

Theory and Experiments on Vector Quantized Autoencoders

Van den Oord et al.

Park Jungsoo

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,
College of Informatics, Korea University

Why Discrete Latent Representation?

- Computational Efficiency
- Interpretability and Communication
- More Natural

Introduction

VQ-VAE

$$\begin{split} z_i &= \arg\min_{j \in [K]} \left\| z_e(x_i) - e_j \right\|_2 \qquad \qquad L = l_r + \beta \left\| z_e(x_i) - \operatorname{sg}\left(z_q(x_i)\right) \right\|_2, \\ z_q(x_i) &= e_{z_i} \\ & \operatorname{sg}(x) = \begin{cases} x & \text{forward pass} \\ 0 & \text{backward pass} \end{cases} \end{split}$$

KOREA UNIVERSITY

EMA Update ver.

$$c_j \leftarrow \lambda c_j + (1 - \lambda) \sum_i \mathbb{1} \left[z_q(x_i) = e_j \right],$$

$$e_j \leftarrow \lambda e_j + (1 - \lambda) \sum_i \frac{\mathbb{1}\left[z_q(x_i) = e_j\right] z_e(x_i)}{c_j},$$

- Calculation of averages of different subsets of the full data set.
- When used in updating embedding vectors, (instead of gradient) more stable in training.

Introduction

EM Algorithm

- 1. **E step:** $(z_1, \ldots, z_N) \leftarrow \arg \max_{z_1, \ldots, z_N} P_{\Theta}(x_1, \ldots, x_N, z_1, \ldots, z_N),$
- 2. **M step:** $\Theta \leftarrow \arg \max_{\Theta} P_{\Theta}(x_1, \dots, x_N, z_1, \dots, z_N)$

K-Means Clustering is one of EM-Algorithm

$$\Theta = \langle \mu^1, \dots, \mu^K \rangle, \quad \mu^k \in \mathbb{R}^D.$$

1. E step: Cluster assignment is given by,

$$z_i \leftarrow \arg\min_{j \in [K]} \left\| \mu^j - x_i \right\|_2^2,$$

2. M step: The means of the clusters are updated as,

$$c_j \leftarrow \sum_{i=1}^{N} \mathbb{1}[z_i = j]; \quad \mu^j \leftarrow \frac{1}{c_j} \sum_{i=1}^{N} \mathbb{1}[z_i = j] x_i.$$

Index Collapse

270000 - 40000 - 40000 - 50000 - 100000 - 140000 - 140000 - 140000 - 150000 - 150000 - 150000

Index Collapse

Ideal Case

- X axis corresponds to the different possible discrete latent codes,
 Y axis corresponds to the progression of training steps.
- Only few latent embedding vectors are selected, and updated.

VQ-VAE training with EM

Instead of indexing

 $P_{\Theta}(z_i \mid z_e(x_i)) \propto e^{-\left\|e_{z_i} - z_e(x_i)\right\|_2^2}$ Define probability distribution over embedding vectors

$$z_i^1, \dots, z_i^m \sim \text{Multinomial}\left(-\|e_1 - z_e(x_i)\|_2^2, \dots, -\|e_K - z_e(x_i)\|_2^2\right)$$

Monte Carlo Approximate

E step:
$$z_i^1, ..., z_i^m \leftarrow \text{Multinomial} \left(-\|e_1 - z_e(x_i)\|_2^2, ..., -\|e_K - z_e(x_i)\|_2^2 \right)$$

M step:
$$c_j \leftarrow \frac{1}{m} \sum_{i=1}^{N} \sum_{l=1}^{m} \mathbb{1} \left[z_i^l = j \right]; \qquad e_j \leftarrow \frac{1}{mc_j} \sum_{i=1}^{N} \sum_{l=1}^{m} \mathbb{1} \left[z_i^l = j \right] z_e(x_i).$$

$$z_q(x_i) = \frac{1}{m} \sum_{l=1}^{m} e_{z_i^l}.$$

Experiments

Machine Translation

- Encoder function is a series of convolutional layers with residual connections
- Source sentence is encoded in to sequence of hidden states through multiple causal self-attention layers
- Decoder consists of transpose convolutional layers whose output is fed to a transformer decoder with causal attention.

3 Experiments

Machine Translation

Model	n_c	$\mid n_s \mid$	BLEU	Latency	Speedup	
Autoregressive Model (beam size=4) Autoregressive Baseline (no beam-search)	-		28.1 27.0	331 ms 265 ms	$1 \times 1.25 \times$	
NAT + distillation	· -	-	17.7	39 ms	15.6× *	
NAT + distillation + NPD=10	-	-	18.7	79 ms	7.68× *	
NAT + distillation + NPD=100	-	-	19.2	257 ms	2.36 imes *	
LT + Semhash	-	-	19.8	105 ms	$3.15 \times$	
Our Results						
VQ-VAE	3	-	21.4	81 ms	$4.08 \times$	
VQ-VAE with EM	3	5	22.4	81 ms	$4.08 \times$	
VQ-VAE + distillation	3	-	26.4	81 ms	4.08×	
VQ-VAE with EM + distillation	3	10	26.7	81 ms	$4.08 \times$	
VQ-VAE with EM + distillation	4	10	25.4	58 ms	5.71×	

Experiments

Image Generation

Figure 4: Samples of original and reconstructed images from CIFAR-10 using VQ-VAE trained using EM with a code-book of size 2^8 .

Model	n_s	Log perplexity
ImageTransformer VAE VQ-VAE [31]	- - -	2.92 4.51 4.67
VQ-VAE (Ours) EM	5	4.83 4.80