Information Retrieval Topic: Index Compression (Part-2) Lecture-22

Prepared By

Dr. Rasmita Rautray & Dr. Rasmita Dash Associate Professor Dept. of CSE

Dictionary as a string

4 bytes 4 bytes 3 bytes

we need $400,000 \times (4 + 4 + 3 + 8) = 7.6$ MB for the Reuters-RCV1 dictionary: 4 bytes each for frequency and postings pointer, 3 bytes for the term pointer, and 8 bytes on average for the term. So we have reduced the space requirements by one third from 11.2 to 7.6 MB

Dictionary compression as Blocked storage

Space for dictionary as a string with blocking

Example: block size k = 4

- Where we used 4 × 3 bytes for term pointers without blocking . . .
- . . .we now use 3 bytes for one pointer plus 4 bytes for indicating the length of each term.
- We save 12 (3 + 4) = 5 bytes per block.
- Total savings: 400,000/4 * 5 = 0.5 MB
- This reduces the size of the dictionary from 7.6 MB to 7.1 MB.

- By increasing the block size k, we get better compression.
- There is a tradeoff between compression and the speed of term lookup.

Lookup of a term without blocking

Search of the uncompressed dictionary

Lookup of a term with blocking: (slightly) slower

(0+1+2+3+4+1+2+3)/8 = 2 steps on average, $\approx 25\%$ more

Dictionary compressed by blocking with k = 4

Front coding

One block in blocked compression (k = 4) . . .
 8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n

 \downarrow

• . . . further compressed with front coding.

8automat * a 1 ◊ e 2 ◊ i c 3 ◊ i o n

Dictionary compression for Reuters: Summary

data structure	size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
\sim , with blocking, $k=4$	7.1
\sim , with blocking & front coding	5.9

Thank You