WHAT IS CLAIMED IS:

1		1. An optical device comprising
2		a primary grating;
3		a light source disposed opposing a predetermined side of the primary grating;
4		a first reference grating disposed between the light source and the primary
5	grating;	
6		a photodetector disposed opposing the predetermined side of the primary
7	grating; and	
8		a second reference grating disposed between the photodetector and the
9	primary gratir	g;
10		wherein the primary grating, the first reference grating and the light source are
11	configured for	movement relative to one another.
1		2. The optical device of claim 1, wherein the primary grating is a moving
2	orating and th	e first reference grating and second reference grating are fixed gratings.
2	grating and th	That reference grating and second reference grating are timed gratings.
l		3. The optical device of claim 1, wherein the primary grating, light
2	source, first re	ference grating, second reference grating and photodetector are configured as
3	an optical pos	tion encoder device.
1		4. The optical device of claim 1, wherein the grating is a reflective
	anatina	4. The optical device of claim 1, wherein the grating is a reflective
2	grating.	
1		5. The optical device of claim 1, wherein the first reference grating and
2	second refere	ace grating are configured for identical relative motion with respect to the
3	primary gratio	g.
1		The autical device of plains 1, wherein the light gourge is a
1		6. The optical device of claim 1, wherein the light source is a
2	semiconducto	r laser.
1		7. The optical device of claim 1, wherein the light source is an extended
2	light source.	
,		O The autical desire of alains 7 advancing the automated light commended
1	1. 1	8. The optical device of claim 7, wherein the extended light source is a
2	light emitting	diode (LED).

- 1 9. The optical device of claim 1, wherein a period Tr of the first reference
- 2 grating and a period T of the second reference grating are related to a period T_s of the
- 3 primary grating by the following formula: $\frac{1}{T} + \frac{1}{T_r} = \frac{1}{T_s}$.
- 1 10. An optical position encoder device comprising:
- 2 a moving grating with a period T_s ;
- a photodetector with light sensitive components;
- 4 a light source disposed on the photodetector;
- a first fixed grating with spatial period T_r disposed on the light source; and
- at least one second fixed grating with period T disposed on the light sensitive
- 7 components;
- 8 wherein the moving grating is moveable relative to the first fixed grating and
- 9 the light source.
- 1 The optical position encoder device of claim 9, wherein the light
- 2 source is an incoherent light source.
- 1 The optical position encoder device of claim 9, wherein $\frac{1}{T} + \frac{1}{T_r} = \frac{1}{T_s}$.
- 1 The optical position encoder device of claim 10, wherein there is a
- 2 plurality of second fixed gratings with a fixed phase relationship thereamong such that the
- 3 photodetector receives only one harmonic component.
- 14. The optical position encoder device of claim 13, wherein the plurality
- 2 of second fixed gratings are sinusoidal fixed gratings.
- 1 15. An optical device comprising
- 2 a primary grating;
- a light source disposed opposing a predetermined side of the primary grating;
- a first reference grating disposed between the light source and the primary
- 5 grating;
- a photodetector disposed on a far side of the primary grating; and
- a second reference grating disposed between the photodetector and the
- 8 primary grating;

- 9 wherein the primary grating, the first reference grating and the light source are
- 10 configured for movement relative to one another.