Doubly slice knots

Benjamin Matthias Ruppik

MPIM Bonn

2019-05-13

Slice knots and Concordance

Definition

A knot $K \subset \mathbb{S}^3$ is called *slice* if it arises as the equatorial slice of a 2-sphere embedded^a in \mathbb{S}^4 .

Other definitions that you might have seen: *K* is *slice* if ...

- ... it is concordant to the unknot.
- ... it is the boundary of a flat/smooth 2-disk in the 4-ball.

Figure 1: Slicing a 2-sphere

^aThere is a topological locally flat and smooth version of this.

Doubly slice knots

Question [Fox, 1960s]

Which slice knots are cross sections of **unknotted** 2-spheres $\mathbb{S}^2 \hookrightarrow \mathbb{S}^4$?

Definition

We call such slices of a 2-unknot doubly slice.

- ► So named because a doubly slice knot slices in two ways.
- \triangleright Example: 9_{46}

Figure 2: Claim: The union of the two slice disks in the picture is a trivial 2-sphere.

Another example

Proposition

K#(-K) is doubly slice.

- ► Careful: This is a cross-section of the sphere S obtained by *spinning* the knot K, but this \mathbb{S}^2 is **knotted** in \mathbb{S}^4 ! Its knot group $\pi_1(\mathbb{S}^4 \setminus S)$ agrees with $\pi_1(\mathbb{S}^3 \setminus K)$.
- ▶ Surprising observation [Zeeman, 1965]: The ± 1 -spin of a knot K is unknotted.

Figure 3: Spinning a knot to obtain a 2-sphere

Figure 4: Twist the dotted 3-ball around an axis while performing the spinning in \mathbb{R}^4

Multi-infection by a string link

► Generalizes the notion of a satellite link

Connection

Proposition [Cochran, Friedl, Teichner: New constructions of slice links, 2009]

Any algebraically slice knot K is smoothly concordant to an infection of the form

$$Inf(L, J, \eta_i)$$

with

- ► L ribbon
- ▶ J string link with linking numbers zero
- $ightharpoonup \eta_i$ in the intersection of the terms of the lower central series of $\pi_1(\mathbb{S}^3\setminus L)$

Question

Is there a similar statement for algebraically doubly slice knots K?