Section 29: Introduction to Extension Fields

Goal: The results in this section will allow us to prove that every nonconstant polynomial has a zero.

Def: A field E is an extension field of a field F if $F \leq E$.

Kronecker's Theorem: Let F be a field and let f(x) be a nonconstant polynomial in F[x]. Then there exists an extension field E of F and an $\alpha \in E$ such that $f(\alpha) = 0$.

Proof:

f(x) has a factorization in F[x] into polynomials that are irreducible over F. Let p(x) be an irreducible polynomial in such a factorization. It is E.T.S that there exists an extension field of F that contains a root of p(x). We can get our required extension field by noting that, since $\langle p(x) \rangle$ is a maximal ideal in F[x], $F[x]/\langle p(x) \rangle$ must be a field. To show that F is a subfield of $E = F[x]/\langle p(x) \rangle$, we construct the following map, $\psi: F \to E$ via

$$\psi(a) = a + \langle p(x) \rangle$$

for $a \in F$. ψ is 1-1 since $\psi(a) = \psi(b)$ implies that $a - b \in \langle p(x) \rangle$ and since $a, b \in F$, a - b = 0 and a = b.