How neglect differentially affects sexes: a resilient phenotype or a hidden vulnerability?

Lucia D'Amore, Maurilio Menduni De Rossi Statistical Learning and Large Data Module 1 Professor Francesca Chiaromonte 9/05/2024

A historical perspective

«From a neurobiological perspective, neglect is the absence of experiences required to express an underlying genetic potential in a key developing neural system.»[1]

Burden and consequences of child maltreatment in high-income countries

US Department of Health and Human Services, Administration on Children Youth and Families. Child Maltreatment 2006. Decree 770 was a decree of the communist Romanian government of Nicolae Ceausescu, signed in 1967.

Total Fertility Rate (TFR) in Romania, 1956-2000 [2]

Codruta, a Romanian child, at 13 years of age in 1990, as her hundreds of thousends other children were systematically neglected in Romaninan «orphanages». Angela Catlin public domain

The original project

Ultimate Goal:

Multilevel biomarkers and treatment outcomes differences

1 The model: Repeated Maternal Separation (RMS)

4 Pharmachological treatments for stress-related disorders

5 High resolution neuroimaging data collection

3 Touchscreen-based spatial Probabilistic Reversal Learning (PRL) task.

Dataset and first steps description

- 64 rats, male and females; 32 exposed to early repeated maternal separation
- 17 initial columns and two target variables (sex and group) for the supervised learning part
- **640** initial **rows**, 10 for each of the **10 sessions** all the rats completed, then brought to 64, each summarizing one rat's performance

How?

Two ways choosen to summarize the data panel: **mean** of the 10 (best performance) or **difference** between the first value and the last

In supervised learning we had **two datasets** (**dif, mn**) and **two variables** to **predict** (**sex, group**). We found sex differences and group differences only for females

Some histograms to explore which column to transform

Outcome of preprocessing and data wrangling

Some unsupervised analysis: PCA results

Logistic regression 1: mn dataset, predicting sex


```
Legenda:
```

Females = 1

Accuracy = 0.667

\$num_trials.x
Effect sizes were labelled following Chen's (2010) recommendations.

very small (Std. beta = 0.12, 95% CI [-0.54, 0.81])
medium (Std. beta = -1.59, 95% CI [-2.69, -0.75])

log_mean_latency_choice.x

Accuracy = 1

\$log_mean_latency_choice.x
Effect sizes were labelled following Chen's (2010) recommendations.

very small (Std. beta = 0.11, 95% CI [-0.72, 0.99]) large (Std. beta = -3.14, 95% CI [-5.17, -1.76])

Logistic regression 1: mn dataset, predicting sex


```
$log_mean_latency_initiate.x
Effect sizes were labelled following Chen's (2010) recommendations.
very small (Std. beta = 0.03, 95% CI [-0.70, 0.78])
large (Std. beta = 2.04, 95% CI [1.11, 3.30])
```

Accuracy: 0.75

Logistic regression 2: mn dataset, sex differences in predicting group


```
$num_trials.x
Effect sizes were labelled following Chen's (2010) recommendations.

very small (Std. beta = -0.12, 95% CI [-0.99, 0.72])
small (Std. beta = 1.07, 95% CI [0.15, 2.34])
```

\$log_mean_latency_initiate.x
Effect sizes were labelled following Chen's (2010) recommendations.

very small (Std. beta = -0.07, 95% CI [-0.93, 0.79])
small (Std. beta = -1.07, 95% CI [-2.27, -0.17])

Comparing complete linear regressions

LDA: application and results


```
lda <- lda(factor(merged_column) - ., data=train_transformed1[,-c(17,18)])
```

Overall Statistics

Accuracy : 0.5962

95% CI : (0.451, 0.7299)

No Information Rate: 0.25

P-Value [Acc > NIR] : 1.26e-07

Confusion Matrix and Statistics

Reference

rediction	femalecon	femaleMS	malecon	maleMS
femalecon	1	0	0	0
femaleMS	2	3	0	1
malecon	0	0	2	2
maleMS	0	0	1	0

QDA with two classes

```
qda3 <- qda(factor(sex)~
                                  ., data=train_transformed3)
              Reference
      Prediction male female
         male
         female
                  Accuracy: 0.8333
                    95% CI: (0.5159, 0.9791)
         No Information Rate: 0.5
         P-Value [Acc > NIR] : 0.01929
```


Partition Plot

Some other interesting results

Reference

Prediction con MS

con 5 1 MS 1 5

Accuracy: 0.8333

95% CI: (0.5159, 0.9791)

No Information Rate : 0.5 P-Value [Acc > NIR] : 0.01929

Partition Plot

- The effect of stay win incorr prop y x group [MS] is statistically significant and positive (beta = 0.65, 95% CI [0.16, 1.13], t(60) = 2.66, p = 0.010; Std. beta = 0.65, 95% CI [0.16, 1.13])

- There are **basal behavioural differences between sexes** on the PRL task, females have higher number of trials and higher choice latency while lower latency to initiate.
- Differences for groups in behavioural measures seem to be present only in female rats, highlighting a differential developmental effect of neglect dependent on sex.
- There is a "resilient" phenotype in maltreated females that confers them better task scores but this effect could hide a more subtle vulnerability

7

Possible further developments

- Cross validate the models to better estimate performances
- Are maltreated female rats really that "resilient"? Could there be differences
 in treatment outcomes? -> Data on pharmacological tests
- Are there brain-wide alterations associated with maltreatment status and behavioural differences? -> Analyze MRI data
- Functional data analysis using all the 640 rows of the longitudinal dataset instead
 of only the 64 rows used in the current analysis

Thank you for the attention!

References

- [2] Bradatan C, Firebaugh G. History, Population Policies, and Fertility Decline in Eastern Europe. J Fam Hist 2007;32:179–92. https://doi.org/10.1177/0363199006297732.
- Grolemund, Garrett, and Hadley Wickham. R for Data Science. O'Reilly Media, 2017.
- [1] McLaughlin KA, Sheridan MA, Lambert HK. Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neurosci Biobehav Rev 2014;47:578–91. https://doi.org/10.1016/j.neubiorev.2014.10.012
- Young-Southward G, Svelnys C, Gajwani R, Bosquet Enlow M, Minnis H. Child
 Maltreatment, Autonomic Nervous System Responsivity, and Psychopathology: Current
 State of the Literature and Future Directions. Child Maltreat 2020;25:3–19.
 https://doi.org/10.1177/10775505108/18/107
- 7 O John Lu The Flements of Statistical Learning Data Mining Inference and Prediction Journal of the Royal Statistical Society Series A: Statistics in Society, Volume 173. Issue 3. July 2010, Pages 693–694, https://doi.org/10.1111/j.1467-985X.2010.00646_6.x

