

Département sciences du numérique Première année

### **Transmissions Bande de Base**

Nathalie Thomas, IRIT/ENSEEIHT Nathalie.Thomas@enseeiht.fr

#### Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
  - 1) Définition du modulateur bande de base
  - 2) DSP du signal modulé => bande nécessaire à la transmission
  - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
  - 1) Problème de l'interférence entre symboles,
  - 2) Critère de Nyquist dans le domaine temporel,
  - 3) Diagramme de l'œil,
  - 4) Critère de Nyquist dans le domaine fréquentiel,
  - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
  - 1) Filtrage adapté,
  - 2) Règle de décision,
  - 3) Taux d'erreur symbole et taux d'erreur binaire,
  - 4) Efficacité en puissance de la transmission.

#### Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
  - 1) Définition du modulateur bande de base
  - 2) DSP du signal modulé => bande nécessaire à la transmission
  - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
  - 1) Problème de l'interférence entre symboles,
  - 2) Critère de Nyquist dans le domaine temporel,
  - 3) Diagramme de l'œil,
  - 4) Critère de Nyquist dans le domaine fréquentiel,
  - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
  - 1) Filtrage adapté,
  - 2) Règle de décision,
  - 3) Taux d'erreur symbole et taux d'erreur binaire,
  - 4) Efficacité en puissance de la transmission.

## Modulation numérique en bande de base Objectif - Principe général

### $\rightarrow$ Objectif

A partir de données numériques (information binaire), générer un signal physique adapté au canal de propagation et permettant la transmission de ces données.

#### $\rightarrow$ Principe

- → Découper la séquence binaire en blocs de n bits
- $\rightarrow$  Associer un symbole M-aire à chaque bloc : M=2<sup>n</sup>
- → Associer un signal analogique à chacun de ces symboles (forme d'onde)
- $\rightarrow$  Transmission des bits tous les T<sub>b</sub>, R<sub>b</sub>=1/T<sub>b</sub>: débit binaire
- $\rightarrow$  Transmission des symboles tous les  $T_s = nT_b$  (période symbole)

$$R_s=1/T_s$$
: débit symbole  $R_s=R_b/n$ 

Objectif - Principe général

#### $\rightarrow$ Exemple avec M=4

→ Symboles et formes d'onde associées

| Bits | Forme d'onde |
|------|--------------|
| 00   |              |
| 01   | <b></b>      |
| 10   |              |
| 11   |              |

| Bits | Symbole        | Forme d'onde |
|------|----------------|--------------|
| 00   | $S_0$          |              |
| 01   | $S_1$          |              |
| 10   | $S_2$          |              |
| 11   | S <sub>3</sub> |              |

→ Signal obtenu pour transmettre une séquence de 10 bits



Quelques exemples de signaux



Modélisation générale

Information binaire : Modulation bande de base 
$$x(t) = \sum_{k} a_k h(t - kT_s)$$

#### Modélisation générale



# Accès Woodlap pour les questions

#### Comment participer?







Code d'événement **MODBDB** 

- Envoyez @MODBDB au 06 44 60 96 62
- Vous pouvez participer



| Мар  | ping                           |
|------|--------------------------------|
| bits | Symboles <u>a</u> <sub>k</sub> |
| 0    | 0                              |
| 1    | +V                             |



| Mapping |                     |
|---------|---------------------|
| bits    | Symboles <u>a</u> k |
| 0       | -V                  |
| 1       | +V                  |



| Map  | ping                           |
|------|--------------------------------|
| bits | Symboles <u>a</u> <sub>k</sub> |
| 0    | 0                              |
| 1    | +V                             |





| Map  | ping                           |
|------|--------------------------------|
| bits | Symboles <u>a</u> <sub>k</sub> |
| 0    | 0                              |
| 1    | +V                             |



| Map  | ping                       |
|------|----------------------------|
| bits | Symboles <u>a</u> <u>k</u> |
| 0    | -V                         |
| 1    | +V                         |



| Map  | ping                           |
|------|--------------------------------|
| bits | Symboles <u>a</u> <sub>k</sub> |
| 0    | -V                             |
| 1    | +V                             |









| Mapping     |  |
|-------------|--|
| Symboles ak |  |
| -V          |  |
| +V          |  |
|             |  |



| Mapping |                         |
|---------|-------------------------|
| bits    | Symboles a <sub>k</sub> |
| 0       | -V                      |
| 1       | +V                      |





Afin de générer le deuxième signal, qu'avons nous changé par rapport au premier?

1 Le mapping

3 La période symbole

2 La réponse impulsionnelle du filtre de mise en forme

4 Pas assez d'éléments pour répondre à la question



| Mapping |                     |
|---------|---------------------|
| bits    | Symboles <u>a</u> k |
| 0       | -V                  |
| 1       | +V                  |



| Symboles ak |
|-------------|
|             |
| -3V         |
| -V          |
| +V          |
| +3V         |
|             |



| Mapping |                         |
|---------|-------------------------|
| bits    | Symboles a <sub>k</sub> |
| 00      | -3V                     |
| 01      | -V                      |
| 11      | +V                      |
| 10      | +3V                     |



#### Modélisation générale



Débit symbole :  $R_S = \frac{1}{T_S}$  (symboles/s ou bauds)

#### Modélisation générale



#### Modélisation générale



Débit symbole :  $R_S = \frac{1}{T_S}$  (symboles/s ou bauds)

$$R_s = \frac{R_b}{log_2(M)}$$

 $M = 2^n$ : ordre de la modulation = nombre de symboles possibles

Exemple (NRZ, M=4 = NRZ 4-aire):



Suite de bits à transmettre : 00100111

Signal généré :



Avec ce signal généré pour la suite de bits à transmettre donnée, le débit symbole sera :

1 Égal au débit binaire

2 Plus grand que le débit binaire

3 Plus petit que le débit binaire

4 Pas assez d'éléments pour répondre à la question posée

En considérant qu'il est possible de transmettre un débit symbole Rs=6000 symboles/s, on pourra transmettre un débit binaire de 12 kbits/s avec une modulation d'ordre :

**1** 2

**(2**)

3

8

#### Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
  - 1) Définition du modulateur bande de base
  - 2) DSP du signal modulé => bande nécessaire à la transmission
  - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
  - 1) Problème de l'interférence entre symboles,
  - 2) Critère de Nyquist dans le domaine temporel,
  - 3) Diagramme de l'œil,
  - 4) Critère de Nyquist dans le domaine fréquentiel,
  - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
  - 1) Filtrage adapté,
  - 2) Règle de décision,
  - 3) Taux d'erreur symbole et taux d'erreur binaire,
  - 4) Efficacité en puissance de la transmission.

Densité spectrale de puissance (DSP) du signal transmis

Information binaire : Modulation bande de base Débit binaire 
$$\begin{array}{c} \text{Modulation} \\ \text{Débit binaire} \\ \text{R}_{\text{b}} = 1/\text{T}_{\text{b}} \end{array}$$

Densité spectrale de puissance (DSP) du signal transmis



Modulation PAM (Pulse Amplitude Modulation) d'ordre M (M-PAM)

Densité spectrale de puissance (DSP) du signal transmis



Modulation PAM (Pulse Amplitude Modulation) d'ordre M (M-PAM)

$$S_{x}(f) = \frac{\sigma_{a}^{2}}{T_{s}} \left| H(f) \right|^{2} + 2 \frac{\sigma_{a}^{2}}{T_{s}} \left| H(f) \right|^{2} \sum_{k=1}^{\infty} \Re \left[ R_{a}(k) e^{j2\pi f k T_{s}} \right] + \frac{\left| m_{a} \right|^{2}}{T_{s}^{2}} \sum_{k} \left| H\left(\frac{k}{T_{s}}\right) \right|^{2} \delta \left( f - \frac{k}{T_{s}} \right)$$

(calcul donné sur moodle)

où : 
$$\sigma_a^2=E\left[|a_k-m_a|^2\right]\;;\quad m_a=E\left[a_k\right]\;\;;\quad R_a(k)=\frac{E\left[a_m^*a_{m-k}\right]-\left|m_a\right|^2}{\sigma_a^2}$$
 
$$H(f)=TF\left[h(t)\right]$$

= Modulation linéaire en "bande de base" = DSP du signal transmis autour de la fréquence 0

Quelques exemples de DSPs

#### → Mise en forme NRZ à 2 niveaux (forme d'onde du GPS)



Quelques exemples de DSPs

#### → Mise en forme Biphase ou Manchester (forme d'onde Ethernet : IEEE802.3)



 $-4/T_S$ 

 $-2/T_S$ 

 $4/T_S$ 

 $2/T_S$ 

Quelques exemples de DSPs

#### → Mise en forme en racine de cosinus surélevé (forme d'onde du DVB-C et DVB-S)



Bande occupée par le signal transmis

#### → Définition 1

Bande de fréquence B concentrant x % de l'énergie du signal (valeurs typiques : 95 à 99 %)

$$\frac{\int_{0}^{B} S_x(f)df}{\int_{0}^{\infty} S_x(f)df} = \frac{x}{100}$$

#### → Définition 2

Bande de fréquence B au délà de laquelle l'atténuation minimale est de x dB (valeurs typiques : 20 à 30 dB)



#### Transmissions en bande de base

- 1) Modulation numérique en bande de Base et notion d'efficacité spectrale
  - 1) Définition du modulateur bande de base
  - 2) DSP du signal modulé => bande nécessaire à la transmission
  - 3) Efficacité spectrale de la transmission
- 2) Interférences entre symboles et critère de Nyquist
  - 1) Problème de l'interférence entre symboles,
  - 2) Critère de Nyquist dans le domaine temporel,
  - 3) Diagramme de l'œil,
  - 4) Critère de Nyquist dans le domaine fréquentiel,
  - 5) Impact du canal de propagation
- 3) Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance
  - Filtrage adapté,
  - 2) Règle de décision,
  - 3) Taux d'erreur symbole et taux d'erreur binaire,
  - 4) Efficacité en puissance de la transmission.

Efficacité spectrale de la transmission



Information binaire reçue: 0 1 0 1 0 1 1 ...

Débit binaire Rb

#### Efficacité spectrale de la transmission



Information binaire reçue: 0 1 0 1 0 1 1 ...

Efficacité spectrale de la transmission



Information binaire reçue: 0 1 0 1 0 1 1 ...

Efficacité spectrale de la transmission

#### → Efficacité spectrale (en bits/s/Hz) :

$$B = kR_s$$

(Quel que soit le filter de mise en forme utilisé)

$$R_s = \frac{R_b}{\log_2(M)}$$

$$a_k \in \{\pm V, \pm 3V, ..., \pm (M-1)V\}$$
(Symboles M-aires)

$$\eta = \frac{R_b}{B} = \frac{log_2(M)}{k}$$
 (bits/s/Hz)

Un signal modulé en « bande de base » est un signal :

(1) Généré par un modulateur basique : symboles binaires et filtre de mise en forme rectangulaire,

2 Dont la densité spectrale de puissance est centrée autour de la fréquence 0,

3 Avec une bande occupée étroite.

Soit une suite de bits 0,1 à transmettre et un mapping qui associe -V aux 0 et +V aux 1. La figure donne la densité spectrale de puissance du signal généré en utilisant un filtre de mise en forme en racine de cosinus surélevé. L'efficacité spectrale obtenue sera :



- 1 Plus grande qu'en utilisant un filtre de mise en forme rectangulaire
- 2 Plus petite qu'en utilisant un filtre de mise en forme rectangulaire
- 3 Identique à celle obtenue en utilisant un filtre de mise en forme rectangulaire
- 4 Pas assez d'éléments pour répondre à la question



L'efficacité spectrale de la transmission sera :

- 1 meilleure si je transmets le signal x1(t)
- 3 Identique pour la transmission des deux signaux

- meilleure si je transmets le signal x2(t)
- 4 Pas assez d'éléments pour répondre à la question