相变理论

第三章 单元系的相变 第四章 多元系的相变

热动平衡判据 开系的热力学基本方程 复相系的平衡条件和性质

相变分类

临界现象和临界指数

朗道的连续相变理论

多元系的热力学函数和热力学方程 多元复相系的平衡条件和性质 相律和相图 化学平衡条件

热力学第三定律

Phase Equilibrium & Phase Transition

States of Matter (Phase)

cold

Fully ionized plasma.

Atoms in plasma become increasingly ionized.

Free electrons move among positively charged ions.

Molecular dissociation into component atoms.

Gas Phase

Atoms or molecules move essentially unconstrained.

Liquid Phase

Atoms or molecules remain together but move relatively freely.

Solid Phase

Atoms or molecules are held tightly in place.

State of Matter Definitions

Phase Diagram

Plot of Pressure versus Temperature

Triple Point

 A point on the phase diagram at which all three phases exist (solid, liquid and gas)

Critical Point

 A point on the phase diagram at which the density of the liquid and vapor phases are the same

Ethyl Acetate in Acetic Anhydride

Entropy increases for $s \rightarrow l \rightarrow g$

单元系的相变

热动平衡判据

前面,我们主要讨论了平衡态的热力学(状态,状态参量,过程)。本节我们希望能从理论上给出严格,判别体系是否处在平衡态的判据,以及体系处在平衡态时,各种态参量所必须满足的条件,并用这些条件去研究体系的各种特征。

熵判据 热力学第二定律,熵增加原理。

对绝热隔离体系或孤立系,自发过程总是朝着熵增加的方向进行,直到达到平衡态为止。因此,绝热隔离体系或孤立系达到平衡态时,熵达到最大。

熵判据: 一个体系在总能量保持不变时, 对于各种可能的变动, 平衡态的熵最大

$$\Delta S < 0$$
 充分必要条件
$$\Delta S = \delta S + \frac{1}{2} \delta^2 S$$

$$\delta S = 0 \quad \delta^2 S < 0$$

虚变动的概 念

稳定条件

自由能判据 体系和大热源接触,体积不变(温度,体积不变) 一个体系在保持温度,体积不变时,对于各种可能的变动,平衡态的自由能最小

$$\delta F = 0 \quad \delta^2 F > 0$$

物理意义: 当体系和大热源接触以保持恒温且不对外做功时,过程只能朝着自由能减少的方向进行,到达平衡态时,自由能最小。

吉布斯函数判据 考虑体系在恒温恒压条件下。

一个体系在恒温恒压条件下,对于各种可能的变动,平衡 态的吉布斯函数最小

$$\delta G = 0 \quad \delta^2 G > 0$$

物理意义: 当体系在恒温恒压条件下时,过程只能朝着自由能减少的方向进行,到达平衡态时,吉布斯函数最小。

焓判据 考虑体系在压强p和熵S不变条件下。

一个体系在压强p和熵S不变的条件下,对于各种可能的变动,平衡态的焓H最小

$$\delta H = 0 \quad \delta^2 H > 0$$

内能判据 考虑体系在体积V和熵S不变的条件下。

一个体系在体积V和熵S不变的条件下,对于各种可能的变动,平衡态的内能最小

$$\delta U = 0 \quad \delta^2 U > 0$$

- (1) 所有这些判据中,最根本的是熵判据,其他判据都可以从 ² 熵判据导出。而熵判据是根据热力学第二定律给出的。因此,所有这些判据都来源于热力学第二定律,即关于自发过程进行的方向性的规律。
- (2)根据马休定理,在选定一定的独立变数后,如果选择相应的特性函数,若这些特性函数已知,则体系的热力学性质可以唯一地由这个特性函数决定。所以,以上判据适应的条件正是独立变数和特性函数关系的反映。

平衡条件

热学平衡条件 假定一孤立体系分成两部分, 在体积V不变的条件下

$$U = U_1 + U_2 = \mathring{\mathbb{R}} \, \mathfrak{Y}$$

$$\delta U = \delta U_1 + \delta U_2 = 0$$

$$\delta S = \delta S_1 + \delta S_2 = \frac{\delta U_1}{T_1} + \frac{\delta U_2}{T_2} = 0$$

$$\delta S = \delta U_1 \left(\frac{1}{T_1} - \frac{1}{T_2} \right) = 0$$

所以

$$T_1 = T_2$$

由此条件可以理解热传导过程的方向。

力学平衡条件 设体系两部分已达到热平衡,在体积为 V_1,V_2 ,在不考虑外场的条件下

$$V = V_1 + V_2 = 常数$$

$$\delta V = \delta V_1 + \delta V_2 = 0$$

$$\delta F = \delta F_1 + \delta F_2 = \delta V_1 (P_2 - P_1) = 0$$

所以

$$P_1 = P_2$$

相平衡条件 一般地,在无外力场的情况下,当设体系各部分已 达到热平衡和力学平衡,整个体将达到热平衡。这一结论 仅对均匀体系而言。当各个部分不完全均匀时,则应考虑 如化学组分,或状态(如水和水蒸气)的不同。

元: 化学组分

相: 指体系中物理性质均匀的部分,他和其他部分之间有一定的分界面分隔开来。

对于这样的多元或复相系统(常称为开系统),通常利用 吉布斯函数来研究。

吉布斯函数反映了系统"物质量"的性质

$$dG = -SdT + VdP + \underline{\mu}dn \tag{1}$$

右方第三项代表由于物质的量改变了dn所引起的吉布斯函数的改变

$$\mu = \left(\frac{\partial G}{\partial n}\right)_{T,p} \tag{2}$$

称为化学势。它等于在温度和压强不变的条件下,增加1mol物质时,吉布斯函数的改变。

考虑到吉布斯函数是广延量

$$G(T, p, n) = n \underline{G_m(T, p, n)}$$

$$\mu = \left(rac{\partial G}{\partial n}
ight)_{T,p} = G_m(T,p,n)$$
 化学势为摩尔吉布斯函数

如果已知吉布斯函数 G(T, p, n)

$$S = -\left(\frac{\partial G}{\partial T}\right)_{p,n}; \ V = \left(\frac{\partial G}{\partial p}\right)_{T,n}; \ V = \left(\frac{\partial G}{\partial T}\right)_{T,p}$$

 $dU = TdS + pdV + \mu dn$ 开系的热力学基本方程

$$dH = TdS + Vdp + \mu dn$$

$$dF = +SdT - pdV + \mu dn$$

 $=F-\mu n=J(T,V,\mu)$ 巨热力势,特性函数

$$dJ = -SdT - pdV + nd\mu;$$

$$dJ = -SdT - pdV + nd\mu; \qquad S = -\left(\frac{\partial J}{\partial T}\right)_{V,n}$$

$$p = -\left(\frac{\partial J}{\partial V}\right)_{T,\mu}$$
$$n = -\left(\frac{\partial G}{\partial \mu}\right)_{T,V}$$
$$J = F - G = -pV$$

考虑在T, p不变的条件下,有两相之间交换粒子带来的结果

$$N = N_1 + N_2 = 常数$$

 $\delta N = \delta N_1 + \delta N_2 = 0$
由吉布斯判据 $G = N\mu(T, P)$
 $\delta G = \delta G_1 + \delta G_2$
 $= \mu_1 \delta N_1 + \mu_2 \delta N_2 = \delta N_1(\mu_1 - \mu_2) = 0$

所以,体系达到相平衡的充分必要条件是两相的化学是相

等:

$$\mu_1 = \mu_2$$

平衡的稳定条件

利用内能平衡条件

$$\delta U = 0 \quad \delta^2 U > 0$$

或,利用熵平衡条件

$$\Delta S < 0$$
 充分必要条件
 $\Delta S = \delta S + \frac{1}{2}\delta^2 S$
 $\delta S = 0$ $\delta^2 S < 0$

利用泰勒展开

$$\delta^{2}S = \left[\left(\frac{\partial^{2}S}{\partial U^{2}} \right) (\delta U)^{2} + 2 \frac{\partial^{2}S}{\partial U \partial V} \delta U \delta V + \left(\frac{\partial^{2}S}{\partial V^{2}} \right) (\delta V)^{2} \right] < 0$$

$$C_{V} > 0 \quad \left(\frac{\partial \overline{p}}{\partial V} \right)_{T} < 0$$

$$2 \text{ 这就是平衡的稳定条件,称为热力学不等式。}$$

要点:请推导这一条件

平衡稳定性条件的物理解释

假如子系统的温度由于涨落或某种外界影响而略高于媒质,热量将从子系统传递到媒质,使子系统的温度降低,从而恢复平衡。

(2). $\left[\frac{\partial p}{\partial V}\right]_T < 0$ 压强传递的方向

假如子系统的体积由于某种原因而发生收缩,子系统的压强将增高而略高于媒质的压强,从而子系统膨胀而恢复平衡。

请注意:如果平衡的稳定条件得到满足,当系统对平衡发生某种偏离时,系统中将会自发产生相应的过程,以恢复系统的平

单元复相系的平衡性质

在一定的温度和压强下,系统的平衡状态是其吉布斯函数最小的状态,各相的化学势是其温度和压强确定的函数。

如果在一温度和压强范围内, α 相的化学势 $\nu^{\alpha}(T,P)$ 较其他相 的化学势为低,系统将以 α 相单独存在。这个温度和压强范围就 的化字努力低,系统将以 α 相单独存在。这个温度和压强泡围就 α 是 α 相的单相区域。在这个区域内,温度和压强是独立的状态参 量。

$$\begin{split} T^{\alpha} &= T^{\beta} = T \\ p^{\alpha} &= p^{\beta} = p \\ \mu^{\alpha}(T,p) &= \mu^{\beta}(T,p) = \mu(T,p) \end{split}$$

这就是两相平衡的曲线方程

$$U^{\alpha} + U^{\beta} = 常量, \quad \delta U^{\alpha} + \delta U^{\beta} = 0$$

$$V^{\alpha} + V^{\beta} = 常量, \quad \delta V^{\alpha} + \delta V^{\beta} = 0$$

$$n^{\alpha} + n^{\beta} = 常量, \quad \delta n^{\alpha} + \delta n^{\beta} = 0$$

$$\delta S^{\alpha} + \delta S^{\beta} = \delta U^{\alpha} \left(\frac{1}{T^{\alpha}} - \frac{1}{T^{\beta}}\right) + \delta V^{\alpha} \left(\frac{p^{\alpha}}{T^{\alpha}} - \frac{p^{\beta}}{T^{\beta}}\right) - \delta n^{\alpha} \left(\frac{\mu^{\alpha}}{T^{\alpha}} - \frac{\mu^{\beta}}{T^{\beta}}\right)$$

平衡条件不满足时, 复相系演化的方向

$$T^{\alpha} = T^{\beta} = T^{\gamma} = T$$

$$p^{\alpha} = p^{\beta} = p^{\gamma} = p$$

$$\mu^{\alpha}(T, p) = \mu^{\beta}(T, p) = \mu^{\gamma}(T, p) = \mu(T, p)$$

这就是三相点方程

课后习题3.3-3.7

两相平衡曲线(Clausius-Clapeyron 方程)

给出两相平衡曲线的斜率

$$\frac{dp}{dT} = -\frac{\left(\frac{\partial \mu^{\beta}}{\partial T}\right)_{p} - \left(\frac{\partial \mu^{\alpha}}{\partial T}\right)_{p}}{\left(\frac{\partial \mu^{\beta}}{\partial p}\right)_{T} - \left(\frac{\partial \mu^{\alpha}}{\partial p}\right)_{T}} = \frac{L}{T(v_{m}^{\beta} - v_{m}^{\alpha})}$$

$$L = T(s_{m}^{\beta} - s_{m}^{\alpha}) \quad \text{相 变潜热}$$

注意推导

相变潜热与温度的关系

$$\frac{dL}{dT} = c_{\beta}^{(1)} - c_{\alpha}^{(2)} + \frac{L}{T}$$

Clausius-Clapeyron 方程适用的条件

$$s^{\beta} \neq s^{\alpha}, \quad \left(\frac{\partial \mu^{\beta}}{\partial T}\right)_{p} \neq \left(\frac{\partial \mu^{\alpha}}{\partial T}\right)_{p}$$
$$v^{\beta} \neq v^{\alpha}, \quad \left(\frac{\partial \mu^{\beta}}{\partial p}\right)_{T} \neq \left(\frac{\partial \mu^{\alpha}}{\partial p}\right)_{T}$$

饱和蒸气压方程

(Kirchhoff 方程)

$$\ln p = -\frac{L_0}{RT} + \frac{c_p^{\beta} - c_p^{\alpha}}{T} \ln T + const$$

在确定了积分常数后

注意推导

$$\ln p = A - \frac{B}{T} + C \ln T$$

$$A = \frac{s_{\beta}^{0} - s_{\alpha}^{0} - c_{p}^{\beta,0} + c_{p}^{\alpha,0}}{R}, \quad B = \frac{h_{\beta}^{0} - c_{\alpha}^{0}}{R}, \quad C = \frac{c_{p}^{\beta,0} - c_{p}^{\alpha,0}}{R}$$

称为蒸气压常数

临界点和气液两相的转变

- (1) 等温线中的水平段的长 度随温度升高而缩短
- (2) 在临界点, 水平段的左 右两端重合
- (3) 临界等温线在临界点的 切线是水平的

临界点

$$\left(\frac{\partial p}{\partial V}\right)_T = 0$$

必要但不充分!

液相

液气共存

利用Van der Waals方程来讨 论

$$\left(p + \frac{a}{V_m^2}\right)(V_m - b) = RT$$

对应一个p值, 有三个可能的V值

现在我们讨论,根据吉布斯函数最小的要求,讨论在 $p_1 < p_2$ 范围内,在给定的T,p下,什么状态是是稳定的。

积分等于等温线与p轴之间的面积

$$\mu_A = \mu_B$$

A:气相 B:液相

两相的相变平衡点

线段OKBAMR上各点代 表系统的稳定平衡态

$$O \rightarrow N$$
 $\mu - \mu_0 > 0$ μ 增加 $N \rightarrow J$ $\mu - \mu_0 < 0$ μ 減少 $J \rightarrow A \rightarrow M$ $\mu - \mu_0 > 0$ μ 增加

Maxwell等面积法则

$$\mu_A = \mu_B$$

$$\mu_B - \mu_A = \int_{BNDJA} V_m dp = 0$$
面积 $BND =$ 面积 DJA

可由此确定AB点

$$\mu$$
极大点 $N: \left(\frac{\partial p}{\partial V_m}\right)_T = 0; \quad \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T < 0$

$$\mu$$
极小点 $J: \left(\frac{\partial p}{\partial V_m}\right)_T = 0; \quad \left(\frac{\partial^2 p}{\partial V_m^2}\right)_T > 0$

随着温度T的升高,J,N逐步靠近,达到临界温度时,两点重合

临界点

$$\left(\frac{\partial p}{\partial V_m}\right)_T=0;$$
 $\left(\frac{\partial^2 p}{\partial V_m^2}\right)_T=0$ 临界点的充分必要条件

$$\begin{pmatrix}
p + \frac{a}{V_m^2} \end{pmatrix} (V_m - b) = RT$$

$$T_c = \frac{8a}{27Rb}, \quad p_c = \frac{a}{27b^2}, \quad V_{mc} = 3b$$

$$\frac{RT_c}{P_c V_{mc}} = \frac{8}{3} = 2.667 \quad \text{临界指数}$$

对各种物质应该是相同的

实测结果:He(3.28);H2(3.27);Ne(3.43);Ar(3.42);...

引入新的Scaled Variables

$$t^* = \frac{T}{T_c}, \quad p^* = \frac{p}{p_c}, \quad v^* = \frac{V_m}{V_{mc}}$$
$$\left(p^* + \frac{3}{V^{*2}}\right)\left(V^* - \frac{1}{3}\right) = \frac{8}{3}t^* \quad \text{Van der Waals对比方程}$$

7/1/42/11 00

该方程不含与具体物质的性质有关的常数。

如果采用对比变量,各种气(液)体的物态方程是完全相同的

→ 对应态定律

相变分类

Clausius-Clapeyron 方程

$$\frac{dp}{dT} = -\frac{\left(\frac{\partial \mu^{\beta}}{\partial T}\right)_{p} - \left(\frac{\partial \mu^{\alpha}}{\partial T}\right)_{p}}{\left(\frac{\partial \mu^{\beta}}{\partial p}\right)_{T} - \left(\frac{\partial \mu^{\alpha}}{\partial p}\right)_{T}} = \frac{L}{T(v_{m}^{\beta} - v_{m}^{\alpha})} \stackrel{\text{3}}{\underset{\text{3}}{\stackrel{\text{3}}}}\stackrel{\text{3}}{\stackrel{\text{3}}{\stackrel{\text{3}}}}\stackrel{\text{3}}{\stackrel{\text{3}}}\stackrel{\text{3}}{\stackrel{\text{3}}}\stackrel{\text{3}}{\stackrel{\text{3}}}\stackrel{\text{3}}}\stackrel{\text{3}}\stackrel{\text{3}}}\stackrel{\text{3}}\stackrel{\text{3}$$

存在相变潜热和体积突变

Clausius-Clapeyron 方程适用的条件

$$s^{\beta} \neq s^{\alpha}, \quad \left(\frac{\partial \mu^{\beta}}{\partial T}\right)_{p} \neq \left(\frac{\partial \mu^{\alpha}}{\partial T}\right)_{p}$$
$$v^{\beta} \neq v^{\alpha}, \quad \left(\frac{\partial \mu^{\beta}}{\partial p}\right)_{T} \neq \left(\frac{\partial \mu^{\alpha}}{\partial p}\right)_{T}$$

但也有另一类相变,既不存在相变潜热而且体积是连续变化的

ASS.

在这样的情况下,Clausius-Clapeyron不再成立

$$s^{\beta} = s^{\alpha}, \left(\frac{\partial \mu^{\beta}}{\partial T}\right)_{p} = \left(\frac{\partial \mu^{\alpha}}{\partial T}\right)_{p}$$

$$\frac{dp}{dT} = -\frac{\left(\frac{\partial \mu^{\beta}}{\partial T}\right)_{p} - \left(\frac{\partial \mu^{\alpha}}{\partial T}\right)_{p}}{\left(\frac{\partial \mu^{\beta}}{\partial p}\right)_{T} - \left(\frac{\partial \mu^{\alpha}}{\partial p}\right)_{T}} = \frac{0}{0}$$

$$v^{\beta} = v^{\alpha}, \left(\frac{\partial \mu^{\beta}}{\partial p}\right)_{T} = \left(\frac{\partial \mu^{\alpha}}{\partial p}\right)_{T}$$

有很多生动的例子!

二级相变

$$\mu^{\alpha} = \mu \beta;$$

$$s^{\beta} = s^{\alpha}, \quad \left(\frac{\partial \mu^{\beta}}{\partial T}\right)_{p} = \left(\frac{\partial \mu^{\alpha}}{\partial T}\right)_{p};$$

$$v^{\beta} = v^{\alpha}, \quad \left(\frac{\partial \mu^{\beta}}{\partial p}\right)_{T} = \left(\frac{\partial \mu^{\alpha}}{\partial p}\right)_{T};$$

但是

$$\left(\frac{\partial^2 \mu^{\beta}}{\partial p^2}\right)_T \neq \left(\frac{\partial^2 \mu^{\alpha}}{\partial p^2}\right)_T \Rightarrow \left(\frac{\partial v^{\beta}}{\partial p}\right)_T \neq \left(\frac{\partial v^{\alpha}}{\partial p}\right)_T;$$

$$\left(\frac{\partial^2 \mu^{\beta}}{\partial T^2}\right)_p \neq \left(\frac{\partial^2 \mu^{\alpha}}{\partial T^2}\right)_p \Rightarrow \quad \left(\frac{\partial s^{\beta}}{\partial p}\right)_T \neq \left(\frac{\partial s^{\alpha}}{\partial p}\right)_T;$$

$$\frac{\partial^{2} \mu^{\beta}}{\partial T \partial p} \neq \frac{\partial^{2} \mu^{\alpha}}{\partial T \partial p} \Rightarrow \left(\frac{\partial v^{\beta}}{\partial T}\right)_{p} \neq \left(\frac{\partial v^{\alpha}}{\partial T}\right)_{p}$$

$$c_{p} = T \left(\frac{\partial s}{\partial T} \right)_{p} = -T \frac{\partial^{2} \mu}{\partial T^{2}}$$

$$\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_{p} = \frac{1}{v} \frac{\partial^{2} \mu}{\partial T \partial p}$$

$$\kappa_{T} = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_{T} = -\frac{1}{v} \frac{\partial^{2} \mu}{\partial p^{2}}$$

二级相变没有相变潜热和体积突变,但定压热容量,定压膨胀系数和等温压缩系数存在突变

Ehrenfest方程---二级相变情况下的Clausius-Clapeyron方程

$$v^{\beta} = v^{\alpha} \Longrightarrow \frac{dp}{dT} = \frac{\alpha_2 - \alpha_1}{\kappa_2 - \kappa_1} = \frac{\Delta \alpha}{\Delta \kappa}$$
$$s^{\beta} = s^{\alpha} \Longrightarrow \frac{dp}{dT} = \frac{C_{p_2} - C_{p_1}}{Tv(\alpha_2 - \alpha_1)} = \frac{\Delta C_p}{Tv\Delta \alpha}$$

$$\Delta C_p = \frac{Tv(\Delta\alpha)^2}{\Delta\kappa}$$
 注意推导

表示在二级相变时,在相变点处,定压热容量的跳跃 ΔC_p 与定压膨胀系数的跳跃 $\Delta \alpha$ 以及等温压缩系数的跳跃 $\Delta \kappa$ 之间的关

临界现象与临界指数

连续相变的相变点也称为临界 点。临界现象是指物质在连续 相变临界点邻域的非解析行为。

具体问题具体分析

临界现象具有普遍性

Von Laue关于二级相变的质疑

$$\mu^{\alpha} = \mu^{\beta}$$

$$\left(\frac{\partial \mu^{\beta}}{\partial T}\right)_{p_0} = \left(\frac{\partial \mu^{\alpha}}{\partial T}\right)_{p_0}$$

$$\Delta\mu(T_c + dT, p_c + dp) = \Delta\mu(T_c, p_c) + \left(\frac{\partial\Delta\mu}{\partial p}\right)_{T_c} dp + \left(\frac{\partial\Delta\mu}{\partial T}\right)_{p_c} dT + \frac{1}{2} \left[\left(\frac{\partial^2\Delta\mu}{\partial T^2}\right)_{p_c} + \left(\frac{\partial^2\Delta\mu}{\partial p^2}\right)_{T_c} + 2\frac{\partial^2\Delta\mu}{\partial p\partial T} dT dp \right] + \cdots$$

$$\Delta\mu(T_c + dT, p_c + dp) = -\frac{v}{2\Delta\kappa} \left[\Delta\alpha(dT) - \Delta\kappa(dp) \right]^2$$

$\Delta\mu$ 与 $\Delta\kappa$ 异号

在相变点的两侧, 两相的化学势保持同样的符号

Von Laue揭示了一个根本矛盾:一方面,自然界确实存在二级相变,Ehrenfest方程已得到实验验证;另一方面,二级相变的存在,表面上又似乎和吉布斯函数的平衡判据相矛盾

为了解决这一问题, 朗道提出了有序相变理论

到现在,有序相变理论 仍然是连续相变理论中极 重要,极成功的唯象理论

郎道的连续相变理论

$$\mu(T,p) \to \mu(T,p,\eta)$$

Order Parameter

• 132 •	第三章 单元系的相图	E	
表 3.1。			
相变	序 参 量	例子	T _c /K
液气	$\rho_1 - \rho_g$	H ₂ O	647.05
铁磁	磁化强度 ()	Fe	1044.0
反铁磁	子晶格磁化强度	FeF ₂	78.26
超流	He 原子的量子概率幅度	He ⁴	1.8~2.
超导	电子对的量子概率幅度	Pb	7.19
二元合金	次晶格中某组元的密度	Cu - Zn	739

当温度升高时,有序度以跃变的方式从某一有限值变为零,则这种相变为一级相变,如果有序度连续的方式变为零,则这种相变为二级相变。

$$\mu = \mu_0 + A(T, p)\eta^2 + \frac{1}{2}C(T, p)\eta^4 + \cdots$$

对于稳定平衡态

$$\begin{cases} \frac{\partial \mu}{\partial \eta} = 0\\ \frac{\partial^2 \mu}{\partial \eta^2} > 0 \end{cases}$$

$$\frac{\partial \mu}{\partial \eta} = 2\eta (A + C\eta^2) = 0$$

$$\Longrightarrow \left\{ \begin{array}{c} \eta = 0 \\ \eta^2 = -\frac{A}{C} \to \eta = \sqrt{-\frac{A}{C}} \end{array} \right.$$

$$\eta = 0 \quad \frac{\partial^2 \mu}{\partial \eta^2} \rightarrow \begin{cases} > 0 & A > 0 & 稳定平衡相 \\ < 0 & A < 0 & 不稳定相 \end{cases}$$

$$\eta = \sqrt{-\frac{A}{C}} \quad \frac{\partial^2 \mu}{\partial \eta^2} \rightarrow -4A \left\{ \begin{array}{ll} > 0 & A < 0 & \text{fight of } x \neq x \neq x \\ \\ < 0 & A > 0 & \text{line}(x \neq x \neq x) \end{array} \right.$$

连续相变为二级相变

例题: 设气体遵循下列状态方程

求临界点处 $\frac{pV}{RT}$

