Normal and Shear Stresses

Consider an arbitrary surface in B

with normal n. Thus we have the

two projection matrices

P"= n&n and P=I-n&n=mem

that define the

normal stress: th = P" th = (n.th) n = on n

shear stress: th = Pth = (m. bn)m= t m

The magnifudes of there stresses are

T = m. tn = m. on or T = mioijnj

If $\sigma_n > 0$ the normal stresses are tensile if $\sigma_n < 0$ the normal stresses are compressive.

From geometry: $\frac{1}{2}n = \frac{1}{2}n + \frac{1}{2}n$ $\left|\frac{1}{2}n\right|^2 = \left|\frac{1}{2}n\right|^2 + \left|\frac{1}{2}n\right|^2 = \frac{1}{2}n^2 + \frac{1}{2}n$

Extremal Stress Values

I, Haximum and Minimum Normal Stresses

Given a state of stress of at point x, what are
the unit normals n corresponding to min.
and max. normal stress on.

This is a constrained optimization problem, because we want to find extrema of the function $\overline{\sigma}_n = \overline{\sigma}_n(\underline{n})$ with the constraint that $|\underline{n}| = 1$.

Function $f(\underline{n}) = \underline{n} \cdot \underline{g}\underline{n}$ is quadratic in components of \underline{n} . If eigenvalue of \underline{g} are positive then the level sets of $f(\underline{n})$ are ellipsoids as shown.

The extremal values are the stationary points of $\mathcal{L}(\underline{n},\lambda)$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = n_i n_i - 1 = 0$$

$$\frac{\partial \mathcal{L}}{\partial n_k} = \delta_{ij} \left(n_{i,k} n_j + n_i n_{j,k} \right) - \lambda \left(2 n_i n_{i,k} \right) = 0$$
where $n_{i,k} = \delta_{i,k}$ $n_{j,k} - \delta_{j,k}$

$$= \delta_{ij} \left(\delta_{ik} n_j + \delta_{jk} n_i \right) - \lambda \left(2 n_i \delta_{jk} \right)$$

$$= \delta_{kj} n_j + \delta_{ik} n_i - 2\lambda n_k$$

$$= 2 \left(\delta_{ik} n_k - \lambda n_k \right) = 0$$

In symbolic notation! $(\underline{p}-\lambda \underline{I})\underline{n}=0$ and $\underline{I}\underline{n}=1$ The Lagrange multiplier method leads to an eigen problem, where the Lagrange multiplier, λ , is the eigenvalue and the normal, \underline{n} , the eigenvalue.

We can see that λ is the magnitude of the normal stress by taking the dot product of eigenproblem with \underline{n} . $\underline{n} \cdot (\underline{\diamond} - \lambda \underline{\underline{I}})\underline{n} = 0 \implies \underline{n} \cdot \underline{\diamond}\underline{n} = \lambda \underline{n} \cdot \underline{n} \implies \overline{\diamond}_{\mu} = \lambda$ Hence to find the extremal stress values we must find the eigenvalues λ ; and eigenvectors \underline{n} :. λ_i 's are the principal normal stresses $\Rightarrow \lambda_i = \overline{s}_i$ \underline{n} 's are the principal elirections of \underline{z}

Since $\underline{s} = \underline{s}^T$ all λ_i are real and the set $\{\underline{n}_i\}$ form a mutually orthogonal basis, so that \underline{s} can be represented as $\underline{s} = \underline{\tilde{s}} + \underline{$

The tractions in the principal directions are

since $\underline{t}_i = \underline{\delta} \underline{n}_i = \underline{\delta}_i \underline{n}_i$ since $\underline{t}_i = \underline{\delta}_i \underline{n}_i$ there is no shear

stress on the principal planes, $\underline{t}_i^1 = 0$.

II. Maximum and minimum shear stresses

Given the principal directions n_1, n_2 and n_3 at x what is the unit vector $s = [s_1, s_2, s_3]$ that gives the max and min. values of the shear stresses t > 0

In the frame of the principal directions {n;} the traction vector associated with 3 is

The magnitudes of normal, δ_{N} , and shear stress, τ , are $\delta_{n} = \underline{s} \cdot \underline{t}_{3} = \delta_{1} s_{1}^{2} + \delta_{2} s_{2}^{2} + \delta_{3} s_{3}^{2}$ $T_{1}^{2} = |\underline{t}_{3}|^{2} - \delta_{n}^{2} = \delta_{1}^{2} s_{1}^{2} + \delta_{2}^{2} s_{2}^{2} + \delta_{3}^{2} s_{3}^{2} - (\varepsilon_{1} s_{1}^{2} + \varepsilon_{2} s_{2}^{2} + \varepsilon_{3} s_{3}^{2})^{2}$ Hence we have the following expression for the shear stress $T_{1}^{2} = \sum_{i=1}^{3} \delta_{i}^{2} s_{i}^{2} - (\sum_{j=1}^{3} \delta_{i} s_{2}^{2})^{2}$ we are looking for the extremal values of T_{1}^{2} under the constraint $|\underline{s}|^{2} - 1 = 0$

=> Solve using Lagrange mult. or direct elimination.

I) Eliminate
$$n_3 = 1 - n_1 - n_2 \implies \mathcal{T}^2 = \mathcal{T}^2(s_1, s_2)$$
.
We just used to find $\frac{\partial \mathcal{T}^2}{\partial s_1} = \frac{\partial \mathcal{T}^2}{\partial s_2} = 0$.
 $\frac{\partial \mathcal{T}^2}{\partial s_1} = 2s_1(s_1 - s_3)\{s_1 - s_3 - 2[(s_1 - s_3)s_1^2 + (s_2 - s_3)s_2^2]\} = 0$
 $\frac{\partial \mathcal{T}^2}{\partial s_2} = 2s_2(s_2 - s_3)\{s_2 - s_3 - 2[(s_1 - s_3)s_1^2 + (s_2 - s_3)s_2^2]\} = 0$

First solution:
$$S_1 = S_2 = 0 \implies S_3 = 1 \implies S_2 = \pm n_3$$

$$T^2 = S_3^2 \cdot 1 - (S_3 \cdot 1)^2 = 0$$

⇒ minimum in the shear stress
which vanishes on principal plane

Second solution: 3, = 0

$$\frac{\partial z^{2}}{\partial n_{z}} = \delta_{2} - \delta_{3} - 2 \left[(\delta_{2} - \delta_{3}) s_{2}^{2} \right] = 0$$

$$\left(\delta_{2} - \delta_{3} \right) \left(1 - 2 s_{2}^{2} \right) = 0 \quad \Rightarrow \quad S_{2} = \pm \frac{1}{\sqrt{2}}$$

$$\left(\cos s_{2}^{2} + s_{3}^{2} = 1 \right) \quad \Rightarrow \quad S_{3} = \pm \frac{1}{\sqrt{2}}$$

$$\Rightarrow \quad s = \pm \frac{1}{\sqrt{2}} \underbrace{n_{2}}_{2} \pm \frac{1}{\sqrt{2}} \underbrace{n_{3}}_{2}$$

$$= \frac{\delta_{2}^{2}}{2} + \frac{\delta_{2}^{2}}{2} - \left(\frac{\delta_{2}}{4} + 2 \frac{\delta_{3}}{2} \frac{\delta_{3}}{2} + \frac{\delta_{3}^{2}}{4} \right)$$

$$= \frac{\delta_{2}^{2}}{2} + \frac{\delta_{2}^{2}}{2} - \left(\frac{\delta_{2}^{2}}{4} + 2 \frac{\delta_{3}}{2} \frac{\delta_{3}}{2} + \frac{\delta_{3}^{2}}{4} \right)$$

$$\mathcal{T}^2 = \left(\frac{\delta_2}{2}\right)^2 - 2\frac{\delta_2}{2}\frac{\delta_3}{2} + \left(\frac{\delta_1}{2}\right)^2 = \left(\frac{\delta_2 - \delta_3}{2}\right)^2$$

We have the following two solutions:

min.
$$T = 0$$
 for $\underline{s} = \pm \underline{n}_3$
max. $T = \frac{1}{2}(\delta_2 - \delta_3)$ for $\underline{s} = \pm \frac{\underline{n}_2}{\sqrt{2}} \pm \frac{\underline{n}_3}{\sqrt{2}}$

Two additional pairs of solutions can be obtained by eliminating n, or no from to and folling similar steps. So that we have

Minimum shear stresses:

$$T=0$$
 on $\underline{s}=\pm\underline{n}$, $\underline{s}=\pm\underline{n}$, $\underline{s}=\pm\underline{n}_3$

Maximum shear stresses:

$$T = \frac{1}{2} (\delta_2 - \delta_3) \quad \text{on} \quad \underline{S}_{23} = \frac{1}{\sqrt{2}} (\pm \underline{n}_2 \pm \underline{n}_3)$$

$$T = \frac{1}{2} (\delta_1 - \delta_3) \quad \text{on} \quad \underline{S}_3 = \frac{1}{\sqrt{2}} (\pm \underline{n}_1 \pm \underline{n}_3)$$

$$T = \frac{1}{2} (\delta_1 - \delta_2) \quad \text{on} \quad \underline{S}_2 = \frac{1}{\sqrt{2}} (\pm \underline{n}_1 \pm \underline{n}_2)$$

where we assume o, 2 oz 2 oz

Note: G&S do this with Lagrange multipliers but it leads to odd expressions in judex notation, such as

$$4\left(\sum_{j=1}^{3}n_{j}^{2}s_{j}\right)n_{i}s_{i}=2\lambda n_{i}$$

where 'i'seems to be a dummy on the 1.h.s. but en free index on the rhs.

>> we did it the pedestrian way.