HAI702I — **TD**s

Ivan Lejeune

8 septembre 2025

Table des matières												
$\mathrm{TD1}$ — Espaces vectoriels .												2

TD1 — Espaces vectoriels

Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

Exercice 1.1.

Déterminer une base orthonormale directe done le premier vecteur est colinéaire au vecteur (1,2,2).

Solution. On pose $u = \frac{1}{3}(1,2,2)$, c'est à dire celui imposé puis normalisé.

Ensuite on veut v orthogonal à u et de norme 1.

Il faut donc $\langle u, v \rangle = 0$, soit (0, 1, -1).

On le normalise en divisant par $\sqrt{2}$: $v = \frac{1}{\sqrt{2}}(0, 1, -1)$.

Pour w on peut faire le produit vectoriel $u \wedge v$: On trouve $w = \frac{1}{3\sqrt{2}}(4,1,1)$.

On pose alors notre base orthonormale directe:

$$\mathcal{B} = (u, v, w) = \left(\frac{1}{3}(1, 2, 2), \frac{1}{\sqrt{2}}(0, 1, -1), \frac{1}{3\sqrt{2}}(4, 1, 1)\right).$$

Exercice 1.2.

Pour quelles valeurs de a les vecteurs suivant sont-ils coplanaires?

- (a, 1, 0),
- (0, a, 1).

Solution. On trouve assez vite que -1 est solution. C'est la seule solution réelle, prouvable avec factorisation puis delta.

Exercice 1.3.

Soient u, v et w trois vecteurs de l'espace et $a \in \mathbb{R}$. On considère l'équation vectorielle d'inconnue x suivante :

$$u \wedge x = v$$

- 1. Montrer que si l'équation admet une solution, alors u et v sont orthogonaux. On supposera dans la suite que u et v sont orthogonaux.
- 2. Déterminer toutes les solutions colinéaires à $u \wedge v$.
- 3. En déduire toutes les solutions de l'équation.
- 4. Déterminer les vecteurs solutions qui vérifient en outre $\langle x, w \rangle = a$.

Solution.

Exercice 1.4. *

Dans l'espace muni d'un repère orthonormal. On note \mathcal{D} la droite passant par le point A = (1,3,-2) et de vecteur directeur u=(2,1,0), \mathcal{P} le plan d'équation 2x-3y+5z=7 et M le point de coordonnées (1,2,3).

- 1. Calculer la distance de M à la droite \mathcal{D} .
- 2. Calculer la distance de M au plan \mathcal{P} . Indication: remarquer que le point (1,0,1) appartient au plan \mathcal{P} .

Solution.

1. La distance de M à la droite $\mathcal D$ est donnée par la formule :

$$d(M, \mathcal{D}) = \frac{\mathcal{N}AM \wedge u}{\mathcal{N}u} = \frac{\sqrt{30}}{\sqrt{5}} = \sqrt{6}.$$

Exercice 1.5. \star

Déterminer la projection orthogonale Δ' de la droite Δ d'équation :

$$\begin{cases} x = 1 + 2\lambda \\ y = -1 + \lambda \\ z = 2 \end{cases}$$

dans le plan \mathcal{P} d'équation x+y+z=1.

Solution.

Exercice 1.6. *

Calculer l'équation de la sphère de centre (1,1,1) et dont le plan tangent est x+y+z=2.

Solution.