Симметрия относительно обращения времени

Anikin Evgeny, 128

29 марта 2017 г.

Нетрудно проверить, что для частицы со спином $\frac{1}{2}$

$$\langle \chi | T\psi \rangle = -\langle \psi | T\chi \rangle \tag{1}$$

Тогда $\langle \psi | \hat{A} | T \psi \rangle = 0$ для любого $| \psi \rangle$, если \hat{A} удовлетворяет условию $-T \hat{A}^\dagger T = \hat{A}$. Действительно,

$$\langle \psi | \hat{A} | T \psi \rangle = \langle \hat{A}^{\dagger} \psi | T \psi \rangle = -\langle \psi | T \hat{A}^{\dagger} | \psi \rangle = -\langle \psi | (-T \hat{A}^{\dagger} T) | T \psi \rangle \tag{2}$$

Оператор эволюции T—инвариантной системы удовлетворяет именно такому условию:

$$-T\hat{U}T = U^{-1} = U^{\dagger} \tag{3}$$

Поэтому рассеяние $|\psi\rangle$ и $|T\psi\rangle$ друг в друга запрещено.