Espaces vectoriels

Aperçu

- 1. Structure d'espace vectoriel
- 2. Sous-espaces vectoriels
- 3. Génération et liberté : avec une bouée

- 1. Structure d'espace vectoriel
- 1.1 Les axiomes d'espace vectoriel
- 1.2 Exemples
- 1.3 Combinaisons linéaires
- 2. Sous-espaces vectoriels
- Génération et liberté : avec une bouée

- 1. Structure d'espace vectoriel
- 1.1 Les axiomes d'espace vectoriel
- 1.2 Exemples
- 1.3 Combinaisons linéaires
- 2. Sous-espaces vectoriels
- 3. Génération et liberté : avec une bouée

D 1 Axiomes d'espace vectoriel

Étant donné un corps \mathbb{K} , d'éléments neutres $0_{\mathbb{K}}$ et $1_{\mathbb{K}}$, on appelle **espace vectoriel sur \mathbb{K}** un ensemble E muni d'une structure algébrique définie par la donnée

d'une loi de composition interne, appelée addition

$$\begin{array}{ccc} E \times E & \to & E \\ (x, y) & \mapsto & x + y \end{array}$$

telle que (E, +) soit un groupe commutatif, c'est-à-dire

1. La loi + est associative.

$$\forall (x, y, z) \in E^3, x + (y + z) = (x + y) + z.$$

2. E possède un **élément neutre** pour la loi +, noté $\mathbf{0}_E$.

$$\exists 0_E \in E, \forall x \in E, x + 0_E = 0_E + x = x.$$

3. Tout élément de E possède un **opposé** pour la loi + dans E.

$$\forall x \in E, \exists x' \in E, x + x' = x' + x = 0_E.$$

On note -x l'opposé de x.

4. La loi + est commutative.

$$\forall (x, y) \in E^2, x + y = y + x.$$

D 1 Axiomes d'espace vectoriel

Étant donné un corps \mathbb{K} , d'éléments neutres $0_{\mathbb{K}}$ et $1_{\mathbb{K}}$, on appelle **espace vectoriel sur \mathbb{K}** un ensemble E muni d'une structure algébrique définie par la donnée

D'une loi d'action appelée multiplication externe

$$\begin{array}{cccc} \mathbb{K} \times E & \to & E \\ (\alpha, x) & \mapsto & \alpha \cdot x \end{array}$$

qui satisfait aux axiomes suivants a

- 5. Pour tous $\alpha \in \mathbb{K}$, $x \in E$, $y \in E$, $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$.
- 6. Pour tous $\alpha \in \mathbb{K}$, $\beta \in \mathbb{K}$, $x \in E$, $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$.
- 7. Pour tous $\alpha \in \mathbb{K}$, $\beta \in \mathbb{K}$, $x \in E$, $(\alpha.\beta) \cdot x = \alpha \cdot (\beta \cdot x)$.
- 8. Pour tout $x \in E$, $1_{\mathbb{K}} \cdot x = x$.

^aRègle bien connue : pour économiser les parenthèses, on convient que la multiplication est prioritaire sur l'addition.

$$\forall x \in E, 0_{\mathbb{K}} \cdot x = 0_E.$$

Démonstration. Soit $x \in E$. Puisque 0 + 0 = 0 (dans \mathbb{K}), on a

$$0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x.$$

En ajoutant $-(0 \cdot x)$, l'opposé de $0 \cdot x$, à chaque côté de l'égalité, on obtient

$$0_E = (0 \cdot x + 0 \cdot x) + (-0 \cdot x) = 0 \cdot x + (0 \cdot x + (-0 \cdot x)) = 0 \cdot x + 0_E = 0 \cdot x.$$

P 3 Soit E un \mathbb{K} -espace vectoriel.

$$\forall x \in E, (-1) \cdot x = -x.$$

T 4 Montrer le avec un argument similaire avec 0 = 1 + (-1). Pour les plus rapides, démontrer le résultat suivant.

La proposition suivante montre qu'il n'y a absolument aucune surprise et que l'on calcule en fait comme dans toute structure algébrique classique.

- **P 5** Soit E un espace vectoriel sur \mathbb{K} . Pour tous vecteurs $x, y \in E$ et tous scalaires $\alpha, \beta \in \mathbb{K}$,
 - 1. $\alpha \cdot 0_E = 0_E$;
 - 2. $\alpha \cdot (x y) = \alpha \cdot x \alpha \cdot y$;
 - 3. $(\alpha \beta) \cdot x = \alpha x \beta x$;
 - 4. $(-\alpha) \cdot x = \alpha \cdot (-x) = -(\alpha \cdot x)$.
 - 5. Pour tout $n \in \mathbb{N}$, $n \cdot x = \underbrace{x + \dots + x}_{n}$ et $(-n) \cdot x = \underbrace{(-x) + \dots + (-x)}_{n}$.
- P 6 Soit E un espace vectoriel sur \mathbb{K} . Pour tous vecteurs $x_1, \dots, x_n \in E$ et tout scalaire $\alpha \in \mathbb{K}$,

$$\alpha \cdot \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} (\alpha \cdot x_i).$$

Soit E un espace vectoriel sur \mathbb{K} . Pour tout vecteur $x \in E$ et tout scalaire $\alpha \in \mathbb{K}$,

$$\alpha \cdot x = 0_E \implies \alpha = 0 \text{ ou } x = 0_E.$$

1. Structure d'espace vectoriel

- 1.1 Les axiomes d'espace vectoriel
- 1.2 Exemples
- 1.3 Combinaisons linéaires
- 2. Sous-espaces vectoriels
- 3. Génération et liberté : avec une bouée

E 7 Le \mathbb{K} -espace vectoriel \mathbb{K}

Si E est le corps $\mathbb K$ lui-même, alors E est un espace vectoriel sur $\mathbb K$; les deux opérations étant naturellement $(x,y)\mapsto x+y$ et $(\lambda,x)\mapsto \lambda x$.

E 8 Le \mathbb{R} -espace vectoriel \mathbb{C}

Si $E=\mathbb{C}$ et $\mathbb{K}=\mathbb{R}$, l'ensemble \mathbb{C} est muni des deux opérations définies par

$$(a+ib) + (a'+ib') = (a+a') + i(b+b')$$
 et $\lambda(a+ib) = (\lambda a) + i(\lambda b)$

où a,b,a',b' et λ sont réels. Alors $\mathbb C$ est un espace vectoriel sur $\mathbb R$, c'est aussi un espace vectoriel sur $\mathbb C$; ces deux structures sont différentes.

E 9 Espace vectoriel \mathbb{K}^n

L'ensemble \mathbb{K}^n est un espace vectoriel sur \mathbb{K} lorsqu'il est muni de addition et multiplication par un scalaire usuelle:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad \text{et} \quad \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix}$$

Le vecteur nul de \mathbb{K}^n étant le vecteur dont chaque composante est nulle, c'est-à-dire $0_{\mathbb{K}^n}=(0,\dots,0)^T$.

On peut également noter les éléments de \mathbb{K}^n en lignes, les opérations sur \mathbb{K}^n s'écrivant alors

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

et $\lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n).$

E 10 Un espace vectoriel de fonctions

L'ensemble F des fonctions de $\mathbb R$ dans $\mathbb R$ munie de l'addition point à point et de la multiplication par un scalaire usuelle est un $\mathbb R$ -espace vectoriel.

Remarquons que le vecteur nul de cet espace vectoriel est la fonction identiquement nulle,

$$\tilde{0}: \ \mathbb{R} \ \rightarrow \ \mathbb{R} \\ x \ \mapsto \ 0$$

T 11 Montrer que les axiomes d'espace vectoriel sont respectés pour F. En particulier, si la fonction f est un vecteur de F, décrire le vecteur -f.

E 12 Espace vectoriel de matrices

L'ensemble $\mathcal{M}_{n,p}(\mathbb{K})$ des matrices à n lignes et p à coefficients dans \mathbb{K} est un \mathbb{K} -espace vectoriel lorsqu'on le munit des opérations usuelles définies par

$$\forall (i,j) \in [[1,n]] \times [[1,p]], (A+B)[i,j] = A[i,j] + B[i,j]$$

$$\forall (i,j) \in [[1,n]] \times [[1,p]], (\lambda \cdot A)[i,j] = \lambda A[i,j]$$

où $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

- Le vecteur nul de cet espace n'est autre que la matrice nulle notée $0_{n,p}$: c'est la matrice dont tous les coefficients sont égaux à 0.
- Chaque matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ admet pour matrice opposée la matrice -A que l'on construit en posant

$$\forall (i, j) \in [[1, n]] \times [[1, p]], (-A)[i, j] = -A[i, j].$$

E 13 Espace vectoriel des suites

L'ensemble $\mathbb{K}^\mathbb{N}$ des suites à valeurs dans \mathbb{K} est un \mathbb{K} -espace vectoriel lorsqu'on le munit des opérations usuelles définies par

$$(u_n)_{n\in\mathbb{N}} + (v_n)_{n\in\mathbb{N}} = (u_n + v_n)_{n\in\mathbb{N}};$$
$$\lambda \cdot (u_n)_{n\in\mathbb{N}} = (\lambda u_n)_{n\in\mathbb{N}}.$$

où $(u_n), (v_n) \in \mathbb{K}^{\mathbb{N}}$ et $\lambda \in \mathbb{K}$.

Le vecteur nul est la suite constante dont chaque terme égale zéro. L'opposé de la suite $u=(u_n)_{n\in\mathbb{N}}$ est la suite $-u=(-u_n)_{n\in\mathbb{N}}$.

T 14 Vérifier que $\mathbb{R}^{\mathbb{N}}$ est bien un \mathbb{R} -espace vectoriel.

L'exemple suivant est une partie de \mathbb{R}^3 .

E 15 Soit W l'ensemble des vecteurs de \mathbb{R}^3 dont le dernier coefficient est nul, c'est-à-dire

$$W = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \middle| (x, y) \in \mathbb{R}^2 \right\}.$$

Alors W est un \mathbb{R} -espace vectoriel lorsqu'il est muni de l'addition et la multiplication par un scalaire usuelle. Pour cela, il suffit de vérifier que W contient le vecteur nul de \mathbb{R}^3 , et que W est stable par addition et multiplication par un scalaire.

En effet, les axiomes 1, 2, 4, 5, 6, 7, 8 sont vérifiés pour tous vecteurs de W puisqu'ils sont vérifiés pour tous vecteurs de \mathbb{R}^3 .

Reste à vérifier que si $u, v \in W$, alors $u + v \in W$ et si $\alpha \in \mathbb{R}$ et $v \in W$, alors $\alpha v \in W$. Ce assure assure l'existence de l'addition et la multiplication externe pour W.

$$+: W \times W \to W$$
 et $\cdot: \mathbb{R} \times W \to W$.

On vérifie alors facilement l'axiome 3, l'opposé de $v \in W$ étant alors le même dans W que dans \mathbb{R}^3 : $-v = (-1) \cdot v$.

T 16 Vérifier que $0_{\mathbb{R}^3} \in W$, et que pour $(u, v) \in W^2$ et $\alpha \in \mathbb{R}$, on a $u + v \in W$ et $\alpha v \in W$.

E 17 Espace vectoriel de polynômes

L'ensemble $\mathbb{K}[X]$ des polynômes à coefficients dans \mathbb{K} muni des opérations usuelles est un \mathbb{K} -espace vectoriel

$$\begin{split} \left(\sum_{k\geq 0} a_k X^k\right) + \left(\sum_{k\geq 0} b_k X^k\right) &= \sum_{k\geq 0} (a_k + b_k) X^k; \\ \lambda \cdot \left(\sum_{k\geq 0} a_k X^k\right) &= \sum_{k\geq 0} \left(\lambda a_k\right) X^k. \end{split}$$

T 18 Espace vectoriel d'applications

Soient X un ensemble non vide et V un espace vectoriel sur \mathbb{K} , alors $\mathscr{F}(X,V)$ est un espace vectoriel sur \mathbb{K} pour les lois naturelles définies par

$$f+g: X \to V$$
; $\lambda \cdot f: X \to V$.
 $x \mapsto f(x) + g(x)$; $\lambda \cdot f: X \to V$.

où $f,g \in \mathcal{F}(X,V)$ et $\lambda \in \mathbb{K}$.

L'espace vectoriel des matrices est un cas particulier d'espace vectoriel d'applications $\mathcal{M}_{n,p}(\mathbb{K}) = \mathcal{F}\left(\llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket,\mathbb{K}\right)$. L'espace vectoriel des suites est un cas particulier d'un espace vectoriel d'applications $\mathbb{K}^{\mathbb{N}} = \mathcal{F}\left(\mathbb{N},\mathbb{K}\right)$.

D 19 Espace vectoriel produit

Soient $(E_1,+,\cdot)$ et $(E_2,+,\cdot)$ deux espaces vectoriels sur le même corps $\mathbb K$. On munit naturellement l'ensemble $E=E_1\times E_2$ d'une structure de $\mathbb K$ -espace vectoriel en définissant

$$\begin{split} \forall (x_1, x_2) \in E_1 \times E_2, \forall (y_1, y_2) \in E_1 \times E_2, \forall \alpha \in \mathbb{K}, \\ (x_1, x_2) + (y_1, y_2) &= (x_1 + y_1, x_2 + y_2) \\ \alpha \cdot (x_1, x_2) &= (\alpha \cdot x_1, \alpha \cdot x_2). \end{split}$$

L'espace vectoriel $(E, +, \cdot)$ est appelé **espace vectoriel produit**.

Le vecteur nul de $E = E_1 \times E_2$ est $(0_{E_1}, 0_{E_2})$.

On peut généraliser cette notion en munissant, de manière naturelle, l'ensemble $E_1 \times E_2 \times \cdots \times E_n$ d'une structure de \mathbb{K} -espace vectoriel, lorsque les E_i sont eux-même des \mathbb{K} -espaces vectoriels.

- 1. Structure d'espace vectoriel
- 1.1 Les axiomes d'espace vectoriel
- 1.2 Exemples
- 1.3 Combinaisons linéaires
- 2. Sous-espaces vectoriels
- Génération et liberté : avec une bouée

D 20 Soit E un espace vectoriel sur \mathbb{K} et v, v_1, v_2, \ldots, v_n un nombre fini de vecteurs de E. On dit que v est une **combinaison linéaire** de v_1, \ldots, v_n s'il existe des scalaires $\alpha_1, \ldots, \alpha_n$

$$\alpha_1 v_1 + \dots + \alpha_n v_n = v$$
 c'est-à-dire $\sum_{i=1}^n \alpha_i v_i = v$.

P 21 Un espace vectoriel est stable par combinaison linéaire.

tels que

E 22 Montrons que
$$w=(2,-5)^T$$
 est combinaison linéaire de $v_1=(1,2)^T$ et $v_2=(1,-1)^T$. Il nous faut donc exhiber des scalaires α,β tels que $\alpha v_1+\beta v_2=w$, c'est-à-dire

$$\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}.$$

Cette égalité entre vecteurs s'écrit comme un système d'équations scalaires

$$\begin{cases} \alpha + \beta = 2 \\ 2\alpha - \beta = -5 \end{cases}$$

On trouve $\alpha = -1$ et $\beta = 3$. Alors $w = -v_1 + 3v_2$, que l'on peut vérifie facilement

$$-\begin{pmatrix}1\\2\end{pmatrix}+3\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}2\\-5\end{pmatrix}.$$

T 23 Dans le plan, tracer v_1 et v_2 . Représenter w comme combinaison linéaire de v_1 et v_2 .

linéaire de v_1 et v_2 ?

Représenter également le vecteur $x = \frac{1}{2}v_1 + v_2$. Peut-on représenter n'importe quel «point» de votre feuille avec une combinaison **E 24** Dans l'espace vectoriel $F = \mathcal{F}(\mathbb{R}, \mathbb{R})$, la fonction $f: x \mapsto 2x^2 + 3x + 4$ est combinaison linéaire de trois fonctions simples, f = 2g + 3h + 4k, où

$$g: x \mapsto x^2$$
 $h: x \mapsto x$ $k: x \mapsto 1$.

En effet, une combinaison linéaire de g, h et k reste dans F; ainsi 2g + 3h + 4k ont même ensemble de départ et d'arrivée que f. De plus, pour tous $x \in \mathbb{R}$,

$$(2g + 3h + 4k)(x) = (2g)(x) + (3h)(x) + (4k)(x)$$
$$= 2(g(x)) + 3(h(x)) + 4(k(x))$$
$$= 2x^{2} + 3x + 4$$
$$= f(x).$$

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \qquad \dots \qquad e_k = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} k \text{-\`eme} \qquad \dots \qquad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Quel est alors le vecteur $x = \sum_{i=1}^{n} \alpha_i e_i$?

R En notant

$$\delta_{\alpha,\beta} = \begin{cases} 1 & \text{si } \alpha = \beta \\ 0 & \text{si } \alpha \neq \beta \end{cases}$$

le **symbole de Kronecker**. On a $e_k = (\delta_{i,k})_{i=1,\dots,n}$

- 1. Structure d'espace vectorie
- 2. Sous-espaces vectoriels
- 2.1 Définition
- 2.2 Caractérisation
- 2.3 Intersection de sous-espaces vectoriels
- 2.4 Droites et plans vectoriels
- 2.5 Noyau et image d'une matrice
- 3. Génération et liberté : avec une bouée

1. Structure d'espace vectorie

2. Sous-espaces vectoriels

- 2.1 Définition
- 2.2 Caractérisation
- 2.3 Intersection de sous-espaces vectoriels
- 2.4 Droites et plans vectoriels
- 2.5 Noyau et image d'une matrice
- 3. Génération et liberté : avec une bouée

- D 26 Soit E un \mathbb{K} -espace vectoriel et V une partie de E. On dit que V est un sous-espace vectoriel de E si
 - $0_E \in V$.
 - V est stable par addition:

$$\forall (u,v) \in V^2, u+v \in V$$

ightharpoonup et V est stable par multiplication externe

$$\forall \alpha \in \mathbb{K}, \forall v \in V, \alpha v \in V.$$

T 27 Montrer que l'un de ces ensemble et un sous-espace vectoriel de \mathbb{R}^3 et que l'autre ne l'est pas:

$$S_1 = \left\{ \begin{pmatrix} x \\ x^2 \\ 0 \end{pmatrix} \middle| x \in \mathbb{R} \right\}, \qquad S_2 = \left\{ \begin{pmatrix} x \\ 2x \\ 0 \end{pmatrix} \middle| x \in \mathbb{R} \right\}.$$

T 28 Un sous-espace vectoriel V d'un espace vectoriel E est un espace vectoriel pour les lois induites

T 29 Démontrer ce théorème. S'inspirer de l'exemple $W = \{(x, y, 0)^T \mid (x, y) \in \mathbb{R}^2 \}$.

- **E 30** Si E est un espace vectoriel, alors E est un sous-espace vectoriel de E.
- **E 31** Si E est un espace vectoriel, alors $\{0_E\}$ est un sous-espace vectoriel de E. On l'appelle parfois sous-espace nul.
- **E 32** Fixons $n \in \mathbb{N}$. Alors l'ensemble des polynômes de degré inférieur à n

$$\mathbb{K}_n[X] = \{ P \in \mathbb{K}[X] \mid \deg P \le n \}$$

est un sous-espace vectoriel de $\mathbb{K}[X]$.

E 33 L'ensemble $\mathbb{K}^{(\mathbb{N})}$ des suites réelles à support fini est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$.

1. Structure d'espace vectorie

2. Sous-espaces vectoriels

2.1 Définition

2.2 Caractérisation

- 2.3 Intersection de sous-espaces vectoriels
- 2.4 Droites et plans vectoriels
- 2.5 Noyau et image d'une matrice
- Génération et liberté : avec une bouée

- $0_E \in V$.
- V est stable par combinaison linéaire

$$\forall (u, v) \in V^2, \forall (\alpha, \beta) \in \mathbb{K}^2, \alpha u + \beta v \in V.$$

T 35 Si cela n'est pas encore évident, montrer le!

1. Structure d'espace vectorie

- 2. Sous-espaces vectoriels
- 2.1 Définition
- 2.2 Caractérisation
- 2.3 Intersection de sous-espaces vectoriels
- 2.4 Droites et plans vectoriels
- 2.5 Noyau et image d'une matrice
- 3. Génération et liberté : avec une bouée

$$W = \bigcap_{i \in I} W_i$$

est un sous-espace vectoriel de E.

1. Structure d'espace vectorie

- 2. Sous-espaces vectoriels
- 2.1 Définition
- 2.2 Caractérisation
- 2.3 Intersection de sous-espaces vectoriels
- 2.4 Droites et plans vectoriels
- 2.5 Noyau et image d'une matrice
- 3. Génération et liberté : avec une bouée

$$S = \mathbb{K}x = \{ \alpha x \mid \alpha \in \mathbb{K} \}$$

est un sous-espace vectoriel de E.

T 38 Montrer le!

$$V = \mathbb{K} x + \mathbb{K} y = \{ \; \alpha x + \beta y \mid \alpha, \beta \in \mathbb{K} \; \}$$

est un sous-espace vectoriel de E.

D 40 Soit $x \in E$. On appelle sous-espace vectoriel de E engendré par x le sous-espace vectoriel

Vect
$$\{x\} \stackrel{\text{def}}{=} \mathbb{K}x = \{\lambda x \mid \lambda \in \mathbb{K}\}.$$

Lorsque $x \neq 0_E$, on dit que $\mathbb{K}x$ est une **droite vectorielle**.

D 41 Soit $x, y \in E$. On appelle sous-espace vectoriel de E engendré par x et y le sous-espace vectoriel

Vect
$$\{x, y\} \stackrel{\text{def}}{=} \mathbb{K}x + \mathbb{K}y = \{\alpha x + \beta y \mid \alpha, \beta \in \mathbb{K}\}.$$

Lorsque x et y ne sont pas colinéaires, on dit que $Vect \{x, y\}$ est un **plan vectoriel**

P 42 Soit $x, y \in E$. Alors $Vect \{ x \}$ et $Vect \{ x, y \}$ sont des sous-espaces vectoriels de E.

1. Structure d'espace vectorie

- 2. Sous-espaces vectoriels
- 2.1 Définition
- 2.2 Caractérisation
- 2.3 Intersection de sous-espaces vectoriels
- 2.4 Droites et plans vectoriels
- 2.5 Noyau et image d'une matrice
- Génération et liberté : avec une bouée

Démonstration. À faire en exercice.

E 44 L'ensemble

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 3x - 2y + z = 0 \right\}$$

est un sous-espace vectoriel de \mathbb{R}^3 . En effet, on a

$$S = \ker(A)$$
 avec $A = \begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$

Le noyau de A est l'ensemble des solution du système linéaire homogène Ax = 0. Si on considère l'ensemble S des solutions du système Ax = b, alors S n'est pas un sous-espace vectoriel de \mathbb{K}^n lorsque $b \neq 0$ (c'est-à-dire lorsque le système n'est pas homogène). En effet,

 $0 \notin S$. Il y a néanmoins un lien entre S et $\ker(A)$: si x_0 est une solution de Ax = b, alors

$$S = \left\{ x_0 + z \mid z \in \ker(A) \right\},\,$$

on dit que S est un sous-espace affine de \mathbb{K}^n de direction $\ker(A)$.

$$\mathcal{V} = (2,-1) + \left\{ \; 0_E \; \right\} = \left\{ \; (2,-1) \; \right\}.$$

2. Dans \mathbb{R}^3 , x + y + z = 1 est l'équation d'un plan affine

$$\mathcal{P} = (1,0,0) + \{ (x, y, z)^T \mid x + y + z = 0 \}.$$

T 46 Soit $A \in \mathcal{M}_{m,n}(\mathbb{K})$, alors Im(A) est un sous-espace vectoriel de \mathbb{K}^m .

Démonstration. À faire en exercice.

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 3x - 2y + z = 0 \right\}.$$

Alors pour $(x, y, z) \in \mathbb{R}^3$,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in S \iff 3x - 2y + z = 0$$

$$\iff x = \frac{2}{3}y - \frac{1}{3}z$$

$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{2}{3}y - \frac{1}{3}z \\ y \\ z \end{pmatrix} = y\begin{pmatrix} \frac{2}{3} \\ 1 \\ 0 \end{pmatrix} + z\begin{pmatrix} -\frac{1}{3} \\ 0 \\ 1 \end{pmatrix}.$$

Ainsi,

$$S = \left\{ \left. sv_1 + tv_2 \right| (s, t) \in \mathbb{R}^2 \right. \right\} = \mathbb{K}v_1 + \mathbb{K}v_2.$$

où $v_1 = (2/3, 1, 0)^T$ et $v_2 = (1/3, 0, 1)^T$.

On peut donc écrire

$$S = \text{Im}(A)$$
 avec $A = \begin{pmatrix} 2/3 & 1/2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Ainsi, S est un sous-espace vectoriel de \mathbb{R}^3 .

Bien sûr, on peut le montrer également avec la définition ou écrire S comme le noyau d'une matrice.

- 1. Structure d'espace vectorie
- 2. Sous-espaces vectoriels
- 3. Génération et liberté : avec une bouée
- 3.1 Sous-espace vectoriel engendré
- 3.2 Indépendance linéaire
- 3.3 Lien entre famille libre et famille génératrice

- 1. Structure d'espace vectorie
- 2. Sous-espaces vectoriels
- 3. Génération et liberté : avec une bouée
- 3.1 Sous-espace vectoriel engendré
- 3.2 Indépendance linéaire
- 3.3 Lien entre famille libre et famille génératrice

D 48 Soit (x_1, x_2, x_3) un triplet de vecteurs de l'espace vectoriel E. L'ensemble F des combinaisons linéaires des vecteurs x_1, x_2, x_3 est un sous-espace vectoriel de E. C'est le plus petit sous-espace vectoriel (pour l'inclusion) de E contenant les vecteurs x_1, x_2, x_3 . On l'appelle le sous-espace vectoriel engendré par x_1, x_2, x_3 et on le note

$$F = \text{Vect} \{ x_1, x_2, x_3 \} = \{ x \in E \mid \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{K}^3, x = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 \}.$$

On dit que (x_1, x_2, x_3) engendre F ou que c'est une famille génératrice de F.

On peut aménager un texte analogue dans le cas d'un vecteur, d'un couple, d'un quadruplet, . . .

E 49 Soit $x \in E, x \neq 0_E$. Alors Vect $\{x\} = \{\lambda x \mid \lambda \in \mathbb{K}\} = \mathbb{K}x$ est une droite vectorielle de E.

T 50 Soit $E=\mathbb{R}^3$, $e_1=(1,0,0)$, $e_2=(0,1,0)$, $e_3=(0,0,1)$. Montrer que (e_1,e_2,e_3) engendre \mathbb{R}^3 mais que (e_1,e_2) engendre un sous-espace vectoriel non trivial de \mathbb{R}^3 .

T 51 Soit $E = \mathbb{R}^3$ et $F = \{ (x, y, z) \in \mathbb{R}^3 \mid 2x - y + 2z = 0 \}.$

- 1. Montrer que F est un sous-espace vectoriel de E, trouver un couple générateur de F. Y-a-t-il unicité d'un tel couple ?
- 2. Soit X = (2, 2, -1). Montrer que $X \in F$ mais que $\text{Vect } \{X\} = \mathbb{R}X \subsetneq F$.
- 3. Un couple (X_1, X_2) générateur de F étant choisi, y-a-t-il unicité de la décomposition $X = \lambda_1 X_1 + \lambda_2 X_2$?

- 1. Montrer que $X \in \text{Vect} \{X_1, X_2, X_3\}$. Y-a-t-il unicité de la décomposition ?
- 2. Montrer que Vect $\{X_1, X_2, X_3\} = E$. Extraire du triplet (X_1, X_2, X_3) un couple générateur de E.

- 1. $1 + 2X^2 \in \text{Vect} \{1 2X, X^2 + X, X^3\}$
- 2. $X^3 \notin \text{Vect} \{ 1, X, X^2 \},$
- 3. $X^3 \in \text{Vect} \{ 1, X 1, (X 1)^2, (X 1)^3 \}.$

D'une part, il est évident que si x_4 est un nouvel individu de E, on a

Vect {
$$x_1, x_2, x_3$$
 } ⊂ Vect { x_1, x_2, x_3, x_4 }.

D'autre part, on a vu dans les exercices précédents que cette inclusion pouvait être stricte ou large. Plus précisément, on a

$$x_4 \in \text{Vect} \{ x_1, x_2, x_3 \} \iff \text{Vect} \{ x_1, x_2, x_3 \} = \text{Vect} \{ x_1, x_2, x_3, x_4 \}.$$

- 1. Structure d'espace vectorie
- 2. Sous-espaces vectoriels
- 3. Génération et liberté : avec une bouée
- 3.1 Sous-espace vectoriel engendré
- 3.2 Indépendance linéaire
- 3.3 Lien entre famille libre et famille génératrice

D 55

- On appelle relation de dépendance linéaire entre les vecteurs x_1, x_2, x_3 de E toute relation du type $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0_E$ avec $\lambda_1, \lambda_2, \lambda_3$ des scalaires non tous nuls (ce qui ne veut pas dire qu'ils sont tous non nuls !).
- S'il existe une relation de dépendance linéaire, on dit que le triplet (x_1, x_2, x_3) est **lié**, ou que les vecteurs x_1, x_2, x_3 sont **linéairement dépendants**.
- Dans le cas contraire, on dit que le triplet (x_1, x_2, x_3) est **libre**, ou que les vecteurs x_1, x_2, x_3 sont **linéairement indépendants**.

T 56 Étudier l'indépendance linéaire des triplets (x_1, x_2, x_3) suivants de \mathbb{R}^2 ou \mathbb{R}^3 et donner, s'il y a lieu les relations de dépendance linéaire.

- 1. ((1,3),(4,-1),(-5,1)).
- ((1, 8, 1), (-9, -3, 1), (2, 2, -3)).
- 3. ((2,3,-1),(8,8,1),(4,2,3)).

T 57 Montrer que si (x_1, x_2, x_3) est un triplet libre de E, il en est de même du triplet $(x_1 +$ $x_2, x_2 + x_3, x_3 + x_1$).

- 1. Structure d'espace vectorie
- 2. Sous-espaces vectoriels
- 3. Génération et liberté : avec une bouée
- 3.1 Sous-espace vectoriel engendré
- 3.2 Indépendance linéaire
- 3.3 Lien entre famille libre et famille génératrice

- **P 58** Soit (x_1, x_2, x_3) un triplet de E.
 - Le triplet (x_1, x_2, x_3) est lié si et seulement si l'un au moins des vecteurs x_1, x_2, x_3 est combinaison linéaire des deux autres.
 - Le triplet (x_1, x_2, x_3) est libre si et seulement si aucun des vecteurs du triplet est combinaison linéaire des deux autres.
- P 59 Soit (x_1, x_2, x_3) un triplet libre de E et x un vecteur de E. On a

$$(x_1, x_2, x_3, x)$$
 liée $\iff x \in \text{Vect} \{x_1, x_2, x_3\}.$

Démonstration. Soit $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda x = 0_E$ une relation de dépendance linéaire entre les vecteurs x_1, x_2, x_3, x . Alors $\lambda \neq 0$, car sinon le triplet (x_1, x_2, x_3) serait lié, donc λ est inversible et l'on a

$$x = (-\lambda^{-1}\lambda_1)x_1 + (-\lambda^{-1}\lambda_2)x_2 + (-\lambda^{-1}\lambda_3)x_3.$$

La réciproque a déjà été vue.

- P 60 Soit (x_1, x_2, x_3) un triplet de vecteurs de E. Les assertions suivantes sont équivalentes
 - 1. (x_1, x_2, x_3) est libre.
 - 2. tout vecteur x appartenant à Vect $\{x_1, x_2, x_3\}$ admet un unique décomposition de la forme $x = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$.

Démonstration. $1 \implies 2$: Soit $x = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = \mu_1 x_1 + \mu_2 x_2 + \mu_3 x_3$ deux décompositions de x. Par soustraction, on obtient

$$(\lambda_1 - \mu_1)x_1 + (\lambda_2 - \mu_2)x_2 + (\lambda_3 - \mu_3)x_3 = 0_E.$$

Mais puisque (x_1, x_2, x_3) est libre, on en déduit $\lambda_1 = \mu_1, \lambda_2 = \mu_2, \lambda_3 = \mu_3$. Les deux décompositions sont donc identiques.

- $2 \implies 1$: En effet, (1) ne fait qu'exprimer (2) pour $x = 0_E$.
- **D 61** Soit (x_1, x_2, x_3) un triplet libre de vecteurs de E et posons $F = \text{Vect}\{x_1, x_2, x_3\}$. (x_1, x_2, x_3) s'appelle une base de F. C'est donc un triplet libre engendrant F.

- **T 62** Soit $x \in E$, $x \neq 0_E$ et $F = \text{Vect}\{x\} = \mathbb{K}x$. Montrer que tout couple (x_1, x_2) d'éléments de F est lié. En déduire toutes les bases de F.
- **T 63** Soit (x_1, x_2) un couple libre de vecteurs de E et $F = \text{Vect}\{x_1, x_2\}$. Montrer que tout triplet de vecteurs de F est lié. En déduire que les bases de F sont les couples libres de vecteurs de F.