BIKERIDE DEMAND

Forecasting bike ride demand with a dataset from Seoul.

25.10.2024.

AGENDA

01 Introduction

02 Data Overview

03 Data Preprocessing

04 Feature Selection

05 Modeling Approaches

06 Results & Conclusion

INTRODUCTION BIKERIDE DEMAND

- Objective: To develop a predictive model for bike rental demand.
- Significance: Improve operational efficiency for bike-sharing systems.
- Goal: Compare the effectiveness of different machine learning algorithms.

DATA OVERVIEW

Dataset Source: Public dataset

Description:

Historical bike rental counts
Weather conditions
Temporal data (hour, day, month, season)

Feature Name	Description	Data Type
Date	Date and timestamp of when the ride occurred	Categoric
Rented Bike Count	Count of bikes rented at each hour	Numeric
Hour	Hour of the day (0 to 23) when the ride occurred	Categoric
Temperature(°C)	Temperature in Celsius during the ride	Numeric
Humidity(%)	Humidity percentage during the ride	Numeric
Wind speed (m/s)	Wind speed in meters per second during the ride	Numeric
Visibility (10m)	Visibility measured in meters (the distance at which objects can be clearly seen)	Numeric
Dew point temperature(°C)	Dew point temperature in Celsius during the ride	Numeric
Solar Radiation (MJ/m2)	Solar radiation measured in megajoules per square meter during the ride	Numeric
Rainfall(mm)	Precipitation in millimeters during the ride	Numeric
Snowfall (cm)	Snow accumulation measured in centimeters during the ride	Numeric
Seasons	Season during which the ride occurred (e.g., Winter, Spring)	Categoric
Holiday	Indicates whether the day was a holiday	Categoric
Functioning Day	Day when the bike-sharing system is operational	Categoric

DATA OVERVIEW

Dataset Source: Public dataset

Description:

Historical bike rental counts
Weather conditions
Temporal data (hour, day, month, season)

DATA PREPROCESSING STEPS

Handling Missing and Duplicate
Values: Identifying and managing any
missing or duplicate data points in the
dataset.

Data Type Conversion: Converting data types to appropriate formats for analysis. (Date to datetime64[ns])

Data Splitting: Splitting data where needed to enhance further handling. (Namely Date to Day, Month and Year)

Data Profiling: Getting a comprehensive report on the data with y-data profiling ProfileReport.

Outlier Detection: Identifying outliers that may skew the analysis. Those were mainly Dew Point and Snow. Also, the dependent variable, which had to be normalized.

DATA EXPLORATION

Data Distribution: Temporal Analysis Influencing Factors

VARIABLE DISTRIBUTION

VARIABLE COUNT

SEASONAL DEMAND

HOLIDAY DEMAND

TEMPORAL DEMAND

WEEKDAY DEMAND

HOURLY DEMAND ACROSS SEASONS

HOURLY DEMAND ACROSS WEEKDAYS

DAILY DEMAND ACROSS MONTHS

HOLIDAYS VS NON HOLIDAYS HOURLY

CORRELATION MATRIX

- Temperature and hour of the day show the strongest positive correlations, implying these factors significantly impact bike rentals.
- Rainfall, and snowfall have weak negative correlations.

Temperature x Dew Point Temperature

VIF: ADDRESSING MULTICOLLINEARITY

```
[50] #In our Correlation Matrix, we also see that Temperature and Dew Point Temperature are multicollinear. We should address this before creatig a model.
     from statsmodels.stats.outliers_influence import variance_inflation_factor
     def calc vif(X):
        # Calculating VIF
        vif = pd.DataFrame()
         vif["variables"] = X.columns
        vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
[51] numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns
     filtered_cols = [col for col in numeric_cols if col not in ['Rented Bike Count', 'Dew point temperature(°C)']]
[52] vif_result = calc_vif(df[filtered_cols])
     print("VIF Results:\n", vif_result)
     df.drop(columns=['Dew point temperature(°C)'], inplace=True)

→ VIF Results:
                      variables
                          Hour 3.921832
             Temperature(°C) 3.228318
                   Humidity(%) 4.868221
              Wind speed (m/s) 4.608625
              Visibility (10m) 4.710170
    5 Solar Radiation (MJ/m2) 2.246791
                  Rainfall(mm) 1.079158
                 Snowfall (cm) 1.120579
```

dependent variable - left-skewed

NORMALISATION: BIKE RIDE COUNT

DATA MODELLING STEPS

Selecting Features: Identifying the most relevant features for predicting bike rentals.

02

Splitting the Data: Dividing the dataset into training and testing sets.

03

Train Models: Implement various machine learning algorithms to predict bike rentals.

04

Evaluate Performance: Assess the performance of each model using appropriate metrics.

FEATURE SELECTION

- Weather variables: Temperature, Humidity, Rainfall, Humidity, Solar Radiation, Visibility
- Temporal variables: Hour, Day of Week, Month, Season
- Special events: Holidays

METHODOLOGY: CORRELATION ANALYSIS TO IDENTIFY RELEVANT FEATURES.

MODELLING APPROACHES

01 Linear Regression

02 XGBoost Regressor

MODEL TRAINING

TEST

SET

SPLITTING

• Fit models using training data

• Hyperparameter definition

TRAINING

PERFORMANCE EVALUATION

Mean Squared Error: 30.017399163802487

R^2 Score: 0.6927259377484193

XGBOOST

Mean Squared Error: 4.766630085882673

2 Score: 0.9537684553043096

PERFORMANCE

RESULTS

XGBOOST REGRESSION MODEL

-BECAUSE:

The relationships in the dataset are complex.

- We needed a model that can handle large datasets and many features effectively.
- To improve prediction accuracy and robustness.

CONCLUSION

- XGBoost is the preferred model for bike rental demand prediction in this instance.
- Importance of feature selection and preprocessing in model performance.

