This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Crash protector for fitting to steering wheel

Patent number: DE19749914

Publication date: 1999-05-20

Inventor: SPECHT MARTIN DIPL ING (DE)

Applicant: HS TECH & DESIGN (DE)

Classification:

- international: B60R21/16; B60R21/05

- european: B60R21/20B2K, B60R21/16B2, B60R21/20D, B60R21/20G

Application number: DE19971049914 19971111

Priority number(s): DE19971049914 19971111

Abstract of **DE19749914**

device. In the inflated position, it covers the steering wheel (24) relative to the drive sitting behind it. The entire filling volume of the gas cushion is in annular form. The gas cushion on the front side facing the driver has a conical or funnel-shaped recess (2) in it, possibly formed from the surface of The crash protector has a filling device (5) and a gas cushion (1) which can be inflated by the filling the gas cushion itself.

30.06.2004 15:53

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift

_® DE 197 49 914 A 1

(2) Aktenzeichen:

197 49 914.7

② Anmeldetag:

11. 11. 97

(43) Offenlegungstag:

20. 5.99

(5) Int. Cl.⁶: B 60 R 21/16 B 60 R 21/05

(71) Anmelder:

HS Technik und Design Technische Entwicklungen GmbH, 82234 Weßling, DE

(74) Vertreter:

Nöth und Kollegen, 80336 München

② Erfinder:

Specht, Martin, Dipl.-Ing. (FH), 82340 Feldafing, DE

66 Entgegenhaltungen:

DE 22 48 393 B2 DE 36 30 685 A1 US 36 18 979

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (9) Vorrichtung für einen Aufprallschutz am Lenkrad eines Kraftfahrzeugs
- Eine Vorrichtung für einen Aufprallschutz an einem Lenkrad eines Kraftfahrzeugs mit einer Fülleinrichtung 5 und einem Gaskissen 1, welches von der Fülleinrichtung 5 mit Füllgas aufblasbar ist und im aufgeblasenen Zustand einen Lenkradkranz 24 gegenüber einem hinter dem Lenkrad sitzenden Fahrer abdeckt, wobei das gesamte Füllvolumen des Gaskissens 1 ringförmig ausgebildet ist und das Gaskissen 1 an seiner dem Fahrer zugekehrten Frontfläche eine kegelförmige bzw. trichterförmige Vertiefung 2 aufweist.

Beschreibung

Die Erfindung betrifft eine Vorrichtung für einen Aufprallschutz am Lenkrad eines Kraftfahrzeugs mit einer Füllgaseinrichtung und einem Gaskissen, welches von der Fülleinrichtung mit Füllgas aufblasbar ist und im aufgeblasenen Zustand einen Lenkradkranz gegenüber einem hinter dem Lenkrad sitzenden Fahrzeuginsassen abdeckt, wobei das Gaskissen ein ringförmiges Aufblasvolumen aufweist.

Eine derartige Aufprallschutzvorrichtung für den Fahrer 10 eines Fahrzeugs, insbesondere Kraftfahrzeugs, ist aus der DE 22 48 393 bekannt. Bei der bekannten Aufprallschutzvorrichtung ist innerhalb der das ringförmige Füllvolumen umfassenden Ringkammer eine Mittelkammer vorgesehen, welche die Lenkradnabe überdeckt. Die Ringkammer über- 15 deckt den Lenkradkranz. Im aufgeblasenen Zustand ragt die Mittelkammer weiter in den Fahrzeuginnenraum als die Ringkammer. Die Mittelkammer soll nur mittelbar über die Ringkammer und weicher mit Füllgas aufblasbar sein. Hierdurch soll der Fahrer des Fahrzeugs bei einem Aufprall zur 20 Mitte des Gaskissens hin abgelenkt und sein Körper in der Mitte des Gaskissens gehalten werden. Als Fülleinrichtung ist ein Diffusor vorgesehen, der in die äußere Ringkammer gerichtet ist. Die bekannte Aufprallschutzvorrichtung benötigt zwei Kammern, nämlich die äußere Ringkammer und 25 die dazwischen liegende Mittelkammer.

Demgegenüber ist es Aufgabe der Erfindung, eine Aufprallschutzvorrichtung der eingangs genannten Art zu schaffen, welche einen einfachen Aufbau besitzt und bei welcher ebenfalls im Falle einer OOP (Out-Off-Position) des Fahrzeuginsassen, insbesondere bei einer in Richtung auf das Lenkrad zugeneigten Vorlage des Fahrers ein sicherer Aufprallschutz gewährleistet wird.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das gesamte Füllvolumen des Gaskissens ringförmig 35 ausgebildet ist und die dem Fahrzeuginsassen zugekehrte Frontstäche des aufgeblasenen Gaskissens in ihrem mittleren Bereich eine Vertiefung aufweist, die etwa kegel- bzw. trichterförmig ausgebildet sein kann.

Bei der Erfindung ist das Gaskissen ringförmig ausgebil- 40 det, und es umfaßt das gesamte Füllvolumen. Insbesondere besitzt das Gaskissen eine einzige Ringkammer, welche das gesamte Füllvolumen enthält. Der bevorzugt etwa kegelbzw. trichterförmige Gaskissenteil ist etwa mittig zum Ringinnern hin verlaufend vorgesehen. Eine innere Öffnung des 45 die Vertiefung bildenden Frontflächenteils kann in eine durchgehende Ringöffnung, welche von dem das ringförmige Füllvolumen umfassende Gaskissen vollständig durchsetzt ist, übergehen. Die durchgehende Ringöffnung des Gaskissens besitzt einen wesentlich kleineren Durchmesser als ein Kopfdurchmesser des Fahrzeuginsassen und kann im aufgeblasenen Zustand des Gaskissens durch Aneinanderliegen des die Ringöffnung umgebenden schlauchförmigen Kissenteils praktisch Null sein. Die Fülleinrichtung ist in bevorzugter Weise ringförmig ausgebildet. Sie 55 kann von einem ringförmigen Gasgenerator gebildet werden. Es ist jedoch auch möglich, eine ringförmige Diffusoröffnung als Fülleinrichtung vorzusehen, durch die das von einem angeschlossenen Gasgenerator gelieferte Füllgas in die Ringkammer des Gaskissens eingeblasen wird. Auch 60 kann die Fülleinrichtung von auf einer etwa kreisförmigen Umfangsfläche des Diffusors oder Gasgenerators angeordneten Gasausströmöffnungen gebildet werden.

Das Gaskissen kann eine ringförmige Kissenöffnung aufweisen, durch welche das Füllgas von der Fülleinrichtung in das Kisseninnere eingebracht wird. Ein innerer Ringteil des Gaskissens bildet dabei die innere Begrenzung der ringförmigen Kissenöffnung und ist innerhalb der ringförmigen Fülleinrichtung an einem Airbagträger befestigt, und ein äußerer Gaskissenringteil, welcher die äußere Begrenzung der ningförmigen Kissenöffnung bildet, ist in einem Bereich außerhalb der ringförmigen Fülleinrichtung am Airbagträger befestigt.

Durch die Verankerung des inneren Kissenteils am Airbagträger oder einem anderen fest mit der Lenkradsäule verbundenen Teil und durch die etwa kegel- bzw. trichterförmige Gestalt des die Vertiefung bildenden Frontflächenteils, in welchen der innere Kissenringteil übergeht, kann eine geeignete Begrenzung der Entfaltungsstrecke des Airbaggewebes in den Fahrgastraum hinein erzielt werden bei gleichzeitiger Erfüllung eines Aufprallschutzes gegenüber dem Lenkrad, insbesondere Lenkradkranz, über welchen sich die aufgeblasene Ringkammer des Gaskissens erstreckt. Im die Vertiefung aufweisenden Frontflächenteil des Gaskissens wird ebenfalls ein Aufprallschutz gegenüber der Lenkradnäbe erreicht, da die Trichteröffnung sich so weit verengt, daß ein sicheres Auffangen des Kopfes des Fahrers durch das aufgeblasene Gaskissen erreicht wird. Bei einer OOP des Fahrers wird durch den etwa V-förmigen Querschnitt, welche das ringförmig sich entfaltende Gaskissen in der Anfangsphase des Aufblasens hat, gewährleistet, daß der Kopf im Bereich des sich entfaltenden Gaskissens bleibt. Außerdem wird vermieden, daß ein mittlerer Airbagteil wie eine Schlagfaust auf den Fahrzeuginsassen in der Anfangsphase des Aufblasens einwirkt und den Fahrzeuginsassen, wenn er in einer vorgebeugten OOP sich befindet, mit hoher Krafteinwirkung trifft.

Aufgrund der speziellen Gestaltung des ringförmigen Gaskissens, welches sowohl in seiner Ringmitte als auch an seiner Ringaußenseite am Airbagträger verankert ist, genügt es, wenn die Entfaltungsstrecke in den Fahrgastraum hinein verringert ist und zwischen ca. 300 mm und 400 mm beträgt. Hierdurch wird eine nur geringe Insassenbelastung, insbesondere eine verringerte Belastung auf einen nach vorne gebeugten Fahrer beim Aufblasen des Gaskissens ausgeübt.

In bevorzugter Weise ist das gefaltete Gaskissen und die Fülleinrichtung, welche vorzugsweise auch den Gasgenerator beinhaltet, als vormontierte Baueinheit (Airbageinheit) ausgebildet, die insbesondere durch Verschrauben mit der Lenksäule verbunden-werden kann. In bevorzugter Weise kann diese Airbageinheit eine durchgehende mit der Achse der Lenksäule in Fluchtung bringbare Durchgangsöffnung aufweisen. Falls die Fülleinrichtung einen Gasgenerator mit mittiger Anzündung und einen um diese angeordnete Treibladung aufweist, kann die Durchgangsöffnung durch den Bereich des Gasgenerators gelegt sein, welcher die Treibladung aufweist. Der Durchmesser der Durchgangsöffnung ist derart, daß mit Hilfe eines Festziehwerkzeugs, beispielsweise Imbusschlüssels, zum Festziehen der Schraubverbindung zwischen Lenkrad und Lenksäule hindurchgegriffen werden kann.

Hierdurch ist es möglich, daß die Airbagbaueinheit an dem an der Lenksäule schon mittels der Schraubverbindung vormontierten Lenkrad derart befestigt werden kann, daß die Durchgangsöffnung mit der Lenksäulenachse fluchtet. Die Schraubverbindung zwischen der Lenksäule und dem Lenkrad kann dann mittels dem durch die Durchgangsöffnung hindurchgesteckten Festziehwerkzeug (Imbusschlüssel) festgezogen werden, so daß die drehfeste Verbindung zwischen Lenksäule und Lenkrad hergestellt wird. Es ist jedoch auch möglich, die Airbageinheit am Lenkrad vorzumontieren, wobei die zur Herstellung der Schraubverbindung zwischen Lenkrad und Lenksäule erforderliche Schraube in der Durchgangsöffnung angeordnet wird. Diese vormontierte Baueinheit wird dann auf die Lenksäule aufge-

setzt und durch Festziehen der Schraubverbindung mit dem durch die Durchgangsöffnung hindurchgreifenden Schraubwerkzeug festgezogen.

In der durchgehenden Öffnung des gefalteten Gaskissens kann eine Führung, die ebenfalls Bestandteil der Airbageinheit sein kann, angeordnet sein. An ihrem in das Fahrzeuginnere gerichteten Ende ist die Führung etwa trichterförmig aufgeweitet, wodurch eine seitlich nach außen gerichtete Entfaltung des ringförmigen Gaskissens beim Aufblasen unten Material (Kunststoff oder Metall). Die Führung ist bevorzugt rohrförmig ausgebildet und gestattet für eine direkte Montage des Komplett-Airbagaufbaus an der Lenkradsäule einen Durchgriff, z. B. beim Verschrauben. Die rohrförmig ausgebildete Führung kann hierzu in der Weise an der Airbageinheit, beispielsweise an der Fülleinrichtung, befestigt sein, daß ihre Rohröffnung mit der Durchgangsöffnung der Airbageinheit fluchtet. Die Führung kann hierzu in der Durchgangsöffnung, beispielsweise durch Verschrauben, befestigt sein.

Im gefalteten Zustand des Gaskissens ragt die Führung durch die durchgehende Öffnung des gefalteten Gaskissens hindurch. Aufgrund der Trichterform der Führung wird beim Aufblasen des Gaskissens ein seitlich nach außen gerichteter Schußkanal gebildet, welcher eine ringförmige ra- 25 dial nach außen gerichtete Entfaltung des Gaskissens er-

Um die zentrale Führung ist eine ringförmige Austrittsöffnung, welche im Normalfall von einer Abdeckung verschlossen ist, vorgesehen.

Anhand der Figuren wird die Erfindung noch näher erläutert. Es zeigt:

Fig. 1 eine Lenkradairbagvorrichtung, welche ein Ausführungsbeispiel der Erfindung ist, in gefaltetem Zustand des Airbags;

Fig. 2 das in der Fig. 1 dargestellte Ausführungsbeispiel beim Aufblasen des Gaskissens nach etwa 1/3 Entfaltung;

Fig. 3 das in der Fig. 1 dargestellte Ausführungsbeispiel beim Aufblasen des Gaskissens nach etwa 2/3 Entfaltung;

Fig. 4 das in der Fig. 1 dargestellte Ausführungsbeispiel 40 bei vollständig aufgeblasenem Gaskissen;

Fig. 5 ein zweites Ausführungsbeispiel einer Lenkradairbagvorrichtung;

Fig. 6 ein drittes Ausführungsbeispiel einer Lenkradairbagvorrichtung;

Fig. 7 in Draufsicht ein Ausführungsbeispiel für eine Airbagabdeckung im normalen Fahrbetrieb;

Fig. 8 das in der Fig. 7 dargestellte Ausführungsbeispiel einer Airbagabdeckung in geöffnetem Zustand;

Fig. 9 verschiedene Entfaltungszustände eines Ausfüh- 50 rungsbeispiels der Erfindung zur Erläuterung der Einwirkung auf den Fahrzeuginsassen zu sechs unterschiedlichen

Fig. 10 bei einer herkömmlichen Lenkradvorrichtung verschiedene Entfaltungszustände und die daraus resultie- 55 rende Insassenbelastung ebenfalls bei sechs verschiedenen

Die in den Figuren dargestellten Ausführungsbeispiele eines Lenkradairbags bilden einen Aufprallschutz für einen hinter einem Lenkrad 30 angeordneten Fahrzeuginsassen 60 (Fahrer). Der Lenkradairbag besitzt ein Gaskissen 1. Im gefalteten Zustand (Fig. 1, 5 und 6) ist das Gaskissen 1 mit einer innen liegenden Faltung 12 und einer äußeren Faltung 13 in einem Airbagbehälter 16 (Fig. 1 und 6) oder Airbagrahmen, der fest mit dem Lenkrad 30 verbunden ist, untergebracht. Beim Ausführungsbeispiel der Fig. 5 ist der Airbagbehälter nicht dargestellt. Das Gaskissen wird von einem vorderen und hinteren Gaskissenteil gebildet und besitzt

Ringform. Beim Falten des Gaskissens 1 liegen ein vorderer und hinterer Gaskissenteil aufeinander und werden von zwei diametral entgegengesetzten Umfangsstellen her zur Mitte hin (durchgehende Ringöffnung) Z-förmig gefaltet. Auf diese Weise ergibt sich ein langgestrecktes etwa rechteckiges gefaltetes Gaskissenpaket mit etwa der Breite des Aufnahmeraums, in welchem das Gaskissen im gefalteten Zustand untergebracht wird. Dieses langgestreckte Gaskissenpaket wird von seinen beiden Enden her ein zweites Mal zur terstützt wird. Die Führung besteht aus einem stabilen, har- 10 Mitte hin etwa Z-förmig auf eine Länge, welche etwa der Länge des Aufnahmeraums entspricht, gefaltet. Die Fülleinrichtung 5 ist beim in den Fig. 1 bis 4 dargestellten Ausführungsbeispiel ringförmig ausgebildet. Die Fülleinrichtung 5 kann ein Gasgenerator mit am Umfangsrand vorgesehenen Gasaustrittsöffnungen 35 sein (Fig. 5 und 6). Es ist jedoch auch möglich, daß die Fülleinrichtung 5 von einem Diffusor gebildet ist, der an einem Gasgenerator angeschlossen ist. Eine ringförmige Gasdüse der Fülleinrichtung 5 oder auf einer kreisringförmigen Fläche der Fülleinrichtung 5 angeordnete Einblasdüsen sind in das Innere des Gaskissens 1 ge-

Bei den dargestellten Ausführungsbeispielen sind die Gasaustrittsöffnungen der Fülleinrichtung 5 in eine ringförmige Kissenöffnung 6 des Gaskissens 1 gerichtet. Die ringförmige Kissenöffnung 6 wird umrandet von einem inneren Gaskissenringteil 7 und einem äußeren Gaskissenringteil 8. Die beiden Gaskissenringteile 7 und 8 sind an der Fülleinrichtung 5 an Befestigungsstellen 33, 34 (Fig. 5, 6) fest verankert. Es ist jedoch auch möglich, die Gaskissenringteile 7 und 8 an einem geeigneten und mit dem Lenkrad oder der Lenkradsäule fest verbindbaren Airbagträger zu verankern. Der Airbagträger kann ein separates Trägerteil sein. Es ist jedoch auch möglich, daß der Airbagträger durch an die Fülleinrichtung 5 angeformte Teile oder durch an der Fülleinrichtung vorhandene Teile gebildet wird. Durch den radialen Abstand der beiden Gaskissenringteile 7 und 8 wird die ringförmige Kissenöffnung 6 im Airbagbehälter 16 gebildet. Die Fülleinrichtung 5 kann, wie es in den Fig. 1 bis 4 dargestellt ist, innerhalb der ringförmigen Kissenöffnung 6 liegen. Die Anordnung der Fülleinrichtung 5 gegenüber der ringförmigen Kissenöffnung 6 ist jedoch so, daß zumindest die Einblasöffnung bzw. die Einblasöffnungen 35 in das Innere des Gaskissens 1 gerichtet sind und in dem Bereich sich befinden, der in der Kissenöffnung 6 (Fig. 5, 6) liegt.

In der mittleren Öffnung des Kissenteils befindet sich eine stabförmige oder bevorzugt rohrförmige Führung 10, welche von einer innen liegenden Faltung 12 des Gaskissens 1 umfaßt ist. Die Führung 10 ist ebenfalls an der Fülleinrichtung 5 befestigt. Das gefaltete Gaskissen 1, die Fülleinrichtung 5 und die Führungseinrichtung 10 bilden eine vormontierte Airbageinheit 9. Die Airbageinheit 9 kann mit der Lenksäule 11, beispielsweise durch Verschraubung, an einer Befestigungsstelle 25 befestigt sein, wobei die rohrförmige Führung 10 eine Durchgriffsmöglichkeit beim Verschrauben schafft (Fig. 1 bis 4). An dem dem Fahrzeuginnenraum zugewandten Ende der Führung 10 kann ein Deckel 21 mit einem etwa in der Mitte angeordneten Logo oder Emblem des Fahrzeugherstellers vorgesehen sein.

Bei den in den Fig. 5 und 6 dargestellten Ausführungsbeispielen wird die Fülleinrichtung 5 von einem im wesentlichen zylinderförmig ausgebildeten Gasgenerator gebildet. An einer umlaufenden Fläche befindliche Gasaustrittsöffnungen 35 sind in die ringförmige Kissenöffnung 6 des Gaskissens 1 gerichtet. An den Befestigungsstellen 33 und 34 sind die Gaskissenringteile 7 und 8 befestigt. Bei den dargestellten Ausführungsbeispielen ist sowohl die Führungseinrichtung 10 als auch der innere Gaskissenringteil 7 mit Hilfe einer Verankerungsschraube 32, welche an der Fülleinrich-

6

tung 5 fest verschraubt ist, befestigt bzw. verankert. Der äußere Gaskissenringteil 8 ist ebenfalls mit Hilfe von Verankerungsschrauben und mit Hilfe eines nicht näher dargestellten untergelegten ringförmigen Andrückbleches an der Befestigungsstelle 34 verankert. Eine von Verschlußklappen 522 und 23 gebildete Abdeckung kann mit Hilfe eines umlaufenden Schnappverschlusses 36 an der Airbageinheit 9 befestigt sein. Die aus der Fülleinrichtung im Gaskissen 1 und der Führung 10 bestehende Airbageinheit 9 kann in bekannter Weise mit dem Lenkrad 30 bzw. mit der Lenksäule 11 10 verbunden werden.

Bei den Ausführungsbeispielen 1 bis 4 und 6 ist durch die Fülleinrichtung 5 eine Durchgangsöffnung 29 vorgesehen. Diese Durchgangsöffnung befindet sich bevorzugt außermittig, so daß eine in der Mitte des in der Fülleinrichtung 5 15 vorgesehenen Gasgenerators vorhandene Zündeinrichtung für den das Füllgas erzeugenden Treibsatz nicht beeinträchtigt ist. Die Durchgangsöffnung 29 kann durch das ringförmige Paket des Gasgenerators hindurchgeführt sein. Die Airbageinheit 9 wird so in den drehfest mit dem Lenkrad 30 20 verbundenen Airbagbehälter 16 eingesetzt, daß die Achse der Durchgangsöffnung 29 mit der Lenksäulenachse 28 fluchtet. Das Lenkrad, welches drehfest mit dem Airbagbehälter 16 verbunden ist, kann über eine die Schraubverbindung 31 mit der Lenksäule herstellende Lenkradmutter an 25 der Lenksäule vormontiert sein. Es ist jedoch auch möglich, die Airbageinheit 9 in den Airbagbehälter 16 des Lenkrades 30 einzusetzen und in bekannter Weise zu befestigen, wobei die die Schraubverbindung 31 herstellende Lenksäulenmutter ebenfalls an dieser vormontierten Baueinheit, welche aus 30 der Airbageinheit 9 und dem Lenkrad besteht, vorzusehen.

Die endgültige Befestigung kann dann durch Festziehen der Schraubverbindung 31 an der Lenksäule 11 erfolgen. Hierzu wird mit Hilfe eines Drehwerkzeugs, beispielsweise eines Imbusschlüssels durch die Durchgangsöffnung 29 35 durchgegriffen und die Lenksäulenschraube festgezogen. Hierzu besitzt im Ausführungsbeispiel der Fig. 6 die Verankerungsschraube 32 ebenfalls eine Durchgangsbohrung, um den ungehinderten Durchgriff des Drehwerkzeugs zu erlauben. Nach der endgültigen Montage des Lenkrades und der 40 Airbageinheit an der Lenksäule kann dann die Durchgangsöffnung, beispielsweise durch Aufclipsen des Deckels 21, verschlossen werden, so daß eine durchgehende Abdeckung in Verbindung mit den Verschlußklappen 22 und 23 erreicht wird.

Die Führung 10 kann auch durch Verschweißen mit dem Gehäuse der Fülleinrichtung 5 verbunden sein. Der innere Gaskissenringteil 7 kann auch mit Hilfe eines ringförmigen Montageblechs unter Verwendung von Schrauben mit dem Gehäuse der Fülleinrichtung fest verbunden sein.

Im gefalteten Zustand des Gaskissens wird um die Führungseinrichtung 10 ein innerer Faltungsbereich 12 gebildet. Dieser innere Faltungsbereich ist durch den inneren Gaskissenringteil 7 an der Fülleinrichtung 5 in der beschriebenen Weise befestigt. Ferner besitzt das gefaltete Gaskissen 1 einen äußeren Faltungsbereich 13, der über den äußeren Gaskissenringteil 8 an der äußeren Befestigungsstelle 34 an der Fülleinrichtung 5 befestigt ist.

Im normalen Fahrbetrieb ist eine Austrittsöffnung 15. durch welche das Gaskissen 1 beim Aufblasen aus dem Airbagbehälter 16 austritt, von einer Abdeckung verschlossen. In der Fig. 7 ist ein Ausführungsbeispiel für eine Abdekkung im normalen Fahrbetrieb dargestellt. In der Fig. 8 ist das Ausführungsbeispiel der Fig. 7 in geöffnetem Zustand dargestellt. Die Abdeckung kann durch zwei oder mehr Verschlußklappen. nämlich auf einem inneren Ring liegende Verschlußklappe bzw. Verschlußklappe bzw. Verschlußklappe bzw. Verschlußklappe bzw. Verschlußklappe bzw. Verschlußklappe

klappen 23, zwischen denen sich eine Sollbruchstelle 18 befindet, gebildet sein. Beim Aufblasen des Gaskissens 1 werden die Verschlußklappen 22 und 23 an der umlaufenden Sollbruchstelle 18 voneinander getrennt und weggeklappt, wie es in Fig. 8 dargestellt ist. Das Aufklappen erfolgt um einen äußeren Biegekreis 19 und einen inneren Biegekreis 20. Die umlaufende Sollbruchstelle 18 ist bevorzugt an der Innenseite der Abdeckung vorgesehen. Zur Bildung von mehreren Verschlußklappen 22 und 23 können an der Abdeckung weitere radial sich erstreckende Sollbruchstellen 26 und 27 vorgesehen sein. Die Sollbruchstellen 26 sind zwischen den Verschlußklappen 22, die auf dem inneren Ring angeordnet sind, vorgesehen, und die Sollbruchstellen 27 sind zwischen den Verschlußklappen 23, welche auf dem äußeren Ring sich befinden, vorgesehen. Zwischen den geöffneten Verschlußklappen 22 und 23 wird die Austrittsöffnung 15 gebildet (Fig. 8), aus der das Gaskissen 1 beim Aufblasen austritt. Beim Ausführungsbeispiel der Fig. 7 sind die Sollbruchstellen bevorzugt an der Innenseite der Abdekkung vorgesehen.

An dem dem Fahrzeuginnenraum zugewandten Ende besitzt die Führung 10 eine trichterförmige Erweiterung 17 (Führungstrichter). Hierdurch wird ein Schußkanal gebildet, der eine von innen nach außen gerichtete Entfaltung des Gaskissens (Pfeile in Fig. 2) unterstützt. Beim Aufblasen nimmt das Gaskissen 1 zunächst, etwa nach 1/3 der Entfaltungszeit, die in Fig. 2 dargestellte Ringform an mit V-förmigem Querschnitt, wobei in bevorzugter Weise die Anblasrichtung derart ist, daß sie zunächst außen, d. h. im Kissenbereich 13, welcher in gefaltetem Zustand den äußeren Faltungsbereich 13 bildet, sich über den Lenkradkranz 24 erstreckt. Der trichterförmig erweiterte Teil der Führung 10 kann hierbei eine auf den inneren Faltungsbereich 12 zurückhaltende Wirkung in der Anfangsphase des Aufblasens ausüben. Anschließend wird auch der Kissenteil, welcher den innenliegenden Faltungsbereich 12 bildet, herausgezogen und entfaltet. Die Fig. 3 zeigt den Zustand nach etwa 2/3 der Entfaltungszeit. Der Aufblasvorgang setzt sich fort, bis der kegelförmige bzw. trichterförmige Innenbereich 2 die gewünschte Form einnimmt, welche in Fig. 4 dargestellt ist. Aufgrund der oben erläuterten Entfaltung des ringförmigen Gaskissens wird ein direkter Anschuß des hinter dem Lenkrad befindlichen Fahrzeuginsassen vermieden. Auch bei nach vorne gebeugter OOP des Fahrzeuginsassen ist die beim Entfalten vom Gaskissen 1 ausgeübte Krafteinwirkung gegenüber herkömmlichen Gaskissenformen erheblich verringert.

Im aufgeblasenen Zustand des Gaskissens 1 (Fig. 4) wird von dem inneren ringförmigen Faltungsbereich 12 des Gaskissens ein Schlauch gebildet, welcher eine durchgehende Ringöffnung 4 des Gaskissens 1 umfaßt. Der vom Gaskissenmaterial gebildete mittlere Schlauch umfaßt ferner eine innere Öffnung 3 der trichterförmigen Vertiefung 2, welche an der dem Fahrer zugekehrten Frontseite des Gaskissens gebildet wird. Da das innere Schlauchende des Gaskissenmaterials, welches die durchgehende Öffnung 4 umfaßt, an seinem rückwärtigen Ende fest an der Befestigungsstelle 33 und damit an der Lenksäule 11 verankert ist, wird im mittleren Bereich des Gaskissens 1 eine Begrenzung der sich in den Innenraum des Fahrzeugs erstreckenden Ringform des Gaskissens 1 erreicht. Der Durchmesser der durchgehenden Öffnung 4 ist eng ausgebildet, so daß bei einem Kopfaufprall des Fahrzeuginsassen ein ausreichender Schutz gegenüber dem Lenkrad erzielt wird. Gegebenenfalls kann der Durchmesser der durchgehenden Öffnung 4 bis auf Null in der aufgeblasenen Form des Gaskissens 1 reduziert sein. Durch entsprechende Zuschnitte des Gaskissens läßt sich die gewünschte Ringform mit der kegelförmigen bzw. trich-

35

terförmigen Vertiefung an der Frontseite erzielen.

Der von dem äußeren Faltungsbereich 13 gebildete Teil des Gaskissens 1 erstreckt sich, ausgehend von der Austrittsöffnung 15, über den Lenkradkranz und bildet die äußere Umfangsform sowie den Übergangsbereich zur Frontseite, welcher über einen ringförmigen Verbindungskissenteil 14 mit der trichterförmigen bzw. kegelförmigen Vertiefung 2 etwa in der Mitte des Gaskissens verbunden ist.

Aus den zeitlich aufeinanderfolgenden Darstellungen der Fig. 9, in denen verschiedene Entfaltungszustände in zeitli- 10 cher Folge dargestellt sind, ergibt sich, daß eine reduzierte Insassenbelastung vom sich entfaltenden Airbag beim Aufblasen ausgeübt wird. Selbst wenn der Fahrzeuginsasse in einer nach vorne geneigten und gegebenenfalls schräg zum Lenkrad angeordneten Position sich befindet (Zeitpunkt 15 Null), ergibt sich, daß bei den verschiedenen nach dem Unfall sich ergebenden Situationen zu den Zeitpunkten 15 ms. 30 ms, 40 ms und 60 ms der Kopf des Insassen im Airbag, insbesondere in dem kegelförmigen bzw. trichterförmigen Teil 2 des Gaskissens 1, eingetaucht wird und mit vermin- 20 derter Krafteinwirkung in Richtung zur Rückenlehne geschoben wird (Zeitpunkt 75 ms). Im Gegensatz dazu ergibt sich aus der Fig. 10, daß bei herkömmlichen Gaskissen der Kopf des Insassen durch das aufgeblasene Gaskissen, insbesondere in der zeitlichen Folge von 45 ms bis 75 ms, vor al- 25 lem aufgrund eines direkten Anschusses durch den mittleren Gaskissenbereich, in Richtung zur Rückenlehne des Fahrersitzes mit erheblicher Krafteinwirkung geschleudert wird. Diese Krafteinwirkung findet beim erfindungsgemäßen Airbag nicht statt, da im Bereich der kegelförmigen Vertiefung 30 2 des Gaskissens 1 eine nur verminderte Ausbreitung des Gaskissens in den Fahrgastraum mit zeitlicher Verzögerung gegenüber dem äußeren Gaskissenbereich stattfindet.

Patentansprüche.

- 1. Vorrichtung für einen Aufprallschutz an einem Lenkrad eines Kraftfahrzeugs mit einer Fülleinrichtung und einem Gaskissen, welches von der Fülleinrichtung mit Füllgas aufblasbar ist und im aufgeblasenen Zustand das Lenkrad, insbesondere einen Lenkradkranz gegenüber einen hinter dem Lenkrad sitzenden Fahrzeuginsassen abdeckt, wobei das Gaskissen in einer Ringkammer ein ringförmiges Füllvolumen umfaßt, dadurch gekennzeichnet, daß das gesamte Füllvolumen des Gaskissens (1) ringförmig ausgebildet ist und daß die dem Fahrzeuginsassen zugekehrte Frontsläche des aufgeblasenen Gaskissens (1) in ihrem mittleren Bereich eine Vertiefung (2) aufweist.
- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Vertiefung (2) durch einen trichteroder kegelförmigen Flächenteil des Gaskissens (1) gebildet ist.
- 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der die Vertiefung (2) aufweisende
 Gaskissenteil an der Lenkradsäule (11) verankert ist.
 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine innere Öffnung (3) der
 Vertiefung (2) in eine durchgehende Ringöffnung (4)
 des Gaskissens (1) übergeht, wobei die durchgehende
 Ringöffnung (4) einen wesentlich kleineren Durchmesser aufweist als ein Kopfdurchmesser eines Fahrzeuginsassen.
- 5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Fülleinrichtung (5) ringförmig ausgebildet sein kann.
 6. Vorrichtung nach einem der Ansprüche 1 bis 5. dadurch gekennzeichnet, daß die ringförmige Fülleinrichten.

- tung (5) in eine ringförmige Kissenöffnung (6) des Gaskissens (1) gerichtet ist.
- 7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein innerer Gaskissenringteil (7), welcher die innere Begrenzung der ringförmigen Kissenöffnung (6) bildet, im Bereich innerhalb der ringförmigen Fülleinrichtung (5) und ein äußerer Gaskissenringteil (8), welcher die äußere Begrenzung der ringförmigen Kissenöffnung (6) bildet, in einem Bereich außerhalb der ringförmigen Fülleinrichtung (5) an einem Airbagträger befestigt sind.
- 8. Vorrichtung nach einem der Ansprüche 1 bis 7. dadurch gekennzeichnet, daß in der durchgehenden Ringöffnung (4) des Gaskissens (1) eine am Airbagträger besestigte Führung (10) vorgesehen ist.
- 9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Führung (10) rohrförmig ausgebildet ist.
- 10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß an dem dem Fahrzeuginnenraum zugekehrten Ende die Führung (10) einen sich erweiternden Durchmesser aufweist.
- 11. Vorrichtung für einen Aufprallschutz an einem Lenkrad eines Kraftfahrzeugs mit einer Fülleinrichtung und einem Gaskissen, welches von der Fülleinrichtung mit Füllgas aufblasbar ist und im aufgeblasenen Zustand das Lenkrad, insbesondere einen Lenkradkranz gegenüber einen hinter dem Lenkrad sitzenden Fahrzeuginsassen abdeckt, wobei das Gaskissen in einer Ringkammer ein ringförmiges Füllvolumen umfaßt, insbesondere nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das gefaltete Gaskissen (1) und die Fülleinrichtung (5) als vormontierte Airbageinheit (9), insbesondere durch Verschrauben mit der Lenksäule (11) verbindbar sind.
- 12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Airbageinheit (9) eine durchgehende mit der Lenksäulenachse (28) in Fluchtung bringbare Durchgangsöffnung (29) aufweist.
- 13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Airbageinheit (9) an dem an der Lenksäule (11) mittels einer Schraubverbindung (31) vormontierten Lenkrad (30) derart befestigbar ist, daß die Durchgangsöffnung (29) mit der Lenksäulenachse (28) fluchtet und daß die Schraubverbindung (31) zwischen der Lenksäule (11) und dem Lenkrad (30) mittels Durchgriff durch die Durchgangsöffnung (29) festziehbar ist.
- 14. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Airbageinheit (9) und das Lenkrad (30) mit im Bereich der Durchgangsöffnung (29) eingesetzter Lenksäulenmutter für die Herstellung der Schraubverbindung (31) zwischen Lenksäule und Lenkrad eine vormontierte Baueinheit bildet, die nach dem Aufsetzen auf die Lenksäule (11) mittels Durchgriff durch die Durchgangsöffnung (29) durch Festziehen der Schraubverbindung (31) mit der Lenksäule (11) drehfest verbindbar ist.
- 15. Vorrichtung nach Anspruch 9 und einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß die Rohröffnung der Führung (10) mit der Durchgangsöffnung (29) fluchtet.
- 16. Vorrichtung nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß die Führung (10) in der Durchgangsöffnung (29) z. B. durch Verschrauben befestigt ist.
- 17. Vorrichtung nach einem der Ansprüche 1 bis 16. dadurch gekennzeichnet, daß die Führung (10) von

dem gefalteten Gaskissen (1) umfaßt ist.

18. Vorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß ein innerer Faltungsbereich (12) im aufgeblasenen Zustand im wesentlichen die durchgehende Ringöffnung (4) umgibt und ein äußerer Faltungsbereich (13) im aufgeblasenen Zustand im wesentlichen einen sich über den Lenkradkranz (24) erstreckenden und das ringförmige Füllvolumen außen umfassenden Gaskissenteil, welcher über ein Verbindungskissenteil (14) mit dem trichterförmigen Frontfächenteil (2) verbunden ist, bilden.

19. Vorrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß eine entgegengesetzt zur Fülleinrichtung (5) liegende Austrittsöffnung (15), durch welche das Gaskissen (1) beim Aufblasen austritt, ringförmig ausgebildet ist.

20. Vorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Austrittsöffnung (15) die Führung (10) umgibt.

21. Vorrichtung nach einem der Ansprüche 1 bis 20, 20 dadurch gekennzeichnet, daß im aufgeblasenen Zustand der die durchgehende Ringöffnung (4) und den trichterförmigen Frontslächenteil (2) bildende Gaskissenteil eine die Ausschußweite des Gaskissens begrenzende Wirkung aufweist.

22. Vorrichtung nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß die Ausschußweite des Gaskissens (1) in den Fahrgastraum ca. 300 mm bis 400 mm beträgt.

23. Vorrichtung nach einem der Ansprüche 1 bis 22, 30 dadurch gekennzeichnet, daß die Austrittsöffnung (15) durch zwei oder mehr Verschlußklappen (22, 23) abgedeckt ist, wobei zwischen den Verschlußklappen eine oder mehrere Sollbruchstellen (18, 26, 27) gebildet sind.

24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, daß die Verschlußklappen (22, 23) um Biegestellen, insbesondere Biegekreise (19, 20) nach außen aufklappbar sind.

25. Vorrichtung nach einem der Ansprüche 1 bis 24, 40 dadurch gekennzeichnet, daß das Gaskissen (1) in seinem mittleren im wesentlichen den kegelförmigen Gaskissenteil (2) aufweisenden Bereich über ein die durchgehende Ringöffnung (4) umfassendes Kissenteil am Airbagträger bzw. an der Lenkradsäule (11) veran- 45 kert ist.

26. Vorrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die Faltungsbereiche (12, 13) in der Weise gefaltet und gegenüber der Ausblasöffnung bzw. den Ausblasöffnungen der Fülleinrichtung (5) und der Führung (10) so angeordnet sind, daß in einer Anfangsphase des Aufblasens im wesentlichen der äußere Faltungsbereich (13) beim Aufblasen des Gaskissens (1) entfaltet wird.

Hierzu 9 Seite(n) Zeichnungen

55

60

- Leerseite -

