Date	10 November 2022
Team ID	PNT2022TMID01716
Project Name	CAR RESALES VALUE PREDICTION
Maximum Marks	2 Marks

A training model is a dataset that is used to train an algorithm. It consists of the sample output data and the corresponding sets of input data that have an influence on the output. The training model is used to run the input data through the algorithm to correlate the processed output against the sample output. The result from this correlation is used to modify the model.

This iterative process is called "model fitting". The accuracy of the training dataset or the validation dataset is critical for the precision of the model.

Model training is the process of feeding an algorithm with data to help identify and learn good values for all attributes involved.

```
import seaborn as sns
from matplotlib import *
import sys
from pylab import *
plt.figure(figsize=[11,5])
sns.distplot(new_df['price'])
```



```
plt.figure(figsize=[17,5])
plt.subplot(1,3,1)
sns.distplot(new_df['yearOfRegistration'])
plt.title('Car Year Distribution Plot')

plt.subplot(1,3,2)
sns.distplot(new_df['powerPS'])
plt.title('Car power Plot')
```


new df.describe()

log_price = np.log(new_df['price'])
new_df['log_price'] = log_price
new_df.head()

	seller	offerType	price	vehicleType	yearOfRegistration	gearbox	powerPS	model	kilometer	monthOfRegistration	fuelType	brand	notRepairedDamage	1
1	privat	Angebot	18300	coupe	2011	manual	190	not- declared	125000	5	diesel	audi	Yes	
2	privat	Angebot	9800	suv	2004	automatic	163	grand	125000	8	diesel	jeep	not-declared	
3	privat	Angebot	1500	small car	2001	manual	75	golf	150000	6	petrol	volkswagen	No	
4	privat	Angebot	3600	small car	2008	manual	69	fabia	90000	7	diesel	skoda	No	
5	privat	Angebot	650	limousine	1995	manual	102	3er	150000	10	petrol	bmw	Yes	
4														Þ

```
plt.figure(figsize=[20,7])
plt.subplot(1,3,1)
plt.title("Price and Year")
sns.scatterplot(x='yearOfRegistration',y='log_price',data=new_df)

plt.subplot(1,3,2)
plt.title("price and kilometer")
sns.scatterplot(x='kilometer',y='log_price',data=new_df)

plt.subplot(1,3,3)
sns.scatterplot(y='price',x='log_price',data=new_df)
plt.title("Price and powerPS")
```


sns.heatmap(new df.corr(), annot=True)

```
\begin{tabular}{ll} \beg
                                                                                                                                                                                                   增☆□□:
  CO & IBM.ipynb 🌣
                                                                                                                                                                              Comment A Share D
           File Edit View Insert Runtime Tools Help All changes saved
                                                                                                                                                                                      sns.heatmap(new_dt.corr(), annot=Irue)
 ≡
                                                                                                                                                                                       ↑ ↓ © 目 ‡ 🛭 👔 :
 Q
                 <matplotlib.axes._subplots.AxesSubplot at 0x7fa7f3b952d0>
 {x}
                                                     1
                                                                                                       -0.098
                                                                                                                                               -0.24
 -0.017 -0.42
                                                                          1
                                log_price
                  notRepairedDamage labels
                             brand labels
 <>
 vehicleType_labels
 >_
Y = labeled.iloc[:,0].values
X = labeled.iloc[:,1:].values
Y = Y.reshape(-1,1)
from sklearn.model selection import train_test_split,cross_val_score
X train, X test, Y train, Y test = train test split(X,Y,test size=0.3, ran
dom state=3)
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2 score
regressor= RandomForestRegressor (n estimators=1000, max depth=10, random
state=34)
regressor.fit(X train, np.ravel (Y train, order='C'))
y pred=regressor.predict(X test)
print(r2 score (Y test, y pred))
y pred=regressor.predict(X test)
print(r2 score (Y test,y pred))
df ev = pd.DataFrame(np.exp(y pred), columns=['Predicted Price'])
# We can also include the Actual price column in that data frame (so we ca
n manually compare them)
#Y test=Y test.reset index(drop=True)
df ev['Actual Price'] = np.exp(Y test)
# we can calculate the difference between the targets and the predictions
```

```
df ev['Residual'] = df ev['Actual Price'] - df ev['Predicted Price']
df ev['Difference%'] = np.absolute(df ev['Residual']/df ev['Actual Price']
*100)
pd.set_option('display.float_format', lambda x: '%.2f' % x)
df ev.sort values(by=['Difference%'])
df ev.tail(5)
          Predicted Price Actual Price Residual Difference%
    83504
                  4946.32
                               5790.00
                                          843.68
                                                       14.57
    83505
                                                       19.66
                  4177.92
                                5200.00
                                        1022.08
    83506
                               12499.00
                                                       11.79
                  11025.04
                                        1473.96
                                                       18.69
    83507
                  7967.92
                                9800.00
                                        1832.08
    83508
                   564.48
                                400.00
                                         -164.48
                                                       41.12
from sklearn.linear model import LinearRegression
lr = LinearRegression()
lr.fit(X train, Y train)
y pred lr = lr.predict(X test)
r squared = r2 score(Y test,y pred lr)
print("R squared :", r squared)
from sklearn.ensemble import GradientBoostingRegressor
gbt = GradientBoostingRegressor()
gbt.fit(X train, Y train)
y pred gbt = gbt.predict(X test)
r_squared = r2_score(Y_test,y_pred_gbt)
print("R squared :", r squared)
df ev = pd.DataFrame(np.exp(y pred gbt), columns=['Predicted Price'])
df ev['Actual Price'] = np.exp(Y test)
df ev['Residual'] = df ev['Actual Price'] - df_ev['Predicted Price']
df ev['Difference%'] = np.absolute(df ev['Residual']/df ev['Actual Price']
*100)
pd.set option('display.float format', lambda x: '%.2f' % x)
df ev.sort values(by=['Difference%'])
```

df ev.tail(5)

filename = 'resale_model.sav'
pickle.dump(gbt, open(filename, 'wb'))