Logica

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Introduzione	2
2	Sintassi della logica proposizionale 2.1 Connettivi	2
3	Principio di induzione 3.1 Definizione induttiva formale dell'insieme PROP	3
4	Proprietà su un insieme 4.1 Principio di induzione sui numeri naturali ℕ	4
5	Teorema del principio di induzione su PROP	4

1 Introduzione

La logica ha lo scopo di formalizzare il ragionamento matematico che è caratterizzato dal concetto di dimostrazione senza ambiguità

2 Sintassi della logica proposizionale

La logica proposizionale è formata da simboli formali ben definiti e sono divisi in:

2.1 Connettivi

- V Congiunzione, And logico
- A Disgiunzione, Or logico
- ¬ Negazione, Not logico (non connette niente, è solo una costante logica che equivale a 0 nella logica booleana)
- \(\perp \) Falso, Bottom, Assurdo
- \bullet \rightarrow Implicazione, If-then

2.2 Ausiliari

• () Le parentesi non fanno parte della proposizione, ma servono solo a costruire il linguaggio

2.3 Simboli proposizionali

• p_n, q_n, ψ_n, \dots Le lettere minuscole indicizzate vengono usate per indicare una proposizione (sono infiniti simboli numerabili)

2.4 Altri simboli

- | Tale che
- $\bullet \ \leftrightarrow \mathbf{Se}$ e solo se

Definizioni utili 2.1

- 1. Stringa: Una sequenza finita di simboli o caratteri
- 2. Infinito numerabile: Un insieme è infinito numerabile se è il più piccolo infinito possibile, cioè se è in corrispondenza biunivoca con l'insieme N

3 Principio di induzione

Il principio di induzione è un principio logico che permette di dimostrare che una proprietà è vera per tutti gli elementi di un insieme infinito numerabile.

Una prima definizione induttiva fatta in modo non formale, ma con frasi in italiano è la seguente:

L'insieme di proposizioni PROP è così definito induttivamente:

- 1. $\perp \rightarrow PROP$
- 2. se p è un simbolo proposizionale allora $p \in PROP$
- 3. (Caso induttivo) se $\alpha, \beta \in PROP$ allora $(\alpha \land \beta) \in PROP, (\alpha \lor \beta) \in PROP, (\alpha \to \beta) \in PROP, (\neg \alpha) \in PROP$
- 4. nient'altro appartiene a PROP

In questo modo è stato creato l'insieme PROP che contiene tutte le proposizioni che possono essere create usando gli unici simboli che abbiamo definito $(\land, \lor, \rightarrow, \neg)$.

Esempi di proposizioni corrette e scorrette:

- $(p_7 \rightarrow p_0) \in PROP$
- $p_7 \rightarrow p_0 \notin PROP$ (mancano le parentesi)
- $((\bot \lor p_{32}) \land (\neg p_2)) \in PROP$
- $((\rightarrow \land \notin PROP))$
- $\neg\neg\bot\notin PROP$

3.1 Definizione induttiva formale dell'insieme PROP

Adesso l'insieme PROP viene definito in modo formale usando i simboli proposizionali.

Definizione 3.1

L'insieme PROP è il più piccolo insieme X di stringhe tale che:

- 1. $\perp \in X$
- 2. $p \in X$ (Perchè è un simbolo proposizionale)
- 3. se $\alpha, \beta \in X$ allora $(\alpha \to \beta) \in X, (\alpha \lor \beta) \in X, (\alpha \land \beta) \in X, (\neg \alpha) \in X$

 p, α, β, \dots sono elementi proposizionali generici

 $\underline{AT=\text{simboli proposizionali}+\bot}$ è l'insieme di tutte le proposizioni atomiche, cioè quelle che non contengono connettivi, sono quindi la più piccola parte non ulteriormente scomponibile

4 Proprietà su un insieme

Definito P un insieme di proprietà assunte da un insieme A si ha che:

- \bullet $P \subseteq A$
- $a \in A$ dove a è un elemento generico dell'insieme A

Si dice che a gode della proprietà P se $a \in P$.

Altri modi per dire che a gode della proprietà P sono:

- \bullet P(a)
- P[a] (per non creare confusione con le parentesi tonde che sono usate come simboli ausiliari per costruire il linguaggio)

$$P \subseteq PROP \quad \forall \alpha \in PROP . P(\alpha)$$

(il punto mette in evidenza ciè che viene dopo di esso e può anche essere omesso)

Esempio 4.1

Esempio di una proprietà sull'insieme \mathbb{N} :

 $P=\{n|n\in\mathbb{N}\ ed\ e'\ pari\ \}$ essendo n un numero generico indica la proprietà di essere pari.

 $P[5] \times$

 $P[4] \sqrt{}$

4.1 Principio di induzione sui numeri naturali $\mathbb N$

 $P\subseteq \mathbb{N}$

- 1. Caso base: se P[0] e
- 2. Passo induttivo: se $\forall n \in \mathbb{N}(P[n] \Rightarrow P[n+1])$ allora $\forall n \in \mathbb{N}$. P[n]

Se si dimostra la proprietà per n e per il successivo (n+1), allora si dimostra che la proprietà è vera per tutti i numeri naturali. Si sfrutta il fatto che esiste un minimo a cui prima o poi si arriva.

Esercizio 4.1

Dimostra per induzione che: TODO

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

5 Teorema del principio di induzione su PROP

Definizione 5.1

 $P \subseteq PROP$

- 1. Se $P[\alpha], \alpha \in AT$ e
- 2. Se $P[\alpha] \Rightarrow P[(\neg \alpha)] e$
- 3. se $P[\alpha]$ e $P[\beta] \Rightarrow P[(\alpha \land \beta)], P[(\alpha \lor \beta)P[(\alpha \to \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$

Con questo teorema si possono dimostrare intere proposizioni complesse dimostrando i pezzi più piccoli (sottoformule) come mostrato nella figura 1.

Figura 1: Dimostrazione di una formula complessa

Esercizio 5.1

Dimostra che ogni $\psi \in PROP$ ha un numero pari di parentesi usando il principio di induzione per dimostrare proprietà sintattiche sulla struttura delle formule.

 $P[\psi] \equiv \psi$ ha un numero pari di parentesi

- 1. Caso base $\psi \in AT$ quindi ψ ha 0 parentesi e quindi è pari: $P[\psi] \sqrt{}$
- 2. **Ipotesi induttiva** $\alpha, \beta \in PROP, P[\alpha], P[\beta]$? $P[(\alpha \to \beta)]$ (per α vale e per β vale, si sono aggiunte due parentesi, quindi la formula è ancora pari)
- 3. Passo induttivo $P[\alpha], P[\beta] \Rightarrow P[(\alpha \rightarrow \beta)], P[(\alpha \lor \beta)], P[(\alpha \land \beta)]$ allora $\forall \psi \in PROP$. $P[\psi]$