COL 351: Analysis and Design of Algorithms

Friday, 13 August 2021

Today's Lecture

- Graph Notations
- Spanning Tree Problem
- Minimum Spanning Tree Problem (uses Greedy approach)

What are graphs?

• A graph is a pair G = (V, E) where V is a set of vertices and $E \subseteq V \times V$ is a set of edges.

•
$$n = |V|$$

•
$$m = |E|$$

• Subgraph: A graph H=(V',E') is subgraph of G=(V,E) if $V'\subseteq V$ and $E'\subseteq E$.

What is tree?

Equivalent definition of trees:

(Un-rooted tree) - No edge direction | Examples of tree

• A tree T = (V, E) is a connected acyclic undirected graph.

AVI tree

Binary tree

- G is a connected graph with n vertices and (n-1) edges.
- G is a <u>acyclic</u> graph with n vertices and (n-1) edges.
- $oldsymbol{\cdot}$ satisfies that each pair of vertices has a unique path between them.

veeten is

Rin

Motivational Problem: Metro Layout

There are n locations in a city connected by roads.

GOAL: Compute a "metro-network" on top of road map such that each pair of location is connected by metro. with minimum wo of edges.

Mathematical Formulation: Spanning Tree

GIVEN: An n vertex, m edges connected undirected graph G = (V, E).

GOAL: Find a connected subgraph $H = (V, E_H \subseteq E)$ of G with minimum edges.

Minimum Spanning Tee of Gr is edge-weighted, find a sola with least weight

What if the edges in G are weighted?

Will the same Spanning Tree be optimal?

God: Teird a sol with least weight.

spanning tree of weight 17 = -1+2+1+3+9+3

An Important Property of <u>Trees</u>

Simple

Property 1: Let T be a spanning tree of G and $e_0 = (x, y)$ be an edge not lying in T.

Let e be any edge on the *unique* path from x to y in T.

Then on swapping e with e_0 in T we get another spanning tree of G.

Proof Hint: Use equivalent definitions of tree.

(4.W°) given: Gr = (V, E) Ques. and a spang tree of Gr Refeat Swale endge of læger weight with smaler weight. weight Gurainant Process will terminate Tis Spany. Final tree will have mineim fosseble weight.

Main Problem: Minimum Spanning Tree (MST)

GIVEN: An *n* vertex, *m* edges connected undirected graph G = (V, E).

Weight function $wt: E \to \mathbb{R}$.

GOAL: Find a spanning tree $T = (V, E_T \subseteq E)$ of G such that $\sum wt(e)$ is minimum.

weight of thee

G

An Important Property of MST

Property 2: Let $e_0 = (x, y)$ be an edge in G of least weight.

Then there exists at least one MST of G containing e_0 .

Proof: Consider an MST T of G. Let us suppose $e_0 \notin T$.

Let e be any edge on the *unique* path from x to y in T.

Swap e with e_0 to compute a new tree T_0 .

By Property 1, T_0 is also a spanning tree of G.

Since $wt(T_0) \le wt(T)$, tree T_0 is an MST of G .

buz eo
is least
weight edge.

An Important Property of MST

Minimu Spang Tee

Property 2: Let $e_0 = (x, y)$ be an edge in G of least weight.

Then there exists at least one MST of G containing e_0 .

Take any MST "T" lies in T By Perperty 1, (T hie are done. HOW.

Algorithm sketch

- Step 1: Reduce Problem to Smaller Instance with n-1 vertices.
- Step 2: Compute MST of Smaller Instance H. (n-1) & vertices
- Step 3: Extract back MST of G.

What we know?

of eo has least weight in the state of the s

Step 1: Reduce Problem to Smaller Instance

Transformation: Let $e_0 = (x, y)$ be an edge in G with least weight. Compute H as below:

- Remove vertices *x* and *y* from *G*, and add a new vertex *z*.
- For each v neighbour of x or y in G, add (v, z) to H and set $wt(v, z) := \min (wt(v, x), wt(v, y))$

Step 1: Reduce Problem to Smaller Instance

n vertices

Transformation: Let $e_0 = (x, y)$ be an edge in G with least weight. Compute H as below:

- Remove vertices *x* and *y* from *G*, and add a new vertex *z*.
- For each v neighbour of x or y in G, add (v, z) to H and set $wt(v, z) := \min (wt(v, x), wt(v, y))$

Step 2: Compute MST of Smaller Instance H

Step 3: Extract back MST of G

Algorithm

Let $e_0 = (x, y)$ be edge in G with least weight.

Initialize H to G.

Remove vertices x and y from H, and insert a new vertex z.

foreach v neighbour of x or y in G do

add edge (v, z) to H and set $wt(v, z) := \min (wt(v, x), wt(v, y))$.

Set
$$map(v, z) = \begin{cases} (v, x) & \text{if } wt(v, x) \leq wt(v, y) \\ (v, y) & \text{otherwise.} \end{cases}$$

 $T_H \leftarrow \text{MST of } H.$

Initialize $T_G := (V, \{e_0\}).$

foreach edge e in T_H do

if e is not incident to z then add e to T_G .

else add map(e) to T_G .

Output T_G .

Algorithm

Let $e_0 = (x, y)$ be edge in G with least weight.

Initialize H to G.

Remove vertices x and y from H, and insert a new vertex z.

foreach v neighbour of x or y in G do

add edge
$$(v, z)$$
 to H and set $wt(v, z) := \min (wt(v, x), wt(v, y))$.
Set $map(v, z) = \begin{cases} (v, x) & \text{if } wt(v, x) \leq wt(v, y) \\ (v, y) & \text{otherwise.} \end{cases}$

 $T_H \leftarrow \text{MST of } H.$

Initialize $T_G := (V, \{e_0\}).$

foreach edge e in T_H do

if e is not incident to z then add e to T_G .

else add map(e) to T_G .

Output T_G .

Correctness

Theorem 1: Let $e_0 = (x, y)$ be edge with least weight in G, and H graph computed by Algorithm.

Then $wt(MST(G)) = wt(MST(H)) + wt(e_0)$.

Part 1:
$$wt(MST(G)) \le wt(MST(H)) + wt(e_0)$$

Part 2: $wt(MST(G)) \ge wt(MST(H)) + wt(e_0)$