CH 2 數字系統(digital system)

- A. 進位制 10 進位(0~9)、2 進位(0~1)、8 進位(0~7)、16 進位(0~9; A~F)
- B. **10 進位轉其他進位(R)** 整數: 連除 R, 最後的商數 + 下至上取餘數;小數: 連乘 R, 取整數部分,直到無小數、10 進位快速取 2 進位
- C. R 進位轉 10 進位
- D. **2** 進位與其他進位互換 2-8(每 3 個 bits 一組)、2-16(每 4 個 bits 一組)、2-4(每 2 個 bits 一組)
- E. **16 進位←→8 進位** 化2 進位再轉
- F. **10 進位分數轉 2 進位 -** 一直乘 2, 取進位到整數的部分;無法精準轉換→ 存成近似值;判斷→分母為 2 的次方
- G. 四則運算 加、減、乘、除
- 1. 進位制

10 運制:每一位权主值域: 10个(逢10進1位)

8 進制: 笛-位牧之盾士或: ×~り

2 選制: " **少** 及 1

0	0000	8 1000
1	0001	9 1001
2	0000	A(10) 1010
3	0011	B(1) 1011
4	0 100	C (12) 1100
5	0 01	D (B) 1101
6	0110	E (11) 1110
7	0111	F (15) [1]

2. 10 進位轉換至其他進位

特別: (1) (21.625)₁₀ → (10101.101)₂ (2) (375.125)₁₀ → (56月.1)_{8/0ct} 整数:
$$\frac{2[2]}{2!5}$$
 (3 (3月5.125)₁₀ → (56月.1)_{8/0ct} 整数: $\frac{2[2]}{2!5}$ (1) (2.625) (2.525) (3 (3月5.125)₁₀ → (56月.1)_{8/0ct} 整数: $\frac{8!315}{2!5}$ (1) (1) (21.625)₁₀ → (56月.1)_{8/0ct} を数: $\frac{2[2]}{2!5}$ (2) (375.125)₁₀ → (56月.1)_{8/0ct} を数: $\frac{2[2]}{2!5}$ (3 (375.125)₁₀ → (56月.1)_{8/0ct}

(3)
$$(484, 625)_{10} \rightarrow (308.4)_{16/Hex}$$
 (4) $(784)_{10} \rightarrow (2200)_{10}$ (5) $(784)_{10} \rightarrow (2200)_{10}$ (6) $(784)_{10} \rightarrow (2200)_{10}$ (7) $(784)_{10} \rightarrow (784)_{10} \rightarrow (784)_{10}$ (8) 最後的商數

- 10 進位 "整數" 快速轉換 2 進位方法

(1)

[1]
$$(100000 m0)_2 \iff 2 \iff + 強制$$

N個"0" e.g. $(1000)_2 = 2^2 = 4 (10000)_2 = 2^4 = 16$
 $(100000)_2 = 2^5 (10000)_2 = 2^8 = 756$.

(1)
$$(9b)_{10} = (?)_2$$
 (2) $(150)_{10} = (?)_2$ (3) $(700)_{10} = (?)_2$

Ans: $9b = b4 + 32$ Ans: $150 = 128 + 22$ $30 = 75b + 44 = 28 + 25 + 12$

$$= 2^6 + 2^5$$

$$= 2^7 + 16 + 6$$

$$= 2^9 + 2^4 + 6$$

$$(100 | 01 | 00)_2$$

$$(100 | 01 | 0)_2$$

(2)

(1)
$$(60)_{10} = (?)_z$$
 (2) $(250)_{10} = (?)_z$

5: $60 = 64 - 4 \times 7 - \frac{1000000}{(00)}$ Ans: $255 - 5$

$$= 63 - 3 \quad \sqrt{257} = 11111111$$

$$= 2^{6} - 1 \cdot 66 \sqrt{1}$$

$$= \frac{101}{(111100)}$$

$$= \frac{111111}{(111100)}$$

3. 其他進位轉換至 10 進位

下注:
$$(\frac{\chi_{n}\chi_{n-1} \cdots \chi_{2}\chi_{1}\chi_{0}}{\downarrow^{*} \downarrow^{*} \downarrow^{*}} \cdot \frac{y_{1}y_{2} \cdots y_{m}}{\downarrow^{*} \downarrow^{*}})_{r}$$

$$r^{n} + r^{n-1} + \dots + r^{2} + r^{1} + r^{0} \cdot r^{1} + r^{2} + \dots + r^{m}$$

$$\downarrow^{\nu}$$

$$($$

$$\forall \forall \chi$$

$$\downarrow^{\nu}$$

4. 2 進位與其他進位互換

 $2 \rightarrow 8$

- 2 → 16

 $-2 \rightarrow 4$

- 16 → 2

$$CACF.59)_{1b} \rightarrow (?)_{2}$$

 $CACF.59)_{1b} \rightarrow (?)_{2}$
 $CACF.59)_{1b} \rightarrow (?)_{2}$

- 8 → 2

- 2 → 10
 - (1) 0 很多,1 不多

(1)
$$([00000 [0])_2 = (?)_1$$

 $18 = 256$
 $12 = 256$
 $12 = 256$

(3)
$$(1010000010)_2 = (?)_{10}$$

 $10 * 2^6 + 2 = (642)_{10}$

(1)
$$(1000001)_2 = (?)_{10}$$
 (5) $(11010001)_2 = (?)_{10}$
 $100001)_2 = (?)_{10}$ (7) 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001
 100001

(3)
$$(10000000)_z = (?)_{10}$$
 (4) $(10001111)_z = (?)_{10}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{1000011111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{1000011111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{100001111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{10000111111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{10000111111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{10000111111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{10000111111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{10000111111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{1000011111}$ $(9)_{10000111111}$ $(9)_{10000111111}$ $(9)_{10000111111}$ $(9)_{10000111111}$ $(9)_{10000111111}$ $(9)_{100001111$

(2) 0 很少, 1 很多

(1)
$$(1111011)_{2} = (?)_{10}$$

$$-\frac{1111111}{100} \Rightarrow (2^{4}-1)$$

$$-\frac{4}{127-4} = (123)_{10}$$

(2)
$$(11100111)_z = (?)_{10}$$

 $- (1101111)_z = (?)_{10}$
 $- (2^8-1)_{1000}$
 $- (2^8-1)_{1000}$
 $- (2^8-1)_{1000}$

(3)
$$(1111110101)_2 = (?)_{10}$$

 $-\frac{(111111111)}{(010)} \Rightarrow \frac{(2^{10}-1)}{-10}$
 $\Rightarrow (023-10=(013)_{10}$

5. 16 進位 ←→8 進位

1:
$$(D \subset A \cdot 91)_{16} \rightarrow (?)_{8}$$
 $(?)_{16}$ $(?)_{16}$ $(?)_{16}$ $(?)_{16}$ $(?)_{16}$ $(?)_{16}$ $(?)_{16}$ $(?)_{16}$ $(?)_{16}$ $(?)_{16}$ $(?)_{16}$

6. 其他進位互換

Ex3:
$$(\frac{1}{4}, \frac{2}{4}, \frac{1}{4}, \frac{1}$$

Ex3:
$$(\frac{1}{2}, \frac{2}{\sqrt{1}}, \frac{0}{\sqrt{1}}, \frac{2}{\sqrt{1}})_{3} \rightarrow (?)_{q}$$
 Ex4: $(\frac{8}{1}, \frac{1}{\sqrt{1}}, \frac{4}{\sqrt{2}}, \frac{5}{\sqrt{2}})_{q} \rightarrow (?)_{3}$ $(22 \ 21 \ 11. \ 12)_{3}$ $(5 \ 1)_{q}$ $(5)_{q}$ $(7)_{q}$ $(7)_{q}$ $(7)_{q}$ $(7)_{q}$ $(7)_{q}$

7. 10 進位分數轉 2 進位

例:
$$(10\frac{3}{8})_{10} \rightarrow (?)_{2}$$
Ans: 整枚: $(10)_{10} \rightarrow (1010)_{2}$ 分数: $\frac{3}{8} \times 2 = 0\frac{6}{8}$ $\therefore (1010.011)_{2}$ $\frac{6}{8} \times 2 = 0\frac{4}{8}$ $\frac{4}{8} \times 2 = 0$

無法精準轉換之狀況 => 無法以2 進位完整表示,會形成誤差,存成近

似值

例:
$$(1)$$
 ($\frac{3}{5}$) $\frac{1}{10}$ (?) $\frac{3}{5}$ (?) $\frac{3}{5}$ (?) $\frac{3}{5}$ (?) $\frac{3}{5}$ (?) $\frac{3}{5}$ (2) 小數矣後 $\frac{20}{6}$ (2) 小數矣後 $\frac{20}{6}$ (2) 小數矣後 $\frac{20}{6}$ (2) 小數矣後 $\frac{20}{6}$ (2) $\frac{20}{6}$ (2) 小數矣後 $\frac{20}{6}$ (3) 小數矣後 $\frac{20}{6}$ (4) $\frac{20}{6}$ (2) 小數矣後 $\frac{20}{6}$ (3) 小數矣後 $\frac{20}{6}$ (4) $\frac{20}{6}$ (5) $\frac{20}{6}$ (6) $\frac{20}{6}$ (6) $\frac{20}{6}$ (7) $\frac{20}{6}$ (6) $\frac{20}{6}$ (7) $\frac{20}{6}$ (9) \frac

- 判斷

产判断是否可用Z强制精確表示

- ⇒ 分數將它無分後, 若分母是 2 5分幂次方者, 则可以精耀用 2 進制表示. 反之则不行。即 <u>2 × × 2</u> 乘× × × 次移, 即号小叔。.
- 詳細台大于天立 http://ocw.aca.ntu.edu.tw/ntu-ocw/ocw/cou/101S210/1

8. 四則運算

- 加法

- 減法

が次と (1)
$$\frac{-1-1-1-1}{(100(0.01)_2)}$$
 (2) $\frac{-1-1-1-1}{(6142.5)_8}$ $\frac{-(245.68)_{16}}{(7245.68)_{16}}$ $\frac{-(2486.90)_{16}}{(4786.68)_{16}}$

- 乘法