ICCS310: Assignment 1

Possawat Sanorkam possawat2017@hotmail.com January 13, 2021

1: Review: Something About Sets

(1) Let A_1, A_2, A_3 be any sets from a universe \mathcal{U} . Prove that $\overline{A_1 \cup A_2 \cup A_3} = \overline{A_1} \cap \overline{A_2} \cap \overline{A_3}$.

Proof: We want to show that $\overline{A_1 \cup A_2 \cup A_3} \subseteq \overline{A_1} \cap \overline{A_2} \cap \overline{A_3}$ and $\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \subseteq \overline{A_1 \cup A_2 \cup A_3}$. Let A_1, A_2, A_3 be any three given sets. We'll first prove that $\overline{A_1 \cup A_2 \cup A_3} \subseteq \overline{A_1} \cap \overline{A_2} \cap \overline{A_3}$. Let $x \in \overline{A_1 \cup A_2 \cup A_3}$. Then, $x \notin A_1 \cup A_2 \cup A_3$ by the definition of complement, so then $x \notin A_1$, $x \notin A_2$ and $x \notin A_3$, by the definition of union. This means that $x \in \overline{A_1}, x \in \overline{A_2}$, and $x \in \overline{A_3}$, by the definition of complement. Hence, $x \in \overline{A_1} \cap \overline{A_2} \cap \overline{A_3}$ since x is in $\overline{A_1}, \overline{A_2}$, and $\overline{A_3}$.

Also, we will show that $\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \subseteq \overline{A_1 \cup A_2 \cup A_3}$. Let $y \in \overline{A_1} \cap \overline{A_2} \cap \overline{A_3}$, so y is in $\overline{A_1}$, $\overline{A_2}$, and $\overline{A_3}$, by the definition of intersection. This means $y \notin A_1$, $y \notin A_2$, and $y \notin A_3$, by the definition of complement. It follows that $y \notin A_1 \cup A_2 \cup A_3$, and so $y \in \overline{A_1 \cup A_2 \cup A_3}$.

In conclusion, $\overline{A_1 \cup A_2 \cup A_3} = \overline{A_1} \cap \overline{A_2} \cap \overline{A_3}$.

(2) Let A and B be any sets from a universe \mathcal{U} . Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof: We want to show that $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$

Let A and B be any two given sets. We'll first prove that $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$. Let $x \in \overline{A \cup B}$. Then, $x \notin A \cup B$ by the definition of complement, so then $x \notin A$, and $x \notin B$, by the definition of union. This means that $x \in \overline{A}$, and $x \in \overline{B}$, by the definition of complement. Hence, $x \in \overline{A} \cap \overline{B}$ since x is in \overline{A} and \overline{B} .

Also, we will show that $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$. Let $y \in \overline{A} \cap \overline{B}$, so y is in \overline{A} and \overline{B} , by the definition of intersection. This means $y \notin A$ and $y \notin B$, by the definition of complement. It follows that $y \notin A \cup B$, and so $y \in \overline{A \cup B}$.

In conclusion, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

2: Prime and Irrational

(1) Let $p \ge 2$ be a prime and a be a positive integer. Prove that if p divides a^2 , then p divides a.

Proof: Using contraposition, we can prove that if p does not divides a, then p does not divides a^2 instead.

Let a be any number that cannot be divided by p, so a = (p * q) + r where r < p and $r, q \in \mathbb{I}^+$. So, we have $a^2 = ((p * q) + r)^2 = (p * q)^2 + 2 * (p * q * r) + r^2$. We can see that r^2 cannot be divided by p. Hence, p does not divides a^2 .

Therefore, if p divides a^2 , then p divides a.

(2) Prove that if p is any positive prime number, then \sqrt{p} is irrational.

Proof: Using contraposition, we can prove that if p does not divides a, then p does not divides a^2 instead.

Let a be any number that cannot be divided by p, so a = (p * q) + r where r < p and $r, q \in \mathbb{I}^+$. So, we have $a^2 = ((p * q) + r)^2 = (p * q)^2 + 2 * (p * q * r) + r^2$. We can see that r^2 cannot be divided by p. Hence, p does not divides a^2 .

Therefore, if p divides a^2 , then p divides a.

3: Spacing

Prove that in any set of n+1 numbers from $\{1,...,2n\}$, there are always two numbers that are consecutive.

Proof: Without loss of generality,

4: Curious Fact about Graphs

Let G = (V, E) be an undirected graph. Show that G contains two nodes that have equal degrees.

5: Basic DFAs

(1) Prove Theorem: for any $n \ge 0$, Solve_Hanoi (n, From_Peg, To_Peg, Aux_Peg) generates exactly $2^n - 1$ lines of instruction

Predicate: $P(x) \equiv \text{for any } x \geq 0$, Solve_Hanoi (x, ...) generates exactly $2^x - 1$ lines of instruction

Base case: $P(0) \equiv Solve_Hanoi(n, ...)$ generates exactly 0 lines of instruction which is true

Inductive Steps: Assume that if P(x) is true then P(x+1) is true $P(x) \equiv \text{Solve_Hanoi } (x, ...)$ generates exactly $2^x - 1$ lines of instruction $P(x+1) \equiv \text{Solve_Hanoi } (x, ...)$ generates exactly $2^{x+1} - 1$ lines of instruction

To show that this is true in mathematically way, T(x) is the number of line generated from the function using recurrence.

$$T(x) = 2T(x-1) + 1; T(1) = 1; T(0) = 0$$
 (1)

$$T(x) = 2^{x-1} + \dots + 2 + 1 \tag{2}$$

$$T(x) = 2^x - 1 \tag{3}$$

$$LHS = 2^x - 1; T(x) \tag{4}$$

$$RHS = 2^x - 1 \tag{5}$$

$$LHS \equiv RHS \tag{6}$$

So, P(x) is true, this time we will prove the P(x+1) by using the equations above.

$$T(x+1) = 2T(x) + 1; T(1) = 1; T(0) = 0$$
 (7)

$$T(x+1) = 2^x + \dots + 2 + 1 \tag{8}$$

$$T(x+1) = 2^x + 2^x - 1; (9)$$

Using T(x) to solve the equation below

$$T(x+1) = 2^{x+1} - 1 (10)$$

$$LHS = 2^{x+1} - 1; T(x+1)$$
 (11)

$$RHS = 2^{x+1} - 1; (12)$$

$$LHS \equiv RHS \tag{13}$$

From the induction hypothesis, $P(x-1) \implies P(x)$ and P(x) holds for any $x \ge 0$, Solve_Hanoi (x, ...) generates exactly $2^x - 1$ lines of instruction. Q.E.D.

(3) Prove printRuler:

These are the equations we know from this problem

$$f(n) = 2f(n-1) + 1, f(0) = 0$$
 is number of lines

$$g(n) = 2g(n-1) + n, g(0) = 0$$
 is number of dashes

$$g(n) = a * f(n) + b * n + c$$

1. Basically, I just followed the hint

$$g(0) = a * f(0) + b * 0 + c (14)$$

$$g(0) = c \tag{15}$$

$$g(0) = 0 (16)$$

So, c = 0

2. We will find a and b

$$g(n) = 2g(n-1) + n \tag{17}$$

$$a * f(n) + b * n = 2(a * f(n-1) + b * (n-1)) + n$$
 (18)

$$a * f(n) + b * n = 2a * f(n-1) + 2b * (n-1) + n$$
 (19)

$$a * f(n) = 2a * f(n-1) + b * n - 2b + n$$
 (20)

$$a * f(n) - 2a * f(n-1) = b * n - 2b + n$$
 (21)

Let's do it side by side

$$a(f(n) - 2f(n-1)) = b * n + n - 2b$$
(22)

$$a(1) = n * (b+1) - 2b (23)$$

$$a + 2b = n * (b+1)$$
 (24)

$$a + 2b - n * (b+1) = 0 (25)$$

To find a and b, we know that substitute P and Q = 0 will solve this equation

$$P + Qn = 0 (26)$$

$$a + 2b = P (27)$$

$$(b+1) = Q (28)$$

$$b = -1 \tag{29}$$

$$a = 2 \tag{30}$$

$$g(n) = a * f(n) + b * n \tag{31}$$

$$g(n) = 2 * f(n) - n \tag{32}$$

- 3. Previously, we got g(n) = 2 * f(n) nAlso, $f(n) = 2^n - 1$. In fact, $g(n) = 2^{n+1} - n - 2$.
- 4. Theorem : $g(n) = 2^{n+1} n 2$ works for all $n \ge 0$

Predicate: $P(x) \equiv g(x) = 2^{x+1} - x - 2$ works for all $x \ge 0$

Base case : $P(0) \equiv g(0) = 0$ is true

Inductive Steps: Assume that if P(x) is true then P(x+1) is true

 $P(x) \equiv g(x) = 2^{x+1} - x - 2$

 $P(x+1) \equiv g(x+1) = 2^{x+2} - x - 3$

Actually, we know that g(n) = 2g(n-1) + n has a close form of $g(x) = 2^{x+1} - x - 2$ according to what we have done on part 2.

So, P(x) is true, this time we will prove the P(x+1) by using the equations above.

$$g(x+1) = 2^{x+2} - x - 3 (33)$$

$$g(x+1) = 2 * 2^{x+1} - x - 3 (34)$$

$$g(x+1) = 2(g(x) + x + 2) - x - 3 (35)$$

$$g(x+1) = 2g(x) + (x+1) (36)$$

$$LHS = 2^{x+2} - x - 3 (37)$$

$$RHS = 2g(x) + (x+1) \tag{38}$$

$$LHS \equiv RHS \tag{39}$$

From the induction hypothesis, $P(x) \implies P(x+1)$ and P(x) holds for any $x \ge 0$ which will make $g(x) = 2^{x+1} - x - 2$ true. So, $g(x) = 2^{x+1} - x - 2$ works. Q.E.D.

6: Penultimate

(1) Prove Theorem: for any $n \ge 0$, Solve_Hanoi (n, From_Peg, To_Peg, Aux_Peg) generates exactly $2^n - 1$ lines of instruction

Predicate: $P(x) \equiv \text{for any } x > 0$, Solve_Hanoi (x, ...) generates exactly $2^x - 1$ lines of instruction

Base case: $P(0) \equiv Solve_Hanoi(n, ...)$ generates exactly 0 lines of instruction which is true

Inductive Steps: Assume that if P(x) is true then P(x+1) is true

 $P(x) \equiv Solve_Hanoi(x, ...)$ generates exactly $2^x - 1$ lines of instruction

 $P(x+1) \equiv Solve_Hanoi(x, ...)$ generates exactly $2^{x+1} - 1$ lines of instruction

7: Digit Sum

(1) Prove Theorem: for any $n \ge 0$, Solve_Hanoi (n, From_Peg, To_Peg, Aux_Peg) generates exactly $2^n - 1$ lines of instruction

Predicate: $P(x) \equiv \text{for any } x \geq 0$, Solve_Hanoi (x, ...) generates exactly $2^x - 1$ lines of instruction

Base case: $P(0) \equiv Solve_Hanoi(n, ...)$ generates exactly 0 lines of instruction which is true

Inductive Steps: Assume that if P(x) is true then P(x+1) is true $P(x) \equiv \text{Solve_Hanoi } (x, ...)$ generates exactly $2^x - 1$ lines of instruction $P(x+1) \equiv \text{Solve_Hanoi } (x, ...)$ generates exactly $2^{x+1} - 1$ lines of instruction