	1a	6a	6b	2a	3a	3b	24a	24b	8a	8b	24c	24d	12a	12b	4a	4b	12c	12d	12e	12f	4c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1
χ_3	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1
χ_4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_5	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$-E(3)^2$	$-E(3)^2$	-1	-1	-E(3)	-E(3)	$E(3)^{2}$	E(3)	1	-1	$-E(3)^2$	-E(3)	$E(3)^{2}$	E(3)	1
χ_6	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-E(3)	-E(3)	-1	-1	$-E(3)^{2}$	$-E(3)^2$	E(3)	$E(3)^{2}$	1	-1	-E(3)	$-E(3)^2$	E(3)	$E(3)^{2}$	1
χ_7	1	$E(3)^2$	E(3)	1	$E(3)^{2}$	E(3)	$-E(3)^{2}$	$-E(3)^{2}$	-1	-1	-E(3)	-E(3)	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	E(3)	$-E(3)^{2}$	-E(3)	-1
χ_8	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	-E(3)	-E(3)	-1	-1	$-E(3)^{2}$	$-E(3)^{2}$	E(3)	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$	-E(3)	$-E(3)^{2}$	-1
χ_9	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^2$	$E(3)^2$	1	1	E(3)	E(3)	$E(3)^{2}$	E(3)	1	-1	$-E(3)^{2}$	-E(3)	$-E(3)^{2}$	-E(3)	-1
χ_{10}	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)	E(3)	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	-1	-E(3)	$-E(3)^{2}$	-E(3)	$-E(3)^{2}$	-1
χ_{11}	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^2$	1	1	E(3)	E(3)	$E(3)^{2}$	E(3)	1	1	$E(3)^2$	E(3)	$E(3)^{2}$	E(3)	1
χ_{12}	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)	E(3)	1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	1
χ_{13}	2	2	2	2	2	2	0	0	0	0	0	0	-2	-2	-2	0	0	0	0	0	0
χ_{14}	2	$2 * E(3)^2$	2 * E(3)	2	$2*E(3)^2$	2 * E(3)	0	0	0	0	0	0	$-2*E(3)^2$	-2 * E(3)	-2	0	0	0	0	0	0
χ_{15}	2	2 * E(3)	$2*E(3)^2$	2	2 * E(3)	$2*E(3)^2$	0	0	0	0	0	0	-2*E(3)	$-2*E(3)^2$	-2	0	0	0	0	0	0
χ_{16}	2	-2	-2	-2	2	2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	0	0	0	0	0	0
χ_{17}	2	-2	-2	-2	2	2	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	0	0	0	0	0	0
χ_{18}	2	-2 * E(3)	$-2*E(3)^2$	-2	2 * E(3)	$2 * E(3)^2$	$-E(24)^{11} + E(24)^{17}$	$E(24)^{11} - E(24)^{17}$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(24) + E(24)^{19}$	$E(24) - E(24)^{19}$	0	0	0	0	0	0	0	0	0
χ_{19}	2	-2*E(3)	$-2*E(3)^2$	-2	2 * E(3)	$2*E(3)^2$	$E(24)^{11} - E(24)^{17}$	$-E(24)^{11} + E(24)^{17}$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$E(24) - E(24)^{19}$	$-E(24) + E(24)^{19}$	0	0	0	0	0	0	0	0	0
χ_{20}	2	$-2*E(3)^2$	-2 * E(3)	-2	$2*E(3)^2$	2*E(3)	$-E(24) + E(24)^{19}$	$E(24) - E(24)^{19}$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$-E(24)^{11} + E(24)^{17}$	$E(24)^{11} - E(24)^{17}$	0	0	0	0	0	0	0	0	0
χ_{21}	2	$-2*E(3)^2$	-2 * E(3)	-2	$2*E(3)^2$	2 * E(3)	$E(24) - E(24)^{19}$	$-E(24) + E(24)^{19}$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$E(24)^{11} - E(24)^{17}$	$-E(24)^{11} + E(24)^{17}$	0	0	0	0	0	0	0	0	0

Trivial source character table of $G \cong C3 \times Q16$ at $p = 3$:									
Normalisers N_i			N_1				N_{\cdot}		
p-subgroups of G up to conjugacy in G			P_1				P_2		
Representatives $n_j \in N_i$	1a 4b 4c 4c	a $2a$	8a	8b	1a - 4c	4b	2a $8a$	4a	8 <i>b</i>
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} + 0 \cdot $	$\frac{1}{21}$ 3 3 3 3	3	3	3	0 0	0	0 0	0	0
$ \left \ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} \right $	$_{21} \mid 3 -3 3 3$	3	-3	-3	0 0	0	0 0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} \right $			-3	-3	0 0	0	0 0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} \right $			3	3	0 0	0	0 0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} $	$_{21} \mid 6 0 0 -$	6 6	0	0	0 0	0	0 0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} $	$_{21} \mid 6 0 0 0$	-6	$3*E(8) - 3*E(8)^3$	$-3*E(8) + 3*E(8)^3$	0 0	0	0 0	0	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} $	$_{21} \mid 6 0 0 0$	-6	$-3*E(8) + 3*E(8)^3$	$3*E(8) - 3*E(8)^3$	0 0	0	0 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} + 0 \cdot $	$\frac{1}{21}$ 1 1 1 1	1	1	1	1 1	1	1 1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} + 0 \cdot $	$_{21} \mid 1 -1 -1 1$	l 1	1	1	$\begin{vmatrix} 1 & -1 \end{vmatrix}$	1	1 1	1	1
$ \left \ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} $	$_{21} \mid 1 -1 1 1 1$	l 1	-1	-1	1 1	-1	1 -1	1	-1
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} $	$_{21} \mid 1 1 -1 1$	l 1	-1	-1	$\begin{vmatrix} 1 & -1 \end{vmatrix}$. 1	1 -1	1	-1
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} $		$\cdot 2 2$	0	0	2 0	0	2 0	-2	0
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} $	$_{21} \mid 2 0 0 0$	-2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	2 0	0	-2 -E(8) +	$E(8)^3 = 0$	$E(8) - E(8)^3$
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{19} $		-2	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	2 0	0	-2 E(8) - E(8)	$(8)^3 = 0$	$-E(8) + E(8)^3$

 $P_1 = Group([()]) \simeq 1$

 $P_2 = Group([(1,4,14)(2,8,21)(3,11,25)(5,15,29)(6,16,30)(7,18,32)(9,22,36)(10,23,37)(12,26,39)(13,27,40)(17,31,42)(19,33,43)(20,34,44)(24,38,46)(28,41,47)(35,45,48)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2,6,10)(3,19,13,35)(4,8,16,23)(5,24,19)(14,25,30,40)(15,31,35)(4,8,16,23)(5,24,19)(14,25,30,40)(15,31,35)(4,8,16,23)(5,24,19)(14,25,30,40)(15,31,35)(4,8,16,23)(5,24,19)(14,25,30,40)(15,31,35)(4,8,16,23)(5,24,19)(14,25,30,40)(15,31,35)(4,8,16,23)(5,24,19)(14,25,30,40)(15,31,35)(4,8,16,23)(2,34,44,39)(13,34,34)(2,34,44,39)(13,34,34)(2,34,44,39)(13,34,34)(2,34,44,39)(13,34,34)(2,34$