Kafrelshiekh University Mechanical Engineering Department Mechatronics Program

Serial Manipulator Dynamics

Lagrangian Formulation using MATLAB

Eman M.ElRify

Supervisor: Prof. Roshdy Abo-Shanab

Course: Industrial Robots Dynamics, Control and Simulation

Code: 40143

Outlines

- Introduction
- Collecting Data
- Forward Kinematics
- Jacobian Submatrices
- Manipulator Inertia Matrix
- Velocity Coupling Vector
- Gravitational Vector
- Results

Introduction

- A dynamical equation of motion can be formulated by several methods. One approach is Lagrange's equation of motion. Lagrangian formulation eliminates the constraint forces.
- Lagrangian function is defines as the difference between kinetic and potential energy in a mechanical system.

$$L = K - U$$

• Lagrange's equation of motion:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} + \frac{\partial U}{\partial q_i} = \tau_i$$

Introduction

• The state-space equation:

$$M\ddot{q} + V + G + F = \tau$$

$$\begin{bmatrix} M_{11} & \dots & M_{1n} \\ \vdots & \vdots & \vdots \\ M_{n1} & \dots & M_{nn} \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \\ \vdots \\ \ddot{q}_n \end{bmatrix} + \begin{bmatrix} C_{11} & \dots & C_{1n} \\ \vdots & \vdots & \vdots \\ C_{n1} & \dots & C_{nn} \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \vdots \\ \dot{q}_n \end{bmatrix} + \begin{bmatrix} G_1 \\ G_2 \\ \vdots \\ G_n \end{bmatrix} + \begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_n \end{bmatrix} = \begin{bmatrix} \tau_1 \\ \tau_2 \\ \vdots \\ \tau_n \end{bmatrix}$$

M: Manipulator Inertia Matrix

V: Velocity Coupling Vector

G: Gravitational Vector

F: Friction Forces Vector

τ: Generalized forces Vector

Introduction

Assumptions

• Resistance forces are neglected:
$$F = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad M\ddot{q} + V + G = \tau$$

Each link has a rectangular surface and cross-section area

$$I_{i} = \frac{1}{12} m_{i} a_{i}^{2} \begin{bmatrix} (w_{i}^{2} + h_{i}^{2}) & 0 & 0\\ 0 & (a_{i}^{2} + h_{i}^{2}) & 0\\ 0 & 0 & (w_{i}^{2} + a_{i}^{2}) \end{bmatrix}$$

Collecting Data

.xlsx file for parameters

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0
1	Ji	alpha_i	a_i	d_i	m_i	flag_i	w_i	h_i	theta_i				Туре	Revolute	Prismatic
2	1	0	a_1	d_1	m_1	1	0	0	theta_1				Flag	1	0
3	2	3.141593	a_2	0	m_2	1	0	0	theta_2		DOF =	3			
4	3	0	0	d_3	m_3	0	0		0				Quantity	notation	Unit
5													Link Twist	alpha_i	deg
6													Link Length	a_i	cm
7													Link Width	w_i	cm
8													Link Thickness	h_i	cm
9													Link offset	d_i	cm
10													Joint angle	theta_i	deg
11													Mass of link i	m_i	kg
12															

SCARA Robot Parameters

Note: the shots in this PowerPoint file is taken after the execution of the program with the above parameters

Paremeters are introduced to MATLAB by reading .xlsx file

Collecting Data

Reading Excel File

Introducing Symbols for the non – numeric values

```
%introducing Symbols for unknown existing parameters
syms 'j_%d' 'alpha_%d' 'a_%d' 'theta_%d' 'm_%d' 'flag_%d' 'h_%d' 'w_%d' 'l_%d' [DOF,1]
sym('l');
alpha_ %preview a symbolic variable
```

```
alpha_ =  \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}
```


Assigning parameters to column vector and conerting data type

Assigning parameters to column vectors

```
%Assigning the values in the file to column vectors
17
          [i,alpha,a,d,m,flag,w,h,theta]=readvars(file Of parameters,'Range',dh Range)
18
          str2double(theta)
19
          str2double(alpha)
20
21
          str2double(a)
22
          str2double(d)
          str2double(h)
23
          str2double(w)
24
          str2double(m)
25
          for i = 1:DOF
26
28
              theta (i)=theta(i);
29
              alpha_(i)=alpha(i);
30
              a_(i)=a(i);
31
              d_i(i)=d(i);
              W_{-}(i)=W(i);
32
              h_(i)=h(i);
33
              flag_(i)= flag(i);
34
35
36
          end
```


Assigning parameters to column vector and conerting data type

```
Assigning parameters to column vectors
         %Assigning the values in the file to column vectors
17
         [i,alpha,a,d,m,flag,w,h,theta]=readvars(file Of parameters,'Range',dh Range)
18
         str2double(theta)
19
         str2double(alpha)
20
21
         str2double(a)
22
         str2double(d)
                                                                                  Read data as a column vectors
         str2double(h)
23
24
         str2double(w)
         str2double(m)
25
         for i = 1:DOF
                                                                   Converting string data type
26
27
                                                                   into double
28
             theta (i)=theta(i);
             alpha_(i)=alpha(i);
29
30
             a_{i}(i)=a(i);
             d(i)=d(i);
31
                                                                   Assigning values to the symbolic
             W_{i}(i)=W(i);
32
                                                                   functions
             h_(i)=h(i);
33
             flag_(i)= flag(i);
34
35
36
         end
```

Collecting Data

Cleaning Data (Replacing NaN values with 0)

```
Cleaning Data

Replacing NaN values with zero

alpha_(isnan(alpha_))=0
theta_(isnan(theta_))=0
a_(isnan(a_))=0
h_(isnan(h_))=0
w_(isnan(w_))=0
m_(isnan(w_))=0
d_(isnan(d_))=0
flag_(isnan(flag_))=0
```


$$\begin{pmatrix} 0 \\ \pi \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
theta_ = m_{-} =
$$\begin{pmatrix} \theta_{1} \\ \theta_{2} \\ 0 \end{pmatrix} \qquad \begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix}$$

$$a_{-}$$
 =
$$d_{-}$$
 =
$$\begin{pmatrix} a_{1} \\ a_{2} \\ 0 \end{pmatrix} \qquad \begin{pmatrix} d_{1} \\ 0 \\ d_{3} \end{pmatrix}$$

$$h_{-}$$
 =
$$flag_{-}$$
 =
$$\begin{pmatrix} 0 \\ 0 \\ l \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

W_ =

alpha_ =

D-H Transformation Matrix:

$$A_{i}^{i-1} \begin{bmatrix} c\theta_{i} & -c\alpha_{i}s\theta_{i} & s\alpha_{i}s\theta_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\alpha_{i}c\theta_{i} & -s\alpha_{i}c\theta_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}, (A_{1}^{0}, A_{2}^{1}, \dots A_{n}^{n-1})$$

Forward Kinematics

$$A_i^{i-1} = \begin{bmatrix} c\theta_i & -c\alpha_i s\theta_i & s\alpha_i s\theta_i & a_i c\theta_i \\ s\theta_i & c\alpha_i c\theta_i & -s\alpha_i c\theta_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

```
48
49
50
51
52
53
```

Forward Kinematics

Calculating: A_1^0 , A_2^0 ... A_n^0

$$A_n^0 = A_1^0 A_2^1 \dots A_n^{n-1}$$

```
A_0^n = A_0^1 A_2^1 \dots A_{n-1}^n
           A_0^{n-1} = A_0^1 A_2^1 \dots A_{n-2}^{n-1}
54
            T{1}=A{1};
            for i = 1:DOF-1
55
                 T{i+1}=T{i}*A{i+1}
56
                 T{i+1}=simplify(T{i+1})
58
            end
59
             for i = 1:DOF
                 display(compose('A%d_0',i))
61
                 T{i}
             end
62
```

Forward Kinematics

Calculating:
$$A_1^0, A_2^0 \dots A_n^0$$
 $A_n^0 = A_1^0 A_2^1 \dots A_n^{n-1}$

$$A_n^0 = A_1^0 A_2^1 \dots A_n^{n-1}$$

1×1 cell array

$$\begin{cases} \text{'A3_0'} \} \\ \text{ans} = \\ \begin{pmatrix} \cos(\theta_1 + \theta_2) & \sin(\theta_1 + \theta_2) & 0 & a_2\cos(\theta_1 + \theta_2) + a_1\cos(\theta_1) \\ \sin(\theta_1 + \theta_2) & -\cos(\theta_1 + \theta_2) & 0 & a_2\sin(\theta_1 + \theta_2) + a_1\sin(\theta_1) \\ 0 & 0 & -1 & d_1 - d_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Result:

Jacobian Submatrices

Jacobian Submatrices

$$J_{vi} = [J_{vi}^1, J_{vi}^2, \dots, J_{vi}^i, 0, 0, \dots, 0]$$

$$J_{\omega i} = [J^1_{\omega i}, J^2_{\omega i}, \dots, J^i_{\omega i}, 0, 0, \dots, 0]$$

$$J_{vi}^{j} = z_{j-1} \times p_{ci}^{j-1} * \text{ for } a \text{ revolute joint}$$

$$J_{vi}^j = z_{j-1}$$
 for a prismatic joint

$$J_{\omega i}^{j} = z_{j-1}$$
 for a revolute joint

$$J_{\omega i}^{j} = 0$$
 for a prismatic joint

$$J_{vi}^j = 0$$
 for $j > i$

$$J_{\omega i}^{j} = 0$$
 for $j > i$

$$p_{ci}^{j-1} * = p_{ci} - p_{j-1}$$

$$p_{\rm ci} = A_i^0 \, p_{\rm ci}^i$$

$$p^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$p^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad z_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$z_{j-1} = A_{j-1}^0 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$p_{j-1}^0 = A_{j-1}^0 \begin{vmatrix} 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$$


```
64
          %Jacobian
65
          syms 'Jv %d' 'Jw %d' [DOF]
66
          c=1; %a avriable uses as an index for storing the jacobian submatrices and extracting it later
          for j= 1:DOF
67
68
              if j>1
                  Pi0 = T{j-1}*transpose([0 0 0 1]);
70
                  Pi0 = Pi0(1:3);
71
72
                  z = T{j-1}*transpose([0 0 1 0]);
                  z = z(1:3);
73
74
              else
                  Pi0 = transpose([0 0 0]); %P00 =[0 0 0]'
75
76
                  z = transpose([0 0 1]);
77
              end
78
79
              for i = DOF: -1:1
80
81
82
                  if flag_(j)==1
83
84
                      Pcii = transpose([-1/2*a (i) 0 0 1]);
85
                  else
                      Pcii = transpose([0 \ 0 \ -1/2*h_(i) \ 1]);
                  end
```



```
64
          %Jacobian
65
          syms 'Jv_%d' 'Jw_%d' [DOF]
66
          c=1; %a avriable uses as an index for storing the jacobian submatrices and extracting it later
67
          for j= 1:DOF
              if j>1
                                                                                     set initial value for P_{i-1}^0
                  Pi0 = T{j-1}*transpose([0 0 0 1]);
70
                  Pi0 = Pi0(1:3);
71
72
                  z = T{j-1}*transpose([0 0 1 0]);
                  z = z(1:3);
73
74
              else
                  Pi0 = transpose([0 0 0]); %P00 =[0 0 0]'
75
                                                                                             and for z_{j-1}
76
                  z = transpose([0 0 1]);
77
              end
78
79
              for i = DOF:-1:1
80
81
82
                  if flag_(j)==1
83
84
                      Pcii = transpose([-1/2*a (i) 0 0 1]);
                  else
                      Pcii = transpose([0 \ 0 \ -1/2*h_(i) \ 1]);
                  end
```



```
89
                   if flag_(j)==1 %if the joint is revolute
                       Pci0 = T{i}*Pcii;
                       Pci0 = Pci0(1:3,1);
 91
                       pci0_star = Pci0-Pi0;
 92
                       jv=cross(z,pci0_star); %cross product
                       jw =z;
 94
                   elseif flag_(j)==0
 96
                       j∨ =z;
                       jw =transpose([0 0 0]);
                   if i<j % if j > i Jvij = 0 Jwij =0
                       Pi0 = transpose([0 0 0]);
100
                       z = [0 \ 0 \ 0]';
101
                       jv =Pi0;
102
                       jw =transpose([0 0 0]);
103
                   end
104
                   Jv{c}=jv;
105
106
                   Jw{c}=jw;
107
                   c=c+1;
108
                   jv
109
110
               end
111
           end
112
```



```
if flag_(j)==1 %if the joint is revolute
 89
                           Pci0 = T{i}*Pcii;
 91
                           Pci0 = Pci0(1:3,1);
 92
                           pci0_star = Pci0-Pi0;
                           jv=cross(z,pci0_star); %cross product
                            jw =z;
 94
                       elseif flag (j)==0
                                                                                           if j > i then J_{vi}^{j} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} and J_{\omega i}^{j} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
 96
                            jv =z;
                            jw =transpose([0 0 0]);
                       if i<j % if j > i Jvij = 0 Jwij =0
                           Pi0 = transpose([0 0 0]);
100
                           z = [0 \ 0 \ 0]';
101
                           jv =Pi0;
102
                            jw =transpose([0 0 0]);
103
                       end
104
                       Jv{c}=jv;
105
106
                       Jw{c}=jw;
107
                       c=c+1;
108
                       jν
109
110
                  end
111
              end
112
```



```
89
                  if flag_(j)==1 %if the joint is revolute
                      Pci0 = T{i}*Pcii;
                      Pci0 = Pci0(1:3,1);
 91
 92
                      pci0_star = Pci0-Pi0;
                      jv=cross(z,pci0_star); %cross product
                       jw =z;
 94
                  elseif flag (j)==0
 96
                       jv =z;
                       jw =transpose([0 0 0]);
                  if i<j % if j > i Jvij = 0 Jwij =0
                      Pi0 = transpose([0 0 0]);
100
                      z = [0 \ 0 \ 0]';
101
                      jv =Pi0;
102
                       jw =transpose([0 0 0]);
103
                                                                     Creating an array with the Jacobian
                  end
104
                  Jv{c}=jv;
105
                                                                                        vectors
106
                  Jw{c}=jw;
107
                  c=c+1;
108
                  jν
109
110
               end
111
           end
112
```



```
Check the resulted values
124
           % Jv{1}
125
           % Jv{2}
126
           % Jv{3}
127
           % Jv{4}
128
           % Jv{5}
129
           % Jv{6}
130
           % Jv{7}
131
           % Jv{8}
132
           % Jv{9}
           %example DOF =3
111
           %Pc30* Pc20* Pc10* Pc31* Pc21* Pc11* Pc32* Pc22* Pc12*
112
113
           %jv31 jv21 jv11 jv32 jv22 jv12 jv33 jv23 jv13
11/
```

Set of matrices in particular order resulted from the loop

Concatenating the vectors in one single array for each link i

$$J_{vi} = \begin{bmatrix} J_{vi}^{1}, J_{vi}^{2}, \dots, J_{vi}^{i}, 0, 0, \dots, 0 \end{bmatrix}$$
$$J_{\omega i} = \begin{bmatrix} J_{\omega i}^{1}, J_{\omega i}^{2}, \dots, J_{\omega i}^{i}, 0, 0, \dots, 0 \end{bmatrix}$$

```
%Continue Jacobian
T{1}(1:4,4);
for i = 1:DOF
    Jvi{i}=[];
end
for i = 1:DOF
    for j =1:DOF
        Jvi{i}=horzcat(Jvi{i},Jv{j*(DOF)-i+1});
    end
end
for i = 1:DOF
    Jwi{i}=[];
end
for i = 1:DOF
    for j =1:DOF
        Jwi{i}=horzcat(Jwi{i},Jw{j*(DOF)-i+1});
    end
end
```


Checking the Jacobian Matrix for each link

```
Checking jacobian submatrices
155
           Jvi{1}
           simplify(Jvi{2})
156
           simplify(Jvi{3})
157
158
159
           Jwi{1}
           Jwi{2}
160
           Jwi{3}
161
162
163
```

Jacobian Submatrices

$$\begin{pmatrix}
-\frac{a_1 \sin(\theta_1)}{2} & 0 & 0 \\
\frac{a_1 \cos(\theta_1)}{2} & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

ans =

$$\begin{pmatrix}
-\frac{a_2 \sin(\theta_1 + \theta_2)}{2} - a_1 \sin(\theta_1) & -\frac{a_2 \sin(\theta_1 + \theta_2)}{2} & 0 \\
\frac{a_2 \cos(\theta_1 + \theta_2)}{2} + a_1 \cos(\theta_1) & \frac{a_2 \cos(\theta_1 + \theta_2)}{2} & 0 \\
0 & 0 & 0
\end{pmatrix}$$

ans =

$$\begin{pmatrix}
-a_2 \sin(\theta_1 + \theta_2) - a_1 \sin(\theta_1) & -a_2 \sin(\theta_1 + \theta_2) & 0 \\
a_2 \cos(\theta_1 + \theta_2) + a_1 \cos(\theta_1) & a_2 \cos(\theta_1 + \theta_2) & 0 \\
0 & 0 & -1
\end{pmatrix}$$

ans =
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

ans =
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Manipulator Inertia Matrix

$$M = \sum_{i=1}^{n} (J_{vi}^{T} m_{i} J_{vi} + J_{\omega i}^{T} I_{i} J_{\omega i})$$

Link Inertia Matrix I_i

$$I_{i} = \frac{1}{12} m_{i} a_{i}^{2} \begin{bmatrix} (w_{i}^{2} + h_{i}^{2}) & 0 & 0 \\ 0 & (a_{i}^{2} + h_{i}^{2}) & 0 \\ 0 & 0 & (w_{i}^{2} + a_{i}^{2}) \end{bmatrix}$$

Link Inertia Matrix I_i

$$I_{i} = \frac{1}{12} m_{i} a_{i}^{2} \begin{bmatrix} \left(w_{i}^{2} + h_{i}^{2}\right) & 0 & 0\\ 0 & \left(a_{i}^{2} + h_{i}^{2}\right) & 0\\ 0 & 0 & \left(w_{i}^{2} + a_{i}^{2}\right) \end{bmatrix}$$

```
%inertial Matrix Moment of inertia
                                                                                                                                                                                                                                                                                                                                                                                     %the link has a rectangular shape length a width w height h
                                                                                                                                                                                                                                                                                                                                                                                     % a-> x w-> y h-> z
                                                                                                                                                                                                                                                                                                                                                                                        syms 'Ixx_%d' 'Iyy_%d' 'Izz_%d' 'Ixy_%d' 'Ixz_%d' 'Iyz_%d' [DOF 1]
                                                                                                                                                                                                                                                                                                                                                                                    for i = 1:DOF
                                                                                                                                                                                                                                                                                                                                                                                                                  Ixx_{(i)} = 1/12*m_{(i)}*(w_{(i)}^2 + h_{(i)}^2);
                                                                                                                                                                                                                                                                                                                                                                                                            Iyy_{(i)} = 1/12*m_{(i)}*(a_{(i)}^2 + h_{(i)}^2);
I_{i} = \frac{1}{12} m_{i} a_{i}^{2} \begin{bmatrix} (w_{i}^{2} + h_{i}^{2}) & 0 & 0 \\ 0 & (a_{i}^{2} + h_{i}^{2}) & 0 \\ 0 & 0 & (w_{i}^{2} + a_{i}^{2}) \end{bmatrix} \begin{bmatrix} \frac{1 \times y_{-}(1)}{12} & \frac{1}{12} + \frac{1}{12} & \frac{1}{12} + \frac{1}{12} & \frac{
                                                                                                                                                                                                                                                                                                                                                                                                                                                   -Iyz_(i);-Ixz_(i) --Iyz_(i) Izz_(i)];
                                                                                                                                                                                                                                                                                                                                                                                                                  I{i}=simplify(I{i});
                                                                                                                                                                                                                                                                                                                                                                                        end
```


$$M = \sum_{i=1}^{n} (J_{vi}^{T} m_{i} J_{vi} + J_{\omega i}^{T} I_{i} J_{\omega i})$$

```
%Manipulator Inertia Matrix
M=zeros(DOF);
for i = 1:DOF
    M=M+m_(i)*transpose(Jvi{i})*Jvi{i} + transpose(Jwi{i})*I{i}*Jwi{i};
    M=simplify(M);
end
```


$$M = \sum_{i=1}^{n} (J_{vi}^{T} m_{i} J_{vi} + J_{\omega i}^{T} I_{i} J_{\omega i})$$

M =

$$\begin{pmatrix} \frac{a_1^2 m_1}{3} + a_1^2 m_2 + a_1^2 m_3 + \frac{a_2^2 m_2}{3} + a_2^2 m_3 + a_1 a_2 m_2 \cos(\theta_2) + 2 a_1 a_2 m_3 \cos(\theta_2) & \sigma_1 & 0 \\ \sigma_1 & \frac{a_2^2 (m_2 + 3 m_3)}{3} & 0 \\ 0 & 0 & m_3 \end{pmatrix}$$

where

$$\sigma_1 = \frac{a_2 (2 a_2 m_2 + 6 a_2 m_3 + 3 a_1 m_2 \cos(\theta_2) + 6 a_1 m_3 \cos(\theta_2))}{6}$$

Velocity Coupling Vector

Coriolis Matrix

$$B = \frac{\partial M}{\partial q_i} \dot{q}$$

$$V = C(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}$$

```
%V=C*q_dot
%C=B-0.5Bt Coriollis Matrix B=[B1 B2...Bn]
B=[];
syms 'theta_dot_%d' 'theta_ddot_%d' [DOF 1]
for i =1:DOF
    Bi{i}=diff(M,theta_(i))*theta_dot_;
    B = horzcat(B,Bi{i}); %concatenate the column matrices
end
```

Velocity Coupling Vector

Coriolis Matrix

$$B = \frac{\partial M}{\partial q_i} \dot{\boldsymbol{q}}$$

$$V = C(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}$$

$$\begin{cases}
0 & -\dot{\theta}_1 \ (a_1 \, a_2 \, m_2 \sin(\theta_2) + 2 \, a_1 \, a_2 \, m_3 \sin(\theta_2)) - \frac{a_2 \, \dot{\theta}_2 \ (3 \, a_1 \, m_2 \sin(\theta_2) + 6 \, a_1 \, m_3 \sin(\theta_2))}{6} & 0 \\
0 & -\frac{a_2 \, \dot{\theta}_1 \ (3 \, a_1 \, m_2 \sin(\theta_2) + 6 \, a_1 \, m_3 \sin(\theta_2))}{6} & 0 \\
0 & 0 & 0
\end{cases}$$

Centrifugal Coefficients Matrix

$$C(\boldsymbol{q}, \dot{\boldsymbol{q}}) = B - \frac{1}{2}\boldsymbol{B}^T$$

$$V = C(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}$$

Centrifugal Coefficients Matrix

$$C(\boldsymbol{q}, \dot{\boldsymbol{q}}) = B - \frac{1}{2}\boldsymbol{B}^T$$

$$V = C(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}$$

$$\begin{pmatrix}
0 & -\frac{a_1 a_2 \sin(\theta_2) (m_2 + 2 m_3) (2 \dot{\theta}_1 + \dot{\theta}_2)}{2} & 0 \\
\frac{a_1 a_2 \sin(\theta_2) (m_2 + 2 m_3) (2 \dot{\theta}_1 + \dot{\theta}_2)}{4} & -\frac{a_1 a_2 \dot{\theta}_1 \sin(\theta_2) (m_2 + 2 m_3)}{4} & 0 \\
0 & 0 & 0
\end{pmatrix}$$

Gravitational Acceleration Vector \boldsymbol{g}

The **g** vector is determined according to the first link twist

if
$$\alpha_1 = 0 \& d_1 = 0$$
: $g = \begin{bmatrix} 0 \\ -g_c \\ 0 \end{bmatrix}$

if
$$\alpha_1 = \frac{\pi}{2}$$
 or $\frac{-\pi}{2}$: $g = \begin{bmatrix} 0 \\ 0 \\ -g_c \end{bmatrix}$

```
%Gravitational Matrix G=[G1;G2;...;Gn]
gc = sym('g_c')
%gc =9.81; %m/s^s
if (alpha_(1)==0) & (d_(1)==0)
    g = [0;-gc;0];
    r=2;
else
    g = [0;0;-gc];
    r=3;
end
```


Gravitational Vector
$$G_i = -\sum_{j=1}^{n} m_j g^T J_{v\ j}^i$$

```
218
           G=[];
219
           Gj=0;
220
           n=0;
221
           for i =1:DOF
               Gj=0;
222
223
               s = DOF; % to get the right order in jacobian submatrices array
224
               for j=1:DOF
225
                   v=s+n;
                   Gj=Gj-(m_(j)*transpose(g)*Jv{v})
226
227
                   Gi{i} = Gj;
                   s= s-1:
228
229
               end
230
               n=n+DOF;
               G = vertcat(G,Gi{i});
231
232
           end
233
           G=simplify(G)
```

Gravitational Vector

Gravitational Vector
$$G_i = -\sum_{j=1}^n m_j g^T J_{v\ j}^i$$

$$G = \begin{pmatrix} 0 \\ 0 \\ -a & m_2 \end{pmatrix}$$

Selecting the variable parameters

234 235 236 237 238 239 240 241 242 243 244 245

Generalized Forces Vector

```
M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau
 syms 'tau_%d' [DOF 1]
 q ddot=[];
 q_dot=[];
 for i=1:DOF
     if flag_(i)==1
         q_ddot=vertcat(q_ddot,theta_ddot_(i));
         q dot=vertcat(q dot,theta dot (i));
                                                                                 Selecting the variable
     else
         q ddot=vertcat(q ddot,d ddot (i));
                                                                                 parameters
         q dot=vertcat(q dot,d dot (i));
     end
 end
```

Generalized Forces Vector (Result)

Selecting the variable parameters

$$\begin{array}{c} \mathbf{q_ddot} = \\ \begin{pmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \\ \ddot{d}_3 \end{pmatrix} \end{array}$$

$$\begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{d}_3 \end{pmatrix}$$

Generalized Forces Vector (Result) MATLAB®

Generalized Forces Vector

$$M\ddot{q} + V + G + F = \tau$$

```
tau_ = M*q_ddot + C*q_dot +G;
248
           tau =simplify(tau )
249
250
           display('tau_1')
251
           simplify(tau_(1))
252
           display('tau_2')
253
           simplify(tau_(2))
254
           display('tau_3')
255
256
           simplify(tau_(3))
```

Generalized Forces Vector (Result) MATLAB®

Generalized Forces Vector

$$M\ddot{q} + V + G + F = \tau$$

$$\begin{pmatrix} \ddot{\theta}_{1} \left(\frac{a_{1}^{2} m_{1}}{3} + a_{1}^{2} m_{2} + a_{1}^{2} m_{3} + \frac{a_{2}^{2} m_{2}}{3} + a_{2}^{2} m_{3} + a_{1} a_{2} m_{2} \cos(\theta_{2}) + 2 a_{1} a_{2} m_{3} \cos(\theta_{2}) \right) + \frac{a_{2} \ddot{\theta}_{2} \sigma_{1}}{6} - \frac{a_{1} a_{2} \dot{\theta}_{2} \sin(\theta_{2}) \left(m_{2} + 2 m_{3} \right) \left(2 \dot{\theta}_{1} + \dot{\theta}_{2} \right)}{2} \\ \frac{a_{2}^{2} \ddot{\theta}_{2} \left(m_{2} + 3 m_{3} \right)}{3} + \frac{a_{2} \ddot{\theta}_{1} \sigma_{1}}{6} - \frac{a_{1} a_{2} \dot{\theta}_{1} \dot{\theta}_{2} \sin(\theta_{2}) \left(m_{2} + 2 m_{3} \right)}{4} + \frac{a_{1} a_{2} \dot{\theta}_{1} \sin(\theta_{2}) \left(m_{2} + 2 m_{3} \right) \left(2 \dot{\theta}_{1} + \dot{\theta}_{2} \right)}{4} \\ m_{3} \left(\ddot{d}_{3} - g_{c} \right)$$

where

$$\sigma_1 = 2 a_2 m_2 + 6 a_2 m_3 + 3 a_1 m_2 \cos(\theta_2) + 6 a_1 m_3 \cos(\theta_2)$$