

MP-4

平面半导体气体传感器

使用说明书 Ver1.0

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology CO.,LTD ISO9001 认证企业

以诚为本、信守承诺 创造完美、服务社会

感谢您使用炜盛科技系列产品, 当您准备使用本产品时请务必仔细阅读本说明。 并按照所提供的有关操作步骤进行,使您能充分享受我公司提供的服务。 请妥善保管本手册,以便在您日后需要时能及时查阅、获得帮助。

版权声明

本手册版权属郑州炜盛电子科技有限公司所有, 未经书面许可, 本手册任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音等任何手段及方式进行传播。

郑州炜盛电子科技有限公司秉承科技进步原则, 不断致力于产品改进、 技术创新的服务理念。在此,本公司保留任何产品改进而不预先通知的权利。

如果用户不依照本手册说明擅自拆解、 更换传感器内部件 , 由此产生的责任由用户负责。

产品及产品颜色、款式请以购买的实物为准。

郑州炜盛电子科技有限公司

通讯地址:河南省郑州市高新技术产业开发区金梭路 299号 450001

传真号码: (86) 0371-60932988

服务信箱: winsensorec@163.com

以诚为本、信守承诺 创造完美、服务社会

MP-4 可燃气体检测用平面半导体气敏元件

MP-4型可燃气体检测用平面半导体气敏元件采用先进的平面生产工艺,在微型 AI 2Q陶瓷基片上形成加热器和金属氧化物半导体气敏材料,用电极引线引出,封装在金属管座、管帽内。当有被检测气体存在时,空气中该气体的浓度越高,传感器的电导率就越高。使用简单的电路即可将这种电导率的变化转换为与气体浓度对应的输出信号。

特点

- * 高选择性
- * 对甲烷的灵敏度高
- * 元件外形尺寸小
- * 5V 定电压、低功耗
- * 快速的响应恢复特性
- * 优异的稳定性和长期的使用寿命
- * 简单的驱动电路

应用

- * 用于家庭、工厂、商业用所的可燃气体泄漏监测装置,防火/安全探测系统。
- * 可燃气体泄漏报警器,气体检漏仪。

性能参数

产品型号			MP-4
产品类型			平面半导体气敏元件
标准封装			金属
检测气体			甲烷、天燃气
检测浓度			300-10000ppm(甲烷、天燃气)
标准电 路条件	回路电压	V _c	24V DC
	加热电压	V _H	5.0 V± 0. 1V ACorDC
	负载电阻	R_L	可调
标准测 试条件 下气敏 元件特 性	加热电阻	R _H	85 ± 15 (室温)
	加热功耗	P _H	350mW
	敏感体表 面电阻	Rs	2K -20K (in 5000ppm 甲烷)
	灵敏度	S	Rs(in air)/Rs(5000ppm 甲烷) 5
	浓度斜率		0. 6 R _{5000ppm} /R _{3000ppm^{甲烷})}
标准测 试条件	温度、湿度		20 ± 2 ; 65%±5%RH
	标准测试电路		Vc:5.0V ± 0.1V ; V н: 5.0V ± 0.1V
	预热时间		不少于 48小时

敏感体功耗值(Ps)计算公式: $Ps=Vc^2 \times Rs/(Rs+RL)^2$ 传感器电阻值(Rs)计算公式: $Rs=(Vc/V_{RL}-1)$ **R**L

元件外形结构

基本测试电路

抗振性

* 振动:频率 - 1000次/分,全振幅 -4mm, 持续时间 -1小时,方向 -垂直

* 冲击:加速度 -100G, 方向 - 垂直, 重复 5次

以诚为本、信守承诺 创造完美、服务社会

灵敏度特性

图 1中Rs 表示传感器在不同浓度气体中的电阻值; Ro表示传感器在 1000ppm甲烷中的电阻值。图中所有测试都是在标准试验条件下完成的。

响应恢复

温/湿度的影响

图 2中 Rs表示在含 1000ppm甲烷、各种温 / 湿度下的电阻值; Ro表示在含 1000ppm甲烷、 20 /65%RH下的电阻值。

长期稳定性

使用注意事项

1 必须避免的情况

1.1 暴露于有机硅蒸气中

如果传感器的表面吸附了有机硅蒸气,传感器的敏感材料会被包裹住,抑制传感器的敏感性,并且不可恢复。传感器要避免暴露其在硅粘接剂、发胶、硅橡胶、腻子或其它含硅塑料添加剂可能存在的地方。

1.2 高腐蚀性的环境

传感器暴露在高浓度的腐蚀性气体(如 H_2S , SO_X , CI_2 , HCI等)中,不仅会引起加热材料及传感器引线的腐蚀或破坏,并会引起敏感材料性能发生不可逆的改变。

1.3 碱、碱金属盐、卤素的污染

http://www.winsensor.com

传感器被碱金属尤其是盐水喷雾污染后,及暴露在卤素如氟中也会引起性能劣变。

1.4 接触到水

溅上水或浸到水中会造成敏感特性下降。

1.5 结冰

水在敏感元件表面结冰会导致敏感材料碎裂而丧失敏感特性。

1.6 施加电压过高

如果给敏感元件或加热器施加的电压高于规定值,即使传感器没有受到物理损坏或破坏,也会造成引线和 / 或加热器损坏,并引起传感器敏感特性下降。

2 尽可能避免的情况___

2.1 凝结水

在室内使用条件下, 轻微凝结水会对传感器性能会产生轻微影响。 但是,如果水凝结在敏感元件表面并保持一段时间,传感器特性则会下降。

2.2 处于高浓度气体中

无论传感器是否通电,在高浓度气体中长期放置,都会影响传感器特性。

2.3 长期贮存

传感器在不通电情况下长时间贮存, 其电阻会产生可逆性漂移, 这种漂移与贮存环境有关。 传感器应贮存在有清洁空气不含硅胶的密封袋中。经长期不通电贮存的传感器,在使用前需要长时间通电以使其达到稳定。

2.4 长期暴露在极端环境中

无论传感器是否通电,长时间暴露在极端条件下,如高湿、高温、或高污染等极端条件,传感器性能将受到严重影响。

2.5 振动

频繁、过度振动会导致敏感元件引线产生共振而断裂。在运输途中及组装线上使用气动改锥 / 超声波焊接机会产生这种振动。

2.6 冲击

如果传感器受到强烈冲击会导致其引线断线。

2.7 使用

对传感器来说手工焊接是最理想的焊接方式。使用波峰焊是应满足以下条件:

2.7.1 助焊剂:含氯最少的松香助焊剂

2.7.2 速度: 1-2 米/分钟

2.7.3 预热温度: 100 ± 20

2.7.4 焊接温度: 250 ± 10

2.7.5 1 次通过波峰焊机

违反以上使用条件将使传感器特性下降。

注:如果说明书版本发生变动,本公司不另行通知。

以诚为本、信守承诺 创造完美、服务社会