Algorithmendesign

Lösungen zu Übungsblatt 9 WS 13/14 Gruppe 2 Max Bannach

Markus Richter (614027)

Aufgabe 9.3 Kuckucks-Hashing

Teilaufgabe 1)

$$h(x) = ((11x + 14) \mod 17) \mod 3$$

$$h'(x) = ((x+10) \mod 17) \mod 3$$

	3	5	2	7	10
0 1 2					
	3	5	2	7	10
0 1 2		5			
	3	5	2	7	10
0 1 2	3	5	5	7	10
0 1 2	3			7	10

Kollision!

	3	5	2	7	10
0 1 2	3	3	3 2	7 3 2	7 3 \(\frac{1}{2}\) 10
	3	5	2	7	10
0 1 2	3	3	3 2	7 3 2	7 3 10

	3	5	2	7	10			3	5	2	7	
,				7	7		0		_	_	_	
$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	3	3	3	-	¥5		1		3	3	5	
2					10		2					
1	3	5	2	7	10			3	5	2	7	
	3	5	2	7	10	_		3	5	2	7	_
0	3	5	2	7	10 7	_	0	3			7 5	
0 1				7	10 7 5	-	0	3				

Teilaufgabe 2

Sei zufällig folgendes gegeben:

$h(x) = x \mod 11$											
	20) 5	0 5	53	75	100	67	105	3	36	39
0 1 2 3 4						100	67	67	67	67	100
4 5 6 7 8		5	0 5	50	50	50	50	50	50	50	50
9 10	20) 2	0 2	20	20	20	20	53	53	53	75
	20	50	53		'(x) 75	$= \left\lfloor \frac{k}{11} \right\rfloor$ 100] mo	od 11 105	3	36	39
0 1 2 3								20	20	20	3 20
3 4 5			53	Į	53	53	53	50	50	36 50	39 53
5 6 7				7	75	75	75	75	75	75	67
8 9 10							100	100	100	100	105

Fügt man nun eine 6 ein gerät man in einen Zyklus:

Schlüssel	h(x)		h'(x)	
	alter Wert	neuer Wert	alter Wert	neuer Wert
6	50	6	53	50
53	75	53	67	75
67	100	67	105	100
105	6	105	3	6
3	36	3	39	36
39	105	39	100	105
100	67	100	75	67
75	53	75	50	53
50	39	50	36	39
36	3	36	6	3
6	50	6	53	50

Aufgabe 9.4 Wir bauen einen Flughafen!

Teilaufgabe 1

Das Optimierungsproblem sei Π genannt, wobei für eine Eingabe $X=x_1,\ldots,x_n$ eine Folge von Aktionen $Y=y_1,\ldots,y_n$ zu bestimmten ist. Sei X in diesem Beispiel eine binäre Folge, die mit einem Block von Einsen beginnt, welche die Jahre repräsentieren, in denen noch gebaut wird. Wenn der Flughafen zum Zeitpunkt $x_i=1$ fertiggestellt wird wechselt die Folge ab x_{i+1} auf 0. Die Ausgabe Y gibt an, ob bei einem $x_i=1$ die Aktion KAUF durchgeführt wird, falls nicht bereits in der Vergangenheit geschehen, oder stattdessen die Aktion $y_i=M$ IET.

Um das Moor trockenzulegen, kann man die Pumpe

- 1. kaufen, wofür einmalig K = 980.000 Euro anfallen, wovon aber sogleich $0.5 \cdot K$ also 490.000 Euro, wieder abgezogen werden, da das Gerät veräußert wird. Effektiv beträgt der Preis demnach 490.000 Euro.
- 2. mieten, wofür pro Jahr L = 70.000 Euro anfallen.

 S_r beschreibt die möglichen Strategien, wobei $r = 0, 1, \dots$ die Jahre r mieten bedeutet und, falls im Jahr r + 1 noch gebaut wird, danach einmalig kaufen.

Bezeichnet t(X) die Anzahl der Einsen in X, so berechnen sich die Kosten von S_r analog zum Beispiel aus dem Skript als:

$$cost(S_r) = \begin{cases} t(X) \cdot L & \text{falls } t(X) \le r, \\ r \cdot L + K - 0, 5 \cdot K & \text{sonst.} \end{cases}$$

Teilaufgabe 2

Die optimale Strategie ist ebenfalls analog zum Skript – nur dass der Kaufpreis effektiv $0.5 \cdot K$ also 490.000 Euro beträgt – wie folgt

$$cost(OPT) = \begin{cases} t(X) \cdot L & \text{falls } t(X) \leq \frac{0.5 \cdot K}{L}, \\ r \cdot L + K - 0.5 \cdot K & \text{sonst.} \end{cases}$$

Das Verhältnis der Kosten von S_r zu den minimalen Kosten beträgt

$$\frac{cost(S_r)}{cost(OPT)} = \begin{cases} \frac{t(X) \cdot L}{t(X) \cdot L} = 1 & \text{falls } t(X) \leq \min\left\{\frac{0.5 \cdot K}{L}\right\}, \\ \frac{t(X) \cdot L}{0.5 \cdot K} & \text{falls } \frac{0.5 \cdot K}{L} < t(X) \leq r, \\ \frac{r \cdot L + 0.5 \cdot K}{t(X) \cdot L} & \text{falls } r < t(X) \leq \frac{0.5 \cdot K}{L}, \\ \frac{r \cdot L + 0.5 \cdot K}{0.5 \cdot K} & \text{falls } t(X) > \min\left\{\frac{0.5 \cdot K}{L}, r\right\}. \end{cases}$$
Wir wollen nun den Parameter r finden – denn nur da

Wir wollen nun den Parameter r finden – denn nur darauf haben wir Einfluss – für den sich die Strategie S_r ergibt, die den minimal schlimmen Worst-Case im Verhältnis zum optimalen Fall liefert, d. h. der Ausdruck

 $\max\left\{\frac{r\cdot L}{K\cdot 0,5}, \frac{r\cdot L + K\cdot 0,5}{(r+1)\cdot L}, \frac{r\cdot L + K\cdot 0,5}{K\cdot 0,5}\right\} \text{ soll minimiert werden. Der dritte Term dominiert den ersten, d. h. es genügt den zweiten und dritten Term zu betrachten. Setzt man die beiden Terme gleich und rechnet nach <math>r$ um, so ergibt sich: $r = \frac{0,5\cdot K}{L} - 1$ Setzt man diesen Wert in die oben genannten Terme ein ergibt sich analog zum Ski-Problem der Quotient $2 - \frac{L}{0,5\cdot K}$. Der zweite Fall ist nicht relevant, weil hierfür 2 raus kommt, die immer größer ist als der oben genannte Quotient.

Daraus folgt, dass konkret in diesem Beispiel, $r = \frac{490.000}{70.000} - 1 = 6$ Jahre die bestmögliche Strategie ergibt, sofern man kein vorheriges Wissen bzgl. der Bauzeit hat. Diese Lösung ist maximal $2 - \frac{70.000}{490.000} = 1,8571$, also 0,8571 mal schlechter als die optimale Strategie.