Informatique Graphique

Simplification de Surface

Contexte

Modèle St Mattieu

360 000 000 de triangles

TROP pour beaucoup d'applications

Modèle Atlas

500 000 000 de triangles

Scans sur-échantillonnés

~80k triangles

• Overtessellation: E.g. extraction d'iso-surface

- Hiérarchies multi-résolution pour
 - Le traitement efficace de la géométrie
 - Rendu à différents niveaux de détails (level-of-detail LOD)

Adaptation aux capacités matérielles

Compromis taille-qualité

size

Objectif

- Générer un maillage
 - contenant moins de polygones
 - préservant au mieux la forme d'origine.

- Entrée : un maillage
- Sortie : un maillage
- Techniques similaires pour les surfaces de points

Définition du problème

- Etant donné : $\mathcal{M} = (\mathcal{V}, \mathcal{F})$
- Trouver: $\mathcal{M}' = (\mathcal{V}', \mathcal{F}')$ Tel que
 - 1. $|\mathcal{V}'| = n < |\mathcal{V}|$ et $||\mathcal{M} \mathcal{M}'||$ soit minimal, ou
 - 2. $\|\mathcal{M} \mathcal{M}'\| < \epsilon$ et $|\mathcal{V}'|$ est minimal
- Respect de critères additionnels
 - déviation de normal, forme des triangles, attributs scalaires, etc.

Caractérisation

- Efficacité :
 - Complexité en temps : vitesse de simplification
 - Simplification à la volée
 - Complexité en mémoire : taille de l'entrée
 - Algorithmes hors-mémoire souhaitables
- Qualité:
 - Préservation de la topologie
 - Degré d'approximation de la géométrie

Classification

- 1. Partitionner la maillage
- 2. Définir un sommet représentant par partition
- 3. Trianguler l'ensemble des sommets représentant

- 1. Définir une importance par sommet
- 2. Supprimer le sommet de moindre importance
- 3. Recommencer en 1 jusqu'à obtenir le nombre souhaité d'éléments

Algorithmes de Simplification

Quelques algorithmes de simplification:

Décimation

- MO (Mesh Optimization): Optimisation de maillage [Hoppe et al., 1993]
- QEF (Quadric Error Function): Erreur L2 basée sur une quadrique locale [Garland 1997]

Partitionnement

- OCS (Out-of-Core Simplification): Partitionnement en grille de soupes de polygones [Lindstrom 2000]
- VSA (Variational Shape Approximation): Relaxation de Lloyd pilotée par la normale [Cohen-Steiner et al. 2004]

- 1. Partitionner la surface en régions
- 2. Calculer un représentant pour chaque région
 - Le plus souvent un sommet
 - Position/normale/etc. définit par une optimisation
 - La plus simple : une moyenne
- 3. Trianguler les sommets représentants

- Génération de régions
- Calcul d'un représentant
- Génération d'un maillage
- Changement de topologie

- Génération de régions
 - Grille uniforme 3D
 - Mapper les sommets pour les grouper
- Calcul d'un représentant
- Génération d'un maillage
- Changement de topologie

- Génération de régions
- Calcul d'un représentant
 - Position moyenne/medianne des sommets
 - Erreur quadrique
- Génération d'un maillage
- Changement de topologie

Calcul d'un représentant

Position moyenne

Calcul d'un représentant

Medianne vertex position

Calcul d'un représentant

Erreur quadrique

Quadrique d'Erreur (Quadric Error Metric - QEM)

- Les patch sont supposés plat par morceau
- Minimiser la distance aux plans des triangles voisins

Quadrique d'Erreur (Quadric Error Metric - QEM)

Distance au carré d'un point p à un plan q :

$$p = (x, y, z, 1)^T, q = (a, b, c, d)^T$$

$$dist(q,p)^2 = (q^Tp)^2 = p^T(qq^T)p =: p^TQ_qp$$

$$Q_q = egin{bmatrix} a^2 & ab & ac & ad \ ab & b^2 & bc & bd \ ac & bc & c^2 & cd \ ad & bd & cd & d^2 \ \end{bmatrix}$$

Quadrique d'Erreur (Quadric Error Metric - QEM)

• Somme des distances aux plans q_i des triangles voisins au sommet :

$$\sum_{i} dist(q_i,p)^2 = \sum_{i} p^T Q_{q_i} p = p^T \left(\sum_{i} Q_{q_i}
ight) p =: p^T Q_p p$$

Point p* that minimizes the error satisfies:

$$\left[egin{array}{cccc} q_{11} & q_{12} & q_{13} & q_{14} \ q_{21} & q_{22} & q_{23} & q_{24} \ q_{31} & q_{32} & q_{33} & q_{34} \ 0 & 0 & 0 & 1 \end{array}
ight] p^* = \left[egin{array}{cccc} 0 \ 0 \ 0 \ 1 \end{array}
ight]$$

Comparaison

- Génération de régions
- Calcul d'un représentant
- Génération d'un maillage
 - Clusters $p \leftrightarrow \{p_0,...,p_n\}$,

$$q \leftrightarrow \{q_0, ..., q_m\}$$

Changement de topologie

- Génération de régions
- Calcul d'un représentant
- Génération d'un maillage
 - Clusters $p \leftrightarrow \{p_0,...,p_n\}$, $q \leftrightarrow \{q_0,...,q_m\}$
 - Connecter (p,q) si il existait une arête (p_i,q_i)
- Changement de topologie

Exemple simple : partitionnement en grille (OCS)

- Structure de partition : une grille 3D G
 - Région = ensembles des sommets du maillages appartenant à la même cellule de G
- Sommet représentant : la moyenne des sommet d'une cellule
- Triangulation
 - Pour chaque triangle du maillage d'origine :
 - Si 2 ou 3 des sommets sont dans la même cellule de G, supprimer le triangle
 - Sinon, conserver le triangle, en réindexant ses sommets sur les sommets représentants de leurs cellules respectives

Principe OCS

Maillage

Partitionnement en grille

Calcul des représentants

Λ.	anta	OD
AV	alite	ISC

- Simplicité
- •Calcul en flux (un sommet du maillage dense en mémoire à la fois)
- Très rapide

Inconvénients

- •Contrôle de la résolution de la surface difficile
- Erreurs topologiques

Sélection des triangles à conserver (sommets dans différentes cellules) « Étirement » des triangles à la positions des représentants (réindexation)

Maillage simplifié

Adaptivité

- Grille régulière G remplacée par une des structures de partitionnement spatial hiérarchiques adaptatives
- Meilleur distribution des régions
 - petites régions dans les zones accidentées
 - grandes régions dans les zones planes
- Exemples :
 - Octree
 - kd tree
 - BSP tree

Exemple haute qualité : VSA (Approximation Variationelle de Forme)

Algorithme itératif :

- 1. Initialisation d'un ensemble de *proxies* (couple représentant, point/normale) par selection aléatoire d'un ensemble de triangles
 - Graîne/représentants des regions
- 2. Grossissement de regions basé normal
 - Triangle t en bord de regions affecté à la region dont la normale du proxy minimise l'angle avec la normale de t

3. Optimisation du proxy : point et normales moyennes des triangle de sa

régions associée

4.Recommencer en 2 jusqu'à convergence Maillage simplifié obtenu par suivi de contour des régions

Avantage	Inconvénients
Précision et optimalité	• Lenteur
Structure anisotrope	Convergence non garantie

- Génération de régions
- Calcul d'un représentant
- Génération d'un maillage
- Changement de topologie
 - Si différents plans passent pas la même cellule
 - Peut être non-variété

Vertex Clustering

- Cluster Generation
- Computing a representative
- Mesh generation
- Topology changes
 - If different sheets pass through one cell
 - Can be non-manifold

Décimation Incrémentale

Simplification par Décimation

- 1. Trier les sommets en fonction de leur **importance/erreur** (induite par leur suppression) dans une file à priorité **F**
 - Métrique d'erreur : basée sur la position, la normale, la couleur, le point de vue, ...
- 2. Supprimer le sommet de tête de **F** (erreur minimum)
 - Contraction d'arête ou Retriangulation
- 3. Optimisation : recalculer l'importance des sommets adjacents au sommet supprimé
- 4. Mettre à jour **F**
- 5. Recommencer en 1 jusqu'à condition d'arrêt
 - Nombre de sommets cible
 - Erreur maximum autorisée

Décimation Incrémentale

- Principe général
- Opérateur de décimation
- Métrique d'erreur quatrique
- Critère de qualité
- Changement de topologie

Principe général

- Repeat:
- pick mesh region
- apply decimation operator
- Until no further reduction possible

Greedy Optimization

- For each region
- evaluate quality after decimation
- enqeue (quality, region)

- Repeat:
- get best mesh region from queue
- apply decimation operator
- update queue
- Until no further reduction possible

Global Error Control

- For each region
- evaluate quality after decimation
- enqeue (quality, region)
- Repeat:
- get best mesh region from queue
- if error < ε
- apply decimation operator
- update queue
- Until no further reduction possible

Décimation Incrémentale

- Principe général
- Opérateur de décimation
- Métrique d'erreur quadrique
- Critère de qualité
- Changement de topologie

Stratégie de Suppression

Contraction d'une arête adjacente au sommet de moindre importance

- Supprime 1 sommet et 2 triangles
- Opération dual : division de sommet

Note: cet opérateur de simplification permet de construire des maillages progressifs, une structure de multirésolution, avec continuum géométrique.

Retriangulation

Note: équivalent à la contraction d'arête, mais en général sans calcul d'optimum local.

Opérateur de décimation

- Qu'est ce qu'une région ?
- Quels sont les degrés de liberté pour la retriangulation ?
- Classification
 - Changement de topologie vs. préservation
 - Sous-échantillonnage vs. lissage
 - Opération inverse → maillages progressifs

Suppression de sommets

Vertex Removal

Vertex Removal

Vertex Removal

Opérateurs de décimation

- Supprimer le sommet
- Re-trianguler le trou
 - Degrés de liberté combinatoire

Opérateurs de décimation

- Fusionner deux sommets adjacents
- Définir une nouvelle position
 - Degrés de liberté continus
 - Filtrage sur la route

Opérateurs de décimation

- Contracter l'arête en un de ses sommets
 - Cas particulier de la suppression de sommet
 - Cas particulier de la contraction d'arête
- Pas de degrés de liberté
- Sépare l'optimisation globale de l'optimisation locale

Décimation Incrémentale

- Principe général
- Opérateurs de décimation
- Métriques d'erreur
- Critères de qualité
- Changements de topologie

Métrique d'erreur locale

- Local distance to mesh
 - Calculer le plan moyen
 - Pas de comparaison à la géométrie originale

Métriques d'erreur globale

- Quadriques d'erreur
 - Distance au carré des plans pour un sommet

Décimation Incrémentale

- Principe général
- Opérateurs de décimation
- Métriques d'erreur
- Critères de qualité
- Changements de topologie

- Donne la qualité après décimation
 - Erreur d'approximation
 - Formes des triangles
 - Angles dihedraux
 - Equilibre de la valence
 - Différences de couleurs

- Donne la qualité après décimation
 - Erreur d'approximation
 - Formes des triangles
 - Angles dihedraux
 - Equilibre de la valence
 - Différences de couleurs

$$\frac{r_1}{e_1}<\frac{r_2}{e_2}$$

- Donne la qualité après décimation
 - Erreur d'approximation
 - Formes des triangles
 - Angles dihedraux
 - Equilibre de la valence
 - Différences de couleurs

- Donne la qualité après décimation
 - Erreur d'approximation
 - Forme des triangles
 - Angles dihedraux
 - Equilibre de la valence
 - Differences de couleurs

- Donne la qualité après décimation
 - Erreur d'approximation
 - Forme des triangles
 - Angles dihedraux
 - Equilibre de la valence
 - Differences de couleurs

- Donne la qualité après décimation
 - Erreur d'approximation
 - Forme des triangles
 - Angles dihedraux
 - Equilibre de la valence
 - Differences de couleurs

Décimation Incrémentale

- Principe général
- Opérateur de décimation
- Métrique d'erreur
- Critères de qualité
- Changement de topologie

Changements de topologie ?

- Fusionner des sommets sont connectés
 - Induit des changement de topologie
 - Nécessite des informations de voisinage spatial
 - Génére des maillages non-variété

Changements de topologie ?

- Fusionner des sommets sont connectés
 - Induit des changement de topologie
 - Nécessite des informations de voisinage spatial
 - Génére des maillages non-variété

Exemple par Décimation

Simplification par Décimation

Avantage	Inconvénients
 Précision et optimalité Continuum et granularité de 	LentDifficile à mettre sur de
la simplification	grands modèles
 Transformation géomorphe de niveaux de details 	(algorithmique hors mémoire)
de filveaux de détails	memone)

Métriques d'Erreur

- Caractérise le coût géométrique (perte d'information) introduit par la simplification d'une région
 - Région = 1-voisinage d'un sommet supprimé par décimation
 - Région = cellule pour les méthodes par partitionnement
- Peut s'appuyer sur la position des sommets, leurs normales, celles de triangles, etc...
- Idéalement, la métrique d'erreur permet de :
 - Ordonnancer les sommets en vue de supprimer les moins importants
 - Définir un représentant optimum pour la métrique en question

Distances géométrique et métriques d'erreurs

- Distances L^p (p=2 pour la distance euclidienne)
- Carrée de la distance euclidienne : un quadrique (QEM) [Garland 1997]
- Métrique $L^{2,1}$: basée sur le normale des surfaces [Cohen-Steiner 04]
- Distance de Hausdorff

Distances L^p

Distance entre une surface S et sa version simplifiée R

Basé sur les positions des élément (L2)

$$\mathcal{L}^{p}(S,R) = \left(\frac{1}{|S|} \iint_{x \in S} ||d(x,R)||^{p} dx\right)^{\frac{1}{p}}$$
avec $d(x,R) = \inf_{y \in R} ||x-y||$

Quadrique d'Erreur (Quadric Error Metric - QEM)

Permet de mieux placer

- un sommet représentant pour les méthodes par partitionnement
- un sommet contracté pour les méthodes par décimation

Métrique $L^{2,1}$

normale moyenne de la région

(distance aux centre des régions minimisée)

Conclusion

Tous ces algorithmes peuvent être combinés à différentes échelles. Exemple:

L'opération de simplification de maillage est un cas particulier :

- d'optimisation géométrique
- de ré-échantillonnage géométrique -> remaillage

Mémo Simplification

- 1993 : Optimisation de maillage
- 1993: <u>Simplification par partitionnement</u> (OCS)
- 1996 : Maillages progressifs (PM)
- 1997 : Quadrique d'Erreur (QEF/QEM)
- 2000 : <u>Simplification hors-mémoire</u> (OCS)
- 2004 : <u>Partitionnement variationnel</u> (VSA)
- 2009 : <u>Simplification de Maillages Quad</u>
- 2013 : <u>Sphere-Meshes</u>