MLDS-413 Introduction to Databases and Information Retrieval

Lecture 1 Overview; Integer Representation

Instructor: Nikos Hardavellas

Course Summary

- Learn how to handle real-world, **complex**, **messy** data with SQL relational databases
 - A powerful foundational technology
 - Like a filesystem, but better
 - (easy queries, indexing, concurrency, crash tolerance)
- Roughly speaking "Data Science" is:
 - Data management (this course!)
 - Statistics (e.g., MLDS Predictive Analytics I, MLDS Data Mining)
 - Visualization (e.g., MLDS Data Visualization)

You'll learn to answer questions (about the past) using complex data sets

Things you cannot do with Excel and Matlab

- Model complex data relationships
 - Spreadsheets and matrices are very limiting formats
 - Just have records with attributes
 - Can't model one-to-many and many-to-many relationships
 - Multiple spreadsheets / multiple matrices for different types of data are possible
 - ...but, linking them is difficult
- Enforce data integrity constraints
 - Spreadsheet cells can have all kinds of weird data
 - Matlab matrices cannot easily handle anything other than numbers
- Spreadsheets are terrible for large datasets!
 - [Excel forum on Reddit]
 - Crashing on 10K-100K rows of data
 - Freezing on changes
 - Calculations take minutes
- Keep data and analysis separate

	A	В	С	D	E	F	G
1							
2							
3	Company Name	Invoice Date	Delivery Date	Amounts			
4	Jenny	01.09.2007	1900/01/00	2057			
5		01.11.2007	1900/01/00	2669			
6	Jenny Total			2669		Unwar	
7	Sam	1900/01/01	1900/01/00	1426		Row	/S
8		1998/01/01	01.01.1998	1185			
9	Gaps that	1998/01/01	1900/01/00	2359			
10	need to be	1998/01/01	01.06.1998	1886			
11	filled in	1998/01/01	1900/01/00	2359			
12		2000/07/01	01.07.2000	2486			
13	Sam Total			9342			
14						Unwant	ted
15				Page 1		Rows	6
16							
17	Peter	2000/01/01	1900/01/00	2385			
8		1975/04/01	1900/01/00	0).	
9		2000/04/01	1900/01/00	0,000		Numbers r	not)
20		2005/06/01	1900/01/00	7 293.07		working	_
21		1993/07/01	1900/01/00	42 717.42		working	J
22		1993/07/01	01.07.1993	55 872.63			
23	Dates not	01.08.2000	1900/01/00	40 176.80			
24	working	01.09.2000	1900/01/00	1585			
25		01.10.2001	1900/01/00	1384			
26		01.10.2004	01.10.2004	01518			
		04 40 0007	04 40 0007	TOOT 7			

PATSTAT: European Patent Office's International Patent Database

- 29 cross-referenced tables
- 6 DVDs of data
- 119GB of CSV files after unzipping

Stack Overflow Public Data Dump – 1TB

Difficulties in plain Python, R, C++, Java, etc.

- Working with data that is larger than the computer's RAM (scalability)
- Keeping your data around after your program finishes (persistence)
- Efficiently searching through lots of data (indexing)
- Easily filtering and summarizing data (querying)
- Sharing data between multiple applications (concurrency)

The Goal: Easy & Clean Descriptive Analytics

Answer a wide variety of complex questions using the same database:

• Where did our 10 biggest customers in 2007 live?

- How many widgets are left in stock?
- What is the average price of the chairs we sell?

Database Management Systems

- E.g., Oracle, MS SQL Server, MySQL, PostgreSQL, (SQLite, Access)
- Often run on a remote, multi-user server
 - Typically, you need to know the hostname and have a username and password
- May be connected to one or more software applications or may be standalone
- Client libraries exist for every common programming language
 - But you usually query the database using the SQL language

Course Outline (subject to change)

- Data in detail
 - Numeric formats
 - Binary, integers, floats, precision
 - Dates and times
 - Text encodings
 - ASCII, UTF-8, special characters
 - Organizing data in files
 - CSV, XML, JSON
 - Messy data
 - Missing entries, fuzzy matching

- SQL relational databases
 - Data modelling
 - One-to-many, many-to-many relationships
 - Integrity & foreign key constraints
 - Structured Query Language (SQL)
 - Select, create table, update, delete
 - Joining tables
 - Subqueries & temporary tables
 - Indexes and execution plans
- Plus more if time permits

DB Engines for MSiA-413: MySQL (SQLite), Postgres

Questions about course content?

Course Logistics

- READ THE SYLLABUS !!! It is on Canvas
 - Pay particular attention to the **Academic Integrity** statements
 - Pay particular attention to the **Policy on Academic Work Missed Due to Illness**
- No exams, only homeworks (8 if time allows, roughly one a week)
 - Schedule is approximate. The number of homeworks may change
- Homeworks in groups of 2
 - All other group sizes (e.g., 1, 3) require justification and instructor approval
 - We will assign you into groups in the first week of classes
- Use slack for all offline questions regarding the course, not email
 - Please ask course questions openly if possible, so all can benefit from the answer
 - Use private messaging only for questions that reveal your answer
 - Easy to private-message the instructor, if needed
 - Please feel free to answer questions too; your classmates will be grateful!

Recommended Books (not required)

Ramakrishnan & Gehrke "Database Management Systems"

Hernandez "Database Design for Mere Mortals"

Viescas & Hernandez "SQL Queries for Mere Mortals"

Questions about logistics?

Part 2: Integer Representation

Computers store information in binary

- Ones and Zeros
- Called "bits," meaning "binary digits"
- Why?
 - Simplicity
 - Noise robustness
 - By convention
- But how do we get meaning from a sequence of ones and zeros?

Data is zeros and ones plus context

- An **encoding** defines what the zeros and ones represent
- "01000100011000010111010001100001" can represent:
 - The number 1,147,237,473 as an **integer**
 - The number 901.8184 as a float
 - The four letters "Data" in the ASCII character encoding
 - This color (at 37% transparency) in **RGBA**
 - 32 separate True or False values
- Any crazy encoding is possible, but there are some standards

Integers

- Integers are the simplest of all data encodings
- Whole numbers only (no fractions)
- Numbers are represented directly in the "base two" positional notation
- The familiar "base ten" representation of numbers is just a convention due to the fact that humans have ten fingers
 - Still, Mayans/Aztecs used base-20 (vigesimal)
 - They had a "0", drawn as a shell
 - Babylonians used base-60 (sexagesimal)
 - Count to 12 using one hand only, with thumb pointing to each finger bone on the four fingers in turn
 - Mark that 12 by raising a finger on the other hand
 - $60 = 12 \times 5$
- What number base will octopuses evolve to use?

(drawing from http://drawingpencilarts.com/realistic-octopus-drawing/

Integers in detail

Decimal 137_{ten}

Binary
$$10001001_{\text{two}} = 137_{\text{ten}}$$

1 0 0 0 1 0 1

 $\frac{\text{x2}^7 \text{ x2}^6 \text{ x2}^5 \text{ x2}^4 \text{ x2}^3 \text{ x2}^2 \text{ x2}^1 \text{ x2}^0}{128 + 0 + 0 + 0 + 8 + 0 + 0 + 1} \leftarrow \text{powers of 2}$

Simple binary integers

Examples of 2ⁿ

$$1_{\text{ten}} = 1_{\text{two}}$$

$$2_{\text{ten}} = 10_{\text{two}}$$

$$4_{\text{ten}} = 100_{\text{two}}$$

$$8_{\text{ten}} = 1000_{\text{two}}$$

$$16_{\text{ten}} = 10000_{\text{two}}$$

$$32_{\text{ten}} = 100000_{\text{two}}$$

$$64_{\text{ten}} = 1000000_{\text{two}}$$

$$128_{\text{ten}} = 10000000_{\text{two}}$$

Examples of 2ⁿ-1

$$3_{\text{ten}} = 11_{\text{two}}$$

$$7_{\text{ten}} = 111_{\text{two}}$$

$$15_{\rm ten} = 1111_{\rm two}$$

$$31_{\text{ten}} = 11111_{\text{two}}$$

$$63_{\text{ten}} = 111111_{\text{two}}$$

$$127_{\text{ten}} = 11111111_{\text{two}}$$

$$255_{\text{ten}} = 111111111_{\text{two}}$$

There are only 10 types of people in this world... those who understand binary and those who don't.

Binary tricks

- Remember the first eight powers of two:
 - 2, 4, 8, 16, 32, 64, 128, 256
- Remember that $2^{10} = 1024 \approx 1000$
 - Lets you estimate the number of binary digits in a decimal integer: Every three decimal digits gives approximately ten binary digits
 - $2^{20} \approx 1$ million (1,048,576)
 - $2^{30} \approx 1$ billion (1,073,741,824)
- Remember the important large powers of two:
 - $2^8 = 256$
 - $2^{16} \approx 64$ thousand
 - $2^{32} \approx 4$ billion
 - $2^{64} \approx$ really big (≈ 18 quintillion, or in CS parlance: 16 exa-...)
 - 2¹⁰=kilo (Ki), 2²⁰=mega (Mi), 2³⁰=giga (Gi), 2⁴⁰=tera (Ti), 2⁵⁰=peta (Pi), 2⁶⁰=exa (Ei)

Addition in binary

$$4 + 7 = 11$$

$$100 + 111 = 1011$$

1 \leftarrow carry

4

<u>+ 7</u>

1 1

1 \leftarrow carry

1 0 0

<u>+ 1 1 1</u>

1 0 1 1

More binary addition

$$63 + 98 = 161$$

$$11111 + 110010 = 1010001$$

Subtraction: addition's tricky pal

$$161 - 98 = 63$$

$$1010001 - 110010 = 11111$$

What about negative integers?

- Signed integers can represent both positive and negative integers
- We need an extra bit to represent the sign of the number
- But we don't just use a simple sign bit
- We use two's complement to represent negative numbers, because it
 - Simplifies the computer's addition and subtraction circuitry, and
 - It has just one representation of zero
- Negative numbers "roll over" from the top of the binary range

Works like an old-style car odometer

Two's complement for three-bit numbers

$$1 - 2 = 1 + (-2) = -1$$

 $001 + 110 = 111$

Subtraction is done in the exact same way as addition!

No need to learn how to "borrow"

Subtraction works just like addition!

No need to learn how to "borrow."

Just negate the second number and add.

$$3 - 2 = 3 + (-2) =$$

1 1 ← carry
0 1 1
+ 1 1 0
1 0 0 1 ← our answer!

We ignore the final carry because it falls outside of the 3-bits we are working with. That's how we roll-over between negative and positive. 3: 011

2: 010

1: 001

0: 000

-1: 111

-2: 110

-3: 101

-4: 100

Two's complement negation

To negate a number and get its two's complement representation:

• Flip	all the b	its. On	es become
zero	s and zer	os beco	me ones.

•
$$-x = -x + 1$$

For example -3

• Start with the bits for three: **011**

• Flip the bits: **100**

• Add one: **101**

3: 011

2: 010

1: 001

0: 000

-1: 111

-2: 110

-3: 101

-4: 100

Negating with Complement and Increment

- Claim: The following holds for 2's complement (when defined)
 - $\sim_{\rm X} + 1 = -{\rm X}$
- Complement
 - Observation: $\sim x + x = 1111...11_2 = -1$

• Increment

•
$$\sim_X + 1 = (\sim_X + x) - x + 1 = (\sim_X + x) -$$

•
$$\sim_{\rm X} + 1 = -{\rm X}$$

Overflow: when numbers don't fit

For example, 2 + 2 = 4

4 cannot be represented in a three-bit **signed** integer. What happens when we try this addition?

1 ← carry	2:	010
0 1 0	1:	001
<u>+ 0 1 0</u>	0:	000
1 0 0 ← answer looks like -4!		111
• The computer will throw an exception if the signs of the		110
operands were the same, but the sign of the result is different.	-3:	101
• positive + negative cannot overflow	-4:	100
 positive + positive should give a positive 		

• Remember that the left-most bit indicates the sign.

• negative + negative should give a negative

3: 011

Examples with 4 and 8 bits

4-bit is between -8 and 7

8-bit is between -128 and 127

Reading Assignment and Practice

- Read "Representing Numbers in Computers" at http://www.stat.berkeley.edu/~nolan/stat133/Spr04/chapters/representations.pdf
- Practice converting numbers to and from binary
- Practice binary addition and subtraction (check with online tools)
- Browse data sets from Kaggle.com
 - Don't forget to click the "Data" tab
- Watch this video to see how addition is actually implemented in hardware https://www.youtube.com/watch?v=1I5ZMmrOfnA
 Search YouTube for "PBS ALU"