29/11/2013 E

COMP 5 - 2 (RC)

T.E. (Computer) (Semester – V) Examination, Nov./Dec. 2013 (Revised Course) AUTOMATA LANGUAGE AND COMPUTATION

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any five full questions, at least one from each Module.

2) Make suitable assumptions wherever necessary.

MODULE-I

1.	a)	Construct the DFA for the following language:	8
		$L(M) = \{ w \in \{a,b\}^* \mid w \text{ contains baba or doesn't contain ab } \}.$	
	b)	Construct the regular expression for the given DFA M = ({A, B, C}, {0, 1} δ , A, {B, C} where δ is defined as { δ (A, 0) = B, δ (A, 1) = C, δ (B, 0) = A, δ (B, 1) = C, δ (C, 0) = B, δ (C, 1) = B}.	8
	c)	Prove that the language $L(M) = \{0^m 1^n \mid m \neq n\}$ is not regular language.	4
2.	a)	Construct the NFA for the language $L(M) = \{x \in \{a, b\}^* \mid x \text{ contains a substring bb or bab}\}$. Draw the computation tree for the string bbab.	4
	b)	Construct the ϵ – NFA which accepts L(r) where r = $(0+11)^*(10^*+\epsilon)$. Convert the constructed ϵ – NFA to NFA.	3
	c)	Minimize the following DFA using table filling method:	6
		$\begin{split} M = (\{A, B, C, D, E, F, G, H), \{a, b\}, \delta, A, \{C\}) \text{ where } \delta \text{ is } \delta = & \{\delta(A, a) = F, \delta(A, b) = B, \delta(B, a) = C, \delta(B, b) = G, \delta(C, a) = C, \delta(C, b) = A, \delta(D, a) = G, \\ \delta(D, b) = C, \delta(E, a) = F, \delta(E, b) = H, \delta(F, a) = G, \delta(F, b) = C, \delta(G, a) = E, \\ \delta(G, b) = G, \delta(H, a) = C, \delta(H, b) = G\}. \end{split}$	
	d)	Construct the Mealy Machine to convert each occurrence of substring 100 by 101. Convert the Mealy Machine to equivalent Moore Machine.	7
			and the same of

TER (Component Semest) I Same 2 (component See 2013

3.	a)	Construct the CFG for the language $L(G)=\{0^i1_j2^k\mid k\le i \text{ or } k\le j\}$. Convert the constructed CFG to CNF.	8
	b)	Prove that the CFL's are not closed under: i) Intersection ii) Complement.	4
	c)	Construct the PDA for the language L(M) = $\{0^n 1^m 2^{2m} \mid n, m \ge 0\}$	4
	d)	Show that the language L(M) = $\{a^ib^jc^k\mid i=j=k \text{ and } i,j,k\geq 1\}$ is not CFL.	4
4.	a)	Define Instantaneous Description in a PDA. Construct the bottom-up PDA for the given CFG. G = ({S, A, B}, {a, b}, {S \rightarrow AB ϵ , A \rightarrow aaA ϵ , B \rightarrow bB ϵ }, S). Validate the string aaaab.	8
	b)	Construct the CFG for the given PDA M = ({A, B}, {a, b}, {Z, X}, δ , A, Z, ϕ) where δ is defined as { δ (A, b, Z) = (A, XZ), δ (A, ϵ , Z) = (A, ϵ) δ (A, b, X) = (A, XX), δ (A, a, X) = (B, X), δ (B, b, X) = (B, ϵ), δ (B, a, Z) = (A, Z)}.	6
	c)	Define Greibach Normal Form. Convert the following grammar to GNF	6
	1.25	$G = (\{E, T, F\}, \{+, *, (,), a\}, \{E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow (E) \mid a\}, E).$	
		MODULE - III	
5.	a)	Construct the Turing Machine which can find out the value of \log_2^n where n is stored as an unary number.	10
	b)	Explain the following: i) Nondeterministic Turing Machine ii) Universal Turing Machine.	10
6.	a)	Construct the Turing Machine to compute the function f(w) = ww.	8
	b)	Explain briefly the Church-Turing thesis.	2
	c)	Discuss the power of Turing machine. Construct the Turing machine to compute the addition of two given binary numbers. If the input on the tape is B10+01B, then the output on the tape should beBB11B	10

MODULE-IV

7.	a)	If L_1 and L_2 are recursively enumerable languages over Σ then $L_1 \cup L_2$ and	
		L ₁ ∩L ₂ are also recursively enumerable.	4
	b)	Construct the unrestricted grammar for the following language :	4
		$L(G) = \{a^nb^nc^nd^n \mid n \ge 1\}.$	
	c)	Define the following: i) Non self accepting ii) Trio.	4
	d)	Construct the Right Linear Grammar for the language	
		$L(G)=\{a^nb\mid n\geq 0\}\cup\{b^na\mid n\geq 1\}.$ Convert the Right Linear Grammar to Left Linear Grammar.	8
8.	a)	Consider the Unrestricted Grammar with productions:	8
	0.000	$S \rightarrow aBS \mid \epsilon, aB \rightarrow Ba, Ba \rightarrow aB, B \rightarrow b$. Simulate the TM.	
	b)	Explain the equivalence of Context Sensitive Grammar and Linear Bounded Automation.	4
	c)	Construct the context-sensitive grammar for the following language:	4
		$L(G) = \{a^n b^n a^{2n} \mid n \ge 1\}$	
	d)	i) Halting problem ii) Linear Bounded Automation.	4