幾何学の意味での量子化の一般化 佐古草乡史 (理科大) 郷原惇平(理科大),廣田祐士(麻林) 難散的手法による場と時空のガナミクス 2019年9月9日 島根大学 arXiv 190708665, 190902361

1	•	Int	tro.	8,			tioz						
			_				Q	vanti	zatron				
0	Cla	55iC	al.	Med	hani	'c5		1	>	Que	entun	n Me	chanics
													ation
						•	can	ON	ical	gua	entiz	atil	702
									cant				
						•	pat	hi	ntegr	al			
0	Ci	assi	ical	Ti	eld	th	eory	,	> Qu	antu	m fir	eld t	theory
0	Cl	assi	cal	Gro	vite	4 -	->	?	Str Loo, Mai	ing	theor	ry	
								?	loo	p - g	ravi	ty	
DW	car	2 W4	. Ger	porali	e an	w/ V	pstri	ct t	the wa	y of	qua	ntiza	ation

~ Quantizations ~ · Dirac. $: f \in C^{\infty}(M) \longrightarrow \widehat{f} \in End(\mathcal{U})$ (1) Â, + Â2 = Â1+ H2, (2) ÂH = AÂ (3) [Ĥ, Ĥ] = i {H, H2}, (4) Î = Id There is no Perfect Quantization De Bormation Quantization De Wilde-Leante, Fedsov, Omori-Marda-Yashioka, Geometric Qum. Weyl, Kostant, Sourian, etc. Observable · Matrix regularization

Belezin, Toeplitz, Hoppe, de Wit, Nicobi. etc.

It is convinient if there is a perspective unitying these quantizations!

Def). Pre-2 category. E RMod: category of R-module over com. R. A(M): Poisson ala (C[®]M), , {, }) Not alg.

ixed Mis a Poisson mfd. Mor(l) is
linea fun C: sub Category of R Mod s.t. 1. A(M) ∈ ob(e) 2. 7 Mi ∈ ob(C) is a Lie alg ([,]i). 3. 3 Ti ∈ C(A(M), Mi) s.t. $[T_{R}(f), T_{R}(g)]_{R} = i t(T_{R}) T_{R}(\{f,g\}) + O(t^{re}(T_{R}))$

Character X $\chi: \mathscr{O}(e) \rightarrow \mathbb{R}$ $\chi(Mi) = Max h(Ti)$ $Ti \in ob(A(M), Mi)$ m is # of connected componentsDef) Je: index category J = I Ja Ja: connected category Ja + Mi e ob(e)\{A(M)} =! Ja, ieob(Ja) Tij∈ e (Mi, Mj), γ(Mi)≤χ(Mj) ⇔ (i.j) ← J d(i.j) F: set of diagonal function F= {F', ..., Fm} F(i) = Mi, Morphism (i,j) > Tij

Def). Quantization Category 2 of Poisson alg A(M). 2(L(M), J, F, X) is a category C(M) satisfying tollowing conditions

Ø f, f ∈ A(M). $T := T_{\infty} ∈ C(A(M), M_{\infty})$ satisfies the following quantization conditions:

Q1. T(fg) - T(f)T(g) = 0

Q2. $[T(f), T(9)]_{\infty} - ik T(\{f, g\}) = 0$

Q1 ~ Q2. are similar conditions
with them in Berezine Toeplitz quantization
or Metrix regularization.

3. Matrix Regularization (including B-T quantisation) Def). CMR: pre-2 category for Matrix regularization {Ni}: strictly increasing sequence of NI the strictly decreasing fun s.t. limN t(N) converges CMR (M) is defined as follows. Nex Ne Matrix alg. · ob (CMR (M))= { A(M), Mather (R=1,2,...), Mation } · Mor(CMR(M)): set of linear fun. S.T. =! Ti: A(M) -> Matri, =! Tij: Matri Matri with Ti = Tij o Tj

4. Deformation Quantization
Let's review. D.Q.
Def). Deformation Quantization (7, *).
$\mathcal{F}_{*} := \{f \mid f = \Sigma t^{k} f_{k}, f_{k} \in C^{\infty}(M)\} \text{ formal P.S.}$ $f * g = \sum_{i} t^{k} C_{k}(f, g)$
1. * is associative 2. Conscioling on
2. Ch is bidifferential op. 2. Co(f. 9) = f θ , C(f, 9) = $\frac{1}{2}i \{f, 9\}$
4. $f*1 = /*f = f$ [f, g] = it {f, g}
For arbitrary Poisson mfd M. +O(th') there exist (Z, X).
Let's consider "Not" formal. > "Strict D.Q."
(Riefe), etc

Def). pre 2 category
$$Coa$$

$$cb(Coa) = \{A(M), (\bar{f}, *)\}$$

$$Lie olg by Ef , $D_* = f * 9 - 9 * f$

$$A(M) \xrightarrow{T} \qquad Coa$$

$$A(M)$$

$$T_{n} \qquad Coa$$

$$A(M)$$

$$Thm (Coa , Toa , Foa , Xoa) is 2 -category
$$Thm (Coa, Toa, Foa, Xoa) is 2 -category
$$Thm (A(M), TE)$$$$$$$$

~ Equivalence of Categories ~
Def). Naturally Isomorphic function
Natural trans. $f \Rightarrow G$ $F, G: C \rightarrow \emptyset$
$t_x: F(x) \to G(x)$ $x \mapsto F(x)$ $G(x)$
For X, tx is isomorphic (=tx s.t. tx.tx=1)
t is naturally iso.
Det) Equivalence of Categories
C=D=F:C-D,3G:D-C st
Equiv $\exists \xi : FG \xrightarrow{\mathcal{E}} I_{\mathcal{D}} \xrightarrow{\exists} 2 : GF \xrightarrow{\mathcal{E}} I_{e}$
natural iso Identity functor
Tearing ources.
Similar diagram up to iso.

Other Quantization Def. Pre Quantization Set of Op acting on 21 - P CPQ: Ob (CpQ) = {A(M), Q(A(M))} FPG Q(A(M)) $\chi_{PQ}(A(M)) = \pi$, $\chi_{PQ}(Q(A(M)) = \delta$ Thm. (lpa, Jpa, Fpa, Xpa) is 2 category. 2pa with limit (A(M), Q) Thm, 2 Pa , A(M)

· Every theory of phys might be an object in a category like the Quantization category. o How does the nature chose one category as our universe? Categorical extension of Hamiltonian eigenvalue problem? To be continued ... Next Gohara's talk