Learning Curves

Training an algorithm on a very few number of data points (such as 1, 2 or 3) will easily have 0 errors because we can always find a quadratic curve that touches exactly those number of points. Hence:

- As the training set gets larger, the error for a quadratic function increases.
- The error value will plateau out after a certain m, or training set size.

Experiencing high bias:

Low training set size: causes J {train}(\Theta) to be low and J {CV}(\Theta) to be high.

Large training set size: causes both $J_{\text{train}}(\theta)$ and $J_{\text{CV}}(\theta)$ to be high with $J_{\text{train}}(\theta)$ (\Theta) $J_{\text{CV}}(\theta)$.

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

Experiencing high variance:

Low training set size: J {train}(\Theta) will be low and J {CV}(\Theta) will be high.

Large training set size: $J_{\text{train}}(\Theta)$ increases with training set size and $J_{\text{CV}}(\Theta)$ continues to decrease without leveling off. Also, $J_{\text{train}}(\Theta) < J_{\text{CV}}(\Theta)$ but the difference between them remains significant.

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

