L3 A, intégration: M363

- I - Exercices préliminaires

Exercice 1 Soient A, B deux parties de X. Exprimer $\mathbf{1}_{X\setminus A}$, $\mathbf{1}_{A\cap B}$, $\mathbf{1}_{AUB}$, $\mathbf{1}_{B\setminus A}$, $\mathbf{1}_{A\Delta B}$, en fonction de $\mathbf{1}_A$ et $\mathbf{1}_B$.

Plus généralement, pour toute suite finie $(A_k)_{1 \leq k \leq n}$ de parties de X, exprimer $\mathbf{1}_{\substack{n \\ k=1}}^n A_k$ et $\mathbf{1}_{\substack{n \\ k=1}}^n A_k$ en fonction des $\mathbf{1}_{A_k}$.

Exercice 2 Montrer que l'application qui associe à une partie A de X sa fonction caractéristique $\mathbf{1}_A$ réalise une bijection de $\mathcal{P}(X)$ sur $\{0,1\}^X$ (ensemble des applications de X dans $\{0,1\}$). Préciser son inverse.

Exercice 3 Montrer qu'il n'existe pas de bijection de X sur $\mathcal{P}(X)$ (théorème de Cantor). On en déduit en particulier que $\mathcal{P}(\mathbb{N})$ et $\{0,1\}^{\mathbb{N}}$ ne sont pas dénombrables.

Exercice 4 Soit σ une bijection de \mathbb{N} dans \mathbb{N} et $\sum u_n$ une série réelle absolument convergente.

Montrer que la série $\sum u_{\sigma(n)}$ converge absolument avec $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$ (cela justifie l'écriture

 $\sum_{n\in\mathbb{N}} u_n$ dans le cas d'une série absolument convergente, ce qui est le cas pour une série à termes positifs convergente, ce qui est utilisé implicitement dans la définition d'une mesure).

Exercice 5 La longueur d'un intervalle réel I est définie par :

$$\ell(I) = \sup(I) - \inf(I) \in [0, +\infty] = \mathbb{R}^+ \cup \{+\infty\}$$

1. Soient I=[a,b] un intervalle fermé, borné et $(I_k)_{1\leq k\leq n}$ une famille finie d'intervalles telle que :

$$I \subset \bigcup_{k=1}^{n} I_k$$

Montrer que:

$$\ell\left(I\right) \le \sum_{k=1}^{n} \ell\left(I_{k}\right)$$

2. Soient I = [a, b] un intervalle fermé, borné et $(I_n)_{n \in \mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que:

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

3. Soient I un intervalle et $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

4. Soit $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles deux à deux disjoints inclus dans un intervalle I. Montrer que :

$$\ell\left(I\right) \geq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

Exercice 6 Pour tous réels a < b, on désigne par $C^0([a,b],\mathbb{R})$ l'espace des fonctions continues de [a,b] dans \mathbb{R} .

1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite croissante dans $C^0([a,b],\mathbb{R})$ qui converge simplement vers une fonction $f\in C^0([a,b],\mathbb{R})$.

Montrer que la convergence est uniforme sur [a,b] (théorème de Dini). On donnera deux

Montrer que la convergence est uniforme sur [a, o] (theoreme de Dini). On donnera deux démonstrations de ce résultat, l'une utilisant la caractérisation des compacts de Bolzano-Weierstrass et l'autre utilisant celle de Borel-Lebesgue.

- 2. Le résultat précédent est-il encore vrai dans $C^0(I,\mathbb{R})$ si on ne suppose plus l'intervalle I compact?
- 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $C^0([a,b],\mathbb{R}^+)$ telle que la série de fonctions $\sum f_n$ converge simplement vers une fonction $f \in C^0([a,b],\mathbb{R})$.

 Montrer que:

$$\int_{a}^{b} f(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt$$

4. On désigne par A la famille des parties de \mathbb{R}^2 de la forme :

$$A(f,g) = \{(x,y) \in [a,b] \times \mathbb{R} \mid f(x) \le y \le g(x)\}$$

où f, g sont dans $C^{0}([a, b], \mathbb{R})$ telles que $f \leq g$ et on note :

$$\mu\left(A\left(f,g\right)\right) = \int_{a}^{b} \left(g\left(t\right) - f\left(t\right)\right) dt$$

Montrer que cette application μ est σ -additive sur \mathcal{A} .

Exercice 7 Soit A une tribu sur X. Montrer que :

- 1. $X \in \mathcal{A}$;
- 2. $si\ A, B\ sont\ dans\ A$, $alors\ A \cup B$, $A \cap B$, $A \setminus B\ et\ A \triangle B\ sont\ dans\ A$;
- 3. si $(A_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathcal{A} alors $\bigcap_{n\in\mathbb{N}} A_n \in \mathcal{A}$ (\mathcal{A} est stable par intersection dénombrable).

Exercice 8 Soient (X, \mathcal{A}, μ) un espace mesuré et $(A_k)_{1 \leq k \leq n}$ est une suite d'éléments de \mathcal{A} telle que $\mu\left(\bigcup_{k=1}^{n} A_k\right) < +\infty$. Montrer que :

$$\mu\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} (-1)^{k-1} \mu_{k,n}$$

où on a noté pour $1 \le k \le n$:

$$\mu_{k,n} = \sum_{1 \le i_1 < \dots < i_k \le n} \mu\left(A_{i_1} \cap \dots \cap A_{i_k}\right) = \sum_{\substack{I \subset \{1,\dots,n\} \\ \operatorname{card}(I) = k}} \mu\left(\bigcap_{i \in I} A_i\right)$$

(formule de Poincaré).

Exercice 9

1. Montrer que, pour tout $x \in X$, l'application :

$$\delta_x: \mathcal{P}(X) \rightarrow \{0,1\}$$
 $A \mapsto \mathbf{1}_A(x)$

est une mesure finie sur $\mathcal{P}(X)$ (mesure de Dirac en x).

2. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite de réels positifs ou nuls indexée par (n,m) dans \mathbb{N}^2 . On suppose que, pour tout $n\in\mathbb{N}$, la série $\sum_{m\in\mathbb{N}}u_{n,m}$ est convergente de somme S_n et que la série $\sum S_n$ est convergente de somme S.

Montrer que pour tout $m \in \mathbb{N}$, la série $\sum_{n \in \mathbb{N}} u_{n,m}$ est convergente de somme T_m et que la série

 $\sum T_m$ est convergente, soit :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

(en fait cette égalité valable dans $\mathbb{R}^+ \cup \{+\infty\}$ pour toute suite double $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ de réels positifs).

3. On suppose que $X = \{x_n \mid n \in \mathbb{N}\}$ est un ensemble dénombrable. Montrer que pour toute suite $(p_n)_{n \in \mathbb{N}}$ de réels positifs ou nuls tels que la série $\sum p_n$ soit convergente, l'application :

$$\mu: \mathcal{P}(X) \to \mathbb{R}^+$$

$$A \mapsto \sum_{n=0}^{+\infty} p_n \delta_{x_n}(A) \tag{1}$$

est une mesure finie sur $\mathcal{P}(X)$.

4. Montrer que toute mesure finie μ sur $\mathcal{P}(X)$ peut s'exprimer sous la forme (1) (pour X dénombrable, toute mesure finie est une série pondérée de masses de Dirac).

Exercice 10 Soient A une partie de P(X) telle que :

- $-\emptyset\in\mathcal{A}$:
- $\forall A \in \mathcal{A}, \ X \setminus A \in \mathcal{A} \ (\mathcal{A} \ est \ stable \ par \ passage \ au \ complémentaire);$
- $\forall (A, B) \in A^2$, $A \cap B \in A$ (A est stable par intersection finie);

 $(A \text{ est une algèbre de Boole}) \text{ et } \mu : A \to [0, +\infty] \text{ une application telle que } :$

- $-\mu\left(\emptyset\right)=0;$
- μ est σ -additive (i. e. $\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$ pour toute suite $\left(A_n\right)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints telle que $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$).
- 1. Montrer que, pour toute suite finie $(A_k)_{1 \le k \le n}$ d'éléments de \mathcal{A} , on a $\bigcap_{k=1}^n A_k \in \mathcal{A}$, $\bigcup_{k=1}^n A_k \in \mathcal{A}$ et $A_n \setminus \bigcup_{k=1}^{n-1} A_k \in \mathcal{A}$ (dans le cas où $n \ge 2$).
- 2. Montrer que μ est croissante
- 3. Soient $A \in \mathcal{A}$ et $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} telle que $A \subset \bigcup_{n \in \mathbb{N}} A_n$. Montrer que :

$$\mu\left(A\right) \le \sum_{n \in \mathbb{N}} \mu\left(A_n\right)$$

Exercice 11 Soit A une σ -algèbre sur X supposée dénombrable (i. e. en bijection avec une partie, finie ou infinie, de \mathbb{N}). Pour tout $x \in X$, on note :

$$A\left(x\right) = \bigcap_{\substack{A \in \mathcal{A} \\ x \in A}} A$$

 $(atome \ de \ x).$

- 1. Montrer que, pour tout $x \in X$, A(x) est le plus petit élément de A qui contient x.
- 2. Soient x, y dans X. Montrer que si $y \in A(x)$, on a alors A(x) = A(y).
- 3. Montrer que, pour tous x, y dans X, on a $A(x) \cap A(y) = \emptyset$ ou A(x) = A(y).
- 4. En désignant par $(x_i)_{i\in I}$ la famille des éléments de X telle que les $A(x_i)$ soient deux à deux disjoints, montrer que cette famille est dénombrable et que pour tout $A \in \mathcal{A}$, on a une partition $A = \bigcup_{j \in J} A(x_j)$, où J est une partie de I.
- 5. En déduire que A est finie, son cardinal étant une puissance de 2.

Exercice 12 Soit X un ensemble dénombrable. Quelle est la σ -algèbre engendrée par les singletons de X?

Exercice 13 Soit X un ensemble non dénombrable.

1. Quelle est la σ -algèbre \mathcal{A} engendrée par les singletons de X?

2. Montrer que l'application :

$$\begin{array}{ccc} \mu: & \mathcal{A} & \to & \{0,1\} \\ & A & \mapsto & \left\{ \begin{array}{c} 0 \ si \ A \ est \ d\'{e}nombrable} \\ 1 \ si \ X \setminus A \ est \ d\'{e}nombrable} \end{array} \right. \end{array}$$

est une mesure sur (X, A).

Exercice 14 Soit (X, \mathcal{A}, μ) un espace mesuré.

1. Montrer que si A, B sont des éléments de A tels que $A \subset B$ et $\mu(B) < +\infty$, on a alors :

$$\mu\left(B\setminus A\right) = \mu\left(B\right) - \mu\left(A\right)$$

- 2. Soient $(A_n)_{n\in\mathbb{N}}$ une suite croissante d'éléments de \mathcal{A} et $A=\bigcup_{n\in\mathbb{N}}A_n$. Montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en croissant vers $\mu(A)$.
- 3. Soient $(A_n)_{n\in\mathbb{N}}$ une suite décroissante d'éléments de A et $A = \bigcap_{n\in\mathbb{N}} A_n$. En supposant qu'il existe $n_0 \in \mathbb{N}$ tel que $\mu(A_{n_0}) < +\infty$, montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en décroissant vers $\mu(A)$.

Exercice 15 Soient μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et F la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ F(x) = \mu([x, +\infty[)$$

1. Montrer que F est décroissante avec, pour tout réel x :

$$\lim_{\substack{t \to x \\ t < x}} F\left(t\right) = F\left(x\right), \ \lim_{\substack{t \to x \\ t > x}} F\left(t\right) = F\left(x\right) - \mu\left(\left\{x\right\}\right)$$

et:

$$\lim_{t \to -\infty} F(t) = \mu(\mathbb{R}), \ \lim_{t \to +\infty} F(t) = 0$$

2. Montrer que l'ensemble :

$$\mathcal{D} = \{ x \in \mathbb{R} \mid \mu(\{x\}) > 0 \}$$

est dénombrable.

- III - Fonctions mesurables

Exercice 16 La mesure ℓ des intervalles réels se prolonge de manière unique en une mesure sur la tribu $\mathcal{B}(\mathbb{R})$ des boréliens, cette mesure étant invariante par translation. C'est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Nous allons vérifier que cette mesure ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.

On désigne par C le groupe quotient \mathbb{R}/\mathbb{Q} .

1. Vérifier que, pour toute classe d'équivalence $c \in \mathcal{C}$, on peut trouver un représentant x dans [0,1[.

Pour tout $c \in \mathcal{C}$, on se fixe un représentant x_c de c dans [0,1[(axiome du choix) et on désigne par A l'ensemble de tous ces réels x_c .

2. Montrer que les translatés r + A, où r décrit $[-1,1] \cap \mathbb{Q}$, sont deux à deux disjoints et que :

$$[0,1] \subset \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A) \subset [-1,2]$$

- 3. En déduire que A n'est pas borélien et que ℓ ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.
- 4. Donner un exemple de fonction $f : \mathbb{R} \to \mathbb{R}$ non mesurable (\mathbb{R} étant muni de la tribu de Borel) telle que |f| soit mesurable.

Exercice 17 \mathbb{R} est muni de la tribu de Borel.

Soit $f : \mathbb{R} \to \mathbb{R}$. Montrer que f est mesurable si, et seulement si, la restriction de f à tout segment [a,b] est mesurable.

Exercice 18 Soient E un espace vectoriel normé complet et a < b deux réels.

Une fonction $f:[a,b] \to E$ est dite réglée si elle admet une limite à droite en tout point de [a,b] et une limite à gauche en tout point de [a,b].

On notera $f(x^-)$ [resp. $f(x^+)$] la limite à gauche [resp. à droite] en $x \in [a, b]$ [resp. en $x \in [a, b]$].

- 1. Montrer qu'une fonction réglée est bornée.
- 2. Montrer qu'une limite uniforme de fonctions réglées de [a, b] dans E est réglée.
- 3. Soit $f:[a,b] \to E$ une fonction réglée et $\varepsilon > 0$. On note :

$$E_{\varepsilon} = \left\{ x \in \left] a, b \right] \mid il \text{ existe } \varphi \text{ en escaliers sur } \left[a, x \right] \text{ telle que } \sup_{t \in \left[a, x \right]} \left\| f \left(t \right) - \varphi \left(t \right) \right\| < \varepsilon \right\}$$

Montrer que $E_x \neq \emptyset$, puis que $b = \max(E_{\varepsilon})$.

- 4. Montrer qu'une fonction $f:[a,b] \to E$ est réglée si, et seulement si, elle est limite uniforme sur [a,b] d'une suite de fonctions en escaliers.
- 5. Montrer qu'une fonction réglée $f:[a,b] \to E$ est borélienne et qu'elle est continue sur [a,b] privé d'un ensemble D dénombrable (éventuellement vide).
- 6. La fonction $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$ est-elle réglée?
- 7. En désignant par E (t) la partie entière d'un réel t, montrer que la fonction f définie sur [0,1] par :

$$f(x) = \sum_{n=1}^{+\infty} \frac{E(nx)}{2^n}$$

est réglée, puis calculer $\int_0^1 f(x) dx$ (il s'agit d'une intégrale de Riemann).

Exercice 19 [a, b] est un intervalle fermé borné fixé avec a < b réels.

1. Montrer que les fonctions en escaliers positives sur [a,b] sont exactement les fonctions du type :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $n \in \mathbb{N}^*$, les a_k sont des réels positifs ou nuls et les I_k sont des intervalles contenus dans [a,b].

- 2. Montrer que si $(\varphi_k)_{1 \le k \le n}$ est une suite finie de fonctions en escaliers sur [a,b], alors la fonction $\varphi = \max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.
- 3. Soit f une fonction réglée définie sur [a, b] et à valeurs positives.
 - (a) Montrer qu'il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escaliers qui converge uniformément vers f sur [a,b] et telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in [a, b], \ \varphi_n(x) \le f(x)$$

(b) On désigne par $(\psi_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [a,b] par $\psi_0=0$ et pour tout $n\geq 1$:

$$\psi_n = \max\left(0, \varphi_1, \cdots, \varphi_n\right)$$

Monter que $(\psi_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions en escaliers qui converge uniformément vers f sur [a,b].

- (c) Montrer qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].
- 4. Montrer que les fonctions réglées à valeurs positives sur [a, b] sont exactement les fonctions de la forme :

$$f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$$

où les $(a_n)_{n\in\mathbb{N}}$ est une suite de réels positifs ou nuls, $(I_n)_{n\in\mathbb{N}}$ est une suite d'intervalles contenus dans [a,b] et la série considérée converge uniformément sur [a,b].

Exercice 20 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Montrer que sa dérivée f' est borélienne.

Exercice 21

- 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de \mathbb{R} dans \mathbb{R} . L'ensemble des réels x tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ soit convergente est-il ouvert? fermé?
- 2. Soient (X, A) un espace mesurable et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R} $(\mathbb{R} \text{ étant muni de la tribu borélienne}).$

Montrer que l'ensemble des éléments x de X tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ soit convergente est mesurable.

Exercice 22 On se place sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ muni de la mesure de comptage :

$$\forall A \in \mathcal{P}(\mathbb{N}), \ \mu(A) = \operatorname{card}(A) \in \mathbb{N} \cup \{+\infty\}$$

Calculer $\int_{\mathbb{N}} x d\mu$ pour toute suite réelle positive $x = (x_n)_{n \in \mathbb{N}}$.

Donner une condition nécessaire et suffisante pour qu'une suite $x = (x_n)_{n \in \mathbb{N}}$ à valeurs complexes soit sommable.

Exercice 23 On se place sur $(X, \mathcal{P}(X))$ muni d'une mesure de Dirac $\mu = \delta_x$, où $x \in X$ est fixé. Calculer $\int_X f d\mu$ pour toute fonction $f: X \to \mathbb{R}^+$.

Exercice 24 Soient X, Y deux espaces métriques munis de leur tribu borélienne respective. Montrer qu'une fonction $f: X \to Y$ qui est continue sur X privé d'un ensemble D dénombrable est borélienne.

Exercice 25 On se place sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, où λ est la mesure de Lebesgue.

- 1. Montrer que pour tout réel $\varepsilon > 0$, on peut trouver un ouvert \mathcal{O} dense dans \mathbb{R} tel que $\lambda(\mathcal{O}) < \varepsilon$.
- 2. Montrer qu'une partie mesurable bornée de $\mathbb R$ est de mesure finie. La réciproque est-elle vraie ?
- 3. Montrer qu'une partie mesurable de \mathbb{R} d'intérieur non vide est de mesure non nulle. La réciproque est-elle vraie?
- 4. Montrer qu'une partie mesurable A de [0,1] de mesure égale à 1 est dense dans [0,1]. Réciproquement un ouvert dense de [0,1] est-il de mesure égale à 1?

Exercice 26 (X, \mathcal{A}, μ) est un espace mesuré avec $\mu \neq 0$, \mathbb{R} est muni de la tribu de Borel et les fonctions considérées sont à valeurs réelles.

- 1. Montrer que si f, g sont deux fonctions mesurables de X dans \mathbb{R} , les fonctions f + g et fg sont mesurables.
- 2. Montrer que la somme de deux fonctions intégrables est intégrable.
- 3. Le produit de deux fonctions intégrables est-il intégrable?
- 4. La composée de deux fonctions intégrables est-il intégrable?
- 5. Soit $f: X \to \mathbb{R}$ une fonction intégrable positive. Montrer que pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que :

$$(A \in \mathcal{A} \ et \ \mu(A) < \eta) \Rightarrow \int_{A} f d\mu < \varepsilon$$

- 6. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer que pour tout réel $\varepsilon > 0$, il existe une partie mesurable A de X telle que $\mu(A) > 0$ et $|f(y) f(x)| < \varepsilon$ pour tous x, y dans A.
- 7. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que pour tout réel $\alpha > 0$, on a :

$$\mu\left(f^{-1}\left(\left[\alpha,+\infty\right[\right)\right) \le \frac{1}{\alpha} \int_X f d\mu$$

- 8. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que $\int_X f d\mu = 0$ si, et seulement si, f est nulle presque partout.
- 9. Soit $f: X \to \mathbb{R}$ une fonction mesurable positive. Montrer que si $\int_X f d\mu < +\infty$, on a alors $f(x) < +\infty$ presque partout.

- 10. Soient f, g deux fonctions mesurables positives sur X. Montrer que si f = g presque partout, alors $\int_X f d\mu = \int_X g d\mu$.
- 11. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer qu'il existe une partie mesurable A de X telle que $\mu(A) > 0$ et f est bornée sur A.
- 12. Soit $f: X \to \mathbb{R}$ une fonction mesurable telle que $f \neq 0$ presque partout. Montrer qu'il existe une partie mesurable A de X telle que $\mu(A) > 0$ et |f| est minorée sur A par une constante strictement positive.
- 13. Soit $f: X \to \mathbb{R}$ une fonction intégrable. Montrer que si $\int_A f d\mu = 0$ pour toute partie A mesurable dans X, alors la fonction f est nulle presque partout.

Exercice 27 Soient (X, \mathcal{A}, μ) un espace mesuré, la mesure μ étant finie, et f une fonction mesurable de X dans \mathbb{R}^+ (\mathbb{R} est muni de la tribu de Borel). On définit les suites $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ de parties mesurables de X par :

$$A_n = f^{-1}([n, +\infty[), B_n = f^{-1}([n, n+1[)$$

et g est la fonction définie sur X par :

$$g = \sum_{n=1}^{+\infty} n \mathbf{1}_{B_n}$$

1. Montrer que, pour tout entier $n \in \mathbb{N}$, on a :

$$\mu\left(A_{n}\right) = \sum_{k=n}^{+\infty} \mu\left(B_{k}\right)$$

- 2. Montrer que $g \le f < g + 1$.
- 3. Montrer que f est intégrable si, et seulement si, la série $\sum n\mu(B_n)$ est convergente.
- 4. Montrer que, pour tout entier $n \in \mathbb{N}^*$, on a :

$$\sum_{k=1}^{n} k\mu(B_k) = \sum_{k=1}^{n} \mu(A_k) - n\mu(A_{n+1})$$

- 5. Montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ est décroissante et converge vers 0.
- 6. Montrer que f est intégrable si, et seulement si, la série $\sum \mu(A_n)$ est convergente.
- 7. Le résultat précédent est-il valable dan le cas où $\mu(X) = +\infty$?

Exercice 28 Soient (X, \mathcal{A}, μ) un espace mesuré et $f: X \to \mathbb{R}$ une fonction mesurable.

- 1. Montrer que s'il existe une fonction intégrable $\varphi: X \to \mathbb{R}^+$ telle $|f| \leq \varphi$ presque partout, la fonction f est alors intégrable.
- 2. Montrer que si f est bornée presque partout et $\mu(X)$ est fini, la fonction f est alors intégrable. En particulier, une fonction $f:[a,b]\to\mathbb{R}$ qui est mesurable et bornée presque partout est intégrable.

Exercice 29

1. Soient I un intervalle réel non réduit à un point et $a \in I$. Pour tout $x \in I$, on désigne par $I_{a,x}$ l'intervalle fermé d'extrémités a et x. On se donne une fonction mesurable bornée, $f:I\to\mathbb{R}$ et on désigne par F la fonction définie sur I par :

$$\forall x \in I, \ F(x) = \int_{I_{a,x}} f(t) dt$$

soit:

$$F(x) = \begin{cases} \int_{a}^{x} f(t) dt & \text{si } a \leq x \\ \int_{x}^{a} f(t) dt & \text{si } x \leq a \end{cases}$$

Montrer que F est lipschitzienne (donc uniformément continue) sur I et qu'elle est dérivable en tout point $x_0 \in I$ où la fonction f est continue avec $F'(x_0) = f(x_0)$.

2. Montrer que si $f:[a,b] \to \mathbb{R}$ est une fonction dérivable de dérivée bornée, alors f' est intégrable sur [a,b] et :

$$\int_{a}^{b} f'(t) dt = f(b) - f(a)$$

3. En considérant la fonction f définie sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$ par f(0) = 0 et :

$$f(x) = \frac{x}{\ln(|x|)}\cos\left(\frac{1}{x}\right)$$

pour $x \neq 0$, vérifier que le résultat précédent n'est plus valable pour f dérivable de dérivée non bornée.

- V - Convergence monotone, dominée

Exercice 30 Soient (X, \mathcal{A}, μ) un espace mesuré.

- 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R}^+ qui converge vers une fonction f. Montrer que s'il existe une constante M>0 telle que $\int_X f_n d\mu \leq M$ pour tout $n\in\mathbb{N}$, on a alors $\int_Y f d\mu \leq M$.
- 2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite décroissante de fonctions mesurables de X dans \mathbb{R}^+ qui converge presque partout vers une fonction f.

Montrer que si f_0 est intégrable, il en est alors de même de toutes les fonctions f_n ainsi que de f et gu'on a:

$$\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$$

Le résultat subsiste-t-il si $\int_X f_0 d\mu = +\infty$?

3. Soient $f: X \to \overline{\mathbb{R}}$ une fonction intégrable et $(A_n)_{n \in \mathbb{N}}$ la suite de parties mesurables de X définie par :

$$A_n = |f|^{-1} \left([n, +\infty[\right)$$

(a) Montrer que f est finie presque partout et que :

$$\lim_{n \to +\infty} \int_{A_n} |f| \, d\mu = 0$$

(b) Montrer que pour tout réel $\varepsilon > 0$, il existe un réel $\eta > 0$ tel que :

$$(A \in \mathcal{A} \ et \ \mu(A) < \eta) \Rightarrow \int_{A} |f| \, d\mu < \varepsilon$$

(c) En prenant $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ où λ est la mesure de Lebesgue, montrer que la fonction F définie sur \mathbb{R} par :

$$F(x) = \int_0^x f(t) dt$$

est uniformément continue sur \mathbb{R} $(\int_0^x f(t) dt$ désigne l'intégrale de f sur l'intervalle d'extrémités 0 et x).

Exercice 31 On se place sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ muni de la mesure de comptage :

$$\forall A \in \mathcal{P}(\mathbb{N}), \ \mu(A) = \operatorname{card}(A) \in \mathbb{N} \cup \{+\infty\}$$

Pour tout $n \in \mathbb{N}$, on désigne par δ_n la mesure de Dirac en n.

1. Montrer que :

$$\mu = \sum_{n \in \mathbb{N}} \delta_n$$

2. Montrer que pour toute suite réelle positive $x=(x_n)_{n\in\mathbb{N}}$, on a :

$$\int_{\mathbb{N}} x d\mu = \sum_{n \in \mathbb{N}} x_n$$

3. Calculer:

$$\lim_{n \to +\infty} \sum_{k=1}^{+\infty} \frac{n}{k} \sin\left(\frac{1}{kn}\right)$$

Exercice 32 Calculer

$$\lim_{n \to +\infty} \int_0^1 n^2 x \left(1 - x\right)^n dx$$

et conclure.

Exercice 33 Pour tout réel $\alpha > 0$, on désigne par $(I_n(\alpha))_{n \in \mathbb{N}^*}$ la suite réelle définie par :

$$I_n(\alpha) = \int_0^{n^{\frac{1}{\alpha}}} \left(1 - \frac{x^{\alpha}}{n}\right)^n dx$$

Montrer que cette suite est convergente et calculer sa limite.

Exercice 34 Pour tout réel $\alpha > 0$, on désigne par $(I_n(\alpha))_{n \in \mathbb{N}^*}$ la suite réelle définie par :

$$I_n\left(\alpha\right) = \int_1^{+\infty} n^{\alpha} \sin\left(\frac{x}{n}\right) e^{-n^2 x^2} dx$$

Montrer que cette suite est convergente et calculer sa limite.

Exercice 35

1. Montrer que:

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n \ln\left(t\right) dt = \int_0^{+\infty} e^{-t} \ln\left(t\right) dt$$

2. Montrer que :

$$\int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} \ln(t) dt = \frac{n}{n+1} \left(\ln(n) - \sum_{k=1}^{n+1} \frac{1}{k}\right)$$

En déduire la valeur de $\int_0^{+\infty} e^{-t} \ln(t) dt$.

Exercice 36

- 1. Montrer que, tout réel x et tout réel $t \in]-1,1[$ la série $\sum t^{n-1}\sin(nx)$ est convergente et calculer sa somme. On notera f(x,t) cette somme.
- 2. Montrer que, pour tout réel $x \in [0, \pi[$, on a :

$$\int_0^1 f(x,t) dt = \frac{\pi - x}{2}$$

3. Monter que, pour tout réel $x \in [0, \pi[$, on a :

$$\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n} = \frac{\pi - x}{2}$$

Exercice 37 Soient a < b deux réels et $(a_n)_{n \ge 1}$, $(b_n)_{n \ge 1}$ deux suites réelles telles que :

$$\forall x \in \left]a, b\right[, \lim_{n \to +\infty} \left(a_n \cos\left(nx\right) + b_n \sin\left(nx\right)\right) = 0$$

Montrer que $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = 0$ (lemme de Cantor).

On peut raisonner par l'absurde en utilisant une suite de fonctions définie par :

$$f_k(x) = \frac{(a_{n_k}\cos(n_k x) + b_{n_k}\sin(n_k x))^2}{a_{n_k}^2 + b_{n_k}^2}$$

où la suite d'entiers $(n_k)_{k\geq 1}$ est judicieusement choisie.

Exercice 38 On désigne par H le demi plan complexe défini par :

$$\mathcal{H} = \left\{ z \in \mathbb{C} \mid \Re\left(z\right) > 0 \right\}$$

- 1. Montrer que, pour tout nombre complexe z, la fonction $t\mapsto t^{z-1}e^{-t}$ est intégrable sur $]1,+\infty[$.
- 2. Soit z un nombre complexe. Montrer que la fonction $t \mapsto t^{z-1}e^{-t}$ est intégrable sur]0,1[si, et seulement si, $z \in \mathcal{H}$.

La fonction gamma d'Euler est la fonction définie sur \mathcal{H} par :

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt$$

3. Montrer que :

$$\Gamma(1) = 1 \ et \ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

4. Montrer que la fonction gamma vérifie l'équation fonctionnelle :

$$\forall z \in \mathcal{H}, \ \Gamma(z+1) = z\Gamma(z) \tag{2}$$

5. Montrer que pour tout entier naturel n, on a :

$$\Gamma(n+1) = n! \ et \ \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

6.

- (a) Soient z et α deux nombres complexes. Montrer que la fonction $t \mapsto \frac{t^z e^{-\alpha t}}{1 e^{-t}}$ est intégrable $sur\]0, +\infty[$ si, et seulement si, $(z, \alpha) \in \mathcal{H}^2$.
- (b) Montrer que:

$$\forall (z, \alpha) \in \mathcal{H} \times \mathbb{R}^{+,*}, \int_{0}^{+\infty} \frac{t^{z} e^{-\alpha t}}{1 - e^{-t}} dt = \Gamma(z + 1) \zeta(z + 1, \alpha)$$

où ζ est la fonction dzéta de Hurwitz définie par :

$$\forall (z, \alpha) \in \mathcal{H} \times \mathbb{R}^{+,*}, \ \zeta(z+1, \alpha) = \sum_{n=0}^{+\infty} \frac{1}{(n+\alpha)^{z+1}}$$

En particulier, pour $\alpha = 1$, on a:

$$\forall z \in \mathcal{H}, \int_{0}^{+\infty} \frac{t^{z}}{e^{t} - 1} dt = \Gamma(z + 1) \zeta(z + 1)$$

 $où \zeta$ est la fonction dzéta de Riemann.

7. Pour tout entier $n \ge 1$ et tout $z \in \mathcal{H}$, on note :

$$I_n(z) = \frac{n!n^z}{z(z+1)\cdots(z+n)}$$

(a) Montrer que :

$$\forall z \in \mathcal{H}, \ \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{z-1} dt = I_{n}\left(z\right)$$

(b) En déduire que :

$$\forall z \in \mathcal{H}, \ \Gamma(z) = \lim_{n \to +\infty} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$

(formule d'Euler).

8. Montrer que :

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{2^{2n}}{\sqrt{n} \binom{2n}{n}}$$

soit:

$$\binom{2n}{n} \underset{n \to +\infty}{\backsim} \frac{1}{\sqrt{\pi}} \frac{2^{2n}}{\sqrt{n}}$$

(formule de Wallis).

9.

(a) Montrer que, pour tout entier $n \geq 1$ et tout $z \in \mathcal{H}$, on a :

$$I_{2n}(z) = 2^{z-1} \left(1 + \frac{z}{2n+1} \right) \frac{I_n\left(\frac{z}{2}\right) I_n\left(\frac{z+1}{2}\right)}{I_n\left(\frac{1}{2}\right)}$$

(b) Montrer que, pour tout $z \in \mathcal{H}$, on a :

$$\Gamma\left(z\right) = \frac{2^{z-1}}{\sqrt{\pi}} \Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right)$$

(formule de Legendre).

10. On désigne par f la fonction définie sur $\mathbb{R}^{+,*} \times \mathbb{R}$ par :

$$\forall (x, u) \in \mathbb{R}^{+,*} \times \mathbb{R}, \ f(x, u) = \begin{cases} 0 \ si \ u \le -\sqrt{x} \\ \left(1 + \frac{u}{\sqrt{x}}\right)^x e^{-u\sqrt{x}} \ si \ u > -\sqrt{x} \end{cases}$$

(a) Montrer que pour tout réel x > 0, on a :

$$\Gamma\left(x+1\right) = \sqrt{x} \left(\frac{x}{e}\right)^{x} \int_{-\infty}^{+\infty} f\left(x,u\right) du$$

(b) Montrer que, pour tout réel u, on a :

$$\lim_{x \to +\infty} f(x, u) = e^{-\frac{u^2}{2}}$$

(c) Montrer que pour tout $(x, u) \in [1, +\infty[\times \mathbb{R}, \text{ on } a :$

$$0 \le f(x, u) \le \varphi(u) = \begin{cases} e^{-\frac{u^2}{2}} & \text{si } u \le 0\\ (1 + u) e^{-u} & \text{si } u > 0 \end{cases}$$

(d) En déduire la formule de Stirling :

$$\Gamma(x+1) \underset{x \to +\infty}{\backsim} \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$

Pour x = n entier naturel non nul, on retrouve la formule usuelle :

$$n! \underset{n \to +\infty}{\backsim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

11. Montrer que la fonction gamma est continue sur \mathcal{H} et indéfiniment dérivable sur $\mathbb{R}^{+,*}$ avec pour tout entier naturel non nul n et tout réel strictement positif x:

$$\Gamma^{(n)}(x) = \int_0^{+\infty} (\ln(t))^n t^{x-1} e^{-t} dt$$

- 12. En utilisant l'équation fonctionnelle (2), montrer que la fonction Γ peut être prolongée en une fonction continue sur $\mathbb{C} \setminus \mathbb{Z}^-$ et que ce prolongement vérifie la même équation fonctionnelle. Pour tout $z \in \mathbb{C} \setminus \mathbb{Z}^-$, on notera encore $\Gamma(z)$ ce prolongement.
- 13. Montrer que, pour tout entier naturel n, on a :

$$\Gamma(z) \underset{z \to -n}{\backsim} \frac{(-1)^n}{n!} \frac{1}{z+n}$$

14. La formule des compléments.

On désigne par φ la fonction définie sur \mathcal{H} par :

$$\forall z \in \mathcal{H}, \ \varphi(z) = \int_0^1 \frac{t^{z-1}}{1+t} dt$$

et par \mathcal{D} la bande ouverte du plan complexe définie par :

$$\mathcal{D} = \{ z \in \mathbb{C} \mid 0 < \Re(z) < 1 \}$$

(a) Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\int_{0}^{+\infty} \frac{t^{z-1}}{1+t} dt = \varphi(z) + \varphi(1-z)$$

(b) Montrer que, pour tout $z \in \mathcal{D}$, on a:

$$\Gamma(z) \Gamma(1-z) = \varphi(z) + \varphi(1-z)$$

(c) Montrer que, pour tout $z \in \mathcal{H}$, on a :

$$\varphi(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+z}$$

(d) Montrer que, pour tout $z \in \mathcal{D}$, on a :

$$\Gamma(z)\Gamma(1-z) = \frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2}$$

(e) Montrer que, pour tout nombre complexe $z \in \mathbb{C} \setminus \mathbb{Z}$ et tout réel $t \in [0, \pi]$, on a :

$$\cos(zt) = \frac{\sin(\pi z)}{\pi} \left(\frac{1}{z} - 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - z^2} \cos(nt) \right)$$

(f) Montrer que, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a :

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

(g) Montrer que, pour tout $z \in \mathbb{C} \setminus \mathbb{Z}$, on a :

$$\Gamma(z)\Gamma(-z) = -\frac{\pi}{z\sin(\pi z)}$$

(h) En déduire que, pour tout $z \in \mathbb{C}$, on a :

$$\sin(\pi z) = \pi z \prod_{n=1}^{+\infty} \left(1 - \frac{z^2}{n^2}\right)$$

Exercice 39 Utilisation d'une intégrale double pour calculer $\sum_{n=1}^{+\infty} \frac{1}{n^2}$

1. Montrer que :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = -\int_0^1 \frac{\ln(1-y)}{y} dy$$

2. En déduire que :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \int \int_{[0,1]^2} \frac{dxdy}{1 - xy}$$

- 3. Montrer que l'application $\varphi:(u,v)\mapsto (u-v,u+v)$ est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 sur lui même et préciser son inverse.
- 4. Déterminer l'image par φ^{-1} du carré $[0,1]^2$.

5. Montrer que pour tout $u \in [0, 1]$, on a :

$$\arctan\left(\frac{u}{\sqrt{1-u^2}}\right) = \arcsin\left(u\right)$$

et:

$$\arctan\left(\frac{1-u}{\sqrt{1-u^2}}\right) = \frac{\pi}{4} - \frac{\arcsin\left(u\right)}{2}$$

6. En utilisant le changement de variable $(x,y) = \varphi(u,v)$, montrer que $\iint \frac{dxdy}{1-xy} = \frac{\pi^2}{6}$ et en conséquence $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

$-VI-Mesure de Lebesgue sur \mathbb{R}$

 $\mathcal{P}(\mathbb{R})$ désigne la tribu de toutes les parties de \mathbb{R} et $\mathcal{B}(\mathbb{R}) \subset \mathcal{P}(\mathbb{R})$ la tribu de Borel sur \mathbb{R} (i. e. la tribu engendrée par les intervalles ouverts).

Pour tout partie A de \mathbb{R} , on note :

$$\ell^*\left(A\right) = \inf_{A \subset \bigcup_{n \in \mathbb{N}} I_n} \sum_{n \in \mathbb{N}} \ell\left(I_n\right) \in \overline{\mathbb{R}^+}$$

la borne inférieure étant prise sur toutes les suites d'intervalles $(I_n)_{n\in\mathbb{N}}$ tels que $A\subset\bigcup I_n$.

On dit qu'une partie A de \mathbb{R} est négligeable si $\ell^*(A) = 0$, ce qui revient à dire que pour tout réel $\varepsilon > 0$ il existe une suite $(I_n)_{n \in \mathbb{N}}$ d'intervalles telle que :

$$A \subset \bigcup_{n \in \mathbb{N}} I_n \text{ et } \sum_{n \in \mathbb{N}} \ell\left(I_n\right) < \varepsilon$$

On dit qu'une partie A de \mathbb{R} est Lebesgue-mesurable (on dira simplement mesurable) si pour toute partie E de \mathbb{R} , on a :

$$\ell^{*}\left(E\right)=\ell^{*}\left(E\cap A\right)+\ell^{*}\left(E\setminus A\right)$$

où $E \setminus A = E \cap (\mathbb{R} \setminus A)$ (condition de Carathéodory).

La famille de toutes les parties de \mathbb{R} qui sont Lebesgue-mesurable est une tribu qui contient la tribu de Borel $\mathcal{B}(\mathbb{R})$. On la note $\mathcal{L}(\mathbb{R})$.

Pour toute partie mesurable $A \in \mathcal{L}(\mathbb{R})$, on note $\lambda(A) = \ell^*(A)$ et λ est une mesure sur $\mathcal{L}(\mathbb{R})$ (mesure de Lebesgue sur $(\mathbb{R}, \mathcal{L}(\mathbb{R}))$).

Exercice 40 Montrer que $\ell^*(I) = \ell(I)$ pour tout intervalle réel I et que ℓ^* est une mesure extérieure sur $\mathcal{P}(\mathbb{R})$, c'est-à-dire que :

$$\ell^* (\emptyset) = 0$$
$$A \subset B \Rightarrow \ell^* (A) < \ell^* (B)$$

et pour toute partie A de \mathbb{R} , toute suite $(A_n)_{n\in\mathbb{N}}$ de parties de \mathbb{R} , telles que $A\subset\bigcup_{n\in\mathbb{N}}A_n$, on a :

$$\ell^*(A) \le \sum_{n \in \mathbb{N}} \ell^*(A_n)$$

Exercice 41

- 1. Montrer qu'une partie négligeable de \mathbb{R} est mesurable de mesure nulle.
- 2. Montrer que toute partie d'un sous-ensemble négligeable de \mathbb{R} est négligeable et qu'une réunion dénombrable de parties négligeables est négligeable.
- 3. Montrer qu'une partie négligeable de $\mathbb R$ est d'intérieur vide. La réciproque est-elle vraie?
- 4. Montrer qu'une partie de \mathbb{R} est négligeable si, et seulement si, elle est contenue dans un borélien de mesure nulle.

Exercice 42 Montrer que, pour toutes parties A, B de \mathbb{R} , on a :

$$\ell^* (A \cup B) + \ell^* (A \cap B) \le \ell^* (A) + \ell^* (B)$$

Exercice 43 Soit A une partie de \mathbb{R} contenu dans un mesurable B. Montrer que pour toute partie C de \mathbb{R} telle que $B \cap C = \emptyset$, on a:

$$\ell^* (A \cup C) = \ell^* (A) + \ell^* (C)$$

Exercice 44 Soient A, B deux parties de \mathbb{R} telles que d(A, B) > 0. Montrer que :

$$\ell^* (A \cup B) = \ell^* (A) + \ell^* (B)$$

Exercice 45 Soit B une partie négligeable de \mathbb{R} . Montrer que pour toute partie A de \mathbb{R} on a :

$$\ell^* (A \cup B) = \ell^* (A) = \ell^* (A \setminus B)$$

Exercice 46 Soit A une partie de \mathbb{R} . Montrer que les propriétés suivantes sont équivalentes :

- 1. A est mesurable;
- 2. pour tout réel $\varepsilon > 0$, il existe un ouvert \mathcal{O} de \mathbb{R} qui contient A tel que $\ell^*(\mathcal{O} \setminus A) < \varepsilon$;
- 3. pour tout réel $\varepsilon > 0$, il existe un fermé \mathcal{F} de \mathbb{R} contenu dans A tel que $\ell^*(A \setminus \mathcal{F}) < \varepsilon$.

Exercice 47 Soit A une partie de \mathbb{R} . Montrer que A est mesurable de mesure finie si, et seulement si, pour tout réel $\varepsilon > 0$, il existe un compact K de \mathbb{R} contenu dans A et un ouvert \mathcal{O} de \mathbb{R} qui contient A tels que ℓ^* ($\mathcal{O} \setminus K$) $< \varepsilon$.

Exercice 48 Fonctions Riemann-intégrables.

On se donne deux réels a < b et une fonction bornée $f : [a,b] \to \mathbb{R}$. Pour tout $x \in [a,b]$, l'oscillation de f en x est le réel :

$$\omega\left(x\right) = \inf_{\eta > 0} \sup_{|x - \eta, x + \eta[\cap[a, b]]} \left| f\left(y\right) - f\left(z\right) \right|$$

1. Montrer que l'ensemble des points de continuité de f est :

$$C = \{x \in [a, b] \mid \omega(x) = 0\}$$

- 2. Montrer que la fonction ω est semi-continue supérieurement.
- 3. Montrer que, pour tout entier $n \geq 1$, l'ensemble :

$$D_{n} = \left\{ x \in [a, b] \mid \omega(x) \ge \frac{1}{n} \right\}$$

est un fermé et en déduire que l'ensemble D des points de discontinuité de f est mesurable.

4. On se propose de montrer dans cette question, qu'une fonction Riemann-intégrable est continue presque partout.

On suppose que la fonction bornée $f:[a,b]\to\mathbb{R}$ est Riemann-intégrable.

On se donne un réel $\varepsilon > 0$ et un entier $n \geq 1$.

(a) Justifier l'existence de deux fonctions en escaliers φ et ψ telles que $|f - \varphi| \leq \psi$ et $\int_a^b \psi(x) \, dx < \frac{\varepsilon}{2n}.$

On se donne une subdivision $a_0 < a_1 < \dots < a_p = b$ de [a,b] telle que $\varphi = \sum_{k=1}^{p-1} \varphi_k \mathbf{1}_{[a_k,a_{k+1}[}$

et $\psi = \sum_{k=0}^{p-1} \psi_k \mathbf{1}_{[a_k, a_{k+1}[}$ (la valeur de ces fonctions en b est sans importance).

(b) Montrer que:

$$\forall x \in [a, b] \setminus \{a_0, a_1, \cdots, a_p\}, \ \omega(x) < 2\psi(x)$$

- (c) En déduire que $0 \le \lambda(D_n) < \varepsilon$ et conclure.
- 5. On se propose de montrer dans cette question, la réciproque du résultat précédent, à savoir qu'une fonction bornée $f:[a,b]\to\mathbb{R}$ qui est continue presque partout est Riemann-intégrable. On suppose que l'ensemble D des points de discontinuité de la fonction bornée $f:[a,b]\to\mathbb{R}$ est négligeable et pour tout réel $\varepsilon>0$, on note :

$$D_{\varepsilon} = \{ x \in [a, b] \mid \omega(x) \ge \varepsilon \}$$

(a) Montrer qu'il existe une suite finie $(I_k)_{1 \le k \le p}$ d'intervalles ouverts telle que :

$$D_{\varepsilon} \subset \bigcup_{k=1}^{p} I_{k} \ et \ \sum_{k=1}^{p} \ell\left(I_{k}\right) < \varepsilon$$

(b) Montrer qu'il existe une suite $(J_k)_{1 \le k \le m}$ d'intervalles ouverts telle que :

$$K_{\varepsilon} = [a, b] \setminus \bigcup_{k=1}^{p} I_k \subset \bigcup_{k=1}^{m} J_k$$

avec:

$$\forall k \in \{1, \dots, m\}, \sup_{(y,z) \in J_k^2} |f(y) - f(z)| < \varepsilon$$

(c) On ordonne les extrémités des intervalles de $R_1 = (I_k)_{1 \le k \le p}$ et de $R_2 = (J_k)_{1 \le k \le m}$ en une subdivision $\sigma = (a_k)_{0 \le k \le r}$ de [a,b], chaque intervalle ouvert $]a_k, a_{k+1}[$ étant dans au moins un des I_i ou un des J_i .

On note E_1 l'ensemble des indices k compris entre 0 et r-1 tels que $]a_k, a_{k+1}[$ est dans au moins un des I_j et E_2 le complémentaire de cet ensemble.

On note M la borne supérieure de |f| sur [a,b] et on définit les fonctions en escaliers φ et ψ par :

$$\forall k \in E_1 \ et \ \forall t \in]a_k, a_{k+1}[, \ \varphi(t) = 0, \ \psi(t) = M$$

$$\forall k \in E_2 \ et \ \forall t \in]a_k, a_{k+1}[, \ \varphi(t) = f\left(\frac{a_k + a_{k+1}}{2}\right), \ \psi(t) = \varepsilon$$

(la définition de ces fonctions aux points de la subdivision σ n'ayant pas d'importance).

Montrer que
$$|f - \varphi| \le \psi$$
 et $\int_a^b \psi(x) dx < (M + b - a) \varepsilon$. Conclure.

Exercice 49 Montrer que la fonction $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$ est Lebesgue-intégrable et non Riemann-intégrable sur [0,1].

Exercice 50 Soient I, un intervalle réel d'intérieur non vide, a un point de I et f, g deux fonctions intégrables de I dans \mathbb{R} . Montrer f = g presque partout si, et seulement si, $\int_a^x f(t) dt = \int_a^x g(t) dt$ pour tout $x \in I$.

- VII - Fonction définie par une intégrale

Exercice 51 Théorème de Fubini pour les fonctions continues sur un rectangle.

Étant donnée une fonction $f \in C^0([a,b] \times [c,d], \mathbb{C})$, où a < b et c < d, on lui associe les fonctions α et β définies sur[c,d] par :

$$\forall z \in [c, d], \begin{cases} \alpha(z) = \int_{c}^{z} \left(\int_{a}^{b} f(t, x) dt \right) dx \\ \beta(z) = \int_{a}^{b} \left(\int_{c}^{z} f(t, x) dx \right) dt \end{cases}$$

- 1. Montrer que la fonction α est de classe C^1 sur [c,d] et donner une expression de sa dérivée α' .
- 2. On désigne par γ la fonction définie sur le rectangle $R = [a, b] \times [c, d]$ par :

$$\gamma(t, z) = \int_{c}^{z} f(t, x) dx$$

Montrer que la fonction γ est continue sur R et qu'elle admet une dérivée partielle par rapport à z en tout point de R, cette dérivée $\frac{\partial \gamma}{\partial z}$ étant continue sur R.

- 3. Montrer que la fonction β est de classe C^1 sur [c,d] et donner une expression de sa dérivée β' .
- 4. Déduire de ce qui précède que :

$$\forall z \in [c, d], \int_{c}^{z} \left(\int_{a}^{b} f(t, x) dt \right) dx = \int_{a}^{b} \left(\int_{c}^{z} f(t, x) dx \right) dt$$

et en particulier :

$$\int_{c}^{d} \left(\int_{a}^{b} f(t, x) dt \right) dx = \int_{a}^{b} \left(\int_{c}^{d} f(t, x) dx \right) dt$$

Exercice 52 Théorème de Fubini pour les fonctions continues sur un triangle. Soient deux réels a < b et φ une fonction à valeurs réelles définie et continue sur le triangle :

$$T = \left\{ (x, y) \in \mathbb{R}^2 \mid a \le x \le y \le b \right\}$$

1. Montrer que la fonction ψ définie sur le carré $C = [a,b]^2$ par :

$$\forall (x,y) \in C, \ \psi\left(x,y\right) = \left\{ \begin{array}{ll} \varphi\left(x,y\right) - \varphi\left(x,x\right) & si \ (x,y) \in T \\ 0 & si \ (x,y) \notin T \end{array} \right.$$

est continue sur C.

2. Soit $k \in C^0([a,b],\mathbb{R})$. Montrer que:

$$\forall z \in [a, b], \int_{a}^{z} \left(\int_{a}^{y} k(x) dx \right) dy = \int_{a}^{z} \left(\int_{x}^{z} k(x) dy \right) dx$$

3. Déduire de ce qui précède que :

$$\forall z \in [a, b], \int_{a}^{z} \left(\int_{a}^{y} \varphi(x, y) dx \right) dy = \int_{a}^{z} \left(\int_{x}^{z} \varphi(x, y) dy \right) dx$$

et en particulier:

$$\int_{a}^{b} \left(\int_{a}^{y} \varphi(x, y) \, dx \right) dy = \int_{a}^{b} \left(\int_{x}^{b} \varphi(x, y) \, dy \right) dx$$

Exercice 53 L'intégrale de Gauss $\int_0^{+\infty} e^{-t^2} dt$

- 1. Montrer que la fonction $f: t \mapsto e^{-t^2}$ est intégrable sur \mathbb{R}^+ .
- 2. Pour tout réel R > 0, on note :

$$I_R = \int_0^R e^{-t^2} dt$$

$$C_R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x, y \le R\} \text{ et } T_R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le x \le R\}$$

(a) Montrer que:

$$I_R^2 = 2 \iint_{T_R} e^{-\left(x^2 + y^2\right)} dx dy$$

(b) Montrer que:

$$I_R^2 = \frac{\pi}{4} - \int_0^{\frac{\pi}{4}} e^{-\frac{R^2}{\cos^2(\theta)}} d\theta$$

et en déduire que
$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$
.

3. En munissant, pour tout entier $n \geq 1$, \mathbb{R}^n de sa structure euclidienne canonique, calculer $\int_{\mathbb{R}^n} e^{-\|x\|^2} dx.$

Exercice 54 *L'intégrale de Gauss* $\int_0^{+\infty} e^{-t^2} dt$

On considère les fonctions F et G définies sur \mathbb{R}^+ par :

$$F(x) = \left(\int_0^x e^{-t^2} dt\right)^2, \ G(x) = \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt$$

- 1. Montrer que ces fonctions sont de classe C^{∞} sur \mathbb{R}^+ et que F' + G' = 0.
- $2. \ En \ d\'eduire \ la \ valeur \ de \ l'int\'egrale \ de \ Gauss.$

Exercice 55 *L'intégrale de Gauss* $\int_0^{+\infty} e^{-t^2} dt$

On désigne par f la fonction définie sur $\mathbb{R}^{+,*}$ par :

$$\forall t \in \mathbb{R}^{+,*}, \ f(t) = \frac{1}{\sqrt{t}(1+t)}$$

1. Montrer que la fonction :

$$F: x \in \mathbb{R}^+ \mapsto F(x) = \int_0^{+\infty} e^{-xt} f(t) dt$$

est bien définie et continue sur \mathbb{R}^+ .

- 2. Montrer que F est de classe C^1 sur $\mathbb{R}^{+,*}$ et solution d'une équation différentielle de la forme $y'-y=-\frac{\lambda}{\sqrt{x}}$, où λ est une constante réelle.
- 3. Résoudre cette équation différentielle et en déduire la valeur de l'intégrale de Gauss.

Exercice 56 L'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(t)}{t} dt$. On désigne par f la fonction définie sur \mathbb{R}^+ par :

$$\forall t \in \mathbb{R}^+, \ f(t) = \frac{1}{1 + t^2}$$

1. Montrer que la fonction :

$$F: x \in \mathbb{R}^+ \mapsto F(x) = \int_0^{+\infty} e^{-xt} f(t) dt$$

est bien définie et continue sur \mathbb{R}^+ .

- 2. Montrer que F est de classe C^2 sur $\mathbb{R}^{+,*}$ et solution de l'équation différentielle $y'' + y = \frac{1}{x}$.
- 3. Résoudre cette équation différentielle et en déduire la valeur de l'intégrale de Dirichlet.

Exercice 57 $\mathcal{L}^1(\mathbb{R})$ est l'espace vectoriel des fonctions Lebesgue-intégrables de \mathbb{R} dans \mathbb{C} . Pour toute fonction $f \in \mathcal{L}^1(\mathbb{R})$, on note :

$$\left\|f\right\|_{1} = \int_{\mathbb{R}} \left|f\left(t\right)\right| dt$$

- 1. Soient f, g deux fonctions dans $\mathcal{L}^1(\mathbb{R})$. Montrer que :
 - (a) pour tout $x \in \mathbb{R}$, la fonction $t \mapsto f(x t) g(t)$ est intégrable sur \mathbb{R} ;
 - (b) la fonction $f * g : x \mapsto \int_{\mathbb{R}} f(x t) g(t) dt$ est intégrable sur \mathbb{R} ;
 - (c) $||f * g||_1 \le ||f||_1 ||f||_1$.

La fonction f * g est le produit de convolution de f et g.

2. Montrer que la loi de composition interne * est commutative et associative sur $\mathcal{L}^1(\mathbb{R})$.

Exercice 58 Pour tout intervalle réel I non réduit à un point, on désigne par $C^0(I,\mathbb{R})$ l'espace vectoriel des fonctions continues de I dans \mathbb{R} .

 $I = \mathbb{R}^+$ ou I = [0, X] pour un réel X > 0, E est l'espace vectoriel $C^0(I, \mathbb{R})$ et T est l'opérateur de Volterra (ou opérateur de primitivation) défini par :

$$\forall f \in E, \ \forall x \in I, \ T(f)(x) = \int_0^x f(t) dt$$

Pour toutes fonctions f, g dans E, on définit le produit de convolution f * g par :

$$\forall x \in I, \ f * g(x) = \int_0^x f(x-t) g(t) dt$$

- 1. Montrer que :
 - (a) la loi * est une loi de composition interne sur E;
 - (b) cette loi est commutative;

- (c) cette loi est associative;
- (d) il n'existe pas d'élément neutre pour cette loi.
- 2. Montrer que pour toutes fonctions f, g dans E, on a:

$$T(f * g) = T(f) * g = f * T(g)$$

 $et \ pour \ tout \ entier \ naturel \ n :$

$$T^{n}\left(f\ast g\right) = T^{n}\left(f\right)\ast g = f\ast T^{n}\left(g\right)$$

3. On suppose que f et g sont des fonctions de classe C^1 sur I. Montrer que f * g est de classe C^1 sur I avec :

$$(f * g)' = f(0) g + f' * g = g(0) f + f * g'$$

- 4. On prend ici I = [0, 1] et on se propose de montrer le cas particulier suivant du théorème de Titchmarsh : si f, g sont deux fonctions développables en série entière sur un intervalle]-R, R[où R > 1 telles que f * g = 0, on a alors f = 0 ou g = 0.
 - (a) On suppose que f et g sont des fonctions de classe C^{∞} sur [0,1] avec $f(0) \neq 0$. Montrer que si f * g = 0, on a alors $g^{(n)}(0) = 0$ et $f * g^{(n+1)} = 0$ pour tout $n \in \mathbb{N}$.
 - (b) On suppose que f et g sont des fonctions de classe C^{∞} sur [0,1] telles que f(0) = 0, $f'(0) \neq 0$ et f * g = 0. Montrer qu'on a f' * g = 0 et $g^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$.
 - (c) Soient f, g deux fonctions de classe C^{∞} sur [0,1]. Montrer que si f * g = 0, on a alors $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$, ou $g^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$.
 - (d) Soient f, g deux fonctions développables en série entière sur un intervalle]-R, R[où R > 1. Montrer que si f * g = 0, on a alors f = 0 ou g = 0.

Exercice 59 Opérateurs de Volterra

On se donne deux réels a < b et E est l'espace vectoriel $C^0([a,b],\mathbb{R})$.

On dit que $\lambda \in \mathbb{R}$ est une valeur propre de $u \in \mathcal{L}(E)$ si $\ker(\lambda Id - u) \neq \{0\}$.

On dit que $\lambda \in \mathbb{R}$ est une valeur spectrale de $u \in \mathcal{L}(E)$ si $\lambda Id - u$ n'est pas bijective.

Le spectre de u est l'ensemble $\sigma(u)$ des valeurs spectrales de u.

Étant donnée une fonction $K \in \mathcal{C}^0([a,b]^2,\mathbb{R})$, où a < b, on lui associe les endomorphismes de E, T_K et T_K^* définis par :

$$\forall f \in E, \ \forall x \in [a, b], \ T_K(f)(x) = \int_a^x f(t) K(t, x) dt$$
(3)

et:

$$\forall f \in E, \ \forall x \in [a, b], \ T_K^*(f)(x) = \int_x^b f(t) K(x, t) dt$$

On dit que T_K est un opérateur de Volterra de noyau K.

Pour K constante égale à 1 sur $[0,1]^2$, on notera simplement T l'opérateur de Volterra correspondant et T^* l'opérateur T_K^* .

1. Montrer que T_K^* est l'unique endomorphisme de E tel que pour toutes fonctions f,g dans E, on ait :

$$\langle T_K(f) \mid g \rangle = \langle f \mid T_K^*(g) \rangle$$

2. On se propose de montrer que T_K est continue de $(E, \|\cdot\|_{\infty})$ dans $(E, \|\cdot\|_{\infty})$ avec :

$$||T_K||_{\infty} = \sup_{x \in [a,b]} \int_a^x |K(t,x)| dt$$

- (a) Montrer le résultat pour K à valeurs positives.
- (b) Montrer que T_K est continue de $(E, \|\cdot\|_{\infty})$ dans $(E, \|\cdot\|_{\infty})$ avec :

$$||T_K||_{\infty} \le ||T_{|K|}||_{\infty}$$

(c) Justifier l'existence de $x_0 \in [a, b]$ tel que :

$$||T_{|K|}||_{\infty} = \sup_{x \in [a,b]} \int_{a}^{x} |K(t,x)| dt = \int_{a}^{x_{0}} |K(t,x_{0})| dt$$

(d) On désigne par $(\varepsilon_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs telle que $\lim_{n\to+\infty} \varepsilon_n = 0$ et par $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions continues définie par :

$$\forall n \in \mathbb{N}, \ \forall t \in [a, b], \ f_n(t) = \frac{K(t, x_0)}{|K(t, x_0)| + \varepsilon_n}$$

Montrer que $\lim_{n\to+\infty} T_K(f_n)(x_0) = \|T_{|K|}\|_{\infty}$ et conclure.

3. On suppose que K est à valeurs positives et on se propose de montrer que T_K est continue de $(E, \|\cdot\|_1)$ dans $(E, \|\cdot\|_1)$ avec :

$$\left\|T_K\right\|_1 = \sup_{x \in [a,b]} \int_x^b K(x,t) dt$$

(a) Montrer que T_K est continue de $(E, \|\cdot\|_1)$ dans $(E, \|\cdot\|_1)$ avec :

$$||T_K||_1 \le \sup_{x \in [a,b]} \int_x^b K(x,t) dt$$

(b) Justifier l'existence de $x_0 \in [a, b]$ tel que :

$$\sup_{x \in [a,b]} \int_{x}^{b} K(x,t) dt = \int_{x_0}^{b} K(x_0,t) dt$$

(c) Montrer que :

$$\|T_K\|_1 = \sup_{x \in [a,b]} \int_x^b K(x,t) dt$$

4. Montrer que T_K est continue de $(E, \|\cdot\|_2)$ dans $(E, \|\cdot\|_2)$ et que :

$$\left\|T_K\right\|_2 \le \frac{b-a}{\sqrt{2}} \left\|K\right\|_{\infty}$$

$$o\grave{u} \parallel K \parallel_{\infty} = \sup_{(x,t) \in [a,b]^2} \left| K \left(x,t \right) \right|.$$

- 5. On se propose de montrer que l'opérateur T_K n'a pas de valeur propre réelle non nulle.
 - (a) On suppose que K = 1. Montrer que T n'admet pas de valeur propre.
 - (b) On revient au cas général.

Comme pour K=0 le résultat est évident, on suppose que $K\neq 0$.

On raisonne par l'absurde en supposant qu'il existe un réel $\lambda \in \mathbb{R}^*$ et une onction $f \in E \setminus \{0\}$ tels que $K(f) = \lambda f$.

On désigne par g la fonction définie par $g = T(f^2)$.

- i. Montrer que la fonction g est croissante et qu'il existe un réel $\alpha \in [a,b[$ tel que g(x) = 0 pour tout $x \in [a,\alpha]$ et g(x) > 0 pour tout $x \in [a,b]$.
- ii. Montrer qu'il existe un réel $\beta > 0$ tel que :

$$\forall x \in [a, b], \ \lambda^2 g'(x) \le \beta g(x)$$

iii. Conclure.

(c) On suppose que [a, b] = [0, 1] et T_K est l'opérateur défini par :

$$\forall f \in E, \ \forall x \in [0,1], \ T_K(f)(x) = \int_0^x f(t) \cos(x-t) dt$$

(opérateur de convolution par la fonction cos).

- i. Montrer que, pour toute fonction $f \in E$, la fonction $T_K(f)$ est de classe C^1 sur [0,1].
- ii. Montrer que T_K n'a pas de valeur propre.
- 6. Montrer que si K_1 et K_2 sont deux fonctions continues sur $[a,b]^2$, alors la composée $T_{K_1} \circ T_{K_2}$ est un opérateur de Volterra sur E.
- 7. On se propose de montrer que $\sigma(T_K) = \{0\}$.
 - (a) Montrer que, pour tout entier naturel non nul n, l'application T_K^n est un opérateur de Volterra, c'est-à-dire qu'il existe une fonction $K_n \in \mathcal{C}^0([a,b]^2,\mathbb{R})$ telle que :

$$\forall f \in E, \ \forall x \in [a, b], \ T_K^n(f)(x) = \int_a^x f(t) K_n(t, x) dt$$

(b) Montrer que, pour tout entier naturel non nul n, on a :

$$\forall (x,y) \in [a,b]^2, |K_n(x,y)| \le \frac{\|K\|_{\infty}^n}{(n-1)!} |x-y|^{n-1}$$

(c) Montrer que pour tout entier naturel non nul n, on a :

$$||T_K^n||_2 \le \frac{||K||_{\infty}^n (b-a)^n}{n!}$$

- (d) Montrer que la série $\sum T_K^n$ est convergente dans $(\mathcal{L}(E), \|\cdot\|_2)$, que $Id T_K$ est inversible dans $\mathcal{L}(E)$ et donner une expression de $(Id T_K)^{-1}$.
- (e) Montrer que, pour tout réel non nul λ , l'opérateur $\lambda Id T_K$ est inversible dans $\mathcal{L}(E)$ et retrouver le fait que T_K n'a pas de valeur propre non nulle.
- (f) Montrer que $\sigma(T_K) = \{0\}$.
- 8. Pour cette question et les suivantes, K = 1.
 - (a) Montrer que, pour tout $f \in E$, tout $n \in \mathbb{N}^*$ et tout $x \in [0,1]$, on a :

$$T^{n}(f)(x) = \int_{a}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt$$

la fonction $T^{n}(f)$ étant de classe C^{n} sur [a,b].

- (b) Calculer $||T^n||_{\infty}$ et $||T^n||_1$, pour tout $n \in \mathbb{N}$.
- (c) Donner une expression de $(\lambda Id T)^{-1}$ pour $\lambda \in \mathbb{R}^*$.

(d) Montrer que, pour tout $f \in E$, tout $n \in \mathbb{N}^*$ et tout $x \in [a, b]$, on a :

$$(T^*)^n(f)(x) = \int_x^b \frac{(t-x)^{n-1}}{(n-1)!} f(t) dt$$

(e) Montrer que, pour tout $f \in E$, tout $n \in \mathbb{N}^*$ et tout $x \in [a, b]$, on a :

$$T^{n}(f)(x) + (T^{*})^{n}(f)(x) = \int_{a}^{b} \frac{|t - x|^{n-1}}{(n-1)!} f(t) dt$$

- 9. Soit H un sous-espace vectoriel de dimension finie de E stable par T. Montrer que $H = \{0\}$.
- 10. Soient f une fonction de classe C^1 sur [a,b] telle que f(a) = 0 et φ la fonction définie sur l'intervalle ouvert [a,b[par :

$$\varphi(t) = \frac{\pi}{2(b-a)\tan\left(\frac{\pi}{2}\frac{t-a}{b-a}\right)}$$

- (a) Montrer que la fonction φ se prolonge par continuité en b et que la fonction $\varphi \cdot f$ se prolonge par continuité en a.
- (b) Montrer que:

$$\forall t \in \left]a, b\right[, \ \varphi^{2}\left(t\right) + \varphi'\left(t\right) = -\frac{\pi^{2}}{4\left(b - a\right)^{2}}$$

(c) Montrer que:

$$||f' - \varphi \cdot f||_2^2 = ||f'||_2^2 - \frac{\pi^2}{4(b-a)^2} ||f||_2^2$$

(d) En déduire que :

$$||f||_2 \le \frac{2(b-a)}{\pi} ||f'||_2$$

l'égalité étant réalisée uniquement pour les fonctions $f: t \in [a,b] \mapsto \lambda \sin\left(\frac{\pi}{2}\frac{t-a}{b-a}\right)$, où λ est une constante réelle.

11. Calculer $||T||_2$.

- VIII - Théorèmes de changement de variables et de Fubini sur \mathbb{R}^n

Exercice 60 Quelle est l'image de $\mathcal{U} = (\mathbb{R}_+^*)^2$ par l'application qui à (x,y) associe (x+y,y)? Montrer que cette application est un \mathcal{C}^1 -difféomorphisme de \mathcal{U} sur son image. En déduire la valeur de $\int_{\mathcal{U}} e^{-(x+y)^2} dx \, dy$.

Exercice 61 Soient a et b deux réels tels que -1 < a < b.

- 1. Montrer que la fonction la fonction $(x,y) \mapsto f(x,y) = y^x$ est intégrable sur le rectangle $[a,b] \times [0,1]$.
- 2. En déduire la valeur de $\int_0^1 \frac{y^b y^a}{\ln(y)} dy$.

Exercice 62 La fonction $f:(x,y)\mapsto e^{-xy}\sin(x)\sin(y)$ est-elle intégrable sur $\mathcal{U}=\left(\mathbb{R}_+^\star\right)^2$?

Exercice 63 Soit f la fonction définie sur $R = [0, 1]^2$ par :

$$f(x,y) = \frac{x-y}{(x^2+y^2)^{\frac{3}{2}}}$$

- 1. La fonction f est-elle intégrable sur R?
- 2. Calculer une primitive de $\frac{1}{(1+t^2)^{\frac{3}{2}}}$ sur \mathbb{R} .
- 3. Calculer, pour tout $y \in [0, 1]$:

$$\varphi\left(y\right) = \int_{0}^{1} f\left(x, y\right) dx$$

4. Montrer que :

$$\int_{0}^{1} \left(\int_{0}^{1} f(x, y) dx \right) dy \neq \int_{0}^{1} \left(\int_{0}^{1} f(x, y) dy \right) dx$$

Exercice 64 Soient f, g les fonctions définies sur $R = [0, 1]^2$ par :

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 et $g(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$

- 1. Montrer que f est intégrable sur R et calculer $\int_{R} f(x,y) dxdy$.
- 2.
- (a) Calculer, pour tout $y \in]0,1[$:

$$\varphi\left(y\right) = \int_{0}^{1} g\left(x, y\right) dx$$

(b) Calculer:

$$\int_0^1 \left(\int_0^1 g(x,y) \, dx \right) dy \ et \ \int_0^1 \left(\int_0^1 g(x,y) \, dy \right) dx$$

et conclure.

Exercice 65 Fonction Béta.

On désigne par \mathcal{H} le demi plan complexe défini par :

$$\mathcal{H} = \{ z \in \mathbb{C} \mid \Re(z) > 0 \}$$

1. Soient u, v deux nombres complexes. Montrer que la fonction $t \mapsto t^{u-1} (1-t)^{v-1}$ est intégrable sur]0,1[si, et seulement si, $(u,v) \in \mathcal{H}^2$.

Définition : la fonction béta (ou fonction de Bessel de seconde espèce) est la fonction définie sur \mathcal{H}^2 par :

$$\forall (u, v) \in \mathcal{H}^2, \ B(u, v) = \int_0^1 t^{u-1} (1-t)^{v-1} dt$$

2. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a :

$$B(u, v) = B(v, u)$$
 et $B(u + 1, v) = \frac{u}{u + v} B(u, v)$

3. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a:

$$\lim_{n \to +\infty} n^{u} B\left(u, v + n + 1\right) = \Gamma\left(u\right)$$

- 4. Montrer que, pour tous nombres complexes u, v dans \mathcal{H} , on a $B(u, v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}$.
- 5. Calculer B(n+1, m+1), pour n, m entiers naturels.

- IX - Espaces L^p

Exercice 66 Soient (X, \mathcal{M}, μ) un espace mesuré, $1 \leq p < \infty$ et $\mathcal{L}^p = \mathcal{L}^p(X, \mathcal{M}, \mu)$.

 $\mathcal{L}^{\infty} = \mathcal{L}^{\infty}(X, \mathcal{M}, \mu)$ est l'espace vectoriel des fonctions qui s'écrivent comme la somme d'une fonction mesurable bornée et d'une fonction nulle presque partout.

Pour $1 \leq p \leq \infty$, $L^p = L^p(X, \mathcal{M}, \mu)$ est l'espace vectoriel quotient $\frac{\mathcal{L}^p(X, \mathcal{M}, \mu)}{\mathcal{N}(X, \mathcal{M}, \mu)}$ où $\mathcal{N}(X, \mathcal{M}, \mu)$ est le sous-espace vectoriel de $\mathcal{L}^p(X, \mathcal{M}, \mu)$ formé des fonctions nulles presque partout. Une fonction $f \in \mathcal{L}^p(X, \mathcal{M}, \mu)$ est identifiée à sa classe d'équivalence $\overline{f} \in L^p(X, \mathcal{M}, \mu)$. On se donne $p \in [1, \infty]$.

- 1. Montrer que, si f, g sont à valeurs réelles et dans \mathcal{L}^p , alors $\max(f, g)$ et $\min(f, g)$ sont aussi dans \mathcal{L}^p .
- 2. Soient $(f_n)_{n\in\mathbb{N}}$ et. $(g_n)_{n\in\mathbb{N}}$ deux suites d'éléments de L^p à valeurs réelles qui convergent dans L^p vers f et g respectivement. Montrer que la suite $(\max(f_n, g_n))_{n\in\mathbb{N}}$ converge dans L^p vers $\max(f, g)$.
- 3. Soient $q \in [1,\infty]$ tel que $\frac{1}{p} + \frac{1}{q} \le 1$ et $r \in [1,\infty]$ défini par $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$.
 - (a) Montrer que si $f \in L^p$ et $g \in L^q$, on a alors $fg \in L^r$ et $\|fg\|_r \le \|f\|_p \|g\|_q$.
 - (b) Si $(f_n)_{n\in\mathbb{N}}$ est une suite d'éléments de L^p qui convergent dans L^p vers f et $(g_n)_{n\in\mathbb{N}}$ une suite d'éléments de L^q qui convergent dans L^q vers g montrer alors que $(f_ng_n)_{n\in\mathbb{N}}$ converge vers fg dans L^r .
- 4. On suppose que p est fini. Si $(f_n)_{n\in\mathbb{N}}$ converge vers f dans L^p et si $(g_n)_{n\in\mathbb{N}}$ est une suite bornée dans L^∞ qui converge vers g presque partout, montrer alors que $(f_ng_n)_{n\in\mathbb{N}}$ converge vers fg dans L^p .

Exercice 67 Soit (X, \mathcal{M}, μ) un espace mesuré, avec μ finie.

1. Montrer que pour tout $f \in L^{\infty}$, on a :

$$\lim_{p \to +\infty} \|f\|_p = \|f\|_{\infty}$$

- 2. Soit $f \in \bigcap_{1 \le p < \infty} L^p$ telle que $\sup_{1 \le p < \infty} \|f\|_p < \infty$. Montrer que $f \in L^{\infty}$.
- 3. Donner un exemple de fonction $f \in \bigcap_{1 \le p < \infty} L^p$ telle que $f \notin L^{\infty}$.

Exercice 68 Pour cet exercice, \mathbb{R}_{+}^{\star} est muni de la tribu de Borel et de la mesure de Lebesgue. Soit $p \in]1, \infty[$. À toute fonction $f \in \mathcal{L}^{p}(\mathbb{R}_{+}^{\star}, \mathbb{R})$, on associe les fonctions F, G, H définies sur \mathbb{R}_{+}^{\star} par :

$$\forall x \in \mathbb{R}_{+}^{\star}, \ F\left(x\right) = \int_{0}^{x} f\left(t\right) dt, \ G\left(x\right) = \frac{F\left(x\right)}{x^{\frac{1}{q}}}, \ H\left(x\right) = \frac{F\left(x\right)}{x}$$

où $q = \frac{p}{p-1}$ désigne l'exposant conjugué de p.

1. Montrer que $|F(x) - F(y)| \le \|f\|_p |x - y|^{\frac{1}{q}}$ pour tous réels x > 0 et y > 0. En déduire que F, G et H sont continues sur \mathbb{R}_+^{\star} et que $\|G\|_{\infty} \le \|f\|_p$.

- 2. Montrer que $\lim_{x\to 0^+} G(x) = 0$.
- 3. Montrer que $\lim_{x\to +\infty} G(x)=0$ (on pourra commencer par supposer que f est continue et à support compact, puis utiliser le fait que l'espace des fonctions de \mathbb{R}_+^{\star} dans \mathbb{R} continues et à support compact est dense dans $\left(L^p\left(\mathbb{R}_+^{\star},\mathbb{R}\right),\|\cdot\|_p\right)$).
- 4. On veut montrer que $\|H\|_p \le q \|f\|_p$, c'est-à-dire que :

$$\int_0^\infty \frac{|F(x)|^p}{x^p} dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty |f(x)|^p dx \tag{4}$$

(inégalité de Hardy).

(a) Montrer que, si $f: \mathbb{R}_+^{\star} \to \mathbb{R}$ est continue, positive, et à support compact dans \mathbb{R}_+^{\star} , on a alors:

$$\int_{0}^{\infty} \frac{F(x)^{p}}{x^{p}} dx = \frac{p}{p-1} \int_{0}^{\infty} \frac{F(x)^{p-1}}{x^{p-1}} f(x) dx$$

En déduire que f vérifie l'inégalité (4).

- (b) On suppose que $f: \mathbb{R}_+^{\star} \to \mathbb{R}$ est continue et à support compact dans \mathbb{R}_+^{\star} . Montrer que f vérifie l'inéqulité (4).
- (c) Par un argument de densité, montrer que (4) est vraie pour toute fonction $f \in \mathcal{L}^p(\mathbb{R}_+^*, \mathbb{R}^+)$, puis montrer qu'elle est vraie pour toute fonction $f \in \mathcal{L}^p(\mathbb{R}_+^*, \mathbb{R})$.
- (d) En utilisant la suite de fonctions $(f_n)_{n\geq 2}$ définie par :

$$\forall n \geq 2, \ \forall t \in \mathbb{R}_{+}^{\star}, \ f_{n}\left(t\right) = t^{-\frac{1}{p}} \mathbf{1}_{\left[1,n\right[}\left(t\right)$$

montrer que la constante $\frac{p}{p-1}$ est optimale dans l'inégalité de Hardy (4).

(e) Etudier les cas p = 1 et $p = \infty$.

- X - Produit de convolution et transformée de Fourier

 \mathbb{R} est muni de la tribu de Borel et de la mesure de Lebesgue.

Exercice 69

1. Soient p, q deux réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$.

Montrer que :

$$\forall (x,y) \in (\mathbb{R}^+)^2, \ xy \le \frac{1}{p}x^p + \frac{1}{q}y^q$$

2. Soient r un entier naturel non nul, p_1, \dots, p_r une suite d'éléments de $[1, +\infty]$ telle que $\sum_{k=1}^r \frac{1}{p_k} = 1$ et, pour tout k compris entre 1 et r, f_k une fonction dans $\mathcal{L}^{p_k}(\mathbb{R})$.

Montrer que la fonction $f = \prod_{k=1}^{n} f_k$ est dans $\mathcal{L}^1(\mathbb{R})$ et que $||f||_1 \leq \prod_{k=1}^{n} ||f_k||_{p_k}$.

Exercice 70 Soient $f \in \mathcal{L}^1(\mathbb{R})$ et $g \in \mathcal{L}^p(\mathbb{R})$ où $1 \leq p \leq +\infty$. Montrer que :

- pour tout $x \in \mathbb{R}$, la fonction $t \mapsto f(x-t)g(t)$ est intégrable sur \mathbb{R} ;
- la fonction $f * g : x \mapsto \int_{\mathbb{R}} f(x t) g(t) dt$ est dans $\mathcal{L}^{p}(\mathbb{R})$;

 $\begin{array}{c} - \ \|f*g\|_p \leq \|f\|_1 \ \|g\|_p \,. \\ La \ fonction \ f*g \ est \ le \ produit \ de \ convolution \ de \ f \ et \ g. \end{array}$

Exercice 71 Soient $f \in \mathcal{L}^p(\mathbb{R})$ et $g \in \mathcal{L}^q(\mathbb{R})$ où $1 \leq p, q \leq +\infty$ avec $\frac{1}{p} + \frac{1}{q} \geq 1$.

- 1. Justifier l'existence de $r \in [1, +\infty]$ tel que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$.
- 2. Pour $\frac{1}{p} + \frac{1}{q} = 1$, montrer que le produit de convolution f * g est bien défini et que $f * g \in \mathcal{L}^{\infty}(\mathbb{R})$ avec $||f * g||_{\infty} \leq ||f||_{p} ||g||_{q}$.
- 3. On suppose que $\frac{1}{p} + \frac{1}{q} > 1$.
 - (a) Vérifier que $1 \le p, q \le r < +\infty$ et $p' = \frac{pr}{r-p}, q' = \frac{qr}{r-q}$ sont dans $[1, +\infty]$ avec $\frac{1}{p'} + \frac{1}{q'} + \frac{1}{r} = 1$.
 - (b) Montrer que, pour tout réel x, la fonction $t \mapsto |f(x-t)|^{\frac{p}{r}} |g(t)|^{\frac{q}{r}}$ est dans $\mathcal{L}^r(\mathbb{R})$, la fonction $t \mapsto |f(x-t)|^{1-\frac{p}{r}}$ est dans $\mathcal{L}^{p'}(\mathbb{R})$ et la fonction $t \mapsto |g(t)|^{1-\frac{q}{r}}$ est dans $\mathcal{L}^{q'}(\mathbb{R})$.
 - (c) En déduire que le produit de convolution f * g est bien défini et que $f * g \in \mathcal{L}^r(\mathbb{R})$ avec $||f * g||_r \le ||f||_p ||g||_q$ (inégalité de Young).

Exercice 72 Montrer que, pour toute fonction $f \in \mathcal{L}^1$, on peut définir la fonction \widehat{f} par :

$$\forall x \in \mathbb{R}, \ \widehat{f}(x) = \int_{-\infty}^{+\infty} f(t) e^{-ixt} dt$$

et que cette fonction \widehat{f} est continue avec :

$$\lim_{|x| \to +\infty} \widehat{f}(x) = 0$$

Cette fonction \widehat{f} est la transformée de Fourier de f. Montrer que l'application $f \mapsto \widehat{f}$ est linéaire continue de $(\mathcal{L}^1, \|\cdot\|_1)$ dans $(\mathcal{L}^\infty, \|\cdot\|_\infty)$.