# Week 6 - Chance

Created September 11, 2023 8:56 PM

Date Empty

Status Empty

Add a

Add a comment...

# 0) Summary of important things

## 0.1) Mutually exclusive vs. Independence

| Term               | Definition                                                    | Example                                                     |
|--------------------|---------------------------------------------------------------|-------------------------------------------------------------|
| Mutually exclusive | The occurrence of Event1 prevents Event2 occurring            | Getting a sum of 12 from 2 dice throws and throwing a 1     |
| Independence       | The occurrence of Event1 does not change the chance of Event2 | Getting a head from a coin toss and throwing a 3 from a die |

## 0.2) Addition rule vs. Multiplication rule

| What                   | When                             | Formula                           | Condition             |
|------------------------|----------------------------------|-----------------------------------|-----------------------|
| Addition Rule          | P(At least 1 of 2 events occurs) | P(Event1) + P(Event2)             | if mutually exclusive |
| Multiplication<br>Rule | P(Both events occur)             | P(Event1) x P(Event2)             | if independent        |
|                        |                                  | P(Event1) x P(Event2 <br>Event 1) | if dependent          |

# 6.1) Chance

## 6.1.1) Prosecutor's fallacy

Prosecutor's fallacy states that:

$$P(A|B) = P(B|A)$$

which is impossible, as it is factual that:

$$P(A|B) \neq P(B|A)$$

### 6.1.2) Definition of chance

Chance (or probability) is the the percentage of time an event is expected to happen, if the same process is repeated in the long term.

## 6.1.3) Properties of chance

- Chances are between 0% (impossible) and 100% (certain)
- The chance of some event happening is 100% minus its complement

$$P(X) = 1 - P(\overline{X})$$

• Randomly drawing from a set of elements means each element has the same chance of being picked.

#### 6.1.4) Conditional probability

Conditional probability is the chance that an event X occurs, given that another event Y has occured.

## 6.1.5) Independence & dependence

### 6.1.5.1) Independence

**Independence:** 2 events are independent if the chance of the 2nd event  $E_2$ , given the 1st event  $E_1$  has occurred, is the same as  $E_2$ .

$$P(E_2|E_1) = P(E_2)$$

- Drawing randomly WITH replacement ensures independence.
- MULTIPLICATION PRINCIPLE (Special case for independence): If 2 events  $E_1$  and  $E_2$  are independent, the chance of both occurring is the product of their unconditional probabilities

$$P(E_1 \text{ and } E_2) = P(E_1) \times P(E_2)$$

#### 6.1.5.2) Dependence

**Dependence:** 2 events are dependent if the chance of the 2nd event  $E_2$ , given the 1st event  $E_1$  has occurred, is **NOT** the same as  $E_2$ .

$$P(E_2|E_1) \neq P(E_2)$$

- Drawing randomly WITHOUT replacement ensures dependence.
- MULTIPLICATION PRINCIPLE: The probability that 2 DEPENDENT events  $E_1$  and  $E_2$  occur is the chance that  $E_1$  occurs multiplied by the chance that  $E_2$  occurs, given that  $E_1$  has occurred.

$$P(E_1 \wedge E_2) = P(E_1) \times P(E_2|E_1)$$

## 6.2) More chance

### 6.2.1) Solving problems by making lists

#### 6.2.1.1) METHOD 1: Writing lists of outcomes

For simple chance problems, a good way to start is by:

- 1. Write a list of all outcomes
- 2. Count which outcomes belong to the event of interest

#### 6.2.1.2) METHOD 2: Summarize in a tree diagram

- 1. Create a tree diagram branching from "Start"
- 2. Keep branching respectively until we get all events of interest

#### **6.2.1.3) METHOD 3: Simulate**

Simulate the problem and record the findings for each trial. (You can use R for this)

Chance simulation in R template:

```
# Template
set.seed(1)
X = sample(<possible outcomes>, <number of trials>, <repetition: TRUE/FALSE>)
```

Example: Simulating coin toss in R

## 6.2.2) Mutually exclusive events

2 events  $E_1$  and  $E_2$  are **mutually exclusive** when the occurrence of one event prevents the other.

**Example:** The event of getting a sum of 12  $(E_1)$  and the event of throwing a  $(E_2)$  are mutually exclusive because  $E_2$  prevents  $E_1$  from happening.

### 6.2.3) Addition rule

If 2 events  $E_1$  and  $E_2$  are mutually exclusive, then the chance of AT LEAST 1 of them occurring



is the sum of the individual chances.

$$P(\text{At least one of } E_1 \text{ or } E_2) = P(E_1) + P(E_2)$$

## 6.3) Binomial formulas

### 6.3.1) Factorial

The number of ways of rearranging n distinct objects in a row is n!

$$n! = n imes (n-1) imes ... imes 2 imes 1$$

To note, 0! is 1.

$$0! = 1$$

Factorial in R:

factorial(6)

OUT:

720

### 6.3.2) Binomial coefficient

If we have n objects in a row, made up of 2 types:

- *x*, and
- $\bullet$  n-x

The number of ways of rearranging the n objects is given by the **binomial coefficient:** 

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

with special case:

$$\binom{n}{0} = 1$$

getting binomial coefficient in R:

choose(n, x)

### 6.3.3) Binomial model

#### **6.3.3.1**) Binary trials

A binary trial is at trial of one of two possibilities: either an event E occurred or not. Therefore we have the following properties in a binary trial for some event E:

- P(E) = p
- $P(\overline{E}) = 1 p$

#### 6.3.3.2) Binomial theorem

If we have fixed n number of independent binary trials for some event E with P(E) = p at every trial, the chance that **EXACTLY** x events occurs is given by:

$$\binom{n}{x} = p^x (1-p)^{n-x}$$

Binomial theorem in R:

dbinom(x, n, p)