Recitation 1

Gradients and Directional Derivatives

Brett Bernstein

CDS at NYU

January 20, 2018

Intro Question

Question

We are given the data set $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. We want to fit a linear function to this data by performing empirical risk minimization. More precisely, we are using the hypothesis space $\mathcal{F} = \{f(x) = w^T x \mid w \in \mathbb{R}^d\}$ and the loss function $\ell(a, y) = (a - y)^2$. Given an initial guess \tilde{w} for the empirical risk minimizing parameter vector, how could we improve our guess?

Intro Solution

Solution

• The empirical risk is given by

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) = \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2 = \frac{1}{n} ||Xw - y||_2^2,$$

where $X \in \mathbb{R}^{n \times d}$ is the matrix whose *i*th row is given by x_i .

• Can improve a non-optimal guess \tilde{w} by taking a small step in the direction of the negative gradient.

Single Variable Differentiation

ullet For $f:\mathbb{R} o \mathbb{R}$ differentiable, the derivative is given by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Can also be written as

$$f(x+h) = f(x) + hf'(x) + o(h) \text{ as } h \to 0,$$

where o(h) denotes a function g(h) with $g(h)/h \to 0$ as $h \to 0$.

• Points with f'(x) = 0 are called *critical points*.

1D Linear Approximation By Derivative

Multivariable Differentiation

- Consider now a function $f: \mathbb{R}^n \to \mathbb{R}$ with inputs of the form $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.
- Unlike the 1-dimensional case, we cannot assign a single number to the slope at a point since there are many directions we can move in.

Multiple Possible Directions for $f: \mathbb{R}^2 \to \mathbb{R}$

Directional Derivative

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$. The directional derivative f'(x; u) of f at $x \in \mathbb{R}^n$ in the direction $u \in \mathbb{R}^n$ is given by

$$f'(x; u) = \lim_{h \to 0} \frac{f(x + hu) - f(x)}{h}.$$

- By fixing a direction u we turned our multidimensional problem into a 1-dimensional problem.
- Similar to 1-d we have

$$f(x + hu) = f(x) + hf'(x; u) + o(h).$$

• We say that u is a descent direction of f at x if f'(x; u) < 0.

イロト (個) (基) (基) (基) のQの

Directional Derivative as a Slope of a Slice

Tangent Plane for $f: \mathbb{R}^2 \to \mathbb{R}$

Critical Points of $f: \mathbb{R}^2 \to \mathbb{R}$

Computing Gradients

Question

For each of the following functions, compute the gradient.

 $f: \mathbb{R}^3 \to \mathbb{R}$ is given by

$$f(x_1, x_2, x_3) = \log(1 + e^{x_1 + 2x_2 + 3x_3}).$$

② $f: \mathbb{R}^n \to \mathbb{R}$ is given by

$$f(x) = ||Ax - y||_2^2 = (Ax - y)^T (Ax - y) = x^T A^T Ax - 2y^T Ax + y^T y,$$

for some $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$.

4□ > 4□ > 4 = > 4 = > = 90