

كران پايين

الگوریتمهای ارائه شده (مثلا ++FM+):

تقريب

نصادفي

الگوریتمهای ارائه شده (مثلا ++ FM+):

ب**اد**فی ت

آيا هر دو لازمند؟

تكنيك براى توليد كران پايين

هدف: نمى تواند حافظه A كم باشد

$$S \ge \log |X|$$
 پس:

كران پايين براى حافظه الگوريتم دقيق قطعى

Theorem 3.1.1. Suppose A is a deterministic streaming algorithm that computes the number of distinct elements exactly. Then A uses at least n bits of memory.

كران پايين براى حافظه الگوريتم دقيق قطعي

Theorem 3.1.1. Suppose A is a deterministic streaming algorithm that computes the number of distinct elements exactly. Then A uses at least n bits of memory.

Enc(x): $x \in \{0,1\}^n$

۱_ یک رشته با اعدادی که اندیسشان در ورودی هست (مرتب)

 Y_{-} رشته را به الگوریتم A بدهیم. Y_{-} خروجی Y_{-} حافظه Y_{-}

كران پايين براى حافظه الگوريتم دقيق قطعى

Theorem 3.1.1. Suppose A is a deterministic streaming algorithm that computes the number of distinct elements exactly. Then A uses at least n bits of memory.

```
Enc(x): x \in \{0,1\}^n = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1
```

Dec(M)

```
\begin{array}{l} s \leftarrow \mathcal{A}.\mathsf{query}() \  \  \, // \  \, \mathsf{support \ size \ of} \  \, x, \  \, i.e. \  \, |\{i: x_i \neq 0\}| \\ x \leftarrow (0,0,\ldots,0) \\ \text{for } i=1\ldots n; \\ \mathcal{A}.\mathsf{update}(i) \  \, // \  \, \mathsf{append} \  \, i \  \, \mathsf{to \ the \ stream} \\ r \leftarrow \mathcal{A}.\mathsf{query}() \  \, // \  \, \mathsf{will \ either \ be \  } s \  \, or \  \, s+1 \\ \text{if } r=s; \  \, // \  \, \mathsf{Encoder \ must \ have \ included} \  \, i, \  \, \mathsf{so \ it \ wasn't \ a \ new \ distinct \ element} \\ x_i \leftarrow 1 \\ s \leftarrow r \\ \mathbf{return \ } x \end{array}
```

الگوريتم قطعي تقريبي _ كران پايين

كدهاى اصلاح خطا

اندازه بلوک $C \subset [q]^l$ کد اصلاح خطا:

Hamming distance: $\Delta(x,y) := |\{i : x_i \neq y_i\}|$

relative Hamming distance : $\delta(x, y) = \Delta(x, y)/1$.

distance of the code : $\min_{c,c' \in C} \Delta(c,c')$

relative distance : $\min_{c,c' \in C} \delta(c,c')$

كدهاى اصلاح خطا

اندازه بلوک $C \subset [q]^l : اصلاح خطا:$ الفبا

Hamming distance: $\Delta(x,y) := |\{i : x_i \neq y_i\}|$

relative Hamming distance : $\delta(x, y) = \Delta(x, y)/1$.

distance of the code : $\min_{c,c' \in C} \Delta(c,c')$

relative distance : $\min_{c,c' \in C} \delta(c,c')$

چرا مهم است؟

 $[q]^l$ تا تا مرکدام با توزیع یکنواخت از ci اتا C:

 $[q]^l$ شامل n تا n هر کدام با توزیع یکنواخت از n

cj و ci تعداد شباهت : $Y_{i,j}$

 $1/q = E[Y_{i,j}]$

 $[q]^l$ تا تا مرکدام با توزیع یکنواخت از n شامل n

cن و و ci تعداد شباهت : $Y_{i,j}$

 $1/q = E[Y_{i,j}]$

 $P[Y_{i,j} > 6l/q] < 2exp(-25/3 \cdot l/q)$

 $[q]^l$ شامل n تا تا هر کدام با توزیع یکنواخت از ci اتا C

 cj و ci تعداد شباهت : $Y_{i,j}$

 $1/q = E[Y_{i,j}]$

$$P[Y_{i,j} > 6l/q] < 2exp(-25/3 \cdot l/q) < \frac{1}{n^2}$$

با انتخاب ا بزرگ

 $[q]^l$ ا تا تا مرکدام با توزیع یکنواخت از n شامل n

 cj و ci تعداد شباهت : $Y_{i,j}$

 $1/q = E[Y_{i,j}]$

$$P[Y_{i,j} > 6l/q] < 2exp(-25/3 \cdot l/q) < \frac{1}{n^2}$$

با انتخاب ا بزرگ

احتمال بد بودن < ١

Corollary 3.1.5. For any integer n > 0 and any integers $\ell, q > 1$ such that $n = q\ell$, there exists a subset $\mathcal{B}_{q,\ell}$ of $\{0,1\}^n$ satisfying the following properties:

- 1. Every $c \in \mathcal{B}_{q,\ell}$ has support size ℓ , i.e. $|\{i : c_i \neq 0\}| = \ell$.
- 2. For $c \neq c' \in \mathcal{B}_{q,\ell}$, $|\{i : c_i = c'_i\}| \leq 6\ell/q$.
- 3. $|\mathcal{B}_{q,\ell}| = \exp(\Omega(\ell/q))$. ci=1

 $P[Y_{i,j} > 6l/q] < 2exp(-25/3 \cdot l/q)$

Corollary 3.1.5. For any integer n > 0 and any integers $\ell, q > 1$ such that $n = q\ell$, there exists a subset $\mathcal{B}_{q,\ell}$ of $\{0,1\}^n$ satisfying the following properties:

- 1. Every $c \in \mathcal{B}_{q,\ell}$ has support size ℓ , i.e. $|\{i : c_i \neq 0\}| = \ell$.
- 2. For $c \neq c' \in \mathcal{B}_{q,\ell}$, $|\{i : c_i = c'_i\}| \leq 6\ell/q$.
- 3. $|\mathcal{B}_{q,\ell}| = \exp(\Omega(\ell/q))$. ci=1

 $P[Y_{i,j} > 6l/q] < 2exp(-25/3 \cdot l/q)$

Enc:
$$B_{q,1} \rightarrow \{0, 1\}S$$

 $q = 100 \text{ and } l = n/q$

$$S \ge log |B_{q,1}| = \Omega(n)$$

Enc:
$$B_{q,1} \to \{0, 1\}^S$$

 $q = 100 \text{ and } l = n/q$
 $S \ge log |B_{q,1}| = \Omega(n)$

$$Enc: x \to \{i \mid x[i]=1 \} \to A \to A$$
حافظه A

Enc:
$$B_{q,1} \rightarrow \{0, 1\}S$$

 $q = 100 \text{ and } l = n/q$

$$S \ge log |B_{q,1}| = \Omega(n)$$

$$Enc: x \rightarrow \{i \mid x[i]=1 \} \rightarrow A \rightarrow A$$
حافظه A

Dec:

```
\begin{array}{l} \textbf{for } c \in \mathcal{B}_{q,t} \colon \\ \qquad \mathcal{A}.\mathsf{init}(M) \text{ // initialize } \mathcal{A}\text{'s memory to } M \\ \textbf{for } i = 1, 2, \dots, n \colon \\ \qquad \textbf{if } c_i = 1 \colon \\ \qquad \qquad \mathcal{A}.\mathsf{update}(i) \\ \textbf{if } \mathcal{A}.\mathsf{query}() \leq 1.9\ell \\ \qquad \qquad \textbf{return } \varepsilon \end{array}
```

Enc:
$$B_{q,1} \rightarrow \{0, 1\}S$$

 $q = 100 \text{ and } l = n/q$

$$S \ge log |B_{q,1}| = \Omega(n)$$

$$Enc: x \to \{i \mid x[i]=1 \} \to A \to A$$
حافظه A

 $\begin{array}{l} \mathbf{for}\ c \in \mathcal{B}_{q,t} \colon \\ \mathcal{A}.\mathsf{init}(M) \ / / \ \mathsf{initialize}\ \mathcal{A} \text{'s memory to}\ M \\ \mathbf{for}\ i = 1, 2, \dots, n \colon \\ \mathbf{if}\ c_i = 1 \colon \\ \mathcal{A}.\mathsf{update}(i) \\ \mathbf{if}\ \mathcal{A}.\mathsf{query}() \leq 1.9\ell \end{array}$

return c

Dec:

وگرنه:

اگر c=x

$$|c \cup x| = |c| + |x| - |c \cap x| > 21 - 61/q = 1.94 \times 1$$

الگوريتم تصادفي دقيق _ كران پايين

Theorem 3.1.7. Suppose A is a randomized streaming algorithm that outputs the exact number of distinct elements with success probability at least 2/3 for the last query in any fixed sequence of stream updates and queries. Then A uses at least c bits of memory for some constant c > 0.

كم كردن احتمال خطا

 10^{-6} احتمال خطا:

حافظه: (O(S)

 $A \rightarrow A'$

احتمال درستی: ۲/۳ حافظه: S

الگوریتم تصادفی A: (r, ورودی) A

الگوريتم تصادفي A: (r, ورودي) A

الگوریتم تصادفی A: (r, ورودی) A

الگوریتم تصادفی A: (r, ورودی) A

 $E Y_X \le n/106$ $X' \circ X$ عداد بیتهای متفاوت $X \circ X$

 $Yx > Yl/q = Yn/q^2$ حالت بد:

 $Y_x > 2n/10^6 : Zx$

$$P(Z_X = 1) < 1/2$$

$$E\sum_{x\in B_{q,l}} Z_x < \frac{1}{2} |B_{q,l}|$$

منبع تصادفی

A(c) الگوریتم تصادفی A: (r) الگوریتم

 $E Y_X \le n/106$

x': تعداد بیتهای متفاوت x و 'X

 $Yx > Yl/q = Yn/q^2$ حالت بد:

 $Y_x > 2n/10^6 : Zx$

$$P(Z_X = 1) < 1/2$$

$$E\sum_{x\in B_{q,l}} Z_x < \frac{1}{2} |B_{q,l}|$$

پس حداقل نیمی از Bq,1 درست پاسخ میدهند. تصادفع

A(color proper) (A(color proper) الگوریتم تصادفی A(color proper)

قطعى سازى الگوريتم تصادفي A: (r, ورودي) A