Matemática Computacional MEBiol, MEBiom e MEFT Aula 5 - Resolução numérica de equações não lineares

Ana Leonor Silvestre

Instituto Superior Técnico, 1º Semestre, 2020/2021

Sumário da Aula 5

Cap.2 - Resolução numérica de equações não lineares

Equações não lineares escalares. Localização de raízes. Métodos iterativos, convergência, majorações dos erros. Método da bisseção: interpretação geométrica, algoritmo, convergência e estimativas de erro.

Exercício.

Implementação computacional em Matlab.

Resolução numérica de equações não lineares Exemplo: equação do foguete de Tsiolkovsky

A velocidade de um projétil é dada em cada instante t por

$$v(t) = u \ln \left(\frac{m_0}{m_0 - qt}\right) - gt$$

onde

- u é a velocidade de expulsão dos gases resultantes da combustão (em relação ao projétil),
 - m_0 é a sua massa inicial,
 - ullet q é o coeficiente de consumo do combustível e
 - $g = 9.8 \text{ m/s}^2$ é a aceleração da gravidade.

Resolução numérica de equações não lineares Exemplo: equação do foguete de Tsiolkovsky

Problema

Determinar o instante t em que a velocidade atinge o valor

$$v = 1000 \, m/s$$
,

quando u = 2200 m/s, $m_0 = 16 \times 10^4$ kg e q = 2680 Kg/s.

Pretende-se determinar $t\ (t>0)$ tal que

$$v(t) = 1000$$

Equação não linear

$$2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680t} \right) - 9.8t = 1000$$

Localização gráfica das soluções de v(t)=1000

Figura: Localização da solução através de esboço gráfico

Será que a equação tem solução? Haverá apenas uma solução?

Localização e separação de raízes

Resultado importante para assegurar existência e unicidade de solução para uma equação f(x) = 0:

Teorema

Seja f uma função contínua em $\left[a,b\right]$ e diferenciável em $\left]a,b\right[$. Se

- f(a)f(b) < 0
- f' não se anula em]a,b[

então existe um e um só $z\in]a,b[$ tal que f(z)=0, ou seja, no intervalo]a,b[, a equação f(x)=0 uma e uma só solução.

Aplicação do resultado de existência e unicidade

Voltando à equação do foguete de Tsiolkovsky, consideramos a equação não linear na variável t

$$2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680t} \right) - 9.8t - 1000 = 0$$

e a função

$$f(t) := 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680t} \right) - 9.8t - 1000$$

definida para t em [0, 59.7].

Tem-se

$$f(10) = -694.691$$
 $f(20) = -298.47$ $f(30) = 241.951$

Aplicação do resultado de existência e unicidade

Recordamos a função

$$f(t) := 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680t} \right) - 9.8t - 1000$$

Vamos tomar [a,b]=[20,30]. Tem-se $f\in C^2([20,30])$ com

$$f'(t) = -9.8 + \frac{589600}{16000 - 268t}, \quad f''(t) = \frac{9875800}{(4000 - 67t)^2}.$$

Como

$$f''(t) > 0, \forall t \in [20, 30]$$

a função f^\prime é monótona crescente em [20,30] e uma vez que

tem-se f'(t) > 0 em [20, 30].

Aplicação do resultado de existência e unicidade

Recordamos a equação

$$f(t) := 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680t} \right) - 9.8t - 1000 = 0$$

Como $f \in C^1([20, 30])$ e

- f(20)f(30) < 0
- ▶ f' não se anula em]20,30[(mostrámos que f'>0 em [20,30])

conclui-se que a equação f(t)=0 tem em]20,30[uma e uma só solução.

Assim,

$$\exists^1 z \in]20, 30[: v(z) = 1000]$$

Como calcular a solução?

Solução obtida com o software MATLAB

$$\begin{split} &\mathsf{fzero}(@(t)2200*\log(16*10^4/(16*10^4-2680*t)) - 9.8*t - 1000, 20) \\ &\mathsf{ans} = 25.9424 \\ &\mathsf{fzero}(@(t)2200*\log(16*10^4/(16*10^4-2680*t)) - 9.8*t - 1000, 30) \\ &\mathsf{ans} = 25.9424 \end{split}$$

$$\begin{aligned} &\mathsf{fzero}(@(t)2200*\log(16*10^4/(16*10^4-2680*t)) - 9.8*t - 1000, [20, 30]) \\ &\mathsf{ans} = 25.9424 \end{aligned}$$

Nota: The fzero command is a function file. The algorithm, created by T. Dekker, uses a combination of **bisection**, **secant** and inverse quadratic interpolation methods.

Métodos iterativos, convergência, majorações dos erros

Um método iterativo para o cálculo da solução z de uma equação (não linear) de variável real é um processo que gera, a partir de iteradas iniciais $x_{-n_0},...,x_0$, uma sucessão $\{x_n\}_{n\in\mathbb{N}}$ de números reais, com iteradas x_n facilmente calculáveis, e a qual, em certas condições, é convergente para z. Exemplo: método da bisseção, método de Newton, método da secante,...

Sendo \tilde{z} uma aproximação para um zero z de uma função f (por exemplo, um termo x_n da sucessão gerada por um método iterativo), podemos majorar o erro $z-\tilde{z}$ usando o seguinte resultado elementar.

Teorema

Seja $f\in C^1([a,b])$, e sejam $z,\tilde{z}\in [a,b]$. Se f(z)=0 e f' não se anula em [a,b] então

$$|z - \tilde{z}| \le \frac{|f(\tilde{z})|}{\min_{x \in [a,b]} |f'(x)|}.$$

Demonstração:

Pelo Teorema de Lagrange, existe $c \in]a,b[$ tal que

$$f(z) - f(\tilde{z}) = f'(c)(z - \tilde{z}).$$

 $\mathsf{Como}\ f(z) = 0\ \mathsf{e}\ f'\ \mathsf{n\~{a}o}\ \mathsf{se}\ \mathsf{anula}\ \mathsf{em}\ [a,b] \mathsf{,}\ \mathsf{tem\text{-se}}$

$$f(\tilde{z}) = -f'(c)(z - \tilde{z})$$

е

$$|z - \tilde{z}| = \frac{|f(\tilde{z})|}{|f'(c)|} \le \frac{|f(\tilde{z})|}{\min_{x \in [a,b]} |f'(x)|}.$$

Em que consiste o método da bisseção e quais as suas propriedades?

Método da bisseção - Descrição geométrica

Seja $f \in C([a,b])$ tal que f(a)f(b) < 0, pelo que f tem pelo menos um zero z no intervalo [a,b]. Suponhamos que z é o único zero de f em [a,b].

Figura: Algumas iterações do método da bisseção (aqui x_i designam pontos médios de intervalos que contêm z)

Método da bisseção

O método da bisseção consiste em construir, a partir do intervalo $I_0 := [a,b]$,

lacktriangle uma sucessão de intervalos $\{I_n\}_{n\in\mathbb{N}_0}$

$$I_n = [a_n, b_n] \subset [a, b], n \in \mathbb{N},$$

lacktriangle uma sucessão de pontos médios $\{x_n\}_{n\in\mathbb{N}}$ desses intervalos, de modo que z, solução da equação f(x)=0, vai sendo sucessivamente confinado a intervalos cada vez mais pequenos.

Método da bisseção - Algoritmo

Para cada $n\in\mathbb{N}_0$, calculamos x_{n+1} e selecionamos o subintervalo $I_{n+1}=[a_{n+1},b_{n+1}]$ de $I_n=[a_n,b_n]$ do seguinte modo:

- $x_{n+1} = \frac{a_n + b_n}{2};$
- se $f(x_{n+1}) = 0$ então $z = x_{n+1}$ e o algoritmo termina;
- se $f(a_n)f(x_{n+1}) < 0$ então $a_{n+1} = a_n$, $b_{n+1} = x_{n+1}$;
- se $f(b_n)f(x_{n+1}) < 0$ então $a_{n+1} = x_{n+1}$, $b_{n+1} = b_n$;
- ightharpoonup se um certo **critério de paragem** for satisfeito, passa-se de n para n+1 e repete-se as instruções acima.

Questão: Critério de paragem eficaz?

Método da bisseção - Algoritmo alternativo

Em alternativa, o método da bisseção pode descrever-se analiticamente pela fórmula (Exercício):

▶
$$x_1 = \frac{a+b}{2}$$
,

$$x_{n+1} = x_n + \frac{b-a}{2^{n+1}} \operatorname{sign}[f(a)f(x_n)], \ n \in \mathbb{N}.$$

Será que a sucessão $\{x_n\}_{n\in\mathbb{N}}$ gerada pelo método da bisseção converge para z?

Exemplo: aplicação do método da bisseção à equação do foguete de Tsiolkovsky

$$f(x) := 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680x} \right) - 9.8x - 1000 = 0$$

n	a_{n-1}	$f(a_{n-1})$	b_{n-1}	$f(b_{n-1})$	x_n	$f(x_n)$	
1	20	<0	30	>0	25	-51.3365	
2	25	<0	30	>0	27.5	88.6573	
3	25	<0	27.5	>0	26.25	17.1234	
4	25	<0	26.25	>0	25.625	-17.4767	
5	25.625	<0	26.25	>0	25.9375	-0.27089	
6	25.9375	<0	26.25	>0	26.0938	8.40524	
7	25.9375	<0	26.0938	>0	26.0157	4.06403	
8	25.9375	<0	26.0157	>0	25.9766	1.89509	
9	25.9375	<0	25.9766	>0	25.9571	0.814501	
10	25.9375	<0	25.9571	>0	25.9473	0.271713	

Método da bisseção - Convergência e estimativas de erro

Teorema

Seja $f \in C([a,b])$ tal que f(a)f(b) < 0 e suponhamos que a equação f(x) = 0 tem apenas uma raiz z em [a,b].

Então o método da bisseção converge para z e são válidas as seguintes majorações dos erros:

(i)
$$|z-x_n| \leq \frac{b-a}{2^n}, n \in \mathbb{N};$$

(Estimativa a priori)

(ii)
$$|z - x_{n+1}| \le |x_{n+1} - x_n| = \frac{b_n - a_n}{2}, n \in \mathbb{N}.$$

(Estimativas a posteriori)

Método da bisseção - Convergência e estimativas de erro

Demonstração:

- ▶ $f \in C([a,b])$ e f(a)f(b) < 0 garantem a existência de um zero de f em [a,b[.
- A sucessão de intervalos $\{I_n\}_{n\in\mathbb{N}_0}$ e a sucessão de números reais $\{x_n\}_{n\in\mathbb{N}}$ geradas pelo método da bisseção satisfazem:
 - 1. $z \in I_n = [a_n, b_n], \forall n \in \mathbb{N}_0$,
 - 2. $x_n, x_{n+1} \in I_n, \forall n \in \mathbb{N}$, e tem-se $x_n = a_n$ ou $x_n = b_n$,
 - 3. $|I_n| := b_n a_n = \frac{b-a}{2^n}, \forall n \in \mathbb{N}_0.$

Método da bisseção - Estimativas de erro

Demonstração (cont.):

Estimativas a posteriori

▶ Para cada $n \in \mathbb{N}_0$, como $z, x_{n+1} \in I_n$, tem-se

$$|z - x_{n+1}| \le \begin{cases} x_{n+1} - a_n, & \text{se } z \in [a_n, x_{n+1}], \\ b_n - x_{n+1}, & \text{se } z \in [x_{n+1}, b_n], \end{cases}$$
 (1)

е

$$x_{n+1} - a_n = b_n - x_{n+1} = \frac{b_n - a_n}{2}.$$

Assim,

$$|z - x_{n+1}| \le \frac{b_n - a_n}{2}.\tag{2}$$

Método da bisseção - Estimativas de erro

Demonstração (cont.):

▶ De (1) resulta também

$$|z - x_{n+1}| \le \begin{cases} x_{n+1} - x_n = |x_{n+1} - x_n|, \text{ se } x_n = a_n, \\ x_n - x_{n+1} = |x_{n+1} - x_n|, \text{ se } x_n = b_n. \end{cases}$$

Estimativa a priori

▶ Usando o facto de

$$b_n - a_n = (b - a)/2^n,$$

da desigualdade (2) obtém-se

$$|z - x_{n+1}| \le \frac{b-a}{2^{n+1}}.$$

Método da bisseção - Convergência

Demonstração (cont.):

Convergência Como

$$0 \le |z - x_n| \le \left(\frac{1}{2}\right)^n (b - a), \, \forall n \in \mathbb{N},$$

е

$$\lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0,$$

tem-se

$$\lim_{n \to \infty} |z - x_n| = 0$$

e portanto $\lim_{n\to\infty} x_n = z$.

Exemplo: aplicação do método da bisseção à equação do foguete de Tsiolkovsky

$$f(x) := 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680x} \right) - 9.8x - 1000 = 0$$

Por aplicação do método da bisseção, obtivémos:

$$a_9 = 25.9375, b_9 = 25.9571, x_{10} = 25.9473$$

Majoração do erro de x_{10} :

$$|z - x_{10}| \le (b_9 - a_9)/2 \approx 0.0098$$

ou

$$|z - x_{10}| \le \frac{|f(x_{10})|}{\min_{x \in [a_9, b_9]} |f'(x)|} = \frac{|f(x_{10})|}{|f'(a_9)|} = \frac{0.271713}{55.3582} \approx 0.0050$$

Método da bisseção - Algoritmo

Fixar $\varepsilon>0$ pequeno. Para cada $n\in\mathbb{N}_0$, calculamos x_{n+1} e selecionamos o subintervalo $I_{n+1}=[a_{n+1},b_{n+1}]$ de $I_n=[a_n,b_n]$ do seguinte modo:

- $x_{n+1} = \frac{a_n + b_n}{2};$
- ▶ se $|x_{n+1}-x_n|<\varepsilon$ (ou $\frac{b_n-a_n}{2}<\varepsilon$) então o algoritmo termina;
- ightharpoonup se $|x_{n+1}-x_n|\geq arepsilon$ (ou $rac{b_n-a_n}{2}\geq arepsilon$) então
 - se $f(x_{n+1}) = 0$ então $z = x_{n+1}$ e o algoritmo termina;
 - se $f(a_n)f(x_{n+1}) < 0$ então $a_{n+1} = a_n$, $b_{n+1} = x_{n+1}$;
 - se $f(b_n)f(x_{n+1}) < 0$ então $a_{n+1} = x_{n+1}$, $b_{n+1} = b_n$;
- ightharpoonup passa-se de n para n+1 e repete-se as instruções acima.

Em resumo:

- O método da bisseção é um método iterativo a um passo.
- ▶ É sempre convergente desde que f(a)f(b) < 0, mas a convergência pode ser muito lenta. Não se pode afirmar que o método tem convergência linear mas apenas que tem semelhanças com métodos com convergência linear. Com efeito, a sucessão dos majorantes dos erros $\{\varepsilon_n\}_{n\in\mathbb{N}}$, $\varepsilon_n=(b-a)/2^n$, converge linearmente com fator assintótico $K_\infty=\frac{1}{2}$.
- A estimativa a posteriori $|z-x_{n+1}| \leq \frac{b_n-a_n}{2}$ pode ser facilmente utilizada como critério de paragem para o método, em particular na sua implementação computacional.
- ▶ É útil para a localização de raízes e para a inicialização de métodos mais rápidos cuja convergência só é garantida com uma boa aproximação inicial (p. ex., o método de Newton).

Exercício

Considere a equação $\sin(x) - e^{-x} = 0$.

- (a) Verifique que a equação tem um número infinito de soluções em \mathbb{R} .
- (b) Prove que, no intervalo [0.5, 0.7], a equação tem uma e uma só raiz, a qual será designada por z.
- (c) Partindo de $I_0=[0.5,0.7]$, calcule a terceira iterada do método da bisseção para aproximar z e um majorante do erro dessa aproximação.
- (d) Determine o número m de iterações necessárias para garantir $\vert z-x_m\vert<10^{-6}.$

Resolução

(a)
$$\sin(x) - e^{-x} = 0 \iff \sin(x) = e^{-x}$$

A equação tem um número infinito de soluções, todas positivas.

(b)
$$I := [0.5, 0.7], f(x) := \sin(x) - e^{-x},$$

•
$$f(0.5) = -0.127105, f(0.7) = 0.147632 \Longrightarrow f(0.5)f(0.7) < 0$$

$$f'(x) := \cos(x) + e^{-x}$$

$$cos(x) > 0, \forall x \in I, \quad e^{-x} > 0, \forall x \in \mathbb{R} \Longrightarrow f'(x) > 0, \forall x \in I$$

Resolução

(c) Os intervalos resultantes do método da bisseção e os correspondentes pontos médios são:

n	a_{n-1}	$f(a_{n-1})$	b_{n-1}	$f(b_{n-1})$	x_n	$f(x_n)$	
1	0.5	<0	0.7	>0	0.6	0.0158308	
2	0.5	<0	0.6	>0	0.55	-0.0542626	
3	0.55	<0	0.6	>0	0.575		

A estimativa de erro é:

$$|z - x_3| \le (0.6 - 0.55)/2 = (0.7 - 0.5)/2^3 = 0.025$$

Alternativa:

$$f(0.575) = -0.0188701, \ f(0.6) > 0 \Rightarrow z \in [0.575, 0.6]$$
 Como $f'>0$ e decrescente em $[0.575, 0.6]$, tem-se

$$|z - x_3| \le \frac{|f(0.575)|}{\min_{x \in [0.575, 0.6]} |f'(x)|} = \frac{|f(0.575)|}{f'(0.6)}$$

$$= \frac{0.0188701}{1.37415} = 0.0137322$$

Resolução

(d) Sabemos que

$$|z - x_m| \le \frac{0.7 - 0.5}{2^m}.$$

Se
$$(0.7 - 0.5)/2^m < 10^{-6}$$
 então $|z - x_m| < 10^{-6}$.

Determinamos m a partir de $(0.7-0.5)/2^m < 10^{-6}$. Obtém-se

$$(0.7 - 0.5)/2^m < 10^{-6} \iff 2^m > 0.2 \times 10^6$$

 $\iff m > \log_2(0.2 \times 10^6) = 17.6096.$

Devemos efetuar 18 iterações.

Métodos com convergência mais rápida?

Método de Newton ou da tangente

Seja $f\in C^1([a,b])$ tal que f(a)f(b)<0 e f' não se anula em [a,b]. Seja z a solução da equação

$$f(x) = 0$$

no intervalo [a, b].

Figura: Interpretação geométrica do método de Newton

Método de Newton - Algoritmo

Partindo de uma aproximação inicial x_0 de z, para cada $n \in \mathbb{N}_0$, calculamos a iterada genérica x_{n+1} a partir de x_n do seguinte modo:

considera-se a reta tangente à curva (x,f(x)) no ponto $(x_n,f(x_n))$, a qual é dada por

$$r(x) = f(x_n) + f'(x_n)(x - x_n),$$

ightharpoonup obtém-se x_{n+1} como sendo a abcissa do ponto de interseção desta reta com o eixo dos x

$$r(x_{n+1}) = 0 \iff f(x_n) + f'(x_n)(x_{n+1} - x_n) = 0 \iff$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Exemplo: aplicação do método de Newton à equação do foguete de Tsiolkovsky

$$f(x) := 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680x} \right) - 9.8x - 1000 = 0$$
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n = 0, 1, 2, \dots$$

n	x_n	$f(x_n)$	
0	20	-298.47	
1	26.54344995	33.632	
2	25.94870856	0.349717	
3	25.94239368	0.0000386363	

Outra aplicação do método de Newton

$$f(x) := \sin(x) - e^{-x} = 0, \quad z \in [0.5, 0.7]$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$$

$$\begin{array}{c|cccc} n & x_n & f(x_n) \\ \hline 0 & 0.7 & 0.147632 \\ 1 & 0.5829640352 & -0.00774043 \\ 2 & 0.5885203977 & -0.0000171231 \\ 3 & 0.5885327439 & -1.13533 \times 10^{-10} \end{array}$$

Sabemos que $z \in [0.575, 0.6]$. Como f'>0 e decrescente em [0.575, 0.6], tem-se

$$|z - x_3| \le \frac{|f(x_3)|}{\min_{x \in [0.575, 0.6]} |f'(x)|} = \frac{|f(x_3)|}{f'(0.6)}$$

$$= \frac{1.13533 \times 10^{-10}}{1.37415} = 0.826205 \times 10^{-10}$$

Método de Newton - Condições suficientes de convergência

Teorema

Sejam $f \in C^2([a,b])$ e $x_0 \in [a,b]$ satisfazendo as seguintes condições:

- (i) f(a)f(b) < 0;
- (ii) $f'(x) \neq 0, \forall x \in [a, b];$
- (iii) f'' não muda de sinal em [a, b];
- (iv) $f(x_0)f''(x) \ge 0, \forall x \in [a, b].$

Então a equação f(x)=0 tem uma e uma única solução $z\in]a,b[$ e o método de Newton com iterada inicial x_0 converge monotonamente para z.

Demonstração:

Suponhamos que f' < 0 em [a,b], $f'' \ge 0$ em [a,b] e $f(x_0) \ge 0$. Os outros casos têm análise semelhante. Tem-se então

$$x_1 - x_0 = -\frac{f(x_0)}{f'(x_0)} \ge 0$$

$$0 = f(z) = f(x_0) + f'(x_0)(z - x_0) + \frac{f''(\xi_0)}{2}(z - x_0)^2$$

$$z - x_1 = z - x_0 + \frac{f(x_0)}{f'(x_0)} = -\frac{f''(\xi_0)}{2f'(x_0)}(z - x_0)^2 \ge 0$$

pelo que $x_0 \le x_1 \le z$ e $f(x_1) \ge 0$.

Repetindo o mesmo argumento com x_1 e sucessivamente com uma iterada genérica x_n satisfazendo $f(x_n) \geq 0$ e $f'(x_n) < 0$, obtém-se

$$a \le x_0 \le \dots \le x_n \le x_{n+1} \le z \le b, \quad \forall n \in \mathbb{N}.$$

Demonstração (cont.):

Portanto, a sucessão $\{x_n\}_{n\in\mathbb{N}}$ é monótona e limitada, logo convergente.

Passando ao limite em ambos os lados da igualdade

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

o que é possível dado que a função $x\mapsto x-\frac{f(x)}{f'(x)}$ é contínua, e usando a unicidade da raíz de f , conclui-se que

$$\lim_{n\to\infty} x_n = z.$$