Discrete Mathematics Assignment 1

Give justifications for all your answers. The set of all real numbers is denoted by \mathbb{R} . The letter n always denotes a positive integer. Each question carries 5 marks.

1. Prove by induction on n:

(a)
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

(b) $1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1}n^2 = \frac{(-1)^{n-1}n(n+1)}{2}$

(b)
$$1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1} n^2 = \frac{(-1)^{n-1} n(n+1)}{2}$$

- 2. Show using truth tables that if p and q are two propositions, the proposition $p \Rightarrow q$ is equivalent to the proposition $\neg p \lor q$.
- 3. For any two real numbers $i, j \in \mathbb{R}$, where $i \leq j$, the "interval" [i, j] is defined to be the set $\{x \in \mathbb{R}: i \leq x \leq j\}$. Let \mathcal{F} be a finite family of intervals.
 - (a) Define a relation \sim on \mathcal{F} as follows: for two intervals $A, B \in \mathcal{F}$, we define $A \sim B$ if and only if $A \cap B \neq \emptyset$. Discuss whether the relation \sim reflexive, symmetric, anti-symmetric or transitive.
 - (b) For an interval $A \in \mathcal{F}$, define $N(A) = \{B \in \mathcal{F}: A \sim B\}$. Show that there is an interval $A \in \mathcal{F}$ with the property that if $B, C \in N(A)$, then $B \sim C$.
 - (c) Let \nsim denote the relation defined as follows: for two intervals $A, B \in \mathcal{F}$, $A \not\sim B$ if and only if $A \cap B = \emptyset$. Discuss what kind of a relation $\not\sim$ is.
- 4. Show that given $n^2 + 1$ data points in the XY-plane, one can always draw a monotonically increasing or decreasing curve (one whose slope is always nonnegative or is always non-positive) that passes through at least n of them.
- 5. Let p be some prime number other than 2 and 5. Show that there is some power of p whose decimal representation has 01 as its last two digits.
- 6. Let $f: A \to B$ and $g: B \to C$ be two functions and let $h = g \circ f$.
 - (a) Is h injective if both f and g are injective? What about the converse ("Are both f and g injective if h is injective?") ?
 - (b) Is h surjective if both f and g are surjective? What about the converse?
- 7. Let $S \subseteq 2^{\mathbb{N}}$ be a family of subsets of natural numbers such that any two sets in S are disjoint. Is S necessarily a countable set?
- 8. In how many ways can the aadhaar cards of n people be distributed among them in such a way that nobody receives his/her own card? (The answer can be in the form of a formula involving summation.)
- 9. How many integral solutions are there for $x_1 + x_2 + x_3 + x_4 = 20$ which satisfy the constraints $2 \le x_1 \le 6$, $3 \le x_2 \le 7$, $5 \le x_3 \le 8$, and $2 \le x_4 \le 9$?
- 10. What is the least number of colours required to color the integers $1, 2, \ldots, 2^n 1$ such that in any set of consecutive integers, there is a colour that occurs exactly once? That is, the colouring has to satisfy the condition that for any integers i, j such that $1 \le i \le j \le 2^n - 1$, there is a colour that is given to exactly one integer in the set $\{i, i+1, \ldots, j-1, j\}$.