AE333

Mechanics of Materials

Lecture 21 - Combined loading
Dr. Nicholas Smith
Wichita State University, Department of Aerospace Engineering
27 Mar, 2019

schedule

- 25 Mar Combined Loading, HW6 Due
- 27 Mar Stress Transformation
- 29 Mar Stress Transformation
- 1 Apr Stress Transformation, HW7 Due

outline

- combined loading
- group problems
- plane stress transformation

combined loading

combined loading

• We can use the principle of superposition to treat various loading conditions separately and then add them together to find the total stress

procedure

- Section the member at the point of interest, internal force components should be drawn acting through the centroid of the section
- Moment components should be calculated about the centroidal axis

stress components

• Normal stress: $\sigma = N/A$

• Shear: $\tau = Q/It$

• Bending: $\sigma = y/I$

• Torsion: $\tau = \rho/J$

• Pressure Vessels: $\sigma_1 = r/t$, $\sigma_2 = r/2t$

example 8.2

Neglect the weight of the member and find the stress at B and C.

example 8.4

Determine the stress at C and D.

example 8.5

The rod shown has a radius of 0.75 in. Find the stress at A.

group problems

group one

Find the stress at the corners A and B for the column shown.

group two

Find the stress at point A for the cantilever beam shown.

group three

Find the load P that will cause a maximum normal stress of σ =30 ksi along the section a-a.

plane stress transformation

plane stress

- In general, the state of stress at a point is characterized by six stress components
- In practice, this is rare, as most stresses and forces act in the same plane
- This case is referred to as plane stress

transformation

procedure

- If the state of stress $(\sigma_x, \sigma_y, \tau_{xy})$ is known for a known axis system x and y, we can find the stress relative to some rotated coordinate system
- We do this by considering a section of the element perpendicular to the x' axis
- Sum of forces in x and y will give $\sigma_{\chi'}$ and $\tau_{\chi' y'}$
- A second section is needed to find $\sigma_{y'}$, perpendicular to the y' axis

procedure

example 9.1

Represent the state of stress shown on the fuselage section on an element rotated 30° clockwise from the position shown.