Advanced R: Statistical Machine Learning

Dan Schmutz, MS Chief Environmental Scientist

Zoom Workshop for SJRWMD September 24, 2020

Ensembles and Random Forest

How much does this cow weigh?

Penelope The Cow

How much does this cow weigh?

• Google says depends on gender...

How much does this cow weigh?

 Google says depends on gender...sounds like Google has been doing some machine learning...

The wisdom of crowds in machine learning: ensemble techniques (bagging and boosting)

INTRODUCTION

How Much Does This Cow Weigh?

Source: The Internet. Credit: Quoctrung Bui/NPR

https://www.npr.org/sections/money/2015/08/07/429720443/17-205-people-guessed-the-weight-of-a-cow-heres-how-they-did

The wisdom of crowds in machine learning: ensemble techniques (bagging and boosting)

INTRODUCTION

How Much Does This Cow Weigh?

Idea is that a group of "weak learners" will average out to a better answer than a typical expert!

Can think of this as the large positive and negative errors of the "uneducated" canceling out.

Source: The Internet.
Credit: Quoctrung Bui/NPR

https://www.npr.org/sections/money/2015/08/07/429720443/ 17-205-people-guessed-the-weight-of-a-cow-heres-how-they-did

Types of ensembles: bagging

- Bagging bootstrap aggregation. Subsample rows of a dataset (bootstrapping) repeatedly and then average responses (regression) or majority vote (classification).
 - Decreases the variance in the prediction by generating additional data from training dataset (sampling with replacement)
 - Interestingly, by chance if you sample the same number of rows with replacement on average each bootstrap sample contains 63.2% of the original observations and omits 36.8%
 - The omitted observations from each sample are called out-of-bag observations and can be used as a kind of hold-out sample

Types of ensembles: boosting

XGBoost is a superstar in the machine learning world!

 Boosting – fitting successive models which address residual variation by increasing the weight of poorly fit observations in successive models. This is a sequential method. Iteration 1 Iteration 2 Iteration 3

https://www.researchgate.net/publication/326379229_ Exploring_the_clinical_features_of_narcolepsy_type_1_ versus_narcolepsy_type_2_from_European_Narcolepsy _Network_database_with_machine_learning

Types of ensembles: stacking

• Stacking – a method of combining heterogenous models. Train several models, then train a metamodel on the outputs of the

group of models.

Random Forest Algorithm: a modified bagged decision tree

- Can be used for classification or regression
- Creates "forest" of decision trees using subset of cases and variables (bootstrap aggregation or "bagging")
- Predictions are made by running case through all trees (e.g., 500) and taking an average for regression
- Each tree is grown with only about 60% of the data, so the remaining data provide a realistic "out-of-bag" error estimate
- Robust to outliers and noise
- Allows complex interactions
- No statistical assumptions
- Handles datasets >1000 variables
- Avoids overfitting
- Minimal tuning required
- Limitations
 - Can't extrapolate
 - May overestimate lows/underestimate highs

Random Forest Simplified

Random Forest Algorithm Pseudocode

- 1. Given a training data set
- 2. Select number of trees to build (n_trees)
- 3. for i = 1 to n_{trees} do
- 4. | Generate a bootstrap sample of the original data
- 5. | Grow a regression/classification tree to the bootstrapped data
- 6. | for each split do
- 7. | | Select m_try variables at random from all p variables
- 8. | Pick the best variable/split-point among the m_try
- 9. | | Split the node into two child nodes
- 10. | end
- 11. | Use typical tree model stopping criteria to determine when a | tree is complete (but do not prune)
- 12. end
- 13. Output ensemble of trees

Random Forest hyperparameters worth tuning

- mtry number of variables tried at each split on tree, typical default values are
 - Number of parameters/3 (regression)
 - Number of parameters 0.5 (classification)
- ntree number of trees in the forest
 - default value is 500
 - may be useful to tune mtry at 500 trees, then boost number of trees to see if any improvement

Less frequently tuned hyperparameters

- The complexity of each tree
 - node size, max depth, max number of terminal nodes, or the required node size to allow additional splits
- The sampling scheme
 - Bootstrap with replacement is the norm but if you have many categorical features with a varying number of levels, sampling with replacement can lead to biased variable split selection
- The splitting rule to use during tree construction
 - The splitting is based usually on Gini impurity (in the case of classification) and the SSE (in case of regression), but it can be changed.

Tuning mtry using caret on ttrain4

```
# code below used to identify optimal mtry hyperparameter for tuning using caret
seed<-42
set.seed(seed)
control <- trainControl(method="repeatedcv", number=10, repeats=3, search="grid", classProbs = TRUE)
tunegrid <- expand.grid(.mtry=c(1:7))
metric<-"Accuracy"
rf_gridsearch <- train(Survived2~., data= ttrain4rf, method="rf", metric=metric, tuneGrid=tunegrid, trControl=control)
print(rf_gridsearch)
plot(rf_gridsearch)
brint(rf_gridsearch)</pre>
```

mtry=3 results in highest accuracy

plot(rf_gridsearch)

Out-of-bag performance on ttrain4, ntree=500

- OOB accuracy of 100-16.39 = 83.61%
- OOB is usually conservative compared to test set results

Plotting the randomForest object gives idea of changing error rates with ntree

plot(rfm_ttrain4_500)

Out-of-bag performance on ttrain4 for ntree=10000

- OOB accuracy of 100-16.61 = 83.39%
- No improvement over model with default 500 trees in this case

Test set performance ntree=500

confusionMatrix(pred_rfm_500_test,ttest4rf\$Survived2) #
evaluating performance on out-of-sample test dataset

- 76% accuracy
- Not as good as knn

```
> confusionMatrix(pred_rfm_500_test,ttest4rf$Survived2) #
evaluating performance on out-of-sample test dataset
Confusion Matrix and Statistics
         Reference
Prediction X0 X1
       X0 210 54
       X1 40 91
              Accuracy: 0.762
                95% CI: (0.7169, 0.8032)
    No Information Rate: 0.6329
    P-Value [Acc > NIR] : 2.664e-08
                 Kappa : 0.4773
Mcnemar's Test P-Value: 0.18
           Sensitivity: 0.8400
           Specificity: 0.6276
        Pos Pred Value: 0.7955
        Neg Pred Value: 0.6947
            Prevalence: 0.6329
        Detection Rate: 0.5316
  Detection Prevalence: 0.6684
      Balanced Accuracy: 0.7338
       'Positive' Class: X0
```

Test set performance ntree=10000

confusionMatrix(pred_rfm_10000_test,ttest4rf\$Survived2)

> confusionMatrix(pred_rfm_10000_test,ttest4rf\$Survived2)

Confusion Matrix and Statistics

Reference

Prediction X0 X1 X0 212 53 X1 38 92

Accuracy: 0.7696

95% CI: (0.7249, 0.8103)

No Information Rate : 0.6329 P-Value [Acc > NIR] : 3.776e-09

Kappa: 0.4932

Mcnemar's Test P-Value: 0.1422

Sensitivity: 0.8480 Specificity: 0.6345

Pos Pred Value : 0.8000 Neg Pred Value : 0.7077

Prevalence: 0.6329 Detection Rate: 0.5367

Detection Prevalence: 0.6709 Balanced Accuracy: 0.7412

'Positive' Class: X0

25

Peeking into the random forest a "black box" model

Two types of importance available for randomForest

rfm_ttrain4_500i<-randomForest(Survived2~.,ttrain4rf,mtry=3,ntree=500, importance=T)

varImpPlot(rfm_ttrain4_500i)

Randomization-based

Importance for tree-splitting

Dependence plots

randomForest on ames train_3

• 90.51% out-of-bag estimate of variance explained

Results from ames train

plot(m_rf_ames_v1)

Predicting test_3

pred_rf_ames_v1<-predict(m_rf_ames_v1,newdata=test_3)
hist(pred_rf_ames_v1)</pre>

rf train and test RMSE

```
> RMSE(m_rf_ames_v1$predicted, train_3$Sale_Price)
[1] 24340.52
> RMSE(pred_rf_ames_v1, test_3$Sale_Price)
[1] 31741.76
> test_3aug$predrf1<-pred_rf_ames_v1
> ggplot(test_3aug,aes(x=predrf1,y=Sale_Price))+
+ geom_point()+stat_smooth(method=lm)+geom_abline(slope=1, intercept=0, col='red')
'geom_smooth()` using formula 'y ~ x'
> cor(test_3aug$predrf1,test_3aug$Sale_Price)^2
[1] 0.8597779
> res_predrf1<-test_3aug$Sale_Price-test_3aug$predrf1
> (mean((res_predrf1)^2))^0.5
[1] 31741.76
> |
```

rf excellent performance on test set with RMSE 31741.76 and r² of 6%

randomForest algorithm well suited to this problem

