Fashion Gan project

2018.10.01 ~ 2018.12.28

목차

• 논문 리딩 발표 자료

• 프로젝트 진행과정

• 결과 -> <추후 공지 예정>

• 이번학기 DAIA 활동 돌아보기

논문 리딩 발표 자료

Original GAN

Unrolled GAN

EBGAN

CNN

DCGAN

CGAN

CAGAN

Wasserstein GAN

BEGAN

Cycle GAN

Be your own prada

Be your own prada

model

• Input: model segmentation map + textual descriptions

• Output: 3개의 new outfits onto 모델사진

Text Entry 1:

The woman is wearing in beige with long sleeves.

Text Entry 2:

The lady was wearing a multicolored long-sleeved coat.

The Original Image

Text Entry 3: The lady is wearing a pink long-sleeved blouse.

기존 문제점

- First, 모든 input이 same view of wearer 이여야 한다.
- -> 기존의 non parametric 한 그래픽 방법으로 가능(실용성 떨어짐, textual description과 결합 x)
- Second, 옷이 짧거나 길어질 때 orginal과 bodyshape이 달라져 야함

DCGAN만으로 부족한 이유

• Input의 구조적 일관성을 강화하는 메커니즘이 없음

• Pixel averaging이 articles의 boundary를 희미하게 만듬

=> Two stage to solve it

When we train, we need

- 1 model wearing cloth + description about that cloth
- -> input image 와 target image 둘 다로 쓰일 수 있음

$$\min_{G} \max_{D} \mathbb{E}_{I \sim p_{\text{data}}} [\log D(I)] + \mathbb{E}_{\mathbf{z} \sim p_{z}} [\log (1 - D(\underline{G(\mathbf{z})}))].$$

$$\tilde{S} \leftarrow G_{\text{shape}}(\mathbf{z}_S, \downarrow m(S_0), \mathbf{d}),$$

 $\tilde{I} \leftarrow G_{\text{image}}(\mathbf{z}_L, \tilde{S}, \mathbf{d}).$

 $S_0 \in \{0,1\}^{m \times n \times L}$

(m:넓이, n:높이

L: 7{background, hair, face, upper-clothes, pants/shorts, legs, and arms})

Extract vector of binary feature

- a: body, face, and other physical characteristics vector
- v: text encoding

$$d = (a,v)$$

• S_0 :human segmentation map

• I: synthesized image

Original segmentation의 저해상도

$$\tilde{S} \leftarrow G_{\text{shape}}(\mathbf{z}_S, \downarrow m(S_0), \mathbf{d}),$$

$$\tilde{I} \leftarrow G_{\text{image}}(\mathbf{z}_I, \tilde{S}, \mathbf{d}).$$

Stage one

- human segmentation map 생성(bodyshape , upper garment)
- -> preserve body shape

Stage two

- Generator input: segmentation map + texture description
- ->renders the region-specific texture onto the photograph

프로젝트 진행과정

1.Dataset – Fashion Image Synthesis

• Fashion Synthesis Benchmark

Download Instructions

- Some image data are encrypted to prevent unauthorized access. Please download the DeepFashion dataset Release Agreement.
- Read it carefully, complete and sign it appropriately. This is an example.
- Please send the completed form to Ziwei Liu (zwliu.hust@gmail.com) and cc to Ping Luo (pluo(at)ie.cuhk.edu.hk) using institutional email address. The email Subject Title is "**DeepFashion Agreement**". We will verify your request and contact you with the passwords to unzip the image data.

Send mail !

LINK:

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/FashionSynthesis.html

보낸사람 🔷 Ziwei Liu<zwliu.hust@gmail.com>

받는사람 <gudrbehdtode@naver.com>

Hi,

Thank you for your interest in our work! The DeepFashion dataset is now officially released at: https://drive.google.com/open?id=0B7EVK8r0v71pQ2FuZ0k0QnhBQnc.

Five benchmarks are developed using the DeepFashion database, including 'Attribute Prediction', 'In-shop Clothes Retrieval', 'Consumer-to-shop Clothes Retrieval', 'Landmark Detection' and 'Fashion Synthesis'.

The image zip file passwords are listed as follows:

- In-shop Clothes Retrieval Benchmark:
- Consumer-to-shop Clothes Retrieval Benchmark:
- Fashion Synthesis Benchmark:

Note that the data and labels of the 'Attribute Prediction Benchmark' and 'Landmark Detection Benchmark' are released without encryption.

1.Dataset – git clone

codes_lua	1: Init	a year ago
complete_demo	add the input images	a year ago
demo_release	Update demo_full.lua	a year ago
ih1	1: Init	a year ago
ih1_p2p	1: Init	a year ago
ih1_skip	1: Init	a year ago
language	8: add language initial encoding.	a year ago
□ sr1	add license	a year ago
igitignore	add the input images	a year ago
LICENSE	add license	a year ago
download.sh	typo fixed	2 years ago
interp.png	update interp figure	a year ago
matrix.png	add license	a year ago
readme.md	Update readme.md	a year ago

1.Dataset – download.sh

Clone한 폴더로 이동 후

```
    gudrb@DESKTOP-AM2H9BQ: /mnt/c/FashionGAN$ sh download sh

audrb@DESKTOP-AM2H9BQ: /mnt/c/FashionGAN$ sh download sh

audrb
```

2. 실행환경

• Window10 + ubuntu 16.04(Microsoft Store)

Why?

- Virtual Box, VM ware
- 1.별도의 디스크 공간 할당 해야함
- -> GAN특성상 필요한 용량이 큼
- -> 공간 할당이 유동적이지 않음

2.WinSCP 같은 프로그램으로 dataset 옮겨 줘야함

3. pytorch, Lua

Lua: anaconda 라이브러리로 설치 가능하나, linux기반이여야함

Pytorch 공부...

gudrb 'pytorch'		Latest commit f103a89 9 minutes ago
■ Be your own prada.pptx	'ppt'	18 days ago
□ CAGAN.pptx	ppt	26 days ago
□ CNN.pptx	ppt	a month ago
Cycle GAN.pptx	ppt	27 days ago
■ DCGAN.pptx	ppt	a month ago
■ EBGAN.pptx	ppt	28 days ago
autoencoder.ipynb	first	4 months ago
□ cGan.pptx	ppt	a month ago
mnist_gan.ipynb	ppt	a month ago
namescope,variablescope,get_collection.ipynb	first commit	3 months ago
pytorch tutorial day2.ipynb	'practice'	17 days ago
pytorch tutorial day3.ipynb	'pytorch'	9 minutes ago
pytorch tutorial day4.ipynb	'pytorch'	9 minutes ago
pytorch tutorial.ipynb	'practice'	18 days ago
wasserstein GAN.pptx	ppt	a month ago

4. Training 돌아가는 중 ...

결과 추후 공개예정...

이번학기 DAIA 활동 돌아보기

Dreaming for developer of AI

https://github.com/gudrb +010-5144-6863

- ➤ AI of NCSOFT
- ▶ 수상 및 활동
- ▶ 프로젝트

취업실전전략 _01 portfolio

정보통신공학 4학년 김형규

대상 기업

Dreaming for developer of AI

https://github.com/gudrb +010-5144-6863

- ➤ AI of NCSOFT
- ▶ 수상 및 활동
- ▶ 프로젝트

저는 Machine learning, deep learning 과 여러가지 프로그래밍 언어에 대한 이해를 바탕으로 하는 AI 플랫폼의 개발을 꿈꾸는 학생입니다.

Member of Dongguk DAIA

http://daia.ml

Dreaming for developer of AI

https://github.com/gudrb +010-5144-6863

- ➤ AI of NCSOFT
- ▶ 수상 및 활동
- ▶ 프로젝트

AI of NCSOFT

- Deep learning, Machine learning을 이용한 게임 이탈자 예측 모델
- 2018빅콘테스트 챔피언스 리그 과제
- 여러가지 게임 플레이어들의 데이터를 이용하여 어떤 요소가 플레이어들을 이탈하게 만드는지 파악할 수 있고, 추후에 이런 요소들을 보안하는 컨텐츠들로 플레이어들의 이탈을 방지할 수 있습니다.

■ 제공가능 데이터 설명 [pdf]

Dreaming for developer of AI

https://github.com/gudrb +010-5144-6863

- ➤ AI of NCSOFT
- ▶ 수상 및 활동
- ▶ 프로젝트

AI of NCSOFT

- GAN을 이용한 게임 아이템 디자인 모티베이션 생성
- GAN을 통하여 실제 사진을 해당 아이템 풍의 그림으로 바꾸어 주면 디자이너들의 게임 아이템 디자인 제작에 영감을 줄 수 있습니다.
- GAN의 앞으로 풀어야할 과제는
 Multi modal, Few parameter, Raw data
 세가지 측면입니다.

■ NCSOFT Vision LAB 김준호 연구원님 발표자료 [ppt]

Dreaming for developer of AI

https://github.com/gudrb +010-5144-6863

- ➤ AI of NCSOFT
- ▶ 수상 및 활동
- ▶ 프로젝트

(01)

수상 및 활동

2018/11/21

2018빅콘테스트 <우수상>

딥러닝 모델 RNN과 LSTM, 머신러닝 모델 Random Forest 데이터 핸들링 기법인 label encoding, zero padding, over sampling 등을 사용한 영화 (나를 차버린 스파이, 너의 결혼식, 물 괴) 관객수 예측.

- 제출 자료 [pdf] [code]
- 맡은 역할 [pdf]

Dreaming for developer of AI

https://github.com/gudrb +010-5144-6863

- ➤ AI of NCSOFT
- ▶ 수상 및 활동
- ▶ 프로젝트

(01)

수상 및 활동

2018/07/20 ~

Dongguk DAIA 논문 스터디

- Machine learning, Deep learning 논문을 읽고, 내용 발표
- 프로젝트, 공모전 진행

■ 발표 자료 [ppt]

Dreaming for developer of AI

https://github.com/gudrb +010-5144-6863

- ➤ AI of NCSOFT
- ▶ 수상 및 활동
- ▶ 프로젝트

(02)

프로젝트

2018/08/08

Django를 이용한 DAIA홈페이지 만들기

- Python 사용
- 회원 database제작
- 관리자 기능: 회원가입 승인, 거절, 수정 등의 기능을 GET, POST방식을 이용해 제 작

- 홈페이지 http://daia.ml
- 맡은 역할 [code]

-END-