MA0505 - Análisis I

Lección XVII: La Función de Cantor

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

La Función de Cantor

Preliminares

Sea $D_k = [0, 1] \setminus C_k$, entonces

$$D_1 = \left] \frac{1}{3}, \frac{2}{3} \right[, \ D_2 = D_1 \cup \left] \frac{1}{9}, \frac{2}{9} \right[\cup \left] \frac{7}{9}, \frac{8}{9} \right[.$$

En general $D_k = \bigcup_{j=1}^{2^k-1} [\alpha_j^k, \beta_j^k]$, con $\alpha_j < \beta_j < \alpha_{j+1}$. Tome entonces $I_j^k = [\alpha_j^k, \beta_j^k]$ y

$$\ell_j^k(x) = \frac{1}{2^k} \frac{x - \beta_j^k}{\alpha_{j+1}^k - \beta_j^k} + \frac{j}{2^k}.$$

La Función

Definimos entonces

$$f_k(x) = \begin{cases} \frac{j}{2^k} & \text{si } \alpha_j^k \leqslant x \leqslant \beta_j^k \\ \frac{x}{\alpha_1 2^k} & \text{si } 0 \leqslant x \leqslant \alpha_1^k \\ \ell_j^k(x) & \text{si } \beta_j^k \leqslant x \leqslant \alpha_{j+1}^k. \end{cases}$$

Propiedades

- Es fácil probar que $f_k(x)$ es creciente.
- Tenemos

$$D_{k+1} = \bigcup_{j=1}^{2^k-1} [\alpha_j^k, \beta_j^k] \cup \bigcup_{m=1}^{2^k} [\tilde{\alpha}_m^k, \tilde{\beta}_m^k]$$

$$\text{con } 0 < \tilde{\alpha}_1^k < \tilde{\beta}_1^k < \alpha_1 \text{ y } \beta_i^k < \tilde{\alpha}_{i+1}^k < \tilde{\beta}_m^k < \alpha_{i+1}^k.$$

- Entonces $f_{k+1}(x) = f_k(x)$ para $x \in [\alpha_j^k, \beta_j^k]$.
- Si $x \in [\tilde{\alpha}_j^k, \tilde{\beta}_j^k]$, entonces $f_{k+1}(x) = \frac{j-1}{2^{k+1}}$.

El Límite

Note que para $x \in [0, 1]$ tenemos

$$|f_k(x)-f_{k+1}(x)|\leqslant \frac{1}{2^k}.$$

Por el M-test de Weierstrass tenemos que

$$\sum_{k=1}^{\infty} [f_{k+1} - f_k]$$

converge uniformemente de manera que $f_k \xrightarrow[k \to \infty]{} f$ uniformemente. La función resultante es la función de Cantor. Entonces f es continua, creciente y vale que f(0) = 0, f(1) = 1. Además para $x \in I_j^k$, $f_k(x) = f_j(x) = \frac{j}{2^k}$ si $j \geqslant k$. Entonces $f(x) = \frac{j}{2^k}$, f'(x) = 0 en I_i^k y f'(x) = 0 en $[0,1] \setminus C$.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.