第十七届全国青少年信息学奥林匹克联赛初赛试题

(普及组 •• C 语言 两小时完成)

、单项选择题(共 20 题, 每题 1.5 分, 共计 30 分。每题有且仅有一个正确选项。)

B. 57 C. 120 D. 视具体的计算机而定

1. 在二进制下。1100100+()=1110001

A. 39

A. 1011 B. 1101 C. 1010 D. 1111 .

2. 字符"0"的 ASCII 码为 48, 则字符"9"的 ASCII 码为 ()

A. 1600	B. 2000	C. 40	00	D. 16000
4. 摩尔定律	(Moore's law) 是由英特尔	创始人之一	戈登·摩尔 (Gordon Moore) 提出
的。根据摩	尔定律, 在过去	几十年以及在	可预测的未	来几年,单块集成电路的集成度大
每()个月	粗番。			
A. 1	B. 6	C. 18	D. 36	
5. 无向完	全图是图中每对	顶点之间都恰在	有一条边的	简单图。 已知无向完全图 G 有 7
顶点, 则它	E共有()条边。			
A. 7	B. 21	C. 42	D. 49	
c ×/199	是()的重要组	nH 307.44		
ARAN KAMBUM	\$5000000000000000000000000000000000000		rhi de	D. 中央处理器 (CPU)
A. REM	D. 的建筑	H C.	1311	D. 中央处理备(GPO)
 如果根约 	吉点的深度记为	1,则 棵恰有	2011 个	叶结点的二叉树的深度最少是()
A. 10	B. 11	C. 12	D. 1	3

```
(2)
if (ans.num[a.len + b.len] > 0)
   ans.len = a.len + b.len:
else
   ans.len = a.len + b.len - 1;
return ans:
1
hugeint add(hugeint a, hugeint b)
//计算大整数 a 和 b 的和
int i; hugeint ans;
memset(ans.num, 0, sizeof(ans.num));
if (a.len > b.len)
   ans.len = a.len;
else
   ans.len = b.len;
for (i = 1; i <= ans.len; i++) {
    ans.num[i] += (3);
    ans.num[i + 1] += ans.num[i] / 10;
    ans.num[i] %= 10;
    1
 if (ans.num[ans.len + 1] > 0)
     ans.len++;
  return ans:
1
```

hugeint average(hugeint a, hugeint b)

```
//计算大整数 a 和 b 的平均数的整数部分
1
int i:
hugeint ans:
ans = add(a, b):
for (i = ans.len; i >= 2; i---) {
     ans.num[i - 1] += ( 4 );
    ans.num[i] /= 2;
 ans.num[1] /= 2;
 if (ans.num[ans.len] == 0)
    ans.len--:
return ans:
}
hugeint plustwo(hugeint a)
//计算大整数 a 加 2 后的结果
1
int i:
 hugeint ans;
ans = a;
ans.num[1] += 2;
i = 1;
while ((i <= ans.len) && (ans.num[i] >= 10)) {
       ans.num[i + 1] += ans.num[i] / 10;
       ans.num[i] %= 10;
       i++:
1
```

```
if (ans.num[ans.len + 1] > 0)
  (5)
return ans:
1
int over(hugeint a, hugeint b)
//若大整数 a>b 则返回 1, 否则返回 0
1
int i;
if ( 6 )
   return 0;
if (a.len > b.len)
   return 1;
for (i = a.len; i >= 1; i--) {
   if (a.num[i] < b.num[i])
       return 0:
   if (a.num[i] > b.num[i])
       return 1;
   1
return 0;
1
int main()
{
char s[SIZE];
int i;
hugeint target, left, middle, right;
scanf("%s", s);
```

```
memset(target.num, 0, sizeof(target.num));
target.len = strlen(s);
for (i = 1; i \le target.len; i++)
    target.num[i] = s[target.len - i]- (7);
memset(left.num, 0, sizeof(left.num));
left.len = 1;
left.num[1] = 1;
right = target;
do {
   middle = average(left, right);
   if (over( 8 ) == 1)
       right = middle;
   else
       left = middle;
   } while (over(plustwo(left), right) == 0);
for (i = left.len; i >= 1; i--)
   printf("%d", left.num[i]);
printf("\n");
return 0;
1
```

A. 快速排	序 E	3. 插入排序	C. 冒治	对排序	D. 归并排序位。
9. 个正	整数在二进行	制下有 100 位,	则它在十六	进制下有()位。	
A. 7	B. 13	C. 25	D. 7	下能确定	
10. 有人 认	(为,在个人)	电脑送修前,将	文件放入回收	(站中就是已经	将其删除了。这种想法 是
(),					
A. 正磷的	的,将文件放	入回收站意味着	音彻底删除、	无法恢复	
B. 不正確	角的,只有将	回收站清空后,	才意味着彻	底删除、无法协	灰 复
C. 不正確	角的,即使将	回收站清空, 5	文件只是被标	记为删除,仍可	可能通过恢复软件找回
D. 不正確	角的,只要在	硬盘上出现过的	勺文件,永远	不可能被彻底。	川除
11. 广度包	尤先搜索时,	需要用到的数数	居结构是()。		
A. 链表	B.	人列 C.	枧.	D. 散列表	
12. 在使月	用高级语言编	3写程序时,一点	及提到的"空间	可复杂度"中的"	空间"是指()
A. 程序运	行时理论上的	新占的内存空间			
B. 程序运	行时理论上原	折占的数组空间			
C. 程序运	行时理论上周	折占的硬盘空间			
D. 程序源	文件理论上	新占的硬盘空间			
13. 在含在	有 n 个元素	的双向链表中查	t询是否存在	关键字为 k 的	元素,最坏情况下运行的
时 间复杂	度是()。				
A. O(1) B.	O(log n) C.	O(n) D. O(n log	j n)		
14. 生物特	征识别,是和	可用人体本身的	生物特征进行	了身份认证的	种技术。目前,指纹识别、
虹膜识别、	人脸识别等	技术已广泛应用	用于政府、银	行、安全防卫等	等领域。以下不属于生 物
特征识别技	支术及其应用	的是()。			
A. 指静脉	验证	B. 步态验证	C. A	ATM 机密码验	证 D. 声音验证

学按顺序来到操场时, 都从排尾走向排头, 找到第一个比自己高的同学, 并站在他的后

面。 这种站队的方法类似于() 算法。

15. 现有一段文言文, 要通过二进制哈夫曼领	高码进行压缩。简单起见、假设这段文言文只 由
4 个汉字"之"、"乎"、"者"、"也"组成,它	们出现的次数分别为 700、600、300、 200。
那么,"也"字的编码长度是()。	
A. 1 B. 2 C. 3	D. 4
16. 关于汇编语言,下列说法错误的是(
A. 是一种与具体硬件相关的程序设计语言	
B. 在编写复杂程序时,相对于高级语言而言	代码量较大,且不易调试
C, 可以直接访问寄存器、内存单元、以及	/O 端口
D. 随着高级语言的诞生,如今已完全被淘汰	c, 不再使用
17. ()是一种选优搜索法,按选优条件向	前搜索,以达到目标。当探索到某一步时,发
现原先选择并不优或达不到目标, 就退回	步重新选择。
A. 回溯法 B. 枚举法 C.	功态规划 D. 贪心法
18. 1956 年 () 授予肖克利 (William Shock	ley)、巴丁(John Bardeen)和 布拉頓(Walter
Brattain),以表彰他们对半导体的研究和品	体管效应的发现。
A. 诺贝尔物理学奖	
B. 约翰·冯·诺依曼奖	
C. 图灵奖	
D. 高德纳奖 (Donald E. Knuth Prize)	
19. 对一个有向图而言,如果每个节点都有	在到达其他任何节点 的路径, 那么就称它是
强连通的。 例如, 右图就是 个强连通图	。 事实上, 在删掉边()后, 它依然是强连通
的。	
A.a B.b C.c D.d	2/1
	c d

20. 从 ENIAC 到 当 前最先进 的计算机, 冯	·诺依曼体系结构始终占有重要的地位。
冯·诺 依 曼体系结构的核心内容是 ()。	
A. 采用开关电路	B. 采用半导体器件
C. 采用存储程序和程序控制原理	D. 采用键盘输入
二、问题求解(共2题,每题5分,共计10)分)
1. 每份考卷都有一个 8 位二进制序列号。当且	仅当一个序列号含有偶数个 1 时,它才是
有 效的。例如,0000000、01010011 都是有效	效的序列号,而 11111110 不是。那么,有
效的序列号共有个。	
2. 定义字符串的基本操作为: 删除一个字符、抽	重入 个字符和将 个字符修改成另 个字
符这三种操作。将字符串 A 变成字符串 B 的最	设少操作步数,称为字符串 A 到字符串 B
的编 辑距离。字符串"ABCDEFG"到字符串"BAC	DECG"的编辑距离为。
三、阅读程序写结果(共 4 题,每题 8 分, 封	共计 32 分)
ā.	
#include <stdio.h></stdio.h>	
int main()	
(
int i, n, m, ans;	
scanf("%d%d", &n, &m);	
i = n;	
ans = 0;	
while (i <= m)	
{ ans += i;	
i++;	
1	
printf("%d'n", ans);	

return 0;

```
}
输入: 10 20
输出: _____
2.
#include <stdio.h>
#include <string.h>
#define SIZE 20
int main()
char map[] = "22233344455566677778889999";
char tel[SIZE];
int i;
scanf("%s", tel);
for (i = 0; i < strlen(tel); i++)
    if ((tel[i] >= '0') && (tel[i] <= '9'))
       printf("%c", tel[i]);
    else if ((tel[i] >= 'A') && (tel[i] <= 'Z'))
            printf("%c", map[tel[i] - 'A']);
 return 0;
1
输入: CCF-NOIP-2011
输出: _____
3.
#include <stdio.h>
```

#include <string.h>

```
int main()
1
int n, i, sum, x, a[SIZE];
scanf("%d", &n);
memset(a, 0, sizeof(a));
for (i = 1; i \le n; i++)
{
   scanf("%d", &x);
  a[x]++;
}
i = 0;
sum = 0;
while (sum < (n / 2 + 1))
 1
    i++;
    sum += a[i];
   }
  printf("%d\n", i);
 return 0;
}
输入: 11
      45664332321
输出: _____
```

#include <stdio.h>

4.

```
int solve(int n, int m)
int i, sum;
if (m == 1)
  return 1;
sum = 0:
for (i = 1; i < n; i++)
  sum += solve(i, m - 1);
return sum;
1
int main()
1
int n, m;
scanf("%d %d", &n, &m);
printf("%d\n", solve(n, m));
return 0:
输入: 74
输出:
```

四、完善程序(前 11 空, 每空 2 分, 后 2 空, 每空 3 分, 共计 28 分)

1. (子矩阵)输入 个 n1*m1 的矩阵 a, 和 n2*m2 的矩阵 b, 祠 a 中是否存在子矩阵 和 b 相等。 若存在,输出所有子矩阵左上角的坐标; 若不存在输出 "There is no answer"。

```
#include <stdio.h>
#define SIZE 50
int n1, m1, n2, m2, a[SIZE][SIZE], b[SIZE][SIZE];
int main()
int i, j, k1, k2, good, haveAns;
scanf("%d %d", &n1, &m1);
for (i = 1; i \le n1; i++)
   for (j = 1; j \le m1; j++)
         scanf("%d", &a[i][j]);
scanf("%d %d", &n2, &m2);
for (i = 1; i \le n2; i++)
   for (j = 1; j \le m2; j++)
         (I)
haveAns = 0;
for (i = 1; i <= n1 - n2 + 1; i++)) {:
     for (j = 1; j <= 2 ; j++) {
         3;
         for (k1 = 1; k1 \le n2; k1++)
              for (k2 = 1; k2 <= 4); k2++){
                  if (a[i + k1 - 1][j + k2 - 1]! = b[k1][k2])
                         good = 0;
             1
           if (good == 1) {
              printf("%d %d\n", i, j);
              (5)
```

```
}
1
if (haveAns == 0)
      printf("There is no answerin"); return 0;
}
2. (大整数开方) 输入一个正整数 n (1≤n<10100), 试用二分法计算它的平方根的整数部
分.
#include <stdio.h>
#include <string.h>
#define SIZE 200
typedef struct node {
int len, num[SIZE];
} hugeint; //其中 len 表示大整数的位数; num[1]表示个位、num[2]表示十位,以此类推;
hugeint times(hugeint a, hugeint b)
//计算大整数 a 和 b 的乘积
 int i, j;
hugeint ans;
memset(ans.num, 0, sizeof(ans.num));
for (i = 1; i \le a.len; i++)
   for (j = 1; j \le b.len; j++)
      for (i = 1; i \le a.len + b.len; i++) {
   ans.num[i + 1] += ans.num[i] / 10;
```