Mathematical Logic and Computability

Lecture 3: Semantics of First-Order Logic

Yunpyo An

Ulsan National Institute of Science and Technology

Mathematical Logic and Computability Sep 8, 2023 Mathematical Logic and Computability

Yunpyo An

Outline

Review

emantics of rst-Order Logic

nterpretations

Consequer

Coincidence

Satisfication

Mathematical Logic and Computability

Yunpyo An

Review

Semantics of First-Order Logic

Structures and Interpretations Connectives

Consequence

Coincidence

Satisfication Relation

Outline

leview

emantics of rst-Order Logic

Interpretations

Joinectives

oincidence

atisfication

Review

In previous lecture, we learned the syntax of first-order logic.

- Alphabet of First-order logic
- Terms
- Formulas
- Free and bound variables
- Substitution

Now, we assign the Mathematical object to each symbol in first-order language.

Mathematical Logic and Computability

Yunpyo An

Outline

Review

Semantics of First-Order Logic

Interpretations

Consequer

coincidence

Interpretations

Before define the semantics of first-order logic, we need to consider our language domain.

Definition

An S-structure is a pair $\mathcal{A} = (A, \mathfrak{a})$ with the following properties:

- \triangleright A is a non-empty set, called the *domain* or *universe* of I
- α is a function that assigns from symbols to following:
 - for every *n*-ary relation symbol R in S, $\alpha(R)$ is an *n*-ary relation on A
 - for every *n*-ary function symbol f in S, a(f) is an n-ary function on A
 - for every constant c in S, a(c) is an element of A

From Ebbinghaus textbook, for convenience, we denote a(R), a(f), a(c) by $R^{\mathcal{A}}$, $f^{\mathcal{A}}$, $c^{\mathcal{A}}$ or $R^{\mathcal{A}}$, $f^{\mathcal{A}}$, $c^{\mathcal{A}}$ respectively.

We write $S = \{R, f\}$, where R is a n-ary relation symbol, f is a n-ary function symbol. The structure of *S* is denote as $\mathcal{A} = (A, R^{\mathcal{A}}, f^{\mathcal{A}})$. We consider symbol set of arithmetic as follows:

$$S_{ar} := \{+, \cdot, 0, 1\} \text{ and } S_{ar}^{<} := \{+, \cdot, 0, 1, <\}$$
 (1)

We will use N as the structure of natural number arithmetic with S_{ar} (equation 1).

$$\mathcal{N} := (\mathbb{N}, +^{\mathbb{N}}, \cdot^{\mathbb{N}}, 0^{\mathbb{N}}, 1^{\mathbb{N}})$$

where, our domain is \mathbb{N} , + and · are addition and multiplication, 0 and 1 are zero and one respectively.

Structures and Interpretations

We remain the variable symbols for semantics of first-order logic. We **assign** a value in our domain *A* to each variable.

Definition

An assignment in S-structure \mathcal{A} is a function $\beta: \{v_n | n \in \mathbb{N}\} \to A$ from the set of variables into the domain A.

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

Semantics of First-Order Logic

Interpretations

Connectives

Consequence

Coincidence

Structures and Interpretations

Now, we combine structure and interpretations together.

Definition

An S-interpretation I is a pair (\mathcal{A},β) , where \mathcal{A} is an S-structure and β is an assignment in \mathcal{A} .

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

Semantics of First-Order Logi Structures and

Interpretations

Connectives

Coincidence

Satisfication

Structures and Interpretations

We might consider assignment is a subtitution of variables to values in domain. We can write as follows:

$$\beta \frac{a}{x}(y) := \begin{cases} \beta(y) & \text{otherwise} \\ a & \text{if } y = x \end{cases}$$

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

emantics of rst-Order Logic

Structures and Interpretations

Connectives

Consequenc

Coincidence

Interpretations

Let's define interpretation $I = (\mathcal{A}, I)$ is given by

$$I = (\mathbb{N}, +, \cdot, 0, 1, <)$$
 and $\beta(v_n) = 2n$ for $n \ge 0$

Example

The formula $v_2 \cdot (v_1 + v_2) \equiv v_4$ reads as $4 \cdot (2 + 4) \equiv 8$.

Question: Interprete the follwing formulas by ${\cal I}.$

$$\exists v_0 v_0 + v_0 \equiv v_1 \tag{2}$$

$$\forall v_0 \forall v_1 \exists v_2 (v_0 < v_2 \land v_2 < v_1)$$
 (3)

Mathematical Logic and Computability

Yunpyo An

outline

Review

emantics of rst-Order Logic

Structures and Interpretations

Conseque

Coincidence

Connectives

As we learned in propositional logic, we need to define the semantics of connectives with truth-table.

		Ÿ	À		$\stackrel{\cdot}{\leftrightarrow}$		
Т	Т	Т	Т	Т	Т		÷
Τ	F	Т	F	F	F	Т	F
F	Τ	Т	F	Т	F	F	Т
F	F	F	F	→ T F T	Т	,	

Mathematical Logic and Computability

Yunpyo An

Outline

Review

Semantics of First-Order Logic

Structures and Interpretations

Connectives

Consequence

Coincidence

The Satisfication Relation

Now, we define interprete of our S-formula. Let's given S-formula φ and S-interpretation $I=(\mathcal{A},\beta)$. Interpreted result is denoted by $I(\varphi)$. We define $I(\varphi)$ by induction on terms

Definition

- For a variable x let $I(x) = \beta(x)$
- For a constant $c \in S$ let $I(c) = c^{\mathcal{A}}$
- For *n*-ary function symbol $f \in S$ and terms t_1, \dots, t_n let $I(f(t_1, \dots, t_n)) = f^{\mathcal{A}}(I(t_1), \dots, I(t_n))$

Mathematical Logic and Computability

Yunpyo An

Jutline

Review

First-Order Logic

Interpretations

Connectives

onsequence

Satisfication

The Satisfication Relation

For all interpretations $I = (\mathcal{A}, \beta)$ we define following interpretations

- $I \models (t_1 \equiv t_2) \text{ iff. } I(t_1) = I(t_2)$
- $I \models (Rt_1 \dots t_n) \text{ iff. } R^{\mathcal{A}}(I(t_1), \dots, I(t_n))$
- $ightharpoonup I \models (\neg \varphi) \text{ iff. not } I \models \varphi$
- $ightharpoonup I \models (\varphi \land \psi) \text{ iff. } I \models \varphi \text{ and } I \models \psi$
- $ightharpoonup I \models (\varphi \lor \psi) \text{ iff. } I \models \varphi \text{ or } I \models \psi$
- $I \models (\varphi \rightarrow \psi)$ iff. $I \models \varphi$ implies $I \models \psi$
- $I \models (\varphi \leftrightarrow \psi) \text{ iff. } I \models \varphi \text{ iff. } I \models \psi$
- ▶ $I \models (\forall x \varphi)$ iff. for all $a \in A$, $I \frac{a}{x} \models \varphi$
- ▶ $I \models (\exists x \varphi)$ iff. there exists $a \in A$, $I \frac{a}{x} \models \varphi$

Mathematical Logic and Computability

Yunpyo An

Outline

Review

rst-Order Logic

nterpretations

Connectives

onsequence

Coincidence

Definition

Let Φ be a set of S-formulas and φ be an S-formula. We say that ϕ is a consequence of Φ (written $\Phi \models \varphi$) iff. for every S-interpretation I if $I \models \psi$ for all $\psi \in \Phi$, then $I \models \varphi$.

Definition

A formula φ is valid (written $\models \varphi$) iff. $\emptyset \models \varphi$.

Definition

A formula φ is satisfiable (written $Sat\varphi$) if and only if there is interpretation which is a model of φ . A set of formula Φ is satisfiable if and only if there is interpretation which is a model of Φ .

Note. The satisfiability of formula is called SAT problem. It is one of the most important problem in computer science and its complexity is NP-hard.

Dutline

Review

Samantic

First-Order Logi

Interpretations Connectives

Consequence

Coincidence

Example of Consequence Relation

In previous lecture, we consider about left inverse of group. Let's the set of axiom of group formula as $\Phi_{\rm gr}.$

Now we can formulate the left inverse of group as follows:

$$\Phi_{\rm gr} \models \{ \forall v_0 \exists v_1 (v_1 \cdot v_0 \equiv e) \}$$
 (4)

where the axiom of group as follows:

$$\begin{split} \Phi_{\mathrm{gr}} &= \{ \forall v_0 \forall v_1 \forall v_2 (v_0 \cdot (v_1 \cdot v_2) \equiv (v_0 \cdot v_1) \cdot v_2), \\ \forall v_0 (v_0 \cdot e \equiv v_0), \forall v_0 \exists v_1 (v_1 \cdot v_0 \equiv e) \} \end{split}$$

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

emantics of rst-Order Logic

Interpretations
Connectives

Consequence

Coincidence

Satisfiability and Validity

Lemma

For all Φ and φ ,

$$\Phi \models \varphi \quad \textit{iff.} \quad \textit{not Sat} \Phi \cup \{\neg \varphi\}$$

Question: Prove it.

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

emantics of irst-Order Logi

nterpretations Connectives

Consequence

Coincidence

Satisfication

Connectives

Coincidence

Satisfication Relation

depends only on interpretation of the symols of S occurring in φ , and on the variable occurring free in φ .

The satisfication relation between S-formula φ and an S-interpretation I

Definition

Two interpretation I_1 and I_2 agree on $k \in S$ on x if $k^{\mathcal{H}_1} = k^{\mathcal{H}_2}$ or $\beta_1(x) = \beta_2(x)$.

Lemma

Let's $I_1=(\mathcal{A}_1,\beta)$ be an S_1 -interpretation and $I_2=(\mathcal{A}_2,\beta)$ be an S_2 -interpretation. both with the same domain $A_1=A_2$. Put $S:=S_1\cap S_2$.

- Let t be an S-term. If I_1 and I_2 agree on the S-symbols occurring in t and on the variables occurring in t, then $I_1(t) = I_2(t)$.
- Let φ be an S-formula. If I_1 and I_2 agree on the S-symbols and the variables occurring free in φ , then $(I_1 \models \varphi \text{ iff. } I_2 \models \varphi)$.

Coincidence

Me when proving literally anything in mathematical logic, automata theory, or computability

Mathematical Logic and Computability

Yunpyo An

Outline

Reviev

Semantics of First-Order Logic

nterpretations Connectives

Consequence

Coincidence

Connectives

Coincidence

Coincidence

Satisfication Relation

Coincidence lemma says that, for an S-formula φ and an S-interpretation $I=(\mathcal{A},\beta)$, the validity of φ under I depends only on the assignments for the finitely many variables occurring free in φ .

If these variables among $v_0, v_1, \ldots, v_{n-1}$, the β -values $a_i = \beta(v_i)$ for $i = 0, \ldots, n-1$ which are significant. Thus instead of $(\mathcal{A}, \beta) \models \varphi$, we shall often use the more suggestive notation

$$\mathcal{A} \models \varphi[a_0, \dots, a_{n-1}] \tag{5}$$

If φ is a sentence, we can choose n=0 and write $\mathcal{A}\models\varphi$ without even mentioning an assignment. We say that \mathcal{A} is a model of φ .

Reduct and Expansion

Definition

Let S and S' be a symbol sets such that $S \subseteq S'$. Let $\mathcal{A} = (A, \mathfrak{a})$ be an S-structure, and $\mathcal{A}' = (A', \mathfrak{a})$ be an S'-structure. we call \mathcal{A} a reduct (or the S-reduct) of \mathcal{A}' and write $\mathcal{A} = \mathcal{A}'|_S$ iff A = A' and \mathfrak{a} and \mathfrak{a}' agrees on S. We say that \mathcal{A}' is an expansion of \mathcal{A} .

Satisfiability on Reduct and Expansion

 Φ is satisfiable with respect to S iff Φ is satisfiable with respect to S'.

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

First-Order Logic

Interpretation: Connectives

Consequence

Coincidence

Horn Formulas

Formulas which are derivable in the following calculus called *Horn formulas*.

$$\frac{}{(\neg \varphi_1 \lor \dots \lor \neg \varphi_n \lor \varphi)} \text{ if } n \in \mathbb{N} \text{ and } \varphi_1, \dots, \varphi_n \text{ are atomic formulas}$$

$$\frac{}{\neg \varphi_0 \lor \neg \varphi_n} \text{ if } n \in \mathbb{N} \text{ and } \varphi_0 \land \varphi_1 \land \dots \land \varphi_n \text{ is an atomic formula}$$

$$\frac{\varphi, \psi}{(\varphi \land \psi)} \qquad \frac{\varphi}{\forall x \varphi} \qquad \frac{\varphi}{\exists x \varphi}$$

Horn formulas without free variables are called Horn sentences.

Question: Show that if φ is a Horn sentence and if \mathcal{A}_i is a model of φ for $i \in I$, then $\prod_{i \in I} \mathcal{A}_i \models \varphi$.

Note. The atomic formula is a formula which is not a compound formula. (from terms)

Further question: How can we prove that the Horn formulas are satisfiable (without quantifier)?

Mathematical Logic and Computability

Yunpyo An

outline

Review

First-Order Logic

Interpretations Connectives

Coincidence

Confidence

Isomorphism

Definition

Let \mathcal{A} and \mathcal{B} be S-Structures

- ▶ A map $\pi : A \to B$ is called an *isomorphism* of \mathcal{A} onto \mathcal{B} ($\pi : \mathcal{A} \simeq \mathcal{B}$) iff
 - \blacktriangleright π is a bijection of A onto B.
 - For *n*-ary $R \in S$ and $a_1, \ldots, a_n \in A$,

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 iff $R^{\mathcal{B}}(\pi(a_1),\ldots,\pi(a_n))$

For *n*-ary $f \in S$ and $a_1, \ldots, a_n \in A$,

$$\pi(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(\pi(a_1),\ldots,\pi(a_n))$$

▶ For $c \in S$,

$$pi(c^{\mathcal{A}})=c^{\mathcal{B}}$$

Structure \mathcal{A} and \mathcal{B} are said to be *isomorphic* $(\mathcal{A} \simeq \mathcal{B})$ iff. there is an isomorphism $\pi : \mathcal{A} \simeq \mathcal{B}$.

Mathematical Logic and Computability

Yunpyo An

Outline

Review

emantics of rst-Order Logic

Interpretations
Connectives

Coincidence

Isomorphism

Lemma

For isomorphic S-structures $\mathcal A$ and $\mathcal B$ and every S-sentence φ ,

$$\mathcal{A} \models \varphi \quad \textit{iff.} \quad \mathcal{B} \models \varphi$$

Corollary

If $\pi : \mathcal{A} \simeq \mathcal{B}$, then for $\varphi \in L_n^{\mathcal{S}}$ and $a_0, \ldots, a_{n-1} \in A$,

$$\mathcal{A} \models \varphi[a_0,\ldots,a_{n-1}]$$
 iff. $\mathcal{B} \models \varphi[\pi(a_0),\ldots,\pi(a_{n-1})]$

Note that, isomorphic structures cannot be distinguished in L_0^S . For example, there are structures not isomorphic to the $S_{\rm ar}$ -structure ${\cal N}$ of natural numbers in which are the same first-order sentences hold.

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

Semantics of First-Order Logic

Interpretations Connectives

Consequer Coincidence

Substructure

Definition

Let $\mathcal A$ and $\mathcal B$ be S-structures. Then $\mathcal A$ is called a *substructure* of $\mathcal B$ ($\mathcal A\subseteq\mathcal B$) iff.

- A ⊆ B
- ▶ for *n*-ary $R \in S$, $R^{\mathcal{A}} = R^{\mathcal{B}} \cap A^n$
 - ▶ for *n*-ary $f \in S$, $f^{\mathcal{A}}$ is the restriction of $f^{\mathcal{B}}$ to A^n
 - ▶ for $c \in S$, $c^{\mathcal{A}} = c^{\mathcal{B}}$

For example the $(\mathbb{Z},+,0)$ is a substructure of $(\mathbb{Q},+,0)$

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

Semantics of First-Order Logic

Interpretations Connectives

onsequence

Domicidence

Substructure

Lemma

Let \mathcal{A} and \mathcal{B} be S-structures with $\mathcal{A} \subseteq \mathcal{B}$ and let $\beta : \{v_n | n \in \mathbb{N}\} \to A$ be an assignment in \mathcal{A} . Then the following holds for every S-term t

$$(\mathcal{A},\beta)(t)=(\mathcal{B},\beta)(t)$$

and for every quantifier-free S-formula φ :

$$(\mathcal{A},\beta) \models \varphi \quad \textit{iff.} \quad (\mathcal{B},\beta) \models \varphi$$

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

Semantics of First-Order Logic

Interpretation Connectives

Coincidence

Coincidence

Universal Formula

Definition

The formulas which are derivable by means of the following calculus are called *universal formulas*.

$$\frac{-\inf \varphi \text{ is quantifier-free}}{(\varphi \star \psi)} \text{ for } \star \in \{\land, \lor\}$$

$$\frac{\varphi}{\forall x \varphi}$$

Mathematical Logic and Computability

Yunpyo An

Dutline

Review

Semantics of

Interpretations
Connectives

onsequence

Catiofication

Substructure and Universal Formulas

Mathematical Logic and Computability

Yunpyo An

utline

Review

Semantics of First-Order Logic

Interpretations
Connectives

Coincidence

Satisfication Relation

Lemma

Let \mathcal{A} and \mathcal{B} be S-structures with $\mathcal{A} \subseteq \mathcal{B}$ and let $\varphi \in L_n^S$ be a universal. Then the following holds for all $a_0, \ldots, a_{n-1} \in A$:

If
$$\mathcal{B} \models \varphi[a_0, \ldots, a_{n-1}]$$
, then $\mathcal{A} \models \varphi[a_0, \ldots, a_{n-1}]$

Corollary

If $\mathcal{A} \subseteq \mathcal{B}$, then the following holds for every universal sentence φ :

If
$$\mathcal{B} \models \varphi$$
, then $\mathcal{A} \models \varphi$