Разбор задач, которые должны были быть рассмотрены на практическом занятии 21.03.2020

1. Объясните, почему подпространство $L\{f\}$ – линейная оболочка элементов f_1, \ldots, f_N – является выпуклым множеством.

Решение. Выпуклым называется множество, которое вместе с любыми элементами x, y содержит и отрезок, их соединяющий, т.е. все точки вида $\alpha x + \beta y$, где $\alpha, \beta \in [0,1], \alpha + \beta = 1$. Но произвольный линеал (и, в частности, подпространство) содержит вместе с любой парой элементов x, y все линейные комбинации этих элементов вида $\alpha x + \beta y$. В частности, он содержит и выпуклые линейные комбинации, для которых выполняются указанные условия на коэффициенты.

 Покажите, что любая конечная ортонормированная система линйно независима.

Решение. Пусть $\{e_1,e_2,\dots,e_n\}$ — ортонормированная система, и пусть линейная комбинация входящих в неё элементов равна нулю:

 $\alpha_1 e_1 + \dots + \alpha_k e_k + \dots + \alpha_n e_n = 0.$

Докажем, что такая линейная комбинация тривиальна, т.е. все её коэффициенты равны нулю.

Возьмём произвольный номер k и докажем, что $\alpha_k = 0$. Для этого скалярно усножим левую и правую части векторного равенства на e_k : $\alpha_1(e_1, e_k) + \cdots + \alpha_k(e_k, e_k) + \cdots + \alpha_n(e_n, e_k) = (o, e_k)$.

В силу ортонормированности системы $(e_i,e_k)=\delta_{ik}$, поэтому все слагаемые в левой части с $i\neq k$ обращаются в нуль, и в левой части остаётся единственное слагаемое, равное α_k . Кроме того, нулю равна и правая часть, и поэтому $\alpha_k=0$. В силу произвольности k мы получаем, что нулю равны все коэффициенты, т.е. линейная комбинация тривиальна. По определению это означает, что система элементов $\{e_1,e_2,\ldots,e_n\}$ линейно независима.

3. Докажите, что Y^{\perp} всегда замкнуто, независимо от замкнутости или незамкнутости Y.

Решение. Пусть h^* – предельная точка Y^{\perp} , тогда существует последовательность $\{h_1, h_2, \ldots, h_n, \ldots\}$ элементов из Y^{\perp} , пределом которой является h^* . Нам нужно локазать, что $h^* \in Y^{\perp}$.

является h^* . Нам нужно доказать, что $h^* \in Y^{\perp}$. Действительно, поскольку $h_n \in Y^{\perp}$, это означает, что h_n ортогонально любому элементу множества $Y \colon \forall y \in Y \ \forall n : (h_n, y) = 0$. Но отсюда следует, что $(h^*, y) = \lim_{n \to \infty} (h_n, y) = 0$ для $\forall y \in Y$, что и означает, что $h^* \in Y^{\perp}$.

4. Покажите, что система функций

$$\left\{\frac{1}{\sqrt{\pi}}\sin nt\,,\,n=1,2,\dots\right\}$$

является бесконечной ортонормированной системой в пространстве $L_2[-\pi,\pi]$, но она не полна в этом пространстве.

Решение. Система функций бесконечна, поскольку бесконечно (счётно) множество индексов, и для различных индексов функции также различны.

Докажем ортонормированность. Пусть e_n – элементы указанной системы, тогда

$$(e_n, e_m) = \int_{-\pi}^{\pi} e_n(t) e_m(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin nt \sin mt dt =$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\cos(n-m)t - \cos(n+m)t}{2} dt = \dots$$

Рассмотрим отдельно случа
и $m\neq n$ и m=n. Если $m\neq n,$ то

$$(e_n, e_m) = \dots = \frac{1}{2\pi} \left(\frac{\sin(n-m)t}{n-m} - \frac{\sin(n-m)t}{n-m} \right) \Big|_{-\pi}^{\pi} = 0,$$

поскольку равны нулю все синусы как на верхнем, так и на нижнем пределах.

Если m=n, то $\cos(n-m)t=1$, и

$$(e_n, e_n) = \dots = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1 - \cos 2nt}{2} dt =$$

= $\frac{1}{2\pi} \left(2\pi - \frac{\sin 2nt}{2n} \Big|_{-\pi}^{\pi} \right) = 1.$

Таким образом, $(e_n,e_m)=\delta_{nm}$, ортонормированность доказана. Неполнота системы следует из того обстоятельства, что ортогональное дополнение к этой системе нетривиально. Все элементы системы — нечётные функции на отрезке $[-\pi,\pi]$, откуда следует их ортогональность произвольной чётной функции на этом отрезке — в частности, тождественной единице.

5. Покажите, что любая счётная ортонормированная система в пространстве со скалярным произведением слабо сходится к o.

Решение. Напомню: слабая сходимость последовательности $\{e_1, e_2, \dots, e_n, \dots\}$ к нулевому элементу означает, что

 $\forall x \in X : \lim_{n \to \infty} (x, e_n) = 0$

(X – пространство со скалярным произведением). Это обстоятельство вытекает из неравенства Бесселя

$$\sum_{n=1}^{\infty} |(x, e_n)|^2 \le ||x||^2$$

и необходимого признака сходимости числовых рядов.

6. Докажите, что любое сепарабельное гильбертово пространство H непрерывно изоморфно пространству l_2 .

Уточнение: речь идёт о бесконечномерных гильбертовых пространствах. Конечномерные пространства изоморфны E^n , где n – размерность пространства.

Решение. Если пространство H сепарабельно, то оно содержит счётное плотное множество элементов $\{f_n\}$. Применим к этому множеству процемм ортогонализации Грама-Шмидта, отбрасывая те элементы плотного множества, которые входят в линейную оболочку предыдущих. В результате получим ортонормированную систему $\{e_n\}$, которая будет полной в пространстве H.

Действительно, линейная оболочка этой системы образует плотное множество в H, поскольку она содержит исходное плотное множество $\{f_n\}$ (это следует из того обстоятельства, что каждый элемент f_n принадлежит линейной оболочке первых n элементов ортонормированной системы). Если получившаяся ортонормированная система конечна, то пространство конечномерно, а если бесконечна, то бесконечномерно.

Поскольку система $\{e_n\}$ полна, произвольный элемент $x \in H$ раскладывается в ряд Фурье по этой системе:

$$x = \sum_{n=1}^{\infty} (x, e_n) e_n \,,$$

причём справедливо равенство Парсеваля

$$||x||^2 = \sum_{n=1}^{\infty} |(x, e_k)|^2$$
.

Отсюда вытекает, что последовательность $\alpha_n=(x,e_n)$ квадратично суммируема, т.е. принадлежит пространству l_2 . Обратно, если некоторая последовательность α_n принадлежит l_2 , а пространство H полное (гильбертово), то ряд

$$\sum_{n=1}^{\infty} \alpha_n e_n \,,$$

сходится, поскольку последовательность его частичных сумм фундаментальна, и для элемента $x \in H$, являющегося суммой ряда, значения α_n являются коэффициентами Фурье. Таким образом, установлена биекция между пространствами H и l_2 , причём эта биекция, является линейным изоморфизмом (коэффициенты Фурье для линейной комбинации элементов является линейной комбинацией коэффициентов Фурье элементов). Кроме того, это отображение является изометрией, что следует из равенства Парсеваля, поэтому H и l_2 изоморфны как ЛНП. А поскольку

$$(x,y) = \frac{\|x+y\|^2 - \|x-y\|^2}{4},$$

мы заключаем, что из совпадения норм соответствующих жлементов в H и l_2 следует и совпадение скалярных произведений, т.е. H и l_2 изоморфны и как гильбертовы пространства.

Замечание. Ниже будут использованы следующие обозначения: $\hat{x}=(\alpha_1,\alpha_2,\dots,\alpha_n,\dots)\in l_2$ – последовательность коэффициентов Фурье элемента $x\in H$, а τ – непрерывный изоморфизм между H и l_2 , сопоставляющий элементу $x\in H$ соответствующую последовательность $\hat{x}\in l_2$.

Задачи, которые должны были быть рассмотрены на практическом занятии 18.04.2020

- 1. Покажите, что любой непрерывный оператор в евклидовом пространстве E^n компактен.
- 2. Пусть для всякого $x=(\alpha_1,\alpha_2,\ldots,\alpha_n,\ldots)\in l_2$ оператор A действует по формуле

$$Ax = \sum_{j=1}^{\infty} \frac{\alpha_j}{2j} \,.$$

Покажите, что оператор A – компактный оператор из l_2 в E^1 .

- 3. Докажите, что линейный оператор A, действующий из E^n в E^n , симметричен тогда и только тогда, когда симметрична представляющая его матрица.
- 4. Выпишите сопряжённый оператор к оператору A в E^2 , определяемому матрицей $\begin{pmatrix} 1 & 4 \\ 5 & 2 \end{pmatrix}$.
- 5. Покажите, что $(A^*)^* = A$ и $(A^*A)^* = A^*A$.
- 6. Проверьте, что если A и A^* сопряжённые друг к другу операторы, то $A+A^*$, AA^* и A^*A самосопряжённые операторы и $\|AA^*\|=\|A^*A\|=\|A\|^2$.
- 7. Пусть в сепарабельном гильбертовом пространстве H задана полная система $\{e_i\}, i=1,2,\ldots$ ортонормированных векторов. Тогда всякому элементу $x\in H$ соответвтует ряд Фурье относительно системы $\{e_i\},$ $i=1,2,\ldots: x=\sum_{i=1}^\infty \alpha_i e_i.$

Оператор A, действующий на всякий элемент $x\in H$ по формуле $Ax=\sum_{i=1}^\infty \lambda_i \alpha_i e_i$, называется оператором нормального типа.

Покажите, что оператор нормального типа в гильбертовом пространстве будет иметь ограниченный обратный тогда и только тогда, когда существует такая постоянная величина $\gamma>0$, что выполняется неравенство $\inf_n |\lambda_n| \geq \gamma$.

- 8. Покажите, что оператор нормального типа в гильбертовом пространстве будет компактным тогда и только тогда, когда $\lim_{n\to\infty}\lambda_n=0$.
- 9. Покажите, что для всякого ограниченного оператора A, действующего в сепарабельном гильбертовом пространстве H по формуле y = Ax, в пространстве l_2 существует "подобный" оператору A ограниченный оператор \hat{A} такой, что $\|\hat{A}\|_{l_2 \to l_2} = \|A\|_{H \to H}$. При этом оператор \hat{A} определяется следующим образом: $\hat{A}\hat{x} = \hat{y}$, где $\hat{x} = (\alpha_1, \alpha_2, \dots, \alpha_n, \dots) \in l_2$ и $\hat{y} = (\beta_1, \beta_2, \dots, \beta_n, \dots) \in l_2$ те элементы l_2 , которые соответствуют при непрерывном изоморфизме τ сепарабельного гильбертова пространства H и l_2 элементам $x \in H$ и $u \in H$.
- 10. Покажите, что оператор \hat{A} в пространстве l_2 , построенный в предыдущей задаче для заданного оператора A, будет компактным тогда и только тогда, когда компактным будет исходный оператор A.