

BAM format

Alistair Ward
USTAR Center for Genetic Discovery
University of Utah

What are we going to discuss?

BAM format

- Quick recap how are BAM files generated?
- Description of format
- Important attributes
- How to manipulate BAM files

FASTA format

We start with a reference genome to map to

The reference sequence (chromosome)

Sequence description

FASTQ format

and sequence reads to map

DNA sequence

the unique instrument name					
the run id					
the flowcell id					
flowcell lane					
tile number within the flowcell lane					
'x'-coordinate of the cluster within the tile					
'y'-coordinate of the cluster within the tile					
the member of a pair, 1 or 2 (paired-end or mate-pair reads only)					
Y if the read is filtered, N otherwise					
0 when none of the control bits are on, otherwise it is an even number					
index sequence					

Quality scores

 $Q=-10 log_{10}(P_{err})$

Fragment a genome —> DNA library

PCR amplification

Sequence reads (ends of DNA fragment for mate pairs)

Fragment a genome —> DNA library

PCR amplification

Sequence reads (ends of DNA fragment for mate pairs)

Fragment a genome —> DNA library

PCR amplification

Sequence reads (ends of DNA fragment for mate pairs)

We no longer have any positional information or relational information between fragments

Store the read information in FASTQ file

Mapping to a reference genome

This is like a jigsaw puzzle

Could fit here - but there are differences

Could fit here as well.

mapped uniquely
mapped to multiple locations
unmapped

mapped uniquely
mapped to multiple locations
unmapped

Both mates map uniquely

One mate maps uniquely, the other is unmapped

mapped uniquely
mapped to multiple locations
unmapped

One mate maps uniquely, the other maps to multiple locations

Use fragment length distribution to determine most likely location

What needs to be stored?

Where did the read map?
How confident are we that we are correct?

Which strand does the read come from?

Are there any differences with the reference?

What is the DNA sequence?

What are the quality scores for each base in the read?

What do we know about the mate?

Which read group does the read belong to?

What needs to be stored?

Where did the read map?
How confident are we that we are correct?

Which strand does the read come from?

Are there any differences with the reference?

What is the DNA sequence?

What are the quality scores for each base in the read?

What do we know about the mate?

Which read group does the read belong to?

What needs to be stored?

Where did the read map?
How confident are we that we are correct?
Which strand does the read come from?

Are there any differences with the reference?
What is the DNA sequence?
What are the quality scores for each base in the read?
What do we know about the mate?
Which read group does the read belong to?

Store the alignment

Standardise alignment formats

SAM - Sequence Alignment/Map

- Compressed (BAM) saves space
- Can be indexed allowing fast access of regions
- Simple format
- Can represent single and paired end reads
- Many toolkits now available to process data

SAM format

Version (VN) and sort order (SO) Important!

Reference sequence (SQ)
and sequence length (LN)

VN:1.3 S0:co=dinate
SN:20 4M:63025520
ID:HG00096 SM:HG00096
ID:HG00096 PN:bwa CL:/Users/AlistairNWard/Work/gkno/gkno_launcher/tools/bwa/bwa mem -t

Read group (RG) and sample (SM)

Programs (PG) that have been run on the data

SAM format

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	Int	$[0,2^{16}-1]$	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	$[0,2^{31}-1]$	1-based leftmost mapping POSition
5	MAPQ	Int	$[0,2^8-1]$	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	Int	$[0,2^{31}-1]$	Position of the mate/next read
9	TLEN	Int	$[-2^{31}+1,2^{31}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Flag

	,	Bit	Description
		0x1	template having multiple segments in sequencing
		0x2	each segment properly aligned according to the aligner
		0x4	segment unmapped
		0x8	next segment in the template unmapped
		0x10	SEQ being reverse complemented
		0x20	SEQ of the next segment in the template being reversed
		0x40	the first segment in the template
		0x80	the last segment in the template
		0x100	secondary alignment
		0x200	not passing quality controls
		0x400	PCR or optical duplicate
		0x800	supplementary alignment
	,		

Secondary alignment - an alternative location for the read (sequence and quality strings are '*')

Supplementary alignments - read is split into a set of alignments. All but one are represented as supplementary

Mapping quality

Quality scores

 $Q=-10 log_{10}(P_{err})$

1 in a 100 chance that we mismapped: Q = 20

1 in a 1,000 chance that we mismapped: Q = 30

If Q = 0, what is the interpretation?

Mapping quality

Quality scores

 $Q=-10 log_{10}(P_{err})$

1 in a 100 chance that we mismapped: Q = 20

1 in a 1,000 chance that we mismapped: Q = 30

If Q = 0, what is the interpretation?

The read is multiply mapped. We are not confident of where the read goes, e.g. mobile elements

Split read mapping

Estimate of fragment length - we have an idea of where to look

Split read mapping

CIGAR string

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

Reference: ACTTTTCATCCCTAAA---CAACC---CTGTGTTTTTCCC Sample: ACCGGTCAT---TAAATTTCAACCCTTCTGTGAAATCCC

CIGAR - Clipped reads

Reduced coverage

Visualizing a BAM file

CRAM format

- Developed at EBI
- Significantly better lossless compression than BAM
- Fully compatible with BAM
- Tools to allow transition between BAM <—> CRAM
- Ability to generate *lossy* files
 - Calculable tags, eg. MD tag
 - Quality score compression

Illumina 8 bin compression

Table 1: Q Scores Based upon an Optimized 8-level Mapping **Old Quality Score** New Quality score N (no call) N (no call) Replace Q = [2 - 9] with 6 2 - 910-19 15 20 - 2422 25 - 2930 - 3433 35 - 39 ≥ 40

Original Q string: 2 5 8 3 3 12 15 38 42 49 56 59 58 62 ...
8-bin Q string: 6 6 6 6 6 15 15 37 40 40 40 40 40 ...

New string is more compressible

Illumina 8 bin compression

Illumina 8 bin compression

Table 2: Reduced Resolu	tion Q	Scores
-------------------------	--------	--------

Resolution	Sensitivity (%)	Conflicts*	Specificity (%)
Full (Elandv2e+CASAVA Variant Calling)	95.29	5,419	99.999788
Reduced (Elandv2e+CASAVA Variant Calling)	95.56	5,940	99.999792
Full (BWA + GATK)	98.40	16,766*	99.999365
Reduced (BWA + GATK)	98.40	17,400*	99.999341

^{*} Absolute conflict numbers cannot be directly compared, due to the different filters and thresholds used by different tools. It is the relative performance with full and reduced Q score resolution that is of interest.

Sequenced trio at 40X

Mendelian SNP conflicts

No 'significant' differences in calling quality using reduced quality scheme

Hands-on with BAM files

The gkno website has a tutorial for playing with BAM files

http://gkno.me/cshl.html

