Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 1)

B.H. Robbins Scholars Series

June 3, 2010

Outline

Introduction to hypothesis testing

Scientific and statistical hypotheses

Classical and Bayesian paradigms

Type 1 and type 2 errors

One sample test for the mean

Hypothesis testing

Power and sample size

Confidence interval for the mean

Special case: paired data

One sample methods for a probability

Hypothesis testing

Power, confidence intervals, and sample size

Two sample tests for means

Hypothesis tests

Power, confidence intervals, and sample size

Introduction

- Goal of hypothesis testing is to rule out chance as an explanation for an observed effect
- Example: Cholesterol lowering medications
 - 25 people treated with a statin and 25 with a placebo
 - ► Average cholesterol after treatment is 180 with statins and 200 with placebo.
- Do we have sufficient evidence to suggest that statins lower cholesterol?
- ► Can we be sure that statin use as opposed to a chance occurrence led to lower cholesterol levels?

Introduction to hypothesis testing

Scientific and statistical hypotheses

Hypotheses

- Scientific Hypotheses
 - Often involve estimation of a quantity of interest
 - After amputation, to what extent does treatment with clonidine lead to lower rates of phantom limb pain than with standard therapy? (Difference or ratio in rates)
 - What is the average increase in alanine aminotransferase (ALT) one month after doubling the dose of medication X? (Difference in means)
- Statistical Hypothesis
 - ► A statement to be judged. Usually of the form: population parameter X is equal to a specified constant
 - ▶ Population mean potassium K, $\mu = 4.0 \text{ mEq/L}$
 - ▶ Difference in population means, $\mu_1 \mu_2 = 0.0 \text{ mEq/L}$

Statistical Hypotheses

- ▶ Null Hypothesis: *H*₀
 - A straw man; something we hope to disprove
 - ▶ It is usually is a statement of no effects.
 - ▶ It can also be of the form H_0 : μ =constant, or H_0 : probability of heads equal 1/2.
- Alternative Hypothesis: H_A
 - What you expect to favor over the null
- ▶ If H_0 : Mean K value = 3.5 mEq/L
 - ▶ One sided alternative hypothesis: H_A : Mean K > 3.5 mEq/L
 - ► Two-sided alternative hypothesis: H_A : Mean K \neq 3.5 mEq/L (values far away from the null)

Classical (Frequentist) Statistics

- Emphasizes hypothesis testing
- ▶ Begin by assuming H_0 is true
- Examines whether data are consistent with H₀
- Proof by contradiction
 - If, under H₀, the data are strange or extreme, then doubts are cast on the null.
- ► Evidence is summarized with a single statistic which captures the tendency of the data.
- ▶ The statistic is compared to the parameter value given by H_0

Classical (Frequentist) Statistics

- p-value: Under the assumption that H₀ is true, it is the probability of getting a statistic as or more in favor of H_A over H₀ than was observed in the data.
- ▶ Low p-values indicate that if *H*₀ is true, we have observed an improbable event.
- Mount evidence against the null, and when sufficient, reject H₀.
- NOTE: Failing to reject H₀ does not mean we have gathered evidence in favor of it (i.e., absence of evidence does not imply evidence of absence)
 - ► There are many reasons for not rejecting *H*₀ (e.g., small samples, inefficient designs, imprecise measurements, etc.)

Classical (Frequentist) Statistics

- Clinical significance is ignored.
- ▶ Parametric statistics: assumes the data arise from a certain distribution, often a normal or Gaussian.
- Non-parametric statistics: does not assume a distribution and usually looks at ranks rather than raw values.

Bayesian Statistics

- We can compute the probability that a statement, that is of clinical significance, is true
 - ► Given the data we observed, does medication X lower the mean cholesterol by more than 10 units?
- May be more natural than the frequentist approach, but it requires a lot more work.
- Supported by decision theory:
- ▶ Begin with a (prior) belief → learn from your data → Form a new (posterior) belief that combines the prior belief and the new data
- We can then formally integrate information accrued from other studies as well as from skeptics.
- Becoming more popular.

Errors in Hypothesis Testing

- ► Type 1 error: Reject H₀ when it is true
 - Significance level (α) or Type 1 error rate: is the probability of making this type of error
 - ▶ This value is usually set to 0.05 for random reasons
- ▶ Type 2 error: Failing to reject H_0 when it is false
 - The value β is the probability of a type 2 error or type 2 error rate.
- ▶ Power: 1β : probability of correctly rejecting H_0 when it is false

	State of H ₀		
Decision	H₀ is true	H_0 is false	
Do not reject H_0	Correct	Type 2 error (β)	
Reject H ₀	Type 1 error (α)	Correct	

└─Type 1 and type 2 errors

Notes Regarding Hypothesis Testing

- ► Two schools of thought
 - Neyman-Pearson: Fix Type 1 error rate (say $\alpha = 0.05$) and then make the binary decision, reject/do not reject
 - ► Fisher: Compute the p-value and quote the report in the publication.
 - We favor Fisher, but Neyman-Pearson is used all of the time.
- ► Fisher approach: discussion of p-values does not require discussion of type 1 and type 2 errors
 - Assume the sample was chosen randomly from a population whose parameter value is captured by H_0 . The p-value is a measure of evidence against it.
- Neyman-Pearson approach: having to make a binary call (reject vs do not reject) regarding significance is arbitrary
 - ▶ There is nothing magical about 0.05
 - Statistical significance has nothing to do with clinical significance

One sample test for the mean

- ► Assumes the sample is drawn from a population where values are normally distributed (normality is actually not necessary)
- ▶ One sample tests for mean $\mu = \mu_0$ (constant) don't happen very often except when data are paired (to be discussed later)
- ▶ The t-test is based on the t-statistic

$$t = \frac{\text{estimated value - hypothesized value}}{\text{standard deviation of numerator}}$$

 Standard deviation of a summary statistic is called the standard error which is the square root of the variance of the statistic

One sample test for the mean

- ▶ Sample average: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - ► The estimate of the population mean based on the observed sample
- Sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2$
- ▶ Sample standard deviation: $s = \sqrt{s^2}$
- $H_0: \mu = \mu_0 \text{ vs. } H_A: \mu \neq \mu_0$
- One sample t-statistic

$$t = \frac{\overline{x} - \mu_0}{SE}$$

▶ Standard error of the mean, $SE = \frac{s}{\sqrt{n}}$

One sample t-test for the mean

- When data come from a normal distribution and H₀ holds, the t ratio follows the t − distribution. What does that mean?
- Draw a sample from the population, conduct the study and calculate the t-statistic.
- Do it again, and calculate the t-statistic again.
- Do it again and again.
- Now look at the distribution of all of those t-statistics.
- ▶ This tells us the relative probabilities of all t-statistics if *H*₀ is true.

Example: one sample t-test for the mean

- ▶ The distribution of potassium concentrations in the target population are normally distributed with mean 4.3 and variance .1: N(4.3, .1).
- ▶ H_0 : $\mu = 4.3$ vs. H_A : $\mu \neq 4.3$. Note that H_0 is true!
- Each time the study is done,
 - Sample 100 participants
 - Calculate:

$$t = \frac{\overline{x} - 4.3}{SE}$$

Conduct the study 25 times, 250 times, 1000 times, 5000 times

☐ Hypothesis testing

One sample t-test for the mean

- With very small samples (n), the t statistic can be unstable because the sample standard deviation (s) is not a precise estimate of the population standard deviation (σ).
- ▶ So, the t-statistic has heavy tails for small *n*
- As n increases, the t-distribution converges to the normal distribution with mean equal to 0 and with standard deviation equal to one.
- ► The parameter defining the particular t-distribution we use (function of n) is called the degrees of freedom or d.f.
- ▶ d.f. = n number of means being estimated
- ▶ For the one-sample problem, d.f.=n-1
- \triangleright Symbol is t_{n-1}

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 1) \cup One sample test for the mean

∟ Hypothesis testing

One sample t-test for the mean

- ▶ One sided test: H_0 : $\mu = \mu_0$ versus H_A : $\mu > \mu_0$
- One tailed p-value:
 - ▶ Probability of getting a value from the t_{n-1} distribution that is at least as much in favor of H_A over H_0 than what we had observed.
- ▶ Two-sided test: H_0 : $\mu = \mu_0$ versus H_A : $\mu \neq \mu_0$
- Two-tailed p-value:
 - ▶ Probability of getting a value from the t_{n-1} distribution that is at least as big **in absolute value** as the one we observed.

One sample t-test for the mean

- Computer programs can compute the p-value for a given n and t-statistic
- Critical value
 - ▶ The value in the t (or any other) distribution that, if exceeded, yields a 'statistically significant' result for type 1 error rate equal to α
- Critical region
 - ▶ The set of all values that are considered statistically significantly different from H_0 .

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 1)

—One sample test for the mean

☐ Hypothesis testing

Power and Sample Size for a one sample test of means

- Power increases when
 - ▶ Type 1 error rate (α) increases: type 1 (α) versus type 2 (β) tradeoff
 - ▶ True μ is very far from μ_0
 - Variance or standard deviation (σ) decreases (decrease noise)
 - Sample size increases
- T-statistic

$$t = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

Power for a 2-tailed test is a function of the true mean μ , the hypothesized mean μ_0 , and the standard deviation σ only through $|\mu - \mu_0|/\sigma$

Power and Sample Size for a one sample test of means

▶ Sample size to achieve $\alpha = 0.05$, power=0.90 is approximately

$$n = 10.51 \left(\frac{\sigma}{\mu - \mu_0}\right)^2$$

- Power calculators can be found at statpages.org/#Power
- PS is a very good power calculator (Dupont and Plummer): http://biostat.mc.vanderbilt.edu/PowerSampleSize

Example: Power and Sample Size

- ► The mean forced expiratory volume in 1 second in a population of asthmatics is 2.5 L/sec, and the standard deviation is assumed to be 1
- ▶ How many subjects are needed to reject $H_0: \mu = 2.5$ in favor of $H_0: \mu \neq 2.5$ if the new drug is expected to increase the FEV to 3 L/sec with $\alpha = 0.05$ and $\beta = 0.1$
- $\mu_0 = 2.5, \ \mu = 3.0, \ \sigma = 1$

$$n = 10.51 \left(\frac{1}{3.0 - 2.5}\right)^2 = 42.04$$

▶ We need 43 subjects to have 90 percent power to detect a 0.5 difference from 2.5.

Confidence Intervals

▶ Two-sided, $100(1-\alpha)\%$ CI for the mean μ is given by

$$(\overline{x} - t_{n-1,1-\alpha/2} \cdot SE, \overline{x} + t_{n-1,1-\alpha/2} \cdot SE)$$

- $t_{n-1,1-\alpha/2}$ is the critical value from the t-distribution with d.f.=n-1
- ▶ For large n, $t_{n-1,1-\alpha/2}$ is equal to 1.96 for $\alpha = 0.05$
- ightharpoonup 1-lpha is called the confidence level or confidence coefficient

Confidence Intervals

- ▶ $100(1-\alpha)\%$ confidence interval (CI)
 - If we were able to repeat a study a large number of times, then $100 \cdot (1 \alpha)$ percent of CIs would contain the true value.
- ▶ Two-sided $100(1-\alpha)\%$ CI
 - Includes the null hypothesis μ_0 if and only if a hypothesis test H_0 : $\mu=\mu_0$ is not rejected for a 2-sided α significance level test.
 - ▶ If a 95% CI does not contain μ_0 , we can reject $H_0: \mu = \mu_0$ at the $\alpha = 0.05$ significance level

n	\overline{X}	σ	p-value	95% CI
20	27.31	54.23	0.036	(1.930, 52.690)
20	27.31	59.23	0.053	(-0.410, 55.030)
20	25.31	54.23	0.051	(-0.070, 50.690)
17	27.31	54.23	0.054	(-0.572, 55.192)

Cls provide more information than p-values

Special case: Paired data and one-sample tests

- Assume we want to study whether furosemide (or lasix) has an impact on potassium concentrations among hospitalized patients.
- ► That is, we would like to test H_0 : $\mu_{on-furo} \mu_{off-furo} = 0$ versus H_A : $\mu_{on-furo} \mu_{off-furo} \neq 0$
- ▶ In theory, we could sample n_1 participants not on furosemide and compare them to n_2 participants on furosemide
- However, a very robust and efficient design to test this hypothesis is with a paired sample approach
- ▶ On n patients, measure K concentrations just prior to and 12 hours following furosemide administration.

Special case: Paired data and one-sample tests

- ► The effect measure to test H₀ versus H_A, is the mean, within person difference between pre and post- administration K concentrations.
- $V_i = Y_{on-furo,i} Y_{off-furo,i}$
- ▶ Note that $\overline{W} = \overline{Y}_{on-furo} \overline{Y}_{off-furo}$
 - ► The average of the differences is equal to the difference between the averages
- ▶ H_0 : $\mu_w = 0$ versus H_A : $\mu_w \neq 0$ is equivalent to the above H_0 and H_A
- $\overline{W} = -0.075 \text{ mEq/L and } s = 0.08$

$$t_{99} = \frac{-0.075 - 0}{0.08 / \sqrt{100}} = 9.375$$

► The p-value is less than $0.0001 \rightarrow a$ highly (!!!!) statistically significant reduction

One Sample Methods for a Probability

- Y is binary (0/1): Its distribution is bernoulli(p) (p is the probability that Y = 1).
- **>** p is also the mean of Y and p(1-p) is the variance.
- ▶ We want to test H_0 : $p = p_0$ versus H_A : $p \neq p_0$
- ▶ Estimate the population probability p with the sample proportion or sample average \hat{p}

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

One Sample Methods for a Probability

► A z-test is an approximate test that assumes the test statistic has a normal distribution i.e., it is a t-statistic with the d.f. very large

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

▶ The z-statistic has the same form as the t-statistic

$$z = \frac{\text{estimated value - hypothesized value}}{\text{standard deviation of numerator}}$$

where $\sqrt{p_0(1-p_0)/n}$ is the standard deviation of the numerator which is the standard error assuming the H_0 is true.

(see t-statistic distributions)

One Sample test for a probability: Is our coin fair?

- $Y \sim bernoulli(p)$: $H_0: p = 0.5$ versus $H_A: p \neq 0.5$
- ▶ Flip the coin 50 times. Heads (Y=1) shows up 30 times $(\hat{p} = 0.6)$.

$$z = \frac{0.6 - 0.5}{\sqrt{(0.5)(0.5)/50}} = 1.414$$

- ▶ The p-value associated with Z is $2 \times$ the area under the normal curve to the right of z=1.414 (e.g. the area to the right of 1.414 plus the area to the left of -1.414)
- ▶ The critical value for a 2-sided $\alpha = 0.05$ significance level test is 1.96
- ▶ The p-value associated with this test is approximately 0.16
- Note that if p is very small or very large or if n is small, use exact methods (e.g. Fishers exact test or permutation test)

 $\hbox{Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 1) } \\$

One sample methods for a probability

Hypothesis testing

One sample methods for a probability

Power, confidence intervals, and sample size

Power and confidence intervals

- Power increases when
 - n increases
 - p departs from p₀
 - $ightharpoonup p_0$ departs from 0.5

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

- Confidence interval
 - ▶ 95%CI: $(\hat{p} 1.96 \cdot \sqrt{\hat{p}(1 \hat{p}/n)}, \hat{p} 1.96 \cdot \sqrt{\hat{p}(1 \hat{p}/n)})$
- ▶ For the coin flipping example: $\hat{p} = 0.6$ and the 95% CI is given by

$$0.6 \pm 1.96 \cdot \sqrt{0.6 \times 0.4/50} = (0.464, 0.736)$$

which is consistent with the 0.16 p-value that we had observed for H_0 : p = 0.5.

☐ Hypothesis tests

Two sample test for means

- Two groups of patients (not paired)
- ▶ These are much more common than 1 sample tests
- We assume data come from a normal distribution (although this is not completely necessary)
- For now, assume the two groups have equal variability in response distribution
- Test whether population means are equal
- Example: All patient in population 1 are treated with clonidine after limb amputation and all patients in population 2 are treated with standard therapy.
- Scientific question:
 - ► What is the difference in the mean pain scale scores at 6 months following the amputation?

Two sample test for means

- ▶ H_0 : $\mu_1 = \mu_2$ which can be generalized to H_0 : $\mu_1 \mu_2 = 0$ or H_0 : $\mu_1 \mu_2 = \delta$
- ▶ The quantity of interest (QOI) is $\mu_1 \mu_2$
- ▶ If we want to test H_0 : $\mu_1 \mu_2 = 0$ and if we assume the two populations have equal variances, then the t- statistic is given by:

$$t = \frac{\text{point estimate of the QOI} - 0}{\text{standard error of the numerator}}$$

▶ The estimate of the QOI: $\overline{x}_1 - \overline{x}_2$

Two sample test for means

- For two independent samples variance of the sum or of differences in means is equal to the sum of the variances
- ► The variance of the QOI is then given by $\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}$
- We need to estimate a single σ^2 from the two samples
- We use a weighted average of the two sample variances

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

► The true standard error of the difference in sample means: $\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

• Estimate with $s\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$

Two sample test for means

The t-statistic is given by,

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- ▶ Under H_0 t, has a t-distribution with $n_1 + n_2 2$ degrees of freedom.
- ► The -2 comes from the fact that we had to estimate the center of 2 distributions

Example: two sample test for means

▶
$$n_1 = 8$$
, $n_2 = 21$, $s_1 = 15.34$, $s_2 = 18.23$, $\overline{x}_1 = 132.86$, $\overline{x}_2 = 127.44$

$$s^2 = \frac{7(15.34)^2 + 20(18.23)^2}{7 + 20} = 307.18$$

$$s = \sqrt{307.18} = 17.527$$

$$se = 17.527\sqrt{\frac{1}{8} + \frac{1}{21}} = 7.282$$

$$t = \frac{5.42}{7.282} = 0.74$$

on 27 d.f.

Example: two sample test for means

- ▶ The two-sided p-value is 0.466
 - ▶ You many verify with the surfstat.org t-distribution calculator
- ▶ The chance of getting a difference in means as large or larger than 5.42 if the two populations have the same mean in 0.466.
- No evidence to suggest that the population means are different.

Power, confidence intervals, and sample size

Power and sample size: two sample test for means

- Power increases when
 - $ightharpoonup \Delta = \mid \mu_1 \mu_2 \mid \text{increases}$
 - $ightharpoonup n_1$ or n_2 increases
 - $ightharpoonup n_1$ and n_2 are close
 - $ightharpoonup \sigma$ decreases
 - $ightharpoonup \alpha$ increases
- ▶ Power depends on n_1 , n_2 , μ_1 , μ_2 , and σ approximately through

$$\frac{\Delta}{\sigma\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}$$

- When using software to calculate power you can put in 0 for μ_1 and Δ for μ_2 since all that matters is their difference
- $ightharpoonup \sigma$ is often estimated from pilot data

Power, confidence intervals, and sample size

Power and sample size: two sample test for means

- Example
 - From available data, ascertain a best guess of σ : assume it is 16.847.
 - Assume Δ =5, n_1 = 100, n_2 = 100, α = 0.05
 - ▶ The surfstat software computes a power of 0.555
- The required sample size decreases with
 - $k = \frac{n_2}{n_1} \rightarrow 1$
 - ▶ ∆ large
 - $ightharpoonup \sigma$ small
 - ightharpoonup lpha large
 - Lower power requirements

 $\begin{tabular}{ll} Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 1) \\ \end{tabular}$

Two sample tests for means

Power, confidence intervals, and sample size

Power and sample size: two sample test for means

▶ An approximate formula for required sample sizes to achieve power=0.9 with $\alpha = 0.05$ is

$$n_1 = \frac{10.51\sigma^2(1 + \frac{1}{k})}{\Delta^2}$$

$$n_2 = \frac{10.51\sigma^2(1 + k)}{\Delta^2}$$

σ	Δ	K	n_1	n_2	n
16.847	5	1.0	239	239	478
16.847	5	1.5	199	299	498
16.847	5	2.0	177	358	537
16.847	5	3.0	160	478	638

▶ Usually, websites are recommended for these calculations.

Two sample tests for means

Power, confidence intervals, and sample size

Confidence interval: two sample test for means

Confidence interval

$$[(\overline{x}_1 - \overline{x}_2) - t_{n_1+n_2-2,1-\alpha/2} \times s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \\ (\overline{x}_1 - \overline{x}_2) + t_{n_1+n_2-2,1-\alpha/2} \times s \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}]$$

Δ	S	n_1	n ₂	LCI	UCI
5	16.847	100	100	3.01	6.99
5	16.847	75	125	2.95	7.05
5	16.847	50	150	2.70	7.30

Power, confidence intervals, and sample size

Summary

- Hypothesis testing, power, sample size, and confidence intervals
 - One sample test for the mean
 - One sample test for a probability
 - ► Two sample test for the mean