Quantitative Research in Political Science I

Professor Patrick Egan

Omitted Variables Bias (OVB)

BIVARIATE REGRESSION

linear model	$y = \beta_0 + \beta_1 x + u$
least-squares estimator	$\widehat{\beta}_1 \equiv \frac{cov(x,y)}{var(x)}$
expected value of estimator	$E\left(\widehat{\beta}_{1}\right) = \beta_{1} + \frac{1}{SST_{x}} E\left[\sum (x_{i} - \overline{x}) u_{i}\right]$
conditional independence assumption	E(u x) = 0
but what if true DGP ¹ is:	$y = \beta_0 + \beta_1 x + \mathbf{z}' \boldsymbol{\gamma} + v$
then the OVB formula is:	$\widehat{eta}_1 = eta_1 + \gamma' oldsymbol{\delta}_{zx}$

The scalar $\gamma' \delta_{zx}$ is the product of:

- δ_{zx} , the vector of coefficients from the separate regressions of each of the variables in **z** on x, and
- *γ*, a vector whose elements are the coefficients from the regressions of *y* on each of the elements of **z**.

 $^{^{1}}$ DGP = "data generating process": the (at least partially unobserved) social process that generates y.

MULTIPLE REGRESSION

linear model	$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$, where \mathbf{X} is an $N \times K$ matrix
least-squares estimator	$\widehat{\boldsymbol{\beta}} \equiv (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
expected value of estimator	$E\left(\widehat{\boldsymbol{\beta}}\right) = \boldsymbol{\beta} + E\left[\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{u}\right]$
conditional independence assumption	$E\left(\mathbf{u} \mathbf{X}\right)=0$
but what if true DGP is:	$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\gamma + \mathbf{v}$, where Z is an $N \times J$ matrix
then the OVB formula is:	$\widehat{oldsymbol{eta}} = oldsymbol{eta} + \left(\mathbf{X}' \mathbf{X} \right)^{-1} \left(\mathbf{X}' \mathbf{Z} \right) \gamma$

Here, $(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Z}) \gamma$ is a $K \times 1$ "correction vector," the product of:

- γ , a $J \times 1$ vector whose elements are the coefficients from the regressions of y on each of the J elements of \mathbf{z} , and
- $(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Z})$, the $K \times J$ matrix whose columns are the coefficients from the J separate regressions of each of the variables in \mathbf{Z} on the K variables in \mathbf{X} . We might write this as

$$\left(\mathbf{X}'\mathbf{X}\right)^{-1}\left(\mathbf{X}'\mathbf{Z}\right) = egin{bmatrix} \delta_{11} & \delta_{12} & \dots & \delta_{1J} \\ \delta_{21} & \ddots & & & \\ \vdots & & & & \delta_{KJ} \end{bmatrix},$$

• Thus we can write

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1} (\mathbf{X}'\mathbf{Z}) \boldsymbol{\gamma}
\begin{bmatrix} \widehat{\beta}_1 \\ \widehat{\beta}_2 \\ \vdots \\ \widehat{\beta}_K \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_K \end{bmatrix} + \begin{bmatrix} \delta_{11} & \delta_{12} & \dots & \delta_{1J} \\ \delta_{21} & \ddots & & \\ \vdots & & & & \\ \delta_{K1} & & & \delta_{KJ} \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_J \end{bmatrix}$$

So what does this tell us about the OVB formula for some generic element of $\hat{\beta}$, $\hat{\beta}_k$?

$$\widehat{\beta}_k = \beta_k + \delta_{k1}\gamma_1 + \delta_{k2}\gamma_2 + ...\delta_{kI}\gamma_I$$

2

- Thus $\hat{\beta}_k$ is biased by the sum of *J* products consisting of:
 - δ_{kj} , the coefficient on x_k in the regression of z_j on x, multiplied by
 - γ_i , the coefficient on z_i in the regression of y on \mathbf{z} .