A *triangle* in an undirected graph is a 3-clique. Show that *TRIANGLE*? P, where *TRIANGLE* = { $\langle G \rangle$ | G contains a triangle}

Step-by-step solution

Step 1 of 1

 $\underline{Class\ P}\ \underline{:}\ P\ \text{is a class of languages that are decidable in polynomial time on a deterministic single-tape\ Turing-machine.}$

Specified language,

- A triangle is an undirected graph is a 3 clique.
- TRIANGLE = $\{\langle G \rangle | G \text{ contains a triangle} \}$
- Now we have to show that TRIANGLE $\in p$
- Let A be the Turing machine that decides TRIANGLE is polynomial time
- A can be described as follows:

A="on input
$$G\langle V, E \rangle$$
:

V denotes set of vertices of the graph G.

E denotes set of edges of the graph G.

- 1. For $u, v, w \in V$ and u < v < w, we enumerate all triples $\langle u, v, w \rangle$.
- 2. Check whether all three edges (u,v),(v,w) and (w,u) exist in E or not. If exist then accept.
- 3. Otherwise reject."
- Enumeration of all triple require $o\left(\left|v\right|^3\right)_{\text{time}}$
- Checking whether all three edges belong to E take $O(|E|)_{\mathrm{time.}}$
- Overall time is $O\!\left(\!\left|V\right|^3\!\left|E\right|\!\right)$ which is polynomial in the length of the inplet
- Therefore TRIANGLE $\in P$

Comment