Assignment 16

Adarsh Srivastava

The link to the solution is

https://github.com/Adarsh1310/EE5609

Abstract—This documents solves a problem based on basis and dimensions.

1 Problem

Let **V** be a vector space over a subfield **F** of complex numbers. Suppose α , β and γ are linearly independent vectors in **V**. Prove that $(\alpha+\beta)$, $(\beta+\gamma)$ and $(\gamma+\alpha)$ are linearly independent.

2 Solution

Let α , β and γ be three n× 1 dimensional vectors. We need to prove that,

$$(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha)\mathbf{x} = 0 \tag{2.0.1}$$

will only have a trivial solution. The above equation can be written as

$$\begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{2.0.2}$$

$$\mathbf{x}^T \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha^T \\ \boldsymbol{\beta}^T \\ \boldsymbol{\gamma}^T \end{pmatrix} = 0 \tag{2.0.3}$$

Since, α , β and γ are independent.

$$\mathbf{x}^T \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 0 \tag{2.0.4}$$

In the above equation we can see that the 3×3 matrix has linearly independent rows and hence will have a trivial solution.So,**x** is a zero vector.Hence, $(\alpha+\beta)$, $(\beta+\gamma)$ and $(\gamma+\alpha)$ are linearly independent.