Математический анализ, Коллоквиум 2

Балюк Игорь @lodthe, GitHub

2019 - 2020

Содержание

1	Воп	просы предварительной части коллоквиума		
	1.1	Определение непрерывности функции в точке		
	1.2	Точки разрыва, их классификация.		
	1.3	Теорема о непрерывности сложной функции		
	1.4	Формулировки первой и второй теорем Вейерштрасса.		
	1.5	Понятие производной функции в точке.		
	1.6	Геометрический и физический смысл производной.		
	1.7	Уравнение касательной к графику функции в точке.		
	1.8	Понятие дифференцируемости функции в точке.		
	1.9	Правила дифференцирования (производная суммы, произведения, частного).		
	1.10	Формула вычисления производной сложной функции.		
	1.11	Таблица производных основных элементарных функций.		
	1.12	Понятие дифференциала (первого) функции в точке		
	1.13	Геометрический смысл дифференциала.		
	1.14	Определение локального экстремума. Необходимое условие для внутреннего локального		
		экстремума (теорема Ферма).		
	1.15	Формулы Лагранжа и Коши.		
	1.16	Многочлен Тейлора и формула Тейлора для функций одной переменной.		
	1.17	Формулы Маклорена для основных элементарных функций.		
	1.18	Правило Лопиталя.		
2	Воп	росы на знание доказательств		
	2.1	Определения непрерывности функции в точке, их эквивалентность. Точки разрыва, их		
		классификация.		
	2.2	Непрерывность основных элементарных функций.		
	2.3	Арифметические свойства непрерывных функций.		
	2.4	Теорема о непрерывности сложной функции.		
	2.5	Свойства функций, непрерывных на отрезке (первая и вторая теоремы Вейерштрасса).		
	2.6	Теорема Коши о прохождении непрерывной функции через промежуточные значения.		
	2.7	Понятие производной функции в точке.		
	2.8	Геометрический и физический смысл производной.		
	2.9	Уравнение касательной к графику функции в точке.		
	2.10	Понятие дифференцируемости функции в точке.		
	2.11	Необходимое условие дифференцируемости.		
	2.12	Правила дифференцирования.		
	2.13	Теорема о дифференцируемости и производной сложной функции.		
	2.14	Теорема о дифференцируемости обратной функции.		
	2.15	Таблица производных основных элементарных функций.		
	2.16	Производные функций, графики которых заданы параметрически.		
	2.17	Понятие дифференциала (первого) функции в точке		
	2.18	Геометрический смысл дифференциала.		
	2.19	Инвариантность формы первого дифференциала.		
	2.20	Производные и дифференциалы высших порядков функции одной переменной в точке.		

2.21	Понятие об экстремумах функции одной переменной	7
2.22	Локальный экстремум. Необходимое условие для внутреннего локального экстремума (тео-	
	рема Ферма)	7
2.23	Основные теоремы о дифференцируемых функций на отрезке (теорема Ролля, формулы	
	Лагранжа и Коши)	7
2.24	Многочлен Тейлора и формула Тейлора для функций одной переменной с остаточным	
	членом в форме Пеано и Лагранжа.	7
2.25	Формулы Маклорена для основных элементарных функций.	8
2.26	Правило Лопиталя	8
2.27	Достаточное условие строгого возрастания (убывания) функции на промежутке.	8
2.28	Достаточные условия локального экстремума для функции одной переменной	8
2.29	Выпуклые (вогнутые) функции одной переменной.	8
2.30	Достаточные условия выпуклости (вогнутости)	8
2.31	Точки перегиба	8
2.32	Необходимые и достаточные условия для точки перегиба	8
2.33	Асимптоты графика функции одной переменной	8

1 Вопросы предварительной части коллоквиума

Список вопросов предварительной части коллоквиума, ответ на которые необходим для подготовки к основной части.

1. Определение непрерывности функции в точке.

Функция f(x) непрерывна в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$. Другими словами, $A = f(x_0)$ и справедливы следующие определения предела функции в точке x_0 :

• По Kowu:

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x, |x - x_0| < \delta \implies |f(x) - A| < \varepsilon$$

По Гейне:

$$\forall \{x_n\}: x_n \in \overset{\circ}{U}(x_0), \lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = A$$

Другое определение:

Пусть f(x) — функция, определенная на промежутке I (I — это её область определения) и пусть c — произвольная точка из I. Предположим, что для любого $\varepsilon > 0$ существует $\delta > 0$:

$$\forall x \in I: |x-c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

Тогда функция f(x) **непрерывна** в точке c.

Заметьте, если c — это левая граница I, то условие имеет вид (функция непрерывна в точке c справа, аналогично для непрерывности слева).

$$\forall x \in I : c < x < c + \delta \implies |f(x) - f(c)| < \varepsilon$$

Теорема. Также, функция f(x) непрерывна в точке a. Тогда найдётся такое $\delta > 0$, что функция f(x) ограничена окрестностью $U_{\delta}(a)$ точки a.

2. Точки разрыва, их классификация.

Пусть f(x) определена в некоторой окрестности $U_{\delta}(a)$ и функция разрывна в a. Тогда этот разрыв является одним из следующих:

• **Устранимый разрыв**: пределы f(x) справа и слева существуют и равны друг другу, но отличаются от значения функции в исследуемой точке:

$$\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) \neq f(a)$$

- Heycmpaнимый разрыв первого рода: пределы f(x) справа и слева существуют, но не равны друг другу
- **Неустранимый разрыв второго рода**: хотя бы один из односторонних пределов f(x) не существует или равен бесконечности.

3. Теорема о непрерывности сложной функции.

Теорема. Пусть функция g(x) непрерывна в точке a_0 и функция f(x) непрерывна в точке $b_0 = g(a_0)$. Тогда функция f(g(x)) непрерывна в точке a_0 .

4. Формулировки первой и второй теорем Вейерштрасса.

Теорема (Первая теорема Вейерштрасса). Если функция f(x) непрерывна на отрезке [a,b], то она ограничена на этом отрезке.

Теорема (Вторая теорема Вейерштрасса). Непрерывная на отрезке [a,b] функция f достигает на нем своих нижней и верхней граней. Или, что тоже самое, достигает на отрезке своего минимума и максимума. То есть существуют такие точки $x_1, x_2 \in [a,b]$, так что для любого $x \in [a,b]$, выполняются неравенства:

$$f(x_1) \leqslant f(x) \leqslant f(x_2)$$

5. Понятие производной функции в точке.

Рассмотрим функцию, область определения которой содержит точку x_0 . Тогда функция f(x) является дифференцируемой в точке x_0 , и ее производная определяется формулой

$$f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

если предел существует.

6. Геометрический и физический смысл производной.

Геометрический смысл производной. Производная в точке x_0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

Физический смысл производной. Если точка движется вдоль оси OX и ее координата изменяется по закону x(t), то мгновенная скорость точки: v(t) = x'(t).

7. Уравнение касательной к графику функции в точке.

Пусть дана функция f, которая в некоторой точке x_0 имеет конечную производную $f(x_0)$. Тогда прямая, проходящая через точку $(x_0; f(x_0))$, имеющая угловой коэффициент $f'(x_0)$, называется касательной.

Итак, пусть дана функция y = f(x), которая имеет производную y = f'(x) на отрезке [a, b]. Тогда в любой точке $x_0 \in (a; b)$ к графику этой функции можно провести касательную, которая задается уравнением:

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

8. Понятие дифференцируемости функции в точке.

Функция f(x) является дифференциируемой в точке x_0 своей области определения D[f], если существует такая константа A, что:

$$f(x) = f(x_0) + A(x - x_0) + \bar{o}(x - x_0)$$

И

$$A = f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

9. Правила дифференцирования (производная суммы, произведения, частного).

Пусть функции f(x) и g(x) имеют производные в точке x_0 . Тогда,

$$(g+f)'(x_0) = g'(x_0) + f'(x_0)$$
$$(g \cdot f)'(x_0) = g'(x_0) \cdot f(x_0) + g(x_0) \cdot f'(x_0)$$

Если $g(x_0) \neq 0$, то

$$\left(\frac{f}{g}\right)'(x_0) = \frac{g'(x_0) \cdot f(x_0) - g(x_0) \cdot f'(x_0)}{g(x_0)^2}$$

10. Формула вычисления производной сложной функции.

Если g(x) дифференциируема в точке x_0 и f(x) дифференциируема в точке $y_0 = g(x_0)$, тогда,

$$(f \circ g)'(x_0) = (f(g(x_0)))' = f'(g(x_0)) \cdot g'(x_0)$$

11. Таблица производных основных элементарных функций.

f(x)	f'(x)
const	0
x^a	$a \cdot x^{a-1}$
a^x	$a^x \cdot \ln a$
e^x	e^x
$\ln_a x$	$\frac{1}{\ln a \cdot x}$
$\ln x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tg x	$\frac{1}{\cos^2 x}$
$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$

f(x)	f'(x)
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\operatorname{arctg} x$	$\frac{1}{1+x^2}$
$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$

12. Понятие дифференциала (первого) функции в точке.

Функция f(x) является дифференциируемой в точке x_0 своей области определения D[f], если существует такая константа A, что:

$$f(x) = f(x_0) + A(x - x_0) + \bar{o}(x - x_0)$$
$$A = f'(x_0) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta) - f(x_0)}{\Delta}$$

Тогда выражение $f'(x_0)dx$ называют дифференциалом функции f(x) в точке x_0 . Обозначение: $df = df(x_0, dx)$. Обратите внимание, что df зависит и от точки, и от dx.

13. Геометрический смысл дифференциала.

Дифференциал функции численно равен приращению ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда аргумент x получает приращение Δx .

Подробнее тут

14. Определение локального экстремума. Необходимое условие для внутреннего локального экстремума (теорема Ферма).

Точка x_0 называется точкой локального максимума (минимума) функции f, если существует такая окрестность $U_{\delta}(x_0)$ точки x_0 , что

$$\forall x \in U_{\delta}(x_0) \implies f(x) \leqslant f(x_0)$$
 (для минимума соответственно $f(x) \geqslant f(x_0)$)

 x_0 называется точкой строгого локального максимума (минимума), если

$$\forall x \in \overset{\circ}{U_{\delta}}(x_0) \implies f(x) < f(x_0)$$
 (для минимума соответственно $f(x) > f(x_0)$)

Теорема (Ферма). Если функция имеет в точке локального экстремума производную, то эта производная равна нулю.

5

15. Формулы Лагранжа и Коши.

Теорема (Лагранж: о конечных приращениях).

16. Многочлен Тейлора и формула Тейлора для функций одной переменной.

17. Формулы Маклорена для основных элементарных функций.

1.
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \bar{o}(x^n), x \to 0$$

2.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \cdot \frac{x^n}{n} + \bar{o}(x^n), x \to 0$$

3.
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} {\alpha \choose k} x^k + \bar{o}(x^n)$$

Например
$$(1+x)^{\frac{1}{3}}-1={\frac{1}{3}\choose 1}x+{\frac{1}{3}\choose 2}x^2+\bar{\bar{o}}(x^2)=\frac{1}{3}x+\frac{\frac{1}{3}(\frac{1}{3}-1)}{2}x^2+\bar{\bar{o}}(x^2)$$

4.
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{2n-1} \cdot \frac{x^{2n-1}}{(2n-1)!} + \bar{o}(x^{2n-1})$$

5.
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^{2n-2} \frac{x^{2n-2}}{(2n-2)!} + \bar{o}(x^{2n-2})$$

6.
$$\operatorname{tg}(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \dots + \frac{B_{2n}(-4)^n(1-4^n)}{(2n)!} \cdot x^{2n-1} + \bar{o}(x^{2n-1}),$$
 где B_{2n} — числа Бернулли

Но достаточно помнить, что $\operatorname{tg}(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + \bar{o}(x^5)$, т.е. общая формула для семинаров <u>не</u> нужна

7.
$$\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \dots + \frac{(2n)!}{4^n(n!)^2(2n+1)} \cdot x^{2n+1} + \bar{o}(x^{2n+1})$$

Достаточно знать $\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \bar{\bar{o}}(x^5)$

8.
$$\arccos(x) = \frac{\pi}{2} - \arcsin(x)$$

9.
$$\operatorname{arctg}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{2n-1} + \bar{\bar{o}}(x^{2n-1})$$

18. Правило Лопиталя.

2 Вопросы на знание доказательств

1. Определения непрерывности функции в точке, их эквивалентность. Точки разрыва, их классификация.

Функция f(x) непрерывна в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$. Другими словами, $A = f(x_0)$ и справедливы следующие определения предела функции в точке x_0 :

• По Koшu:

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x, |x - x_0| < \delta \implies |f(x) - A| < \varepsilon$$

• По Гейне:

$$\forall \{x_n\}: x_n \in \overset{\circ}{U}(x_0), \lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = A$$

Теорема. Определения предела функции в точке по Коши и Гейне эквивалентны

Доказательство. Пусть f определена на множестве X и число A является пределом функции f в точке x_0 в смысле Коши. Выберем произвольную подходящую последовательность $x_n, n \in \mathbb{N}$, т.е. такую, для которой $\forall n \in \mathbb{N} : x_n \in X$ и $\lim_{n \to \infty} x_n = x_0$. Покажем, что A является пределом в смысле Гейне.

Зададим произвольное число $\varepsilon>0$ и укажем для него такое $\delta>0$, что $\forall x\in X$ из условия $|x-x_0|<\delta$ следует неравенство $|f(x)-A|<\varepsilon$. В силу того, что $\lim_{n\to\infty}x_n=x_0$, для $\delta>0$ найдется такой номер $N\in\mathbb{N}$, что для всех $n\geqslant N$ будет выполняться неравенство $|f(x_n)-A|<\varepsilon$, т.е. $\lim_{n\to\infty}f(x_n)=A$.

Докажем теперь обратное утверждение: предположим, что $A = \lim_{x \to x_0} f(x)$ в смысле Гейне, и покажем, что число A является пределом функции f в точке x_0 в смысле Коши. Предположим, что это неверно, т.е.

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x_\delta \in X : \ 0 < |x_\delta - x_0| < \delta : \ |f(x_\delta) - A| \geqslant \varepsilon$$

В качестве δ рассмотрим $\delta = \frac{1}{n}$, а соответствующие значения x_{δ} будем обозначать x_n . Тогда при любом $n \in \mathbb{N}$ выполняются условия $x_n \neq x_0, |x_n - x_0| < \frac{1}{n}$ и $|f(x_n) - A| \geqslant \varepsilon$. Отсюда следует, что последовательность $\{x_n\}$ является подходящей, но число A не является пределом функции f в точке x_0 . Получили противоречие.

Классицифкация разрывов:

Пусть f(x) определена в некоторой окрестности $U_{\delta}(a)$ и функция разрывна в a. Тогда говорят, что функция имеет

• **Устранимый разрыв**: пределы f(x) справа и слева существуют и равны друг другу, но отличаются от значения функции в исследуемой точке:

$$\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) \neq f(a)$$

- **Неустранимый разрыв первого рода**: пределы f(x) справа и слева существуют, но не равны друг другу
- **Неустранимый разрыв второго рода**: хотя бы один из односторонних пределов f(x) не существует или равен бесконечности.
- 2. Непрерывность основных элементарных функций.
- 3. Арифметические свойства непрерывных функций.
- 4. Теорема о непрерывности сложной функции.
- 5. Свойства функций, непрерывных на отрезке (первая и вторая теоремы Вейерштрасса).
- 6. Теорема Коши о прохождении непрерывной функции через промежуточные значения.
- 7. Понятие производной функции в точке.
- 8. Геометрический и физический смысл производной.
- 9. Уравнение касательной к графику функции в точке.
- 10. Понятие дифференцируемости функции в точке.
- 11. Необходимое условие дифференцируемости.
- 12. Правила дифференцирования.
- 13. Теорема о дифференцируемости и производной сложной функции.
- 14. Теорема о дифференцируемости обратной функции.
- 15. Таблица производных основных элементарных функций.
- 16. Производные функций, графики которых заданы параметрически.
- 17. Понятие дифференциала (первого) функции в точке.
- 18. Геометрический смысл дифференциала.
- 19. Инвариантность формы первого дифференциала.
- 20. Производные и дифференциалы высших порядков функции одной переменной в точке.
- 21. Понятие об экстремумах функции одной переменной.
- 22. Локальный экстремум. Необходимое условие для внутреннего локального экстремума (теорема Ферма).
- 23. Основные теоремы о дифференцируемых функций на отрезке (теорема Ролля, формулы Лагранжа и Коши).
- 24. Многочлен Тейлора и формула Тейлора для функций одной переменной с остаточным членом в форме Пеано и Лагранжа.

- 25. Формулы Маклорена для основных элементарных функций.
- 26. Правило Лопиталя.
- 27. Достаточное условие строгого возрастания (убывания) функции на промежутке.
- 28. Достаточные условия локального экстремума для функции одной переменной.
- 29. Выпуклые (вогнутые) функции одной переменной.
- 30. Достаточные условия выпуклости (вогнутости).
- 31. Точки перегиба.
- 32. Необходимые и достаточные условия для точки перегиба.
- 33. Асимптоты графика функции одной переменной.