EFFECTS OF PROJECTED TWENTYFIRST CENTURY SEA LEVEL RISE, STORM SURGE, AND RIVER FLOODING ON WATER LEVELS IN THE SKAGIT RIVER FLOODPLAIN

Joe Hamman, Alan F. Hamlet

October 1, 2012

Pacific Northwest Climate

Science Conference

GLOBAL SEA LEVEL RISE

Adapted from Nicholls and Cazenave, 2010

REGULATED FLOODING

100-yr Flood for Skagit River at Mt. Vernon

Source: Lee & Hamlet, 2012

TOOLS FOR LOCAL PLANNING

SKAGIT RIVER BASIN

SKAGIT RIVER BASIN

LOWER SKAGIT RIVER BASIN

FLOOD MAPPING

METHODS HYDROLOGY

- Goal: Combine hydrology and sea level rise projections to develop new flood maps
- Hydrologic Methods:
 - 1. Downscale GCM results
 - Statistical Downscaling: Hybrid Delta Method
 - Dynamic Downscaling: WRF Regional Climate Model
 - 2. Use downscaled GCM results to run hydrology model
 - Hydrology Model: Variable Infiltration Capacity (VIC) Model
 - 3. Use a reservoir model to simulate hydropower and flood operations

METHODS SEA LEVEL

Sea Level Methods:

- 1. Use regression model to predict anomalous water levels
 - Anomaly = f (Pressure, Pressure Patterns, ENSO)
- 2. Add anomalies to predicted tides
- 3. Add sea level rise to modified tidal signal

METHODS SEA LEVEL RISE

Figure adopted from Nicholls and Cazenave (2010) and Mote et al. (2008).

STORM SURGE AND SLR

- No change in the CDFs between RCM time periods
- SLR, by comparison, drastically changes the CDFs by shifting them each upward

METHODS HYDRODYNAMIC MODELING

- Skagit Model developed by USACE and FEMA
- 2D hydrodynamic model, Flo2D
- Simulates channel and overbank flow in lower Skagit River Basin
- Includes current levees and dikes

3 Largest WRF Flood Events in 2050s

WRF-2050S FL00D 1

ALL LEVEES INTACT

Inputs:

- Hydrograph: 1/30/2060 (94% of Historical 100yr)
- Sea Level Rise: 1.23 feet

Area Flooded: 51,365 acres (+22%)

METHODS 100-YEAR FLOOD MAPPING

- Applied relative changes in 100year flood to FEMA hydrograph
- Eliminates model bias in peak flows
- Performed composite flood mapping for 2040s and 2080s (7 levee failure scenarios)

Scaled FEMA Floods

$$FEMA_{2040s} = FEMA \times \frac{100yrHD_{2040s}}{100yrHis}$$

HISTORICAL 100-YEAR FLOOD

ALL LEVEES INTACT

Inputs:

Hydrograph: Historical 100yr

Sea Level Rise: 0.00 feet

Area Flooded: 42,266 acres

2040S 100-YEAR FLOOD

ALL LEVEES INTACT

Inputs:

 Hydrograph: 1.14 x (His 100yr)

• Sea Level Rise: 1.35 feet

Area Flooded: 66,248 acres (+57%)

2080S 100-YEAR FLOOD

ALL LEVEES INTACT

Inputs:

 Hydrograph: 1.32 x (His 100yr)

• Sea Level Rise: 3.02 feet

Area Flooded: 73,594 acres (+74%)

COMPOSITE FLOOD MAPS

HISTORICAL

Inputs:

Hydrograph: Historical 100yr

Sea Level Rise: 0.00 feet

Area Flooded: 71,427 acres

Avg Depth: 7.03 feet

1.000-2000

2001-4000

4.001 - 8.000

8.001 - 16.000

16.001 - 30.000

COMPOSITE FLOOD MAPS

2040S

Inputs:

 Hydrograph: 1.14 x (His 100yr)

Sea Level Rise: 1.35feet

Area Flooded: 72,206 acres

(+1%)

Avg Depth: 7.46 feet

(+5 inches)

COMPOSITE FLOOD MAPS

2080S

Inputs:

 Hydrograph: 1.32 x (His 100yr)

Sea Level Rise: 3.02 feet

Area Flooded: 72,768 acres

(+2%)

Avg Depth: 7.46 feet

(**+10** inches)

1.000-2000

2001-4000

4.001 - 8.000

8.001 - 16.000

16.001 - 30.000

CONCLUSIONS

- Future storm surge, brought on by barometric and wind effects, is not expected to change significantly.
- Sea level rise is expected to influence extreme water levels much more than changes in storm surge.
- Inundation from flooding in the Skagit is expected to increase by up to 74% by the 2080s given combined SLR and increased flood magnitudes.
- Average depth in flood map increases by
 - 5 inches in 2040s
 - 10 inches in 2080s
- Using a scenario based approach is an effective way to understand changes in flood magnitudes over time.

QUESTIONS?

Acknowledgments

- Alan Hamlet, Faculty Advisor
- Contributors
 - Se-Yuen Lee
 - Matt Stumbaugh
 - Eric Salathé
- EPA Funding
 - Roger Fuller
 - Eric Grossman

EXTRAS

JOINT PROBABILITY OF EXCEEDANCE

Skagit River

STATISTICAL DOWNSCALING

- Adjusts historic monthly timeseries to match CDF of GCM at each grid cell
- Forces historic daily timeseries to fit new monthly values
- Preserves most of the historical time series behavior
 - Storm size, storm location, interarrival, seasonality, time, etc.
- Two30-year time periods
 - 2040s and 2080s

DYNAMIC DOWNSCALING

- WRF provides atmospheric conditions at much higher resolution
- Simulates actual weather prescribed by large scale GCM
- Produces actual storms
- Does not rely on the historical time series
- Three 30-year time periods
 - 1980s, 2020s and 2050s

HYDROLOGIC MODELING

Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model

VIC Snow Algorithm

UNREGULATED HYDROLOGY

RESERVOIR MODELING

- Satisfy system mass balance and physical constraints on storage and releases.
- 2. Satisfy local minimum flow requirements.
- 3. Satisfy hydropower production demands.
- Follow flood control rules and mimic flood control operations.

REGULATED PEAK FLOWS

COMPOSITE FLOOD MAPS 7 LEVEE FAILURE SCENARIOS

