PEA - projekt nr 2

Temat: Implementacja i analiza efektywności algorytmu Tabu Search i/lub Symulowanego Wyżarzania dla problemu komiwojażera

Należy zaimplementować oraz dokonać analizy efektywności algorytmu **Tabu Search (TS)** i/lub **Symulowanego Wyżarzania (SW)** dla problemu komiwojażera (TSP).

Należy porównać rozwiązanie dostarczone przez algorytm z najlepszymi znanymi rozwiązaniami dla przykładów testowych.

Podczas realizacji zadania należy przyjąć następujące założenia:

- używane struktury danych powinny być alokowane dynamicznie (w zależności od aktualnego rozmiaru problemu),
- program powinien umożliwić wczytanie danych testowych z pliku te pliki to: ftv55.atsp (1608), ftv170.atsp (2755) , rgb358.atsp (1163). W nawiasach podano najlepsze znane rozwiązanie dla danych zawartych w pliku długość drogi.
- opis formatu pliku z danymi znajduje się na stronie: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
- na stronie http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/atsp/ znajdują się wyżej wymienione pliki
- na stronie http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/XML-TSPLIB/instances/
 znajdują się wersje XML-owe w/w plików można je stosować zamiast plików w poprzednim formacie (za to jest dodatkowa premia)
- program musi umożliwiać wprowadzenia kryterium stopu jako czasu wykonania podawanego w sekundach,
- implementacje algorytmów należy dokonać zgodnie z obiektowym paradygmatem programowania,
- używanie "okienek" nie jest konieczne i nie wpływa na ocenę (wystarczy wersja konsolowa),
- kod źródłowy powinien być komentowany.

Menu programu powinno zawierać następujące opcje:

- 1.Wczytanie danych z pliku (wspólne dla obu algorytmów)
- 2. Wprowadzenie kryterium stopu (wspólne dla obu algorytmów)
- 3. Obliczenie rozwiązania metodą zachłanną (przetestować wszystkie wierzchołki startowe i wybrać najlepsze rozwiązanie)

- 4. Wybór sąsiedztwa (dla TS jeśli zaimplementowano)
- 5.Uruchomianie algorytmu TS dla wczytanych danych i ustawionych parametrów i wyświetlenie wyników (wartość drogi + ciąg wierzchołków)
- 6. Ustawienie współczynnika zmiany temperatury dla SW
- 7.Uruchomianie algorytmu SW dla wczytanych danych i ustawionych parametrów i wyświetlenie wyników (wartość drogi + ciąg wierzchołków). Na końcu działania algorytmu wyświetlić wartość wyrażenia $exp(-1/T_k)$ oraz T_k , gdzie T_k jest temperaturą końcową
- 8. Zapis ścieżki rozwiązania do pliku txt
- 9. Wczytanie ścieżki rozwiązania z pliku txt i obliczenie na drogi na podstawie wczytanej tabeli kosztów w p.1.

UWAGA 1!

- 1.Raz ustawione parametry obowiązują do ich zmiany (chodzi o to, aby nie ustawiać ich ponownie przy wczytywaniu nowych danych jak i nie wczytywać ponownie danych przy zmianie parametrów).
- 2. Rozwiązanie początkowe wygenerować za pomocą metody zachłannej.
- 3.W trakcie działania algorytmu zawsze pamiętać najlepsze rozwiązanie.
- 4. Format zapisu ścieżki (wyniku) jest następujący:
- -w pierwszej linii ilość wierzchołków
- -w kolejnych liniach numery wierzchołków

Ścieżka zapisana w pliku ma być kompletna tzn. powinna się zapętlać.

TS:

5. Algorytm ma uwzględniać mechanizm dywersyfikacji przeszukiwania przestrzeni rozwiązań jak również różne definicje sąsiedztwa (typy ruchów).

SW:

- 6.Sposób zmiany temperatury (schładzania) zrealizować wg wzoru T(i+1) = a* T(i), gdzie a jest stałą 7.Wybrać jeden ze sposobów definicji sąsiedztwa.
- 8.Obliczyć temperaturę początkową w oparciu o przetwarzane dane zaproponować sposób liczenia i umieścić go w sprawozdaniu temp. początkowa nie może być wpisana na sztywno do programu
- 9.W sprawozdaniu umieścić temperaturę końcową (wynikającą z działania algorytmu)
- 10.Starać się optymalnie dobrać wsp. *a*, aby schładzanie nie odbywało się za szybko (zwłaszcza przy wersji z jedną wartością wsp. schładzania).

Sprawozdanie powinno zawierać:

- a) wstęp teoretyczny zawierający opis algorytmów i same algorytmy (w postaci pseudokodu lub graficznie), omówienie jego elementów (lista tabu, dywersyfikacja, opis (definicja) sąsiedztwa itd.) dla TS; analogicznie dla SW.
- b) opis najważniejszych klas w projekcie
- c) wyniki w postaci tabel dla podanych 3 plików wykonać pomiary błędu względnego (wyrażonego go w %) w funkcji czasu wykonywania algorytmu (dla każdego parametru osobno) ustalić na sztywno czas wykonywania algorytmów na np. 2 minuty dla rozmiaru małego, 4- średniego, 6-dużego. Dla każdego z plików i dla każdego algorytmu i każdego parametru algorytmu uruchomić algorytm 10 razy i w tabeli przedstawić dla każdego uruchomienia najlepsze rozwiązanie (wartość drogi) i moment (czas) kiedy zostało odnalezione.
- d) narysować wykres błędu w funkcji czasu dla najlepszego rozwiązania dla każdego pliku i każdej wartości parametru algorytmu (dla TS:jeżeli wybrano 3 sąsiedztwa to umieścić je na jednym wykresie, analogicznie dla SW jeśli wybrano 3 różne wartości współczynnika zmiany temperatury).
- e) dla najlepszego rozwiązania dla każdego z plików (z obu algorytmów, jeśli implementowano oba) umieścić w sprawozdaniu ścieżkę i zapisać ją pliku na dysku w formacie wg UWAGI 1. Nazwa pliku z rozwiązaniem powinna zawierać nazwę pliku źródłowego oraz nazwę algorytmu (SW, TS) np. sw_ftv170.txt
- f) jeżeli wybrano dwa algorytmy to porównać je (w tym celu oba algorytmy dla określonego pliku z danymi powinny wykonywać się tyle samo czasu)

Błąd względny to $|f_{zn} - f_{opt}|/f_{opt}$, gdzie f_{zn} – wartość obliczona przez nasz algorytm, f_{opt} – wartość optymalna – najlepsze znane rozwiązanie (podane wyżej)

Ocena:

- a) algorytm tabu z dywersyfikacją i jedną definicją sąsiedztwa 1.0
- b) algorytm tabu z dywersyfikacją i trzema definicjami sąsiedztwa 1.4
- c) algorytm SW dla jednego schematu schładzania (wsp. a) 1,0
- d) algorytm SW dla trzech schematów schładzania (wsp. a) 1,4
- e) bonus za wczytanie pliku z danymi w formacie XML 0,2

c.d. na następnej stronie

UWAGA 2!

Na dysku google'a należy zamieścić projekt oraz najlepsze rozwiązanie dla danego algorytmu w postaci pliku tekstowego (format podano w UWAGI 1) oraz sprawozdanie w wersji elektronicznej (ale papierową wersję też należy dostarczyć)

UWAGA 3!

Algorytm TS musi zawierać elementy losowości – nie może to być algorytm deterministyczny.

UWAGA 4!

Jeżeli wybrano dwa algorytmy, to czasy eksperymentów dla obu algorytmów powinny być takie same

UWAGA 5!!!

Jeżeli najlepsze rozwiązanie za pomocą danego algorytmu jest takie same lub gorsze od metody zachłannej to obniżam ocenę za algorytm.

Dodatkowe materialy internetowe:

Z.Michalkiewicz, D.B.Vogel, Jak to rozwigzać czyli nowoczesna heurystyka, WNT 2006

http://www2.imm.dtu.dk/courses/02719/tabu/4tabu2.pdf

http://www.pi.zarz.agh.edu.pl/intObl/notes/IntObl w2.pdf

http://155.158.112.25/~algorytmyewolucyjne/materialy/algorytm_symulowanego_wyzarzania.pdf