Листок 04. Метод k-ближайших соседей (k-Nearest Neighbors, k-NN)

Упраженение 1. Для набора данных sleep75 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
sleep	totwrk, age, south, male

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male
0	2160	32	1	0
1	1720	24	0	1
2	2390	44	0	1

вычислите прогноз **sleep** по каждой модели

Упраженение 2. Для набора данных **sleep75** рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
sleep	totwrk, age, south, male, smsa, yngkid, marr

1. подгоните на исходном датасете модель k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male	smsa	yngkid	marr
0	2150	37	0	1	1	0	1
1	1950	28	1	1	0	1	0
2	2240	26	0	0	1	0	0

вычислите прогноз **sleep** по каждой модели

Упражнение 3. Для набора данных wage2 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	age, IQ, south, married, urban

1. подгоните на исходном датасете модель k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз **wage** по каждой модели

Упраженение 4. Для набора данных wage2 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
$\log(\text{wage})$	age, IQ, south, married, urban

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз **wage** по каждой модели

Упраженение 5. Для набора данных wage1 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	exper, female, married, smsa

1. подгоните на исходном датасете модель k-NN с параметрами

№	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз **wage** по каждой модели

Упраженение 6. Для набора данных wage1 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
$\log(\text{wage})$	exper, female, married, smsa

1. подгоните на исходном датасете модель k-NN с параметрами

Ŋo	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз **wage** по каждой модели

Упраженение 7. Для набора данных **Labour** рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
output	capital, labour

1. подгоните на исходном датасете модель k-NN с параметрами

No	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз **output** по каждой модели

Упраженение 8. Для набора данных **Labour** рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
log(output)	log(capital), log(labour)

1. подгоните на исходном датасете модель k-NN с параметрами

№	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз **output** по каждой модели

Упраженение 9. Для набора данных **Labour** рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
output	capital, labour, wage

1. подгоните на исходном датасете модель k-NN с параметрами

No॒	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output по каждой модели

 ${\it Упраженениe~10}$. Для набора данных Labour рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
log(output)	$\log(\text{capital}), \log(\text{labour}), \log(\text{wage})$

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output по каждой модели