Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4 2020/21

2.º teste - turma TP4A-6

- Este teste termina com a palavra FIM e a indicação da cotação das questões.
- Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas.

Duração: 1h15

1. Calcula as primitivas das seguintes funções:

(a)
$$\ln(x^2+1)$$
; (b) $\frac{x-4}{x^2+x-2}$; (c) $\frac{x^2}{\sqrt{4-x^2}}$.

Sugestão: Na alínea (a) utiliza primitivação por partes e na alínea (c) faz uma substituição trigonométrica $x = a \sin t, t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, para um valor de a conveniente.

- 2. Seja $A := \{(x,y) \in \mathbb{R}^2 : y \ge 0, y \le 2x, y \le \frac{2}{\sqrt{x}}, 0 \le x \le 4\}.$
 - (a) Calcula os pontos de interseção dos gráficos de y = 2x e de $y = \frac{2}{\sqrt{x}}$.

 Nota: Para efeitos da resolução das alíneas seguintes informa-se que a solução é (1,2), mas nenhuma cotação terás na presente alínea se apenas verificares que este ponto satisfaz as duas equações.
 - (b) Representa geometricamente a região A.
 - (c) Calcula a área da região A.
- 3. (a) Define, para a < b e $n \in \mathbb{N}$, soma de Riemann $S(f, P_n, C_n)$ de uma função $f : [a, b] \to \mathbb{R}$ associada a uma partição P_n de [a, b] e a uma sequência C_n compatível com P_n .
 - (b) Considera agora a função $f:[0,1] \to \mathbb{R}$ definida por $f(x) = \begin{cases} \frac{1}{x}, & \text{se } x > 0 \\ 0, & \text{se } x = 0 \end{cases}$ e prova, a partir da definição de integral de Riemann, que f não é integrável.

<u>Sugestão</u>: Podes, por exemplo, considerar as partições $0 < \frac{1}{n} < \frac{2}{n} < \ldots < \frac{n-1}{n} < 1$ do intervalo [0, 1] e escolher as sequências compatíveis de modo a que as somas de Riemann correspondentes divirjam para infinito quando $n \to \infty$; se precisares, podes tirar partido do facto de $\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{i}$ ser infinito.

FIM

Cotação:

1. 10; 2. 7; 3. 3.