CSE 574 Lecture 18: POMDP

(Slides adapted from Kaebling et. al., Geoff Hollinger CMU lecture, and POMDP tutorial)

Professor: Stephanie Gil

Email: sgil@asu.edu (Office hours M 12-1pm BYENG 386)

TAs: Sushmita Bhattacharya sbhatt55@asu.edu (Office hours M 5-6 BYENG 392)

Weiying Wang wwang239@asu.edu (Office hours Th 2:30-3:30 BYENG 392)

Last Time

• HMM

Inference with hidden state

Viterbi algorithm and the most likely sequence

Today

- Partially Observable Markov Decision Processes
 - Updating belief state using observations and actions
 - Acting under uncertainty
- References
 - A POMDP tutorial: https://www.techfak.uni-bielefeld.de/~skopp/Lehre/STdKI_SS10/
 POMDP_tutorial.pdf
 - "Planning and Acting in Partially Observable Stochastic Domains," Kaebling et. al.

Agent Model

- Set of states
- Set of actions
- Transition and reward probabilities
- Observation function
- Belief state
- Policy

Goal of a POMDP

 As before, our goal is to maximize long-term total discounted reward

• Find a policy that maximizes the value (expected future reward) of each state s:

$$V^{\pi}(s) = E\{r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s_t = s, \pi\}$$

How Does this Fit in with Past Lectures?

Source: Geoff Hollinger POMDP tutorial https://www.cs.cmu.edu/~ggordon/780-fall07/lectures/POMDP_lecture.pdf

Overview of Current Problem

POMDP Model

 a_1

Components:

Set of states: $s \in S$

Set of actions: $a \in A$

Set of observations: $o \in \Omega$

POMDP parameters:

Initial belief: $b_0(s)=Pr(S=s)$

Belief state updating: b'(s')=Pr(s'|o, a, b)

Observation probabilities: O(s',a,o)=Pr(o|s',a)

Transition probabilities: T(s,a,s')=Pr(s'|s,a)

Rewards: R(s,a)

- MDP

Belief State

- The agent does not know what state it is in
- Definition belief state: which states of the world are currently possible
 - Actions: belief state b={s1,s2}
 - Transitions:
- Reward function

Transition function

Visualization of Belief State

$$b'(s_j) = P(s_j \mid o, a, b) = \frac{P(o \mid s_j, a) \sum_{s_i \in S} P(s_j \mid s_i, a) b(s_i)}{\sum_{s_j \in S} P(o \mid s_j, a) \sum_{s_i \in S} P(s_j \mid s_i, a) b(s_i)}$$

Belief state update

Computing the Belief State

Simplified Gridworld

- Initial belief state
 [0.333 0.333 0.000 0.333]
- Action is successful with p=0.9 and opposite with p=0.1
- Agent has two observations, in the goal or not in the goal
- $b'(s_j) = P(s_j \mid o, a, b) = \frac{P(o \mid s_j, a) \sum_{s_i \in S} P(s_j \mid s_i, a) b(s_i)}{\sum_{s_j \in S} P(o \mid s_j, a) \sum_{s_i \in S} P(s_j \mid s_i, a) b(s_i)}$
 - Stage 1: agent takes action EAST and does not observe goal

[0.100 0.450 0.000 0.450]

 Stage 2: agent takes action EAST again and does not observe goal

[0.100 0.164 0.000 0.736]

How to Choose an Action?

If we don't know our state?

 Unlike having a distribution over states, we cannot take a "partial action"

Policy Tree

Value of executing a one-step policy tree p

$$V_p(s) = R(s, a(p))$$

Value of executing a t-step policy tree p

$$V_p(s) = R(s, a(p)) + \gamma \cdot (\text{Expected value of the future})$$

$$= R(s, a(p)) + \gamma \sum_{s' \in \mathcal{S}} \Pr(s' \mid s, a(p)) \sum_{o_i \in \Omega} \Pr(o_i \mid s', a(p)) V_{o_i(p)}(s')$$

Expected Value of Executing Policy p

Must compute the value over beliefs, not states.
 Build off of the equation on the last slide

$$V_p(b) = \sum_{s \in \mathcal{S}} b(s) V_p(s)$$

- Denote $\alpha_p = \langle V_p(s_1), \dots, V_p(s_n) \rangle$ then $V_p(b) = b \cdot \alpha_p$
- And the optimal t-step value of starting in belief state b is the value of executing the best policy tree in that belief state

$$V_t(b) = \max_{p \in \mathcal{P}} b \cdot \alpha_p$$

Pictorial Representation of the Optimal t-step Value for Belief b

POMDP Example

S0
"tiger-left"
Pr(o=TL | S0, listen)=0.85
Pr(o=TR | S1, listen)=0.15

S1 "tiger-right" Pr(o=TL | S0, listen)=0.15 Pr(o=TR | S1, listen)=0.85

Actions={ 0: listen, 1: open-left, 2: open-right}

Reward Function

- Penalty for wrong opening: -100
- Reward for correct opening: +10
- Cost for listening action: -1

Observations

- to hear the tiger on the left (TL)
- to hear the tiger on the right(TR)

Transition probabilities

Prob. (LISTEN)	Tiger: left	Tiger: right
Tiger: left	1.0	0.0
Tiger: right	0.0	1.0

Doesn't change
Tiger location

Prob. (LEFT)	Tiger: left	Tiger: right
Tiger: left	0.5	0.5
Tiger: right	0.5	0.5

Problem reset

Prob. (RIGHT)	Tiger: left	Tiger: right
Tiger: left	0.5	0.5
Tiger: right	0.5	0.5

Observation probabilities

Prob. (LISTEN)	O: TL	O: TR
Tiger: left	0.85	0.15
Tiger: right	0.15	0.85

Immediate rewards

Reward (LISTEN)	
Tiger: left	-1
Tiger: right	-1

Reward (LEFT)	
Tiger: left	-100
Tiger: right	+10

Reward (RIGHT)	
Tiger: left	+10
Tiger: right	-100

The tiger problem: State tracking

Tiger Example Optimal Policy t=1

Intro to SLAM

- Simultaneous Localization and Mapping (SLAM) is also a hidden state problem!
- Idea:
 - Given

$$z_{1:t}^{i} \equiv \{z_{1}^{i}, z_{2}^{i}, ..., z_{t}^{i}\}$$
$$u_{1:t}^{i} \equiv \{u_{1}^{i}, u_{2}^{i}, ..., u_{t}^{i}\}$$

• Simultaneous localize (find sequence $x_{1:t}^i \equiv \{x_1^i, x_2^i, ..., x_t^i\}$)

and a map of the agents' environment

$$p(m, x_{1:t}|z_{1:t}, u_{1:t}, x_0)$$

Example Video of SLAM

Applications

- What is SLAM important for?
 - Navigation this can be robots, cars, drones, etc
 - Mapping and reconnaissance
 - Autonomous driving
 - Rideshare
 - Delivery
- What we will cover in class
 - Introduction to SLAM
 - High-level review of two major approaches (EKF and particle SLAM)
 - Multi-robot algorithms

Next Time

Recitation on hidden state problems

Introduction to SLAM

• Final project presentation schedule is online

• Final project presentations begin on the 19th!