

# Mini Project - CT2

# **Group Number: CT2 Project Group - 5**

## **Team Members**

- 1. Vinod A
- 2. Ramarajan V
- 3. Francis Alexandre Akshay Rajan

Apply **DBSCAN Clustering** for the **Country Status DataSet**. It contains the following data fields: country, child\_mort, exports, health, imports, income, inflation, life expec, total fer, gdpp

Define the Required Libraries for this problem. (2 marks)

```
In [1]: import pandas as pd
    import seaborn as sns
    import numpy as np
    from matplotlib import pyplot as plt
    from matplotlib import colors as clr
    import warnings
    warnings.filterwarnings('ignore')

    from sklearn.cluster import KMeans
    from sklearn.cluster import DBSCAN
    from sklearn.preprocessing import StandardScaler, MinMaxScaler
    from sklearn.neighbors import NearestNeighbors
    from sklearn.decomposition import PCA
```

Open the CSV file and display the statistical information about the dataset (1 mark)

```
In [2]: df = pd.read_csv("Country-data.csv")
df.describe(include='all')
```

#### Out[2]:

|        | country     | child_mort | exports    | health     | imports    | income        | inflation  | life_expec | total_fer  | gdpp          |
|--------|-------------|------------|------------|------------|------------|---------------|------------|------------|------------|---------------|
| count  | 167         | 167.000000 | 167.000000 | 167.000000 | 167.000000 | 167.000000    | 167.000000 | 167.000000 | 167.000000 | 167.000000    |
| unique | 167         | NaN        | NaN        | NaN        | NaN        | NaN           | NaN        | NaN        | NaN        | NaN           |
| top    | Afghanistan | NaN        | NaN        | NaN        | NaN        | NaN           | NaN        | NaN        | NaN        | NaN           |
| freq   | 1           | NaN        | NaN        | NaN        | NaN        | NaN           | NaN        | NaN        | NaN        | NaN           |
| mean   | NaN         | 38.270060  | 41.108976  | 6.815689   | 46.890215  | 17144.688623  | 7.781832   | 70.555689  | 2.947964   | 12964.155689  |
| std    | NaN         | 40.328931  | 27.412010  | 2.746837   | 24.209589  | 19278.067698  | 10.570704  | 8.893172   | 1.513848   | 18328.704809  |
| min    | NaN         | 2.600000   | 0.109000   | 1.810000   | 0.065900   | 609.000000    | -4.210000  | 32.100000  | 1.150000   | 231.000000    |
| 25%    | NaN         | 8.250000   | 23.800000  | 4.920000   | 30.200000  | 3355.000000   | 1.810000   | 65.300000  | 1.795000   | 1330.000000   |
| 50%    | NaN         | 19.300000  | 35.000000  | 6.320000   | 43.300000  | 9960.000000   | 5.390000   | 73.100000  | 2.410000   | 4660.000000   |
| 75%    | NaN         | 62.100000  | 51.350000  | 8.600000   | 58.750000  | 22800.000000  | 10.750000  | 76.800000  | 3.880000   | 14050.000000  |
| max    | NaN         | 208.000000 | 200.000000 | 17.900000  | 174.000000 | 125000.000000 | 104.000000 | 82.800000  | 7.490000   | 105000.000000 |

```
In [3]: df.drop(columns='country', inplace=True)
```

INFERENCE: As per statistical infromation of the dataframe explains that most of them are normally distributed to each other and defines the SD is good enough for clustering it. But "Country" attribute will not requied as there is no repetation in occurance and not considered as categorical value.

Therefore we are removing "Country" attribute, as its not useful for clustering.

Print the correlation map and find the most related features. (1 mark)

In [4]: plt.figure(figsize=(12,5))
 cor = df.corr()
 sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
 plt.show()



The Top correlated combination of the dataset:

## Out[5]:

|   | 0          | 1         |
|---|------------|-----------|
| 0 | gdpp       | income    |
| 1 | total_fer  | child_mor |
| 2 | life expec | child mor |

INFERENCE: As per Coorelation matrix we can find that the above mentioned 3 combinations were having more than 80%

Plot a graph with the correlated features. (1 mark)

```
In [6]: plt.figure(figsize=(12,5))
         for i, fe in enumerate(corrFeature):
             x, y = df[fe[0]], df[fe[1]]
             plt.subplot(round(len(corrFeature)/4)+1, 4, i+1)
             sns.scatterplot(x, y)
             plt.plot(np.unique(x), np.poly1d(np.polyfit(x, y, 1))
                  (np.unique(x)), color='red')
         plt.tight layout()
         plt.show()
                                                                                           200
             120000
                                                      200
             100000
                                                                                           150
                                                      150
                                                   child_mort
                                                                                         child_mort
              80000
          income
                                                                                           100
                                                      100
              60000
              40000
                                                                                             50
                                                       50
              20000
                                                                                              0
                         25000 50000 75000100000
                                                                                                    40
                                                                                                              60
                                                                                                                        80
                                                                              6
```

INFERENCE: The Scatter plots were used to represent the corelation and how its been corelated with respect to each other

total\_fer

life\_expec

Apply Elbow Method to find optimal clusters. (1 marks)

gdpp

```
In [7]: scaler = StandardScaler()
    df_scaled = scaler.fit_transform(df)
    df_scaled = pd.DataFrame(df_scaled, columns=df.columns)
    df_scaled.head()
```

#### Out[7]:

|   | child_mort | exports   | health    | imports   | income    | inflation | life_expec | total_fer | gdpp      |
|---|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| 0 | 1.291532   | -1.138280 | 0.279088  | -0.082455 | -0.808245 | 0.157336  | -1.619092  | 1.902882  | -0.679180 |
| 1 | -0.538949  | -0.479658 | -0.097016 | 0.070837  | -0.375369 | -0.312347 | 0.647866   | -0.859973 | -0.485623 |
| 2 | -0.272833  | -0.099122 | -0.966073 | -0.641762 | -0.220844 | 0.789274  | 0.670423   | -0.038404 | -0.465376 |
| 3 | 2.007808   | 0.775381  | -1.448071 | -0.165315 | -0.585043 | 1.387054  | -1.179234  | 2.128151  | -0.516268 |
| 4 | -0.695634  | 0.160668  | -0.286894 | 0.497568  | 0.101732  | -0.601749 | 0.704258   | -0.541946 | -0.041817 |

INFERENCE: Before taking a Elbow method or moving into the concept of clustering, we are making the dataset to be scaled with StandardScaler. As this scaling technique scales the values with respect to standard deviation.

```
In [8]: Sum_of_squared_distances = []
K = range(1,10)
for num_clusters in K :
    kmeans = KMeans(n_clusters=num_clusters)
    kmeans.fit(df_scaled)
    Sum_of_squared_distances.append(kmeans.inertia_)
print("Value of k", Sum_of_squared_distances)
```

Value of k [1502.9999999999, 1050.2145582853304, 831.4244352086873, 700.3229986404374, 631.387785996057, 550.712602 4726136, 517.3769743137748, 453.51612965537197, 428.2024400953263]

Plot Elbow curve (1 mark)

```
In [9]: plt.figure(figsize=(12,5))
    plt.plot(K,Sum_of_squared_distances,'bx-')
    plt.xlabel('Values of K')
    plt.ylabel('Sum of squared distances/Inertia')
    plt.title('Elbow Method For Optimal k')
    plt.show()
```

## Elbow Method For Optimal k



INFERENCE: Upon using K-means for calculation the number of clusters in elbow method, it provides the value to K = 3

Apply DBSCAN to find optimal eps and minpts. (2 marks)

```
In [10]: pca = PCA(n_components = 2)
dim_red_data = pca.fit_transform(df_scaled)
```

INFERENCE: Before Forming cluster with DBSCAN, We are using PCA to reduce the dimension to 2 attributes.

```
In [11]:
    plt.figure(figsize=(12,5))
    sns.scatterplot(dim_red_data[:,0], dim_red_data[:,1], s=100)
    plt.title("After PCA implementation in dimensionality reduction to 2 attributes")
    plt.show()
```

After PCA implementation in dimensionality reduction to 2 attributes





```
In [13]: dbscan=DBSCAN(eps=.5, min_samples=7)
    dbscan.fit(dim_red_data)
    df_scaled['DBSCAN_labels']=dbscan.labels_
    df_scaled['DBSCAN_labels'].value_counts()
    df_scaled[df_scaled['DBSCAN_labels'] == -1] = 'Noise'
```

INFERENCE: To find optimal eps and minpts we are using Nearest Neighbors algorithm. As per graph, we can find the eps value is .35 and taking min\_samples as 5 to get 3 clusters

```
In [14]: plt.figure(figsize=(12,5))
    sns.scatterplot(x=dim_red_data[:,0], y=dim_red_data[:,1],hue=df_scaled.iloc[:,-1], palette='bright', s=100)
    plt.title("On applying DBSCAN clustering Technique")
    plt.show()
```

## On applying DBSCAN clustering Technique



## INFERENCE: As per DBSCAN results the scatter plots are plotted to exhibit the clustering

Apply **Fuzzy C Means Clustering** for the Country Status DataSet. It contains the following data fields: country, child\_mort, exports, health, imports, income, inflation, life\_expec, total\_fer, gdpp

Define the Required Libraries for this problem. (2 marks)

```
In [15]: import pandas as pd
   import seaborn as sns
   import numpy as np
   from matplotlib import pyplot as plt
   import warnings
   warnings.filterwarnings('ignore')
   from sklearn.preprocessing import LabelEncoder
   from fcmeans import FCM
```

Open the CSV file and display the statistical information about the dataset (1 mark)

```
In [16]: df = pd.read_csv("Country-data.csv")
    df.describe(include='all')
```

### Out[16]:

|        | country     | child_mort | exports    | health     | imports    | income        | inflation  | life_expec | total_fer  | gdpp          |
|--------|-------------|------------|------------|------------|------------|---------------|------------|------------|------------|---------------|
| count  | 167         | 167.000000 | 167.000000 | 167.000000 | 167.000000 | 167.000000    | 167.000000 | 167.000000 | 167.000000 | 167.000000    |
| unique | 167         | NaN        | NaN        | NaN        | NaN        | NaN           | NaN        | NaN        | NaN        | NaN           |
| top    | Afghanistan | NaN        | NaN        | NaN        | NaN        | NaN           | NaN        | NaN        | NaN        | NaN           |
| freq   | 1           | NaN        | NaN        | NaN        | NaN        | NaN           | NaN        | NaN        | NaN        | NaN           |
| mean   | NaN         | 38.270060  | 41.108976  | 6.815689   | 46.890215  | 17144.688623  | 7.781832   | 70.555689  | 2.947964   | 12964.155689  |
| std    | NaN         | 40.328931  | 27.412010  | 2.746837   | 24.209589  | 19278.067698  | 10.570704  | 8.893172   | 1.513848   | 18328.704809  |
| min    | NaN         | 2.600000   | 0.109000   | 1.810000   | 0.065900   | 609.000000    | -4.210000  | 32.100000  | 1.150000   | 231.000000    |
| 25%    | NaN         | 8.250000   | 23.800000  | 4.920000   | 30.200000  | 3355.000000   | 1.810000   | 65.300000  | 1.795000   | 1330.000000   |
| 50%    | NaN         | 19.300000  | 35.000000  | 6.320000   | 43.300000  | 9960.000000   | 5.390000   | 73.100000  | 2.410000   | 4660.000000   |
| 75%    | NaN         | 62.100000  | 51.350000  | 8.600000   | 58.750000  | 22800.000000  | 10.750000  | 76.800000  | 3.880000   | 14050.000000  |
| max    | NaN         | 208.000000 | 200.000000 | 17.900000  | 174.000000 | 125000.000000 | 104.000000 | 82.800000  | 7.490000   | 105000.000000 |

INFERENCE: As per statistical infromation of the dataframe explains that most of them are normally distributed to each other and defines the SD is good enough for clustering it.

Label encode the country field from the dataset. (1 mark)

```
In [17]: le = LabelEncoder()
df['country'] = le.fit_transform(df['country'])
df.head()
```

## Out[17]:

|   | country | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp  |
|---|---------|------------|---------|--------|---------|--------|-----------|------------|-----------|-------|
| 0 | 0       | 90.2       | 10.0    | 7.58   | 44.9    | 1610   | 9.44      | 56.2       | 5.82      | 553   |
| 1 | 1       | 16.6       | 28.0    | 6.55   | 48.6    | 9930   | 4.49      | 76.3       | 1.65      | 4090  |
| 2 | 2       | 27.3       | 38.4    | 4.17   | 31.4    | 12900  | 16.10     | 76.5       | 2.89      | 4460  |
| 3 | 3       | 119.0      | 62.3    | 2.85   | 42.9    | 5900   | 22.40     | 60.1       | 6.16      | 3530  |
| 4 | 4       | 10.3       | 45.5    | 6.03   | 58.9    | 19100  | 1.44      | 76.8       | 2.13      | 12200 |

INFERENCE: Label encoding is done for Country attribute and convertied them to numerical values

Print the correlation map and find the most related features. (1 mark)

```
In [18]: plt.figure(figsize=(12,5))
    cor = df.corr()
    sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
    plt.show()
```



```
In [19]: arr = cor.to_numpy()
    np.fill_diagonal(arr, 0)
    temp = cor[cor.isin([arr.max()])].stack()
    print(temp.index[0][0],' vs ',temp.index[0][1],' : ', temp.values[0])
```

income vs gdpp : 0.895571433087531

INFERENCE: As per corelation matrix, we can find "income vs gdpp" has the max corelation

Scaling the dataset. (1 mark)

INFERENCE: Before taking a Elbow method or moving into the concept of clustering, we are making the dataset to be scaled with StandardScaler. As this scaling technique scales the values with respect to standard deviation.

Apply Fuzzy C-Means Algorithm. (2 marks)

```
In [22]: # pip install fuzzy-c-means
In [23]: pca = PCA(n_components = 2)
    dim_red_data = pca.fit_transform(df_scaled)
    X = dim_red_data
```

INFERENCE: Before Forming cluster with Fuzzy C means, We are using PCA to reduce the dimension to 2 attributes.

```
In [24]: from fcmeans import FCM
In [25]: fcm = FCM(n_clusters=3)
fcm.fit(X)
```

Merge the predicted label with the dataframe. (2 marks)

Plot the Fuzzy C Means clustered datapoints using scatter plot. (1 mark)

```
In [27]: f, axes = plt.subplots(figsize=(12,5))
    sns.scatterplot(X[:,0], X[:,1], s=100)
    plt.title("Before Clustering")
    plt.tight_layout()
    plt.show()
```





```
In [28]: fcm_centers = fcm.centers
    f, axes = plt.subplots(figsize=(12,5))
    plt.title("On applying Fuzzy C Mean clustering Technique")
    sns.scatterplot(X[:,0], X[:,1], hue=df['fcm_labels'], s=100, palette='bright')
    plt.scatter(fcm_centers[:,0], fcm_centers[:,1], marker="x", s=200, c='maroon')
Out[28]: <matplotlib.collections.PathCollection at 0x7feb188e2850>
```

## On analysis a France C Manage absorbaging Table inves



INFERENCE: As per Fuzzy C means results the scatter plots are plotted to exhibit the clustering