Group	(4 bits)	Product N	umber (5 bits)			
	Assuming the same item product group and product of items Morgan, Nick, your answer as an unsi	uct number rega and Branden car	rdless of the substitution relationships and the relationships and the relationships are relationships are relationships are relationships and the relationships are relationships are relationships and the relationships are relatio	store they're	e sold at) what is the r	maximum numbe		
	Unique	e Items						

Your Name (first last)		UC Berke Fall 201	•	SIL		
← Name of person on left (or aisle)		CS61C Q	uest Na	Name of person on right (or aisle) →		
Q1) [10 Points] Ne	gate the following	nibble <i>binary/hex</i>	numbers, or write	N/A if not possible		
Remember to write	your answer in th	e appropriate base	. (A nibble is 4 bits	s)		
(1 lin n i nun n nl)	(Dinn - 7)	(Dinn - 7)	(T	(T)		

(Unsigned)	(Bias = -7)	(Bias = -7)	(Two's Comp)	(Two's Comp)
0b0101	0b0100	0xF	0b1100	
0b	0ъ	0 x	0ъ	0 x

...scratch space below...

Q2) [6 Points] Which of the following sums will yield an **arithmetically incorrect result** when computed with **two's complement nibbles**?

Correct O	Incorrect ○ xE + 0xF		Incorrect O		Incorrect + 0x5
	AC T VAC	UX/	T UXO	U U U U U	T UXO

...scratch space below...

Q3) [12 Points] For each of the following representations, what is the *fewest number of bits* needed to cover the given range, which is inclusive of the endpoints (e.g., [1, 4] is the numbers 1, 2, 3 and 4). Write "N/A" if it is impossible. For the **Bias** *Value* (final value = unsigned + bias value), we'll let YOU specify whatever offset you wish to minimize the total number of bits needed for the Bias encoding.

Range	Unsigned	One's Comp	Two's Comp	Sign&Mag	Bias	Bias <i>Valu</i> e
[0, 10]		5	5			0
[-4, -1]		4				
[1, 4]				4	2	

...scratch space below...

For this page, assume all mallocs are successful, all necessary libraries are #included, and any heap accesses outside what the program allocates is a segmentation fault.

Q4) [12 Points] Which of the following are possible, if perhaps unlikely, results of attempting to compile and run this code? (select	Compilation error due to invalid typecast
ALL that apply)	 Runtime typecasting error
<pre>int main() {</pre>	□ A segmentation fault
int32_t *str = (int32_t *) malloc(sizeof(int32_t) * 3);	□ The program prints the empty string
<pre>printf("%s", (char *) str); // A char is 8 bits. return 0;</pre>	□ The program prints CS61C
}	□ The program prints CS61C rocks!

Q5) [10 Points] Each of the following evaluate to an address in memory. In other words, they "point" somewhere. Where in memory do they point ?					Q6) [10 Points] The program below runs through the array of strings, doing something to each of the characters and putting the results in the dest array.
	Code	Static	Stack	Heap	What are the first 8 characters the program
arr	0	0	0	0	prints? (Note: The program DOES compile and run without error.)
arr[0]	0	0	0	0	mandat diron,
dest	0	0	0	0	
dest[0]	0	0	0	0	
&arrPtr	0	0	0	0	

```
// The ASCII values for 'a', 'b', etc. are 97, 98, ... 
char *arr[] = {"Go", "Bears"};
int main() {
    char **arrPtr = arr;
    char *dest[2];
    int j;

    for (int i = 0; i < 2; i++) {
        char *currString = *arrPtr;
        dest[i] = (char *) malloc(strlen(currString) + 1);
        for (j = 0; j < strlen(currString); j++) {
            dest[i][j] = currString[j] & ~(1 << 5); // Hint: Focus on this line!
        }
        dest[i][j] = '\0';
        arrPtr++;
    }
    printf("%s %s", dest[0], dest[1]);
}</pre>
```

// The ASCII values for 'A', 'B', etc. are 65, 66, ... \ ← ← ← ← Important

M1-1: I smell a potpourri section covering midterm one... (9 points)

- a) Which of the following number representations give **0xfffffff** the **most positive** value when converted to decimal?
- A) Bias (with standard bias) B) Unsigned C) Two's complement D) Sign and Magnitude
- b) Consider a plot that shows the mapping between 8-bit two's complement binary numbers and their decimal equivalents (i.e. binary is on the x-axis and decimal is on the y-axis). Fill in the plot to the left and answer the following questions.

- i) Fill in the plot to the left.
- ii) Describe (in binary) where discontinuities occur in the plot, if any:
- iii) What are the most positive and most negative decimal values that this representation can store?

Q1a) With 3 bits, how do we represent -2? If it can't be done, select "N/A". (Select ONE per row)

	000	001	010	011	100	101	110	111	N/A
Unsigned	0	0	0	0	0	0	0	0	0
Sign/Magnitude	0	0	0	0	0	0	0	0	0
One's Complement	0	0	0	0	0	0	0	0	0
Two's Complement	0	0	0	0	0	0	0	0	0
Bias; use bias of -(2 ^{N-1} -1) from lecture	0	0	0	0	0	0	0	0	0

...scratch space below...

Q1b) Convert 26₁₀ to the following bases (and remove any leading zeros)

Binary	Hex
0ъ	0 x

Q1c) Add these Two's Complement nibbles:

1001 + 1011	Does it overflow a nibble? (Select ONE) O Yes No
----------------	--

Problem 1 Number Representation

(a) Translate the following decimal numbers into 8-bit two's complement and unsigned binary representation in the table below. If a translation is not possible, please write "N/A". Write your final answer in hexadecimal format.

Decimal Number	Two's Complement	Unsigned Number
10	0x	0x
129	0x	0x
-12	0x	0x

(b) Suppose that we define the negative of x to be just \overline{x} . We will call this new number representation scheme **one's complement**. Note that the top bit of a one's complement number still denotes the number's sign (0 for positive, 1 for negative).

Translate the following decimal numbers into 8-bit one's complement binary representation. If the translation is not possible, please write "N/A". Write your final answer in hexadecimal format.

Decimal Number	One's Complement
13	0x
-6	0x

(c)	What is the range	of integers (i	in decimal	format)	that	we can	represent	with	an
	<i>n</i> -bit one's comple	ment binary r	number?						

Problem 1 /MT1-1/ Number Rep

Answer the following questions about number representation:

- (a) Unsigned Base 4
 - (i) What is the range that a 4 digit unsigned base 4 number can represent? Write the bounds in decimal.

(ii) Convert 107₁₀ to unsigned base 4.

- (b) Signed Base 4
 - (i) Suppose we wanted to use a bias in order to represent negative numbers in base4. If we are working with a 4 digit base 4 number, what should we choose as our bias? (Our bias should create equal amounts of negative and positive numbers for our range. If this is not possible, select a bias that will result in 1 more negative number than positive numbers). Express your answer in decimal.

Bias = - _____

(ii) Suppose rather than using a bias notation, we decide to do the following.

For each base 4 number, we will reserve the most significant digit to strictly be used as a sign bit. A digit value of 1 will indicate a negative number, and a digit value of 0 will indicate a positive number. Any other values will result in an invalid number. For instance:

 $0003_4 = +3$ $1003_4 = -3$ $2003_4 = Invalid$

How many valid numbers can we represent with a 4 digit base 4 number using this scheme?

Question 1: Number Representation and Floating Point (12 pts)

2)			d as an unsigned number '	?
3)	What is this bitstring's v	valva if it was interpretar		
,		value if it was interpreted	d in two's complement?	
		•	-	owing the dot (.) represent the tring 0b1111.1100 represent?
	the following sentence:	xed point bitstring 0bXX		or negative values. Complete
	What is the value of 0b above?	1111.1100 given the tw	o's complement fixed poi	int representation described
	•	•	d specifications of an 8-bit , except with different field l	floating point, which follows engths:
	Sign: 1 bit	Exponent Value	Significand Value	Floating Point Value
	Exponent: 3 bits Significand: 4 bits	Smallest	Zero, Non-Zero	±0, Denormalized
	-	Largest	Zero, Non-zero	±Infinity, NaN
7)		iting point description in	e part 6 so that the exponen bute the floating point value	

}

Q1) Float, float on... (6 points; a,b 1pt; c,d 2pts)

Consider an 8-bit "minifloat" SEEEEMM (1 sign bit, 5 exponent bits, 2 mantissa bits). All other properties of IEEE754 apply (bias, denormalized numbers, ∞, NaNs, etc). The bias is -15.

a)	How many NaNs do we have?	
b)	What is the bit representation (in hex) of the next minifloat bigger than the minifloat represented by the hexadecimal value is 0x3F?	
c)	What is the bit representation (in hex) of the encoding of -2.5?	
d)	What does should_be_a_billion() return? (assume we always round down to 0)	
	<pre>minifloat should_be_a_billion() { minifloat sum = 0.0; for (unsigned int i = 0; i < 1000000000; i++) { sum = sum + 1.0; } return sum;</pre>	

MT2-5: What is the *floating point* of *complex* numbers? (5 points)

Your friend needs your help to make a new complex number representation. As a refresher, complex numbers are in the form a + bi, where a is the real component, b is the imaginary component, and the magnitude is $\sqrt{a^2 + b^2}$.

You decide to create a 16-bit representation for storing both the real and imaginary components as floating point numbers with the following form: The first 8 bits will represent the real component, and the latter 8 bits will represent the complex component. Your new representation looks like this:

Sign	Exponent	Significand	Sign	Exponent	Significand
15	14-12	11-8	7	6-4	3-0

Bits per field:

Sign: 1

Exponent: 3 Significand: 4

Everything else follows the IEEE standard 754 for floating point, except in 16 bits

Bias: 3

- a. Convert 0xB248 into a complex number.
- b. What is the smallest positive number you can represent with a nonzero real component and zero complex component.

Recall the following floating point representation from the midterm:

Sign	Exponent	Significand
15	14-9	8-0

Bits per field:

Sign: 1

Exponent: 6 Significand: 9

Everything else follows the IEEE standard 754 for floating point, except in 16 bits

c. Ignoring infinities, which of the two representations presented above can represent a number with the larger magnitude.

Complex Number Representation

Midterm Representation

Q2) Open to Interpretation (11 pts = 2 + 3 + 4 + 2)

Let's consider the hexadecimal value 0xFF000003. How is	this data interpreted, if we treat this number as
a) an array A of unsigned, 8-bit numbers? Please write each number in decimal , assume the machine is big endian, and write A[0] on the left, A[3] on the right.	SHOW YOUR WORK HERE
b) an IEEE-754 single-precision floating point number?	SHOW YOUR WORK
c) a RISC-V instruction? If there's an immediate, write it in decimal.	SHOW YOUR WORK
d) a (uint32_t *) variable c in little-endian format, and we call printf((char *) &c)? If an error or undefined behavior occurs, write "Error". If nothing is printed, write "Blank". Please refer to the ASCII table provided on your reference sheet. For non-printable characters, please write the value in the Char column from the table. For example, for a single backspace character, you would write "BS".	SHOW YOUR WORK