

UNIVERSIDADE FEDERAL DO PARÁ ICEN – INSTITUTO DE CIENCIA EXATAS E NATURAIS FACOMP – FACULDADE DE COMPUTAÇÃO CURSO DE CIENCIA DA COMPUTAÇÃO – 2021 TURMA: EN05210

DISCENTE: CHRISTIAN DE JESUS DA COSTA MARINHO

Matricula: 202004940041

LISTA 3 DE EXERCICIOS DE LÓGICA ALGORITIMO

BELÉM

2021

1. Construa a tabela da verdade para a seguinte proposição

a) (p
$$\vee$$
 (\sim p \vee q)) \wedge \sim (q \wedge \sim r)

р	q	r	~p	(~p v q)	p v (~p v q)	~r	(q ^~ r)	~(q ^ r)	(p v (~p v q)) ∧ ~(q ∧ ~r)
V	٧	V	F	V	V	F	F	V	V
V	٧	F	F	V	V	V	V	F	F
V	F	V	F	F	V	F	F	V	V
V	F	F	F	F	V	V	F	V	V
F	V	V	V	V	V	F	F	V	V
F	V	F	V	V	V	V	V	F	F
F	F	V	V	V	V	F	F	V	V
F	F	F	٧	V	V	V	F	V	V

b) $(p \land (\sim(\sim p \lor q))) \lor (p \land q)$

р	q	~p	(~p v q)	~(~p v q)	(p ^ (~(~p v q)))	p ^ q	(p ∧ (~(~p ∨ q))) ∨ (p ∧ q)
V	V	F	V	F	F	V	F
V	F	F	F	V	V	F	F
F	V	V	V	F	F	F	F
F	F	V	V	F	F	F	F

c) p v q \rightarrow p \wedge q

p	q	p∨q	p∧q	$b \wedge d \rightarrow b \vee d$
٧	٧	V	V	V
٧	F	V	F	F
F	V	V	F	F
F	F	F	F	V

$d)\ (p \to q) \to (p \ \land \ r \to q)$

р	q	r	$(b \rightarrow d)$	p ^ r	$(p \land r \rightarrow q)$	$(p \to q) \to (p \land r \to q)$
V	V	V	V	V	V	V
V	V	F	F	F	V	V
V	F	V	V	V	F	F
V	F	F	F	F	V	V
F	V	V	V	F	V	V
F	V	F	V	F	V	V
F	F	V	V	F	V	V
F	F	F	V	F	V	V

e) $(p \rightarrow q) \land p \rightarrow q$

р	q	$(b \rightarrow d)$	$p \rightarrow q$	$(b \rightarrow d) \lor b \rightarrow d$
V	V	V	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

$\mathsf{f)}\ (\sim\!\!\mathsf{p}\ \wedge\ (\sim\!\!\mathsf{q}\ \vee\ \mathsf{r})) \Leftrightarrow (\sim\!\!(\mathsf{p}\ \vee\ \mathsf{q})\ \vee\ (\sim\!\!\mathsf{p}\ \wedge\ \mathsf{r}))$

р	q	r	~q	(~q ∨ r)	~p	(~p ∧ (~q ∨ r))	(p v q)	(~p ∧ r)	(p ∨ q) ∨ (~p ∧ r)	(~(p ∨ q) ∨ (~p ∧ r))	$(\sim p \land (\sim q \lor r)) \Leftrightarrow (\sim (p \lor q) \lor (\sim p \land r))$
V	V	V	F	V	F	F	V	F	V	F	V
V	V	F	F	F	F	F	V	F	V	F	V
V	F	V	V	V	F	F	V	F	V	F	V
V	F	F	V	V	F	F	V	F	V	F	V
F	V	V	F	V	V	V	V	V	V	F	F
F	٧	F	F	F	V	F	V	F	V	F	V
F	F	V	V	V	V	V	F	V	V	F	F
F	F	F	V	V	V	V	F	F	F	V	V

2. O famoso detetive Vinicius Homes foi chamado para resolver um assassinato misterioso. Ele determinou os seguintes fatos:

(a) Lord Charles – o homem do açai foi assassinado, foi morto com uma pancada

na cabeça com um castiçal.

(b) Ou Lady Joelma do calypso ou a empregada Sara estavam na sala de jantar

no momento do assassinato.

(c) Se o cozinheiro estava na cozinha no momento do assassinato, então o

açougueiro matou Lord Charles com uma dose fatal de arsênico.

(d) Se Lady Joelma do calypso estava na sala de jantar no momento do

assassinato, então o motorista matou Lord Charles.

(e) Se o cozinheiro não estava na cozinha no momento do assassinato, então

Sara não estava na sala de jantar quando o assassinato ocorreu.

(f) Se Sara estava na sala de jantar no momento do assassinato, então o

ajudante pessoal de Lord Charles o matou

É possível para o detetive Percule Hoirot deduzir quem matou Lorde Charles?

Se sim, quem é o assassino?

Sim, o assassino foi o motorista.

A = p = V

 $B = q \underline{v} r = V$

 $C = s \rightarrow t = F$

D = q -> u = V

E = ~s -> ~r = V

 $F = r \rightarrow v = F$

3. Mostre se as expressões E1 e E2 são equivalentes logicamente:

E1 =
$$(s \rightarrow (p \land \neg r)) \land ((p \rightarrow (r \lor q)) \land s)$$

E2 = $(p \land q \land \neg r \land s) \lor \neg (p \lor s)$

R = As expressões não são equivalentes logicamente

р	q	r	S	~r	p ∧ ~r	$s \rightarrow (p \land \sim r)$	rvq	$p \rightarrow (r \lor q)$	$(p \rightarrow (r \lor q)) \land s$	E1
V	٧	٧	٧	F	F	F	V	V	V	F
V	٧	٧	F	F	F	V	V	V	F	F
V	٧	F	٧	٧	V	V	V	V	V	V
V	٧	H	F	>	V	V	V	V	F	F
V	F	>	>	F	F	F	V	V	V	F
V	F	٧	H	F	Ŧ	V	V	V	F	F
V	F	F	٧	V	V	V	F	F	F	F
V	F	F	F	V	V	V	F	F	F	F
F	٧	٧	٧	F	F	F	V	V	V	F
F	٧	٧	F	F	F	V	V	V	F	F
F	٧	F	٧	V	F	F	V	V	V	F
F	٧	F	H	٧	Ŧ	V	V	V	F	F
F	F	٧	٧	F	F	F	V	V	V	F
F	F	>	F	F	F	V	V	V	F	F
F	F	F	٧	٧	F	F	F	V	V	F
F	F	F	F	٧	F	V	F	V	F	F

р	q	r	S	~r	p∧q∧¬r∧s	pvs	~(p v s)	E2
V	V	V	V	F	F	V	F"	F
V	٧	٧	F	F	F	V	F	F
V	٧	F	٧	V	V	V	F	٧
V	٧	F	F	V	F	V	F	F
V	F	٧	٧	F	F	V	F	F
V	F	>	F	F	F	V	F	F
V	F	F	٧	V	F	V	F	F
V	F	F	F	V	F	V	F	F
F	٧	٧	٧	F	F	V	F	F
F	٧	٧	F	F	F	F	V	٧
F	٧	F	٧	V	F	V	F	F
F	٧	F	F	V	F	F	V	٧
F	F	>	٧	F	F	V	F	F
F	F	٧	F	F	F	F	V	V
F	F	F	٧	V	F	V	F	F
F	F	F	F	V	F	F	٧	٧

- 4. Cada habitante de uma vila longínqua sempre diz a verdade ou sempre mente. Um habitante dela dará apenas como resposta um sim ou um não para a pergunta que um turista fizer. Suponha que você seja um turista que visita essa área e que chegue a uma bifurcação na estrada. Um lado leva até às ruínas que você quer visitar; o outro, às profundezas de uma floresta. Um habitante dessa vila está parado nessa bifurcação. Que pergunta você pode fazer ao habitante para determinar qual lado seguir?
- R: 1 A estrada da esquerda é a certa?
- 2 Se eu perguntar se a estrada da esquerda é a certa, você responderia sim?

Caso ele mentisse na primeira a resposta de segunda vai ser diferente.

5. Um detetive entrevistou quatro testemunhas de um crime. A partir das histórias das testemunhas, o detetive concluiu que, se o mordomo está dizendo a verdade, então o cozinheiro também está; o cozinheiro e o jardineiro, ambos, não podem estar dizendo a verdade; o jardineiro e o zelador, ambos, não estão mentindo; e se o zelador está dizendo a verdade, então o cozinheiro está mentindo. Para cada uma das quatro testemunhas, o detetive pode determinar se a pessoa está mentindo ou dizendo a verdade?

R: Jardineiro - V Cozinheiro - F Mordomo - F Zelador – V

- 6. Construa os algoritmos propostos (Narrativos, Fluxograma e Pseudocódigo) para as seguintes tarefas:
- a) Obter a soma de 3 variáveis.

 Narrativo: Receber os 3 números

 Somar os 3 números

 Mostrar o resultado da soma

Pseudocódigo:

Algoritimo "Soma" Var

A, B, C, D: inteiro

Inicio

Escreva ("Digite primeiro número: ")

Leia (A)

Escreva ("Digite o segundo número: ")

Leia (B)

Escreva ("Digite o terceiro número: ")

Leia (C)

 $D \leftarrow A + B + C$

Escreva ("O resultado é: ", D)

Fimalgoritimo

b) Multiplicação de duas variáveis.

Narrativo: Receber dois números

Multiplica os números

Mostrar o resultado da multiplicação

Pseudocódigo:

Algoritmo "Multiplicação"

Var

A, B, C: inteiro

Escreva ("Digite o primeiro número: ")

Leia (A)

Escreva ("Digite o segundo número: ")

Leia (B)

C <- A * B

Escreva ("O resultado é: ", C)

Fimalgoritimo

c) Mostrar o resultado da divisão de dois números.

Narrativo: Receber dois números

Dividir o primeiro número pelo segundo

Mostrar o resultado da divisão

Fluxograma:

Pseudocódigo:

Algoritmo "Divisão"

Var

A, B, C: inteiro

Escreva ("Digite o primeiro número: ")

Leia (A)

Escreva ("Digite o segundo número: ")

Leia (B)

 $C \leftarrow A / B$

Escreva ("O resultado é: ", C)

Fimalgoritimo

d) Calcular a média aritmética de um aluno e mostrar a situação, que pode ser aprovado ou reprovado.

Narrativo: Receber duas notas

Calcular a média aritmética

Mostrar o resultado da média aritmética

Se for maior ou igual a 6, mostrar a situação aprovado, senão, mostrar a situação reprovado.

Fluxograma:

Pseudocódigo:

Algoritmo "Média aritmética"

Var

A, B, C: Real

Escreva ("Digite a primeira nota: ")

Leia (A)

Escreva ("Digite a segunda nota: ")

Leia (B)

C <- (A * B)/2

Escreva ("A média é: ", C)

Se (C >= 7) então

escreva ("Aluno aprovado")

Senão

escreva ("Aluno Reprovado")

fimse

Fimalgoritimo

7. Elabore um algoritmo que dada a idade de um nadador classifica-o em uma das seguintes

categorias:

- a) infantil A = 5 7 anos
- b) infantil B = 8-10 anos
- c) juvenil A = 11-13 anos
- d) juvenil B = 14-17 anos
- e) adulto = maiores de 18 anos

```
Algoritmo "Idade"
var
idade: inteiro
inicio
escreva ("Digite sua idade")
Leia(idade)
se idade >= 5 ou idade =< 7 então
      escreva ("infantil A")
fimse
se idade >= 8 ou idade =< 10 então
      escreva ("Infantil B")
fimse
se idade >= 11 ou idade =< 13 então
      escreva("Juvenil A")
fimse
se idade >= 14 ou idade =< 17 então
      escreva("Juvenil B")
fimse
Se idade >= 18 então
      escreva("Maiores de 18 anos")
fimse
```

fimalgoritmo

8. Escreva um algoritmo que leia 3 números inteiro e mostre o maior deles.

```
Algoritimo "Maior"
Var
A, B, C: inteiro
Inicio
Escreva ("Digite primeiro número: ")
Leia (A)
Escreva ("Digite o segundo número: ")
Leia (B)
Escreva ("Digite o terceiro número: ")
Leia (C)
se (A >= B) e (A >= C) então
      escreva ("O maior número é o: ", A)
senão
      se (B >= A) e (B >= C) então
             escreva ("O maior número é o: ", B)
      senão
             escreva ("O maior número é o: ", C)
      fimse
fimse
fimalgoritimo
```

9. Faça um algoritmo que leia um nº inteiro e mostre uma mensagem indicando se este número é par ou ímpar, e se é positivo ou negativo.

```
Algoritmo "Par_Impar/Negativo_Positivo"
Var
numero: inteiro
Inicio
escreva("Digite um número: ")
leia(numero)
se numero mod 2 = 0 entao
      escreva ("O número é par!")
senao
      escreva ("O número é ímpar!")
fimse
se numero > 0 então
      escreva ("O número é positivo")
senão
      escreva ("O numero é negativo")
Fimalgoritmo
```

10. O cardápio de uma cantina é o seguinte:

Produto	Código	Preço
Cachorro-quente	100	R\$3,00
Bauru	101	R\$3,50
Bauru com ovo	102	R\$4,10
Hamburger	103	R\$4,00
Cheeseburger	104	R\$4,20
Refrigerante	105	R\$3,00

Escrever um algoritmo que leia o código do item pedido, a quantidade e calcule o valor a ser pago por aquele lanche. Considere que a cada execução somente será calculado um item.

```
algoritmo "Cardápio"
var
cod, val, qua: real
inicio
cod <- 0
val <- 0
qua <- 0
escreva (" Digite o código do produto: ")
leia (cod)
escreva ("Digite a quantidade")
leia (qua)
se (cod = 100) entao
val <- (3.00 * qua)
       escreva ("o valor do produto é: ", val)
fimse
se (cod = 101) entao
val <- (3.50 * qua)
       escreva ("o valor do produto é: ", val)
fimse
se (cod = 102) entao
val <- (4.10 * qua)
       escreva ("o valor do produto é: ", val)
fimse
se (cod = 103) entao
val <- (4.00 * qua)
       escreva ("o valor do produto é: ", val)
fimse
```

```
se (cod = 104) entao
val <- (4.20 * qua)
escreva ("o valor do produto é: ", val)
fimse

se (cod = 105) entao
val <- (3.00 * qua)
escreva ("o valor do produto é: ", val)
fimse

fimalgoritmo
```