McGill University Department of Mathematics and Statistics MATH 254 Honours Analysis 1, Fall 2024 Assignment 3

You should carefully work out **all** problems. However, you only have to hand in solutions to **problems 1 and 2.**

This assignment is due Thursday, September 26, at 8:00pm and is to be submitted on Crowdmark. Late assignments will not be accepted!

1. Let $S := \{\sqrt{k} - \sqrt{n} : k, n \in \mathbb{N}\}$. Prove that S is dense in \mathbb{R} , i.e. prove that for all $a, b \in \mathbb{R}$, with a < b, there exist $k, n \in \mathbb{N}$ such that $a < \sqrt{k} - \sqrt{n} < b$.

<u>Hint</u>: Try to imitate the proof (not the details, only the main idea!) of the density of \mathbb{Q} in \mathbb{R} .

2. Prove that $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} i.e. prove that any interval $]a, b[, a, b \in \mathbb{R}, a < b, \text{ contains at least one irrational number.}]$

<u>Hint</u>: Use the following two facts:

- \mathbb{Q} is dense in \mathbb{R} ,
- $\sqrt{2}$ is irrational.
- 3. Let x be a real number. Prove that for every $\epsilon > 0$ there exist two rational numbers q and q' such that q < x < q' and $|q q'| < \epsilon$.
- 4. Let A and B be finite, nonempty sets.
 - (a) Prove that $|A| \leq |B|$ iff there exists an injective function $f: A \to B$.
 - (b) Prove that $|A| \ge |B|$ iff there exists a surjective function $f: A \to B$.
- 5. (a) Let B be a subset of \mathbb{N} . Prove that B is countable.
 - (b) Let A be a countably infinite set and let $B \subseteq A$. Prove that B is countable.
- 6. Prove that the set $\mathbb{N} \times \mathbb{N}$ is countably infinite.
- 7. (a) Let A and B be two countably infinite sets. Prove that $A \cup B$ is countably infinite.
 - (b) Prove that the set of all irrational numbers is uncountable.
 - (c) Let A_1, A_2, A_3, \ldots be countably infinite sets. Prove that $\bigcup_{n=1}^{\infty} A_n$ is countably infinite.
- 8. Let A be a finite set with |A| = n. Prove that the power set $\mathcal{P}(A)$ of A has cardinality 2^n . Remark: The power set P(A) of a set A is defined to be the set of all subsets of A. For example, if $A = \{1, 2, 3\}$, then $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.
- 9. Prove that the set $\mathcal{F}(\mathbb{N})$ of all finite subsets of \mathbb{N} is countably infinite. <u>Hint</u>: Consider for all $n \in \mathbb{N}$ the set S_n of all finite subsets of \mathbb{N} whose maximal element is n. You are free to quote other questions from this assignment.