Machine Learning

Ravi Kumar Tiwari 14 June 2016

Introduction

- 1. Definition: It is a method of teaching computers to make predictions based on data
- 2. Types of machine learning:
 - Supervised learning
 - Unsupervised learning
- 3. Machine Learning in Everday life:
 - Forecasting
 - Spam filtering
 - Product recommendation
 - Fraud detection

Linear Regression

Working principle

Find a straight line that best describes the relationship between the dependent and the independent variables. In order to obtain the predicted value of the dependent variable, plug in the the values of the independent variable in the equation of the line.

Example

Build a linear model to describe the relationship between mpg (miles per gallon) and wt (weight of the car) in the mtcars dataset


```
## Build the linear model object
lmModel <- lm(mpg ~ wt, data = mtcars)

## Obtain the model parameters
sumModel <- summary(lmModel)
sumModel$coefficients

## Prediction using the model</pre>
```

```
predValue <- predict(lmModel, data.frame(wt = c(3.5, 4.2)))
predValue <- predict(lmModel, data.frame(wt = mtcars$wt))</pre>
```

Model Assessment

1. Visual Inspection

2. R-squared value

```
sumModel <- summary(lmModel)
sumModel$r.squared</pre>
```

[1] 0.7528328

3. F-statistics

sumModel\$fstatistic

```
## value numdf dendf
## 91.37533 1.00000 30.00000
```

Extension of linear model

```
## More than one predictors
lmModel2 <- lm(mpg ~ wt+hp+disp, data = mtcars) # wt, hp, and disp will be used as predictor
lmModel3 <- lm(mpg~ ., data = mtcars) # All the variable will be used

## subset selection: 1) Identify the best model that contains a given number of predictors
## 2) Identify the overall best model

library(leaps) # subset selection library
fwdSelection <- regsubsets(mpg ~ ., data = mtcars, method = "forward")
sumFwdSel <- summary(fwdSelection)
sumFwdSel$outmat # 1) Included predictor in the Best Model when the number of predictors is fixed
which.max(sumFwdSel$adjr2) # 2) overall best model has the highest adjusted r-squared value</pre>
```

Output

1. Included predictors in the best model when the number of predictors are fixed

sumFwdSel\$outmat

2. Overall best model

Challenge

Use backward selection model to find the best model for mpg

Logistic Regression

Working Principle

Fit the predictor values to a function whose value lies between 0 and 1. Choose a cut-off value to separates the function output values in two regions corresponding to two classes. A new observation class is decided by the region in which the function values corresponding to this observation lies.

Example

Codes

```
inSetosa <- iris$Species == "setosa"
myIris <- iris[!inSetosa,]
myIris$Species <- factor(myIris$Species, levels = c("versicolor", "virginica"))
glmModel <- glm(Species ~ Petal.Length, data = myIris, family = binomial(link="logit"))
predValue <- predict(glmModel, myIris, type = "response")</pre>
```

Model Assessment

```
prediction <- ifelse(predValue > 0.5, "virginica", "versicolor")
table(prediction, myIris$Species)
```

```
##
## prediction versicolor virginica
## versicolor 46 3
## virginica 4 47
```

Tree based algorithm

Used both for classification and regression

Working principle

Divide the data set into several small regions such that the response variables are (nearly) homogeneous in those regions. The predictd value of a new observation is the most dominant class of the region to which the observation belongs.

Example

Find the decision rule to predict the species of iris dataset based on Sepal.Length, Sepal.Width, Petal.Length, and Petal.Width

```
iris[c(1,100,150),]
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	100	5.7	2.8	4.1	1.3	versicolor
##	150	5.9	3.0	5.1	1.8	virginica

Decision Tree visualization


```
## Load the required libraries
library(rpart)
library(rpart.plot) # For decision tree visualization
## create the data partition
set.seed(1)
inTrain <- sample(c(TRUE, FALSE), size = nrow(iris), replace = TRUE, prob = c(0.6,0.4))</pre>
trainData <- iris[inTrain,]</pre>
testData <- iris[!inTrain,1:4]</pre>
testClass <- iris[!inTrain,5]</pre>
## Create the tree model
treeModel <- rpart(Species ~ ., data = trainData)</pre>
## Use the tree model to predict the class of the test data
predTrainClass <- predict(treeModel, newdata = trainData, type = "class")</pre>
predTestClass <- predict(treeModel, newdata = testData, type = "class")</pre>
## Find out the performance of the decision tree
table(predTrainClass, trainData$Species) # Confusion Matrix
mean(predTrainClass == trainData$Species) # Prediction Accuracy
table(predTestClass, testClass)
                                           # Confusion Matrix
mean(predTestClass == testClass)
                                       # Prediction Accuracy
```

Decision tree prediction visualization

Add some challenge

Advantages of decision tree

Easy to interpret

Problem with the decision tree

Lower prediction accuracy

Solution

Aggregate many decision trees (bagging, random forest, boosting)

random Forest

Need to decorrelate the trees. Making it more accurate

ntree

\mathbf{mtry}

Decorrelate the trees a random sample of m predictors is chosen as split candidates from the full set of p predictors.

Random Forest classifier

Individual tree

random forest example

```
library(randomForest)
rfModel <- randomForest(Species ~ ., data=trainData, mtry=3, ntree=15)
predClass <- predict(rfModel, newdata = testData)
table(predClass, testClass)</pre>
```

##	# testClass					
##	predClass	setosa	${\tt versicolor}$	virginica		
##	setosa	23	0	0		
##	versicolor	0	20	3		
##	virginica	0	0	15		

rfModel

Add some challenge

Boosting

Illustration

example

The argument n.teees = 5000 indicates that we want 5000 trees, and the option interaction.depth = 4 limits the depth of each tree

knn

make sure, you scale the data and also with an example tell why it is important to scale the data

Working principle

It assumes that the members of a given class have similar characteristics. So, a given observation is assigned the class of its nearest neighbours (number of nearest neighbour to be decided by the user)

Example

codes

```
library(class)
myIris <- iris[,3:5]

set.seed(100)
inTrain <- sample(c(TRUE, FALSE), size = nrow(myIris), replace = TRUE, prob = c(0.2,0.8))
trainData <- myIris[inTrain,1:2]
trainClass <- myIris[inTrain,3]
testData <- myIris[!inTrain,1:2]
testClass <- myIris[!inTrain,3]</pre>
```

```
predClass <- knn(trainData, testData, cl = trainClass, k = 3)
table(predClass, testClass)</pre>
```

##	1			
##	predClass	setosa	${\tt versicolor}$	virginica
##	setosa	40	0	0
##	versicolor	0	40	1
##	virginica	0	2	38

clustering example

kmeans clustering


```
##
                group
##
   predGroupC
                 setosa versicolor virginica
##
     setosa
                       0
                                   7
                                              1
                      10
                                   0
                                              0
##
     versicolor
                                             10
     virginnica
                       0
                                   1
##
```

Hierarchichal Clustering

Cross-validation

5 fold cross validation illustration

baye's theorem

#head(Titanic)

SVM

Working Principle

It classifies a test observation depending on which side of a hyperplane it lies. The hyperplabe is chosen to correctly separate most of the training observations into two classes

Example


```
summary(svmModel)
prediction <- predict(svmModel, myIris[, 1:2])
table(prediction, myIris$Species)</pre>
```

Assessment

```
prediction <- predict(svmModel, myIris[, 1:2])
table(prediction, myIris$Species)

##
## prediction versicolor virginica
## versicolor 47 3
## virginica 3 47

mean(prediction==myIris$Species)</pre>
```

[1] 0.94