CS 3100, Models of Computation, Spring 20, Lec 9

Ganesh Gopalakrishnan School of Computing University of Utah Salt Lake City, UT 84112

bit.ly/3100s20Syllabus

Lecture 9, covering Ch 7,8

7	No	ndeterministic Finite Automata	81	8	Reg	gular Expressions and NFA	95
•	7.1				8.1	Regular Expressions	95
					8.2	RE to NFA Conversion: Examples, Algorithm Sketch	96
		Formal Description of NFA					
	7.3	Language of an NFA: Example Driven	84				
		7.3.1 Simulations of the NFA of Figure 7.5	84		8.4	, , , , , , , , , , , , , , , , , , ,	
		7.3.2 Simulations of the NFA of Figure 7.3	85		8.5	Anat Go to page 123 to NFA Converter	
	74	Language of an NFA: via Eclosure			8.6	Example: Designing an Error-Correcting DFA	106
	1.4					8.6.1 Error-correcting RE for "within Hamming Distance	
		7.4.1 Defining Eclosure				of 2"	106
		7.4.2 Definition of δ and $\hat{\delta}$	86			8.6.2 NFA-based Design of "within Hamming Distance of 2"	
	7.5	NFA to DFA Conversion through Subset Construction	87		0.7		
	7.6	Brzozowski's DFA Minimization Algorithm	90		8.7	Minimal DFA and Isomorphism	108
		7.6.1 Reversal of a DFA Yields an NFA			8.8	DFA Ultimate Periodicity to Solve the Postage Stamp	
	77					Problem	111
	7.7	A Complete Illustration of Brzozowski's Minimization	92			8.8.1 Ultimately periodic sets and lengths of members of	
						a regular language	111
						8.8.2 Stamp Problem and Ultimate Periodicity via Jove	112
						8.8.3 Applying to numbers that are not relatively prime	113

Practice using

CH7/CH7.ipynb and then CH8-9/CH8-9.ipynb

Concepts around NFA, DFA, RE, and Applications

NFA allow regular languages to be specified succinctly

E.g. NFA for "strings that contain 01" (one of many designs)

Concepts around NFA, DFA, RE, and Applications

NFA allow regular languages to be specified succinctly

E.g. NFA for "strings that contain 0101"

One NFA for "contains 0101"

```
1  nfahas0101 = md2mc('''
2  NFA
3  I : 0 | 1 -> I
4  I : '' -> A
5  A : 0 -> B
6  B : 1 -> C
7  C : 0 -> D
8  D : 1 -> E
9  E : 0 | 1 -> E
10  E : '' -> F
11  ''')
```

1 dotObj_nfa(nfahas0101)

1 dotObj_dfa(min_dfa(nfa2dfa(nfahas0101)))

dotObj_dfa(min_dfa(nfa2dfa(nfahas0101, STATENAME_MAXSIZE = 50)), STATENAME_MAXSIZE = 50)

What is an NFA formally?

Let Σ_{ε} stand for $(\Sigma \cup {\varepsilon})$. An NFA N is a structure $(Q, \Sigma, \delta, Q_0, F)$, where:

- *Q* is a *finite non-empty* set of states (as with DFA);
- Σ is a *finite non-empty* alphabet (as with DFA);
- $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$, is a transition function. An NFA's δ function takes a state in Q and a symbol or ε and returns a *set of states* (which is a member of $\mathcal{P}(Q)$, the *Powerset* of Q). See Figure 7.4 for the state transition table ' δ ' for the example NFA.
- $Q_0 \subseteq Q$ is a set of initial states; and
- $F \subseteq Q$, is a *finite*, *possibly empty* set of final states.

State Next state upon inputs			
	0	1	ε
I	$\{I\}$	$\{I\}$	{S0}
S0	{}	$\{S1\}$	{}
S1	$\{S2\}$	$\{S2\}$	{}
S2	$\{oldsymbol{F}\}$	$\{F\}$	{}
\mathbf{F}	{}	{}	{}

```
{'Q'
        : {'F', 'I',
           'S0', 'S1', 'S2'},
 'Sigma': {'0', '1'},
 'Delta':
\{('I', '0') : \{'I'\},
  ('I', '1') : \{'I'\},
  ('I', '') : {'S0'},
  ('S0', '1') : {'S1'},
  ('S1', '0') : {'S2'},
  ('S1', '1') : {'S2'},
  ('S2', '0') : {'F'},
  ('S2', '1') : {'F'}},
  'q0': {'I'},
  'F' : {'F'}}
```

NFA to DFA Conversion

Algorithm for Subset Construction:

- Input: An NFA $N = (Q, \Sigma, \delta, Q_0, F)$
- Output: A language-equivalent DFA *D*
- Method: Subset Construction
 - Add the Eclosure of the initial state of the NFA as an unexpanded state of the DFA *D* being built. This would also be the initial state of the DFA being built.

Repeat

Choose a state S of D that has not been expanded Expand(S)

Until there are no more unexpanded states in D

- $\mathbf{Expand}(S)$:

Mark S as expanded;

If $S \cap F \neq \emptyset$, record S to be a final state of the DFA

For each symbol c in Σ

For each state $s \in S$ do

Let
$$s_c = \delta(s, c)$$
;

Let
$$S_c = Eclosure((\cup_{s \in S} s_c));$$

Subset construction illustrated

dotObj_nfa(nfahas0101)

dotObj_dfa(min_dfa(nfa2dfa(nfahas0101, STATENAME_MAXSIZE = 50)), STATENAME_MAXSIZE = 50)

Review of concepts so far

- NFA allow regular languages to be specified succinctly
 - No direct NFA minimization!
 - But they are often quite succinct
 - NFA can never be larger than DFA
 - DFA are essentially NFA
 - No epsilon moves
 - Next SET of states is to a singleton set
- NFA can be converted to a DFA with a potential exp blowup
 - Exp blowup is apparent when we convert the "Nth-last is a 1" NFA to a DFA
 - Algorithm is called subset construction

1 dotObj_dfa(FBloat)

FS2 b S5 b FS6 FS6 FS3 b S4 b

Reversal of DFA produce NFA

1 dotObj_nfa(rev_dfa(FBloat))

What's the language of FBloat and its reverse?

Language of FBloat via language operations

Language of rev_dfa(Fbloat)

Reversal followed by nfa2dfa

i.e.

R; D so far

Do subset constrn.

Reversal followed by nfa2dfa

i.e.

R; D so far

Do subset constrn.

dotObj_dfa(nfa2dfa(rev_dfa(FBloat), STATENAME_MAXSIZE=50), STATENAME_MAXSIZE=50).render('/private/tmp/rdbloat')

Reversal followed by nfa2dfa

i.e.

R; D so far

Do subset constrn.

dotObj_dfa(nfa2dfa(rev_dfa(FBloat)))

R; D; R; D is Brzozowski's minimization!

1 dotObj_dfa(nfa2dfa(rev_dfa(nfa2dfa(rev_dfa(FBloat)))))

NFA2DFA for NFA with epsilons

NFA2DFA for NFA with epsilons

Summary

- DFA minimization can be done via Rev;Det;Rev;Det
 - This is Brzozowski's algorithm

Regular Expressions

- RE are textual short-hands for regular languages
 - Languages put together using Union, Concat, Star, and basic languages

- In general, we won't ask you to design complicated NFA
 - We will ask you to write REs instead

Regular Expressions: Examples

User syntax	Mathematical Syntax	Language Denoted	
"	ε	$\{arepsilon\}$	
1	1	{1}	
a	a	$\{a\}$	
aa	aa	$\{a\}\{a\} = \{aa\}$	
a+b	a + b	$\{a\} \cup \{b\} = \{a,b\}$	
(a+b)(a+c)	(a+b)(a+c)	$\{a,b\}\{a,c\}=\{aa,ac,ba,bc\}$	
(ab)+(ac)	(ab)+(ac)	$\{ab\} \cup \{ac\}$	
a*	a^*	$\{a\}^*$	
nothing	Ø	{}	

Regular Expressions: General rules

The General Syntax for Regular Expressions (RE): REs can be defined over an alphabet Σ as follows:

- 1. ε is a RE denoting the regular language $\{\varepsilon\}$;
- 2. $a \in \Sigma$ is a RE denoting the regular language $\{a\}$;
- 3. if r is a RE, so is r^* as well as (r); the former denotes the regular language $(\mathcal{L}(r))^*$ and the latter² denotes $\mathcal{L}(r)$, the language of r;
- 4. if r_1 and r_2 are REs, so are $r_1 + r_2$, and r_1r_2 . These expressions denote $(\mathcal{L}(r_1)) \cup (\mathcal{L}(r_2))$ and $(\mathcal{L}(r_1))(\mathcal{L}(r_2))$ respectively.³

re2nfa

1 dotObj_nfa(re2nfa("a"))

Generating LALR tables

1 dotObj_nfa(re2nfa("a*"))

Generating LALR tables

1 dotObj_nfa(re2nfa("a+b"))

Generating LALR tables

Example: All words with 0101 with a 1-bit error

-0101....
- Here either the 0 or the 1 or the 0 or the 1 could be flipped
- We must still accept

Idioms for REs

- ... is (0+1)*
- One-bit errors can be captured by a (0+1) pattern
- That is,
 - 0101
 - Versus
 - (0+1)101
- Build the whole RE
- Experiment in Jove

...0101... with a 1-bit error (Hamming dist).

 $dotObj_dfa(min_dfa(nfa2dfa(re2nfa("(0+1)* ((0+1)101 + 0 (0+1) 01 + 01 (0+1) 1 + 010 (0+1)) (0+1)*")))$. render('/private/tmp/0101-one-bit-error')

Find the strings in the language of these RE

```
• (00*1 + 11*01)*
```

- ((00*1)* + 11*01)*
- (00*1 + (11*01)*)*

: True

- Find out by developing a min DFA
 - Use iso_dfa

Compare these RE pairwise

```
• ( 00*1 )*
```

```
• ( 0 (0+1)* 1 )*
```

Compare these RE pairwise

• (0 (0+1)* 1 + 11*01)*