STATS 300A: Theory of Statistics I

Autumn 2016/17

Lecture 4: October 6

Lecturer: Joseph Romano Scribes: Kenneth Tay

4.1 Clarifications

- Completeness is a function of the family of distributions induced by the statistic T, not of the family of distributions for the data X.
- A statistic can be complete but not sufficient.

For example, X_1, \ldots, X_n iid, $\sim \mathcal{N}(\theta, 1)$. Since this is a 1-parameter exponential family, X is sufficient and complete.

Now, $X_1 \sim \mathcal{N}(\theta, 1)$, and if $\mathbb{E}f(X_1) = 0$, then f = 0. So X_1 is complete, but it is clearly not sufficient. In practice, there isn't a real reason to talk about complete statistics that are not sufficient.

4.2 Rao-Blackwell Theorem

Recall from last time:

Theorem 4.1 (Rao-Blackwell Theorem) Assume that T is a sufficient statistic.

Assume that we have a loss function $L(\theta, d)$ which is strictly convex in d, and that $\delta(X)$ is an estimator of $g(\theta)$ with finite risk $R(\theta, \delta)$.

Let
$$\eta(t) = \mathbb{E} [\delta(X)|T(X) = t]$$
. Then

$$R(\theta, \eta) < R(\theta, \delta)$$

unless $\delta = \eta$ with probability 1 (i.e. δ was a function of T to begin with).

Notes on Rao-Blackwell:

- Rao-Blackwell is not true without convexity of the loss function.
- Define a randomized estimator as $\delta = \delta(X, U)$, where U is an auxiliary random variable, of some known distribution, which is independent of X.

Under Rao-Blackwell, we can dispense with randomized estimators. This is because $\mathbb{E}[\delta(X,U)\mid X]$ depends only on X.

4.3 Uniformly Minimum Variance Unbiased (UMVU) Estimators

Definition 4.2 Let $X \sim P_{\theta}$, $\theta \in \Omega$, $g(\theta)$ real-valued. We say that $g(\theta)$ is **U-estimable** if there exists some $\delta(X)$ such that

$$\mathbb{E}_{\theta}[\delta(X)] = g(\theta)$$

for all θ . (That is, $g(\theta)$ has an unbiased estimator.)

4-2 Lecture 4: October 6

Note that there are some cases where $q(\theta)$ does not have an unbiased estimator!

Using Rao-Blackwell for squared error loss, we obtain the following corollary:

Corollary 4.3 Suppose that $\delta(X)$ is an unbiased estimator for $g(\theta)$. Define

$$\eta(T) = \mathbb{E}[\delta(X) \mid T].$$

Then η is also unbiased, and $Var_{\theta}\eta(T) \leq Var_{\theta}\delta(X)$ for all θ .

Definition 4.4 We say that an estimator δ^* is UMVU (uniformly minimum variance unbiased estimator) or UMRU (uniformly minimum risk unbiased estimator) if for any other unbiased estimator δ ,

$$R(\theta, \delta^*) \leq R(\theta, \delta)$$

for all θ . It is uniquely UMVU if the above inequality is strict for some θ .

We can ask the following question: when does a U-estimable parameter $g(\theta)$ have an UMVUE, and how do we find it? The Lehmann-Scheffé Theorem answers this:

Theorem 4.5 (Lehmann-Scheffé Theorem, Take 1) Suppose that there exists only one unbiased estimator of $g(\theta)$ based on a sufficient statistic T.

Then, it must be UMVU.

Proof: Let $\eta^*(T)$ be unbiased, depending only on T. By assumption, it is the only such one.

Let δ be any other unbiased estimator. By Rao-Blackwell, we can improve on it:

$$\eta(T) = \mathbb{E}[\delta \mid T].$$

However, η is now a function of T which is unbiased, hence it must be equal to η^* ! Therefore

$$R(\theta, \eta^*) = R(\theta, \eta) \le R(\theta, \delta)$$

for all θ .

The condition in Theorem 4.5 may seem strange, but the following proposition shows that completeness implies it:

Proposition 4.6 If T is a complete statistic, then there is at most one unbiased estimator of $g(\theta)$ based on T.

Proof: Suppose that $\delta_1(T)$ and $\delta_2(T)$ are both unbiased estimators of $g(\theta)$ based on T. Then for all θ ,

$$\mathbb{E}_{\theta} \left[\delta_1(T) - \delta_2(T) \right] = 0.$$

By completeness, this means that $\delta_1 = \delta_2$ with probability 1.

We can now rewrite Theorem 4.5 in a slightly more useful form:

Theorem 4.7 (Lehmann-Scheffé Theorem, Take 2) If we have an unbiased estimator of $g(\theta)$ based on a sufficient and complete statistic T, then it must be UMVU.

We'll now go through a series of examples to demonstrate how this theorem can be used to find UMVUs.

Lecture 4: October 6 4-3

4.3.1 Example: $\mathcal{N}(\mu, \sigma^2)$

Let X_1, \ldots, X_n iid, $X_i \sim \mathcal{N}(\mu, \sigma^2)$.

Case 1: μ unknown, σ known. Want to estimate μ .

We know that \bar{X} is sufficient and complete, and is an unbiased estimator of μ . Hence, it is UMVU.

Now, let $\delta(X_1, \ldots, X_n) = \operatorname{Median}(X_1, \ldots, X_n)$. This is an unbiased estimator of μ . The Rao-Blackwell Theorem says that we can improve on this estimator (or at least do no worse) by using $\mathbb{E}[\delta \mid \bar{X}]$ instead.

However, we know that $\mathbb{E}[\delta \mid \bar{X}]$ is an unbiased estimator of μ , and is a function of \bar{X} which is sufficient and complete. Hence, we must have $\mathbb{E}[\mathrm{Median}(X_1,\ldots,X_n)\mid \bar{X}]=\bar{X}$.

Case 2: μ and σ unknown. Want to estimate $g(\mu, \sigma) = \mu$.

We know that $T = (\sum X_i, \sum X_i^2)$ is complete and sufficient. Since \bar{X} is a function of T, it is again UMVU.

Case 3: μ and σ unknown. Want to estimate $g(\mu, \sigma) = \sigma^2$. (Assume n > 1.)

The sample variance

$$\frac{\sum (X_i - \bar{X})^2}{n - 1}$$

is an unbiased estimator of σ^2 , and is a function of T from Case 2. Hence, it is UMVU.

4.3.2 Example: Poisson(λ)

Let X_1, \ldots, X_n iid, $X_i \sim \text{Poisson}(\lambda)$. This is a 1-parameter exponential family with $\sum X_i$ being complete and sufficient.

To estimate $g(\lambda) = \lambda$, note that $\frac{\sum X_i}{n}$ and $\frac{\sum (X_i - \bar{X})^2}{n-1}$ are both unbiased estimators of λ , but only $\frac{\sum X_i}{n}$ is UMVII

Let's say we want to estimate $g(\lambda) = e^{-\lambda}$. Let $T = \sum X_i$. Then $T \sim \text{Poisson}(n\lambda)$.

First consider the case where n > 1. In order for $\mathbb{E}_{\lambda} \eta(T) = e^{-\lambda}$ for all λ , we must have, for all λ ,

$$\begin{split} \sum_{t=0}^{\infty} \eta(t) \frac{e^{-n\lambda}(n\lambda)^t}{t!} &= e^{-\lambda}, \\ \sum_{t=0}^{\infty} \frac{\eta(t)(n\lambda)^t}{t!} &= e^{(n-1)\lambda} \\ &= \sum_{t=0}^{\infty} \frac{[(n-1)\lambda]^t}{t!}, \end{split}$$

i.e. $\eta(t) = \left(\frac{n-1}{n}\right)^t$. Hence, when we set $\eta(T) = \left(1 - \frac{1}{n}\right)^T$, we get that $\eta(T)$ is UMVU.

In the case where n=1, note that X is complete and sufficient. Note also that

$$P(X = j) = \frac{e^{-\lambda} \lambda^j}{j!}, \Rightarrow P(X = 0) = e^{-\lambda}.$$

4-4 Lecture 4: October 6

Hence, the indicator function

$$1_{\{X=0\}} = \begin{cases} 1 & \text{if } X = 0, \\ 0 & \text{otherwise} \end{cases}$$

is UMVU.

4.3.3 Example: Uniform Distribution

Let X_1, \ldots, X_n iid, $X_i \sim U(0, \theta)$. We want to estimate $g(\theta) = \frac{\theta}{2}$.

Previously we showed that $T = \max(X_1, \dots, X_n)$ is a complete and sufficient statistic for this model.

Note that X_1 is an unbiased estimator of $\frac{\theta}{2}$. Thus,

$$\mathbb{E}[X_1 \mid T] = \frac{1}{n}T + \frac{n-1}{n}\left(\frac{T}{2}\right)$$
$$= \frac{n+1}{2n}T$$

is UMVU for $\frac{\theta}{2}$. Equivalently, $\frac{n+1}{n}T$ is UMVU for θ .

4.3.4 Example: $\mathcal{N}(\mu, 1)$

Let X_1, \ldots, X_n iid, $X_i \sim \mathcal{N}(\mu, 1)$. We want to estimate

$$g(\mu) = P_{\mu} \{ X_i \le u \} = \Phi(u - \mu),$$

where u is some critical fixed value and Φ is the standard normal CDF.

Note that $P\{X_1 \leq u \mid \bar{X}\}$ is UMVU. We use a trick to calculate this.

$$P\{X_1 \le u \mid \bar{X} = \bar{x}\} = P\{X_1 - \bar{X} \le u - \bar{x} \mid \bar{X} = \bar{x}\}.$$

Note that the distribution of $X_1 - \bar{X}$ does not depend on μ , and so it is ancillary. By Basu's Theorem, $X_1 - \bar{X}$ must be independent of the complete sufficient statistic \bar{X} , and so

$$P\{X_1 \le u \mid \bar{X} = \bar{x}\} = P\{X_1 - \bar{X} \le u - \bar{x}\}.$$

Now, let's find the distribution of $X_1 - \bar{X}$. It is normally distributed with mean 0. The variance can be computed:

$$Var(X_1 - \bar{X}) = VarX_1 + Var\bar{X} - 2Cov(X_1, \bar{X})$$

$$= 1 + \frac{1}{n} - 2Cov\left(X_1, \frac{X_1}{n}\right)$$

$$= 1 + \frac{1}{n} - \frac{2}{n}$$

$$= \frac{n-1}{n}.$$

Lecture 4: October 6 4-5

Thus, we have

$$P\left\{X_1 - \bar{X} \le u - \bar{x}\right\} = \Phi\left(\frac{u - \bar{x}}{\sqrt{\frac{n-1}{n}}}\right).$$

4.3.5 Example: Bernoulli Trials

Let X_1, \ldots, X_n iid, $X_i \sim \text{Bernoulli}(p)$.

 $T = \sum X_i$ is complete and sufficient, and $T \sim \text{Binom}(n, p)$.

$$\frac{T}{n}$$
 is UMVU for p .

To get a UMVU for the variance g(p)=p(1-p): We know that $\frac{1}{n-1}\sum (X_i-\bar{X})^2$ is always an unbiased estimator for the variance. But since we always have $X_i^2=X_i$ for Bernoulli random variables,

$$\frac{1}{n-1} \sum (X_i - \bar{X})^2 = \frac{1}{n-1} \left(\sum X_i^2 - n\bar{X}^2 \right)$$
$$= \frac{1}{n-1} \left(\sum X_i - n\bar{X}^2 \right)$$
$$= \frac{1}{n-1} \left(T - \frac{T^2}{n} \right)$$
$$= \frac{T(n-T)}{n(n-1)}$$

is a function of T, and hence is UMVU.