Technika bezdrátové komunikace B2B17TBK

Část 3 - Parametry radiových obvodů a zařízení

Přemysl Hudec

ČVUT-FEL katedra elektromagnetického pole

hudecp@fel.cvut.cz

verze 2025

Obsah

- S-parametry
- Výkon signálu, signálová úroveň
- Šumové parametry
- Nelineární parametry

Důležité parametry

- Mezi nejdůležitější parametry VF a mikrovlnných obvodů a systémů patří:
 - o S-parametry
 - Výkon signálu, signálová úroveň
 - Odstup signál-šum, šumové číslo, šumová teplota, šumový práh
 - Výkon harmonických a IM produktů, IP2, IP3
- Běžně používané pro:
 - Návrh a analýzu VF a mikrovlnných komponent a obvodů
 - Návrh a analýzu VF a mikrovlnných radiových systémů
 - Související měření

S-parametry

Podobné jako z- nebo y-parametry:

- Ty se používají v oblasti NF
- Jsou založené na standardních parametrech TO, tedy u a i
- Používají se k popisu obecných 2-branů, vícebranů
- Používají se pro obecnou analýzu obvodů

S-parametry:

elmaq.org

- o Používají se v oboru VF a mikrovln
- Jsou založené na dopadajících a odražených napěťových vlnách
- U tomto oboru lze použít i z- nebo yparametry,
- ale s-parametry lépe odpovídají podmínkám VF a mikrovlnných zařízení
 - a také se podstatně lépe měří, a to i na velmi vysokých GHz frekvencích.

$$u_1 = z_{11}.i_1 + z_{12}.i_2$$

$$u_2 = z_{21}.i_1 + z_{22}.i_2$$

$$i_1 = y_{11}.u_1 + y_{12}.u_2$$

 $i_2 = y_{21}.u_1 + y_{22}.u_2$

S-parametry (S=,,Scattering")

- Jsou definovány pomocí:
 - Dopadajících a a odražených b napěťových vln
 - o Normovaných k $\sqrt{2Z_0}$
 - O Druhé mocniny a a b → mají význam výkonu
- Definice:
- Maticový zápis:
- Popis *N*-branů:

$$\begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1n} \\ s_{21} & s_{22} & \dots & s_{2n} \\ \dots & \dots & \dots & \dots \\ s_{n1} & s_{n2} & \dots & s_{nn} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix}$$

$$a_i = \frac{\hat{V}^+}{\sqrt{2Z_o}}$$

$$b_i = \frac{\hat{V}^-}{\sqrt{2Z_o}}$$

$$P_i^+ = \left| a_i \right|^2 \qquad P_i^- = \left| b_i \right|^2$$

$$b_1 = s_{11}.a_1 + s_{12}.a_2$$

$$b_2 = s_{21}.a_1 + s_{22}.a_2$$

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Význam a měření s₁₁

• Z:

$$b_1 = s_{11}.a_1 + s_{12}.a_2$$

• Definice:

$$s_{11} = \frac{b_1}{a_1}$$

CASE STYLE: LL561

- Za podmínky: $a_2 = 0$
- Tuto podmínku lze splnit zapojením bezodrazové koncovky (BK) s impedancí Z_0 =50 Ω na výstup 2-branu
- s_{11} = vstupní koeficient odrazu s BK zapojenou na výstupu
- Lze jej měřit pomocí VNA ("Vector Network Analyzer")
- Výkonové vyjádření

$$10\log|s_{11}|^2 = 20\log|s_{11}| = -RL_1 = dBs11$$

• = útlum odrazů ("Return Loss") na vstupu při Z_0 =50 Ω zakončení 2-branu

Význam a měření s₁₂

• Z:
$$b_1 = s_{11}.a_1 + s_{12}.a_2$$

• Definice:

$$s_{12} = \frac{b_1}{a_2}$$

- Za podmínky: $a_1 = 0$
- VF V-metr měřící b_1 musí mít impedanci $Z_{in}=Z_0=50\Omega$
- s_{12} = zpětný koeficient přenosu z výstupu do vstupu
- Lze jej také měřit pomocí VNA
- Výkonové vyjádření:

$$10\log|s_{12}|^2 = 20\log|s_{12}| = dBs12 = G_{retdB}$$

• = zpětný výkonový zisk z 50Ω do 50Ω

Význam a měření s₂₁

• Z:
$$b_2 = s_{21}.a_1 + s_{22}.a_2$$

$$s_{21} = \frac{b_2}{a_1}$$

- Za podmínky: $a_2 = 0$
- VF V-metr měřící b_2 musí mít impedanci $Z_{in}=Z_0=50\Omega$
- s_{21} = dopředný koeficient přenosu
- Lze jej měřit pomocí VNA
- Výkonové vyjádření:

$$10\log|s_{21}|^2 = 20\log|s_{21}| = dBS21 = G_{dB}$$

dopředný výkonový zisk z 50Ω do 50Ω

Význam a měření s₂₂

• Z: $b_2 = s_{21}.a_1 + s_{22}.a_2$

• Definice:

$$s_{22} = \frac{b_2}{a_2}$$

CASE STYLE: LL561

- Za podmínky: $a_1 = 0$
- Tu lze splnit zapojením BK Z_0 =50 Ω na vstup 2-branu
- s_{22} = koeficient odrazu na výstupu při zapojené BK na vstupu
- Měří se pomocí VNA
- Výkonové vyjádření: $10\log|s_{22}|^2 = 20\log|s_{22}| = dBS21 = RL_2$
- = Útlum odrazů ("return loss") na výstupu při Z_0 =50 Ω na vstupu 2-branu

Srovnání z- a y-parametrů

Výhody s-parametrů:

- o Jsou definovány pro zakončení Z_0 na všech branách (obvykle 50Ω)
- To odpovídá podmínce impedančního přizpůsobení
- Na vysokých GHz frekvencích lze měřit napěťové vlny
- Pro zátěže 50Ω jsou mikrovlnné tranzistory stabilní
- z- & y-parametry
 - Jsou definovány pro zátěže OPEN (*i*=0) nebo SHORT (*v*=0)
 - To vede na extrémní impedanční nepřizpůsobení
 - Na VF nelze měřit v, i
 - Pro OPEN a SHORT jsou VF tranzistory
 často nestabilní

- Pokud je to potřeba, lze sparametry na z- nebo ysnadno přepočítat
- Přepočetní vztahy jsou založené na jednoduchých rovnicích:

$$u_1 = a_1 + b_1$$

$$u_2 = a_2 + b_2$$

$$i_1 = \frac{a_1 - b_1}{Z_0}$$

$$i_2 = \frac{a_2 - b_2}{Z_0}$$

Použití s-parametrů = cvičení

Výkony signálů = signálové úrovně

- V určitých bodech VF a mikrovlnných systémů musí být definované výkony signálu = signálové úrovně ("signal levels") například:
 - Výstupní výkon TX, výkon na vstupu násobiče frekvence, minimální vstupní výkon RX, nominální výkon na LO vstupu směšovače, ...
 - Jsou to základní parametry důležité při návrhu jakéhokoliv radiového systému
- Lze je měřit VF měřiči výkonu nebo spektrálními analyzátory
- Velmi často se vyjadřují v dBm:

$$S_{dBm} = P_{dBm} = 10\log\frac{P}{10^{-3}}[dBm]$$

P[W]	10	1	0,1	0,01	0,001	10^{-4}	10^{-5}	10^{-6}	10^{-8}	10^{-10}	10^{-12}	10^{-15}
S[dBm]	40	30	20	10	0	-10	-20	-30	-50	-70	-90	-120

P[mW]							7			10
S[dBm]	0	3	4,8	6	7	7,8	8,5	9	9,5	10

Příklad:

TDMA transceiver - návrh signálových úrovní

Požadované úrovně:

$$\circ$$
 $P_{LO} = 12 \text{dBm}$

o
$$P_{out}$$
 = 19dBm

Šum ("Noise")

- Důležitý při zpracování signálů s velmi nízkými úrovněmi
- To je v bezdrátových radiových komunikacích velmi častý případ
- Je to způsobeno velmi vysokými hodnotami útlumu šíření volným prostředím (*FSL* = "free space loss")
- V případě vysokých frekvencí a větších vzdáleností mohou být S velmi nízké a srovnatelné se šumem
- Ale pro správné vyhodnocení v demodulátoru musí být S dostatečně vysoko nad šumovým prahem N
- Šumové příspěvky:
 - Šum z přijímací antény

Šum generovaný lineárními obvody RX

Fázový šum místního oscilátoru

f=1GHz

<i>R</i> [m]	1	10	100	1000	10 km
FSL [dB]	32,4	52,4	72,4	92,4	112,4

• f=10GHz

<i>R</i> [m]	1	10	100	1000	10 km
FSL [dB]	52,4	72,4	92,4	112,4	132,4

f=100GHz

<i>R</i> [m]	1	10	100	1000	10 km
FSL [dB]	72,4	92,4	112, 4	132,4	152,4

- Nejčastěji používané parametry:
 - Odstup signál-šum ("signal-to-noise ratio")

SNR

Šumové číslo ("noise figure")

 \circ Šumová teplota T_e

Šumový výkon, šumový práh

N

o Popis fázového šumu $PSD=f(\Delta f)$

• Vliv šumu:

- Šum je náhodný signál, který se sčítá (někdy násobí) s užitečným digitálním signálem
- Zvyšuje rozptyl symbolů
- To zvyšuje "bit-error rate" BER
- Šum musí být důsledně "pod kontrolou"

16QAM *SNR*=40↑ *SNR*=15↓

Podíl výkonu signálu S a výkonu šumu N

V dBm:

$$SNR = \frac{S}{N}$$

$$SNR_{dB} = S_{dBm} - N_{dBm}$$

- Nemodulovaný signál výkon lze pomocí SpA odečíst přímo
- Modulované signály výkon musí být integrován přes šířku kanálu B

$$S = \int_{-B/2}^{+B/2} PSD_{sig} df$$

• Spektrální výkonová hustota *PSD* ("Power Spectral Density") ve W/Hz nebo dBm/Hz

Date: 5.JUN.2017 16:18:19

Date: 5.JUN.2017 16:26:32

Odstup signál-šum

- PSD šumu označení N₀ obvykle konstantní v pásmu B
- Jednotka = W/Hz resp. dBm/Hz
- Často se vyjadřuje pomocí ekvivalentní šumové teploty T

$$PSD_{noise} = N_0 = kT$$

k = Boltzmanova konstanta

$$k = 1.38.10^{-23} J/K$$

- T = virtuální ekvivalentní teplota
 bezodrazové koncovky, která generuje
 stejnou PSD šumu
- o Bezodrazová koncovka

$$N_0 = kT_0$$

$$N = kTB$$

Výjimka - fázový šum LO

$$T_0 \cong 290 \ K$$

Date: 5.JUN.2017 16:18:19

Fázový šum LO

- Místní oscilátor ("Local Oscillator", LO)

 oscilátor používaný pro buzení LO
 vstupů směšovačů (relativně silným signálem ~10dBm)
- LO a směšovače patří mezi základní komponenty (skoro) všech radiových vysílačů a přijímačů - detaily později
- Fázový šum = šum v bezprostřední blízkosti nosné způsobený náhodnými změnami fáze
- Fázový šum se násobením (konvoluce spekter) přenáší na užitečný signál
- Vliv fázového šumu se řeší ve všech radiových přijímačích (RX)
- Měření i výpočty → relativně složité

Date: 16.OCT.2008 17:33:23

Šumové číslo F

- Používá se pro popis šumových vlastností
 2-branů
- 2 hlavní definice:
 - SNR definice
 - Výkonová definice
- SNR definice:
 - o S_1 = výkon signálu na vstupu
 - o N_1 = výkon šumu na vstupu
 - o S_2 =výkon signálu na výstupu
 - N₂=výkon šumu na výstupu
- Důležité:
 - Platí pouze pro $N_1 = kT_0B$
 - To je šumové vyzařování "černého tělesa"
 - o Definiční teplota $T_0 = 290 K$

- Použití definice založené na SNR:
 - Systémové výpočty
 - Rozhodující pro BER
 - Každá modulace a BER vyžadují určitou hodnotu SNR_{min}
 - Pro analýzu VF obvodů ale tato definice vhodná není

Referenční "černé těleso"

- Generuje šum $N_1 = kT_0B$
- Referenční teplota

$$T_0 = 290 \ K$$

- Praktická realizace ve VF oboru → bezodrazová koncovka (BK)
 - Impedance přesně Z₀= 50Ω
 - Velmi vysoké RL

elmaq.org

- Vyrábí se do 10¹-10² GHz
- Standardní VF komponenta
- Jiná relevantní realizace = anténa:
 - o Impedančně přizpůsobená
 - Namířená na "černý" povrch s fyzickou teplotou 290K
 - ∨ oboru bezdrátových komunikací → častý případ
- V ostatních případech $N_1 \neq kT_0B$ a definici F nelze použít přímo

CASE STYLE: LL561

Šumové číslo F

Výkonová definice:

 Nahrazuje signály S₁ a S₂ ziskem 2branu G:

$$G = S_2 / S_1$$

- Vhodné pro návrh obvodů a měření
- Na vstupu musí být BK s impedancí přesně Z₀ a šumovým výkonem

$$N_1 = kT_0B$$

Definice:

- Celkový výstupní šumový výkon N₂
 dělený zesíleným šumem z BK na vstupu.
- N_a = šumový výkon přidaný 2branem
- N_a lze použít pro složitější šumové výpočty - například šum kaskády

$$F = \frac{N_2}{GN_1} = \frac{GN_1 + N_a}{GN_1} = 1 + \frac{N_a}{GN_1} = 1 + \frac{N_a}{kT_0BG}$$

Často v dB

$$F_{dB} = 10.\log F$$

$$F = 10^{F_{dB}/10}$$

Ekvivalentní šumová teplota T_e

- Výhodné pro řešení šumu antén:
 - Z 2-branu jsou vyjmuty všechny vnitřní zdroje šumu a jsou nahrazeny virtuální přídavnou BK zapojenou na vstupu,
 - \circ a to BK s šumovou teplotou T_e
 - T_e lze vypočítat z N_a
- N_a z definice F:

$$N_a = (F - 1)kT_0BG$$

• N_a odpovídající T_e :

$$N_a = kT_eBG$$

Srovnáním:

$$T_e = (F - 1)T_0$$

- Použití v radioastronomii:
 - Obvody s velmi nízkými F:

$$F = 1,1$$
 $F_{dB} = 0,413dB$ $T_e = 29K$
 $F = 1,11$ $F_{dB} = 0,453dB$ $T_e = 31,9K$

Řešení šumu antén - podrobnosti dále

Šumové číslo pasivních komponent

- Dobře impedančně přizpůsobené pasivní VF komponenty:
 - Atenuátory
 - Kabely, přenosová vedení
 - Filtry v průchozím pásmu
 - VF přepínače
 - 0

elmag.org

- F je možné vyhodnotit podle definice:
 - o Kombinace BK-atenuátor generuje šumový výkon $N_2 = kT_0B$
 - o , přitom přenos je G=1/L
 - Šumové číslo F se rovná útlumu pasivního 2-branu L
- Může být velmi významné

$$F = \frac{N_2}{GN_1} = \frac{kT_0B}{\frac{kT_0B}{L}} = L$$

- Při zakončení ostatních bran pomocí BK lze použít i pro vícebrany:
 - o Děliče výkonu
 - Směrové vazby
 - 0

Sumové číslo kaskády

- Radiové RX se vždy skládají z více kaskádně zapojených komponent
- Pro většinu z nich platí $N_1 \neq kT_0B$

$$N_1 \neq kT_0B$$

$$N_{a1} = (F_1 - 1)kT_0BG_1$$

Definiční vztah pro F nelze tedy použít přímo

$$N_{a2} = (F_2 - 1)kT_0BG_2$$

S výhodou lze použít N_a

$$N_{a3} = (F_3 - 1)kT_0BG_3$$

Šumový výkon:

$$N_2 = kT_0BG_1G_2G_3 + N_{a1}G_2G_3 + N_{a2}G_3 + N_{a3} =$$

$$= kT_0B[G_1G_2G_3 + (F_1 - 1)G_1G_2G_3 + (F_2 - 1)G_2G_3 + (F_3 - 1)G_3]$$

Friisův vztah:

$$F_c = \frac{N_2}{kT_0BG_1G_2G_3} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1G_2} + \dots$$

Lze jej rozšířit pro libovolně dlouhé kaskády

Šumové číslo kaskády

Celkové šumové číslo:

$$F_c = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots$$

- \circ Silně závisí na F_1 = šumové číslo prvního obvodu v kaskádě
- Proto jsou na vstupech RX obvykle nízkošumové předzesilovače LNA
- o Hodnoty F_{LNA} mohou být velmi nízké i výrazně méně než 1dB (1,26), a to i na vyšších GHz frekvencích (např. v satelitních komunikacích)
- Ne vždy jsou ale extrémně nízké hodnoty F nezbytné závisí to na systémovém rozboru / návrhu (později)
- o Vliv šumových příspěvků následujících obvodů v kaskádě je omezen ziskem LNA s hodnotou G_1 ta by měla být proto dostatečně vysoká

Příklad: Friisův vztah

- Vstupní obvody RX se skládají z propojovacího kabelu, vstupního TDD přepínače, LNA, filtru a přímého IQ demodulátoru. Vypočtěte celkové šumové číslo F_c tohoto RX.
- Útlumy kabelu a přepínače lze sloučit do vstupního útlumu L_{in} .

Celkové šumové číslo RX:
$$F_c = L_{in} + (F_{LNA} - 1)L_{in} + \frac{(F_F - 1)L_{in}}{G_{LNA}} + \frac{(F_{dem} - 1)L_{in}L_F}{G_{LNA}}$$

Šumové číslo demodulátoru:

$$F_{dem} \cong L_{conv}$$

Výsledné *F_c*:

$$F_c = 2,24 + 1,23 + 0,0536 + 0,473 = 4,0$$

$$F_c = 10\log(4) = 6 dB$$

parametr	L_{in}	$oxed{F_{\!\scriptscriptstyle L\!N\!A}}$	$G_{{\scriptscriptstyle LNA}}$	L_{F}	L_{dem}
hodnota dB	3,5	1,9	18	4	8
hodnota [-]	2,24	1,55	63,1	2,51	6,31

L_{cb}=2,5dB

Systémové šumové výpočty

 Předcházející příklad ukazuje silný vliv útlumu na vstupu L_{in} na celkové šumové číslo RX

$$F_c = L_{in} + (F_{LNA} - 1)L_{in} = L_{in} + L_{in}F_{LNA} - L_{in} = L_{in}F_{LNA}$$

$$F_{cdB} = L_{indB} + F_{LNAdB}$$

- Ztráty před LNA v dB se přímo sčítají s F_{LNA} (také v dB)
- Vysoké útlumy mezi anténou a LNA mohou být "zničující"
- Vliv šumu antény:
 - Nelze jej řešit přes šumové číslo to je definováno jen pro 2-brany
 - Lze jej řešit pomocí šumových teplot
 - o Šumová teplota antény T_A :
 - Je dána hlavně teplotou okolí
 - Pozemské komunikace $T_A \cong 300K$ —
 - Satelitní komunikace $T_A \cong 3K$
 - o Vliv šumu RX: $T_{RX} = (F_{RX} 1)T_0$

Systémové šumové výpočty

Výsledná systémová šumová teplota:

$$T_{sys} = T_A + T_{RX}$$

Pozemské komunikace:

Antény "vidí" povrch země, budovy, lidi, ... $T_A \cong 300K$

$$T_A \cong 300K$$

- o Tomu odpovídá $T_A \cong T_0$

O Systémová šumová teplota
$$T_{sys} = T_A + T_{RX} = T_0 + (F_{RX} - 1)T_0 = F_{RX}T_0$$

- \circ $T_A \cong 300K$ je dost vysoká hodnota \to použití extrémně nízkošumových LNA s nízkými T_{BX} nepřináší velký efekt a jsou zbytečně nákladné
- o Příklad: Šumová čísla F mobilních telefonů jsou obvykle kolem 6dB

Satelitní komunikace:

o Antény "vidí" téměř 0K (jen reliktní záření) $T_{A} \cong 3K$

$$T_A \cong 3K$$

- \circ Velmi nízké hodnoty T_{BX} jsou pak velmi výhodné
- $Z T_{svs}$, Ize vypočítat šumový práh RX
 - vztažený ke vstupu:

$$N_{in} = kT_{sys}B$$

Systémové šumové výpočty

· Příklad:

Mobilní datový přenos 64-QAM vyžaduje pro požadované BER

$$SNR = 14dB$$

$$B = 1MHz$$

$$F_{RX} = 6dB = 4$$

$$T_A \cong 290K$$

$$S_{in\min}$$

· Řešení:

$$T_{sys} = T_A + T_{RX} = F_{RX}T_0 = 4.290 = 1160K$$

$$N_{in} = kT_{sys}B = 1,38.10^{-23}1160.10^6 = 1,6.10^{-14} = -108dBm$$

Minimální výkon signálu

$$S_{in\min} = N_{in}SNR = -108 + 14 = -94dBm$$

Nelineární jevy

- Vedle šumu je funkce všech VF systémů omezená i nelineárním chováním některých obvodů:
 - Zesilovače
 - Směšovače
 - Násobiče frekvence
 - Limitery
 - 0 ...
- Nelineární chování musí být často zvažováno i při použití:
 - VF přepínačů
 - o Proměnných atenuátorů
 - 0 ...
- Obecně, všechny obvody obsahující tranzistory nebo diody

• Příklad:

- Saturace VF zesilovačů
- Vliv na konstelační diagram

Jeden vstupní signál

- Obvyklý popis nelineárního chování
 - → pomocí polynomiální aproximace:

$$v_2 = k_1 v_1 + k_2 v_1^2 + k_3 v_1^3 + \dots$$

1 vstupní sinusový signál

$$v_1 = V_1 \cos \omega_1 t$$

Výstupní signál:

$$v_2 = \frac{1}{2}k_2V_1^2 + (k_1V_1 + \frac{3}{4}k_3V_1^3)\cos(\omega_1 t) + \frac{1}{2}k_2V_1^2\cos(2\omega_1 t) + \frac{1}{4}k_3V_1^3\cos(3\omega_1 t) + \dots$$

- Na výstupu je více různých nelineárních produktů
- Nelineární obvody vykazují kompresi a generují nové výstupní frekvence

Použité vzorce:

$$\cos^2 \alpha = \frac{1}{2}(1 + \cos 2\alpha)$$

$$\cos^3 \alpha = \frac{1}{4} (\cos 3\alpha + 3\cos \alpha)$$

Výstupní spektrum

Jednotlivé složky v₂:

- DC složka = detekce
- Zesílený/zeslabený vstupní signál
- Komprese signálu
- $k_3 \le 0$

- o 2. harmonická
- o 3. harmonická
- Použití:

elmag.org

- VF detektory
- o Zesilovače
- Omezovače = limitery

Násobiče frekvence 2x, 3x, ...

$$\frac{1}{2}k_2V_1^2$$

$$k_1V_1\cos(\omega_1t)$$

$$\frac{3}{4} |k_3| V_1^3 \cos(\omega_1 t)$$

$$\frac{1}{2}k_2V_1^2\cos(2\omega_1t)$$

$$\frac{1}{4}k_3V_1^3\cos(3\omega_1t)$$

Komprese P_{-1dB}

- Je to nelineární produkt 3. řádu
- Výstupní napětí na ω₁:

$$v_2(\omega_1) = k_1 V_1 \cos(\omega_1 t) - \frac{3}{4} |k_3| V_1^3 \cos(\omega_1 t)$$

- Protože je k_3 <0, pro vyšší V_1 klesá výstupní výkon
- Zesilovače → komprese je způsobena omezeným napájecím napětím
- V praxi se popisuje pomocí parametru P_{-1dB}
- P_{-1dB} = výstupní výkon odpovídající rozdílu 1dB mezi reálným průběhem P_{out} = $f(P_{in})$ a extrapolovanou lineární částí

- P_{-1dB} = použitelný výstupní výkon
 - ALE na výstupu mohou být již nepřijatelné úrovně parazitních IM produktů
 - Důsledkem mohou být rušivé interference nebo rozšiřování spektra
 - o Detaily dále
- V praxi proto často P_{out}<P_{-1dB}

Dva vstupní signály

- Jednotlivé složky v₂:
 - o DC složka, detekce
 - o Zesílené / zeslabené v₁
 - o Komprese

$$k_3 \le 0$$

- o 2. harmonická
- o 3. harmonická
- o IM produkty 2. řádu
- o IM produkty 3. řádu

$$\frac{1}{2} k_2 \left(V_1^2 + V_1^2 \right) = k_2 V_1^2$$
 v₁

$$k_1 V_1 \left[\cos(\omega_1 t) + \cos(\omega_2 t)\right]$$

$$\frac{3}{4} |k_3| V_1^3 \left[\cos(\omega_1 t) + \cos(\omega_2 t) \right]$$

$$\frac{1}{2}k_2V_1^2\left[\cos(2\omega_1t)+\cos(2\omega_2t)\right]$$

$$\frac{1}{4}k_3V_1^3\left[\cos(3\omega_1t)+\cos(3\omega_2t)\right]$$

$$k_2V_1^2\left[\cos(\omega_1-\omega_2)t+\cos(\omega_1+\omega_2)t\right]$$

$$\frac{3}{4}k_{3}V_{1}^{3}\left[\cos(2\omega_{1}-\omega_{2})t+\cos(2\omega_{1}+\omega_{2})t\right]+$$

$$+\frac{3}{4}k_3V_1^3[\cos(2\omega_2-\omega_1)t+\cos(2\omega_2+\omega_1)t]$$

$$v_1 = V_1(\cos \omega_1 t + \cos \omega_2 t)$$

Výstupní spektrum 🗸

- Nové výstupní frekvence:
 - 2. harmonické
 - 3. harmonické
 - Intermodulační produkty (IM)
 - IM 2. řádu (typu a±b)
 - IM 3. řádu (typu 2a±b)

- Použití = směšovače ("mixers")
- Ty patří mezi základní komponenty všech radiových TX i RX
- IM mohou ale i způsobovat rušivé signály = interference,
- a to pokud spadají do jiného VF kanálu
- Produkty 2. řádu obvykle spadají daleko od výchozích frekvencí,

takže je lze dobře filtrovat.

elmaq.org

$$f_{IF} = \pm f_{LO} \pm f_{RF}$$

$$f_{IF} = \pm f_{LO} \pm f_{RF}$$
 $f_{RF} = \pm f_{LO} \pm f_{IF}$

IM produkty 3. řádu

Typu 2a±b:

- Vždy jsou to rušivé interference.
- Ve VF radiových komunikacích představují jeden z nejvážnějších problémů.
- o Digitální signály \rightarrow mají diskrétní spektrum (vzdálenost čar = $1/T_s$).
- IM produkty typu 2a±b mají frekvence, které jsou těsně vedle budících frekvencí, a mohou tedy spadat do stejného nebo sousedního kanálu.
- To se může týkat i dalších složek ma±nb, přičemž tyto interference
- se chovají jako zvýšený vnitřní šum v daném radiovém kanálu,
- který zvyšuje chybovost BER.

- Generace nových blízkých složek na±mb také vede k rozšiřování výstupního spektra ("spectral regrowth"):
 - To může rušit sousední kanály.
 - Je to definováno EMC/EMI normami,
 - o které jsou dost přísné.
 - Měřený parametr = výkon v sousedním kanálu ("adjacent channel power" = ACHP).
- Lze omezit:
 - Použitím lineárnějších obvodů
 - Nastavením nižšího výstupního výkonu
 - Bližší popis dále

Date: 5.JUN.2017 16:56:43

36

IP2, snížení IM2

- IP2 = 2-nd order intercept point
- Užitečný pro výpočty IM2:
 - o P_{IM2} = výkon složky IM2
 - o O_{IM2} = odstup IM2 vůči vstupnímu signálu na ω_1 (1a)
- IP2 = průsečík extrapolovaných závislosti 1a a a±b, je to virtuální výkon v dBm
- Užitečné vzorce (v dBm):

$$P_{IM2} = IP2 - 2(IP2 - P_{out}) = 2P_{out} - IP2$$

- Směrnice závislosti 1a = 1
- Směrnice závislosti a±b = 2

elmag.org

$$10\log(V_1^1) = 10\log(V_1)$$

$$10\log(V_1^2) = 20\log(V_1)$$

Snížení IM2:

- Snížení výkonu signálu 1a o 1dB snižuje P_{IM2} o 2dB a zvyšuje O_{IM2} o 1dB
- Nejjednodušší opatření

Příklad: Výpočty IM2

 Parametry výkonového zesilovače ZHL-4W-422+ (www.minicircuits.com)

- o *IP2*=55,8dBm
- o $P_{-1dB} = 36,6dBm$
- Vypočtěte P_{IM2} a O_{IM2} odpovídající P_{out} =10, 20, 30 a 36,6dBm
- Výsledky jsou v připojené tabulce
- Snížení P_{out} je účinný a často používaný nástroj pro omezení parazitních produktů IM2
- IP2 se liší pro produkty typu 2a resp. a±b, musí být správně definováno

$P_{out}[dBm]$	36,6	30	20	10
$P_{out}[W]$	4,5	1,0	0,1	0,01
$P_{IM 2} [dBm]$	17,4	4,2	-15,8	-35,8
$O_{IM 2}[dB]$	19,2	25,8	35,8	45,8

IP3, snížení IM3

- IP3 = 3-rd order intercept point
- Užitečný pro výpočty IM3:
 - o P_{IM3} = výkon složky IM3
 - o O_{IM3} = odstup složky IM3 vůči budícímu signálu na ω_1 (1a)
- IP3 = průsečík extrapolovaných lineárních částí závislostí 1a a 2a±b, je to virtuální výkon v dBm.
- Užitečné vzorce (v dBm):

$$P_{IM3} = IP3 - 3(IP3 - P_{out}) = 3P_{out} - 2IP3$$

- $O_{IM3} = P_{out} P_{IM3} = P_{out} (3P_{out} 2IP3) = 2IP3 2P_{out}$
 - Směrnice závislosti 1a = 1

elmag.org

Směrnice závislosti 2a±b = 3

$$10\log(V_1^1) = 10\log(V_1)$$

 $10\log(V_1^3) = 30\log(V_1)$

- Snížení IM3:
 - Snížení výkonu
 signálu 1a o 1dB sníží
 P_{IM3} o 3dB a zvýší
 O_{IM3} o 2dB

Příklad: Výpočty IM3

- Parametry výkonového zesilovače ZHL-4W-422+ (www.minicircuits.com)
- Na f=1GHz:

elmag.org

- o *IP3*=47,8dBm
- o P_{-1dB} =36,6dBm
- Vypočtěte P_{IM3} a O_{IM3} odpovídající P_{out}=10, 20, 30 a 36,6dBm
- Výsledky jsou uvedeny v tabulce
- Snížení P_{out} je účinný a často používaný nástroj pro omezení všech parazitních produktů IM3
- IP3 se liší pro produkty typu 3a a 2a±b, musí být správně
 definováno

$P_{out}\left[dBm\right]$	36,6	30	20	10
$P_{out}\left[W\right]$	4,5	1,0	0,1	0,01
$P_{IM3} [dBm]$	14,2	-5,6	-35,6	-65,6
$O_{IM3}[dB]$	22,4	35,6	55,6	75,6

Shrnutí - parametry

- Mezi nejdůležitější parametry v oboru VF a mikrovlnné techniky patří:
 - S-parametry
 - Výkony signálů = signálové úrovně
 - \circ **Sumové parametry** F, T_e a fázový šum LO
 - Nelineární parametry P_{-1dB}, P_{IM2}, IP2, P_{IM3}, IP3
- Tyto parametry se používají pro:
 - Návrh VF a mikrovlnných systémů
 - Měření
 - Nastavování a údržbu bezdrátových radiových tras

