

LG U+ Why Not SW 캠프 6기 Python 데이터 분석 I

Logistic Regression (2-class)

조준우 metamath@gmail.com

분류 모델

- 이산 타겟 변수와 입력의 관계를 찾는 모델
- 대표적인 알고리즘
 - 로지스틱회귀
 - 결정 트리Decision Tree
 - 나이브 베이즈Naïve Bayes
- 응용분야
 - 스팸 필터링
 - 불량 검출
 - 개체인식

두가지 관점

• 선형회귀에서 시작

• 확률적 관점

$$p(C_1 \mid x) = rac{p(x \mid C_1)p(C_1)}{p(x \mid C_1)p(C_1) + p(x \mid C_2)p(C_2)}$$

선형회귀에서시작

- 다음 데이터에 대해……
 - 입력: 공부한 시간
 - 출력: 합격 여부

선형회귀에서시작

• 선형회귀 후 0.5를 기준으로 결정

선형회귀로실험

• 괜찮은 결과

선형회귀의 한계

• 공부를 열심히 한 학생이 많으면

S자 곡선 형태

• 함수의 형태로 부터 결과를 계선

목적함수

- $\sigma(z_i)$ 가 점과 가까우면 되니까
- 문제는?

목적함수 단점

미분 과정에서 미분계수가 사라진다.

$$rac{\partial}{\partial w_i}J(\mathbf{w})=rac{1}{2}\sum_{i=1}^N\{\underbrace{\sigma(z_i(x_i,\mathbf{w}))}-y_i\}^2$$
합성함수 $ightarrow$ 케인룰 $rac{d\sigma}{dz}rac{\partial z}{\partial w_i}$

목적함수 단점

미분 과정에서 미분계수가 사라진다.

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{ \sigma(z_i(x_i, \mathbf{w})) - y_i \}^2$$

$$\frac{\partial}{\partial w_i} J(w_i, w_0 = -5) \approx 0$$

$$\begin{bmatrix} \widehat{\Omega} \\ 12.5 \\ 15.0 \\ 10.0 \\ 17.5 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

$$\begin{bmatrix} \widehat{\Omega} \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{bmatrix}$$

머신러닝 분류 문제에 있어서 평가 함수로 사용

 $\mathbf{x} \in \mathbb{R}^n$

 W_7 W_8 W_9 w_{10}

 W_1

 W_2

 W_6

 $W_3 \longrightarrow z: \mathbb{R}^{10} \to \mathbb{R} \longrightarrow \sigma(z) \in (0,1) \longrightarrow -\log(\sigma)$ W_4 W_5

강아지

강아지 확률:0.525, 고양이 확률: 0.475

0.5

-log(σ) 강아지 손실

log

JS

metamath1.github.io/noviceml/toyclassifier2.html

초간단 분류기: 지수,로그함수활용

머신러닝 분류 문제에 있어서 평가 함수로 사용

 $w_2 = 2$

$$W_3 \longrightarrow z: \mathbb{R}^n \to \mathbb{R} \longrightarrow \sigma(z) \in (0,1) \longrightarrow -\log(\sigma)$$

 W_4

 W_5

 W_6

 W_7

 W_8

 W_9

 w_{10}

 $\mathbf{x} \in \mathbb{R}^n$

강아지

강아지 확률:0.949, 고양이 확률: 0.051

log

초간단 분류기: 지수,로그함수활용

머신러닝 분류 문제에 있어서 평가 함수로 사용

$$w_2 = 2$$

$$W_3 \longrightarrow z: \mathbb{R}^n \to \mathbb{R} \longrightarrow \sigma(z) \in (0,1) \longrightarrow -\log(\sigma)$$

 W_4

 W_5

 W_6

 W_7

 W_8

 W_9

 w_{10}

 $\mathbf{x} \in \mathbb{R}^n$

강아지

강아지 확률:0.796, 고양이 확률: 0.204

log

초간단 분류기: 지수,로그함수활용

머신러닝 분류 문제에 있어서 평가 함수로 사용

 W_1 $w_2 = 2$

$$W_3 \longrightarrow z: \mathbb{R}^n \to \mathbb{R} \longrightarrow \sigma(z) \in (0,1) \longrightarrow -\log(\sigma)$$

 W_4

$$W_5$$

 W_6

 W_7

$$w_8 = -4$$
강아지

 W_9

강아지 확률:0.949, 고양이 확률: 0.051

 w_{10}

log

새로운목적함수

- log(⋅) 특성 이용
- *y_i* 는 0 또는 1

$$J(\mathbf{w}) = -\sum_{i=1}^{N} \left[y_i \log \sigma(z_i(x_i, \mathbf{w})) + (1 - y_i) \log(1 - \sigma(z_i(x_i, \mathbf{w})))
ight]$$
 $z_i = w_1 x_i + w_0$

개선된 목적함수

• 지속적으로 감소하거나 상승하는 형태

$$J(\mathbf{w}) = -\sum_{i=1}^N \left[y_i \log \sigma(z_i(x_i, \mathbf{w})) + (1-y_i) \log(1-\sigma(z_i(x_i, \mathbf{w})))
ight]$$

