

https://seasawher.github.io/kitamado/

@seasawher

1 Some basics of algebraic number theory

Lemma 1.3

Recall that $(,)_{\text{Tr}_{K/\mathbb{Q}}}$ is non-degenerate if the Gramm matrix with respect to one (and hence any) basis of L over F is invertible.

Proof. Almost trivial. Try to prove it.

Proposition 1.4

Let $\{\beta_1, \dots, \beta_n\}$ be the dual basis of $\{\alpha_1, \dots, \alpha_n\}$ with respect to $(,)_{\operatorname{Tr}_{K/\mathbb{Q}}}$. Then, for any $x \in O_K$, we have $x = (x, \alpha_1)_{\operatorname{Tr}_{K/\mathbb{Q}}} \beta_1 + \dots + (x, \alpha_n)_{\operatorname{Tr}_{K/\mathbb{Q}}} \beta_n$.

Proof. Since the trace form $(\ ,\)_{\operatorname{Tr}_{K/\mathbb{Q}}}$ is nondegenerate, $K \to K^*$ s.t. $x \mapsto (\cdot, x)_{\operatorname{Tr}_{K/\mathbb{Q}}}$ is a isomorphism. Let $p_i \colon K \to \mathbb{Q}$ be a projection map such that $p_i(x_1\alpha_1 + \cdots + x_n\alpha_n) = x_i$. Then, we set β_j the preimage of p_j .

Lemma 1.7

To see this, we take $t \in P(O_K)_P$ with $t \notin P^2(O_K)_P$.

remark. From Nakayama's lemma.

Adjacent to Lemma 1.8

For a nonzero prime ideal P of O_K , we set $P \cap \mathbb{Z} = (p)$, where p is a prime of Z. Because O_K is a free Z-module of rank $[K : \mathbb{Q}]$, O_K/P is a finite extension of $\mathbb{Z}/(p)$ with degree at most $[K : \mathbb{Q}]$.

Proof. There is a canonical surjection $O_K/pO_K \to O_K/P$, so we get $\#(O_K/P) \le \#(O_K/pO_K)$. But we obtain $O_K/pO_K \cong O_K \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z}$. Since O_K is a free \mathbb{Z} -module of rank $n = [K : \mathbb{Q}]$, we conclude $O_K/pO_K \cong (\mathbb{Z}/p\mathbb{Z})^n$. So, $\#(O_K/P) \le \#(O_K/pO_K) = p^n$.

Lemma 1.8

$$\bigoplus_{i=1}^r O_K/P_i^{e_i} = \bigoplus_{i=1}^r (O_K/P_i^{e_i})_{P_i}$$

Proof. Because $O_K/P_i^{e_i}$ is a local ring with maximal ideal $P_i/P_i^{e_i}$.

Adjacent to Theorem 1.9

we consider the value $\sqrt{\det(\langle e_i, e_j \rangle)}$.

remark. Why we get $\det(\langle e_i, e_j \rangle)$? Apply Gram-Schmidt orthonormalization.

Adjacent to Theorem 1.9

Then $\operatorname{vol}(M,\langle,\rangle)$ is equal to the volume of the *n*-dimensional parallelpiped Π spanned by $e_1,\cdots,e_n,$

Proof. Let $F \colon (V, \langle, \rangle) \to \mathbb{R}^n$ be an isometric isomorphism. Then, we generate

$$vol(M, \langle, \rangle)^{2} = det(\langle e_{i}, e_{j} \rangle)$$
$$= det(\langle Fe_{i}, Fe_{j} \rangle)$$

We set $E = (Ee_1, \dots, Fe_n)$. $E \in M_n(\mathbb{R})$. Then we get $(\langle Fe_i, Fe_j \rangle)_{i,j} = {}^tEE$, and $vol(M, \langle, \rangle) = |\det E|$. From Yukie[3] Theorem 4.9.1, $|\det E| = vol(\Pi)$.

Proposition 1.11

The form \langle , \rangle_K is an inner product on V.

remark. \langle , \rangle_K is trivially an inner product on K. Why should we show this?

Let S be a \mathbb{Q} vector space and \langle,\rangle a inner product on S. Then, bilinear form extended to $S \otimes_{\mathbb{Q}} \mathbb{R}$ may not be an inner product. For example, set $S = \mathbb{Q}[\sqrt{2}]$ and $\langle x, y \rangle = xy$.

Lemma 1.12

 $\#(O_K/I)$ is finite. Then I is a free \mathbb{Z} -module of rank n.

Proof. $I \subset O_K$ is a free \mathbb{Z} -module. Since $\#(O_K/I)$ is finite, we get $\forall x \in K \exists n \in \mathbb{Z}$ s.t. $nx \in I$. So we obtain $I \otimes_{\mathbb{Z}} \mathbb{Q} = K$. The rank of I is n.

Lemma 1.16

We have $[K':K] = e_1 f_1 + \dots + e_r f_r$.

Proof. See the proof of Prop 1.4. We obtain $O_{K'} \subset O_K \beta_1 \oplus \cdots \oplus O_K \beta_n$ for some $\beta_i \in K'$. That implies there is an injection such that $O_{K'} \to \bigoplus_i O_K$. Because localization is a flat module, we get $(O_{K'})_P \subset (O_K)_P \beta_1 \oplus \cdots \oplus (O_K)_P \beta_n$. Since $(O_K)_P$ is a PID, $(O_{K'})_P$ is a free $(O_K)_P$ -module. The rank

is [K':K] because

$$(O_{K'})_P \otimes_{(O_K)_P} K = (O_{K'} \otimes_{O_K} (O_K)_P) \otimes_{(O_K)_P} K = O_{K'} \otimes_{O_K} K = K'.$$

Thus, as a O_K/P module,

$$O_{K'}/PO_{K'} \cong O_K/P \otimes_{O_K} O_{K'}$$

$$\cong (O_K/P \otimes_{O_K} (O_K)_P \otimes_{(O_K)_P} (O_K)_P) \otimes_{O_K} O_{K'}$$

$$\cong (O_K/P \otimes_{O_K} (O_K)_P) \otimes_{(O_K)_P} (O_{K'})_P$$

$$\cong \bigoplus_{[K':K]} (O_K/P \otimes_{O_K} (O_K)_P)$$

$$\cong \bigoplus_{[K':K]} O_K/P.$$

Then it follows that

$$\#(O_K/P)^{[K':K]} = \#(O_{K'}/PO_{K'})$$

$$= \prod_i \#(O_{K'}/P_i^{e_i})$$

$$= \prod_i \#(O_{K'}/P_i')^{e_i}$$

$$= \prod_i \#(O_K/P)^{e_i f_i}.$$

Thus $[K':K] = \sum_i e_i f_i$.

Adjacent to Lemma 1.17

We take a integral basis $\{\omega_1, \dots, \omega_n\}$ of O_K , we denote by $\{\beta_1, \dots, \beta_n\}$ the dual basis with respect to $(,)_{\mathrm{Tr}_{K/\mathbb{Q}}}$. Then we have $\mathcal{M} = \mathbb{Z}\beta_1 + \dots + \mathbb{Z}\beta_n$.

Proof. See the note of Prop 1.4.

Lemma 1.17

Indeed, because $\#(O_K/\mathcal{D}_K) = \#(\mathcal{M}/O_K)$,

Proof. See Yukie[1] Proposition 1.8.6.

Theorem 1.18

Then we have

$$|D_{K/\mathbb{Q}}| \le \prod_{p \in S} p^{n-1+n\log_p(n)}.$$

Proof. We may assume that $S = \{ p \in \mathbb{Z} \mid p \text{ is ramified} \}$. Set $B = O_K$ and $I = D_K$.

Step 1 Let $p \in \mathbb{Z}$ be a prime number. Then B_p and I_p are free \mathbb{Z}_p -module of rank n. So there is a matrix $C \in M_n(\mathbb{Z}_p) \cap GL_n(\mathbb{Q}_p)$ such that the following diagram

$$I_p \longrightarrow B_p$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}_p^n \stackrel{C}{\longrightarrow} \mathbb{Z}_p^n$$

commute. Then

$$\#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p) = \#(\operatorname{Coker} C)$$

$$= \#(\mathbb{Z}_p/(\det C)\mathbb{Z}_p)$$

$$= \#(\widehat{\mathbb{Z}}_p/(\det C)\widehat{\mathbb{Z}}_p) \qquad (See Yukie[1] Proposition 1.2.13)$$

$$= \#(B/I \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}_p).$$

Step 2 It follows that

$$B/I \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}_p \cong B/I \otimes_B B \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}_p$$

$$\cong B/I \otimes_B \bigoplus_i \widehat{B}_{P_i} \qquad \text{(See Yukie[1] Theorem 1.3.23)}$$

$$\cong \bigoplus_i \widehat{B}_{P_i}/P_i^{\operatorname{ord}_{P_i}(I)} \widehat{B}_{P_i}$$

$$\cong \bigoplus_i B/P_i^{\operatorname{ord}_{P_i}(I)}$$

Step 3 Set $J = I \cap \mathbb{Z}$. Because B/I is finitely generated \mathbb{Z} -module, we get

$$\operatorname{Supp}_{\mathbb{Z}}(B/I) = V(\operatorname{ann}_{\mathbb{Z}}(B/I)) = V(J).$$

See Matsumura[4] adjacent to Theorem 4.4 if you do not understand the first equation. And for any prime number $p \in \mathbb{Z}$, then we obtain

$$\begin{split} p \not \in \operatorname{Supp}_{\mathbb{Z}}(B/I) &\iff B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p = 0 \\ &\iff \#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p) = 1 \\ &\iff \forall i \ \#(B/P_i^{\operatorname{ord}_{P_i}(I)}) = 1 \\ &\iff \operatorname{ord}_{P_i}(I) = 0 \\ &\iff p \text{ is unramified} \end{split}$$

Thus we conclude $V(J) = \operatorname{Supp}_{\mathbb{Z}}(B/I) = S$.

 $Step \ 4 \quad {\rm Then \ we \ get}$

$$\#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p) = \prod_i \#(B/P_i^{\operatorname{ord}_{P_i}(I)})$$

$$= \prod_i \#(B/P_i)^{\operatorname{ord}_{P_i}(I)}$$

$$= \prod_i \#(\mathbb{Z}/p)^{f_i \operatorname{ord}_{P_i}(I)}.$$

So we conclude $\log_p(\#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p)) \leq n - 1 + n \log_p(n)$.

Step 5 Recall that $J = \operatorname{ann}_{\mathbb{Z}}(B/I)$. Then we get

$$B/I \cong (B/I)/J(B/I)$$

$$\cong \bigoplus_{p \in S} (B/I)/p^e(B/I) \qquad (e \text{ depends on } p)$$

$$\cong \bigoplus_{p \in S} B/(p^eB+I)$$

$$\cong \bigoplus_{p \in S} B/(p^eB+I) \otimes_{\mathbb{Z}} \mathbb{Z}_p$$

$$\cong \bigoplus_{p \in S} B_p/(p^eB_p+I_p)$$

$$\cong \bigoplus_{p \in S} B_p/(JB_p+I_p)$$

$$\cong \bigoplus_{p \in S} B_p/I_p$$

Now we conclude that

$$|D_{K/\mathbb{Q}}| = \#(B/I) = \prod_{p \in S} \#(B_p/I_p) \le \prod_{p \in S} p^{n-1+n\log_p(n)}.$$

2 Theory of heights

Theorem 2.3

We set $n = [K : \mathbb{Q}]$. Let $\{\omega_1, \dots, \omega_n\}$ be the integral basis of O_K . Then $\{x\omega_1, \dots, x\omega_n\}$ is a basis of V.

Proof. There is a $c_{ij} \in \mathbb{Z}$ such that $x\omega_i = \sum_j c_{ij}\omega_i$. Set $C = (c_{ij}) \in M_n(\mathbb{Z})$. Then $\det C = N_{K/\mathbb{Q}}(x) \neq 0$, so we get $C \in GL_n(\mathbb{Q})$. And we obtain the assertion.

Proposition 2.5

$$h_K(x) \le \sum_{\sigma \in K(\mathbb{C})} \log \left(\max_{1 \le i \le n} \{|x_i|_{\sigma}\} \right).$$

remark. Misprint. Add $1/[K:\mathbb{Q}]$ into the right.

Proposition 2.6

for any $x \in \overline{\mathbb{Q}}^n$.

remark. Misprint. Exclude the case x = 0.

Proposition 2.8

We consider two morphisms $\phi_1 \colon X \to \mathbb{P}^{m_1}$ and $\phi_2 \colon X \to \mathbb{P}^{m_2}$ over $\overline{\mathbb{Q}}$. If $\phi_1^* \mathcal{O}_{\mathbb{P}^{m_1}} \cong \phi_2^* \mathcal{O}_{\mathbb{P}^{m_2}}$, then there is a constant C such that, for any $x \in X(\overline{\mathbb{Q}})$,

$$|h_{\phi_1}(x) - h_{\phi_2}(x)| \le C.$$

Proof. Remark that $\mathcal{O}_{\mathbb{P}^{m_1}}(1)$ is a Serre's twisted sheaf. See Bosch[2] 9.2/Definition 3. or Hartshorne[6] section 2.5 Adjacent to Proposition 5.12. We set $L = \phi_1^* \mathcal{O}_{\mathbb{P}^{m_1}}$ and set $k = \overline{\mathbb{Q}}$ and $\mathscr{F} = \mathcal{O}_{\mathbb{P}^{m_1}}(1)$. Since X is a projective variety over k and L is an invertible sheaf on X, so $H^0(X, L) = \Gamma(X, L)$ is a k-vector space of finite dimension. (See Hartshorne[6] section 2.5 Theorem 5.19. and Hartshorne[6] section 2.4 Prop 4.10)

Let $\{t_0, \dots, t_m\}$ be a basis of $H^0(X, L)$ and let X_0, \dots, X_{m_1} be the homogenous coordinates of \mathbb{P}^{m_1} . Note that each X_i is a global section of \mathscr{F} . And we set $s_i = \phi_1^* X_i \in H^0(X, L)$, where $\phi_1^* X_i$ is the image of $X_i \in H^0(\mathbb{P}^m, \mathscr{F})$ by the canonical map $\mathscr{F} \to \phi_1_* \phi_1^* \mathscr{F}$. It follows from Hartshorne[6] section 2.7 Theorem 7.1 that s_0, \dots, s_{m_1} generate L. Because for any $x \in X$ the each germ $(s_i)_x$ is a linear combination of $(t_j)_x$, so t_0, \dots, t_m generate L.

There is a morphism $\phi \colon X \to \mathbb{P}^m$ such that $L \cong \phi^* \mathcal{O}_{\mathbb{P}^m}(1)$ and $s_i = \phi^* X_i$ under this isomorphism. See Hartshorne[6] section 2.7 Theorem 7.1(b). There is another explanation on what ϕ is. For any $x \in X$, we can consider the germ $(t_i)_x \in L_x$. Denote $(t_i)_x$ by $t_i(x)$. Since L is a line bundle, $L_x \cong \mathcal{O}_{X,x}$. Then we define the map $\phi \colon X \to \mathbb{P}^m$ by $\phi(x) = (t_0(x), \dots, t_m(x))$. Note that there is a scalar ambiguity in choice of morphism $L_x \to k$. If $\forall i \ t_i(x) = 0$, then $(t_i)_x$ cannot generate L_x , which is a contradiction. Thus for any $x \in X$, there is an index i such that $t_i(x) \neq 0$.

Then, the rest of the proof is almost trivial.

Theorem 2.9

First, suppose that L is globally generated.

remark. What "globally generated" means? We say L is globally generated iff there is an exact sequence $\bigoplus_I O_X \to L \to 0$. Even if L is an invertible sheaf, L is not necessarily globally generated. For example, set $X = \mathbb{P}^m$, $L = \mathcal{O}_{\mathbb{P}^m}(-1)$. Since $\Gamma(X, L) = 0$, L is not globally generated.

Theorem 2.9

Let

$$\phi_{|L|} \colon X \to \mathbb{P}(H^0(X,L))$$

be a morphism associated to the complete linear system |L|. We set $h_L = h_{\phi_{|L|}}$.

Proof. Note that we want to get $h_L \in \operatorname{Func}(X)/B(X)$, which is not contained in $\operatorname{Func}(X)$.

What is a $\mathbb{P}(H^0(X,L))$? I think it is isomorphic to \mathbb{P}^m by taking a basis of $H^0(X,L)$.

Set $k = \overline{\mathbb{Q}}$. Since L be a globally generated line bundle on X, there is a basis s_0, \dots, s_m of $H^0(X, L)$ which generate L. Then we get a map $\phi_L \colon X \to \mathbb{P}^m$ such that $\phi_L^* \mathcal{O}_{\mathbb{P}^m}(1) \cong L$. We define h_L by $h_L = h_{\phi_L}$.

Theorem 2.9

Then $s_i \otimes t_j$ induces a morphism $\phi \colon X \to \mathbb{P}^N$ such that $\phi^*(O_{\mathbb{P}^N(1)}) \cong L_1 \otimes L_2$.

remark. How $s_i \otimes t_j \in H^0(X, L_1) \otimes_k H^0(X, L_2)$ define an element of $H^0(X, L_1 \otimes L_2)$? Let \mathscr{F} be a presheaf defined by $\mathscr{F}(U) = \Gamma(U, L_1) \otimes_{\mathcal{O}_X(U)} \Gamma(U, L_2)$. Then there is a canonical morphism $\mathscr{F} \to L_1 \otimes L_2$ since $L_1 \otimes L_2$ is the sheafification of \mathscr{F} . So we can see $s_i \otimes t_j \in H^0(X, L_1 \otimes L_2)$.

We denote the image of $s_i \otimes t_l$ by $s_i t_j \in H^0(X, L_1 \otimes L_2)$. Why $\{s_i t_j\}$ generate $L_1 \otimes L_2$? Take a stalk.

Theorem 2.9

tell us that $L \otimes A^n$ is globally generated for any sufficiently large n.

remark. The ampleness of A implies that

$$\exists n_1 \text{ s.t. } n \geq n_1 \Rightarrow L \otimes A^n \text{ is globally generated}$$

 $\exists n_2 \text{ s.t. } n \geq n_2 \Rightarrow A^n \text{ is globally generated}$

Then we set $n = \max_i \{n_i\}.$

Theorem 2.9

Then, modulo B(X), we have

$$h_{f^*(L)} = h_{f^*(C) \otimes f^*(C)^{-1}}$$

remark. See Görtz Wedhorn[5] Remark 7.10.

Theorem 2.9

Then by (1), h_L must be equal to $h_{L_1} - h_{L_2}$ modulo B(X).

remark. Let σ : {line bundles } \to Func(X)/B(X) be a map which satisfies the properties (1), (2), (3). By (3), for globally generated line bundle L, we get $\sigma_L = h_L$. Because $\Gamma(X, O_X) = k$, we obtain $\sigma_{O_X} = 0$. Thus (1) implies that $\sigma_L = h_L$ for general line bundle L.

Proposition 2.10

Let B be the Zariski closed subset of X defined by the ideal sheaf

$$\operatorname{Im}(H^0(X,L) \otimes L^{-1} \to O_X).$$

remark. What is the morphism $H^0(X,L) \otimes L^{-1} \to O_X$? Note that there is a canonical morphism $f^*f_*L \to L$ where $f\colon X \to \operatorname{Spec} k$ is a k-scheme structure. Note that f_*L is isomorphic to $\widehat{H^0(X,L)}$. We denote this canonical morphism $f^*f_*L \to L$ by

$$H^0(X,L)\otimes O_X\to L.$$

This is surjective if L is globally generated.

In general, we define $V \otimes_k O_X$ for k-module V, by setting

$$V \otimes_k O_k = f^{-1} \widetilde{V} \otimes_{f^{-1}O_{\operatorname{Spec} k}} O_X = f^* \widetilde{V}.$$

Then we get $H^0(X,L) \otimes L^{-1} \to O_X$ by tensoring L^{-1} .

Proposition 2.10

Then $\{ss_i\}$ are linearly independent elements of $H^0(X,L)$.

remark. What are ss_i ? Note that there is a canonical morphism

$$H^{0}(X, L) \otimes H^{0}(X, L_{2}) \to H^{0}(X, L \otimes L_{2}) \cong H^{0}(X, L_{1})$$

Thus I guess ss_i is the image of $s \otimes s_i$.

Moreover, why ss_i are linearly independent? It suffices to show that the morphism of k-module

$$s: H^0(X, L_2) \to H^0(X, L_1)$$

is injective.

We prepare the following lemma.

lemma. Let X be an integral scheme and let L be a line bundle on X. Assume that $s \in H^0(X, L)$ is not zero. Then for any $x \in X$, $s_x \neq 0$ in L_x .

Proof. Assume that there is a $z \in X$ such that $s_z = 0$. We want to show $s = 0 \in H^0(X, L)$. Since L is invertible, there is an open affine covering $X = \bigcup_{i \in I} U_i$ such that

$$U_i = \operatorname{Spec} A_i, \ L|_{U_i} \cong \widetilde{A_i}$$

On the other hand, $s_z=0$ implies that there is an open subset $U\subset X$ such that $s|_U=0$ and $z\in U$. Since X is integral, $U\cap\operatorname{Spec} A_i\neq\emptyset$. Thus there is a $g_i\in A_i\setminus\{0\}$ such that $\emptyset\neq D(g_i)\subset U\cap\operatorname{Spec} A_i$. Then $s|_{D(g_i)}=0$ in $\Gamma(D(g_i),L)\cong A_{ig_i}$. Note that each A_i is an integral domain because X is integral. Thus we get $\forall i\ s|_{U_i}=0$ because $A_i\to A_{ig_i}$ is injective. It follows from the sheaf axiom that $s=0\in\Gamma(X,L)$. \square

Then, we can prove the injectivity of $s: O_X \to L$. First, by the lemma, $0 \to O_X \xrightarrow{s} L$ is exact. Since L_2 is flat, $0 \to L_2 \xrightarrow{s} L_1$ is exact. Since global section is left exact, we get $0 \to H^0(X, L_2) \xrightarrow{s} H^0(X, L_1)$ is exact.

Proposition 2.10

Let
$$s_1, \dots, s_n$$
 be a basis of $H^0(X, L)$. \dots
Because $B = \{x \in X \mid s_1(x) = \dots = s_n(x) = 0\}$.
Proof. Why $B = \{x \in X \mid s_1(x) = \dots = s_n(x) = 0\}$? I guess
$$B = \operatorname{Supp} \operatorname{Coker}(H^0(X, L) \otimes L^{-1} \to O_X)$$

$$= \operatorname{Supp} \operatorname{Coker}(H^0(X, L) \otimes O_X \to L) \otimes L^{-1} \qquad \text{(right exactness of tensor)}$$

$$= \operatorname{Supp} \operatorname{Coker}(H^0(X, L) \otimes O_X \to L) \cap \operatorname{Supp} L^{-1}$$

$$= \operatorname{Supp} \operatorname{Coker}(H^0(X, L) \otimes O_X \to L)$$

Thus we get

$$x \in B \iff \operatorname{Coker}(H^0(X, L) \otimes O_X \to L)_x \neq 0$$

 $\iff \forall s \in H^0(X, L) \ x_x \in \mathfrak{m}_x L_x$
 $\iff s(x) = 0$
 $\iff s_1(x) = \dots = s_n(x) = 0$

Cor 2.25

Let A be an abelian variety of dimension g over F.

- (1) For any integer n, $[n]: A \to A$ is a finite and flat morphism of degree n^{2g} .
- (2) The abelian group $A(\overline{F})$ is divisible, i.e., for any $x \in A(\overline{F})$ and for any positive integer n, there is a $y \in A(\overline{F})$ with [n](y) = x.

Proof.

(1) L を even かつ ample な line bundle とする。 $[n]^*L = L^{n^2}$ より $[n]^*L$ も ample である。 $[n]^*L$ が ample ということは、(閉とは限らない)埋め込み

$$\psi_{|\widetilde{L}|} \colon A \to \mathbb{P}(\Gamma(A, \widetilde{L})^{\vee})$$

がある。ただし $\widetilde{L}=[n]^*L$ であり、 $^{\vee}$ は双対空間を表す。このとき次の図式は可換。

$$A \xrightarrow{\psi_{|\widetilde{L}|}} \mathbb{P}(\Gamma(A, \widetilde{L})^{\vee}) \\ \uparrow \qquad \qquad \uparrow \\ \operatorname{Ker}[n] \xrightarrow{\psi_{|\operatorname{Ker}[n]}|} \mathbb{P}(\Gamma(\operatorname{Ker}[n], \widetilde{L}|_{\operatorname{Ker}[n]})^{\vee})$$

ここで $\widetilde{L}|_{\mathrm{Ker}[n]}$ は自明なので $\mathrm{Ker}[n]$ の既約性分への分解を $\mathrm{Ker}[n] = \coprod_{i \in I} P_i$ とすると、各成分 P_i の $\psi_{|\mathrm{Ker}[n]|}$ による像は $\mathbb{P}^0(F)$ に含まれる。つまり一点である。したがって、 $\psi_{|\widetilde{L}|}$ は埋め込みなので各 P_i は一点である。よって $\mathrm{dim}\,\mathrm{Ker}[n] = 0$ である。

また [n] は projective variety の間の射なので projective であり、とくに固有である。 $\dim \operatorname{Ker}[n]=0$ であることをいま示したが、[n] は準同型なのですべての点の fiber の次元が等しい。ゆえに固有かつすべての点での fiber の次元がゼロなので [n] は finite である。とくに fiber の次元が任意の点で等しいので [n] は flat である。

次に degree について考える。ここでの degree は交点数を用いて定義される。ample line bundle L に ついて

$$L^{\cdot g} = (L, \cdots, L)$$

と定義する。右辺のLはg個ある。(Reference: 石井志保子「特異点入門」) 交点数は多重線形なので

$$([n]^*L)^{\cdot g} = (L^{n^2}.\cdots.L^{n^2}) = n^{2g}L^{\cdot g}$$

が従う。よって degree の定義から $\deg[n] = n^{2g}$ である。

(2) $[n]: A \to A$ は固有なのでその像 [n](A) は閉部分多様体である。また [n] は flat なので

$$\dim_0 A + \dim_0 \operatorname{Ker}[n] = \dim_0[n](A)$$

が成り立つ。よって $\dim \operatorname{Ker}[n] = 0$ より $\dim A = \dim_0 A = \dim_0[n](A) = \dim[n](A)$ である。真閉 部分多様体は次元が落ちるはずなので A = [n](A) がわかる。

Remark 2.27

If D is an effective Cartier divisor on an abelian variety A, then |2D| is base point free. In particular, D is nef.

remark. まず用語について解説する。Dが base point free とは、rational map

$$\psi_{|D|} \colon A \dashrightarrow \mathbb{P}(\Gamma(A,D)^{\vee})$$

が A 全体で定義されることである。 言い換えれば、

$$\{x\in A\mid \forall 0\neq s\in \Gamma(A,D)\; s(x)=0\}=\emptyset$$

ということである。また D が nef(数値的正、ネフ) とは

$$\forall C \text{ irreducible curve } (D.C) \geq 0$$

(交点数がゼロ以上)として定義される。

さて effective な Cartier divisor D について、2D が base point free ならば D が nef であることを確かめよう。2D が nef ならあきらかに D も nef なので、はじめから D が base point free だと仮定して D が nef だといえばよい。

いま D は effective なので既約曲線 C が $C \not\subset D$ である限り、 $(D.C) \ge 0$ となる。交点数は線形同値なもの同士を入れ替えても不変なので、どんな C についてもある D と線形同値な D' があって $C \not\subset D'$ となることをいえばよい。

ハイリホーで示す。ある既約曲線 C が存在して、すべての $D'\sim D$ なる D' について $C\subset D'$ であったとする。いま $\psi_{|D|}$ の定義から、任意の超曲面 $H\subset \mathbb{P}(\Gamma(A,D)^\vee)$ に対して $D\sim \psi_{|D|}^*H$ である。H はある大域 切断 $s\in \Gamma(A,D)$ により $H=\{l\mid l(s)=0\}$ と表せる。そこでこれを H_s とおく。このとき仮定から

$$\forall s \ C \subset \psi_{|D|}^* H_s$$

であるが、 $\psi_{|D|}^*H_s=\{x\in A\mid s(x)=0\}$ であったため、D が base point free であったことより $C=\emptyset$ となるしかない。これは矛盾である。

Remark 2.27

For an $a \in A(\overline{F})$, we define the morphism $T_a : A_{\overline{F}} \to \text{Pic}(A_{\overline{F}})$ by

$$T_a : x \mapsto x + a$$
.

For any given line bundle L on $A_{\overline{F}}$, we define the map $\lambda_L \colon A(\overline{F}) \to \operatorname{Pic}(A_{\overline{F}})$ by

$$\lambda \colon x \mapsto T_x^* L \otimes L^{-1}$$
.

Cor (Theorem of Square)

As groups, the map λ_L is a homomorphism from $A(\overline{F})$ to $\operatorname{Pic}(A_{\overline{F}})$.

If D is an effective Cartier divisor on an abelian variety A, then |2D| is base point free. In particular, D is nef. Indeed, identifying D with the corresponding Weil divisor, we write D+a and D-a for $T_a(D)$ and $T_{-a}(D)$ respectively. For any $x \in A(\overline{F})$, we choose a point $a \notin \operatorname{Supp}(D-x) \cup \operatorname{Supp}(D+x)$. Then $x \notin \operatorname{Supp}(D-a) \cup \operatorname{Supp}(D+a)$. Further, the theorem of the square implies that $(D-a)+(D+a) \sim 2D$. Thus |2D| is base point free.

remark. Hartshorne[6] section 2.6 命題 6.11 の、X が整分離的 Noether スキームで局所分解的なものとすると、Cartier divisor と Weil 因子が同型になるということを踏まえて同一視をする。ここで Abelian 多様体 A は smooth で、したがって局所環が regular であり、正則局所環は UFD であることから A は局所分解的であることに気を付ける。

閉点 $x \in A(\overline{F})$ が任意に与えられたとする。x を台に含まないような、2D と線形同値な effective 因子の存在をいえば、|2D| が base point free であることが従う。そういう因子を構成しよう。

点 $a \notin \operatorname{Supp}(D-x) \cup \operatorname{Supp}(-D+x)$ をとる。ここで因子 D-x は像 $T_{-x}(D)$ を意味し、-D+x は逆元をとる写像を i として $T_x(i(D))$ を意味する。このとき $a \notin \operatorname{Supp}(D-x)$ より $x \notin \operatorname{Supp}(D-a)$ であり、 $a \notin \operatorname{Supp}(-D+x)$ より $x \notin \operatorname{Supp}(D+a)$ である。(本文には誤植がある)このとき Theorem of square により

$$(D-a) + (D+a) = T_{-a}(D) + T_a(D)$$
$$= \lambda_D(-a) + \lambda_D(a) + 2D$$
$$= 2D$$

だから 2D と (D+a)+(D-a) は線形同値。 (D+a)+(D-a) はあきらかに effective なので |2D| が base point free であることがいえた。

Cor 2.28

Let A be an abelian variety, and let D be an effective Cartier divisor on A. We set $L = O_X(D)$. (In particular, |2D| is base point free) Then the following are equivalent.

- (1) $\operatorname{Ker}(\lambda_L)$ is a finite subgroup of $A(\overline{F})$.
- (2) A morphism $\Phi: A \to \mathbb{P}(H^0(A, L^2))$ associated to the complete linear system |2D| is a finite morphism onto its image.
- (3) L is ample.

PROOF. Properties (2) and (3) hold over F if and only if those hold over \overline{F} , so we may assume that $F = \overline{F}$.

(1) \Rightarrow (2) Suppose that Φ maps a projective curve C on A to a single point. We are going to deduce a contradiction by showing that $\operatorname{Ker}(\lambda_L)$ contains $C - C = \{x_2 - x_1 \mid x_1, x_2 \in C(F)\}$. We write $D = \sum_{i=1}^r a_i D_i$ with $a_i > 0$ and prime divisors D_i on A.

We claim that either $(C+x) \cap D_i = \emptyset$ or $C+x \subset D_i$ for any i and for any $x \in A(F)$. Because D_i is an effective Cartier divisor on an abelian variety, it is nef by Remark 2.27. In particular, $(D_i \cdot C) \geq 0$. It follows from

$$0 = (D \cdot C) = a_1(D_1 \cdot C) + \dots + a_r(D_r \cdot C),$$

that $(D_i \cdot C) = 0$. Further, because C + x is algebraically equivalent to C, we have $(D_i \cdot C + x) = (D_i \cdot C) = 0$. Thus we obtain the claim.

Next, we claim that $D_i = D_i + x_1 - x_2$ for any $x_1, x_2 \in C(F)$. Indeed, if $y \in D_i$ is a closed point, then both $C - x_1 + y$ and D_i contain y. Thus $C - x_1 + y \subset D_i$ by the above argument. It follows that $x_2 - x_1 + y \in D_i$, so $y \in D_i + x_1 - x_2$. Thus $D_i \subset D_i + x_1 - x_2$. By switching x_1 and x_2 in the above argument, we have $D_i \supset D_i + x_1 - x_2$. Hence we obtain the claim.

We set $L_i = O_A(D_i)$. Then $L = L_1^{\otimes a_1} \otimes \cdots \otimes L_r^{\otimes a_r}$. By the above claim, we have $T_{x_2-x_1}^*(L_i) = L_i$ for each i. It follows that

$$T_{x_2-x_1}^*(L) = T_{x_2-x_1}^*(L_1)^{\otimes a_1} \otimes \cdots \otimes T_{x_2-x_1}^*(L_r)^{\otimes a_r}$$
$$= L_1^{\otimes a_1} \otimes \cdots \otimes L_r^{\otimes a_r}$$
$$= L.$$

Thus $x_2 - x_1 \in \text{Ker}(\lambda_L)$, and so $C - C \subset \text{Ker}(\lambda_L)$. This is a contradiction.

(2) \Rightarrow (3) Let E be any coherent O_A -module on A. We are going to show that $E \otimes L^{2n}$ is globally generated for any sufficiently large 2n. We write X for the image $\Phi(A)$ of Φ . Because $\Phi_*(E)$ is coherent on X and $O_X(1)$ is ample, there is an $n_0 > 0$ such that

$$H^0(X, \Phi_*(E) \otimes O_X(n)) \otimes O_X \to \Phi_*(E) \otimes O_X(n)$$

is surjective for any $n \ge n_0$ (See Hartshorne p.153). Pulling back by Φ , we find that

$$(*) \qquad H^0(X, \Phi_*(E) \otimes O_X(n)) \otimes O_A \to \Phi^*\Phi_*(E) \otimes \Phi^*O_X(n)$$

is also surjective.

On the other hand, it follows from $\Phi^*O_X(n) \cong L^{2n}$ and the projection formula that $\Phi_*(E \otimes L^{2n}) \cong \Phi_*(E) \otimes O_X(n)$. Further, as Φ is a finite morphism, the canonical morphism $\Phi^*\Phi_*(E) \to E$ is surjective. Thus the surjectivity of (*) implies the surjectivity of

$$H^0(A, E \otimes L^{2n}) \otimes O_A \to E \otimes L^{2n}$$

for every $n \ge n_0$. Thus L^2 is ample, so L is ample.

(3) \Rightarrow (1) Let $p_i: A \times A \to A$ denote the i-th projection. First, we note the equality

$$\operatorname{Ker} \lambda_L = \left\{ x \in A(F) \mid (m_A^* L^{-1} \otimes p_1^* L)|_{A \times \{x\}} \text{ is trivial} \right\}.$$

In particular, the seesaw theorem tells us that $\operatorname{Ker} \lambda_L$ endowed with the reduced induced scheme structure is regarded as a closed subgroup scheme of A. We denote by B the connected component of $\operatorname{Ker}(\lambda_L)$ containing the identity. Then B is an abelian subvariety of A. We are going to show that $\dim B = 0$.

We set $L' := (m_A^*L^{-1} \otimes p_1^*L \otimes p_2^*L)|_{B \times B}$ on $B \times B$. Because $L'|_{B \times \{x\}} = (m_A^*L^{-1} \otimes p_1^*L)|_{B \times \{x\}} \otimes p_2^*L|_{B \times \{x\}}$ is trivial for any $x \in B$ and $L'|_{\{0\} \times B}$ is trivial, the seesaw theorem implies that L' is trivial. Pulling back L' by $([1]_B, [-1]_B) : B \to B \times B$, we obtain that $L \otimes [-1]_A^*L$ is trivial on B. On the other hand, because L is ample on A, $L \otimes [-1]_A^*L$ is ample on A. Thus dim B = 0, and we conclude that $Ker(\lambda_L)$ is a finite set.

query.

- (1) 「Properties (2) and (3) hold over F if and only if those hold over \overline{F} 」とあります。これは何故なのでしょうか。
- (2) (1)⇒(2) の証明で、背理法(対偶)が使われているようです。(2) が成り立たず、 Φ が finite でなかったとして、 $\ker \lambda_L$ が無限集合であることを示す証明になっているように見えます。そこで Φ が finite でなければある x があって、 $\Phi^{-1}(x)$ に含まれる projective な曲線 C があるということを使っているようですが、どうしてそういう C が存在するのでしょうか。

Φ のすべてのファイバーの次元が 0 だとすると、Φ は proper なので finite になります。よって Φ が finite でないという仮定から、Φ のある点でのファイバーの次元は 1 以上であり、したがってあるファイバーに含まれるような射影曲線 C がとれる、という証明で問題ないですか?

(3) 「Further, because C+x is algebraically equivalent to C」とあります。algebraically equivalent と はどういう意味 (定義) で、そしてどうしてそれが分かるのでしょうか。

(3)

参考文献

- [1] 雪江明彦『整数論 2 代数的整数論の基礎』(日本評論社, 2013)
- [2] Siegfried Bosch ${{\mathbb f}}$ Algebraic Geometry and Commutative Algebra ${{\mathbb f}}$ (Springer, 2013)
- [3] 雪江明彦『線形代数学概説』(培風館, 2006)
- [4] 松村英之『可換環論』(共立出版, 1980)
- [5] Ulrich Görtz, Torsten Wedhorn \lceil Algebraic Geometry I : Schemes with Examples and Exercises \rfloor (Springer, 2010)
- [6] Robin Hartshorne 『Algebraic Geometry』 (Springer, 1977)