BGSM/CRM AL&DNN

Differential Geometry

Backgrpound notions

S. Xambó

UPC & IMTech

2/11/2021

Topics. Group theory and differential geometry basics. Differential manifolds. Lie groups and Lie algebras.

References:

- [1] (bronstein-bruna-cohen-velickovic-2021)
- [2] (cohen-2021)
- [3] (gallier-quaintance-2020)
- [4] (xambo-2018)
- [5] (lee-2013)
- [6] (carne-2012)

Computations in manifold learning:

[7] (smirnov-2021)

Topology

Basic notions

Example: stereographic projection
Homotopies
Poincaré's fundamental group
Simply connected spaces

With the exception of *projective spaces* and *Grassmannians*, to be introduced later, for our purposes we only need to consider topological spaces X that are subsets of some \mathbb{R}^n (which will simply be called *spaces*).

The topology of any such space $X \subseteq E$ is the topology induced by the standard topology of E containing it, which is the topology induced by any *Euclidean norm* $\|x\|$ on E.

Thus an *open set* of $X \subseteq \mathbb{R}^n$ is any subset U of X of the form $U = V \cap X$, where V is open in \mathbb{R}^n . The *closed sets* of X are the complements of open sets.

A map $f: X \to X'$ between spaces is said to be *continuous* if $f^{-1}U'$ is an open set of X for any open set U' of X'. It is immediate to check that the composition of continuous maps is continuous. If f is bijective and f^{-1} is also continuous, we say that f is a homeomorphism. This is equivalent to say that $U \subset X$ is open in X' if and only if f(U) is open in X'.

Figure 1.1: Stereographic projection of $S^2-\{e_3\}$ to \mathbf{R}^2 from e_3 . Analytically, $\sigma(x)=\lambda x'$, where $x'=x-x_3e_3$ (the ortogonal projecton of x to \mathbf{R}^2) and $\lambda=1/(1-x_3)$. Indeed, $\sigma(x)=e_3+\lambda(x-e_3)$, for some $\lambda\in\mathbf{R}$, $\lambda\neq0$, and $0=e_3\cdot\sigma(x)=1+\lambda(x_3-1)$. So $\lambda=1/(1-x_3)$ and $e_3+\lambda(x-e_3)=(x-x_3e_3)/(1-x_3)$ This map is defined, and is continuous, for all $x\in\mathbf{R}^3-\{x_3=1\}$.

In general, consider the sphere S^{n-1} of radius 1 in \mathbb{R}^n :

$$S^{n-1} = \{ x \in \mathbf{R}^n \, | \, x^2 = 1 \}.$$

Then $e_n \in S^{n-1}$ and the stereographic projection from e_n is the map

$$\sigma: S^{n-1} - \{e_n\} \to \mathbf{R}^{n-1} = e_n^{\perp},$$

defined by requiring that $\sigma(x) \in \mathbb{R}^{n-1}$ be aligned with e_n and x. By the same argument as for n=3 we conclude that $\sigma(x) = (x - x_n e_n)/(1 - x_n)$, also defined and continuous for all $x \in \mathbf{R}^n - \{x_n = 1\}.$

The expression of the inverse map $\sigma^{-1}: \mathbb{R}^{n-1} \to S^{n-1} - \{e_n\}$ is

$$\sigma^{-1}(y) = \frac{2}{y^2 + 1}y + \frac{y^2 - 1}{y^2 + 1}e_n,$$

as this point is in the line joining e_3 and y and belongs to S^{n-1} :

$$\sigma^{-1}(y)^2 = \frac{4y^2}{(y^2+1)^2} + \frac{(y^2-1)^2}{(y^2+1)^2} = 1.$$

Two continuous maps $f, g: X \to X'$ are said to be *homotopic*, and we write $f \simeq g$ to denote it, if there is a continuous map $H: I \times X \to X'$, where $I = [0,1] \subset \mathbb{R}$, such that H(0,x) = f(x) and H(1,x) = g(x) forall $x \in X$.

To see that this expresses the idea of *continuous deformation of f* into g (or homotopy), consider the maps $h_s: X \to X'$, $s \in I$, defined by $h_s(x) = H(s,x)$. This is a continuously varying family $\{h_s\}_{s \in I}$ of continuous maps $h_s: X \to X'$ and by definition we have $h_0 = f$ and $h_1 = g$. The homotopy relation \cong turns out to be an *equivalence* relation in the set of continuous maps $X \to X'$, and the homotopy class of f, consisting of all continuous maps $X \to X'$ that are homotopic to f, is denoted by [f].

Given a space X and a point $x_0 \in X$, the elements of the fundamental group of X with base point x_0 , which is denoted by $\pi_1(X, x_0)$, are the homotopy classes $[\gamma]$ of *loops* on X with base point x_0 , by which we mean continuous maps $\gamma: I \to X$ such that $\gamma(0) = \gamma(1) = x_0$.

In this case, a homotopy $H: I \times I \to X$ is required to satisfy $H(s,0)=x_0=H(s,1)$ for all $s\in I$, which means that all the paths $\gamma_s(t) = H(s,t)$ have to be loops on X at x_0 (loop homotopy).

The group operation is defined by the rule $[\gamma][\gamma'] = [\gamma * \gamma']$, where $\gamma * \gamma'$ is the loop defined by

$$(\gamma * \gamma')(t) = egin{cases} \gamma(2t) & \text{for} & 0 \leqslant t \leqslant rac{1}{2}, \\ \gamma'(2t-1) & \text{for} & rac{1}{2} \leqslant t \leqslant 1. \end{cases}$$

Note that this loop travels the whole loop γ for $t \in [0, \frac{1}{2}]$ followed by traveling the whole loop γ' for $t \in [\frac{1}{2}, 1]$. The composition $\gamma * \gamma'$ is not associative, but it becomes so at the level of homotopy classes.

Similarly, the constant loop $e:I\to X$, $e(t)=x_0$ for all t, is not a neutral element for the composition, but it is so for homotopy classes, namely $[e][\gamma]=[\gamma][e]=[\gamma]$; and the inverse loop γ^{-1} defined by traveling γ backwards, $\gamma^{-1}[t]=\gamma[1-t]$, satisfies $[\gamma][\gamma^{-1}]=[\gamma^{-1}][\gamma]=[e]$ although $\gamma*\gamma^{-1}\neq e$.

A continuous map $f: X \to X'$ induces a group homomorphism $\tilde{f}: \pi_1(X, x_0) \to \pi_1(X', x_0'), \ \ where x_0' = f(x_0).$

Actually if γ is a loop on X at x_0 , then $\gamma' = f \circ \gamma$ is a loop on X' at x'_0 and the homomorphism is defined by $[\gamma] \mapsto [\gamma']$. In particular we see that if f is a homeomorphism, then \tilde{f} is an isomorphism.

If $x_0, x_0' \in X$ are connected by a path δ , then the map $\pi_1(X, x_0') \to \pi_1(X, x_0)$, $[\gamma] \mapsto [\delta][\gamma][\delta^{-1}]$ is an isomorphism of groups, with inverse the analogous map for δ^{-1} .

In particular we see that for *path-connected spaces* the isomorphism class of $\pi_1(X, x_0)$ is the same for all points x_0 . In such cases, we may simply write $\pi_1(X)$ to denote that isomorphism class.

This is especially apt when X has some distinguished point, and of course also when $\pi_1(X) \simeq \{0\}$.

The space X is *simply connected* if and only if it is connected and $\pi_1(X)$ is trivial.

A vector space E is simply connected, as

$$H(s,t)=(1-s)\gamma(t)$$

is a loop homotopy of any given loop γ on E at 0 to the constant loop at 0.

The same argument works for *star-shaped* sets X, which be definition include, for some $p \in X$, the segment $px = \{p + t(x - p)\}_{0 \le t \le 1}$ for all $x \in X$.

The spheres S^{n-1} are simply connected for $n \ge 3$, as in this case any loop on S^{n-1} can be deformed to a loop that avoids e_n and hence

$$\pi_1(S^{n-1}) = \pi_1(S^{n-1} - \{e_n\}) = \pi_1(\mathbf{R}^{n-1}) = \{0\}.$$

This last argument does not work for S^1 (n = 2), for any loop on S^1 going at least once round it cannot be deformed to avoid e_2 .

Actually, in this case $\pi_1(S^1) \simeq \mathbf{Z}$, where the isomorphism is given by counting the number of times a loop on S^1 goes round S^1 , with the sign \pm determined by the *sense* (counterclockwise or clockwise) of the net number of turns.

Topological groups

Definition and examples Quaternions, SU₂ and SO₃

Defintion. A *topological group* is a group G endowed with a topology such that the group operation $G \times G \to G$ and the inverse map $G \to G$, $g \mapsto g^{-1}$, are continuous.

Examples. The group GL_n of (real) invertible matrices of order n is a topological group (*general linear group*). It is an open subset of $\mathbf{R}(n) \simeq \mathbf{R}^{n^2}$ and the expressions for the product of two matrices and for the inverse of a matrix show that they are continuous maps.

From this it follows that any subgroup of GL_n is a topological group with the induced topology. In particular, the following groups are topological groups:

- SL_n (special linear group): matrices of determinant 1.
- $O_{r,s}$ (orthogonal group of signature (r,s)):

$$\{A \in \mathsf{GL}_n \mid A^T I_{r,s} A = I_{r,s} \}, \ I_{r,s} = \mathsf{diag}(1, \overset{r}{\dots}, 1, -1, \overset{s}{\dots}, -1).$$

- $O_{r,s}^+ = SO_{r,s}$ (special orthogonal group of signature (r,s): subgroup of $O_{r,s}$ of matrices A such that det(A) = 1. Note: $O_{r,s} = O_{r,s}^+ \sqcup O_{r,s}^-$
- \bullet $O_{r,s}^0 = SO_{r,s}^0$: The connected component of the identity of $SO_{r,s}$.
- For the *Euclidean signature* (n,0), we simply write O_n and SO_n . In this case, $SO_n^0 = SO_n$. So $O_n = \{A \in GL_n \mid A^TA = I_n\}$.
- $SO_2 \simeq U_1 = \{e^{i\theta} \mid 0 \leqslant \theta < 2\pi\}$ (group of unit complex numbers):

$$e^{i\theta} = \cos\theta + i\sin\theta \leftrightarrow \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}.$$

• $SE_{r,s}$ (SE_n in the Euclidean case): the group of affine maps of \mathbb{R}^n , $x \mapsto xA + b$ with $A \in SO_{r,s}$. In the Euclidean case, it is the group of rigid motions.

These maps can be identified with the matrices

$$egin{pmatrix} A & 0 \ b & 1 \end{pmatrix}, \quad (x,1) egin{pmatrix} A & 0 \ b & 1 \end{pmatrix} = (xA+b,1)$$

The composition is morphed into the matrix product

$$\begin{pmatrix} A & 0 \\ b & 1 \end{pmatrix} \begin{pmatrix} A' & 0 \\ b' & 1 \end{pmatrix} = \begin{pmatrix} AA' & 0 \\ bA' + b' & 1 \end{pmatrix}$$

and this shows that $SE_{r,s}$ is a topological group.

Note that

$$\begin{pmatrix} A & 0 \\ b & 1 \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ -bA^{-1} & 1 \end{pmatrix}.$$

$$(z, w) \mapsto h = \begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix}$$
, and let **H** be its image.

It is easy to check that H is a subring of C(2).

Let
$$\tilde{h} = \begin{pmatrix} \bar{z} & -w \\ \bar{w} & z \end{pmatrix}$$
 (conjugate-transpose, or just conjugate of h).

Then $h\tilde{h} = (z\bar{z} + w\bar{w})l_2 = \det(h)l_2$. Since $\tilde{h} \in \mathbf{H}$, it follows that if $h \neq 0$, then $\frac{1}{\det(h)}\tilde{h} = h^{-1} \in \mathbf{H}$. So \mathbf{H} is a field.

Notation: $\mathbf{H}^{\times} = \mathbf{H} - \{0\}$, the *multiplicative group* of \mathbf{H} .

Let
$$\mathbf{1} = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.

These matrices satisfy *Hamilton's relations*: $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{ijk} = -1$; and if z = a + bi, w = c + di, then $h = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$. So **H** is isomorphic to *Hamilton's quaternion field*.

- Since **i**, **j** and **k** have trace 0, we have $a = \frac{1}{2} \text{tr}(h)$, which we will denote by h_0 (scalar part of h).
- Set $E = E_3 = \langle \mathbf{i}, \mathbf{j}, \mathbf{k} \rangle = \{ h \in \mathbf{H} \mid h_0 = 0 \}$ (vector quaternions). The vector part of h is $h_1 = h h_0$.
- If $h' = a'\mathbf{1} + b'\mathbf{i} + c'\mathbf{j} + d'\mathbf{k}$, then $(\tilde{h}h')_0 = aa' + bb' + cc' + dd'$,

which is the Euclidean metric on \mathbf{H} with orthonormal basis $\mathbf{1}$, \mathbf{i} , \mathbf{j} , \mathbf{k} . We will denote it by $h \cdot h'$. In particular, denoting by |h| the norm ||h|| of h (often called the *modulus* of h),

$$|h|^2 = a^2 + b^2 + c^2 + d^2 = z\bar{z} + w\bar{w} = \det(h),$$

which implies that |hh'| = |h||h'|.

Restricted to E_3 , the inner product $x \cdot x'$ is the Euclidean metric with orthonormal basis i, j, k.

• If $v, v' \in E_3$, then $vv' = -v \cdot v' + v \times v'$, where $v \times v'$ is the *cross product*. In fact, if $v = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ and $v' = v_1' \mathbf{i} + v_2' \mathbf{j} + v_3' \mathbf{k}$, a short computation shows that

$$vv' = -v \cdot v' + (v_2v_3' - v_3v_2')\mathbf{i} + (v_3v_1' - v_1v_3')\mathbf{j} + (v_1v_2' - v_2v_3')\mathbf{k}.$$

Lemma. For all $h, h' \in \mathbf{H}$, $(hh')^{\sim} = \tilde{h}'\tilde{h}$.

By definition, $\tilde{h} = \bar{h}^T$, where \bar{h} is the complex-conjugate of h. Therefore $(hh')^{\sim} = (\bar{h}\bar{h}')^T = (\bar{h}')^T\bar{h}^T = \tilde{h}'\tilde{h}$.

• For a given $h \in \mathbf{H}$, let $\underline{h} : \mathbf{H} \to \mathbf{H}$, $\underline{h}(x) = hx\tilde{h}$ (a real linear map, which belongs to $GL(\mathbf{H})$ if $h \neq 0$).

Lemma. The map $\mathbf{H}^{\times} \to \mathsf{GL}(\mathbf{H})$ is a group homomorphism.

If $h, h' \in \mathbf{H}^{\times}$, then $\underline{hh'}(x) = hh'x(hh')^{\sim} = hh'x\tilde{h}'\tilde{h} = \underline{h}(\underline{h}'(x))$.

Lemma. The map h is linear similarity of ratio $|h|^2$.

Indeed,
$$|\underline{h}(x)|^2 = (hx\tilde{h})(hx\tilde{h})^{\sim} = hx\tilde{h}h\tilde{x}\tilde{h}$$
, and the claim follows because $\tilde{h}h = |h|^2$, $x\tilde{x} = |x|^2$, and $h\tilde{h} = |h|^2$, so that $|\underline{h}(x)|^2 = |x|^2|h|^4$ and hence $|\underline{h}(x)| = |h|^2|x|$.

Lemma. If $h \neq 0$, h induces a linear similarity of E_3 of ratio $|h|^2$.

It is enough to show that $(hxh)_0 = 0$ if $x_0 = 0$. This is a consequence of the formula $h_0 = \frac{1}{2} tr(h)$, for all $h \in \mathbf{H}$:

$$(hx\tilde{h})_0 = \frac{1}{2}\mathsf{tr}(hx\tilde{h}) = \frac{1}{2}\mathsf{tr}(\tilde{h}hx) = \frac{1}{2}|h|^2\mathsf{tr}(x) = 0.$$

We have used that tr(AB) = tr(BA), for all $A, B \in \mathbf{R}(n)$.

 \bullet SU₂ = { $h \in \mathbf{H} : |h| = 1$ } = $S^3(\mathbf{H})$. In particular, SU₂ is simply connected.

Corollary. If $h \in SU_2$, then $h \in SO_3$ and the map $SU_2 \to SO_3$, $h \mapsto \underline{h}$ is a group homomorphism.

Lemma. The kernel of the homomorphism $SU_2 \rightarrow SO_3$ is ± 1 .

If h is in the kernel, then hv = vh for any $v \in E_3$. In particular, we have $h\mathbf{i} = \mathbf{i}h$, which implies w = 0, hence $h = \begin{pmatrix} z & 0 \\ 0 & \overline{z} \end{pmatrix}$ and $z\overline{z} = 1$. Now $h\mathbf{i} = \mathbf{i}h$ yields that $z = \pm 1$, hence $h = \pm 1$.

Theorem. The homomorphism $SU_2 \rightarrow SO_3$ is surjective.

Let $v \in S^2(E)$ be a unit vector. Then $v^2 = -v \cdot v = -1$. Given any $\theta \in \mathbf{R}$, $h = e^{\theta v} = \cos \theta + v \sin \theta \in \mathrm{SU}_2$. Since v commutes with h, $\underline{h}(v) = e^{\theta v} v e^{-\theta v} = v$. This means that \underline{h} is a rotation about the axis $\langle v \rangle$. Now, if $w \in v^\perp$, then $vw = v \times w = -w \times v = -wv$, and therefore $\underline{h}(w) = e^{\theta v} w e^{-\theta v} = e^{2\theta v} w = (\cos 2\theta + v \sin 2\theta) w = w \cos 2\theta + (v \times w) \sin 2\theta$, which implies (take w of unit length) that \underline{h} induces a rotation of amplitude 2θ in v^\perp . In sum, \underline{h} is the rotation of amplitude 2θ about the axis $\langle v \rangle$. Thus the rotation $R_{v,\alpha}$ of amplitude α about v is equal to \underline{h} , where $\underline{h} = \cos \alpha/2 + v \sin \alpha/2$.

The differential realm

Differencials, directional derivatives and gradients Manifolds Tangent spaces Inverse function theorem Implicit function theorem **Projective spaces** Grassmannians Tangent bundle and vector fields

Let $U \subseteq \mathbb{R}^n$ be an open set and $f: U \to \mathbb{R}^m$ a map.

We say that f is differentiable at $x \in U$ if there is a linear function $\ell_x : \mathbb{R}^n \to \mathbb{R}^m$ that approximates the increment $(\Delta_x f)(v) = f(x+v) - f(x)$, as a function of v, up to second order terms. More formally,

$$f(x+v)-f(x)=\ell_x(v)+o(v), \text{ where } o(v)/\|v\|\to 0 \text{ when } v\to 0.$$

If ℓ_x exists, it is unique, is denoted by $d_x f$, is called the *differential of* f at x, and f is said to be *differentiable* at x.

In that case, for any $v \in \mathbb{R}^n$ the directional derivative $\partial_v f(x) = D_v f(x) = \frac{df(x+tv)}{dt}|_{t=0}$ exists, and $\partial_v f(x) = d_x f(v)$. The partial derivatives $\partial_i f(x) = \partial_{e_i} f(x)$ exist, so also exists $\nabla f(x)$, and $d_x f(v) = \nabla f(x) \cdot v$, defined as $(\nabla f_1(x) \cdot v, \dots, \nabla f_m(x) \cdot v)$, where $f = (f_1, \dots, f_m)$.

If $d_x f$ exists for any $x \in U$, f is said to be differentiable in U. In this case, the partial derivatives $\partial_i f(x)$ exist for all $x \in U$.

 $\nabla f(x)$ is also called the *Jacobian matrix* of f at x. Its entries are $\partial_i f_j$ $(i \in [n], j \in [m])$.

The function f is smooth, or of $class\ \mathbb{C}^{\infty}$, if f has continuous partial derivatives of all orders at any point of U. The vector space of smooth functions $U \to \mathbb{R}^m$ is denoted $\mathbb{C}^{\infty}(U, \mathbb{R}^m)$. For m = 1, it is an algebra that we denote simply by $\mathbb{C}^{\infty}(U)$.

More generally, if $Y \subseteq \mathbb{R}^n$, a map $f: Y \to \mathbb{R}^m$ is said to be differentialbe (respectively smooth) if for any point $y \in Y$ there is an open set $U_y \subseteq \mathbb{R}^n$ that contains y and a differentiable (smooth) function $\varphi_y: U_y \to \mathbb{R}^m$ such that $f(x) = \varphi_y(x)$ for all $x \in U_y \cap Y$.

If $f: Y \to \mathbb{R}^m$ is smooth and Z = f(Y), we say that $f: Y \to Z$ is a diffeomorphism if f is bijective and $f^{-1}: Z \to Y$ is smooth.

For example, the stereographic projection $\sigma: S^{n-1} - \{e_n\} \to \mathbb{R}^{n-1}$ is a diffeormorphism.

Indeed, the expression $\sigma(x)=(x-x_ne_n)/(1-x_n)$ for σ shows that it makes sense, and is smooth, for any point not on the hyperplane $x_n=1$, while $\sigma^{-1}: \mathbf{R}^{n-1} \to \mathbf{R}^n$, $y \mapsto (2y+(y^2-1)e_n)/(y^2+1)$, is also smooth and its image is $S^{n-1}-\{e_n\}$.

A space Y is said to be a *manifold* of *dimension* d if each point $y \in Y$ has an open neighborhood (in Y) that is diffeomorphic to an open set of \mathbb{R}^d . The dimension d of Y is denoted by $\dim(Y)$.

Example. Any non-empty open set U of \mathbb{R}^n is a manifold and $\dim U = n$.

Example. What we have said about the stereographic projection shows that S^{n-1} is a manifold of dimension n-1 for any $n \ge 1$.

If $Y \subseteq E_n$ is a manifold, and $y \in Y$, a vector $v \in E_n$ is said to be tangent to Y at y if there is a smooth function $\gamma: (-\varepsilon, \varepsilon) \to Y$, $(-\varepsilon,\varepsilon)\subset \mathbb{R}$, such that $\gamma(0)=v$ and $\dot{\gamma}(0)=v$.

We will write $T_v Y$ to denote the set of vectors tangent to Y at y, and we will say that it is the tangent space to Y at y.

For example, $T_v E_n = E_n$ for any point $y \in E_n$, because if $\gamma(t) = y + tv$, $v \in E_n$, then we have $\dot{\gamma}(t) = v$ for any t.

Since $GL(E_n) \subset End(E_n)$ is open,

$$T_{\mathsf{Id}}\mathsf{GL}(E_n) = T_{\mathsf{Id}}\mathsf{End}(E_n) = \mathsf{End}(E_n).$$

In general, $T_v Y$ is a linear subspace of E_n and dim $T_v Y = \dim Y$.

Let E and F be vector spaces, U a non-empty open set of E and $f: U \to F$ a smooth function.

Theorem. If $u \in U$ is such that $d_u f : E \to F$ is injective, then there exists an open set $U' \subseteq U$, $u \in U'$, such that $f : U' \to f(U')$ is a diffeomorfism.

This means that f(U) is a manifold of dimension $\dim(E)$ near f(u). Moreover, $T_u(f(U)) = (d_u f)(E)$.

See, for example, [8, §5.3, Th. 3].

Let E and F be vector spaces, U a non-empty open set of E and $f: U \to F$ a smooth function.

Theorem. Set $Z = \{z \in U \mid f(z) = 0\}$. If $z \in Z$ is such that $d_z f: E \to F$ is *surjective*, then there exists an open set $U' \subseteq U$. $z \in U'$, such that $Z' = Z \cap U'$ is a manifold of dimension $d = \dim(E) - \dim(F)$ and $T_z Z' = \ker(d_z f)$.

See, for example, [8, §5.3, Th. 4].

If
$$F = \mathbf{R}^m$$
 and $f = (f_1, \dots, f_m)$, then $Z = Z(f) = Z(f_1) \cap \dots \cap Z(f_m)$

and the theorem implies that Z is a manifold around a point z if $d_z f_1, \ldots, d_z f_m$ are linearly independent, and in this case $T_z Z = \ker d_z f = \bigcap_i \ker d_z f_i$ (cf. 21-05b-Opt, classical Lagrange multipliers).

Example

Although we know, via the stereographic projection, that S^{n-1} is a manifold of dimension n-1, it is instructive to prove it again using the implicit function theorem.

Consider the function $f: E_n \to \mathbb{R}$ given by $f(x) = x^2$, so that $S^{n-1} = Z(f-1)$.

To apply the theorem, let us find $d_y f$ at a point $y \in S^{n-1}$.

For any vector $\mathbf{v} \in \mathbf{E}_n$,

$$(d_y f)(v) = \frac{d}{dt} f(y + tv)|_{t=0} = \frac{d}{dt} (y + tv)^2|_{t=0} = 2y \cdot v.$$

Now for any non-zero y, in particular for any $y \in S^{n-1}$, the map $E_n \to \mathbb{R}$, $v \mapsto 2y \cdot v$ is surjective. Therefore S^{n-1} is a manifold of dimension n-1 around anyone of its points y, and $T_y S^{n-1} = y^{\perp}$.

Example

Consider the group $SL(E) \subset GL(E)$, which by definition can be represented as $Z(\det -1)$.

We will see that $d_{ld} \det = tr$, from which it follows, since $tr : End(E) \to \mathbf{R}$ is surjective, that SL(E) is a manifold near ld of dimension $n^2 - 1$ $(n = \dim E)$ and

$$T_{\mathsf{Id}}\mathsf{SL}(E) = \{h \in \mathsf{End}(E) \,|\, \mathsf{tr}(h) = 0\} = \mathsf{End}_0(E).$$

To prove the claim, note that for any $h \in \operatorname{End}(E)$ we have $(d_{\operatorname{Id}} \det)(h) = \frac{d}{dt} \det(\operatorname{Id} + th)|_{t=0} = \frac{d}{dt}(1 + \operatorname{tr}(th) + \cdots)|_{t=0} = \operatorname{tr}(h)$. Finally note that $\operatorname{SL}(E)$ is a manifold of dimension $n^2 - 1$ near any $g \in \operatorname{SL}(E)$ because the map $L_g : \operatorname{SL}(E) \to \operatorname{SL}(E)$, $f \mapsto gf$, is a diffeomorfism and $L_g(\operatorname{Id}) = g$.

The notion of manifold given on page 27 needs a broadening that liberates it from having to be a subset of some vector space (see, for instance, $[8, \S 5.1]$, or $[9, \S 1.2b]$).

The definition of an abstract manifold is quite natural, as it is based on reflecting that it looks like an open set of a vector space in the neighborhood of each of its points, with differentiable transitions between overlapping neighborhoods.

For example, if we identify antipodal points on the sphere S^{n-1} , $P^{n-1} = S^{n-1}/\{\pm 1\}$, we have a manifold in the abstract sense. Indeed, any open set of S^{n-1} that does not contain pairs of antipodal points is mapped injectively into P^{n-1} , which means that locally P^{n-1} looks like the manifold S^{n-1} . Since $P^{n-1} \simeq P(\mathbb{R}^n)$, $[x] \mapsto [x/\|x\|]$ we may conclude that the projective space $P(\mathbb{R}^n)$ is a manifold of dimension n-1.

This can also be concluded by means of the *coordinates* x_1, \ldots, x_n in \mathbb{R}^n : $\mathbb{P}^n - \{x_j = 0\} \leftrightarrow \mathbb{R}^{n-1}$, $[x_1, \ldots, x_n] \mapsto [x_1/x_j, x_{j-1}/x_j, x_{j+1}/x_j, \ldots, x_n/x_j]$.

Given a k-dimensional linear subspace L of the vector space E, let $g(L) \in \mathbf{P}(\wedge^k E)$ be defined as $[x_1 \wedge \cdots \wedge x_k]$, where x_1, \ldots, x_k is any basis of L. The point g(L) only depends on L, for the exterior product of two basis are proportional.

Moreover, $L \mapsto g(L)$ is injective, as the vectors $x \in L$ are precisely those satisfying $x \wedge x_1 \wedge \cdots \wedge x_k = 0$.

Let $\operatorname{Gr}_k(E) \subset \mathbf{P}(\wedge^k E)$ be the image of g. It turns out that this is a submanifold of dimension (k+1)(n-k) of $\mathbf{P}(\wedge^k E)$. Such manifolds are called *Grassmann manifolds*, popularly *Grassmannians*, [9, §17.2b]. The projective space $\mathbf{P}(E)$ is the special case $\operatorname{Gr}_1(E)$.

The tangent bundle TM of a manifold M of dimension n is manifold of dimension 2n endowed with a differentiable map $\pi: TM \to M$ with the property that $\pi^{-1}(x) \simeq T_x M$.

- For an open set $U \subseteq E$, $TU = U \times E$, with π the projection map.
- $TS^{n-1} = \{(y, v) \in S^{n-1} \times \mathbb{R}^n : y \cdot v = 0\}.$

The cotangent bundle has a similar meaning, but with $T_x(M)$ replaced by T_*^*M (the dual space of T_*M).

A vector field v on X assigns a tangent vector $v_x \in T_x M$ for any $x \in M$ in such a way that the map $M \to TM$, $x \mapsto v_x$, is differentiable.

Vector bundles are a generalization of the tangent and cotangent bundles. They are *locally trivial* families of *vector spaces*. The dimension of these spaces is the *rank* of the vector bundle.

Example: $V = \{(x, v) \in S^{n-1} \times \mathbb{R}^n : v \in \langle x \rangle \}$. Its rank is 1 (a line bundle).

Lie groups and algebras

Definition and examples Remarks on $O_{r,s}$ Lie algebras We have seen that the groups GL_n and SL_n are at the same time topological groups and manifolds, and that in fact the multiplication and inversion maps are smooth. In other words, they are Lie groups. Their dimensions are n^2 and $n^2 - 1$, respectively.

Example. $O_{r,s}$ is a Lie group of dimension $\binom{n}{2}$, n=r+s.

Let $\gamma: (-\epsilon, \epsilon) \to O_{r,s}$ be a differentiable path with $\gamma(0) = Id$ and let $B = \dot{\gamma}(0) \in M_n = \mathbb{R}(n)$. Since $\gamma(t)^T I_{r,s} \gamma(t) = I_{r,s}$, on taking the derivative with respect to t, at t = 0, we get $B^T I_{r,s} + I_{r,s} B = 0$. This shows that $T_{Id}O_{r,s} \subseteq \mathfrak{so}_{r,s} = \{B \in M_n : B^TI_{r,s} = -I_{r,s}B\}.$

In fact we now proceed to show that $T_{ld}O_{r,s} = \mathfrak{so}_{r,s}$.

Let $B \in H$, and consider the map $\gamma : \mathfrak{so}_{r,s} \to \mathsf{GL}_n$ defined by $\gamma(t) = e^{tB}$. As we will see in a moment, we actually have $\gamma(t) \in O_{r,s}$, with $\gamma(0) = Id$, and clearly $\dot{\gamma}(0) = B$, so $B \in T_{Id}O_{r,s}$. Let us check that $\gamma(t) \in O_{r,s}$ for all t.

Using that $(B^T)^k I_{r,s} = I_{r,s} (-1)^k B^k$, which follows from $B^T I_{r,s} = -I_{r,s} B$ by induction on k, we infer that the claim holds:

$$(e^{tB})^T I_{r,s} e^{tB} = I_{r,s} e^{-tB} e^{tB} = I_{r,s}.$$

That $O_{r,s}$ is a manifold of dimension $\binom{n}{2}$ is a nice application of the inverse function theorem.

Consider the map $\exp: \mathfrak{so}_{r,s} \to O_{r,s}, B \mapsto e^B$. Then $d_0 \exp$ is a linear map from $T_0 \mathfrak{so}_{r,s} = \mathfrak{so}_{r,s}$ to $T_{ld}O_{r,s} = \mathfrak{so}_{r,s}$, and this map is the identity: $d_0 \exp(B) = (D_B \exp)(0) = (de^{tB}/dt)|_{t=0} = B$.

It follows that exp induces a diffeomorphism of an open neighborhood of 0 in $\mathfrak{so}_{r,s}$ and an open neighborhood of Id in $O_{r,s}$ and this implies that $O_{r,s}$ is a manifold, hence a Lie group, of dimension $\binom{n}{2}$

- (1) For any (r,s), $O_{r,s}=O_{r,s}^+\sqcup O_{r,s}^-$, $O_{r,s}^+=SO_{r,s}$ and $O_{r,s}^-=\alpha SO_{r,s}$ for any given $\alpha\in O_{r,s}^-$ (as α we can take the orthogonal reflection m_u with respect to a non-isotropic vector u: $m_u(x)=x$ if $x\in u^\perp$ and $m_u(u)=-u$).
- (2) If (r,s) = (n,0) (Euclidean case) or (r,s) = (0,n) (anti-Euclidean case), then $SO_{r,s}$ is connected and hence $O_{r,s}$ has two connected components.
- (3) If $r, s \ge 1$, then $SO_{r,s} = SO_{r,s}^0 \sqcup m_u m_{\bar{u}} SO_{r,s}^0$, where u, \bar{u} are any non-isotropic vectors of oposite signatures ($u^2 \bar{u}^2 < 0$). It follows that in this case $O_{r,s}$ has 4 connected components.
- (4) Example. $O_{1,3}$ is the general Lorentz group, $O_{1,3}^+ = SO_{1,3}$ is the proper Lorentz group, and $SO_{1,3}^0$ is the orthochronous or restricted Lorentz group (proper Lorentz transformations that preserve the time orientation).

Let G be any of the Lie groups considered so far, and write $\operatorname{lie}(G)$ to denote its tangent space at the identity element of G. More specifically, we have:

$$\begin{split} & \mathfrak{lie}(\mathsf{GL}(E)) = \mathsf{End}(E) \\ & \mathfrak{lie}(\mathsf{SL}(E)) = \mathsf{End}_0(E) \text{ (the traceless endomorphisms of } E) \\ & \mathfrak{lie}(\mathsf{O}_{r,s}) = \mathfrak{lie}(\mathsf{SO}_{r,s}^0) = \mathfrak{so}_{r,s} \end{split}$$

In all cases, $\mathfrak{lie}(G)$ is closed under the *commutator bracket* ([A,A']=AA'-A'A) and hence it is a *Lie algebra*. This claim is clear for $\mathfrak{lie}(\mathsf{GL}(E))$. The case of $\mathfrak{lie}(\mathsf{SL}(E))$ is an immediate consequence of the fact that $\mathsf{tr}([A,B])=\mathsf{tr}(AB)-\mathsf{tr}(BA)=0$. The case of $\mathfrak{so}_{r,s}$ is checked with the following computation, where $B,C\in\mathfrak{so}_{r,s}$:

$$[B, C]^{T}I_{r,s} = (C^{T}B^{T} - B^{T}C^{T})I_{r,s} = -C^{T}I_{r,s}B + B^{T}I_{r,s}C$$

= $I_{r,s}CB - I_{r,s}BC = -I_{r,s}[B, C].$

We have seen that $SE_{r,s}$ (in particular SE_n) is a topological group.

By inspecting its multiplication and inverse maps, page 17, we see that it is a Lie group.

Its Lie algebra $\mathfrak{se}_{r,s}$ (tangent space at Id) can be determined as for $\mathsf{SO}_{r,s}$, and the result is that it is the Lia algebra of matrices of the form

$$\begin{pmatrix} B & 0 \\ v & 0 \end{pmatrix}, \quad B \in \mathfrak{so}_{r,s}, \ v \in \mathbf{R}^n.$$

The argument with the exponential can be adapted to this case and the outcome is that $SE_{r,s}$ is a Lie group of dimension $\binom{n+1}{2}$, n=r+s.

This agrees with the intuition that the *degres of freedom* a rigid motion are n for the translation plus the degrees of freedom (dimension) of a rotation.

Appendix

Two properties of the stereographic projection σ

Lemma. The section S' of the hyperplane $\Pi: u \cdot x = \delta$ ($u \in \mathbb{R}^n$ unitary, $\delta \in \mathbb{R}_+$) with the unit sphere S^{n-1} is empty if $\delta > 1$, the point u if $\delta = 1$ and the sphere with center at δu and radius $\rho = \sqrt{1 - \delta^2}$ if $\delta < 1$

The plane Π cuts the line $\{\lambda u\}_{\lambda \in \mathbb{R}}$ at δu . For any $x \in S'$, we have $1 = x^2 = (x - \delta u)^2 + (\delta u)^2 \ge \delta^2$. Hence the intersection is empty unless $\delta \leq 1$. For $\delta = 1$, the only solution is x = u (and Π is the tangent hyperplane to S^{n-1} at u). If $\delta < 1$, then any x in the intersection satisfies, writing $\rho = \|x - \delta u\|$, $1 = \rho^2 + \delta^2$, which shows that S' is the sphere in Π with center δu and radius ρ .

Note: for $\delta = 0$, the section S^{n-2} has radius 1, the greatest possible (equatorial spheres).

Let $S^{n-2} \subset S^{n-1}$ be the section with the hyperplane $\Pi : u \cdot x = \delta$, $u \in \mathbb{R}^n$ a unit vector and $\delta \in \mathbb{R}_+$.

The $y = \sigma(x) \in \sigma(S^{n-2})$ iff and only if $x = \frac{2y + (y^2 - 1)e_n}{y^2 + 1}$ belongs to Π , namely,

$$2(u \cdot y) + c(y^2 - 1) = \delta(y^2 + 1),$$

where $c = u \cdot e_n$ (the cosine of the angle $\widehat{u, e_n}$).

Letting \bar{u} be the orthogonal projection of u to \mathbb{R}^{n-1} , it is equivalent to

$$(\delta - c)y^2 - 2(\bar{u} \cdot y) + \delta + c = 0.$$

The condition $\delta = c$ means that Π passes through e_n , and in this case $\sigma(S^{n-2})$ is the hyperplane $\bar{u} \cdot y = \delta$ of \mathbb{R}^{n-2} , that is $\Pi \cap \mathbb{R}^{n-2}$. This conclusion clearly matches the geometric intuition of the case.

If $\delta \neq c$, then $\sigma(S^{n-2})$ is the \mathbf{R}^{n-1} sphere with center u' and radius ρ' , where $u' = \bar{u}/(\delta - c)$ and ${\rho'}^2 = {u'}^2 - (\delta + c)/(\delta - c)$.

Figure 9.1: Let $N, P \in S^2$, $P \neq N$. Let t_1 and t_2 be lines tangent to S^2 at P. The planes $\Pi_i = [N, t_i]$ (i = 1, 2) cut S^2 along the circles C_i that pass through N and P and which touch t_i at P. If we let t_i' denote the tangents to the C_i at N, then $\angle t_1't_2' = \angle t_1t_2$. Notice that t_i' is the intersection of Π_i with the tangent plane to S^2 at N. This implies that $\angle t_1t_2 = \angle t_1''t_2''$, where t_i'' is the tangent to $\sigma(C_i)$ at $\sigma(P)$.

References I

- M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic, "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges," 2021. arXiv:2104.13478.
- [2] T. Cohen, Equivariant Convolutional Networks.PhD thesis, University of Amsterdam, 2021.
- [3] J. Gallier and J. Quaintance, Differential geometry and Lie groups: a computational perspective, vol. 12 of Geometry and Computing. Springer, 2020. xv+777p.

References II

[4] S. Xambó-Descamps, Real Spinorial Groups: A Short Mathematical Introduction.

Springer, 2018.

[5] M. Lee John, *Introduction to smooth manifolds*, vol. 218 of *Graduate Texts in Mathematics*.

Springer, 2013.

xvi+708p.

[6] T. K. Carne, "Geometry and groups," 2012.

Electronic publication.

References III

[7] O. Smirnov, "TensorFlow RiemOpt: a library for optimization on Riemannian manifolds," 2021.

https://arxiv.org/pdf/2105.13921.

[8] I. M. Singer and J. A. Thorpe, *Lecture notes on elementary topology and geometry*.

Scott, Foresman and Company, 1967.

[9] T. Frankel, The geometry of physics: an introduction.

Cambridge University Press, 2011.