Modul 6

Detect Outlier

Mata Kuliah Data Mining

Disusun Oleh

Rizky Pratama Yudha

2241760020

Kelas SIB 2A

Jurusan Teknologi Informasi Program Studi D4 Sistem Informasi Bisnis POLITEKNIK NEGERI MALANG **MALANG**

2024

Latihan 1:

- 1. Perhatikan dataset Titanic, menurut anda kira-kira atribut mana yang memiliki oulier selain atribut age?
- Selain atribut age adalah no of sibling or spouses on board, no of parents or children on board, passanger fare

Latihan 2:

- 1. Kira-kira atribut mana yang tidak diperlukan dalam menentukan model prediktif penumpang yang selamat?
- Atribut nama

Langkah-langkah praktikum

- Menambahkan data titanic

- Menentukan atribut mana yang penting dan tidak penting dengan operator select attributes

- Menambahkan operator normalize

- Menambahkan operator detect outliers (distance)

- Menggunakan filter examples untuk menghapus sample data dengan outlier

Latihan Praktikum 1

1. Pada data titanic

Pada data mahasiswa:

- Manipulasi data yang dilakukan sebanyak 6 data
- Atribut yang hanya ditambahkan BB

- Menambahkan normalize

Row No.	ВВ		
1	2.971		
2	-0.376		
3	?		
4	?		
5	?		
6	-0.309		
7	-0.412		
8	-0.351		
9	-0.387		
10	-0.407		
11	-0.279		
12	2.111		
13	-0.309		
14	-0.376		
15	-0.418		
16	-0.212		
17	?		
18	?		
ExampleSet (29	ExampleSet (29 examples,0 special a		

- Menambahkan detect outlier (LOF)

Row No.	outlier	ВВ
1	50.175	2.971
2	0.946	-0.376
3	0	?
4	0	?
5	0	?
6	1.157	-0.309
7	1.244	-0.412
8	1.103	-0.351
9	0.956	-0.387
10	1.102	-0.407
11	2.079	-0.279
12	36.805	2.111
13	1.157	-0.309
14	0.946	-0.376
15	1.340	-0.418
16	3.766	-0.212
17	0	?
18	0	?

Terlihat outlier dengan nilai diatas 3 merupakan nilai yang tidak semestinya, maka menambahkan filter examples untuk seleksi data outlier yang lebih dari 3

Hasil:

Row No.	outlier	ВВ
1	50.175	2.971
2	36.805	2.111
3	3.766	-0.212
4	3.665	-0.593
5	3.988	-0.613
6	34.342	1.941
7	3.988	-0.613

2. Deteksi outlier mengunakan pyhton

Link collab:

https://github.com/rizkypratamayudha/dataMining/blob/main/detectOutliers.ipynb

Link metode yang dipakai untuk menemukan oulier:

https://ilmudatapy.com/menemukan-outlier-dengan-python/#google_vignette

kesimpulan metode atau cara yang digunakan:

- Cara yang digunakan dalam menentukan outlier dalam teks tersebut adalah dengan menggunakan metode interquartile range (IQR) metode ini melibatkan beberapa langkah, antara lain :
 - 1. Menghitung nilai Q1 (kuartil pertama) dan Q3 (kuartil ketiga) dari data menggunakan fungsi quantile() dari Numpy.
 - 2. Menghitung selisih antara Q3 dan Q1 untuk mendapatkan nilai IQR.
 - 3. Menghitung nilai IQR minimum dan maksimum dengan mengalikan IQR dengan 1.5 (konstanta untuk menemukan outliers).
 - 4. Mencari nilai minimum dan maksimum dari data.
 - 5. Membuat kondisi untuk mendefinisikan outlier berdasarkan perbandingan antara nilai minimum dan maksimum data dengan nilai IQR minimum dan maksimum.
 - 6. Mengidentifikasi dan menampilkan data yang termasuk dalam kategori outlier berdasarkan kondisi yang telah ditentukan.