MoskaliovYV 18092024-150526

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.512	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Найти точку (см. рисунок 1), соответствующую s_{22} на частоте 5.4 ГГц.

Рисунок 1 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
4.2	0.494	171.3	6.608	58.9	0.062	50.7	0.236	-109.5
4.3	0.496	170.1	6.452	57.8	0.063	50.5	0.234	-110.7
4.4	0.498	169.0	6.297	56.6	0.064	50.2	0.231	-112.0
4.5	0.500	167.8	6.146	55.4	0.066	50.0	0.229	-113.3
4.6	0.502	166.8	6.010	54.5	0.067	49.7	0.227	-114.5
4.7	0.503	165.7	5.876	53.5	0.068	49.5	0.224	-115.7
4.8	0.505	164.7	5.744	52.4	0.069	49.2	0.222	-116.9
4.9	0.507	163.7	5.614	51.3	0.070	48.9	0.219	-118.2
5.0	0.509	162.7	5.486	50.2	0.071	48.7	0.217	-119.5
5.1	0.508	161.9	5.376	49.4	0.073	48.5	0.215	-120.0
5.2	0.506	161.0	5.268	48.5	0.074	48.4	0.213	-120.6

и частоты $f_{\scriptscriptstyle \rm H}=4.4$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=5.1$ $\Gamma\Gamma$ ц.

Найти модуль $s_{12}\;$ в дБ на частоте $f_{\scriptscriptstyle \rm B}$.

Варианты ОТВЕТА:

- 1) -22.7 дБ
- 2) -5.9 дБ
- 3) 14.6 дБ
- 4) -13.3 дБ

Найти точку (см. рисунок 2), соответствующую коэффициенту отражения от нормированного импеданса $z=1.95\text{-}2.41\mathrm{i}$.

Рисунок 2 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Задан двухполюсник на рисунке 3, причём $R1 = 208.23 \, \text{Ом}$.

Рисунок 3 – Двухполюсник

Найти полуокружность (см. рисунок 4), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 4 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.564	156.8	4.666	68.8	0.058	58.1	0.263	-44.1
1.5	0.578	147.3	3.740	60.7	0.070	57.0	0.254	-48.4
1.8	0.594	138.0	3.104	53.2	0.082	54.8	0.246	-53.9
2.1	0.608	130.0	2.651	46.3	0.094	52.3	0.241	-60.1
2.4	0.629	122.1	2.313	39.3	0.105	49.7	0.234	-67.3
2.7	0.653	115.2	2.038	32.5	0.116	46.7	0.227	-75.2
3.0	0.674	108.9	1.818	26.1	0.126	43.9	0.220	-83.8
3.3	0.692	103.1	1.640	20.5	0.135	41.1	0.217	-93.1
3.6	0.713	97.7	1.485	14.5	0.145	38.3	0.217	-102.7

и частоты $f_{\scriptscriptstyle \rm H}=1.5$ ГГц, $f_{\scriptscriptstyle \rm B}=3.6$ ГГц.

Найти обратные потери по входу $\,$ на $f_{\scriptscriptstyle \rm H}$.

Варианты ОТВЕТА:

1) 4.8 дБ 2) 2.4 дБ 3) 2.9 дБ 4) 1.5 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.9	0.483	169.3	7.357	60.8	0.057	56.5	0.218	-105.9
4.0	0.484	168.2	7.159	59.6	0.059	56.3	0.217	-106.8
4.1	0.486	167.1	6.992	58.6	0.060	55.9	0.215	-108.0
4.2	0.488	166.1	6.827	57.6	0.061	55.5	0.213	-109.3
4.3	0.490	165.1	6.664	56.6	0.063	55.2	0.211	-110.5
4.4	0.492	164.0	6.503	55.5	0.064	54.8	0.209	-111.8
4.5	0.494	163.0	6.345	54.3	0.066	54.5	0.208	-113.1
4.6	0.496	162.1	6.204	53.4	0.067	54.1	0.206	-114.3
4.7	0.497	161.2	6.065	52.4	0.068	53.7	0.203	-115.5
4.8	0.499	160.3	5.928	51.4	0.069	53.4	0.201	-116.7
4.9	0.501	159.4	5.792	50.4	0.071	53.0	0.199	-118.0

и частоты $f_{\mbox{\tiny H}}=4.0$ $\Gamma\Gamma\mbox{\scriptsize II},$ $f_{\mbox{\tiny B}}=4.8$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.2 дБ 2) 0.8 дБ 3) 2.1 дБ 4) 1.6 дБ