2 Types of Semantics
Operational - Describing the operations necessary to execute code
Denotational - Mapping instructions to another model (like math)
A function is a subset of the cartesian product of sets
Define f: A-B fcAxB
(a,b)∈f
In a function, many elements in the domain can map to a single element in the range, but one elem in domain cannot map to many in range

In Category Theory, an arrow f, that has an inverse, q, is an isomorphism f(a) by $g \circ f = i d_a$ $g : b \rightarrow a$ In Set Theory, A function has an inverse iff 1-1+ is monic (injective)
2. 1+ is epic (surjective) Desivation of Epimorphism in Category Theory Specifically, to show a function, f, is an epimorphism (surjective)

compose & with any two functions 91: 3-> 92:B ->C f is an epimorphism iff ∀g1,92 g10f = g2f => g1 = g2 If f were not epic, there would exist 2 fors $g_1 \neq g_2$ that could still be equal under f composition, that is 9, of = 92 of (Video 7.1 40 mins for explanation) Definition of Monomorphism Similar to the proof above, function f is a monomorphism if Yg1, g2 fog1 = tog2 => g1 = g2 Where this time y: A-B

