G reductive group / C eg-Slace B Boul Subgroup T maxinal toms W Weyl group W = Sm-1 Duhot decoposition B = 11 BwB/B Xw = BWB/B Schulart variety. Slogan The geometry of Silulant variety is a very sich source of infonstran in representation through A Lendonental object to consider is: IC(XW,R) interaction colonology Sheof T X W D'C(Xw) derived cotegory of constructible Sheaves (wrt strotification of) B-orlat 1H(XwIR) = IH(IC(Xw,IR)) Intersection colombogy. (H) is the correct space to consider it we went phisalite

JNS(XW) is senisiple => 1H(XW) is involucible as a JNS(XW)-module H(Xw,IR) ⊆ [H(Xw, IR) is a R-submodule The Betti mens of $H(X_w)$ are =

symmetric

(din H = dim H(w)-h Hh) {veW | vew, l(v)=h {veW|vew, l(v)=l(w)-h} H*(Xw) is a gns(Xw, IR)-monod. of IH* H*(Xw)=1H*(Xw)

All the howthon-histing polymolial h_{x,w}(v), x \le w

are trivial

(i.e. h_{x,w}(v)=v) This was (of course) abrealy hour (was proved for example by Carrell

Peterson) Here we find an easy Hodge-throughtic proof of this... EXCURSUS: How com generalize this to a general Coxeter group.

We coxeter group, ht geom representation.

H(Xv) C-> Bv=Bv&R indecorposoble is a module over R=hyn(h*) Soergel bimodules Ilm (E-W) For peh "ampli" Bu satisfais HIT and HR Bil rel. We con also find analystraic replacent homology sulsodile Hw. Problem in genial By is not indecomposable

as a R-module (EXAMPLE 5./14)

w=tstrits in Az To get around this Con define 2 algebric replacement of $H_{\tau}^{\star}(X)$ (also dud mil Hecke ning of) honstant and human The (Fielige) The cotegory of Sorgel Sinodules is equivalent to a cotegory of Z-modules. Z=Z0plR, Bu às indicorposable as Z-madules - the same right follows...

What the Hodge theory can say in positive characteristic.
Here there is no Hoolyo thoy HRBR do not make surse.
Local Hand Lefschutz holds for Schulet variety
controls part of the knowing conjecture on the character
of sight modules for reductive groups/k
(u.j. G=SLM(Fp))
I started by looking at the first non-trivial example
Flora X flog veriety of Cruductive group.
M=\$\p \chon \ta=p.
then if podimX there exists A ∈H (X, lh) such that
Then if podimX there exists $\lambda \in H^2(X, \mathbb{R})$ such that $\lambda \in H^2(X, \mathbb{R})$ such that
The hope is the one con also explicitly counte when I
The hope is the one con also explicitly counts when I local to holds for (office) Schnicht variety and this could
bring to new bounds in Lussbig's conjecture.