SMALL CELL NETWORKS: SPEED BASED POWER ALLOCATION

by

Veeraruna Kavitha¹

Along with Veronique Capdevielle² and Manu K. Gupta¹

¹Industrial Engineering and Operations Research Indian Institute of Technology, Bombay

²Alcatel Lucent Bell Labs, France

51st Annual Allerton Conference on Communication, Control and Computing

Outline

- Problem description
- Speed dependent performance measure
- Maximum velocity supported by system
- Optimal power: finite number of classes
- Continuous optimal power law
- Numerical results
- Conclusions and future directions

Problem description

User 1: Receives rate r_N User 2: Receives rate r₂

- Short radius cell network.
- Good service to cell edge users.

Problem description contd..

- Mobility management.
- Increase in handover rate.
- Unacceptable rate of call drop.
- Optimal cell size increases with velocity.
- Increase power.

Power allocation

- Allocate power based on speed.
 - Finite number of velocity classes.
 - Allocate equal power to each class.
 - Continuous power allocation.
 - Allocate power based on exact speed.
- Discrete law converges to continuous one.

Assumptions

- No interference.
- Symmetry in both directions.
- User speed does not change during call.

Notations and Terminology

• 2*N* disjoint segments $\{A_n\}_{n\in\mathbb{N}}$.

$$\mathbb{A}_n := \left[\frac{(n-1)L}{N}, \frac{nL}{N}\right] \mathbf{1}_{\{n>0\}} + \left[\frac{nL}{N}, \frac{(n+1)L}{N}\right] \mathbf{1}_{\{n<0\}}$$

$$\mathbb{N}:=\{-N,\cdots,-1,1,\cdots,N\}$$

- Rate regions $\mathbb{R} := \{r_1, \dots, r_N\}$
 - Decreasing set
- Path loss factor β

Notations and Terminology

- Poisson Arrivals
 - External arrivals
 - Arrival from external world (λ_e) .
 - Handover arrivals
 - sub-stream of external arrivals whose service is not completed in the previous cell (λ_h) .
- Velocity of user (V)
- Number of bytes to be transmitted $S \sim expo(\mu)$
- Resources
 - K number of servers.
- Probabilistic arrival in each segment
 - Position of arrival with distribution $\Pi := \{\pi_n\}_n$
- Information to initiate the HO
 - extra bytes to be exchanged: $s_h \ll S$

Speed dependent performance measure

- Hand over probability
 - Probability of External call handing over $(P_{e,ho})$
 - Probability of HO call again handing over $(P_{h,ho})$
- Expected service time
- HO arrival rate $(\lambda_{h;L})$
- Overall expected service time

$$ar{b} = \left(rac{\lambda_L}{\lambda_L + \lambda_{h,L}}b_e + rac{\lambda_{h,L}}{\lambda_L + \lambda_{h,L}}b_h
ight).$$

Speed dependent performance measure

Load factor (ρ)

$$\rho = \frac{1}{K} (\lambda_L + \lambda_{h,L}) \bar{b}.$$

Busy probability (M/G/K/K queue)

$$P_{Busy} = \frac{\rho^K / K!}{\sum_{k=0}^K \rho^k / k!}$$
 (Erlang loss formulae)

Claim

Optimizers of ρ and P_{busy} are same.

Maximum velocity supported by system

Useful communication is possible only if

$$g^N(L) > s_h$$
 a.s.

Theorem

When $\beta > 1$, there exists a limit on the maximum velocity that can be supported by the system for a given power P

$$V_{lim}(P) := \frac{1}{s_h} r_0 \sum_{n=-N}^{N} |n|^{-\beta} P d_0^{1-\beta}. \quad \Box$$

Optimal power: Finite number of classes

• Divide users in I disjoint intervals based on speed

Theorem

Assume $C_{h,ho} - \mu s_h C_{e,ho} > 0$ and assume that the following matrix is positive definite,

$$\mathcal{P}_{V} := \begin{bmatrix} p_{1} + \frac{p_{1}^{2}}{p_{I}} & \frac{p_{1}p_{2}}{p_{I}} & \cdots & \frac{p_{1}p_{I-1}}{p_{I}} \\ \frac{p_{1}p_{2}}{p_{I}} & p_{2} + \frac{p_{2}^{2}}{p_{I}} & \cdots & \frac{p_{2}p_{I-1}}{p_{I}} \\ & & \vdots & \\ \frac{p_{1}p_{I-1}}{p_{I}} & \frac{p_{I-1}p_{2}}{p_{I}} & \cdots & p_{I-1} + \frac{p_{I-1}^{2}}{p_{I}} \end{bmatrix} > 0.$$

Then the power allocation that minimizes ρ while satisfying the average power constraint equals:

$$P_i^*(L; \bar{P}) = \bar{P} + \frac{\mu s_h L^{\beta - 1}}{C_{h,ho}} \left(\frac{1}{\Upsilon_i} - \sum_i p_j \frac{1}{\Upsilon_j} \right). \tag{1}$$

Continuous optimal power law

Accurate estimate of velocity.

Optimal power law that optimizes load factor ρ , and satisfies

$$\int_{V_{min}}^{V_{max}} P(v) p_V(v) d(v) \le \bar{P}.$$

Theorem

The power function $P^*(.)$ that optimizes ρ , while satisfying the average power constraint equals:

$$P^{*}(v) = \bar{P} + \frac{1}{C_{h ho}} \mu s_{h} L^{\beta - 1} \left(v - E[V] \right). \quad \Box$$
 (2)

Numerical results

 More the losses (path-loss factor) are, more diverse the two allocated powers are.

Power allocated optimally to two user classes

Numerical results contd...

Comparison of performance with and without optimal power allocation

Numerical results contd...

 ρ^* decreases with number of classes and approaches to continuous law

Conclusions

- Model to incorporate speed based design variation in allocated power.
- Closed form expression for optimal power allocation.
 - optimal for busy/drop probability
 - Discrete power law
 - continuous power law (fine optimal power control)
- Linear variation in optimal power with user speed
- Large improvement in busy probability with optimal power law
- Best improvement with continuous power law.

Thank you!!!