UFSM - CT Sistemas de Informação 28/03/2025

Engenharia Econômica

Unidade 3 – Taxas de juros

Docente responsável: Julio Siluk, Dr. Docente orientado: Alexandre Stephan

Taxa de Juros Nominal e Efetiva

Taxa de juro efetiva:

Quando o período referido na taxa coincide com o período de capitalização.

Ex.: 12% a.a. com capitalização anual;

Taxa de juro nominal:

Quando o período referido na taxa <u>não</u> coincide com o período de capitalização.

Ex.: 12% a.a. com capitalização mensal;

A capitalização é a correção monetário do capital durante o período proposto.

Os cálculos financeiros são sempre realizados utilizando taxas **EFETIVAS**.

Taxa de Juros Nominal e Efetiva

Taxa de juro nominal:

Quando o período referido na taxa <u>não</u> coincide com o período de capitalização.

Ex.: 12% a.a. com capitalização mensal;

Então para sabermos a taxa de juros ao mês, realizamos o seguinte cálculo?

$$\frac{12\%}{12 \text{ meses}} = 1\% \text{ a.m com capitalização mensal?}$$

NÃO!!! Pois os juros são COMPOSTOS.

Taxa de Juros Nominal e Efetiva

Divisão/Multiplicação -> "Quem manda é o período de capitalização"

Taxa Efetiva

Taxa Nominal

Unidade de tempo da taxa <u>é coincidente</u> com a unidade de tempo do período de capitalização

Unidade de tempo da taxa NÃO É coincidente com a unidade de tempo do período de capitalização

Conversão de Taxa Nominal em Efetiva

$$i = \frac{i_n}{k}$$

Quando passar de um período maior para um período menor (ex: de ano para mês)

$$i = \frac{i_n}{1/k}$$

Quando passar de um período menor para um período maior (ex: de mês para ano)

Onde:

- i = taxa efetiva
- i_n = taxa nominal
- $k = n^{\circ}$ de vezes que a taxa i_n é capitalizada no período anunciado

Os cálculos financeiros são sempre realizados utilizando taxas **EFETIVAS**, nunca **NOMINAIS**;

Conversão de Taxa Nominal em Efetiva

Ex.: Qual a taxa efetiva mensal que correspondente a 36% a.a. capitalizada mensalmente?

$$i = \frac{0,36}{12} = 3\%$$
 a.m.

Ex.: Qual a taxa efetiva anual que correspondente a 2% a.m. capitalizada anualmente?

$$i = \frac{0.02}{\frac{1}{12}} = 24\%$$
 a.a. Ou $0.02 * 12 = 0.24 = 24\%$

-	r% nominal	Período de capitalização	m	Taxa efetiva por PC	Distribuição ao Longo do Período de Tempo t											
(a)	9% ao ano	Trimestre	4	2,25%	2,25%		6	2,25%			2,25%			2,25%		
								2			3			4		
(b)	9% ao ano	Mês	12	0,75%	,75%	,75%	,75%	,75%	,75%	,75%	,75%	,75%	,75%	,75%	,75%	,75%
					1	2	3	4	5	6	7	8	9	10	11	12
			0,173%													
(c)	4,5% por 6 meses	Semana	26	0,173%												
					1					12	14	16				26

Taxa Equivalente

- → É a conversão de uma taxa efetiva em outra efetiva, para períodos de capitalização diferente;
- → Duas taxas de juros são equivalentes quando, após o mesmo número de períodos, produzem o mesmo montante de juros.

$$i_{eq} = (1 + i)^k - 1$$

Quando passar de um período menor para um período maior (ex: de mês para ano)

$$i_{eq} = (1+i)^{1/k}-1$$

Quando passar de um período maior para um período menor (ex: de ano para mês)

Esquema de Conversão de Taxas

Exemplos

→ 1) Qual é a taxa anual equivalente a 4% a.m.?

$$i_{eq} = (1+i)^k - 1$$

 $i_{eq} = (1+0.04)^{12} - 1$
 $i_{eq} = 60.1\% \ a. \ a.$

→ 2) Qual é a taxa mensal equivalente a 6% a.s.?

$$i_{eq} = (1+i)^{1/k} - 1$$

 $i_{eq} = (1+0.06)^{1/6} - 1$
 $i_{eq} = 0.97\% \ a.m.$

Taxa maior → Taxa menor = (<u>expoente</u> 1/k) semestre → mês (k=6)

Exemplos

→ 3) Qual é a taxa semestral efetiva que corresponde a 2% a.m. com capitalização trimestral?

Taxa nominal → taxa efetiva taxa menor → taxa maior (\underline{X} k) mês → trimestre (k=3) $i = \frac{i_n}{1/k} = \frac{0,02}{1/3} = 0,06 = 6\% \ a.t.$

Taxa efetiva \rightarrow taxa efetiva 2

Taxa menor \rightarrow taxa maior (expoente k)

trimestre \rightarrow semestre (k=2) $i_{eq} = (1+i)^k - 1 = (1+0.06)^2 - 1 = 0.1236 = 12.36\% a.s.$

Taxas cobradas antecipadamente

Em alguns empréstimos pode ser cobrado antecipadamente os juros. Os juros são pagos no momento em que se recebe o dinheiro emprestado, sendo devolvido ao final apenas o valor presente emprestado. Nessas situações, a taxa de juros real é maior do que aquela enunciada.

Ex. 12.: Calcule a taxa efetiva anual e mensal de um empréstimo de R\$10.000,00 por um ano a uma taxa de 30% a.a., sendo que os juros são cobrados antecipadamente.

Juros: R\$10.000,00 x 0,3 = R\$3.000,00

Dinheiro efetivamente recebido: P = R\$10.000,00 - R\$3.000,00 = R\$7.000,00

Dinheiro a ser devolvido ao final do período: F = R\$10.000,00

Taxas cobradas antecipadamente

Ex. 12.: Calcule a taxa efetiva anual e mensal de um empréstimo de R\$10.000,00 por um ano a uma taxa de 30% a.a., sendo que os juros são cobrados antecipadamente.

Juros: R\$10.000,00 x 0,3 = R\$3.000,00

Dinheiro efetivamente recebido: P = R\$10.000,00 - R\$3.000,00 = R\$7.000,00

Dinheiro a ser devolvido ao final do período: F = R\$10.000,00

$$F = P (1 + i)^n$$

 $10.000 = 7.000(1 + i)^1$
 $i = 0.4286 = 42.86\%$ a.a

$$ieq = (1+i)^{1/12}-1$$

 $ieq = (1+0.4286)^{1/12}-1$
 $ieq = 0.0302 = 3.02\% \ a.m.$

Taxa Global de Juros

É quando precisamos representar duas taxas em uma só. É a taxa que considera simultaneamente a inflação e os juros;

$$i_g = (1+\Theta)(1+i) - 1$$

Onde:

 i_g = Taxa de juros Global

Θ = correção monetária

i = Taxa de juros real

Taxa Global de Juros

Ex. 13.: Considerando uma taxa de juros global da caderneta de poupança de 0,7% ao mês e uma taxa de juros real de 0,5% ao mês. Calcule a expectativa de correção monetária no período.

$$i_g = (1+\Theta)(1+i) - 1$$

$$0.007 = (1+\Theta)(1+0.005) - 1$$

$$1,007 = (1+\Theta)(1,005)$$

$$1,005\Theta = 1,007 - 1,005$$

$$1,005\Theta = 1,007 - 1,005$$

$$\Theta = \frac{1,007 - 1,005}{1,005}$$

$$\Theta = 0.199005\%$$
 a.m

Leitura Complementar

Para melhor compreensão do conteúdo, sugerimos a leitura complementar do Capítulo "2 Taxas Percentuais de Juros" do livro de Vancucci, L. R. Matemática Financeira e Engenharia Econômica,

Disponível na Biblioteca Online da UFSM.

UFSM - CT Sistemas de Informação 28/03/2025

Engenharia Econômica

Julio Siluk

jsiluk@ufsm.br

Alexandre Stephan astephan2005@gmail.com

