8085 Microprocessor

Topics to be covered

- Introduction
- 8085 Programming Model
- Bus Organization of 8085
- 8085 pin diagram
- 8085 Architecture/Block Diagram

Introduction

Introduction

- ▶ 8085is pronounceæs "eightyeightyfive" microprocessor
- ▶ It is an 8-bit microprocessodesignedby Intelin 1977using NMOStechnology
- ▶ 8 bit Generaburposemicroprocesso(i.e. 8 bit databus).
- It is a singlechip NMOSdevicewith 40 pins.
- ► It hasmultiplexecaddressanddatabus(AD, AD,).
- ▶ It workson 5-Volt DCpowersupply
- ▶ Themaximumclockfrequencyis 3MHzwhileminimumfrequencyis 500kHz
- ▶ It provides 16 addresdines, therefor exapable of addressing 16 = 64K of memory
- ▶ It supportsexternalinterruptrequest
- ▶ It has two 16 bit registers named program counters (PC) and stack pointer (SP)
- ▶ It generates bit I/O addresso it canaccess28 = 256 input ports.
- ▶ It provides5 hardwareinterrupts

8085 Programming Model

8085 Programming Model

General Purpose Registers

- ▶ 6 generaburposeregistersto store8-bit dataB,C,D,E,H&L.
- ▶ Canbe combine das fixed registerpairs BC,DE,HLto perform 16 bit operations
- Usedto storeor copydatausingdatacopyinstructions

B (8)	C (8)	
D (8)	E (8)	
H (8)	L (8)	

8085 Programming Model

Accumulator

- ▶ 8 bit register,identifiedas A
- Partof ALU
- Used to store 8-bit data to perform arithmetic&logicaloperations
- Result of operation is stored in Accumulator

8085 Programming Model

Flag Register

X:Undefined

Set (1) if 7 bit of result is 1; otherwise reset (0)

P-ParityFlag

Set (1) if result has evenno. of 1's & Reset(0) if resulthas oddno. of 1's

AC-AuxiliapyCarryFlag
Set (1) when carry bit is generated by 3rd bit & passed to bit 4th bit.

CY-Carry Flag
Set (1) if arithmetic operation results in carry; otherwise reset(0)

Flag Register

- ALUhas 5 Flag Registerthat set/reset after an operation according to data conditions of the result in accumulator & other registers
- Helpful in decisionmaking process of microprocessor
- Conditionsare tested through software instructions

For e.g.

JC(Jump On Carry) is implemented to Bidirectional change the sequence of program when CY(Carry Flag) is set(1).

Accumulator A	(8)	Flag Register			
В	(8)	C (8)			
D	(8)	E (8)			
Н	(8)	L (8)			
Stack Pointer (SP) (16)					
Program Counter (PC) (16)					
Data Bus		Address Bus			
8		16			

Unidirectional

8085 Programming Model

Stack Pointer & Program Counter

StackPointer(SP)

- Usedas memorypointer
- Points to the memorylocation in R/W memory, called Stack
- ▶ Beginningof stackis definedby loadinga 16-bit addressin the stackpointer

ProgramCounter(PC)

- Microprocessoruses PC register to sequence the execution finstructions
- Its function is to point to memoryaddress from which next byte is to be fetched
- Whera byte is being fetched, PC is incremented by 1 to point next memory location

Bus Organization of 8085

Address bus

- Groupof 16 unidirectionalines generally dentified as A₀ to A₁₅. i.e. bits flow from microprocessoto peripheral devices
- ▶ 16 address lines are capable of addressing 65536 memory locations So, 8085 has 64K memory locations

Data bus

- Group 8 linesidentified as D_0 to D_7 .
- ► They are bidirectionali.e. data flow in both directionsbetweermicroprocessormemory& peripheral
- ▶ 8 data lines enable microprocessor to manipulatedata ranging from 00 H to FF H (28=256 numbers.)
- Largestnumberappearon data bus is 1111 111=>(255)₁₀.
- As Databus is of 8-bit, 8085 is known as 8-bit Microprocessor

Control bus

- ▶ It comprises f various single lines that carry synchronization timing & controls ignals
- ▶ Thesesignalsareusedto identifya devicetypewith whichMPUintendsto communicate
- ▶ Somecontrolsignalsare ReadWrite and Opcode etch etc.

- 8-bit general purpose microprocessor.
- Capable of addressing K of memory.
- It has40 pins.
- Requires+5Vsingle power supply.

Signalsare classified into 6 groups

- 1. Addressbus
- 2. Multiplexecaddress/databus
- 3. Control&statussignals
- 4. Powersupply&frequencysignals
- 5. Externallynitiated signals
- 6. Seriall/Oports

8085 pin diagram: Address Bus

- ▶ 16 signallines are used as addres sbus
- ► Howeverthese lines are split into two segments A_{15} A_8 and A_{17} A_{15}
- ► A₁₅ A₈ are unidirectional used to carry highorderaddressof 16-bit address
- ► AD areusedfor dualpurpose

8085 pin diagram: Multiplexed Address/Data Bus

- ▶ Signal lines AD,-AD are bidirectional and serve dualpurpose
- Theyare used as low-orderaddress bus as well as databus.
- The low-order addressbus can be separatefrom these signals by using a latch (ALE).

To identify nature of operation

- ▶ Two Control Signals
 - 1. $\overline{RD}(Read)$
 - 2. WR(Write)
- ▶ Three Status Signals
 - $1. S_1$
 - 2. S₀
 - 3. IO/\overline{M}
- To indicate beginning of operation
 - 1. ALE(Address Latch Enable)

 $ALE \leftarrow 1$, then Address bus

 $ALE \leftarrow 0$, then Data bus

ALE Pin 30

- This is positive going pulse generate devery time the 8085 begins an operation (machine ycle)
- ▶ It indicates that the bits on AD₇-AD₀ are address bits.
- This signal is used primarily to latch the low-address from multiplexed bus & generate a separateset of addressines A₇-A₀.

RD(Read)Pin32

- This is a readcontrol signal (active low)
- ▶ This signal indicates that the selected I/O or Memorydeviceis to be read & data is available on databus.

WR(Write) Pin 31

- This is a write control signal (active low)
- This signal indicates that the selected I/O or Memory devices to be write & data is available on databus.

IO/M Pin 34

- This is a status signal used to differentiatel/O and RESET OUT memoryoperation.
- Whersignalis

 $high \rightarrow I/O$ operation

 $low \rightarrow Memory operation$

This signal is combined with RD and WR to generate I/O & memory control signals.

S_1 (Pin 33) & S_0 (Pin 29)

These status signals can identify various operations

S ₁	So	Mode	
0	0	HLT	
0	1	WRITE	
1	0	READ	
1	1	OPCODE FETCH	

IO/M	RD	WR	Operation
0	0	0	HLT
0	0	1	MEMR
0	1	0	MEMW
0	1	1	Opcode Fetch
1	0	0	HLT
1	0	1	ĪOR
1	1	0	ĪOW
1	1	1	NOP

8085 Pin Diagram: Power Supply & Frequency Signal

- $V_{cc} \rightarrow Pin40, +5V Supply$
- ▶ V_{ss} → Pin20, GroundReference

8085 Pin Diagram: Power Supply & Frequency Signal

- X1, X2 → Pin 1 & 2, CrystalOscillatoris connected at thesetwo pins.
- Thefrequency is internally divided by two; therefore to operate a system at 3MHz, the crystal should have a frequency of 6MHz

8085 Pin Diagram: Power Supply & Frequency Signal

- ► CLK(OUT)→ Clockoutput
- ▶ Pin 37: This signal is used as system clock for other I/O devices for synchronization with Microprocessor

- ► INTRInput) → Interrupt Request

 It is used for general purpose interrupt.
- ▶ INTA(Output) → Interrupt Acknowledge.

- ▶ RS7.5, RS75.5, RS75.5 (Input) → Restart Interrupts.
- These are vector interrupts that transfer the program control to specific memory locations.
- RST7.5, RST6.5, RST5.5 have higher priorities than INTR interrupt.
- Among these 3 interrupts, the priority order (higher to lower) is RST7.5, RST6.5, RST5.5 respectively.

► TRAP(Input)→ This is a nonmaskableinterrupt& hasthe highestpriority.

- ► HOLD(Input) → This signal indicates that a peripherasuchas DMAControllers requesting the use of address databases
- ► HLDA(Output)→ Hold Acknowledge This signal acknowledge the HOLD request

- ► READ(Input) → This signal is used to delay the microprocessor read or write cycles until low-responding peripheral is ready to send or accept data.
- When the signal goes low, the microprocessor waits for an integral no. of clock cycles until **READY** signal goes high.

- ▶ RESETN (Input) → When the signal on this pin goes low, the Program Counter is set to zero, the buses are tri-stated µprocessor is reset.
- ▶ RESETOUT(Output) → This signal indicates that microprocessor is being reset. The signal is also used to reset other devices.

8085 Pin Diagram: Serial I/O Ports

Twopins for serial transmission

- 1. SID(SerialInputData)
- 2. SOD(SerialOutputData)
- In serial transmission, data bits are sent over a single line, one bit at a time.

8085 Microprocessor signal Groups

Thank You