TCP/IP

O protocolo TCP/IP atualmente é o protocolo mais usado no mundo. Isso se deve a popularização da Internet, a rede mundial de computadores, já que esse protocolo foi criado para ser usado na Internet.

Devido à popularização do protocolo TCP/IP, alguns sistemas operacionais que possuíam, seus próprios protocolos de intercomunicação como Windows com o seu NetBEUI e o Netware com o seu IPX/SPX, passaram a dar suporte ao TCP/IP.

Uma das grandes vantagens do TCP/IP em relação a outros protocolos existentes é que ele permite endereçar os hosts e depois rotear, isto é, o TCP/IP foi criado pensando em redes grandes e de longa distância, onde pode haver vários caminhos para o dado atingir o computador receptor.

Outro fator da popularização do TCP/IP, é que ele possui arquitetura aberta e qualquer fabricante pode adotar a sua própria versão do TCP/IP em seu sistema operacional, sem a necessidade de pagamento de direitos autorais a ninguém. Isso possibilita que todos os sistemas possam se comunicar entre si sem dificuldades, desde que utilizem o TCP/IP.

Camadas do modelo TCP/IP

O protocolo TCP/IP assume um modelo de cinco camadas.

O TCP/IP são um conjunto de protocolos, onde os mais conhecidos são justamente o nome deste conjunto: TCP (*Transmission Control Protocol -* Protocolo de Controle da Transmissão) e IP (*Internet Protocolo -* Protocolo Internet, Protocolo Inter-redes), que operam nas camadas de Transporte e Internet referentes ao modelo OSI. Porem esses dois protocolos não são os únicos.

Camada de Aplicação

Esta camada equivale às camadas 5 (Aplicação), 6(Apresentação) e 7(Sessão) do modelo OSI e faz a comunicação entre os aplicativos e o protocolo de transporte.

Existem inúmeros protocolos que operam nesta camada, alguns são:

- •HTTP (HyperText Transfer Protocol);
- •SMTP (Simple Mail Transfer Protocol);
- •FTP (File Transfer Protocol);
- •DNS (Domain Name System);
- •Telnet;
- •Entre outros...

Portando quando o aplicativo quiser realizar alguma tarefa que utilize a rede, ele irá efetuar esse pedido a camada de aplicação.

Por exemplo: Quando você entra com um endereço www em seu browser para visualizar uma página na Internet, o seu aplicativo irá comunicar-se com a camada de aplicação do TCP/IP, sendo atendido pelo protocolo HTTP.

Camada de Aplicação

No processo de "descida" da pilha de protocolos TCP/IP, a camada de aplicação comunica-se com a camada de transporte através de uma *porta*. Por exemplo, o protocolo HTTP utiliza por padrão a porta 80.

O uso de portas permite ao protocolo de transporte saber qual é o tipo de conteúdo do pacote de dados (por exemplo, saber que o dado que ele está transportando é um e-mail) e, no receptor, saber para qual protocolo de aplicação ele deverá entregar o pacote de dados, já que, existem inúmeros protocolos de aplicação.

Camada de Transporte

Essa camada é o equivalente direto da Camada de Transporte (4) do modelo OSI.

A camada de Transporte é responsável por pegar os dados enviados pela camada de aplicação e transforma-los em pacotes, a serem repassados para a camada de Inter-rede.

No modelo TCP/IP a camada de transporte utiliza um esquema de multiplexação, onde é possível transmitir "simultaneamente" dados das mais diferentes aplicações. Porém na verdade os dados não são enviados simultaneamente, mais sim de forma intercalada. Formando assim o conceito de intercalamento de pacotes.

O intercalamento de pacotes permite que vários programas comuniquem-se na rede ao mesmo tempo, mas os pacotes gerados serão enviados à rede de forma intercalada, não sendo preciso terminar um tipo de aplicação de rede para começar outra. Isso também se deve ao conceito de uso de portas.

Camada de Transporte

Na camada de Transporte do TCP/IP operam dois protocolos:

- •TCP (*Transmission Control Protocol*);
- UDP (*User Datagram Protocol*).

O UDP não verifica se o dado chegou ou não ao destino. E por esse motivo, o protocolo mais usado na transmissão de dados, é o TCP, enquanto o UDP é tipicamente usado na transmissão de informação de controle.

Na recepção de dados, a camada de transporte pega os pacotes passados pela camada Internet e trata de colocá-los em ordem e verificar se todos chegaram corretamente. Pois os dados devido a diversos fatores podem chegar fora de ordem, corrompidos, ou até mesmo não chegar. Então fica a cargo do TCP tratar essas situações.

Camada de Inter-rede

Essa camada é equivalente a camada de Rede (3) do modelo OSI.

Fora o protocolo IP, existem alguns outros que podem entrar em operação nesta camada, tal como:

- ICMP(Internet Control Message Protocol);
- •ARP (Address Resolution Protocol);
- RARP (Reverse Address Resolution Protocol).

Na transmissão de um dado programa, o pacote de dados recebido da camada TCP é dividido em pacotes chamados datagramas. Os datagramas são enviados para a camada de enlace, onde são transmitidos pelo cabeamento da rede através de quadros. A camada de Rede (ex. IP) não verifica se os datagramas chegaram ao destino, ficando essa tarefa a cargo do TCP.

Essa camada é responsável pelo endereçamento e roteamento de pacotes, ou seja, ele adiciona informações sobre o caminho que ele deverá percorrer.

Camada de Enlace e Camada Física

A camada de Enlace(2) no modelo TCP/IP é o representante direto da camada 2 do modelo OSI, é responsável por enviar o datagrama recebido pela camada de Inter-rede em forma de um quadro através da rede, ficando responsável por endereçar fisicamente os quadros, gerenciar o meio físico de transmissão e torná-lo livre de erros. Já a camada Física transmite os dados da camada de enlace pela rede, convertendo bits em de forma que a rede entenda.

