Taller de preparación para la OCI - PUC

Guía de Ejercicios Semana 9

Introducción

En esta guía trabajaremos con arreglos unidimensionales. Un arreglo es una colección ordenada de datos de largo fijo. Son útiles cuando un problema requeriría utilizar demasiadas variables o cuando no se sabe de antemano cuántas variables se usarán.

En los problemas encontrarás una tabla con ejemplos de entrada y salidas que deben producir tus soluciones. Usa estos ejemplos para verificar que tu solución sea correcta.

Nota: En los ejercicios muchas veces se habla del *i*-ésimo elemento de una secuencia de números. Al igual que en Java, los índices parten de 0: el 0-ésimo elemento es el primero, el 3-ésimo elemento es el cuarto, etc.

Ejercicios: arreglos

Escriba un programa que reciba como input un número N, una secuencia de N números y un número
i. El programa debe entregar como output el elemento i-ésimo (partiendo en 0) de la secuencia.
 Si el índice i esta fuera de rango (es decir, no existe el elemento i-ésimo) entonces el programa debe
imprimir fuera de rango.

Entrada	Salida
3	
1 2 3	
2	3
5	
1 2 8 6 5	
2	8
5	
5 4 3 2 1	
6	fuera de rango
1	
2	
0	2

2. Escriba un programa que sea capaz de determinar si dos secuencias de números son iguales. El input es un número N₁, una secuencia de N₁ números, un número N₂ y una secuencia de N₂ números. El programa debe determinar si ambas secuencias son iguales. Si lo son, debe imprimir Las secuencias son iguales. Si no son iguales, debe imprimir Las secuencias son distintas.

Entrada	Salida
3 1 2 3	
3 1 2 3	Las secuencias son iguales
4 0 3 5 6	
4 0 3 5 1	Las secuencias son distintas
3 1 2 3	
2 1 2	Las secuencias son distintas
2 1 2	
3 1 2 3	Las secuencias son distintas

3. Escriba un programa que busque un número x en una secuencia de números.

El input será un número N, una secuencia de N números, y un número x.

El programa debe entregar como output el primer índice donde se encuentra el elemento x en la secuencia. Si el elemento no se encuentra en la secuencia, el programa debe entregar -1.

Entrada	Salida
4	
1 2 3 4	
3	2
5	
8 2 5 7 4	
8	0
5	
4 6 2 3 1	
9	-1
3	
1 2 3	
3	2

4. Escriba un programa que sea capaz de dar vuelta una secuencia de números.

El input será un número N y una secuencia de N números. El programa debe imprimir la secuencia al revés.

Entrada	Salida
4	
1 2 3 4	4 3 2 1
5	
8 2 5 7 4	4 7 5 2 8
5	
4 6 2 3 1	1 3 2 6 4
3	
1 2 3	3 2 1

5. Escriba un programa que reciba como input un número N, una secuencia de N números y otra secuencia de N números no repetidos en el rango [0, N-1].

El programa debe entregar como output los números de la primera secuencia, pero ordenados de la siguiente manera: si el i-ésimo elemento de la segunda secuencia es j, el i-ésimo elemento del output debe ser el j-ésimo elemento de la primera secuencia.

Entrada	Salida
3	
1 2 3	
0 2 1	1 3 2
4	
5 7 2 4	
1 2 3 0	7 2 4 5
4	
8 6 4 1	
0 1 2 3	8 6 4 1
5	
1 2 3 4 5	
4 3 2 1 0	5 4 3 2 1

6. Escriba un programa que sea capaz de detectar si existen elementos repetidos en una secuencia de números.

El input será un número N y una secuencia de N números.

El programa debe entregar como output si existen números repetidos en la secuencia. Si hay números repetidos, debe imprimir Hay números repetidos. En caso contrario, debe imprimir No hay números repetidos.

Entrada	Salida
4	
1 2 3 4	No hay números repetidos
5	
5 7 4 5 1	Hay números repetidos
1	
2	No hay números repetidos
6	
1 1 2 2 3 3	Hay números repetidos

7. Este ejercicio consta de dos partes:

a) Escriba un programa que sea capaz de imprimir los 3 elementos menores de una secuencia de números

El input será un número N y una secuencia de N números, con N >= 3.

El programa debe imprimir el elemento menor, el segundo menor, y el tercer menor, en ese orden.

Entrada	Salida
4	
1 2 3 4	1 2 3
5	
5 4 4 5 1	1 4 4
3	
0 0 0	0 0 0
6	
0 2 9 8 7 1	0 1 2

Les puede ser útil recordar que el mayor valor que puede tener un int puede ser escrito como Integer.MAX_VALUE.

b) Escriba un programa que sea capaz de imprimir los M menores elementos de un arreglo, con M siendo variable.

El input será un número N, una secuencia de N números y un número M, con M <= N. El programa debe imprimir los M elementos menores en orden, es decir, debe imprimir el elemento menor, el segundo menor, el tercer menor, etc. hasta haber impreso M elementos.

Entrada	Salida
4	
1 2 3 4	
3	1 2 3
5	
5 4 4 5 1	
3	1 4 4
4	
8 9 6 1	
1	1
6	
7 9 5 4 7 1	
6	1 4 5 7 7 9

Ejercicios Adicionales

- 1. Escriba un programa que sea capaz de determinar si algún número se repite exactamente M veces en una secuencia de números.
 - El input será un número N, un número M y una secuencia de N números.
 - El output del programa deberá ser:
 - Si existe algun número x que se repita M veces, entonces el programa debe imprimir El número $\{x\}$ se repite $\{M\}$ veces, donde $\{x\}$ y $\{M\}$ deben ser reemplazados por los valores correspondientes.
 - Si ningún número se repite M veces, el programa debe imprimir Ningún numero se repite $\{M\}$ veces, nuevamente reemplazando $\{M\}$ por el valor correspondiente.

Entrada	Salida
5 3	
1 2 3 4 5	Ningún número se repite 3 veces
4 2	
0 3 7 0	El número O se repite 2 veces
7 3	
1 4 7 5 1 4 1	El número 1 se repite 3 veces
6 2	
1 2 3 4 5 6	Ningún número se repite 2 veces

2. Un conjunto de números se denomina *coprimo* cuando el máximo común divisor entre todos los números es igual a 1. En otras palabras, el número más grande que divide a todos los números del conjunto es 1. Escriba un programa que determine si un conjunto de números es coprimo.

El input será un número N y una secuencia de N números. El output debe ser Coprimo si se cumple esta propiedad, o No es coprimo. Máximo común divisor: $\{x\}$ cuando no se cumpla, reemplazando $\{x\}$ por el máximo común divisor del conjunto.

Entrada	Salida
4	
2 5 7 11	Coprimo
4	
2 6 8 11	Coprimo
5	
3 27 12 9 6	No es coprimo. Maximo común divisor: 3
3	
51 33 57	No es coprimo. Maximo común divisor: 3

3. Un conjunto de números se denomina coprimo a pares cuando el máximo común divisor entre todos par de números es igual a 1. En otras palabras, cada par de números del conjunto es coprimo. Escriba un programa que determine si un conjunto de números es coprimo a pares.

El input será un número N y una secuencia de N números. El output debe ser Coprimo a pares si se cumple esta propiedad, o No es coprimo a pares. El par $\{x\}$, $\{y\}$ no es coprimo cuando no se cumpla, con $\{x\}$ e $\{y\}$ reemplazados por un par de números que no es coprimo.

Entrada	Salida
4	
2 5 7 11	Coprimo a pares
4	
2 6 8 11	No es coprimo a pares. El par 2, 6 no
	es coprimo
4	
33 10 49 169	Coprimo a pares.
3	
44 21 35	No es coprimo a pares. El par 35, 21
	no es coprimo