Лабораторна робота №1

з дисципліни "Математичні методи оптимізації" тема: "Знаходження безумовних екстремумів функцій багатьох змінних"

Мета роботи – опанувати комп'ютерні засоби для знаходження екстремумів функцій багатьох змінних.

Завдання для виконання

- 1. Знайти всі локальні екстремуми функції, заданої за варіантом (*табл.* 1.1), на заданому інтервалі (*табл.* 1.1), побудувати її графік та відмітити на ньому всі знайдені екстремуми. Якщо завдання буде виконане у *MatLab*, то для пошуку локального екстремуму рекомендується використовувати функцію *fminbnd*.
- 2. Знайти всі функції, локальні екстремуми заданої 3a варіантом (*табл.* 1.2), на **інтервалі** (*табл.* 1.2) заданому побудувати її графік. Якщо завдання буде виконане у *MatLab*, то для екстремумів рекомендується пошуку використовувати функцію *fmincon*, для побудови графіку функцію *surf* та для побудови сітки, необхідної для функції surf, функцію meshgrid.
- 3. Зробити висновки.

4. Номер варіанту визначається таблицею:

№ за списком викладача	Варіант №
1	5
2	11
3	6
4	9
5	3
6	8

№ за списком викладача	Варіант №
7	10
8	2
9	1
10	7
11	4

Вимоги до оформлення звіту

Звіт має містити:

- 1. Оформлений за зразком титульний аркуш.
- 2. На кожній сторінці, окрім титульної, в правому верхньому куті прізвище, ініціали студента та номер групи.
- 3. Наскрізну нумерацію, окрім титульної, в правому нижньому куті.
- 4. Постановку задачі за варіантом.
- 5. Математичне підгрунття для виконання даної лабораторної роботи.
- 6. Графік першої, заданої за варіантом, функції з відміченими на ньому локальними екстремумами.
- 7. Перелік всіх знайдених екстремальних точок та відповідних значень першої, заданої за варіантом, функції.
- 8. Графік другої, заданої за варіантом, функції.
- 9. Перелік всіх знайдених екстремальних точок та відповідних значень другої, заданої за варіантом, функції.
- 10. Висновки.
- 11. Основний текст звіту має бути набраний з дотриманням таких вимог: шрифт Times New Roman 14 пт, відступ першого рядка 12.5 мм з міжрядковим інтервалом 1.5 з вирівнюванням по ширині та надрукований на одному боці аркуша паперу формату А4 з полями таких розмірів:
 - верхнє та нижнє поле: до тексту 20 мм,
 до колонтитула 12.5 мм;
 - ліве поле 30 мм;
 - праве поле 15 мм.
- 12. Текст в таблицях має бути набраний з дотриманням таких вимог: шрифт Times New Roman 12 пт (при необхідності дозволяється змінити шрифт на Courier New 8 пт), міжрядковий інтервал 1.0, інтервал перед 6 пт, інтервал після 6 пт.

- 13. Текст програм має бути набраний з дотриманням таких вимог: шрифт Courier New 8 пт з міжрядковим інтервалом 1.0.
- 14. Звіт подається на перевірку в роздрукованому та електронному вигляді в форматі *.doc або *.docx, або *.rtf, або *.pdf.

Таблиця 1.1. Варіанти завдань

Варіант №	Рівняння	Інтервал
1	$f(x) = x^3 \cos x - 2x \sin x$	[-10;10]
2	$f(x) = x^3 \sin x - 5x^2$	[-10;10]
3	$f(x) = e^x \cos x + 9x \sin x$	[-10; 6]
4	$f(x) = e^{\cos x} \cdot x \cdot \sin x$	[-10; 6]
5	$f(x) = x \cdot e^{\cos x} + x^2 \sin x$	[-10; 6]
6	$f(x) = x \cdot e^{\sin x} + x^2 \sin x$	[-10; 6]
7	$f(x) = \sin x + x \cdot \log_2(\pi + \cos x)$	[-10; 6]
8	$f(x) = 5x + e^x \cos x$	[-15; 6]
9	$f(x) = \cos x \cdot \log_2(x+50) + 5x \cdot \sin x$	[-15; 6]
10	$f(x) = e^{\pi \cdot \cos x} - \sin x$	[-15; 6]
11	$f(x) = e^{x + \pi \cos x} - \log_2(\pi + \sin x)$	[-10; 5]

Таблиця 1.2. Варіанти завдань

Варіант №	Функція	Інтервали
1	$f(\mathbf{x}) = (x_1 - 7)^2 + (x_2 - 3)^2 + 5\sin x_1 - \cos x_1$	$x_1 \in [-5; 5]; x_2 \in [-5; 5]$
2	$f(\mathbf{x}) = e^{x_1} + (3x_2 - 5)^2 + 7\cos x_1 - \sin x_2$	$x_1 \in [-5; 1]; x_2 \in [-3; 5]$
3	$f(\mathbf{x}) = \log_2(x_1 + 100) + (3x_2 - x_1 - 5)^3 + \operatorname{ch} x_1$	$x_1 \in [-7; 5]; x_2 \in [-3; 7]$
4	$f(\mathbf{x}) = (x_1 - \pi)^2 + (x_2 - e)^2 + x_2$	$x_1 \in [-7; 5]; x_2 \in [-3; 7]$
5	$f(\mathbf{x}) = (x_1 - \pi)^3 + (x_2 - e)^4 + x_2 - x_1^2$	$x_1 \in [-10; 1]; x_2 \in [-3; 17]$
6	$f(\mathbf{x}) = \sin^2 x_1 - e^{x_1} \cos x_2$	$x_1 \in [-3; 5]; x_2 \in [-5; 7]$
7	$f\left(\mathbf{x}\right) = \operatorname{sh}^{3} x_{2} - e^{x_{2}} \cos x_{1}$	$x_1 \in [-1; 5]; x_2 \in [-1; 7]$
8	$f(\mathbf{x}) = \operatorname{ch} x_2 - \operatorname{ch} x_1 \log_2(x_1 + 100) + x_2 \sin x_1$	$x_1 \in [-5;1]; x_2 \in [-4;1]$
9	$f(\mathbf{x}) = \sin x_1 \cdot \operatorname{ch} x_2$	$x_1 \in [-7; 3]; x_2 \in [-4; 5]$
10	$f(\mathbf{x}) = \sin x_1 \cdot \cosh x_2 + x_1^2 \cdot \sin(x_1 + x_2 + \pi)$	$x_1 \in [-15; 3]; x_2 \in [-5; 5]$
11	$f(\mathbf{x}) = x_1^3 + \sinh(x_1 - x_2 + \pi)$	$x_1 \in [-3; 1]; x_2 \in [-1; 5]$

Контрольні питання

- 1. Дати визначення градієнта.
- 2. Дати визначення матриці Гессе.
- 3. Перша необхідна умова існування безумовного екстремуму для задач нелінійного програмування.
- 4. Друга необхідна умова існування безумовного екстремуму для задач нелінійного програмування.
- 5. Достатня умова існування безумовного екстремуму для задач нелінійного програмування.
- 6. Дати визначення лінії рівня функції.