蒙特卡洛算法:基础

计算物理b 高阳

数学基础: 随机变量

• 在前面的例子中都需用到在(0,1)的均匀分布随机 数

• 随机变量 ξ :有确定的取值区域,但取哪个值不确定,按照某种统计规律获得。

• 例子: 掷硬币, 头为0, 背为1, 计 ξ 标记某次掷的结果, 即为随机变量。

数学基础: 期望

- 离散型: $\xi \in \{x_i, i = 1, 2, ..., n\}, p_i = p(\xi = x_i).$ 需要归一: $\sum_i p_i = 1$
- 连续型: $\xi \in (a,b)$, 概率密度 $p(\xi)$. 归一: $\int_a^b p(\xi)d\xi = 1$ $p(x)dx = p(x < \xi < x + dx)$ 分布函数 $p(x) = \frac{d}{dx}P(x)$
- 期望: $\langle \xi \rangle = \sum_i x_i p_i$, $\langle \xi \rangle = \int_a^b d\xi \, \xi p(\xi)$
- 方差 $V(\xi) = \langle \xi^2 \rangle \langle \xi \rangle^2$ 标准差 $\sigma = \sqrt{V}$

数学基础: 基本性质

• x,y为随机变量, a,b为常数

$$\langle ax + by \rangle = a \langle x \rangle + b \langle y \rangle$$

 $V(ax + by) = a^2 V(x) + b^2 V(y) + 2ab V(x, y)$

- 协方差: $V(x,y) = \langle (x \langle x \rangle)(y \langle y \rangle) \rangle$
- 协方差说明两个随机变量的关联。

如果两变量独立,则V(x,y)=0.

此时有 $V(ax + by) = a^2V(x) + b^2V(y)$

对于一系列独立同分布随机变量 ξ_i , i=1,2,...,N

$$V(\sum \xi_i) = NV(\xi_i), \ V\left(\frac{\sum \xi_i}{N}\right) = \frac{1}{N}V(\xi_i), \ \sigma\left(\frac{\sum \xi_i}{N}\right) = \frac{1}{\sqrt{N}}\sigma(\xi_i)$$

数学基础: 独立性

- x,y为随机变量,我们可定义联合概率密度p(x,y) $p(x,y)dxdy = p(x < \xi_1 < x + dx && y < \xi_2 < y + dy)$
- 例子: 高维空间的概率密度
- 若p(x,y) = f(x)g(y)则我们可说x,y相互独立。
- 例子: 直接抽样计算 π 的算法,产生正方形里的点的时候
- 若有多个随机变量, 其独立性不能化为成对的独立性例子: $x = r, y = s, z = (r + s) \mod 1$. 其中, r, s为(0,1)区间的随机数。

数学基础:条件概率

- 事情A的发生可能需要前提B或者C,则 p(A) = p(B)p(A|B) + p(C)p(A|C)
- 性质:

$$p(A|B) = \frac{p(AB)}{p(B)}$$

• 对于独立事件 p(A|B) = p(A)

数学基础: 大数定律

• ξ_i 为独立同分布的随机变量序列,而且 ξ_i 存在数学期望,记为 μ ,则对于任意 $\epsilon > 0$,我们有

$$\lim_{n \to \infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n} \xi_i - \mu\right| < \epsilon\right) = 1$$

• 例子: 掷n次硬币, 每次的值 ξ_i 为随机变量, 其期望为1/2则当n很大时

$$\frac{1}{n}\sum_{i=1}^{n}\xi_{i} = \frac{1}{2} \quad (概率意义上的相等)$$

• 蒙特卡洛算法应用的基础。

数学基础: 中心极限定理

• ξ_i 为一列独立同分布随机变量(n个),并且有有限的期望 μ 和标准差 σ ,则如下变量近似服从标准正态分布:

$$\xi = \frac{\frac{1}{n} \sum_{i=1}^{n} \xi_i - \mu}{\sigma / \sqrt{n}}$$

也即

$$\lim_{n \to \infty} P(\xi \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{x^2}{2}} dx$$

• 用于误差分析

数学基础: 检验

• 掷硬币:进行多次重复实验,每次实验掷m次硬币,观察 $\xi = \frac{\frac{1}{n}\sum_{i=1}^n \xi_i - \mu}{\sigma/\sqrt{n}}$ 的分布情况。注意,单次实验期望值为1/2,标准差为1/2

数学基础: 误差分析

• 期望值的偏离

$$P\left(-\lambda \frac{\sigma}{\sqrt{n}} \le \frac{1}{n} \sum_{i} \xi_{i} < \lambda \frac{\sigma}{\sqrt{n}}\right) = \frac{1}{\sqrt{2\pi}} \int_{-\lambda}^{\lambda} e^{-\frac{x^{2}}{2}} dx$$
$$= \operatorname{erf}\left(\frac{\lambda}{\sqrt{2}}\right) = 1 - \alpha$$

- 误差在 $\lambda \frac{\sigma}{\sqrt{n}}$ 之内的概率为 $1-\alpha$,此为置信水平。 α 为显著水平。
- 是概率收敛,不是精确收敛。
- 若 σ 固定,可以通过增大n来减小误差。

数学基础: 误差分析示例

每轮900次

轮数	1	2	3	4	5	6	7	8	9
期望值	0.527	0.504	0.489	0.482	0.502	0.520	0.492	0.514	0.489

误差函数, $\lambda = 1$ 时值为0.68 有68%的概率计算值在 $0.5 \pm \frac{0.5}{30} = 0.5 \pm 0.017$ 的区间内实际发现占比为 $\frac{6}{9} = 67\%$

随机数生成

- 在前面的例子中都需用到在(0,1)的均匀分布随机 数
- 真随机数: 比如物理过程产生的, 涨落之类的。
- 准随机数:不具有随机性,无法通过统计检验, 但可能很均匀,仍然可以用来计算。
- 举例: Halton序列(区间均分型, 二进制翻转获得): 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8,...

伪随机数算法1

平方取中法(冯诺依曼提出)对于一个2r位的数字,其平方为4r位,取中间的2r位作为随机数,并且构成获得下一个数字的种子。

(课本有误)

$$\xi_n = \frac{x_n}{10^{2r}}$$
 $x_{n+1} = [10^{-r} x_n^2] (mod \ 10^{2r})$
此方法较差,容易重复,如感兴趣可自己尝试。

伪随机数算法2

• 线性同余法 通过如下方法获得数列。

 $x_{n+1} = (a x_n + c) (mod m)$ a 为乘子, c为增量, m为模数, x_0 为种子。 若c=0, 为乘同余法

• 与参量值的选择非常相关。 例子: a=3, m=10, c为偶数,

 x_0 , $3x_0 + c$, $9x_0 + 4c$, $27x_0 + 13c$, $81x_0 + 40c = x_0 \pmod{10}$

一般原则

- (1) c和m互素; (2) 若p是m的素因子, $a = 1 \pmod{p}$; (3) 若 $m = 0 \pmod{4}$, $a = 1 \pmod{4}$; (此为一种方法) 此时,周期为m
- 证明请见:
 https://chagall.med.cornell.edu/BioinfoCourse/PDFs/Lecture

 4/random number generator.pdf
- $m = 2^n$ 是一种比较便利的选择,可以用到计算机以二进制编码的事实。此时,若n > 1(一般肯定满足),则可选c = 2p + 1, a = 4q + 1, 也即教材中给出的形式。

统计检验:均匀性

 χ^2 检验: 检验实验值是否满足某种分布的方法

对于均匀性检验:将(0,1)分成N份,若满足均匀性则在每份的概率应为1/N

做法:产生(0,1)内的长度为M的随机数,将(0,1)均匀分成N份,统计每份中点的数目,计算 χ^2 值,查表判断均匀性。

统计检验:实例

 χ^2 检验: 产生 (0,1) 内的长度为2000的随机数列,记为A,将(0,1)均匀分成10份。

进行假设检验: H0, A在(0,1)内均匀分布

H1, A在(0,1) 内不满足均匀分布

区间号	1	2	3	4	5	6	7	8	9	10
频数	188	221	181	197	207	213	209	203	190	191

 $\chi^2 = \sum_{i=1}^N \frac{(m_i - M/N)^2}{M/N} = 7.22$ 服从 $\chi^2(N-1)$, $\chi^2(9,7.22) = 0.39$ 若H0 成立,服从 χ^2 分布,则不小于7.22的概率为0.61,我们确实在此区间,故61%的概率接受H0.

注: 也可均分为两个区间, $\chi^2 = 0.072$, $\chi^2(1,0.072) = 0.21$, 有79%的概率可认为在二分区间均匀。实际上, 撒点变多可提高均匀性。

统计检验: 独立性

 χ^2 检验: 检验实验值是否满足某种分布的方法

两事件独立性检验:若独立性成立,我们有如下理论预言,也即联合概率等于分立概率之积。基于此,可适用 χ^2 检验。

做法:产生M个随机数,两两成对,每队第一个作为变量1,第二个作为变量2,将变量1和2的取值区间分划,利用独立时间条件概率检验独立性。

统计检验:实验值

 χ^2 检验:产生10000个随机数,形成5000对,将(0,1)区间分成3份,从而对于两个变量的联合分布,有9个区间。列表计算频数。

	$x1 \in \left(0, \frac{1}{3}\right)$	$x1 \in \left(\frac{1}{3}, \frac{2}{3}\right)$	$x1 \in \left(\frac{2}{3}, 1\right)$	计数
$x2 \in \left(0, \frac{1}{3}\right)$	546	548	529	1623
$x2 \in \left(\frac{1}{3}, \frac{2}{3}\right)$	548	542	560	1650
$x2 \in \left(\frac{2}{3}, 1\right)$	584	560	583	1727
计数	1678	1650	1672	

统计检验: 理论频数与检验

	$x1 \in \left(0, \frac{1}{3}\right)$	$x1 \in \left(\frac{1}{3}, \frac{2}{3}\right)$	$x1 \in \left(\frac{2}{3}, 1\right)$	计数
$x2 \in \left(0, \frac{1}{3}\right)$	544.68	535.59	542.73	1623
$x2 \in \left(\frac{1}{3}, \frac{2}{3}\right)$	553.74	544.50	551.76	1650
$x2 \in \left(\frac{2}{3}, 1\right)$	579.58	569.91	577.51	1727
计数	1678	1650	1672	

若为均匀分布,则每个 矩阵元可以计算出来。 比如第一个元的理论值 应为:

1697/5000*1633=554.24 这里不用5000/9是因为 不预先假设变量为均匀 分布,做与均匀性无关 的独立性检验。

 $\chi^2(4,1.0904) = 0.104$,故有89.6%的概率接收H0,也即独立性。

(注: 若按照理论均匀频数5000/9来计算,则 $\chi^2 = 4.8532$, $\chi^2(4,1.0904) = 0.697$, 只有30%的概率接收独立性。)

作业

1. 根据上次作业中计算 π 的值的算法,设置投点步数 N=10000,分别写出置信水平为68%和95%的误差区间(对于误差函数, $\lambda = 1$ 时值为0.68, $\lambda = 2$ 时值为0.95)。

2. 教材第二章习题1.