Resposta em Frequência de um FET para pequenos sinais Relatório 03 de ELT 311

Wérikson F. O. Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

Resumo

Este relatório abordará o efeito de pequenos sinais de entrada em circuitos JFET, na configuração **autopolarização com** R_S **com desvio**. Assim, o objetivo principal é verificar a faixa de frequência na qual o componente irá funcionar. Por fim, será apresentado os resultados obtidos pela simulação fazendo uma comparação com os resultados calculados.

Introdução

O JFET possui diversos tipos de configurações e para cada uma delas possui uma frequência de trabalho informada pelo fabricante no *datasheet*. Essa faixa de operação é influenciada pelas capacitâncias de acoplamento e as capacitâncias internas que limitam uma zona na qual o ganho é maior que 0,707 do valor máximo.

Objetivos Gerais e Específicos

De forma geral o objetivo deste relatório será verificar a capacidade de amplificação de um circuito JFET no modo de auto-polarização de acordo com a variação da frequência, fazendo uma comparação entre os valores calculados e os simulados.

Materiais e Métodos

- $R_{sig} = 10 \text{ k}\Omega$;
- $R_G = 1 \text{ M}\Omega$;
- $R_L = 2.2 \text{ k}\Omega$;
- $V_{DD} = 30 \text{ V}$;
- $R_D = 4.7 \text{ k}\Omega;$
- $C_{wi} = 5 \text{ pF};$
- $R_S = 1 \text{ k}\Omega$;
- $C_{wo} = 6 \text{ pF};$

- $C_{GS} = 4 \text{ pF}$;
- Fonte CA ajustável;
- $C_{DS} = 0.5 \text{ pF};$
- Gerador de sinais;
- $C_{DG} = 2 \text{ pF};$
- Transistor BF245C:
- · Osciloscópio;
- Fonte CC ajustável;
- Multímetro digital.

Parte teórica

Figura 1: JFET - Auto-polarização

Dado o circuito da Figura 1, inicialmente, foi realizado uma análise teórica do circuito. Como uma das principais características do JFET é a alta impedância de entrada, não havendo corrente passando pelo resistor no terminal PORTA, e para a analise CC, na qual os capacitores serão considerados como circuito aberto ao aplicar LKT no terminal porta-fonte, tem-se:

$$I_G = 0 \text{ mA e } V_{R_C} = V_G = 0 \text{ V}$$
 (1)

$$V_{GS} = V_G - V_S = -I_D R_S$$

Substituindo a Equação de V_{GS} na Equação de Shockley e sabendo que $V_P=-6~{\rm V}~{\rm e}~I_{DSS}=12~{\rm mA},$ fica-se com apenas uma variável, I_D . Logo, ao resolver a equação, encontra-se duas respostas:

$$I_D = I_{DSS} \left(1 - \frac{-I_D R_S}{V_P} \right)^2$$

$$I_1 = 12 \ mA \ e \ I_2 = 3 \ mA$$

Substituindo estes valores na Equação de V_{GS} ,

$$V_{GS_1} = -12 \ V \ e \ V_{GS_2} = -3 \ V$$

Entretanto como V_P deve ser menor que V_{GS} conclui-se:

$$I_D = 3 \text{ mA e } V_{GS} = -3 V \tag{2}$$

A queda de tensão em R_S é dada por:

$$V_{Rs} = I_D R_S = 3 V$$
 (3)

Agora, analisando a queda de tensão no resistor do Dreno e em seguida a diferença nas tensões entre os terminais de dreno e fonte, obtém-se:

$$V_D = V_{DD} - R_D I_D = 15,9 V$$
 (4)

$$V_{DS} = V_D - V_S = 12,9 V$$
 (5)

Agora, para a analise do circuito em CA, ou seja, os capacitores sendo considerados como curto circuito e zerando a fonte cc tem-se:

$$\mathbf{Z_i} = \mathbf{R_G} = 1 \, M\Omega \tag{6}$$

$$\mathbf{Z_o} = \mathbf{R_D} = \mathbf{4}, \mathbf{7} \, k\Omega \tag{7}$$

$$g_m = 2 \cdot \frac{I_{DSS}}{|V_P|} \cdot \left(1 - \frac{V_{GS}}{V_P}\right)$$

$$\mathbf{g_m} = \mathbf{2} \ mS \tag{8}$$

$$A_{VNL} = \frac{V_o}{V_i} = -g_m R_D = -9,400 \eqno(9)$$

$$A_{VL} = -g_m(R_D||R_L) = -2,997$$
 (10)

$$\mathbf{A_{VS}} = \left[\frac{\mathbf{R_{G}}}{\mathbf{R_{G}} + \mathbf{R_{sig}}}\right] \left[-\mathbf{g_m}(\mathbf{R_{D}}||\mathbf{R_{L}})\right] = -2,990 \tag{11}$$

Depois ao analisar a variação de frequência, percebe-se que, para baixas frequências, temos:

• Para C_G :

$$f_{L_G} = \frac{1}{2\pi (R_{sig} + Z_i)C_G} = 15,75 Hz$$
 (12)

• Para C_C :

$$R_o = R_D || r_d = R_D = 4,7 k\Omega$$

$$f_{L_C} = \frac{1}{2\pi (R_o + R_L)C_C} = 46,13 Hz \qquad (13)$$

• Para C_S :

$$R_{eq} = R_S || \left(\frac{1}{gm}\right) = \frac{1000}{3} \Omega$$

$$f_{L_S} = \frac{1}{2\pi R_{eq} C_S} = 238,73 \; Hz \qquad (14)$$

A frequência de corte inferior é dada pela maior frequência, ou seja, ${\bf f_{L_S}}\approx {\bf 239~Hz}.$

Para alta frequências, temos:

• Para f_{H_i} :

$$R_{Thi} = R_{sig} / / R_g = 9,9 \, k\Omega$$

$$C_i = C_{wi} + C_{gs} + (1 - A_V)C_{gd} = 17 \, pF$$

$$f_{H_i} = \frac{1}{2\pi R_{Thi}C_i} = 945,568 \, kHz \tag{15}$$

• Para f_{H_0} :

$$R_{Tho} = R_D / / R_L = 1,5 \text{ k}\Omega$$

$$C_o = C_{wo} + C_{ds} + (1 - 1/A_V)C_{gd} = 9,17 \text{ pF}$$

$$f_{H_o} = \frac{1}{2\pi R_{Tho}C_o} = 11.585 \text{ MHz}$$
 (16)

A frequência de corte superior é dada pela menor frequência, ou seja, $\mathbf{f_{H_i}} \approx \mathbf{945}, \mathbf{6~kHz}.$

Desta forma, podemos traçar a curva de Bode, Figura 2, obtendo assim a largura de banda de aproximadamente 945,347 kHz.

Figura 2: Gráfico de Bode

Parte prática

Para a analise CC, inicialmente foi simulado o circuito da Figura 3, desta forma, completando a tabela 1.

Figura 3: Circuito para analise CC.

Já para a analise CA, foi simulado o circuito da Figura 4, completando a tabela 2.

Figura 4: Circuito para analise CA.

Depois, foi simulado o circuito completo da Figura 6, no modo CC e CA, preenchendo a tabela 3 e 4, apresentadas no anexo.

Figura 5: Simulação do circuito completo.

Resultados e Discussões

Para as simulações CC e CA foram preenchidas as tabelas 1 e 2, respectivamente. Além disto, nas tabelas, constam o erro relativo percentual entre os valores calculados e medidos. Em seguida com os dados obtido pela simulação do circuito completo foi obtido a curva de Bode para este circuito, na qual é apresentado os pontos da frequência de corte, dessa forma o obtendo a banda de passagem da simulação:

$$B_w = 1,78 M - 281 = 1,77 M$$

Tabela 1: Valores obtidos na analise CC.

	Valores calculados	Valores medidos	Erro (%)
$V_{R_G}(\mathbf{V})$	0,00	0,00	0,00
V_{R_S} (V)	3,00	2,96	1,33
$V_{GS}\left(\mathbf{V}\right)$	-3,00	-3,00	0,00
$V_D(\mathbf{V})$	15,9	16,1	1,26
$V_{DS}\left(\mathbf{V}\right)$	12,9	13,1	1,55
I_G (mA)	0,00	0,00	0,00
I_D (mA)	3,00	2,96	1,33

Tabela 2: Valores obtidos na analise CA.

	Valores calculados	Valores medidos	Erro (%)
A_{VNL}	-9,4	-9,395	0,05
A_V	-2,997	-3,000	0,10
A_{VS}	-2,990	-3,00	0,33

Figura 6: Curva de bode para JFET-Auto polarização.

Conclusão

Portanto, podemos notar que as capacitâncias de acoplamento determinam a frequência de corte inferior e que as capacitâncias internas determinam a frequência de corte superior. Outro ponto importante, é que foi possível observar os efeitos das capacitâncias sobre os ganhos do circuito, na simulação CA, ao compara-los com o ganho do circuito CC. Além disso, houve também uma influenREFERÊNCIAS REFERÊNCIAS

cia sobre a frequência de corte superior na qual houve um erro relativo mais expressivo de 88,24 %.

Além disto, foi observado que com teorema de miller pode-se converter o capacitor de realimentação em dois capacitores equivalente, sendo estes um na entrada e outro na saída. Desta forma, com o efeito miller, dependendo do valor de capacitância, um capacitor se torna dominante sobre o outro, determinando assim a frequência de corte do estágio. Logo ao variar sua eficácia segundo a frequência, ou seja, a sensibilidade perante ao ganho do amplificador e a capacitância parasita entre os terminais, contribuindo para a linearidade.

Referências

[1] R. L. Boylestad and L. Nashelsky, *Dispositivos eletrônicos e teoria de circuitos*, vol. 6. Prentice-Hall do Brasil, 1984. REFERÊNCIAS REFERÊNCIAS

Anexo:

Tabela 3: Parâmetros do circuito amplificador.

F(Hz)	$V_S(mV)$	$V_o(mV)$	A_V	A_V/A_{med}	$A_V/A_{med}dB$
5 k	1	3,88	3,88	0,997	-0,00245
10 k	1	3,88	3,88	0,998	-0,0134
100 k	1	3,88	3,88	0,997	-0,0238
200 k	1	3,86	3,86	0,993	-0,0631
300 k	1	3,83	3,83	0,985	-0,131
400 k	1	3,79	3,79	0,975	-0,219
500 k	1	3,74	3,74	0,962	-0,337
600 k	1	3,68	3,68	0,947	-0,475
650 k	1	3,66	3,66	0,940	-0,540
700 k	1	3,61	3,61	0,929	-0,640
750 k	1	3,58	3,58	0,921	-0,711
800 k	1	3,55	3,55	0,912	-0,793
900 k	1	3,47	3,47	0,892	-0,980
1 M	1	3,39	3,39	0,872	-1,19
2 M	1	2,59	2,59	0,666	-3,53
3 M	1	1,97	1,97	0,507	-5,90
5 M	1	1,28	1,28	0,330	-9,63
10 M	1	0,64	0,64	0,163	-15,7

Tabela 4: Parâmetros do circuito amplificador (Baixa frequência).

F (Hz)	$V_S(mV)$	$V_o(mV)$	A_V	A_V/A_{med}	A_V/A_{med} dB
1 k	1	3,73	3,73	0,961	- 0,34
900	1	3,69	3,69	0,952	- 0,43
800	1	3,65	3,65	0,940	- 0,54
700	1	3,59	3,59	0,925	- 0,68
600	1	3,50	3,50	0,902	- 0,90
500	1	3,36	3,36	0,867	- 1,24
450	1	3,27	3,27	0,840	- 1,51
400	1	3,14	3,14	0,810	- 1,83
300	1	2,82	2,82	0,726	- 2,78
250	1	2,57	2,57	0,663	-3,57
200	1	2,25	2,25	0,581	- 4,72
150	1	1,88	1,88	0,485	-6,28
100	1	1,41	1,41	0,363	-8,81
50	1	0,837	0,837	0,216	-13,3
30	1	0,526	0,526	0,136	-17,4
10	1	0,116	0,116	0,03	- 30,5