

CMS-HIN-16-014

Observation of medium induced modifications of jet fragmentation in PbPb collisions using isolated-photon-tagged jets

The CMS Collaboration*

Abstract

Measurements of fragmentation functions for jets associated with an isolated photon are presented for the first time in pp and PbPb collisions. The analysis uses data collected with the CMS detector at the CERN LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Fragmentation functions are obtained for jets with $p_{\rm T}^{\rm jet} > 30\,{\rm GeV}/c$ in events containing an isolated photon with $p_{\rm T}^{\gamma} > 60\,{\rm GeV}/c$, using charged tracks with transverse momentum $p_{\rm T}^{\rm trk} > 1\,{\rm GeV}/c$ in a cone around the jet axis. The association with an isolated photon constrains the initial $p_{\rm T}$ and azimuthal angle of the parton whose shower produced the jet. For central PbPb collisions, modifications of the jet fragmentation functions are observed when compared to those measured in pp collisions, while no significant differences are found in the 50% most peripheral collisions. Jets in central PbPb events show an excess (depletion) of low (high) $p_{\rm T}$ particles, with a transition around $3\,{\rm GeV}/c$.

Submitted to Physical Review Letters

A deconfined state of quarks and gluons, called the quark-gluon plasma (QGP) [1], is believed to be produced on a short timescale, $\tau \approx 1\, {\rm fm/c}$, in high energy nucleus-nucleus collisions [2]. Occasionally, a pair of partons (quarks or gluons) in the colliding nuclei undergoes a high transverse momentum ($p_{\rm T}$) scattering, a process that occurs over a shorter timescale, $\tau \sim 1/p_{\rm T}$. As they pass through and interact with the QGP, the scattered partons lose some of their energy, thereby acting as probes of the short-wavelength structure of the medium [3–8]. The relative importance of the various mechanisms by which these partons lose energy to the medium, whether by heating the medium, scattering off point-like constituents of the QGP, or by some other process, has been a continuous focus of the field of relativistic heavy ion collisions [9–13].

The outgoing hard-scattered partons eventually fragment, and each forms a jet of collimated particles that can be observed experimentally. The CERN LHC collaborations have studied various properties of jets and jet pairs, such as modifications of the jet yield in the medium (jet quenching) [14–16], jet fragmentation functions (the probability for a parton to fragment into particles carrying a given fraction of the jet momentum) [17, 18], missing p_T in dijet systems [19–21], jet-track correlations [22], and the radial p_T profile of tracks within jets [23]. However, understanding how the observed jets relate to their parent partons is challenging in these analyses. The energy lost by the partons diminishes the correlation between the final-state jet measurement (after energy loss) and the initial parton properties. One way to overcome this challenge is to study processes in which the initial hard scattering produces a parton and an electroweak boson. Since these bosons do not experience quantum chromodynamic interactions, they are largely unaffected by their passage through the QGP. As a result, in a sample selected by requiring the presence of a photon or a Z boson (whose p_T can be reliably measured), the jets associated with the boson should have parent partons whose p_T before any energy loss occurs is well defined. The analysis of such pairs allows for more constrained jet studies and comparisons with theoretical calculations. In addition, at LHC energies, the electroweak-boson+jet production is dominated by quark jets for $p_{\rm T}^{\rm jet} > 30\,{\rm GeV/}c$ [24], hence providing information specifically on quark energy loss and therefore constraining the dependence of energy loss on parton (quark or gluon) flavor.

The CMS Collaboration has previously measured the azimuthal correlation and momentum imbalance of isolated-photon+jet pairs in pp and PbPb collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_{\rm NN}}=2.76$ and 5.02 TeV [25, 26] and of Z+jet pairs at $\sqrt{s_{\rm NN}}=5.02$ TeV [27]. This Letter presents the first measurement of the fragmentation function of jets associated with an isolated photon, i.e. a photon for which no significant energy is deposited around its location in the detector. This definition suppresses dijet events in which a high- $p_{\rm T}$ photon originates from one of the jets, either via collinear fragmentation of a parton ("fragmentation photons") or via decays of neutral mesons ("decay photons"). The analysis uses PbPb and pp data at $\sqrt{s_{\rm NN}}=5.02$ TeV collected in 2015 and corresponding to integrated luminosities of $404~\mu b^{-1}$ and $27.4~\rm pb^{-1}$, respectively. The results from PbPb and pp collisions are compared to search for QGP-induced modifications.

Photon-tagged fragmentation functions are presented as distributions of $\xi^{\rm jet} = \ln\left[|\vec{p}^{\rm jet}|^2/(\vec{p}^{\rm trk}\cdot\vec{p}^{\rm jet})\right]$, where $\vec{p}^{\rm jet}$ and $\vec{p}^{\rm trk}$ are the 3-momenta of the jet and charged particle, respectively, and $\xi_{\rm T}^{\gamma} = \ln\left[-|\vec{p}_{\rm T}^{\gamma}|^2/(\vec{p}_{\rm T}^{\rm trk}\cdot\vec{p}_{\rm T}^{\gamma})\right]$, where $\vec{p}_{\rm T}^{\gamma}$ and $\vec{p}_{\rm T}^{\rm trk}$ are the transverse momenta with respect to the beam direction of the photon and charged-particle, respectively. These ξ variables represent the longitudinal distribution of $p_{\rm T}$ along the jet axis and, hence, the fragmentation pattern of the jets [28, 29]. The $\xi^{\rm jet}$ variable gives the fragmentation pattern with respect to the transverse momentum of the reconstructed jet, and can be compared directly with results obtained using a dijet sample [17]. The $\xi_{\rm T}^{\gamma}$ variable is used to characterize the

fragmentation pattern with respect to the transverse momentum of the initial parton before any energy loss occurred. Note that \vec{p}_T^{γ} is used instead of \vec{p}^{γ} because the photon and parton from a hard scattering have the same $|p_T|$ at leading order (because of transverse momentum conservation) but not necessarily the same magnitude of longitudinal momentum (because the colliding partons can have different x values).

The central feature of the CMS detector is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Hadron forward (HF) calorimeters extend the pseudorapidity coverage up to $|\eta| = 5.2$ and are used for event selection. In addition, in the case of PbPb events, the HF signals are used to determine the degree of overlap ("centrality") of the two colliding Pb nuclei [20] and the event-by-event azimuthal angle of maximum particle density ("event plane") [30]. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [31].

The event samples are selected online with a dedicated photon trigger requiring one photon with $p_{\rm T}^{\gamma} > 40\,{\rm GeV/}c$ [26], and are subjected to offline requirements to remove non-collision events such as beam-gas interactions [26, 32]. For jets and photons, the reconstruction algorithms, analysis selections, and corrections for the energy scale and resolution are the same as in Ref. [26]. For the analysis of PbPb collisions, the event centrality is defined as the fraction of the total inelastic hadronic cross section, starting at 0% for the most central collisions, and is evaluated as percentiles of the distribution of the energy deposited in the HF calorimeters [20]. Results are presented in four centrality intervals: a central interval 0–10% (i.e., the 10% of the events having the largest overlap area of the two nuclei), two intermediate intervals 10–30% and 30–50%, and a peripheral interval 50–100% (the one closest to a pp-like environment).

The photon candidates are restricted to the barrel region of the ECAL, $|\eta^{\gamma}| < 1.44$, and are required to have $p_{\rm T}^{\gamma} > 60\,{\rm GeV}/c$. Electron contamination and anomalous signals caused by the interaction of heavily ionizing particles with the silicon avalanche photodiodes used for the ECAL readout are removed as described in Ref. [33]. Background from ECAL showers induced by hadrons are rejected using the ratio of HCAL over ECAL energy inside a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.15$ around the photon candidate [33, 34]. Background contributions from fragmentation and decay photons are rejected by imposing the same isolation requirements as in Refs. [26, 33]. The dominant remaining background is ECAL showers initiated by isolated neutral mesons decaying into pairs of photons that, because of their small opening angle, are reconstructed as a single photon. Because the pattern of energy deposited in the ECAL is wider in η for these decay photons, their contribution can be reduced by a factor of \sim 2 using an upper limit on the "shower shape", which is a measure of the width of the η distribution [33].

The energy of the reconstructed photons is corrected to account for the effects of the material in front of the ECAL and for incomplete containment of the shower energy in the ECAL crystals [35]. An additional correction is applied in PbPb collisions to account for the contribution of the underlying event (UE). The corrections are obtained from photon events simulated using the CUETP8M1 tune [36] of the PYTHIA 8.212 [37] Monte Carlo (MC) event generator. The effect of the PbPb UE is modeled by embedding the PYTHIA output in events generated using HYDJET 1.9 [38]. The size of the resulting energy correction for isolated photons varies from 0 to 10%, depending on p_T^{γ} and the centrality of the collision.

The particle-flow (PF) algorithm [39] is used for the jet reconstruction with the anti- $k_{\rm T}$ algorithm provided in the FASTJET framework [40, 41] with a distance parameter R=0.3 chosen to minimize the effects of UE fluctuations. In order to subtract the UE background in PbPb collisions, an iterative algorithm [42] is employed [20, 25, 43]. In pp collisions, where the UE level is negligible, jets are reconstructed without UE subtraction. The jet energy corrections are derived from simulation, separately for pp and PbPb, and are confirmed via energy-balance methods applied to dijet and photon+jet events in pp data [44]. Jets with $|\eta^{\rm jet}|<1.6$ and corrected $p_{\rm T}^{\rm jet}>30\,{\rm GeV}/c$ are selected. In order to compare the PbPb and pp results, the jet energy and $\phi^{\rm jet}$ in pp events are smeared to match the jet energy and azimuthal angle resolution in each of the PbPb centrality intervals in which the comparison is made [26]. To match the 0–10% PbPb data, the energy resolutions of pp jets with $p_{\rm T}^{\rm jet}=30(90)\,{\rm GeV}/c$ changes from 18% (12%) to 35% (17%), while the change in angular resolution is negligible (<2.2%).

In each event, photon+jet pairs are formed by associating the highest- $p_{\rm T}^{\gamma}$ isolated photon candidate with all jets that pass the jet selection criteria. An azimuthal separation of $\Delta\phi_{j\gamma}=|\phi^{\rm jet}-\phi^{\gamma}|>7\pi/8$ is applied to the photon+jet pairs to suppress contributions from background jets (jets not originating from the same hard scattering as the photon) and photon+multijet events (jets originating from an early splitting of the original parton). The tracks used in the measurement of the fragmentation function have $p_{\rm T}^{\rm trk}>1\,{\rm GeV/}c$ and must fall within a cone of radius $\Delta R=0.3$ around the jet direction. These selection criteria, as well as the corrections for tracking efficiency, detector acceptance, and misreconstruction rate, are the same as in Ref. [32] for both pp and PbPb data.

The selected charged-particle tracks (N^{trk}) are used in conjunction with the selected photon+jet pairs to determine the fragmentation functions, $(1/N^{\rm jet})(dN^{\rm trk}/d\xi^{\rm jet})$ and $(1/N^{\text{jet}})$ $(dN^{\text{trk}}/d\xi_{\text{T}}^{\gamma})$, where N^{jet} represents the total number of photon+jet pairs. To isolate the contribution of photons, jets, and charged particles that are produced in the same hard scattering in PbPb collisions, several combinatorial backgrounds are subtracted: tracks from the UE that fall within the cone around the selected jet, misidentified jets resulting from UE fluctuations, and jets not produced in the same hard parton-parton scatterings as the photon. The shape and magnitude of these contributions to the $\xi^{\rm jet}$ and $\xi_{\rm T}^{\gamma}$ distributions are estimated from data with an event mixing procedure, in which either the isolated photon or the jet is combined with jets and tracks found in events chosen randomly from a minimum-bias (MB) PbPb dataset with similar event characteristics (centrality, interaction vertex position, and event plane angle). The background contribution from UE tracks is estimated by correlating each selected jet with tracks from MB events. The backgrounds from jets produced by UE fluctuations or a different parton-parton scattering are estimated as in Refs. [25, 26]. The normalizations of these combinatorial background fragmentation functions are given by the number of MB events used, and the normalized distributions are subtracted from those for tracks and photon+jet pairs in the same event.

The final correction accounts for the photon purity, defined to be the fraction of non-decay photons within the collection of isolated photon candidates that pass the shower shape requirement. This fraction is extracted from the data using a template fit to the shower shape distribution [25, 26]. The shape of the fragmentation functions from decay photons is estimated by repeating the analysis selecting photons with wider shower shapes. The purity values found from the shower shape fits are used to adjust the magnitude of this background contribution.

Several sources of systematic uncertainty are considered, including the photon purity, photon energy scale, photon isolation, electron contamination, jet energy scale, jet energy resolution, tracking efficiency, and UE background. The total uncertainty is the sum in quadrature of the

individual uncertainties. The quoted systematic uncertainties are an average over all $\xi^{\rm jet}$ and $\xi_{\rm T}^{\gamma}$ bins and, in the case of the PbPb results, are quoted only for events with 0–10% centrality. To evaluate the systematic uncertainties related to the isolated photons, the same procedures as in Ref. [26] are applied. The uncertainty in the photon purity estimation is evaluated by varying the components of the shower shape template, as in Ref. [25]. The maximum variations with respect to the nominal case are propagated as systematic uncertainties, amounting to 3.2 (5.7)% for the 0–10% most central PbPb events, and 0.4 (0.4)% for the pp results, for $\xi^{\rm jet}$ ($\xi^{\gamma}_{\rm T}$). In the following, the uncertainties will continue to be quoted for central PbPb first, then for pp. The total systematic uncertainties resulting from the experimental criteria for an isolated photon are 0.8 (1.3)% and 0.8 (0.7)% for ξ^{jet} (ξ_T^{γ}). The residual data-to-simulation photon energy scale difference after applying the photon energy corrections is also quoted as a systematic uncertainty of 1.4 (0.8)% and <0.1% for ξ^{jet} (ξ_{T}^{γ}). The level of electron contamination in the samples before applying the electron rejection criteria is 14% and reduces to roughly 5% after the rejection procedure. An uncertainty is evaluated by repeating the analysis without applying the electron rejection criteria, and scaling down the difference in the $\tilde{\zeta}$ observables to the remaining electron level of contamination after applying the electron rejection, giving 0.5 (0.4)% and 0.1(0.1)% for ξ^{jet} (ξ_{T}^{γ}). The uncertainties related to the jet energy resolution and jet energy scale are evaluated as in Ref. [26]. When propagated, the uncertainty related to the jet energy scale amounts to 9.6 (7.4)% and 2.8 (0.6)% for ξ^{jet} (ξ_{T}^{γ}), while the energy resolution gives uncertainties of 2.9 (1.2)% and 1.0 (0.6)%. A systematic uncertainty is assigned to account for long-range η correlations [22] that contribute to the UE. It is estimated by constructing the observables using tracks lying within the same azimuthal angle as the jet, but separated by a large pseudorapidity interval, $1.5 < \Delta \eta < 2.4$. The uncertainty is found to be 4.2 (3.3)% and 1.7 (1.5)% for $\xi^{\rm jet}$ ($\xi_{\rm T}^{\gamma}$). The uncertainty related to the tracking inefficiency is estimated as the difference in the track reconstruction efficiency between data and simulation, as in Ref. [32]. It is 5 (4)% for PbPb, pp) data, for both $\xi^{\rm jet}$ and $\xi_{\rm T}^{\acute{\gamma}}$, and is constant as a function of the track $p_{\rm T}$ and event centrality.

For the PbPb results only, two additional sources of systematic uncertainties are considered. One accounts for possible inaccuracies in the background subtraction method. This effect is estimated using an alternative background subtraction procedure (the so-called η -reflection method [17]), which has different sensitivities to various background sources. The observed difference of 3.4% for both $\xi^{\rm jet}$ and $\xi^{\gamma}_{\rm T}$ with respect to the nominal method is assigned as the uncertainty. The second uncertainty accounts for differences in the jet energy response due to $\xi^{\rm jet}$ and $\xi^{\gamma}_{\rm T}$ variances in the jet fragmentation pattern, as studied in simulation [26]. The observed differences of 11% for $\xi^{\rm jet}$ < 1 and 4.3 (7.0)% for $\xi^{\rm jet}$ ($\xi^{\gamma}_{\rm T}$) > 2.5 are propagated as uncertainties in the corresponding $\xi^{\rm jet}$ and $\xi^{\gamma}_{\rm T}$ regions for the PbPb results, while there are no significant differences in other $\xi^{\rm jet}$ and $\xi^{\gamma}_{\rm T}$ bins.

Figure 1 shows the photon-tagged fragmentation functions as a function of $\xi^{\rm jet}$ for both PbPb and pp collisions, together with the ratio of the PbPb to pp results. The $\xi^{\rm jet}$ distributions in PbPb collisions represent the fragmentation pattern of jets that may have lost energy through interactions with the medium, while those for pp stand for unquenched jets. Because of this possibility of quenching, the collections of reconstructed jets in PbPb and pp collisions do not necessarily have the same $p_{\rm T}^{\rm jet}$ spectrum, even though the samples are selected based on photon energy. The $\xi^{\rm jet}$ distributions for 50–100% centrality PbPb collisions are consistent with those in pp collisions. In more central collisions, an enhancement of the fragmentation function in PbPb collisions with respect to the reference pp data is observed for $\xi^{\rm jet} > 2.5$ (corresponding to $p_{\rm T}^{\rm trk} \lesssim 2.5\,{\rm GeV}/c$ for $p_{\rm T}^{\rm jet} = 30\,{\rm GeV}/c$ and $\Delta R = 0$ between the track and the jet), indicating that there is a small excess of soft particles near the jet. Additionally, a slight suppression of the fragmentation function in the region $0.5 < \xi^{\rm jet} < 2.5$ (corresponding to $18 \gtrsim p_{\rm T}^{\rm trk} \gtrsim 2.5\,{\rm GeV}/c$

Figure 1: Top: The centrality dependence of the $\xi^{\rm jet}$ distribution for jets associated with an isolated photon for PbPb (full crosses) and pp (open crosses) collisions. The pp results are smeared appropriately for each PbPb centrality bin, and data for each centrality bin are shifted vertically as indicated, for clarity. Bottom: The ratios of the PbPb over smeared pp distributions. The vertical bars through the points represent statistical uncertainties, while the colored boxes indicate systematic uncertainties.

Figure 2: Top: The centrality dependence of the ξ_T^{γ} distribution for jets associated with an isolated photon for PbPb (full crosses) and pp (open crosses) collisions. The pp results are smeared appropriately for each PbPb centrality bin, and data for each centrality bin are shifted vertically as indicated, for clarity. Bottom: The ratios of the PbPb over smeared pp distributions. The vertical bars through the points represent statistical uncertainties, while the colored boxes indicate systematic uncertainties.

for $p_{\rm T}^{\rm jet}=30\,{\rm GeV}/c$ and $\Delta R=0$) is also observed in the most central PbPb collisions.

Figure 2 shows the photon-tagged fragmentation functions as a function of $\xi_{\rm T}^{\gamma}$ for PbPb and pp collisions, as well as their ratio. As for $\xi^{\rm jet}$, the $\xi_{\rm T}^{\gamma}$ distributions for peripheral PbPb events are consistent with those in pp data. An enhancement is observed in the PbPb data relative to pp data in the $\xi_{\rm T}^{\gamma} > 3$ region (corresponding to $p_{\rm T}^{\rm trk} \lesssim 3\,{\rm GeV/}c$ for $p_{\rm T}^{\gamma} = 60\,{\rm GeV/}c$ and $\Delta\phi = \pi$ between the track and the photon). The magnitude of this enhancement increases as the PbPb collisions become more central, and is more significant than the enhancement observed in the $\xi^{\rm jet}$ distributions. A suppression of the $\xi_{\rm T}^{\gamma}$ distribution for the most central PbPb collisions is also observed for $0.5 < \xi_{\rm T}^{\gamma} < 3$ (corresponding to $36 \gtrsim p_{\rm T}^{\rm trk} \gtrsim 3\,{\rm GeV/}c$ for $p_{\rm T}^{\gamma} = 60\,{\rm GeV/}c$ and $\Delta\phi = \pi$). This pattern of suppression and enhancement is direct evidence for energy loss by high- $p_{\rm T}$ partons as they traverse the high-density medium created in heavy ion collisions.

The enhancement at large $\xi^{\rm jet}$ and $\xi^{\gamma}_{\rm T}$, together with the suppression at lower values, indicates that the showers of partons that emerged from the medium contain more particles with lower energy in PbPb collisions. The enhancements and suppressions of the fragmentation patterns measured using initial parton energy $(\xi^{\gamma}_{\rm T})$ are observed to be more pronounced than the ones measured using detector level jet energy $(\xi^{\rm jet})$. Qualitatively, this is not surprising. First, a shift

of the distributions to lower values for $\xi^{\rm jet}$ compared to $\xi_{\rm T}^{\gamma}$ is also observed in the pp results, because of effects such as out-of-cone radiation not being captured in the anti- $k_{\rm T}$ R=0.3 jet area. Additionally, in PbPb collisions a similar shift happens if the jet is quenched: the jet momentum is lower than that of the parton, resulting in a shift to lower $\xi^{\rm jet}$. As a result, the modifications in the ratio PbPb/pp are weakened by quenching in the $\xi^{\rm jet}$ case. Apart from jet quenching, the measurements may also be sensitive to the response of the medium [29, 45, 46]. The enhancement of soft particles (large ξ values) can potentially arise from low- $p_{\rm T}$ particles produced in the interaction of the traversing parton with the medium. Events selected by a photon trigger, which ensures that the initial parton $p_{\rm T}$ spectra are the same for pp and PbPb, will allow testing the theoretical modelling of both the parton shower modification in the medium and the medium response to the passage of that parton.

In summary, the fragmentation functions of jets associated with isolated photons are measured for the first time in pp and PbPb data, using CMS samples collected at $\sqrt{s_{_{\rm NN}}}=5.02\,{\rm TeV}$. Fragmentation patterns as functions of $\xi^{\rm jet}=\ln\left[|\vec{p}^{\rm jet}|^2/(\vec{p}^{\rm trk}\cdot\vec{p}^{\rm jet})\right]$ and $\xi_{\rm T}^{\gamma}=\ln\left[-|\vec{p}_{\rm T}^{\gamma}|^2/(\vec{p}^{\rm trk}\cdot\vec{p}^{\rm jet})\right]$ are constructed using charged particles with $p_{\rm T}^{\rm trk}>1\,{\rm GeV}/c$, for jets with $p_{\rm T}^{\rm jet}>30\,{\rm GeV}/c$ tagged by an isolated photon with $p_{\rm T}^{\gamma}>60\,{\rm GeV}/c$. When compared to the results found using pp data, the $\xi^{\rm jet}$ and $\xi_{\rm T}^{\gamma}$ distributions in central PbPb collisions show an excess of low- $p_{\rm T}$ particles and a depletion of high- $p_{\rm T}$ particles inside the jet. This observation is more apparent in the $\xi_{\rm T}^{\gamma}$ distributions, where the photon-based selection allows for tagging the properties of the initial parton before quenching occurs. This measurement shows for the first time the in-medium parton shower modifications for events with well-defined initial parton kinematics, and constitutes a clear reference for testing theoretical models of the parton's passage through the QGP.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] F. Karsch, "The phase transition to the quark gluon plasma: recent results from lattice calculations", *Nucl. Phys. A* **590** (1995) 367, doi:10.1016/0375-9474 (95) 00248-Y, arXiv:hep-lat/9503010.

- [2] J. D. Bjorken, "Highly relativistic nucleus-nucleus collisions: The central rapidity region", *Phys. Rev. D* **27** (1983) 140, doi:10.1103/PhysRevD.27.140.
- [3] D. A. Appel, "Jets as a probe of quark-gluon plasmas", *Phys. Rev. D* **33** (1986) 717, doi:10.1103/PhysRevD.33.717.
- [4] J. P. Blaizot and L. D. McLerran, "Jets in expanding quark-gluon plasmas", *Phys. Rev. D* **34** (1986) 2739, doi:10.1103/PhysRevD.34.2739.
- [5] M. Gyulassy and M. Plümer, "Jet quenching in dense matter", *Phys. Lett. B* **243** (1990) 432, doi:10.1016/0370-2693 (90) 91409-5.
- [6] X.-N. Wang and M. Gyulassy, "Gluon shadowing and jet quenching in A+A collisions at $\sqrt{s}=200A$ GeV", *Phys. Rev. Lett.* **68** (1992) 1480, doi:10.1103/PhysRevLett.68.1480.
- [7] R. Baier et al., "Radiative energy loss and p_{\perp} -broadening of high energy partons in nuclei", Nucl. Phys. B **484** (1997) 265, doi:10.1016/S0550-3213 (96) 00581-0, arXiv:hep-ph/9608322.
- [8] B. G. Zakharov, "Radiative energy loss of high-energy quarks in finite-size nuclear matter and quark-gluon plasma", *JETP Lett.* **65** (1997) 615, doi:10.1134/1.567389, arXiv:hep-ph/9704255.
- [9] J. Casalderrey-Solana and C. A. Salgado, "Introductory lectures on jet quenching in heavy ion collisions", *Acta Phys. Polon. B* **38** (2007) 3731, arXiv:0712.3443.
- [10] D. d'Enterria, "Jet quenching", in *Springer Materials The Landolt-Börnstein Database*, R. Stock, ed., volume 23: Relativistic Heavy Ion Physics, p. 99. Springer-Verlag, 2010. arXiv:0902.2011. doi:10.1007/978-3-642-01539-7_16.
- [11] U. A. Wiedemann, "Jet quenching in heavy ion collisions", *Landolt-Bornstein* (2010) 521, doi:10.1007/978-3-642-01539-7_17, arXiv:0908.2306.
- [12] A. Majumder and M. Van Leeuwen, "The theory and phenomenology of perturbative QCD based jet quenching", *Prog. Part. Nucl. Phys.* **66** (2011) 41, doi:10.1016/j.ppnp.2010.09.001, arXiv:1002.2206.
- [13] JET Collaboration, "Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions", *Phys. Rev. C* **90** (2014) 014909, doi:10.1103/PhysRevC.90.014909, arXiv:1312.5003.
- [14] ATLAS Collaboration, "Measurements of the nuclear modification factor for jets in Pb+Pb collisions at $\sqrt{s_{_{\rm NN}}}=2.76\,\text{TeV}$ with the ATLAS detector", *Phys. Rev. Lett.* **114** (2015) 072302, doi:10.1103/PhysRevLett.114.072302, arXiv:1411.2357.
- [15] ALICE Collaboration, "Measurement of jet suppression in central Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}=2.76\,{\rm TeV}$ ", Phys. Lett. B 746 (2015) 1, doi:10.1016/j.physletb.2015.04.039, arXiv:1502.01689.

[16] CMS Collaboration, "Measurement of inclusive jet cross sections in pp and PbPb collisions at $\sqrt{s_{_{
m NN}}}=2.76\,{\rm TeV}$ ", Phys. Rev. C **96** (2017) 015202, doi:10.1103/PhysRevC.96.015202, arXiv:1609.05383.

- [17] CMS Collaboration, "Measurement of jet fragmentation in PbPb and pp collisions at $\sqrt{s_{_{\rm NN}}} = 2.76\,\text{TeV}$ ", Phys. Rev. C **90** (2014) 024908, doi:10.1103/PhysRevC.90.024908, arXiv:1406.0932.
- [18] ATLAS Collaboration, "Measurement of jet fragmentation in Pb+Pb and pp collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with the ATLAS detector at the LHC", Eur. Phys. J. C 77 (2017) 379, doi:10.1140/epjc/s10052-017-4915-5, arXiv:1702.00674.
- [19] ATLAS Collaboration, "Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at $\sqrt{s_{\rm NN}}=2.76\,{\rm TeV}$ with the ATLAS detector at the LHC", Phys. Rev. Lett. 105 (2010) 252303, doi:10.1103/PhysRevLett.105.252303, arXiv:1011.6182.
- [20] CMS Collaboration, "Observation and studies of jet quenching in PbPb collisions at $\sqrt{s_{_{\rm NN}}}=2.76\,{\rm TeV}$ ", Phys. Rev. C 84 (2011) 024906, doi:10.1103/PhysRevC.84.024906, arXiv:1102.1957.
- [21] CMS Collaboration, "Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at $\sqrt{s_{\text{NN}}} = 2.76 \,\text{TeV}$ ", JHEP **01** (2016) 006, doi:10.1007/JHEP01 (2016) 006, arXiv:1509.09029.
- [22] CMS Collaboration, "Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at $\sqrt{s_{\rm NN}}=2.76\,{\rm TeV}$ ", *JHEP* **11** (2016) 055, doi:10.1007/JHEP11 (2016) 055, arXiv:1609.02466.
- [23] CMS Collaboration, "Modification of jet shapes in PbPb collisions at $\sqrt{s_{NN}} = 2.76 \,\text{TeV}$ ", Phys. Lett. B 730 (2014) 243, doi:10.1016/j.physletb.2014.01.042, arXiv:1310.0878.
- [24] R. B. Neufeld, I. Vitev, and B. W. Zhang, "Physics of Z^0/γ^* -tagged jets at energies available at the CERN Large Hadron Collider", *Phys. Rev. C* **83** (2011) 034902, doi:10.1103/PhysRevC.83.034902, arXiv:1006.2389.
- [25] CMS Collaboration, "Studies of jet quenching using isolated-photon+jet correlations in PbPb and pp collisions at $\sqrt{s_{NN}} = 2.76 \,\text{TeV}$ ", Phys. Lett. B **718** (2013) 773, doi:10.1016/j.physletb.2012.11.003, arXiv:1205.0206.
- [26] CMS Collaboration, "Study of jet quenching with isolated-photon+jet correlations in PbPb and pp collisions at $\sqrt{s_{_{
 m NN}}}=5.02\,{
 m TeV}''$, (2017). arXiv:1711.09738. Submitted to Phys. Lett. B.
- [27] CMS Collaboration, "Study of jet quenching with Z+jet correlations in Pb-Pb and pp Collisions at $\sqrt{s_{NN}} = 5.02 \,\text{TeV}$ ", Phys. Rev. Lett. 119 (2017) 082301, doi:10.1103/PhysRevLett.119.082301, arXiv:1702.01060.
- [28] F. Arleo, P. Aurenche, Z. Belghobsi, and J.-P. Guillet, "Photon tagged correlations in heavy ion collisions", *JHEP* 11 (2004) 009, doi:10.1088/1126-6708/2004/11/009, arXiv:hep-ph/0410088.

[29] J. Casalderrey-Solana et al., "Predictions for boson-jet observables and fragmentation function ratios from a hybrid strong/weak coupling model for jet quenching", JHEP 03 (2016) 053, doi:10.1007/JHEP03(2016) 053, arXiv:1508.00815.

- [30] CMS Collaboration, "Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at $\sqrt{s_{NN}} = 2.76 \,\text{TeV}$ ", Phys. Rev. Lett. **109** (2012) 022301, doi:10.1103/PhysRevLett.109.022301, arXiv:1204.1850.
- [31] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [32] CMS Collaboration, "Charged-particle nuclear modification factors in PbPb and pPb collisions at $\sqrt{s_{\rm NN}}=5.02\,{\rm TeV}$ ", JHEP **04** (2017) 039, doi:10.1007/JHEP04 (2017) 039, arXiv:1611.01664.
- [33] CMS Collaboration, "Measurement of isolated photon production in pp and PbPb collisions at $\sqrt{s_{NN}} = 2.76 \,\text{TeV}$ ", *Phys. Lett. B* **710** (2012) 256, doi:10.1016/j.physletb.2012.02.077, arXiv:1201.3093.
- [34] CMS Collaboration, "Measurement of the isolated prompt photon production cross section in pp collisions at $\sqrt{s} = 7 \, \text{TeV}$ ", *Phys. Rev. Lett.* **106** (2011) 082001, doi:10.1103/PhysRevLett.106.082001, arXiv:1012.0799.
- [35] CMS Collaboration, "Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8 \text{ TeV}$ ", JINST **10** (2015) P08010, doi:10.1088/1748-0221/10/08/P08010, arXiv:1502.02702.
- [36] CMS Collaboration, "Event generator tunes obtained from underlying event and multiparton scattering measurements", Eur. Phys. J. C 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
- [37] T. Sjöstrand, S. Mrenna, and P. Z. Skands, "A brief introduction to PYTHIA 8.1", Comput. Phys. Commun. 178 (2008) 852, doi:10.1016/j.cpc.2008.01.036, arXiv:0710.3820.
- [38] I. P. Lokhtin and A. M. Snigirev, "A model of jet quenching in ultrarelativistic heavy ion collisions and high- p_T hadron spectra at RHIC", Eur. Phys. J. C **45** (2006) 211, doi:10.1140/epjc/s2005-02426-3, arXiv:hep-ph/0506189.
- [39] CMS Collaboration, "Particle-flow reconstruction and global event description with the CMS detector", JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- [40] M. Cacciari, G. P. Salam, and G. Soyez, "The anti- k_t jet clustering algorithm", *JHEP* **04** (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- [41] M. Cacciari, G. P. Salam, and G. Soyez, "FastJet user manual", Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- [42] O. Kodolova, I. Vardanian, A. Nikitenko, and A. Oulianov, "The performance of the jet identification and reconstruction in heavy ions collisions with CMS detector", *Eur. Phys. J. C* **50** (2007) 117, doi:10.1140/epjc/s10052-007-0223-9.

[43] CMS Collaboration, "Jet momentum dependence of jet quenching in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 2.76\,\mathrm{TeV}$ ", Phys. Lett. B 712 (2012) 176, doi:10.1016/j.physletb.2012.04.058, arXiv:1202.5022.

- [44] CMS Collaboration, "Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV", JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
- [45] R. Kunnawalkam Elayavalli and K. C. Zapp, "Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions", *JHEP* **07** (2017) 141, doi:10.1007/JHEP07 (2017) 141, arXiv:1707.01539.
- [46] X.-N. Wang and Y. Zhu, "Medium modification of γ -jets in high-energy heavy-ion collisions", *Phys. Rev. Lett.* **111** (2013) 062301, doi:10.1103/PhysRevLett.111.062301, arXiv:1302.5874.

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth¹, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler¹, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck¹, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz¹, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus

V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium

S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium

D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni

Ghent University, Ghent, Belgium

T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov², D. Poyraz, C. Roskas, S. Salva, D. Trocino, M. Tytgat, W. Verbeke, M. Vit, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato³, E. Coelho, E.M. Da Costa, G.G. Da Silveira⁴, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote³, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil

S. Ahuja^a, C.A. Bernardes^a, T.R. Fernandez Perez Tomei^a, E.M. Gregores^b, P.G. Mercadante^b, S.F. Novaes^a, Sandra S. Padula^a, D. Romero Abad^b, J.C. Ruiz Vargas^a

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria

A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China

W. Fang⁵, X. Gao⁵, L. Yuan

Institute of High Energy Physics, Beijing, China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, F. Zhang⁵

Tsinghua University, Beijing, China

Y. Wang

Universidad de Los Andes, Bogota, Colombia

C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov⁶, T. Susa

University of Cyprus, Nicosia, Cyprus

M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic

M. Finger⁷, M. Finger Jr.⁷

Universidad San Francisco de Quito, Quito, Ecuador

E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

E. El-khateeb⁸, A. Ellithi Kamel⁹, M.A. Mahmoud^{10,11}

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

S. Bhowmik, R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland

T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

A. Abdulsalam¹², C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

J.-L. Agram¹³, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, C. Collard, E. Conte¹³, X. Coubez, F. Drouhin¹³, J.-C. Fontaine¹³, D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov¹⁴, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang

Georgian Technical University, Tbilisi, Georgia

T. Toriashvili¹⁵

Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze⁷

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov 14

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

G. Flügge, B. Kargoll, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl¹⁶

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras¹⁷, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo¹⁸, J. Garay Garcia, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, A. Harb, J. Hauk, M. Hempel¹⁹, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, K. Lipka, W. Lohmann¹⁹, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Missiroli, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo¹⁶, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Giffels, M.A. Harrendorf, F. Hartmann¹⁶, S.M. Heindl, U. Husemann, F. Kassel¹⁶, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece

G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

National Technical University of Athens, Athens, Greece

K. Kousouris

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

M. Csanad, N. Filipovic, G. Pasztor, O. Surányi, G.I. Veres²⁰

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, D. Horvath²¹, Á. Hunyadi, F. Sikler, V. Veszpremi, G. Vesztergombi²⁰

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, S. Czellar, J. Karancsi²², A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary

M. Bartók²⁰, P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India

S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India

S. Bahinipati²³, P. Mal, K. Mandal, A. Nayak²⁴, D.K. Sahoo²³, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India

S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia

University of Delhi, Delhi, India

Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

R. Bhardwaj²⁵, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep²⁵, D. Bhowmik, S. Dey, S. Dutt²⁵, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, B. Singh, S. Thakur²⁵

Indian Institute of Technology Madras, Madras, India

P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India

R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty¹⁶, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India

S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity²⁶, G. Majumder, K. Mazumdar, T. Sarkar²⁶, N. Wickramage²⁷

Indian Institute of Science Education and Research (IISER), Pune, India

S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

S. Chenarani²⁸, E. Eskandari Tadavani, S.M. Etesami²⁸, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi²⁹, F. Rezaei Hosseinabadi, B. Safarzadeh³⁰, M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari ^a, Università di Bari ^b, Politecnico di Bari ^c, Bari, Italy

M. Abbrescia^{a,b}, C. Calabria^{a,b}, A. Colaleo^a, D. Creanza^{a,c}, L. Cristella^{a,b}, N. De Filippis^{a,c}, M. De Palma^{a,b}, F. Errico^{a,b}, L. Fiore^a, G. Iaselli^{a,c}, S. Lezki^{a,b}, G. Maggi^{a,c}, M. Maggi^a, B. Marangelli^{a,b}, G. Miniello^{a,b}, S. My^{a,b}, S. Nuzzo^{a,b}, A. Pompili^{a,b}, G. Pugliese^{a,c}, R. Radogna^a, A. Ranieri^a, G. Selvaggi^{a,b}, A. Sharma^a, L. Silvestris^{a,16}, R. Venditti^a, P. Verwilligen^a, G. Zito^a

INFN Sezione di Bologna ^a, Università di Bologna ^b, Bologna, Italy

G. Abbiendi^a, C. Battilana^{a,b}, D. Bonacorsi^{a,b}, L. Borgonovi^{a,b}, S. Braibant-Giacomelli^{a,b}, R. Campanini^{a,b}, P. Capiluppi^{a,b}, A. Castro^{a,b}, F.R. Cavallo^a, S.S. Chhibra^{a,b}, G. Codispoti^{a,b}, M. Cuffiani^{a,b}, G.M. Dallavalle^a, F. Fabbri^a, A. Fanfani^{a,b}, D. Fasanella^{a,b}, P. Giacomelli^a, C. Grandi^a, L. Guiducci^{a,b}, F. Iemmi, S. Marcellini^a, G. Masetti^a, A. Montanari^a, F.L. Navarria^{a,b}, A. Perrotta^a, A.M. Rossi^{a,b}, T. Rovelli^{a,b}, G.P. Siroli^{a,b}, N. Tosi^a

INFN Sezione di Catania ^a, Università di Catania ^b, Catania, Italy

S. Albergo^{a,b}, S. Costa^{a,b}, A. Di Mattia^a, F. Giordano^{a,b}, R. Potenza^{a,b}, A. Tricomi^{a,b}, C. Tuve^{a,b}

INFN Sezione di Firenze ^a, Università di Firenze ^b, Firenze, Italy

G. Barbagli^a, K. Chatterjee^{a,b}, V. Ciulli^{a,b}, C. Civinini^a, R. D'Alessandro^{a,b}, E. Focardi^{a,b}, P. Lenzi^{a,b}, M. Meschini^a, S. Paoletti^a, L. Russo^{a,31}, G. Sguazzoni^a, D. Strom^a, L. Viliani^a

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera¹⁶

INFN Sezione di Genova ^a, Università di Genova ^b, Genova, Italy

V. Calvelli^{a,b}, F. Ferro^a, F. Ravera^{a,b}, E. Robutti^a, S. Tosi^{a,b}

INFN Sezione di Milano-Bicocca ^a, Università di Milano-Bicocca ^b, Milano, Italy

A. Benaglia^a, A. Beschi^b, L. Brianza^{a,b}, F. Brivio^{a,b}, V. Ciriolo^{a,b,16}, M.E. Dinardo^{a,b}, S. Fiorendi^{a,b}, S. Gennai^a, A. Ghezzi^{a,b}, P. Govoni^{a,b}, M. Malberti^{a,b}, S. Malvezzi^a, R.A. Manzoni^{a,b}, D. Menasce^a, L. Moroni^a, M. Paganoni^{a,b}, K. Pauwels^{a,b}, D. Pedrini^a, S. Pigazzini^{a,b,32}, S. Ragazzi^{a,b}, T. Tabarelli de Fatis^{a,b}

INFN Sezione di Napoli ^a, Università di Napoli 'Federico II' ^b, Napoli, Italy, Università della Basilicata ^c, Potenza, Italy, Università G. Marconi ^d, Roma, Italy

S. Buontempo^a, N. Cavallo^{a,c}, S. Di Guida^{a,d,16}, F. Fabozzi^{a,c}, F. Fienga^{a,b}, A.O.M. Iorio^{a,b}, W.A. Khan^a, L. Lista^a, S. Meola^{a,d,16}, P. Paolucci^{a,16}, C. Sciacca^{a,b}, F. Thyssen^a

INFN Sezione di Padova ^a, Università di Padova ^b, Padova, Italy, Università di Trento ^c, Trento, Italy

P. Azzi^a, N. Bacchetta^a, L. Benato^{a,b}, D. Bisello^{a,b}, A. Boletti^{a,b}, R. Carlin^{a,b}, P. Checchia^a, M. Dall'Osso^{a,b}, P. De Castro Manzano^a, T. Dorigo^a, U. Dosselli^a, F. Gasparini^{a,b}, U. Gasparini^{a,b}, A. Gozzelino^a, S. Lacaprara^a, P. Lujan, M. Margoni^{a,b}, A.T. Meneguzzo^{a,b}, N. Pozzobon^{a,b}, P. Ronchese^{a,b}, R. Rossin^{a,b}, F. Simonetto^{a,b}, A. Tiko, E. Torassa^a, M. Zanetti^{a,b}, P. Zotto^{a,b}, G. Zumerle^{a,b}

INFN Sezione di Pavia ^a, Università di Pavia ^b, Pavia, Italy

A. Braghieri^a, A. Magnani^a, P. Montagna^{a,b}, S.P. Ratti^{a,b}, V. Re^a, M. Ressegotti^{a,b}, C. Riccardi^{a,b}, P. Salvini^a, I. Vai^{a,b}, P. Vitulo^{a,b}

INFN Sezione di Perugia ^a, Università di Perugia ^b, Perugia, Italy

L. Alunni Solestizi^{a,b}, M. Biasini^{a,b}, G.M. Bilei^a, C. Cecchi^{a,b}, D. Ciangottini^{a,b}, L. Fanò^{a,b}, P. Lariccia^{a,b}, R. Leonardi^{a,b}, E. Manoni^a, G. Mantovani^{a,b}, V. Mariani^{a,b}, M. Menichelli^a, A. Rossi^{a,b}, A. Santocchia^{a,b}, D. Spiga^a

INFN Sezione di Pisa ^a, Università di Pisa ^b, Scuola Normale Superiore di Pisa ^c, Pisa, Italy K. Androsov^a, P. Azzurri^{a,16}, G. Bagliesi^a, L. Bianchini^a, T. Boccali^a, L. Borrello, R. Castaldi^a, M.A. Ciocci^{a,b}, R. Dell'Orso^a, G. Fedi^a, L. Giannini^{a,c}, A. Giassi^a, M.T. Grippo^{a,31}, F. Ligabue^{a,c}, T. Lomtadze^a, E. Manca^{a,c}, G. Mandorli^{a,c}, A. Messineo^{a,b}, F. Palla^a, A. Rizzi^{a,b}, P. Spagnolo^a, R. Tenchini^a, G. Tonelli^{a,b}, A. Venturi^a, P.G. Verdini^a

INFN Sezione di Roma ^a, Sapienza Università di Roma ^b, Rome, Italy

L. Barone^{a,b}, F. Cavallari^a, M. Cipriani^{a,b}, N. Daci^a, D. Del Re^{a,b}, E. Di Marco^{a,b}, M. Diemoz^a, S. Gelli^{a,b}, E. Longo^{a,b}, F. Margaroli^{a,b}, B. Marzocchi^{a,b}, P. Meridiani^a, G. Organtini^{a,b}, R. Paramatti^{a,b}, F. Preiato^{a,b}, S. Rahatlou^{a,b}, C. Rovelli^a, F. Santanastasio^{a,b}

INFN Sezione di Torino ^a, Università di Torino ^b, Torino, Italy, Università del Piemonte Orientale ^c, Novara, Italy

N. Amapane^{a,b}, R. Arcidiacono^{a,c}, S. Argiro^{a,b}, M. Arneodo^{a,c}, N. Bartosik^a, R. Bellan^{a,b},

C. Biino^a, N. Cartiglia^a, F. Cenna^{a,b}, M. Costa^{a,b}, R. Covarelli^{a,b}, A. Degano^{a,b}, N. Demaria^a, B. Kiani^{a,b}, C. Mariotti^a, S. Maselli^a, E. Migliore^{a,b}, V. Monaco^{a,b}, E. Monteil^{a,b}, M. Monteno^a, M.M. Obertino^{a,b}, L. Pacher^{a,b}, N. Pastrone^a, M. Pelliccioni^a, G.L. Pinna Angioni^{a,b}, A. Romero^{a,b}, M. Ruspa^{a,c}, R. Sacchi^{a,b}, K. Shchelina^{a,b}, V. Sola^a, A. Solano^{a,b}, A. Staiano^a, P. Traczyk^{a,b}

INFN Sezione di Trieste ^a, Università di Trieste ^b, Trieste, Italy

S. Belforte^a, M. Casarsa^a, F. Cossutti^a, G. Della Ricca^{a,b}, A. Zanetti^a

Kyungpook National University, Daegu, Korea

D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

H. Kim, D.H. Moon, G. Oh

Hanyang University, Seoul, Korea

J.A. Brochero Cifuentes, J. Goh, T.J. Kim

Korea University, Seoul, Korea

S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea

J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea

H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

Sungkyunkwan University, Suwon, Korea

Y. Choi, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania

V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali³³, F. Mohamad Idris³⁴, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz³⁵, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

A. Morelos Pineda

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk³⁶, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia

S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev^{37,38}, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Y. Ivanov, V. Kim³⁹, E. Kuznetsova⁴⁰, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia

T. Aushev, A. Bylinkin³⁸

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

M. Chadeeva⁴¹, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin³⁸, I. Dremin³⁸, M. Kirakosyan³⁸, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia

V. Blinov⁴², D. Shtol⁴², Y. Skovpen⁴²

State Research Center of Russian Federation, Institute for High Energy Physics of NRC "Kurchatov Institute", Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia

A. Babaev

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic⁴³, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, I. Bachiller, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi, A. Álvarez Fernández

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, J. Garcia-Ferrero, A. García Alonso, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, B. Akgun, E. Auffray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban¹⁹, J. Kieseler, V. Knünz, A. Kornmayer, M.J. Kortelainen, M. Krammer¹, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic⁴⁴, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, G. Rolandi⁴⁵, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas⁴⁶, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Tsirou, V. Veckalns⁴⁷, M. Verweij, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl[†], L. Caminada⁴⁸, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

M. Backhaus, L. Bäni, P. Berger, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer,

C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland

T.K. Aarrestad, C. Amsler⁴⁹, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta

National Central University, Chung-Li, Taiwan

V. Candelise, Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

M.N. Bakirci⁵⁰, A. Bat, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos⁵¹, E.E. Kangal⁵², O. Kara, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir⁵³, S. Ozturk⁵⁰, A. Polatoz, D. Sunar Cerci⁵⁴, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey

G. Karapinar⁵⁵, K. Ocalan⁵⁶, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey

E. Gülmez, M. Kaya⁵⁷, O. Kaya⁵⁸, S. Tekten, E.A. Yetkin⁵⁹

Istanbul Technical University, Istanbul, Turkey

M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold⁶⁰, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom

A. Belyaev⁶¹, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

Imperial College, London, United Kingdom

G. Auzinger, R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso,

M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash⁶², A. Nikitenko⁶, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta⁶³, T. Virdee¹⁶, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA

A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Catholic University of America, Washington DC, USA

R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA

A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA

G. Benelli, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu

University of California, Davis, Davis, USA

R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang

University of California, Los Angeles, USA

M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA

E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA

J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech⁶⁴, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo

California Institute of Technology, Pasadena, USA

D. Anderson, A. Bornheim, J. Bunn, I. Dutta, J.M. Lawhorn, H.B. Newman, T. Q. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA

J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, E. Macdonald, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, J. Chaves, Y. Cheng, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla[†], K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, A. Savoy-Navarro⁶⁵, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, W. Wu

University of Florida, Gainesville, USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA

Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez

Florida State University, Tallahassee, USA

A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay

Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA

B. Bilki⁶⁶, W. Clarida, K. Dilsiz⁶⁷, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya⁶⁸, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul⁶⁹, Y. Onel, F. Ozok⁷⁰, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA

B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USA

A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA

A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze

Lawrence Livermore National Laboratory, Livermore, USA

F. Rebassoo, D. Wright

University of Maryland, College Park, USA

A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA

D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA

A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud

University of Mississippi, Oxford, USA

J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA

J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA

G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA

S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA

R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko³⁷, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA

J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, T.Y. Ling, B. Liu, W. Luo, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USA

S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A. Kalogeropoulos, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA

S. Malik, S. Norberg

Purdue University, West Lafayette, USA

A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA

T. Cheng, N. Parashar, J. Stupak

Rice University, Houston, USA

Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

University of Rochester, Rochester, USA

A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

The Rockefeller University, New York, USA

R. Ciesielski, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA

A.G. Delannoy, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

O. Bouhali⁷¹, A. Castaneda Hernandez⁷¹, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon⁷², R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA

N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA

S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA

M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA

R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA

M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, V. Rekovic, T. Ruggles, A. Savin, N. Smith, W.H. Smith, N. Woods

†: Deceased

- 1: Also at Vienna University of Technology, Vienna, Austria
- 2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- 3: Also at Universidade Estadual de Campinas, Campinas, Brazil
- 4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- 5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
- 6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
- 7: Also at Joint Institute for Nuclear Research, Dubna, Russia
- 8: Now at Ain Shams University, Cairo, Egypt
- 9: Now at Cairo University, Cairo, Egypt
- 10: Also at Fayoum University, El-Fayoum, Egypt
- 11: Now at British University in Egypt, Cairo, Egypt
- 12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- 13: Also at Université de Haute Alsace, Mulhouse, France
- 14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 15: Also at Tbilisi State University, Tbilisi, Georgia
- 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
- 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
- 18: Also at University of Hamburg, Hamburg, Germany
- 19: Also at Brandenburg University of Technology, Cottbus, Germany
- 20: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
- 21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
- 23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- 24: Also at Institute of Physics, Bhubaneswar, India
- 25: Also at Shoolini University, Solan, India
- 26: Also at University of Visva-Bharati, Santiniketan, India
- 27: Also at University of Ruhuna, Matara, Sri Lanka
- 28: Also at Isfahan University of Technology, Isfahan, Iran
- 29: Also at Yazd University, Yazd, Iran
- 30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- 31: Also at Università degli Studi di Siena, Siena, Italy
- 32: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
- 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
- 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
- 35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
- 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
- 37: Also at Institute for Nuclear Research, Moscow, Russia
- 38: Now at National Research Nuclear University 'Moscow Engineering Physics

Institute' (MEPhI), Moscow, Russia

- 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
- 40: Also at University of Florida, Gainesville, USA
- 41: Also at P.N. Lebedev Physical Institute, Moscow, Russia
- 42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
- 43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
- 44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 45: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
- 46: Also at National and Kapodistrian University of Athens, Athens, Greece
- 47: Also at Riga Technical University, Riga, Latvia
- 48: Also at Universität Zürich, Zurich, Switzerland
- 49: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
- 50: Also at Gaziosmanpasa University, Tokat, Turkey
- 51: Also at Istanbul Aydin University, Istanbul, Turkey
- 52: Also at Mersin University, Mersin, Turkey
- 53: Also at Piri Reis University, Istanbul, Turkey
- 54: Also at Adiyaman University, Adiyaman, Turkey
- 55: Also at Izmir Institute of Technology, Izmir, Turkey
- 56: Also at Necmettin Erbakan University, Konya, Turkey
- 57: Also at Marmara University, Istanbul, Turkey
- 58: Also at Kafkas University, Kars, Turkey
- 59: Also at Istanbul Bilgi University, Istanbul, Turkey
- 60: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
- 61: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
- 62: Also at Monash University, Faculty of Science, Clayton, Australia
- 63: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
- 64: Also at Utah Valley University, Orem, USA
- 65: Also at Purdue University, West Lafayette, USA
- 66: Also at Beykent University, Istanbul, Turkey
- 67: Also at Bingol University, Bingol, Turkey
- 68: Also at Erzincan University, Erzincan, Turkey
- 69: Also at Sinop University, Sinop, Turkey
- 70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- 71: Also at Texas A&M University at Qatar, Doha, Qatar
- 72: Also at Kyungpook National University, Daegu, Korea