

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

XENOBIOTICA, 1999, VOL. 29, NO. 7, 655-691

Differential gene expression in drug metabolism and toxicology: practicalities, problems and potential

JOHN C. ROCKETT†, DAVID J. ESDAILE‡
 and G. GORDON GIBSON*

Molecular Toxicology Laboratory, School of Biological Sciences, University of Surrey,
 Guildford, Surrey, GU2 5XH, UK

Received January 8, 1999

1. An important feature of the work of many molecular biologists is identifying which genes are switched on and off in a cell under different environmental conditions or subsequent to xenobiotic challenge. Such information has many uses, including the deciphering of molecular pathways and facilitating the development of new experimental and diagnostic procedures. However, the student of gene hunting should be forgiven for perhaps becoming confused by the mountain of information available as there appears to be almost as many methods of discovering differentially expressed genes as there are research groups using the technique.

2. The aim of this review was to clarify the main methods of differential gene expression analysis and the mechanistic principles underlying them. Also included is a discussion on some of the practical aspects of using this technique. Emphasis is placed on the so-called 'open' systems, which require no prior knowledge of the genes contained within the study model. Whilst these will eventually be replaced by 'closed' systems in the study of human, mouse and other commonly studied laboratory animals, they will remain a powerful tool for those examining less fashionable models.

3. The use of suppression-PCR subtractive hybridization is exemplified in the identification of up- and down-regulated genes in rat liver following exposure to phenobarbital, a well-known inducer of the drug metabolizing enzymes.

4. Differential gene display provides a coherent platform for building libraries and microchip arrays of 'gene fingerprints' characteristic of known enzyme inducers and xenobiotic toxicants, which may be interrogated subsequently for the identification and characterization of xenobiotics of unknown biological properties.

Introduction

It is now apparent that the development of almost all cancers and many non-neoplastic diseases are accompanied by altered gene expression in the affected cells compared to their normal state (Hunter 1991, Wynford-Thomas 1991, Vogelstein and Kinzler 1993, Semenza 1994, Cassidy 1995, Kleinjan and Van Hegneningen 1998). Such changes also occur in response to external stimuli such as pathogenic micro-organisms (Rohn *et al.* 1996, Singh *et al.* 1997, Griffin and Krishna 1998, Lunney 1998) and xenobiotics (Sewall *et al.* 1995, Dogra *et al.* 1998, Ramana and Kohli 1998), as well as during the development of undifferentiated cells (Hecht 1998, Rudin and Thompson 1998, Schneider-Maunoury *et al.* 1998). The potential medical and therapeutic benefits of understanding the molecular changes which occur in any given cell in progressing from the normal to the 'altered' state are enormous. Such profiling essentially provides a 'fingerprint' of each step of a

* Author for correspondence; e-mail: g.gibson@surrey.ac.uk

† Current Address: US Environmental Protection Agency, National Health and Environmental Effects, Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC 27711, USA.

‡ Rhone-Poulenc Agrochemicals, Toxicology Department, Sophia-Antipolis, Nice, France.

cell's development or response and should help in the elucidation of specific and sensitive biomarkers representing, for example, different types of cancer or previous exposure to certain classes of chemicals that are enzyme inducers.

In drug metabolism, many of the xenobiotic-metabolizing enzymes (including the well-characterized isoforms of cytochrome P450) are inducible by drugs and chemicals in man (Pelkonen *et al.* 1998), predominantly involving transcriptional activation of not only the cognate cytochrome P450 genes, but additional cellular proteins which may be crucial to the phenomenon of induction. Accordingly, the development of methodology to identify and assess the full complement of genes that are either up- or down-regulated by inducers are crucial in the development of knowledge to understand the precise molecular mechanisms of enzyme induction and how this relates to drug action. Similarly, in the field of chemical-induced toxicity, it is now becoming increasingly obvious that most adverse reactions to drugs and chemicals are the result of multiple gene regulation, some of which are causal and some of which are casually-related to the toxicological phenomenon *per se*. This observation has led to an upsurge in interest in gene-profiling technologies which differentiate between the control and toxin-treated gene pools in target tissues and is, therefore, of value in rationalizing the molecular mechanisms of xenobiotic-induced toxicity. Knowledge of toxin-dependent gene regulation in target tissues is not solely an academic pursuit as much interest has been generated in the pharmaceutical industry to harness this technology in the early identification of toxic drug candidates, thereby shortening the developmental process and contributing substantially to the safety assessment of new drugs. For example, if the gene profile in response to say a testicular toxin that has been well-characterized *in vivo* could be determined in the testis, then this profile would be representative of all new drug candidates which act via this specific molecular mechanism of toxicity, thereby providing a useful and coherent approach to the early detection of such toxicants. Whereas it would be informative to know the identity and functionality of all genes up/down regulated by such toxicants, this would appear a longer term goal, as the majority of human genes have not yet been sequenced, far less their functionality determined. However, the current use of gene profiling yields a pattern of gene changes for a xenobiotic of unknown toxicity which may be matched to that of well-characterized toxins, thus alerting the toxicologist to possible *in vivo* similarities between the unknown and the standard, thereby providing a platform for more extensive toxicological examination. Such approaches are beginning to gain momentum, in that several biotechnology companies are commercially producing 'gene chips' or 'gene arrays' that may be interrogated for toxicity assessment of xenobiotics. These chips consist of hundreds/thousands of genes, some of which are degenerate in the sense that not all of the genes are mechanistically-related to any one toxicological phenomenon. Whereas these chips are useful in broad-spectrum screening, they are maturing at a substantial rate, in that gene arrays are now becoming more specific, e.g. chips for the identification of changes in growth factor families that contribute to the aetiology and development of chemically-induced neoplasias.

Although documenting and explaining these genetic changes presents a formidable obstacle to understanding the different mechanisms of development and disease progression, the technology is now available to begin attempting this difficult challenge. Indeed, several 'differential expression analysis' methods have been developed which facilitate the identification of gene products that demonstrate

ation of specific and of cancer or previous cancers.

enzymes (including those inducible by drugs and living transcriptional factors) additional cellular factors. Accordingly, the complement of genes involved in the development of enzyme induction of chemical-induced adverse reactions to some, some of which are local phenomenon *per se*. Profiling technologies pools in target tissues mechanisms of xenobiotic metabolism in target tissues is being generated in the identification of toxic effects and contributing to, if the gene profile characterized *in vivo* could be indicative of all new drug candidates of toxicity, thereby identifying such toxicants. Identification of all genes is a long term goal, as this will facilitate their functionality and a pattern of gene expression related to that of well-known *in vivo* similarities and a platform for more beginning to gain commercially producing toxicity assessment of chemicals, some of which are chemically-related to any available in broad-spectrum gene arrays are now being developed in growth factor and chemically-induced changes presents a range of development and attempting this difficult methods have been used to demonstrate

altered expression in cells of one population compared to another. These methods have been used to identify differential gene expression in many situations, including invading pathogenic microbes (Zhao *et al.* 1998), in cells responding to extracellular and intracellular microbial invasion (Duguid and Dinauer 1990, Ragno *et al.* 1997, Maldarelli *et al.* 1998), in chemically treated cells (Syed *et al.* 1997, Rockett *et al.* 1999), neoplastic cells (Liang *et al.* 1992, Chang and Terzaghi-Howe 1998), activated cells (Gurskaya *et al.* 1996, Wan *et al.* 1996), differentiated cells (Hara *et al.* 1991, Guimaraes *et al.* 1995a, b), and different cell types (Davis *et al.* 1984, Hedrick *et al.* 1984, Xhu *et al.* 1998). Although differential expression analysis technologies are applicable to a broad range of models, perhaps their most important advantage is that, in most cases, absolutely no prior knowledge of the specific genes which are up- or down-regulated is required.

The field of differential expression analysis is a large and complex one, with many techniques available to the potential user. These can be categorized into several methodological approaches, including:

- (1) Differential screening,
- (2) Subtractive hybridization (SH) (includes methods such as chemical cross-linking subtraction—CCLS, suppression-PCR subtractive hybridization—SSH, and representational difference analysis—RDA),
- (3) Differential display (DD),
- (4) Restriction endonuclease facilitated analysis (including serial analysis of gene expression—SAGE—and gene expression fingerprinting—GEF),
- (5) Gene expression arrays, and
- (6) Expressed sequence tag (EST) analysis.

The above approaches have been used successfully to isolate differentially expressed genes in different model systems. However, each method has its own subtle (and sometimes not so subtle) characteristics which incur various advantages and disadvantages. Accordingly, it is the purpose of this review to clarify the mechanistic principles underlying the main differential expression methods and to highlight some of the broader considerations and implications of this very powerful and increasingly popular technique. Specifically, we will concentrate on the so-called 'open' systems, namely those which do not require any knowledge of gene sequences and, therefore, are useful for isolating unknown genes. Two 'closed' systems (those utilising previously identified gene sequences), EST analysis and the use of DNA arrays, will also be considered briefly for completeness. Whilst emphasis will often be placed on suppression PCR subtractive hybridization (SSH, the approach employed in this laboratory), it is the aim of the authors to highlight, wherever possible, those areas of common interest to those who use, or intend to use, differential gene expression analysis.

Differential cDNA library screening (DS)

Despite the development of multiple technological advances which have recently brought the field of gene expression profiling to the forefront of molecular analysis, recognition of the importance of differential gene expression and characterization of differentially expressed genes has existed for many years. One of the original approaches used to identify such genes was described 20 years ago by St John and Davis (1979). These authors developed a method, termed 'differential plaque filter'

hybridization', which was used to isolate galactose-inducible DNA sequences from yeast. The theory is simple: a genomic DNA library is prepared from normal, unstimulated cells of the test organism/tissue and multiple filter replicas are prepared. These replica blots are probed with radioactively (or otherwise) labelled complex cDNA probes prepared from the control and test cell mRNA populations. Those mRNAs which are differentially expressed in the treated cell population will show a positive signal only on the filter probed with cDNA from the treated cells. Furthermore, labelled cDNA from different test conditions can be used to probe multiple blots, thereby enabling the identification of mRNAs which are only up-regulated under certain conditions. For example, St John and Davis (1979) screened replica filters with acetate-, glucose- and galactose-derived probes in order to obtain genes induced specifically by galactose metabolism. Although groundbreaking in its time this method is now considered insensitive and time-consuming, as up to 2 months are required to complete the identification of genes which are differentially expressed in the test population. In addition, there is no convenient way to check that the procedure has worked until the whole process has been completed.

Subtractive Hybridization (SH)

The developing concept of differential gene expression and the success of early approaches such as that described by St John and Davis (1979) soon gave rise to a search for more convenient methods of analysis. One of the first to be developed was SH, numerous variations of which have since been reported (see below). In general, this approach involves hybridization of mRNA/cDNA from one population (tester) to excess mRNA/cDNA from another (driver), followed by separation of the unhybridized tester fraction (differentially expressed) from the hybridized common sequences. This step has been achieved physically, chemically and through the use of selective polymerase chain reaction (PCR) techniques.

Physical separation

Original subtractive hybridization technology involved the physical separation of hybridized common species from unique single stranded species. Several methods of achieving this have been described, including hydroxyapatite chromatography (Sargent and Dawid 1983), avidin-biotin technology (Duguid and Dinauer 1990) and oligodT-latex separation (Hara *et al.* 1991). In the first approach, common mRNA species are removed by cDNA (from test cells)-mRNA (from control cells) subtractive hybridization followed by hydroxyapatite chromatography, as hydroxyapatite specifically adsorbs the cDNA-mRNA hybrids. The unabsorbed cDNA is then used either for the construction of a cDNA library of differentially expressed genes (Sargent and Dawid 1983, Schneider *et al.* 1988) or directly as a probe to screen a preselected library (Zimmerman *et al.* 1980, Davis *et al.* 1984, Hedrick *et al.* 1984). A schematic diagram of the procedure is shown in figure 1.

Less rigorous physical separation procedures coupled with sensitivity enhancing PCR steps were later developed as a means to overcome some of the problems encountered with the hydroxyapatite procedure. For example, Duguid and Dinauer (1990) described a method of subtraction utilizing biotin-affinity systems as a means to remove hybridized common sequences. In this process, both the control and tester mRNA populations are first converted to cDNA and an adaptor ('oligovector',

DNA sequences from
separated from normal,
ie filter replicas are
or otherwise) labelled
mRNA populations.
d cell population will
form the treated cells.
can be used to probe
es which are only up-
Davis (1979) screened
bes in order to obtain
groundbreaking in its
consuming, as up to 2
which are differentially
convenient way to check
en completed.

d the success of early
9) soon gave rise to a
t to be developed was
ee below). In general,
ne population (tester)
by separation of the
hybridized common
and through the use

e physical separation
cies. Several methods
site chromatography
(Sargent and Dinauer 1990)
approach, common
(from control cells)
ography, as hydroxy-
unabsorbed cDNA is
differentially expressed
directly as a probe to
l. 1984, Hedrick *et al.*
ire 1.
sensitivity enhancing
one of the problems
Daguid and Dinauer
ty systems as a means
both the control and
daptor ('oligovector',

Figure 1. The hydroxypapate method of subtractive hybridization. cDNA derived from the treated/altering (tester) population is mixed with a large excess of mRNA from the control (driver) population. Following hybridization, mRNA-cDNA hybrids are removed by hydroxypapate chromatography. The only cDNAs which remain are those which are differentially expressed in the treated/altering population. In order to facilitate the recovery of full length clones, small cDNA fragments are removed by exclusion chromatography. The remaining cDNAs are then cloned into a vector for sequencing, or labelled and used directly to probe a library, as described by Sargent and Dawid (1983).

containing a restriction site) ligated to both sides. Both populations are then amplified by PCR, but the driver cDNA population is subsequently digested with the adaptor-containing restriction endonuclease. This serves to cleave the oligo-vector and reduce the amplification potential of the control population. The digest of control population is then biotinylated and an excess mixed with tester cDNA. Following denaturation and hybridization, the mix is applied to a biocytin column (streptavidin may also be used) to remove the control population, including heteroduplexes formed by annealing of common sequences from the tester population. The procedure is repeated several times following the addition of fresh

Figure 2. The use of oligodT₃₀ latex to perform subtractive hybridization. mRNA extracted from the control (driver) population is converted to anchored cDNA using polydT oligonucleotides attached to latex beads. mRNA from the treated/alter (tester) population is repeatedly hybridized against an excess of the anchored driver cDNA. The final population of mRNA is tester specific and can be converted into cDNA for cloning and other downstream applications, as described by Hara *et al.* (1991).

ster) mRNA

—AAAA

—AAAA

mRNA retrieved after
hybridization

mRNA extracted from the
polydT oligonucleotides
population is repeatedly
hybridized to the tester
population of mRNA is
downstream applications, as

control cDNA. In order to further enrich those species differentially expressed in the tester cDNA, the subtracted tester population is amplified by PCR following every second subtraction cycle. After six cycles of subtraction (three reamplification steps) the reaction mix is ligated into a vector for further analysis.

In a slightly different approach, Hara *et al.* (1991) utilized a method whereby oligo(dT₃₀) primers attached to a latex substrate are used to first capture mRNA extracted from the control population. Following 1st strand cDNA synthesis, the RNA strand of the heteroduplexes is removed by heat denaturation and centrifugation (the cDNA-oligonucleotide-dT₃₀ forms a pellet and the supernatant is removed). A quantity of tester mRNA is then repeatedly hybridized to the immobilized control (driver) cDNA (which is present in 20-fold excess). After several rounds of hybridization the only mRNA molecules left in the tester mRNA population are those which are not found in the driver cDNA-oligonucleotide-dT₃₀ population. These tester-specific mRNA species are then converted to cDNA and, following the addition of adaptor sequences, amplified by PCR. The PCR products are then ligated into a vector for further analysis using restriction sites incorporated into the PCR primers. A schematic illustration of this subtraction process is shown in figure 2.

However, all these methods utilising physical separation have been described as inefficient due to the requirement for large starting amounts of mRNA, significant loss of material during the separation process and a need for several rounds of hybridization. Hence, new methods of differential expression analysis have recently been designed to eliminate these problems.

Chemical Cross-Linking Subtraction (CCLS)

In this technique, originally described by Hampson *et al.* (1992), driver mRNA is mixed with tester cDNA (1st strand only) in a ratio of > 20:1. The common sequences form cDNA:mRNA hybrids, leaving the tester specific species as single stranded cDNA. Instead of physically separating these hybrids, they are inactivated chemically using 2,5 diaziridinyl-1,4-benzoquinone (DZQ). Labelled probes are then synthesized from the remaining single stranded cDNA species (unreacted mRNA species remaining from the driver are not converted into probe material due to specificity of Sequenase T7 DNA polymerase used to make the probe) and used to screen a cDNA library made from the tester cell population. A schematic diagram of the system is shown in figure 3.

It has been shown that the differentially expressed sequences can be enriched at least 300-fold with one round of subtraction (Hampson *et al.* 1992), and that the technique should allow isolation of cDNAs derived from transcripts that are present at less than 50 copies per cell. This equates to genes at the low end of intermediate abundance (see table 1). The main advantages of the CCLS approach are that it is rapid, technically simple and also produces fewer false positives than other differential expression analysis methods. However, like the physical separation protocols, a major drawback with CCLS is the large amount of starting material required (at least 10 µg RNA). Consequently, the technique has recently been refined so that a renewable source of RNA can be generated. The degenerate random oligonucleotide primed (DROP) adaptation (Hampson *et al.* 1996, Hampson and Hampson 1997) uses random hexanucleotide sequences to prime solid phase synthesized cDNA. Since each primer includes a T7 polymerase promoter sequence

Figure 3. Chemical cross-linking subtraction. Excess driver mRNA is mixed with 1st strand tester cDNA. The common sequences form mRNA:cDNA hybrids which are cross linked with 2,5 diaziridinyl-1,4-benzoquinone (DZQ) and the remaining cDNA sequences are differentially expressed in the tester population. Probes are made from these sequences using Sequenase 2.0 DNA polymerase, which lacks reverse transcriptase activity and, therefore, does not react with the remaining mRNA molecules from the driver. The labelled probes are then used to screen a cDNA library for clones of differentially expressed sequences. Adapted from Walter *et al.* (1996), with permission.

Table 1. The abundance of mRNA species and classes in a typical mammalian cell.

mRNA class	Copies of each species/cell	No. of mRNA species in class	Mean % of each species in class	Mean mass (ng) of each species/μg total RNA
Abundant	12 000	4	3.3	1.65
Intermediate	300	500	0.08	0.04
Rare	15	11 000	0.004	0.002

Modified from Bertioli *et al.* (1995).

ester) mRNA
.....AAAA
.....AAAA

↓
—TTT—
—TTT—
—TTT—

ent

VA

xed with 1st strand tester
are cross linked with 2.5
quences are differentially
ences using Sequenase 2.0
ore, does not react with the
en used to screen a cDNA
Walter *et al.* (1996), with

mammalian cell.

Mean mass
(ng) of each
species/ μ g
total RNA

1.65
0.04
0.002

at the 5' end, the final pool of random cDNA fragments is a PCR-renewable cDNA population which is representative of the expressed gene pool and can be used to synthesize sense RNA for use as driver material. Furthermore, if the final pool of random cDNA fragments is reamplified using biotinylated T7 primer and random hexamer, the product can be captured with streptavidin beads and the antisense strand eluted for use as tester. Since both target and driver can be generated from the same DROP product, subtraction can be performed in both directions (i.e. for up- and down-regulated species) between two different DROP products.

Representational Difference Analysis (RDA)

RDA of cDNA (Hubank and Schatz 1994) is an extension of the technique originally applied to genomic DNA as a means of identifying differences between two complex genomes (Lisitsyn *et al.* 1993). It is a process of subtraction and amplification involving subtractive hybridization of the tester in the presence of excess driver. Sequences in the tester that have homologues in the driver are rendered unamplifiable, whereas those genes expressed only in the tester retain the ability to be amplified by PCR. The procedure is shown schematically in figure 4.

In essence, the driver and tester mRNA populations are first converted to cDNA and amplified by PCR following the ligation of an adaptor. The adaptors are then removed from both populations and a new (different) adaptor ligated to the amplified tester population only. Driver and tester populations are next melted and hybridized together in a ratio of 100:1. Following hybridization, only tester:tester homohybrids have 5' adaptors at each end of the DNA duplex and can, thus, be filled in at both 3' ends. Hence, only these molecules are amplified exponentially during the subsequent PCR step. Although tester:driver heterohybrids are present, they only amplify in a linear fashion, since the strand derived from the driver has no adaptor to which the primer can bind. Driver:driver heterohybrids have no adaptors and, therefore, are not amplified. Single stranded molecules are digested with mung bean nuclease before a further PCR-enrichment of the tester:tester homohybrids. The adaptors on the amplified tester population are then replaced and the whole process repeated a further two or three times using an increasing excess of driver (Hubank and Schatz used a tester:driver ratio of 1:400, 1:80000 and 1:800000 for the second, third and fourth hybridizations, respectively). Different adaptors are ligated to the tester between successive rounds of hybridization and amplification to prevent the accumulation of PCR products that might interfere with subsequent amplifications. The final display is a series of differentially expressed gene products easily observable on an ethidium bromide gel.

The main advantages of RDA are that it offers a reproducible and sensitive approach to the analysis of differentially expressed genes. Hubank and Schatz (1994) reported that they were able to isolate genes that were differentially expressed in substantially less than 1% of the cells from which the tester is derived. Perhaps the main drawback is that multiple rounds of ligation, hybridization, amplification and digestion are required. The procedure is, therefore, lengthier than many other differential display approaches and provides more opportunity for operator-induced error to occur. Although the generation of false positives has been noted, this has been solved to some degree by O'Neill and Sinclair (1997) through the use of HPLC-purified adaptors. These are free of the truncated adaptors which appear to be a major source of the false positive bands. A very similar technique to RDA, termed linker capture subtraction (LCS) was described by Yang and Sytowski (1996).

Figure 4. The representational difference analysis (RDA) technique. Driver and tester cDNA are digested with a 4-cutter restriction enzyme such as *Dpn*II. The 1st set of 12/24 adaptor strands (oligonucleotides) are ligated to each other and the digested cDNA products. The 12mer is subsequently melted away and the 3' ends filled in using Taq DNA polymerase. Each cDNA population is then amplified using PCR, following which the 1st set of adaptors is removed with *Dpn*II. A second set of 12/24 adaptor strands is then added to the amplified tester cDNA population, after which the tester is hybridized against a large excess of driver. The 12mer adaptors are melted and the 3' ends filled in as before. PCR is carried out with primers identical to the new 24mer adaptor. Thus, the only hybridization products which are exponentially amplified are those which are tester:tester combinations. Following PCR, ssDNA products are removed with mung bean nuclease, leaving the 'first difference product'. This is digested and a third set of 12/24 adaptors added before repeating the subtraction process from the hybridization stage. The process is repeated to the 3rd or 4th difference product, as described by Lisitsyn *et al.* (1993) and Hubank and Schatz (1994).

r) cDNA

=

=

=

Digest and ligate
new 12/24 adaptor

=

↓

↓
lification

e

iver and tester cDNA are set of 12/24 adaptor strands A products. The 12mer is polymerase. Each cDNA of adaptors is removed with the amplified tester cDNA excess of driver. The 12mer is out with primers identical to which are exponentially PCR, ssDNA products are used. This is digested and a excess from the hybridization described by Lisitsyn et al.

Suppression PCR Subtractive Hybridization (SSH)

The most recent adaptation of the SH approach to differential expression analysis was first described by Diatchenko *et al.* (1996) and Gurskaya *et al.* (1996). They reported that a 1000–5000 fold enrichment of rare cDNAs (equivalent to isolating mRNAs present at only a few copies per cell) can be obtained without the need for multiple hybridizations/subtractions. Instead of physical or chemical removal of the common sequences, a PCR-based suppression system is used (see figure 5).

In SSH, excess driver cDNA is added to two portions of the tester cDNA which have been ligated with different adaptors. A first round of hybridization serves to enrich differentially expressed genes and equalize rare and abundant messages. Equalization occurs since reannealing is more rapid for abundant molecules than for rarer molecules due to the second order kinetics of hybridization (James and Higgins 1985). The two primary hybridization mixes are then mixed together in the presence of excess driver and allowed to hybridize further. This step permits the annealing of single stranded complementary sequences which did not hybridize in the primary hybridization, and in doing so generates templates for PCR amplification. Although there are several possible combinations of the single stranded molecules present in the secondary hybridization mix, only one particular combination (differentially expressed in the tester cDNA composed of complimentary strands having different adaptors) can amplify exponentially.

Having obtained the final differential display, two options are available if cloning of cDNAs is desired. One is to transform the whole of the final PCR reaction into competent cells. Transformed colonies can then be isolated and their inserts characterized by sequencing, restriction analysis or PCR. Alternatively, the final PCR products can be resolved on a gel and the individual bands excised, reamplified and cloned. The first approach is technically simpler and less time consuming. However, ligation/transformation reactions are known to be biased towards the cloning of smaller molecules, and so the final population of clones will probably not contain a representative selection of the larger products. In addition, although equalization theoretically occurs, observations in this laboratory suggest that this is by no means perfectly accomplished. Consequently, some gene species are present in a higher number than others and this will be represented in the final population of clones. Thus, in order to obtain a substantial proportion of those gene species that actually demonstrate differential expression in the tester population, the number of clones that will have to be screened after this step may be substantial. The second approach is initially more time consuming and technically demanding. However, it would appear to offer better prospects for cloning larger and low abundance gel products. In addition, one can incorporate a screening step that differentiates different products of different sequences but of the same size (HA-staining, see later). In this way, a good idea of the final number of clones to be isolated and identified can be achieved.

An alternative (or even complementary) approach is to use the final differential display reaction to screen a cDNA library to isolate full length clones for further characterization, or a DNA array (see later) to quickly identify known genes. SSH has been used in this laboratory to begin characterization of the short-term gene expression profiles of enzyme-inducers such as phenobarbital (Rockett *et al.* 1997) and Wy-14,643 (Rockett *et al.* unpublished observations). The isolation of differentially expressed genes in this manner enables the construction of a fingerprint

Figure 5. PCR-select cDNA subtraction. In the primary hybridization, an excess of driver cDNA is added to each tester cDNA population. The samples are heat denatured and allowed to hybridize for between 3 and 8 h. This serves two purposes: (1) to equalize rare and abundant molecules; and (2) to enrich for differentially expressed sequences—cDNAs that are not differentially expressed form type c molecules with the driver. In the secondary hybridization, the two primary hybridizations are mixed together without denaturing. Fresh denatured driver can also be added at this point to allow further enrichment of differentially expressed sequences. Type e molecules are formed in this secondary hybridization which are subsequently amplified using two rounds of PCR. The final products can be visualized on an agarose gel, labelled directly or cloned into a vector for downstream manipulation. As described by Diatchenko *et al.* (1996) and Gurskaya *et al.* (1996), with permission.

or cDNA with adaptor 2

Figure 6. Flow diagram showing method used in this laboratory to isolate and identify clones of genes which are differentially expressed in rat liver following short term exposure to the enzyme inducers, phenobarbital and Wy-14,643.

of expressed genes which are unique to each compound and time/dose point. Such information could be useful in short-term characterization of the toxic potential of new compounds by comparing the gene-expression profiles they elicit with those produced by known inducers. Figure 6 shows a flow diagram of the method used to isolate, verify and clone differentially expressed genes, and figure 7 shows expression profiles obtained from a typical SSH experiment. Subsequent sub-cloning of the individual bands, sequencing and gene data base interrogation reveals many genes which are either up- or down-regulated by phenobarbital in the rat (tables 2 and 3).

One of the advantages in using the SSH approach is that no prior knowledge is required of which specific genes are up/down-regulated subsequent to xenobiotic

due to
ture

in excess of driver cDNA is red and allowed to hybridize and abundant molecules; and not differentially expressed idization, the two primary red driver can also be added sequences. Type e molecules amplified using two rounds of led directly or cloned into a et al. (1996) and Gurskaya

Figure 7. SSH display patterns obtained from rat liver following 3-day treatment with WY-14,643 or phenobarbital. mRNA extracted from control and treated livers was used to generate the differential displays using the PCR-Select cDNA subtraction kit (Clontech). Lane: 1—1kb ladder; 2—genes upregulated following Wy,14-643 treatment; 3—genes downregulated following Wy,14-643 treatment; 4—genes upregulated following phenobarbital treatment; 5—genes downregulated following phenobarbital treatment; 6—1kb ladder. Reproduced from Rockett *et al.* (1997), with permission.

exposure, and an almost complete complement of genes are obtained. For example, the peroxisome proliferator and non-genotoxic hepatocarcinogen Wy,14,643, up-regulates at least 28 genes and down-regulates at least 15 in the rat (a sensitive species) and produces 48 up- and 37 down-regulated genes in the guinea pig, a resistant species (Rockett, Swales, Esda and Gibson, unpublished observations). One of these genes, CD81, was up-regulated in the rat and down-regulated in the guinea pig following Wy-14,643 treatment. CD81 (alternatively named TAPA-1) is a widely expressed cell surface protein which is involved in a large number of cellular processes including adhesion, activation, proliferation and differentiation (Levy *et al.* 1998). Since all of these functions are altered to some extent in the phenomena of hepatomegaly and non-genotoxic hepatocarcinogenesis, it is intriguing, and probably mechanistically-relevant, that CD81 expression is differentially regulated in a resistant and susceptible species. However, the down-side of this approach is that the majority of genes can be sequenced and matched to database sequences, but the latter are predominantly expressed sequence tags or genes of completely unknown function, thus partially obscuring a realistic overall assessment of the critical genes of genuine biological interest. Notwithstanding the lack of complete functional identification of altered gene expression, such gene profiling studies essentially provides a 'molecular fingerprint' in response to xenobiotic challenge, thereby serving as a mechanistically-relevant platform for further detailed investigations.

Differential Display (DD)

Originally described as 'RNA fingerprinting by arbitrarily primed PCR' (Liang and Pardee 1992) this method is now more commonly referred to as 'differential

Table 2. Genes up-regulated in rat liver following 3-day exposure to phenobarbital.

Band number (approximate size in bp)	Highest sequence similarity	FASTA-EMBL gene identification
5 (1300)	93.5 %	CYP2B1
7 (1000)	95.1 %	Prealbumin
8 (950)	98.3 %	Serum albumin mRNA
10 (850)	95.7 %	NCI-CGAP-Pr1 <i>H. sapiens</i> (EST)
11 (800)	Clone 1 94.9 % Clone 2 75.3 %	CYP2B1 CYP2B2
12 (750)	93.8 %	TRPM-2 mRNA
15 (600)	92.9 %	Sulfated glycoprotein
16 (55)	Clone 1 95.2 % Clone 2 93.6 %	Prealbumin Serum albumin mRNA CYP2B1 Haptoglobin mRNA partial alpha
21 (350)	99.3 %	18S, 5.8S & 28S rRNA

Bands 1–4, 6, 9, 13, 14, and 17–20 are shown to be false positives by dot blot analysis and, therefore, are not sequenced. Derived from Rockett *et al.* (1997). It should be noted that the above genes do not represent the complete spectrum of genes which are up-regulated in rat liver by phenobarbital, but simply represents the genes sequenced and identified to date.

Table 3. Genes down-regulated in rat liver following 3-day exposure to phenobarbital.

Band number (approximate size in bp)	Highest sequence similarity	FASTA-EMBL gene identification
1 (1500)	95.3 %	3-oxoacyl-CoA thiolase
2 (1200)	92.3 %	Hemopoxin mRNA
3 (1000)	91.7 %	Alpha-2u-globulin mRNA
7 (700)	Clone 1 77.2 % Clone 2 94.5 % Clone 3 91.0 %	<i>M. musculus</i> Cl inhibitor Electron transfer flavoprotein <i>M. musculus</i> Topoisomerase 1 (Topo 1)
8 (650)	Clone 1 86.9 % Clone 2 96.2 %	Soares 2NbMT <i>M. musculus</i> (EST) Alpha-2u-globulin (s-type) mRNA
9 (600)	Clone 1 86.9 % Clone 2 82.0 %	Soares mouse NML <i>M. musculus</i> (EST) Soares p3NMF 19.5 <i>M. musculus</i> (EST)
10 (550)	73.8 %	Soares mouse NML <i>M. musculus</i> (EST)
11 (525)	95.7 %	NCI-CGAP-Pr1 <i>H. sapiens</i> (EST)
12 (375)	100.0 %	Ribosomal protein
13 (23)	Clone 1 97.2 % Clone 2 100.0 % Clone 3 100.0 %	Soares mouse embryo NbME135 (EST) Fibrinogen B-beta-chain Apolipoprotein E gene
14 (170)	96.0 %	Soares p3NMF19.5 <i>M. musculus</i> (EST)
15 (140)	97.3 %	Stratagene mouse testis (EST)
Others: (300)	96.7 %	<i>R. norvegicus</i> RASP 1 mRNA
(275)	93.1 %	Soares mouse mammary gland (EST)

EST = Expressed sequence tag. Bands 4–6 were shown to be false positives by dot blot analysis and, therefore, were not sequenced. Derived from Rockett *et al.* (1997). It should be noted that the above genes do not represent the complete spectrum of genes which are down-regulated in rat liver by phenobarbital, but simply represents the genes sequenced and identified to date.

display' (DD). In this method, all the mRNA species in the control and treated cell populations are amplified in separate reactions using reverse transcriptase-PCR (RT-PCR). The products are then run side-by-side on sequencing gels. Those bands which are present in one display only, or which are much more intense in one

treatment with WY-14,643 or was used to generate the (Clontech). Lane: 1—1kb genes downregulated following barbital treatment; 5—genes (reproduced from Rockett *et*

obtained. For example, nogen Wy,14,643, up- in the rat (a sensitive s in the guinea pig, a blished observations). down-regulated in the ely named TAPA-1) is large number of cellular differentiation (Levy *et* tent in the phenomena it is intriguing, and differentially regulated ide of this approach is atabase sequences, but genes of completely ral assessment of the g the lack of complete gene profiling studies xenobiotic challenge, for further detailed

y primed PCR' (Liang red to as 'differential

display compared to the other, are differentially expressed and may be recovered for further characterization. One advantage of this system is the speed with which it can be carried out—2 days to obtain a display and as little as a week to make and identify clones.

Two commonly used variations are based on different methods of priming the reverse transcription step (figure 8). One is to use an oligo dT with a 2-base 'anchor' at the 3'-end, e.g. 5' (dT₁₁)CA 3' (Liang and Pardee 1992). Alternatively, an arbitrary primer may be used for 1st strand cDNA synthesis (Welsh *et al.* 1992). This variant of RNA fingerprinting has also been called 'RAP' (RNA Arbitrarily Primed)-PCR. One advantage of this second approach is that PCR products may be derived from anywhere in the RNA, including open reading frames. In addition, it can be used for mRNAs that are not polyadenylated, such as many bacterial mRNAs (Wong and McClelland 1994). In both cases, following reverse transcription and denaturation, second strand cDNA synthesis is carried out with an arbitrary primer (*arbitrary* primers have a single base at each position, as compared to *random* primers, which contain a mixture of all four bases at each position). The resulting PCR, thus, produces a series of products which, depending on the system (primer length and composition, polymerase and gel system), usually includes 50–100 products per primer set (Band and Sager 1989). When a combination of different dT-anchors and arbitrary primers are used, almost all mRNA species from a cell can be amplified. When the cDNA products from two different populations are analysed side by side on a polyacrylamide gel, differences in expression can be identified and the appropriate bands recovered for cloning and further analysis.

Although DD is perhaps the most popular approach used today for identifying differentially expressed genes, it does suffer from several perceived disadvantages:

- (1) It may have a strong bias towards high copy number mRNAs (Bertioli *et al.* 1995), although this has been disputed (Wan *et al.* 1996) and the isolation of very low abundance genes may be achieved in certain circumstances (Guimeraes *et al.* 1995a).
- (2) The cDNAs obtained often only represent the extreme 3' end of the mRNA (often the 3'-untranslated region), although this may not always be the case (Guimeraes *et al.* 1995a). Since the 3' end is often not included in Genbank and shows variation between organisms, cDNAs identified by DD cannot always be matched with their genes, even if they have been identified.
- (3) The pattern of differential expression seen on the display often cannot be reproduced on Northern blots, with false positives arising in up to 70% of cases (Sun *et al.* 1994). Some adaptations have been shown to reduce false positives, including the use of two reverse transcriptases (Sung and Denman 1997), comparison of uninduced and induced cells over a time course (Burn *et al.* 1994) and comparison of DDPCR-products from two uninduced and two induced lines (Sompayrac *et al.* 1995). The latter authors also reported that the use of cytoplasmic RNA rather than total RNA reduces false positives arising from nuclear RNA that is not transported to the cytoplasm.

Further details of the background, strengths and weaknesses of the DD technique can be obtained from a review by McClelland *et al.* (1996) and from articles by Liang *et al.* (1995) and Wan *et al.* (1996).

d may be recovered for speed with which it can be made and identify

methods of priming the with a 2-base 'anchor' (Welsh *et al.* 1992). Alternatively, an is (Welsh *et al.* 1992). AP' (RNA Arbitrarily PCR products may be frames. In addition, it many bacterial mRNAs reverse transcription and with an arbitrary primer compared to random position). The resulting on the system (primer usually includes 50–100 combination of different species from a cell can populations are analysed and can be identified and lysis.

Today for identifying received disadvantages:

mRNAs (Bertioli *et al.* and the isolation of very stances (Guimeraes *et*

3' end of the mRNA ot always be the case included in Genbank and DD cannot always be ed.

play often cannot be in up to 70% of cases reduce false positives, and Denman 1997), urse (Burn *et al.* 1994) and two induced reported that the use of positives arising from

aknesses of the DD *et al.* (1996) and from

Figure 8. Two approaches to differential display (DD) analysis. 1st strand synthesis can be carried out either with a polydT₁₁NN primer (where N = G, C or A) or with an arbitrary primer. The use of different combinations of G, C and A to anchor the first strand polydT primer enables the priming of the majority of polyadenylated mRNAs. Arbitrary primers may hybridize at none, one or more places along the length of the mRNA, allowing 1st strand cDNA synthesis to occur at none, one or more points in the same gene. In both cases, 2nd strand synthesis is carried out with an arbitrary primer. Since these arbitrary primers for the 2nd strand may also hybridize to the 1st strand cDNA in a number of different places, several different 2nd strand products may be obtained from one binding point of the 1st strand primer. Following 2nd strand synthesis, the original set of primers is used to amplify the second strand products, with the result that numerous gene sequences are amplified.

Restriction endonuclease-facilitated analysis of gene expression

Serial Analysis of Gene Expression (SAGE)

A more recent development in the field of differential display is SAGE analysis (Velculescu *et al.* 1995). This method uses a different approach to those discussed so far and is based on two principles. Firstly, in more than 95% of cases, short nucleotide sequences ('tags') of only nine or 10 base pairs provide sufficient information to identify their gene of origin. Secondly, concatenation (linking together in a series) of these tags allows sequencing of multiple cDNAs within a single clone. Figure 9 shows a schematic representation of the SAGE process. In this procedure, double stranded cDNA from the test cells is synthesized with a biotinylated polydT primer. Following digestion with a commonly cutting (4bp recognition sequence) restriction enzyme ('anchoring enzyme'), the 3' ends of the cDNA population are captured with streptavidin beads. The captured population is

split into two and different adaptors ligated to the 5' ends of each group. Incorporated into the adaptors is a recognition sequence for a type IIS restriction enzyme—one which cuts DNA at a defined distance (< 20 bp) from its recognition sequence. Hence, following digestion of each captured cDNA population with the IIS enzyme, the adaptors plus a short piece of the captured cDNA are released. The two populations are then ligated and the products amplified. The amplified products are cleaved with the original anchoring enzyme, religated (concatomers are formed in the process) and cloned. The advantage of this system is that hundreds of gene tags can be identified by sequencing only a few clones. Furthermore, the number of times a given transcript is identified is a quantitative measurement of that gene's abundance in the original population, a feature which facilitates identification of differentially expressed genes in different cell populations.

Some disadvantages of SAGE analysis include the technical difficulty of the method, a large amount of accurate sequencing is required, biased towards abundant mRNAs, has not been validated in the pharmaco/toxicogenomic setting and has only been used to examine well known tissue differences to date.

Gene Expression Fingerprinting (GEF)

A different capture/restriction digest approach for isolating differentially expressed genes has been described by Ivanova and Belyavsky (1995). In this method, RNA is converted to cDNA using biotinylated oligo(dT) primers. The cDNA population is then digested with a specific endonuclease and captured with magnetic streptavidin microbeads to facilitate removal of the unwanted 5' digestion products. The use of restricted 3'-ends alone serves to reduce the complexity of the cDNA fragment pool and helps to ensure that each RNA species is represented by not more than one restriction product. An adaptor is ligated to facilitate subsequent amplification of the captured population. PCR is carried out with one adaptor-specific and one biotinylated polydT primer. The reamplified population is recaptured and the non-biotinylated strands removed by alkaline dissociation. The non-biotinylated strand is then resynthesized using a different adaptor-specific primer in the presence of a radiolabelled dNTP. The labelled immobilized 3' cDNA ends are next sequentially treated with a series of different restriction endonucleases and the products from each digestion analysed by PAGE. The result is a fingerprint composed of a number of ladders (equal to the number of sequential digests used). By comparing test versus control fingerprints, it is possible to identify differentially expressed products which can then be isolated from the gel and cloned. The advantages of this procedure are that it is very robust and reproducible, and the authors estimate that 80–93% of cDNA molecules are involved in the final fingerprint. The disadvantage is that polyacrylamide gels can rarely resolve more than 300–400 bands, which compares poorly to the 1000 or more which are estimated to be produced in an average experiment. The use of 2-D gels such as those described by Uitterlinden *et al.* (1989) and Hatada *et al.* (1991) may help to overcome this problem.

A similar method for displaying restriction endonuclease fragments was later described by Prashar and Weissman (1996). However, instead of sequential digestion of the immobilized 3'-terminal cDNA fragments, these authors simply compared the profiles of the control and treated populations without further manipulation.

ch group. Incorporated restriction enzyme—one recognition sequence, in with the IIS enzyme, are released. The two amplified products are isomers formed in hundreds of gene tags re, the number of times clement of that gene's litates identification of

hnical difficulty of the sed towards abundant nomic setting and has date.

isolating differentially vavsky (1995). In this ligo(dT) primers. The ease and captured with unwanted 5' digestion e the complexity of the species is represented by to facilitate subsequent out with one adaptor-amplified population is aline dissociation. The ferent adaptor-specific immobilized 3' cDNA restriction endonucleases e result is a fingerprint quential digests used). identify differentially gel and cloned. The reproducible, and the involved in the final an rarely resolve more 0 or more which are se of 2-D gels such as al. (1991) may help to

se fragments was later instead of sequential , these authors simply tions without further

Figure 9. Serial analysis of gene expression (SAGE) analysis. cDNA is cleaved with an anchoring enzyme (AE) and the 3' ends captured using streptavidin beads. The cDNA pool is divided in half and each portion ligated to a different linker; each containing a type IIS restriction site (tagging enzyme, TE). Restriction with the type IIS enzyme releases the linker plus a short length of cDNA (XXXXX and OOOOO indicate nucleotides of different tags). The two pools of tags are then ligated and amplified using linker-specific primers. Following PCR, the products are cleaved with the AE and the ditags isolated from the linkers using PAGE. The ditags are then ligated (during which process, concatenization occurs) and cloned into a vector of choice for sequencing. After Velculescu *et al.* (1995), with permission.

DNA arrays

'Open' differential display systems are cumbersome in that it takes a great deal of time to extract and identify candidate genes and then confirm that they are indeed up- or down-regulated in the treated compared to the control tissue. Normally, the latter process is carried out using Northern blotting or RT-PCR. Even so, each of the aforementioned steps produce a bottleneck to the ultimate goal of rapid analysis of gene expression. These problems will likely be addressed by the development of so-called DNA arrays (e.g. Gress *et al.* 1992, Zhao *et al.* 1995, Schena *et al.* 1996), the introduction of which has signalled the next era in differential gene expression analysis. DNA arrays consist of a gridded membrane or glass 'chips' containing hundreds or thousands of DNA spots, each consisting of multiple copies of part of a known gene. The genes are often selected based on previously proven involvement in oncogenesis, cell cycling, DNA repair, development and other cellular processes. They are usually chosen to be as specific as possible for each gene and animal species. Human and mouse arrays are already commercially available and a few companies will construct a personalized array to order, for example Clontech Laboratories and Research Genetics Inc. The technique is rapid in that hundreds or even thousands of genes can be spotted on a single array, and that mRNA/cDNA from the test populations can be labelled and used directly as probe. When analysed with appropriate hardware and software, arrays offer a rapid and quantitative means to assess differences in gene expression between two cell populations. Of course, there can only be identification and quantitation of those genes which are in the array (hence the term 'closed' system). Therefore, one approach to elucidating the molecular mechanisms involved in a particular disease/development system may be to combine an open and closed system—a DNA array to directly identify and quantitate the expression of known genes in mRNA populations, and an open system such as SSH to isolate unknown genes which are differentially expressed.

One of the main advantages of DNA arrays is the huge number of gene fragments which can be put on a membrane—some companies have reported gridding up to 60000 spots on a single glass 'chip' (microscope slide). These high density chip-based micro-arrays will probably become available as mass-produced off-the-shelf items in the near future. This should facilitate the more rapid determination of differential expression in time and dose-response experiments. Aside from their high cost and the technical complexities involved in producing and probing DNA arrays, the main problem which remains, especially with the newer micro-array (gene-chip) technologies, is that results are often not wholly reproducible between arrays. However, this problem is being addressed and should be resolved within the next few years.

EST databases as a means to identify differentially expressed genes

Expressed sequence tags (ESTs) are partial sequences of clones obtained from cDNA libraries. Even though most ESTs have no formal identity (putative identification is the best to be hoped for), they have proven to be a rapid and efficient means of discovering new genes and can be used to generate profiles of gene-expression in specific cells. Since they were first described by Adams *et al.* (1991), there has been a huge explosion in EST production and it is estimated that there are now well over a million such sequences in the public domain, representing over half

that it takes a great deal of time that they are indeed from the target tissue. Normally, the PCR. Even so, each of the genes of rapid analysis by the development of microarray chips (Schena *et al.* 1996), differential gene expression using 'chips' containing multiple copies of part of the genome proven involvement in other cellular processes. In man and animal species, there are a few companies (e.g. Tech Laboratories and others) or even thousands of cDNA from the test. When analysed with quantitative means to identify differentiations. Of course, there are which are in the array which help to elucidate the development system may be directly identified and differentiated, and an open system for differentially expressed genes. A number of gene fragments have been reported gridding up to these high density chips produced off-the-shelf rapid determination of differentiations. Aside from their use in screening and probing DNA, the newer micro-array technology is more reproducible between samples and can be resolved within the

of all human genes (Hillier *et al.* 1996). This large number of freely available sequences (both sequence information and clones are normally available royalty-free from the originators) has enabled the development of a new approach towards differential gene expression analysis as described by Vasmatzis *et al.* (1998). The approach is simple in theory: EST databases are first searched for genes that have a number of related EST sequences from the target tissue of choice, but none or few from non-target tissue libraries. Programmes to assist in the assembly of such sets of overlapping data may be developed in-house or obtained privately or from the internet. For example, the Institute for Genomic Research (TIGR, found at <http://www.tigr.org>) provides many software tools free of charge to the scientific community. Included amongst these is the TIGR assembler (Sutton *et al.* 1995), a tool for the assembly of large sets of overlapping data such as ESTs, bacterial artificial chromosomes (BAC)s, or small genomes. Candidate EST clones representing different genes are then analysed using RNA blot methods for size and tissue specificity and, if required, used as probes to isolate and identify the full length cDNA clone for further characterization. In practice however, the method is rather more involved, requiring bioinformatic and computer analysis coupled with confirmatory molecular studies. Vasmatzis *et al.* (1998) have described several problems in this fledgling approach, such as separating highly homologous sequences derived from different genes and an overemphasis of specificity for some EST sequences. However, since these problems will largely be addressed by the development of more suitable computer algorithms and an increased completeness of the EST database, it is likely that this approach to identifying differentially expressed genes may enjoy more patronage in the future.

Problems and potential of differential expression techniques

The holistic or single cell approach?

When working with *in vivo* models of differential expression, one of the first issues to consider must be the presence of multiple cell types in any given specimen. For example, a liver sample is likely to contain not only hepatocytes, but also (potentially) Kupffer cells, bile ductule cells, endothelial cells, various immune cells (e.g. lymphocytes, macrophages and Kupffer cells) and fibroblasts. Other tissues will each have their own distinctive cell populations. Also, in the case of neoplastic tissue, there are almost always normal, hyperplastic and/or dysplastic cells present in a sample. One must, therefore, be aware that genes obtained from a differential display experiment performed on an animal tissue model may not necessarily arise exclusively from the intended 'target' cells, e.g. hepatocytes/neoplastic cells. If appropriate, further analyses using immunohistochemistry, *in situ* hybridization or *in situ* RT-PCR should be used to confirm which cell types are expressing the gene(s) of interest. This problem is probably most acute for those studying the differential expression of genes in the development of different cell types, where there is a need to examine homologous cell populations. The problem is now being addressed at the National Cancer Institute (Bethesda, MD, USA) where new micro-dissection techniques have been employed to assist in their gene analysis programme, the Cancer Genome Anatomy Project (CGAP) (For more information see web site: <http://www.ncbi.nlm.nih.gov/ncicgap/intro.html>). There are also separation techniques available that utilise cell-specific antigens as a means to isolate target cells,

or ss d genes
clones obtained from
nal identity (putative
be a rapid and efficient
rate profiles of genes
Adams *et al.* (1991),
stimated that there are
representing over half

e.g. fluorescence activated cell sorting (FACS) (Dunbar *et al.* 1998, Kas-Deelen *et al.* 1998) and magnetic bead technology (Richard *et al.* 1998, Rogler *et al.* 1998).

However, those taking a holistic approach may consider this issue unimportant. There is an equally appropriate view that all those genes showing altered expression within a compromised tissue should be taken into consideration. After all, since all tissues are complex mixes of different, interacting cell types which intimately regulate each other's growth and development, it is clear that each cell type could in some way contribute (positively or negatively) towards the molecular mechanisms which lie behind responses to external stimuli or neoplastic growth. It is perhaps then more informative to carry out differential display experiments using *in vivo* as opposed to *in vitro* models, where uniform populations of identical cells probably represent a partial, skewed or even inaccurate picture of the molecular changes that occur.

The incidence and possible implications of inter-individual biological variation should be considered in any approach where whole animal models are being used. It is clear that individuals (humans and animals) respond in different ways to identical stimuli. One of the best characterized examples is the debrisoquine oxidation polymorphism, which is mediated by cytochrome CYP2D6 and determines the pharmacokinetics of many commonly prescribed drugs (Lennard 1993, Meyer and Zanger 1997). The reasons for such differences are varied and complex, but allelic variations, regulatory region polymorphisms and even physical and mental health can all contribute to observed differences in individual responses. Careful thought should, therefore, be given to the specific objectives of the study and to the possible value of pooling starting material (tissue/mRNA). The effect of this can be beneficial through the ironing out of exaggerated responses and unimportant minor fluctuations of (mechanistically) irrelevant genes in individual animals, thus providing a clearer overall picture of the general molecular mechanisms of the response. However, at the same time such minor variations may be of utmost importance in deciding the ability of individual animals to succumb to or resist the effects of a given chemical/disease.

How efficient are differential expression techniques at recovering a high percentage of differentially expressed genes?

A number of groups have produced experimental data suggesting that mammalian cells produce between 8000–15 000 different mRNA species at any one time (Mechler and Rabbitts 1981, Hedrick *et al.* 1984, Bravo 1990), although figures as high as 20–30 000 have also been quoted (Axel *et al.* 1976). Hedrick *et al.* (1984) provided evidence suggesting that the majority of these belong to the rare abundance class. A breakdown of this abundance distribution is shown in table 1.

When the results of differential display experiments have been compared with data obtained previously using other methods, it is apparent that not all differentially expressed mRNAs are represented in the final display. In particular, rare messages (which, importantly, often include regulatory proteins) are not easily recovered using differential display systems. This is a major shortcoming, as the majority of mRNA species exist at levels of less than 0.005% of the total population (table 1). Bertioli *et al.* (1995) examined the efficiency of DD templates (heterogeneous mRNA populations) for recovering rare messages and were unable to detect mRNA

1998, Kas-Deelen *et al.* 1998). his issue unimportant. ing altered expression ion. After all, since all pes which intimately each cell type could in molecular mechanisms growth. It is perhaps iments using *in vivo* as identical cells probably molecular changes that

ial biological variation models are being used. It erent ways to identical ebrisoquine oxidation 6 and determines the nard 1993, Meyer and d complex, but allelic al and mental health nses. Careful thought idy and to the possible effect of this can be id unimportant minor individual animals, thus ir mechanisms of the ns may be of utmost ccumb to or resist the

a high percentage of

suggesting that mam- species at any one time), although figures as Hedrick *et al.* (1984) to the rare abundance in table 1.

been compared with at not all differentially ticular, rare messages not easily recovered ng, as the majority of l population (table 1). plates (heterogeneous able to detect mRNA

species present at less than 1.2% of the total mRNA population—equivalent to an intermediate or abundant species. Interestingly, when simple model systems (single target only) were used instead of a heterogeneous mRNA population, the same primers could detect levels of target mRNA down to $10000 \times$ smaller. These results are probably best explained by competition for substrates from the many PCR products produced in a DD reaction.

The numbers of differentially expressed mRNAs reported in the literature using various model systems provides further evidence that many differentially expressed mRNAs are not recovered. For example, DeRisi *et al.* (1997) used DNA array technology to examine gene expression in yeast following exhaustion of sugar in the medium, and found that more than 1700 genes showed a change in expression of at least 2-fold. In light of such a finding, it would not be unreasonable to suggest that of the 8000–15 000 different mRNA species produced by any given mammalian cell, up to 1000 or more may show altered expression following chemical stimulation. Whilst this may be an extreme figure, it is known that at least 100 genes are activated/upregulated in Jurkat (T-) cells following IL-2 stimulation (Ullman *et al.* 1990). In addition, Wan *et al.* (1996) estimated that interferon- γ -stimulated HeLa cells differentially express up to 433 genes (assuming 24000 distinct mRNAs expressed by the cells). However, there have been few publications documenting anywhere near the recovery of these numbers. For example, in using DD to compare normal and regenerating mouse liver, Bauer *et al.* (1993) found only 70 of 38000 total bands to be different. Of these, 50% (35 genes) were shown to correspond to differentially expressed bands. Chen *et al.* (1996) reported 10 genes upregulated in female rat liver following ethinyl estradiol treatment. McKenzie and Drake (1997) identified 14 different gene products whose expression was altered by phorbol myristate acetate (PMA, a tumour promoter agent) stimulation of a human myelomonocytic cell line. Kilty and Vickers (1997) identified 10 different gene products whose expression was upregulated in the peripheral blood leukocytes of allergic disease sufferers. Linskens *et al.* (1995) found 23 genes differentially expressed between young and senescent fibroblasts. Techniques other than DD have also provided an apparent paucity of differentially expressed genes. Using SSH for example, Cao *et al.* (1997) found 15 genes differentially expressed in colorectal cancer compared to normal mucosal epithelium. Fitzpatrick *et al.* (1995) isolated 17 genes upregulated in rat liver following treatment with the peroxisome proliferator, clofibrate; Philips *et al.* (1990) isolated 12 cDNA clones which were upregulated in highly metastatic mammary adenocarcinoma cell lines compared to poorly metastatic ones. Prashar and Weissman (1996) used 3' restriction fragment analysis and identified approximately 40 genes showing altered expression within 4 h of activation of Jurkat T-cells. Groenink and Leegwater (1996) analysed 27 gene fragments isolated using SSH of delayed early response phase of liver regeneration and found only 12 to be upregulated.

In the laboratory, SSH was used to isolate up to 70 candidate genes which appear to show altered expression in guinea pig liver following short-term treatment with the peroxisome proliferator, WY-14,643 (Rockett, Swales, Esdaile and Gibson, unpublished observations). However, these findings have still to be confirmed by analysis of the extracted tissue mRNA for differential expression of these sequences.

Whilst the latest differential display technologies are purported to include design and experimental modifications to overcome this lack of efficiency (in both the total number of differentially expressed genes recovered and the percentage that are true

positives), it is still not clear if such adaptations are practically effective—proving efficiency by spiking with a known amount of limited numbers of artificial construct(s) is one thing, but isolating a high percentage of the rare messages already present in an mRNA population is another. Of course, some models will genuinely produce only a small number of differentially expressed genes. In addition, there are also technical problems that can reduce efficiency. For example, mRNAs may have an unusual primary structure that effectively prevents their amplification by PCR-based systems. In addition, it is known that under certain circumstances not all mRNAs have 3' polyA sites. For example, during *Xenopus* development, deadenylation is used as a means to stabilize RNAs (Voeltz and Steitz 1998), whilst preferential deadenylation may play a role in regulating Hsp70 (and perhaps, therefore, other stress protein) expression in *Drosophila* (Dellavalle *et al.* 1994). The presence of deadenylated mRNAs would clearly reduce the efficiency of systems utilizing a polydT reverse transcription step. The efficiency of any system also depends on the quality of the starting material. All differential display techniques use mRNA as their target material. However, it is difficult to isolate mRNA that is completely free of ribosomal RNA. Even if polydT primers are used to prime first strand cDNA synthesis, ribosomal RNA is often transcribed to some degree (Clontech PCR-Select cDNA Subtraction kit user manual). It has been shown, at least in the case of SSH, that a high rRNA:mRNA ratio can lead to inefficient subtractive hybridization (Clontech PCR-Select cDNA Subtraction kit user manual), and there is no reason to suppose that it will not do likewise in other SH approaches. Finally, those techniques that utilise a presubtraction amplification step (e.g. RDA) may present a skewed representation since some sequences amplify better than others.

Of course, probably the most important consideration is the temporal factor. It is clear that any given differential display experiment can only interrogate a cell at one point in time. It may well be that a high percentage of the genes showing altered expression at that time are obtained. However, given that disease processes and responses to environmental stimuli involve dynamic cascades of signalling, regulation, production and action, it is clear that all those genes which are switched on/off at different times will not be recovered and, therefore, vital information may well be missed. It is, therefore, imperative to obtain as much information about the model system beforehand as possible, from which a strategy can be derived for targeting specific time points or events that are of particular interest to the investigator. One way of getting round this problem of single time point analysis is to conduct the experiment over a suitable time course which, of course, adds substantially to the amount of work involved.

How sensitive are differential expression technologies?

There has been little published data that addresses the issue of how large the change in expression must be for it to permit isolation of the gene in question with the various differential expression technologies. Although the isolation of genes whose expression is changed as little as 1.5-fold has been reported using SSH (Groenink and Leegwater 1996), it appears that those demonstrating a change in excess of 5-fold are more likely to be picked up. Thus, there is a 'grey zone' in between where small changes could fade in and out of isolation between

ally effective—proving numbers of artificial rare messages already models will genuinely s. In addition, there are ple, mRNAs may have amplification by PCR—circumstances not all development, deadenylation (Steitz 1998), whilst Hsp70 (and perhaps, lavalle *et al.* 1994). The efficiency of systems of any system also display techniques to isolate mRNA that is are used to prime first ribed to some degree. It has been shown, at can lead to inefficient Subtraction kit user likewise in other SH cation amplification step me sequences amplify

the temporal factor. It only interrogate a cell at genes showing altered disease processes and cascades of signalling, ones which are switched vital information may information about the gy can be derived for particular interest to the e time point analysis is which, of course, adds

issu of how large the gene in question with the isolation of genes reported using SSH onstrating a change in ther is a 'grey zone' of isolation between

experiments and animals. DD, on the other hand, is not subject to this grey zone since, unlike SH approaches, it does not amplify the difference in expression between two samples. Wan *et al.* (1996) reported that differences in expression of twofold or more are detectable using DD.

Resolution and visualization of differential expression products

It seems highly improbable with current technology that a gel system could be developed that is able to resolve all gene species showing altered expression in any given test system (be it SH- or DD-based). Polyacrylamide gel electrophoresis (PAGE) can resolve size differences down to 0.2% (Sambrook *et al.* 1989) and are used as standard in DD experiments. Even so, it is clear that a complex series of gene products such as those seen in a DD will contain unresolvable components. Thus, what appears to be one band in a gel may in fact turn out to be several. Indeed, it has been well documented (Mathieu-Daude *et al.* 1996, Smith *et al.* 1997) that a single band extracted from a DD often represents a composite of heterogeneous products, and the same has been found for SSH displays in this laboratory (Rockett *et al.* 1997). One possible solution was offered by Mathieu-Daude *et al.* (1996), who extracted and reamplified candidate bands from a DD display and used single strand conformation polymorphism (SSCP) analysis to confirm which components represented the truly differentially expressed product.

Many scientists often try to avoid the use of PAGE where possible because it is technically more demanding than agarose gel electrophoresis (AGE). Unfortunately, high resolution agarose gels such as Metaphor (FMC, Lichfield, UK) and AquaPor HR (National Diagnostics, Hessle, UK), whilst easier to prepare and manipulate than PAGE, can only separate DNA sequences which differ in size by around 1.5–2% (15–20 base pairs for a 1Kb fragment). Thus, SSH, RDA or other such products which differ in size by less than this amount are normally not resolvable. However, a simple technique does in fact exist for increasing the resolving power of AGE—the inclusion of HA-red (10-phenyl neutral red-PEG ligand) or HA-yellow (bisbenzamide-PEG ligand) (Hanse Analytik GmbH, Bremen, Germany) in a gel separates identical or closely-sized products on base content. Specifically, HA-red and -yellow selectively bind to GC and AT DNA motifs, respectively (Wawer *et al.* 1995, Hanse Analytik 1997, personal communication). Since both HA-stains possess an overall positive charge, they migrate towards the cathode when an electric field is applied. This is in direct opposition to DNA, which is negatively charged and, therefore, migrates towards the anode. Thus, if two DNA clones are identical in size (as perceived on a standard high resolution agarose gel), but differ in AT/GC content, inclusion of a HA-dye in the gel will effectively retard the migration of one of the sequences compared to the other, effectively making it apparently larger and, thus, providing a means of differentiating between the two. The use of HA-red has been shown to resolve sequences with an AT variation of less than 1% (Wawer *et al.* 1995), whilst Hanse Analytik have reported that HA staining is so sensitive that in one case it was used to distinguish two 567bp sequences which differed by only a single point mutation (Hanse Analytik 1996, personal communication). Therefore, if one wishes to check whether all the clones produced from a specific band in a differential display experiment are derived from the same gene species, a small amount of reamplified or digested clone can be run on a standard high resolution gel, and a second aliquot

Figure 10. Discrimination of clones of identical/nearly identical size using HA-red. Bands of decreasing size (1–5) were extracted from the final display of a suppression subtractive hybridization experiment and cloned. Seven colonies were picked at random from each cloned band and their inserts amplified using PCR. The products were run on two gels, (A) a high resolution 2% agarose gel, and (B) a high resolution 2% agarose gel containing 1 U/ml HA-red. With few exceptions, all the clones from each band appear to be the same size (gel A). However, the presence of HA-red (gel B), which separates identically-sized DNA fragments based on the percentage of GC within the sequence, clearly indicates the presence of different gene species within each band. For example, even though all five re-amplified clones of band 1 appear to be the same size, at least four different gene species are represented.

in a similar gel containing one of the HA-stains. The standard gel should indicate any gross size differences, whilst the HA-stained gel should separate otherwise unresolvable species (on standard AGE) according to their base content. Geisinger *et al.* (1997) reported successful use of this approach for identifying DD-derived clones. Figure 10 shows such an experiment carried out in this laboratory on clones obtained from a band extracted from an SSH display.

An alternative approach is to carry out a 2-D analysis of the differential display products. In this approach, size-based separation is first carried out in a standard agarose gel. The gel slice containing the display is then extracted and incorporated in to a HA gel for resolution based on AT/GC content.

Of course, one should always consider the possibility of there being different gene species which are the same size and have the same GC/AT content. However, even these species are not unresolvable given some effort—again, one might use SSCP, or perhaps a denaturing gradient gel electrophoresis (DGGE) or temperature gradient field electrophoresis (TGGE) approach to resolve the contents of a band, either directly on the extracted band (Suzuki *et al.* 1991) or on the reamplified product.

The requirement of some differential display techniques to visualize large numbers of products (e.g. DD and GEF) can also present a problem in that, in terms of numbers, the resolution of PAGE rarely exceeds 300–400 bands. One approach to overcoming this might be to use 2-D gels such as those described by Uitterlinden *et al.* (1989) and Hatada *et al.* (1991).

Extraction of differentially expressed bands from a gel can be complex since, in some cases (e.g. DD, GEF), the results are visualized by autoradiographic means, such that precise overlay of the developed film on the gel must occur if the correct band is to be extracted for further analysis. Clearly, a misjudged extraction can account for many man-hours lost. This problem, and that of the use of radioisotopes, has been addressed by several groups. For example, Lohmann *et al.* (1995) demonstrated that silver staining can be used directly to visualize DD bands in horizontal PAGs. An *et al.* (1996) avoided the use of radioisotopes by transferring a small amount (20–30%) of the DNA from their DD to a nylon membrane, and visualizing the bands using chemiluminescent staining before going back to extract the remaining DNA from the gel. Chen and Peck (1996) went one step further and transferred the entire DD to a nylon membrane. The DNA bands were then visualized using a digoxigenin (DIG) system (DIG was attached to the polydT primers used in the differential display procedure). Differentially expressed bands were cut from the membrane and the DNA eluted by washing with PCR buffer prior to reamplification.

One of the advantages of using techniques such as SSH and RDA is that the final display can be run on an agarose gel and the bands visualized with simple ethidium bromide staining. Whilst this approach can provide acceptable results, overstaining with SYBR Green I or SYBR Gold nucleic acid stains (FMC) effectively enhances the intensity and sharpness of the bands. This greatly aids in their precise extraction and often reveals some faint products that may otherwise be overlooked. Whilst differential displays stained with SYBR Green I are better visualized using short wavelength UV (254 nm) rather than medium wavelength (306 nm), the shorter wavelength is much more DNA damaging. In practice, it takes only a few seconds to damage DNA extracted under 254 nm irradiation, effectively preventing reamplification and cloning. The best approach is to overstain with SYBR Green I and extract bands under a medium wavelength UV transillumination.

The possible use of 'microfingerprinting' to reduce complexity

Given the sheer number of gene products and the possible complexity of each band, an alternative approach to rapid characterization may be to use an enhanced analysis of a small section of a differential display—a 'sub-fingerprint' or 'micro-fingerprint'. In this case, one could concentrate on those bands which only appear in a particular chosen size region. Reducing the fingerprint in this way has at least two advantages. One is that it should be possible to use different gel types, concentrations and run times tailored exactly to that region. Currently, one might run products from 100–3000+ bp on the same gel, which leads to compromise in the gel system being used and consequently to suboptimal resolution, both in terms of size and numbers, and can lead to problems in the accurate excision of individual bands. Secondly, it may be possible to enhance resolution by using a 2-D analysis using a HA-stain, as described earlier. In summary, if a range of gene product sizes is carefully chosen to include certain 'relevant' genes, the 2-D system standardized, and appropriate gene analysis used, it may be possible to develop a method for the early and rapid identification of compounds which have similar or widely different cellular effects. If the prognosis for exposure to one or more other chemicals which display a similar profile is already known, then one could perhaps predict similar effects for any new compounds which show a similar micro-fingerprint.

An alternative approach to microfingerprinting is to examine altered expression in specific families of genes through careful selection of PCR primers and/or post-reaction analysis. Stress genes, growth factors and/or their receptors, cell cycling genes, cytochromes P450 and regulatory proteins might be considered as candidates for analysis in this way. Indeed, some off-the-shelf DNA arrays (e.g. Clontech's Atlas cDNA Expression Array series) already anticipated this to some degree by grouping together genes involved in different responses e.g. apoptosis, stress, DNA-damage response etc.

Screening

False positives

The generation of false positives has been discussed at length amongst the differential display community (Liang *et al.* 1993, 1995, Nishio *et al.* 1994, Sun *et al.* 1994, Sompayrac *et al.* 1995). The reason for false positives varies with the technique being used. For instance, in RDA, the use of adaptors which have not been HPLC purified can lead to the production of false positives through illegitimate ligation events (O'Neill and Sinclair 1997), whilst in DD they can arise through PCR artifacts and illegitimate transcription of rRNA. In SH, false positives appear to be derived largely from abundant gene species, although some may arise from cDNA/mRNA species which do not undergo hybridization for technical reasons.

A quick screening of putative differentially expressed clones can be carried out using a simple dot blot approach, in which labelled first strand probes synthesized from tester and driver mRNA are hybridized to an array of said clones (Hedrick *et al.* 1984, Sakaguchi *et al.* 1986). Differentially expressed clones will hybridize to tester probe, but not driver. The disadvantage of this approach is that rare species may not generate detectable hybridization signals. One option for those using SSH is to screen the clones using a labelled probe generated from the subtracted cDNA from which it was derived, and with a probe made from the reverse subtraction reaction (ClonTechniques 1997a). Since the SSH method enriches rare sequences, it should be possible to confirm the presence of clones representing low abundance genes. Despite this quick screening step, there is still the need to go back to the original mRNA and confirm the altered expression using a more quantitative approach. Although this may be achieved using Northern blots, the sensitivity is poor by today's high standards and one must rely on PCR methods for accurate and sensitive determinations (see below).

Sequence analysis

The majority of differential display procedures produce final products which are between 100 and 1000bp in size. However, this may considerably reduce the size of the sequence for analysis of the DNA databases. This in turn leads to a reduced confidence in the result—several families of genes have members whose DNA sequences are almost identical except in a few key stretches; e.g. the cytochrome P450 gene superfamily (Nelson *et al.* 1996). Thus, does the clone identified as being almost identical to gene X₀ really come from that gene, or its brother gene X₁ or its as yet undiscovered sister X₂? For example, using SSH, part of a gene was isolated,

mine altered expression
R primers and/or post-
receptors, cell cycling
considered as candidates
arrays (e.g. Clontech's
this to some degree by
apoptosis, stress, DNA-

at length amongst the
et al. 1994, Sun *et al.*
sitives varies with the
laptops which have not
ves through illegitimate
they can arise through
I, false positives appear
some may arise from
for technical reasons.
ones can be carried out
and probes synthesized
said clones (Hedrick *et*
lones will hybridize to
ach is that rare species
on for those using SSH
the subtracted cDNA
the reverse subtraction
riches rare sequences,
senting low abundance
need to go back to the
z a more quantitative
plots, the sensitivity is
methods for accurate and

inal products which are
rably reduce the size of
urn leads to a reduced
members whose DNA
s, e.g. the cytochrome
alone identified as being
brother gene X, or its
of a gene was isolated,

which was up-regulated in the liver of rats exposed to Wy-14,643 and was identified by a FASTA search as being transferrin (data not shown). However, transferrin is known to be downregulated by hypolipidemic peroxisome proliferators such as Wy-14,643 (Hertz *et al.* 1996), and this was confirmed with subsequent RT-PCR analysis. This suggests that the gene sequence isolated may belong to a gene which is closely related to transferrin, but is regulated by a different mechanism.

A further problem associated with SH technology is redundancy. In most cases before SH is carried out, the cDNA population must first be simplified by restriction digestion. This is important for at least two reasons:

- (1) To reduce complexity—long cDNA fragments may form complex networks which prevent the formation of appropriate hybrids, especially at the high concentrations required for efficient hybridization.
- (2) Cutting the cDNAs into small fragments provides better representation of individual genes. This is because genes derived from related but distinct members of gene families often have similar coding sequences that may cross-hybridize and be eliminated during the subtraction procedure (Ko 1990). Furthermore, different fragments from the same cDNA may differ considerably in terms of hybridization and amplification and, thus, may not efficiently do one or the other (Wang and Brown 1991). Thus, some fragments from differentially expressed cDNAs may be eliminated during subtractive hybridization procedures. However, other fragments may be enriched and isolated. As a consequence of this, some genes will be cut one or more times, giving rise to two or more fragments of different sizes. If those same genes are differentially expressed, then two or more of the different size fragments may come through as separate bands on the final differential display, increasing the observed redundancy and increasing the number of redundant sequencing reactions.

Sequence comparisons also throw up another important point—at what degree of sequence similarity does one accept a result. Is 90% identity between a gene derived from your model species and another acceptably close? Is 95% between your sequence and one from the same species also acceptable? This problem is particularly relevant when the forward and reverse sequence comparisons give similar sequences with completely different gene species! An arbitrary decision seems to be to allocate genes that are definite (95% and above similarity) and then group those between 60 and 95% as being related or possible homologues.

Quantitative analysis

At some point, one must give consideration to the quantitative analysis of the candidate genes, either as a means of confirming that they are truly differentially expressed, or in order to establish just what the differences are. Northern blot analysis is a popular approach as it is relatively easy and quick to perform. However, the major drawback with Northern blots is that they are often not sensitive enough to detect rare sequences. Since the majority of messages expressed in a cell are of low abundance (see table 1), this is a major problem. Consequently, RT-PCR may be the method of choice for confirming differential expression. Although the procedure is somewhat more complex than Northern analysis, requiring synthesis of primers and optimization of reaction conditions for each gene species, it is now possible to set up high throughput PCR systems using multichannel pipettes, 96+ well plates and

appropriate thermal cycling technology. Whilst quantitative analysis is more desirable, being more accurate and without reliance on an internal standard, the money and time needed to develop a competitor molecule is often excessive, especially when one might be examining tens or even hundreds of gene species. The use of semi-quantitative analysis is simpler, although still relatively involved. One must first of all choose an internal standard that does not change in the test cells compared to the controls. Numerous reference genes have been tried in the past, for example interferon-gamma (IFN- γ , Frye *et al.* 1989), β -actin (Heuval *et al.* 1994), glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Wong *et al.* 1994), dihydrofolate reductase (DHFR, Mohler and Butler 1991), β -2-microglobulin (β -2-m, Murphy *et al.* 1990), hypoxanthine phosphoribosyl transferase (HPRT, Foss *et al.* 1998) and a number of others (ClonTechniques 1997b). Ideally, an internal standard should not change its level of expression in the cell regardless of cell age, stage in the cell cycle or through the effects of external stimuli. However, it has been shown on numerous occasions that the levels of most housekeeping genes currently used by the research community do in fact change under certain conditions and in different tissues (ClonTechniques 1997b). It is imperative, therefore, that preliminary experiments be carried out on a panel of housekeeping genes to establish their suitability for use in the model system.

Interpretation of quantitative data must also be treated with caution. By comparing the lists of genes identified by differential expression one can perhaps gain insight into why two different species react in different ways to external stimuli. For example, rats and mice appear sensitive to the non-genotoxic effects of a wide range of peroxisome proliferators whilst Syrian hamsters and guinea pigs are largely resistant (Orton *et al.* 1984, Rodricks and Turnbull 1987, Lake *et al.* 1989, 1993, Makowska *et al.* 1992). A simplified approach to resolving the reason(s) why is to compare lists of up- and down-regulated genes in order to identify those which are expressed in only one species and, through background knowledge of the effects of the said gene, might suggest a mechanism of facilitated non-genotoxic carcinogenesis or protection. Of course, the situation is likely to be far more complex. Perhaps if there were one key gene protecting guinea pig from non-genotoxic effects and it was upregulated 50 times by PPs, the same gene might only be up-regulated five times in the rat. However, since both were noted to be upregulated, the importance of the gene may be overlooked. Just to complicate matters, a large change in expression does not necessarily mean a biologically important change. For example, what is the true relevance of gene Y which shows a 50-fold increase after a particular treatment, and gene Z which shows only a 5-fold increase? If one examines the literature one may find that historically, gene Y has often been shown to be up-regulated 40–60-fold by a number of unrelated stimuli—in light of this the 50-fold increase would appear less significant. However, the literature may show that gene Z has never been recorded as having more than doubled in expression—which makes your 5-fold increase all the more exciting. Perhaps even more interesting is if that same 5-fold increase has only been seen in related neoplasms or following treatment with related chemicals.

Problems in using the differential display approach

Differential display technology originally held promise of an easily obtainable 'fingerprint' of those genes which are up- or down-regulated in test animals/cells in a developmental process or following exposure to given stimuli. However, it has

ative analysis is more internal standard, the rule is often excessive, numbers of gene species. The relatively involved. One change in the test cells been tried in the past, for instance (Heuval *et al.* 1994), Vong *et al.* 1994), di- β -2-microglobulin (β -2-microglobulin) (HPRT, Foss *et al.* 1994). Ideally, an internal standard regardless of cell age, will. However, it has been keeping genes currently certain conditions and in view, therefore, that preparing genes to establish

become clear that the fingerprinting process, whilst still valid, is much too complex to be represented by a single technique profile. This is because all differential display techniques have common and/or unique technical problems which preclude the isolation and identification of all those genes which show changes in expression. Furthermore, there are important genetic changes related to disease development which differential expression analysis is simply not designed to address. An example of this is the presence of small deletions, insertions, or point mutations such as those seen in activated oncogenes, tumour suppressor genes and individual polymorphisms. Polymorphic variations, small though they usually are, are often regarded as being of paramount importance in explaining why some patients respond better than others to certain drug treatments (and, in logical extension, why some people are less affected by potentially dangerous xenobiotics/carcinogens than others). The identification of such point mutations and naturally occurring polymorphisms requires the subsequent application of sequencing, SSCP, DGGE or TGGE to the gene of interest. Furthermore, differential display is not designed to address issues such as alternatively spliced gene species or whether an increased abundance of mRNA is a result of increased transcription or increased mRNA stability.

Conclusions

Perhaps the main advantage of open system differential display techniques is that they are not limited by extant theories or researcher bias in revealing genes which are differentially expressed, since they are designed to amplify all genes which demonstrate altered expression. This means that they are useful for the isolation of previously unknown genes which may turn out to be useful biomarkers of a particular state or condition. At least one open system (SAGE) is also quantitative, thus eliminating the need to return to the original mRNA and carry out Northern/PCR analysis to confirm the result. However, the rapid progress of genome mapping projects means that over the next 5–10 years or so, the balance of experimental use will switch from open to closed differential display systems, particularly DNA arrays. Arrays are easier and faster to prepare and use, provide quantitative data, are suitable for high throughput analysis and can be tailored to look at specific signalling pathways or families of genes. Identification of all the gene sequences in human and common laboratory animals combined with improved DNA array technology, means that it will soon no longer be necessary to try to isolate differentially expressed genes using the technically more demanding open system approach. Thus, their main advantage (that of identifying unknown genes) will be largely eradicated. It is likely, therefore, that their sphere of application will be reduced to analysis of the less common laboratory species, since it will be some time yet before the genomes of such animals as zebrafish, electric eels, gerbils, crayfish and squid, for example, will be sequenced.

Of course, in the end the question will always remain: What is the functional/biological significance of the identified, differentially expressed genes? One persistent problem is understanding whether differentially expressed genes are a cause or consequence of the altered state. Furthermore, many chemicals, such as non-genotoxic carcinogens, are also mitogens and so genes associated with replication will also be upregulated but may have little or nothing to do with the

of an easily obtainable in test animals/cells in stimuli. However, it has

carcinogenic effect. Whilst differential display technology cannot hope to answer these questions, it does provide a springboard from which identification, regulatory and functional studies can be launched. Understanding the molecular mechanism of cellular responses is almost impossible without knowing the regulation and function of those genes and their condition (e.g. mutated). In an abstract sense, differential display can be likened to a still photograph, showing details of a fixed moment in time. Consider the Historian who knows the outcome of a battle and the placement and condition of the troops before the battle commenced, but is asked to try and deduce how the battle progressed and why it ended as it did from a few still photographs—an impossible task. In order to understand the battle, the Historian must find out the capabilities and motivation of the soldiers and their commanding officers, what the orders were and whether they were obeyed. He must examine the terrain, the remains of the battle and consider the effects the prevailing weather conditions exerted. Likewise, if mechanistic answers are to be forthcoming, the scientist must use differential display in combination with other techniques, such as knockout technology, the analysis of cell signalling pathways, mutation analysis and time and dose response analyses. Although this review has emphasized the importance of differential gene profiling, it should not be considered in isolation and the full impact of this approach will be strengthened if used in combination with functional genomics and proteomics (2-dimensional protein gels from isoelectric focusing and subsequent SDS electrophoresis and virtual 2D-maps using capillary electrophoresis). Proteomics is attracting much recent attention as many of the changes resulting in differential gene expression do not involve changes in mRNA levels, as described extensively herein, but rather protein–protein, protein–DNA and protein phosphorylation events which would require functional genomics or proteomic technologies for investigation.

Despite the limitations of differential display technology, it is clear that many potential applications and benefits can be obtained from characterizing the genetic changes that occur in a cell during normal and disease development and in response to chemical or biological insult. In light of functional data, such profiling will provide a 'fingerprint' of each stage of development or response, and in the long term should help in the elucidation of specific and sensitive biomarkers for different types of chemical/biological exposure and disease states. The potential medical and therapeutic benefits of understanding such molecular changes are almost immeasurable. Amongst other things, such fingerprints could indicate the family or even specific type of chemical an individual has been exposed to plus the length and/or acuteness of that exposure, thus indicating the most prudent treatment. They may also help uncover differences in histologically identical cancers, provide diagnostic tests for the earliest stages of neoplasia and, again, perhaps indicate the most efficacious treatment.

The Human Genome Project will be completed early in the next century and the DNA sequence of all the human genes will be known. The continuing development and evolution of differential gene expression technology will ensure that this knowledge contributes fully to the understanding of human disease processes.

Acknowledgements

We acknowledge Drs Nick Plant (University of Surrey), Sally Darney and Chris Luft (US EPA at RTP) for their critical analysis of the manuscript prior to submission. This manuscript has been reviewed in accordance with the policy of the

cannot hope to answer identification, regulatory molecular mechanism of regulation and function tract sense, differential s of a fixed moment in attle and the placement but is asked to try and it did from a few still he battle, the Historian and their commanding i. He must examine the the prevailing weather to be forthcoming, the her techniques, such as , mutation analysis and has emphasized the sidered in isolation and d in combination with n gels from isoelectric D-maps using capillary ention as many of the olve changes in mRNA tein, protein-DNA and nctional genomics or

y, it is clear that many characterizing the genetic pment and in response ita, such profiling will ponse, and in the long biomarkers for different e potential medical and anges are almost im- indicate the family or sed to plus the length st prudent treatment. ntical cancers, provide n, perhaps indicate the

he next century and the ontinuing development will ensure that this disease processes.

Sally Darney and Chris e manuscript prior t e with the policy of the

US Environmental Protection Agency and approved for publication. Approval does not signify that the contents reflect the views and policies of the Agency, nor does mention of trade names constitute endorsement or recommendation for use.

References

- ADAMS, M. D., KELLEY, J. M., GOCAYNE, J. D., DUBNICK, M., POLYMEROPoulos, M. H., XIAO, H., MERRIL, C. R., WU, A., OLDE, B., MORENO, R. F., KERLAVAGE, A. R., McCOMBIE, W. R. and VENTOR, J. C., 1991, Complementary DNA sequencing: expressed sequence tags and human genome project. *Science*, **252**, 1651-1656.
- AN, G., LUO, G., VELTRI, R. W. and O'HARA, S. M., 1996, Sensitive non-radioactive differential display method using chemiluminescent detection. *Biotechniques*, **20**, 342-346.
- AXEL, R., FEIGELSON, P. and SCHULTZ, G., 1976, Analysis of the complexity and diversity of mRNA from chicken liver and oviduct. *Cell*, **7**, 247-254.
- BAND, V. and SAGER, R., 1989, Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that supports long-term growth of both cell types. *Proceedings of the National Academy of Sciences, USA*, **86**, 1249-1253.
- BAUER, D., MULLER, H., REICH, J., RIEDEL, H., AHRENKIEL, V., WARTHOE, P. and STRAUSS, M., 1993, Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). *Nucleic Acids Research*, **21**, 4272-4280.
- BERTIOLI, D. J., SCHLICHTER, U. H. A., ADAMS, M. J., BURROWS, P. R., STEINBISS, H.-H. and ANTONIW, J. F., 1995, An analysis of differential display shows a strong bias towards high copy number mRNAs. *Nucleic Acids Research*, **23**, 4520-4523.
- BRAVO, R., 1990, Genes induced during the G0/G1 transition in mouse fibroblasts. *Seminars in Cancer Biology*, **1**, 37-46.
- BURN, T. C., PETROVICK, M. S., HOHAUS, S., ROLLINS, B. J. and TENEN, D. G., 1994, Monocyte chemoattractant protein-1 gene is expressed in activated neutrophils and retinoic acid-induced human myeloid cell lines. *Blood*, **84**, 2776-2783.
- CAO, J., CAI, X., ZHENG, L., GENG, L., SHI, Z., PAO, C. C. and ZHENG, S., 1997, Characterisation of colorectal cancer-related cDNA clones obtained by subtractive hybridisation screening. *Journal of Cancer Research and Clinical Oncology*, **123**, 447-451.
- CASSIDY, S. B., 1995, Uniparental disomy and genomic imprinting as causes of human genetic disease. *Environmental and Molecular Mutagenesis*, **25** (Suppl 26), 13-20.
- CHANG, G. W. and TERZAGHI-HOWE, M., 1998, Multiple changes in gene expression are associated with normal cell-induced modulation of the neoplastic phenotype. *Cancer Research*, **58**, 4445-4452.
- CHEN, J., SCHWARTZ, D. A., YOUNG, T. A., NORRIS, J. S. and YAGER, J. D., 1996, Identification of genes whose expression is altered during mitosuppression in livers of ethinyl estradiol-treated female rats. *Carcinogenesis*, **17**, 2783-2786.
- CHEN, J. J. W. and PECK, K., 1996, Non-radioactive differential display method to directly visualise and amplify differential bands on nylon membrane. *Nucleic Acid Research*, **24**, 793-794.
- CLONTECHNIQUES, 1997a, PCR-Select Differential Screening Kit—the nextstep after Clontech PCR-Select cDNA subtraction. *ClonTechniques*, **XII**, 18-19.
- CLONTECHNIQUES, 1997b, Housekeeping RT-PCR amplimers and cDNA probes. *ClonTechniques*, **XII**, 15-16.
- DAVIS, M. M., COHEN, D. I., NIELSEN, E. A., STEINMETZ, M., PAUL, W. E. and HOOD, L., 1984, Cell-type-specific cDNA probes and the murine I region: the localization and orientation of Ad alpha. *Proceedings of the National Academy of Sciences (USA)*, **81**, 2194-2198.
- DELLAVALLE, R. P., PETERSON, R. and LINDQUIST, S., 1994, Preferential deadenylation of HSP70 mRNA plays a key role in regulating Hsp70 expression in *Drosophila melanogaster*. *Molecular and Cell Biology*, **14**, 3646-3659.
- DERISI, J. L., VASHWANATH, R. L. and BROWN, P., 1997, Exploring the metabolic and genetic control of gene expression on a genomic scale. *Science*, **278**, 680-686.
- DIATCHENKO, L., LAU, Y.-F. C., CAMPBELL, A. P., CHENCHIK, A., MOQADAM, F., HUANG, B., LUKYANOV, K., GURSKAYA, N., SVERDLOV, E. D. and SIEBERT, P. D., 1996, Suppression subtractive hybridisation: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. *Proceedings of the National Academy of Sciences (USA)*, **93**, 6025-6030.
- DOGRA, S. C., WHITELAW, M. L. and MAY, B. K., 1998, Transcriptional activation of cytochrome P450 genes by different classes of chemical inducers. *Clinical and Experimental Pharmacology and Physiology*, **25**, 1-9.
- DUGUID, J. R. and DINAUER, M. C., 1990, Library subtraction of *in vitro* cDNA libraries to identify differentially expressed genes in scrapie infection. *Nucleic Acids Research*, **18**, 2789-2792.
- DUNBAR, P. R., OCC, G. S., CHEN, J., RUST, N., VAN DER BRUGGEN, P. and CERUNDolo, V., 1998, Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood. *Current Biology*, **26**, 413-416.

- FITZPATRICK, D. R., GERMAIN-LEE, E. and VALLE, D., 1995, Isolation and characterisation of rat and human cDNAs encoding a novel putative peroxisomal enoyl-CoA hydratase. *Genomics*, **27**, 457-466.
- FOSS, D. L., BAARSCH, M. J. and MURTAUGH, M. P., 1998, Regulation of hypoxanthine phosphoribosyltransferase, glyceraldehyde-3-phosphate dehydrogenase and beta-actin mRNA expression in porcine immune cells and tissues. *Animal Biotechnology*, **9**, 67-78.
- FRYE, R. A., BENZ, C. C. and LIU, E., 1989, Detection of amplified oncogenes by differential polymerase chain reaction. *Oncogene*, **4**, 1153-1157.
- GEISINGER, A., RODRIGUEZ, R., ROMERO, V. and WETTSTEIN, R., 1997, A simple method for screening cDNAs arising from the cloning of RNA differential display bands. *Elsevier Trends Journals Technical Tips Online*, <http://tto.trends.com>, document T01110.
- GRESS, T. M., HOHEISEL, J. D., LENNON, G. G., ZEHETNER, G. and LEHRACH, H., 1992, Hybridisation fingerprinting of high density cDNA filter arrays with cDNA pools derived from whole tissues. *Mammalian Genome*, **3**, 609-619.
- GRIFFIN, G. and KRISHNA, S., 1998, Cytokines in infectious diseases. *Journal of the Royal College of Physicians, London*, **32**, 195-198.
- GROENINK, M. and LEEGWATER, A. C. J., 1996, Isolation of delayed early genes associated with liver regeneration using Clontech PCR-select subtraction technique. *Clonetechniques*, **XI**, 23-24.
- GUIMERAES, M. J., BAZAN, J. F., ZLOTNIK, A., WILES, M. V., GRIMALDI, J. C., LEE, F. and MCCLANAHAN, T., 1995b, A new approach to the study of haematopoietic development in the yolk sac and embryoid bodies. *Development*, **121**, 3335-3346.
- GUIMERAES, M. J., LEE, F., ZLOTNIK, A. and MCCLANAHAN, T., 1995a, Differential display by PCR: novel findings and applications. *Nucleic Acids Research*, **23**, 1832-1833.
- GURSKAYA, N. G., DIATCHENKO, L., CHENCHIK, P. D., SIEBERT, P. D., KHASPEKOV, G. L., LUKYANOV, K. A., VAGNER, L. L., ERMOLAEVA, O. D., LUKYANOV, S. A. and SVERDLOV, E. D., 1996, Equalising cDNA subtraction based on selective suppression of polymerase chain reaction: Cloning of Jurkat cell transcripts induced by phytohemagglutinin and phorbol 12-Myristate 13-Acetate. *Analytical Biochemistry*, **240**, 90-97.
- HAMPSON, I. N. and HAMPSON, L., 1997, CCLS and DROP—subtractive cloning made easy. *Life Science News* (A publication of Amersham Life Science), **23**, 22-24.
- HAMPSON, I. N., HAMPSON, L. and DEXTER, T. M., 1996, Directional random oligonucleotide primed (DROP) global amplification of cDNA: its application to subtractive cDNA cloning. *Nucleic Acids Research*, **24**, 4832-4835.
- HAMPSON, I. N., POPE, L., COWLING, G. J. and DEXTER, T. M., 1992, Chemical cross linking subtraction (CCLS): a new method for the generation of subtractive hybridisation probes. *Nucleic Acids Research*, **20**, 2899.
- HARA, E., KATO, T., NAKADA, S., SEKIYA, S. and ODA, K., 1991, Subtractive cDNA cloning using oligo(dT)30-latex and PCR: isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells. *Nucleic Acids Research*, **19**, 7097-7104.
- HATADA, I., HAYASHIZAKE, Y., HIROTOSUNE, S., KOMATSUBARA, H. and MUKAI, T., 1991, A genomic scanning method for higher organisms using restriction sites as landmarks. *Proceedings of the National Academy of Sciences (U.S.A.)*, **88**, 9523-9527.
- HECHT, N., 1998, Molecular mechanisms of male sperm cell differentiation. *Bioessays*, **20**, 555-561.
- HEDRICK, S., COHEN, D. I., NIELSEN, E. A. and DAVIS, M. E., 1984, Isolation of T cell-specific membrane-associated proteins. *Nature*, **308**, 149-153.
- HERTZ, R., SECKBACH, M., ZAKIN, M. M. and BAR-TANA, J., 1996, Transcriptional suppression of the transferrin gene by hypolipidemic peroxisome proliferators. *Journal of Biological Chemistry*, **271**, 218-224.
- HEUVAL, J. P. V., CLARK, G. C., KOHN, M. C., TRITSCHER, A. M., GREENLEE, W. F., LUCIER, G. W. and BELL, D. A., 1994, Dioxin-responsive genes: Examination of dose-response relationships using quantitative reverse transcriptase-polymerase chain reaction. *Cancer Research*, **54**, 62-68.
- HILLIER, L. D., LENNON, G., BECKER, M., BONALDO, M. F., CHIAPELLI, B., CHIASSO, S., DIETRICH, N., DUBUQUE, T., FAYELO, A., GISH, W., HAWKINS, M., HULTMAN, M., KUCABA, T., LACY, M., LE, M., LE, N., MARDIS, E., MOORE, B., MORRIS, M., PARSONS, J., PRANGE, C., RIFKIN, L., ROHLFING, T., SCHELLENBERG, K., SOARES, M. B., TAN, F., THIERRY-MEG, J., TREVASKIS, E., UNDERWOOD, K., WOHLDMAN, P., WATERSTON, R., WILSON, R. and MARRA, M., 1996, Generation and analysis of 280,000 human expressed sequence tags. *Genome Research*, **6**, 807-828.
- HUBANK, M. and SCHATZ, D. G., 1994, Identifying differences in mRNA expression by representational difference analysis. *Nucleic Acids Research*, **22**, 5640-5648.
- HUNTER, T., 1991, Cooperation between oncogenes. *Cell*, **64**, 249-270.
- IVANOVA, N. B. and BELYAVSKY, A. V., 1995, Identification of differentially expressed genes by restriction endonuclease-based gene expression fingerprinting. *Nucleic Acids Research*, **23**, 2954-2958.
- JAMES, B. D. and HIGGINS, S. J., 1985, *Nucleic Acid Hybridisation* (Oxford: IRL Press Ltd).
- KAS-DEELEN, A. M., HARMSEN, M. C., DE MAAR, E. F. and VAN SON, W. J., 1998, A sensitive method for

- and characterisation of rat and CoA hydrolase. *Genomics*, 27, 1–7.
- on of hypoxanthine phosphodiesterase mRNA expression in rat brain. *Journal of Molecular Biology*, 278, 73–78.
- enes by differential polymerase chain reaction. A simple method for screening for genetic variants. *Elsevier Trends Journals*.
- RACH, H., 1992, Hybridisation of cDNA probes derived from whole tissues. *Journal of the Royal College of Physicians of London*, 26, 10–11.
- rly genes associated with liver disease. *Journal of Clinical Genetics*, XI, 23–24.
- UMALDI, J. C., LEE, F. and PARDEE, A. B., 1992, Differential display of genes involved in the poietic development in the yolk sac. *Journal of Cell Biology*, 118, 955–965.
- 995a, Differential display by reverse transcriptase PCR. *Journal of Clinical Genetics*, XI, 1832–1833.
- CHASPEKOV, G. L., LUKYANOV, S. V. and SVERDLOV, E. D., 1996, Application of polymerase chain reaction: differential display of mRNA and phorbol 12-Myristate 13-acetate induced genes. *Journal of Clinical Genetics*, XI, 1834–1842.
- cloning made easy. *Life Science*, 59, 1–10.
- andom oligonucleotide primed reverse transcription active cDNA cloning. *Nucleic Acids Research*, 23, 1–10.
- chemical cross linking subtraction hybridisation probes. *Nucleic Acids Research*, 23, 1–10.
- tractive cDNA cloning using differential display of subtractive cDNA cloning using differential display of cDNA to undifferentiated human fibroblasts. *Journal of Clinical Genetics*, XI, 1843–1851.
- MUKAI, T., 1991, A genomic map of the mouse genome landmarks. *Proceedings of the National Academy of Sciences USA*, 88, 555–561.
- Isolation of T cell-specific genes. *Journal of Clinical Genetics*, XI, 1852–1860.
- scriptional suppression of the mouse genome. *Journal of Biological Chemistry*, 271, 1–10.
- LEE, W. F., LUCIER, G. W. and PARDEE, A. B., 1996, Differential display relationships using differential display. *Journal of Clinical Genetics*, XI, 1861–1868.
- B., CHISSEY, S., DIETRICH, N., FRIEDMAN, I., KUCABA, T., LACY, M., LE, C., RIEKE, C., RIFKIN, L., ROHFLING, J., TREVASKIS, E., UNDERWOOD, J., 1996, Generation and analysis of the mouse genome. *Journal of Clinical Genetics*, XI, 1869–1878.
- expression by differential display. *Journal of Clinical Genetics*, XI, 1879–1888.
- expressed genes by restriction fragment length polymorphism. *Journal of Clinical Genetics*, XI, 1889–1898.
- d: IRL Press Ltd).
- I., 1998, A sensitive method for quantifying cytomegalic endothelial cells in peripheral blood from cytomegalovirus-infected patients. *Clinical Diagnostic and Laboratory Immunology*, 5, 622–626.
- KILTY, I. and VICKERS, P., 1997, Fractionating DNA fragments generated by differential display PCR. *Strategies Newsletter* (Stratagene), 10, 50–51.
- KLEINJAN, D.-J. and VAN HEYNINGEN, V., 1998, Position effect in human genetic disease. *Human and Molecular Genetics*, 7, 1611–1618.
- KO, M. S., 1990, An 'equalized cDNA library' by the reassociation of short double-stranded cDNAs. *Nucleic Acids Research*, 18, 5705–5711.
- LAKE, B. G., EVANS, J. G., CUNNINGHAM, M. E. and PRICE, R. J., 1993, Comparison of the hepatic effects of Wy-14,643 on peroxisome proliferation and cell replication in the rat and Syrian hamster. *Environmental Health Perspectives*, 101, 241–248.
- LAKE, B. G., EVANS, J. G., GRAY, T. J. B., KOROSI, S. A. and NORTH, C. J., 1989, Comparative studies of nafenopin-induced hepatic peroxisome proliferation in the rat, Syrian hamster, guinea pig and marmoset. *Toxicology and Applied Pharmacology*, 99, 148–160.
- LENNARD, M. S., 1993, Genetically determined adverse drug reactions involving metabolism. *Drug Safety*, 9, 60–77.
- LEVY, S., TODD, S. C. and MAECKER, H. T., 1998, CD81(TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. *Annual Review of Immunology*, 16, 89–109.
- LIANG, P. and PARDEE, A. B., 1992, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. *Science*, 257, 967–971.
- LIANG, P., AVERBOUKH, L., KEYOMARSI, K., SAGER, R. and PARDEE, A., 1992, Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. *Cancer Research*, 52, 6966–6968.
- LIANG, P., AVERBOUKH, L. and PARDEE, A. B., 1993, Distribution & cloning of eukaryotic mRNAs by means of differential display refinements and optimisation. *Nucleic Acids Research*, 21, 3269–3275.
- LIANG, P., BAUER, D., AVERBOUKH, L., WARTHOE, P., ROHRWILD, M., MULLER, H., STRAUSS, M. and PARDEE, A. B., 1995, Analysis of altered gene expression by differential display. *Methods in Enzymology*, 254, 304–321.
- LINSKENS, M. H., FENG, J., ANDREWS, W. H., ENLOW, B. E., SAATI, S. M., TONKIN, L. A., FUNK, W. D. and VILLEPONTEAU, B., 1995, Cataloging altered gene expression in young and senescent cells using enhanced differential display. *Nucleic Acids Research*, 23, 3244–3251.
- LISITSYN, N., LISITSYN, N. and WIGLER, M., 1993, Cloning the differences between two complex genomes. *Science*, 259, 946–951.
- LOHMANN, J., SCHICKLE, H. and BOSCH, T. C. G., 1995, REN Display, a rapid and efficient method for non-radioactive differential display and mRNA isolation. *Biotechniques*, 18, 200–202.
- LUNNEY, J. K., 1998, Cytokines orchestrating the immune response. *Reviews in Science and Technology*, 17, 84–94.
- MAKOWSKA, J. M., GIBSON, G. G. and BONNER, F. W., 1992, Species differences in ciprofibrate-induction of hepatic cytochrome P4504A1 and peroxisome proliferation. *Journal of Biochemical and Molecular Toxicology*, 7, 183–191.
- MALDARELLI, F., XIANG, C., CHAMOUN, G. and ZEICHNER, S. L., 1998, The expression of the essential nuclear splicing factor SC35 is altered by human immunodeficiency virus infection. *Virus Research*, 53, 39–51.
- MATHIEU-DAUDE, F., CHENG, R., WELSH, J. and McCLELLAND, M., 1996, Screening of differentially amplified cDNA products from RNA arbitrarily primed PCR fingerprints using single strand conformation polymorphism (SSCP) gel. *Nucleic Acids Research*, 24, 1504–1507.
- MCKENZIE, D. and DRAKE, D., 1997, Identification of differentially expressed gene products with the castaway system. *Strategies Newsletter* (Stratagene), 10, 19–20.
- McCLELLAND, M., MATHIEU-DAUDE, F. and WELSH, J., 1996, RNA fingerprinting and differential display using arbitrarily primed PCR. *Trends in Genetics*, 11, 242–246.
- MECHLER, B. and RABBITS, T. H., 1981, Membrane-bound ribosomes of myeloma cells. IV. mRNA complexity of free and membrane-bound polysomes. *Journal of Cell Biology*, 88, 29–36.
- MEYER, U. A. and ZANGER, U. M., 1997, Molecular mechanisms of genetic polymorphisms of drug metabolism. *Annual Review of Pharmacology and Toxicology*, 37, 269–296.
- MOHLER, K. M. and BUTLER, L. D., 1991, Quantitation of cytokine mRNA levels utilizing the reverse transcriptase-polymerase chain reaction following primary antigen-specific sensitization in vivo—I. Verification of linearity, reproducibility and specificity. *Molecular Immunology*, 28, 437–447.
- MURPHY, L. D., HERZOG, C. E., RUDICK, J. B., TITO FOJO, A. and BATES, S. E., 1990, Use of the polymerase chain reaction in the quantitation of the mdr-1 gene expression. *Biochemistry*, 29, 10351–10356.
- NELSON, D. R., KOYMANS, L., KAMATAKI, T., STEGEMAN, J. J., FEYERISEN, R., WAXMAN, D. J., WATERMAN, M. R., GOTOH, O., COON, M. J., ESTABROOK, R. W., GUNSALUS, I. C. and NEBERT, D. W., 1996, Update on new sequences, gene mapping, accession numbers and nomenclature. *Pharmacogenetics*, 6, 1–42.

- NISHIO, Y., AIELLO, L. P. and KING, G. L., 1994, Glucose induced genes in bovine aortic smooth muscle cells identified by mRNA differential display. *FASEB Journal*, **8**, 103-106.
- O'NEILL, M. J. and SINCLAIR, A. H., 1997, Isolation of rare transcripts by representational difference analysis. *Nucleic Acids Research*, **25**, 2681-2682.
- ORTON, T. C., ADAM, H. K., BENTLEY, M., HOLLOWAY, B. and TUCKER, M. J., 1984, Clobuzarit: species differences in the morphological and biochemical response of the liver following chronic administration. *Toxicology and Applied Pharmacology*, **73**, 138-151.
- PELKONEN, O., MAENPAA, J., TAAVITSAINEN, P., RAUTIO, A. and RAUNIO, H., 1998, Inhibition and Induction of human cytochrome P450 (CYP) enzymes. *Xenobiotica*, **28**, 1203-1253.
- PHILIPS, S. M., BENDALL, A. J. and RAMSHAW, I. A., 1990, Isolation of genes associated with high metastatic potential in rat mammary adenocarcinomas. *Journal of the National Cancer Institute*, **82**, 199-203.
- PRASHAR, Y. and WEISSMAN, S. M., 1996, Analysis of differential gene expression by display of 3' end restriction fragments of cDNAs. *Proceedings of the National Academy of Sciences (U.S.A.)*, **93**, 659-663.
- RAGNO, S., ESTRADA, I., BUTLER, R. and COLSTON, M. J., 1997, Regulation of macrophage gene expression following invasion by *Mycobacterium tuberculosis*. *Immunology Letters*, **57**, 143-146.
- RAMANA, K. V. and KOHLI, K. K., 1998, Gene regulation of cytochrome P450—an overview. *Indian Journal of Experimental Biology*, **36**, 437-446.
- RICHARD, L., VELASCO, P. and DETMAR, M., 1998, A simple immunomagnetic protocol for the selective isolation and long-term culture of human dermal microvascular endothelial cells. *Experimental Cell Research*, **240**, 1-6.
- ROCKETT, J. C., ESDAILE, D. J. and GIBSON, G. G., 1997, Molecular profiling of non-genotoxic hepatocarcinogenesis using differential display reverse transcription-polymerase chain reaction (ddRT-PCR). *European Journal of Drug Metabolism and Pharmacokinetics*, **22**, 329-333.
- RODRICKS, J. V. and TURNBULL, D., 1987, Inter-species differences in peroxisomes and peroxisome proliferation. *Toxicology and Industrial Health*, **3**, 197-212.
- ROGLER, G., HAUSMANN, M., VOGL, D., ASCHENBRENNER, E., ANDUS, T., FALK, W., ANDREESEN, R., SCHOLMERICH, J. and GROSS, V., 1998, Isolation and phenotypic characterization of colonic macrophages. *Clinical and Experimental Immunology*, **112**, 205-215.
- ROHN, W. M., LEE, Y. J. and BENVENISTE, E. N., 1996, Regulation of class II MHC expression. *Critical Reviews in Immunology*, **16**, 311-330.
- RUDIN, C. M. and THOMPSON, C. B., 1998, B-cell development and maturation. *Seminars in Oncology*, **25**, 435-446.
- SAKAGUCHI, N., BERGER, C. N. and MELCHERS, F., 1986, Isolation of a cDNA copy of an RNA species expressed in murine pre-B cells. *EMBO Journal*, **5**, 2139-2147.
- SAMBROOK, J., FRITSCH, E. F. and MANIATIS, T., 1989, Gel electrophoresis of DNA. In N. Ford, M. Nolan and M. Fergusen (eds), *Molecular Cloning—A laboratory manual*. 2nd edition (New York: Cold Spring Harbour Laboratory Press), Volume 1, pp. 6-37.
- SARGENT, T. D. and DAWID, I. B., 1983, Differential gene expression in the gastrula of *Xenopus laevis*. *Science*, **222**, 135-139.
- SCHENA, M., SHALON, D., HELLER, R., CHAI, A., BROWN, P. O. and DAVIS, R. W., 1996, Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. *Proceedings of the National Academy of Sciences (U.S.A.)*, **93**, 10614-10619.
- SCHNEIDER, C., KING, R. M. and PHILIPSON, L., 1988, Genes specifically expressed at growth arrest of mammalian cells. *Cell*, **54**, 787-793.
- SCHNEIDER-MAUNOURY, S., GILARDI-HEBENSTREIT, P. and CHARNAZ, P., 1998, How to build a vertebrate hindbrain. Lessons from genetics. *C R Académie de Science III*, **321**, 819-834.
- SEMENZA, G. L., 1994, Transcriptional regulation of gene expression: mechanisms and pathophysiology. *Human Mutations*, **3**, 180-199.
- SEWALL, C. H., BELL, D. A., CLARK, G. C., TRITSCHER, A. M., TULLY, D. B., VANDEN HELVEL, J. and LUCIER, G. W., 1995, Induced gene transcription: implications for biomarkers. *Clinical Chemistry*, **41**, 1829-1834.
- SINGH, N., AGRAWAL, S. and RASTOGI, A. K., 1997, Infectious diseases and immunity: special reference to major histocompatibility complex. *Emerging Infectious Diseases*, **3**, 41-49.
- SMITH, N. R., LI, A., ALDERSLEY, M., HIGH, A. S., MARKHAM, A. F. and ROBINSON, P. A., 1997, Rapid determination of the complexity of cDNA bands extracted from DDRT-PCR polyacrylamide gels. *Nucleic Acids Research*, **25**, 3552-3554.
- SOMPAYRAC, L., JANE, S., BURN, T. C., TENEN, D. G. and DANNA, K. J., 1995, Overcoming limitations of the mRNA differential display technique. *Nucleic Acids Research*, **23**, 4738-4739.
- ST JOHN, T. P. and DAVIS, R. W., 1979, Isolation of galactose-inducible DNA sequences from *Saccharomyces cerevisiae* by differential plaque filter hybridisation. *Cell*, **16**, 443-452.
- SUN, Y., HEGAMYER, G. and COLBURN, N. H., 1994, Molecular cloning of five messenger RNAs differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells: one is homologous to human tissue inhibitor of metalloproteinases-3. *Cancer Research*, **54**, 1139-1144.

- s in bovine aortic smooth muscle 8, 103–106.
- ts by representational difference M. J., 1984, Clobuzarit: species of the liver following chronic 51.
- ONIO, H., 1998, Inhibition and tica, 28, 1203–1253.
- of genes associated with high of the National Cancer Institute, expression by display of 3'end Academy of Sciences (USA), 93.
- regulation of macrophage gene mology Letters, 57, 143–146.
- me P450—an overview. Indian gnetic protocol for the selective endothelial cells. Experimental lar profiling of non-genotoxic tion-polymerase chain reaction acokinetics, 22, 329–333.
- n peroxisomes and peroxisome T., FALK, W., ANDRESEN, R., pic characterization of colonic 15.
- iss II MHC expression. Critical turation. Seminars in Oncology, :DNA copy of an RNA species resis of DNA. In N. Ford, M. hanual, 2nd edition (New York: the gastrula of *Xenopus laevis*. ts, R. W., 1996, Parallel human 1000 genes. Proceedings of the y expressed at growth arrest of 1998. How to build a vertebrate 21, 819–834.
- chanisms and pathophysiology. D. B., VANDEN HEUVEL, J. and ons for biomarkers. Clinical and immunity: special reference 3, 41–49.
- ROBINSON, P. A., 1997, Rapid DDRT-PCR polyacrylamide 1995, Overcoming limitations ch, 23, 4738–4739.
- ucible DNA sequences from n. Cell, 16, 443–452.
- ring of five messenger RNAs use epidermal cells: one is cancer Research, 54, 1139–1144.
- SUNG, Y. J. and DENMAN, R. B., 1997, Use of two reverse transcriptases eliminates false-positive results in differential display. *Biotechniques*, 23, 462–464.
- SUTTON, G., WHITE, O., ADAMS, M. and KERLAVAGE, A., 1995, TIGR Assembler: A new tool for assembling large shotgun sequencing projects. *Genome Science and Technology*, 1, 9–19.
- SUZUKI, Y., SEKIYA, T. and HAYASHI, K., 1991, Allele-specific polymerase chain reaction: a method for amplification and sequence determination of a single component among a mixture of sequence variants. *Analytical Biochemistry*, 192, 82–84.
- SYED, V., GU, W. and HECHT, N. B., 1997, Sertoli cells in culture and mRNA differential display provide a sensitive early warning assay system to detect changes induced by xenobiotics. *Journal of Andrology*, 18, 264–273.
- UITTERLINDEN, A. G., SLAGBOOM, P., KNOOK, D. L. and VIJGL, J., 1989, Two-dimensional DNA fingerprinting of human individuals. *Proceedings of the National Academy of Sciences (USA)*, 86, 2742–2746.
- ULLMAN, K. S., NORTHRUP, J. P., VERWEIJ, C. L. and CRABTREE, G. R., 1990, Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: the missing link. *Annual Review of Immunology*, 8, 421–452.
- VASMATZIS, G., ESSAND, M., BRINKMANN, U., LEE, B. and PASTON, I., 1998, Discovery of three genes specifically expressed in human prostate by expressed sequence tag database analysis. *Proceedings of the National Academy of Sciences (USA)*, 95, 300–304.
- VELCULESCU, V. E., ZHANG, L., VOGELSTEIN, B. and KINZLER, K. W., 1995, Serial analysis of gene expression. *Science*, 270, 484–487.
- VOELTZ, G. K. and STEITZ, J. A., 1998, AUUUUA sequences direct mRNA-deadenylation uncoupled from decay during *Xenopus* early development. *Molecular and Cell Biology*, 18, 7537–7545.
- VOGELSTEIN, B. and KINZLER, K. W., 1993, The multistep nature of cancer. *Trends in Genetics*, 9, 138–141.
- WALTER, J., BELFIELD, M., HAMPSON, I. and READ, C., 1997, A novel approach for generating subtractive probes for differential screening by CCLS. *Life Science News*, 21, 13–14.
- WAN, J. S., SHARP, S. J., POIRIER, G. M.-C., WAGAMAN, P. C., CHAMBERS, J., PYATI, J., HOM, Y.-L., GALINDO, J. E., HUVAR, A., PETERSON, P. A., JACKSON, M. R. and ERLANDER, M. G., 1996, Cloning differentially expressed mRNAs. *Nature Biotechnology*, 14, 1685–1691.
- WALTER, J., BELFIELD, M., HAMPSON, I. and READ, C., 1997, A novel approach for generating subtractive probes for differential screening by CCLS. *Life Science News*, 21, 13–14.
- WANG, Z. and BROWN, D. D., 1991, A gene expression screen. *Proceedings of the National Academy of Sciences (USA)*, 88, 11505–11509.
- WAWER, C., RUGGEBERG, H., MEYER, G. and MUYZER, G., 1995, A simple and rapid electrophoresis method to detect sequence variation in PCR-amplified DNA fragments. *Nucleic Acids Research*, 23, 4928–4929.
- WELSH, J., CHADA, K., DALAL, S. S., CHENG, R., RALPH, D. and McCLELLAND, M., 1992, Arbitrarily primed PCR fingerprinting of RNA. *Nucleic Acids Research*, 20, 4965–4970.
- WONG, H., ANDERSON, W. D., CHENG, T. and RIABOWOL, K. T., 1994, Monitoring mRNA expression by polymerase chain reaction: the 'primer-dropping' method. *Analytical Biochemistry*, 223, 251–258.
- WONG, K. K. and McCLELLAND, M., 1994, Stress-inducible gene of *Salmonella typhimurium* identified by arbitrarily primed PCR of RNA. *Proceedings of the National Academy of Sciences (USA)*, 91, 639–643.
- WYNFORD-THOMAS, D., 1991, Oncogenes and anti-oncogenes: the molecular basis of tumour behaviour. *Journal of Pathology*, 165, 187–201.
- XHU, D., CHAN, W. L., LEUNG, B. P., HUANG, F. P., WHEELER, R., PIEDRAFITA, D., ROBINSON, J. H. and LIEW, F. Y., 1998, Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. *Journal of Experimental Medicine*, 187, 787–794.
- YANG, M. and SYTOWSKI, A. J., 1996, Cloning differentially expressed genes by linker capture subtraction. *Analytical Biochemistry*, 237, 109–114.
- ZHAO, N., HASHIDA, H., TAKAHASHI, N., MISUMI, Y. and SAKAKI, Y., 1995, High-density cDNA filter analysis: a novel approach for large scale quantitative analysis of gene expression. *Gene*, 156, 207–213.
- ZHAO, X. J., NEWSOME, J. T. and CIHLAR, R. L., 1998, Up-regulation of two *candida albicans* genes in the rat model of oral candidiasis detected by differential display. *Microbial Pathogenesis*, 25, 121–129.
- ZIMMERMANN, C. R., ORR, W. C., LECLERC, R. F., BARNARD, C. and TIMBERLAKE, W. E., 1980, Molecular cloning and selection of genes regulated in *Aspergillus* development. *Cell*, 21, 709–715.

THIS PAGE BLANK (USPTO)