

Index

Un	it - 3 → Relation	3
1)	Method − 1 → Properties of Relation	3
2)	Method − 2 → Matrix and Graph Representation of a Relation	5
3)	Method − 3 → Partition and Covering of a Set	8
4)	Method – 4 → Equivalence Relation	9
5)	Method – 5 → Partially Ordered Relation	11
6)	Method − 6 → Hasse–diagram	12
7)	Method − 7 → Totally Ordered Set	16
8)	Method − 8(a) → Least Member and Greatest Member	17
9)	Method − 8(b) → Minimal Elements and Maximal Elements	22
10)	Method – 8(c) → Least Upper Bound and Greatest Lower Bound	26

Unit - 3 → Relation

Method - 1 → Properties of Relation

Examples of Method-1: Properties of Relation

Α	1	For each of these relations on the set { 1, 2, 3, 4 }, determine whether it is			
		reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive.			
		(1) $R_1 = \{ (1, 1), (2, 2), (3, 3) \}$			
		(2) $R_2 = \{ (1, 1), (1, 3), (1, 2), (3, 1), (3, 2), (3, 3), (4, 4) \}$			
		(3) $R_3 = \{ (1, 2), (1, 3), (1, 4), (2, 3), (3, 1), (4, 1), (3, 4) \}$			
		$(4) R_4 = A \times A$			
		Answer: R₁ → Symmetric, Antisymmetric, Transitive			
		R ₂ > Transitive			
		R ₃ → Irreflexive			
		R ₄ > Reflexive, Symmetric, Transitive			
Α	2	Let A = { 1, 2, 3, 4, 5, 6 } and define a relation R on A as			
		$R = \{ (a, b) : b - a = 2 \}$			
		Check whether R is reflexive, irreflexive, symmetric, asymmetric,			
		antisymmetric or transitive.			
		Answer: R is irreflexive, asymmetric and antisymmetric			
В	3	Let R be the relation on the set of integers such that aRb if and only if $a = b$			
		or $a = -b$.			
		Check whether R is reflexive, symmetric, transitive or not.			
		Answer: R is reflexive, symmetric and transitive			

С	4	Determine whether the relation R on the set of all set of all people is reflexive,			
		symmetric, antisymmetric or transitive, where aRb if and only if			
		(1) a is taller than b.			
		(2) a is 3 inches shorter than b.			
		(3) a and b were born on the same day.			
		(4) a has the same first name as b.			
		(5) a is grandparent of b.			
		(6) a is brother of b.			
		Answer: (1) R is transitive and antisymmetric			
		(2) R is antisymmetric			
		(3) R is reflexive, symmetric and transitive			
		(4) R is reflexive, symmetric and transitive			
		(5) R is antisymmetric			
		(6) R is transitive			
С	5	Determine whether the relation R on the set of all integers is reflexive,			
		symmetric, antisymmetric or transitive, where $(x, y) \in R$ if and only if			
		(1) $x \neq y$ (2) $xy \geq 1$ (3) $x = y^2$ (4) $xy = 0$			
		Answer: (1) R is symmetric (2) R is symmetric and transitive			
		(3) R is antisymmetric (4) R is symmetric			
С	6	Let relation R defined on \mathbb{R} as $R = \{ (a, b) : a \le b^3; a, b \in \mathbb{R} \}.$			
		Check whether R is reflexive, symmetric, transitive or not.			
В	7	Answer: R is neither reflexive nor symmetric nor transitive			
B	'	Let L be the set of all lines in a plane and R be the relation in L defined as R = { (L, L,) : L is perpendicular to L.}			
		$R = \{ (L_1, L_2) : L_1 \text{ is perpendicular to } L_2 \}.$			
		Check whether R reflexive, symmetric or transitive.			
		Answer: R is symmetric			

Method - 2 ---> Matrix and Graph Representation of a Relation

Examples of Method-2: Matrix and Graph Representation of a Relation

A Represent given relation R on { 1, 2, 3, 4 } with a matrix.

 $R = \{ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) \}$

Answer: Matrix Representation of a Relation:

$$\mathsf{M}_R = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 & 1 \\ 2 & 0 & 0 & 1 & 1 \\ 3 & 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 0 & 0 \end{bmatrix}$$

A | 2 | Represent given relation R on { 1, 2, 3 } with a matrix.

 $R = \{ (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) \}$

Answer: Matrix Representation of a Relation:

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 3 & 0 & 0 & 1 \end{bmatrix}$$

A Draw the directed graph representing relation on { 1, 2, 3 }:

 $R = \{ (1,2), (2,2), (3,1) \}$

Answer: Digraph of a Relation:

B 4 Draw the directed graph representing the following relation on a set {a, b, c, d}:

$$R = \{ (a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d) \}$$

Answer: Digraph of a Relation:

B | 5 | Represent given relation R on { 1, 2, 3, 4 } with a matrix also draw a directed graph of it.

$$R = \{ (2,1), (2,3), (3,1), (3,2) \}$$

Answer: Matrix Representation of a Relation:

$$M_R = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Digraph of a Relation:

C Represent given relation R on { p, q, r, s, t, u, v } with a matrix also draw a directed graph of it.

$$R = \left\{ \begin{aligned} &(p,\,q),\; (p,\,u),\; (q,\,r),\; (q,\,v),\; (r,\,s),\; (s,\,t),\\ &(t,\,v),\; (u,\,s),\; (u,\,t),\; (u,\,v),\; (v,\,r) \end{aligned} \right\}$$

Answer: Matrix Representation of a Relation:

Digraph of a Relation:

C | 7 | Give the relation R defined on $S = \{ 1, 2, 3, 5 \}$ from following matrix.

$$M_{R} = \left[egin{array}{ccccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{array}
ight]$$

Answer: $R = \{ (1,1), (1,2), (2,2), (2,3), (3,3), (3,5), (5,1) \}$

Method - 3 → Partition and Covering of a Set

Examples of Method-3: Partition and Covering of a Set

Α	1	Let $S = \{ 2, 4, 6, 8, 12, 14, 15, 17 \}$ be a set and $A_1 = \{ 4, 6, 12 \}$, $A_2 = \{ 2 \}$,			
		$A_3 = \{ 12, 14 \}, A_4 = \{ 15, 17 \}, A_5 = \{ 8, 14 \} $ be subsets of S.			
		Determine which of the collection is covering or partition:			
		$P_1 = \{ A_1, A_2, A_4 \}, \qquad P_2 = \{ A_1, A_2, A_3, A_4, A_5 \}$			
		$P_3 = \{ A_1, A_2, A_4, A_5 \}, \qquad P_4 = \{ A_1, A_3, A_4, A_5 \}$			
		Answer: P ₁ is neither covering nor partition,			
		P ₂ is covering but not partition,			
		P ₃ is covering and partition,			
		P ₄ is neither covering nor partition.			
В	2	Let P = { p, q, r, x, y, z, a, b, c } be a set. Determine any two such collection			
		which are partition of set P.			
		Hint: Make a collection of nonempty and disjoint subsets of S.			
В	3	Let P = { p, q, r, x, y, z, a, b, c } be a set. Determine any two such collection			
		which are covering but not partition of set P.			
		Hint: Make a collection of nonempty and not disjoint subsets of S.			
В	4	Let $P = \{ p, q, r, x, y, z, a, b, c \}$ be a set. Determine any two such collection			
		which are neither covering nor partition of set P.			
		Hint: Some elements of the set must not be in the collection.			

Method - 4 → Equivalence Relation

Examples of Method-4: Equivalence Relation

Α	1	Let R be the relation on the set of real numbers such that aRb if and only if			
		a – b is an integer. Is R an equivalence relation?			
		Anguar Dia an agricular sa valation			
		Answer: R is an equivalence relation.			
Α	2	Show that the "divides" relation on the set of positive integers in not an			
		equivalence relation.			
	Wint Charlethat Disput Charlet				
	Hint: Check that R is reflexive, symmetry and transitive or not.				
B 3 Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. Define th					
		relation S on $\mathcal{P}(X)$ as follows:			
		For all A, $B \in \mathcal{P}(X)$, $(A, B) \in S \Leftrightarrow A \subseteq B$.			
		Check whether relation S is equivalence or not.			
		Answer: R is not equivalance relation			
В	B 4 Let m be an integer with $m > 1$. Show that the				
		$R = \{(a,b) \mid a \equiv b \pmod{m}\}$ is an equivalence relation on the set of			
		integers.			
		Hint: Check that R is reflexive, symmetry and transitive or not.			
В	B Show that the relation R in the set P of points in a plane given by				
		$R = \left\{ (X, Y) : \begin{array}{l} \text{Distance of the point X from the origin is same} \\ \text{as the distance of the point Y from the origin} \end{array} \right\},$			
	is an equivalence relation.				
		Answer: Check that R is reflexive, symmetry and transitive or not.			
В	6	Let R be the relation on $\mathbb R$ such that xRy if and only if $ x-y <1$. Show that			
	R is not an equivalence relation.				
		Hint: Check that R is reflexive, symmetry and transitive or not.			

В	7	Let A be a set of nonzero integers and let \approx be the relation on A \times A defined			
		by (a, b) \approx (c, d) whenever ad = bc.			
		Prove that \approx is an equivalence relation.			
		Hint: Check that R is reflexive, symmetry and transitive or not.			
С	8	Let X be the set of all nonempty subsets of { 1, 2, 3 }. Define a relation R on X			
		as follows:			
		\forall A, B \in X, ARB \Leftrightarrow the least element of A equals the least element of B.			
		Prove that R is an equivalence relation on X.			
		Hint: Check that R is reflexive, symmetry and transitive or not.			
С	9	Which of these relations on the set of all people are equivalence relations?			
		(1) { (a, b) a and b are the same age }			
		(2) { (a, b) a and b have the same parents }			
		(3) { (a, b) a and b have met }			
		(4) { (a, b) a and b speak a common language }			
		Answer: (1) and (2) are equivalance relation			
С	10	Let R be an equivalence relation on a set $A = \{a, b, c, d\}$ defined as			
		$R = \{ (a, a), (b, b), (b, d), (c, c), (d, b), (d, d) \}.$			
		Find the distinct equivalence classes of R.			
		Answer: Distinct equivalence classes:			
		{a}, {b, d}, {c}			
С	11	Let $A = \{1, 2, 3,, 20\}$. R be an equivalence relation on a set defined as			
		follow:			
		$\forall x, y \in A, xRy \Leftrightarrow x - y \text{ is divisible by 4}$			
		Find the distinct equivalence classes of R.			
		Answer: Distinct equivalence classes:			
		{1, 5, 9, 13, 17}, {2, 6, 10, 14, 18}, {3, 7, 11, 15, 19}			
		{ 4, 8, 12, 16, 20 }			

Method - 5 → Partially Ordered Relation

Examples of Method-5: Partially Ordered Relation

Α	1	Which of these relations on { 0, 1, 2, 3 } are partial orderings?			
11	1				
		(1) { (0,0), (1,1), (2,2), (3,3) }			
		(2) { (0,0), (1,1), (2,0), (2,2), (2,3), (3,2), (3,3) }			
		(3) { (0,0), (1,1), (1,2), (2,2), (3,3) }			
		(4) { (0,0), (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) }			
		(5) { (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3) }			
		Answer: (1), (3) and (4) are partial orderings			
В	2	Let R be the relation on the set of people such that xRy if x and y are people			
		and x is older than y. Show that R is not a partial ordering.			
		Hint: Check that R is reflexive, antisymmetry and transitive or not.			
Α	3	Let X be a nonempty set. Prove that $(\mathcal{P}(X), \subseteq)$ is a poset.			
		Hint: Check that \subseteq is reflexive, antisymmetry and transitive or not.			
В	4	Prove that (\mathbb{Z}, \leq) is not a poset where, \leq be a relation defined on \mathbb{Z} as follow:			
		$a \le b \Leftrightarrow a = 2b, \ \forall \ a, b \in \mathbb{Z}$			
С	5	Prove that (\mathbb{Z}, \leq) is not a poset where, \leq be a relation defined on \mathbb{Z} as follow:			
		$a \le b \Leftrightarrow a$ is divisible by b^2 , \forall $a, b \in \mathbb{Z}$			

Method 6 ---> Hasse-diagram

Examples of Method-6: Hasse-diagram

B 1 Draw the Hasse-diagram for poset $\langle A, \leq \rangle$. Find cover of each element of set A if possible. A = $\{1, 2, 3, 5, 6, 10, 15, 30\}$. "a \leq b" if "a divides b".

Answer: Cover of 1 = 2, 3, 5 Cover of 2 = 6, 10

Cover of 3 = 6, 15 Cover of 5 = 10, 15

Cover of 6 = 30 Cover of 10 = 30

Cover of 15 = 30

A 2 Draw the Hasse-diagram for poset $\langle A, \leq \rangle$. Find cover of each element of set A if possible. A = $\{1, 2, 3, 4, 36, 42, 48\}$. "a \leq b" if "a divides b".

Answer: Cover of 1 = 2, 3 Cover of 3 = 36, 42, 48

Cover of 2 = 4, 42 Cover of 4 = 36, 48

C Draw the Hasse-diagram for poset $\langle A, \leq \rangle$, "a \leq b" if "a divides b" for set $A = \{ 1, 2, 3, 4, 6, 9, 12, 18, 36 \}$. Find cover of each element of set A if possible.

Answer: Cover of 1 = 2, 3 Cover of 2 = 4, 6

Cover of 3 = 6, 9 Cover of 4 = 12

Cover of 6 = 12, 18 Cover of 9 = 18

Cover of 12 = 36 Cover of 18 = 36

C A Draw the Hasse-diagram for poset $\langle A, \leq \rangle$, " $a \leq b$ " if "a divides b" for set $A = \{ 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 \}$. Find cover of each element of set A if possible.

Answer: Cover of 1 = 2, 3 Cover of 2 = 4, 6

Cover of 3 = 6, 9 Cover of 4 = 8, 12

Cover of 6 = 12, 18 Cover of 8 = 24

Cover of 9 = 18 Cover of 12 = 24, 36

Cover of 18 = 36 Cover of 24 = 72.

Cover of 36 = 72

Method 7 ---> Totally Ordered Set

Examples of Method-7: Totally Ordered Set

Method 8(a) --> Least Member and Greatest Member

Examples of Method-8(a): Least Member and Greatest Member

From given Hasse-diagram find Least and Greatest Member. Α **Answer: Least Member - a, Greatest Member - f** Draw the Hasse-diagram of poset $\langle P(X), \subseteq \rangle$, Where $X = \{a, b, c\}$. В 2 Find Least and Greatest Member of P(X). **Answer**: { a, b, c } { a, c } { **a**, **b** } { **b**, **c** } { **a** } { **b** } { **c** } Ø **Least Member** – Ø, **Greatest Member** – { a, b, c }

A 3 From given Hasse-diagram find Least and Greatest Member.

e d
b
c
Answer: Least Member - a, No Greatest Member

B 4 Draw the Hasse-diagram of poset $\langle A, | \rangle$. Find Least and Greatest Member of A. Where, $A = \{ 2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72 \}$.

Answer:

No Least Member, No Greatest Member

From given Hasse-diagram find Least and Greatest Member. 1 j i h g e d b **Answer: No Least Member, No Greatest Member** Draw the Hasse-diagram of poset \langle A, | \rangle . Find Least and Greatest Member of В A. Where, $A = \{ 2, 4, 6, 8, 12, 18, 24, 36, 72 \}$. **Answer**: **72** 24 **36 18 12** 4 2 **Least Member - 2**, **Greatest Member - 72**

В Draw the Hasse-diagram of poset (A, |). Find Least and Greatest Member of A. Where, $A = \{3, 5, 7, 15, 21, 30\}$. **Answer**: **30** • 21 **15** • 3 5 No Least Member, **No Greatest Member** В 8 Draw the Hasse-diagram of poset (A, |). Find Least and Greatest Member of A.Where, $A = \{ 1, 2, 4, 8, 28 \}$. **Answer**: 8 • **28** 1 Least Member -1, No Greatest Member

B 9 Draw the Hasse-diagram of poset (A, |). Find Least and Greatest Member of Where, A = { 3, 5, 15, 30, 60 }.

Answer:

60
30
15
No Least Member, Greatest Member - 60

Method 8(b) ---> Minimal Elements and Maximal Elements

Examples of Method-8(b): Minimal and Maximal Elements

Draw the Hasse-diagram of poset (A, |). Find Minimal and Maximal В Elements of A.Where, $A = \{2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72\}$. **Answer**: **72 36** 489 60° **18** Minimal Element – 2, 9 Maximal Element - 48, 60, 72 A From given Hasse-diagram find Minimal and Maximal Elements. 1 j i h g e d b Minimal Element - a, b, c Maximal Element - l, m

Draw the Hasse-diagram of poset $\langle A, | \rangle$. Find Minimal and Maximal В 5 Elements of A. Where, $A = \{2, 4, 6, 8, 12, 18, 24, 36, 72\}.$ **Answer**: **72 24 36 18 12** 6 **Minimal Element - 2 Maximal Element - 72** В 6 Draw the Hasse-diagram of poset (A, |). Find Minimal and Maximal Elements of A. Where, $A = \{3, 5, 7, 15, 21, 30\}$. **Answer**: **30** • 21 **15** ⁽ 5 Minimal Element – 3, 5, 7 Maximal Element - 30, 21

Draw the Hasse-diagram of poset (A, |). Find Minimal and Maximal В Elements of A. Where, $A = \{ 1, 2, 4, 8, 28 \}$. **Answer**: **28** 2 1 • Minimal Element - 1 Maximal Element - 8, 28 В Draw the Hasse-diagram of poset (A, |). Find Minimal and Maximal Elements of A. Where, $A = \{3, 5, 15, 30, 60\}$. **Answer**: **60** • 30 **15** 5 Minimal Element - 3, 5 **Maximal Element - 60**

Method 8(c) → Least Upper Bound and Greatest Lower Bound

Examples of Method-8(c): Least Upper Bound and Greatest Lower Bound

B 1 Let $A = \{1, 2, 3, 5, 4, 9, 10, 15, 36\}$ and the relation \leq be such that $x \leq y$ if x divides y. Then, find LUB and GLB if exists for following sets:

- **(1)** {2, 3, 5}
- **(2)** { 9, 15 }
- **(3)** { 10, 15, 36 }
- **(4)** { 3, 4, 10 }
- **(5)** {2, 9, 5}

Answer:

Set	GLB	LUB
{2, 3, 5}	1	Not exist
{ 9, 15 }	3	Not exist
{ 10, 15, 36 }		Not exist
	1	
{ 3, 4, 10 }	1	Not exist
{ 2 , 9 , 5 }	1	Not exist

B | 2 | Let $A = \{1, 2, 3, \}$

Let $A = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72\}$ and the relation \leq be such that $x \leq y$ if x divides y. Then, find LUB and GLB if exists for following sets:

- **(1)** { 2, 6, 9 }
- **(2)** { 1, 4, 12 }
- **(3)** { 12, 18, 36 }
- **(4)** { 3, 4, 6 }
- **(5)** { 8, 9, 12 }

Answer:

Set	LUB	GLB
{ 2, 6, 9 }	1	18
{ 1 , 4 , 12 }	1	12
{ 12 , 18 , 36 }	6	36
{3, 4, 6}	1	12
{8, 9, 12}	1	72

* * * * * End of the Unit * * * *

