Stochastic Processes – 18.445

MIT, FALL 2011

Practice Mid Term Exam 1

October 25, 2011

Problem 1: .

Let X_1, X_2, X_3, \ldots be a Markov chain on a finite state space $S = \{1, \ldots, N\}$ with transition matrix P. Among the following statements, say which implies which.

- (a) There exists a probability distribution $\bar{\pi}$ such that $\lim_{n\to\infty} \pi P^n = \bar{\pi}$ for every probability distribution π .
- (b) $\lim_{n\to\infty} P^n = \begin{bmatrix} \bar{\pi} \\ \vdots \\ \bar{\pi} \end{bmatrix}$, for some probability distribution $\bar{\pi}$.
- (c) There exists a probability distribution $\bar{\pi}$ such that $\bar{\pi}P = \bar{\pi}$.
- (d) 1 is an eigenvalue of P with multiplicity 1, and all other eigenvalues λ have $|\lambda| < 1$.
- (e) $P_{ij} > 0$ for all $i, j \in S$.
- (f) There exists n > 0 such that $P_{ij}^n > 0$ for all $i, j \in S$
- (g) $P_{ij}^n > 0$ for all $i, j \in S$ and n > 0.
- (h) For all $i, j \in S$ there exists n > 0 such that $P_{ij}^n > 0$.
- (i) X_1, X_2, X_3, \ldots is an irreducible Markov chain.
- (j) X_1, X_2, X_3, \ldots is an irreducible aperiodic Markov chain.

Solution:

$$(e) \Leftrightarrow (g) \implies (f) \Leftrightarrow (j) \implies \left\{ \begin{array}{c} (d) \implies (a) \Leftrightarrow (b) \\ (h) \Leftrightarrow (i) \end{array} \right\} \implies (c)$$

Problem 2: .

Let $X_1, X_2, X_3, ...$ be a Markov chain on \mathbb{Z} such that $X_0 = 0$ and, conditioned on $X_n = i$, we have

$$X_{n+1} = \begin{cases} i - 1 & \text{with prob. } \alpha \\ i & \text{with prob. } \beta \\ i + 1 & \text{with prob. } \gamma \end{cases},$$

where $\alpha, \beta, \gamma \geq 0$ are such that $\alpha + \beta + \gamma = 1$. Let $T_k = \inf\{n \geq 0 \mid X_n = k\}$ be the time of first passage through k, and let $u_k(s) = \mathbb{E}[s^{T_k}]$, for |s| < 1.

- (a) Sow that, for every $k \ge 1$, we have $u_k(s) = (u_1(s))^k$.
- (b) Compute $u_1(s)$.

Solution: (a) $u_{k+1}(s) = \mathbb{E}[s^{T_{k+1}}] = \sum_{n=0}^{\infty} \mathbb{E}[s^{T_{k+1}} \mid T_k = n] \mathbb{P}[T_k = n] = \sum_{n=0}^{\infty} \mathbb{E}[s^{T_1} + n] \mathbb{P}[T_k = n] = \mathbb{E}[s^{T_1}] \sum_{n=0}^{\infty} s^n \mathbb{P}[T_k = n] = u_1(s)u_k(s)$. Hence, by induction, $u_k(s) = (u_1(s))^k$. (b) $u_1(s) = \mathbb{E}[s^{T_1}] = \mathbb{E}[s^{T_1} \mid X_1 = -1] \mathbb{P}[X_1 = -1] + \mathbb{E}[s^{T_1} \mid X_1 = 0] \mathbb{P}[X_1 = 0] + \mathbb{E}[s^{T_1} \mid X_1 = 1] \mathbb{P}[X_1 = 1] = \mathbb{E}[s^{1+T_2}]\alpha + \mathbb{E}[s^{1+T_1}]\beta + \mathbb{E}[s^1]\gamma = \alpha s u_2(s) + \beta s u_1(s) + \gamma s = \alpha s (u_1(s))^2 + \beta s u_1(s) + \gamma s$. Hence, $\alpha s (u_1(s))^2 - (1 - \beta s) u_1(s) + \gamma s = 0$, which has solution:

$$u_1(s) = \frac{1 - \beta s \pm \sqrt{(1 - \beta s)^2 - 4\alpha \beta s^2}}{2\alpha s}.$$

1

To conclude, we observe that the "+" solution is not good since it is > 1 for small s > 0 (while we know that, for $s \in (01)$, we must have $u_1(s) > 0$).

Problem 3: .

Let X_1, X_2, X_3, \ldots be a Markov chain on $S = \{1, 2, \ldots, 11\}$ with transition matrix

- (a) List all communicating classes, specifying if they are transient or recurrent classes.
- (b) For each recurrent communicating class, decide whether it is aperiodic or periodic, and in the latter case, find its period.

Solution: Communicating classes:

- (1) $\{1,2,3\}$: recurrent, aperiodic
- (2) $\{4,5\}$: transient,
- (3) $\{6, 7, 8, 9, 10, 11\}$: recurrent, periodic of period 2.

Problem 4: .

Let X_1, X_2, X_3, \ldots be a sequence of independent, identically distributed random variables, with values in $S = \{1, 2, 3\}$ and probability distribution $\mathbb{P}[X = 1] = 1/2$, $\mathbb{P}[X = 2] = 1/3$, $\mathbb{P}[X = 3] = 1/3$ 1/6. Explain why this defines a Markov chain, and compute the transition matrix P. Compute the equilibrium distribution $\bar{\pi}$.

Solution: Since X_n are independent, the Markov property holds trivially. The transition matrix

$$P = \left[\begin{array}{ccc} 1/2 & 1/3 & 1/6 \\ 1/2 & 1/3 & 1/6 \\ 1/2 & 1/3 & 1/6 \end{array} \right] .$$

The equilibrium distribution is: $\bar{\pi} = (1/2, 1/3, 1/6)$

Problem 5: .

Costumers arrive at a certain facility according to a Poisson process of rate λ . It is known that exactly 5 costumers arrives in the first hour. Each costumer, independently from the other costumers, spends a time T in the store that is an exponential random variable of rate α , and then leave the store. Compute the probability P that the store is empty at the end of this first

Solution: As we proved in class, conditioned on $X_1 = 5$, the waiting times W_1, \ldots, W_5 are uniformly distributed in the interval [0,1]. Namely, if S_1,\ldots,S_5 are independent uniform random variable on [0, 1], then the waiting times can be constructed by imposing that $W_1 < \cdots < W_5$ and $\{S_1,\ldots,S_5\}=\{W_1,\ldots,W_n\}$ (as unordered sets). If T_i is the time that costumer i spends in the shop, we thus have

$$P = \mathbb{P}[S_i + T_i < 1 \ \forall i] = \left(\mathbb{P}[S + T < 1]\right)^5 = \left(\int_0^1 dt \alpha e^{-\alpha t} \mathbb{P}[S < 1 - t]\right)^5 = \left(\alpha \int_0^1 dt (1 - t) e^{-\alpha t}\right)^5 = \left(1 - \frac{1}{\alpha} + \frac{e^{-\alpha}}{\alpha}\right)^5.$$

Problem 6: .

Let Y_n , n = 0, 1, 2, ... be a Markov chain on $S = \{1, ..., N\}$ with transition matrix P, and let N_t be a Poisson process of rate λ . Consider the continuous time process $X_t = Y_{N_t}$. Argue that it is a continuous time Markov chain, and find its infinitesimal generating matrix A.

Solution: It is immediate to understand that X_t is a homogeneous Markov process. For small interval Δt , we have

$$\mathbb{P}[X_{\Delta t} = j \mid X_0 = i] \simeq \mathbb{P}[T_1 < \Delta t, Y_1 = j \mid Y_0 = i] = \mathbb{P}[T_1 < \Delta t] \mathbb{P}[Y_1 = j \mid Y_0 = i] = (1 - e^{-\lambda \Delta t}) p_{ij} \simeq (\lambda \Delta t + o(\Delta t^2)) p_{ij}.$$

Hence, the jump rates are: $\alpha(i,j) = \lambda p_{ij}$. We have $\alpha(i) = \sum_{j \neq i} \alpha(i,j) = \lambda \sum_{j \neq i} p_{ij} = \lambda (1-p_{ii})$. Hence, the generating matrix is:

$$A = \begin{bmatrix} \lambda(1-p_{11}) & \lambda p_{12} & \dots & \lambda p_{1N} \\ \lambda p_{21} & \lambda(1-p_{22}) & \dots & \lambda p_{2N} \\ & \dots & & \\ \lambda p_{N1} & \lambda p_{N2} & \dots & \lambda(1-p_{NN}) \end{bmatrix}.$$