Course Code	Course Name	Credit
CSC402	Analysis of Algorithms	3

Pro	Prerequisite: Data structure concepts, Discrete structures	
Co	Course Objectives:	
1	To provide mathematical approaches for Analysis of Algorithms	
2	To understand and solve problems using various algorithmic approaches	
3	To analyze algorithms using various methods	
Co	Course Outcomes: At the end of the course learner will be able to	
1	Analyze the running time and space complexity of algorithms.	
2	Describe, apply and analyze the complexity of divide and conquer strategy.	
3	Describe, apply and analyze the complexity of greedy strategy.	
4	Describe, apply and analyze the complexity of dynamic programming strategy.	
5	Explain and apply backtracking, branch and bound.	
6	Explain and apply string matching techniques.	

Module		Detailed Contents	Hours
1		Introduction	8
	1.1	Performance analysis, space, and time complexity Growth of function,	
		Big-Oh, Omega Theta notation Mathematical background for algorithm	
		analysis.	
		Complexity class: Definition of P, NP, NP-Hard, NP-Complete	
		Analysis of selection sort, insertion sort.	
	1.2	Recurrences: The substitution method, Recursion tree method, Master	
		method	
2		Divide and Conquer Approach	6
	2.1	General method, Merge sort, Quick sort, Finding minimum and	
		maximum algorithms and their Analysis, Analysis of Binary search.	
3		Greedy Method Approach	6
	3.1	General Method, Single source shortest path: Dijkstra Algorithm	
		Fractional Knapsack problem, Job sequencing with deadlines,	
		Minimum cost spanning trees: Kruskal and Prim's algorithms	
4		Dynamic Programming Approach	9
	4.1	General Method, Multistage graphs, Single source shortest path:	
		Bellman Ford Algorithm	
		All pair shortest path: Floyd Warshall Algorithm, Assembly-line	
		scheduling Problem0/1 knapsack Problem, Travelling Salesperson	
		problem, Longest common subsequence	
5		Backtracking and Branch and bound	6
	5.1	General Method, Backtracking: N-queen problem, Sum of subsets,	
		Graph coloring	
	5.2	Branch and Bound: Travelling Salesperson Problem, 15 Puzzle problem	
6		String Matching Algorithms	4
	6.1	The Naïve string-matching algorithm, The Rabin Karp algorithm, The	
		Knuth-Morris-Pratt algorithm	

	Textbooks:		
	1	T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to algorithms", 2 nd	
		Edition, PHI Publication 2005.	
Ī	2	Ellis Horowitz, Sartaj Sahni, S. Rajsekaran. "Fundamentals of computer algorithms"	
		University Press.	

Refe	References:		
1	Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw-		
	Hill Edition.		
2	S. K. Basu, "Design Methods and Analysis of Algorithm". PHI		

Asse	Assessment:		
Inte	Internal Assessment:		
whe	Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.		
End Semester Theory Examination:			
2	Question paper will comprise of total six questions. All question carries equal marks		
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)		
4	Only Four question need to be solved.		
5	In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.		

Useful Links	
1	https://nptel.ac.in/courses/106/106/106106131/
2	https://swayam.gov.in/nd1_noc19_cs47/preview
3	https://www.coursera.org/specializations/algorithms
4	https://www.mooc-list.com/tags/algorithms