Author Profiling Using Deep Learning to Identify Age Groups and Genders

Dario Gjorgjevski¹
gjorgjevski.dario@students.finki.ukim.mk

¹Faculty of Computer Science and Engineering Ss. Cyril and Methodius University in Skopje

October 26, 2017

Contents

Introduction

Preprocessing

Classification pipeline

Results and future work

Motivation

- ▶ Huge volume of user-generated content \implies appealing to profile users based on it.
- ▶ Profiling has multi-faceted advantages:
 - Commercial Analyze the demographics of people that like or dislike certain products.

Forensic Find out the linguistic profile of the author of a harassing text message and identify certain characteristics (language as evidence).

Task

Definition (Author profiling)

Author profiling is the task of identifying certain features of authors of text.

- ▶ We will focus on the the *genders* and *age groups* of authors of Twitter posts.
- ▶ Genders are either male or female.
- ▶ Age groups are 18–24, 25–34, 35–49, 50–64, and 65–xx.

Dataset

- ▶ Data are provided as part of the PAN 2016 event¹.
- ▶ There are 277 792 tweets written in English by 436 users, or an average of 637.14 tweets per user.
- ▶ 218 users are male and 218 are female.
- ▶ The distribution of age groups is given in table 1.
- ▶ We additionally used the data provided by the 2013, 2014, and 2017 PAN events for the unsupervised part of our classification pipeline (stay tuned).

¹http://pan.webis.de/clef16/pan16-web/author-profiling.html

Age groups

Table: Distribution of age groups

Age group	Number of users
18-24	28
25 – 34	140
35 – 49	182
50 – 64	80
64-xx	6

One can see that there is class imbalance here. However, we are not going to attempt to rectify this by weighing or resampling.

Contents

Introduction

Preprocessing

Classification pipeline

Results and future work

Parsing

- ▶ Data are given in XML files: there is one XML file per author named by the author's hexadecimal ID.
- ▶ We used the Beautiful Soup library to parse the files.
- ▶ Additionally, there is a file called truth.txt which consists of lines of the form

```
<filename>:::<gender>:::<age-group>
and gives the ground truth.
```

Normalization

- 1. Hash tags, replies, and external links are replaced by new and unique tokens.
- 2. Tweets are tokenized into words using the Punkt tokenizer [2] from NLTK, the natural language toolkit.
- 3. Abbreviations and nonstandard words such as "ur" and "lol" are converted to their standard forms using a dictionary constructed from the ACL 2015 workshop on noisy usergenerated content [1].

Contents

Introduction

Preprocessing

Classification pipeline

Results and future work

Distributed representations Motivation

The Doc2Vec model [3] learns distributed representations of both words and entire documents. In our case, document := author.

- ▶ Semantically related entities, e.g., Prague, Rome, Berlin, etc., should be close to each other.
- ➤ Two entities are considered close if they appear in the same context (Word2Vec [4]).
- ightharpoonup The context is a simple window of k words to the left and to the right of a target word.
- ▶ The "leftovers" of the context are explained by the document's ID itself (Doc2Vec).

Distributed representations

Architecture

sat the sat on softmax \mathbf{b}, \mathbf{U} b, U b, U b, U concatenate embed D \mathbf{W} W the cat id (b) DBOW model (a) DM model

Figure: Doc2Vec with embeddings \mathbf{W} and \mathbf{D}

Distributed representations Learning

- ▶ We trained the DM model (figure 1a) using Gensim [5] on 1047358 posts (PAN 2013, 2014, and 2017) to learn embeddings of size 256.
- ➤ Trained was carried for 20 epochs using a context window of size 8.
- ▶ Some examples for closest representations can be seen in listing 1.

Distributed representations

Examples

```
>>> model.most_similar(
                              >>> model.most_similar(
... 'substantial')
                              ... 'trump')
[('higher', 0.72),
                              [('ivanka', 0.5),
 ('large', 0.70),
                               ('donald', 0.41),
 ('high', 0.69),
                               ('gould', 0.4),
 ('significant', 0.6),
                               ('melania', 0.38).
 ('huge', 0.6),
                               ('selby', 0.38),
 ('reduced', 0.6).
                               ('osullivan', 0.35).
 ('massive', 0.59),
                               ('finalist', 0.34),
 ('increased', 0.58),
                           ('hudson', 0.31),
 ('considerable', 0.57), ('qingyang', 0.31),
                               ('ferguson', 0.31)]
 ('enormous', 0.56)]
```

Listing 1: Similarities between learned word vectors

Classification

- 1. Words are padded to a length of 512, transformed to their distributed representations, and fed to two CNNs:
 - 1.1 128 filters using a kernel size of 4, rectified linear units (ReLUs) for activation, and max-pooled with a factor of 4.
 - 1.2 128 filters using a kernel size of 4, ReLUs for activation, and max-pooled with a factor of 16.
- Author IDs are transformed to their distributed representations and fed to a densely-connected network of 128 ReLUs.
- 3. The two outputs are concatenated and fed to:
 - 3.1 Densely-connected layer of 128 ReLUs.
 - 3.2 Densely-connected layer of 32 ReLUs.
 - 3.3 Softmax panel for classification.

Contents

Introduction

Preprocessing

Classification pipeline

Results and future work

Results

- ▶ Training the architecture for 3 epochs yielded an accuracy of 81.30 % for gender, and 61.18 % for age groups.
- ightharpoonup The accuracy was estimated using 1/3 of the data for validation.
- ▶ Better results than the ones observed at PAN 2016.

Future work

- ▶ We would like to determine why over-fitting began to occur after the 3rd epoch. It might be worthwhile to apply L_1 or L_2 regularization, or more aggressive dropout.
- ▶ Lexical normalization is not perfect: since a dictionary is used, "ur" will always be translated to "your," even though it might sometimes stand for "you are."
- ▶ An obvious improvement is to train the distributed representations on more data, and perhaps lemmatize the texts before processing them.

References I

Bo Han, Paul Cook, and Timothy Baldwin. "Automatically Constructing a Normalisation Dictionary for Microblogs". In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. EMNLP-CoNLL '12. Jeju Island, Korea: Association for Computational Linguistics, 2012, pp. 421–432. URL: http://dl.acm.org/citation.cfm?id=2390948.2391000.

Tibor Kiss and Jan Strunk. "Unsupervised Multilingual Sentence Boundary Detection". In: Comput. Linguist. 32.4 (Dec. 2006), pp. 485–525. ISSN: 0891-2017. DOI: 10.1162/coli.2006.32.4.485. URL: http://dx.doi.org/10.1162/coli.2006.32.4.485.

References II

Quoc Le and Tomas Mikolov. "Distributed Representations of Sentences and Documents". In: *Proceedings of the 31st International Conference on Machine Learning*. Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China, June 2014, pp. 1188–1196. URL:

http://proceedings.mlr.press/v32/le14.html.

Tomas Mikolov et al. "Distributed Representations of Words and Phrases and Their Compositionality". In: Proceedings of the 26th International Conference on Neural Information Processing Systems. NIPS'13. Lake Tahoe, Nevada: Curran Associates Inc., 2013, pp. 3111–3119. URL: http://dl.acm.org/citation.cfm?id=2999792.2999959.

References III

Radim Řehůřek and Petr Sojka. "Software Framework for Topic Modelling with Large Corpora". In: *Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks*. Valletta, Malta: ELRA, May 2010, pp. 45–50. URL: http://is.muni.cz/publication/884893/en.