# Lecture 3: DFAs and Regular Languages

CSC 320: Foundations of Computer Science

Quinton Yong

quintonyong@uvic.ca



#### Is the set of all languages / decision problems countable?

- Firstly, let's consider how many possible strings there are over an alphabet  $\Sigma$ 
  - i.e. how large is  $\Sigma^*$  for any alphabet  $\Sigma$
- Clearly, the alphabet  $\Sigma$  is **countable** since it is a **finite set**
- Claim: Σ\* is countably infinite
- **Proof**: We can enumerate  $\Sigma^*$ . Example, consider  $\Sigma = \{0, 1\}$ .

$$\epsilon$$
 0 1 00 01 10 11 000 ...

1 2 3 4 5 6 7 8 ...

#### Is the set of all languages / decision problems countable?

- Now, how large is the set of all possible languages over an alphabet  $\Sigma$ ?
- We know that the set of possible strings  $\Sigma^*$  is countable (countably infinite)
- Languages are **subsets** of  $\Sigma^*$  (select strings which are accepted)
  - Every language is countably infinite or finite
- So, the set of all languages over  $\Sigma$  is the set of all subsets of  $\Sigma^*$  (powerset)  $\mathcal{P}(\Sigma^*)$
- Thus, the size of the set of all languages over alphabet  $\Sigma$  is  $|\mathcal{P}(\Sigma^*)|$

#### Is the set of all languages / decision problems countable?

- We will prove that the powerset of any countably infinite set is uncountable
  - This would imply that  $\mathcal{P}(\Sigma^*)$  is uncountable
- Since  $\Sigma^*$  is **countably infinite**, it has a **bijection** with  $\mathbb N$
- We can just prove that  $\mathcal{P}(\mathbb{N})$  is uncountably infinite

#### **Barber Paradox**

The barber shaves everyone who doesn't shave themselves.

Who shaves the barber?

- If the barber shaves themself, then the barber doesn't shave the barber...
- If the barber doesn't shave themself, then the barber shaves the barber...

This is a **paradox**.

We will use this idea in the proof.

- Assume for a contradiction that  $\mathcal{P}(\mathbb{N})$  is countable
- We **list every subset** of N as  $S_1, S_2, S_3, ...$  such that every possible subset of N is equal to a subset  $S_i$  for some i

$$S_1 = \{ ... \}$$
 $S_2 = \{ ... \}$ 
 $S_3 = \{ ... \}$ 
 $\vdots$ 

- Consider the subset  $D \subseteq \mathbb{N}$  where  $D = \{i \in \mathbb{N} | i \notin S_i\}$ 
  - e.g. if  $S_1$  does not contain the number 1, then 1 is in D
  - e.g. if  $S_5$  does not contain the number 5, then 5 is in D
  - e.g. if  $S_8$  contains the number 8, then 8 is not in D

- Consider the subset  $D \subseteq \mathbb{N}$  where  $D = \{i \in \mathbb{N} | i \notin S_i\}$
- For example, suppose the list of **every subset of**  $\mathbb N$  was as follows:

```
S_1 = \{ 2, 4, 6, ... \}
S_2 = \{ 1, 2, 21, ... \}
S_3 = \{ 1, 8, 13, ... \}
S_4 = \{ 3, 61, 152, ... \}
S_5 = \{ 5, 10, 15, ... \}
\vdots
```

- **D** would be {1, 3, 4, ...}
  - 1,3,4  $\in$  D since 1  $\notin$   $S_1$ , 3  $\notin$   $S_3$ , and 4  $\notin$   $S_4$
  - 2,5  $\notin$  D since 2  $\in$   $S_2$  and 5  $\in$   $S_5$

- Consider the subset  $D \subseteq \mathbb{N}$  where  $D = \{i \in \mathbb{N} | i \notin S_i\}$
- Since  $D \subseteq \mathbb{N}$ , D is **in the list** of subsets and there is an  $S_j$  such that  $S_j = D$

$$S_1 = \{ ... \}$$
 $S_2 = \{ ... \}$ 
 $\vdots$ 
 $S_j = D = \{ ... \}$ 

- Is the number j in the set D (which is  $S_j$ )?
  - If **D** contains **j**, then by definition, **j** is not in **D**
  - If D does not contains j, then by definition, j is in D
- Thus, **D** cannot exist and cannot be listed.

- The way we defined **D** was a **valid subset** of N
- However, we showed that it cannot exist, so we cannot list every subset of N
- Thus, we have a contradiction
- Therefore,  $\mathcal{P}(\mathbb{N})$  is uncountable

#### Recap:

- By showing  $\mathcal{P}(\mathbb{N})$  is uncountable, we also have that  $\mathcal{P}(\Sigma^*)$  is uncountable
- Therefore, the set of all languages / decidable problems is uncountably infinite
- This means there are an uncountably infinite number of problems

#### **Finite Automata**

- In this course, we want to understand and evaluate computability and computational limits
- To do that, we need to have model(s) of a computer which capture its computational power
- The simplest model is a finite state machine or finite automaton
- Very little finite amount of memory independent of problem size



 Real world examples: Automatic doors, elevator, household appliances, substring search

State diagrams are used to **describe** finite automata



This state diagram contains:

- States:  $\{q_1, q_2, q_3, q_4\}$
- **Start state**:  $q_1$  (indicated by start arrow)
- Accept state:  $\{q_3\}$  (indicated by double circle)
- Transitions: arrow from state to state (according to received input)
- **Inputs**: labels on transitions (symbols from alphabet, in this case  $\Sigma = \{0, 1\}$ )

State diagrams are used to **describe** finite automata



- Once we read each symbol of the input, we land on an accept state
- This finite state machine accepts the string

State diagrams are used to **describe** finite automata



What other strings are accepted by this finite automaton?

- Is the **empty string**  $\varepsilon$  accepted?
- Is the string **00**?
- Is the string **000**?

What **language is recognized** by this finite automaton (i.e. what are all the strings which are accepted)?

#### Formal Definition: Deterministic Finite Automaton

A deterministic finite automaton (DFA) is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$  where

- Q is a finite set called the states
- Σ is a **finite set** called the **alphabet**
- $\delta: Q \times \Sigma \to Q$  is the transition function (i.e.  $\delta(\text{curr\_state}, \text{symbol}) = \text{next\_state})$
- $q_0 \in Q$  is the start state
- $F \subseteq Q$  is the set of accept states





#### **DFA Definition**

### Language of a DFA

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA and A be the set of all strings that M accepts

- A is called the language of machine M
- L(M) = A (i.e. L(M) denotes the language of M)
- *M* recognizes the language *A*

Note: a machine that accepts no string recognizes the empty language  $\emptyset$ 

#### **Example:** Language L(M) of a DFA M



What is the language of DFA M?

 $L(M) = \{ w \in \Sigma^* \mid |w| \ge 1, \text{ if } w \text{ starts with } 1 \text{ then } |w| \ge 2 \}$ 

## **DFA: Formal Definition of Computation**

- Let  $M=(Q,\Sigma,\delta,q_0,F)$  be a DFA and let  $w=w_1w_2...w_n$  be a string over  $\Sigma$
- Then M accepts w if there is a sequence of states  $r_0, r_1, r_2, ..., r_n$  in Q such that
  - 1.  $r_0 = q_0$
  - 2.  $\delta(r_i, w_{i+1}) = r_{i+1}$
  - 3.  $r_n \in F$



• M recognizes language L if  $L = L(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$ 

#### **Computation of DFA – Sequence of States**

• What is the sequence of states when the following DFA M computes

$$w = 001101$$



- $q_1$ ,  $q_3$ ,  $q_1$ ,  $q_2$ ,  $q_3$ ,  $q_1$ ,  $q_2$
- Since  $q_2$  is not a final state, w is **not accepted**
- $w \notin L(M)$

#### **Computation of DFA – Sequence of States**

• What is the sequence of states when the following DFA M computes

$$w = 0011011$$



- $q_1$ ,  $q_3$ ,  $q_1$ ,  $q_2$ ,  $q_3$ ,  $q_1$ ,  $q_2$ ,  $q_3$
- Since  $q_3$  is a final state, w is **accepted**
- $w \in L(M)$

#### **Regular Languages**

• A language  $\boldsymbol{L}$  is called a **regular language** if there **exists a deterministic** finite automaton that recognizes  $\boldsymbol{L}$ 

 The set of all languages recognized by the set of all possible DFAs is called the regular languages

#### **Regular Languages**



- In this DFA M which we saw previously, the language of M is  $L(M) = \{w \in \Sigma^* \mid |w| \ge 1, \text{ if } w \text{ starts with } 1 \text{ then } |w| \ge 2\}$
- Since there exists a DFA which recognizes  $\boldsymbol{L}(\boldsymbol{M})$ ,  $\boldsymbol{L}(\boldsymbol{M})$  is a regular language

### **DFA Example 1**

Is this the state diagram for a valid DFA?



Try to write the **formal DFA definition** (i.e. the 5-tuple):  $M = (Q, \Sigma, \delta, q_0, F)$  where

- $Q = \{q_3, q_4\}$
- $\Sigma = \{0, 1, 2\}$
- $q_0 = q_3$
- $F = \{q_3\}$
- However, in a DFA, the transition function  $\delta: Q \times \Sigma \to Q$  must have an **outgoing** transition for each alphabet symbol
- This state diagram does not correspond to a valid DFA since  $q_3$  does not have an outgoing transition for 2

#### **DFA Example 2**

Is this the state diagram for a valid DFA?



**Yes**. The DFA is  $M=(Q,\Sigma,\delta,q_0,F)$  where

- $Q = \{q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- $q_0 = q_3$
- $F = \{q_3\}$
- $\delta$  is as described by the state diagram

**Note**: When asked to provide a DFA, **you must give the 5-tuple** (the state diagram by itself is not a formal DFA). For the **transition function**, unless specified, you can provide the table or say "described by the state diagram".

#### **DFA Example 2**

What is the language of the DFA corresponding to this state diagram?



- $L(M) = \{\varepsilon\}$
- Note that this is **not the same** as writing  $L(M) = \emptyset$
- This DFA accepts the empty string
- L(M) would be  $\emptyset$  if the DFA doesn't accept any string