Peeling Back the Layers: An In-Depth Evaluation of Encoder Architectures in Neural News Recommenders

Andreea Iana¹, Goran Glavaš², Heiko Paulheim¹

¹Data and Web Science Group, University of Mannheim, Germany ²Center for Artificial Intelligence and Data Science, University of Würzburg, Germany

Content-based Neural News Recommenders

Content-based Neural News Recommenders

One-sided (performance-based) understanding of encoders' behavior can lead to suboptimal model selection!

AddAtt: additive attention

Con / Concat: concatenation

(2) Candidate-aware

Recommendation Performance

Similarity of Recommendations

Recommendation Performance

Similarity of Recommendations

Recommendation Performance

Similarity of Recommendations

Recommendation Performance

Similarity of Recommendations

Results: News Encoders

Recommendation Performance

Setup: fixed user encoder = LF

- → Similar ranking performance for models using the same family of news encoders
- → Categorical information is beneficial only for less contextualized / semantically informed text encoders

Results: News Encoders

Similarity of Recommendations

- → Intra-family news encoders clusters
- → Same recommended news in over 70% of the time, regardless of architectural design & complexity

Results: News Encoders

- → Similar embeddings of intra-family news encoders
- → Similar retrieved items for small *k*, even for models with low representational similarity scores

Results: User Encoders

Recommendation Performance

Setup: fixed news encoder for different user encoders

- → Simpler encoders (e.g., LF, AddAtt) outperform more complex ones
- → Multi-feature inputs close the gap
 - → in between inter-family user encoders for the same base news encoder
 - → across intra-family user encoders for different underlying news encoders

Results: User Encoders

Similarity of Recommendations

- → Models clustered based on the underlying news encoder family, regardless of the user encoder
- → Large overlap of recommended news for intra-family user encoders

Results: User Encoders

- → Architecturally comparable families of user encoders dictate the similarity of embeddings, regardless of the news encoder
- → Differences in representational similarity not directly correlated with more dissimilar recommendations

Main Takeaways

1 Semantic Richness is Key

→ News encoding should focus more on using or adapting semantically informed, contextualized language models

Main Takeaways

1 Semantic Richness is Key

User Encoders Can be Considerably Simplified

- → Simpler architectures are more lightweight, equally effective user encoder alternatives
- → User modeling should focus also on (i) collecting richer, more accurate user feedback & (ii) news consumption motivations

Main Takeaways

1 Semantic Richness is Key

User Encoders Can be Considerably Simplified

More Rigorous Evaluation is Needed for Better Model Selection

→ Ablations & evaluations should go beyond perfomance-based evaluation & consider the broader architectural context

Conclusion

Semantic Richness is Key

NewsRecLib

Contact

User Encoders Can be Considerably Simplified

3

More Rigorous Evaluation is Needed for Better Model Selection