

Semântica da Lógica Proposicional Lógica para Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

14 de maio de 2021

⁰Slides baseados no livro Lógica para Ciência da Computação¹.

¹DE SOUZA, JOÃO NUNES. Lógica para ciência da computação. Elsevier Brasil, 2008.

O que vimos na aula passada?

- Introdução
- Subfórmulas
- Complexidade de fórmulas
- Expressando situações reais em lógica proposicional

Introdução

Semântica

O estudo da semântica da lógica Proposicional clássica consiste em atribuir valores verdade às fórmulas da linguagem. Na lógica clássica, há apenas dois valores verdade: verdadeiro e falso. Representaremos o verdadeiro por 1 e o falso por 0.

• Inicialmente, atribuímos valores verdade para os símbolos proposicionais por meio de uma função de valoração

Definição

Uma valoração proposicional V é uma função $V:\mathcal{P}\to\{0,1\}$ que mapeia cada símbolo proposicional em \mathcal{P} em um valor verdade.

Valoração

- Essa valoração apenas diz quais são verdadeiros e quais são falsos
- Em seguida, estendemos a valoração para todas as formas da linguagem da lógica proposicional, de forma a obtermos uma valoração V: $\mathcal{L_{LP}} \to \{0,1\}$

 Essa extensão da valoração é feita por indução sobre a estrutura das fórmulas, da seguinte maneira:

- A definição anterior pode ser detalhada da seguinte maneira
- Para atribuirmos um valor verdade a uma fórmula
 - precisamos primeiro atribuir um valor verdade para suas subfórmulas
 - para depois compor o valor verdade da fórmula de acordo com as regras dadas

- Note que o fato de a definição usar "se, e somente se" (abreviado de "sse") tem o efeito de, quando a condição à direita for falsa, inverter o valor verdade
 - Dessa forma, se V(A)=1, então $V(\neg A)=0$
 - Na definição de (A \vee B), o valor verdade será 1 se V(A)=1 ou se V(B)=1 ou se ambos forem 1
 - ullet Similarmente, V(A o B) terá valor verdade 1 se V(A)=0 ou V(B)=1 ou ambos
 - E, $V(A \land B)=0$ se V(A)=0 ou V(B)=0 ou ambos

Matriz de conectivos

- Podemos visualizar o valor verdade dos conectivos lógicos de forma mais clara por meio de matrizes de conectivos
- Para ler essas matrizes, procedemos da seguinte maneira
 - Na matriz relativa a $A \wedge B$, vemos que, se A é 0 e B é 0, então $A \wedge B$ também é 0
 - Nas matrizes podemos ver que a única forma de obter o valor verdade 1 para $A \wedge B$ é quando ambos A e B são valores em 1
 - Já na matriz $A \lor B$, vamos que a única forma de obter 0 é quando A e B são valorados em O
 - Similarmente, na matriz de $A \to B$, vemos que a única forma de obtermos 0 é quando A é valorado em 1 e B é valorado em 0

Matriz de conectivos

$A \wedge B$

$A \wedge B$	B=0	B=1
A=0	0	0
A=1	0	1

$A \vee B$

Matriz de conectivos

$\mathsf{A} \to \mathsf{B}$

$A\toB$	B=0	B=1
A=0	1	1
A=1	0	1

$\neg A$

Exemplo: Valoração de fórmulas complexas

- Agora veremos um exemplo de valoração de uma fórmula complexa
- Suponha que temos uma valoração V_1 tal que $V_1(p)=1$, $V_1(q)=0$ e $V_1(r)=1$ e queiramos computar $V_1(A)$, onde $A=(p\vee\neg q)\to (r\wedge\neg q)$
- Procedemos inicialmente computando os valores verdade das subfórmulas mais internas, até chegarmos no valor verdade de A

Valoração da fórmula A

$$egin{aligned} V_1(
eg q) &= 1 \ V_1(
ho ee
eg q) &= 1 \ V_1(r \wedge
eg q) &= 1 \ V_1((
ho ee
eg q) &
ightarrow (r \wedge
eg q)) &= 1 \end{aligned}$$

Exemplo: Valoração de fórmulas complexas

Por outro lado, considere agora uma valoração V_2 tal que $V_2(p)=1$, $V_2(q)=1$ e $V_2(r)=1$ e vamos calcular $V_2(A)$, para A como anteriormente. Então:

Valoração da fórmula A

$$egin{aligned} V_2(\lnot q) &= 0 \ V_2(p \lor \lnot q) &= 1 \ V_2(r \land \lnot q) &= 0 \ V_2((p \lor \lnot q) &\to (r \land \lnot q)) &= 0 \end{aligned}$$

Valoração de fórmulas complexas

- Ou seja, o valor verdade de uma fórmula pode variar, em geral, de acordo com a valoração de seus átomos
- Pela definição dada, uma valoração atribui um valor verdade a cada um dos infinitos símbolos proposicionais
- No entanto, ao valorarmos uma única fórmula, só temos a necessidade de valorar o seu conjunto de átomos, que é sempre finito
- Dessa forma, se uma fórmula A possui um número N de subfórmulas atômicas e cada valoração pode atribuir 0 ou 1 a cada um desses átomos, temos que pode haver 2^N distintas valorações diferentes para a fórmula A.
- Veremos adiante que existem fórmulas cujo valor verdade não varia com as diferentes valorações

Próxima Aula

O que vem por aí?

- Satisfazibilidade
- Validade
- Tabelas verdade

Semântica da Lógica Proposicional Lógica para Computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

14 de maio de 2021

⁰Slides baseados no livro Lógica para Ciência da Computação².

¹DE SOUZA, JOÃO NUNES. Lógica para ciência da computação. Elsevier Brasil, 2008.