Elementarity of Subgroups and Complexity of Theories of Profinite Subgroups of S_{ω} via Tree Presentations

Jason Block

Computable Structure Theory and Interactions

Profinite Groups

A topological group is called profinite if it is isomorphic to the inverse limit of an inverse system of discrete finite groups. Equivalently a topological group is profinite if it is compact, Hausdorff, and totally disconnected.

Examples:

- Finite groups
- Direct products of finite groups
- The p-adic integers \mathbb{Z}_p under addition
- Galois groups

Profinite Groups

A topological group is called profinite if it is isomorphic to the inverse limit of an inverse system of discrete finite groups. Equivalently a topological group is profinite if it is compact, Hausdorff, and totally disconnected.

Examples:

- Finite groups
- Direct products of finite groups
- The *p*-adic integers \mathbb{Z}_p under addition
- Galois groups

In [5], R. Miller investigated the absolute Galois group of \mathbb{Q} (that is, $(\overline{\mathbb{Q}})$) viewed as a subgroup of S_{ω} (the group of permutations of \mathbb{N}).

Approach

- Although S_{ω} is size continuum, both it and its closed subgroups can be presented as the set of paths through a countable tree.
- The subgroups of S_{ω} that can be presented this way with finite branching trees are exactly the profinite ones.
- We use these presentations to find the complexities of the theories of profinite subgroups G of S_{ω} , as well as to find to what degree certain nicely defined countable subgroups of G are elementary subgroups.

Tree Presentations

Definition

Let G be a subgroup of S_{ω} . We define the tree T_G to be the subtree of $\mathbb{N}^{<\omega}$ containing all initial segments of elements of G. That is,

$$T_G := \{ \tau \in \mathbb{N}^{<\omega} : (\exists g \in G, n \in \mathbb{N}) [\tau = g(0)g(1) \cdots g(n)] \}$$

where $m \in \mathbb{N}$ is mapped to g(m) under g. We define the ordering of T_G via initial segments and write $\tau \sqsubset \sigma$ if τ is an initial segment of σ .

Tree Presentations

Definition

Let G be a subgroup of S_{ω} . We define the tree T_G to be the subtree of $\mathbb{N}^{<\omega}$ containing all initial segments of elements of G. That is,

$$T_G := \{ \tau \in \mathbb{N}^{<\omega} : (\exists g \in G, n \in \mathbb{N}) [\tau = g(0)g(1) \cdots g(n)] \}$$

where $m \in \mathbb{N}$ is mapped to g(m) under g. We define the ordering of T_G via initial segments and write $\tau \sqsubset \sigma$ if τ is an initial segment of σ .

Let G be a subgroup of S_{ω} . We define the degree of T_G (deg (T_G)) to be the join of the Turing degrees of

- The domain of T_G under some computable coding of $\mathbb{N}^{<\omega}$ in which \square is decidable; and
- A branching function $Br: T_G \to \mathbb{N} \cup \{\infty\}$ such that $Br(\tau)$ is equal to the number of direct successors of τ in T_G .

Topology

Given a tree $T \subset \mathbb{N}^{<\omega}$, we define [T] to be the set of all paths through T. We endow [T] with the standard product topology in which the basic clopen sets are those of the form $\{f \in \mathbb{N}^{\omega} : \tau \sqsubset f\}$ for some $\tau \in T$.

Topology

Given a tree $T \subset \mathbb{N}^{<\omega}$, we define [T] to be the set of all paths through T. We endow [T] with the standard product topology in which the basic clopen sets are those of the form $\{f \in \mathbb{N}^\omega : \tau \sqsubset f\}$ for some $\tau \in T$.

In order for every path in $[T_G]$ to represent an element of G, we must have that G is a closed subgroup of S_ω .

Profinite Groups and Orbits

Given a subgroup G of S_{ω} and $n \in \mathbb{N}$, we define the orbit of n under G as

$$\operatorname{orb}_{G}(n) := \{g(n) \in \mathbb{N} : g \in G\}.$$

Proposition

Let G be a subgroup of S_{ω} . The following are equivalent:

- (1) G is compact,
- (2) G is closed and all orbits under G are finite,
- (3) G is profinite.

Orbit Independence

Let G be a profinite subgroup of S_{ω} . Let $\{O_{G,n}\}_{n\in\mathbb{N}}$ be an enumeration of the orbits under G (all of which are finite). Define

$$H_n := \{g \upharpoonright O_{G,n} : g \in G\}.$$

Definition

We say that G has orbit independence if it is isomorphic to the Cartesian product of all H_n . That is,

$$G\cong\prod_{n\in\mathbb{N}}H_n.$$

Orbit Independence

Let G be a profinite subgroup of S_{ω} . Let $\{O_{G,n}\}_{n\in\mathbb{N}}$ be an enumeration of the orbits under G (all of which are finite). Define

$$H_n := \{g \upharpoonright O_{G,n} : g \in G\}.$$

Definition

We say that G has orbit independence if it is isomorphic to the Cartesian product of all H_n . That is,

$$G\cong\prod_{n\in\mathbb{N}}H_n.$$

A non-example: $G = \{1_G, (0\,1)(2\,3)\}$ does not have orbit independence. Note that $G \cong C_2$, $H_0 = \{1, (0\,1)\} \cong C_2$, $H_1 = \{1, (2\,3)\} \cong C_2$, and H_n is trivial for all n > 1. Thus $G \ncong \prod_n H_n \cong C_2 \times C_2$.

Finite Approximations

Let G be a profinite subgroup of S_{ω} . Given $g \in G$, define $g_k = g \upharpoonright \bigcup_{n \leq k} O_{G,n}$. Define

$$G_k:=\{g_k:g\in G\}.$$

Finite Approximations

Let G be a profinite subgroup of S_{ω} . Given $g \in G$, define $g_k = g \upharpoonright \bigcup_{n \leq k} O_{G,n}$. Define

$$G_k:=\{g_k:g\in G\}.$$

Note, by defining $\pi_k: G_{k+1} \to G_k$ by $\pi_k(g_{k+1}) = g_k$, we get that G is isomorphic to the inverse limit of $\{G_k, \pi_k\}_{k \in \mathbb{N}}$.

Existential Theory and Entire First Order Theory

Let G be a profinite subgroup of S_{ω} . The only obvious upper bound for the complexity of the existential theory is Σ_1^1 . The only obvious upper bound for the complexity of Th(G) is Σ_{ω}^1 .

Existential Theory and Entire First Order Theory

Let G be a profinite subgroup of S_{ω} . The only obvious upper bound for the complexity of the existential theory is Σ_1^1 . The only obvious upper bound for the complexity of Th(G) is Σ_{ω}^1 .

However, we show that:

- The existential theory is Σ_2^0 relative to $\deg(T_G)$. Additionally, if G has orbit independence then the existential theory is Σ_1^0 relative to $\deg(T_G)$.
- If G has orbit independence, Th(G) is Δ_2^0 relative $\deg(T_G)$.

Sentences

Lemma

Every atomic sentence in the language of groups is true in every group.

Proof: Every such sentence has the form $1^n = 1^m$ with $n, m \in \mathbb{Z}$.

Sentences

Lemma

Every atomic sentence in the language of groups is true in every group.

Proof: Every such sentence has the form $1^n = 1^m$ with $n, m \in \mathbb{Z}$.

Lemma

Let G be a profinite subgroup of S_{ω} with orbit independence. Let α be an existential sentence in the language of groups. We have that $G \models \alpha$ if and only if $G_k \models \alpha$ for some $k \in \mathbb{N}$.

Proof Sketch: Let $\alpha = \exists (\bar{x})\beta(\bar{x})$ with β quantifier free. If $G_k \models \beta(\bar{\gamma})$, then by extending $\bar{\gamma}$ by the identity at all "levels" above k we get a witness to β in $G^{<\omega}$.

Existential Theory With Orbit Independence

Theorem

Let G be a profinite subgroup of S_{ω} with orbit independence. The existential theory of G is Σ_1^0 relative to $\deg(T_G)$.

Proof: Let α be an existential sentence. By the previous lemma, ${\it G} \models \alpha$ if and only if

$$(\exists k)[G_k \models \alpha]$$

which is Σ_1^0 relative to deg(T_G).

Existential Theory With Orbit Independence

Theorem

Let G be a profinite subgroup of S_{ω} with orbit independence. The existential theory of G is Σ_1^0 relative to $\deg(T_G)$.

Proof: Let α be an existential sentence. By the previous lemma, ${\bf G} \models \alpha$ if and only if

$$(\exists k)[G_k \models \alpha]$$

which is Σ_1^0 relative to $\deg(T_G)$.

This theorem is sharp.

Proof of Sharpness

Proposition

There exists a profinite subgroup G of S_{ω} with orbit independence such that T_G is computable and the existential theory of G is Σ^0_1 complete.

Proof Sketch: For all $n \in \mathbb{N}$, define the formula

$$\alpha_n := (\exists x)[x \neq 1 \& x^{p_n} = 1]$$

where $\{p_n\}_{n\in\mathbb{N}}$ is an enumeration of the primes. We build G such that T_G is computable but $G \models \alpha_n$ if and only if $n \in \emptyset'$.

Existential Theory Without Orbit Independence

Theorem

Let G be any profinite subgroup of S_{ω} (not necessarily with orbit independence). The existential theory of G is Σ_2^0 relative to $\deg(T_G)$.

Proof Sketch: Suppose $\alpha = \exists \bar{x}\beta$ with β quantifier free. It turns out that given any $\bar{g} \in G^{<\omega}$, $G \models \beta(\bar{g})$ if and only if $G_k \models \beta(\bar{g}_k)$ for all but finitely many $k \in \mathbb{N}$.

This theorem is sharp.

Proof of Sharpness

Proposition

There exists a profinite subgroup G of S_{ω} (without orbit independence) with T_G computable such that the existential theory of G is Σ_2^0 complete.

Proof Sketch: We build G so that it will contain an element of order p_n if and only if $n \in Fin$ (that is, if Φ_n has finite domain).

Strategy for $p_0 = 2$

We essentially start to build a copy of the 2-adic integers within G. Every time the domain of Φ_0 gets a new element we add another "layer" of the 2-adics to G. When a new layer is added at stage s, any element that had order 2 when restricted to G_s will not be order 2 in G_{s+1} . However, a new order 2 element is added to G_{s+1} .

Feferman-Vaught Corollary

Lemma

If G has orbit independence, then given any first order sentence α in the language of groups, $G \models \alpha$ if and only if $G_k \models \alpha$ for all but finitely many k.

This follows from the Feferman-Vaught Theorem.

Feferman-Vaught Corollary

Lemma

If G has orbit independence, then given any first order sentence α in the language of groups, $G \models \alpha$ if and only if $G_k \models \alpha$ for all but finitely many k.

This follows from the Feferman-Vaught Theorem.

Note, this does NOT always hold if G does not have orbit independence. Counter example: \mathbb{Z}_2 .

Entire First Order Theory W/ Orbit Independence

Theorem

Let G be a profinite subgroup of S_{ω} with orbit independence. The first order theory of G is Δ_2^0 relative to $\deg(T_G)$.

Proof: $G \models \alpha$ iff $(\exists n)(\forall k > n)[G_k \models \alpha]$. Additionally, $G \nvDash \alpha$ iff $(\exists n)(\forall k > n)[G_k \models \neg \alpha]$. Thus, both Th(G) and its complement are Σ_2^0 relative to $\deg(T_G)$.

Entire First Order Theory W/ Orbit Independence

Theorem

Let G be a profinite subgroup of S_{ω} with orbit independence. The first order theory of G is Δ_2^0 relative to $\deg(T_G)$.

Proof: $G \models \alpha$ iff $(\exists n)(\forall k > n)[G_k \models \alpha]$. Additionally, $G \nvDash \alpha$ iff $(\exists n)(\forall k > n)[G_k \models \neg \alpha]$. Thus, both Th(G) and its complement are Σ_2^0 relative to $\deg(T_G)$.

Open Question: How complicated can Th(G) be when G does not have orbit independence?

A countable subgroup of G

Let G be a profinite subgroup of S_{ω} . Define $G_{\{0\}}$ to be the set of all computable elements of G.

A countable subgroup of G

Let G be a profinite subgroup of S_{ω} . Define $G_{\{0\}}$ to be the set of all computable elements of G.

To what extent is $G_{\{0\}}$ an elementary subgroup of G?

What happens if take the elements of G of some higher Turing degree?

Turing Ideals and G_l

A collection I of Turing degrees is called a Turing ideal if

- *I* is downwards closed (under \leq_T); and
- Given $c, d \in I$, we have $c \oplus d \in I$.

We call I a *Scott ideal* if for every $c \in I$ there exists $d \in I$ that is PA relative to c.

Turing Ideals and G_l

A collection I of Turing degrees is called a Turing ideal if

- *I* is downwards closed (under \leq_T); and
- Given $c, d \in I$, we have $c \oplus d \in I$.

We call I a *Scott ideal* if for every $c \in I$ there exists $d \in I$ that is PA relative to c.

Given a subgroup G of S_{ω} and a Turing ideal I with $\deg(T_G) \in I$, we define G_I to be the subgroup of G all of whose elements are of degree in I. That is,

$$G_I = \{g \in G : \deg(g) \in I\}.$$

Turing Ideals and G_l

A collection I of Turing degrees is called a Turing ideal if

- *I* is downwards closed (under \leq_T); and
- Given $c, d \in I$, we have $c \oplus d \in I$.

We call I a *Scott ideal* if for every $c \in I$ there exists $d \in I$ that is PA relative to c.

Given a subgroup G of S_{ω} and a Turing ideal I with $\deg(T_G) \in I$, we define G_I to be the subgroup of G all of whose elements are of degree in I. That is,

$$G_I = \{g \in G : \deg(g) \in I\}.$$

Question: To what degree is G_l an elementary substructure of G?

Elementarity

Let $\mathcal A$ be a substructure of $\mathcal B$ and let Γ be a class of formulas. We say that $\mathcal A$ is a Γ -elementary substructure if for all formulas $\gamma \in \Gamma$ and tuples $\bar{a} \in \mathcal A$,

$$\mathcal{A} \models \gamma(\bar{\mathbf{a}}) \iff \mathcal{B} \models \gamma(\bar{\mathbf{a}}).$$

We express this as

$$\mathcal{A} \preceq_{\Gamma} \mathcal{B}$$
.

If this holds for all first order formulas γ , then we simply say that $\mathcal A$ is an elementary substructure of $\mathcal B$ and write

$$A \leq B$$
.

Definitely Not Always Elementary

Proposition

There exists a profinite subgroup G of S_{ω} such that $G_{\{0\}}$ is not an \exists -elementary subgroup of G.

To prove this, we build a G along with a computable $g \in G$ such that g has a square root in G but no computable square root. Defining $\alpha(x) = (\exists y)[y^2 = x]$, we have $G \models \alpha(g)$ but $G_{\{\mathbf{0}\}} \nvDash \alpha(g)$.

Definitely Not Always Elementary

Proposition

There exists a profinite subgroup G of S_{ω} such that $G_{\{0\}}$ is not an \exists -elementary subgroup of G.

To prove this, we build a G along with a computable $g \in G$ such that g has a square root in G but no computable square root. Defining $\alpha(x) = (\exists y)[y^2 = x]$, we have $G \models \alpha(g)$ but $G_{\{\mathbf{0}\}} \nvDash \alpha(g)$.

Note, the G that we build will NOT have orbit independence and $\{\mathbf{0}\}$ is NOT a Scott ideal.

With Orbit Independence

Theorem

Given a profinite subgroup of G with orbit independence and any Turing ideal I,

$$G_I \leq_\exists G$$
.

If G has orbit independence, then by previous Lemma given any quantifier free $\alpha(x)$, $G \models \alpha(g)$ iff $G_k \models \alpha(g_k)$ for some $k \in \mathbb{N}$. If G has orbit independence, then there is some computable $g' \in G$ extending g_k and we must have $G \models \alpha(g')$. Thus,

$$G \models \exists x \alpha(x) \iff G_I \models \exists x \alpha(x).$$

With a Scott Ideal

Theorem

Given any profinite subgroup G of S_{ω} and a Scott ideal I,

$$G_I \leq_\exists G$$
.

Furthermore if G has orbit independence, then

$$G_I \leq G$$
.

The Key Lemmas

Lemma

Let G be any profinite subgroup of S_{ω} . If α is quantifier free, then $G \models \alpha(g)$ if and only if $G_k \models \alpha(g_k)$ for all but finitely many $k \in \mathbb{N}$.

Lemma

Let G be a profinite subgroup of S_{ω} with orbit independence. If β is ANY first order formula, then $G \models \beta(g)$ if and only if $G_k \models \beta(g_k)$ for all but finitely many $k \in \mathbb{N}$.

Using the Scott Ideals

Suppose G has orbit independence, β is any first order formula, and $G \models \exists x \beta(x)$. Fix a witness g. Must have that for some L

$$k \geq L \implies G_k \models \beta(g_k).$$

Using the Scott Ideals

Suppose G has orbit independence, β is any first order formula, and $G \models \exists x \beta(x)$. Fix a witness g. Must have that for some L

$$k \geq L \implies G_k \models \beta(g_k).$$

We can define a tree T_{β} with root g_L all of whose elements are finite extensions of g_L that still satisfy β . If I is a Scott ideal, there will be an I computable path g' through T_{β} . We will have $G_I \models \beta(g'_k)$. Thus,

$$G \models \exists x \beta(x) \implies G_I \models \exists x \beta(x).$$

Using the Scott Ideals

Suppose G has orbit independence, β is any first order formula, and $G \models \exists x \beta(x)$. Fix a witness g. Must have that for some L

$$k \geq L \implies G_k \models \beta(g_k).$$

We can define a tree T_{β} with root g_L all of whose elements are finite extensions of g_L that still satisfy β . If I is a Scott ideal, there will be an I computable path g' through T_{β} . We will have $G_I \models \beta(g'_k)$. Thus,

$$G \models \exists x \beta(x) \implies G_I \models \exists x \beta(x).$$

Applying induction, we get

$$G_I \leq G$$
.

Summary

Thus, to get that G_l is an elementary subgroup of G it is sufficient to have that l is a Scott ideal and that G has orbit independence.

Summary

Thus, to get that G_l is an elementary subgroup of G it is sufficient to have that l is a Scott ideal and that G has orbit independence.

If G does not have orbit independence and I is not a Scott ideal, then we need not even have $G \prec_{\exists} G$.

Summary

Thus, to get that G_l is an elementary subgroup of G it is sufficient to have that l is a Scott ideal and that G has orbit independence.

If *G* does not have orbit independence and *I* is not a Scott ideal, then we need not even have $G \leq_{\exists} G$.

If G has orbit independence but I is not a Scott ideal, or if G does not have orbit independence but I is a Scott ideal, then $G_I \leq_{\exists} G$. However, must we have $G_I \leq_{\exists} G$? (Open question)

References

- Feferman, S., Vaught R.: The first order properties of products of algebraic systems. Fundamenta Mathematicae **47**(1), 57â103 1959.
- Greenberg, N., Melnikov A., Nies A., Turetsky D.: Effectively Closed Subgroups of the Infinite Symmetric Group. Proceedings of the American Mathematical Society **146**(12), 5421-5435 (2018)
- La Roche, P.: Effective Galois Theory. The Journal of Symbolic Logic **46**(2), 385-392 (1981)
- Metakides, G., Nerode, A.: Effective Content of Field Theory. Annals of Mathematical Logic **17** 289-320, (1979)
- Miller, R.: Computability for the absolute Galois group of Q. To appear, available at arXiv:2307.08935
- Smith, R.: Effective aspects of profinite groups. The Journal of Symbolic Logic **46**(4), 851-863 (1981)