Binomial Distribution

- 1. Ten coins are tossed simultaneously. Find the probability of obtaining,
 - a) No head
 - b) Exactly 6 heads
 - c) At least one head
 - d) Not more than three heads i.e. at most 3 heads
- 2. A multiple choice test has 5 questions. There are 4 choices for each question. A student who has not studied for the test decides to answer all questions randomly. What is the probability that he will get:
 - a) Five questions, correct?
 - b) At least four questions, correct?
- 3. In a local hospital 48% of all babies born are males. On a particular day five babies are born. What is the probability that:
 - a) None of them are male
 - b) Two of them are male
 - c) At least one is male
- 4. Out of 9000 families 4 children each, how many families would you expect to have 3 boys and 1 girl, the birth of male child and female child is assumed equal?
- 5. If the mean of a binomial distribution is 0.4 and its standard deviation is 0.6, find the probability of at least one success.
- 6. In a binomial distribution with 6 independent trials the probabilities of 3 and 4 successes are found to be 0.2457 and 0.0819. find the parameter 'p' of the binomial distribution.
- 7. It is known that on an average the probability that Shyam will win the game is 40%. What is the probability that out of 8 games Shyam will win between 2 and 6 games? (including 2 and 6)
- 8. Forty five percent of the Nepalese workers have been gone abroad are illegal. If in a sample of six, Nepalese workers who have gone abroad, what is the probability that
 - a) Three are illegal
 - b) All are legal
 - c) At least one is legal

Fitting of Binomial Distribution

If n independent trials are repeated N times and satisfying the condition of binomial distribution, then theoretical or expected frequencies of x successes is given by

$$f(x)= N {}^{n}C_{x} p^{x} q^{n-x}$$
, where $x=0, 1, 2,, n$

The following steps are generally followed to fit binomial distribution.

• First of all, we compute the mean of given frequency distribution by using the following formula $\bar{X} = \frac{\sum fX}{N}$

If p is known (given), it is not necessary to find mean.

- Equate the value of mean with np to find the values of p and q, i.e., $\bar{X} = np$
- Calculate the expected frequency by using the formula

$$f(x)= N {}^{n}C_{x} p^{x} q^{n-x}$$
, where $x=0, 1, 2,, n$

Practical problems

1. Fit the binomial distribution for the following data:

No. of heads	0	1	2	3	4	Total
Frequency	28	62	46	20	4	160

2. Fit the binomial distribution for the following data

X	0	1	2	3	4	5	Total
f	1	4	10	31	26	13	85