Risoluzione del compito n. 6 (Giugno 2020)

PROBLEMA 1

Trovate tutte le soluzioni (z,w), con $z,w\in\mathbb{C}$, del sistema

$$\left\{ egin{aligned} z+w &= -1 - \mathrm{i} \ (z+w)^3 - 3z^2w - 3zw^2 = 2 - 2\mathrm{i} \ . \end{aligned}
ight.$$

La seconda equazione si riscrive

$$-(1+{\rm i})^3 - 3zw(-1-{\rm i}) = 2 - 2{\rm i} \iff -(1+3{\rm i} - 3 - {\rm i}) - 3zw(-1-{\rm i}) = 2 - 2{\rm i} \iff zw = 0 \; ,$$

quindi o z=0, e dalla prima equazione ricaviamo $w=-1-\mathrm{i}$, oppure w=0 e dalla prima equazione $z=-1-\mathrm{i}$. Le due soluzioni del sistema sono

$$z = 0$$
, $w = -1 - i$, $z = -1 - i$, $w = 0$.

PROBLEMA 2

Considerate la funzione $f(x) = e^{x^2/(x+1)}$.

- a) Calcolatene il dominio ed i limiti agli estremi del dominio.
- b) Determinate la derivata f', calcolate i limiti di f' agli estremi del dominio e determinate gli asintoti di f.
- c) Determinate gli intervalli di monotonia di f e i punti di massimo e/o minimo locale.
- d) Disegnate il grafico di f.
- e) Determinate la derivata seconda f'' e dite se x = -3 si trova in un intervallo di concavità o di convessità di f.

La funzione f è definita per ogni $x \neq -1$ ed è sempre positiva. Per $x \to (-1)^{\pm}$ l'esponente tende a $\pm \infty$, pertanto

$$\lim_{x \to (-1)^{-}} f(x) = 0^{+} , \qquad \lim_{x \to (-1)^{+}} f(x) = +\infty .$$

Invece per $x \to \pm \infty$ l'esponente tende a $\pm \infty$ dunque

$$\lim_{x \to -\infty} f(x) = 0^+ , \qquad \lim_{x \to +\infty} f(x) = +\infty .$$

C'è un asintoto orizzontale (zero) per $x\to -\infty$, un asintoto verticale destro per $x\to (-1)^+$. Il grafico è un po' falsato in verticale, perché il ramo sinistro risulta molto schiacciato.

Abbiamo per $x \neq -1$

$$f'(x) = \frac{x(x+2)}{(x+1)^2} e^{x^2/(x+1)} ;$$

quindi il segno di f' è positivo per x<-2 e per x>0, negativo per -2< x<-1 e per -1< x<0, ed f' si annulla in x=-2 che è di massimo locale, e in x=0 che è di minimo locale. Abbiamo

$$f(-2) = e^{-4} \ll f(0) = 1$$
,

$$\lim_{x \to -\infty} f'(x) = 0^+ , \lim_{x \to (-1)^-} f'(x) = 0^- , \lim_{x \to (-1)^+} f'(x) = -\infty , \lim_{x \to +\infty} f'(x) = +\infty .$$

Dall'ultima relazione segue che $\,f\,$ non ha asintoto obliquo a destra. Dato poi che

$$f''(x) = \frac{x^4 + 4x^3 + 4x^2 + 2x + 2}{(x+1)^4} e^{x^2/(x+1)} ,$$

abbiamo $f''(-3) = -\frac{1}{4} \, \mathrm{e}^{-9/2} < 0 \,$ dunque $x = -3 \,$ è in un intervallo di concavità.

PROBLEMA 3

In questo esercizio, i coefficienti dei monomi vanno semplificati ai minimi termini. Siano

$$f(x) = 2x^2 + \log(\cos(2x) - \sin(2x))$$
, $g(x) = \sin(\log(1 - 2x))$.

- a) Scrivete lo sviluppo di Taylor di ordine 3 e centrato in $x_0 = 0$ di f(x).
- b) Scrivete lo sviluppo di Taylor di ordine 3 e centrato in $x_0 = 0$ di g(x).
- c) Trovate l'ordine e la parte principale di infinitesimo, per $x \to 0$, di f(x) g(x).
- d) Calcolate al variare di $\alpha \in \mathbb{R}$ il limite $\lim_{x \to 0^+} \frac{f(x) g(x) + \alpha x^3}{x \operatorname{sen}^2 x}$.

Dato che

$$\cos t = 1 - \frac{t^2}{2} + o(t^3)$$
, $\sin t = t - \frac{t^3}{6} + o(t^3)$, $\log(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + o(t^3)$

abbiamo

$$\cos(2x) - \sin(2x) = 1 - 2x - 2x^2 + \frac{4x^3}{3} + o(x^3)$$

$$f(x) = 2x^{2} + \log\left[1 + \left(-2x - 2x^{2} + \frac{4x^{3}}{3} + o(x^{3})\right)\right]$$
$$= 2x^{2} + \left(-2x - 2x^{2} + \frac{4x^{3}}{3} + o(x^{3})\right) - \frac{1}{2}(\cdots)^{2} + \frac{1}{3}(\cdots)^{3} + o(\cdots)^{3}.$$

Dato che la quantità fra parentesi è di ordine 1, abbiamo $o(\cdots)^3 = o(x^3)$ e possiamo proseguire con

$$\dots = -2x + \frac{4x^3}{3} - \frac{1}{2}(4x^2 + 8x^3) + \frac{1}{3}(-8x^3) + o(x^3)$$
$$= -2x - 2x^2 - \frac{16x^3}{3} + o(x^3).$$

Invece $\log(1-2x) = -2x - 2x^2 - 8x^3/3 + o(x^3)$ quindi

$$g(x) = \operatorname{sen}\left(-2x - 2x^2 - \frac{8x^3}{3} + o(x^3)\right) = \left(-2x - 2x^2 - \frac{8x^3}{3} + o(x^3)\right) - \frac{1}{6}(\cdots)^3 + o(\cdots)^3$$

e siccome la quantità fra parentesi è di ordine 1, abbiamo $o(\cdots)^3 = o(x^3)$ e possiamo proseguire con

$$\cdots = -2x - 2x^2 - \frac{8x^3}{3} + \frac{4x^3}{3} + o(x^3) = -2x - 2x^2 - \frac{4x^3}{3} + o(x^3).$$

Otteniamo allora

$$f(x) - g(x) = -4x^3 + o(x^3) ,$$

un infinitesimo di ordine 3 con parte principale $-4x^3$, quindi osservando che $x \operatorname{sen}^2 x = x^3 + o(x^3)$

$$\lim_{x \to 0^+} \frac{f(x) - g(x) + \alpha x^3}{x \sec^2 x} = \lim_{x \to 0^+} \frac{(\alpha - 4)x^3 + o(x^3)}{x^3 + o(x^3)} = \alpha - 4.$$

PROBLEMA 4

Determinate i valori di $\alpha \in \mathbb{R}$ per i quali la serie $\sum_n n^{3\alpha} \arctan(1/n^{\alpha^2+2})$ risulta convergente.

Determinate i valori di $k \in \mathbb{R}$ per cui la serie $\sum_n n^{3\alpha} \arctan(1/n^{\alpha^2+k^2})$ risulta divergente per $1 \le \alpha \le 2$ e convergente per tutti gli altri valori di α .

Entrambe le serie sono a termini positivi. Dato che $\alpha^2+2>0$, l'argomento dell'arcotangente tende a zero, quindi

$$n^{3\alpha} \arctan(1/n^{\alpha^2+2}) \sim \frac{n^{3\alpha}}{n^{\alpha^2+2}} = \frac{1}{n^{\alpha^2-3\alpha+2}}$$
,

e la prima serie converge se e solo se

$$\begin{split} \alpha^2 - 3\alpha + 2 > 1 &\iff \alpha^2 - 3\alpha + 1 > 0 \\ &\iff \left[\alpha < \frac{3 - \sqrt{5}}{2} \ \mathbf{o} \ \alpha > \frac{3 + \sqrt{5}}{2}\right]. \end{split}$$

Analogamente la seconda serie converge se e solo se

$$\alpha^2 - 3\alpha + k^2 > 1 \iff \alpha^2 - 3\alpha + k^2 - 1 > 0$$
 $\iff \left[\alpha < \frac{3 - \sqrt{13 - 4k^2}}{2} \text{ o } \alpha > \frac{3 + \sqrt{13 - 4k^2}}{2} \right]$

e diverge per

$$\frac{3 - \sqrt{13 - 4k^2}}{2} \le \alpha \le \frac{3 + \sqrt{13 - 4k^2}}{2} :$$

occorre dunque che questi numeri siano rispettivamente 1 e 2, il che si verifica quando $\sqrt{13-4k^2}=1$ ossia $4k^2=12$. I valori cercati sono dunque $k=\pm\sqrt{3}$. In alternativa avremmo potuto dire che se vogliamo che la disequazione $\alpha^2-3\alpha+k^2-1\leq 0$ sia risolta per $1\leq \alpha\leq 2$, occorre che il primo membro sia $(\alpha-1)(\alpha-2)$, che dà subito $k^2-1=2$.

Esercizio 1. Se $z=2-{\rm i}$ e $w={(3+{\rm i})z-{\rm i}\bar z\over{\rm i}|z|^2-(3-3{\rm i})}$ allora la parte immaginaria di w è

(A)
$$-55/73$$
.
(B) $-7/13$.
(C) $-215i/793$
(D) $-39/73$.

(B)
$$-7/13$$
. (D) $-39/73$.

Calcoliamo:
$$(3+i)(2-i) - i(2+i) = 8-3i$$
, $i|z|^2 - (3-3i) = 8i-3$ quindi

$$w = \frac{(8-3i)(-8i-3)}{64+9} = \frac{-48-55i}{73}$$

ha parte immaginaria -55/73.

Esercizio 2. Tre dadi hanno le facce numerate da 1 a 6: lanciandoli tutti e tre. la probabilità che la somma dei punti sia 5 è

(A)
$$1/36$$
.
(B) $1/72$.
(C) $3/(5 \cdot 6)$.
(D) $\binom{6}{5}/3$.

(B)
$$1/72$$
. (D) $\binom{6}{5}/3$

Il primo dado può presentare un qualunque punteggio fra 1 e 6; indipendentemente da questo punteggio, anche il secondo e il terzo dado fanno lo stesso: in totale le terne primo-secondo-terzo dado sono dunque 6³. I punteggi favorevoli sono quelli in cui un dado fa 3 e gli altri due 1 (tre possibilità, a seconda di quale dado fa 3) o quelli in cui un dado fa 1 e gli altri due dadi 2 (altre 3 possibilità), in totale 6. Dunque la probabilità è $6/6^3 = 1/36$.

Esercizio 3. La successione $\frac{n^4(1-2/\sqrt{n})-n^3(n+3\sqrt{n})}{n^6 \operatorname{sen}(5/n^4)+n^4 \operatorname{sen}(5/\sqrt{n})} \text{ ha limite:}$

$$(C) +\infty$$

(A)
$$-1$$
.
(B) 0 .
(C) $+\infty$.
(D) $-2/5$.
Il numeratore si riscrive $-2n^4/\sqrt{n}-3n^3\sqrt{n}=-5n^{7/2}$, e al denominatore

$$n^6 \sin(5/n^4) \simeq 5n^2$$
, $n^4 \sin(5/\sqrt{n}) \simeq 5n^4/\sqrt{n} = 5n^{7/2}$,

quindi domina il secondo addendo e il limite vale -1.

Esercizio 4. I valori di a,b per i quali la funzione $f(x) = \begin{cases} \sin(3x) + e^{-x} & \text{se } x < 0 \\ 2ax^2 - bx + 1 & \text{se } x \ge 0 \end{cases}$ risulta derivabile su tutto \mathbf{R} sono

(A)
$$b = -2$$
, a qualsiasi. (C) $b = -3$, $a = 0$.

(B)
$$b = -2a$$
, a qualsiasi. (D) $b = -3$, $a = -1$.

Osserviamo che per qualunque a, b i limiti da sinistra e da destra di f in zero e il valore in zero coincidono, quindi f è continua. Poi certamente per $x \neq 0$

$$f'(x) = \begin{cases} 3\cos(3x) - e^{-x} & \text{se } x < 0 \\ 2ax - b & \text{se } x > 0 \end{cases} \Rightarrow \begin{cases} \lim_{x \to 0^{-}} f'(x) = 2 \\ \lim_{x \to 0^{+}} f'(x) = -b \end{cases},$$

dunque f è derivabile anche in zero (con derivata 2) se e solo se -b=2, indipendentemente dal valore di a.

Esercizio 5. I valori di $\alpha > 0$ per i quali converge l'integrale $\int_1^{+\infty} x^{2-\alpha^2} \arctan x^{2\alpha} dx$ sono

(A)
$$\alpha > \sqrt{3}$$
.

(C)
$$0 < \alpha < \sqrt{3}$$
.
(D) $\sqrt{3} < \alpha < 3$.

(B)
$$-3 < \alpha < 3$$

(D)
$$\sqrt{3} < \alpha < 3$$

La sola improprietà è all'infinito, dove

$$\alpha>0\Rightarrow x^{2\alpha}\to +\infty\Rightarrow\arctan x^{2\alpha}\to \frac{\pi}{2}\Rightarrow x^{2-\alpha^2}\arctan x^{2\alpha}\sim x^{2-\alpha^2}=\frac{1}{x^{\alpha^2-2}}\;,$$

quindi l'integrale converge se e solo se $\alpha^2 - 2 > 1$ che, ricordando che $\alpha > 0$, equivale a $\alpha > \sqrt{3}$.

Esercizio 6. La derivata di $\int_{7}^{2x} \sin^7 t \, dt$ per $x = \pi/4$ vale

(C)
$$1/8(\sqrt{2})^8$$

(D)
$$1/(\sqrt{2})^7$$
.

(A) 2. $(C) \ 1/8(\sqrt{2})^8 \,.$ $(B) \ 1 \,.$ $(D) \ 1/(\sqrt{2})^7 \,.$ Posto $F(x) = \int_7^x \sin^7 t \, dt$, la funzione da derivare è F(2x) e per il teorema fondamentale del calcolo $F'(x) = \sin^7 x$, dunque

$$\frac{d}{dx}F(2x) = 2F'(2x) = 2\sin^7(2x) \quad \Rightarrow \quad \frac{d}{dx}F(2x)\Big|_{x=\pi/4} = 2\sin^7(\pi/2) = 2.$$

Esercizio 7. Se f è debolmente crescente, allora f^2 è debolmente crescente?

- (A) Solo se f è non negativa.
- (C) Solo se f ha segno costante.

(B) Sì, sempre.

Se $f \geq 0$ allora ricordando che per numeri non negativi la funzione quadrato è strettamente crescente si ha

$$x < y \implies 0 < f(x) < f(y) \implies f^2(x) < f^2(y)$$
.

Invece se f ha segno costante ma negativo la funzione f^2 è debolmente decrescente: infatti sui numeri non positivi la funzione quadrato è strettamente decrescente pertanto

$$x < y \implies f(x) \le f(y) \le 0 \implies f^2(x) \ge f^2(y)$$
.