Started on Friday, 3 November 2023, 10:46 PM

State Finished

Completed on Friday, 3 November 2023, 11:35 PM

Time taken 48 mins 39 secs

Grade 10.00 out of 10.00 (**100**%)

Question 1

Correct

Mark 1.00 out of 1.00

The probability of symbol error for 16-QAM with $\frac{E_S}{N_0}=20$ is given as

Select one:

- \bigcirc 3Q(1)
- $Q = \frac{7}{2}Q\left(\sqrt{\frac{1}{3}}\right)$
- 3Q(2)

 ✓

Your answer is correct.

The correct answer is: 3Q(2)

Question 2

Correct

Mark 1.00 out of 1.00

Let the decision regions for $\mathcal{H}_1, \mathcal{H}_0$ be R_1, R_0 , respectively, and corresponding prior probabilities of the hypotheses be π_1, π_0 . The probability of error is given as

Select one:

- $\bigcirc \quad \pi_1 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}} + \pi_0 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}}$

- $\bigcirc \quad \pi_0 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}} + \pi_1 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}}$

Your answer is correct.

The correct answer is: $\pi_1 \int_{R_0} p(\overline{\mathbf{y}}|\mathcal{H}_1) d\overline{\mathbf{y}} + \pi_0 \int_{R_1} p(\overline{\mathbf{y}}|\mathcal{H}_0) d\overline{\mathbf{y}}$

Question 3

Correct

Mark 1.00 out of 1.00

The min P_e detector chooses \mathcal{H}_0 when

Select one:

$$\bigcirc \quad \frac{p(\bar{\mathbf{y}}|\mathcal{H}_0)}{p(\bar{\mathbf{y}}|\mathcal{H}_1)} \geq \frac{\pi_1}{\pi_0} \checkmark$$

$p(\bar{y} \mathcal{H}_0)$	_	$\pi_{\rm 0}$
$p(\bar{y} \mathcal{H}_1)$	_	$\overline{\pi_1}$

$$\frac{p(\bar{\mathbf{y}}|\mathcal{H}_0)}{p(\bar{\mathbf{y}}|\mathcal{H}_0)} \leq \frac{\pi_0}{\pi_0}$$

$$\frac{p(\overline{y}|\mathcal{H}_0)}{p(\overline{y}|\mathcal{H}_1)} \ge \frac{\pi_0}{\pi_1}$$

Your answer is correct.

The correct answer is: $\frac{p(\bar{\mathbf{y}}|\mathcal{H}_0)}{p(\bar{\mathbf{y}}|\mathcal{H}_1)} \geq \frac{\pi_1}{\pi_0}$

Question 4

Correct

Mark 1.00 out of 1.00

The min P_e detector chooses \mathcal{H}_0 when

Select one:

$$@ \ \Pr(\mathcal{H}_0|\bar{\mathbf{y}}) \geq \Pr(\mathcal{H}_1|\bar{\mathbf{y}}) \checkmark$$

$$\quad \quad \Pr(\mathcal{H}_1|\bar{\mathbf{y}}) \geq \Pr(\mathcal{H}_0|\bar{\mathbf{y}})$$

$$\bigcirc \ \Pr(\bar{\mathbf{y}}|\mathcal{H}_0) \geq \Pr(\bar{\mathbf{y}}|\mathcal{H}_1)$$

Your answer is correct.

The correct answer is: $\Pr(\mathcal{H}_0|\bar{\mathbf{y}}) \ge \Pr(\mathcal{H}_1|\bar{\mathbf{y}})$

Question **5**

Correct

Mark 1.00 out of 1.00

The min Pe decision rule is the

Select one:

ML rule

LRT

Least Squares

■ MAP rule ✓

Your answer is correct.

The correct answer is: MAP rule

Question 6

Correct

Mark 1.00 out of 1.00

For equiprobable hypotheses, the min Pe decision rule reduces to the

Select one:

- LRT
- ML rule

 ✓
- Least Squares
- Maximum Apriori Probability rule

Your answer is correct.

The correct answer is: ML rule

Question 7

Correct

Mark 1.00 out of 1.00

Consider
$$\bar{\mathbf{s}} = \begin{bmatrix} 2 \\ -2 \\ 2 \\ -2 \end{bmatrix}$$
, $\sigma^2 = 2$ and $\pi_0 = \frac{e}{1+e}$. For the binary signal detection problem

described in class, the threshold for the MAP decision rule is given as

Select one:

- 10
- 0 8
- **6**
- **12**

Your answer is correct.

The correct answer is: 10

Question 8

Correct

Mark 1.00 out of 1.00

For the binary signal detection problem described in class, the minimum Pe achieved using the MAP rule is given as

Select one:

$$\bigcirc \ \, \pi_0 Q \left(\frac{\|\bar{\mathfrak{s}}\| - 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\bar{\mathfrak{s}}\|^2} \right) + \, \pi_1 Q \left(\frac{\|\bar{\mathfrak{s}}\| + 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\bar{\mathfrak{s}}\|^2} \right)$$

$$@ \quad \pi_0 Q \left(\frac{ ||\vec{s}||^2 - 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma ||\vec{s}||} \right) + \pi_1 Q \left(\frac{ ||\vec{s}||^2 + 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma ||\vec{s}||} \right) \checkmark$$

$$\bigcirc \quad \pi_0 Q \left(\frac{\|\vec{s}\| + 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\vec{s}\|^2} \right) + \pi_1 Q \left(\frac{\|\vec{s}\| - 2\sigma \ln \frac{\pi_1}{\pi_0}}{2\sigma^2 \|\vec{s}\|^2} \right)$$

Your answer is correct.

The correct answer is:
$$\pi_0 Q \left(\frac{\|\vec{\mathbf{s}}\|^2 - 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{\mathbf{s}}\|} \right) + \pi_1 Q \left(\frac{\|\vec{\mathbf{s}}\|^2 + 2\sigma^2 \ln \frac{\pi_1}{\pi_0}}{2\sigma \|\vec{\mathbf{s}}\|} \right)$$

Question 9
Correct
Mark 1.00 out of 1.00
∀ Flag question
Consider the binary signal detection problem with $SNR = 10 \ dB$ and $\pi_1 = 0.60$. The min P_e achieved using the optimal decision rule is
Select one:
0.00787
0.0569
0.1046
Your answer is correct.
The correct answer is: 0.0555
Question 10
Correct
Mark 1.00 out of 1.00
▼ Flag question
Consider the binary signal detection problem with $SNR=10~dB$ and $\pi_1=0.60$. The P_e achieved using the ML decision rule is
Select one:
Select one: 0.00787
0.00787
○ 0.00787○ 0.0569
 0.00787 0.0569 ✓ 0.0555
 0.00787 0.0569 ✓ 0.0555 0.1046
 0.00787 0.0569 ✓ 0.0555

https://md.ipearl.ai/mod/quiz/review.php?attempt=31543&cmid=5589

Finish review