Wydział:	Imię i nazwisko: Rafał Grabiański Zbigniew Królikowski		Rok:	Grupa:	Zespół:
WIEiT			II	7	7
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Dioda p	Nr ćwiczenia: 123			
Data wykonania:	Data oddania:	Zwrot do poprawy:	Data oddania: 25.11.2014	Data zaliczenia:	
					OCENA:
21.10.2014	28.10.2014	18.11.2014	•		

1 Cel ćwiczenia

Celem naszego ćwiczenia było poznanie własności warstwowych złącz półprzewodnikowych typu p-n. Cel ten miał zostać osiągnięty poprzez wyznaczenie i analizę charakterystyk stałoprądowych dla czterech typów diód: germanowej, krzemowej, świecącej i Zenera.

1.1 Definicje

Współczynnik nie
idealności Wskaźnik mówiący o tym jak bardzo natężenie prądu odbiega od tego wyliczonego na podstawie wzoru dla doskonałej diody Shoeckleya. Współczynnik liczymy na podstawie wzoru: $m = \frac{1}{aU_T}$, gdzie U_T to stała nazywana napięciem termicznym.

Przerwa energetyczna Zakres energii elektronów, dla której w danym materiale są one silnie rozpraszane na atomach i w konsekwencji w układzie nie ma elektronów z energiami w tym zakresie.

Współczynnik stabilizacji Stosunek względnej zmiany napięcia do względnej zmiany prądu w diodzie.

2 Przebieg pomiarów

Podczas wykonywania ćwiczenia korzystaliśmy z zestawu składającego się z: czułego przyrządu uniwersalnego V-640, który służył nam jako amperomierz, multimetra służącego jako woltomierz, zestawu czterech diód: germanowej, krzemowej, Zenera i świecącej oraz zasilacza prądu stałego.

Naszym zadaniem było wykonanie pomiarów napięć na poszczególnych diodach przy zadanym napięciu i na bazie tych wyników opracowanie charakterystyki dla wszystkich diód w kierunku przewodzenia oraz zaporowym.

3 Wyniki pomiarów

I [A]	Napięcie U[V] diody					
I [A]	Ge	Si	Świecąca	Zenera		
0.0001	0.053	0.395	2.44	0.593		
0.0002	0.064	0.406	2.46	0.604		
0.0003	0.075	0.422	2.48	0.621		
0.0005	0.091	0.442	2.51	0.639		
0.0007	0.101	0.454	2.53	0.651		
0.001	0.113	0.467	2.56	0.662		
0.002	0.136	0.491	2.62	0.682		
0.003	0.152	0.508	2.67	0.694		
0.005	0.172	0.531	2.75	0.71		
0.007	0.186	0.546	2.8	0.72		
0.01	0.202	0.562	2.87	0.731		

Tabela 1: Charakterystyka prądowo-napięciowa dla diód połączonych w kierunku przewodzenia

Dioda Ge		Diody inne			Dioda Zenera	
U[V]	I[A]	U[V]	Si I[A]	świecąca $I[A]$	I[A]	U[V]
-0.02	-0.0000095	-0.1	-0.000000015	-0.00000001	-0.0001	-10.32
-0.04	-0.000015	-0.2	-0.000000025	-0.00000002	-0.0002	-10.35
-0.06	-0.000015	-0.3	-0.000000035	-0.00000003	-0.0003	-10.36
-0.08	-0.00002	-0.5	-0.00000006	-0.000000045	-0.0005	-10.37
-0.1	-0.00002	-0.7	-0.00000008	-0.000000065	-0.0007	-10.37
-0.2	-0.00002	-1	-0.00000011	-0.000000095	-0.001	-10.38
-0.3	-0.00002	-1.5	-0.00000015	-0.000000145	-0.0015	-10.39
-0.5	-0.00002	-2	-0.0000002	-0.0000002	-0.002	-10.39
-0.7	-0.00002	-3	-0.0000003	-0.0000003	-0.003	-10.4
-1	-0.00002	-4	-0.0000004	-0.0000004	-0.004	-10.41
-1.5	-0.00002	-5	-0.0000005	-0.0000005	-0.005	-10.42
-2	-0.00002	-6	-0.0000006	-0.0000006	-0.006	
-3	-0.00002	-7	-0.0000007	-0.0000007	-0.007	
-4	-0.00002	-8	-0.0000008	-0.0000008	-0.008	brak danych
-5	-0.000025	-9	-0.0000009	-0.0000009	-0.009	
-6	-0.000025	-10	-0.000001	-0.000001	-0.01	

Tabela 2: Charakterystyka prądowo-napięciowa dla diód połączonych w kierunku zaporowym

4 Opracowanie wyników

4.1 Charakterystyka prądowo-napięciowa dla polaryzacji przewodzenia

Rysunek 1: Wykres zależności natężenia prądu od napięcia dla diód podłączonych w kierunku przewodzenia log(I) = f(U)

4.2 Obliczenie współczynnika idealności dla diody germanowej

Po wykonaniu zlinearyzowanego wykresu zależności natężenia prądu id napięcia dla diody germanowej, za pomocą arkusza kalkulacyjnego obliczyliśmy, że współczynnik kierunkowy prostej a=29.692. Przyjmując wartość napięcia termicznego $U_T=26mV$, obliczamy wartość współczynnika idealności ze wzoru:

$$m = \frac{1}{a \cdot U_T} \tag{1}$$

Czyli w naszym przypadku: $m=\frac{1}{29.692\cdot 26*10^{-3}}=1.3.$

Rysunek 2: Wykres zależności natężenia prądu od napięcia dla diody Ge

4.3 Analiza przesunięcia charakterystyk diód: krzemowej i germanowej

Na podstawie wyników z tabeli 1. można obliczyć, że dla danego natężenia różnica w napięciach, które go wywołują jest pomiędzy 0.34V a 0.36V. Natomiast różnica między przerwami energetycznymi dla materiałów, z których wykonane były diody: krzemu (1.11 eV) i germanu (0.67 eV) wynosi 0.44eV.

Można więc wywnioskować, że $\Delta E = e \cdot \Delta U$. Teoretyczna różnica ΔE powinna wynieść 0.44eV, a wyniosła 0.36eV.

4.4 Wyznaczenie wartości przerwy energetycznej dla materiału, z którego wykonana jest dioda świecąca

Przesunięcie charakterystyki diody świecącej względem krzemowej odczytujemy z tabeli: $\Delta U = 2.3V$. Wiemy, że $\Delta E = e \cdot \Delta U = 2.1eV$. Wiedząc z kolei, że $E_{Si} = 1.11eV$ dostajemy $E_w = E_{si} + \Delta E = 3.21eV$. Obliczona energia odpowiada energii światła fioletowego (czyli jest w zakresie widzialnym). Podana przerwa energetyczna wskazuje, że dioda została wykonana z azotku galu, który ma przerwę energetyczną wynoszącą 3.4eV.

4.5 Analiza charakterystyki diody Zenera

Sprawdziliśmy ΔU w odniesieniu do diody krzemowej i na podstawie uzyskanych wyników wynosi ono: 0.19V. Szukamy więc materiału, dla którego E_g będzie równe 1.3eV. W przybliżeniu tyle wynosi przerwa energetyczna dla arsenku galu (1.43eV).

4.6 Charakterystyki I = f(U) dla diod połączonych w kierunku zaporowym

Rysunek 3: Zależność natężenia prądu od napięcia w kierunku zaporowym dla diody Ge

Rysunek 4: Zależność natężenia prądu od napięcia w kierunku zaporowym dla diody Si

4.7 Określenie napięcia stabilizowanego U_Z dla diody Zenera

Tak jak według instrukcji, jako napięcie stabilizowane określamy takie napięcie, dla którego prąd płynący w kierunku zaporowym dla diody wyniósł 5mA. Odczytując dane z tabeli: $U_z = 10.42V$

Rysunek 5: Zależność natężenia prądu od napięcie w kierunku zaporowym dla diody LED

Rysunek 6: Zależność natężenia prądu od napięcie w kierunku zaporowym dla diody Zenera

4.8 Obliczenie współczynnika stabilizacji diody Zenera

Współczynnik stabilizacji to iloraz oporności dynamicznej do oporności statycznej, dla kierunku zaporowego.

$$R = \frac{U_z}{I_0} \tag{2}$$

$$r = \frac{\Delta U}{\Delta I} \tag{3}$$

$$Z = \frac{r}{R} \tag{4}$$

$$R = \frac{10.42V}{0.005A} = 2084 \frac{V}{A}$$

$$r = \frac{0.1V}{0.0049A} = 20.41 \frac{V}{A}$$

$$Z = \frac{r}{R} = \frac{20.41}{2084} \approx 0.010$$

5 Wnioski

Wyniki doświadczenia, także w postaci wykresu charakterystyk potwierdziły poprawność modelu złącza pn a także właściwości poszczególnych rodzajów diód. Udało się zaobserwować tzw. "napięcie progowe" czyli napięcie od którego można nałożyć na funkcję asypmotykę liniową, oraz przebicie lawinowe dla diody Zenera, umożliwiające jej pracę w charakterze stablizacyjnym (np. w prostowniku, równolegle do kondensatora za mostkiem Graetza). Pozostałe diody nie uległy temu zjawisku pomimo napięcia dochodzącego do 10V co

świadczy o ich specyficznej konstrukcji, adekwatnej do zastosowania. Warto zauważyć, że w układzie pozornie została zastowana dioda niebieska, za której odkrycie w tym roku przyznano Nagrodę Nobla w dziedzinie Fizyki dla Isamu Akasaki, Hiroshi Amano, Shūji Nakamura, wyniki doświadczenia scharakteryzowały ten materiał jako azotek galu(o przerwie energetycznej 3.4 eV), co zgadza się z teorią. Dla diody Zenera otrzymany materiał to arsenek galu.