Packet 5: Linear Regression

Chap 7.6 More Regression

Confidence intervals for α and β :

We see that the variances of $\hat{\alpha}$ and $\hat{\beta}$ depend on the unknown error variance σ^2 . Given σ^2 , under the normality assumption, we have

$$\hat{\alpha} \sim N(\alpha, \frac{\sigma^2}{n})$$

$$\hat{\beta} \sim N(\beta, \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2})$$

Replace the unknown σ^2 with $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$ (MLE).

Therefore a $(1-a) \times 100\%$ CI for α is

$$\left[\hat{\alpha}-t_{\frac{a}{2},n-2}\sqrt{\frac{\hat{\sigma}^2}{(n-2)}},\hat{\alpha}+t_{\frac{a}{2},n-2}\sqrt{\frac{\hat{\sigma}^2}{(n-2)}}\right].$$

Similarly, a $(1-a) \times 100\%$ CI for β is

$$\left[\hat{\beta} - t_{\frac{a}{2}, n-2} \sqrt{\frac{n\hat{\sigma}^2}{(n-2)\sum_{i=1}^n (x_i - \bar{x})^2}}, \hat{\beta} + t_{\frac{a}{2}, n-2} \sqrt{\frac{n\hat{\sigma}^2}{(n-2)\sum_{i=1}^n (x_i - \bar{x})^2}}\right].$$

These results allow us to construct confidence intervals for α and β , and to carry out hypothesis tests using t-tests, e.g.,

$$H_0: \beta = 0$$
 v.s. $H_1:$ Otherwise.

Gauss-Markov Theorem: It turns out that under the current assumptions, the least square estimators $\hat{\alpha}$ and $\hat{\beta}$ can be proved to be the

Best Linear Unbiased Estimators (BLUEs) for α and β .

In other words, the least square estimators are the ones with the smallest variance among all unbiased estimators under the current assumptions.

Confidence interval for $E(Y_i|x_i)$: We are interested in knowing the expected value of the response for a given value of the predictor.

Prediction interval for a new observation Y_{n+1} : We are interested in knowing the possible value of a new observation Y_{n+1} for a given value of the predictor.

It covers a new data point y_{n+1} with probability 1-a.