

Candidato: Lemuel Puglisi Relatore:
Prof. Alaimo
Salvatore

Correlatori:

Prof. Ferro Alfredo Dott. Micale Giovanni

Autoencoder per la riduzione della dimensionalità di dataset molecolari e conseguente predizione di dati clinici

Contesto: Tumore al seno

Il tumore al seno è il

tumore più frequente nella

Sottotipi molecolari

Lo studio a livello molecolare ha portato alla definizione di sottotipi molecolari di carcinoma mammario, la cui distinzione favorisce l'adozione di terapie mirate.

Luminal A

Her2+

Luminal B

Basal

E molti altri...

Profilo dell'espressione genica

Un profilo dell'espressione genica rappresenta l'attività di migliaia di geni in un dato istante.

Heatmap by Miguel Andrade

Genes expression profiling

Per ottenere profili dell'espressione genica dal tessuto ammalato, vengono utilizzate varie tecniche. I dataset forniti per lo studio adottano rispettivamente le tecniche RNA-Seq e Microarray.

RNA-Seq

Tecnica NGS. Sequenziamento dell'RNA e allineamento su genoma

Microarray

Sonde microscopiche analizzano simultaneamente la presenza di geni

Curse of dimensionality

Ogni profilo dell'espressione genica è un dato ad alta dimensionalità: si fa riferimento a circa 20.000 geni del genoma umano. L'alta dimensionalità dei dati provoca il fenomeno della curse of dimensionality: il volume dello spazio aumenta esponenzialmente con le dimensioni, per cui ad alte dimensioni i punti risultano pressoché equidistanti.

Principal Component Analysis

Metodi classici di riduzione della dimensionalità, come la PCA, performano male quando vi sono relazioni non lineari tra le feature.

Perché utilizzare delle reti neurali per la riduzione della dimensionalità?

- 1. Le reti neurali sono approssimatori universali.
- 2. Le performance aumentano proporzionalmente alla quantità di dati

Struttura di un deep autoencoder

Scelte implementative

Risultati di compressione

La huber loss media si aggira a 0.008 nei dati RNA-Seq e 0.013 per i dati Microarray.

Classificazione del sottotipo attraverso i dati compressi

Modelli di classificazione

XGBoost

Modello ensemble, utilizza il gradient boosting

SVM

Modello discriminativo, sfrutta vettori di supporto

Random Forest

Modello ensemble,

utilizza il bootstrapping

* Ci riferiremo al modello XGBoost quando parleremo di risultati, poiché le performance sono lievemente migliori.

Embedding space	Metrics	LumA	LumB	Basal	Her2
150	Sensitivity	0.94	0.72	0.97	0.44
	Specificity	0.89	0.91	0.99	0.99
	Precision	0.90	0.67	0.97	0.78
	NPV	0.93	0.93	0.99	0.95
50	Sensitivity	0.91	0.69	0.97	0.38
	Specificity	0.83	0.91	0.99	0.98
	Precision	0.86	0.68	0.97	0.67
	NPV	0.89	0.92	0.99	0.94
25	Sensitivity	0.90	0.54	0.91	0.38
	Specificity	0.83	0.89	0.99	0.96
	Precision	0.86	0.55	0.94	0.46
	NPV	0.88	0.88	0.98	0.94

Risultati su dati RNA-Seq compressi

* Ci riferiremo al modello XGBoost quando parleremo di risultati, poiché le performance sono lievemente migliori.

Risultati su dati Microarray compressi

Embedding space	Metrics	LumA	LumB	Basal	Her2
150	Sensitivity	0.60	0.72	0.92	0.77
	Specificity	0.95	0.78	0.98	0.89
	Precision	0.90	0.58	0.86	0.53
	NPV	0.76	0.87	0.99	0.96
50	Sensitivity	0.67	0.68	0.95	0.68
	Specificity	0.93	0.82	0.96	0.90
	Precision	0.88	0.62	0.79	0.52
	NPV	0.78	0.86	0.99	0.94
25	Sensitivity	0.66	0.67	0.90	0.68
	Specificity	0.92	0.81	0.97	0.88
	Precision	0.87	0.60	0.84	0.49
	NPV	0.78	0.86	0.99	0.94

Idea di base

Scelte implementative

* Ci riferiremo al modello XGBoost quando parleremo di risultati, poiché le performance sono lievemente migliori.

Embedding space	Metrics	LumA	LumB	Basal	Her2
150	Sensitivity	0.96	0.90	0.97	0.94
	Specificity	0.98	0.97	1.00	0.98
	Precision	0.98	0.90	1.00	0.79
	NPV	0.96	0.97	0.99	0.99
50	Sensitivity	0.98	0.79	1.00	0.94
	Specificity	0.94	0.99	0.99	0.98
	Precision	0.95	0.94	0.97	0.83
	NPV	0.98	0.95	1.00	0.99
25	Sensitivity	0.98	0.77	1.00	0.88
	Specificity	0.93	0.99	0.99	0.97
	Precision	0.94	0.97	0.97	0.74
	NPV	0.98	0.94	1.00	0.99

Risultati su dati RNA-Seq compressi (A.E. biased)

* Ci riferiremo al modello XGBoost quando parleremo di risultati, poiché le performance sono lievemente migliori.

Embedding space	Metrics	LumA	LumB	Basal	Her2
150	Sensitivity	0.83	0.89	0.98	0.91
	Specificity	0.97	0.91	0.98	0.97
	Precision	0.96	0.80	0.89	0.83
	NPV	0.88	0.95	1.00	0.98
50	Sensitivity	0.85	0.87	0.98	0.89
	Specificity	0.97	0.91	0.97	0.97
	Precision	0.95	0.81	0.85	0.85
	NPV	0.89	0.94	1.00	0.98
25	Sensitivity	0.87	0.90	1.00	0.89
	Specificity	0.97	0.91	0.98	0.97
	Precision	0.96	0.81	0.87	0.83
	NPV	0.87	0.96	1.00	0.98

Risultati su dati Microarray compressi (A.E. biased)

Differenze tra i due modelli

Blind autoencoder

Produce una rappresentazione generica del dato, utilizzabile per qualsiasi tipo di analisi.

Biased autoencoder

La rappresentazione prodotta è basata su una determinata proprietà dei dati, su cui è effettuato il training del modello.

Conclusione

La progressiva quantità di dati sul carcinoma mammario aiuta la produzione di autoencoder precisi, quindi compressioni significative. I modelli di predizione lavorano su dati a bassa dimensionalità e producono risultati più accurati. I modelli possono essere sfruttati come strumenti di supporto alle decisioni, per lo sviluppo di trattamenti mirati.

Grazie dell'attenzione

