

UNIVERSIDAD DE MEDELLIN FACULTAD DE INGENIERIA INGENIERIA ELECTRONICA ELECTRONICA ANALOGICA

EJEMPLOS DE CLASE – DIODO IDEAL

Ejemplos

- **1.** El circuito rectificador de la siguiente figura se alimenta con una entrada senoidal de $12 V_{rms}$ y emplea un diodo cuyo $V_{D0} = 0.7 V$ conectado a una resistencia de $R = 100 \Omega$, se pide:
 - **a.** El valor promedio de v_0 .
 - **b.** La corriente pico del diodo.
 - c. El valor de PIV.

Montaje en Spice: rectificador-media-onda_ejemplo1.asc

Modelo de caida constante

.model DVcte D(Ron=0.0001 Roff=100G Vfwd=0.7)

Parametros de simulación

.tran 0 33.33m 0 33.33u

Mediciones

.meas Vo_avg AVG V(o)
.meas I_max MAX I(R1)

Resultado simulación:

a. Resultado teórico: $v_{O,avg} = 5.05 V$

Señales de voltaje de entrada y salida

El comando de simulación para obtener el valor promedio del voltaje es:

```
.meas Vo_avg AVG V(o)
```

El archivo de salida muestra el siguiente resultado. Se resalta el voltaje promedio:

```
.OP point found by inspection.

vo_avg: AVG(v(o))=5.05713 FROM 0 TO 0.03333
```

```
i_max: MAX(i(r1))=0.162488 FROM 0 TO 0.03333
```

b. Resultado teórico: $I = 163 \ mA$

Señal de corriente de salida – Señales de voltaje de entrada y salida

Señal de corriente de salida

El comando de simulación para obtener el valor máximo de la corriente es:

.meas I_max MAX I(R1)

El resultado arrojado en el archivo de salida se resalta a continuación:

```
OP point found by inspection.

vo_avg: AVG(v(o))=5.05713 FROM 0 TO 0.03333
i_max: MAX(i(r1))=0.162488 FROM 0 TO 0.03333
...
```

A continuación, se muestra la captura del archivo de salida del cual se obtuvieron los valores de los numerales **a** y **b**.

```
🥰 SPICE Error Log: C:\Users\Usuario\Documents\UdeM\2023-2\electronica_analogica\presentaciones\clase4\... 💢
Circuit: * C:\Users\Usuario\Documents\UdeM\2023-2\electronica analogica\prese ^
.OP point found by inspection.
vo avg: AVG(v(o))=5.05713 FROM 0 TO 0.03333
i max: MAX(i(r1))=0.162488 FROM 0 TO 0.03333
Date: Sat Jul 15 16:50:09 2023
Total elapsed time: 0.098 seconds.
tnom = 27
temp = 27
method = modified trap
totiter = 2038
traniter = 2038
tranpoints = 1018
accept = 1018
rejected = 0
matrix size = 3
fillins = 0
solver = Normal
Matrix Compiler1: 86 bytes object code size 0.0/0.0/[0.0]
Matrix Compiler2: 163 bytes object code size 0.0/0.0/[0.0]
```

c. Valor teórico: PIV = 17 V

Señal de voltaje del diodo - Señales de voltaje de entrada, de salida y del diodo

Señal de voltaje del diodo

- 2. El circuito rectificador de la siguiente figura se alimenta con una entrada senoidal de $12~V_{rms}$ y emplea un diodo cuyo $V_{D0}=0.7~V$ conectado a una resistencia de $R=100~\Omega$, se pide:
 - **a.** El valor promedio de v_0 .
 - **b.** La corriente pico del diodo.
 - c. El valor de PIV.

Montaje en Spice: rectificador-onda-completa-tap_ejemplo2.asc

Señal de voltaje en el secundario 1 - Señal de voltaje en el secundario 2 - Señales de voltaje en el primario (entrada) y en los secundarios 1 y 2

Señal de voltaje en el secundario 1 - Señal de voltaje en el secundario 2

Señal de voltaje en el secundario 1 - Señal de voltaje en el secundario 2

Señales de voltaje en el primario (entrada) y en los secundarios 1 y 2 – Señal de voltaje en el secundario 1 y en la salida – Señal de voltaje a la salida

Señales de voltaje en los secundarios 1 y 2 – Señal de voltaje en los diodos D1 y D2 – Señal de voltaje en el diodo D2 – Señal de voltaje en el diodo D2 – Señal de voltaje a la salida

Señales de voltaje en secundario 1 – Señal de voltaje a la salida

Señales de corriente en los diodos D1 y D2 – Señal de corriente en el diodo D1 – Señal de corriente en el diodo D2 – Señal de corriente a la salida

Señal de corriente de salida – Señal de voltaje de salida

Señal de voltaje de en el diodo D1

a. Resultado teórico: $v_{O,avg} = 10.1 \, V$ **b.** Resultado teórico: $I = 163 \, mA$ **c.** Resultado teórico: $PIV = 33.2 \, V$

A continuación, se muestran y corrientes resultantes en el archivo de salida:

```
OP point found by inspection.

vs_max: MAX(v(s1))=17.6899 FROM 0 TO 0.1

vo_max: MAX(v(o))=16.9898 FROM 0 TO 0.1

vo_avg: AVG(v(o))=9.61267 FROM 0 TO 0.1

io_max: MAX(i(r1))=0.169898 FROM 0 TO 0.1

vd1_min: MIN(v(s1)-v(o))=-32.0931 FROM 0 TO 0.1
```

La siguiente imagen muestra el archivo de salida:

```
SPICE Error Log: C:\Users\Usuario\Documents\UdeM\2023-2\electronica_analogica\presentaciones\clase4\...
Circuit: * C:\Users\Usuario\Documents\UdeM\2023-2\electronica analogica\prese ^
.OP point found by inspection.
vs max: MAX(v(s1))=17.6899 FROM 0 TO 0.1
vo max: MAX(v(o))=16.9898 FROM 0 TO 0.1
vo avg: AVG(v(o))=9.61267 FROM 0 TO 0.1
io max: MAX(i(r1))=0.169898 FROM 0 TO 0.1
vd1 min: MIN(v(s1)-v(o))=-32.0931 FROM 0 TO 0.1
Date: Sat Jul 15 20:29:15 2023
Total elapsed time: 0.105 seconds.
tnom = 27
temp = 27
method = modified trap
totiter = 2121
traniter = 2121
tranpoints = 1049
accept = 1048
rejected = 1
matrix size = 8
fillins = 4
solver = Normal
Matrix Compiler1: 754 bytes object code size 0.2/0.1/[0.1]
Matrix Compiler2: off [0.1]/0.1/0.1
```

- **3.** El circuito rectificador de la siguiente figura se alimenta con una entrada senoidal de $12\ V_{rms}$ y emplea un diodo cuyo $V_{D0}=0.7\ V$ conectado a una resistencia de $R=100\ \Omega$, se pide:
 - **a.** El valor promedio de v_{o} .
 - **b.** La corriente pico del diodo.
 - c. El valor de PIV.

Montaje en Spice: rectificador-onda-completa-puente_ejemplo3.asc

Señales de voltaje a la entrada y a la salida

Señales de voltaje a la entrada y a la salida (con puntos resaltados)

Señales de voltaje y corriente a la salida

Señales de voltaje y corriente a la salida

Señales de voltaje a la entrada y en cada uno de los cuatro diodos (D1, D2, D3 y D4) que conforman el puente

Señal de voltaje en cada del diodo D1

Cálculos solicitados:

a. Resultado teórico: $v_{O,avg} = 9.4 \ V$ **b.** Resultado teórico: $I = 156 \ mA$ **c.** Resultado teórico: $PIV = 16.3 \ V$

En lo que respecta a los valores pedidos, la siguiente salida despliega los principales resultados del archivo de salida:

```
OP point found by inspection.

vo_avg: AVG(v(o))=9.44199 FROM 0 TO 0.03333

i_max: MAX(i(r1))=0.155505 FROM 0 TO 0.03333

vd1_min: MIN(v(in+) - v(o))=-16.2505 FROM 0 TO 0.03333
```

La siguiente imagen muestra el archivo de salida:

```
SPICE Error Log: C:\Users\Usuario\Documents\UdeM\2023-2\electronica_analogica\presentaciones\clase4\...
Circuit: * C:\Users\Usuario\Documents\UdeM\2023-2\electronica analogica\present
.OP point found by inspection.
vo avg: AVG(v(o))=9.44199 FROM 0 TO 0.03333
i max: MAX(i(r1))=0.155505 FROM 0 TO 0.03333
vd1 min: MIN(v(in+) - v(o))=-16.2505 FROM 0 TO 0.03333
Date: Sun Jul 16 22:39:42 2023
Total elapsed time: 0.119 seconds.
tnom = 27
temp = 27
method = modified trap
totiter = 2090
traniter = 2090
tranpoints = 1042
accept = 1042
rejected = 0
matrix size = 4
fillins = 1
solver = Normal
Matrix Compiler1:
                    12 opcodes 0.1/[0.0]/0.1
Matrix Compiler2: off [0.0]/0.1/0.1
```