AMATH 351 Differential Equations and Applications Equations

Organized by Teng-Jui Lin

Warning

- WARNING: These equations are hand-typed and for personal reference use, so it is guaranteed to have some mistakes, both innocent and unforgivable. Therefore, use with caution!
- By using this equation sheet, you accept the risk associated with potential mistakes.
- If you find any mistakes, I welcome you to raise an issue.
- Updated: 18 March 2021

Table of Contents

- AMATH 351 Differential Equations and Applications Equations
 - Warning
 - Table of Contents
 - First Order Differential Equations
 - Concepts
 - Existence and Uniqueness Theorem
 - Solving initial value problems (IVP)
 - Solving ODEs using separation of variables
 - Solving ODEs using integrating factors
 - Solving exact ODEs
 - Solving ODEs using substitution
 - Mathematical Modeling
 - Radioactive decay
 - Other equations
 - Stability and phase plane analysis
 - Second Order Differential Equations
 - Concepts
 - Principle of superposition
 - Wronskian and linear (in)dependence
 - Abel's theorem
 - Euler's formula
 - Solving 2nd order homogeneous constant coefficient ODEs
 - Solving ODEs by reduction of order
 - Solving Euler equation
 - Solving nonhomogeneous ODEs by method of undetermined coefficients
 - lacktriangle Rules for guessing y_H
 - Solving nonhomogeneous ODEs by variation of parameters
 - Mechanical vibrations
 - Unforced oscillation
 - Forced oscillation
 - o Systems of Differential Equations
 - Introduction to linear algebra
 - Linear independence
 - Matrix inversion
 - Matrix determinant
 - Eigenvalues and eigenvectors of matrix
 - Systems of differential equations
 - Rewriting ODEs into systems of 1st order ODEs
 - Linear system of ODEs
 - Solving homogeneous constant-coefficient systems of ODEs
 - Solving Euler systems
 - O Laplace Transform
 - Concepts
 - Properties of Laplace transform
 - Translation theorems

- Solving ODEs with Laplace transform
- Laplace transform table

First Order Differential Equations

Concepts

- Differential equations (DE) relationship between an unknown function y and its derivative $\circ F(y(x), y'(x), y''(x), ...) = 0$
- Order order of the highest order derivative in the DE
- Ordinary differential equation (ODE) contains derivative with respect to only 1 variable
- Partial differential equation (PDE) contains derivative with respect to multiple variables
- Linear unknowns of DE do not appear as argument of nonlinear functions or multiply with each other or themselves
- Valid solution a solution of an ODE that does not...
 - have a complex number
 - \circ have $\lim = \infty$ ($\lim = \infty$ is ok)
 - o have division by zero
 - \circ have undefined operation (e.g. $\ln(-2)$)
- Interval of validity the largest interval where the solution is valid.
- ullet Distinct solution $y_1(x)
 eq y_2(x)$ for some x

Existence and Uniqueness Theorem

- ✓ 1st order ODE
- Consider the IVP y' = f(t, y), y(0) = 0.
 - o first order ODE only
- ullet If f and $rac{\partial f}{\partial y}$ are continuous for $|t| \leq a, |y| \leq b$,
 - \circ then there exists a $|t| \leq h \leq a$ such that there exists a unique solution y(t) =

Solving initial value problems (IVP)

Given some initial values $y(0)=a_0,y'(0)=a_1,...,y^{(n)}(0)=a_n.$ Solve the ODE F(y(x), y'(x), y''(x), ...) = 0

- 1. Find the general solution to the ODE (or verify a given solution).
- 2. Plug in any initial values to determine the values of unknown constants in the ODE general
- 3. Check if there is any additional prompt to do with the solution of the ODE.

Solving ODEs using separation of variables

- 1st order
- Nonlinear, linear
- Separable
- 1. Write the DE in the form of separable DE $\dfrac{dy}{dx}=g(x)h(y)$.
- 2. Check if h(y)=0 generates trivial solutions.
- 3. Separate the x and y terms: $\dfrac{dy}{h(y)}=g(x)dx$. (Don't consider int. const.)
- 4. Integrate both sides and add constant of integration: $\int \frac{dy}{h(y)} = \int g(x) dx$
 - 1. Solve for y for explicit solution.
- 5. IVP

Solving ODEs using integrating factors

- ✓ 1st order
- Linear
- 1. Write the DE in the form of y'(x) + p(x)y(x) = q(x).
- 2. Find the integrating factor $\mu(x)=\exp(\int p(x)dx)$.

 3. The solution is in the form $y(x)=\frac{\int \mu(x)q(x)dx+C}{\mu(x)}$.
- 4. IVP

Solving exact ODEs

- ✓ 1st order
- ✓ Nonlinear, linear

1. Write the DE in the form of $N(x,y)y^\prime + M(x,y) = 0$

1. Let
$$y=f(x,y)$$
. 2. Let $M(x,y)=rac{\partial f}{\partial x}$, and $N(x,y)=rac{\partial f}{\partial y}$

- 2. Check if the DE is an exact DE by verifying $\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}$
- 3. Find the solution f(x,y) using one of the following methods:
 - Method A1

1. Find
$$f(x,y)=\int \partial f=\int M\ \partial x=f_{\mathrm{main}}(x,y)+h(y).$$
2. Solve for $h'(y)$ in $N=rac{\partial f}{\partial y}=rac{\partial f_{\mathrm{main}}}{\partial y}+h'(y).$
3. Solve for $h(y)$ and plug in $f(x,y).$

Method A2

1. Find
$$f(x,y)=\int\partial f=\int N\ \partial y=f_{\mathrm{main}}(x,y)+g(x).$$
2. Solve for $g'(x)$ in $M=rac{\partial f}{\partial x}=rac{\partial f_{\mathrm{main}}}{\partial x}+g'(x).$
3. Solve for $g(x)$ and plug in $f(x,y).$

- Method B
 - lacksquare Do not consider int. const. g(x) and h(y) in the following steps.

1. Find
$$f_1(x,y)\equiv\int\partial f=\int M\ \partial x\equiv f_{
m mixed-terms}(x,y)+f_{
m y-terms}(y)$$
2. Find $f_2(x,y)\equiv\int\partial f=\int N\ \partial y\equiv f_{
m mixed-terms}(x,y)+f_{
m x-terms}(x)$

3. Match up the terms to get the solution

$$f(x,y) = f_{
m mixed-terms}(x,y) + f_{
m x-terms}(x) + f_{
m y-terms}(y) = C$$

4. IVP

Solving ODEs using substitution

- 1st order
- ☑ Nonlinear, linear
- 1. Substitute function y with u to find an easy-to-solve ODE by...
 - 1. Given DE $y^\prime=f(x,y)$,
 - lacksquare write the DE in terms of y'
 - \blacksquare find the substitution u = u(x, y(x))
 - lacktriangledown find the inverse substitution y=y(x,u(x))

2. By chain rule, find
$$u'=rac{\partial u}{\partial x}+rac{\partial u}{\partial y}y'.$$

3. Substitution (replace y^\prime with original ODE):

$$u' = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} y' \stackrel{y'}{\longleftarrow} y' = f(x, y)$$
$$u' = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} f(x, y) \equiv F(x, y, u)$$

4. Substitution (replace y with inverse substitution):

$$u' = F(x, y, u) \stackrel{y}{\longleftarrow} y(x, u(x))$$

 $u' = F(x, y(x, u), u) \equiv G(x, u)$

- 2. Solve the ODE u' = G(x,u) for u(x).
- 3. Substitution:

$$y(x,u(x)) \stackrel{u(x)}{\longleftarrow} u(x) \ y(x)$$

4. IVP

Mathematical Modeling

Radioactive decay

Description	•
DE of radioactive decay	$rac{dN}{dt} = -kN(t)$
Number of nuclei over time (solution)	$N(t) = N(0)e^{-kt} = N_0 e^{-kt}$
Half life	$N(au)=rac{N_0}{2}$

Decay constant
$$k=rac{\ln 2}{}$$

Radioactive dating
$$t=rac{\ln\left(rac{N_1(t)}{N_2(t)}rac{N_2(0)}{N_1(0)}
ight)}{ au_1 au_2}$$

Other equations

Description	Equations
Logistic equation $(r,k>0)$	$P'(t) = r \left(1 - rac{P}{k} ight) P$
Bernoulli equation	$y^{\prime}+p(t)y=q(t)y^{n}$
General solutions of Bernoulli equation $(n=1,2,3)$	$egin{aligned} n = 0: y(t) &= rac{\int e^{\int p(t)dt} q(t)dt + C}{e^{\int p(t)dt}} \ n = 1: y(t) &= Ce^{\int q(t) - p(t)dt} \ n = 2: y(t) &= rac{-e^{-\int p(t)dt}}{\int e^{-\int p(t)dt} q(t)dt + C} \end{aligned}$
General solutions of Bernoulli equation	$orall n: y(t) = \left(rac{1-n}{f(t)}\int q(t)f(t)dt ight)^{1/(1-n)}$ where $f(t) = e^{\int (1-n)p(t)dt}$
Riccati equation	$y' = q_0(t) + q_1(t)y + q_2(t)y^2$
Solving Riccati equation known p_1	$y=y_1+rac{1}{v(t)}$, where v satisfies $v'(t)=-(q_1+2q_2y_1)v-q_2$
General solutions of Riccati equation known particular solution y_1	$y=y_1+rac{\mu(t)}{-\int \mu(t)q_2dt+C}$ where $\mu(t)=e^{\int q_1+2q_2y_1\;dt}$

Stability and phase plane analysis

- 1. Plot P'(t) vs P(t).
- 2. Find fixed point P^st such that $P^\prime=0$
 - \circ x-intercept of P'(t) vs P(t) plot
 - \circ a solution with initial value $P(0)=P^*$ is constant over time
- 3. Draw flow arrows near fixed points
 - $\circ~P'>0$ flows to the right
 - $\circ \ P' < 0$ flows to the left
- 4. Identify stability of fixed points by flow arrows
 - $\circ\,$ stable solution approaches the fixed point
 - $\circ\,$ unstable solution diverges from the fixed point
 - $\circ\,$ semi-stable solution approaches the fixed point from one side and diverges from another
- 5. Sketch solution P(t) vs. t so that
 - $\circ\ P$ increases in region flow to the right
 - $\circ\ P$ decreases in region flow to the left
 - o solution approaches to stable fixed point
 - o solution diverges from unstable fixed point

Second Order Differential Equations

Concepts

- ullet Second order linear differential equation r(x)y''+p(x)y'+q(x)y=g(x)
- ullet Homogeneous g(x)=0
- ullet Non-homogeneous g(x)
 eq 0
- ullet Linearly independent $c_1f(x)+c_2g(x)=0$ can only be satisfied by choosing $c_1=c_2=0$ for functions f,g

•	Wronskian -	W(f,	a)(x)	= fa'	-f'a

Principle of superposition

- 2nd order homogeneous ODE
- ullet Consider 2nd order homogeneous ODE r(x)y''+p(x)y'+q(x)y=0.
- ullet If Wronskian $W(y_1,y_2)
 eq 0$ (y_1 and y_2 are linearly independent solution of the ODE),
 - \circ then the general solution of the ODE is $y(x) = c_1 y_1(x) + c_2 y_2(x)$.

Wronskian and linear (in)dependence

- ullet Two functions f and g are linearly dependent \circ if their Wronskian W(f,g)(x)=fg'-f'g=0.
- Corollary \circ two linearly independent functions f and g has $W(f,g)(x) \neq 0$.

Abel's theorem

- If y_1 and y_2 be any two solutions of y'' + p(x)y' + q(x)y = 0, \circ then $W(y_1,y_2)=xe^{-\int p(d)dx}$.
- Corollary: reduction of order formula \circ Known y_1 , then $y_2=y_1\intrac{W}{u_{ au}^2}dx$

Euler's formula

$$e^{ieta x} = \cos(eta x) + i\sin(eta x)
onumber \ e^{-ieta x} = \cos(eta x) - i\sin(eta x)$$

Solving 2nd order homogeneous constant coefficient ODEs

- 2nd order
- Linear
- Constant coefficient
- Homogeneous
- 1. Write the ODE in the form of ay'' + by' + cy = 0.
- 2. Write the characteristic equation $a\lambda^2 + b\lambda + c = 0$.
- 3. Solve the characteristic equation $\lambda_1,\lambda_2=rac{-b\pm\sqrt{b^2-4ac}}{2a}$
 - \circ If $\lambda_1
 eq \lambda_2$ and $\lambda_1, \lambda_2 \in \mathbb{R}$,
 - lacksquare then the general solution is $y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$.
 - \circ If $\lambda_1=\lambda_2$, and $\lambda_1,\lambda_2\in\mathbb{R}$,
 - lacksquare then the general solution is $y(x)=c_1e^{\lambda_1x}+c_2xe^{\lambda_1x}$.
 - by reduction of order
 - \circ If $\lambda_1
 eq \lambda_2$, and $\lambda_1, \lambda_2 \in \mathbb{C}$, where $\lambda_1, \lambda_2 = lpha \pm ieta$,

 - $\blacksquare \text{ then the general solution is } y(x) = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x),$ $\blacksquare \text{ where } \alpha = -\frac{b}{2a}, \beta = \frac{\sqrt{4ac-b^2}}{2a}.$
 - by Euler's formula

4 IVP

Solving ODEs by reduction of order

- ☑ 2nd order
- □ Linear
- ☑ Non-constant coefficient, constant coefficient
- Homogeneous
- 0. Given a solution y_1 .
- 1. Write the ODE in the form of y'' + p(x)y' + q(x)y = 0.
- 2. Calculate the Wronskian by Abel's Theorem $W=ce^{-\int p(x)dx}.$
- 3. Find y_2 by reduction of order formula $y_2=y_1\int rac{W}{y_1^2}\,dx.$
- 4. Pick a convenient coefficient c (but $c \neq 0$).
- 5. Write the general solution $y(x) = c_1 y_1(x) + c_2 y_2(x)$.

Solving Euler equation

- 2nd order
- Linear

- 4. IVP

Solving nonhomogeneous ODEs by method of undetermined coefficients

- 2nd order
- Linear
- Constant coefficient
- ✓ Nonhomogeneous
- 1. Write the ODE in the form of $L[y] \equiv ay'' + by' + cy = g(x)$.
- 2. Calculate the solution y_H to the homogeneous problem $L[y_H]=0$.
- 3. Guess a particular solution y_P to the nonhomogeneous problem $L[y_H]=g(x)$.
- 4. Substitute y_P into the ODE and solve for any constants.
- 5. Write the general solution $y(x) = y_H(x) + y_P(x)$.
- 6. IVP

Rules for guessing $y_{\cal H}$

- \bullet Consider each term of nonhomogeneity g(x) separately.
- Beware of the constants
 - Changes
 - lacksquare $\alpha o A$
 - lacksquare eta o B
 - $lacksquare P_n(x) o S_n(x)$ contains $lpha_i o A_i, orall n$
 - $lacksquare Q_m(x) o T_m(x)$ contains $lpha_i o A_i, orall n$
 - O No changes
 - $\blacksquare \ k, \omega$
- If a term of guessed y_P conflicts with y_H , then multiply the term of guessed y_P (not the entire guess of y_P) by x.

Term of guessed particular solution y_P
A
Ae^{kx}
$S_n(x) = \sum\limits_{i=0}^n A_i x^i$
$e^{kx}S_n(x)$
$A\cos(\omega x) + B\sin(\omega x)$
$S_n(x)\cos(\omega x) + T_m(x)\sin(\omega x)$
$e^{kx}[S_n(x)\cos(\omega x)+T_m(x)\sin(\omega x)]$

Solving nonhomogeneous ODEs by variation of parameters

- 2nd order
- Linear

- Non-constant coefficient, constant coefficient
- Nonhomogeneous
- 1. Write the ODE in the form of $L[y] \equiv y'' + p(x)y' + r(x)y = g(x)$.
- 2. Calculate the solution to the homogeneous problem $L[y_H]=0$
 - $\circ \ y_H = c_1 y_1 + c_2 y_2$
- 3. Calculate the Wronskian $W(y_1,y_2)$
- 4. Calculate the particular solution y_P to the nonhomogeneous problem $L[y_H]=g(x)$

$$0 \circ y_P = -y_1 \int rac{g(x)y_2}{W(y_1,y_2)} dx + y_2 \int rac{g(x)y_1}{W(y_1,y_2)} dx$$

- 5. Write the general solution $y(x) = y_H(x) + y_P(x)$.
- 6. IVP

Mechanical vibrations

- A mass on a spring moves vertically in a fluid bath on Earth.
- Newton's second law adds up all the forces

$$\circ \sum F = mx''(t)$$

$$\circ \ F_{\rm damper} = -\gamma x'(t)$$

$$\circ F_{
m spring} = -kx(t)$$

- $\circ F_{ ext{extrenal}}$
- ullet ODE: $mx''(t) + \gamma x'(t) + kx(t) = F_{
 m ext}(t)$

Unforced oscillation

- ullet No external force on the system: $F_{
 m ext}(t)\equiv 0$
- ullet Homogeneous ODE: $\overline{mx''+\gamma x'+kx=0}$ $(m>0,\gamma,k\geq 0)$
 - Overdamped system
 - $lacksquare \gamma^2 4mk > 0$
 - lacksquare $\lambda_1
 eq \lambda_2 \in \mathbb{R}$
 - lacksquare General solution: $x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$
 - o Critically damped system

$$lacksquare \gamma^2 - 4mk = 0$$

- lacksquare $\lambda_1=\lambda_2\in\mathbb{R}$
- lacksquare General solution: $x(t)=c_1e^{\lambda_1t}+c_2te^{\lambda_2t}$
- Underdamped system
 - $\quad \blacksquare \ \gamma^2 4mk < 0$
 - lacksquare $\lambda_1
 eq\lambda_2\in\mathbb{C}$
 - lacksquare General solution: $x(t) = e^{-\gamma t/2m} [c_1 \cos(\omega t) + c_2 \sin(\omega t)]$
 - Undamped spring

 - lacksquare General solution: $x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$
 - lacksquare Phase-amplitude form: $x(t) = A\cos(\omega t arphi)$
 - lacksquare amplitude $A=\sqrt{c_1^2+c_2^2}$
 - lacksquare phase $arphi=rctan(c_2/c_1)$
 - lacksquare natural frequency $\omega=\sqrt{rac{k}{m}}$
 - $\blacksquare \ \mathrm{period} \ T = \frac{2\pi}{\omega}$
 - Graph: oscillating wave with constant amplitude
 - Underdamped spring
 - lacksquare $\gamma>0$
 - lacksquare General solution: $x(t) = e^{-\gamma t/2m}[c_1\cos(\omega t) + c_2\sin(\omega t)]$
 - lacksquare Phase-amplitude form: $x(t) = Ae^{-\gamma t/2m}\cos(\omega t arphi)$
 - lacksquare amplitude $A=\sqrt{c_1^2+c_2^2}$
 - lacksquare phase $arphi=rctan(c_2/c_1)$
 - lacksquare natural frequency $\omega=\sqrt{rac{k}{m}}$
 - lacksquare period $T=rac{2\pi}{\omega}$
 - Graph: oscillating wave with exponentially decreasing amplitude

Forced oscillation

- ullet Has external force on the system: $F_{
 m ext}(t)
 eq 0$
- ullet Investigate a special case of oscillating external force $F_{
 m ext}(t) \equiv F_0 \cos(\Omega t)$

- ullet Non-homogeneous ODE: $\left|mx''+\gamma x'+kx=F_0\cos(\Omega t)
 ight|(m,\gamma,k\geq0)$
 - O No damping, no resonance

$$lacksquare \gamma = 0, \Omega
eq \omega_0 = \sqrt{rac{k}{m}}$$

- lacksquare General solution: $x(t) = \left(c_1 + rac{F_0}{m(\omega_0^2 \Omega_0^2)}
 ight)\cos(\omega_0 t) + c_2\sin(\omega_0 t)$
- Graph: modulated wave + beats pattern
- No damping, with resonance

$$lacksquare \gamma = 0, \Omega = \omega_0 = \sqrt{rac{k}{m}}$$

- lacksquare General solution: $x(t) = c_1 \cos(\omega_0 t) + \left(c_2 + rac{F_0}{2\omega_0 m} t
 ight) \sin(\omega_0 t)$
- Graph: oscillating wave with linearly increasing amplitude

Systems of Differential Equations

Introduction to linear algebra

Linear independence

- Linear combination $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + ... + c_n \mathbf{x}_n$
- ullet Linearly dependent vectors satisfy the equation $c_1\mathbf{x}_1+c_2\mathbf{x}_2+...+c_n\mathbf{x}_n=\mathbf{0}$ such that the constants are not all zero
- Linearly independent vectors that are not linearly dependent
- ullet Wronskian $W[\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_n]=\det([\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_n])=\det(X)$
- Checking linear independence

$$\circ$$
 If $W[\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_n]
eq 0$

■ then they are linearly independent

- ullet Inverse of a square matrix A^{-1} thats satisfies $AA^{-1}=A^{-1}A=I_n$

• Finding matrix inverse
$$\circ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

• Solving systems of equations using inverse

$$\circ A\mathbf{x} = \mathbf{b}$$

$$\circ \mathbf{x} = A^{-1}\mathbf{b}$$

Matrix determinant

• Finding matrix determinant

$$egin{align*} \circ A &= egin{bmatrix} a & b \ c & d \end{bmatrix}, \det(A) = ad - bc \ &\circ A &= egin{bmatrix} a & b & c \ d & e & f \ g & h & i \end{bmatrix}, \det(A) = aigg| e & f \ h & i \end{bmatrix} - bigg| d & f \ g & i \end{bmatrix} + cigg| d & e \ g & h \end{bmatrix}$$

- Singular matrix matrix with a determinant of 0
- Equivalent statements

$$\circ \det(A) = 0$$

$$\circ \ A \text{ is singular} \\$$

- $\circ A^{-1}$ does not exist
- $\circ A\mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions
- \circ columns of A are linearly dependent
- \circ rows of A are linearly dependent

Eigenvalues and eigenvectors of matrix

- ullet Eigenvector vector ${f v}$ such that $A{f v}=\lambda{f v}$ for square matrix A
 - \circ **0** is not an eigenvector by convention
- ullet Eigenvalue constant λ corresponding to the eigenvector ${f v}$
- Finding eigenvalues and eigenvectors
 - 1. Solve for λ in $\det(A \lambda I) = 0$
 - 2. Substitute λ into $A\mathbf{v}=\lambda\mathbf{v}$ to find relationship between components of eigenvectors

Systems of differential equations

Rewriting ODEs into systems of 1st order ODEs

- 1. Define n auxiliary variables y_1 , ..., y_n for nth order ODE
 - 1. Let y_1 be the original function in the ODE

2. Let
$$y_2=y_1^\prime$$

3

4. Let
$$y_n=y_{n-1}^\prime$$

- Rearrange the ODE to isolate the highest order derivative, and write it in terms of the auxiliary variables.
- 3. Write a system of ODEs with derivatives of auxiliary variables on the left hand side and their expression on the right hand side in terms of the auxiliary variables

1.
$$y_1'=y_2$$
 (by definition)

2. ...

3. $y_{n-1}^\prime=y_n$ (by definition)

4. y'_n = highest order derivative in step 2

Linear system of ODEs

$$\begin{cases} y_1' = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n + b_1 \\ y_2' = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n + b_2 \\ \vdots \\ y_n' = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n + b_n \end{cases} \Rightarrow \boxed{\mathbf{y}' = A\mathbf{y} + \mathbf{b}}$$

$$\diamond \text{ where } \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \mathbf{y}' = \begin{bmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

- ullet Homogeneous ${f b}={f 0}$
- ullet Nonhomogeneous $\mathbf{b}
 eq \mathbf{0}$
- Superposition principle
 - o If the vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ are linearly independent solutions of the homogeneous system $\mathbf{x}' = P\mathbf{x}$
 - then the general solution \mathbf{x} is the linear combination of them $\mathbf{x} = c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + ... + c_n\mathbf{x}_n$

Solving homogeneous constant-coefficient systems of ODEs

- ODE system
- 1st order
- Linear
- Constant coefficient
- Homogeneous
- 1. Write the system of ODEs in the form of $\mathbf{x}' = P\mathbf{x}$
- 2. For $P{f v}=\lambda{f v}$, find the eigenvalues of λ by solving $\det(P-\lambda I_n)=0$
- 3. For $P\mathbf{v}=\lambda\mathbf{v}$, find the eigenvectors of by substitution of λ
- 4. Write the general solution
 - $\circ \leq n$ distinct $\lambda \in \mathbb{R}$; n distinct real ${f v}$
 - General solution: $\mathbf{x} = c_1 \mathbf{v}_1 e^{\lambda_1 t} + ... + c_n \mathbf{v}_n e^{\lambda_n t}$
 - $\circ \leq n$ distinct $\lambda \in \mathbb{C}$; n distinct complex \mathbf{v}
 - lacksquare Known: $\mathbf{x}_1 = c_1 \mathbf{v}_1 e^{\lambda_1 t} = \mathrm{Re}(\mathbf{x}_1) + i \mathrm{Im}(\mathbf{x}_1)$
 - lacksquare General solution: $\mathbf{x} = c_1 \mathrm{Re}(\mathbf{x}_1) + c_2 \mathrm{Im}(\mathbf{x}_1)$
 - $\circ \leq n$ distinct $oldsymbol{\lambda}; < n$ distinct $oldsymbol{\mathbf{v}}$
 - lacksquare General solution: $\mathbf{x} = c_1 \mathbf{v} e^{\lambda t} + c_2 (\mathbf{v} t e^{\lambda t} + ec{\eta} e^{\lambda t})$
 - lacktriangle Find $ec{\eta}$ (relationship between its components) by substituting into the ODE

Solving Euler systems

- Linear
- ☑ Non-constant coefficient (of special type)
- ☑ Homogeneous
- Euler system
- 1. Write the system of ODEs in the form of $\mathbf{x}' = P\mathbf{x}$
- 2. For $P\mathbf{v}=\lambda\mathbf{v}$, find the eigenvalues of λ by solving $\det(P-\lambda I_n)=0$
- 3. For $P\mathbf{v}=\lambda\mathbf{v}$, find the eigenvectors of by substitution of λ
- 4. Write the general solution
 - $\circ \leq n$ distinct $\lambda \in \mathbb{R}$; n distinct real ${f v}$
 - lacksquare General solution: $\mathbf{x} = c_1 \mathbf{v}_1 t^{\lambda_1} + ... + c_n \mathbf{v}_n t^{\lambda_n}$
 - Other conditions are not discussed

Laplace Transform

Concepts

- ullet Laplace transform $\mathcal{L}\{f(t)\}=F(s)=\int_0^\infty e^{-st}f(t)\ dt$
- Heaviside function (unit step function)

$$egin{aligned} \circ \ u_c(t) = u(t-c) = egin{cases} 0 & t < c \ 1 & t \geq c \end{cases} \end{aligned}$$

Properties of Laplace transform

• Laplace transform is linear

$$\circ \ \mathcal{L}\{c_1f(t)+c_2g(t)\}=c_1\mathcal{L}\{f(t)\}+c_2\mathcal{L}\{g(t)\}$$

• Laplace transforms of derivatives incorporate initial conditions

$$\circ \mathcal{L}\{f'(t)\} = sF(s) - f(0)$$

$$\mathcal{L}\{f''(t)\} = s^2 F(s) - s f(0) - f'(0)$$

$$egin{array}{l} \circ \mathcal{L}\{f''(t)\} = s^2 F(s) - s f(0) - f'(0) \ \circ \mathcal{L}\{f^{(n)}(t)\} = s^n F(s) - s^{n-1} f(0) - ... - f^{(n-1)}(0) \end{array}$$

ullet Heaviside function has a simple Laplace transforms $\circ \ \mathcal{L}\{u_c(t)\} = rac{e^{-sc}}{s}$

$$\circ \ \mathcal{L}\{u_c(t)\} = rac{e^{-sc}}{c}$$

Translation theorems

• Time domain translation

$$\begin{aligned} &\circ \mathcal{L}\{f(t-c)u_c(t)\} = e^{-sc}\mathcal{L}\{f(t)\} \\ &\circ \mathcal{L}^{-1}\{e^{-sc}\mathcal{L}\{f(t)\}\} = f(t-c)u_c(t) \end{aligned}$$

• Laplace domain translation

$$\circ \ \mathcal{L}\{e^{ct}f(t)\} = F(s-c)$$

$$\circ \mathcal{L}^{-1}\{F(s-c)\} = e^{ct}f(t)$$

Solving ODEs with Laplace transform

- 1. Time domain: difficult ODE
 - \circ Laplace transform (t
 ightarrow s)
- 2. Laplace domain: easy algebra problem
 - $\circ\,$ Solve the algebra problem
- 3. Laplace domain: solution to algebra problem
 - \circ Inverse Laplace transform (s
 ightarrow t)
- 4. Time domain: solution of difficult ODE
 - Problem solved

Laplace transform table

Inverse L.T.	Laplace Transform	Inverse L.T.	Laplace Transform
f(t)	F(s)	f(t)	F(s)
1	$\frac{1}{s}$	e^{at}	$\frac{1}{s-a}$
t^n	$rac{n!}{s^{n+1}}$	\sqrt{t}	$rac{\sqrt{\pi}}{2s^{3/2}}$
$\sin(at)$	$rac{a}{s^2+a^2}$	$t\sin(at)$	$\frac{2as}{(s^2+a^2)^2}$
$\cos(at)$	$\frac{s}{s^2+a^2}$	$t\cos(at)$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$
$\sin(at)$ $-$	$2a^3$	$\cos(at)$ $-$	$s(s^2-a^2)$
$at\cos(at)$	$\overline{(s^2+a^2)^2}$	$at\sin(at)$	$\overline{(s^2+a^2)^2}$
$\sin(at) +$	$2as^2$	$\cos(at) +$	$s(s^2+3a^2)$
$at\cos(at)$	$\frac{2as^2}{(s^2+a^2)^2}$	$at\sin(at)$	$\frac{s(s^2+3a^2)}{(s^2+a^2)^2}$
$\sinh(at)$	$rac{a}{s^2-a^2}$	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$
$\cosh(at)$	$rac{s}{s^2-a^2}$	$\cos(at+b)$	$\frac{s\cos(b)-a\sin(b)}{s^2+a^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	$e^{at}\sinh(bt)$	$\frac{b}{(s-a)^2-b^2}$

$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	$e^{at}\cosh(bt)$	$\frac{s-a}{(s-a)^2-b^2}$
$u_c(t)$	$\frac{e^{-sc}}{s}$		