

Plenum
1988.

BEST AVAILABLE COPY

13-13. SILICON ETCHING

CHING

of re-
plasma
ch with
on film
C) with
H₄ gasmetals
are lif-
metal
masks
-beam
plasma
polymer
strates
g with
or this
prior to
in the
solvent
cessaryratio are
portant
id flow

FIGURE 13-13-8. Some examples of bilayer and trilayer resist images that can be used for reactive ion etching. (A) From Ref. 758. (B) From Ref. 759. (C) From Ref. 760. (D) From Ref. 761.

underlayer erosion are desired. Furthermore, etch rate monitors are absolutely essential to terminate etching at each film sublayer.

By varying the power frequency and pressure, optimization of the throughput can be achieved.⁽³⁸⁵⁾ Since sputter yields for Si, Si₃N₄, and SiO₂ are about equivalent for the same ion bombardment,⁽³⁵⁴⁾ the chemical reactivity of Si, SiO₂, and Si₃N₄ to halogens, halocarbons, or halo etchants determines the selectivity ratio of film (F) to underlayer (U), (Table 13-13-17). For example, Kushner varied the C1/F ratio in favor of a high Si/SiO₂ selectivity.⁽³⁸⁶⁾ The high selectivity of SiO₂/Si is the major objective of the plasma etch process (to mimic HF wet etch). In order to accomplish high selectivity, the H/F ratio is manipulated in CF₄-H₂,⁽³⁸²⁾ C₂F₆-C₂H₄,⁽³⁹⁴⁾ and CHF₃.⁽³⁹⁵⁾ There are three basic mechanisms of

TABLE 13-13-16. Resist-Plasma Selectivity

Film (F)	Resist (R)	F/R	Etchant	Reference
Si ₃ N ₄	AZ-2400	10	CF ₄	381
SiO ₂	AZ-1350	5	C ₂ F ₆	294
SiO ₂	AZ-1350	10	CF ₄ /H ₂	382
SiO ₂	PMMA	4	CF ₄ /H ₂	365
Poly Si	AZ-1470	5	NF ₃	383
Poly Si	PBS	15	CF ₄	356
PSG	AZ-1350	10	SF ₆	384

TABLE 13-13-17. Selectivity (F/U) in Plasma Etching of Silicon

Film (F)	Underlayer (U)	F/U	Etchant	Reference
SiO ₂	Si	20	H ₂	387
SiO ₂	Si	30	CF ₄ /H ₂	388
SiO ₂	Si	30	CF ₃ Cl	351
SiO ₂	Si	8	HF	326
SiO ₂	Si	5	C ₂ F ₆	294
SiO ₂	p-doped Si	20	CHF ₃	389
Si	SiO ₂	30	SF ₆	390, 391
n-doped Si	Si	15	C ₂ F ₅ Cl	351
Poly Si	SiO ₂	10	CF ₄	392
Poly Si	SiO ₂	14	NF ₃	383
Poly Si	SiO ₂	10	CCl ₄	383
Si ₃ N ₄	SiO ₂	30	C ₂ F ₆	393
Si ₃ N ₄	SiO ₂	12	CF ₄ /O ₂	323
Si ₃ N ₄	SiO ₂	50	NF ₃	398

SiO₂/Si selectivity: (1) a sidewall banking agent of polyvinyl fluoride film forms on the Si by growth from adsorbed C⁽⁶⁹⁸⁾:

Excess H₂ generates carbon and a polymer deposits on all surfaces,⁽³⁹⁵⁾ which requires a subsequent Cl₂/Ar cleanup.^(396, 682) CHF₃/SiF₆ is recommended as a gas that forms little residue.^(384, 707) In deep trench CF₄ etching of 0.2-μm-wide by 6-μm-deep holes in silicon, deposits of polymer build up on the orifice and eventually stop the etching.⁽⁷⁵¹⁾ (2) The second mode involves adjustment of the concentration of F* and CF₃⁺. While the etch rate of Si will depend on the F* concentration, the etching of SiO₂ mainly involves the sputter-assisted reactions of CF₃⁺. (3) Differences in the chemisorption of the etching gases have also been proposed as a basic mechanism for selectivity.⁽³⁰²⁾ Br generated⁽⁵²³⁾ from CF₃Br is suggested to adsorb preferentially on SiO₂, and inhibit F attack by inducing F atom dimerization.⁽³⁹⁷⁾

For active devices, the etchant attack of the Si layer underneath the SiO₂ remains a problem for shallow junction devices. A combination of mixed etching techniques serves to prevent the Si attack.⁽⁵²⁴⁾ Initially, the plasma etching of the oxide to the last 500-Å thickness is performed. Wet etching with HF removes the remaining film of SiO₂, and any contamination, such as heavy metal left on the silicon surface.

Choosing selective etching gases and conditions remains a basic challenge to the plasma chemist, especially for future reactors using rapid single-wafer etching,⁽³⁸⁹⁾ where overetching must be counteracted by a high selectivity ratio (> 20).

13-13-4. Etch Profiles and Image Bias

The image etch bias is the loss of sidewall material beyond the edge of resist (Fig. 13-13-9). The biases of wet etching were as large (2–4 μm) as the dimensions

FIGURE 13-13-1
due to mask bi-
image, and (C)
The distortion

in present ci-
mimic isotro-
tially reduc-
(Table 13-13-
the economi-
dry etching.

As VLSI
dimensions
lost in wet
depth of fil-
increasing, e
greater is th
As the
the selectivi-
selectivity (.
the poor wa
overetching
beyond enc