МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

Домашнее задание № 1 по курсу «Аналитические модели АСОИиУ» Вариант 4

ИСПОЛНИТЕЛЬ: группа ИУ5-14М			Журавлев Н. В
			подпись
	"	"	2023 г

Содержание

Содержание	2
Задача 1	3
Задача 2	4
Задача 3	6
Задача 4	8
Задача 5	

Заданы законы поступления и обслуживания заявок АСОИиУ, формализуемой в виде одноканальной СМО типа G/G/1. Необходимо определить временные и загрузочные характеристики функционирования СМО.

Номер	Интенсивность	Загрузка	Параметр Эрланга	Параметр	
варианта	входного	OA	интервалов времени	Эрланга	
	потока заявок,		входного потока	интервалов	
	(1/c)			времени	
				обслуживания	
B4	4	0,2	1		4

Таблица 1. Значения для задачи 1

Решение:

Найдём квадрат коэффициента вариации интервалов времени входного потока $\vartheta_{_{\rm BX}}^{^{-2}}$ и интервалов времени обслуживания ϑ_{o}^{2} :

$$v^2 = \frac{1}{K_{\text{эрл}}} = 1$$

Откуда получаем выражения для
$$\vartheta_{o}^{2}$$
 и $\vartheta_{\text{Ex}}^{2}$:
$$\vartheta_{o}^{2} = \frac{1}{K_{\text{эрль}}} = \frac{1}{4} = 0,25$$

$$\vartheta_{\text{Ex}}^{2} = \frac{1}{K_{\text{эрль}}} = \frac{1}{1} = 1$$

По формуле Файнберга оценим количество заявок в очереди СМО:
$$Q = \frac{(v_{\text{вx}}^2 + v_{\text{o}}^2) * \rho^2}{2 * (1 - \rho)} = \frac{(1 + 0.25) * 0.2^2}{2 * (1 - 0.2)} = 0.03125$$

Оценим количество заявок в системе:

$$L = Q + \rho = 0.03125 + 0.2 = 0.23125$$

В соответствии с формулами Литтла находим время нахождения заявок в очереди и в системе соответственно:

Системе соответственно.
$$W = \frac{Q}{\lambda} = \frac{0,03125}{4\left[\frac{1}{c}\right]} = 0,0078125[c]$$

$$T = \frac{L}{\lambda} = \frac{0,23125}{4[1/c]} = 0,0578125[c]$$
Ответ: $Q = 0,03125[c]; L = 0,23125; W = 0,0078125[c]; T = 0,0578125[c]$

Заданы законы поступления и обслуживания заявок в подсистеме АСОИиУ, формализуемой в виде СМО с обратной связью. Необходимо определить временные и загрузочные характеристики функционирования СМО.

Номер варианта	Интенсивность входного потока заявок, $(1/c)$, λ	Кол-во ОА,с	Загрузка одного ОА, <i>р</i>	Параметр Эрланга интервалов времени обслуживания, $K_{ m 3p}_{ m 0}$	Вероятность повторной обработки заявок в ОА, <i>p</i>
B14	14	2	0,7	2	0,1

Таблица 2. Значения для задачи 2.

Решение:

Схема 1. Схема взаимодействия СМО

Найдём квадрат коэффициента вариации интервалов времени входного потока $\vartheta_{\mathtt{ex}}^{-2}$ и интервалов времени обслуживания ϑ_0^2 : $v^2 = \frac{1}{K_{\text{эрл}}} = 1$

$$v^2 = \frac{1}{K_{ang}} = 1$$

Откуда получаем выражения для
$$\vartheta_o^2$$
: $\vartheta_o^2 = \frac{1}{K_{\text{эрл}_0}} = \frac{1}{2} = 0.5$

Так как система без отказов, то справедливо следующее соотношение:

$$\lambda_{\text{bun}} = \lambda_{\text{bn}}$$

Тогда получаем:

$$\lambda + \lambda_{\text{beix}} \times P = \lambda_{\text{beix}}$$

$$\lambda_{\text{beix}} = \frac{\lambda}{1-P} = \frac{14}{1-0.1} = 15.5(5)$$

Определим количество попаданий заявки на вход СМО за время ее пребывания в системе:

$$\alpha = \frac{\lambda}{1 - p} = \frac{1}{1 - 0.1} = 1.1(1)$$

Определим количество заявок в очереди Q для СМО типа M/G/2 методом инвариантов отношений:

$$\frac{Q_{M/M/2}}{Q_{M/M/1}} \approx \frac{Q_{M/G/2}}{Q_{M/G/1}},$$

Определим количество заявок в очереди Q для CMO типа M/M/1 и M/M/2:

$$Q_{M/M/1} = \frac{\rho^2}{1-\rho} = \frac{0.7^2}{1-0.7} = 1.63$$

$$Q_{M/M/2} = \frac{2 \times \rho^8}{1 - \rho^2} = \frac{2 \times 0.7^8}{1 - 0.7^2} = 1.35$$

По формуле Поллячека-Хинчина (2.10), находим:

$$Q_{M/G/1} \cong \frac{(1+\vartheta_0^2)\times\rho^2}{2\times(1-\rho)} = \frac{(1+0.5)\times0.7^2}{2\times(1-0.7)} = 1.225$$

Из соотношения выше, находим $Q_{M/G/2}$:

$$Q_{M/G/2} \cong Q_{M/G/1} \times \frac{Q_{M/M/2}}{Q_{M/M/1}} = 1,225 \times \frac{1,35}{1,63} = 1,01$$

Оценим количество заявок в системе:

$$L = Q + c * \rho = 1,01 + 2 * 0,7 = 2,41$$

В соответствии с формулами Литтла находим время нахождения заявок в очереди и в системе соответственно:

$$W = \frac{Q}{\lambda_{\text{BX}}} * \alpha = \frac{1,01}{15,5(5)} * 1,1 = 0,07[c]$$
$$T = \frac{L}{\lambda_{\text{BY}}} * \alpha = \frac{2,41}{15,5(5)} * 1,1 = 0,17[c]$$

Otbet:
$$Q = 1,01$$
; $L = 2,41$; $W = 0,07[c]$; $T = 0,17[c]$

Заданы законы поступления и обслуживания заявок АСОИиУ, формализуемой в виде СМО с отказами типа M/M/C/m. Необходимо определить временные и загрузочные характеристики функционирования СМО.

Номер варианта	Интенсивность входного потока заявок, $(1/c)$, λ	Кол-во ОА, с	Загрузка одного ОА, <i>р</i>	Емкость буфера, m
В9	9	1	0,5	1, 2, 3

Таблица 3. Значения для задачи 2.

Рассчитаем основные характеристики для каждой из емкостей буферов. Найдем базовые характеристики системы (вероятность отказа заявкам в обслуживании, интенсивность потока обслуженных заявок, коэффициент использования обслуживающего аппарата соответственно):

обслуживающего аппарата соответственно):
$$P_{\text{отк}} = \frac{(\rho^{m+1} - \rho^{m+2})}{1 - \rho^{m+2}}$$

$$\lambda_{\text{c}} = (1 - P_{\text{отк}}) * \lambda$$

$$U = \frac{\lambda_{\text{c}}}{\mu} = (1 - P_{\text{отк}}) * \rho$$

Результаты приведены в таблице 4.

Метрика	Емкость буфера				
Номер буфера	1	2	3		
P_{otk}	0,143	0,06(6)	0,032		
λ_{c}	7,713	8,406	8,712		
U	0,428	0,46(6)	0,484		

Таблица 4. Вероятности отказа для разных емкостей буфера

Найдем основные временные и количественные характеристики по формулам:

$$Q = \frac{\rho^{m+2} * (1 - \rho^{m} * (m+1) + m * \rho^{m+1})}{(1 - \rho^{m+2}) * (1 - \rho)}$$

$$L = Q + U$$

$$W = \frac{Q}{\lambda_{c}}[c]$$

$$T = \frac{L}{\lambda_{c}}[c]$$

Результаты представлены в таблице 5.

Метрика	Размер буфера				
Номер буфера	1	2	3		
Q	0,143	0,26(6)	0,355		
L	0,571	0,73(3)	0,834		
W	0,0185	0,0317	0,0407		
Т	0,074	0,087	0,096		

Таблица 5. Количественные и временные характеристики СМО с отказами

Ответ:	Q = 0.14	3/0,26	(6)/0,355;	L	= 0,5	571/0,73(3	3)/0,834;
W = 0.0185/	0,0317/0,0407	[c]; T:	= 0,074/0,087/0	,096 [c]	для	ёмкости	буфера,
равного	1,	2	И	3		соответ	ственно.

Заданы законы поступления и обслуживания заявок АСОИиУ, формализуемой в виде разомкнутой СМО с обратными связями, состоящей из M/M/C. Необходимо определить временные и загрузочные характеристики функционирования СМО.

Номер варианта	Интенсивность входного потока заявок (1/с), λ	O	л-в \ в азах		ОА в ф	Интенсивность ОА в фазах (1/c), µ		Вероятности переходов между фазами				
	Обозначение фаз	1	2	3	1	2	3	P_{12}	P_{13}	P_{21}	P_{31}	$P_{\scriptscriptstyle m BMX}$
B4	1	1	1	1	15	10	10	0,8	0,2	0,5	1	0,5

Таблица 6. Значения для задачи 4.

Схема системы:

Схема 1. Схема взаимодействия СеМО.

Найдём интенсивность входных потоков в каждую СМО:

$$\begin{split} \lambda_1 &= \frac{\lambda}{1 - P_{12} \times P_{21} - P_{18}} = \frac{1}{1 - 0.8 \times 0.5 - 0.2} = 2.5 \left[\frac{1}{c} \right] \\ \lambda_2 &= \lambda_1 \times P_{12} = 2.5 \times 0.8 = 2 \left[\frac{1}{c} \right] \\ \lambda_3 &= \frac{\lambda_1 \times P_{18}}{P_{81}} = \frac{2.5 \times 0.2}{1} = 0.5 \left[\frac{1}{c} \right] \end{split}$$

Определим стационарность каждой СМО, для этого найдём у них загрузку ОА

 ρ :

$$\rho_1 = \frac{\lambda_1}{\mu_1 \times c_1} = \frac{2.5}{15 \times 1} = 0.17$$

$$\rho_2 = \frac{\lambda_2}{\mu_2 \times c_2} = \frac{2}{10 \times 1} = 0.2$$

$$\rho_3 = \frac{\lambda_s}{\mu_s \times c_s} = \frac{0.5}{10 \times 1} = 0.5$$

Т.к. $\rho_1, \rho_2, \rho_3 < 1$, следовательно СеМО стационарно.

Рассчитаем основные количественные и временные характеристики:

$$\begin{aligned} Q_{i} &= \frac{c_{i} \times \rho_{i}^{c_{i}+1}}{1 - \rho_{i}^{c_{i}}} \\ L_{i} &= Q_{i} + c_{i} * \rho_{i} \\ W_{i} &= \frac{\rho_{i}^{c_{i}+1}}{(1 - \rho_{i}^{c_{i}}) \times \mu} \\ T_{i} &= \frac{1}{(1 - \rho_{i}^{c_{i}}) \times \mu} \end{aligned}$$

Результаты расчетов приведены в таблице 7.

	CMO1	CMO2	CMO3
Q_i	0,035	0,05	0,5
L_i	0,205	0,25	1
W_i	0,002	0,005	0,05
T_i	0,08	0,125	0,2

Таблица 7. Временные и количественные характеристики СМО и СеМО Найдём среднее время пребывания *Т* в системе в целом:

$$T = \sum_{i=1}^{3} T_i = (0.08 + 0.125 + 0.2) = 0.405 [c]$$

Ответ: $Q_1=0.035, Q_2=0.05, Q_3=0.5; L_1=0.205, L_2=0.25, L_3=1; W_1=0.002$ [c], $W_2=0.005$ [c], $W_3=0.05$ [c]; $T_1=0.08$ [$T_2=0.125$ [$T_3=0.2$]]

Заданы законы поступления и обслуживания заявок в подсистеме АСОИиУ, формализуемой в виде СМО с приоритетами. Необходимо определить временные и загрузочные характеристики функционирования СМО.

		ь входного потока к, (1/c)), λ	Среднее время обслуживания заявок, (c), t_{o}		
Номер					
варианта	1 приоритет	2 приоритет	1 приоритет	2 приоритет	
B24	1	4	0,1	0,2	

Таблица 8. Значения для задачи 5.

Определим базовые параметры СМО для заявок каждого приоритета.

$$\rho_i = \lambda_i * t_{o_i}$$

Результаты приведены в таблице 9.

Приоритет заявок	λ_i	ρ_i
1 приоритет	1	0,1
2 приоритет	4	0,8

Таблица 9. Базовые параметры СМО с параметрами

Рассчитаем основные характеристики для СМО с относительными и абсолютными приоритетами. Для СМО M/M/1 с относительными приоритетами используется следующий набор функций:

следующий набор функций:
$$W_1 = \frac{\rho_1 * t_{o_1} + \rho_2 * t_{o_2}}{1 - \rho_1}$$

$$W_2 = \frac{\rho_1 * t_{o_1} + \rho_2 * t_{o_2}}{(1 - \rho_1) * (1 - \rho_1 - \rho_2)}$$

$$Q_i = \frac{W_i}{\lambda_i}$$

$$L_i = Q_i + \rho_i$$

$$T_i = \frac{L_i}{\lambda_i}$$

Где і – приоритет заявки.

Результаты вычисления характеристик для СМО с относительными приоритетами приведены в таблице 10.

Приоритетность заявок	W	Q	L	Т
1 приоритет	0,18(8)	0,18(8)	0,28(8)	0,28(8)
2 приоритет	1,8(8)	0,472(2)	1,27(2)	0,3175

Таблица 10. Характеристики для СМО с относительными приоритетами Для СМО М/М/1 с абсолютными приоритетами используются следующие функции:

$$\begin{split} W_1 &= \frac{\rho_1 * t_{o_1}}{1 - \rho_1} \\ W_2 &= \frac{\rho_1 * t_{o_2}}{1 - \rho_1} + \frac{\rho_1 * t_{o_1} + \rho_2 * t_{o_2}}{(1 - \rho_1) * (1 - \rho_1 - \rho_2)} \\ Q_i &= \frac{W_i}{\lambda_i} \\ L_i &= Q_i + \rho_i \\ T_i &= \frac{L_i}{\lambda_i} \end{split}$$

Результаты вычисления характеристик для СМО с абсолютными приоритетами приведены в таблице 11.

Приоритетность заявок	W	Q	L	Т
1 приоритет	0,01(1)	0,01(1)	0,1(1)	0,1(1)
2 приоритет	1,91	0,477	0,98	0,245

Таблица 11. Характеристики для СМО с абсолютными приоритетами

Ответ: Ответом являются вычисленные значения, приведенные в таблицах выше: Таблица 10 (для относительных приоритетов), Таблица 11 (для абсолютных приоритетов).