Nombre:			Nota
Curso:	2º Bachillerato	Examen XIII	
Fecha:	19 de mayo de 2016	La mala o nula explicación de cada ejercicio implica una penalización de hasta el 25% de la nota.	

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2011-2012

MATEMÁTICAS II

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la Opción A o realizar únicamente los cuatro ejercicios de la Opción B.
- c) La puntuación de cada pregunta está indicada en la misma.
- d) Contesta de forma razonada y escribe ordenadamente y con letra clara.
- e) Se permitirá el uso de calculadoras que no sean programables, gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.

Opción A

Ejercicio 1.- Sea la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \ln(x^2 + 3x + 3) - x$ donde la denota la función logaritmo neperiano.

- (a) [1'5 puntos] Halla los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (abscisas donde se obtienen y valores que se alcanzan).
- (b) [1 punto] Determina la ecuación de la recta normal a la gráfica de f en el punto de abscisa x = -2.

Ejercicio 2.- [2'5 puntos] Calcula los valores de a y b sabiendo que la función $f:(0,+\infty)\to\mathbb{R}$ definida por $f(x)=ax^2+b\ln(x)$, donde la función logaritmo neperiano, tiene un extremo relativo en x=1 y que

$$\int_{1}^{4} f(x) \ dx = 27 - 8\ln(4)$$

Ejercicio 3.- Dada la matriz $A = \begin{pmatrix} 3 & -2 \\ 5 & 1 \end{pmatrix}$, sea B la matriz que verifica que $AB = \begin{pmatrix} -2 & 1 \\ 7 & 3 \end{pmatrix}$

- (a) [1 punto] Comprueba que las matrices A y B poseen inversas.
- (b) [1'5 puntos] Resuelve la ecuación matricial $A^{-1}X B = BA$.

Ejercicio 4.- [2'5 puntos] Encuentra los puntos de la recta $r \equiv \frac{x-1}{4} = \frac{2-y}{2} = z-3$ cuya distancia al plano $\pi \equiv x-2y+2z=1$ vale cuatro unidades.

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

MATEMÁTICAS II

CURSO 2010-2011

	a) Duración: 1 hora y 30 minutos.		
	b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la $\mathbf{Opci\acute{o}n}$ A o realizar únicamente los cuatro ejercicios de la $\mathbf{Opci\acute{o}n}$ B.		
T	c) La puntuación de cada pregunta está indicada en la misma.		
Instrucciones:	d) Contesta de forma razonada y escribe ordenadamente y con letra clara.		

e) Se permitirá el uso de calculadoras que no sean programables, gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.

Opción B

Ejercicio 1.- [2'5 puntos] En una empresa los ingresos (en euros) dependen de la edad. Si la edad, x, es de 18 a 50 años, los ingresos vienen dados por la fórmula $-x^2 + 70x$, mientras que para edades iguales o superiores a 50 años los ingresos están determinados por la expresión,

$$\frac{400x}{x - 30}$$

Calcula cuál es el máximo de los ingresos y a qué edad se alcanza.

Ejercicio 2.- Dada la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = -2x^2 + 3x - 1$

- (a) [0'5 puntos] Prueba que las rectas y = -x + 1 e y = 3x 1 son tangentes a su gráfica.
- (b) [2 puntos] Halla el área del recinto limitado por la gráfica de f y las rectas mencionadas en el apartado anterior.

Ejercicio 3.- Dada la matriz $A = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$

- (a) [1 punto] Demuestra que $A^2 + 2A = I$ y que $A^{-1} = A + 2I$, siendo I la matriz identidad de orden 2.
- (b) [1'5 puntos] Calcula la matriz X que verifica la ecuación $A^2 + XA + 5A = 4I$.

Ejercicio 4.- Dada la recta r definida por $\frac{x+7}{2} = \frac{y-7}{-1} = z$ y la recta s definida por $\begin{cases} x=2\\ y=-5\\ z=\lambda \end{cases}$

- (a) [1'75 puntos] Halla la ecuación de la recta que corta perpendicularmente a ambas.
- (b) [0.75 puntos] Calcula la distancia entre r y s.