

General information

Designation

Dalbergia latifolia

Typical uses

Veneer; decorative plywood; speciality items: cutlery handles; brush backs; billiard cue butts; fancy turnery articles, woodwind instruments, boatbuilding, agricultural implements.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O					
Material family	Natural				
Base material	Wood (t	Wood (tropical)			
Renewable content	100			%	
Composition detail (polymers and natur	ral materials)				
Wood	100			%	
Price					
Price	* 6.7	-	10.8	USD/kg	
Physical properties					
Density	840	-	1.02e3	kg/m^3	
Mechanical properties					
Young's modulus	* 4.82	-	5.38	GPa	
Yield strength (elastic limit)	* 3.12	_	3.84	MPa	
Tensile strength	* 5.2	_	6.4	MPa	
Elongation	* 0.32	_	0.39	% strain	
Compressive strength	* 12.4	-	15.2	MPa	
Flexural modulus	4.38	-	4.89	GPa	
Flexural strength (modulus of rupture)	* 5.2	-	6.4	MPa	
Shear modulus	* 0.498	-	0.685	GPa	
Shear strength	* 39	-	47.7	MPa	
Rolling shear strength	* 1.44	-	4.33	MPa	
Bulk modulus	* 2.39	-	2.68	GPa	
Poisson's ratio	* 0.02	-	0.04		
Shape factor	5.7				
Hardness - Vickers	12.7	-	15.5	HV	
Hardness - Brinell	* 36.3	-	44.3	MPa	
Hardness - Janka	12.7	-	15.5	kN	

UV radiation (sunlight)

Rosewood (dalbergia latifolia) (t)

EDUPACK					
Fatigue strength at 10^7 cycles	* 1.56 -	1.92	MPa		
Mechanical loss coefficient (tan delta)	* 0.011 -	0.014			
Differential shrinkage (radial)	0.15 -	0.18	%		
Differential shrinkage (tangential)	0.23 -	0.26	%		
Radial shrinkage (green to oven-dry)	2.4 -	3	%		
Tangential shrinkage (green to oven-dry)	5.2 -	6.4	%		
Volumetric shrinkage (green to oven-dry)	* 11 -	18	%		
Work to maximum strength	* 8.1 -	9.9	kJ/m^3		
Impact & fracture properties					
Fracture toughness	* 0.807 -	0.986	MPa.m^0.5		
Thermal properties					
Glass temperature	77 -	102	°C		
Maximum service temperature	120 -	140	°C		
Minimum service temperature	* -73 -	-23	°C		
Thermal conductivity	0.191 -	0.234	W/m.°C		
Specific heat capacity	1.66e3 -	1.71e3	J/kg.°C		
Thermal expansion coefficient	* 37.5 -	49.2	µstrain/°C		
Electrical properties					
Electrical resistivity	* 2.1e14 -	7e14	μohm.cm		
Dielectric constant (relative permittivity)	* 4.97 -	6.08			
Dissipation factor (dielectric loss tangent)	* 0.073 -	0.09			
Dielectric strength (dielectric breakdown)	* 1 -	2	MV/m		
Magnetic properties					
Magnetic type	Non-magnet	Non-magnetic			
Optical properties					
Transparency	Opaque	Opaque			
Durability					
Water (fresh)	Limited use	Limited use			
Water (salt)	Limited use				
Weak acids	Limited use				
Strong acids	Unacceptab	Unacceptable			
Weak alkalis	Acceptable	·			
Strong alkalis	·	Unacceptable			
Organic solvents	Acceptable	·			
Oxidation at 500C		Unacceptable			
	Unacceptable				

	Good		
Flammability	Highly flammable		
Primary production energy, CO2 and water			
Embodied energy, primary production	* 11.6 - 12.8 MJ/kg		
CO2 footprint, primary production	* 0.574 - 0.633 kg/kg		
Water usage	* 665 - 735 l/kg		
Processing energy, CO2 footprint & water			
Coarse machining energy (per unit wt removed)	* 0.616 - 0.681 MJ/kg		
Coarse machining CO2 (per unit wt removed)	* 0.0462 - 0.0511 kg/kg		
Fine machining energy (per unit wt removed)	* 1.88 - 2.08 MJ/kg		
Fine machining CO2 (per unit wt removed)	* 0.141 - 0.156 kg/kg		
Grinding energy (per unit wt removed)	* 3.29 - 3.64 MJ/kg		
Grinding CO2 (per unit wt removed)	* 0.247 - 0.273 kg/kg		
Recycling and end of life			
Recycle	×		
Recycle fraction in current supply	8.55 - 9.45 %		
Downcycle	J		
Combust for energy recovery	✓		
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg		
Combustion CO2	* 1.69 - 1.78 kg/kg		
Landfill	√ .		

Notes

Biodegrade

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse	
Reference	
Shape	