RAISONNEMENTS ET ENSEMBLES

SOLUTION 1.

1. Il suffit d'établir une table de vérité.

P	Q	non P	(non P) ou Q		
V	V	F	V		
V	F	F	F		
F	V	V	V		
F	F	V	V		

On retrouve la table de vérité de l'implication d'où l'équivalence demandée.

2. D'après la question précédente,

$$(\text{NON } Q \Longrightarrow \text{NON } P) \equiv (\text{NON}(\text{NON } Q) \text{ OU } \text{NON } P) \equiv (Q \text{ OU } \text{NON } P) \equiv (P \Longrightarrow Q)$$

SOLUTION 2.

1. La négation de la proposition s'écrit

 $\exists n \in \mathbb{N}, \ \forall m \in \mathbb{N}, \ m \text{ ne divise pas } n.$

La proposition **1.** est vraie : soit $n \in \mathbb{N}$; posons m = 1. On a bien que 1 divise n.

2. La négation de la proposition s'écrit

 $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, m \text{ ne divise pas } n.$

La proposition 2. est vraie : posons m = 1; soit $n \in \mathbb{N}$. On a bien que 1 divise n.

3. La négation de la proposition s'écrit

$$\exists a, b \in \mathbb{Z}, \ \forall u, v \in \mathbb{Z}, \ au + bv \neq 1.$$

La proposition 3. est fausse : posons a = b = 2; soient $u, v \in \mathbb{Z}$. On a $au + bv = 2(u + v) \neq 1$.

4. La négation de la proposition s'écrit

$$\forall a \in \mathbb{R}, \exists \varepsilon > 0, |a| > \varepsilon.$$

La proposition 4. est vraie : posons a = 0; soit $\varepsilon > 0$. On a bien $|a| \le \varepsilon$.

5. La négation de la proposition s'écrit

$$\exists \varepsilon > 0, \ \forall a \in \mathbb{R}, \ |a| > \varepsilon.$$

La proposition **5.** est vraie : soit $\varepsilon > 0$; posons $a = \varepsilon/2$. On a bien $|a| < \varepsilon$.

6. La négation de la proposition s'écrit

$$\exists M > 0, \forall n_0 \in \mathbb{N}, \exists n \ge n_0, M < 2^n.$$

La proposition **6.** est vraie : soient M > 0 et n_0 un entier strictement plus grand que $\ln(M)/\ln(2)$. Soit $n \ge n_0$. On a bien $2^n \ge M$.

SOLUTION 3.

1. La négation de 𝒜 est

$$\exists x \in]0, +\infty[, \exists y \in]x, +\infty[, \forall z \in]0, +\infty[, (x \ge z \text{ ou } z \ge y)]$$

2. Oui, l'assertion $\mathscr A$ est vraie. Soit $x \in]0, +\infty[$. Soit $y \in]x, +\infty[$. Posons $z = \frac{x+y}{2}$. Puisque x < y on a

$$x = \frac{x+x}{2} < \frac{x+y}{2} = z < \frac{y+y}{2} = y$$

SOLUTION 4.

Il faut bien sûr effectuer une récurrence double. Soit pour tout $n \ge 1$,

$$HR(n): (n-1)! \leq u_n \leq n!$$

- ► HR(1) et HR(2) sont vraies puisque $u_1 = 1$ et $u_2 = 2$.
- ▶ Supposons HR(n) et HR(n+1) vraies pour un certain $n \ge 1$, c'est-à-dire

$$(n-1)! \leq u_n \leq n!$$

et

$$n! \le u_{n+1} \le (n+1)!$$

En sommant membre à membre ces inégalités, on obtient

$$(n-1)! + n! \le u_n + u_{n+1} \le n! + (n+1)!$$

En multipliant par (n+1), on obtient

$$(n-1)!(n+1)+(n+1)! \le u_{n+2} \le (n+1)!+(n+1)!(n+1)$$

D'une part, $(n-1)!(n+1)+(n+1)! \ge (n+1)!$ car $(n-1)!(n+1) \ge 0$. D'autre part

$$(n+1)! + (n+1)!(n+1) = (n+1)!(n+2) = (n+2)!$$

Finalement $(n+1)! \le u_{n+2} \le (n+2)!$ i.e. $\operatorname{HR}(n+2)$ est vraie.

▶ Par récurrence double, HR(n) est vraie pour tout $n \ge 1$.

SOLUTION 5.

Soit, pour tout $n \in \mathbb{N}^*$, HR(n) la proposition suivante

$$1 + 1/\sqrt{2} + \dots + 1/\sqrt{n} < 2\sqrt{n}$$
.

- ► HR(1) est banalement vraie.
- ▶ Prouvons que pour tout $n \ge 1$, HR(n) implique HR(n+1): soit $n \in \mathbb{N}$. Supposons HR(n) vraie, c'est-à-dire

$$1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}.$$

Alors

$$1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} < 2\sqrt{n} + \frac{1}{\sqrt{n+1}}.$$

Or

$$2\sqrt{n} + \frac{1}{\sqrt{n+1}} < 2\sqrt{n+1}$$

car

$$2(\sqrt{n+1}-\sqrt{n}) = \frac{2}{\sqrt{n+1}+\sqrt{n}}$$

et

$$\frac{2}{\sqrt{n+1}+\sqrt{n}} < \frac{2}{\sqrt{n+1}+\sqrt{n+1}} = \frac{1}{\sqrt{n+1}}.$$

HR(n+1) est donc vraie.

▶ D'après le principe de récurrence, $\forall n \in \mathbb{N}^*$,

$$1+1/\sqrt{2}+\cdots+1/\sqrt{n}<2\sqrt{n}.$$

SOLUTION 6.

Soit pour tout $n \in \mathbb{N}$, HR(n) la proposition

$$\forall k \leq n, \quad u_k \geq k.$$

- ► HR(0), HR(1) et HR(2) sont vraies car $u_0 = 1 \ge 0$, $u_1 = 1 \ge 1$ et $u_2 = 2 \ge 2$.
- ▶ Prouvons que pour tout $n \ge 2$, $HR(n) \Rightarrow HR(n+1)$. Soit $n \ge 2$. Supposons HR(n) vraie, c'est-à-dire

$$\forall k \leq n, \quad u_k \geq k.$$

On a alors $u_n \ge n$ et $u_{n-1} \ge n-1$, d'où

$$u_{n+1} = u_n + u_{n-1} \ge n + n - 1 = 2n - 1.$$

Or $2n-1 \ge n+1$ puisque $n \ge 2$. Ainsi $u_{n+1} \ge n+1$ et $\mathrm{HR}(n+1)$ est vraie.

▶ D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, \quad u_n \geqslant n.$$

SOLUTION 7.

On note HR(n) l'hypothèse de récurrence : « Si $E_1, E_2, ..., E_n$ sont n ensembles distincts deux à deux, alors l'un au moins des ensembles ne contient aucun autre.»

La propriété est évidente au rang n = 1.

Supposons $\operatorname{HR}(n)$ pour un certain $n \ge 1$ et montrons $\operatorname{HR}(n+1)$. Soient donc $\operatorname{E}_1, \dots, \operatorname{E}_n, \operatorname{E}_{n+1} n+1$ ensembles distincts deux à deux. A fortiori, $\operatorname{E}_1, \dots, \operatorname{E}_n$ sont distincts deux à deux. Par hypothèse de récurrence, il existe $i \in [\![1,n]\!]$ tel que E_i ne contient aucun des E_j pour $j \in [\![1,n]\!] \setminus \{i\}$. Il y a alors deux cas à étudier.

- ▶ Si E_i ne contient pas E_{n+1} , alors E_i ne contient aucun autre ensemble et le tour est joué.
- ▶ Si E_i contient E_{n+1} , on montre que E_{n+1} ne contient aucun des autres ensemble. En effet, E_{n+1} ne peut pas contenir E_i sinon on aurait $E_i = E_{n+1}$ ce qui est exclu puisque tous les ensembles sont distincts. E_{n+1} ne peut pas non plus contenir un des E_j pour $j \in [1, n] \setminus \{i\}$ sinon E_i contiendrait ce même E_j , ce qui est exclu.

La propriété HR(n) est donc vraie pour tout n par récurrence.

SOLUTION 8.

On raisonne par récurrence forte.

Initialisation Tout d'abord $u_0 = 1 \le 0! = 1$.

Hérédité Supposons qu'il existe $n \in \mathbb{N}$ tel que $u_k \leq k!$ pour tout $k \in [0, n]$. Alors

$$u_{n+1} \le 0! + 1! + \dots + n!$$

Mais par croissance de la factorielle, $k! \le n!$ pour tout $k \in [0, n]$. Ainsi

$$u_{n+1} \le n! + n! + \dots + n! = (n+1)n! = (n+1)!$$

Conclusion Par récurrence forte, $u_n \le n!$ $n \in \mathbb{N}$.

SOLUTION 9.

- 1. On trouve $F_2 = 1$, $F_3 = 2$, $F_4 = 3$ et $F_5 = 3$.
- 2. On a bien $F_5 = 5 \ge 5$ et $F_6 = 8 \ge 6$. Supposons que $F_n \ge n$ et $F_{n+1} \ge n+1$ pour un certain $n \ge 5$. Alors $F_{n+2} \ge 2n+1$. Or $2n+1 \ge n+2$ car $n \ge 5 \ge 1$. Ainsi $F_{n+2} \ge n+2$. Par récurrence double, $F_n \ge n$ pour tout $n \ge 5$.

On peut en déduire que $\lim_{n\to+\infty} F_n = +\infty$.

3. a. On utilise la définition de la suite (F_n) . Soit $n \in \mathbb{N}^*$. On fait apparaître un télescopage.

$$1 + \sum_{k=0}^{n-1} \mathbf{F}_k = 1 + \sum_{k=0}^{n-1} \mathbf{F}_{k+2} - \mathbf{F}_{k+1} = 1 + \mathbf{F}_{n+1} - \mathbf{F}_1 = \mathbf{F}_{n+1}$$

 $car F_1 = 1.$

b. On utilise la définition de la suite (F_n) . Soit $n \in \mathbb{N}^*$. On fait apparaître un télescopage.

$$\sum_{k=0}^{n-1} \mathbf{F}_{2k+1} = \sum_{k=0}^{n-1} \mathbf{F}_{2k+2} - \mathbf{F}_{2k} = \sum_{k=0}^{n-1} \mathbf{F}_{2(k+1)} - \mathbf{F}_{2k} = \mathbf{F}_{2n} - \mathbf{F}_0 = \mathbf{F}_{2n}$$

 $car F_0 = 0.$

c. On utilise la définition de la suite (F_n) . Soit $n \in \mathbb{N}^*$. On fait apparaître un télescopage.

$$\sum_{k=0}^{n-1} \mathbf{F}_{2k} = \sum_{k=1}^{n-1} \mathbf{F}_{2k} = \sum_{k=1}^{n-1} \mathbf{F}_{2k+1} - \mathbf{F}_{2k-1} = \sum_{k=1}^{n-1} \mathbf{F}_{2(k+1)-1} - \mathbf{F}_{2k-1} = \mathbf{F}_{2n-1} - \mathbf{F}_{1} = \mathbf{F}_{2n-1} - \mathbf{F}_{2n-1} = \mathbf{F$$

car $F_1 = 1$.

- **4. a.** On trouve $\alpha = \frac{1+\sqrt{5}}{2}$ et $\beta = \frac{1-\sqrt{5}}{2}$. Les liens coefficients/racines nous apprennent que $\alpha\beta = -1$.
 - **b.** On vérifie que $\frac{1}{\sqrt{5}}(\alpha^0 \beta^0) = 0 = F_0$ et que $\frac{1}{\sqrt{5}}(\alpha^1 \beta^1) = 1 = F_1$. On suppose maintenant que $F_n = \frac{1}{\sqrt{5}}(\alpha^n - \beta^n)$ et $F_{n+1} = \frac{1}{\sqrt{5}}(\alpha^{n+1} - \beta^{n+1})$ pour un certain $n \in \mathbb{N}$. Alors

$$\begin{split} \mathbf{F}_{n+2} &= \mathbf{F}_n + \mathbf{F}_{n+1} \\ &= \frac{1}{\sqrt{5}} \left(\alpha^n - \beta^n \right) + \frac{1}{\sqrt{5}} \left(\alpha^{n+1} - \beta^{n+1} \right) \\ &= \frac{1}{\sqrt{5}} \left(\alpha^n + \alpha^{n+1} - \beta^n - \beta^{n+1} \right) \\ &= \frac{1}{\sqrt{5}} \left[\alpha^n (1 + \alpha) - \beta^n (1 + \beta) \right] \\ &= \frac{1}{\sqrt{5}} \left(\alpha^n \alpha^2 - \beta^n \beta^2 \right) \qquad \text{car } \alpha \text{ et } \beta \text{ sont solutions de l'équation } x^2 = x + 1 \\ &= \frac{1}{\sqrt{5}} \left(\alpha^{n+2} - \beta^{n+2} \right) \end{split}$$

Par récurrence double, $F_n = \frac{1}{\sqrt{5}} (\alpha^n - \beta^n)$ pour tout $n \in \mathbb{N}$.

c. On tient compte du fait que $\beta = -\frac{1}{\alpha}$. D'une part

$$\begin{split} \mathbf{F}_{p+q} \mathbf{F}_r &= \frac{1}{5} \left(\alpha^{p+q} - (-1)^{p+q} \alpha^{-p-q} \right) \left(\alpha^r - (-1)^r \alpha^{-r} \right) \\ &= \frac{1}{5} \left(\alpha^{p+q+r} + (-1)^{p+q+r} \alpha^{-p-q-r} - (-1)^r \alpha^{p+q-r} - (-1)^{p+q} \alpha^{-p-q+r} \right) \end{split}$$

D'autre part,

$$\begin{split} \mathrm{F}_{p}\mathrm{F}_{q+r}-(-1)^{r}\mathrm{F}_{p-r}\mathrm{F}_{q} &= \frac{1}{5} \Big(\alpha^{p}-(-1)^{p}\alpha^{-p}\Big) \Big(\alpha^{q+r}-(-1)^{q+r}\alpha^{-q-r}\Big) \\ &-\frac{(-1)^{r}}{5} \Big(\alpha^{p-r}-(-1)^{p-r}\alpha^{-p+r}\Big) \Big(\alpha^{q}-(-1)^{q}\alpha^{-q}\Big) \\ &= \frac{1}{5} \Big(\alpha^{p+q+r}+(-1)^{p+q+r}\alpha^{-p-q-r}-(-1)^{q+r}\alpha^{p-q-r}-(-1)^{p}\alpha^{-p+q+r}\Big) \\ &-\frac{(-1)^{r}}{5} \Big(\alpha^{p+q-r}+(-1)^{p+q-r}\alpha^{-p-q+r}-(-1)^{q}\alpha^{p-q-r}-(-1)^{p-r}\alpha^{-p+q+r}\Big) \\ &= \frac{1}{5} \Big(\alpha^{p+q+r}+(-1)^{p+q+r}\alpha^{-p-q-r}-(-1)^{r}\alpha^{p+q-r}-(-1)^{p+q}\alpha^{-p-q+r}\Big) \end{split}$$

On en déduit que $F_pF_{q+r}-(-1)^rF_{p-r}F_q=F_{p+q}F_r$.

SOLUTION 10.

Raisonnons par récurrence. Pour $n \in \mathbb{N}^*$, notons $\mathrm{HR}(n)$ la proposition

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k^3} \right) \le 3 - \frac{1}{n}$$

- ▶ HR(1) est vraie car les deux membres sont dans ce cas égaux à 2.
- ▶ Soit $n \in \mathbb{N}^*$. Supposons HR(n) vérifiée, c'est-à-dire

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k^3} \right) \le 3 - \frac{1}{n}$$

En multipliant membre à membre par $1 + \frac{1}{(n+1)^3} \ge 0$, on obtient

$$\prod_{k=1}^{n+1} \left(1 + \frac{1}{k^3} \right) \le \left(3 - \frac{1}{n} \right) \left(1 + \frac{1}{(n+1)^3} \right)$$
$$\left(3 - \frac{1}{n} \right) \left(1 + \frac{1}{(n+1)^3} \right) \le 3 - \frac{1}{n+1}$$

est donc une *condition suffisante* de HR(n + 1). Or,

$$\left(3 - \frac{1}{n}\right) \left(1 + \frac{1}{(n+1)^3}\right) \le 3 - \frac{1}{n+1}$$

$$\Leftrightarrow \frac{(3n-1)(1 + (n+1)^3)}{n(n+1)^3} \le \frac{3n+2}{n+1}$$

$$\Leftrightarrow \qquad (3n-1)(n^3 + 3n^3 + 3n + 2) \le (3n+2)n(n+1)^2$$

$$\Leftrightarrow \qquad 3n^4 + 8n^3 + 6n^2 + 3n - 2 \le 3n^4 + 8n^3 + 7n^2 + 2n$$

$$\Leftrightarrow \qquad 0 \le n^2 - n + 2$$

Le déterminant du trinôme $X^2 - X + 2$ étant strictement négatif, la dernière inégalité est vraie et donc la première également. Par suite, HR(n+1) est vérifiée.

▶ D'après le principe de récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}^*$.

SOLUTION 11.

Notons HR(n): $u_n = 2^{n-1}$. Clairement, $u_1 = 1$ donc HR(1) est vraie. Soit $n \in \mathbb{N}^*$ tel que HR(k) soit vraie pour tout $k \in [1, n]$. Alors

$$u_{n+1} = u_0 + \sum_{k=1}^{n} u_k = 1 + \sum_{k=1}^{n} 2^{k-1} = 1 + \sum_{k=0}^{n-1} 2^k = 1 + \frac{2^n - 1}{2 - 1} = 2^n$$

de sorte que HR(n+1) est vraie. Par récurrence forte, HR(n) est vraie pour tout $n \in \mathbb{N}^*$.

SOLUTION 12.

Raisonnons par contraposition. Supposons $a \neq 0$. Posons $\varepsilon = |a|/2$: on a $\varepsilon > 0$ et $|a| \ge \varepsilon$. Ainsi $\exists \varepsilon > 0$ tel que $|a| \ge \varepsilon$.

SOLUTION 13.

Quitte à permuter les a_i , on peut supposer que

$$a_1 \leq a_2 \leq \ldots \leq a_9$$
.

Prouvons par contraposition que

$$(a_1 + \dots + a_9 = 90) \implies (a_7 + a_8 + a_9 \ge 30).$$

Supposons que $a_7 + a_8 + a_9 < 30$. On a alors

$$a_4 + a_5 + a_6 \le a_7 + a_8 + a_9 < 30$$

et

$$a_1 + a_2 + a_3 \le a_7 + a_8 + a_9 < 30$$
.

Ainsi $a_1 + \cdots + a_9 < 90$ donc $a_1 + \cdots + a_9 \neq 90$.

SOLUTION 14.

- 1. Supposons que n est pair. Alors il existe $k \in \mathbb{Z}$ tel que n = 2k. Alors $n^2 = 4k^2 = 2k'$ avec $k' = 2k^2$. Donc n^2 est pair. Réciproquement supposons que n est impair. Alors il existe $k \in \mathbb{Z}$ tel que n = 2k + 1. Alors $n^2 = 4k^2 + 4k + 1 = 2k' + 1$ avec k' = 2k(k+1). Donc n^2 est impair.
- 2. Supposons par l'absurde que $\sqrt{2} \in \mathbb{Q}$. Alors il existe $(m,n) \in \mathbb{Z} \times \mathbb{Z}^*$ tels que $\sqrt{2} = m/n$. Quitte à simplifier on peut supposer que la fraction m/n est irréductible. On a

(*)
$$2n^2 = m^2$$
.

De cette équation on déduit que m^2 est pair, donc m aussi. Alors il existe $k \in \mathbb{Z}$ tel que m = 2k. Ainsi (*) devient $2n^2 = m^2 = 4k^2$, d'où $n^2 = 2k^2$. Par conséquence n^2 est pair, et donc n est aussi pair. On peut donc simplifier la fraction m/n par 2. Or d'après l'hypothèse la fraction m/n est irréductible, contradiction n/n cela prouve que n/n est irréductible, contradiction n/n est irréductible est irreductible est irreduct

Preuve alternative. Notons $\mathbb{P} = \{2,3,5,7,11,\ldots\}$ l'ensemble de tous les nombres premiers. Tout nombre entier positif possède une factorisation unique en nombres premiers, c'est-à-dire

$$\forall n \in \mathbb{N}^* \exists_1 (\nu_p(n)) \in \mathbb{N}^{(\mathbb{P})} : n = \prod_{p \in \mathbb{P}} p^{\nu_p(n)}.$$

La notation $\mathbb{N}^{(\mathbb{P})}$ désigne l'ensemble des applications de \mathbb{P} dans \mathbb{N} qui sont nulles à partir d'un certain rang. Par exemple, $20 = 2^2 \times 5$ donc $v_2(20) = 2$, $v_5(20) = 1$ et $v_p(20) = 0$ pour tout $p \in \mathbb{P} \setminus \{2, 5\}$.

Maintenant, supposons que $\sqrt{2} \in \mathbb{Q}$. Alors il existe $(m, n) \in \mathbb{Z} \times \mathbb{Z}^*$ tels que $\sqrt{2} = m/n$, autrement dit $2n^2 = m^2$. Alors

$$2\left(\prod_{p\in\mathbb{P}}p^{\nu_p(n)}\right)^2 = \left(\prod_{p\in\mathbb{P}}p^{\nu_p(m)}\right)^2,$$

d'où

$$2\prod_{p\in\mathbb{P}}p^{2\nu_p(n)}=\prod_{p\in\mathbb{P}}p^{2\nu_p(m)}.$$

Par unicité de cette décomposition $2v_2(n) + 1 = 2v_2(m)$, une contradiction. $\frac{1}{2}$

SOLUTION 15.

Raisonnons par l'absurde en supposant $\ln(2)/\ln(3)$ rationnel. Il existe donc deux entiers naturels p et $q \neq 0$ tels que $\ln(2)/\ln(3) = p/q$, ie $q \ln(2) = p \ln(3)$, ie $\ln(2^q) = \ln(3^p)$ d'où $2^q = 3^p$. Puisque $q \geq 1$, 2^q est un nombre pair, ce qui est absurde car 3^p est toujours impair.

SOLUTION 16.

Voici deux preuves possibles (parmi tant d'autres!)

- ▶ Raisonnons par l'absurde en supposant l'existence d'un tel polynôme P. On a alors $\forall x \in \mathbb{R}$, $e^{-x}P(x) = 1$, et puisque $\lim_{x \to +\infty} e^{-x}P(x) = 0$ (l'exponentielle *l'emporte* sur les puissances puissances en $+\infty$, donc également sur les polynômes), on obtient par passage à la limite, 0 = 1. Ce qui est absurde.
- ▶ Raisonnons par l'absurde en supposant l'existence d'un tel polynôme P. On a alors $\forall x \in \mathbb{R}$, $P(x) = e^x$. L'exponentielle ne s'annulant pas, le polynôme P est non nul. Toutes les fonctions en jeu étant dérivables, la dérivation membre à membre de cette égalité aboutit à $\forall x \in \mathbb{R}$, $P'(x) = e^x = P(x)$, ie P = P', ce qui est absurde car P étant non nul, cela implique deg(P) < deg(P).

SOLUTION 17.

Soit f une telle fonction. Pour tout x réel, on a

$$f(-x) = -f(x)$$
 et $f(-x) - 1 = f(x) - 1$,

d'où f(x) = -f(x) et f(x) = 0. Réciproquement, il est clair que la fonction nulle est solution du problème posé.

SOLUTION 18.

▶ *Analyse* : soit f une application de \mathbb{N} dans \mathbb{N} telle que

$$\forall (m,n) \in \mathbb{N}^2$$
, $f(m+n) = f(n) + f(m)$.

On a alors f(0) = f(0+0) = f(0) + f(0) = 2f(0), donc f(0) = 0. Par une récurrence immédiate, on prouve que $\forall n \in \mathbb{N}$, f(n) = nf(1).

► Synthèse: soient $k \in \mathbb{N}$ et f l'application de \mathbb{N} dans \mathbb{N} définie par $\forall n \in \mathbb{N}$, f(n) = kn. Il est immédiat que $\forall (m, n) \in \mathbb{N}^2$, f(m+n) = f(n) + f(m).

SOLUTION 19.

 \blacktriangleright Analyse: supposons que f désigne une solution de l'équation. On en déduit (en fixant y=0) que

$$\forall x \in \mathbb{R}, \quad f(x) + f(0) = 2f(x) + 1,$$

i.e f(x) = f(0) - 1. Ceci prouve que f est nécessairement une fonction constante.

REMARQUE. La partie synthèse va maintenant permettre de déterminer, parmi les fonctions constantes, celles qui sont effectivement solutions. ■

 \triangleright Synthèse: soit f une fonction constante qu'on suppose égale au réel c, i.e

$$\forall x \in \mathbb{R}, \quad f(x) = c.$$

La fonction f est solution de l'équation si et seulement si

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, f(x) + f(y) = 2f(x - y) + 1.$$

i.e c + c = 2c + 1, soit encore 0 = 1. Ceci est absurde ! Il n'y a donc pas de solution constante à l'équation de l'énoncé.

► *Conclusion*: dans la partie analyse on a prouvé que seules les fonctions constantes pouvaient être solutions de l'équation. Dans la partie synthèse, on a vérifié qu'aucune fonction constante ne pouvait être solution.

SOLUTION 20.

On remarque que rechercher x, y tels que x $y \neq 0$ et

$$\alpha x y = x^2 + y^2,$$

revient à trouver les valeurs non nulles de y telles que l'équation

$$X^2 - \alpha vX + v^2 = 0$$

admet une solution non nulle.

► Analyse : soient x, y tels que $x y \neq 0$ et

$$\alpha x y = x^2 + y^2$$
.

Alors le discriminant de l'équation

$$X^2 - \alpha y X + y^2 = 0$$

 $\Delta = (\alpha^2 - 4) v^2$ est positif. Et, puisque $v \neq 0$,

$$\alpha^2 \geqslant 4$$
.

► Synthèse : supposons $\alpha^2 \ge 4$. Soit alors $\gamma = 1$. Alors le discriminant de l'équation

$$X^2 - \alpha X + 1 = 0$$
,

 $\Delta = (\alpha^2 - 4)$ est positif et les deux racines x_1 et x_2 de l'équation sont non nulles puisque $x_1x_2 = 1$. Le couple $(x_1, 1)$ est une solution au problème posé.

► Conclusion : la condition nécessaire et suffisante est $\alpha^2 \ge 4$, ie $|\alpha| \ge 2$.

SOLUTION 21.

► *Analyse* : supposons l'existence de deux nombres réels *a* et *b* tels que

$$\forall n \ge 0$$
, $u_n = a + b2^n$.

Alors $u_0 = 1 = a + b$ et $u_1 = 7 = a + 2b$. Ce système linéaire 2×2 en (a, b) admet une unique solution, le couple (-5, 6).

▶ Synthèse: prouvons par récurrence que pour tout entier naturel n, $u_n = -5 + 6 \times 2^n$. Soit, pour tout $n \in \mathbb{N}$, HR(n) la proposition suivante,

$$\forall k \leq n, \quad u_k = -5 + 6 \times 2^k.$$

- ₩ HR(0) et HR(1) sont banalement vraies.
- Prouvons que pour tout $n \ge 1$, HR(n) implique HR(n+1): soit $n \in \mathbb{N}$, supposons HR(n) vraie, c'est-à-dire

$$\forall k \leq n, \quad u_k = -5 + 6 \times 2^k.$$

Alors

$$u_{n+1} = 3u_n - 2u_{n-1}$$

= $3(-5+6\times2^n) - 2(-5+6\times2^{n-1})$
= $-5+(18-6)\times2^n = -5+6\times2^{n+1}$

HR(n+1) est donc vraie.

D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, \quad u_n = -5 + 6 \times 2^n.$$

SOLUTION 22.

► *Analyse* : supposons l'existence de deux nombres réels α et β tels que $s = \alpha + \beta$ et $p = \alpha\beta$. Alors α et β sont les racines réelles du plolynôme

$$Q(x) = (x - \alpha)(x - \beta) = x^2 - sx + p.$$

Le discriminant de cet équation est donc positif : $s^2 \ge 4p$.

- ► Synthèse : supposons $s^2 \ge 4p$ et posons $\Delta = s^2 4p$. Soient α et β les racines de $x^2 sx + p$, par exemple $\alpha = (s + \sqrt{\Delta})/2$ et $\beta = (s \sqrt{\Delta})/2$. On a bien que $s = \alpha + \beta$ et $p = \alpha\beta$.
- ► Conclusion: s et p sont respectivement la somme et le produit de deux nombres réels si et seulement si $s^2 \ge 4p$.

SOLUTION 23.

ightharpoonup Analyse: Soit f une application de $\mathbb N$ dans $\mathbb N$ telle que

$$\forall (m,n) \in \mathbb{N}^2, f(m+n) = f(n)f(m)$$

On a notamment $f(0) = f(0)^2$ donc $f(0) \in \{0,1\}$. De plus, pour tout $n \in \mathbb{N}$, f(n+1) = f(n)f(1) donc la suite de terme général f(n) est géométrique de raison $k = f(1) \in \mathbb{N}$. Si f(0) = 0, alors f est nulle sur \mathbb{N} et si f(0) = 1 alors $f(n) = k^n$ pour tout $n \in \mathbb{N}$.

▶ *Synthèse* : Soient $k \in \mathbb{N}$ et f l'application de \mathbb{N} dans \mathbb{N} définie par

$$\forall n \in \mathbb{N}, f(n) = k^n$$

Il est immédiat que

$$\forall (m,n) \in \mathbb{N}^2, f(m+n) = f(n)f(m)$$

L'application identiquement nulle vérifie également cette équation fonctionnelle.

► Conclusion : les seules fonctions de N dans N vérifiant

$$\forall (m,n) \in \mathbb{N}^2, \quad f(m+n) = f(n)f(m),$$

sont les fonctions de la forme

$$n \in \mathbb{N} \mapsto f(n) = k^n$$

où $k \in \mathbb{N}$ et la fonction nulle.

SOLUTION 24.

1. On raisonne par équivalences :

$$|x+2| \ge \frac{1-x}{1+x} \iff x+2 \ge \frac{1-x}{1+x} \text{ ou} - (x+2) \ge \frac{1-x}{1+x}$$

$$\iff \frac{(x+2)(1+x) - (1-x)}{1+x} \ge 0 \text{ ou} \frac{(x+2)(1+x) + (1-x)}{1+x} \le 0$$

$$\iff \frac{x^2 + 4x + 1}{1+x} \ge 0 \text{ (1) ou} \frac{x^2 + 2x + 3}{1+x} \le 0 \text{ (2)}$$

Les racines de $x^2 + 4x + 1$ sont $-2 - \sqrt{3}$ et $-2 + \sqrt{3}$. On a le tableau de signes suivant :

x	-∞		$-2-\sqrt{3}$		-1		$-2+\sqrt{3}$		+∞
$x^2 + 4x + 1$		+	0	_		_	0	+	
x + 1		_		_	0	+		+	
$\frac{x^2+4x+1}{1+x}$		_	0	+		_	0	+	

L'ensemble des solutions de (1) est donc $\mathcal{S}_1 = [-2 - \sqrt{3}, -1] \cup [-2 + \sqrt{3}, +\infty[$.

Le trinôme $x^2 + 2x + 3$ est constamment positif; l'ensemble des solutions de (2) est donc $\mathcal{S}_2 =]-\infty, -1[$.

L'ensemble des solutions de l'inéquation initiale est donc $\mathcal{S} = \mathcal{S}_1 \cup \mathcal{S}_2 =]-\infty, -1[\cup [-2+\sqrt{3}, +\infty[$.

2. On raisonne également par équivalences :

L'ensemble des solutions est donc $\left[-2, \frac{-1+\sqrt{5}}{2}\right]$.

SOLUTION 25.

Soit $x \in \mathbb{R}$. Il y a deux cas à considérer, $x \ge 1$ et x < 1.

► Cas $1: x \ge 1$. On a alors

$$x^2 - x + 1 \ge |x - 1| \iff x^2 - x + 1 \ge x - 1.$$

Ce qui est encore équivalent à $x^2-2x+1 \ge -1$, c'est-à-dire $(x-1)^2 \ge -1$, inégalité vérifiée pour tout x réel.

ightharpoonup Cas 2: x < 1. On a alors

$$x^2 - x + 1 \ge |x - 1| \iff x^2 - x + 1 \ge 1 - x$$
.

Ce qui est encore équivalent à $x^2 \ge 0$, inégalité vérifiée pour tout x réel.

► Conclusion : on a prouvé que

$$\forall x \in \mathbb{R}, \quad x^2 - x + 1 \ge |x - 1|.$$

SOLUTION 26.

On a les équivalences suivantes

$$|x+y| = |x| + |y|$$

$$\iff |x+y|^2 = (|x|+|y|)^2$$

$$\iff (x+y)^2 = |x|^2 + 2|x||y| + |y|^2$$

$$\iff x^2 + 2xy + y^2 = x^2 + 2|x||y| + y^2$$

$$\iff xy = |x||y|$$

$$\iff xy \ge 0$$

car les membres de l'égalité sont positifs

SOLUTION 27.

Soient $\alpha, \beta \in \mathbb{R}$. Supposons que $\alpha^2 + \alpha\beta + \beta^2 = 0$. Alors

$$(\alpha + \beta/2)^2 - \beta^2/4 + \beta^2 = 0$$
,

c'est-à-dire $(\alpha + \beta/2)^2 + 3\beta^2/4 = 0$. Ainsi $\alpha + \beta/2 = \beta = 0$ et donc $\alpha = \beta = 0$.

SOLUTION 28.

1. On résout par équivalence.

$$\sqrt{|x-3|} = |x-1|$$

$$\iff |x-3| = (x-1)^2 \text{ car les deux membres sont positifs}$$

$$\iff x-3 = (x-1)^2 \text{ ou } x-3 = -(x-1)^2$$

$$\iff x^2 - 3x + 4 = 0 \text{ ou } x^2 - x - 2 = 0$$

$$\iff x = -1 \text{ ou } x = 2$$

L'ensemble des solutions est donc $\{-1,2\}$.

2.

$$\sqrt{|x-3|} \le x - 1$$

$$\iff \begin{cases} x \ge 1 \\ |x-3| \le (x-1)^2 \end{cases}$$

$$\iff \begin{cases} x \ge 1 \\ -(x-1)^2 \le x - 3 \le (x-1)^2 \end{cases}$$

$$\iff \begin{cases} x \ge 1 \\ x^2 - x - 2 \ge 0 \\ x^2 - 3x + 4 \ge 0 \end{cases}$$

$$\iff \begin{cases} x \ge 1 \\ x \le -1 \text{ ou } x \ge 2 \end{cases}$$

$$\iff x \ge 2$$

L'ensemble des solutions est donc $[2,+\infty[$.

SOLUTION 29.

Remarquons que $xy \le \frac{1}{2}(x^2+y^2) \iff \frac{1}{2}(x^2-2xy+y^2) \ge 0 \iff (x-y)^2 \ge 0$. La dernière inégalité étant toujours vraie, la première l'est également.

SOLUTION 30.

1.

$$\sqrt{|x^2-4|} \leqslant |x-1|$$
 \Leftrightarrow $|x^2-4| \leqslant |x-1|^2$ car les membres de l'inégalité précédente sont positifs
$$\Leftrightarrow |x^2-4| \leqslant (x-1)^2$$
 \Leftrightarrow $|x^2-4| \leqslant (x-1)^4$ car les membres de l'inégalité précédente sont positifs
$$\Leftrightarrow (x^2-4)^2 \leqslant (x-1)^4$$
 \Leftrightarrow $0 \leqslant (x-1)^4 - (x^2-4)^2$ \Leftrightarrow $0 \leqslant [(x-1)^2 + (x^2-4)][(x-1)^2 - (x^2-4)]$ \Leftrightarrow $0 \leqslant [(x-1)^2 + (x^2-4)][(x-1)^2 - (x^2-4)]$ \Leftrightarrow $0 \leqslant (2x^2 - 2x - 3)(5 - 2x)$

Or les racines du trinôme $2x^2-2x-3$ sont $\frac{1-\sqrt{7}}{2}$ et $\frac{1+\sqrt{7}}{2}$. Un tableau de signes permet de conclure que l'ensemble des solutions est $\left]-\infty,\frac{1-\sqrt{7}}{2}\right]\cup\left[\frac{1+\sqrt{7}}{2},\frac{5}{2}\right[$.

2.

$$\frac{x+1}{x-1} \leqslant \frac{x-2}{x+2}$$

$$\iff \frac{(x+1)(x+2) - (x-1)(x-2)}{(x-1)(x+2)} \leqslant 0$$

$$\iff \frac{6x}{(x-1)(x+2)} \leqslant 0$$

Un tableau de signes permet de conclure que l'ensemble des solutions est $]-\infty, -2[\cup[0, 1[$.

3. Remarquons tout d'abord que les membres de l'inégalité ne sont définis que pour x > -1 ou x < -2. On suppose donc que x vérifie ces inégalités par la suite.

$$\sqrt{\frac{x+1}{x+2}} \leqslant \sqrt{\frac{x+2}{x+1}}$$

$$\Leftrightarrow \frac{x+1}{x+2} \leqslant \frac{x+2}{x+1} \quad \text{car les membres de l'inégalité précédente sont positifs}$$

$$\Leftrightarrow 0 \leqslant \frac{x+2}{x+1} - \frac{x+1}{x+2}$$

$$\Leftrightarrow 0 \leqslant \frac{(x+2)^2 - (x+1)^2}{(x+1)(x+2)}$$

$$\Leftrightarrow 0 \leqslant \frac{2x+3}{(x+1)(x+2)}$$

$$\Leftrightarrow x \geqslant -\frac{3}{2} \quad \text{car } (x+1)(x+2) > 0$$

L'ensemble des solutions est donc $]-1,+\infty[$.

SOLUTION 31.

L'inégalité est définie lorsque l'expression sous la racine carrée est positive, c'est-à-dire pour $x \in [0,2]$. Si x < 1 l'inégalité est manifestement fausse. Considérons donc le cas où $x \ge 1$. Puisque dans ce cas les deux côtés de l'inégalité sont des nombres positifs on peut « prendre le carré» de l'inégalité.

$$\sqrt{2x - x^2} < x - 1 \iff 2x - x^2 < (x - 1)^2$$

$$\iff 2x - x^2 < x^2 - 2x + 1$$

$$\iff 0 < 2x^2 - 4x + 1$$

$$\iff x < \frac{4 - \sqrt{8}}{4} \text{ ou } x > \frac{4 + \sqrt{8}}{4}$$

$$\stackrel{x > 1}{\iff} x > 1 + \frac{\sqrt{2}}{2}.$$

L'ensemble des solutions est donc $]1 + \frac{\sqrt{2}}{2}, 2].$

SOLUTION 32.

Soit, pour tout $n \in \mathbb{N}^*$, HR(n) la proposition suivante

$$\frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times 2n} \le \frac{1}{\sqrt{3n+1}}.$$

- ► HR(1), HR(2) et HR(3) sont banalement vraies.
- ▶ Prouvons que pour tout $n \ge 1$, HR(n) implique HR(n+1). soit $n \in \mathbb{N}^*$; supposons HR(n) vraie, c'est-à-dire

$$\frac{1\times 3\times \cdots \times (2n-1)}{2\times 4\times \cdots \times 2n} \leqslant \frac{1}{\sqrt{3n+1}}.$$
 On a
$$\frac{1\times 3\times \cdots \times (2n+1)}{2\times 4\times \cdots \times 2n+2} = \frac{1\times 3\times \cdots \times (2n-1)}{2\times 4\times \cdots \times 2n} \times \frac{2n+1}{2n+2},$$
 donc
$$\frac{1\times 3\times \cdots \times (2n+1)}{2\times 4\times \cdots \times 2n+2} \leqslant \frac{2n+1}{2(n+1)\sqrt{3n+1}}.$$

Or,

$$\frac{2n+1}{2(n+1)\sqrt{3n+1}} \le \frac{1}{\sqrt{3n+4}}$$

est équivalent à

$$\frac{(2n+1)^2}{4(n+1)^2(3n+1)} \le \frac{1}{3n+4},$$

qui est aussi équivalent à

$$(2n+1)^2(3n+4) \le 4(n+1)^2(3n+1)$$

et encore à

$$12n^3 + 28n^2 + 19n + 4 \le 12n^3 + 28n^2 + 20n + 1$$

qui est finalement équivalent à $n \ge 3$, HR(n+1) est donc vraie.

▶ D'après le principe de récurrence, $\forall n \in \mathbb{N}^*$

$$\frac{1\times 3\times \cdots \times (2n-1)}{2\times 4\times \cdots \times 2n} \leqslant \frac{1}{\sqrt{3n+1}}.$$

SOLUTION 33.

Soit, pour tout $n \ge 2$, HR(n) la proposition suivante

$$\forall a \in]0,1[, 1-na < (1-a)^n < \frac{1}{1+na}.$$

► HR(2) est vraie car

$$(1-a)^2 = 1-2a+a^2 > 1-2a$$

et

$$(1-a)^2(1+2a)-1=a^2(2a-3)<0$$

lorsque $a \in]0, 1[$.

▶ Prouvons que pour tout $n \ge 1$, HR(n) implique HR(n+1): soit $n \in \mathbb{N}$; supposons HR(n) vraie, c'est-à-dire $\forall a \in]0,1[$, $\forall n \ge 2$

$$1 - na < (1 - a)^n < \frac{1}{1 + na}.$$

Soit alors $a \in [0, 1[$. On a

$$(1-a)^{n+1} > (1-na)(1-a),$$

donc

$$(1-a)^{n+1} > 1-(n+1)a+na^2 > 1-(n+1)a$$
.

De plus

$$(1-a)^{n+1} = (1-a)(1-a)^n < \frac{1-a}{1+na}$$

Or,

$$\frac{1-a}{1+na} < \frac{1}{1+(n+1)a}$$

est équivalent à

$$1-a+(n+1)a-(n+1)a^2 < 1+na$$

c'est-à-dire à -(n+1)a < 0 qui est banalement vérifiée. HR(n+1) est donc vraie.

► D'après le principe de récurrence,

$$\forall a \in]0,1[, \forall n \ge 2, 1-na < (1-a)^n < \frac{1}{1+na}.$$

SOLUTION 34.

L'inégalité est une conséquence immédiate de

$$(\sqrt{b} - \sqrt{a})^2 \ge 0.$$

SOLUTION 35.

Soient a et b dans \mathbb{R}_+^* .

1. Après mise au même dénominateur, l'inégalité est équivalente à

$$\frac{(a+b)^2}{ab} \geqslant 4,$$

comme ab > 0, ceci équivaut à

$$(a+b)^2 - 4ab \ge 0.$$

Or cette dernière est clairement puisque

$$(a+b)^2-4ab=(a-b)^2 \ge 0.$$

2. On a, pour tous x et y positifs

$$(\sqrt{x} - \sqrt{y})^2 \ge 0$$

c'est-à-dire

$$x + y \ge 2\sqrt{xy}$$
.

Ainsi

$$a+b \ge 2\sqrt{ab}$$
, $b+c \ge 2\sqrt{bc}$ et $c+a \ge 2\sqrt{ca}$.

On en déduit que

$$(a+b)(b+c)(c+a) \ge 8\sqrt{abbcca} = 8abc.$$

3. Après mise au même dénominateur, l'inégalité est équivalente à

$$\frac{a^2 - 2\sqrt{b}a + b}{a} = \frac{(a - \sqrt{b})^2}{a} \geqslant 0,$$

inégalité clairement vérifiée.

SOLUTION 36.

- 1. On trouve x = 2 ou -8.
- 2. $\mathcal{S} = [-8, 5]$.
- 3. $\mathcal{S} =]-\infty, -8[\cup]5, +\infty[$.
- 4. L'équation équivaut à $x^2-4=\pm(2x-5)$, ie x=1 ou $x=-1\pm\sqrt{10}$.
- 5. $\mathcal{S} = [-8, 5]$.
- **6.** $\mathcal{S} = [\frac{2}{3}, 6].$
- 7. $\mathcal{S} =]-\infty, -4[\cup [5, +\infty[$.

Remarque. Tous ces résultats s'obtiennent après avoir dressé un tableau de signes. ■

SOLUTION 37.

En développant le membre de droite, on trouve que l'inégalité est équivalente à

$$|xy-1| \le |x-1| + |y-1| + |x-1||y-1|$$
.

On remarque alors que

$$xy-1=(x-1)(y-1)+x-1+y-1$$
,

et en appliquant l'inégalité triangulaire

$$|xy-1| \le |(x-1)(y-1)| + |x-1| + |y-1|,$$

d'où le résultat.

SOLUTION 38.

lacktriangleq Plaçons-nous sur l'intervalle $\left]-\sqrt{3},\sqrt{3}\right[$. L'équation est alors équivalente à

$$3-x^2>2$$
,

c'est-à-dire

$$x^2 < 1$$
,

ie $x \in]-1,1[$.

▶ Plaçons-nous sur $]-\infty,-\sqrt{3}[\,\cup\,]\sqrt{3},+\infty[$. L'équation est alors équivalente à

$$x^2 - 3 > 2$$

c'est-à-dire

$$x^2 > 5$$
,

ie
$$x \in]-\infty, -\sqrt{5}[\cup]\sqrt{5}, +\infty[.$$

▶ L'ensemble des solutions est donc

$$]-1,1[\,\cup\,]-\infty,-\sqrt{5}[\,\cup\,]\sqrt{5},+\infty[\,.$$

SOLUTION 39.

Puisque $0 \le x \le y$,

$$0 \le x^2 \le x y$$
,

mais aussi

$$x y \leq y^2$$
,

ďoù

$$0 \le x^2 \le x \, y \le y^2,$$

et donc

$$0 \le x \le \sqrt{x \, y} \le y.$$

SOLUTION 40.

1. Puisque les deux membres sont positifs, l'inégalité est équivalente à

$$\sqrt{a+b}^2 \le (\sqrt{a} + \sqrt{b})^2,$$

c'est-à-dire

$$a+b \le a+2\sqrt{a}\sqrt{b}+b$$
,

ce qui équivaut à $2\sqrt{a}\sqrt{b} \ge 0$. Puisque cette dernière inégalité est banalement vraie, l'inégalité initiale l'est également.

2. Puisque les deux membres de l'inégalité sont invariants par permutation des réels a et b, on peut toujours supposer que $a \le b$, quitte à permuter les deux nombres. On a d'après la première question appliquée à $a \ge 0$ et $b - a \ge 0$,

$$\sqrt{b} = \sqrt{a+b-a} \le \sqrt{a} + \sqrt{b-a}$$

et donc $\sqrt{b} - \sqrt{a} \le \sqrt{b-a} = \sqrt{|a-b|}$. De plus, on a par croissance de la racine carrée sur \mathbb{R}_+ ,

$$\sqrt{a} - \sqrt{b} \le 0 \le \sqrt{|b - a|}$$
.

Ainsi
$$|\sqrt{a} - \sqrt{b}| \le \sqrt{|b - a|}$$
.

SOLUTION 41.

On se donne $\lambda \in [0,1]$ et on raisonne par équivalence.

$$\sqrt{a_{\lambda}} + \sqrt{b_{\lambda}} \geqslant \sqrt{a} + \sqrt{b}$$

$$\Leftrightarrow \qquad \left(\sqrt{a_{\lambda}} + \sqrt{b_{\lambda}}\right)^{2} \geqslant \left(\sqrt{a} + \sqrt{b}\right)^{2} \qquad \text{car les membres de l'inégalité précédente sont positifs}$$

$$\Leftrightarrow \qquad a_{\lambda} + b_{\lambda} + 2\sqrt{a_{\lambda}b_{\lambda}} \geqslant a + b + 2\sqrt{ab}$$

$$\Leftrightarrow \qquad \sqrt{a_{\lambda}b_{\lambda}} \geqslant \sqrt{ab}$$

$$\Leftrightarrow \qquad a_{\lambda}b_{\lambda} \geqslant ab \qquad \text{par croissance des fonctions carrée et racine carrée}$$

$$\Leftrightarrow \qquad \lambda^{2}(2ab - a^{2} - b^{2}) + \lambda(a^{2} + b^{2} - 2ab) \geqslant 0 \qquad \text{après simplification}$$

$$\Leftrightarrow \qquad (a - b)^{2}\lambda(1 - \lambda) \geqslant 0$$

La dernière inégalité est vraie puisque $\lambda \in [0,1]$. Par équivalence, l'inégalité de départ est également vraie.

SOLUTION 42.

Prouvons par exemple que A = B par double inclusion.

On a $B \subset A \cup B = A \cap C \subset A$. De même, $A \subset A \cup C = B \cap C \subset B$. L'égalité B = C se démontre de la même manière.

SOLUTION 43.

Montrons l'égalité des deux ensembles. Comme

$$(A \cup B) \cap (B \cup C) = B \cup (A \cap C)$$

on a

$$Y = [B \cup (A \cap C)] \cap (C \cup A)$$

$$= [B \cap (C \cup A)] \cup [(A \cap C) \cap (C \cup A)]$$

$$= (B \cap C) \cup (B \cap A) \cup (A \cap C) = X$$

SOLUTION 44.

► Supposons que A = B. On a alors banalement

$$A \cap B = A \cup B = A = B$$
.

▶ *Réciproquement*, supposons que $A \cup B = A \cap B$. Montrons que A = B par double inclusion. On a

$$A \subset A \cup B = A \cap B \subset B$$

et puisque A et B jouent des rôles symétriques, on a également $B \subset A$.

SOLUTION 45.

Puisque pour tout $n \in \mathbb{N}^*$,

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

on a $\mathcal{F} \subset \mathcal{E}$. Cette inclusion est *stricte* car $1 = 1 - \frac{1}{1} + \frac{1}{1} \in \mathcal{E}$ mais $1 \notin \mathcal{F}$.

SOLUTION 46.

- 1. Notons A, B, C, D les points de coordonnées respectives (1,0), (0,1), (-1,0), (0,-1). Les droites (AB), (CD), (AC), (BD) ont pour équations respectives x+y=1, x+y=-1, x-y=1, x-y=1. On en déduit que A_1 est la portion du plan strictement comprise entre les droites (AB) et (CD) et que A_2 est la portion du plan strictement comprise entre les droites (AC) et (BD).
 - En se plaçant succesivement sur les quatre quadrants $\mathbb{R}_+ \times \mathbb{R}_+$, $\mathbb{R}_+ \times \mathbb{R}_-$, $\mathbb{R}_- \times \mathbb{R}_+$, $\mathbb{R}_- \times \mathbb{R}_-$, on montre que A_3 est la réunion des triangles OAB, OAD, OCA, OCD autrement dit le carré ABCD.
- 2. La question précédente montre que $A_1 \cap A_2 = A_3$, ce qui équivaut bien à l'équivalence demandée.

SOLUTION 47.

On a $A \subset A \cup B = B \cap C \subset B \subset A \cup B = B \cap C \subset C$.

SOLUTION 48.

Supposons $D = A \times B$ où A et B sont deux parties de \mathbb{R} . Comme $(1,0) \in D$, $1 \in A$. De la même façon, $(0,1) \in D$ donc $1 \in B$. Par conséquent, $(1,1) \in D$, ce qui est faux.

SOLUTION 49.

Il y a toujours deux modes de raisonnement possibles : soit en raisonnant sur les éléments, soit directement sur les ensembles. La seconde méthode est généralement plus élégante et plus rapide.

1. On suppose $A \cap B = A \cap C$ et $A \cup B = A \cup C$.

Première méthode Soit $x \in B$. Alors $x \in A \cup B = A \cup C$. Si $x \notin A$, alors $x \in C$. Si $x \in A$, alors $x \in A \cap B = A \cap C$. Donc $x \in C$. Dans les deux cas, $x \in C$. On en déduit que $B \subset C$. Les rôles de B et C étant symétriques, on a également $C \subset B$. D'où B = C.

Deuxième méthode On a $B = (B \cap A) \cup (B \cap \overline{A})$. D'une part, $B \cap A = C \cap A$. D'autre part,

$$B \cap \overline{A} = (A \cup B) \setminus A = (A \cup C) \setminus A = C \cap \overline{A}$$

Ainsi $B = (C \cap A) \cup (C \cap \overline{A}) = C$.

2. Première méthode Soit $x \in (A \setminus B) \cup (A \setminus C)$. Si $x \in A \setminus B$, alors $x \in A$ et $x \notin B$. A fortiori, $x \notin B \cap C$. Donc $x \in A \setminus (B \cap C)$. De même, si $x \in A \setminus C$, $x \in A \setminus (B \cap C)$. On en déduit que $(A \setminus B) \cup (A \setminus C) \subset A \setminus (B \cap C)$.

Soit $x \in A \setminus (B \cap C)$. Alors $x \in A$ et $x \notin B \cap C$. Si $x \notin B$, alors $x \in A \setminus B$. Si $x \in B$, alors $x \notin C$ donc $x \in A \setminus C$. Ainsi $x \in (A \setminus B) \cup (A \setminus C)$. On en déduit que $A \setminus (B \cap C) \subset (A \setminus B) \cup (A \setminus C)$.

Par double inclusion, $(A \setminus B) \cup (A \setminus C) = A \setminus (B \cap C)$.

Deuxième méthode Beaucoup plus rapidement :

$$(A \setminus B) \cup (A \setminus C) = (A \cap \overline{B}) \cup (A \cap \overline{C}) = A \cap (\overline{B} \cup \overline{C}) = A \cap (\overline{B \cap C}) = A \setminus (B \cap C)$$

SOLUTION 50.

1.
$$\mathbb{Q} = \left\{ x \in \mathbb{R}, \, \exists (p,q) \in \mathbb{Z} \times \mathbb{N}^*, \, x = \frac{p}{q} \right\} = \left\{ \frac{p}{q}, \, (p,q) \in \mathbb{Z} \times \mathbb{N}^* \right\}$$

2.
$$2\mathbb{Z} + 1 = \{ n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n = 2k + 1 \} = \{ 2k + 1, k \in \mathbb{Z} \}$$

3.
$$i\mathbb{R}=\left\{z\in\mathbb{C},\ \exists b\in\mathbb{R},\ z=i\,b\right\}=\left\{i\,b,\ b\in\mathbb{R}\right\}=\left\{z\in\mathbb{C},\ \mathrm{Re}(z)=0\right\}$$

4. $\left\{ f \in \mathbb{R}^{\mathbb{R}}, \, \forall x \in \mathbb{R}, \, f(x) = f(-x) \right\}$

SOLUTION 51.

1.
$$\{f \in \mathbb{R}^{\mathbb{R}}, \forall x \in \mathbb{R}, f(x+T) = f(x)\}$$

2.
$$\{ f \in \mathbb{R}^{\mathbb{R}}, \exists T \in \mathbb{R}_{+}^{*}, \forall x \in \mathbb{R}, f(x+T) = f(x) \}$$

3.
$$\left\{ f \in \mathbb{R}^{\mathbb{R}}, \, \exists (a,b) \in \mathbb{R}^2, \, \forall x \in \mathbb{R}, \, f(x) = ax + b \right\}$$

SOLUTION 52.

Notons $A = (X \cup Z) \cap (Y \cup \overline{Z})$ et $B = (X \cap \overline{Z}) \cup (Y \cap Z)$.

Première méthode : en utilisant trois fois la distributivité de ∩ sur ∪, on obtient l'égalité $A = (X \cap Y) \cup (Z \cap Y) \cup (X \cap \overline{Z})$, c'est-à-dire : $A = (X \cap Y) \cup B$. Ainsi $A = B \iff X \cap Y \subset B$.

Prouvons donc l'inclusion $X \cap Y \subset B$.

Si $x \in X \cap Y$, on a deux cas :

▶ soit $x \in Z$, et alors $x \in Y \cap Z$ (puisque $x \in Y$), donc $x \in B$ (puisque $Y \cap Z \subset B$).

▶ soit $x \in \overline{Z}$, et alors $x \in X \cap \overline{Z}$ (puisque $x \in X$), donc $x \in B$ (puisque $X \cap \overline{Z} \subset B$).

 $\label{eq:decomposition} \textit{Deuxième méthode}: \text{avec les fonctions indicatrices. Le calcul de } \mathbb{1}_B \text{ est le plus simple}: \text{puisque } (X \cap \overline{Z}) \cap (Y \cap Z) = \emptyset, \text{ on a } \mathbb{1}_B = \mathbb{1}_X \mathbb{1}_{\overline{Z}} + \mathbb{1}_Y \mathbb{1}_Z.$ Pour calculer $\mathbb{1}_A$ on développe en gardant $\mathbb{1}_{\overline{Z}}$ sous cette forme (sans la remplacer par $1 - \mathbb{1}_Z$), et on utilise que $\mathbb{1}_Z \mathbb{1}_{\overline{Z}} = 0$ puisque $Z \cap \overline{Z} = \emptyset$. Il reste au final $\mathbb{1}_A = \mathbb{1}_X \mathbb{1}_{\overline{Z}} + \mathbb{1}_Y \mathbb{1}_Z$, on a donc bien $\mathbb{1}_A = \mathbb{1}_B$, et donc A = B.