Assignment 1 Solution

- 1. 教材 Chap 1 习题 1.1
- 1.1 表 1.1 中若只包含编号为 1 和 4 的两个样例, 试给出相应的版本空间.

表 1.1 西瓜数据集 编号 色泽 根蒂 敲声 好瓜 浊响 青绿 蜷缩 是 乌黑 蜷缩 浊响 是 青绿 硬挺 清脆 否 3 乌黑 稍蜷 沉闷 否

即我们的表格变为:

编号	色泽	根蒂	敲声	好瓜
1	青绿	蜷缩	浊响	是
2	乌黑	稍蜷	沉闷	否

根据版本空间的定义,我们需要找出所有与给定训练数据一致的假设。这意味着假设应该正确地将第一个实例分类为"好瓜=是",并将第二个实例分类为"好瓜=否"。

考虑到我们的特征和训练数据,我们的版本空间将包括所有满足以下条件的假设:

- 对于第一个实例,假设必须预测"是"(好瓜)。
- 对于第二个实例,假设必须预测"否"(不是好瓜)。

对于第一个示例 (好瓜=是), 假设需要预测为"是"。这意味着任何将此实例分类为好瓜的假设都应该被包括在版本空间内。考虑到我们仅有的一个正面示例, 假设可以是:

- 1. <色泽=青绿, 根蒂=*, 敲声=*, 好瓜=是>
- 2. <色泽=*, 根蒂=蜷缩, 敲声=*, 好瓜=是>
- 3. <色泽=*, 根蒂=*, 敲声=浊响, 好瓜=是>
- 4. <色泽=青绿, 根蒂=蜷缩, 敲声=*, 好瓜=是>
- 5. <色泽=青绿, 根蒂=*, 敲声=浊响, 好瓜=是
- 6. <色泽=*, 根蒂=蜷缩, 敲声=浊响, 好瓜=是>
- 7. <色泽=青绿, 根蒂=蜷缩, 敲声=浊响, 好瓜=是>

Problem 1: Basic Vector Operations

Let two vectors $\mathbf{a} = (1 \ 2 \ 3)^T$ and $\mathbf{b} = (-8 \ 1 \ 2)^T$, answer the following equations:

- (1) Calculate the ℓ_2 norm of **a** and **b**.
- (2) Calculate the Euclidean distance between **a** and **b** (i.e. ℓ_2 norm of **a b**).
- (3) Are a and b orthogonal? State you reason.

$$\|a\|_2 = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

$$\|b\|_2 = \sqrt{(-8)^2 + 1^2 + 2^2} = \sqrt{69}$$

$$\|a - b\|_2 = \sqrt{(1+8)^2 + (2-1)^2 + (3-2)^2} = \sqrt{83}$$

$$a \cdot b = 1 \times (-8) + 2 \times 1 + 3 \times 2 = -8 + 2 + 6 = 2$$

$$a \cdot b = 0 \iff a \text{ and } b \text{ are orthogonal}$$

Problem 2: Basic Matrix Operations

Suppose
$$A=\begin{bmatrix}1&-3&3\\3&-5&3\\6&-6&4\end{bmatrix}$$
, answer the following questions: (1) Calculate A^{-1} and $\det(A)$.

- (2) The Rank of A is?
- (3) The trace of A is?
- (4) Calculate $A + A^T$.
- 1. 最好先计算det A, 因为如果det A = 0 那么说明 singular matrix, 那么 inverse 不存在。

$$= 1 \cdot \begin{bmatrix} -5 & 3 \\ -6 & 4 \end{bmatrix} - (-3) \cdot \begin{bmatrix} 3 & 3 \\ 6 & 4 \end{bmatrix} + 3 \cdot \begin{bmatrix} 3 & -5 \\ 6 & -6 \end{bmatrix}$$

$$= 1 \cdot (-5 \cdot 4 - (3 \cdot -6)) - (-3) \cdot (3 \cdot 4 - 3 \cdot 6) + 3 \cdot (3 \cdot (-6) - (-5 \cdot 6))$$

$$= 1(-20 + 18) - (-3)(12 - 18) + 3(-18 + 30)$$

$$= -2 - 18 + 36$$

$$= 16$$

使用高斯消元法

增广矩阵 [A|I] 是:

$$\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{2nd \ r \div 6} \begin{pmatrix} 1 & -3 & 3 \\ 1 & -5/3 & 1 \\ 1 & -1 & 2/3 \end{pmatrix}$$

$$\frac{2nd \, r \div 3}{3rd \, r \div 6} \begin{pmatrix} 1 & -3 & 3 \\ 1 & -5/3 & 1 \\ 1 & -1 & 2/3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/6 \end{pmatrix} \xrightarrow{3rd \, r \cdot 1st \, r} \begin{pmatrix} 1 & -3 & 3 \\ 0 & 4/3 & -2 \\ 0 & 2 & -7/3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1/3 & 0 \\ -1 & 0 & 1/6 \end{pmatrix}$$

$$2nd \, r \times 3/4 \quad (1 - 3 - 3) \quad (1 - 0 - 0) \quad (1 - 3 - 3) \quad (1 - 3$$

$$\xrightarrow{3\mathrm{rd} \; r \; \times \; 3/4} \begin{pmatrix} 1 & -3 & 3 \\ 0 & 1 & -3/2 \\ 0 & 1 & -7/6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -3/4 & 1/4 & 0 \\ -1 & 0 & 1/12 \end{pmatrix} \xrightarrow{3rd \; r \; - \; 2\mathrm{nd} \; r} \begin{pmatrix} 1 & -3 & 3 \\ 0 & 1 & -3/2 \\ 0 & 0 & 1/3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -3/4 & 1/4 & 0 \\ 1/4 & -1/4 & 1/12 \end{pmatrix}$$

$$\xrightarrow{3rd\ r\times 3} \begin{pmatrix} 1 & -3 & 3 \\ 0 & 1 & -3/2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -3/4 & 1/4 & 0 \\ 3/4 & -3/4 & 1/4 \end{pmatrix} \xrightarrow{2nd\ r+3/2\times 3rd\ r} \begin{pmatrix} 1 & -3 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 3/8 & -7/8 & 3/8 \\ 3/4 & -3/4 & 1/4 \end{pmatrix}$$

$$-3/4 + 3/2 \times 3/4 = -6/8 + 9/8 = 3/8$$
$$1/4 + 3/2 \times -3/4 = 1/4 - 9/8 = -7/8$$
$$0 + 3/2 \times 1/4 = 3/8$$

$$\frac{1 \text{st } r + 3 \times 2 \text{nd } r}{0} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 17/8 & -21/8 & 9/8 \\ 3/8 & -7/8 & 3/8 \\ 3/4 & -3/4 & 1/4 \end{pmatrix} \xrightarrow{1 \text{st } r - 3 \times 3 rd \ r} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1/8 & -3/8 & 3/8 \\ 3/8 & -7/8 & 3/8 \\ 3/4 & -3/4 & 1/4 \end{pmatrix}$$

$$1 + 3 \times 3/8 = 8/8 + 9/8 = 17/8$$

$$0 + 3 \times -7/8 = -21/8$$

$$0 + 3 \times 3/8 = 9/8$$

$$17/8 - 3 \times 3/4 = 17/8 - 18/8 = -1/8$$

 $-21/8 - 3 \times -3/4 = -21/8 + 18/8 = -3/8$
 $9/8-3 \times 1/4 = 9/8-6/8 = 3/8$

- 2. rank(A) = 3, 矩阵 invertible
- 3. 矩阵的迹 (Trace) 是主对角线上元素的和。

$$Trace(A) = \sum_{i=1}^{n} a_{ii}$$

Trace(A) =
$$a_{11} + a_{22} + a_{33} = 1 - 5 + 4 = 0$$

4.

$$A^{\mathsf{T}} = \begin{pmatrix} 1 & 3 & 6 \\ -3 & -5 & -6 \\ 3 & 3 & 4 \end{pmatrix}$$
$$A + A^{\mathsf{T}} = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 3 & 6 \\ -3 & -5 & -6 \\ 3 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 9 \\ 0 & -10 & -3 \\ 9 & -3 & 8 \end{pmatrix}$$

5. 正交矩阵(Orthogonal matrix)是一个方阵,它的行向量和列向量都是单位向量,且互相正交。这意味着正交矩阵的转置等于其逆矩阵:

$$A^T = A^{-1}$$

对于正交矩阵A,满足以下性质:

$$A^TA = AA^T = I$$

简单地说, 正交矩阵代表了一个不涉及伸缩的刚体变换。

6. Solve $|A - \lambda I| = 0$

$$A - \lambda I = \begin{pmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{pmatrix}$$

$$(1 - \lambda)[(-5 - \lambda)(4 - \lambda) - 3 \times (-6)] - (-3)[3(4 - \lambda) - 3 \times 6] + 3[3(-6) - 6(-5 - \lambda)]$$

$$= (1 - \lambda)[-20 - 4\lambda + 5\lambda + \lambda^2 + 18] + 3[-3\lambda - 6] + 3[-18 + 30 + 6\lambda]$$

$$= (1 - \lambda)[-2 + \lambda + \lambda^2] - 9\lambda - 18 + 36 + 18\lambda$$

$$= -2 + \lambda + \frac{\lambda^2}{\lambda^2} + 2\lambda - \frac{\lambda^2}{\lambda^2} - \lambda^3 - 18 - 9\lambda + 36 + 18\lambda$$

$$= -\lambda^3 + 12\lambda + 16 = 0$$

解得: $\lambda_1 = 4$, $\lambda_2 = \lambda_3 = -2$ 解方程组 $(A - \lambda I)v = 0$

对于 $\lambda_1 = 4$ 我们有:

$$\begin{pmatrix} 1-4 & -3 & 3 \\ 3 & -5-4 & 3 \\ 6 & -6 & 4-4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$\begin{cases} -3x - 3y + 3z = 0 & -x - y + z = 0 \\ 3x - 9y + 3z = 0 & \rightarrow x - 3y + z = 0 \\ 6x - 6y = 0 & x - y = 0 \end{cases}$$

$$x - y = 0 \rightarrow x = y$$

$$-x - y + z = 0 \rightarrow -2x + z = 0 \rightarrow z = 2x$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

因此对应的 eigenvalue 是 $(1 \ 1 \ 2)^T$

对于 $λ_1 = -2$ 我们有:

$$\begin{pmatrix} 1+2 & -3 & 3 \\ 3 & -5+2 & 3 \\ 6 & -6 & 4+2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$\begin{cases} 3x - 3y + 3z = 0 & x - y + z = 0 \\ 3x - 3y + 3z = 0 \longrightarrow x - y + z = 0 \\ 6x - 6y + 6z = 0 & x - y + z = 0 \end{cases}$$

$$z = -x + y$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

因此对应的 eigenvalue 是 $(1 \ 0 \ -1)^{\mathsf{T}}$ 或者 $(0 \ 1 \ 1)^{\mathsf{T}}$

或者,

$$y = x + z$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

eigenvalue 是 $(1 \ 1 \ 0)^{\mathsf{T}}$ 或者 $(0 \ 1 \ 1)^{\mathsf{T}}$

$$x = y - z$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

eigenvalue 是 $(1 \ 1 \ 0)^{\mathsf{T}}$ 或者 $(-1 \ 0 \ 1)^{\mathsf{T}}$

7. 根据第6小题的分解结果:

$$\Lambda = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

P 可以有三个结果:

$$P_1 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}, P_2 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}, P_3 = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

它们都满足:

$$A = P \wedge P^{-1}$$

```
P1 = np.array([
                                   [1, 1, 0],
                                   [1, 0, 1],
                                   [2, -1, 1]
                                                       1 P1.dot(L).dot(np.linalg.inv(P1))
                              ])
                              P2 = np.array([
                                   [1, 1, 0],
                                   [1, 1, 1],
                                                        1 P2.dot(L).dot(np.linalg.inv(P2))
                                   [2, 0, 1]
import numpy as np
                                                       array([[ 1., -3., 3.],
        [ 3., -5., 3.],
        [ 6., -6., 4.]])
                               ])
L = np.array([
                              P3 = np.array([
      [4, 0, 0],
                                   [1, 1, -1],
                                                        1 P3.dot(L).dot(np.linalg.inv(P3))
      [0, -2, 0],
                                   [1, 1, 0],
                                                       array([[ 1., -3., 3.],
        [ 3., -5., 3.],
        [ 6., -6., 4.]])
      [0, 0, -2]
                                   [2, 0, 1]
])
                               ])
```

8. The $\ell_{2,1}$ of matrix is given by:

$$|A|_{2,1} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} |a_{ij}|^2 \right)^{1/2}$$

$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$

$$\sum_{i=1}^{m} |a_{ij}|^2 = [1^2 + 3^2 + 6^2 \quad (-3)^2 + (-5)^2 + (-6)^2 \quad 3^2 + 3^2 + 4^2] = [46 \quad 70 \quad 34]$$

$$\left(\sum_{i=1}^{m} \left| a_{ij} \right|^2 \right)^{1/2} = ([46 \quad 70 \quad 34])^{1/2} = [\sqrt{46} \quad \sqrt{70} \quad \sqrt{34}]$$

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{m} |a_{ij}|^2 \right)^{1/2} = \sqrt{46} + \sqrt{70} + \sqrt{34} \approx 20.98$$

Frobenius 范数:

$$|A|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

$$|A|_F = \sqrt{1^2 + (-3)^2 + 3^2 + 3^2 + (-5)^2 + 3^2 + 6^2 + (-6)^2 + 4^2}$$

= $\sqrt{1 + 9 + 9 + 9 + 25 + 9 + 36 + 36 + 16} = \sqrt{150} = 6\sqrt{5}$

9. 核范数 (nuclear norm),又称为迹范数 (trace norm),是矩阵范数的一种,通常用于机器学习和优化中,尤其在低秩矩阵逼近和压缩感知领域。对于一个给定的矩阵 \(A\),其核范数是该矩阵奇异值的和。

具体来说,如果矩阵 A 有奇异值分解 (SVD),那么 A 可以表示为:

$$A = U \Sigma V^T$$

其中 U 和 V是正交矩阵, Σ 是对角矩阵,对角线上的元素是奇异值 σ_i 。那么 A 的核范数 $|A|_*$ 就定义为其奇异值 σ_i 的和:

$$|A|_* = \sum_i \sigma_i$$

也可以用正交分解, 求 $A^TA = P \wedge P^{-1}$, 然后求 $\sum_i \sqrt{\lambda_i}$

$$A^{T}A = \begin{pmatrix} 1 & 3 & 6 \\ -3 & -5 & -6 \\ 3 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} = \begin{pmatrix} 46 & -54 & 36 \\ -54 & 70 & -48 \\ 36 & -48 & 34 \end{pmatrix}$$

$$\lambda_1 = 4, \ \lambda_2 = 73 + 9\sqrt{65}, \ \lambda_3 = \frac{64}{73 + 9\sqrt{65}}$$

$$||A||_* = 2 + \sqrt{73 + 9\sqrt{65}} + \frac{8}{\sqrt{73 + 9\sqrt{65}}} \approx 14.73, ||A||_2 = \sqrt{73 + 9\sqrt{65}} \approx 12.06.$$

Problem 3: Linear Equations

Please give some proper steps to show how you get the answer.

Let $x = (x_1, x_2, x_3)^T$ and

$$\begin{cases} 2x_1 + 2x_2 + 3x_3 = 1\\ x_1 - x_2 = -1\\ -x_1 + 2x_2 + x_3 = 2 \end{cases}$$

Answer the following questions:

- (1) Solve the linear equations
- (2) Write it into matrix form (i.e. Ax = b) and we will use the same A and b in the following questions.

$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \xrightarrow{3\text{rd r} + 2\text{nd r}} \begin{pmatrix} 2 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \xrightarrow{1\text{st r} - 2 \times 2\text{nd r}} \begin{pmatrix} 0 & 4 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \xrightarrow{3 \operatorname{rd} r + 2 \operatorname{nd} r} \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \xrightarrow{1 \operatorname{st} r - 2 \times 2 \operatorname{nd} r} \begin{pmatrix} 0 & 4 & 3 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

$$\xrightarrow{1\text{st r-}4\times 3rd} r \begin{pmatrix} 0 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \xrightarrow{3rd \ r + 1\text{st r}} \begin{pmatrix} 0 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \xrightarrow{2nd \ r + 3rd} r \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

$$x_1 = -1, x_2 = 0, x_3 = 1$$

3. 不是 singular, 有唯一解, 因此 rank 是 3.

4.

$$\det A = \begin{vmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{vmatrix} = 2(-1 - 0) - 2(1 + 1) + 3(2 - 1) = -2 - 2 + 3 = -1$$

$$\begin{pmatrix}
2 & 2 & 3 \\
1 & -1 & 0 \\
-1 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{1str - 2 \times 2ndr}
\begin{pmatrix}
0 & 4 & 3 \\
1 & -1 & 0 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{1str - 4 \times 3rdr}
\begin{pmatrix}
0 & 0 & -1 \\
1 & -1 & 0 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -6 & -4 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{3rd r + 1str}
\begin{pmatrix}
0 & 0 & -1 \\
1 & -1 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & -6 & -4 \\
0 & 1 & 0 \\
1 & -5 & -3
\end{pmatrix}
\xrightarrow{2nd r + 3rdr}
\begin{pmatrix}
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & -6 & -4 \\
1 & -4 & -3 \\
1 & -5 & -3
\end{pmatrix}$$

$$\xrightarrow{reorganize}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
1 & -4 & -3 \\
1 & -5 & -3 \\
1 & -6 & -4
\end{pmatrix}
\xrightarrow{-1 \times 3rdr}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -4 & -3 \\
1 & -5 & -3 \\
-1 & 6 & 4
\end{pmatrix}$$

因此,

$$A^{-1} = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix}$$

5. 直接用 $x = A^{-1}b$ 求解,验证第一题答案。

$$x = A^{-1}b = \begin{bmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

6. 内积就是点乘

$$\langle x, b \rangle = [-1,0,1] \cdot [1,-1,2] = -1 \cdot 1 + 0 \cdot (-1) + 1 \cdot 2 = 1$$

1 1x3 = 3x3.

外积 3x1 1x3 = 3x3:

$$x \otimes b = xb^{\mathsf{T}} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} (1 -1 2) = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

7.

$$|b|_1 = |1| + |-1| + |2| = 4$$

$$|b|_2 = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{6} \approx 2.449$$

$$|b|_{\text{max}} = \max\{1, -1, 2\} = 2$$

8. 注意,这里是矢量运算

检查一下维度:

$$y^{\mathsf{T}}Ay = (3 \times 1)^{\mathsf{T}} \times (3 \times 3) \times (3 \times 1) = 1 \times 1$$

因此,得到的 $y^{\mathsf{T}}Ay$ 应该是一个标量:

$$(y_1 \quad y_2 \quad y_3) \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$(y_1 \quad y_2 \quad y_3)$$
 $\begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix} = (2y_1 + y_2 - y_3 \quad 2y_1 - y_2 + y_3 \quad 3y_1 + y_3)$

$$(2y_1 + y_2 - y_3 \quad 2y_1 - y_2 + y_3 \quad 3y_1 + y_3)$$
 $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$

=
$$(2y_1^2 + y_2y_1 - y_3y_1) + (2y_1y_2 - y_2^2 + y_{2y_3}) + (3y_1y_3 + y_3^2) \| 1$$

= $2y_1^2 - y_2^2 + y_3^2 + 3y_1y_2 + 2y_1y_3 + 2y_2y_3$

注意, $(y^TA)y = y^T(Ay)$, 这个性质可以用于验算。

对y求导时要注意,由于y是一个矢量,因此导数应该与y的维度一致:

$$\frac{d}{dy_1}(y^{\mathsf{T}}Ay) = 4y_1 + 3y_2 + 2y_3$$

$$\frac{d}{dy_2}(y^{\mathsf{T}}Ay) = -2y_2 + 3y_1 + 2y_3$$

$$\frac{d}{dy_2}(y^{\mathsf{T}}Ay) = 2y_3 + 2y_1 + 2y_2$$

$$\frac{d}{dy}(y^{\mathsf{T}}Ay) = \begin{pmatrix} 4y_1 + 3y_2 + 2y_3 \\ -2y_2 + 3y_1 + 2y_3 \\ 2y_3 + 2y_1 + 2y_2 \end{pmatrix}$$

9. 放入新的线性方程:

$$A = \begin{bmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \\ -1 & 2 & 1 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 2 \end{bmatrix}.$$

- 10. Rank 是 3;
- 11. 不影响的, 高斯消元法可以直接消除掉。依然 rank 等于变量的数量, 还是只有唯一解。