Домашняя работа №2

Болорболд Аригуун, Р3111

Вариант 121

Алгоритм Дейкстра

	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	e ₁₁	e ₁₂
e ₁	0		3	5		3		1	4			2
e ₂		0	5	3	7	5				1	5	5
e ₃	3	5	0		-)		7				5	
e ₄	5	3		0		4	7			2		
e ₅					0	1	1	5	4	3		4
e ₆	3	5		4		0	. 1	1	1			
e ₇			l				0	1	2	2		
e ₈	1			M	5	1	1	0	7.	1	2	
e ₉	4				4	7/	2	7	0	4	2	
e ₁₀				2	3	1	2	1	4	0		
e ₁₁		5	5	18			9	2	2		0	
e ₁₂	2	5	3	L	4		1					0

II - IIIXXMM

0+
8
8
8
8
8
8
8
8
8
8
∞

1.
$$I(e_1) = 0^+$$
, $I(e_i) = \infty$, для всех $i \neq 1$.
 $\Gamma p = \{e_3, e_4, e_6, e_8, e_9, e_{12}\}$
 $I(e_3) = min[\infty, 0 + 3] = 3$,
 $I(e_4) = min[\infty, 0 + 5] = 5$,
 $I(e_6) = min[\infty, 0 + 3] = 3$,
 $I(e_8) = min[\infty, 0 + 1] = 1$,
 $I(e_9) = min[\infty, 0 + 4] = 4$,
 $I(e_{12}) = min[\infty, 0 + 2] = 2$,
 $min[I(e_i)] = I(e_8) = 1^+$

2.
$$\Gamma p = \{e_1, e_5, e_6, e_7, e_{10}, e_{11}\}$$

$$I(e_5) = \min[\infty, 1 + 5] = 6,$$

$$I(e_6) = \min[2, 1 + 1] = 2,$$

$$I(e_7) = \min[\infty, 1 + 1] = 2,$$

$$I(e_{10}) = \min[4, 1 + 1] = 2,$$

$$I(e_{11}) = \min[4, 1 + 2] = 3,$$

$$\min[I(e_i)] = I(e_6) = 2^+$$

	1	2	3
e₁	0+		
e ₂	8	8	8
ез	8	3	3
e ₄	8	5	5
e ₅	8	8	6
e ₆	8	2	2+
e ₇	8	8	2
e ₈	8	1⁺	
e ₉	8	4	4
e ₁₀	8	8	2
e ₁₁	8	∞	3
e ₁₂	8	2	2
	4		

3.
$$\Gamma p = \{e_1, e_2, e_4, e_8\}$$

 $I(e_2) = min[\infty, 2 + 5] = 7,$
 $I(e_4) = min[5, 2 + 4] = 5,$
 $min[I(e_i)] = I(e_7) = 2^+$

4.
$$\Gamma p = \{e_8, e_9, e_{10}\}$$

$$I(e_9) = min[4, 2 + 2] = 4,$$

$$I(e_{10}) = min[2, 2 + 2] = 2,$$

$$min[I(e_i)] = I(e_{10}) = 2^+$$

	1	2	3	4	5
e ₁	0+				
e ₂	8	∞	∞	7	7
e ₃	8	3	3	3	3
e ₄	∞	5	5	5	5
e ₅	8	∞	6	6	6
e ₆	∞	2	2+		
e ₇	∞	∞	2	2+	
e ₈	8	1+			
e ₉	8	4	4	4	4
e ₁₀	∞	∞	2	2	2⁺
e ₁₁	∞	∞	3	3	3
e ₁₂	8	2	2	2	2

5.
$$\Gamma p = \{e_4, e_5, e_7, e_8, e_9\}$$

$$I(e_4) = min[5, 2 + 2] = 4,$$

$$I(e_5) = min[6, 2 + 3] = 5,$$

$$I(e_9) = min[4, 2 + 4] = 4,$$

$$min[I(e_i)] = I(e_{12}) = 2^+$$

	1	2	3	4	5	6
e ₁	0+					
e ₂	8	∞	8	7	7	7
ез	∞	3	3	3	3	3
e ₄	8	5	5	5	5	4
e ₅	8	∞	6	6	6	5
e ₆	8	2	2⁺			
e ₇	8	∞	2	2⁺		
e ₈	8	1⁺				
e ₉	8	4	4	4	4	4
e ₁₀	8	∞	2	2	2+	
e ₁₁	8	∞	3	3	3	3
e ₁₂	8	2	2	2	2	2⁺

6.
$$\Gamma p = \{e_1, e_2, e_5\}$$

$$I(e_2) = min[7, 2 + 5] = 7,$$

$$I(e_5) = min[5, 2 + 4] = 5$$

$$min[I(e_i)] = I(e_3) = 3^+$$

	1	2	3	4	5	6	7
e ₁	0+						
e ₂	8	8	∞	7	7	7	7
ез	8	3	3	3	3	3	3⁺
e ₄	8	5	5	5	5	4	4
e ₅	8	8	6	6	6	5	5
e ₆	8	2	2+				
e ₇	8	8	2	2	2	2+	
e ₈	∞	1+					
e ₉	8	4	4	4	4	4	4
e ₁₀	8	∞	2	2	2⁺		
e ₁₁	8	∞	3	3	3	3	3
e ₁₂	∞	2	2	2	2	2+	Ī
						The s	

7.
$$\Gamma p = \{e_1, e_2, e_{11}\}\$$

$$I(e_2) = min[7, 3 + 5] = 7,$$

$$I(e_{11}) = min[3, 3 + 5] = 3,$$

$$min[I(e_i)] = I(e_{11}) = 3^+$$

	1	2	3	4	5	6	7	8
e ₁	0⁺						Ь	
e ₂	8	∞	∞	7	7	7	7	7
ез	8	3	3	3	3	3	3⁺	
e ₄	8	5	5	5	5	4	4	4
e ₅	8	∞	6	6	6	5	5	5
e ₆	∞	2	2⁺					A
e ₇	∞	∞	2	2	2	2+		
e ₈	8	1+					1	
e ₉	8	4	4	4	4	4	4	4
e ₁₀	8	∞	2	2	2+			
e ₁₁	∞	∞	3	3	3	3	3	3⁺
e ₁₂	8	2	2	2	2	2⁺		

8.
$$\Gamma p = \{e_2, e_3, e_8, e_9\}$$

 $I(e_2) = min[7, 3 + 5] = 5,$
 $I(e_9) = min[4, 3 + 2] = 4,$
 $min[I(e_i)] = I(e_9) = 4^+$

	1	2	3	4	5	6	7	8	9
e ₁	0+								
e ₂	8	∞	∞	7	7	7	7	7	7
e ₃	8	3	3	3	3	3	3⁺		
e ₄	8	5	5	5	5	4	4	4	4
e ₅	8	∞	6	6	6	5	5	5	5
e ₆	8	2	2+					(4)	
e ₇	8	8	2	2	2	2⁺		Ŋ	
e ₈	8	1⁺							1
e ₉	∞	4	4	4	4	4	4	4	4 ⁺
e ₁₀	8	∞	2	2	2+			۵	
e ₁₁	∞	∞	3	3	3	3	3	3⁺	
e ₁₂	∞	2	2	2	2	2⁺	-		

9. $\Gamma p = \{e_1, e_5, e_{10}, e_{11}\}$
$I(e_5) = min[5, 4 + 4] = 5,$
$Min[I(e_i)] = I(e_4) = 4^+$

	1	2	3	4	5	6	7	8	9	10
e ₁	0+						Н		A	
e ₂	8	∞	8	7	7	7	7	7	7	7
e ₃	8	3	3	3	3	3	3⁺		7	15
e ₄	8	5	5	5	5	4	4	4	4	4+
e ₅	8	8	6	6	6	5	5	5	5	5
e ₆	∞	2	2+					Α		7
e ₇	8	8	2	2	2	2+			У	
e ₈	8	1⁺					79		7	1
e ₉	8	4	4	4	4	4	4	4	4+	
e ₁₀	8	8	2	2	2+					
e ₁₁	8	8	3	3	3	3	3	3⁺		
e ₁₂	∞	2	2	2	2	2+				

10.
$$\Gamma p = \{e_1, e_2, e_6, e_{10}\}$$

$$I(e_2) = min[7, 5 + 3] = 7,$$

$$Min[I(e_i)] = I(e_5) = 5^+$$

	1	2	3	4	5	6	7	8	9	10	11
e ₁	0+										
e ₂	8	8	8	7	7	7	7	7	7	7	7
e ₃	8	3	ന	3	3	3	3⁺				
e ₄	8	5	5	5	5	4	4	4	4	4 ⁺	
e ₅	8	∞	6	6	6	5	5	5	5	5	5⁺
e ₆	8	2	2⁺					V		7	
e ₇	8	8	2	2	2	2+			9		
e ₈	8	1⁺								6	r.,
e ₉	8	4	4	4	4	4	4	4	4+		go.
e ₁₀	8	∞	2	2	2+		T				
e ₁₁	8	∞	3	3	3	3	3	3⁺			
e ₁₂	8	2	2	2	2	2+					9

11.
$$\Gamma p = \{e_8, e_9, e_{10}, e_{12}\}$$

 $Min[I(e_i)] = I(e_2) = 7^+$

	1	2	3	4	5	6	7	8	9	10	11	12
e ₁	0+											
e ₂	8	∞	8	7	7	7	7	7	7	7	7	7⁺
e ₃	8	3	3	3	3	3	3⁺					
e ₄	8	5	5	5	5	4	4	4	4	4+		
e ₅	8	∞	6	6	6	5	5	5	5	5	5⁺	
e ₆	8	2	2⁺					7	п			
e ₇	8	∞	2	2	2	2+		-7	5	7		
e ₈	∞	1+					A			7		
e ₉	8	4	4	4	4	4	4	4	4 ⁺	1		7
e ₁₀	8	∞	2	2	2+	-			P		A	1
e ₁₁	∞	∞	3	3	3	3	3	3⁺	1	- /		/
e ₁₂	∞	2	2	2	2	2+	4		7	20	1/	20

Найденные кратчайшие пути:

$$e1 \rightarrow e1 = 0$$
, $e1 \rightarrow e5 = 5$, $e1 \rightarrow e9 = 4$,

$$e1 \rightarrow e2 = 7$$
, $e1 \rightarrow e6 = 2$, $e1 \rightarrow e10 = 2$,

$$e1 \rightarrow e3 = 3$$
, $e1 \rightarrow e7 = 2$, $e1 \rightarrow e11 = 3$,

$$e1 \rightarrow e4 = 4$$
, $e1 \rightarrow e8 = 1$, $e1 \rightarrow e12 = 2$