Снеговики

Опубликовал

sobody

Автор или источник

sobopedia

Предмет

Теория Вероятностей (/Subjects/Details?id=1)

Тема

Сходимости (/Topics/Details?id=13)

Раздел

Центральная предельная теорема (/SubTopics/Details?id=73)

Дата публикации

07.12.2018

Дата последней правки

15.11.2021

Последний вносивший правки

sobody

Рейтинг

Условие

На улице гуляют 100 детей, каждый из которых лепит снеговика. Вес снеговика (в килограммах), слепленного случайно выбранным ребенком, является равномерно распределенной случайной величиной $X_i \sim U(1,9), i \in \{1,\dots,100\}$.

- 1. Найдите вероятность того, что суммарный вес слепленных снеговиков превысит 510 килограмм.
- 2. Вычислите вероятность того, что средний вес слепленных снеговиков окажется между 4.9 и 5.1 килограммами.
- 3. Повторите первый пункт учитывая, что вес каждого снеговика имеет не равномерное, а экспоненциальное распределение $X_i \sim EXP(0.1), i \in \{1,\dots,100\}$.

Решение

1. Обозначим через $X_i, i \in \{1,\dots,100\}$ случайную величину, обозначающую вес слепленного i-м ребенком снеговика. Очевидно, что $E(X_1) = \frac{9+1}{2} = 5$ и $Var(X_1) = \frac{(9-1)^2}{12} = \frac{16}{3}$. Поскольку веса снеговиков представляют собой независимые, одинаково распределенные случайные величины, можем воспользоваться ЦПТ и предположим, что $\sum\limits_{i=1}^{100} X_i \dot{\sim} \mathcal{N}\left(5*100, \frac{16}{3}*100\right)$.

Введем стандартную нормальную величину $Z \sim N(0,1)$. Поскольку распределение известно, то нетрудно найти вероятность, пользуясь связью, существующей между функциями распределения произвольной нормальной случайной величины и стандартной нормальной случайной величины:

$$P(\sum_{i=1}^{100} X_i \ge 510) = 1 - P(\sum_{i=1}^{100} X_i \le 510) = 1 - P(\sum_{i=1}^{100} X_i \le 510) = 1 - P\left(\frac{\sum_{i=1}^{100} X_i - 5*100}{\sqrt{\frac{16}{3}*100}} \le \frac{510 - 5*100}{\sqrt{\frac{16}{3}*100}}\right) = 1 - F_Z\left(\frac{510 - 5*100}{\sqrt{\frac{16}{3}*100}}\right) = 1 - F_Z\left(\frac{510 - 5*100}{\sqrt{\frac{16}{3}*100}}\right) \approx 1 - F_Z(0.433) \approx 1 - 0.6675 \approx 0.3325$$

2. Из предыдущего пункта получаем, что средний вес слепленных снеговиков имеет следующее распределение $\overline{X}=\frac{1}{n}\sum_{i=1}^{100}X_i\dot{\sim}\mathcal{N}\left(5,\frac{16}{300}\right)$.

Пользуясь полученным результатом рассчитаем искомую вероятность:

$$P(4.9 \leq \overline{X} \leq 5.1) = F_Z\left(rac{5.1 - 5}{\sqrt{rac{16}{300}}}
ight) - F_Z\left(rac{4.9 - 5}{\sqrt{rac{16}{300}}}
ight) pprox 0.335$$

3. Поскольку в данном случае мы имеем дело с экспоненциальным распределением, то нетрудно догадаться, что $\sum\limits_{i=1}^{100} X_i \dot{\sim} \mathcal{N} \ (10*100,100*100).$

Отсюда получаем, что:

$$P(\sum_{i=1}^{100} X_i \geq 510) = 1 - F_Z\left(rac{510 - 10*100}{\sqrt{100*100}}
ight) = 1 - F_Z(-4.9) pprox 0.9999995$$

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.