International Institute of Information Technology, Hyderabad

(Deemed to be University)

MA4.101-Real Analysis (Monsoon-2025)

Quiz 1

Time: 45 Minutes

Total Marks: 20

Question (1) [4 Marks] Define $a_0 = 1$, $a_{n+1} = 2a_n + 1$.

- (a). [1 Mark] Compute the first 5 terms.
- (b). [1 Marks] Guess a closed form for a_n .
- (c). [2 Marks] Prove it by induction.

Question (2) [4 Marks] Place-value notation works because expansions are unique. This fact underpins decimal/binary representation and later decimal expansions of real numbers. Fix $b \geq 2$. Prove that every $n \in \mathbb{N}$ has a unique expansion

$$n = a_0 + a_1 b + \dots + a_k b^k,$$

with $0 \le a_i < b$ and $a_k \ne 0$. [Hint: Use division algorithm.]

Question (3) [3 Marks] Let us consider a function $f: \mathbb{Z} \to \mathbb{Z}$ such that for each $x \in \mathbb{Z}$, $f(x) = x^k \in \mathbb{Z}$ for some $k \geq 2$.

- (a). [1 Mark] For which values of k is f injective?
- (b). [1 Mark] For which values of k is f bijective?
- (c). [1 Mark] For k = 2, what is the inverse image of N under f, that is, what is $f^{-1}(N)$?

Question (4) [4 Marks] How close can a rational number get to the nearest integer? Distance measures define closeness. For each rational x, define its distance with the set of integers as

$$d(x) = \min_{m \in \mathbb{Z}} |x - m|.$$

- (a). [2 Marks] Show $0 \le d(x) \le \frac{1}{2}$.
- (b). [1 Mark] Give two examples of $x \in \mathbb{Q}$ with $d(x) = \frac{1}{2}$.
- (c). [1 Mark] Show that d(x) = 0 iff $x \in \mathbb{Z}$.

Question (5) [5 Marks] For a finite set with n elements, the power set has 2^n elements, i.e., its size grows exponentially. But what if the set is infinite, like N? Cantor's theorem shows that $\mathcal{P}(\mathbb{N})$ is strictly larger, revealing that even infinities come in different sizes. In particular, can you show that there is no surjection from \mathbb{N} to $\mathcal{P}(\mathbb{N})$? Proving this will imply that the cardinality of \mathbb{N} , which is infinite, is smaller than cardinality of $\mathcal{P}(\mathbb{N})$.

[Hint: Assume there is a surjection $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$. Then construct a subset S of \mathbb{N} as $S = \{n \in \mathbb{N} : n \notin f(n)\}$. Use this to show a contradiction.]