Active op amp LPF and HPF

1. Active Inverting Op Amp Low Pass Filter Circuit

Procedure:

Construct the circuit shown, then Fill the following table with $V_{in} = 20 \text{ mV}_{P-P}$ Calculate the output voltage (V_0) and gain (A_0) with frequency starting from 10 Hz till 1 M Hz.

Frequency (H	10	20	30	50	100	150	200	400	500	800		
V _{in} (mV)		20 mV _{pp}										
V _{out} (mV)												
Gain= A _V												

Frequency (KH z)	1	2	5	10	20	50	80	100	200	500	
V _{in} (mV)	20 mV _{pp}										
V _{out} (mV)											
Gain= A _v											

Frequency (MH z)	1	1.5	2	2.5	3	3.5	4	4.5	5	10	
V _{in} (mV)		20 mV _{pp}									
V _{out} (mV)											
Gain= A _v											

Plot a graph showing the relation between the gain (A_V) and frequency (Hz).

From graph determine:

 $Maximum\ gain\ A_o =$

Lower Cut-off frequency f_L =

2. Active Inverting Op Amp High Pass Filter Circuit

Construct the circuit shown, then Fill the following table with $V_{in} = 20 \text{ mV}_{P-P}$ Calculate the output voltage (V_0) and gain (A_0) with frequency starting from 10 Hz till 1 M Hz.

Frequency (H	10	20	30	50	100	150	200	400	500	800	
V _{in} (mV)	20 mV _{pp}										
V _{out} (mV)											
Gain= A _v											
Frequency (KH z)	1	2	5	10	20	50	80	100	200	500	
V _{in} (mV)		20 mV _{pp}									
V _{out} (mV)											
Gain= A _v											

Frequency (MH z)	1	1.5	2	2.5	3	3.5	4	4.5	5	10		
V _{in} (mV)		20 mV _{pp}										
V _{out} (mV)												
Gain= A _v												

Plot a graph showing the relation between the gain (A_V) and frequency (Hz).

From graph determine:

Maximum gain $A_o = \dots$

Lower Cut-off frequency $f_H = \dots$