

Gemeinsame Abituraufgabenpools der Länder

Pool für das Jahr 2020

Aufgaben für das Fach Mathematik

Kurzbeschreibung

Anforderungsniveau	Prüfungsteil	Sachgebiet ¹ digitales Hilfsmi	
erhöht	В	AG/LA (A2)	CAS

1 Aufgabe

Betrachtet wird der abgebildete Würfel mit A(0|0|0), B(3|-3|3), G(0|0|9) und H(-3|3|6).

- a Berechnen Sie das Volumen des Würfels.
- **b** Begründen Sie, dass das Viereck ABGH ein Rechteck ist, und zeichnen Sie dieses in die Abbildung ein.
- **c** Das Viereck ABGH liegt in der Ebene L. Bestimmen Sie eine Gleichung von L in Koordinatenform.

(zur Kontrolle:
$$x + y = 0$$
)

- **d** Bestimmen Sie die Größe des Winkels, den die Ebene L mit der xz-Ebene einschließt.
- e Ermitteln Sie die Koordinaten von F.
- **f** Die Gerade durch B und G schneidet die xy-Ebene im Punkt S. Bestimmen Sie das Verhältnis, in dem B die Strecke SG teilt.
- **g** Die Ebene, die durch die Mittelpunkte der Kanten \overline{BC} , \overline{CG} , AD und DH verläuft, teilt den Würfel in zwei Teilkörper. Begründen Sie mithilfe einer Skizze, dass das Volumen des kleineren Teilkörpers ein Achtel des Volumens des Würfels ist.

5

5

2

¹ verwendete Abkürzungen: AG/LA (A1) - Analytische Geometrie/Lineare Algebra (Alternative A1), AG/LA (A2) - Analytische Geometrie/Lineare Algebra (Alternative A2)

h Gegeben ist die Schar der Ebenen z=k mit $k \in IR$. Geben Sie in Abhängigkeit von k die unterschiedlichen Arten der Figuren an, in denen die Ebenen für 0 < k < 9 den Würfel schneiden.

25

2 Erwartungshorizont

Der Erwartungshorizont stellt für jede Teilaufgabe eine mögliche Lösung dar. Nicht dargestellte korrekte Lösungen sind als gleichwertig zu akzeptieren.

		ВЕ	
а	$\left \overline{AB} \right ^3 = 81\sqrt{3}$	2	
b	AB und GH sind als Kanten, AH und BG als Seitendiagonalen eines Würfels gleich lang. BG liegt in der Seitenfläche BFGC und steht damit senkrecht zu AB.	3	
С	$ \overrightarrow{AB} \circ \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = 0 \wedge \overrightarrow{AG} \circ \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = 0 \ \ \text{liefert} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \ \text{als Normalenvektor von L. Da A in L liegt,} $ ergibt sich für die gesuchte Gleichung $x + y = 0$.	3	
d	d Da L die z-Achse enthält und den Winkel halbiert, den die positive x-Achse und die negative y-Achse einschließen, beträgt die Größe des gesuchten Winkels 45°.		
е	Mittelpunkt von \overline{BG} : $M \big(1,5 -1,5 6 \big)$	5	
	Da $\overline{\mathbf{CF}}$ senkrecht zu L steht, gilt $\overline{\mathbf{AF}} = \overline{\mathbf{AM}} - \frac{1}{2} \cdot \left \overline{\mathbf{BG}} \right \cdot \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1, 5 - \frac{3}{2}\sqrt{3} \\ -1, 5 - \frac{3}{2}\sqrt{3} \\ 6 \end{pmatrix}$. Damit: $\mathbf{F} \left(1, 5 - \frac{3}{2}\sqrt{3} \mid -1, 5 - \frac{3}{2}\sqrt{3} \mid 6 \right)$		
	$\frac{ Darmax ^2}{ A ^2} \sqrt{3} \left(-\frac{1}{2} \sqrt{3} \right) = \frac{1}{2} \sqrt{3} \left(-\frac{1}{2} \sqrt{3} \right)$		
f	$\frac{\overline{ SB }}{\overline{ BG }} = \frac{3}{9-3} = \frac{1}{2}$	2	
g	Der kleinere Teilkörper ist ein gerades Prisma. Die Grundfläche des Prismas ist eine Teilfläche der Seitenfläche BFGC; der Inhalt dieser Teilfläche ist ein Achtel des Inhalts der Seitenfläche BFGC. Die Höhe des Prismas stimmt mit der Kantenlänge des Würfels überein.	5	

h	Für $0 < k \le 3$ und $6 \le k < 9$ ist die jeweilige Schnittfigur ein Dreieck, für $3 < k < 6$ ein Sechseck.	3
		25

3 Standardbezug

Teilauf- gabe	BE
а	2
b	3
С	3
d	2
е	5
f	2
g	5
h	3

allgemeine mathematische Kompetenzen					
K1	K2	К3	K4	K5	K6
				- 1	
I			- 1	- 1	
				П	
				П	
III	Ш		Ш	Ш	II
	Ш			1	I
П			Ш		II
III	Ш		Ш		

Anforderungsbereich			
ı	П	III	
Х			
Х			
	Х		
	Х		
		Х	
	Х		
	Х		
		Х	

4 Bewertungshinweise

Die Bewertung der erbrachten Prüfungsleistungen hat sich für jede Teilaufgabe nach der am rechten Rand der Aufgabenstellung angegebenen Anzahl maximal erreichbarer Bewertungseinheiten (BE) zu richten.

Für die Bewertung der Gesamtleistung eines Prüflings ist ein Bewertungsraster² vorgesehen, das angibt, wie die in den Prüfungsteilen A und B insgesamt erreichten Bewertungseinheiten in Notenpunkte umgesetzt werden.

3

² Das Bewertungsraster ist Teil des Dokuments "Beschreibung der Struktur", das auf den Internetseiten des IQB zum Download bereitsteht.