UGR | Metaheurística

Guillermo Gómez Trenado

YIN-YANG-PAIR OPTIMIZATION

PUNNATHANAM, V. KOTECHA, P.

TABLE OF CONTENTS

MOTIVATION Pg. 3

MAIN FEATURES Pg. 4

NAVIGATION MECHANISM Pg. 7

CEC-2013 RESULTS Pg. 10

ROOM FOR IMPROVEMENT Pg. 12

MOTIVATION

- Exploitation Exploration balance
- Same navigation mechanism
- Low complexity

KEY VALUES

- δ Initial radius
- α Transformation speed

MAIN FEATURES

TWO POINTS

RADII

P1 exploitates \longrightarrow $oldsymbol{\delta}$ 1 shrinks $\delta_1 = d_1 - (d_1/lpha)$

P2 explores \longrightarrow **\delta**2 grows $\delta_2 = d_2 - (d_2/lpha)$

α FACTOR

$$\delta_1 = d_1 - (d_1/lpha)$$

$$\delta_2 = d_2 - (d_2/lpha)$$

If fitter they exchange positions and radius

MAIN FEATURES

Fig. 3. Variation of δ_1 and δ_2 with iterations.

KEY VALUES

I - Archive stage interval

MAIN FEATURES

SPLITTING STAGE

Saves in the archive the current solution

Generates 2D new solutions for each point

Selects the fittest

l iterations

ARCHIVE STAGE

Selects the two fittest solutions from the archive (last 21 points)

Every I iterations

Reduces δ

KEY VALUES

P - Splitting probability (0.5)

NAVIGATION MECHANISM

ONE-WAY SPLITTING

Explore the hypersphere in 1 dimension

NP = Matrix 2DxD

$$NP_{j}^{j} = P^{j} + r\delta$$
 and $NP_{j}^{j} = P^{j} - r\delta$ where $i = 1$

$$NP_{D+j}^{j} = P^{j} - r\delta$$
, where $j = 1, 2, 3...D$

D-WAY SPLITTING

Explore the hypersphere in several dimensions

B = Matrix 2DxD

$$NP_k^j = P^j + r\left(\delta/\sqrt{2}\right)$$
 if $B(k,j) = 1$,

$$NP_k^j = P^j - r(\delta/\sqrt{2})$$
 else.

where $k = 1, 2, 3 \dots 2D$ and $j = 1, 2, 3 \dots D$

NAVIGATION MECHANISM

Rastrigin function

Fig. 2. Convergence of YYPO for the Rastrigin function.

NAVIGATION MECHANISM

Rastrigin function

CEC-2013 Results

Performance of YYPO on the 50D test functions.

	Prob. ID (Optima)	Best	Worst	Median	Mean	Std. dev.
Unimodal	CEC1 (-1400)	2.82E – 08	6.57E – 07	1.12E-07	1.45E-07	1.21E-07
	CEC2 (-1300)	1.13E + 06	7.26E + 06	3.69E + 06	3.55E + 06	1.48E + 06
	CEC3 (-1200)	1.21E + 07	2.51E + 09	3.38E + 08	5.43E + 08	6.10E + 08
	CEC4 (-1100)	1.83E + 03	1.25E + 04	4.55E + 03	5.40E + 03	2.63E + 03
	CEC5 (-1000)	6.71E-04	4.43E - 03	3.74E - 03	3.58E - 03	6.95E - 04
Basic multimodal	CEC6 (-900)	4.34E+01	1.41E+02	4.72E+01	6.36E+01	2.80E+01
basic maramodal	CEC7 (-800)	5.75E+01	1.44E + 02	1.04E + 02	1.01E+02	2.07E + 01
	CEC8 (-700)	2.10E+01	2.12E+01	2.11E+01	2.11E+01	2.98E-02
	CEC9 (-600)	2.77E+01	6.14E + 01	4.50E+01	4.50E + 01	7.51E + 00
	CEC10 (-500)	4.17E-06	9.60E - 02	2.96E - 02	3.47E-02	2.13E - 02
	CEC11 (-400)	3.57E-07	4.97E + 00	1.99E + 00	1.78E+00	1.18E+00
	CEC12 (-300)	1.63E + 02	6.08E + 02	3.69E+02	3.76E + 02	1.22E + 02
	CEC13 (-200)	2.53E + 02	6.45E + 02	4.07E + 02	4.28E + 02	8.82E + 01
	CEC14 (-100)	1.59E+00	1.96E+01	1.01E+01	1.02E+01	3.84E + 00
	CEC15 (100)	6.12E + 03	1.07E + 04	8.25E + 03	8.29E + 03	1.02E + 03
	CEC16 (200)	9.67E-01	2.98E + 00	1.79E + 00	1.84E + 00	4.37E - 01
	CEC17 (300)	5.34E + 01	6.26E + 01	5.75E + 01	5.77E + 01	2.17E + 00
	CEC18 (400)	2.03E + 02	4.42E + 02	3.24E + 02	3.22E + 02	6.49E + 01
	CEC19 (500)	1.57E + 00	4.20E + 00	3.16E + 00	3.10E + 00	5.78E-01
	CEC20 (600)	1.93E + 01	2.40E + 01	2.10E + 01	2.12E+01	1.08E + 00
Composition	CEC21 (700)	2.00E+02	1.12E+03	8.36E+02	7.78E+02	3.94E+02
Composition	CEC22 (800)	2.17E+01	2.45E+02	3.21E+01	8.78E+01	8.68E+01
	CEC23 (900)	7.21E+03	1.15E+04	9.34E+03	9.47E+03	1.04E+03
	CEC24 (1000)	2.64E+02	3.83E+02	3.28E+02	3.27E+02	2.47E+01
	CEC25 (1100)	3.23E + 02	4.45E + 02	3.91E+02	3.87E+02	2.74E+01
	CEC26 (1200)	2.00E+02	2.08E + 02	2.00E+02	2.01E+02	1.29E+00
	CEC27 (1300)	1.02E + 03	1.95E+03	1.56E + 03	1.55E+03	2.00E+02
	CEC28 (1400)	4.00E+02	3.71E+03	4.00E+02	8.29E+02	1.09E + 0.3

CEC-2013 Results

Wilcoxon signed rank test results.

YYPO vs.	10D			30D		
	R+	R-	p-Value	R+	R-	p-Value
ABC	235	171	4.66E-01	284	122	6.51E – 02
ALO	400	6	7.26E - 06	390	16	2.06E - 05
DE	361	45	3.21E - 04	319	87	8.25E - 03
GWO	351	55	7.51E - 04	307	99	1.79E - 02
MDS	385	21	3.41E - 05	361	45	3.21E - 04
PS	393	13	1.51E - 05	361	45	3.21E - 04
PSO	388	18	2.52E - 05	315	91	1.08E - 02

YYPO vs.	50D					
	R+	R-	p-Value			
ABC	284	122	6.51E – 02			
ALO	278	128	8.77E - 02			
DE	311	95	1.39E - 02			
GWO	318	88	8.83E - 03			
MDS	359	47	3.82E - 04			
PS	345	61	1.22E - 03			
PSO	324	82	5.86E - 03			

ABC Artificial Bee Colony
ALO Ant-Lion Optimizer
DE Differential Evolution
GWO Grey Wolf Optimizer
MDS Multiobjective Direct Search
PS Pattern Search
PSO Particle Swarm Optimization

ROOM FOR IMPROVEMENT

- Local search almost already implemented
- Dynamic splitting probability [1]

$$P_M = (D/(D+5))^2$$

 $P_U = 1 - P_M$

- Dynamic load balance (P1/P2)
- Several explorer points
- Genetic stage before archive stage

[1] V. Punnathanam and P. Kotecha, "Adaptive Yin-Yang-Pair Optimization on CEC 2016 functions," 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016, pp. 2296-2299.