CTS API Introduction and Demo

Hubert Hickman

CTS API

The Cancer Clinical Trials Search API https://www.cancer.gov/syndication/api is a NCI supported API that provides a wide range of features including trial information and search capabilities. Much of the API content uses the NCI Thesaurus.

- CTS API Helpful links:
 - Swagger page https://clinicaltrialsapi.cancer.gov/doc
 - You will need an API key signup for a key here : https://clinicaltrialsapi.cancer.gov/signin
 - Rate limits for standard 1 request per second
 - Maximum number of trials returned per request is 50.
- Searching is supported via POST or GET. I typicall use POST for convenience.
- Searching by code, strings, geolocation, and much much more.
- Has both unstructured and structured eligibility criteria.

EVS API

NCI's Enterprise Vocabulary Services provides several tools and downloads of the National Institute Thesaurus.

- NCI Thesaurus Helpful links:
 - EVS Explore (defaults to NCIt) https://evsexplore.semantics.cancer.gov/evsexplore/ welcome
 - EVS API: https://evsexplore.semantics.cancer.gov/evsexplore/evsapi
 - * No API key required
 - * Will timeout if too much activity (need sleep/backoff timing code)
 - NCIt releases are available as for download as well as TSV and OWL files.
 - * https://evs.nci.nih.gov/evs-download/thesaurus-downloads

- I have used the TSV extensively in my work (computing the transitive closure of NCIt digraph and enumerating all the paths in a database table - it speeds up inheritance computations)
- TSV file is a subset of the OWL representation.

Simple Example

This example shows how to query the CTS API to get a count of active treatment trials. It retrieves one trial.

```
import requests
import sys
import json
import os
import pandas as pd
from dotenv import dotenv_values
import mercury as mr
import time
config = dotenv_values('.env')
CTS_API_KEY=config['CTS_API_KEY']
cts_api_header = {"x-api-key": CTS_API_KEY,
                  "Content-Type": "application/json"}
includes = ['nct_id',
            'diseases',
            'biomarkers',
            'prior_therapy',
            'brief_title'
            ]
active_treatment_trials_that_are_recruiting = {'current_trial_status': 'Active',
        'sites.recruitment_status' : 'ACTIVE',
        'primary_purpose': 'TREATMENT',
        'size':1,
        'from':0,
        'include':includes
r = requests.post('https://clinicaltrialsapi.cancer.gov/api/v2/trials',
                  json = active_treatment_trials_that_are_recruiting, headers=cts_api_header
j = r.json()
```

```
mr.JSON(j)
time.sleep(2)

<IPython.core.display.HTML object>
<IPython.core.display.HTML object>
```

Diseases

Expanding upon the above example, let us look at the diseases returned from the trial.

```
import requests
import sys
import json
import os
import pandas as pd
from dotenv import dotenv_values
import mercury as mr
import itables
import time
config = dotenv_values('.env')
CTS_API_KEY=config['CTS_API_KEY']
cts_api_header = {"x-api-key": CTS_API_KEY,
                  "Content-Type": "application/json"}
includes = ['nct_id',
            'diseases',
            'biomarkers',
            'prior_therapy',
            'brief_title'
            ]
active_treatment_trials_that_are_recruiting = {'current_trial_status': 'Active',
        'sites.recruitment_status' : 'ACTIVE',
        'primary_purpose': 'TREATMENT',
        'size':1,
        'from':0,
        'include':includes
r = requests.post('https://clinicaltrialsapi.cancer.gov/api/v2/trials',
```

```
json = active_treatment_trials_that_are_recruiting, headers=cts_api_header
j = r.json()
diseases_df = pd.DataFrame(j['data'][0]['diseases'])
itables.show(diseases_df, column_filters="header")
time.sleep(2)
```

TRIAL level diseases are those coded to the trial by clinical trial abstractors at NCI. TREE level diseases go 'up' the NCIt digraph.

Lead disease is/are the most focused trial level disease for the trial. Other trial level diseases are generally more broad or alternative matches.

Biomarkers

Biomarkers are abstracted as discrete data using NCIt codes. Biomarkers have been coded on new trials for a couple of years now – older trials may not have them even if the trial calls has biomarkers as inclusion/exclusion criteria.

As with diseases, the TREE terms go 'up' the NCIt digraph. Note that NCIt is a multiaxial hierarchy, and hence you may 1 parent node.

```
import requests
import sys
import json
import os
import pandas as pd
from dotenv import dotenv_values
import mercury as mr
import itables
import time
config = dotenv_values('.env')
CTS_API_KEY=config['CTS_API_KEY']
cts_api_header = {"x-api-key": CTS_API_KEY,
                  "Content-Type": "application/json"}
includes = ['nct_id',
            'diseases',
            'biomarkers',
            'prior_therapy',
            'brief_title'
```

Retrieving a trial by NCT_ID that has prior therapy records

The trial NCT02914405 contains prior therapy terms. These are shown as a dataframe and as a rather busy digraph.

```
import requests
import sys
import json
import os
import pandas as pd
from dotenv import dotenv_values
import mercury as mr
import itables
import time
import networkx as nx
import graphviz
import matplotlib.pyplot as plt
plt.clf()
config = dotenv_values('.env')
CTS_API_KEY=config['CTS_API_KEY']
cts_api_header = {"x-api-key": CTS_API_KEY,
                  "Content-Type": "application/json"}
```

```
# No 'includes' so get everything
trial_ids = {
        'nct id': ['NCT02914405']
r = requests.post('https://clinicaltrialsapi.cancer.gov/api/v2/trials',
                  json = trial_ids, headers=cts_api_header)
j = r.json()
mr.JSON(j)
time.sleep(2)
prior_therapy_df = pd.DataFrame(j['data'][0]['prior_therapy'])
itables.show(prior_therapy_df, column_filters="header",
 buttons=["pageLength", "copyHtml5", "csvHtml5", "excelHtml5"])
# Now set up the graph for display
# set node
node_label_dict = {}
node_color_dict = {}
node_size_dict = {}
G = nx.DiGraph()
prior_therapy_df['node_label'] = prior_therapy_df['nci_thesaurus_concept_id'] + '\n'+ prior_
trial_pt_df = prior_therapy_df[prior_therapy_df['inclusion_indicator'] == 'TRIAL']
for index, pt in prior_therapy_df.iterrows():
    node_label_dict[str(pt['nci_thesaurus_concept_id'])] = str(pt['node_label'])
    if str(pt['inclusion_indicator']) == 'TRIAL':
        node_color_dict[str(pt['nci_thesaurus_concept_id'])] = 'green'
        node_size_dict[str(pt['nci_thesaurus_concept_id'])] = 1000
    else:
        node_color_dict[str(pt['nci_thesaurus_concept_id'])] = 'yellow'
        node_size_dict[str(pt['nci_thesaurus_concept_id'])] = 500
    G.add node(str(pt['nci thesaurus concept id']))
```

```
for p in pt['parents']:
        #print('adding edge ',str(pt['nci_thesaurus_concept_id']), str(p) )
        G.add_edge(str(pt['nci_thesaurus_concept_id']), str(p))
color_list = []
node_size_list = []
for node in G:
    color_list.append(node_color_dict[node])
   node_size_list.append(node_size_dict[node])
pos = nx.nx_pydot.graphviz_layout(G, prog="dot")
#pos = nx.spring_layout(G, k=20.0)
plt.clf()
fig = plt.gcf()
fig.set_size_inches(12,12)
nx.draw(G, with_labels=True,
            labels = node_label_dict,
            node_color = color_list,
            node_size = node_size_list)
plt.show()
plt.savefig('prior_therapy_example.pdf',dpi=300, format = 'pdf' )
<IPython.core.display.HTML object>
<IPython.core.display.HTML object>
```


<Figure size 1650x1050 with 0 Axes>

Retrieving several trials by NCT_ID

Let us now retrieve the information for three trials: NCT05183035, NCT05188170, NCT02914405

```
import requests
import sys
import json
import os
import pandas as pd
from dotenv import dotenv_values
import mercury as mr
import itables
import time
config = dotenv_values('.env')
CTS_API_KEY=config['CTS_API_KEY']
cts_api_header = {"x-api-key": CTS_API_KEY,
                  "Content-Type": "application/json"}
# No 'includes' so get everything
trial_ids = {
        'nct_id': ['NCT05183035','NCT05188170','NCT02914405']
r = requests.post('https://clinicaltrialsapi.cancer.gov/api/v2/trials',
                  json = trial_ids, headers=cts_api_header)
j = r.json()
mr.JSON(j)
time.sleep(2)
#diseases_df = pd.DataFrame(j['data'][0]['diseases'])
#itables.show(diseases_df, column_filters="header",
# buttons=["pageLength", "copyHtml5", "csvHtml5", "excelHtml5"])
```

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Search for AML trials by NCIt code

Now search for AML trials by NCIt code.

```
import requests
import sys
import json
```

```
import os
import pandas as pd
from dotenv import dotenv_values
import mercury as mr
import itables
import time
config = dotenv_values('.env')
CTS_API_KEY=config['CTS_API_KEY']
cts_api_header = {"x-api-key": CTS_API_KEY,
                  "Content-Type": "application/json"}
aml_trials = {'current_trial_status': 'Active',
        'sites.recruitment_status' : 'ACTIVE',
        'primary_purpose': 'TREATMENT',
        'size':10,
        'from':0,
        'diseases.nci_thesaurus_concept_id': ['C3171']
      # 'include':includes
r = requests.post('https://clinicaltrialsapi.cancer.gov/api/v2/trials',
                  json = aml_trials, headers=cts_api_header)
j = r.json()
mr.JSON(j)
aml_df = pd.DataFrame(j['data'])
itables.show(aml_df, column_filters="header",
  buttons=["pageLength", "copyHtml5", "csvHtml5", "excelHtml5"])
time.sleep(2)
<IPython.core.display.HTML object>
```

<IPython.core.display.HTML object>

AML Trials within 100 miles of my location

```
import requests
import sys
import json
import os
import pandas as pd
from dotenv import dotenv_values
import mercury as mr
import itables
import time
config = dotenv_values('.env')
CTS_API_KEY=config['CTS_API_KEY']
cts_api_header = {"x-api-key": CTS_API_KEY,
                  "Content-Type": "application/json"}
aml_trials = {'current_trial_status': 'Active',
        'sites.recruitment_status' : 'ACTIVE',
        'primary_purpose': 'TREATMENT',
        'size':10,
        'from':0,
        'diseases.nci_thesaurus_concept_id': ['C3171'],
        'sites.org_coordinates_lat': 41.2749,
        'sites.org_coordinates_lon': -96.0212,
        'sites.org_coordinates_dist': '100 mi'
      # 'include':includes
r = requests.post('https://clinicaltrialsapi.cancer.gov/api/v2/trials',
                  json = aml_trials, headers=cts_api_header)
j = r.json()
mr.JSON(j)
aml_df = pd.DataFrame(j['data'])
itables.show(aml_df, column_filters="header",
  buttons=["pageLength", "copyHtml5", "csvHtml5", "excelHtml5"])
time.sleep(2)
<IPython.core.display.HTML object>
<IPython.core.display.HTML object>
```

Trials with EGFR positive as an inclusion or exclusion criteria

```
import requests
import sys
import json
import os
import pandas as pd
from dotenv import dotenv_values
import mercury as mr
import itables
import time
config = dotenv_values('.env')
CTS_API_KEY=config['CTS_API_KEY']
cts_api_header = {"x-api-key": CTS_API_KEY,
                  "Content-Type": "application/json"}
egfr_pos_trials = {'current_trial_status': 'Active',
        'sites.recruitment_status' : 'ACTIVE',
        'primary_purpose': 'TREATMENT',
        'size':10,
        'from':0,
         'biomarkers.nci_thesaurus_concept_id': ['C134501'],
        'biomarkers.eligibility_criterion':'inclusion'
      # 'include':includes
        }
r = requests.post('https://clinicaltrialsapi.cancer.gov/api/v2/trials',
                  json = egfr_pos_trials, headers=cts_api_header)
j = r.json()
mr.JSON(j)
egfr df = pd.DataFrame(j['data'])
itables.show(egfr_df, column_filters="header",
  buttons=["pageLength", "copyHtml5", "csvHtml5", "excelHtml5"])
summary_df = egfr_df[['nct_id', 'official_title']]
itables.show(summary_df, column_filters="header",
  buttons=["pageLength", "copyHtml5", "csvHtml5", "excelHtml5"])
time.sleep(2)
```

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>