Quiz 2 Solutions: Set Theory

- 1. Let A be the set $\{f, o, r, t, u, n, a, t, e, l, y\}$ and B be the set $\{b, r, i, m, s, t, o, n, e\}$. Which of the following are subsets of $A \oplus B$?
 - $\{b, a, b, y\}$
 - $\{f, a, m, i, l, y\}$
 - Ø
 - {}
 - $\{m, a, s, t, e, r\}$
 - $\{b, b, b, l, s, s, a, a, b, u, l\}$
 - {Ø}
 - {{}}
 - a, i

Answer(s)

We have $A \oplus B = \{i, a, b, f, l, m, s, u, y\}$. This means that

- $\{b,a,b,y\}=\{b,a,y\}$ since we can ignore repetition. As all elements are in $A\oplus B$, this is a subset.
- $\{f, a, m, i, l, y\}$ is a subset as all elements of this set are present in $A \oplus B$.
- Ø is a subset.
- {} is a subset.
- $\{m, a, s, t, e, r\}$ is not a subset since r is not an element in $A \oplus B$.
- $\{b,b,b,l,s,s,a,a,b,u,l\} = \{b,l,s,a,u\}$ since we can ignore repetition. As order does not matter, this is a subset of $A \oplus B$.
- $\{\emptyset\}$ is not a subset since \emptyset is not an element of $A \oplus B$.
- $\{\{\}\}$ is not a subset since $\{\}$ is not an element of $A \oplus B$.
- a, i is not a subset since there are no brackets, indicating it is not a set.
- 2. Let $A=\{a\},\ B=\{b\}$ and $C=\{c\}$. Which of the following strings are not in the language $(A^*B^*C^*)^*$?
 - *abc*
 - \bullet abcabc
 - aabbcc
 - abacbc
 - λ
 - None of the other options.

We know that, by definition,

$$(A^*B^*C^*)^* = (A^*B^*C^*)^0 \cup (A^*B^*C^*)^1 \cup (A^*B^*C^*)^2 \cup \dots$$

We find that

- abc is in the language. We have $a \in A^*$, $b \in B^*$ and $c \in C^*$ so $abc \in A^*B^*C^* = (A^*B^*C^*)^1$. This means $abc \in (A^*B^*C^*)^*$.
- abcabc is in the language since $abc \in A^*B^*C^*$. This means $abcabc \in (A^*B^*C^*)^2 \subseteq (A^*B^*C^*)^*$.
- aabbcc is in the language. We have $aa \in A^*$, $bb \in B^*$ and $cc \in C^*$ so $aabbcc \in A^*B^*C^* = (A^*B^*C^*)^1$. This means $aabbcc \in (A^*B^*C^*)^*$.
- abacbc is in the language. We have $ab \in A^*B^*C^*$, $ac \in A^*B^*C^*$ and $bc \in A^*B^*C^*$ so $abacbc \in (A^*B^*C^*)^3 \subseteq (A^*B^*C^*)^*$.
- λ is in $(A^*B^*C^*)^0$ and so it is in the language.
- all other options are in the language.
- 3. Let A and B be sets, and define the operation \diamond between two sets as follows

$$A \diamond B = ((A \oplus B) \cup ((A \cap B) \times (A^c \cap B^c))).$$

Now, consider the following statements. Which of the following are always true?

- $A \diamond B = (A \cup B) \setminus (A \cap B)$
- $A \diamond B = (A \times B) \cup (B \times A)$
- $A \diamond B = B \diamond A$
- $A \diamond A = A \times A^c$
- None of these options

Answer(s)

- Consider $A = \{1\}, B = \{1\}$ and $\mathcal{U} = \{1, 2\}$. We get $(A \cup B) \setminus (A \cap B) = \{\}$ but $A \diamond B = \{(1, 2)\}$, since $A \oplus B = \{\}$, $A \cap B = \{1\}$ and $A^c \cap B^c = \{2\}$. Therefore, $A \diamond B = (A \times B) \cup (B \times A)$ is not true.
- Consider $A=\{1\}$ and $B=\{\}$. We get $A\times B=\{\}=B\times A$. But, we find that $A\diamond B=\{1\}$. This means $A\diamond B=(A\times B)\cup (B\times A)$ is not true.
- We find that $A \diamond B = B \diamond A$ as $A \oplus B = B \oplus A$, $A \cap B = B \cap A$ and $A^c \cap B^c = B^c \cap A^c$.
- We find that

$$A \diamond A = ((A \oplus A) \cup ((A \cap A) \times (A^c \cap A^c))) = A \times A^c,$$

using the fact that $A \oplus A = \{\}$, $A \cap A = A$ and $A^c \times A^c = A^c$.

4. Let $X = \{0, 1, 2, 3, 4\}$. Define $Z = \{(x, y) : x, y \in X \text{ and } x^2 - y \text{ is a perfect square. What is } |Z|$?

We simply have to go through all the possibilities:

$$Z = \{(0,0), (1,0), (2,0), (3,0), (4,0), (1,1), (2,3), (2,4)\}.$$

We have |Z| = 8.

5. Let $\Sigma = \{g, c, d\}$ and $\psi = \{d, u, c, k\}$. How many words are in the set $\Sigma^{=2} \cup \Psi^{\leq 3}$.

Answer(s)

To calculate $\Sigma^{=2}$, we want the number of 2-letter words we can make. We have 3 choices $(\{g,c,d\})$ for the first letter and 3 choices $(\{g,c,d\})$ for the second letter. We have $3\times 3=9$ words in $\Sigma^{=2}$.

Now, we will calculate the size of $\Psi^{\leq 3}$. This is the set of words with length 0, 1, 2 and 3. There is only 1 word of length 0, the empty word λ . There are 4 letters so 4 words of length 1. For words of length 2, we have $4\times 4=16$ words. For words of length 3, we have $4\times 4\times 4=64$ words. This gives us $|\Psi^{\leq 3}|=85$.

We will now calculate the overlap. We find that $\Sigma \cap \Psi = \{c, d\}$ so the overlap between the two sets will be two letter words made up of c and d. This gives us $2 \times 2 = 4$ words. Hence,

$$|\Sigma^{=2} \cup \Psi^{\leq 3}| = |\Sigma^{=2}| + |\Psi^{\leq 3}| - |\Sigma^{=2} \cap \Psi^{\leq 3}| = 9 + 85 - 4 = 90.$$

- 6. Let $A = \{\emptyset, \{\emptyset\} \text{ and } B = \text{Pow}(\text{Pow}(A)).$ Which of the following statements are true?
 - $|Pow(A)| = 2^{|A|}$
 - $\{\emptyset, \{\{\emptyset\}\}\}\} \in B$
 - $Pow(A) \subset B$
 - $\{\{A\}\}\in B$
 - None of these options.

Answer(s)

We can calculate $\text{Pow}(A) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}\}, \{\varnothing, \{\varnothing\}\}\}\$. We then find that $|\text{Pow}(A)| = 2^{|A|}$.

Now, we know that $\varnothing \in B$ as \varnothing is a subset of $\operatorname{Pow}(A)$. We also know that $\{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}$ are all subsets of $\operatorname{Pow}(A)$ and therefore elements of B. This means that $\operatorname{Pow}(A) \subset B$ and $\{\varnothing, \{\{\varnothing\}\} \in B$.

We have $A \in \text{Pow}(A)$ so $\{A\} \in B$, but $\{\{A\}\} \notin B$.

- 7. Define the operation \diamondsuit on sets as follows: For any set X, $\diamondsuit X = \{Y : Y \subseteq X \text{ and } |Y| \text{ is prime}\}$. Let $C = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Which of the following is true?
 - $\emptyset \in (\diamondsuit(\diamondsuit C))$
 - $|\operatorname{Pow}(C) \setminus (\lozenge C)| = 2^{|C|} |\lozenge C|$

- $|\lozenge C| = |\operatorname{Pow}(C)|$
- · None of the above

- The diamond operator only contains sets with a prime size. Since $|\varnothing| = 0$ and 0 is not prime, $\varnothing \notin (\diamondsuit(\diamondsuit C))$.
- Since $\operatorname{Pow}(C) = \{X : X \subseteq C\}$, we find that $\Diamond C$ is a subset of $\operatorname{Pow}(C)$ as all elements in $\Diamond C$ are subsets of C. This means that $|\operatorname{Pow}(C) \setminus (\Diamond C)| = 2^{|C|} |\Diamond C|$.
- We find that $\Diamond C \subseteq \text{Pow}(C)$, but $\varnothing \notin \Diamond C$ while $\varnothing \in \text{Pow}(C)$. This means that $|\Diamond C| < |\text{Pow}(C)|$.
- 8. Let $\Sigma = \{a, b\}$, and define $L_1 = \{a^n b^n : n \ge 0\}$ and $L_2 = \{a^{n^2} b^n : n \ge 0\}$. Which of the following is true about $L_1 \cap L_2$?
 - (a) $L_1 \cap L_2 = \{ \varepsilon, ab \}$
 - (b) $L_1 \cap L_2$ is finite and contains more than two elements
 - (c) $L_1 \cap L_2$ is infinite
 - (d) $L_1 \cap L_2 = \emptyset$

Answer(s)

To calculate $L_1 \cap L_2$, let w be a word both in L_1 and L_2 . We find that $w = a^n b^n = a^{m^2} b^m$ for some non-negative integers n and m. Since $a^n b^n$ and $a^{m^2} b^m$ must have the same amount of b's, we have n = m. The words must also have the same number of a's so $n = m^2 = n^2$. The only numbers where $n = n^2$ are 0 and 1 so the only two words in $L_1 \cap L_2$ are λ and ab.

- 9. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Which of the following statements is true?
 - $|\operatorname{Pow}(A)| = |\operatorname{Pow}(B)|$
 - $|A \times B| = |B \times A|$
 - $|\operatorname{Pow}(A \cup B)| = |\operatorname{Pow}(A)| + |\operatorname{Pow}(B)|$
 - $|A \oplus B| = |A| + |B|$
 - None of the other options

Answer(s)

We know that $|\operatorname{Pow}(X)| = 2^{|X|}$ for all sets X. This means that since $|A| \neq |B|$, we have $|\operatorname{Pow}(A)| \neq |\operatorname{Pow}(B)|$. Since $|A \cup B| = 7$, we can use our formula to find that $|\operatorname{Pow}(A \cup B)| \neq |\operatorname{Pow}(A)| + |\operatorname{Pow}(B)|$.

We have $|A \times B| = |A| \times |B|$ so we find that $|A \times B| = |B \times A|$.

We can calculate $A \oplus B = \{1, 2, 3, 4, a, b, c\}$ to get $|A \oplus B| = 7 = |A| + |B|$.

10. Let $\Sigma = \{a, b, c\}$. For $x \in \Sigma$, we define $|w|_x$ to be the number of times x appears in the word w. Consider the language $L = \{w \in \Sigma^* : |w|_a, |w|_b, |w|_c \text{ are primes}\}$. Which of the following is in L?

- w = aabcbabababbcb
- w = bcbabbaaabaaa
- w = cccbbbccbbcc
- w = abcabcabcabcabc
- w = accbbcacaaab

- w = aabcbababbcb has 5 a's, 5 b's and 2 c's which are all prime. This means $w \in L$.
- w = bcbabbaaabaaa is not in L as there is only one c and 1 is not prime.
- w = cccbbbccbbcc is not in L as there are 0 a's and 0 is not prime.
- w = abcabcabcabcabc has 5 a's, 5 b's and 5 c's which are all prime. This means $w \in L$.
- w = accbbcacaaab is not in L as there are 4 a's and 4 is not prime.