Package 'decode'

October 13, 2022

Title Differential Co-Expression and Differential Expression Analysis

Version 1.2
Description Integrated differential expression (DE) and differential co- expression (DC) analysis on gene expression data based on DECODE (DifferEntial CO- expression and Differential Expression) algorithm.
Depends R (>= $3.1.2$)
License GPL-3
LazyData false
VignetteBuilder knitr
Suggests knitr
NeedsCompilation no
Author Thomas Lui [aut, cre]
Maintainer Thomas Lui <tlui27@yahoo.com></tlui27@yahoo.com>
Repository CRAN
Date/Publication 2015-07-14 20:40:34
R topics documented:
getAssoGeneSetPValue
getBestAssociatedGeneSet
getBonferroniPValue
getDE_DC_OptimalThreshold
getFDR
getPathway
openFileToWrite
runDecode
sumResult_MinGain

8

Index

getAssoGeneSetPValue Calculate the p-value between selected genes and functional gene set

Description

Calculate the p-value between selected genes and functional gene set

Usage

```
getAssoGeneSetPValue(geneList, geneSet, multipleTestCount, MaxGene)
```

Arguments

geneList Selected genes geneSet Functional gene set

multipleTestCount

Number of multiple testing

MaxGene Number of genes in expression data

Value

The adjusted p-value for the associated gene set

```
getBestAssociatedGeneSet
```

Get best associated functional gene sets for partitions of gene i

Description

Get best associated functional gene sets for partitions of gene i

Usage

```
getBestAssociatedGeneSet(pathway, all8Partitions, onePartition, MaxGene,
    minSupport)
```

Arguments

pathway All functional gene sets

all8Partitions All eight possible partitions for gene i

onePartition The partition to be associated with the functional gene set

MaxGene Number of genes in expression data
minSupport Minimum support for functional gene set

Value

The adjusted p-values for the best associated gene set of the input partition

getBonferroniPValue 3

Description

Adjust p-value by Bonferroni correction

Usage

getBonferroniPValue(pValues)

Arguments

pValues Unadjusted p-values

Value

Adjusted p-values

getDE_DC_OptimalThreshold

Perform chi-square optimization

Description

Perform chi-square optimization

Usage

```
getDE_DC_OptimalThreshold(t_result, MaxGene, d_r, minSupport)
```

Arguments

t_result The t-statistics

MaxGene Number of genes in expression data

d_r DC measures

minSupport The minimum expected frequency in contingency table

Value

The optimal threshold information

4 getPartitionIndex

getFDR

Adjust p-value by Benjamini and Hochberg method

Description

Adjust p-value by Benjamini and Hochberg method

Usage

```
getFDR(pValues)
```

Arguments

pValues

Unadjusted p-values

Value

Adjusted p-values

getPartitionIndex

Get gene index of 8 partitions for gene i

Description

Get gene index of 8 partitions for gene i

Usage

```
getPartitionIndex(gene_i, t_result, optimalCutOff, abs_r)
```

Arguments

gene_i Gene i index t_result t-statistics

optimalCutOff Optimal thresholds

abs_r Matrix consisting of absolute values of all differential co-expression measures

Value

The selected genes for each partition in index

getPathway 5

getPathway

read functional gene sets

Description

read functional gene sets

Usage

```
getPathway(inputFile, geneName, minSupport)
```

Arguments

inputFile Input file name geneName Gene name lists minSupport Minimum support

Value

Functional gene set

openFileToWrite

Open file to write result

Description

Open file to write result

Usage

```
openFileToWrite(filename)
```

Arguments

filename

file name Output: Results in text file

6 runDecode

runDecode

Differential Co-Expression and Differential Expression Analysis

Description

Given a set of gene expression data and functional gene set data, the program will return a table summary for the selected gene sets with high differential co-expression and high differential expression (HDC-HDE). User need to specify the input paths for the gene expression data and functional gene set data.

Usage

runDecode(geneSetInputFile, geneExpressionFile)

Arguments

geneSetInputFile

Path for functional gene set data

geneExpressionFile

Path for gene expression data

Input: (1) gene expression data

(2) functional gene set data

Output: Table summary for the selected HDC-HDE gene sets, 'out_summary.txt'

Data format for gene expression data (Columns are tab-separated):

Column 1: Official gene symbol

Column 2: Probe ID

Starting from column 3: Expression for different samples

Row 1 (starting from column 3): Sample class ("1" indicates control group; "2" indicates case group)

Row 2: Sample id

Starting from row 3: Expression for different genes

Example:

geneName probeID 2 2 2 1 1 1

- - Case1 Case2 Case3 Control1 Control2 Control3

7A5 ILMN_1762337 5.12621 5.19419 5.06645 5.40649 5.51259 5.387

A1BG ILMN_2055271 5.63504 5.68533 5.66251 5.37466 5.43955 5.50973

A1CF ILMN_2383229 5.41543 5.58543 5.43239 5.49634 5.62685 5.36962

A26C3 ILMN_1653355 5.56713 5.5547 5.59547 5.46895 5.49622 5.50094

A2BP1 ILMN_1814316 5.23016 5.33808 5.31413 5.30586 5.40108 5.31855

A2M ILMN_1745607 7.65332 6.56431 8.20163 9.19837 9.04295 10.1448

A2ML1 ILMN_2136495 5.53532 5.93801 5.33728 5.36676 5.79942 5.13974 A3GALT2 ILMN_1668111 5.18578 5.35207 5.30554 5.26107 5.26536 5.28932

Data format for functional gene set data (Columns are tab-separated):

sumResult_MinGain 7

Column 1: Functional gene set name

Column 2: Other description such as gene set id

Starting from column 3: Official gene symbols for the functional gene set

Example:

B cell activation GO\GO:0042113 AKAP17A ZAP70 PFDN1 ...

apoptotic signaling pathway GO\GO:0097190 ITPR1 PTH DNAJC10 HINT1 ...

Details

The main program for DECODE algorithm

To run an example using expression data with 1400 genes.

runDecode("\extdata\geneSet.txt","\extdata\Expression_data_1400genes.txt")

Of

runDecode("/extdata/geneSet.txt","/extdata/Expression_data_1400genes.txt")

The sample data with 1400 genes takes 16 minutes to complete. (Computer used: An Intel Core i7-4600 processor, 2.69 GHz, 8 GB RAM)

Examples

```
## Not run:
path = system.file('extdata', package='decode')
geneSetInputFile = file.path(path, "geneSet.txt")
geneExpressionFile = file.path(path, "Expression_data_50genes.txt")
runDecode(geneSetInputFile, geneExpressionFile)
## End(Not run)
```

sumResult_MinGain

Summarize the functional gene set results into text file

Description

Summarize the functional gene set results into text file

Usage

```
sumResult_MinGain()
```

Index

```
getAssoGeneSetPValue, 2
getBestAssociatedGeneSet, 2
getBonferroniPValue, 3
getDE_DC_OptimalThreshold, 3
getFDR, 4
getPartitionIndex, 4
getPathway, 5

openFileToWrite, 5
runDecode, 6
sumResult_MinGain, 7
```