#3

SEQUENCE LISTING

MEZARTHY, Sean A
PRASER, Christopher C
SHARP, John D
BARNES, Thomas S
KIRST, Susan J
MYERS, Paul S
WRIGHTON, Nicholas
GOODEARL, Andrew
HOLTZMAN, Douglas A
KHODADOUST, Mehran M

<120> NOVEL GENES ENCODING PROTEINS HAVING PROGNOSTIC, DIAGNOSTIC,
PREVENTIVE, THERAPEUTIC, AND OTHER USES

- <130> 10147-65
- <140> 09/766,511
- <141> 2001-01-19
- <150> US 09/578,063
- <151> 2000-05-24
- <150> US 09/333,159
- <151> 1999-06-14
- <150> US 09/596,194
- <151> 2000-06-16
- <150> US 09/342,364
- <151> 1999-06-29
- <150> US 09/608,452
- <151> 2000-06-30
- <150> US 09/393,996
- <151> 1999-09-10
- <150> US 09/345,680
- <151> 1999-06-30
- <160> 85
- <170> PatentIn version 3.1
- <210> 1
- <211> 2964
- <212> DNA
- <213> Homo sapiens
- <400> 1

gtcgacccac gcgtccgcgg acgcgtgggg acggctcccg gctgcagtct gcccgcccgc 60
cccgcgcggg ggccgagtcg cgaagcgcc ctgcgacccg gcgtccgggc gcgctggaga 120
ggacgcgagg agccatgagg cgccagcctg cgaaggtggc ggcgctgctg ctcgggctgc 180
tcttggagtg cacagaagcc aaaaagcatt gctggtattt cgaaggactc tatccaacct 240

attatatatg ccgctcctac gaggactgct gtggctccag gtgctgtgtg cgggccctct 300 ccatacagag gctgtggtac ttctggttcc ttctgatgat gggcgtgctt ttctgctgcg 360 gagccggctt cttcatccgg aggcgcatgt acccccgcc gctgatcgag gagccagcct 420 teaatgtgte etacaceagg cageececaa ateceggeec aggageecag cageegggge 480 cgccctatta cactgaccca ggaggaccgg ggatgaaccc tgtcgggaat tccatggcaa 540 600 tggctttcca ggtcccaccc aactcacccc aggggagtgt ggcctgcccg cccctccag cctactgcaa cacgcctccg cccccgtacg aacaggtagt gaaggccaag tagtggggtg 660 cccacgtgca agaggagaga caggagaggg cctttccctg gcctttctgt cttcgttgat 720 gttcacttcc aggaacggtc tcgtgggctg ctaagggcag ttcctctgat atcctcacag 780 caagcacage tetettteag gettteeatg gagtacaata tatgaaetea eaetttgtet 840 cetetgttge ttetgtttet gaegeagtet gtgeteteae atggtagtgt ggtgaeagte 900 cccgagggct gacgtcctta cggtggcgtg accagatcta caggagagag actgagagga 960 agaaggcagt gctggaggtg caggtggcat gtagaggggc caggccgagc atcccaggca 1020 agcatectte tgecegggta ttaataggaa geceeatgee gggeggetea geegatgaag 1080 cagcagccga ctgagctgag cccagcaggt catctgctcc agcctgtcct ctcgtcagcc 1140 ttcctcttcc agaagctgtt ggagagacat tcaggagaga gcaagcccct tgtcatgttt 1200 ctgtctctgt tcatatccta aagatagact tctcctgcac cgccagggaa gggtagcacg 1260 tgcagctctc accgcaggat ggggcctaga atcaggcttg ccttggaggc ctgacagtga 1320 tetgacatee actaageaaa tttatttaaa tteatgggaa ateaetteet geeceaaaet 1380 gagacattgc attttgtgag ctcttggtct gatttggaga aaggactgtt acccattttt 1440 ttggtgtgtt tatggaagtg catgtagagc gtcctgccct ttgaaatcag actgggtgtg 1500 tgtetteeet ggacateaet geeteteeag ggeattetea ggeeeggggg teteetteee 1560 traggraget cragtggtgg gttrtgaagg gtgrtttraa aarggggrar atrtggrtgg 1620 gaagtcacat ggactcttcc agggagagag accagctgag gcgtctctct ctgaggttgt 1680 gttgggtcta agcgggtgtg tgctgggctc caaggaggag gagcttgctg ggaaaagaca 1740 ggagaagtac tgactcaact gcactgacca tgttgtcata attagaataa agaagaagtg 1800 gtcggaaatg cacattcctg gataggaatc acagctcacc ccaggatctc acaggtagtc 1860 tcctgagtag ttgacggcta gcggggagct agttccgccg catagttata gtgttgatgt 1920 gtgaacgctg acctgtcctg tgtgctaaga gctatgcagc ttagctgagg cgcctagatt 1980

actagatgtg	ctgtatcacg	gggaatgagg	tgggggtgct	tatttttaa	tgaactaatc	2040
agagcctctt	gagaaattgt	tactcattga	actggagcat	caagacatct	catggaagtg	2100
gatacggagt	gatttggtgt	ccatgctttt	cactctgagg	acatttaatc	ggagaacctc	2160
ctggggaatt	ttgtgggaga	cacttgggaa	caaaacagac	accctgggaa	tgcagttgca	2220
agcacagatg	ctgccaccag	tgtctctgac	caccctggtg	tgactgctga	ctgccagcgt	2280
ggtacctccc	atgctgcagg	cctccatcta	aatgagacaa	caaagcacaa	tgttcactgt	2340
ttacaaccaa	gacaactgcg	tgggtccaaa	cactcctctt	cctccaggtc	atttgttttg	2400
catttttaat	gtctttattt	tttgtaatga	aaaagcacac	taagctgccc	ctggaatcgg	2460
gtgcagctga	ataggcaccc	aaaagtccgt	gactaaattt	cgtttgtctt	tttgatagca	2520
aattatgtta	agagacagtg	atggctaggg	ctcaacaatt	ttgtattccc	atgtttgtgt	2580
gagacagagt	ttgttttccc	ttgaacttgg	ttagaattgt	gctactgtga	acgctgatcc	2640
tgcatatgga	agtcccactt	tggtgacatt	tectggecat	tcttgtttcc	attgtgtgga	2700
tggtgggttg	tgcccacttc	ctggagtgag	acagctcctg	gtgtgtagaa	ttcccggagc	2760
gtccgtggtt	cagagtaaac	ttgaagcaga	tctgtgcatg	cttttcctct	gcaacaattg	2820
gctcgtttct	cttttttgtt	ctcttttgat	aggatcctgt	ttcctatgtg	tgcaaaataa	2880
aaataaattt	gggcaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	2940
aaaaaaaaa	aaaagggcgg	ccgc				2964

<210> 2

<400> 2

<211> 516

<212> DNA

<213> Homo sapiens

cctccgcccc cgtacgaaca ggtagtgaag gccaag

atgaggcgcc agcctgcgaa ggtggcggcg ctgctgctcg ggctgctctt ggagtgcaca 60 gaagccaaaa agcattgctg gtatttcgaa ggactctatc caacctatta tatatgccgc 120 tectaegagg actgetgtgg etceaggtge tgtgtgeggg eceteteeat acagaggetg 180 tggtacttct ggttccttct gatgatgggc gtgcttttct gctgcggagc cggcttcttc 240 atccggaggc gcatgtaccc cccgccgctg atcgaggagc cagccttcaa tgtgtcctac 300 360 accaggcage ceceaaatee eggeecagga geecageage eggggeegee etattacaet gacccaggag gaccggggat gaaccctgtc gggaattcca tggcaatggc tttccaggtc 420 ccacccaact caccccaggg gagtgtggcc tgcccgcccc ctccagccta ctgcaacacg 480

516

<210> 3

<211> 172

<212> PRT

<213> Homo sapiens

<400> 3

Met Arg Arg Gln Pro Ala Lys Val Ala Ala Leu Leu Leu Gly Leu Leu 1 5 10 15

Leu Glu Cys Thr Glu Ala Lys Lys His Cys Trp Tyr Phe Glu Gly Leu 20 25 30

Tyr Pro Thr Tyr Tyr Ile Cys Arg Ser Tyr Glu Asp Cys Cys Gly Ser 35 40 45

Arg Cys Cys Val Arg Ala Leu Ser Ile Gln Arg Leu Trp Tyr Phe Trp 50 55 60

Phe Leu Leu Met Met Gly Val Leu Phe Cys Cys Gly Ala Gly Phe Phe 65 70 75 80

Ile Arg Arg Met Tyr Pro Pro Pro Leu Ile Glu Glu Pro Ala Phe
85 90 95

Asn Val Ser Tyr Thr Arg Gln Pro Pro Asn Pro Gly Pro Gly Ala Gln 100 105 110

Gln Pro Gly Pro Pro Tyr Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn 115 120 125

Pro Val Gly Asn Ser Met Ala Met Ala Phe Gln Val Pro Pro Asn Ser 130 135 140

Pro Gln Gly Ser Val Ala Cys Pro Pro Pro Pro Ala Tyr Cys Asn Thr 145 150 155 160

Pro Pro Pro Pro Tyr Glu Gln Val Val Lys Ala Lys 165 170

<210> 4

<211> 22

<212> PRT

<213> Homo sapiens

<400> 4

Met Arg Arg Gln Pro Ala Lys Val Ala Ala Leu Leu Gly Leu Leu 1 5 10 15

Leu Glu Cys Thr Glu Ala 20

<210> 5

<211> 150

<212> PRT

<213> Homo sapiens

<400> 5

Lys Lys His Cys Trp Tyr Phe Glu Gly Leu Tyr Pro Thr Tyr Tyr Ile 1 5 10 15

Cys Arg Ser Tyr Glu Asp Cys Cys Gly Ser Arg Cys Cys Val Arg Ala 20 25 30

Leu Ser Ile Gln Arg Leu Trp Tyr Phe Trp Phe Leu Leu Met Met Gly
35 40 45

Val Leu Phe Cys Cys Gly Ala Gly Phe Phe Ile Arg Arg Met Tyr 50 55 60

Pro Pro Pro Leu Ile Glu Glu Pro Ala Phe Asn Val Ser Tyr Thr Arg 65 70 75 80

Gln Pro Pro Asn Pro Gly Pro Gly Ala Gln Gln Pro Gly Pro Pro Tyr 85 90 95

Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn Pro Val Gly Asn Ser Met 100 105 110

Ala Met Ala Phe Gln Val Pro Pro Asn Ser Pro Gln Gly Ser Val Ala 115 120 125

Cys Pro Pro Pro Pro Ala Tyr Cys Asn Thr Pro Pro Pro Pro Tyr Glu 130 135 140

Gln Val Val Lys Ala Lys 145 150

<210> 6

<211> 38

<212> PRT

<213> Homo sapiens

<400> 6

Lys Lys His Cys Trp Tyr Phe Glu Gly Leu Tyr Pro Thr Tyr Tyr Ile 1 5 10 15

Cys Arg Ser Tyr Glu Asp Cys Cys Gly Ser Arg Cys Cys Val Arg Ala 20 25 30

Leu Ser Ile Gln Arg Leu 35

<210> 7

<211> 21

<212> PRT

<213> Homo sapiens

<400> 7

Trp Tyr Phe Trp Phe Leu Leu Met Met Gly Val Leu Phe Cys Cys Gly
1 5 10 15

Ala Gly Phe Phe Ile 20

<210> 8

<211> 91

<212> PRT

<213> Homo sapiens

<400> 8

Arg Arg Arg Met Tyr Pro Pro Pro Leu Ile Glu Glu Pro Ala Phe Asn 1 5 10 15

Val Ser Tyr Thr Arg Gln Pro Pro Asn Pro Gly Pro Gly Ala Gln Gln 20 25 30

Pro Gly Pro Pro Tyr Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn Pro 35 40 45

Val Gly Asn Ser Met Ala Met Ala Phe Gln Val Pro Pro Asn Ser Pro 50 55 60

Gln Gly Ser Val Ala Cys Pro Pro Pro Pro Ala Tyr Cys Asn Thr Pro 65 70 75 80

Pro Pro Pro Tyr Glu Gln Val Val Lys Ala Lys 85 90

```
<210>
       9
<211>
<212>
       DNA
<213> Homo sapiens
<400>
       9
000
<210>
       10
<211>
<212>
       DNA
<213>
       Homo sapiens
<400>
       10
000
<210>
       11
       2915
<211>
<212> DNA
<213> Mus sp.
<400>
      11
gtegacecae gegteeggee gegegteett etgeeggett eagetegtat eeceggagte
                                                                       60
caccegeceg teceggggtg eggactggee etgagetgge egtacagece ggetteggae
                                                                      120
ggtcctcgct ggagccatgg gccgccggct cggcagggtg gcggcgctgc tgctcgggct
                                                                      180
gctagtggag tgcactgagg ccaaaaaaca ttgctggtat tttgaaggac tctatcccac
                                                                      240
atactatata tgccgttcct atgaagactg ctgtggctcc aggtgctgtg tgagggccct
                                                                      300
ttccatacag aggetgtggt attittggtt cetgetgatg atgggtgtge tgttetgetg
                                                                      360
tggtgccggt ttcttcattc gccggcgcat gtatccgcca ccactcattg aggagcccac
                                                                      420
attcaatgtg tectatacca ggeagecace aaateetget eeaggageac ageaaatggg
                                                                      480
accgccatat tacaccgacc ctggaggacc cgggatgaat cctgttggca ataccatggc
                                                                      540
tatggettte caggtecage ceaatteace teacggagge acaacttace caccectee
                                                                      600
tteetaetge aacaegeete caceeeeta tgaacaggtg gtgaaggaca agtagcaaga
                                                                      660
tgctacatca aaggcaaaga ggatggacag gcccttttgt ttaccttccc atcctcaccg
                                                                      720
                                                                      780
atacttgctg atagggtggt ccaagggaaa acttggatat tctcaaagca agcccagctc
tettteaagt ettttgtgga ggacatttga atceacactg teteetetgt tgettetgtt
                                                                      840
tetgatgtag tetgtgetet etgagagagt gtggeaacag teeetgaggg ttgatattee
                                                                      900
tagggtgtcc agggtagatc ctcgggagag aggctaaggg gaaaggaagg catagcctgt
                                                                      960
gtgttagggg gcagataaag tggtcaggct gagataagac tcacatgatg cagtagttgg
                                                                     1020
cagtgaactt cgaagagaca ctatccacca tcccagccca ttctcctaat agaagctgtg
                                                                     1080
```

1140 gggctgtgtt gttgatgctc tttggtctcc actcacattt tgaaaatagg ctttcctctg caggaatagg aaagacccaa gtacatattt gcttccactt aaaaatgagg gtcagaacca 1200 ggcctcagtt ggacatctat agttaaataa aggccattag agaggggaaa tctttaagtt 1260 1320 1380 agtgcatgta ttgaagtgag ggtgtccttt gagatcagat ggggagagtg aactctgcgg ggggtggggt gtctctactc agagggctcc aacacccttt tcttaggtag ttctggtgat 1440 1500 gggttttatg ggcactatag agctgagggg cacattaggc cgggtagtta cattgaccct 1560 agctagggtt gtatgtgatc ccaacagaga tgtgctggcc tcagaagagg ggacgtttgt 1620 1680 ggatagagcc gtgaaaacct acttagttgc acagatgaca taatcaaaag tagagaaaga 1740 agtgtagtta gagatgccat ttcccaggtg agaatcagag ctcatccata gatttacaag 1800 tagtggctgg agttaacagt atggagttct tttcccttgc gtagttagtc acgttgatgt 1860 gtatttaaac ccaggttgag accttgtgta ctaagagcaa ggaagtatag ctaagatgtc tagattattt atatgtagta tggtggggag tggggctgca aggaaggggg ctgacattgt 1920 aaatgagaaa atcagagcca tttgataaac tgttacttgt tggatcaggc atccaaaagt 1980 2040 gtctcttgag tggacattga gtattcttta ccacctacaa gaccaggagg catggtgtca 2100 ttctccattg gggtatttat atgaggtaga ggttcaggaa tcgacagtag ctgtgtgggc 2160 ttagtttaag gactgaaagc atagggactg gtagacagtt tcataggaaa ctgcggggaa ggaatggata cctttaaaga cagtttgtgg atgcagatgc tgccacccat cattgagcac 2220 2280 ccttgtgtct ctggcttcct gtcactggat ccagtacccc tccatgcttg ggtccttgtt ttacataaga caacaaagca caatgtctgc tgtttacaat caagacgact acatggtcca 2340 aacatttett etetetteta teaettgtgg etttaaette eattteetee gtteettttt 2400 aaaatcaaga agcacagtca gagctgcccc tgggattgca tcagggaacg gctgatcaag 2460 gcattcagtg tccatgacta aatcttatct ttttgatagc aaatcctttt aagaaactga 2520 acaattgcta aggctcagca attttatact ccaatgtctg tgtaaggtaa attttgtttg 2580 2640 ccattgagcc cacattggaa ttccttctga cgtcaacact gacaatgcct atggaaattg cacttctggg tatatgtccc agcatccttg ttttcttatg tttggtgagt aaggctcacc 2700 2760 cettecagea getetaette tgtgtgetga ggteetgtag ageegggget tgggeacaga catgaggcag acttgtgcat gctctttctt ggcaacactt ggctcatatt tcttgttctc 2820

ttttgataga gtcctgtttc	ctatgtattt	aaaaaataat	aaaagtgaat ttagtca	aaa 2880
aaaaaaaaaa aaaaaaaaaa	aaaaagggcg	gccgc		2915
<210> 12 <211> 516 <212> DNA <213> Mus sp.				
<400> 12 atgggccgcc ggctcggcag	ggtggcggcg	ctgctgctcg	ggctgctagt ggagtgc	act 60
gaggccaaaa aacattgctg	gtattttgaa	ggactctatc	ccacatacta tatatgo	cgt 120
tcctatgaag actgctgtgg	ctccaggtgc	tgtgtgaggg	ccctttccat acagagg	gctg 180
tggtattttt ggttcctgct	gatgatgggt	gtgctgttct	gctgtggtgc cggtttc	cttc 240
attcgccggc gcatgtatcc	gccaccactc	attgaggagc	ccacattcaa tgtgtcc	ctat 300
accaggcage caccaaatco	tgctccagga	gcacagcaaa	tgggaccgcc atattac	cacc 360
gaccctggag gacccgggat	gaatcctgtt	ggcaatacca	tggctatggc tttccag	ggtc 420
cageceaatt caceteaegg	aggcacaact	tacccacccc	ctccttccta ctgcaac	cacg 480
cctccacccc cctatgaaca	ggtggtgaag	gacaag		516
<210> 13 <211> 172 <212> PRT <213> Mus sp.				
Met Gly Arg Arg Leu (Gly Arg Val	Ala Ala Leu 10	Leu Leu Gly Leu Le 15	eu
Val Glu Cys Thr Glu <i>I</i> 20	Ala Lys Lys	His Cys Trp 25	Tyr Phe Glu Gly Le	eu
Tyr Pro Thr Tyr Tyr 35	Ile Cys Arg 40	Ser Tyr Glu	Asp Cys Cys Gly So	er
Arg Cys Cys Val Arg 1	Ala Leu Ser 55	Ile Gln Arg	Leu Trp Tyr Phe T	rp
Phe Leu Leu Met Met (Gly Val Leu 70	Phe Cys Cys	Gly Ala Gly Phe Pi	
Ile Arg Arg Arg Met '	Tyr Pro Pro	Pro Leu Ile 90	Glu Glu Pro Thr P	he

Asn Val Ser Tyr Thr Arg Gln Pro Pro Asn Pro Ala Pro Gly Ala Gln
100 105 110

Gln Met Gly Pro Pro Tyr Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn 115 120 125

Pro Val Gly Asn Thr Met Ala Met Ala Phe Gln Val Gln Pro Asn Ser 130 135 140

Pro His Gly Gly Thr Thr Tyr Pro Pro Pro Pro Ser Tyr Cys Asn Thr 145 150 155 160

Pro Pro Pro Pro Tyr Glu Gln Val Val Lys Asp Lys 165 170

<210> 14

<211> 0

<212> DNA

<213> Mus sp.

<400> 14

000

<210> 15

<211> 150

<212> PRT

<213> Mus sp.

<400> 15

Lys Lys His Cys Trp Tyr Phe Glu Gly Leu Tyr Pro Thr Tyr Tyr Ile 1 5 10 15

Cys Arg Ser Tyr Glu Asp Cys Cys Gly Ser Arg Cys Cys Val Arg Ala 20 25 30

Leu Ser Ile Gln Arg Leu Trp Tyr Phe Trp Phe Leu Leu Met Met Gly 35 40 45

Val Leu Phe Cys Cys Gly Ala Gly Phe Phe Ile Arg Arg Met Tyr 50 55 60

Pro Pro Pro Leu Ile Glu Glu Pro Thr Phe Asn Val Ser Tyr Thr Arg 65 70 75 80

Gln Pro Pro Asn Pro Ala Pro Gly Ala Gln Gln Met Gly Pro Pro Tyr 85 90 95

```
105
           100
Ala Met Ala Phe Gln Val Gln Pro Asn Ser Pro His Gly Gly Thr Thr
                                               125
                           120
Tyr Pro Pro Pro Pro Ser Tyr Cys Asn Thr Pro Pro Pro Pro Tyr Glu
                                           140
   130
                       135
Gln Val Val Lys Asp Lys
145
<210> 16
<211> 0
<212> DNA
<213> Mus sp.
<400> 16
                                                                     3
000
<210> 17
<211> 0
<212> DNA
<213> Mus sp.
<400> 17
                                                                      3
000
<210> 18
<211> 0
<212> DNA
<213> Mus sp.
<400> 18
                                                                      3
000
<210> 19
<211> 0
<212> DNA
<213> Mus sp.
<400> 19
000
<210> 20
<211> 0
<212> DNA
<213> Mus sp.
```

Tyr Thr Asp Pro Gly Gly Pro Gly Met Asn Pro Val Gly Asn Thr Met

<400> 20

000

<210> 21 <211> 2169

<212> DNA

<213> Homo sapiens

<400> 21

60 gtcgacccac gcgtccggaa atgtcgttct tcagatttaa aaagaaaacc tttactgaat cagctgagtg ttaataatac gaatttcctt ttcttgccaa ttctgatctg aacagaaaat 120 ccaagaacag ggatatgtgt ggattacagt tttctctgcc ttgcctacga ctgtttctgg 180 240 ttgttacctg ttatctttta ttattactcc acaaagaaat acttggatgt tcgtctgttt 300 gtcagctctg cactgggaga caaattaact gccgtaactt aggcctttcg agtattccta agaattttcc tgaaagtaca gtttttctgt atctgactgg gaataatata tcttatataa 360 atgaaagtga attaacagga cttcattctc ttgtagcatt gtatttggat aattctaaca 420 ttctgtatgt atatccaaaa gcctttgttc aattgaggca tctatatttt ctatttctaa 480 ataataattt catcaaacgc ttagatcctg gaatatttaa gggactttta aatcttcgta 540 600 atttatattt acagtataat caggtatctt ttgttccgag aggagtattt aatgatctag tttcagttca gtacttaaat ctacaaagga atcgcctcac tgtccttggg agtggtacct 660 720 ttgttggtat ggttgctctt cggatacttg atttatcaaa caataacatt ttgaggatat 780 cagaatcagg ctttcaacat cttgaaaacc ttgcttgttt gtatttagga agtaataatt 840 taacaaaagt accatcaaat gcctttgaag tacttaaaag tcttagaaga ctttctttgt 900 ctcataatcc tattgaagca atacagccct ttgcatttaa aggacttgcc aatctggaat acctcctcct gaaaaattca agaattagga atgttactag ggatgggttt agtggaatta 960 1020 ataatcttaa acatttgatc ttaagtcata atgatttaga gaatttaaat tctgacacat tcagtttgtt aaagaattta atttacctta agttagatag aaacagaata attagcattg 1080 ataatgatac atttgaaaat atgggagcat ctttgaagat ccttaatctg tcatttaata 1140 atcttacage ettgeateca agggteetta ageegttgte tteattgatt catetteagg 1200 1260 caaattctaa tccttgggaa tgtaactgca aacttttggg ccttcgagac tggctagcat cttcagccat tactctaaac atctattgtc agaatccccc atccatgcgt ggcagagcat 1320 1380 tacgttatat taacattaca aattgtgtta catcttcaat aaatgtatcc agagcttggg ctgttgtaaa atctcctcat attcatcaca agactactgc gctaatgatg gcctggcata 1440 aagtaaccac aaatggcagt cctctggaaa atactgagac tgagaacatt actttctggg 1500 aacgaattcc tacttcacct gctggtagat tttttcaaga gaatgccttt ggtaatccat 1560 tagagactac agcagtgtta cctgtgcaaa tacaacttac tacttctgtt accttgaact 1620 1680 tggaaaaaaa cagtgctcta ccgaatgatg ctgcttcaat gtcagggaaa acatctctaa tttgtacaca agaagttgag aagttgaatg aggcttttga cattttgcta gctttttca 1740 tottagettg tgttttaate atttttttga tetacaaagt tgttcagttt aaacaaaaac 1800 taaaggcatc agaaaactca agggaaaata gacttgaata ctacagcttt tatcagtcag 1860 caaggtataa tgtaactgcc tcaatttgta acacttcccc aaattctcta gaaagtcctg 1920 gcttggagca gattcgactt cataaacaaa ttgttcctga aaatgaggca caggtcattc 1980 tttttgaaca ttctgcttta taactcaact aaatattgtc tataagaaac ttcagtgcca 2040 tggacatgat ttaaactgaa acctccttat ataattatat actttagttg gaaatataat 2100 2160 2169 ggcggccgc

<210> 22

<211> 1866

<212> DNA

<213> Homo sapiens

<400> 22

60 atgtgtggat tacagttttc tctgccttgc ctacgactgt ttctggttgt tacctgttat cttttattat tactccacaa agaaatactt ggatgttcgt ctgtttgtca gctctgcact 120 180 gggagacaaa ttaactgccg taacttaggc ctttcgagta ttcctaagaa ttttcctgaa agtacagttt ttctgtatct gactgggaat aatatatctt atataaatga aagtgaatta 240 300 acaggacttc attctcttgt agcattgtat ttggataatt ctaacattct gtatgtatat ccaaaagcct ttgttcaatt gaggcatcta tattttctat ttctaaataa taatttcatc 360 aaacgcttag atcctggaat atttaaggga cttttaaatc ttcgtaattt atatttacag 420 tataatcagg tatcttttgt tccgagagga gtatttaatg atctagtttc agttcagtac 480 ttaaatctac aaaggaatcg cctcactgtc cttgggagtg gtacctttgt tggtatggtt 540 gctcttcgga tacttgattt atcaaacaat aacattttga ggatatcaga atcaggcttt 600 660 caacatcttg aaaaccttgc ttgtttgtat ttaggaagta ataatttaac aaaagtacca tcaaatgcct ttgaagtact taaaagtctt agaagacttt ctttgtctca taatcctatt 720 780 gaagcaatac agccctttgc atttaaagga cttgccaatc tggaatacct cctcctgaaa aattcaagaa ttaggaatgt tactagggat gggtttagtg gaattaataa tcttaaacat 840 ttgatcttaa gtcataatga tttagagaat ttaaattctg acacattcag tttgttaaag 900 aatttaattt accttaagtt agatagaaac agaataatta gcattgataa tgatacattt 960 gaaaatatgg gagcatcttt gaagatcctt aatctgtcat ttaataatct tacagccttg 1020 catccaaggg teettaagee gttgtettea ttgatteate tteaggeaaa ttetaateet 1080 tgggaatgta actgcaaact tttgggcctt cgagactggc tagcatcttc agccattact 1140 ctaaacatct attgtcagaa tcccccatcc atgcgtggca gagcattacg ttatattaac 1200 attacaaatt gtgttacatc ttcaataaat gtatccagag cttgggctgt tgtaaaatct 1260 cctcatattc atcacaagac tactgcgcta atgatggcct ggcataaagt aaccacaaat 1320 ggcagtcctc tggaaaatac tgagactgag aacattactt tctgggaacg aattcctact 1380 tcacctgctg gtagattttt tcaagagaat gcctttggta atccattaga gactacagca 1440 gtgttacctg tgcaaataca acttactact tctgttacct tgaacttgga aaaaaacagt 1500 getetacega atgatgetge tteaatgtea gggaaaacat etetaatttg tacacaagaa 1560 gttgagaagt tgaatgaggc ttttgacatt ttgctagctt ttttcatctt agcttgtgtt 1620 1680 ttaatcattt ttttgatcta caaagttgtt cagtttaaac aaaaactaaa ggcatcagaa aactcaaggg aaaatagact tgaatactac agcttttatc agtcagcaag gtataatgta 1740 1800 actgcctcaa tttgtaacac ttccccaaat tctctagaaa gtcctggctt ggagcagatt cgacttcata aacaaattgt tcctgaaaat gaggcacagg tcattctttt tgaacattct 1860 1866 gcttta

<210> 23

<211> 622

<212> PRT

<213> Homo sapiens

<400> 23

Met Cys Gly Leu Gln Phe Ser Leu Pro Cys Leu Arg Leu Phe Leu Val 1 5 10 15

Val Thr Cys Tyr Leu Leu Leu Leu His Lys Glu Ile Leu Gly Cys
20 25 30

Ser Ser Val Cys Gln Leu Cys Thr Gly Arg Gln Ile Asn Cys Arg Asn 35 40 45

Leu Gly Leu Ser Ser Ile Pro Lys Asn Phe Pro Glu Ser Thr Val Phe 50 55 60

Leu 65	Tyr	Leu	Thr	Gly	Asn 70	Asn	Ile	Ser	Tyr	Ile 75	Asn	Glu	Ser	GIu	Leu 80
Thr	Gly	Leu	His	Ser 85	Leu	Val	Ala	Leu	Tyr 90	Leu	Asp	Asn	Ser	Asn 95	Ile
Leu	Tyr	Val	Tyr 100	Pro	Lys	Ala	Phe	Val 105	Gln	Leu	Arg	His	Leu 110	Tyr	Phe
Leu	Phe	Leu 115	Asn	Asn	Asn	Phe	Ile 120	Lys	Arg	Leu	Asp	Pro 125	Gly	Ile	Phe
Lys	Gly 130	Leu	Leu	Asn	Leu	Arg 135	Asn	Leu	Tyr	Leu	Gln 140	Tyr	Asn	Gln	Val
Ser 145	Phe	Val	Pro	Arg	Gly 150	Val	Phe	Asn	Asp	Leu 155	Val	Ser	Val	Gln	Tyr 160
Leu	Asn	Leu	Gln	Arg 165	Asn	Arg	Leu	Thr	Val 170	Leu	Gly	Ser	Gly	Thr 175	Phe
Val	Gly	Met	Val 180	Ala	Leu	Arg	Ile	Leu 185	Asp	Leu	Ser	Asn	Asn 190	Asn	Ile
Leu	Arg	Ile 195	Ser	Glu	Ser	Gly	Phe 200	Gln	His	Leu	Glu	Asn 205	Leu	Ala	Cys
Leu	Tyr 210		Gly	Ser	Asn	Asn 215	Leu	Thr	Lys	Val	Pro 220	Ser	Asn	Ala	Phe
Glu 225	Val	Leu	Lys	Ser	Leu 230	Arg	Arg	Leu	Ser	Leu 235	Ser	His	Asn	Pro	Ile 240
Glu	Ala	Ile	Gln	Pro 245	Phe	Ala	Phe	Lys	Gly 250		Ala	Asn	Leu	Glu 255	Туг
Leu	Leu	Leu	Lys 260		Ser	Arg	Ile	Arg 265	Asn	Val	Thr	Arg	Asp 270	Gly	Phe
Ser	Gly	lle 275		Asn	. Leu	Lys	His 280		Ile	Leu	Ser	His 285		Asp	Leu
Glu	Asn 290		Asn	Ser	Asp	Thr 295		Ser	Leu	Leu	Lys 300		Leu	Ile	Tyr

Leu 305	Lys	Leu	Asp	Arg	Asn 310	Arg	Ile	Ile	Ser	Ile 315	Asp	Asn	Asp	Thr	Phe 320
Glu	Asn	Met	Gly	Ala 325	Ser	Leu	Lys	Ile	Leu 330	Asn	Leu	Ser	Phe	Asn 335	Asn
Leu	Thr	Ala	Leu 340	His	Pro	Arg	Val	Leu 345	Lys	Pro	Leu	Ser	Ser 350	Leu	Ile
His	Leu	Gln 355	Ala	Asn	Ser	Asn	Pro 360	Trp	Glu	Cys	Asn	Cys 365	Lys	Leu	Leu
Gly	Leu 370	Arg	Asp	Trp	Leu	Ala 375	Ser	Ser	Ala	Ile	Thr 380	Leu	Asn	Ile	Tyr
Cys 385	Gln	Asn	Pro	Pro	Ser 390	Met	Arg	Gly	Arg	Ala 395	Leu	Arg	Tyr	Ile	Asn 400
Ile	Thr	Asn	Cys	Val 405	Thr	Ser	Ser	Ile	Asn 410	Val	Ser	Arg	Ala	Trp 415	Ala
Val	Val	Lys	Ser 420	Pro	His	Ile	His	His 425	Lys	Thr	Thr	Ala	Leu 430	Met	Met
Ala	Trp	His 435	Lys	Val	Thr	Thr	Asn 440	Gly	Ser	Pro	Leu	Glu 445	Asn	Thr	Glu
Thr	Glu 450	Asn	Ile	Thr	Phe	Trp 455	Glu	Arg	Ile	Pro	Thr 460	Ser	Pro	Ala	Gly
Arg 465		Phe	Gln	Glu	Asn 470	Ala	Phe	Gly	Asn	Pro 475	Leu	Glu	Thr	Thr	Ala 480
Val	Leu	Pro	Val	Gln 485	Ile	Gln	Leu	Thr	Thr 490	Ser	Val	Thr	Leu	Asn 495	Leu
Glu	Lys	Asn	Ser 500		Leu	Pro	Asn	Asp 505		Ala	Ser	Met	Ser 510	Gly	Lys
Thr	Ser	Leu 515		Cys	Thr	Gln	Glu 520	Val	Glu	Lys	Leu	Asn 525		Ala	Phe

Asp Ile Leu Leu Ala Phe Phe Ile Leu Ala Cys Val Leu Ile Ile Phe

530 535 540

Leu Ile Tyr Lys Val Val Gln Phe Lys Gln Lys Leu Lys Ala Ser Glu 545 550 555 560

Asn Ser Arg Glu Asn Arg Leu Glu Tyr Tyr Ser Phe Tyr Gln Ser Ala 565 570 575

Arg Tyr Asn Val Thr Ala Ser Ile Cys Asn Thr Ser Pro Asn Ser Leu
580 585 590

Glu Ser Pro Gly Leu Glu Gln Ile Arg Leu His Lys Gln Ile Val Pro 595 600 605

Glu Asn Glu Ala Gln Val Ile Leu Phe Glu His Ser Ala Leu 610 615 620

<210> 24

<211> 31

<212> PRT

<213> Homo sapiens

<400> 24

Met Cys Gly Leu Gln Phe Ser Leu Pro Cys Leu Arg Leu Phe Leu Val 1 5 10 15

Val Thr Cys Tyr Leu Leu Leu Leu His Lys Glu Ile Leu Gly 20 25 30

<210> 25

<211> 591

<212> PRT

<213> Homo sapiens

<400> 25

Cys Ser Ser Val Cys Gln Leu Cys Thr Gly Arg Gln Ile Asn Cys Arg 1 5 10 15

Asn Leu Gly Leu Ser Ser Ile Pro Lys Asn Phe Pro Glu Ser Thr Val 20 25 30

Phe Leu Tyr Leu Thr Gly Asn Asn Ile Ser Tyr Ile Asn Glu Ser Glu 35 40 45

Leu Thr Gly Leu His Ser Leu Val Ala Leu Tyr Leu Asp Asn Ser Asn 50 55 60

Ile 65	Leu	Tyr	Val	Tyr	Pro 70	Lys	Ala	Phe	Val	Gln 75	Leu	Arg	His	Leu	Tyr 80
Phe	Leu	Phe	Leu	Asn 85	Asn	Asn	Phe	Ile	Lys 90	Arg	Leu	Asp	Pro	Gly 95	Ile
Phe	Lys	Gly	Leu 100	Leu	Asn	Leu	Arg	Asn 105	Leu	Tyr	Leu	Gln	Tyr 110	Asn	Gln
Val	Ser	Phe 115	Val	Pro	Arg	Gly	Val 120	Phe	Asn	Asp	Leu	Val 125	Ser	Val	Gln
Tyr	Leu 130	Asn	Leu	Gln	Arg	Asn 135	Arg	Leu	Thr	Val	Leu 140	Gly	Ser	Gly	Thr
Phe 145	Val	Gly	Met	Val	Ala 150	Leu	Arg	Ile	Leu	Asp 155	Leu	Ser	Asn	Asn	Asn 160
				165					170	His				175	
			180					185		Lys			190		
		195					200			Ser		205			
	210					215				Gly	220				
225					230					Asn 235					240
				245					250					255	
			260					265		Leu			270		
Tyr	Leu	Lys 275		Asp	Arg	Asn	Arg 280	Ile	Ile	Ser	IIe	Asp 285	Asn	Asp	Tnr

Phe Glu Asn Met Gly Ala Ser Leu Lys Ile Leu Asn Leu Ser Phe Asn

290 295 300

Asn 305	Leu	Thr	Ala	Leu	His 310	Pro	Arg	Val	Leu	Lys 315	Pro	Leu	Ser	Ser	Leu 320
Ile	His	Leu	Gln	Ala 325	Asn	Ser	Asn	Pro	Trp 330	Glu	Cys	Asn	Cys	Lys 335	Leu
Leu	Gly	Leu	Arg 340	Asp	Trp	Leu	Ala	Ser 345	Ser	Ala	Ile	Thr	Leu 350	Asn	Ile
Tyr	Cys	Gln 355	Asn	Pro	Pro	Ser	Met 360	Arg	Gly	Arg	Ala	Leu 365	Arg	Tyr	Ile
Asn	Ile 370	Thr	Asn	Cys	Val	Thr 375	Ser	Ser	Ile	Asn	Val 380	Ser	Arg	Ala	Trp
Ala 385	Val	Val	Lys	Ser	Pro 390	His	Ile	His	His	Lys 395	Thr	Thr	Ala	Leu	Met 400
Met	Ala	Trp	His	Lys 405	Val	Thr	Thr	Asn	Gly 410	Ser	Pro	Leu	Glu	Asn 415	Thr
Glu	Thr	Glu	Asn 420	Ile	Thr	Phe	Trp	Glu 425	Arg	Ile	Pro	Thr	Ser 430	Pro	Ala
Gly	Arg	Phe 435	Phe	Gln	Glu	Asn	Ala 440	Phe	Gly	Asn	Pro	Leu 445	Glu	Thr	Thr
Ala	Val 450	Leu	Pro	Val	Gln	Ile 455	Gln	Leu	Thr	Thr	Ser 460	Val	Thr	Leu	Asn
Leu 465	Glu	Lys	Asn	Ser	Ala 470	Leu	Pro	Asn	Asp	Ala 475	Ala	Ser	Met	Ser	Gly 480
Lys	Thr	Ser	Leu	Ile 485	Cys	Thr	Gln	Glu	Val 490		Lys	Leu	Asn	Glu 495	Ala
Phe	Asp	Ile	Leu 500		Ala	Phe	Phe	Ile 505	Leu	Ala	Cys	Val	Leu 510	Ile	Ile
Phe	Leu	Ile 515		Lys	Val	Val	Gln 520	Phe	Lys	Gln	Lys	Leu 525		Ala	Ser

Glu Asn Ser Arg Glu Asn Arg Leu Glu Tyr Tyr Ser Phe Tyr Gln Ser 530 540

Ala Arg Tyr Asn Val Thr Ala Ser Ile Cys Asn Thr Ser Pro Asn Ser 545 550 555 560

Leu Glu Ser Pro Gly Leu Glu Gln Ile Arg Leu His Lys Gln Ile Val 565 570 575

Pro Glu Asn Glu Ala Gln Val Ile Leu Phe Glu His Ser Ala Leu 580 585 590

<210> 26

<211> 498

<212> PRT

<213> Homo sapiens

<400> 26

Cys Ser Ser Val Cys Gln Leu Cys Thr Gly Arg Gln Ile Asn Cys Arg 1 5 10 15

Asn Leu Gly Leu Ser Ser Ile Pro Lys Asn Phe Pro Glu Ser Thr Val 20 25 30

Phe Leu Tyr Leu Thr Gly Asn Asn Ile Ser Tyr Ile Asn Glu Ser Glu 35 40 45

Leu Thr Gly Leu His Ser Leu Val Ala Leu Tyr Leu Asp Asn Ser Asn 50 55 60

Ile Leu Tyr Val Tyr Pro Lys Ala Phe Val Gln Leu Arg His Leu Tyr 65 70 75 80

Phe Leu Phe Leu Asn Asn Asn Phe Ile Lys Arg Leu Asp Pro Gly Ile 85 90 95

Phe Lys Gly Leu Leu Asn Leu Arg Asn Leu Tyr Leu Gln Tyr Asn Gln
100 105 110

Val Ser Phe Val Pro Arg Gly Val Phe Asn Asp Leu Val Ser Val Gln
115 120 125

Tyr Leu Asn Leu Gln Arg Asn Arg Leu Thr Val Leu Gly Ser Gly Thr 130 135 140

Phe 145	Val	Gly	Met	Val	Ala 150	Leu	Arg	Ile	Leu	Asp 155	Leu	Ser	Asn	Asn	Asn 160
Ile	Leu	Arg	Ile	Ser 165	Glu	Ser	Gly	Phe	Gln 170	His	Leu	Glu	Asn	Leu 175	Ala
Cys	Leu	Tyr	Leu 180	Gly	Ser	Asn	Asn	Leu 185	Thr	Lys	Val	Pro	Ser 190	Asn	Ala
Phe	Glu	Val 195	Leu	Lys	Ser	Leu	Arg 200	Arg	Leu	Ser	Leu	Ser 205	His	Asn	Pro
Ile	Glu 210	Ala	Ile	Gln	Pro	Phe 215	Ala	Phe	Lys	Gly	Leu 220	Ala	Asn	Leu	Glu
Tyr 225	Leu	Leu	Leu	Lys	Asn 230	Ser	Arg	Ile	Arg	Asn 235	Val	Thr	Arg	Asp	Gly 240
Phe	Ser	Gly	Ile	Asn 245	Asn	Leu	Lys	His	Leu 250	Ile	Leu	Ser	His	Asn 255	Asp
Leu	Glu	Asn	Leu 260	Asn	Ser	Asp	Thr	Phe 265	Ser	Leu	Leu	Lys	Asn 270	Leu	Ile
Tyr	Leu	Lys 275	Leu	Asp	Arg	Asn	Arg 280	Ile	Ile	Ser	Ile	Asp 285	Asn	Asp	Thr
Phe	Glu 290	Asn	Met	Gly	Ala	Ser 295	Leu	Lys	Ile	Leu	Asn 300	Leu	Ser	Phe	Asn
Asn 305	Leu	Thr	Ala	Leu	His 310	Pro	Arg	Val	Leu	Lys 315	Pro	Leu	Ser	Ser	Leu 320
Ile	His	Leu	Gln	Ala 325	Asn	Ser	Asn	Pro	Trp 330	Glu	Cys	Asn	Cys	Lys 335	Leu
Leu	Gly	Leu	Arg 340		Trp	Leu	Ala	Ser 345	Ser	Ala	Ile	Thr	Leu 350	Asn	Ile
Tyr	Cys	Gln 355		Pro	Pro	Ser	Met 360	Arg	Gly	Arg	Ala	Leu 365	Arg	Tyr	Ile
Asn	Ile 370		Asn	Cys	Val	Thr 375		Ser	Ile	Asn	Val 380		Arg	Ala	Trp

Ala Val Val Lys Ser Pro His Ile His His Lys Thr Thr Ala Leu Met 395 390 Met Ala Trp His Lys Val Thr Thr Asn Gly Ser Pro Leu Glu Asn Thr 410 405 Glu Thr Glu Asn Ile Thr Phe Trp Glu Arg Ile Pro Thr Ser Pro Ala 425 Gly Arg Phe Phe Gln Glu Asn Ala Phe Gly Asn Pro Leu Glu Thr Thr 445 440 Ala Val Leu Pro Val Gln Ile Gln Leu Thr Thr Ser Val Thr Leu Asn 455 460 450 Leu Glu Lys Asn Ser Ala Leu Pro Asn Asp Ala Ala Ser Met Ser Gly 480 470 475 465 Lys Thr Ser Leu Ile Cys Thr Gln Glu Val Glu Lys Leu Asn Glu Ala 490 485 Phe Asp <210> 27 <211> 18 <212> PRT <213> Homo sapiens <400> 27 Ile Leu Leu Ala Phe Phe Ile Leu Ala Cys Val Leu Ile Ile Phe Leu 15 10 5 Ile Tyr <210> 28 <211> 75 <212> PRT <213> Homo sapiens <400> 28 Lys Val Val Gln Phe Lys Gln Lys Leu Lys Ala Ser Glu Asn Ser Arg 10 5

Glu Asn Arg Leu Glu Tyr Tyr Ser Phe Tyr Gln Ser Ala Arg Tyr Asn 20 25 30

Val Thr Ala Ser Ile Cys Asn Thr Ser Pro Asn Ser Leu Glu Ser Pro 35 40 45

Gly Leu Glu Gln Ile Arg Leu His Lys Gln Ile Val Pro Glu Asn Glu 50 55 60

Ala Gln Val Ile Leu Phe Glu His Ser Ala Leu 65 70 75

<210> 29

<211> 1529

<212> PRT

<213> Homo sapiens

<400> 29

Met Arg Gly Val Gly Trp Gln Met Leu Ser Leu Ser Leu Gly Leu Val 1 5 10 15

Leu Ala Ile Leu Asn Lys Val Ala Pro Gln Ala Cys Pro Ala Gln Cys 20 25 30

Ser Cys Ser Gly Ser Thr Val Asp Cys His Gly Leu Ala Leu Arg Ser 35 40 45

Val Pro Arg Asn Ile Pro Arg Asn Thr Glu Arg Leu Asp Leu Asn Gly
50 55 60

Asn Asn Ile Thr Arg Ile Thr Lys Thr Asp Phe Ala Gly Leu Arg His 65 70 75 80

Leu Arg Val Leu Gln Leu Met Glu Asn Lys Ile Ser Thr Ile Glu Arg 85 90 95

Gly Ala Phe Gln Asp Leu Lys Glu Leu Glu Arg Leu Arg Leu Asn Arg 100 105 110

Asn His Leu Gln Leu Phe Pro Glu Leu Leu Phe Leu Gly Thr Ala Lys 115 120 125

Leu Tyr Arg Leu Asp Leu Ser Glu Asn Gln Ile Gln Ala Ile Pro Arg 130 135 140

Lys . 145	Ala	Phe	Arg	Gly	Ala 150	Val	Asp	Ile	Lys	Asn 155	Leu	Gln	Leu	Asp	Tyr 160
Asn	Gln	Ile	Ser	Cys 165	Ile	Glu	Asp	Gly	Ala 170	Phe	Arg	Ala	Leu	Arg 175	Asp
Leu	Glu	Val	Leu 180	Thr	Leu	Asn	Asn	Asn 185	Asn	Ile	Thr	Arg	Leu 190	Ser	Val
Ala	Ser	Phe 195	Asn	His	Met	Pro	Lys 200	Leu	Arg	Thr	Phe	Arg 205	Leu	His	Ser
	Asn 210	Leu	Tyr	Cys	Asp	Cys 215	His	Leu	Ala	Trp	Leu 220	Ser	Asp	Trp	Leu
Arg 225	Gln	Arg	Pro	Arg	Val 230	Gly	Leu	Tyr	Thr	Gln 235	Cys	Met	Gly	Pro	Ser 240
His	Leu	Arg	Gly	His 245	Asn	Val	Ala	Glu	Val 250	Gln	Lys	Arg	Glu	Phe 255	Val
Cys	Ser	Gly	His 260	Gln	Ser	Phe	Met	Ala 265	Pro	Ser	Cys	Ser	Val 270	Leu	His
Cys	Pro	Ala 275	Ala	Cys	Thr	Cys	Ser 280	Asn	Asn	Ile	Val	Asp 285	Cys	Arg	Gly
Lys	Gly 290	Leu	Thr	Glu	Ile	Pro 295	Thr	Asn	Leu	Pro	Glu 300	Thr	Ile	Thr	Glu
Ile 305	Arg	Leu	Glu	Gln	Asn 310	Thr	Ile	Lys	Val	Ile 315	Pro	Pro	Gly	Ala	Phe 320
Ser	Pro	Tyr	Lys	Lys 325	Leu	Arg	Arg	Ile	Asp 330	Leu	Ser	Asn	Asn	Gln 335	Ile
Ser	Glu	Leu	Ala 340	Pro	Asp	Ala	Phe	Gln 345	Gly	Leu	Arg	Ser	Leu 350	Asn	Ser
Leu	Val	Leu 355	Tyr	Gly	Asn	Lys	Ile 360	Thr	Glu	Leu	Pro	Lys 365	Ser	Leu	Phe
Glu	Gly 370		Phe	Ser	Leu	Gln 375		Leu	Leu	Leu	Asn 380	Ala	Asn	Lys	Ile

Asn 385	Cys	Leu	Arg	Val	Asp 390	Ala	Phe	Gln	Asp	Leu 395	His	Asn	Leu	Asn	Leu 400	
Leu	Ser	Leu	Tyr	Asp 405	Asn	Lys	Leu	Gln	Thr 410	Ile	Ala	Lys	Gly	Thr 415	Phe	
Ser	Pro	Leu	Arg 420	Ala	Ile	Gln	Thr	Met 425	His	Leu	Ala	Gln	Asn 430	Pro	Phe	
Ile	Cys	Asp 435	Cys	His	Leu	Lys	Trp 440	Leu	Ala	Asp	Tyr	Leu 445	His	Thr	Asn	
Pro	Ile 450	Glu	Thr	Ser	Gly	Ala 455	Arg	Cys	Thr	Ser	Pro 460	Arg	Arg	Leu	Ala	
Asn 465	Lys	Arg	Ile	Gly	Gln 470	Ile	Lys	Ser	Lys	Lys 475	Phe	Arg	Cys	Ser	Ala 480	
Lys	Glu	Gln	Tyr	Phe 485	Ile	Pro	Gly	Thr	Glu 490	Asp	Tyr	Arg	Ser	Lys 495	Leu	
Ser	Gly	Asp	Cys 500	Phe	Ala	Asp	Leu	Ala 505	Cys	Pro	Glu	Lys	Cys 510	Arg	Cys	
Glu	Gly	Thr 515	Thr	Val	Asp	Cys	Ser 520	Asn	Gln	Lys	Leu	Asn 525	Lys	Ile	Pro	
Glu	His 530	Ile	Pro	Gln	Tyr	Thr 535	Ala	Glu	Leu	Arg	Leu 540	Asn	Asn	Asn	Glu	
Phe 545		Val	Leu	Glu	Ala 550	Thr	Gly	Ile	Phe	Lys 555	Lys	Leu	Pro	Gln	Leu 560	
Arg	Lys	Ile	Asn	Phe 565	Ser	Asn	Asn	Lys	Ile 570		Asp	Ile	Glu	Glu 575	Gly	
Ala	Phe	Glu	Gly 580		Ser	Gly	Val	Asn 585	Glu	Ile	Leu	Leu	Thr 590		Asn	
Arg	Leu	Glu 595		Val	Gln	His	Lys 600	Met	Phe	Lys	Gly	Leu 605		Ser	Leu	
Lys	Thr		Met	Leu	Arg	Ser 615		Arg	Ile	Thr	Cys 620		Gly	Asn	Asp	

Ser 625	Phe	Ile	Gly	Leu	Ser 630	Ser	Val	Arg	Leu	Leu 635	Ser	Leu	Tyr	Asp	Asn 640
Gln	Ile	Thr	Thr	Val 645	Ala	Pro	Gly	Ala	Phe 650	Asp	Thr	Leu	His	Ser 655	Leu
Ser	Thr	Leu	Asn 660	Leu	Leu	Ala	Asn	Pro 665	Phe	Asn	Cys	Asn	Cys 670	Tyr	Leu
Ala	Trp	Leu 675	Gly	Glu	Trp	Leu	Arg 680	Lys	Lys	Arg	Ile	Val 685	Thr	Gly	Asn
Pro	Arg 690	Cys	Gln	Lys	Pro	Tyr 695	Phe	Leu	Lys	Glu	Ile 700	Pro	Ile	Gln	Asp
Val 705	Ala	Ile	Gln	Asp	Phe 710	Thr	Cys	Asp	Asp	Gly 715	Asn	Asp	Asp	Asn	Ser 720
Cys	Ser	Pro	Leu	Ser 725	Arg	Cys	Pro	Thr	Glu 730	Cys	Thr	Cys	Leu	Asp 735	Thr
Val	Val	Arg	Cys 740	Ser	Asn	Lys	Gly	Leu 745	Lys	Val	Leu	Pro	Lys 750	Gly	Ile
Pro	Arg	Asp 755	Val	Thr	Glu	Leu	Tyr 760	Leu	Asp	Gly	Asn	Gln 765	Phe	Thr	Leu
Val	Pro 770	Lys	Glu	Leu	Ser	Asn 775	Tyr	Lys	His	Leu	Thr 780	Leu	Ile	Asp	Leu
Ser 785	Asn	Asn	Arg	Ile	Ser 790	Thr	Leu	Ser	Asn	Gln 795	Ser	Phe	Ser	Asn	Met 800
Thr	Gln	Leu	Leu	Thr 805	Leu	Ile	Leu	Ser	Tyr 810	Asn	Arg	Leu	Arg	Cys 815	Ile
Pro	Pro	Arg	Thr 820		Asp	Gly	Leu	Lys 825	Ser	Leu	Arg	Leu	Leu 830	Ser	Leu
His	Gly	Asn 835	Asp	Ile	Ser	Val	Val 840	Pro	Glu	Gly	Ala	Phe 845		Asp	Leu
Ser	Ala	Leu	Ser	His	Leu	Ala	Ile	Gly	Ala	Asn	Pro	Leu	Tyr	Cys	Asp

		0.00
850	855	860

Cys	Asn	Met	Gln	\mathtt{Trp}	Leu	Ser	Asp	Trp	Val	Lys	Ser	Glu	Tyr	Lys	Glu
865					870					875					880

- Pro Gly Ile Ala Arg Cys Ala Gly Pro Gly Glu Met Ala Asp Lys Leu 885 890 895
- Leu Leu Thr Thr Pro Ser Lys Lys Phe Thr Cys Gln Gly Pro Val Asp 900 905 910
- Val Asn Ile Leu Ala Lys Cys Asn Pro Cys Leu Ser Asn Pro Cys Lys 915 920 925
- Asn Asp Gly Thr Cys Asn Ser Asp Pro Val Asp Phe Tyr Arg Cys Thr 930 935 940
- Cys Pro Tyr Gly Phe Lys Gly Gln Asp Cys Asp Val Pro Ile His Ala 945 950 955 960
- Cys Ile Ser Asn Pro Cys Lys His Gly Gly Thr Cys His Leu Lys Glu 965 970 975
- Gly Glu Glu Asp Gly Phe Trp Cys Ile Cys Ala Asp Gly Phe Glu Gly 980 985 990
- Glu Asn Cys Glu Val Asn Val Asp Asp Cys Glu Asp Asn Asp Cys Glu 995 1000 1005
- Asn Asn Ser Thr Cys Val Asp Gly Ile Asn Asn Tyr Thr Cys Leu 1010 1015 1020
- Cys Pro Pro Glu Tyr Thr Gly Glu Leu Cys Glu Glu Lys Leu Asp 1025 1030 1035
- Phe Cys Ala Gln Asp Leu Asn Pro Cys Gln His Asp Ser Lys Cys 1040 1045 1050
- Ile Leu Thr Pro Lys Gly Phe Lys Cys Asp Cys Thr Pro Gly Tyr 1055 1060 1065
- Val Gly Glu His Cys Asp Ile Asp Phe Asp Asp Cys Gln Asp Asn 1070 1075 1080

Lys Cys Lys Asn Gly Ala His Cys Thr Asp Ala Val Asn Gly Tyr Thr Cys Ile Cys Pro Glu Gly Tyr Ser Gly Leu Phe Cys Glu Phe Ser Pro Pro Met Val Leu Pro Arg Thr Ser Pro Cys Asp Asn Phe Asp Cys Gln Asn Gly Ala Gln Cys Ile Val Arg Ile Asn Glu Pro Ile Cys Gln Cys Leu Pro Gly Tyr Gln Gly Glu Lys Cys Glu Lys Leu Val Ser Val Asn Phe Ile Asn Lys Glu Ser Tyr Leu Gln Ile Pro Ser Ala Lys Val Arg Pro Gln Thr Asn Ile Thr Leu Gln Ile Ala Thr Asp Glu Asp Ser Gly Ile Leu Leu Tyr Lys Gly Asp Lys Asp His Ile Ala Val Glu Leu Tyr Arg Gly Arg Val Arg Ala Ser Tyr Asp Thr Gly Ser His Pro Ala Ser Ala Ile Tyr Ser Val Glu Thr Ile Asn Asp Gly Asn Phe His Ile Val Glu Leu Leu Ala Leu Asp Gln Ser Leu Ser Leu Ser Val Asp Gly Gly Asn Pro Lys Ile Ile Thr Asn Leu Ser Lys Gln Ser Thr Leu Asn Phe Asp Ser Pro Leu Tyr Val Gly Gly Met Pro Gly Lys Ser Asn Val Ala Ser Leu Arg Gln Ala Pro Gly Gln Asn Gly Thr Ser Phe His Gly Cys Ile

Arg Asn Leu Tyr Ile Asn Ser Glu Leu Gln Asp Phe Gln Lys Val Pro Met Gln Thr Gly Ile Leu Pro Gly Cys Glu Pro Cys His Lys Lys Val Cys Ala His Gly Thr Cys Gln Pro Ser Ser Gln Ala Gly Phe Thr Cys Glu Cys Gln Glu Gly Trp Met Gly Pro Leu Cys Asp Gln Arg Thr Asn Asp Pro Cys Leu Gly Asn Lys Cys Val His Gly Thr Cys Leu Pro Ile Asn Ala Phe Ser Tyr Ser Cys Lys Cys Leu Glu Gly His Gly Gly Val Leu Cys Asp Glu Glu Glu Asp Leu Phe Asn Pro Cys Gln Ala Ile Lys Cys Lys His Gly Lys Cys Arg Leu Ser Gly Leu Gly Gln Pro Tyr Cys Glu Cys Ser Ser Gly Tyr Thr Gly Asp Ser Cys Asp Arg Glu Ile Ser Cys Arg Gly Glu Arg Ile Arg Asp Tyr Tyr Gln Lys Gln Gln Gly Tyr Ala Ala Cys Gln Thr Thr Lys Lys Val Ser Arg Leu Glu Cys Arg Gly Gly Cys Ala Gly Gly Gln Cys Cys Gly Pro Leu Arg Ser Lys Arg Arg Lys Tyr Ser Phe Glu Cys Thr Asp Gly Ser Ser Phe Val Asp Glu Val Glu Lys 1510 1515 Val Val Lys Cys Gly Cys Thr Arg Cys Val Ser

<210> 30 <211> 4900 <212> DNA

<213> Homo sapiens

<400> 30 cagagcaggg tggagaggc ggtgggaggc gtgtgcctga gtgggctcta ctgccttgtt 60 ccatattatt ttgtgcacat tttccctggc actctgggtt gctagccccg ccgggcactg 120 ggcctcagac actgcgcggt tccctcggag cagcaagcta aagaaagccc ccagtgccgg 180 cgaggaagga ggcgggggg aaagatgcgc ggcgttggct ggcagatgct gtccctgtcg 240 etggggttag tgetggegat eetgaacaag gtggeacege aggegtgeee ggegeagtge 300 tettgetegg geageaeagt ggaetgteae gggetggege tgegeagegt geeeaggaat 360 atcccccgca acaccgagag actggattta aatggaaata acatcacaag aattacgaag 420 acagattttg ctggtcttag acatctaaga gttcttcagc ttatggagaa taagattagc 480 accattgaaa gaggagcatt ccaggatctt aaagaactag agagactgcg tttaaacaga 540 aatcaccttc agctgtttcc tgagttgctg tttcttggga ctgcgaagct atacaggctt 600 gatctcagtg aaaaccaaat tcaggcaatc ccaaggaaag ctttccgtgg ggcagttgac 660 720 ataaaaaatt tgcaactgga ttacaaccag atcagctgta ttgaagatgg ggcattcagg gctctccggg acctggaagt gctcactctc aacaataaca acattactag actttctgtg 780 gcaagtttca accatatgcc taaacttagg acttttcgac tgcattcaaa caacctgtat 840 tgtgactgcc acctggcctg gctctccgac tggcttcgcc aaaggcctcg ggttggtctg 900 tacactcagt gtatgggccc ctcccacctg agaggccata atgtagccga ggttcaaaaa 960 cgagaatttg tctgcagtgg tcaccagtca tttatggctc cttcttgtag tgttttgcac 1020 tgccctgccg cctgtacctg tagcaacaat atcgtagact gtcgtgggaa aggtctcact 1080 gagatececa caaatettee agagaecate acagaaatae gtttggaaca gaacacaate 1140 aaagtcatcc ctcctggagc tttctcacca tataaaaagc ttagacgaat tgacctgagc 1200 aataatcaga tetetgaaet tgeaceagat gettteeaag gaetaegete tetgaattea 1260 cttgtcctct atggaaataa aatcacagaa ctccccaaaa gtttatttga aggactgttt 1320 teettacage teetattatt gaatgeeaae aagataaaet geettegggt agatgetttt 1380 caggatetee acaacttgaa cettetetee etatatgaca acaagettea gaccategee 1440

1500

1560

aaggggacct tttcacctct tcgggccatt caaactatgc atttggccca gaaccccttt

atttgtgact gccatctcaa gtggctagcg gattatctcc ataccaaccc gattgagacc

1620 agtggtgccc gttgcaccag cccccgccgc ctggcaaaca aaagaattgg acagatcaaa agcaagaaat toogttgtto agctaaagaa cagtatttoa ttocaggtac agaagattat 1680 1740 cgatcaaaat taagtggaga ctgctttgcg gatctggctt gccctgaaaa gtgtcgctgt 1800 gaaggaacca cagtagattg ctctaatcaa aagctcaaca aaatcccgga gcacattccc cagtacactg cagagttgcg tctcaataat aatgaattta ccgtgttgga agccacagga 1860 1920 atctttaaga aacttcctca attacgtaaa ataaacttta gcaacaataa gatcacagat 1980 attgaggagg gagcatttga aggagcatct ggtgtaaatg aaatacttct tacgagtaat 2040 cgtttggaaa atgtgcagca taagatgttc aagggattgg aaagcctcaa aactttgatg ttgagaagca atcgaataac ctgtgtgggg aatgacagtt tcataggact cagttctgtg 2100 cgtttgcttt ctttgtatga taatcaaatt actacagttg caccaggggc atttgatact 2160 ctccattctt tatctactct aaacctcttg gccaatcctt ttaactgtaa ctgctacctg 2220 gcttggttgg gagagtggct gagaaagaag agaattgtca cgggaaatcc tagatgtcaa 2280 aaaccatact teetgaaaga aatacecate caggatgtgg ceatteagga etteaettgt 2340 2400 gatgacggaa atgatgacaa tagttgctcc ccactttctc gctgtcctac tgaatgtact tgcttggata cagtcgtccg atgtagcaac aagggtttga aggtcttgcc gaaaggtatt 2460 2520 ccaagagatg tcacagagtt gtatctggat ggaaaccaat ttacactggt tcccaaggaa ctctccaact acaaacattt aacacttata gacttaagta acaacagaat aagcacgctt 2580 2640 totaatoaga gottoagoaa catgacocag otootoacot taattottag ttacaacogt 2700 ctgagatgta ttcctcctcg cacctttgat ggattaaagt ctcttcgatt actttctcta 2760 catggaaatg acatttctgt tgtgcctgaa ggtgctttca atgatctttc tgcattatca 2820 catctagcaa ttggagccaa ccctctttac tgtgattgta acatgcagtg gttatccgac 2880 tgggtgaagt cggaatataa ggagcctgga attgctcgtt gtgctggtcc tggagaaatg gcagataaac ttttactcac aactccctcc aaaaaattta cctgtcaagg tcctgtggat 2940 3000 gtcaatattc tagctaagtg taacccctgc ctatcaaatc cgtgtaaaaa tgatggcaca tgtaatagtg atccagttga cttttaccga tgcacctgtc catatggttt caaggggcag 3060 3120 gactgtgatg toccaattca tgcctgcatc agtaacccat gtaaacatgg aggaacttgc 3180 cacttaaaqq aaggagaaga agatggattc tggtgtattt gtgctgatgg atttgaagga 3240 gaaaattgtg aagtcaacgt tgatgattgt gaagataatg actgtgaaaa taattctaca 3300 tgtgtcgatg gcattaataa ctacacatgc ctttgcccac ctgagtatac aggtgagttg

tgtgaggaga	agctggactt	ctgtgcccag	gacctgaacc	cctgccagca	cgattcaaag	3360
tgcatcctaa	ctccaaaggg	attcaaatgt	gactgcacac	cagggtacgt	aggtgaacac	3420
tgcgacatcg	attttgacga	ctgccaagac	aacaagtgta	aaaacggagc	ccactgcaca	3480
gatgcagtga	acggctatac	gtgcatatgc	cccgaaggtt	acagtggctt	gttctgtgag	3540
ttttctccac	ccatggtcct	ccctcgtacc	ageceetgtg	ataattttga	ttgtcagaat	3600
ggagctcagt	gtatcgtcag	aataaatgag	ccaatatgtc	agtgtttgcc	tggctatcag	3660
ggagaaaagt	gtgaaaaatt	ggttagtgtg	aattttataa	acaaagagtc	ttatcttcag	3720
attccttcag	ccaaggttcg	gcctcagacg	aacataacac	ttcagattgc	cacagatgaa	3780
gacagcggaa	tcctcctgta	taagggtgac	aaagaccata	tcgcggtaga	actctatcgg	3840
gggcgtgttc	gtgccagcta	tgacaccggc	tctcatccag	cttctgccat	ttacagtgtg	3900
gagacaatca	atgatggaaa	cttccacatt	gtggaactac	ttgccttgga	tcagagtctc	3960
tetttgteeg	tggatggtgg	gaaccccaaa	atcatcacta	acttgtcaaa	gcagtccact	4020
ctgaattttg	actctccact	ctatgtagga	ggcatgccag	ggaagagtaa	cgtggcatct	4080
ctgcgccagg	cccctgggca	gaacggaacc	agcttccacg	gctgcatccg	gaacctttac	4140
atcaacagtg	agctgcagga	cttccagaag	gtgccgatgc	aaacaggcat	tttgcctggc	4200
tgtgagccat	gccacaagaa	ggtgtgtgcc	catggcacat	gccagcccag	cagccaggca	4260
ggcttcacct	gcgagtgcca	ggaaggatgg	atggggcccc	tctgtgacca	acggaccaat	4320
gacccttgcc	ttggaaataa	atgcgtacat	ggcacctgct	tgcccatcaa	tgcgttctcc	4380
tacagctgta	agtgcttgga	gggccatgga	ggtgtcctct	gtgatgaaga	ggaggatctg	4440
tttaacccat	gccaggcgat	caagtgcaag	cacgggaagt	gcaggctttc	aggtctgggg	4500
cagccctact	gtgaatgcag	cagtggatac	acgggggaca	gctgtgatcg	agaaatctct	4560
tgtcgagggg	aaaggataag	agattattac	caaaagcagc	agggctatgc	tgcttgccaa	4620
acaaccaaga	aggtgtcccg	attagagtgc	agaggtgggt	gtgcaggagg	gcagtgctgt	4680
ggaccgctga	ggagcaagcg	gcggaaatac	tctttcgaat	gcactgacgg	ctcctccttt	4740
gtggacgagg	ttgagaaagt	ggtgaagtgc	ggctgtacga	ggtgtgtgtc	ctaaacacac	4800
tcccggcagc	tctgtctttg	gaaaaggttg	tatacttctt	gaccatgtgg	gactaatgaa	4860
tgcttcatag	tggaaatatt	tgaaatatat	tgtaaaatac			4900

<210> 31

<211> 3510

<212> DNA

<213> Homo sapiens

<400> 31 gcagctctgg gggagctcgg agctcccgat cacggcttct tggggggtagc tacggctggg 60 120 tgtgtagaac ggggccgggg ctggggctgg gtcccctagt ggagacccaa gtgcgagagg caagaactct gcagcttcct gccttctggg tcagttcctt attcaagtct gcagccggct 180 240 cccagggaga tctcggtgga acttcagaaa cgctgggcag tctgcctttc aaccatgccc ctgtccctgg gagccgagat gtgggggcct gaggcctggc tgctgctgct gctactgctg 300 360 gcatcattta caggeeggtg eccegeggt gagetggaga ecteagaegt ggtaactgtg 420 gtgctgggcc aggacgcaaa actgccctgc ttctaccgag gggactccgg cgagcaagtg gggcaagtgg catgggctcg ggtggacgcg ggcgaaggcg cccaggaact agcgctactg 480 cactccaaat acgggcttca tgtgagcccg gcttacgagg gccgcgtgga gcagccgccg 540 ccccacgca accccctgga cggctcagtg ctcctgcgca acgcagtgca ggcggatgag 600 ggcgagtacg agtgccgggt cagcacette eccgccggca gettecagge geggetgegg 660 ctccgagtgc tggtgcctcc cctgccctca ctgaatcctg gtccagcact agaagaggc 720 780 cagggeetga ecetggeage etectgeaca getgagggea geecageece cagegtgace tgggacacgg aggtcaaagg cacaacgtcc agccgttcct tcaagcactc ccgctctgct 840 900 gccgtcacct cagagttcca cttggtgcct agccgcagca tgaatgggca gccactgact 960 tgtgtggtgt cccatcctgg cctgctccag gaccaaagga tcacccacat cctccacgtg 1020 tectteettg etgaggeete tgtgagggge ettgaagace aaaatetgtg geacattgge 1080 agagaaggag ctatgctcaa gtgcctgagt gaagggcagc cccctccctc atacaactgg 1140 acacggctgg atgggcctct gcccagtggg gtacgagtgg atggggacac tttgggcttt 1200 cccccactga ccactgagca cagcggcatc tacgtctgcc atgtcagcaa tgagttctcc 1260 tcaagggatt ctcaggtcac tgtggatgtt cttgaccccc aggaagactc tgggaagcag 1320 gtggacctag tgtcagcctc ggtggtggtg gtgggtgtga tcgccgcact cttgttctgc 1380 cttctggtgg tggtggtt gctcatgtcc cgataccatc ggcgcaaggc ccagcagatg 1440 acccagaaat atgaggagga gctgaccctg accagggaga actccatccg gaggctgcat 1500 teceateaca eggaeeceag gageeageeg gaggagagtg tagggetgag ageegaggge 1560 caccetgata gteteaagga caacagtage tgetetgtga tgagtgaaga geeegaggge 1620 cqcaqttact ccacqctgac cacqgtgagg gagatagaaa cacagactga actgctgtct ccaggctctg ggcgggccga ggaggaggaa gatcaggatg aaggcatcaa acaggccatg 1680 1740 aaccattttg ttcaggagaa tgggacccta cgggccaagc ccacgggcaa tggcatctac

atcaatgggc ggggacacct ggtctgaccc aggcctgcct cccttcccta ggcctggctc 1800 1860 cttctgttga catgggagat tttagctcat cttgggggcc tccttaaaca cccccatttc ttgcggaaga tgctccccat cccactgact gcttgacctt tacctccaac ccttctgttc 1920 1980 atcgggaggg ctccaccaat tgagtctctc ccaccatgca tgcaggtcac tgtgtgtgtg catgtgtgcc tgtgtgagtg ttgactgact gtgtgtgtgt ggaggggtga ctgtccgtgg 2040 2100 aggggtgact gtgtccgtgg tgtgtattat gctgtcatat cagagtcaag tgaactgtgg tgtatgtgcc acgggatttg agtggttgcg tgggcaacac tgtcagggtt tggcgtgtgt 2160 gtcatgtggc tgtgtgtgac ctctgcctga aaaagcaggt attttctcag accccagagc 2220 agtattaatg atgcagaggt tggaggagag aggtggagac tgtggctcag acccaggtgt 2280 gcgggcatag ctggagctgg aatctgcctc cggtgtgagg gaacctgtct cctaccactt 2340 cggagccatg ggggcaagtg tgaagcagcc agtccctggg tcagccagag gcttgaactg 2400 2460 ttacagaagc cctctgccct ctggtggcct ctgggcctgc tgcatgtaca tattttctgt aaatatacat gcgccgggag cttcttgcag gaatactgct ccgaatcact tttaattttt 2520 ttcttttttt tttcttgccc tttccattag ttgtattttt tatttattt tattttatt 2580 2640 tttttttaga gatggagtct cactatgttg ctcaggctgg ccttgaactc ctgggctcaa 2700 gcaatcetee tgeeteagee teectagtag etgggaettt aagtgtaeae eactgtgeet 2760 gctttgaatc ctttacgaag agaaaaaaaa aattaaagaa agcctttaga tttatccaat 2820 gtttactact gggattgctt aaagtgaggc ccctccaaca ccagggggtt aattcctgtg 2880 attgtgaaag gggctacttc caaggcatct tcatgcaggc agccccttgg gagggcacct gagagctggt agagtctgaa attagggatg tgagcctcgt ggttactgag taaggtaaaa 2940 3000 ttgcatccac cattgtttgt gataccttag ggaattgctt ggacctggtg acaagggctc ctgttcaata gtggtgttgg ggagagagag agcagtgatt atagaccgag agagtaggag 3060 ttgaggtgag gtgaaggagg tgctgggggt gagaatgtcg cctttccccc tgggttttgg 3120 atcactaatt caaggetett etggatgttt etetgggttg gggetggagt teaatgaggt 3180 3240 ttatttttag ctggcccacc cagatacact cagccagaat acctagattt agtacccaaa 3300 ctcttcttag tctgaaatct gctggatttc tggcctaagg gagaggctcc catccttcgt 3360 tececageea geetaggaet tegaatgtgg ageetgaaga tetaagatee taacatgtae attttatgta aatatgtgca tatttgtaca taaaatgata ttctgttttt aaataaacag 3420 3480

- <210> 32 <211> 1530 <212> DNA
- <213> Homo sapiens

<400> 32

atgeceetgt eeetgggage egagatgtgg gggeetgagg eetggetget getgetgeta 60 120 ctgctggcat catttacagg ccggtgcccc gcgggtgagc tggagacctc agacgtggta 180 actgtggtgc tgggccagga cgcaaaactg ccctgcttct accgagggga ctccggcgag 240 caagtggggc aagtggcatg ggctcgggtg gacgcgggcg aaggcgccca ggaactagcg ctactgcact ccaaatacgg gcttcatgtg agcccggctt acgagggccg cgtggagcag 300 cegeegeece caegeaacee eetggaegge teagtgetee tgegeaacge agtgeaggeg 360 gatgagggcg agtacgagtg ccgggtcagc accttccccg ccggcagctt ccaggcgcgg 420 ctgoggctcc gagtgctggt gcctcccctg ccctcactga atcctggtcc agcactagaa 480 gagggccagg gcctgaccct ggcagcctcc tgcacagctg agggcagccc agccccagc 540 gtgacctggg acacggaggt caaaggcaca acgtccagcc gttccttcaa gcactcccgc 600 tetgetgeeg teaceteaga gtteeacttg gtgeetagee geageatgaa tgggeageea 660 ctgacttgtg tggtgtccca tcctggcctg ctccaggacc aaaggatcac ccacatcctc 720 cacgtgtcct tccttgctga ggcctctgtg aggggccttg aagaccaaaa tctgtggcac 780 attggcagag aaggagctat gctcaagtgc ctgagtgaag ggcagccccc tccctcatac 840 aactggacac ggctggatgg gcctctgccc agtggggtac gagtggatgg ggacactttg 900 ggettteece caetgaceae tgageaeage ggeatetaeg tetgeeatgt eageaatgag 960 ttctcctcaa gggattctca ggtcactgtg gatgttcttg acccccagga agactctggg 1020 aagcaggtgg acctagtgtc agcctcggtg gtggtggtgg gtgtgatcgc cgcactcttg 1080 1140 ttctgccttc tggtggtggt ggtggtgctc atgtcccgat accatcggcg caaggcccag cagatgaccc agaaatatga ggaggagctg accctgacca gggagaactc catccggagg 1200 1260 ctgcattccc atcacacgga ccccaggagc cagccggagg agagtgtagg gctgagagcc gagggccacc ctgatagtct caaggacaac agtagctgct ctgtgatgag tgaagagccc 1320 gagggccgca gttactccac gctgaccacg gtgagggaga tagaaacaca gactgaactg 1380 ctgtctccag gctctgggcg ggccgaggag gaggaagatc aggatgaagg catcaaacag 1440 gccatgaacc attttgttca ggagaatggg accctacggg ccaagcccac gggcaatggc 1500

<210> 33

<211> 510

<212> PRT

<213> Homo sapiens

<400> 33

Met Pro Leu Ser Leu Gly Ala Glu Met Trp Gly Pro Glu Ala Trp Leu 1 5 10 15

Leu Leu Leu Leu Leu Ala Ser Phe Thr Gly Arg Cys Pro Ala Gly
20 25 30

Glu Leu Glu Thr Ser Asp Val Val Thr Val Val Leu Gly Gln Asp Ala 35 40 45

Lys Leu Pro Cys Phe Tyr Arg Gly Asp Ser Gly Glu Gln Val Gly Gln 50 55 60

Val Ala Trp Ala Arg Val Asp Ala Gly Glu Gly Ala Gln Glu Leu Ala 65 70 75 80

Leu Leu His Ser Lys Tyr Gly Leu His Val Ser Pro Ala Tyr Glu Gly 85 90 95

Arg Val Glu Gln Pro Pro Pro Pro Arg Asn Pro Leu Asp Gly Ser Val

Leu Leu Arg Asn Ala Val Gln Ala Asp Glu Gly Glu Tyr Glu Cys Arg 115 120 125

Val Ser Thr Phe Pro Ala Gly Ser Phe Gln Ala Arg Leu Arg Leu Arg 130 135 140

Glu Gly Gln Gly Leu Thr Leu Ala Ala Ser Cys Thr Ala Glu Gly Ser 165 170 175

Pro Ala Pro Ser Val Thr Trp Asp Thr Glu Val Lys Gly Thr Thr Ser 180 185 190

Ser Arg Ser Phe Lys His Ser Arg Ser Ala Ala Val Thr Ser Glu Phe

195	200	205

His	Leu 210	Val	Pro	Ser	Arg	Ser 215	Met	Asn	Gly	Gln	Pro 220	Leu	Thr	Cys	Val
Val 225	Ser	His	Pro	Gly	Leu 230	Leu	Gln	Asp	Gln	Arg 235	Ile	Thr	His	Ile	Leu 240
His	Val	Ser	Phe	Leu 245	Ala	Glu	Ala	Ser	Val 250	Arg	Gly	Leu	Glu	Asp 255	Gln
Asn	Leu	Trp	His 260	Ile	Gly	Arg	Glu	Gly 265	Ala	Met	Leu	Lys	Cys 270	Leu	Ser
Glu	Gly	Gln 275	Pro	Pro	Pro	Ser	Tyr 280	Asn	Trp	Thr	Arg	Leu 285	Asp	Gly	Pro
Leu	Pro 290	Ser	Gly	Val	Arg	Val 295	Asp	Gly	Asp	Thr	Leu 300	Gly	Phe	Pro	Pro
Leu 305	Thr	Thr	Glu	His	Ser 310	Gly	Ile	Tyr	Val	Cys 315	His	Val	Ser	Asn	Glu 320
Phe	Ser	Ser	Arg	Asp 325	Ser	Gln	Val	Thr	Val 330	Asp	Val	Leu	Asp	Pro 335	Gln
Glu	Asp	Ser	Gly 340	Lys	Gln	Val	Asp	Leu 345	Val	Ser	Ala	Ser	Val 350	Val	Val
Val	Gly	Val 355	Ile	Ala	Ala	Leu	Leu 360	Phe	Cys	Leu	Leu	Val 365	Val	Val	Val
Val	Leu 370	Met	Ser	Arg	Tyr	His 375	Arg	Arg	Lys	Ala	Gln 380	Gln	Met	Thr	Gln
Lys 385	Tyr	Glu	Glu	Glu	Leu 390	Thr	Leu	Thr	Arg	Glu 395	Asn	Ser	Ile	Arg	Arg
Leu	His	Ser	His	His 405	Thr	Asp	Pro	Arg	Ser 410		Pro	Glu	Glu	Ser 415	Val
Gly	Leu	Arg	Ala 420	Glu	Gly	His	Pro	Asp 425	Ser	Leu	Lys	Asp	Asn 430	Ser	Ser

Cys Ser Val Met Ser Glu Glu Pro Glu Gly Arg Ser Tyr Ser Thr Leu 435 440 Thr Thr Val Arg Glu Ile Glu Thr Gln Thr Glu Leu Leu Ser Pro Gly 450 455 460 Ser Gly Arg Ala Glu Glu Glu Glu Asp Gln Asp Glu Gly Ile Lys Gln 465 470 Ala Met Asn His Phe Val Gln Glu Asn Gly Thr Leu Arg Ala Lys Pro Thr Gly Asn Gly Ile Tyr Ile Asn Gly Arg Gly His Leu Val 505 500 <210> 34 <211> 31 <212> PRT <213> Homo sapiens <400> 34 Met Pro Leu Ser Leu Gly Ala Glu Met Trp Gly Pro Glu Ala Trp Leu Leu Leu Leu Leu Leu Ala Ser Phe Thr Gly Arg Cys Pro Ala <210> 35 <211> 479 <212> PRT <213> Homo sapiens <400> 35 Gly Glu Leu Glu Thr Ser Asp Val Val Thr Val Val Leu Gly Gln Asp 5 Ala Lys Leu Pro Cys Phe Tyr Arg Gly Asp Ser Gly Glu Gln Val Gly Gln Val Ala Trp Ala Arg Val Asp Ala Gly Glu Gly Ala Gln Glu Leu Ala Leu Leu His Ser Lys Tyr Gly Leu His Val Ser Pro Ala Tyr Glu 50 55

Gly Arg Val Glu Gln Pro Pro Pro Pro Arg Asn Pro Leu Asp Gly Ser

Val Leu Leu Arg Asn Ala Val Gln Ala Asp Glu Gly Glu Tyr Glu Cys 85 90 95

65

Arg Val Ser Thr Phe Pro Ala Gly Ser Phe Gln Ala Arg Leu Arg Leu 100 105 110

Arg Val Leu Val Pro Pro Leu Pro Ser Leu Asn Pro Gly Pro Ala Leu 115 120 125

Glu Glu Gly Gln Gly Leu Thr Leu Ala Ala Ser Cys Thr Ala Glu Gly 130 135 140

Ser Pro Ala Pro Ser Val Thr Trp Asp Thr Glu Val Lys Gly Thr Thr 145 150 155 160

Ser Ser Arg Ser Phe Lys His Ser Arg Ser Ala Ala Val Thr Ser Glu 165 170 175

Phe His Leu Val Pro Ser Arg Ser Met Asn Gly Gln Pro Leu Thr Cys 180 185 190

Val Val Ser His Pro Gly Leu Leu Gln Asp Gln Arg Ile Thr His Ile 195 200 205

Leu His Val Ser Phe Leu Ala Glu Ala Ser Val Arg Gly Leu Glu Asp 210 215 220

Gln Asn Leu Trp His Ile Gly Arg Glu Gly Ala Met Leu Lys Cys Leu 225 230 235 240

Ser Glu Gly Gln Pro Pro Pro Ser Tyr Asn Trp Thr Arg Leu Asp Gly 245 250 255

Pro Leu Pro Ser Gly Val Arg Val Asp Gly Asp Thr Leu Gly Phe Pro 260 265 270

Pro Leu Thr Thr Glu His Ser Gly Ile Tyr Val Cys His Val Ser Asn 275 280 285

Glu Phe Ser Ser Arg Asp Ser Gln Val Thr Val Asp Val Leu Asp Pro 290 295 300

Gln Glu Asp Ser Gly Lys Gln Val Asp Leu Val Ser Ala Ser Val Va 305 310 315 32	
Val Val Gly Val Ile Ala Ala Leu Leu Phe Cys Leu Leu Val Val Val 325 330 335	ıl
Val Val Leu Met Ser Arg Tyr His Arg Arg Lys Ala Gln Gln Met Th 340 345 350	ır
Gln Lys Tyr Glu Glu Glu Leu Thr Leu Thr Arg Glu Asn Ser Ile Ar 355 360 365	:g
Arg Leu His Ser His His Thr Asp Pro Arg Ser Gln Pro Glu Glu Se 370 375 380	r
Val Gly Leu Arg Ala Glu Gly His Pro Asp Ser Leu Lys Asp Asn Se 385 390 395 40	
Ser Cys Ser Val Met Ser Glu Glu Pro Glu Gly Arg Ser Tyr Ser Th 405 410 415	ır
Leu Thr Thr Val Arg Glu Ile Glu Thr Gln Thr Glu Leu Leu Ser Pr 420 425 430	:o
Gly Ser Gly Arg Ala Glu Glu Glu Glu Asp Gln Asp Glu Gly Ile Ly 435 440 445	'S
Gln Ala Met Asn His Phe Val Gln Glu Asn Gly Thr Leu Arg Ala Ly 450 455 460	'S
Pro Thr Gly Asn Gly Ile Tyr Ile Asn Gly Arg Gly His Leu Val 465 470 475	
<210> 36 <211> 314 <212> PRT <213> Homo sapiens	
<400> 36	
Gly Glu Leu Glu Thr Ser Asp Val Val Thr Val Val Leu Gly Gln As	q
Ala Lys Leu Pro Cys Phe Tyr Arg Gly Asp Ser Gly Glu Gln Val Gl 20 25 30	.у

Gln	Val	Ala 35	Trp	Ala	Arg	Val	Asp 40	Ala	Gly	Glu	Gly	Ala 45	Gln	Glu	Leu
Ala	Leu 50	Leu	His	Ser	Lys	Tyr 55	Gly	Leu	His	Val	Ser 60	Pro	Ala	Tyr	Glu
Gly 65	Arg	Val	Glu	Gln	Pro 70	Pro	Pro	Pro	Arg	Asn 75	Pro	Leu	Asp	Gly	Ser 80
Val	Leu	Leu	Arg	Asn 85	Ala	Val	Gln	Ala	Asp 90	Glu	Gly	Glu	Tyr	Glu 95	Cys
Arg	Val	Ser	Thr 100	Phe	Pro	Ala	Gly	Ser 105	Phe	Gln	Ala	Arg	Leu 110	Arg	Leu
Arg	Val	Leu 115	Val	Pro	Pro	Leu	Pro 120	Ser	Leu	Asn	Pro	Gly 125	Pro	Ala	Leu
Glu	Glu 130	Gly	Gln	Gly	Leu	Thr 135	Leu	Ala	Ala	Ser	Cys 140	Thr	Ala	Glu	Gly
Ser 145	Pro	Ala	Pro	Ser	Val 150	Thr	Trp	Asp	Thr	Glu 155	Val	Lys	Gly	Thr	Thr 160
Ser	Ser	Arg	Ser	Phe 165	Lys	His	Ser	Arg	Ser 170	Ala	Ala	Val	Thr	Ser 175	Glu
Phe	His	Leu	Val 180	Pro	Ser	Arg	Ser	Met 185	Asn	Gly	Gln	Pro	Leu 190	Thr	Cys
Val	Val	Ser 195	His	Pro	Gly	Leu	Leu 200	Gln	Asp	Gln	Arg	Ile 205	Thr	His	Ile
Leu	His 210	Val	Ser	Phe	Leu	Ala 215	Glu	Ala	Ser	Val	Arg 220	Gly	Leu	Glu	Asp
Gln 225	Asn	Leu	Trp	His	Ile 230	Gly	Arg	Glu	Gly	Ala 235	Met	Leu	Lys	Cys	Leu 240
Ser	Glu	Gly	Gln	Pro 245	Pro	Pro	Ser	Tyr	Asn 250		Thr	Arg	Leu	Asp 255	Gly
Pro	Leu	Pro	Ser		Val	Arg	Val	Asp		Asp	Thr	Leu	Gly 270		Pro

Pro Leu Thr Thr Glu His Ser Gly Ile Tyr Val Cys His Val Ser Asn 275 280 285

Glu Phe Ser Ser Arg Asp Ser Gln Val Thr Val Asp Val Leu Asp Pro 290 295 300

Gln Glu Asp Ser Gly Lys Gln Val Asp Leu 305

<210> 37

<211> 25

<212> PRT

<213> Homo sapiens

<400> 37

Val Ser Ala Ser Val Val Val Val Gly Val Ile Ala Ala Leu Leu Phe 1 5 10 15

Cys Leu Leu Val Val Val Val Leu 20 25

<210> 38

<211> 140

<212> PRT

<213> Homo sapiens

<400> 38

Met Ser Arg Tyr His Arg Arg Lys Ala Gln Gln Met Thr Gln Lys Tyr
1 5 10 15

Glu Glu Glu Leu Thr Leu Thr Arg Glu Asn Ser Ile Arg Arg Leu His 20 25 30

Ser His His Thr Asp Pro Arg Ser Gln Pro Glu Glu Ser Val Gly Leu 35 40 45

Arg Ala Glu Gly His Pro Asp Ser Leu Lys Asp Asn Ser Ser Cys Ser 50 55 60

Val Met Ser Glu Glu Pro Glu Gly Arg Ser Tyr Ser Thr Leu Thr Thr 65 70 75 80

Val Arg Glu Ile Glu Thr Gln Thr Glu Leu Leu Ser Pro Gly Ser Gly 85 90 95

100 Asn His Phe Val Gln Glu Asn Gly Thr Leu Arg Ala Lys Pro Thr Gly 115 Asn Gly Ile Tyr Ile Asn Gly Arg Gly His Leu Val 130 <210> 39 <211> <212> DNA <213> Homo sapiens <400> 39 000 3 <210> 40 <211> 0 <212> DNA <213> Homo sapiens <400> 40 000 3 <210> 41 <211> 2510 <212> DNA <213> Homo sapiens <400> 41 caaaggcaca acgtccagcc gttccttcaa gcactcccgc tctgctgccg tcacctcaga 60 gttccacttg gtgcctagcc gcagcatgaa tgggcagcca ctgacttgtg tggtgtccca 120 teetggeetg etecaggace aaaggateae ecacateete eacgtgteet teettgetga 180 ggcctctgtg aggggccttg aagaccaaaa tctgtggcac attggcagag aaggagctat 240 gctcaagtgc ctgagtgaag ggcagcccc tccctcatac aactggacac ggctggatgg 300 gcctctgccc agtggggtac gagtggatgg ggacactttg ggctttcccc cactgaccac 360 tgagcacagc ggcatctacg tctgccatgt cagcaatgag ttctcctcaa gggattctca 420 ggtcactgtg gatgttcttg cagaccccca ggaagactct gggaagcagg tggacctagt 480 gtcagcctcg gtggtggtgg tgggtgtgat cgccgcactc ttgttctgcc ttctggtggt 540 ggtggtggtg ctcatgtccc gataccatcg gcgcaaggcc cagcagatga cccagaaata 600 tgaggaggag ctgaccctga ccagggagaa ctccatccgg aggctgcatt cccatcacac 660 ggaccccagg agccagagtg aagagcccga gggccgcagt tactccacgc tgaccacggt 720

Arg Ala Glu Glu Glu Glu Asp Gln Asp Glu Gly Ile Lys Gln Ala Met

780 gagggagata gaaacacaga ctgaactgct gtctccaggc tctgggcggg ccgaggagga ggaagatcag gatgaaggca tcaaacaggc catgaaccat tttgttcagg agaatgggac 840 cctacgggcc aagcccacgg gcaatggcat ctacatcaat gggcggggac acctggtctg 900 960 accoaggest gesteestte estaggestg geteettetg ttgacatggg agattttage tcatcttggg ggcctcctta aacaccccca tttcttgcgg aagatgctcc ccatcccact 1020 1080 gactgcttga cctttacctc caacccttct gttcatcggg agggctccac caattgagtc tctcccacca tgcatgcagg tcactgtgtg tgtgcatgtg tgcctgtgtg agtgttgact 1140 1200 gactgtgtgt gtgtggaggg gtgactgtcc gtggaggggt gactgtgtcc gtggtgtgta ttatgctgtc atatcagagt caagtgaact gtggtgtatg tgccacggga tttgagtggt 1260 tgcgtgggca acactgtcag ggtttggcgt gtgtgtcatg tggctgtgtg tgacctctgc 1320 ctgaaaaagc aggtattttc tcagacccca gagcagtatt aatgatgcag aggttggagg 1380 agagaggtgg agactgtggc tcagacccag gtgtgcgggc atagctggag ctggaatctg 1440 1500 cctccqqtqt qaqqqaacct gtctcctacc acttcggagc catgggggca agtgtgaagc agccagtccc tgggtcagcc agaggcttga actgttacag aagccctctg ccctctggtg 1560 gcctctgggc ctgctgcatg tacatatttt ctgtaaatat acatgcgccg ggagcttctt 1620 gcaggaatac tgctccgaat cacttttaat ttttttcttt ttttttctt gccctttcca 1680 1740 gttgctcagg ctggccttga actcctgggc tcaagcaatc ctcctgcctc agcctcccta 1800 gtagctggga ctttaagtgt acaccactgt gcctgctttg aatcctttac gaagagaaaa 1860 aaaaaattaa agaaagcctt tagatttatc caatgtttac tactgggatt gcttaaagtg 1920 aggcccctcc aacaccaggg ggttaattcc tgtgattgtg aaaggggcta cttccaaggc 1980 atcttcatgc aggcagcccc ttgggagggc acctgagagc tggtagagtc tgaaattagg 2040 2100 gatgtgagcc tggtgacaag ggctcctgtt caatagtggt gttggggaga gagagagcag 2160 tgattataga ccgagagagt aggagttgag gtgaggtgaa ggaggtgctg ggggtgagaa 2220 tgtcgccttt ccccctgggt tttggatcac taattcaagg ctcttctgga tgtttctctg 2280 ggttggggct ggagttcaat gaggtttatt tttagctggc ccacccagat acactcagcc 2340 agaataccta gatttagtac ccaaactctt cttagtctga aatctgctgg atttctggcc taagggagag geteceatee ttegtteeee agecageeta ggaettegaa tgtggageet 2400 gaagatctaa gatcctaaca tgtacatttt atgtaaatat gtgcatattt gtacataaaa 2460

tgatattctg tttttaaata aacagacaaa acttgaaaaa aaaaaaaaaa	2510
<210> 42 <211> 897 <212> DNA <213> Homo sapiens	
<400> 42 aaaggcacaa cgtccagccg ttccttcaag cactcccgct ctgctgccgt cacctcagag	60
ttccacttgg tgcctagccg cagcatgaat gggcagccac tgacttgtgt ggtgtcccat	120
cctggcctgc tccaggacca aaggatcacc cacatcctcc acgtgtcctt ccttgctgag	180
gcctctgtga ggggccttga agaccaaaat ctgtggcaca ttggcagaga aggagctatg	240
ctcaagtgcc tgagtgaagg gcagcccct ccctcataca actggacacg gctggatggg	300
cctctgccca gtggggtacg agtggatggg gacactttgg gctttccccc actgaccact	360
gagcacagcg gcatctacgt ctgccatgtc agcaatgagt tctcctcaag ggattctcag	420
gtcactgtgg atgttcttgc agacccccag gaagactctg ggaagcaggt ggacctagtg	480
tcagcctcgg tggtggtggt gggtgtgatc gccgcactct tgttctgcct tctggtggtg	540
gtggtggtgc tcatgtcccg ataccatcgg cgcaaggccc agcagatgac ccagaaatat	600
gaggaggagc tgaccctgac cagggagaac tccatccgga ggctgcattc ccatcacacg	660
gaccccagga gccagagtga agagcccgag ggccgcagtt actccacgct gaccacggtg	720
agggagatag aaacacagac tgaactgctg tctccaggct ctgggcgggc cgaggaggag	780
gaagatcagg atgaaggcat caaacaggcc atgaaccatt ttgttcagga gaatgggacc	840
ctacgggcca agcccacggg caatggcatc tacatcaatg ggcggggaca cctggtc	897
<210> 43 <211> 299 <212> PRT <213> Homo sapiens <400> 43	
Lys Gly Thr Thr Ser Ser Arg Ser Phe Lys His Ser Arg Ser Ala Ala 1 5 10 15	

Pro Leu Thr Cys Val Val Ser His Pro Gly Leu Leu Gln Asp Gln Arg 35 40 45

Val Thr Ser Glu Phe His Leu Val Pro Ser Arg Ser Met Asn Gly Gln

20

25

Ile	Thr 50	His	Ile	Leu	His	Val 55	Ser	Phe	Leu	Ala	Glu 60	Ala	Ser	Val	Arg
Gly 65	Leu	Glu	Asp	Gln	Asn 70	Leu	Trp	His	Ile	Gly 75	Arg	Glu	Gly	Ala	Met 80
Leu	Lys	Cys	Leu	Ser 85	Glu	Gly	Gln	Pro	Pro 90	Pro	Ser	Tyr	Asn	Trp 95	Thr
Arg	Leu	Asp	Gly 100	Pro	Leu	Pro	Ser	Gly 105	Val	Arg	Val	Asp	Gly 110	Asp	Thr
Leu	Gly	Phe 115	Pro	Pro	Leu	Thr	Thr 120	Glu	His	Ser	Gly	Ile 125	Tyr	Val	Cys
His	Val 130	Ser	Asn	Glu	Phe	Ser 135	Ser	Arg	Asp	Ser	Gln 140	Val	Thr	Val	Asp
Val 145	Leu	Ala	Asp	Pro	Gln 150	Glu	Asp	Ser	Gly	Lys 155	Gln	Val	Asp	Leu	Val 160
Ser	Ala	Ser	Val	Val 165	Val	Val	Gly	Val	Ile 170	Ala	Ala	Leu	Leu	Phe 175	Cys
Leu	Leu	Val	Val 180	Val	Val	Val	Leu	Met 185	Ser	Arg	Tyr	His	Arg 190	Arg	Lys
Ala	Gln	Gln 195	Met	Thr	Gln	Lys	Tyr 200	Glu	Glu	Glu	Leu	Thr 205	Leu	Thr	Arg
Glu	Asn 210	Ser	Ile	Arg	Arg	Leu 215	His	Ser	His	His	Thr 220	Asp	Pro	Arg	Ser
Gln 225		Glu	Glu	Pro	Glu 230	Gly	Arg	Ser	Tyr	Ser 235	Thr	Leu	Thr	Thr	Val 240
Arg	Glu	Ile	Glu	Thr 245		Thr	Glu	Leu	Leu 250		Pro	Gly	Ser	Gly 255	Arg
Ala	Glu	Glu	Glu 260	Glu	Asp	Gln	Asp	Glu 265		Ile	Lys	Gln	Ala 270	Met	Asn
His	Phe	Val 275		Glu	Asn	Gly	Thr 280		Arg	Ala	Lys	Pro 285	Thr	Gly	Asn

```
295
<210> 44
<211> 0
<212> DNA
<213> Homo sapiens
<400> 44
                                                                    3
000
<210> 45
<211> 0
<212> DNA
<213> Homo sapiens
<400> 45
                                                                    3
000
<210> 46
<211>
<212> DNA
<213> Homo sapiens
<400> 46
                                                                    3
000
<210> 47
<211> 0
<212> DNA
<213> Homo sapiens
<400> 47
                                                                    3
000
<210> 48
<211> 0
<212> DNA
<213> Homo sapiens
<400> 48
                                                                    3
000
<210> 49
<211> 0
<212> DNA
<213> Homo sapiens
<400> 49
                                                                     3
000
```

Gly Ile Tyr Ile Asn Gly Arg Gly His Leu Val

<210> 50 <211> <212> DNA <213> Homo sapiens <400> 50 3 000 <210> 51 <211> 3114 <212> DNA <213> Homo sapiens <400> 51 60 cttaatgttg gaagtctctt agtcctatga gagtgtgtag cagtttgtcc ctgagctcta gettetttaa atgaagetga gtetetggge aacatettta gggagagagg tacaaaaggt 120 tectggaeet teteaacaea gggageetge ataatgatge aagageagea aceteaaagt 180 acagagaaaa gaggctggtt gtccctgaga ctctggtctg tggctgggat ttccattgca 240 ctcctcagtg cttgcttcat tgtgagctgt gtagtaactt accattttac atatggtgaa 300 360 actggcaaaa ggctgtctga actacactca tatcattcaa gtctcacctg cttcagtgaa gggacaaagg tgccagcctg gggatgttgc ccagcttctt ggaagtcatt tggttccagt 420 480 tgctacttca tttccagtga agagaaggtt tggtctaaga gtgagcagaa ctgtgttgag atgggagcac atttggttgt gttcaacaca gaagcagagc agaatttcat tgtccagcag 540 600 ctgaatgagt cattttctta ttttctgggg ctttcagacc cacaaggtaa taataattgg 660 caatggattg ataagacacc ttatgagaaa aatgtcagat tttggcacct aggtgagccc 720 aatcattctg cagagcaatg tgcttcaata gtcttctgga aacctacagg atggggctgg 780 aatgatgtta tctgtgaaac tagaaggaat tcaatatgtg agatgaataa gatttaccta 840 tgagtagaag cttaattgga aagaagagaa gaattactga cgtaattttt tccctgacgt ctttaaaatt gaaccctatc atgaaatgat aatttcttcc tgaatttaca cataatcctt 900 atgttataga ggttcacaga aatggaaaga tacctgtttc cctttaatca atcttctcgt 960 ttcctctttt ccattaatga tagaatgcac ccttcctctc tttgttccat tctttcactt 1020 1080 gtactatttt gtttgttaga agatttataa ggcagtatct tttgaaaaatt atgactttcc 1140 1200 ttcctcaata taccataaag aaatcttttt ggtcaagatg gtagttggaa ctacaatcat ctgaaggcct gacaagagtt gaaagacatg ttttctagat ggctcactca catggctggc 1260 aacttggtgt tggctattaa tgtaacctgg aaataaattt tattctgcag ttagggattt 1320

1380 ggcattttat atatgttgat tcaatcaagt ttggcaagca gggtgttcga tactgctata tectgtatte ttggtttatt tgttttattt etgagaaata tgtgttaaga tetetegetg 1440 1500 attgggaatt tgtctatttc tcatttaaat tttgtcaaat ctttctttgc ttgcaagcat 1560 ttcttgttac ccaaatctaa cctattcctg aaaatatgat ggttagcaaa gtttgagata actagageet gtaateeate attttaaatg geaatgataa tgacagttta tttttatgtt 1620 atataaaaac ctcaacaaat tttccaaaca attaccaaaa tggtcattaa tctgtatcca 1680 caaaggattt ctgcattaca tactttaaaa caaattacct aattatttag tgcatattaa 1740 1800 acttattggt gggcatgact atatgcaaca gttgcatgat atatgataca aattatgtta 1860 ttottttoca ttgcactgaa aataccataa tataaagaag aatcccatca tccaaattga gcctatattg attgatactc agaagaatct ggcagtagga gcctataaag ggataagcaa 1920 ttgggaaagg attgggaagt tggtagtact gaacatette teacetggae teatgageaa 1980 cttgaatagt tgtaactgtg atgcatatgt agattctaac acatttttcc cccttgaata 2040 gaaatttggc acaacaattt tttaaattaa tttagcaaat atttggatat taaagcttct 2100 tatagaaaga gatacctgta tatttaagcc atgatgaggt atatacaatg ttataattat 2160 tacttgtaca tggcaaatta attttttat cattgtggag tcactttctt taaatttagt 2220 2280 aatgcctttg gctttaattt ttctcctgat attaaaatag atacagtaac tttcattatg ttagtgctgt aaaatttttt tttccatctt ctatttttga ccatttttat tccacatgtg 2340 2400 ctcttaataa gtagcatata gttaaatttt aaaaaatcca atatggcaat caccttttag gttaaaaatt taatccattt acatttgtga caattcgaca tatatatggt tctaaatcta 2460 2520 tcatcttact aggtggtttc catttcctct gctccaaaat atttttttta cagcttataa 2580 cacaactttt attagaaaag ttatacataa cacagcatca actattttca agaacccaat 2640 aagcaacaaa aaccagacta acaaaatgtg taacaagaaa ctaatgacct ttctaaaatc 2700 aaacattcaa ttatctacaa tgtctattta caaacaggga aaactccatg gtttacaggc atgtcatatt gaaaataaag ctgcaatagc tttttataca attatcgctc tcaagaaaat 2760 2820 gaatcattaa gacagtaatt aggagttcac aaatttaaaa catttcacgt aattttaaat tattgtcttc aataatttta aattattgaa gtctgagttt caaaagtgat tttttcccac 2880 aaaggtgcca acacttaagc tagagctttc agtgttaact ttgccctaaa agttaagaca 2940 3000 tattctgaga atcataatag tcacatgatt tctgatgcta tctgctctgt taataacaaa gatttcacac atgaatacct atgtaacaaa tctccatgtt ctacacatat accccagaac 3060 3114

<210> 52 <211> 627 <212> DNA <213> Homo sapiens

<400> 52

atgatgcaag agcagcaacc tcaaagtaca gagaaaagag gctggttgtc cctgagactc 60 tggtctgtgg ctgggatttc cattgcactc ctcagtgctt gcttcattgt gagctgtgta 120 gtaacttacc attttacata tggtgaaact ggcaaaaggc tgtctgaact acactcatat 180 cattcaagtc tcacctgctt cagtgaaggg acaaaggtgc cagcctgggg atgttgccca 240 gcttcttgga agtcatttgg ttccagttgc tacttcattt ccagtgaaga gaaggtttgg 300 tctaagagtg agcagaactg tgttgagatg ggagcacatt tggttgtgtt caacacagaa 360 gcagagcaga atttcattgt ccagcagctg aatgagtcat tttcttattt tctggggctt 420 tcagacccac aaggtaataa taattggcaa tggattgata agacacctta tgagaaaaat 480 gtcagatttt ggcacctagg tgagcccaat cattctgcag agcaatgtgc ttcaatagtc 540 ttctggaaac ctacaggatg gggctggaat gatgttatct gtgaaactag aaggaattca 600 atatgtgaga tgaataagat ttaccta 627

<210> 53 <211> 209 <212> PRT

<213> Homo sapiens

<400> 53

Met Met Gln Gln Gln Pro Gln Ser Thr Glu Lys Arg Gly Trp Leu 1 5 10 15

Ser Leu Arg Leu Trp Ser Val Ala Gly Ile Ser Ile Ala Leu Leu Ser 20 25 30

Ala Cys Phe Ile Val Ser Cys Val Val Thr Tyr His Phe Thr Tyr Gly
35 40 45

Glu Thr Gly Lys Arg Leu Ser Glu Leu His Ser Tyr His Ser Ser Leu 50 55 60

Thr Cys Phe Ser Glu Gly Thr Lys Val Pro Ala Trp Gly Cys Cys Pro 65 70 75 80

Ala Ser Trp Lys Ser Phe Gly Ser Ser Cys Tyr Phe Ile Ser Ser Glu

85 90 95

Glu Lys Val Trp Ser Lys Ser Glu Gln Asn Cys Val Glu Met Gly Ala 100 105 110

His Leu Val Val Phe Asn Thr Glu Ala Glu Gln Asn Phe Ile Val Gln
115 120 125

Gln Leu Asn Glu Ser Phe Ser Tyr Phe Leu Gly Leu Ser Asp Pro Gln 130 135 140

Val Arg Phe Trp His Leu Gly Glu Pro Asn His Ser Ala Glu Gln Cys 165 170 175

Ala Ser Ile Val Phe Trp Lys Pro Thr Gly Trp Gly Trp Asn Asp Val 180 185 190

Ile Cys Glu Thr Arg Arg Asn Ser Ile Cys Glu Met Asn Lys Ile Tyr 195 200 205

Leu

<210> 54

<211> 48

<212> PRT

<213> Homo sapiens

<400> 54

Met Met Gln Glu Gln Gln Pro Gln Ser Thr Glu Lys Arg Gly Trp Leu 1 5 10 15

Ser Leu Arg Leu Trp Ser Val Ala Gly Ile Ser Ile Ala Leu Leu Ser 20 25 30

Ala Cys Phe Ile Val Ser Cys Val Val Thr Tyr His Phe Thr Tyr Gly 35 40 45

<210> 55

<211> 161

<212> PRT

<213> Homo sapiens

<400> 55

Glu Thr Gly Lys Arg Leu Ser Glu Leu His Ser Tyr His Ser Ser Leu 1 5 10 15

Thr Cys Phe Ser Glu Gly Thr Lys Val Pro Ala Trp Gly Cys Cys Pro 20 25 30

Ala Ser Trp Lys Ser Phe Gly Ser Ser Cys Tyr Phe Ile Ser Ser Glu 35 40 45

Glu Lys Val Trp Ser Lys Ser Glu Gln Asn Cys Val Glu Met Gly Ala 50 55 60

His Leu Val Val Phe Asn Thr Glu Ala Glu Gln Asn Phe Ile Val Gln 65 . 70 75 80

Gln Leu Asn Glu Ser Phe Ser Tyr Phe Leu Gly Leu Ser Asp Pro Gln 85 90 95

Gly Asn Asn Asn Trp Gln Trp Ile Asp Lys Thr Pro Tyr Glu Lys Asn 100 105 110

Val Arg Phe Trp His Leu Gly Glu Pro Asn His Ser Ala Glu Gln Cys 115 120 125

Ala Ser Ile Val Phe Trp Lys Pro Thr Gly Trp Gly Trp Asn Asp Val 130 135 140

Leu

<210> 56

<211> 0

<212> DNA

<213> Homo sapiens

<400> 56

000

<210> 57

<211> 0

<212> DNA

<213> Homo sapiens

3 000 <210> 58 <211> 0 <212> DNA <213> Homo sapiens <400> 58 3 000 <210> 59 <211> 0 <212> DNA <213> Homo sapiens <400> 59 3 000 <210> 60 <211> 209 <212> PRT <213> Mus sp. <400> 60 Met Val Gln Glu Arg Gln Ser Gln Gly Lys Gly Val Cys Trp Thr Leu Arg Leu Trp Ser Ala Ala Val Ile Ser Met Leu Leu Leu Ser Thr Cys 20 Phe Ile Ala Ser Cys Val Val Thr Tyr Gln Phe Ile Met Asp Gln Pro 40 35 Ser Arg Arg Leu Tyr Glu Leu His Thr Tyr His Ser Ser Leu Thr Cys 55 Phe Ser Glu Gly Thr Met Val Ser Glu Lys Met Trp Gly Cys Cys Pro 70 Asn His Trp Lys Ser Phe Gly Ser Ser Cys Tyr Leu Ile Ser Thr Lys 85 Glu Asn Phe Trp Ser Thr Ser Glu Gln Asn Cys Val Gln Met Gly Ala 105 100

<400> 57

His Leu Val Val Ile Asn Thr Glu Ala Glu Gln Asn Phe Ile Thr Gln

115 120 125

Gln Leu Asn Glu Ser Leu Ser Tyr Phe Leu Gly Leu Ser Asp Pro Gln 130 135 140

Gly Asn Gly Lys Trp Gln Trp Ile Asp Asp Thr Pro Phe Ser Gln Asn 145 150 155 160

Val Arg Phe Trp His Pro His Glu Pro Asn Leu Pro Glu Glu Arg Cys 165 170 175

Val Ser Ile Val Tyr Trp Asn Pro Ser Lys Trp Gly Trp Asn Asp Val 180 185 190

Phe Cys Asp Ser Lys His Asn Ser Ile Cys Glu Met Lys Lys Ile Tyr 195 200 205

Leu

<210> 61

<211> 821

<212> DNA

<213> Mus sp.

<220>

<221> misc feature

<222> (788)..(788)

<223> unsure

<400> 61

gaactccccg gtgtcgaccc cgcgtcccga ttggcccgct ctgtggcatt taactcaagt 60 gtgtgtggaa gttgattctg aactctggcc tctttgacag aagccaggtc cctgagtcgt 120 attttggaga cagatgcaag aaacccctga ccttctgaac atacacctca acaatggtgc 180 aggaaagaca atcccaaggg aagggagtct gctggaccct gagactctgg tcagctgctg 240 300 tgatttccat gttactcttg agtacctgtt tcattgcgag ctgtgtggtg acttaccaat ttattatgga ccagcccagt agaagactat atgaacttca cacataccat tccagtctca 360 cctgcttcag tgaagggact atggtgtcag aaaaaatgtg gggatgctgc ccaaatcact 420 480 ggaagtcatt tggctccagc tgctacctca tttctaccaa ggagaacttc tggagcacca gtgagcagaa ctgtgttcag atgggggctc atctggtggt gatcaatact gaagcggagc 540 600 agaatttcat cacccagcag ctgaatgagt cactttctta cttcctgggt ctttcggatc

ccaaggtaat	ggcaaatggc	aatggatcga	tgatactcct	ttcagtcaaa	atgtcaggtt	660
ctggcacccc	catgaaccca	atcttccaga	agagcggtgt	gtttcaatag	tttactggaa	720
tccttcgaaa	tggggctggg	aatgatgttt	tctgtgatag	taaacacaat	tcaatatgtg	780
aaatgaanaa	gattacctat	gaatgcctgt	tattcttaat	a		821
<210> 62 <211> 534 <212> DNA <213> Mus						
<400> 62 atggtgcagg	aaagacaatc	ccaagggaag	ggagtctgct	ggaccctgag	actctggtca	60
gctgctgtga	tttccatgtt	actcttgagt	acctgtttca	ttgcgagctg	tgtggtgact	120
taccaattta	ttatggacca	gcccagtaga	agactatatg	aacttcacac	ataccattcc	180
agtctcacct	gcttcagtga	agggactatg	gtgtcagaaa	aaatgtgggg	atgctgccca	240
aatcactgga	agtcatttgg	ctccagctgc	tacctcattt	ctaccaagga	gaacttctgg	300
agcaccagtg	agcagaactg	tgttcagatg	ggggctcatc	tggtggtgat	caatactgaa	360
gcggagcaga	atttcatcac	ccagcagctg	aatgagtcac	tttcttactt	cctgggtctt	420
tcggatccca	aggtaatggc	aaatggcaat	ggatcgatga	tactcctttc	agtcaaaatg	480
tcaggttctg	gcacccccat	gaacccaatc	ttccagaaga	gcggtgtgtt	tcaa	534
<210> 63 <211> 178 <212> PRT <213> Mus	sp.					
<400> 63						
Met Val Gl:	n Glu Arg G 5	ln Ser Gln	Gly Lys Gly 10	Val Cys Trp	o Thr Leu 15	
Arg Leu Tr	p Ser Ala A 20		Ser Met Leu 25	Leu Leu Se:	r Thr Cys	
Phe Ile Al	-	al Val Thr '	Tyr Gln Phe	Ile Met Ası 45	o Gln Pro	

Ser Arg Arg Leu Tyr Glu Leu His Thr Tyr His Ser Ser Leu Thr Cys

Phe Ser Glu Gly Thr Met Val Ser Glu Lys Met Trp Gly Cys Cys Pro

Asn His Trp Lys Ser Phe Gly Ser Ser Cys Tyr Leu Ile Ser Thr Lys 85 90 Glu Asn Phe Trp Ser Thr Ser Glu Gln Asn Cys Val Gln Met Gly Ala 105 100 His Leu Val Val Ile Asn Thr Glu Ala Glu Gln Asn Phe Ile Thr Gln 115 120 Gln Leu Asn Glu Ser Leu Ser Tyr Phe Leu Gly Leu Ser Asp Pro Lys 130 135 Val Met Ala Asn Gly Asn Gly Ser Met Ile Leu Leu Ser Val Lys Met 150 155 Ser Gly Ser Gly Thr Pro Met Asn Pro Ile Phe Gln Lys Ser Gly Val 170 165 Phe Gln <210> 64 <211> 48 <212> PRT <213> Mus sp. <400> 64 Met Val Gln Glu Arg Gln Ser Gln Gly Lys Gly Val Cys Trp Thr Leu Arg Leu Trp Ser Ala Ala Val Ile Ser Met Leu Leu Ser Thr Cys 20 Phe Ile Ala Ser Cys Val Val Thr Tyr Gln Phe Ile Met Asp Gln Pro 40 35 <210> 65 <211> 130 <212> PRT <213> Mus sp.

Ser Arg Arg Leu Tyr Glu Leu His Thr Tyr His Ser Ser Leu Thr Cys
1 10 15

<400> 65

```
Phe Ser Glu Gly Thr Met Val Ser Glu Lys Met Trp Gly Cys Cys Pro
Asn His Trp Lys Ser Phe Gly Ser Ser Cys Tyr Leu Ile Ser Thr Lys
Glu Asn Phe Trp Ser Thr Ser Glu Gln Asn Cys Val Gln Met Gly Ala
                       55
His Leu Val Val Ile Asn Thr Glu Ala Glu Gln Asn Phe Ile Thr Gln
                   70
                                       75
Gln Leu Asn Glu Ser Leu Ser Tyr Phe Leu Gly Leu Ser Asp Pro Lys
               85
                                   90
Val Met Ala Asn Gly Asn Gly Ser Met Ile Leu Leu Ser Val Lys Met
                              105
           100
                                                 110
Ser Gly Ser Gly Thr Pro Met Asn Pro Ile Phe Gln Lys Ser Gly Val
                           120
                                              125
       115
Phe Gln
 130
<210> 66
<211> 0
<212> DNA
<213> Mus sp.
<400> 66
                                                                      3
000
<210> 67
<211> 0
<212> DNA
<213> Mus sp.
<400> 67
                                                                      3
000
<210> 68
<211> 0
<212> DNA
<213> Mus sp.
<400> 68
                                                                      3
000
```

```
<210>
       69
<211>
<212>
       DNA
<213>
       Mus sp.
<400>
       69
000
                                                                         3
<210>
       70
<211>
<212>
       DNA
<213>
       Mus sp.
<400>
       70
000
                                                                         3
<210>
       71
       1252
<211>
<212>
       DNA
       Mus sp.
<213>
<400>
       71
egacecegeg teegetgact tetgggtttg cageattgge eegetetgtg geatttaaet
                                                                       60
caagtgtgtg tggaagttga ttctgaactc tggcctcttt gacagaagcc aggtccctga
                                                                      120
gtcgtatttt ggagacagat gcaagaaacc cctgaccttc tgaacataca cctcaacaat
                                                                      180
ggtgcaggaa agacaatccc aagggaaggg agtctgctgg accctgagac tctggtcagc
                                                                      240
tgctgtgatt tccatgttac tcttgagtac ctgtttcatt gcgagctgtg tggtgactta
                                                                      300
ccaatttatt atggaccagc ccagtagaag actatatgaa cttcacacat accattccag
                                                                      360
teteacetge tteagtgaag ggaetatggt gteagaaaaa atgtggggat getgeecaaa
                                                                      420
tcactggaag tcatttggct ccagctgcta cctcatttct accaaggaga acttctggag
                                                                      480
caccagtgag cagaactgtg ttcagatggg ggctcatctg gtggtgatca atactgaagc
                                                                      540
ggagcagaat ttcatcaccc agcagctgaa tgagtcactt tcttacttcc tgggtctttc
                                                                      600
ggatccacaa ggtaatggca aatggcaatg gatcgatgat actcctttca gtcaaaatgt
                                                                      660
caggitetgg cacceccatg aacceaatet tecagaagag eggtgtgttt caatagitta
                                                                      720
ctggaatcct tcgaaatggg gctggaatga tgttttctgt gatagtaaac acaattcaat
                                                                      780
atgtgaaatg aagaagattt acctatgagt gcctgttatt cattaatatc tttaaagttc
                                                                      840
agacctacca agaagccata acttettgge etgtacatet gacagaggee gttettttee
                                                                      900
tagccactat tetttaetca aacagaatga gecetttete ettetgatgg ttagagtttt
                                                                      960
gtcaacttga cacaaactag agtcacctgg ggagtaggat cttcagctaa ggaattgcct
                                                                     1020
```

ctgtcagctt	gaccagtcag	catgtctggg	ggcattttct	tgattaatga	ttgttgtaag	1080
agggtccagg	tggtaagcaa	aggtgttaaa	cccatgaaga	gcaagccagg	gagcatcatc	1140
catccatctc	tgccctcagg	tttctgcccc	agggtcttgc	cctggtttct	ttctatgaac	1200
tgctgttact	tgaaagtata	agatgaataa	acaatttcat	ccaaaaaaaa	aa	1252
<210> 72 <211> 627 <212> DNA <213> Mus	sp.					
<400> 72 atggtgcagg	aaagacaatc	ccaagggaag	ggagtctgct	ggaccctgag	actctggtca	60
gctgctgtga	tttccatgtt	actcttgagt	acctgtttca	ttgcgagctg	tgtggtgact	120
taccaattta	ttatggacca	gcccagtaga	agactatatg	aacttcacac	ataccattcc	180
agtctcacct	gcttcagtga	agggactatg	gtgtcagaaa	aaatgtgggg	atgctgccca	240
aatcactgga	agtcatttgg	ctccagctgc	tacctcattt	ctaccaagga	gaacttctgg	300
agcaccagtg	agcagaactg	tgttcagatg	ggggctcatc	tggtggtgat	caatactgaa	360
gcggagcaga	atttcatcac	ccagcagctg	aatgagtcac	tttcttactt	cctgggtctt	420
tcggatccac	aaggtaatgg	caaatggcaa	tggatcgatg	atactccttt	cagtcaaaat	480
gtcaggttct	ggcaccccca	tgaacccaat	cttccagaag	agcggtgtgt	ttcaatagtt	540
tactggaatc	cttcgaaatg	gggctggaat	gatgttttct	gtgatagtaa	acacaattca	600
atatgtgaaa	tgaagaagat	ttaccta				627

<210> 73

<211> 586

<212> PRT

<213> Mus sp.

<400> 73

Met Glu Thr Val Ala Leu Gly Leu Asn Gly Leu Ala Arg Gly Gly Leu 1 5 10 15

Asn Ser Glu Arg Gly Leu Asn Gly Leu Tyr Leu Tyr Ser Gly Leu Tyr 20 25 30

Val Ala Leu Cys Tyr Ser Thr Arg Pro Thr His Arg Leu Glu Ala Arg 35 40 45

Gly Leu Glu Thr Arg Pro Ser Glu Arg Ala Leu Ala Ala Leu Ala Val 50 55 60

Ala 65	Leu	Ile	Leu	Glu	Ser 70	Glu	Arg	Met	Glu	Thr 75	Leu	Glu	Leu	Glu	Leu 80
Glu	Ser	Glu	Arg	Thr 85	His	Arg	Cys	Tyr	Ser 90	Pro	His	Glu	Ile	Leu 95	Glu
Ala	Leu	Ala	Ser 100	Glu	Arg	Cys	Tyr	Ser 105	Val	Ala	Leu	Val	Ala 110	Leu	Thr
His	Arg	Thr 115	Tyr	Arg	Gly	Leu	Asn 120	Pro	His	Glu	Ile	Leu 125	Glu	Met	Glu
Thr	Ala 130	Ser	Pro	Gly	Leu	Asn 135	Pro	Arg	Ser	Glu	Arg 140	Ala	Arg	Gly	Ala
Arg 145	Gly	Leu	Glu	Thr	Tyr 150	Arg	Gly	Leu	Leu	Glu 155	His	Ile	Ser	Thr	His 160
Arg	Thr	Tyr	Arg	His 165	Ile	Ser	Ser	Glu	Arg 170	Ser	Glu	Arg	Leu	Glu 175	Thr
His	Arg	Cys	Tyr 180	Ser	Pro	His	Glu	Ser 185	Glu	Arg	Gly	Leu	Gly 190	Leu	Tyr
Thr	His	Arg 195	Met	Glu	Thr	Val	Ala 200	Leu	Ser	Glu	Arg	Gly 205	Leu	Leu	Tyr
Ser	Met 210	Glu	Thr	Thr	Arg	Pro 215	Gly	Leu	Tyr	Cys	Tyr 220	Ser	Cys	Tyr	Ser
Pro 225	Arg	Ala	Ser	Asn	His 230	Ile	Ser	Thr	Arg	Pro 235	Leu	Tyr	Ser	Ser	Glu 240
Arg	Pro	His	Glu	Gly 245	Leu	Tyr	Ser	Glu	Arg 250	Ser	Glu	Arg	Cys	Туг 255	Ser
Thr	Tyr	Arg	Leu 260	Glu	Ile	Leu	Glu	Ser 265	Glu	Arg	Thr	His	Arg 270	Leu	Tyr
Ser	Gly	Leu 275	Ala	Ser	Asn	Pro	His 280	Glu	Thr	Arg	Pro	Ser 285	Glu	Arg	Thr
His	Arg	Ser	Glu	Arg	Gly	Leu	Gly	Leu	Asn	Ala	Ser	Asn	Cys	Tyr	Ser

290 295 300

Val Ala Leu Gly Leu Asn Met Glu Thr Gly Leu Tyr Ala Leu Ala His Ile Ser Leu Glu Val Ala Leu Val Ala Leu Ile Leu Glu Ala Ser Asn Thr His Arg Gly Leu Ala Leu Ala Gly Leu Gly Leu Asn Ala Ser Asn Pro His Glu Ile Leu Glu Thr His Arg Gly Leu Asn Gly Leu Asn Leu Glu Ala Ser Asn Gly Leu Ser Glu Arg Leu Glu Ser Glu Arg Thr Tyr Arg Pro His Glu Leu Glu Gly Leu Tyr Leu Glu Ser Glu Arg Ala Ser Pro Pro Arg Gly Leu Asn Gly Leu Tyr Ala Ser Asn Gly Leu Tyr Leu Tyr Ser Thr Arg Pro Gly Leu Asn Thr Arg Pro Ile Leu Glu Ala Ser Pro Ala Ser Pro Thr His Arg Pro Arg Pro His Glu Ser Glu Arg Gly Leu Asn Ala Ser Asn Val Ala Leu Ala Arg Gly Pro His Glu Thr Arg Pro His Ile Ser Pro Arg His Ile Ser Gly Leu Pro Arg Ala Ser Asn Leu Glu Pro Arg Gly Leu Gly Leu Ala Arg Gly Cys Tyr Ser Val Ala Leu Ser Glu Arg Ile Leu Glu Val Ala Leu Thr Tyr Arg Trp Ala Ser

Asn Pro Arg Ser Glu Arg Leu Tyr Ser Thr Arg Pro Gly Leu Tyr Thr

```
Ser Pro Ser Glu Arg Leu Tyr Ser His Ile Ser Ala Ser Asn Ser Glu
                                                           560
545
                   550
                                       555
Arg Ile Leu Glu Cys Tyr Ser Gly Leu Met Glu Thr Leu Tyr Ser Leu
                                   570
               565
Tyr Ser Ile Leu Glu Thr Tyr Arg Leu Glu
<210> 74
<211> 0
<212> DNA
<213> Mus sp.
<400> 74
000
                                                                      3
<210> 75
<211> 0
<212> DNA
<213> Mus sp.
<400> 75
000
                                                                      3
<210> 76
<211> 0
<212> DNA
<213> Mus sp.
<400> 76
                                                                      3
000
<210> 77
<211> 0
<212> DNA
<213> Mus sp.
<400> 77
000
                                                                      3
<210> 78
<211> 0
<212> DNA
<213> Mus sp.
<400> 78
                                                                      3
000
```

Arg Pro Ala Ser Asn Ala Ser Pro Val Ala Leu Phe Cys Tyr Ser Ala

535

```
79
<210>
<211>
<212>
      DNA
      Mus sp.
<213>
<400>
       79
                                                                        3
000
<210>
       80
<211>
       0
<212>
       DNA
<213> Mus sp.
       80
<400>
                                                                        3
000
<210>
       81
<211>
       1202
<212>
       DNA
<213>
      Homo sapiens
<400> 81
gtcgacccac gcgtccggaa accattccac aatcaccctc ctgaggaact cttagcactg
                                                                       60
cataaagtgt totgagtttg taatcagata ttgtcacact ggttccttca aacagacatg
                                                                      120
                                                                      180
acaaggaget ggetttggge taggetgete ettgeetatg attggggaag gttaaaceee
tacagggett atgtatgtgg aaactgttgg aacactgatt aaatgggatg gacttcactt
                                                                      240
                                                                      300
aacactcttg gatttccaat attatgtttg agtaaaagaa ctgctatcca caaacaccat
taatccttta gggaggcaga aaaggccaga atgcaaagcc atcttttcat tacactaggg
                                                                      360
tetgtetttt taettetetg ggeetttate tggggaggge atgttteece caettggaae
                                                                      420
agtgagcctg gccaggacag taacctgtgg gcttgtgatg acattatttc taatagggaa
                                                                      480
tgggaaagga tgttagcttc tcaggtttta aagtgtcctg gaggagaaga gaaaggacga
                                                                      540
catgagaagg agacaatgaa gaagatgggt gagggggaga tagtgtaaga ccctgagaat
                                                                      600
                                                                      660
ggcatagggt aaaactggga cagagatact gtgggagaac gatagctgca gagggacaga
                                                                      720
gggaggaagg aaggagaaga gagggagata aaaacagttt ggagaaactc tcacaataca
ttcataagaa gacaaagaac ccaataaaaa tgggcaacag ataccacaga agatgatata
                                                                      780
ttgagtggcc aataaataca taaaaatatg ctcaacatct ataattacca gggaaatgca
                                                                      840
aattaaaaqc actgtgagat accactacac actgatgaga atggctaaaa tcaaaaaaga
                                                                      900
                                                                      960
ccaaccagca ctttgggagg ccgaggtggg cggatcatga ggtcaggagt ttgagactag
                                                                     1020
cctgaccaac atggtgaaac cctgtctcta ctaaacatac aaaaattagc tgggggtggt
```

ggcatgcgcc tgtaattcca gctactcagg aggctgaggc aggagaatcg cttgaaccca 1080 ggaggcagag attacagtga gccgagatca tgcccttgca ctctagcctg ggtgacagag 1140 cgagactctg tcttaaaaaa aaaaaaaaaa aaaaaaaaa aagggcggcc 1200 gc 1202 <210> 82 <211> 255 <212> DNA <213> Homo sapiens <400> 82 atgeaaagee atetttteat tacaetaggg tetgtetttt tacttetetg ggeetttate 60 tggggagggc atgtttcccc cacttggaac agtgagcctg gccaggacag taacctgtgg 120 gcttgtgatg acattatttc taatagggaa tgggaaagga tgttagcttc tcaggtttta 180 aagtgtcctg gaggagaaga gaaaggacga catgagaagg agacaatgaa gaagatgggt 240 gaggggaga tagtg 255 <210> 83 <211> 85 <212> PRT <213> Homo sapiens <400> 83 Met Gln Ser His Leu Phe Ile Thr Leu Gly Ser Val Phe Leu Leu Leu 10 15 Trp Ala Phe Ile Trp Gly Gly His Val Ser Pro Thr Trp Asn Ser Glu 20 25 30

Pro Gly Gln Asp Ser Asn Leu Trp Ala Cys Asp Asp Ile Ile Ser Asn 35 40 45

Arg Glu Trp Glu Arg Met Leu Ala Ser Gln Val Leu Lys Cys Pro Gly 50 55 60

Gly Glu Glu Lys Gly Arg His Glu Lys Glu Thr Met Lys Lys Met Gly 65 70 75 80

Glu Gly Glu Ile Val

85

<210> 84

<211> 23

<212> PRT

<213> Homo sapiens

<400> 84

Met Gln Ser His Leu Phe Ile Thr Leu Gly Ser Val Phe Leu Leu Leu 1 5 10 15

Trp Ala Phe Ile Trp Gly Gly 20

<210> 85

<211> 62

<212> PRT

<213> Homo sapiens

<400> 85

His Val Ser Pro Thr Trp Asn Ser Glu Pro Gly Gln Asp Ser Asn Leu 1 5 10 15

Trp Ala Cys Asp Asp Ile Ile Ser Asn Arg Glu Trp Glu Arg Met Leu 20 25 30

Ala Ser Gln Val Leu Lys Cys Pro Gly Gly Glu Glu Lys Gly Arg His 35 40 45

Glu Lys Glu Thr Met Lys Lys Met Gly Glu Gly Glu Ile Val 50 55 60