# TRIGONOMETRY Chapter 07



RAZONES TRIGONOMÉTRICAS

DE UN ÁNGULO EN

POSICIÓN NORMAL II





# **HELICOMOTIVACIÓN**



Divide las dificultades que examinas en tantas partes como sea posible para su mejor solución.

René Descartes 1596 - 1650

TRIGONOMETRÍA SACO OLIVEROS

# ÁNGULOS CUADRANTALES

Son aquellos ángulos trigonométricos cuyo lado final se encuentra sobre algún semieje, por tal razón no pertenecen a ningún cuadrante.

**Conclusión**: Son ángulos cuyas medidas son múltiplos del ángulo

recto, por consiguiente tienen la forma :











# RAZONES TRIGONOMÉTRICAS DE NGULOS CUADRANTALES

| R.T | 0º; 360º | 90º | 180º | 270º |
|-----|----------|-----|------|------|
| sen | 0        | 1   | 0    | -1   |
| cos | 1        | 0   | -1   | 0    |
| tan | 0        | N.D | 0    | N.D  |
| cot | N.D      | 0   | N.D  | 0    |
| sec | 1        | N.D | -1   | N.D  |
| CSC | N        | 1   | N.D  | -1   |



#### **OBSERVACIONES**:

Si α es un ángulo cuadrantal



$$sen\alpha = \{ -1 ; 0 ; 1 \}$$
 $cos\alpha = \{ -1 ; 0 ; 1 \}$ 
 $tan\alpha = 0$ 
 $cot\alpha = 0$ 
 $sec\alpha = \{ -1 ; 1 \}$ 
 $csc\alpha = \{ -1 ; 1 \}$ 

ND: No Determinado

# SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS EN CADA CUADRANTE

#### Regla práctica:



#### **OBSERVACIONES:**



Si 
$$0^{\circ} < \alpha < 90^{\circ}$$
  $\Rightarrow \alpha \in IC$ 

Si 
$$90^{\circ} < \alpha < 180^{\circ}$$
  $\Rightarrow$   $\alpha \in IIC$ 

Si 
$$180^{\circ} < \alpha < 270^{\circ} \Rightarrow \alpha \in IIIC$$

Si 
$$270^{\circ} < \alpha < 360^{\circ}$$
  $\Rightarrow \alpha \in IVC$ 

# ÁNGULOS COTERMINALES

Son aquellos ángulos trigonométricos que tienen el mismo lado inicial,

lado final y vértice.



α y θ son las medidas de los ángulos coterminales en sentidos opuestos.



α y θ son las medidas de los ángulos coterminales en el mismo sentido.

Siendo α y θ las medidas de dos ángulos coterminales, se cumple :

I) 
$$\alpha - \theta = 360^{\circ}n$$
;  $n \in z$ 

II) Rt(
$$\alpha$$
) = Rt( $\theta$ )



Siendo  $\theta$  y  $\beta$ , ángulos cuadrantales diferentes, positivos y menores o iguales

a 360°; se cumple que 
$$\sqrt{1-\cos\theta}+\sqrt{\cos\theta-1}=1+\sin\beta$$
 ; calcule  $\theta+\beta$ .

# **RESOLUCIÓN**

#### Por existencia de raíz cuadrada real:

$$1 - \cos\theta \ge 0$$
  $\wedge \cos\theta - 1 \ge 0$   
 $\cos\theta \le 1$   $\wedge \cos\theta \ge 1$ 

$$cos\theta = 1$$

Como 0°< 
$$\theta \le 360^\circ$$
  $\Rightarrow$   $\theta = 360^\circ$ 

Luego : 
$$1 + sen\beta = \sqrt{1-1} + \sqrt{1-1}$$
  
 $sen\beta = -1$ 

Como 0°< 
$$\beta \le 360^{\circ}$$
  $\Rightarrow$   $\beta = 270^{\circ}$ 

**Luego**: 
$$\theta + \beta = 360^{\circ} + 270^{\circ}$$

$$\therefore \quad \theta + \beta = 630^{\circ}$$

#### Recordar:

| R.T | 0°; 360° | 90° | 180° | 270° |
|-----|----------|-----|------|------|
| sen | 0        | 1   | 0    | -1   |
| cos | 1        | 0   | -1   | 0    |
| tan | 0        | N.D | 0    | N.D  |
| cot | N.D      | 0   | N.D  | 0    |
| sec | 1        | N.D | -1   | N.D  |
| csc | N        | 1   | N.D  | -1   |

Siendo  $\alpha$  y  $\theta$ , ángulos cuadrantales positivos y menores a una vuelta,

tal que se cumple :  $sen\alpha + tan\theta = -1$ ; efectúe  $F = \frac{sen(\frac{\alpha}{3}) + cos(\frac{\theta}{2})}{csc(\alpha - \theta)}$ 

# **RESOLUCIÓN**

Datos: 
$$0^{\circ} < \alpha$$
,  $\theta < 360^{\circ}$ 

$$sen\alpha + tan\theta = -1$$

$$\rightarrow$$
 -1 + 0 = -1

$$\alpha = 270^{\circ}$$
;  $\theta = 180^{\circ}$ 

#### Luego:

$$F = \frac{\text{sen}\left(\frac{270^{\circ}}{3}\right) + \cos\left(\frac{180^{\circ}}{2}\right)}{\csc(270^{\circ} - 180^{\circ})}$$

$$F = \frac{\text{sen}90^{\circ} + \cos 90^{\circ}}{\csc 90^{\circ}} = \frac{1 + 0}{1}$$

#### Recordar:

| R.T | 0°;360° | 90° | 180° | 270° |
|-----|---------|-----|------|------|
| sen | 0       | 1   | 0    | -1   |
| cos | 1       | 0   | -1   | 0    |
| tan | 0       | N.D | 0    | N.D  |
| cot | N.D     | 0   | N.D  | 0    |
| sec | 1       | N.D | -1   | N.D  |
| csc | N       | 1   | N.D  | -1   |

Siendo  $\theta$  un ángulo positivo y menor a una vuelta, que cumple :  $\tan\theta$  .  $\sin 120^\circ < 0$  ;  $\cos\theta$  .  $\tan 300^\circ > 0$  .- Indique el signo de  $\sin 2\theta$  .



El profesor de matemática pidió a sus alumnos que indiquen el cuadrante al cual pertenece el ángulo θ que cumple :

$$sen\theta . \sqrt{tan\theta + cot\theta} < 0$$

Los alumnos respondieron:

Andrea:  $\theta \in IC$ ; Bernardo:  $\theta \in IIC$ ;

Carlos :  $\theta \in IIIC$ ; Daniela :  $\theta \in IVC$ .

¿ Quién dio la respuesta correcta?

Recordar:



# **RESOLUCIÓN**

Por existencia de raíz cuadrada real:

$$\tan\theta + \cot\theta > 0 \Rightarrow \theta \in IC \lor \theta \in IIIC$$

Luego: 
$$sen\theta \cdot \sqrt{tan\theta + cot\theta} < 0$$

$$(-) \cdot (+) < 0$$

$$\theta \in IIIC \lor \theta \in IVC$$

Carlos dio la respuesta correcta.

El código de una caja fuerte está dado por un número de tres cifras, las cuales

son: 
$$a = 9 \sec 0^{\circ} - \sec 90^{\circ} + \tan 360^{\circ}$$

$$b = 5 \tan 45^{\circ} - 3 \cos 180^{\circ} + \cos 0^{\circ}$$

$$c = \cos 90^{\circ} - 9 \csc 270^{\circ} - 2 \sec 60^{\circ}$$

Efectúe las operaciones, ordene en forma decreciente estas cifras y averigüe dicho código.

| 17.1 | , , , , |     |     |     |
|------|---------|-----|-----|-----|
| sen  | 0       | 1   | 0   | -1  |
| cos  | 1       | 0   | -1  | 0   |
| tan  | 0       | N.D | 0   | N.D |
| cot  | N.D     | 0   | N.D | 0   |
| sec  | 1       | N.D | -1  | N.D |
| CSC  | N       | 1   | N.D | -1  |

RT 0°: 360° 90° 180° 270°

# **RESOLUCIÓN**

#### Calculamos las cifras:

$$a = 9(1) - (1) + (0) = 9 - 1$$
  
 $a = 8$ 

$$b = 5(1) - 3(-1) + (1) = 5 + 3 + 1$$
  
 $b = 9$ 

$$c = (0) - 9(-1) - 2(2) = 9 - 4$$
  
 $c = 5$ 

Luego: 
$$b > a > c$$

Recordar:

En la figura, se cumple que :  $tan\alpha \cdot tan\beta + sen\alpha \cdot csc\beta = 5$ . Calcule  $tan\alpha$ .



# **RESOLUCIÓN**

#### Según figura:

 $\alpha$ ,  $\beta$  son ángulos coterminales del IVC

Propiedad: 
$$Rt(\alpha) = Rt(\beta)$$

$$\Rightarrow$$
 tanα = tanβ  $\land$  cscα = cscβ

#### Reemplazamos $\beta$ por $\alpha$ en el dato :

$$\tan \alpha \cdot \tan \alpha + \sec \alpha \cdot \csc \alpha = 5$$

$$\tan^2 \alpha + 1 = 5$$

$$\tan^2 \alpha = 4$$

$$tan\alpha = -2$$

La secretaria del colegio actualmente tiene K años.- Si le preguntan su edad, ella indica que los ángulos  $\alpha$  y  $\theta$  son coterminales del segundo cuadrante y cumplen :

$$\cos\alpha = -\frac{\sqrt{5}}{3}$$
;  $\csc\theta = \frac{4K-10}{2K+10}$ 

¿ Cuál será la edad de la secretaria dentro de 5 años ?

# **RESOLUCIÓN**

Dato: 
$$\cos \alpha = \frac{-\sqrt{5}}{3} = \frac{x}{r}$$

Luego: 
$$x^2 + y^2 = r^2$$
;  $y > 0$ 

$$(-\sqrt{5})^2 + y^2 = 3^2$$
  
5 + y<sup>2</sup> = 9 y = 2





$$\frac{3}{2}=\frac{2K-5}{K+5}$$



$$25 = k$$
 $K + 5 = 25 + 5$ 
 $K + 5 = 30$ 

3k + 15 = 4k - 10

Dentro de 5 años la secretaria tendrá 30 años de edad.

