built on 2021/02/09 at 21:20:20

due: tue feb 23 @ 11:59pm

Ground Rules:

- This assignment contains only written problems. You should first attempt the problems by yourself and start working in groups after a few days of thinking.
- Typeset your solution (a good excuse to learn/master LaTeX) or write legibly. You're handing in your work electronically. We only accept PDF files. Name the file whatever you want as long as it's a single PDF.
- Exercise common sense when collaborating with others or looking things up online. Even if you work together on a problem, the writeup should be your own. This is the only way I know for you to master this kind of subject.

Task 1: Eh? They Have The Same Cardinality? (4 points)

Remember that \mathbb{R} is the set of real numbers. Let

- the close-open interval [a, b) denote the set { $x \in \mathbb{R} \mid a \le x < b$ }.
- the open-open interval (a, b) denote the set $\{x \in \mathbb{R} \mid a < x < b\}$.

Prove the following statements using rigorous mathematical reasoning:

- (1) $|[0, \frac{1}{2})| = |[0, 1)|$ (*Hint*: Establish a bijection)
- (2) |[0,1)| = |(-1,1)| (*Hint:* You can use two functions, instead of one.)
- (3) $|[0,1)| = |\mathbb{R}|$.

Task 2: The Power Set of A (2 points)

Let *A* be a nonempty set, though it is potentially countably infinite. Your goal in this problem is to prove that $|A| < |2^A|$. You will do it in two steps:

- (1) Prove that $|2^A| = |\{0,1\}^A|$. Remember that the power set of a set A, denoted by 2^A , is the set $\{X \mid X \subseteq A\}$. Furthermore, $\{0,1\}^A$ is a binary array of length |A|. Because A is potentially infinite, it helps to reason about each $w \in \{0,1\}^A$ as a function $w: A \to \{0,1\}$. This view isn't all that outlandish: For example, if you consider an $x \in \{0,1\}^{100}$, this is a binary string of length 100; each position is 0 or 1. Another way to view x is as a function: $x: \{0,1,\ldots,99\} \to \{0,1\}$, where x(k) returns x[k].
- (2) Prove that $|A| < |\{0,1\}^A|$ and conclude that $|A| < |2^A|$.

Task 3: Hamming Code (4 points)

Consider applying the Hamming coding scheme to send 8 bits of data. This will require 4 parity bits, so an encoded codeword in this scheme is 12 bits long. You will answer the following questions:

- (1) If the data bits are $d_1d_2d_3...d_8$, what is β_2 in terms of d_i 's?
- (2) Encode the following 8-bit data: 01101010.
- (3) Assuming that at most a single single bit flip, decide the following codewords (indicate also whether there was any error):
 - (i) 010011111000

(ii) 011101010010

Task 4: Same Number of 0s and 1s (2 points)

Consider the language $L = \{w \in \{0,1\}^* \mid w \text{ contains an equal number of 0s and 1s}\}$. You already know that L is not regular. In this problem, show that L is (Turing) decideable by providing a TM that decides it (a medium-level detail is preferred).

Task 5: Infinite DFA (2 points)

Show that the following language is (Turing) decideable:

 $\mathsf{IDFA} = \{ \langle M \rangle \mid M \text{ is a DFA and } L(M) \text{ is an infinite language} \}.$

Task 6: Lucky 9 (4 points)

The number 9 is considered by many cultures to be a lucky number. Following this trend, we'll deal with languages that involve only 9s. Let $\Sigma = \{9\}$. For this problem, a high-level TM description is sufficient. Also: you do not need any deep knowledge of number theory or analysis to solve the following.

(1) Let $L_1 \subseteq \Sigma^*$ be defined as

$$L_1 = \begin{cases} \emptyset & \text{if } 2^{74207281} - 1 \text{ is prime} \\ \{99\} & \text{if } 2^{74207281} - 1 \text{ is not prime} \end{cases}$$

Prove that L_1 is (Turing) decideable.

(2) Let $L_2 \subseteq \Sigma^*$ be defined as follows:

 $w \in L_2 \iff w$ appears somewhere (not necessarily consecutively) in the decimal expansion of π .

For example, $\varepsilon \in L_2$, $9 \in L_2$, and $99 \in L_2$, and so is $9999 \in L_2$ because

 $\pi = 3.1415926535897932384626433832795028841971693993751...$

Prove that L_2 is (Turing) decideable.

Task 7: β -reduction (2 points)

Apply β -reduction to the following λ -expressions as much as possible:

- $(\lambda z.z)(\lambda z.zz)(\lambda z.zy)$
- $(((\lambda x.\lambda y.(xy))(\lambda y.y))w)$

Task 8: Fibonacci (2 points)

The n-th Fibonacci number is given by the recurrence f(n) = f(n-1) + f(n-2), where f(0) = 1 and f(1) = 1. Using the functions we have developed (e.g., pred, if_then_else, mult, add, etc.), write down an explicit λ -term fib such that

$$\overline{\mathsf{fib}} \ \overline{n} =_{\beta} \overline{f(n)}.$$

Here, \overline{n} is the Church numeral λ -term for the number n.

Task 9: Power Of 2 (2 points)

Without using the recursion or fixed-point theorem, implement a λ -term for the function $pow(n) = 2^n$. You can use the standard functions we developed in class.