1. (3 punts)

a) Demostreu que la fórmula d'iteració del mètode de la tangent (Newton-Raphson) per al càlcul aproximat de zeros de funcions per a la funció $f(x) = x^k - a$ es pot escriure de la manera següent:

$$x_{n+1} = \frac{1}{k} \left(\frac{a}{(x_n)^{k-1}} + (k-1)x_n \right)$$

- b) Per al cas particular de $f(x) = x^3 2$ i $x_1 = 4/3$:
 - b.1) Sabent que $x_n > \sqrt[3]{2}$, $\forall n \geq 1$, demostreu que $x_{n+1} x_n < 0$, $\forall n \geq 1$.
 - b.2) Sabent que $x_n > \sqrt[3]{2}$, $\forall n \geq 1$, demostreu que la successió $(x_n)_{n\geq 1}$ és convergent i calculeu el seu límit.
 - b.3) Utilitzeu el mètode de la tangent amb valor inicial $x_1 = 4/3$ per a calcular $\sqrt[3]{2}$ amb error més petit que 10^{-2} .

2. (2 punts)

- a) Enuncieu el Teorema Fonamental del Càlcul.
- b) Calculeu el límit següent:

$$\lim_{x \to 0} \frac{\int_0^{x^2} \sin \sqrt{t} dt}{x^3}$$

c) Considereu la funció:

$$f(x) = \int_0^{x^2} \sin \sqrt{t} dt$$

Calculeu el polinomi de Taylor de grau 3 de f a l'origen.

- **3.** (5 punts) Considereu la funció $f(x,y) = (2x y + 1)^2$.
 - a) Calculeu la derivada direccional de f en el punt P=(0,0) en la direcció del vector $\overrightarrow{v}=(4,3)$.
 - b) Quina és la direcció en la qual f creix més ràpidament en el punt P = (0,0)? Trobeu la derivada direccional de f en aquesta direcció.
 - c) Trobeu els extrems relatius de f.
 - d) Dibuixeu el conjunt $K=\{(x,y)\in\mathbb{R}:\ x^2+(y-3)^2\leq 1,\ y\leq x+3\}$ i demostreu que és compacte.
 - e) Justifiqueu l'existència d'extrems absoluts de f en K.
 - f) Trobeu els extrems absoluts de f en K.

1. (3 punts)

a) Demostreu que la fórmula d'iteració del mètode de la tangent (Newton-Raphson) per al càlcul aproximat de zeros de funcions per a la funció $f(x) = x^k - a$ es pot escriure de la manera següent:

$$x_{n+1} = \frac{1}{k} \left(\frac{a}{(x_n)^{k-1}} + (k-1)x_n \right)$$

- b) Per al cas particular de $f(x) = x^3 2$ i $x_1 = 4/3$:
 - b.1) Sabent que $x_n > \sqrt[3]{2}$, $\forall n \geq 1$, demostreu que $x_{n+1} x_n < 0$, $\forall n \geq 1$.
 - b.2) Sabent que $x_n > \sqrt[3]{2}$, $\forall n \geq 1$, demostreu que la successió $(x_n)_{n\geq 1}$ és convergent i calculeu el seu límit.
 - b.3) Utilitzeu el mètode de la tangent amb valor inicial $x_1 = 4/3$ per a calcular $\sqrt[3]{2}$ amb error més petit que 10^{-2} .

SOLUCIÓ:

a) La fórmula d'iteració del mètode de la tangent (Newton-Raphson) per al càlcul aproximat de zeros de funcions per a una funció f(x) és:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

i en el cas $f(x) = x^k - a$ tenim:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{(x_n)^k - a}{k(x_n)^{k-1}} = \frac{(k-1)(x_n)^k + a}{k(x_n)^{k-1}} = \frac{1}{k} \left(\frac{a}{(x_n)^{k-1}} + (k-1)x_n \right).$$

- b) Suposem $f(x) = x^3 2$ (és a dir k = 3 i a = 2) i $x_1 = 4/3$.
 - b.1) Suposem que $x_n > \sqrt[3]{2}$, $\forall n \geq 1$, aleshores per a tot $n \geq 1$:

$$x_{n+1} - x_n = \frac{1}{3} \left(\frac{2}{(x_n)^2} + 2x_n \right) - x_n = \frac{1}{3} \left(\frac{2 + 2(x_n)^3 - 3(x_n)^3}{(x_n)^2} \right) =$$

$$= \frac{1}{3} \left(\frac{2 - (x_n)^3}{(x_n)^2} \right) = \frac{1}{3} \left(\frac{2}{(x_n)^2} - x_n \right) < \frac{1}{3} \left(\frac{2}{(\sqrt[3]{2})^2} - \sqrt[3]{2} \right) = 0.$$

b.2) Suposem que $x_n > \sqrt[3]{2}$, $\forall n \geq 1$, aleshores la successió $(x_n)_{n\geq 1}$ és acotada inferiorment per $\sqrt[3]{2}$ per hipòtesi, i és decreixent pel apartat b.1). Per tant, aplicant el Teorema de la convergència monòtona, tenim que la successió $(x_n)_{n\geq 1}$ és convergent.

Sigui $l = \lim x_n$, aleshores $l = \lim x_{n+1}$. A partir de la fòrmula de recurrència $x_{n+1} = \frac{1}{3} \left(\frac{2}{(x_n)^2} + 2x_n \right)$, prenent límits obtenim $l = \frac{1}{3} \left(\frac{2}{(l)^2} + 2l \right)$. Fent càlculs: $3l^3 = 2 + 2l^3$ d'on $l^3 = 2$, i per tant el seu límit és $l = \sqrt[3]{2}$.

- b.3) Es pot utilitzar la fórmula de l'apartat a), aleshores prenent valor inicial $x_1 = 4/3$, donat que $\sqrt[3]{2}$ és el zero de la funció $f(x) = x^3 2$ (és a dir k = 3 i a = 2), tenim $x_2 = 1.26388888$, $x_3 = 1.25993349$, $x_4 = 1.259921050$ i com que $|x_3 x_4| < 10^{-2}$ i $|f(x_3) f(x_4)| < 10^{-2}$, una aproximació de $\sqrt[3]{2}$ amb error més petit que 10^{-2} és $\sqrt[3]{2} \simeq x_4 = \simeq 1.26$.
- **2.** (2 punts)
 - a) Enuncieu el Teorema Fonamental del Càlcul.
 - b) Calculeu el límit següent:

$$\lim_{x \to 0} \frac{\int_0^{x^2} \sin \sqrt{t} dt}{x^3}$$

c) Considereu la funció:

$$f(x) = \int_0^{x^2} \sin \sqrt{t} dt$$

Calculeu el polinomi de Taylor de grau 3 de f a l'origen.

SOLUCIÓ:

a) Sigui f una funció integrable en un interval [a,b] si es defineix la funció $F:[a,b]\to\mathbb{R}$ com:

$$F(x) = \int_{a}^{x} f(t)dt,$$

aleshores:

- i) F és contínua en [a, b].
- ii) Si f és contínua en $c \in [a, b]$, aleshores F és derivable en c i F'(c) = f(c).
- b) Aplicant la Regla de L'Hôpital, la Regla de la Cadena i el Teorema Fonamental del Càlcul:

$$\lim_{x \to 0} \frac{\int_0^{x^2} \sin \sqrt{t} dt}{x^3} = \lim_{x \to 0} \frac{2x \sin x}{3x^2} = \lim_{x \to 0} \frac{2 \sin x}{3x}$$

i tornant a aplicar la Regla de L'Hôpital:

$$\lim_{x \to 0} \frac{\int_0^{x^2} \sin \sqrt{t} dt}{x^3} = \lim_{x \to 0} \frac{2 \cos x}{3} = \frac{2}{3}.$$

c) El polinomi de Taylor de grau 3 d'una funció f a l'origen és

$$P_3(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \frac{1}{6}f'''(0)x^3.$$

Considerem la funció: $f(x) = \int_0^{x^2} \sin \sqrt{t} dt$. Aleshores, com a l'apartat anterior, aplicant la Regla de L'Hôpital, la Regla de la Cadena i el Teorema Fonamental del Càlcul: $f'(x) = 2x \sin x$, d'on $f''(x) = 2 \sin x + 2x \cos x$, d'on $f'''(x) = 2 \cos x + 2 \cos x - 2x \sin x = 4 \cos x - 2x \sin x$. Per tant f(0) = f'(0) = f'(0) = 0 i f'''(0) = 4. Finalment $P_3(x) = \frac{2}{3}x^3$.

- **3.** (5 punts) Considereu la funció $f(x,y) = (2x y + 1)^2$.
 - a) Calculeu la derivada direccional de f en el punt P = (0,0) en la direcció del vector $\overrightarrow{v} = (4,3)$.
 - b) Quina és la direcció en la qual f creix més ràpidament en el punt P = (0,0)? Trobeu la derivada direccional de f en aquesta direcció.
 - c) Trobeu els extrems relatius de f.
 - d) Dibuixeu el conjunt $K = \{(x, y) \in \mathbb{R} : x^2 + (y-3)^2 \le 1, y \le x+3\}$ i demostreu que és compacte.
 - e) Justifiqueu l'existència d'extrems absoluts de f en K.
 - f) Trobeu els extrems absoluts de f en K.

SOLUCIÓ:

- a) La funció f és polinòmica i per tant de classe C^1 en tot \mathbb{R}^2 i en particular en el punt P. El vector $\overrightarrow{v}=(4,3)$ té mòdul 5, per tant un vector unitari en la mateixa direcció i sentit que \overrightarrow{v} és el vector $\left(\frac{4}{5},\frac{3}{5}\right)$. Aleshores la derivada direccional de f en el punt P=(0,0) en la direcció del vector $\overrightarrow{v}=(4,3)$ és : $\left(\frac{4}{5},\frac{3}{5}\right)\cdot\overrightarrow{\nabla}(P)$, i donat que $\frac{\partial f}{\partial x}=4(2x-y+1)$ i $\frac{\partial f}{\partial y}=-2(2x-y+1)$, tenim $=\left(\frac{4}{5},\frac{3}{5}\right)\cdot(4,-2)=2$.
- b) Per ser f de classe C^1 en tot \mathbb{R}^2 i en particular en el punt P, la direcció en la qual f creix més ràpidament en el punt P=(0,0) és la direcció del $\overrightarrow{\nabla}(P)$, és a dir la direcció del vector (4,-2), o equivalentment la del (2,-1). La derivada direccional de f en aquesta direcció és $|\overrightarrow{\nabla}(P)| = |(4,-2)| = 2\sqrt{5}$.
- c) Ja hem dit que la funció f és de classe C^1 en tot \mathbb{R}^2 , per tant els seus punts crítics són les solucions del sistema format per les dues equacions $\frac{\partial f}{\partial x}=0$ i $\frac{\partial f}{\partial y}=0$, que és equivalent a l'equació 2x-y+1=0. Per tant els punts crítics de la funció f són tots els de la recta d'equació 2x-y+1=0. Si (x,y) és un punt de la recta d'equació 2x-y+1=0, té f(x,y)=0. I per definició de la funció f, es té $f(x,y)\geq 0$ $\forall (x,y)\in \mathbb{R}^2$. Per tant f té mínims relatius en tots els punts de la recta d'equació 2x-y+1=0 (de fet mínims absoluts).
- d) El dibuix del conjunt $K = \{(x, y) \in \mathbb{R} : x^2 + (y 3)^2 \le 1, y \le x + 3\}$ és:

El conjunt K és tancat ja que $Fr(K) \subset K$ (en efecte: $Fr(K) = \{(x,y) \in \mathbb{R} : x^2 + (y-3)^2 = 1, y \leq x+3\} \cup \{(x,y) \in \mathbb{R} : x^2 + (y-3)^2 \leq 1, y = x+3\} \subset K$) i acotat ja que $K \subset B((0,3);2)$. Per ser tancat i acotat és compacte.

- e) L'existència d'extrems absoluts de f en K està assegurada pel Teorema de Weierstrass, donat que f és contínua en tot \mathbb{R}^2 i K és un compacte de \mathbb{R}^2 .
- f) En primer lloc, els punts crítics de f que estàn a l'interior del compacte K són els punts de la recta d'equació 2x-y+1=0 que estàn a l'interior de K. En segon lloc, els vèrtexs del compacte K són els punts d'intersecció de la circumferència $x^2+(y-3)^2=1$ i la recta y=x+3, que són els punts $\left(-\frac{\sqrt{2}}{2},3-\frac{\sqrt{2}}{2}\right)$ i $\left(\frac{\sqrt{2}}{2},3+\frac{\sqrt{2}}{2}\right)$.

En tercer lloc, els punts crítics de f condicionats a ser en el segment de la recta y=x+3, amb $x^2+(y-3)^2\leq 1$, serien els punts crítics de la funció d'una variable $\varphi(x)=f(x,x+3)=(x-2)^2$, és a dir les solucions de $\varphi'(x)=2(x-2)=0$ amb $-\frac{\sqrt{2}}{2}\leq x\leq \frac{\sqrt{2}}{2}$. No n'hi ha ja que el punt x=2 no compleix $-\frac{\sqrt{2}}{2}\leq x\leq \frac{\sqrt{2}}{2}$.

En quart lloc, per trobar els punts crítics de f condicionats a ser en el segment de la circumferència $x^2 + (y-3)^2 = 1$, amb $y \le x+3$, construïm la funció de Lagrange $L(x,y,\lambda) = (2x-y+1)^2 - \lambda(x^2+(y-3)^2-1)$. Igualant a zero les seves derivades parcials obtenim:

$$\begin{cases} \frac{\partial L}{\partial x} = 0 \\ \frac{\partial L}{\partial y} = 0 \\ \frac{\partial L}{\partial \lambda} = 0 \end{cases} \Leftrightarrow \begin{cases} 4(2x - y + 1) - 2\lambda x = 0 \\ -2(2x - y + 1) - 2\lambda (y - 3) = 0 \\ x^2 + (y - 3)^2 - 1 = 0 \end{cases}$$

Sumant a la primera equació el doble de la segona equació, s'obté: $-2\lambda(x+2y-6)=0$. Per tant $\lambda=0$ o x=6-2y. Fent x=6-2y a la tercera equació s'obté l'equació $5y^2-30y+44=0$, amb solucions $y=3\pm\frac{\sqrt{5}}{5}$. Calculant x=6-2y per a cadascun d'aquests dos possibles valors de y, només el punt $\left(\frac{2\sqrt{5}}{5},3-\frac{\sqrt{5}}{5}\right)$ satisfà $y\leq x+3$. Fent $\lambda=0$ a la primera equació, tornem a trobar com a solucions els punts que satisfan 2x-y+1=0.

Finalment, calculem les imatges de tots els punt trobats i tenim:

$$f(x, 2x + 1) = 0, \ f\left(-\frac{\sqrt{2}}{2}, 3 - \frac{\sqrt{2}}{2}\right) = \frac{9}{2} + 2\sqrt{2}, \ f\left(\frac{\sqrt{2}}{2}, 3 + \frac{\sqrt{2}}{2}\right) = \frac{9}{2} - 2\sqrt{2}, \ f\left(\frac{2\sqrt{5}}{5}, 3 - \frac{\sqrt{5}}{5}\right) = 9 - 4\sqrt{5}$$

Per tant el mínim absolut de f en K és 0 i s'assoleix a tots els punts de la recta d'equació 2x-y+1=0 que estàn al conjunt K, i el màxim absolut de f en K és $\frac{9}{2}+2\sqrt{2}$ i s'assoleix al punt $\left(-\frac{\sqrt{2}}{2},3-\frac{\sqrt{2}}{2}\right)$.