
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=3; day=3; hr=9; min=6; sec=23; ms=273;]

Validated By CRFValidator v 1.0.3

Application No: 10585695 Version No: 1.0

Input Set:

Output Set:

Started: 2009-02-11 21:49:35.464 **Finished:** 2009-02-11 21:51:20.685

Elapsed: 0 hr(s) 1 min(s) 45 sec(s) 221 ms

Total Warnings: 20304

Total Errors: 0

No. of SeqIDs Defined: 20318
Actual SeqID Count: 20318

Error code		Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(22)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(23)

Input Set:

Output Set:

Started: 2009-02-11 21:49:35.464

Finished: 2009-02-11 21:51:20.685

Elapsed: 0 hr(s) 1 min(s) 45 sec(s) 221 ms

Total Warnings: 20304

Total Errors: 0

No. of SeqIDs Defined: 20318

Actual SeqID Count: 20318

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

```
<110> Soreq, Hermona
      Diamant, Sophie
<120> COMPOUNDS, PHARMACEUTICAL COMPOSITIONS AND THERAPEUTIC METHODS OF
      PREVENTING AND TREATING DISEASES AND DISORDERS ASSOCIATED WITH
      AMYLOID FIBRIL FORMATION
<130> 28870
<140> 10585695
<141> 2009-02-11
<160> 20318
<170> PatentIn version 3.3
<210> 1
<211> 41
<212> PRT
<213> Artificial sequence
<220>
<223> BSP41 Synthetic peptide
<400> 1
Gly Asn Ile Asp Glu Ala Glu Trp Glu Trp Lys Ala Gly Phe His Arg
Trp Asn Asn Tyr Met Met Asp Trp Lys Asn Gln Phe Asn Asp Tyr Thr
         20
                            25
Ser Lys Lys Glu Ser Cys Val Gly Leu
   35
              40
<210> 2
<211> 602
<212> PRT
<213> Homo sapiens
<400> 2
Met His Ser Lys Val Thr Ile Ile Cys Ile Arg Phe Leu Phe Trp Phe
   5
                              10
Leu Leu Cys Met Leu Ile Gly Lys Ser His Thr Glu Asp Asp Ile
          20
                      25
```

Ile Ile Ala Thr Lys Asn Gly Lys Val Arg Gly Met Asn Leu Thr Val 35 40 45

Phe Gly Gly 50	Thr Val	Thr Ala	Phe Le	a Gly Il	le Pro Ty: 60	r Ala Gln	Pro
Pro Leu Gly	Arg Leu	Arg Phe	Lys Ly:	s Pro Gl		ı Thr Lys	Trp 80
Ser Asp Ile	Trp Asn 85	Ala Thr	Lys Ty:	r Ala As 90	sn Ser Cy	s Cys Gln 95	Asn
Ile Asp Gln	Ser Phe	Pro Gly	Phe Hi:		er Glu Me	Trp Asn	Pro
Asn Thr Asp		Glu Asp	Cys Let	ı Tyr Le	eu Asn Va	_	Pro
Ala Pro Lys	Pro Lys	Asn Ala 135	Thr Va	l Leu Il	le Trp Ile	e Tyr Gly	Gly
Gly Phe Gln 145	Thr Gly	Thr Ser	Ser Le	ı His Va		o Gly Lys	Phe 160
Leu Ala Arg	Val Glu 165	Arg Val	Ile Va	l Val Se	er Met Ası	n Tyr Arg 175	Val
Gly Ala Leu	Gly Phe 180	Leu Ala	Leu Pro	_	sn Pro Gl	ı Ala Pro 190	Gly
Asn Met Gly		Asp Gln	Gln Let	ı Ala L∈	eu Gln Trj 20		Lys
Asn Ile Ala 210	Ala Phe	Gly Gly 215	Asn Pro	o Lys Se	er Val Th	r Leu Phe	Gly
Glu Ser Ala 225	Gly Ala	Ala Ser 230	Val Se	r Leu Hi 23		ı Ser Pro	Gly 240
Ser His Ser	Leu Phe 245	Thr Arg	Ala Ile	e Leu Gl 250	ln Ser Gl	y Ser Phe 255	Asn
Ala Pro Trp	Ala Val 260	Thr Ser	Leu Ty: 26!		la Arg Ası	n Arg Thr 270	Leu

Asn Leu Ala Lys 275	Leu Thr Gly	Cys Ser Arg 280	Glu Asn Glu 285	Thr Glu Ile
Ile Lys Cys Leu 290	Arg Asn Lys 295	-	Glu Ile Leu 300	Leu Asn Glu
Ala Phe Val Val 305	Pro Tyr Gly 310	Thr Pro Leu	Ser Val Asn 315	Phe Gly Pro 320
Thr Val Asp Gly	Asp Phe Leu 325	Thr Asp Met 330	Pro Asp Ile	Leu Leu Glu 335
Leu Gly Gln Phe		Gln Ile Leu 345	Val Gly Val	Asn Lys Asp 350
Glu Gly Thr Ala		360	365	
Asn Asn Ser Ile 370	375	;	380	
Phe Phe Pro Gly	390		395	400
Tyr Thr Asp Trp	405	410	-	415
Leu Gly Asp Val		425		430
Phe Thr Lys Lys 435 Phe Glu His Arc		440	445	
450 Met His Gly Tyr	455	· ·	460	_
465	470		475	480
Arg Asp Asn Tyr	485	490	Leu ser Arg	495

Lys Arg Trp Ala Asn Phe Ala Lys Tyr Gly Asn Pro Asn Glu Thr Gln 500 505 510 Asn Asn Ser Thr Ser Trp Pro Val Phe Lys Ser Thr Glu Gln Lys Tyr 515 520 525 Leu Thr Leu Asn Thr Glu Ser Thr Arg Ile Met Thr Lys Leu Arg Ala 530 535 540 Gln Gln Cys Arg Phe Trp Thr Ser Phe Phe Pro Lys Val Leu Glu Met 550 555 Thr Gly Asn Ile Asp Glu Ala Glu Trp Glu Trp Lys Ala Gly Phe His 565 570 575 Arg Trp Asn Asn Tyr Met Met Asp Trp Lys Asn Gln Phe Asn Asp Tyr 585 580 Thr Ser Lys Lys Glu Ser Cys Val Gly Leu 595 600 <210> 3 <211> 53 <212> PRT <213> Artificial sequence <220> <223> ASP23 Synthetic peptide <400> 3 Phe Trp Asn Arg Phe Leu Pro Lys Leu Leu Ser Ala Thr Asp Thr Leu 10 15 Asp Glu Ala Glu Arg Gln Trp Lys Ala Glu Phe His Arg Trp Ser Ser 20 25 30 Tyr Met Val His Trp Lys Asn Gln Phe Asp His Tyr Ser Lys Gln Asp 40 35 Arg Cys Ser Asp Leu 50

<210> 4 <211> 40 <212> PRT

```
<213> Artificial sequence
<220>
<223> ASP40 Synthetic peptide
<400> 4
Asp Thr Leu Asp Glu Ala Glu Arg Gln Trp Lys Ala Glu Phe His Arg
                    10
Trp Ser Ser Tyr Met Val His Trp Lys Asn Gln Phe Asp His Tyr Ser
           25 30
Lys Gln Asp Arg Cys Ser Asp Leu
   35
             40
<210> 5
<211> 63
<212> PRT
<213> Artificial sequence
<220>
<223> ASP63 Synthetic peptide
<400> 5
Pro Leu Glu Val Arg Arg Gly Leu Arg Ala Gln Ala Cys Ala Phe Trp
1 5 10 15
Asn Arg Phe Leu Pro Lys Leu Leu Ser Ala Thr Asp Thr Leu Asp Glu
   20 25
Ala Glu Arg Gln Trp Lys Ala Glu Phe His Arg Trp Ser Ser Tyr Met
   35
               40 45
Val His Trp Lys Asn Gln Phe Asp His Tyr Ser Lys Gln Asp Arg
      55
  50
<210> 6
<211> 614
<212> PRT
<213> Homo sapiens
<400> 6
Met Arg Pro Pro Gln Cys Leu Leu His Thr Pro Ser Leu Ala Ser Pro
1 5 10 15
```

Leu Leu Leu Leu Leu Trp Leu Leu Gly Gly Val Gly Ala Glu

20 25 30

Gly Arg Glu Asp Ala Glu Leu Leu Val Thr Val Arg Gly Gly Arg Leu 40 45 35 Arg Gly Ile Arg Leu Lys Thr Pro Gly Gly Pro Val Ser Ala Phe Leu 55 Gly Ile Pro Phe Ala Glu Pro Pro Met Gly Pro Arg Arg Phe Leu Pro 65 Pro Glu Pro Lys Gln Pro Trp Ser Gly Val Val Asp Ala Thr Thr Phe 85 90 Gln Ser Val Cys Tyr Gln Tyr Val Asp Thr Leu Tyr Pro Gly Phe Glu 100 105 110 Gly Thr Glu Met Trp Asn Pro Asn Arg Glu Leu Ser Glu Asp Cys Leu 115 120 125 Tyr Leu Asn Val Trp Thr Pro Tyr Pro Arg Pro Thr Ser Pro Thr Pro 130 135 140 Val Leu Val Trp Ile Tyr Gly Gly Phe Tyr Ser Gly Ala Ser Ser 145 150 155 Leu Asp Val Tyr Asp Gly Arg Phe Leu Val Gln Ala Glu Arg Thr Val 170 165 175 Leu Val Ser Met Asn Tyr Arg Val Gly Ala Phe Gly Phe Leu Ala Leu 180 185 190

Pro Gly Ser Arg Glu Ala Pro Gly Asn Val Gly Leu Leu Asp Gln Arg 195 200 205

Leu Ala Leu Gln Trp Val Gln Glu Asn Val Ala Ala Phe Gly Gly Asp 210 215 220

Pro Thr Ser Val Thr Leu Phe Gly Glu Ser Ala Gly Ala Ala Ser Val 225 230 235 240

Gly Met His Leu Leu Ser Pro Pro Ser Arg Gly Leu Phe His Arg Ala 245 250 255

Val I	Leu	Gln	Ser 260	Gly	Ala	Pro	Asn	Gly 265	Pro	Trp	Ala	Thr	Val 270	Gly	Met
Gly G		Ala 275	Arg	Arg	Arg	Ala	Thr 280	Gln	Leu	Ala	His	Leu 285	Val	Gly	Суз
Pro P	°ro 290	Gly	Gly	Thr	Gly	Gly 295	Asn	Asp	Thr	Glu	Leu 300	Val	Ala	Cys	Leu
Arg T	hr	Arg	Pro	Ala	Gln 310	Val	Leu	Val	Asn	His 315	Glu	Trp	His	Val	Leu 320
Pro G	Sln	Glu	Ser	Val 325	Phe	Arg	Phe	Ser	Phe 330	Val	Pro	Val	Val	Asp 335	Gly
Asp P	he	Leu	Ser 340	Asp	Thr	Pro	Glu	Ala 345	Leu	Ile	Asn	Ala	Gly 350	Asp	Phe
His G	_	Leu 355	Gln	Val	Leu	Val	Gly 360	Val	Val	Lys	Asp	Glu 365	Gly	Ser	Tyr
Phe I	Leu 370	Val	Tyr	Gly	Ala	Pro 375	Gly	Phe	Ser	Lys	Asp 380	Asn	Glu	Ser	Leu
Ile S	Ser	Arg	Ala	Glu	Phe 390	Leu	Ala	Gly	Val	Arg 395	Val	Gly	Val	Pro	Gln 400
Val S	Ser	Asp	Leu	Ala 405	Ala	Glu	Ala	Val	Val 410	Leu	His	Tyr	Thr	Asp 415	Trp
Leu H	His	Pro	Glu 420	Asp	Pro	Ala	Arg	Leu 425	Arg	Glu	Ala	Leu	Ser 430	Asp	Val
Val G	_	Asp 435	His	Asn	Val	Val	Cys 440	Pro	Val	Ala	Gln	Leu 445	Ala	Gly	Arg
Leu A	Ala 150	Ala	Gln	Gly	Ala	Arg 455	Val	Tyr	Ala	Tyr	Val 460	Phe	Glu	His	Arg
Ala S 465	Ser	Thr	Leu	Ser	Trp 470	Pro	Leu	Trp	Met	Gly 475	Val	Pro	His	Gly	Tyr 480

Glu Ile Glu Phe Ile Phe Gly Ile Pro Leu Asp Pro Ser Arg Asn Tyr Thr Ala Glu Glu Lys Ile Phe Ala Gln Arg Leu Met Arg Tyr Trp Ala 500 505 Asn Phe Ala Arg Thr Gly Asp Pro Asn Glu Pro Arg Asp Pro Lys Ala 515 520 Pro Gln Trp Pro Pro Tyr Thr Ala Gly Ala Gln Gln Tyr Val Ser Leu 535 Asp Leu Arg Pro Leu Glu Val Arg Arg Gly Leu Arg Ala Gln Ala Cys 550 555 Ala Phe Trp Asn Arg Phe Leu Pro Lys Leu Leu Ser Ala Thr Asp Thr 565 570 Leu Asp Glu Ala Glu Arg Gln Trp Lys Ala Glu Phe His Arg Trp Ser 580 585 590 Ser Tyr Met Val His Trp Lys Asn Gln Phe Asp His Tyr Ser Lys Gln 595 600 605 Asp Arg Cys Ser Asp Leu 610 <210> 7 <211> 2444 <212> DNA <213> Homo sapiens <400> 7 agtaacagtt gattgttaca ttcagtaaca ctgaatgtca gtgcagtcca atttacaggc 60 tggagcagca gctgcatcct gcatttcccc gaagtattac atgattttca ctccttgcaa 120 180 actttaccat ctttgttgca gagaatcgga aatcaatatg catagcaaag tcacaatcat

atgcatcaga tttctctttt ggtttctttt gctctgcatg cttattggga agtcacatac

tgaagatgac atcataattg caacaaagaa tggaaaagtc agagggatga acttgacagt

ttttggtggc acggtaacag cctttcttgg aattccctat gcacagccac ctcttggtag

acttcgattc aaaaagccac agtctctgac caagtggtct gatatttgga atgccacaaa

240

300

360

420

atatgcaaat tcttgctgtc	agaacataga	tcaaagtttt	ccaggcttcc	atggatcaga	480
gatgtggaac ccaaacactg	acctcagtga	agactgttta	tatctaaatg	tatggattcc	540
agcacctaaa ccaaaaaatg	ccactgtatt	gatatggatt	tatggtggtg	gttttcaaac	600
tggaacatca tctttacatg	tttatgatgg	caagtttctg	gctcgggttg	aaagagttat	660
tgtagtgtca atgaactata	gggtgggtgc	cctaggattc	ttagctttgc	caggaaatcc	720
tgaggctcca gggaacatgg	gtttatttga	tcaacagttg	gctcttcagt	gggttcaaaa	780
aaatatagca gcctttggtg	gaaatcctaa	aagtgtaact	ctctttggag	aaagtgcagg	840
agcagcttca gttagcctgc	atttgctttc	tcctggaagc	cattcattgt	tcaccagagc	900
cattctgcaa agtggatcct	ttaatgctcc	ttgggcggta	acatctcttt	atgaagctag	960
gaacagaacg ttgaacttag	ctaaattgac	tggttgctct	agagagaatg	agactgaaat	1020
aatcaagtgt cttagaaata	aagatcccca	agaaattctt	ctgaatgaag	catttgttgt	1080
cccctatggg actcctttgt	cagtaaactt	tggtccgacc	gtggatggtg	attttctcac	1140
tgacatgcca gacatattac	ttgaacttgg	acaatttaaa	aaaacccaga	ttttggtggg	1200
tgttaataaa gatgaaggga	cagcttttt	agtctatggt	gctcctggct	tcagcaaaga	1260
taacaatagt atcataacta	gaaaagaatt	tcaggaaggt	ttaaaaatat	tttttccagg	1320
agtgagtgag tttggaaagg	aatccatcct	ttttcattac	acagactggg	tagatgatca	1380
gagacctgaa aactaccgtg	aggccttggg	tgatgttgtt	ggggattata	atttcatatg	1440
ccctgccttg gagttcacca	agaagttctc	agaatgggga	aataatgcct	ttttctacta	1500
ttttgaacac cgatcctcca	aacttccgtg	gccagaatgg	atgggagtga	tgcatggcta	1560
tgaaattgaa tttgtctttg	gtttacctct	ggaaagaaga	gataattaca	caaaagccga	1620
ggaaattttg agtagatcca	tagtgaaacg	gtgggcaaat	tttgcaaaat	atgggaatcc	1680
aaatgagact cagaacaata	gcacaagctg	gcctgtcttc	aaaagcactg	aacaaaaata	1740
tctaaccttg aatacagagt	caacaagaat	aatgacgaaa	ctacgtgctc	aacaatgtcg	1800
attctggaca tcatttttc	caaaagtctt	ggaaatgaca	ggaaatattg	atgaagcaga	1860
atgggagtgg aaagcaggat	tccatcgctg	gaacaattac	atgatggact	ggaaaaatca	1920
atttaacgat tacactagca	agaaagaaag	ttgtgtgggt	ctctaattaa	tagatttacc	1980
ctttatagaa catattttcc	tttagatcaa	ggcaaaaata	tcaggagctt	ttttacacac	2040
ctactaaaaa agttattatg	tagctgaaac	aaaaatgcca	gaaggataat	attgattcct	2100
cacatcttta acttagtatt	ttacctagca	tttcaaaacc	caaatggcta	gaacatgttt	2160

```
aattaaattt cacaatataa agttctacag ttaattatgt gcatattaaa acaatggcct
                                                                 2220
ggttcaattt ctttctttcc ttaataaatt taagtttttt ccccccaaaa ttatcagtgc 2280
tctgctttta gtcacgtgta ttttcattac cactcgtaaa aaggtatctt ttttaaatga
                                                                 2340
attaaatatt gaaacactgt acaccatagt ttacaatatt atgtttccta attaaaataa
                                                                   2400
gaattgaatg tcaatatgag atattaaaat aagcacagaa aatc
                                                                   2444
<210> 8
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> synthetic peptide
<400> 8
Met His Ser Lys Val Thr
<210> 9
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> synthetic peptide
<400> 9
His Ser Lys Val Thr Ile
<210> 10
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> synthetic peptide
<400> 10
Ser Lys Val Thr Ile Ile
<210> 11
```

<211> 6 <212> PRT

```
<213> Artificial sequence
<220>
<223> synthetic peptide
<400> 11
Lys Val Thr Ile Ile Cys
<210> 12
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> synthetic peptide
<400> 12
Val Thr Ile Ile Cys Ile
    5
<210> 13
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> synthetic peptide
<400> 13
Thr Ile Ile Cys Ile Arg
<210> 14
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> synthetic peptide
<400> 14
Ile Ile Cys Ile Arg Phe
<210> 15
<211> 6
<212> PRT
<213> Artificial sequence
```

```
<220>
<223> synthetic peptide
<400> 15
Ile Cys Ile Arg Phe Leu
<210> 16
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> synthetic peptide
<400> 16
Cys Ile Arg Phe Leu Phe
<210> 17
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> synthetic p
```