Engineering Cryptographic Software Multiprecision arithmetic

Radboud University, Nijmegen, The Netherlands

Winter 2023/24

- Asymmetric cryptography heavily relies on arithmetic on "big integers"
- \blacktriangleright Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers

c

- ► Asymmetric cryptography heavily relies on arithmetic on "big
- ► Example 1: RSA-2048 needs (modular) multiplication and squaring integers"
- ► Example 2:

of 2048-bit numbers

- Elliptic curves defined over finite fields
 Typically use EC over large-characteristic prime fields
 Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits ...

- Asymmetric cryptography heavily relies on arithmetic on "big
- Example 1: RSA-2048 needs (modular) multiplication and squaring integers"
- of 2048-bit numbers ► Example 2:
- Elliptic curves defined over finite fields
 Typically use EC over large-characteristic prime fields
 Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits ...
 - ► Example 3: Poly1305 needs arithmetic on 130-bit integers

- ► Asymmetric cryptography heavily relies on arithmetic on "big integers"
- \blacktriangleright Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
- Example 2:
- ► Elliptic curves defined over finite fields
- ► Typically use EC over large-characteristic prime fields ► Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits...
- Example 3: Poly1305 needs arithmetic on 130-bit integers
- ► An integer is "big" if it's not natively supported by the machine architecture
- ► Example: AMD64 supports up to 64-bit integers, multiplication produces 128-bit result, but not bigger than that.
- ► We call arithmetic on such "big integers" multiprecision arithmetic

- Asymmetric cryptography heavily relies on arithmetic on "big integers"
- Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
- Example 2:
- Elliptic curves defined over finite fields
- Typically use EC over large-characteristic prime fields
 Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits...
- Example 3: Poly1305 needs arithmetic on 130-bit integers
- An integer is "big" if it's not natively supported by the machine architecture
- ► Example: AMD64 supports up to 64-bit integers, multiplication produces 128-bit result, but not bigger than that.
- ► We call arithmetic on such "big integers" multiprecision arithmetic
 - ► For now mainly interested in 160-bit and 256-bit arithmetic
- Example architecture for today (most of the time): AVR ATmega

```
Addition 3+5=? 2+7=? 4+3=?
```

Subtractio	7 - 5 = ?	5 - 1 = ?	9 - 3 = ?	
Addition	+5	2 + 7 = ?	+3	

Subtraction		5 - 1 = ?	9 - 3 = ?
Addition	3+5=?	2+7 = ?	4+3 = ?

- ► All results are in the set of available numbers
- ► No confusion for first-year school kids

Available numbers: $0, 1, \dots, 255$

Available numbers: $0,1,\ldots,255$

Addition

```
uint8_t a = 42;
uint8_t b = 89;
uint8_t r = a + b;
```

4

```
Available numbers: 0,1,\ldots,255
```

```
uint8_t a = 157;
uint8_t b = 23;
uint8_t r = a - b
                                  .։
գ
uint8_t a = 42;
uint8_t b = 89;
uint8_t r = a + 1
```

Subtraction

Addition

Available numbers: $0, 1, \dots, 255$

Addition Addition uint8_t a = 42; uint8_t b = 89; uint8_t r = a + b; uint8_t r = a + b;

- All results are in the set of available numbers
- Larger set of available numbers: uint16_t, uint32_t, uint64_t
 Basic principle is the same; for the moment stick with uint8_t

Crossing the ten barrier

- 6+5 = 9+7 = 4+8 = 1

Crossing the ten barrier

$$6+5 = ?$$

 $9+7 = ?$
 $4+8 = ?$

- $\,\blacktriangleright\,$ Inputs to addition are still from the set of available numbers
- ► Results are allowed to be larger than 9

Ľ

Crossing the ten barrier

$$6+5 = ?$$

 $9+7 = ?$
 $4+8 = ?$

- ▶ Inputs to addition are still from the set of available numbers
- ► Results are allowed to be larger than 9
- ► Addition is allowed to produce a *carry*

Ľ

Crossing the ten barrier

- 6+5=3 9+7=34+8=3
- ▶ Inputs to addition are still from the set of available numbers
- ► Results are allowed to be larger than 9
- ► Addition is allowed to produce a carry

What happens with the carry?

- ▶ Introduce the decimal positional system
- lacktriangle Write an integer A in two digits a_1a_0 with

$$A = 10 \cdot a_1 + a_0$$

▶ Note that at the moment $a_1 \in \{0,1\}$

...back to programming

```
uint8_t a = 184;
uint8_t b = 203;
uint8_t r = a + b;
```

... back to programming

```
uint8_t a = 184;
uint8_t b = 203;
uint8_t r = a + b;
```

- \blacktriangleright The result r now has the value of 131
- ► The carry is lost, what do we do?

ď

... back to programming

```
uint8_t a = 184;
uint8_t b = 203;
uint8_t r = a + b
```

- \blacktriangleright The result r now has the value of 131
- The carry is lost, what do we do?
 Could cast to uint16_t, uint32_t etc.,
 but that solves the problem only for this uint8_t example
- ► We really want to obtain the carry, and put it into another uint8_t

.

The AVR ATmega

- ▶ 8-bit RISC architecture
- ▶ 32 registers R0...R31, some of those are "special":

- (R26,R27) aliased as X
 (R28,R29) aliased as Y
 (R30,R31) aliased as Z
 X, Y, Z are used for addressing
 2-byte output of a multiplication always in R0, R1

 - $\,\blacktriangleright\,$ Multiplication and memory access takes 2 cycles ▶ Most arithmetic instructions cost 1 cycle

184 + 203

```
LDI R5, 184

LDI R6, 203

ADD R5, R6 ; result in R5, sets carry flag

CLR R6 ; set R6 to zero

ADC R6,R6 ; add with carry, R6 now holds the carry
```

Addition 42 + 78 = ? 789 + 543 = ? 7862 + 5275 = ?

٥

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862 + 5275 + 37 ۰

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862 + 5275 + 137

$$\begin{array}{r}
 7862 \\
 + 5275 \\
 + 13137
 \end{array}$$

Addition 42 + 78 = ? 789 + 543 = ? 7862 + 5275 = ?

 $\begin{array}{rrr}
 7862 \\
 + 5275 \\
 + 13137
 \end{array}$

► Once school kids can add beyond 1000, they can add arbitrary numbers

Multiprecision addition is old

"Oh Līlāvatī, intelligent girl, if you understand addition and subtraction, tell me the sum of the amounts 2, 5, 32, 193, 18, 10, and 100, as well as [the remainder of] those when subtracted from 10000."

—"Līlāvatī" by Bhāskara (1150)

AVR multiprecision addition...

- $\,\blacktriangleright\,$ Add two n-byte numbers, returning an n+1 byte result:
- ▶ Input pointers X,Y, output pointer Z

LD R5,X+	LD R5,X+	CLR R5
LD R6,Y+	LD R6,Y+	ADC R5,R5
ADD R5,R6	ADC R5, R6	ST Z+,R5
ST Z+,R5	ST Z+,R5	
: : :	1	

LD R5, X+
LD R6, Y+
LD R6, Y+
ADC R5, R6
ST Z+, R5
ST Z+, R5

:

...and subtraction

- $\,\blacktriangleright\,$ Subtract two n-byte numbers, returning an n+1 byte result:
- ▶ Input pointers X,Y, output pointer Z
- \blacktriangleright Use highest byte =-1 to indicate negative result

CLR R5	SBC R5,R5	ST Z+,R5					
LD R5,X+	LD R6,Y+	SBC R5, R6	ST Z+,R5	LD R5,X+	LD R6,Y+	SBC R5, R6	ST Z+,R5
LD R5,X+	LD R6,Y+	SUB R5, R6	ST Z+,R5	LD R5,X+	LD R6,Y+	SBC R5, R6	ST Z+,R5

:

ightharpoonup Consider multiplication of $1234~{\rm by}~789$

► Consider multiplication of 1234 by 789

 $\frac{1234 \cdot 789}{111106}$

► Consider multiplication of 1234 by 789

 $1234 \cdot 789 \\ 11106 \\ 9872$

► Consider multiplication of 1234 by 789

 $\begin{array}{r}
 1234 \cdot 789 \\
 \hline
 11106 \\
 9872 \\
 8638
 \end{array}$

 \blacktriangleright Consider multiplication of $1234~\mathrm{by}~789$

$1234 \cdot 789$	111106	9872	8638	973626
		+	+	

► Consider multiplication of 1234 by 789

 $\frac{1234 \cdot 789}{111106}$

► Consider multiplication of 1234 by 789

$$\begin{array}{r}
 1234.789 \\
 \hline
 11106 \\
 + 9872
 \end{array}$$

► Consider multiplication of 1234 by 789

 $\frac{1234 \cdot 789}{20978}$

► Consider multiplication of 1234 by 789

$$1234.789 \\ 20978 \\ + 8638$$

► Consider multiplication of 1234 by 789

 $1234 \cdot 789 \\ 973626$

 \blacktriangleright Consider multiplication of 1234 by 789

 $1234 \cdot 789 \\ 973626$

- This is also an old technique
- ► Earliest reference I could find is again the Līlāvatī (1150)

LD R2, X+ LD R3, X+ LD R4, X+

LD R7, Y+

MUL R2,R7 ST Z+,R0 MOV R8,R1

MUL R3,R7 ADD R8,R0 CLR R9 ADC R9,R1

MUL R4,R7
ADD R9,R0
CLR R10
ADC R10,R1

LD R7, Y+	MUL R2,R7 MOVW R12,R0	MUL R3.R7	ADD R13,R0	CLR R14	ADC R14,R1	MUL R4,R7	ADD R14,R0	CLR R15	ADC R15,R1	ADD R8,R12	ST Z+, R8	ADC R9,R13	ADC R10,R14	CLR R11	ADC R11,R15
LD R2, X+ LD R3, X+	LD R4, X+	LD R7, Y+	MUL R2,R7	ST Z+, RO	MOV R8,R1	MUL R3,R7	ADD R8, R0	CLR R9	ADC R9,R1	MUL R4,R7	ADD R9, RO	CLR R10	ADC R10,R1		

14

LD R7, Y+		MUL R2,R7	MOVW R12,R0		MUL R3,R7	ADD R13,R0	CLR R14	ADC R14,R1	MUL R4,R7	ADD R14,R0	CLR R15	ADC R15,R1	ADC R9,R12	ST Z+,R9	ADC R10,R13	ADC R11,R14	CLR R12	ADC R12,R15
LD R7, Y+		MUL R2,R7	MOVW R12, RO		MUL R3,R7	ADD R13,R0	CLR R14	ADC R14,R1	MUL R4,R7	ADD R14,R0	CLR R15	ADC R15,R1	ADD R8,R12	ST Z+, R8	ADC R9,R13	ADC R10,R14	CLR R11	ADC R11,R15
LD R2, X+	LD R3, X+	LD R4, X+		LD R7, Y+		MUL R2,R7	ST Z+,RO	MOV R8,R1	MUL R3,R7	ADD R8,R0	CLR R9	ADC R9,R1	MUL R4,R7	ADD R9,R0	CLR R10	ADC R10,R1		

LD R2, X+ LD R3, X+ LD R4, X+	LD R7, Y+ MUL R2,R7	LD R7, Y+ MUL R2,R7	ST Z+,R10 ST Z+,R11 ST Z+,R12
	MUVW KIZ, KO	MUVW RIZ, RO	
	ADD R13,R0	ADD R13,R0	
	CLR R14	CLR R14	
	ADC R14,R1	ADC R14,R1	
	MUL R4,R7	MUL R4,R7	
	ADD R14,R0	ADD R14, RO	
	CLR R15	CLR R15	
	ADC R15,R1	ADC R15,R1	
	ADD R8,R12	ADC R9,R12	
	ST Z+,R8	ST Z+,R9	
	ADC R9,R13	ADC R10,R13	
	ADC R10,R14	ADC R11,R14	
	CLR R11	CLR R12	
	ADC R11,R15	ADC R12,R15	

 \blacktriangleright Problem: Need 3n+c registers for $n\times n\text{-byte}$ multiplication

- ▶ Problem: Need 3n + c registers for $n \times n$ -byte multiplication
- Can add on the fly, get down to 2n+c, but more carry handling

Can we do better?

"Again as the information is understood, the multiplication of 2345 by 6789 is proposed; therefore the numbers are written down; the 5 is multiplied by the 9, there will be 45; the 5 is put, the 4 is kept; and the 5 is multiplied by the 8, and the 9 by the 4 and the products are added to the kept 4; there will be 80; the 0 is put and the 8 is kept; and the 5 is multiplied by the 7 and the 9 by the 3 and the 4 by the 8, and the products are added to the kept 8; there will be 102; the 2 is put and the 10 is kept in hand..."

From "Fibonacci's Liber Abaci" (1202) Chapter 2 (English translation by Sigler)

Product scanning on the AVR

R3,	ADD R15, RO	R16,	R17,	R4,	R15,	R16,	R17,	Z+3,		R4,	R16,	R17,	STD Z+4, R16		Z+5,							
R2,	ADD R14, RO	R15,	R16,	R3,	R14,	R15,	R16,	R4,	R14,	R15,	R16,	Z+2,										
R2,	LD R3, X+	R4,	R7,	R8,	R9,			MUL R2, R7						R2,	R13	R14	R3,	R13	R14	ADC R15, R5	Z+1	

From the Treviso Arithmetic, 1478 (http://www.republicaveneta.com/doc/abaco.pdf)

Hybrid multiplication

- ▶ Idea: Chop whole multiplication into smaller blocks
- ► Compute each of the smaller multiplications by schoolbook
- ► Later add up to the full result
- ► See it as two nested loops:
- ► Inner loop performs operand scanning ► Outer loop performs product scanning

Hybrid multiplication

- ▶ Idea: Chop whole multiplication into smaller blocks
- Compute each of the smaller multiplications by schoolbook
- ► Later add up to the full result
- See it as two nested loops:
- Inner loop performs operand scanning
 Outer loop performs product scanning
- Originally proposed by Gura, Patel, Wander, Eberle, Chang Shantz,

Hybrid multiplication

- ► Idea: Chop whole multiplication into smaller blocks
- ► Compute each of the smaller multiplications by schoolbook
- ► Later add up to the full result
- See it as two nested loops:
- ► Inner loop performs operand scanning
- ► Outer loop performs product scanning
- Originally proposed by Gura, Patel, Wander, Eberle, Chang Shantz,
- ► Various improvements, consider 160-bit multiplication:
- Originally: 3106 cycles
 Uhsadel, Poschmann, Paar (2007): 2881 cycles
 - Scott, Szczechowiak (2007): 2651 cycles
- ► Kargl, Pyka, Seuschek (2008): 2593 cycles

Operand-caching multiplication

- ► Hutter, Wenger, 2011: More efficient way to decompose multiplication
- ► Inside separate chunks use product-scanning
- ► Main idea: re-use values in registers for longer

Operand-caching multiplication

- ► Hutter, Wenger, 2011: More efficient way to decompose multiplication
 - ► Inside separate chunks use product-scanning
- ► Main idea: re-use values in registers for longer
- Performance:

 2393 cycles for 160-bit multiplication

 1012 cycles for 256-bit multiplication

19

Operand-caching multiplication

- ► Hutter, Wenger, 2011: More efficient way to decompose multiplication
- ► Inside separate chunks use product-scanning
- ► Main idea: re-use values in registers for longer
- Performance:
- $\blacktriangleright~2393$ cycles for 160-bit multiplication
- ► 6121 cycles for 256-bit multiplication ► Followup-paper by Seo and Kim: "Consecutive operand caching":
- $\,\blacktriangleright\,2341$ cycles for $160\mbox{-bit}$ multiplication
- ▶ 6115 cycles for 256-bit multiplication

- \blacktriangleright So far, multiplication of 2~n-byte numbers needs $n^2~\mathrm{MULs}$
- ► Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity

- $\,\blacktriangleright\,$ So far, multiplication of 2 n-byte numbers needs n^2 MULs
- ► Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- \blacktriangleright Proven wrong by $23\mbox{-year}$ old student Karatsuba in 1960

- $\,\blacktriangleright\,$ So far, multiplication of 2 n-byte numbers needs n^2 MULs
- ► Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
 - ▶ Proven wrong by 23-year old student Karatsuba in 1960
- ▶ Idea: write $A \cdot B$ as $(A_0 + 2^m A_1)(B_0 + 2^m B_1)$ for half-size A_0, B_0, A_1, B_1

- \blacktriangleright So far, multiplication of 2~n-byte numbers needs n^2 MULs
- ► Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- \blacktriangleright Proven wrong by 23-year old student Karatsuba in 1960
- - A_0, B_0, A_1, B_1

Compute

 $2^m (A_0 B_1 + B_0 A_1)$

 $A_0B_0 +$

 $+ 2^{2m} A_1 B_1$

- lacktriangle So far, multiplication of 2~n-byte numbers needs n^2 MULs
- ► Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
 - Proven wrong by 23-year old student Karatsuba in 1960
- ▶ Idea: write $A \cdot B$ as $(A_0 + 2^m A_1)(B_0 + 2^m B_1)$ for half-size A_0, B_0, A_1, B_1
- Compute

$$A_0B_0 + 2^m(A_0B_1 + B_0A_1) + 2^{2m}A_1B_1$$

= $A_0B_0 + 2^m((A_0 + A_1)(B_0 + B_1) - A_0B_0 - A_1B_1) + 2^{2m}A_1B_1$

- $\,\blacktriangleright\,$ So far, multiplication of 2 n-byte numbers needs n^2 MULs
- ► Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- Proven wrong by 23-year old student Karatsuba in 1960
- ▶ Idea: write $A \cdot B$ as $(A_0 + 2^m A_1)(B_0 + 2^m B_1)$ for half-size
 - A_0, B_0, A_1, B_1 Compute

$$A_0B_0 + 2^m(A_0B_1 + B_0A_1)$$

$$A_0B_0 + 2^m(A_0B_1 + B_0A_1) + 2^{2m}A_1B_1$$

= $A_0B_0 + 2^m((A_0 + A_1)(B_0 + B_1) - A_0B_0 - A_1B_1) + 2^{2m}A_1B_1$

lacktriangle Recursive application yields $\Theta(n^{\log_2 3})$ runtime

Does that help on the AVR?

Consider multiplication of n-byte numbers

$$A \triangleq (a_0, \ldots, a_{n-1})$$
 and $B \triangleq (b_0, \ldots, b_{n-1})$

Consider multiplication of n-byte numbers

$$A \stackrel{.}{=} (a_0, \ldots, a_{n-1})$$
 and $B \stackrel{.}{=} (b_0, \ldots, b_{n-1})$

▶ Write $A=A_\ell+2^{8k}A_h$ and $B=B_\ell+2^{8k}B_h$ for k-byte integers A_ℓ,A_h,B_ℓ , and B_h and k=n/2

Consider multiplication of $n ext{-}\mathrm{byte}$ numbers

$$A \hat{=} (a_0, \ldots, a_{n-1})$$
 and $B \hat{=} (b_0, \ldots, b_{n-1})$

- ▶ Write $A=A_\ell+2^{8k}A_h$ and $B=B_\ell+2^{8k}B_h$ for k-byte integers A_ℓ,A_h,B_ℓ , and B_h and k=n/2
 - ▶ Compute $L = A_\ell \cdot B_\ell \triangleq (\ell_0, \dots, \ell_{n-1})$ ▶ Compute $H = A_h \cdot B_h \triangleq (h_0, \dots, h_{n-1})$
- $lackbox{\ }$ Compute $M=(A_\ell+A_h)\cdot(B_\ell+B_h)\,\hat{=}\,(m_0,\ldots,m_n)$

Consider multiplication of n-byte numbers

$$A \hat{=} (a_0, \ldots, a_{n-1})$$
 and $B \hat{=} (b_0, \ldots, b_{n-1})$

- ▶ Write $A=A_\ell+2^{8k}A_h$ and $B=B_\ell+2^{8k}B_h$ for k-byte integers A_ℓ,A_h,B_ℓ , and B_h and k=n/2
 - Compute $L=A_\ell\cdot B_\ell \triangleq (\ell_0,\dots,\ell_{n-1})$ Compute $H=A_h\cdot B_h \triangleq (h_0,\dots,h_{n-1})$
- ▶ Compute $M = (A_\ell + A_h) \cdot (B_\ell + B_h) \stackrel{.}{=} (m_0, \dots, m_n)$
- \blacktriangleright Obtain result as $A\cdot B=L+2^{8k}(M-L-H)+2^{8n}H$

$\label{eq:multiplication} \mbox{Multiplication by the carry in } M$

- \blacktriangleright Can expand carry to 0xff or 0x00
- ► Use AND instruction for multiplication

Multiplication by the carry in ${\cal M}$

- \blacktriangleright Can expand carry to 0xff or 0x00
- ► Use AND instruction for multiplication
- ► Does not help for recursive Karatsuba

Multiplication by the carry in M

- ► Can expand carry to 0xff or 0x00
- ► Use AND instruction for multiplication
- ► Does not help for recursive Karatsuba

Subtractive Karatsuba

- \blacktriangleright Compute $L=A_\ell\cdot B_\ell \stackrel{.}{=} (\ell_0,\dots,\ell_{n-1})$
- $lackbox{\ }$ Compute $H=A_h\cdot B_h\,\hat{=}\,(h_0,\ldots,h_{n-1})$
- \blacktriangleright Compute $M = |A_\ell A_h| \cdot |B_\ell B_h| \stackrel{.}{=} (m_0, \ldots, m_{n-1})$
- ▶ Set t=0, if $M=(A_\ell-A_h)\cdot(B_\ell-B_h)$; t=1 otherwise ▶ Compute $\hat{M}=(-1)^tM=(A_\ell-A_h)(B_\ell-B_h)$
 - $\hat{=} (\hat{m}_0, \dots, \hat{m}_{n-1})$
- Obtain result as $A\cdot B = L + 2^{8k}(L+H-\hat{M}) + 2^{8n}H$

The easy solution

if(b) a = -a

The easy solution

if(b) a = -a

- ▶ NEG instruction does not help for multiprecision
- ► Can subtract from zero, but subtraction would overwrite zero

The easy solution

if(b) a = -a

- ▶ NEG instruction does not help for multiprecision
- ► Can subtract from zero, but subtraction would overwrite zero
- ► Even worse, the if would create a timing side-channel!

The easy solution

if(b) a = -a

- ▶ NEG instruction does not help for multiprecision
- ► Can subtract from zero, but subtraction would overwrite zero
- ► Even worse, the if would create a timing side-channel!

The constant-time solution

- ► Produce condition bit as byte 0xff or 0x00
- ➤ XOR all limbs with this condition byte

The easy solution

if(b) a = -a

- ▶ NEG instruction does not help for multiprecision
- $\,\blacktriangleright\,$ Can subtract from zero, but subtraction would overwrite zero
 - ► Even worse, the if would create a timing side-channel!

The constant-time solution

- ► Produce condition bit as byte 0xff or 0x00
- ➤ XOR all limbs with this condition byte
- ▶ Negate the condition byte and obtain 0x01 or 0x00
- ► Add this value to the lowest byte
- ► Ripple through the carry (ADC with zero)

The easy solution

if(b) a = -a

- ▶ NEG instruction does not help for multiprecision
- $\,\blacktriangleright\,$ Can subtract from zero, but subtraction would overwrite zero
 - ► Even worse, the if would create a timing side-channel!

The constant-time solution

- ► Produce condition bit as byte 0xff or 0x00
- ➤ XOR all limbs with this condition byte
- ► Don't negate the condition byte
- ► Subtract the condition byte (0xff or 0x00 from all bytes)
- ► Saves two NEG instructions and the zero register

► Consider example of 4×4-byte Karatsuba multiplication:

ם מ	h_3			
ratsu	h_2			
yre Na	h_1	\hat{m}_3	l_3	h_3
consider example of 4×4 -byte Naratsuba I	h_0		l_2	
o oi	l_3		l_1	
examb	l_2	\hat{m}_0	l_0	h_0
der	l_1	1	+	+
SIO	l_0			

ightharpoonup Consider example of 4×4 -byte Karatsuba multiplication:

	h_3			
	h_2			
	h_1	\hat{m}_3	l_3	h_3
1	h_0	\hat{m}_2	l_2	h_2
	l_3	\hat{m}_1	l_1	h_1
-	l_2	\hat{m}_0	l_0	h_0
	l_1	١	+	+
	l_0			

- Karatsuba performs some additions twice
 - ► Refined Karatsuba: do them only once

ightharpoonup Consider example of 4×4 -byte Karatsuba multiplication:

_				
Ш	h_3			
pa	4			
4×4 -byte Karatsuba	h_2			
2	,	က္	_ <u>ლ</u>	က္
<u>t</u> e	y	\hat{m}_3	7	h
ò				
1	h_0	\hat{m}_2	l_2	h_2
4		-		
ō	63	\hat{m}_1	l_1	11
<u>o</u>		ŷ		
ц	_ [7]			
insider example of	7	\hat{m}_0	7	h(
ω̂				
ğ	l_1	١	+	+
)SI				
≒	0			

- Karatsuba performs some additions twice
- ► Refined Karatsuba: do them only once
- lacktriangle Merge additions into computation of H
- $lack \mathsf{Compute}\;\mathbf{H}\,\hat{=}\,(\mathbf{h_0},\mathbf{h_1},\mathbf{h_2},\mathbf{h_3})=H+(l_2,l_3)$

► Note that **H** cannot "overflow"

► Consider example of 4×4-byte Karatsuba multiplication:

h_3			
h_2			
h_1	\hat{m}_3	l_3	h_3
h_0	\hat{m}_2	l_2	h_2
l_3	\hat{m}_1	l_1	h_1
l_2	\hat{m}_0	l_0	h_0
l_1	1	+	+
l_0			

- Karatsuba performs some additions twice
- Refined Karatsuba: do them only once
- $lack \mathsf{Compute}\; \mathbf{H} \stackrel{.}{=} (\mathbf{h_0},\mathbf{h_1},\mathbf{h_2},\mathbf{h_3}) = H + (l_2,l_3)$

Merge additions into computation of H

 \blacktriangleright Consider example of $4\times4\text{-byte}$ Karatsuba multiplication:

	h_3			
	h_2			
	h_1	\hat{m}_3	l_3	h_3
•	h_0	\hat{m}_2	l_2	h_2
	l_3	\hat{m}_1	l_1	h_1
•	l_2	\hat{m}_0	l_0	h_0
	l_1	١	+	+
	Į,			

- ► Karatsuba performs some additions twice
- ► Refined Karatsuba: do them only once
- ▶ Merge additions into computation of H▶ Compute $\mathbf{H} \stackrel{.}{=} (\mathbf{h_0}, \mathbf{h_1}, \mathbf{h_2}, \mathbf{h_3}) = H + (l_2, l_3)$

 \blacktriangleright Consider example of $4{\times}4\text{-byte}$ Karatsuba multiplication:

h_3			
h_2			
h_1	\hat{m}_3	l_3	h_3
h_0	\hat{m}_2	l_2	h_2
l_3	\hat{m}_1	l_1	h_1
l_2	\hat{m}_0	l_0	h_0
l_1	1	+	+
l_0			

- Karatsuba performs some additions twice
 - Refined Karatsuba: do them only once
 Merge additions into computation of H
- Compute $\mathbf{H} \stackrel{.}{=} (\mathbf{h_0}, \mathbf{h_1}, \mathbf{h_2}, \mathbf{h_3}) = H + (l_2, l_3)$
- ► Consequence: fewer additions, easier register allocation

 $\ensuremath{\mathit{Arithmetic}}$ cost of $n\ensuremath{\text{-byte}}$ Karatsuba on AVR

lacktriangle Cost of computing L, M, and ${\bf H}$

${\it Arithmetic}$ cost of $n{\text -}{\it byte}$ Karatsuba on AVR

- \blacktriangleright Cost of computing $L,\,M,$ and ${\bf H}$
- $\,\blacktriangleright\, 4k+2$ SUB/SBC, 2k EOR for absolute differences

${\it Arithmetic}$ cost of $n ext{-byte}$ Karatsuba on AVR

- \blacktriangleright Cost of computing $L,\,M,$ and ${\bf H}$
- ▶ 4k + 2 SUB/SBC, 2k EOR for absolute differences
- $\blacktriangleright~n+1~{\rm ADD/ADC}$ to add $(l_0,\dots,l_{k-1},{\bf h_k},\dots,{\bf h_{n-1}})$

Arithmetic cost of n-byte Karatsuba on AVR

- ightharpoonup Cost of computing L, M, and ${\bf H}$
- ▶ 4k + 2 SUB/SBC, 2k EOR for absolute differences
- $\blacktriangleright~n+1~{\rm ADD/ADC}$ to add $(l_0,\dots,l_{k-1},{\bf h_k},\dots,{\bf h_{n-1}})$
- lacktriangle One EOR to compute t
- ► A BRNE instruction to branch, then either

Arithmetic cost of n-byte Karatsuba on AVR

- ightharpoonup Cost of computing L, M, and ${\bf H}$
- ▶ 4k + 2 SUB/SBC, 2k EOR for absolute differences
- $\blacktriangleright n+1$ ADD/ADC to add $(l_0,\dots,l_{k-1},\mathbf{h_k},\dots,\mathbf{h_{n-1}})$
- lacktriangle One EOR to compute t
- A BRNE instruction to branch, then either
- $\,\blacktriangleright\, n+2$ SUB/SBC instructions and one RJMP, or $\,\blacktriangleright\, n+1$ ADD/ADC, one CLR, and one NOP

Arithmetic cost of n-byte Karatsuba on AVR

- ightharpoonup Cost of computing L, M, and ${\bf H}$
- ▶ 4k + 2 SUB/SBC, 2k EOR for absolute differences
- $~~n+1~{\rm ADD/ADC}$ to add $(l_0,\dots,l_{k-1},{\bf h_k},\dots,{\bf h_{n-1}})$
- lacktriangle One EOR to compute t
- A BRNE instruction to branch, then either
- $\,\blacktriangleright\, n+2$ SUB/SBC instructions and one RJMP, or $\,\blacktriangleright\, n+1$ ADD/ADC, one CLR, and one NOP

ightharpoonup k ADD/ADC instructions to ripple carry to the end

48-bit Karatsuba on AVR

CLR R22	R3,	LD R14, X+	EOR R2, R26
CLR R23	4 R14	LD R15, X+	R3,
MOVW R12, R22	R3,	LD R16, X+	R4,
MOVW R20, R22	R9,	LDD R17, Y+3	R5,
	R10,	LDD R18, Y+4	R6,
LD R2, X+		LDD R19, Y+5	R7,
LD R3, X+	R15,		
LD R4, X+	R3,	SUB R2, R14	R2,
LDD R5, Y+0	R10,	SBC R3, R15	R3,
LDD R6, Y+1	R11,	SBC R4, R16	R4,
LDD R7, Y+2	R12,	SBC R26, R26	R5,
			R6,
MUL R2, R7	R4,	SUB R5, R17	R7,
MOVW R10, RO	N R14	SBC R6, R18	
MUL R2, R5	R4,	SBC R7, R19	
MOVW R8, RO	R10,	SBC R27, R27	
MUL R2, R6	R11,		
ADD R9, R0	R12,		
ADC R10, R1	R15,		
ADC R11, R23	R4,		
	R11,		
	R12,		
	ADC R13, R15		
	Z+0,		
	Z+1,		
	Z+2,		
	•		

48-bit Karatsuba on AVR

MUL R4, R7 MOVW R24, R0 MUL R4, R5 ADD R16, R0 ADC R17, R1 ADC R18, R24 ADC R25, R23 MUL R4, R6 ADD R17, R0 ADC R18, R1 ADC R18, R1 ADC R18, R1	
R2, ^N R16, ^N R14, ^N R15, R15, R17, R17,	MUL R3, R5 ADD R15, R0 ADC R16, R1 ADC R17, R24 ADC R25, R23 MUL R3, R6 ADD R16, R0 ADC R17, R1 ADC R18, R25
MUL R16, R19 MOVW R24, R0 MUL R16, R17 ADD R13, R0 ADC R20, R1 ADC R21, R24 ADC R25, R23 MUL R16, R18 MOVW R18, R22 ADD R20, R0 ADC R21, R2	R22,
MUL R14, R19 MOVW R24, R0 MUL R14, R17 ADD R11, R0 ADC R12, R1 ADC R25, R23 ADC R26, R23 ADC R26, R23 ADD R12, R0 ADD R12, R0 ADC R13, R1	

48-bit Karatsuba on AVR

add_M: ADD R8, R14 ADC R9, R15 ADC R10, R16 ADC R11, R17 ADC R13, R19 CLR R24 ADC R23, R24 NOP	2+3, R Z+4, R Z+5, R Z+6, R Z+7, R Z+8, R R20, R R21, R Z+9, R	STD Z+10, R21 STD Z+11, R22
ADD R8, R11 ADC R9, R12 ADC R10, R13 ADC R11, R20 ADC R12, R21 ADC R13, R22 ADC R23, R23 EOR R26, R27 BRNE add_M	SUB R8, R14 SBC R9, R15 SBC R10, R16 SBC R11, R17 SBC R12, R18 SBC R13, R19 SBCI R23, 0 SBCI R24, R24 RJMP final	

Larger Karatsuba multiplication

- ▶ 48-bit Karatsuba is friendly; everything fits into registers
- ► Remember that previous speed records were achieved by eliminating loads/stores

Larger Karatsuba multiplication

- ► 48-bit Karatsuba is friendly; everything fits into registers
- Remember that previous speed records were achieved by eliminating loads/stores
- Karatsuba structure needs additional temporary storage
- ► Good performance needs careful scheduling and register allocation

Larger Karatsuba multiplication

- ► 48-bit Karatsuba is friendly; everything fits into registers
- Remember that previous speed records were achieved by eliminating loads/stores
 - Karatsuba structure needs additional temporary storage
- Good performance needs careful scheduling and register allocation
- \blacktriangleright Very important is to compute $\mathbf{H}=H+(l_{k+1},\ldots,l_{n-1})$ on the fly
- Use 1-level Karatsuba for 48-bit, 64-bit, 80-bit, 96-bit inputs
 Use 2-level Karatsuba for 128-bit, 160-bit, 192-bit inputs
- ▶ Use 3-level Karatsuba for 256-bit inputs

Results

Cycle counts for n-bit multiplication

				lnp	Input size n	u		
Approach	48	64	80	96	128	160	192	256
Product scanning:	235	362	262	988				
Hutter, Wenger, 2011:		1	1	1		2393	3467	6121
Seo, Kim, 2012:		1	1		1532	2356	3464	6180
Seo, Kim, 2013:					1523	2341	3437	6115
Karatsuba:	217	098	275	082	1325	9261	2923	4797
— w/o branches:	222	898	233	008	1369	0802	2867	4961

- ightharpoonup 160-bit multiplication now >18% faster
- $\blacktriangleright~256\text{-bit}$ multiplication now >23% faster

Main differences (for us)

Arithmetic on larger (64-bit) integers

Main differences (for us)

- ightharpoonup Arithmetic on larger (64-bit) integers
- Arithmetic on floating-point numbers

Main differences (for us)

- ► Arithmetic on larger (64-bit) integers
- Arithmetic on floating-point numbersPipelined and superscalar execution

Main differences (for us)

- Arithmetic on larger (64-bit) integersArithmetic on floating-point numbers
 - Arithmetic on floating-point numberPipelined and superscalar execution
- ► (Arithmetic on vectors)

$\operatorname{Radix-}2^{64}$ representation

- ightharpoonup Let's consider representing 255-bit integers
- \blacktriangleright Obvious choice: use 4 64-bit integers a_0, a_1, a_2, a_3 with

$$A = \sum_{i=0}^{3} a_i 2^{64i}$$

Arithmetic works just as before (except with larger registers)

$\operatorname{Radix-}\!2^{51}$ representation

- Radix-2⁶⁴ representation works and is sometimes a good choice
 Highly depends on the efficiency of handling carries

$\operatorname{Radix-}\!2^{51}$ representation

- \blacktriangleright Radix- 2^{64} representation works and is sometimes a good choice
- ► Highly depends on the efficiency of handling carries
- $\,\blacktriangleright\,$ Example 1: Intel Nehalem can do 3 additions every cycle, but only 1addition with carry every two cycles (carries cost a factor of 6!)

$\operatorname{Radix-}2^{51}$ representation

- NX-Z representation works and is sometimes a good choice

 ▶ Radix-2⁶⁴ representation works and is sometimes a
 - ► Highly depends on the efficiency of handling carries
- \blacktriangleright Example 1: Intel Nehalem can do 3 additions every cycle, but only 1addition with carry every two cycles (carries cost a factor of 6!)
- ► Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)

$Radix-2^{51}$ representation

- $\,\blacktriangleright\,$ Radix- 2^{64} representation works and is sometimes a good choice
 - ► Highly depends on the efficiency of handling carries
- ightharpoonup Example 1: Intel Nehalem can do 3 additions every cycle, but only 1addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
- lack Let's get rid of the carries, represent A as (a_0,a_1,a_2,a_3,a_4) with

$$A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$$

ightharpoonup This is called radix- 2^{51} representation

$Radix-2^{51}$ representation

- $\,\blacktriangleright\,$ Radix- 2^{64} representation works and is sometimes a good choice
 - ► Highly depends on the efficiency of handling carries
- ightharpoonup Example 1: Intel Nehalem can do 3 additions every cycle, but only 1addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
 - lacktriangle Let's get rid of the carries, represent A as (a_0,a_1,a_2,a_3,a_4) with

$$A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$$

- ightharpoonup This is called radix- 2^{51} representation
- ▶ Multiple ways to write the same integer A, for example $A = 2^{52}$:
 - $(2^{52}, 0, 0, 0, 0)$ (0, 2, 0, 0, 0)

$Radix-2^{51}$ representation

- $\,\blacktriangleright\,$ Radix- 2^{64} representation works and is sometimes a good choice
- ► Highly depends on the efficiency of handling carries
- ightharpoonup Example 1: Intel Nehalem can do 3 additions every cycle, but only 1addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
- \blacktriangleright Let's get rid of the carries, represent A as (a_0,a_1,a_2,a_3,a_4) with

$$A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$$

- ightharpoonup This is called radix- 2^{51} representation
- ▶ Multiple ways to write the same integer A, for example $A = 2^{52}$:
 - $(2^{52}, 0, 0, 0, 0)$ (0, 2, 0, 0, 0)
- ▶ Let's call a representation (a_0,a_1,a_2,a_3,a_4) reduced, if all $a_i \in [0,\dots,2^{52}-1]$

► This definitely works for reduced inputs

- This definitely works for reduced inputs
- \blacktriangleright This actually works as long as all coefficients are in $[0,\dots,2^{63}-1]$

```
const bigint255 *x,
                                                                                                                                                            const bigint255 *y)
                                                                                                       void bigint255_add(bigint255 *r,
                                                                                                                                                                                                           r->a[0] = x->a[0] + y->a[0];

r->a[1] = x->a[1] + y->a[1];

r->a[2] = x->a[2] + y->a[2];

r->a[3] = x->a[3] + y->a[3];
                                                                                                                                                                                                                                                                                                                    r->a[4] = x->a[4] + y->a[4];
                         unsigned long long a[5];
typedef struct{
                                                   } bigint255;
```

► This definitely works for reduced inputs

 $\,\blacktriangleright\,$ This actually works as long as all coefficients are in $[0,\dots,2^{63}-1]$

Subtraction of two bigint255

```
typedef struct{
    signed long long a[5];
} bigint255;

void bigint255_sub(bigint255 *r,
    const bigint255 *x,
    const bigint255 *x,

    r->a[0] = x->a[0] - y->a[0];
    r->a[1] = x->a[1] - y->a[1];
    r->a[2] = x->a[3] - y->a[3];
    r->a[3] = x->a[3] - y->a[3];
    r->a[4] = x->a[4] - y->a[4];
}
```

 $\,\,$ Slightly update our bigint255 definition to work with signed 64-bit integers

Subtraction of two bigint255

```
typedef struct{
    signed long long a[5];
} bigint255;

void bigint255_sub(bigint255 *r,
    const bigint255 *x,
    const bigint255 *x)
{
    r->a[0] = x->a[0] - y->a[0];
    r->a[1] = x->a[1] - y->a[1];
    r->a[2] = x->a[2] - y->a[2];
    r->a[3] = x->a[3] - y->a[3];
    r->a[4] = x->a[4] - y->a[4];
}
```

- Slightly update our bigint255 definition to work with signed 64-bit integers
 - \blacktriangleright Reduced if coefficients are in $[-2^{52}+1,2^{52}-1]$

Carrying in radix- 2^{51}

- ▶ With many additions, coefficients may grow larger than 63 bits
- They grow even faster with multiplication

Carrying in radix- 2^{51}

- $\,\blacktriangleright\,$ With many additions, coefficients may grow larger than 63 bits
- ► They grow even faster with multiplication
 - ► Eventually we have to *carry* en bloc:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;</pre>
```

► Note: Addition code would look *exactly* the same for 5-coefficient polynomial addition

- ▶ Note: Addition code would look *exactly* the same for 5-coefficient polynomial addition
- \blacktriangleright This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
 - ▶ Inputs to addition are 5-coefficient polynomials

- ► Note: Addition code would look *exactly* the same for 5-coefficient polynomial addition
- \blacktriangleright This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- lacktriangle Inputs to addition are 5-coefficient polynomials
- \blacktriangleright Nice thing about arithmetic in $\mathbb{Z}[x]$: no carries!

- ▶ Note: Addition code would look *exactly* the same for 5-coefficient polynomial addition
- \blacktriangleright This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- ▶ Inputs to addition are 5-coefficient polynomials
- Nice thing about arithmetic in $\mathbb{Z}[x]$: no carries!
- ▶ To go from $\mathbb{Z}[x]$ to \mathbb{Z} , evaluate at the radix (this is a ring homomorphism)
- ► Carrying means evaluating at the radix

- ► Note: Addition code would look *exactly* the same for 5-coefficient polynomial addition
- ▶ This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
 - ▶ Inputs to addition are 5-coefficient polynomials
- \blacktriangleright Nice thing about arithmetic in $\mathbb{Z}[x]$: no carries!
- ▶ To go from $\mathbb{Z}[x]$ to \mathbb{Z} , evaluate at the radix (this is a ring homomorphism)
 - Carrying means evaluating at the radix
- Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic

- ▶ On some microarchitectures floating-point arithmetic is much faster than integer arithmetic
 - ► An IEEE-754 floating-point number has value

$$(-1)^s \cdot (1.b_{m-1}b_{m-2}\dots b_0) \cdot 2^{e-t}$$
 with $b_i \in \{0,1\}$

- ▶ On some microarchitectures floating-point arithmetic is much faster than integer arithmetic
 - An IEEE-754 floating-point number has value

$$(-1)^s \cdot (1.b_{m-1}b_{m-2}\dots b_0) \cdot 2^{e-t}$$
 with $b_i \in \{0,1\}$

- ► For double-precision floats:
- $egin{align*} s \in \{0,1\} \text{ "sign bit"} \\ m{v} &= 52 \text{ "mantissa bits"} \\ m{v} &e \in \{1,\dots,2046\} \text{ "exponent"} \\ m{v} &t = 1023 \end{aligned}$

- ▶ On some microarchitectures floating-point arithmetic is much faster than integer arithmetic
- ► An IEEE-754 floating-point number has value

$$(-1)^s \cdot (1.b_{m-1}b_{m-2}\dots b_0) \cdot 2^{e-t}$$
 with $b_i \in \{0,1\}$

- ► For double-precision floats:

- \mathbf{P} $s \in \{0,1\}$ "sign bit" \mathbf{P} m = 52 "mantissa bits" \mathbf{P} $e \in \{1,\dots,2046\}$ "exponent" \mathbf{P} t = 1023
- For single-precision floats:
- $s \in \{0,1\}$ "sign bit" m = 23 "mantissa bits" $e \in \{1,\dots,254\}$ "exponent" t = 127

- ▶ On some microarchitectures floating-point arithmetic is much faster than integer arithmetic
- ► An IEEE-754 floating-point number has value

$$(-1)^s \cdot (1.b_{m-1}b_{m-2}\dots b_0) \cdot 2^{e-t}$$
 with $b_i \in \{0,1\}$

- ► For double-precision floats:

- \mathbf{P} $s \in \{0,1\}$ "sign bit" \mathbf{P} m = 52 "mantissa bits" \mathbf{P} $e \in \{1,\dots,2046\}$ "exponent" \mathbf{P} t = 1023
- For single-precision floats:
- $s \in \{0,1\}$ "sign bit" m = 23 "mantissa bits" $e \in \{1,\ldots,254\}$ "exponent" t = 127
- ightharpoonup Exponent =0 used to represent 0

- On some microarchitectures floating-point arithmetic is much faster than integer arithmetic
- ► An IEEE-754 floating-point number has value

$$(-1)^s \cdot (1.b_{m-1}b_{m-2}\dots b_0) \cdot 2^{e-t}$$
 with $b_i \in \{0,1\}$

- ► For double-precision floats:
- \mathbf{p} $s \in \{0,1\}$ "sign bit" \mathbf{p} m = 52 "mantissa bits" \mathbf{p} $e \in \{1,\dots,2046\}$ "exponent" \mathbf{p} t = 1023
- ► For single-precision floats:
- $s \in \{0,1\}$ "sign bit" m=23 "mantissa bits" $e \in \{1,\dots,254\}$ "exponent" t=127
- ► Exponent = 0 used to represent 0
- ► Any number that can be represented like this, will be precise
- Other numbers will be rounded, according to a rounding mode

Addition and subtraction

► For carrying integers we used a right shift (discard lowest bits)

Carrying

- ► For carrying integers we used a right shift (discard lowest bits)
- ▶ For floating-point numbers we can use multiplication by the inverse of the radix
 - \blacktriangleright Example: Radix $2^{22},$ multiply by 2^{-22}
- ightharpoonup This does not cut off lowest bits, need to round

Carrying

- ► For carrying integers we used a right shift (discard lowest bits)
- For floating-point numbers we can use multiplication by the inverse of the radix
 - \blacktriangleright Example: Radix 2^{22} , multiply by 2^{-22}
- ► This does *not* cut off lowest bits, need to round
- Some processors have efficient rounding instructions, e.g., vroundpd

Carrying

- ► For carrying integers we used a right shift (discard lowest bits)
- ► For floating-point numbers we can use multiplication by the inverse of the radix
- ightharpoonup Example: Radix 2^{22} , multiply by 2^{-22}
- ► This does *not* cut off lowest bits, need to round
- Some processors have efficient rounding instructions, e.g., vroundpd
 - Otherwise (for double-precision):
 - ▶ add constant $2^{52} + 2^{51}$ ▶ subtract constant $2^{52} + 2^{51}$
- This will round the number to an integer according to the rounding mode (to nearest, towards zero, away from zero, or truncate)

- ► We don't just need arithmetic on big integers
- ► We need arithmetic in finite fields

- ► We don't just need arithmetic on big integers
- ► We need arithmetic in finite fields
- $\,\blacktriangleright\,$ In other words, we need reduction modulo a prime p

- ► We don't just need arithmetic on big integers
- We need arithmetic in finite fields
- $\,\blacktriangleright\,$ In other words, we need reduction modulo a prime p
- Let's fix some size and representation:
 /* 256-bit integers in radix 2~16 */
 typedef signed long long bigint[16];
- lacktriangle Integer A is obtained as $\sum_{i=0}^{15} a_i 2^{16i}$
- ► Lot of space in top of limbs to accumulate carries

A quick look at product-scanning multiplication

```
void mul_prodscan(signed long long r[31],
                  typedef signed long long bigint[16];
/* 256-bit integers in radix 2^16 */
                                                                    const bigint x,
                                                                                    const bigint y)
                                                                                                                                                                                                                                        r[29] = x[15] * y[14];

r[29] += x[14] * y[15];

r[30] = x[15] * y[15];
                                                                                                                   = x[0] * y[0];
= x[1] * y[0];
+= x[0] * y[1];
= x[2] * y[0];
+= x[1] * y[1];
                                                                                                                                                                                                         += x[0] *
                                                                                                                    r[0]
r[1]
                                                                                                                                                                     r[2]
r[2]
r[2]
                                                                                                                                                      r[1]
```

 $\blacktriangleright \ \, \mathsf{Let's} \ \mathsf{fix} \ \mathsf{some} \ p, \ \mathsf{say} \ p = 2^{255} - 19$

- ▶ Let's fix some p, say $p=2^{255}-19$ ▶ We know that $2^{255}\equiv 19\pmod p$ ▶ This means that $2^{256}\equiv 38\pmod p$

- Let's fix some p, say $p=2^{255}-19$ We know that $2^{255}\equiv 19\pmod p$
- \blacktriangleright Reduce 31-bit intermediate result ${\bf r}$ as follows: ▶ This means that $2^{256} \equiv 38 \pmod{p}$
 - for(i=0;i<15;i++)
 r[i] += 38*r[i+16];

- Let's fix some p, say $p=2^{255}-19$ We know that $2^{255}\equiv 19\pmod p$
- \blacktriangleright Reduce 31-bit intermediate result ${\bf r}$ as follows: ▶ This means that $2^{256} \equiv 38 \pmod{p}$
 - for(i=0;i<15;i++)
 r[i] += 38*r[i+16];

Let's fix some
$$p$$
, say $p=2^{255}-19$ We know that $2^{255}\equiv 19\pmod{p}$

$$\blacktriangleright$$
 This means that $2^{256} \equiv 38 \pmod{p}$

► Result is in r[0],...,r[15]

Primes are not rabbits

"You cannot just simply pull some nice prime out of your hat!"

- "You cannot just simply pull some nice prime out of your hat!"
- ▶ In fact, very often we can.
- ▶ For cryptography we construct curves over fields of "nice" order

- "You cannot just simply pull some nice prime out of your hat!"
- ▶ In fact, very often we can.
- ▶ For cryptography we construct curves over fields of "nice" order
- Examples:

- 2¹⁹² 2⁶⁴ 1 ("NIST-P192", FIPS186-2, 2000)
 2²²⁴ 2⁹⁶ + 1 ("NIST-P224", FIPS186-2, 2000)
 2²⁵⁶ 2²²⁴ + 2¹⁹² + 2⁹⁶ 1 ("NIST-P256", FIPS186-2, 2000)
 2²⁵⁵ 19 (Bernstein, 2006)
 2²⁵¹ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
 2⁴⁴⁸ 2²²⁴ 1 (Hamburg, 2015)

- "You cannot just simply pull some nice prime out of your hat!"
- ▶ In fact, very often we can.
- ► For cryptography we construct curves over fields of "nice" order
- Examples:
- 2¹⁹² 2⁶⁴ 1 ("NIST-P192", FIPS186-2, 2000)
 2²²⁴ 2⁹⁶ + 1 ("NIST-P224", FIPS186-2, 2000)
 2²⁵⁶ 2²²⁴ + 2¹⁹² + 2⁹⁶ 1 ("NIST-P256", FIPS186-2, 2000)
 2²⁵⁵ 19 (Bernstein, 2006)
 2²⁵¹ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
 2⁴⁴⁸ 2²²⁴ 1 (Hamburg, 2015)

- ► All these primes come with (more or less) fast reduction algorithms

- "You cannot just simply pull some nice prime out of your hat!"
- ▶ In fact, very often we can.
- ► For cryptography we construct curves over fields of "nice" order
- Examples:
- 2¹⁹² 2⁶⁴ 1 ("NIST-P192", FIPS186-2, 2000)
 2²²⁴ 2⁹⁶ + 1 ("NIST-P224", FIPS186-2, 2000)
 2²⁵⁶ 2²²⁴ + 2¹⁹² + 2⁹⁶ 1 ("NIST-P256", FIPS186-2, 2000)
 2²⁵⁵ 19 (Bernstein, 2006)
 2²⁵¹ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
 2⁴⁴⁸ 2²²⁴ 1 (Hamburg, 2015)

- ► All these primes come with (more or less) fast reduction algorithms
 - \blacktriangleright For the moment let's stick to $2^{255}-19$ ► More about general primes later

Carrying after multiplication

```
long long c;
for(i=0;i<15;i++)
{
    c = r[i] >> 16;
    r[i+1] += c;
    c <<= 16;
    r[i] -= c;
}
c = r[15] >> 16;
r[0] += 38*c;
c <<= 16;
r[0] += 38*c;
c <<= 16;
r[15] -= c;</pre>
```

Carrying after multiplication

```
long long c;
for(i=0;i<15;i++)
{
    c = r[i] >> 16;
    r[i+1] += c;
    c <<= 16;
    r[i] -= c;
    r[i] -= c;
}
c = r[15] >> 16;
r[0] += 38*c;
c <<= 16;
r[15] -= c;
r[15] -= c;</pre>
```

 \blacktriangleright Coefficient r[0] may still be too large: carry again to r[1]

How about squaring?

#define bigint_square(R,X) bigint_mul(R,X,X)

How about squaring?

```
/* 256-bit integers in radix 2~16 */
typedef signed long long bigint[16];

void square_prodscan(signed long long r[31],

const bigint x)

{
    r[0] = x[0] * x[0];
    r[1] += x[0] * x[0];
    r[1] += x[0] * x[1];
    r[2] = x[2] * x[0];
    r[2] += x[1] * x[1];
    r[2] += x[1] * x[1];
    r[2] += x[0] * x[2];
    ...
    r[29] = x[15] * x[14];
    r[29] = x[15] * x[15];
    r[30] = x[15] * x[15];
```

How about squaring?

Squaring vs. multiplication

Multiplication needs

- ightharpoonup 256 multiplications
 - ightharpoonup 225 additions

- Squaring needs ► 136 multiplications
 - ▶ 105 additions
- lacktriangleright 15 additions or shifts or multiplications by 2 for precomputation

How about other prime fields?

- ► So far: reductions only modulo "nice" primes
- ► What if somebody just throws an ugly prime at you?

How about other prime fields?

- ▶ So far: reductions only modulo "nice" primes
- ► What if somebody just throws an ugly prime at you?
- Example: German BSI is pushing the "Brainpool curves", over fields \mathbb{F}_p with

```
p_{224} = 2272162293245435278755253799591092807334073 \backslash \\ 2145944992304435472941311 / \\ = 0xD7C134AA264366862A18302575D1D787B09F07579 \backslash \\ 7DA89F57EC8C0FF
```

ō

```
\begin{array}{l} p_{256} = 7688495639704534422080974662900164909303795 \backslash\\ 0200943055203735601445031516197751\\ = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D \backslash\\ 52620282013481D1F6E5377 \\ \end{array}
```

How about other prime fields?

- ► So far: reductions only modulo "nice" primes
- ► What if somebody just throws an ugly prime at you?
- Example: German BSI is pushing the "Brainpool curves", over fields \mathbb{F}_p with

```
p_{224} = 2272162293245435278755253799591092807334073 / \\ 2145944992304435472941311 \\ = 0xD7C134AA264366862A18302575D1D787B09F07579 / \\ 7DA89F57EC8C0FF
```

ŏ

```
\begin{split} p_{256} = & 7688495639704534422080974662900164909303795 \backslash \\ & 0200943055203735601445031516197751 \\ & = & 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D \backslash \\ & 52620282013481D1F6E5377 \end{split}
```

. Another example: Pairing-friendly curves are typically defined over fields \mathbb{F}_p where p has some structure, but hard to exploit for fast arithmetic

- ► We have the following problem:
- ▶ We multiply two n-limb big integers and obtain a 2n-limb result t ▶ We need to find $t \mod p$

- ► We have the following problem:
- ▶ We multiply two n-limb big integers and obtain a 2n-limb result t ▶ We need to find $t \mod p$

▶ Idea: Perform big-integer division with remainder (expensive!)

- ► We have the following problem:
- \blacktriangleright We multiply two n-limb big integers and obtain a 2n-limb result t
 - left We need to find $t \mod p$

▶ Idea: Perform big-integer division with remainder (expensive!)

- ► Better idea (Montgomery, 1985):
- ▶ Let R be such that $\gcd(R,p)=1$ and t
 ▶ Represent an element <math>a of \mathbb{F}_p as $aR \mod p$ ▶ Multiplication of aR and bR yields $t = abR^2$ $(2n \ \text{limbs})$
 - Now compute Montgomery reduction: $tR^{-1} \mod p$

- ► We have the following problem:
- ▶ We multiply two n-limb big integers and obtain a 2n-limb result t
 - left We need to find $t \mod p$

▶ Idea: Perform big-integer division with remainder (expensive!)

- ► Better idea (Montgomery, 1985):
- ▶ Let R be such that $\gcd(R,p)=1$ and t ▶ Represent an element <math>a of \mathbb{F}_p as $aR \mod p$
- lacktriangle For some choices of R this is more efficient than division Multiplication of aR and bR yields $t=abR^2\ (2n\ \text{limbs})$ Now compute Montgomery reduction: $tR^{-1}\mod p$
 - $\,\blacktriangleright\,$ Typical choice for radix-b representation: $R=b^n$

Montgomery reduction (pseudocode)

```
Require: p=(p_{n-1},\ldots,p_0)_b with \gcd(p,b)=1,\,R=b^n, p'=-p^{-1} \mod b and t=(t_{2n-1},\ldots,t_0)_b Ensure: tR^{-1} \mod p A \leftarrow t for i from 0 to n-1 do u \leftarrow a_i p' \mod b A \leftarrow A+u\cdot p\cdot b^i end for A \leftarrow A+u\cdot p\cdot b^i if A \geq p then A \leftarrow A-p end if return A
```

- Some cost for transforming to Montgomery representation and back
- ► Only efficient if many operations are performed in Montgomery representation

- Some cost for transforming to Montgomery representation and back
- ► Only efficient if many operations are performed in Montgomery representation
- $\,\blacktriangleright\,$ The algorithms takes n^2+n multiplication instructions
- ightharpoonup n of those are "shortened" multiplications (modulo b)

- Some cost for transforming to Montgomery representation and back
- ► Only efficient if many operations are performed in Montgomery representation
- $\,\blacktriangleright\,$ The algorithms takes n^2+n multiplication instructions
- $\,\blacktriangleright\, n$ of those are "shortened" multiplications (modulo b)
- ► The cost is roughly the same as schoolbook multiplication

- Some cost for transforming to Montgomery representation and back
- ► Only efficient if many operations are performed in Montgomery representation
- $\,\,\blacksquare\,$ The algorithms takes n^2+n multiplication instructions
- $\,{}^{\star}\,\,n$ of those are "shortened" multiplications (modulo b)
- ► The cost is roughly the same as schoolbook multiplication
- Careful about conditional subtraction (timing attacks!)

- Some cost for transforming to Montgomery representation and back
- ► Only efficient if many operations are performed in Montgomery representation
- The algorithms takes $n^2 + n$ multiplication instructions
- $\,\,n\,$ of those are "shortened" multiplications (modulo b) $\,$ The cost is roughly the same as schoolbook multiplication
- Careful about conditional subtraction (timing attacks!)
- ► One can merge schoolbook multiplication with Montgomery reduction: "Montgomery multiplication"

Still missing: inversion

► Inversion is typically much more expensive than multiplication

Still missing: inversion

- ▶ Inversion is typically much more expensive than multiplication
- ► Efficient ECC arithmetic avoids frequent inversions
 - ► ECC can typically not avoid all inversions
- ▶ We need inversion, but we do (usually) not need it often

Still missing: inversion

- ▶ Inversion is typically much more expensive than multiplication
- ► Efficient ECC arithmetic avoids frequent inversions ► ECC can typically not avoid all inversions
- ▶ We need inversion, but we do (usually) not need it often
- ► Two approaches to inversion:
- Extended Euclidean algorithm
 Fermat's little theorem

25

Extended Euclidean algorithm

- ightharpoonup Given two integers a,b, the Extended Euclidean algorithm finds

 - ▶ The greatest common divisor of a and b Integers u and v, such that $a\cdot u+b\cdot v=\gcd(a,b)$

Extended Euclidean algorithm

- ightharpoonup Given two integers a,b, the Extended Euclidean algorithm finds
- $\,\blacktriangleright\,$ The greatest common divisor of a and b
- ▶ Integers u and v, such that $a \cdot u + b \cdot v = \gcd(a,b)$
- ► It is based on the observation that

$$\gcd(a,b) = \gcd(b,a-qb) \quad \forall q \in \mathbb{Z}$$

Extended Euclidean algorithm

- ightharpoonup Given two integers a,b, the Extended Euclidean algorithm finds
- $\,\blacktriangleright\,$ The greatest common divisor of a and b
- ▶ Integers u and v, such that $a \cdot u + b \cdot v = \gcd(a,b)$
- ► It is based on the observation that

$$gcd(a, b) = gcd(b, a - qb) \quad \forall q \in \mathbb{Z}$$

▶ To compute $a^{-1} \pmod{p}$, use the algorithm to compute

$$a \cdot u + p \cdot v = \gcd(a, p) = 1$$

▶ Now it holds that $u \equiv a^{-1} \pmod{p}$

Extended Euclidean algorithm (pseudocode)

```
Require: Integers a and b. Ensure: An integer tuple (u,v,d) satisfying a\cdot u+b\cdot v=d=\gcd(a,b)
```

```
u \leftarrow 1
v \leftarrow 0
d \leftarrow a
v_1 \leftarrow 0
v_3 \leftarrow b
while (v_3 \neq 0) do
q \leftarrow \lfloor \frac{d}{v_3} \rfloor
t_3 \leftarrow d \mod v_3
t_1 \leftarrow u - qv_1
u \leftarrow v_1
u \leftarrow v_1
d \leftarrow v_3
v_1 \leftarrow t_1
v_3 \leftarrow t_3
end while
v \leftarrow \frac{d - \alpha u}{b}
return (u, v, d)
```

- ► Core operation are divisions with remainder
- ► This lecture: no details about big-integer division
- ► Version without divisions: **binary extended gcd**:

Handbook of applied cryptography, Alg. 14.61

- ► Core operation are divisions with remainder
- ► This lecture: no details about big-integer division
- ► Version without divisions: **binary extended gcd**:
- Handbook of applied cryptography, Alg. 14.61
- ► We usually do not want this for cryptography (timing attacks!)

▶ The running time (number of loop iterations) depends on the inputs

- Core operation are divisions with remainder
- ► This lecture: no details about big-integer division
- ► Version without divisions: **binary extended gcd**:
- Handbook of applied cryptography, Alg. 14.61
- ► The running time (number of loop iterations) depends on the inputs
- ► We usually do not want this for cryptography (timing attacks!) ► Possible protection: blinding
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \end{tabu$
- \blacktriangleright Multiply again by r to obtain a^{-1}
- ▶ Note that this requires a source of randomness

- Core operation are divisions with remainder
- ► This lecture: no details about big-integer division
- ► Version without divisions: **binary extended gcd**:
- Handbook of applied cryptography, Alg. 14.61
- ▶ The running time (number of loop iterations) depends on the inputs
- We usually do not want this for cryptography (timing attacks!) ► Possible protection: blinding
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \end{tabu$
- ightharpoonup Multiply again by r to obtain a^{-1}
- ▶ Other option: constant-time EEA, Bernstein-Yang, 2019: ► Note that this requires a source of randomness https://eprint.iacr.org/2019/266.pdf

Fermat's little theorem

Theorem Let p be prime. Then for any integer a it holds that $a^{p-1}\equiv 1\pmod p$

Fermat's little theorem

Theorem

Let p be prime. Then for any integer a it holds that $a^{p-1}\equiv 1\pmod p$

- ▶ This implies that $a^{p-2} \equiv a^{-1} \pmod{p}$
- $\,\blacktriangleright\,$ Obvious algorithm for inversion: Exponentiation with p-2

Fermat's little theorem

Theorem

Let p be prime. Then for any integer a it holds that $a^{p-1}\equiv 1\pmod p$

- ▶ This implies that $a^{p-2} \equiv a^{-1} \pmod{p}$
- $\,\blacktriangleright\,$ Obvious algorithm for inversion: Exponentiation with p-2
- ▶ The exponent is quite large (e.g., 255 bits), is that efficient?

Fermat's little theorem

Theorem

Let p be prime. Then for any integer a it holds that $a^{p-1} \equiv 1 \pmod{p}$

- ▶ This implies that $a^{p-2} \equiv a^{-1} \pmod{p}$
- $\,\blacktriangleright\,$ Obvious algorithm for inversion: Exponentiation with p-2
- ▶ The exponent is quite large (e.g., 255 bits), is that efficient?
- Yes, fairly:
- Exponent is fixed and known at compile time
- Can spend quite some time on finding an efficient addition chain (next lecture)
- multiplications in $\mathbb{F}_{2^{255}-19}$

ightharpoonup Inversion modulo $2^{255}-19$ needs 254 squarings and 11

Inversion in $\mathbb{F}_{2^{255}-19}$

```
gfe z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t;
                                                                                                                                                                                                                                                                                                                                                          for (i = 1; i < 10; i++) { gfe_square(t,t); }
                                                                                                                                                                                                                                                                                                                                                                                                                              for (i = 1;i < 20;i++) { gfe_square(t,t); }
                                                                                                                                                                                                                                                                                     for (i = 1;i < 5;i++) { gfe_square(t,t); }
                                                                                                                                                                                                                                                                                                                                                                                   gfe_mul(z2_20_0,t,z2_10_0);
                                                                                                                                                                                                                                                                                                          gfe_mul(z2_10_0,t,z2_5_0);
                                                                                                                                                                                                                                                                                                                                   gfe_square(t,z2_10_0);
                                                                                                                                                                                                                                                                                                                                                                                                           gfe_square(t,z2_20_0);
                                                                                                                                                                                                                                    /* 2^5 - 2^0 = 31 */ gfe_mul(z_2_5_0,t,z_9);
                                                                                                                                                                                                                                                               gfe_square(t,z2_5_0);
                                                                                                                                                                                                                                                                                                                                                                                                                                                         gfe_mul(t,t,z2_20_0);
                                                                                                                                                                                      gfe_mul(z11,z9,z2);
                                                                                                                                                                                                                 gfe_square(t,z11);
                                                                                            gfe_square(z2,x);
                                                                                                                  gfe_square(t,z2);
                                                                                                                                                                gfe_mul(z9,t,x);
                                                                                                                                          gfe_square(t,t);
void gfe_invert(gfe r, const gfe x)
                                                                                                                                                                                                                                                       /* 2~6 - 2~1 */
/* 2~10 - 2~5 */
/* 2~10 - 2~0 */
                                                                                                                                                                                                                                                                                                                                                        /* 2^20 - 2^10 */
                                                                                                                                                                                                                                                                                                                                                                                                                                /* 2^40 - 2^20 */
                                                                                                                                                                                                                                                                                                                               /* 2~11 - 2~1 */
                                                                                                                                                                                                                                                                                                                                                                                                                                                       2^40 - 2^0 */
                                                                                                                                                                                                                                                                                                                                                                                /* 2^20 - 2^0 */
                                                                                                                                                                                                                                                                                                                                                                                                        /* 2^21 - 2^1 */
                                                                                                                                                                                                              /* 22 */
                                                                                                                                          /* 8 */
* 6 */
                                                                                                                                                                                      /* 11 */
                                                                                             /* 2 */
                                                                       int i;
```

Inversion in $\mathbb{F}_{2^{255}-19}$

```
for (i = 1;i < 100;i++) { gfe_square(t,t); }
                     for (i = 1; i < 10; i++) { gfe_square(t,t); }
                                                                                                                                                                                                                               for (i = 1; i < 50; i++) { gfe_square(t,t); }
                                                                                      for (i = 1;i < 50;i++) { gfe_square(t,t); }</pre>
                                                                                                                gfe_mul(z2_100_0,t,z2_50_0);
                                            gfe_mul(z2_50_0,t,z2_10_0);
                                                                                                                                         gfe_square(t,z2_100_0);
                                                                                                                                                                                     gfe_mul(t,t,z2_100_0);
                                                                     gfe_square(t,z2_50_0);
                                                                                                                                                                                                                                                        gfe_mul(t,t,z2_50_0);
                                                                                                                                                                                                                                                                                                                                                                                                 gfe_mul(r,t,z11);
 gfe_square(t,t);
                                                                                                                                                                                                            gfe_square(t,t);
                                                                                                                                                                                                                                                                               gfe_square(t,t);
                                                                                                                                                                                                                                                                                                    gfe_square(t,t);
                                                                                                                                                                                                                                                                                                                           gfe_square(t,t);
                                                                                                                                                                                                                                                                                                                                                                          gfe_square(t,t);
                                                                                                                                                                                                                                                                                                                                                 gfe_square(t,t);
                                                                                                                                                             2~100 */
                                                                                         /* 2~100 - 2~50 */
                                                                                                                                                                                                                                  2~50 */
                                                                                                                                      /* 2~101 - 2~1 */
                                                                                                                                                                                    2~0 */
                                                                                                              /* 2~100 - 2~0 */
                                                                                                                                                                                                           2^{-1} */
                                                                                                                                                                                                                                                                                                                                              /* 2^254 - 2^4 */
/* 2^255 - 2^5 */
                     /* 2~50 - 2~10 */
                                                                                                                                                                                                                                                         /* 2~250 - 2~0 */
                                                                                                                                                                                                                                                                               /* 2~251 - 2~1 */
                                                                                                                                                                                                                                                                                                    /* 2~252 - 2~2 */
                                                                                                                                                                                                                                                                                                                           /* 2~253 - 2~3 */
/* 2-41 - 2-1 */
                                           /* 2~50 - 2~0 */
                                                                  /* 2~51 - 2~1 */
                                                                                                                                                              /* 2^200 -
                                                                                                                                                                                     /* 2^200 -
                                                                                                                                                                                                           /* 2^201 -
                                                                                                                                                                                                                                  /* 2^250 -
```

- ► Why would you write low-level arithmetic yourself?
- ► Aren't there some good libraries for this?

- ► Why would you write low-level arithmetic yourself?
- ► Aren't there some good libraries for this?
- There are:
 GMP (http://gmplib.org), high-performance arithmetic on multiprecision numbers

- ► Why would you write low-level arithmetic yourself?
- ► Aren't there some good libraries for this?
 - There are:
- GMP (http://gmplib.org), high-performance arithmetic on multiprecision numbers
 NTL (http://shoup.net/ntl/), number-theory library, higher level than GMP, uses GMP

- ► Why would you write low-level arithmetic yourself?
- ► Aren't there some good libraries for this?
- There are:
- ► GMP (http://gmplib.org), high-performance arithmetic on
- multiprecision numbers
 ► NTL (http://shoup.net/ntl/), number-theory library, higher level than GMP, uses GMP
 - OpenSSL Bignum (http://openssl.org), low-level routines in OpenSSL

- Why would you write low-level arithmetic yourself?
- ► Aren't there some good libraries for this?
- There are:
- ► GMP (http://gmplib.org), high-performance arithmetic on
- NTL (http://shoup.net/ntl/), number-theory library, higher level than GMP, uses GMP
 OpenSSL Bignum (http://openssl.org), low-level routines in multiprecision numbers
- ▶ $mp\mathbb{F}_q$ (http://mpfq.gforge.inria.fr/), a finite-field library (generator)

 \blacktriangleright Libraries don't know the modulus (except for $\mathtt{mp}\mathbb{F}_q$), cannot optimize for a fixed modulus

- \blacktriangleright Libraries don't know the modulus (except for ${\rm mp}\mathbb{F}_q)$, cannot optimize for a fixed modulus
- ► Libraries don't know the sequence of field operations you're computing (e.g., point addition), cannot use lazy reduction

- \blacktriangleright Libraries don't know the modulus (except for ${\tt mp}{\Bbb F}_q$), cannot optimize for a fixed modulus
- ► Libraries don't know the sequence of field operations you're computing (e.g., point addition), cannot use lazy reduction
- ► Libraries are not always timing-attack protected

- ▶ Libraries don't know the modulus (except for $mp\mathbb{F}_q$), cannot optimize for a fixed modulus
- ► Libraries don't know the sequence of field operations you're computing (e.g., point addition), cannot use lazy reduction
- ► Libraries are not always timing-attack protected
- ► Consequence: ECC speed records are achieved with hand-optimized assembly implementations