SPIKE-RT:

LEGO SPIKE Prime で始める 組込みリアルタイムプログラミング

@seccamp2022全国大会 LT 開発コース X3 チューター 朱 義文

自己紹介

- 所属
 - 名古屋大学情報学部コンピュータ科学科 B3
 - 名古屋大学大学院情報学研究科 組込みリアルタイムシステム研究室(ERTL) 高田・松原研究室
- 興味
 - 電子工作(昔), 組込み, OS, 仮想化技術
 - プログラミング歴7年
- 活動歴
 - セキュリティ・キャンプ
 - 全国大会2017修了集中X組込みOS自作ゼミ
 - ネクストキャンプ2020修了
 - SecHack365 2018年度優秀修了生
 - o CODE BLUE 2019 スピーカー
- Twitter : @envzhu
- https://envzhu.github.io/index-ja.html

SPIKE-RT

● 概要

- LEGO SPIKE Prime 向けの RTOS ベースのソフトウェアプラットフォーム(SPF).
- SPF... アプリケーションを開発する上で基盤となるソフトウェア

特徴

- TOPPERS/ASP3 RTOS
 - µITRON 4.0 風
- C 言語プログラミング環境
- o MIT ライセンス

状態

○ 研究室内で開発中.

LEGO® Education SPIKE™ Prime

小学校高学年から中高生向けの STEAM学習セット ([1]より引用)

画像は, [1] より引用

SPIKE Prime Hub

- プログラム可能
- 6 つ I/O ポート (PUPデバイス接続用)
- 32 MB の外部記憶領域(フラッシュメモリ)
- 5x5 LED マトリックス表示器
- 加速度センサとジャイロスコープセンサ
- 3 つの制御用ボタン(1つは ライト を含む)
- スピーカ
- USB
- Bluetooth
- PUP(Powered Up) デバイス
 - モータ
 - カラーセンサ
 - 超音波センサ
 - フォースセンサ

[1] https://education.lego.com/ja-jp/products/-spike-/45678#spike%E3%83%97%E3%83%A9%E3%82%A4%E3%83%A0

SPIKE Prime Hub の詳細

- SoC:STM32F413VG
 - Arm Cortex-M4
 - 最大 100 MHz
 - RAM: 320 KB
 - ROM: 1 MB (うち32KBはBootloaderが使用)
 - USB DFU による書き込み
- 公式ファームウェア
 - MicroPythonによるプログラミング環境を提供.
 - 公式の仕様書[2]には以下のようにある.
 - > Embedded MicroPython operating system
 - RTOS を載せてないように見える.

[2]

https://education.lego.com/ja-jp/product-resources/spike-prime/%E3%83%80%E3%82%A6%E3%83%B3%E3%83%AD%E3%83%BC%E3%83%89/%E6%8A%80%E8%A1%93%E8%A6%81%E4%BB%B6

[既存事例] Pybricks

- LEGOのコンピュータ(Technic/Boost/City Hub, EV3, SPIKE Prime)向けOSSのSPF.
- 特徴
 - MicroPythonによるプログラミング環境.
 - ブラウザからのコーディングし、Bluetooth でロード、
- 実装
 - デバイスドライバの実装にContikiを使用.
 - 協調的スケジューリング(ノンプリエンプティブ)
 - リアルタイムシステムには不向き.

```
from pybricks.pupdevices import Motor
from pybricks.parameters import Port
from pybricks.tools import wait

# Initialize a motor on port A.
example_motor = Motor(Port.A)

# Make the motor run clockwise at 500 degrees per second.
example_motor.run(500)

# Wait for three seconds.
wait(3000)

# Make the motor run counterclockwise at 500 degrees per second.
example_motor.run(-500)
```

画像は, [3] より引用

[3] https://pybricks.com/

理念

目標:

リアルタイムプログラミング環境の提供

個人的な企み:

小中高生向けの組込み教材; LEGOから, μITRON の楽しい世界へ!

SPIKE-RTの実装

Pybricksの再利用 & リアルタイム化によるデバイス制御

- コードの再利用: Contiki(OS)の移植
- リアルタイム件: 低優先度のドライバ(USB)を別タスクに(予定)
 - 最悪応答性 < 10ms に

Unityによるテスト

[5] http://www.throwtheswitch.org/unity/

デバイス対応状況

ハブ本体の機能	動作(※1)	API対応
マトリックスLED	0	Х
単一 LED	0	0
ボタン	0	X
加速度センサ/ ジャイロスコープ	Х	Х
スピーカ	Δ(※2)	X
外部フラッシュメモリ	X	Х
USBシリアル	0	Х
Bluetooth	0	Х

PUPデバイス	動作(※1)	API対応
カラーセンサ	0	0
超音波センサ	0	0
フォースセンサ	0	0
モータ	0	Х

※1 ... Pybricks の関数を呼び出すことで動作する場合を含む

※2...動作確認にはしてないが動作することが期待される

ほとんどが動作確認済み!

今後の展開

- 残りの API の実装
- 今年10月頃に正式発表予定

興味のある方は、ぜひ朱まで~

以上