Aufgabe: Datenbankmodellierung – Reisebüro

Aufgabe 2: (Datenbank, Datenmodellierung und Normalisierung)

Im Buchungssystem eines Reisebüros werden Kundendaten und Reisebuchungen in einer einzigen Tabelle gespeichert. Die ursprüngliche Tabellenstruktur ist wie folgt:

Nicht normalisierte Tabelle: Reisebuchungen

KundenI	D Name	Adresse (Straße, Ort, PLZ)	ReiseID	Reiseziel	Reisedatum	Preis
1001	Jana Meier	Marktweg 5, Köln, 50667	R01	Paris	15.06.2024	850
1002	Max Schulze	Gartenstr. 12, Hamburg, 20095	R02	Rom	20.07.2024	920
1001	Jana Meier	Marktweg 5, Köln, 50667	R03	London	05.08.2024	790
1003	Lena Hoffmann	Allee 9, Berlin, 10115	R02	Rom	20.07.2024	920

Tabelle 1: *
Ursprüngliche Tabelle mit Redundanzen

Teilaufgaben

- a) Untersuchen Sie die Redundanzen und Anomalien in der oben dargestellten Tabelle. $(10~\mathrm{BE})$
- b) Normalisieren Sie die Tabelle schrittweise bis zur 3. Normalform. Geben Sie die resultierenden Tabellen mit Attributnamen an (ohne Daten). (25 BE)
- c) Erläutern Sie die konkreten Vorteile der Normalisierung für das Reisebüro. (5 BE)

Aufgabe 2: Lösung

a) Analyse von Redundanzen und Anomalien (10 BE)

Die nicht normalisierte Tabelle enthält folgende Probleme:

Redundanzen:

- Kundendaten (z.B. Name und Adresse von Jana Meier) wiederholen sich bei mehreren Buchungen.
- Reisedaten (z.B. Rom am 20.07.2024) erscheinen mehrfach bei unterschiedlichen Kunden.

Einfügeanomalien:

• Eine neue Reise oder ein neuer Kunde kann nicht gespeichert werden, ohne dass bereits eine Buchung vorliegt.

Änderungsanomalien:

• Bei Änderungen an Name oder Adresse eines Kunden müssen alle betreffenden Datensätze angepasst werden – Fehleranfälligkeit!

Löschanomalien:

• Wird ein Buchungsdatensatz gelöscht, können wichtige Informationen über den Kunden oder die Reise verloren gehen.

Fazit: Die Tabelle enthält redundante Daten und ist anfällig für Anomalien. Eine Normalisierung ist notwendig.

b) Normalisierung bis zur 3. Normalform (25 BE)

1. Normalform (1NF):

• Alle Werte sind atomar (Adresse wird in Straße, Ort und PLZ zerlegt).

Tabelle Reisebuchungen (1NF):

KundenID Name Straße Ort PLZ

ReiseID Reiseziel Reisedatum Preis

- 2. Normalform (2NF):
- Trennung der Daten in mehrere Tabellen zur Vermeidung von partiellen Abhängigkeiten:

Tabelle Kunden:

KundenID Name Straße Ort PLZ

Tabelle Reisen:

ReiseID Reiseziel Reisedatum Preis

Tabelle Buchungen: KundenID ReiseID

- 3. Normalform (3NF):
- Keine transitiven Abhängigkeiten. Alle Nichtschlüsselattribute sind direkt vom Primärschlüssel abhängig.

Die Tabellenstruktur entspricht nun der 3. Normalform.

c) Vorteile der Normalisierung (5 BE)

- Datenintegrität: Redundanzen werden vermieden, Inkonsistenzen minimiert.
- Effizienz: Speicherplatz wird eingespart, Änderungen sind einfacher.
- Flexibilität: Neue Kunden oder Reisen können unabhängig gespeichert werden.
- Fehlerminimierung: Keine mehrfachen Änderungen nötig.
- Erweiterbarkeit: Die Datenbank ist leichter wartbar und erweiterbar.