Industrielles de

Sciences

l'Ingénieur

Application 1 Corrigé

Chaîne fermée – Micromoteur de modélisme

Équipe PT La Martinière Monplaisir

Savoirs et compétences :

- Res1.C2: principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la

Question 1 Exprimer la relation liant la vitesse de rotation ω_{10} du vilebrequin (1) et la vitesse du piston (3), notée $\dot{\lambda} = V_{3/0}$.

Correction On réalise une fermeture géométrique dans le triangle \overrightarrow{ABC} et on a : $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0} \iff e \overrightarrow{x_1} + L_2 \overrightarrow{x_2} - C$ $\lambda_3 \overrightarrow{y_0} \iff e\left(\cos\theta_1 \overrightarrow{x_0} + \sin\theta_1 \overrightarrow{y_0}\right) + L_2\left(\cos\theta_2 \overrightarrow{x_0} + \sin\theta_2 \overrightarrow{y_0}\right) - \lambda_3 \overrightarrow{y_0} = \overrightarrow{0}. \text{ On a donc}: \begin{cases} e\cos\theta_1 + L_2\cos\theta_2 = 0\\ e\sin\theta_1 + L_2\sin\theta_2 - \lambda_3 = 0 \end{cases}$ $\Leftrightarrow \begin{cases} L_2 \cos \theta_2 = -e \cos \theta_1 \\ L_2 \sin \theta_2 = \lambda_3 - e \sin \theta_1 \end{cases} \text{ Au final, } L_2^2 = e^2 \cos^2 \theta_1 + (\lambda_3 - e \sin \theta_1)^2 \Leftrightarrow L_2^2 - e^2 \cos^2 \theta_1 = (\lambda_3 - e \sin \theta_1)^2 \\ \Rightarrow \sqrt{L_2^2 - e^2 \cos^2 \theta_1} = \lambda_3 - e \sin \theta_1 \Rightarrow \lambda_3 = \sqrt{L_2^2 - e^2 \cos^2 \theta_1} + e \sin \theta_1.$

Question 2 En considérant que seul le plan $(H, \overrightarrow{x_1}, \overrightarrow{z_1})$ est le plan de symétrie, indiquer quelle(s) simplification(s) cela apporte à cette matrice d'inertie.

Correction On a donc une invariance suivant $\overrightarrow{y_1}$ et $I_H(1) = \begin{pmatrix} A_1 & 0 & -E_1 \\ 0 & B_1 & 0 \\ -E_1 & 0 & C_1 \end{pmatrix}_{(H:\overrightarrow{x_1},\overrightarrow{y_1},\overrightarrow{z_1})}$

Par la suite on fait l'hypothèse que les matrices d'inertie $I_A(1)$, $I_{G_2}(2)$ et $I_{G_3}(3)$ sont diagonales.

$$\bullet \left\{ \mathscr{C}(1/0) \right\} = \left\{ \begin{array}{l} \overline{R_c(1/0)} = m_1 \overline{V(G_1, 1/0)} \\ \overline{\sigma(H, 1/0)} = I_H(1) \overline{\Omega(1/0)} \end{array} \right\}_H = \left\{ \begin{array}{l} \overrightarrow{0} \\ C_1 \dot{\theta}_1 \overline{z}_1 \end{array} \right\}_H \\
\bullet \left\{ \mathscr{D}(1/0) \right\} = \left\{ \begin{array}{l} \overline{R_d(1/0)} = m_1 \overline{\Gamma(G_1, 1/0)} \\ \overline{\delta(H, 1/0)} = \left[\frac{d\overline{\delta(H, 1/0)}}{dt} \right] \end{array} \right\}_H = \left\{ \begin{array}{l} \overrightarrow{0} \\ C_1 \ddot{\theta}_1 \overline{z}_1 \end{array} \right\}_H$$

$$G_{3} \text{ est le centre de gravité de 3. Le solide 3 est en translation par rappor } \bullet \{\mathscr{C}(3/0)\} = \left\{ \begin{array}{l} \overline{R_{c}(3/0)} = m_{3} \overline{V(G_{3}, 3/0)} \\ \overline{\sigma(G_{3}, 3/0)} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \dot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}}$$

$$\bullet \{\mathscr{D}(3/0)\} = \left\{ \begin{array}{l} \overline{R_{d}(3/0)} = m_{1} \overline{\Gamma(G_{3}, 3/0)} \\ \overline{\delta(G_{3}, 1/0)} = \left[\frac{d\overline{\sigma(G_{3}, 3/0)}}{dt} \right]_{\mathscr{R}_{0}} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{3}} \ddot{\lambda}_{3} \overline{y_{0}} \\ \overline{0} \end{array} \right\}_{G_{3}} = \left\{ \begin{array}{l} \overline{m_{$$

•
$$\{\mathscr{C}(2/0)\} = \left\{\begin{array}{l} \overline{R_c(2/0)} = m_2 \overline{V(G_2, 2/0)} \\ \overline{\sigma(G_2, 2/0)} = I_{G_2}(2) \overline{\Omega(2/0)} \end{array}\right\}_{G_2} = \left\{\begin{array}{l} m_2 \left(\dot{\lambda}_3 \overrightarrow{y_0} + a_2 \dot{\theta}_2 \overrightarrow{x_2}\right) \\ C_2 \dot{\theta}_2 \overrightarrow{z_0} \end{array}\right\}_{G_2}$$

1

$$\bullet \ \{\mathscr{D}(2/0)\} = \left\{ \begin{array}{l} \overline{R_d(2/0)} = m_2 \overline{\Gamma(G_2, 2/0)} \\ \overline{\delta(G_2, 2/0)} = \left[\frac{\mathrm{d}\overline{\sigma(G_2, 2/0)}}{\mathrm{d}t} \right]_{\mathscr{R}_0} \end{array} \right\}_{G_2} = \left\{ \begin{array}{l} m_2 \left(\ddot{\lambda}_3 \overrightarrow{y_0} + a_2 \ddot{\theta}_2 \overrightarrow{x_2} + a_2 \dot{\theta}_2^2 \overrightarrow{y_2} \right) \\ C_2 \ddot{\theta}_2 \overrightarrow{z_0} \end{array} \right\}_{G_2}$$

Calcul de $V(G_2, 2/0)$.

$$\overrightarrow{V(G_2,2/0)} = \overrightarrow{V(G_2,2/3)} + \overrightarrow{V(G_2,3/0)}$$

$$\frac{\overrightarrow{V(G_2,2/0)} = \overrightarrow{V(G_2,2/3)} + \overrightarrow{V(G_2,3/0)}}{\overrightarrow{V(G_2,2/3)} = \overrightarrow{V(C,2/3)} + \overrightarrow{G_2C} \wedge \overrightarrow{\Omega(2/3)} = \overrightarrow{0} + a_2 \overrightarrow{y_2} \wedge \dot{\theta}_2 \overrightarrow{z_0} = a_2 \dot{\theta}_2 \overrightarrow{x_2} \qquad \overrightarrow{V(G_2,3/0)} = \dot{\lambda}_3 \overrightarrow{y_0}$$

$$\overrightarrow{V(G_2,2/0)} = \dot{\lambda}_3 \overrightarrow{y_0} + a_2 \dot{\theta}_2 \overrightarrow{x_2}.$$

Calcul de $\Gamma(G_2, 2/0)$.

$$\overrightarrow{\Gamma(G_2,2/0)} = \ddot{\lambda}_3 \overrightarrow{y_0} + a_2 \ddot{\theta}_2 \overrightarrow{x_2} + a_2 \dot{\theta}_2^2 \overrightarrow{y_2}.$$

Question 3 Déterminer l'équation de mouvement par les théorèmes généraux.

Correction

- On isole (1).
- Bilan des actions mécaniques extérieures
 - Liaison pivot : $\{\mathcal{T}(0 \to 1)\} = \left\{ \begin{array}{c} \overrightarrow{R(0 \to 1)} \\ \cancel{\mathscr{M}(A, 0 \to 1)} \end{array} \right\}$ avec $\overrightarrow{\mathscr{M}(A, 0 \to 1)} \cdot \overrightarrow{z_0} = 0$ (pas de frottement dans la
 - Liaison pivot : $\{\mathcal{T}(2 \to 1)\} = \left\{ \begin{array}{c} \overrightarrow{R(2 \to 1)} \\ \cancel{\mathcal{M}(B, 2 \to 1)} \end{array} \right\}_{B} \text{ avec } \overrightarrow{\mathcal{M}(B, 2 \to 1)} \cdot \overrightarrow{z_0} = 0 \text{ (pas de frottement dans la liaison)}.$ Par ailleurs, $\overrightarrow{\mathcal{M}(A, 2 \to 1)} \cdot \overrightarrow{z_0} = \overrightarrow{\mathcal{M}(B, 2 \to 1)} \cdot \overrightarrow{z_0} + \left(\overrightarrow{AB} \wedge \overrightarrow{R(2 \to 1)}\right) \overrightarrow{z_0} = \left(e \overrightarrow{x_1} \wedge \left(X_{21} \overrightarrow{x_2} + Y_{21} \overrightarrow{y_2}\right)\right) \overrightarrow{z_0}$ $= \left(eX_{21}\overrightarrow{x_1} \wedge \overrightarrow{x_2} + eY_{21}\overrightarrow{x_1} \wedge \overrightarrow{y_2}\right)\overrightarrow{z_0} = eX_{21}\sin(\theta_2 - \theta_1) + eY_{21}\cos(\theta_2 - \theta_1)$
 - Couple moteur : $\{\mathcal{T}(0_m \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{z_0} \end{array}\right\}_A$.
- On applique le TMD en A en projection suivant

$$eX_{21}\sin(\theta_2-\theta_1)+eY_{21}\cos(\theta_2-\theta_1)+C_m=C_1\ddot{\theta}_1$$

- On isole (2).
- · Bilan des actions mécaniques extérieure
 - Liaison pivot : $\{\mathcal{T}(1 \to 2)\} = \left\{ \begin{array}{c} -\overrightarrow{R(2 \to 1)} \\ -\cancel{\mathcal{M}(B.2 \to 1)} \end{array} \right\}$ avec $\overrightarrow{\mathcal{M}(B.2 \to 1)} \cdot \overrightarrow{z_0} = 0$ (pas de frottement dans la
 - Liaison pivot : $\{\mathcal{T}(3 \to 2)\} = \begin{cases} -\overrightarrow{R(2 \to 3)} \\ -\cancel{M(C, 2 \to 3)} \end{cases}$ avec $\overrightarrow{M(C, 2 \to 3)} \cdot \overrightarrow{z_0} = 0$ (pas de frottement dans la
- On applique le TMD en C en projection sur $\overrightarrow{z_0}$:

$$-\overrightarrow{CB}\wedge\overrightarrow{R(2\rightarrow 1)}\cdot\overrightarrow{z}=\overrightarrow{\delta(C,2/0)}\cdot\overrightarrow{z}\Longleftrightarrow L_{2}\overrightarrow{y_{2}}\wedge\left(X_{21}\overrightarrow{x_{2}}+Y_{21}\overrightarrow{y_{2}}\right)\cdot\overrightarrow{z}=\left(\overrightarrow{\delta(G_{2},2/0)}+\overrightarrow{CG_{2}}\wedge m_{2}\overrightarrow{\Gamma(G_{2},2/0)}\right)\cdot\overrightarrow{z}$$

$$\implies -L_2 X_{21} = C_2 \ddot{\theta}_2 \left(-a_2 \overrightarrow{y_2} \wedge \left(m_2 \left(\ddot{\lambda}_3 \overrightarrow{y_0} + a_2 \ddot{\theta}_2 \overrightarrow{x_2} + a_2 \dot{\theta}_2^2 \overrightarrow{y_2} \right) \right) \right) \cdot \overrightarrow{z}$$

$$\implies -L_2 X_{21} = C_2 \ddot{\theta}_2 + a_2 m_2 \left(\ddot{\lambda}_3 \sin \theta_2 - a_2 \ddot{\theta}_2 \overrightarrow{z_2} \right)$$

• On isole (2+3).

Xavier Pessoles

- · Bilan des actions mécaniques extérieures
 - Liaison glissière : $\{\mathcal{T}(0 \to 3)\} = \left\{\begin{array}{c} \overrightarrow{R(0 \to 3)} \\ \cancel{M}(A, 0 \to 3) \end{array}\right\}$ avec $\overrightarrow{R(0 \to 3)} \cdot \overrightarrow{y_0} = 0$ (pas de frottement dans la
 - Liaison pivot : $\{\mathcal{T}(1 \to 2)\} = \left\{ \begin{array}{c} -\overrightarrow{R(2 \to 1)} \\ -\cancel{M(B, 2 \to 1)} \end{array} \right\}$ avec $\overrightarrow{M(B, 2 \to 1)} \cdot \overrightarrow{z_0} = 0$ (pas de frottement dans la liaison).

- Force explosion : $\{\mathcal{T}(0_e \to 3)\} = \left\{\begin{array}{c} F_y \overrightarrow{y} + F_z \overrightarrow{z} \\ C_{exp} \end{array}\right\}_C$.

 On applique le TRD en projection sur $\overrightarrow{y_0}$:

$$F_{y} - Y_{21} = m_{3}\ddot{\lambda}_{3} + \left(m_{2}\left(\ddot{\lambda}_{3}\overrightarrow{y_{0}} + a_{2}\ddot{\theta}_{2}\overrightarrow{x_{2}} + a_{2}\dot{\theta}_{2}^{2}\overrightarrow{y_{2}}\right)\right) \cdot \overrightarrow{y_{0}}$$

$$\iff F_{y} - Y_{21} = m_{3}\ddot{\lambda}_{3} + \left(m_{2}\left(\ddot{\lambda}_{3} + a_{2}\ddot{\theta}_{2}\sin\theta_{2} + a_{2}\dot{\theta}_{2}^{2}\cos\theta_{2}\right)\right)$$

Chapitre 3 – Méthodologie: détermination des équations de mouvement

l'Ingénieur

Sciences

Application 1 -Corrigé

Chaîne ouverte – Wheeling moto

Équipe PT La Martinière Monplaisir

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la

Eléments de corrigé

Construire le graphe de structure de la moto dans la phase de wheeling. Préciser le degré de mobilité de l'ensemble, compte tenu de l'hypothèse de roulement sans glissement en H₃.

Si un considère des liaisons parfaites, en particulier en H₃ (liaison sans frottement), l'ensemble modélisé en 2D est isostatique et comporte 4 mobilités :

- déplacement suivant $\vec{x_0}$ du centre d'inertie G_1 du cadre (1) par rapport au sol : paramètre λ_1 ;
- position angulaire du cadre (1) par rapport au sol : paramètre $\theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1})$;
- position angulaire de la roue (3) par rapport au sol : paramètre $\theta_3 = (x_0, x_3)$;
- position angulaire de la roue (2) par rapport au sol : paramètre $\theta_2 = (\vec{x_0}, \vec{x_2})$.

La propriété de roulement sans glissement en H₃ entre la roue (3) et le sol (0) introduit <u>une relation entre les paramètres de</u>

Il y a donc 3 équations du mouvement issues de l'application du principe fondamental de la dynamique.

- En se limitant à l'application des théorèmes généraux de la dynamique, définir quelles équations permettent de déterminer le mouvement de l'ensemble :
 - élément(s) isolé(s);
 - théorème appliqué, en précisant quelle projection et quel point de réduction éventuel sont retenus.

Les trois équations sont obtenues en isolant successivement :

- la roue avant (2): équation du moment dynamique en O_2 , en projection
 - z₀. Cette équation est la seule à ne faire apparaître aucune composante d'effort de la liaison pivot (1) - (2);

ensemble {roue avant (2), cadre (1)}:

équation du moment dynamique en O₃, en projection sur z₀. Cette équation est la seule à ne faire apparaître aucune composante d'effort de la liaison pivot (3) - (1);

ensemble {roue avant (2), cadre (1), roue arrière (3)} : équation du moment dynamique en H_3 , en projection sur z_0 .

Cette équation est la seule à ne faire apparaître aucune composante d'effort de la liaison ponctuelle avec RsG (0) – (3);

Q3- Mettre en place les équations précédentes.

Conclure sur la possibilité d'intégration de ces équations.

EQUATION (1)

Moment cinétique de la roue (2) : il est défini en O2, centre d'inertie de la roue (2), point où est supposée définie sa matrice

d'inertie:
$$\overrightarrow{\sigma}(O_2,2/0) = \overline{\overline{\mathbf{I}}(O_2,2)} \otimes \overset{\bullet}{\theta_2} \overset{\rightarrow}{\mathbf{z}_0} = C_2 \overset{\bullet}{\theta_2} \overset{\rightarrow}{\mathbf{z}_0}$$

Moment dynamique :
$$\overrightarrow{\delta}(O_2,2/0) = \frac{\overrightarrow{d\sigma}(O_2,2/0)}{\overrightarrow{dt}/(0)} = C_2 \overset{\bullet \bullet}{\theta_2} \overset{\rightarrow}{z_0}$$

Actions extérieures sur la roue (2) :

- pesanteur : le poids $\overrightarrow{P_2}$ est supposé appliqué en O_2 , donc de moment nul en ce point ;
- la liaison pivot (1) (2) a un moment nul en O₂.

Soit l'équation (1) :
$$C_2 \stackrel{\bullet}{\theta}_2 = 0$$

EQUATION (2)

 $Moment \ dynamique \ de \ l'ensemble \ \{(1), (2)\}: il \ est \ d\'efini \ en \ O_3, \ en \ faisant \ la \ somme \ des \ moments \ dynamiques \ de \ (1) \ et \ de \ de \ (2)$

(2):
$$\overrightarrow{\delta}(O_3, \{1,2\}/0) = \overrightarrow{\delta}(O_3, 1/0) + \overrightarrow{\delta}(O_3, 2/0)$$

Calcul pour le cadre (1):

Moment cinétique du cadre (1) : il est défini en G₁, centre d'inertie du cadre (1), point où est supposée définie sa matrice

d'inertie :
$$\overrightarrow{\sigma}(G_1,1/0) = \overline{\overrightarrow{I}(G_1,1)} \otimes \overset{\bullet}{\theta_1} \overset{\rightarrow}{z_0} = C_1 \overset{\bullet}{\theta_1} \overset{\rightarrow}{z_0}$$

Moment dynamique :
$$\overrightarrow{\delta}(G_1,1/0) = \frac{\overrightarrow{d\sigma}(G_1,1/0)}{\overrightarrow{dt}/(0)} = C_1 \overset{\bullet \bullet}{\theta}_1 \vec{z}_0$$

Calcul en
$$O_3$$
: $\overrightarrow{\delta}(O_3,1/0) = \overrightarrow{\delta}(G_1,1/0) + m_1 \overrightarrow{\Gamma}(G_1,1/0) \wedge \overrightarrow{G_1O_3}$

Calcul de l'accélération $\overrightarrow{\Gamma}(G_1,1/0)$: pour ce calcul, il est plus adroit de repérer la position du cadre (1) par rapport au sol (0) en définissant comme paramètre λ_1 : $\overrightarrow{OO_3} = \lambda_1 \overrightarrow{x_0}$.

Le point O est un point lié au sol, situé à la distance R du plan de contact de la roue avec la chaussée.

$$\overrightarrow{OG}_1 = \overrightarrow{OO}_3 + O_3\overrightarrow{G}_1 = \lambda_1\overrightarrow{x_0} + \alpha_1\overrightarrow{x_1} + b_1\overrightarrow{y_1}$$

$$\overrightarrow{V}(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{x_0} + \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{y_1} - b_1\overrightarrow{x_1})$$

$$\overrightarrow{\Gamma}(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{x_0} + \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{y_1} - b_1\overrightarrow{x_1}) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{x_1} + b_1\overrightarrow{y_1})$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{x_0} + \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{y_1} - b_1\overrightarrow{x_1}) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{x_1} + b_1\overrightarrow{y_1})$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{x_0} + \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{y_1} - b_1\overrightarrow{x_1}) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{x_1} + b_1\overrightarrow{y_1})$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{x_1} + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{x_1} + b_1\overrightarrow{y_1})$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{x_1} + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{x_1} + b_1\overrightarrow{y_1})$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{x_1} + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{x_1} + b_1\overrightarrow{y_1})$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1)$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1)$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1)$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1)$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1)$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1)$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1)$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1)$$

$$\overrightarrow{D}_1(G_11/0) = \overset{\bullet}{\lambda}_1\overrightarrow{\lambda}_1(a_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1) - \overset{\bullet}{\theta}_1(\alpha_1\overrightarrow{\lambda}_1 + b_1\overrightarrow{\lambda}_1)$$

Calcul pour la roue avant (2):

$$\overrightarrow{\delta}(O_3,2/0) = \overrightarrow{\delta}(O_2,2/0) + m_2 \overrightarrow{\Gamma}(O_2,2/0) \wedge \overrightarrow{O_2O_3}$$

Calcul de l'accélération $\overrightarrow{\Gamma}(O_2,2/0)$

$$\overrightarrow{OO_2} = \lambda_1 \overrightarrow{x_0} + L_1 \overrightarrow{x_1}$$

$$\overrightarrow{V}(O_2, 2/0) = \overleftarrow{\lambda}_1 \overrightarrow{x_0} + \overleftarrow{\theta}_1 L_1 \overrightarrow{y_1}$$

$$\overrightarrow{\Gamma}(O_2, 2/0) = \overleftarrow{\lambda}_1 \overrightarrow{x_0} + \overleftarrow{\theta}_1 L_1 \overrightarrow{y_1} - \overleftarrow{\theta}_1^2 L_1 \overrightarrow{x_1}$$

$$\begin{aligned} &\text{Moment dynamique en O}_3: \quad \overrightarrow{\delta}(O_3 2 / 0) = C_2 \overset{\bullet \bullet}{\theta_2} \overset{\rightarrow}{z_0} + m_2 \begin{bmatrix} \overset{\bullet \bullet}{\lambda_1} \overset{\rightarrow}{x_0} + \overset{\bullet \bullet}{\theta_1} L_1 \overset{\rightarrow}{y_1} - \overset{\bullet}{\theta_1} L_1 \overset{\rightarrow}{x_1} \end{bmatrix} \wedge -L_1 \overset{\rightarrow}{x_1} \\ &\overrightarrow{\delta}(O_3, 2 / 0) = C_2 \overset{\bullet \bullet}{\theta_2} \overset{\rightarrow}{z_0} - m_2 . L_1 \begin{bmatrix} \overset{\bullet \bullet}{\lambda_1} \sin \theta_1 - \overset{\bullet \bullet}{\theta_1} L_1 \end{bmatrix} \overset{\rightarrow}{z_0} \end{aligned}$$

Actions extérieures appliquées à l'ensemble {1, 2} :

pesanteur sur (2): le poids P₂ appliqué en O₂, de moment en O₃:

$$\overrightarrow{O_3O_2} \wedge \overrightarrow{-P_2} \overrightarrow{y_0} = \overrightarrow{L_1} \overrightarrow{x_1} \wedge \overrightarrow{-P_2} \overrightarrow{y_0} = \overrightarrow{-L_1P_2} \cos\theta_1 \overrightarrow{z_0}$$

pesanteur sur (1): le poids P₁ appliqué en G₁, de moment en O₃:

$$\overrightarrow{O_3G_1} \wedge \neg P_1 \stackrel{\rightarrow}{y_0} = (a_1 \stackrel{\rightarrow}{x_1} + b_1 \stackrel{\rightarrow}{y_1}) \wedge \neg P_1 \stackrel{\rightarrow}{y_0} = -P_1(a_1 \cos\theta_1 - b_1 \sin\theta_1) \stackrel{\rightarrow}{z_0}$$

- le moteur agit sur le cadre (1) en exerçant un couple de moment −C_m z₀
- la liaison pivot (3) (2) a un moment nul en O₃.

Soit l'équation (2) :

$$C_1 \overset{\bullet}{\theta_1} - m_1 \left[\overset{\bullet}{\lambda}_1 (a_1 \sin \theta_1 + b_1 \cos \theta_1) + \overset{\bullet}{\theta_1} (a_1^2 + b_1^2) \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \sin \theta_1 - \overset{\bullet}{\theta_1} L_1 \right] = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \left[\overset{\bullet}{\lambda}_1 (a_1 \sin \theta_1 + b_1 \cos \theta_1) + \overset{\bullet}{\theta_1} (a_1^2 + b_1^2) \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \sin \theta_1 - \overset{\bullet}{\theta_1} L_1 \right] = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \left[\overset{\bullet}{\lambda}_1 (a_1 \sin \theta_1 + b_1 \cos \theta_1) + \overset{\bullet}{\theta_1} (a_1^2 + b_1^2) \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \sin \theta_1 - \overset{\bullet}{\theta_1} L_1 \right] = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \left[\overset{\bullet}{\lambda}_1 (a_1 \cos \theta_1 + b_1 \cos \theta_1) + \overset{\bullet}{\theta_1} (a_1^2 + b_1^2) \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \sin \theta_1 - \overset{\bullet}{\theta_1} L_1 \right] = -L_1 P_2 \cos \theta_1 - P_1 (a_1 \cos \theta_1 - b_1 \sin \theta_1) - C_m \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\theta_1} \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m_2 L_1 \left[\overset{\bullet}{\lambda}_1 \cos \theta_1 - \overset{\bullet}{\lambda}_1 \cos \theta_1 \right] + C_2 \overset{\bullet}{\theta_2} - m$$

EQUATION (3)

Moment dynamique de l'ensemble $\{(1), (2), (3)\}$: il est défini en H_3 , en faisant la somme des moments dynamiques de (1), de (2) et de (3): $\overrightarrow{\delta}(H_3, \{1,2,3\}/0) = \overrightarrow{\delta}(H_3, 1/0) + \overrightarrow{\delta}(H_3, 2/0) + \overrightarrow{\delta}(H_3, 3/0)$

Calcul pour le cadre (1):

$$\begin{aligned} & \text{Moment dynamique en H}_3: \quad \overrightarrow{\delta}(\textbf{H}_3.1/0) = \overrightarrow{\delta}(\textbf{G}_1.1/0) + \textbf{m}_1 \overrightarrow{\Gamma}(\textbf{G}_1.1/0) \wedge \overrightarrow{\textbf{G}_1 H}_3 \\ & \overrightarrow{\delta}(\textbf{H}_3.1/0) = \textbf{C}_1 \overset{\bullet \bullet}{\theta}_1 \overrightarrow{\textbf{z}_0} + \textbf{m}_1 \begin{bmatrix} \overset{\bullet \bullet}{\lambda}_1 \overrightarrow{\textbf{z}_0} + \overset{\bullet \bullet}{\theta}_1 (a_1 \overrightarrow{\textbf{y}_1} - b_1 \overrightarrow{\textbf{z}_1}) - \overset{\bullet 2}{\theta}_1 (a_1 \overrightarrow{\textbf{x}_1} + b_1 \overrightarrow{\textbf{y}_1}) \end{bmatrix} \wedge (-\textbf{R} \overset{\rightarrow}{\textbf{y}_0} - a_1 \overrightarrow{\textbf{x}_1} - b_1 \overrightarrow{\textbf{y}_1}) \end{aligned}$$

Calcul pour la roue avant (2):

$$\begin{aligned} & \text{Moment dynamique en H}_3: \quad \stackrel{\rightarrow}{\delta}(\text{H}_3\text{,}2\text{/}0) = \stackrel{\rightarrow}{\delta}(\text{O}_2\text{,}2\text{/}0) + + \text{m}_2 \stackrel{\rightarrow}{\Gamma}(\text{O}_2\text{,}2\text{/}0) \wedge \text{O}_2 \stackrel{\rightarrow}{\text{H}}_3 \\ & \stackrel{\rightarrow}{\delta}(H_3\text{,}2\text{/}0) = C_2 \stackrel{\bullet}{\theta}_2 \stackrel{\rightarrow}{z}_0 + m_2.L_1. \\ & \stackrel{\leftarrow}{\lambda}_1 \stackrel{\rightarrow}{x}_0 + \stackrel{\bullet}{\theta}_1 L_1 \stackrel{\rightarrow}{y}_1 - \stackrel{\bullet}{\theta}_1 L_1 \stackrel{\rightarrow}{x}_1 \\ & \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{x}_1 - \stackrel{\bullet}{\theta}_1 L_1 \stackrel{\rightarrow}{x}_1 \\ & \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{x}_1 - \stackrel{\rightarrow}{\theta}_1 L_1 \stackrel{\rightarrow}{x}_1 \\ & \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \\ & \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 - \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \\ & \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \\ & \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \\ & \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \\ & \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}_1 \\ & \stackrel{\rightarrow}{\lambda}_1 \stackrel{\rightarrow}{\lambda}$$

Calcul pour la roue arrière (3):

Moment cinétique de la roue (3) : il est défini en O₃, centre d'inertie de la roue (3), point où est supposée définie sa matrice d'inertie.

$$\overrightarrow{\sigma}(O_3,3/0) = \overline{\overrightarrow{I}(O_3,3)} \otimes \overrightarrow{\theta_3} \overrightarrow{z_0} = C_3 \overset{\bullet}{\theta_3} \overrightarrow{z_0}$$

Moment dynamique:
$$\overrightarrow{\delta}(O_3,3/0) = \frac{\overrightarrow{d\sigma}(O_3,3/0)}{\overrightarrow{dt}/(0)} = C_3 \overset{\bullet\bullet}{\theta} \overset{\bullet}{3} \overset{\bullet}{z}_0$$

Moment dynamique en H_3 : $\overrightarrow{\delta}(H_3,3/0) = \overrightarrow{\delta}(O_3,3/0) + m_3 \overrightarrow{\Gamma}(O_3,3/0) \wedge \overrightarrow{O_3H_3}$, avec $O_3 = G_3$, centre d'inertie de la roue (3).

Calcul de l'accélération $\overrightarrow{\Gamma}(O_3,3/0)$

$$\overrightarrow{OO_3} = \lambda_1 \overrightarrow{x_0}$$

$$\overrightarrow{V}(O_3,3/0) = \overset{\bullet}{\lambda_1} \overset{\rightarrow}{\times_0}$$

$$\vec{\Gamma}(O_3,3/0) = \lambda_1 \times_0$$

$$\mathsf{En}\,\mathsf{H}_3\colon \overset{\rightarrow}{\delta}(\mathsf{H}_3,\!3/0) = \mathsf{C}_3\overset{\bullet\bullet}{\theta}_3\overset{\rightarrow}{\mathsf{Z}_0} + \mathsf{m}_3\overset{\bullet\bullet}{\lambda}_1\overset{\rightarrow}{\mathsf{X}_0} \wedge -\mathsf{R}\overset{\rightarrow}{\mathsf{y}_0} = (\mathsf{C}_3\overset{\bullet\bullet}{\theta}_3 - \mathsf{m}_3\overset{\bullet}{\lambda}_1\mathsf{R})\overset{\rightarrow}{\mathsf{z}_0}$$

Actions extérieures appliquées à l'ensemble {1, 2, 3} :

- pesanteur sur (2): le poids $\overrightarrow{P_2}$ appliqué en O_2 , de moment en $H_3: H_3 \overrightarrow{O_2} \land -P_2 \overrightarrow{y_0} = -L_1 P_2 \cos \theta_1 \overrightarrow{z_0}$
- pesanteur sur (1): le poids $\overrightarrow{P_1}$ appliqué en G_1 , de moment en $H_3: H_3 \overset{\rightarrow}{G_1} \land -P_1 \overset{\rightarrow}{y_0} = -P_1 (a_1 \cos \theta_1 b_1 \sin \theta_1) \overset{\rightarrow}{z_0}$
- pesanteur sur (3) : le poids $\overrightarrow{P_3}$ appliqué en O_3 , a un moment nul en H_3 ;
- le contact ponctuel du sol sur la roue (3) a un moment nul en H₃.

Nota: le moteur est interne à l'ensemble isolé...

Soit l'équation (3):

Il reste à conclure...

Le système d'équations n'est pas intégrable dans le cas général.

Seule l'équation (1) indépendante des deux autres donne un résultat simple :

 C_2 $\theta_2 = 0$, soit $\theta_2 = Cte$: la vitesse de rotation de la roue avant est constante...

Sciences Industrielles de

Chapitre 3 – Méthodologie : détermination des équations de mouvement

l'Ingénieur

Application 2 – Corrigé

Chaîne ouverte – Banc d'essai vibrant

Pôle Chateaubriand - Joliot Curie

Savoirs et compétences :

- □ Res1.C2: principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement
- Préciser les théorèmes à utiliser permettant de déterminer deux équations différentielles liant x, θ, leurs dérivées et les paramètres cinétiques et cinématiques utiles. Déterminer ces deux équations.

Graphe de structure :

Le mécanisme possède trois degrés de mobilité, il est donc nécessaire de trouver trois équations du mouvement indépendantes. Une équation est déjà imposée : $\Omega = cte$. Reste à déterminer $\theta(t)$ et x(t).

On isole $\Sigma = 1+2+3$.

Le théorème de la résultante dynamique appliqué à Σ en projection sur \vec{x}_0 doit permettre d'obtenir une équation dans laquelle les actions mécaniques inconnues de liaison entre 0 et 1 n'interviennent pas :

$$\vec{R}_{d \; \Sigma/0} \cdot \vec{x}_0 = \vec{R}_{\Sigma \to \Sigma} \cdot \vec{x}_0$$

On isole 3.

Le théorème du moment dynamique appliqué à 3 au point C et en projection sur \bar{z}_0 doit permettre d'obtenir une équation dans laquelle les actions mécaniques inconnues de liaison entre 1 et 3 n'interviennent pas :

$$\vec{\delta}_{C,3/0} \cdot \vec{z}_0 = \vec{M}_{C,\overline{3} \to 3} \cdot \vec{z}_0$$

Actions mécaniques pour obtenir $\vec{R}_{\overline{(1+2+3)} \to (1+2+3)} \cdot \vec{x}_0$:

$$\left\{ T_{0 \to 1} \right\} = \sqrt[]{\beta} \begin{bmatrix} \vec{R}_{0 \to 1} & avec & \vec{R}_{0 \to 1} \cdot \vec{x}_0 = 0 \\ \vec{M}_{P,0 \to 1} \end{bmatrix} = \sqrt[]{\beta} \begin{bmatrix} -kx\vec{x}_0 \\ \vec{0} \end{bmatrix}$$

$$\left\{ T_{pes \to 1} \right\} = \sqrt[]{\beta} \begin{bmatrix} -m_1g\vec{y}_0 \\ \vec{0} \end{bmatrix}$$

$$\left\{ T_{pes \to 2} \right\} = \sqrt[]{\beta} \begin{bmatrix} -m_2g\vec{y}_0 \\ \vec{0} \end{bmatrix}$$

$$\left\{ T_{pes \to 3} \right\} = \sqrt[]{\beta} \begin{bmatrix} -m_3g\vec{y}_0 \\ \vec{0} \end{bmatrix}$$

$$\vec{R}_{(1+2+3)\to(1+2+3)} \cdot \vec{x}_0 = -kx$$

Éléments cinétique et dynamique pour obtenir $\vec{R}_{d\,(1+2+3)/0}\cdot\vec{x}_0$:

$$\vec{R}_{d\,(1+2+3)/0}\cdot\vec{x}_0 = \sum_{i=1}^3 m_i \vec{\Gamma}_{G_i\in i/0}\cdot\vec{x}_0$$

Soit
$$\vec{R}_{d \ (1+2+3)/0} \cdot \vec{x}_0 = m_1 \vec{\Gamma}_{G_1 \in 1/0} \cdot \vec{x}_0 + m_2 \vec{\Gamma}_{G_2 \in 2/0} \cdot \vec{x}_0 + m_3 \vec{\Gamma}_{G_3 \in 3/0} \cdot \vec{x}_0$$

$$\vec{V}_{G_1 \in 1/0} = \dot{x}\vec{x}_0 \implies$$

$$\vec{\Gamma}_{G_1 \in 1/0} = \vec{x} \vec{x}_0$$

$$\vec{V}_{G_2 \in 2/1} = \vec{V}_{B \in 2/1} + \overrightarrow{G_2B} \wedge \vec{\Omega}_{2/1} = -r\vec{i} \wedge \Omega \vec{z}_0 = r\Omega \vec{j}$$

$$\vec{V}_{G_2 \in 2/0} = \vec{V}_{G_2 \in 2/1} + \vec{V}_{G_2 \in 1/0} = r\Omega \vec{j} + \dot{x}\vec{x}_0$$
 \Rightarrow

$$\vec{\Gamma}_{G_2\in 2/0}= \ddot{x}\vec{x}_0-r\Omega^2\vec{i}$$

$$\vec{V}_{G_2\in 2/0} = \vec{V}_{G_2\in 2/1} + \vec{V}_{G_2\in 1/0} = r\Omega \vec{j} + \dot{x}\vec{x}_0 \qquad \Rightarrow \qquad \qquad \vec{\underline{\Gamma}}_{G_2\in 2/0} = \dot{x}\vec{x}_0 - r\Omega^2 \vec{i} \qquad \qquad \text{car } \frac{d\vec{j}}{dt}\bigg|_0 = \vec{\Omega}_{2/0} \wedge \vec{j} = \Omega \vec{z}_0 \wedge \vec{j} = -\Omega \vec{i}$$

$$\vec{V}_{G_2 \in 3/0} = \vec{V}_{G_2 \in 3/1} + \vec{V}_{G_2 \in 1/0} = L\dot{\theta}\vec{u} + \dot{x}\vec{x}_0$$

Théorème de la résultante dynamique appliqué à Σ =S1 + S2 + S3 en projection sur $\vec{x}_0: \vec{R}_{d \; \Sigma/0} \cdot \vec{x}_0 = \vec{R}_{\Sigma \to \Sigma} \cdot \vec{x}_0$

$$-kx = m_1\ddot{x} + m_2\Big(\ddot{x} - r\Omega^2\cos\big(\Omega t\big)\Big) + m_3\Big(\ddot{x} + L\ddot{\theta}\cos\theta - L\dot{\theta}^2\sin\theta\Big)$$

$$(m_1 + m_2 + m_3)\ddot{x} + kx + m_3 L\ddot{\theta}\cos\theta - m_3 L\dot{\theta}^2\sin\theta = m_2 r\Omega^2\cos(\Omega t)$$

Actions mécaniques pour obtenir $\overline{M}_{C,\overline{3}\to 3} \cdot \overline{z}_0$:

$$\left\{ T_{2 \to 3} \right\} = \begin{cases} \vec{R}_{2 \to 3} & avec \ \vec{M}_{P,2 \to 3} \cdot \vec{z}_0 = 0 \\ \vec{M}_{P,2 \to 3} \end{cases} avec \ \vec{M}_{P,2 \to 3} \cdot \vec{z}_0 = 0 \qquad \qquad \\ \left\{ T_{pes \to 3} \right\} = \begin{cases} -m_3 g \vec{y}_0 \\ \vec{0} \end{cases}$$

$$T_{pes \to 3}$$
 $= \begin{cases} T_{pes \to 3} \end{cases} = \begin{cases} -m_3 g \vec{y}_0 \\ \vec{0} \end{cases}$

$$\vec{M}_{C,pes \to 3} \cdot \vec{z}_0 = \left(\vec{M}_{G_3,pes \to 3} + \overline{CG_3} \wedge -m_3 g \vec{y}_0\right) \cdot \vec{z}_0 = \left[-L\vec{v} \wedge -m_3 g \vec{y}_0\right] \cdot \vec{z}_0 = -m_3 g L \sin\theta$$

Éléments cinétique et dynamique pour obtenir $\vec{\delta}_{C.3/0} \cdot \vec{z}_0$:

 $\delta_{G_3,3/0} = 0$ (masse ponctuelle)

$$\vec{\delta}_{C,3/0} \cdot \vec{z}_0 = \left[\vec{\delta}_{G_3,3/0} + \overrightarrow{CG_3} \wedge \vec{R}_{d3/0}\right] \cdot \vec{z}_0 = \left[-L\vec{v} \wedge m_3\vec{\Gamma}_{G_3 \in 3/0}\right] \cdot \vec{z}_0 = -m_3L\left[\vec{z}_0 \wedge \vec{v}\right] \cdot \vec{\Gamma}_{G_3 \in 3/0} = m_3L\vec{u} \cdot \vec{\Gamma}_{G_3 \in 3/0} = m_3L\left[\vec{x}\cos\theta + L\ddot{\theta}\right]$$

Théorème du moment dynamique appliqué à S3 au point C et en projection sur $\vec{z}_0: \vec{\delta}_{C,3/0} \cdot \vec{z}_0 = \vec{M}_{C,\overline{3} \to 3} \cdot \vec{z}_0$

$$-m_3gL\sin\theta = m_3L\left[\ddot{x}\cos\theta + L\ddot{\theta}\right]$$

$$d'où \quad | \ddot{x}\cos\theta + L\ddot{\theta} + g\sin\theta = 0$$

Proposer une linéarisation, à l'ordre 1, des deux équations différentielles précédentes.

En considérant que $x, \theta, \dot{x}, \dot{\theta}$ sont des petites variations de position ou de vitesse autour de la position d'équilibre $(x_0, \theta_0) = (0, 0)$,

et que le développement limité de f(x) à l'ordre n en a est $f(x+a) = f(a) + \frac{f'(a)}{1!}x + \cdots + \frac{f''(a)}{n!}x^n$, on a :

$$\text{ordre 0:} \begin{cases} \cos\theta = 1 \\ \sin\theta = 0 \end{cases} \quad \text{ordre 1:} \begin{cases} \cos\theta = 1 \\ \sin\theta = \theta \end{cases} \quad \text{ordre 2:} \begin{cases} \cos\theta = 1 - \frac{\theta^2}{2!} \\ \sin\theta = \theta \end{cases} \quad \text{ordre 3:} \begin{cases} \cos\theta = 1 - \frac{\theta^2}{2!} \\ \sin\theta = \theta \end{cases}$$

et
$$\dot{\theta}^2 \approx 0$$

Donc:
$$\overline{\left(m_1+m_2+m_3\right)\ddot{x}+kx+m_3L\ddot{\theta}=m_2r\Omega^2\cos\left(\Omega\,t\right)} \ \ \text{et} \ \ \overline{\ddot{x}+L\ddot{\theta}+g\theta=0}$$

3. Déterminer le système d'équations permettant de calculer A et B.

En posant $x(t) = A\cos(\Omega t)$ et $\theta(t) = B\cos(\Omega t)$, on a : $\ddot{x}(t) = -A\Omega^2\cos(\Omega t)$ et $\ddot{\theta}(t) = -B\Omega^2\cos(\Omega t)$

Les deux équations obtenues précédentes s'écrivent alors :

$$\begin{cases} -\left(m_1+m_2+m_3\right)A\Omega^2\cos(\Omega t)+kA\cos(\Omega t)-m_3LB\Omega^2\cos(\Omega t)=m_2r\Omega^2\cos\left(\Omega t\right)\\ -A\Omega^2\cos(\Omega t)-LB\Omega^2\cos(\Omega t)+gB\cos(\Omega t)=0 \end{cases}$$

$$\text{Ce qui conduit à : } \begin{cases} \left[-\left(m_1+m_2+m_3\right)\Omega^2+k\right]A-m_3L\Omega^2B=m_2r\Omega^2\\ -A\Omega^2+\left(-l\Omega^2+g\right)B=0 \end{cases}$$

$$A = \frac{m_2 r \Omega^2 \left(-L \Omega^2 + g\right)}{\left[-\left(m_1 + m_2 + m_3\right) \Omega^2 + k\right] \left(-L \Omega^2 + g\right) - m_3 L \Omega^4}$$

$$B = \frac{m_2 r \Omega^4}{\left[-\left(m_1 + m_2 + m_3\right) \Omega^2 + k\right] \left(-L \Omega^2 + g\right) - m_3 L \Omega^4}$$

4. Indiquer la condition que doit vérifier la longueur L afin d'assurer x(t) = 0 en régime forcé.

On a x(t) = 0 en régime forcé, si A = 0.

Ce qui implique que :
$$A = \frac{m_2 r \Omega^2 \left(-l \Omega^2 + g\right)}{\left\lceil -\left(m_1 + m_2 + m_3\right) \Omega^2 + k \right\rceil \left(-l \Omega^2 + g\right) - m_3 l \Omega^4}$$
 Soit : $\boxed{L = \frac{g}{\Omega^2}}$

Dans ce cas
$$B = \frac{-m_2 r}{m_3 L}$$
 et $\theta(t) = B\cos(\Omega t) = \frac{-m_2 r}{m_3 L}\cos(\Omega t)$

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 – Méthodologie: détermination des équations de mouvement

l'Ingénieur

Application 3 – Corrigé

Chaîne ouverte - Centrifugeuse géotechnique

Pôle Chateaubriand - Joliot Curie

Savoirs et compétences :

- ☐ Res1.C2: principe fondamental de la dynamique
- Res1.C1.SF1 : proposer une démarche permettant la détermination de la
- Préciser le théorème à utiliser permettant de déterminer l'équation de mouvement de la nacelle 2 par rapport au bras 1. Déterminer cette équation.

Graphe de structure :

Le mécanisme possède deux degrés de mobilité, il est donc nécessaire de trouver deux équations du mouvement indépendantes. Une équation est déjà imposée : ω = cte . Reste à déterminer $\beta(t)$.

On isole la nacelle 2.

Le théorème du moment dynamique appliqué à 2 au point A et en projection sur \vec{y}_1 doit permettre d'obtenir une équation dans laquelle les actions mécaniques inconnues de liaison entre 1 et 2 n'interviennent pas :

$$\vec{\delta}_{A,2/0} \cdot \vec{y}_1 = \vec{M}_{A,\overline{2} \to 2} \cdot \vec{y}_1$$

Actions mécaniques pour obtenir $\vec{M}_{A,\bar{2}\to 2} \cdot \vec{y}_1$:

$$\left\{T_{1\rightarrow2}\right\} = \underset{\forall P \in (A,\vec{\gamma}_1)}{\left\{\vec{R}_{1\rightarrow2}} \left\{\vec{R}_{1\rightarrow2} \ avec \ \vec{M}_{P,1\rightarrow2} \cdot \vec{\gamma}_1 = 0 \right. \right. \\ \left. \left\{T_{pes\rightarrow2}\right\} = \underset{\forall P \in (G,\vec{z})}{\left\{\vec{m}g\vec{z} \ \vec{0}\right\}} \right\} = \underbrace{\left\{\vec{R}_{1\rightarrow2} \left\{\vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \right\} = \vec{R}_{1\rightarrow2} \left\{\vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \right\} = \vec{R}_{1\rightarrow2} \left\{\vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \right\} = \underbrace{\left\{\vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \right\}}_{\left.\vec{R}_{1\rightarrow2} \left(\vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \right) = \vec{R}_{1\rightarrow2} \left\{\vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \right\} = \underbrace{\left\{\vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \right\}}_{\left.\vec{R}_{1\rightarrow2} \left(\vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \right) = \underbrace{\left\{\vec{R}_{1\rightarrow2} \ \vec{R}_{1\rightarrow2} \$$

$$\vec{M}_{A,pes \to 2} \cdot \vec{y}_1 = \left(\vec{M}_{G,pes \to 2} + \overrightarrow{AG} \wedge mg\vec{z} \right) \cdot \vec{y}_1 = \left(b\vec{z}_2 \wedge mg\vec{z} \right) \cdot \vec{y}_1 = \underline{-mgb \sin\beta}$$

Éléments cinétique et dynamique pour obtenir : $\vec{\delta}_{A,2/0} \cdot \vec{y}_1$:

A n'est pas un point fixe dans R_0 . On ne peut donc pas utiliser l'intégration par partie.

La matrice d'inertie est donnée en un point A qui n'est pas le centre de gravité!!! 2 possibilités:

Méthode 1 : utiliser les définitions de $\vec{\sigma}_{A,2/0}$ et $\vec{\delta}_{A,2/0}$:

$$\vec{\sigma}_{A,2/0} = \vec{I}_A(2) \cdot \vec{\Omega}_{2/0} + m \overrightarrow{AG} \wedge \vec{V}_{A \in 2/0} \qquad \text{et} \qquad \vec{\delta}_{A,2/0} = \frac{d \vec{\sigma}_{A,2/0}}{dt} \bigg|_0 + m \vec{V}_{A/0} \wedge \vec{V}_{G \in 2/0}$$

Méthode 2 : utiliser Huygens pour obtenir la matrice au point G, puis utiliser la méthode classique en déterminant $\ddot{\sigma}_{G,2/0}$ puis $\vec{\delta}_{G,2/0}$ puis $\vec{\delta}_{A,2/0}$.

Nous allons utiliser la méthode 1.

$$\vec{V}_{A/0} = \vec{V}_{A \in 2/0} = \vec{V}_{A \in 1/0} = \vec{V}_{O \in 1/0} + \overrightarrow{AO} \wedge \vec{\Omega}_{1/0} = -a\vec{x}_1 \wedge \dot{\alpha}\vec{z}_1 = a\dot{\alpha}\vec{y}_1$$

$$\vec{\sigma}_{A,2/0} = \vec{I}_{A}(2) \cdot \vec{\Omega}_{2/0} + m \overrightarrow{AG} \wedge \vec{V}_{A \in 2/0} = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{b2} \cdot \begin{pmatrix} 0 \\ \dot{\beta} \\ \dot{\alpha} \end{pmatrix}_{b1} + m b \vec{z}_{2} \wedge a \dot{\alpha} \vec{y}_{1}$$

$$= \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{b2} \cdot \begin{pmatrix} -\dot{\alpha}\sin\beta \\ \dot{\beta} \\ \dot{\alpha}\cos\beta \end{pmatrix}_{b2} - mba\dot{\alpha}\vec{x}_{2}$$

 $= -A\dot{\alpha}\sin\beta\vec{x}_2 + B\dot{\beta}\vec{y}_2 + C\dot{\alpha}\cos\beta\vec{z}_2 - mba\dot{\alpha}\vec{x}_2$

$$= -(A\dot{\alpha}\sin\beta + mba\dot{\alpha})\vec{x}_2 + B\dot{\beta}\vec{y}_2 + C\dot{\alpha}\cos\beta\vec{z}_2$$

Avec: $(mV_{A/0} \wedge V_{G \in 2/0}) \cdot y_1 = 0 \text{ car } V_{A/0} / / y_1$ $\frac{d\vec{\sigma}_{A,2/0}}{dt} \left[\cdot \vec{y}_1 = \frac{d(\vec{\sigma}_{A,2/0} \cdot \vec{y}_1)}{dt} - \vec{\sigma}_{A,2/0} \cdot \frac{d\vec{y}_1}{dt} \right]_0$

$$\left. \text{et} \ \frac{d \, \vec{y}_1}{dt} \right|_0 = \vec{\Omega}_{1/0} \wedge \vec{y}_1 = \dot{\alpha} \vec{z} \wedge \vec{y}_1 = -\dot{\alpha} \vec{x}_1$$

Donc

$$\begin{split} \vec{\delta}_{A,2/0} \cdot \vec{y}_1 &= \frac{d \left(B \dot{\beta} \right)}{dt} - \left[- (A \dot{\alpha} \sin\beta + mba \dot{\alpha}) \vec{x}_2 + B \dot{\beta} \vec{y}_2 + C \dot{\alpha} \cos\beta \vec{z}_2 \right] \cdot \left[- \dot{\alpha} \vec{x}_1 \right] \\ \vec{\delta}_{A,2/0} \cdot \vec{y}_1 &= B \ddot{\beta} + \dot{\alpha} \left[- (A \dot{\alpha} \sin\beta + mba \dot{\alpha}) \cos\beta + C \dot{\alpha} \cos\beta \sin\beta \right] \\ \vec{\delta}_{A,2/0} \cdot \vec{y}_1 &= B \ddot{\beta} + \dot{\alpha}^2 \cos\beta \left[\sin\beta (C - A) - mba \right] \end{split}$$
 car $\vec{x}_2 \cdot \vec{x}_1 = \cos\beta$ et $\vec{z}_2 \cdot \vec{x}_1 = \sin\beta$

Théorème du moment dynamique appliqué à 2 au point A et en projection sur $\vec{y}_1:\vec{\delta}_{A,2/0}\cdot\vec{y}_1=\vec{M}_{A,2\to2}\cdot\vec{y}_1$

$$\left[-mgb\sin\beta = B\ddot{\beta} + \omega^2 \cos\beta \left[\sin\beta (C - A) - mba \right] \right] (1)$$

Préciser le théorème à utiliser permettant de déterminer le couple moteur. Déterminer son expression.

Graphe de structure :

On isole l'ensemble E=bras 1+ nacelle 2.

Le théorème du moment dynamique appliqué à E au point O et en projection sur \vec{z} doit permettre d'obtenir une équation dans laquelle les actions mécaniques inconnues de liaison entre 0 et 1 n'interviennent pas.

$$\vec{\delta}_{O,E/0} \cdot \vec{z} = \vec{M}_{O,E \to E} \cdot \vec{z}$$

Actions mécaniques pour obtenir $M_{O, \overline{E} \to E} \cdot \vec{z}$:

Actions mecaniques pour obtenir
$$M_{O,\overline{E}\to E} \cdot Z$$
:
$$\{T_{0\to 1}\} = \begin{cases} \vec{R}_{0\to 1} & \text{avec } \vec{M}_{P,0\to 1} \cdot \vec{z} = 0 \\ \vec{M}_{P,0\to 1} \end{cases} = \begin{cases} \vec{R}_{0\to 1} & \text{avec } \vec{M}_{P,0\to 1} \cdot \vec{z} = C_m \end{cases}$$

$$\{T_{pes\to 1}\} = \begin{cases} m_1 g \vec{z} \\ \vec{0} \end{cases} \qquad \qquad \{T_{pes\to 2}\} \begin{cases} mg \vec{z} \\ \vec{0} \end{cases}$$

$$\{T_{pes\to 2}\} \begin{cases} mg \vec{z} \\ \vec{0} \end{cases}$$

Avec
$$\vec{M}_{O,pes \to i} \cdot \vec{z} = \left(\vec{M}_{G,pes \to i} + \overrightarrow{OG_i} \wedge m_i g \vec{z} \right) \cdot \vec{z} = \underline{0}$$

$$\vec{M}_{O,\vec{E} \to E} \cdot \vec{z} = \vec{M}_{O,0 \to 1} \cdot \vec{z} + \vec{M}_{O,0 \to 1} \cdot \vec{z} + \vec{M}_{O,pes \to 1} \cdot \vec{z} + \vec{M}_{O,pes \to 2} \cdot \vec{z} = \underline{C_m}$$

Éléments cinétique et dynamique pour obtenir $\delta_{O.E/0}\cdot\vec{z}$:

O est un point fixe dans R_0 . On peut donc utiliser l'intégration par partie.

$$\vec{\delta}_{O,E/0} \cdot \vec{z} = \frac{d \left(\vec{\sigma}_{O,E/0} \cdot \vec{z} \right)}{dt} - \vec{\sigma}_{O,E/0} \cdot \frac{d\vec{z}}{dt} \bigg|_{0} = \frac{d \left(\vec{\sigma}_{O,E/0} \cdot \vec{z} \right)}{dt}$$

$$\vec{\sigma}_{O,1/0} \cdot \vec{z} = \left(\vec{l}_O(1) \cdot \vec{\Omega}_{1/0}\right) \cdot \vec{z} = I\dot{\alpha} \quad \text{donc} \quad \frac{d\left(\vec{\sigma}_{O,1/0} \cdot \vec{z}\right)}{dt} = 0 \quad \text{(car } \dot{\alpha} = \omega = cte)$$

$$\vec{\sigma}_{O,2/0} \cdot \vec{z} = \left(\vec{\sigma}_{A,2/0} + \overrightarrow{OA} \wedge m \vec{V}_{G \in 2/0}\right) \cdot \vec{z} = \vec{\sigma}_{A,2/0} \cdot \vec{z} + \left(\overrightarrow{OA} \wedge m \vec{V}_{G \in 2/0}\right) \cdot \vec{z}$$

$$\begin{split} \vec{\sigma}_{A,2/0} \cdot \vec{z} &= \left[-(A\dot{\alpha}\sin\beta + mba\dot{\alpha})\vec{x}_2 + B\dot{\beta}\vec{y}_2 + C\dot{\alpha}\cos\beta\vec{z}_2 \right] \cdot \vec{z} \\ &= -(A\dot{\alpha}\sin\beta + mba\dot{\alpha})(-\sin\beta) + C\dot{\alpha}\cos^2\beta & \text{car } \vec{x}_2 \cdot \vec{z} = -\sin\beta \quad \text{et } \vec{z}_2 \cdot \vec{z} = \cos\beta \\ &= \omega \Big(A\sin^2\beta + C\cos^2\beta + mba\sin\beta \Big) \end{split}$$

$$\begin{split} \left(\overrightarrow{OA} \wedge m \overrightarrow{V}_{G \in 2/0}\right) \cdot \overrightarrow{z} &= \left[a \overrightarrow{x}_1 \wedge m (\overrightarrow{V}_{A \in 2/0} + \overrightarrow{GA} \wedge \overrightarrow{\Omega}_{2/0}) \right] \cdot \overrightarrow{z} \\ &= \left\{ a \overrightarrow{x}_1 \wedge m \left[a \dot{\alpha} \overrightarrow{y}_1 - b \overrightarrow{z}_2 \wedge (\dot{\alpha} \overrightarrow{z} + \dot{\beta} \overrightarrow{y}_1) \right] \right\} \cdot \overrightarrow{z} \\ &= \left\{ a \overrightarrow{x}_1 \wedge m \left[\dot{\alpha} (a + b \sin \beta) \overrightarrow{y}_1 + b \dot{\beta} \overrightarrow{x}_2 \right] \right\} \cdot \overrightarrow{z} \\ &= m a \dot{\alpha} (a + b \sin \beta) \\ &= m a \omega (a + b \sin \beta) \\ &= m a \omega (a + b \sin \beta) \end{split}$$
 Ainsi $\overrightarrow{\sigma}_{O,2/0} \cdot \overrightarrow{z} = \omega \left(A \sin^2 \beta + C \cos^2 \beta + 2mba \sin \beta + ma^2 \right)$

$$\vec{\sigma}_{O,2/0} \cdot \vec{z} = \omega \left(A \sin^2 \beta + C \cos^2 \beta + 2mba \sin \beta + ma^2 \right)$$

$$d(\vec{\sigma}_{O,2/0} \cdot \vec{z}) \qquad (\dot{\sigma}_{O,2/0} \cdot \vec{z})$$

$$\frac{d(\vec{\sigma}_{O,2/O} \cdot \vec{z})}{dt} = \omega \left(2\dot{\beta}A\sin\beta\cos\beta - 2C\dot{\beta}\cos\beta\sin\beta + 2mba\dot{\beta}\cos\beta\right)$$

$$\frac{d(\vec{\sigma}_{O,2/0} \cdot \vec{z})}{dt} = 2\omega \dot{\beta} \cos \beta [\sin \beta (A - C) + mba]$$

Théorème du moment dynamique appliqué à E au point O et en projection sur $\vec{z}:\vec{\delta}_{O,E/O}\cdot\vec{z}=\vec{M}_{O,E\to E}\cdot\vec{z}$

$$C_m = 2\omega \dot{\beta} \cos \beta \left[\sin \beta (A - C) + mba \right]$$
 (2)

3. Déterminer les expressions de l'angle β et du couple moteur C_m ?

On suppose que $mba >> A \approx C$

De plus lorsque la nacelle 2 est en équilibre relatif par rapport au bras 1, on a : $\beta = cte \Rightarrow \dot{\beta} = \ddot{\beta} = 0$

Ainsi, les deux équations déterminées aux questions 1 et 2 $\begin{cases} -mgb\sin\beta = B\ddot{\beta} + \omega^2\cos\beta \left[\sin\beta(C-A) - mba\right] & \text{(1)} \\ C_m = 2\omega\dot{\beta}\cos\beta \left[\sin\beta(A-C) + mba\right] & \text{(2)} \end{cases}$ deviennent :

$$(1) \implies -mgb\sin\beta = -\omega^2\cos\beta mba \implies \tan\beta = \frac{\omega^2 a}{g} \implies \boxed{\beta = \arctan\left(\frac{\omega^2 a}{g}\right)}$$

(2) $\Rightarrow C_m = 0$ ce qui est normal, car la liaison 1/0 est parfaite, donc à vitesse constante de 1/0, il n'y a pas besoin de couple moteur (qui sert à accélérer ou freiner).

Chapitre 3 – Méthodologie : détermination des équations de mouvement

l'Ingénieur

Application 4 – Corrigé

Chargement et déchargement des cargos porteconteneurs

Centrale Supelec PSI 2013

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1 : proposer une démarche permettant la détermination de la loi de mouvement

Modélisation dynamique du comportement de la charge

Objectif Déterminer les équations du mouvement du conteneur de façon à en obtenir un modèle simple pour la synthèse de la commande.

Question 1 Après avoir réalisé le graphe de structure, déterminer le nombre de degrés de liberté et le nombre d'actionneurs du modèle proposé figure précédente. En déduire le nombre de degrés de liberté non motorisés. Expliquer pourquoi il est difficile de poser le conteneur sur un camion avec précision?

Le système a trois mobilités :

- la translation de la liaison glissière de longueur $y_{ch}(t)$ (degré de liberté motorisé);
- la rotation du câble d'angle $\theta(t)$ (degré de liberté non motorisé);
- la rotation du conteneur d'angle $\beta(t)$ (degré de liberté non motorisé).

Les deux liaisons pivot n'étant pas freinées ou motorisées, lorsque le chariot se positionne au-dessus du camion le conteneur va se balancer, ce qui rend difficile la dépose du conteneur.

Question 2 Déterminer littéralement, au point G_3 , la vitesse $\overline{V(G_3, 3/0)}$ puis le torseur dynamique $\{\mathcal{D}(3/0)\}$ de l'ensemble {conteneur + spreader} (3) dans son mouvement par rapport au repère galiléen \mathcal{R}_0 .

•
$$\left[\frac{\mathrm{d} \overrightarrow{z_3}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} \overrightarrow{z_3}}{\mathrm{d}t} \right]_{\mathscr{R}_3} + \overline{\Omega(3/0)} \wedge \overrightarrow{z_3} = \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_2} \wedge \overrightarrow{z_3} = - \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{y_3};$$
•
$$\left[\frac{\mathrm{d} \overrightarrow{y_2}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \dot{\theta} \overrightarrow{z_2};$$
•
$$\left[\frac{\mathrm{d} \overrightarrow{y_3}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{z_3}.$$

$$\overrightarrow{V(G_3, 3/0)} = \dot{y}_{ch}(t) \overrightarrow{y_0} + \ell_2 \dot{\theta} \overrightarrow{y_2} + h_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{y_3}.$$

$$\overrightarrow{\Gamma(G_3, 3/0)} = \ddot{y}_{ch}(t) \overrightarrow{y_0} + \ell_2 \ddot{\theta} \overrightarrow{y_2} + h_3 \left(\ddot{\theta} + \ddot{\beta} \right) \overrightarrow{y_3} + \ell_2 \dot{\theta}^2 \overrightarrow{z_2} + h_3 \left(\dot{\theta} + \dot{\beta} \right)^2 \overrightarrow{z_3}.$$
Par ailleurs, G_3 étant le centre d'inertie, de 3, on a
$$\overrightarrow{\delta(G_3, 3/0)} = \left[\frac{\mathrm{d} \overrightarrow{\sigma(G_3, 3/0)}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t} \right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d} A_3 \left(\dot{\theta} + \dot{\beta} \right) \overrightarrow{x_0}}{\mathrm{d}t}$$

Question 3 En précisant l'isolement et le bilan des actions mécaniques extérieures, déterminer l'équation différentielle de résultante reliant les paramètres heta(t), eta(t)et $y_{ch}(t)$, sans inconnue de liaison et sans l'action du moteur.

Correction D'une part, on peut se dire qu'on va utiliser le résultat de la question précédente. D'autre part, le sujet demande une équation de résultante sans aucune action mécanique. Si on isole le solide 3, il va donc falloir projeter sur une direction ne faisant pas intervenir d'action mécanique. Les données précisent que l'action du câble est suivant $\overrightarrow{z_2}$, on peut donc suggérer de réaliser le thorème de la résultante dynamique appliqué au solide 3 en projection sur $\overline{y_2}$.

Le bilan des actions mécaniques est donc le suivant :

- action de la pesanteur sur 3;
- action de 2 sur 3.

On a donc:
$$-M_3 g \overrightarrow{z_0} \cdot \overrightarrow{y_2} = \left(M_3 \left(\ddot{y}_{ch}(t) \overrightarrow{y_0} + \ell_2 \ddot{\theta} \overrightarrow{y_2} + h_3 \left(\ddot{\theta} + \ddot{\beta} \right) \overrightarrow{y_3} + \ell_2 \dot{\theta}^2 \overrightarrow{z_2} + h_3 \left(\dot{\theta} + \dot{\beta} \right)^2 \overrightarrow{z_3} \right) \right) \cdot \overrightarrow{y_2}$$

 $\Leftrightarrow -M_3 g \sin \theta = M_3 \left(\ddot{y}_{ch}(t) \cos \theta + \ell_2 \ddot{\theta} + h_3 \left(\ddot{\theta} + \ddot{\beta} \right) \cos \beta - h_3 \left(\dot{\theta} + \dot{\beta} \right)^2 \sin \beta \right)$

Résolution faisant intervenir F – Non demandé.

L'équation de résultante étant demandée, on peut aussi isoler une pièce (ou un ensemble de pièces) en translation rectiligne. On isole donc (1+2+3) et on réalise un théorème de la résultante dynamique en projection sur y_0 .

Bilan des actions mécaniques :

- action de la pesanteur sur 3 (la résultante n'a pas de composante sur $\overrightarrow{y_0}$);
- action de la pesanteur sur 1 (négligée) (la résultante n'a pas de composante sur $\overrightarrow{y_0}$);
- action de 0 sur 3 (glissière) (la résultante n'a pas de composante sur $\overrightarrow{y_0}$);

• action du moteur sur 1. On applique le TRD sur
$$\overrightarrow{y_0}: F = \overrightarrow{R_d(1+2+3/0)} \cdot \overrightarrow{y_0} = \underbrace{\overrightarrow{R_d(1/0)} \cdot \overrightarrow{y_0}}_{=0 \text{(masse négligée)}} + \underbrace{\overrightarrow{R_d(2/0)} \cdot \overrightarrow{$$

Question 4 En précisant l'isolement et le bilan des actions mécaniques extérieures, déterminer les équations différentielles reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$ et sans inconnue de liaison. La méthode sera clairement séparée des calculs.

Correction Le TRD appliqué à 3 en projection suivant $\overrightarrow{z_2}$ se traduit par : $F - M_3 g \overrightarrow{z_0} \cdot \overrightarrow{z_2} = \left(M_3 \left(\ddot{y}_{ch}(t) \overrightarrow{y_0} + \ell_2 \ddot{\theta} \overrightarrow{y_2} + h_3 \left(\ddot{\theta} + \ddot{\beta} \right) \overrightarrow{y_3} + \ell_2 \dot{\theta}^2 \overrightarrow{z_2} + h_3 \left(\dot{\theta} + \dot{\beta} \right)^2 \overrightarrow{z_3} \right) \right) \cdot \overrightarrow{z_2}$ $\Leftrightarrow F - M_3 g \cos \theta = M_3 \left(-\ddot{y}_{ch}(t) \sin \theta + h_3 \left(\ddot{\theta} + \ddot{\beta} \right) \sin \beta + \ell_2 \dot{\theta}^2 + h_3 \left(\dot{\theta} + \dot{\beta} \right)^2 \cos \beta \right).$ Le TMD appliqué à 3 au point F en projection suivant $\overrightarrow{x_0}$ se traduit par : $\overrightarrow{FG_3} \wedge \left(-M_3 g \overrightarrow{z_0} \right) \cdot \overrightarrow{x_0} = \left(\overrightarrow{\delta(G_3, 3/0)} + \overrightarrow{FG_3} \wedge \overrightarrow{R_d(3/0)} \right) \cdot \overrightarrow{x_0}$

$$\iff -h_3 \overrightarrow{z_3} \wedge \left(-M_3 g \overrightarrow{z_0}\right) \cdot \overrightarrow{x_0} = A_3 \left(\ddot{\theta} + \ddot{\beta}\right)$$

$$\iff -M_3 g h_3 \sin \left(\beta + \theta\right) = A_3 \left(\ddot{\theta} + \ddot{\beta}\right).$$

Question 5 En supposant que θ , β , $\dot{\theta}$ et $\dot{\beta}$ sont petits, linéariser les équations précédentes.

Correction • On a $-M_3g\sin\theta = M_3\left(\ddot{y}_{ch}(t)\cos\theta + \ell_2\ddot{\theta} + h_3\left(\ddot{\theta} + \ddot{\beta}\right)\cos\beta - h_3\left(\dot{\theta} + \dot{\beta}\right)^2\sin\beta\right)$. En linéarisant, on obtient $-M_3g\theta = M_3\left(\ddot{y}_{ch}(t) + \ell_2\ddot{\theta} + h_3\left(\ddot{\theta} + \ddot{\beta}\right) - h_3\left(\dot{\theta} + \dot{\beta}\right)^2\beta\right)$. En considérant que $\dot{\theta}$ et $\dot{\beta}$ sont petits, on a : $-M_3g\theta = M_3\left(\ddot{y}_{ch}(t) + \ell_2\ddot{\theta} + h_3\left(\ddot{\theta} + \ddot{\beta}\right)\right)$.

- On a : $F M_3 g \cos \theta = M_3 \left(-\ddot{y}_{ch}(t) \sin \theta + h_3 \left(\ddot{\theta} + \ddot{\beta} \right) \sin \beta + \ell_2 \dot{\theta}^2 + h_3 \left(\dot{\theta} + \dot{\beta} \right)^2 \cos \beta \right)$. En linéarisant, on obtient : $F M_3 g = M_3 \left(-\ddot{y}_{ch}(t)\theta + h_3 \left(\ddot{\theta} + \ddot{\beta} \right) \beta + \ell_2 \dot{\theta}^2 + h_3 \left(\dot{\theta} + \dot{\beta} \right)^2 \right)$ En considérant que $\dot{\theta}$ et $\dot{\beta}$ sont petits, on a : $F M_3 g = M_3 \left(-\ddot{y}_{ch}(t)\theta + h_3 \left(\ddot{\theta} + \ddot{\beta} \right) \beta \right)$.
- On a : $M_3 g h_3 \sin (\beta + \theta) = A_3 (\ddot{\theta} + \ddot{\beta})$ En linéarisant, on obtient $M_3 g h_3 (\beta + \theta) = A_3 (\ddot{\theta} + \ddot{\beta})$.

Les courbes temporelles ont été obtenues par simulation, à partir des équations précédentes, pour un échelon en $y_{ch}(t)$ de 10 m.

Question 6 Proposer une simplification de la modélisation précédente.

Correction L'amplitude des oscillations de β est 10 fois inférieure aux oscillations de θ . En conséquences, on pourrait poser $\beta = 0$ et :

- $-g\theta = \ddot{y}_{ch}(t) + \ell_2 \ddot{\theta} + h_3 \ddot{\theta}$;
- $F M_3 g = -M_3 \ddot{y}_{ch}(t)\theta$;
- $M_3gh_3\theta = A_3\ddot{\theta}$.

Industrielles de

Chapitre 3 – Méthodologie : détermination des équations de mouvement

l'Ingénieur

Sciences

TD 1 - Corrigé

Dynamique du véhicule - Chariot élévateur à bateaux

X - ENS - PSI - 2012

Savoirs et compétences :

- ☐ Res1.C2: principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement

Présentation

Étude de la position du centre de gravité

Objectif L'objectif est de valider l'exigence suivante : « req C206 : la position du centre de gravité de l'ensemble Σ ={chariot, tablier, contrepoids} doit être situé à un tiers de l'empattement par rapport à l'axe des roues arrières».

Question 1 Déterminer l'expression de x_{G_C} afin de valider l'exigence req C206.

Pour toute la suite de l'étude, les points G et O sont supposés confondus et la masse totale de l'ensemble $\Sigma = \{\text{chariot, tablier, contrepoids}\}$ est notée M.

Étude du basculement frontal

Question 2 Écrire les équations issues de l'application du principe fondamental de la dynamique à l'ensemble $\{\Sigma, B\}$. Le théorème du moment dynamique sera appliqué au point I_4 .

Correction On isole $\{\Sigma, B\}$.

On fait le BAME.

• Poids du bateau :
$$\{\mathcal{T}(\text{pes} \to B)\} = \left\{\begin{array}{c} -m_B g \overrightarrow{z} \\ \overrightarrow{0} \end{array}\right\}_O = \left\{\begin{array}{c} -m_B g \overrightarrow{z} \\ m_B g \overrightarrow{y} \left(x_{G_B} - \frac{2L}{3}\right) + E m_B g \overrightarrow{x} \end{array}\right\}_{I_A}.$$

• Poids de
$$\Sigma$$
: $\{\mathcal{T}(\text{pes} \to \Sigma)\} = \left\{\begin{array}{c} -Mg\overrightarrow{z} \\ \overrightarrow{0} \end{array}\right\}_{O} = \left\{\begin{array}{c} -Mg\overrightarrow{z} \\ -\frac{2MgL}{3}\overrightarrow{y} + EMg\overrightarrow{x} \end{array}\right\}_{C}.$

• Action du sol sur chaque roue :

Calcul du $\{\mathcal{D}(\{\Sigma, B\}/0)\}$.

$$\{\mathcal{D}(\{\Sigma,B\}/0)\} = \left\{ \begin{array}{l} \overline{R_d(\{\Sigma,B\}/0)} \\ \overline{\delta(I_4,\{\Sigma,B\}/0)} \end{array} \right\}_{I_4}.$$

On a
$$\overrightarrow{R_d(\{\Sigma, B\}/0)} = -(M + m_B) \operatorname{dec}_x \overrightarrow{x_1}$$

Par ailleurs, on a $\delta(G, \{\Sigma, B\}/0) = \overline{\delta(G, \Sigma/0)} + \overline{\delta(G, B/0)}$. Le bateau étant en translation par rapport au bâti, on a donc:

•
$$\overrightarrow{\delta(G,\{\Sigma\}/0)} = \overrightarrow{0}$$
 et $\overrightarrow{\delta(I_4,\{\Sigma\}/0)} = \overrightarrow{\delta(G,\{\Sigma,\}/0)} + \overrightarrow{I_4G} \wedge \overrightarrow{R_d(\{\Sigma\}/0)} = \left(-2\frac{L}{3}\overrightarrow{x_1} - E\overrightarrow{y_1} + h\overrightarrow{z_1}\right) \wedge -M \operatorname{dec}_x \overrightarrow{x_1} = -M \operatorname{dec}_x \left(E\overrightarrow{z_1} + h\overrightarrow{y_1}\right);$

•
$$\overrightarrow{\delta(G_B, \{B\}/0)} = \overrightarrow{0} \text{ et } \overrightarrow{\delta(I_4, \{B\}/0)} = \overrightarrow{\delta(G_B, \{B\}/0)} + \overrightarrow{I_4G_B} \wedge \overrightarrow{R_d(\{B\}/0)} = \left(\left(-x_{G_B} + 2\frac{L}{3}\right)\overrightarrow{x_1} + E\overrightarrow{y_1} + \left(z_{G_B} + h\right)\overrightarrow{z_1}\right) \wedge -m_B \text{dec}_x \overrightarrow{x_1} = m_B \text{dec}_x \left(E\overrightarrow{z_1} - \left(z_{G_B} + h\right)\overrightarrow{y_1}\right);$$

• au final, $\overrightarrow{\delta(I_4, \{\Sigma, B\}/0)} = m_B \operatorname{dec}_x \left(E \overrightarrow{z_1} - \left(z_{G_B} + h \right) \overrightarrow{y_1} \right) - M \operatorname{dec}_x \left(E \overrightarrow{z_1} + h \overrightarrow{y_1} \right)$.

On applique le PFD.

- Théorème de la résultante dynamique :
 - suivant $\overrightarrow{x_1}$:- $(M+m_B)$ dec_x = $-\sum_{i=1}^{4} T_i$;
 - suivant $\overrightarrow{v_1}:0=0$;
- suivant $\overrightarrow{z_1}$:0 = $\sum_{i=1}^4 N_i (M + m_B)g$. Théorème du moment dynamique :
- - suivant $\overrightarrow{x_1}$: $0 = Em_B g + EMg 2EN_2 2EN_3$;
 - suivant $\overrightarrow{y_1}$: $-m_B \operatorname{dec}_x \left(z_{G_B} + h\right) M \operatorname{dec}_x h = L(N_1 + N_2) + m_B g\left(x_{G_B} 2\frac{L}{3}\right) \frac{Mg2L}{3}$;
 - suivant $\overrightarrow{z_1}$: $m_B \operatorname{dec}_x E M \operatorname{dec}_x E = -2ET_2 2ET_3$.

Question 3 Donner les hypothèses qui peuvent être faites afin de réduire le nombre d'inconnues du problème.

Correction La mise en équation précédente permet d'exprimer 8 inconnues $(N_i \text{ et } T_i \text{ pour } i \text{ allant de } 1 \text{ à 4})$.

En faisant l'hypothèse que le plan $(G_1, \overrightarrow{z_1}, \overrightarrow{x_1})$ est plan de symétrie, on peut considérer que $N_4 = N_3$, $T_4 = T_3$, $N_1 = N_2$, $T_1 = T_2$. Il reste donc 4 inconnues.

De plus, à la limite du basculement frontal, les roues arrières se décolleraient. Il resterait donc les inconnues N_3 et T_3 .

On considère que le basculement a lieu lorsque les roues arrière perdent le contact avec le sol.

Question 4 Déterminer alors l'expression de dec_x.

Correction Le basculement frontal du véhicule peut se traduire par un théorème du moment dynamique appliqué en I_4 en projection sur $\overrightarrow{y_1}$. On utilise les conditions précédentes. On a donc :

$$-m_{B} \operatorname{dec}_{x} (z_{G_{B}} + h) - M \operatorname{dec}_{x} h = m_{B} g \left(x_{G_{B}} - 2\frac{L}{3} \right) - \frac{Mg2L}{3} \operatorname{soit} \operatorname{dec}_{x} = \frac{m_{B} g \left(x_{G_{B}} - 2\frac{L}{3} \right) - \frac{Mg2L}{3}}{-m_{B} (z_{G_{B}} + h) - Mh}$$

$$\Leftrightarrow \operatorname{dec}_{x} = -g \frac{m_{B} (3x_{G_{B}} - 2L) - M2L}{3m_{B} (z_{G_{B}} + h) + 3Mh}$$

Le facteur d'adhérence entre le pneu et la route est noté f.

Question 5 Donner les expressions de N_4 et T_4 et expliquer qualitativement comment vérifier que le basculement a lieu avant le glissement afin de justifier l'hypothèse faite en début d'étude.

Correction

Étude du basculement latéral

Question 6 Quel théorème doit-on utiliser afin d'obtenir directement l'équation permettant de déterminer l'expression de V qui provoque le basculement latéral?

Correction

Question 7 En déduire l'expression de V qui provoque le basculement latéral .

Correction

Sciences
Industrielles de

Chapitre 3 – Méthodologie : détermination des équations de mouvement

l'Ingénieur

TD 3 - Corrigé

Dynamique du véhicule – Segway de première génération

Frédéric SOLLNER - Lycée Mermoz - Montpellier

Savoirs et compétences :

- □ Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1 : proposer une démarche permettant la détermination de la loi de mouvement

Présentation

Objectif L'objectif est de valider l'exigence 1 : permettre à l'utilisateur de se déplacer sur le sol.

Étude du dérapage en virage du véhicule Segway

Question 1 Exprimer la vitesse, notée $\overrightarrow{V(G_E/\mathcal{R}_0)}$, du point G_E dans son mouvement par rapport à \mathcal{R}_0 en fonction de $\dot{\theta}$ et R_C . Exprimer la vitesse linéaire V_L du véhicule en fonction de R_C et $\dot{\theta}$.

Correction On a $\overrightarrow{V(G_E/\mathcal{R}_0)} = -R_C \dot{\theta} \overrightarrow{x_1}$. On a alors $V_L = R_C \dot{\theta}$.

Correction La direction des efforts normaux et tangentiels est donnée. En utilisant les lois de Coulomb, on a donc, $T_A \le f N_A$ et $T_B \le f N_B$. En sommant les inégalités, on a donc $T_A + T_B \le f (N_A + N_B)$.

Correction E étant un ensemble indéformable, on a : $\overrightarrow{R_d(E/\mathcal{R}_0)} = -m_E R_C \dot{\theta}^2 \overrightarrow{y_1}$ (pas de projection sur $\overrightarrow{z_0}$. On isole E et les roues et on réalise le BAME :

- pesanteur sur *E*;
- · action du sol sur les roues.

En appliquant le TRD en projection sur $\overrightarrow{z_{01}}$, on a donc : $N_A + N_B - m_E g = 0$.

Correction En appliquant le TRD en projection sur $\overline{y_1}$, on a : $-T_A - T_B = -m_E R_C \dot{\theta}^2 \Leftrightarrow T_A + T_B = m_E R_C \dot{\theta}^2$. En utilisant les résultats de la question précédente, $m_E R_C \dot{\theta}^2 \leq f m_E g$. En notant $V_L = R_C \dot{\theta}$ la vitesse limite avant dérapage, on a $\frac{V_L^2}{R_C} \leq f g$. On a donc $V_L \leq \sqrt{R_C f g}$.

Correction La vitesse limite est donc de 10 m s⁻¹ soient 36 km h⁻¹ ce qui satisfait le cahier des charges.

Étude du renversement en virage du véhicule Segway

En conséquence,
$$\{\mathcal{D}(E/\mathcal{R}_0)\} = \left\{ \begin{array}{l} -m_E R_C \dot{\theta}^2 \overrightarrow{y_1} \\ -E \dot{\theta}^2 \overrightarrow{y_1} + D \dot{\theta}^2 \overrightarrow{x_1} \end{array} \right\}_{G_E}$$

Correction On a:

•
$$\overrightarrow{BG_E} \wedge -m_E g \overrightarrow{z_{01}} = \left(-l \overrightarrow{y_1} + h \overrightarrow{z_0}\right) \wedge -m_E g \overrightarrow{z_{01}} = l m_E g \overrightarrow{x_1};$$

•
$$\overrightarrow{BA} \wedge \left(-T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1} \right) = -2l \overrightarrow{y_1} \wedge \left(-T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1} \right) = -2l N_A \overrightarrow{x_1}.$$

En appliquent le TMD en B suivant $\overrightarrow{x_1}$, on a : $l m_E g - 2l N_A = (D + h m_E R_C) \dot{\theta}^2$.

Au final,
$$N_A = \frac{l m_E g - (D + h m_E R_C) \dot{\theta}^2}{2l}$$

Correction Pour qu'il y ait non renversement, N_A doit rester positif ou nul.

On néglige $I_{G_E}(E)$ pour simplifier l'application numérique.

Question 2 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

$$\begin{array}{l} \textbf{Correction} \quad N_A \simeq \frac{l \, m_E \, g - h m_E R_C \, \dot{\theta}^2}{2 \, l} \geq \text{0.Ce qui est positif (pas de basculement)}. \\ N_A \geq 0 \Rightarrow \frac{l \, m_E \, g - (D + h m_E R_C) \, \dot{\theta}^2}{2 \, l} \geq 0 \Rightarrow l \, g - h R_C \, \dot{\theta}^2 \geq 0 \Rightarrow l \, g - h V_L^2 / R_C \geq 0 \Rightarrow l \, g \geq h V_L^2 / R_C \Rightarrow \sqrt{\frac{R_C \, l \, g}{h}} \geq V_L \\ \Rightarrow V_L \leq 6,38 \, \text{m s}^{-1} = 22,9 \, \text{km h}^{-1}. \, \text{CDCF Valid\'e}. \end{array}$$