第13讲

A lemma about ordinals

Lemma 2.11.

- (i) $0 = \emptyset$ is an ordinal.
- (ii) If α is an ordinal and $\beta \in \alpha$, then β is an ordinal.
- (iii) If $\alpha \neq \beta$ are ordinals and $\alpha \subset \beta$, then $\alpha \in \beta$.
- (iv) If α , β are ordinals, then either $\alpha \subset \beta$ or $\beta \subset \alpha$.

Proof of (ii)

Proof. Let α be an ordinal and let $x \in \alpha$. First we prove that x is transitive. Let u and v be such that $u \in v \in x$; we wish to show that $u \in x$. Since α is transitive and $x \in \alpha$, we have $v \in \alpha$ and therefore, also $u \in \alpha$. Thus u, v, and x are all elements of α and $u \in v \in x$. Since \in_{α} linearly orders α , we conclude that $u \in x$.

Second, we prove that \in_x is a well-ordering of x. But by transitivity of α we have $x \subseteq \alpha$ and therefore, the relation \in_x is a restriction of the relation \in_α . Since \in_α is a well-ordering, so is \in_x .

Some facts about ordinals

- (2.1) < is a linear ordering of the class Ord.
- (2.2) For each α , $\alpha = \{\beta : \beta < \alpha\}$.
- (2.3) If C is a nonempty class of ordinals, then $\bigcap C$ is an ordinal, $\bigcap C \in C$ and $\bigcap C = \inf C$.
- (2.4) If X is a nonempty set of ordinals, then $\bigcup X$ is an ordinal, and $\bigcup X = \sup X$.
- (2.5) For every α , $\alpha \cup \{\alpha\}$ is an ordinal and $\alpha \cup \{\alpha\} = \inf\{\beta : \beta > \alpha\}$.

We thus define $\alpha + 1 = \alpha \cup \{\alpha\}$ (the *successor* of α). In view of (2.4), the class Ord is a proper class; otherwise, consider sup Ord + 1.

Remark 6.3.3 Historically, in the context of belief in Global Comprehension, this result was seen as a paradox, the so-called *Burali-Forti paradox*. Hence it may be seen as an alternative to Russell's paradox for demonstrating the inconsistency of Global Comprehension.

Order types of well-ordered sets

Theorem 2.12. Every well-ordered set is isomorphic to a unique ordinal number.

Proof. The uniqueness follows from Lemma 2.7. Given a well-ordered set W, we find an isomorphic ordinal as follows: Define $F(x) = \alpha$ if α is isomorphic to the initial segment of W given by x. If such an α exists, then it is unique. By the Replacement Axioms, F(W) is a set. For each $x \in W$, such an α exists (otherwise consider the least x for which such an α does not exist). If γ is the least $\gamma \notin F(W)$, then $F(W) = \gamma$ and we have an isomorphism of W onto γ .

Successor ordinal and limit ordinal

If $\alpha = \beta + 1$, then α is a *successor ordinal*. If α is not a successor ordinal, then $\alpha = \sup\{\beta : \beta < \alpha\} = \bigcup \alpha$; α is called a *limit ordinal*. We also consider 0 a limit ordinal and define $\sup \emptyset = 0$.

The existence of limit ordinals other than 0 follows from the Axiom of Infinity; see Exercise 2.3.

Natural numbers

Definition 2.13 (Natural Numbers). We denote the least nonzero limit ordinal ω (or N). The ordinals less than ω (elements of N) are called *finite ordinals*, or *natural numbers*. Specifically,

$$0 = \emptyset$$
, $1 = 0 + 1$, $2 = 1 + 1$, $3 = 2 + 1$, etc.

A set X is *finite* if there is a one-to-one mapping of X onto some $n \in \mathbb{N}$. X is *infinite* if it is not finite.

We use letters n, m, l, k, j, i (most of the time) to denote natural numbers.

Transfinite induction

Theorem 2.14 (Transfinite Induction). Let C be a class of ordinals and assume that:

- (i) $0 \in C$;
- (ii) if $\alpha \in C$, then $\alpha + 1 \in C$;
- (iii) if α is a nonzero limit ordinal and $\beta \in C$ for all $\beta < \alpha$, then $\alpha \in C$.

Then C is the class of all ordinals.

Proof. Otherwise, let α be the least ordinal $\alpha \notin C$ and apply (i), (ii), or (iii).

超限归纳法的另一种形式如下:设*C*是一个序数的类,满足"对任意序数 α ,只要所有小于 α 的序数都属于*C*,就有 $\alpha \in C$ ",则C = Ord.

Sequence

A function whose domain is the set N is called an (infinite) sequence (A sequence in X is a function $f: N \to X$.) The standard notation for a sequence is

$$\langle a_n : n < \omega \rangle$$

or variants thereof. A finite sequence is a function s such dom(s) = $\{i : i < n\}$ for some $n \in \mathbb{N}$; then s is a sequence of length n.

Transfinite sequence

A transfinite sequence is a function whose domain is an ordinal:

$$\langle a_{\xi} : \xi < \alpha \rangle$$
.

It is also called an α -sequence or a sequence of length α . We also say that a sequence $\langle a_{\xi} : \xi < \alpha \rangle$ is an enumeration of its range $\{a_{\xi} : \xi < \alpha\}$. If s is a sequence of length α , then $s \cap x$ or simply sx denotes the sequence of length $\alpha + 1$ that extends s and whose α th term is x:

$$s^{\frown}x = sx = s \cup \{(\alpha, x)\}.$$

Sometimes we shall call a "sequence"

$$\langle a_{\alpha} : \alpha \in Ord \rangle$$

a function (a proper class) on Ord.

Definition by transfinite recursion

"Definition by transfinite recursion" usually takes the following form: Given a function G (on the class of transfinite sequences), then for every θ there exists a unique θ -sequence

$$\langle a_{\alpha} : \alpha < \theta \rangle$$

such that

$$a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

for every $\alpha < \theta$.

We shall give a general version of this theorem, so that we can also construct sequences $\langle a_{\alpha} : \alpha \in Ord \rangle$.

Transfinite recursion

Theorem 2.15 (Transfinite Recursion). Let G be a function (on V), then (2.6) below defines a unique function F on Ord such that

$$F(\alpha) = G(F \upharpoonright \alpha)$$

for each α .

In other words, if we let $a_{\alpha} = F(\alpha)$, then for each α ,

$$a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle).$$

(Note that we tacitly use Replacement: $F \upharpoonright \alpha$ is a set for each α .)

Corollary 2.16. Let X be a set and θ an ordinal number. For every function G on the set of all transfinite sequences in X of length $< \theta$ such that $\operatorname{ran}(G) \subset X$ there exists a unique θ -sequence $\langle a_{\alpha} : \alpha < \theta \rangle$ in X such that $a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle)$ for every $\alpha < \theta$.

The limit of the sequence

Definition 2.17. Let $\alpha > 0$ be a limit ordinal and let $\langle \gamma_{\xi} : \xi < \alpha \rangle$ be a nondecreasing sequence of ordinals (i.e., $\xi < \eta$ implies $\gamma_{\xi} \leq \gamma_{\eta}$). We define the *limit* of the sequence by

$$\lim_{\xi \to \alpha} \gamma_{\xi} = \sup \{ \gamma_{\xi} : \xi < \alpha \}.$$

A sequence of ordinals $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ is *normal* if it is increasing and *continuous*, i.e., for every limit α , $\gamma_{\alpha} = \lim_{\xi \to \alpha} \gamma_{\xi}$.

Addition, multiplication and exponentiation of ordinals

Definition 2.18 (Addition). For all ordinal numbers α

- (i) $\alpha + 0 = \alpha$,
- (ii) $\alpha + (\beta + 1) = (\alpha + \beta) + 1$, for all β ,
- (iii) $\alpha + \beta = \lim_{\xi \to \beta} (\alpha + \xi)$ for all limit $\beta > 0$.

Definition 2.19 (Multiplication). For all ordinal numbers α

- (i) $\alpha \cdot 0 = 0$,
- (ii) $\alpha \cdot (\beta + 1) = \alpha \cdot \beta + \alpha$ for all β ,
- (iii) $\alpha \cdot \beta = \lim_{\xi \to \beta} \alpha \cdot \xi$ for all limit $\beta > 0$.

Definition 2.20 (Exponentiation). For all ordinal numbers α

- (i) $\alpha^0 = 1$,
- (ii) $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$ for all β ,
- (iii) $\alpha^{\beta} = \lim_{\xi \to \beta} \alpha^{\xi}$ for all limit $\beta > 0$.