Design enample: A factory making ball-bearings (BB). The three persons so: gives 0 if a BB is too small

S1: Too light

- clesion reject function (R) gives I if at least two pensors give U.

R

Boolean Algebra

$$1. \quad o \cdot o = o$$

3.
$$0.1 = 1.0 = 0$$

4. if
$$x=0, \bar{x}=1$$

$$0+0=0$$

if
$$x=1, \overline{x}=0$$

Duality: given a logic enpression, if we swap 0 - 1 and also - +, then the expression still holds.

based on these anions, we can define a set of rules:

$$5. \ \chi \cdot o = 0 \qquad \chi + | = |$$

6.
$$x \cdot 1 = x$$
 $x + 0 = x$

7.
$$\chi \cdot \chi = \chi$$
 $\chi \cdot \chi = \chi$

8.
$$\chi \cdot \overline{\chi} = 0$$
 $\chi \cdot \overline{\chi} = 1$

$$q, \ \overline{\overline{\chi}} = \chi$$

-> pome convenient identities or theorems

10.
$$x,y=y,x$$
 $x+y=y+x$ (commutative)

11.
$$\chi \cdot (y \cdot z) = (\chi \cdot y) \cdot z$$
 $\chi + (y + z) = (\chi + y) + z$ (associative)

12.
$$\chi \cdot (y+z) = \chi \cdot y + \chi \cdot z$$
 $\chi + (y\cdot z) = (\chi + y)(\chi + z)$ (distributure)

Proof x+(y.z) = (x+z) (x+z) by perfect induction

	' '0 -	<i>-</i>			_
xyz	(y·z)	LHS	(X+Y)	(x+2)	RHS
000	O	0	0	0	0
001	O	0	0		O
010	U	0	1	Ö	0
011		1	1	1	1
100	0	ı	1	1	1
101	0	i	1	1	1
110	0	ì	İ	Ţ	1
111	1	į	1		1
	1	-			

LHS = RHS

Proof by Venn Diagram

→ each variable is represented as a circle

NAND

16.
$$x + \overline{x}y = x + y$$
 $x \cdot (\overline{x} + y) = x \cdot y$ (absorption)

Proof:

LHS = $(x + x)(x + y)$ (distributive)

= $x + y$

= $x + y$

= $x + y$

N	OR		_			
	20-	 =	1	<u> [</u>	>>-	
(1 802)	NOR					
) O)					
0 1	0					
0	0					
1 1	Δ.					