

This page shows the frequency of the top 7 "L2" lineages for NZ, across recent months.

The detailed Lineage classifications are provided by Nextclade. I roll those up into "L2" groups, which roughly follow the WHO Variant definitions. For example, my "BA.2.86.*" group includes BA.2.86 and all it's descendants, e.g. the JN.* lineages.

The detailed Lineage classifications are quite numerous and dynamic, so the "Lineage L2" groups give a simpler and more stable basis for analysis and comparison.

The frequency shown at each point is based on the 7-day rolling average across all lineages.

The grey column chart across the bottom shows the volume of sequences available by date. As there can be long sample and data processing times, it is quite routine for recent dates to show lower sample sizes.

The frequency results calculated for the most recent dates might not be representative, due to those lower sample sizes.

This page shows the frequency of the top 7 lineages for NZ, across recent months.

The Lineage classifications are provided by Nextclade. The colour assignments are random.

The frequency shown at each point is based on the 7-day rolling average across all lineages.

The grey column chart across the bottom shows the volume of sequences available by date. As there can be long sample and data processing times, it is quite routine for recent dates to show lower sample sizes.

The frequency results calculated for the most recent dates might not be representative, due to those lower sample sizes.

This page shows the frequency of a selected Lineage of interest, across the District Health Boards (DHB) of NZ, over recent months. The top 6 locations are shown, based on the volume of samples.

The Lineage classifications are provided by Nextclade.

The frequency shown at each point is based on the 7-day rolling average across all lineages, for that state.

The grey column chart across the bottom shows the volume of sequences available by date. As there can be long sample and data processing times, it is quite routine for recent dates to show lower sample sizes.

The frequency results calculated for the most recent dates might not be representative, due to those lower sample sizes.

This page compares the relative frequency of 2 selected "L2" Lineages for NZ, over recent months. A challenging "L2" Lineage is selected first, and compared to the incumbent.

The trend is shown as a green line and expressed as a daily growth % advantage. If the green line crosses over the 0.0 line, the date when that occurred or is predicted to occur will be shown. At that point the challenging "L2" Lineage is considered to have "crossed over" or taken over dominance from the incumbent Lineage

The Lineage classifications are provided by Nextclade. I roll those up into "L2" groups, which roughly follow the WHO Variant definitions. For example, my "BA.2.86.*" group includes BA.2.86 and all it's descendants, e.g. the JN.* lineages.

The grey column chart across the bottom shows the volume of sequences available by date. As there can be long sample and data processing times, it is quite routine for recent dates to show lower sample sizes.

This page compares the relative frequency of 2 selected Lineages for Australia, over recent months. A challenging Lineage is selected first, and compared to the incumbent.

The trend is shown as a green line and expressed as a daily growth % advantage. If the green line crosses over the 0.0 line, the date when that occurred or is predicted to occur will be shown. At that point the challenging Lineage is considered to have "crossed over" or taken over dominance from the incumbent Lineage

The Lineage classifications are provided by Nextclade.

The grey column chart across the bottom shows the volume of sequences available by date. As there can be long sample and data processing times, it is quite routine for recent dates to show lower sample sizes.

This page shows the hierarchy of the significant Lineages for NZ, over recent months.

The hierarchy can be read from left to right, starting with the earliest/highest Lineages being broken down into more detailed child Lineages.

The vertical height of each bar segment represents the relative volume of all the samples of that specific Lineage, as well as all it's descendants.

The full picture is typically quite busy, so insignificant Lineages (with few samples, or at the extreme top or bottom of the hierarchy) are not shown.

The Lineage classifications are provided by Nextclade.

Data Submitted in the last 8 weeks

Country	# Samples Sequenced	Latest Collection date	by Collection date	Latest Submission date	by	Submission date
□ New Zealand	427	16/03/2025	e and other taller.	19/03/2025	ī,	and the
Auckland	162	15/03/2025	. In different called	19/03/2025	Ī.	and the second
Counties Manukau	124	16/03/2025	tottanegalle, centin	19/03/2025	ы	10 mg/s
Waikato	41	16/03/2025	and the same of the same	19/03/2025	Ι.	1 1 h
MidCentral	21	08/03/2025	Large den He	19/03/2025	Ι.	the late
Waitemata	18	15/03/2025	the state of the	19/03/2025	Ι.	
Northland	16	13/03/2025	la contraction	19/03/2025	Ι.	
Hawkes Bay	13	10/03/2025	do a o	19/03/2025	Ь	1 L
Southern	12	11/03/2025	Lala L	19/03/2025	T.	11 1
Hutt Valley	5	06/03/2025		18/03/2025	ы	1 1
Nelson Marlborough	5	26/02/2025		19/03/2025		
Bay of Plenty	2	12/02/2025		04/03/2025		
Capital and Coast	2	07/02/2025		28/02/2025		
Wairarapa	2	24/02/2025		18/03/2025		
Whanganui	2	25/01/2025		12/02/2025		
Lakes	1	04/02/2025		16/02/2025		
Tairawhiti	1	22/01/2025		12/02/2025		
Total	427	16/03/2025	e and other dates.	19/03/2025		and the

This page shows the volume and currency/timeliness of the genomic sequencing data shared for NZ via GISAID, over the last 8 weeks. A breakdown by location is also shown.

Each sample shared comes with a Collection date - when the PCR test for that sample was collected. The GISAID system also records a Submission date for each sample, which is typically the date that sample was uploaded.

The latest date of each type is shown, along with "sparkline"-style mini charts to give a flavour for the spread of recent data by Collection date and by Submission date.