

Operating Systems

Lecture 6: CPU Scheduling

Objectives

- To introduce CPU scheduling, which is the basis for multiprogrammed operating systems.
- To describe various CPU-scheduling algorithms.
- To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system.

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

load store add store CPU burst read from file I/O burst wait for I/O store increment CPU burst index write to file I/O burst wait for I/O load store CPU burst add store read from file I/O burst wait for I/O

CPU Scheduler

- Short-term scheduler selects from among the processes in ready queue, and allocates the CPU to one of them
 - Queue may be ordered in various ways
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is nonpreemptive
- All other scheduling is preemptive

Scheduling Criteria

- **CPU utilization** keep the CPU as busy as possible
- **Throughput** # of processes that complete their execution per time unit
- **Turnaround time** amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- **Response time** amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

Scheduling Algorithms

In job scheduling algorithms we follow 3 steps:

- Step 1: draw Gantt chart
- Step 2: calculate Waiting Time

WT (Waiting Time) = initial processing time
$$-$$
 arrival time

Step 3: calculate Average Waiting Time (AWT)

$$AWT = \frac{WT_1 + WT_2 + WT_3 \dots + WT_n}{\text{number of processes}}$$

First- Come, First-Served (FCFS) Scheduling

<u>Process</u>	<u>Burst Time</u>
$P_{\scriptscriptstyle 1}$	24
P_2	3
P_3	3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$ Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2$$
, P_3 , P_1

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst.
- ☐ Use these lengths to schedule the process with the shortest time.
- SJF is optimal gives minimum average waiting time for a given set of processes.
- The difficulty is knowing the length of the next CPU request.
 - □ Could ask the user.

Example of SJF (non-preemptive)

<u>Process</u>	<u>Burst Time</u>
$P_{_{1}}$	6
P_2	8
P_3	7
P_4	3

SJF scheduling chart

- Waiting time for $P_1 = 3$; $P_2 = 16$; $P_3 = 9$; $P_4 = 0$
- Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Example of Shortest-remaining-time-first (preemptive)

Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	<u> Arrival Time</u>	<u>Burst Time</u>
P_{1}	0	8
P_2	1	4
P_3	2	9
$P_{_{4}}$	3	5

• Preemptive SJF Gantt Chart

• Waiting time for P1 =
$$(0-0)+(10-1) = 9$$
; P2 = $(1-1) = 0$
P3 = $(17-2) = 15$; P4 = $(5-3) = 2$

Average waiting time = [9 + 0 + 15 + 2]/4 = 26/4 = 6.5 msec

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer = highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is priority scheduling where priority is the inverse of predicted next CPU burst time
- Problem **Starvation** low priority processes may never execute
- Solution = Aging as time progresses increase the priority of the process

Example of Priority Scheduling

<u>Process</u>	Burst Time	<u>Priority</u>
P_1	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

Priority scheduling Gantt Chart

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 16$; $P_4 = 18$; $P_5 = 1$
- \square Average waiting time = [6 + 0 + 16 + 18 + 1] / 5 = 41 / 5 = 8.2 msec

Round Robin (RR)

Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds.

 After this time has elapsed, the process is preempted and added to the end of the ready queue.

Example of RR with Time Quantum = 4

<u>Process</u>	<u>Burst Time</u>
$P_{_{1}}$	24
$\bar{P_2}$	3
P_3	3

The Gantt chart is:

- Waiting time for $P_1 = (0 0) + (10 4) + (14 14) = 0 + 6 + 0 = 6$ $P_2 = (4 - 0) = 4; P_3 = (7 - 0) = 7$
- Average waiting time = [6 + 4 + 7] / 3 = 17 / 3 = 5.67 msec

Time Quantum and Context Switch Time

End of Chapter 6

