Методы оптимизации

1 Теорема Вейерштрасса (метрический вариант).

Задача: Минимизировать функционал J(u) по множеству $U \subset X, X$ — метрическое. $J_* = \inf_{u \in U} J(u), J(u_*) = J_*, U_* = \{u \in U | J(u) = J_*\}$

Определение. Функционал J(u) на U называется полунепревным снизу (сверху), если $\forall u_n \subset U: \rho(u_n,u_0) \to 0 \Rightarrow J(u_0) \leqslant \underline{\lim}_{n \to \infty} J(u_n) \left(J(u_0) \geqslant \overline{\lim}_{n \to \infty} J(u_n)\right)$

Определение. Последовательность $\{u_n\} \subset U$ называется минимизирующей, если $\exists J(u_n) \to J_*$

Определение. Последовательность $\{u_n\}\subset U$ сходится κ множеству $K\subset U,$ если $\inf_{u\in K}\rho(u_n,u)\to 0$

Теорема. (Теорема Вейерштрасса метрический вариант)

 Π усть U - компкатное множество, J(u) - полунепрервный снизу, тогда

- 1. $J_* > -\infty$
- 2. U_* непустое компактное множество
- 3. Любая минимизирующая последовательность $\{u_n\}$ сходится к U_*

2 Слабый вариант теоремы Вейерштрасса. Применение к задаче минимазции квадратичного функционала.

H - гильбертово пространство.

Определение. Функционал J(u) на U называется слабо полунепревным снизу (сверху), если $\forall u_n \subset U: u_n \to u_0 \Rightarrow J(u_0) \leqslant \underline{\lim}_{n \to \infty} J(u_n) \ \left(J(u_0) \geqslant \overline{\lim}_{n \to \infty} J(u_n)\right)$

Замечание. Из слабой полунепрервыности следует сильная полунепрерывность

Определение. Последовательность $\{u_n\} \subset H$ слабо сходится к множеству $K \subset H$, если любая слабая предельная точка $\{u_n\}$ принадлежит K.

Определение. Множество $U \in H$ называется выпуклым, если $\forall u, v \in U, \ \forall \alpha \in [0,1]: \alpha u + (1-\alpha)v \in U.$

Определение. Функционал J(u) называется выпуклым на выпуклом U, если $\forall u,v \in U$, $\forall \alpha \in [0,1]: J(\alpha u + (1-\alpha)v) \leqslant \alpha J(u) + (1-\alpha)J(v)$.

Лемма. $\mathit{Пусть}\ U$ - $\mathit{сыпуклоe}\ \mathit{замкнутoe}\ \mathit{ограниченноe}\ \mathit{множествo},\ \mathit{morda}\ U$ - $\mathit{слабокомпактноe}\ \mathit{множествo}.$

Лемма. Пусть J(U) полунепрерывный снизу и выпуклый на U, тогда он слабо полунепрерывный снизу.

Теорема. (Слабый вариант теоремы Вейерштрасса)

 $\mathit{Пусть}\ U \subset X$ - замкнутое ограниченное выпуклое множество, J(u) - выпуклый и полунепрерывный на U, тогда

- 1. $J_* > -\infty$
- 2. U_* непустое замкнутое ограниченное выпуклое множество
- 3. Любая минимизирующая последовательность $\{u_n\}$ слабо сходится к U_*

Квадратичный функционал

Функионал $J(u) = \|Au - f\|_F^2$, $A: H \to F$ - линейный ограниченный оператор, $f \in F$. Исследуем его свойства:

- 1. J(u) непрерывный в силу непрерывности A и непрерывности нормы.
- 2. Проверим выпуклость J(u): $J(\alpha u + (1-\alpha)v) = \|A(\alpha u + (1-\alpha)v) f\|^2 = \|\alpha(Au-f) + (1-\alpha)(Av-f)\|^2 \le (\|\alpha(Au-f)\| + \|(1-\alpha)(Av-f)\|)^2 \le \{x^2$ выпукла $\{x^2\} \le \|\alpha\| \|(Au-f)\|^2 + \|(1-\alpha)\| \|Av-f\|^2$
- 3. Полунепрерывный снизу
- 4. В общем случае не является слабо полунепрерывным т.к. если A=I, f=0, то на последовательности ортонормированных векторов слабой сходимости не будет.
- 5. Слабо полунепрерывен снизу, т.к. полунепрерывен снизу и выпуклый.

3 Существование решения задач минимизации терминального и интегрального квадратичных функционалов на решениях линейной системы ОДУ

Рассматриваем задачу

$$\begin{cases} \dot{x}(t) = D(t)x(t) + B(t)u(t) + y(t), \ t \in (0, T) \\ x(0) = x_0 \end{cases}$$

u(t) - функция управления

Размерности: $x(t):n\times 1,\ D(t):n\times n,\ B(t):n\times r,\ u(t):r\times 1,\ y(t):n\times 1$

Базово предполагаем, что $D(t), B(t) \in L_{\infty}(0,T); u \in L_{2}(0,T); x_{0} \in \mathbb{R}^{n}$

Надо найти пару $x(t) \in AC[0,T], u(t) \in L_2(0,T)$. AC - абослютная непревность: 1) п.в. на [0,T] существует производная; 2) верна формула Ньютона-Лейбница

Определение. Решением Задачи Коши по Каратеодори называется функция $x(t) \in AC[0,1]$ такая, что уравнение выполняется п.в., а граничное условие выполняется в классическом смысле.

Определение. Альтернативным решением называется функция $x(t) \in AC[0,1]$ такая, что выполняется интегральное соотношение: $x(t) = x_0 + \int\limits_0^t \left[D(t)x(t) + B(t)u(t) + y(t)\right]dt, \ \forall t \in [0,T]$

Теорема. Пусть $D(t), B(t) \in L_{\infty}(0,T), \ u,y(t) \in L_{2}(0,T)$ тогда существует и единственно решение Задачи Коши.

Теорема. (о существовании решения задачи ОУ линейной системы) Пусть $D(t), B(t) \in L_{\infty}(0,T), \ U$ - слабый компакт, тогда

- 1. $J_* > -\infty$
- 2. $U_* \neq \emptyset$
- 3. Любая минимизирующая последовательность $\{u_n\}$ слабо в $L_2(0,T)$ сходится к U_*

4 Существование реения задачи об оптимальном нагреве стержня

Рассматривается задача:

$$\begin{cases} y_t = y_{xx}, x \in (0, l), t \in (0, t) \\ y_x|_{x=0} = 0 \\ y_x + y|_{x=l} = u(t) \\ y|_{t=0} = 0 \end{cases}$$

Решение: y=y(t;x). Рассмотрим функционал $J(u)=\int\limits_0^t \left(y(T,x,u)-f(x)\right)^2 dx$. Значение именно в t=T, то есть в конце процессса. Минимизируем этот функционал. По сути y(T,x,u)=Au, тогда $J(u)=\|Au-f\|_{L_2(0,l)}^2$. Пусть y(t,x) - дважды гладкая функция, а U - замкнутое ограниченное выпуклое множество.

Теорема. (о существовании решения обратной задачи) Пусть U - слабый компакт в $L_2(0,T)$, тогда

- 1. $J_* > \infty$
- 2. $U_* \neq \emptyset$
- 3. Любая минимизирующая последовательность слабо сходится к U_* в $L_2(0,T)$.

5 Дифференцирование по Фреше. Применение к квадратичному функционалу

Пусть $F: X \to Y, X, Y$ - банаховы.

Определение. Оператор $A:X\to Y$ называется производной по Фреше оператора F в m. $x\in X,$ если $F(x+h)-F(x)=Ah+\overline{o}(\|h\|_X)$ при $\|h\|_X\to 0$

Лемма. Производная по Фреше определяется единственным образом

Определение. Оператор F'' называется второй производной по Фреше от оператора F в $m. x \in X$, если $F'(x+h)-F'(x)=F''h+\overline{o}(\|h\|_X)$ при $\|h\|_x\to 0$.

Определение. Оператор F дифференицируем на множестве $U \subset X$, если он определён на множестве M: $U \subset M$ и $\exists F'(u), \forall u \in U$.

Градиент и Гессиан

Рассматриваем Гильбертово пространство H

Определение. Функционал F' называется градиентом функционала F, G т. $x \in H$, если F(x+h) - F(x) = $(F'(x),h) + \overline{o}(\|x\|_H)$

Определение. Функционал F''(x) называется гессианом функционала F, в $m. x \in H$, если F'(x+h) - F'(x) = $F''(x)h + \overline{o}(\|x\|_H)$

Найдем градиент и гессиан функционала $J(u) = \|Au - f\|_F^2$: $J(u+h) - J(u) = \|A(u+h) - f\|^2 - \|Au - f\|^2 = \|(Au - f) + Ah\|^2 - \|Au - f\|^2 = \|Au - f\|^2 + \|Ah\|^2 + 2(Au - f, Ah) - \|Au - f\|^2 = (Au - f, Ah) + \|Ah\|^2$. Покажем, что $\|Ah\|^2 \leqslant \|A\|^2 \|h\|^2 = \underline{O}(\|h\|^2) = \overline{o}(\|h\|)$. В итоге $J'(u) = 2A^*(Au - f)$. $J'(u+h) - J'(u) = 2A^*Ah \Rightarrow J''(u) = 2A^*A.$

Необходимое условие локального минимума

Теорема. Пусть U - выпуклое множество в H, $u_* \in U$ -локальный минимум J(u) на U и существует $J'(u_*)$ $\Rightarrow (J'(u_*), u - u_*) \ge 0, \ \forall u \in U.$

Теорема. Пусть U - выпуклое множество в H, $u_* \in intU$ - локальный минимум и существует $J'(u_*) \Rightarrow$ $(J'(u_*), u - u_*) = 0, \ \forall u \in U.$

Пример. $J(u) = u, u \in [1, 2] \subset \mathbb{R}$. Понятно, что $u_* = 1, J_* = 1, J'(u) = I, \Rightarrow (J'(u_*), u - u_*) = (1, u - 1) \ge 0$ $m.\kappa. \ u \in [1, 2].$

Пример. Сложный и непонятный

Градиент терминального граничного функционала

Рассматриваем задачу

$$\begin{cases} \dot{x}(t) = D(t)x(t) + B(t)u(t), \ t \in (0, T) \\ x(0) = 0 \end{cases}$$

Рассматриваем оператор Au(t)=x(t) - сопоставляет решение функции управления. Функционал $J(u)=\|Au \|f\|^2$, $J'(u) = 2A^*(Au - f)$. Необходимо найти A^* , т.е. $(Au, v) = (u, A^*v)$ Домножим уравнение скалярно на $\psi(t)$ и проинтегрируем от 0 до Т

$$\int\limits_{0}^{T}(\psi(t),\dot{x}(t))dt=\int\limits_{0}^{T}(\psi(t),D(t)x(t)+B(t)u(t))dt$$

$$(\psi(t), x(t))|_0^T - \int_0^T (\dot{\psi}(t), x(t))dt = \int_0^T (\psi(t), Au(t))dt$$

$$(\psi(T),x(T))-\int\limits_0^T\dot{(\psi(t)},x(t))dt=\int\limits_0^T(\psi(t),Au(t))dt,$$
 Потребуем $v(t)=\psi(t)$

$$(v, Au) = \int_{0}^{T} (\dot{\psi}(t), x(t))dt + \int_{0}^{T} (\psi(t), D(t)x(t) + B(t)u(t))dt$$

$$(v, Au) = \int_{0}^{T} (\dot{\psi}(t), x(t)) dt + \int_{0}^{T} [(D^{T}\psi(t), x(t)) + (B^{T}\psi(t), u(t))] dt$$

$$(v,Au) = \int_{0}^{T} (\dot{\psi}(t) + D^{T}\psi(t), x(t))dt + \int_{0}^{T} (B^{T}(t)\psi(t), u(t))dt, \text{ Потребуем } \dot{\psi}(t) + D^{T}\psi(t) = 0$$

Тогда $(v,Au)=\int\limits_{\dot{\gamma}}^T (B^T(t)\psi(t),u(t))dt$ $\Rightarrow (A^*v)(t)=B^T(t)\psi(t)$. $\psi(t)$ определяется из двойственной задачи.

$$\begin{cases} \dot{\psi}(t) = -D^T(t)\psi(t) \\ \psi(t) = v(t) \end{cases}$$

Градиент интегрального квадратичного функционала

Рассматриваем задачу

$$\begin{cases} \dot{x}(t) = D(t)x(t) + B(t)u(t), \ t \in (0, T) \\ x(0) = 0 \end{cases}$$

Рассматриваем задачу
$$\begin{cases} \dot{x}(t) = D(t)x(t) + B(t)u(t), \ t \in (0,T) \\ x(0) = 0 \end{cases}$$

$$J_I(u) = \int\limits_0^T |x(t;u) - f(x)|^2 dt, \ Au = x(t;u), \ J_I(u) = \|Au - f\|_{L_2}^2, \ J_I' = 2A^*(Au - f). \ \text{Надо искать } A^*$$

Нам подойдёт $A^*v = B^T\psi(t;v)$, где

$$\begin{cases} \dot{\psi}(t) = -D^T(t)\psi(t) - v(t), \ t \in (0,T) \\ \psi(T) = 0 \end{cases}$$

Проверим это:
$$(Au,c)_{L_2} = \int\limits_0^T x(t;u)v(t)dt = \int\limits_0^T x(t;u)\left[-\dot{\psi}(t) - D^T(t)\psi(t)\right]dt = -\int\limits_0^T x(t;u)\dot{\psi}(t)dt - \int\limits_0^T x(t;u)D^T(t)\psi(t)dt = -\int\limits_0^T x(t;u)\psi(t)dt - \int\limits_0^T x(t;u)D^T(t)\psi(t)dt = \int\limits_0^T \left[D(t)x(t) + B(t)u(t)\right]\psi(t)dt - \int\limits_0^T x(t;u)D^T(t)\psi(t)dt = \int\limits_0^T B(t)\psi(t)u(t)dt = (u(t),B^T\psi)_{L_2}$$

Градиент функционала в задаче о нагреве стержня

Рассматриваем задачу

$$\begin{cases} y_t = y_{xx}, x \in (0, l), t \in (0, t) \\ y_x|_{x=0} = 0 \\ y_x + y|_{x=l} = u(t) \\ y|_{t=0} = 0 \end{cases}$$

Рассмотрим Функционал $J(u) = \int\limits_0^l |y(T,x;u)-f(x)|^2 dx, \ Au = y(T,x;u)$ тогда $J(u) = \|Au-f\|_{L_2}^2, \ J'(u) = \|Au-f\|_{L_2}^2$ $2A^*(Au - f)$. Нужно найти A*.

Умножим уравнение на $\psi(t,x)$ и проитнегрируем по $Q=(0,T)\times (0,l).$

$$\iint\limits_{Q} \left[y_{xx} - y_{t}\right] \psi dt dx = \int\limits_{0}^{T} \left[\int\limits_{0}^{l} y_{xx} \psi dx\right] dt - \int\limits_{0}^{l} \left[\int\limits_{0}^{T} y_{t} \psi dt\right] dx = \left\{\Pi\text{o частям}\right\} = \int\limits_{0}^{T} \left[y_{x} \psi|_{x=0}^{x=l} - y \psi_{x}|_{x=0}^{x=l} + \int\limits_{0}^{l} y \psi_{xx} dx\right] dt - \int\limits_{0}^{l} \left[y \psi|_{t=0}^{t=T} - \int\limits_{0}^{T} y \psi_{t} dt\right] dx = \int\limits_{0}^{T} y_{x} \psi|_{x=0}^{x=l} dt - \int\limits_{0}^{l} y \psi_{x}|_{x=0}^{x=l} dt - \int\limits_{0}^{l} y \psi|_{t=0}^{t=T} dx + \iint\limits_{Q} y \left(\psi_{xx} + \psi_{t}\right) dt dx = \left\{\text{Требуем } \psi_{xx} + \psi_{t} = 0 \text{ в Q и } \psi_{x}|_{x=0}^{x=l} = 0, \text{ много что обнуляется из-за граничных условий}\right\} = \int\limits_{0}^{T} \left[y_{x}(t,l)\psi(t,l)\right] dt - \int\limits_{0}^{T} y(t,l)\psi_{x}(t,l) dt - \int\limits_{0}^{l} y(T,x)\psi(T,x)\right] dx = \int\limits_{0}^{T} \left[u(t) - y(t,l)\right] \psi(t,l) dt - \int\limits_{0}^{T} y(t,l)\psi_{x}(t,l) dt - (Au,v)_{L_{2}} = \left\{\Pi\text{отребовали, чтобы } \psi(T,x) = v(x) \text{ и } (\psi_{x} + \psi)|_{x=l} = 0\right\} = \left(u,\psi|_{x=l}\right)_{L_{2}} - \left(Au,v\right)_{L_{2}} = 0$$

Получили, что $A^*v = \psi|_{x=l}$, где

$$\begin{cases} \psi_t = -\psi_{xx}, x \in (0, l), t \in (0, t) \\ \psi_x|_{x=0} = 0 \\ \psi_x + \psi|_{x=l} = 0 \\ \psi|_{t=T} = v \end{cases}$$

Выпуклые функции и функционалы. Теоремы о локальном минимимуме, о множестве Лебега, о касательной плоскости. Критерий оптимальности. Примеры

Определение. Множество $U \in H$ называется выпуклым, если $\forall u, v \in U, \forall \alpha \in [0, 1] : \alpha u + (1 - \alpha)v \in U$.

Определение. Функционал J(u) называется строго выпуклым на выпуклом U, если $\forall u, v \in U, \ \forall \alpha \in [0,1]$: $J(\alpha u + (1 - \alpha)v) < \alpha J(u) + (1 - \alpha)J(v).$

Определение. Функционал J(u) называется сильно выпуклым на выпуклом U с константой $\mathfrak{X}>0$, если $\forall u,v\in U,\ \forall \alpha\in[0,1]:\ J(\alpha u+(1-\alpha)v)\leqslant \alpha J(u)+(1-\alpha)J(v)-\frac{\mathfrak{X}}{2}\alpha(1-\alpha)\|u-v\|^2.$

Пример. Функционал J(u) = ||Au - f|| является выпуклым.

Свойства строгой выпуклости:

- 1. $J_1(u), J_2(u)$ строго выпуклы на U и $\alpha_1, \alpha_2 > 0 \Rightarrow \alpha_1 J_1(u) + \alpha_2 J_2(u)$ строго выпулый на U.
- 2. $J_1(u)$ строго выпуклый, $J_2(u)$ выпуклый на $U \Rightarrow J_1(u) + J_2(u)$ строго выпуклый на U.

Теорема. (о локальном минимуме)

J(u) - быпуклый на $U\Rightarrow$ точка локального минимума - точка глобального минимума.

Теорема. (о множестве Лебега)

J(u) - выпуклый на $U \Rightarrow$ множество $L_c = \{u \in U | J(u) \leqslant c\}$ -выпукло $\forall c \in \mathbb{R}$.

Обратное неверно т.к. $J(u) = u^3, u \in \mathbb{R}, L_c = (-\infty, \sqrt[3]{c}]$

Лемма. Пусть U - выпуклое, J(u) - выпуклый на U, тогда U_* - выпуклое.

Лемма. Пусть U - выпуклое, J(u) - строго выпуклый на U, тогда U_* содержит одну точку или $U_*=\varnothing$.

Пример. $U_* = \emptyset$:

1.
$$J(u) = u, u \in \mathbb{R} \Rightarrow J_* = -\infty, U_* = \emptyset$$
.

2.
$$J(u) = e^{-u}, u \in \mathbb{R} \Rightarrow J_* = 0, U_* = \emptyset$$
.

Теорема. (о касательной плоскости)

Пусть U - выпуклое, J(u) сильно выпуклый на U с x > 0 u в точке v $\exists J'(v) \Rightarrow J(u) \geqslant J(v) + (J'(v), u - v) + \frac{x}{2} \|u - v\|^2$, $\forall u \in H$.

Теорема. (критерий оптимальности)

 Π усть U - выпуклое, J(u) выпуклый на U и $\exists J'(u_*) \Rightarrow u_* \in U_* \Leftrightarrow$ выполнено $(J'(u_*), u - u_*) \geqslant 0, \forall u \in U$.

Пример. Решить уравнение Au = f, $A \in L(H \to H)$, $A = A^*$. Эквивалентна задаче минизации функционала $J(u) = (Au, u) - 2(u, f) \to min$. $J'(u_*) = 0$, $(A + A^*)u_* = 2f \Rightarrow Au_* = f$

11 Критерий выпуклости функций и функционалов. Выпуклость квадртичного функционала

Теорема. (критерий выпуклости)

 $\Pi y c m b U$ - выпуклое, $J(u) \in C^1(U)$, тогда следующие утверждения эквивалентны

- 1. J(u) выпуклый
- 2. $J(u) > J(v) + (J'(v), u v), \forall u, v \in U$
- 3. $(J'(u) J'(v), u v) \ge 0, \forall u, v \in U$

Выпуклость квадратичного доказана в первом билете.

12 Сильно выпуклые функции и функционалы, их свойства. Критерии сильной выпуклости функций и функционалов

Определение. Функционал J(u) называется сильно выпуклым на выпуклом U с константой $\mathfrak{E}>0$, если $\forall u,v\in U,\ \forall \alpha\in[0,1]:\ J(\alpha u+(1-\alpha)v)\leqslant \alpha J(u)+(1-\alpha)J(v)-\frac{\mathfrak{E}}{2}\alpha(1-\alpha)\|u-v\|^2.$

Свойства сильно выпуклости:

- 1. $J_1(u), J_2(u)$ сильно выпуклы на U и $\alpha_1, \alpha_2 > 0 \Rightarrow \alpha_1 J_1(u) + \alpha_2 J_2(u)$ сильно выпулый на U.
- 2. $J_1(u)$ сильно выпуклый, $J_2(u)$ выпуклый на $U\Rightarrow J_1(u)+J_2(u)$ сильно выпуклый на U.

Теорема. (критерий сильной выпуклости)

Пусть U - выпукло, $J \in C^1(U)$, тогда J(u) сильно выпуклый на U с константой $x > 0 \Leftrightarrow (J'(u) - J'(v), u - v) \geqslant x \|u - v\|^2$, $\forall u, v \in U$.

Теорема. (второй критерий сильной выпуклости)

Пусть U - выпукло, $J \in C^2(U)$, $intU \neq \emptyset$, тогда J(u) сильно выпуклый на U с константой $\mathfrak{X} > 0 \Leftrightarrow (J''(u)h,h) \geqslant \mathfrak{X} \|h\|, \forall u \in U, h \in H$.

Пример. $J(u) = \|u\|^2$, J'(u) = 2u, J''(u) = 2I, $(J''(u)h, h) = 2\|h\|^2 \geqslant x \|h\|^2 \Rightarrow x = 2$

Пример. $J(u) = x^2 + 2xy + y^2 + z^2$, $u \in \mathbb{R}^3$.

$$J''(u) = \begin{pmatrix} 2, 2, 0 \\ 2, 2, 0 \\ 0, 0, 2 \end{pmatrix}$$

Найдем собственные значения: $\lambda_1=0, \lambda_2=2, \lambda_3=4$. По критерию положительно опредленных матриц, все с.з. неотрицательны, значит матрица положительна определена: $(J''(u)h,h)\geqslant 0$. Но J(u) не является сильно выпуклым т.к. при λ_1 значение ровно 0.

13 Теорема Вейерштрасса для сильно выпуклых функционалов

Теорема. Пусть U - выпуклое, замкнутое, J(u) сильно выпуклый на U с x > 0 и полунепрерывный снизу на U, тогда

- 1. $J_* > -\infty$
- 2. $U_* = \{u_*\} \neq \emptyset$
- 3. $\forall u \in U : \frac{x}{2} ||u u_*||^2 \le J(u) J(u_*)$

14 Метрическая проекция точки на выпуклое замкнутое множество в гильбертовом пространстве, её свойства. Примеры

Определение. Пусть $U \subset H$. Проекцией элемента $u \in H$ на множество U называется $w \in U$: $\|w-u\| = \inf_{v \in U} \|v-u\|$

Теорема. (существование и единственность и свойства проекции)

 Π усть U - выпуклое и замкнутое, тогда

1. $\forall u \in H \exists ! w = P_u u$.

2.
$$w = P_u u \Leftrightarrow (w - u, v - w) \ge 0, \forall v \in U$$
.

Теорема. (о нестрогой сэкимаемости)

Пусть U - выпуклое и замкнутое мноежство $\Rightarrow \forall u, v \in H \ \|P_u u - P_u v\| \leqslant \|u - v\|$.

Пример. $U=B_R(0),\ u\in H, w=P_uu,\ w=\begin{cases} u,u\in U\\ \dfrac{u}{\|u\|}R,u\notin U \end{cases}$. Проверим свойство: ссли $u\in U$ то очевидно,

nycmь $u \notin U$, mordа $(\frac{u}{\|u\|}R - u, v - \frac{u}{\|u\|}R) = \left(\frac{R}{\|u\|} - 1\right)(u, v - \frac{u}{\|u\|}R)$. Первое слагаемое неположительно, второе тоже $m.\kappa$. $\|v\| \leqslant R$. Поэтому условие выполняется.

Пример. $U = \{u \in L_2(a,b) | \alpha(t) \leq u(t) \leq \beta(t), \alpha(t), \beta(t) \in L_2(a,b)\}, \|u(t) - h(t)\|_{L_2}^2 = \int_a^b |u(t) - h(t)|^2 dt \rightarrow \inf\{u \in L_2(a,b) | \alpha(t) \leq u(t) \leq \beta(t), \alpha(t), \beta(t) \in L_2(a,b)\}, \|u(t) - h(t)\|_{L_2}^2 = \int_a^b |u(t) - h(t)|^2 dt$

$$P_{U}h = \begin{cases} h(t), \alpha(t) \leq h(t) \leq \beta(t) \\ \beta(t), \beta(t) \leq h(t) \\ \alpha(t), h(t) \leq \alpha(t) \end{cases}$$

15 Градиентный метод. Метод проекции градиента. Их сходимость

Решаем задачу $J(u) \to \inf$ в гильбертовом пространстве. Многие методы решения укладываются в итерационную схему:

$$u_{k+1} = u_k + \alpha_k p_k \tag{1}$$

 u_0 - задано, α_k - шаг, p_k - поправление шага.

- 1. $p_k = -J'(u_k)$ наискорейшее локальное убывание
- 2. α_k можно выбирать например так: $\alpha_k \in (\operatorname{Argmin}_{\alpha \in \mathbb{R}} J(u_k + \alpha p_k))$
- 3. u_0 хочется выбрать как можно ближе к u_* .
- 4. Правило останова:
 - (a) малость градиента $\|J'(u_k)\| \leqslant arepsilon$ -строгий
 - (b) $\frac{\|u_{k+1} u_k\|}{\|u_k\|} \leqslant \varepsilon$ -слабый
 - (c) $\frac{|J(u_{k+1})-J(u_k)|}{|J(u_k)|}\leqslant \varepsilon$ самый слабый

Градиентный метод

Его имеет смысл применять к задачам вида $J(u) \to \inf$, $u \in U \subset H$, $J(u) \in C^1(H)$ Представляет из себя итерационный процесс $u_{k+1} = u_k - \alpha_k J'(u_k)$, $\alpha_k > 0$, k = 0, 1, 2, ... Выбор длины шага можно делать по-разному:

- 1. константный шаг (проблемы: зацикливание, перескок)
- 2. метод дробления: сначала задаем α_* б потом $\alpha_k = \frac{\alpha_*}{2^m}$, $m = 0, 1, 2, \ldots$ На каждом шаге проверяется будет ли $J(u_k \frac{\alpha_*}{2^m}J'(u_k)) < J(u_k)$ и в качестве m берется первый, при котором выполняется это неравенство.
- 3. метод скорейшего спуска: выбираем α для оптимального убывания.

Пример. $J(u)=\frac{1}{2}x^2+\frac{1}{4}y^4-\frac{1}{2}y^2\to\inf,\ u\in\mathbb{R}^2.$ Очевидно, что $J_*=-\frac{1}{4},\ U_*=\{(0,1),(0,-1)\}.$ Решим с помощью градиентного метода: $J'(u)=(x,y^3-y)$ $u_0=(1,-1),\ \alpha_k=\frac{1}{2}.\ J'(u_0)=(1,0)\ u_1=(\frac{1}{2},-1),\ u_2=(\frac{1}{4},-1),\dots,u_k=(2^{-k},-1).$

Метод проекции градиента

Отличается тем, что теперь ищем оптимум не во всем пространстве, а на $U \neq H$. Тогда в какой-то момент значение функционала в точке, не принадлежащей множесту U неопределено. Исправляем так: $u_{k+1} = P_u(u_k - \alpha_k J'(u_k)), \ \alpha_k > 0, k = 0, 1, 2, \dots$

Теорема. (о сходимост МПГ)

Пусть U - выпуклое, замкнутое множество из H и $J(u) \in C^1(U)$ и градиент J(u) удовлетворяет условию Липшица с константой L>0 на U. Пусть J(u) сильно выпуклый на U с константой x>0 и коэффициенты $\alpha_k=\alpha\in(0,\frac{2x}{L^2})$. Тогда при \forall начальном условии последовательность u_k сходится x решению u_* и справедлива оценка: $\|u_k-u_*\| \leqslant q^k\|u_0-u_*\|,\ q=\sqrt{1-2x\alpha+\alpha^2L^2}$

Метод скорейшего спуска

 $\alpha_k = \operatorname{Argmin}_{\alpha \ge 0} J(u_k - \alpha J'(u_k)).$

Пример.
$$J(u) = ||u||^2$$
, $J'(u) = 2u$. Пусть $u_0 \in H$, тогда $u_1 = u_0 - \alpha J'(u_0) = u_0 - 2\alpha u_0 = (1 - 2\alpha)u_0$. $J(u_0 - \alpha J'(u_0)) = ||(1 - 2\alpha)u_0||^2 = (1 - 2\alpha)^2 ||u_0||^2 \Rightarrow \alpha_0 = \frac{1}{2}$

16 Метод Ньютона. Его сходимость

Решение задачи условной минимизации: $J(u) \to \inf_{u \in U}, \ U \neq H$.

Идея: Пусть уже известно k-ое приближение $u_k \in U$. Берем квадратичную часть приращения $J(u) - J(u_k) = J_k(u) + \overline{o}(\|u - u_k\|^2)$, где $J_k(u) = (J'(u_k), u - u_k) + \frac{1}{2}(J''(u_k)(u - u_k), u - u_k)$, $u \in U$. И вычисляем $u_{k+1} = \operatorname{Argmin}_{u \in U} J_k(u)$

Теорема. (О сходимости метода Нъютона)

Пусть U - выпуклое замкнутое множество, int $U \neq \emptyset$, J(u) сильно выпукла с константой x > 0 на U, $J(u) \in C^2(U)$, J''(u) удовлетворяет на U условию Липшица с константой L > 0. Пусть начальное приближение удовлетворяет условию $\|u_0 - u_*\| < \frac{2x}{L}$, u_* -решение задачи . Тогда метода Ньютона порождает последовательность $\{u_k\}: \|u_k - u_*\| \leqslant \frac{2x}{L}q^{2^k}$, $q = \frac{L\|u_0 - u_*\|}{2x} < 1$

17 Метод покоординатного спуска

В предыдущих методов нам требовалось вычислять градиент и гессиан функционала, но зачастую функционал не обладает нужной гладкостью. Рассмотрим этот метод для задаче минимизации без ограничений в конечномерном пространстве $J(u) \to \inf_{u \in \mathbb{R}^n}.$ $\{e_i\}_{i=1}^{i=n}$ - базис. В дальнейшем будет использоваться бесконечный базис, поэтом доопределим $p_0 = e_1, p_1 = e_2, \ldots, p_{n-1} = e_n, p_n = e_1, \ldots, p_{2n-1} = e_n, \ldots$ (циклически повторяются). Перед запуском метода выбираем $u_0 \in \mathbb{R}^n$, стартовый шаг $\alpha_0 > 0$ и коэффициент дробления шага $\lambda \in (0,1)$. Пусть найдено k-е приближение u_k и текущее значение шага $\alpha_k > 0$. Найдем следующее приближение. Вычислим $u = u_k + \alpha_k p_k$

- 1. Если $J(u_k + \alpha_k p_k) < J(u_k)$, то $u_{k+1} = u_k + \alpha_k p_k$, $\alpha_{k+1} = \alpha_k$ и процесс продолжается со следующим по порядку базисным направлением p_{k+1} .
- 2. Если $J(u_k \alpha_k p_k) < J(u_k)$, то $u_{k+1} = u_k \alpha_k p_k$, $\alpha_{k+1} = \alpha_k$ и процесс продолжается со следующим по порядку базисным направлением p_{k+1} . Будем называть k+1-ую итерацию удачной, если переход от u_k к u_{k+1} произошёл по этому или предыдущему пункту.
- 3. Если $J(u_k + \alpha_k p_k) \geqslant J(u_k)$, то итерация неудачная. В процессе вычислений ведётся подсчёт числа неудачных итераций, случившихся подряд. Если их число вместе с текущей не достигло n, то полагают $u_{k+1} = u_k$, $\alpha_{k+1} = \alpha_k$ и переходят к следующему базисному направлению. Иначе происходит дробление шага α_k с коэффициентом $\lambda : \alpha_{k+1} = \lambda \alpha_k$.

Теорема. (о сходимости МПС)

Пусть J(u) выпуклый, $J(u) \in C^1(\mathbb{R}^n)$, u_0 -начальное приближение, множество Лебега $M_{J(u_0)} = \{u \in \mathbb{R}^n | J(u) \leq J(u_0)\}$ ограниченно. Тогда $\lim_{k \to \infty} J(u_k) = J_*$, $\lim_{k \to \infty} \rho(u_k, u_*) = 0$.

Пример. $J \in C^1(\mathbb{R}^n)$ - существенно. $J(u) = (x-1)^2 + (y-1)^2 + 2|x-y| - 2$. $J_* = -2$, $U_* = \{(1,1)\}$. Функционал не дифференцируем в x = y. Пусть $u_0 = (0,0)$, тогда все $u_k = (0,0)$. Все шаги неудачные.

18 Метод штрафных функций и его сходимость

Позволяет решать задачи c большим количеством ограничений. Нарушая эти ограничения получаем "штрафы".

H - гильбретово, $J(u) \to \inf_{u \in U}, U \subset H, U = \{u \in U_0 | g_1(u) \leqslant 0, \dots, g_m(u) \leqslant 0, g_{m+1}(u) = 0, \dots g_{m+s}(u) = 0\}$ Функции g_j как раз задают ограничения. Неструктурированные ограничения, задаываемые множеством U_0 считаем "терпимыми"и обязуемся их не нарушать.

Будем использовать одни из самых распространённых штрафов: за нарушение неравенств будем применять индивидуальные штрафы типа срезки: $g_i^+(u) = \max{(g_i(u),0)}$. За нарушения равенств будетм испльзовать мо-

дули $g_i^+ = |g_i(u)|$. Из индивидуальных штрафов собирается общий $P(u) = \sum_{i=1}^{m+s} (g_i^+(u))^{P_i}, \ P_i \geqslant 1, \ i = \overline{1, m+s}$ Свойства штрафов:

1. $P(u) \ge 0$

2.
$$u \in U \Leftrightarrow \begin{cases} u \in U_0 \\ P(u) = 0 \end{cases} \Leftrightarrow \begin{cases} u \in U_0 \\ g_i^+(u) = 0, i = \overline{1, m+s} \end{cases}$$

Общий штраф добавляется к исходному функционалу J(u) и получаем следующую задачу:

$$\Phi_k(u) = J(u) + A_k P(u) \to \inf_{u \in U_0}$$

Задача на терпимом множестве. $\Phi_{k*}=\inf_{u\in U_0}\Phi_k(u)\leqslant\Phi_k(u_k)\leqslant\Phi_{k*}+\varepsilon_k,\ \varepsilon_k>0.$

Определение. $\{P_k(u)\}$ - штрафная функция множества U на множестве U_0 , если

1. $P_k(u)$ определена на U_0 и неотрицательна на U_0

2.
$$\lim_{k \to \infty} P_k(u) = \begin{cases} 0, u \in U \\ +\infty, u \in U_0 \setminus U \end{cases}$$

Теорема. (Теорема о сходимости МШФ)

Пусть Н-гильбертово пространство, множество $U_0 \subset H$ слабо замкнут в H, исходная функция J(u) и все индивидуальные штрафы $g_i^+(u)$ слабо полунепрерывны снизу на U_0 . Пусть также нижняя грань J(u)на U_0 конечна, а δ - расширение $U(\delta)=\{u\in U_0|g_i^+(u)\leqslant \delta, i=\overline{1,m+s}\}$ допустимого множества U при некотором δ ограниченно в H . Тогда если $A_k o +\infty$ и $arepsilon_k o 0$, то для элементов u_k имеет место сходимость по функционалу $J(u_k) o J_*$, а у самой последовательности $\{u_k\}_{k=1}^\infty$ имеется слабый в H предльные точки, причем каждая из них принадлежит U_* .

Пример.
$$J(u) = x^2 + xy + y^2 \rightarrow \inf$$
, $U = \{u \in \mathbb{R}^2 | x + y = 2\}$, $J_* = 3$, $u_* = (1,1)$. $\Phi_k(u) = J(u) + A_k P(u) = x^2 + xy + y^2 + k(|x + y - 2)^2, k \in \mathbb{N}$. $\Phi'_k(u) = 0 \Rightarrow \begin{pmatrix} 2x + y + 2k(x + y - 2) \\ x + 2y + 2k(x + y - 2) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $u_k = (x_k, y_k)$: $x_k = y_k = \frac{4k}{3 + 4k} \rightarrow 1$ $u_* = (1, 1)$.

19 Правило множителей Лагранжа

Та же задача, что и в предыдущем пункте.

Введём функцию Лагранжа
$$L(u,\lambda)=\lambda_0 J(u)+\sum\limits_{i=1}^s\lambda_j g_j(u),\ u\in U_0, \lambda=(\lambda_0,\ldots,\lambda_s), \lambda_j\geqslant 0.$$

Теорема. (Правило множителей Лагранжа)

Пусть U_0 - выпуклое замкнутое множество, $u_* \in U$ - точка локального минимума J(u). $g_i(u)$ - непрерывно дифференцируемы в окрестности u_* . Тогда $\exists \overline{\lambda^*} = (\lambda_0^*, \dots, \lambda_s^*):, \overline{\lambda^*} \neq 0.$ $\lambda_j \geqslant 0, j = \overline{0, m}.$ $(\frac{dL}{du}(u_*, \overline{\lambda^*}), u - u_*) \geqslant 0$ $0, \forall u \in U_0, \ \lambda_i^* g_j(u_*) = 0, j = \overline{1, m}. \ L$ - выпукла по u. Тогда $u_* \in Agrmin_{u \in U_0} L(u, \overline{\lambda^*})$

20 Теорема Куна-Такера

Задача как в предыдущем билете.

Введём функцию Лагранжа
$$L(u,\lambda)=\lambda_0 J(u)+\sum\limits_{i=1}^s\lambda_j g_j(u),\ u\in U_0, \lambda=(\lambda_0,\dots,\lambda_s), \lambda_j\geqslant 0.$$
 И возьмём $\lambda_0=1.$ $\Lambda_0=\{\lambda=(\lambda_1,\dots,\lambda_s)|\lambda_1\geqslant 0,\dots,\lambda_m\geqslant 0\}$

Определение. Точку $(u_*,\lambda^*)\in U_0 imes\Lambda_0$ называют седловой точкой функции Лагранжа, если $L(u_*,\lambda)\leqslant$ $L(u_*, \lambda^*) \leq L(u, \lambda^*), \ \forall u \in U_0, \forall \lambda \in \Lambda_0.$

Теорема. (достаточное услоиве оптимальности)

Пусть функции $J(u),g_i(u),i=\overline{1,s}$ определены и конечны на U_0 . Пусть (u_*,λ^*) - седловая точка функции $L(u,\lambda)$. Torda $u_* \in U_*$, $J(u_*) = J_* = L(u_*,\lambda^*)$.

Теорема. (Куна-Такера)

Пусть U_0 - выпуклое замкнутое множество из \mathbb{R}^n . Пусть в функции Лагранжа $U=\{u\in U_0|g_1(u)\leqslant$ $\{0,\ldots,g_m(u)\leqslant 0\}$. Функции $J(u),g_i(u),i=\overline{1,m}$ -выпуклы на $U_0,\ J_*>-\infty,\ U_*
eq \varnothing$. Пусть $\exists\overline{u}\in U:\ g_1(\overline{u})<0$ $0,\ldots,g_m(\overline{u})<0$ (ycrobue creŭmepa). Torda $\forall u_*\in U_*$ $\exists \lambda^*\in\Lambda_0=\{\lambda\in\mathbb{R}^m|\lambda_1\geqslant 0,\ldots,\lambda_m\geqslant 0\}=\mathbb{R}^m_+$, makars, что пара (u_*, λ^*) -седловая точка функции Лагранжа.

21 Двойственная задача. Её свойства

Решаем задачу $J(u) \to \inf_{u \in U}, U \subset H, U = \{u \in U_0 | g_1(u) \leq 0, \dots, g_m(u) \leq 0, g_{m+1}(u) = 0, \dots g_{m+s}(u) = 0\}$. Ранее была сформулированно достаточное условие оптимальности.

Введём функцию $\chi(u)=\sup_{\lambda\in\Lambda_0}L(u,\lambda), u\in U_0$. Теперь рассматриваем задачу $\chi(u)\to\inf_{u\in U_0}$. Эта задача эквива-

лентна исходной и $\chi_*=\inf_{U_0}\chi(u)=\inf_{U}J(u)=J_*$

Двойственная задача:

$$\psi(\lambda) = \inf_{u \in U_0} L(u, \lambda), \ \lambda \in \Lambda_0$$

$$\psi(\lambda) \to \sup_{\lambda}$$

обозначим
$$\psi^* = \sup_{\Lambda_0} \psi(\lambda), \Lambda^* = \{\lambda \in \Lambda_0 | \psi(\lambda) = \psi^* \}$$

Лемма. Всегда верно неравенство $\psi(\lambda) \leqslant \psi^* \leqslant \chi_* = J_* \leqslant \chi(u), \forall u \in U_0, \forall \lambda \in \Lambda_0$

Теорема. Для того, чтобы $\psi^* = \chi_*$, $U_* \neq \emptyset$, $\Lambda_0 \neq \emptyset$ необходимо и достаточно, чтобы функция Лагранжа $L(u,\lambda)$ имела седло. Множество седловых точек $\{(u_*,\lambda^*)\} = U_* \times \lambda^*$

22 Каноническая и общая задачи линейного программирования. Их эквивалентность

Постановка задачи:

 $(c,u) o \inf_{U},\ U = \{u \in \mathbb{R}^n | A_1 u \leqslant b_1, A_2 u = b_2 \}$ - выпуклый многогранник.

Каноническая задача:

 $(c,u) \to \inf_{U}, \ U = \{u \in \mathbb{R}^n | Au = b\}$ - канонический многогранник.

Эти задачи эквивалентны.

Определение. Точка v называется угловой точкой множества U, если представление $v=\alpha v_1+(1-\alpha)v_2,\ \alpha\in(0,1)$ для $\forall v_1,v_2\in U$ возможно только если $v_1=v_2,\ m.e.$ не является внутренней точкой никакого отрезка, принадлежащего U

23 Критерий угловой точки в канонической задаче линейного программирования

Определение. Точка v называется угловой точкой множества U, если представление $v=\alpha v_1+(1-\alpha)v_2,\ \alpha\in(0,1)$ для $\forall v_1,v_2\in U$ возможно только если $v_1=v_2,\ m.e.$ не является внутренней точкой никакого отрезка, принадлежащего U

Теорема. (Критерий угловой точки канонического многогранника) Π усть U - канонический многогранник, тогда v - угловая точка \Leftrightarrow

1.
$$\exists B(v) = \{j_1, \dots, j_r\} \subset \overline{1, n}, \ r = rangA: A_{j_1}v_{j_1} + \dots + A_{j_r}v_{j_r} = b$$

- 2. $\{A_i\}\{j \in B(v)\}$ линейно независимы
- 3. $v_i = 0, j \notin B(v)$.

Если все полученные координаты $v_{i_j} > 0$, то это вырожденная угловая точка.

Пример. Найти угловую точку $U = \{u = (u^1, \dots, u^n) \geqslant 0: u^1 + u^2 + 3u^3 + u^4 = 3, u^1 - u^2 + u^3 + 2u^4 = 1\}.$ Получаем матрицу $A = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 1 & -1 & 1 & 2 \end{pmatrix}, \ b = \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$ Ранг матрицы равен 2. Нужно перебрать 6 вариантов:

- 1. $B = \{1,2\}$ A_1, A_2 лнз, v нужно искать в виде (*,*,0,0) Таким обрзаом $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} v = b$. Отсюда v = (2,1,0,0)
- 2. $B = \{1,3\}$ A_1, A_3 лнз, v нужно искать в виде (*,0,*,0) Таким обрзаом $\begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} v = b$. Отсюда v = (0,0,1,0)
- 3. $B = \{1,4\}$ A_1, A_4 лнз, v нужно искать в виде (*,0,0,*) Таким обрзаом $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} v = b$. Отсюда v = (5,0,0,-2). Не подходит, все координаты должны быть неотрицательны.
- 4. v = (0, 0, 1, 0)
- 5. $v = (0, \frac{5}{3}, 0, \frac{4}{3})$
- 6. v = (0, 0, 1, 0)

Симплекс-метод для канонической задачи ЛП

Приведенная форма к угловой точке каноничесской задачи ЛП.

Пусть $U \neq$ и нам уже известна одна угловая точка $v, B(v) = (j_1, \ldots, j_r), C(v) = (A_{j_1}, \ldots, A_{j_r})$. Наша ближайшая цель перейти от текущей угловой точки к следующей. Это и будет 1 шаг симплекс метода. Для этого нужно перейти к приведенной форме задачи ЛП.

$$\overline{v} = \begin{pmatrix} v_{j_1} \\ \dots \\ v_{j_r} \end{pmatrix}, \overline{u} = \begin{pmatrix} u_{j_1} \\ \dots \\ u_{j_r} \end{pmatrix}, \overline{c} = \begin{pmatrix} c_{j_1} \\ \dots \\ c_{j_r} \end{pmatrix}$$
 Тогда по критерию угловой точки $\sum_{i=1}^{m=r} A_{j_i} v j_i = B \overline{v} = b \Rightarrow \overline{v} = B^{-1} b \geqslant 0$

Тогда можно записать эту систему в виде $\sum_{i=1}^{r} A_{ji}vj_i + \sum_{j\in B(v)} A_{j}u_j = B\overline{u} + \sum_{j\in B(v)} A_{j}u_j$ Если домножить слева на $B^{-1}(v)$, то $\overline{u} + \sum_{j\in B(v)} B^{-1}(v)A_{j}u_j = B^{-1}(v)b = \overline{v}$. Полученная система эквивалентна исходной Au = b. Теперь

преобразуем функционал
$$J(u) = (c,u) = \sum_{i=1}^n c_j u_j = (\overline{u},\overline{c}) + \sum_{j \notin B(v)} c_j u_j = (\overline{c},\overline{v} - \sum_{j \notin B(v)} (B^{-1}A_j)u_j) + \sum_{j \notin B(v)} c_j u_j = (\overline{c},\overline{v}) - \sum_{j \notin B(v)} (\overline{c},B^{-1}A_j)u_j + \sum_{j \notin B(v)} c_j u_j = (\overline{c},\overline{v}) - \sum_{j \notin B(v)} ((\overline{c},B^{-1}A_j) - c_j)u_j = J(v) - \sum_{j \notin B(v)} \Delta_j u_j, \Delta_j = ((\overline{c},B^{-1}A_j) - c_j)$$

Описание одного шага симплекс-метода

Положим $u_j = 0, j \notin B, j \notin k \Rightarrow J(u) = J(v) - \Delta_k u_k \rightarrow \inf, \ u_{j_i} = v_{j_i} - \xi_{ik} u_k, \ i = \overline{1,r}$ Условие $u \geqslant 0 \Rightarrow u_{j_i} \geqslant 0, u_k \geqslant 0; u_j = 0, j \not\ni B, j \not\in k$. Мы хотим перейти от (v, B(v)) к новой точке u = w за счёт выбора такого $u_k, k \notin B$, чтобы новая точкая имела вид $w = \{w_{j_i} = v_{j_i} - \xi_{i_k}, \ i = \overline{1,r}, w_k = u_k, ; w_j = 0, j \notin A\}$

- 1. $\Delta_j = (\overline{c}, \xi_j) c_j \leqslant 0, \forall j \notin B(v) \Rightarrow c_j \geqslant (\overline{c}, \xi_j), \forall j \notin B(v)$. В этом случае $J(u) = J(v) \sum_{j \notin B(v)} \Delta_j u_j \geqslant J(v)$. В этом случае $J(v) = J_*, v \in U_*$ - решение задачи.
- 2. $\exists \Delta_k > 0$ при некоторых $k \notin B$, причем $\xi_k = B^{-1}A_k \leqslant 0$ ю В этом случае при выборе $u_k > 0$ получаем J(w) > J(v) В этом случае $J_* = -\infty$.
- $3. \ \exists \Delta_k > 0$ при некоторых $k \notin B$ и для каждого такого k найдется норме $i \in 1, \ldots, r$ такой, что $\xi_{ik} =$ $(B^{-1}A_k) > 0$. Иначе говоря, множество индексов $I_k(v) = \{i : i = \overline{1,r}, \xi_{ik} > 0\} \neq \emptyset$ для всех $k \notin B$, для любого $\Delta_k > a$. А

25 Симплекс таблица: её преобразование на одном шаге симплекс метода

26Градиент в задаче оптимального управления со свободным правым концом

$$J(u) = \int\limits_0^T f^0(x(t),u(t),t)dt + g^0(x(T)),\ x(t)$$
 - решение задачи Коши $\dot{x}(t) = f(x(t),u(t),t),x(0) = x_0.$

Определение. Непрерывная функция x(t) называется решением задачи Коши, если $x(t) = x_0 + \int\limits_0^T f(x(\tau), u(\tau), \tau) d\tau$, x(t;u) - траектория, соответствующая управлению u.

Ищем градиент по определению: $J(u+h)-J(u)=(J'(u),h)+\overline{o}(\|h\|)$. Работаем в $L_2(0,T)$. $J(u+h) - J(u) = \int_{0}^{T} (J'(u)(t), h(t))_{\mathbb{R}^{r}} dt + \overline{o}(\|h\|)$

Теорема. (существование градиента)

Пусть $f, f'_x, f'_u, f^0, f^0_x, f^0_u$ непрерывны по (x, u, t) на $\mathbb{R}^n \times \mathbb{R}^r \times [0, T]$ и удовлетворяют условию Липшица по (x, u) на этом же множестве. Тогда функция $J(u) \in C^1(L_2(0, T))$ причем $J'(u) = -\frac{\partial H}{\partial u}|_{x=x(t;u),u=u(t),\psi=\psi(t;u)}$. H - функция Гамильтона-Понтрягина $H = H(x, t, u, \psi) = -f^0(x, u, t) + (\psi, f(x, u, t))$, где $\psi(t, u)$ - решение Задачи Коши $\dot{\psi} = -\frac{\partial H}{\partial x}, \psi(T) = -\frac{\partial g^0}{\partial x}|_{x=x(T;u)}$

27 Принцип максимума Понтрягина в задаче оптимального управления со свободным правым концом

$$J(u) = \int\limits_0^T f^0()x(t), u(t), t)dt + g^0(x(T)), \ x(t)$$
 - решение задачи Коши $\dot x(t) = f(x(t), u(t), t), x(0) = x_0$. Задача $J(u) \to \inf$ $U = \{u \in L_2(0,T) | u(t) \in V \subset \mathbb{R}^2, \text{п.в. } t \in (0,T)\}$ - геометрическое ограничение

Определение. $u \in U$ называется оптимальным управлением, если $J(u) = J_* = \inf_{x \in U} J(u)$. Функция x = x(t) = 0x(t;u) называется соответствующей оптимальнию траекторией.

10

Теорема. (Принцип максимума Понтрягина) Пусть $f, f'_x, f^0, f^0, g^0, g^0_x$ непрерывны по совокупности переменных, (x(t), u(t)) - оптимальная пара (оптимальный процесс). $H(x, u, t, \psi) = -f^0(x, u, t) + (\psi, f(x, u, t))$ - функция Гамильтона-Понтрягина. $\psi(t)$ - решение сопряженной системы $\dot{\psi} = -\frac{\partial H}{\partial x}, \psi(T) = -\frac{\partial g^0}{\partial x}|_{x=x(T;u)}$. Тогда $H(x(t), u(t), t, \psi(t)) = \max_{v \in U} H(x(t), v, t, \psi(t))$ п.в. на (0,T).