

UNIVERSITY OF ASIA PACIFIC

Department of Computer Science & Engineering

Course Title : Digital Logic & System Design Lab

Course Code : CSE 210

Experiment No. : 04

Experiment Name: a) Design 1 bit Half Adder and Full Adder

b) Test and verify the 4-bit parallel Adder(IC # 7483)

c) Design Subtractor using IC # 7483

d) Adder + Subtractor

e) Design a 4 bit adder-subtractor with full adders.

Date of Performance: 08-02-2022

Date of Submission: 14-02-2022

Submitted by: Submitted To:

Name : Sheikh Nafez Sadnan Shammi Akhtar

Reg. No.: 20101106 Assistant Professor

Roll No.: 106 Department of CSE

Section: B₍₂₎ University of Asia Pacific

Problem Statement:

- a) Design 1 bit Half Adder and Full Adder
- b) Test and verify the 4-bit parallel Adder(IC # 7483)
- c) Design Subtractor using IC # 7483
- d) Adder + Subtractor
- e) Design a 4 bit adder-subtractor with full adders.

Instruments (Used in This Experiment):

- i. XOR GATE (IC-7486)
- ii. AND GATE (IC-7408)
- iii. OR GATE (IC-7432)
- iv. NOT GATE (IC-7404)
- v. IC-7483
- vi. Logic Switch
- vii. Logic Display

a) Design 1 bit Half Adder and Full Adder

HALF ADDER:

Truth Table:

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Logic Expression:

Sum= A'B+ AB' = A
$$\bigoplus$$
 B
Carry = AB

Circuit Diagram:

For A=0, B=0

For A=0, B=1

For A=1, B=0

For A=1, B=1

FULL ADDER:

Truth Table:

A	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Logic Expression:

$$=$$
Cin' (A' B + A B') + Cin (A \oplus B)'

= Cin' X +Cin X' [Let
$$A \oplus B = X$$
]

$$= Cin \oplus X$$

$$= Cin \oplus A \oplus B$$

$$= A \oplus B \oplus Cin$$

Circuit Diagram:

For A=0, B=0, Cin=0

For A=0, B=0, Cin=1

For A=0, B=1, Cin=0

For A=0, B=1, Cin=1

For A=1, B=0, Cin=0

For A=1, B=0, Cin=1

FULL ADDER

For A=1, B=1, Cin=0

For A=1, B=1, Cin=1

b) Test and verify the 4-bit parallel Adder(IC # 7483)

Adder Calculation:

c) Design Subtractor using IC # 7483

Subtractor Calculation:

A = 15 = 1111 (A4 A3 A2 A1)

B = 14 = 1110 (B4 B3 B2 B1)

So, -B = -14 = 0010 (B4 B3 B2 B1)

In Subtraction we use negative value's 2's compliment. Here we add +15 that's mean 1111 and -14 that's mean 0010. So.

Subtraction = 1 = 10001 (Cout S4 S3 S2 S1)

But when we input value in Subtractor we put A= 1111 and B = 1110.

Circuit Diagram:

Here consider that,

A = 15 = 1111

B = 14 = 1110

Subtraction = 1 = 10001

(using NOT gate)

(using XOR gate)

d) Adder + Subtractor

Calculation:

For Adder,

$$A = 15 = 1111$$

$$B = 14 = 1110$$

Sum = 29 = 11101

For Subtractor,

A = 15 = 1111

B = 14 = 1110

= 0001 [1's complement of B]

+1

= 0010 [2's complement of B]

So, Subtraction = 10001

Circuit Diagram: (FOR ADDER)

(FOR SUBTRACTOR)

e) Design a 4 bit adder-subtractor with full adders

FOR ADDITION OPERATION:

A = 15 = 1111 (A4 A3 A2 A1)

B = 14 = 1110 (B4 B3 B2 B1)

Sum = 29 = 11101 (Cout S4 S3 S2 S1)

4 – bit example of Adder and Subtractor:

For addition operation:

A = 12 = 1100 (A4 A3 A2 A1)

B = 11 = 1011 (B4 B3 B2 B1)

Sum = 23 = 10111 (Cout S4 S3 S2 S1)

For subtraction operation:

A = 12 = 1100 B = 11 = 1011 = 0100 [1's complement of B] +1 = 0101 [2's complement of B] So, Subtraction = 10001

Discussion: In this experiment we learned about half adder & full adder. We also discussed about 4 bit parallel adder. We have verified 4-bit parallel adder using IC#7483. We also designed subtractor using IC#7483 and verified it. We designed adder+subtractor and a 4-bit example of adder and subtractor using full adder. Security issues were strictly maintained during the experiment.