MATH 444 HW 8

Nathaniel Murphy

4.1.1

a.

$$|x^2 - 1| = |x + 1||x - 1|$$

 $\begin{array}{l} |x-1|<1 \Rightarrow -1 < x-1 < 1 \Rightarrow 1 < x+1 < 3, \text{ so clearly, } x+1 < 3 \text{ if } |x-1| < 1. \text{ Now fix } \\ |x-1|<\frac{1}{6}. \text{ Since } |x-1|<\frac{1}{6} < 1 \Rightarrow |x+1| < 3, \text{ we achieve } |x^2+1| = |x+1||x-1| < \left(\frac{1}{6}\right)(3) = \frac{1}{2}. \end{array}$ It suffices to say that $|x-1|<\frac{1}{6} \Rightarrow |x^2-1| < \frac{1}{2}.$

d.

$$|x^3 - 1| = |x - 1||x^2 + x + 1|$$
$$|x - 1| < 1 \Rightarrow -1 < x - 1 < 1 \Rightarrow 0 < x < 2$$

The x-coordinate of the vertex of the parabola x^2+x+1 is $-\frac{b}{2a}=-\frac{1}{2}$, so on the interval $0 < x < 2, \ x^2+x+1$ s strictly increasing. $0 < x < 2 \Rightarrow 1 < x^2+x+1 < 7$, so clearly, if $|x-1| < 1, \ x^2+x+1 < 7$.

Now take $|x-1| < \frac{1}{7n}$. We see that $|x^3 - 1| = |x-1||x^2 + x + 1| < (\frac{1}{7n})(7) = \frac{1}{n}$.

4.1.9

a.

$$\lim_{x \to 2} \frac{1}{1 - x} = -1 \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 : 0 < |x - 2| < \delta \Rightarrow \left| \frac{1}{1 - x} + 1 \right| < \epsilon$$
$$\left| \frac{1}{1 - x} + 1 \right| < \epsilon \Rightarrow \left| \frac{1 + 1 - x}{1 - x} \right| = \left| \frac{x - 2}{x - 1} \right| = \frac{|x - 2|}{|x - 1|} < \epsilon$$

Let us assume that $|x-2| < \frac{1}{2}$.

$$|x-2| < \frac{1}{2} \Rightarrow -\frac{1}{2} < x-2 < \frac{1}{2} \Rightarrow \frac{3}{2} < x < \frac{5}{2} \Rightarrow x-1 > \frac{3}{2}-1 = \frac{1}{2}$$

Thus, $\left| \frac{x-2}{x-1} \right| < \frac{1}{2}|x-2| < \epsilon = |x-2| < 2\epsilon$, so set $\delta = \min\{\frac{1}{2}, 2\epsilon\}$.

d.

$$\lim_{x \to 1} \frac{x^2 - x + 1}{x + 1} = \frac{1}{2} = \frac{1}{2} \Rightarrow \forall \epsilon > 0 \exists \delta > 0 : 0 < |x - 1| < \delta \Rightarrow \left| \frac{x^2 - x + 1}{x + 1} - \frac{1}{2} \right| < \epsilon$$

$$\left| \frac{x^2 - x + 1}{x + 1} - \frac{1}{2} \right| = \left| \frac{2(x^2 - x + 1)}{2(x + 1)} - \frac{x + 1}{2(x + 1)} \right| = \left| \frac{2x^2 - 2x + 2 - x - 1}{2(x + 1)} \right| = \left| \frac{2x^2 - x + 1}{2(x + 1)} \right| = \left| \frac{2x^2 - x + 1}{2(x + 1)} \right| = \frac{|2x - 1||x - 1|}{|x + 1|} < 2\epsilon$$

Assume that |x-1| < 1. Then,

$$-1 < x - 1 < 1 \Rightarrow 0 < x < 1 \Rightarrow -1 < 2x - 1 < 1 \Rightarrow 1 < x + 1 < 2$$

So clearly, $|x-1| < 1 \Rightarrow 2x - 1 < 1$ and x + 1 > 1.

$$\left|\frac{x^2-x+1}{x+1}-\frac{1}{2}\right|<\epsilon\Rightarrow\frac{|2x-1||x-1|}{|x+1|}<\epsilon\Rightarrow|x-1|<\epsilon,\text{ so set }\delta=\min\{1,\epsilon\}.$$

4.1.12

a.

Let $x_n = \frac{1}{n^2}$, $n \in \mathbb{N}$ $(x_n \neq 0 \text{ and } \lim_{n \to \infty} x_n = 0)$. Because $(f(x_n) = n)_{n=1}^{\infty}$ is unbounded, $\lim_{n \to \infty} f(n)$ does not exist $\Rightarrow \lim_{x \to 0} f(x)$ does not exist by the divergence criterion.

 \mathbf{d} .

Let
$$\sin\left(\frac{1}{x^2}\right) = 1 \Rightarrow \frac{1}{x^2} = \frac{\pi}{2} + 2\pi n \ (n \in \mathbb{Z}).$$

Let $\sin\left(\frac{1}{x^2}\right) = -1 \Rightarrow \frac{1}{x^2} = -\frac{\pi}{2} + 2\pi n \ (n \in \mathbb{Z}).$

Define the following sequence: $x_n := \frac{1}{\sqrt{\frac{\pi}{2} + 2\pi n}}$, $y_n := \frac{1}{\sqrt{-\frac{\pi}{2} + 2\pi n}}$. Clearly, $0 < -\frac{\pi}{2} + 2\pi n < \frac{\pi}{2} + 2\pi n$, n > 0 so x_n and y_n are well defined and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$. But $\lim_{n \to \infty} \sin(x_n) = 1 \neq -1 = \lim_{n \to \infty} \sin(y_n)$. By the divergence criterion, $\lim_{x \to 0} \sin\left(\frac{1}{x^2}\right)$ does not exist.

4.1.15

a.

f has a limit at x=0 because by the density of real numbers, $\forall \, \epsilon > 0$, every V_{ϵ} neighborhood of f around 0 contains at least one rational and one irrational. the rational, x_0 and irrational, x_1 are clearly defined inside V_{ϵ} . $|x-x_0|=|0-x_0|<\epsilon$ because x_0 is in the ϵ neighborhood of f around 0, and $|x-x_1|=|0-0|=0<\epsilon$, so all points in V_{ϵ} are ϵ close to 0. So 0 is a limit of f.

b.

Given $c \neq 0 \in \mathbb{R}$, there exist subsequences x_n and y_n in \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$, respectively that converge to c due to the density property of real numbers for rational and irrational numbers. So $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = c$. But $\lim_{n\to\infty} f(x_n) = c$ and $\lim_{n\to\infty} f(y_n) = 0$. Thus, by the divergence criterion, c is not a limit point of f.

4.2.1

a.

$$\lim_{x \to 1} (x+1)(2x+3) = \left(\lim_{x \to 1} (x+1)\right) = 2 \cdot 5 = 10$$

c.

$$\lim_{x \to 2} \left(\frac{1}{x+1} - \frac{1}{2x} \right) = \lim_{x \to 2} \left(\frac{1}{x+1} \right) - \lim_{x \to 2} \left(\frac{1}{2x} \right) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

5.1.11

$$|x - y| < \delta$$

$$|f(x) - f(y)| \le K|x - y| < K\delta < \epsilon \Rightarrow \delta < \frac{\epsilon}{K}$$

We have found that such δ exists for every $y \in \mathbb{R}$, so it must be true that f is continuous at every point $c \in \mathbb{R}$.