TP Réseaux Multimédia

Téléphonie sur IP avec le protocole SIP

NOM et PRENOM : BONNET Ludivine NOM et PRENOM : GUARDIA Quentin

Objectif: installer, configurer et analyser le fonctionnement d'un système de téléphonie sur IPv4 compatible avec le protocole SIP (Session Initiation Protocol) et couplant Téléphonie, Vidéoconference et messagerie éléctronique.

- Répondre aux questions et reportez vos réponses sur ce document. Les captures d'écran sont appréciées pour illustrer/valider vos réponses. Convertir votre document en PDF si possible avant envoi par émail : master2srs.dir@gmail.com en précisant dans le sujet du mail : « M1 Cyber – TP3 ToIP ».
- Date limite de remise de votre rapport par email : 21 avril 17h00
- Pour répondre aux questions suivantes veuillez installer les logiciels fournis et utiliser la documentation associée. Aidez vous si besoin d'Internet.
- Partie 1 : Téléphonie sur IP avec le protocole SIP en mode de communication via un serveur téléphonique (SIP proxy) et authentification des clients
- 10. **install** the 3CX SIP proxy server. **Create** three (3) user accounts (BOB (100), ALICE (101) and PAUL (102)) in the SIP server administration console to authenticate each SIP client during the calling process. https://www.3cx.fr

- 11. **Configure** your first SIP softphone clients to create a profile using BOB account to log on to your SIP proxy server. **Configure** your second SIP 3CX VoIP softphone to create another profile using ALICE account to log on to the SIP proxy server of your student mate. You may use a laptop or your mobile/Tablet devices to setup your lab.
 - Beware: we may need to update your hosts file on server and client systems
 - Beware: use PCMA or PCMU audio codec in your VoIP clients.
 - Beware : use only numbers (no letters or special characters) for the password
 - Beware: desactivate or reconfigure your windows firewall to open the voip tcp/udp ports.

Using Wireshark, answers the following questions:

 Capture, display and insert in this document the SIP sequence when the terminal is registrering at the server (user authentification and registration procedures).

S	ip					
	sip sipfrag		Source	Destination	Protocol	Length Info
	Sipriag	5134	192.168.137.101	192.168.137.101	SIP	596 Request: REGISTER sip:192.168.137.101:5060 (1 binding)
	4 3.64	6924	192.168.137.101	192.168.137.101	SIP	565 Status: 407 Proxy Authentication Required
	5 3.75	5234	192.168.137.101	192.168.137.101	SIP	812 Request: REGISTER sip:192.168.137.101:5060 (1 binding)
	146 3.85	6873	192.168.137.101	192.168.137.101	SIP	486 Status: 200 OK (1 binding)
	147 3.96	5212	192.168.137.101	192.168.137.101	SIP	640 Request: SUBSCRIBE sip:100@192.168.137.101:5060;transport=UDP
	148 4.06	6862	192.168.137.101	192.168.137.101	SIP	566 Status: 407 Proxy Authentication Required
	149 4.17	5455	192.168.137.101	192.168.137.101	SIP	874 Request: SUBSCRIBE sip:100@192.168.137.101:5060;transport=UDP
	150 4.27	6848	192.168.137.101	192.168.137.101	SIP	439 Status: 489 Event Package Not Supported

Are the UserID and password transmitted in cleartext between your terminal and the server (yes/no)
 ? If not, explain how it does ?

No, we can only see the UserID which is same as extension number, but password is encrypted. We can't find it in cleartext.

What is the server port number?

Port 5060 is used

```
> Internet Protocol Version 4, Src: 192.168.137.101, Dst: 37.171.169.38
> User Datagram Protocol, Src Port: 64815, Dst Port: 5060

> Session Initiation Protocol (REGISTER)
> Request-Line: REGISTER sip:37.171.169.38:5060 SIP/2.0

> Message Header
> Via: SIP/2.0/UDP 192.168.137.101:64815:branch=z9hG4bK-d8754z-3d62
```

– What is the SIP method used to register to the server?

Client send first a "REGISTER" request, with important data like server address, its own IP, extension number, connection time, protocol (UDP)... Then the server returns a 407 Authentication required so the client send his credentials.

```
/ Session Initiation Protocol (REGISTER)
  > Request-Line: REGISTER sip:37.171.169.38:5060 SIP/2.0

✓ Message Header

    Via: SIP/2.0/UDP 192.168.137.101:64815; branch=z9hG4bK-d8754z-3d62424bd0437302-1---d8754z-; rport
       Max-Forwards: 70
    ✓ Contact: <sip:101@37.173.92.71:50557;transport=UDP;rinstance=428366dbe9b286a7>
       > Contact URI: sip:101@37.173.92.71:50557;transport=UDP;rinstance=428366dbe9b286a7
    > To: "101"<sip:101@37.171.169.38:5060>
     > From: "101"<sip:101@37.171.169.38:5060>;tag=1972f017
       Call-ID: NjNlYTQ2MTQyZTBiMGE5ZjU3ZWYzYTk2NTBhOWEyZDc.
       [Generated Call-ID: NjNlYTQ2MTQyZTBiMGE5ZjU3ZWYzYTk2NTBhOWEyZDc.]

✓ CSeq: 1 REGISTER

         Sequence Number: 1
         Method: REGISTER
       Expires: 120
       Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REGISTER, SUBSCRIBE, NOTIFY, REFER, INFO, MESSAGE
       Supported: replaces
       User-Agent: 3CXPhone 6.0.20943.0
       Content-Length: 0
```

– What is the SIP code number used to register?

We can't find code number in the REGISTER request.

– What is the SIP code number used by the server to confirm your registration?

Code "200" is returned by server to tell everything has been successful, like for HTTP protocol.

11 **Initiate** a call between 2 SIP Softphones (example BOB -> ALICE) through your SIP server using an extension number (example "100"). Using Wireshark, **capture** the sequence of SIP messages between the 2 terminals and the server from the beginning to the end of your voip session.

	Etat	Extension	Statuts utilisateurs	Files d'attente	Nom
•	Enregistré (inoccupé)	100	Disponible	Appel	BOB
	Enregistré (inoccupé)	101	Disponible	Appel	ALICE

 Using Wireshark options, display and insert in this document, the flow chart of the SIP signalling messages exchanged between the two terminals from Registration to End call. Use advanced wireshark options. Look at the

si	sip							
٥.		Time	Source	Destination	Protocol	Length	Info	
	7	3.370624	192.168.137.101	192.168.137.101	SIP/SDP	1252	Request: INVITE sip:101@192.168.137.101:5060	
	267	3.479680	192.168.137.101	192.168.137.101	SIP	339	Status: 100 Trying	
	373	3.836975	192.168.137.101	192.168.137.101	SIP	435	Status: 180 Ringing	
	585	8.245267	192.168.137.101	192.168.137.101	SIP/SDP	809	Status: 200 OK	
	586	8.354027	192.168.137.101	192.168.137.101	SIP	698	Request: ACK sip:101@192.168.137.101:5060	
	1414	13.007213	192.168.137.101	192.168.137.101	SIP	698	Request: BYE sip:101@192.168.137.101:5060	
	1535	13.115828	192.168.137.101	192.168.137.101	SIP	427	Status: 200 OK	

Are the source and destination port numbers used by the clients identical to the ones used with the direct voice call procedure (Partie 1)?

No, they are not the same.

Port used in Part 1:

1414 13.007213	192.168.137.101	192.168.137.101	SIP	698 Request: BYE s
Null/Loopback Internet Protocol	Version 4, Src: 192.7 Stocol, Src Port: 62779	168.137.101, Dst: 192.1	•	bits) on interface \De

- > Request-Line: BYE sip:101@192.168.137.101:5060 SIP/2.0
- ✓ Message Header
 - Via: SIP/2.0/UDP 192.168.137.101:62779; branch=z9hG4bK-d8754z-9a073d4bd54ca55f-1---d8

Ports used during call:

/58 11./046/3	127.0.0.1	127.0.0.1	ICP	44 53					
759 11.704776	127.0.0.1	127.0.0.1	TCP	52 53					
Null/Loopback									
Internet Protocol	Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1								
Transmission Control Protocol, Src Port: 53373, Dst Port: 5482, Seq: 1, Ack: 9,									
Source Port: 53	373								
Destination Por	t: 5482								

Are the voice IP packets passing through the SIP server or directly between the 2 clients?

Voice IP packets are communicated directly between both clients.

What is the role of the SIP server during this test?

The SIP server is used to manage sessions and allow connexion between two phones.

Les parties 2, 3, 4, et 5 ci-dessous vous permettront d'implémenter et tester des fonctionnalités CTI (couplage téléphonie et informatique) :

Partie 2: Call transfert and Call redirection

12. BOB (100), ALICE (101) and PAUL (102) are logged on to your SIP server. Establish a voice call between BOB and ALICE, and after ALICE hangs-up, she **Transfers** the active call to PAUL.

```
Destination
                                                   Protocol
                                                             Length Info
192.168.137.101
                         192.168.137.174
                                                   SIP/SDP
                                                             1060 Request: INVITE sip:101@192.168.137.174:59083;rinstance=5ed004e40b
                                                                464 Status: 180 Ringing |
192.168.137.174
                          192.168.137.101
                                                   SIP
                                                    SIP/SDP
                                                                996 Status: 200 OK
192.168.137.174
                         192.168.137.101
                                                                502 Request: ACK sip:101@192.168.137.174:59083;rinstance=5ed004e40b2f4
192.168.137.101
                         192.168.137.174
                                                   SIP
                                                   SIP/SDP
192.168.137.174
                         192.168.137.101
                                                              1063 Request: INVITE sip:100@192.168.137.101:5060, in-dialog |
                                                   STP
                                                              362 Status: 100 Trying |
1014 Status: 200 OK |
192,168,137,101
                         192,168,137,174
                                                   SIP/SDP
192.168.137.101
                         192.168.137.174
                         192.168.137.101
                                                                496 Request: ACK sip:100@192.168.137.101:5060
192.168.137.174
                                                   SIP
192.168.137.174
                         192.168.137.101
                                                   SIP
                                                                587 Request: REFER sip:100@192.168.137.101:5060, in-dialog |
                                                                458 Status: 202 Accepted
192.168.137.101
                         192.168.137.174
                                                    SIP
                                                                613 Request: NOTIFY sip:101@192.168.137.174:59083;rinstance=5ed004e40b
653 Request: INVITE sip:102@192.168.137.78:59654;rinstance=2b163319c4b
653 Request: INVITE sip:102@192.168.137.78:43974;rinstance=9048adf5f50
192.168.137.101
                         192.168.137.174
                                                   SIP/si...
192.168.137.101
                         192.168.137.78
                                                   SIP
192.168.137.101
                         192.168.137.78
                                                   SIP
192.168.137.78
                          192.168.137.101
                                                   SIP
                                                                347 Status: 100 Trying |
192.168.137.174
                         192.168.137.101
                                                   SIP
                                                                459 Status: 200 OK
                                                                575 Status: 180 Ringing | 653 Request: INVITE sip:102@192.168.137.78:43974;rinstance=9048adf5f50 653 Request: INVITE sip:102@192.168.137.78:43974;rinstance=9048adf5f50
192.168.137.78
                         192.168.137.101
                                                   SIP
                                                   SIP
192,168,137,101
                         192.168.137.78
                         192.168.137.78
192.168.137.101
                                                   SIP
192.168.137.101
                         192.168.137.78
                                                   SIP
                                                                653 Request: INVITE sip:102@192.168.137.78:43974;rinstance=9048adf5f50
192.168.137.78
192.168.137.101
                         192.168.137.101
192.168.137.174
                                                   SIP/SDP
                                                              1038 Status: 200 OK | 622 Request: NOTIFY sip:101@192.168.137.174:59083;rinstance=5ed004e40b
                                                   SIP/si...
192.168.137.174
                         192.168.137.101
                                                   SIP
                                                                459 Status: 200 OK |
                                                                536 Request: BYE sip:100@192.168.137.101:5060 |
798 Request: ACK sip:102@192.168.137.78:59654;rinstance=2b163319c4b7a2
                                                    SIP
192.168.137.174
                         192.168.137.101
192.168.137.101
                         192.168.137.78
                                                   SIP/SDP
192.168.137.101
                         192.168.137.174
                                                   STP
                                                                437 Status: 200 OK | 653 Request: INVITE sip:102@192.168.137.78:43974;rinstance=9048adf5f50
                         192.168.137.78
192.168.137.101
                                                   SIP
192.168.137.78
                         192.168.137.101
                                                                566 Request: BYE sip:100@192.168.137.101:5060
```

– What is the SIP message/method used to do this call transfer?

During the call, ALICE sends a request REFER to the server. Then the server requests INVITE to PAUL and tell ALICE the REFER is OK (200). Then PAUL is Trying (100) to call so ALICE receives a SIP NOTIFY. After that, PAUL and ALICE both send OK (200) to the server to tell they're ready. So the server transmits an ACK to PAUL and BYE to ALICE. ALICE answers OK (200). Finally, the call between PAUL and BOB is launched.

What is the SIP code used ?

Server sends "202 Accepted" to ALICE to notify her that the refer has been accepted, PAUL sends "100 Trying" and "180 Ringing" to the server to initiate the second call and PAUL and ALICE send "200 OK" to tell they are ready.

Below there is a diagram showing SIP packets sent from the first call to the end of the second call.

- 13. Modify the SIP server and the ALICE profile, to automatically redirect an incoming call to ALICE to PAUL when ALICE is not answering after 10 secondes ringing.
- capture the server configuration screen for setting up this functionality. Insert this picture in this document.

Partie 3: Voice Messaging and Voice Mail

14. **modify** the SIP server and ALICE profile to redirect an inbound call to the voice messaging system if ALICE is not responding after 10 seconds.

capture a picture of your screen configuration and insert it in this document.

Capture the SIP message/method sequence of this scenario and insert it in this document.

Time	Source	Destination	Protocol	Length	Info
2.868468	192.168.137.101	192.168.137.174	SIP/SDP	1060	Request: INVITE sip:101@192.168.137.174:64050; rins
2.988822	192.168.137.174	192.168.137.101	SIP	464	Status: 180 Ringing
12.893336	192.168.137.101	192.168.137.174	SIP	515	Request: CANCEL sip:101@192.168.137.174:64050;rins
13.012160	192.168.137.174	192.168.137.101	SIP	459	Status: 200 OK
13.012160	192.168.137.174	192.168.137.101	SIP	406	Status: 487 Request Terminated
13.013179	192.168.137.101	192.168.137.174	SIP	420	Request: ACK sip:101@192.168.137.174:64050;rinstan

What is the SIP message and code number used by the server to indicate that ALICE is not available?

The SIP message from ALICE is a CANCEL request, where BOB answer with a 200 OK and 487 Request Terminated packets.

- What is the phone number to dial to access to the voice messages recorded in the Server?
 This is 999 (and 99 if we had only 2 digits extensions). We have then to enter the PIN written in extension's profile in the server.
- With wireshark, identify the network protocols that are used to access and listen to this voice messages? Do you use RTSP/RTP/RTCP (yes/no)?

Based on Wireshark, only RTP is used. We couldn't find RTSP or RTCP packet.

	Time	Source	Destination	Protocol	Length Info
2197	53.223780	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13873, Time=
2198	53.231681	192.168.137.174	192.168.137.101	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x3D6C, Seq=20253, Time=
2199	53.238613	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13874, Time=
2200	53.251740	192.168.137.174	192.168.137.101	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x3D6C, Seq=20254, Time=
2201	53.266687	192.168.137.174	192.168.137.101	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x3D6C, Seq=20255, Time=
2202	53.272917	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13875, Time=
2203	53.279460	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13876, Time=
2204	53.286679	192.168.137.174	192.168.137.101	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x3D6C, Seq=20256, Time=
2205	53.306200	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13877, Time=
2206	53.306554	192.168.137.174	192.168.137.101	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x3D6C, Seq=20257, Time=
2207	53.318307	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13878, Time=
2208	53.331623	192.168.137.174	192.168.137.101	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x3D6C, Seq=20258, Time=
2209	53.337477	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13879, Time=
2210	53.346562	192.168.137.174	192.168.137.101	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x3D6C, Seq=20259, Time=
2211	53.363453	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13880, Time=
2212	53.371582	192.168.137.174	192.168.137.101	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x3D6C, Seq=20260, Time=
2213	53.380570	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13881, Time=
2214	53.386578	192.168.137.174	192.168.137.101	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x3D6C, Seq=20261, Time=
2215	53.403029	192.168.137.101	192.168.137.174	RTP	214 PT=ITU-T G.711 PCMU, SSRC=0x2213, Seq=13882, Time=

15. Install and configure an Email Server and configure it with 4 accounts (ADMIN, BOB, ALICE & PAUL)

In the VOIP Server, **Configure** the ALICE profile to automatically receive an email notification with the attached voice message using an external SMTP server (your webmail or your university email account)

We used kerio mailserver:

 capture a screen picture of your email message with the attached voice mail. Insert this picture in this document.

– What is the audio format of this voice message ?

The audio file is a .wav file.

What is the email protocol to send this message to the client (POP3, IMAP4, SMTP) ?

The protocol SMTP is used a shown below:

Partie 4: Interactive Voice Assistant

16. Modify ALICE profile to activate an Interactive Voice Assistant when an incoming call is not answered after 10 sec. Record a "Welcome voice message" in audio WAVE format that propose the following interactive scenario to the caller:

Please dial #1: to transfer your call to BOB

Please dial #2: to transfer your call to the voice messaging

Please dial #3: to repeat listen this message again

 capture a screen picture of your email message with the attached voice mail. Insert this picture in this document.

Partie 5: VOIP and VideoConferencing with 3CX clients and server

17 Configure the 3CX VOIP clients to use Video-Conferencing without any security options.

- What is the video codec type used ? What is the video resolution (pixels) ?

The H.263 ffdshow codec is used, with a resolution of 176*144 pixels.

What is the audio codec type used?

PCMA audio codec is used.

How many sockets (TCP and UDP ports) at the client side are used for this videoconference?
 Ports from 40 000 to 40 049 are used during videoconference, looking at the preferences window and Wireshark

Partie 6: VOIP and Security with 3CX

18. VOIP vulnerabilities :

- search on the internet about the different vulnerabilities and threats on TOIP services. List these on a table below.

Man-In-The-Middle and replay

Denial of Service

Hijacking and theft data which can cost lots of fees when hacker use them to do expansive acts

Intrusion on the organism, to put viruses and trojan

Internet Bound Traffic: packets can be sniffed

Spoofing: a hacker can act with society's properties to ask credentials to customers

Call tampering: the hacker send lots of datas to affect clarity of call

Eavesdropping (ex:VOMIT,...)

Spams (ex:SPIT,...)

Gateway, Firewall, Application, Phones can be also victims of vulnerabilities and so on...

- initiate a voice call (without security using PCMA or PCMU codec) and capture the voice packets with wireshark. Record the voice packet into a file with .wav file extension. Play this file with your media player to listen to the conversation.

Frame 14: 54 bytes on wire (432 bits). 54 bytes captured (432 bits) on interface \Device\NPF {B7389593-8BI

We want now to secure the TOIP communications by configuring both the VOIP clients and the server to establish a secured (encrypted) authentication between the clients and the server AND a secured (encrypted) voice call between the two VOIP client.

Configure the 3CX Server with secure SIP (SIPS) using "SimpleCA" to generate an X.509 SSL certificate for this server. Use the instructions presented in the "security user guide".

Sécurité

wDqYD

Q1ggTHRk

wgzQ1hQ

wIDIw.

OaWNv

EJARYM

7az

CqYDVQQL

Sélectionnez l'interface

Activer le SIP sécurisé

Désactiver le SIP sécurisé

Using Wireshark, answer the following questions.

19. VoIP signalling security:

Explain How the SIP messages are secured between clients and Server ? and between Client and Client ?

Between clients and server, SIPS is used to secure SIP. It's a SIP version using TSL/SSL. Between two clients, SRTP is used to ensure media exchange. On the same way, it's RTP with data encryption. We explain in the next answers how it works.

What is the transport protocol used (TCP/UDP) with SIP security ? Explain Why, you don't have the same protocole than the non-secured SIP call ?

TLSv1 protocol is used. This is a protocol only used for secured exchange, a special handshake is done at the beginning. It's not the case for a non-secured communication, where this protocol is not asked. We could also have used a SSL tunnel.

Explain what is SIPS (SIP over SSL)

SIPS gives more security during a client/server exchange than stndard SIP. First, client and server check each other certificate, then they exchange key, and to finish they choose the cipher mode. After that, the SIP/RTP exchanges are fully encrypted, using the keys and the cipher mode.

What is the port number of SIPS ?

SIPS requires port 5061 instead of 5060

20. VoIP data security:

Are the default voice/RTP packets encrypted (yes/no)?

No, as we saw before, RTP packets are not encrypted by default and we can listen to the call using Wireshark

- what is the encryption algorithm used to secure voice data?

AES in CBC mode has been used (cf screen below)

Explain what is Secure RTP (SRTP). Find the IETF RFC number for SRTP.

RFC 3711 explains what Secure Real-Time Transfer Protocol is. This is a protocol based on RTP, with more security strength, like message authentication, confidentiality or protection against replay.

– What is the transport protocol used (TCP/UDP) with SIP security?

We can see TCP packets on Wireshark. It must be the SRTP data

– How the SRTP secret key is exchanged between the two systems?

Key management protocol allows secret key to be known by both systems. Actually, one single master key is exchanged, then keys are derived from this master key on both sides.

Insert the pictures of the captured packets with Wireshark to justify your answers.

	Time	Source	Destination	Protocol	Length	Info
43	6.259049	192.168.137.101	192.168.137.101	TLSv1	144	Client Hello
44	6.259102	192.168.137.101	192.168.137.101	TCP	44	5061 → 53850 [ACK] Seq=1 Ack=101 Win=525568 Len=0
45	6.260432	192.168.137.101	192.168.137.101	TLSv1	915	Server Hello, Certificate, Server Hello Done
46	6.260506	192.168.137.101	192.168.137.101	TCP	44	53850 → 5061 [ACK] Seq=101 Ack=872 Win=524544 Len=0
47	6.263255	192.168.137.101	192.168.137.101	TLSv1	242	Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
48	6.263319	192.168.137.101	192.168.137.101	TCP	44	5061 → 53850 [ACK] Seq=872 Ack=299 Win=525312 Len=0
49	6.267948	192.168.137.101	192.168.137.101	TLSv1	103	Change Cipher Spec, Encrypted Handshake Message
50	6.268013	192.168.137.101	192.168.137.101	TCP	44	53850 → 5061 [ACK] Seq=299 Ack=931 Win=524544 Len=0
51	6.268433	192.168.137.101	192.168.137.101	TLSv1	710	Application Data, Application Data
52	6 268472	192 168 137 181	192 168 137 101	TCD	- 44	5061 - 53850 [ACV] Sec-031 Ack-065 Win-524544 Len-0

Version: TLS 1.0 (0x0301)

Length: 74

Handshake Protocol: Server Hello (2)

Handshake Type: Server Hello (2)

Length: 70

Version: TLS 1.0 (0x0301)

> Random: 607b1849c9627f1541d83831550b66c85f691023383e37dcf0153d36c6f0eb90

Session ID Length: 32

Session ID: dcec888c40d1a493f43444b55d6f9fbdfe9e7498557986fa915528f26595842f

Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA (0x0035)

Compression Method: null (0)

▼ TLSv1 Record Layer: Handshake Protocol: Certificate

Content Type: Handshake (22) Version: TLS 1.0 (0x0301)

Length: 778

Handshake Protocol: Certificate

	Time	Source	Destination	Protocol	Length Info
46	6.260506	192.168.137.101	192.168.137.101	TCP	44 53850 → 5061 [ACK] Seq=101 Ack=872 Win=524544 Len=0
47	6.263255	192.168.137.101	192.168.137.101	TLSv1	242 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
48	6.263319	192.168.137.101	192.168.137.101	TCP	44 5061 → 53850 [ACK] Seq=872 Ack=299 Win=525312 Len=0
49	6.267948	192.168.137.101	192.168.137.101	TLSv1	103 Change Cipher Spec, Encrypted Handshake Message
50	6.268013	192.168.137.101	192.168.137.101	TCP	44 53850 → 5061 [ACK] Seq=299 Ack=931 Win=524544 Len=0
51	6.268433	192.168.137.101	192.168.137.101	TLSv1	710 Application Data, Application Data
52	6.268472	192.168.137.101	192.168.137.101	TCP	44 5061 → 53850 [ACK] Seq=931 Ack=965 Win=524544 Len=0
53	6.317205	127.0.0.1	127.0.0.1	TCP	56 53851 → 5000 [SYN] Seq=0 Win=64240 Len=0 MSS=65495 WS=256 SACK_PERM=1
54	6.317292	127.0.0.1	127.0.0.1	TCP	56 5000 → 53851 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=65495 WS=256
55	6.317400	127.0.0.1	127.0.0.1	TCP	44 53851 → 5000 [ACK] Seq=1 Ack=1 Win=525568 Len=0
56	6.470538	192.168.137.101	192.168.137.101	TLSv1	630 Application Data, Application Data
57	6.470606	192.168.137.101	192.168.137.101	TCP	44 53850 → 5061 [ACK] Seq=965 Ack=1517 Win=525568 Len=0
58	6.681485	192.168.137.101	192.168.137.101	TLSv1	918 Application Data, Application Data
59	6.681547	192.168.137.101	192.168.137.101	TCP	44 5061 → 53850 [ACK] Seq=1517 Ack=1839 Win=525568 Len=0
60	6.704742	127.0.0.1	127.0.0.1	TCP	52 52844 → 5485 [PSH, ACK] Seq=1 Ack=1 Win=2053 Len=8
61	6.704806	127.0.0.1	127.0.0.1	TCP	44 5485 → 52844 [ACK] Seq=1 Ack=9 Win=2051 Len=0
62	6.704850	127.0.0.1	127.0.0.1	TCP	66 52844 → 5485 [PSH, ACK] Seq=9 Ack=1 Win=2053 Len=22
63	6.704882	127.0.0.1	127.0.0.1	TCP	44 5485 → 52844 [ACK] Seq=1 Ack=31 Win=2051 Len=0
64	6.704921	127.0.0.1	127.0.0.1	TCP	48 52844 → 5485 [PSH, ACK] Seq=31 Ack=1 Win=2053 Len=4
65	6.704953	127.0.0.1	127.0.0.1	TCP	44 5485 → 52844 [ACK] Seq=1 Ack=35 Win=2051 Len=0
66	6.704986	127.0.0.1	127.0.0.1	TCP	517 52844 → 5485 [PSH, ACK] Seq=35 Ack=1 Win=2053 Len=473
67	6.705018	127.0.0.1	127.0.0.1	TCP	44 5485 → 52844 [ACK] Seq=1 Ack=508 Win=2049 Len=0
68	6.705249	127.0.0.1	127.0.0.1	TCP	52 5485 → 52844 [PSH, ACK] Seq=1 Ack=508 Win=2049 Len=8
69	6.705302	127.0.0.1	127.0.0.1	TCP	44 52844 → 5485 [ACK] Seq=508 Ack=9 Win=2053 Len=0
70	6.705470	127.0.0.1	127.0.0.1	TCP	60 5485 → 52844 [PSH, ACK] Seq=9 Ack=508 Win=2049 Len=16
71	6.705534	127.0.0.1	127.0.0.1	TCP	44 52844 → 5485 [ACK] Seq=508 Ack=25 Win=2053 Len=0
72	6.705582	127.0.0.1	127.0.0.1	TCP	48 5485 → 52844 [PSH, ACK] Seq=25 Ack=508 Win=2049 Len=4

Partie 7: VOIP and Security with Linephone

- Install the TOIP Linephone client in your terminals. Beware to unistall 3CX TOIP clients first. https://www.linphone.org

- Configure first the Linephone SIP accounts to connect to your 3CX server

- Configure then the Linephone <u>audio</u> codec. Explain what audio codec you selected. What is your audio bit rate ?

I selected the opus audio codec with a bitrate of 50 Kbit/s. Screenshot is available on the next page.

Configure then the Linephone <u>video</u> codec. Explain what video codec you selected (Cisco H.264 or google VP8). What is your video resolution (pixels)? What is your video bitrate?

I selected Google VP8 video codec, which can be used with a 640*480 pixels resolution. The bitrate is 1500 Kbit/s.

Configure then the Linephone Security options to select SRTP (data) and SIPS (signaling).

- What is ZRTP? what are the differences with SRTP?

ZRTP is a protocol which provides security between two end points in a VoIP network. To do so, Secure RTP (SRTP) is used, with the help of a Diffie-Hellman key exchange before any data communication.

- What is Datagram TLS (DTLS). Find the RFC number for DTLS. What are the differences with SRTP?

DTLS is defined in the RFC 4347 and in RFC 6347 for the version 1.2. It is a communication protocol, preventing from attacks like message forgery, tampering or eavesdropping. This is based on the TLS protocol and it's similar to it. Actually, SRTP uses DTLS for the handshake and so the key exchange. Then, RTP data are encrypted using SRTP method during the communication between both end points.

 Configure then the Linephone <u>network</u> options to setup your UDP/TCP port numbers for facilitating your firewall configurations

We didn't understand what was expecting here, but we disabled fixed ports and we have activated ICE and TURN in the NAT and firewall options.

Protocol	O POCOSI	i et ports
FIULUCUI	e i eseat	i et poi ta

Port d'écoute SIP UDP	
Port d'écoute SIP TCP	
Port Audio RTP UDP	
Port Vidéo RTP UDP	
NAT et Pare-feu	
Activer ICE	
Activer TURN	

- What is STUN/TURN protocols? Why we need these protocols with TOIP? Provide the name and IP address of two public STUN/TURN servers available online.

STUN protocol allows NAT clients in a local network to pass through firewall to communicate with an external VoIP operator. To do so, information like public IP, NAT router type or port used must be known and exchanged by the clients. So two VoIP end points can connect with the help of a STUN server. TURN is an extension of STUN, which aims to facilitate NAT traversal for media traffic. Media traffic is more heavy than network discovery packets, so it is relayed by a dedicated server: the STUN server.

These protocols are important for TOIP because clients sometimes need to join another client in an external network. So handshake and then media traffic need to traverse firewall, with the help of STUN and TURN servers.

Here are two public STUN/TURN servers available online:

- stun.3cx.com:3478 with IP 54.39.182.217
- <u>stun.12voip.com:3478</u> with IP 77.72.169.212

We can register to them online.

Diagram showing the roles of TURN and STUN servers from https://blog.ivrpowers.com/post/technologies/what-is-stun-turn-server/