CS375 Week 6

Jason N Mansfield

August 13, 2011

Figure 1: Pumping Lemma Contradiction

0.1

$$L = \{a^nb^{2n} \mid n \geq 1\} = \{abb, aabbbb, aaabbbbbb, ...\}$$

Proof. For any regular language L, there exists a number p such that for any string w in L of length at least p there are strings x,y,z such that

- \bullet w = xyz
- $\bullet \mid xy \mid \leq p$
- $\bullet \mid y \mid \geq 1$
- Then $x = a^n, y = a^n, z = b^{p+1}$
- $xy^2z \ni L$
- This is a contradiction so the shown language is nonregular.

0.2

1. Palindromes

Proof. For any regular language L, there exists a number p such that for any string w in L of length at least p there are strings x,y,z such that

(a) If
$$w = xyz$$
.

- (b) And if x = a, y = b, z = a.
- (c) or if x = b, y = a, z = b.
- (d) Then $w = a^{90+1}ba^{90}$
- (e) and $w = b^{90+1}ab^{90}$
- (f) Therefore Palindromes are nonregular

2. Equal

Proof. For any regular language L, there exists a number p such that for any string w in L of length at least p there are strings x,y,z such that

- (a) EQUAL = $\{\Lambda \ ab \ ba \ aabb \ abab \ abba \ baab \ baba \ baba \ baab \ baba$
- (b) $\{a^nb^n\} = \mathbf{a}^*\mathbf{b}^* \cap EQUAL$
- (c) If a^*b^* is regular then so is the result of $\mathbf{a}^*\mathbf{b}^* \cap EQUAL$
- (d) w = xyz
- (e) $|xy| \leq p$
- (f) $|y| \ge 1$
- (g) Then $x = a^n, y = a^2, z = b^n$
- (h) So then xyyz would allow aaab which is not in this language.
- (i) Therefore this language is nonregular

0.3

Prove that the below generates the language defined by the regular expression: $\mathbf{a}^*\mathbf{b}\mathbf{b}$

$$Prod1 \quad S \to aS \mid bb$$

 $S \Longrightarrow aS$

 $\implies aaS$

 $\implies aaaS$

 $\implies aaaaS$

 $\implies aaaaaS$

This derivation could continue infinitely until terminal bb is appended.

 $\implies aaaaabb$

0.4