Übungsblatt 27 zur Homologischen Algebra II

Aufgabe 1. Kohomologie von \mathbb{R}^1 mit kompaktem Träger

- a) Zeige, dass $0 \to \mathbb{R} \to \mathcal{C}^1 \to \mathcal{C} \to 0$ eine exakte Sequenz von Garben auf \mathbb{R}^1 ist. Dabei schickt der Morphismus $\mathcal{C}^1 \to \mathcal{C}$ eine stetig differenzierbare Funktion auf ihre Ableitung.
- b) Wieso sind \mathcal{C} und \mathcal{C}^1 weiche Garben?
- c) Berechne $H_c^{\bullet}(\mathbb{R}^1, \mathbb{R})$.

Aufgabe 2. Dimensionstheorie über Kohomologie mit kompaktem Träger

Die Dimension eines topologischen Raums X ist die kleinste Zahl $n \geq 0$, sodass $H_c^{>n}(X, \mathcal{E})$ für alle Garben \mathcal{E} abelscher Gruppen auf X verschwindet. Sei im Folgenden X ein lokal kompakter Hausdorffraum, der das zweite Abzählbarkeitsaxiom erfüllt.

- a) Sei $Y \subseteq X$ eine offene oder abgeschlossene Teilmenge. Zeige $\dim_c Y \leq \dim_c X$.

 Tipp: Ist $i: Y \hookrightarrow X$ die Inklusion, so gilt $H^{\bullet}_c(Y, \mathcal{E}) \cong H^{\bullet}_c(X, i_! \mathcal{E})$.
- b) Sei $0 \to \mathcal{E} \to \mathcal{L}^0 \to \cdots \to \mathcal{L}^{n-1} \to \mathcal{L}^n \to 0$ eine exakte Sequenz von Garben abelscher Gruppen auf X. Seien $\mathcal{L}^0, \ldots, \mathcal{L}^{n-1}$ weich. Sei $\dim_c X \leq n$. Zeige, dass dann auch \mathcal{L}^n weich ist.

Tipp: Eine Garbe $\mathcal F$ ist genau dann weich, wenn $H^1_c(U,\mathcal F)=0$ für alle offenen Teilmengen $U\subseteq X$. Zerlege die Sequenz in viele kurze, um $H^1_c(U,\mathcal L^n)\cong H^{n+1}_c(U,\mathcal E)$ nachzuweisen.

- c) Sei X durch offene Mengen U mit $\dim_c U \leq n$ überdeckt. Zeige $\dim_c X \leq n$.

 Tipp: Eine Garbe ist genau dann weich, wenn sie lokal weich ist.
- d) Sei $f: X \to Y$ eine eigentliche stetige Abbildung. Sei $\dim_c X \leq n$. Zeige $R^{>n} f_!(\mathcal{E}) = 0$ für alle Garben \mathcal{E} abelscher Gruppen auf X.
- e) Zeige, dass in der Situation aus d) $Rf_!$ als Funktor $D^b \to D^b$ und auch als Funktor $D^- \to D^-$ wohldefiniert ist.

Aufgabe 3. Halme des direkten Bilds mit kompaktem Träger

Vollziehe den Beweis von Proposition III.8.10 über die Halme des direkten Bilds mit kompaktem Träger genau nach. Verwende das Buch *Cohomology of Sheaves* von Birger Iversen, wenn du nicht weiterkommst.

Aufgabe 4. Abgeleitetes Zurückziehen und Vordrücken

Sei $f: X \to Y$ ein Morphismus lokal geringter Räume. Zeige, dass Lf^* linksadjungiert zu Rf_* ist.

Aufgabe 5. Rechnen modulo Torsion

Sei Ab_{fp} die abelsche Kategorie der endlich präsentierten abelschen Gruppen und \mathcal{T} ihre volle Unterkategorie der Torsionsgruppen.

- a) Mache dir klar, dass \mathcal{T} eine Serresche Unterkategorie von Ab_{fp} ist.
- b) Konstruiere einen Funktor $\overline{F}: \mathrm{Ab_{fp}}/\mathcal{T} \to \mathrm{Vect}(\mathbb{Q})_{\mathrm{findim}}$ mit $A \mapsto A \otimes_{\mathbb{Z}} \mathbb{Q}$.

 Tipp: Verwende die universelle Eigenschaft von $\mathrm{Ab_{fp}}/\mathcal{T}$ (siehe Blatt 16, Aufgabe 4) und die Flachheit von \mathbb{Q} über \mathbb{Z} .
- c) Zeige, dass \overline{F} treu ist.

 Tipp: Zeige, dass aus $A \otimes_{\mathbb{Z}} \mathbb{Q} = 0$ folgt, dass A eine Torsionsgruppe ist. Verwende dann Tag 06XK aus dem Stacks Project.
- d) Zeige, dass in $\mathrm{Ab_{fp}}/\mathcal{T}$ der Morphismus $\mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z}$ für $n \geq 1$ invertierbar ist. Folgere, dass \overline{F} voll und daher eine Kategorienäquivalenz ist.
- e) Sei eine konvergente Spektralsequenz in Ab_{fp} gegeben. Was ist zu tun, wenn man vorgeben möchte, dass alle kurzen exakten Sequenzen in Ab_{fp} zerfallen? Wie schwächt man seine Resultate dadurch ab?