Let's go cisco live! #CiscoLive

BRKENS-2051 Migrating legacy infrastructure to Catalyst 9000

Real world experience, best practices and automation use cases

Krishna Haresamudram, Customer Delivery Architect Nirbhay Rane, Customer Delivery Architect BRKENS - 2051

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKENS-2051

Agenda

- Introduction
- Catalyst 9000 Portfolio & Campus Network Architecture
- Migration Overview
- Migration Types, Approach and Process
- Technical Challenges
- Best Practices
- Automation Story
- Conclusion

Introduction

Krishna Haresamudram

- Customer Delivery Architect
- CX US Public Sector
- 12+ years at Cisco
- CCIE#36680
- Specialized in DC and Campus Routing and Switching, MPLS and Collaboration

Nirbhay Rane

- Customer Delivery Architect
- CX Center
- 10+ years at Cisco
- CCIE#65469
- Specialized Enterprise Routing and Switching, SD-WAN, MPLS

Catalyst 9000 portfolio & Three Tier Campus network architecture

Hardware Placement (Access/Core/Distribution)

Cisco Catalyst 9000 Switching Portfolio

One Family from Access to Core - Common Hardware & Software

Three Tier Campus Network Architecture

Three Tier Campus Network Architecture

Migration Overview

How did we help the customer

Background

- Enterprise customer with 1000+ legacy Catalyst switches across 10 campus sites
- Customer wants to upgrade campus infrastructure to adopt newer technologies - Software Defined Access or VxLAN BGP EVPN fabric

Customer Asks

- Campus sites refresh with minimal business impact
- Minimize migration cost, time
- Incorporate design & operational best practices to increase network high availability & redundancy

Cisco CX

- Helping customer to migrate to Catalyst 9000 to start Enterprise Network Transformation journey
- Phased, well structured & well executed campus site migrations
- Phase 0 & 1 200+ devices (120 Access, 60 Distribution & 40 Core) migrated successfully

Project Manager Managing Project Setting realistic migration Timelines and engineer schedules requests Project Manager **Bringing Stakeholders** Maintaining, updating and Together reporting project data to stakeholders Bridging the Gap

CX Migration Team

Pre-Migration

Migration Strategy

- Requirements Gathering
- Design Documentation
- Migration Execution Procedure

BoM Validation

Feature, HW Support Check

Port-Mapping

Config Conversion

Lab testing

Staging

Device Configuration
Recommended SW Version
Stacking/StackWise Validation
Hardware Resource Check

Migration

L2/L3 Post Migration Checks

Failover Checks

Resolving Technical Issues

Assisting in Service Validation

Post MW 24-hour Support

Migration Closure Document

Customer

Pre-Migration

- Site Survey Information
- Site Technical PoC
- Site Readiness

Migration

- Service Validation
- User Acceptance
 Testing

Staging

- Sufficient Power & Connectors
- Rack Space
- Facilitating Device Movement

Partner

Pre-Migration

- Carrying out site survey
- · Assessing rack space requirement
- Capturing power/PDU requirements

Staging

- SFP Copper & Fiber, SMF/MMF Cables
- Cable labeling
- Rack, Stack, Power
- POST

Migration

- Device Commissioning/Decommissioning
- Cable movement as per MoP
- Cable dressing & final labeling

Migration Types, Approach and Process

Migration Types

2:2 Migration

Migration Approach

Hardware Swap

- Remove existing gear and replace with new
- Ensure transceiver compatibility
- Ensure proper site access
- Ensure cables are marked properly
- Longer downtime
- Difficult roll back
- New gear should be pre-staged for config/software upgrade at a different location
- More suitable for Access Layer switches

Parallel Migration

- Existing and New gear will run parallelly
- Layer 2 and Layer 3 interconnects between Existing and New Gear allows for easier migration and roll back
- VLAN migration and STP convergence should be thoroughly planned
- HSRP states can be easily controlled using priorities
- If carefully planned, almost no downtime in most cases
- More suitable for Distribution/Core Layer switches

BRKENS-2051

Migration Process

Technical Challenges

Challenge - TCAM Exhaustion

Lots of Access Control List Entries

Background -

Legacy Catalyst device is having many ACLs configured

Issue -

On new Catalyst 9000, large number of Access Control Entries (ACEs) are not getting programmed in HW

AM Utilization for ASI Table	Subtype	Dir	Max	Used	%Used	V4	V6	MPLS	Other
 Mac Address Table	EM	I	32768	27	0.08%	0	0	0	 27
Mac Address Table	TCAM	I	768	21	2.73%	0	0	0	21
L3 Multicast	EM	I	32768	0	0.00%	0	0	0	0
L3 Multicast	TCAM	I	768	6	0.78%	3	3	0	0
L2 Multicast	TCAM	I	2304	7	0.30%	3	4	0	0
IP Route Table	EM/LPM	I	212992	36	0.02%	35	0	1	0
IP Route Table	TCAM	I	1536	11	0.72%	6	3	2	0
QOS ACL Ipv4	TCAM	I	5632	15	0.27%	15	0	0	0
QOS ACL Non Ipv4	TCAM	I	2560	30	1.17%	0	20	0	10
QOS ACL Ipv4	TCAM	0	6144	13	0.21%	13	0	0	0
OOS ACL Non Try/	TCAM	0	20/18	27	1 32%	۵	1.0	ρ	0
Security ACL Ipv4	TCAM	I	7168	6752	94.20%	6752	0	0	0
Security ACL Non Ipv4	TCAM	I	5120	76	1.48%	0	36	0	40
Security ACL Ipv4	TCAM	0	7168	5718	79.77%	5718	0	0	0
Security ACL Non Ipv4	TCAM	0	8192	29	0.35%	0	24	0	5
NETTIOW ALL	TCAM	1	512	б	1.1/%	2	2	0	2
PBR ACL	TCAM	I	3072	22	0.72%	16	6	0	0
Netflow ACL	TCAM	0	512	6	1.17%	2	2	0	2
Flow SPAN ACL	TCAM	I	512	4	0.78%	1	2	0	1
Flow SPAN ACL	TCAM	0	512	4	0.78%	1	2	0	1

%ACL_ERRMSG-4-UNLOADED: Chassis 1 F1/0: fed: Output IPv4 L3 ACL on interface Vlan639 could not be programmed in hardware and traffic will be dropped.

Challenge - TCAM Exhaustion

Lots of Access Control List Entries

- SDM templates can be used to configure system resources to optimize support for specific features, device role
- Catalyst 9600 & 9500 supports Custom as well as three Standard SDM templates
 - Core
 - NAT
 - Distribution
- Catalyst 9400 supports 4 Standard SDM templates
 - Access
 - Core
 - SDA
 - NAT
- Catalyst 9300 supports 2 Standard SDM templates
 - Access
 - NAT

Switch(config)#
Switch(config)#Switch(config)#Sdm prefer custom ACL
Switch(config-sdm-acl)#acl-ingress 20 priority 1
Switch(config-sdm-acl)#acl-egress 20 priority 2
Switch(config-sdm-acl)#exit
Use 'show sdm prefer custom' to see proposed values and 'sdm prefer custom commit' to apply
Switch(config)#Sdm prefer custom commit
Changes to the running SDM preferences have been stored and will take effect on the next reload.

Switch(config)#
Switch(config)#
Switch(config)#

Switch# Switch#show sdm prefer custom Showing SDM Template Info

1pv4/1pv0 shared unitcast routes*.	212332		
Ingress Security Access Control Entries*: Egress Security Access Control Entries*: Ingress Oof Access Control Entries*:	12288 (current) - 20480 (proposed) 15360 (current) - 20480 (proposed)	(current) - 20480	
Egress QoS Access Control Entries*: Policy Based Routing ACEs / NAT ACEs*: Netflow Input ACEs*: Netflow Output ACEs*: Input Flow SPAN ACEs*: Output Flow SPAN ACEs*: UITPUT Flow SPAN ACEs*: LISP Instance Mapping Entries*: Control Plane Entries*: Input Netflow flows*: Output Netflow flows*: Output Netflow flows*: SGT/DGT (or) MPLS VPN entries*: SGT/DGT (or) MPLS VPN overflow entries*: MACSec SPD Entries*: MACSec SPD Entries*:	8192 (current) - 1024 (proposed) 512 (current) - 1024 (proposed) 512 (current) - 512 (proposed) 512 (current) - 768 (proposed) 5148 (current) - 768 (proposed) 512 (current) - 512 (proposed) 512 (proposed) 512 (proposed) 512 (proposed) 513 (proposed) 514 (proposed) 515 (proposed) 516 (proposed)	(current) - 1024 (current) - 512 (current) - 512 (current) - 512 (current) - 512 (current) - 768 (current) - 1024 (current) - 512 (current) - 512 (current) - 512 (current) - 512 (current) - 512 (current) - 512	

Challenge - TCAM Exhaustion

Lots of Access Control List Entries

Solution - Switch Device Manager (SDM) Template

 Once the device is reloaded with proper SDM template, ACLs will be programmed in HW

Switch#show platform Codes: EM - Exact_Mat									
CAM Utilization for A Table	NSIC [0] Subtype	Dir	Max	Used	%Used	V4	V6	MPLS	Other
Mac Address Table	EM	I	32768	26	0.08%	0	0	0	26
Mac Address Table	TCAM	I	768	21	2.73%	0	0	0	21
L3 Multicast	EM	I	32768	0	0.00%	0	0	0	0
L3 Multicast	TCAM	I	768	6	0.78%	3	3	0	0
L2 Multicast	TCAM	I	2304	7	0.30%	3	4	0	0
IP Route Table	EM/LPM	I	212992	3	0.00%	2	0	1	0
IP Route Table	TCAM	I	1536	11	0.72%	6	3	2	0
QOS ACL	TCAM	I	1024	45	4.39%	15	20	0	10
OOS ACI	TCAM	0	1024	40	3.91%	13	18	Ø	9
Security ACL	TCAM	I	20480	17998	87.88%	17922	36	0	40
Security ACL	TCAM	0	20480	8969	43.79%	8940	24	0	5
NETTLOW ACL	TCAM	1	512	б	1.1/%	2	2	Ø	2
PBR ACL	TCAM	I	1024	22	2.15%	16	6	0	0
Netflow ACL	TCAM	0	512	6	1.17%	2	2	0	2
Flow SPAN ACL	TCAM	I	512	4	0.78%	1	2	0	1
Flow SPAN ACL	TCAM	0	512	4	0.78%	1	2	0	1

%ACL_ERRMSG-6-RELOADED: Chassis 2 F0/0: fed: Output IPv4 L3 ACL on interface Vlan639 has now been loaded into the hardware.

Challenge - Object Group ACL Syntax Difference

Config conversion for Object Group based ACLs

Background -

Object group ACL configuration syntax difference between Legacy Catalyst and new Catalyst 9000 switches

Legacy Catalyst Switches	Catalyst 9000 Switches
object-group ip address g1 host 10.20.20.1 host 10.20.21.1 object-group ip port p1 gt 100 lt 200 ip access-list extended test1 permit tcp host 1.1.1.1 port-group p1 adrgroup g1	object-group network g1 host 10.20.20.1 host 10.20.21.1 object-group service p1 tcp source gt 100 tcp source lt 200 ip access-list extended test1 permit object-group p1 host 1.1.1.1 object-group g1
object-group ip address g2 host 10.30.20.1 host 10.30.21.1 object-group ip port p2 gt 300 lt 400 ip access-list extended test2 permit tcp host 1.1.1.1 addrgroup g2 port-group p2	object-group network g1 host 10.20.20.1 host 10.20.21.1 object-group service p1 tcp source gt 100 tcp source lt 200 ip access-list extended test1 permit object-group p1 host 1.1.1.1 object-group g1

Challenge - Object Group ACL Syntax Difference

Config conversion for Object Group based ACLs

<u>lssue</u> -

- Multiple Legacy Devices with 10-15K configuration lines of object group ACLs
- Impossible to do manual config conversion for Object Group ACLs due to syntax changes

<u>Solution</u> –

- Automation tool for quick & easy Object Group ACL config conversion
- · No manual errors, time saving

Challenge - Catalyst 9400 PVST Instance Scalability

Catalyst 9400 Supervisor PVST Instance limit

Background -

On legacy device, there are more than 300 PVST instances are active

Issue -

 Catalyst 9400 sup models currently supports up to 300 PVST instances with IOS-XE 17.1

%SPANTREE_VLAN_SW-2-MAX_INSTANCE: Platform limit of 300 STP instances exceeded. No instance created for VLAN301 (port Po10)

Solution -

- Use Catalyst 9600 or Catalyst 9500 (UDAP 3.0 models) to replace these legacy devices
- Catalyst 9600 Sup-1 supports 1000 & Sup-2 up to 4096 PVST instances*
- Catalyst 9500 (UDAP 3.0 models) up to 4000 PVST instances*

* refer Catalyst 9000 data sheet for more details

PBR support to forward traffic into GRE tunnel

Background -

 On legacy device, PBR is configured to forward traffic into GRE tunnel using "set interface tunnel" in PBR

Issue -

 Set interface, set default next-hop and set default interface are not supported in PBR route-map on Catalyst 9000

%FMANRP_PBR-3-UNSUPPORTED_RMAP: Route-map PBR has unsupported options for Policy-Based Routing. It has been removed from the interface, if applied.

PBR support to forward traffic into GRE tunnel

Solution -

- Starting with the Cisco IOS XE -17.7.1 release, PBR can forward traffic into GRE tunnel on Catalyst 9000
- Use "set ip next hop" instead of "set interface"

Legacy Catalyst Switches

Catalyst 9000 Switches

```
interface Vlan105
                                                 interface Vlan105
description **Server-Vlan**
                                                  description **Server-Vlan**
ip address 1.1.1.1 255.255.255.0
                                                  ip address 1.1.1.1 255.255.255.0
ip policy route-map PBR
                                                  ip policy route-map PBR
route-map PBR permit 10
                                                 route-map PBR permit 10
match ip address PBR-ACL
                                                  match ip address PBR-ACL
set interface Tunnel100
                                                  set ip next-hop <x.x.x.x>
route-map PBR permit 20
                                                 route-map PBR permit 20
```

PBR based on TOS, DSCP and IP Precedence

Background -

On legacy device, PBR is configured to set IP precedence, TOS, DSCP

Issue -

 On Catalyst 9000 switches, PBR based on TOS, DSCP and IP Precedence are not supported.

%FMANRP_PBR-3-UNSUPPORTED_RMAP: Route-map Marking-Voice has unsupported options for Policy-Based Routing. It has been removed from the interface, if applied.

PBR based on TOS, DSCP and IP Precedence

Use QoS service-policy configuration to set IP Precedence, TOS, DSCP.

Legacy Catalyst Switches

Catalyst 9000 Switches

```
access-list 1 remark ** Voice traffic **
                                                 access-list 1 remark ** Voice traffic **
access-list 1 permit any
                                                 access-list 1 permit any
access-list 1 deny any
                                                 access-list 1 deny any
route-map Marking-Voice permit 10
                                                 class-map match-any VOICE
match ip address 1
                                                  match access-group 1
 set ip precedence critical
                                                 policy-map Marking-Voice
                                                  class VOICE
interface Vlan96
                                                   set ip precedence 5
 description IP Phones
 ip policy route-map Marking-Voice
                                                 interface Vlan96
                                                  service-policy input Marking-Voice
```

Challenge - Traditional vs Flexible NetFlow

NetFlow Support

 Traditional NetFlow is configured on legacy devices however flexible NetFlow is supported on Catalyst 9000 switches.

 Traditional NetFlow configuration can be easily mapped to flexible NetFlow configuration which provides more customized and flexible option for flow data

Challenge - Traditional vs Flexible NetFlow

NetFlow Support

Legacy Catalyst Switches

Catalyst 9000 Switches

```
!
ip flow-export destination 1.1.1.1 9996
ip flow-export source GigabitEthernet 0/2
ip flow-export version 5
!
ip flow-cache timeout active 1
ip flow-cache timeout inactive 15
!
interface GigabitEthernet 0/1
ip flowingress
!
```

```
flow export export1
destination 1.1.1.1
transport udp 9996
export-protocol netflow-v5
source GigabitEthernet 1/0/2
```

flow record record1

```
match ipv4 source address
match ipv4 destination address
match ipv4 protocol
match transport source-port
match transport destination-port
collect interface output
collect counter bytes
```

flow monitor monitor1
 record record1
 exporter export1
 cache timeout active 1
 cache timeout inactive 15

interface GigabitEthernet 1/0/1
ip flow monitor monitor1 input

Challenge - Parameter differences

Legacy Catalyst 6500 vs Catalyst 9600

Parameter	Legacy Catalyst 6500 Switches	Catalyst 9600 Switches				
Default Port Type & State	Layer 3 & Off (shutdown)	Layer 2 & On (no shutdown)				
Interface	interface <type><slot#>/<port#></port#></slot#></type>	interface <type><slot#>/<bay#>/<port#></port#></bay#></slot#></type>				
Numbering 	Example - TenGigabitEthernet1/1	Example - TenGigabitEthernet1/0/1				
Mgmt Interface & VRF	Mgmt0 management	GigabitEthernet0/0Mgmt-vrf				
Port-channel numbering	Cisco IOS Release 15.1SY - 1 to 512 in VSS mode 1 to 256 in standalone mode	 IOS-XE 17.3.x & below - 1 to 128 IOS-XE 17.4.x & later - 1 to 192 In StackWise Virtual setup, PO 127 and 128 are reserved by default 				
CoPP Differences	 Default - Enabled CoPP Class map can be added, modified, deleted 	 Default - Enabled (can't be disabled, but policing rates can be modified) CoPP class map - System predefined 				
Domain	ip domain-name <name> ip domain-lookup</name>	ip domain name <name> ip domain lookup</name>				
ntp calendar	ntp update-calendar	clock calendar-valid				

Best Practices

Design and configuration Best Practices

- Consider to plan for Routed Access Design
 - Avoid Spanning Tree, make use of ECMP
 - Consistent and Predictable
- Summarization at Distribution Layer
 - Limits the number of EIGRP Queries or OSPF LSAs
- ✓ Use Passive Interfaces for IGP
- Consider deploying QoS even if you have tons of bandwidth today

- ✓ Use VTP Transparent mode
 - Avoids Operational Errors
- Configure portfast on Edge ports
- Use Uni Directional Link Detection (UDLD)
 - Protects against One-Way Communication in Fibre Optic links
- Configure device hardening best practices
 - AAA & TACACS, password/key, SNMP, SSH, Syslogs

Catalyst 9600 - Power Redundancy Mode

- Supported power supply redundancy modes
 - Combined
 - N+1
- Combined mode is the default, redundant mode is configurable

Use redundant mode (N+1)

Catalyst 9600 Power Priority

- All components in the system are assigned with a power priority level
- Supervisors and the fan tray have the same highest priority level
- Line cards with lower slot numbers have the higher power priority level by default
- User-configurable power priority for line card slots is on the roadmap

Place important connectivity on higher priority line cards

BRKENS-2051

Catalyst 9400 - Power Redundancy Mode

- Supported power supply redundancy modes
 - Combined
 - N+1
 - N+N
- Combined mode is the default, redundant mode is configurable.

Catalyst 9400 Power Priority

- All components in the system are assigned a power priority level
- Supervisors and fan tray have the same highest priority level
- Line cards with lower slot numbers have the higher power priority level by default if "power supply autoLC shutdown" is configured
- Software allows user-configurable power priority for line card slots

```
C94(config) #power supply autoLC priority ?
    <1-7> Physical slot number
     <cr>
C94(config) #power supply autoLC priority
```


Place important connectivity on higher priority line cards

Catalyst 9400 Sup-1 Uplink Ports Configurations

To use an SFP or SFP+ port, disable the corresponding QSFP interface

Catalyst 9400 Sup-2 Uplink Ports Configurations

Port 1-4 - SFP+/SFP28 Port 5-8 - QSFP/QSFP28

To use an SFP+ or SFP28 port, disable the corresponding QSFP/QSFP28 interface

Automation Story

Why is automation needed?

- Eliminate hard work, enable smart work
 - Reduce repetitive work for configuring multiple Catalyst switches simultaneously
 - Avoid human errors/typos
 - Available to do more in less time
- Brings in configuration consistency

- Saves troubleshooting time
 - Automating pre and post checks during migration
 - Quickly identify which routes or mac addresses are missing
 - Capture the ideal network state for future references
- Version Control
 - Share templatized configurations with team
 - Desired state of the network managed as a code

Automation Use Cases for Campus Network Migration

Device Onboarding

- Pre-Migration switch configuration
- IOS to IOS-XE Config conversion

Migration

- Capture Pre and Post Migration checks
- Compare the checks to ensure post migration checks are as

- Software upgrade
- Upgrade the device to recommended version before migration

- Day 2 changes
- SW Image Management
- Telemetry

Conclusion

Key Takeaways

- Campus infrastructure can be upgraded rapidly with well managed & executed migration process
- Automation helps in consistent, efficient, accurate & faster migrations
- Use infrastructure refresh opportunity to improve campus network design & deployment
- Cross team collaboration is key
- Cisco CX is always there to help you and work with you to achieve your campus network infrastructure transformation

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge

Gamify your Cisco Live experience! Get points for attending this session!

How:

- Open the Cisco Events App.
- 2 Click on 'Cisco Live Challenge' in the side menu.
- 3 Click on View Your Badges at the top.
- 4 Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive