March 7, 2024

Ahmed Saad Sabit, Rice University

Eigenvalues and Eigenvectors

We are mainly dealing with $T \in \mathcal{L}(V)$ where T is an operator.

Definition 1. Invariant Subspace $U \subset V$ subspace such that $Tu \in U$ for all $u \in U$. $T(U) \subset U$ where T(U) is range T. Trivial examples,

 $V, \{0\}, rangeT, null T$

Suppose $u \in V$ $u \neq 0$ and then of course u defines 1-dim subspace of V,

$$\lambda u : \lambda \in \mathbb{F}$$

Then T will have this as the invariant subspace $Tu = \lambda u$.

In this case we can say λ is an eigenvalue of T, and $Tu = \lambda u$ $u \neq 0$. And u is called an Eigenvector of T corresponding to the Eigenvalues.

Suppose $\dim V$ is finite.

$$T \in \mathcal{L}(V), \quad \lambda \in \mathbb{F}$$

Then these conditions are equivalent

- λ is an eigenvalue of T
- $T \lambda I$ is not injective.
- $T \lambda I$ is not surjective.
- $T \lambda I$ is not bijective.

An example is $T \in \mathcal{L}(\mathbb{F}^2)$ defined by $T(x_1, x_2) = (-x_2, x_1)$. Look for eigenvalue of T.

 $T(x_1, x_2)$ is $= \lambda(x_1, x_2)$. That means

$$(-x_2, x_1) = \lambda(x_1, x_2)$$

Looking at the equations,

$$-x_2 = \lambda x_1$$

$$x_1 = \lambda x_2$$

From here $x_1 = \lambda(-\lambda x_1) = -\lambda^2 x_1$. For $\mathbb{F} = \mathbb{R}$ then either $\lambda = 0$ or $x_1, x_2 = 0, 0$. So T has no eigenvalue.

But if $\mathbb{F} = \mathbb{C}$ then $x \neq 0$ if and only if $\lambda^2 = -1$ so $\lambda = \pm i$.

Linearly Independent Eigenvectors

 v_1, \ldots, v_n be eigenvectors of T such that their corresponding eigenvalues are distinct. Then v_1, \ldots, v_n are linearly independent.

$$Tv_1 = \lambda_1 v_1$$

$$Tv_2 = \lambda_2 v_2$$

$$Tv_n = \lambda_n v_n$$

To prove this, we use contradiction.

Proof. Some non-trivial linear combination of these vectors of the vector is 0. We want to write the shortest equation of m length (not n) that will give us a nice 0.

$$a_1v_1 + \ldots + a_mv_m = 0$$

And $a_j \neq 0$. Operate with T,

$$a_1\lambda_1v_1 + \ldots + a_m\lambda_mv_m = 0$$

Now this is also valid, which is a separate equation,

$$a_1\lambda_m v_1 + \ldots + a_m\lambda_m v_m = 0$$

But we can subtract the two from here,

$$a_1(\lambda_1 - \lambda_m)v_1 + \dots a_m(\lambda_1 - \lambda_m)v_m = 0$$

Then we have another shorter equation.

If $T \in \mathcal{L}(V)$ then null T and range T are both invariant under the action of T.

Problem 08

 $P^2 = P$ the find λ . So,

$$Pu = \lambda u$$

$$PPu = \lambda Pu \implies p^2 u = \lambda^2 u$$

So

$$(P^2 - \lambda P)u = 0$$

$$(P - \lambda P)u = 0$$

$$(1 - \lambda)Pu = 0$$

$$(1 - \lambda)\lambda u = 0$$

$$(1 - \lambda)\lambda = 0$$