Politechnika Warszawska

Wydział Mechaniczny Energetyki i Lotnictwa Zakład Samolotów i Śmigłowców

SAMOLOTY BEZZAŁOGOWE

Projekt nr 3 Data oddania 11.04.2023

MALE, z silnikiem tłokowym i masie poniżej 1000 kg, z konfiguracją skrzydeł klasyczną

Zespół nr 2:

inż. Sara Waśniewska

inż. Stanisław Dul

inż. Kenan Majewski

prowadzący: Prof. Zdobysław Goraj

Warszawa, semestr letni 2022/2023

1. Dobór profilu

1.1. Ustalenie prędkości projektowe

Poniżej przedstawiono prędkości projektowe bezzałogowych statków powietrznych o parametrach podobnych do projektowanego statku powietrznego:

Professional UAS Falco EVO - 57 m/s

Albatross 2.2 - 57 m/s

Bayractar TB-2 - 36 m/s

Seeker 400 - 41 m/s

Ostatecznie zdecydowano, że prędkość projektowa będzie stosunkowo niska i wyniesie $V_{proj}=36\frac{m}{s}$. Z względu na znaczną powierzchnię płata lot z prędkością projektową będzie odbywał się na bardzo niskich wartościach współczynnika siły nośnej, co zostało przedstawione w dalszej części projektu.

Ze względu na zadania jakie wykonuje samolot istotna jest długotrwałość - poszukiwany jest profil o największej doskonałości o grubości zbliżonej do założonej 14 %.

Należy obliczyć współczynnik siły nośnej niezbędny do lotu przy prędkości projektowej.

 $S=14,52 m^2$

MTOW = 900 kg,

Zatem przy $V_{proj}=36\frac{m}{s}$ niezbędny jest współczynnik siły nośnej wynoszący:

$$C_L = \frac{2 * MTOW}{\rho * V_{proj}^2 * S} = 0.09.$$

Jest to bardzo niska wartość. Zdecydowano, iż będzie poszukiwany profil który zapewni najniższy opór przy tej wartości współczynnika siły nośnej. Ostatecznie zdecydowano, iż będzie to profil NACA 63₁-012 o grubości zbliżonej do oszacowanej w projekcie 2 wynoszący 12%. Cechuje się bardzo niskim współczynnikiem oporu w porównaniu do innych profili z raportu NACA wynoszącym $C_{Dmin}=0,005$.

2. Charakterystyki aerodynamiczne

2.1. Współczynnik siły nośnej

Do obliczeń charakterystyk aerodynamicznych płata przyjęto:

Tabela 1 Współczynniki do obliczeń aerodynamicznych

Współczynnik a	$\frac{dC_L}{d\alpha}$	$5,47 \frac{1}{rad}$
Pierwszy współczynnik korekcyjny Glautera	δ	0,135 [-]
Drugi współczynnik korekcyjny Glautera	τ	0,36 [-]

Poniżej zamieszczono wykresy zależności współczynnika siły nośnej od kąta natarcia dla profilu lotniczego, dla płata zastosowanego w samolocie oraz dla wychylonych klap. Klapy statku powierzanego występują na 40% rozpiętości płata i stanowią 30% profilu skrzydła.

Rysunek 1 Wykres współczynnika siły nośnej w funkcji kąta natarcia

2.2. Współczynnik oporu i opory szkodliwe

W tabeli 1 przedstawiono wartości współczynników oporu poszczególnych elementów samolotu wraz z ich powierzchniami odniesienia.

 $S_i [m^2]$ Element samolotu $C_{Di}[-]$ Skrzydło 0,00575 0,0058 12.682 0,022 0,0026 Usterzenie pionowe 1,471 Usterzenie Poziome 0,022 1,403 0,0024 Kadłub 0,0111 0,09268 1,521 Podwozie przednie 0,001 Podwozie Tylne 0,0025 2 Belki ogonowe 0,06 0,2 0,0012 Razem 0,142 17,08 0,0254

Tabela 2 Opory szkodliwe

W obliczeniach przyjęto następujące parametry usterzeń:

Cechy objętościowe dla usterzenia wysokości i kierunku takie jak w samolotach lekkich jednosilnikowych:

$$\kappa_{H} = 0.7$$
,

$$\kappa_V = 0.04.$$

Ramię usterzenia poziomego jest równe ramieniu usterzenia pionowego i wynosi $l_k=5,\!25~m.$

Korzystając ze wzorów na cechy objętościowe obliczono powierzchnię steru wysokości i łączną powierzchnię 2 sterów kierunku:

$$S_H=1,47~m^2,$$

$$S_{2V} = 1,4 m^2.$$

Poniżej przedstawiono wykres współczynnika siły nośnej profilu, płata i całego samolotu w funkcji współczynnika opor.

Rysunek 2 Wykres współczynnika siły nośnej w funkcji współczynnika oporu

Dalej zaprezentowano wykres doskonałości w funkcji kąta natarcia.

Rysunek 3 Wykres doskonałości w funkcji współczynnika siły nośnej

Maksymalna wartość doskonałości wynosi $K_{max}=12,06$ występujące dla wartości współczynnika siły nośnej $C_{LKmax}=0.9$.

2.3. Moment pochylający

Przyjęto, iż środek ciężkości samolotu znajduje się w 30% średniej cięciwy aerodynamicznej. Obliczając moment pochylający statku powietrznego bez usterzenia poziomego wzięto pod uwagę najistotniejsze z punktu widzenia tej bezwymiarowej wielkości elementy bezzałogowca: płat oraz kadłub. Wzięto po uwagę także położenie środka ciężkości względem średniej cięciwy aerodynamicznej płata. Korzystano ze wzoru:

$$Cm_{b,u} = Cm_{SA} + C_L * \bar{x}_S - (C_D - \alpha * C_L) * \bar{z}_S + Cm_{kad}$$

gdzie:

 Cm_{SA} — współczynnik momentu pochylającego od płata,

 m_{kadlub} — współczynnik momentu pochylającego od kadłuba,

 \bar{x}_S , \bar{z}_S — znormalizowane położenie środka ciężkości względem średniej cięciwy aerodynamicznej.

Poniżej przedstawiono wykres momentu pochylającego projektowanego bezzałogowego statku powietrznego bez usterzenia poziomego w funkcji kąta natarcia:

Rysunek 4 Wykres współczynnika momentu pochylającego dla samolotu bez usterzenia poziomego

Dalej obliczono współczynniki a_1 oraz a_2 usterzenia wysokości pozwalające na obliczenie momentu pochylającego całego samolotu.

Współczynnik a_1 obliczono z poniższego wykresu 9.2 z pomocy do projektu nr 9 z przedmiotu Mechanika Lotu 2.

Rysunek 5 Wykresu 9.2 z pomocy do projektu nr 9 do wyznaczenia współczynnika a1

$$a_1 = 4.5 \frac{1}{rad}.$$

Z kolei współczynnik a_2 obliczono ze wzoru:

$$a_2 = 1,27 * a_1 * \sqrt{\frac{S_{Sh}}{S_h}} * \left(1 - 0,2 * \frac{S_{Sh}}{S_H}\right) = 2,866 \frac{1}{rad}.$$

Przyjęto, iż ster stanowi 30 % cięciwy. Pozostawiając 100 mm na usterzeniu z lewej i prawej strony na mocowania otrzymano $S_{Sh}=0.42\ m^2.$

Dalej obliczono współczynnik momentu pochylającego od usterzenia wysokości dla zerowego wychylenia steru, dla wychylenia steru w dół o 5 stopni i dla wychylenia steru w górę o 5 stopni. Wartości współczynnika momentu pochylającego przedstawia poniższy wykres:

Rysunek 6 Wykres współczynnika momentu pochylającego w funkcji kąta natarcia

Tabela 3 zawiera wszystkie wyznaczone współczynniki aerodynamiczne:

Tabela 3 Tabela współczynników aerodynamicznych

C_L	α_{inf}	α_{plat}	C_{Dinf}	C_{Dplat}	C_D	$\mathcal{C}m_{b.u.}$	$\mathit{Cm}_{\delta 0 deg}$	${\it Cm_{\delta 10 deg}}$	${\it Cm_{\delta 20 deg}}$
-1,300	-12	- 13,938	0,019	0,056	0,124	-0,058	0,622	0,452	0,792
-1,100	-10	- 11,640	0,014	0,041	0,096	-0,070	0,534	0,363	0,704
-0,900	-8	-9,341	0,011	0,029	0,075	-0,076	0,445	0,275	0,615
-0,700	-6	-7,043	0,009	0,021	0,059	-0,075	0,356	0,186	0,527
-0,475	-4	-4,708	0,008	0,013	0,046	-0,065	0,257	0,087	0,427
-0,350	-3	-3,522	0,007	0,010	0,040	-0,056	0,202	0,031	0,372
-0,225	-2	-2,335	0,006	0,007	0,036	-0,044	0,146	-0,024	0,316
-0,125	-1	-1,186	0,005	0,006	0,034	-0,034	0,102	-0,068	0,272
0,000	0	0,000	0,005	0,006	0,034	-0,019	0,047	-0,124	0,217
0,100	1	1,149	0,005	0,006	0,034	-0,005	0,002	-0,168	0,172
0,225	2	2,335	0,005	0,007	0,036	0,015	-0,053	-0,223	0,117
0,325	3	3,484	0,006	0,009	0,039	0,032	-0,097	-0,268	0,073
0,450	4	4,671	0,007	0,012	0,045	0,055	-0,153	-0,323	0,017
0,675	6	7,006	0,009	0,019	0,057	0,103	-0,252	-0,423	-0,082
0,900	8	9,341	0,011	0,029	0,075	0,159	-0,352	-0,522	-0,182
1,150	10	11,714	0,014	0,043	0,099	0,229	-0,463	-0,633	-0,293
1,325	12	13,975	0,018	0,057	0,125	0,287	-0,540	-0,710	-0,370

Bibliografia

- [1] https://www.uavos.com/products/fixed-wing-uavs/albatross-2-2/
- [2] https://en.wikipedia.org/wiki/Baykar_Bayraktar_TB2
- [3] Raport NACA 824
- [4] Kundu, A. K., 2010. W: Aircraft Design. Nowy York: Cambridge University Press, p. 74
- [5] Pomoce do projektów z przedmiotów: Mechanika Lotu 1, Mechanika Lotu 2, Budowa i Projektowanie Obiektów Latających 1