Fonction carrée, fonction racine carrée

1. La fonction carrée

1.1 Définition et premières propriétés

Définition 1.8

La fonction carrée est la fonction f qui à tout réel x associe son carré soit $f(x) = \underline{\hspace{1cm}}$ et on appelle parabole $\mathscr P$ la courbe représentative de cette fonction carrée.

Propriété 1.8.

- 1. Un carré est toujours positif ou nul dans \mathbb{R} . Pour tout réel x, on a $x^2 \ge 0$: la parabole \mathscr{P} est toujours située **au dessus de l'axe des abscisses**.
- 2. Un nombre et son opposé ont le même carré. Pour tout réel x, on a $x^2 = (-x)^2$: la parabole \mathscr{P} est symétrique par rapport à l'axe des ordonnées : on dit que la fonction carré est paire.

1.2 Sens de variation de la fonction carrée

Propriété 2.8. La fonction carrée est :

- 1. strictement décroissante sur $]-\infty$; 0]; autrement dit, la fonction carrée ne conserve pas l'ordre des réels négatifs : si $u < v \le 0$ alors ______.
- 2. strictement croissante sur $[0; +\infty[$; autrement dit, la fonction carrée conserve l'ordre des réels positifs : si $0 \le u < v$ alors ______.

On résume ces variations dans un tableau :

x	$-\infty$	0	$+\infty$
Variation de x^2			

P Application 1.8. Sans calcul, comparer les carrés de :

1.
$$\pi$$
 et 3, 15

2.
$$-0.96 \text{ et } -0.8$$

3.
$$0, 2 \text{ et } -0, 3$$

Propriété 3.8.

- 1. Si k < 0, comme un carré est positif, l'équation $x^2 = k$ n'a pas de solution.
- 2. Si k = 0, l'équation $x^2 = 0$ a pour unique solution x = 0.
- 3. Si k > 0, $x^2 = k \Leftrightarrow x^2 k = 0 \Leftrightarrow (x + \sqrt{k})(x \sqrt{k}) = 0$. On obtient les deux solutions $x = -\sqrt{k}$ ou $x = \sqrt{k}$.

 $\begin{array}{c|c}
k < 0 \\
\end{array}$

 $x^2 = k$ n'a pas de solution

 $x^2 = 0$ a pour unique solution 0 $x^2 = k$ a deux solutions $-\sqrt{k}$ ou \sqrt{k}

■ Application 2.8. Résoudre graphiquement les équations suivantes :

1.
$$x^2 = 16$$

2.
$$x^2 = -2$$

3.
$$x^2 = 0$$

2. La fonction racine carrée

2.1 Définition et courbe représentative

Définition 2.8

La fonction racine carré est la fonction qui à tout réel x positif ou nul associe sa racine carré : $x \longmapsto \sqrt{x}$.

2.2 Sens de variation

Propriété 4.8. La fonction racine carrée **conserve** l'ordre dans les réels positifs. Autrement dit, si $0 \le u < v$ alors $\sqrt{u} < \sqrt{v}$, elle est donc **strictement croissante** sur $[0; +\infty[$.

x	0	$+\infty$
Variation de \sqrt{x}	0	

PAPPLICATION 3.8. Résoudre dans \mathbb{R} les inéquations suivantes :

1.
$$\sqrt{x} < 2$$

2.
$$\sqrt{x} - 3 \ge 0$$

Propriété 5.8. Pour tous nombres réels a et b positifs :

1.
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

2. Si
$$b \neq 0$$
, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

3. Si a et b sont non nuls,
$$\sqrt{a+b} < \sqrt{a} + \sqrt{b}$$

■ Application 4.8.

- 1. Écrire $\sqrt{75}$ sous la forme $a\sqrt{3}$.
- 2. Simplifier $\sqrt{\frac{9}{25}}$.
- 3. Démontrer que $(\sqrt{3}-1)(\sqrt{3}+1)$ est un entier.