Literature Survey On The Selected Project and information Gathering

Team ID	PNT2022TMID37599	
Project Name	Hazardous Area Monitoring for	
	Industrial Plant Powered by IOT	
Team Members	K.Chanukya	
	K.Anuhya	
	J.Jyothsna	
	Y.Silpa Rani	
	J.Swetha	

REFERENCES	RESEARCH	AUTHORS	PROJECT
	PAPER		DESCRIPTION
1	RESEARCH PAPER Implementation of hazardous chemical gas monitoring system using unmanned aerial vehicle (UAV	Fadhil Mochammad; Aditya Rachman Putra; Bambang Riyanto Trilaksono	
			area. To do this task, an on-board data acquisition system is needed on the UAV to measure the hazardous chemical gas level based on the GPS position of the measurement. The user can interact with UAV to specify the

			scanning scanorio
2	Real-Time Design of HMI for Hazardous Gas Control and Monitoring System in Pakistani Mines, Natural Gas Areas and Fertilizer Plants	M. U. Khan, A. Shaheen, M. Zeeshan, Asad-ur- Rehman, M. Adnan and M. T. Rehman	scanning scenario. The technique presented in this paper includes the identification and reporting of dangerous gases in a region by designing a Gas control and monitoring system (GCMS) that can automatically detect, alert and control hazardous gas leakage. It is quite easy to handle as
3	Digital Twin for Monitoring	L. Oliveira, M. Castro, R. Ramos,	users will only have to press buttons at the designed HMI (Human machine interface) The complexity of the number of
	Containerized Hazmat Cargo in Port Areas	J. Santos, J. Silva and L. Dias	stakeholders, information systems used, and port operations evoke new challenges to port security when it comes to the total knowledge and control of the overall operations of transport and parking of containerized freight, namely hazmat ones. The rising interest and the port authorities' awareness of the relevance of security concerns involved in this complex ecosystem has led to the search for new technological solutions that allow, in an integrated manner, the smart and automatic control of operations of transport and hazardous freight parking in all the

			areas of its jurisdiction, without third-party dependencies. Despite its importance and criticality, port authorities tend to have limited real-time knowledge of the location of hazmat containers, whether moving within the port (entering and leaving), or in its parking, having a direct impact on the port security. This article presents a Digital Twin platform for 3D and real-time georeferenced visualization of container parks and the location of hazardous containerized freight. This tool combines different modules that further allow to visualize information associated to a container, its movement, as well as its surrounding area, including a realistic and dynamic 3D representation of what is the area encircling the port
4	To design and develop LoRa-based system for remote safety monitoring	S. Ingle, S. Salankar and S. Prasad	Hazardous area, such as coal mines, are below the earth's surface. Below a certain level there are dangerous and flammable gases. Unavailability of any mobile Network makes such an area black spot for communication. In this paper, describe the using of LoRa that provide an

			wireless network upto certain range in this range using another LoRa that receive and again retransmit the same data resulting in doubling the range of communication. Adding Lora repeaters multiplies the range of communication. In such a way, routing sensor data till the area where GPRS Packets are available and then upload the data to the cloud. This can turn any black spot for communication reach to cloud storage.
5	Camera systems in hazardous locations to monitor and control the separation of liquid waste products in chemical plants	Ingo Emde ; Wolfgang Berner ; Klaus Mertens	It is essential to have high-quality measuring systems for chemical processes in order to obtain reliable data for the control system. For some process applications it is difficult to find a dependable method to measure important values that are vital for the end product. In the case of a liquid waste product processing facility the difficult measuring task is to monitor the separation of Anilin and water in a vessel. In this application, standard measuring methods cannot monitor the process

	reliably, especially
	during a
	start up phase. To
	avoid cost-intensive
	and timeconsuming
	monitoring by staff
	directly at the
	vessel, the task can be
	solved by using
	cameras to
	monitor the process.
	The additional
	problem is to design
	such a solution for a
	facility that is
	classified as a Zone 1
	hazardous location.