COL215 DIGITAL LOGIC AND SYSTEM DESIGN

- State Minimization in FSMs,
- Introduction to AsynchronousFSMs

07 November 2017

Star (*) operation

Possible results of operation C = A * B on cubes A and B

- if A and B are far apart, no new cube is generated
- if A, B overlap, the result is intersection of A and B
- if A, B differ in exactly one literal, new cube generated is union of a part of A and a part of B

$A_i \setminus B_i$	0	1	Х
0	0	Ø	0
1	Ø	1	1
x	0	1	X

```
If A_i * B_i = \emptyset for

more than one i,

then C = \emptyset

Otherwise,

if A_i * B_i \neq \emptyset then

C_i = A_i * B_i

else

C_i = x
```

Sharp (#) operation

Possible results of operation

C = A # B on cubes A and B

- if A and B are disjoint, the result is A
- if A is contained in B, the result is empty
- if B partly overlaps with A, the result is non-overlapping part of A

0	1	Х	
3	Ø	3	
Ø	3	3	
1	0	ε	
	8	ε φ ε	ε Ø ε ε

```
If A_i \# B_i = \emptyset for

some i,

then C = A

If A_i \# B_i = \varepsilon for

all i,

then C = \emptyset
```


Finite State Machine Model

```
Quintuple (X, Y, S, \delta, \lambda)
```

```
X = set of primary input patterns
```

```
Y = set of primary output patterns
```

$$\delta$$
 = state transition function $S \times X \rightarrow S$

$$\lambda$$
 = output function

S×X→Y for Mealy model or

S→Y for Moore model

Assumptions

- Synchronous circuits
- Single clock
- Single phase
- Edge triggered D type flip-flops/registers

Completely specified FSMs

Definition of state equivalence:

```
equiv (s_i, s_j) iff

output_seq (s_i, input_seq) =

output_seq (s_j, input_seq)

for all input_seq
```

Incompletely specified FSMs

Definition of compatible states:

```
comp (s<sub>i</sub>, s<sub>j</sub>) iff
output_seq (s<sub>i</sub>, input_seq) =
output_seq (s<sub>j</sub>, input_seq)
when both are defined,
```

for all applicable input_seq

Incompletely specified FSMs

Easier way to check compatibility:

comp
$$(s_i, s_j) \equiv$$

$$(s_i = s_j)$$
or
$$\lambda (s_i, x) = \lambda (s_j, x) \text{ if both are defined and}$$
comp $(\delta (s_i, x), \delta (s_j, x)),$

for all applicable x in X

Equivalence vs compatibility

- Reflexive, symmetric and transitive
- Equivalence classes (groups of equivalent states) are disjoint
- Partition is unique

- Reflexive, symmetric but NOT transitive
- Compatibility classes
 (groups of compatible states) are overlapping
- Partition is not unique, each choice has "implications"

"Implications" while partitioning

- If states A and B are chosen as compatible, successor of A and successor of B (under all applicable inputs) should also be chosen as compatible
- Closure property: A partition has closure property if all the implications are taken care of

Example

In	PS	NS	Out
0	S ₁	s_3	1
1	S ₁	S ₅	*
0	s_2	s_3	*
1	s_2	S ₅	1
0	s_3	s_2	0
1	s_3	S ₁	1
0	S ₄	S_4	0
1	S ₄	S ₅	1
0	S ₅	S ₄	1
1	S ₅	s ₁	0

There is an exponential number of completely specified FSMs corresponding to an incompletely specified FSM

Compatible pairs

	Pairs	Depends on
Compatible	$\{s_1, s_2\}$	
Compatible	$\{s_1, s_5\}$	$\{s_3, s_4\}$
Compatible	$\{s_2, s_4\}$	$\{s_3, s_4\}$
Compatible	$\{s_2, s_3\}$	$\{s_1, s_5\}$
Compatible	$\{s_3, s_4\}$	$\{s_2, s_4\}, \{s_1, s_5\}$
Incompatible	$\{s_1, s_3\}$	
Incompatible	$\{s_1, s_4\}$	
Incompatible	$\{s_2, s_5\}$	
Incompatible	$\{s_3, s_5\}$	
Incompatible	$\{s_4, s_5\}$	

In	PS	NS	Out
0	S ₁	s_3	1
1	S ₁	S ₅	*
0	S ₂	S_3	*
1	s_2	S ₅	_1
0	S ₃	S ₂	0
1	s_3	S ₁	_1
0	S ₄	S ₄	0
1	S ₄	S ₅	_1
0	S ₅	S ₄	1
1	S-	S.	0

Compatibility classes

Classes Implied

classes

$$\{s_1, s_2\}$$

 $\{s_1, s_5\}$ $\{s_3, s_4\}$
 $\{s_2, s_3, s_4\}$ $\{s_1, s_5\}$

Selected classes may not always be maximal

Minimized FSM Table

In	PS	NS	Out
0	S ₁	s_3	1
1	S ₁	S ₅	*
0	s_2	s_3	*
1	s_2	S ₅	1
0	s_3	s_2	0
1	s_3	S ₁	1
0	S_4	S_4	0
1	S_4	S ₅	1
0	s_5	S_4	1
1	S_5	S ₁	0

In	PS	NS C	ut
0	S ₁₅	S ₂₃₄	1
1	S ₁₅	S ₁₅	0
0	S ₂₃₄	S ₂₃₄	0
1	S ₂₃₄	S ₁₅	1

Synchronous FSM (Moore)

Synchronous FSM (Mealy)

Asynchronous FSM (Mealy)

Outline

- SR Latch
- Gated D Latch
- Master-Slave D Flip-flop

Set-Reset (SR) Latch

R: Reset

S:Set

Set-Reset (SR) Latch

R: Reset

S:Set

State assigned table

$$Y = ((S + y)' + R)' = (S + y).R' = S.R' + y.R'$$

State assigned table

Present	Next state Y				Output
state y	SR = 00	SR = 01	SR = 10	SR = 11	Q
0	0	0	1	0	0
1	1	0	1	0	1

$$Y = ((S + y)' + R)' = (S + y).R' = S.R' + y.R'$$

State assigned table

Present		Output			
state y	SR = 00	SR = 01	SR = 10	SR = 11	Q
0	0	0	1	0	0
1	1	0	1	0	1

State transition table

Present		Output			
state y	SR = 00	SR = 01	SR = 10	SR = 11	Q
А	A	A	В	A	0
В	В	А	В	А	1

State transition diagram

Present		Output			
state y	SR = 00	SR = 01	SR = 10	SR = 11	Q
Α	(4)	A	В	A	0
В	В	А	В	А	1

State transition diagram

Present		Output			
state y	SR = 00	SR = 01	SR = 10	SR = 11	Q
А	A	A	В	A	0
В	В	А	В	А	1

