

Outline

- Simulation platform for end-to-end verification and validation system
 - Simulation improvements to support Phase 2 MOPS development
 - Java Architecture for DAA Extensibility and Modeling (<u>JADEM</u>) and Detect and Avoid Alerting Logic for Unmanned Systems (<u>DAIDALUS</u>) integration
 - Sensor and Pilot Models
- Planned Modeling and Simulation Work
 - Mainly supports MOPS for low cost, size, weight, and power surveillance (C-SWaP) to detect and track non-cooperative aircraft
 - Expected results
- Flight Test 5 &6

Transformed Fast-Time Simulation Architecture

Transformed Fast-Time Simulation Architecture (cont.)

Event Hierarchy

Integration with Other Datasets

JADEM Architecture

JADEM Architecture

Where NASA has integrated various DAA algorithms...

JADEM/DAIDALUS Integration

JADEM -

Not shown:

- MOPS-compliant alerting comes from "Generic Conflict Evaluator"
- Trial Planner is another guidance configuration (from IHITL/PT5 days)

Alerting and Guidance Interfaced Data

Models

- Sensor models
 - Leveraging existing sensor models developed by Honeywell
 - Air-to-air radar (Phase 1)
 - ADS-B
 - Mode C/S
 - Honeywell Fusion Tracker
 - Low SWaP radar model to be developed under new cooperative agreement with partner (selection made, still under negotiation)
 - Reference track processing algorithm for low SWaP radar MOPS (to be developed under cooperative agreement)
- Pilot Model Continue development of pilot model NASA used in Phase 1 ACES simulations
 - Key features:
 - Alert generation
 - Alert evaluation time delay
 - Maneuver determination
 - Maneuver execution time delay
 - Challenges
 - Surveillance uncertainty
 - Intruder accelerations
 - Maneuver reversals

Planned Fast-Time Simulation Activities:

Supporting Low Cost, Size, Weight, and Power Surveillance for Detecting and Tracking Non-Cooperative Aircraft

Planned Fast-Time Simulation Activities

- Low C-SWaP Fast-Time Simulation 1 (FY17/18)
 - A.k.a. Low C-SWaP DAA Well Clear Trade Study
- Low C-SWaP Fast-Time Simulation 2 (FY18)
- Low C-SWaP Fast-Time Simulation 3 (FY19)

DWC Trade Study for Non-Cooperative (Sim 1)

- Develop an alternative DAA Well Clear (DWC)
 - Low C-SWaP UAS
 - Phase 1 UAS

Low C-SWaP UAS

- Phase 1 sensor for non-cooperative aircraft (radar) consumes too much power and is too heavy for many UAS
- Low C-SWaP sensors (range < 3 nmi for example) leaves little time to detect and remain DWC
- Example: head-on encounter
 - ownship 100 kts, intruder 170 kts
 - At ~3.4 nmi, ownship cannot maintain well clear (bands saturated)

Phase 1 UAS

- Phase I DWC largely driven by TCAS II interoperability consideration
 - Definition type, h, HMD, and modTau
 - Thresholds of variables
- Better consistency between Phases 1 and 2

Objectives

- Investigate trade space for DWC definition(s) for noncooperative aircraft
- Collect data to inform sensor declaration range/maneuver initiation point analysis (AAG)
- Recommend alternative DWC definition(s) for the SC-228 to consider for non-cooperative aircraft

Workflow Diagram

Independent variables

- DWC types and threshold values (* for threshold)
 - DWC1: h*, HMD*, modTau*
 - DWC2: h*, HMD*, t_{pz}*
 - DWC3: Static hockey puck: h*, R*
 - DWC4: Dynamic hockey puck: h*, R*(rdot) = a* + rdot x b*

Type	h* (ft)	HMD* (ft)	modTau* (sec)
DWC1	450	[2000, 9000]	[15, 35]
Type	H* (ft)	HMD* (ft)	Tpz* (sec)
DWC2	450	[2000, 9000]	[15, 35]
Type	H* (ft)	R* (ft)	
DWC3	450	[2000, 15000]	
Type	H* (ft)	a* (ft)	b* (sec)
DWC4	450	TBD	TBD

Schedule

Milestone	Date
ACES Encounter data generation	8/14/17
Software tool feature complete	9/12/17
Data analysis complete	10/3/17
Preliminary results brief	10/10/17
Feedback, adjustment, and aligning with Lincoln Lab analysis	11/30/17
Final briefing	12/4/17

Low C-SWaP Fast-Time Simulation 2

Objective: <u>Unmitigated</u> fast-time simulation with (and without) surveillance uncertainty to explore alerting performance requirements for low C-SWaP surveillance

Scenarios

- Encounters from NAS-wide simulations (UAS missions vs. VFR RADES)
- New MIT-LL low C-SWaP encounter model

Models

- Low C-SWaP UAS aircraft performance
- Low C-SWaP radar sensor uncertainty
- Tracking processing
- JADEM with DAIDALUS updated for low C-SWaP DWC definition

Result

- Results to informed new alerting and guidance requirements for low C-SWaP surveillance, i.e., non-hazard zone, alerting/guidance special cases, late alert threshold, early alert threshold, etc.
- First version of low C-SWaP radar test vectors and alerting performance

Schedule

- Start FY18
- To be completed 9/30/18

Low C-SWaP Fast-Time Simulation 3

Objective: <u>Unmitigated</u> and <u>mitigated</u> fast-time simulation with (and without) surveillance uncertainty to verify and validate alerting and guidance requirements

Scenarios

- Encounters from NAS-wide simulations (UAS missions vs. VFR RADES)
- New MIT-LL low C-SWaP encounter model
- Selected encounters from Flight Test 5
- Selected encounters from Low C-SWaP HITL

Models

- Low C-SWaP UAS aircraft performance
- Low C-SWaP radar sensor uncertainty (updated from Flight Test 5 results)
- Tracking processing (updated from Flight Test 5 results)
- JADEM with DAIDALUS updated for low C-SWaP DWC definition
- Pilot model

Result

- Results to finalize take-away's from Sim 2, LoWC/NAMC risk ratios, and other open- and closed-loop performance metrics from MOPS
- Final version of low C-SWaP radar test vectors and alerting performance

Schedule

- Start FY19
- To be completed 9/30/19

Cooperative Agreement – Low C-SWaP Non-Coop. Sensor

- Just completed selection of partner (and non-selections)
 - Cooperative agreement = cost-sharing
- Honeywell was selected
- Low C-SWaP radar basis for our flight test supporting development of low C-SWaP radar performance standards
- Also supports modeling and simulation of low C-SWaP radar
 - Sensor modeling and track processing
- Still in negotiation, cooperative agreement not awarded yet

Flight Test 5

- UAS: SIERRA-B (similar to Shadow UAS)
- Edwards AFB airspace
- Equipped with partner (Honeywell) low C-SWaP surveillance system for detecting and tracking non-cooperative aircraft
- Existing aircraft GCS and legacy C2 systems
- Scripted air-to-air encounters against single and multiple manned intruders
- Objectives:
 - Development of sensor performance requirements
 - Verify/validate models and simulation results
 - Verify interoperability of low C-SWaP sensor requirements with existing DAA alerting and guidance requirements
- Data collection: September-November 2018

SIERRA-B

Flight Test 6

- Similar to FT5, but with matured and enhanced systems
- Vigilant Spirit Control Station instead of SIERRA-B's legacy GCS
- Baselined for taking place at Edwards AFB, but could take place at another mutually-agreed-upon test site
- Could also include cooperative surveillance systems such as "lesser SWAP" ADS-B and Active Surveillance (option we are considering)
- More to be defined as we work through simulations and SC-228 Phase 2 MOPS needs
- Data collection summer of 2019

Questions?

BACKUP

Planned Fast-Time Simulation Activities

Objective: Trade-study to analyze <u>alternative DWC definitions</u> for non-cooperative aircraft (Phase

1 UAS performances and new, relatively lower UAS performances in Phase 2)

Result: Candidate DWC definitions for SC-228 to consider for Phase 2 MOPS

Schedule: To be completed by 12/10/17

Low C-SWaP Fast-Time Sim 1

<u>Objective</u>: <u>Unmitigated</u> fast-time simulation with (and without) <u>surveillance uncertainty</u> to explore alerting performance requirements for low C-SWaP surveillance

<u>Result</u>: Results to informed new alerting and guidance requirements for low C-SWaP surveillance, i.e., non-hazard zone, alerting/guidance special cases, late alert threshold, early alert threshold, etc.

Schedule: To be completed by 9/30/18

Low C-SWaP Fast-Time Sim 2

<u>Objective</u>: <u>Unmitigated</u> and <u>mitigated</u> fast-time simulation with (and without) <u>surveillance</u> <u>uncertainty</u> to V&V alerting and guidance requirement

<u>Result</u>: Results to finalize take-away's from Sim 2, LoWC/NAMC risk ratios, and other openand closed-loop performance metrics from MOPS

Schedule: To be completed by 9/30/19

Low C-SWaP Fast-Time Sim 3