OLA RIDES ANALYSIS PROJECT

Project Overview

This project analyses OLA ride data with specific focus on **ride cancellation patterns**, identifying root causes, and providing data-driven solutions to reduce cancellation rates and improve overall service efficiency.

Dataset Summary

The dataset contains over 20,000+ rows and 19 columns. It includes data related to ride bookings, vehicle types, payment methods, customer and driver ratings, ride distances, and cancellation reasons.

Data Cleaning And Standardization Using Python

- Data Loading: Imported Dataset Using Pandas
- Initial Exploration: Used df.info() to check structure and .describe() for summary statistics.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20407 entries, 0 to 20406
Data columns (total 20 columns):
#
    Column
                                 Non-Null Count
                                                 Dtype
0
    Date
                                 20407 non-null object
1
    Time
                                 20407 non-null object
2
    Booking_ID
                                 20407 non-null object
3
                                 20407 non-null object
   Booking_Status
4
                                 20407 non-null object
    Customer_ID
5
    Vehicle_Type
                                 20407 non-null
                                                 object
   Pickup_Location
                                 20407 non-null
                                                 object
    Drop_Location
7
                                 20407 non-null
                                                 object
8
    V TAT
                                 12652 non-null
                                                 float64
9
    C TAT
                                 12652 non-null float64
10 Canceled_Rides_by_Customer
                                 2081 non-null
                                                 object
11 Canceled_Rides_by_Driver
                                                 object
                                 3654 non-null
    Incomplete_Rides
                                 12652 non-null
                                                 object
12
25%
             3.500000
                              3.500000
                                                   NaN
50%
             4.000000
                              4.000000
                                                   NaN
75%
             4.500000
                              4.500000
                                                   NaN
             5.000000
                              5.000000
                                                   NaN
nax
```

• Standardization Of Column Names & Removing ALL Whitespaces: using pandas string methods (.str.lower(), .str.replace(), .str.strip()).

- **Data Consistency Check**: Checked the datatypes of all numerical columns and changed for the required data type.
- **Database Integration**: Connected Python Script to MYSQL Workbench and located the cleaned dataset into the database for further inspection.

```
# Connecting to mysql
!pip install pymysql sqlalchemy
!-m pip install --upgrade pip

1  from sqlalchemy import create_engine
2  import mysql.connector
3  # Setting up connection with MYSQL
4  username = "root"
5  password = "Secure$4u"
6  host = "localhost"
7  port = "3306"
8  database = "OLA_RIDES_ANALYSIS"
9
10  engine = create_engine(f"mysql+pymysql://{username}:{password}@{host}:{port}/{database}")
11

1  # Write DataFrame to MySQL ( Loaded this dataframe under table name "TABLE1")
2  table_name = "TABLE1"  # choose any table name
3  df.to_sql(table_name, engine , if_exists="replace", index=False)
```

Data Analysis & Finding Insights Using Python

We performed structured analysis in Python (pandas) to answer key business questions:

• Retrieve all successful bookings:

```
## TOTAL SUCCESSFUL or UNSUCCessful BOOKINGS
var=df[df['booking_status']=="Success"]
print(len(var))
12652
```

Find the average ride distance for each vehicle type:

```
1 ## FINDING AVERAGE DISTANCE RIDE FOR EACH VEHICLE ( let's do it for prime_suv)
2 var1=df[df['vehicle_type']=="prime_suv"]
3 var2=var1['ride_distance'].mean()
4 print(var2)

15.187096774193549
```

• Get the total number of cancelled rides by customers:

```
1 ## CANCELLED RIDES BY THE CUSTOMERS or drivers
2 var3=df[df['canceled_rides_by_customer'].notna()]
3 print(len(var3))
2081
```

List the top 5 customers who booked the highest number of rides:

```
1 ## TOP 5 CUSTOMERS WHO BOOKED HIGHEST NUMBER OF RIDES or rating wise or booking value wise ( just adjust the filter condition & see the 2 var4 =df.groupby('customer_id').agg(number_of_bookings=('booking_id','count')).sort_values('number_of_bookings',ascending=False).head(print(var4))

Python

number_of_bookings

customer_id

CID940408 3

CID393964 2

CID143850 2

CID196336 2

CID196536 2

CID126952 2
```

 Get the number of rides cancelled by drivers due to personal and car-related issues:

```
1 ## Number of rides cancelled by drivers due to personal and car-related issues or any other reasons as 2 var5 =df[df['canceled_rides_by_driver']=="Personal & Car related issue"]
3 print(len(var5))

Python

1263
```

• Find the maximum and minimum driver ratings for Prime Sedan bookings:

• Retrieve all rides where payment was made using UPI:

```
## RIDES WHERE PAYMENT METHOD IS UPI or any other
#First cleaing the strings of payment method column

df['payment_method']=df['payment_method'].str.lower()

df['payment_method']=df['payment_method'].str.replace(' ','_')

ff['payment_method']=df['payment_method'].str.strip()

print(df['payment_method'])

var7= df[df['payment_method']=="upi"]

print(len(var7))

Python

NaN

cash

upi

NaN

credit_card

...

20402 NaN
20403 cash
20404 cash
20405 upi
20406 NaN
Name: payment_method, Length: 20407, dtype: object
5113
```

• Find the average customer rating per vehicle type:

Calculate the total booking value of rides completed successfully:

```
## TOTAL value OF rides COMPLETED successfully or unsuccessfully

2 print(df['incomplete_rides'].unique()) # checking the different values inside the incomplete_rides column

3 var10= df[df['incomplete_rides']=="No"]

4 var11= var10['booking_value'].sum()

5 print(var11)

Python

[nan 'No' 'Yes']

6429897
```

List all incomplete rides along with the reason:

Dashboard In Power BI

Finally, we built an interactive dashboard in Power BI to present insights visually.

			01-07-2024 📾	30-07-2024 📾
Vehicle Type	Total Booking Value	Success Booking Value	Avg. Distance Travelled	Total Distance Travelled
Prime Sedan	1.67M	1.06M	15.27	44.97K
Prime SUV	1.58M	962.25K	15.19	44.73K
Prime Plus	1.54M	934.88K	14.87	41.46K
Mini	1.57M	973.65K	15.72	45.06K
· Auto	1.59M	992.78K	6.21	18.12K
Bike	1.58M	985.07K	16.16	47.64K
E-Bike	1.62M	994.76K	15.68	46.99K

Business Insights

We found several high impactful insights which upon implementation can significantly reduce the cancellation rate and will increase overall efficiency .

- 1. Payment Method Impact on Cancellations: UPI payments show significantly lower cancellation rates compared to cash payments
- 2. Vehicle Wise Cancellation Analysis: Premium vehicles have higher cancellation rates due to availability issues

3. Cancellation Reason Analysis:

Customer Side: Driver is not moving (29.47%) & Change of plans (26.69%) **Driver Side:** Personal & Car related (34.19%) & Customer related issue (29.24%)

4. Rating Analysis:

Customer Side: Customers are happy with mini vehicles

Driver Side: Drivers are happy with premium vehicles (like prime SUV)

Business Recommendations

- 1. Charge a fee for last-minute "change of plans " cancellations : this reason makes up over a quarter (26.69 %) of customer cancellations.
- **2.** Fix the "Driver not moving issue": it's the biggest reason (29.47 %) of customer canceled rides.
- **3.** Help drivers to keep their cars in good condition: "personal & car related issue" is the major reason (34.19 &) for driver canceled rides.
- **4.** Make a strict rule against drivers asking customers to cancel: this bad practice is responsibe for (15.31%) of customer canceled rides.
- **5. Give better cars and training to prime drivers :** these have genrally the lower ratings in comparison to the mini type vehicles.