

Licenciatura em Engenharia Informática

1º Ano, 2º Semestre

Eletrónica (2022/2023)

Ficha Prática N.º 5

Nesta folha de exercícios pretende-se que os alunos compreendam o princípio de funcionamento de um díodo retificador e, simultaneamente, consigam adquirir competências que lhes permitam analisar e projetar circuitos com díodos.

1. Análise de circuitos com um díodo

Recordamos que um díodo é um dispositivo não linear, que apenas conduz quando a queda de tensão aos seus terminais (V_{ak} - tensão do ânodo (A) para o cátodo (K)) for superior à tensão de arranque (V_a). Apresenta-se, em seguida, o modelo matemático deste dispositivo:

Fig. 1 – Modelo matemático do díodo retificador

- Se a tensão aos terminais do díodo for positiva e superior à tensão de arranque $(V_{ak} > V_a)$, verifica-se um aumento significativo da corrente. Este aumento é limitado pela resistência interna do díodo. Deste modo, ambos os efeitos da resistência interna (R_d) e da tensão de arranque (V_a) deverão ser incluídos no modelo que permite representar o díodo quando diretamente polarizado. Deste modo, quando diretamente polarizado, se a tensão aplicada for superior à tensão de arranque $(V_{ak}>V_a)$, a corrente no díodo cresce a um ritmo inversamente proporcional ao valor da sua resistência interna. Neste caso, o circuito equivalente deve ser composto por uma fonte de tensão independente (V_a) em série com uma resistência (R_d) [1,2], como é possível observar na Fig. 1a.
- Caso o díodo se encontre inversamente polarizado, ignora-se o efeito da corrente inversa, e considera-se que o díodo se comporta como um circuito aberto^[1,2] (Fig. 1b).

^[1] Acácio Amaral, "Electrónica Analógica: Princípios, Análise e Projectos", Edições Sílabo, 2017, Lisboa.

^[2] Acácio Amaral, "Electrónica Aplicada", Edições Sílabo, 2021, Lisboa.

Nesta folha de exercícios serão apenas analisados circuitos composto por um díodo. Para analisar circuitos compostos por um díodo deve-se aplicar o seguinte algoritmo^[2,3]:

- 1. Primeiro deve identificar-se o estado do díodo:
 - a. Como a identificação do estado do díodo nem sempre é fácil, deve-se partir do pressuposto que o díodo conduz, considerando que o sentido da corrente no circuito respeita o sentido de condução do díodo (do ânodo para o cátodo).
 - Seguidamente deve-se efetuar o cálculo da corrente, este valor permite concluir se o díodo se encontra em condução ou não:
 - Se o valor da corrente for positivo, então pode-se concluir que o sentido da corrente está correto, logo o díodo encontra-se em condução.
 - ii. Se pelo contrário, o valor da corrente for negativo, então pode-se concluir que o sentido da corrente está incorreto e o díodo encontra-se inversamente polarizado. Neste caso, deve-se substituir o símbolo do díodo pelo circuito equivalente quando este se encontra inversamente polarizado e refazer os cálculos.
- Após identificar o estado do díodo, deve-se substituí-lo pelo seu circuito equivalente e recorrer a um qualquer método de análise de circuitos por forma a obter a informação pretendida:
 - a. Forma de onda da tensão de saída do circuito.
 - b. Forma de onda da corrente no díodo.
 - c. Função transferência do circuito.

A metodologia apresentada anteriormente será utilizada na análise do seguinte circuito (Fig. 2 - retificador de $\frac{1}{2}$ onda).

De acordo com a informação apresentada na figura anterior pode-se concluir que a forma de onda da tensão de entrada (v_{in}) é sinusoidal com amplitude 15 V e frequência 50 Hz. Deste modo, como não é possível prever o valor da tensão de entrada, pois esta varia no tempo, iremos partir do pressuposto que o díodo conduz (Fig. 3).

^[3] Acácio Amaral, "Análise de Circuitos e Dispositivos Eletrónicos", Publindustria, 2013, Porto.

_

Aplicando o método das malhas obtém-se a seguinte equação:

$$-v_{in} + (R_d + R) \times i_d + V_a = 0$$

O díodo encontra-se em condução se i_d>0, logo, utilizando a equação anterior é possível concluir que:

$$i_d = \frac{v_{in} - V_a}{(R_d + R)} > 0 \Rightarrow v_{in} > V_a$$

Desta forma, é possível concluir que o díodo representado no circuito da Fig. 2 conduz sempre que a tensão de entrada (v_{in}) for superior à tensão de arranque (V_a) .

Seguidamente iremos determinar a relação analítica entre a tensão de saída (v_{AB}) e a tensão de entrada do circuito. Neste momento é possível obter a referida relação para o estado em que o díodo conduz (Fig. 3). Assim, utilizando a equação anterior e analisando o circuito da Fig. 3 é possível escrever:

$$\begin{cases} i_{d} = \frac{v_{in} - V_{a}}{(R_{d} + R)} \Rightarrow v_{AB} = \frac{R}{(R_{d} + R)} \times (v_{in} - V_{a}) \\ v_{AB} = R \times i \end{cases}$$

Relativamente ao estado 2, estado em que o díodo não conduz, é possível representar o seguinte circuito (Fig. 4):

Fig. 4 – Estado 2 (Díodo não conduz)

A partir da análise do circuito da figura anterior é possível concluir que:

$$\begin{cases} i_d = 0 \\ v_{AB} = R \times i \end{cases} \Rightarrow v_{AB} = 0$$

Logo a função transferência analítica do circuito pode ser representada da seguinte forma:

$$v_{AB} = \begin{cases} \frac{R}{(R_d + R)} \times (v_{in} - V_a), v_{in} \geq V_a \\ 0, v_{in} \leq V_a \end{cases}$$

Para compreender o princípio de funcionamento do retificador de ½ onda (Fig.2) é fundamental representar a forma de onda da tensão de saída, assim como, a função transferência. Para o efeito serão utilizadas duas Bibliotecas do *python*: o *numpy* e o *matplotlib*.

Relativamente à Biblioteca numpy esta já foi extensivamente abordada nas últimas

aulas, não sendo por isso abordada nesta ficha3.

2. Biblioteca matplotlib

Neste manual iremos apresentar apenas os comandos mais relevantes da Biblioteca *matplotlib* e que permitem realizar a representação gráfica de funções.

Recordamos que esta Biblioteca deve ser instalada. Para o efeito deve aceder à linha de comando do *Windows* na qualidade de administrador e executar o seguinte comando:

>> python -mpip install -U matplotlib

A Biblioteca *matplotlib* é uma biblioteca composta por objetos e rotinas que permitem a criação de gráficos e a visualização de dados, sendo considerada uma extensão da Biblioteca *numpy*.

Antes de executar os comandos associados à Biblioteca *matplotlib*, na linha de comando do *IDLE*, é fundamental importar a referida Biblioteca. Deste modo, deve utilizar o seguinte comando:

>> from matplotlib import pyplot as plt⁴

As funções *plot()* e *show()* permitem representar gráficos 2D.

- >> plt.plot(x,y) em que x representa a função corresponde ao eixo dos X do gráfico (tipicamente o tempo) e y a função corresponde ao eixo dos Y do gráfico.
- >> plt.show() permite a exibição do gráfico.

A função *subplot()* permite representar vários gráficos na mesma figura.

>> plt.subplot(x,y,pos)
 - em que x representa o nº de gráficos relativos à posição horizontal, y representa o nº de gráficos relativos à posição vertical e pos a posição do gráfico.

As funções xlabel() e ylabel() permitem definir os títulos dos eixos do gráfico.

- >> plt.xlabel("texto eixo do X") permite definir o título do eixo dos X.
- >> plt.ylabel("texto eixo do Y") permite definir o título do eixo dos Y.

A função *title()* permite definir o título da figura.

• >> plt.title("titulo da figura") – permite definir o título da figura.

A função *grid()* cria uma grelha no gráfico.

>> plt.grid() – cria uma grelha no gráfico.

Suponha que pretende representar a forma de onda da tensão de entrada do circuito da Fig. 2:

• Uma onda sinusoidal com amplitude 15 V e frequência (f) 50 Hz.

A referida forma de onda pode ser representa através da seguinte equação:

_

³ Se o aluno não se recordar dos seus principais comandos deve consultar a folha de exercícios nº 1

⁴ Esta instrução permite criar um objeto do tipo *matplotlib*.

$$v_{in}(t) = 15 \times \sin(2 \times \pi \times t \times f) = 15 \times \sin(100 \times \pi \times t)$$

Como o período (P) é igual ao inverso da frequência (f) pode-se concluir que o período da referida onda é igual a:

$$P = \frac{1}{f} = \frac{1}{50} = 0.02 \text{ s}$$

Considerando que se pretende observar 100 amostras por período pode-se concluir que o período de amostragem (*PA*) é igual a:

$$PA = \frac{20 \text{ ms}}{100} = 0.2 \text{ ms}$$

A informação anterior permite-nos construir o vetor tempo:

- Dois períodos do sinal, ou seja, com início a 0 s e fim 0.04 s.
- Período de amostragem igual a 0.0002 s.

Finalmente, utilizando a informação anterior, é possível representar a referida forma de onda com recurso ao *IDLE*. A figura seguinte mostra os comandos que devem ser utilizados para representar a forma de onda da tensão de entrada:

```
>>> import numpy as np
>>> f=50;P=1/f;
>>> t=np.arange(0,0.04,0.0002)
>>> from math import pi
>>> vin=15*np.sin(2*pi*f*t)
>>> from matplotlib import pyplot as plt
>>> plt.plot(t,vin)
[<matplotlib.lines.Line2D object at 0x000002010238FCC8>]
>>> plt.xlabel("tempo (s)")
Text(0.5, 0, 'tempo (s)')
>>> plt.ylabel("tensão de entrada (V)")
Text(0, 0.5, 'tensão de entrada (V)')
>>> plt.title("forma de onda da tensão de entrada")
Text(0.5, 1.0, 'forma de onda da tensão de entrada')
>>> plt.show()
```

Finalmente apresenta-se o resultado da execução dos comandos da Fig. 5.

3. Comandos básicos do python

A linguagem de programação *python* é simples, no entanto, é bastante poderosa, sendo utilizada no desenvolvimento de diferentes sistemas. Uma das suas principais características é o facto de não conter um elevado número de marcações ('.' ou ';'), marcadores ('{' e '}') ou palavras chave ('begin' e 'end').

Os principais tipos de variáveis são:

- Tipo inteiro (números inteiros).
- Tipo real (número reais).
- Tipo *string* (conjunto de caracteres)

No *python* não é necessário declarar o tipo de variável, basta atribuir o valor à variável que esta automaticamente assume o tipo.

- >> num_int=1234 a variável num_int torna-se automaticamente do tipo inteiro.
- >> num_rea=12.34 a variável num_rea torna-se automaticamente do tipo real.
- >> nome=input("indique o seu nome") a variável *nome* torna-se automaticamente do tipo *string*.

Os comandos int e float permitem converter os valores para os respetivos tipos.

- >> num int= int(input("indique a sua idade"))
- >> num_rea= float(input("indique a seu peso de Kg"))

Os principais operadores aritméticos são:

- '+' soma.
- '-' subtração.
- '*' multiplicação.
- '/' divisão.
- '%' resto da divisão.
- '**' potência.

Os principais operadores utilizados na comparação entre valores numéricos são:

- '<' menor.
- '<=' menor ou igual.
- '>' maior.
- '>=' maior ou igual.
- '==' igual.
- '!=' diferente.

Os principais operadores lógicos são:

- 'not' inversor lógico.
- 'And' E lógico.
- 'Or' Ou lógico.

As estruturas de decisão são:

- if <condição>:
- if <condição>:

else:

. . .

if <condição>:elif <condição>:else:

A figura seguinte mostra como pode utilizar as estruturas de decisão no âmbito de um programa em *python*.

Fig. 7 – Exemplo de aplicação de estrutura de decisão em Python

As estruturas de repetição são:

- while <condição>:
 - <blood>
- for <variável> in range(início:fim:passo)
 <bloco de comandos>

A figura seguinte mostra como pode utilizar as estruturas de repetição *while* e *for* no âmbito de um programa em *python*.

Fig. 8 – Exemplo de aplicação de estrutura de repetição em Python

4. Simulação de um circuito com díodos em python

Nesta secção apresenta-se o código em *python* que permite simular o circuito da Fig. 2. Para o efeito foram utilizados os conceitos apresentados nas secções anteriores.

```
>>> import numpy as np
>>> f=50;P=1/f;
>>> PA=P/100;
>>> t=np.arange(0,P+PA,PA)
>>> from math import pi
>>> vin=15*np.sin(2*pi*f*t)
>>> vout=vin.copy()
>>> i=0;
>>> TAM=np.size(t)
>>> Va=0.7; Rd=100; R=1000;
>>> while (i<TAM):
        if (vin[i]<Va):</pre>
                vout[i]=0;
                i+=1;
        else:
                vout[i]=R/(R+Rd)*(vin[i]-Va);
                i+=1;
>>> from matplotlib import pyplot as plt
>>> plt.subplot(2,1,1)
<AxesSubplot:>
>>> plt.plot(t,vin)
[<matplotlib.lines.Line2D object at 0x000001C1CC8C3648>]
>>> plt.subplot(2,1,2)
<AxesSubplot:>
>>> plt.plot(t, vout)
[<matplotlib.lines.Line2D object at 0x000001C1CD616D48>]
>>> plt.show()
>>>
```

Fig. 9 – Código *Python* que permite simular o circuito da Fig.2

Referências Bibliográficas

- [1] Amaral, Acácio (2021), Eletrónica Aplicada, Edições Silabo, Lisboa, Portugal.
- [2] <u>Amaral, Acácio (2017), Electrónica Analógica: Princípios, Análise e Projectos, Edições Silabo, Lisboa, Portugal</u>.
- [3] Amaral, Acácio (2015), Análise de Circuitos e Dispositivos Eletrónicos, Publindústria, Porto (2ª edição).

Exercícios

16. Considere o circuito da figura seguinte.

- a) Determine para que valores de v_{in} o díodo conduz.
- b) Represente graficamente a característica de transferência do circuito.
- c) Represente a evolução temporal dos sinais v_{in} e v_{O} .
- d) Simule o circuito anterior em *Pspice* (em alternativa pode utilizar o programa de simulação *Ltspice*).
- e) Simule o circuito anterior em Python.
- **17.** Considere o circuito da figura seguinte (V_d = 0.7 V e R_d = 100 Ω).

- a) Determine os valores de v_{in} e vo, para i = 1 mA.
- b) Represente graficamente a característica de transferência do circuito.
- c) Considerando que v_{in} é uma onda sinusoidal de amplitude 20 V e frequência 50 Hz, represente a evolução temporal de v_{in} e v_O .
- d) Simule o circuito anterior em *Pspice* (em alternativa pode utilizar o programa de simulação *Ltspice*).
- e) Simule o circuito anterior em Python.

18. Considere o circuito da figura seguinte (V_d =0.7 V e R_d = 100 Ω).

- a) Determine o valor de V_o , para $V_{in} = 0$ V.
- b) Represente graficamente a característica de transferência do circuito.
- c) Considerando que v_{in} é uma onda sinusoidal de amplitude 20 V e frequência 50 Hz, represente a evolução temporal de v_{in} e v_O .
- d) Simule o circuito anterior em *Pspice* (em alternativa pode utilizar o programa de simulação *Ltspice*).
- e) Simule o circuito anterior em Python.