Quiz 2 Review

Lecture 4

Quiz

- Format: Blackboard, so remember...
 - Bring your laptop charged
 - Install LockDown Browser

- No notes/programs/web/calculator/etc
 - Scratch paper will be supplied
 - Bring a writing utensil
- Content: all of clustering

 Of the four algorithms we covered (K-Means, agglomerative, DBSCAN, GMMs), which (if any) could have led to the following clustering (to 3 decimal places of precision)

	c1	c2	с3
p1	0	0	1
p2	0	1	0
р3	1	0	0
p4	0	1	0

- K-Means
- DBSCAN
- GMMs

Of the four algorithms we covered (K-Means, agglomerative, DBSCAN, GMMs), which (if any) could have led to the following clustering (to 3 decimal places of precision)

	c1	c2	с3
p1	0	1	1
p2	0	1	1
р3	1	0	1
р4	1	0	1

Agglomerative

$$C3 = \{C1, C2\}$$

 Of the four algorithms we covered (K-Means, agglomerative, DBSCAN, GMMs), which (if any) could have led to the following clustering (to 3 decimal places of precision)

	c1	c2	с3
p1	0	1	1
p2	0	1	1
р3	1	0	1
р4	0	0	0

- None
 - What are the properties of this clustering?

 We learned about the agglomerative clustering algorithm in detail.

 In what context have we learned that divisive is also useful?

A method for K-Means initialization!

- Agree/Disagree + WHY!?
 - It is not an effective strategy to evaluate using a function over the data/clusters that is different than that optimized by your clustering algorithm

- Disagree!
 - K-Means: SSE vs Silhouette (amongst others)

- Agree/Disagree
 - K-Means is guaranteed to converge and, when it does, the clustering is globally optimum.

- Disagree!
 - Converge, yes, but to a *local* optimum

 Describe the meaning and context of the following expression in context of K-Means, where x refers to the dataset and r the one-hot membership variables

$$\frac{\sum_{n} r_{nk} \mathbf{x_n}}{\sum_{n} r_{nk}}$$

The M-Step!!

- Agree/Disagree
 - Assuming K, # of dimensions, and N are large enough, it is reasonable to assume that a small number of random Forgy restarts will result in good K-Means clusterings

- Disagree!
 - The more likely there is a bad distribution w.r.t. centroids/clusters

- Increasing K will generally lead to...
 - a) Monotonically higher SSE
 - b) Better clusterings

- Agree/Disagree
 - Identifying isolated branches is a reasonable approach to finding good cluster-number cutoffs

- Disagree!
 - Think about relative dendogrammatic heights

- Agree/Disagree
 - A point, q, is density-reachable from another point, p, if q is in the eps-neighborhood of p, $N_{\varepsilon}(p)$

- Disagree
 - What condition is missing about p?

 What algorithm(s) could have produced the following clustering, where color (RGB) indicates cluster membership

• GMMs!

 Provide approximate values of responsibility for each distribution in the following diagram (close to 0/1, middle)

- Red: close to 1
- Blue: close to 0

- Agree/Disagree
 - When running EM for GMMs, you stop iterating once all the responsibilities have stopped changing

- Disagree
 - Think ε

Good Clustering? **Proximity Matrix**

- Agree/Disagree
 - High accuracy implies high precision and/or recall

Disagree

	Same Class	Diff Class
Same Cluster	0	25
Diff Cluster	0	175