DEPARTAMENTO DE GESTÃO

Gestão

2014 / 2015

Exercícios Práticos

Módulo 7

Avaliação de Projectos de Investimentos

Um empresário pretende estudar dois projectos de investimento que apresentam os seguintes cash-flow anuais em euros.

Anos	Investimento A	Investimento B
0	-1.150.000	-1.950.000
1	-500.000	2.400.000
2	900.000	-
3	1.500.000	-

Considere que a taxa anual das obrigações do tesouro é 4,5% e que o prémio de risco do investimento A é 3,74% e do investimento B é 2%. Calcule para os dois investimentos:

- a) O valor actual líquido.
- b) A taxa interna de rentabilidade.
- c) O prazo de recuperação
- d) Indique justificando que decisão aconselharia o empresário a tomar se os investimentos fossem independentes.
- e) Manteria a mesma orientação da decisão se os investimentos fossem mutuamente exclusivos.

Resolução:

a) VAL ?
$$i_A$$
 = 4,5 + 3,74 = 8,24% i_B = 4,5 + 2 = 6,5%
$$VAL_A = -1150000 - 500000^*1,0824^{-1} + 900000^*1,0824^{-2} + 1500000^*1,0824^{-3} = 339095,73$$

$$VAL_B = -1950000 + 2400000^*1,065^{-1} = 303521$$

b) Projecto A TIR?

$$\begin{array}{l} -115000 - 500000 \, / \, (1 + TIR \,) + 900000 \, / \, (1 + TIR)^2 + 1500000 \, / \, (1 + TIR \,)^3 = 0 \\ VAL_{A(15\%)} = \, 82021 > 0 \qquad TIR > 15\% \\ VAL_{A(16\%)} = \, 48799 > 0 \qquad TIR > 16\% \\ VAL_{A(17\%)} = \, 16668 > 0 \qquad TIR > 17\% \\ VAL_{A(18\%)} = -14417 > 0 \qquad TIR < 18\% \\ 17\% < TIR < 18\% \\ Interpolação linear \end{array}$$

$$(0.17 - TIR) / (16668 - 0) = (TIR - 0.18) / (0 - (-14417))$$

 $14417 * (0.17 - TIR) = 16668 * (TIR - 0.18)$
 $TIR = 17,532\%$

Ou

$$VAL_{A(17\%)} = 16668 > 0$$
 TIR > 17%
 $VAL_{A(18\%)} = -14417 > 0$ TIR < 18%

$$0.01 * (-16668) = (TIR - 0.17) * (-31085)$$

$$-166,68 = -31085 \text{ TIR} + 5284,45$$

$$31085 \text{ TIR} = 5451,13$$

$$TIR = 0.175336$$
 $TIR \cong 17.5362\%$

Projecto B TIR?

A TIR é obtida por interpolação linear utilizando o procedimento para o Projecto A

$$-1950000 + 2400000 / (1 + TIR) = 0$$
 TIR = 23,077%

- c) $2 < PR_{A(8,24\%)} < 3$ porque o cash-flow torna-se positivo no 3° ano. $0 < PR_{B(6,50\%)} < 1$ porque o cash-flow torna-se positivo no 1° ano.
 - d) $VAL_A > 0$ $i_A = 17,532\% > i = 8,24\%$ $VAL_B > 0$ $i_B = 23,077\% > i = 6,50\%$ Ambos os projectos devem ser executados
 - e) Não, deveria ser executado o projecto A, em detrimento do projecto B, porque $VAL_{A} > VAL_{B} \label{eq:VAL}$

Questão 02

Considere dois projectos de investimento, A e B, mutuamente exclusivos, que apresentam os seguintes cash-flows (em euros):

Anos	Projecto A	Projecto B
1	45000	25000
2	15000	70000
3	5000	100000
4		150000
5		180000
6		250000

Os custos de investimento são os sguintes: 50000 euros para o projecto A e 500000 euros para o Projecto B (ambos ocorrem na data em que se inicia a implementação do projecto). Os valores residuais estimados são os seguintes: 2000 euros para o Projecto A e 5000 euros para o Projecto B. Tendo em conta estas informações, pretende-se que:

a) Assumindo uma taxa anual de actualização de 10%, diga qual é o projecto mais aconselhável segundo o critério do VAL.

Trata-se de dois projectos mutuamente exclusivo, logo só se pode implementar um deles.

$$VAL_A = -50000 + 45000*(1,10)^{-1} + 15000*(1,10)^{-2} + 15000*(1,10)^{-3} + 2000*(1,10)^{-3}$$
 = 8564,99 euros

$$VAL_B = -500000 + 25000^*(1,10)^{-1} + 70000^*(1,10)^{-2} + 100000^*(1,10)^{-3} + 150000^*(1,10)^{-4} + 180000^*(1,10)^{-5} + 250000^*(1,10)^{-6} + 5000^*(1,10)^{-6} = 13868,70 \ euros.$$

Utilizando uma taxa anual de actualização de 10%, o Projecto B é melhor, uma vez que apresenta um VAL mais elevado.

b) Determine, em termos aproximados, a TIR associada a cada um dos projectos de investimento.

A TIR é obtida por interpolação linear para ambos os projectos (Ver solução da

questão 01)

```
Projecto A -50000 + 45000*(1+TIR)^{-1} + 15000*(1+TIR)^{-2} + 15000*(1+TIR)^{-3} + 2000*(1+TIR)^{-3}
= 0
```

```
Proejcto B  -500000 + 25000*(1+TIR)^{-1} + 70000*(1+TIR)^{-2} + 100000*(1+TIR)^{-3} + 150000*(1+TIR)^{-4} + 180000*(1+TIR)^{-5} + 250000*(1+TIR)^{-6} + 5000*(1+TIR)^{-6}  = 0
```

 $TIR_A = 23,478053\%$

 $TIR_B = 10,707674\%$

Que projecto escolheria? O projecto A porque tem a TIR maior. E se o critério fosse o VAL qual seria o projecto escolhido? Justifique.

O investimento A tem uma despesa de investimento inicial de 100.000 euros, receitas de 40.000 euros nos primeiros 3 anos e de 50.000 euros nos restantes 3, despesas de funcionamento anuais de 10.000 euros e um valor residual de 15.000 euros.

O investimento B engloba uma despesa de inevstimento inicial de 40.000 euros, receitas e despesas anuais de 20.000 euros e de 5.000 euros e , um valor residual de 7.000 euros ao fim de 6 anos

admitindo uma taxa de actualização de 10%, calcule o VAL e a TIR e identifique a decisão a tomar caso os investimentos fossem independentes.

Cálculo do VAL e da TIR

A TIR é obtida por interpolação linear para ambos os projectos (Ver solução da

questão 01)

Projecto A

 $VAL_{10\%} = 57809,02 \text{ euros}$

TIR = $0.259653931 \cong 26\%$

Projecto B

 $VAL_{10\%} = 29280.23$ euros

A TIR é obtida por interpolação linear

TIR = $0.312267029 \cong 31\%$

Critérios de decisão para projetos:

Independentes

Ambos os projectos deveriam ser executados:

 $VAL_A > 0$ $TIR_A = 26\% > 10\%$

 $VAL_A > 0$ $TIR_A = 31\% > 10\%$

Para um investimento de 400000 euros com a duração de 5 anos que produz os seguintes cashflows:

Anos	1	2	3	4	5
Cashflows	200000	200000	200000	200000	200000

Nota: Valores em euros

4.1 Calcule o VAL para uma taxa de actaulização de 20%

$$VAL = -400000 + 200000 * (1+0,2)^{-1} + 200000 * (1+0,2)^{-2} + 200000 * (1+0,2)^{-3} + 200000 * (1+0,2)^{-4} + 200000 * (1+0,2)^{-5} = 198300 \ euros$$

4.2 – Calcule a TIR

Interpolação linear

$$VAL_{34\%}\ =1465$$

$$VAL_{35\%} = -626$$

$$0.01 * (-1465) = (TIR - 0.34) * (-626 - 1465)$$

$$-14,65 = -2091 \text{ TIR} + 710,94$$

$$2091 \text{ TIR} = 710,94 + 14,65$$

$$TIR = 0.347006$$
 $TIR \cong 34,7006\%$

Para um investimento de 10000 euros com a duração de 2 anos que gera os seguintes cashflows:

Anos	1	2
Cashflows	12000	12000

Nota: Valores em euros

Calcule o valor da TIR

1^a alternativa

A TIR é a taxa que torna o VAL = 0

$$VAL = -10000 + 12000 / (1+TIR)^{1} + 12000 / (1+TIR)^{2}$$

Se
$$VAL = 0$$

$$0 = -10000 + 12000 / (1 + TIR)^{1} + 12000 / (1 + TIR)^{2}$$

Desembaraçar de denominadores para obter uma equação do 2º grau

$$0 = -10000 * (1+TIR)^2 + 12000 * (1+TIR)^1 + 12000$$

Equação do 2º grau

$$0 = 14000 - 8000 \text{ TIR} - 10000 \text{ TIR}^2$$

Passando os termos do segundo membro para o primeiro membro e dividindo todos os termos por 10000, temos:

$$TIR^2 + 0.8 TIR - 1.4 = 0$$

Aplica-se a fórmula resolvente para obter as raízes da equação do 2º grau

$$TIR_1 = (-0.8 + (0.64 + 5.6)^{0.5}) / 2 = 0.849$$
 $TIR_1 = 84.9\%$

$$TIR_2 = (-0.8 - (0.64 + 5.6)^{0.5}) / 2 = -1.649$$
 $TIR_1 = -164.9\%$

O valor da TIR será o valor positivo obtido através da fórmula resolvente, isto é,

TIR = 84,9%. Não faria qualquer sentido que o valor da TIR fosse um valor negativo, porque a TIR é uma taxa de rendibilidade e logo deve apresentar o maoir valor positivo para que um projecto de investimento possa ser aceite pelo investidor. Assim, abandona-se a segunda solução obtida através da fórmula resolvente (o valor da TIR = -164,9%).

2^a alternativa

$$(1 + TIR)^{-1} = v$$

 $0 = -10000 + 12000 (1 + TIR)^{-1} + 12000 (1 + TIR)^{-2}$
 $0 = -10000 + 12000 v + 12000 v^{2}$ (equação do 2º grau)
 $1,2 v^{2} + 1,2 v - 1 = 0$

Aplicando a fórmula resolvente, teremos:

$$v1 = 0,540833$$
 $v1 = 1 / (1+TIR1)$ $TIR1 = 0,8489996$ $TIR1 = 84,9%$ $v2 = -1,540833$ $v2 = 1 / (1+TIR2)$ $TIR2 = -1,6489996$ $TIR2 = -164,9%$

O valor da TIR será o valor positivo obtido, isto é, TIR = 84,9%.