What is claimed is:

1	1. A system for intrusion detection data collection using a protocol		
2	stack multiplexor, comprising:		
3	a hierarchical protocol stack defined within kernel memory space and		
4	comprising a plurality of communicatively interfaced protocol layers, each such		
5	protocol layer comprising one or more procedures for processing data packets;		
6	a data frame processed through the protocol stack, the data frame		
7	comprising a plurality of recursively encapsulated data packets which are each		
8	encoded with a protocol recognized by one of the protocol layers; and		
9	a protocol stack multiplexor collecting data directly from the protocol		
.10	stack from at least one of the processed data packets, comprising:		
11	an interface interfacing directly into at least one such protocol		
- 12	layer through redirected-references to the data packet-processing procedures-		
13	comprised within the at least one such protocol layer; and		
14	a logical reference to the processed data packets obtained from the		
15	interfaced protocol layer, the logical reference referring to a memory block in the		
16	kernel memory space within which the processed data packets are stored and		
17	provided to an intrusion detection analyzer executing within user memory space.		
1	2. A system according to Claim 1, further comprising:		
2	a network hardware interface in a link protocol layer logically located at a		
3	device end of the protocol stack;		
4	an application software interface in a transport protocol layer logically		
5	located at a user end of the protocol stack; and		
6	the protocol stack multiplexor tapping the collected data from the protocol		
7	stack between and through the link protocol layer and the transport protocol layer		
1	3. A system according to Claim 2, wherein the protocol stack		
2	comprises a Transmission Control Protocol/Internet Protocol-compliant (TCP/IP)		
3	protocol stack.		

1	4. A system according to Claim 1, further comprising:		
2	a read queue associated with each protocol layer storing incoming data		
3	frames;		
4	a write queue associated with each protocol layer storing outgoing data		
5	frame; and		
6	the protocol stack multiplexor retrieving the logical reference to the		
7	processed data packets from at least one of the read queue and the write queue.		
1	5. A system according to Claim 1, further comprising:		
2	a module switch table in the kernel memory space storing the references to		
3	the data packet processing procedures comprised within the at least one such		
4	protocol layer; and		
5	an initialization module in the protocol stack multiplexor replacing select		
6	procedure references in the module switch table with references to data collection		
7	procedures in the protocol stack multiplexor.		
1	6. A system according to Claim 5, wherein one such protocol layer		
2	comprises a Transmission Control Protocol-compliant (TCP) protocol layer,		
3	further comprising:		
4	the initialization module augmenting the procedure references in the		
5	module switch table for the procedures for processing data frames for the TCP		
6	protocol layer with references to TCP data collection procedures in the protocol		
7	stack multiplexor.		
1	7. A system according to Claim 5, wherein one such protocol layer		
2	comprises a User Datagram Protocol-compliant (UDP) protocol layer, further		
3	comprising:		
4	the initialization module replacing the procedure references in the module		
5	switch table for the procedures for processing incoming data frames for the UDP		
6	protocol layer with references to UDP data collection procedures in the protocol		
7	stack multiplexor.		

1	8. A method for intrusion detection data collection using a protocol			
2	stack multiplexor, comprising:			
3	defining a hierarchical protocol stack within kernel memory space and			
4	comprising a plurality of communicatively interfaced protocol layers, each such			
5	protocol layer comprising one or more procedures for processing data packets;			
6	processing a data frame through the protocol stack, the data frame			
7	comprising a plurality of recursively encapsulated data packets which are each			
8	encoded with a protocol recognized by one of the protocol layers; and			
9	collecting data directly from the protocol stack from at least one of the			
0	processed data packets using a protocol stack multiplexor, comprising:			
11	interfacing directly into at least one such protocol layer through			
12	redirected references to the data packet processing procedures comprised within			
l-3	the-at-least-one-such-protocol-layer;			
14	obtaining a logical reference to the processed data packets from the			
15	interfaced protocol layer, the logical reference referring to a memory block in the			
16	kernel memory space within which the processed data packets are stored; and			
17	providing the logical reference to an intrusion detection analyzer			
18	executing within user memory space.			
1	9. A method according to Claim 8, further comprising:			
2	providing a network hardware interface in a link protocol layer logically			
3	located at a device end of the protocol stack;			
4	providing an application software interface in a transport protocol layer			
5	logically located at a user end of the protocol stack; and			
6	tapping the collected data from the protocol stack between and through the			
7	link protocol layer and the transport protocol layer.			
1	10. A method according to Claim 9, wherein the protocol stack			
2	comprises a Transmission Control Protocol/Internet Protocol-compliant (TCP/IP)			
3	protocol stack.			

0141.01.ap3 - 17 -

1	11. A method according to Claim 8, further comprising:		
2	storing incoming data frames in a read queue associated with each		
3	protocol layer;		
4	storing outgoing data frame in a write queue associated with each protocol		
5	layer; and		
6	retrieving the logical reference to the processed data packets from at least		
7	one of the read queue and the write queue.		
1	12. A method according to Claim 8, further comprising:		
2	storing the references to the data packet processing procedures comprised		
3	within the at least one such protocol layer in a module switch table in the kernel		
4	memory space; and		
5	replacing select procedure references in the module switch table with		
6	references to data collection procedures in the protocol stack multiplexor.		
1	13. A method according to Claim 12, wherein one such protocol layer		
2	comprises a Transmission Control Protocol-compliant (TCP) protocol layer,		
3	further comprising:		
ر 4	augmenting the procedure references in the module switch table for the		
5	procedures for processing data frames for the TCP protocol layer with references		
6	to TCP data collection procedures in the protocol stack multiplexor.		
1	14. A method according to Claim 12, wherein one such protocol layer		
2	comprises a User Datagram Protocol-compliant (UDP) protocol layer, further		
3	comprising:		
4	replacing the procedure references in the module switch table for the		
5	procedures for processing incoming data frames for the UDP protocol layer with		
6	references to UDP data collection procedures in the protocol stack multiplexor.		
1	15. A storage medium for intrusion detection data collection using a		
2	protocol stack multiplexor, comprising:		

3	defining a hierarchical protocol stack within kernel memory space and		
4	comprising a plurality of communicatively interfaced protocol layers, each such		
5	protocol layer comprising one or more procedures for processing data packets;		
6	processing a data frame through the protocol stack, the data frame		
7	comprising a plurality of recursively encapsulated data packets which are each		
8	encoded with a protocol recognized by one of the protocol layers; and		
9	collecting data directly from the protocol stack from at least one of the		
10	processed data packets using a protocol stack multiplexor, comprising:		
11	interfacing directly into at least one such protocol layer through		
12	redirected references to the data packet processing procedures comprised within		
13	the at least one such protocol layer;		
14	obtaining a logical reference to the processed data packets from the		
15	interfaced protocol layer, the logical reference referring to a memory block in the		
16	kernel memory space within which the processed data packets are stored; and		
17	providing the logical reference to an intrusion detection analyzer		
18	executing within user memory space.		
1	16. A storage medium according to Claim 15, further comprising:		
2	providing a network hardware interface in a link protocol layer logically		
3	located at a device end of the protocol stack;		
4	providing an application software interface in a transport protocol layer		
5	logically located at a user end of the protocol stack; and		
6	tapping the collected data from the protocol stack between and through the		
7	link protocol layer and the transport protocol layer.		
•	prototor any or anno transport prototor any tra		
1	17. A storage medium according to Claim 15, further comprising:		
2	storing incoming data frames in a read queue associated with each		
3	protocol layer;		
4	storing outgoing data frame in a write queue associated with each protocol		
5	layer; and		

6

7	one of the read queue and the write queue.		
1	18. A storage medium according to Claim 15, further comprising:		
2	storing the references to the data packet processing procedures comprised		
3	within the at least one such protocol layer in a module switch table in the kernel		
4	memory space; and		
5	replacing select procedure references in the module switch table with		
6	references to data collection procedures in the protocol stack multiplexor.		
1	19. A storage medium according to Claim 18, wherein one such		
2	protocol layer comprises a Transmission Control Protocol-compliant (TCP)		
3	protocol layer and a further such protocol layer comprises a User Datagram		
4	Protocol-compliant (UDP) protocol layer, further comprising:		
5	augmenting the procedure references in the module switch table for the		
6	procedures for processing data frames for the TCP protocol layer with references		
7	to TCP data collection procedures in the protocol stack multiplexor; and		
8	replacing the procedure references in the module switch table for the		
9	procedures for processing incoming data frames for the UDP protocol layer with		
0	references to UDP data collection procedures in the protocol stack multiplexor.		
1	20. A system for detecting network intrusions using a protocol stack		
2	multiplexor, comprising:		
3	a network protocol stack comprising a plurality of hierarchically		
4	structured protocol layers, each such protocol layer comprising a read queue and a		
5	write queue for staging transitory data packets and a set of procedures for		
6	processing the transitory data packets in accordance with the associated protocol;		
7	a protocol stack multiplexor interfaced directly to at least one such		
8	protocol layer through a set of redirected pointers to the processing procedures of		
9	the interfaced protocol layer, further comprising:		

retrieving the logical reference to the processed data packets from at least

10	a data packet collector referencing at least one of the read queue		
11	and the write queue for the associated protocol layer; and		
12	a data packet exchanger communicating a memory reference to		
13	each transitory data packet from the referenced at least one of the read queue and		
14	the write queue for the associated protocol layer; and		
15	an analysis module receiving the communicated memory reference and		
16	performing intrusion detection based thereon.		
1	21. A system according to Claim 20, further comprising:		
2	a module switch table storing a set of pointers to the processing		
3	procedures of the interfaced protocol layer; and		
4	an initialization module selectively redirecting the set of pointers to a set		
5	of data collection procedures comprised in the protocol stack multiplexor.		
1	22. A system according to Claim 21, further comprising:		
2	a one-way shim redirecting the set of pointers for processing the transitor		
3	data packets for one of the read queue and the write queue for the associated		
4	protocol layer.		
1	23. A system according to Claim 21, further comprising:		
2	a two-way shim redirecting the set of pointers for processing the transitory		
3	data packets for both the read queue and the write queue for the associated		
4	protocol layer.		
1	24. A system according to Claim 20, wherein the network protocol		
2	stack is a TCP/IP-compliant protocol stack, further comprising:		
3 .	a set of TCP/IP-compliant protocol layers, selected from the group		
4	comprising at least:		
5	a data link protocol layer;		
6	an Internet (IP) protocol layer;		
7	an Transmission Control Protocol (TCP) layer; and		
8	a User Datagram Protocol (UDP) layer.		

1	25. A me	thod for detecting network intrusions using a protocol stack	
2	multiplexor, compris	sing:	
3	executing a network protocol stack comprising a plurality of hierarchically		
4	structured protocol layers, each such protocol layer comprising a read queue and a		
5	write queue for stagi	ng transitory data packets and a set of procedures for	
6	processing the transi	tory data packets in accordance with the associated protocol;	
7	interfacing a	protocol stack multiplexor directly to at least one such	
8	protocol layer through a set of redirected pointers to the processing procedures of		
9	the interfaced protoc	ol layer, further comprising:	
10	referencing at least one of the read queue and the write queue for		
11	the associated protoc	ol layer; and	
12	comn	nunicating a memory reference to each transitory data packet	
13	from the referenced	at least one of the read queue and the write queue for the	
14	associated protocol l	ayer; and	
15	receiving the	communicated memory reference into an analysis module	
16	and performing intru	sion detection based thereon.	
. 1	26. A me	thod according to Claim 25, further comprising:	
		of pointers to the processing procedures of the interfaced	
2	C	module switch table; and	
	•	directing the set of pointers to a set of data collection	
4	•		
5	procedures comprise	d in the protocol stack multiplexor.	
1	27. A me	thod according to Claim 26, further comprising:	
2	redirecting th	e set of pointers for processing the transitory data packets for	
3	one of the read queu	e and the write queue for the associated protocol layer.	
1		thod according to Claim 26, further comprising:	
2		the set of pointers for processing the transitory data packets for	
3	both the read queue	and the write queue for the associated protocol layer	

1	29. A method according to Claim 25, wherein the network protocol
2	stack is a TCP/IP-compliant protocol stack, further comprising:
3	defining a set of TCP/IP-compliant protocol layers, selected from the
4	group comprising at least:
5	a data link protocol layer;
6	an Internet (IP) protocol layer;
7	an Transmission Control Protocol (TCP) layer; and
8	a User Datagram Protocol (UDP) layer.