Ecological Dynamics Constructing and analyzing models

Dr. Tarik C. Gouhier (tarik.gouhier@gmail.com)

Northeastern University http://blackboard.neu.edu

January 22, 2015

A guide to constructing models (Otto and Day, 2007)

An overview of model analyses

Sensitivity analysis (effect of each parameter on the state variable(s)) and **local stability analysis** (stability of each equilibrium) are often used in conjunction with the approaches above.

Example of explicit solution

The exponential growth model can be used to predict how the size of a population will change over time in the absence of any resource limitation:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN$$

This **toy model** consists of a single parameter r, which represents the intrinsic rate of growth (births minus deaths), and a single state variable N, which represents the size of the population.

Explicit solutions (also called **closed-form solutions**) express the state variable(s) as a function of the model parameter(s). The explicit solution for the exponential model is $N(t) = N_0 e^{rt}$ where N_0 is the initial abundance at time t = 0.

This expression allows us to understand how changes in r will affect population size. For instance, we can immediately see that $0 \le N(t) < \infty$ which is a **constraint** that the size of a population must satisfy.

Example of explicit solution

Although extremely informative, **explicit solutions** can typically only be computed for **linear** or a very limited set of **nonlinear** differential equations.

A differential equation is **linear** if: $\frac{\mathrm{d}f\left(c\left[N_{1}+N_{2}\right]\right)}{\mathrm{d}t}=c\frac{\mathrm{d}f\left(N_{1}\right)}{\mathrm{d}t}+c\frac{\mathrm{d}f\left(N_{2}\right)}{\mathrm{d}t}.$

How would you determine whether the exponential model is a linear differential equation?

Example of explicit solution

- Numerical simulations of the model can be used to verify the validity of our explicit solution
- ullet r > 0 (warm colors): exponential growth of population size
- r < 0 (cold colors): exponential decay of population size to zero

Example of explicit equilibrium solution

Unfortunately, most biological processes are nonlinear and thus cannot be solved explicitly. However, they can be **solved explicitly at equilibrium**, which is the next best thing. To do so for the exponential model, we set the population growth rate to zero and solve:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN = 0$$

This equation has two solutions: $\hat{N}=0$ and r=0. This means the trivial equilibrium $\hat{N}=0$ can be achieved if the initial population size $N_0=0$. A non-trivial equilibrium of $\hat{N}=N_0$ can be achieved if r=0.

This result makes sense: a population with zero individuals at the onset will never increase regardless of its intrinsic rate of growth r. Similarly, a population with r=0 will not grow or decrease over time, so its equilibrium size $\hat{N}=N_0$.

Local stability analysis of equilibrium solution

Local stability analysis can be used to determine whether a system will return to its equilibrium following an **infinitesimally small perturbation**.

Local stability analysis is typically performed by linearizing around the equilibrium (e.g., via Taylor expansion) but it can also be performed graphically.

Example of graphical analysis

The equilibrium solutions and their local stability are typically analyzed graphically in the Lotka-Volterra competition model:

$$\frac{dN_1}{dt} = r_1 N_1 \left(\frac{K_1 - N_1 - \alpha_{12} N_2}{K_1} \right)$$

$$\frac{dN_2}{dt} = r_2 N_2 \left(\frac{K_2 - N_2 - \alpha_{21} N_1}{K_2} \right)$$

 N_1 and N_2 are species undergoing logistic growth and competing via coefficients α_{12} and α_{21}

Numerical simulations

- Complexity can make equilibrium solutions impossible to find explicitly
- For differential equation models where time is continuous, use numerical approaches such as Runge-Kutta methods
- For difference equation models where time is discrete, use for loops to simulate the dynamics
- Simulations are typically run for a range of parameter values and with random initial conditions for the state variables
- The equilibrium values of the state variables are then plotted as a function of the parameter values

Evolution and the maintenance of genetic variation

- One of the earliest objections to natural selection was that blending inheritance of genetic material leads to the loss of genetic variation needed for natural selection to operate
- However, Mendel's work showed that genetic material was transferred from parents to offspring via particulate inheritance
- The implications of particulate inheritance were discovered via mathemetical modeling (Hardy, 1908; Weinberg, 1908)

The Hardy-Weinberg equilibrium

Definition

In the absence of natural selection, mutation and migration, the allele and genotype frequencies in a population of randomly mating individuals will remain constant over time (Hardy, 1908; Weinberg, 1908)

Godfrey H. Hardy

Wilhelm Weinberg

This remarkable result resolved a major issue in evolutionary biology by showing how genetic variation could be sustained over time and provide the raw material needed for natural selection to operate.

Diagram of life cycle in diploid organisms

Deriving the Hardy-Weinberg equilibrium

We assume that individuals mate randomly and that there is no migration, natural selection, or mutation.

The locus in question has two alleles: recessive a and dominant A. There are thus four possible outcomes of mating: $\{AA, aA, Aa, aa\}$.

Call x_0 , y_0 and z_0 the respective frequencies of genotypes AA, Aa and aa at time t=0 (generation 0); Call p_0 and q_0 the respective frequencies of alleles A and a at time t=0 (generation 0).

Note that $x_0 + y_0 + z_0 = 1$ and that $x_0, y_0, z_0 \in [0, 1]$. Similarly, note that $p_0 + q_0 = 1$ and that $p_0, q_0 \in [0, 1]$.

Now find $\{x_1, y_1, z_1\}$ and $\{p_1, q_1\}$ for generation 1.

Deriving the Hardy-Weinberg equilibrium

Under random mating, the probabilities are independent so for example $\Pr(AA) = \Pr(A \cap A) = \Pr(A) \cdot \Pr(A) = p_0^2$. This greatly simplifies the calculation of the genotype and allele frequencies:

Generation 0 mating	Resulting generation 1 genotype
AxA	$x_1 = p_0^2 = (x_0 + y_0/2)^2$
axA or Axa	$y_1 = 2p_0q_0 = 2(x_0 + y_0/2) \cdot (z_0 + y_0/2)$
axa	$z_1 = q_0^2 = (z_0 + y_0/2)^2$
Total (constraint)	$x_1 + y_1 + z_1 = 1$

To verify that $x_1 + y_1 + z_1 = 1$, we have to remember that $p_0 + q_0 = 1$. Hence, $x_1 + y_1 + z_1 = p_0^2 + 2p_0q_0 + q_0^2 = (p_0 + q_0)^2 = 1$

We now need to compute the frequencies p_1 and q_1 of alleles A and a in generation 1.

Deriving the Hardy-Weinberg equilibrium

To do so, we note that $p_1 = x_1 + y_1/2$ and $q_1 = z_1 + y_1/2$

$$p_1 = x_1 + y_1/2 = p_0^2 + p_0 q_0$$

$$q_1 = z_1 + y_1/2 = q_0^2 + p_0 q_0$$

Because $p_0 + q_0 = 1$, we can replace all instances of q_0 with $1 - p_0$:

$$p_1 = p_0^2 + p_0 (1 - p_0) = p_0$$

Similarly, we can replace all instances of p_0 with $1 - q_0$:

$$q_1 = q_0^2 + q_0 (1 - q_0) = q_0$$

The allele frequencies $\{p, q\}$ reach the equilibrium in one generation. Hence, genetic variation remains constant in the absence of other evolutionary forces. The genotype frequencies $\{x, y, z\}$ also remain fixed following generation 1.

References I

- Hardy, G. H. 1908. Mendelian proportions in a mixed population. Science, **28**:49–50.
- Otto, S. P. and T. Day. 2007. A biologist's guide to mathematical modeling in ecology and evolution. Princeton University Press.
- Weinberg, W. 1908. Uber den nachweis der vererbung beim menschen. Jahreshefte des Vereins fur vaterlandische Naturkunde in Wurttemberg, **64**:368–382.