Лабораторно упражнение № 1 Алгоритмизация на изчислителни процеси

І. Теоретична обосновка

1. Видове алгоритми

Според реда на изпълнение на действията, алгоритмите се разделят на:

- линейни;
- разклонени;
- циклични.

Линейни са тези алгоритми, при които се спазва нормалният, линейно последователен ред на изпълнение на действията (операциите). При линейните алгоритми, действията се изпълняват в реда на тяхното записване.

При *разклонените алгоритми* се нарушава линейният ред на изпълнение на операциите т.е. действията не се изпълняват по реда на тяхното записване. В разклонените алгоритми, според дадено условие, в даден момент, се изпълнява една част от действията. В последствие, при друго изпълнение на алгоритъма, при други условия, ще се изпълни друга част от действията.

Циклични са тези алгоритми, при които част от действията се повтарят многократно. Това многократно повторение се нарича **цикъл**. Като структура, цикълът се състои от: **условие за край** и **тяло** (групата операции, които се повтарят многократно).

Според това, дали условието за край е преди тялото или след него, циклите се разделят на:

- цикъл с пред условие;
- цикъл със след условие (пост условие).

2. Линейни алгоритми

Линейни алгоритми се използват когато е необходимо да бъдат извършени група изчисления. Обикновено такива алгоритми са или част от друг алгоритъм или алгоритми на подпрограми, които използват пресмятания. Пример на програмна задача с линеен алгоритъм е: Да се намери лицето на триъгълник по зададени три страни, като се счита, че входните данни са въведени коректно. Алгоритъмът на задачата е даден на фиг. 1.1.

Фиг. 1.1. Пример за линеен алгоритъм

3. Разклонени алгоритми

В разклонените алгоритми, според зададено условие се извършва *разклонение* към един или към друг клон от алгоритъма. Типичен пример за задача с разклонен алгоритъм е намирането на корените на квадратно уравнение по зададени стойности на коефициентите. Алгоритъмът на задачата е даден на фиг. 1.2.

4. Циклични алгоритми

При цикличните алгоритми част от действията се повтарят многократно. Тези действия съставляват т.нар. **тяло на цикъла**. Важна част от всеки един програмен цикъл е условието за край. Чрез него се определя при какво условие да се прекрати изпълнението на тялото на цикъла. Ако условието за край липсва или ако е зададено некоректно, тогава цикълът се превръща безкраен.

На фиг. 1.3. е представен пример за цикличен алгоритъм - задачата за намиране на n! (п факториел). Стойността на n се въвежда от клавиатурата. Този алгоритъм е типичен пример за цикличен алгоритъм.

Фиг.1.2. Пример за разклонен алгоритъм

Фиг. 1.3. Пример за цикличен алгоритъм

Много често при реализацията на циклични алгоритми се срещат т.нар. *вложени цикли*. В този случай, в тялото на даден цикъл се организира друг цикъл. Пример за такъв алгоритъм е представения на фиг. 1.4, чрез който се реализира задачата за сумиране на две матрици. Входни матрици са а, b; изходна матрица е с. Счита се, че елементите на матриците са предварително въведени. Стойностите за m, n определят размерностите на матриците по редове и стълбове, съответно. Индексите на елементите се изменят както е според С и С++, от 0 до m-1 и от 0 до n-1. Цикълът на изменение на елементите по стълбове, реализиран с изменението на брояча j, е вложен в цикъла на изменение на редовете, реализиран с изменението на брояча i. При тази реализация, цикълът на изменение на редовете е *външен*, а цикълът на изменение на стълбовете е *външен*.

Важно условие за реализацията на вложени цикли е те да не се пресичат т.е. цикълът, който е започнал първи, да свърши последен.

Фиг. 1.4. Пример за цикличен алгоритъм с вложени цикли

II. Контролни въпроси

- 1. Кои алгоритми са линейни?
- 2. Кои алгоритми са разклонени?
- 3. Кои алгоритми са циклични?
- 4. Каква е разликата между цикъл с пред условие и цикъл със след условие?
- 5. Кои цикли са вложени?

III. Задачи за изпълнение

- 1. Да се състави алгоритъм за намиране на обем на правилна триъгълна пирамида. Стойностите на страните на основата и височината се задават от клавиатурата.
- 2. Да се състави алгоритъм за въвеждане на две числа и намиране на по-голямото от тях.
- 3. Да се състави алгоритъм за намиране стойностите на функцията у по зададен аргумент х:

```
y=2, при x<=0;
y=x+2, при x (0,1);
y=3, при x [1,2];
y=5-х, при х (2,3);
y=2, при x>=3;
```

- 4. Да се състави алгоритъм за намиране на произведението на произволно въведени положителни числа от клавиатурата. Въвеждането на стойност 0 да прекрати понататъшното въвеждане на числа.
- 5. Да се състави алгоритъм за намиране позицията и стойността на минималния елемент в едномерен масив от 10 елемента.
- 6. Да се състави алгоритъм за транспониране на матрица. В алгоритъма да се включи и въвеждането на елементите на матрицата.