第三章 F28027存储空间

- 3.1 概述
- 3.2 DSP片内存储类型
- 3.3 存储空间
- 3.4 程序的引导装载

什么是存储器? 为什么要有存储器? 存储空间类型?

存储器怎么使用? 存储器使用中要注意那些事项?

3.1 概述

C28x采用六组总线(PAB、PRDB、DRAB、DRDB、DWAB和DWDB)将DSP、存储器和外设连接在一起,

存储空间分为: 数据存储器和程序存储器

数据存储器的总线包含32根地址线和32根数据线,数据存储器最多支持4G字的地址,

程序存储器的总线包含22根地址线和32根数据线,程序存储器最多支持4M字的地址。

3.1 概述

外设总线将片内各种外设连接在一起,这组总线具有16根地址线和16根或32根数据线以及相关的控制信号,因此DSP对外设的操作与对存储器的操作是一样的。数据空间

外设总线有三种形式:

支持16位和32位的外设操作称为外设帧1, 支持16位的外设操作称为外设帧2, 支持16位和32位的访问称为外设帧0。

	Data Space	Prog Space	
0x00 0000	M0 Vector RAM (Enabled if VMAP = 0)		
0x00 0040	M0 SARAM (1	K x 16, 0-Wait)	
0x00 0400	M1 SARAM (1	K x 16, 0-Wait)	
0x00 0800	Peripheral Frame 0		
0x00 0D00	PIE Vector - RAM (256 x 16) (Enabled if VMAP = 1, ENPIE = 1)	Reserved	
0x00 0E00	Peripheral Frame 0		
0x00 2000	Reserved		
0×00 6000	Peripheral Frame 1 (4K x 16, Protected)		
0×00 7000	Peripheral Frame 2 (4K x 16, Protected)	Reserved	
0×00 8000	L0 SARAM (4K x 16) (0-Wait, Secure Zone + ECSL, Dual Mapped)		
0x00 9000	Reserved		
0x3D 7800	User OTP (1K x 16, Secure Zone + ECSL)		
0x3D 7C00	Reserved		
0x3D 7C80	Calibration Data		
0x3D 7CC0	Get_mod	de function	

0x3D 7CE0	Reserved
0x3D 7E80	Calibration Data
0x3D 7EB0	Reserved
0x3D 7FFF	PARTID
0x3D 8000	Reserved
0x3F 0000	
	FLASH (32K x 16, 4 Sectors, Secure Zone + ECSL)
0x3F 7FF8	128-Bit Password
0x3F 8000	L0 SARAM (4K x 16) (0-Wait, Secure Zone + ECSL, Dual Mapped)
0x3F 9000	Reserved
0x3F E000	Boot ROM (8K x 16, 0-Wait)
0x3F FFC0	Vector (32 Vectors, Enabled if VMAP = 1)

3.2 片内存储器类型

- SARAM
- FLASH & OTP
- BOOT ROM
- M0,M1 SARAMs
 在一个周期只能访问一次
 每个空间 1K * 16
 数据存储器和程序存储器
- L0 SARAM
 在一个周期只能访问一次
 空间 4K * 16 RAM
 数据存储器和程序存储器

Flash 和 OTP

空间 32K * 16 分为4个 8K * 16 的段 一个OTP存储空间 1K * 16

特殊的存储流水线

数据存储器和程序存储器

Flash存储器可以擦除的最小单元是一个扇区

BOOT ROM

Boot ROM是出厂时已固化好引导装载程序的只读存储器。

F2802x的Boot ROM大小为8K×16位,位于地址0x3F E000-0x3F FFFF。

Boot ROM还包含用于数学计算的数学表与函数等

0x3F E000	数据空间	程序空间		
OX3F E000	IQmath表			
0x3F EC86				
0x3F F4B0	IQmat	IQmath函数		
0x3F F4B0	引导选	差6 译 类尔		
0x3F F8D2	引导装载函数			
0.101 1 0.2 2	Flash .	API库		
0x3F FFB9	ROM	版本		
0x3F FFC0		ROM校验和		
0x3F FFFF	复位向量 CPU向量表			

3.3 存储空间

	Data Space	Prog Space		
0x00 0000	M0 Vector RAM (Enabled if VMAP = 0)			
0x00 0040	M0 SARAM (1	K x 16, 0-Wait)		
0x00 0400	M1 SARAM (1	K x 16, 0-Wait)		
0x00 0800	Peripheral Frame 0			
0×00 0D00	PIE Vector - RAM (256 x 16) (Enabled if VMAP = 1, ENPIE = 1)	Reserved		
0x00 0E00	Peripheral Frame 0			
0x00 2000	Reserved			
0x00 6000	Peripheral Frame 1 (4K x 16, Protected)			
0×00 7000	Peripheral Frame 2 (4K x 16, Protected)	Reserved		
0x00 8000	L0 SARAM (4K x 16) (0-Wait, Secure Zone + ECSL, Dual Mapped)			
0x00 9000	Reserved			
0x3D 7800	User OTP (1K x 16, Secure Zone + ECSL)			
0x3D 7C00	Reserved			
0x3D 7C80	Calibration Data			
0x3D 7CC0	Get_mode function			

0x3D 7CE0	Reserved
0x3D 7E80	Calibration Data
0x3D 7EB0	Reserved
0x3D 7FFF	PARTID
0x3D 8000	Reserved
0x3F 0000	
	FLASH (32K x 16, 4 Sectors, Secure Zone + ECSL)
0x3F 7FF8	128-Bit Password
0x3F 8000	L0 SARAM (4K x 16) (0-Wait, Secure Zone + ECSL, Dual Mapped)
0x3F 9000	Reserved
0x3F E000	Boot ROM (8K x 16, 0-Wait)
0x3F FFC0	Vector (32 Vectors, Enabled if VMAP = 1)

表3-2 存储器容量及范围

类型	容量	地址范围
SARAM MO	1K×16位	0x00 0000~0x00 03FF
SARAM M1	1K×16位	0x00 0400~0x00 07FF
SARAM LO	4K×16位	0x00 8000~0x00 8FFF
SARAM LO	4K×16位	0x3F 8000~0x3F 8FFF
FLASH	32K×16位	0x3F 0000~0x3F 7FFF
OTP	1K×16位	0x3D 7800~0x3D 7BFF
Boot ROM	8K×16位	0x3F E000~0x3F FFFF
外设帧0	2K×16位	0x00 0800~0x000 DFF
外设帧1	4K×16位	0x00 6000~0x00 6FFF
外设帧2	4K×16位	0x00 7000~0x00 7FFF
PIE向量	256×16位	0x00 0D00~0x00 0DFF

表3-3 Flash扇区地址范围

扇区	地址范围
0x3F 0000~0x3F 1FFF	扇区D(8K×16位)
0x3F 2000~0x3F 3FFF	扇区C(8K×16位)
0x3F 4000~0x3F 5FFF	扇区B(8K×16位)
0x3F 6000~0x3F 7F7F	扇区A(8K×16位)
0x3F 7F80~0x3F 7FF5	当使用CSM模块该区域必须编程为 0x0000
0x3F 7FF6~0x3F 7FF7	引导至Flash的入口地址
0x3F 7FF8~0x3F 7FFF	128位的安全密码区

外设帧

外设帧是TMS320F28027的CPU定时器、Flash、中断向量、片内外设(例如SCI、SPI、ADC、ePWM、eCAP及比较)等寄存器的映像空间,TMS320F28027的外设帧包含3个外设空间,外设空间分类如下:

- ▶ 外设帧0: 直接映射到CPU存储器总线的外设,包括PIE、Flash、CPU 定时器、CSM和ADC;
- ▶ 外设帧1:映射到32位外设总线的外设,包括GPIO、ePWM、eCAP和比较模块;
- ➤ 外设帧2:映射到16位外设总线的外设,包括系统控制、SCI、SPI、ADC和XINT。

3.3.3 CSM对存储空间的影响

● CSM 功能特点

对存储空间访问需要输入正确的密码防止存储空间信息被盗

● CSM 安全等级

用正确的密码执行	操作模式₽	程序提取地址↩	安全性描述₽
了 PMF?₽			
没有₽	安全。	安全存储器之外₽	只允许提取安全存储器的内容。↩
没有₽	安全₽	安全存储器之内₽	CPU 拥有所有存储器的访问权。↩ ←
			JTAG 端口不能读取被保护的存储器的内容。₽
是↩	不安全₽	任何地方₽	CPU 和 JTAG 端口可以全权访问安全存储器⊶ ←

● CSM 能保护的片上资源

Address	Block
0x00 0A80 - 0x00 0A87	Flash Configuration Registers
0x00 8000 - 0x00 83FF or 0x00 8000 - 0x00 8BFF or 0x00 8000 - 0x00 8FFF	L0 SARAM (1K X 16) L0 SARAM (3K X 16) L0 SARAM (4K X 16)
0x3F 4000 - 0x3F 7FFF or 0x3F 0000 - 0x3F 7FFF	Flash (16K X 16) Flash (32K X 16)
0x3D 7800 - 0x3D 7BFF	User One-Time Programmable (OTP) (1K X 16)
0x3D 7C00 - 0x3D 7FFF	TI One-Time Programmable (OTP) ⁽¹⁾ (1K X 16)
0x3F 8000 - 0x3F 83FF or 0x3F 8000 - 0x3F 8BFF or 0x3F 8000 - 0x3F 8FFF	L0 SARAM (1K X 16) L0 SARAM (3K X 16) L0 SARAM (4K X 16)

对SARAM, BOOT ROM, PIE矢量表, 外设寄存器没有保护作用

● CSM 寄存器

Memory Address	Register Name	Reset Values	Register Description
KEY Registers			
0x00 - 0AE0	KEY0 ⁽¹⁾	0xFFFF	Low word of the 128-bit KEY register
0x00 - 0AE1	KEY1 ⁽¹⁾	0xFFFF	Second word of the 128-bit KEY register
0x00 - 0AE2	KEY2 ⁽¹⁾	0xFFFF	Third word of the 128-bit KEY register
0x00 - 0AE3	KEY3 ⁽¹⁾	0xFFFF	Fourth word of the 128-bit key
0x00 - 0AE4	KEY4 ⁽¹⁾	0xFFFF	Fifth word of the 128-bit key
0x00 - 0AE5	KEY5 ⁽¹⁾	0xFFFF	Sixth word of the 128-bit key
0x00 - 0AE6	KEY6 ⁽¹⁾	0xFFFF	Seventh word of the 128-bit key
0x00 - 0AE7	KEY7 ⁽¹⁾	0xFFFF	High word of the 128-bit KEY register
0x00 - 0AEF	CSMSCR ⁽¹⁾	0x002F	CSM status and control register

● CSM 寄存器

Password Locations	(PWL) i	in Flash Memory	- Reserved for t	the CSM r	password only

0x3F - 7FF8	PWL0	User defined	Low word of the 128-bit password
0x3F - 7FF9	PWL1	User defined	Second word of the 128-bit password
0x3F - 7FFA	PWL2	User defined	Third word of the 128-bit password
0x3F - 7FFB	PWL3	User defined	Fourth word of the 128-bit password
0x3F - 7FFC	PWL4	User defined	Fifth word of the 128-bit password
0x3F - 7FFD	PWL5	User defined	Sixth word of the 128-bit password
0x3F - 7FFE	PWL6	User defined	Seventh word of the 128-bit password
0x3F - 7FFF	PWL7	User defined	High word of the 128-bit password

PMF(Password Match Flow) 流程图

PMF(Password Match Flow) 流程图

对PWL读取判断: 1.All zero: permanently secured

2.All Fs: Unsecure

3.Correct password : unsecure

3.3.4 DSP片内存储的使用方法

● 问题:如何划分存储器的类型和功能?

● 程序空间? or 数据空间?

在28027的任何工程中,包含二个链接器的命令(CMD)文件,它来指明存储器的划分!

链接器的命令(CMD)文件

```
MEMORY {
  PAGE 0: /* Program Memory */
        FLASH: origin = 0x3F0000, length = 0x8000
  PAGE 1: /* Data Memory */
        MOSARAM: origin = 0x000000, length = 0x400
        M1SARAM: origin = 0x000400, length = 0x400
SECTIONS
   .text:> FLASH
                        PAGE = 0
   .ebss:> M0SARAM
                        PAGE = 1
   .cinit:> FLASH
                        PAGE = 0
                        PAGE = 1
   .stack:> M1SARAM
```

Flash & OTP 存储

Flash & OTP 特点

- 多块的结构 -- 最小的flash存储空间
- 拥有代码安全性 -- CSM模块
- 更好的性能 -- 可配置的等待时间&flash流水线

Flash & OTP 工作模式

- 复位&睡眠模式
- 备用模式
- 激活&读取模式

Flash & OTP 使用要点

● 流水线是否启用

● 等待周期设置

名称(1)(2)₁□	地址↩	大小 (x16)₽	描述↩
FOPT₽	0x0A80₽	1₽	Flash 选项寄存器₽
保留₽	0x0 A 81₽	1€	保留₽
FPWR₽	0x0A82₽	1₽	Flash 功率模式寄存器₽
FSTATUS₽	0x0A83₽	1₽	状态寄存器₽
FSTDBYWAIT(3)	0x0A84₽	1∻	Flash 休眠到待机等待寄存器₽
FACTIVEWAIT(3) ₄ 3	0x0A85₽	1₽	Flash 待机到活动等待寄存器₽
FBANKWAIT₽	0x0A86₽	1₽	Flash 读访问等待状态寄存器₽
FOTPWAIT₽	0x0A87₽	1₽	OTP 读访问等待状态寄存器₽

FOPT 确定是否开启flash流水线模式寄存器

位₽	域₽	值₽	描述(1)(2)(3)↩
15-1₽	保留₽	₽	<i>Q</i>
0₽	ENPIPE P	4	Flash 管道模式使能位。当该位被置位时 Flash 管道模式激
		₽	活。管道模式通过预取指令来提高指令提取的性能。
		41	
		₽	当管道模式被使能时,Flash 等待状态(分页访问和随机访
		04	问) 必须大于 0。↓
		1₽	在 Flash 器件上,ENPIPE 影响 Flash 和 OTP 内容的提取。4
			Flash 管道模式无效。(默认)↓
			Flash 管道模式有效。↩

FPWR 确定flash工作模式寄存器

位₽	域₽	值₽	描述(1)(2)↓	
15-2₽	保留₽	₽	4]
1-0₽	PWR₽	ų	Flash 功率模式位。写这两位来改变 Flash 组和泵的当前功率模式。	
		ħ		
		00↔	泵和组处于休眠模式(功率最低)。↩	
		01₽	泵和组处于待机模式。↩	
		10₽	保留(无影响)。↩	
		11₽	泵和组处于活动模式(功率最高)。↩	

FATATUS flash 状态标志位寄存器

位₽	域₽	值₽	描述⑴⑵√	
15-9₽	保留₽	¢	保留。↩	_
8€	3VSTAT₽	¥	${f Flash}$ 电压(${f V_{DD3VFL}}$)状态锁存位。当该位置位时,该位指示泵模块	-
		ų	的 3VSTAT 信号变成一个高电平。这个信号指示 Flash 3.3V 的电源超	
		ų	出了允许的范围。↩	
		04	写 0 被忽略。↩	
		1₽	当读出该位为 1 时,表明 Flash 3.3V 的电源超出了允许的范围。↩	
			通过写入1来清除该位。↩	
7-4₽	保留₹	¢	保留₹	

FATATUS flash 状态标志位寄存器

3₽	ACTIVEWAITS	Ų	组和泵从待机状态转为活动状态的等待计数器状态位。该位指示相应	
		ų.	的等待计数器是否超出了访问的等待时间。↩	
		0←	计数器没有在计数。↩	
		1₽	计数器正在计数。↩	
2₽	STDBYWAITS#	Ą	组和泵从休眠状态转为待机状态的等待计数器状态位。该位指示相应	
		ų.	的等待计数器是否超出了访问的等待时间。↩	
		0₊	计数器没有在计数。↩	
		1₽	计数器正在计数。↩	

FATATUS flash 状态标志位寄存器

∱ Ì₽	域₽	値↩	描述⑴⑵↩	
1-0₽	PWRS₽	Ą	功率模式状态位。这些位指示 Flash/OTP 当前处于哪种功率模式。只	
		Ą	有适当的计时延迟到期后,PWRS 位才能设置成新的功率模式。↓	
		00₊	泵和组处于休眠模式(功率最低)。↓	
		01₽	泵和组处于待机模式。→	
		10₊	保留。→	
		11₽	泵和组正常工作,处于读取模式(功率最高)。₽	

FBANKWAIT flash 等待寄存器

位↩	域↩	值↩	描述(1)(2)(3)↓			
15-12₽	保留₽	₽	保留。↩			
11-8₽	PAGEWAIT P	4	Flash 分页读的等待状态。这些寄存器位用 CPU 时钟周期来指定 Flash 存储			
		ب	区一个分页读操作的等待状态数目(015 个 SYSCLKOUT 周期)。			
		٦				
		ب	有关一个分页 Flash 访问所需的最短时间请见器件特定的数据手册。↩			
		ب	你必须将 RANDWAIT 的值设置成大于或等于 PAGEWAIT 的值。没有提供			
		ų	硬件来检测大于 RANDWAIT 的 PAGEWAIT 值。↩			
		0000	每个分页 Flash 访问使用零个等待状态,或者,每次访问共使用 1 个			
		ų	SYSCLKOUT 周期。↩			
		0001↔	每个分页 Flash 访问使用 1 个等待状态,或者,每次访问共使用 2 个			
		L.	SYSCLKOUT 周期。↩			
		0010↔	每个分页 Flash 访问使用 2 个等待状态,或者,每次访问共使用 3 个			
		₽J.	SYSCLKOUT 周期。↩			
		0011↔	每个分页 Flash 访问使用 3 个等待状态,或者,每次访问共使用 4 个			
		٦	SYSCLKOUT 周期。↩			
		↓	4			
		1111₽	每个分页 Flash 访问使用 15 个等待状态,或者,每次访问共使用 16 个			
			SYSCLKOUT 周期(默认)。₽			

FBANKWAIT flash 等待寄存器

7-40

7-40	休田←	,	M		
3-0₽	RANDWAIT₽	4-1	Flash 随机读等待状态。这些寄存器位用 CPU 时钟周期来指定 Flash 存储区		
		4	一个随机读操作的等待状态数目(115 个 SYSCLKOUT 周期)。		
		4			
		₽	有关一个随机 Flash 访问所需的最短时间请见器件特定的数据手册。↩		
		4.1	RANDWAIT 的值必须设置成大于 0。也就是说,必须使用至少 1 个随机等		
		4-1	待状态。另外,你必须将 RANDWAIT 的值设置成大于或等于 PAGEWAIT		
		4	的值。本器件将不检测和纠正大于 RANDWAIT 的 PAGEWAIT 值。↩		
		0000€	非法值。RANDWAIT 必须设置成大于 0。↩		
		0001↔	每个随机 Flash 访问使用 1 个等待状态,或者,每次访问共使用 2 个		
		the contract of the contract o	SYSCLKOUT 周期。↩		
		0010↔	每个随机 Flash 访问使用 2 个等待状态,或者,每次访问共使用 3 个		
		4	SYSCLKOUT 周期。↩		
		0011↔	每个随机 Flash 访问使用 3 个等待状态,或者,每次访问共使用 4 个		
		₩	SYSCLKOUT 周期。↩		
		↓	4		
		1111₽	每个随机 Flash 访问使用 15 个等待状态,或者,每次访问共使用 16 个		
			SYSCLKOUT 周期(默认)。↩		

FOTPWAIT OTP等待寄存器

位心	域↩	值↩	描述⑴⑵⑶↩
15-5₽	保留₽	0↔	保留。↩
4-0₽	OTPWAIT	٠	OTP 读等待状态。这些寄存器位用 CPU 时钟周期来指定 OTP 一个读操作
		4	的等待状态数目(131 个 SYSCLKOUT 周期)。详情请见"Flash/OTP 的
		Ą	CPU 读或提取访问"相关章节。OTP 中没有页面模式。↩
		₽	OTPWAIT 的值必须设置成大于 0。也就是说,必须使用最少 1 个等待状态。
		Ą	有关一次 OTP 访问所需的最短时间请见器件特定的数据手册。↩
		00000⊷	非法值。OTPWAIT 必须设置成大于等于 1。↩
		00001↔	每个 OTP 访问将使用 1 个等待状态,每次访问共使用 2 个 SYSCLKOUT
		₽	周期。↩
		00010↩	每个 OTP 访问将使用 2 个等待状态,每次访问共使用 3 个 SYSCLKOUT
		₽	周期。↩
		00011↔	每个 OTP 访问将使用 3 个等待状态,每次访问共使用 4 个 SYSCLKOUT
		Ą	周期。↩
		4	⁴
		111114	每个 OTP 访问将使用 31 个等待状态,每次访问共使用 32 个 SYSCLKOUT
			周期。↩

3.4 程序的引导装载

引导装载程序根据TRST和两个 GPIO引脚状态决定采用哪一种引导模式

表3-10 引导模式选择

模式	GPIO37/TDO	GPIO34/COMP2OUT	TRST	引导装载模式
3	1	1	0	模式获取
2	1	0	0	wait
1	0	1	0	SCI
0	0	0	0	并行I/O
EMU	X	X	1	仿真

1.仿真引导

在这种情况下,仿真头已连接到器件(TRST=1)且引导ROM从PIE向量表的前两个单元得到引导模式。

2.独立引导

在这种情况下,仿真头未连接到器件(TRST=0),则引导模式通过引导模式引脚的状态来确定。

WAIT

SCI

8位并行IO

GetMode

表3-14 独立引导模式

TRST	GPIO37 TDO	GPIO3 4	OTP KEY 读0x3D 7BFE	OTP BMODE 读0x3D 7BFF	所选的引导模式
0	0	0	x	X	并行 I/O
0	0	1	x	X	SCI
0	1	0	x	x	Wait
		1	!= 0x55AA	X	GetMode: Flash
				0x0001	GetMode: SCI
				0x0003	GetMode: Flash
0	1		OveeAA	0x0004	GetMode: SPI
			0x55AA	0x0005	GetMode:I2C
				0x0006	GetMode: OTP
				Other	GetMode: Flash

总结使用要点:

- 1, 如何配置各个存储器空间? 有待后面进一步讲解
- 2,如何进行Flash设置?
- 3,如何进行代码保护? 不同的芯片不同的做法
- 4, BOOT