

Universidad Alfonso X El Sabio

Grado en Ingeniería Matemática GESTION DE DATOS

Caso número 1 GD

INTEGRANTES: Sánchez Escribano, José Antonio

29 de marzo de 2025

Índice

Ín	Índice				
1.	Introduction	1			
2.	Metodología	1			
	2.1. Análisis inicial del Data Lake en Azure				
	2.2. Análisis de Relaciones entre Tablas				
	2.3. Estructura Final de Datos	2			
3.	Transformación del Modelo de Datos	3			
	3.1. Consolidación de Tablas	3			
	3.2. Procesamiento Técnico de Datos				
	3.3. Migración Automatizada	4			
4.	Construcción del Modelo Predictivo	4			
	4.1. Creación de la Variable Objetivo (Churn)	4			
	4.2. Resultados del Modelo	4			
	1.2. 1.0.0.1.1.0.1.0.1.1.1.1.1.1.1.1.1.1.1.	-			
5 .	Análisis del Valor del Cliente (CLTV)	5			
	5.1. Relaciones Clave	5			
	5.2. Fórmula Básica	5			
	5.3 Interpretación Práctica	5			

1. Introduction

2. Metodología

2.1. Análisis inicial del Data Lake en Azure

Se realizó un exhaustivo análisis de las 19 tablas disponibles en el Data Lake de Azure, identificando su estructura y relaciones. A continuación se detallan las tablas más relevantes:

Cuadro 1: Principales tablas del Data Lake

Tabla	Descripción
001_sales	Datos principales de ventas
002_date	Dimension temporal
003_clientes	Información de clientes
004_rev	Datos de revisiones
005_cp	Códigos postales
006_producto	Catálogo de productos

2.2. Análisis de Relaciones entre Tablas

Tras examinar detenidamente las 19 tablas del sistema, identificamos las siguientes conexiones clave:

Relaciones 1 a N (Uno a Muchos):

- Ejemplo: Un cliente puede tener múltiples ventas registradas, pero cada venta pertenece a un único cliente
- Implementación: Mediante campos como Customer_ID que vinculan tablas

■ Relaciones N a M (Muchos a Muchos):

- Ejemplo: Productos que aparecen en múltiples ventas y ventas que contienen varios productos
- Solución: Implementadas mediante tablas puente especiales

• Casos especiales:

- Campos opcionales (valores nulos) en algunas relaciones
- Conexiones indirectas a través de tablas intermedias
- Relaciones condicionales basadas en criterios de negocio

Resultado del análisis:

- Todas las tablas quedaron interconectadas mediante relaciones directas o indirectas
- Se normalizaron las conexiones para evitar redundancias

2.3. Estructura Final de Datos

Después de analizar toda la información, creamos un sistema organizado donde:

Tabla principal de ventas:

- Contiene todos los registros de transacciones
- Conecta con las demás tablas mediante códigos únicos

■ Tablas complementarias:

- Datos de clientes (quién compra)
- Catálogo de productos (qué se vende)
- Información de tiendas (dónde se vende)
- Calendario (cuándo se vende)

■ Características clave:

- Todas las fechas siguen el mismo formato
- Los productos y clientes tienen identificadores únicos
- Diseño optimizado para generar informes rápidamente

Este sistema nos permite:

- Consultar cualquier venta con todos sus detalles
- Analizar tendencias por producto, tienda o período
- Mantener la información actualizada sin duplicados

3. Transformación del Modelo de Datos

3.1. Consolidación de Tablas

Una vez definido el modelo entidad-relación, simplificamos la estructura original mediante:

• 5 tablas principales:

- FACT_SALES: Tabla maestra con todas las transacciones comerciales
- DIM_CLIENTE: Información unificada de clientes
- DIM_PRODUCTO: Catálogo completo de productos
- DIM_LUGAR: Datos geográficos y de tiendas
- DIM_TIEMPO: Calendario analítico

• Reducción de complejidad:

- De 19 tablas originales a 5 tablas optimizadas
- 112 campos reorganizados lógicamente

3.2. Procesamiento Técnico de Datos

- Tratamiento de valores faltantes (análisis predictivo):
 - ¿Por qué: Los algoritmos de machine learning no pueden trabajar con valores nulos. Para variables numéricas clave usadas en regresión, sustituimos los vacíos por la mediana (no por la media) porque:
 - o La mediana es más robusta contra valores extremos
 - o Mantiene mejor la distribución original de los datos
 - $\circ\;$ Evita sesgos en modelos lineales
 - Implementación: Usamos consultas SQL condicionales que solo aplican este tratamiento a campos específicos seleccionados para modelado.

■ Definición de restricciones de integridad:

- ¿Por qué?: Las Primary Keys (PKs) y Foreign Keys (FKs) son el esqueleto de cualquier base de datos porque:
 - o PKs: Garantizan que cada registro es único (evitan duplicados)
 - o FKs: Mantienen las relaciones lógicas entre tablas (evitan datos huérfanos)
- Cómo: Implementamos mediante ALTER TABLE con verificaciones en dos fases:
 - 1. Primero comprobamos que los datos cumplen las reglas
 - 2. Luego aplicamos las restricciones definitivas

Selección de columnas no nulas (churn):

- ¿Por qué?: Para predecir abandono de clientes necesitamos:
 - o Datos completos en variables críticas (ej: frecuencia de compra)
 - o Consistencia temporal en series históricas
- Implementación: Creamos vistas materializadas con:
 - Clausulas WHERE que filtran registros incompletos
 - o COALESCE para campos opcionales no usados en el modelo

3.3. Migración Automatizada

Desarrollamos un proceso en Python que:

- Extrajo los datos limpios de Azure Data Lake
- Transformó las relaciones complejas en joins optimizados
- Cargó la estructura final en nuestra base de datos local
- Estableció automáticamente las claves primarias y foráneas

4. Construcción del Modelo Predictivo

4.1. Creación de la Variable Objetivo (Churn)

- Definición técnica:
 - Variable binaria: $churn \in \{0, 1\}$
 - Criterio: Cliente inactivo si no realiza revisión en últimos 400 días o si no ha realizado nunca revisión.
 - Lógica: Umbral basado en ciclo de mantenimiento promedio del sector
- Variables clave:
 - PVP: Precio como variable continua
 - Car_Age: Antigüedad del vehículo (normalizada)
 - Km_medio: Kilometraje entre revisiones
 - Revisiones: Frecuencia de mantenimiento

4.2. Resultados del Modelo

Cuadro 2: Métricas de Rendimiento

Métrica	Valor
MSE	0.0276
R ²	0.6774

Cuadro 3: Coeficientes de Regresión

Variable	Coeficiente
PVP	0.000008
avg_car_age	-0.070765
avg_km_revision	0.000016
avg_revisiones	0.118480

Interpretación técnica:

■ $redR^2 = 0.677$: El modelo explica el 67.74 % de la varianza

- redMSE bajo (0.0276): Error cuadrático medio mínimo
- Relaciones significativas:
 - Antigüedad del coche $\uparrow \Rightarrow$ Churn \uparrow (coef. negativo)
 - Revisiones frecuentes $\uparrow \Rightarrow$ Fidelidad \uparrow (coef. positivo)

5. Análisis del Valor del Cliente (CLTV)

5.1. Relaciones Clave

- Retención (R):
 - Probabilidad anual de que el cliente siga activo
 - Directamente proporcional al CLTV
- Margen (M):
 - Beneficio promedio anual por cliente
 - Impacta linealmente en el CLTV

5.2. Fórmula Básica

$$CLTV = \sum_{n=1}^{5} \frac{M \times R^n}{(1,07)^n}$$

5.3. Interpretación Práctica

- Clientes de Alto Valor:
 - Combinan R alta (mayor de 0.6) y M elevado
 - Priorizar retención sobre captación
- Estrategias Óptimas:
 - Inversión en fidelización 30 % del CLTV
 - Descuentos controlados para R menor de 0.5

Cuadro 4: Perfiles de Cliente

Tipo	Rango CLTV	Acción
Premium	Alto	Retención VIP
Estándar	Medio	Upselling
Riesgo	Bajo	Reactivación