1 2 3 4 5 6	REGINALD STEER (SBN 56324) AMIT KURLEKAR (SBN 244230) AKIN GUMP STRAUSS HAUER & FELD 580 California, 15th Floor San Francisco, California 94104-1036 Telephone: 415-765-9500 Facsimile: 415-765-9501 EMail: RSteer@AkinGump.com Attorneys for Plaintiffs VALENT U.S.A. CORPORATION AND	LLP
7	SUMITOMO CHEMICAL CO. LTD.	
8	UNITED STA	TES DISTRICT COURT
9	NORTHERN DI	STRICT OF CALIFORNIA
10	VALENT U.S.A. CORPORATION AND SUMITOMO CHEMICAL CO. LTD.	Case No. CV 08 0720 VRW
11	Plaintiffs,	PLAINTIFFS' MOTION FOR
12	V.	EXPEDITED DISCOVERY
13	SYNGENTA CROP PROTECTION, INC.	Hearing Date: June 26, 2008 Hearing Time: 2:30 p.m.
14	Defendant.	Courtroom: Courtroom 6, 17 th floor
15	Defendant.	
16		
17	NOTIO	CE OF MOTION
18	TO ALL PARTIES AND THEIR ATT	ORNEYS OF RECORD: PLEASE TAKE NOTICE
19	that on June 26, 2008, at 2:30 PM, or as soon t	hereafter as counsel may be heard, Plaintiffs Valent
20	U.S.A. Corporation ("Valent") and Sumitomo	Chemical Co., Ltd ("SCC") (collectively "Plaintiffs")
21	will and hereby do move the Court for an order	r, pursuant to Fed. R. Civ. P. 26(d)(1), allowing the
22	parties to immediately commence limited disco	overy prior to the conference required under Fed. R. Civ.
23	P. 26(f)(1).	
24	In the alternative, Plaintiffs respectfully	y request that the Case Management Conference,
25	currently scheduled for September 18, 2008, be	e rescheduled to an earlier date consistent with the
26	Court's Order dated May 30, 2008, reschedulir	ng the hearing date of defendant's motion to dismiss
27	from August 14, 2008 to June 26, 2008.	
28		
		1

Case No. 08-CV-0720-VRW

PLAINTIFFS' MOTION FOR EXPEDITED DISCOVERY

Case 3:08-cv-00720-VRW Document 71 Filed 06/12/2008 Page 1 of 57

CONCISE STATEMENT OF RELIEF REQUESTED

Plaintiffs respectfully request that the Court issue an order, pursuant to Fed. R. Civ. P. 26(d)(1), allowing the parties to immediately commence limited discovery prior to the conference required under Fed. R. Civ. P. 26(f)(1), *i.e.*, prior to August 28, 2008. In the alternative, Plaintiffs respectfully request that the Case Management Conference, currently scheduled for September 18, 2008, be rescheduled to an earlier date consistent with the Court's Order dated May 30, 2008, so that discovery may commence sooner by operation of the Federal Rules of Civil Procedure.

MEMORANDUM OF POINTS AND AUTHORITIES

I. <u>INTRODUCTION</u>

The '469 patent issued in September 2006 to Syngenta. Although Plaintiffs believed then, and still strongly believe today, that the '469 patent is invalid, soon after the patent issued, SCC inquired about a license. SCC believed that a business solution was preferable to bringing a declaratory judgment lawsuit charging invalidity, such as the present suit. But, after one year of meetings it eventually became clear that no license would be offered. In fact, Syngenta ultimately admitted that it did not want to see any new entrant in the seed treatment business after all.

Unfortunately, Plaintiffs lost one year during which they could have sought a declaration that the '469 patent is invalid. Plaintiffs did not file this lawsuit until 15-months later than they otherwise would have. The Plaintiffs are greatly prejudiced by this timing because the products at issue are agricultural and sales are driven by relevant annual seed treating and planting seasons. Even just a few months delay in discovery, and in the ultimate resolution of this case, can potentially delay the introduction of Plaintiffs' products for an additional year. Such delay would be extremely detrimental to Plaintiffs' business interests.

As explained below, Syngenta has delayed this case long enough. Plaintiffs respectfully request that their motion for expedited discovery be granted and that Syngenta be ordered to produce within 30 days those documents and information it would normally be obligated to produce as part of its initial disclosures under Fed. R. Civ. P. 26(a)(1)(A)(ii) - i.e., documents that Syngenta has in its possession that it may use to support its claims or defenses.

Specifically, since the validity of the '469 patent is at issue, the following categories of

14 15

16

17

18 19

20

21 22

23

24

25 26

27

28

documents are relevant and must be produced by Syngenta as part of its initial disclosures:

- i) documents related to the development of the inventions claimed in the '469 patent (e.g., lab notebooks, documents related to the "synergistic effect" described in the specification, etc., all of which are relevant to validity, including inventorship, whether the claimed invention is obviousness in view of the prior art, whether there were unexpected results, etc.);
- ii) documents related to Syngenta's use of clothianidin on genetically engineered and nongenetically engineered plants or their seeds, including data on all working examples described in the '469 patent (these documents are relevant to whether it would have been known to a person of ordinary skill in the art to apply clothianidin to genetically engineered plants or their seeds); and
- iii) any license agreements involving the '469 patent including the alleged license agreement with Bayer (these documents are relevant to, e.g., whether Bayer, or any other third party, should be joined in this lawsuit due to its acquisition of enforcement rights under the '469 patent). Plaintiffs would also reciprocate with limited discovery.

In the alternative, should the Court decline to grant Plaintiffs' motion, Plaintiffs respectfully move the Court to reschedule the Case Management Conference to an earlier date that is convenient to the Court so that discovery may commence by operation of the Federal Rules of Civil Procedure.

II. STATEMENT OF FACTS

Syngenta owns U.S. Patent No. 7,105,469 ("the '469 patent") which purports to cover the treatment of genetically engineered plants or their seeds with the insecticide known as clothianidin. A true and correct copy of the '469 patent is attached as Motion Exhibit 1. Beginning this December 2008, Plaintiffs will be making and offering for sale clothianidin for use on seeds of genetically engineered plants, and for the past several years, Plaintiffs have been engaged in necessary field testing in order to comply with federal and state regulations and to prepare for its entry into the

Pursuant to the terms of a pre-existing license agreement between Takeda and Bayer CropScience AG ("Bayer"), Bayer has the exclusive right to sell clothianidin in the U.S. for the treatment of seeds. That exclusive right expires in November 2008. Moriya Declaration. At ¶9.

6

13

15

21

27

planting seasons are limited, even just a few months delay can potentially delay the introduction of Plaintiffs' products for an additional year. Moriya Decl. at ¶ 30

clothianidin seed treatment business. Moriya Decl.² at ¶ 11. Since the relevant seed treating and

Syngenta should have been aware of Plaintiffs' testing of clothianidin as well as their intent to offer clothianidin for sale to treat seeds of genetically engineered plants since October 2006. Moriya Decl. at ¶ 15. Syngenta has asserted that its '469 patent covers the use of clothianidin on seeds of genetically engineered plants, one of the uses for which Plaintiffs will make clothianidin commercially available in the U.S. Moriya Decl. at ¶ 21, 23. Thus, the parties have a substantial controversy over the legality of the Plaintiffs' current use and fast-approaching plans to offer clothianidin for sale for use on seeds of genetically engineered plants.

Indeed, SCC was surprised that the U.S. Patent and Trademark Office allowed the '469 patent to issue since SCC believed then, and still strongly believes today, that the '469 patent is invalid. Moriya Decl. at ¶ 14. But, SCC nonetheless approached Syngenta and promptly inquired about a license one month after the '469 patent issued in October 2006. SCC believed that a license under the '469 patent was preferable to costly legal action and would also avoid introducing any additional time delays into an already very time-sensitive business plan. Moriya Decl. at ¶ 26.

But as the weeks, and then months, passed and still there was no license, it eventually became evident that Syngenta did not intend to grant a license under the '469 patent. Moriya Decl. at ¶ 25 Rather, Syngenta's apparent motive was to give SCC false hope into believing a license was available so as to forestall a declaratory judgment lawsuit challenging the validity of the '469 patent. As long as the '469 patent remained unchallenged, Syngenta would be able to interfere with Plaintiffs' seed treatment business by casting doubts among Plaintiffs' potential customers about the legality of Plaintiffs' market entry, and by threatening to assert the '469 patent against Plaintiffs when Plaintiffs entered the seed treatment business this December.

After months of so-called negotiations, Syngenta admitted that it did not want to see a new entrant in the seed treatment business -- apparently another reason why a license was not made

[&]quot;Moriya Decl." refers to the Declaration of Motoharu Moriya in Support of Plaintiffs' Response to Syngenta's Motion to Dismiss the Complaint, filed on the same date as the instant motion.

available. Moriya Decl. at ¶ 25. Syngenta's alleged business partner, Bayer,³ also eventually admitted that it wanted to keep Plaintiffs out of the seed treatment business. Moriya Decl. at ¶ 24.

In addition to admitting it wanted to keep Plaintiffs out of the seed treatment business, Syngenta, on at least two occasions, threatened SCC with a patent infringement lawsuit under the '469 patent if Plaintiffs engaged in the seed treatment business for genetically engineered plants. Moriya Decl. at ¶ 21, 23. Having no other recourse, Plaintiffs confirmed the bases for their belief that the '469 patent is invalid, secured U.S. counsel and filed the present lawsuit.

Since Plaintiffs filed the present lawsuit on January 31, 2008, they have made every effort to expedite the process. For example, when Syngenta requested an extension of time to file its answer, or otherwise respond to the complaint, Plaintiffs granted only a 2-week extension. *See* D.I. 022. Plaintiffs also consented to the exercise of all jurisdiction by a U.S. Magistrate Judge. D.I. 014.

III. ARGUMENT

A. Legal Standard Governing Motions for Expedited Discovery

In Semitool, Inc. v. Tokyo Electron America, Inc., 208 F.R.D. 273, (N.D. Cal. Apr. 19, 2002), this district rejected a more rigid standard and adopted a "good cause" standard in deciding a plaintiff's request for expedited discovery, where "good cause may be found where the need for expedited discovery, in consideration of the administration of justice, outweighs the prejudice to the responding party." Id. at 276 (emphasis added). The court also noted that "courts have recognized that good cause is frequently found in cases involving claims of infringement and unfair competition." Semitool, 208 F.R.D. at 276 (emphasis added).

The Semitool court granted the motion because the benefits to the administration of justice (i.e., "expedited discovery would ultimately conserve party and court resources and expedite the litigation") outweighed the possible prejudice or hardship on the defendants. Id. at 276. In deciding there was no prejudice to the defendant, the Semitool court noted that the requested information was limited in scope, was relevant to the issues in the case, and would have been produced during the normal course of discovery anyway. Id. at 276-277. The court also considered important the fact that "the parties are

Syngenta and Bayer allegedly have agreements that control and constrict sales of products like clothianidin for their benefit and to the detriment of other companies like Plaintiffs.

both represented by sophisticated counsel and have engaged in pre-litigation discussion for over a year." *Id.* at 277. "Hence the Court is unable to discern any real prejudice to Defendants in advancing discovery by a modest amount of time." *Id.*

Similarly, in *Invitrogen Corp. v. President and Fellows of Harvard College*, 2007 WL 2915058 (S.D. Cal. Oct. 4, 2007), the court also found "good cause" and granted the plaintiff's motion for expedited, limited discovery even though a motion to dismiss was pending. *Id.* at * 4.

B. There is "Good Cause" To Grant Plaintiffs' Motion

Just as in *Semitool* and *Invitrogen*, there is also "good cause" here to grant Plaintiffs' motion for expedited discovery. Indeed, the facts of this case, including the extensive pre-litigation delay caused by Syngenta, are even more compelling than those in either *Semitool* or *Invitrogen* and, thus, warrant Plaintiffs' motion being granted.

1. The benefit to the administration of justice outweighs any prejudice to Syngenta

Currently, the Case Management Conference is scheduled for September 18, 2008. Thus, the latest the Fed. R. Civ. P. 26(f)(1) conference could be held, and the earliest discovery can commence, is August 28, 2008. Plaintiffs requested an earlier Rule 26(f)(1) conference with Syngenta so as to commence discovery earlier than August 28, 2008, but consistent with its pre-trial strategy of delay, Syngenta refused to meet earlier, citing its pending motion to dismiss as the reason for its refusal. *See* May 20, 2008 Letter from McCurdy to Sherwood, a true and correct copy of which is attached to Sherwood Decl.⁴ as Sherwood Exhibit 1.

Although Plaintiffs recognize that the law permits Syngenta to have its motion to dismiss heard, the pendency of that motion does not mean that the Court should not make other orders in this case. See Nielsen v. Merck & Co., 2007 U.S. Dist. LEXIS 21250, 2007 WL 806510 (N.D. Cal. Mar. 15, 2007). In fact, as discussed above, the *Invitrogen* court granted a motion to expedite discovery while the defendant's motion to dismiss was still pending. *Invitrogen*, 2007 WL 2915058 at * 4. Just as in *Invitrogen*, the pendency of Syngenta's motion to dismiss should not preclude granting Plaintiffs'

⁴ "Sherwood Decl." refers to the Declaration of Jeffrey K. Sherwood in Support of Plaintiffs' Motion for Expedited Discovery.

5

8

14

12

16

28

motion for expedited discovery. And since this Court has now accelerated the hearing date for that motion, Defendant's concern has been addressed.

Further, just as in Semitool, the benefits of granting Plaintiffs' motion for expedited discovery in this case outweigh any prejudice to Syngenta. For example, granting Plaintiffs' motion would result in conserving the parties' and the Court's resources and would also expedite the litigation since it would put the parties at least two months ahead of the current schedule for the start of discovery (i.e., mid-June as opposed to end of August). Semitool, 208 F.R.D. at 276. And once Syngenta's motion to dismiss is decided, the parties will be better prepared for possibly dispensing with the case early either on summary judgment and/or possible settlement.

> The requested information is of a limited scope, is relevant to the issues in the case and would be produced during the normal course

Just as in Semitool, Plaintiffs are seeking limited discovery of information that is most relevant to the issues in the case. Semitool, 208 F.R.D. at 276-77. Specifically, Plaintiffs request documents or information that would normally be exchanged as part of the parties' initial disclosures under Fed. R. Civ. P. 26(a)(1)(A)(ii) - i.e., documents that Syngenta has in its possession that it may use to support its claims or defenses.

Plaintiffs request the following categories of documents which are relevant to the validity of the '469 patent and which Syngenta is otherwise obligated to produce as part of its initial disclosures:

- documents related to the development of the inventions claimed in the '469 patent (e.g., i) lab notebooks, documents related to the "synergistic effect" described in the specification, etc., all of which are relevant to validity, including inventorship, whether the claimed invention is obviousness in view of the prior art, whether there were unexpected results, etc.);
- documents related to Syngenta's use of clothianidin on genetically engineered and nonii) genetically engineered plants or their seeds, including data on all working examples described in the '469 patent (these documents are relevant to whether it would have been known to a person of ordinary skill in the art to apply clothianidin to genetically engineered plants or their seeds); and
- any license agreements involving the '469 patent including the alleged license iii) agreement with Bayer (these documents are relevant to, e.g., whether Bayer, or any other third party,

5 6

4

7 8

9

10 11

12 13

14 15

16

17

18 19

20

21 22

23

24

25

26 27

28

should be joined in this lawsuit due to its acquisition of enforcement rights under the '469 patent). Plaintiffs would also reciprocate with limited discovery. Thus, just as in Semitool, Plaintiffs are proposing a document production of limited scope, or information relevant to the issues in the case and that would be produced during the normal course of discovery.

The parties are represented by sophisticated counsel and have been b. involved in pre-litigation discussion for over a year

Just as in Semitool and Invitrogen, the Court should not find that expediting discovery of such a limited scope is unduly prejudicial to Syngenta. For example, the parties in this case are represented by sophisticated counsel, thus, the parties are certainly on even ground in that regard. Semitool, 208 F.R.D. at 277. Further, just as in *Semitool*, the parties in this case were involved in pre-litigation discussions for more than a year. This case was filed in January 2008. Thus, combining the prelitigation period with the post-litigation period, Syngenta has had more than 1-1/2 years to become familiar with the issues surrounding the current conflict between the parties. Thus, Syngenta cannot now credibly claim that it is unfamiliar with the issues or that it needs more time.

In the Alternative, Plaintiffs Request That the Case Management C. Conference Be Rescheduled

In the event the Court does not find "good cause" to grant Plaintiffs' motion for expedited discovery, Plaintiffs respectfully move, in the alternative, to reschedule the Case Management Conference to an earlier date consistent with the Court's Order dated May 30, 2008, so that discovery may commence by operation of the Federal Rules. Currently, the Case Management Conference is scheduled for September 18, 2008. But since Syngenta's motion to dismiss will now be heard 7 weeks earlier than previously scheduled, Plaintiffs respectfully submit that the parties should be fully prepared to discuss the case schedule earlier than September 18. Thus, while being sensitive to the Court's docket, Plaintiffs respectfully request that the Court consider rescheduling the Case Management Conference to a date earlier than September 18, 2008, which would in turn enable discovery to commence sooner than August 28, 2008.

1	IV. <u>CONCLUSION</u>
2	For all the foregoing reasons, Plaintiffs' motion should be granted
3	
4	Dated: June 12, 2008 AKIN GUMP STRAUSS HAUER & FELD LLP
5	Dea : 11) 15
6	By Reginald D. Steer Atternation for Plaintiffs
7	Attorneys for Plaintiffs VALENT U.S.A. CORPORATION AND
8	SUMITOMO CHEMICAL CO. LTD.
9	
10	Of Counsel:
11	ARTHUR WINEBURG (Admitted Pro Hac Vice) MICHAEL A. OAKES (Admitted Pro Hac Vice)
12	DANIEL E. YONAN (Admitted Pro Hac Vice)
13	AKIN GUMP STRAUSS HAUER & FELD, LLP 1333 New Hampshire Avenue, NW
14	Washington, D.C. 20036 Telephone: 202.887.4000
15	Facsimile: 202.887.4288
16 17	JEFFREY K. SHERWOOD (Admitted Pro Hac Vice)
18	DICKSTEIN SHAPIRO LLP 1825 Eye Street NW
19	Washington, DC 20006-5403 Telephone: 202-420-3602
20	Facsimile: 202-420-2201
21	WILLIAM W. SCHWARZE (Admitted Pro Hac Vice) WEIHONG HSING (Admitted Pro Hac Vice)
22	PANITCH SCHWARZE BELISARIO & NADEL LLP 2005 Market Street
23	Suite 2200
24	Philadelphia, PA 19103 Telephone: 215-965-1330
25	Facsimile: 215-965-1331
26	
27	
28	
	9 PLAINTIFFS' MOTION FOR EXPEDITED DISCOVERY Case No. 08-CV-0720-VRW
ľ	

US007105469B2

(12) United States Patent Lee et al.

US 7,105,469 B2 (10) Patent No.: Sep. 12, 2006 (45) Date of Patent:

(54)	USE OF NEONICOTINOIDS IN PEST CONTROL	
(75)	Inventors:	Bruce Lee, Bad Krozingen (DE); Marius Sutter, Binningen (CH); Hubert Buholzer, Binningen (CH)
(73)	Assignee:	Syngenta Crop Protection, Inc., Greensboro, NC (US)
(*)	Notice:	Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 168 days.
(21)	Appl. No.:	11/019,051

EP	374753	6/1990
EP	580553	1/1994
EP	0677247	10/1995
WO	WO 94 16565	8/1994
WO	WO 96 01055	1/1996
WO	WO 96 28023	9/1996
wo	WO 96 37105	11/1996
WO	WO 97 26339	7/1997
WO	WO 97 40691	11/1997
WO	WO 97 40692	11/1997
WO	WO 97 45017	12/1997
	CNULTUD	DE UNE LCC ACC

OTHER PUBLICATIONS

Dec. 21, 2004

(22) Filed:

(65)**Prior Publication Data** US 2005/0120411 A1 Jun. 2, 2005

Related U.S. Application Data

(60) Division of application No. 10/125,136, filed on Apr. 18, 2002, now Pat. No. 6,844,339, which is a continuation of application No. 09/600,384, filed on Sep. 21, 2000, now abandoned.

(30)	For	eign A _l	pplication Priority Data
	n. 16, 1998 or. 25, 1998		
(51)	Int. Cl. A0IN 25/26 A0IN 43/48 A0IN 43/78	}	(2006.01) (2006.01) (2006.01)

(52) U.S. Cl. 504/100; 504/253; 504/266 (58) Field of Classification Search 514/229.2; 504/266, 100, 253 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

4,798,837	A	1/1989	Drabek et al.
4,849,432	A	7/1989	Shiokawa et al.
5,034,404	A	7/1991	Uneme et al.
6,022,871	Α	2/2000	Maienfisch et al.
6,060,489	Α	5/2000	Erdelen et al.
6,593,273	BI *	7/2003	Asrar et al 504/100

FOREIGN PATENT DOCUMENTS

CA	2005658	6/1990
CA	2146822	10/1995

Database CABA, AN 1998:103569, Eval. Of XP00210251. Univ. of

Ark. Spec. ret. No. 183, pp. 169-172 (1997) C.T. Allen. Databaes CABA, AN 1998:68711, Infl. Of—in Bollgard, Proceedings of Beltwide Cotton Conf., vol. 2, pp. 892-895, XP002102502, 1997, W.P. Scott et al.

Dalabase CABA, AN 1998:167903, Infl. Of Proceedings of Beltwide Cotton Conf., vol. 2, pp. 1061-1064, XP002102503, 1998, D.D. Hardee.

Chem. Abstr. No. 199293, vol. 129, No. 16, XP002102499, J.A. Hopkins.

Derwent Abstr., AN 97-89894, Effic of-Arthropod Manage Tests, vol. 22, p. 266, XP002102504, (1997), Reed et al.

Derwent Abstr., AN 97-89879, Effic of—Aphids on BT Cotton, Arthropod Manage Tests, vol. 22, p. 251-2, XP002102505, (1997). Fife et al.

Derwent Abstr., AN 95-89639, Arthropod Manage Tests, vol. 21, p. 422, Xpoo2102506, (1997) Burris, et al.

Derwent Abstr., AN 96-87648, Arthropod Manage Tests, vol. 21, p. 171-2, Ctrl. Of CO potato beetle, XP002102507, Suranyli et al. CA 127:105569, Effic. And Duration/Transg. Cotton, Beltw-Cotton Conf., vol. 2, p. 888-91, XP002102500, (1997), J.T. Huscoe. Derwent Abst., 98-87243, Arthropod Manage Tests, vol. 23, p. 127, Ctr. Of green peach aphid on pot., XP002102508, Longtine, et al.

* cited by examiner

Primary Examiner-Alton Pryor (74) Attorney, Agent, or Firm Jacqueline Haley

ABSTRACT (57)

There is now described a method of controlling pests with nitroimino- or nitroguanidino-compounds; more specifically a method of controlling pests in and on transgenic crops of useful plants, such as, for example, in crops of maize, cereals, soya beans, tomatoes, cotton, potatoes, rice and mustard, with a nitroimino- or nitroguanidino-compound, especially with thiamethoxam, characterized in that a pesticidal composition comprising a nitroimino- or nitroguanidino-compound in free form or in agrochemically useful salt form and at least one auxiliary is applied to the pests or their environment, in particular to the crop plant itself.

8 Claims, No Drawings

USE OF NEONICOTINOIDS IN PEST CONTROL

This application is a divisional application of U.S. patent application Ser. No. 10/125,136, filed Apr. 18, 2002 now 5 U.S. Pat. No. 6.844,339, which is a continuation of U.S. patent application Ser. No. 09/600,384, filed Sep. 21, 2000 (now abandoned), the contents of which are incorporated herein by reference.

The present invention relates to a method of controlling 10 pests with a nitroimino- or nitroguanidino-compound, especially thiamethoxam; more specifically to a novel method of controlling pests in and on transgenic crops of useful plants with a nitroimino- or nitroguanidino-compound.

Certain pest control methods are proposed in the litera- 15 ture. However, these methods are not fully satisfactory in the field of pest control, which is why there is a demand for providing further methods for controlling and combating pests, in particular insects and representatives of the order Acarina, or for protecting plants, especially crop plants. This 20 art. object is achieved according to the invention by providing the present method.

The present invention therefore relates to a method of controlling pests in crops of transgenic useful plants, such as, for example, in crops of maize, cereals, soya beans, 25 tomatoes, cotton, potatoes, rice and mustard, characterized in that a pesticidal composition comprising a nitroimino- or nitroguanidino-compound, especially thiamethoxam, imidacloprid, Ti-435 or thiacloprid in free form or in agrochemically useful salt form and at least one auxiliary is applied to 30 the pests or their environment, in particular to the crop plant itself; to the use of the composition in question and to propagation material of transgenic plants which has been treated with it.

Surprisingly, it has now emerged that the use of a 35 nitroimino- or nitroguanidino-compound compound for controlling pests on transgenic useful plants which contain-for instance—one or more genes expressing a pesticidally, particularly insecticidally, acaricidally, nematocidally or fugicidally active ingredient, or which are tolerant against her- 40 bicides or resistent against the attack of fungi, has a synergistic effect. It is highly surprising that the use of a nitroimino- or nitroguanidino-compound in combination with a transgenic plant exceeds the additive effect, to be expected in principle, on the pests to be controlled and thus 45 extends the range of action of the nitroimino- or nitroguanidino-compound and of the active principle expressed by the transgenic plant in particular in two respects:

In particular, it has been found, surprisingly, that within the scope of invention the pesticidal activity of a nitroimino- 50 or nitroguanidino-compound in combination with the effect expressed by the transgenic useful plant, is not only additive in comparison with the pesticidal activities of the nitroimino- or nitroguanidino-compound alone and of the transgenic crop plant alone, as can generally be expected, 55 but that a synergistic effect is present. The term "synergistic", however, is in no way to be understood in this connection as being restricted to the pesticidal activity, but the term also refers to other advantageous properties of the method according to the invention compared with the nitroimino- or 60 nitroguanidino-compound and the transgenic useful plant alone. Examples of such advantageous properties which may be mentioned are: extension of the pesticidal spectrum of action to other pests, for example to resistant strains; reduction in the application rate of the nitroimino- or 65 nitroguanidino-compound, or sufficient control of the pests with the aid of the compositions according to the invention

even at an application rate of the nitroimino- or nitroguanidino-compound alone and the transgenic useful plant alone are entirely ineffective; enhanced crop safety; improved quality of produce such as higher content of nutrient or oil, better fiber quality, enhanced shelf life, reduced content of toxic products such as mycotoxins, reduced content of residues or unfavorable constituents of any kind or better digestability; improved tolerance to unfavorable temperatures, draughts or salt content of water; enhanced assimilation rates such as nutrient uptake, water uptake and photosynthesis; favorable crop properties such as altered leaf aerea, reduced vegetative growth, increased yields, favorable seed shape/seed thickness or germination properties, altered colonialisation by saprophytes or epiphytes, reduction of senescense, improved phytoalexin production, improved of accelerated ripening, flower set increase. reduced boll fall and shattering, better attraction to beneficials and predators, increased pollination, reduced attraction to birds; or other advantages known to those skilled in the

Nitroimino- and nitroguanidino-epmpounds, such as thiamethoxam (5-(2-Chlorthiazol-5-ylmethyl)-3-methyl-4-nitroimino-perhydro-1,3,5-oxadiazin), are known from EP-A-0'580'553. Within the scope of invention thiamethoxam is preferred.

Also preferred within the scope of invention is imidacloprid of the formula

known from The Pesticide Manual, 10th Ed. (1991). The British Crop Protection Council, London, page 591;

also preferred is Thiacloprid of the formula

known from EP-A-235'725;

also preferred is the compound of the formula

known as Ti-435 (clothianidin) from EP-A-376'279

The agrochemically compatible salts of the nitroimino- or nitroguanidino-compounds are, for example, acid addition salts of inorganic and organic acids, in particular of hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, formic acid, acetic acid, 5 trifluoroacetic acid, oxalic acid, malonic acid, toluenesulfonic acid or benzoic acid. Preferred within the scope of the present invention is a composition known per se which comprises, as active ingredient, thiamethoxam and imidacloprid, each in the free form, especially thiamethoxam.

The transgenic plants used according to the invention are plants, or propagation material thereof, which are transformed by means of recombinant DNA technology in such a way that they are for instance capable of synthesizing selectively acting toxins as are known, for example, from 15 toxin-producing in vertebrates, especially of the phylum Arthropoda, as can be obtained from Bacillus thuringiensis strains; or as are known from plants, such as lectins; or in the alternative capable of expressing a herbicidal or fungicidal resistance. Examples of such toxins, or transgenic plants 20 which are capable of synthesizing such toxins, have been disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529 and EP-A-451 878 and are incorporated by reference in the present application.

The methods for generating such transgenic plants are 25 widely known to those skilled in the art and described, for example, in the publications mentioned above.

The toxins which can be expressed by such transgenic plants include, for example, toxins, such as proteins which have insecticidal properties and which are expressed by 30 transgenic plants, for example Bacillus cereus proteins or

Bacillus popliae proteins: or Bacillus thuringiensis endotoxins (B.t.), such as CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2 or CytA; VIP1; VIP2; VIP3; or insecticidal proteins of bacteria colonising nematodes like Photorhabdus spp or Xenorhabdus spp such as Photorhabdus luminescens, Xenorhabdus nematophilus etc.; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize RIP, abrin, luffin, saporin or bryodin; plant lectins such as pea lectins, barley lectins or snowdrop lectins; or agglutinins; toxins produced by animals, such as scorpion toxins, spider venoms, wasp venoms and other insect-specific neurotoxins; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdysteroid UDP-glycosyl transferase, cholesterol oxidases, ecdysone inhibitors, IIMG-COAreductase, ion channel blockers such as sodium and calcium, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.

Examples of known transgenic plants which comprise one or more genes which encode insecticidal resistance and express one or more toxins are the following: KnockOut® (maize), YieldGard® (maize); NuCOTN 33B® (cotton), Boligard® (cotton), NewLeaf®: (potatoes), NatureGard®: and Protecta®.

The following tables comprise further examples of targets and principles and crop phenotypes of transgenic crops which show tolerance against pests mainly insects, mites, nematodes, virus, bacteria and diseases or are tolerant to specific herbicides or classes of herbicides.

	IABLE AI
•	Crop: Maize
Effected target or expressed principle(s)	Crop phenotype/Tolerance to
Acctolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase O-Methyl transferase	Phosphinothricin altered lignin levels
Glutamine synthetase	Glufosinare, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic insides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1	Xenobiotics and herbicides such as Sulfonylureas
Dimboa biosynthesis (Bx1 gene)	Helminthosporium turcicum, Rhopalosiphum maydis, Diplodia maydis, Ostrinia nubilalis, lepidoptera sp.
CMIII (small basic maize seed peptide	plant pathogenes eg. fusarium, alternaria, sclerotina
Corn-SAFP (zeamatin)	plant pathogenes eg. fusarium, alternaria, selerotina, rhizoctoria, chaetomium, phycomyces
Hm1 gene	Cochliobulus
Chitinases	plant pathogenes
Glucanases	plant pathogenes

US 7,105,469 B2

5

TABLE A1-continued

•	Cron: Maize
Effected target or expressed principle(s)	Crop phenotype/Tolerance to
Coat proteins	viruses such as maize dwarf mosaic
	virus, maize chlorotic dwarf virus
Pacillus thuringiensis toxins, VIP 3.	lepidoptera, coleoptera, diptera,
acillus cereus toxins, Photorabdus and	nematodes, eg. ostrinia nubilalis,
Cenorhaldus toxins	heliothis zea, amyworms eg. spodaptera
	frugiperda, com rootworms, sesamia sp.,
	black cutworm, asian corn borer, weevils
3-Hydroxysteroid oxidase	lepidoptera, coleoptera, diptera,
	nematodes, eg. ostrinia nubilalis,
	heliothis zea. armyworms eg. spodoptera
	frugiperda, com rootworms, sesama sp.,
	black cutwonn, asian corn horer, weevils
eroxidase	lepidoptera, coleoptera, diptera,
	nematodes, eg. ostrinia nubilalis.
	heliothis zea, amyworms eg. spodoptera
	frugiperda, com rootwonns, sesamia sp.,
and the second of the second o	black culworn, asian corn borer, weevils
uninopeptidase inhibitors eg. Leucine	lepidoptera, coleoptera, diptera,
minopeptidase inhibitor (LAPI)	nematodes, eg. ostrinia nubilalis,
	heliothis zea. armyworms eg. spodoptera
	frugiperda, com rootworms, sesamia sp., black cutworm, asian com borer, weevils
oronana combasa	
monene synthase ectines	corn roofworms
termes	lepidoptera, coleoptera, diptera, nematodes, eg. ostrinia nubilalis,
	heliothis zea, annyworms eg. spodoptera
	frugiperda, com rootworms, sesamia sp.,
	black cutworm, asian corn borer, weevils
otease Inhibitors eg. cystatin, patatin, rgiferin, CPTI	weevils, corn rootworm
bosome inactivating protein	lepidoptera, coleoptera, diptera,
	nematodes, eg. ostrinia nubilalis,
	heliothis zea, armyworms eg. spodoptera
	frugiperda, com rootworms, sesamia sp.,
	black cutworm, asian corn borer, weevils
aize 5C9 polypeptide	lepidoptera, coleoptera, diptera,
* ** *	nematodes, eg. ostrinia nubilalis.
	heliothis zea, armyworms eg. spodoptera
	frigiperda, com rootworms, sesamia sp.,
	black cutworm, asian corn borer, weevils
IMG-CoA reductase	lepidoptera, coleoptera, diptera,
The same of the state of the st	nematodes, eg. ostrinia nubilalis.
	heliothis zea, amyworms eg. spodoptera
	frugiperda, com rootwonns, sesamia sp.,
	black cutworm, asian corn horer, weevils
	orack curwonn, asian corn norer, weevers

	Crop Wheat
Effected target or expressed principle(s)	Crop phenotype/Folerance to
Acctolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecartxxylic acids, cyclohexanediones
Hydroxyphenylpyrovate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachloriol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Joxinyl
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides,

US 7,105,469 B2

7

TABLE A2-continued

	Crop Wheat
Effected target or expressed principle(s)	Crop phenotype/Tolerance to
	phenylpyrazoles, pyridin derivatives,
O . 1 9460 9450 GH	phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SUI	Xenohiotics and herbicides such as
A - ATC A A ATC - A A - A PPD	Sulfonylurens
Antifungal polypeptide AlyAFP	plant pathogenes eg septoria and
glucose oxidase	fusarioum
	plant pathogenes eg. fusarium, septoria
pyrrolnitrin synthesis genes serine/threonine kinases	plant pathogenes eg. fusarium, septoria
serine difeonine kinases	plant pathogenes eg. fusarium, septoria and other diseases
Hypersensitive response eliciting	
polypeptide	plant pathogenes eg, fusarium, septoria and other diseases
Systemic acquires resistance (SAR)	viral, bacterial, fungal, pematodal
genes	pathogens
Chitinases	plant pathogenes
Glucanases	plant pathogenes
double stranded ribonuclease	viruses such as BYDV and MSMV
Coat proteins	viruses such as BYDV and MSMV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, colcoptera, diptera,
Bacillus cereus toxins. Photorabdus and	nematodes.
Xenorhabdus toxins	·
3-Hydroxysteroid oxidase	lepidoptera, coleoptera, diptera,
	nematodes,
Peroxidase	lepidoptera, coleoptera, diptera,
	nematodes.
Aminopeptidase inhibitors eg. Leneine	lepidoptera, coleoptera, diptera,
aminopeptidase inhibitor	nematodes,
Lectines	lepidoptera, coleoptera, diptera,
	nematodes, aphids
Protease Inhibitors eg. cystatin, patatin,	lepidoptera, coleoptera, diptera,
virgiferin, CPTI	nematodes, aphids
ribosome inactivating protein	lepidoptera, coleoptera, diptera,
	nematodes, aphids
HMG-CoA reductase	lepidoptera, coleoptera, diptera,
	nemalodes, eg. ostrinia nubilalis,
	heliothis zea, amyworms eg. spadoptera
	frugiperda, com rootworms, sesamia sp.,
	black cutworm, asian corn borer, weevils

-	Crop Barley
Effected target or expressed principle(s)	Crop phenotype-Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines,
AcetylCoA Carboxylase (ACCase)	Pyrimidyloxybenzoates, Phtalides Aryloxyphenoxyalkanecarboxylic acids,
	cyclohexanediones
lydroxyphenylpyruvate dioxygenase	Isoxazoles such as Isoxaflutol or
(HPPD)	Isoxachlortol, Triones such as
	mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Flotamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such
	as Bromoxynil and Ioxinyl
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Olyphosate oxidereductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides,
	phenylpyrazoles, pyridin derivatives,
	phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SUI	Xenobiotics and herbicides such as Sulfonylureas
Antifungal polypeptide AlyAFP	plant pathogenes eg septoria and fusarioum
thicose oxidase	plant pathogenes eg. fusarium, septoria

US 7,105,469 B2

9

TABLE A3-continued

Crop Barley	
Effected target or expressed principle(s)	Crop phenotype/Tolerance to
pyrrolnitrin synthesis genes serine/threonine kinases	plant pathogenes eg. fusarium, septoria plant pathogenes eg. fusarium, septoria and other diseases
Hypersensitive response eliciting polypeptide Systemic acquires resistance (SAR)	plant pathogenes eg. fusarium, septoria and other diseases viral, bacterial, fungal, nematodal
genes Chitinases Glucanases double stranded ribonuclease	pathogens plant pathogenes plant pathogenes viruses such as BYDV and MSMV
Coat proteins Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, Photorabdus and	vinuses such as BYDV and MSMV lepidoptera, coleoptera, diptera, nomatodes,
Xenorhabdus toxins 3-Hydroxysteroid oxidase	lepidoptera, coleoptera, diptera,
Peroxidase	lepidopicra, coleoptera, diptera, nematodes.
Antinopeptidase inhibitors eg. Leucine aminopeptidase inhibitor Lectines	lepidoptera, coleoptera, diptera, nomstodes, lepidoptera, coleoptera, diptera,
Protease Inhibitors eg. cystatin, palatin, virgiferin, CPTI	nematodes, aphids lepidoptera, coleoptera, diptera, nematodes, aphids
ribosome inactivating protein	lepidoptera, coleoptera, diptera, nematodes, aphids
HMG-CoA reductase	lepidoptera, coleoptera, diptera, nomatodes, aphids

Crop_Rice	
Effected target or expressed principle(s)	Crop phenotype/Tolerance to
Acetolactate synthase (ALS)	Sulfonylurens, Imidazolinones, Triazolopyrimidines. Pyrimidyloxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	aftered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophon synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SUI	Xenobiotics and herbicides such as Sulfonylurens
Antifungal polypeptide AlyAFP	plant pathogenes
glucose oxidase	plant pathogenes
pyrrolnitrin synthesis genes	plant pathogenes
serine/threonine kinases	plant pathogenes
Phenylalanine ammonia lyase (PAL)	plant pathogenes og bacterial leaf blight and nee blast, inducible
phytoalexins	plant pathogenes eg bacterial leaf blight and rice blast
B-1,3-glucanase antisense	plant pathogenes eg bacterial leaf blight and rice blast
receptor kinuse	plant pathogenes eg bacterial leaf blight and rice blast
Hypersensitive response eliciting	plant pathogenes

US 7,105,469 B2

11

TABLE A4-continued

	Crop Rice
Effected target or expressed principle(s)	Crop phenotype Tolerance to
polypeptide	
Systemic acquires resistance (SAR)	viral, bacterial, fungal, nematodal
genes	pathogens
Chitinases	plant pathogenes eg bacterial leaf blight and rice blast
Glucanases	plant pathogenes
double stranded ribonuclease	viruses such as BYDV and MSMV
Coat proteins	viruses such as BYDV and MSMV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera eg. stemborer, coleoptera eg
Bacillus cereus toxins, Photorabdus and	rice water weevil, diptera, rice hoppers
Xenorhabdus toxins	eg brown rice hopper
3-Hydroxysteroid oxidase	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
Peroxidase	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
Aminopeptidase inhibitors eg. Leucine	lepidoptera eg. stemhorer, coleoptera eg
aminopeptiduse inhibitor	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
Lectines	lepidoptera eg. stembores, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
Protease Inhibitors,	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice hopper
ribosome inactivating protein	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
TD (C. C.)	eg brown rice hopper
HMG-CoA reductase	lepidoptera eg. stemborer, coleoptera eg
	rice water weevil, diptera, rice hoppers
	eg brown rice nopper
	eg brown rice hopper

	Стор Ѕоуа
Effected target or expressed principle(s)	Crop phenotype/Tolerance to
Acctolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpymvate dioxygenase (HPPD)	isoxaroles such as Isoxaffutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase O-Methyl transferase	Phosphinothricin
Glutunine synthetase	altered lignin levels Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuceinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl
5-Enolpymyyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
oxalate oxidase	bacterial and fungal pathogens such as fusarium, sclerotinia, stemtot
glucose oxidase	bacterial and fingal pathogens such as fusurium, sclerotinia, stemroi
pyrrolnitrin synthesis genes	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot

US 7,105,469 B2

13

TABLE A5-continued

	Crop Soya
Effected target or expressed principle(s)	Crop phenotype Tolerance to
serine/threonine kinases	bacterial and fingal pathogens such as fusarium, sclerotinia, stemrot
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens such as fusurium, sclerotivia, sternrot
phytoalexins	plant pathogenes eg bacterial leaf blight and rice blast
B-1,3-glucanase antisense	plant pathogenes eg bacterial leaf blight and rice blast
receptor kinase	bacterial and fungal pathogens such as fusarium, sclerotinia, stempot
Hypersensitive response eliciting polypeptide	plant pathogenes
Systemic acquires resistance (SAR)	viral, bacterial, fungal, nematodal
genes Chitinases	pathogens bacterial and fungal pathogens such as
	fusarium, scierotinia, slemtot
Glucanases	bacterial and fungal pathogens such as fusarium, sclerotinia, stemrot
double stranded ribonuclease	viruses such as BPMV and SbMV
Coat proteins	viruses such as BYDV and MSMV
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, coleoptera, aphids
Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	
3-Hydroxysteroid oxidase	lepidoptera, coleoptera, aphids
Peroxidase	lepidoptera, coleoptera, aphids
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, coleoptera, aphids
I.ectines	lepidoptera, coleoptera, aphids
Protease Inhibitors eg virgiferin	lepidoptera, coleoptera, aphids
ribosome inactivating protein	lepidoptera, coleoptera, aphids
HMG-CoA reductase	lepidoptera, coleoptera, aphids
Barnase	nematodes eg root knot nematodes and cyst nematodes
Cyst nematode hatching stimulus	cyst nematodes
Antifeeding principles	nematodes eg root knot nematodes and cyst nematodes

Crop Potatoes	
Effected target or expressed principle(s)	Crop phenotype Tolerance to
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflatol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase O-Methyl transferase	Phosphinothricin altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL) Adenylosuccinate Synthase	Inhibitors of IMP and AMP synthesis Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3,5-dihaio-4-hydroxy-henzonitriles such as Bromoxynil and Ioxinyl
5-Enolpynivyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	blackspot bruise
Metallothionein	bacterial and fungal pathogens such as phytophtora
Ribonuclease	Phytophtora, Verticillium, Rhizactonia

TABLE A6-continued		
Crop Polatoes		
Effected target or expressed principle(s)	Crop phenotype/Foterance to	
Antifungal polypeptide AlyAFP	bacterial and lungal pathogens such as phytophtora	
oxalate oxidase	bacterial and lungal pathogens such as Phytophtora, Verticillium, Rhizoctonia	
glucose oxidase	bacterial and fungal pathogens such as Phytophtora, Verticullium, Rhizoctonia	
pyrrolnitrin synthesis genes	bacterial and fingal pathogens such as Phytophtora, Verticillium, Rhizoctonia	
serine/threonine kinases	bacterial and fingal pathogens such as Phytophtora, Verticillium, Rhizoctonia	
Ceeropin B	bacteria such as corynebacterium sepedonicum, Erwinia carotovora	
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia	
phytoalexins	bacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia	
B-1.3-glucanase antisense	bacterial and fungal pathogens such as	
receptor kinase	Phytophtora, Verticillium, Rhizoctonia bacterial and fungal pathogens such as Phytophtona Verticillium, Phicoctonia	
Hypersensitive response eliciting	Phytophtora, Verticillium, Rhizoctonia bacterial and fungal pathogens such as	
polypeptide Systemic acquires resistance (SAR)	Phytophtora, Verticillium, Rhizoctonia viral, bacterial, fungal, nematodal	
genes Chitinases	pathogens bacterial and fungal pathogens such as	
Barnase	Phytophtora, Verticillium, Rhizoctonia bacterial and fungal pathogens such as Phytophtora, Verticillium.	
Disease resistance response gene 49	Rhizoctonia hacterial and fungal pathogens such as Phytophtora, Verticillium, Rhizoctonia	
trans aldolase antisense Glucanases	blackspots bacterial and fungal pathogens such as	
	Phytophtoro, Verticillium, Rhizoctonio	
double stranded ribonuclease Coat proteins	vinises such as PLRV, PVY and TRV vinises such as PLRV, PVY and TRV	
17 kDa or 60 kDa protein	viruses such as PLRV, PVY and TRV	
Nuclear inclusion proteins eg. a or b	viruses such as PLRV, PVY and TRV	
Pseudoubiquitin	viruses such as PLRV, PVY and TRV	
Replicase	viruses such as PLRV, PVY and TRV	
Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	coleoptera eg Colorado potato beetle, aphids	
3-Hydroxysteroid oxidase	coleoptera eg Colorado potato beetle, aphids	
Peroxidase	coleoptera eg Colorado potato heetle, aphids	
Aminopeptidase inhibitors eg. Lencine aminopeptidase inhibitor	coleoptera eg Colorado potato heetle, aphids	
stilbene synthase	coleoptera eg Colonado potato beetle,	
Lectines	coleoptera eg Colorado potato beetle, aphids	
Protease Inhibitors eg cystatin, patatin	coleoptera eg Colorado potato beetle, aphids	
ribosome inactivating protein	coleoptera eg Colorado potato beetle, aphids	
HMG-CoA reductase	coleoptera eg Colorado potato beetle, aphids	
Cyst nematode hatching stimulus Barnasc	cyst nematodes nematodes eg root knot nematodes and	
Antifeeding principles	cyst nematodes nematodes eg root knot nematodes and	
	cyst nematodes	

17

TABLE A7

	crop Tomatoes
Effected target or expressed principle(s)	Crop phenotype/Tolerance to
Acetolactate synthase (ALS) AcetylCoA Carboxylase (ACCase)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides
	Aryloxyphenoxyalkanecartoxylic acids, cyclohexanediones
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachloroi, Triones such as
Phosphinothricin acetyl transferase O-Methyl transferase	mesotrione or sulcotrione Phosphinothricin altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL) Adenylosuccinate Synthase	Inhibitors of IMP and AMP synthesis Inhibitors of adenylosuccinate synthesis
Anthranilate Synthese	Inhibitors of tryptophan synthesis and catabolism
Nitrilase	3.5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate
Glyphosate oxidoreductase	Glyphosate or sulfosate
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives.
Canadanina 2460 2460 6111	phenopylate, oxadiazoles etc.
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas
Polyphenol oxidase or Polyphenol oxidase antisense	blackspot bruise
Metallothionein	bacterial and fitingal pathogens such as phytophtora
Ribonuclease	Phytophtora, Verticillium, Rhizoctonia
Antifungal polypeptide AlyAFP	bacterial and fungul pathogens such as bacterial speek, fusarium, soft rot,
	powdery mildew, crown rot, leaf mould etc.
oxalate oxidase	bacterial and fungal pathogens such as
	bacterial speek, fusarium, soft rot, powdery mildew, crown rot, leaf mould
	ctc.
glucose oxidase	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot,
	powdery mildew, crown rot, leaf mould etc.
pyrrolnitrin synthesis genes	bacterial and fungal pathogens such as
	bacterial speek, fusarium, soft rot, powdery mildew, crown rot, leaf mould
serine/threonine kinases	etc.
controlline khases	bacterial and fingal pathogens such as bacterial speck, fusarium, soft rot,
	powdery mildew, crown rot, leaf mould etc.
Cecropin B	bacterial and fungal pathogens such as
	bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould
Phonylalanina ammania lugga (DAT)	elc.
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens such as bacterial speek, fusarium, soft rot,
	powdery mildew, crown rot, leaf mould etc.
Of genes eg. Of 9 Of5 Of4 Of2	leaf mould
Osmotin Alpha Hordothionin	alternaria solani bacteria
Systemin	bacterial and fungal pathogens such as
	bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould
Dallana da amana ana ana Sudakh ka an	elc.
Polygalacturonase inhibitors	bacterial and fungal pathogens such as bacterial speek, fusarium, soft rot,
	powdery mildew, erown rot, leaf mould etc.
Prf regulatory gene	bacterial and fungal pathogens such as
	bacterial speck, fusarium, soft rot, powdery mildew, crown rot, leaf mould
	etc.
2 Fusarium resistance locus obytoalexins	fusarium bacterial and fingal pathogens such as
. •	bacterial speck, fusarium, soft rot,

US 7,105,469 B2

19

TABLE A7-continued

Crop Tornatoes		
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	
-	powdery mildew, crown rot, leaf mould	
D-1 3-chemium estimano	etc.	
B-1,3-glucanase antisense	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot,	
	powdery mildew, crown rot, leaf mould	
	etc.	
receptor kinase	bacterial and flingal pathogens such as	
	bacterial speek, fusarium, soft rot,	
	powdery mildew, crown rot, leaf mould etc.	
Hypersensitive response eliciting	bacterial and fungal pathogens such as	
polypeptide	bacterial speek, fusarium, soft rot,	
	powdery mildew, crown rot, leaf mould	
	etc.	
Systemic acquires resistance (SAR)	viral, bacterial, fungal, nematodal	
genes Chitinases	pathogens	
Chimases	bacterial and fungal pathogens such as bacterial speck, fusarium, soft rot,	
	powdery mildew, crown rot, leaf mould	
	etc.	
Barnase	bacterial and fungal pathogens such as	
	bacterial speck, fusarium, soft rot,	
	powdery mildew, crown rot, leaf	
	mould etc.	
Glucanases	bacterial and fungal pathogens such as	
	bacterial speek, fusarium, soft rot,	
	powdery mildew, crown rot, leaf mould etc.	
double stranded ribonuclease	vinises such as PLRV, PVY and ToMoV	
Coat proteins	viruses such as PLRV, PVY and ToMoV	
17 kDa or 60 kDa protein	viruses such as PLRV, PVY and ToMoV	
Nuclear inclusion proteins eg. a or b or	viruses such as PLRV, PVY and ToMoV	
Nucleoprotein	TRV	
Pseudoubiquitin	viruses such as PLRV, PVY and ToMoV	
Replicase Bacillus thuringiensis toxins, VIP 3,	vinuses such as PLRV, PVY and ToMoV	
Bacillus cercus toxins, Photorabdus and Xenorhabdus toxins	lepidoptera eg heliothis, whiteflies aphids	
3-Hydroxysteroid oxidase	lepidoptera eg heliothis, whiteflies aphids	
Peroxidase	lepidopiera eg heliothis, whiteflies aphids	
Aminopeptidase inhibitors eg. Leucine	lepidoptera eg heliothis, whiteflies aphids	
antinopeptidase inhibitor		
Lectines	lepidoptera eg heliothis, whiteflies aphids	
Protease Inhibitors og cystatin, patatin	lepidopiera eg heliothis, whiteflies aphids	
ribosome inactivating protein	lepidopiera og heliothis, whiteflies aphids	
stilbene synthase	lepidoptera eg heliothis, whiteflies aphids	
HMG-CoA reductase	lepidoptera eg heliothis, whiteflies aphids	
Cyst nematode hatching stimulus	cyst nematodes	
Barnasc	nematodes eg root knot nematodes and	
Antifeeding principles	cyst nematodes	
sourceand lunchies	nematodes eg root knot nematodes and cyst nematodes	

Crop Peppers	
Effected target or expressed principle(s)	Crop phenotype/Tolerance to
Acetolactate synthase (ALS)	Sulfonylurens, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzontes, Phtalides
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones
Hydroxyphenylpynwate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	aftered lignin levels
Cilutamine synthetase	Glufosinate, Bialaphos
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis
Anthranilate Synthase	Inhibitors of tryptophan synthesis and

US 7,105,469 B2

21

TABLE A8-continued

Crop Peppers		
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	
Miledian	catabolism	
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such	
5-Enolpyruvyl-3phosphoshikimate	as Bromoxynil and loxinyl Glyphosate or sulfosate	
Synthase (EPSPS)	Cryphosaic or sanoane	
Glyphosate oxidoreductase	Glyphosare or sulfosare	
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides,	
	phenylpyrazoles, pyridin derivatives,	
- . B .a	phenopylate, oxadiazoles etc.	
Cytochrome P450 eg. P450 SU1 or	Xenobiotics and herbicides such as	
selection Polyphenol oxidase or Polyphenol	Sulfonylureas	
oxidase antisense	bacterial and fungal pathogens	
Metallothionein	bacterial and fungal pathogens	
Ribonuclease	bacterial and fungal pathogens	
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens	
oxalate oxidase	bacterial and fungal pathogens	
glucose oxidase	bacterial and fungal pathogens	
pyrrolnitrin synthesis genes	bacterial and fungal pathogens	
serine/threonine kinases	bacterial and fungal pathogens	
Cecropin B	bacterial and fungal pathogens rot, leaf	
Phenylalanine animonia Iyase (PAL)	mould etc.	
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial and fungal pathogens bacterial and fungal pathogens	
Osmotin	bacterial and fungal pathogens	
Alpha Hordothionin	bacterial and fungal pathogens	
Systemin	bacterial and fitingal pathogens	
Polygalacturonase inhibitors	bacterial and fungal pathogens	
Prf regulatory gene	bacterial and fungal pathogens	
12 Fusarium resistance locus	fusarium	
phytoalexins	bacterial and fungal pathogens	
B-1,3-glucanase antisense	bacterial and fungal pathogens	
receptor kinase Hypersensitive response eliciting	bacterial and fungal pathogens bacterial and fungal pathogens	
polypeptide	oacteria: and tungat pathogens	
Systemic acquires resistance (SAR)	viral, bacterial, fungal, nematodal	
genes	pathogens	
Chitinases	bacterial and fungal pathogens	
Barnase	bacterial and fungal pathogens	
Ghicanases	bacterial and fitingal pathogens	
double stranded ribonuclease	vinuses such as CMV, TEV	
Coat proteins	viruses such as CMV, TEV	
17 kDa or 60 kDa protein Nuclear inclusion proteins eg. a or b or	viruses such as CMV, TEV viruses such as CMV, TEV	
Nucleoprotein	viluses such as Civity, ILV	
Pseudoubiquitin	vinises such as CMV, TEV	
Replicase	viruses such as CMV, TEV	
Bacillus thuringiensis toxins, VIP 3,	lepidoptera, whiteflies aphids	
Bacillus cereus toxins, Photorabdus and		
Xenorhabdus toxins		
3-Hydroxysteroid oxidase Peroxidase	lepidoptera, whiteflies aphids	
Aminopeptidase inhibitors eg. Leucine	lepidopiera, whiteflies aphids lepidopiera, whiteflies aphids	
aminopeptidase inhibitor	repraopiera, wintennes apintas	
Lectines	lepidoptera, whiteflies aphids	
Protease Inhibitors eg cystatin, patatin	lepidoptera, whiteflies aphids	
ribosome inactivating protein	lepidoptera, whiteflies aphids	
stilhene synthase	lepidoptera, whiteflies aphids	
HMG-CoA reductase	lepidoptera, whiteflies aphids	
Cyst nematode hatching stimulus	cyst nematodes	
Barnase	nematodes eg root knot nematodes and	
4 - 1: C 4:	cyst nematodes	
Antifeeding principles	nematodes eg root knot nematodes and cyst nematodes	
	CVSC DERRIBORES	

TABLE A9

	111818181818
Crop Grapes	
Effected target or expressed principle(s)	Crop phenotype/Tolerance to
Acetolactate symbase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines,

Pyrimidyloxybenzoates, Phtalides

23

TABLE A9-continued

TABLE AS-Continued		
<u> </u>	Urop Grapes	
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones	
Hydroxyphenylpyruvate dioxygenase (HPPD)	Isoxazoles such as Isoxafluiol or Isoxachlortol, Triones such as mesotrione or sulcotrione	
Phosphinothricin acetyl transferase	Phosphinothricin	
O-Methyl transferase Glutamine synthetase	aftered lignin levels Glufosinate, Bialaphos	
Adenylosuccinate Lyase (ADSL)	Inhibitors of IMP and AMP synthesis	
Adenylosuccinate Synthase Anthranilate Synthase	Inhibitors of ademylosuccinate synthesis Inhibitors of tryptophan synthesis and	
7 Michael Symposis	catabolism	
Nitrilase	3,5-dihało-4-hydroxy-benzonitriles such as Bromoxynil and loxinyl	
5-Enolpyruvyl-3phosphoshikimate Synthuse (EPSPS)	Glyphosale or sulfosate	
Glyphosate oxidoreductase	Glyphosate or sulfosate	
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives,	
O P450 - P450 0774	phenopylate, oxadiazoles etc.	
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas	
Polyphenol oxidase or Polyphenol	bacterial and fungal pathogens like	
oxidase antisense Metallothionein	Botrytis and powdery mildew bacterial and fungal pathogens like	
	Botrytis and powdery mildew	
Ribonuclease	bacterial and fungal pathogens like Botrytis and powdery mildew	
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens like	
oxalate oxidase	Botrytis and powdery mildew	
Oxarate Oxidase	bacterial and fungal pathogens like Bottytis and powdery mildew	
glucose oxidase	bacterial and fungal pathogens like	
pyrrolnitrin synthesis genes	Botrytis and powdery mildew bacterial and fingal pathogens like	
serine/threonine kinases	Bottytis and powdery mildew bacterial and fungal pathogens like	
Cecropin B	Botrytis and powdery mildew bacterial and fungal pathogens like Botrytis and powdery mildew	
Phenylalanine ammonia lyase (PAL)	bacterial and fungal pathogens like Botrytis and powdery mildew	
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial and fungal pathogens like Botrytis and powdery mildew	
Osmotin	bacterial and fungal pathogens like Botrytis and powdery mildew	
Alpha Hordothionin	bacterial and fungal pathogens like Botrytis and powdery mildew	
Systemin	bacterial and fungal pathogens like Botrytis and powdery mildew	
Polygalacturonase inhibitors	bacterial and fungal pathogens like Bottytis and powdery mildew	
Prf regulatory gene	bacterial and fungal pathogens like	
phytoalexins	Botrytis and powdery mildew bacterial and fungal pathogens like Botrytis and powdery mildew	
B-1,3-glucanase antisense	bacterial and fungal pathogens like Bottytis and powdery mildew	
receptor kinase	bacterial and fungal pathogens like Botrytis and powdery mildew	
Hypersensitive response eliciting	bacterial and fungal pathogens like	
polypeptide Systemic acquires resistance (SAR)	Botrytis and powdery mildew viral, bacterial, fungal, nematodal	
делез	pathogens	
Chitinases	bacterial and fungal pathogens like Botrytis and powdery mildew	
Barnase	bacterial and fungal pathogens like	
Ghicanases	Borrytis and powdery mildew bacterial and firingal pathogens like	
	Botrytis and powdery mildew	
double stranded ribonuclease Coat proteins	vinises vinises	
17 kDa or 60 kDa protein	viruses	
Nuclear inclusion proteins eg. a or h or Nucleoprotein	vinises	

US 7,105,469 B2

25

TABLE A9-continued

Crop Grapes		
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	
Pseudoubiquitin	viruses	
Replicase	viruses	
Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins	<i>lepidoptera</i> , aphids	
3-Hydroxysteroid oxidase	lepidopiera, aphids	
Peroxidase	lepidoptera, aphids	
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids	
Lectines	lepidoptera, aphids	
Protease Inhibitors eg cystatin, patatin	lepidoptera, aphids	
ribosome inactivating protein	lepidoptera, aphids	
stilbene synthase	lepidopiera, aphids, diseases	
HMG-CoA reductase	lepidoptera, aphids	
Cyst nematode hatching stimulus	cyst nematodes	
Barnase	nematodes eg reot knot nematodes and	
	cyst nematodes or general diseases	
CBI	root knot nematodes	
Antifeeding principles	nematodes eg root knot nematodes or	
	root cyst nematodes	

TARLE A10

TABLE A10 _crop_Oit_Seed_rape_		
Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides	
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanerliones	
Hydroxyphenylpynivate dioxygenase (HPPD)	Isoxacoles such as Isoxaflutol or Isoxachlortol, Triones such as mesotrione or sulcotrione	
Phosphinothricin acetyl transferase O-Methyl transferase Glutamine synthetase	Phosphinothricin altered lignin levels Glufosinate, Bialaphos	
Adenylosuccinate Lyase (ADSL) Adenylosuccinate Synthase	Inhibitors of IMP and AMP synthesis Inhibitors of adenylosuccinate synthesis	
Anthranilate Synthese	Inhibitors of tryptophan synthesis and catabolism	
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and loxinyl	
5-Enolpyravyl-3phosphoshikimate Synthase (EPSPS)	Glyphosate or sulfosate	
Glyphosate oxidoreductase Protoporphyrinogen oxidase (PROTOX)	Glyphosate or sulfosate Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.	
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas	
Polyphenol exidase or Polyphenol oxidase antisense	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
Metallothionein	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
Ribonuclease	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
Antifungal polypeptide AlyAFP	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
oxalate oxidase	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
plucose oxidase	bacterial and fungal pathogens like Cylindrosporium, Phoma, Scleronnia	
pytrolnitrin synthesis genes	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
serine/threonine kinases	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
Cecronin B	bacterial and fungal nathonens like	

Asterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia

Phenylalanine ammonia lyase (PAL)

Cecropin B

28

TABLE A10-continued

crop Oil Seed rape		
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
Osmotin	bacterial and fungal pathogens like Cylindrosporium, Phoma, Selerotinia	
Alpha Hordothionin	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
Systemin	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
Polygalacturonase inhibitors	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
Prf regulatory gene	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
phytoalexins	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
B-1,3-glucanase antisense	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
receptor kinase	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
Hypersensitive response eliciting polypeptide Systemic acquires resistance (SAR)	bacterial and fungal pathogens like Cylindrosporium, Phoma, Sclerotinia	
genes Chitinases	viral, bacterial, fungal, nematodal pathogens bacterial and fungal pathogens like	
Barnase	Cylindrasporium, Phoma, Sclerotinia bacterial and fungal pathogens like Cylindrasporium, Phoma,	
Glucanases	Cylindrasporium, Phoma, Sclerotinia, nematodes bacterial and fungal pathogens like Cylindrasporium, Phoma, Sclerotinia	
double stranded ribonuclease Coat proteins	viruses	
17 kDa or 60 kDa protein Nuclear inclusion proteins eg. a or b or	viruses	
Nucleoprotein		
Pseudonbiquitin Replicase	viruses viruses	
Bacillus thuringiensis toxins, VIP 3. Bacillus cereus toxins, Photombdus and Xenorhabdus toxins	lepidoptera, aphids	
3-Hydroxysteroid oxidase	lepidoptera, aphids	
Peroxidase Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids lepidoptera, aphids	
Protesse Inhibitors eg cystatin, patatin,	lepidoptera, aphids lepidoptera, aphids	
riflosome inactivating protein stilbene synthase HMG-CoA reductase Cyst nematode hatching stimulus Barnase	lepidoptera, aphids tepidoptera, aphids, diseases lepidoptera, aphids cyst nematodes nematodes eg root knot nematodes and cyst nematodes	
CBI Antifeeding principles induced at a nematode feeding site	root knot nematodes nematodes eg root knot nematodes, root cyst nematodes	

TΆ	RI	H	Δ	1	1

	Effected target or expressed principle(s)	Crop phenotype/Tolerance to
О	Phosphinothricin acetyl transferase	Phosphinothricin
	O-Methyl transferase	altered lignin levels
	Glutamine synthetase	Glufosinate, Bialaphos
	Adenylosuccinate Lyase	Inhibitors of IMP and AMP
	(ADSL)	synthesis
5	Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis

TABLE All-continued

Crop Brassica vegetable (cabbage, brussel sprouts, broccoli etc.)		
Effected target or expressed principle(s)	Crop phenotype-Tolerance to	
Acciolaciate synthase (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides	
AcetylCoA Carboxylase (ACCase) Hydroxyphenylpyravate dioxygenase (HPPD)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones Isoxazoles such as Isoxafiutol or Isoxachlortol, Triones such as mesorrione or sulcotrione	

TABL	E A11-continued	_	TABLE A	11-continued
Crop Brassica vegetable	(cabbage, brussel sprouts, broccoli etc.)		Crop Brassica vegetable (cabbi	age, brussel sprouts, broccoli etc.)
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	_	Effected target or expressed principle(s)	rop phenotype/Tolerance to
Anthranilate Synthase Nitrilase	Inhibitors of tryptophan syn- thesis and catabolism 3,5-dihato-4-hydroxy-benzonitriles		induced at a nematode ro	ot cyst nematodes
5-Enolpymyyl-	such as Bromoxynil and Ioxinyl Glyphosate or sulfosate	10		<u> </u>
3phosphoshikimate Synthase (EPSPS)			TARI	LE A12
Glyphosate oxidoreductase Protoporphyrinogen oxidase	Glyphosate or sulfosate Diphenylethers, cyclic imides,			is eg apples, pears
(PROTOX)	phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.	15	Effected target or	
Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas		expressed principle(s)	Crop phenotype Tolerance to
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial and fungal pathogens		Acetolactate synthese (ALS)	Sulfonylureas, Imidazolinones, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides
Metallothionein	bacterial and fungal pathogens	20	AcetylCoA Carboxylase	Aryloxyphenoxyalkanecarboxylic
Ribonuclease Antifungal polypeptide	bacterial and fungal pathogens bacterial and fungal pathogens		(ACCase) Hydroxyphenylpynivate	acids, cyclohexanediones Isoxazoles such as Isoxaflutol
AlyAFP	bacteriai ano tungai patnogens		dioxygenase (HPPD)	or Isoxachiortol, Triones such
oxalate oxidase	bacterial and fungal pathogens			as mesotrione or sulcotrione
glucose oxidase pyrrolnitrin synthesis	hacterial and fungal pathogens hacterial and fungal pathogens	25	Phosphinothricin acetyl transferase	Phosphinothricin
genes	material and things passages.		O-Methyl transferase	altered lignin levels
serine/threonine kinases	bacterial and fungal pathogens		Glutamine synthetase	Glufosinate, Bialaphos Inhibitors of IMP and AMP
Cecropin B Phenylalanine ammonia	bacterial and fungal pathogens bacterial and fungal pathogens		Adenylosuccinate Lyase (ADSL)	synthesis
lyase (PAL) Cf genes eg. Cf 9 Cf5	bacterial and fungal pathogens	30	Adenylosuccinute Synthuse	Inhibitors of adenylosuccinate synthesis
Cf4 Cf2			Anthranilate Synthase	Inhibitors of tryptophan syn-
Osmotin Alpha Hordothionin	bacterial and fungal pathogens bacterial and fungal pathogens		Nitrilase	thesis and catabolism 3,5-dihalo-4-hydroxy-benzonitriles
Systemin	bacterial and fungal pathogens			such as Bromoxynil and Ioxinyl
Polygalactmonase inhibitors	bacterial and fungal pathogens		5-Enolpyruvyl-3phosphoshikimate	Glyphosate or sulfosate
Prf regulatory gene phytoalexins	bacterial and fungal pathogens bacterial and fungal pathogens	35	Synthase (EPSPS) Glyphosate oxidoreductase	Glyphosate or sulfosate
B-1,3-glucanase antisense	bacterial and fungal pathogens		Protoporphyrinogen oxidase	Diphenylethers, cyclic imides,
receptor kinase Hypersensitive response	bacterial and fungal pathogens bacterial and fungal pathogens		(PROTOX)	phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc.
eliciting polypeptide Systemic acquires resistance	viral, bacterial, fungal,		Cytochrome P450 eg. P450 SU1	Xenobiotics and herbicides
(SAR) genes	nematodal pathogens	40	or selection	such as Sulfonylureas
Chitinases Barnase	bacterial and fungal pathogens bacterial and fungal pathogens		Polyphenol oxidase or Polyphenol oxidase antisense	bacterial and fungal pathogens like apple seab or fireblight
Glucanases	bacterial and fungal pathogens		Metallothionein	bacterial and fungal pathogens
double stranded ribonuclease	vinuses			like apple seab or fireblight
Coat proteins 17 kDa or 60 kDa protein	viruses viruses	45	Ribonuclease	bacterial and fungal pathogens like apple scab or fireblight
Nuclear inclusion proteins	vīruses		Antifungal polypeptide AlyAFP	bacterial and fungal pathogens
eg. a or b or Nucleoprotein Pseudoubiquitin			and the continue	like apple scab or fireblight
Replicase	viruses viruses		oxalate oxidase	bacterial and fungal pathogens like apple scab or fireblight
Bacillus thuringiensis	lepidoptera, aphids		glucose oxidase	bacterial and fungal pathogens
toxins, VIP 3, Bacillus cereus toxins, Photorabdus and Xenorhabdus toxins		50	pyrrolnitrin synthesis genes	like apple seab or fireblight bacterial and fungal pathogens like apple seab or fireblight
3-Hydroxysteroid oxidase Peroxidase	lepidoptera, aphids lepidoptera, aphids		serine/threonine kinases	bacterial and fungal pathogens like apple seab or fireblight
Aminopeptidase inhibitors eg. Leucine aminopeptidase	lepidoptera, aphids		Cecropin B	bacterial and fungal pathogens like apple scab or fireblight
inhibitor		55	Phenylalanine arumonia lyase	bacterial and fungal pathogens
Lectines	lepidoptera, aphids		(PAL)	like apple scab or fireblight
Protease Inhibitors eg cystatin, patatin, CPTI	lepidoptera, aphids		Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial and fungal pathogens like apple scab or fireblight
ribosome inactivating	lepidoptera, aphids		Osmotin	bacterial and fungal pathogens
protein stilbene synthase	lepidoptera, aphids, diseases	60	Alpha Hordethionin	like apple scab or fireblight bacterial and fungal pathogens
HMG-CoA reductase	tepidoptera, aphids			like apple seab or fireblight
Cyst nematode hatching stimulus	cyst nematodes		Systemin	bacterial and fungal pathogens like apple seab or fireblight
Ваптаке	nematodes eg root knot nematodes		Polygalacturonase inhibitors	bacterial and fungal pathogens like apple scab or fireblight
СВІ	and cyst nematodes root knot nematodes	65	Prf regulatory gene	bacterial and fungal pathogens
Antifeeding principles	nematodes eg root knot nematodes,			like apple scab or fireblight

US 7,105,469 B2

31

TABLE A12-continued

TABLE A1	2-continued	_	TABLE A	13-continued
Crop Pome fruit	s eg apples, pears		Cron	Melons
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	5	Effected target or expressed principle(s)	Crop phenotype Tolerance to
phytoalexins	bacterial and fungal pathogens		Anthranilate Synthase	Inhibitors of tryptophan syn-
B-1,3-glucunase antisense	like apple seab or fireblight bacterial and fungal pathogens like apple seab or fireblight	10	Nitrilase	thesis and catabolism 3,5-dihalo-4-hydroxy-benzonitriles
receptor kinase	bacterial and fungal pathogens	10	5-Enolpyrovyl-3phosphoshikimate	such as Bromoxynil and Ioxinyl Glyphosate or sulfosate
Hypersensitive response eliciting polypeptide Systemic acquires resistance	like apple scah or fireblight bacterial and fungal pathogens like apple scab or fireblight viral, bacterial, fungal,		Synthase (EPSPS) Glyphosate oxidoreductase Protoporphyrinogen oxidase (PROTOX)	Glyphosate or sulfosate Diphenylethers, cyclic imides, phenylpyrazoles, pyridin
(SAR) genes Lytic protein	nematodal pathogens bacterial and fungal pathogens	15		derivatives, phenopylate, oxadiazoles etc.
Lysozym	like apple scab or fireblight bacterial and fungal pathogens		Cytochrome P450 eg. P450 SU1 or selection	Xenobjotics and herbicides such as Sulfonylureas
Chitinases	like apple scab or fireblight bacterial and fungal pathogens		Polyphenol oxidase or Polyphenol oxidase antisense	bacterial or fungal pathogens like phytophtorn
Barnase	like apple scab or fireblight bacterial and fungal pathogens	20		bacterial or fungal pathogens like phytophtora
Glucanases	like apple scab or fireblight bacterial and fungal pathogens		Ribonuclease	bacterial or fungal pathogens like phytophtora
double stranded ribonuclease	like apple scab or fireblight viruses		Antifungal polypeptide AlyAFP	bacterial or fungal pathogens like phytophtora
Coat proteins 17 kDa or 60 kDa protein	viruses viruses	25	oxalate oxidase	hacterial or fungal pathogens like phytophtora
Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses		glucose oxidase	bacterial or fungal pathogens like phytophtora
Pseudoubiquitin Replicase	viruses viruses		pyrrolnitrin synthesis genes	bacterial or filingal parhogens like phytophtora
Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins,	lepidoptera, aphids, mites	30	serine/threonine kinases	bacterial or fungal pathogens like phytophtora
Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase	lepidoptera, aphids, mites		Cecropin B	bacterial or fungal pathogens like phytophtora
Peroxidase Aminopeptidase inhibitors eg.	lepidoptera, aphids, mites lepidoptera, aphids, mites		Phenylalanine ammonia lyase (PAL)	bacterial or fungal pathogens like phytophtora
Leucine aminopeptidase inhibitor Lectines	lepidoptera, aphids, mites	35	Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial or fungal pathogens like phytophtora
Protease Inhibitors eg cystatin, patatin, CPTI	lepidoptera, aphids, mites	<i>ڊ</i> ر	Osmotin	bacterial or fungal pathogens like phytophtora
ribosome inactivating protein stilbene synthuse	lepidoptera, aphids, mites lepidoptera, aphids, diseases,		Alpha Hordothionin	bacterial or fungal pathogens like phytophtora
HMG-CoA reductase	mites lepidoptera, aphids, mites	10	Systemia	bacterial or fungal pathogens like phytophtora
Cyst nematode hatching stimulus Barnase	cyst nematodes	40	Polygalacturonase inhibitors	bacterial or fungal pathogens like phytophtora
	nematodes eg root knot nematodes and cyst nematodes		Prf regulatory gene	bacterial or fungal pathogens like phytophtora
CBI Antifeeding principles induced	noot knot nematodes nematodes eg root knot nematodes,		phytoalexins	bacterial or fungal pathogens like phytophtora
at a nematode feeding site	root cyst nematodes	45	B-1,3-glucanase antisense	bacterial or fungal pathogens like phytophtora
•			receptor kinase	bacterial or fungal pathogens like phytophtora
TABL	E A13		Hypersensitive response cliciting polypeptide	bacterial or fungal pathogens like phytophtora
Crop !	Melons	50	Systemic acquires resistance (SAR) genes	viral, bacterial, fungal, nematodal pathogens
Effected target or	Coordinates Talances to		Lytic protein	bacterial or fungal pathogens like phytophtora
Acetolactate synthase	Crop phenotype/Tolerance to Sulfonylureas, Imidazolinones,	•	Lysozym	bacterial or fungal pathogens like phytophtora
(ALS)	Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides	55	Chitinases	bacterial or fungal pathogens like phytophtora
AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids, cyclohexanediones		Вагламе	bacterial or fungal pathogens like phytophtora
Hydroxyphenylpyravate dioxygenase (HPPD)	Isoxazoles such as Isoxaflutoi or Isoxachlortol, Triones such		Glucanases	bacterial or fungal pathogens like phytophtora
Phosphinothricin acetyl	as mesotrione or sulcotrione Phosphinothricin	60	double stranded ribonuclease	viruses as CMV, PRSV, WMV2, SMV, ZYMV
transferase O-Methyl transferase	altered lignin levels		Coat proteins	viruses as CMV, PRSV, WMV2, SMV, ZYMV
Glutarnine synthetase Adenylosuccinate Lyase	Glufosinate, Bialaphos Inhibitors of IMP and AMP		17 kDa or 60 kDa protein	viruses as CMV, PRSV, WMV2, SMV, ZYMV
(ADSL) Adenylosuccinate Synthase	synthesis Inhibitors of adenylosuccinate	65	Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses as CMV,, PRSV, WMV2, SMV, ZYMV
•,	synthesis		Pseudoubiquitin	vinises as CMV,, PRSV, WMV2,

10

15

20

25

30

40

45

55

33

34

TABLE A13-continued

Crop Melons		
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	
Replicese	SMV, ZYMV viruses as CMV., PRSV, WMV2. SMV, ZYMV	
Bacillus thuringiensis toxins, VIP 3. Bacillus cereus toxins,	lepidoptera, aphids, mites	
Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase	lepidoptera, aphids, mites,	
Peroxidase	lepidoptera, aphids, mites, whitefly	
Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids, mites, whitefly	
Lectines Protease Inhibitors eg cystatin.	lepidoptera, aphids, mites, whitefly	
patatin, CPTI, virgiferin ribosome inactivating protein	lepidoptera, aphids, mites, whitefly lepidoptera, aphids, mites,	
stilbene synthuse	whitefly lepidoptera, aphids, mites,	
HMG-CoA reductase	whitefly lepidoptera, aphids, mites,	
Cyst nematode hatching stimulus	whitefly cyst nematodes	
Barnase	nematodes eg root knot nematodes and cyst nematodes	
CBI	root knot nematodes	
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes	

Metallothionein

Antifungal polypeptide AlyAFP oxalate oxidase

Ribonuclease

TABLE A14 Crop Banana		
		
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	
expressed principle(s)	Citop Intensiyper tolerance to	
Acetolactate synthase	Sulfonylureas, Imidazolinones,	
(ALS)	Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides	
AcetylCoA Carboxylase	Aryloxyphenoxyalkanecarboxylic	
(ACCase)	acids, cyclohexanediones	
Hydroxyphenylpyruvate	Isoxazoles such as Isoxaflutol	
dioxygenase (HPPD)	or Isoxachlortol, Triones such	
	as mesotrione or sulcotrione	
Phosphinothricin acetyl	Phosphinothricin	
transferase		
O-Methyl transferase	altered lignin levels	
Glutamine synthetase	Glufosinate, Bialaphos	
Adenylosuccinate Lyase	Inhibitors of IMP and AMP	
(ADSL)	synthesis	
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate	
	synthesis	
Anthranilate Synthase	Inhibitors of tryptophan syn-	
N. 11	thesis and catabolism	
Nitrilase	3.5-dihalo-4-hydroxy-henzonitrile	
5-Enolpyravy1-3phosphoshikimate	such as Bromoxynil and Ioxinyt Glyphosate or sulfosate	
Synthase (EPSPS)	Chyphosale of surfosale	
Glyphosate oxidoreductase	Glyphosate or sulfosate	
Protoporphyrinogen oxidase	Diphenylethers, cyclic imides,	
(PROTOX)	phenylpyrazoles, pyridin	
(1.10.1031)	derivatives, phenopylate,	
	oxadiazoles etc.	
Cytochrome P450 eg. P450 SU1	Xenobiotics and herbicides	
or selection	such as Sulfonylureas	
Polyphenol oxidase or Polyphenol oxidase antisense	bacterial or fungal pathogens	
Matellathianain	harterial on finned authorone	

hacterial or fungal pathogens bacterial or fungal pathogens bacterial or fungal pathogens bacterial or fungal pathogens

TABLE A14-continued

Стор 1	Banana
Effected target or expressed principle(s)	Crop phenotype Tolerance to
glucose oxidase	bacterial or fungal pathogens
pyrrolnitrin synthesis genes	bacterial or fungal pathogens
serine/threonine kinases	bacterial or fungal pathogens
Cecropin B	bacterial or fungal pathogens
Phenylalanine ammonia lyase (PAL)	bacterial or fungal pathogens
Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial or fungal pathogens
Osmotin	bacterial or fungal pathogens
Alpha Hordothionin	bacterial or fungal pathogens
Systemin	bacterial or fungal pathogens
Polygalacturonase inhibitors	bacterial or fungal pathogens
Prf regulatory gene	bacterial or fungal pathogens bacterial or fungal pathogens
phytoalexins B-1,3-glucanase antisense	bacterial or fungal pathogens
receptor kinase	bacterial or fungal pathogens
Hypersensitive response	bacterial or fungal pathogens
eliciting polypeptide	
Systemic sequires resistance	viral, bacterial, fungal,
(SAR) genes	nematodal pathogens
Lytic protein	bacterial or fungal pathogens
Lysozym	bacterial or fungal pathogens
Chitinases	bacterial or fungal pathogens
Barnase	bacterial or fungal pathogens
Glucanases	bacterial or fungal pathogens
double stranded ribonuclease	viruses as Banana bunchy top virus (BBTV)
Coat proteins	viruses as Banana bunchy top virus (BBTV)
17 kDa or 60 kDa protein	viruses as Banana bunchy top virus (BBTV)
Nuclear inclusion proteins eg.	viruses as Banana bunchy top
a or b or Nucleoprotein	virus (BBTV)
Pseudoubiquitin	viruses as Banana bunchy top virus (BBTV)
Replicase	viruses as Banana bunchy top virus (BBTV)
Bacillus thuringiensis toxins,	lepidoptera, aphids, mites.
VIP 3, Bacillus cereus toxins.	nematodes
Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase	lepidoptera, aphids, mites,
Peroxidase	nematodes lepidoptera, aphids, mites,
	nematodes
Aminopeptidase inhibitors eg.	Icpidoptera, aphids, mites,
Leucine aminopeptidase inhibitor	nematodes
Lectines	lepidoptera, aphids, mites, nematodes
Protease Inhibitors eg cystatin, patatin, CPTI, virgiferin	lepidoptera, aphids, mites, nematodes
ribosome inactivating protein	lepidoptera, aphids, mites.
stilbene synthase	nematodes lepidoptera, aphids, mites, nematodes
HMG-CoA reductase	lepidoptera, aphids, mites.
Cyst nematode hatching stimulus Barnase	cyst nematodes nematodes eg root knot nematodes
CBI	and cyst nematodes
CBI	root knot nematodes
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root eyst nematodes

Crop Cotton				
ffected target or spressed principle(s)	Crop phenotype Tolerance to			
cetolactate synthase	Sulfonyhireas, Imidazolinones, Triazolopytimidines			

US 7,105,469 B2

TABLE A15-continued			TABLE A15-continued		
Crop Cotton			Стр	Cotton	
Effected target or expressed principle(s)	Crop phenotype/Tolerance to	5	Effected target or expressed principle(s)	Crop phenotype Tolerance to	
AcetylCoA Carboxylase	Pyrimidyloxybenzoates, Phtalides Aryloxyphenoxyalkanecarboxylic	_	Peroxidase	lepidoptera, aphids, mites, nematodes, whitefly	
(ACCase) Hydroxyphenylpynivaie	acids, cyclohexanediones Isoxazoles such as Isoxaflutol	10	Aminopeptidase inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids, mites, nematodes, whitefly	
dioxygenase (HPPD) Phosphinothricin acetyl	or Isoxachlortol, Triones such as mesotrione or sulcotrione Phosphinothricin		Lectines Protecto Tubibitors on execution	lepidoptera, aphids, mites, nematodes, whitefly lepidoptera, aphids, mites,	
transferase O-Methyl transferase	altered lignin levels		Protesse Inhibitors og cystatin, patatin, CPTI, virgiferin ribosome inactivating protein	nematodes, whitefly lepidoptera, aphids, mites,	
Glutamine synthetase Adenylosuccinate Lyase (ADSL)	Glufosinate, Bialaphos Inhibitors of IMP and AMP synthesis	15	stilbene synthase	nematodes, whitefly lepidoptera, aphids, mites, nematodes, whitefly	
Adenylosuccinate Synthase	Inhibitors of adenylosuccinate synthesis		HMG-CoA reductase	lepidoptera, aphids, mites, nematodes, whitefly	
Anthranilate Synthase	Inhibitors of tryptophan syn- thesis and catabolism	20	Cyst nematode hatching stimulus Barnase	cyst nematodes nematodes eg root knot nematodes	
Nitrilase	3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl		CBI	and cyst nematodes	
5-Enolpyruvyl-3phosphoshikimate Synthase (EPSPS) Glyphosate oxidoreductase	Glyphosate or sulfosate Glyphosate or sulfosate		Antifeeding principles induced at a nematode feeding site	nematodes og root knot nematodes, root cyst nematodes	
Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides, phenylpyrazoles, pyridin derivatives, phenopylate,	25			
Cytochrome P450 eg. P450 SU1	oxadiazoles etc. Хепоbiotics and herbicides			LE A16	
or selection Polyphenol oxidase or Polyphenol oxidase antisense	such as Sulfonylureas bacterial or fungal pathogens	30	Crop S Effected target or	Sugarcane	
Metallothionein Ribonuclease	bacterial or fungal pathogens bacterial or fungal pathogens	30	expressed principle(s)	Crop phenotype/Tolerance to	
Antifungal polypeptide AlyAFP oxalate oxidase glucose oxidase	bacterial or fungal pathogens bacterial or fungal pathogens		Acetolactate synthase (ALS)	Sulfonylureas, Imidazolinoues, Triazolopyrimidines, Pyrimidyloxybenzoates, Phtalides	
pyrrolnitrin synthesis genes serine/threonine kinases	bacterial or fungal pathogens bacterial or fungal pathogens bacterial or fungal pathogens	35	AcetylCoA Carboxylase (ACCase)	Aryloxyphenoxyalkanecarboxylic acids,	
Cecropin B Phenylalanine ammonia lyase (PAL)	bacterial or fungal pathogens bacterial or fungal pathogens		Hydroxyphenylpyruvate dioxygenase (HPPD)	cyclohexanediones Isoxazoles such as Isoxatlutol or Isoxachtoriol, Triones such	
Cf genes eg. Cf 9 Cf5 Cf4 Cf2 Osmotin	bacterial or fungal pathogens bacterial or fungal pathogens	40	Phosphinothricin acetyl	as mesotrione or sulcotrione Phosphinothricin	
Alpha Hordothionin Systemin	bacterial or fungal pathogens bacterial or fungal pathogens	40	transferase O-Methyl transferase	altered lignin levels	
Polygalacturonase inhibitors Prf regulatory gene	bacterial or fungal pathogens bacterial or fungal pathogens		Glutamine synthetase Adenylosuccinate Lyase	Glufosinate, Bialaphos Inhibitors of IMP and AMP	
phytoalexins B-1,3-glucanase antisense	bacterial or fungal pathogens bacterial or fungal pathogens		(ADSL) Adenylosuccinate Synthase	synthesis Inhibitors of adenylosuccinate	
receptor kinase Hypersensitive response	bacterial or fungal pathogens bacterial or fungal pathogens	45	Anthranilate Synthase	synthesis Inhibitors of tryptophan synthesis	
eliciting polypeptide Systemic acquires resistance	viral, bacterial, fungal,		Nitritase	and catabolism 3,5-dihalo-4-hydroxy-benzonitriles	
(SAR) genes Lytic protein	nematodal pathogens bacterial or fungal pathogens		5-Enolpyruvyl-3phosphoshikimate	such as Bromoxynil and loxinyl Glyphosate or sulfosate	
Lysozym Chitinases	bacterial or fungal pathogens bacterial or fungal pathogens	50	Synthase (EPSPS) Glyphosate oxidoreductase	Glyphosate or sulfosate	
Barnasc Glucanases	bacterial or fungal pathogens bacterial or fungal pathogens		Protoporphyrinogen oxidase (PROTOX)	Diphenylethers, cyclic imides. phenylpyrazoles, pyridin	
double stranded ribonuclease	viruses as wound aumor virus (WTV)		(IRO10A)	derivatives, phenopylate, oxadiazoles etc.	
Coat proteins	viruses as wound tumor virus (WTV)	55	Cytochrome P450 eg. P450 SU1 or selection	Xenobiotics and herbicides such as Sulfonylureas	
17 kDa or 60 kDa protein	viruses as wound tumor virus (WTV)		Polyphenol oxidase or Polyphenol oxidase antisense	bacterial or fungal pathogens	
Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses as wound tumor virus (WTV)		Metallothionein Ribonuclease	bacterial or fungal pathogens bacterial or fungal pathogens	
Pscudoubiquitin	viruses as wound tumor virus (WTV)	60	Antifungal polypeptide AlyAFP oxalate oxidase	bacterial or fungal pathogens bacterial or fungal pathogens	
Replicase	viruses as wound tumor virus (WTV)		glucose oxidase pyrrolnitrin synthesis genes	bacterial or fungal pathogens bacterial or fungal pathogens	
Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, Photographics and Vinoritations toxins	lepidopters, aphids, mites, nematodes, whitefly		serine/threonine kinases Cecropin B	bacterial or fungal pathogens bacterial or fungal pathogens bacterial or fungal pathogens	
Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase	lepidoptera, aphids, mites, nematodes, whitefly	65	Phenylalanine ammonia lyase (PAL) Cf genes eg. Cf 9 Cf5 Cf4 Cf2	bacterial or lungal pathogens	
			The Parison of the sail a sail, said sail		

37

TABLE A16-continued

TABLE A17-continued

38

Damoit I ordothionin	TABLE A1	6-continued	_	TABLE A17-continued		
Composition bacterial of fingal pathogens bacterial of fingal path	Crop Sugarcane			<u>Crop Sunflower</u>		
Alpha Inforthónoin Systemin basterial or fungal pathogens basterial or fungal pathogens potential or fungal pathogens basterial or fungal pathogens basteri		Crop phenotype/Tolerance to	5		Crop phenotype/Tolerance to	
Forgulations gene phytotolexins bacterial of fingal pathogens bacterial or fingal pathogens bact	Alpha Hordothionin		-		Isoxazoles such as Isoxaffutol or Isoxachlortol, Triones such	
phytocalexins bacterial of fangal pathogens bacterial of fangal pa	Polygalacturonase inhibitors	bacterial or fungal pathogens	10		as mesotrione or sulcotrione Phosphinothricin	
B-1.3-glucasase attiscase bacterial of fugal pathogens bythocons bacterial of fugal pathogens bacterial of fugal pathogens bacterial of fugal pathogens bacterial of fugal pathogens bythocons bacterial of fugal pathogens bythocons bacterial of fugal pathogens bacterial of fugal						
bacterial of fungal pathogens eliciting polypeptide Systemic acquires resistance stances of the pathogens bacterial of fungal pathogens viruses as SCMV, SMV						
Effected target or Expressed principle(s) Effected target or Expression and call tableogues bacterial or finugal pathogens Enthibitions or adenytopacidate tablebions or Enthibitions or adenytopacid tablebase and catacholosium Adhenolates Synthase Addreylosuccinate Synthase Adenylosuccinate Synthase Adenyl						
Systemic acquires resistance (SAR) genes bytic protein bytic protein bytic protein bytic protein Chitinases batcarial or fungal pathogens se, claivbacter baterial or fungal pathogens batcarial or fungal pathogens bat						
SARJ genes Lysozym			1.5	Adenylosuccinate Synthase	Inhibitors of adenylosuccinate	
Lytic preterin y-groupm bacterial of fingual pathogens see clavibacter bacterial of fingual pathogens bacterial of fingual p				And the soul		
Lysozym bucterial or fungal pathogens eg clavibuseler bucterial or fungal pathogens viruses as SCMV, SMV viruses as S				Anthranilate Synthase		
bacterial or fungal pathogens bacterial or fungal pathogens bacterial or fungal pathogens vinues as SCMV, SMV vinues as SCMV v		bacterial or fungal pathogens		Nitrilase	3,5-dihalo-4-hydroxy-benzonitrites such as Bromoxynil and Ioxinyl	
Diphosate or sulfoate pathogens vinues as SCMV, SMV vinues as SCMV			20			
Jobble stranded ribonuclesaes Vinuses as SCMV, SrMV Vinuses as SCM			20	Synthase (EPSPS)		
Coat protoins Yinuses as SCMV, SMV Vinuses as SCMV,						
17 EDs or 60 EDs protein vinuses as SCMV, SMV vinus						
viruses as SCMV, SYMV (Sprilosse (Sprilosse) (Aprilosse) (Aprilos correct toxins, Photorabdus and Amorbiaddas toxins (Peroxidase) (Pero	17 kDa or 60 kDa protein					
resendoubiquitin (vinuses as SCMV, SYMV plot plane) facellus thurmigiensis toxins, vinuses, as SCMV, SYMV plot plane) facellus thurmigiensis toxins, plane to bore replidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nemandeds og rook knot nemandeds and cyst nemandeds og rook knot nemandeds and cyst nemandeds og rook knot nemandeds og rook knot nemandeds and cyst nemandeds og rook knot nema	Nuclear inclusion proteins eg.				oxadiazoles etc.	
Replicases Acollius tiumingiousis toxins, elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer elepidoptera, aphids, mites, nematodes witerandes eg mexican rice borer elepidoptera, aphids, mites, nematodes witerandes eg mexican rice borer elepidoptera, aphids			25		Xenobiotics and herbicides	
Hearthus thurniquents toxins, vite standards toxins, photorabdus and Atenorhabdus toxins, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes within the proposition of the prop						
VIP 3. Bacillus cereus toxias, flethotrabdus toxias e mematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes witherfly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes witherfly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes within the proposition problem lepidoptera, aphids, mites, nem	•				bacterial or tungai parnogens	
Depositions de lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes, whitefly, beetles en mexican rice bourr lepidoptera, aphids, mites, nematodes per root knot nematodes and cyst nematodes en motodes cytool knot nematodes and cyst nematodes en root knot nematodes, and cyst	VIP 3. Bacillus cereus toxins,	nematodes, whitefly, heetles			bacterial or fungal pathogens	
nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes wither portion lepidoptera, aphids, mites, nematodes wither portion lepidoptera, aphids, mites, nematodes wither portion lepidoptera, aphids, mites, nematodes eg root knot nematodes vivuses as CMV, TMV vinuses as CMV, TMV vinuses as CMV, TMV vinu					bacterial or fungal pathogens	
Peroxidase lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes eg mexican rice borer lepidoptera, aphids,	-Hydroxysteroid oxidase		30		bacterial or fungal pathogens	
Peroxidase lepidoptera, aphids, mites, gernatodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes eg root knot nematodes and cyst nematodes groot knot nematodes, and cyst nematodes eg root knot nematodes, and cyst nematodes eg root knot nematodes, and cyst nematodes eg root knot nematodes, root cyst nematodes				oxalate oxidase		
minopeptidase inhibitors eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes	eroxidase			elucose oxidase		
Aminopeptidase inhibitor seg. emerican ince borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes and cyst nematodes whitefly, beetles eg mexican rice borer cyst nematodes and cyst nematodes and cyst nematodes root knot nematodes and cyst nematodes or oot cyst nematodes of the nematodes of the nematodes root knot nematodes and cyst nematodes or to cyst ne					bacterial or fungal pathogens	
nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes eg motivating principles induced at a nematode feeding site TABLEAT7 Crop Sunflower TABLEAT7 Crop phenotype/Folerance to Peroxidase Peroxidase					bacterial or fungal pathogens	
Lectines eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes winderal or fungal pathoge bacterial or fu			35		bacterial or fungal pathogens	
lepidoptera, aphids, mites, nematodes, whitefly, beerles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes witefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes witefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes witefly, beetles eg mexican rice borer cyst nematode batching stimulus Burnasse "IMG-CoA reductase" IMG-CoA reductase IM	eneme ammopeptidase inhibitor				bacterial or finigal pathogens	
Protease Inhibitors og cystatin, patatin, CPTI, virgiferin og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles og mexican rice borer cost mematodes whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles og mexican rice borer cyst nematode hatching stimulus 3urnase CBH Alpha Hordothionin bacterial or fungal pathoge bacterial or fungal pathoge bacterial or fungal pathoge receptor kinase lyterations bacterial or fungal pathoge sliciting polypeptide Systemin Polygalacturonase inhibitors Prif regulatory gene phytoalexins B-1,3-glucanase antisense receptor kinase lyteraseitive response lyteration or fungal pathoge sliciting polypeptide Systemic acquires resistance (SAR) genes Lytic protein Lysozym bacterial or fungal pathoge sliciting polypeptide Systemic acquires resistance (SAR) genes Lytic protein Lysozym bacterial or fungal pathoge of living pathoge sliciting polypeptide Systemin Polygalacturonase inhibitors Systemin Polygalacturonase inhibitors Prif regulatory gene phytoalexins B-1,3-glucanase antisense receptor kinase (SAR) genes Lytic protein Lysozym bacterial or fungal pathoge sliciting polypeptide Systemin Polygalacturonase inhibitors Prif regulatory gene phytoalexins Lypersensitive response (SAR) genes Lytic protein Lysozym bacterial or fungal pathoge of lucanases double stranded ribonuclease Coal proteins Tykla or 60 kDa protein Nuclear inclusion proteins eg. a or bor Nucleoprotein Provided ribonuclease Coal proteins Provided ribonuclease Co	Lectines				bacterial or fungal nathogens	
Protease Inhibitors of cystatin, lepidoptera, aphids, mites, nematodes, whitefly, beetles of mematodes, whitefly, beetles of mematodes of most knot mematodes, root knot mematodes, root cyst nematodes TABLE A17 Crop Sumflower TABLE A17 Crop Sumflower Crop phenotype/Tolerance to Crop phenotype/Tolerance to Independence of mematodes of mem					bacterial or fungal pathogens	
patatin, CPTI, virgiferin nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles og mexican rice borer oyst nematodes nematodes og root knot nematodes nematodes or oot knot nematodes nematodes or oot knot nematodes root knot nematodes root knot nematodes or oot vest nematodes TABLE A17 Crop Sunflower TABLE A17 Crop Sunflower Crop phenotype/Tolerance to Peroxidase Polygalacturonase inhibitors patching bacterial or fungal pathoge bacterial or fungal pathoge receptor kinase inhibitors patching bacterial or fungal pathoge receptor kinase inhibitors patching to spectral or fungal pathoge receptor kinase inhibitors patching to spectral or fungal pathoge receptor kinase inhibitors patching to spectral or fungal pathoge systemic acquires resistance (SAR) genes (SAR) genes					bacterial or fungal pathogens	
og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer cyst nematode hatching stimulus and cyst nematodes and cyst nematodes root knot nematodes and cyst nematodes root knot nematodes are nematodes eg root knot nematodes, root cyst nematodes root cyst nematodes root cyst nematodes TABLE A17 Crop Sunflower TCABLE A17 Crop phenotype/Tolerance to Top phenotype/Toleranc			40		bacterial or fungal pathogens	
lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles og mexican rice borer cyst nematode hatching stimulus Barnase "Antifeeding principles induced a nematodes are nematodes of a nematode feeding site" "TABLE A17" "TABLE A17" "Terp Sunflower" "Terp Sunflower "Spressed principle(s) "Terp Sunflower" "Terp Sunflower" "Terp Sunflower "Spressed principle(s) "T	acidn, CP11, virgilerin					
nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles og mexican rice borer lepidoptera, aphids, mites, nematodes witefly, beetles og mexican rice borer cyst nematodes nematodes and cyst nematodes and cyst nematodes and cyst nematodes and cyst nematodes are metodes of root knot nematodes are nematodes of a nematode feeding principles induced a nematodes of a nematode feeding site receptor kinase lyste receptor kinase lyste receptor kinase lyste receptor kinase lyste receptor kinase hacterial or fungal pathoge (SAR) genes lyste protein bucterial or fungal pathoge bacterial or fungal pathoge bacterial or fungal pathoge bacterial or fungal pathoge obsected or fungal pathoge obsected or fungal pathoge obsected or fungal pathoge double stranded ribonuclease viruses as CMV, TMV rivises as CMV, TMV viruses as CMV, TMV rivises as CM	ibosome inactivating protein					
lepidoptera, aphids, mites, nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles eg mexican rice borer cyst nematode hatching stimulus Burnase ematodes and cyst nematodes and cyst nematodes and cyst nematodes and cyst nematodes are mematodes are mematodes are root knot nematodes are mematodes groot knot nematodes are mematodes querial or fungal pathoge bacterial or fungal pathoge double stranded ribonuclease Coal proteins viruses as CMV, TMV viruses as CMV,					bacterial or fungal pathogens	
nematodes, whitefly, beetles eg mexican rice borer lepidoptera, aphids, mites, nematodes whitefly, beetles cg mexican rice borer lepidoptera, aphids, mites, nematode hatching stimulus Burnase Cyst nematode hatching stimulus Burnase CBI Antifeeding principles induced in a nematodes in a nematode groot knot nematodes in a nematode feeding site TABLE A17 Crop Sunflower Crop plenctype/Tolerance to Peroxidase lepidoptera, aphids, mites, systemic acquires resistance Systemic acquires resistance (SAR) genes Lysic protein Systemic acquires resistance (SAR) genes nematodal pathoge bacterial or fungal pathoge Chitmases Barnase Chitmases Barnase Glucanases double stranded ribonuclease Coal protein Viruses as CMV, TMV Replicase Viruses as CMV, TMV Replicase Viruses as CMV, TMV lepidoptera, aphids, mites, nematodes, whitefly, beetle solution for fungal pathoge bacterial or fungal pa					bacterial or fungal pathogens	
eg mexican rice borer lepidoptera, aphids, mites, nematodes, whitefly, beetles cg mexican rice borer cyst nematodes harching stimulus Burnase nematodes eg root knot nematodes and cyst nematodes and cyst nematodes and cyst nematodes and cyst nematodes are cyst nematodes and cyst nematodes and cyst nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof knot nematodes. The proof of knot nematodes are proof of knot nematodes. The proof of knot nematodes are proof of knot nematodes. The proof of knot nematodes are proof of knot nematodes. The proof of knot nematodes are proof of knot nematodes. The proof of knot nematodes are proof of knot nematodes. The proof of knot nematodes are proof of knot nematodes. The proof of knot nematodes ar	tilbene synthase		45	Hypersensitive response	bacterial or fungal pathogens	
Image: Indicate the problem of the p		-	7.5		viral bacterial funcial	
nematodes, whitefly, beetles cg mexican rice borer cyst nematodes nematodes eg root knot nematodes and cyst nematodes and cyst nematodes root knot nematodes are root cyst nematodes are root knot nematodes are root not knot nematodes are root not knot nematodes are root	IMG-CoA reductase					
cg mexican rice borer cyst nematode batching stimulus Barnase Barnase Chitnases Chucanases Coal proteins 17 kDa or 60 kDa protein Nuclear inclusion proteins eg. 2 a or b or Nucleoprotein Pseudoubiquitin Replicase Crop Sunflower Crop Sunflower Crop phenotype/Toleranee to Crop phenotype/Toleranee to Chitnases Chitnases Chucanases double stranded ribonuclease Coal proteins Viruses as CMV, TMV Replicase Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins. Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, nematodes, whitefly, beetle peroxidase Peroxidase Peroxidase					bacterial or fungal pathogens	
Stranse nematodes eg rool knot nematodes and cyst nematodes are root knot nematodes are root knot nematodes are root knot nematodes are root knot nematodes. The control of the cyst nematodes are root knot nematodes are root knot nematodes. The control of the cyttes as CMV, TMV and the cyttes as CMV, TMV are root cyst nematodes. The cyttes as CMV, TMV are root cyst nematodes. The cyttes as CMV, TMV are root cyst nematodes. The cyttes as CMV, TMV are root are root cyst nematodes. The cyttes as CMV, TMV are root are root are root are root are root and are root are root and are root are root are root are root are root and are root are root are root are root are root are root					bacterial or fungal pathogens	
Crop Sunflower Crop phenotype/Tolerance to Institutives of Not Rion infinitions and cyst nematodes and cyst nematodes and cyst nematodes and cyst nematodes are root knot nematodes aroot knot nematodes aroot knot nematodes aroot cyst nematodes aroot cyst nematodes Coal proteins viruses as CMV, TMV Replicase viruses as CMV, TMV Replication proteins can be according to the proteins viruses as CMV, TMV Replication proteins can be according to the proteins viruses as CMV, TMV Replication proteins can be according to the proteins viruses as CMV, TMV Replication proteins can be according to the proteins viruses as CMV, TMV Replication proteins can be according to the proteins viruses as CMV, TMV representation proteins can be according to the proteins can be according to the proteins viruses as CMV, TMV representation proteins can be according to the proteins can be	yst nematode hatching stimulus		50	_		
Antifeeding principles induced a mematodes are mentodes at a nematode feeding site and cyst nematodes are mematodes are mematodes at a nematode feeding site and cyst nematodes are mematodes are mematodes are mematodes are mematodes. The profession proteins are considered as a construction of the proteins are considered as a construction of the proteins are constructed as a construction of the	Burnase		50			
TABLE A17 Crop Sunflower Crop phenotype/Tolerance to Tot knot nematodes groot knot nematodes, nematodes groot knot nematodes, protected target or xpressed principle(s) Tot knot nematodes groot knot nematodes, nematodes groot knot nematodes, nematodes groot knot nematodes, nematodes groot knot nematodes, proteins groot knot nematodes, proteins are mematodes groot knot nematodes, proteins groot knot nematodes, proteins are mematodes of the proteins are proteins are not proteins are proteins. The Da or 60 kDa protein groot knot proteins are proteins are proteins. The Da or 60 kDa protein groot knot proteins are proteins are proteins. The Da or 60 kDa protein groot knot proteins groot knot nematodes are proteins. The Da or 60 kDa protein groot knot proteins groot knot nematodes are proteins. The Da or 60 kDa protein groot groot knot proteins groot knot nematodes groot groot knot nematodes groot groo	151	-				
t a nematode feeding site root cyst nematodes Nuclear inclusion proteins eg. viruses as CMV, TMV a or b or Nucleoprotein Pseudoubiquitin viruses as CMV, TMV TABLE A17 Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, nematodes, whitefly, beetle Photorabdus and Xenorhabdus toxins Crop Sunflower Crop Sunflower Greeked target or appreciation of the provided toxins of the				•	vinises as CMV, TMV	
TABLE A17 To be a composite to the composition of the composity of the composition of the composition of the composition of th				17 kDa or 60 kDa protein	•	
Pseudoubiquitin viruses as CMV, TMV Replicase TABLE A17 Pseudoubiquitin Replicase viruses as CMV, TMV Replicase Bacillus thuringicusis toxins, VIP 3, Bacillus cereus toxins, nematodes, whitefly, beetle Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, nematodes, whitefly, beetle processed principle(s) Crop phenotype/Tolerance to Peroxidase Peroxidase lepidoptera, aphids, mites, nematodes, whitefly, beetle lepidoptera, aphids, mites, nematodera, whitefly beetle lepidoptera, aphids, mi	t a netratode reeding site	100t cyst nematodes			viruses as CMV, TMV	
Replicase viruses as CMV, TMV Bacillus thuringiensis toxins, lepidoptera, aphids, mites, vIP 3, Bacillus cereus toxins, photorabdus and Xenorhabdus toxins Crop Sunflower Photorabdus and Xenorhabdus toxins GO 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, nematodes, whitefly, beetle processed principle(s) Crop phenotype/Tolerance to Peroxidase lepidoptera, aphids, mites, nematodes, whitefly, beetle processed principle(s) Peroxidase lepidoptera, aphids, mites,			55		virgene of CMV TMV	
TABLE A17 Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, nematodes, whitefly, beetle streeted target or xpressed principle(s) Crop phenotype/Tolerance to Bacillus thuringiensis toxins, VIP 3, Bacillus cereus toxins, nematodes, whitefly, beetle streeted target or xpressed principle(s) Crop phenotype/Tolerance to Bacillus thuringiensis toxins, vipe 3, Bacillus cereus toxins, nematodes, whitefly, beetle streeted target or xpressed principle(s) Peroxidase Peroxidase Bacillus thuringiensis toxins, vipe 3, Bacillus cereus toxins, nematodes, whitefly, beetle streeted target or xpressed principle(s) Peroxidase						
Crop Sunflower Photorabdus and Xenomabdus toxins 3-Hydroxysteroid oxidase lepidoptera, aphids, mites, mematodes, whitefly, beetle xpressed principle(s) Crop phenotype/Tolerance to Peroxidase lepidoptera, aphids, mites,	TABLE A17					
ffected target or nematodes, whitefly, beetle principle(s) Crop phenotype/Tolerance to Peroxidase lepidoptera, aphids, mites,				Photorabdus and Xenorhabdus toxins	nematodes, whitefly, beetles	
xpressed principle(s) Crop phenotype/Tolerance to Peroxidase lepidoptera, aphids, mites,			60	3-Hydroxysteroid oxidase		
		Crop phenotype/Tolerance to		Peroxidase		
Acctolactate synthase Sulfonylureas, Imidazolinones, Aminopeptidase inhibitors eg. lepidoptera, aphids, mites,	cetolactate synthase	Sulfonylureas, Imidazolinones.		Aminopeptidase inhibitors eg.		
ALS) Triazolopyrimidines, Leucine aminopeptidase inhibitor nematodes, whitefly, beetle					nematodes, whitefly, beetles	
Pyrimidyloxybenzoates, Phtalides Lectines lepidoptera, aphids, mites.		Pyrimidyloxybenzoates, Phtalides			lepidoptera, aphids, mites.	
			65	Dantaga Inhihitawa	nematodes, whitefly, beetles	
ACCase) acids, cyclohexanediones Protease Inhibitors eg cystatin, lepidoptera, aphids, mites,	/tt.c.ase)	acias, cyclonexanediones		rrolease innibitors eg cystatin,	reputopiera, apaitos, mites,	

39

TABLE A17-continued

Crop Sunflower					
Effected target or expressed principle(s)	Crop phenotype/Tolerance to				
patatin, CPTI, virgiferin ribosome inactivating protein	nematodes, whitefly, beetles lepidoptera, aphids, mites, nematodes, whitefly, beetles				
stilbene synthase	lepidoptera, aphids, mites, nematodes, whitefly, beetles				
HMG-CoA reductase	lepidoptem, aphids, mites, nematodes, whitefly, beetles				
Cyst nematode hatching stimulus	cyst nematodes				
Barnase	nematodes eg root knot nematodes and cyst nematodes				
CBI	root knot nematodes				
Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes, root cyst nematodes				

TABLE A18 Crop Sugarbeet, Beet root

Effected target or expressed principle(s)	Crop phenotype/Tolerance to
Acctolactate synthase	Sulfonylureas, limidazolinones,
(ALS)	Triazolopyrimidines,
	Pyrimidyloxybenzoates, Phtalides
AcetylCoA Carboxylase	Aryloxyphenoxyalkanecarboxylic
(ACCase)	acids, cyclohexanediones
Hydroxyphenylpynivate	Isoxazoles such as Isoxaflutoi
dioxygenase (HPPD)	or Isoxachlortol, Triones such as mesotrione or sulcotrione
Phosphinothricin acetyl transferase	Phosphinothricin
O-Methyl transferase	altered lignin levels
Glutamine synthetase	Glufosinate, Bialaphos
	· · · · · · · · · · · · · · · · · · ·

(ADSL)

Nitrilase

Inhibitors of IMP and AMP Adenylosuccinate Lyase synthesis Adenylosuccinate Synthase Inhibitors of adenylosuccinate synthesis Inhibitors of tryptophan syn-Anthranilate Synthase thesis and catabolism 3,5-dihalo-4-hydroxy-benzonitriles such as Bromoxynil and Ioxinyl 5-Enolpyruvyl-3phosphoshikimate Cilyphosate or sulfosate Synthase (EPSPS)

Glyphosate oxidoreductase Cilyphosate or sulfosate Protoporphyrinogen oxidase Diphenylethers, cyclic imides. (PROTOX) phenylpyrazoles, pyridin derivatives, phenopylate, oxadiazoles etc. Cytochrome P450 eg. P450 SU1 Xenobiotics and herbicides such as Sulfonylureas Polyphenol oxidase or Polyphenol bacterial or fungal pathogens

oxidase antisense Metallothionein bacterial or fungal pathogens Ribonuclease bacterial or fungal pathogens Antifungal polypeptide AlyAFP bacterial or fungal pathogens oxalate oxidase bacterial or fungal pathogens eg sclerotinia

glucose oxidase bacterial or fungal pathogens pyrrolnitrin synthesis genes bacterial or fungal pathogens bacterial or fungal pathogens serine/threonine kinases Cecropin B bacterial or fungal pathogens Phenylalanine ammonia lyase bacterial or fungal pathogens

Cf genes eg. Cf 9 Cf5 Cf4 Cf2 bacterial or fungal pathogens bacterial or fungal pathogens Osmotin Alpha Hordothionin bacterial or fungal pathogens Systemin bacterial or fingal pathogens Polygalacturonase inhibitors bacterial or fungal pathogens Pri regulatory gene bacterial or fungal pathogens hytoalexins bacterial or fingal pathogens B-1,3-glucanase antisense hacterial or fungal pathogens

TABLE A18-continued

40

	Crop Sugarbeet, Beet root					
5	Effected target or expressed principle(s)	Crop phenotype/Tolerance to				
	AX + WIN proteins	bacterial or fungal pathogens like Cercospora heticola				
10	receptor kinase Hypersensitive response eliciting polypeptide	bacterial or fungal pathogens bacterial or fungal pathogens				
	Systemic acquires resistance (SAR) genes	viral, hacterial, fungal, nematodal pathogens				
15	Lytic protein Lysozym Chitneses Barnase	bacterial or fungal pathogens bacterial or fungal pathogens bacterial or fungal pathogens bacterial or fungal pathogens				
	Glucanases double stranded ribonuclease Coat proteins	bacterial or fungal pathogens viruses as BNYVV viruses as BNYVV				
20	17 kDa or 60 kDa protein Nuclear inclusion proteins eg. a or b or Nucleoprotein	viruses as BNYVV viruses as BNYVV				
i	Pseudoubiquitin Replicase Bacillus thuringiensis toxins, VIP 3. Bacillus cereus toxins.	viruses as BNYVV viruses as BNYVV lepidoptera, aphids, mites, nematodes, whitefly, beetles,				
25	Photorabdus and Xenorhabdus toxins 3-Hydroxysteroid oxidase	rootflies lepidoptera, aphids, mites, nematodes, whitefly, beetles,				
	Peroxidase	rootflies lepidoptera, aphids, mites, nematodes, whitefly, heetles, rootflies				
30	Aminopeptiduse inhibitors eg. Leucine aminopeptidase inhibitor	lepidoptera, aphids, mites, nematodes, whitefly, boetles, rootflies				
	Lectines	lepidoptera, aphids, mites, nematodes, whitefly, beetles, roofflies				
35	Protease Inhibitors eg cystatin, patatin, CPTI, virgiferin	lepidoptera, aphids, mites, nematodes, whitefly, beetles, roottlies				
	ribosome inactivating protein	lepidoptera, aphids, mites, nematodes, whitefly, beetles, rootflies				
40	stilbene synthase	lepidopters, aphids, mites, nematodes, whitefly, beetles, rootflies				
	HMG-CoA reductase	lepidoptera, aphids, mites, nematodes, whitefly, heetles, notifies				
45	Cyst nematode hatching stimulus Barnase	cyst nematodes nematodes eg root knot nematodes and cyst nematodes				
	Beet cyst nematode resistance locus CBI	cyst nematodes				
50	Antifeeding principles induced at a nematode feeding site	nematodes eg root knot nematodes. root cyst nematodes				

The abovementioned animal pests which can be controlled by the method according to the invention include, for 55 example, insects, representatives of the order acarina and representatives of the class nematoda; especially

from the order Lepidoptera Acleris spp., Adoxophyes spp., especially Adoxophyes reticulana; Aegeria spp., Agrotis spp., especially Agrotis spinifera; Alabama argillaceae. Amylois spp., Anticarsia gemmatalis, Archips spp., Argyrotaenia spp., Autographa spp., Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Crocidolomia binotalis, Cryptophlebia leucotreta, Cydia spp., especially Cydia pomonella; Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., especially E. Khü-

41

niella; Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Grapholita spp., Hedya nubiferana, Heliothis spp., especially H. Virescens und H. zea; Hellula undalis, Hyphantria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesiaspp., 5 Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Operophtera spp., Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea. Pectinophora spp., Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostelia, Prays spp., 10 Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodopteralittoralis, Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni and Yponomeuta spp.; from the order Coleoptera, for example Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibi- 15 alis, Cosmopolites spp., Curculio spp., Dermestes spp.,

alis, Cosmopolites spp., Curculio spp., Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata. Lissorhoptrus spp., Melolontha spp., Oryzaephilus spp., Otiorhynchus spp., Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp. and Trogoderma spp.;

from the order Orthoptera, for example Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. and Schistocerca spp.;

from the order Isoptera, for example Reticulitermes spp.; from the order Psocoptera, for example Liposcelis spp.;

from the order Anoplura, for example Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.;

from the order Mallophaga, for example *Damalinea* spp. and *Trichodectes* spp.:

from the order Thysanoptera, for example Frankliniella spp., Hercinothrips spp., Taeniothrips spp., Thrips palmi, Thrips tahaci and Scirtothrips aurantii;

from the order Heteroptera, for example Cimex spp., Distantiella theobroma, Dysdercus spp., Euchistus spp., Eurygaster spp., Leptocorisa spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotinophara spp. and Triatoma spp.;

from the order Homoptera, for example Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella aurantii, Aphididae, Aphis craccivora, A. fabae, A. gosvpii; Aspidiotus spp.. Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperi- 45 dum, Empoasca spp., Eriosoma lanigerum, Erythroneura spp., Gascardia spp., Laodelphax spp., Lecanium corni, Lepidosaphes spp., Macrosiphus spp., Myzus spp., especially M. persicae; Nephotettix spp., especially N. cincticeps; Nilaparvata spp., especially N. lugens; Paratoria 50 spp.. Pemphigus spp.. Planococcus spp.. Pseudaulacaspis spp., Pseudococcus spp., especially P. Fragilis, P. citriculus and P. comstocki; Psylla spp., especially P. pyri; Pulvinaria aethiopica, Quadraspidiotus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis 55 spp.. Sitobion spp., Trialeurodes vaporariorum, Trioza erytreae and Unaspis citri;

from the order Hymenoptera, for example Acromyrmex,

Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma. Hoplocampa spp., Lasius spp., Monomorium pharaonis. Neodiprion spp., Solenopsis spp. and
Vespa spp.;

from the order Diptera, for example Aedes spp., Antherigona soccata, Bibio hortulanus, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra 65 spp., Dacus spp., Drosophila melanogaster, Fannia spp., Gastrophilus spp., Glossina spp., Hypoderma spp., Hyp-

42

pobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp., and Tipula spp.;

from the order Siphonaptera, for example Ceratophyllus spp. and Xenopsylla cheopis;

from the order Thysanura, for example Lepisma saccharina and

from the order Acarina, for example Acarus siro, Aceria sheldoni; Aculus spp., especially A. schlechtendali; Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., especially B. californicus and B. phoenicis; Bryobia praetiosa, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Eotetranychus spp., especially E. carpini and E. orientalis; Eriophyes spp., especially E. vitis; Hyalomma spp., Ixodes spp., Olygonychus pratensis, Ornithodoros spp., Panonychus spp., especially P. ulmi and P. citri; Phyllocoptruta spp., especially P. oleivora; Polyphagotarsonemus spp., especially P. latus; Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Tarsonemus spp. and Tetranychus spp., in particular T. urticae, T. cinnabarinus and T. Kanzawai;

Representatives of the Class Nematoda;

- nematodes selected from the group consisting of root knot nematodes, cyst-forming nematodes, stem eelworms and foliar nematodes;
- (2) nematodes selected from the group consisting of Anguina spp.; Aphelenchoides spp.; Ditylenchus spp.; Globodera spp., for example Globodera rostochiensis; Heterodera spp., for example Heterodera avenae, Heterodera glycines, Heterodera schaltii or Heterodera trifolii; Longidorus spp.; Meloidogyne spp., for example Meloidogyne incognita or Meloidogyne javanica; Pratylenchus, for example Pratylenchus neglectans or Pratylenchus penetrans; Radopholus spp., for example Radopholus similis; Trichodorus spp.; Tylenchulus, for example Tylenchulus semipenetrans; and Xiphinema spp.; or
- 40 (3) nematodes selected from the group consisting of Heterodera spp., for example Heterodera glycines; and Meloidogyne spp., for example Meloidogyne incognita.

The method according to the invention allows pests of the abovementioned type to be controlled, i.e. contained or destroyed, which occur, in particular, on transgenic plants, mainly useful plants and ornamentals in agriculture, in horticulture and in forests, or on parts, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, the protection against these pests in some cases even extending to plant parts which form at a later point in time.

The method according to the invention can be employed advantageously for controlling pests in rice, cereals such as maize or sorghum; in fruit, for example stone fruit, pome fruit and soft fruit such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries and blackberries; in legumes such as beans, lentils, peas or soya beans; in oil crops such as oilseed rape, mustard, poppies, olives, sunflowers, coconuts, castor-oil plants, cacao or peanuts; in the marrow family such as pumpkins, cucumbers or melons; in fibre plants such as cotton, flax, hemp or jute; in citrus fruit such as oranges, lemons, grapefruit or tangerines; in vegetables such as spinach, lettuce, asparagus, cabbage species, carrots, onions, tomatoes, potatoes, beet or capsicum; in the laurel family such as avocado, Cinnamonium or camphor; or in tobacco, nuts, coffee, egg plants, sugar cane, tea, pepper, grapevines, hops, the banana family, latex plants or ornamentals, mainly

in maize, rice, cereals, soya beans, tomatoes, cotton, potatoes, sugar beet, rice and mustard; in particular in cotton, rice, soya beans, potatoes and maize.

It has emerged that the method according to the invention is valuable preventatively and/or curatively in the field of 5 pest control even at low use concentrations of the pesticidal composition and that a very favourable biocidal spectrum is achieved thereby. Combined with a favourable compatibility of the composition employed with warm-blooded species, fish and plants, the method according to the invention can be 10 employed against all or individual developmental stages of normally-sensitive, but also of normally-resistant, animal pests such as insects and representatives of the order Acarina, depending on the species of the transgenic crop plant to be protected from attack by pests. The insecticidal and/or 15 acaricidal effect of the method according to the invention may become apparent directly, i.e. in a destruction of the pests which occurs immediately or only after some time has elapsed, for example, during ecdysis, or indirectly, for example as a reduced oviposition and/or hatching rate, the 20 in a known manner, for example prior to mixing with the good action corresponding to a destruction rate (mortality) of at least 40 to 50%.

Depending on the intended aims and the prevailing circumstances, the pesticides within the scope of invention, which are known per se, are emulsifiable concentrates, 25 suspension concentrates, directly sprayable or dilutable solutions, spreadable pastes, dilute emulsions, wettable powders, soluble powders, dispersible powders, wettable powders, dusts, granules or encapsulations in polymeric substances which comprise a nitroimino- or nitroguanidino- 30 compound.

The active ingredients are employed in these compositions together with at least one of the auxiliaries conventionally used in art of formulation, such as extenders, for example solvents or solid carriers, or such as surface-active 35 compounds (surfactants).

Formulation auxiliaries which are used are, for example, solid carriers, solvents, stabilizers, "slow release" auxiliaries, colourants and, if appropriate, surface-active substances (surfactants). Suitable carriers and auxiliaries are all 40 those substances which are conventionally used for crop protection products. Suitable auxiliaries such as solvents, solid carriers, surface-active compounds, non-ionic surfactants, cationic surfactants, anionic surfactants and other auxiliaries in the compositions employed according to the 45 invention are, for example, those which have been described in EP-A-736 252.

These compositions for controlling pests can be formulated, for example, as wettable powders, dusts, granules, solutions, emulsifiable concentrates, emulsions, suspension 50 concentrates or aerosols. For example, the compositions are of the type described in EP-A-736 252.

The action of the compositions within the scope of invention which comprise a nitroimino- or nitroguanidinocompound can be extended substantially and adapted to 55 prevailing circumstances by adding other insecticidally, acaricidally and/or fungicidally active ingredients. Suitable examples of added active ingredients are representatives of the following classes of active ingredients: organophosphorous compounds, nitrophenols and derivatives, forma- 60 midines, ureas, carbamates, pyrethroids, chlorinated hydrocarbons; especially preferred components in mixtures are, for example, abamectin, emamectin, spinosad, pymetrozine, fenoxycarb, Ti-435, fipronil, pyriproxyfen, diazinon or diafenthiuron.

As a rule, the compositions within the scope of invention comprise 0.1 to 99%, in particular 0.1 to 95%, of a

nitroimino- or nitroguanidino-compound and 1 to 99.9%, in particular 5 to 99.9%, of-at least-one solid or liquid auxiliary, it being possible, as a rule, for 0 to 25%, in particular 0.1 to 20%, of the compositions to be surfactants (% in each case meaning percent by weight). While concentrated compositions are more preferred as commercial products, the end user will, as a rule, use dilute compositions which have considerably lower concentrations of active ingredient.

The compositions according to the invention may also comprise other solid or liquid auxiliaries, such as stabilisers, for example epoxidized or unepoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya bean oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, and also fertilizers or other active ingredients for achieving specific effects, for example, bactericides, fungicides, nematicides, molluscicides or herbicides.

The compositions according to the invention are produced auxiliary/auxiliaries by grinding, screening and/or compressing the active ingredient, for example to give a particular particle size, and by intimately mixing and/or grinding the active ingredient with the auxiliary/auxiliaries.

The method according to the invention for controlling pests of the abovementioned type is carried out in a manner known per se to those skilled in the art, depending on the intended aims and prevailing circumstances, that is to say by spraying, wetting, atomizing, dusting, brushing on, seed dressing, scattering or pouring of the composition. Typical use concentrations are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm of active ingredient. The application rate may vary within wide ranges and depends on the soil constitution, the type of application (foliar application; seed dressing; application in the seed furrow), the transgenic crop plant, the pest to be controlled, the climatic circumstances prevailing in each case, and other factors determined by the type of application, timing of application and target crop. The application rates per hectare are generally 1 to 2000 g of nitroimino- or nitroguanidinocompound per hectare, in particular 10 to 1000 g/ha, preferably 10 to 500 g/ha, especially preferably 10 to 200 g/ha.

A preferred type of application in the field of crop protection within the scope of invention is application to the foliage of the plants (foliar application), it being possible to adapt frequency and rate of application to the risk of infestation with the pest in question. However, the active ingredient may also enter into the plants via the root system (systemic action), by drenching the site of the plants with a liquid composition or by incorporating the active ingredient in solid form into the site of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules may be metered into the flooded paddy field.

The compositions according to invention are also suitable for protecting propagation material of transgenic plants, for example seed, such as fruits, tubers or kernels, or plant cuttings, from animal pests, in particular insects and representatives of the order Acarina.

The propagation material can be treated with the composition prior to application, for example, seed being dressed prior to sowing. The active ingredient may also be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by coating them with a solid composition. The composition may also be applied to the site of application when applying the propagation material, for example into the seed furrow during sowing. These treat-

ΑP

US 7,105,469 B2

45

ment methods for plant propagation material and the plant propagation material treated thus are a further subject of the 46

TABLE B-continued

Control of

Examples of formulations of nitroimino- or nitroguani-			_		AP	Control of
dino-compounds which can be used in the method according				B.61	CryIA(a)	Panonychus spp.
to the invention, for instance solutions, granules, dusts,				B.62	CryIA(a)	Phyllocoptruta spp.
				B.63	CryIA(a)	Tetranychus spp.
sprayable powders, emulsion concentrates, coated granules				B.64	CryIA(a)	Heterodera spp.
		s, are of the type as has been		B.65	CryIA(a)	Meloidogyne spp.
described in	ı, for example, I	EP-A-580 553, Examples F1 to	10	B.66	CryIA(b) CryIA(b)	Adoxophyes spp.
F10.		•	10	B.67 B.68	CryIΛ(δ) CryIΛ(δ)	Agrotis spp. Alahama argillaceae
				B.69	CryIA(b)	Anticarsia gemmatalis
BIOLOGICAL EXAMPLES				B.70	CryIA(b)	Chilo spp.
DIOLOGICAL EXAMPLES				B.71	CryIA(b)	Clysia ambiguella
				B.72	CryIA(b)	Crocidolomia binotalis
			15	13.73	CrylA(b)	Cydia spp.
	TA	BLE B	1.7	B.74	CryIA(b)	Diparopsis castanea
	•••			B.75	CryIA(b)	Earias spp.
	AP	Control of		B.76	CryIA(b)	Ephestia spp.
	0.144			B.77	CryIA(b)	Heliothis spp.
B.I	CryIA(a)	Adoxophyes spp.		B.78	CryIA(b)	Hellula undalis
B.2 B.3	CryIA(a) CryIA(a)	Agrotis spp. Alabama argillaceae	20	B.79 B.80	CryIA(b)	Keiferia lycopersicella Leucoptera scitella
B.4	CryIA(a)	Anticarsia gemmatalis		B.81	CryIA(b) CryIA(b)	Lithocollethis spp.
B.5	CryLA(a)	Chilo spp.		B.82	CryLA(b)	Lobesia botrana
B.6	CryIA(a)	Clysia ambiguella		B.83	CryIA(b)	Ostrinia nubilalis
B.7	CryIA(a)	Crocidolomia binotalis		B.84	CryIA(b)	Pandemis spp.
B.8	CrylA(a)	Cydia spp.		B.85	CrylA(b)	Pectinophora gossyp.
B.9	CrylA(a)	Diparopsis castanea	25	B.86	CrytA(b)	Phyllocuistis citrella
B.10	CrylA(a)	Earias spp.		13.87	CrylA(b)	Pieris spp.
B.11	CryfA(a)	Ephestia spp.		13.88	CryIA(b)	Plutella xylostella
B.12	CrylA(a)	Heliothis spp.		13.89	CryIA(b)	Scirpophaga spp.
B.13	CrylA(a)	Hellula undalis		13.90	CrylA(b)	Sesamia spp.
B.14	CryLA(a)	Keiferia lycopersicella		B.91	CryIA(b)	Sparganothis spp.
B.15	CryIA(a)	Leucoptera scitella	30	B.92	CryIA(b)	Spodoptera spp.
B.16	CryLA(a)	Lithocollethis spp.		B.93	CryIA(b)	Tortrix spp.
B.17	CryLA(a)	Lobesia botrana		B.94	CryIA(b)	Trichoplusia ni
B.18 B.19	CryIA(a) CryIA(a)	Ostrinia nubilalis Pandemis spp.		B.95 B.96	CryIA(b) CryIA(b)	Agriotes spp. Anthonomus grandis
B.20	CryIA(a)	Pectinophora gossyp.		B.97	CryIA(b)	Curculio spp.
B.21	CryIA(a)	Phyllocnistis citrella	25	B.98	CryIA(b)	Diabrotica balteata
B.22	CrylA(a)	Pieris spp.	35	B.99	CrylA(b)	Leptinotarsa spp.
B.23	CryIA(a)	Plutella xylostella		B.100	CryIA(b)	Lissorhoptrus spp.
B.24	CryIA(a)	Scirpophaga spp.		B.101	CryIA(b)	Ottorhynchus spp.
B.25	CryIA(a)	Sesamia spp.		B.102	CryIA(b)	Aleurothrixus spp.
13.26	CryIA(a)	Sparganothis spp.		B.103	CryIA(b)	Aleyrodes spp.
B.27	CryIA(a)	Spodoptera spp.	40	B.104	CryIA(b)	Aonidiella spp.
B.28	CryIA(a)	Tortrix spp.	40	B.105	CryIA(b)	Aphididae spp.
B.29	CryIA(a)	Trichoplusia ni		B.106	CryIA(b)	Aphis spp.
B.30	CryIA(a)	Agriotes spp.		B.107	CryIA(b)	Bemisia tabaci
B.31 B.32	CrylA(a)	Anthonomus grandis		B.108 B.109	CryIA(b)	Empoasca spp. Mycus spp.
B.33	CrylA(a) CrylA(a)	Curculio spp. Diabrotica halteata		B.110	CrylA(b) CrylA(b)	Nephotettix spp.
B.34	CrylA(a)	Leptinotarsa spp.	45	B.111	CrylA(b)	Nilaparvata spp.
B.35	CryIA(a)	Lissorhoutrus spp.		B.112	CryIA(b)	Pseudococcus spp.
B.36	CryIA(a)	Otiorhynchus spp.		B.113	CryIA(b)	Psylla spp.
B.37	CryIA(a)	Aleurothrixus spp.		B.114	CryIA(b)	Quadraspidiotus spp.
B.38	CrylA(a)	Aleyrodes spp.		B.115	CryLA(b)	Schizaphis spp.
B.39	CryIA(a)	Aonidiella spp.		B.116	CryIA(b)	Trialeurodes spp.
B.40	CryIA(a)	Aphididae spp.	50	B.117	CryLA(b)	Lyriomyza spp.
B.41	CryLA(a)	Aphis spp.		B.118	CryIA(b)	Oscinella spp.
B.42	CryIA(a)	Bemisia tabaci		B.119	CryIA(b)	Phorbia spp.
B.43	CryiA(a)	Empousca spp.		B.120	CryIA(b)	Frankliniella spp.
B.44	CrylA(a)	Mycus spp.		B.121	CryIA(b)	Thrips spp. Scirtothrips aurantii
B.45	CrylA(a) CrylA(a)	Nephotettix spp.		B.122 B.123	CryIA(b) CryIA(b)	Aceria spp.
B.46 B.47	CryIA(a)	Nilaparvata spp. Pseudococcus spp.	55	B.124	CryIA(b)	Aculus spp.
B.48	CryIA(a)	Psylla spp.		B.125	CryLA(b)	Brevipalpus spp.
B.49	CryIA(a)	Quadraspidiotus spp.		B.126	CryIA(b)	Panonychus spp.
B.50	CryIA(a)	Schizaphis spp.		B.127	CryIA(b)	Phyllocoptruta spp.
B.51	CryLA(a)	Trialeurodes spp.		B.128	CryIA(b)	Tetranychus spp.
B.52	CryIA(a)	Lyriomyza spp.		B.129	CryIA(b)	Heterodera spp.
B.53	CryLA(a)	Oscinella spp.	60	B.130	CryIA(b)	Meloidogyne spp.
B.54	CrylA(a)	Phorbia spp.		B.131	CrylA(c)	Adoxophyes spp.
B.55	CrylA(a)	Frankliniella spp.		B.132	CrylA(c)	Agrotis spp.
B.56	CrylA(a)	Thrips spp.		B.133	CryIA(c)	Alahama argillaceae
B.57	CrylA(a)	Scirtothrips aurantii		B.134	CrylA(c)	Anticarsia gemmatalis
B.58	CryIA(u)	Aceria spp.	46	B.135	CryLA(e)	Chilo spp.
B.59	CryiA(a)	Aculus spp.	65	B.136	CryIA(c)	Clysia amhiguella
B.60	CrylA(a)	Brevipalpus spp.		B.137	CryIA(c)	Crocidolomia binotalis

47

TABLE B-continued

48 TABLE B-continued

TABLE B-continued			TABLE B-continued			
	AP	Control of			AP	Control of
B.138	CryLA(c)	Cydia spp.	5	B.215	CryILA	Pectinophora gossyp.
B.139	CryIA(c)	Diparopsis castança		B.216	CryHA	Phyllocnistis citrella
B.140	CryIA(c)	Earias spp.		B.217	CryffA	Pieris spp.
B.141	CryIA(c)	Ephestia spp.		B.218	CryllA	Plutella xylostella
B.142 B.143	CryIA(c) CryIA(c)	Heliothis spp. Hellula undalis		B.219 B.220	CryllA	Scirpophaga spp.
B.144	CryIA(c)	Keiferia lycopersicella	10	B.220 B.221	CryllA CryllA	Sesamia spp. Sparganothis spp.
B.145	CryIA(c)	Leucoptera scitella	10	B.222	CryllA	Spodoptera spp.
B.146	CryIA(c)	Lithocollethis spp.		B.223	CryllA	Tortrix spp.
B.147	CryLA(c)	Lohesia botrana		B.224	CryIIA	Trichoplusia ni
B.148	CryIA(c)	Ostrinia nubilalis		B.225	CryIIA	Agriotes spp.
B.149	CryIA(c)	Pandemis spp.		B.226	CryILA	Anthonomus grandis
B.150	CrylA(c)	Pectinophora gassypiella.	15	13.227	CryffA	Curculio spp.
B.151	CrylA(c)	Phyllocnisus curella		B.228	CryllA	Diabrotica balteata
B.152 B.153	CryIA(c) CryIA(c)	Pieris spp. Plutella xylostella		B.229	CryllA	Leptinotarsa spp.
B.154	CryLA(e)	Scirpophaga spp.		B.230 B.231	CryllA CryllA	Lissorhoptrus spp. Ohorhynchus spp.
B.155	CryIA(c)	Sasamia spp.		B.232	CryIIA	Aleurothrixus spp.
B.156	CryIA(c)	Sparganothis spp.		B.233	CryIL1	Aleyrodes spp.
B.157	CryIA(c)	Spodoptera spp.	20	B.234	CryIIA	Aonidiella spp.
B.158	CryIA(c)	Tortrix spp.		B.235	CryILA	Aphididae spp.
B.159	CryLA(c)	Trichoplusia ni		B.236	CryIIA	Aphis spp.
B.160	CrylA(c)	Agriotes spp.		B.237	CryILA	Bemisia tabaci
B.161	CryIA(c)	Anthonomus grandis		B.238	CryIIA	Empoasca spp.
B.162	CryIA(c)	Curculio spp.	76	B.239	CryllA	Mycus spp.
B.163	CryIA(c)	Diabrotica balteata	25	B.240	CrylfA	Nephotettix spp.
B.164 B.165	CryIA(c)	Leptinotarsa spp. Lissorhoptrus spp.		13.241	CryllA	Nilaparrata spp.
B.166	CrylA(c) CrylA(c)	Otiorhynchus spp.		B.242 B.243	CryllA CryllA	Pseudococcus spp. Psylla spp.
B.167	CryIA(c)	Aleurodirixus spp.		B.243	CryIIA	Quadraspidiotus spp.
B.168	CrylA(c)	Aleyrodes spp.		B.245	CryllA	Schizaphis spp.
B.169	CrylA(c)	Aonidiella spp.	30	B.246	CrylLA	Trialcurodes spp.
B.170	CryIA(c)	Aphididae spp.		B.247	CryILA	Lyriomyza spp.
B.171	CryIA(c)	Aphis spp.		B.248	CryIIA	Óscinella spp.
B.172	CryIA(c)	Bemisia tabaci		B.249	CryIIA	Phorbia spp.
B.173	CrylA(c)	Empoasca spp.		B.250	CryILA	Frankliniella spp.
B.174	CryIA(c)	Mycus spp.		B.251	CryllA	Thrips spp.
B.175	CryIA(c)	Nephotettix spp.	35	B.252	CryIIA	Scirtothrips aurantii
B.176	CryIA(c)	Nilaparvata spp.		B.253	CryIIA	Aceria spp.
B.177 B.178	CryIA(c) CryIA(c)	Pseudococcus spp. Psylla spp.		B.254 B.255	CryllA CryllA	Aculus spp. Brevipalpus spp.
B.179	CryIA(c)	Quadraspidiotus spp.		B.256	CryllA	Pananychus spp.
B.180	CryIA(c)	Schizaphis spp.		B.257	CryllA	Phyllocoptruta spp.
B.181	CryIA(c)	Trialeurodes spp.	46	B.258	CryILA	Tetranychus spp.
B.182	CryLA(c)	Lyriomyza spp.	40	B.259	CryIIA	Heterodera spp.
B.183	CrylA(c)	Oscinella spp.		B.260	CryILA	Meloidogyne spp.
B.184	CrylA(c)	Phorbia spp.		B.261	CryIIIA	Adoxophyes spp.
13.185	CrylA(c)	Frankliniella spp.		B.262	CryIIIA	Agratis spp.
13.186	CryLA(c)	Thrips spp.		13.263	CryllIA	Alahama argillaceae
B.187	CryIA(c)	Scirtothrips aurantii	45	13.264	CryllIA	Anticarsia gemmatalis
B.188	CryIA(c)	Aceria spp.	40	B.265	CryIIIA	Chilo spp.
B.189 B.190	CryIA(c) CryIA(c)	Aculus spp. Brevipalpus spp.		B.266 B.267	CryIIIA CryIIIA	Clysia ambiguella Crocidolomia binotalis
B.191	CryLA(c)	Panonychus spp.		B.268	CrylllA	Cydia spp.
B.192	CrylA(c)	Phyllocoptruta spp.		B,269	CryllIA	Diparopsis custunea
B.193	CryIA(c)	Tetranychus spp.		B.270	CryIIIA	Earias spp.
B.194	CryLA(c)	Heterodera spp.	50	B.271	CryIIIA	Ephestia spp.
B.195	CryLA(c)	Meloidogyne spp.		B.272	CryIIIA	Heliothis spp.
B.196	СгуПА	Adoxophyes spp.		B.273	CryIIIA	Hellula undalis
B.197	CtyllA	Agrotis spp.		13.274	CryIIIA	Keiferia lycopersicella
B.198	CryIIA	Alabama argillaceae		B.275	CryIIIA	Leucoptera scitella
B.199	CryIIA	Anticarsia gemmatalis		B.276	CryIIIA	Lithocollethis spp.
B.200 B.201	CryHA	Chilo spp.	55	13.277	CryIIIA	Lobesia hotrana Ostrinia nubilalis
B.202	CryllA CryllA	Clysia ambiguella Crocidolomia binotalis		B.278 B.279	CryIIIA CryIIIA	Pandemis spp.
B.203	CryllA	Cydia spp.		B.280	CryIIIA	Pectinophora gossyp.
B.204	CryIIA	Diparopsis castanea		B.281	CryIIIA	Phyllocuistis citrella
B.205	CryILA	Earias spp.		B.282	CryIIIA	Pieris spp.
B.206	CryIIA	Ephestia spp.	^^	B.283	CryllIA	Plutella xylostella
B.207	CryllA	Heliothis spp.	60	B.284	CryIIIA	Scirpophaga spp.
B.208	CryIIA	Hellula undalis		B.285	CryIIIA	Sesamia spp.
B.209	CryIIA	Keiferia lycopersicella		B.286	CryllIA	Sparganothis spp.
B.210	CryIIA	Leucoptera scitella		B.287	CryIIIA	Spodoptera spp.
B.211	CryIIA	Lithocollethis spp.		B.288	CryIIIA	Tortrix spp.
B.212	CryIIA	Lobesia botrana	65	B.289	CryIIIA	Trichoplusia ni
B.213 B.214	CryIIA CryIIA	Ostrinia nuhilalis Pandemis spp.		B.290 B.291	CryIIIA CryIIIA	Agriotes spp. Anthonomus grandis
17.217	Signa	· macana app		121071	Signin	marriage of misself

US 7,105,469 B2

	TABLE	B-continued			TABLE	B-continued
	AP	Control of			AP	Control of
B.292	CryllIA	Curculio spp.	5	B.369	CryIIIB2	Мусия эрр.
B.293	CryllIA	Diabrotica balteata		B.370	СгуПІВ2	Nephotettix spp.
B.294	CryllIA	Leptinotarsa spp.		B.371	CryIIIB2	Nilaparvata spp.
B.295	CryllIA	Lissorhoptrus spp.		B.372	CryIIIB2	Pseudococcus spp.
B.296	CryIIIA	Ottorhynchus spp.		B.373	CryIIIB2	Psylla spp.
B.297 B.298	CryIIIA CryIIIA	Aleurothrixus spp. Aleyrades spp.	10	B.374 B.375	CryIIIB2 CryIIIB2	Quadraspidiotus spp. Schizaphis spp.
B.299	CrylliA	Aonidiella spp.	10	B.376	CryllIB2	Trialeurodes spp.
B.300	CrylliA	Aphididae spp.		B.377	CryIIIB2	Lyriomyza spp.
B.301	CryllIA	Aphis spp.		B.378	CryIIIB2	Oscinella spp.
B.302	CryIIIA	Bemisia tabaci		B.379	CryIIIB2	Phorbia spp.
B.303	CryllIA	Empoasca spp.		B.380	CryIIIB2	Frankliniella spp.
B.304	CryllIA	Mycus spp.	1.5	B.381	CryIIIB2	Thrips spp.
B.305	CryllIA	Nephotettix spp.	137	B.382	CryIIIB2	Scirtothrips aurantii
B.306	CryllIA	Nilaparvata spp.		B.383	CryIIIB2	Aceria spp.
B.307	CryIIIA	Pseudococcus spp.		B.384	Cryll1B2	Aculus spp.
B.308	CtylliA	Psylla spp.		B.385	CryIIIB2	Brevipulpus spp.
B.309	CryllIA	Quadraspidiotus spp.		B.386	CryIIIB2	Panonychus spp.
B.310	CryIIIA	Schizaphis spp.	20	B.387	Cryll1B2	Phyllocoptruta spp. Tetranychus spp.
B.311 B.312	CryllIA CryllIA	Triuleurodes spp. Lyriomyza spp.		B.388 B.389	CryIIIB2 CryIIIB2	Heterodera spp.
B.313	Civilla	Oscinella spp.		B.390	CryII1B2	Meloidogyne spp.
B.314	CryIIIA	Phorbia spp.		B.391	CytA	Adoxophyes spp.
B.315	CryIIIA	Frankliniella spp.		B.392	CytA	Agrotis spp.
B.316	CryllIA	Thrips spp.		B.393	CytA	Alahama argillaceae
B.317	CryIIIA	Scirtothrips aurantii	25	B.394	CytA	Anticarsia gemmatalis
13.318	CryIIIA	Aceria spp.		B.395	CytA	Chilo spp.
B.319	CryIIIA	Aculus spp.		B.396	CytA	Clysia ambiguella
13.320	CryIIIA	Brevipalpus spp.		B.397	CytA	Crocidolomia binotalis
B.321	CryIIIA	Panonychus spp.		13.398	CytA	Cydia spp.
B.322	CryIlLA	Phyllocoptruta spp.		B.399	CytA	Diparopsis castanea
B.323	CryIIIA	Tetranychus spp.	30	B.400	CylA	Earias spp.
B.324	CryIIIA	Heterodera spp.		B.401 B.402	CytA	Ephestia spp. Heliothis spp.
B.325 B.326	CryIIIA	Meloidogyne spp.		B.402 B.403	CytA CytA	Hellula undalis
B.327	CryIIIB2 CryIIIB2	Adoxophyes spp. Agrotis spp.		B.404	CytA	Keiferia lycopersicella
B.328	CryllIB2	Alahama argillaceae		B.405	CytA	Leucoptera scitella
B.329	CryIIIB2	Anticarsia gemmatalis	26	B.406	CytA	Lithocollethis spp.
B.330	CryIIIB2	Chilo spp.	35	B.407	CvtA	Lobesia hotrona
B.331	CryIIIB2	Clysia ambiguella		B.408	CytA	Ostrinia nubilalis
B.332	Cryll1B2	Cracidolomia hinotalis		B.409	CytA	Pandemis spp.
B.333	CryllIB2	Cydia spp.		B.410	CytA	Pectinophora gossyp.
B.334	CryHIB2	Diparopsis castanea		13,411	CytA	Phyllocnistis citrella
B.335	CryIIIB2	Earias spp.	40	B.412	CytA	Pieris spp.
B.336	CryIIIB2	Ephestia spp.	₩.	B.413	CytA	Plutella xylostella
B.337	CryllIB2	Heliothis spp.		B.414	CytA	Scirpophaga spp.
B.338	CryIIIB2	Hellula undalis		B.415	CytA	Sesamia spp.
B.339	CryIIIB2	Keiferia lycopersicella		B.416 B.417	CytA	Sparganothis spp. Spodoptera spp.
B.340	CryIIIB2 CryIIIB2	Leucoptera scitella Lithocollethis spp.		B.417	CytA CytA	Tortrix spp.
B.341 B.342	CryIIIB2 CryIIIB2	Lohesia hotrana	45	B.419	CytA	Trichophisia ni
B.343	CryIIIB2	Ostrinia nubilalis		B.420	CytA	Agriotes spp.
B.344	CryIIIB2	Pandemis spp.		B.421	CytA	Anthonomus grandis
B.345	CryIIIB2	Pectinophora gossyp.		B.422	CylA	Curculio spp.
B.346	CryIIIB2	Phyllocrástis citrella		B.423	CylA	Diabrotica balteata
B.347	CryIIIB2	Pieris spp.		B.424	CytA	Leptinotarsa spp.
B.348	CryIIIB2	Plutella xylostella	50	B.425	CytA	Lissorhoptrus spp.
B.349	CryIIIB2	Scirpophaga spp.		B.426	CytA	Ottorhynchus spp.
B.350	CryIIIB2	Sesamia spp.		B.427	CytA	Aleurothrixus spp.
B.351	CryIIIB2	Sparganothis spp.		13.428	CytA	Aleyrodes spp.
B.352	CryIIIB2	Spodoptera spp.		B.429	CytA	Aonidiella spp.
B.353	CryIIIB2	Tortrix spp.		B.430	CytA	Aphididae spp. Aphis spp.
B.354	CryIIIB2	Trichoplusia ni	55	B.431	CytA	npms spp. Bemisia tabaci
B.355	CrylliB2	Agriotes spp. Anthonomus grandis		B.432 B.433	CylA CylA	Empoasca spp.
B.356 B.357	CrylIIB2 CryIIIB2	Annonomus granais Curculio spp.		B.433 B.434	CytA	Mycus spp.
B.358	CryIIIB2	Diabrotica balteata		B.435	CytA	Nephotettix spp.
B.359	CryIIIB2	Leptinotarsa spp.		B.436	CytA	Nilaparyata spp.
B.360	CryIIIB2	Lissorhoptrus spp.		B.437	CytA	Pseudococcus spp.
B.361	CryllIB2	Otiorhynchus spp.	60	B.438	CytA	Psylla spp.
B.362	Cryll1B2	Aleurothrixus spp.		B.439	CytA	Quadraspidiotus spp.
B.363	CryIIIB2	Aleyrodes spp.		B.440	CvtA	Schizaphis spp.
B.364	CryIIIB2	Aonidiella spp.		13.441	CytA	Trialeumdes spp.
B.365	CryIIIB2	Aphididae spp.		13.442	CytA	Lyriomyza spp.
B.366	CryIIIB2	Aphis spp.		B.443	CytA	Oscinella spp.
B.367	Cry!IIB2	Bemisia tahaci	65	B.444	CytA	Phorbia spp.
B.368	CryIIIB2	Empoasca spp.		B.445	CytA	Frankliniella spp.

51

52

TABLE B-continued TABLE B-continued

	AP	Control of			AP	Control of
D 446				D 222		
B.446	CytA	Thrips spp.	,	B.523	GL	Alabama argillaceae
B.447	CytA	Scirtothrips aurantii		B.524	GI.	Anticarsia gemmatalis
B.448	CytA	Aceria spp.		B.525	GI.	Chilo spp.
13,449	CytA	Aculus spp.		B.526	GI.	Clysia ambiguella
13.450	CytA	Brevipalpus spp.		B.527	Gl.	Crocadolomia binotalis
B.451	CytA	Panonychus spp.		B.528	GL	Cydia spp.
B.452	CytA	Phyllocoptruta spp.	10	B.529	GI.	Diparopsis castanea
B.453	СутА	Tetranychus spp.		B.530	GI.	Earias spp.
13.454	CytA	Heterodera spp.		B.531	GI.	Ephestia spp.
B.455	CytA	Meloidogyne spp.		B.532	GL	Heliothis spp.
B.456	VIP3	Adoxophyes spp.		B.533	GL	Hellula undalis
B.457	VIP3	Agrotis spp.		B.534	GL	Keiferia lycopersicella
13.458	VIP3	Alahama argillaceae	15	13.535	Gl.	Leucoptera scitella
B.459	VIP3	Anticarsia gemmatalis	1.5	B.536	GL.	Lithocollethis spp.
B.460	VIP3	Chilo spp.		B.537	GL	Lobesia botrana
B.461	VIP3	Clysia ambiguella		B.538	GL.	Ostrinia nubilalis
B.462	VIP3	Crocidolomia binotalis		B.539	GL	Pandemis spp.
B.463	VIP3	Cydia spp.		B.540	GL	Pectinophora gossyp.
B.464	VIP3	Diparopsis castanea		B.541	GL	Phyllocnistis citrella
B.465	VIP3	Earius spp.	20	B.542	GL	Pieris spp.
B.466	VIP3	Ephestia spp.		B.543	GL	Plutella xylostella
B.467	VIP3	Heliothis spp.		B.544	GL	Scirpophaga spp.
B.468	VIP3	Hellula undalis		B.545	GL	Sesamia spp.
B.469	VIP3	Keiferia lycopersicella		B.545 B.546	GL	Sparganothis spp.
B.470	VIP3 VIP3			B.546 B.547	GL GI.	Sparganomis spp. Spodopiera spp.
		Leucoptera scitella	25			
B.471	VIP3	Lithocollethis spp.	23	B.548	Gl.	Tortrix spp.
B.472	VIP3	Lohesia botrana		B.549	GI.	Trichoplusia ni
B.473	VIP3	Ostrinia nubilalis		13.550	Cil.	Agriotes app.
B.474	VIP3	Pandemis sop.		B.551	GI.	Anthonomus grandis
B.475	VIP3	Pecnnophora gossyp.		B.552	GI.	Curculio spp.
B.476	VIP3	Phyllocnistis citrella		B.553	GL	Diabrotica balteata
B.477	VIP3	Pieris spp.	30	B.554	GL	Leptinotarsa spp.
B.478	VIP3	Plutella xylostella		B.555	GL	Lissorhoptrus spp.
B.479	VIP3	Scirpophaga spp.		B.556	GL	Otiorhynchus spp.
B.480	VIP3	Sesamia spp.		B.557	GL	Aleurothrixus spp.
B.481	VIP3	Sparganothis spp.		B.558	GL	Aleyrodes spp.
B.482	VIP3	Spodoptera spp.		B.559	GL.	Aonidiella spp.
B.483	VIP3	Tortrix spp.	35	B.560	GI.	Aphididae spp.
B.484	VIP3	Trichophusia ni	.33	13.561	GI.	Aphis spp.
B.485	VIP3	Agriotes spp.		B.562	GL	Bemisia tabaci
B.486	VIP3	Anthonomus grandis		B.563	ĞL	Empasca spp.
B.487	VIP3	Curculia spp.		B.564	GI.	Mycus spp.
B.488	VIP3	Diabrotica balteata		B.565	GL.	Nephotettix spp.
					GL.	
B.489	VIP3	Leptinotarsa spp.	40	B.566		Nilaparvata spp.
B.490	VIP3	Lissorhoptrus spp.		B.567	GL	Pseudococcus spp.
B.491	VIP3	Ottorhynchus sop.		B.568	GL	Psylla spp.
B.492	VIP3	Aleurothrixus spp.		B.569	GL.	Quadraspidiotus spp.
B.493	VIP3	Aleyrodes spp.		13,570	GI.	Schizaphis spp.
13.494	VIP3	Aonidiella spp.		13.571	GL.	Trialeurodes spp.
13.495	VIP3	Aphididae spp.		13.572	GI.	Lyriomyza spp.
13.496	VIP3	Aphis spp.	45	B.573	G1.	Oscinella spp.
B.497	VIP3	Bemisia tabaci		B.574	GL	Phorbia spp.
B.498	VIP3	Empoasca spp.		B.575	GL	Frankliniella spp.
B.499	VIP3	Mycus spp.		B.576	GL	Thrips spp.
B.500	VIP3	Nephotettix spp.		B.577	GL	Scirtothrips aurantii
B.501	VIP3	Nilaparvata spp.		B.578	GL	Aceria spp.
B.502	VIP3	Pseudococcus spp.	50	B.579	GL	Aculus spp.
B.503	VIP3	Psylla spp.		B.580	GL	Brevipalpus spp.
B.504	VIP3	Quadraspidiosus spp.		B.581	ĞĹ	Panonychus spp.
B.505	VIP3	Schizaphis spp.		B.582	GL.	Phyllocoptruta spp.
B.506	VIP3	Trialeurodes spp.		B.583	GL.	Tetranychus spp.
B.507	VIP3	Lvriomvza spp.		B.584	GI.	Heterodera spp.
B.508	VIP3 VIP3	Oscinetla spp.		B.585	GL	Melaidagyne spp.
			55		PL	Adoxophyes spp.
B.509	VIP3	Phorbia spp.		B.586		
B.510	VIP3	Frankliniella spp.		B.587	PL	Agrotis spp.
B.511	VIP3	Thrips spp.		B.588	PL	Alabama argillaceae
B.512	VIP3	Scirtodirips aurantii		B.589	PL	Anticarsia gemmatalis
B.513	VIP3	Aceria spp.		B.590	PL	Chilo spp.
B.514	VIP3	Aculus spp.	60	B.591	PL	Clysia ambiguella
B.515	VIP3	Brevipalpus spp.	00	B.592	PL	Crocidolomía binotalis
B.516	VIP3	Panonychus spp.		B.593	PL.	Cydia spp.
B.517	VIP3	Phyllocoptruta spp.		13.594	PI.	Diparopsis castanca
B.518	VIP3	Tetranychus spp.		B.595	PL	Earias spp.
B.519	VIP3	Heterodera spp.		B.596	PL.	Ephestia spp.
B.520	VIP3	Meloidogyne spp.		B.597	PL	Heliothis spp.
B.521	GI.	Adoxophyes spp.	65	B.598	Pl.	Hellula undalis
B.522	GL.	Agratis spp.		B.599	PI.	Keiferia lycopersicella
5.Fe-1 6.44	\$11.	Agricos app.				2 2 2

US 7,105,469 B2

	33			3 4				
	TABL	E B-continued			TABL	E B-continued		
	AP	Control of			AP	Control of		
B.600	PL	Leucopiera scitella	5	B.677	XN	Spodoptera spp.		
B.601	PI.	Lithocollethis spp.		B.678	XN	Tortrix spp.		
B.602	PI.	Lobesia hotrana		B.679	XN	Trichoplusia ni		
B.603	P1.	Ostrinia nubilalis		B.680	XN	Agriotes spp.		
B.604	PL PL	Pandemis spp.		13.681	XN	Anthonomus grandis		
B.605 B.606	PL PL	Pectinophora gossyp.	10	B.682 B.683	XN XN	Curculio spp. Dialmatica halteata		
B.607	PJ.	Phyllocrastis citrella Pieris spp.	10	B.684	XN	Leptinotarsa spp.		
B.608	P1.	Plutella xylostella		13.685	XN	Lissorhopurus spp.		
B.609	PL	Scirpophaga spp.		B.686	XN	Ottorhynchus spp.		
B.610	PL	Sesamia spp.		B.687	XN	Aleurothrixus spp.		
B.611	PL	Sparganothis spp.		B.688	XN	Aleyrodes spp.		
B.612	P1.	Spodoptera spp.	15	B.689	XN	Aonidiella spp.		
B.613	PL	Tortrix spp.		B.690	XN	Aphididae spp.		
B.614	PL	Trichoplusia ni		B.691	XN	Aphis spp.		
B.615	PL	Agriotes spp.		B.692	XN	Bemisia tabaci		
B.616	PL	Anthonomus grandis		B.693	XN	Empoasca spp.		
B.617	PL	Curculio spp.		B.694	XN	Mycus spp.		
B.618	PL	Diabrotica balteata	20	B.695	XN	Nephotettix spp.		
B.619	PL PI	Leptinotarsa spp.		B.696	XN	Nilaparvata spp.		
B.620 B.621	PL PL	Lissorhoptrus spp.		B.697 B.698	XN XN	Pseudococcus spp. Psylla spp.		
B.622	PL PL	Otiorhynchus spp. Alewothrixus spp.		B.699	XN	Psytta spp. Quadraspidiotus spp.		
B.623	PL PL	Alevrodes spp.		B.700	XN	Schizaphis spp.		
B.624	PL	Anidiella spp.		B.700	XN	Trialeurodes spp.		
B.625	PL.	Aphididae spp.	25	B.702	XN	Lyriomyza spp.		
B.626	PL	Aphis spp.		B.703	XN	Oscinella spp.		
B.627	PL.	Bemisia tabaci		13.704	XN	Phorbia spp.		
B.628	PL.	Empoasca spp.		B.705	XN	Frankliniella spp.		
B.629	PL.	Мусия врр.		13.706	XN	Thrips spp.		
B.630	PL	Nephotettix spp.		B.707	XN	Scirtothrips aurantii		
B.631	PL	Nilaparvata spp.	30	B.798	XN	Aceria spp.		
B.632	PL	Pseudococcus spp.		B.709	XN	Aculus spp.		
B.633	PL	Psylla spp.		B.710	XN	Brevipalpus spp.		
B.634	PL	Quadraspidiotus spp.		B.711	XN	Panonychus spp.		
B.635	PL	Schizaphis spp.		B.712	XN	Phyllocoptruta spp.		
B.636	PI.	Trialcurodes spp.		B.713	XN	Tetranychus spp.		
B.637	PL.	Lyriomyza spp.	35	B.714	XN	Heterodera spp.		
B.638 B.639	PL PL	Oscinella spp.		13.715 B.716	XN Pluh,	Meloidogyne spp. Adoxophyes spp.		
B.640	PL	Phorbia spp. Frankliniella spp.		B.717	Pinh.	Agrotis spp.		
B.641	PI.	Turips spp.		B.718	Pinh.	Alabama argillaceae		
B.642	PL.	Scirtodirips aurantii		B.719	Pink.	Anticarsia gemmatalis		
B.643	PL	Aceria spp.		B.720	PInh.	Chilo spp.		
B.644	PL	Aculus spp.	40	B.721	PInh.	Clysia ambiguella		
B.645	PL	Brevipalpus spp.		B.722	PInh.	Crocidolomia binotalis		
B.646	PL	Panonychus spp.		B.723	PInh.	Cydia spp.		
13.647	er.	Phyllocoptruta spp.		B.724	Plnh.	Diparopsis castanea		
B.648	PL	Tetranychus spp.		B.725	PInh.	Earias spp.		
13.649	PL.	Heterodera spp.	45	B.726	Plnh.	Ephestia spp.		
13.650	PI.	Meloidogyne spp.	45	B.727	Plah.	Heliothis spp.		
B.651	XN	Adoxophyes spp.		B.728	PInb.	Hellula undalis		
B.652	XN	Agrotis spp.		B.729	PInh.	Keiferia lycopersicella		
B.653 B.654	XN XN	Alabama argillaceae		B.730 B.731	PInb. PInb.	Leucoptera scitella Lithocollethis spp.		
B.655	XN XN	Anticarsia gemmatalis		B.732	PInh.	Limoconeims spp. Lobesia botrana		
B.656	XN XN	Chilo sop. Clysia ambiguella	50	B.733	PInh.	Ostrinia nubilalis		
B.657	XN	Crocidolomia binotalis	30	B.734	PInh. PInh.	Pandemis spp.		
B.658	XN	Cydia spp.		B.735	PInb.	Pectinophora gossyp.		
B.659	XN	Diparopsis costanea		B.736	Pinh.	Phyllocaistis citrella		
B.660	XN	Earias spp.		B.737	PInh.	Pieris spp.		
B.661	XN	Ephestia spp.		B.738	PInh.	Plutella xylostella		
B.662	XN	Heliothis spp.	55	B.739	PInh.	Scirpophaga spp.		
B.663	XN	Hellula ınıdalis		B.740	PInb.	Sesamia spp.		
B.664	XN	Kelferia lycopersicella		B.741	PInh.	Spurganothis spp.		
B.665	XN	Leucoptera scitella		B.742	PInh.	Spodoptera spp.		
B.666	XN	Lithocollethis spp.		B.743	PInh.	Tortrix spp.		
B.667	XN	Lobesia botrana		B.744	PInh.	Trichoplusia ni		
B.668	XN	Ostrinia nubilalis	60	B.745	PInh.	Agriotes spp.		
B.669	XN	Pandemis spp.		B.746	PInh.	Anthonomus grandis		
13 (30)	XN	Pectinophora gossyp.		13.747	Pinh.	Curculio spp.		
B.670	XN	Phyllocnistis citrella		13.748	Pinh.	Diabrotica balteata		
B.671					Pinh.	Leptinotarsa spp.		
B.671 B.672	XN	Pieris spp.		13.749				
B.671 B.672 B.673	XN XN	Plutella xylostella		B.750	Pinh.	Lissorhoptrus spp.		
B.671 B.672 B.673 B.674	XN XN XN	Plutella xylostella Scirpophaga spp.	65	B.750 B.751	Pinh. Pinh.	Lissorhoptrus spp. Ottorhynchus spp.		
B.671 B.672 B.673	XN XN	Plutella xylostella	65	B.750	Pinh.	Lissorhoptrus spp.		

55

56

TABLE B-continued TABLE B-continued

	TABL	E B-continued			TABLI	E B-continued
	AP	Control of			AP	Control of
B.754	PInh.	Aonidiella spp.	5	B.831	PLec.	Trialeurodes spp.
B.755	PInlı.	Aphididae spp.		B.832	PLec.	Lyriomyza spp.
B.756	PInh.	Aphis spp.		B.833	PLec.	Oscinella spp.
B.757	Plah.	Bemisia tahaci		B.834	P1.ec.	Phorbia spp.
B.758	Pinh.	Empoasca spp.		B.835	PLec.	Frankliniella spp.
B.759	PInh.	Mycus spp.		B.836	PLec.	Thrips spp.
B.760	PInh.	Nephotettix spp.	10	B.837	PLec.	Scirtothrips aurantii
B.761	PInh.	Nilaparvata spp.		B.838	PLec.	Aceria spp.
B.762 B.763	Pinh. Pinh.	Pseudococcus spp.		B.839	Pl.ec. PLcc.	Aculus Spp.
B.764	PInh.	Psylla spp. Quadraspidiotus spp.		B.840 B.841	PLec.	Brevipalpus spp. Panonychus spp.
B.765	PInh.	Schizaphis spp.		B.842	PLec.	Phyllocoptruta spp.
13.766	PInh.	Trialeurodes spp.		B.843	PLec.	Tetranychus spp.
B.767	Pinh.	Lyriomyza spp.	15	B.844	PLec.	Heterodera spp.
B.768	Pinh.	Oscinella spp.		B.845	PLec.	Meloidogyne spp.
B.769	Pluh.	Phorbia spp.		B.846	Aggl.	Adoxophyes spp.
B.770	Plnb.	Frankliniella spp.		B.847	Aggl.	Agroiis spp.
B.771	PInh.	Thrips spp.		B.848	Aggl.	Alabama argillaceae
B.772	PInh.	Scirtothrips aurantit	30	B.849	Aggl.	Anticarsia gemmatalis
B.773	Plnh.	Accria spp.	20	B.850	Aggl.	Chilo spp.
B.774	PInh.	Aculus spp.		B.851	Aggl.	Clysia ambiguella
B.775	Pluh.	Brevipalpus spp.		B.852	Aggl.	Crocidolomia binotalis
B.776	PInh.	Panonychus spp.		B.853	Aggl.	Cvdia spp.
B.777	PInh.	Phyllocoptruta spp.		B.854	Aggl.	Diparopsis castanea
B.778	Plnh.	Tetranychus spp.	26	13.85.5	Aggl.	Earios spp.
B.779	Pinh.	Heterodera spp.	25	B.856	Aggl.	Ephestia spp.
B.780	Plah.	Meloidogyne spp.		B.857	Aggl.	Heliothis spp.
B.781	Plæc.	Adoxophyes spp.		B.858	Aggl.	Hellula undalis
B.782	PLec.	Agrotis spp.		B.859	Aggl.	Keiferia lycopersicella
13.783	Pl.ec.	Alahama argillaceae		B.860	Aggl.	Leucoptera scitella
13.784	PLec.	Anticarsia gemmatalis	3.0	B.861	Aggl.	Lithocollethis spp.
B.785 B.786	PLec. PLec.	Chilo spp.	30	B.862	Aggl.	Lobesia hotrana
B.787	PLec.	Clysia ambiguella Crocidolomia binotalis		B.863	Aggl.	Ostrinia nubilalis
B.788	PLec.	Cydia spp.		B.864	Aggl.	Pandemis spp.
B.789	PLec.	Diparopsis castanea		B.865 B.866	Aggi. Aggi.	Pectinophora gossyp. Phyllocuistis citrella
B.790	PLee.	Earius spp.		B.867	Aggi. Aggl.	Pieris spp.
B.791	PLec.	Ephestia spp.		B.868	Aggl.	Plutella xylostella
B.792	Pl.ec.	Heliothis spp.	35	B.869	Aggi.	Scirpophaga spp.
B.793	PLec.	Hellula ımdalis		B.870	Aggl.	Sesania spp.
B.794	PLec.	Keiferia lycopersicella		B.871	Aggl.	Sparganothis spp.
B.795	Pl.ec.	Leucoptera scitella		B.872	Aggl.	Spodopiera spp.
B.796	PLec.	Lithocollethis spp.		13.873	Aggl.	Tornix spp.
B.797	PLcc.	Lobesia botrana	40	B.874	Aggl.	Trichoplusia ni
B.798	PLec.	Ostrinia nubilalis	40	B.875	Aggl.	Agrioles spp.
B.799	PLec.	Pandemis spp.		B.876	Aggl.	Anthonomus grandis
B.800	PLcc.	Pectinophora gossyp.		B.877	Aggl.	Curculio spp.
B.801	PLec.	Phyllocnistis citrella		13.878	Aggl.	Diabrotica balteata
B.802	PLec.	Pieris spp.		13.879	Aggl	Leptinotarsa spp.
B.803	PLec.	Plutella xylostella	46	13.880	Aggl.	Lissorhoptrus spp.
B.804	PLec.	Scirpophaga spp.	45	13.881	Aggl.	Ottorhynchus sop.
B.805	PLec.	Sesamia spp.		B.882	Aggl.	Alcurothrixus spp.
B.806	PLec.	Sparganothis spp.		B.883	Aggl.	Alcyrodes spp.
B.807	PLec.	Spodoptera spp.		B.884	Aggl.	Aonidiella spp.
B.808	PLec.	Toririx spp.		B.885	Aggl.	Aphididue spp.
B.809	PLec.	Trichoplusia ni	50	B.886	Aggl.	Aphis spp.
B.810 B.811	PLec. PLec.	Agriotes spp.	50	B.887 B.888	Aggi.	Empoasca spp.
B.812	PLec.	Anthonomus grandis Curculio spp.		B.889	Aggl. Aggl.	Mycus spp.
B.813	PLec.	Diabrotica balteata		B.890		Nephotettix spp.
B.814	PLec.	Leptinotarsa spp.		B.891	Aggl. Aggl.	Nilaparvata spp.
B.815	Plec.	Lissorhoptrus spp.		B.892	Aggl.	Pseudococcus spp.
B.816	PLec.	Ottorhynchus sop.		B.893	Aggl.	Psylla spp.
B.817	PLec.	,lleurothrixus spp.	5.5	B.894	Aggl.	Quadruspidiotus spp.
B.818	PLec.	Aleyrodes spp.		B.895	Aggl.	Schizaphis spp.
B.819	PLec.	Aonidiella spp.		B.896	Aggl.	Trialcurodes spp.
B.820	PLec.	Aphididae spp.		B.897	Aggl.	Lyriomyza spp.
B.821	PLcc.	Aphis spp.		B.898	Aggl.	Oscinella spp.
B.822	PLec.	Bemisia tabaci		B.899	Aggl.	Phorbia spp.
B.823	PLcc.	Empoasca spp.	60	B.900	Aggl.	Frankliniella spp.
13.824	PLec.	Myrus spp.		B.901	Aggl.	Thrips spp.
B.825	Plæc.	Nephotettix spp.		13.902	Aggl.	Scirtothrips aurantii
B.826	PLec.	Nilaparvata spp.		B,903	Aggl.	Aceria spp.
13.827	PLec.	Pseudococcus spp.		13.904	Aggl.	Aculus spp.
B.828	PLec.	Psylla spp.		B.905	Aggl.	Brevipalpus spp.
B.829	PLec.	Quadraspidiotus spp.	65	B.906	Aggl.	Panonyrhus spp.
B.830	PLec.	Schizaphis spp.		B.907	Aggl.	Phyllocoptruta spp.

US 7,105,469 B2

	שכנה.ג	TABLE B-continued		TABLE B-continued			
	AP	Control of			ΑP	Control of	
B.908	Aggl.	Tetranychus spp.	5	B.985	CH	Earias spp.	
B.909	Aggl.	Heterodera spp.		B.986	CH	Ephestia spp.	
B.910	Aggl.	Meloidogyne spp.		B.987	CH	Heliothis spp.	
B.911	CO	Adoxophyes spp.		B.988	CH	Hellula undalis	
B.912	CO	Agrotis spp.		B.989	CH	Keiferia lycopersicella	
B.913	co	Alabama argillaceae		B.990	CH	Leucoptera scitella	
B.914	CO	Anticarsia gemmatalis	10	B.991	CH	Lithocollethis spp.	
B.915	CO	Chilo spp.		B.992	CH	Lohesia hotrana	
B.916	CO	Clysia amhiguella		B.993	CH	Ostrinia nubilalis	
B.917	CO	Crocidolomia binotalis		B.994	CH	Pandemis spp.	
B.918	CO	Cydia spp.		B.995	CH	Pectinophora gossyp.	
B.919	co	Diparopsis castanea		B.996	CH	Phyllocuistis citrella	
B.920	CO	Earias spp.	1.5	3.997	CH	Pieris spp.	
B.921	CO	Ephestia spp.	1.5	B.998	ČII	Plutella xylostella	
B.922	ďΟ	Heliothis spp.		B.999	CH	Scirpophaga spp.	
B.923	co	Hellula undalis		B.1000	CH	Sesumia spp.	
B.924	co						
		Keiferia lycopersicella		B.1001	CH	Sparganothis spp.	
B.925	co	Leucoptera scitella		B.1002	CH	Spodoptera spp.	
B.926	co	Lithocollethis spp.	20	B.1003	CH	Tortrix spp.	
B.927	co	Lobesia botrana		B.1004	CH	Trichoplusia ni	
B.928	CO	Ostrinia nubilalis		B.1005	CH	Agriotes spp.	
B.929	co	Pandemis spp.		B.1006	CH	Anthonomus grandis	
B.930	co	Pectinophora gossyp.		B.1007	CH	Curculio spp.	
B.931	co	Phyllocraistis citrella		B.1008	CH	Diabrotica balteata	
B.932	CO	Pieris spp.		B.1009	CH	Leptinotarsa spp.	
B.933	CO	Plutella xylostella	25	B.1010	CH	Lissorhoptrus spp.	
B.934	CO	Scirpophaga spp.		B.1011	CH	Otiorhynchus spp.	
B.935	CO	Sesamia spp.		B.1012	CH	Aleurothrixus spp.	
B.936	CO	Sparganothis spp.		B.1013	CH	Aleyrodes spp.	
B.937	CO	Spodoptera spp.		B.1013	CH	Aonidicila spp.	
B.938	co						
		Tortrix spp.	••	B.1015	CH	Aphididae spp.	
B.939	co	Trichoplusia ni	30	B.1016	CH	Aphia spp.	
B.940	co	Agriotes spp.		B.1017	CH	Bemisia tabaci	
B.941	co	Anthonomus grandis		B.1018	CH	Empoasca spp.	
B.942	co	Curculio spp.		B.1019	CH	Мусы врр.	
B.943	co	Diabrotica balteata		B.1020	CH	Nephotettix spp.	
B.944	CO	Leptinotarsa spp.		B.1021	CH	Nilaparvata spp.	
B 945	CO	Lissorhopurus spp.	35	B.1022	CH	Pseudococcus spp.	
B.946	CO	Otiorhynchus spp.	***	B.1023	CH	Psylla spp.	
B.947	co	Aleurothrixus spp.		B.1024	CH	Quadraspidiotus spp.	
B.948	CO	Aleyrodes spp.		B.1025	CH	Schizaphis spp.	
B.949	CO	Aonidiella spp.		B.1026	CH	Trialcumdes spp.	
B.950	CO	.tphididae spp,		B.1027	CH	Lyriomyza spp.	
B.951	co	Aphis spp.		B.1028	CH	Oscinella spp.	
B.952	çõ	Bemisia tabaci	40	B.1029	CH	Phorbia spp.	
B.953	co				CH		
	co	Empoasca spp.		B.1030		Frankliniella spp.	
B.954		Mycus spp.		B.1031	CH	Thrips spp.	
B.955	. co	Nephotettix spp.		B.1032	CH	Scirtothrips aurantii	
B,956	CO	Nilaparvata spp.		B.1033	CIL	Aceria spp.	
13.957	CO	Pseudococcus spp.	4.5	B.1034	CH	Aculus spp.	
B.958	CO	Psylla spp.	45	B.1035	CH	Brevipalpus spp.	
B.959	CO	Quadraspidiotus spp.		B.1036	CH	Panonychus spp.	
B.960	CO	Schizaphis spp.		B.1037	CH	Phyllocoptruta spp.	
B.961	CO	Trialeurodes spp.		B.1038	CH	Tetranychus spp.	
B.962	co	Lyriomyza spp.		B.1039	CH	Heterodera spp.	
B.963	co	Oscinella spp.		B.1040	CH	Meloidogyne spp.	
B.964	čŏ	Phorbia spp.	50	B.1041	SS	Adoxophyes spp.	
B.965	co	Frankliniella spp.	20	B.1042	SS	Agroris spp.	
B.966	čo	Thrips spp.		B.1042	SS	Alabama argillaceae	
13.967	CO	Scirtothrips aurantii			SS	Anticarsia gemmatalis	
				33.1044 32.1045			
B.968	co	Aceria spp.		B.1045	SS	Chilo spp.	
B.969	CO	Aculus sop.		B.1046	SS	Clysia amhiguella	
13.970	CO	Brevipalpus spp.	55	B.1047	SS	Crocidolomia binotalis	
B.971	co	Panonychus spp.		B.1048	SS	Cydia spp.	
B.972	CO	Phyllocoptruta spp.		B.1049	SS	Diparopsis castanea	
B.973	co	Tetranychus spp.		B.1050	SS	Earias spp.	
B.974	co	Heterodera spp.		B.1051	SS	Ephestia spp.	
B.975	co	Meloidogyne spp.		B.1052	SS	Heliothis spp.	
B.976	CH	Adoxophyes spp.		B.1053	SS	Hellula undalis	
B.977	CH	Agrotis spp.	60	B.1054	SS	Keiferia lycopersicella	
	CH	Agrous spp. Alahama argillaceae			SS	Leucoptera scitella	
B.978				B.1055			
B.979	CH	Anticarsia gemmatalis		B.1056	SS	Lithocollethis spp.	
B.980	CH	Chilo spp.		B.1057	SS	Lobesia botrana	
B.981	CH	Clysia amhiguella		B.1058	SS	Ostrinia nubilalis	
B.982	CH	Crocidolomia binotalis		B.1059	SS	Pandemis spp.	
B.983	CH	Cydio spp.	65	B.1060	SS	Pectinophara gossyp.	
B.984	CII	Diparopsis castanea		B.1061	SS	Phyllocuistis citrella	

B.1124

B.1125

B.1126

B.1127

B.1128

B.1129

B.1130

B.1131

B.1132

B.1133 B.1134

B.1135

B.1136

B.1137

B.1138

но

HO HO

НО

но

НО

НО

HO HO

по

но

но

HO

Pandemis spp.

Sesamia spp.

Sparganothis spp.

Anthonomus grandis

Spodoptera spp.

Tortrix spp. Trichoplusia ni

Agriotes spp.

Curculio spp. Diahmtica halteata

Pectinophora gossypiella Phyllocrastis citrella Pieris spp. Plutella xylostella Scirpophaga spp.

US 7,105,469 B2

59

TABLE B-continued

TABLE B-continued

60

		CO D COMMINGE			IADL	E B-continuca
	AP	Control of			AP	Control of
B.1062	SS	Pieris spp.	5	B.1139	НО	Leptinotarsa spp.
B.1063	SS	Plutella xylostella		B.1140	но	Lissorhoptrus spp.
B.1064	SS	Scirpophaga spp.		B.1141	HO	Otiorhynchus spp.
B.1065	SS	Sesamia spp.		B.1142	Ю	Aleurothrixus spp.
B.1066	SS	Sparganothis spp.		B.1143	110	Aleyrodes spp.
B.1067	SS	Spodoptera spp.		B.1144	HO	Aonidiella spp.
B.1068	SS	Tortrix spp.	10	B.1145	но	Aphididae spp.
B.1069	SS	Trichoplusia ni		B.1146	HO	Aphis spp.
B.1070	SS	Agriotes spp.		B.1147	Ю	Bemisia tahaci
B.1071	SS	Anthonomus grandis		B.1148	НО	Empoasca spp.
B.1072	SS	Curculio spp.		B.1149	но	Мусти врр.
B.1073	SS	Diabrotica balteata		B.1150	НО	Nephotettix spp.
B.1074	SS	Leptinotarsa spp.	15	B.1151	Ю	Nilaparvata spp.
B.1075	SS	Lissorhoptrus spp.		B.1152	HO	Pseudococcus spp.
B.1076	88	Otiorhynchus spp.		B.1153	но	Psylla spp.
B.1077	SS	Aleurothrixus spp.		B.1154	НО	Quadraspidiotus spp.
B.1078	SS	Aleyrodes spp.		B.1155	HO	Schizaphis spp.
B.1079	SS	Aonidiella spp.		B.1156	но	Trialeurodes spp.
B.1080	SS SS	Aphididae spp.	20	B.1157	но	Lyriomyza spp.
B.1081		Aphis spp.		B.1158	но	Oscinella spp.
B.1082	SS	Bemisia tabaci		B.1159	НО	Phorbia spp.
B.1083 B.1084	SS SS	Empoasca spp.		B.1160	но	Franklinella spp.
		Mycus spp.		B.1161	НО	Thrips spp.
B.1085	SS	Nephotettix spp.		B.1162	но	Scirtothrips aurantii
B.1086 B.1087	SS	Nilaparvata spp.	25	B.1163	110	Aceria spp.
	SS	Pseudococcus spp.	22	B.1164	HO	Aculus spp.
B.1088	SS	Psylla spp.		B.1165	110	Brevipalpus spp.
13.1089	SS	Quadraspidintus spp.		B.1166	Ю	Panonychus spp.
B.1090		Schizaphis spp.		B.1167	Ю	Phyllocoptruta spp.
B.1091	SS	Dialeurodes spp.		B.1168	110	Tetranychus spp.
B.1092 B.1093	SS SS	Lyriomyza spp.	20	B.1169	Ю	Heterodera spp.
B.1093	SS	Oscinella spp.	30	B.1170	но	Meloidogyne spp.
		Phorbia spp.		T1 5 11 1 1		11 4 4 4
B.1095 B.1096	SS SS	Frankliniella spp.		The following at		
B.1097	SS	Thrips spp.		Active Principle		ant: AP
B.1098	SS	Scirtothrips auramii		Photornabdus lu		
B.1099	SS	Aceria spp.		Xenorhabdus nei		
B.1100	SS	Acudus spp.		Proteinase Inhibi		
B.1101	SS	Brevipalpus spp.		Plant lectins PLe		
B.1102	SS	Panonychus spp.		Agglutinins: Agg		
B.1103	5S	Phyllocoptruta spp. Tetranychus spp.		3-Hydroxysteroid Cholesteroloxida		
B.1104	SS	Heterodera spp.		Chitinase: CH	se; (()	
B.1105	SS	Meloidogyne spp.		Glucanase: GL		
B.1106	но	Adoxophyes spp.		Stilbensynthase S		
B.1107	но	Agrons spp.		amounsymmese a	33	
B.1108	но	Alabama argillaceae				
B.1109	но	Anticarsia gemmatalis			D:-1	.:1 f
B.1110	HÖ	Chilo spp.			Biolog	tical Examples
B.1111	Ю	Clysia ambiguella				
B.1112	Ю	Crocidolomia binotalis	45	Table 1: A	method of	controlling pests comprising the
B.1113	но	Cydia spp.				am to transgenic cotton, wherein
B.1114	но	Diparopsis castanea				
B.1115	HO	Earius spp.				active principle expressed by the
B.1116	110	Ephestia spp.				est to be controlled correspond to
B.1117	но	Heliothis spp.		anyone of the	: individualis	ed combinations B.1 to B.1170 of
B.1118	HO	Hellula undalis		table B.		
B.1119	HO	Keiferia lycopersicella	3(7		method of	controlling pests comprising the
B.1120	HO	Leucoptera scitella				
B.1121	HO	Lithocollethis spp.				am to transgenic rice, wherein the
B.1122	HO HO	Labesia botrana				principle expressed by the trans-
B.1123	HO	Ostrinia nubilalis		genic plant a	and the pest	to be controlled correspond to
B.1124	HO	Pandanis spp		anyone of the	individualis	ed combinations B.1 to B.1170 of

genic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table 13.

Table 3: A method of controlling pests comprising the application of thiamethoxam to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of

Table 4: A method of controlling pests comprising the application of thiamethoxam to transgenic brassica, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

6

Table 5: A method of controlling pests comprising the application of thiamethoxam to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 6: A method of controlling pests comprising the application of thiamethoxam to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 7: A method of controlling pests comprising the application of thiamethoxam to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 8: A method of controlling pests comprising the application of thiamethoxam to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 9: A method of controlling pests comprising the application of thiamethoxam to transgenic wheat, wherein 25 the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table 13.

Table 10: A method of controlling pests comprising the 30 application of thiamethoxam to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 11: A method of controlling pests comprising the application of thiamethoxam to transgenic citrus trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.I to B.1170 of table B.

Table 12: A method of controlling pests comprising the application of thiamethoxam to transgenic pome fruit trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 13: A method of controlling pests comprising the application of thiamethoxam to transgenic peppers, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 14: A method of controlling pests comprising the application of imidacloprid to transgenic cotton, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 15: A method of controlling pests comprising the application of imidacloprid to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 16: A method of controlling pests comprising the 65 application of imidacloprid to transgenic potatoes, wherein the combination of the active principle expressed by the

62

transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 17: A method of controlling pests comprising the application of imidacloprid to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 18: A method of controlling pests comprising the application of imidacloprid to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B. 1 to B. 1170 of table B.

Table 19: A method of controlling pests comprising the application of imidacloprid to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 20: A method of controlling pests comprising the application of imidacloprid to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 21: A method of controlling pests comprising the application of imidacloprid to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 22: A method of controlling pests comprising the application of imidacloprid to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 23: A method of controlling pests comprising the application of imidacloprid to transgenic orange trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 24: A method of controlling pests comprising the application of imidacloprid to transgenic pome fruit, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 25: A method of controlling pests comprising the application of imidacloprid to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 26: A method of controlling pests comprising the application of imidacloprid to transgenic peppers, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 27: A method of controlling pests comprising the application of Ti-435 to transgenic cotton, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

63

Table 28: A method of controlling pests comprising the application of Ti-435 to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 29: A method of controlling pests comprising the application of Ti-435 to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of 10 table 13.

Table 30: A method of controlling pests comprising the application of Ti-435 to transgenic *brassica*, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to 15 anyone of the individualised combinations B.1 to B.1170 of table B.

Table 31: A method of controlling pests comprising the application of Ti-435 to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 32: A method of controlling pests comprising the application of Ti-435 to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B. 1170 of table B.

Table 33: A method of controlling pests comprising the application of Ti-435 to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 34: A method of controlling pests comprising the application of Ti-435 to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 35: A method of controlling pests comprising the application of Ti-435 to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of ⁴⁵ table B.

Table 36: A method of controlling pests comprising the application of Ti-435 to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to 50 anyone of the individualised combinations B.1 to B.1170 of table B.

Table 37: A method of controlling pests comprising the application of Ti-435 to transgenic citrus trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 38: A method of controlling pests comprising the application of Ti-435 to transgenic pome fruit trees, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 39: A method of controlling pests comprising the 65 application of thiacloprid to transgenic cotton, wherein the combination of the active principle expressed by the trans-

64

genic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 40: A method of controlling pests comprising the application of thiacloprid to transgenic rice, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 41: A method of controlling pests comprising the application of thiacloprid to transgenic potatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B

Table 42: A method of controlling pests comprising the application of thiacloprid to transgenic *brassica*, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 43: A method of controlling pests comprising the application of thiacloprid to transgenic tomatoes, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 44: A method of controlling pests comprising the application of thiacloprid to transgenic cucurbits, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 45: A method of controlling pests comprising the application of thiacloprid to transgenic soybeans, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B

Table 46: A method of controlling pests comprising the application of thiacloprid to transgenic maize, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 47: A method of controlling pests comprising the application of thiacloprid to transgenic wheat, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

Table 48: A method of controlling pests comprising the application of thiacloprid to transgenic bananas, wherein the combination of the active principle expressed by the transgenic plant and the pest to be controlled correspond to anyone of the individualised combinations B.1 to B.1170 of table B.

TABLE C

	Principle	Tolerant to	Crop
C.1	ALS	Sulfonylureas etc. ***	Cotton
C.2	ALS	Sulfonylureas etc. ***	Rice
C.3	ALS	Sulfonylureas etc. ***	Brassica
C.4	ALS	Sulfonylureas etc. ***	Potatoes
C.5	ALS	Sulfonvlureas etc. ***	Tomatoes
C.6	ALS	Sulfonylureas etc. ***	Cucurbits
C.7	ALS	Sulfonylureas etc. ***	Soybeans
C.8	ALS	Sulfonylureus etc. ***	Maize
C.9	ALS	Sulfonylureas etc. ***	Wheat

65

TABLE C-continued

TABLE C-continued

66

		TABLE C-continued		_	TABLE C-continued				
	Principle	Tolerant to	Crop	_		Principle	Tolerant to	Стор	
C.10	ALS	Sulfonylureas etc. ***	pome fruit	- 5	C.75	PROTOX	Protox inhibitors III	Brassica	
C.11	ALS.	Sulfonylareas etc. ***	stone Imit		C.76	PROTOX	Protox inhibitors III	Potatoes	
C.12	ALS	Sulfonylureas etc. ***	citrus		C.77	PROTOX	Protox inhibitors 1//	Tomatoes	
C.13	ACCase	+++	Cotton		C.78	PROTOX	Protox inhibitors ///	Cucurbits	
C.14	ACCase	+++	Rice		C.79	PROTOX	Protox inhibitors ///	Soybeans	
C.15	ACCase	+++	Brassica		C.80	PROTOX	Protox inhibitors ///	Maize	
C.16 C.17	ACCase ACCase	+++	Potatoes	10	C.81	PROTOX	Protox inhibitors //	Wheat	
C.18	ACCase	+++	Tomatoes		C.82	PROTOX	Protox inhibitors ///	pome fruit	
C.19	ACCase	+++ +++	Cucurbits		C.83 C.84	PROTOX	Protox inhibitors /// Protox inhibitors ///	stone fruit	
C.20	ACCase	+++	Soybeans Maize		C.85	PROTOX EPSPS		citrus Cotton	
C.21	ACCase	+++	Wheat		C.86	EPSPS	Glyphosate and/or Sulphosate Glyphosate and/or Sulphosate	Rice	
:.22	ACCase	+++	pome fmit		C.87	EPSPS	Glyphosate and/or Sulphosate	Brassica	
2.23	ACCase	+++	stone fruit	15	C.88	EPSPS	Glyphosate and/or Sulphosate	Potatoes	
2.24	ACCase	+++	citrus		C.89	EPSPS	Glyphosate and/or Sulphosate	Tomatoes	
2.25	HPPD	Isoxaflutol, Isoxachlotol,	Cotton		C.90	EPSPS	Glyphosate and/or Sulphosate	Cucurbits	
		Sulcotrion, Mesotrion			C.91	EPSPS	Glyphosate and/or Sulphosate	Soybeans	
26	HPPD	Isoxaflutol, Isoxachlotol,	Rice		C.92	EPSPS	Glyphosate and/or Sulphosate	Maize	
		Sulcotrion, Mesotrion		•	C.93	EPSPS	Glyphosate and/or Sulphosate	Wheat	
27	HPPD	Isoxaflutel, Isoxachlotel,	Brassica	20	C.94	EPSPS	Glyphosate and/or Sulphosate	pome fruit	
		Sulcotrion, Mesotrion			C.95	EPSPS	Glyphosate and/or Sulphosate	stone fruit	
.28	HPPD	Isoxaflutol, Isoxachlotol.	Potatoes		C.96	EPSPS	Glyphosate and/or Sulphosate	citrus	
		Sulcotrion. Mesetrion			C.97	GS	Gluphosinate and/or Bialaphos	Cotton	
:.29	HPPD	Isoxaflutol, Isoxachlotol,	Tomatoes		C.98	GS	Gluphosinate and/or Bialaphos	Rice	
		Sulcotrion, Mesotrion		2.5	C99	GS	Gluphosinate and/or Bialaphos	Brassica	
2.30	HPPD	Isoxaflutol, Isoxachlotol,	Cuenrbus	25	C.100	GS	Gluphosinate and/or Bialaphos	Potatoes	
		Sulcotrion, Mesotrion			C.101	GS	Ghiphosinate and/or Bialaphos	Tomatoes	
31	HPPD	Isoxaflutol, Isoxachlotol,	Soybeans		C.102	GS	Gluphosinate and/or Bialaphos	Cucurbits	
	LIBBIN	Sulcotrion, Mesotrion			C.103	GS	Gluphosinate and/or Bialaphos	Soybeans	
.32	ПРР	Isoxaflutol, Isoxachlotol,	Maize		C.104	GS	Ghiphosinate and/or Bialaphos	Maize	
.33	HPPD	Sulcotrion, Mesotrion	3371 .	30	C.105	GS	Gluphosinate and/or Bialaphos	Wheat	
	nrru	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Wheat	30	C.106	GS	Gluphosinate and/or Bialaphos	ponie finit	
.34	HPPD	Isoxaflutol, Isoxachlotol,	pome fruit		C.107 C.108	GS GS	Gluphosinate and/or Bialaphos	stone fruit citrus	
.54	mil	Sulcotrion, Mesotrion	point mut		C.108	<u> </u>	Gluphosinate and/or Bialaphos	curus	
.35	HPPD	Isoxaflutol, Isoxachlotol,	stone fruit		Abbrevia	tione:			
		Sulcotrion, Mesotrion	Stone Huit			OA Carboxylas	art ACCasar		
.36	HPPD	Isoxaflutol, Isoxachlotol,	citrus	20		tate Synthase: /			
		Sulcotrion, Mesorrion	L. 51.7 64.1	.35			floxygenase: HPPD		
.37	Nitrilase	Bromoxynil, Ioxynil	Cotton			n of protein syn			
.38	Nitrilase	Bromoxynil, Ioxynil	Rice			mimie: HO			
:.39	Nitrilase	Bromoxynil, Ioxynil	Brassica			e Synthetase: C	38		
:.40	Nitrilase	Bromoxynil, loxynil	Potatoes			phyrinogen oxid			
0.41	Nitrilase	Bromoxynit, Ioxynil	Tomatoes	40			oshikimate Synthase: EPSPS		
.42	Nitrilase	Bromoxynil, Ioxynil	Cucurbits	40			ylureas, Imidazolinones, Triazolopyr	imidines.	
2.43	Nitrilase	Bromoxynil, Ioxynil	Soybeans		Dimethor	xypyrimidines e	nd N-Acylsulfonamides:		
.44	Nitrilase	Bromoxynil, Ioxynil	Maizc				litorsulfuron, Chlorimuron, Ethanetl		
1.45	Nitrilase	Bromoxynil, loxynil	Wheat				Prosulfuron, Triasulfuron, Cinosulfu		
.46	Nitrilase	Bromoxynil, loxynil	pome fmit				sulfuron, Tribenuron, ACC 322140,		
1.47 1.48	Nitrilase	Bromoxynil, loxynil	stone finit	45			ulfuron, Nicosulfuron, Rimsulfuron,		
	Nitrilase	Bromoxynil, loxynil	citrus	7.,			pyrasulfuron, NC 330, Azimsulfuror desulfuron, Flupyrsulfuron, CGA 36.		
1.49 1.50	IPS IPS	Chloroactanilides &&&	Cotton				Imazaniethabenz, Imazaquin, Imazan		
`.51	IPS	Chloroactanilides &&&	Rice			руг, Ішахаруг а			
3.52	IPS	Chloroactanilide &&&s Chloroactanilides &&&	Brassica				h as DE 511, Flumetsulam and Chlo	ransulam:	
3.53	IPS	Chloroactanilides &&&	Potatoes				arch as Pyrithiobac, Pyriminiobac, B		
:54	IPS	Chloroactanilides &&&	Tomatocs	50	Pyribenzo	oxim.			
.55	IPS	Chloroactanilides &&&	Cucurbits	.30			p-methyl, Fluazifop-P-butyl, Haloxyi		
.56	IPS	Chloroactanilides &&&	Soybeans Maize				alafop-P-ethyl, elodinafop propargyl		
:.57	IPS	Chloroacianilides &&&	Wheat				Alloxydam, Sethoxydam, Cycloxydin		
.58	IPS	Chloroactanilides &&&	pome fmit				oxydim, Caloxydim, Clefoxydim, Cl		
.59	IPS	Chloroactanilides &&&	stone fruit				s such as Alachlor Acetochlor, Dime		
.60	IPS	Chloroactanilides &&&	citrus				instance diphenyethers such as Acid		
.61	НОМ	2.4-D, Mecoprop-P	Cotton	22			omitrofen, Ethoxyfen, Fluoroglycofe		
.62	ном	2,4-D, Mecoprop-P	Rice				mides such as Azafenidin, Carfentra ac-pentyl, Flumioxazin, Fluthiacetm		
.63	HOM	2,4-D, Mecoprop-P	Brassica				sazone, Sulfentrazone, Imides and of		
.64	HOM	2,4-D, Mecoprop-P	Potatoes				il. Nipyraclofen and Thidiazimin: an		
.65	HOM	2.4-D. Mecoprop-P	Tomatoes			and Pyraflufen-			
.66	HOM	2.4-D. Mecoprop-P	Cucurbits	**		,	*****		
.67	HOM	2,4-D, Mecoprop-P	Soybeans	60					
1.68	HOM	2,4-D, Mecoprop-P	Maize				Biological Examples		
.69	HOM	2,4-D, Mecoprop-P	Wheat				Diological Examples		
70	HOM	2,4-D, Mecoprop-P	pome fauit						
.71	HOM	2,4-D, Mecoprop-P	stone fruit		Table	e 49: A meth	nod of controlling representa	tives of th	
.72	НОМ	2.4-D, Mecoprop-P	citrus				- ·		
1.73	PROTOX	Protox inhibitors #	Cotton	65			comprising the application		
.74	PROTOX	Protox inhibitors ///	Rice				aerbicidally resistant transs		
						- 460 000-61-	ation af the active principle o		

wherein the combination of the active principle expressed by

67

the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 50: A method of controlling representatives of the genus *Agrotis* comprising the application of thiamethoxam 5 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 51: A method of controlling *Alabama argillaceae* 10 comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant, and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 52: A method of controlling *Amicarsia gemmatalis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of 20 the lines C.1 to C.108 of table C.

Table 53: A method of controlling representatives of the genus *Chilo* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic 25 plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 54: A method of controlling *Clysia ambiguella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of 30 the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 55: A method of controlling representatives of the genus *Cnephalocrocis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 56: A method of controlling *Crocidolomia binotalis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of 45 the lines C.1 to C.108 of table C.

Table 57: A method of controlling representatives of the genus *Cydia* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic 50 plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 58: A method of controlling *Diparopsis castanea* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of 55 the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 59: A method of controlling representatives of the genus *Earias* comprising the application of thiamethoxam to 60 a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 60: A method of controlling representatives of the 65 genus *Ephestia* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the

68

combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 61: A method of controlling representatives of the genus *Heliothis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 62: A method of controlling *Hellula undalis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 63: A method of controlling Keiferia lycopersicella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 64: A method of controlling Leucoptera scitella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 65: A method of controlling representatives of the genus *Lithocollethis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 66: A method of controlling *Lobesia botrana* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 67: A method of controlling Ostrinia nubilalis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 68: A method of controlling representatives of the genus *Pandemis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 69: A method of controlling *Pectinophora gossypiella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 70: A method of controlling *Phyllocnistis citrella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 71: A method of controlling representatives of the genus *Pieris* comprising the application of thiamethoxam to

69

a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 72: A method of controlling Plutella xylostella 5 comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 73: A method of controlling representatives of the genus Scirpophaga comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by pest correspond to anyone of the lines C.1 to C.108 of table

Table 74: A method of controlling representatives of the genus Sesamia comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the 20 C. combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 75: A method of controlling representatives of the genus Sparganothis comprising the application of thia- 25 methoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table

Table 76: A method of controlling representatives of the genus Spodoptera comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the 35 pest correspond to anyone of the lines C.1 to C.108 of table

Table 77: A method of controlling representatives of the genus Tortrix comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combi- 40 nation of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 78: A method of controlling Trichoplusia ni comprising the application of thiamethoxam to a herbicidally 45 resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 79: A method of controlling representatives of the 50 genus Agriotes comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. 55 C.

Table 80: A method of controlling Anthonomus grandis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of 60 the lines C.1 to C.108 of table C.

Table 81: A method of controlling representatives of the genus Curculio comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the trans- 65 genic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

70

Table 82: A method of controlling Diabrotica balteata comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 83: A method of controlling representatives of the genus Leptinotarsa comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table

Table 84: A method of controlling representatives of the the transgenic plant and the crop to be protected against the 15 genus Lissorhoptrus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table

> Table 85: A method of controlling representatives of the genus Otiorhynchus comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table

Table 86: A method of controlling representatives of the genus Aleurothrixus comprising the application of thia-30 methoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table

Table 87: A method of controlling representatives of the genus Aleyrodes comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table С.

Table 88: A method of controlling representatives of the genus Aonidiella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table

Table 89: A method of controlling representatives of the family Aphididae comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table

Table 90: A method of controlling representatives of the genus Aphis comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 91: A method of controlling Bemisia tabaci comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

71

Table 92: A method of controlling representatives of the genus *Empoasca* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 93: A method of controlling representatives of the genus *Mycus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 94: A method of controlling representatives of the genus *Nephotettix* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 95: A method of controlling representatives of the genus *Nilaparvata* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 96: A method of controlling representatives of the genus *Pseudococcus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table

Table 97: A method of controlling representatives of the genus *Psylla* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond ⁴⁰ to anyone of the lines C.1 to C.108 of table C.

Table 98: A method of controlling representatives of the genus *Quadraspidiotus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 99: A method of controlling representatives of the genus *Schizaphis* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 100: A method of controlling representatives of the genus *Trialeurodes* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 101: A method of controlling representatives of the genus *Lyriomyza* comprising the application of thia-65 methoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by

72

the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 102: A method of controlling representatives of the genus Oscinella comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table (**)

Table 103: A method of controlling representatives of the genus *Phorbia* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 104: A method of controlling representatives of the genus *Frankliniella* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 105: A method of controlling representatives of the genus *Thrips* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 106: A method of controlling Scirtothrips aurantii comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 107: A method of controlling representatives of the genus *Aceria* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 108: A method of controlling representatives of the genus *Aculus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 109: A method of controlling representatives of the genus *Brevipalpus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 110: A method of controlling representatives of the genus *Panonychus* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 111: A method of controlling representatives of the genus *Phyllocoptruta* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by

73

the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 112: A method of controlling representatives of the genus *Tetranychus* comprising the application of thia-5 methoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 113: A method of controlling representatives of the genus *Heterodera* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the 15 pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 114: A method of controlling representatives of the genus *Meloidogyne* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 115: A method of controlling *Mamestra brassica* comprising the application of thiamethoxam to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 116: A method of controlling representatives of the genus *Adoxophyes* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 117: A method of controlling representatives of the genus *Agrotis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 118: A method of controlling *Alabama argillaceae* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 119: A method of controlling Anticarsia gemmatalis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 120: A method of controlling representatives of the genus *Chilo* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to 60 anyone of the lines C.1 to C.108 of table C.

Table 121: A method of controlling Clysia ambiguella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the 65 crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

74

Table 122: A method of controlling representatives of the genus *Cnephalocrocis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 123: A method of controlling *Crocidolomia binotalis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 124: A method of controlling representatives of the genus *Cydia* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 125: A method of controlling *Diparopsis castanea* comprising the application of imidaeloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 126: A method of controlling representatives of the genus *Earias* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 127: A method of controlling representatives of the genus *Ephestia* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 128: A method of controlling representatives of the genus *Heliothis* of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 129: A method of controlling *Hellula undalis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 130: A method of controlling *Keiferia lycopersicella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 131: A method of controlling Leucoptera scitella comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 132: A method of controlling representatives of the genus *Lithocollethis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

75

Table 133: A method of controlling *Lobesia botrana* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of 5 the lines C.1 to C.108 of table C.

Table 134: A method of controlling *Ostrinia nubilalis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the 10 crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 135: A method of controlling representatives of the genus *Pandemis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the 15 combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 136: A method of controlling *Pectinophora gossypiella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 137: A method of controlling *Phyllocnistis citrella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 138: A method of controlling representatives of the genus *Pieris* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 139: A method of controlling *Plutella xylostella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 140: A method of controlling representatives of the genus *Scirpophaga* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 141: A method of controlling representatives of the genus *Sesamia* comprising the application of imidaeloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 142: A method of controlling representatives of the genus *Sparganothis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest 60 correspond to anyone of the lines C.1 to C.108 of table C.

Table 143: A method of controlling representatives of the genus *Spodoptera* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

76

Table 144: A method of controlling representatives of the genus *Tortrix* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 145: A method of controlling *Trichoplusia ni* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 146: A method of controlling representatives of the genus *Agriotes* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 147: A method of controlling Anthonomus grandis comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 148: A method of controlling representatives of the genus *Curculio* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 149: A method of controlling *Diabrotica balteata* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 150: A method of controlling representatives of the genus *Leptinotarsa* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 151: A method of controlling representatives of the genus *Lissorhoptrus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 152: A method of controlling representatives of the genus Otiorhynchus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 153: A method of controlling representatives of the genus *Aleurothrixus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 154: A method of controlling representatives of the genus *Aleyrodes* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

7

Table 155: A method of controlling representatives of the genus *Aonidiella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest 5 correspond to anyone of the lines C.1 to C.108 of table C.

Table 156: A method of controlling representatives of the family *Aphididae* comprising the application of imidaclo-prid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 157: A method of controlling representatives of the genus *Aphis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 158: A method of controlling *Bemisia tabaci* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 159: A method of controlling representatives of the genus *Empoasca* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 160: A method of controlling representatives of the genus *Mycus* comprising the application of imidaeloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 161: A method of controlling representatives of the genus *Nephotettix* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 162: A method of controlling representatives of the genus *Nilaparvata* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 163: A method of controlling representatives of the 50 genus *Pseudococcus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C. 55

Table 164: A method of controlling representatives of the genus *Psylla* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond 60 to anyone of the lines C.1 to C.108 of table C.

Table 165: A method of controlling representatives of the genus *Quadraspidiotus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the 65 transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

78

Table 166: A method of controlling representatives of the genus *Schizaphis* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 167: A method of controlling representatives of the genus *Trialeurodes* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 168: A method of controlling representatives of the genus *Lyriomyza* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 169: A method of controlling representatives of the genus *Oscinella* comprising the application of imidaeloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 170: A method of controlling representatives of the genus *Phorbia* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 171: A method of controlling representatives of the genus *Frankliniella* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 172: A method of controlling representatives of the genus *Thrips* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 173: A method of controlling Scirtothrips aurantii comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 174: A method of controlling representatives of the genus *Aceria* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 175: A method of controlling representatives of the genus *Aculus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 176: A method of controlling representatives of the genus *Brevipalpus* comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 177: A method of controlling representatives of the genus Panonychus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest 5 correspond to anyone of the lines C.1 to C.108 of table C.

Table 178: A method of controlling representatives of the genus Phyllocoptruta comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the 10 transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 179: A method of controlling representatives of the genus Tetranychus comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the 15 combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 180: A method of controlling representatives of the genus Heterodera comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 181: A method of controlling representatives of the 25 genus Meloidogyne comprising the application of imidacloprid to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 182: A method of controlling representatives of the genus Adoxophyes comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 183: A method of controlling representatives of the genus Agrotis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 184: A method of controlling Alabama argillaceae comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 185: A method of controlling Anticarsia gemmatalis 50 comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 186: A method of controlling representatives of the genus Chilo comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to 60 anyone of the lines C.1 to C.108 of table C.

Table 187: A method of controlling Clysia ambiguella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to 65 be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 188: A method of controlling Crocidolomia binotalis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 189: A method of controlling representatives of the genus Cydia comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 190: A method of controlling Diparopsis castanea comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 191: A method of controlling representatives of the genus Earias comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 192: A method of controlling representatives of the genus Ephestia comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 193: A method of controlling representatives of the genus Heliothis of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 194: A method of controlling Hellula undalis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 195: A method of controlling Keiferia lycopersicella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 196: A method of controlling Leucoptera scitella comprising the application of 11-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the 55 lines C.1 to C.108 of table C.

Table 197: A method of controlling representatives of the genus Lithocollethis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 198: A method of controlling Lobesia botrana comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Я1

Table 199: A method of controlling Ostrinia nubilalis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the 5 lines C.1 to C.108 of table C.

Table 200: A method of controlling representatives of the genus Pandemis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant 10 and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 201: A method of controlling Pectinophora gossypiella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the 15 active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 202: A method of controlling Phyllocnistis citrella comprising the application of Ti-435 to a herbicidally resis-20 tant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 203: A method of controlling representatives of the 25 genus Pieris comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C

Table 204: A method of controlling Plutella xylostella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 205: A method of controlling representatives of the genus Scirpophaga comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 206: A method of controlling representatives of the genus Sesamia comprising the application of Ti-435 to a 45 genus Otiorhynchus comprising the application of Ti-435 to herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 207: A method of controlling representatives of the 50 genus Sparganothis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 208: A method of controlling representatives of the genus Spodoptera comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to 60 anyone of the lines C.1 to C.108 of table C.

Table 209: A method of controlling representatives of the genus Tortrix comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant 65 and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

82

Table 210: A method of controlling Trichoplusia ni comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 211: A method of controlling representatives of the genus Agriotes comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 212: A method of controlling Anthonomus grandis comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 213: A method of controlling representatives of the genus Curculio comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 214: A method of controlling Diabrotica bulteuta comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 215: A method of controlling representatives of the genus Leptinotarsa comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 216: A method of controlling representatives of the genus Lissorhoptrus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 217: A method of controlling representatives of the a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 218: A method of controlling representatives of the genus Aleurothrixus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond 55 to anyone of the lines C.1 to C.108 of table C.

Table 219: A method of controlling representatives of the genus Aleyrodes comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 220: A method of controlling representatives of the genus Aonidiella comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

83

Table 221: A method of controlling representatives of the family *Aphididae* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 222: A method of controlling representatives of the genus *Aphis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant 10 and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 223: A method of controlling *Bemisia tabaci* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active ¹⁵ principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 224: A method of controlling representatives of the genus *Empoasea* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 225: A method of controlling representatives of the genus *Mycus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 226: A method of controlling representatives of the genus *Nephotettix* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 227: A method of controlling representatives of the genus *Nilaparvata* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 228: A method of controlling representatives of the genus *Pseudococcus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 229: A method of controlling representatives of the square Psylla comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 230: A method of controlling representatives of the genus *Quadraspidiotus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest 60 correspond to anyone of the lines C.1 to C.108 of table C.

Table 231: A method of controlling representatives of the genus *Schizaphis* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant 65 and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

84

Table 232: A method of controlling representatives of the genus *Trialeurodes* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 233: A method of controlling representatives of the genus *Lyriomyza* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 234: A method of controlling representatives of the genus *Oscinella* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 235: A method of controlling representatives of the genus *Phorbia* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 236: A method of controlling representatives of the genus *Frankliniella* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 237: A method of controlling representatives of the genus *Thrips* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 238: A method of controlling Scirtothrips aurantii comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 239: A method of controlling representatives of the genus *Aceria* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 240: A method of controlling representatives of the genus Aculus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 241: A method of controlling representatives of the genus *Brevipalpus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 242: A method of controlling representatives of the genus *Panonychus* comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 243: A method of controlling representatives of the genus Phyllocoptruta comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest 5 correspond to anyone of the lines C.1 to C.108 of table C.

Table 244: A method of controlling representatives of the genus Tetranychus comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant 10 and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 245: A method of controlling representatives of the genus Heterodera comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 246: A method of controlling representatives of the genus Meloidogyne comprising the application of Ti-435 to 20 a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to be protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Table 247: A method of controlling Mamestra brassica 25 comprising the application of Ti-435 to a herbicidally resistant transgenic crop, wherein the combination of the active principle expressed by the transgenic plant and the crop to he protected against the pest correspond to anyone of the lines C.1 to C.108 of table C.

Example B1

Action Against Anthonomus grandis adults, Spodoptera littoralis of Heliothis virescens

Young transgenic cotton plants which express the δ-endotoxin CryIIIA are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of imidacloprid respectively. After the spray coating has dried on, the cotton 40 plants are populated with 10 adult Anthonomus grandis. 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage 45 (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising imidacloprid and conventional CrylIIA-toxin at a concen- 50 tration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior to the control on the nontransgenic plant.

Example B2

Action Against anthonomus grandis adults. spodoptera littoralis or heliothis virescens

Young transgenic cotton plants which express the δ-endotoxin CryIIIA are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of thiamethoxam respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 65 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evalu-

ation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising thiamethoxam and conventional CrylllA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant.

Example B3

Action Against Anthonomus grandis adults, Spodoptera littoralis of Heliothis virescens

Young transgenic cotton plants which express the δ-endotoxin CryIIIA are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of Ti-435 respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have 30 been treated with an emulsion spray mixture comprising Ti-435 and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the 35 non-transgenic plant.

Example B4

Action Against Anthonomus grandis adults, Spodoptera littoralis or Heliothis virescens

Young transgenic cotton plants which express the δ-endotoxin Cryla(c) are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of Ti-435 respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead heetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising 55 Ti-435 and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant.

Example B5

Action Against Anthonomus grandis adults, Spodoptera littoralis or Heliothis virescens

Young transgenic cotton plants which express the δ-endotoxin CryIa(c) are sprayed with an aqueous emulsion

87

spray mixture comprising 100, 50, 10, 5, 1 ppm of thiamethoxam respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by comparing the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising thiamethoxam and conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant.

Example B6

Action Against Anthonomus grandis adults, Spodoptera littoralis or Heliothis virescens

Young transgenic cotton plants which express the δ-endotoxin Cryla(c) are sprayed with an aqueous emulsion spray mixture comprising 100, 50, 10, 5, 1 ppm of imidacloprid respectively. After the spray coating has dried on, the cotton plants are populated with 10 adult Anthonomus 30 grandis, 10 Spodoptera littoralis larvae or 10 Heliothis virescens larvae respectively and introduced into a plastic container. Evaluation takes place 3 to 10 days later. The percentage reduction in population, or the percentage reduction in feeding damage (% action), is determined by com- 35 paring the number of dead beetles and the feeding damage on the transgenic cotton plants with that of non-transgenic cotton plants which have been treated with an emulsion spray mixture comprising imidacloprid conventional CryIIIA-toxin at a concentration of in each case 100, 50, 10, 40 5, 1 ppm respectively.

In this test, the control of the tested insects in the transgenic plant is superior, while it is insufficient in the non-transgenic plant.

Example B7

Action Against Ostrinia nubilalis, Spodoptera spp. or Heliothis sop.

A plot (a) planted with maize cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize, both showing natural infestation with Ostrinia nubilalis, Spodoptera spp. or Heliothis, are sprayed with an aqueous emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of Ti-435. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of the endotoxin expressed by KnockOut®. Evaluation takes place 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b).

Improved control of *Ostrinia nubilalis, Spodoptera* spp. 65 or *Heliothis* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

88

Example B8

Action Against Ostrinia nubilalis, Spodoptera spp. or Heliothis spp.

A plot (a) planted with maize cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize, both showing natural infestation with Ostrinia nubilalis, Spodoptera spp. or IIeliothis, are sprayed with an aqueous emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of the endotoxin expressed by KnockOut®. Evaluation takes place 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b).

Improved control of *Ostrinia nubilalis, Spodoptera* spp. or *Heliothis* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B9

Action Against Ostrinia nubilalis, Spodoptera spp. or Heliothis spp.

A plot (a) planted with maize cv. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize, both showing natural infestation with Ostrinia nubilalis, Spodoptera spp. or Heliothis, are sprayed with an aqueous emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of imidacloprid. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 200, 100, 50, 10, 5, 1 ppm of the endotoxin expressed by KnockOut®. Evaluation takes place 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b).

Improved control of *Ostrinia nubilalis*, *Spodoptera* spp. or *Ileliothis* spp. is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B10

Action Against Diabrotica balteata

A plot (a) planted with maize seedlings ev. KnockOut® and an adjacent plot (b) of the same size which is planted with conventional maize are sprayed with an aqueous emulsion of a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the endotoxin expressed by KnockOut®. After the spray coating has dried on, the seedlings are populated with 10 Diabrotica balteata larvae in the second stage and transferred to a plastic container. The test is evaluated 6 days later. The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b).

Improved control of *Diabrotica balteata* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

89

Example B11

Action Against Aphis gossypii

Cotton seedlings on a plot (a) expressing the δ-endotoxin 5 CryIIIa on a plot (a) and conventional cotton seedlings on a plot (b) are infected with *Aphis gassypi* and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the 10 δ-endotoxin CryIIIa. The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 3 and 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the 15 plants of plot (a) with that on the plants of plot (b). Improved control of *Aphis gossypi* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B12

Action Against Frankliniella occidentalis

Cotton seedlings expressing the δ -endotoxin Cryllla on a plot (a) and conventional cotton seedlings on a plot (b) are 25 infected with Frankliniella occidentalis and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately-afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ -endotoxin Cryllla. The seedlings of plot (a) and (b) are 30 then incubated at 20° C. The test is evaluated after 3 and 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved 35 control of *Frankliniella occidentalis* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B13

Action Against Aphis gossypii

Cotton seedlings expressing the δ -endotoxin CryIA(c) on a plot (a) and conventional cotton seedlings on a plot (b) are 45 infected with *Aphis gossypii* and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ -endotoxin CryIIIa. The seedlings of plot (a) and (b) are then incubated at 20° C. 50 The test is evaluated after 3 and 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of *Aphis gossypii* is observed on the plants of plot 55 (a), while plot (b) shows a control level of not over 60%.

Example B14

Action Against Frankliniella occidentalis

Cotton seedlings expressing the \(\delta\)-endotoxin Cryla(c) on a plot (a) and conventional cotton seedlings on a plot (b) are infected with Frankliniella occidentalis and subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the

90

 δ -endotoxin CryIa(c). The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 3 and 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of *Frankliniella occidentalis* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B15

Action Against Nephotettix cincticeps

Rice plants on a plot (a) expressing the δ-endotoxin CryIA(b) and conventional rice plants on a plot (b) are sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIA(b). After the spray coating has dried on, the plants are infected with Nephotettix cincticeps of the 2nd and 3rd stages. The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 21 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of *Nephotettix cincticeps* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

Example B16

Action Against Nephotettix cincticeps (systemic)

Rice plants expressing the 6-endotoxin Cryla(b) are planted in a in pot (A) and conventional ice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is placed in a pot containing 400 ppm thiamethoxam and 400 ppm of the 6-endotoxin Cryl(b). The plants are subsequently infected with *Nephotettix cincticeps* larvae of the second and third stage. The test is evaluated after 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of *Nephotettix cincticeps* is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%.

Example B17

Action Against Nilaparvata lugens

Rice plants on a plot (a) expressing the 6-endotoxin CryIA(b) and conventional rice plants on a plot (b) are infected with Nilaparvata lugens, subsequently sprayed with a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the 6-endotoxin CryIA(b). The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 21 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of *Nilaparvata lugens* is observed on the plants of plot (a), while plot (b) shows a control level of not over 60%.

91

Example B18

Action Against Nilaparvata lugens (Systemic)

Rice plants expressing the 6-endotoxin CryIA(b) are planted in a in pot (A) and conventional rice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot (B) is place in a pot copntaining 400 ppm thiamethoxam and 400 ppm of the 6-endotoxin CrylA(b). The plants are 10 plot (a), while plot (b) shows a control level of not over 0%. subsequently infected with Nilaparvata lugens larvae of the second and third stage. The test is evaluated after 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved 15 control of Nephotettix cincticeps is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%.

Example B19

Action Against Nephotettix cincticeps

Rice plants on a plot (a) expressing the 6-endotoxin CrylA(c) and conventional rice plants on a plot (b) are sprayed with a spray mixture comprising 400 ppm thia- 25 methoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the δ-endotoxin CryIA(c). After the spray coating has dried on, the plants are infected with Nephotettix cincticeps of the 2nd and 3rd stages. The seedlings of plot (a) and (b) are then 30 incubated at 20° C. The test is evaluated after 21 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Nephotettix cincticeps is observed on the plants of 35 material thereof. plot (a), while plot (b) shows a control level of not over 60%.

Example B20

Action Against Nephotettix cincticeps (Systemic)

Rice plants expressing the 6-endotoxin Cryla(c) are planted in a in pot (A) and conventional ice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot 45 (B) is placed in a pot containing 400 ppm thiamethoxam and 400 ppm of the 6-endotoxin Cryl(c). The plants are subsequently infected with Nephotettix cincticeps larvae of the second and third stage. The test is evaluated after 6 days.

The percentage reduction in population (% action) is 50 HO. determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of Nephotettix cincticeps is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%.

Example B21

Action Against Nilaparvata lugens

Rice plants on a plot (a) expressing the 6-endotoxin 60 rial is seed. CrylA(c) and conventional rice plants on a plot (b) are infected with Nilaparvata lugens, subsequently sprayed with

92

a spray mixture comprising 400 ppm thiamethoxam. Immediately afterwards, plot (b) is treated with an emulsion spray mixture comprising 400 ppm of the 6-endotoxin CryIA(c). The seedlings of plot (a) and (b) are then incubated at 20° C. The test is evaluated after 21 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of plot (a) with that on the plants of plot (b). Improved control of Nilaparvata lugens is observed on the plants of

Example B22

Action Against Nilaparvata lugens (Systemic)

Rice plants expressing the δ-endotoxin CryIA(c) are planted in a in pot (A) and conventional rice plants are planted in a pot (B). Pot (A) is placed in an aqueous emulsion containing 400 ppm thiamethoxam, whereas plot 20 (B) is place in a pot copntaining 400 ppm thiamethoxam and 400 ppm of the 6-endotoxin CryIA(c). The plants are subsequently infected with Nilaparvata lugens larvae of the second and third stage. The test is evaluated after 6 days.

The percentage reduction in population (% action) is determined by comparing the number of dead pests on the plants of pot (A) with that on the plants of pot (B). Improved control of Nephotettix cincticens is observed on the plants of pot (A), while pot (B) shows a control level of not over 60%.

The invention claimed is:

- 1. A method of controlling pests in crops of transgenic useful plants comprising the application of a composition comprising clothioanidin, in free form or in agrochemically useful salt form as active ingredient and at least one auxiliary to the pests, or the transgenic plant or propagation
- 2. The method of claim 1 where the transgenic useful plant contains one or more genes which encode insecticidal resistance and express one or more active toxins.
- 3. The method of claim 2 wherein the active toxin 40 expressed by the transgenic plant is selected from Bacillus cereus proteins, Bacillus poplia proteins, Bacillus thuringiensis endotoxins (B.t.), insecticidal proteins of bateria colonising nematodes, proteinase inhibitors, ribosome inactivating proteins, plant lectins, animal toxins, and steroid metabolism enzymes.
 - 4. The method of claim 2 wherein the active toxin expressed by the transgenic plant is selected from CrylA(a), CryIA(b), CryIA(c), Cry IIA, CryIIIA, CryIIIB2, CytA, VIP3, GL, PL, XN, Plnh., Plec., Aggl., CO, CH, SS, and
 - 5. The method of claim 1 where the crops of transgenic useful plants are selected from cotton, rice, potatoes. brassica, tomatoes, cucurbits, soybeans, maize, wheat, bananas, citrus trees, pome fruit trees and peppers.
 - 6. The method of claim 1 wherein the composition is applied to the transgenic useful plant.
 - 7. The method of claim 1 wherein clothioanidin is applied to the propagation material of the transgenic useful plant.
 - 8. The method of claim 7 wherein the propagation mate-