H21T3A2

a) Gegeben sei die Differentialgleichung $x' = 3\sqrt{xt}$; $t, x \in]0, \infty[$.

Überprüfen Sie diese auf lokale Existenz und Eindeutigkeit von Lösungen mit Anfangswerten im offenen ersten Quadranten $]0, \infty[\times]0, \infty[$.

b) Zeigen Sie, dass die Eindeutigkeit der Lösungen nicht mehr gültig ist, sobald man den ersten Quadranten verlässt. Geben Sie dazu zwei verschiedene, auf $\mathbb R$ globale Lösungen für das Anfangswertproblem x(0)=0 an.

Zu a)

 $f:]0; \infty[^2 \to \mathbb{R}; (t, x) \to 3\sqrt{xt}$ ost stetig differenzierbar, da $\partial_t f(t, x) = \frac{3x}{2\sqrt{xt}}$ und $\partial_x f(t, x) = \frac{3t}{2\sqrt{xt}}$ beide stetig sind. $]0; \infty[^2$ ist ein Gebiet.

Somit hat nach dem globalen Existenz- und Eindeutigkeitssatz jedes Anfangswertproblem x' = f(x,t); $x(\tau) = \xi mit(\tau,\xi) \in]0$; $\infty[^2$ eine eindeutige maximale Lösung.

Zub)

 $3\sqrt{xt}$ gibt eine reellwertige Lösung für $(t, x) \in [0; \infty[^2 \cup] - \infty; 0[^2;$ dieses ist nicht mehr offen und ∂f ist nicht mehr definiert, falls x oder t = 0.

Gesucht sind zwei reellwertige Lösungen von $x' = 3\sqrt{xt}$; x(0) = 0.

- i) $\nu: \mathbb{R} \to \mathbb{R}$; $t \to 0$ löst das Anfangswertproblem
- ii) Trennung der Variablen liefert μ : $\mathbb{R} \to \mathbb{R}$; $t \to t^3$ als Lösung. Kontrolle: $\mu(0) = 0$; $\mu'(t) = 3t^2$, $3\sqrt{\mu(t)t} = 3\sqrt{t^4} = 3t^2$

Somit ist die Eindeutigkeit nicht mehr gegeben.