Comité de suivi 2^e année

Interactions dipolaire avec des ensembles de centre NV

- Rappel de l'année précédente
- Étude des interactions dipolaires
- Utilisation des interactions :
 - Spectroscopie d'autre défauts
 - Opto-mécanique
 - Magnétométrie

Previously in : le centre NV

Spin 1:

- Polarisable optiquement (dans l'état |0>)
- Lecture optique (de l'état |0>)

A 300 K:

- T1 ~ ms
- T2* ~ μs (ensemble)

Interaction dipolaire : relaxation croisée

Spin 2 = autre impureté paramagnétique Ou (étonnamment) autre centre NV

- \rightarrow Depolarization of the NVs
 - \rightarrow Decrease of the photoluminescence

En augmentant le champ mag on lève la dégénérescence entre les 4 classes de centre NV → la PL augmente

Les 4 classes sont toujours dégénérées mais on a quand même une chute de PL en champ nul

Interaction en champ nul : Double quantum

Interaction dipolaire « flip-flop » :
|0>|+1> → |+1>|0> : Conserve toujours l'énergie

- Interaction dipolaire « double quantum » :
 |0>|+1> → |-1>|0> : Ne conserve l'énergie qu'en champ nul (|-1> et |+1> dégénérés)
 - → Origine de la chute de PL en champ nul

Spectroscopie par relaxation croisée

Spectroscopie : nouveaux défauts non identifiés

Relaxation croisée en lévitation

Relaxation croisée et magnétométrie

Relaxation croisée et magnétométrie

- Sans micro-onde
- Forte contribution des double quantum
 - Faible dépendance avec l'orientation cristalline
- Possibilité d'utiliser des poudres (en solution?) ou des solides polycristallins
- Sensibilité mesurée ~100 nT/sqrt(Hz) (Vs 300 pT/sqrt(Hz) au Gslac)

La suite

- Finaliser l'étude des double quantum/la magnétométrie
- Étude en température des VH- / autres défauts
- Corréler les mesures avec du DEER