UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI

ESTIMASI POSE TIGA DIMENSI DARI GAMBAR MONOKULER MENGGUNAKAN DEEP NEURAL NETWORK

Disusun oleh:

Nama : Denilson NPM : 51416815

Jurusan : Teknik Informatika

Pembimbing: Dr. Dharmayanti, ST., MMSI.

Diajukan Guna Melengkapi Sebagian Syarat Dalam Mencapai Gelar Sarjana Strata Satu (S1)

Depok

2020

LEMBAR ORIGINALITAS DAN PUBLIKASI

Saya yang bertanda tangan di bawah ini,

Nama : Denilson

NPM : 51416815

Judul Penulisan Ilmiah : Estimasi Pose Tiga Dimensi dari Gambar Monokuler

Menggunakan Deep Neural Network

Tanggal Sidang : tanggal

Tanggal Lulus : tanggal

menyatakan bahwa tulisan ini adalah merupakan hasil karya saya sendiri dan dapat dipublikasikan sepenuhnya oleh Universitas Gunadarma. Segala kutipan dalam bentuk apa pun telah mengikuti kaidah, etika yang berlaku. Mengenai isi dan tulisan adalah merupakan tanggung jawab Penulis, bukan Universitas Gunadarma.

Demikian pernyataan ini dibuat dengan sebenarnya dan dengan penuh kesadaran.

Depok, April 2020

Denilson

LEMBAR PENGESAHAN

Komisi Pembimbing

No	Nama	Kedudukan
1	Dr. Dharmayanti, ST., MMSI.	Ketua
2	DIGANTI NAMA PENGUJI 2	DIGANTI JABATAN PENGUJI 2
3	DIGANTI NAMA PENGUJI 3	DIGANTI JABATAN PENGUJI 3

Tanggal Sidang: tgl bln thn

Panitia Ujian

No	Nama	Kedudukan
1	DIGANTI NAMA PENGUJI 1	DIGANTI JABATAN PENGUJI 1
2	DIGANTI NAMA PENGUJI 2	DIGANTI JABATAN PENGUJI 2
3	DIGANTI NAMA PENGUJI 3	DIGANTI JABATAN PENGUJI 3
4	DIGANTI NAMA PENGUJI 4	DIGANTI JABATAN PENGUJI 4
5	DIGANTI NAMA PENGUJI 5	DIGANTI JABATAN PENGUJI 5

Tanggal Lulus: tgl bln thn

MENGETAHUI

Pembimbing Bagian Sidang Sarjana

(Dr. Dharmayanti, ST., MMSI.) (NAMA BAGIAN SARJANA)

ABSTRAKSI

Denilson, 51416815

ESTIMASI POSE TIGA DIMENSI DARI GAMBAR MONOKULER MENGGUNAKAN DEEP NEURAL NETWORK

Tugas Akhir. Jurusan Teknik Informatika, Fakultas Teknologi Industri,

Universitas Gunadarma, 2020

Kata Kunci : dibuat urut abjad sekitar 3-5 kata kunci

(jml hlm romawi + jml hlm arab + Lampiran)

Abstraksi.

Daftar Pustaka (thn terlama-thn terbaru)

ABSTRACT

Denilson, 51416815

THREE DIMENSIONAL POSE ESTIMATION FROM MONOCULAR IMAGE

USING DEEP NEURAL NETWORK

Thesis. Informatics Engineering, Faculty of Industrial Technology,

Gunadarma University, 2020

Keywords: dibuat urut abjad sekitar 3-5 kata kunci

(jml hlm romawi + jml hlm arab + Lampiran)

Abstract.

Bibliography (thn terlama-thn terbaru)

KATA PENGANTAR

Segala puji dan syukur penulis ucapkan ke hadirat Tuhan Yang Maha Esa yang telah memberikan berkat, anugerah dan karunia yang melimpah, sehingga penulis dapat menyelesaikan Tugas Akhir ini pada waktu yang telah ditentukan.

Tugas Akhir ini disusun guna melengkapi sebagian syarat untuk memperoleh gelar Sarjana Teknik Informatika Universitas Gunadarma. Adapun judul Tugas Akhir ini adalah "Estimasi Pose Tiga Dimensi Dari Gambar Monokuler Menggunakan Deep Neural Network".

Walaupun banyak kesulitan yang penulis harus hadapi ketika menyusun Tugas Akhir ini, namun berkat bantuan dan dorongan dari berbagai pihak, akhirnya Tugas Akhir ini dapat diselesaikan dengan baik. Untuk itu penulis tidak lupa mengucapkan terima kasih kepada:

- 1. Ibu Prof. E. S. Margianti, SE, MM selaku rektor Universitas Gunadarma
- 2. selaku Dekan Fakultas Universitas Gunadarma
- 3. selaku Ketua Jurusan
- 4. selaku Bagian Sidang Sarjana
- 5. Ibu Dr. Dharmayanti, ST., MMSI sebagai pembimbing penulis yang ditengah-tengah kesibukannya telah membimbing penulis sehingga penulisan ini dapat diselesaikan.
- 6. Keluarga yang selalu mendukung dan terus memberikan motivasi.
- 7. Semua pihak yang terlibat dalam membantu penyelesaian Tugas Akhir ini.

Sebagai manusia biasa yang tak luput dari kesalahan, maka penulis meminta maaf atas segala kekurangan dan keterbatasan dalam penyusunan Tugas Akhir ini. Penulis sadari bahwa penulisan ini masih jauh dari sempurna, disebabkan karena berbagai keterbatasan yang penulis miliki. Untuk itu penulis mengharapkan kritik

dan saran yang bersifat membangun untuk menjadi perbaikan di masa yang akan datang.

Akhir kata, penulis berharap penulisan ini dapat bermanfaat bagi kita semua dan bagi penulis pribadi khususnya, serta dapat digunakan sebagaimana mestinya.

Depok, April 2020

Penulis

DAFTAR ISI

HALAN	MAN JUDUL
LEMBA	AR ORIGINALITAS DAN PUBLIKASI i
LEMBA	AR PENGESAHAN ii
ABSTR	AKSI i
ABSTR	ACT
KATA P	PENGANTAR v
DAFTA	R ISI in
DAFTA	R TABEL
DAFTA	R GAMBAR
DAFTA	R LAMPIRAN xi
BAB I	: PENDAHULUAN
1.1	Latar Belakang Masalah
1.2	Rumusan Masalah
1.3	Batasan Masalah
1.4	Tujuan Penelitian
1.5	Metode Penelitian
1.6	Sistematika Penulisan
BAB II	: TINJAUAN PUSTAKA
2.1	Teorema Penaksiran Universal
2.2	Jaringan Saraf
2.3	Jaringan Saraf Tiruan
2.4	Fungsi Aktivasi
2.5	Residual Network
2.6	Optimisasi Model
	2.6.1 Backpropagation
	2.6.2 Learning Rate
	2.6.3 Mean Squared Error

2.7	Estimasi Pose Dua Dimensi	11
2.8	Estimasi Pose Tiga Dimensi	12
2.9	PyTorch	12
BAB III	: PENDEKATAN	13
3.1	Langkah-Langkah yang dilakukan	13
3.2	Alur Pelatihan Model	13
3.3	Pra Pemrosesan Data	13
3.4	Arsitektur	13
3.5	Pelatihan Model	13
BAB IV	: HASIL DAN ANALISIS	14
4.1	Plot Grafik	14
4.2	Matplotlib	14
BAB V	: PENUTUP	15
5.1	Kesimpulan	15
5.2	Saran	15
DAFTA	R PUSTAKA	16
T AMDI	DAN	T 1

DAFTAR TABEL

2.1	Sebuah tabel																														1	2
-----	--------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

DAFTAR GAMBAR

2.1	Ilustrasi Jaringan Saraf Manusia	6
2.2	Ilustrasi Sel Saraf Manusia	6
2.3	Ilustrasi Jaringan Saraf Tiruan	7
2.4	Ilustrasi Sel Saraf Tiruan	7
2.5	Rectified Linear Unit	8
2.6	Residual Block	9
2.7	Gradient Descent	10
2.8	Skema Backpropagation	10
2.9	Ilustrasi Perbedaan <i>Learning Rate</i>	11

DAFTAR LAMPIRAN

Lampiran 1	Listing Program	 10
· I ·		-

BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Pemanfaatan teknologi yang terkomputerisasi oleh manusia selalu meninggalkan rekam jejak yang tersimpan dalam bentuk data digital. Data digital yang umumnya dimanfaatkan oleh manusia meliputi teks, citra audio, citra visual, dan citra audio visual yang dimampatkan kedalam suatu media penyimpanan. Pengaksesan data ini tergolong mudah karena data dikonstruksi dengan struktur dan format yang tertentu sehingga dapat diakses dimana saja. Jumlah rekam jejak digital yang tersedia semakin bertambah seiring dengan mudahnya akses terhadap teknologi secara skala besar.

Rekam jejak digital yang terkumpul bersifat laten yang berarti data yang tersedia tidak memiliki arti semantik. Data ini hanya akan berguna apabila ada suatu aturan yang ditentukan oleh pengguna. Proses pembuatan citra visual terbentuk dari hasil perekaman kamera dengan mengubah gelombang elektromagnetik yang dipantulkan oleh benda dari posisi tertentu menuju lensa kamera menjadi tiga lapis deretan angka numerik yang mewakili warna merah, hijau, dan biru. Citra visual yang tercipta hanya memiliki informasi numerik mengenai warna dalam bentuk gambar, sedangkan informasi posisi benda saat perekaman sudah hilang. Otak manusia dapat mengartikan kondisi suatu benda dalam suatu gambar tanpa kita ketahui cara kerjanya secara pasti. Hal yang sama dapat dilakukan oleh komputer dengan membuat pemetaan dari suatu gambar ke suatu kondisi yang diinginkan.

Permodelan pemelajaran dalam atau *deep learning* dapat memetakan suatu domain ke domain lainnya secara otomatis menggunakan pelatihan jaringan saraf tiruan dalam atau *deep neural network*. Pemelajaran dalam menggunakan jaringan saraf tiruan dalam dapat digunakan untuk memajukan teknologi khususnya pada bidang visi komputer seperti melakukan estimasi pose tiga dimensi tubuh manusia yang terdapat dalam suatu gambar.

1.2 Rumusan Masalah

Permasalahan yang ingin diselesaikan adalah mengembalikan informasi posisi pose tubuh manusia yang telah hilang dengan membuat pemetaan dari gambar yang ditangkap menggunakan kamera monokuler ke koordinat setiap titik kunci dari pose. Model yang telah dilatih harus mampu melakukan proses pemetaan terhadap gambar baru.

1.3 Batasan Masalah

Penelitian ini menganggap setiap pose dua dimensi maupun pose tiga dimensi berada dalam koordinat lokal. Setiap pose ditransformasi ke dalam observasi kamera dengan titik kunci pinggang sebagai posisi tengah. Hal ini dilakukan karena pemetaan hanya menggunakan grafik datar tanpa informasi kedalaman titik kunci sehingga dapat menghindari masalah kedalaman yang ambigu.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah untuk membuat sebuah aplikasi yang dapat membaca titik kunci dari sebuah citra visual datar dan melakukan transformasi ke pose lokal dua dimensi sehingga dapat dipetakan oleh jaringan saraf tiruan yang dimodelkan ke bentuk pose lokal tiga dimensi. Pose hasil juga divisualisasikan secara interaktif sehingga dapat dipergunakan untuk kepentingan yang sesuai.

1.5 Metode Penelitian

Penelitian dibagi menjadi tiga tahap besar terurut yang terdiri dari *data preprocessing*, pelatihan model jaringan saraf tiruan, dan visualisasi. Tahap pertama dan tahap ketiga tidak melibatkan pemelajaran mesin. Masalah utama dari penelitian ini berada pada tahap kedua tentang pelatihan jaringan saraf tiruan untuk melakukan pemetaan pose dua dimensi ke pose tiga dimensi.

Dataset yang digunakan dalam penelitian ini adalah Human3.6M yang berisi 3,6 juta pose unik yang dilakukan oleh sebelas aktor profesional dan

direkam menggunakan empat sudut kamera yang berbeda beserta dengan koordinat setiap titik kunci dari hasil penangkapan alat *motion capture* [8].

Pose dua dimensi dan tiga dimensi merupakan variabel yang relevan untuk masalah. Pada tahap *data preprocessing* akan dilakukan ekstraksi variabel ini kedalam bentuk numerik sehingga mudah untuk digunakan saat melakukan pelatihan jaringan saraf tiruan. Tahap selanjutnya akan dilakukan pembuatan, permodelan, pelatihan, dan evaluasi jaringan saraf tiruan dalam untuk pemetaan titik kunci yang kemudian dilanjutkan dengan percobaan model dengan video. Tahap terakhir menampilkan visualisasi gambar, pose dua dimensi, dan pose tiga dimensi.

Perangkat keras yang digunakan dalam penelitian ini adalah satu unit laptop dengan spesifikasi:

- CPU Intel Core I7 7700HQ
- Memori 24 GB DDR4
- GPU NVIDIA GTX 1060 6GB
- SSD NVME SAMSUNG 120 GB
- HDD SATA 1 TB

Perangkat lunak yang digunakan dalam penelitian ini adalah satu unit laptop dengan spesifikasi:

- Python 3.7
- Jupyter Lab
- Git
- GitHub
- LaTeX

1.6 Sistematika Penulisan

Adapun sistematika penulisan yang digunakan dalam penulisan ini adalah sebagai berikut:

PENDAHULUAN, mengemukakan latar belakang masalah, rumusan masalah, batasan masalah, tujuan penelitian, metode penelitian, dan sistematika penulisan.

TINJAUAN PUSTAKA, menjelaskan kumpulan teori yang digunakan dalam mendukung proses penyelesaian program.

PENDEKATAN, mengemukakan langkah-langkah yang dicapai untuk membuat program.

HASIL DAN ANALISIS, mendalami hasil yang tercapai dengan analisis secara mendalam.

PENUTUP, mengulas lebih lanjut mengenai kesimpulan yang dapat ditarik dari hasil disertai dengan saran yang dapat menyempurnakan penelitian selanjutnya.

BAB II

TINJAUAN PUSTAKA

2.1 Teorema Penaksiran Universal

Teorema penaksiran universal atau *universal approximation theorem* menyatakan bahwa sebuah model jaringan *feed-forward* dapat membentuk fungsi apapun secara subjektif. Sebuah model jaringan saraf tiruan dibentuk dari serangkaian lapisan yang didalamnya terdapat deretan sel saraf atau *neuron* dengan kuantitas tertentu. Semakin panjang rangkaian lapisan yang tersedia, maka semakin banyak saraf yang tersedia sehingga dapat memetakan fungsi yang sulit. Model jaringan yang memiliki banyak saraf dapat mempelajari pola-pola yang ada dari satu domain ke domain lainnya [4].

Teorema penaksiran universal memiliki dua sifat yang dikategorikan berdasarkan pemanfaatannya dalam melakukan pemelajaran mesin. Sifat pertama adalah suatu model jaringan saraf tiruan dapat memperkirakan suatu fungsi dengan batasan-batasan tertentu sesuai dengan fungsi aktivasi pada lapisan terakhir. Sifat kedua adalah sebuah fungsi kontinu dengan jumlah variabel sembarang dapat ditiru oleh sebuah jaringan saraf tiruan dengan jumlah yang sembarang [10].

2.2 Jaringan Saraf

Otak manusia terdiri dari kumpulan sel saraf yang saling terkoneksi satu sama lain. Sebuah sel saraf adalah sel yang dapat memproses dan mengantarkan informasi apabila dirangsang dengan tegangan elektrokimia. Sel-sel saraf tidak pernah memperbanyak dirinya dan tidak digantikan apabila ada yang rusak. Jumlah sel saraf yang terdapat dalam otak manusia diperkirakan sebanyak satu miliar. Setiap sel saraf diperkirakan berkoneksi dengan sepuluh ribu sel saraf lainnya melalui sinapsis yang berarti otak manusia beroperasi seperti prosesor dengan kecepatan satu triliun bit per detik [6].

Bentuk sel saraf sangat bervariasi dengan berbagai ukuran, bentuk, dan sifat elektrokimianya. Sebuah sel saraf memiliki badan yang terdiri dari beberapa

Gambar 2.1: Ilustrasi Jaringan Saraf Manusia

struktur penting meliputi *soma*, *dendrites*, *axon*, dan *synapses* seperti pada gambar 2.2. Sebuah sel saraf akan menerima beberapa masukkan melalui *synapses*, memproses inputan tersebut melewati *dendrites*, kemudian diteruskan melalui *soma*, dan diberikan kepada sel saraf lainnya melalui *axon* [18].

Gambar 2.2: Ilustrasi Sel Saraf Manusia

2.3 Jaringan Saraf Tiruan

Jaringan Saraf Tiruan adalah sistem komputasi yang cara kerjanya menyerupai jaringan saraf pada otak makhluk hidup. Sebuah jaringan saraf tiruan dapat dengan otomatis memodelkan fungsi sembarang yang tingkat kesulitannya sesuai dengan jumlah koneksi yang tesedia. Jarigan ini menyerupai jaringan saraf asli dimana sebuah saraf tiruan menerima banyak masukkan dari saraf lainnya kemudian dioperasikan dengan bobot yang terkadung pada sel tersebut dan akhirnya diteruskan ke sel berikutnya. Jaringan saraf umumnya dibentuk kedalam beberapa lapisan seperti pada gambar 2.3 [1].

Gambar 2.3: Ilustrasi Jaringan Saraf Tiruan

Sebuah sel saraf saraf dapat dibagi menjadi empat bagian yang meliputi masukkan, bobot, fungsi transfer atau aktivasi, dan keluaran. Jumlah masukkan pada suatu sel saraf tiruan berjumlah sebanyak output dari sel-sel yang berada pada layer sebelumnya. Bobot sel adalah nilai numerik yang menjadi identitas dari sel yang merupakan hasil penyesuaian dari proses latihan. Fungsi aktivasi adalah sebuah fungsi menerima hasil operasi antara bobot dan masukkan. Keluaran merupakan hasil dari sel yang diteruskan ke lapisan selanjutnya. Ilustrasi sebuah sel saraf tiruan dapat dilihat pada gambar 2.4 [15].

Gambar 2.4: Ilustrasi Sel Saraf Tiruan

2.4 Fungsi Aktivasi

Fungsi aktivasi pada sel saraf tiruan berfungsi untuk mengkonversi hasil operasi matriks antara masukkan dan bobot sebuah sel dari sistem linier ke sistem nonlinier. Konversi nilai ini dilakukan agar setiap sel mengambil perannya pada saat proses pelatihan model. Beberapa fungsi aktivasi yang dipakai pada umumnya adalah *Sigmoid*, *ReLU*, *Tanh*, dan *Softmax* [2].

Rectified Linear Unit adalah fungsi aktivasi yang paling umum digunakan dalam aplikasi jaringan saraf tiruan. Fungsi aktivasi ReLU membatasi nilai masukkannya dimana nilai yang kurang dari nol akan diubah menjadi nol [7, 12]. Persamaan fungsi aktivasi Rectified Linear Unit dapat dilihat seperti pada persamaan dibawah.

$$f(x) = max(0,x) = \begin{cases} x_i, & \text{if } x_i \ge 0 \\ 0, & \text{if } x_i < 0 \end{cases}$$

Gambar 2.5: Rectified Linear Unit

2.5 Residual Network

Residual Network atau ResNet merupakan model jaringan saraf tiruan yang menggunakan residual block sebagai dasar dari setiap lapisan. Sebuah residual block merupakan sebuah arsitektur jaringan saraf tiruan kecil yang terdiri dari beberapa lapisan. Setiap blok akan menjumlahkan masukkan dan keluarannya sehingga layer di dalam suatu blok hanya menambahkan pola-pola yang dipelajari. Hal ini memungkinkan ResNet untuk memiliki jumlah blok yang sangat banyak sehingga dapat memetakan suatu fungsi sembarang yang sulit sesuai dengan teorema penaksiran universal [5]. Jenis-jenis residual block dapat dilihat pada gambar 2.6.

Gambar 2.6: Residual Block

2.6 Optimisasi Model

Algoritma optimisasi model yang paling populer dalam melakukan pelatihan model deep learning adalah gradient descent. Gradient descent meminimalisir selisih antara prediksi model dan target sebenarnya dengan merubah bobot-bobot yang terdapat dalam model. Nilai bobot yang ditambahkan berbanding terbalik dengan gradien hasil fungsi kesalahan terhadap masing-masing bobot. Proses optimisasi dilakukan dengan melakukan backpropagation yang melibatkan beberapa elemen seperti learning rate, dan loss function. Tujuannya adalah untuk mencapai titik optimal pada sebuah bidang berdasarkan hasil dari loss function [4]. Ilustrasi titik optimal digambarkan pada gambar 2.7.

Gambar 2.7: Gradient Descent

2.6.1 Backpropagation

Backpropagation adalah sebuah prosedur pelatihan jaringan saraf tiruan yang secara berulang-ulang kali menyesuaikan bobot setiap sel hingga selisih antara keluaran dan target menjadi lebih kecil. Algoritma ini merupakan mengorganisasikan sebuah model jaringan untuk secara mandiri mencari titik optimal secara berkala. Optimisasi dilakukan dengan melakukan forward-pass pada satu atau sebagian atau semua data yang ada kedalam model untuk mendapatkan hasil prediksi. Hasil tersebut kemudian diukur selisihnya dengan target yang sebenarnya menggunakan sebuah fungsi kesalahan. Turuan parsial masing-masing bobot terhadap selisih kesalahan ini adalah kuantitas negatif yang harus ditambahkan bobot yang berkaitan [14]. Skema algoritma backpropagation dapat dilihat pada gambar 2.9.

Gambar 2.8: Skema Backpropagation

2.6.2 Learning Rate

Learning rate adalah sebuah nilai skalar yang menentukan seberapa besar sebuah bobot pada jaringan saraf akan ditambahkan. Nilai learning rate umumnya bernilai kecil karena besar turunan parsial pada setiap iterasi akan berubah-ubah. Nilai learning rate yang besar akan merubah dalam skala yang besar sehingga akurasi model cederung tidak stabil. Nilai learning rate yang kecil akan menghasilkan model yang stabil tetapi memerlukan jumlah iterasi yang banyak seperti pada gambar 2.9 [17].

Gambar 2.9: Ilustrasi Perbedaan Learning Rate

2.6.3 Mean Squared Error

Mean squared error adalah sebuah persamaan estimasi kesalahan dengan merata-ratakan hasil dari pangkat dua selisih antara dua vektor. Fungsi kesalahan ini dipakai untuk mengukur kesalahan model regresi dimana keluaran yang diukur bersifat kontinu. Persamaan ini akan selalu bernilai positif dan nilai yang mendekati nol menandakan bahwa selisih antara dua vektor semakin kecil seperti pada persamaan dibawah [16].

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{d_i - f_i}{\sigma_i} \right)^2$$

2.7 Estimasi Pose Dua Dimensi

citasi [3]

2.8 Estimasi Pose Tiga Dimensi

citasi [11]

2.9 PyTorch

pytorch dynamic graph

Tabel 2.1: Sebuah tabel

1	2	3
4	5	6
7	8	9

Sumber: Bego Lu

BAB III

PENDEKATAN

3.1 Langkah-Langkah yang dilakukan

diagram

3.2 Alur Pelatihan Model

diagram

3.3 Pra Pemrosesan Data

download -> data loader

3.4 Arsitektur

2 kali resnet

3.5 Pelatihan Model

brp epoch dll

BAB IV HASIL DAN ANALISIS

- 4.1 Plot Grafik
- 4.2 Matplotlib

BAB V

PENUTUP

5.1 Kesimpulan

Berisi ringkasan dari metodologi dan kesimpulan penting dari hasil evaluasi.

5.2 Saran

Berisi saran-saran untuk pengembangan riset ini ke langkah ke depan.

DAFTAR PUSTAKA

- [1] O. Abiodun, A. Jantan, O. Omolara, K. Dada, A. Umar, O. Linus, H. Arshad, A. Aminu Kazaure, U. Gana, and M. Kiru. Comprehensive review of artificial neural network applications to pattern recognition. *IEEE Access*, PP:1–1, 10 2019.
- [2] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi. Learning Activation Functions to Improve Deep Neural Networks. *arXiv e-prints*, page arXiv:1412.6830, Dec. 2014.
- [3] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Realtime multi-person 2d pose estimation using part affinity fields. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2019.
- [4] N. J. Guliyev and V. E. Ismailov. A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function. *arXiv e-prints*, page arXiv:1601.00013, Dec. 2015.
- [5] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. *arXiv e-prints*, page arXiv:1512.03385, Dec. 2015.
- [6] S. Herculano-Houzel. The human brain in numbers: a linearly scaled-up primate brain. *Frontiers in Human Neuroscience*, 3:31, 2009.
- [7] G. E. Hinton. Rectified linear units improve restricted boltzmann machines vinod nair.
- [8] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(7):1325–1339, jul 2014.

- [9] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. *arXiv e-prints*, page arXiv:1412.6980, Dec. 2014.
- [10] A. Kratsios. The Universal Approximation Property: Characterizations, Existence, and a Canonical Topology for Deep-Learning. *arXiv e-prints*, page arXiv:1910.03344, Oct. 2019.
- [11] J. Martinez, R. Hossain, J. Romero, and J. J. Little. A simple yet effective baseline for 3d human pose estimation. In *ICCV*, 2017.
- [12] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation Functions: Comparison of trends in Practice and Research for Deep Learning. *arXiv e-prints*, page arXiv:1811.03378, Nov. 2018.
- [13] S. Ruder. An overview of gradient descent optimization algorithms. *arXiv e-prints*, page arXiv:1609.04747, Sept. 2016.
- [14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representations by Back-propagating Errors. *Nature*, 323(6088):533–536, 1986.
- [15] V. Sharma, S. Rai, and A. Dev. A comprehensive study of artificial neural networks. 2012.
- [16] M. Torabi and J. Rao. Estimation of mean squared error of model-based estimators of small area means under a nested error linear regression model. *Journal of Multivariate Analysis*, 117:76 – 87, 2013.
- [17] K. You, M. Long, J. Wang, and M. I. Jordan. How Does Learning Rate Decay Help Modern Neural Networks? *arXiv e-prints*, page arXiv:1908.01878, Aug. 2019.
- [18] J. Zhang. Basic Neural Units of the Brain: Neurons, Synapses and Action Potential. *arXiv e-prints*, page arXiv:1906.01703, May 2019.

LAMPIRAN

Bisa diketik sesuai kebutuhan