

IIT Madras ONLINE DEGREE

Statistics for Data Science -1

Lecture 4.7: Association between two numerical variables-Correlation

Usha Mohan

Indian Institute of Technology Madras

Learning objectives

- 1. Understand the measure of correlation.
- 2. Interpret correlation to quantify the strength of association between two numerical variables.

Statistics for Data Science -1

Association between numerical variables

Measuring association: Correlation

Correlation

► A more easily interreted measure of linear association between two numerical variables is correlation

Measuring association: Correlation

Correlation

- ► A more easily interreted measure of linear association between two numerical variables is correlation
- It is derived from covariance.
- ▶ To find the correlation between two numerical variables *x* and *y* divide the covariance between *x* and *y* by the product of the standard deviations of *x* and *y*. The Pearson correlation coefficient, *r*, between *x* and *y* is given by

- ► A more easily interreted measure of linear association between two numerical variables is correlation
- It is derived from covariance.
- ▶ To find the correlation between two numerical variables *x* and *y* divide the covariance between *x* and *y* by the product of the standard deviations of *x* and *y*. The Pearson correlation coefficient, *r*, between *x* and *y* is given by

r =

- ► A more easily interreted measure of linear association between two numerical variables is correlation
- It is derived from covariance.
- ▶ To find the correlation between two numerical variables *x* and *y* divide the covariance between *x* and *y* by the product of the standard deviations of *x* and *y*. The Pearson correlation coefficient, *r*, between *x* and *y* is given by

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} =$$

- ► A more easily interreted measure of linear association between two numerical variables is correlation
- It is derived from covariance.
- ➤ To find the correlation between two numerical variables x and y divide the covariance between x and y by the product of the standard deviations of x and y. The Pearson correlation coefficient, r, between x and y is given by

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{cov(x, y)}{s_x s_y}$$

Statistics for Data Science -1

Association between numerical variables

Measuring association: Correlation

Statistics for Data Science -1

Association between numerical variables

Measuring association: Correlation

Remark

The units of the standard deviations cancel out the units of covariance

Association between numerical variables

Measuring asssociation: Correlation

Remark

The units of the standard deviations cancel out the units of covariance

Remark

It can be shown that the correlation measure always lies between -1 and +1

Correlation: Example 1

Correlation: Example 1

Age	Height	sq.Devn of x	sq.Devn of y	
X	у	$(x_i-\bar{x})^2$	$(y_i - \bar{y})^2$	$(x_i-\bar{x})(y_i-\bar{y})$
1	75	4	309.76	35.2
2	85	1	57.76	7.6
3	94	0	1.96	0
4	101	1	70.56	8.4
5	108	4	237.16	30.8
		10	677.2	82

$$s_x = 1.58$$
, $s_y = 13.01$

$$ightharpoonup r = \frac{82}{\sqrt{10 \times 677.2}} \text{ OR } \frac{20.5}{1.58 \times 13.01} = 0.9964$$

☐ Measuring asssociation: Correlation

Correlation: Example 2

Age	Price	sq. Devn of x	sq. Devn of y	
X	у	$(x_i - \bar{x})^2$	$(y_i - \bar{y})^2$	$(x_i-\bar{x})(y_i-\bar{y})$
1	6	4	4	-4
2	5	1	1	-1
3	4	0	0	0
4	3	1	1	-1
5	2	4	4	-4
		10	10	-10

$$s_x = 1.58, s_y = 1.58$$

$$ightharpoonup r = rac{-10}{\sqrt{10} \times \sqrt{10}} \text{ OR } rac{-2.5}{1.58 \times 1.58} = -1$$

Correlation using google sheets

Step 1 The function CORREL(series1, series2) will return the value of correlation.

For example: If the data corresponding to *x*-variable (series1) is in cell A2:A6 and data corresponding to *y*-variable (series2) is in cells B2:B6; then CORREL(A2:A6,B2:B6) returns the value of the Pearson Correlation coefficient.

Measuring association: Correlation

Section summary

Section summary

- 1. Introduced measure of correlation.
- 2. Interpreting correlation between variables.

Learning objectives

- 1. Summarize the linear association between two variables using the equation of a line.
- 2. Understand the significance of R^2

Summarizing the association with a line

Summarizing the association with a line

► The strength of linear association between the variables was measured using the measures of Covariance and Correlation.

Summarizing the association with a line

- ► The strength of linear association between the variables was measured using the measures of Covariance and Correlation.
- ► The linear association can be described using the equation of a line.

Equation of line using google sheets

Fitting a line

Equation of line using google sheets

- Step 1 Open the scatter plot
- Step 2 Under customize tab, click on series
- Step 3 Click on trendline
- Step 4 Under label tab, click on use equation, and click the show R^2 button.

Example 1: Size versus Price of homes: Equation

Equation of the line:
$$Price = 30.5 \times Size + 36$$
; $R^2 = 0.647$; $r = 0.804$

Statistics for Data Science -1

Association between numerical variables
Fitting a line

Example 2: Age versus Price of cars: Equation

Equation of the line:
$$Price = -0.694 \times Age + 9.03$$
; $R^2 = 0.855$; $r = -0.9247$

Example 3: Size versus Price of homes: Equation

Equation of the line: $Price = 7.77 \times Size + 130$; $R^2 = 0.022$; r = 0.149

Section summary

- 1. Equation of a line describing linear relationship between two variables.
- 2. Interpreting slope, R^2 of the line.