4.0 VU Theoretische Informatik und Logik Teil 1 SS 2013 16. Dezember 2013					
Kennzahl	Matrikelnummer	Familienname	Vorname	Gruppe	
1.) Sei <i>L</i>	$u = (\{\underline{0}\} \cup \{\underline{1}\}^*)^* \text{ u}$	and $\Sigma = \{\underline{0}, \underline{1}\}.$			
,	Geben Sie einene deterministischen endlichen Automaten mit möglichst wenigen Zuständen an, der \overline{L} (also das Komplement von L) akzeptiert. (Graphische Darstellung genügt.) (2 Punkte)				
b)	Geben Sie eine reg	guläre Sprache L_1 so an, dass	gilt:		
		$\overline{L_1} \cap L = \{\underline{1}\}^* (\{\underline{0}\} \{\underline{1}\})$	$\{\underline{0}\} \{\underline{0}\} \{\underline{1}\}^*)^*$		
				(2 Punkte)	
,		eterministischen endlichen A che L_1 akzeptiert. (Graphisch		welcher die unter	
2.) Sei <i>I</i>	$u = \{\underline{\mathbf{a}}^n\underline{\mathbf{b}}^m \mid n > m\}$	}			
		es Pumping Lemmas für regu	läre Sprachen, dass L	nicht regulär ist. (6 Punkte)	
Bewe Sprae		kontextfrei. ilfe des Satzes von Chomsky-S wie einen entsprechenden Ho			
(D_n)	bezeichnet eine Dy	ck-Sprache über n verschiede	enen Klammerpaaren.)		
				(6 Punkte)	
,	eisen oder widerleg lbt kontextfreie Sp	en Sie: rachen, für deren Kompleme	nt das Wortproblem n	icht entscheidbar	
ist.				(6 Punkte)	
Antw bei le	5.) Geben Sie an, ob die folgenden Aussagen richtig oder falsch sind, und begründen Sie Ihre Antworten. (Zwei Punkte für jede richtige Antwort mit richtiger Begründung, einen Punkt bei leicht fehlerhafter Begründung, keinen Punkt für falsche Antworten oder fehlerhafte bzw fehlende Begründungen.)				
	Ist L regulär, so is Begründung:	t jede Grammatik, die L erze		richtig \square falsch	
	Begründung:	prachen L_1 , sodass $L_1 \cdot L_2$ nic		richtig \square falsch	
	Das Halteproblem Begründung:	für Turingmaschinen ist NP-	-	richtig \Box falsch	
				(6 Punkte)	