

大规模图学习平台GraphLearn

阿里巴巴 艾宝乐

目录

- 1. 平台介绍
- 2. 系统优化
- 3. 应用案例
- 4. 在线推理

GraphLearn:工业级大规模图学习平台

GraphLearn 拓扑和特征存储

GraphLearn 采样实现

Server 0

Server i

Server i

Server i

Server i

Server n

Op执行逻辑

- 采样执行逻辑
- Alias Method O(1)时间复杂度
- 边权重预排序
- 多种采样策略: Topk, random, edge_weight, in_degree

GraphLearn GNN模型范式

GNN训练流程

- 1.子图采样
- 2.特征预处理
- 3.消息传递

- EgoGraph based GNN (v0.4) dense格式采样树状子图
 - [root_node, 1-hop nodes, 2-hop nodes, ...]
- SubGraph based GNN (v1.0) 更general的sparse格式采样子图(类似PyG的Data) edge index, node feature

Ego

1-hop neighbor

2-hop neighbor

SubGraph

EgoGraph

node-centric aggregation

graph message passing

GraphLearn 架构

兼容常用深度

学习框架

GraphLearn GNN训练链路

GraphLearn: 分布式图学习平台

- 支持百亿边、十亿点规模图
- 支持异构图、属性图、有向图、无向图
- 支持多种采样、负采样策略
- 高效的多线程异步采样
- 支持多种数据源(ODPS, OSS, HDFS)
- 支持多种GNN算法: GraphSAGE, GCN, GAT, Bipartite-GraphSAGE, RGCN, UltraGCN等
- 支持Tensorflow1.x和PyTorch/PyG
- GPU训练优化(即将开源)
- 在线推理(即将开源)
- Temporal GNN(开发中)

开源地址 https://github.com/alibaba/graph-learn
文档地址 https://graph-learn.readthedocs.io/zh_CN/latest/

采样优化

问题: GNN训练采样和特征查找成 为瓶颈

- 采样抽象为query DAG进行并行
- 基于Actor的无锁纯异步调度
- 和训练过程pipeline
- Gremlin-like language

g.E("u2i").batch(64).alias('edge').outV().alias('src')

稀疏场景GNN模型优化

性能优化

- AdamAsync Optimizer,加速梯度更新
- · 输入string特征hash压缩存储,减少通信和存储
- Embedding coalescence, 高性能embedding lookup

效果优化

- 高质量边生成方法
- Batch-share 负采样 + Softmax CE损失函数
- Embedding normalization

gl_torch: 针对PyTorch的GPU加速

GNN训练典型流程

问题:

Graph-Learn PyTorch瓶颈在IO(通信,数据拷贝和格式转换)

优化思路:

- 通信优化
- 减少数据转换
- 利用图的性质(提高locality)

和quiver team合作 https://github.com/quiver-team/torch-quiver

[OSDI21] P3: Distributed Deep Graph Learning at Scale

gl_torch GPU sampling

- 图拓扑使用CSR格式存储在GPU/pin memory
- CUDA Kernel进行采样

OGBN-Products 采样边数/s

	CPU	Pin Memory	GPU -
PyG	0.87M	-	
gl_torch		51.39M	70.83M

batch_size=1024 nbrs=[15,10,5] V100 GPU

gl_torch GPU采样是pyg CPU(单核)采样的80倍左右

gl_torch UnifiedTensor

CPU-GPU统一访问的UnifiedTensor

- GPU间p2p访问
- GPU Zero-Copy访问内存

gl_torch Feature

gl_torch 运行模式

	Graph topo	Feature	Sampling & Subgraph Inducing	Feature Collection
	CPU	CPU	CPU	CPU
	GPU	Unified	GPU	GPU
1	Pinned	Unified	GPU	GPU

gl_torch 性能

OGBN-Papers100M

	1卡(s/epoch)	2卡(s/epoch)	4卡(s/epoch)	8卡(s/epoch)	备注
gl_torch	22.5	12.5	6.9	5.6	split_ratio: 4,8卡 0.6 2卡 0.3 1卡 0.15

batch_size=1024, nbrs=[15,10,5], 8+V100

OGBN-MAG

	1卡(s/epoch)	2卡(s/epoch)	4卡(s/epoch)	8卡(s/epoch)	备注
pyg	520	L	-	_	num_workers=0, 特征全在GPU
gl_torch	40 (13x)	22 (24x)	12 (43x)	7.5 (70x)	特征GPU cache 20%
gl_torch	33 (16x)	19 (27x)	11 (47x)	7 (74x)	特征全在GPU

batch_size = 1024, nbrs= [10,10], 8\frac{1}{2}v100

推荐召回-GraphSAGE

- 把u2i/i2i推荐问题转换成顶点间的边连接预测问题
- 构图很关键, 图关系意味着模型学习的上限
 - ✓数据: user-item关系, item-item关系, user和item原始特征

GraphSAGE

• 优点:不局限于行为历史序列,可供挖掘多类型高阶关系,易捕捉数据的动态变化,运行效率高

推荐召回-丰富的模型库

- i2i召回:构建高质量i2i图, GraphSAGE模型训练进行向量召回,提高对长尾的覆盖。
- u2i召回: UltraGCN模型,简化GCN模型,直接计算user和他点击过的item以及user和该item相似的item(共现关系)直接的内积,得到最终的相似度。
- 序列推荐: SURGE模型,将序列通过metric learning转换成图,从而用GNN挖掘用户兴趣。

安全风控-垃圾注册检测

- 垃圾注册检测场景,点分类模型
- 多种类型边的RGCN算法

$$h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_i^r} \frac{1}{c_{i,r}} W_r^{(l)} h_j^{(l)} + W_0^{(l)} h_i^{(l)} \right)$$

• 优点: 利用账号之间的多种关系, 发掘团伙信息

安全风控-垃圾评论识别

[CIKM2019] Spam Review Detection with Graph Convolutional Networks

在线推理采样服务系统架构

性能

- 2跳采样P99延时20ms
- 分钟级图更新
- QPS单机2万,线性扩展

在线推理链路

