24-4-2021

BILKENT UNIVERSITY Department of Electrical and Electronics Engineering EEE313 Electronic Circuit Design MidTerm Exam #2 3 questions 120 minutes

Part-2 Two questions 80 minutes

- Instructions:
- Calculators without extensive memory are allowed
- Clearly explain all your answers in order to receive credit
- Put a box around your final answer
- Cheat sheets are not allowed
- Indicate the units for your final answers
- Write your name and student ID on the bottom of every page
- Mail your pdf solutions to <u>eee313exam@bilkent.edu.tr</u> with your student ID number as subject
- Also upload your pdf solutions to Moodle

EEE313 Electronic Circuit Design MidTerm Exam #2 24-4-2021

Q2. (35 points)

The parameters of the common-source amplifier shown above are $K_p=2mA/V^2$, $V_{TP}=-2V$, $\lambda=0.01V^{-1}$, $C_{gs}=10pF$, $C_{gd}=1pF$, and $C_s\rightarrow\infty$.

- a) Derive and numerically determine the Q-point values of I_p and V_{sp} . Neglect the contribution of λ in this part. Verify the state of the transistor.
- b) Derive and numerically determine the midband small-signal ac gain v_a/v_i .
- c) Derive and numerically determine the -3dB upper cut-off frequency f_{H^*}

PART 2

80 minutes

Q3. (30 points)

The amplifier show above uses a pnp driver and an npn active load circuit. The transistor parameters are: $I_{S0}=5 \times 10^{-13} A$, $I_{S1}=I_{S2}=10^{-12} A$, $V_{AN}=120 V$, and $V_{AP}=80 V$. Let $V^+=5 V$, $V_T=0.026 V$, and neglect base currents. $v_I=V_I+v_i$ where V_I is a fixed voltage and v_i is a small-signal variable contribution to the input.

- a) Find the value of V_{BE} that will produce $I_{REF}\!\!=\!0.5mA.$ Neglect the contribution of V_{AN} in this part.
- b) Determine the value of R_1
- c) What value of V_I will produce $V_{EC0}=V_{CE2}$?
- d) Derive and numerically determine the open-circuit small-signal voltage gain v_i/v_o . Note: Collector current is given by the formulae $i_C = I_S e^{(VBE/VT)} (1 + V_{CE}/V_{AN})$ and $i_C = I_S e^{(VEB/VT)} (1 + V_{EC}/V_{AP})$ for npn and pnp BJTs, respectively.