(20425 / 19.7.15)

:טענות

. y -ו x ו- y היא פונקציה ממשית של x ו- x נניח כי y היא פונקציה ממשית של x ו- y .1

$$E[g(X,Y)] = \sum_{y} \sum_{x} g(x,y) \, p_{X,Y}(x,y)$$
 : אם ל- X ו- Y יש פונקציית הסתברות משותפת $P_{X,Y}(x,y)$: אם ל- $P_{X,Y}(x,y)$

2. תוחלת של סכום משתנים מקריים

$$E[X_1+X_2+...+X_n]=E[X_1]+E[X_2]+ \ ... \ +E[X_n]$$
 אם $E[X_i]=E[X_1]+E[X_2]+ \ ... \ +E[X_n]$ אום $E[X_i]=E[X_i]$

הערה: הטענה במקרה האינסופי תקפה, אם כל ה- X_i -ים הם משתנים מקריים אי-שליליים, $\cdot \sum_{i=1}^\infty E[\mid X_i\mid] < \infty$ או אם ∞

$$\operatorname{Cov}(X,Y) = E[(X-E[X])(Y-E[Y])]$$
 השונות המשותפת של X ו- Y מוגדרת על-ידי:
$$= E[XY] - E[X]E[Y]$$

אם היים בלתי-מתואמים Y ו-Y נקראים בלתי-מתואמים.

$$Cov(X,X) = Var(X)$$

$$Cov(aX,Y) = aCov(X,Y)$$

$$\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$$
 .4

בהכרח להיפך). אם או ו-Y בלתי-תלויים הבהכרח להיפך).

.
$$\operatorname{Cov}(X_i, X_j) = -np_ip_j$$
 מתקיים $i \neq j$ אז לכל $\underline{X} \sim \operatorname{Mult}(n, p)$ אם .3

שונות של סכום סופי של משתנים מקריים

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j}) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$$

$$\operatorname{Var}\!\left(\sum_{i=1}^{n}X_{i}\right)=\sum_{i=1}^{n}\operatorname{Var}(X_{i})$$
 שונות של סכום סופי של משתנים מקריים בלתי-תלויים

$$ho(X,Y) = rac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)\mathrm{Var}(Y)}}$$
 מקדם המתאם של X ו- Y מוגדר על-ידי:

. $-1 \le \rho(X,Y) \le 1$ מתקיים Y-ו לכל X לכל .1

$$ho(X,Y) = \begin{cases} 1 & , & a > 0 \\ -1 & , & a < 0 \end{cases}$$
 אז $Y = aX + b$ אז .2

. בהתאמה מקרי שמקבל את הערכים 1 ו-0 בהסתברויות p ו- p ו- p הוא משתנה מקרי שמקבל את הערכים 1 ו-0 בהסתברויות

$$E[X]=p$$
 ; $E[X^2]=p$; $Var(X)=p(1-p)$: מתקיים X , מתקיים לכל אינדיקטור, שנסמנו ב- X , מתקיים

$$E[X_1X_2] = P\{X_1 = 1, X_2 = 1\}$$
 : ולכל שני אינדיקטורים, שנסמנם ב- X_1 וב- X_2 , מתקיים :

$$\mathrm{Cov}(X_1, X_2) = P\{X_1 = 1, X_2 = 1\} - P\{X_1 = 1\}P\{X_2 = 1\}$$
 : ולכן

תוחלת מותנית

אם ל-X ו-Y יש פונקציית הסתברות משותפת אז התוחלת המותנית של X בהינתן Y=y מוגדרת,

$$E[X \mid Y = y] = \sum_{x} x P\{X = x \mid Y = y\} = \sum_{x} x \frac{P\{X = x, Y = y\}}{P\{Y = y\}}$$
 נכל $Y = Y = y$ נכל א המקיים $Y = Y = y$ נכל א המקיים $Y = Y = y$ נכל א המקיים $Y = Y = y$

. y הערך של פונקציה פונקציה Y=y בהינתן של הערך אל הערק התוחלת המותנית של

$$E[X] = E[E[X \mid Y]]$$
 נוחלת של תוחלת מותנית:

$$E[X] = \sum_{y} E[X \mid Y = y] P\{Y = y\}$$
 – כלומר, אם Y משתנה מקרי בדיד אז

אפשר להשתמש בטענה זו, כדי לחשב הסתברויות של מאורעות על-ידי התניה במשתנה מקרי.

$$P(E) = \sum_{y} P(E \mid Y = y) P\{Y = y\}$$
 : בלומר, אם מסמן מאורע כלשהו ואם אם מסמן משתנה מקרי בדיד אז מסמן מאורע כלשהו ואם אורע כלשהו

$$E[g(Y)X \mid Y] = g(Y)E[X \mid Y]$$
 טענה (תרגיל ת26):

$$Var(X) = E[Var(X|Y)] + Var(E[X|Y])$$
 נוסחת השונות המותנית:

סכום מקרי

אם N הוא משתנים מקריים שווי-התפלגות אי-שליליים, אי-שליליים אי-שליליים שווי-התפלגות מקריים אי משתנים מקריים אי-שליליים. איווי-התפלגות ובלתי-תלויים אי ובלתי-תלויים איווי-חתפלגות ובלתי-תלויים איווי-חתפלגות ובלתי-תלויים איווי-התפלגות ובלתי-תלויים איווי-תלויים איווים איווי-תלויים איווים אי

$$Eigg[\sum_{i=1}^{N}X_iigg] = E[N]E[X_1]$$
 [0 - סכום המשתנים שווה גם הוא ל- 0]

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X_{1}) + (E[X_{1}])^{2}\operatorname{Var}(N)$$

$$M_X(t) = E[e^{tX}]$$
 במשי, על-ידי: ממשי, מחגדרת, לכל ממשי של משתנה מקרי X מוגדרת משתנה מקרי אוצרת המומנטים של משתנה מקרי אוברת, לכל ממשי

$$E[X^r]$$
 אל משתנה מקרי X מוגדר על-ידי:

המומנט מסדר $M_X(t)$ של (לפי t) של (תקבל מהנגזרת ה-r-ית מתקבל מהנגזרת מקרים אם הנגזרת מחקרים אם $M_X^{(r)}(t)\Big|_{t=0}=E[X^r]$: קיימת בסביבת נקודה זו. כלומר, מתקיים השוויון

$$M_Y(t) = E\Big[\Big(M_{X_1}(t)\Big)^N\Big]$$
 : $Y = \sum_{i=1}^N X_i$ ש"ה ב"ת ש"ה מקרי של סכום מקרי של מ"מ ב"ת ש"ה פונקציה יוצרת מומנטים של סכום מקרי של מ"מ ב"ת ש

פונקציות יוצרות מומנטים של התפלגויות מיוחדות

$$X \sim B(n,p)$$
 $M_X(t) = (pe^t + 1 - p)^n$, t לכל : משתנה מקרי בינומי

$$X \sim Po(\lambda)$$
 א $M_X(t) = e^{\lambda(e^t-1)}$, t לכל : משתנה מקרי פואסוני

$$X \sim Geo(p)$$

$$M_X(t) = \frac{pe^t}{1 - (1-p)e^t} \qquad , \qquad t < -\ln(1-p) \qquad :$$
 משתנה מקרי גיאומטרי

$$X \sim NB(r,p)$$

$$M_X(t) = \left(\frac{pe^t}{1-(1-p)e^t}\right)^r \qquad , \qquad t < -\ln(1-p) \qquad : t < -\ln(1-p)$$
 משתנה מקרי בינומי שלילי:
$$X \sim U(a,b)$$

$$M_X(t) = \frac{e^{bt} - e^{at}}{t(b-a)} \qquad , \qquad t \neq 0 \qquad : t \neq 0$$

$$X \sim U(a,b)$$
 $M_X(t) = rac{e^{bt} - e^{at}}{t(b-a)}$, $t
eq 0$ כל : משתנה מקרי אחיד:

$$X \sim Exp(\lambda)$$
 $M_X(t) = \frac{\lambda}{\lambda - t}$, $t < \lambda$: משתנה מקרי מעריכי

$$X\sim N(\mu,\sigma^2)$$
 $M_X(t)=e^{\mu t+\sigma^2t^2/2}$, t לכל : :משתנה מקרי נורמלי:

$$M_{Y}(t) = M_{aX+b}(t) = e^{bt} M_{X}(at)$$
 אם $Y = aX + b$ טענות: 1. אם $Y = aX + b$

- 3. קיימת התאמה חד-חד-ערכית בין הפונקציות יוצרות המומנטים לפונקציות ההתפלגות המצטברת. כלומר, אם הפונקציה יוצרת המומנטים של משתנה מקרי X קיימת וסופית בסביבה . כלשהי של t=0, אז ההתפלגות של X נקבעת באופן יחיד.
- p, i=1,...,n לכל p, ו- p, לכל n_i סכום של n משתנים מקריים בינומיים בלתי-תלויים עם הפרמטרים של n. p -ו Σn_i הוא משתנה מקרי בינומי עם הפרמטרים
- הוא , i=1,...,n לכל λ_i משתנים של הפרמטרים בלתי-תלויים בלתי-תלויים מקריים מקריים מקריים בלתי-תלויים או $\Sigma \lambda_i$ משתנה מקרי פואסוני עם הפרמטר
- משתנה מקריים הלויים שלכולם בלתי-תלויים גיאומטריים גיאומטריים גיאומטריים בלתי-תלויים שלכולם משתנה מקריים גיאומטריים האומטריים בלתי-תלויים מקריים אומטריים בלתי-תלויים שלכולם הפרמטר מקריים בלתי-תלויים מקריים בלתי-תלויים מקריים בלתי-תלויים מקריים בלתי-תלויים שלכולם הפרמטר מקריים בלתי-תלויים בלתי-תלויים שלכולם הפרמטר מקריים בלתי-תלויים בלתי-תלויים שלכולם הפרמטר מקריים בלתי-תלויים בלתי-תלוים בלתי-תלויים בלתי-תלוים בלתי-תלויים בלתי-תלויים בלתי-תלויים בלתי-תלויים בלתי-תלויים בלתי-תלויים בלתי-תלויים בלתי-תלויים בלתי-תליים בלתי-תלוים בלתי-תלי-תלוים בלתי-תלוים בלתי-תלים בלתי-תלוים בלתי-תלוים בלתי-תלים בלתי-תלים בלתי-תלים בלתי-תלים בלתי-תלים ב . p -ו n בינומי שלילי עם הפרמטרים
- ים משתנה משתנה σ_i^2 -ו μ_i סכום של n סכום של משתנה נורמליים נורמליים בלתי-תלויים עם הפרמטרים n $\Sigma \sigma_i^2$ -ו $\Sigma \mu_i$ נורמלי עם הפרמטרים

 σ^2 ושונות μ ושונות בעלת תוחלת μ משתנים מקריים בלתי-תלויים, שלכולם התפלגות X_n,\ldots,X_2,X_1

 A_{n} נהוג לומר, שהמשתנים המקריים A_{n} ,..., A_{n} , אות המקריים המקריים מדגם מדגם מדגם מקרי

$$\mathrm{Var}(\overline{X}) = \sigma^2/n$$
 - ו מתקיים: $E[\overline{X}] = \mu$: ומתקיים , $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ ומתקיים

$$E[S^2] = \sigma^2$$
 : ומתקיים , $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ שונות המדגם היא