Доклад по математическому моделированию

Совместное принятие решений

Наталья Андреевна Сидорова

Содержание

1	АКТУАЛЬНОСТЬ ТЕМЫ	5
2	Объект и предмет исследования	6
3	Научная новизна	7
4	Практическая значимость работы	8
5	Цель исследования:	9
6	Гипотеза:	10
7	Задачи исследования	11
8	Материалы исследования	12
9	Методы и инструменты	13
10	Теоретическая база	14
11	Содержание исследования	15
12	Основные этапы работы	16
13	Анализ достигнутых результатов	17
14	Практическая значимость полученных результатов	18
15	Общее заключение	19
16	Выводы	20
17	Заключение	21
Сп	исок литературы	22

Список иллюстраций

Список таблиц

1 Актуальность темы

В современном мире принятие решений все чаще оказывается коллективной задачей в условиях неопределенности и множества заинтересованных сторон. Совместное принятие решений применяется в управлении, экономике, здравоохранении и многих других сферах. Рост информационной нагрузки, необходимость учитывать различные точки зрения и стремление к оптимальному результату подчёркивают важность поиска эффективных методов коллективного решения сложных задач. [1]

2 Объект и предмет исследования

Объект исследования: процессы коллективного принятия решений в сложных системах.

Предмет исследования: методы математического моделирования, используемые для анализа и оптимизации коллективных решений, а также алгоритмы, способствующие нахождению консенсуса.

3 Научная новизна

- 1. Разработка новой модели, которая интегрирует методы теории игр, принятия решений и оптимизации для анализа совместного решения.
- 2. Построение модели комплексной оценки альтернатив с участием нескольких агентов, учитывая влияние информационных потоков и временные ограничения.

4 Практическая значимость работы

- 1. Возможность применения разработанной модели в управлении проектами, корпоративном управлении и разработке стратегических решений.
- 2. Повышение качества и оперативности принимаемых решений за счет автоматизированных вычислительных инструментов, что приводит к снижению затрат и рисков при реализации проектов.

5 Цель исследования:

Разработать математическую модель для анализа и оптимизации совместного принятия решений с учетом влияния различных факторов и интересов участников.

6 Гипотеза:

Применение интегрированного подхода, объединяющего методы многокритериального анализа и теорию игр, позволит добиться более эффективного и устойчивого консенсуса в ситуациях, характеризующихся сложной динамикой и неопределенностью.

7 Задачи исследования

- 1. Провести анализ существующих моделей и методов совместного принятия решений.
- 2. Определить ключевые факторы влияния в процессах коллективного выбора.
- 3. Построить интегрированную модель, учитывающую взаимодействие участников и информационные потоки.
- 4. Провести численное моделирование и анализ устойчивости решений в различных сценариях.
- 5. Оценить возможности практического применения полученных результатов на примере конкретных кейсов.

8 Материалы исследования

- 1. Литературный обзор по методам принятия решений, теории игр и много-критериальному анализу.
- 2. Данные, полученные из кейс-исследований в области управления проектами и корпоративного управления.

9 Методы и инструменты

- 1. Математическое моделирование: построение дифференциальных моделей и моделей дискретного выбора.
- 2. Теория игр: анализ стратегического поведения агентов.
- 3. Методы оптимизации и многокритериального анализа: метод анализа иерархий (АНР), ELECTRE, метод взвешенных сумм.
- 4. Численные методы: моделирование на программных платформах (MATLAB, Python).
- 5. Статистический анализ для оценки параметров и поведения модели. [5]

10 Теоретическая база

- 1. Основы теории игр для взаимодействия агентов.
- 2. Многоагентное моделирование процессов принятия решений.
- 3. Модели оптимизации и методы оценки эффективности коллективного выбора.
- 4. Принципы многокритериального анализа для оценки альтернатив. [4]

11 Содержание исследования

Предлагаемое решение задач исследования с обоснованием (как выглядит пример исследования на основе совместного принятия решений):

- 1. Построена математическая модель, основанная на интеграции методов теории игр и многокритериального анализа, в которой участники (агенты) имеют свои предпочтения и ограничения.
- 2. Применение теории игр позволяет учитывать стратегическое поведение и возможное влияние информации, а методы многокритериального анализа структурировать критерии оценки альтернатив.
- 3. Выбор данного подхода обоснован необходимостью учета как индивидуальных предпочтений, так и коллективного интереса, что отражается в динамике процессов принятия решений.

12 Основные этапы работы

- 1. Анализ литературы и сбор данных изучение существующих моделей и выбор нормативной базы.
- 2. Формализация задачи определение критериев и построение математической модели.
- 3. Разработка и программная реализация модели написание кода для численного моделирования и тестирования алгоритмов.
- 4. Проведение экспериментов моделирование различных сценариев совместного принятия решений.
- 5. Анализ результатов проверка гипотезы, оценка устойчивости и практической применимости модели.
- 6. Формирование выводов и разработка рекомендаций для практического внедрения. [1] [2]

13 Анализ достигнутых результатов

- 1. В результате моделирования получены характеристики оптимального выбора, позволяющие наблюдать динамику формирования консенсуса среди агентов.
- 2. Анализ чувствительности модели к изменению входных параметров показал устойчивость результатов при определенной вариации.
- 3. Сравнение с традиционными методами коллективного решения выявило преимущество предложенной интегрированной модели в условиях высокой неопределенности и многокритериальности. [3]

Практическая значимость полученных результатов

Разработанный инструмент может быть адаптирован для поддержки принятия решений в корпоративном управлении и межведомственных структурах. Возможность автоматизированного анализа сценариев позволяет снизить время на принятие решений и повысить их качество. Принципы модели могут быть применены для обучения специалистов в области управления и принятия решений, что способствует развитию компетенций в многогранном анализе и оптимизации.

15 Общее заключение

Совместное принятие решений является актуальной и многогранной проблемой, требующей комплексного подхода. Применение математических методов и теории игр в данной области позволяет значительно улучшить качество принимаемых решений. Разработанная интегрированная модель демонстрирует высокую эффективность при условии учета как индивидуальных предпочтений участников, так и общих критериев выбора.

16 Выводы

- 1. Интеграция методов теории игр и многокритериального анализа позволяет более точно описывать и оптимизировать процессы коллективного принятия решений.
- 2. Разработанная математическая модель является надежным инструментом для анализа и поддержки решения в условиях неопределенности и сложных взаимосвязей.
- 3. Практическая реализация модели подтверждает её эффективность и перспективность для использования в реальных управленческих и проектных процессах.
- 4. Дальнейшие исследования могут быть направлены на улучшение алгоритмов коммуникации между участниками и адаптацию модели под специфические отраслевые задачи.

17 Заключение

В заключение хочу подчеркнуть, что проблема совместного принятия решений требует нового взгляда и применения междисциплинарных методов. Наш подход, основанный на математическом моделировании, не только позволяет уточнить теоретические основы процесса, но и предоставляет практический инструмент для улучшения качества управленческих решений. Результаты данного исследования будут способствовать дальнейшему развитию данной области и станут полезными для специалистов, занимающихся оптимизацией и анализом процессов принятия решений в различных сферах деятельности.

Список литературы

- [1] Востоков Е.В. Менеджмент. Учебное пособие / Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А.Бонч-Бруевича. – СПб, 2006. URL: https://studfile.net/preview/9560405/page:14/
- [2] Математическая модель. Материал из Википедии— свободной энциклопедии URL: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%
- [3] Г. С. Хакимзянов, Л. Б. Чубаров, П. В. Воронина, МАТЕМАТИЧЕСКОЕ МОДЕЛИ-РОВАНИЕ Часть 1 / Общие принципы математического моделирования. Учебное пособие, Новосибирск, 2010 URL: http://www.ict.nsc.ru/matmod/files/textbooks/MatModel-1.pdf
- [4] А.И. Орлов. Теория принятия решений. Учебное пособие. М.: Издательство "Март", 2004. URL: http://www.aup.ru/books/m157/4 1 3.htm
- [5] «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕН-НЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО». Кафедра геометрии. "Математические модели принятия решений в условиях риска и неопределенности" АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ URL: http://elibrary.sgu.ru/VKR/2019/02-03-01_008.pdf ::: {#refs} :::