Proof Outlines for Partial Correctness

Part 1: Full Proof Outlines of Partial Correctness CS 536: Science of Programming, Fall 2022

A. Why

• A formal proof lets us write out in detail the reasons for believing that something is valid.

B. Objectives

At the end of this activity assignment you should be able to

- Write and check formal proofs of partial correctness.
- Translate between full formal proofs and full proof outlines

C. Problems

1. Form the full outline for the proof below. (It's an alternative to Example 1 in the notes.)

1.	$\{T\}\ k := 0\ \{k = 0\}$	assignment (forward)
2.	$\{k = 0\} x := 1 \{k = 0 \land x = 1\}$	assignment (forward)
3.	$k = 0 \land x = 1 \rightarrow k \ge 0 \land x = 2 \land k$	predicate logic
4.	$\{k = 0\} \ x := 1 \ \{k \ge 0 \land x = 2^k\}$	postcondition weakening 2, 3
5.	$\{T\}\ k := 0;\ x := 1\ \{k \ge 0 \land x = 2^k\}$	sequence 1, 4

2. Let $W = while \ k > 0 \ do \ k := k-1$; $s := s + k \ od$. Take the partial proof below and give the full proof outline for it.

1.	$\{n \ge 0\} \ k := n \ \{n \ge 0 \land k = n\}$	
2.	$\{n \geq 0 \land k = n\} s := n \{n \geq 0 \land k = n \land s = n\}$	
3.	$\{n \ge 0\} \ k := n; \ s := n \ \{n \ge 0 \land k = n \land s = n\}$	
4.	$n \ge 0 \land k = n \land s = n \rightarrow p$	
5.	$\{n \ge 0\} \ k := n; \ s := n \ \{p\}$	
6.	$\{p[s+k/s]\}$ s:= s+k $\{p\}$	
7.	$\{p[s+k/s][k-1/k]\}\ k:= k-1\ \{p[s+k/s]\}$	
8.	$p \wedge k > 0 \rightarrow p[s+k/s][k-1/k]$	
9.	$\{p \land k > 0\} \ k := k-1 \ \{p[s+k/s]\}$	
10.	$\{p \land k > 0\} \ k = k-1; \ s = s+k \ \{p\}$	
11.	$\{inv\ p\}\ W\{p\land k\leq 0\}$	
12.	$p \wedge k \leq 0 \rightarrow s = sum(0, n)$	
13.	$\{inv \ p\} \ W \{s = sum(0, n)\}$	
14.	$\{n \ge 0\} \ k := n; \ s := n;$	
15.	$\{inv \ p\} \ W \{s = sum(0, n)\}$	

For Problems 3–5, you are given a full proof outline; write a corresponding proof of partial correctness from it. There are multiple right answers.

3.
$$\{T\}\{0 \ge 0 \land 1 = 2^0\} k := 0; \{k \ge 0 \land 1 = 2^k\} x := 1 \{k \ge 0 \land x = 2^k\}$$

4a..
$$\{y = x\}$$
 if $x < 0$ then
$$\{y = x \land x < 0\} \{-x = abs(x)\} y := -x \{y = abs(x)\}$$
else
$$\{y = x \land x \ge 0\} \{y = abs(x)\} \text{ skip } \{y = abs(x)\}$$
fi $\{y = abs(x)\}$

4b. $\{y = x\}$ if $x < 0$ then
$$\{y = x \land x < 0\} y := -x \{y_0 = x \land x < 0 \land y = -x\}$$
else
$$\{y = x \land x \ge 0\} \text{ skip } \{y = x \land x \ge 0\}$$
fi $\{(y_0 = x \land x < 0 \land y = -x) \lor (y = x \land x \ge 0)\} \{y = abs(x)\}$

4c. $\{y = x\} \{(x < 0 \rightarrow -x = abs(x)) \land (x \ge 0 \rightarrow y = abs(x))\}$
if $x < 0$ then
$$\{-x = abs(x)\} y := -x \{y = abs(x)\}$$
else
$$\{y = abs(x)\} \text{ skip } \{y = abs(x)\}$$

5. Hint: Use *sp* for the two loop initialization assignments.

```
\{n \ge 0\} \ k := n; \{n \ge 0 \land k = n\} \ s := n; \{n \ge 0 \land k = n \land s = n\}
\{ inv p = 0 \le k \le n \land s = sum(k, n) \}
while k > 0 do
     \{p \land k > 0\} \{p[s+k/s][k-1/k]\} k := k-1;
     \{p[s+k/s]\}s := s+k\{p\}
od
\{p \land k \le 0\} \{s = sum(0, n)\}
```

 $fi \{ y = abs(x) \}$

Solution to Practice 16 (Full Proof Outlines

Solution

1. (Full outline from formal proof.)

$$\{T\}\ k := 0; \ x := 1\ \{k = 0 \land x = 1\}\ \{k \ge 0 \land x = 2^k\}$$

2. (Full outline from formal proof.) where W = while k > 0 do k = k-1; s = s+k od.

$$\{n \ge 0\} \ k := n \ \{n \ge 0 \land k = n\}; \ s := n \ \{n \ge 0 \land k = n \land s = n\} \}$$

 $\{ \mbox{inv } p \} \mbox{ while } k > 0 \mbox{ do}$
 $\{ p \land k > 0 \}$
 $\{ p [s+k/s] [k-1/k] \} \ k := k-1$
 $\{ p [s+k/s] \}; \ s := s+k \}$
 $\{ p \} \mbox{ od }$
 $\{ p \land k \le 0 \}$
 $\{ s = sum(0, n) \}$

3. (Full outline to proof):

```
      1. T \rightarrow 0 \ge 0 \land 1 = 2 \land 0
      predicate logic

      2. \{0 \ge 0 \land 1 = 2 \land 0\} \ k := 0; \{k \ge 0 \land 1 = 2 \land k\}
      assignment (backwards)

      3. \{T\} \ k := 0; \{k \ge 0 \land 1 = 2 \land k\}
      precondition strengthen. 1, 2

      4. \{k \ge 0 \land 1 = 2 \land k\} \ x := 1 \ \{k \ge 0 \land x = 2 \land k\}
      assignment (backwards)

      5. \{T\} \ k := 0; \ x := 1 \ \{k \ge 0 \land x = 2 \land k\}
      sequence 3, 4
```

4a. (Full outline to proof):

1.	$\{-x = abs(x)\} y := -x \{y = abs(x)\}$	assignment (backwards)
2.	$y = x \land x < 0 \rightarrow -x = abs(x)$	predicate logic
3.	${y = x \land x < 0} y := -x {y = abs(x)}$	precondition strength. 2, 1
4.	${y = abs(x)}$ skip ${y = abs(x)}$	skip
5.	$y = x \land x \ge 0 \rightarrow y = abs(x)$	predicate logic
6.	$\{y = x \land x \ge 0\}$ skip $\{y = abs(x)\}$	precondition strength. 5, 4
7.	$\{y = x\}$ if $x < 0$ then $y := -x$ fi $\{y = abs(x)\}$	conditional 3, 6

4b. (Full outline to proof):

```
1. \{y = x \land x < 0\} \ y := -x \ \{y_0 = x \land x < 0 \land y = -x\} assignment (forward)

2. \{y = x \land x \ge 0\} \  skip \{y = x \land x \ge 0\} skip

3. \{y = x\} \  if x < 0 \  then y := -x \  fi \{(y_0 = x \land x < 0 \land y = -x) \lor (y = x \land x \ge 0)\} conditional 1, 2

4. \{y = x\} \  if \{x < 0 \  then \{y := -x\} \  if \{y = abs(x)\} \  postcondition weak., 3, 4
```

4c. (Full outline to proof):

1.
$$\{-x = abs(x)\} \ y := -x \ \{y = abs(x)\}$$
 assignment (backwards)
2. $\{y = abs(x)\} \$ skip $\{y = abs(x)\}$ skip
3. $\{p\} \$ if $x < 0 \$ then $y := -x \$ if $\{y = abs(x)\}$ conditional 1, 2
where $p = (x < 0 \rightarrow -x = abs(x)) \land (x \ge 0 \rightarrow y = abs(x))$
4. $y = x \rightarrow p$ predicate Logic

- 4. $y x \rightarrow p$ predictive Log
- 5. $\{y = x\}$ if x < 0 then y := -x fi $\{y = abs(x)\}$ precondition strength. 4, 3
- 5. Below, let $W = while \ k > 0 \ do \ k := k-1; \ s := s+k \ od$

1.
$$\{n \ge 0\} k := n \{n \ge 0 \land k = n\}$$

2. $\{n \ge 0 \land k = n\} s := n \{n \ge 0 \land k = n \land s = n\}$

- 3. $\{n \ge 0\} k := n; s := n \{n \ge 0 \land k = n \land s = n\}$
- 4. $n \ge 0 \land k = n \land s = n \rightarrow p$
- 5. $\{n \ge 0\} k := n; s := n \{p\}$
- 6. $\{p[s+k/s]\}$ s := s+k $\{p\}$
- 7. $\{p[s+k/s][k-1/k]\} k := k-1 \{p[s+k/s]\}$
- 8. $p \wedge k > 0 \rightarrow p[s+k/s][k-1/k]$
- 9. $\{p \land k > 0\} k := k-1 \{p[s+k/s]\}$
- 10. $\{p \land k > 0\} \ k := k-1; \ s := s+k \{p\}$
- 11. $\{ inv p \} W \{ p \land k \le 0 \}$
- 12. $p \wedge k \leq 0 \rightarrow s = sum(0, n)$
- 13. $\{inv \ p\} \ W \{s = sum(0, n)\}$
- 14. $\{n \ge 0\} \ k := n; \ s := n; \ W \ \{s = sum(0, n)\}$

assignment (forward)
assignment (forward)

sequence 1, 2 predicate logic

postcondition weak. 3, 4 assignment (backwards) assignment (backwards)

predicate logic

precondition strength. 8, 7

sequence 9, 6 while 10 predicate logic

postcondition weak. 12, 11

sequence 5, 13

5. Hint: Use *sp* for the two loop initialization assignments.

$$\{n \ge 0\} \ k := n; \{n \ge 0 \land k = n\} \ s := n; \{n \ge 0 \land k = n \land s = n\}$$
 $\{ \mbox{inv } p = 0 \le k \le n \land s = sum(k, n) \}$
 $\mbox{while } k > 0 \mbox{ do}$
 $\{ p \land k > 0 \} \{ p[s+k/s][k-1/k] \} \ k := k-1;$
 $\{ p[s+k/s] \} \ s := s+k \{ p \}$
 \mbox{od}
 $\{ p \land k \le 0 \} \{ s = sum(0, n) \}$