taurier Series and transforms

A series expansion of a funch in terms of trigonometric functions cos (mm) and din (nx) is called fourier series.

Many funchs including some discontinuous periodic funchs can be written in form a Fourier series.

Hence, it has wide application in solving ode's and PDE's.

comider a bet of function,

2 f1, f2, f3.... } defined in [a,b]

there are said to be orthogonal if Ibficosficostx = 0, +i +j

· Now, we see {1, costax), costax), Sin(Tx), sin(Tx) ...}

is arthogonal in [-l, l] since,

. $\int_{0}^{\infty} \cos \left(\frac{m\pi x}{2} \right) dx = \int_{0}^{\infty} dx \sin \left(\frac{m\pi x}{2} \right) dx = 0$

 $\int_{-1}^{1} \cos \left(\frac{m\pi x}{L}\right) \cos \left(\frac{n\pi x}{L}\right) dx = \begin{cases} 0, & m \neq n \\ 1, & m = n \end{cases}$

 $\int_{0}^{1} \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{m\pi x}{L} \right) dn = \begin{cases} 0, & m \neq n \\ 2, & m = n \end{cases}$

Scos (milix) sin (nilx) dn z {0, x m,n

Hence, if we take any a diff. funchs from set D and integrate their product from [-1,1] then we get o' which means given set of funch is orthogonal.

Now consider a funch f(N) which is periodic with period 21 defined on [-1, 1).

Assuming, for can be expressed as a linear combination of try, funchs cos (mm), show then

$$f(x) = \frac{1}{2} + \frac{1}{2}$$

$$f(x) = \frac{q_0}{2} + \sum_{n=1}^{\infty} \left(q_n \cos \left(\frac{n \pi x}{2} \right) + b_n \sin \left(\frac{n \pi x}{2} \right) \right)$$

Now to find 'do we integrate both sides from -l to l \rightarrow I fend $z = \int \frac{a_0}{2} dx + \int \sum_{n=1}^{\infty} (a_n \cos(\frac{n\pi n}{2}) + b_n \sin(\frac{n\pi n}{2})) dx$

$$Q_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$\int_{-\ell}^{\ell} \cos \left(\frac{n \pi x}{\ell} \right) = 0$$

$$\int_{-\ell}^{\ell} \sin \left(\frac{n \pi x}{\ell} \right) = 0$$
for any 'n'

To find
$$a_n$$
 we multiply both sides by $(as(n\pi n))$ and $\int_{-1}^{1} f(n) \cos(n\pi n) dx = a_n \int (as(n\pi n)) dx + a_n \int (as(n\pi n)) dx + o$

I fine to $s(n\pi n) dn = 0 + 0_n \times l$

$$\int_{-1}^{1} f(n) \cos(n\pi n) dx = 0$$

$$\int_{-1}^{1} f(n) \cos(n\pi n) \sin(n\pi n) dx$$

Similarly, for b_n , we multiply both sides by
$$\int_{-1}^{1} cos(n\pi n) \sin(n\pi n) \sin(n\pi n) dx$$

$$\int_{-1}^{1} cos(n\pi n) \sin(n\pi n) \sin(n\pi n) dx$$

$$\int_{-1}^{1} cos(n\pi n) \cos(n\pi n) \cos(n\pi n) dx$$

$$\int_{-1}^{1} cos(n\pi n) \cos(n\pi n) dx$$

$$\int_{-1}^{1} cos(n\pi n) \cos(n\pi n) \cos$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{0} (\pi + n) \cos (n x) dn + \frac{1}{\pi} \int_{0}^{\pi} o dn$$

$$a_{n} = \frac{1}{\pi} \left[(\pi + x) \frac{\sin(n x)}{n} + \frac{\cos(n x)}{n^{2}} \right]_{-\pi}^{0}$$

$$a_{n} = \frac{1}{\pi} \left[\frac{1}{n^{2}} - \frac{\cos(n \pi)}{n^{2}} \right]$$

$$a_{n} = \frac{1}{\pi} \int_{\pi}^{\pi} (1 - (-1)^{n}) dn$$

$$b_{n} = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \sin(n \pi) dx \Rightarrow \frac{1}{\pi} \left[(\pi + n) \left(-\frac{\cos(n x)}{n} \right) + \frac{\sin(n x)}{n^{2}} \right]_{-\pi}^{\pi}$$

$$b_{n} = \frac{1}{\pi} \int_{\pi}^{\pi} (\pi + n) \sin(n \pi) dx \Rightarrow \frac{1}{\pi} \left[(\pi + n) \left(-\frac{\cos(n x)}{n} \right) + \frac{\sin(n x)}{n^{2}} \right]_{-\pi}^{\pi}$$

$$= \frac{1}{\pi} \left(-\frac{\pi}{n} \right) \Rightarrow b_n = -\frac{1}{n}$$

fourier series of f(n) is,
$$f(n) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \left[\frac{1}{\pi m^2} \left[1 - (-1)^n \right] \cos \left(\frac{n\pi x}{L} \right) + \left(-\frac{1}{n} \right) \sin \left(\frac{n\pi x}{L} \right) \right]$$

$$f(n) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \left[\frac{1}{\pi m^2} \left[\frac{1}{n} \left[(-1)^n \right] \cos (m\pi) - \frac{1}{n} \sin (m\pi) \right] \right]$$

convergence of faurier series for continuous funcir. If a periodic funch form with period 2l is corti in [-1,1] and has continuous 1st and 2nd ander derivatives at each point in that interval, then the formier series offer is convergent broof: an = 1 fen, ws (nmn) de = $\frac{1}{2} \left[\left(f(x) \frac{din (n\pi x)}{(n\pi/e)} \right)^2 - \int_{-e}^{e} f'(n) \frac{din (n\pi x)}{e} dx \right]$ mil [(fin) 8'n(n Tin)) - - | f'(x) &in(min) dx $\frac{1}{n\pi} \left[-\left(\frac{p'(x) \cos(n\pi n)}{n\pi/e} \right) + \int f''(n) \cos(n\pi n) dn \right]$ $\frac{2}{n\pi} \left[-\frac{1}{n\pi} \left(f'(l) \cos n\pi - f'(-l) \cos n\pi \right) \right]$ Since, f(n) has T=2l i.e. f(x+2l) = f(n)ie. f(x+21) = f(n) + $\frac{1}{n\pi}$ $\int_{\ell} f''(x) \cos(\frac{n\pi x}{\ell}) dx$: 1st denivative is conti. · f'(x+2l) = f'(x) $z - \frac{1}{n^2 \pi^2} \int_{0}^{\infty} f''(x) \cos \left(\frac{n \pi x}{2}\right) dx$ at x=-lf'(1) = f'(-1) Since, f'(x) is also conti. in [-l, l] so, for some m 1 f"(x) | < M also | (als (n Tix) | < 1 $-\frac{1}{|\alpha_n|} = \frac{1}{m^2 \pi^2} \left| \int_{-\infty}^{\infty} f''(x) \cos \left(\frac{n \pi x}{n} \right) dx \right| < \frac{1}{m^2 \pi^2} \int_{-\infty}^{\infty} (m x^2) dx = \frac{2ML}{m^2 \pi^2}$

$$|f(n)| = \left| \frac{a_0}{2} + \underbrace{\mathcal{E}}_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l} + \underbrace{\mathcal{E}}_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} \right|$$

$$\leq \frac{|a_0|}{2} + \underbrace{\mathcal{E}}_{n=1}^{\infty} \left(\frac{2ml}{n^2\pi^2} + \frac{2ml}{n^2\pi^2} \right)$$

$$\leq \frac{|a_0|}{2} + \underbrace{4ml}_{\pi^2} \underbrace{\mathcal{E}}_{n=1}^{\infty} \left(\frac{1}{n^2} \right)$$

By p-series test $\sum_{n=1}^{\infty} (\frac{1}{n^2}) \rightarrow \text{convergent as } P>1$

If contingent is commingent

and form < |form)

: fin) -> also convergent

consurgence of fourier series for pieceuse conti. funct.

A function f is said to be piecewise conti. in [-1,1] it,

. f(n) is defined and conti. in t at [-d, l] except at finite number of points in [-1,1].

· At a point no ∈ (-l,l), if funch is not continuous, then lim f(x) exist and are finite.

N→xo

exist and are finite exist and are finite

exist and are finite

1) = xb(1xit) = xb(1xit)

© f(x) → periodic with period 2l, single valued a finite.

© f(x) → piccewise conti: in [-1,17]

T(x) → has left hand obstivative of RHD at each point in [-1,17] then, for convergence of piccewise cont. Junct we have a fuch on the interval C-l, l] then the faurier Series of for, converges to f(x) at the point of continuity At the point of discontinuity, say not (-1,1) fourier Series converges to f(xt) tf(xt) where f(xto) a for one RHL, LHL of for at Xo. At both end points of Ed. 17, faurier series conunges f(-l+) + f(l-) (//////) G. Find the fourier series expansion of the following function $f(x) = \begin{cases} -\pi & -\pi < \pi < 0 \end{cases}$ Hence, deduce: $\begin{cases} \frac{\pi^2}{8} = \frac{1}{12} + \frac{1}{32} + \frac{1}{52} + \cdots \end{cases}$ we have our funch $\Delta \mathbf{a} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\mathbf{n}) d\mathbf{x}$ in [-TI, TI] : l= T = = = [] -TIdn + [xdn] 三一九[一化十型] 为一型

$$a_{n} = \frac{1}{\pi l} \int_{-\pi}^{\pi} f(x) \cos (n\pi l) dx$$

$$= \frac{1}{\pi l} \left[\int_{-\pi}^{\pi} dx \cos (n\pi l) dx + \int_{-\pi}^{\pi} x \cos n\pi dx \right]$$

$$= \frac{1}{\pi l} \left[\pi \left(\frac{\sin n\pi}{n} \right)^{-\pi} + \left[\pi \frac{\sin n\pi}{n} + \frac{\cos n\pi}{n} \right]^{\pi} \right]$$

$$= \frac{1}{n^{2}\pi l} \cdot \left[(-1)^{n} - 1 \right]$$

$$b_{n} = \frac{1}{\pi l} \left[\int_{-\pi}^{\pi} \pi \sin n\pi dn + \int_{-\pi}^{\pi} \pi \sin n\pi dn \right]$$

$$= \frac{1}{\pi l} \left[-\pi l \left(-\frac{\cos n\pi}{n} \right)^{n} + \left[\pi l \left(-\frac{\cos n\pi}{n} \right) + \left(\frac{\sin n\pi}{n} \right)^{n} \right] \right]$$

$$= \frac{1}{n} \left[1 - 2 \left(-1 \right)^{n} \right]$$

$$= \frac{1}{n} \left[1 - 2 \left(-1 \right)^{n} \right] \cos n\pi + \sum_{n=1}^{\infty} \frac{1}{n^{2}\pi l} \left[l - 2 \left(-1 \right)^{n} \right] \sin n\pi$$

$$= \lim_{n \to \infty} \sin n \ln n + \lim_{n \to \infty} \sin n + \lim_{n \to \infty} \sin n \ln n + \lim_{n \to \infty} \sin n \ln n + \lim_{n \to \infty} \sin n \ln n + \lim_{n \to \infty} \sin n + \lim_{$$

$$f(0) = -\frac{\pi}{4} + \frac{2}{\pi} \frac{1}{\pi m^2} [-1]^{n-1}$$

f(n) is discont. at $n \ge 0$ so, f(0) converges to $f(0^+) + f(0^-)$ ie. $f(0) \ge \frac{n-\pi}{2} = -\frac{\pi}{2}$

$$\frac{1}{2} = -\frac{\pi}{4} + \sum_{n=1}^{\infty} \frac{1}{\pi n^{2}} (-1)^{n} = 1$$

$$\Rightarrow - \frac{\pi^{2}}{4} = \frac{2}{5} \frac{1}{5} [(-1)^{5} - 1]$$

$$= \frac{11^2}{4} = -\frac{2}{1^2} - \frac{2}{3^2} - \frac{2}{5^2} \dots$$

$$\Rightarrow \frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$

Fourier cosine transform-

let form be defined + no,0 then the faurier cosine transform of fins is given by

$$F(n) = \int_{-\infty}^{\infty} f(n) \cos(2n) dn$$
, $n \to parameter > 0$

Similarly, formier inverse cosine transform of F(A) is

guien by
$$f(n) = \frac{2}{\pi} \int_{0}^{\infty} F(\lambda) \omega s(\lambda x) dx$$

$$= \frac{1}{2} \left[\frac{8in (1-\lambda)^{2}}{1-\lambda} + \frac{8in (1+\lambda)^{2}}{1+\lambda} \right]^{\alpha}$$

$$= \frac{1}{2} \left[\frac{8in (1-\lambda)^{\alpha}}{1-\lambda} + \frac{8in (1+\lambda)^{\alpha}}{1+\lambda} \right]$$

$$F(\lambda) = \int_{0}^{\infty} f_{1}(n) \cos((\lambda n)) dn$$

$$= \int_{0}^{\infty} \frac{\cos((\lambda n))}{1+n^{2}} dn = I(\lambda) - 0$$

$$\frac{dI}{dx} = -\int_{0}^{\infty} \frac{\sin xx}{(1+x^{2})} dx = -\int_{0}^{\infty} \frac{x^{2} \sin xx}{(1+x^{2}) x} dx$$

$$-\int_{0}^{\infty} \frac{\sin \lambda n}{n} + \int_{0}^{\infty} \frac{\sin \lambda n}{(1+n^{2})n} dn$$

$$\frac{2}{2} + \int_{0}^{\infty} \frac{\sin \lambda n}{n(Hn^{2})} dn - Q$$

$$\frac{d^2I}{d\lambda^2} \geq \int_0^\infty \frac{\cos \lambda n}{(1+n^2)} dn = I$$

$$\frac{d^2I}{d\lambda^2} - I = 0 = 0 = \frac{d}{d\lambda} \left(\frac{dI}{d\lambda}\right) = I$$

aux. equ:
$$M^{1}-I=0$$
 \Rightarrow $(D^{1}-1)I=0$ $\frac{d}{d\lambda}=D$

aux. equ: $M^{1}-I=0$ \Rightarrow $M=\pm 1$
 \vdots $I=(F+PI)$ $(Rut RHS=0=)PI=0)$
 \vdots $I=(F=c_{1}e^{2}+c_{1}e^{-\lambda}-3)$

Now, we need to find $c_{1},c_{1}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$ $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 $c_{1}-c_{2}\Rightarrow$
 c_{1

differentiating
$$\emptyset$$
 with $x \rightarrow \frac{1}{2} e^{-x}$

Faurier dine transform:

$$F(\lambda) = \int_{0}^{\infty} f(n) \sin(2n) dn$$
 , $\lambda > 0$

$$f(n) = \frac{2}{\pi} \int_{0}^{\infty} F(\lambda) \sin(\lambda n) d\lambda$$
 (9 nuerse faurices sine)

9.
$$f(n) = e^{-|n|}$$
 evaluate fourier sine transform of fox, hence evaluate $\int_{0}^{\infty} (\frac{\pi}{Hn^2})^{dn}$

$$\Rightarrow F(\lambda) = \int_{0}^{\infty} e^{-\lambda} dx \quad \text{and} \quad x = I(\lambda) \quad | x > 0$$

$$\therefore |x| = x$$

$$I = -\left(e^{-x}\cos x\right)^{\infty} - \int_{-\infty}^{\infty} e^{-x}\cos x \, dx$$

$$\frac{1}{\lambda} - \frac{1}{\lambda} \left[e^{-n} \sin n + \int e^{-n} \sin n \, dn \right]$$

$$I = \frac{1}{\lambda} - \frac{I}{\lambda^2} \Rightarrow I(1 + \frac{1}{\lambda^2}) = \frac{1}{\lambda}$$

$$I = \frac{\lambda}{\lambda^2 + 1}$$
 "

now, je "din Andr = 3 fin = 2 / \ \frac{\gamma}{\gamma^2+1}. Sim An da $\frac{\pi}{2}e^{-x} = \int_{0}^{\infty} \frac{\lambda}{\lambda^{2}+1} \sin(2\pi) d\lambda$ Put n=m both sides -> $\frac{\pi}{2}e^{-m} = \int_{0}^{\infty} \frac{\lambda}{\lambda^{2}+1} \cdot \sin(\lambda m) d\lambda$ using property 16 fcm dn = 56 f tts dt ∫₀ x . Sin (mx) dx Te-m = Half range Faurier sine and cosine serieses Till now we defined fourier series in complete interval (-lil) to get f(x) = a + [ancos(nTx) + bnsih(nTx)] but now, we are defining faurier series in half range ic. (a,l) so, depending on the case whether fire is even or odd in (-1,1) me get Half range tourier Whine Levies a line series.

80, $f(x) = \frac{a_0}{2} + \frac{\infty}{2} a_n \cos(\frac{m\pi x}{\ell})$ where $a_n = \frac{2}{\ell} \int_{-\ell}^{\ell} f(x) \cos(\frac{m\pi x}{\ell}) dx$

Fourier half I sange cosine I series

Similarly,
$$f(x) = \sum_{n=1}^{\infty} b_n \sin \left(\frac{n\pi n}{n}\right)$$

where $b_n = \frac{2}{n} \int_0^n f(x) \sin \left(\frac{n\pi n}{n}\right) dx$

for $\int_0^n f(x) \sin \left(\frac{n\pi n}{n}\right) dx$

for $\int_0^n f(x) + \int_0^n f(x) \cos \left(\frac{n\pi n}{n}\right) dx$
 $\int_0^n f(x) + \int_0^n f(x) \cos \left(\frac{n\pi n}{n}\right) dx$
 $\int_0^n f(x) + \int_0^n f(x) \cos \left(\frac{n\pi n}{n}\right) dx$
 $\int_0^n f(x) + \int_0^n f(x) \cos dx$

Note: (1) odd funch x odd funch $\int_0^n f(x) \cos dx$

even " " even " $\int_0^n f(x) \cos dx$

even " x odd " $\int_0^n f(x) \cos dx$

Of depending upon $\int_0^n f(x) \cos dx$

Of as, as, be one coming which ultimately giving

half range sine and cosine series.

This is sometimes also known as faurier series for won and odd functs.

townier triansforms and Andegrals

familier transform of for multi- by x". F[x"f(x)] = i"F"(x).

Finite Faurier sine and cosine transform.

for f(x), in the interval [0,1] F. Fourier cosine transform, F_c(n) = 1 f(x) cos(mix) dx $f_s(n) = \int_{-\infty}^{\infty} f(x) \sin(n\pi x) dx$ similarly, their inverse are defined, as $f(x) = \frac{1}{4} \left[F_c(0) + 2 \sum_{m=1}^{\infty} F_c(m) \cos(\frac{m\pi x}{0}) \right]$

 $f(x) = \frac{2}{l} \sum_{n=1}^{\infty} F_s(n) \sin(\frac{n\pi x}{l})$

Convolution Theorem -

Let fin, gins be piece uise cordi on every interval [-1,1] $\int_{-\infty}^{\infty} |f(x)| dx$, $\int_{-\infty}^{\infty} |g(x)| dx$ converge. f(f(x)) = F(x)and $f(f(x)) = G(\lambda)$ then,

$$(f * g)(x) = \int_{-\infty}^{\infty} f(u) g(n-u) du = (g * f)(x)$$

is known as convolution of f'&'g' wort 'x'.

Now,

$$f[\{f*g\}(x)] = F(\lambda) G(\lambda)$$

(convolution theorem)

faurier cosine and sine transform of derivatives:

$$F_{c}\left[f''(x)\right] = \int_{0}^{\infty} f''(x) \left(\cos(2x) dx \right) = -\lambda^{2} F_{c}(\lambda) - f'(0)$$

$$\int_{S} \left[f''(x) \right] = \int_{0}^{\infty} f''(x) \sin(\beta x) dx = -\lambda^{2} F_{s}(\lambda) + \lambda f(0)$$

the parties of top a color of the top of the

Their Carp - Cast dies

Fourier integrals -

If for satisfies the familier cond">

O + (n) is piecewise conti: in every interval [-1,1].

Define is absolutely integrable on x-axis ie. Infinildx converges.

(3) At every 'n' on real line f(x) has LHD & RHD.

then faurier integral suppresentation of fine is,

 $f(x) = \iint_{\mathbb{R}} A(x) \cos(xx) + B(x) \sin(xx) dx$

where, $A(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos(xx) dx$

and $B(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) dx (\lambda x) dx$

Note: favorier integral converges to f(x) at a point of continuity but if x is a point of discontinuity then favorier integral converges to $f(x^{+}) + f(x^{-})$.

Fourier cosine and sine Integrals.

$$f(x) = \int_{\infty}^{\infty} A(\lambda) \cos(\lambda x) d\lambda$$

f(n) = 500 B(n) din (nn) dn

Complex from of faurier integralme have fini= s[A(x) cos (xn) + B(x) din(xn)]dx and $A(A) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(m) \cos(gn) dn$ B (A) = \frac{1}{17} \int \frac{1}{50} \text{ f(n) \text{ \text{Lin}(\text{2m}) \dn} \dn \dn \dots \text{\text{G}} using 6 h 3 in 1 $f(n) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) \cos(\lambda(n-u)) du d\lambda - 0$ dince, i sin (2 (4-x)) - odd funch : sin(2(4-x)) du = 0 me add i sin (n (4-20) in 9 becoz it doesn't affect (y). $f(n) \ge \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) \left[\cos \left(\lambda (u-n) \right) + i \sin \left(\lambda (u-n) \right) \right] du d\lambda$ = 1 1 of (u) e'x (u-x) du dx = $\frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(u)e^{i\lambda u} du \right] e^{-i\lambda u} d\lambda$

for = $\frac{1}{2\pi} \int_{-\infty}^{\infty} c(x) e^{-ixx} dx$ where, $c(x) = \int_{-\infty}^{\infty} f(u)e^{-ixu} du$

Complex from of fawrier beries

we know
$$f(n) = \frac{a_0}{2} + \frac{g}{g} \left(a_n \cos(n\pi n) + b_n \sin(n\pi n) \right)$$
is formier series?

$$\cos\left(\frac{n\pi\pi}{\ell}\right) = \left[e^{in\pi\pi/\ell} - in\pi\pi/\ell\right]$$

$$\sin\left(\frac{n\pi x}{\ell}\right) = \left[\frac{e^{in\pi x/\ell}}{-e^{-in\pi x/\ell}}\right]$$

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{(in\pi x/2)}$$
 where $c_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-(in\pi x/2)} dx$

* Some useful results:

$$\int e^{\alpha \lambda} \sin(\lambda x) d\lambda = \frac{e^{\alpha \lambda}}{a^2 + x^2} \left[a \sin(\lambda x) + n \cos(\lambda x) \right]$$

(3)
$$\int_{0}^{a^{2}} \cos(2\pi) dx = \frac{e^{ax}}{a^{2} + x^{2}} \left[a\cos(2\pi) + x \sin(2\pi) \right]$$

(3)
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

(4)
$$\int e^{ax} \sin(\lambda x) dx = \frac{e^{ax}}{a^2 + \lambda^2} \left[a \sin(\lambda x) - \lambda \cos(\lambda x) \right]$$

```
taurior terans froms -
```

An Integral transform similar to Laplace transform, fixed be piecewise conti. in (-00,00) and assuming from is absolutely convergent in 101 fixed die converges then,

fourier transform of fix is defined as,

$$\mathcal{F}(f(x)) = \int_{-\infty}^{\infty} f(x)e^{-jx} dx = F(x)$$

then $f(f(\lambda)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\lambda) e^{i\lambda x} d\lambda = f(x)$ (grunde faurier transform).

Properties >

1.
$$f[f(x-a)] = e^{ia\lambda} F(\lambda)$$
 Shifting on x-axis

2.
$$F[e^{ixa}f(x)] = F(x-a)$$
 Forguency shifting

3.
$$F[f(x) cos(ax)] = \frac{1}{2}[f(x+a)+f(x-a)]$$
 [Modulation]
4. $F[f(x) sin(ax)] = \frac{1}{2}[f(x+a)-f(x-a)]$ {theorem}

5. $F[f(x)] = 2\pi f(-\lambda)$ Symmetry property

6. F[af(x) + bg(x)] = aF(f(x)) + bF(g(x)) Linearity property

Note: Here $F[f(x)] = F(\lambda)$ and $a \in R$

2) Most of these properties are similar to Laplace properties.

faurier transform of derivatives >

$$f[f(n)] = f(\lambda)$$
 then, $f[f'(x)] = (i\lambda)^n F(\lambda)$

Fourier transform of integral >

If above dyin. of faurier transform holds under stated cond. and F(0)=0 then $F[\int_{-\infty}^{\infty} f(u) du] = \frac{1}{i\lambda} F(\lambda)$