Sample Question

Course Title: Circuit Theory and Analysis

NB:

- 1. All question only for theoretical part.
- 2. Read the reference book for Mathematical question.

PART-A

Set-01(*Chapter: 4,5*)

- 1. a) Define the following terms: Ohm's law, Circuit, Power, Energy and Efficiency.
 - b) Write down the Kirchhoff's voltage law.
 - c) State and explain the Voltage Divider Rule (VDR) with suitable diagram.
 - d) What do you understand by notation or Double-Subscript Notation or Single-Subscript Notation?
 - e) See all highlighted math from reference book.

Set-02 (*Chapter:* 6,7)

- 2. a) Define parallel circuit, Open and Short circuits.
 - b) State and explain current divider rule with suitable diagram.
 - c) Write down the Kirchhoff's current law.
 - d) See all highlighted math from reference book.

Set-03 (*Chapter:* 8)

- **3.** a) Explain source conversion procedure.
 - b) Write down the steps of Branch-Current analysis procedure.
 - c) Write down the steps of Mesh Analysis procedure.
 - d) Write down the steps of Nodal Analysis procedure.
 - e) See all highlighted math from reference book.

Set-04 (*Chapter: 9*)

- **4.** a) With a suitable illustration, State and explain Superposition's theorem.
 - b) State and explain Thévenin's network theorem with a suitable illustration.
 - c) State and explain Norton's network theorem with a suitable illustration.
 - d) State Maximum Power Transfer theorem. What load should be applied to a system to ensure that the load is receiving maximum power from the system? Or Drive the expression to ensure that the load is receiving maximum power from the network. (*answer: equation 9.3*).
 - e) See all highlighted math from reference book.

PART-B

Set-05 (*Chapter: 13*)

- **5.** a) Define the following terms: Waveform, Instantaneous value, Peak Amplitude. Peak Value, Peak-to-Peak Value, Periodic Waveform, Period and Cycle.
 - b) What do you mean by Leading and Lagging Waveform?
 - c) Give the concepts of average value with suitable example.
 - d) Define rms or effective value. Show that the equivalent dc value of a sinusoidal current or voltage is $I_{dc} = \frac{l_m}{\sqrt{2}}$, where the symbols have their usual meaning. (answer: *book*, *page*: 567).
 - e) See all highlighted math from reference book.

Set-06 (*Chapter: 14*)

- 6. a) Show that the inductive reactance of an inductor in ac sinusoidal network is $X_L = \omega L$, where the symbols have their usual meaning.
 - b) Show that the capacitive reactance of a capacitor in ac sinusoidal network is $X_C = \frac{1}{\omega C}$, where the symbols have their usual meaning.
 - c) Deduce the expression for average power delivered to a load for sinusoidal voltage and current.

- d) Explain the terms: (i) Power factor (ii) Phasor (iii) Phasor diagram with suitable figure.
- e) See all highlighted math from reference book.

Set-07 (*Chapter: 15*)

- 7. a) Briefly explain the impedance of a resistive element in ac network with suitable illustration. Or Show that the impedance of a resistive element in ac network is $Z_R = R < 0^0$, where the symbols have their usual meaning. (answer: *book*, *equation*: 15.1).
 - b) Briefly explain the impedance of an inductive element in ac network with suitable illustration. Or Show that the impedance of an inductive element in ac network is $Z_L = X_L < 90^{\circ}$, where the symbols have their usual meaning. (answer: *book, equation: 15.2*).
 - c) Briefly explain the impedance of a capacitive element in ac network with suitable illustration. Or Show that the impedance of a capacitive element in ac network is $Z_C = X_C < -90^{\circ}$, where the symbols have their usual meaning. (answer: *book, equation: 15.3*).
 - d) Define Admittance and Susceptance.
 - e) See all highlighted math from reference book.

Set-08 (*Chapter: 20*)

- 8. a) Define resonance and Quality Factor (Q). What do you understand by resonant circuit? Show that the resonant frequency of series resonant circuit is $f_S = \frac{1}{2\pi\sqrt{LC}}$, where the symbols have their usual meaning.
 - Show that the quality factor of series resonant circuit is $Q_s = \frac{1}{R} \sqrt{\frac{L}{c}}$, where the symbols have their usual meaning.
 - c) Draw and explain the total impedance (Z_T) versus frequency curve for the series resonant circuit. (answer: *book*, *page*:877).
 - d) What do you understand by selectivity? Show that the bandwidth of series resonant circuit is $BW = \frac{f_s}{Q_s}$, where the symbols have their usual meaning.
 - e) See all highlighted math from reference book.