

Linear Algebra

Linear Algebra - Vector Spaces

Andrew Lehmann

Last updated: July 12, 2024

École d'ingénieurs du numérique

Linear Dependence and

Independence

Definition - Linear dependence

A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ from a vector space V is said to be *linearly dependent* if there exists a set of constants $\{\alpha_1, \dots, \alpha_n\}$ not all zero such that

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}_V.$$

Note: the right hand side of the equation is the zero vector, not the real number 0.

2

Example - Linear dependence of two Euclidean vectors

Properties

For Euclidean vectors, when we have two vectors that are linearly dependent we say that they are *colinear*.

When we have three 3d Euclidean vectors that are linearly dependent we say that they are *coplanar*. Any two of the vectors give a plane as their span and then adding the 3rd dependent vector gives linear combinations that remain in that plane.

Definition - Linear independence

A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ from V is said to be *linearly independent* if they are not linearly dependent. That is, the equation

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}_V.$$

implies that the constants $\alpha_1, \ldots, \alpha_n$ are all zero.

Example - Linear independence of three Euclidean vectors

Methodology

Take note of the simple logic or methodology of the previous examples. We always start with the equation

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0}_V$$

and show either that by necessity all of the coefficients are zero (then the vectors are linearly independent), or that we can find at least one non-zero coefficient (then the vectors are linearly dependent). The exact method by which we determine these coefficients depends on which type of vectors we are considering.

8

Exercise - Linear dependence/independence

Determine whether the following vectors are linearly dependent or independent

$$\mathbf{u} = (1, 2, 0), \quad \mathbf{v} = (0, 1, -1) \quad \mathbf{w} = (1, 0, 3).$$

Properties

Given a set of linearly independent vectors $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$, if a new set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n, \mathbf{w}\}$ is linearly dependent, then \mathbf{w} can be given as a linear combination of the other vectors. That is, there exist constants $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$ such that

$$\mathbf{w} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

Additionally, given a set of independent vectors, any linear combination of a subset of these vectors is also linearly independent.

Theorem - The span of a dependent set of vectors can be reduced

Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a set of vectors of V. If \mathcal{B} is a set of linearly dependent vectors, then we can always remove one of the vectors to form a new set, $\mathcal{B}' = \mathcal{B} \setminus \{\mathbf{v}_k\}$ for some k, without changing the span: $\mathsf{SPAN}(\mathcal{B}') = \mathsf{SPAN}(\mathcal{B})$.

Basis

Definition - Spanning set

A set of vectors $\mathcal{A} = \{\mathbf{v}_1, \, \dots, \mathbf{v}_n\}$ is said to span a vector space V if and only if

$$\mathsf{SPAN}(\mathbf{v}_1,\ldots,\mathbf{v}_n)=V$$

We also call A a spanning set of V. Every vector of V can be written as a linear combination vectors from a spanning set.

Examples - Spanning sets

Definition - Basis

A basis of a vector space V is a minimal set of vectors which spans the vector space. Formally, the set of vectors $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ in a vector space V is a basis of V if it is a set of linearly independent vectors and $SPAN(\mathbf{v}_1, \dots, \mathbf{v}_n) = V$.

Note: bases are not unique, but they always contain the same number of vectors.

Theorem - Bases of two dimensional Euclidean space

Any two linearly independent vectors in \mathbb{R}^2 forms a basis of $\mathbb{R}^2.$

Example - Basis of \mathbb{R}^3

Is the set $\mathcal{B} = \{\mathbf{u}, \mathbf{v}, \mathbf{w}\} = \{(1, -2, 2), (2, 1, 0), (1, 1, 2)\}$ a basis of \mathbb{R}^3 ?

Dimension

Definition - Dimension

A vector space is said to be **finite-dimensional** if it has a basis with a finite number of vectors. This *number of vectors* (or cardinality) of the basis is called the dimension of the vector space, denoted dim(V). We may also speak of an *n-dimensional vector space* for a finite-dimensional vector space with dimension $n \in \mathbb{Z}$.

Dimension and Canonical Basis of Euclidean vector spaces

The Euclidean vector space \mathbb{R}^n has dimension n.

The *canonical basis* of the vector space of real *n*-tuples, \mathbb{R}^n , is the ordered set of *n n*-tuples with k^{th} element, $\mathbf{c}_k = (\alpha_1, \dots, \alpha_n)$ such that

$$\alpha_j = \begin{cases} 1 & \text{for } j = k, \\ 0 & \text{for } j \neq k. \end{cases}$$

That is, as a set the canonical basis is

$$\mathcal{C}_n = \{(1,0,\dots,0),\, (0,1,\dots,0),\, \dots,\, \underbrace{(0,0,\dots,0,\underbrace{1}_{k^{th}\; tuple}}^{k^{th}\; place}, \dots,\, (0,0,\dots,1)\}.$$

Examples - Dimension

 \mathbb{R}^3 has a basis $\mathcal{A}=\{(1,-2,2),\,(2,1,0),\,(1,1,2)\}$ and therefore $\text{dim}(\mathbb{R}^3)=$.

The set $\mathcal{B} = \{(1,0,0), (0,-1,0), (0,0,2), (1,1,-1)\}$ is not a basis of \mathbb{R}^3 because ...

The vector space of polynomials of degree up to 3, \mathcal{P}_3 has a basis $\mathcal{C}=\left\{1-x,\,1+x^2,\,x^3,\,2\right\}$ and therefore $\dim(\mathcal{P}_3)=$

The vector space of 2x2 diagonal matrices, \mathcal{M} has a basis $\mathcal{D} = \left\{ \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \right\}$ and therefore $\dim(\mathcal{M}) = -1$.

Theorem - Dimension of subspaces

Let V be a finite-dimensional vector space of dimension n. Then every vector subspace, S, of V is also finite-dimensional and

$$\dim(S) \leq \dim(V)$$
.

Furthermore, if dim(S) = dim(V) then S = V.

Theorem - Basis demonstration with dimension

Let V be a vector space and \mathcal{B} be set of vectors in V. Then \mathcal{B} forms a basis of V if its vectors are linearly independent and the number of vectors in \mathcal{B} equals the dimension of V.

Note: this theorem merely results from the definition of dimension. It seems circular, but if you can use your geometrical intuition to find the dimension of a space (for example we can know that a planar equation will define a 2 dimensional vector space) without finding the basis first, then it cuts the work in half.

Example - Dimension of an intersection of Euclidean subspaces

Let A = SPAN((1,1,0), (1,2,-1)) and B = SPAN((0,2,-1), (-1,1,-2)) be two vector subspaces of \mathbb{R}^3 . What is the dimension of $A \cap B$?

Example - Dimension of an intersection of Euclidean subspaces

Dimension of sum of subspaces

Let A and B be two finite-dimensional subspaces of a vector space V (which is either finite or infinite dimensional). Recall: the sum of these subspaces is the vector space given by $A + B = \{ \mathbf{a} + \mathbf{b} \mid \mathbf{a} \in A, \, \mathbf{b} \in B \}$.

The sum space A + B is also a finite-dimensional vector space with

$$\dim(A+B)=\dim(A)+\dim(B)-\dim(A\cap B).$$

Particular cases:

• If $A + B = A \oplus B$ (a direct sum), then $A \cap B = \{\mathbf{0}_V\}$. So we have

$$\dim(A \oplus B) = \dim(A) + \dim(B)$$

• If A and B are complementary, then $A \cap B = \{\mathbf{0}_V\}$ and A + B = V. Hence

$$\dim(A \oplus B) = \dim(A) + \dim(B) = \dim(V)$$

Example - Dimension of sum space

```
For A = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - 3z = 0\} and B = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}: 1) Find a basis for B. 2) Show that A + B = \mathbb{R}^3. 3) Is A + B a direct sum? 4) Does \dim(A + B) = \dim(A) + \dim(B)?
```

Coordinates

Coordinates in a basis

Let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis of a vector space V. As SPAN $(\mathcal{B}) = V$, every vector of V can be expressed as a linear combination of the basis vectors

$$\forall \mathbf{v} \in V, \quad \exists \alpha_1, \dots, \alpha_n, \quad \text{such that} \quad \mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n.$$

The *unique* coefficients in this linear combination are called the *coordinates* of the vector \mathbf{v} in the basis \mathcal{B} . We denote these coordinates with a column

$$[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Example - Coordinates in $\ensuremath{\mathbb{R}}^2$

Example - Coordinates in \mathbb{R}^3