

CLAIMS

What is claimed is:

- 1 1. A network comprising:
 - 2 a first network node having a first transponder for receiving and
 - 3 transmitting communications signals, said first network node further comprising
 - 4 a first receiver for receiving position signals from a plurality of navigation
 - 5 beacons; and,
 - 6 a second network node having a second transponder for receiving and
 - 7 transmitting said communications signals, said second network node further
 - 8 comprising a second receiver for receiving position signals from a plurality of
 - 9 navigation beacons,
- 10 wherein each of said first and second receivers further include local code
- 11 generators that are also used as transmitter code generators for said first and
- 12 second transponders.

- 1 2. The network of claim 1, wherein a signal modulation process of
- 2 said first and second network nodes is reciprocal to a signal demodulation
- 3 process for said first and second network nodes.

1 3. The network of claim 2, wherein said signal modulation process
2 and signal demodulation process are based on modulo-2 addition.

1 4. The network of claim 1, wherein said communication signals are
2 generated by direct conversation using binary phase shift keying.

1 5. The network of claim 1, wherein said first and second receivers are
2 direct sequence spread spectrum positioning receivers.

1 6. The network of claim 5, wherein said first and second receivers use
2 correlators and pseudo random number (PRN) code tracking loops for
3 synchronization, and wherein signals from said correlators and PRN code
4 tracking loops are inputted to a complimentary code keying (CCK) modulator to
5 generate said communication signals.

1 7. The network of claim 6, wherein the signals from said correlators
2 and PRN code tracking loops are combined and summed to provide a CCK
3 signal.

1 8. The network of claim 7, wherein said CCK signal is up-converted to
2 change a frequency of the CCK signal to match a frequency of said
3 communication signals.

1 9. The network of claim 1 wherein said first and second network
2 nodes are addressable using one or more spatial parameters which include at
3 least one of a position parameter and a velocity parameter.

1 10. The network of claim 1, wherein said first and second network
2 node contain a topology of the network, said topology to be updated in response
3 to network topology changes.

1 11. The network of claim 1, further comprising a master transmitter
2 that sets the basic frequency and phase of said network and said first and second
3 network nodes.

1 12. The network of claim 1, further comprising a plurality of
2 navigation beacons which transmit position signals to said first and second
3 network nodes.

1 13. The network of claim 12, wherein said communication signals are
2 synchronized to said position signals.

1 14. The network of claim 12, wherein said communication signals are
2 used as ranging signals for other network nodes, said other network nodes to
3 determine signal propagation time using signal time tagging.

1 15. The network of claim 12, wherein said communication signals
2 substitute for said position signals in determining network node position
3 information.

1 16. The network of claim 15, wherein said communication signals are
2 used to provide frequency and signal phase assistance in the determination of
3 node position information.

1 17. The network of claim 16, wherein said frequency and signal phase
2 assistance is used by said first network node to detect attenuated positioning
3 signals from said plurality of navigation beacons.

1 18. A positioning device coupled to a network, comprising:
2 a receiver to receive position signals from a plurality of navigation
3 beacons, said receiver to include a receiver code generator;
4 a transponder to receive and transmit communication signals, said
5 transponder to use said receiver code generator as a transmitter code generator;
6 a processor coupled to the receiver and transponder; and

7 a memory coupled to the processor to store one or more instruction
8 sequences, said instruction sequences to cause the positioning device to transmit
9 said communication signals between said positioning device and a second
10 positioning device.

1 19. The positioning device of claim 18, wherein a signal modulation
2 process of said positioning device is reciprocal to a signal demodulation process
3 for said positioning device.

1 20. The positioning device of claim 19, wherein said signal modulation
2 process and signal demodulation process are based on modulo-2 addition.

1 21. The positioning device of claim 18, wherein said communication
2 signals are generated by direct conversion using binary phase shift keying.

1 22. The positioning device of claim 18, wherein said receiver is a direct
2 sequence spread spectrum positioning receiver.

1 23. The positioning device of claim 22, wherein said receiver uses
2 correlators and pseudo random number (PRN) code tracking loops for
3 synchronization, and wherein signals from said correlators and PRN code
4 tracking loops are inputted to a complimentary code keying (CCK) modulator to
5 generate said communication signals.

1 24. The positioning device of claim 23, wherein said signals from said
2 correlators and PRN code tracking loops are combined and summed to provide a
3 CCK signal.

1 25. The positioning device of claim 24, wherein said CCK signal is up-
2 converted to change a frequency of the CCK signal to match a frequency of said
3 communication signals.

1 26. The positioning device of claim 18 wherein said positioning device
2 is addressable using one or more spatial parameters which include at least one of
3 a position parameter and a velocity parameter.

1 27. The positioning device of claim 18, wherein said memory further
2 includes a topology of the network, said topology to be updated in response to
3 network topology changes.

1 28. The positioning device of claim 18, further comprising a master
2 transmitter that sets the basic frequency and phase of said network and said
3 positioning device.

1 29. The positioning device of claim 18, further comprising a plurality of
2 navigation beacons which transmit position signals to said positioning device.

1 30. The positioning device of claim 29, wherein said communication
2 signals are synchronized to said position signals.

1 31. The positioning device of claim 29, wherein said communication
2 signals are used as ranging signals for other positioning devices coupled to the
3 network, said other positioning devices to determine signal propagation time
4 using signal time tagging.

1 32. The positioning device of claim 29, wherein said communication
2 signals substitute for said position signals in determining position information.

1 33. The positioning device of claim 32, wherein said communication
2 signals are used to provide frequency and signal phase assistance in the
3 determination of position information.

1 34. The positioning device of claim 33, wherein said frequency and
2 signal phase assistance is used by said positioning device to detect attenuated
3 positioning signals from said plurality of navigation beacons.

1 35. A method comprising:
2 transmitting communication signals from a first network node to a second
3 network node, said first and second network nodes to comprise a network and to
4 each include a receiver portion and a transponder portion;
5 receiving, by said first and second network nodes, position signals from a
6 plurality of navigation beacons;

7 generating transmitter codes for said transponder portions using local
8 code generators of said receiver portions.

1 36. The method of claim 35, further comprising:
2 performing, by said first and second network nodes, a signal modulation
3 process; and
4 performing, by said first and second network nodes, a signal
5 demodulation process, wherein said signal modulation process is reciprocal to
6 said signal demodulation process.

1 37. The method of claim 36, wherein said signal modulation process
2 and signal demodulation process are based on modulo-2 addition.

1 38. The method of claim 35, further comprising generating said
2 communication signals by direct conversation using binary phase shift keying.

1 39. The method of claim 35, wherein said receiver portions for said first
2 and second network nodes are direct sequence spread spectrum positioning
3 receivers.

1 40. The method of claim 39, further comprising:
2 using, by said receiver portions, correlators and pseudo random number
3 (PRN) code tracking loops for synchronization; and,
4 inputted, to a complimentary code keying (CCK) modulator, signals from
5 said correlators and PRN code tracking loops to generate said communication
6 signals.

1 41. The method of claim 40, further comprising combining and
2 summing the signals from said correlators and PRN code tracking loops to
3 provide a CCK signal.

1 42. The method of claim 41, further comprising up-converting said
2 CCK signal to change a frequency of the CCK signal to match a frequency of said
3 communication signals.

1 43. The method of claim 35, further comprising addressing said first
2 and second network nodes using one or more spatial parameters which include
3 at least one of a position parameter and a velocity parameter.

1 44. The method of claim 35, wherein said first and second network
2 node contain a topology of the network, said topology to be updated in response
3 to network topology changes.

1 45. The method of claim 35, further comprising setting a basic
2 frequency and phase of said network and said first and second network nodes
3 using a master transmitter.

1 46. The method of claim 35, further comprising transmitting position
2 signals from a plurality of navigation beacons to said first and second network
3 nodes.

1 47. The method of claim 46, further comprising synchronizing said
2 communication signals to said position signals.

1 48. The method of claim 46, further comprising using said
2 communication signals as ranging signals for other network nodes, said other
3 network nodes to determine signal propagation time using signal time tagging.

1 49. The method of claim 46, further comprising substituting said
2 communication signals for said position signals in determining network node
3 position information.

1 50. The method of claim 49, further comprising using said
2 communication signals to provide frequency and signal phase assistance in the
3 determination of node position information.

1 51. The method of claim 49, further comprising using, by said first
2 network node, the frequency and signal phase assistance to detect attenuated
3 positioning signals from said plurality of navigation beacons.