

EE 4550L IC Hardware Security and Trust

Lab 1 - Test 4-bit adder/subtractor in Xilinx Vivado

(Note: Write your TA's name and your login on the report)

Objective

The objective of this lab is to practice writing VHDL code and testbench. Xilinx Vivado is used to simulate VHDL code and testbench.

A. 4-bit Binary Ripple Carry Adder

- 1. Create truth table for 1-bit full adder.
- 2. Create basic logic gates in VHDL code for 1-bit full adder.
- 3. Create 1-bit full adder in VHDL code.
- 4. Simulate testbench and 1-bit full adder in Vivado. Verify the simulation waveform with truth table.
- 5. Create 4-bit binary ripple carry adder in VHDL code.
- 6. Create a testbench for 4-bit binary ripple carry adder with the following testing cases. case 1: C0=0, A=0110, B=0011 case 2: C0=0, A=1010, B=0011 case 3: C0=1, A=0100, B=0101 case 4: C0=1, A=0101, B=0110
- 7. Simulate testbench and circuit 4-bit binary adder in Vivado.

B. 4-bit Binary Adder/Subtractor

- 1. Create 4-bit binary adder/subtractor in VHDL code.
- 2. Create a testbench for 4-bit binary adder/subtractor with the following testing cases. case 1: M=0, A=0110, B=0011 case 2: M=0, A=1010, B=0011 case 3: M=1, A=0100, B=0101 case 4: M=1, A=0101, B=0110
- 3. Simulate testbench and circuit 4-bit binary adder/subtractor in Vivado.

Lab Report (30 points)

A LAB REPORT SHOULD BE SUBMITTED INDIVIDUALLY. This should include:

Truth table of 1-bit full adder.

All related VHDL code (including testbench).

Simulation waveform of 1-bit full adder, 4-bit adder, and 4-bit adder/subtractor. Label binary value of waveforms.

Question: How many input patterns are required for exhaustive testing on 4-bit adder and adder/subtractor? Why?

Appendix

Xilinx Vivado tutorial:

Start Xilinx Vivado by typing "vivado &" in terminal. Click "Create New Project".

Click "Next".

Type "Project name", select "Project location", hit "Next".

Click "Next" until the following window, select "xc7vx485tffg1157-1", click "Next".

Select "Add or create design sources", click "Next", add or create RTL code and testbench.

Click "Run Simulation" in Simulation.

```
-- 2 inputs AND gate library
IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity AND2 is
    Port (A: in STD_LOGIC; -- AND gate input
B: in STD_LOGIC; -- AND gate input
C: out STD_LOGIC); -- AND gate output end
AND2;

architecture Behavioral of AND2 is begin
C <= A and B; -- 2 input AND gate end
Behavioral;
```

```
-- Testbench for AND gate
library IEEE;
IEEE.STD LOGIC 1164.ALL;
entity \overline{AND2TestBench} is end
AND2TestBench;
architecture Behavioral of AND2TestBench is
component AND2 is Port (A,B:in std logic;
            C: out std logic );
end component; --inputs
signal a: std logic:= '0';
signal b: std logic:= '0';
--outputs
signal c : std logic;
constant period : time := 1ns;
begin
uut: AND2 PORT MAP(a=>A,b=>B,c=>C);
a<=not a after period; b<=not b</pre>
after period*2;
end Behavioral;
```