Lab 11. Recunoaşterea obiectelor din imagini digitale monobiect, fără extragerea şi selecția trăsăturilor, folosind clasificatoare masini cu vectori suport (SVM) binare

Clasificatorul SVM binar

Notatii matematice:

- Spatiul trasaturilor: $\mathbb{R}^{\mathsf{F}} \Rightarrow \mathsf{F} = \mathsf{dimensiunea}$ spatiului trasaturilor
- Date de antrenare: $X_{trn} = \{x_{t,1}, x_{t,2}, ..., x_{t,Ntrn}\}$; etichetele datelor de antrenare: $Y_{trn} = \{y_{t,1}, y_{t,2}, ..., y_{t,Ntrn}\}$, $y_{t,i} = +1$ sau -1.
- SVM = clasificator binar capabil sa separe datele in 2 clase:
- a) clasa exemplelor pozitive, etichetate cu +1, pentru o problema de clasificare data (ex.: clasa imaginilor faciale)
- **b)** clasa exemplelor negative, etichetate cu -1, pentru problema de clasificare data = orice alt tip de date decat cele pozitive (ex.: orice alta imagine decat o imagine faciala)
- => SVM clasifica datele in "exemple pozitive" si "exemple negative" ⇔ intr-o clasa *C* si o clasa *non-C*.

Principiul de separare a datelor in cele 2 clase in clasificatorul SVM binar: separarea datelor de catre un hiperplan separator optimal \mathcal{H} , care separa exemplele din cele doua clase fara eroare si cu margine maxima = cu distanta maxima de la cel mai apropiat exemplu pozitiv la \mathcal{H} si de la cel mai apropiat exemplu negativ la \mathcal{H} .

Principiul recunoasterii obiectelor cu SVM binare

Etapa de antrenare a SVM

În funcție de gradul de separabilitate al datelor de clasificat în spațiul trăsăturilor lor, putem utiliza :

•SVM liniare, pt. date liniar separabile => ecuația hiperplanului separator optimal se deduce în \mathbb{R}^{F} .

•SVM neliniare, pt. date neseparabile liniar în \mathbb{R}^{F} => nu putem deduce un hiperplan care să separe datele în \mathbb{R}^{F} =>SVM proiectează datele într-un spațiu de dimensiune mai mare, \mathbb{R}^{M} , M>F, în care datele devin liniar separabile. Hiperplanul separator este dedus în spațiul înalt dimensional \mathbb{R}^{M} .

Cazul SVM liniar (1)

• Procesul de învățare al SVM = găsirea parametrilor unui hiperplan \mathcal{H}_o in \mathbb{R}^{F} care:

- să separe perfect exemplele pozitive și exemplele negative din $\mathsf{X}_{\mathsf{trn}}$ in \mathbb{R}^{F}

 – să maximizeze marginea ⇔ să maximizeze distanța celui mai apropiat exemplu pozitiv şi distanța celui mai apropiat exemplu negativ la

hiperplanul \mathcal{H}_0 .

 \mathcal{H}_0 = hiperplanul separator optimal = "media" hiperplanelor limita definite de vectorii suport: \mathcal{H}_v , \mathcal{H}_z

Cazul SVM liniar (2)

- Este posibilă definirea mai multor hiperplane care să separe perfect datele din mulțimea de antrenare : \mathcal{H}_0 , \mathcal{H}'_0 , \mathcal{H}''_0 .
- Doar hiperplanul \mathcal{H}_0 dă **distanța maximă** de la cel mai apropiat exemplu pozitiv şi cel mai apropiat exemplu negativ la hiperplan => \mathcal{H}_0 = **hiperplan** separator optimal
- Hiperplanul separator optimal este paralel cu hiperplanele-limită \mathcal{H}_1 şi \mathcal{H}_2 , fiind situat la mijlocul distanței dintre ele.

Cazul SVM liniar (3)

- \mathcal{H}_p , \mathcal{H}_2 = hiperplanele cu proprietatea că, nici una din datele de antrenare nu cade între ele, dar există date de antrenare și pe \mathcal{H}_p , și pe \mathcal{H}_2 .
- Datele de antrenare situate pe \mathcal{H}_1 si \mathcal{H}_2 = **vectorii suport ai SVM**.
- Vectorii support = singurele date necesare pentru definirea SVM, deoarece permit definirea univocă a \mathcal{H}_o :
 - Vectorii suport formați din exemple de antrenare pozitive definesc complet ecuația hiperplanului $\mathcal{H}_{_{\rm I}}$
 - Vectorii suport formați din exemple de antrenare pozitive definesc complet ecuația hiperplanului \mathcal{H}_2
 - Odată definite \mathcal{H}_1 si \mathcal{H}_2 prin ecuațiile lor matematice => ecuația matematică a hiperplanului separator optimal \mathcal{H}_0 se poate defini prin "media" ecuațiilor hiperplanelor \mathcal{H}_1 și \mathcal{H}_2 , respectiv, prin ecuația acelui hiperplan care este paralel și cu \mathcal{H}_{ν} , și cu \mathcal{H}_{ν} , și este amplasat exact la mijlocul distanței dintre ele.
- Pentru exemplul din fig. anterioara, avem câte două exemple din fiecare clasă aflate pe hiperplanele-limită => numărul de vectori suport = 4 (2 vectori suport cu eticheta +1; 2 vectori suport cu eticheta -1).

Cazul SVM liniar (4)

• Ecuația matematică a hiperplanului \mathcal{H}_{o} în spațiul \mathbb{R}^{F} al datelor se exprimă ca:

$$H_0: \mathbf{w} \cdot \mathbf{x} + b = 0,$$

unde \mathbf{w} = vectorul normal la hiperplan; b = termenul liber al hiperplanului.

- Suma distanțelor celui mai apropiat exemplu negativ la hiperplanul \mathcal{H}_o și a celui mai apropiat exemplu pozitiv la hiperplanul \mathcal{H}_o este dată de expresia $\frac{2}{\|\mathbf{w}\|}$ și se numește margine. $\|\mathbf{w}\|$ = norma Euclidiană a vectorului \mathbf{w} .
- **Problema antrenării SVM** = deducerea parametrilor \mathbf{w} şi b ai hiperplanului separator optimal \mathcal{H}_0 astfel încât marginea să fie maximizată, iar exemplele pozitive şi negative să respecte următoarele constrângerile ca nici unul dintre ele să nu "cadă" în interiorul marginii de separare a claselor, adică, să nu fie amplasate între hiperplanele-limită \mathcal{H}_1 şi \mathcal{H}_2 :

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge 1, & \text{pentru } y_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1, & \text{pentru } y_i = -1 \end{cases} \quad \forall i = 1, 2, ..., N_{trn}.$$

Cazul SVM liniar (5)

- Problema de maximizare a marginii cu constrângeri de tip inecuatie se poate rezolva cu ajutorul multiplicatorilor Lagrange.
- Datele \mathbf{x}_k din mulțimea de antrenare pentru care, în urma procesului de optimizare, se obțin multiplicatori Lagrange $\alpha_k = 0$ nu vor interveni în expresia matematică a funcției de decizie a clasificatorului mașină cu vectori suport.
- Celelalte date, pentru care obținem multiplicatori Lagrange nenuli, sunt importante în definirea ecuației matematice a hiperplanului \mathcal{H}_o , și deci și a funcției de decizie a clasificatorului. Aceste date de antrenare sunt exact **vectorii suport ai clasificatorului**, adică, datele din mulțimea de antrenare care definesc cele două hiperplane-limită \mathcal{H}_1 și \mathcal{H}_2 . Fie N_s = nr. vectorilor support, N_s >0 și $N_s \leq N_{trn}$.
- Vectorii suport, etichetele lor, valorile multiplicatorilor lor Lagrange asociați și valoarea termenului liber b al hiperplanului deduse în urma procedurii de optimizare sunt suficienți pentru a defini complet maşina cu vectori support
- Ecuația hiperplanului separator optimal \mathcal{H}_o al maşinii cu vectori suport definește de fapt și funcția de decizie a clasificatorului maşină cu vectori suport, în următoarea formă:

$$f(\mathbf{x}) = \sum_{i=1}^{N_S} \alpha_i y_i \mathbf{x}^T \mathbf{x}_i + b,$$
 sau $y = f'(\mathbf{x}) = sign(f(\mathbf{x})).$

Cazul SVM neliniar (1)

- Daca datele de antrenare nu sunt separabile fără eroare printr-un hiperplan în domeniul lor original => SVM proiectează datele din spațiul într-un spațiu Hilbert de dimensiune mai înaltă \mathbb{R}^{M} , cu M>F, folosind pentru proiecție o transformare neliniară Φ , $\Phi: \Re^F \to \Re^M$
- În noul spațiu, datele devin mai distanțate și vor fi mai ușor de separat liniar => SVM construiește în faza de antrenare hiperplanul separator optimal în noul spațiu \mathbb{R}^{M} , dat de ecuația:

$$H_0: \mathbf{w} \cdot \Phi(\mathbf{x}) + b = 0,$$

ca orice SVM liniar, dar nu in \mathbb{R}^{F} ci in \mathbb{R}^{M} .

- Similar SVM liniar, in expresia finala a functiei de decizie f(**x**), datele intervin prin produsele lor scalare in \mathbb{R}^{M} : $\Phi\left(\mathbf{x}_{i}\right)\cdot\Phi\left(\mathbf{x}_{j}\right)$, $\forall i,j$ = 1,2,..., N_{trn} .
- În locul folosirii explicite a acestor produse şi transformării neliniare Φ , SVM folosesc funcții-kernel $K: \Re^F \times \Re^F \to \Re^F$, care implementeaza calculul:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j), \quad \forall i, j = 1, 2, ..., N_{trn}.$$

Cazul SVM neliniar (2)

Ilustrare a procesului de proiectie a datelor intr-un spatiu inalt dimensional si deducere a hiperplanului separator optimal in acest spatiu:

Cazul SVM neliniar (3)

- Exemple de funcții-kernel în clasificatoarele SVM:
 - Funcția-kernel polinomială, de grad d, d întreg pozitiv nenul:

$$K(\mathbf{x}_i, \mathbf{x}_j) = (m \cdot \mathbf{x}_i^T \mathbf{x}_j + n)^d$$

unde: d = gradul polinomului; valori uzuale: 2,3,5 şi 7.

m și n = parametri cu valori reale nenule, care reprezintă coeficienții expresiei polinomiale. Uzual, m=n=1.

6) Funcția-kernel exponențială (RBF)(=radial basis function):

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left\{-\gamma |\mathbf{x}_i - \mathbf{x}_j|^2\right\},\,$$

unde γ reprezintă parametrul cu valori reale pozitive nenule al funcției Gaussiene.

 În urma procesului de învățare al maşinii cu vectori suport neliniare, se obține funcția de decizie (cu valori reale) a clasificatorului sub forma:

$$f(\mathbf{x}) = \sum_{i=1}^{N_S} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) + b,$$

Aplicatie practica

1) Se va descarca biblioteca *Matlab Support Vector Machine Toolbox* dezvoltata de catre Steve Gunn, Univ. of Southampton, de la adresa: http://www.isis.ecs.soton.ac.uk/isystems/kernel/svm.zip

Se va dezarhiva aceasta biblioteca in directorul *Toolbox* din *Matlab* Se va adauga (comanda Set Path) directorul acestui toolbox, cu subdirectoarele sale, la pornirea Matlab-ului

2) La linia de comanda a Matlab-ului, rulati aplicatia *uiclass*. Incarcati pe rand cele trei fisiere de date corespunzatoare problemei de clasificare a florilor de Iris. Care este diferenta intre cele 3 fisiere? Ce problema de clasificare rezolva fiecare dintre ele?

- 3) Analizati, pentru fiecare din cele 3 seturi de date al problemei de clasificare a florilor de Iris, performanta de clasificare a unui clasificator SVM binar liniar si a unor clasificatoare SVM binare neliniare, pentru diferite forme de functii kernel. Comentati performantele de clasificare.
- 4) Rulati aplicatia *ObjClassifSVM_LargeDatabase.m* si notati erorile de clasificare in setul de antrenare si in setul de test pentru problema de clasificare data. Comparati performanta de clasificare cu cea a clasificatorului LDA din lucrarea de laborator precedenta.
- 5) Modificati parametrii SVM astfel incat sa se minimizeze rata de eroare in setul de test (atat pentru cazul folosirii numai a luminantei, cat si a culorii) pentru problema de clasificare data.