1	(a) Expand and simplify	(y-2)(y-5)	
			(2)
	(b) Prove algebraically that		
	0 11 11 11	$(2n+1)^2 - (2n+1)$ is an even number	
	for all positive integer v	alues of n.	
		(Total for Overtion 1 is	(3) 5 marks)
_		(Total for Question 1 is	э шагку)

2 <i>n</i> is an integer. Prove also braically that the sum of $\frac{1}{2}v(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.
Prove algebraically that the sum of $\frac{1}{2}n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.
(Total for Question 2 is 2 marks)
(Total for Question 2 is 2 marks)
(Total for Question 2 is 2 marks)
(Total for Question 2 is 2 marks)
(Total for Question 2 is 2 marks)
(Total for Question 2 is 2 marks)
(Total for Question 2 is 2 marks)
(Total for Question 2 is 2 marks)
(Total for Question 2 is 2 marks)
(Total for Question 2 is 2 marks)

3	Prove that $ (2n+3)^2 - (2n-3)^2 $ is a multiple of 8	
	for all positive integer values of n .	
_		(Total for Question 3 is 3 marks)
_		(Total for Question 3 is 3 marks)
_		(Total for Question 3 is 3 marks)
		(Total for Question 3 is 3 marks)
		(Total for Question 3 is 3 marks)
		(Total for Question 3 is 3 marks)
		(Total for Question 3 is 3 marks)
		(Total for Question 3 is 3 marks)
		(Total for Question 3 is 3 marks)
		(Total for Question 3 is 3 marks)

4	Circum that is one has any interest area half-to as a summer that in?
4	Given that n can be any integer such that $n > 1$, prove that $n^2 - n$ is never an odd number.
	(Total for Question 4 is 2 marks)
_	(10001101 Question 1.02 marks)

5 <i>n</i> is an integer greater than 1		
Prove algebraically that $n^2 - 2 - (n-2)^2$ is always an even number.		
(Total for Question 5 is 4 marks)		

6 Prove algebraically that	
$(2n + 1)^2 - (2n + 1)$ is an even number	
for all positive integer values of n .	
	(Total for Question 6 is 3 marks)

	(0 + 1)2 (0 + 1)2 + (+ + + + + + + + + + + + + + + + +	
	$(2m+1)^2 - (2n-1)^2 = 4(m+n)(m-n+1)$	
		(3)
Sophia says that the resu	alt in part (a) shows that the difference of the squares of any two	
odd numbers must be a	alt in part (a) shows that the difference of the squares of any two multiple of 4	
odd numbers must be a : (b) Is Sophia correct?	multiple of 4	
odd numbers must be a	multiple of 4	
odd numbers must be a : (b) Is Sophia correct?	multiple of 4	
odd numbers must be a : (b) Is Sophia correct?	multiple of 4	
odd numbers must be a : (b) Is Sophia correct?	multiple of 4	
odd numbers must be a : (b) Is Sophia correct?	multiple of 4	(1)
odd numbers must be a : (b) Is Sophia correct?	multiple of 4	(1)
odd numbers must be a : (b) Is Sophia correct?	multiple of 4 ns for your answer.	(1)
odd numbers must be a : (b) Is Sophia correct?	multiple of 4 ns for your answer.	(1)
odd numbers must be a : (b) Is Sophia correct?	multiple of 4 ns for your answer.	(1)
odd numbers must be a : (b) Is Sophia correct?	multiple of 4 ns for your answer.	(1)

8 (a) Show that $x(x-1)(x+1) = x^3 - x$	
(b) Prove that the difference between a whole number and the cube of this number is always a multiple of 6	(1)
(Total for Question 8 is 4	(3) marks)

9 N is a multiple of 5	
A = N + 1 $B = N - 1$	
Prove, using algebra, that $A^2 - B^2$ is always a multiple of 20	
(Tate	al for Question 9 is 3 marks)
(1012	ar for Ancomon 5 is 2 marks)

10 Prove algebraically that the product of any two odd numbers is always an odd number.		
(Total for Question 10 is 4 marks)		
(Total for Question 10 is 4 marks)		
(Total for Question 10 is 4 marks)		
(Total for Question 10 is 4 marks)		
(Total for Question 10 is 4 marks)		
(Total for Question 10 is 4 marks)		
(Total for Question 10 is 4 marks)		

11 Prove that the square of an odd number is always 1 more than a multiple of 4		
	(Total for Question 11 is 4 marks)	

12	Prove that the difference between two consecutive square numbers is always an odd number. Show clear algebraic working.		
	(Total	for Question 12 is 3 marks)	

13	Prove algebraically that the sum of the squares of any two consecutive even numbers is always a multiple of 4
_	(Total for Question 13 is 3 marks)

14 Prove algonumbers i	ebraically that the d s always a multiple	ifference between t of 8	he squares of any t	wo consecutive odd	
			(Total for	Question 14 is 3 m	arks)

15	Prove that when the sum of the squares of any two consecutive odd numbers is divided by 8, the remainder is always 2 Show clear algebraic working.
	(Total for Question 15 is 3 marks)

16	The product of two consecutive positive integers is added to the larger of the two integers.
	Prove that the result is always a square number.
	(Total for Question 16 is 3 marks)

17	Using algebra, prove that, given any 3 consecutive even numbers, the difference between the square of the largest number and the square of the smallest number is always 8 times the middle number.
	(Total for Question 17 is 3 marks)

18 Prove algebraically that the difference between the integers is equal to the sum of these two integers.	squares of any two consecutive
	(Total for Question 18 is 4 marks)
19 Using algebra, prove that, given any 3 consecutive we square of the smallest number and the square of the lathan twice the square of the middle number.	
square of the smallest number and the square of the l	
square of the smallest number and the square of the l	
square of the smallest number and the square of the l	
square of the smallest number and the square of the l	
square of the smallest number and the square of the l	
square of the smallest number and the square of the l	

				_		_		_	
20	Hara ara	tha	firet	four	tarme	of a	sequence	αf	fractions
∠ ∪	Ticic aic	uic	11115t	IUUI	CIIIIS	or a	Schuciice	UΙ	machons.

$$\frac{1}{1}$$
 $\frac{2}{3}$ $\frac{3}{5}$ $\frac{4}{7}$

The numerators of the fractions form the sequence of whole numbers $1 \ 2 \ 3 \ 4 \dots$ The denominators of the fractions form the sequence of odd numbers $1 \ 3 \ 5 \ 7 \dots$

(a) Write down an expression, in terms of n, for the nth term of this sequence of fractions.

(2)

(b) Using algebra, prove that when the square of any odd number is divided by 4 the remainder is 1

(3)

(Total for Question 20 is 5 marks)

21 The table gives information about the first six terms of a sequence of numbers.

Term number	1	2	3	4	5	6
Term of sequence	$\frac{1\times2}{2}$	$\frac{2\times3}{2}$	$\frac{3\times4}{2}$	$\frac{4\times5}{2}$	$\frac{5\times 6}{2}$	$\frac{6\times7}{2}$

Prove algebraically that the sum of any two consecutive terms of this sequence is always a square number.

(Total for Question 21 is 4 marks)

22	(2x + 23), $(8x + 2)$ and $(20x -$	- 52) are three consecutive terms of an arithmetic sequence.
	Prove that the common different	
		(Total for Question 22 is 4 marks)

23 The diagram shows a triangle *ADE*.

AE = DEAB:BC:CD = 1:2:1

Prove that triangle ACE is congruent to triangle DBE.

24 *ABCD* is a quadrilateral.

AB = CD.

Angle ABC = angle BCD.

Prove that AC = BD.

ABCD is a parallelogram. ABP and QDC are straight lines. Angle ADP = angle CBQ = 90°

(a) Prove that triangle ADP is congruent to triangle CBQ.

(3)

(b) Explain why AQ is parallel to PC.

(2)

26 *ABCD* is a parallelogram.

 $\it E$ is the point where the diagonals $\it AC$ and $\it BD$ meet.

Prove that triangle *ABE* is congruent to triangle *CDE*.

(Total for Question 26 is 3 marks)

27 *ABCD* is a rhombus.

M and N are points on BD such that DN = MB.

Prove that triangle *DNC* is congruent to triangle *BMC*.

(Total for Question 27 is 3 marks)