Convexity

Daniel P. Robinson
Department of Applied Mathematics and Statistics
Johns Hopkins University

September 10, 2020

Outline

- Convex Sets
- Convex Functions

lotes			
lotes			

• Convex sets are central to constrained optimization, stochastic optimization, nonsmooth structured optimization, and even unconstrained optimization

Definition (convex sets)

A set \mathcal{S} is said to be a convex set if for any two points in \mathcal{S} , the entire line segment joining the points is also contained in \mathcal{S} , i.e., a set \mathcal{S} is convex if and only if for all x and y in \mathcal{S} , it follows that

$$\alpha x + (1 - \alpha)y \in \mathcal{S}$$
 for all $\alpha \in [0, 1]$

Figure: Nonconvex set.

Intersections

Theorem

The intersection of convex sets is itself a convex set, i.e., if S_i is convex for $i \in \mathcal{I}$, then

$$\mathcal{S} \stackrel{\mathrm{def}}{=} \cap_{i \in \mathcal{I}} \mathcal{S}_i$$

is convex.

Proof:

Let x and y be in S. Thus,

$$x \in \mathcal{S}_i$$
 and $y \in \mathcal{S}_i$ for all $i \in \mathcal{I}$.

Since each S_i is convex, we know that

$$\alpha x + (1 - \alpha)y \in \mathcal{S}_i$$
 for all $\alpha \in [0, 1]$ and $i \in \mathcal{I}$.

Thus,

$$\alpha x + (1 - \alpha)y \in \mathcal{S}$$
 for all $\alpha \in [0, 1]$

which completes the proof.

Notes	
Notes	

Motoo

Definition (convex combination)

A point x is a convex combination of x_1, x_2, \ldots, x_k if there exist $\{\alpha_1, \alpha_2, \ldots, \alpha_k\} \geq 0$ such that

$$\sum_{i=1}^k lpha_i = 1$$
 and $x = \sum_{i=1}^k lpha_i x_i$

Definition

The convex hull of a set \mathcal{S} , denoted by $\mathbf{conv}(\mathcal{S})$, is defined as the smallest (with respect to set inclusion) convex set that contains \mathcal{S} . More formally, for any convex set X such that $\mathcal{S} \subseteq X$, we must have $\mathbf{conv}(\mathcal{S}) \subseteq X$. The convex hull $\mathbf{conv}(\mathcal{S})$ may be characterized in two equivalent ways:

- lacktriangledown the intersection of all convex sets containing ${\cal S}$
- $oldsymbol{0}$ the set of all convex combinations of points in ${\mathcal S}$

Figure: Convex combinations.

Figure: Convex hull.

- Convex functions are ubiquitous in many ares of optimization theory
 - ▶ line-search methods for unconstrained and constrained optimization
 - trust-region methods for unconstrained and constrained optimization
 - stochastic optimization
 - (structured) nonsmooth optimization
 - $ightharpoonup \ell_1$ regularization for inducing sparsity
 - ▶ hinge-loss function associated with the Support Vector Machine
- ullet Convex functions have important properties and are very important in optimization even when the objective f is nonconvex (e.g., line-search methods)
- Optimization algorithms make use of the properties of convex functions

Notes			
Notes			

Notes

Definition

If
$$f:\mathbb{R}^n o\overline{\mathbb{R}}$$
 where

$$\overline{\mathbb{R}}\stackrel{\mathrm{def}}{=}\mathbb{R}\cup\{+\infty\}$$

then

• the effective domain of f is the set of points in \mathbb{R}^n over which it is not equal to positive infinity, i.e.,

$$dom(f) \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n : f(x) < +\infty\}$$

• the epigraph of f is the set of points in $\mathbb{R}^n \times \mathbb{R}$ that "lies above" f, i.e.,

$$\mathrm{epi}(f) \stackrel{\mathrm{def}}{=} \{(x,y) \in \mathbb{R}^n \times \mathbb{R} : y \ge f(x)\}$$

There are several equivalent definitions of a convex function

Definition 1: Convex function

A function $f:\mathbb{R}^n o \overline{\mathbb{R}}$ is convex if its epigraph is a convex set.

Figure: Convex function.

Figure: Nonconvex function.

Notes			
Notes			

Definition 2: Convex function

A function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex if for all x_1 and x_2 in \mathbb{R}^n and $\alpha \in (0,1)$, it follows that

$$f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2)$$

In other words, the function f is convex if it "lies below" the line segment joining any two function values.

Figure: Convex function.

Figure: Nonconvex function.

• f is strictly convex if the above inequality is strict for all $x_1 \neq x_2$

Definition

A function f is (strictly) concave if -f is (strictly) convex.

Figure: A concave function.

- A function is simultaneously convex and concave if and only if it is affine
- Just because a function is not convex, does not mean that it is concave!
- Nonlinearity and nonconvexity are not the same thing!

Notes			
Notes			

Some examples

Convex functions

• Affine: $\langle a, x \rangle + b$

• Powers: x^a for x > 0 and $a \notin (0, 1)$

• Negative entropy: $x \log(x)$ for x > 0

• p-norm: $\left(\sum_{i=1}^{n}|x_i|^p\right)^{1/p}$ for $p\geq 1$

Concave functions

• Affine: $\langle a, x \rangle + b$

• Powers: x^a for x > 0 and $a \in [0, 1]$

• Logarithms: $\log(x)$ for x > 0

Operations preserving convexity

• Addition: if $f_1, f_2, \ldots, f_k : \mathbb{R}^n \to \overline{\mathbb{R}}$ are convex and $\{\alpha_1, \alpha_2, \ldots, \alpha_k\} > 0$, then

$$f(x) = \sum_{i=1}^k \alpha_i f_i(x)$$
 is convex

• Maximization: if $f_1, f_2, \ldots, f_k : \mathbb{R}^n \to \overline{\mathbb{R}}$ are convex, then

$$f(x) = \max\{f_1(x), f_2(x), \dots, f_k(x)\}$$
 is convex

• Pre-Composition with Affine function : if $T:\mathbb{R}^n \to \mathbb{R}^m$ is an affine function, i.e., T(x) = Ax + b for some matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, and $h: \mathbb{R}^m \to \overline{\mathbb{R}}$ is convex, then

$$f(x) = h(T(x))$$
 is convex

• Post-Composition with nondecreasing, convex function: if $g:\mathbb{R}\to\overline{\mathbb{R}}$ is nondecreasing and convex, and $h:\mathbb{R}^n\to\mathbb{R}$ is convex, then

$$f(x) = g(h(x))$$
 is convex

Notes			
Notes			

Notes

Theorem

If $f: \mathcal{S} \subseteq \mathbb{R}^n \to \mathbb{R}$ is a convex function for some open convex set \mathcal{S} , then it is continuous on \mathcal{S} .

Proof (by picture):

Convexity using first derivatives

Let $f:\mathbb{R}^n \to \mathbb{R}$ be differentiable everywhere. Then the following are equivalent:

- lacktriangledown f is convex.

A characterization of strict convexity is obtained if all the above inequalities are considered strict for all $x \neq y \in \mathbb{R}^n$.

ullet Note: if f is convex, then for any given x the affine function

 $f(x) + \nabla f(x)^{T}(y - x)$ is a linear underestimator for f(y).

Notes			

Notes			

Convexity using second derivatives

Suppose that f is twice-continuously differentiable. It follows that

- ullet f is convex if and only if $abla^2 f(x) \succeq 0$ for all $x \in \mathbb{R}^n$
- if $\nabla^2 f(x) \succ 0$ for all $x \in \mathbb{R}^n$, then f is strictly convex

Question: Why is the second statement not an "if and only if"?

Notes			
lotes			