第1章

簡介:數字系統與轉換

Continuous signal

Discrete signal

1.1 數位系統和交換電路

- ❖數位系統的設計大略可以分成三個部分:系統設計、 邏輯設計和電路設計。
 - 系統設計(system design)包括將整個系統分割成子系統, 並且設定每個子系統的特性。
 - 邏輯設計(logic design)包括決定如何連結內部基本的邏輯架構方塊以執行特定的功能,邏輯設計的例子像決定 邏輯閘和正反器的內部連結以執行二進位加法。
 - 電路設計 (circuit design) 包括指定特定的元件,如電阻、 二極體和電晶體之內部連結,以構成邏輯閘、正反器或 其他邏輯架構方塊。

1.1 數位系統和交換電路

❖許多數位系統的子系統採用如圖1-1 交換電路 (switching circuit)的形式,交換電路具有一個或 多個離散的輸入值和輸出值。

圖 1-1 交換電路

❖在本書中,將學到兩種類型的交換電路:組合式 (combinational)與序向式 (sequential)。

- S ON, V0="1" (3V)
- S OFF, V0= "0" (0V)

- Question:
- S1 on, S2 on V0 =____.
- S1 on, S2 off V0 = ____.
- S1 off, S2 on V0 = ____.
- S1 off, S2 off V0 = ____.

- Ans:
- S1 on, S2 on V0=(3V) "1"
- S1 on, S2 off V0=(3V) "1"
- S1 off, S2 on V0=(3V) "1"
- S1 off, S2 off V0=(0V) "0"

- ❖位置記號法 (positional notation)
 - 10的乘幂:

$$953.78_{10} = 9 \times 10^{2} + 5 \times 10^{1} + 3 \times 10^{0} + 7 \times 10^{-1} + 8 \times 10^{-2}$$

■ 2 的乘幂::

$$1011.11_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$$
$$= 8 + 0 + 2 + 1 + \frac{1}{2} + \frac{1}{4} = 11\frac{3}{4} = 11.75_{10}$$

❖*R*的乘幂:

■ 任意一個正整數R(R>1)都可以被當作數字系統的基數 (radix)或底數 (base)

$$N = (a_4 a_3 a_2 a_1 a_0 . a_{-1} a_{-2} a_{-3})_R$$

$$= a_4 \times R^4 + a_3 \times R^3 + a_2 \times R^2 + a_1 \times R^1 + a_0 \times R^0$$

$$+ a_{-1} \times R^{-1} + a_{-2} \times R^{-2} + a_{-3} \times R^{-3}$$

其中 a_i 是 R^i 的係數,且 $0 \le a_i \le R-1$ 。

❖例如:

$$147.3_8 = 1 \times 8^2 + 4 \times 8^1 + 7 \times 8^0 + 3 \times 8^{-1} = 64 + 32 + 7 + \frac{3}{8}$$
$$= 103.375_{10}$$

❖通常使用字母來代表大於9的數字。例如:在十六進位(底數為16)中,A表示 10_{10} 、B表示 11_{10} 、C表示 12_{10} 、D表示 13_{10} 、E表示 14_{10} 及F表示 15_{10} 。

$$A2F_{16} = 10 \times 16^2 + 2 \times 16^1 + 15 \times 16^0 = 2560 + 32 + 15 = 2607_{10}$$

❖利用除法將十進位的整數轉換成底數R。

$$\begin{split} N &= \left(a_n a_{n-1} \cdots a_2 a_1 a_0\right)_R = a_n R^n + a_{n-1} R^{n-1} + \cdots + a_2 R^2 + a_1 R^1 + a_0 \\ \frac{N}{R} &= a_n R^{n-1} + a_{n-1} R^{n-2} + \cdots + a_2 R^1 + a_1 = Q_1 \quad \text{, if \mathfrak{B} \mathfrak{B} a_0} \\ \frac{Q_1}{R} &= a_n R^{n-2} + a_{n-1} R^{n-3} + \cdots + a_3 R^1 + a_2 = Q_2 \quad \text{, if \mathfrak{B} \mathfrak{B} a_1} \\ \frac{Q_2}{R} &= a_n R^{n-3} + a_{n-1} R^{n-4} + \cdots + a_3 = Q_3 \quad \text{, if \mathfrak{B} \mathfrak{B} a_2} \end{split}$$

- ❖這個步驟持續下去,直到最後求得a_n。
- ❖注意到每次除法所得的餘數是一個所要的數字,並 且最先求得的是最低有效數元(least significant digit)。

❖將 5310轉換成二進位數

$$2 / 53$$

 $2 / 26$ 餘數 = $1 = a_0$
 $2 / 13$ 餘數 = $0 = a_1$
 $2 / 6$ 餘數 = $1 = a_2$ 53₁₀ = 110101₂
 $2 / 3$ 餘數 = $0 = a_3$
 $2 / 1$ 餘數 = $1 = a_4$
 0 餘數 = $1 = a_5$

❖可以利用連續乘以R的乘法,將十進位的小數轉換成底數R。

$$F = (0.a_{-1}a_{-2}a_{-3}\cdots a_{-m})_{R} = a_{-1}R^{-1} + a_{-2}R^{-2} + a_{-3}R^{-3} + \cdots + a_{-m}R^{-m}$$

$$FR = a_{-1} + a_{-2}R^{-1} + a_{-3}R^{-2} + \cdots + a_{-m}R^{-m+1} = a_{-1} + F_{1}$$

$$F_{1}R = a_{-2} + a_{-3}R^{-1} + \cdots + a_{-m}R^{-m+2} = a_{-2} + F_{2}$$

$$F_{2}R = a_{-3} + \cdots + a_{-m}R^{-m+3} = a_{-3} + F_{3}$$

❖這個步驟持續下去,直到求得足夠的位數。注意到 每次所得的整數部分是一個所要的數字,並且最先 求得的是最高有效數元 (most significant digit)。

❖將 0.625₁₀轉換成二進位數。

$$F = 0.625$$
 $F_1 = 0.250$ $F_2 = 0.500$
 \times 2 \times 2 \times 2 $0.625_{10} = 0.101_2$
 $\frac{1.250}{(a_{-1} = 1)}$ $\frac{0.500}{(a_{-2} = 0)}$ $\frac{1.000}{(a_{-3} = 1)}$

❖將 0.710轉換成二進位數。

0.7

____2

(1) 0.4

____2

(0) 0.8

____2

(1) 0.6

____2

(1) 0.2

____2

(0) 0.4 ←從此處開始循環,因為之前就已經出現0.4

____2

(0) 0.8 $0.7_{10} = 0.1 \ \underline{0110} \ \underline{0110} \ \underline{0110} \dots_2$

第一章 簡介:數字系統與轉換 第7頁

❖將 231.34轉換成底數7。

$$231.3_4 = 2 \times 16 + 3 \times 4 + 1 + \frac{3}{4} = 45.75_{10}$$

❖二進位到十六進位(或反過來)的轉換

$$1001101.010111_{2} = \underbrace{0100}_{4} \quad \underbrace{1101}_{D} \cdot \underbrace{0101}_{5} \quad \underbrace{1100}_{C} = 4D.5C_{16}$$

$$(1-1)$$

❖二進位數的加法表如下:

$$0 + 0 = 0$$

$$0+1=1$$

$$1 + 0 = 1$$

❖用二進制執行1310與1110相加。

$$1111$$
 — 進位
$$13_{10} = 1101$$

$$11_{10} = 1011$$

$$11000 = 24_{10}$$

❖二進位數的減法表如下:

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$1 - 1 = 0$$

範例 二進位減法的範例

❖二進位數的乘法表如下所示:

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

❖底下的例子說明13₁₀ 乘以11₁₀ 的二進位乘法運算:

$$\begin{array}{r}
1101 \\
\underline{1011} \\
1101 \\
1101 \\
0000 \\
\underline{1101} \\
10001111 = 143_{10}
\end{array}$$

第一章 簡介:數字系統與轉換 第11頁

❖底下的例子說明145₁₀ 除以11₁₀ 的二進位除法運算:

第一章 簡介:數字系統與轉換 第11頁

2 補數法的數字

❖2補數系統:

- 正數N表示法是一個0接著如符號與大小法表示的大小N。
- 負數-N是用其2補數N*來表示。
- ❖若字組長度為n位元,則正整數N的2補數定義如下:

$$N^* = 2^n - N \tag{1-2}$$

❖表1-1顯示n=4的結果,如表1-1所示,2補數法從-1到-7的負數可以取其正數1到7的2補數而得(亦即用16去減)。

1.4 負數的表示法

表 1-1 有號二進制整數 (字組長度: n=4)

+N	正整數 (各系統)	-N	符號與大小	2 補數 <i>N</i> *	1 補數 N
+0	0000	-0	1000	83 8	1111
+1	0001	-1	1001	1111	1110
+2	0010	-2	1010	1110	1101
+3	0011	-3	1011	1101	1100
+4	0100	- 4	1100	1100	1011
+5	0101	- 5	1101	1011	1010
+6	0110	-6	1110	1010	1001
+7	0111	- 7	1111	1001	1000
	100 (100)	-8	-	1000	

- ❖n位元二進位有號數 (signed binary number) 的加法。
- ❖n=4時,
 - 1. 兩個正數相加,和 $< 2^{n-1}$ 。

2. 兩個正數相加,和 $\geq 2^{n-1}$ 。

1011 ← 由於溢位,所以答案錯誤 (+11包括符號共須5位元方能表示)

3. 正、負數相加(負數之值較大時)。

4. 與例3相同,但正數之值較大時。

$$-5$$
 1011

$$-3$$
 1011

- 6. 兩個負數相加, $| 和 | > 2^{n-1}$ 。
 - **-**5 1011
 - <u>-6</u> <u>1010</u>
 - (1) 0101 ←—由於溢位,所以答案錯誤

(-11包括符號共須5位元方能表示)

❖證明如下:

例
$$4: -A + B$$
 (其中 $B > A$)
$$A^* + B = (2^n - A) + B = 2^n + (B - A) > 2^n$$

❖捨棄最後之進位,相當於減去2ⁿ,所以結果是(B-A)為正確解!

例 5:
$$-A - B$$
 (其中 $A + B \le 2^{n-1}$)
$$A^* + B^* = (2^n - A) + (2^n - B) = 2^n + 2^n - (A + B)$$

❖ 捨棄最後之進位,得到2ⁿ-(A+B) = (A+B)*,這 正是-(A+B)之正確表示式。

1補數法的數字

❖在1補數系統中,一個負數-N 用N 的1補數 \overline{N} 表示,定義如下:

$$\overline{N} = (2^n - 1) - N$$
 (1-4)

❖1補數數字之加法與2補數加法非常類似,唯一不同的是1補數加法並不捨棄最後的進位,而是將進位加在n位元和的最小位元,此稱為末位遞迴進位(end-around carry)。

- 正數相加時的情形與2補數中的例1及例2完全相同,其他 的例子分別說明如下(n=4)。
- 3. 正、負數相加(負數之值較大時)。

4. 與例3相同,但正數之值較大時。

第一章 簡介:數字系統與轉換 第16頁

5. 兩個負數相加, $| 和 | < 2^{n-1}$ 。

6. 兩個負數相加, | 和 $| \geq 2^{n-1}$ 。

❖證明如下:

例
$$4: -A + B$$
 (其中 $B > A$)
$$\overline{A} + B = (2^n - 1 - A) + B = 2^n + (B - A) - 1$$

❖末位遞迴進位相當於減去 2^n 後再加1,所以結果是(B-A)為正確解。

例 5:
$$-A - B$$
 $(A + B \le 2^{n-1})$
$$\overline{A} + \overline{B} = (2^n - 1 - A) + (2^n - 1 - B) = 2^n + [2^n - 1 - (A + B)] - 1$$

★末位遞迴進位之後,結果是 2ⁿ-1-(A+B)=(A+B),
 此為-(A+B) 之正確表示式。

1.4 負數的表示法

- ❖以下的例子分別說明字組長度n=8時,1補數與2補數之加法運算:
 - 1. 以1 補數法執行-11 及-20 之加法運算。

$$+11 = 00001011$$
 $+20 = 00010100$

各位元逐一取補數,

-11以11110100表示,而-20以11101011表示

$$11110100 \quad (-11)$$

$$11101011 + (-20)$$

(1) 11011111

$$11100000 = -31$$

2. 以2 補數法執行-8 及+19 之加法運算。

$$+8 = 00001000$$

將第一個1左側的所有位元取補數, -8表示成11111000

 $111111000 \quad (-8)$

00010011 + 19

(1) 00001011 = +11

(捨棄最後之進位)

1.5 二進制碼

- ❖二進制編碼的十進位(binary-coded-decimal, BCD), 或者更明確地稱為8-4-2-1 BCD。
- ❖超3碼 (excess-3 code)
- ❖8-4-2-1 (BCD) 碼和6-3-1-1 碼為加權碼
- **❖5占2**碼(2-out-of-5 code)
- ❖格雷碼(Gray code) (表1-2)
- ❖ 美國資訊交換標準碼 (American Standard Code for Information Interchange, ASCII)

1.5 二進制碼

表 1-2 十進位數的二進制碼

十進位數	8-4-2-1 碼 (BCD)	6-3-1-1 碼	超3碼	5占2碼	格雷碼
0	0000	0000	0011	00011	0000
1	0001	0001	0100	00101	0001
2	0010	0011	0101	00110	0011
3	0011	0100	0110	01001	0010
4	0100	0101	0111	01010	0110
5	0101	0111	1000	01100	1110
6	0110	1000	1001	10001	1010
7	0111	1001	1010	10010	1011
8	1000	1011	1011	10100	1001
9	1001	1100	1100	11000	1000

1.5 二進制碼

❖表1-3列出ASCII碼的一部分,沒有列出來的編碼組合被用作特殊的控制功能,如「饋頁」(form feed)或「傳輸結束」(end of transmission)。「Start」這個字用ASCII碼表示如下:

1010011 1110100 1100001 1110010 1110100 S t a r t

表 1-3 ASCII 碼

ASCII 碼				ASCII 碼									ASCII 碼													
字元	A_6	A	5	A_4	A_3	A	1 ₂	A_1	A_0	字	元	A_6	A_5	A_4	A_3	A_2	A_1	A_0	字元	A_6	A_5	A_4	A_3	A_2	A_1	A
space	0	1		0	0	0)	0	0	(\widehat{a}	1	0	0	0	0	0	0	6	1	1	0	0	0	0	0
!	0	1		0	0	0)	0	1		Ā	1	0	0	0	0	0	1	a	1	1	0	0	0	0	1
"	0	1		0	0	0)	1	0		В	1	0	0	0	0	1	0	b	1	1	0	0	0	1	0
#	0	1		0	0	0)	1	1		C	1	0	0	0	0	1	1	c	1	1	0	0	0	1	1
\$	0	1		0	0	1		0	0		D	1	0	0	0	1	0	0	d	1	1	0	0	1	0	0
%	0	1		0	0	1		0	1		E	1	0	0	0	1	0	1	e	1	1	0	0	1	0	1
&	0	1		0	0	1	l	1	0		F	1	0	0	0	1	1	0	f	1	1	0	0	1	1	0
,	0	1		0	0	1	l	1	1		G	1	0	0	0	1	1	1	g	1	1	0	0	1	1	1
(0	1		0	1	0)	0	0		Η	1	0	0	1	0	0	0	h	1	1	0	1	0	0	0
)	0	1		0	1	0)	0	1		I	1	0	0	1	0	0	1	i	1	1	0	1	0	0	1
*	0	1	,	0	1	0)	1	0		J	1	0	0	1	0	1	0	j	1	1	0	1	0	1	0
+	0	1		0	1	0)	1	1		K	1	0	0	1	0	1	1	k	1	1	0	1	0	1	1
,	0	1		0	1	1		0	0		L	1	0	0	1	1	0	0	1	1	1	0	1	1	0	0
_	0	1		0	1	1	l	0	1		M	1	0	0	1	1	0	1	m	1	1	0	1	1	0	1
	0	1		0	1	1		1	0		N	1	0	0	1	1	1	0	n	1	1	0	1	1	1	0
/	0	1		0	1	1		1	1		O	1	0	0	1	1	1	1	o	1	1	0	1	1	1	1
0	0	1		1	0	0		0	0		P	1	0	1	0	0	0	0	p	1	1	1	0	0	0	0
1	0	1		1	0	0		0	1		Q	1	0	1	0	0	0	1	q	1	1	1	0	0	0	1
2	0	1		1	0	0)	1	0		R	1	0	1	0	0	1	0	r	1	1	1	0	0	1	0
3	0	1		1	0	0)	1	1		S	1	0	1	0	0	1	1	S	1	1	1	0	0	1	1
4	0	1		1	0	1		0	0		T	1	0	1	0	1	0	0	t	1	1	1	0	1	0	0
5	0	1		1	0	1	-	0	1		U	1	0	1	0	1	0	1	u	1	1	1	0	1	0	1
6	0	1		1	0	1		1	0		V	1	0	1	0	1	1	0	v	1	1	1	0	1	1	0
7	0	1		1	0	1		1	1		W	1	0	1	0	1	1	1	W	1	1	1	0	1	1	1
8	0	1		1	1	0		0	0		X	1	0	1	1	0	0	0	X	1	1	1	1	0	0	0
9	0	1		1	1	0		0	1		Y	1	0	1	1	0	0	1	У	1	1	1	1	0	0	1
:	0	1		1	1	0		1	0		Z	1	0	1	1	0	1	0	Z	1	1	1	1	0	1	0
;	0	1		1	1	0)	1	1		[1	0	1	1	0	1	1	{	1	1	1	1	0	1	1
<	0	1		1	1	1	l	0	0		\	1	0	1	1	1	0	0	ļ	1	1	1	1	1	0	0
=	0	1		1	1	1	l	0	1]	1	0	1	1	1	0	1	}	1	1	1	1	1	0	1
>	0	1		1	1	1	l	1	0		^	1	0	1	1	1	1	0	~	1	1	1	1	1	1	0
?	0	1		1	1	1		1	1	-	_	1	0	1	1	1	1	1	delete	1	1	1	1	1	1	1