

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2019 - 2020)

LEADER & ACHIEVER COURSE

PHASE: MLM,N,R,S,MAZI,L,T,U,M2AP1A, M2AP1B, M4AA2A TARGET: PRE-MEDICAL 2020

Test Type: MAJOR Test Pattern: NEET(UG)

TEST DATE: 28 - 02 - 2020

TEST SYLLABUS: 03

HINT - SHEET

1. As we know

$$\frac{\Delta T}{T} = \frac{1}{2}\alpha\Delta\theta \qquad \text{where } \Delta\theta = \theta_{actual} - \theta_{calibration}$$

So,
$$\frac{5}{10} = \left(\frac{T - 15}{30 - T}\right)$$
 $\Rightarrow 30 - T = 2T - 30$
 $\Rightarrow T = 20^{\circ}C$

2.
$$V_{RMS} = \sqrt{\frac{4+9+16+25+36}{5}} = 4.24$$

3.
$$\eta_{\text{max}} = 1 - \frac{T_2}{T_1} = 1 - \frac{300}{400} = 0.25 = 25\%$$

Therefore 26% efficient engine is impossible.

4.
$$\frac{KE_{max}}{KE_{avg}} = \frac{\frac{1}{2}KA^2}{\frac{1}{4}KA^2} = \frac{2}{1}$$

5. Given amplitude = 0.5 m

f = 2Hz, $\omega = 2\pi f = 4\pi$, travelling in positive x-direction so sign of t & x are different.

- 6. By anamolus behaviour of water, density of water increase between 0 to 4°C, decrease for higher tempeature.
- 7. $W = P\Delta V$, for contraction of volume ΔV is negative.

8.
$$\eta = 1 - \frac{T_2}{T_1}, \frac{T_1}{T_2} = \frac{1}{1 - \eta}$$

$$\omega = \frac{T_2}{T_1 - T_2} = \frac{1}{(T_1 / T_2) - 1}$$

$$= \frac{1}{[1 / (1 - \eta)] - 1} = \frac{1 - \eta}{\eta}$$

As
$$\eta = 10\% = 0.1$$
, $\omega = \frac{1 - 0.1}{0.1} = 9$

9.
$$k_{eq} = k_1 + k_2 \Rightarrow T = \frac{1}{2\pi} \sqrt{\frac{M}{k_{eq}}}$$

10.
$$V = \frac{\omega}{k} = \frac{100}{1/10} = 1000 \text{ m/s}$$

11. When a body is heated, the distance between any two points on it increases.

12. $W = Q - \Delta U = 110 - 40 = 70 J$

13. Only sin & cos represents simple harmonic motion so tanωt will not represent a SHM

14.
$$f = \sqrt{f_1^2 + f_2^2} = 5Hz$$

15. $2d = v \times t$, where v = velocity of sound = 330 m/s

 $t = Persistence of hearing = \frac{1}{10} sec$.

$$\Rightarrow d = \frac{v \times t}{2} = \frac{330 \times \frac{1}{10}}{2} = 16.5 \text{ meter}$$

16. K.E. per degree of freedom = $\frac{1}{2}$ kT

For polyatomic gas, mean K.E. = $\frac{nkT}{2}$

17.
$$nC_{p_{eq}} = \left(\frac{1}{2}\right)\left(\frac{7}{2}R\right) + \left(\frac{1}{4}\right)\left(\frac{5}{2}R\right) = \frac{19R}{8}$$

$$Q = nC_{p_{eq}}\Delta T = \frac{19R}{8} \times 100, R = 2 \text{ cal/mol-K}$$

$$Q = \frac{19 \times 2}{8} \times 100 = 475 \text{ cal}$$

18.
$$\frac{d^2x}{dt^2} + \frac{16}{9}x = 0$$

Here
$$\omega^2 = \frac{16}{9}$$

$$\omega = \frac{4}{3}$$
 unit

19.
$$v = \omega/k = 2$$
 units

$$2d_{1} + 2d_{2} = v \times t_{1} + v \times t_{2}$$

$$\Rightarrow 2(d_{1} + d_{2}) = v(t_{1} + t_{2})$$

$$d_{1} + d_{2} = \frac{v(t_{1} + t_{2})}{2} = \frac{340 \times (1.5 + 3.5)}{2} = 850 \text{ m}.$$

- 21. When the bimetallic strip is kept in a cold bath the length of X decreases faster and therefore the strip bends towards the left.
- Using relation = $\frac{T_2}{T_1}$ $\left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$ $\left(8\right)^{\frac{3/2-1}{3/2}}$ $\Rightarrow T_2 \quad 2T_1$ \Rightarrow T₂ 2(273 27) 600K 327 C
- $\frac{T}{2} = (6-2)$, T = 8 sec
- Maximum particle velocity is $V_{max} = A\omega = 1800 \times 60 \times 10^{-6} \text{ m/s}$ wave velocity $V = \frac{\omega}{k} = \frac{1800}{5.3}$ m/s
 - $\frac{V_{\text{max}}}{V} = 5.3 \times 60 \times 10^{-6} = 3.18 \times 10^{-4}$ The resultant amplitude is given by
 - $A_{R} = \sqrt{A^{2} + A^{2} + 2AA\cos\theta} = \sqrt{2A^{2}(1 + \cos\theta)}$ $(\because 1 + \cos\theta = 2\cos^2\theta/2)$
- **26.** $\eta = 1 \frac{T_2}{T_1} \Rightarrow \frac{30}{100} = 1 \frac{77 + 273}{T_1}$ $T_1 = 500 \text{ K, or } 227^{\circ}\text{C}$
- 27. $\frac{3}{2}P_0V_0 + \frac{10}{2}P_0V_0 = \frac{13}{2}P_0V_0$
- Slope is irrelevant. Time period $T = 2\pi \sqrt{(M/2k)}$ 28.
- **29**. The wave speed depends on factors of tension in the string and its composition. Hence, since the wave speed is unchanged, with an increased frequency, there is a decreased wavelength ($v = f\lambda$)
- If suppose n_s = frequency of string = $\frac{1}{2l} \sqrt{\frac{T}{m}}$ 30. n_f = Frequency of tuning fork = 480 Hz x = Beats heard per second = 10as tension T increases, so n_s increases (\uparrow) Also it is given that number of beats per sec decreases (i.e. $x \downarrow$)
 Hence $n_s \uparrow - n_f = x \downarrow \longrightarrow Wrong$ $n_f - n_s \uparrow = x \downarrow \longrightarrow Correct$ $\Rightarrow n_s = n_f - x = 480 - 10 = 470 \text{ Hz}.$

- 31. $E = \frac{Q}{A} = \sigma T^4$ $\frac{Q}{4} = \sigma A T^4 \Rightarrow 10 = \sigma A (400)^4$ and $\left(\frac{Q}{t}\right)_2 = \sigma A \left(800\right)^4$...(2) $\frac{10}{\left(\frac{Q}{t}\right)} = \left(\frac{400}{800}\right)^4 \implies \left(\frac{Q}{t}\right)_2 = 160W$
- Given $P \propto T^3$, but we know for an adiabatic process, the pressure $P \propto T^{\gamma/\gamma-1}$

$$S_0, \frac{\gamma}{\gamma - 1} = 3 \Rightarrow \gamma = \frac{3}{2} \Rightarrow \frac{C_P}{C_V} = \frac{3}{2}$$

- 33.
- From graph (1), Wavelength (λ) = 4 cm **34**. From graph (2), Time period (T) = 0.8 s $v = f\lambda = \lambda/T = 4/0.8 = 5$ cm/s
- **35.** L = 1m = 100 cm, m = (0.5/100) $= 5 \times 10^{-3}$ g/cm and p = 4 In the transverse arrangement the frequency of the vibrating string is equal to the frequency of the tuning fork, i.e., 200 Hz.

Now, n =
$$\frac{p}{2L}\sqrt{\frac{T}{m}}$$

or $200 = \frac{4}{2 \times 100}\sqrt{\frac{T}{5 \times 10^{-3}}}$
 $\therefore T = 5 \times 10^5 \text{ dyne.}$

- 36. $N = \frac{PV}{PT} \times N_A$ $=\frac{1.3\times10^5\times7\times10^{-3}}{8.314\times273}\times6.023\times10^{23}$
- **37.** In isothermal expansion temperature remains constant, hence no change in internal energy.
- 38. $f = \omega^2 x$ $0.5 = \omega^2 \times 0.02$ $V_{max} = \omega a = 0.5 \text{ m/s}$
- **39.** It is clear from figure that the particle will come after a time T/4 to its mean position.

- 40. Theory
- 41. $A \rightarrow B$ ⇒ constant pressure $B \rightarrow C$ ⇒ constant temperature \Rightarrow constant volume

42.
$$\eta = \frac{T_1 - T_2}{T_1} = \frac{(273 + 727) - (273 + 227)}{273 + 727}$$
$$= \frac{1000 - 500}{1000} = \frac{1}{2}$$

43.
$$\frac{1}{2}K\left(\frac{A^2}{4}\right) = 2.5 \implies TE = \frac{1}{2}KA^2 = 2.5 \times 4 = 10J$$

44.
$$V = \frac{\omega}{k} = \frac{60}{2} = 30 \text{ m/s}$$
 in -x direction sign if t & x is same.

45.
$$\overrightarrow{O} = \frac{\text{C/2}}{\text{O}} = \frac{\text{f} = 10\text{GH}_2}{\text{S}}$$
$$f_{app} = \left(1 + \frac{\text{V}}{\text{C}}\right) f = \left(1 + \frac{1}{2}\right) \times 10\text{GH}_2 \Rightarrow \frac{3}{2} \times 10 = 15\text{GH}_2$$

- 46. Homologous series Smallest Member Alkanal Н -СНО Alkanone CH,-C-CH, CH₂-COOH Alkonoic acid Alkene $CH_2=CH_2$
- 47. are chain isomers
- Compound which having α -C-H with -NO₂, 48. -NO -CHO, Ketone group.
- No resonance due to bred't rule. 49.
- 50. Carbon-Carbon multiple bond is absent in so will give test of unsaturation.
- 51. * Oate in the name suggest ester os PFG with

ethyl group attached to oxygen atom of $-\ddot{C}$ -O-R

- Oxo suggest ketone/aldehyde as subsitunt.
- but as word root means PCC of 4 carbon

52. See cos/pos

(3) have pos (crossing all four groups)

54. A- octet complete R.S.

- Stability order decide by **58.**
 - (A) Octet rule
 - (B) Polar R.S. < Non- Polar R.S.
 - (C) -ve charge OH high E.N. Atom and +ve charge OH less E.N. atom.

61.
$$\underbrace{\begin{array}{c} 2 & 1 \\ CH_2-CH_2 \end{array}}_{Sub.} Cl$$

1-chloro-2-phenylethane

- **63.** D is not valid resonating structure (Nitrogen contain 10 e⁻ s)
- 64. Nitro compound having at least one active-H $(\alpha-H)$ show tautomerism.

68.

- C_6H_5 -O- CH_2 - CH_2 -CH- CH_3 , NCERT/XII/319 **66.**
- Due to high BP and steam volatile nature of **67.** aniline it is separate by steam distillation.

70.
$$Cl_2(Excess) \xrightarrow{Cl} Cl$$

$$Cl \xrightarrow{Cl} Cl$$

- 71. 1, 2, 3 have different structure so no. G.I.
- 72. Factual question NCERT Pg. # 356

73. Acidic strength of active
$$\alpha h$$
 –CHO > –C – > –C –O –R

74.
$$CH_3$$
- CH - CH_2 - CH_3
 CI_2 /h ω
 CI - CH_2 - CH - CH_2 - CH_3
 CH_3

$$(d \& \ell) \rightarrow (2)$$

75.
$$CH_3$$
 O CH_3 CH_3 CH_2 = CCH_3 CH_3 CH_2 = CCH_3

- **76.** R and S.
- 77. Photochemical smog does not involve SO₂.

After protonation conjugated acid stable by resonance.

79. NCERT-XI, Pg. # 388 (Old), 396 (New)

82. Stability of
$$C^{\oplus} \alpha \frac{+M}{-M} \alpha \frac{+H}{-H} \alpha \frac{+I}{-I}$$

$$(A) \begin{picture}(60,0)(0,0) \put(0,0){\ovalign{\hfill \hfill \h$$

Stability :- C > A > B > D

- 83. More αH OH alkene more stable.
- **84.** NCERT-XI, Pg. # 388 (Old), 396 (New)

85.
$$\bigcirc$$
 +CICH₂Cl+ \bigcirc $\stackrel{\text{Anh.AICl}_3}{\bigcirc}$ \bigcirc CH₂ \bigcirc

So see directly 'R' configuration.

87. Stability of
$$C^{\Theta} \alpha \frac{-M}{+M} \alpha \frac{-H}{+H} \alpha \frac{-I}{+I}$$

$$(A) \begin{picture}(60,0) \put(0,0){\oold} \put$$

Stability order P > S > Q > R

So most e[⊙] density in benzene ring.

90. Isomers of C_7H_7C1 are \Rightarrow (4)

- **91.** NCERT(XI) Pg # 48/48(H) Para:4.1.5
- **102.** NCERT(XI) Pg # 57/57(H) Para:4.2.11.2
- **111.** NCERT(XI) Pg # 50/48(H) Para:4.2.2
- **112.** NCERT(XI) Pg # 56/55(H) Para:4.2.11
- **113.** NCERT(XI) Pg # 104/104(H) Para:7.1.2
- **122.** NCERT(XI) Pg # 54/54(H) Para:4.2.10
- **123.** NCERT(XI) Pg # 113/113(H) Fig:7.16
- **143.** NCERT(XI) Pg # 114/114(H) Para:7.4.2
- **152.** NCERT(XI) Pg # 103/103(H) Para:7.1.2
- **172.** NCERT(XI) Pg # 102/102(H) Para:7.1.1

HS-4/4