

Community of Practice KIPerWeb

Austausch zur Nutzung und Entwicklung KI-gestützter Webanwendungen

Agenda

- Update
 - News & Leaderboard-Update
- Input
 - "Wissensgraphen und Ontologien"
- Diskussion

News & Update (16.10.2024)

 Nicht im Leaderboard aber laut Benchmarks vor GPT-40 & Claude 3.5 Sonnet: NVIDIA Llama 3.1 Nemotron 70B:

Model	Arena Hard	AlpacaEval	MT-Bench	Mean Response Length
Details	(95% CI)	2 LC (SE)	(GPT-4- Turbo)	(# of Characters for MT- Bench)
Llama-3.1-Nemotron-70B- Instruct	85.0 (-1.5, 1.5)	57.6 (1.65)	8.98	2199.8
Llama-3.1-70B-Instruct	55.7 (-2.9, 2.7)	38.1 (0.90)	8.22	1728.6
Llama-3.1-405B-Instruct	69.3 (-2.4, 2.2)	39.3 (1.43)	8.49	1664.7
Claude-3-5-Sonnet-20240620	79.2 (-1.9, 1.7)	52.4 (1.47)	8.81	1619.9
GPT-40-2024-05-13	79.3 (-2.1, 2.0)	57.5 (1.47)	8.74	1752.2

Quelle: https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF

Confidence Intervals on model strength (Arena Elo, German)

Update: BERUFENET.AI – RAG mit kuratiertem Content

- Antwortet auf Basis der passendsten
 Berufsbeschreibungen auf BERUFENET
- RAG seit 15.10. auf Basis von Jina-Embeddings-v2base-de & Mixtral-8x7B-Instruct-v0.1
- GraphRAG ist umgesetzt (aber bis auf Weiteres noch nicht public)

Quelle: https://huggingface.co/spaces/AFischer1985/BERUFENET.AI

Update: Frag-dein-PDF - RAG mit User-Content

- Prompt adaptiert von AnythingLLM
- Output mit Quellenangaben
- Klassisches RAG auf Basis von Jina-Embeddings-v2-base-de & Mixtral-8x7B-Instruct-v0.1
- OCR möglich aber oft unerwünscht
- ChromaDB-uploads personalisiert über session-hashes
- Chunking mit Overlap
- Auch hier ist eine GraphRAG-Variante möglich und geplant

Quelle: https://huggingface.co/spaces/AFischer1985/Frag-dein-PDF

Überleitung: Dokumente als Graphen

Rechts eine Graph-Repräsentation eines semantischen Netzes mit Knoten für

- Dokumente
- Seiten
- Sektionen
- Sätze
- Satzbestandteile

Pfeile repräsentieren hier simple "contains"-Beziehungen

Fokusthema: Wissensgraphen und Ontologien

- Prompt an Llama-3.1-70B-Instruct: ,Erstelle die
 Beschreibung eines Cover-Bildes zur Veranstaltung
 "Wissensgraphen und Ontologien", die ich als Prompt für eine bildgenerierende KI verwenden kann.
- Visualisierung von FLUX.1 [dev]

 Hinweis: bei den folgenden Folien handelt es sich um Auszüge aus meinem jüngsten Vortrag zum Thema: Fischer, A. (2024): Wissensgraphen. Präsentation auf der Sektionenkonferenz der DGS am 25.09.2024

Quelle: https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell

Arbeitsdefinition

 Wissensgraphen (engl. Knowledge Graphs) gehen auf Semantische Netze (Quillian, 1960) sowie das Semantic Web (Berners Lee, 2001) zurück und stellen Wissen in Form von Graphen, d.h. über Objekte/Knoten und deren Verbindungen/Kanten, dar (z.B. Google, 2012).

Conceptual Diagram - Example Quelle: https://en.wikipedia.org/wiki/Knowledge_graph

An example of a simple RDF graph Quelle: https://de.wikipedia.org/wiki/Semantic_Web

Anwendungsbeispiele aus der Berufsbildungsforschung

- Fischer & Dörpinghaus (2024): Analyse möglicher Bildungspfade auf Basis eines BERUFENET-Wissensgraphen
- Ortmann, Bönke & Hammer (2023): Bestimmung der Schnittmenge an jeweils verknüpften Kompetenzen als Ähnlichkeitsmaß für Berufe
- GraphRAG-Chatbots:

 Perspektivisch bieten sich
 Wissensgraphen auch für
 KI-gestützte Auswertungen
 und Beratungsangebote an
 (z.B. Chatbot zur Berufsorientierung/-beratung auf
 Basis von GraphRAG)

Linked Open Data (LOD) als Wissensgraph

- Linked Open Data Cloud (https://lod-cloud.net/)
- bildet als "Giant Global Graph" (GGG) ein Netzwerk verknüpfter offener Datenbestände, z.B.
 - enzyklopädische Daten ("DBpedia", "Wikidata", "WordNet"),
 - geografische Daten ("OpenStreetMap", "GeoNames", "Linked GeoData")
 - bibliografische Daten ("DBLP", "RDF Book MashUp")
 - ...
- Oberkategorien: Cross Domain, Geography, Government, Life Sciences, Linguistics, Media, Publications, Social Networking, User Generated
- Vgl. für umfangreiche Graph-basierte Daten mit Fokus auf Statistiken auch Googles "Data Commons" (https://datacommons.org/) seit 2018

LOD als 5-Sterne-Variante von Open Data

"Occupation" in schema.org

- Mehrwert bieten v.a. verbreitete Ontologien
- Rechts ein Auszug zentraler Konzepte und Relationen zum Konzept "Occupation" auf Basis der Ontologie von schema.org: https://schema.org/Occupation
 - z.B.,rdfs:subClassOf" Intangible
 - z.B. "schema:skills" DefinedTerm
 - z.B. Person "schema:hasOccupation"
 - ...
- Beziehungen z.B. zu BERUFENET-Wissensgraph
 (Fischer & Dörpinghaus, 2024) erlauben bessere
 Analysen, Validierung und systematische Ergänzungen

Mehrwerte von Ontologien

- Generell empfiehlt sich die explizite Verknüpfung/Verknüpfbarkeit von Wissensgraphen mit einer formalen, expliziten und verbreiteten Ontologie (wie Schema.org, Basic Formal Ontology BFO, o.ä.) aus unterschiedlichen Gründen:
 - Deductive Reasoning: Ontologie als Basis für Validierung und Erweiterung des Datenbestandes
 - Data Integration: Ontologie als Brücke für die Integration von Daten aus unterschiedlichen Quellen
 - 3. Semantic Interoperability: Ontologie bietet einheitliches Vokabular, an welches multiple Systeme anknüpfen können