Propositional Resolution¹

LECTURE 3

¹The slides have been prepared using the textbook material available on the web, and the slides of the previous editions of the course by Prof. Luigia Carlucci Aiello

Summary

• resolution [RN, 7.5 + some additional material]

Resolution

- One inference rule
- Requires **normal** form

Clauses

- ♦ Literals: propositional symbols (atoms) or negated atoms.
- \Diamond A formula is in negation normal form (NNF) if negations appear only in front of atoms.
- \diamondsuit A *clause* is a disjuntion of literals $L_1 \lor L_2 \lor \cdots \lor L_n$.
- ♦ A formula is in conjunctive normal form (CNF) or in clausal form or it is called a set of clauses if:

it is in negation normal form and

it is $C_1 \wedge C_2 \wedge \cdots \wedge C_n$ where C_i are clauses.

Clauses (cont.)

♦ Since disjunction is commutative:

$$A_1 \lor A_2 \lor \cdots \lor A_n \lor \neg B_1 \lor \neg B_2 \lor \cdots \lor \neg B_m$$

where A_i and B_j are atoms.

 \diamondsuit When n=m=0 we have the *empty clause*, denoted $\{\}$, or \square .

- \diamondsuit Clause: $\{L_1, L_2, \ldots, L_p\}$.
- \diamondsuit Let L be a literal and $C = \{L_1, L_2, \dots, L_p\}$ be a clause $L \cup C$ denotes $C' = \{L\} \cup C$, i.e. $C' = \{L, L_1, L_2, \dots, L_p\}$.

Horn Clauses

 \Diamond A clause is **Horn** if $n \leq 1$:

example: $P \vee \neg Q \vee \neg R$

corresponding to $Q \wedge R \Rightarrow P$

♦ A CNF is Horn if all its clauses are Horn

$$\diamondsuit$$
 If $n=1$:

$$A_1 \vee \neg B_1 \vee \dots, \vee \neg B_m$$

we have a definite (Horn) clause.

α and β formulae

Conjunctive formulae α and disjunctive formulae β :

α	α_1	α_2	β	β_1	β_2
$A \wedge B$	A	B	$A \vee B$	A	B
$\neg (A \lor B)$	$\neg A$	$\neg B$	$\neg (A \land B)$	$\neg A$	$\neg B$
	A	$\neg B$	$A \Rightarrow B$	$\neg A$	B

Trasformation in clausal form: algorithm

let F be a propositional formula:

Step 1 let $\{F\}$ be the initial set.

Step n+1 Let the result of step n be $\{D_1,\ldots,D_n\}$, where D_i is a disjunction $\{A_1^i,\ldots,A_k^i\}$; if A_j^i is not a literal, we do not have yet a CNF and ...

Trasformation in clausal form: algorithm (cont.)

Choose a D_i which contains a non literal X:

- a. if X is $\neg \top$ replace it with \bot ;
- b. if X is $\neg \bot$ replace it with \top ;
- c. if X is $\neg \neg A$ replace it with A;
- d. if X is a β formula replace it with β_1 , β_2 ;
- e. if X is a α formula replace D_i with two clauses D_i^1 and D_i^2 , where D_i^1 is D_i with α replaced by α_1 and D_i^2 is D_i with α replaced by α_2 .

Expansion rules

 \diamondsuit Steps a – e and can be written as expansion rules:

1.
$$\frac{\neg \neg A}{A}$$
 2. $\frac{\neg \top}{\bot}$ 3. $\frac{\neg \bot}{\top}$ 4. $\frac{\beta}{\beta_1, \beta_2}$ 5. $\frac{\alpha}{\alpha_1 \mid \alpha_2}$

Properties

Lemma:

Let D be a disjunction $\{A_1, \ldots, A_k\}$. If D' is obtained from D by applying rules a – e of the algorithm:

$$D \equiv D'$$

•

Example

- 1. $F = (P \Rightarrow (Q \Rightarrow (S \lor T))) \Rightarrow (T \Rightarrow Q)$
- 2. $C = \{ \neg (P \Rightarrow (Q \Rightarrow (S \lor T))), (T \Rightarrow Q) \}$ (β -rule to F)
- 3. $C_1 = \{P, (T \Rightarrow Q)\}, C_2 = \{\neg(Q \Rightarrow (S \lor T)), (T \Rightarrow Q)\}$ (α -rule to C)
- 4. $C_1=\{P,\neg T,Q\},\ C_2=\{\neg(Q\Rightarrow(S\vee T)),(T\Rightarrow Q)\}$ (β -rule to C_1)

Example (cont.)

5
$$C_1=\{P,\neg T,Q\},\ C_2=\{\neg(Q\Rightarrow(S\vee T)),\neg T,Q\}$$
 (β -rule to C_2)

6
$$C_1=\{P,\neg T,Q\}\}, \ C_2=\{Q,\neg T,Q\}, \ C_3=\{\neg(S\lor T),\neg T,Q\}$$
 (\$\alpha\$-rule to \$C_2\$)

7
$$C_1 = \{P, \neg T, Q\}, \ C_2 = \{Q, \neg T, Q\}, \ C_3 = \{\neg S, \neg T, Q\}, \ C_4 = \{\neg T, \neg T, Q\}$$
 (\$\alpha\$-rule to \$C_3\$)

Propositional resolution

 \diamondsuit Let $\{L\} \cup D_1$ and $\{\neg L\} \cup D_2$ be two clauses. $D_1 \cup D_2$ is obtained from $\{L\} \cup D_1$ and $\{\neg L\} \cup D_2$ by a *resolution step* written:

$$\frac{\{L\} \cup D_1 \ \{\neg L\} \cup D_2}{D_1 \cup D_2}$$

 \diamondsuit A resolution tree is a binary tree whose nodes are labelled by clauses. Let C_1 and C_2 be 2 brother nodes, whose father is C, then $C_1 = D_1 \cup \{L\}$, $C_2 = D_2 \cup \{\neg L\}$ and $C = D_1 \cup D_2$. The label associated with the father is the result of a resolution step applied to the sons.

Propositional resolution (cont.)

 \diamondsuit Let Γ be a finite set of clauses, and C a clause. C can be derived by *resolution* from Γ iff there exists a resolution tree whose root is labelled by C and all the leaves are clauses in Γ .

 $\Gamma \vdash_R C$ denotes that Γ derives C by resolution.

Example

Let
$$\Gamma = \{ \{P\}, \{Q\}, \{\neg P, \neg Q\} \}$$
:

resolution tree for $\Gamma \vdash_R \{\}$.

$$\begin{array}{ccc}
Q & \neg P \lor \neg Q \\
\hline
P & \neg P \\
\hline
\{\}
\end{array}$$

Resolution and satisfiability

- 1. let Γ be a set of clauses, $\{L\} \cup D_1 \in \Gamma$ and $\{\neg L\} \cup D_2 \in \Gamma$. If Γ is satisfiable then $\Gamma \cup \{D_1 \cup D_2\}$ is satisfiable;
- 2. let Γ be a set of clauses, if $\Gamma \vdash_R \{\}$ then Γ is unsatisfiable.

We prove 1. Suppose Γ be satisfiable, i.e. there exists a model \mathcal{M} ; such that $\mathcal{M} \models \Gamma$ and suppose that L is true in \mathcal{M} ; it follows that $\neg L$ is false in \mathcal{M} and therefore D_2 must be true in \mathcal{M} . Consequently, $D_1 \cup D_2$ is true in \mathcal{M} . Since \mathcal{M} is a model of Γ by hypothesis, $\Gamma \cup \{D_1 \cup D_2\}$ is true in \mathcal{M} .

 $\mathcal{M} \models \neg L$ is analogous.

Resolution and satisfiability (cont.)

{} denotes contradiction; the empty clause is unsatisfiable.

Since resolution preserves satisfiability, if the empty clause is generated then the initial set of clauses is unsatisfiable.

Resolution proofs work by **refutation**: $\Gamma \vdash_R F$ is proven by checking whether $\Gamma \cup \{\neg F\} \vdash_R \{\}$, where Γ is a set of clauses and $\{\neg F\}$ is the negation of F in clausal form.

Example

We prove that $A \Rightarrow C$ follows from $A \Rightarrow B$ and $B \Rightarrow C$:

1.
$$(A \Rightarrow B) \land (B \Rightarrow C) \land \neg (A \Rightarrow C)$$

2.
$$\{\neg A \lor B\}, \{\neg B \lor C\}, \{A\}, \{\neg C\}$$
 (transf. in clausal form)

3.
$$\{\neg A \lor C\}, \{A\}, \{\neg C\}$$
 (res. B and $\neg B$ in 1^{st} and 2^{nd} claus. of 2)

4.
$$\{C\}, \{\neg C\}$$
 (res. $\neg A$ and A in 1^{st} and 2^{nd} claus. of 3)

5.
$$\{\}$$
 (res. C and $\neg C$ in 1^{st} and 2^{nd} claus. of 4).

Resolution is satisfiability-complete

Let Γ be a set of clauses. Γ is unsatisfiable iff $\Gamma \vdash_R \{\}$.

Let $RC(\Gamma)$ denote the **resolution closure** (i.e. the finite set of clauses that can be derived from Γ using the resolution rule):

 Γ is unsatisfiable iff $\{\} \in RC(\Gamma)$

Resolution is satisfiability-complete: proof

Proof by contradiction: If $\{\} \not\in RC(\Gamma)$ then Γ is satisfiable. Build a model from $RC(\Gamma)$:

- If a clause in $RC(\Gamma)$ contains the literal $\neg P_i$ and all its other literals are false (given previous assignments), then assign false to P_i .
- ullet Otherwise assign true to P_i

This assignment can falsify a clause only when in $RC(\Gamma)$ there are two clauses: $false, false, \dots, P_i$ and $false, false, \dots, \neg P_i$; but this is impossible because $RC(\Gamma)$ is closed under resolution.

Resolution is sound and complete for propositional logic

... but not validity-complete

Let $\Gamma = \{\{P\}\}$ and let $C = \{P, Q\}$;

 Γ logically entails C, and it can be derived by refutation,

but $\Gamma \vdash_R C$ can not be directly derived by applying a resolution step.

Resolution algorithm

Proof by contradiction, i.e., show $KB \wedge \neg \alpha$ unsatisfiable

```
function PL-Resolution(KB, \alpha) returns true or
false
   clauses \leftarrow set of clauses in the CNF repres. of KB \land \neg \alpha
   new \leftarrow \{ \}
   loop do
        for each C_i, C_j in clauses do
              resolvents \leftarrow PL-Resolve(C_i, C_j)
              if \{\} \in resolvents then return true
              new \leftarrow new \cup resolvents
         if new \subseteq clauses then return false
         clauses \leftarrow clauses \cup new
```

Resolution for the wumpus world

$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$$

$$\alpha = \neg P_{1,2}$$

$$KB \land \neg \alpha \Leftrightarrow \{ \{\neg B_{1,1}, P_{2,1}, P_{1,2} \}, \{B_{1,1}, \neg P_{2,1} \}, \{B_{1,1}, \neg P_{1,2} \}, \{\neg B_{1,1} \}, \{P_{1,2} \} \}$$

Resolution example

$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1}$$

$$\alpha = \neg P_{1,2}$$

$$\underbrace{P_{1,2} \quad \frac{\neg B_{1,1} \quad \neg P_{1,2} \vee B_{1,1}}{\neg P_{1,2}}}_{\{\}}$$

Summary

Resolution is a proof procedure that is sound and complete for satisfiability.

Resolution is the basis for reasoning systems, in particular for FOL.