BM-311 Bilgisayar Mimarisi

Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Konular

- Hafıza sistemleri karakteristikleri
- Hafıza hiyerarşisi
- Önbellek prensipleri
- Önbellek tasarım bileşenleri
 - Cache size
 - Mapping function
 - Replacement algorithms
 - Write policy
 - Line size
 - Number of caches

- Location
 - Internal (regs, cache, main memory)
 - External (optical disk, magnetic disk, tape)
- Capacity
 - Number of words
 - Number of bytes
- Unit of transfer
 - Word
 - Block
- Access method
 - Sequential
 - Direct
 - Random
 - Associative

- Performance
 - Access time
 - Cycle time
 - Transfer rate
- Physical type
 - Semiconductor
 - Magnetic
 - Optical
 - Magneto-optical
- Physical characteristics
 - Volatile/nonvolatile
 - Erasable/nonerasable
- Organization

Location

- Internal:
 - Register'lar, control unit memory, cache, main memory.
- External:
 - HDD, tape, I/O kontrol ile erişilenler.

Capacity

Number of words:

- Toplam satır sayısını ifade eder.
- Genellikle main memory için kullanılır.
- Bir word 8, 16 veya 32 bit olabilir.

Number of bytes:

 İkincil depolama birimlerinde kapasite byte olarak ifade edilir.

Hafıza sistemleri karakteristikleri

Unit of transfer

Word:

- Bir seferde bir word boyutunda veri okunur veya yazılır.
- Main memory için kullanılır.

Block:

- Bir seferde bir blok veri okunur veya yazılır.
- External memory için kullanılır.

Access method

- Sequential: Okuma /yazma mekanizması bulunulan konumdan istenen konuma kadar tüm kayıtları okuyarak gider. (Örn.: Tape)
- Direct: İstenen konuma doğrudan konumlanılır. İstenen konum okuma/yazma mekanizmasının altına gelene kadar beklenir. Erişim süresi önceki bulunulan konuma bağlıdır. (Örn.: HDD, CD)
- **Random:** İstenen konuma doğrudan gidilir. Erişim süresi önceki konuma bağlı değildir. (Örn:. Main memory)
- Associative: Arama adrese göre değil içeriğe göre yapılır.
 Aranan veriyle tüm hafıza alanları eşzamanlı karşılaştırılır.
 (Örn.: Cache)

Hafıza sistemleri karakteristikleri

Performance

• Access time (latency):

- RAM için adres bilgisinin verilmesinden verinin alınmasına/yazılmasına kadar geçen süredir.
- Diğerleri için okuma/yazma mekanizmasının istenen konuma ulaşması için geçen süredir.

Memory cycle time:

RAM için iki erişim süresi arasındaki toplam süredir.

Transfer rate:

- Veri aktarım hızıdır.
- RAM için (1/cycle time)*block size ile ifade edilir.
- Non-random access memory için $T_N = T_A + (n/R)$ ile ifade edilir.
- T_A Ortalama erişim süresi; n bit sayısı ve R aktarım hızı (bps).
- T_{N} , n adet bit için okuma veya yazma süresidir.

Physical type

- Semiconductor:
 - Random access memory'lerde kullanılır.
- Magnetic:
 - Disk ve tape ünitelerinde kullanılır.
- Optical ve Magneto-optical:
 - CD ve DVD'lerde kullanılır.

Hafıza sistemleri karakteristikleri

Physical characteristics

- Volatile/nonvolatile:
 - Elektrik kesildiğinde veri kaybolan (semiconductor)
 - Elektrik kesildiğinde veri kaybolmayan (magneticsurface)
- Erasable/nonerasable:
 - İçeriği silinebilen (EEPROM)
 - İçeriği silinemeyen (ROM)

Organization

• Random access memory için word oluşturmak için bitlerin yerleşimini ifade eder (interleaved, sequential).

Konular

- Hafıza sistemleri karakteristikleri
- Hafıza hiyerarşisi
- Önbellek prensipleri
- Önbellek tasarım bileşenleri
 - Cache size
 - Mapping function
 - Replacement algorithms
 - Write policy
 - Line size
 - Number of caches

Hafıza hiyerarşisi

- CPU tarafından hafıza birimlerinde erişim süresi kısaldıkça, bit başına maliyet artar.
- Hafıza birimlerinde kapasitesi arttıkça bit başına maliyet düşer.
- Hafıza birimlerinde kapasitesi arttıkça erişim süresi artar.

Hafıza hiyerarşisi

Örnek:

- Bir CPU iki seviyeli hafızaya erişiyor.
- Birinci seviye 1000 word ve ikinci seviye 100.000 word kapasitededir.
- Birinci seviye hafızaya erişim süresi 0,01μs ve ikinci seviye hafızaya erişim süresi 0,1μs dir.
- CPU ilk önce birinci seviyeye yoksa ikinci seviyeye erişmektedir.

-

Hafıza hiyerarşisi

Örnek:

- Şekilde, verinin birinci seviye hafızada bulunma oranına göre erişim süresi görülmektedir. Birinci seviye önbelleği ifade eder.
- Verinin birinci seviyede bulunma oranı %95 ise ortalama erişim süresi nedir?

Ortalama erişim süresi = $(0.95)(0.01 \,\mu\text{s}) + (0.05)(0.01 \,\mu\text{s} + 0.1 \,\mu\text{s})$ = $0.0095 + 0.0055 = 0.015 \,\mu\text{s}$

Ortalama erişim süresi $0.01 \mu s$ daha yakındır çünkü %95 oranında birinci seviyede bulunmuştur.

Şekilde, T_I birinci seviyeye T_2 ise ikinci seviyeye erişim süresidir.

CPU'nun erişim sıklığına göre hafıza hiyerarşisi

- Registers
- L1 Cache
- L2 Cache
- L3 Cache
- Main memory
- Disk cache
- Disk
- Optical
- Tape

Konular

- Hafıza sistemleri karakteristikleri
- Hafıza hiyerarşisi
- Önbellek prensipleri
- Önbellek tasarım bileşenleri
 - Cache size
 - Mapping function
 - Replacement algorithms
 - Write policy
 - Line size
 - Number of caches

Önbellek prensipleri

Önbellek işlemi

- CPU bir adres içeriğini ister.
- Önbelleğe bakılır.
- Önbellekte bulunursa alınır.
- İstenen veri önbellekte yoksa hafızada içinde bulunduğu blok alınır ve önbelleğe aktarılır.
- Önbellekten CPU'ya aktarılır.

- Hafıza sistemleri karakteristikleri
- Hafıza hiyerarşisi
- Önbellek prensipleri
- Önbellek tasarım bileşenleri
 - Cache size
 - Mapping function
 - Replacement algorithms
 - Write policy
 - Line size
 - Number of caches

- Cache size
 - Cache satır boyutu
 - Cache satır sayısı
- Mapping function
 - Direct
 - Associative
 - Set associative
- Replacement algorithms
 - Least recently used (LRU)
 - First in first out (FIFO)
 - Least frequently used (LFU)
 - Random

- Write policy
 - Write through
 - Write back
 - Write once
- Line size
 - Satıra alınan blok boyutu
- Number of caches
 - Single or multilevel
 - Unified or split

Cache size

- Önbellek boyutu azaldıkça toplam maliyet düşer.
- Önbellek boyutu arttıkça hit oranı arttığı için veriye erişim süresi düşer.
- Önbellek boyutu arttıkça kullanılan devre daha karmaşık hale gelir ve az da olsa yavaşlama olur.

Mapping function

- Önbellekteki satır sayısı main memory'den çok az olduğu için eşleştirme fonksiyonu kullanılarak aktarma yapılır.
- Mapping function hafızadaki bir bloğun önbelleğe nasıl yerleştirileceğini belirler.
- Direct, associative ve set associative olarak üç yöntem kullanılır.

Direct mapping - devam

Eşleştirme modüler aritmetiğe göre yapılır.

 $i = j \mod m$

 $i = \ddot{\text{o}}$ nbellek satır numarası

j = main memory blok numarası

m =önbellekteki satır sayısı

- Her hafıza adresi 3 alandan oluşur. Tag, Line ve Word.
- Line önbellekte satırı seçmek için, tag seçilen satırın etiketini belirtmek için word ise bulunan satırın bir elemanını seçmek için kullanılır.

Direct mapping – devam

- Adres boyutu = (s+w) bit
- Adreslenebilir alan sayısı = 2^{s+w} word
- Blok boyutu = satır boyutu = 2^w word
- Hafızadaki blok sayısı = $(2^{s+w}) / (2^w) = 2^s$ word
- Önbellekteki satır sayısı = 2^r
- Önbellek boyutu = 2^{r+w}
- Tag boyutu = (s r) bit

Avantaj / dezavantaj

- Oluşturmak basit ve ucuzdur.
- Bir blok sadece bir satıra yazılabilir.
- Aynı satıra eşleşen iki blok sürekli çalıştığında performans düşer.

Associative mapping – devam

- Adres boyutu = (s+w) bit
- Adreslenebilir alan sayısı = 2^{s+w} word
- Blok boyutu = satır boyutu = 2^w word
- Hafizadaki blok sayısı = $(2^{s+w}) / (2^w) = 2^s$ word
- Önbellekteki satır sayısı = tanımlı değil
- Tag boyutu = s bit

Avantaj / dezavantaj

- Yapısı karmaşıktır.
- Bir blok uygun olan bir satıra yazılabilir.
- Önbellekte eşzamanlı arama hızı düşüktür.

Set associative mapping- devam

- Adres boyutu = (s+w) bit
- Adreslenebilir alan sayısı = 2^{s+w} word
- Blok boyutu = satır boyutu = 2^w word
- Hafızadaki blok sayısı = $(2^{s+w}) / (2^w) = 2^s$ word
- Kümedeki satır sayısı = k
- Küme sayısı = 2^d
- Önbellekteki satır sayısı = k. 2^d
- Tag boyutu = (s-d) bit

Avantaj / dezavantaj

- Yapısı direct mapping'e göre karmaşıktır.
- Bir blok sadece kendisine ait bir kümedeki istenilen satıra yazılabilir.
- Önbellekte küme içinde eşzamanlı arama hızı düşüktür.

Replacement algorithms

- Direct mapping'te sadece bir satır seçilebildiği için replacement algoritması kullanılmaz.
- Associative ve set associative eşleştirmede replacement algoritmaları kullanılır.
- Least recently used (LRU):
 - En uzun süre kullanılmayan satıra yazılır.
 - Her satır için USE field kullanılır.
- First in first out (FIFO):
 - İlk gelen satıra yazılır.
 - Least frequently used (LFU):
 - En az kullanılan satıra yazılır.
 - Her satır için counter kullanılır.
- Random:
 - Rastgele bir satır seçilir ve o satıra yazılır.

Önbellek tasarım bileşenleri

Write policy

- Önbellekteki veri değişmişse üzerine yeni veri yazılmadan önce hafızaya aktarılması gerekir.
- Eğer hafıza birden fazla cihaz tarafından ortak kullanılıyorsa, önbellekteki değişimin hafızaya aktarılma yöntemi çok önemlidir.
- Write through: Önbellekteki her yazma işlemi doğrudan hafızaya da aktarılır. Birden çok şlemcili sistemlerde bus sürekli izlenir ve değişiklikler güncellenir.
- Bus üzerindeki trafik fazladır.
- Write back: Önbellekteki bir veri değişir değişmez değil, sadece atılacağı zaman hafızaya yazılır. Her satır için UPDATE field kullanılır.
- Bus trafiği write through'a göre daha azdır.
- Write once: Birden çok işlemcili sistemlerde cache coherence için kullanılan protokoldür. İlk değişiklikler hemen yazılır diğerleri hemen yazılmaz.

Line size

- Önbellekte bir veri bulunamadığında, hafızadan sadece o veri değil bir blok alınır.
- Satır boyutu arttıkça ilk önceleri hit ratio artar daha sonra düşmeye başlar.
- Blok boyutu arttıkça yakın zamanda kullanılmayacak verilerde alınmaya başlar.

Önbellek tasarım bileşenleri

Number of caches

 Önbellekler birden fazla seviyede, veri ve komut için ayrı ayrı da oluşturulabilirler.

Multilevel caches

- On-chip ve off-chip olarak oluşturulabilir. L1, L2 ve L3 şeklinde üç seviyeli kullanımı vardır.
- On-chip önbellek CPU'nun external bus trafiğini azaltır.

Unified / split caches

- Split önbelleklerin bir kısmı komut için bir kısmı ise data için kullanılır.
- Unified önbelleklerde hit oranı yüksektir. Çünkü komut ve data arasındaki fetch yoğunluğuna göre kendini update eder.
- Unified önbelleklerde tek önbellek kullanıldığı için oluşturulması basittir.
- Split önbelleğin en önemli avantajı, instruction cycle'da instruction fetch/decode unit ile execution unit'i bağımsız hale getirir. Pipelining için önemlidir.

 Multicore ve çok işlemcili sistemlerde cache coherence için kullanılan protokoller hakkında detaylı bir araştırma ödevi hazırlayınız.