Module 1: Potential Outcomes

Fall 2021

Matthew Blackwell

Gov 2003 (Harvard)

• Does the minimum wage increase the unemployment rate?

- Does the minimum wage increase the unemployment rate?
 - · Unemployment rate went up after the minimum wage increased

factual VS. counterfactual

- Does the minimum wage increase the unemployment rate?
 - · Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?

- Does the minimum wage increase the unemployment rate?
 - · Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?
- Does having girls affect a judge's rulings in court?

factual vs. counterfactual

- Does the minimum wage increase the unemployment rate?
 - · Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?
- Does having girls affect a judge's rulings in court?
 - A judge with a daughter gave a pro-choice ruling.

factual vs. counterfactual

- Does the minimum wage increase the unemployment rate?
 - · Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?
- Does having girls affect a judge's rulings in court?
 - · A judge with a daughter gave a pro-choice ruling.
 - · Would they have done that if had a son instead?

- Does the minimum wage increase the unemployment rate?
 - · Unemployment rate went up after the minimum wage increased
 - Would it have gone up if the minimum wage increase not occurred?
- Does having girls affect a judge's rulings in court?
 - · A judge with a daughter gave a pro-choice ruling.
 - Would they have done that if had a son instead?
- Causal inference is the study of these types of causal questions.

• Associations: parameters of the joint distribution of **observed data**.

- · Associations: parameters of the joint distribution of **observed data**.
 - Correlations, regression coefficients, odds ratios, etc.

- · Associations: parameters of the joint distribution of **observed data**.
 - Correlations, regression coefficients, odds ratios, etc.
 - Describes the world as it happened.

- Associations: parameters of the joint distribution of **observed data**.
 - · Correlations, regression coefficients, odds ratios, etc.
 - · Describes the world as it happened.
 - No meaningful "directionality", just a joint distribution.

- Associations: parameters of the joint distribution of **observed data**.
 - · Correlations, regression coefficients, odds ratios, etc.
 - · Describes the world as it happened.
 - No meaningful "directionality", just a joint distribution.
- But causal questions are about **unobserved data**: counterfactuals!

- Associations: parameters of the joint distribution of **observed data**.
 - · Correlations, regression coefficients, odds ratios, etc.
 - Describes the world as it happened.
 - No meaningful "directionality", just a joint distribution.
- But causal questions are about **unobserved data**: counterfactuals!
 - Describes what would happen if we changed the world.

- Associations: parameters of the joint distribution of **observed data**.
 - · Correlations, regression coefficients, odds ratios, etc.
 - Describes the world as it happened.
 - No meaningful "directionality", just a joint distribution.
- But causal questions are about **unobserved data**: counterfactuals!
 - Describes what would happen if we changed the world.
 - The backbone of most social science theorizing.

• Causal inference = missing data problem.

- Causal inference = missing data problem.
- Assumptions connect missing data to observed data.

- Causal inference = missing data problem.
- **Assumptions** connect missing data to observed data.
 - Present Matt stays up until 3am prepping for class.

- Causal inference = missing data problem.
- · Assumptions connect missing data to observed data.
 - Present Matt stays up until 3am prepping for class.
 - · How would Present Matt have felt if he had gone to bed at 10pm?

- Causal inference = missing data problem.
- · Assumptions connect missing data to observed data.
 - Present Matt stays up until 3am prepping for class.
 - · How would Present Matt have felt if he had gone to bed at 10pm?
 - Past Matt (w/ a 10pm bedtime) a good substitute? (Assumption!)

- Causal inference = missing data problem.
- · Assumptions connect missing data to observed data.
 - Present Matt stays up until 3am prepping for class.
 - · How would Present Matt have felt if he had gone to bed at 10pm?
 - Past Matt (w/ a 10pm bedtime) a good substitute? (Assumption!)
- · How do we make assumptions crystal clear? Causal notation!

- Causal inference = missing data problem.
- **Assumptions** connect missing data to observed data.
 - Present Matt stays up until 3am prepping for class.
 - · How would Present Matt have felt if he had gone to bed at 10pm?
 - Past Matt (w/ a 10pm bedtime) a good substitute? (Assumption!)
- · How do we make assumptions crystal clear? Causal notation!
 - Special notation for counterfactuals and interventions.

- Causal inference = missing data problem.
- **Assumptions** connect missing data to observed data.
 - Present Matt stays up until 3am prepping for class.
 - · How would Present Matt have felt if he had gone to bed at 10pm?
 - Past Matt (w/ a 10pm bedtime) a good substitute? (Assumption!)
- · How do we make assumptions crystal clear? Causal notation!
 - · Special notation for counterfactuals and interventions.
 - Precisely state what data helps us learn about counterfactuals.

Study of n voters

- Study of *n* voters
 - n_1 are canvassed

- Study of n voters
 - n_1 are canvassed
 - $n_0 = n n_1$ are not canvassed

- Study of n voters
 - n_1 are canvassed
 - $n_0 = n n_1$ are not canvassed
- For each voter $i \in \{1, 2, ..., n\}$, observe:

- Study of n voters
 - n_1 are canvassed
 - $n_0 = n n_1$ are not canvassed
- For each voter $i \in \{1, 2, ..., n\}$, observe:
 - Observed outcome (turnout): Y_i

- Study of n voters
 - n₁ are canvassed
 - $n_0 = n n_1$ are not canvassed
- For each voter $i \in \{1, 2, ..., n\}$, observe:
 - Observed outcome (turnout): Y_i
 - Treatment variable:

$$D_i = \begin{cases} 1 & \text{if treated (canvassed)} \\ 0 & \text{if control (not canvassed)} \end{cases}$$

- Study of n voters
 - n₁ are canvassed
 - $n_0 = n n_1$ are not canvassed
- For each voter $i \in \{1, 2, ..., n\}$, observe:
 - Observed outcome (turnout): Y_i
 - Treatment variable:

$$D_i = \begin{cases} 1 & \text{if treated (canvassed)} \\ 0 & \text{if control (not canvassed)} \end{cases}$$

Pretreatment covariates: X;

- Study of n voters
 - n₁ are canvassed
 - $n_0 = n n_1$ are not canvassed
- For each voter $i \in \{1, 2, ..., n\}$, observe:
 - Observed outcome (turnout): Y_i
 - · Treatment variable:

$$D_i = \begin{cases} 1 & \text{if treated (canvassed)} \\ 0 & \text{if control (not canvassed)} \end{cases}$$

- Pretreatment covariates: X;
- · Causal question of interest: does contact affect turnout?

• Potential outcomes formally encode counterfactuals (Neyman-Rubin)

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - $Y_i(1)$: outcome that unit i would have if treated.

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - $Y_i(1)$: outcome that unit *i* would have if treated.
 - $Y_i(0)$: outcome that unit i would have if untreated.

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - $Y_i(1)$: outcome that unit i would have if treated.
 - $Y_i(0)$: outcome that unit *i* would have if untreated.
- Connect observed outcomes to potential outcomes (consistency)

Defining causal effects

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - $Y_i(1)$: outcome that unit *i* would have if treated.
 - $Y_i(0)$: outcome that unit *i* would have if untreated.
- Connect observed outcomes to potential outcomes (consistency)
 - $Y_i = Y_i(D_i)$: we observe the potential outcome of observed treatment.

Defining causal effects

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - $Y_i(1)$: outcome that unit *i* would have if treated.
 - $Y_i(0)$: outcome that unit *i* would have if untreated.
- Connect observed outcomes to potential outcomes (consistency)
 - $Y_i = Y_i(D_i)$: we observe the potential outcome of observed treatment.
- Causal effect for unit *i*: $\tau_i = Y_i(1) Y_i(0)$.

Defining causal effects

- Potential outcomes formally encode counterfactuals (Neyman-Rubin)
 - $Y_i(1)$: outcome that unit *i* would have if treated.
 - $Y_i(0)$: outcome that unit *i* would have if untreated.
- Connect observed outcomes to potential outcomes (consistency)
 - $Y_i = Y_i(D_i)$: we observe the potential outcome of observed treatment.
- Causal effect for unit *i*: $\tau_i = Y_i(1) Y_i(0)$.

Voters	Age	Gender	Contact	Turnout		Casual effect
i	X_{i1}	X_{i2}	D_i	$Y_i(1)$	$Y_i(0)$	$Y_i(1) - Y_i(0)$
1	25	M	1	0	???	
2	38	F	0	???	1	
3	67	F	0	???	1	
÷	:	÷	÷	÷	÷	
n	43	M	1	1	???	

· We only observe one potential outcome per unit.

- · We only observe one potential outcome per unit.
 - $\rightsquigarrow Y_i(1) Y_i(0)$ is never directly observed.

- We only observe one potential outcome per unit.
 - $\rightsquigarrow Y_i(1) Y_i(0)$ is never directly observed.
 - · Can learn about the marginal distributions, not joint.

- · We only observe one potential outcome per unit.
 - $\rightsquigarrow Y_i(1) Y_i(0)$ is never directly observed.
 - · Can learn about the marginal distributions, not joint.
- · Generalizes to non-binary treatments:

- · We only observe one potential outcome per unit.
 - $\rightsquigarrow Y_i(1) Y_i(0)$ is never directly observed.
 - · Can learn about the marginal distributions, not joint.
- · Generalizes to non-binary treatments:
 - categorical: $Y_i(d)$ for d = 0, 1, ..., K 1.

- · We only observe one potential outcome per unit.
 - $\rightsquigarrow Y_i(1) Y_i(0)$ is never directly observed.
 - · Can learn about the marginal distributions, not joint.
- · Generalizes to non-binary treatments:
 - categorical: $Y_i(d)$ for d = 0, 1, ..., K 1.
 - continuous (dose-response): $Y_i(d)$ for $d \in \mathbb{R}$

- We only observe one potential outcome per unit.
 - $\rightsquigarrow Y_i(1) Y_i(0)$ is never directly observed.
 - · Can learn about the marginal distributions, not joint.
- · Generalizes to non-binary treatments:
 - categorical: $Y_i(d)$ for d = 0, 1, ..., K 1.
 - continuous (dose-response): $Y_i(d)$ for $d \in \mathbb{R}$
 - multivariate: $Y_i(d_1, ..., d_K)$ for $d_k \in \mathcal{D}_K$

- We only observe one potential outcome per unit.
 - $\rightsquigarrow Y_i(1) Y_i(0)$ is never directly observed.
 - · Can learn about the marginal distributions, not joint.
- · Generalizes to non-binary treatments:
 - categorical: $Y_i(d)$ for d = 0, 1, ..., K 1.
 - continuous (dose-response): $Y_i(d)$ for $d \in \mathbb{R}$
 - multivariate: $Y_i(d_1, ..., d_K)$ for $d_k \in \mathcal{D}_K$
- Causal inference is missing data problem

- We only observe one potential outcome per unit.
 - $\rightsquigarrow Y_i(1) Y_i(0)$ is never directly observed.
 - · Can learn about the marginal distributions, not joint.
- · Generalizes to non-binary treatments:
 - categorical: $Y_i(d)$ for d = 0, 1, ..., K 1.
 - continuous (dose-response): $Y_i(d)$ for $d \in \mathbb{R}$
 - multivariate: $Y_i(d_1, ..., d_K)$ for $d_k \in \mathcal{D}_K$
- Causal inference is missing data problem
 - How do we infer the missing potential outcomes? (see rest of the course)

1. Causal ordering: $D_i \rightarrow Y_i$

- 1. Causal ordering: $D_i \rightarrow Y_i$
 - · No reverse causality or simultaneity.

- 1. Causal ordering: $D_i \rightarrow Y_i$
 - · No reverse causality or simultaneity.
- 2. Consistency: $Y_i = Y_i(d)$ if $D_i = d$

- 1. Causal ordering: $D_i \rightarrow Y_i$
 - · No reverse causality or simultaneity.
- 2. Consistency: $Y_i = Y_i(d)$ if $D_i = d$
 - · No hidden versions of treatment.

- 1. Causal ordering: $D_i \rightarrow Y_i$
 - · No reverse causality or simultaneity.
- 2. Consistency: $Y_i = Y_i(d)$ if $D_i = d$
 - · No hidden versions of treatment.
 - Or that treatment variance is **irrelevant** (Vanderweele, 2009)

- 1. Causal ordering: $D_i \rightarrow Y_i$
 - · No reverse causality or simultaneity.
- 2. Consistency: $Y_i = Y_i(d)$ if $D_i = d$
 - · No hidden versions of treatment.
 - Or that treatment variance is **irrelevant** (Vanderweele, 2009)
- 3. No interference between units: $Y_i(D_1, D_2, \dots, D_N) = Y_i(D_i)$

- 1. Causal ordering: $D_i \rightarrow Y_i$
 - · No reverse causality or simultaneity.
- 2. Consistency: $Y_i = Y_i(d)$ if $D_i = d$
 - · No hidden versions of treatment.
 - Or that treatment variance is **irrelevant** (Vanderweele, 2009)
- 3. No interference between units: $Y_i(D_1, D_2, \dots, D_N) = Y_i(D_i)$
 - · No causal effect of other units' treatment on other units' outcomes.

- 1. Causal ordering: $D_i \rightarrow Y_i$
 - · No reverse causality or simultaneity.
- 2. Consistency: $Y_i = Y_i(d)$ if $D_i = d$
 - · No hidden versions of treatment.
 - Or that treatment variance is **irrelevant** (Vanderweele, 2009)
- 3. No interference between units: $Y_i(D_1, D_2, \dots, D_N) = Y_i(D_i)$
 - · No causal effect of other units' treatment on other units' outcomes.
 - Last two combined: SUTVA (stable unit-treatment variation assumption)

• $Y_i(d)$ is the value that Y would take under D_i set to d.

- $Y_i(d)$ is the value that Y would take under D_i set to d.
 - To be well-defined, D_i should be manipulable at least in principle.

- $Y_i(d)$ is the value that Y would take under D_i set to d.
 - To be well-defined, D_i should be manipulable at least in principle.
- ~> common motto: **"No causation without manipulation"** Holland (1986)

- $Y_i(d)$ is the value that Y would take under D_i set to d.
 - To be well-defined, D_i should be manipulable at least in principle.
- ~> common motto: **"No causation without manipulation"** Holland (1986)
- Tricky causal problems: immutable characteristics such as race, sex, etc.

- $Y_i(d)$ is the value that Y would take under D_i set to d.
 - To be well-defined, D_i should be manipulable at least in principle.
- ~> common motto: "No causation without manipulation" Holland (1986)
- Tricky causal problems: immutable characteristics such as race, sex, etc.
 - · What is the effect of being a man on my political views?

- $Y_i(d)$ is the value that Y would take under D_i set to d.
 - To be well-defined, D_i should be manipulable at least in principle.
- ~> common motto: **"No causation without manipulation"** Holland (1986)
- Tricky causal problems: immutable characteristics such as race, sex, etc.
 - · What is the effect of being a man on my political views?
 - What's the hypothetical manipulation? Very tricky!

- $Y_i(d)$ is the value that Y would take under D_i set to d.
 - To be well-defined, D_i should be manipulable at least in principle.
- ~> common motto: **"No causation without manipulation"** Holland (1986)
- Tricky causal problems: immutable characteristics such as race, sex, etc.
 - · What is the effect of being a man on my political views?
 - · What's the hypothetical manipulation? Very tricky!
- Common alternative: focus on places where we can manipulate these characteristics:

- $Y_i(d)$ is the value that Y would take under D_i set to d.
 - To be well-defined, D_i should be manipulable at least in principle.
- ~> common motto: **"No causation without manipulation"** Holland (1986)
- Tricky causal problems: immutable characteristics such as race, sex, etc.
 - · What is the effect of being a man on my political views?
 - · What's the hypothetical manipulation? Very tricky!
- Common alternative: focus on places where we can manipulate these characteristics:
 - Effect of perceived race/gender on legislator replies to constituent mail.

- $Y_i(d)$ is the value that Y would take under D_i set to d.
 - To be well-defined, D_i should be manipulable at least in principle.
- ~> common motto: **"No causation without manipulation"** Holland (1986)
- Tricky causal problems: immutable characteristics such as race, sex, etc.
 - · What is the effect of being a man on my political views?
 - · What's the hypothetical manipulation? Very tricky!
- Common alternative: focus on places where we can manipulate these characteristics:
 - Effect of perceived race/gender on legislator replies to constituent mail.
 - Effect of elective female versus male legislators on policy outcomes.

- $Y_i(d)$ is the value that Y would take under D_i set to d.
 - To be well-defined, D_i should be manipulable at least in principle.
- ~> common motto: **"No causation without manipulation"** Holland (1986)
- Tricky causal problems: immutable characteristics such as race, sex, etc.
 - · What is the effect of being a man on my political views?
 - · What's the hypothetical manipulation? Very tricky!
- Common alternative: focus on places where we can manipulate these characteristics:
 - Effect of perceived race/gender on legislator replies to constituent mail.
 - Effect of elective female versus male legislators on policy outcomes.
 - Differential effects of treatment by race or gender.

• Ideal world: estimate unit causal effects $Y_i(1) - Y_i(0)$

- Ideal world: estimate unit causal effects $Y_i(1) Y_i(0)$
 - But... FPOCI! Almost always unidentified without strong assumptions

- Ideal world: estimate unit causal effects $Y_i(1) Y_i(0)$
 - · But... FPOCI! Almost always unidentified without strong assumptions
- Sample average treatment effect (SATE):

SATE =
$$\frac{1}{n} \sum_{i=1}^{n} [Y_i(1) - Y_i(0)]$$

- Ideal world: estimate unit causal effects $Y_i(1) Y_i(0)$
 - · But... FPOCI! Almost always unidentified without strong assumptions
- Sample average treatment effect (SATE):

SATE =
$$\frac{1}{n} \sum_{i=1}^{n} [Y_i(1) - Y_i(0)]$$

Average outcomes if everyone is treated vs. no one.

- Ideal world: estimate unit causal effects $Y_i(1) Y_i(0)$
 - · But... FPOCI! Almost always unidentified without strong assumptions
- Sample average treatment effect (SATE):

SATE =
$$\frac{1}{n} \sum_{i=1}^{n} [Y_i(1) - Y_i(0)]$$

- · Average outcomes if everyone is treated vs. no one.
- We'll spend a lot time trying to identify this.

- Ideal world: estimate unit causal effects $Y_i(1) Y_i(0)$
 - · But... FPOCI! Almost always unidentified without strong assumptions
- Sample average treatment effect (SATE):

$$\mathsf{SATE} = \frac{1}{n} \sum_{i=1}^{n} [Y_i(1) - Y_i(0)]$$

- Average outcomes if everyone is treated vs. no one.
- · We'll spend a lot time trying to identify this.
- Sample average treatment effect for the treated (SATT):

$$\mathsf{SATT} = \frac{1}{n_1} \sum_{i=1}^n D_i(Y_i(1) - Y_i(0)) = \frac{1}{n_1} \sum_{i=1}^n D_i(Y_i - Y_i(0))$$

Estimands

- Ideal world: estimate unit causal effects $Y_i(1) Y_i(0)$
 - But... FPOCI! Almost always unidentified without strong assumptions
- Sample average treatment effect (SATE):

SATE =
$$\frac{1}{n} \sum_{i=1}^{n} [Y_i(1) - Y_i(0)]$$

- Average outcomes if everyone is treated vs. no one.
- · We'll spend a lot time trying to identify this.
- Sample average treatment effect for the treated (SATT):

$$\mathsf{SATT} = \frac{1}{n_1} \sum_{i=1}^n D_i(Y_i(1) - Y_i(0)) = \frac{1}{n_1} \sum_{i=1}^n D_i(Y_i - Y_i(0))$$

Useful for potentially harmful treatments we may want to remove.

• SATE and SATT are specific to a particular study i = 1, ..., n.

- SATE and SATT are specific to a particular study $i=1,\dots,n$.
 - · Well-defined even without "repeated sampling" magical thinking

- SATE and SATT are specific to a particular study $i=1,\ldots,n$.
 - · Well-defined even without "repeated sampling" magical thinking
 - Called **finite-sample** or **finite population** inference.

- SATE and SATT are specific to a particular study $i=1,\ldots,n$.
 - · Well-defined even without "repeated sampling" magical thinking
 - Called **finite-sample** or **finite population** inference.
- What if there is a larger population we would like to target?

- SATE and SATT are specific to a particular study $i=1,\ldots,n$.
 - · Well-defined even without "repeated sampling" magical thinking
 - Called **finite-sample** or **finite population** inference.
- What if there is a larger population we would like to target?
 - Assume units are a random sample from a large/infinite population.

- SATE and SATT are specific to a particular study $i=1,\ldots,n$.
 - · Well-defined even without "repeated sampling" magical thinking
 - Called finite-sample or finite population inference.
- · What if there is a larger population we would like to target?
 - Assume units are a random sample from a large/infinite population.
 - Called the **superpopulation** or sometimes just **population** inference.

- SATE and SATT are specific to a particular study i = 1, ..., n.
 - · Well-defined even without "repeated sampling" magical thinking
 - Called finite-sample or finite population inference.
- · What if there is a larger population we would like to target?
 - · Assume units are a random sample from a large/infinite population.
 - Called the superpopulation or sometimes just population inference.
- Population average treatment effects:

$$\begin{aligned} & \mathsf{PATE} = \mathbb{E}[Y_i(1) - Y_i(0)] \\ & \mathsf{PATT} = \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1] \end{aligned}$$

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

• Conditional average treatment effect (CATE):

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

 $\bullet\,$ Useful detecting heterogeneous effects for theory testing or targeting.

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

- Useful detecting heterogeneous effects for theory testing or targeting.
- Multiple treatments:

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

- Useful detecting heterogeneous effects for theory testing or targeting.
- Multiple treatments:
 - Controlled direct effect: $\mathbb{E}[Y_i(1, d_2) Y_i(0, d_2)]$

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

- Useful detecting heterogeneous effects for theory testing or targeting.
- · Multiple treatments:
 - Controlled direct effect: $\mathbb{E}[Y_i(1, d_2) Y_i(0, d_2)]$
 - Subtle but important differences from CATE!

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

- Useful detecting heterogeneous effects for theory testing or targeting.
- · Multiple treatments:
 - Controlled direct effect: $\mathbb{E}[Y_i(1, d_2) Y_i(0, d_2)]$
 - Subtle but important differences from CATE!
- · Non-additive effects:

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

- Useful detecting heterogeneous effects for theory testing or targeting.
- · Multiple treatments:
 - Controlled direct effect: $\mathbb{E}[Y_i(1, d_2) Y_i(0, d_2)]$
 - Subtle but important differences from CATE!
- · Non-additive effects:
 - · Quantile treatment effects:

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

- Useful detecting heterogeneous effects for theory testing or targeting.
- · Multiple treatments:
 - Controlled direct effect: $\mathbb{E}[Y_i(1, d_2) Y_i(0, d_2)]$
 - Subtle but important differences from CATE!
- · Non-additive effects:
 - · Quantile treatment effects:
 - Example: $median(Y_i(1)) median(Y_i(0))$

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

- Useful detecting heterogeneous effects for theory testing or targeting.
- · Multiple treatments:
 - Controlled direct effect: $\mathbb{E}[Y_i(1, d_2) Y_i(0, d_2)]$
 - Subtle but important differences from CATE!
- · Non-additive effects:
 - · Quantile treatment effects:
 - Example: $median(Y_i(1)) median(Y_i(0))$
 - · How does treated shift a particular quantile of the outcome distribution?

$$\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

- Useful detecting heterogeneous effects for theory testing or targeting.
- · Multiple treatments:
 - Controlled direct effect: $\mathbb{E}[Y_i(1, d_2) Y_i(0, d_2)]$
 - Subtle but important differences from CATE!
- · Non-additive effects:
 - Quantile treatment effects:
 - Example: $median(Y_i(1)) median(Y_i(0))$
 - · How does treated shift a particular quantile of the outcome distribution?
 - · Odds-ratio:

$$\frac{\mathbb{P}[Y_i(1) = 1]/\mathbb{P}[Y_i(1) = 0]}{\mathbb{P}[Y_i(0) = 1]/\mathbb{P}[Y_i(0) = 0]}$$

• Setting: effect of a **job training program** D_i on wages Y_i

- Setting: effect of a **job training program** D_i on wages Y_i
- Truncation by "death" problem:

- Setting: effect of a **job training program** D_i on wages Y_i
- Truncation by "death" problem:
 - Wages only defined for **employed** respondents $(S_i = 1)$

- Setting: effect of a **job training program** D_i on wages Y_i
- · Truncation by "death" problem:
 - Wages only defined for **employed** respondents $(S_i = 1)$
 - · But employed are not comparable to unemployed

- Setting: effect of a **job training program** D_i on wages Y_i
- Truncation by "death" problem:
 - Wages only defined for **employed** respondents $(S_i = 1)$
 - · But employed are not comparable to unemployed
 - · Post-treatment bias: program might affect employment.

- Setting: effect of a **job training program** D_i on wages Y_i
- Truncation by "death" problem:
 - Wages only defined for **employed** respondents $(S_i = 1)$
 - · But employed are not comparable to unemployed
 - Post-treatment bias: program might affect employment.
 - If program increases employment, it might seem like the program decreases wages.

- Setting: effect of a **job training program** D_i on wages Y_i
- Truncation by "death" problem:
 - Wages only defined for **employed** respondents ($S_i = 1$)
 - · But employed are not comparable to unemployed
 - · Post-treatment bias: program might affect employment.
 - If program increases employment, it might seem like the program decreases wages.
- Don't adjust for post-treatment variables! (collider/selection bias)

• We only observe Y_i when $S_i = 1$.

- We only observe Y_i when $S_i = 1$.
- · Potential variables:

- We only observe Y_i when $S_i = 1$.
- · Potential variables:
 - Potential employment: $S_i(1), S_i(0)$

- We only observe Y_i when $S_i = 1$.
- · Potential variables:
 - Potential employment: $S_i(1), S_i(0)$
 - Potential wages: $Y_i(d,s) \to Y_i(1,0), Y_i(0,0)$ do not exist.

- We only observe Y_i when $S_i = 1$.
- · Potential variables:
 - Potential employment: $S_i(1), S_i(0)$
 - Potential wages: $Y_i(d,s) \to Y_i(1,0), Y_i(0,0)$ do not exist.
- Four **principal strata** defined by $(S_i(0), S_i(1))$:

- We only observe Y_i when $S_i = 1$.
- · Potential variables:
 - Potential employment: $S_i(1), S_i(0)$
 - Potential wages: $Y_i(d,s) \to Y_i(1,0), Y_i(0,0)$ do not exist.
- Four **principal strata** defined by $(S_i(0), S_i(1))$:
 - 1. (1,1): always employed (regardless of program).

- We only observe Y_i when $S_i = 1$.
- · Potential variables:
 - Potential employment: $S_i(1), S_i(0)$
 - Potential wages: $Y_i(d,s) \to Y_i(1,0), Y_i(0,0)$ do not exist.
- Four **principal strata** defined by $(S_i(0), S_i(1))$:
 - 1. (1,1): always employed (regardless of program).
 - 2. (0,0): never employed (regardless of program).

- We only observe Y_i when $S_i = 1$.
- · Potential variables:
 - Potential employment: $S_i(1), S_i(0)$
 - Potential wages: $Y_i(d,s) \rightarrow Y_i(1,0), Y_i(0,0)$ do not exist.
- Four **principal strata** defined by $(S_i(0), S_i(1))$:
 - 1. (1,1): always employed (regardless of program).
 - 2. (0,0): never employed (regardless of program).
 - 3. (0,1): helped (employed only when treated).

- We only observe Y_i when $S_i = 1$.
- · Potential variables:
 - Potential employment: $S_i(1), S_i(0)$
 - Potential wages: $Y_i(d,s) \to Y_i(1,0), Y_i(0,0)$ do not exist.
- Four **principal strata** defined by $(S_i(0), S_i(1))$:
 - 1. (1,1): always employed (regardless of program).
 - 2. (0,0): never employed (regardless of program).
 - 3. (0,1): helped (employed only when treated).
 - 4. (1,0): hurt (unemployed only when treated).

- We only observe Y_i when $S_i = 1$.
- Potential variables:
 - Potential employment: $S_i(1), S_i(0)$
 - Potential wages: $Y_i(d,s) \to Y_i(1,0), Y_i(0,0)$ do not exist.
- Four **principal strata** defined by $(S_i(0), S_i(1))$:
 - 1. (1, 1): always employed (regardless of program).
 - 2. (0,0): never employed (regardless of program).
 - 3. (0,1): helped (employed only when treated).
 - 4. (1,0): hurt (unemployed only when treated).
- · Can't tell which units in which strata.

- We only observe Y_i when $S_i = 1$.
- · Potential variables:
 - Potential employment: $S_i(1), S_i(0)$
 - Potential wages: $Y_i(d,s) \to Y_i(1,0), Y_i(0,0)$ do not exist.
- Four **principal strata** defined by $(S_i(0), S_i(1))$:
 - 1. (1,1): always employed (regardless of program).
 - 2. (0,0): never employed (regardless of program).
 - 3. (0,1): helped (employed only when treated).
 - 4. (1,0): hurt (unemployed only when treated).
- · Can't tell which units in which strata.
- Effect of interest is the effect among always employed:

$$\mathbb{E}[Y_i(1,1) - Y_i(0,1) \mid S_i(1) = S_i(0) = 1]$$

• Causal inference is about comparing **counterfactuals**.

- · Causal inference is about comparing counterfactuals.
- Potential outcomes represent these counterfactuals mathematically.

- · Causal inference is about comparing counterfactuals.
- Potential outcomes represent these counterfactuals mathematically.
- Many, many possible **causal** quantities of interest (any contrast of POs).

- · Causal inference is about comparing counterfactuals.
- Potential outcomes represent these counterfactuals mathematically.
- Many, many possible **causal** quantities of interest (any contrast of POs).
- Up next: randomized experiments and tests for causal effects.