NUAA

第1页 (共7页)

Matrix Theory, Final Test Date: 2017年1月5							1月5日
矩阵论班号及班内序号:				学号		姓名	
必做题(70 分))	74 V
题号	1	2	3	4	5	选做题(30分)	总分
得分							

Part I (必做题, 共 5 题, 70 分)

第1题 (10分) 得分
$$\text{Let } A = \begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{pmatrix}.$$

- (a) Find an orthonormal basis for the column space of A using Gram-Schmidt orthogonalization process.
- (b) Find a matrix Q and R such that A = QR, where Q is a matrix whose column vectors form an orthonormal set and R is an upper triangular matrix with positive diagonal elements.

第2题(10 分) 得分 Let ${\bf P}_{\!_3}$ be the vector space consisting of all real polynomials of degree less than 3. Let σ be the linear mapping from P_3 to R^2 defined by

$$\sigma(p(x)) = \begin{pmatrix} \int_{-1}^{1} p(x)dx \\ p(0) \end{pmatrix}$$

- (1) Find the range and kernel of this mapping.
- (2) Find a matrix A such that

$$\sigma(a+bx+cx^2) = A \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

第3题(20分) 得分

Let
$$A = \begin{pmatrix} 2 & -6 & 2 \\ 0 & -1 & 1 \\ 0 & -4 & 3 \end{pmatrix}$$

- (1) Find the Smith normal form and all elementary divisors of \boldsymbol{A} .
- (2) Find a Jordan canonical form J of A, and find a nonsingular matrix P such that $P^{-1}AP = J$.
- (3) Compute e^{Jt} . (Give the details of your computations.)

第4题(10分) 得分

Suppose that $A \in \mathbb{R}^{3\times 3}$ and the minimal polynomial of A is $m(\lambda) = (\lambda - 1)(\lambda - 2)$.

- (1) What are the possible characteristic polynomials of A? Explain.
- (2) What are the possible Jordan canonical forms of A? Explain.

第5题(20分) 得分

Let
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbf{R}^{3 \times 2}$$

- (1) Find the Moore-Penrose inverse A^+ of matrix A.
- (2) Find all least-squares solutions of the system $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = (0, 1, 0)^T$.
- (3) Find the orthogonal projection matrix P from \mathbb{R}^3 to the column space of A. **Solution:**

Part II (选做题, 每题 10 分)

请在以下题目中(第6至第9题)选择三题解答.如果你做了四题,请在题号上画圈标明需要批改的三题.否则,阅卷者会随意挑选三题批改,这可能影响你的成绩.

第6题 Let $\begin{pmatrix} A & O \\ O & B \end{pmatrix} \in \mathbf{R}^{n \times n}$, where A and B are square matrices. Show that if $\begin{pmatrix} A & O \\ O & B \end{pmatrix}$ is diagonalizable, then both A and B are diagonalizable.

第7题 Let A be a skew-Hermitian matrix, i.e., $A^H = -A$. Show that

- (a) I A and I + A are invertible.
- **(b)** $(I-A)(I+A)^{-1}$ is a unitary matrix with eigenvalues not equal to -1

第8题 Let A and B be $n \times n$ Hermitian matrices. Show that A and B are similar if they have the same characteristic polynomial.

第9题 Let $A \in \mathbf{R}^{m \times n}$. Show that $A^-A = I_n$ if and only if $\operatorname{rank}(A) = n$

选做题得分 若正面不够书写,请写在反面.

选做题解答: