Chapitre 7

Données catégorielles et khi-carré

Les tests khi-carré

Variables nominales Fréquences

Khi-carré (χ²) est une distribution mathématique

Choisir le bon test d'hypothèse

Identifier les variables et déterminer leurs natures

Le test khi-carré d'ajustement

Une seule variable nominale

Teste si une distribution théorique s'applique

(càd une certaine répartition de % dans les catégories de la VD pour la population)

Le test khi-carré d'ajustement

Exemple: Les hommes sont-ils plus représentés dans les professions médicales?

= répartition différente de 50%-50%

Choisir le bon test d'hypothèse

Identifier les variables et déterminer leurs natures

Le test khi-carré d'ajustement

Les hommes sont-ils plus représentés dans les professions médicales?

	M	F	Total
Fréquences observées	65	35	100

Différence significative ou erreur d'échantillonnage?

Variabilité due au hasard et erreur d'échantillonnage

Simulation de 5 échantillons de 100 personnes dans une population avec 50% d'hommes et de femmes

	Hommes	Femmes	% d'hommes
Echantillon 1	42	58	42%
Echantillon 2	56	44	56%
Echantillon 3	51	49	51%
Echantillon 4	54	46	54%
Echantillon 5	48	52	48%

Variabilité due au hasard et erreur d'échantillonnage

Simulation de 5 échantillons de 10 personnes dans une population avec 50% d'hommes et de femmes

	Hommes	Femmes	% d'hommes
Echantillon 1	8	2	80%
Echantillon 2	5	5	50%
Echantillon 3	4	6	40%
Echantillon 4	3	7	30%
Echantillon 5	4	6	40%

Le test khi-carré d'ajustement

H₀: La population présente un rapport

hommes/femmes de 1:1

H_A : La population présente un rapport

hommes/femmes différent de 1 : 1

Le test khi-carré d'ajustement

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

k = le nombre de catégories

O_i = les fréquences observées dans chaque catégorie

E_i = les fréquences attendues dans chaque catégorie selon l'hypothèse H₀

Comment calculer les fréquences attendues ?

	M	F	Total
Fréquences observées	65	35	100
Fréquences attendues	50	50	100

Fréquence attendue = N x p

Calcul du khi-carré

	M	F	Total
Fréquences observées	65	35	100
Fréquences attendues	50	50	100

$$\chi_{obs}^2 = \frac{(65-50)^2}{50} + \frac{(35-50)^2}{50} = \frac{225}{50} + \frac{225}{50} = 9$$

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Plus il y a désaccord entre O et E, plus le χ² est élevé

On met les écarts au carré pour éviter les valeurs négatives

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

La division par les fréquences attendues permet de maintenir les écarts en proportion

La division par les fréquences attendues permet de maintenir les écarts en proportion

Exemple:

N =20	M	F	% M
Fréquences observées	15	5	75%
Fréquences attendues	10	10	50%

La division par les fréquences attendues permet de maintenir les écarts en proportion

Exemple:

N =100	M	F	% M
Fréquences observées	55	45	55%
Fréquences attendues	50	50	50%

Le χ^2 calculé est une mesure du désaccord entre l'hypothèse et les données

Ajustement parfait: $\chi^2 = 0$

Plus le χ² calculé est grand et plus l'hypothèse H₀ est improbable

Si H₀ est fausse, χ² doit être élevé

Mais χ^2 peut aussi être élevé en raison de l'erreur d'échantillonnage

Calculer la probabilité d'obtenir un χ² aussi élevé par le simple fait du hasard

Comment calculer la probabilité liée à un χ^2

Utilisation de la table χ^2

Les degrés de liberté (dl):

dl = k - 1

dl	0,100	0,050	0,025	0,010	0,005
1	2,71	3,84	5,02	6,63	7,88
2	4,61	5,99	7,38	9,21	10,60
3	6,25	7,81	9,35	11,34	12,84
4	7,78	9,49	11,14	13,28	14,86
5	9,24	11,07	12,83	15,09	16,75
6	10,64	12,59	14,45	16,81	18,55

H₀: La population présente un rapport

hommes/femmes de 1:1

H_A: La population présente un rapport

hommes/femmes différent de 1 : 1

	M	F	Total
Fréquences observées	65	35	100
Fréquences attendues	50	50	100

$$\chi_{obs}^2 = \frac{(65-50)^2}{50} + \frac{(35-50)^2}{50} = \frac{225}{50} + \frac{225}{50} = 9$$

$$dl = k - 1 = 2 - 1 = 1$$

$$\chi^2_{obs} = 9$$

Quelle est la probabilité d'avoir un χ² aussi élevé que 9 avec 1 dl ?

dl	0,100	0,050	0,025	0,010	0,005
1	2,71	3,84	5,02	6,63	7,88
2	4,61	5,99	7,38	9,21	10,60
3	6,25	7,81	9,35	11,34	12,84
4	7,78	9,49	11,14	13,28	14,86
5	9,24	11,07	12,83	15,09	16,75
6	10,64	12,59	14,45	16,81	18,55

$$dl = k - 1 = 2 - 1 = 1$$

$$\chi_{obs}^2 = 9$$

$$\chi_{0.05}^2 = 3,84$$

Puisque 9 > 3,84, alors p < 0,05, rejeter H_0 NB: p = 0,0027

Conclusion:

Nous avons rejeté l'hypothèse H₀ selon laquelle la proportion Hô/Fê est de 1:1

Il y a plus d'hommes que de femmes qui travaillent dans le monde médical

Test khi-carré d'ajustement avec plus de deux catégories

Test et formule identiques

Seuls changent les dl = k - 1

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

On doit nécessairement s'attendre à un χ^2 de plus en plus élevé en fonction du nombre de catégories

dl	0,100	0,050	0,025	0,010	0,005
1	2,71	3,84	5,02	6,63	7,88
2	4,61	5,99	7,38	9,21	10,60
3	6,25	7,81	9,35	11,34	12,84
4	7,78	9,49	11,14	13,28	14,86
5	9,24	11,07	12,83	15,09	16,75
6	10,64	12,59	14,45	16,81	18,55

Les fréquences attendues

Comment déterminer les fréquences attendues ?

- 1. Parfois évident Ex: rapport hô/fê
- 2. Théorie
- 3. Etude antérieure

Une grande marque de soda a créé une nouvelle boisson gazeuse qui existe en trois formules (A, B et C)

On décide de tester les trois formules sur 120 sujets

30 sujets ont choisi la formule A, 54 ont choisi la B et 36 la C

H₀: La préférence se répartit selon un

rapport de 1:1:1

H_A: La préférence se répartit selon un

rapport différent de 1:1:1

	A	В	C	Total
Fréquences observées	30	54	36	120
Fréquences attendues	40	40	40	120

$$\chi_{obs}^2 = \frac{(30-40)^2}{40} + \frac{(54-40)^2}{40} + \frac{(36-40)^2}{40} = 7,8$$

dl	.500	.250	.100	.050	.025	.010	.005
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60
3	2.37	4.11	6.25	7.82	9.35	11.35	12.84
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75
•••	•••	•••	•••	•••	•••	•••	• • •

$$\chi^2_{obs} = 7.8$$

dl = 2

$$\chi^2_{0.05} = 5,99$$

Puisque 7,8 > 5,99, alors p < 0,05, rejeter H_0

NB: p = 0.0202

Exemple

Conclusion:

On peut rejeter l'hypothèse selon laquelle les trois formules sont également appréciées. Selon les résultats, la formule B semble plus appréciée que les autres.

Résumé des étapes du test khi-carré

- 1. Poser une hypothèse sur le rapport entre les différentes catégories
- 2. Récolter des observations et calculer le khicarré d'ajustement sur ces observations

Résumé des étapes du test khi-carré

3. Calculer la probabilité d'obtenir ces observations si l'hypothèse posée est correcte : comparer le khi-carré avec la valeur critique de la table

4. Tirer une conclusion : Si le khi-carré dépasse la valeur critique, alors on rejette l'hypothèse H₀

Le test khi-carré d'indépendance

- 2 variables nominales (ou plus)
 Ces variables sont-elles indépendantes?
 Exemples:
- Le genre influence le fait de travailler à temps partiel ?
- Le fait d'être croyant influence le fait de se marier ?

Choisir le bon test d'hypothèse

Identifier les variables et déterminer leurs natures

Les tables de contingence

Exemple de l'étude de Pugh (1983):

Le fait de souligner la faute de la victime influence-t-il le verdict de culpabilité?

Les tables de contingence

	Vei		
Faute	Coupable	Non coupable	Total
Légère	153	24	177
Grave	105	76	181
Total	258	100	358

Le test khi-carré d'indépendance

H₀: Le verdict est indépendant de la faute attribuée à la victime

H_A: Le verdict n'est pas indépendant de la faute attribuée à la victime

Le test khi-carré d'indépendance

Pour calculer le khi-carré, il faut calculer les fréquences attendues si H₀ est vraie

Càd si les variables sont indépendantes

Verdict			
Faute	Coupable	Non coupable	Total
Légère	153	24	177
Grave	105	76	181
Total	258	100	358

Probabilité simple : total marginal / total général

 $P(coupable) = T_C / N = 258/358 = 0,72$

	Verdict		
Faute	Coupable	Non coupable	Total
Légère	153	24	177
Grave	105	76	181
Total	258	100	358

Probabilité conjointe : Cellule / total général

P(Légère, non coupable) = 24/358 = 0,067

Le test khi-carré d'indépendance

Si deux événements sont indépendants:

Probabilté conjointe se calcule en multipliant les probabilité simples

(loi multiplicative)

	Verdict		
Faute	Coupable	Non coupable	Total
Légère	153	24	177
Grave	105	76	181
Total	258	100	358

Pour chaque cellule:

$$P(E_{ij}) = \frac{L_i}{N} \times \frac{C_j}{N}$$

Faute	Coupable	Non coupable	Total
Légère	p = 0.356	p = 0.138	177
Grave	p = 0.364	p = 0.141	181
Total	258	100	358

Pour chaque cellule:

$$P(E_{ij}) = \frac{L_i}{N} \times \frac{C_j}{N}$$

Exemple: $(177/358) \times (258/358) = 0,356$

	Vei		
Faute	Coupable	Non coupable	Total
Légère	127,56	49,44	177
Grave	130,44	50,56	181
Total	258	100	358

Pour chaque cellule:

$$E_{ij} = P(E_{ij}) \times N$$

Exemple: $0,356 \times 358 = 127,56$

Le test khi-carré d'indépendance

$$P(E_{ij}) = \frac{L_i}{N} \times \frac{C_j}{N}$$

$$E_{ij} = P(E_{ij}) \times N$$

$$E_{ij} = \frac{L_i}{N} \times \frac{C_j}{N} \times N$$

$$E_{ij} = \frac{L_i \times C_j}{N}$$

Verdict			
Faute	Coupable	Non coupable	Total
Légère	153	24	177
Grave	105	76	181
Total	258	100	358
	177 ~ 259	Q	

$$\mathbf{E_{11}} = \frac{177 \times 258}{358} = 127,559$$

Verdict

Faute	Coupable	Non coupable
Légère	153 (127,56)	24 (49,441)
Grave	105 (130,44)	76 (50,559)

$$\chi_{obs}^2 = \sum \frac{(O-E)^2}{E}$$

Verdict

Faute	Coupable	Non coupable
Légère	153 (127,559)	24 (49,44)
Grave	105 (130,441)	76 (50,56)

$$= \frac{\left(153 - 127,559\right)^{2} + \left(24 - 49,441\right)^{2} + \left(105 - 130,441\right)^{2} + \left(76 - 50,559\right)^{2}}{49,441} + \frac{\left(105 - 130,441\right)^{2} + \left(76 - 50,559\right)^{2}}{50,559}$$

=35,93

Degrés de liberté

$$dI = (L-1)(C-1)$$

L = le nombre de lignes de la table

C = le nombre de colonnes de la table

Le test khi-carré d'indépendance

$$\chi_{obs}^2 = 35,93$$

$$dI = (2-1)(2-1) = 1$$

$$\chi^2_{0.05} = 3,84$$

Puisque 35,93 > 3,84, alors p < 0,05 rejeter H_0

NB: p = 0,000000002

Le test khi-carré d'indépendance

Conclusion:

Les deux variables ne sont pas indépendantes

Le jugement de culpabilité est influencé par le fait que l'avocat du prévenu présente ou non la victime comme fautive

1. L'indépendance des observations

Le résultat d'un sujet ne doit pas influencer le résultat d'un autre

Violation la plus fréquente: les mêmes sujets sont utilisés plusieurs fois dans l'étude

2. Les petites fréquences attendues

Si la fréquence attendue de l'une des cellules est petite, le test khi-carré risque de devenir inexact

Convention: toutes les fréquences attendues au moins égales à 5

2. Les petites fréquences attendues

Que faire en cas de petite fréquence ?

- 1) Regrouper les catégories
- 2) Test exact de Fisher (pour tables 2x2 ou 2x3)
- 3) Test khi-carré d'ajustement (2 catégories)

 ——→ test avec binomiale

3. L'inclusion des non-occurrences

Erreur classique: oublier d'inclure les nonoccurrences

Risque d'erreur grave dans la conclusion

Exemple:

Etude de l'influence de l'alcool sur les accidents de la route

	Sobre	lvre	Total
Fréquences observées	48	10	58

	Sobre	lvre	Total
Fréquences observées	48	10	58
Fréquences attendues	29	29	58

$$\chi_{obs}^{2} = \frac{(48-29)^{2}}{29} + \frac{(10-29)^{2}}{29} = 24,9$$

$$\chi_{obs}^2 = 24,9$$

dl = 1

$$\chi_{0.05}^2 = 3,84$$

Puisque 24,9 > 3,84, alors rejeter H_0

Conclusion:

Les personnes sobres commettent significativement plus d'accidents que les personnes en état d'ivresse

Exemple corrigé par l'ajout des nonoccurrences

	Sobre	lvre	Total
Accident	48	10	58
Pas d'accident	1408	42	1450
Total	1456	52	1508

	Sobre	Ivre	Total
Accident	48	10	58
Pas d'accident	1408	42	1450
Total	1456	52	1508

P (Accident | Sobre) = 48 / 1456 = 0.03

P (Accident | Ivre) = 10 / 52 = 0,19

Presque tous les héroïnomanes ont commencé par du cannabis

Donc la consommation de cannabis conduit à consommer des drogues plus fortes

	Héroïne	Non héroïne	Total
Cannabis	40		
Pas cannabis	15		
Total	55		

73% des héroïnomanes ont consommé du Cannabis

	Héroïne Non héroïne	Total
Coca	55	
Pas coca	0	
Total	55	

100% des héroïnomanes ont consommé du coca

Les mesures d'association

Le test khi-carré d'indépendance ne renseigne pas sur le degré d'association de deux variables

Une variable peut en influencer une autre plus ou moins fortement

Effet du genre sur le tabagisme

	Non-fumeur	Fumeur	Total
Hommes	350	150	500
Femmes	400	100	500
Total	750	250	1000

$$\chi_{obs}^2 = 13,333$$

Hommes: 30% fumeurs

Femmes: 20% fumeuses

Effet du genre sur le fait de faire des courses

	Courses	Non-courses	Total
Hommes	4	15	19
Femmes	15	4	19
Total	19	19	38

 $\chi_{obs}^2 = 12,737$

Hommes: 21% courses

Femmes: 79% courses

Le coefficient phi (Φ)

= corrélation entre deux variables dichotomiques

$$\phi = \sqrt{\frac{\chi^2}{N}}$$

Valeur entre 0 et 1

Le coefficient phi (Φ)

Coefficient phi pour les deux exemples:

1. Etude sur le tabagisme

$$\phi = \sqrt{\frac{13,333}{1000}} = 0,12$$

2. Etude sur les courses

$$\phi = \sqrt{\frac{12,737}{38}} = 0,58$$

Le Phi de Cramér

= extension du phi pour des tables plus grande

$$\phi_c = \sqrt{\frac{\chi^2}{N(k-1)}}$$

k = nombre de catégories de la plus petite variable

Les rapports de chance

	Crise	Pas de crise	Total
Aspirine	104	10933	11037
Placebo	189	10845	11034
Total	293	21778	22071

Les rapports de chance

Risque de faire une crise cardiaque

Groupe Aspirine: 104/10933 = 0,0095124

Groupe placebo: 189/10845 = 0,0174274

Les rapports de chance

Calculer un rapport de ces deux chances

0,0174274/0,0095125 = 1,83

Une personne du groupe placebo a 1,83 fois plus de risque de faire une crise cardiaque qu'une personne du groupe aspirine