

Week 5

السنة الخامسة - هندسة المعلوماتية / الذكاء الصنعي

مقرر التعلم التلقائي

SVM

د. ریاض سنبل

Why SVM? ... Why not decision trees?

- Can Decision Trees detect non-linear models?
 - Yes, Decision trees can detect non-linear relationships
- What type of boundaries can be detected using decision trees in each step?
 - The decision boundary in a Decision Tree is linear and perpendicular to one of the input dimensions, which means that it is limited to finding only axis-parallel splits.
- What if we have higher-dimensional feature space, more complex relationships between input features and target class?
- In the higher-dimensional feature space, the decision boundary can take on a more complex shape, such as a curved or nonlinear boundary.
- More problems when the relationship between the input features and the target variable is complex (ex: image classification, sentiment analysis, etc)

Intuitions

Noise in the Observations

Ruling Out Some Separators

Lots of Noise

Maximizing the Margin

Terms

Support Vectors:

- These are the points that are closest to the hyperplane.
- A separating line will be defined with the help of these data points.

Margin:

- It is the distance between the hyperplane and the observations closest to the hyperplane (support vectors).
- In SVM large margin is considered a good margin.
- There are two types of margins hard margin and soft margin.

Intuition

Our problem:

Maximizing the shortest distance to the closest positive or negative point $w^* = arg_w max \left[min_n d_H(\phi(x_n)) \right]$

Note that W represents all parameters i.e. w and b

So.. What is our optimization problem?

Our problem:

Maximizing the shortest <u>distance</u> to the closest positive or negative point.

In our case

the distance of a hyperplane equation: $w^{T}\Phi(x) + b = 0$ from a given point vector $\Phi(x_0)$ can be easily written as:

$$d_H(\phi(x_0)) \ = \frac{|w^T(\phi(x_0)) \ + \ b|}{||w||_2}$$

$$||w||_2 = \sqrt{w_1^2 + w_2^2 + w_3^2 + \dots + w_n^2}$$

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

So.. What is our optimization problem?

Our problem:

Note that W represents all parameters i.e. w and b

RIAD SONBOL - ML COURSE

SVM Optimization

$$w^*, b^* = \arg \min_{w,b} \frac{1}{2} ||w||^2, \quad s.t. \quad y_n(w^T(\emptyset(x_n)) + b) \ge 1 \quad \forall n$$

Solved by Lagrange multiplier method:

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{n} \alpha_n [y_n(w^T(\emptyset(x_n)) + b) - 1]$$

where lpha is the Lagrange multiplier

The optimization problem can be solved by setting derivatives of Lagrangian to 0

ONBOL - ML COURSE

SVM Optimization

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{n} \alpha_n [y_n(w^T(\emptyset(x_n)) + b) - 1]$$

$$\frac{\partial L}{\partial w} = w - \sum_{n} \alpha_{n} y_{n} \phi(x_{n}) = 0 \Rightarrow w = \sum_{n} \alpha_{n} y_{n} \phi(x_{n})$$

$$\frac{\partial L}{\partial b} = \sum_{n} \alpha_{n} y_{n} = 0 \Rightarrow \sum_{n} \alpha_{n} y_{n} = 0$$

$$\frac{\partial L}{\partial b} = \sum_{n} \alpha_n y_n = 0 \quad \Rightarrow \sum_{n} \alpha_n y_n = 0$$

SVM Optimization

$$w^*, b^* = \arg \min_{w,b} \frac{1}{2} ||w||^2, \quad s.t. \quad y_n(w^T(\emptyset(x_n)) + b) \ge 1 \quad \forall n$$

$$Y = w^{T}(\emptyset(x)) + b = \sum_{n} \alpha_{n} y_{n} \emptyset^{T}(x_{n}) \emptyset(x)$$

The decision rule in SVMs only depends on the dot product with support vectors

several important implications

Computational efficiency
Memory efficiency
Robustness to noise and outliers

What if?

What are the problems of the current version for SVM?

RIAD SONBOL - ML COURSE 16

1st Improvement Soft Margin SVM (allows few misclassifications)

Soft Margin SVM

- In real-life applications we don't find any dataset which is linearly separable, what we'll find is either an <u>almost linearly</u> separable dataset or a <u>non-linearly</u> separable dataset
- To tackle this problem what we do is modify that equation in such a way that it allows few misclassifications that means it allows few points to be wrongly classified.

$$\operatorname{argmin}\left(\mathbf{w}^*, \mathbf{b}^*\right) \frac{\|\mathbf{w}\|}{2} + c \sum_{i=1}^{n} \zeta_i$$

• For all the *correctly classified* points our **zeta** will be equal to 0 and for all the *incorrectly classified* points the **zeta** is simply one or the <u>distance</u> of that particular point (misclassification error) from its correct hyperplane

Soft Margin SVM

$$\operatorname{argmin}\left(\mathbf{w}^*, \mathbf{b}^*\right) \frac{\|\mathbf{w}\|}{2} + c \sum_{i=1}^{n} \zeta_i$$

- So now, we can say: SVM Error = Margin Error + Classification Error. The higher the margin, the lower would-be margin error, and vice versa.
- Let's say you take a high value of 'c' =1000, this would mean that you don't want to focus on margin error and just want a model which doesn't misclassify any data point

RIAD SONBOL - ML COURSE 19

C Hyper-parameter

• When **C** is high it will classify all the data points correctly, also there is a chance to overfit.

 $\operatorname{argmin}\left(\mathbf{w}^*, \mathbf{b}^*\right) \frac{\|\mathbf{w}\|}{2} \left(+c \sum_{i=1}^n \zeta_i \right)$

SVM Error = Margin Error + Classification Error

2nd Improvement Consider more points to get the decision boundary.

Gamma Hyper-Parameters

- It defines how far influences the calculation of plausible line of separation.
- when gamma is higher, nearby points will have high influence; low gamma x2 means far away points also be considered to get the decision boundary.

High Gamma

- only near points are considered.

Low Gamma

far away points are also considered

RIAD SONBOL - ML COURSE 22

3rd Improvement How to make a plane curved?

When Linear Separators Fail

- The most interesting feature of SVM is that it can even work with a non-linear dataset.
- We use "Kernel Trick" which makes it easier to classifies the points.

AD SONBOL - ML COURSE

The Kernel Trick

- try converting this <u>lower dimension space</u> to a <u>higher dimension space</u> using some quadratic functions which will allow us to find a decision boundary that clearly divides the data points.
- These functions which help us do this are called Kernels and which kernel to use is purely determined by hyperparameter tuning.

AD SONBOL - ML COURSE 25

The Kernel Trick

For many mappings from a low-D space to a high-D space, there is a simple operation on two vectors in the low-D space that can be used to compute the scalar product of their two images in the high-D space.

Letting the kernel do the work

doing the scalar product in the obvious way

Kernel functions: Polynomial kernel

Following is the formula for the polynomial kernel:

$$f(X1, X2) = (X1^T . X2 + 1)^d$$

- Here d is the degree of the polynomial, which we need to specify manually.
- Suppose we have two features X1 and X2 and output variable as Y, so using polynomial kernel we can write it as:

$$X1^{T}.X2 = \begin{bmatrix} X1 \\ X2 \end{bmatrix} . [X1 \ X2]$$

$$= \begin{bmatrix} X1^{2} & X1.X2 \\ X1.X2 & X2^{2} \end{bmatrix}$$

So we basically need to find X1², X2² and X1.X2, and now we can see that 2 dimensions got converted into 5 dimensions.

Other commonly used kernels

- linear: $\langle x, x' \rangle$.
- ullet polynomial: $(\gamma\langle x,x'
 angle+r)^d$, where d is specified by parameter degree, r by coef0.
- rbf: $\exp(-\gamma \|x-x'\|^2)$, where γ is specified by parameter gamma, must be greater than 0.
- ullet sigmoid $anh(\gamma\langle x,x'
 angle+r)$, where r is specified by coef0.

How to choose the right Kernel?

- Choosing a kernel totally depends on what kind of dataset are you working on.
- You can start with a hypothesis that your data is linearly separable and choose a linear kernel function.
- Once you have established it is a problem requiring <u>a non-linear model</u>, the Radial Basis Function kernel makes a good <u>default</u> kernel

RIAD SONBOL - ML COURSE 28

4th Improvement Dealing with multiclass (more than 2 possible classes)

Multiclass classification

Any suggested solutions?

One-against-all & One-vs-one

One against All learning

- Decompose into binary problems
- IF $y_i \in \{1,2,3,...K\}$, Decompose into K binary classification tasks
 - Learn K models: $w_1, w_2, w_3, \dots w_K$
 - For the Kth binary classifier:
 - Positive examples: Elements of the dataset (D) with label k
 - Negative examples: All other elements of D

ND SONBOL - ML COURSE

One against All learning

Decompose into binary problems

• IF $y_i \in \{1,2,3,...K\}$, Decompose into K binary classification tasks

• Learn K models: $w_1, w_2, w_3, \dots w_K$

But what if not only the correct label will have a positive score?

 $y = argmax(w_{black}^T x, w_{blue}^T x, w_{green}^T x)$

RIAD SONBOL - ML COURSE

One v.s. One learning

■ IF $y_i \in \{1,2,3,...K\}$, Decompose into C(K,2) binary classifier i.e. K * (K-1)/2 classifier

Each classifier learns to distinguish between only two classes.

- Learn C(K,2) models: $w_1, w_2, w_3, ... w_{K*(K-1)/2}$
- For each classifier for the pair (i,j):
 - Positive examples: Elements of records with label i
 - Negative examples Elements of records with label

AD SONBOL - ML COURSE

 $w_3^T x > 0$

One v.s. One learning

For example, if k=4 (say classes A, B, C, D), we train classifiers for:

- A vs B
- A vs C
- A vs D
- B vs C
- B vs D
- C vs D

But how do we decide the final class for a new input?

(Solution 1) Majority Voting:

- ✓ For a test example x, each binary classifier casts one vote for the class it predicted.
- ✓ Then, count how many votes each class got, and assign x to the class with the most votes. (note that Label i gets k-1 votes)

Example:

```
A vs B \rightarrow A wins | A vs C \rightarrow C wins | A vs D \rightarrow D wins B vs C \rightarrow B wins | B vs D \rightarrow D wins | C vs D \rightarrow D wins
```

Majority: D win

One v.s. One learning

For example, if k=4 (say classes A, B, C, D), we train classifiers for:

- A vs B
- A vs C
- A vs D
- B vs C
- B vs D
- C vs D

Example:

Round 1: A vs B \rightarrow A wins

Round 2: A vs D \rightarrow D wins

But how do we decide the final class for a new input?

(Solution 2) Tournament Style Decision:

- ✓ You organize all classes into pairs, have each pair "fight" using the corresponding classifier.
- ✓ Winners move to the next round, losers are eliminated.
- ✓ Repeat until one winner remains that's your predicted class.

 $C \text{ vs } D \rightarrow D \text{ wins}$

Final prediction = D

5th Improvement Feature Scaling

Why feature scaling?

- Why?
- Any suggestion?

RIAD SONBOL - ML COURSE

Feature scaling

- Feature scaling is mapping the feature values of a dataset into the same range.
- The two most widely adopted approaches for feature scaling are normalization and standardization.
- Normalization maps the values into the [0, 1] interval:

$$z = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Standardization shifts the feature values to have a mean of zero, then maps them into a range such that they have a standard deviation of 1:

$$z = \frac{x - \mu}{\sigma}$$

• It centers the data, and it's more flexible to new values that are not yet seen in the dataset. That's why we prefer standardization in general.

Feature scaling

RIAD SONBOL - ML COURSE 39