

iR-ECAT

iR-ECAT

This guide walks through important information about iR-ECAT.

UM019001E_20220307

Table of Contents

1.	Proc	luc	t Overview	1
2.	Spec	ifi	cations	2
3.	LED	Ins	sicators	3
	3.1	L.	V LED	3
	3.2	IC	O RUN/ERR LED	3
	3.3	E	CAT RUN	3
	3.4	E	CAT ERR	3
	3.5	R	J45 Link/Act LED	3
4.	ID S	etu	ıp Rotary	4
5.	COE	Ol	bject Dictionary	4
	5.1	С	ommunication Area	4
	5.2	lr	nput Area	4
	5.3	0	output Area	5
	5.4	С	onfiguration Data object area	6
	5.4.	1	Module Register	6
	5.4.	2	Output behavior on error	6
	5.5	0	bject Areas of the Device	7
	5.5.	1	Modular device profile	7
	5.5.	2	Configured Module Ident List	7
	5.5.	3	Detected Module Ident List	7
	5.5.	4	Module Identity	7
6.	Pow	er	Consumption	8
7.	Con	ne	cting with CODESYS	8
	7.1	Р	reparation	8
	7.2	С	onnecting with CODESYS Device	9
	7.3	Α	dding EtherCAT Device	10
	7.3.	1	Adding devices manually	10
	7.3.	2	Adding devices by scanning	11
	7.4	E	therCAT Configuration	13
	7.5	Ν	Nodule Configuration	14
	7.5.	1	Example 1	14
	7.5.	2	Example 2	15
	7.6	I/	O Mapping	15
	7.7	D	ownload Program and Run	16
	7.8	С	onfigured Station Alias (Using Node ID of the devices)	16
8.	Erro	r B	ehavior Settings	17
	8.1	F	unction	17

8.2	Configuration	17
8.2.1	.1 Digital Output settings	18
8.2.2	.2 Analog Output settings	19

Other company names, product names, or trademarks in this document are the trademarks or registered trademarks of their respective companies.

This document is subject to change without notice.

Copyright© 2018 Weintek Labs., INC. All rights reserved.

1. Product Overview

Top View

Bottom View

а	X1- EtherCAT IN	е	Power Connector
b X2- EtherCAT OUT		f	Expansion Connector
С	Node ID Rotary Switch x10		
d Node ID Rotary Switch x1			

2. Specifications

Model	iR-ECAT		
	Number of Bus Terminals	Depends on Power Consumption.	
	D: :: 1	Max. allowable number of iR modules is 16.	
Expansion I/O	Digital Input Point	Max. 256	
Module	Digital Output Point	Max. 128	
	Analog Input Channel	Max. 64	
	Analog Output Channel	Max. 64	
	ECAT Run (Green)	Device Status Indicator	
	ECAT ERR (Red)	Device Error Indicator	
Indicators	L.V (Red)	Low Voltage Status Indicator	
	IO RUN (Green)	Module Status Indicator	
	IO ERR (Red)	Module Error Indicator	
Data Transfer Rate	100 Mbps		
Data Transfer Medium	4 x 2 twisted pair copper cable	; category 5 (100 Mbps)	
Distance Between	100 m between hub/switch an	d Bus Coupler or between Bus Coupler and Bus	
Stations	Coupler		
Protocol	EtherCat Slave		
MailBox	COE -SDO requests, SDO respo	nses.	
ETG Standards	ETG 5001		
General Specificat	tion		
	Power Supply	24 VDC (-15%/+20%)	
	Power Dissipation	Nominal 100mA@24VDC	
	Current for-Internal Bus	Max 2A@5VDC	
Power	Current Consumption	270mA@5VDC	
	Floorise Healetten	Network to Logic : Isolation	
	Electrical Isolation	Logic to Field power : Isolation	
	Back-up Fuse	≤ 1.6A Self-recovery	
	PCB Coating	Yes	
	Enclosure	Plastic	
Specification	Dimensions WxHxD	27 x 109 x 81 mm	
	Weight	Approx. 0.15 kg	
	Mount	35mm DIN rail mounting	
	Protection Structure	IP20	
	Storage Temperature	-20° ~ 70°C (-4° ~ 158°F)	
Environment	Operating Temperature	0° ~ 55°C (32° ~ 131°F)	
	Relative Humidity	10% ~ 90% (non-condensing)	
	,	Conforms to	
		EN 55032: 2012+AC: 2013, Class A	
Certification	EMC Immunity	EN 61000-6-4: 2007+A1:2011	
		EN 55024: 2010+A1: 2015	
		EN 61000-6-2:2005	

 $\label{eq:thm:cat} \mbox{EtherCAT}^{\mbox{\tiny \$}} \mbox{ is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany}$

3. LED Insicators

3.1 L.V LED

L.V LED state	Description	
OFF	24V power normal	
Blinking	Detect 24V power	
ON	24V power error	

3.2 IO RUN/ERR LED

RUN LED	ERR LED	Description
OFF	OFF	Power off or no power
Blinking	OFF	IO initiating
Blinking	ON	IO initiation error
ON	OFF	IO working
ON	Blinking	IO module alarm
ON	ON	IO communication fault
Blinking	Blinking	Exceeding power limit or too many modules

3.3 ECAT RUN

LED State	Description
OFF	The device is in state INIT
Blinking	The device is in state PRE-OPERATIONAL
Single Flash	The device is in state SAFE-OPERATIONAL
ON	The device is in state OPERATIONAL
Flickering	The device is in state BOOTSTRAP

^{*}Blinking: Alternates between ON/OFF at speed 200ms.

3.4 ECAT ERR

LED State	Description
ON	Error in the coupler
Double Flash	Process Data Watchdog Timeout / EtherCAT Watchdog Timeout
Single Flash	Device changes state from Op to SafeOp Error due to a synchronization error.
Blinking	Configuration error
OFF	No error

3.5 RJ45 Link/Act LED

Link/Act (green)	
OFF	No link
ON	Link without activity
Blinking	Link and activity

^{*}Flickering: Alternates between ON/OFF at speed 50ms.

4. ID Setup Rotary

Setting	Description
0	Invalid Node Address
1~99	Valid Node Address

5. COE Object Dictionary

5.1 Communication Area

Index (hex)	Sub-index (hex)	Name	Default	R/W	Туре
1000	00	Device type	0x00001389 (5001)	RO	UINT32
1008	00	Device Name	"iR-ECAT"	RO	string
1009	00	Hardware	"1.00"	RO	4 char
100A	00	Software Version	"1.00"	RO	4 char
	Identity Ob	ject			
	00	Length of this object	0x04	RO	UINT8
1018	01	Vendor-ID	0x000006DD	RO	UINT32
1010	02	Product code	0x00000706	RO	UINT32
	03	Revision number	0x00000001	RO	UINT32
	04	Serial number	0x00000000	RO	UINT32
	Sync manag	ger type			_
	00	Length of this object	0x04	RO	UINT8
	01	Sync-Manager Type Channel 1: Mailbox Write	0x01	RO	UINT8
1C00	02	Sync-Manager Type Channel 2: Mailbox Read	0x02	RO	UINT8
	03	Sync-Manager Type Channel 3: Process Data Write (Outputs)	0x03	RO	UINT8
	04	Sync-Manager Type Channel 4: Process Data Read (Inputs)	0x04	RO	UINT8
	RxPDO ass	ign			
1C12	00	Length of this object		RO	UINT8
	01-0F	assignment RxPDO		RO	UINT16
	TxPDO assign				
1C13	00	Length of this object		RO	UINT8
	01-0F	assignment TxPDO		RO	UINT16

5.2 Input Area

Index(hex)	Name	R/W	Туре
6000	Module 1 Input Area	RO	UNIT16

6010	Module 2 Input Area	RO	UNIT16
6020	Module 3 Input Area	RO UNIT16	
60n0	Module n Input Area	RO	UNIT16

- The Input Data are located in the object area 0x6000...0x6FFF.
- The Input Data is readable by SDO Upload services.
- The Input Data area and the TxPDOs of a module only exist if Input Data of the module is available.

In the following example, the first module connected to the coupler has 16 digital input points and the second module has 4 analog input channels.

Index (hex)	Sub-index (hex)	Name	Value	Туре
	00	Length of this object	1	UINT8
6000	01	Digital Input value of the 1 st module	-	UINT16
	00	Length of this object	4	UINT8
	01	Analog Input value of the 1 st channel of the 2 nd module		INT16
6010	02	Analog Input value of the 2 nd channel of the 2 nd module		INT16
	03	Analog Input value of the 3 rd channel of the 2 nd module		INT16
	04	Analog Input value of the 4 th channel of the 2 nd module		INT16

5.3 Output Area

Index	Name	R/W	Туре
7000	Module 1 Output Area	RW	UNIT16
7010	Module 2 Output Area	RW	UNIT16
7020	Module 3 Output Area	RW	UNIT16
70F0	Module 16 Output Area	RW	UNIT16

- The Output Data are located in the object area 0x7000...0x7FFF; each module may have up to 16 Output Data objects.
- The Output Data shall be readable by SDO Upload services. Writable by SDO Download services.
- The Output Data area and the RxPDOs of a module only exist if Output Data of the module is available.

In the following example, the first module connected to the coupler has 16 digital input points and the second module has 4 analog input channels.

Index (hex)	Sub-index (hex)	Name	Value	Data Type
	00	Length of this object	1	UINT8
7000	01	Digital Input value of the 1 st module	1	UINT16
	00	Length of this object	4	UINT8
	01	Analog Input value of the 1 st channel of the 2 nd module		INT16
7010	02	Analog Input value of the 2 nd channel of the 2 nd module		INT16
	03	Analog Input value of the 3 rd channel of the 2 nd module	-	INT16
	04	Analog Input value of the 4 th channel of the 2 nd module	-	INT16

5.4 Configuration Data object area

5.4.1 Module Register

Index(hex)	Name
8000	Register of module 1
8010	Register of module 2
8020	Register of module 3
•••	
80F0	Register of module 16

Sub-index (hex)	Name
00	Length of this object
01	Register 0 of module
02	Register 1 of module
03	Register 2 of module
n	Register n-1 of module

5.4.2 Output behavior on error

Index (hex)	Name
800F	Output behavior of module 1
801F	Output behavior of module 2
802F	Output behavior of module 3
•••	
80FF	Output behavior of module 16

Sub-index (hex)	Name	
00	Length of this object	
01	Output behavior On error mode Bit0-15 is Output point 0-15 Mode Value = 0: Keep output value Value = 1: Output value is Substitute Value.	
2/17	Substitute Value 1~16	

5.5 Object Areas of the Device

5.5.1 Modular device profile

Index (hex)	Sub-index (hex)	Name	Default	R/W	Туре
	00	Length of this object	0x02	RO	UINT8
F000	01	Module Index distance	0x0010	RO	UINT16
	02	Maximum number of modules	0x0010	RO	UINT16

5.5.2 Configured Module Ident List

Index (hex)	Sub-index (hex)	Name	R/W	Туре
	00	Module number	RO	UINT8
	01	Configured module identity of the module 1	RO	UINT32
F030	02	Configured module identity of the module 2	RO	UINT32
	OF	Configured module identity of the module 16	RO	UINT32

5.5.3 Detected Module Ident List

Index (hex)	Sub-index (hex)	Name	R/W	Туре
	00	Module number	RO	UINT8
	01	Module identity of the module detected on position 1	RO	UINT32
F050	02	Module identity of the module detected on position 2	RO	UINT32
	OF	Module identity of the module detected on position 16	RO	UINT32

5.5.4 Module Identity

Item	Product	Code (Hex)
1	iR-DI16-K	0154
2	iR-DM16-P	0351
3	iR-DQ16-P	0251
4	iR-DM16-N	0352
5	iR-DQ16-N	0252
6	iR-DQ08-R	0243
7	iR-AQ04-VI	0525
8	iR-AI04-VI	0425
9	iR-AM06-VI	0635
10	iR-AI04-TR	0426

6. Power Consumption

Туре	Device	Consumption(5V)	Power Supply(5V)	Power Consumption(24V)
Coupler	iR-ETN	220mA/1.1w	2A/10w	100mA/2.40W
	iR-COP	170mA/0.85w	2A/10w	100mA/2.40W
	iR-ECAT	270mA/1.35w	2A/10w	100mA/2.40W
Digital I/O	iR-DM16-P	130mA/0.65w		53mA/1.27W
	iR-DM16-N	130mA/0.65w		56mA/1.34W
	iR-DQ08-R	220mA/1.1w		84mA/2.02W
	iR-DQ16-N	205mA/1.02w		78mA/1.87W
	iR-DQ16-P	196mA/0.984w		75mA/1.80W
	iR-DI16-K	83mA/0.418w		31mA/0.74W
Analog I/O	iR-AQ04-VI	65mA/0.325w		25mA/0.60W
	iR-AI04-VI	70mA/0.35W		27mA/0.65W
	iR-AM06-VI	70mA/0.35W		27mA/0.65W
	iR-AI04-TR	65mA/0.325w		25mA/0.60W

Note:

The coupler is the only power supply for the modules in this system. Please consider power requirements when connecting multiple modules.

ex.

Device	Name	Consumption	Power Supply		
Coupler	iR-ECAT	270mA/1.35 w	2A/10w		
Module	iR-DM16-P *13	130mA*13=1.69A	Х		
System	Power consumption: $270\text{mA} + 1.69\text{A} = 1.96\text{ A}$				
	Power supply: 2A > 1.96A				

7. Connecting with CODESYS

7.1 Preparation

First of all, download and install [cMT+CODESYS Package].

(https://www.weintek.com/globalw/Download/Download.aspx)

% Version 1.0.0.188 or later

7.2 Connecting with CODESYS Device

Step1. Find CODESYS PLC device at the bottom-right corner and click [Start PLC].

Step2. Create a simple project with the device of CODESYS Control Win V3.

Step3. Make a connection.

7.3 Adding EtherCAT Device

7.3.1 Adding devices manually

Step1. Add EtherCAT Device

[Device] » [Add Device] » [Fieldbusses] » [EtherCAT] » [Master] » [EtherCAT Master]

Step2. Add iR-ECAT

[EtherCAT Master] » [Add Device] » [Fieldbusses] » [EtherCAT] » [Slave] » [iR-ECAT]

Step3. Add Modules

[iR-ECAT] » [Add Device] » [EtherCAT] » [Module] and add the iR-Module which you use.

P.S. Module order should follow physical module.

7.3.2 Adding devices by scanning

Step1. After adding the EtherCAT Master Device, you can right click on EtherCAT_Master and then [Scan For Devices].

It'll automatically look for EtherCAT couplers and its module on the network.

Step2. Press [Copy All Devices to Project] to add device.

Abort

7.4 EtherCAT Configuration

Select your EtherCAT interface.

[EtherCAT_Master] » [General] » [Browse]

7.5 Module Configuration

If you're going to setup internal parameters of Module, you can take following steps.

Step 1. [iR_ECAT] » [Startup Parameters] » [Add]

Step 2. You'll see the list of parameters of Module. The parameters access after Start PLC.

Index 8000: 1st module Index 8010: 2nd module

And so on.

7.5.1 Example 1

Configure three iR-AQ04-VI modules, set output mode to ±5V (register 1)

(Slot: 2, index: 0x8020)

7.5.2 Example 2

Configure four iR-AM06-VI modules, set input mode to 4-20mA for channel 3 (register 3)

(Slot: 3, index: 0x8030)

7.6 I/O Mapping

Open [iR-ECAT] » [EtherCAT I/O Mapping]

Programming

```
PROGRAM PLC_PRG

VAR

bValue,bDQ : BYTE ;

END_VAR

bDQ := bValue ;
```


7.7 Download Program and Run

[Login] » [Start]

Inspect Digital Outputs

7.8 Configured Station Alias (Using Node ID of the devices)

The device addresses are automatically assigned by the master at startup. Another way to assign addresses is to use rotary switches to configure Node ID.

When Node ID is 0, then Station Alias will be the value read from E2PROM.

When Node ID is not 0, then Station Alias will be the Node ID configured using rotary switches.

8. Error Behavior Settings

8.1 Function

The Error Behavior works while communication is disabled between EtherCAT Master and iR-ECAT. The Output modules behave corresponding settings according to Error Behavior Settings. The behavior can either be keeping the last output value or output a substitute value when communication error occurs.

8.2 Configuration

[iR_ECAT] » [Startup Parameters] » [Add]

The Parameters for Error Behavior Settings are listed in Object Dictionary.

8.2.1 Digital Output settings

Sub index:

16#01 Output behavior On error (default: all activated, 0: keep the last output value,

1: output substitute value)

16#02 Error value

Example : iR-DQ16-N

bit 0~7: Output On when error occurs.

bit 8~15: Keep the last output value when error occurs.

Corresponding settings as below.

8.2.2 Analog Output settings

Sub index:

16#01 Output behavior On error (default: all channel activated)

Bit0~3: Analog Output Channel 0-3, module settings.

(0: keep the last value, 1: output substitute value)

16#02 Channel 0 Substitute value

16#03 Channel 1 Substitute value

16#04 Channel 2 Substitute value

16#05 Channel 3 Substitute value

Example: iR-AQ04-VI

Channel 0-3: Output substitute value = 10000 when error occurs.

Corresponding settings as below.

