

FACULTAD DE CIENCIAS Y FILOSOFÍA DEPARTAMENTO ACADÉMICO DE INGENIERÍA

UNIVERSIDAD PERUANA	
CAYETANO HEREDIA	CARRERA DE INGENIERÍA BIOMÉDICA
	MECÁNICA Y TRANSPORTE DE FLUIDOS
Nombres y apellidos:	
Código:	
PRIMER INFORME DE	SESIONES DEMOSTRATIVAS
CFD FOR BEGGINERS; USO	DE LOS SOLVERS: icoFoam, pimpleFoam
COMPETENCIA: Desarroll	ar competencias básicas en el manejo de simulaciones de fluidos
en computadora mediante	OpenFoam (librería de código escrito en C++).
El presente formato debera consultada.	á ser desarrollado según lo indicado; recuerde citar la bibliografía

I. INTRODUCCIÓN

Construya este primer ítem respondiendo las preguntas planteadas, tenga en cuenta la precisión y coherencia de los párrafos. Puede considerar otros aspectos relevantes.

- ¿Cuáles son las etapas del proceso de una simulación?
- ¿Cuáles son las ventajas de la discretización con volúmenes finitos? Mencionar tres.
- ¿Cuáles son los alcances y restricciones de los solvers icoFoam y pimpleFoam?

II. OBJETIVO

Ejecutar simulaciones mediante el solver que resuelve el caso para la variación de temperatura en el fluido y con este obtener dos casos de viscosidad cada uno con legendas para velocidad.

III. TEORÍA Y CONCEPTOS BÁSICOS

Desarrolle los conceptos y teorías que se presentan a continuación

a. Preliminares:

- Condiciones iniciales
- Condiciones de borde
- Estabilidad numérica
- Convergencia

b. Tipos de flujo; definición y caracterización:

- Flujo transitorio
- Flujo estacionario

IV. RECURSOS

Detalle las características de cada recurso empleado en el desarrollo de la práctica.

- Materiales: Geometría y malla del tutorial de OpenFOAM
- Equipos: Computadora de escritorio o laptop
- Instrumentos o herramientas: OpenFOAM con solvers IcoFoam y SimpleFoam

V. DESARROLLO

Escriba las instrucciones en la terminal que utilizaría para correr los modelos Elbow y Airfol2d. Tome como referencia el ejemplo presentado para Cavity.

\$ cd cavity \$ blockMesh \$ icoFoam \$ icoFoam > info	a. Modelo Cavity	b. Modelo Elbow	c. Modelo hotRoom
\$ icoFoam	-		

VI. RESULTADOS Y DISCUSIONES

- Exporte los resultados gráficos en formato ".png" obtenidos en ParaView correspondientes a la última etapa de la simulación.
- Comente sus apreciaciones sobre los campos de velocidades y campos de presiones en las zonas críticas que tenga la geometría de estudio. Señale estas zonas en su gráfica.
- Comente las dificultades que se le presentaron en el desarrollo de la práctica.

VII. CONCLUSIONES

- Modelo Cavity
- Modelo Elbow
- Modelo Thermal hot Room

VIII. CUESTIONARIO

Responda las siguientes preguntas:

- a. ¿Cuál es la relación entre la pérdida de velocidad y el diámetro de la sección?
- b. ¿Cuáles son los puntos críticos donde conviene estudiar estas geometrías? ¿Por qué estudiar las zonas críticas?

IX. BIBLIOGRAFÍA SUGERIDA

- OpenFoam User Guide Version 8. Disponible en:
 http://foam.sourceforge.net/docs/Guides-a4/OpenFOAMUserGuide-A4.pdf
- Versteeg, H. K., & Malalasekera, W. (1995). An introduction to computational fluid dynamics. Finite Volume Method, Essex, Longman Scientific & Technical.
- Xiaofeng Liu. Computational Methods for Environmental Flows (Ph.D., P.E.Assistant Professor Department of Civil and Environmental Engineering Pennsylvania State University xliu@engr.psu.edu --> Curso de la Pen State University https://github.com/psu-efd/PSU-OpenFOAM-Course-Notes OpenFOAM lecture notes at Penn State University by Xiaofeng Liu, Ph.D., P.E.
- Casacuberta Puig, J., Soudah Prieto, E., Gámez Montero, P. J., Raush Alviach, G. A., Castilla López, R., & Pérez Ronda, J. S. (2015). Hemodynamics in the Thoracic Aorta using OpenFOAM: 4D PCMRI versus CFD.