Lesson3 (时空复杂度分析)

根据数据范围反推题目时间复杂度

一般ACM或者笔试题的时间限制是1秒或2秒。 在这种情况下,C++代码中的操作次数控制在 $10^7 \sim 10^8$ 为最佳。

下面给出在不同数据范围下,代码的时间复杂度和算法该如何选择:

- 1. $n \leq 30$, 指数级别, dfs+剪枝, 状态压缩dp
- 2. $n \leq 100 \Rightarrow O(n^3)$, floyd, dp, 高斯消元
- 3. $n \leq 1000 \Rightarrow O(n^2)$, $O(n^2 log n)$, dp, 二分, 朴素版Dijkstra、朴素版Prim、Bellman-Ford
- 4. $n \leq 10000$ => $O(n*\sqrt{n})$,块状链表、分块、莫队
- $5.~n \leq 100000$ => O(nlogn) => 各种sort,线段树、树状数组、set/map、heap、拓扑排序、dijkstra+heap、prim+heap、spfa、求凸包、求半平面交、二分、CDQ分治、整体二分
- $6. \ n \leq 1000000 \Rightarrow O(n)$,以及常数较小的 O(nlogn) 算法 \Rightarrow 单调队列、 hash、双指针扫描、并查集, kmp、 AC自动机,常数比较小的 O(nlogn) 的做法: sort、树状数组、 heap、 dijkstra、 spfa
- 7. $n \leq 100000000$ => O(n),双指针扫描、kmp、AC自动机、线性筛素数
- 8. $n \leq 10^9 \Rightarrow O(\sqrt{n})$,判断质数
- 9. $n \leq 10^{18}$ => O(logn), 最大公约数, 快速幂
- 10. $n \leq 10^{1000}$ => $O((logn)^2)$,高精度加减乘除
- 11. $n \leq 10^{100000}$ => O(logk imes loglogk),k表示位数,高精度加减、FFT/NTT

根据代码分析时间复杂度

如何求递归算法的时间复杂度 (主定理)

如何求DFS与BFS的时间复杂度(每一层分别开)