

711th Human Performance Wing

Prediction of Protein Secondary Structure through Topological Analysis of Amino-Acid Subsequences

Aaron Hammer, Matt Piekenbrock, Kevin O'Neill, Caroline Bablin, Kyle Hixenbaugh, Rory McIntosh

Protein Folding

- Proteins at the most basic level are chains of amino acids which creates primary structure
- Interactions between atoms within and between amino acids form the secondary structure
 - a local structure
 - helix, sheet, coil are three most prevalent structures
- Long-range interactions between amino acids determine how the protein will fold in 3-dimensional space; the result is the tertiary structure
- One of the most challenging machine learning problems

Impact

- Shape determines function
- Many diseases believed to be caused from improper folding of proteins
 - Parkinson's, Huntington's, Sickle Cell Anemia, Cystic Fibrosis, and more
 - Tertiary structure determination could allow for protein synthesis to aid in treatment of these diseases
- Multiple DOD applications
 - Protein capture elements for sensing

The Challenge

- IEEE ICMLA 2019 Challenge focused on Protein Inter Residue Distances Prediction
- Given Input Features:
 - 1-D features
 - PSIpred-helix, PSIpred-sheet, PSIpred-coil, solvent accessibility, Shannon Entropy
 - 2-D features
 - cmpred, pstat pots, free contact
 - Chosen features were not transparent at first
- Goal: Predict secondary structure

Given an amino acid sequence...

MKTFLYFCLL...

Predict secondary structure label

HHHCCEEE...

Data Pre-Processing

- 1. Transform IEEE data into a standard format (numpy to CSV)
- 2. Augment IEEE data with extra features
 - Pull protein info from DSSP and PDB
 - Calculate torsion angles for each amino-acid pair in each protein
 - Add this to IEEE data
- 3. Segment distance matrix data using chipping strategy
 - o Chip Sizes: 6, 11, 26
 - o Strides: 3, 5, 12

Secondary Structure Types and Frequencies

Key

H: Alpha Helix (Helix)

E: Extended Strand (Sheet)

-: Unknown (Coil)

S: Bend (Coil)

T: Hydrogen Bonded Turn (Coil)

B: Isolated Beta-Bridge (Sheet)

G: 3-Helix (3/10 Helix)

I: 5-Helix (Pi Helix)

PDB Information

1UUN Information

- Classification: Porin
- Organism: Mycobacterium Smegmatis
- Expression System: E. Coli
- Mutations: 1
- Chains: A, B
- Sequence Length: 184
- X, Y, Z Positions

Protein of Sheets

Protein of Helices

Protein of Coils

Chipping

Interactive Dashboard for THDs - Alpha Helix

Interactive Dashboard for THDs - Beta Sheets

THE AIR FORCE RESEARCH LABORATORY

Interactive Dashboard for THDs - Coils

Prediction with Sequence Alignment

- Need means of predicting which group in the THD a given sequence is most similar to
- Solution: Compare sequences via biologically-motivated edit distance
 - o i.e. minimum # additions, deletions, or edits, to transform one string to another
 - We use the mPAM*-matrix to weight the similarity measure
- Prediction strategy: Traverse THD in a bottom-up manner
 - Find node with minimum weighted-alignment distance
 - \circ Use ℓ_2 -loss to settle ties
 - \circ Edit distance can be computed in $O(n^2)$
 - Finding the minimal node can be solved via dynamic programming

Sequence Alignment Results for 3cx510

•	protein_id	chip_id [‡]	start [‡]	stop [‡]	node_ids [‡]	loss [‡]	file_id [‡]	aligned	subsequence
1	3cx510	chip_0	0	5	60	0	30.0.30	AEVTQL	AEVTQL
2	3cx510	chip_1	1	6	60	2	30.0.30	AEVTQL	EVTQLS
3	3cx510	chip_2	2	7	55	2	30.0.25	TQLSNG	VTQLSN
4	3cx510	chip_3	3	8	55	0	30.0.25	TQLSNG	TQLSNG
5	3cx510	chip_4	4	9	468	2	13.0.14	QLSNMI	QLSNGI
6	3cx510	chip_5	5	10	673	2	12.0.8	LSNEIV	LSNGIV
7	3cx510	chip_6	6	11	27	0	27.0.0	SNGIVV	SNGIVV
8	3cx510	chip_7	7	12	33	2	30.0.3	NIVYVA	NGIVVA
9	3cx510	chip_8	8	13	30	2	30.0.0	GIVATT	GIVVAT
10	3cx510	chip_9	9	14	485	0	14.29.16	IVVATE	IVVATE
11	3cx510	chip_10	10	15	486	2	15.16.31	AVVATH	VVATEH
12	3cx510	chip_11	11	16	483	2	12.0.1	VAEVDN	VATEHN
13	3cx510	chip_12	12	17	383	0	15.0.1	ATEHNP	ATEHNP
14	3cx510	chip_13	13	18	383	2	15.0.1	ATEHNP	TEHNPS

THE AIR FORCE RESEARCH LABORATORY

Prediction with Sequence Alignment

ACAYCAAY

Prediction with Sequence Alignment

- Chip test protein with stride of 1
 - Find most similar chips within nodes of THD
 - For each node which is matched to a given subsequence, find the average secondary structure proportion across that node
- For each amino acid in the test protein, set the predicted secondary structure to the average secondary structure of the chip with the lowest edit distance
 - average between multiple chips in the case of ties

THD Pred vs PSI Pred for Coil

Ground Truth:

Our Predictions:

PSI Predictions:

THD Pred vs PSI Pred for Helix

Ground Truth:

Our Predictions:

PSI Predictions:

THD Pred vs PSI Pred for Sheet

Ground Truth:

Our Predictions:

PSI Predictions:

THD Pred vs PSI Pred ROC

Secondary Structure THD Assessment

Secondary Structure THD Assessment

- 1. Layer Sizes: (# Chips, 50, 7)
- 2. Activation: Tanh
- 3. Solver: Adam
- 4. Alpha: 0.0005

Output Layer: 7 Nodes

Secondary Structure THD Assessment

MAE for NN (hidden_layer_sizes=50, activation='tanh', solver='adam', alpha=0.0005) Predictions on Chips								
Data	ground_truth_H	ground_truth_B	ground_truth_E	ground_truth_G	ground_truth_I	ground_truth_T	ground_truth_S	All
Distance_10_5	0.126	0.028	0.128	0.063	0.007	0.088	0.076	0.074
Distance_All	0.14	0.018	0.144	0.059	0.002	0.096	0.081	0.078
Distance_25_12	0.173	0.035	0.135	0.061	0.025	0.074	0.065	0.081
Distance_5_3	0.144	0.022	0.155	0.063	0.004	0.108	0.088	0.084
Torsion_25_12	0.236	0.034	0.173	0.066	0.027	0.076	0.067	0.097
Torsion_10_5	0.323	0.02	0.227	0.065	0.01	0.108	0.088	0.12
Torsion_All	0.34	0.018	0.249	0.066	0.003	0.127	0.1	0.129
Torsion_5_3	0.375	0.019	0.278	0.069	0.005	0.155	0.116	0.145

THD vs Original Data | Times and Error

	Orig	ginal	Group Membership		
Name	MAE	Time (s)	MAE	Time (s)	
Distance_5_3	0.075	7.95	0.083	28.31	
Distance_10_5	0.069	5.05	0.072	21.6	
Distance_25_12	0.057	4.4	0.074	2.54	
Torsion_5_3	0.073	8.08	0.144	33.19	
Torsion_10_5	0.067	5.59	0.12	28.59	
Torsion_25_12	0.056	4.94	0.093	2.6	

Future Work

- Refine prediction strategy for secondary structure
 - Combine information from several THD's in one prediction
 - Aggregate multi-sized chip information
- Incorporate torsion angle information to predict secondary and tertiary structure
- Inspect other metrics
- Refine neural net optimization
- Predict long-range distances between amino acid residues
 - Competitive at predicting secondary structure
 - Could we incorporate tertiary structure into prediction strategy?