

Theoretical Deep Learning #2: generalization ability

Eugene Golikov MIPT, fall 2019

Neural Networks and Deep Learning Lab., MIPT

Notation and goal

- Data distribution: D;
- Dataset: $S_n = \{(x_i, y_i)\}_{i=1}^n \sim \mathcal{D}^n$, where all $y_i \in \{-1, 1\}$, all $x_i \in X$;
- Model: $f: X \to \mathbb{R}$;
- Loss function I(y, f(x));
- Risk: $R(f) = \mathbb{E}_{(x,y) \sim \mathcal{D}} I(y, f(x));$
- Empirical risk: $\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n I(y_i, f(x_i));$
- Result of learning on dataset S_n : $\hat{f}_n = \mathcal{A}(S_n) \in \mathcal{F}$.

Our goal is to bound the risk difference:

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \text{bound}(N(\hat{f}_n), n, \delta)$$
 w.p. $\geq 1 - \delta$ over S_n .

1

Bounds for deterministic A:

• Finite \mathcal{F} :

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \sqrt{\frac{1}{2n} \left(\log \frac{1}{\delta} + \log |\mathcal{F}|\right)} \quad \text{w.p. } \geq 1 - \delta \text{ over } S_n.$$

• At most countable \mathcal{F} (McAllester, 1998)¹:

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \sqrt{\frac{1}{2n} \left(\log \frac{1}{\delta} + \log \frac{1}{P(\hat{f}_n)}\right)} \quad \text{w.p. } \geq 1 - \delta \text{ over } S_n,$$

where P is a distribution over \mathcal{F} (**prior**).

¹Preliminary theorem 2 in http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.1745&rep=rep1&type=pdf

Consider stochastic learning algorithm: $\hat{f}_n = \mathcal{A}(S_n) \sim Q|S_n$.

Define $R(Q) := \mathbb{E}_{f \sim Q} R(f), \quad \hat{R}_n(Q) := \mathbb{E}_{f \sim Q} \hat{R}_n(f).$

Corresponding bound:

$$R(Q|S_n) - \hat{R}_n(Q|S_n) \leq \operatorname{bound}(N(Q|S_n), n, \delta)$$
 w.p. $\geq 1 - \delta$ over S_n .

PAC-bayesian bound (McAllester, 1999)²:

$$R(Q|S_n) - \hat{R}_n(Q|S_n) \leq \sqrt{rac{1}{2n-1} \left(\log rac{4n}{\delta} + \mathit{KL}(Q|S_n \parallel P)
ight)} \quad ext{w.p.} \geq 1 - \delta$$

for any distribution P on \mathcal{F} .

Define: $\Delta_n(f) := |R(f) - \hat{R}_n(f)|.$

Lemma (McAllester, 1999)³:

$$\mathbb{E}_{f \sim P} e^{(2n-1)\Delta_n(f)^2} \leq \frac{4n}{\delta}$$
 w.p. $\geq 1 - \delta$ over S_n

for any distribution P on \mathcal{F} .

Lemma (Donsker & Varadhan):

Let P and Q be distributions on X. Then:

$$KL(P \parallel Q) = \sup_{h: X \to \mathbb{R}} \left(\mathbb{E}_{x \sim P} h(x) - \log \mathbb{E}_{x \sim Q} e^{h(x)} \right).$$

³Lemma 17 in http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 21.1908&rep=rep1&type=pdf

Lemma (Langford & Seeger, 2001)⁴:
$$\mathbb{E}_{f \sim P} e^{(n-1)KL(\hat{R}_n(f) \parallel R(f))} \leq \frac{2n}{\delta} \quad \text{w.p.} \geq 1 - \delta \text{ over } S_n$$

for any distribution P on \mathcal{F} .

Theorem (Langford & Seeger, 2001)⁵:

$$\mathit{KL}(\hat{R}_n(Q|S_n) \parallel R(Q|S_n)) \leq \frac{1}{n-1} \left(\log \frac{2n}{\delta} + \mathit{KL}(Q|S_n \parallel P)\right) \quad \text{w.p. } \geq 1-\delta$$

for any distribution P on \mathcal{F} .

⁴Lemma 2 in http:

^{//}hunch.net/~jl/projects/prediction_bounds/averaging/averaging_tech.pdf ⁵Theorem 3 there.

Let $X_{1:n}$ be i.i.d., $X_i \sim \mathcal{B}(p) \ \forall i$.

Hoeffding's inequality:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n X_i \geq p + \epsilon\right) \leq e^{-2n\epsilon^2}; \qquad \mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n X_i \leq p - \epsilon\right) \leq e^{-2n\epsilon^2}.$$

Chernoff-Hoeffding's inequality:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \geq p + \epsilon\right) \leq e^{-nKL(p+\epsilon \parallel p)};$$

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \leq p - \epsilon\right) \leq e^{-nKL(p-\epsilon \parallel p)}.$$

6