CLAIMS

1. Derivatives of 1,3-diones having general
formula (I):

(I)

wherein:

5

- A represents:

10 an aryl group optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, OH, linear or branched C1-C6 alkyl, linear or branched C1-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ 15 alkoxyalkyl, C_2-C_6 alkylthioalkyl, C_2-C_6 alkylsulfinylalkyl, C_2-C_6 alkylsulfonylalkyl, C_2-C_6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl, C_2-C_6 alkoxyalkoxyl or C_2-C_6 haloalkoxyalkoxyl 20 optionally substituted with a group selected from C_1 alkoxyl or C_1-C_4 haloalkoxyl, alkylthioalkoxyl, C2-C6 haloalkylthioalkoxyl, $C_3 - C_{12}$ dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, dialkylthioalkoxyl, C₃-C₁₂ dialkoxyalkoxyl,

```
haloalkoxyhaloalkoxyl, C_3-C_{10} alkoxyalkoxyalkyl, C_2-C_6
    alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 alkenyloxy, C_2-C_6
    haloalkenyloxy, C_3-C_8 alkenyloxyalkoxyl, C_3-C_8
    haloalkenyloxyalkoxyl, C2-C6
                                              alkynyl,
                                                             C_2-C_6
    haloalkynyl, C_2-C_6 alkynyloxy, C_2-C_6 haloalkynyloxy,
5
    C_3-C_8 alkynyloxyalkoxyl, C_3-C_8 haloalkynyloxyalkoxyl,
    C_3-C_{12} acylaminoalkoxy, C_2-C_8 alkoxyiminoalkyl, C_2-C_8
    haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-
                                                             C3-C8
                    haloalkenyloxyiminoalkyl,
    C_8
     alkynyloxyiminoalkyl, C_3-C_8 haloalkynyloxyiminoalkyl,
10
                         alkoxyalkynyloxyl,
                                                             C_6 - C_{12}
     C5-C10
                                                             C6-C12
     cycloalkylideneiminooxyalkyl,
     dialkylideneiminooxyalkyl, -S(0)_{m}R_{1},
                                                       -0S(0)_{t}R_{1}
     -SO_2NR_2R_3, -CO_2R_4, -COR_5, -CONR_6R_7,
                                                         -CSNR<sub>8</sub>R<sub>9</sub>,
                    -NR_{12}COR_{13}, -NR_{14}CO_2R_{15}, -NR_{16}CONR_{17}R_{18},
15
     -NR_{10}R_{11}
     -PO(R_{19})_2, -Q, -ZQ_1, -(CR_{20}R_{21})_pQ_2, -Z(CR_{22}R_{23})_pQ_3,
                                           -(CR_{26}R_{27})_{p}Z(CR_{28}R_{29})_{q}Q_{5},
     -(CR_{24}R_{25})_{p}ZQ_{4}
                                              -Z_2(CR_{34}R_{35})_p(C=Y)T,
     -(CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6}
     -Z_3(CR_{36}R_{37})_v(CR_{38}R_{39}=CR_{40}R_{41}) (C=Y) T;
     or it represents a heterocyclic group selected from
20
     pyridyl, pyrimidyl, quinolinyl, pyrazolyl, thiazolyl,
      oxazolyl, thienyl, furyl,
                                                    benzothienyl,
                                                     benzofuranyl,
      dihydrobenzothienyl,
     dihydrobenzofuranyl, benzoxazolyl, benzoxazolonyl,
     benzothiazolyl, benzothiazolonyl, benzoimidazolyl,
25
```

benzoimidazolonyl, benzotriazolyl, chromanonyl, chromanyl, thiochromanonyl, thiochromanyl, 3a,4dihydro-3H-indeno[1,2-c]isoxazolyl, 3a,4-dihydro-3Hchromeno [4, 3-c] isoxazolyl, 5, 5-dioxide-3a, 4-dihydro-3H-thiochromeno[4,3-c]isoxazolyl, 5 2,3,3a,4tetrahydrochromeno[4,3-c]pyrazolyl, 6,6-dioxide-2,3dihydro-5H-[1,4]dithiino[2,3-c]thiochromenyl, dioxide-2,3,3a,4-tetrahydrothiochromeno[4,3c]pyrazolyl, 1',1'-dioxide-2',3'-dihydrospiro[1,3dioxolano-2, 4'-thiochromen]-yl, 1,1,4,4-tetraoxide-10 2,3-dihydro-1,4-benzodithiin-6-yl, 4,4-dioxide-2,3dihydro-1,4-benzoxathiin-7-yl, 1,1-dioxide-3-oxo-2,3dihydro-1,2-benzoisothiazol-5-yl, 4-(alkoxyimino)-1,1-dioxide-3,4-dihydro-2H-thiochromen-6-yl, 15 dioxide-4-oxo-3,4-dihydro-2H-thiochromen-6-yl, 2,3dihydro-1,4-benzoxathiin-7-yl, with said groups optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, OH, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ 20 alkoxyl, linear or branched C1-C6 haloalkoxyl, C1-C6 cyanoalkyl, C_2-C_6 alkoxyalkyl, C_2-C_6 alkylthioalkyl, C_2-C_6 alkylsulfinylalkyl, C_2-C_6 alkylsulfonylalkyl, C_2-C_6 haloalkoxyalkyl, C_2-C_6 haloalkylthioalkyl, C_2-C_6 25 haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl,

WO 2005/030736 PCT/EP2004/010653 .

```
alkoxyalkoxyl or C<sub>2</sub>-C<sub>6</sub> haloalkoxyalkoxyl
     optionally substituted with a group selected from C1-
           alkoxyl or
                                C_1-C_4
                                          haloalkoxyl,
     C<sub>4</sub>
                                                                   C_2-C_6
     alkylthioalkoxyl, C2-C6 haloalkylthioalkoxyl,
                                                                  C_3 - C_{12}
 5
     dialkoxyalkyl, C_3-C_{12} dialkylthioalkyl,
                                                                  C_3 - C_{12}
     dialkylthioalkoxyl, C_3-C_{12} dialkoxyalkoxyl,
                                                                   C_2-C_6
     haloalkoxyhaloalkoxyl, C_3-C_{10} alkoxyalkoxyalkyl, C_2-C_6
     alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 alkenyloxy,
     haloalkenyloxy, C<sub>3</sub>-C<sub>8</sub> alkenyloxyalkoxyl,
     haloalkenyloxyalkoxyl,
10
                                    C_2-C_6
                                                   alkynyl,
                                                                   C_2-C_6
     haloalkynyl, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy,
     C_3-C_8 alkynyloxyalkoxyl, C_3-C_8 haloalkynyloxyalkoxyl,
     C_3-C_{12} acylaminoalkoxy, C_2-C_8 alkoxyiminoalkyl, C_2-C_8
     haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-
15
                      haloalkenyloxyiminoalkyl,
      alkynyloxyiminoalkyl, C_3-C_8 haloalkynyloxyiminoalkyl,
     C5-C10
                            alkoxyalkynyloxyl,
                                                                   C_6 - C_{12}
      cycloalkylideneiminooxyalkyl,
                                                                   C_6 - C_{12}
      dialkylideneiminooxyalkyl, -S(0)<sub>m</sub>R<sub>1</sub>,
                                                             -OS(0)_{t}R_{1}
20
      -SO_2NR_2R_3,
                      -CO_2R_4, -COR_5,
                                               -CONR_6R_7,
                                                               -CSNR<sub>8</sub>R<sub>9</sub>,
      -NR_{10}R_{11},
                       -NR_{12}COR_{13}
                                      -NR_{14}CO_2R_{15}
                                                       -NR_{16}CONR_{17}R_{18}
      -PO(R_{19})_{2}
                     -Q_1, -ZQ_1, -(CR_{20}R_{21})_pQ_2,
                                                        -Z (CR_{22}R_{23})_{p}Q_{3}
                                              -(CR_{26}R_{27})_{p}Z(CR_{28}R_{29})_{q}Q_{5}
      -(CR_{24}R_{25})_{p}ZQ_{4}
      -(CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6}
                                                  -Z_2(CR_{34}R_{35})_p(C=Y)T,
25
      -Z_3 (CR_{36}R_{37})_v (CR_{38}R_{39}=CR_{40}R_{41}) (C=Y) T;
```

- B represents a $D-(R_x)_n$ group;

- R represents a hydrogen atom, a linear or branched C_1-C_6 alkyl group, a linear or branched C₁-C₆ haloalkyl group, a C_3-C_6 cycloalkyl or C_4-C_{12} cycloalkylalkyl group optionally substituted with halogen atoms or C_1-C_6 alkyl or C_1-C_6 thioalkyl or C_1-C_6 alkoxyl or C2-C6 alkoxycarbonyl groups, C2-C6 alkenyl groups, C2-C6 alkynyl groups, the latter two groups, in turn, optionally substituted with halogen atoms, a C5-C6 cycloalkenyl group optionally substituted with 10 halogen atoms or C_1-C_6 alkyl groups, an aryl or arylalkyl group optionally substituted;
- R₁ and R₁₉ represent a C₁-C₆ alkyl group or a C₁-C₆ haloalkyl group, a C₃-C₆ cycloalkyl group, an aryl group optionally substituted by one 15 substituents selected from halogen, NO2, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl,
- C₂-C₆ alkoxycarbonyl; 20
 - m is equal to 0, 1 or 2;
 - t is equal to 1 or 2;
- R_2 , R_3 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{17} and R_{18} , the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally 25

WO 2005/030736 PCT/EP2004/010653 .

substituted with halogen atoms, a C₁-C₆ alkoxyl group, a C₃-C₆ cycloalkyl group, an arylalkyl group or an aryl group, said arylalkyl and aryl groups also optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ alkoxyl, c₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, or they jointly represent a C₂-C₅ alkylene group;

- R₄, R₅ and R₄₂ represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms, a Q₇ group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;
 - R_{12} , R_{14} and R_{16} represent a hydrogen atom, a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxyl group, a C_1 - C_6 haloalkoxyl

5

- R₁₃ and R₁₅ represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms, a C₇, NH₂, NHCN, NHNH₂, NHOH group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ alkoxyl, linear

- R₂₀, R₂₁, R₂₂, R₂₃, R₂₄, R₂₅, R₂₆, R₂₇, R₂₈, R₂₉, R₃₀, R₃₁, R₃₂, R₃₃, R₃₄, R₃₅, R₃₆, R₃₇, R₃₈, R₃₉, R₄₀ and R₄₁, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₁-C₆ alkoxyl group, or the two groups attached to the same carbon atom can be joined to each other by C₂-C₅ alkylene groups, the alkylene groups can in turn be substituted with C₁-C₃ alkyl groups;

- Q, Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_6 and Q_7 represent an aryl group, a C_3 - C_6 cycloalkyl group, a C_5 - C_6 cycloalkenyl group, a heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl, imidazolyl, imidazolidinonyl, tetrazolyl, tetrazolonyl, isoxazolyl, furyl, thienyl,

WO 2005/030736 PCT/EP2004/010653 .

pyrrolyl, pyrrolidinyl, pyrrolidinonyl, pyridyl, pyrimidinyl, pyrimidinonyl, pyrazinyl, pyridazinyl, oxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl, benzoxazolyl, benzothiazolyl, isothiazolyl, isoxazolinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-5 dioxolanyl, tetrahydropyranyl, oxethanyl, oxyranyl, oxazolidinyl, thiazolidinyl, piperidinyl, piperidinonyl, piperazinyl, morpholinyl, thiazinyl, dioxazolyl, tetrahydrofuranyl, 2-oxa-3-10 tetrahydrofuroisoxazolyl, azabicyclo[3.1.0]hex-3-enyl, said groups optionally substituted by one or more substituents selected from halogen, NO2, OH, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear 15 or branched C_1-C_6 haloalkoxyl, C_1-C_6 cyanoalkyl, C_2-C_6 C₂-C₆ alkylthioalkyl, C_2-C_6 alkoxyalkyl, alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C_2-C_6 haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆ haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl, 20 C_2-C_6 alkoxyalkoxyl or C_2-C_6 haloalkoxyalkoxyl optionally substituted with a group selected from C_1 or C_1-C_4 haloalkoxyl, alkoxyl C_2-C_6 alkylthioalkoxyl, C2-C6 haloalkylthioalkoxyl, $C_3 - C_{12}$ dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, 25 $C_3 - C_{12}$

```
dialkylthioalkoxyl, C3-C12 dialkoxyalkoxyl, C2-C6
    haloalkoxyhaloalkoxyl, C3-C10 alkoxyalkoxyalkyl, C2-C6
    alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 alkenyloxy, C_2-C_6
    haloalkenyloxy, C_3-C_8 alkenyloxyalkoxyl,
                                                            C_3-C_8
    haloalkenyloxyalkoxyl, C<sub>2</sub>-C<sub>6</sub> alkynyl,
5
                                                            C_2-C_6
    haloalkynyl, C_2-C_6 alkynyloxy, C_2-C_6 haloalkynyloxy,
    C_3-C_8 alkynyloxyalkoxyl, C_3-C_8 haloalkynyloxyalkoxyl,
    C_3-C_{12} acylaminoalkoxy, C_2-C_8 alkoxyiminoalkyl, C_2-C_8
    haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-
                   haloalkenyloxyiminoalkyl,
10
                                                             C_3-C_8
     C_B
     alkynyloxyiminoalkyl, C<sub>3</sub>-C<sub>8</sub> haloalkynyloxyiminoalkyl,
                        alkoxyalkynyloxyl,
     C5-C10
                                                            C_6 - C_{12}
     cycloalkylideneiminooxyalkyl,
                                                            C_6 - C_{12}
     dialkylideneiminooxyalkyl, aryl optionally
15
     substituted, -S(O)_{m}R_{1}, -OS(O)_{t}R_{1},
                                                        -SO_2NR_2R_3,
     -CO_2R_4, -COR_5, -CONR_6R_7,
                                           -CSNR_8R_9,
                                                        -NR_{10}R_{11},
     -NR_{12}COR_{13}, -NR_{14}CO_2R_{15}, -NR_{16}CONR_{17}R_{18},
                                                        -PO(R_{19})_{2}
     -Z_2(CR_{34}R_{35})_p(C=Y)T, -Z_3(CR_{36}R_{37})_v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T;
     - Z_1, Z_1, Z_2 = 0, S(0)_r;
    - Y = 0, S;
20
     - r is equal to 0, 1 or 2;
     - p, q are equal to 1, 2, 3 or 4;
     - v is equal to 0 or 1;
     - Z_3 = 0, S or a direct bond;
```

- T represents a hydrogen atom, a Z₄R₄₂ group, a -NR₄₃R₄₄ group, an aryl group or a heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl, imidazolidinonyl, tetrazolyl, imidazolyl, tetrazolonyl, pyrrolyl, pyrrolidinyl, pyrrolidinonyl, 5 pyridyl, pyrimidinyl, piperidinyl, piperidinonyl, piperazinyl, morpholinyl, said groups optionally substituted by one or more substituents selected from halogen, NO2, OH, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C_1-C_6 haloalkyl, C_3-C_6 10 cycloalkyl, C5-C6 cycloalkenyl, linear or branched C1-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₂-C₆ alkoxyalkyl, cyanoalkyl, C_2-C_6 C_6 alkylthioalkyl, C2-C6 alkylsulfinylalkyl, C_2-C_6 15 alkylsulfonylalkyl, C₂-C₆ haloalkoxyalkyl, C_2-C_6 haloalkylthioalkyl, C2-C6 haloalkylsulfinylalkyl, C2- C_6 haloalkylsulfonylalkyl, $-S(0)_mR_1$;

- $Z_4 = 0$, S or a direct bond;
- R₄₃ and R₄₄, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms, a Q₇ group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or

branched C_1 - C_6 alkyl, linear or branched C_1 - C_6 haloalkyl, linear or branched C_1 - C_6 alkoxyl, linear or branched C_1 - C_6 haloalkoxyl, C_1 - C_6 alkylsulfonyl, C_2 - C_6 alkoxycarbonyl, or they jointly represent a C_2 - C_5 alkylene chain;

- D represents:

- a heterocyclic group of the heteroaryl or heterocyclic type, in all the above cases the heterocycle can be mono or polycyclic and can be connected to the rest of the structure either through one of its carbon atoms or, when possible, through one of its nitrogen atoms;
 - or it represents a mono or polycyclic aryl group, in this latter case, the group can also be partially saturated;
- R_x represents a substituent selected from hydrogen, halogen, NO₂, CN, CHO, OH, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl optionally substituted with a

```
from C_1-C_4 alkoxyl
                                                              or
                                                                    C_1-C_4
     group
               selected
                           C_2-C_6 haloalkylthioalkoxyl,
                                                                    C<sub>3</sub>-C<sub>12</sub>
     haloalkoxyl,
                                        dialkylthioalkyl,
     dialkoxyalkyl, C<sub>3</sub>-C<sub>12</sub>
                                                                    C_3 - C_{12}
     dialkylthioalkoxyl, C_3-C_{12} dialkoxyalkoxyl,
                                                                    C_2-C_6
     haloalkoxyhaloalkoxyl, C_3-C_{10} alkoxyalkoxyalkyl, C_2-C_6
 5
     alkenyl, C<sub>2</sub>-C<sub>6</sub> haloalkenyl, C<sub>2</sub>-C<sub>6</sub> alkenyloxy,
                                                                     C_2-C_6
     haloalkenyloxy, C<sub>3</sub>-C<sub>8</sub> alkenyloxyalkoxyl,
                                                                      C_3-C_8
     haloalkenyloxyalkoxyl, C<sub>2</sub>-C<sub>6</sub>
                                                    alkynyl,
                                                                     C_2-C_6
     haloalkynyl, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy,
     C_3-C_8 alkynyloxyalkoxyl, C_3-C_8 haloalkynyloxyalkoxyl,
10
     C_3-C_{12} acylaminoalkoxy, C_2-C_8 alkoxyiminoalkyl, C_2-C_8
     haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-
                      haloalkenyloxyiminoalkyl,
                                                                      C_3-C_8
     C_8
      alkynyloxyiminoalkyl, C3-C8 haloalkynyloxyiminoalkyl,
                             alkoxyalkynyloxyl,
                                                                     C_6 - C_{12}
15
     C_5 - C_{10}
      cycloalkylideneiminooxyalkyl,
                                                                     C_6 - C_{12}
                                                               -0S(0)_{t}R_{1},
      dialkylideneiminooxyalkyl, -S(0)_{m}R_{1},
      -SO_2NR_2R_3, -CO_2R_4, -COR_5, -CONR_6R_7,
                                                                 -CSNR<sub>8</sub>R<sub>9</sub>,
      -NR_{10}R_{11},
                        -NR_{12}COR_{13},
                                         -NR_{14}CO_2R_{15}, -NR_{16}CONR_{17}R_{18},
      -PO(R_{19})_2, -Q, -ZQ_1, -(CR_{20}R_{21})_pQ_2,
                                                         -Z(CR_{22}R_{23})_pQ_3,
20
                                                -(CR_{26}R_{27})_{p}Z(CR_{28}R_{29})_{q}Q_{5}
      -(CR_{24}R_{25})_{p}ZQ_{4}
                                                    -Z_2(CR_{34}R_{35})_p(C=Y)T,
      -(CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6}
      -Z_3(CR_{36}R_{37})_v(CR_{38}R_{39}=CR_{40}R_{41}) (C=Y) T;
      if several R_{\boldsymbol{x}} groups are present, these can be the
25
      same or different;
```

```
- n = 1-9;
    excluding the following compounds having general
    formula (I) wherein A, B and R have the following
    meanings:
    A=4-chlorophenyl, B=1-methylimidazol-2-yl, R=H;
5
    A=4-nitrophenyl,
                                     B=1-(2-hydroxyethyl)-5-
    nitroimidazol-2-yl, R=H;
    A=phenyl, B=1H-benzimidazol-2-yl, R=C<sub>2</sub>H<sub>5</sub>;
    A=phenyl, B=4H-1-benzopyran-4-yl, R=CH<sub>3</sub>;
    A=4-nitrophenyl, B=3-(4-methylphenyl)-1,2,4-
10
    oxadiazol-5-yl, R=CH<sub>3</sub>;
    A=phenyl, B=4-chloro-2,5-dioxo-2,5-dihydro-1H-pyrrol-
    3-y1, R=CH_3;
    A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-
15
    y1, R=C_2H_5;
     A=2-hydroxy-4-methoxyphenyl, B=thiazol-4-yl, R=CH<sub>3</sub>;
     A=phenyl, B=2,5-diphenyl-1,3-oxathiol-2-yl, R=CH<sub>3</sub>;
     A=4-nitrophenyl, B=4,6-bis(dimethylamino)-1,3,5-
     triazin-2-yl, R=CH3;
20
     A=phenyl, B=furan-2-yl, R=CH<sub>3</sub>;
     A=phenyl, B=1,3-dithian-2-yl, R=CH<sub>3</sub>;
     A=phenyl, B=4-chlorothien-2-yl, R=H;
     A=phenyl, B=5-bromothien-2-yl, R=H;
     A=phenyl, B=5-methylthien-2-yl, R=H;
```

A=phenyl, B=6-phenylpyrazin-2-yl, R=CH₃;

```
A=phenyl, B=3,4-dihydro-3-methyl-2-oxo-2H-1,3-benzo-
    oxazin-4-y1, R=CH<sub>3</sub>;
    A=phenyl, B=benzothiazol-2-yl, R=CH<sub>3</sub>;
    A=2-hydroxy-4-methoxyphenyl, B=2-phenylthiazol-4-yl,
5
   R=CH_3;
    A=phenyl, B=5-methylfuran-2-yl, R=CH<sub>3</sub>;
    A=phenyl, B=3-(4-methylphenyl)-1,2,4-oxadiazol-5-yl,
    R=CH_3;
    A=phenyl, B=tetrahydrofuran-2-yl, R=CH<sub>3</sub>;
    A=phenyl, B=2,3-dihydro-3-hydroxy-2-oxo-1H-indol-3-
10
    yl, R=CH_3,
    A=phenyl, B=4-chloro-1-methyl-2,5-dioxo-2,5-dihydro-
    pyrrol-3-yl, R=CH<sub>3</sub>;
    A=phenyl, B=2-trifluoroacetyl-1,2,3,4-tetrahydroiso-
15
    quinolin-1-yl, R=C_2H_5;
    A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-
    yl, R=CH_3;
    A=4-nitrophenyl, B=2-(4-nitrophenyl)-3,5,6-triphenyl-
    pyridin-4-yl, R=CH<sub>3</sub>;
    A=phenyl, B=4,6-bis(dimethylamino)-1,3,5-triazin-2-
20
     yl, R=CH_3;
     A=phenyl, B=4-methoxy-5-tert-butoxycarbonyl-1H-pyrro-
     2-y1, R=CH_3;
     A=phenyl, B=1,3-dihydro-3-oxo-isobenzofuran-1-yl,
25
     R=CH_3;
```

```
A=phenyl, B=(5-methoxycarbonylmethyl)thien-2-yl, R=H;
    A=phenyl, B=4-methylthien-2-yl, R=H;
    A=phenyl, B=1,4-dihydro-1-methyl-3-nitroquinolin-4-
    yl, R=H;
    A=phenyl, B=thien-2-yl, R=H;
5
    A=phenyl, B=6-methylbenzothiazol-2-yl, R=CH<sub>3</sub>;
    A=2-methoxycarbonylphenyl, B=phenyl, R=CH<sub>3</sub>;
                                                    B=2,3,4-
    A=2-benzyloxy-4-methoxyphenyl,
    trimethoxyphenyl, R=H;
    A=4,5-dimethoxy-2-nitrophenyl, B=3,4-dimethoxyphenyl,
10
    R=H;
    A=2-nitrophenyl, B=phenyl, R=H;
    A=2,4,5-trimethoxyphenyl, B=4-methoxyphenyl, R=H;
    A=4-bromophenyl, B=phenyl, R=H;
    A=4-bromophenyl, B=2,4-dinitrophenyl, R=CH<sub>3</sub>;
15
    A=4-chlorophenyl, B=phenyl, R=H;
    A=2,4-dibenzyloxy-5-methoxyphenyl, B=1,3-benzodioxol-
     5-y1, R=H;
    A=2,4-dibenzyloxyphenyl, B=1,3-benzodioxol-5-yl, R=H;
20
    A=4-methoxyphenyl, B=2-carboxyphenyl, R=H;
     A=4-methylphenyl, B=2,4-dinitrophenyl, R=CH<sub>3</sub>;
     A=4-hydroxy-3-methoxyphenyl,
                                             B=4-hydroxy-3-
     methoxyphenyl, R=H;
     A=2-nitrophenyl, B=4-methylphenyl, R=H;
25
     A=4-chlorophenyl, B=4-chlorophenyl, R=H;
```

WO 2005/030736 PCT/EP2004/010653 .

```
A=2,4-diacetoxyphenyl, B=phenyl, R=CH<sub>3</sub>;
    A=3-methoxyphenyl, B=phenyl, R=C_2R_5;
    A=4-nitrophenyl, B=phenyl, R=H;
    A=2-nitrophenyl, B=4-n-butoxyphenyl, R=H;
5
    A=2-nitro-4-chlorophenyl, B=4-methylphenyl, R=H;
    A=phenyl, B=8-carboxynaphthalenyl, R=CH<sub>3</sub>;
    A=2,5-dimethoxyphenyl, B=2-hydroxyphenyl, R=C_2R_5;
    A=4-fluorophenyl, B=2-nitro-4-trifluoromethylphenyl,
    R=CH_3;
10
    A=3-chloro-4-methylphenyl, B=2,4-dinitrophenyl,
    R=CH_3;
    A=2-nitro-4-chlorophenyl, B=phenyl, R=H;
    A=4,5-dimethoxy-2-nitrophenyl, B=4-methylphenyl, R=H;
    A=2-carboxy-6-nitrophenyl, B=phenyl, R=CH<sub>3</sub>;
15
    A=2,4,5-trimethoxyphenyl, B=3-methoxyphenyl, R=H;
    A=phenyl, B=4-bromophenyl, R=H;
    A=6-benzyloxy-2,3,4-trimethoxyphenyl,
                                                      B=1,3-
    benzodioxol-5-yl, R=H;
    A=4,5-dimethoxy-2-nitrophenyl, B=4-methoxyphenyl,
20
    R=H;
    A=4,5-dimethoxy-2-nitrophenyl, B=4-chlorophenyl, R=H;
    A=2,4-dibenzyloxyphenyl, B=4-methoxyphenyl, R=H;
    A=4-methylphenyl, B=4-methylphenyl, R=H;
    A=4-dimethylaminophenyl, B=phenyl, R=H;
25
    A=4-methoxyphenyl, B=phenyl, R=H;
```

```
A=4,5-dichloro-2-nitrophenyl, B=4-chlorophenyl, R=H;
    A=2-nitrophenyl, B=4-methoxyphenyl, R=H;
    A=phenyl, B=2,5-dimethoxycarbonylaminophenyl, R=CH3;
    A=4-hydroxy-4-methoxyphenyl, B=2-methoxyphenyl, R=H;
5
    A=phenyl, B=4-methylphenyl, R=H;
    A=2-nitrophenyl, B=4-ethoxyphenyl, R=H;
    A=2-nitro-4-chlorophenyl, B=4-methoxyphenyl, R=H;
    A=4-chlorophenyl, B=phenyl, R=C_2H_5;
    A=2-t-butoxycarbonyl-5-ethyl-4-methoxyphenyl, B=2,3-
    dihydro-7-methyl-1, 4-benzodioxin-6-yl, R=t-butyl;
10
    A=phenyl, B=2-nitro-4-trifluoromethylphenyl, R=CH<sub>3</sub>;
    A=3,4-dichlorophenyl, B=2,4-dinitrophenyl, R=CH<sub>3</sub>;
    A=4,5-dichloro-2-nitrophenyl, B=4-methoxyphenyl, R=H;
    A=4-methoxy-2-nitrophenyl, B=4-methylphenyl, R=H;
15
    A=phenyl, B=anthracene-9-yl, R=CH<sub>3</sub>;
    A=phenyl, B=4-methoxyphenyl, R=H;
    A=2,4,5-trimethoxyphenyl, B=phenyl, R=H;
    A=2,4-diacetoxyphenyl, B=2,4,5-trimethoxyphenyl,
     R=CH_3;
    A=2-hydroxyphenyl, B=phenyl, R=H;
20
     A=4-methoxy-2-nitrophenyl, B=phenyl, R=H;
     A=4,5-dimethoxy-2-nitrophenyl, B=phenyl, R=H;
```

A=2,4-dinitrophenyl, B=phenyl, R=CH₃;

A=phenyl, B=4-dimethylaminophenyl, R=H;

A=phenyl, B=phenyl, R=CH3;

WO 2005/030736 PCT/EP2004/010653 ,

```
A=phenyl, B=2,4-dinitrophenyl, R=CH<sub>3</sub>;
    A=4,5-dichloro-2-nitrophenyl, B=4-methylphenyl, R=H;
    A=4-bromophenyl, B=phenyl, R=CH3;
    A=2-(4-methylphenylsulfonyloxy)-6-methoxyphenyl,
5
    B=phenyl, R=H;
    A=4-methylsulfonylphenyl, B=2-methoxyphenyl, R=CH3;
    A=4-methoxyphenyl, B=4-methoxyphenyl, R=CH<sub>3</sub>;
    A=phenyl, B=4-chlorophenyl, R=H;
    A=2-nitrophenyl, B=4-nitrophenyl, R=H;
10
    A=phenyl, B=phenyl, R=H;
    A=2,4-dimethoxyphenyl, B=4-methoxyphenyl, R=H;
    A=2-nitrophenyl, B=4-n-hexyloxyphenyl, R=H;
    A=4-methoxy-2-nitrophenyl, B=4-methoxyphenyl, R=H;
    A=phenyl, B=9-carboxyphenanthren-10-yl, R=CH<sub>3</sub>;
15
    A=phenyl, B=phenyl, R=CH<sub>3</sub>;
    A=3,4-dimethoxyphenyl, B=3,4-dimethoxyphenyl, R=H;
    A=2,4-dimethoxyphenyl, B=phenyl, R=H;
    A=phenyl,
                             B=2-hydroxy-3,4,6-trimethyl-5-
    methoxyphenyl, R=CH3;
20
    A=4-chloro-2-nitrophenyl, B=4-chlorophenyl, R=H;
    A=2-nitrophenyl, B=4-chlorophenyl, R=H;
    A=2,4,5-trimethoxyphenyl, B=3,4-dimethoxyphenyl, R=H;
    A=4-chlorophenyl, B=2,4-dinitrophenyl, R=CH3;
    A=4,5-dichloro-2-nitrophenyl, B=phenyl, R=H;
```

A=4-methoxyphenyl, B=phenyl, R=CH₃;

A=2,4-dibenzyloxyphenyl, B=3,4-dimethoxyphenyl, R=H;
A=4-methylthiophenyl, B=4-methoxyphenyl, R=CH₃;
A=phenyl, B=phenyl, R=C₂H₅;
A=4-methoxyphenyl, B=2,4-dinitrophenyl, R=CH₃;

5 A=2-nitrophenyl, B=3-chlorophenyl, R=H;
A=2-nitrophenyl, B=3,4-dimethoxyphenyl, R=H;
A=4-methoxyphenyl, B=4-methoxyphenyl, R=H;
A=2-hydroxyphenyl, B=4-methoxyphenyl, R=H;
A=phenyl, B=2,5-bis(phenacylamino)phenyl, R=CH₃;

10 A=4-nitrophenyl, B=4-methylphenyl, R=H;
A=2-nitrophenyl, B=4-n-pentyloxyphenyl, R=H;
A=4-methoxy-2-nitrophenyl, B=4-chlorophenyl, R=H;
A=phenyl, B=2-carboxynaphthalen-1-yl, R=CH₃.

- 2. The derivatives according to claim 1, 15 characterized in that the compound having formula (I) are present as tautomeric and/or isomeric forms, pure or as blends of tautomeric and/or isomeric forms, in any proportion whatsoever.
- 3. Use of derivatives of 1,3-diones having 20 general formula (I):

(I)

wherein:

- A represents:

an aryl group optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, OH, linear or branched C₁-C₆ alkyl, linear or branched C₁-5 C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ C_2-C_6 alkylthioalkyl, alkoxyalkyl, alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C_2-C_6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, C_2-C_6 10 $\label{eq:c2-C6} haloalkylsulfonylalkyl, \quad C_2-C_6 \ haloalkylsulfonylalkyl,$ C_2-C_6 alkoxyalkoxyl or C_2-C_6 haloalkoxyalkoxyl possibly substituted with a C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl C_2-C_6 alkylthioalkoxyl, C_2-C_6 group, haloalkylthioalkoxyl, C₃-C₁₂ dialkoxyalkyl, $C_3 - C_{12}$ 15 dialkylthioakyl, C₃-C₁₂ dialkylthioalkoxyl, $C_3 - C_{12}$ dialkoxyalkoxyl, C2-C6 haloalkoxyhaloalkoxyl, $C_3 - C_{10}$ alkoxyalkoxyalkyl, C_2-C_6 alkenyl, C_2-C_6 haloalkenyl, alkenyloxy, C2-C6 haloalkenyloxy, C_3-C_8 C_2-C_6 alkenyloxyalkoxyl, C3-C8 haloalkenyloxyalkoxyl, C2-C6 20 alkynyl, C₂-C₆ haloalkynyl, C₂-C₆ alkynyloxy, C_2-C_6 haloalkynyloxy, C₃-C₈ alkynyloxyalkoxyl, C_3-C_8 haloalkynyloxyalkoxyl, C₃-C₁₂ acylaminoalkoxy, C_2-C_8 alkoxyiminoalkyl, C2-C8 haloalkoxyiminoalkyl, alkenyloxyiminoalkyl, C3-C8 haloalkenyloxyiminoalkyl, 25

```
alkynyloxyiminoalkyl,
                                                         C_3-C_8
    C_3-C_8
    haloalkynyloxyiminoalkyl, C5-C10 alkoxyalkynyloxyl,
                cycloalkylideneiminooxyalkyl,
                                                        C_6 - C_{12}
    C_6 - C_{12}
    dialkylideneiminooxyalkyl, -S(0)_{m}R_{1}, -OS(0)_{t}R_{1},
                -CO_2R_4, -COR_5, -CONR_6R_7,
                                                     -CSNR_8R_9,
    -SO_2NR_2R_3,
    -NR_{10}R_{11}, -NR_{12}COR_{13}, -NR_{14}CO_2R_{15}, -NR_{16}CONR_{17}R_{18},
    -PO(R_{19})_2, -Q, -ZQ_1, -(CR_{20}R_{21})_pQ_2, -Z(CR_{22}R_{23})_pQ_3,
                                      -(CR_{26}R_{27})_{p}Z(CR_{28}R_{29})_{q}Q_{5}
    -(CR_{24}R_{25})_{p}ZQ_{4}
    -(CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6}
                                          -Z_2(CR_{34}R_{35})_p(C=Y)T,
    -Z_3(CR_{36}R_{37})_v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T;
10
    or represents a heterocyclic group selected from
    pyridyl, pyrimidyl, quinolinyl, pyrazolyl, thiazolyl,
    oxazolyl, thienyl, furyl, benzothienyl,
                                                benzofuranyl,
    dihydrobenzothienyl,
15
    dihydrobenzofuranyl, benzoxazolyl, benzoxazolonyl,
    benzothiazolyl, benzothiazolonyl, benzoimidazolyl,
     benzoimidazolonyl, benzotriazolyl, chromanonyl,
     chromanyl, thiochromanonyl, thiochromanyl, 3a,4-
     dihydro-3H-indeno[1,2-c]isoxazolyl, 3a,4-dihydro-3H-
     chromeno[4,3-c]isoxazolyl, 5,5-dioxide-3a,4-dihydro-
20
                                                     2,3,3a,4-
     3H-thiochromeno[4,3-c]isoxazolyl,
     tetrahydrochromeno[4,3-c]pyrazolyl, 6,6-dioxide-2,3-
     dihydro-5H-[1,4]dithiino[2,3-c]thiochromenyl, 5,5-
     dioxide-2,3,3a,4-tetrahydrothiochromeno[4,3-
     c]pyrazolyl, 1',1'-dioxide-2',3'-dihydrospiro[1,3-
25
```

WO 2005/030736 PCT/EP2004/010653 .

dioxolane-2,4'-thiochromen]-yl, 1,1,4,4-tetraoxide-2,3-dihydro-1,4-benzodithiin-6-yl 4,4-dioxide-2,3dihydro-1,4-benzoxathiin-7-yl, 1,1-dioxide-3-oxo-2,3dihydro-1,2-benzoisothiazol-5-yl, 4-(alkoxyimino)-1,1-dioxide-3,4-dihydro-2H-thiochromen-6-yl, 1,1-5 dioxide-4-oxo-3,4-dihydro-2H-thiochromen-6-yl, 2,3dihydro-1,4-benzoxathiin-7-yl, with all these groups possibly substituted by one or more substituents selected from halogen, NO2, CN, CHO, OH, linear or branched C1-C6 alkyl, linear or 10 branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C_2 - C_6 alkoxyalkyl, C_2 - C_6 alkylthioalkyl, C_2-C_6 alkylsulfinylalkyl, C_2-C_6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, C2-C6 15 haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl, C_2-C_6 alkoxyalkoxyl or C_2-C_6 haloalkoxyalkoxyl, possibly substituted with a C1-C4 alkoxyl or C1-C4 haloalkoxyl group, C2-C6 alkylthioalkoxyl, C2-C6 haloalkylthioalkoxyl, C_3-C_{12} dialkoxyalkyl, C_3-C_{12} 20 dialkylthioalkyl, C₃-C₁₂ dialkylthioalkoxyl, $C_3 - C_{12}$ dialkoxyalkoxyl, C_2 - C_6 haloalkoxyhaloalkoxyl, $C_3 - C_{10}$ alkoxyalkoxyalkyl, C2-C6 alkenyl, haloalkenyl, C₂-C₆ alkenyloxy, C_2-C_6 C_2-C_6 haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C_3-C_8 25

haloalkenyloxyalkoxyl, C_2-C_6 alkynyl, C_2-C_6 haloalkynyl, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy, C_3-C_8 alkynyloxyalkoxyl, C_3-C_8 haloalkynyloxyalkoxyl, C_3-C_{12} acylaminoalkoxy, C_2-C_8 alkoxyiminoalkyl, C_2-C_8 5 haloalkoxyiminoalkyl, C₃-C₈ alkenyloxyiminoalkyl, C₃- C_8 haloalkenyloxyiminoalkyl, alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl, C5-C10 alkoxyalkynyloxyl, $C_6 - C_{12}$ cycloalkylideneiminooxyalkyl, $C_6 - C_{12}$ dialkylideneiminooxyalkyl, $-S(O)_mR_1$, $-OS(O)_tR_1$, 10 $-SO_2NR_2R_3$, $-CO_2R_4$, $-COR_5$, $-CONR_6R_7$, -CSNR₈R₉, $-NR_{10}R_{11}$, $-NR_{12}COR_{13}$, $-NR_{14}CO_2R_{15}$, $-NR_{16}CONR_{17}R_{18}$, $-PO(R_{19})_{2}$ $-Q_1$, $-ZQ_1$, $-(CR_{20}R_{21})_pQ_2$, $-Z (CR_{22}R_{23})_{p}Q_{3}$ $-(CR_{24}R_{25})_{p}ZQ_{4}$ $-(CR_{26}R_{27})_{p}Z(CR_{28}R_{29})_{q}Q_{5}$ 15 $-(CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6}$ $-Z_2(CR_{34}R_{35})_p(C=Y)T_r$ $-Z_3 (CR_{36}R_{37})_v (CR_{38}R_{39}=CR_{40}R_{41}) (C=Y) T;$ - B represents a D-(R_x)_n group; R represents a hydrogen atom, a linear or branched C_1-C_6 alkyl group, a linear or branched C_1-C_6 20 haloalkyl group, a C_3-C_6 cycloalkyl group or a C_4-C_{12} cycloalkylalkyl group possibly substituted with halogen atoms or C_1-C_6 alkyl or C_1-C_6 thicalkyl or $C_1 C_6$ alkoxyl or C_2 - C_6 alkoxycarbonyl groups, alkenyl C_2 -C₆ groups, alkynyl C₂-C₆ groups, the latter two 25 groups, in turn, possibly substituted with halogen WO 2005/030736 PCT/EP2004/010653 ·

atoms, a C_5 - C_6 cycloalkenyl group possibly substituted with halogen atoms or C_1 - C_6 alkyl groups, an aryl or arylalkyl group optionally substituted;

- R₁ and R₁₉, represent a C₁-C₆ alkyl or C₁-C₆

 5 haloalkyl group, a C₃-C₆ cycloalkyl group, an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ alkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;
 - m is equal to 0, 1 or 2;
 - t is equal to 1 or 2;
- R₂, R₃, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₇ and R₁₈, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn possibly substituted with halogen atoms, a C₁-C₆ alkoxyl group, a C₃-C₆ cycloalkyl group, an arylalkyl group or an aryl group, said arylalkyl or aryl groups also optionally substituted with one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ alkylsulfonyl,

 C_2 - C_6 alkoxycarbonyl or, together, represent a C_2 - C_5 alkylenic chain;

- R_4 , R_5 and R_{42} , represent a hydrogen atom, a linear or branched C1-C6 alkyl group in turn possibly substituted with halogen atoms, a C3-C6 alkenyl group 5 in turn possibly substituted with halogen atoms, a Q7 group, an arylalkyl group possibly substituted with one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or 10 branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C2-C6 alkoxycarbonyl;
- R_{12} , R_{14} and R_{16} , represent a hydrogen atom, a linear or branched C1-C6 alkyl group in turn possibly substituted with halogen atoms, a C_3-C_6 cycloalkyl 15 group, a C_1-C_6 alkoxyl group, a C_1-C_6 haloalkoxyl group;
- R_{13} and R_{15} , represent a hydrogen atom, a linear or branched C1-C6 alkyl group in turn possibly substituted with halogen atoms, a C₃-C₆ alkenyl 20 group, in turn possibly substituted with halogen atoms, a Q_7 group, NH_2 , NHCN, $NHNH_2$, NHOH, an arylalkyl group possibly substituted with one or more substituents selected from halogen, NO_2 , CN, CHO,

WO 2005/030736 PCT/EP2004/010653 .

 C_6 haloalkyl, linear or branched C_1-C_6 alkoxyl, linear or branched C_1-C_6 haloalkoxyl, C_1-C_6 alkylsulfonyl, C_2-C_6 alkoxycarbonyl;

- R₂₀, R₂₁, R₂₂, R₂₃, R₂₄, R₂₅, R₂₆, R₂₇, R₂₈, R₂₉, R₃₀, R₃₁, S₃₂, R₃₃, R₃₄, R₃₅, R₃₆, R₃₇, R₃₈, R₃₉, R₄₀ and R₄₁, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₁-C₆ alkoxyl group, or the two groups attached to the same carbon atom can be joined to each other by C₂-C₅ alkylene groups, the alkylene groups can in turn be substituted with C₁-C₃ alkyl groups;
- Q, Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_6 and Q_7 represent an aryl group, a C₃-C₆ cycloalkyl group, C₅-C₆ cycloalkenyl, a heterocyclic group selected from triazolyl, 15 triazolonyl, pyrazolyl, imidazolyl, imidazolydinonyl, tetrazolyl, tetrazolonyl, isoxazolyl, furyl, thienyl, pyrrolyl, pyrrolidinyl, pyrrolidinonyl, pyridyl, pyrimidinyl, pyrimidinonyl, pyrazinyl, pyridazinyl, oxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl, 20 isothiazolyl, benzoxazolyl, benzothiazolyl, isoxazolinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3dioxolanyl, tetrahydropyranyl, oxethanyl, oxyranyl, thiazolidinyl, oxazolidinyl, piperidinyl, piperidinonyl, piperazinyl, morpholinyl, thiazinyl, 25

tetrahydrofuranyl, dioxazolyl, tetrahydrofuroisoxazolyl, 2-oxa-3azabicyclo[3.1.0]hex-3-enyl, said groups optionally substituted by one or more substituents selected from halogen, NO2, CN, 5 linear or branched C1-C6 alkyl, linear or branched C1-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C_2-C_6 10 alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C_2-C_6 haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl, C_2-C_6 alkoxyalkoxyl or C_2-C_6 haloalkoxyalkoxyl optionally substituted with a group selected from C1-15 alkoxyl or C_1-C_4 haloalkoxyl, C_2-C_6 alkylthioalkoxyl, C2-C6 haloalkylthioalkoxyl, $C_3 - C_{12}$ dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, $C_3 - C_{12}$ dialkylthioalkoxyl, C_3-C_{12} dialkoxyalkoxyl, C_2-C_6 haloalkoxyhaloalkoxyl, C_3-C_{10} alkoxyalkoxyalkyl, C_2-C_6 20 alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 alkenyloxy, C_2-C_6 haloalkenyloxy, C_3-C_8 alkenyloxyalkoxyl, C_3-C_8 haloalkenyloxyalkoxyl, C2-C6 alkynyl, C_2-C_6 haloalkynyl, C_2-C_6 alkynyloxy, C_2-C_6 haloalkynyloxy, C_3-C_8 alkynyloxyalkoxyl, C_3-C_8 haloalkynyloxyalkoxyl, 25 C_3-C_{12} acylaminoalkoxy, C_2-C_8 alkoxyiminoalkyl, C_2-C_8 WO 2005/030736 PCT/EP2004/010653 •

haloalkoxyiminoalkyl, C₃-C₈ alkenyloxyiminoalkyl, C₃haloalkenyloxyiminoalkyl, C_8 $C_3 - C_8$ alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl, C5-C10 alkoxyalkynyloxyl, C6-C12 cycloalkylideneiminooxyalkyl, $C_{6}-C_{12}$ dialkylideneiminooxyalkyl, aryl optionally substituted, $-S(0)_{m}R_{1}$, $-OS(0)_{t}R_{1}$, $-SO_2NR_2R_3$ $-CO_2R_4$, $-COR_5$, $-CONR_6R_7$, $-CSNR_8R_9$, $-NR_{10}R_{11}$, $-NR_{12}COR_{13}$, $-NR_{14}CO_{2}R_{15}$, $-NR_{16}CONR_{17}R_{18}$, $-PO(R_{19})_{2}$ 10 $-Z_2(CR_{34}R_{35})_p(C=Y)T$, $-Z_3(CR_{36}R_{37})_v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T$; - Z_1 , $Z_2 = O_1$, $S(O)_r$; - Y = 0, S;- r is equal to 0, 1 or 2; - p, q are equal to 1, 2, 3 or 4; 15 - v is equal to 0 or 1; - $Z_3 = 0$, S or a direct bond; - T represents a hydrogen atom, a Z_4R_{42} group, a -NR₄₃R₄₄ group, an aryl group or a heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl, 20 imidazolyl, imidazolidinonyl, tetrazolyl, tetrazolonyl, pyrrolyl, pyrrolidinyl, pyrrolidinonyl, pyridyl, pyrimidinyl, piperidinyl, piperidinonyl, piperazinyl, morpholinyl, said groups optionally substituted by one or more substituents selected from 25 halogen, NO2, OH, CN, CHO, linear or branched C1-C6

alkyl, linear or branched C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₅-C₆ cycloalkenyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfonylalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ haloalkylthioalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl, -S(O)_mR₁;

- $Z_4 = 0$, S or a direct bond;
- 10 R₄₃ and R₄₄, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms, a Q₇ group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, or they jointly represent a C₂-C₅ alkylene chain;
 - D represents:
- a heterocyclic group of the heteroaryl or heterocyclic type, in all the above cases the 25 heterocycle can be mono or polycyclic and can be

WO 2005/030736 PCT/EP2004/010653 •

connected to the rest of the structure either through one of its carbon atoms or, when possible, through one of its nitrogen atoms;

or it represents a mono or polycyclic aryl group, in this latter case, the group can also be partially saturated;

5

- Rx represents a substituent selected from hydrogen, halogen, NO2, CN, CHO, OH, linear or branched C1-C6 alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ 10 haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C2-C6 alkylsulfinylalkyl, C_2-C_6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, haloalkylthioalkyl, C_2-C_6 haloalkylsulfinylalkyl, $C_2 C_6$ haloalkylsulfonylalkyl, C_2 - C_6 alkoxyalkoxyl or C_2 -15 C6 haloalkoxyalkoxyl optionally substituted with a selected from C_1-C_4 alkoxyl or group C_2-C_6 alkylthioalkoxyl, C_2-C_6 haloalkoxyl, haloalkylthioalkoxyl, C3-C12 dialkoxyalkyl, $C_3 - C_{12}$ 20 dialkylthioalkyl, C₃-C₁₂ dialkylthioalkoxyl, $C_3 - C_{12}$ dialkoxyalkoxyl, C2-C6 haloalkoxyhaloalkoxyl, $C_3 - C_{10}$ alkoxyalkoxyalkyl, C_2-C_6 alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 alkenyloxy, C_2-C_6 haloalkenyloxy, C_3-C_8 alkenyloxyalkoxyl, C3-C8 haloalkenyloxyalkoxyl, C2-C6 alkynyl, C_2-C_6 haloalkynyl, C_2-C_6 alkynyloxy, C_2-C_6 25

haloalkynyloxy, C_3-C_8 alkynyloxyalkoxyl, C_3-C_8 haloalkynyloxyalkoxyl, C_3-C_{12} acylaminoalkoxy, C_2-C_8 alkoxyiminoalkyl, C_2-C_8 haloalkoxyiminoalkyl, C_3-C_8 alkenyloxyiminoalkyl, C_3-C_8 haloalkenyloxyiminoalkyl, C_3-C_8 baloalkynyloxyiminoalkyl, C_3-C_8 alkoxyalkynyloxyl

haloalkynyloxyiminoalkyl, C_5-C_{10} alkoxyalkynyloxyl, C_6-C_{12} cycloalkylideneiminooxyalkyl, C_6-C_{12} dialkylideneiminooxyalkyl, $-S(0)_mR_1$, $-OS(0)_tR_1$,

 $-SO_2NR_2R_3$, $-CO_2R_4$, $-COR_5$, $-CONR_6R_7$, $-CSNR_8R_9$,

- - $-(CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6},$ $-Z_{2}(CR_{34}R_{35})_{p}(C=Y)T,$
 - $-Z_3 (CR_{36}R_{37})_v (CR_{38}R_{39}=CR_{40}R_{41}) (C=Y) T;$
- 15 if several $R_{\mathbf{x}}$ groups are present, these can be the same or different;
 - -n = 1-9;

and of the relevant salts which have agronomical compatibility, as herbicides.

- 4. Use according to claim 3, for the control under pre-emergence and post-emergence of monocotyledon and dicotyledon weeds.
 - 5. Use of derivatives of 1,3-diones having general formula (I):

25

WO 2005/030736 PCT/EP2004/010653 .

(I)

wherein:

5 - A, B and R have the meanings defined according to claim 3, and of the relevant salts pharmaceutically acceptable as medicaments.

6. A process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3, characterized in that it includes a reaction of a carbonyl compound having general formula (II) with a compound having general formula (III), according to the reaction scheme 1 Scheme 1:

15

10

wherein

- A, B and R have the meanings previously defined;
- L₁ represents a suitable leaving group such as, for example, a halogen atom, a CN group, an imidazol20 1-yl group, an R_LO- group wherein R_L represents a C₁C₄ alkyl group or a phenyl group optionally

substituted, or it represents an $R_{\rm L1}COO-$ group wherein $R_{\rm L1}$ represents a hydrogen atom, a C_1-C_4 alkyl or haloalkyl group, a phenyl group optionally substituted or an A group.

7. The process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3, characterized in that it includes a reaction of a carbonyl compound having general formula (IV) with a compound having general formula (V), according to the reaction scheme 2

Scheme 2:

wherein

A, B and R have the meanings previously defined;
 L₂ represents a suitable leaving group such as,
 for example, a halogen atom, a CN group, an imidazol 1-yl group, an R_LO- group wherein R_L represents a C₁ C₄ alkyl group or a phenyl group optionally substituted, or it represents an R_{L1}COO- group wherein R_{L1} represents a hydrogen atom, a C₁-C₄ alkyl
 or haloalkyl group, a phenyl group optionally substituted or an R group.

8. The process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3, characterized in that it includes a reaction of a 1,3-dicarbonyl compound having general formula (VI) with a compound having general formula (VII), according to the reaction scheme 3

Scheme 3:

5

20

wherein

- A, B and R have the meanings previously defined;
 X represents a halogen atom, an R_{L2}SO₂O- group,
 wherein R_{L2} represents a C₁-C₄ alkyl or haloalkyl group, a phenyl group optionally substituted by C₁-C₄ alkyl groups, or it represents an R_{L3}SO₂- group,
 wherein R_{L3} represents a C₁-C₄ alkyl or haloalkyl group.
 - 9. The process according to any of the claims from 6 to 8, characterized in that the reaction is carried out in the presence of one or more inert organic solvents and in the presence of an organic or

inorganic base, at a temperature ranging from -80°C to the boiling temperature of the reaction mix.

- 10. The process according to claim 9, characterized in that the reaction is carried out in 5 two separate phases.
 - 11. A method for the control of weeds in agricultural crops, by the application of compounds having general formula (I):

10

(I)

wherein:

- A, B and R have the meanings according to claim 15 3.
 - 12. The method according to claim 11, characterized in that the quantity of compound having formula (I) to be applied ranges from 1 g to 4,000 g per hectare.
- 20 13. Herbicidal compositions containing, as active principle, one or more compounds having general formula (I):

$$A \xrightarrow{O} R$$

(I)

wherein:

10

5 - A, B and R have the meanings according to claim
3, possibly also as a blend of tautomers and/or isomers.

14. The herbicidal compositions according to claim 13, including other active principles compatible with the compounds having general formula (I), such as other herbicides, fungicides, insecticides, acaricides, fertilizers, etc..

15. The herbicidal compositions according to claim 14, characterized in that the additional herbicides are selected from:
 acetochlor, acifluorfen, aclonifen, AKH-7088, alachlor, alloxydim, ametryn, amicarbazone, amidosulfuron, amitrole, anilofos, asulam, atrazine, azafenidin, azimsulfuron, aziprotryne, BAS 670 H, BAY 20 MKH 6561, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, benzthiazuron, bifenox, bilanafos, bispyribac-sodium,

bromacil, bromobutide, bromofenoxim, bromoxynil,

butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorbromuron, chlorbufam, chlorflurenol, 5 chloridazon, chlorimuron, chlornitrofen, chlorotoluron, chloroxuron, chlorpropham, chlorsulfuron, chlorthal, chlorthiamid, cinidon ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clomazone, clomeprop, clopyralid, cloransulam-methyl, cumyluron (JC-940), cyanazine, 10 cycloate, cyclosulfamuron, cycloxydim, cyhalofopbutyl, 2,4-D, 2,4-DB, daimuron, dalapon, desmedipham, desmetryn, dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclosulam, diethatyl, 15 difenoxuron, difenzoquat, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dinitramine, dinosseb, dinoseb acetate, dinoterb, diphenamid, dipropetryn, diquat, dithiopyr, 1-diuron, eglinazine, endothal, 20 EPTC, espropcarb, ethalfluralin, ethametsulfuronmethyl, ethidimuron, ethiozin (SMY 1500), ethofumesate, ethoxyfen-ethyl (HC-252), ethoxysulfuron, etobenzanid (HW 52), fenoxaprop, fenoxaprop-P, fentrazamide, fenuron, flamprop, 25 flamprop-M, flazasulfuron, florasulam, fluazifop,

WO 2005/030736 PCT/EP2004/010653 ,

fluazifop-P, fluazolate (JV 485), flucarbazonesodium, fluchloralin, flufenacet, flufenpyr ethyl, flumiclorac-pentyl, flumioxazin, flumetsulam, fluometuron, fluoroglycofen, flumipropin, fluproanate, flupoxam, 5 fluoronitrofen, flupyrsulfuron, flurenol, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, furyloxyfen, glufosinate, glyphosate, halosulfuron-methyl, haloxyfop, haloxyfop-P-methyl, hexazinone, imazamethabenz, 10 imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, KPP-421, lactofen, lenacil, linuron, LS830556, MCPA, MCPA-15 thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mesosulfuron, mesotrione, metamitron, metazachlor, methabenzthiazuron, methazole, methoprotryne, methyldymron, metobenzuron, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, 20 metribuzin, metsulfuron, molinate, monalide, monolinuron, naproanilide, napropamide, naptalam, NC-330, neburon, nicosulfuron, nipyraclofen, norflurazon, orbencarb, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, 25

pebulate, pendimethalin, penoxsulam, paraquat, pentanochlor, pentoxazone, pethoxamid,, phenmedipham, picloram, picolinafen, piperophos, pretilachlor, primisulfuron, prodiamine, profluazol, proglinazine, prometryne, propachlor, 5 prometon, propanil, propaquizafop, propazine, propham, propisochlor, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen-ethyl, pyrazogyl (HAS-961), pyrazolynate, pyrazosulfuron, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, 10 pyriminobac-methyl, pyrithiobac-sodium, quinclorac, quinmerac, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 15 2,3,6-TBA, TCA-sodium, tebutam, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthyl-azine, terbutryn, thenylchlor, thiazafluron, thiazopyr, thidiazimin, thifensulfuron-methyl, thiobencarb, tiocarbazil, tioclorim, tralkoxydim, tri-allate, 20 triasulfuron, triaziflam, tribenuron, triclopyr, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron, UBI-C4874, vernolate.

16. The compositions according to any of the claims 13-15, characterized in that the concentration of active substance ranges from 1 to 90%.