Advanced Cloud Computing Cloud Pricing and Economics

Wei Wang CSE@HKUST Spring 2022

Cloud Pricing

Fundamental Drivers of Cost

► Compute (EC2)

Let's focus on compute

- charged per hour/second
- varies by instance type (VM configurations)
- Storage (S3, EBS)
 - charged typically per GB w/ tiered pricing
- Data transfer
 - outbound is aggregated and charged, typically per GB
 - inbound has no charge (w/ some exceptions)

How to set the unit instance price?

US East (N. Virginia)

	vCPU	ECU	Memory (GiB)	Instance Storage (GB)	Linux/UNIX Usage	
General Purpose - Current Generation						
t2.nano	1	Variable	0.5	EBS Only	\$0.0059 per Hour	
t2.micro	1	Variable	1	EBS Only	\$0.012 per Hour	
t2.small	1	Variable	2	EBS Only	\$0.023 per Hour	
t2.medium	2	Variable	4	EBS Only	\$0.047 per Hour	
t2.large	2	Variable	8	EBS Only	\$0.094 per Hour	
t2.xlarge	4	Variable	16	EBS Only	\$0.188 per Hour	
t2.2xlarge	8	Variable	32	EBS Only	\$0.376 per Hour	
m4.large	2	6.5	8	EBS Only	\$0.108 per Hour	
m4.xlarge	4	13	16	EBS Only	\$0.215 per Hour	
m4.2xlarge	8	26	32	EBS Only	\$0.431 per Hour	
m4.4xlarge	16	53.5	64	EBS Only	\$0.862 per Hour	
m4.10xlarge	40	124.5	160	EBS Only	\$2.155 per Hour	
m4.16xlarge	64	188	256	EBS Only	\$3.447 per Hour	

amazon EC2 Asia Pacific (Tokyo)

	vCPU	ECU	Memory (GiB)	Instance Storage (GB)	Linux/UNIX Usage	
General Purpose - Current Generation						
t2.nano	1	Variable	0.5	EBS Only	\$0.008 per Hour	
t2.micro	1	Variable	1	EBS Only	\$0.016 per Hour	
t2.small	1	Variable	2	EBS Only	\$0.032 per Hour	
t2.medium	2	Variable	4	EBS Only	\$0.064 per Hour	
t2.large	2	Variable	8	EBS Only	\$0.128 per Hour	
t2.xlarge	4	Variable	16	EBS Only	\$0.256 per Hour	
t2.2xlarge	8	Variable	32	EBS Only	\$0.512 per Hour	
m4.large	2	6.5	8	EBS Only	\$0.139 per Hour	
m4.xlarge	4	13	16	EBS Only	\$0.278 per Hour	
m4.2xlarge	8	26	32	EBS Only	\$0.556 per Hour	
m4.4xlarge	16	53.5	64	EBS Only	\$1.113 per Hour	
m4.10xlarge	40	124.5	160	EBS Only	\$2.782 per Hour	
m4 16ylarge	64	188	256	FRS Only	\$4.45 per Hour	

t2.nano

t2.micro

NOVA

\$0.0059 per Hour

\$0.012 per Hour

\$0.023 per Hour t2.small

t2.medium

t2.large

t2.xlarge

t2.2xlarge

m4.large \$0.108 per Hour

m4.xlarge

\$0.431 per Hour

\$2.155 per Hour

Tokyo

\$0.008 per Hour

\$0.016 per Hour

\$0.032 per Hour

\$0.064 per Hour

\$0.128 per Hour

\$0.256 per Hour

\$0.512 per Hour

\$0.139 per Hour

\$0.278 per Hour

\$0.556 per Hour

on matters?

\$2.782 per Hour

m4.2xlarge

m4.10xlarge

\$0.047 per Hour

\$0.094 per Hour

\$0.188 per Hour

\$0.376 per Hour

\$0.215 per Hour

Why location matters?

- Cooling cost
- Manpower cost
- Land price
- Policy issues
- **)** ...

Is HK a suitable place for datacenter?

New Regions

Is on-demand pay-as-you-go pricing enough?

Diverse pricing options

- On-demand
- Reservation-based
- Spot pricing

) ...

Reserved pricing

- ▶ Pay an up-front reservation fee to reserve an instance for a long period, e.g., 1 to 3 years
- Enjoy a significant discount during the reservation period
 - save up to 75% over on-demand

Reserved pricing

Guaranteed availability

- users signed up for the reserved pricing are always serviced, regardless of the DC load
- not possible for on-demand pricing

Reserved pricing for t2.xlarge

		STANDAR	RD 1-YEAR TERM			
Payment Option	Upfront	Monthly*	Effective Hourly**	Savings over On-Demand	On-Demand Hourly	
No Upfront	\$0	\$109.62	\$0.150	20%		
Partial Upfront	\$562	\$46.85	\$0.128	32%	\$0.188 per Hour	
All Upfront	\$1102	\$0	\$0.126	33%		
STANDARD 3-YEAR TERM						
Payment Option	Upfront	Monthly*	Effective Hourly**	Savings over On-Demand	On-Demand Hourly	
Partial Upfront	\$1164	\$32.33	\$0.089	53%	\$0.188 per Hour	
All Upfront	\$2188	\$0	\$0.083	56%		

Spot pricing

- Used to be an auction-like pricing option
 - users submit bid for instance acquisition
 - cloud posts a spot price periodically
 - users with a higher bid than the spot price wins
 - the spot price is applied until a new one is posted
 - running users with a lower bid get their instances terminated
- https://youtu.be/g3saaMFBhJk

Spot pricing

- Spot price is usually much cheaper than on-demand
 - Does it make sense to have a higher spot price than ondemand?
- No service guarantee
 - running spot instances get terminated when the spot prices rises above the bid

Summary of pricing

AWS Free Tier

- Enables you to gain hands-on experience with the AWS platform, products, and services
 - free for 1-year for new customers only
 - only applies to a restricted set of services (e.g., EC2 t2.micro instances, free usage tier of S3, EBS, etc.)

Services with no charge

Many cloud services are free of charge

**Note: There might be charges associated with other AWS services that are used with these services.

Why so many different pricing models?

Market segmentation

- Reserved pricing
 - locks in long-term users
 - helps predict future demand: better for capacity planning
- On-demand
 - the fundamental cloud business model
- Spot pricing
 - ▶ leftover capacity on sale: increase utilization

Provider's problems

- Datacenter has a limited capacity
- How to allocate the capacity for each pricing model?
 - ▶ if not planned well, one model can canibalize the other
- ▶ How to set the price of each model?

User's problems

- How to cut down the cloud bill by combining different pricing models?
 - demand/workload prediction
 - predict spot price: many works try to reverse-engineer how the spot price is set
 - creative use of spot instances
 - periodic checkpointing and recovery upon instance revocation
 - save over 50% compared with on-demand

The rise of brokerage service

- Cloud brokerage service
 - helps users to make instance acquisition strategies
 - trade-in unused instances in a secondary cloud marketplace
 - hybrid cloud: connects to multiple cloud providers to explore the best deal
 - many innovative business models coming...

Cloud Economics: Total Cost of Ownership (TCO)

On-premises vs. cloud

Shall I move to the cloud?

Total Cost of Ownership (TCO)

- ► Total cost of ownership (TCO) is the financial estimate to help identify direct and indirect cost of a system
- ▶ Why use TCO?
 - to compare the costs of running an entire infrastructure environment or specific workload on-premises versus on cloud (e.g., AWS)
 - to budget and build the business case for moving to the cloud

TCO Considerations

Hardware: Server, rack chassis Facilities cost Software: Operating system power distribution units (PDUs), **Server Costs** (OS), virtualization licenses top-of-rack (TOR) switches (and (and maintenance) Cooling Space Power maintenance) Facilities cost Hardware: Storage disks, storage **Storage Costs** area network (SAN) or Fibre Storage administration costs Channel (FC) switches Cooling Space Power Facilities cost Network hardware: Local area **Network Costs** network (LAN) switches, load Network administration costs balancer bandwidth costs Cooling Space Power **IT Labor Costs** Server administration costs

On-premises vs. all-in-cloud

▶ Taking AWS cloud as an example, moving infrastructure to it can reduce TCO by up to 96% a year.

3-Year Total Cost of Ownership				
	On-Premises	AWS		
Server	\$91,922	\$2,547		
Storage	\$67,840	\$4,963		
Network	\$7,660	\$		
IT – Labor	\$	\$		
Total	\$167, 422	\$7,509		

AWS cost includes business-level support and a 3-year PURI EC2 instance

Additional benefit considerations

Hard benefits

- reduced spending on compute, storage, networking, security
- reductions in hardware and software purchases (capex)
- reductions in operational costs, backup, and disaster recovery
- reduction in operations personnel

Soft benefits

- reuse of service and apps that enable you to define (and redefine) solutions by using the same cloud service
- increased developer productivity and customer satisfaction
- agile business processes that can quickly respond to new and emerging opportunities
- increase in global reach

TCO case study

Background:

- Is a growing global company with over 200 locations
- Have 500 million customers, \$3 billion (USD) annual revenue

Challenge:

- Meet demand to rapidly deploy new solutions
- Constantly upgrade aging equipment

Criteria:

- Have a broad solution to handle all workloads
- Be able to modify processes to improve efficiency and lower costs
- Eliminate busy work (such as patching software)
- Achieve a positive return on investment (ROI)

Solution:

- Moved their on-premises data center to AWS
 - Eliminated 205 servers (90 percent)
 - Moved nearly all applications to AWS
- Used 3-vear Amazon EC2 Reserved Instances

TCO case study

TCO case study

Business Goals:

Growth
Enhanced 24/7 business
Operational efficiency

- Robust security compliance
- Enhanced disaster recovery
- Increased computing capacity

Speed to market

- One day to provision new businesses
- Just minutes to push out a service

Operational efficiency

 Continuous cost optimization and reduction

How can the cloud business benefit the provider?

Resource pooling

▶ From the provider's perspective

Resource pooling

- ▶ The provider's resources are pooled to serve consumers using a multi-tenant model
 - different physical and virtual resources dynamically allocated according to consumer demand
 - creates an illusion of an infinite amount of resources

Resource pooling

Location independence:

- the customer generally has NO control or knowledge over the exact location of the provided resources
- but may be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter)

Resource pooling enables high utilization

Economy of scale

► A medium-sized datacenter (~1k servers) vs. a large datacenter (~50k servers) in 2006

Technology	Cost in Medium-sized DC	Cost in Very Large DC	Ratio
Network	\$95 per Mbit/sec/month	\$13 per Mbit/sec/month	7.1
Storage	\$2.20 per GByte / month	\$0.40 per GByte / month	5.7
Administration	\approx 140 Servers / Administrator	>1000 Servers / Administrator	7.1

5 - 7x decrease of cost!

Statistical multiplexing

Highly profitable business for Cloud providers

Plus...

- Leverage existing investment, e.g., Amazon
- ▶ **Defend a franchise**, e.g., Microsoft Azure
- ▶ Attack an incumbent, e.g., Google Cloud Platform
- ▶ Leverage customer relationships, e.g., IBM
- ▶ Become a platform, e.g., Facebook, Apple, etc.

Credit

- ▶ Some slides are adapted from Prof. Hong Xu's slides for CS 4296/5296 in CityU
- Some slides are adapted from AWS Academy Class (Cloud foundations)