装 订

本试卷适应范围 经济管理类 (3学分)

南京农业大学试题纸

2019-2020 学年 2 学期 课程类型: 必修 试卷类型: A

)

课程号 MATH2117

课程名____线性代数___

学分 3

班级

题号	_	=	三	四	总分	签名
得分						

约定: A^T 为矩阵 A 的转置,A 为方阵 A 的行列式, A^* 为方阵 A 的伴随阵,A 为单位阵。

- 一、判断题:对的打"√",错误打"×"(共5题,一题2分,共10分)
- 1、设n阶方阵A满足 $A^2-I=O,I$ 是n阶单位阵,则必有|A|=1.

$$2 \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
是标准形

- 3、 设A, B都是 $m \times n$ 矩阵,则 A = B等价的充要条件是 R(A) = R(B). (
- 4、设 α_0 是非齐次线性方程组Ax = b的一个解, α_1, α_2 是Ax = O的基础解系,则 $\alpha_0, \alpha_1, \alpha_2$ 的线性组合

是Ax = b的解。)

$$5$$
、 $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 不能相似对角化。 ()

- 二、选择题(共 15 题, 一题 2 分, 共 30 分)
- 1. 设A, B为n 阶方阵,下列命题正确的是 ()

$$B: \quad A^2 - I = (A + I)(A - I)$$

$$C: AB = AC$$
,且 $A \neq O$,则 $B = C$.
$$D: (AB)^2 = A^2B^2$$

$$D: \quad (AB)^2 = A^2B^2$$

2、设
$$\alpha = (1,2), \beta = (-2,3), 则(\alpha^T \beta)^{2020} = ($$
)

$$A:4^{2020}\begin{pmatrix} -2 & -3 \\ -4 & 6 \end{pmatrix}; B:4^{2020}\begin{pmatrix} -2 & 3 \\ -4 & 6 \end{pmatrix}; C:4^{2019}\begin{pmatrix} -2 & 3 \\ -4 & 6 \end{pmatrix}; D:4^{2019}\begin{pmatrix} -2 & -3 \\ -4 & 6 \end{pmatrix}$$

3.已知 4 阶方阵 A 的行列式 |A| = 2 ,则 $\left| (\frac{1}{4}A)^{-1} - A^* \right| = _____.$

A:-8;

B:8:

C:-2:

D:2:

4、设A为三阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第三行得到单位矩阵,记

$$P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \text{MIA} = (\qquad)$$

 $A: P_1P_2;$; $B: P_1^{-1}P_2;$ $C: P_2P_1;$ $D: P_2P_1^{-1};$

5、设矩阵 $A = \left(a_{ij}\right)_{3\times3}$,满足 $A^* = A^T, a_{11}, a_{12}, a_{13}$ 为三个相等的正数,则 a_{11} 为()

$$A:\frac{\sqrt{3}}{3};$$

B:3; $C:\frac{1}{3};$ $D:\sqrt{3}.$

6、设3阶方阵A满足|A|=0,则在A的行向量组中(

A: 必存在一个行向量为零向量;

B: 必存在两个行向量,其对应分量成比例;

C:任意一个行向量都是其它两个行向量的线性组合;

D:存在一个行向量,它是其它两个行向量的线性组合.

7. 设向量组 $\alpha_1 = (a,b,c)^T, \alpha_2 = (b,c,d)^T, \alpha_3 = (d,e,f)^T, \alpha_4 = (f,g,h)^T,$

那么 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的线性关系为(

A:线性无关; B:线性相关; C: α_4 可由 α_1 , α_2 , α_3 线性表示; D:不能确定.

8. 设矩阵 $A_{m\times n}$,则有(

A:若m < n,则Ax = b有无穷多解;

B: 若 m < n,则Ax = O 有非零解,且基础解系含有 n - m 个线性无关的解向量;

C:若 A有n阶子式不为零,则Ax = b有唯一解;

 $D: A \in A$ 有n 阶子式不为零,则Ax = O 仅有零解.

9、设四元非齐次线性方程组 Ax=b的系数矩阵的秩为3,已知 η_1,η_2,η_3 是它的三个解向量,且

$$\eta_{1} = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \eta_{2} + \eta_{3} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, 则不是该方程组通解的形式为()$$

$$A: x = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} + k \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}; B: x = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{pmatrix} + k \begin{pmatrix} -3 \\ -4 \\ -5 \\ -6 \end{pmatrix}; C: x = \begin{pmatrix} 1 \\ \frac{5}{3} \\ \frac{7}{3} \\ \frac{7}{3} \\ \frac{3}{3} \end{pmatrix} + k \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}; D: x = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{3}{2} \\ \frac{2}{2} \end{pmatrix} + k \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix};$$

10、设 α_0 是非齐次线性方程组Ax = b的一个解, α_1, α_2 是Ax = O的基础解系,则下列

命题一定正确的是()

 $A: \alpha_0, \alpha_1, \alpha_2$ 的线性组合是Ax = b的解; $B: \alpha_0, \alpha_1, \alpha_2$ 线性相关;

 $C:\alpha_0,\alpha_1,\alpha_2$ 的线性组合是Ax=O的解; $D:\alpha_0,\alpha_1,\alpha_2$ 线性无关;

11、设
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, 则 $A - B$ 为 ()

A:正定矩阵;

B:正交矩阵

C:奇异矩阵

D:不可逆矩阵

12、已知 A 是 3 阶实对称矩阵, 如果非齐次线性方程组 Ax = b 有通解 $5b + k_1\eta_1 + k_2\eta_2$, 其中 η_1, η_2 是 Ax = O 的

基础解系,那么A的特征值为()

 $A: \frac{1}{5}, \frac{1}{5}, 0;$

 $B: \frac{1}{5}, 0, 0;$ $C: \frac{1}{5}, 1, 0$

D:1,1,1;

13、设矩阵 $A = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}$ 可对角化,则 a 的值为()

A:2;;

B:-2; C:1

D:0

14、设二次型 $f(x_1,x_2,x_3)$ 在正交变换 x=Py 下的标准形为 $f=2y_1^2+y_2^2-y_3^2$, 其中 $P=(e_1,e_2,e_3)$, 若

 $Q = (e_1, -e_2, e_3)$,则 $f(x_1, x_2, x_3)$ 在正交变换 x = Qy 下的标准形为(

 $A: f = 2y_1^2 + y_2^2 + y_3^2;$

 $B: f = 2y_1^2 + y_2^2 - y_3^2$

 $C: f = 2y_1^2 - y_2^2 + y_3^2;$ $D: f = 2y_1^2 - y_2^2 - y_3^2.$

15、二次型 $f(x_1, x_2, \dots, x_n) = x^T A x$ 为正定二次型的充要条件是 ()

(A)对任-n维列向量x, $x^TAx > 0$; (B)通过正交变换得到的f 的标准形的系数均非负;

(C) A-1 为正定矩阵

(D) A 的所有子式均大于零.

三、填空题(共15题,一题2分,共30分)

1.设矩阵 $A = \begin{vmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 4 & 0 \end{vmatrix}$, 求|A| =______.

3、设
$$f(x) = \begin{vmatrix} 2x & x & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix}$$
,则 x^4 的系数为______

4、设 α , β , γ_2 , γ_3 , γ_4 是四维列向量,且|A|= $|\alpha$, γ_2 , γ_3 , γ_4 |=4,|B|= $|\beta$, γ_2 , γ_3 , γ_4 |=1,

$$5$$
、已知矩阵 $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 0 \end{pmatrix}$,对调矩阵 A 的第一行与第三行得到矩阵 B , P 为初等矩阵,关系式 $B = PA$

6、设矩阵
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & a & 2 \\ a & 0 & a^2 \end{pmatrix}$$
, $a > 0$. 若 $R(A) < 3$, 则 $a =$ ______.

7、
$$t \neq$$
______时,向量组 $\alpha_1 = (1,2,3), \alpha_2 = (2,2,4), \alpha_3 = (3,0,t)$ 线性无关?

8、设矩阵
$$A=\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $\alpha_1,\alpha_2,\alpha_3$ 为线性无关的 3 维向量,则向量组 $A\alpha_1,A\alpha_2,A\alpha_3$ 的秩为______

11、向量
$$e_1 = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)^T$$
, $e_2 = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)^T$, $e_3 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)^T$ 是 R^3 的一个标准正交基,

则向量 $\beta = e_1 + 2e_2 + 2e_3$ 的长度为_____

12、设
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & a \\ 2 & a & -4 \end{pmatrix}$$
, 其一个特征向量为 $(1,2,1)^T$, 则 $a = \underline{\hspace{1cm}}$.

13、设矩阵
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $B = P^{-1}A^*P$, 则 $B + 2I$ 的单特征根为_____

14、设方阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
与 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似. 则 $y = \underline{\qquad}$

- 15、设二次型 $f(x,y) = x^2 + ty^2 4xy$,则当 $t > ___$ 时, f(x,y)为正定二次型.
- 四、计算证明题(共4题,第3题12分,其余每题6分,共30分)

1.设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 2 & -1 & 3 & t \end{pmatrix}$$
, 若 $R(A) = 3$, (1) 求出 t 的值, (2) 求出 A 的列组 的极大无关组, 并用此极大

线性无关组表示其余列向量。

穷多解,并在无穷多解时求其通解。

3、	设二次型	f = 3x	$\frac{1}{1} + 2x_2^2$	$+2x_{3}^{2}$	$+2x_{1}x_{2}$	$+2x_{1}x_{2}$
----	------	--------	------------------------	---------------	----------------	----------------

- (1) 写出对应的矩阵 $A_{;}$ (2) 求出 A 的特征值及所对应的全部特征向量;
- (3) 求正交变换 X = QY,将 $f(x_1, x_2, x_3)$ 化为标准形; (4)判断二次型是否正定.

4、设A为n阶矩阵,n维向量 ξ_1 , ξ_2 , ξ_3 满足 $A\xi_1=O$, $A\xi_2=\xi_1$, $A^2\xi_3=\xi_1$, $\xi_1\neq O$, 证明向量组 ξ_1 , ξ_2 , ξ_3 线性无关。