machine learning(732A99) lab1 Block2

Anubhav Dikshit(anudi287), Lennart Schilling(lensc874), Thijs Quast(thiqu264)
04 December 2018

Contents

1.	Ensemble Methods	2
	Code	
	Analysis	,
2.	Mixture Models	4
	Description of the EM algorithm	
	Code	
	K=2	
	K=3	
	K=4	
	Analysis	5
\mathbf{A}	ppendix	56

Contributions

During the lab, Lennart and Thijs focused on assignment 2 using loops, Anubhav focused on assignment 1. All codes and analysis was indepedently done and is also reflected in the individual reports.

1. Ensemble Methods

Code

Loading Input files

```
spam_data <- read.csv(file = "spambase.data", header = FALSE)
colnames(spam_data)[58] <- "Spam"
spam_data$Spam <- factor(spam_data$Spam, levels = c(0,1), labels = c("0", "1"))</pre>
```

Splitting into Train and Test with 66% and 33% ratio.

```
set.seed(12345)
n = NROW(spam_data)
id = sample(1:n, floor(n*(2/3)))
train = spam_data[id,]
test = spam_data[-id,]
```

Trainning the Model

```
final result <- NULL
for(i in seq(from = 10, to = 100, by = 10)){
ada_model <- mboost::blackboost(Spam~.,</pre>
                                    data = train,
                                   family = AdaExp(),
                                 control=boost control(mstop=i))
forest_model <- randomForest(Spam~., data = train, ntree = i)</pre>
prediction_function <- function(model, data){</pre>
  predicted <- predict(model, newdata = data, type = c("class"))</pre>
  predict_correct <- ifelse(data$Spam == predicted, 1, 0)</pre>
  score <- sum(predict_correct)/NROW(data)</pre>
  return(score)
train_ada_model_predict <- predict(ada_model, newdata = train, type = c("class"))</pre>
test_ada_model_predict <- predict(ada_model, newdata = test, type = c("class"))</pre>
train_forest_model_predict <- predict(forest_model, newdata = train, type = c("class"))</pre>
test_forest_model_predict <- predict(forest_model, newdata = test, type = c("class"))</pre>
test_predict_correct <- ifelse(test$Spam == test_forest_model_predict, 1, 0)</pre>
train_predict_correct <- ifelse(train$Spam == train_forest_model_predict, 1, 0)</pre>
train_ada_score <- prediction_function(ada_model, train)</pre>
test_ada_score <- prediction_function(ada_model, test)</pre>
train_forest_score <- prediction_function(forest_model, train)</pre>
test_forest_score <- prediction_function(forest_model, test)</pre>
```

Error Rate vs. increase in trees

Analysis

From the plots we can clearly see that ADA boosted methods uses more trees(\sim 50) to reduce the test error, while randomforest achieves saturation in short number of trees(\sim 10). We also see that random forest achieves less error than ADA tree for both tree and test cases.

2. Mixture Models

Description of the EM algorithm

EM is an iterative expectation maximumation technique. The way this works is for a given mixed distribution we guess the components of the data. This is done by first guessing the number of components and then randomly initializing the parameters of the said distribution (Mean, Varience).

Sometimes the data do not follow any known probability distribution but a mixture of known distributions such as:

$$p(x) = \sum_{k=1}^{K} p(k).p(x|k)$$

where p(x|k) are called mixture components and p(k) are called mixing coefficients: where p(k) is denoted by

 π_k

With the following conditions

$$0 \le \pi_k \le 1$$

and

$$\sum_{k} \pi_k = 1$$

We are also given that the mixture model follows a Bernoulli distribution, for bernoulli we know that

$$Bern(x|\mu_k) = \prod_i \mu_{ki}^{x_i} \cdot (1 - \mu_{ki})^{(1-x_i)}$$

The EM algorithm for an Bernoulli mixed model is:

Set pi and mu to some initial values Repeat until pi and mu do not change E-step: Compute p(z|x) for all k and n M-step: Set pi^k to pi^k(ML) from likehood estimate, do the same to mu

M step:

$$p(z_{nk}|x_n, \mu, \pi) = Z = \frac{\pi_k p(x_n|\mu_k)}{\sum_k p(x_n|\mu_k)}$$

E step:

$$\pi_k^{ML} = \frac{\sum_N p(z_{nk}|x_n, \mu, \pi)}{N}$$

$$\mu_{ki}^{ML} = \frac{\sum_{n} x_{ni} p(z_{nk} | x_n, \mu, \pi)}{\sum_{n} p(z_{nk} | x_n, \mu, \pi)}$$

The maximum likehood of E step is:

$$\log_e p(X|\mu, \pi) = \sum_{n=1}^{N} \log_e \sum_{k=1}^{K} .\pi_k . p(x_n|\mu_k)$$

Code

To compare the results for K = 2,3,4, the em_loop-function provides a graphical analysis for every iteration. The function includes comments which explain what I did at which step to create the EM algorithm. The function will be finally run with K = 2,3,4.

```
em_loop = function(K) {
# Initializing data
set.seed(1234567890)
max_it = 100 # max number of EM iterations
min_change = 0.1 # min change in log likelihood between two consecutive EM iterations
N = 1000 # number of training points
D = 10 # number of dimensions
x = matrix(nrow=N, ncol = D) # training data
true_pi = vector(length = K) # true mixing coefficients
true_mu = matrix(nrow = K, ncol = D) # true conditional distributions
true_pi = c(rep(1/K, K))
if (K == 2) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue",
vlim = c(0,1), main = "True")
points(true_mu[2,], type="o", xlab = "dimension", col = "red",
main = "True")
} else if (K == 3) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue", ylim=c(0,1),
main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
} else {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true mu[4,] = c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue",
ylim = c(0,1), main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
points(true_mu[4,], type = "o", xlab = "dimension", col = "yellow",
main = "True")
}
z = matrix(nrow = N, ncol = K) # fractional component assignments
pi = vector(length = K) # mixing coefficients
mu = matrix(nrow = K, ncol = D) # conditional distributions
llik = vector(length = max_it) # log likelihood of the EM iterations
# Producing the training data
for(n in 1:N) {
k = sample(1:K, 1, prob=true_pi)
```

```
for(d in 1:D) {
x[n,d] = rbinom(1, 1, true_mu[k,d])
}
}
# Random initialization of the paramters
pi = runif(K, 0.49, 0.51)
pi = pi / sum(pi)
for(k in 1:K) {
mu[k,] = runif(D, 0.49, 0.51)
#EM algorithm
for(it in 1:max_it) {
# Plotting mu
# Defining plot title
title = paste0("Iteration", it)
if (K == 2) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
} else if (K == 3) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
} else {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
points(mu[4,], type = "o", xlab = "dimension", col = "yellow", main = title)
}
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for (n in 1:N) {
# Creating empty matrix (column 1:K = p_x_qive_k; column K+1 = p(x|all\ k)
p_x = matrix(data = c(rep(1,K), 0), nrow = 1, ncol = K+1)
# Calculating p(x|k) and p(x|all k)
for (k in 1:K) {
# Calculating p(x|k)
for (d in 1:D) {
p_x[1,k] = p_x[1,k] * (mu[k,d]^x[n,d]) * (1-mu[k,d])^(1-x[n,d])
p_x[1,k] = p_x[1,k] * pi[k] # weighting with pi[k]
# Calculating p(x|all k) (denominator)
p_x[1,K+1] = p_x[1,K+1] + p_x[1,k]
\# Calculating z for n and all k
for (k in 1:K) {
z[n,k] = p_x[1,k] / p_x[1,K+1]
}
# Log likelihood computation
for (n in 1:N) {
for (k in 1:K) {
log_term = 0
for (d in 1:D) {
```

```
log_{term} = log_{term} + x[n,d] * log(mu[k,d]) + (1-x[n,d]) * log(1-mu[k,d])
llik[it] = llik[it] + z[n,k] * (log(pi[k]) + log_term)
}
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the log likelihood has not changed significantly
if (it != 1) {
if (abs(llik[it] - llik[it-1]) < min_change) {</pre>
break
}
}
# M-step: ML parameter estimation from the data and fractional component assignments
# Updating pi
for (k in 1:K) {
pi[k] = sum(z[,k])/N
# Updating mu
for (k in 1:K) {
mu[k,] = 0
for (n in 1:N) {
    mu[k,] = mu[k,] + x[n,] * z[n,k]
mu[k,] = mu[k,] / sum(z[,k])
}
}
# Printing pi, mu and development of log likelihood at the end
return(list(
pi = pi,
mu = mu,
logLikelihoodDevelopment = plot(llik[1:it],
type = "o",
main = "Development of the log likelihood",
xlab = "iteration",
ylab = "log likelihood")
))
```

K=2

```
em_loop(2)
```


iteration: 1 log likelihood: -7623.897

iteration: 2 log likelihood: -7610.745

iteration: 3 log likelihood: -7463.445

iteration: 4 log likelihood: -6575.121

iteration: 5 log likelihood: -5731.559

iteration: 6 log likelihood: -5656.174

iteration: 7 log likelihood: -5648.904

iteration: 8 log likelihood: -5646.139

iteration: 9 log likelihood: -5644.608

iteration: 10 log likelihood: -5643.615

iteration: 11 log likelihood: -5642.913

iteration: 12 log likelihood: -5642.386

iteration: 13 log likelihood: -5641.977

iteration: 14 log likelihood: -5641.649

iteration: 15 log likelihood: -5641.382

iteration: 16 log likelihood: -5641.161

iteration: 17 log likelihood: -5640.975

iteration: 18 log likelihood: -5640.819

iteration: 19 log likelihood: -5640.685

iteration: 20 log likelihood: -5640.571

iteration: 21 log likelihood: -5640.473


```
## $pi
## [1] 0.5110531 0.4889469
##
## $mu
##
             [,1]
                        [,2]
                                  [,3]
                                             [,4]
                                                       [,5]
                                                                 [,6]
                                                                            [,7]
## [1,] 0.4931735 0.3974606 0.5967811 0.2785480 0.6927917 0.2184957 0.8018491
   [2,] 0.4989543 0.6255823 0.3804363 0.7171478 0.3230343 0.7778699 0.2049559
             [,8]
                         [,9]
                                    [,10]
##
## [1,] 0.1116477 0.88054439 0.004290353
## [2,] 0.9140913 0.08997919 0.999714736
## $logLikelihoodDevelopment
## NULL
```

K=3

em_loop(3)

iteration: 1 log likelihood: -8029.723

iteration: 2 log likelihood: -8027.183

iteration: 3 log likelihood: -8024.696

iteration: 4 log likelihood: -8005.631

iteration: 5 log likelihood: -7877.606

iteration: 6 log likelihood: -7403.513

iteration: 7 log likelihood: -6936.919

iteration: 8 log likelihood: -6818.582

iteration: 9 log likelihood: -6791.377

iteration: 10 log likelihood: -6780.713

iteration: 11 log likelihood: -6774.958

iteration: 12 log likelihood: -6771.261

iteration: 13 log likelihood: -6768.606

iteration: 14 log likelihood: -6766.535

iteration: 15 log likelihood: -6764.815

iteration: 16 log likelihood: -6763.316

iteration: 17 log likelihood: -6761.967

iteration: 18 log likelihood: -6760.727

iteration: 19 log likelihood: -6759.572

iteration: 20 log likelihood: -6758.491

iteration: 21 log likelihood: -6757.475

iteration: 22 log likelihood: -6756.521

iteration: 23 log likelihood: -6755.625

iteration: 24 log likelihood: -6754.784

iteration: 25 log likelihood: -6753.996

iteration: 26 log likelihood: -6753.26

iteration: 27 log likelihood: -6752.571

iteration: 28 log likelihood: -6751.928

iteration: 29 log likelihood: -6751.328

iteration: 30 log likelihood: -6750.768

iteration: 31 log likelihood: -6750.246

iteration: 32 log likelihood: -6749.758

iteration: 33 log likelihood: -6749.304

iteration: 34 log likelihood: -6748.88

iteration: 35 log likelihood: -6748.484

iteration: 36 log likelihood: -6748.114

iteration: 37 log likelihood: -6747.767

iteration: 38 log likelihood: -6747.444

iteration: 39 log likelihood: -6747.14

iteration: 40 log likelihood: -6746.856

iteration: 41 log likelihood: -6746.589

iteration: 42 log likelihood: -6746.338

iteration: 43 log likelihood: -6746.102

iteration: 44 log likelihood: -6745.88

iteration: 45 log likelihood: -6745.67

iteration: 46 log likelihood: -6745.472

iteration: 47 log likelihood: -6745.285

iteration: 48 log likelihood: -6745.108

iteration: 49 log likelihood: -6744.939

iteration: 50 log likelihood: -6744.78

iteration: 51 log likelihood: -6744.627

iteration: 52 log likelihood: -6744.483

iteration: 53 log likelihood: -6744.344

iteration: 54 log likelihood: -6744.212

iteration: 55 log likelihood: -6744.086

iteration: 56 log likelihood: -6743.964

iteration: 57 log likelihood: -6743.848

iteration: 58 log likelihood: -6743.736

iteration: 59 log likelihood: -6743.628

iteration: 60 log likelihood: -6743.524

iteration: 61 log likelihood: -6743.423

iteration: 62 log likelihood: -6743.326

\$pi ## [1] 0.3259592 0.3044579 0.3695828

```
## $mu
##
                       [,2]
                                  [,3]
                                            [,4]
                                                      [,5]
                                                                 [,6]
             [,1]
                                                                           [,7]
## [1,] 0.4737193 0.3817120 0.6288021 0.3086143 0.6943731 0.1980896 0.7879447
## [2,] 0.4909874 0.4793213 0.4691560 0.4791793 0.5329895 0.4928830 0.4643990
## [3,] 0.5089571 0.5834802 0.4199272 0.7157107 0.2905703 0.7667258 0.2320784
##
             [,8]
                       [,9]
                                  [,10]
## [1,] 0.1349651 0.8912534 0.01937869
## [2,] 0.4902682 0.4922194 0.39798407
## [3,] 0.8516111 0.1072226 0.99981353
## $logLikelihoodDevelopment
## NULL
```

K=4

em_loop(4)

iteration: 1 log likelihood: -8316.904

iteration: 2 log likelihood: -8291.114

iteration: 3 log likelihood: -8286.966

iteration: 4 log likelihood: -8264.806

iteration: 5 log likelihood: -8161.19

iteration: 6 log likelihood: -7868.89

iteration: 7 log likelihood: -7570.873

iteration: 8 log likelihood: -7445.719

iteration: 9 log likelihood: -7389.741

iteration: 10 log likelihood: -7356.803

iteration: 11 log likelihood: -7337.208

iteration: 12 log likelihood: -7326.118

iteration: 13 log likelihood: -7319.998

iteration: 14 log likelihood: -7316.6

iteration: 15 log likelihood: -7314.666

iteration: 16 log likelihood: -7313.528

iteration: 17 log likelihood: -7312.829

iteration: 18 log likelihood: -7312.367

iteration: 19 log likelihood: -7312.024

iteration: 20 log likelihood: -7311.723

iteration: 21 log likelihood: -7311.407

iteration: 22 log likelihood: -7311.036

iteration: 23 log likelihood: -7310.574

iteration: 24 log likelihood: -7309.988

iteration: 25 log likelihood: -7309.248

iteration: 26 log likelihood: -7308.322

iteration: 27 log likelihood: -7307.185

iteration: 28 log likelihood: -7305.809

iteration: 29 log likelihood: -7304.176

iteration: 30 log likelihood: -7302.273

iteration: 31 log likelihood: -7300.1

iteration: 32 log likelihood: -7297.671

iteration: 33 log likelihood: -7295.014

iteration: 34 log likelihood: -7292.171

iteration: 35 log likelihood: -7289.196

iteration: 36 log likelihood: -7286.15

iteration: 37 log likelihood: -7283.093

iteration: 38 log likelihood: -7280.079

iteration: 39 log likelihood: -7277.151

iteration: 40 log likelihood: -7274.34

iteration: 41 log likelihood: -7271.66

iteration: 42 log likelihood: -7269.116

iteration: 43 log likelihood: -7266.7

iteration: 44 log likelihood: -7264.398

iteration: 45 log likelihood: -7262.189

iteration: 46 log likelihood: -7260.051

iteration: 47 log likelihood: -7257.96

iteration: 48 log likelihood: -7255.892

iteration: 49 log likelihood: -7253.824

iteration: 50 log likelihood: -7251.733

iteration: 51 log likelihood: -7249.603

iteration: 52 log likelihood: -7247.419

iteration: 53 log likelihood: -7245.17

iteration: 54 log likelihood: -7242.853

iteration: 55 log likelihood: -7240.472

iteration: 56 log likelihood: -7238.038

iteration: 57 log likelihood: -7235.571

iteration: 58 log likelihood: -7233.095

iteration: 59 log likelihood: -7230.64

iteration: 60 log likelihood: -7228.239

iteration: 61 log likelihood: -7225.925

iteration: 62 log likelihood: -7223.725

iteration: 63 log likelihood: -7221.663

iteration: 64 log likelihood: -7219.755

iteration: 65 log likelihood: -7218.01

iteration: 66 log likelihood: -7216.431

iteration: 67 log likelihood: -7215.013

iteration: 68 log likelihood: -7213.748

iteration: 69 log likelihood: -7212.621

iteration: 70 log likelihood: -7211.62

iteration: 71 log likelihood: -7210.727

iteration: 72 log likelihood: -7209.929

iteration: 73 log likelihood: -7209.208

iteration: $74 \log likelihood$: -7208.552

iteration: 75 log likelihood: -7207.946

iteration: 76 log likelihood: -7207.38

iteration: 77 log likelihood: -7206.844

iteration: 78 log likelihood: -7206.327

iteration: 79 log likelihood: -7205.824

iteration: 80 log likelihood: -7205.326

iteration: 81 log likelihood: -7204.829

iteration: 82 log likelihood: -7204.327

iteration: 83 log likelihood: -7203.816

iteration: 84 log likelihood: -7203.294

iteration: 85 log likelihood: -7202.756

iteration: 86 log likelihood: -7202.201

iteration: 87 log likelihood: -7201.627

iteration: 88 log likelihood: -7201.032

iteration: 89 log likelihood: -7200.414

iteration: 90 log likelihood: -7199.773

iteration: 91 log likelihood: -7199.107

iteration: 92 log likelihood: -7198.416

iteration: 93 log likelihood: -7197.7

iteration: 94 log likelihood: -7196.957

iteration: 95 log likelihood: -7196.188

iteration: 96 log likelihood: -7195.392

iteration: 97 log likelihood: -7194.57

iteration: 98 log likelihood: -7193.722

iteration: 99 log likelihood: -7192.847

iteration: 100 log likelihood: -7191.946


```
## $pi
## [1] 0.2880470 0.2533761 0.2933710 0.1652060
##
## $mu
             [,1]
                        [,2]
                                  [,3]
                                            [,4]
                                                       [,5]
                                                                 [,6]
                                                                           [,7]
##
## [1,] 0.3714855 0.3899958 0.4790260 0.5731886 0.5022651 0.5108478 0.2835691
## [2,] 0.5199997 0.6135841 0.3891214 0.7132736 0.2722448 0.7785461 0.2168891
## [3,] 0.4383456 0.4042497 0.5489526 0.3298363 0.6578057 0.2049012 0.7825505
  [4,] 0.3428531 0.7784238 0.5591637 0.6319621 0.5167044 0.4629058 0.7311279
##
             [,8]
                         [,9]
                                   [,10]
## [1,] 0.3519184 0.36924863 0.48252239
## [2,] 0.9337959 0.08504806 0.99916297
## [3,] 0.1703330 0.80517853 0.04500171
  [4,] 0.6601375 0.46532151 0.48814639
##
## $logLikelihoodDevelopment
```

Analysis

Comparing the final plots for each of the cases, it becomes clear that when the mixture model has more components (K = 4), the EM algorithm does not perform as accurate as for fewer components (K = 2) or (K = 3). The segregation between each component gets diluted as the components get higher.

Appendix

```
if (!require("pacman")) install.packages("pacman")
pacman::p_load(mboost, randomForest, ggplot2)
options("jtools-digits" = 2, scipen = 999)
spam_data <- read.csv(file = "spambase.data", header = FALSE)</pre>
colnames(spam data)[58] <- "Spam"</pre>
spam_data$Spam <- factor(spam_data$Spam, levels = c(0,1), labels = c("0", "1"))</pre>
set.seed(12345)
n = NROW(spam_data)
id = sample(1:n, floor(n*(2/3)))
train = spam_data[id,]
test = spam_data[-id,]
final_result <- NULL</pre>
for(i in seq(from = 10, to = 100, by = 10)){
ada_model <- mboost::blackboost(Spam~.,</pre>
                                   data = train,
                                   family = AdaExp(),
                                 control=boost control(mstop=i))
forest_model <- randomForest(Spam~., data = train, ntree = i)</pre>
prediction_function <- function(model, data){</pre>
  predicted <- predict(model, newdata = data, type = c("class"))</pre>
  predict_correct <- ifelse(data$Spam == predicted, 1, 0)</pre>
  score <- sum(predict_correct)/NROW(data)</pre>
  return(score)
}
train_ada_model_predict <- predict(ada_model, newdata = train, type = c("class"))</pre>
test_ada_model_predict <- predict(ada_model, newdata = test, type = c("class"))</pre>
train_forest_model_predict <- predict(forest_model, newdata = train, type = c("class"))</pre>
test_forest_model_predict <- predict(forest_model, newdata = test, type = c("class"))</pre>
test predict correct <- ifelse(test$Spam == test forest model predict, 1, 0)
train_predict_correct <- ifelse(train$Spam == train_forest_model_predict, 1, 0)</pre>
train_ada_score <- prediction_function(ada_model, train)</pre>
```

```
test_ada_score <- prediction_function(ada_model, test)</pre>
train_forest_score <- prediction_function(forest_model, train)</pre>
test_forest_score <- prediction_function(forest_model, test)</pre>
iteration_result <- data.frame(number_of_trees = i,</pre>
                                accuracy = c(train_ada_score,
                                             test_ada_score,
                                             train forest score,
                                             test_forest_score),
                               type = c("train", "test", "train", "test"),
                               model = c("ADA", "ADA", "Forest", "Forest"))
final_result <- rbind(iteration_result, final_result)</pre>
}
final_result$error_rate_percentage <- 100*(1 - final_result$accuracy)
ggplot(data = final_result, aes(x = number_of_trees,
                                y = error_rate_percentage,
                                 group = type, color = type)) +
  geom_point() +
  geom_line() +
  ggtitle("Error Rate vs. increase in trees") + facet_grid(rows = vars(model))
em loop = function(K) {
# Initializing data
set.seed(1234567890)
max_it = 100 # max number of EM iterations
min_change = 0.1 # min change in log likelihood between two consecutive EM iterations
N = 1000 # number of training points
D = 10 # number of dimensions
x = matrix(nrow=N, ncol = D) # training data
true_pi = vector(length = K) # true mixing coefficients
true_mu = matrix(nrow = K, ncol = D) # true conditional distributions
true_pi = c(rep(1/K, K))
if (K == 2) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue",
ylim = c(0,1), main = "True")
points(true_mu[2,], type="o", xlab = "dimension", col = "red",
main = "True")
} else if (K == 3) {
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue", ylim=c(0,1),
main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
} else {
```

```
true_mu[1,] = c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,] = c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,] = c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,] = c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true_mu[1,], type = "o", xlab = "dimension", col = "blue",
ylim = c(0,1), main = "True")
points(true_mu[2,], type = "o", xlab = "dimension", col = "red",
main = "True")
points(true_mu[3,], type = "o", xlab = "dimension", col = "green",
main = "True")
points(true_mu[4,], type = "o", xlab = "dimension", col = "yellow",
main = "True")
z = matrix(nrow = N, ncol = K) # fractional component assignments
pi = vector(length = K) # mixing coefficients
mu = matrix(nrow = K, ncol = D) # conditional distributions
llik = vector(length = max_it) # log likelihood of the EM iterations
# Producing the training data
for(n in 1:N) {
k = sample(1:K, 1, prob=true_pi)
for(d in 1:D) {
x[n,d] = rbinom(1, 1, true_mu[k,d])
}
}
# Random initialization of the paramters
pi = runif(K, 0.49, 0.51)
pi = pi / sum(pi)
for(k in 1:K) {
mu[k,] = runif(D, 0.49, 0.51)
}
#EM algorithm
for(it in 1:max_it) {
# Plotting mu
# Defining plot title
title = paste0("Iteration", it)
if (K == 2) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
} else if (K == 3) {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
} else {
plot(mu[1,], type = "o", xlab = "dimension", col = "blue", ylim = c(0,1), main = title)
points(mu[2,], type = "o", xlab = "dimension", col = "red", main = title)
points(mu[3,], type = "o", xlab = "dimension", col = "green", main = title)
points(mu[4,], type = "o", xlab = "dimension", col = "yellow", main = title)
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for (n in 1:N) {
# Creating empty matrix (column 1:K = p_xgiven_k; column K+1 = p(x|all\ k)
p_x = matrix(data = c(rep(1,K), 0), nrow = 1, ncol = K+1)
```

```
# Calculating p(x|k) and p(x|all k)
for (k in 1:K) {
# Calculating p(x/k)
for (d in 1:D) {
p_x[1,k] = p_x[1,k] * (mu[k,d]^x[n,d]) * (1-mu[k,d])^(1-x[n,d])
p_x[1,k] = p_x[1,k] * pi[k] # weighting with pi[k]
# Calculating p(x/all k) (denominator)
p_x[1,K+1] = p_x[1,K+1] + p_x[1,k]
\# Calculating z for n and all k
for (k in 1:K) {
z[n,k] = p_x[1,k] / p_x[1,K+1]
}
# Log likelihood computation
for (n in 1:N) {
for (k in 1:K) {
log_term = 0
for (d in 1:D) {
\log_{\text{term}} = \log_{\text{term}} + x[n,d] * \log(mu[k,d]) + (1-x[n,d]) * \log(1-mu[k,d])
llik[it] = llik[it] + z[n,k] * (log(pi[k]) + log_term)
}
}
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the log likelihood has not changed significantly
if (it != 1) {
if (abs(llik[it] - llik[it-1]) < min_change) {</pre>
break
}
# M-step: ML parameter estimation from the data and fractional component assignments
# Updating pi
for (k in 1:K) {
pi[k] = sum(z[,k])/N
}
# Updating mu
for (k in 1:K) {
mu[k,] = 0
for (n in 1:N) {
    mu[k,] = mu[k,] + x[n,] * z[n,k]
mu[k,] = mu[k,] / sum(z[,k])
}
# Printing pi, mu and development of log likelihood at the end
return(list(
pi = pi,
mu = mu,
logLikelihoodDevelopment = plot(llik[1:it],
type = "o",
```

```
main = "Development of the log likelihood",
xlab = "iteration",
ylab = "log likelihood")
))
}
em_loop(2)
em_loop(3)
em_loop(4)
```