Regimentation and Relations

LOGIC I Benjamin Brast-McKie November 2, 2023

Restricting Quantifiers

Universals Quantifiers: Regiment the following sentences:

- All dogs go to heaven.
- Jim took every chance he got.
- All the monkeys that Amar loves love him back.
- Everyone who trained hard or got lucky made it to the top or else didn't compete.

Hidden Quantifiers: Regiment the following sentences:

- At least the guests that remained were pleased with the party.
- I haven't met a cat that likes Merra.
- Kiko's only friends are animals.

Existential Quantifiers: Regiment the following sentences:

- Something great is around the corner.
- One of Ken's statues is very old.
- Kate found a job that she loved.

Mixed Quantifiers

- 1. Nothing is without imperfections.
- 2. Every dog has its day.
- 3. Everyone loves someone.
- 4. Nobody knows everybody.
- 5. Everybody everybody loves loves somebody.
- 6. No set is a member of itself.
- 7. There is a set with no members.

Arguments

Love: Regiment the following argument:

- Cam doesn't love anyone who loves him back.
- May loves everyone who loves themselves.
- ... If Cam loves himself, he doesn't love May.

Bigger: Regiment the following argument:

- Whenever something is bigger than another, the latter is not bigger than the former.
- ... Nothing is bigger than itself.

Relations

Domain: Let the *domain D* be any set.

Relation: A relation R on D is any subset of D^2 .

Reflexive: A relation *R* is *reflexive* on *D* iff $\langle x, x \rangle \in R$ for all $x \in D$.

Non-Reflexive: A relation *R* is *non-reflexive* on *D iff R* is not reflexive on *D*.

Question 1: What is it to be *irreflexive*?

Irreflexive: A relation *R* is *irreflexive* on *D* iff $\langle x, x \rangle \notin R$ for all $x \in D$.

Symmetric: A relation *R* is *symmetric iff* $\langle y, x \rangle \in R$ whenever $x, y \in R$.

Question 2: Why don't we need to specify a domain?

Question 3: Why is a relation reflexive or irreflexive with respect to a domain?

Asymmetric: A relation *R* is asymmetric iff $\langle y, x \rangle \notin R$ whenever $\langle x, y \rangle \in R$.

Question 4: What is it to be non-symmetric? How about non-asymmetric?

Task 1: Show that every asymmetric relation is irreflexive.

Transitive: A relation *R* is *transitive* iff $\langle x, z \rangle \in R$ whenever $\langle x, y \rangle, \langle y, z \rangle \in R$.

Intransitive: A relation *R* is *intransitive* iff $\langle x,z\rangle \notin R$ whenever $\langle x,y\rangle, \langle y,z\rangle \in R$.

Question 5: Is every symmetric transitive relation reflexive? (No: $R = \emptyset$)

Task 2: Show that every transitive irreflexive relation asymmetric?

Euclidean: A relation *R* is *euclidean iff* $\langle y, z \rangle \in R$ whenever $\langle x, y \rangle, \langle x, z \rangle \in R$.

Task 3: Show that every transitive symmetric relation is euclidean.