Math 445 Number Theory

November 8, 2004

x has a repeating continued fraction expansion $x=[a_0,\ldots,a_n,\overline{b_0,\ldots,b_m}]\Leftrightarrow x=r+s\sqrt{t}$ for some $r,s\in\mathbb{Q}$, $t\in\mathbb{Z}$. Last time: enough to show this for $\alpha=[\overline{b_0,\ldots,b_m}]=[b_0,\ldots,b_m,\alpha]$. Then for $[b_0,\ldots,b_m]=\frac{h'_m}{k'_m}$, $\alpha=\frac{h'_m\alpha+h'_{m-1}}{k'_m\alpha+k'_{m-1}}$, so $k'_m\alpha^2+k'_{m-1}\alpha=h'_m\alpha+h'_{m-1}$, so α is the solution of a quadratic equation with rational coefficients, so $\alpha = r_0 + s_0 \sqrt{t}$, as desired. The converse (\Leftarrow) direction follows an argument parallel to one of your homework questions; our further explorations will not need this direction.

In what follows, for $x = \frac{a + \sqrt{d}}{b}$, it will be useful to have the notation $x' = \frac{a - \sqrt{d}}{b}$ for the *conjugate* of x, that is, the other root of the quadratic having x as root. Our main result on periodic continued If $x = \sqrt{n} + |\sqrt{n}|$, then $x = [\overline{a_0, \dots, a_k}]$ is purely periodic.

To see this, note that $x' = \lfloor \sqrt{n} \rfloor - \sqrt{n}$, so -1 < x' < 0. If we set $x = [a_0, \ldots, a_i + x_i] = [a_0, \ldots, a_i, \zeta_i]$ (so $\zeta_i = \frac{1}{r_i}$ and $a_{i+1} = \lfloor \zeta_i \rfloor$) then from our homework we know that (since $\sqrt{n} = [b_0, b_1, \ldots] = \frac{1}{r_i}$

$$[a_0 - \lfloor \sqrt{n} \rfloor, a_1, a_2, \dots]) \quad x_i = \frac{\sqrt{n} - m_i}{q_i} \text{ and } \zeta_{i+1} = \frac{q_i}{\sqrt{n} - m_i} = \frac{\sqrt{n} + m_i}{q_{i+1}}.$$
So $x_{i+1} = \zeta_{i+1} - a_{i+1}$, where $q_i q_{i+1} = n - m_i^2$ (which, inductively, defines q_{i+1}), $a_{i+1} = \lfloor \zeta_{i+1} \rfloor$, so

 $\frac{\sqrt{n} + m_i}{q_{i+1}} = a_{i+1} + \frac{\sqrt{n} - m_{i+1}}{q_{i+1}}$, and so $m_{i+1} = a_{i+1}q_{i+1} - m_i$ (which, inductively, defines m_{i+1}). In

other words, the formulas $q_{i+1} = \frac{n-m_i^2}{a_i}$, $a_{i+1} = \lfloor \frac{\sqrt{n}+m_i}{a_{i+1}} \rfloor$, and $m_{i+1} = a_{i+1}q_{i+1} - m_i$ allow us to inductively define each of these symbols, starting from $m_0 = |\sqrt{n}|$ and $q_0 = 1$.

The key to the proof is that $-1 < \zeta_i' < 0$ for all i; the proof may be found at the end of the day's notes. This implies that $\lfloor \frac{-1}{\zeta'_{i+1}} \rfloor = \lfloor a_i - \zeta'_i \rfloor = a_i$, since $a_i < a_i - \zeta'_i < a_i + 1$. So a_i can be recovered from ζ_{i+1} .

We know, from homework, that the continued fraction for \sqrt{n} and therefore for $\sqrt{n} + |\sqrt{n}|$ (since they agree in all but the first term), becomes periodic; past a certain point k, there is an m > 0 with $a_{k+s+m}=a_{k+s}$ for all $s\geq 0$. That is, $\zeta_k=\zeta_{k+m}$. Let k and m be the smallest such numbers (i.e., k= place where periodicity starts, m=length of the shortesst period). We claim: k=0. But this is just

because if
$$k > 0$$
, then $\zeta_k = \zeta_{k+m} \Rightarrow \zeta_k' = \zeta_{k+m}' \Rightarrow a_{k-1} = \lfloor \frac{-1}{\zeta_k'} \rfloor = \lfloor \frac{-1}{\zeta_{k+m}'} \rfloor = a_{k+m-1} \Rightarrow \frac{1}{\zeta_{k-1} - a_{k-1}} = \frac{1}{\zeta_{k+m}} = \frac{1}{\zeta_{k$

 $\zeta_k = \zeta_{k+m} = \frac{1}{\zeta_{k+m-1} - a_{k+m-1}} = \frac{1}{\zeta_{k+m-1} - a_{k-1}} \Rightarrow \zeta_{k-1} = \zeta_{(k-1)+m} \text{, contradicting our choice of } k \text{.}$ So k = 0; and so there is an m > 0 so that $a_{m+s} = a_s$ for all $s \ge 0$. So $\sqrt{n} + \lfloor \sqrt{n} \rfloor = [\overline{a_0, \dots, a_{m-1}}] = [a_0, \overline{a_1, \dots, a_{m-1}, a_0}]$. Note that $a_0 = 2\lfloor \sqrt{n} \rfloor$, so $\sqrt{n} = [\lfloor \sqrt{n} \rfloor, \overline{a_1, \dots, a_{m-1}, 2\lfloor \sqrt{n} \rfloor}]$.

Now back to Pell's Equation! We know that if $|N| < \sqrt{n}$, then every solution to $x^2 - ny^2 = N$ has $\frac{x}{y} = \frac{1}{n}$

a convergent of \sqrt{n} . But as we have just seen, $\sqrt{n} + \lfloor \sqrt{n} \rfloor = [2\lfloor \sqrt{n} \rfloor, a_1, \ldots, a_{m-1}]$, and this will allow us to shed light on $h_i^2 - nk_i^2$, to understand Pell's equation better.

$$\sqrt{n} + \lfloor \sqrt{n} \rfloor = [2\lfloor \sqrt{n} \rfloor, a_1, \dots, a_{m-1}]$$
 means (with $a_0 = \lfloor \sqrt{n} \rfloor$) that $\sqrt{n} = [a_0, \overline{a_1, \dots, a_{m-1}, 2a_0}]$

Wherever we choose to stop the continued fraction expansion of \sqrt{n} , $\sqrt{n} = [a_0, \ldots, a_s, \zeta_{s+1}] =$

$$[a_0, \ldots, a_s, \frac{\sqrt{n+m_s}}{q_{s+1}}]$$
, we find that

$$\sqrt{n} = \frac{\frac{\sqrt{n} + m_s}{q_{s+1}} h_s + h_{s-1}}{\frac{\sqrt{n} + m_s}{q_{s+1}} k_s + k_{s-1}} = \frac{(\sqrt{n} + m_s) h_s + q_{s+1} h_{s-1}}{(\sqrt{n} + m_s) k_s + q_{s+1} k_{s-1}} .$$
 Using this, we can calculate what $h_s^2 - n k_s^2$

equals; we will do this next time

Proof of
$$-1 < \zeta_1' < 0$$
: Note that $\zeta_i = \frac{\sqrt{n} + m_{i-1}}{q_i}$, so
$$\zeta_{i+1} = \frac{1}{\zeta_i - a_i} = \frac{1}{\frac{\sqrt{n} + m_{i-1}}{q_i} - a_i} = \frac{q_i}{\sqrt{n} + m_{i-1} - a_i q_i} = \frac{q_i \sqrt{n} - (m_{i-1} - a_i q_{i+1}) q_i}{n - (m_{i-1} - a_i q_i)^2}$$
. Then
$$\zeta_i' = \frac{-\sqrt{n} + m_{i-1}}{q_i}$$
, and
$$\frac{1}{\zeta_i' - a_i} = \frac{1}{\frac{-\sqrt{n} + m_{i-1}}{q_i} - a_i} = \frac{q_i}{(m_{i-1} - a_i q_i) - \sqrt{n}} = \frac{q_i ((m_{i-1} - a_i q_i) + \sqrt{n}}{(m_{i-1} - a_i q_i)^2 - n} = \frac{-q_i \sqrt{n} - (m_{i-1} - a_i q_{i+1}) q_i}{n - (m_{i-1} - a_i q_i)^2} = \zeta_{i+1}'$$
.

But $x = \zeta_0$, so $-1 < \zeta_0' < 0$; then we have, by induction, $-1 < \zeta_i' \Rightarrow \zeta_i' - a_i < -1 \Rightarrow -1 < \frac{1}{\zeta_i' - a_i} = \zeta_{i+1}' < 0$.