Rozmaitości różniczkowalne

elo

_

Spis treści

	nicja rozmaitości	3				
	1.1	Rozmaitości topologiczne	3			
		Mapy, lokalne współrzędne				
	1.3	Atlasy, rozmaitości gładkie [różniczkowalne]	5			
2	Pom	Pomocnik idiotów:				

1. Definicja rozmaitości

Definicję rozmaitości będziemy budowali warstwami: najpierw położymy fundamenty topologiczne, potem naniesiemy na to strukturę gładką, a na koniec rozszerzymy do pojęcia rozmaitości z brzegiem.

Zanim zajmiemy się konkretnymi definicjami, popatrzmy na kilka prostych przykładów rozmaitości:

- · powierzchnia, domknięta lub nie,
- przestrzenie opisane (lokalnie) skończoną liczbą parametrów,
- podzbiory \mathbb{R}^n lub \mathbb{C}^n zapisywane równaniami algebraicznymi (np. $z_1^2 + z_2^2 + z_3^2$ w \mathbb{C}^3).

1.1. Rozmaitości topologiczne

Definicja 1.1. Przestrzeń topologiczna M jest n-wymiarową **rozmaitością topologiczną** [n-rozmaitością], jeżeli spełnia:

- 1. jest Hausdorffa
- 2. ma przeliczalną bazę
- 3. jest lokalnie euklidesowa wymiaru n, czyli każdy punkt z M posiada otwarte otoczenie w M homeomorficzne z otwartym podzbiorem w \mathbb{R}^n .

Warunkiem równoważnym do lokalnej euklidesowości jest istnienie otwartego otoczenia dla każdego punktu p \in U \subseteq M takiego, że istnieje homeomorfizm U $\stackrel{\cong}{\longrightarrow}$ B_r \subseteq \mathbb{R}^n [ćwiczenia].

Konsekwencie Hausdorffowości:

Mamy wykluczone pewne patologie, na przykład przestrzeń

nie jest rozmaitością topologiczną.

- Dla dowolnego punktu $p \in U \subseteq M$ i homeomorfizmu $\phi : U \to \overline{U} \subseteq \mathbb{R}^n$, jeśli $\overline{K} \subseteq \overline{U}$ jest zwartym podzbiorem \mathbb{R}^n , to $K = \phi^{-1}[\overline{K}] \subseteq M$ jest domknięty i zawarty w M [ćwiczenia].
- Skończone podzbiory są zamknięte, a granice zbieżnych ciągów są jednoznacznie określone.

Konsekwencje przeliczalności bazy:

- Warunek Lindelöfa: każde pokrycie rozmaitości zbiorami otwartymi zawiera przeliczalne podpokrycie [ćwiczenia].
- Każda rozmaitość jest wstępującą sumą otwartych podzbiorów

$$U_1 \subseteq U_2 \subseteq ... \subseteq U_n \subseteq ...$$

które są po domknięciu zawarte w M.

- Parazwartość, czyli każde pokrycie M posiada lokalnie skończone rozdrobnienie.
- Każdą rozmaitość jesteśmy w stanie zanurzyć w \mathbb{R}^n dla odpowiednio dużego n.

Konsekwencje lokalnej euklidesowości:

- Twierdzenie Brouwer'a: niepusta n wymiarowa rozmaitość topologiczna nie może być homeomorficzna z żadną m wymiarową rozmaitością gdy m ≠ n.
- Liczba n w definicji jest jednoznaczna, możemy więc określić wymiar rozmaitości jako dim M = n.

Tutaj warto zaznaczyć, że zbiór pusty zaspokaja definicję rozmaitości topologicznej dla dowolnego n. Wygodnie jest jednak móc go czasem użyć, więc w definicji niepustość M nie jest przez nas wymagana.

Uwaga 1.2. Każdy otwarty podzbiór n-rozmaitości topologicznej jest n-rozmaitością topologiczną [ćwiczenia].

1.2. Mapy, lokalne współrzędne

Definicja 1.3. Parę (U, ϕ), gdzie U jest otwartym podzbiorem M, a ϕ to homeomorfizm

$$\phi: U \to \overline{U} \subseteq \mathbb{R}^n$$
.

nazywamy **mapą** lub **lokalną parametryzacją** [coordinate chart] na rozmaitości M. Zbiór U taki jak wyżej nazywamy zbiorem mapowym [coordinate domain/neighborhood]. Z lokalnej euklidesowości wiemy, że **zbiory mapowe pokrywają całą rozmaitość**.

Jeżeli (U, ϕ) jest mapą i dla p \in M mamy ϕ (p) = 0, to mówimy, że mapa jest *wyśrodkowana na* p [centered at p].

Fakt 1.4. Hausdorffowska przestrzeń X o przeliczalnej bazie jest n-rozmaitością ⇔ posiada rodzinę map n-wymiarowych dla której zbiory mapowe pokrywają cały X.

Przykład:

Rozważmy $S^n = \{(x_1, ..., x_n) \in \mathbb{R}^{n+1} : \sum x_i^2 = 1\} \subseteq \mathbb{R}^{n+1}$ z dziedziczoną topologią. Z racji, że \mathbb{R}^{n+1} jest Hausdorffa i ma przeliczalną bazę, to S^n tęż spełnia te dwa warunki. Wystarczy teraz wskazać odpowiednią rodzinę map, która pokryje całe S^n . Dla i = 1, ..., n + 1 określmy otwarte podzbiory w S^n

$$U_i^* = \{x \in S^n : x_i > 0\}$$

$$U_i^- = \{x \in S^n : x_i < 0\}$$

Określmy odwzorowania $\phi_{\mathsf{i}}^{\pm}: \, \mathsf{U}_{\mathsf{i}}^{\pm}
ightarrow \mathbb{R}^{\mathsf{n}}$

$$\phi_i^{\pm}(\mathbf{x}) = (\mathbf{x}_1, ..., \mathbf{x}_{i-1}, \widehat{\mathbf{x}_i}, \mathbf{x}_{i+1}, ..., \mathbf{x}_n).$$

Obraz tego odwzorowania to

$$\overline{U}_{i}^{\pm} = \phi_{i}^{\pm}(U_{i}^{\pm}) = \{(x_{1},...,x_{n}) \in \mathbb{R}^{n} \ : \ \sum x_{i}^{2} < 1\}.$$

Odwzorowanie $\phi_{\bf i}^\pm: {\sf U}_{\bf i}^\pm o \overline{\sf U}_{\bf i}^\pm$ jest wzajemnie jednoznaczne [bijekcja], bo

$$(\phi_i^\pm)^{-1}(x_1,...,x_n)=(x_1,...,x_{i-1},\pm\sqrt{1-\sum x_j^2},x_{i+1},...,x_n).$$

Mamy w obie strony odwzorowanie ciągłe, więc jest to homeomorfizmy z odpowiednimi zbiorami \mathbb{R}^n .

PRZYKŁADY Z LEE

1.3. Własności rozmaitości topologicznych

1.4. Atlasy, rozmaitości gładkie [różniczkowalne]

Na tym wykładzie nie będziemy poświęcać dużej uwagi rozmaitościom różniczkowalnym nie nieskończenie razy, więc pomimo lekkich niuansów między tymi dwoma słowami, dla nas zwykle znaczą one to samo.

Dla funkcji $f: M \to \mathbb{R}$ chcemy określić, co znaczy, że f jest różniczkowalna? Będziemy to robić za pomocą wcześniej zdefiniowanych map:

- Funkcja f wyrażona w mapie (U, ϕ) to nic innego jak złożenie f \circ $\phi^{-1}:\overline{U}\to\mathbb{R}$. Teraz f \circ ϕ^{-1} jest funkcją zależącą od n zmiennych rzeczywistych.
- Chciałoby się powiedzieć, że funkcja $f: M \to \mathbb{R}$ jest gładka, jeśli dla każdej mapy (U, ϕ) na M, ten fragment wyrażony w tej mapie $f \circ \phi^{-1}$ jest gładki. Niestety, tych map może być nieco za dużo.
- Odwzorowanie przejścia między dwoma mapami (U₁, ϕ_1) i (U₂, ϕ_2) to funkcje $\phi_1\phi_2^{-1}$ i $\phi_2\phi_1^{-1}$ określone na U₁ \cap U₂.

[zgodność map] Mapy (U, ϕ_1) oraz (U, ϕ_2) są zgodne (gładko-zgodne), gdy odwzorowanie przejścia $\phi_1\phi_2^{-1}$ jest gładkie. Dla map (U, ϕ) i (V, ψ) mówimy, że są one zgodne, jeśli

- U \cap V = \emptyset , albo
- $\phi\psi^{-1}: \psi(U \cap V) \to \phi(U \cap V)$ i $\psi\phi^{-1}(U \cap V) \to \psi(U \cap V)$ są gładkie.

Warto zauważyć, że jeśli (U, ϕ) i (V, ψ) są zgodne, to $f \circ \phi^{-1}(\phi(U \cap V))$ jest gładkie \iff

Odwzorowania przejściowe map są automatycznie dyfeomorfizmami.

[atlas gładki] Gładkim atlasem \mathscr{A} na topologicznej rozmaitości M nazywamy dowolny taki zbiór map $\{(U_{\alpha}, \phi_{\alpha})\}$ taki, że:

- 1. 1. zbiory mapowe U_{lpha} pokrywają całe M
- 2. 2. każde dwie mapy z tego zbioru są zgodne.

Przykład: Rodzina map $\{(U_i^{\pm}, \phi_i^{\pm}) : i = 1, 2, ..., n + 1\}$ jak wcześniej na sferze $S^n \subseteq R^{n+1}$ tworzy gładki atlas. Wystarczy zbadać gładką zgodność tych map. Rozpatrzmy jeden przypadek: $(U_i^{\dagger}, \phi_i^{\dagger}), (U_j^{\dagger}, \phi_j^{\dagger}), i < j$. Po pierwsze, jak wygląda przekrój tych zbiorów?

$${\sf U}_i \cap {\sf U}_j = \{x \in {\sf S}^n \ : \ x_i > 0, x_j > 0\}$$

Dalej, jak wyglądają obrazy tego przekroju przez poszczególne mapy?

$$\phi_{i}^{+}(U_{i} \cap U_{j}) = \{x \in \mathbb{R}^{n} : |x| < 1, x_{j-1} > 0\}$$
$$\phi_{i}^{+}(U_{i} \cap U_{i}) = \{x \in \mathbb{R}^{n} : |x| < 1, x_{i} < 0\}$$

Odwzorowania przejścia to:

$$\phi_{\mathbf{j}}^{+}(\mathsf{U}_{\mathbf{i}}^{+}\cap\mathsf{U}_{\mathbf{j}}^{+})\ni(\mathsf{x}_{1},...,\mathsf{x}_{n})$$

$$(x_1,...,x_{i-1},\sqrt{1-|x|^2},x_i,...x_n)$$

$$\phi_i^+(\phi_i^+)^{-1}(x_1,...,x_n) = (x_1,...,x_{i-1},x_{i+1},...,x_{i-1},\sqrt{1-|x|^2},x_i,...,x_n)$$

jest przekształceniem gładkim. Analogicznie dla drugiego odwzorowania przejścia.

[rozmaitość gładka] Rozmaitość gładka to para (M, A) złożona z rozmaitości M i gładkiego atlasu A opisanego na M.

Uściślenie: Często (M, \mathcal{A}_1) i (M, \mathcal{A}_2) będące rozmaitościami gładkimi określają tę samą rozmaitość.

[zgodność map, atlasów] Niech A będzie gładkim atlasem na M.

- 1. Mapa (U, ϕ) jest zgodna z atlasem \mathscr{A} , jeśli jest zgodna z każdą mapą z \mathscr{A} .
- 2. Dwa atlasy \mathcal{A}_1 , \mathcal{A}_2 na M są zgodne, jeśli każda mapa z \mathcal{A}_1 jest zgodna z atlasem \mathcal{A}_2 .

[zgodność to relacja równoważnośći] Relacja zgodności atlasów jest relacją równoważności.

Dowód: Ćwiczenia.

Konwencja jest wtedy taka, że zgodne atlasy zadają tą samą strukturę gładką na M. W takim razie, zgodne atlasy można wysumować do jednego większego atlasu.

[atlas maksymalny] $\mathscr A$ jest atlasem maksymalnym na M, jeśli każda mapa na M z nim zgodna jest w nim zawarta.

[dla każdego atlasu istnieje jedyny atlas maksymalny] Każdy atlas 🖋 na M zawiera się w dokładnie jednym atlasie maksymalnym na M. Zaś ten atlas maksymalny to zbiór wszystkich map na M zgodnych z 🖋.

Dowód: Ćwiczenia.

Równoważna definicja rozmaitości gładkiej: para (M, \mathscr{A}) , gdzie M to rozmaitość topologiczna, zaś \mathscr{A} to pewien atlas maksymalny.

2. Pomocnik idiotów:

Skorowidz definicji

Twierdzonkowa zabawa

1.1	Definicja: rozmaitość topolog-		1.2	Uwaga: podzbiory to też roz-	
	iczna	3		maitości	7
1.3	Definicja: mapa	4	1.4	Fakt: n-rozmaitość ⇔ rodz-	
				ina map pokrywaiacych	