Klasyfikacja obrazów z wykorzystaniem metod uczenia głębokiego

Szymon Suszek, Bartosz Lodek

5 Abstract

W ramach projektu analizowano problem klasyfikacji dla zbioru Fashion-MNIST [6]. Do rozwiązania zadania skorzystano z metod uczenia głębokiego. Zaimplementowano i sprawdzono skuteczność sieci opartych na modelu perceptrona wielowarstwowego oraz sieci splotowych. Łącznie zaproponowano pięć architektur.

10

15

20

25

1. Wstęp

Zbiór obrazów składa się z 60,000 przykładów treningowych oraz 10,000 przykładów testowych. Każdy obraz ma jeden kanał (skala szarości) o wymiary 28x28 i należy do jednej z 10 klas. Dodatkowo z zbioru treningowego wydzielono 5,000 przykładów do zbioru walidacyjnego – służy do obliczania metryk podczas treningu jako odniesie. Wszystkie wymienione zbiory są dobrze zbalansowane, każda z klas jest równoliczna.

Na początku badań sprawdzono skuteczność najprostszych technik – modelu wielowarstwowego perceptronu, następnie zbadano płytkie sieci splotowe i kolejno zaimplementowano bardziej złożone modele.

Częstą praktyką w uczeniu głębokim jest korzystanie z wcześniej wytrenowanej sieci, poprawia to skuteczność w przypadku uczenia na małych zbiorach obrazów. Wykorzystana sieć wcześniej zostaje wytrenowana na dużym zbiorze danych. Zbiór powinien być nie tylko duży ale i ogólny [2]. Przestrzenna hierarchia cech wyuczona przez wcześniej trenowany model może być przydatna dla innych zbiorów danych oraz innych zadań przetwarzania obrazów[3]. Podejście to przedstawiono w sekcji 1.4 oraz 1.5.

1.1 Gęsta sieć neurona – perceptron wielowartwowy

Badania rozpoczeto od zaimplementowania gęstej sieci neuronowej o dwóch warstwach ukrytych oraz jednej wyjściowej. Liczba neuronów w wartwach ukrytych wynosiła 512, w warstwie wyjściowej z kolei 10. Wejściem sieci jest jednowymiarowy wektor kolumny równy iloczynowi szerokości i wysokości obrazu. W celu zmniejszenia przeuczenia sieci (overfitting) wykorzystano z metody regularyzacji odrzucania (dropout)[4]. Dokładna struktura sieci:

Layer (type)	Output Shape	Param #	
dense (Dense)	(None, 512)	401920	
dropout (Dropout)	(None, 512)	0	
dense_1 (Dense)	(None, 512)	262656	
dropout_1 (Dropout)	(None, 512)	0	
dense_2 (Dense)	(None, 10)	5130	

Total params: 669,706

Trainable params: 669,706

Non-trainable params: 0

30

35

40

45

Rysunek 1. Wykres wartości straty oraz dokładności na zbiorze treningowym oraz walidacyjnym podczas uczenia, dla 10 epok.

Rysunek 2. Macierz pomyłek dla zbioru testowego.

1.2 Płytka sieć splotowa

Następnie zaimplementowano sieć składającą się z trzech warstw splotowych, po dwóch z nich bezpośrednio zastosowano warstwy łączące (maxpooling) oraz jednej gęstej wraz z warstwą wyjściową. Warstwa łącząca ma na celu zmniejszenie wymiarowości obrazu oraz ekstrakcje cech. Dokładna struktura sieci:

Layer (type)	Output Shape I	Param #
conv2d_3 (Conv2D)	(None, 26, 26, 32)	320
max_pooling2d_2 (M	axPooling2 (None, 13, 1	3, 32) 0
conv2d_4 (Conv2D)	(None, 11, 11, 64)	18496
max_pooling2d_3 (M	axPooling2 (None, 5, 5,	64) 0
conv2d_5 (Conv2D)	(None, 3, 3, 64)	36928
flatten 1 (Flatten)	(None, 576))

dense_2 (Dense)	(None, 64)	36928	
dense_3 (Dense)	(None, 10)	650	

Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0

80

85

90

Rysunek 3. Wykres wartości straty oraz dokładności na zbiorze treningowym oraz walidacyjnym podczas uczenia, dla 20 epok.

Rysunek 4. Macierz pomyłek dla zbioru testowego.

1.3 Sieć splotowa

95

100

105

110

Na podstawie architektur osiągających najlepsze wyniki w klasyfikacji wybranych zbiorów danych np. ImageNet stworzono autorską implementację. Składa się z 7 warstw konwolucyjnych, po każdej warstwie dokonywana jest normalizacja [5] przed funkcją aktywacji. Z powodu małego rozmiaru obrazu wejściowego wykorzystano z uzupełniania obramowania zerami podczas wykonywania operacji konowlucji. Zgodnie z większością istniejących architektur [2][3] w raz z redukcją rozmiaru zdjęcia, rośnie głębokość sieci. Warstwy łączące (pooling) oużyte zostały w celu redukcji wymiarowości. Po 7 warstwach konwolucji i łączących na górze klasyfikatora występują dwie warstwy ukryte gęste o liczbie neuronów 256, 128 oraz warta wyjściowa 10 neuronów. Dokładna struktura sieci:

Layer (type)	Output Shape	Param #	
conv2d (Conv2D)	(None, 28, 28	, 64) 166	4
batch_normalization	(BatchNo (None, 28	8, 28, 64)	256

1001	ky re lu (LeakyReLU) (None, 28, 28, 64) 0
max	x_pooling2d (MaxPooling2D) (None, 14, 14, 64) 0
con	v2d_1 (Conv2D) (None, 14, 14, 128) 73856
bate	ch_normalization_1 (Batch (None, 14, 14, 128) 512
leal	ky_re_lu_1 (LeakyReLU) (None, 14, 14, 128) 0
con	v2d_2 (Conv2D) (None, 14, 14, 64) 8256
bate	ch_normalization_2 (Batch (None, 14, 14, 64) 256
leal	ky_re_lu_2 (LeakyReLU) (None, 14, 14, 64) 0
con	v2d_3 (Conv2D) (None, 14, 14, 128) 73856
bate	ch_normalization_3 (Batch (None, 14, 14, 128) 512
leal	ky_re_lu_3 (LeakyReLU) (None, 14, 14, 128) 0
maz	x_pooling2d_1 (MaxPooling2 (None, 7, 7, 128) 0
con	v2d_4 (Conv2D) (None, 7, 7, 256) 295168
bate	ch_normalization_4 (Batch (None, 7, 7, 256) 1024
leal	ky_re_lu_4 (LeakyReLU) (None, 7, 7, 256) 0
con	v2d_5 (Conv2D) (None, 7, 7, 128) 32896
bate	ch_normalization_5 (Batch (None, 7, 7, 128) 512
leal	ky_re_lu_5 (LeakyReLU) (None, 7, 7, 128) 0
con	v2d_6 (Conv2D) (None, 7, 7, 256) 295168
bate	ch_normalization_6 (Batch (None, 7, 7, 256) 1024
leal	ky_re_lu_6 (LeakyReLU) (None, 7, 7, 256) 0
max	x_pooling2d_2 (MaxPooling2 (None, 3, 3, 256) 0
	ten (Flatten) (None, 2304) 0

(None, 256)	590080	
ReLU) (None, 256)	0	
(None, 256)	0	
(None, 128)	32896	
ReLU) (None, 128)	0	
(None, 128)	0	
(None, 10)	1290	
	ReLU) (None, 256) (None, 256) (None, 128) ReLU) (None, 128) (None, 128)	ReLU) (None, 256) 0 (None, 256) 0 (None, 128) 32896 ReLU) (None, 128) 0 (None, 128) 0

Total params: 1,409,226 Trainable params: 1,407,178 Non-trainable params: 2,048

175

180

Rysunek 5. Wykres wartości straty oraz dokładności na zbiorze treningowym oraz walidacyjnym podczas uczenia, dla 15 epok.

Rysunek 6 Macierz pomyłek dla zbioru testowego.

1.4 Ekstrakcja cech z sieci VGG16

185

190

195

200

Ekstrakcja cech polega na wykorzystaniu reprezentacji wyuczonej przez sieć wcześniej w celu dokonania ekstrakcji interesujących nas cech z nowych próbek [2]. W badaniu skorzystano z wytrenowanej wcześniej sieci VGG16 [1] na zbiorze ImageNet, który składa się z 1,4 miliona obrazów należących do 1000 klas. Większość konwolucyjnych sieci neuronowych stosowanych w zadaniach klasyfikacji składa się z serii warstw łączących (pooling) i warstw konwolucyjnych. Na końcu

sieci znajduje się gęsto połączony klasyfikator. Pierwsza część sieci (złożona z warstw konwolucji i łączących) nazywana jest konowolucyjną bazą modelu.

W sieciach konwolucyjnych ekstrakcja cech polega na skorzystaniu z wcześniej wyuczonej bazy konwolucyjnej, przepuszczeniu przez nią nowych danych i wytrenowaniu nowego klasyfikatora na bazie wyjścia tej sieci.

Najmniejszy dopuszczalny rozmiar obrazów wejściowych dla sieci VGG16 wynosi 32x32, w tym celu przeskalowano obrazy używających interpolacji dwuliniowej (Bilinear interpolation). Następnie skopiowano 3 krotnie każdy z obrazów, tak by obrazy wejściowe składały się z 3 kanałów. Tak przygotowane dane przepuszczone przez konwolucyjną bazę sieci VGG16 tworzą mapę cech (liczba próbek, 1, 1, 512). Mapy cech posłużą jako dane wejściowe podczas trenowania klasyfikatora.

Klasyfikator jako wejście przyjmuje zatem wyjście bazy konwolucyjnej sieci VGG16.

Składa się on z warstwy wejściowej o liczbie 256 neuronów oraz warstwy wyjściowej 10 neuronów.

Z Rysunek 7 widać szybkie przeuczenie modelu, dodanie warstw głębokich o większej liczbie neuronów oraz techniki odrzucania [4] mogłoby by wpłynąć pozytywnie na uczenie modelu.

Rysunek 7. Wykres wartości straty oraz dokładności na zbiorze treningowym oraz walidacyjnym podczas uczenia, dla 10 epok.

Dokładna budowa bazy konwolucyjnej:

205

Layer (type)	Output Shape	Param #	
input_2 (InputLaye	er) [(None, 32, 32	2, 3)] 0	
block1_conv1 (Con	nv2D) (None, 32,	32, 64) 1792	
block1_conv2 (Con	nv2D) (None, 32,	32, 64) 36928	
block1_pool (Maxl	Pooling2D) (None, 1	6, 16, 64) 0	
block2_conv1 (Con	nv2D) (None, 16,	16, 128) 73856	
block2_conv2 (Con	nv2D) (None, 16,	16, 128) 147584	
block2_pool (Max)	Pooling2D) (None, 8	3, 8, 128) 0	
block3_conv1 (Con	nv2D) (None, 8, 8	8, 256) 295168	
		·	

	block3_conv2 (Conv2D) (None, 8, 8, 256)	590080
	block3_conv3 (Conv2D) (None, 8, 8, 256)	590080
235	block3_pool (MaxPooling2D)	(None, 4, 4, 256)	0
	block4_conv1 (Conv2D) (None, 4, 4, 512)	1180160
240	block4_conv2 (Conv2D) (None, 4, 4, 512)	2359808
	block4_conv3 (Conv2D) (None, 4, 4, 512)	2359808
	block4_pool (MaxPooling2D)	(None, 2, 2, 512)	0
245	block5_conv1 (Conv2D) (None, 2, 2, 512)	2359808
	block5_conv2 (Conv2D) (None, 2, 2, 512)	2359808
250	_	None, 2, 2, 512)	2359808
	block5_pool (MaxPooling2D)	(None, 1, 1, 512)	0
	Total params: 14,714,688 Trainable params: 14,714,688		
255	Non-trainable params: 0		

Dokładna struktura klasyfikatora:

260	Layer (type)	Output Shape	Param #
260	vgg16 (Functional)	(None, 1, 1, 512)	14714688
	flatten (Flatten)	(None, 512)	0
265	dense (Dense)	(None, 256)	131328
	dense_1 (Dense)	(None, 10)	2570

Total params: 14,848,586
Trainable params: 14,848,586
Non-trainable params: 0

Rysunek 8. Architektura sieci VGG16 [7].

Rysunek 9. Macierz pomyłek dla zbioru testowego.

275

1.5 Trening sieci VGG16

Wykonano także trening wstępnie wytrenowanej sieci VGG16 na zbiorze ImageNet Obraz wejściowy tak jak w poprzedniej sekcji wymaga przetworzenia. Obrazy są interpolowane do rozmiaru 32x32 oraz liczba kanałów poprzez skopiowanie wzrasta do 3 dla każdej próbki.

Rysunek 10. Wykres wartości straty oraz dokładności na zbiorze treningowym oraz walidacyjnym podczas uczenia, dla 30 epok.

285

290

Rysunek 11. Macierz pomyłek dla zbioru testowego.

2. Podsumowanie

300

295

Tabela 1 przedstawia dokładności badanych sieci na zbiorze testowym. Najwyższą dokładność uzyskała sieć o architekturze zaproponowanej przez autorów raportu. Model ten najgorzej radził sobie z odróżnieniem kategorii koszulki na krótki rękaw i bez rękawów od koszuli. Po spojrzeniu na obie kategorie widać w niektórych przypadkach bardzo subtelne różnice, np. występują koszule na krótki rękaw. Warto zauważyć, że (Rysunek 6) kategorie Trousers, Sandal, Bag, Ankle boot uzyskują dokładność powyżej lub równą 98%. Trudność w poprawnej klasyfikacji może powodować mały rozmiar w skali szarości obrazów.

Tabela 1

Nazwa	Dokładność
1.1 Perceptron wielowarstwowy	0.8636999726295471
1.2 Płytka sieć splotowa	0.9046000242233276
1.3 Sieć splotowa	0.92330002784729
1.4 Ekstrakcja cech z sieci VGG16	0.8569999933242798
1.5 VGG16	0.8382999897003174

305 Odniesienia

- [1] K. Simon, A. Zisserman Very Deep Convolutional Networks for Large-Scale Image Recogniction
- [2] F. Chollet Deep Learning with Python
- 310 [3] A. Geron Hands-on Machine Learning with Scikit-Learn, Keras and Tensorflow: Concept, Tools, and techniques to Build Intelligent System, 2nd Edition
 - [4] G. Hinton, A. Krizkevsky, N. Srivastava, I. Sutskever, R. Salakhutdinov Dropout: A simple Way to Prevent Neural Networks from Overfitting
- [5] S. Ioffe, Ch. Szegedy Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariance Shift
 - [6] H. Xiao, K. Rasul, R. Vollgraf Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
 - [7] https://neurohive.io/en/popular-networks/vgg16/