3. Datenbankentwurf

3. Datenbankentwurf

- Entwurfsaufgabe
- Phasenmodell
- Abbildung ER auf relationales Datenbankmodell

3. Datenbankentwurf 1 / 29

3.1. Entwurfsaufgabe

- Anforderungen an Entwurfsprozess
 - · Informationserhalt
 - Konsistenzerhaltung
 - Redundanzfreiheit
 - Vollständigkeit bezüglich Anforderungsanalyse
 - · Konsistenz des Beschreibungsdokuments
 - Ausdrucksstärke, Verständlichkeit des benutzten Formalismus
 - formale Semantik der Beschreibungskonstrukte
 - · Lesbarkeit der Dokumente
 - weitere Qualitätseigenschaften: Erweiterbarkeit, Modularisierung, Wiederverwendbarkeit, Werkzeugunterstützung etc.

3.2. Phasenmodell

Anforderungsanalyse

Vorgehensweise:

· Sammlung des Informationsbedarfs in den Fachabteilungen

• Ergebnis:

- informale Beschreibung (Texte, tabellarische Aufstellungen, Formblätter, usw.) des Fachproblems
- Trennen der Information über Daten (Datenanalyse) von den Information über Funktionen (Funktionsanalyse)
- "Klassischer" DB-Entwurf:
 - · nur Datenanalyse und Folgeschritte
- Funktionsentwurf:
 - siehe Methoden des Software Engineering

Konzeptioneller Entwurf

- erste formale Beschreibung des Fachproblems
 Sprachmittel: semantisches Datenmodell, z.B. erweitertes ER-Modell
- · Vorgehensweise:
 - · Modellierung von Sichten z.B. für verschiedene Fachabteilungen
 - · Analyse der vorliegenden Sichten in Bezug auf Konflikte
 - · Integration der Sichten in ein Gesamtschema
- Ergebnis: konzeptionelles Gesamtschema, z.B. (E)ER-Diagramm

3. Datenbankentwurf 3.2. Phasenmodell 5 / 29

Konflikte

- Namenskonflikte: Homonyme / Synonyme
 - · Homonyme: Schloss; Kunde
 - Synonyme: Auto, KFZ, Fahrzeug
- Typkonflikte: verschiedene Strukturen f

 ür das gleiche Element
- Wertebereichskonflikte: verschiedene Wertebereiche für ein Element
- Bedingungskonflikte:
 z.B. verschiedene Schlüssel für ein Element
- Strukturkonflikte: gleicher Sachverhalt durch unterschiedliche Konstrukte ausgedrückt

3. Datenbankentwurf 3.2. Phasenmodell 6 / 29

- sollen Daten auf mehreren Rechnern verteilt vorliegen, muss Art und Weise der verteilten Speicherung festgelegt werden
- z.B. bei einer Relation

 KUNDE (KNr, Name, Adresse, PLZ, Konto)
 - horizontale Verteilung:

```
KUNDE_1 (KNr, Name, Adresse, PLZ, Konto)
where PLZ < 50.000
KUNDE_2 (KNr, Name, Adresse, PLZ, Konto)
where PLZ >= 50.000
```

vertikale Verteilung (Verbindung über KNr Attribut):
 KUNDE_Adr (KNr, Name, Adresse, PLZ)
 KUNDE_Konto (KNr, Konto)

Logischer Entwurf

- Sprachmittel: Datenmodell des ausgewählten "Realisierungs"-DBMS, z.B. relationales Modell
- · Vorgehensweise:
 - 1. (automatische) Transformation des konzeptionellen Schemas z.B. ER \rightarrow relationales Modell
 - 2. Verbesserung des relationalen Schemas anhand von Gütekriterien (→ Normalisierung):
 - Entwurfsziele: Redundanzvermeidung, ...
- Ergebnis: logisches Schema, z.B. Sammlung von Relationenschemata

3. Datenbankentwurf 3.2. Phasenmodell 8 / 29

Datendefinition

- Umsetzung des logischen Schemas in ein konkretes Schema
- Sprachmittel: DDL und DML¹ eines DBMS (z.B. Ingres, Oracle, DB2, ...)
 - Datenbankdeklaration in der DDL des DBMS
 - · Realisierung der Integritätssicherung
 - · Definition der Benutzersichten

3. Datenbankentwurf 3.2. Phasenmodell

9 / 29

Physischer Entwurf

- Ergänzen der Datendefinition um Zugriffsunterstützung zur Effizienzverbesserung,
 z.B. Definition von Indexen
- Sprachmittel: Speicherstruktursprache SSL

Implementierung und Wartung

Phasen

- · der Wartung,
- · der weiteren Optimierung der physischen Ebene,
- · der Anpassung an neue Anforderungen und Systemplattformen,
- der Portierung auf neue Datenbank-Management-Systeme
- etc.

Objektorientierte Entwurfsmethoden

- Integration von Funktions- und Strukturbeschreibung in Objektbeschreibungen
 - Strukturbeschreibung analog OODM
 - abstrakte Ereignisse / Methoden zur Funktions- / Verhaltensmodellierung

3. Datenbankentwurf 12 / 29 3.2. Phasenmodell

Phasenbegleitende Methoden

Validationsmethoden:

Verifikation: Der formale Beweis etwa von Schemaeigenschaften

Prototyping: beispielhaftes Arbeiten mit der Datenbank vor der endgültigen

Implementierung

Validation mit Testdaten: Überprüfung der Richtigkeit des Entwurfs anhand von

realen oder künstlichen Testdaten

3.3. ER-Abbildung

- erster Teilschritt des logischen Datenbankentwurfs
- · Abbildung von ER-Modell auf
 - Relationenmodell
- Vorgehensweisen:
 - · Transformation nach Faustregeln manuell
 - automatische Transformation

Ziel: kapazitätserhaltende Abbildung

Kapazitätserhöhende Abbildung

Kapazitätserhöhend

Kapazitätserhaltend

3. Datenbankentwurf 3.3. ER-Abbildung 15 / 29

Kapazitätsvermindernde Abbildung

Kapazitätsvermindernd

Kapazitätserhaltend

Abbildung auf das relationale Modell

- 1. Entity-Typen und Beziehungstypen
 - → Relationenschemata
 - Attribute → Attribute des Relationenschemas
 - · Schlüssel werden übernommen
- 2. Kardinalitäten der Beziehungen ightarrow Wahl der Schlüssel
- Relationenschemata von Entity- und Beziehungstypen können eventuell miteinander verschmolzen werden

3. Datenbankentwurf 3.3. ER-Abbildung 17 / 29

1. Abbildung von Entity-Typen

- Entity-Typ
 - ightarrow Relationenschema mit allen Attributen des Entity-Typs
- mehrere Schlüssel vorhanden
 - → Auswahl eines Primärschlüssels
- Primärschlüssel wird unterstrichen
- Sonderfälle: Abhängige/Schwache Entity-Typen und Entity-Typen in einer IST-Beziehung

2. Abbildung von Beziehungstypen

- Beziehungstyp \to Relationenschema mit allen Attributen des Beziehungstyps + Primärschlüssel der beteiligten Entity-Typen (als Fremdschlüssel)
- Auswahl der Schlüssel (hier für binäre Beziehungen)
 - m:n-Beziehung (nicht-funktional!): Beide Primärschlüssel werden gemeinsam Schlüssel
 - 1:n-Beziehung (funktionale Bez. $E_2 \to E_1$): Der Primärschlüssel der n-Seite ([0, 1]- bzw. [1, 1]-Seite) wird Schlüssel
 - 1:1-Beziehung (wechselseitig funktional): Beide Primärschlüssel werden je ein Schlüssel
- Aus den möglichen Schlüsseln wird ein Primärschlüssel gewählt
- Notation:
 - · Primärschlüssel wird unterstrichen
 - · Fremdschlüssel werden überstrichen

3. Verschmelzen von Relationenschemata

bei zwingenden Beziehungen mit [1,1]-Kardinalität

- 1:n- oder 1:1-Beziehung mit einer [1,1]-Kardinalität: das Entity-Relationenschema der [1,1]-Seite und das Relationenschema der Beziehung werden verschmolzen
- 1:1-Beziehung mit zwei [1,1]-Kardinalitäten:
 beide Entity-Relationenschemata werden mit dem Relationenschema der Beziehung verschmolzen

3. Datenbankentwurf 3.3. ER-Abbildung 20 / 29

Abbildung ER-Schema nach RDM (Zusammenfassung)

ER-Konzept	wird abgebildet auf relationales Konzept
Entity-Typ E _i	Relationenschema R _i
Attribute von E _i	Attribute von R _i
Primärschlüssel P _i	Primärschlüssel P _i
Beziehungstyp	Relationenschema
	Attribute: P ₁ , P ₂ (der beteiligten Entitytypen)
dessen Attribute	weitere Attribute
1 : <i>n</i>	P ₂ wird Primärschlüssel der Beziehung
1:1	P ₁ und P ₂ werden Schlüssel der Beziehung
m : n	P₁∪P₂ wird Primärschlüssel der Beziehung
ıst-Beziehung	R_1 erhält zusätzlichen Schlüssel P_2

 E_1 , E_2 : an Beziehung beteiligte Entity-Typen, P_1 , P_2 : deren Primärschlüssel, 1: n-Beziehung: E_2 ist n-Seite; IST-Beziehung: E_1 ist speziellerer Entity-Typ 1: n funktionale Bez. $E_2 \rightarrow E_1$: 1: 1 wechseitig funktional: n: m nicht funktional

n:m-Beziehung

- Prof(PNr, Stufe)
- Studi(MatrNr, Fach)
- prüft(PNr,MatrNr)

1:n-Beziehung

Ohne Verschmelzungen:

- Prof(PNr,Stufe)
- Vorlesung(<u>ID</u>, Titel)
- hält(<u>ID</u>,<u>PNr</u>)

Mit Verschmelzung von Vorlesung und hält:

Vorlesung(ID, Titel, PNr)

1:1-Beziehung

Ohne Verschmelzungen:

- Prof(<u>PNr</u>,Stufe)
- Lehrstuhl(Bezeichnung, Planstellen)
- hat(Bezeichnung, PNr) oder hat(Bezeichnung, PNr)
- ightarrow sowohl *PNr* als auch *Bezeichnung* sind Schlüssel der Beziehung, einer wird als Primärschlüssel der Relation gewählt

Mit Verschmelzung von Lehrstuhl und hat:

 Lehrstuhl(<u>Bezeichung</u>, Planstellen, PNr)

3. Datenbankentwurf 3.3. ER-Abbildung 24 / 29

Auswirkung von [1,1]-Kardinalitäten

[1,1]:[1,1]-Beziehung

Prof

PNr	Lehrstuhlbezeichnung	Stufe	Planstellen
4711	Datenbanksysteme	W3	3
5588	Rechnernetze	W3	4

→ Verschmelzung von *Prof, hat* und *Lehrstuhl* Prof(<u>PNr</u>, Stufe, Lehrstuhlbezeichnung, Planstellen)

[0,1]:[1,1]-Beziehung:

Prof

F	PNr	Lehrstuhlbezeichnung		Planstellen
	4711	Datenbanksysteme	W3	3
	5588	Rechnernetze	W3	4
	\perp	Bioinformatik	工	2

Lehrstühle können unbesetzt bleiben dann besser zwei Relationenschemata ightarrow keine Verschmelzung mit Prof

3. Datenbankentwurf 3.3. ER-Abbildung 25 / 29

ıst-Beziehung i

- IST-Beziehung hat kein eigenes Relationenschema
- im Relationenschema des unteren Entity-Typs zusätzlich der Primärschlüssel des oberen Entity-Typs als Fremdschlüssel-Attribut

- Obertyp: Personal(PNr)
- Untertyp: Prof(PNr, Lehrstuhl)
- Untertyp: SHK(<u>PNr</u>,MatrNr) oder SHK(<u>MatrNr</u>,<u>PNr</u>)
 - ightarrow Wahl zwischem "lokalem" Schlüssel und geerbtem Schlüssel

Abhängige Entity-Typen

- Buch(ISBN,Titel)
- Abhängiger Entity-Typ erhält Primärschlüssel des identifizierenden Entity-Typs als Fremdschlüssel-Attribut.
 - ightarrow wird zusammen mit partiellem Schlüssel der Primärschlüssel der Relation
- BuchExemplar(ISBN, Nummer, Rückgabe, Ausleihe)

3. Datenbankentwurf 3.3. ER-Abbildung 27 / 29

Rekursive Beziehungen

Umbenennung der übernommenen Primärschlüssel

- Vorlesung(<u>ID</u>, Titel)
- z.B. setztVoraus(VorgängerID, NachfolgerID)

3. Datenbankentwurf 3.3. ER-Abbildung 28 / 29

Mehrstellige Beziehungen

- prüft(PNr,ID,MatrNr)
- Primärschlüssel der Relation abhängig davon, welcher Beziehungstyp vorliegt (1:1:1, 1:1:n, 1:n:m oder n:m:k)
 - \rightarrow Übungsaufgabe

3. Datenbankentwurf 3.3. ER-Abbildung 29 / 29