Category Theory (Continued)

- **1.2.4.** *Example: abelian groups.* The abelian groups, along with group homomorphisms, form a category *Ab*.
- **1.2.5.** *Important Example: Modules over a ring.* If A is a ring, then the A-modules form a category Mod_A . (This category has additional structure; it will be the prototypical example of an *abelian category*, see §1.6.) Taking A = k, we obtain Example 1.2.3; taking $A = \mathbb{Z}$, we obtain Example 1.2.4.
- **1.2.6.** *Example: rings.* There is a category *Rings*, where the objects are rings, and the morphisms are maps of rings in the usual sense (maps of sets which respect addition and multiplication, and which send 1 to 1 by our conventions, §0.3).
- **1.2.7.** *Example: topological spaces.* The topological spaces, along with continuous maps, form a category *Top*. The isomorphisms are homeomorphisms.
- **1.2.8.** *Example: partially ordered sets.* A **partially ordered set**, (or **poset**), is a set S along with a binary relation \geq on S satisfying:
 - (i) $x \ge x$ (reflexivity),
 - (ii) $x \ge y$ and $y \ge z$ imply $x \ge z$ (transitivity), and
 - (iii) if $x \ge y$ and $y \ge x$ then x = y (antisymmetry).

A partially ordered set (S, \ge) can be interpreted as a category whose objects are the elements of S, and with a single morphism from x to y if and only if $x \ge y$ (and no morphism otherwise).

A trivial example is (S, \ge) where $x \ge y$ if and only if x = y. Another example is

(1.2.8.1)

Here there are three objects. The identity morphisms are omitted for convenience, and the two non-identity morphisms are depicted. A third example is

(1.2.8.2)

Here the "obvious" morphisms are again omitted: the identity morphisms, and the morphism from the upper left to the lower right. Similarly,

 $\cdots \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$

depicts a partially ordered set, where again, only the "generating morphisms" are depicted.

1.2.10. *Definition.* A **subcategory** \mathscr{A} of a category \mathscr{B} has as its objects some of the objects of \mathscr{B} , and some of the morphisms, such that the morphisms of \mathscr{A} include the identity morphisms of the objects of \mathscr{A} , and are closed under composition. (For example, (1.2.8.1) is in an obvious way a subcategory of (1.2.8.2). Also, we have an obvious "inclusion functor" $i: \mathscr{A} \to \mathscr{B}$.)

Definition 1.2. A functor

$$F: \mathbf{C} \to \mathbf{D}$$

between categories ${f C}$ and ${f D}$ is a mapping of objects to objects and arrows to arrows, in such a way that

- (a) $F(f: A \to B) = F(f): F(A) \to F(B)$,
- (b) $F(1_A) = 1_{F(A)}$,
- (c) $F(g \circ f) = F(g) \circ F(f)$.

That is, F preserves domains and codomains, identity arrows, and compostion. A functor $F: \mathbf{C} \to \mathbf{D}$ thus gives a sort of "picture"—perhaps distorted—of \mathbf{C} in \mathbf{D} .

1.2.13. Topological examples. Examples of covariant functors include the fundamental group functor π_1 , which sends a topological space X with choice of a point $x_0 \in X$ to a group $\pi_1(X, x_0)$ (what are the objects and morphisms of the source category?), and the ith homology functor $Top \to Ab$, which sends a topological space X to its ith homology group $H_i(X, \mathbb{Z})$. The covariance corresponds to the fact that a (continuous) morphism of pointed topological spaces $\phi \colon X \to Y$ with $\phi(x_0) = y_0$ induces a map of fundamental groups $\pi_1(X, x_0) \to \pi_1(Y, y_0)$, and similarly for homology groups.

43, 人前goy 知此3,我们来(以此6124)看-点代拓

§57.1 Spheres

Recall that

$$S^n = \{(x_0, \dots, x_n) \mid x_0^2 + \dots + x_n^2 = 1\} \subset \mathbb{R}^{n+1}$$

is the surface of an n-sphere while

$$D^{n+1} = \{(x_0, \dots, x_n) \mid x_0^2 + \dots + x_n^2 \le 1\} \subset \mathbb{R}^{n+1}$$

is the corresponding closed ball (So for example, D^2 is a disk in a plane while S^1 is the unit circle.)

Exercise 57.1.1. Show that the open ball $D^n \setminus S^{n-1}$ is homeomorphic to \mathbb{R}^n .

In particular, S^0 consists of two points, while D^1 can be thought of as the interval [-1,1].

門,補營,稅们点拓着得太少3,很多概念还及拓展到 Top Space上,比如 homeomorphic. 考尽以下问题:

$$X = \{a, b, c, d, e\}, Y = \{g, h, i, j, k\},\$$

$$\tau = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\},\$$

和	
	$\tau_1 = \{Y, \varnothing, \{g\}, \{i, j\}, \{g, i, j\}, \{h, i, j, k\}\}.$
	直觉上 (X,τ) "等价于" (Y,τ_1) . 由 $f(a)=g,f(a)=g,f(a)=g,f(a)=g$ 定义的映射 $f:X\to Y$ 提供了等价性. 我们现在正式化这种等价
	$2.1.$ 令 (X, au) 和 (Y, au_1) 为拓扑空间. 则它们称为同胚的, 如果存在满质的映射 $f: X o Y$:
(i) <i>f</i> 是	一一的 $($ 即由 $f(x_1)=f(x_2)$ 有 $x_1=x_2$ 成立 $)$,
(ii) f是	到上的 f 即对任何 $f \in Y$,存在 $f \in X$ 使得 $f(x) = y$,
(iii) 对名	$\mathbf{f} \wedge U \in \tau_1, \ f^{-1}(U) \in \tau, \ \mathbf{L}$
(iv) 对名	
进一步, (Y, τ_1) .	映射 f 称为 (X, au) 和 (Y, au_1) 之间的一个 <mark>同胚映射</mark> ,我们记为 $(X, au)\cong$
	将要证出" \cong "是一个等价关系,并用这一点证明所有开区间 (a,b) 彼 胚的. 例 $4.2.2$ 是第一步,它表明了" \cong "是一个传递关系.
	令 $(X,\tau),(Y,\tau_1)$ 和 (Z,τ_2) 为拓扑空间. 如果 $(X,\tau)\cong (Y,\tau_1)$ 且 (Y,τ_1) 民证 $(X,\tau)\cong (Z,\tau_2)$.
(Y, τ₁) g(f(x) 设U ∈ 到f ⁻¹ 性质($a ext{-}F(X, au) \cong (Y, au_1) ext{且}(Y, au_1) \cong (Z, au_2)$,存在同胚映射 $f: (X, au) \to \mathbb{R}$ 和 $g: (Y, au_1) \to (Z, au_2)$.考虑符合映射 $g \circ f: X \to Z$.[这里 $g \circ f(x) = 0$),对所有 $x \in X$.] 验证 $g \circ f$ 是一一的及到上的是程序性任务.现在 $f: au_2$.则由于 g 为同胚映射, $g^{-1}(U) \in au_1$.由 f 是同胚映射的事实,我们得 $f: (g^{-1}(U)) \in au$.但 $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$.所以 $g \circ f$ 有定义4.2.1的 $f: (g \cap f) = 0$ 。 $f: (g \cap f$

证明.

(简略证明.) 定义 $f:(-1,1)\to\mathbb{R}$,

$$f(x) = \frac{x}{1 - |x|}.$$

容易验证f是一一并到上的,类似于例4.2.4中的图示推导表明f是一个同胚拓扑.

用用样的思路,今午: $(7.172:-1711) \longrightarrow (1-1711), 1-1711), 1-1711), 易知f为<math>D^n \setminus S^{n-1}$ 到 R^n 的同胚

§57.2 Quotient topology

Prototypical example for this section: $D^n/S^{n-1} = S^n$, or the torus.

Given a space X, we can *identify* some of the points together by any equivalence relation \sim ; for an $x \in X$ we denote its equivalence class by [x]. Geometrically, this is the space achieved by welding together points equivalent under \sim .

Formally,

Definition 57.2.1. Let X be a topological space, and \sim an equivalence relation on the points of X. Then X/\sim is the space whose

- \bullet Points are equivalence classes of X, and
- $U \subseteq X/\sim$ is open if and only if $\{x \in X \text{ such that } [x] \in U\}$ is open in X.

As far as I can tell, this definition is mostly useless for intuition, so here are some examples.

明天继续。