Chapter / Wireless and Mobile

Anote on the use of these PowerPoint slides: We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part.

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

In return for use, we only ask the following:

Thanks and enjoy! JFK/KWR

All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Chapter 7 outline

7.1 Introduction

- 7.2 Wireless links and network characteristics
- 7.3 WiFi: 802.11 wireless LANs
- 7.4 Cellular networks: 4G and 5G
- 7.5 Mobility management: principles
- 7.6 Mobility management: practice
- 7.7 Mobility: impact on higher-layer protocols

- Mobile networks, cellular networks
- Wireless LANs, Wi-Fi

Infrastructure networks

Ad hoc networks

- ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Chapter 7 outline

7.1 Introduction

7.2 Wireless links and network characteristics

7.3 WiFi: 802.11 wireless LANs

7.4 Cellular networks: 4G and 5G

7.5 Mobility management: principles

7.6 Mobility management: practice

7.7 Mobility: impact on higher-layer protocols

Wireless link characteristics: fading (attenuation)

Wireless radio signal attenuates (loses power) as it propagates (free space "path loss")

Free space path loss $\sim (fd)^2$

f: frequency

d: distance

higher frequency or larger free space path loss

Wireless link characteristics: interference

• interference from other sources: wireless network frequencies (e.g., 2.4 GHz) shared by many devices (e.g., WiFi, cellular, motors): interference

Wireless link characteristics: multipath

multipath propagation: radio signal reflects off objects ground, built environment, arriving at destination at slightly different times

Wireless link characteristics: multipath

multipath propagation: radio signal reflects off objects ground, built environment, arriving at destination at slightly different times

Coherence time:

- amount of time bit is present in channel to be received
- influences maximum possible transmission rate, since coherence times can not overlap
- inversely proportional to
 - frequency
 - receiver velocity

Wireless link characteristics: noise

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest throughput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

...... QAM256 (8 Mbps)

– – · QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless link characteristics (3)

Multiple wireless senders, receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A,
 C unaware of their interference at B

Signal attenuation:

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Characteristics of selected wireless links

Chapter 7 outline

- 7.1 Introduction
- 7.2 Wireless Links and network characteristics
 - 7.2.1 CDMA: code division multiple access
- 7.3 WiFi: 802.11 wireless LANs
- 7.4 Cellular networks: 4G and 5G
- 7.5 Mobility management: principles
- 7.6 Mobility management: practice
- 7.7 Mobility: impact on higher-layer protocols

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoding: inner product: (original data) X (chipping sequence)
- decoding: summed inner-product: (encoded data) X (chipping sequence)

CDMA encode/decode

... but this isn't really useful yet!

CDMA: two-sender interference

Sender 1

Sender 2

slot 0

received

input

slot 1 received

input

channel sums together transmissions by sender 1 and 2

using same code as sender 1, receiver recovers sender 1's original data from summed channel data!

... now that's useful!

Orthogonal Frequency Division Multiplexing (OFDM)

Chapter 7 outline

- 7.1 Introduction
- 7.2 Wireless Links and network characteristics
- 7.3 WiFi: 802.11 wireless LANs
- 7.3.1 The 802.11 wireless LAN architecture
- 7.3.2 The 802.11 MAC protocol
- 7.3.3 The 802.11 frame format
- 7.3.4 Mobility in the same IP subnet
- 7.3.5 Advanced features in 802.11
- 7.3.6 Personal area networks: Bluetooth
- 7.4 Cellular networks: 4G and 5G
- 7.5 Mobility management: principles
- 7.6 Mobility management: practice
- 7.7 Mobility: impact on higher-layer protocols

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30 m	2.4 Ghz
802.11g	2003	54 Mbps	30m	2.4 Ghz
802.11n (WiFi 4)	2009	600 Mbps	70m	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	2020	14 Gbps	70m	2.4, 5 Ghz
802.11af	2014	35 - 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

 all use CSMA/CA for multiple access, and have base-station and ad-hoc network versions

Unlicensed ISM 2.4 GHz frequency band

- ISM radio bands: Reserved for Industrial, Scientific and Medical purposes
- Used without a government license
- Short-range, low-power wireless communications systems
- Used by low-power transmitters not considered to be ISM devices
 - Cordless phones, Bluetooth devices, near-field communication (NFC) devices, garage door openers, baby monitors, and wireless computer networks (Wi-Fi)

Unlicensed 5 GHz frequency band

As of March 2021, U-NII consists of eight ranges. U-NII 1 through 4 are for 5 GHz WLAN (802.11a and newer), and 5 through 8 are for 6 GHz WLAN (802.11ax) use. U-NII 2 is further divided into three subsections.

U-NII bands and FCC regs

Name	Aliases	Freq. Range (GHz)	Bandwidth (MHz)	Max Power (mW)	Max EIRP (mW)
U-NII-1	U-NII Low / U-NII Indoor	5.150-5.250	100	50	200
U- NII-2A	U-NII Mid	5.250-5.350	100	250	1,000
U- NII-2B		5.350–5.470	120	_	_
U- NII-2C	U-NII Worldwide / U-NII-2-Extended / U-NII-2e	5.470–5.725	255	250	1,000
U-NII-3	U-NII Upper	5.725-5.850	125	1,000	4,000
U-NII-4	DSRC/ITS	5.850-5.925	75	_	_
U-NII-5		5.925-6.425	500	_	_
U-NII-6		6.425–6.525	100	_	_
U-NII-7		6.525–6.875	350	_	_
U-NII-8		6.875–7.125	250	_	a

and Mobile Networks: 7-28

802.11 LAN architecture

- Basic Service Set (BSS) a single access point (AP) interconnecting with wireless hosts
- Basic Service Area (BSA) (aka. cell) is the area that is covered by the access point 's signal

BSS 2

802.11: Channels

- spectrum divided into channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!

802.11: Channels, association

- arriving host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - then may perform authentication [Chapter 8]
 - then typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

- (1) beacon frames sent from APs
- (2) association Request frame sent: H1 to selected AP
- (3) association Response frame sent from selected AP to H1

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

Chapter 7 outline

- 7.1 Introduction
- 7.2 Wireless Links and network characteristics
- 7.3 WiFi: 802.11 wireless LANs
- 7.3.1 The 802.11 wireless LAN architecture
- 7.3.2 The 802.11 MAC protocol
- 7.3.3 The 802.11 frame format
- 7.3.4 Mobility in the same IP subnet
- 7.3.5 Advanced features in 802.11
- 7.3.6 Personal area networks: Bluetooth
- 7.4 Cellular networks: 4G and 5G
- 7.5 Mobility management: principles
- 7.6 Mobility management: practice
- 7.7 Mobility: impact on higher-layer protocols

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with detected ongoing transmission by another node
- 802.11: no collision detection!
 - difficult to sense collisions: high transmitting signal, weak received signal due to fading
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/CollisionAvoidance

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

- 1 if sense channel idle for **DIFS** then transmit entire frame (no CD)
- 2 if sense channel busy then start random backoff time timer counts down while channel idle
- 3 transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

if frame received OK return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Avoiding collisions: RTS-CTS exchange

idea: sender "reserves" channel use for data frames using small reservation packets

- sender first transmits small request-to-send (RTS) packet to AP using CSMA
 - RTSs may still collide with each other (but they are short)
- AP broadcasts clear-to-send (CTS) in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Collision Avoidance: RTS-CTS exchange

Chapter 7 outline

- 7.1 Introduction
- 7.2 Wireless Links and network characteristics
- 7.3 WiFi: 802.11 wireless LANs
- 7.3.1 The 802.11 wireless LAN architecture
- 7.3.2 The 802.11 MAC protocol
- 7.3.3 The 802.11 frame format
- 7.3.4 Mobility in the same IP subnet
- 7.3.5 Advanced features in 802.11
- 7.3.6 Personal area networks: Bluetooth
- 7.4 Cellular networks: 4G and 5G
- 7.5 Mobility management: principles
- 7.6 Mobility management: practice
- 7.7 Mobility: impact on higher-layer protocols

802.11 frame: addressing

802.11 frame: addressing - host to router

802.11 WiFi frame

802.11 frame: addressing

- 7.1 Introduction
- 7.2 Wireless Links and network characteristics
- 7.3 WiFi: 802.11 wireless LANs
- 7.3.1 The 802.11 wireless LAN architecture
- 7.3.2 The 802.11 MAC protocol
- 7.3.3 The 802.11 frame format
- 7.3.4 Mobility in the same IP subnet
- 7.3.5 Advanced features in 802.11
- 7.3.6 Personal area networks: Bluetooth
- 7.4 Cellular networks: 4G and 5G
- 7.5 Mobility management: principles
- 7.6 Mobility management: practice
- 7.7 Mobility: impact on higher-layer protocols

802.11: mobility within same subnet

H1 remains in same IP subnet: IP address can remain same

switch: which AP is associated with H1?

 self-learning (Ch. 6): switch will see frame from H1 and "remember" which switch port can be used to reach H1

- 7.1 Introduction
- 7.2 Wireless Links and network characteristics
- 7.3 WiFi: 802.11 wireless LANs
- 7.3.1 The 802.11 wireless LAN architecture
- 7.3.2 The 802.11 MAC protocol
- 7.3.3 The 802.11 frame format
- 7.3.4 Mobility in the same IP subnet
- 7.3.5 Advanced features in 802.11
- 7.3.6 Personal area networks: Bluetooth
- 7.4 Cellular networks: 4G and 5G
- 7.5 Mobility management: principles
- 7.6 Mobility management: practice
- 7.7 Mobility: impact on higher-layer protocols

802.11: advanced capabilities

Rate adaptation

- base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies
 - 1. SNR decreases, BER increase as node moves away from base station
 - 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802.11: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent;
 otherwise sleep again until next beacon frame

- 7.1 Introduction
- 7.2 Wireless Links and network characteristics
- 7.3 WiFi: 802.11 wireless LANs
- 7.3.1 The 802.11 wireless LAN architecture
- 7.3.2 The 802.11 MAC protocol
- 7.3.3 The 802.11 frame format
- 7.3.4 Mobility in the same IP subnet
- 7.3.5 Advanced features in 802.11
- 7.3.6 Personal area networks: Bluetooth
- 7.4 Cellular networks: 4G and 5G
- 7.5 Mobility management: principles
- 7.6 Mobility management: practice
- 7.7 Mobility: impact on higher-layer protocols

Personal area networks: Bluetooth

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master controller / clients devices:
 - master polls clients, grants requests for client transmissions

Personal area networks: Bluetooth

- 2.4-2.5 GHz ISM radio band, up to 2 Mbps
- **TDM**, 625 μsec sec. slot
- FDM: sender uses 79 frequency channels in known, pseudo-random order slot-to-slot (spread spectrum)
 - other devices/equipment not in piconet only interfere in some slots
- parked mode: clients can "go to sleep" (park) and later wakeup (to preserve battery)
- bootstrapping: nodes self-assemble (plug and play) into piconet

- master device
- C client device
- parked device (inactive)

Pandemic + Bluetooth

Alice and Bob meet each other for the first time and have a 10-minute conversation.

Their phones exchange anonymous identifier beacons (which change frequently).

Bob is positively diagnosed for COVID-19 and enters the test result in an app from a public health authority.

A few days later...

With Bob's consent, his phone uploads the last 14 days of keys for his broadcast beacons to the cloud.

- 7.1 Introduction
- 7.2 Wireless Links and network characteristics
- 7.3 WiFi: 802.11 wireless LANs
- 7.4 Cellular networks: 4G and 5G
- 7.5 Mobility management: principles
- 7.6 Mobility management: practice
- 7.7 Mobility: impact on higher layer protocols

Chapter 7 summary

Wireless

- Wireless Links and network characteristics
- Wi-Fi: 802.11 wireless LANs

Chapter 7 summary

Wireless

- Wireless Links and network characteristics
- Wi-Fi: 802.11 wireless LANs

