Homework Problems

1 Exercise

1.1 Problem 1.

Let \mathbf{x} be a uniform random variable over the interval [0,4]. Moreover, \mathbf{v} is a uniform random variable over the interval [-1,1]. Assume that \mathbf{x} and \mathbf{v} are independent. Let \mathbf{y} be the random variable given by $\mathbf{y} = \mathbf{x} + \mathbf{v}$.

 \mathfrak{D} Let \mathcal{H} be the space spanned by $\{1, \mathbf{y}, \mathbf{y}^2, \mathbf{y}^3\}$. Then compute

$$P_{\mathcal{H}}\mathbf{x} = a + b\mathbf{y} + c\mathbf{y}^2 + d\mathbf{y}^3$$
 and $d_4^2 = E|\mathbf{x} - P_{\mathcal{H}}\mathbf{x}|^2$

© Compute the conditional expectation

$$\widehat{g}(y) = E(\mathbf{x}|\mathbf{y} = y)$$

 \mathfrak{D} Plot $\widehat{g}(y)$ and its approximation $a + by + cy^2 + dy^3$ on the same graph over the interval [-1, 5].

1.2 Problem 2.

Let \mathbf{x} and \mathbf{y} be two independent uniform random variables both over the interval [0,1]. Let \mathbf{a} be the random variable defined by the area $\mathbf{a} = \mathbf{x}\mathbf{y}$. Clearly, the area $0 \le \mathbf{a} \le 1$. Our problem is given the area \mathbf{a} find the best estimate $\hat{\mathbf{x}}$ of \mathbf{x} .

 \mathfrak{D} Let \mathcal{H} be the space spanned by $\{1, \mathbf{a}, \mathbf{a}^2, \mathbf{a}^3\}$. Then compute

$$P_{\mathcal{H}}\mathbf{x} = \alpha + \beta \mathbf{a} + \gamma \mathbf{a}^2 + \delta \mathbf{a}^3$$
 and $d_4^2 = E|\mathbf{x} - P_{\mathcal{H}}\mathbf{x}|^2$

Compute the conditional expectation

$$\widehat{g}(a) = E(\mathbf{x}|\mathbf{a} = a)$$
 and $d_{\infty}^2 = E|\mathbf{x} - \widehat{g}(\mathbf{a})|^2$

Plot $\widehat{g}(a)$ and its approximation $\alpha + \beta a + \gamma a^2 + \delta a^3$ on the same graph over the interval [0, 1]. Is $d_{\infty} < d_4$? Explain why or why not.