Abstract

Given 2d joint locations, predict 3d postitions, includes an array of off-the-self 2d detector that have ben trained end-to-end for 2d.

results:

- * a large portion of the error of 3d stems from visual analysis
- * suggests direction to further advance the 3d human pose estimation

1 Introduction

之前为了保证在提供一张2d表示预测3d时,算法不随光线、形状、颜色等一些背景因素改变,一般使用特征如 silhouettes(剪影) 、shape context、SIFT descriptors等,但现在基于深度学习的方法表现更好。 我们将3d预测问题分解为:

- * 2d pose estimation
- * 3d pose estimation from 3d joint detections

疑问: 标签怎么办? 是用2d的还是3d的, 如果3d的, 哪来这么多数据?

回答: we can train data-hungry algorithms for the 2d-to-3d problem with large amounts of 3d mocap data captured in controlled environments.

模型的效率: 对64的一个batch, 3ms (即300fps)

论文说这种效率的来源是一些简单的想法: estimating 3d joints in camera coordinate frame, adding residual connections and using batch normallization.

如果直接在2d的真值上预测能减少30%的错误率。 所以在2d预测方面还有较大的提升空间去优化最终3d预测的结果。

2 Previous work

2.1 Depth from images

2.2 Top-down 3d reasoning

reasoning about 3d human posture from a minimal representation such as 2d projections.

2.3 2d to 3d joints

many methods such as using binary decision tree、 nearest neighbor queries. and **Deep-net-based 2d to 3d joints**(such as hourglass architecture that instead of regressing 2d joint probability heatmaps, maps to probability distributions in 3d space).

2.4 2d to 3d angular pose

estimate the body configuration in terms of angles.

3 Solution methodology

输入时一系列2d点 $x \in R^{2n}$,输出是一系列3d点 $y \in R^{3d}$,我们要学习函数 $f^*: R^{2n} \to R^{3n}$,从而尽可能减小数据集额误差:

$$f^* = \min_{f} \frac{1}{N} \sum_{i=1}^{N} \zeta(f(x_i) - y_i)$$

3.1 network design

based on a simple, deep, multilayer neural network with batch normalization, dropout and RELUs as well as residual connections. 如下图所示:

上图中没有展现的,网络在会将输入扩展到1024维,然后会将输出变成3n,此外,该网络一般会使用两个残差网络,意味着总共由6个线性层。

3.2 Data preprocessing

- Camera coordinates: use the camera frame as a natural choice of global coordinate frame, sinace this makes the 2d to 3d problem similar across different cameras.为防止过拟合,避免因图片的旋转造成预测结果的任意性,it rotating and translatingthe 3d ground-truth according to the inverse transform of the camera.
- **2d detections**: use the stacked hourglass network. cause it is about 10 times faster than CPM to evaluate. when fine-tuned the stacked hourglass model, we get more accurate results
- **Training details**: train our network for 200 epochs usig Adam, starting learning rate of 0.001 and exponential decay. mini-batches of size 64, 5ms for a forward+backward pass on a Titan Xp GPU,which can be **run in real time**. and 2 min for one epoch, 400 min for the training.