MESA Stellar Model Format

MESA-format files store data describing a stellar model in an ASCII text file. There are two variants of this format, 'old' and 'new', differentiated by their header lines.

Old Variant

The first line of old-variant MES files is a header with the following columns:

Column	Variable	Datatype	Definition
1	n	integer	Number of grid points
2	M_*	real	Stellar mass (g)
3	R_*	real	Stellar radius (cm)
4	L_*	real	Stellar luminosity $(erg s^{-1})$

The following n lines contain the model data, one line per grid point extending from the center to the surface, with the following columns:

Column	Name	Datatype	Definition
1	k	integer	Grid point index $(k = 1,, n)$
2	r	real	Radius (cm)
3	w	real	$M_r/(M_*-M_r)$
4	L_r	real	Luminosity (erg s ^{-1})
5	p	real	Total pressure $(dyn cm^{-2})$
6	T	real	Temperature (K)
7	ρ	real	Density $(g cm^{-2})$
8	∇	real	$\mathrm{d} \ln T / \mathrm{d} \ln p$
9	N^2	real	Brunt-Väisälä frequency squared (s^{-2})
10	c_V	real	Specific heat at constant volume $(erg g^{-1} K^{-1})$
11	c_p	real	Specific heat at constant pressure $(erg g^{-1} K^{-1})$
12	χ_T	real	$(\partial \ln p/\partial \ln T)_{ ho}$
13	$\chi_{ ho}$	real	$(\partial \ln p/\partial \ln \rho)_T$
14	κ	real	opacity $(\text{cm}^2 \text{g}^{-1})$
15	κ_T	real	$(\partial \ln \kappa / \partial \ln T)_{\rho}$
16	$\kappa_{ ho}$	real	$(\partial \ln \kappa / \partial \ln \rho)_T$
17	ϵ	real	energy generation/loss rate (erg s^{-1} g ⁻¹)
18	ϵ_T	real	$(\partial \epsilon/\partial \ln T)_{\rho} \ (\text{erg } s^{-1} \text{g}^{-1})$
19	$\epsilon_{ ho}$	real	$(\partial \epsilon/\partial \ln \rho)_T \ (\text{erg } s^{-1} \text{g}^{-1})$

New Variant

The first line of new-variant MES files is a header with the following columns:

Column	Variable	Datatype	Definition
1	n	integer	Number of grid points
2	M_*	real	Stellar mass (g)
3	R_*	real	Stellar radius (cm)
4	L_*	real	Stellar luminosity $(erg s^{-1})$
5	$n_{\rm col}$	integer	Number of columns in subsequent lines

The following n lines contain the model data, one line per grid point extending from the center to the surface, with the following columns:

Column	Name	Datatype	Definition
1	k	integer	Grid point index $(k = 1,, n)$
2	r	real	Radius (cm)
3	w	real	$M_r/(M_* - M_r)$
4	L_r	real	Luminosity $(\operatorname{erg} \operatorname{s}^{-1})$
5	p	real	Total pressure $(dyn cm^{-2})$
6	T	real	Temperature (K)
7	ρ	real	Density $(g cm^{-2})$
8	∇	real	$\mathrm{d} \ln T / \mathrm{d} \ln p$
9	N^2	real	Brunt-Väisälä frequency squared (s^{-2})
10	Γ_1	real	$(\partial \ln p/\partial \ln ho)_{\mathrm{ad}}$
11	$ abla_{ m ad}$	real	$(\mathrm{d}\ln T/\mathrm{d}\ln p)_{\mathrm{ad}}$
12	δ	real	$-(\partial \ln \rho/\partial \ln T)_p$
13	κ	real	opacity $(cm^2 g^{-1})$
14	κ_T	real	$(\partial \ln \kappa / \partial \ln T)_{\rho}$
15	$\kappa_{ ho}$	real	$(\partial \ln \kappa / \partial \ln \rho)_T$
16	ϵ	real	energy generation/loss rate (erg s^{-1} g ⁻¹)
17	ϵ_T	real	$(\partial \epsilon/\partial \ln T)_{\rho} \ (\text{erg } s^{-1} \text{g}^{-1})$
18	$\epsilon_{ ho}$	real	$(\partial \epsilon/\partial \ln \rho)_T \ (\text{erg } s^{-1} \text{g}^{-1})$
19	$\Omega_{ m rot}$	real	Rotation angular velocity $(rad s^{-1})$