5.1 Analysis

- 1. Completeness
- 2. Soundness
- 3. Zero-Knowledge

5.1.1 Completeness

If $\mathbb{G}_0 = \mathbb{G}_1$ then \mathbb{V} always accepts

5.1.2 Soundness

If $\mathbb{G}_0 \tilde{\neq} \mathbb{G}_1$ then \mathbb{V} rejects with probability at least $\frac{1}{2}$. (But cheating prover may also succeed with probability at most $\frac{1}{2}$. This is called the *soundness error* of the scheme. To reduce it to 2^{-k} , then repeat the protocol k times.)

5.1.3 Intuition here

- If \mathbb{P} could answer both challenges, then statement must be true!
- If model both as machines (Turing Machines or VMs), then one can take a snapshot of both after ℙ has sent first message. Then run protocol to completion; Then restart protocol from snapshot and run it until ℙ picks a different challenge (b).

This gives $\mathbb V$ both permutations ρ_0 and ρ_1

 $\mathbb{G}_0 \stackrel{\tilde{=}}{\rho_0} \mathbb{H} \text{ and } \mathbb{G}_1 \stackrel{\tilde{=}}{\rho_1} \mathbb{H}$

so, \mathbb{V} could extract the isomorphism between \mathbb{G}_0 and \mathbb{G}_1

- Gedankenexperiment

5.1.4 Zero-Knowledge

What is "computational knowledge"?

If a party can generate a random variable T with exactly the same (or an indistinguishable) distribution, then this party gains no (useful) information from T.

Here, V can generate (simulate) a transcript T of an accepting protocol execution.

same distribution ⇔ perfect zero knowledge

indistinguishable distribution ⇔ computational zero knowledge.

 \mathbb{V} can simulate transcript T:

- 1. $\tilde{b} \leftarrow \{0, 1\}$
- 2. $\tilde{\rho} \leftarrow \text{permutation of } \mathbb{V}$
- 3. $\tilde{H} = \tilde{\rho}(\mathbb{G}_{\tilde{b}})$, i.e. isomorph to $\mathbb{G}_{\tilde{b}}$

Distribution (H, b, ρ) in real protocol same as $(\tilde{H}, \tilde{b}, \tilde{\rho})$ in simulated execution.

- \Rightarrow V leaves no information through ZKP
- \Rightarrow V cannot transfer this to any third party

5.1.5 What can be proved "in zero-knowledge"?

- GI problem ∉ P

GI is believed to be between P and NP (like factoring, or DL)

- If one NP-complete problem has a ZKP, then any problem in NP has a ZKP (polynomial time) 3-Colorability of a graph \mathbb{G} is NP-complete and has ZKP

Lecture 05: Zero Knowledge Proofs

5.1.6 Can one use these protocols for online authentication?

In principle yes, BUT in practice more efficient schemes exist.

5.2 Zero-Knowledge Proofs of Knowledge (ZKPK)

Want to prove knowledge about secrets $\alpha, \beta, \gamma, ...$ such that $\Psi(\alpha, \beta, \gamma, ...)$ holds

Example: Prover P

Prover \mathbb{P} knows that it knows α s.t. $g^{\alpha} = y$.

Notation

 $PK\{(\alpha, \beta, \gamma, ...): \Psi(\alpha, \beta, \gamma, ...)\}$, where α, β are known to \mathbb{P} e.g. $PR\{(\alpha): y = g^{\alpha}\}$

5.2.1 Formalizing ZKPK (3-Move Protocol or Σ -Protocol)

To convince V, \mathbb{P} should demonstrate that it knows such a secret $(\alpha, \beta, \gamma, ...)$ s.t. $\Psi(\alpha, \beta, \gamma, ...)$. Formalized using *extraction* of the secret $\alpha, \beta, ...$ from \mathbb{P} . Using an extractor \mathbb{E} , an efficient algorithm that extracts secrets $\alpha, \beta, ...$ from \mathbb{P} when given two protocol runs (transcripts) with same commitment

5.2.2 Definition

A zero-knowledge proof-of-knowledge (ZKPK) is a 3-Move protocol for a relation Ψ satisfies

Completeness

If \mathbb{P} has input x s.t. $\Psi(x)$ then \mathbb{V} accepts.

Soundness

There is an efficient knowledge extractor \mathbb{E} s.t. $\mathbb{E}((t,c,s),(t,c',s')) \to x$ when $c \neq c'$ and $\Psi(x)$ (both transcripts are from executions where \mathbb{V} accepts).

Zero-Knowledge

 $\mathbb V$ can simulate transcripts (t,c,s) on its own with same (or indistinguishable) distribution \Leftrightarrow

 \exists simulator \mathbb{S} that produces (t, c, s)... but may use different order

5.2.3 ZKPK of a Discrete Logarithm ("Schnorr Proof")

Again, $G = \langle g \rangle$ of order q.

$$\Psi(x):g^x=y$$

Completeness?

If \mathbb{P} and \mathbb{V} honest then:

$$t = g^r = g^{r-cx+cx} = g^s \cdot g^{x \cdot c} = g^s \cdot y^c$$

Thus V accepts.

Soundness?

Two executions with (t, c, s) and (t, c', s') (Note $c \neq c'$):

$$\Rightarrow t = g^{s} \cdot y^{c} = g^{s'} \cdot y^{c'}$$

$$\Leftrightarrow g^{s-s'} = y^{c'-c} = g^{x \cdot (c'-c)}$$

$$\Leftrightarrow s - s' \equiv x(c'-c) \pmod{q}$$

$$\Leftrightarrow x \equiv \frac{s-s'}{c'-c} \pmod{q}$$

This x satisfies $g^x = y$.

Zero-Knowledge?

 \mathbb{V} chooses triples (t, c, s) on its own:

$$\begin{aligned} c &\leftarrow \mathbb{Z}_q \\ s &\leftarrow \mathbb{Z}_q \\ t &\leftarrow g^s \cdot y^c \quad (in \ G) \end{aligned}$$

A triple (t, c, s) has same distribution as a transcript of an accepting execution

5.3 Commitment Schemes

- How to pick a uniformly random bit among two parties s.t. no single party can bias this bit
- Cryptographic primitive for a sender $\mathbb S$ and a receiver $\mathbb R$

5.3.1 Definition

A commitment scheme has 3 algorithms: KEYGEN(), COM(), VER().

- 1. KEYGEN() $\rightarrow pk$ probabilistic
- 2. COM(PK, X, R) $\rightarrow c$ deterministic outputs commitment $c \in \{0, 1\}^*$ $x \in \{0, 1\}^*$ $r \in R$, randomness, chosen $r \leftarrow R$ by §
- 3. VER(PK, X, R, C) \rightarrow TRUE/FALSE deterministic, outputs boolean indicating whether x and r correctly "open" commitment c Run by receiver \mathbb{R}

Completeness

•••

Binding

•••

Hiding

•••