强化学习及其应用

Reinforcement Learning and Its Applications

第五章 值函数逼近

Value Function Approximation

授课人: 周晓飞 zhouxiaofei@iie.ac.cn 2018-6-27

课件放映 PDF-〉视图-〉全屏模式

第五章 值函数逼近

- 5.1 值函数逼近
- 5.2 增量预测与控制
- 5.3 批量预测与控制
- 5.4 算法总结

第五章 值函数逼近

- 5.1 值函数逼近
- 5.2 增量预测与控制
- 5.3 批量预测与控制
- 5.4 算法总结

值函数逼近

问题描述

Large-Scale Reinforcement Learning

Prediction 和 Control 问题,都需要值函数估计,S--> V(S), (S,A)--> Q(S,A)

Large MDPs 状态集大,甚至是连续状态空间。

带来的问题:存储需求大,每个S的值都要估计,计算代价大。

解决办法:值函数逼近

$$\hat{v}(s, \mathbf{w}) pprox v_{\pi}(s)$$
 or $\hat{q}(s, a, \mathbf{w}) pprox q_{\pi}(s, a)$

训练学习值函数,对S的值函数可以通过函数逼近来得到。

值函数逼近

问题描述

逼近的值函数

值函数逼近

问题描述

学习函数

- Linear combinations of features
- Neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases

第五章 值函数逼近

- 5.1 值函数逼近
- 5.2 增量预测与控制
- 5.3 批量预测与控制
- 5.4 算法总结

-7-

增量预测

Value Function Approx. By Stochastic Gradient Descent

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))^{2} \right]$$

Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$
$$= \alpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$$

Stochastic gradient descent samples the gradient

$$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$

增量预测

Linear Value Function Approximation

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S) \mathbf{w}_{j}$$

Represent state by a feature vector

$$\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_n(S) \end{pmatrix}$$

$$\nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) = \mathbf{x}(S)$$
$$\Delta \mathbf{w} = \alpha(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))\mathbf{x}(S)$$

Chapter 5 Value Function Approximation

-9- 中国科学院大学网络安全学院 2018 年研究生夏季课程

增量预测算法

MC with Value Function Approximation

- Return G_t is an unbiased, noisy sample of true value $v_{\pi}(S_t)$
- Can therefore apply supervised learning to "training data":

$$\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, ..., \langle S_T, G_T \rangle$$

■ For example, using linear Monte-Carlo policy evaluation

$$\Delta \mathbf{w} = \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$
$$= \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

- Monte-Carlo evaluation converges to a local optimum
- Even when using non-linear value function approximation

增量预测算法

■ TD(0) with Value Function Approximation

- The TD-target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$ is a biased sample of true value $v_{\pi}(S_t)$
- Can still apply supervised learning to "training data":

$$\langle S_1, R_2 + \gamma \hat{v}(S_2, \mathbf{w}) \rangle, \langle S_2, R_3 + \gamma \hat{v}(S_3, \mathbf{w}) \rangle, ..., \langle S_{T-1}, R_T \rangle$$

For example, using *linear TD(0)*

$$\Delta \mathbf{w} = \alpha (R + \gamma \hat{\mathbf{v}}(S', \mathbf{w}) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$
$$= \alpha \delta \mathbf{x}(S)$$

■ Linear TD(0) converges (close) to global optimum

增量预测算法

TD(λ) with Value Function Approximation

- The λ -return G_t^{λ} is also a biased sample of true value $v_{\pi}(s)$
- Can again apply supervised learning to "training data":

$$\langle S_1, G_1^{\lambda} \rangle, \langle S_2, G_2^{\lambda} \rangle, ..., \langle S_{T-1}, G_{T-1}^{\lambda} \rangle$$

Forward view linear $TD(\lambda)$

$$\Delta \mathbf{w} = \alpha (G_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$
$$= \alpha (G_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

■ Backward view linear $TD(\lambda)$

$$\delta_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})$$
$$E_t = \gamma \lambda E_{t-1} + \mathbf{x}(S_t)$$
$$\Delta \mathbf{w} = \alpha \delta_t E_t$$

Forward view and backward view linear $TD(\lambda)$ are equivalent

增量控制

Action-Value Function Approximation by SGD

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^2 \right]$$

stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$
$$\Delta\mathbf{w} = \alpha(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$

增量控制

Linear Action-Value Function Approximation

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\mathsf{T}} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Stochastic gradient descent update

$$\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$
$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \mathbf{x}(S, A)$$

Chapter 5 Value Function Approximation

-14-

中国科学院大学网络安全学院 2018 年研究生夏季课程

增量控制算法

■ For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha (\mathbf{G_t} - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

■ For TD(0), the target is the TD target $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

$$\Delta \mathbf{w} = \alpha(R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

■ For forward-view TD(λ), target is the action-value λ -return

$$\Delta \mathbf{w} = \alpha(\mathbf{q}_t^{\lambda} - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

■ For backward-view $TD(\lambda)$, equivalent update is

$$\delta_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})$$

$$E_t = \gamma \lambda E_{t-1} + \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

$$\Delta \mathbf{w} = \alpha \delta_t E_t$$

第五章 值函数逼近

- 5.1 值函数逼近
- 5.2 增量预测与控制
- 5.3 批量预测与控制
- 5.4 算法总结

批量预测问题

Value Function Approx.

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))^2 \right]$$

Least Squares Prediction (LSP)

$$LS(\mathbf{w}) = \sum_{t=1}^{T} (v_t^{\pi} - \hat{v}(s_t, \mathbf{w}))^2$$
$$= \mathbb{E}_{\mathcal{D}} \left[(v^{\pi} - \hat{v}(s, \mathbf{w}))^2 \right]$$

SGD with Experience Replay

Given experience consisting of *(state, value)* pairs

$$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle\}$$

Repeat:

Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

2 Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

Converges to least squares solution

$$\mathbf{w}^{\pi} = \operatorname{argmin} LS(\mathbf{w})$$

W

-18-

中国科学院大学网络安全学院 2018 年研究生夏季课程

MSE 预测

ISP 最优解

We can solve the least squares solution directly

$$\mathbb{E}_{\mathcal{D}}\left[\Delta\mathbf{w}\right] = 0$$

■ Linear LSP 最优解

Using *linear* value function approximation $\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^{\top}\mathbf{w}$

$$\alpha \sum_{t=1}^{T} \mathbf{x}(s_t) (v_t^{\pi} - \mathbf{x}(s_t)^{\top} \mathbf{w}) = 0$$

MSE 预测

■ Linear LSP 算法

LSMC
$$0 = \sum_{t=1}^{T} \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t) \mathbf{x}(S_t)^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t) G_t$$

$$\mathbf{LSTD} \qquad 0 = \sum_{t=1}^{T} \alpha(R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t) (\mathbf{x}(S_t) - \gamma \mathbf{x}(S_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t) R_{t+1}$$

$$\mathbf{LSTD}(\lambda) \qquad 0 = \sum_{t=1}^{T} \alpha \delta_t E_t$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} E_t (\mathbf{x}(S_t) - \gamma \mathbf{x}(S_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} E_t R_{t+1}$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} E_t (\mathbf{x}(S_t) - \gamma \mathbf{x}(S_{t+1}))^{\top}\right)^{-1} \sum_{t=1}^{T} E_t R_{t+1}$$

Chapter 5 Value Function Approximation

-20-

中国科学院大学网络安全学院 2018 年研究生夏季课程

批量控制问题

Action-Value Function Approx.

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^{2} \right]$$

Least Squares Control

$$LS'(\mathbf{w}) = \mathbb{E}_{\mathcal{D}} \left[(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^2 \right]$$
$$= \sum_{t=1}^{T} (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^2$$

Experience Replay in Deep Q-Networks (DQN)

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i)\right)^2\right]$$

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Chapter 5 Value Function Approximation

-22- 中国科学院大学网络安全学院 2018 年研究生夏季课程

Least Squares Q-Learning

Using Linear Action-State Function

LSTDQ algorithm: solve for total update = zero

$$0 = \sum_{t=1}^{T} \alpha(R_{t+1} + \gamma \hat{q}(S_{t+1}, \pi(S_{t+1}), \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})) \mathbf{x}(S_t, A_t)$$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_{t}, A_{t})(\mathbf{x}(S_{t}, A_{t}) - \gamma \mathbf{x}(S_{t+1}, \pi(S_{t+1})))^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_{t}, A_{t}) R_{t+1}$$

Least Squares Q-Learning

- The following pseudocode uses LSTDQ for policy evaluation
- It repeatedly re-evaluates experience \mathcal{D} with different policies

```
function LSPI-TD(\mathcal{D}, \pi_0)
     \pi' \leftarrow \pi_0
     repeat
           \pi \leftarrow \pi'
            Q \leftarrow \mathsf{LSTDQ}(\pi, \mathcal{D})
           for all s \in \mathcal{S} do
                 \pi'(s) \leftarrow \operatorname{argmax} Q(s, a)
                                   a∈A
           end for
     until (\pi \approx \pi')
     return \pi
end function
```

第五章 值函数逼近

- 5.1 值函数逼近
- 5.2 增量预测与控制
- 5.3 批量预测与控制
- 5.4 算法总结

Convergence of Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	TD(0)	✓	✓	×
	$TD(\lambda)$	✓	✓	×
Off-Policy	MC	✓	✓	✓
	TD(0)	✓	X	×
	$TD(\lambda)$	✓	X	X

Gradient Temporal-Difference Learning

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	TD	✓	✓	X
	Gradient TD	✓	✓	✓
Off-Policy	MC	✓	✓	✓
	TD	✓	X	X
	Gradient TD	✓	✓	✓

Convergence of Linear Least Squares Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	LSMC	✓	✓	-
	TD	✓	✓	X
	LSTD	✓	✓	-
Off-Policy	MC	✓	✓	✓
	LSMC	✓	✓	-
	TD	✓	X	X
	LSTD	✓	✓	_

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	Х
Sarsa	✓	(\checkmark)	×
Q-learning	✓	X	X
Gradient Q-learning	✓	✓	X

 (\checkmark) = chatters around near-optimal value function

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	Х
Sarsa	✓	(\checkmark)	X
Q-learning	✓	X	X
LSPI	✓	(✓)	-

 $(\checkmark)=$ chatters around near-optimal value function

本讲参考文献

- 1. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. (Second edition, in progress, draft).
- 2. David Silver, Slides@ «Reinforcement Learning: An Introduction», 2016.