

機械情報工学科 流体力学

第2回

流体の静力学(1)

~ 圧力と液体の深さ・水頭の関係 ~

亀谷 幸憲

流体デザイン研究室 kametaniy@meiji.ac.jp

流体とは

"A substances that deforms continuously when acted on by a shearing stress of any size"

接線方向の力がかかると変形し続ける

↔<u>変形していないなら**接線方向の力は正味ゼロ**</u>

静水力学

静止状態にある物体が流体から受ける力の バランスを考える。

剪断応力は生じていない

静水力学

静止状態にある物体が流体から受ける力の バランスを考える。

剪断応力は生じていない

圧力はベクトルか?スカラーか?

x方向に微小長さdxの三角柱型要素

カのバランス $\Sigma F = ma$

z方向

 $p_z dx dy - p_S ds dx \cos \theta - \rho g dV$ $= \rho dV a_z$

$$p_z - p_S - \rho g \frac{dz}{2} = \rho a_z \frac{dz}{2}$$

極限を取ると $(dz \rightarrow 0, dy \rightarrow 0, dx \rightarrow 0)$

$$\lim_{dz\to 0} \left(p_z - p_S - \rho g \frac{dz}{2} \right) = \lim_{dz\to 0} \left(\rho a_z \frac{dz}{2} \right)$$

$$\Rightarrow p_z = p_s$$

圧力はベクトルか?スカラーか?

x方向に微小長さdxの三角柱型要素

流体要素は静止

力のバランス $\Sigma F = ma$

y方向も同様 x方向もz-x平面で考えて同様

$$p_z = p_x = p_y = p_s$$

pは方向によらないスカラー 空間の点関数として

$$p = p(x) (= p(x, y, z))$$

とかける。

パスカルの定理

微小要素にかかる力のバランス (静止流体)

p(x,y,z) 周りのテイラー展開 (1次まで)

微小要素にかかる力のバランス (静止流体)

y方向の力

$$\left[p - \frac{\partial p}{\partial y} \frac{dy}{2}\right] dz dx - \left[p + \frac{\partial p}{\partial y} \frac{dy}{2}\right] dz dx = \rho dV a_y$$

$$\Rightarrow -\frac{\partial p}{\partial y} = \rho a_y$$

x方向の力も同様

$$\Rightarrow -\frac{\partial p}{\partial x} = \rho \ a_x$$

z方向の力(重力方向)

$$\left[p - \frac{\partial p}{\partial y} \frac{dy}{2}\right] dz dx - \left[p + \frac{\partial p}{\partial y} \frac{dy}{2}\right] dz dx - \rho g dV$$
$$= \rho dV a_z$$

$$\Rightarrow -\frac{\partial p}{\partial z} - \rho g = \rho \ a_z$$

微小要素にかかる力のバランス(静止流体)

y方向の力

$$\left[p - \frac{\partial p}{\partial y} \frac{dy}{2}\right] dz dx - \left[p + \frac{\partial p}{\partial y} \frac{dy}{2}\right] dz dx = \rho dV a_y \qquad -\frac{\partial p}{\partial x} \mathbf{i} - \frac{\partial p}{\partial y} \mathbf{j} - \frac{\partial p}{\partial z} \mathbf{k} \equiv -\nabla p$$

$$\Rightarrow -\frac{\partial p}{\partial y} = \rho a_y$$
重力も入れた力のバランスは

x方向の力も同様

$$\Rightarrow -\frac{\partial p}{\partial x} = \rho \ a_x$$

z方向の力(重力方向)

$$\begin{split} \left[p - \frac{\partial p}{\partial y} \frac{dy}{2} \right] dz \ dx - \left[p + \frac{\partial p}{\partial y} \frac{dy}{2} \right] dz \ dx - \rho g \ dV \\ &= \rho \ dV a_z \\ \Rightarrow - \frac{\partial p}{\partial z} - \rho g = \rho \ a_z \end{split}$$

圧力によるカ=圧力勾配

$$-\frac{\partial p}{\partial x}\mathbf{i} - \frac{\partial p}{\partial y}\mathbf{j} - \frac{\partial p}{\partial z}\mathbf{k} \equiv -\nabla p$$

重力も入れた力のバランスは

$$-
abla p-
ho oldsymbol{g}=
ho oldsymbol{a}$$
 , where $oldsymbol{g}=egin{pmatrix} 0 \ 0 \ g \end{pmatrix}$

*剪断応力をここでは無視

静止流体中では

$$-\nabla p - \rho \mathbf{g} = \mathbf{0}$$

$$\begin{cases}
-\frac{\partial p}{\partial x} = 0 \\
-\frac{\partial p}{\partial y} = 0 \\
-\frac{\partial p}{\partial z} - \rho g = 0
\end{cases}$$

圧力と深さの関係

$$-\frac{\partial p}{\partial x} = 0$$
$$-\frac{\partial p}{\partial y} = 0$$
$$-\frac{\partial p}{\partial z} = \rho g$$

圧力はこのみの関数 p = p(z)

同じ深さでの圧力は等しい

Fluid Mechanics 8th ed, F. M. White.

1)
$$p_a = p_b = p_c = p_d$$

2)
$$p_A = p_B = p_C < p_D$$

同じ深さでの圧力は等しい

底面積が同じなら、底面での圧力はどこも同じ

大気圧,空気の柱

運動方程式

$$\frac{\partial p}{\partial z} = -\rho g$$

$$\frac{dp}{dz} = -\frac{p}{RT}g$$

$$\Rightarrow \frac{dp}{p} = -\frac{g}{RT} \, dz$$

 ρ κ ι

ここで、Tが定数であるとする(高さ方向の変化が無い)

理想気体 状態方程式

 $\rho = \frac{p}{RT}$ R: 気体定数 T: 温度

$$\ln p = -\frac{g}{RT}z + \ln C$$

$$\Rightarrow p = p_0 e^{-\frac{gz}{RT}}$$

$$*C = p_0 \ge \bigcup t_0$$

2025年度 流体力学

大気圧,空気の柱(演習)

運動方程式

$$\frac{dp}{p} = -\frac{g}{RT} dz$$

一般に温度は一定でなく、高さの関数である。 ここで、以下の式で温度が表せるとする。

$$T = T_0 - \beta z$$
 β :定数

演習:圧力分布を求めよ。

$$p = p_0 \left(1 - \frac{\beta z}{T_0} \right)^{\frac{g}{R\beta}}$$

https://www.weather.gov/jetstream/layers

演習解答

$$\frac{dp}{p} = -\frac{g}{RT}dz$$

$$T = T_0 - \beta z \quad \beta: 定数$$

$$\frac{dp}{p} = -\frac{g}{RT}dz$$

$$dT = -\beta dz$$

$$z = 0
$$p_0 = CT_0^{\frac{g}{\beta R}}$$

$$C = p_0 T_0^{-\frac{g}{\beta R}}$$

$$\ln|p| = \frac{g}{\beta R} \ln|T| + \ln C$$

$$p = p_0 T_0^{-\frac{g}{\beta R}}$$$$

絶対圧かつ非完全真空:p>0配刈圧がつ非元全具空: p>0絶対温度かつ非絶対零度: $T=T_0-\beta z>0$

$$\ln p = \frac{g}{\beta R} \ln T + \ln C = p_0 T_0^{-\frac{g}{\beta R}} T_0^{\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{\beta R} \right) = r_0 T_0^{-\frac{g}{\beta R}} \left(1 - \frac{g}{T_0} \right) = r_0 T_0^{-\frac{g}{\beta R}}$$

2025年度 流体力学

積分
$$\int \frac{dp}{p} = \int \frac{g}{\beta RT} dT$$

$$\ln |p| = \frac{g}{\beta R} \ln |T| + \ln C$$

$$\therefore p = p_0 T_0^{-\frac{g}{\beta R}}$$

$$\Rightarrow \ln p = \frac{g}{\beta R} \ln T + \ln C$$

$$\ln p = \ln T_0^{\frac{g}{\beta R}} + \ln C$$

$$\Rightarrow p = p_0 T_0^{-\frac{g}{\beta R}} T_0^{\frac{g}{\beta R}} \left(1 - \frac{\beta z}{T_0}\right)^{\frac{g}{\beta R}}$$

大気圧の力

大気圧 101 kPa = 101,000 N/m²

 $= 10.1 \text{ N/cm}^2$

1 cm² あたり1キロの 物が乗っている状態

Lecture by MIT Prof. Walter Lewin

https://youtu.be/O_HQklhllwQ?t=2070

圧力を「高さ」で

圧力は液柱の高さで表せる。この高さを水頭あるいはヘッドと呼ぶ。

$$p-p_0=\rho gh$$

$$h=\frac{p-p_0}{\rho g}$$
 臣力の次元 長さの次元

液柱の高さを計ることで流体の圧力を測定する計器をマノメータという。

Aでの絶対圧力は

$$p = p_a + \rho g h$$
$$= p_a + \gamma h$$

U字管マノメータ

Aでのガスの圧力を計測する

液体中のB, Cでの圧力は等しい

$$p_A + \rho_1 g h_1 = p_a + \rho_2 g h_2$$

$$\therefore p_A = p_a + g(\rho_2 h_2 - \rho_1 h_1)$$

U字管示差マノメータ

AとBの**圧力差**を計測する

液体中のC, Dでの圧力は等しい

$$p_A + \rho_2 g h_2 = p_B + \rho_1 g h_1 + \rho g h$$

$$\therefore p_A - p_B = g(\rho_1 h_1 + \rho h - \rho_2 h_2)$$

逆U字管示差マノメータ

AとBの**圧力差**を計測する

*上部に液体より小さい密度の流体(気体)

$$p_A - \rho_2 g h_2 = p_B - \rho_1 g h_1 - \rho g h$$

$$\therefore p_A - p_B = g(\rho_1 h_1 + \rho h - \rho_2 h_2)$$

計算してみよう

課題2

圧力差 $\Delta p = p_A - p_B$ を求めよ。

物質	密度[kg/m³]
ベンジン	0.868 x 10 ³
グリセリン	1.255 x 10 ³
水銀	13.520 x 10 ³

重力加速度 $g = 9.81 \text{ m/s}^2$

<u>長さの単位はmm</u>

演習解答

空気 p_B 空気 p_A 100 圧力差ゼロの線

課題2

圧力差 $\Delta p = p_A - p_B$ を求めよ。

物質	密度[kg/m³]
ベンジン	0.868 x 10 ³
グリセリン	1.255 x 10 ³
水銀	13.520 x 10 ³

重力加速度 $g = 9.81 \text{ m/s}^2$

Cでの圧力
$$p_C = p_A + 0.4 \times 1255 \times 9.81$$

Dでの圧力 $p_D = p_B + (0.7-0.1) \times 868 \times 9.81 + (0.1+0.1) \times 13520 \times 9.8$

$$p_C = p_D \downarrow 0$$
 $p_A - p_B pprox 26.7 imes 10^3 \, \mathrm{Pa} = 26.7 \, \mathrm{kPa}$

<u>長さの単位はmm</u>

微圧計

2液微圧マノメータ

二つの液体は混合しにくいとする

圧力差 $\Delta p = p_A - p_B$ を求める。

点Cにおける圧力は

$$p_A + \rho_1 g(h_1 + \Delta y) + \rho_2 g\left(h_2 + \frac{h}{2} - \Delta y\right)$$

点Dにおける圧力は

$$p_B + \rho_1 g(h_1 - \Delta y) + \rho_2 g \left(h_2 - \frac{h}{2} + \Delta y \right) + \rho_3 g h$$

両者を等しいとし、式を整理すると

$$p_A - p_B = \rho_3 g h - \rho_2 (h - 2\Delta y) - 2\rho_1 \Delta y$$

非圧縮流体で体積一定を考慮すると

$$2\Delta yA = ha \downarrow 0$$

$$p_A - p_B = hg \left\{ \rho_3 - \rho_2 \left(1 - \frac{a}{A} \right) - \rho_1 \frac{a}{A} \right\}$$

微圧計

2液微圧マノメータ

$$p_A - p_B = hg \left\{ \rho_3 - \rho_2 \left(1 - \frac{a}{A} \right) - \rho_1 \frac{a}{A} \right\}$$

$$\frac{a}{A} \ll 1 \ \text{E} \ \text{f} \ \text{3} \ \text{E}$$

$$p_A - p_B \approx (\rho_3 - \rho_2)gh$$

 $(\rho_3 - \rho_2)$ が小さいほど、hの読みが拡大

=> 圧力計の高感度化

二つの液体は混合しにくいとする

水銀柱のヘッドによる圧力表示 mmHg

トリチェリの実験

$$p_a = \rho_{Hg}gh$$

$$p_a = 101$$
kPa なら
 $h \approx 760$ mm

水で同様のことをしたら高さは何倍?

物質	密度[kg/m³]
水	1.00 x 10 ³
水銀	13.5 x 10 ³

水銀柱のヘッドによる圧力表示 mmHg

トリチェリの実験

$$p_a = \rho_{Hg}gh$$

$$p_a = 101$$
kPa なら
 $h \approx 760$ mm

水で同様のことをしたら高さは何倍?

物質	密度[kg/m³]
水	1.00 x 10 ³
水銀	13.5 x 10 ³

次回予告:静水力学(2)

水面下に沈んだ物体にかかる力を考える。

・断面2次モーメントの復習を推奨

