

Module du Master "Systèmes Informatiques Intelligents" 2ème année

Annexe 4

CSP binaires continus (algèbre des intervalles)

Mr ISLI

Département d'Informatique Faculté d'Electronique et d'Informatique Université des Sciences et de la Technologie Houari Boumediène BP 32, El-Alia, Bab Ezzouar DZ-16111 ALGER

http://perso.usthb.dz/~aisli/TA_PpC.htm aisli@usthb.dz

CSP binaires continus (algèbre des intervalles)

- Objets et relations
 - Objets : les intervalles de la droite réelle (temps)
 - Relations qualitatives sur des paires d'intervalles :
 - Relations atomiques: 13
 - Relations générales (disjonctives) :
 - Sous-ensembles de relations atomiques : 2¹³=8192

CSP binaires continus (algèbre des intervalles)

Algèbre des intervalles

Les 13 relations atomiques

Symbole	Signification	Traduction
<	before	avant
m	meets	rencontre
0	overlaps	chevauche
fi	finished-by	terminé-par
di	contains	contient
S	starts	commence
eq	equals	égale
Si	started-by	commencé-par
d	during	durant
f	finishes	termine
oi	overlapped-by	chevauché-par
mi	met-by	rencontré-par
>	after	après

Année universitaire 2016/17

Programmation Par Contraintes (M2 SII)

CSP binaires continus (algèbre des intervalles)

Algèbre des intervalles

CSP qualitatif d'intervalles

Paire
$$P=(X,C)$$
:

- X ensemble fini de variables : $X = \{X_1, ..., X_n\}$
- C ensemble fini de contraintes binaires sur des paires de variables de P
- Le domaine de chacune des variables est l'ensemble {(d,f)∈IR² : d<f} ou l'ensemble {(d,f)∈Q² : d<f}</p>
 - Le domaine commun des variables sera noté D(P)

CSP binaires continus (algèbre des intervalles)

Algèbre des intervalles

CSP qualitatif d'intervalles P=(X,C): Contraintes

R(X_i,X_j), R étant une des 8192 relations de l'algèbre des intervalles

CSP binaires continus (algèbre des intervalles)

- CSP qualitatif d'intervalles P=(X,C)
 - Représentation graphique
 - Représentation matricielle

CSP binaires continus (algèbre des intervalles)

Algèbre des intervalles

Transposée

r	r ^t	r	r ^t
<	>	>	<
m	mi	mi	m
o s d f	oi	oi	0
S	si	si	S
d	di	di	d
f	fi	fi	f
eq	eq		

Année universitaire 2016/17

Programmation Par Contraintes (M2 SII)

CSP binaires continus (algèbre des intervalles)

- Intersection
 - $R_1 \cap R_2 = \{r : r \in R_1 \text{ et } r \in R_2\}$
 - Intersection ensembliste

CSP binaires continus (algèbre des intervalles)

- Composition
 - La composition faible de deux relations R₁ et R₂ est la plus petite relation R telle que pour tous intervalles I, J et K de la droite réelle :
 - Si $R_1(I,K)$ et $R_2(K,J)$ alors R(I,J)
 - R coïncide avec la composition exacte R₁°R₂ si pour tous intervalles I et J tels que R(I,J), il existe un intervalle K tel que R₁(I,K) et R₂(K,J)

CSP binaires continus (algèbre des intervalles)

- Composition
 - Composition faible = composition exacte

$$R_1 \circ R_2 = \bigcup_{r_1 \in R_1, r_2 \in R_2} r_1 \circ r_2$$

CSP binaires continus (algèbre des intervalles)

- Table de composition
 - Table 13x13 dont les lignes et les colonnes sont indicées par les relations atomiques
 - L'élément (r₁,r₂) donne la composition r₁°r₂ de r₁ et r₂

CSP binaires continus (algèbre des intervalles)

Algèbre des intervalles

Table de composition

0	<	 oi	 >	eq
<	<	 {d,s,o,m,<}	 ?	<

S	<	 {oi,f,d}	 >	S
		 •••	 	
>	?	 >	 >	>
eq	<		 >	eq

CSP binaires continus (algèbre des intervalles)

- CSP qualitatif d'intervalles P=(X,C)
 - Nœud-consistant
 - Arc-consistant

CSP binaires continus (algèbre des intervalles)

- CSP qualitatif d'intervalles P=(X,C)
 - Consistance de chemin : répéter jusqu'à fermeture
 - Pour tout triplet (X_i, X_k, X_j) de variables ne vérifiant pas $C_{ij} \subseteq C_{ik} \circ C_{kj}$
 - $C_{ij} = C_{ij} \cap C_{ik} \circ C_{kj}$

CSP binaires continus (algèbre des intervalles)

- CSP qualitatif d'intervalles P=(X,C)
 - L'algèbre des intervalles est un formalisme NP-complet
 - La consistance de chemin, qui est de complexité cubique, décide la consistance d'un CSP qualitatif atomique d'intervalles :
 - Si la consistance de chemin ne rencontre pas la relation Ø alors le CSP en entrée est consistant
 - Pour résoudre un CSP général d'intervalles :
 - Utiliser la consistance de chemin comme algorithme de validation
 - Choix (non-déterminisme) d'une relation atomique sur chacun des arcs disjonctifs
 - Appliquer la consistance de chemin au CSP atomique résultant