This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Internati nal Patent Classification 6:
 C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

A1 (11) II

(11) International Publication Number:

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

(22) International Filing Date:

19 August 1996 (19.08.96)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95)

(34) Countries for which the regional or

international application was filed:

DE et al.

EP

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

construction of a synthetic human antibody library based on consensus: Database of human Ig gene segments Translation in amino acid sequences Alignment of protein sequences Germline Rearranged sequences sequences Assignment to Computation of families germline counterpart Database of used Assignment to germline families families Analysis of Computation of canonical structures consensus sequences Structural Analysis Design of CDRs Gene Design Synthetic combinatorial antibody library

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Skovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	8Z	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Lutvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
KR	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzhekistan
	Gabon	MR	Mauritania		A second

M.

Protein/(Poly)peptide Librari s

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that, the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

4_

Detail d D scription of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a dafabase of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions, in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: Vk1, Vk2, Vk3, Vk4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Ck, Cλ, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3x2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is a inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains Cκ
 (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2. The signal sequence (amino acids 1 to 21) was derived from the E. coli phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sub-libraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein scFv fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and B-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-B, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vk CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes; whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 $V\kappa$, 3 $V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 Vκ, 3 Vλ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- $V\kappa$, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T

Vκ1: N₃₄A,

VK3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_K , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

CDR1	CDR2
VH1-12-1	VH1-12-1
VH1-13-16	VH1-13-6,-7,-8,-9
VH2-31-10,-11,-12,-13	VH2-31-3,-4
VH3-13-8,-9,-10	VH3-13-8,-9,-10
VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
	VH4-31-17,-18,-19,-20
VH5-12-1,-2	VH5-12-1,-2
VH.6-35-1	VH6-35-1
Vκ1-14,-15	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
Vκ2-6	Vκ2-6
Vκ3-1,-4	Vĸ3-4
Vx4-1	Vĸ4-1
HUMLV117,DPL5	DPL5
DPL11,DPL12	DPL12
DPL23	HUMLV318
	VH1-12-1 VH1-13-16 VH2-31-10,-11,-12,-13 VH3-13-8,-9,-10 VH4-11-7 to -14 VH5-12-1,-2 VH6-35-1 VK1-14,-15 VK2-6 VK3-1,-4 VK4-1 HUMLV117,DPL5 DPL11,DPL12

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, V κ or V λ genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₃Q

VH6: S,G

Vκ3: E,D, I₅₈V

Vκ4: K₂₄R

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vk2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGG. The two oligonucleotides encoding this linker TGGCGGTGGTTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCGCCAGGAACCAGCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid plG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the $H3\kappa2$ scFv gene. Briefly, the EcoRl/HindIII restriction fragment in the phagemid vector plG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekās et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI)₆GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI),0(TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and (GTT/TAT) are trinucleotide mixtures encodina the amino acids phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7×10^7 and 3.4×10^{10} for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 µl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3k2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 μI of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10′ and 2.3x10′ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a nonfunctional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{500nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 ($1x10^{10}$ cfu/well of the 10-mer and $5x10^8$ cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100~\mu g/ml$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris·Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 µl FITC-BSA (100µg/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{600nm} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC. PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3k2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to \$\textit{B}\$-estradiol, testosterone, LeY, LT-\$\textit{B}\$, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-\$\textit{B}\$-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, \$\textit{B}\$-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-Ipp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an Aatil site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with Aatil and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via Aatll/Xbal), M7III (via EcoRl/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/Nhel). Finally, the bla gene was replaced by the cat gene module M17 (via Aatll/BglII), and the wild type CoIE1 origin by module M14-Ext2 (via BglII/Nhel). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL-VH3-Vk2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal β-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type β-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the B-lactamase cloning cassette via Bbsl/MscI, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3 κ 2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 $\mu \mathrm{g/ml}$). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an $\mathrm{OD}_{\mathrm{600nm}}$ of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α -FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in 15 buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD 1.0 = $40 \mu g/ml$).

10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants $\frac{1}{100}$ was 5 x $\frac{10^4}{100}$.

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10^8 for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial $H3\kappa2$ H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS 89, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology 6, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology 6, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry 30, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA 92, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name'	Reference ²	Family	³ Germline genes ⁴
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11-
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	· 1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk1-10	1	1	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	C2; O12; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	L22
Vk1-23	2	1	123
Vk2-1	1	2	A2; DPK12
Vk2-2	6	. 2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	Li3
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	/ 23

Table 1A: (continued)

Used Name'	Reference ²	Family ³	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	` 11	· 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name ¹	Referenc	e' Family	3 Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	12.11100/11.1
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1 .	3	VI III.1
Humlv318	4 ·	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	1	7	
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned '	VLAMBDA N.2
gVLX-4.4	6	10	

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	· 19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	I-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	. 1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	-18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HC3
VH1-13-18		, 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	V:12512-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VX2S12-10
VH2-31-5	14	2	VII-26; DP26; 2-26
VH2-31-6	15	2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

49

SUBSTITUTE SHEET (RULE 26)

Table 1C: (continued)

Used Name'	Reference ²	Family	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2 .	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2 .	2	VH2S12-14
VH3-11-1	13	. 3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	D242
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	21-2B; DP35; V3-11
VH3-13-5	19	3	DF 59; VH19; V3-35
VH3-13-6	25	. 3	fi-p1; DP61
VH3-13-7	19	3	DE46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	Vii26
VH3-13-9	5	3	vh25c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11 VH3-13-12	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-14	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24 27	3	301989; DP50; 3-33; 3d277
VH3-13-16	19	3	C(.5.3
VH3-13-17	16	3	D.YS1
VH3-13-18	19	3	F. 52, 605 a. a. a. a. a.
VH3-13-19	19	3	E. (3); COS 6; 3-74; DA-8
VH3-13-20	14	3	[]4; VH3-11; V3-7
VH3-13-21	14		V C4; YAC-6 V: -43
VH3-13-22	14		
VH3-13-23	14		V >43; DP33 VI>33
	17	J	v. · 33

Table 1C: (continued)

Used Name'	Reference ²	Fam	ily³ Germline genes⁴
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	
VH3-13-26	14	3	
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3	. DP33
VH3-1X-1	1	3	LSG3.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSC2.1
VH3-1X-6	1	3	LSC6.1; HUM10IGVH
VH3-1X-7	18	3	3-18; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.00
VH4-11-6	23	4	4.37
VH4-11-7 VH4-11-8	18	4	IV: 4.35; V4-4
VH4-11-8 VH4-11-9	17	4	Viii.11; 3d197d; DP71; 58p2
VH4-11-10	20	4	H7
VH4-11-11	20	4	H
VH4-11-12	20 ·	4	H
VH4-11-13	23	4	V: 116
VH4-11-14	17	4	A
VH4-11-15	11	4	V1.15
VH4-11-16		4	E.,
VH4-21-1			7:;: V4-59
VH4-21-2		4 4	1): V::::7:\//!
VH4-21-3		4	Viii.17; VH4.23; 4d255; 4.40; DP69
	• •	7	V. 3.19; 79; V4-4b
			51

SUBSTITE OF SHEET (RULE 26)

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	D794; 3d216d
VH4-31-4	19	4	DPC5; 4-31; 3d277d
VH4-31-5	23	4	4.03; 3 d75 d
VH4-31-6	20	4	HID
VH4-31-7	20	4	- H11
VH4-31-8	23	4	4.31
VH4-31-9	23	[.] 4	4.52
VH4-31-10	20	4	3d277 d
VH4-31-11	20	4	3d016 d
VH4-31-12	20	4	3dCT9 d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-29
VH4-31-15	11	4	2-1; DP79
VH4-31-16	23	4	4.5 J
VH4-31-17 VH4-31-18	17 10	4	V. 3.12
VH4-31-19	23	4	7 - 7; DP66 4.03
VH4-31-20	8	4 4	Vec.1
VH5-12-1	9	5 ·	
	-		Valast; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; Value (U); VHVBLK; VhAU; V5-51
VH5-12-2	17	5	V##3
VH5-12-3	3	5	1- c; DP80; 5-78
VH5-12-4	9	5	NT -2; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VENUE VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VENUE VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
III-3R	108	1	O8	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	C8	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	09	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2 -	2,3%	122
GM4672	108	1	03	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	C3	9	9,7%	8
MAL-NaCl	108	1	O8	13	13,7%	102
STRAb SA-1A	108	1	C2	0	0,0%	120
HuVHCAMP	108	1	C3	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am 107	108	1	6.5	12	12,6%	108
WALKER	107	1	C2	4	4,2%	57
III-2R	109	1	C CA	0	0,0%	70
FOG1-A4	107	1	OSA	4	4,2%	41
HK137	95	1	Lī	0	0,0%	10
CEA4-8A	107	. 1	02	7	7,4%	41
Va'	95	./1	1.4	0	0,0%	90
TR1.21	108	1	C2	4	4,2%	92
UAH	108	1	C.5	6	6,3%	123
HK 102	95	1	L10(1)	0	0.0%	9
H20C3K	108	1	L11.(2)	3	3,2%	125
CHEB	108	i	(:2	7	7,4%	5
HK134	95	1	L1=(2)	0	0.0%	10
TEL9	108	1	(2	9	9,5%	73

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101 .	95	1	L15(1)	0	0,0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2E 7	108	1	A30	1	1,1%	
33.C9	107	1	L12(2)	7	7,4%	62
3D6	105	1	L12(2)	2	2,1%	126 34
l - 2a	108	1	L8	8	8,4%	70
RF-KL1	9 7 ·	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7	7,4%	92
HIV-B35	106	1	02	2	2,2%	
HIV-b22	106	1	02	2	2,2%	8 8
HIV-b27	106	1	02	2	2,2%	8
HIV-B8	107	1	02	10	10,8%	8
1IV-b8	107	1	02	10	10,8%	8
RF-SJ5	9 5	1 .	A20	5	5,3%	113
GAL(I)	103	1	A30	6	6,3%	64
R3.5H5G	103	1	C2	6	6,3%	70
łIV-b14	106	1	A20	2	2,2%	8
NF-E1	105	1	· L 5	8	8,4%	41
VEA	103	1	A30	8	8,4%	37
U .	103	1	L12(2)	5	5,3%	40
OG1-G8	103	1	13	11	11,6%	41
X7RG1	103	1	Ł1	8	8,4%	
LI	103	1	L3	3	3,2%	70 72
UE	103	1	L12(2)		11,6%	72 22
UNm01	103		L12(2)		10,5%	32
IIV-b1	103	1	Λ?0		4,3%	6
IV-s4	103	1	C2	2	2,2%	8
	•			_	-14-10	8

き手

Table 2A: (continued)

Name ¹	a a²	Computed	Germline	Diff. to	% diff. to	Reference ⁷
		family ³	gene⁴	germline ⁵	germline ⁶	
CAR	107	1	L12(2)	11	11,7%	79
BR.	107	1	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	9 5	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
CLL PATIENT 9	83	1	012	1	1,1%	122
HIV-B2	106	1 .	A20	9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	83	1	A20	1	1,1%	···· 122
CLL PATIENT 1	£3	1	13	2	2,3%	122
CLL PATIENT 2	8 3	1	13	0	0,0%	122
CLL PATIENT 7	63	1	L5	0	0,0%	122
CLL PATIENT 8	8 3	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	E ?	1	L9	1	1,1%	122
CLL PATIENT 4	83	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	19	6	7,1%	122
CLL PATIENT 17	83	1	L13(2)	7	8,1%	122
HIV-b20	197	3	A27	11	11,7%	8
2C12	1: 3	1 '	L17(2)	20 .	21,1%	68
1B11	1, 3	1	L12(2)	20	21,1%	68
1H1	113	1	L12(2)	21	22,1%	68
2A12	113	1	L12(2)	21	22,1%	68
CUR	1.3	3	A27	0	0,0%	66
GLO	1. 3	3	F.27	0	0,0%	16
RF-TS1	Ç. ;	3	F 3.7	0	0,0%	121
GAR'	, 113	3	<i>F</i> ."7	0	0,0%	67
FLO	1 }	3	A" 7	0	0,0%	66
PIE	11.3	3	<i>F</i> .77	0	0,0%	91
HAH 14.1	1. 3	3	177	1	1,0%	51
HAH 14.2	1)	3	7.27	1	1,0%	51

Table 2A: (continued)

Name¹	a a²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HAH 16.1	105	3	A27	1	1,0%	51
NOV .	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	1 10	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	103	3	A27	0	0.0%	51
SON	110	3	A27	1	1,0%	67 .
PAY	103	3	A27	1	1,0%	66
GOT	1 C3	3	A27	1	1,0%	67
mAbA6H4C5	1 00	3	A27	1	1,0%	12
BOR'	100	3	A27	2	2,1%	84
RF-SJ3	9 g	3	A27	2 _	2,1%	121
SIE .	163	3	A27	2	2.1%	15
ESC	10.3	3	A27	2	2.1%	98
HEW'	113	3	A27	2	2,1%	98
YES8c	103	3	A27	3	3,1%	33
Ti	103	3	A27	3	3,1%	114
mAb113	103	3	A27	3	3,1%	71
HEW	100	3	A27	0	0,0%	94
BRO	16.5	3	-A27	0	0,0%	94
ROB	103	з .	A.^ 7	0	0,0%	94
NG9	9:	3	A27	4 .	4,2%	11
NEU	11.3	3 .	A07	4	4,2%	66
VOL	1: 4	3	A^7	4	4,2%	2
85G6	1: 2	3	A.::7	4	4,2%	59
RF-SJ4	14 3	3	All	0	0,0%	88
CAS	1 ⊊ ₹	3	<i>F.</i> 7	4	4,2%	84
BRA	17.0	3	<i>1</i> 7	1	1,1%	94
IAH	1000	3	A"7	1	1,1%	94
IIC	11.5	3	£"7	0	0,0%	94 94
S-2	1	. 3	F^7	6	6,3%	9 4 87
н'	1 . •	3	A^7	6	6,3%	
V1-15	1 :	3	A97	6.		38
CA	1 ;	3	A"7	6	6,3%	83
		•	= 5	U	6,3%	65

TUBSTITUTE STITET (RULE 26)

Table 2A: (continued)

Name ¹	aa²	Computed	Germline	Diff. to	% diff. to	Reference
		family ³	gene⁴	germline ^s	germline ⁶	
mAb112	10 9	3	A27	6	6,3%	71
SIC .	10 3	3	A27	3	3,3%	94
SA-4A	10 9	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	10 9	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	~9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	8 9	3	A27	1	1,1%	122
HIV-b24	10?	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	· 9 9	3	A27	1	1,1%	52
CA3D1	108	3	15	0	0.0%	85
19.E7	107	3	LS	0	0.0%	126
sv6L	109	3	A27	12	12,5%	7
aykv320	9::	3	A27	1	1,2%	, 52
/ h	9::	3	L10(2) -	0	0,0%	89
S8	10 3	3	L6	1	1,1%	109
S1	103	3	L5	1	1,1%	109
S2S3-3	10.5	3	LS	2 ·	2,1%	99
S2	· 103	3	ts	1.	1,1%	109
S 7	1 03	3	15	1	1,1%	109
S2S3-4d	10.0	3	16	2	2,1%	99
S2S3-4a	107	3	15	2	2,1%	. 99
S 4	103	3	16	1	1,1%	109
S6	1(-)	3	LS	1	1,1%	109
S2S3-10a	102	3	16	2	2,1%	99
S2S3-8c	10.7	3	13	2	2,1%	99
S5	103	3	16	1	1,1%	109
S2S3-5	1/ 7	3	LS	3	3,2%	99
UNm03	1- 3	3	F27	13	13,5%	6
ARC/BL41	1/ ;	3	A37	13	13,7%	55
kv22	£.	3	A°7	3	3,5%	13
OP	1: }	3	15	4	4,2%	111

5,2

Table 2A: (continued)

Name ¹	a a?	Computed	• • •	Diff. to	% diff. to	Reference
		family ³	gene4	germline ^s	germline ⁶	
LS2S3-10b	107	3	L6	3	3,2%	
LS2S3-8f	107	. 3	L6	3		99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	3,2%	99
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	163	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	11,7%	8
YSE	107	3	L2/L16	1	9,9%	8
POM	1 09	3	L2/L16	9	1,1%	72
Humkv328	95,	3	L2/L16		9,4%	53
CLL	109	3	L2/L16	1 3	1,1%	19
LES	90	3	L2/L16		3,2%	47
HIV-s5	1 6.4	3	A27	3	3,2%	38
HIV-s7	1C:4	3	A27	11	12,1%	8
slkv 1	្នាក	3	A27	11	12,1%	8
Humka31es	95	3	L2/L16	7	8,1%	13
slkv12	1 01	3	A27	4	4,2%	18
RF-TS2	95	3	L2/L16	8	9,2%	13
l-1	1(1)	3	L2/L16	3 .	3,2%	121
HIV-s3	1′ 7	3	A27	4	4,2%	70
RF-TMC1	Ĉ.	3 .		13	14,3%	8
GER	19,4		13	10	10,5%	121
GF4/1.1	1 € }		L2/116	. 7	7,4%	75
nAb114	1)		L2,116	8 .	8,4%	36
IIV-loop13	100		L2'.16	6	6,3%	71
kv16	8		L2 116	7	7,4%	8
LL PATIENT 29	٤.	3	LG .	1	1,2%	13
kv9	ē.	3	1.3	1	1,2%	122
kv17	ç .	3	13	3	3,5%	13
kv14	Ç	3	13	1	1,2%	13
kv16		3	13	1	1,2%	13
kv33	1: 1	3	IJ	2	2,3%	13
(v15	1: 1	3	1.5	4	4.7%	13
xv15 xv6	ć	3	13	2	2,3%	13
VAO	17. 1	3	1.5	_	3,5%	13

Table 2A: (continued)

Name ¹	aa	² Compu	ted Germ!i	ne Dif	f. to	0/ //	
		family			line ⁵	% diff. to germline	Reference
R6B8K	108	3	L2/L16				
AL 700	107		L2/L16			12,6%	125
slkv11	100			_		9,5%	117
sikv4	97	3	L2/L16	3		3,5%	13
CLL PATIENT 26	87	3	L6	4		4.8%	13
AL Se124	103	3	L2/L16	1		1,1%	122
slkv13	100		L2/L16	9		9,5%	117
bkv7	100	3	L2/L16	6		7,0%	13
bkv22	100	3	L2/L16	5		5,8%	13
CLL PATIENT 27		3	L2/L16	6		7,0%	13
bkv35	84	3	L2/L16	0		0,0%	122
CLL PATIENT 25	100	3	16	8		9,3%	
slkv3	87	3	L2/L16	4		4,6%	13
slkv7	86	3	12/115	7		8,1%	122
HuFd79	9 9	1	63 .	7		8,1%	13
RAD	111	3	12/1.16	24		24,2%	13
CLL PATIENT 28	9 @	3	AC7	9		0,3%	21
REE	83	3	L2/U16	4		0,3% 1,8%	78
FR4	104	3	L2/L16	25			122
MD3.3	99	3	A27	8		7,2%	95
MD3.1	92	3	Lo	1		,2%	77
GA3.6	9 ?	3	10	0		.3%	54
M3.5N	9?	3	£5	2		0%	54
	90	3 .	10	3		6% 304	54
VEI'	8 :	3	A27	0		3%	54
/ID3.4	9 2	3	L2/U16		0,0		65
1D3.2	9:	3	17	1	1,3		54
ER	9?	3	A37	3	3,8		54
LL PATIENT 30	7]	3	46 46	19	22,4		20
3.1N	99		L2 '- 1 6	3	3,80		122
D3.6	9 :	•	.? '6	1	1,30	/o	54
D3.8	9:	`	6 -2 16	0	0,09	/o <u>.</u>	54
\3.4	93	3	+ 1	0	0,0%	, į	54
3.6N		_		7	9,0%	5	54
93.10	_	_	/ 7	0	0,0%		4
•		•/	/	0	0,0%		

Table 2A: (continued)

News						v .,
Name¹	. a a ²	ີ ວິດເກ pute ເ	d Germlin	ne Diff.	to % diff.	4. 0.6
		family ³	gene⁴		ines germlin	to Reference?
MD3.13	91	3	A27		i	_
MD3.7	93	3		0	0,0%	54
MD3.9	93	3	A27	. 0	0,0%	54
GA3.1	93	3	A27	0	0,0%	54
bkv32	101	3	A27	6	7,6%	54
GA3.5	93	3	A27	5	5,7%	13
GA3.7	92	3	A27	5	6,3%	54
MD3.12	92		A27	_7	8,9%	54
M3.2N	9 0	3	A27	2	2,5%	54
MD3.5	92	3	LS	6	7,8%	54
M3.4N	91	3	A27	1	1,3%	54
M3.8N	91	3	L2/L16	8	10,3%	54
M3.7N	9 2	3	L2/116	7	9,0%	54
GA3.2	92	3	17	3	3,8%	54
GA3.8	93	3	A"7	9	11,4%	54
GA3.3	. 9 3	3	<i>F</i> "7	4	5,1%	54
M3.3N		3 .	F"7	8	10,1%	54
B6	9 2	3	£"7	5	6,3%	54
E29.1 KAPPA	8 3	3	F.17	8	11,3%	
SCW	7 8		L27.16	0	0,0%	78 22
REI-based CAMPATH-	108 9 107	1		12	12,6%	22
RZ		1	(3)	14	14,7%	31
ВІ	107	1	(3)	14	14,7%	39 50
AND	103	1	(3	14	14,7%	50
2A4	107	1	(5	13	13,7%	14 -
KA	109	1	(5	12	12,6%	69
MEV	103	1	(3	19	20,0%	23
DEE	109	1	C?	14	14,7%	107
DU(IOC)	106	1	(3	13	14,0%	29
łuRSV19VK	10.9	1 (. 5	18	18,9%	76
SP2	111	1 (3	21	21,0%	60
J26	10	1 (2	17		115
II ·		1	3		17,9%	93
MA 0210511011-		1	•		24,1% 24,20	1 .
03 IOEOCIVZ	10":	1 (·		_	22.20	106
			,	~ '	22,3%	105

Table 2A: (continued)

Name ¹							
	a a	omputed family ³	d Germiine gene ⁴	e Diff. germl	to ine ⁵	% diff. to germline	Reference'
CLL PATIENT 6	71	1		······································		3	
BJ 19	8 5	1	A20	0		0,0%	122
GM 607	113	·	C3	16		21,9%	1
R5A3K	• 1 14	2 2	A3	0		0,0%	58
R1C8K	114		A3	1		1,0%	125
VK2.R149 .	115	2	V 3	1		1,0%	125
TR1.6	109	2	7 .3	2		2,0%	118
TR1.37	103 10:	2	13	4		4,0%	92
FS-1	11%	2	/3	5	•	5,0%	92
TR1.8	11: 11:	2	\(\) 3	6		6,0%	
NIM	117	2	V 3	6		6,0%	87
Inc		2 .	٧.3	8	•	8,0%	92
TEW ·	113 107	2	13	11		11,0%	28
CUM		2	/3	6		6,4%	35 06
HRF1	1 1: 7:	2	(.1	7		5,9%	96
CLL PATIENT 19	8 ·	2	7.3	4		5.6%	44
CLL PATIENT 20		2	13	0		,0%	124
MIL	8.	2	/ 3	0		,0%	122
FR	1; 5	2	£3	16		,0% 5,2%	122
MAL-Urine	11 -	2	/3	20		,0%	26
Taykv306	3	1	(3	6		,040 6%	101
Taykv312	7		7 7	1		5%	102
HIV-b29	7		F . 7	1	1,6		52
1-185-37	Ĉ	3	7 7	14	17,5		52
1-187-29	1 3		7	0	0,0	0.	8
П117	1:1	•	7	0	0,0	٠	119
HIV-loop8	11.4		.: 7	9		'	19
sv23L	11.1	3 /	`7	16	9,40	٠,	63
IIV-b7	1: -	3 ;	· 7	16	16,8		8
IIV-b11	1 7 (7)	3 /	~	14	16,80	,	7
IV-LC1	1 .	3	-	15	14,90		3
IV-LC7	1"	3 /	-		16,0%	_	}
IV-LC22	1	3 / /			20,2%	•	
	1 .	3 /			21,3%	_	
V-FC13	1	3 ,	_		22,3%	•	
		· ·	7 · 2	' 2	22,3%	8	

Table 2A: (continued)

Name ¹		a a ?	Compu		Germlin gene ⁴		Diff. to ermline ⁵	% diff.	to Refere	ence'
HIV-LC3		07			yene [*]	9	Committee.	germlin	1e ⁶	
HIV-LC5			3		A27		21	22,3%		
HIV-LC28		0 7	3		A27		21	22,3%	J	
HIV-b4		07	3		A27		21		. 8	
CLL PATIENT 31) 7	3		A27		22	22,3%	. 8	
HIV-loop2	8		3		A27		15	23,4%	. 8	
HIV-loop35	10		3		L2, _16		17	17,2%	122	
HIV-LC11	10		3 .		L2/116		17	17,9%	8	
HIV-LC24	10		3		£97		23	17,9%	8	
HIV-b12	10		3		A.7.7		23	24,5%	8	
HIV-LC25	10		3		£77		23 24	24,5%	8	
HIV-621	107		3		An7			25,5%	8	
	107		3		A 7.7		!4	25,5%	8	
HIV-LC26	107		3	•	7 7		^	25,5%	8	
G3D10K	10 e		1		. ,5).	2	'	27,7%	8	
TT125	10%		1		-7 !5	12		12,6%	125	
HIV-s2	107		3		. , . 7	8		8,4%	63	
265-695	100		1		5	28	3	1,1%	8	
2-115-19	10%		1	F.		7	7	7.4%	3	
rsv13L	107		1	(2	2	,1%	119	
HIV-b18	160		1			20	21	1.1%	7	
RF-KL5	90		3	()		14	15	,1%	8	
ZM1-1	113	2		13		36	36	,7%	97	
HIV-s8	103	1		F		7	7,0	0%	3	
(- EV15	95	5		(}		16	17,	8%	8 .	
RF-TS3	1C :	2		: 2		0	0,0		112	
IF-21/28	11:	2		y 3		0	0,0	%	121	
PMI6410	113	2		<i>f</i> · 7		1	1,00	%	17	
211	11:	2		£ 7		1	1,00	%	42	
-81	11:	2		£ 7		1	1,00		49	
-001	110			7	-	5	5,0%	,		
)5 + .28	10:	4		: 3	()	0,0%		45 01	
V	11:	4 .		: 3	1	!	1,0%		81	
	11:	4	!	3	1		1,0%	•	27	
5.1 5	1C:	4		3	1		1,0%	•	04	
	1C:	4	!	3	1		1,0%	. 1	11	

Table 2A: (continued)

Name ¹	aa?	Computed	Y'.	D:cc		
.,	an	family ³	Germiine gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	10.				***************************************	
CD5+.12	101	4	B 3	1	1,0%	27
•	101	4	B 3	2	2.0%	27
CD5+.23	101	4	B3	2	2,0%	27
CD5+.7	101	4	B3	2	2,0%	27
V)I	113	4	B3	3	3,0%	56
LOC	113	4	£3	3	3,0%	72
MAL	113	4	E 3	3	3,0%	72
CD5+.6	101	4	B3	3	3,0%	27
H2F	113	. 4	B 3	3	3,0%	70
PB17IV	114	4	E3	4	4,0%	74
CD5+.27	101	4	83	4	4,0%	27
CD5+.9	101	4	E3	4	4,0%	27 ·
CD528	10:	4	٢3	5	5,0%	27
CD526	10!	4	F3	6	5,9%	
CD5+.24	101	4	E3	6	5,9%	27
CD5+.10	10:	4	E3	6	5,9%	27
CD519	101	4	B3	6	5,9%	27
CD518	101	4	E3	7	5,9% 6,9%	27
CD516	101	. 4	£3	8		27
CD524	104	4	£3	8	7,9%	27
CD517	10:	4	[3	10	7,9%	27
MD4.i	9:	4	`E3	0	9,9%	27
MD4.4	9	4	£3	0	0,0%	54 · .
MD4.5	92	4	E3	0	0,0%	54
MD4.6	9 ?	4	F3		0,0%	54
MD4.7	9?	4	E3	0	0,0%	54
MD4.2	9 :	4	£3	0	0,0%	54
MD4.3	9	4		1	1,3%	54
CLL PATIENT 22	ت 8 ⁻	2	[3	5	6,3%	54
CLL PATIENT 23	8 -		<i>f</i> 7	2	2,3%	122
	· · ·	2	<i>f</i> . ¹7	2	2,4%	122

Table 2B: rearranged human lambda sequences

Name¹								
	aa ⁻		outed	Germline		f. to	% diff. t	o Reference
14/411		fam	iily,	gene⁴	gern	ıline ⁵	germline	e ucicience
WAH	110	1		DPL3		,		
1B9/F2	112	1		DPL3	7		7%	68
DIA	112	1		DPL2	7		7%	9
mAb67	89	1			7		7%	36
HiH2	110	1		DDI3	0		0%	29
NIG-77	112	1		DPL3	12	1	11%	3
OKA	112	1		DFL2	9		9%	72
KOL	112			DPL2	7		7%	84
T2:C5	711	•		DPI,2	12		11%	40
T2:C14	110	1		DPL5	0		0%	
PR-TS1		. 1		DP1.5	0		0%	6
4G12	110	1	Ε)n. 2	0		0%	6
KIM46L	111	1	E)F1.5	1		1%	55
Fog-B	112	1	HUN	11117	0		0%	35
9F2L	111	1	D	Pt 5	3		3%	8
mAb111	111	1	D:	D' 5	3			31
PHOX15	110	1	D:	1.5	3		3%	79
BL2	111	1	D.	· 5	4		3%	48
	111	1	£				.%	49
NIG-64	111	1	C.		4		%	74
RF-SJ2	10 0	1	DI.		4	40	%	72
AL EZI	112	1	. Di.		6	60	%	78
ZIM	112	. 1	HUAR		7	79	/ o	41
RF-SJ1	10 0	1.	D' -		7	79	6	18
GLV1.1	9 8	1			9	9.%	ò	78
NEW	112	1	[0	0%)	1
B-201	8 7	1	HU:		11	10%	, D	42
MEM	103	1	[2		1	1%		62
210			C 2		6	6%		50
0V	-	2	Db .C		4	4%		45
EI		2	D⊎r.0	_	3	8%		
MC		2	Dai:10	8	}	8%		25
ES	110 2		00111	6		6%		24
G1-A3	110 2		D. 11	8		8%		28
NOV	111 2		1. 3	9				4
	11" 2		1: 1	7	,	9%	2	
				,		7%,	28	3

Table 2B: (continued)

HMST-1 HBW4-1 WH 11-50 HBp2 NIG-84 VIL TRO ES492 mAb216 BSA3 THY-29	116 100 110 110	family ³ 2 2	gene⁴ DPL11	germline ⁵	-	
HBW4-1 WH 11-50 HBp2 NIG-84 VIL TRO ES492 mAb216 BSA3	10d 11d 11d		DPL11			
WH 11-50 HBp2 NIG-84 VIL TRO ES492 mAb216 BSA3	119 119	2		4	4%	82
11-50 HBp2 NIG-84 VIL TRO ES492 mAb216 BSA3	110		DPL12	9	9%	52
HBp2 NIG-84 VIL TRO ES492 mAb216 BSA3		2	DPL11	11	11%	34
NIG-84 VIL TRO ES492 mAb216 BSA3		2	DPL11	7	7%	82
VIL TRO ES492 mAb216 BSA3	110	2	DPL12	8	8%	3
TRO ES492 mAb216 BSA3	1:	2	DPL11	12	11%	73
ES492 mAb216 BSA3	112	2	DPL11	9	9%	58
mAb216 BSA3	111	2	DPL12	10	10%	61
BSA3	10:	2	DPL11	15	15%	76
	8	2	DPL12	1	1%	7
THY_29	19	3 .	DPL16	0	0%	49
1111-23	1 101	3	DPL16	0 ~	- 0%	27
PR-TS2	1′ 3	3	DPL16	0	0%	55
E29.1 LAMBDA	10.7	3	DPL16	1	1%	13
mAb63	103	3	DPL16	2	2%	29
TEL14	1.)	. 3	DPL16	6	6%	49
6H-3C4	1/3/	3	DPL16	7	7%	39
SH	1: :	3	DPL16	7	7%	70
AL GIL	1 1	3	DPL16	8	8%	23
H6-3C4	1 3	3	DPL16	8	8%	83
V-lambda-2.DS	1:1	2	DPL11	3	3%	15
8.12 ID	1.0	2	DPL11	3	. 3%	81
DSC	1:1	2	DPL11	3	3%	56
PV11	1:)	2	DPL11	1	1%	56
33.H11	1)	2	DPL11	4	4%	81
AS17	1 1	2	DPL11	7	7%	56
SD6	1)	2	DPL11	7	7%	56
KS3	1 3	2	DPL11	9	9%	56
PV6	1:0	2	DPL12	5	5%	56
NGD9	1:0	2	DPL11	7	7%	56
MUC1-1	11	2	DPL11	11	10%	27
	1:1	2	DPL10	6	6%	
	1)	2	DPL12	6	6%	56 56
	1 1	2	DPL11	11		56
			∠5	1 1	10%	49

SUTTITUTE CHEET (RULE 26)

Table 2B: (continued)

Name ¹	⊕a ²	Computed family ³	l Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
AS7	1:0	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
ВОН	112	2	DPL12	11	10%	33 37
TOG	1:1	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	1'0	2	DPL10	14	13%	52
ВО	1:2	2	DPL12	18	17%	80
WIN	1'2	2	DPL12	17	16%	11
BUR	1/14	2	DPL12	15	15%	46
NIG-58	1'0	2	DPL12	20	19%	46 69
WEIR .	1 2	2	DPU11	26	25%	21
THY-32	131	1	DDF8	8	8%	27
NF-H9G1	1.1	1	DDF8	9	9%	27
nAb61	1.1	1	[PL3	1	1%	29
V1L1	53	1	DPL2	0	0%	54
łA	1 . 3	1	.CPL3	14	13%	63
A1L1	1.1	1	[12L2	3	3%	54
RHE	: 2	1	[7]	17	16%	22
1B12L	; 3	1 .	ί 1.8	17	16%	79
oc	; 3	1	1.412	15	14%	84
IIG-51	1 2	1	[1.2	12	11%	67 ·
IEWM	1 4	1	8.1	23	22%	10
1D3-4	1 6	3	Γ 2 3	14	13%	4
OX	! 2	1	: 12	13	12%	84
iH10	108	3	[" 2 3	13	12%	3
OR	! 2	1	: :2	16	15%	16
L POL	1 3	1	[:. 2 ·	16	15%	57
D4-74	1 1	1	: 2	19	18%	27
MYLOID MOL	1 2	3	L 33		15%	30
ST577	1 3	3	H: ·318		10%	
IG-48	1 3	1	. 3		10% 40%	4
ARR	; 3	3	· .3	_/	40% 17%	66 19

TUBSTITUTE S! TT (RULE 26)

	0.
	1
	1
	1
	1
	I
	4
	_
	1 1 2 2
	<u>.</u>
	:
	<u>.</u>
	4
	†
	4
$oldsymbol{\epsilon}$	· j -
	i
	Ĭ
	†
	i
	i
	<u> </u>
	:
	:
	:
	:
	:
	: : :

Table 2B: (continued)

Name¹	a a '	Computed family ³	Germane gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb60	10ರ	3	DPL23	14	13%	29
NIG-68	9 9	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	10 6	3	DPL23	17	16%	19
LEE	110	3	DP! 13	18	17%	85
CLE .	94	3	D∷. 3	17	17%	19
VL8	9 8	8	DOUGH	0	0%	81
MOT	110	3	Humi 118	23	22%	38
GAR	103	3	DP! 13	26	25%	33
32.B9	. 9 8	8	DPI: 1	5	5%	81
PUG	103	3	Hum ¹ - 118	24	23%	19
T1	115	8	HUN" ("01	52	50%	6
RF-TS7	9 .	7	$\mathbb{D}_{++} = \mathbb{R}$	4	40/0	60
YM-1	155	8	HU: 301	51	49%	75
K6H6	113	8	HUND TOT	20	19%	44
K5C7	11:	8	HUNG	20	19%	44
K5B8	1:2	8	HU11 301	20	19%	44
K5G5	1' !	8	HUM 301	20	19%	44
K4B8	142	8	HU: 1301	19	18%	44
K6F5	112	8	HU 301	17	16%	44
HIL	1:3	3	[}	22	21%	47
KIR	103	3	1	20	19%	19
CAP	11.3	3	()	19	18%	84
1B8	1.)	3	D. 3	22	21%	· 43
SHO	11.3	3	$\Gamma:=3$	19	18%	19
HAN	1 3	. 3	[] [3	20	19%	19
cML23	Ç;	3	[· 3	3	3%	12
PR-SJ1		3	; 3	7	7%	55
BAU	1 "	3	: 3	9	9%	5
TEX		3	! 3	8	8%	19
X(PET)	1 7	3	ſ .3	9	9%	51
DOY	1 3	3	[?3	9	9%	19
COT	1 3	3	13	13	12%	19
Pag-1	1 1	3	Hu 318	5	5%	31

CUBSTITUTE S ET (RULE 26)

Table 2B: (continued)

Name ¹	â	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'	
DIS	1	3	Humlv318	2	2%.	19	
WIT	10.9	3	Humlv318	. 7	7%	19	
I.RH	103	3	Humlv318	12	11%	19	
S1-1	103	3	Humiv318	12	11%	52	
DEL	103	3	Humlv318	14	13%	17	
TYR .	1 3	3	Humiy318	11	10%	19	
J.RH	1: }	3	Humly318	13	12%	19	
THO	1	2	D0113	38	36%	26	
LBV	3	1	DU/3	38	36%	2	
WLT	1	1	DDI3	33	31%	14	
SUT	1 :	2	DPU12	37	35%	65	

Table 2C: rearranged human heavy chain sequences

Name ¹	ā ·	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷	
21/28	11:	1	VH1-13 -12	0	0,0%	31	
8E10	100	1	VH1-13-12	0	0,0%	31	
MUC1-1	11"	1	VH1-13-6	4	4,1%	42	
gF1	Ċ	1	VH1-13-12	10	10,2%	75	
VHGL 1.2	.	1	VH1-13-6	2	2,0%	26	
HV1L1		1	VIII-13-6	0	0,0%	- 81	
RF-TS7	1010	1	VH1-13-6	3	3,1%	96	
E55 1.A15	1	1	VH1-12-15	1	1.0%	26	
HA1L1	1	1	VIII3-6	7	7,1%	81	
UC	1	1	VH:1-13-6	5	5,1%	115	
WIL2	1	1	VIII-13-6	6	6,1%	55	
R3.5H5G	1	1	VIII-13-6	10	10,2%	70	
N89P2	1	1	VH3-13-16	11	11,2%	77	
mAb113	1	1	V:::-:5-6	10	10,2%	71	
LS2S3-3	1	1	VH: - 12-7	5	5,1%	98	
LS2S3-12a	1	1	Viii - 7-7	5	5,1%	98	
LS2S3-5	1	1	VI: ?-7	5	5,1%	98	
LS2S3-12e	1	1	V: 1-7	5	5,1%	98	
LS2S3-4	1	1	Vi12-7	5	5,1%	98	
LS2S3-10	. 1	1	Viii - 2-7	5	5,1%	98	
LS2S3-12d	1	1	VI: - 13-7	6	6,1%	98	
L\$2\$3-8	1	1	Vi:-7	5	5,1%	98	
LS2	1	1	VI. :-7	6	6,1%	113	
LS4	1	1	VIII.	6	6,1%	113	
LS5	1	1	V	6	6,1%	113	
LS1	1	1	V7	6	6,1%	113	
LS6	1	1	V 7	6	6,1%	113	
LS8	1	1	Vi 2-7	7	7,1%	113	
THY-29	1	1	\`. · .'-7	0	0,0%	42	
1B9/F2	† :	1	V 7	10	10,2%	21	
51P1	.1	1	V., [-1]	0	0.0%	105	
NEI	1	,1	V 1-1	0	0.0%	55	
AND	1	1	\ '-1	0	0,0%	55	
L7	!	1	V :-1	0	0,0%	54	
L22	1	1	1	0	0,0%	54	
L24	!	1	\ -1	0	0.0%	54	

IT TUTE! T(RULE 26)

Table 2C: (continued)

Name ¹	: :	-Computed family ³	Germl ine gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
L26	; ;	1 .	VH1-12-1	0	0,0%	54
L33	1.3	1	.VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	2.13	1	VH1-12-1	0	0,0%	54
L39	: :	1	VH1-12-1	0	0,0%	54
L41 .	٠ ,	1	$V_{\rm th} \sim 1$. 0	0,0%	54
L42	; 5	1	VH1 - 10 -1	0	0,0%	54
VHGL 1.8	· 1	1	V ^{R++} 2-1	0	0,0%	26
783c	; ?	1	V::::-::2-1	0	0,0%	22
X17115	7	1	Viri-12-1	0	0,0%	37
L25	1 1	1	VH i - 12-1	0	0,0%	54
L17	1. 2	1.	VIII-12-1	1	1,0%	54
L30 .	•	1	V:: '- '9-1	1	1,0%	54
L37	1)	1	V:1	. 1	1,0%	54
TNF-E7	1 3	1	V:::1-1	2	2,0%	42
mÅb111	. 2	1	V. 1- 2-1	7 -	7,1%	71
III-2R	: !	1	Vi - 2-9	3	3,1%	70
KAS	1 :	1	V. 1-2-1	7	7,1%	79
YES8c	1 }	1	V: -12-1	8	8,2%	34
RF-TS1	; :	1	Vi - 3-1	8	8,2%	82
BOR'	:	1	V 8	7	7,1%	79
VHGL 1.9	•	1 .	V1	8	8,2%	26
mAb410.30F305	7	1	\9	5	5,1%	52
EV1-15	: 1	. 1	\ -8	10	10,2%	78
mAb112	<u> </u>	1	V: '-1	11 .	11,2%	71
EU	•	1	V., -1	11	11,2%	28
H210	;	1	V -1	12	12,2%	66
TRANSGENE	•	1	V:1	0	0,0%	111
CLL2-1		1	V1	0	0,0%	30
CLL10 13-3		1	V: 1/2 -1	0	0,0%	29
LS7		1	V7	4	4,1%	113
ALL7-1	. •	1 .	\ -7	0	0,0%	30
CLL3-1	•	1	V7	1	1,0%	30
ALL56-1	; ;	1	۱8	0	0,0%	30
ALL1-1	:	1	V -6	1	1,0%	30
ALL4-1	:-	1	V3	0	0,0%	30

Table 2C: (continued)

Name¹	a	ातृ uted . भन्नां ly ³	Gern de gern i	Diff. to germline ^s	% diff. to germline ⁶	Reference
ALL56 15-4	8	1	V H1-13-3	5	5,1%	29
CLL4-1	8	1	VH1-13-1	1	1,0%	. 30
Au92.1	9	1	VH1-12-5	0	0,0%	49
RF-TS3	11	1	VH1-12-5	1	1,0%	82
Au4.1	g.	1	VH1-12-5	1	1,0%	49
HP1	10	1	VIII-1 3	13	13,3%	110
BLI	12	1	VH1-1 5	5	5,1%	72
No.13	17	1	VF1-11-2	19	19,4%	76
TR1.23	11.	1	VH1-1 - 2	23	23,5%	88
S1-1	17	i	VH1-1 -2	18	18,4%	76
TR1.10	1:	1	VH1-10-12	14	14,3%	88
E55 1.A2	1:	1 .	VH1-10-15	3	3,1%	26 .
SP2	1	1	Min-11 3	. 15	15,3%	89
TNF-H9G1	1	1	VI:1-1 18	2	2,0%	42
G3D10H	1	;	VHI-1. 5	19	19,4%	127
TR1.9	1	1	VII -1 2	14	14,3%	88
TR1.8	1	1	VI. I-1 1	24	24,5%	88
LUNm01	1	1	Vi :-: 3	22	22,4%	9
K1B12H	1	1	V 1 . 7	23	23,5%	127
L3B2	ć.	1	V. 1-1-6	. 2	2,0%	46
ss2	1	1	V: '+ 3	2	2,0%	46
No.86	1	1	V" 1- 1	20	20.4%	76
TR1.6	1	1	V., 1-1 - 1	19	19,4%	88
ss7	•	· 1	V 1-1-7	3	3,1%	46
s5B7	1	1	V. 11	0	0,0%	46
s6A3	٤	1	V - 1	0	0,0%	46
ss6	٤	1	V 11	0	0.0%	46
L2H7	1	1	Vi=112	0	0,0%	46
s6BG8	Ç	1	V: :-: 2	0	0,0%	46
s6C9	1	1	V1 2	0	0,0%	46
HIV-b4	1	1	V. 1-1 12	21	21,4%	12
HIV-b12	;	1	V - 2	21	21,4%	12
L3G5	:	1	V - 3	1	1,0%	46
22	1	1	\ '- 3	11	11,2%	118
L2A12		1	V1 - 15	3	3,1%	46
PHOX15	;	. 1	\ - 7	20	20,4%	73

Table 2C: (continued)

Name'	;	inputed inmily ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LUNm03	1	1	Vii1-1X-1	18	18,4%	9
CEA4-8A	1	1	VH1-12-7	1	1,0%	42
M60	1.	2 .	VH2-31-3	3	3,0%	103
HiH10	•	2	VH2-31-5	. 9	9,0%	4
COR	;	2	VII 2-31-2	11	11,0%	91
2-115-19	1	2 .	Vi -111	8	8,1%	124
OU	. 1	2	VHT-11-14	20	25,6%	92
HE	1	2	VH1-11-13	19	19.0%	27
CLL33 40-1		2	Vi:17-111-5	2	2.0%	29
E55 3.9	;	3	V. 5-14-5	7	7,2%	26
MTFC3	1	3	V -1:-4	21	21,0%	131
MTFC11		3	V11-4	21	21,0%	131
MTFJ1	:	3	V 11-4	21	21,0%	131
MTFJ2	;	3	\ !-4	21	21.0%	131
MTFUJ4	1	3 .	V' -4	21	21,0%	131
MTFÚJ5	1	3	V. '-4	21	21,0%	131
MTFUJ2	;	3	V4	22	22,0%	131
MTFC8	}	3	\ - '-'4	23	23,0%	131
TD e Vq	1	3	V4	0	0,0%	16
rMTF	. !	3	\4	5	5,0%	131
MTFUJ6	1	3	\ -4	10	10,0%	131
RF-KES	i	3 .	4	. 9	9,0%	85
N51P8	i	3	T1	9	9,0%	77
TEI	1	3	V - 8	21	21,4%	20
33.H11	1	3	V19	10	10,2%	129
SB1/D8	1	3	\ . · -3	14	14,0%	2
38P1	!	3	/ -3	0	0,0%	104
BRO'IGM	1	3	/ -3	13	13,4%	19
NIE	;	3	\ -7	15	15.3%	87
3D6	;	3	V ~6	5	5,1%	35
ZM 1-1	1	3	/ · · · 3	8	8,2%	5
E55 3.15	;	3	V	0	0,0%	26
gF9	;	3	7 -3.	15	15,3%	75
THY-32	;	3	٧	3	3,1%	42
RF-KL5	*	3	V 6.	5 .	5,1%	96
OST577	:	3	γ :3	6	6.1%	5

Table 2C: (continued)

Name ¹	ŧ	puted mily ³	ine ₂ 4	Diff. to germline ⁵	% diff. to germline ⁶	Reference
во	. }	3	Vi -17-19	15	15,3%	10
TT125	1	3	VIII - 10-10	15	15,3%	64
2-115-58	1.	3	VIII - 13-10	11	11,2%	. 124
KOL	*	3	VI.0-13-14	16	16,3%	102
mAb60	1	3	V***-17-17	14	14,3%	45
RF-AN		3	V ::::::::::::::::::::::::::::::::::::	8	8,2%	85
BUT	;	3	٠-6	13	13,4%	119
KOL-based CAMP	ATH-				·	
9	!	3	V!** - * ^ - 13	16	16,3%	41
B1	!	3	V1:-19	13	13,3%	53
N98P1	;	3	V - 3-1	13	13,3%	77
П117	!	3	V1 -10	12	12,2%	64
WEA	1	3	V12	15	15,3%	40
HIL		3	\ -14	14	14,3%	23
5A10	•	3	V14	0	0,0%	46
5D11	:	3	\ - [?] -7	0 .	0,0%	46
s6C8	; }	3	:-7	0	0,0%	46
s6H12	*	3	1-7	0	0,0%	46
√H10.7	1	3	V14	16	16,3%	128
HIV-loop2	:	3		16	16,3%	12
HIV-loop35		3	`. ~-7	16	16,3%	12
TRO		3	\ -1	13	13,3%	61
SA-4B	•	3	3-1	15	15,3%	125
L2B5		3	Vi 13	0	0,0%	46
s6E11		3	\ -13	0	0,0%	46
s 6 H7	•	3	\ -13	0	0.0%	46
ss1	:	3	\ '-13	0	0,0%	46
ss8		3	\ '-13	0	0,0%	46
DOB	•	3	\16	· 21	21,4%	116
THY-33	:	3	\ 1-15	20	20,4%	42
NOV	•	3	`-19	14	14,3%	38
rsv13H		3	\ 3-24	20	20,4%	11
L3G11		3	1-20	2	2,0%	· 46
L2E8		3	1 19	0	0.0%	46
L2D10	•	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	1,0%	46
L2E7		3	\ '-10	1	1,0%	46

Table 2C: (continued) ...

L3A10 1 3 V:3-13-24 0 0,0% 46 L2E5 9 3 V:3-13-2 1 1,0% 46 BUR 11 3 V:3-13-7 21 21,4% 67 s4D5 11 3 V:3-11-3 1 1,0% 46 19 1 3 V:3-11-6 4 4,1% 118 s5D4 5 3 V:3-1 0 0,0% 46 s6A8 11 3 V:3-1 0 0,0% 46 HIV-loop13 17 3 V:3-1 0 0,0% 46 HIV-loop13 17 3 V:3-1 0 0,0% 46 HIV-loop13 17 3 V:3-1 1 1,0% 46 HIV-loop13 17 3 V:3-1 0 0,0% 46 HIV-loop13 17 3 V:3-1 0 0,0% 46 RE310	Name¹	а	nputed Inmily ³	€ amline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
BUR 11 3 V:12-13-7 21 21.4% 67 s4D5 11 3 V:12-13-7 21 1.0% 46 19 11 3 V:13-11-3 1 1.0% 46 118 s5D4 5 3 V:13-1 0 0.0% 46 s6A8 11 3 V:13-1 0 0.0% 46 s6A8 11 3 V:13-1 0 0.0% 46 s6A8 11 3 V:13-1 0 17 17,3% 12 TR1.32 1 3 V:13-1 1 1 1,0% 46 HIV-loop13 1 3 V:13-1 1 1 1,0% 46 S6A8 11 3 V:13-1 1 1 1,0% 46 TR1.5 1 3 V:13-1 1 1 1,0% 46 S6A9 1 1 3 V:13-1 1 1 1,0% 46 S6A9 1 1 3 V:13-1 1 1 1,0% 46 S6A9 1 1 3 V:13-1 1 1 1,0% 46 S6A9 1 1 3 V:13-1 1 1 1,0% 46 S7A9 1 1 1 3 V:13-1 1 1 1,0% 46 S7A9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L3A10	1	3	V: 3-13-24	0	0,0%	46
s4D5 1 3 VCB-11-3 1 1,0% 46 19 1 3 VCB-13-16 4 4,1% 118 s5D4 5 3 VCB-13-1 0 0,0% 46 s6A8 16 3 VCB-13-1 0 0,0% 46 HIV-loop13 17 3 VCB-13-12 17 17,3% 12 TR1.32 1 3 VCB-11-8 18 18,6% 88 L2B10 5 3 VCB-11-8 11 1,0% 46 R8. 1 3 VCB-11-8 21 21,6% 88 s6H9 1 3 VCB-11-8 21 21,6% 88 s6H9 1 3 VCB-11-8 21 21,6% 88 s6H9 1 3 VCB-11-8 20 20,6% 88 s6H9 1 3 VCB-11-8 20 20,6% 88 s8 <td>L2E5</td> <td>Ć.</td> <td>3</td> <td>V::3-13-2</td> <td>1</td> <td>1,0%</td> <td>46</td>	L2E5	Ć.	3	V::3-13-2	1	1,0%	46
19	BUR	1 :	3	V#3-1 3-7	21	21,4%	67
s5D4 9 3 V 3-1 0 0,0% 46 s6A8 16 3 V 3-1 0 0,0% 46 HIV-loop13 17 3 V 3-12 17 17,3% 12 TR1.32 1 3 V -11-8 18 18,6% 88 L2B10 9 3 V -11-3 1 1,0% 46 TR1.5 1 3 V -11-8 21 21,6% 88 s6H9 1 3 V -11-8 21 21,6% 88 s6H9 1 3 V -3-1 6 6,1% 118 23 1 3 V -3-1 6 6,1% 118 7 1 3 V -10 0 0,0% 32 18/9 1 3 V -10 0 0,0% 32 18/9	s4D5	1, .	3	VII3-11-3	1	1,0%	46
s6A8 11 3 V 3-1 0 0,0% 46 HIV-loop13 17 3 V 3-12 17 17,3% 12 TR1.32 1 3 V -11-8 18 18,6% 88 L2B10 9 3 V -11-3 1 1,0% 46 TR1.5 1 3 V -13-25 0 0,0% 46 8 1 3 V -13-25 0 0,0% 46 8 1 3 V -13-1 6 6,1% 118 23 1 3 V -3-1 6 6,1% 118 7 1 3 V -3-1 6 6,1% 118 7 1 3 V 3-10 0 0,0% 88 18/2 1 3 V 3-10 0 0,0% 32 18/9 <td< td=""><td>19</td><td>1</td><td>3</td><td>Ving-13-16</td><td>4</td><td>4,1%</td><td>118</td></td<>	19	1	3	Ving-13-16	4	4,1%	118
HIV-loop13	s5D4	5	3	\3-1	0	0,0%	. 46
TR1.32	s6A8	1:	3	V: 13-1	0	0,0%	46
L2B10 \$\sigma\$ 3 V -11-3 1 1,0% 46 TR1.5 1 3 V -11-8 21 21,6% 88 s6H9 1 3 V -13-25 0 0,0% 46 8 1 3 V -13-1 6 6,1% 118 23 1 3 V -3-1 6 6,1% 118 7 1 3 V -3-1 4 4,1% 118 77 1 3 V -3-1 4 4,1% 118 77 1 3 V -3-1 0 0,0% 88 18/2 1 3 V -10 0 0,0% 32 18/9 1 3 V -3-10 0 0,0% 31 30P1 1 3 V -3-10 0 0,0% 106 HF2-1/17 1 3 V -10 0 0,0% 44 819.7 1 3 V -10 0 0,0% 44 819.7 1 3 <	HIV-loop13	11	3	V'' 3-12	17	17,3%	12
L2B10 9 3 V -11-3 1 1,0% 46 TR1.5 1 3 V -11-8 21 21,6% 88 s6H9 1 3 V -13-25 0 0,0% 46 8 1 3 V -3-1 6 6,1% 118 23 1 3 V -3-1 6 6,1% 118 7 1 3 V -3-1 4 4,1% 118 7 1 3 V -3-1 4 4,1% 118 7 1 3 V -3-1 4 4,1% 118 7 1 3 V -1-0 0 0,0% 88 18/2 1 3 V -10 0 0,0% 32 18/9 1 3 V -3-10 0 0,0% 31 30P1 1 3 V -3-10 0 0,0% 44 HF2-1/17 1 3 V -10 0 0,0% 44 M43 1 3 V -10	TR1.32	1 -	3	\ -11-8	18	18,6%	88
TR1.5 1 3 V -11-8 21 21,6% 88 s6H9 1 3 V -3-25 0 0,0% 46 8 1 3 V -3-1 6 6,1% 118 23 1 3 V 3-1 6 6,1% 118 7 1 3 V 3-1 6 6,1% 118 TR1.3 1 3 V 3-1 4 4,1% 118 TR1.3 1 3 V 3-1 0 0 0,0% 32 18/9 1 3 V 3-10 0 0,0% 32 18/9 1 3 V 3-10 0 0,0% 31 30P1 1 3 V 3-10 0 0,0% 106 HF2-1/17 1 3 V 3-10 0 0,0% 106 HF2-1/17 1 3 V 3-10 0 0,0% 44 B19.7 1 3 V 3-10 0 0,0% 44 B19.7 1 3 V 3-10 0 0,0% 44 B19.7 1 3 V 3-10 0 0,0% 31 18/17 1 3 V 3-10 1 0,0% 31 E54 3.4 1 3 V -10 0 0,0% 31 E54 3.8 1 3 V -10 1 1,0% 26 GL16 1 3 V -10 1 1,0% 26 GL16 1 3 V -10 1 1,0% 44 4G12 1 3 V -10 2 2,0% 44 AL1.3 1 3 V -10 2 2,0% 108 Ab18 1 3 V -10 2 2,0% 108 Ab18 1 3 V -10 3 3,1% 26	L2B10	Ĉ.	3				
s6H9 1 3 V: 13-25 0 0,0% 46 8 1 3 V: 13-1 6 6,1% 118 23 1 3 V: 3-1 6 6,1% 118 7 1 3 V: 3-1 6 6,1% 118 TR1.3 1 3 V: 3-1 4 4,1% 118 TR1.3 1 3 V: 3-10 0 0,0% 88 18/2 1 3 V: 3-10 0 0,0% 32 18/9 1 3 V: 3-10 0 0,0% 31 30P1 1 3 V: 3-10 0 0,0% 106 HF2-1/17 1 3 V: 3-10 0 0,0% 8 A77 1 3 V: 3-10 0 0,0% 44 B19.7 1 3 V: 3-10 0 0,0% 44 M43 1 3 V: 3-10 0 0,0% 31 18/17 1 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>						-	
8	s6H9	1	3				
23 1 3 \ 3 \ 3-1 6 6 6,1% 118 7 1 3 \ 3 \ 3-1 4 4,1% 118 TR1.3 1 3 \ 1-8 20 20,6% 88 18/2 1 3 \ 3 \ 3-10 0 0 0,0% 32 18/9 1 3 \ 3 \ 3-10 0 0 0,0% 31 30P1 1 3 \ 3 \ 3-10 0 0 0,0% 106 HF2-1/17 1 3 \ 3 \ 3-10 0 0 0,0% 44 B19.7 1 3 \ 3 \ 3-10 0 0 0,0% 44 B19.7 1 3 \ 3 \ 3-10 0 0 0,0% 103 1/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 103 1/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 31 18/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 31 18/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 31 18/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 31 18/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 31 18/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 31 18/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 31 18/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 31 18/17 1 3 \ 3 \ 3 \ 3-10 0 0 0,0% 31 18/17 1 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3	8 .	1	3				
7 1 3 \ 3-1 4 4,1% 118 TR1.3 1 3 \ 1-8 20 20,6% 88 18/2 1 3 \ 3-10 0 0,0% 32 18/9 1 3 \ 3-10 0 0,0% 31 30P1 1 3 \ 3-10 0 0,0% 106 HF2-1/17 1 3 \ 3-10 0 0,0% 8 A77 1 3 \ 3-10 0 0,0% 44 B19.7 1 3 \ 3-10 0 0,0% 44 M43 1 3 \ 3-10 0 0,0% 44 M43 1 3 \ 3-10 0 0,0% 31 18/17 1 3 \ 3-10 0 0,0% 31 18/17 1 3 \ 3-10 0 0,0% 31 E54 3.4 1 3 \ 3-10 1 1,0% 95 E54 3.8 1 3 \	23	1	3	\ 3-1	6	•	
TR1.3 1 3 \ 1-8 20 20,6% 88 18/2 1 3 \ 3-10 0 0,0% 32 18/9 1 3 \ 3-10 0 0,0% 31 30P1 1 3 \ 3-10 0 0,0% 106 HF2-1/17 1 3 \ 3-10 0 0,0% 106 HF2-1/17 1 3 \ 3-10 0 0,0% 8 A77 1 3 \ 3-10 0 0,0% 44 B19.7 1 3 \ -10 0 0,0% 44 M43 1 3 \ -10 0 0,0% 103 1/17 1 3 \ -10 0 0,0% 31 18/17 1 3 \ -10 0 0,0% 26 LAMBDA-VH26 5 3 \ -10 1 1,0% 26 GL16 1	7	1	3	•	4		
18/2 1 3 V 3-10 0 0,0% 32 18/9 1 3 V 3-10 0 0,0% 31 30P1 1 3 V 3-10 0 0,0% 106 HF2-1/17 1 3 V 3-10 0 0,0% 8 A77 1 3 V 3-10 0 0,0% 44 B19.7 1 3 V 3-10 0 0,0% 44 M43 1 3 V -10 0 0,0% 44 M43 1 3 V -10 0 0,0% 103 1/17 1 3 V -10 0 0,0% 31 18/17 1 3 V -10 0 0,0% 31 E54 3.4 1 3 V -10 1 1,0% 95 E54 3.8 1 3 V -10 1 1,0% 44 4G12 1	TR1.3	1	3	\ 1-8	20		
18/9 1 3 V. 3-10 0 0,0% 31 30P1 1 3 V. 3-10 0 0,0% 106 HF2-1/17 1 3 V. 3-10 0 0,0% 8 A77 1 3 V. 10 0 0,0% 44 B19.7 1 3 V. 10 0 0,0% 44 M43 1 3 V. 10 0 0,0% 103 1/17 1 3 V. 10 0 0,0% 31 18/17 1 3 V. 10 0 0,0% 26 LAMBDA-VH26 5 3 V. 10 1 1,0% 26 GL16 1 3 V.	18/2	1	3	V 3-10	0		
HF2-1/17	18/9	1	3	V. 3-10	0	•	
A77 1 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	30P1	1	3	V 3-10	0	0,0%	106
B19.7 1 3 \ -10 0 0,0% 44 M43 1 3 \ -10 0 0,0% 103 1/17 1 3 \ -10 0 0,0% 31 18/17 1 3 \ -10 0 0,0% 31 E54 3.4 1 3 \ -10 0 0,0% 26 LAMBDA-VH26 5 3 \ -10 1 1,0% 95 E54 3.8 1 3 \ -10 1 1,0% 26 GL16 1 3 \ -10 1 1,0% 44 4G12 1 3 \ -10 1 1,0% 56 A73 1 3 \ -10 2 2,0% 44 AL1.3 1 3 \ -10 2 2,0% 108 Ab18 1 3 \ -10 3 3,1% 2 2,0% 100 E54 3.3 1 3 \ -10 3 3,1% 26 2	HF2-1/17	1	3	V 3-10	0	0,0%	8
M43	A77	1	3	۱-10	0	0,0%	44
1/17	B19.7	1	3 .	· \ :-10	0	0,0%	44 .
18/17 1 3 \ -10 0 0,0% 31 E54 3.4 1 3 \ -10 0 0,0% 26 LAMBDA-VH26 9 3 \ -10 1 1,0% 95 E54 3.8 1 3 \ -10 1 1,0% 26 GL16 1 3 \ -10 1 1,0% 44 4G12 1 3 \ -10 1 1,0% 56 A73 1 3 \ -10 2 2,0% 44 AL1.3 1 3 \ -10 2 2,0% 108 Ab18 1 3 \ -3 2 2,0% 100 E54 3.3 1 3 \ -10 3 3,1% 26	M43	1	3	V -10	0	0,0%	103
E54 3.4	1/17	1	3	V: -10	0	0,0%	31
LAMBDA-VH26	18/17	1	3	V: -:0	0	0,0%	3 1.
E54 3.8	E54 3.4	1	3	\ -10	0	0,0%	26
E54 3.8	LAMBDA-VH26	Ç	3	\. '-10	1	1,0%	
GL16 1 3 \ -10 1 1,0% 44 4G12 1 3 \ -10 1 1,0% 56 A73 1 3 \ -10 2 2,0% 44 AL1.3 1 3 \ -10 3 3,1% 117 3.A290 1 3 \ -10 2 2,0% 108 Ab18 1 3 \ -3 2 2,0% 100 E54 3.3 1 3 \ -10 3 3,1% 26	E54 3.8	1	3	V -10	1	1,0%	
4G12 1 3 \ -10 1 1,0% 56 A73 1 3 \ -10 2 2,0% 44 AL1.3 1 3 \ -10 3 3,1% 117 3.A290 1 3 \ -10 2 2,0% 108 Ab18 1 3 \ -3 2 2,0% 100 E54 3.3 1 3 \ -10 3 3,1% 26	GL16	1	3	V -10	1		
A73 1 3 \ -10 2 2,0% 44 AL1.3 1 3 \ -10 3 3,1% 117 3.A290 1 3 \ -10 2 2,0% 108 Ab18 1 3 \ -3 2 2,0% 100 E54 3.3 1 3 \ -10 3 3,1% 26	4G12	1.	3	١ -10	1	1,0%	
AL1.3 1 3 \ -20 3 3,1% 117 3.A290 1 3 \ -10 2 2,0% 108 Ab18 1 3 \ -3 2 2,0% 100 E54 3.3 1 3 \ -10 3 3,1% 26	A73	1	3	\ -10	2	2,0%	
3.A290 1 3 \ -10 2 2,0% 108 Ab18 1 3 \ -3 2 2,0% 100 E54 3.3 1 3 \ -10 3 3,1% 26	AL1.3	1	3	C:- /	3		
Ab18 1 3 \ -3 2 2,0% 100 E54 3.3 1 3 \ -10 3 3,1% 26	3.A290	1	3	\ -10			
E54 3.3 1 3 \ -10 3 3,1% 26	Ab18	1	3	· -3			
2000	E54 3.3	1	3	\ -!O	3		
i i i i i i i i i i i i i i i i i i i	35G6	1	3	١١٦	3	3,1%	57

TT.TUTE (T'RULE 26)

Table 2C: (continued)

Name¹	a a`	puted mily ³	C	ine 4	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
A95	107	3	VHD	-10	5	5,1%	44
Ab25	128	3	VH3	13-10	5	5,1%	100
N87	12 6	3	VH?	-13-10	4	4,1%	77
ED8.4	9 9	3	VHC	13-10	6	6,1%	2
RF-KL1	122	3	VH~	12 -10	6	6,1%	82
AL1.1	111	3	VI:	-10	2	2,0%	117
AL3.11	102	3	VH	-10	1	1,0%	117
32.B9	72 م	3	V!	n-8	6	6,1%	129-
TK1	10 -	3	V E	-10	2	2,0%	117
POP	12	3	VI:	-10	8	8,2%	115
9F2H	12	3	V I	-10	9	9,2%	127
VD	111	3	VI:	-10	9	9,2%	10
Vh38Cl.10	12	3	V!	-10	8	8,2%	74 ·
Vh38Cl.9	12:	3	V:	-10	8	8,2%	74
Vh38Cl.8	121	3	Vi :	-10	8	8,2%	74
63P1	10	3	\mathbf{V}_{-}^{*}	-9	0	0,0%	104
60P2	1:	3	V.	-8	0	0,0%	104
AL3.5	S	3	V:	·iO	· 2	2,0%	117
GF4/1.1	11	3	y '	-10	10	10,2%	39
Ab21	10	3	$V_{i}^{\ast }=$	-10	12	12,2%	100
TD d Vp	1	3	V	-17	2	2,0%	16
Vh38Cl.4	111	3	V	10	8	8,2%	74
Vh38Cl.5	1.1	3	V:	-10	8	8,2%	74
AL3.4	1′	3	V:	: 0	1	1.0%	117
FOG1-A3	1	3	V	- ∶9	2	2,0%	42.
HA3D1	1.7	3	ν.	-21	1	1,0%	81
E54 3.2	1	3	V	-24	0	0,0%	26
mAb52	1 5	3	∇	-12	2	2,0%	51
mAb53	11.7	3	\mathbf{V}	-12	2	2,0%	51
mAb56	1.38	3	١	12	2	2,0%	51
mAb57	108	3	1.	: 2	2	2,0%	51
mAb58	113	3	\mathbf{V}	-12	2	2.0%	51
mAb59	128	3	١	. 2	2	2.0%	51
mAb105	128	3	∇	-12	2	2,0%	51
mAb107	128	3	۸.	.∶2	2	2,0%	51
E55 3.14	110	3	٧.	-19	0	0,0%	26

S' TUTE (RULE 26)

Table 2C: (continued)

Name¹	aa²	p uted mily ³	C. dine	Diff. to germline ^s	% diff. to germline ⁶	Reference'
F13-28	106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE	117	3	VH3-13-24	6	6,1%	72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VI-1-13-1	3	3,1%	85
N42P5	124	3	V -2	7	7,1%	77
FOG1-H6	110	3	VE -16	7	7,1%	42
0-81	115	3	V ^{1,1} 1-19	11 -	11,2%	47
HIV-s8	122	3	V. '-12	11	11,2%	. 12
mAb114	125	3	Vi 1-19	12	12,2%	71
33.F12	116	3	V - 3-2	4	4,1%	129
484	119	3	V '<-3	0	0,0%	101
M26	123	3	V. '-3	0	0,0%	103
VHGL 3.1	160	3	\ :-3	О .	0,0%	26 ·
E55 3.13	113	3	\ :-3	1	1,0%	26
SB5/D6	101	3	\ :-6	3	3,0%	2
RAY4	1.1	3	\ \ \<-6	3	3,0%	2
82-D V-D	1.6	3	\ <-3	· 5	5,0%	112
MAL	11.4	3	\ (-3	5	5,0%	72
LOC	1: 3	3	\	5	5,0%	72
LSF2	1: ;	3	\ '-5	11	11,0%	2
HIB RC3	1.0	3 .	6	11	11,0%	1 .
56P1	1.3	3	\ -7	0	0,0%	104
M72	112	3	\ -7	0	0,0%	103
M74	1 i	3	\ '-7	0	0,0%	103
E54 3.5	1.5	3	V. 1-7	0	0.0%	26
2E7	1	3	\ '-7	0	0,0%	63
2P1	1	. 3	١7	0	0,0%	104
RF-SJ2	1.	3	\ -7	1	1,0%	83
PR-TS1	1.	3	٠-7	1	1,0%	85
KIM46H	1'	3	V -13	0	0.0%	18
E55 3.6	. 1	3	.7	2	2,0%	26
E55 3.10	1: '	3	V -13	1	1,0%	26
3.B6	111	3	\ -'3	1	1,0%	108
E54 3.6	1.	3	/:3	1	1,0%	26
FL2-2	1:	3	/ -:3	1	1.0%	80 .

Ī

Table 2C: (continued)

Name ¹	a a²	uted Ily³	C.	line e ⁴	Diff. to germlines	% diff. to germline ⁶	Reference'
RF-SJ3	112	ż	VI.	- · 3 -7	2	2,0%	85
E55 3.5	105	3	VH.1-	13-14	1	1,0%	26
BSA3	121	3	VH: -	`3-13	1	1,0%	73
HMST-1	119	3	VH	- 13 -7	3 .	3,1%	130
RF-TS2	120	3	VH"-	· ?-13	4	4,1%	82
E55 3.12	10	3	VI:	-15	0	0,0%	26
19.E7	120	3	VH	-14	3	3,1%	129
11-50	119	3	V H	₹-13	6	6,1%	130
E29.1	12	3	VE:	-15	2	2,0%	25
E55 3.16	10.	3	V:	!-7	6	6,1%	26
TNF-E1	117	3	V_{i}^{i}	}-7	7	7,1%	42
RF-SJ1	127	3	VE	-13	6	6,1%	83
FOG1-A4	111	3	V.:	`-7	8	8,2%	42
TNF-A1	1:	3	V :.	-15	4	4,1%	42
PR-SJ2	101	3	Vì	-14	8	8.2%	85
HN.14	17	3	V!	-13	10	10,2%	33
CAM'	1	3	V	-7	12	12,2%	65
HIV-B8	• 1.	3	V	- 7	9	9,2%	12
HIV-b27	1.	3	V	, -7	9	9,2%	12
HIV-b8	1	3	V	-7	9	9,2%	12
HIV-s4	1.	3	V_{ℓ} ,	-7	9	9,2%	12
HIV-B26	1	3	١	-7	9	9,2%	12
HIV-B35	1	3	\	` - 7	10	10,2%	12
HIV-b18	1	3	\	`- 7	10	10,2%	12
HIV-b22	1	3	4	-7	11	11,2%	.12
HIV-b13	1	3	\	7	12	12,2%	12
333	1.	3	\	-4	24	24,0%	24
1H1	1	3	V	4	24	24.0%	24
1B11	1	3	١	- 4	2 3 .	23,0%	24
CLL30 2-3	Į.	3	V	-19	1	1,0%	29
GA	1:	3	·.	?-7	19	19,4%	36
JeB	:	3	ν.	-14	3	3,1%	7
GAL	1	3	V	. 9	10	10,2%	126
K6H6	1:	3	,	- ŝ	18	18,0%	60
K4B8	1.	3	١	۶ .	18	18.0%	60
K5B8	1:	3	Ţ	6	18	18.0%	60

TUTE - (RUL- 26)

Table 2C: (continued)

Name ¹	3.	iputed imily ³) t	line re ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
K5C7	1:	3	∇_i :	-:X-6	19	19,0%	60
K5G5	11	3	VHC	- :X-6	19	19,0%	60
K6F5	11'	3	V1!?	- 1X-6	19	19,0%	60
AL3.16	6	3	VH2-	13-10	1	1,0%	117
N86P2	\bar{c} .	3	Virg-	13-10	3	3,1%	77
N54P6	č.	3	V.	-16	. 7	7,1%	7 7
LAMBDA HT112-1	1:	4	V.	:-2	0	0,0%	3
HY18	1".	4	V^{α}	1-2	0	0,0%	43
mAb63	1.	4	\	2	0	0,0%	45
FS-3	10	4	\ .	:-2	0	0,0%	86
FS-5	11	4	1.	:-2	0	0,0%	86
FS-7	17	4	\	1-2	0	0,0%	86
FS-8	1.	4	1 .	1-2	0	0,0%	86
PR-TS2	1	4	\	-2	0	0,0%	8 5
RF-TMC	1.	4	χ	2	0	0,0%	85
mAb216	1	4	Λ.	- 2	1	1,0%	15
mAb410.7.F91	1	4	1	.2	1	1,0%	52
mAbA6H4C5	11	4	١	-3	1	1,0%	15
Ab44	1	4	١.	2	2	2,1%	100
6H-3C4	1:	4	X .	2	3	3,1%	59
FS-6	1 .	4	١,	2	6	6,2%	86
FS-2	1 .	4 .	\	- 2	S	6,2%	84
HIG1	11.5	4	1	- 2	7	7,2%	62
FS-4	1	4	1.	2	8	8,2%	86
SA-4A	1	4	1	<u>3</u>	9	9,3%	125
LES-C	1 .	4	\	5	10	10,3%	99
DI	7	4	\)	16	16,5%	58
Ab26	11	4	N.	- 4	8	8,1%	100
TS2	1	4	Λ'	2	15	15,2%	110
265-695	1	4	١	7	15	16,5%	5
WAH	1	-1	V	. 3	19	19,2%	93
268-D	1	4	1.	3	22	22,7%	6
58 P2	1	4	1	- 3	. 0	0,0%	104
mAb67	11	4	Δ°	;	1	1,0%	45
4.L39	1	4	١	}	2	2,1%	108
mF7	1.	4.	V .	3	3	3,0%	75

Table 2C: (continued)

Name¹	a a .	nuted ∃ly³	l (°	1e :	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
33.C9	12:	4	VII	-5	7	7,1%	129
Pag-1	12 4	4	VH 1-	-16	5	5,2%	50
B3	125	4	Viii:	∵-3	8	8,2%	53
IC4	12 ^{rs}	4	VH:-	8	6	6,2%	70
C6B2	127	4	VH:	-12	4	4,0%	48
N78	11	:	V_{\cdot}^{i}	;	11	11,3%	77
B2	10.	1	V!	3	12	12,4%	53
WRD2	12.	:	٧ŀ٠	`2	6	6,2%	90
mAb426.4.2F20	12	1	V.	3	2	2,1%	52
E54 4.58	1 1	4	V:	. 3	1	1,0%	26
WRD6	10	4	V!	< 12	10	10,3%	90
mAb426.12.3F1.4	1.7	4	V.)	·4	4,1%	52
E54 4.2	10	4	V^{i}	3	2	2,0%	26
WIL	1:	4	V:	3	0	0,0%	90
COF	12	;	Vi	: 3	0	0,0%	90
LAR	17	4	V:	. 3	2	2,0%	90
WAT	1:	4	$V_{\cdot,\cdot}$. 3	4	4,0%	90
mAb61	1:	4	V : .	3	5	5,1%	45
WAG	11	4	١		0	0.0%	90
RF-SJ4	1'	4	V_{\cdot} .	. 5	2	2,0%	85
E54 4.4	1	1	١		0	0.0%	26
E55 4.A1	1:	•	١.	,	0	0 .0%	26
PR-SJ1	11	- 1	1.	•	1	1,0%	85
E54 4.23	1	;	\	7	1	1,0%	26
CLL7 7-2	<u>C</u>	‡	V	. 3	0	0,0%	29
37P1	ξ	4	ν.	. 2	0	0,0%	104
ALL52 30-2	Ĩ.	‡	V	2	4	4.0%	29
EBV-21	€	5	V .		0	0,0 %	13
CB-4	<u>Ç</u>	5	\	:	0	0,0%	13
CLL-12	Č.	5	V	1	0	C.)%	13
. L3-4	ć	3	1	:	0	C,0%	13
CLL11	ć	5	\	1	0	0,0%	17
CORD3	٤	ā	İ	1	0	0 ,0 %	17
CORD4	ξ	5	١	- }	0	0.0%	17
CORD8	ć	5	١.	ì	0	0,0%	17
CORD9	į	ĩ	١.	- 1	0 .	0.0%	17

Table 2C: (continued)

Name ¹	aa²	puted mily ³	Gericline gere ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD+1	9 8	5 .	VH5-12-1	0	0,0%	17
CD+3	9 8	5	VHE-12-1	0	0,0%	- 17
CD+4	9 8	5	VHT-12-1	0	0,0%	17
CD-1	\hat{o}_{\pm}	5	VH5-12-1	0	0,0%	17
CD-5	9 8	5	VHE-12-1	0	0,0%	17
VERG14	9 8	5	\"" "-1	C	0,0%	17
PBL1	98	5	Viii [-1	Э	0,0%	17
PBL10	9 8	5	V(1) 7-1	0	0,0%	17
STRAb SA-1A	12 7	5 .	V (**1	0	0,0%	125
DOB'	12^	5	V 17 - 3-1	0	0,0%	97
VERG5	91	5	Virin- 3-1	0	0,0%	17
PBL2	9	5	V.12 - 2-1	1	1,0%	17
Tu16	11.	5	Victoria,	1	1,0%	49
PBL12	9 &	5	\ -1	1	1,0%	17
CD+2	9 8	5	V -1	1	1.0%	17
CORD10	9 8	5	V ~1	1	1.0%	17
PBL9	90	5 .	V1	1	1,0%	17
CORD2	9	5	1 -1	2	2.0%	17
PBL6	$\hat{m{c}}$	5	1 -1	2	2,0%	17
CORD5	5	5	V -1	. 2	2,0%	17
CD-2	S	5	N - 1	. 2	2,0%	17
CORD1	S	5	7 - 4	2	2.5%	17
CD-3	9.	<u>.</u> َ	V -1	3	3,1%	17
VERG4	9	ĵ.	7 -1	. 3	3,1%	17 .
PBL13	9	5	1 -1	3	3,1%	.17 .
PBL7	Ĉ	5 .	V -1	3	3,1%	⁻ 17
HAN	1	5	V -1	3	3.1%	97
VERG3	£ .	5	\ -1	3	3,1%	17
PBL3	, Ç .	5	· -1	3 ·	3,1%	17
VERG7	Ĉ.	5	<i>i</i> -1	3	3.1%	17
PBL5	9	5	\ -1	9	C, 2%	17
CD-4	Ĉ	5	V -1	4	4,1%	17
CLL10	ć	5	V -1	4	4, 1%	17
PBL11	Ĉ.	5	١1	4	4.1%	17
CORD6		5	\ -1	. 4	4,:0%	17
VERG2		5	7 -1	5	£,:%	17

Table 2C: (continued)

Name ¹	a a	. uted ily³	Conline ⊊n e⁴	Diff. to geraline ⁵	% diff. to germline ⁶	Reference ²
83P2	11	5	VIII - 12-1	·:)	0,0%	103
VERG9	90	5	VH5-12-1	6	6,1%	17
CLL6	9 8	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7.1%	17
Ab2022	12 0	5	V!!r-12-1	3	3,1%	100
CAV	17	5	V 12-4	0	C.0%	97
HOM.	12	5	V: -12-4	()	0,0%	97
PET	1?*	5	V!12-4	_ <u></u>	0.0%	97
ANG	12 *	5	V' -12-4	0	0,0%	97
KER	12	5	V12-4	0	0,0%	97
5.M13	11	5	V. 1-12-4	0	0,0%	107
Au2.1	11	5	V" [-12-4	1	1,0%	49
WS1	11	5	V .: 12-1	9	9,2%	110
TD Vn	ς	.5	V 2-4	1	1.7%	16
TEL13	1:	5	V 12-1	9	9%	73
E55 5.237	1:	5	V 2-4	2	2, [~] %	26
VERG1	C ,	5	V :2-1	:)	10,2%	17
CD4-74	1.	5	V : 2-1	:)	1 C 2 %	42
257- D	1:	5	V : :2-1	11	11,2%	6
CLL4	Ç.	5	V 2-1	; 1	11,2%	17
CLL8	ć.	5	1 2-1	: 1	11.2%	17
Ab2	1.	5	V 2-1	: 2	17.3%	120
Vh383ex	€.	5	V 2-1	7.2	10.3%	120
CLL3	Ĉ.	5	1	:1	1 %	17
Au59.1	1.	5	12-1	: 2	1 %	49
TEL16	1	5	12-1	: 2	10.2%	73
M61	1 .	5	1)	C, %	103
Tu0	Ę	5 ·	V .11	5	5 1%	49
P2-51	1	5	V . 1	.3	1. :%	121
P2-54	1.	.5	7 1	. 1	1 : :9/0	121
P1-56	1	5	1	3	5 %	121
P2-53	1	5	1	.)	1 %	121
P1- 51	14	5	V : 1	. }	1 .%	121
P1-54	1?"	5	V 1.1	3	3 %	121
P3-69	1	5	V i	÷	4 %	121
P3-9	1	5	۱ i	:	د ا ₁ / ₀	121

Table 2C: (continued)

Name ¹	aa²	iputed mily ³	Germline gene⁴	Eaff. to gramline ⁵	% diff. to germline ⁶	Reference
1-185-37	125	5 .	\'H5-12-4	0 .	0,0%	124
1-187-29	. 125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	113	5	VH5-12-4	3	3,1%	121
P2-55	13	5	VH5-12-1	· 5	5,1%	121
P2-56	1 3	5	V 15-12-1	90	20,4%	121
P2-52	122	5	VII5-12-1	:1	11,2%	121
P3-60	1?2	5	\"'5-12-1	3	8,2%	121
P1-57	11.3	5	\ :5-12-1	4	4,1%	121
P1-55	11.2	5	. V (5-12- 1	14	14,3%	121
MD3-4	1 3	5	V (5-12-4	12	12,2%	5 .
P1-52	1 .	5	\.i5-12-1	11	11,2%	121
CLL5	ţ	5	1 (5-12-1	13	13 ,3 %	17
CLL7	Ç.,	5	1. 15-12-1	14	14,3%	17
L2F10	11.3	5	V (5-12-1	1	1,0%	46
L3B6	Ç	5	\5 -12- 1	1	1,0%	46
VH6.A12	1 :	6	\ 16 -3 5-1	13	12,9%	122
5A9	1 .	6	\$ 6 -3 5-1	1	1,0%	46
s6G4	ć	6	\ .6 -3 1-1	1	1.0%	46
ss3	į	6	\ 16 -3 5-1	1	1,0%	46
6-1G1	1 .	6	\ 16-35-1	9	C,0%	14
F19L16	1 `	6 .	\	Э	0.0%	68
L16	1	6	\ 6-31	0	0.0%	69
M71	1	6	\ (6+3 ⁻ -1	\mathbf{c}	0.0%	103
ML1	1	6	\ 6-3	3	0 0 %	69
F19ML1	1	6	' 6-3 1)	0.0%	68
15P.1	1	6	V: .6 -3 -1	С	0.0%	104
VH6.N1	1 .	6	\ i6-3 :) .	()%	122
VH6.N11	1	6	16-07-1	')	() %	122
VH6.N12	1	6	\ 6-C -:	Э	(: ')%	122
VH6.N2	1	5	N 16-3 - 1)	0.0%	122
VH6.N5	1	6	\ 6-0 f) .	0,0%	122
VH6.N6	1	6	` 6 -	:)	0,.)%	122
VH6.N7	. 1	6	· .6	Э	0.0%	122
VH6.N8	1	6	` :6-:	·)	0.3%	122
VH6.N9	1	6	1 :6-:)	0.0%	122

Table 2C: (continued)

Name ¹	aa²	iuted ily³	Cermline gene*	l ∷f. to genaline⁵	% diff. to germline ⁶	Reference ⁷
VH6.N10	12 3	·· ·	V!:6-35-1	0	0,0%	122
VH6.A3	123	5	VH6-35-1	0	0.0%	122
VH6.A1	124	5	VH6-35-1	0	0,0%	122
VH6.A4	12 0	S	VH6-35-1	0	0,0%	122
E55 6.16	116	5	VH6-35-1	0	0,0%	26
E55 6.17	12 9	ŝ	V:/6-77-1	$\dot{\alpha}$	0,0%	26
E55 6.6	120	3	VIII6-2 -1	ij	0,0%	26
VHGL 6.3	10?	3	Ving-27-1	0	0,0%	26
CB-201	117	3	V.:6-1 -1	0	0,0%	109
VH6.N4	122	3	V 6-31	0	0.0%	122
E54 6.4	10 9	3	V: .6-3 *-1	1	1,0%	26
VH6.A6	12 0	6	Vi5-31-1	1	1,0%	122
E55 6.14	12 0	6	V: 0-3 -1	1	1,0%	26
E54 6.6	10.	3	V.,6-1 -1	1	1,0%	26
E55 6.10	111	3	V 6-1 :	1	1,0%	26
E54 6.1	10.	3	V 0-0 .	2	2,^%	26
E55 6.13	11	5	V 6-1	2	2.(~%	26
E55 6.3	11.	3	V 9-3 1	2	2,6%	26
E55 6.7	1:	3	V 3-5 1	2	2.0%	26
E55 6.2	11	3	V 3-0 1	2	2,0%	26
E55 6.X	1	5	V 7-1 -1	5	2.1%	26
E55 6.11	1.	3	V1.0 :	3	3.^%	26
VH6.A11_	1	3	V:.C :	3	3, %	122
A10	1	3	V C- :	3	2 %	68
E55 6.1	1	3	\ G-1 :	4	4. %	26
FK-001	1	3	\ 6-3 ;	4	4	65
VH6.A5	1	3	V 8-3 :	.4	4.1%	122
VH6.A7	1	ŝ	V 7-0 -1	4	4,0%	122
HBp2	1 .	3	1	:	4, %	4
Au46.2	1.	3	1 (0-1)	5	5. %	49
A431	1	3	1 101	5	5 %	68
VH6.A2	1	ີວ	V 16 1	5	£. %	122
VH6.A9	1	3	\ 16-, -1	. 3	7 %	122
VH6.A8	1	5	\ [6-3]	.0	S %	122
VH6-FF3	1	3	V 3-3 ·	2	2 %	123
VH6.A10	;	3	1 3-1	: 2	1 ' 4%	122

. --'

Table 2C: (continued)

Name ¹	a o.	puted mily ³	Germli: gene⁴	f. to genline ^s	% diff. to germline ⁶	Reference'
VH6-EB10	117	6	VH6-35-1	:}	3,0%	123
VH6-E6	119	6	VH6-35-1	. 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	117	Ç	VH6-35	G	5,9%	123
VH6-FG9	12;	5	VH6-35-1		7,9%	123
VH6-E5	110	5	VH6-35-1	j	8,9%	123
VH6-EC8	12	6	VH6-35-1	3	8,9%	123
VH6-E10	12	6	VH6-35-1		9,9%	123
VH6-FF11	12.:	6	VH6-35-1	:1	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	8 ti	6	VH6-35-1	4	4,0%	29
VH6-BB11	9.:	6	VH6-35	.1	4,0%	123
VH6-B41	9 3	5	VH6-35-7	7	6,9%	123
JU17	10	S	VH6-35	3	3,0%	114
VH6-BD9	9	6	V:16-35	* 1	10,9%	123
VH6-BB9	9.	S	V:16-35	?	11,9%	123

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Re		ed²	Sum
1	VkI-I				
i	Vk1-2				
I	Vk1-3				
ŧ	Vk1-4		٠.		
1	Vk1-5		••		•
i	Vk1-6				
1	Vk1-7				
ļ	Vk1-8				
1	Vk1-9				
1	Vk1-10				
1	Vk1-11				
1	Vk1-12		••		
1	Vk1-13		:		
1	Vk1-14				
1	Vk1-15				
1	Vk1-16		•		
1	Vk1-17				
1	Vk1-18				
1	Vk1-19		: `		
. 1	Vk1-20				
1	Vk1-21		:		
1	Vk1-22		••		
1	Vk1-23			I	19 entries
2	Vk2-1				
2	Vk2-2				
2	Vk2-3				
2	Vk2-4				
2	Vk2-5				
2	Vk2-6		. 1 %		
2	Vk2-7				
2	Vk2-8				
2	Vk2-9				
2	Vk2-10				
2	Vk2-11		•		
2	Vk2-12				25 entries
3	Vk3-I				
3	Vk3-2				

Table 3A: (continued)

Family 1	Name	Re	ged²	Sum
3	Vk3-3			
3	Vk3-4		. 5	
. 3	Vk3-5			
. 3	Vk3-6		ì	
. 3	Vk3-7		1 2	
3	Vk3-8		.:)	192 entries
4	Vk4-1		-	<i>33</i> : :
5	· Vk5-1			\overline{I}
6	Vk6-1			
6	Vk6-2			0 entries
7	Vk7-1			0 entries

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Ecarranged ²	Tum
1	DPL1	1	
1	DPL2	14	•
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1	DPL6	0	
1	DPL7	, 0	
1	DPL8	3	
1	DPL9	0	42 entries
2 /	DPL10	5	
2	VLAM3DA 2.1	0	
2	DPL11	23	
2	DPL12	15	
· 2	DPL13	0	
2	DPL14	0	4? entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	3" untries
7	Di L18	1	
7	DPL19	0	1 outsies
8	D /1.21	2	
8	HUM:V801	6	P = + - * = 9
9	D: ?2	j	
unassigned	D: 24	0	·· ··
10	gVl - 4	O.	

WO 97/08320 . PCT/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	rranged	?
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
1	VH1-12-4	0 .	
1	VH1-12-5	3	
1	VH1-12-6	ງ	
1	VH1-12-7	23	
1	VH1-13-1	1	
1.	VH1-13-2	1	
1	VH1-13- 3	0	
1	VH1-13-4	0	
1	VH1-1 3-5	0	
1	VH1- 13-0	17	
1	VH1-12-7	0	
1	VH1-1 3-8	3	
1	VH1-1 3-5	0	
1	VH1-1 3-10	0	
1	VH1-1 3-11	0	
1	VH1-13-12	13	
1	VH1-17-55	:)	
1	VH1-13-1-	O	
1	VH1-1 3-1,	4	
1	VH1-10-	2	
1	VH1-10-11	0	
1	VH1~1:"-:	1	
1	VH1-1"-"	0	
1	VH1-1 -:	1	110 entries
2	V H2=1	1	
2	VH2-311-4)	•
2	VH2-0	. 1	
2	VH2-0	1	
2	VH2-5	i)	
2	VH2-01-1	2	
2	VH2-9 -	0	
2	VH2-3	0	
			50

Table 3C: (continued)

Family ¹	Name	F.	:ranged²	:m
2	VH2-31-14		1	
2	VH2-31- 8		0	
2	VH2-31- 9		0	
2	VH2-31-10		0	
2	VH2-31-11		1	
2	VH2-3 1-12		0	
2	VH2-31-13		1	7 entries
3	VH3-11-)	
3	VH3-11-		.)	
3	VH3-11		5	
3	VH3-11-4		0	
3	VH3-11-5		1	
3	VH3-11 3		1	
3 ·	VH3-11-1		ŋ	
3	Vi:!3-1		5	
3	V!:13-1		3	
3	VH3-1 ·		3	
3	V ∺3-1 · ∶		Э	
3	V .3-1 · ·		Э	
3	V1:3-1 3		0	
3	Via3-1 3		0	
3	V. 13-1		. 2	
3	V. 3-1		4	
3	V 3-1 :)	
3	V : :=1 5		.:6	
3	V : !-1 1		.)	
3	V : 7-1		11	
3	Vilhali		:7	
3	$N^{4-5} - 1 = 0$		3	
3	\mathbf{V}_{i}^{i} is a		4	
3	V 1-1		3	
3	V. 3-1		2	
3	Villa:		1	
3	V 3-1		:3	
3	√ :- ·		1	
3	\		1	
3	\ ·-·		0	

Table 3C: (continued)

			
Family ¹	Name [*]	:anged²	Sum .
3	· VH3-13-20)	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-20	6 .	•
3	V!!3-14-1	1	
3	VH3-14-4	15	
3	VI:3-14-2	3	
3	VII3-14-7	•)	
3	Vii 3-1 X-)	
3	VH3-1X-1	·)	•
	Vii3-1X-1	6	
3 3	V::13-1X	3	
3	V3-1X-5	:)	
3	V: 3-1Y-1	`1	
, 3	Vi.3-1.1-1	:)	
3	V''3-1''	1	
3	V:-3-1.'-	o 2	12 entries
4	1 4-1)	V VIII.
4	V:14-11-	. :0	
4	V 4-1 - 2)	•
4	V 4-1 · ·	າ	•
4	\ ;-:)	
4	V .4-1 ··)	
4	1-1	5	
4	1 :- '	7	
4	V (-)	3	
4	V. :-1:-)	•
4	V -1 -)	
4	V: -1 ·	1	
4	V -1 -)	
4	V1 · ·	.)	
4	V1 -)	
4 .	V -1	1	
4	V (2))	
4	Mr. fam. i).	
4	V	1	
4	X - 12 - 1	1	

Table 3C: (continued)

Family ¹	Name	ranged ²	£ :m
4	VII4-21-L		
4	VH4-21-0	1	
. 4	VH4-21-7	С	
4	VH4-21-8	0	
4	M17-51-0	0	
4	VI(4-31-1	С	
4	V).1-11-21	•)	
4	V114-21-3)	
4	V. ::4-3 i -:1	2	
4	V 14-31-1	0	
4	V (4-01-0)	
4	V: 4-01-7)	
4	V	•	
4 .	V' 7)	
4	V :)	
4	Variable)	
4	V!! -(4	
4	V 147 4	· 7	
4	$\mathbf{V}_{i} = \mathbb{C}^{n}$)	
4	\mathbf{V}) ·	
4 .	y)	
4	\)	
4	V .)	
4	V .)	
4	V 1)	57 entries
5	1	2	
5	No.	1	
5	V ' '	C	
5	<u>\</u> .	: 4	97 entries
6		4	7 4 + 24/3 2

			_								Fra	mewo	ork I		
amino acid'	-	-	> <	2	9	7	ಣ		5	- =	12	13	14	15	16
А								:				102		1	
В					1				:						
С					ļ	<u>.</u>									
D	۲.		i		<u></u>	<u>.</u>	<u> </u>			<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	
E	-				<u>.</u>	<u>.</u>	<u></u>			<u></u>	ļ		<u>.</u>	1	••••••
F							<u></u>		6		ļ	·	1		
G	l' i									ļ	ļ	<u>.</u>	<u> </u>	<u>.</u>	105
Н	: 									ļ	<u> </u>	<u></u>	<u> </u>		
			. :							<u></u>	<u> </u>	<u> </u>	<u> </u>	4	
K			· .			•••••	,			<u> </u>	<u>.</u>	ļ	ļ	<u>.</u>	<u></u>
<u> </u>			:							96	ļ	1	<u>.</u>	<u> </u>	.
M	: .					•••••					<u> </u>	<u>.</u>		-	<u></u>
N	: :		. !			-					· · · · · · · · · · · · · · · · · · ·			<u></u>	!
Р		4.	. :						1		2			1	
<u>Q</u>			:		8 8		•			1					
R						- -						****	***********	··	
· S	į								30		103		103		
T	<u>:</u> .			88					. შ				4 **********		
V	ŧ									8		2	***********	98	
W			••			•••••									
_ X															
Y															-
unknown.				17	16 ¹										
not sequent sum of st				=	 .	•			:	100	405	465	465	46-	
	;			:	89 ¹						105	:			
oomes.				7	88						103	<u>-</u>		•••••••••••••••••••••••••••••••••••••••	
mcaa*					Q	•				L	S	Α	S	V	G
rel. oome				100%	0,666	•			!	9100	%86	97%	%86	93%	100%
pos occu _i .					2					3		3	3	5	1

amino acid'	[:	(, T "		21	22		•	5.1	27	∢	8	U	۵
Α		* .		: =====	1	•							
В							:		1		<u></u>		
. с			•	:	<u>.</u>					<u></u>	<u></u>		
D											<u> </u>		
Ε								· •••••	2	ļ	<u>.</u>		
F				. 2							<u>.</u>		
<u>G</u>								:		<u>.</u>	ļ	ļ	
Н	ļ			:					1		<u>.</u>	ļ	
		. 		101	1				•		<u></u>		
K									1				
L				<u>:</u>									
M		· ·		:									
N .				·				. 1	••••••	··········	••••••		
P	·	·		· ·					•••••				
Q	·								100		••••••		
R :										•••••••	·····		
. <u>S</u>		·						2			****		
T				:	101			1			••••••••		
V				2							•••••••		
W	: 1			:	<u></u>					••••••	*******		
X		:			<u></u>						•		
Y	Ĺ			-	<u> </u>								_
										105	105	105	105
unknown (?)	,												
not sequenced					<u> </u>			-					_
sum of seq ²	:			105	:			:				105	
oomcaa ³				101			-	7	i	105	105	105	105
mcaa*	:			11	T				Q	-	-	-	-
rel. oomcaas	:			%96	ν,ου υ			-,	92%	100%	100%	100%	100%
pos o ccupied ^c				3	<u></u>			1	•	1	1		1

	C (13)					-								
amino acid'	w	: 13.		30	7,	:		-	35	36	37	38	39	4
Α				1							<u> </u>	ļ	ļ	<u> </u>
В							<u>:</u>			<u></u>	1	1		
. C	Į Į						<u></u>				ļ	ļ		
D				1	ſ.	: :	i				1			<u> </u>
<u>E</u>		:							••••••		2		·	ļ
F	.			1			•			6				ļ
G		•		7				:		ļ	<u> </u>		<u> </u>	<u></u>
<u>.H</u>				1	<u></u>		***				2			
<u> </u>	į į	: .		1		·				ļ	<u> </u>			<u></u>
K		:					·			·········	<u>.</u>	ļ	95	<u></u>
L	<u> </u>			2				!.			ļ	ļ		
M	! !										·	<u> </u>		
N				16										
Р				•••••				_						10
Q		:									98	1 0 3	2	
R	į			16									3	
S				57							••••••			
T					. 			:			••=•••••		1	******
V				1				· !						
W					•				104					
Χ					 .									
Y	•••	•		1				=		98				
-								:						******
unknown (?)						, .							3	*******
ot sequence:								:	1	1	1	1	1	
$\textbf{sum of } \textbf{s} \textbf{e} \gamma$				105	· 1				104	104	104	104	104	104
oomcaa ³				57	 .				104	98	98	103	95	102
mcaa*				S	.·	÷		<u>!</u>	W	Υ	Q	Q	Κ	Р
rel. oomcaas	:		٠.	54%					100%	94%	94%	%66	91%	98%
pos occupied	•			12			•		1	2		:		

4M. Alialysis (• •									CDR	l .	
amino acid'		:	n k	2	46	٠		S	51	52	53	54	55
Α	ranu var i	===.· 						50	95			·	
В						•							
. C						•							
D	****							21	1	1	1		
E				1				1		1			3 3
F	· ·			••••						1			
G		•.		••••				9	2				
Н													1
					·						1		
К		:		36			****	16			2		5
L					٤		***			**********		101	
M		:								*****	********		
N				10				2		1	25		
Р								1			*********		1
Q				1									62
R		·		3			:				1	1	2
<u> </u>				1				1	1	99	41	2	
T				1			•	1	4	1	31		
V									1		1		
;v				•••••									
X				1							1		
ΥΥ			<u> </u>		_			1					

un kabwn (.				••••							••••••		
not sequenc			•	1	-			2					
su m of set, ¹			-	04							************	104	
oomcaa ^a			1		<u></u> .			<u> </u>	•••••••••••••••••••••••••••••••••••••••		***********	101	
mcaa*			1	K			••		Α	S	S	L	0
rel. comcr		:		83%				ەز ر.	0,10%	95%	39%	97%	900
pos occupi.				8				.0					

TITUT ()

Table 4A: Analysis of V kappa subments 1

		L .												۸.,
amino acid'	58	C		09	61	23	63		د .	99	29	89	69	70
А	3		****					i		2	1		1	
В														
. C							,							
Ú	1		•••							*****				67
E						!				•••••		1		30
F						11				••••••	3	<u>.</u>		
		••								101		102		
i-l		•								•••••••				3
		•				-	3			•••••••		<u></u>		
λ			٠.		1						•••••	<u>.</u>	<u> </u>	1
L							1			••••••			<u></u>	
<u> </u>		· 	•	********		·	:			•••••			1	
il					•••••									
	******			2							***********			
														
		•			10		1			1			2	
			٠.	103	•••••		9				100	************		
***************************************			*		···········	· · ••••						*******	101	
• • • • • • • • • • • • • • • • • • • •					•••••				. !			••••••		1
, , , , ,	. :				••••••		·•••••			•••••				
					•••••					1		1		2
***************************************									_		1			
					••••••		· · · · · · · · · · · · · · · · · · ·							
unkra wat (}		••••••					••••••				
not ser wence:							-==-		=	:	==			_
Sum (SEY?				105							:		105	
00: :383	:			103			9.						•••••••••••••••••••••••••••••••••••••••	67
n a•				5	К	F	<u> </u>			G	5	G	Ţ	D
rel. o noors				98%	, C	Ē	ن 20%			4⁄ນນ <i>ິ</i> ບ	50%	97%	%96	64%
pos e			:	2						······	4	4	:	7

amino aci.	75	92	``				81	(3 (4	83	84	85
A		1		<u></u> -	•	2				10	1 1
В	1						2				
		1					16	10	١		
			·				83				
F		••••	·				·····		73	3	
G		•••••	······································				1		<u></u>		
Н		*********	·				••••••				
	9 9	. [:				••••••		17	, <u></u>	
		•••••••					••••••				
		••••••	: :	107			••••••	·····	1	ļ	
i .								····		<u> </u>	1
<u> </u>		•	······					······			1
P		•••••	·•							<u></u>	1
0		••••••						····		<u> </u>	
<u> </u>											
		£.	9.						1		
<u></u>									••••••	*****	97
	4	•••••						•	11		1
Σ		•••••									
\(\frac{1}{2}\)		•••••					. 1	2	••••••		
***************************************			-	=		-	-				
unka:		••••••	······································	• • • • • • • • • • • • • • • • • • • •							
not se ··· i	1			••••••			?	2	2	2	3
:	104	1("		•		1	=- · C:			103	_
001	9 9	(:		1	:	101	97
m ^a '	1					:	E .	5	F		T
rel o			•		••		:	•	************		
rel. o	95%		••••				13	وبر _{' '} .	710%	98%	95%
pos c 3	3			••••			.:: <u>:</u>	2	5		6

Table 4A: Analy Whappa rehoroup 1

WO 9^ - ***

									:.DR	Ш	٨.				
amino '	3	88	83	90	ξ.	;	ζ.	•	95	⋖	മ	U	٥	ш	ட
	5			1		_	:	== !	5	1					
1.			2	3	••••••	 !		:			-				
('	***************************************	102				:			•					•	
,					********	<u>.</u>	:								
E					**********	:	- ·····			1 1			-		
ŗ.								3							
								7			1				
::			4	6					.)						
j	:				······································	· · · · · · · · · · · · · · · · · · ·				ļ <u>.</u>		<u> </u>	<u> </u>	<u></u>	
				7			. • • • • • • • • • • • • • • • • • •			<u> </u>	<u></u>	<u></u>	<u> </u>	<u></u>	<u></u>
			7						- 2	<u> </u>	ļ	ļ	<u> </u>	<u></u>	
Λ					••••					ļ		<u></u>	<u></u>	<u> </u>	
· · · · · · · · · · · · · · · · · · ·										<u></u>			<u></u>	ļ	
									82	6			<u></u>	<u>.</u>	
************			95	86	*****				<u></u>	<u> </u>			<u>.</u>	<u> </u>	
	`.					٠.									
							•		10						
											····				·
·	٠.			<u>.</u>	••••	•			••••••						
) ************************************					••••	•	•••				•••••	******			
10,000000000000000000000000000000000000			•••••	··········							•••••	•••••	••••••		
***************************************					-		7:		3	8 2	88	_			
unl					······		****		. • • • • • • • • • • • • • • • • • • •		•••••	*******			
not se		3		2	••••	•			4	16	10	16	16	16	16
sum	:	02	1(:	73						8 9:				$\overline{}$	==
00			<u>. ç</u>	36	. . .		•			8:			•		
1.		С	C ;				·		Р	-	-	-	-	-	-
rel.		1000/0	: : ''}	.e					%	ç,	,ç,	%0	100%	%	%00
		0_		: نون :						6,006		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••	
pos c		1	<u> </u>	Ξ.					8	2	1	1	1	1	1

Table 3C: (continued)

Family ¹	Name	B. arranged ²	Sum
3	· VH3-13-23	j j	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6 .	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	
3	VH3-14-3	0	
3	VH3-1X-1	Э	•
3	· VH3-1X-2	0	•
3	VH3-1X-3	6	
3 3	VH3-1X-4	0	
3	V∺ 3-1 X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
. 3	V⊞3-1X-©	1	
3	V H 3-1 X-9	0	212 entries
4	Vii4-11	3	•
4	VH4-11-2	₽0	•
4	VH4-11-3	Э	
4	VH4-11-4	0	•
4 .	VH4-11-5	0	
4	VH4-11-8	Э	
4	V: (4-1) - 7	5	
4	V=4-13-8	7	
4	V: 4-11-9	3	
4	Vi 4-11-10	. 0	
4	VF, =-11-11	0	
4	VH4-11-17	4	
4	VE4-13-13	0	
4	VH2-11-11	. 0	
4	Vi:4-11-15	ົງ	
4 .	V: 1-1"-"	1	
4	V 4-21-1	0	
4	V**4-21-1	Э.	
4	V . 1-71-1	1	
4 .	VH4-21-1	1	

Table 3C: (continued)

Family ¹	Name	Terreranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
. 4	VI44-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	9	
4 ⁻	Vii4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	О	
4	VH4-31-7	0	
4	V1,4-31-8	0	
4 .	V!!(4-3)-9	0	
4	V H4-00-10	О	
4	V H4-31-11	\mathbf{c}	
4	V H4-31-12	4	
4	V \ 4-3\-\7	· 7	
4	V: 4-31-14	Э	
4	V110-21-13	0.	
4 '	V 1.3-3.513	Э	
4	V: 4-27-17	. 0	
4	VH4-30-60	0	
4	Vh.4-5 -13	Э	
4	V: 4-3 -23 -	0	57 entries
5	Vi 1-10-1	₹2	
5	V:-5-12-0	1	
5	V 3-15-3	Э	
5	<u> </u>	:4	97 entries
6	V	4	74 entries

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

•		<u>-</u>		,								Fran	newo	rk I		
amino acid'	-	ζ	:2	4	S	9	7	ထ	C)	20	=	12	13	14	15	16
Α			:						1				102		1	
В			1			1					<u>.</u>	<u> </u>	<u> </u>	<u>.</u>	<u></u>	
С												<u> </u>	<u> </u>	1		
- D	60												<u> </u>	<u>.</u>		
E	. 8		4									<u> </u>	<u> </u>		1	
F			· • • • • • • • • • • • • • • • • • • •	••••						6		<u> </u>		1	ļ	ļ
G			. 1	. 											<u>.</u>	105
Н			· · · · · · · · · · · · · · · · · · ·			•						<u> </u>				
.											· · · · · · · · · · · · · · · · · · ·				4	
K	! 											<u>.</u>			<u></u>	ļ
L		•									96		1		<u>.</u>	ļ
M																
N	; 															
Р						*******				1		2			1	
Q			- ::			8 8	••••				1					
R							••••							**********		
·S			••••				S S			90		103		103		
Ţ					88			·····	:	18						
V						*******			··		. 8		2	***********	98	
W	! 		. :					:	:							
X			:													
Y	- 22		-					•								
	! :						······									
unknown (•						. 		•							
not sequenced				•	17			:		- 4=						
sum of see ?	:				88			•		ν. ε			105			105
oomcaa,					88	88				20			102	103	98	105
mcaa*	•					Q				. 5	L	S	Α	5	V	G
rel. oomcass			· ·		100%	%66				0,44	91%	98%	97%	98%	93%	100%
pos occupil et	·				1						3	ī		3		1

WO 97/08320

Table 4A: Analysis of V kappa see

0.1

amino acid¹.	17	<u></u>			21	22			· . ·	26	27	⋖	æ	ပ	۵
Α				:		1									
В								*****			1				
. C		••••									********				
D	1^1					*******									
E	2					******					2		•••••	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
F					2	•••••									
G										1					
Н			•					••••			1		•••••		
				· · ·	101	1						1			
K				i		••••		:			1		**********		
L						******							••••••		
M						•••••									
N ·				:			::			1					
Р									:						
Q	ļ			Ì 							100				
R :	[3.						• .	:						
S				` :						102					
T						10.				. 1			***********		
V					2										
W	4					••••••					·				
X				:											
Υ				:					•						
	<u></u>	:				*****						105	105	105	105
unknown (?)	3	<u>.</u>				•••••									
not sequenced		:		:						w					
sum of seq ²	· · ·	: -				1 00							105	•••••••••••••••••••••••••••••••••••••••	:
oomcaa,		ļ		1	101	1 .0.	•		; ;		**********************	105	105	105	105
mcaa*	<u>;</u>	• .		: !	1	Ţ					Q	-	-	-	-
rel. oomcaa		;			%96	່ທິນວັບ	: : .				95%	100%	100%	100%	100%
pos occupied	· · · · · · · · · · · · · · · · · · ·				3	•	• ••	***		4		1	1	1	

WO 97/08320 .

Table 4A: Analysis of V kappa 51 Toun 1

		C DRI														
•	amino acid'	u.	u.			30	۲.	ć.	(* (;	35	36	37	38	39	6
	Α					1	:	:		. 2		<u>.</u>				
-	В			į								<u></u>	1	1		
	. C							1						<u>.</u>		
	D					1	5	7		:		<u></u>	1			
-	E												2	; ;		
	F				1	1		: :	:	:		6				
	G			:		7			.,	:						
	įΗ					1			,	:]	,	2			
	1			:	.19	1			: : :	. 1			<u>.</u>			
	K			٠.		***********							<u>.</u>		95	
	Ĺ		÷	٠.		2			:	· .						
	M						•••••	: 	<u></u>		-	-				
	N	amure.				16		:	·	<u>.</u>						
	Р	· · · · · · · · · · · · · · · · · · ·							i							102
	Q	ř.	.1	:		••••		:	:	:			98	103	2	
	R					16		· · · · · · · · · · · · · · · · · · ·	:						3	1
	5					57	3.	·	: :	: 1						1
	T	idate.		:				· ·	: <u></u> .						1	
	V	. j	1		:	1			·					••••••		
	W	· · · · · · · · · · · · · · · · · · ·					•			•••	104	·				
1	X	·						:								
	Υ					1		. : TTT:	-22- ·.	٠,		98				
	-	·	•													
	unknown (?)	· 						· 							3	
	not se quenced	e :autom			٠.٠						1	1	1	1	1	1
	sum of seq?	• • • • • • • • • • • • • • • • • • • •	:		. !	105	1	:	`	- :	104	104	104	104	104	104
	oomcaa ³			1		57	•			 	104	98	98	103	95	102
	mcaa*	· _				S	-1			· i	W	Y	Q	Q	К	Р
	rel. oomcaas	6(1,4)1	. <u>!</u>	o. :	2	54%		:	:		100%	94%	94%	%66	91%	98%
	pos occupied			•		12	:		: ·		1					

WO 97/08320

Table 4A: Analysis of V kappa set in 1

	Fran	ne ·											CDR I		
amino acid'	<u>+</u>	C7		. —	45	46	:	¢.		20	21	25	23	54	55
А				1			- 257 -			50	95				
В			 :					:							
. C		••••••						:	:						
D		••••••••	•						:	21	1	1	1		
E					1			······································		1	·	1			33
F	ř					-						1			
G		 !								9	2				
Η	······································														1
1	:. ····································					1	:	- 10					1		
К		-			86			i		16			2		5
L	*******					٤.	: :::		:					101	
M															
N	70.00				10					2		1	25		
Р									,.	1					1
Q					1			:							62
R		:			3								1	1	2
S		:			1	<u>.</u>				1	1	99	41	2	
Т					1					1	4	1	31		
V	,.,	} J							. :		1		1		
W	••••	:			•••••										
X		:			1								1		
Y	* * * *****			_						1					
_		1			,										
unknown (%								•	-						
not sequence		•			1			'Z'		2	1	1	1	1	_1
sum of seq ²)./	i			104	1	-	;		- 0 3	104	104	104	104	104
oomcaa3	-			. 1	86			1		50	9 5	99	41	101	62
mcaa*		:			Κ	!	·			А	Α	S	S	L	Q
rel. oomcaa'	- William 1				83%	:		:		۰٬۰۶۰/۰ ۱+غ	91%	95%	39%	92%	9,09
pos occupie	• •			:	.8	:	• •			10					

amino acid'				.,					•	4					
	56	75.		: .	.09	61	29	63		:3	99	29	89	69	2
А	3		:						<u>.</u>	:	2	1	1	1	
В				ì		ļ				:			<u></u>		
. C		••••	<u>.</u>			ļ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		;	; ;		ļ		
Ŋ	1		:						<u>.</u>	<u>.</u>			<u> </u>	ļ	67
E									:	: 	······		1	ļ	30
F				,			100					3	<u> </u>	<u> </u>	ļ
G		<u>;</u> ;			• • • • • • • • • • • • • • • • • • • •	ļ				4	10 1		102		
Н	<u></u>		i.			ļ	ļ	ļ		·			ļ	ļ	3
	3						1	3					<u></u>		<u> </u>
K	1					1				:			<u>.</u>	<u> </u>	1
L					••••••			1		· ·	•••••		ļ	ļ	ļ
М									· :		**********		<u></u>	1	
N	ſ			·	•••••						•••••••				
p					2		••••••			:	***********				
Ω	· .	 .			•••••••					1	-400 000 040				
8						100		1		7	1			2	
S					103	•••••••		9 9			*********	100			
T				4		1	-							101	
У		0	;				··		,						1
W		`			************	•					······································				
Х		·			***********		***************************************				1		1		2
Υ΄	YAZL.	ret i -										1			1
-						***************									
unknown (?)							••••						***********		
not sequenced	·		:					-		г.					
sum of seq ²					105	10	-1(10.		-	105	105	105	105	105
oon caa'				•	103	10.	1 C. ;	96		;	101	100	102	101	67
mara*					S	R	F	<u>S</u> :			G	S	G	T	D
rel. or meas					98%	^ک /۵۰۰ ل	70.0	0/00 ر		٠.	9679g	95%	97%	%96	64%
pos ochupicali	•				2					; ;	4	4	•	:	7

Table 4A: Analysis of V kappa substrute 1

•		. 24 .													
amino acid'	-	3.77 :			75	92	77	7.8		;	8	82	83	84	82
Α			: :			1	,,			2				101	1
В					1		.,., <u></u>				2				
. C			<u>:</u>												
Ĺ.			.:			1					16	101			
Е		<u></u>									83			a,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
F)	<u></u>				••••	· · · · · · · · · · · · · · · · · · ·		: : :				73		
G	я :,	<u>.</u>	:				4				1			2	
Н	·														
<u> </u>	:		<u>.</u>		9 9	. 5			·				17		
K	1,****		i					······································							
L				·		•••••	. 	103					1		
N1								·····							1
N			-			7									1
Р										7					1
Q	· •	: : :	:			•••••					·				
R		}				2									
<u> </u>						86	94		<u>.</u>	(1		
7				2		<u></u>	1	· ········							97
\/					4			·					11		1
<i>V</i> 1,		! .		! :		•••••									
X		<u>.</u>		. 1				· 	٠		1	2			
Y	3 - 			=					:	4					
-				: .					. ·						<u></u>
unknown (.)			,	· ····				· · · · · · · · · · · · · · · · · · ·	:						
not sequence:	•	:		<u> </u>	-	_	· -	=		- 1	2			=	3
' sum of seq?			,		104	:	10	:			:	103			
oon.caa*		•		?	:	3	:	<u>: (</u>	•	-	£3 -	•••••••••••••••••••••••••••••••••••••••		101	·····
mcha*	٠				<u> </u>	S		L			E	D	F	Α	T
rel. on (acar)				?)	95%	, ie	:	. ر د د		;	710%	98%	71%	98%	95%
posional p-				3	3					٦.	5	:	:	2	6

THTUTE (IT)

		 .								Cl	DR I	II					_
amino aci: '	55.		88	83	90	5.	;	63	:)	95	٧	80	U	٥	w	! !
Α.					1	/	;		:	5	1						1
В	:			2	3				:								
. C			102						:								
Ð	·.				•••••••	***************************************	20		· · · · · · · · · · · · · · · · · · ·	1	******				-	•	1
E	.·· ········	: !	:			•					1	· 1	<u> </u>	1			ï
F			:			······································				3		•••••					
G		i :	:	•••				•••••		2	1		1	•	<u> </u>		
14		:		4	6			··••··					 	<u> </u>	<u> </u>		İ
								•••••		?	1	******			İ		i
K	1			************	7					-		********			<u> </u>	-	Ť
L				7							2	*******			ļ		-
Λ1						······································	······· :					******	••••••		.		-
<u> </u>			:			•••••	: :			;			••••••			<u> </u>	İ
P				•••••		•••••		· · · · · ·			82	6		<u></u>	<u> </u>	ļ	-
**************************************		• •		9 0	86	······· ;		•••••			i		******		<u> </u>	ļ	-
C C	*****	•			•••••				•		1	******			<u></u>	<u></u>	-
***	::							£			10		******		ļ		-
1				•••••••••••••••••••••••••••••••••••••••		••••		·····	•				*******				-
√	i			•••••		······· :	·····	•••••			1		*******				-
W	••		-		······	······· :.	, ·.	••••	٠		Ť		•••••				-
Χ				•••••••••••				•••••		-			*******	•••••		*******	-
Y	• •			•••••		······································		•••••						•••••			
^							··· .	=		_	3	82	88	89	89	89	- S
ınkra 🗀 🗒		••						•••••	•			-				-00	
ot sequence			3	2	2	······ :	·				4	16	16	16	16	16	1
sum + (it is			-	100		- -	-	:		10	一	-				89	-
۰ ۵0: . "د	;			90	36	·				: -			:			89	
n:			С	C		·······					P		_		-	_	
										-	<u>-</u> -				ص.	ص.	٠
rel. 🖭 🗀			100%	27%	83%		•				81%	95%	%66	100,	100%	000	1000
os o:			1		5		••	•••		:	8	:	··· ···	•••••	1	•••••••••••••••••••••••••••••••••••••••	••••

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

							Fra	me	worl	١V					· ·
amino acid'	96	97	86	66	.100	101	102	103	104	105	106	A	107	108	sum
Α	1														627
В					1					1					19
.C															209
D	1									15					459
E					2					65					258
F	6		86								2				451
G				87	29	87								2	894
Н	2	1													40
1	5								1		7 2				606
K	1	1						77					79		480
L	18	1	1						22	4	2				793
М		1	.,								5				77
N	1										1		2		232
Р	6				7									1	620
Q	1				48					1					865
R	6							6	*******	•••••			2	70	413
<u> </u>	2	2					•••••								1636
T	2	82					87	3					2		1021
V	2			••••				1	63		3				440
W	15														141
X															14
Υ	16													_	564
	4	1										8 5		_1	1250
unknown (?)															7
not sequenced	16	16	18	18	18	18	18	18	19	19	20	20	20	31	589
sum of seq ²	89	89	87	87	87	87	87	87	86	86	85	85	85	74	
oomcaa3	18	82	86	87	48	87	87	77	63	65	72	85	79	70	
mcaa*	L	T	F	G	G	G	Ţ	K	V	Ε	1	-	Κ	R	
rel. oomcaas	20%	95%	%66	100%	25%	100%	100%	%68	73%	26%	85%	100%	93%	95%	
pos occupied ⁶	17	7	2	1	5	1	1	4	3	5	6	1	4	4	

Table 4B: Analysis of V kappa subgroup 2

										*	Fra	mev	vork	(
amino acid'	-	2	3	4	5	9	7	8	6	10	=	12	13	14	15	16	17	18	6	20	21
А																			2	2	
В																	1				<u>.</u>
. с																			<u> </u>		
D	14												ŀ						<u>.</u>		
Е	3																15				
F .									1	1											
G				·							<u></u>	<u></u>	<u></u>		<u>.</u>	22		<u>.</u>	<u>.</u>		
Н					<u>.</u>								<u>.</u>	<u>.</u>				<u>.</u>	<u>.</u>		
1		8																<u></u>	<u>.</u>		22
K									<u></u>					<u></u>		<u>.</u>	<u> </u>	<u></u>			
L		3		1					17	<u> </u>	18				6	<u>.</u>			<u></u>		
M			•••••	15															<u></u>	<u>.</u>	
N						••••				<u></u>								<u>.</u>	<u></u>		<u></u>
Р								18				18		ļ	15			22			
Q			•••••			18											7				
R																					
S			•••••				18			17									•••••	22	
Ţ					17									21							
V		6	17	1									18								
W																					
χ																			•••••		
Υ																					
-												<u></u>									
unknown (?)					1																
not sequenced	5	5	5	5	4	4	4	4	4	4	4	4	4	1	1						
sum of seq ²	17	17	17	17	18	18	18	18	18	18	18	18	18	21	21	22	22	22	22	22	22
oomcaa,	14	8	17	15	17	18	18	18	17	17	18	18	18	21	15	22	15	22	22	22	22
mcaa*	D	ı	٧	М		Q		Ρ	••••••	S	L	Р	٧	Τ	Р	·· <u>-</u>	•••••••••••••••••••••••••••••••••••••••	•••••	Α	S	1
rel. oomcaa ^s	82%	47%	100%	98%	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	68%	100%	100%	100%	100%
pos occupied ⁴	: :	:		:		:	:	:		:	•	•	:	:	:		•			1	1

Table 4B: Analysis of V kappa subgroup 2

C 40. / marysis of			Å.	109.							CDI	31									
amino acid'	22	23	24	25	26	27	`۷	8	U	۵	ш	u.	28	29	30	31	32	33	34	35	36
Α																					
В																					
. С		22																			
D										1			9		1	1			11		
E	Ĺ																				
F.															2						7
G											1			22							
н										16							1		1		
l											••••••••••••••••••••••••••••••••••••••								••••••		
К			1								-					1					
L						1		22	13									22	•		
М									1												
N													10		7	12			9		
Р																					
Q	1					21															
R			21								2							•			
S	21			22	22		22				19		1								
T																8					
V									8												
W										1										22	
X													1		1	•			1		
Y										4			- 1		11		21				15
-												22									
unknown (?)																					
not sequenced																					
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
oomcaa,	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	15
mcaa'	S	С	R	S	S	Q	S	L	L	Н	S	-	N	G	Υ	N	Υ	L	D	W	Υ
rel. oomcaa'	95%	100%	95%	100%	100%	95%	100%	100%	29%	73%	86%	100%	45%	100%	20%	55%	95%	100%	20%	100%	68%
pos occupied ⁶	: :							: :		:			•							•	•••••••

Table 4B: Analysis of V kappa subgroup 2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J. Milaiyaia Oi		- 1- 1-		<u> </u>	Frar		ork	11									CDF	R 11			
	amino acid,	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57
	Α																			14	1	
	В								<u> </u>													
	С			<u></u>	<u></u>	<u> </u>			<u></u>		<u>.</u>	<u> </u>										
	D		<u>.</u>	<u></u>	<u>.</u>	<u>.</u>		<u> </u>	<u> </u>		<u></u>									7		
	E	<u> </u>	<u></u>		<u></u>	<u> </u>		<u></u>		1		<u> </u>		<u> </u>						<u>.</u>	<u>.</u>	
	F					<u>.</u>			<u></u>		<u> </u>			<u> </u>						<u></u>		
	G					22	<u></u>		<u></u>	<u></u>	<u></u>	<u>.</u>		<u></u>		12				1		22
	Н					<u></u>			<u></u>	<u></u>	<u></u>	<u></u>		<u></u>	<u>.</u>	<u> </u>			<u> </u>			
	1										1	<u></u>	22	<u>.</u>	<u>.</u>	<u> </u>					<u></u>	
	K			15		<u></u>							<u> </u>	<u></u>	5			<u></u>	<u>.</u>			
	L	16									14	21			14	1	<u></u>					
	M													<u> </u>			<u></u>					
	N											<u></u>		<u>.</u>	<u></u>		<u>.</u>	18				
	Р				22				21													
 	Q	6	22				22			12					1							
-	R			7						8	7			,	1				22			
	S							21			·······					2	22	2			22	
	T																	1				
	V											1				6						
	W									•••••				•••••			•••••					
	X																•••••					
-	Y	_						_		_				21				1				_
.	-																•••••	•				
1	nknown (?)																					
<u> </u>	t sequenced							_1		_1				1			_		_	_	_	_
S								:			:	:	··········	:	•	:	•••••••••••••••••••••••••••••••••••••••	22	•••••••••••••••••••••••••••••••••••••••	••••••	••••••	•••••
	oomcaa,						•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	*******	••••••••		•••••••••••••••••••••••••••••••••••••••		:	18	••••••••••••••	•••••	•••••	•••••
	mcaa¹								:	- :	:				:		•••••••••••••••••••••••••••••••••••••••	N	•••••••••••••••••••••••••••••••••••••••	••••••	S	G
r	el. oomcaa ^s	73%	100%	%89	100%	100%	100%	100%	100%	92.6	64%	95%	100%	100%	67%	57%	100%	82%	100%	64%	100%	100%
po	os occupied ^a	2	1	2	1	1	1	1	1	3	3	2	1	1	4	4	1	4	1	3	1	1

Table 4B: Analysis of V kappa subgroup 2

4.														Fr	ame	ewo	rk II	1			
amino acid'	28	29	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75	76	77	78
А																					
В		<u></u>																			
· C							<u></u>	<u> </u>													
D			22				1				1		22								
E																					
F					21									22							
G							21		22		21							Ī			
Н																					
l																	1	21			
K																	19		<u></u>		
L															_	21	1				
М															•	·			••••••••••••••••••••••••••••••••••••••		
N															••••••						
Р		22															••••••		•••••		
Q					·										•••••				•••••		
R				20				1						*******					•••••	20	
S				1		22		21		22					•••••				20	1	
T				1								22			21			•	1		
. V	22				1														••••		21
W																			`		
X																	•••••••				
Y																	•••••		•••••		
_																					
unknown (?)															1						
not sequenced																1	1	1	1	1	1
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	21
oomcaa³	22	22	22	20	21	22	21	21	22	22	21	22	22	22	21	21	19	21	20	20	21
mcaa'	٧	Р	D	R	F	S	G	S	G	S	G	T	D	F	T	L	ĸ	١	S	R	٧
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	92%	100%	%06	100%	95%	95%	100%
pos occupied ^a	: :		: :		:			:			•				•	••••••					•••••

Table 4B: Analysis of V kappa subgroup 2

	-										Τ							CDF	R III		
amino acid'	79	80	.81	82	83	84	85	86	87	88	83	90	91	6	93	7 7 6	, g	} ∢	. α	ء د	
A		20)										1,	4			1				
В													1			1					
· C										21									1		
D			1	21																	
Е	19		20																		
F.																					
G	1					21		<u> </u>					6)		1		2	2		
Н													1		7	,					
1							1									1					
K		<u> </u>																			
L							1	<u></u>						12			2				
M		<u> </u>	<u></u>		<u></u>						21										
N	<u></u>	ļ	<u></u>		<u>.</u>			<u> </u>		<u> </u>		<u></u>		<u></u>	<u> </u>						
Р	<u> </u>	1	ļ							<u></u>			<u> </u>	ļ		2	16	1	<u></u>		
Q	1	<u></u>								<u> </u>		20	<u></u>		13						
R	ļ	<u></u>	<u></u>											1							
S	<u> </u>	<u></u>														3	2				
T	 		<u></u>											8	••••••	7					
V	ļ				21		19		ļ .												
W	ļ													•••••		6			·····		
X	ļ																		******		
Y							===	21	21												
-																		14	17	17	17
unknown (?)																			********		
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_1	1	2	5	_5	5	5
sum of seq'	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
oomcaa,	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa ⁴	·	Α			٧		•••••••	******			••••••	······	••••••••	•	····÷	•••••••••••••••••••••••••••••••••••••••		····	-	-	-
rel. oomcaa'	%06	95%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	9/29	57%	62%	33%	%08	82%	100%	%001	100%
pos occupied ⁶																			1	1	1

104

Table 4B: Analysis of V kappa subgroup 2

alialysis of V Kap									Fr	ame	wor	k IV]
amino acid'	ш	щ	96	97	86	66	100	101	102	103	104	105	106	∢	107	108	sum
Α																	71
В												1					3
С														Ī			43
D																	112
E												13					71
F			1		17												72
G						17	2	16				1					233
Н																	26
			3										14				94
K										12					13		66
L			2								11						219
M									· · · · · · · · · · · · · · · · · · ·								37
N									******								56
Р			1														159
Q			1				14										159
R									• • • • • • • • • • • • • • • • • • • •	4						12	126
S									•••••								325
T				17					16								140
V									•		5						146
W			2														31
X																	3
Y	_		7												_	4	123
-	17	17												13			134
unknown (?)																	2
not sequenced	5	5	5	5	5	5	6	6	6	6	6	7	8	9	9	10	211
•		•••••		******		•••••••••••••••••••••••••••••••••••••••	••••••••	••••••	••••••		16	•••••••••••••••••••••••••••••••••••••••	····÷	•••••••••••••••••••••••••••••••••••••••	··÷	••••••	
	17	17	7	17	17	17	14	16	16	12	11	13	14	13	13	12	
mcaa*	-	-	Υ	Ţ	•		Q	••••••	••••••	K	•••••••••••••••••••••••••••••••••••••••	Ε	1	-	Κ	R	
rel. oomcaas	100%	100%	41%	100%	100%	100%	88%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied ^a	1	1	7	1	1	1	2	1	1	2	2	3	1	1	1	1	

105
SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

r*											Fr	amev	vork	I		
amino acid'	_	2	<u>ن</u>	4	2	9	7	80	6	0	=	12	13	14	15	16
Α		5						2	27	7						1
В	1	<u>.</u>		<u>.</u>	<u></u>	<u>.</u>		<u> </u>	<u> </u>							
· c			<u>.</u>		<u>.</u>	<u>.</u>			·				2			
D	2	: : : :			<u>.</u>	<u>.</u>			14	Į.						
E	76	<u></u>	27				<u>.</u>									
F .		1	<u>.</u>	<u> </u>	<u>.</u>	<u>.</u>		<u>.</u>							1	
G	1		<u></u>	<u></u>	<u></u>	<u>.</u>	<u>.</u>	<u>.</u>	82		<u>.</u>					152
Н			<u>.</u>		<u>.</u>	<u>.</u>	<u>.</u>			1						
1		75	<u> </u>	<u> </u>		<u> </u>	<u></u>	<u> </u>								
K	3		<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>									
L		4	1	104			1				150		129		1	
·M	5			13												
N														5		
Р								124							147	
Q						123										
R					1											
· S							119		3	1		150	1	141		
T		2			117		<u>.</u>			147				5	1	
V		1	89	1			1				1		22		1	
W			•••••													
X							.							•		
Y																
•					•••••											
unknown (?)						**********										
not sequenced																
sum of seq'	88	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa,	76	75	89	104	117	123	119	124	82	147	150	150	129	141	147	152
mcaa'	E	1	٧	L	T	0	S	Р	G	T	L	S	L	S	Р	G
rel. oomcaas	%98	85%	76%	88%	%66	100%	97%	100%	65%	%66	%66	%66	85%	93%	92%	%00 ₁
pos occupied ⁶	6	6		:		************		•••••••••••••••••••••••••••••••••••••••	:	:			:	4		1

Table 4C: Analysis of V kappa subgroup 3

																CD
amino acid'	17	18	19	20	21	22	23	24	25	26	27	⋖	_	ں	۵	Ľ
Α			178	2					166	5						
В		<u></u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>	<u>.</u>		<u>.</u>					
. С			<u>.</u>	<u>.</u>			181			1						
D	6				<u>.</u>											
E	146	1	<u>.</u>	<u>.</u>			<u> </u>		<u>.</u>		1					
F		<u> </u>		<u> </u>	7	1										
G	1	1		<u></u>			<u>.</u>		-1	1		1				
Н				<u>.</u>	<u>.</u>	<u>:</u>					17					
ı		1		5	2											
K		1			<u> </u>	<u> </u>		5								
L					173						1	1				
· М							<u> </u>									
N												9				
Р																
Q											159					
R		175					<u> </u>	176		1	1	10				
5						180		<u></u>	7	175		87				
T		1		174					7	2		1				
V		1	4	1					1			1				
W								1			_					
X									-							
Y						1					1					
_												72	182	182	182	182
unknown (?)											1					
ot sequenced																
sum of seq ²	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa¹	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa'	Ε	R	Α	T	L	S	С	R	Α	S	Ω	S	-	-	-	_
rel. oomcaas	95%	97%	%86	%96	95%	%66	100%	92%	91%	97%	. %88	48%	100%	100%	100%	100%
pos occupied ⁶	3	·····					1		:		•••••••••••••••••••••••••••••••••••••••	······ ·	1	1	1	1

بر ۱۰

(continued)
) gene sequence (continue
a 2 (VA2)
2
7
9
lambd
: V lambd
Figure 48: V lambda

Q A E Bbsi	CAAGCGGAAG GTTCGCCTTC	P V F	GCCTGTGTTT CGGACACAAA		
SG	TAGCGGCCTG ATCGCCGGAC	TT	ATACCACCCC TATGGTGGGG		
N T A S L T I	GCCTGACCAT CGGACTGGTA	O O H Y	CAGCAGCATT GTCGTCGTAA	V L G MscI	CGTTCTTGGC GCAAGAACCG
N F S	AACACCGCGA TTGTGGCGCT	. Y Y C	TTATTATTGC AATAATAACG	X	CGAAGTTAAC GCTTCAATTG
K S G BamHI	CAAAAGCGGC GTTTTCGCCG	D E A D BbsI	ACGAAGCGGA TGCTTCGCCT	ບ ບ	GGCGGCGGCA

	TATGATGIGA CGTTGGCAGG GAGIO
--	-----------------------------

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

GCGGATCCAA CGCCTAGGTT	S E D BbsI	AGCGAAGACG TCGCTTCTGC	V F G TGTGTTTGGC ACACAAACCG	
GATCGTTTTA CTAGCAAAAT	Ö U	GGGCCTGCAA CCCGGACGTT	CCACCCCGCC GGTGGGGCGG	
AGGCGTGCCG TCCGCACGGC	AIT	TTGCGATTAC AACGCTAATG	Q H Y T T P P CAGCATTATA CCACCCGGC GTCGTAATAT GGTGGGGGGG	L G MscI ~~~ TCTTGGC AGAACCG
AGCGTCCCTC TCGCAGGGAG	S A S L	AGCGCGAGCC TCGCGCTCGG	Y C Q TTATTGCCAG AATAACGGTC	L T V HpaI ~~~~~~ AGTTAACCGT FCAATTGGCA
GATAACAACC CTATTGTTGG	S D T	AAGCGGCACC	E A D Y AAGCGGATTA TTCGCCTAAT	G G T K GGCGCACGA CCGCCGTGCT

ACTCGACCAT GGTCGTCAAC GGGCCCTGCC GCGGCTTTGA CGACTAAATA GCTGATTTAT ACACTGGTAG AGCACATCGC CGTCGTCGTC GTTGTAACCG TCGTTGATAC TGTGACCATC TCGTGTAGCG GCAGCAGCAG CAACATTGGC AGCAACTATG GTCTCGCACG ACTGGGTCGG CGGAAGTCAC TCACCGCGTG GTCCAGTCGC CAGAGCGTGC TGACCCAGCC GCCTTCAGTG AGTGGCGCAC CAGGTCAGCG ø O^l ტ CCCGGGACGG CGCCGAAACT SexAI ρι ŋ Ø Н BbeI Ů Z ഗ P G T ഗ > Ŋ XmaI ഗ Bsu36I Ŋ ഗ TGAGCTGGTA CCAGCAGTTG Ω U T O O ы 区 Figure 4A: V lambda 1 (VX1) gene sequence Ø X M Z Z Ω >

Figure 3D: V kappa 4 (Vx4) gene sequence (continued)

I S S	ATTTCGTCCC TAAAGCAGGG	T T X		TTATACCACC AATATGGTGG	T BsiWI	C GTACG CATGC
T L T	TACCCTGACC ATGGGACTGG	Н О О Н		GCCAGCAGCA	E I K R T Bsiw	GAAATTAAAC CTTTAATTTG
G T D F	GCACTGATTT CGTGACTAAA	V Y Y		GТGТАТ∣ТАТТ САСАТААТАА	T K V	TACGAAAGTT ATGCTTTCAA
FSGSGS BamHI	TTTTAGCGGC TCTGGATCCG	L Q A E D V A Eco57I	BbsI	TGCAAGCTGA AGACGTGGCG ACGTTCGACT TCTGCACCGC	P P T F G Q G	CCGCCGACCT TTGGCCAGGG GGCGGCTGGA AACCGGTCCC

Figure 3D: V kappa 4 (Vx4) gene sequence

团	GA		CA GT	Д	0 0 0 0 0	CC.	ပ္ပပ္
Ŋ	9 9 9 9 9	Ω	CAG	Д	909	Д	GAT CTA
J. Q	GCCTGGGCGA CGGACCCGCT	Ω	TATAGCAGCA ATATCGTCGT	Q Q	TCAGCCGCCG AGTCGGCGGC	Q٠	TCCCGGATCG AGGGCCTAGC
W	ပ် ပု	X	TA		TC.	V SanDI	TC AG
	rga act	H	CTG	P G SexAI		G V San	GGG TCC
L A V	CTGGCGGTGA GACCGCCACT	S >	GAGCGTGCTG CTCGCACGAC	P G SexAI	AGAAACCAGG TCTTTGGTCC	ω O	GAAAGCGGGG CTTTCGCCCC
. 7	FGGG	W	4GC(×	SAAZ STTI	ы	AAAC
H		01		Q		щ	
Ŋ	AGC	Ω Q	CCA	Ø	, AGC TCG	R.	CGT
Ω	GAT	Ø	CAG	Υ nI	~~~~~~ 3GTACC CCATGG	S T R	ACC TGG
머	cccggatagc gggcctatcg	W.	~ GAAGCAGCCA CTTCGTCGGT	W Y Q Q KpnI	TGGTACCAGC ACCATGGTCG	ഗ	ATCCACCCGT
S BanI	}	R H	}			A.	
B O	AGA TCT	c PstI	CTGCA G	Y L A	0 0 0 0 0 0	A	. 000 000
EH	0 0 0 0 0	z	AAC ITG	Н	rct AGA	Λ Σ	ATT(PAA(
٠.	TGACCCAGAG ACTGGGTCTC	н	ATTAACTGCA TAATTGACGT	≯	CTATCTGGCG GATAGACCGC		_ TTTATTGGGC AAATAACCCG
Σ		F4		Z		LIAseI	?
> >	CGT(Æ.	CGA(GCT(×	AAA I'T'I	AseI	ATT. FAA
D I ECORV	GATATCGTGA CTATAGCACT	R A	ACGTGCGACC TGCACGCTGG	z	ACAACAAAAA TGTTGTTTTT	H	AAACTATTAA TTTGATAATT
ОЩ	GA? CTi		AC(TG(Z	AC.	X	AA! TT
	•						

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

ACC	О	L.	~~ ACT IGA	MscI	~~~~ TGGC ACCG		
3AG		BbsI	~~~~~~ GAAGAC CTTCTG	FI Z	rtt(
CGCCGAGACC	P E E ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	щ.	CCTGAAGACT GGACTTCTGA	Η	GACCTTTGGC CTGGAAACCG		
ΑAΤ	터		SAA	Д	200 200 200		
AAP.	Ţ		TGG	വ	3660		
CCGCGCTCGT CGGCACGTTG ACCCCAGGGC CGCGCAAAT	W		TGACCATTAG CAGCCTGGAA ACTGGTAATC GTCGGACCTT	E	CCACCCGCC		
S S	S		AG TC	[- -		M H	
AGG	Н		ATT TAA	\succ	CAGCATTATA GTCGTAATAT	R T Bsiwi	TAAACGTACG ATTTGCATGC
CCC	H		ACC TGG	H	GCA CGT	×	AAC TTG
AC	H		TG	Ø			
${ m TTG}$	H	,	999 ၁၁၁	O	CAG GTC	H	AAT TTA
ACG	Ĺτι		TTA AAT	Ö	TGC ACG	E	TGA
ວອອວ	Q		ATCCGGCACG GATTTTACCC TAGGCCGTGC CTAAAATGGG	>	TTATTGCCAG AATAACGGTC	>	CAGGGTACGA AAGTTGAAAT GTCCCATGCT TTCAACTTTA
GT	H		~~~~ ATCCGGCACG TAGGCCGTGC	\succ	TTGCGGTGTA AACGCCACAT	X Z	CAGGGTACGA GTCCCATGCT
CTC	Ŋ	L4	3GC/ CCG1	>	SGTC	G · T	STAC CATO
3000	ഗ	BamHI	~~~~ ATCCC TAGGC	A	TTGCGGTGTA AACGCCACAT	CI	4660 1000
\mathcal{C}		Ba	~, A1 T <i>I</i>	[II	TJ A	MS X ×	77 [5

P G	CTCCGGGCGA GAGGCCCGCT	X S S	AGCAGCTATC	L I Y Asel	~~~~~ ATTAATTTAT TAATTAAAT	G S G	Bamhi GCGCGTTTTA GCGGCTCTGG
S	_					ťΩ	S S
ᆸ	TG	လ	AGC TCG	H	rct Aga	[FI	TA
S)))))	>	GTG	R.	3CG7	<u> </u>	TTT
L	CTGAGCCTGT	S	GAGCGTGAGC CTCGCACTCG	Q,	CACCGCGTCT GTGGCGCAGA	A R	ອວອວອ
H	ACC	O ₄	CCA	K	AG	בי) (G
Ø	3CG,	S	AGC	O/	~ ICA AGT	I)]]]
S P BanII	SAG CCCG	¥ Y	GAGCG CTCGC	P G SexAI	CCAGG	G V SanDI	TGGGGTCCCG
e sequence TQS Ba:	TGACCCAGAG CCCGGCGACC ACTGGGTCTC GGGCCGCTGG	S C R PstI	CTGAGCTGCA GAGCGAGCCA GACTCGACGT CTCGCTCGGT	\bowtie	CCAGCAGAAA CCAGGTCAAG GGTCGTCTTT GGTCCAGTTC	A T	GCCGTGCAAC
(Vk3) gen L		IJ		o o	CCAGO	<u>м</u>	GCCGT
карра 3 .V	CGTGC	A T	CGACC	W Y KpnI	GGTA	S	
Figure 3C: VI D I ECORV	GATATCGTGC CTATAGCACG	K.	ACGTGCGACC TGCACGCTGG	L A	TGGCGTGGTA ACCGCACCAT	Ö	GGCGCGAGCA

(continued
) gene sequence (
Ž.
7
kappa
>.
38:
ure

T L K I S R V	AC CCTGAAATT AGCCGTGTGG	о н у т т р	C AGCAGCATTA TACCACCCCG	I K R T Bsiwi	A ATTAAACGTA CG T TAATTTGCAT GC
GSGTDFT BamHI	GGATCCGGCA CCGATTTTAC CCTAGGCCGT GGCTAAAATG	V G V Y Y C Q	cgrggggggg tattattgcc gcacccgcac ataataacgg	G Q G T K V E	GCCAGGGTAC GAAAGTTGAA CGGTCCCATG CTTTCAACTT
ა ე ა	TAGCGGCTCT	E A E D Eco57I	1	P T F G	CCGACCTTTG

Figure 3B: V kappa 2 (Vk2) gene sequence

团	GA	hes	500	Q	AG TC	ĮΤι	TT AA
ტ	999	Z	CAA	വ	000 000	民	CGT GCA
Д	CTCCGGGCGA GAGGCCCGCT	Ŋ	CATAGCAACG GTATCGTTGC	Ŋ	AAGCCCGCAG TTCGGGCGTC	Д	~ CGGATCGTTT GCCTAGCAAA
E-I	CT	耳	CA' GT	•	AA(TT(. 0	, ΩΩ ΩΩ
	rga ACT	H	TG	Q	CA	, P IDI	SGGTCC C
L P V	CTGCCAGTGA GACGGTCACT	H	AAGCCTGCTG TTCGGACGAC	P G exAI	AACCAGGTCA TTGGTCCAGT	V SanDI	AGTGGGGTCC TCACCCCAGG
т,	990 900	S	990	P G SexAI	CCA GGT	O G	TGG ACC
H	CT		AA TT		AA TT	W	AG
W	AGC	Q	CCA	L Q K	\AÀ	æ) (GG
ъ	CTG	W	CAGO		TCZ VAGI	R A	GTG
d l	CCCACTGAGC GGGTGACTCG	ഗ	~ GAAGCAGCCA CTTCGTCGGT	H	TACCTTCAAA ATGGAAGTTT	Z	CAACCGTGCC GTTGGCACGG
S Banli	,	~	}	Y KpnI	₹		
	GAG	C PstI	CTGCA SACGT	Z X	TGG ACC	Ŋ	CAG GTC
Ø	CCA GGT	വ	GCT	О	SAT	J.	9 0 0 0 0 0
E	TGACCCAGAG ACTGGGTCTC	Н	ATTAGCTGCA TAATCGACGT	ъ	TCTGGATTGG AGACCTAACC	H	ATCTGGGCAG TAGACCCGTC
Σ		••		~	•	⊱	
>	STG	W	SAG	X X	ACTA	H ?	TTT
D I ECORV	ATC PAG	S S))) (TAZ ATT	L I AseI	TAA
D I ECORV	GATATCGTGA CTATAGCACT	Д	GCCTGCGAGC CGGACGCTCG	×	GCTATAACTA CGATATTGAT	L A ~~	CTATTAATTT GATAATTAAA
1	00		90	O			0 0

	rcga acgiticece ccaggedage gcaaaatege egagaeeraa
	GCAAAATCGC
ed)	CCAGGGCAGG
gene sequence (continu	ACGITICGCC
Figure 3A: V kappa 1 (Vk1,	CGGTCGTCGA

Figure 3A: V kappa 1 (Vk1) gene sequence (continued) CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG	GTDFTLTISSLQPEDF Eco57I	BamHI	CGGCACTGAT TTTACCCTGA CCATTAGCAG CCTGCAACCT GAAGACTTTG GCCGTGACTA AAATGGGACT GGTAATCGTC GGACGTTGGA CTTCTGAAAC	ATYYCQQHYTTPPTFGQ MscI	CGACCTATTA TIGCCAGCAG CATTATACCA CCCCGCCGAC CTTIGGCCAG GCTGGATAAT AACGGTCGTC GTAATATGGT GGGGCGGCTG GAAACGGTCGTC
---	----------------------------	-------	--	---------------------------	---

R T BsiWI × Н 田 > 又 ⊱ G

GGTACGAAAG TTGAAATTAA CCATGCTTTC AACTTTAATT

Ω	GA		0 0 0	~	ZA T	ഗ	년 · ·
ပ	GCGTGGGTGA CGCACCCACT	H	CTC	A.	TGC	ڻ ن	BamHI ~~~~~
>	STG	\succ	TAT	X	TTA AAT	S I	α γ (Ε
တ	000	ഗ	AGCTATCTGG TCGATAGACC	Н	~~~~~~~ ATT AATTTATGCA TAA TTAAATACGT		ر ا
	GA	S	9 20 20	L AseI	(G	ָט יי
Ø	CTGAGCGCGA GACTCGCGCT	Н	ITA AAT	H	TTA:	ഗ	78'G
Ŋ	SAG		CA:	×	AAC TTG	Įτι	$\Gamma \Gamma T$
H	CTC	Ŋ	GGGCATTAGC CCCGTAATCG		CGAAACTATT GCTTTGATAA	α	CGT
လ	76c	Q	CA	Д		ഗ	TGCAAAGCGG GGTCCCGTCC CGTTTTAGCG GCTCCTA
ഗ	CTZ	ഗ	AGC TCG	Ø	AGC	Д	, GGT(
Δ,	TGACCCAGAG CCCGTCTAGC ACTGGGTCTC GGGCAGATCG	A	ATTACCTGCA. GAGCGAGCCA TAATGGACGT CTCGCTCGGT	×	GCAGAAACCA GGTAAAGCAC CGTCTTTGGT CCATTTCGTG	JC	G GGTCCC
S BanII	00 00 00	K	~~ . GA . CT	AI G		V Sanl	.~~. GG1
	GAG CCC CTC GGG	C PstI	CTGCA.G SACGT C	K P G SexAI	CA	ഗ	~~ GG
o Janeuce	CCA	щ	CTC	₩ %	AAC TTG	ω .	AGC
ene sec	SACC	E	TAC	Q	GCAGAAACCA CGTCTTTGGT	OI .	CAA
لادر) م	·	H) (G) (G)	ᆸ	TG
Figure 3A: V kappa 1 (Nk1) gene sequence • D I Q M T Q ECORV	~~~~~~ GATATCCAGA CTATAGGTCT	H	TCGTGTGACC AGCACACTGG	0 · · · · · · · · · · · · · · · · · · ·	CCA		CT
: V kap I RV	~~ TCC AĞG	>	STG. CAC'	W Y KpnI	CGTGGTACCA GCACCATGGT	S	GCCAGCAGCT
igure 3A: Vk . D I . ECORV	~~~~~ GATATC CTATAG	R V	GTC	≥	TGG	ഗ	CAG
Fig.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		TC	K) () ()	K	Ö

rences
Sequ
consensus
chain o
V heavy
, 2 5
Figure

Γ	.	98	ш	LLI	_	111	<u> </u>		ш	7		T C L I	1,) V			
		48	1		۵							113	ı			, ひ , ひ			
		83	1								4					, o > >			
		J.	ł		Σ						framework			· _	- <i>-</i>			- <i>-</i>	- /-
		9. 8	1		Z						e V	011		. '					
		A			⊢						am	601		· _	· _	· >	 !		· >
					≥			_	_		fr	701 108				· –	- <u> </u>		. –
		18	1		-			_				901	9	· · (=	, רב) ෆ	י רב	י רר	, ල
	2	08	ļ.								-	901	0	_					
-	본	64	>	<u>_</u>		>						101	9	_				_	
	≫	84		<	>							103							
	rramework		İ.	_								102	_		_	· >	-	_	-
	139	9/				z	Z	S	Z			101		_	_	_	_		
		-			\checkmark							3	1.	>	>	Σ	••		
		74	S	S	S	S	S	S	S		CDRI	8	1			\forall			
		73			<u></u>						딩	A	>	>	>	>	>	>	>
		72							Ω			100	ш	щ	ட	· L	щ	ட	ட
	١	۱L	A	8	\checkmark	\propto	>	V	ـم			66	9	ග	9	9	9	9	9
	ı	٥۷	—	-	S	S	S	S	Z			86							
		69	—	Σ		_						۷6	9	9	9	9	9	9	9
		89	—	—	\vdash		<u> </u>	_	\vdash			96	9	9	9	. 9	9	9	9
		۷9	>	>		LL.	>	>				96	≥	≥	≥	≥	≥	≥	\geq
		99			\propto				- 1			7 6	2	\propto	\propto	\propto	8	\propto	8
		99							1		3	£6.	_			\forall			
_	_	• •	O		Y	~			7		framework	65				C	<u>ں</u>	C	
	202	63				>		<u>ш</u>			SW(16	>	≻	>		>	>-	>
اح	기	79			5						m(06	λ /	>	·	·	>	-	>
		19						<u>م</u>			fr	68	<i>-</i>	<i>></i>	<u>_</u>		>		- 1
		09		7	< >	7	_	_	7			88	1	/ 1	7	I A	7 1	7 1	_
	-	69 oc	×	z	∕ ∽	∕ ≻	z	X				28 98						_	
L	لـ	89	A				_			į		סכ	A	<u></u>					
'n				H 1	VH2	H3	H4	VH5	9H				H	H	VH2	VH3	4 4	H2	9H
			AH/	H>	>	<u>></u>	5	SI	JBST		E SHE	ET (RU	E 20		>	>	<u> </u>	Y X	>
										7	/ 204	,		•					

Figure 2C: V heavy chain consensus sequences

S C K A S G G T F S G S S S S G G G G G G G G G G G G G												129		:	- 7	< h	- F	- +		Z
framework 1 E V K K P G S S V K V S C K A S G G T F A L V K P G A S V K V S C K A S G G T F G L V Q P G G S L R L S C A A S G F T F G L V K P S E T L S L T C T V S G G S C E V K K P G E S L K I S C A A S G F T F G L V K P S E T L S L T C T V S G G S C E V K K P G E S L K I S C K G S G Y S F G L V K P S G T L S L T C T V S G G S C F V K R P G E S L K I S C K G S G Y S F G L V K P S G T L S L T C T V S G G S C F V K R P G E S L K I S C K G S G Y S F R Q A P G Q G L E W M G W I N P I F R Q A P G Q G L E W M G W I N P I F R Q A P G K G L E W W S A I S G S G R Q A P G K G L E W M G I I Y P I F R Q A P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W M G I I Y P Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G K G L E W I G Y I Y Y S R Q M P G C C K G S G Y S R Q M P G C C K G S G Y S R Q M P G C C K G S G Y												99	-	- ر	ם כ	ט ב) (Λ (\supset	>
framework 1 E V K K P G S S V K V S C K A S G G T A L V K P T O T L T L T C T F S G F S G L V Q P G G S L R L S C A A S G F T G L V R P S E T L S L T C T V S G G S G V S G L V K P S G T L S L T C T V S G G S G V S G L V K P S G T L S L T C T V S G G S G V S G L V K P S G T L S L T C T V S G G S G V S G L V K P S G T L S L T C T V S G G S G V S G L V K P S G T L S L T C T V S G G S G V S G L V K P S G T L S L T C T V S G G S G V S G L V K P S G T L S L T C T V S G G S G V S G C V S G S G V S G C V S G S G V S G C C C C C C C C C C C C C C C C C C		30	S	-	S	S	S	-	S]		99	יי	ر د) <u>c</u>	ے ر) (י פ	∕	≥
framework 1 E V K K P G S S V K V S C K A S G G E V K K P G A S V K V S C K A S G G E V K P T Q T L T L T C T F S G F G L V K P G G S L R L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P G E S L K L S C A A S G G G L V K P S G T L C T V S G G G L V K P S G T L C T V S G G R Q A P G C L E W M G W L N P L L R Q A P G K G L E W M G W L N P L L R Q A P G K G L E W M G V L Y L L R Q A P G K G L E W M G V L Y L L R Q A P G K G L E W M G V L Y L L R Q A P G K G L E W M G V L Y L L R Q M P G K G L E W M G V L Y L L R Q M P G K G L E W M G L T Y L L L R Q M P G K G L E W M G L T L T L L L L L L L L L R Q M P G K G L E W M G L T L L L L L L L L L L L L L L L L L		67	Щ	щ		ட		ш,	>			179	L	. 0	٦	ם ע	ס כ	n ($\dot{\Box}$	\checkmark
framework 1 E V K K P G S S V K V S C K A S G G L V K P G G S L R L S C A A S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G L E W M G G L E W M G G L E W M G G L E W M G C L C C C C C C C C C C C C C C C C C		82	-	<u> </u>	S	—	Ņ	S	S		=	23	-	· z	_ ≥	3 0	ר >	- (9	S
framework 1 E V K K P G S S V K V S C K A S G G L V K P G G S L R L S C A A S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G T L S L T C T V S G G L V K P S G L E W M G G L E W M G G L E W M G G L E W M G C L C C C C C C C C C C C C C C C C C		72	9	>	LL.	ட	9	>	Ω	ĺ	9	5	1	1	1	1 1	l	1	ı	ı
framework 1 E V K K P G S S V K V S C K A P G S S V K V S C K A P G S S V K V S C K A P G L V K P G G S L R L S C L T C T V C C K G C L V K P G G S L R L S C R G C L V K P S G T L S L T C T V C T V C C K G C C K A P S G T L S L T C T V C T C T C T C T C T C T C T C T		97	ပ	9	9	9	9	9	9			1	1	ı	ı	1	i	ı	1	œ
framework 1 E V K K P G S S V K V S C K G L V Q P G G S L R L S C A G L V K P S E T L S L T C T G L V K P G E S L K L S C A G L V K P G E S L K L S C A G L V K P G E S L K L S C A G L V K P G E S L K L S C A G L V K P G G G L E W M G W L R Q A P G G G L E W M G W L R Q A P G K G L E W M G Y L R Q A P G K G L E W M G K G L R Q A P G K G L E W M G K G L R Q A P G K G L E W M G K G L R Q A P G K G L E W M G K G L R Q A P G C C K A C C K R Q A P G C C K C K R Q A P G C C K C K R Q A P G C C K C K R Q A P G C C K C K R Q A P G C C K C K R Q A P G C C K C K R Q A P G C C K C K R Q A P G C C K C K R Q A P G C C K C K R Q A P C C K C K C K R Q A P C C K C K R Q A P C C K C K R Q A P C C K C K R Q A P C C K C K		52	2	S	S	S	S	S	S			A		Δ.	. 1	C)	ے ا	<u>)</u>	>-
Framework 1 E V K K P G S S V K V S C G L V Q P G G S L R L S C G L V Q P G G S L R L S C G L V K P S E T L S L T C G L V K P S E T L S L T C G L V K P S E T L S L T C L V K P S G S L R L S C G L V K P S G L E W M G W R Q A P G Q G L E W M G W R Q A P G K G L E W M G C R Q A P G K G L E W M G C R Q A P G K G L E W M G C R Q S P G C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C E E W M G C R Q S P G C C C C C C C C C C C C C C C C C C		74	⋖	A	ட	Ø	>	9	_			25	-	Z	: _	\ \) >	- >		>-
framework 1 E V K K P G S S V K V S 116 G L V K P T G T L T L T L T L T L T L T L T L T L		23	\times	\checkmark	-	A	\vdash	\checkmark	A			ιs	-		-		-		_	
framework 1 E V K K P G S S V K V G L V Q P G G S L R L G L V K P T Q T L T L G L V K P G S S V K V G L V K P G G S L R L G L V K P G G S L R L G L V K P G G S L R L G L V K P G G S L R L G L V K P G G S L R L G L V K P G G S L R L G L V K P G G C E W M R Q A P G Q G L E W M R Q A P G K G L E W M R Q A P G K G L E W M R Q A P G K G L E W M R Q S P G C C E L E W M R Q S P G K G L E W M R Q S P G K G L E W M R Q S P G K G L E W M R Q S P G K G L E W M R Q S P G K G L E W M R Q S P G K G L E W M R Q S P G K G L E W M R Q S P G K G L E W M R Q S P G K G L E W M R Q S P G K G L E W M R Q S P G C C C E W M R Q S P G C C C C C C C C C C C C C C C C C C		77	0	ر ا	ں	ပ	ပ	ပ	C		·	20	9	≥	: .—	4	: >		_	ď
framework 1 E V K K P G S S V K G L V D P G G S L R G L V K P T D T L T G L V B P G E S L R G L V K P G G S L R G L V K P G G C L E W R Q A P G Q G L E W R Q A P G C G L E W R Q A P G C G L E W R Q A P G C G L E W R Q A P G C G L E W R Q A P G C G L E W R Q A P G C G L E W R Q A P G C G L E W R Q A P G C G L E W R Q A P G C C E W R Q A P G C C E W R Q A P G C C E W R Q A P G C C E W R Q A P G C C E W R Q A P G C C E W R Q A P G C C E W R Q A P G C C E W		12	5	S	-	S	—	S	-			67	ပြ	9	V	·	<u>ر</u>	<u>)</u> ල	5	9
framework 1 Framework 1 Framework 1 Framework 1 G L V K P G S S V G L V K P G A S V G L V K P G A S V G L V K P G G S L G L V K P G G S L G L V K P G G S L G L V K P G G S L G L V K P G G S L G L V K P G G S L G L V K P G G S L G L V K P G G C E R Q A P G Q G L E R Q A P G C G L E R Q A P G C G L E R Q A P G C G L E R Q A P G K G L E R Q M P G K G L E R Q M P G K G L E R Q M P G K G L E		50	>	>								84	≥	Σ		' >	_	. >	Ξ.	
framework 1 E V K R P G S S G L V R P T D T G L V R P G B S G L V R P G B S G L V R P G B S G L V R P G B S G L V R P G B S G L V R P G B C G L V R P G B C R Q A P G Q G L R Q A P G Q G L R Q A P G C C R Q C C R Q C R Q C C R Q C C R Q C C R Q C C R Q C C R Q C C R Q C C		6l	\forall	\checkmark	₩	æ	S	\checkmark	S			47	≥	≥	≥	≥	3	; ≥	> :	≥
framework	-	81	>	>	_		_		_		2	97	ш	ш	ш	سا	ш	ı	ן ר	ئد
A A A B A 40 A A A A A A A A A A A A A A A A A A A	논	11	5	S	-	S		S	-			94	_	_			_	·	ـ د	
A A A B A 40 A A A A A A A A A A A A A A A A A A A	\ \ \ \ \	91	S	A	0	9	ш	ш			0 M	77	9	9	\forall	9	٣	(C) (<u>ت</u>
A A A B A 40 A A A A A A A A A A A A A A A A A A A	me	Sl	9	9	—	9	S	G	2		me	43	a	O	\prec	\leq	¥	. Y	: .c	r
A A A B A 40 A A A A A A A A A A A A A A A A A A A	fra	τl	ط	٩	٥	٥	م	٩	ما		frai	45	9	9	9	ල	9	5) (פ
20000039 C C C C C C 11 C C C C C C C C C C		13	\times	\prec	\prec	0	\checkmark	\prec	$ \mathbf{x} $		-	17	٥	۵	مـ	٩	Δ.	۵.	. c	~
01 m m 4 0 0 m 0 85 x x x x x x x x x		71	\mathbf{x}	\checkmark	>	>	>	\times	>.		ł	•	A	A	ط	A	ط	Σ	١	γ
								-		ļ	ļ	38	O	O	0	O	O	0	1	기
6 4 4 0 0 4 4		01							ŀ		Ì		X.	\propto	R	\propto	\propto	\propto	: C	2
									1	ļ			/ /	>	_	>	_	>	_	-
8			Į.						1											- 1
Z G S S S S S S S S S S S S S S S S S S			S	S									S				_		_	- 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0							_	- 1		2				_	_	- 1
A			<i>-</i>	<i>></i>	~	<i>></i>	<u> </u>	<i>></i>			8		< \	>	0	Α,	≻	S		
			7	7	7	_	_ ~	7			\circ		<u>بر</u>	<i>></i> -	<i>></i>	> -	> -	> -	<	
E			0 /	0	O	0	\ \	_		l									_	- -
		6	7	~	~	<i></i>	~	-		ľ		· 1		, ,	<u></u>		. ^			
									\subseteq	L		ונן	-	~					-	
VH1B VH2 VH3 VH3 VH1B VH1B VH3 VH3 VH6			117	11E	42	43	44	45	9				417		12	+3	44	45	7	2
VH11 VH3 VH3 VH5 VH5 VH4 VH5 VH5 VH6 VH7 VH6 VH7 VH7 VH7 VH7 VH7 VH7 VH7 VH7 VH7 VH7			>	>	>	>	>		>	ITE (בשב	T /ptii	<u> </u>		>	>	>	>	>	>
6 / 204								JUE	11110	6/	204	ו (היטו	LE Z	u)						

Figure 28: VL lambda consensus sequences

framework 3	60 60 60 60 60 60 60 60 60 60 60 60 60 6	LOSEDEADY	E	A D Y		CDRIII framework 4	90 96 96 96 96 96 96 96 96 96 96 96 96 96	HYTTPPVFGGGTKLTVL	HYTTPPVFGGGTKLTVI	OHYTTPPVFGGGTKLTVLG
	79					CDR		>	>-	>
		\propto	\propto	~			16	エ	エ	
							06	O	O	0
	69	٥	S	ما			68	0	Q	0
	89	<u>></u>	<u>></u>		į		88	ပ	ပ	U
•		<u>> ال</u>	W2 V	W3				3	W2	W3

Figure 2B: VL lambda consensus sequences

	_				-		_			
	28	-	>				75	(U	9	9
	3	Z	Q	1			99		S	S
=	D	S	S	1			99	ام	م	ط
CDRI	77	S	Ŋ	A		=	79	œ	\propto	\propto
	56	2				CDR	23	0	Z	
	52	9	9	9		<u>ت</u>	25	Z	S	S
	74	S	\vdash	S			19	Z	>	
	23	0	C	J			09			
	77	S	S	S			6t	>	>	>- `
	12	-					84	-		
	20	⊢	—	\propto		-	14	-	Σ	>
	61	>	_	A			97	-	_	_
	81	8	S	\vdash			94	$ \mathbf{x} $	\checkmark	>
	41	a	O	O		4 2	74	ط	٩	ط ا
	91	9	G	G		framework 2	43	X	\forall	A
	31	ط	۵.	ط		l S	45	-	\prec	a
k 1	τl	A	S	Α.		an	17	9	9	9
vor	13	9	9	>		fr	04	۵	Р	٩
framework	15	S	S	S			38		工	~
ran	l l	>	>	>	•		38	0	O	0
4-	10	1	1	,			37	0	Q	Q
	6	Ь	Ø;	4			36	≻ >	≻	>
	8					H	35	≥	S	8
	<u></u>	J P					37	_		2
	5) _	T Q P	T 0 P			20 70		>	
	+	LTO				CDRI	33	_	7	
	5	>	A	ш		U	15	- -	<u>~</u> ≻	
	7.	S	SA	>			95	S	9	
	1004601	O	O	S			25 32 33 34 34	9	9	9
	- [W1 Q S V	W2 0	W3 S Y		لـــــا	- • [W1 6 S N	M2 6 G Y N Y	W3 G D K - Y A
		\$	\$	\$				\$	\$	\$

uences
Seque
consensus
kappa
: 2A: VL
Figure

Figure 2A: VL kappa consensus sequences

		_											
)	'		1				t	9 [-	7 2	<u> </u>	<u>~</u>
		8	'	_	ı	>		=	= 8	SV	Z	· v	—
		A	'	S	\sim	S		CNR	5 2	SV		S	S
	CDRI	72	1	O	O	_		اد	1 19	⊊∣∢	. O	V	Ø
		97		S				_	09	ı		9	≥
		52	1	S	A				6t	7 >	>	>	>
	<u> -</u>	77	12	<u>~</u>	~	<u>~</u>			8t	1			_
		23	0	ر د ،	ر د	ပ –			Lt	i i			ا بــ
		22		U1	S	Z			9t	- 1	<i>ب</i> 	_	_
		17				_			St		O	\propto	不
		0Z	>	⋖	A	A		× 2	100		م	ے	4
		81	N N	Д	R	R		No.	E 7	1	2	7 A	4 C
		21		ш	ш	ш		ne	45	1	0 9	0 9	9 0
		91	9	G	9	Ð		framework	l t	<u>d</u>	Р (٥	9
		91	>	۵	۵	_			39	 	· 👱	×	~
		カl	S	—	S	S	İ		38	a	Ö	d	0
	상	13	V	>	_	>	<u> </u>		128	a		O	0
	framework	15	S	٩	S	4			36	>	>	>	>
	am	11	_			_ .			32	≥	≥	≥	≥
	fr	01	S	S	-	S			34	⋖		Ø	A
		6	S		A				33				
		8	۵.	۵.	ط	٩			35	>	>	>	>
		7	S	S	. 2	S			31	S	Z	S	Z Y
		2 9 9	Q	Q.	O	0		CDRI	30	S		S	_
		ם ד	5	5	\ \				57	_		S :	z
		3 4	7	Σ >	>	⊠ >			28	- 6	Z	> ;	2
		7	_	_	_				<u>н</u>	i		i (5 5
		i	Ω	0	۵	۵			ا ت	1	I		>
L		- L	VK1 DIOMT	VK2	VK3	VK4	1		J		7	က	4
			≶	≯	Ž	Š				\ 	Vk2	VK3	\k4

Figure 1: construction of a synthetic human antibody library based on consensus sequences

WO 97/08320 PCT/EP96/03647

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51.

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

WO 97/08320 PCT/EP96/03647

51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.

- **52.** A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

WO 97/08320 PCT/EP96/03647

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- **45**. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- **50**. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, and deducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42.** A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- **41**. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - (i) screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

Claims

- 1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:
 - (a) deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
 - (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
 - (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
 - (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
 - (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- 21 Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur J.Immunol., 23, 832–839.
- 22 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727–738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843-1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003-2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047–1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993).

 (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821–1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- 12 Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc. Acids. Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.lmmunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)Z.Physiol.Chem., 354, 1505–1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481–1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.

B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur J. Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand-Limmunol., 36, 349–362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- 87 Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83–103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- 95 Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. &t Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867–878; Matthyssens, G. &t Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561–6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526-1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017–1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- 82 Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741-3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
 - 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
 - Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
 - Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
 - 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
 - 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
 - Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975)
 Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- 32 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 33 Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 42 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812-823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- 27 Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

59 Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Σ.Physiol.Chem., 349, 867-871; (1971) Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)
 J.Biochem., 86, 1523-1535.
- 67 Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- 69 Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol. Chem. Hoppe-Seyler, 366, 617-625.
- 72 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- 75 Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

203

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 45 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581–597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 29 Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) BiochemJ., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871–1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301–306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 40 Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
 - 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
 - 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.lmmunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L, Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- 117 Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc. Acids Res., 17, 3975.

94 Pratt, L.F., Rassenti, L., Carrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991) J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78. Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 81 Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805–810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- 93 Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur. J. Immunol., 23, 3272-3277.
- Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 63 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- 65 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 66 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322-1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)
 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L, Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- 41 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207;
 Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids
 Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077–1080.
- 44 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718–1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195–205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 5249–5263.
- Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann. Immunol. (Inst. Pasteur), 127c, 261-271.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869-2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 34 Feigenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., ladarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L. Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561–3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273–274.
- Barbas lii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

Table 6G: Analysis of V heavy chain subgroup 6

-					F	ram	ewo	rk I\	/				7
amino acid'	102	103	104	105	106	107	108	109	110	1. ?	113	112	Sum
А					T			2					494
В										******			
С			<u> </u>	<u> </u>	<u> </u>	<u> </u>		-	··				147
D				<u> </u>		·	Ť		1	<u> </u>			403
E				·	<u> </u>	•					***		186
F	2				******							2	150
G			49)	50)	•						571
Н	2											-	18
1	9					3		1					304
K				1			1						293
L	5			<u>.</u>			26						632
M							8			-			31
N													436
Р	4	ļ		6	<u></u>							1	387
Q				40		<u></u>							539
R				2		<u></u>	<u> </u>						495
S	4		1			1	<u>.</u>	<u></u>	<u>.</u>		43	46	1271
T						45	4	<u> </u>	45	<u></u>			640
V	21						2	46	<u>.</u>	48			647
W		65					5						398
X													
Υ.	19				·····								518
Z													
	2									•••••••			585
unknown (?)	·······									••••			13
not sequenced								_				===	580
•			7		•••••••		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••		45	······ ÷	
î.				•••••	••••••		26	46			43	46	
mcaa'	٧	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa ^s	31%	100%	%86	82%	100%	95%	54%	%96	100%	100%	%96	98%	
pos occupied ⁶	9	1	2	4	1	.3	7	3	1	1	2	2	

12

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

										CD	R III									
amino acid'	93	94	95	96	97	86	99	100	∢	8	ပ	۵	ш	Ľ.	g	I	_	_	×	101
А	69		11	1	3	12	4	3	2	5		8					Ī	10) 1	
В			<u> </u>																	
· C					1		1			1		1	1					•		
D			19	4	3	7	4	3	1	6	1	1	1				-			62
E			10	4	2	1	2	2	1	2							1	-		
F.	1		1	1	1		1	2	3		2			1			-		38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		P
Н				1		1	•		1	1	1	1				1	1	1		
1			<u>.</u>	1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	2	1					1	5				8	
M				1				1			5								11	
N			1	3	1	2	1	1	1	3	·	2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
S		3	5	5	5	7	6	7	3	4	2					1	1			
T			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9		<u></u>	4		9	5	1	1					2	
W			1	6	8		3	2	4								4	4		
X															-1					
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																				
				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)					!									6	1	5		<u> </u>		
not sequenced				1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	_1
sum of seq ²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa,	69			*******			14	23	25	33	41	47	53	54	57	56	50	28	38	62
mcaa'	Α	R	D	Р	G	G	-	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	93%	93%	76%	14%	21%	21%	19%	32%	35%	46%	57%	65%	74%	75%	%62	28%	29%	39%	53%	96%
pos occupied	I	•	:	:	:	:	:		1			:	•••••••••••••••••••••••••••••••••••••••	•••••••••			••••••	·····	Ī	

191

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

					Fran	new	ork	III												
amino acid'	9/	77	78	79	8	81	82	⋖	8	U	83	84	85	98	87	88	83	06	9 16	92
Α				-									1			7	4			
В																				
· C																				73
D								3						73	3					
E		<u></u>	<u></u>										73							
F			71	<u></u>	<u>.</u>		ļ	<u></u>	1										3	
G		<u></u>		<u></u>	<u> </u>			ļ	<u>.</u>	<u></u>		<u>.</u>		1						<u>.</u>
Н			ļ	<u> </u>	<u> </u>	2		1	<u></u>		<u> </u>	<u>.</u>		<u></u>		<u>.</u>	<u>.</u>			
1			1	<u>.</u>	<u></u>				<u></u>	<u> </u>	<u>.</u>				<u></u>		2	<u>.</u>	<u>.</u>	<u> </u>
K				<u> </u>	<u> </u>			4	<u></u>	<u> </u>	<u></u>	<u>.</u>			<u></u>		<u></u>	<u>.</u>	<u>.</u>	
L		1		<u> </u>	74		72		<u></u>	ļ	<u></u>	<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>	<u>.</u>	<u> </u>	<u></u>	ļ
M				<u> </u>	<u></u>		1		<u></u>	1	ļ	<u> </u>			ļ	<u></u>	2	<u> </u>	<u> </u>	<u> </u>
N	74							63								<u></u>	<u> </u>	ļ	1	
Р				<u>.</u>							<u>.</u>	70				<u>.</u>		ļ	ļ	
Q		72		<u></u>		71			·			.				ļ	<u>.</u>	ļ	ļ	
R		1				1		1							ļ	<u> </u>	<u></u>	<u></u> .	<u></u>	1
S			•••••	74		••••••	••••••	1	73		1	3			······	<u></u>	<u> </u>			
T							••••••	1			73				74		<u></u>	1		
V			2			•••••••	1			73							70			
<u> </u>						•••••••								••••						
X				•••••	· 	••••••					••••••			••••••						
Y												•••••		••••••				73	70	
Z	_										_									_
-															•••••	••••••		•••••		
unknown (?)															•••••		••••			
not sequenced										_		1								_
sum of seq?				•••••••	•••••••••••••••••••••••••••••••••••••••	•••••••		••••••••	•••••••		•••••••••••••		•••••••••••••••••••••••••••••••••••••••	•••••••				·····÷	74	•••••••••••••••••••••••••••••••••••••••
oomcaa,										······				•••••••••••••••••••••••••••••••••••••••		•••••••	•••••••	••••••••	70	•••••••••••••••••••••••••••••••••••••••
mcaa'		Q	F	S		•••••••••••••••••••••••••••••••••••••••	L	N	S	٧	T	Р	E	D	T		V	Υ	Υ	С
rel. oomcaas	100%	97%	%96	100%	100%	%96	92%	85%	%66	%66	%66	%96	%66	%66	100%	100%	95%	%66	95%	%66
pos occupied [®]	1	3	3	1	1	3	3	7	•	2	:	2	:	:	1	1	3	2	3	2

Table 6G: Analysis of V heavy chain subgroup 6

	v **		DR	II									Π								
	amino acid'	99	57	28	59	99	61	62	63	64	65	99	67	89	69	70	71	72	73	74	75
	А					73	1							2			6		1		
	В																		<u> </u>		
	· C				1						<u></u>	••••••••••••••••••••••••••••••••••••••							1		
	D			68			1									2		73			
	E	1		3			. 7			1									:	<u> </u>	2
	F.	7																†••••••• • •	•	-	
	G			1				1			8										
	Н	1																1			
							1						65	2	71				1		
	K		1							67						1		٠			70
	L	1					5		2				4						1		
	М												1								
	N	2	65	1						1				•••••		69					
	Р					1	1							•••••			66				
	Q .									2		· 1									
	R		1							3		73			•••••						
	S	2	2	1	1			73			66			1		2	1			73	
	T		4											69	1				71	1	2
	V						58		72				4		2		1				
	W																				
	X																				
	Υ	60	-1		72																
	Z		_		_	_	_					_	_		_						_
	-	<u>!</u>																			
	unknown (?)																				
Į	not sequenced										_	_	_				-	_	_	_	_
	sum of seq'	······ <u> </u>			•••••••••••••••••••••••••••••••••••••••				•••••	•	••••••	·-··-÷		·····i			·	·····÷	•••••	-	
	Ī	•••••••••••••••••••••••••••••••••••••••	*******		•		•••••••••••••••••••••••••••••••••••••••	•••••••••	•••••••	•••••••	••••••	•••••••	65	•••••••			······÷·	••••••	••••••	<u>-</u> -	
	mcaa'	Y	N	D	Y	А	٧	2	٧	٨	S	К	1	T	1	N	Р	υ	1	S	K
	rel. oomcaas	81%	9/088	92%	97%	%66	78%	%66	97%	91%	%68	%66	%88	93%	%96	93%	%68	%66	%96	%66	95%
	pos occupied ^a	:	:	:	:	:	:	:	:	•	•			•	:	:	: '	:	:	:	:

Fa

Table 6G: Analysis of V heavy chain subgroup 6

				Fı	rame	wo	k II													
amino acid'	33	40	4	42	43	44	45	46	47	48	49	5	3 5	5 6	۸. ۵	(a	י כ	ے ر	3 2)
A				1										1				i	1	
В																				
. С									<u> </u>		-									
D			<u> </u>		<u> </u>					1	<u> </u>	-					****	···•		<u> </u>
Е			Ī	•				74	ļ.	-								<u> </u>		İ
F .				•			<u> </u>	•		·					2	1			1	-
G						74					74		1							1
Н				<u> </u>							·		-			1		<u> </u>		-
l				<u> </u>				 !	······			·					-	<u> </u>		-
K	1	•••••••••••••••••••••••••••••••••••••••	<u> </u>	<u> </u>	1	*******			<u> </u>	<u> </u>	<u> </u>	†		-			1		66	 S
L	1		<u></u>			••••••	74		<u> </u>	74	İ	<u> </u>			<u> </u>			<u> </u>		<u> </u>
М			<u> </u>			******	********			<u> </u>	<u> </u>	<u> </u>			†	1	<u> </u>	<u> </u>		Ť
N			 !			•••••	•••••		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				-	<u> </u>	1	ļ
Р			73			•••••	••••					·····	•	-			·	·		
Q	72	••••••			•		•••••••	•••••	·							<u> </u>	<u> </u>	†	<u> </u>	<u> </u>
R		•••••			73	•••••	•••••					73				72	· · · · · · · · · · · · · · · · · · ·		1	
S		74	1	73		••••••	*******	•••••								1	·	72	<u> </u>	<u></u>
Т			••••••	7		•••••			*******	•••••			73				İ		5	<u> </u>
V		*******					•••••	••••••	•••••					<u> </u>		······		<u> </u>		<u> </u>
W		•				*******	•••••	•••••	74							<u> </u>	<u> </u>	!	<u> </u>	7
Х		•••••	•				••••••		••••••						<u> </u>	ļ		<u></u>	<u></u>	
Y							******			*******		*******		72	72		 		 -	
Z							••••••				***************************************	•••••								·····
-																	74			
unknown (?)									*******	<u>i</u>		•••••						••••••		
ot sequenced											•••••	*******		•••••		******				••••
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oomcaa		•	:	:	:	:	:	:			-	*******			********	*********			66	• • • • • • • •
mcaa*		S	Р	S	R	G	L	Ε	W	L	G	R	T	•	••••••	***************************************	-	*******	Κ	
rel. oomçaa ^s	97%	100%	%66	%66	%66	%00ı	%00 ₁	%001	%00 ₁	%00ı	%00 ₁	%6(%6(17%	7%	7%	%00	92%	9068	%66
oos occupied"				٠٠٠	<u>, , , , , , , , , , , , , , , , , , , </u>							<u> </u>	<u> </u>	6	െ	6		တ		

Table 6G: Analysis of V heavy chain subgroup 6

•	•													CI	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	۷	8	32	33	34	35	36	37	38
Α	1		67											66	67					
В											******					: : :	<u>.</u>	<u>.</u>		
С		68																		
. D							68				1		••••			• • •	1			
E																				
F .										2				1	1				1	
G			1			69							3	1	2					
Н													,				1			-
1				64		•						2					1		70	
К												3			••••	•••				
L																				••••••
M																				
N							1				2	66					70			
Р																		,		
Q																				
R											2	1								74
S	1			1	69		*******	69		68	66		67		3		1			
T	67										2	1	4		1					
V			1	4					70					6				••••	2	•••••
W		1														74		74		
X							••••••													
Y												1							1	
Z																				
_																				
unknown (?)											1									
not sequenced	5	5	5	5	5	5	5	5	4	4										
sum of seq ²	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	74
oomcaa,	·	·				••••		•••••			*******	66	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••		·····÷	••••••••	70	
mcaa*	T	С	Α	1	S	G	D	S	٧	5	S	N	S	Α	Α	W	N	W	1	R-
rel. oomcaas	92%	%66	97%	93%	100%	100%	99%	100%	100%	97%	89%	%68	91%	%68	91%	100%	95%	100%	95%	100%
pos occupied ^e	:	:	:											:			5		4	1

Table 6G: Analysis of V heavy chain subgroup 6

**															ran	iewo	ork I			
amino acid'	-	7	က	.4	Ŋ	9	7	œ	6	0	=	12	13	14	7.	9	17	<u>~</u>	19	20
A												T	1		T					T
В																				
· c																-				-
D								<u> </u>		-	1	<u> </u>	·				•	<u> </u>	-	1
E			-			<u> </u>			1								1	<u> </u>	-	-
F .				1	<u> </u>												1	<u> </u>		
G								52	2	67								-		
Н				•					·	•	•			-						***************************************
		<u></u>		<u> </u>	····				<u> </u>		<u> </u>	<u> </u>	<u> </u>				<u></u>	·	İ	<u></u>
К				<u> </u>					<u> </u>	<u> </u>	:	<u> </u>	68				<u> </u>	·	·	·
L				52						<u> </u>	68	1			-	<u> </u>	<u> </u>	67	1	68
М		Ī		<u></u>		<u> </u>					<u> </u>	<u> </u>						<u> </u>	-	<u>†</u>
N		••••••••••••••••••••••••••••••••••••••	<u> </u>	<u> </u>			•••••			<u> </u>						<u> </u>		-	<u> </u>	<u> </u>
Р			:						68				<u> </u>	67			;	†	1	
Q	52	•	52		51	52				!	·······	†	······			68				·
R					1	! !	•••		ļ	1			·		········		<u></u>	······		
S				••••••	4.0000111	**********	52							1	68			ļ	66	
Т						********	••••••		<u> </u>			<u> </u>					68		·	
V		52									•••••	66		••••••				1	-	
W		*******			•••••	••••••	*******				••••••			•••••••				••••••	•	
X							••••				•••••			••••••					*******	
Υ				·		•••••	*******		*********	•••••	******	••••	*********	*******	•••••	•				
Z				•••••		•••••					••••••		••••••	********	••••	•••••		•••••	******	
-											-									
unknown (?)							••••	••••					•••••			*****				
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ²	52	52	52	52	52	52	52	52	68	68	68	68	68	68	68	68	68	68	68	68
oomcaa,	: :	:								•••••••					68	••••••				********
mcaa¹	Q		Q	L	Q		S			******		٧		Р	S		•••••••	L	S	•••••••••••••••••••••••••••••••••••••••
rel. oomcaa⁵	100%	100%	100%	100%	%86	100%	100%	100%	100%	%66	100%	92%	100%	%66	100%	100%	100%	%66	92%	100%
pos occupied ⁶	1	1	1		:	:	:	:		:	:	:			1	••••••••		············	<u>-</u>	1

Table 6F: Analysis of V heavy chain subgroup 5

		٠.)	Fr	ame	wor	k IV					7
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α												1	611
В					<u> </u>								
С													205
D	1												458
E				1									404
F	2										•	}	256
G			41		41						•		1065
Н													44
1	9								2				588
K				3									650
L	2						25	1					549
M							8						303
N													64
Р	2					1					1	17	414
Q				34									612
R				3									351
S	2										40	39	1545
T	1					40	8		39				604
V	11							40		41			594
W		43				••••		******	*******				432
X													
Υ	13		••••••									1	738
Z													
.	2												635
unknown (?)													4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq²	45	43	41	41	41	41	41	41	41	41	41	40	
oomcaa	13	***************************************	*********		41	40	25	40	39	41	40	39	
mcaa¹	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	29%	100%	100%	83%	100%	%86	61%	%86	95%	100%	98%	98%	
pos occupied ⁶	10	1	1	4	1	2	3	2	2	1	2	2	

125

WO 97/08320

PCT/EP96/03647

Table 6F: Analysis of V heavy chain subgroup 5

										CD	RIII									
amino acid'	93	94	95	96	97	98	66	100	٧	В	၁	٥	ш	u	9	I		_	×	101
А	92		1	1	2		3	4	3	2		1				1		,	4	2
В				:	 !					<u> </u>										
. C						1	1	1	:		2		1				<u> </u>			
D				3	3	3	3	1	2	1	1	2		2	1	1	1 2	2		37
E			1	1	1	. 2			1	1				1				1		
F .					1		3			3	2		1						26	
G			1	9	11	12	12	5	2	4	3.	10	2	1				5	5	
Н			10	1		2			1	1		1								
1			<u> </u>	3		2	2	1	1	4	1	1		1	1					
K		1	1	1		1	3	1								2				
L			11	2	3	1	1	2	5		1		1		1			<u> </u>	<u></u>	
M			<u>.</u>		2	1	1		1	1	1	1							10	
N				1		2		1	1	2			1	•••••				2		
P ·			5	1	4	3	1	2				1	1	. 1	1			<u></u>		
Q		1	3	2		1	1	4	2	1	2						<u></u>		<u> </u>	3
R		92	7	9	2	2		2	1		2						<u></u>	<u></u>	<u></u>	
5		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
T	1		1	3	2	1	2	6	3	3	6	1		1						
V	2	•••••••	2	4	4		1		1	2			1		•					
W			1		2	1					1		2		1		1	1		
X															••••••					
Y				1	6	3	6	9	8	7	2	1	2	6	8	9	9	10		1
Z								_				_								
						1	_1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)													1			1				
not sequenced				52		•			-		_								==	
sum of seq'				45					•	········ <u> </u>	<u>-</u>	······	••••••••••••••••••				•••••••	••••••••••••		·····i
oomcaa,	•••••••••••••••••••••••••••••••••••••••		11	·	•••••		********		•••••••	10	16	23	30	30	31	32	30	22	•••••	
mcaa¹	. A	R	L	G	G	G	G	Υ	Υ	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	92%	97%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	67%	67%	%69	71%	67%	49%	59%	82%
pos occupied ^a	:	•		•	•	•		;	:	:	:	:	:	:		•	•	6	4	5

184

WO 97/08320 PCT/EP96/03647

Table 6F: Analysis of V heavy chain subgroup 5

					ram	iewo	ork l	11												
amino acid'	9/	77	78	79	8	8	82	٧	80	ပ	83	84	82	98	87	88	83	90	91	ç
Α		1	91								1	96				93				
В																				
. С							1													ć
D				1										96						
E						1					1					·				
F .				1														2	6	
G								3	1							4				
Н						3														
<u> </u>															2		9			
K											91						1			
L					96					97							2			
M																	84			
N	7							2	2						2					
Р			1																	
Q						93														
R	1						1	1	3		3									
S	87	2	1	1		••••••		90	91				96		5					
T	2	94	2					1			1	1	1		88		1			
V			2		1									1						
W							95													
X								••••••												
Y				94														94	89	
Z																				
-													·							
unknown (?)																				
not sequenced																		1	2	
sum of seq ²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	95	9
oomcaa ³	87	94	91	94	96	93	95	90	*********	*******	91	*******	*******	• • • • • • • • • • • • • • • • • • • •	88	93	84	94	89	9
mcaa*	S.	Ţ	Α	Υ	L	Q	W	S	S	L	K	Α	S	. D	T	Α	М	Υ	Υ	(
rel. oomcaas	%06	92%	94%	97%	%66	%96	%86	93%	94%	100%	94%	%66	. %66	%66	91%	%96	37%	%86	94%	,000
pos occupied					:				:	:	:	:	:		:		•••••••••••••••••••••••••••••••••••••••	:		

Table 6F: Analysis of V heavy chain subgroup 5

(CDR	11				•		_			T								
26	57	58	59	09	61	62	63	64	65	99	67	89	8 6	3 5	2, 7	, ,	7 /	2 7	, r
	6						1								8	8			
													••••••			•			
				1					1		-					Ī			
77			<u></u>						2							9	7		
3								2		Ī	İ							2	
			2				9				1			3					
1		-		•					94										
										15	;								
	4	1					1		<u> </u>	<u> </u>	3	1	88	3	*		•		9
		2							•							<u> </u>	9	3	
					1		4			<u> </u>	<u> </u>			1	2		<u> </u>	<u> </u>	<u> </u>
									<u></u>				3	}		<u> </u>	-		
2	,	14	2													<u> </u>	··		
					95	1		1	**********								·	1	
								91	*********	81					-				-
		78						3		1		·	1				1		
2	2			95	1	95	1					1		95				96	
	85	2		1								96				<u> </u>			4
			1								93		2		9	<u></u>			<u> </u>
																	Ī		<u> </u>
						·							······································				1		
12			92									••••••	•••••				<u> </u>		
												• • • • • • • • • • • • • • • • • • • •				•			
	<u> </u>									·									
																•••••			
97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
77	85	78	92	95	95	95	91	91	94	81	93	96	88	95	88	97	93	96	91
•		:		•		**********	**********			******		*******			************		••••••		ı
79%	%88	%08	95%	%86	%86	%86	94%	94%	97%	84%	%96	%66	91%	%86	91%	0001	%9 <u>6</u>	99%	94%
1	· •	•	:	:		3			······ <u> </u>		·····:	•••••••••••••••••••••••••••••••••••••••			••••				
	92 777 3 1 1 2 2 2 2 12 97 77 D	99	1	Image: Control of the contro	CR CR<	Image: Color of the c	R C												

Table 6F: Analysis of V heavy chain subgroup 5

•				Fr	ame	wor	k II													
amino acid'	39	40	4	45	43	44	45	46	47	48	49	20	51	52	<	8	U	53	54	u
А		<u> </u>	1			1										1		2	2 1	I I
В	.	<u></u>			<u></u>	<u> </u>					<u> </u>									
· C														1			Ī	1		-
D														14	ļ			8	93	1
E					3			97								-		·	2	2
F											•	1		2						
G				97		96			-		95	<u> </u>					-	69	1	-
Н										•			•••••••	3	1		<u> </u>			
										1		75	92			·		÷		-
K		1			94					• • • • • • • • • • • • • • • • • • •			 !				<u> </u>		†	-
L							94	•		2		2	1						<u> </u>	
М		92								89			1	•••••••			<u> </u>	<u> </u>		-
N							•••••				*******	••••••		••••••						
Р			96			••••	2					•••••	•••••	1	93	ļ				
Q	97					******	1				••••	••••								
R		1	•••••		•••••	••••••	*******	•••••		•••••	1	14		•			•••••	1	•••••	···
S								*******				1	•••••	•••••	1		*******	16		90
T		1							•••••			3	1	•••••	1				••••	
V		2				••••••	•••••	•••••		5	1	1	2	•••••••	••••••		•••••		••••	
W								•••••	94			••••••	••••••	••••••	•••••		•••••			•
Χ					•••••	••••••	*****	*******			*******				•••••					
Y					•	•••••••••••••••••••••••••••••••••••••••	••••••		3		********			76	~~~~			•		
Ž							********	••••			*******	•••••••••••••••••••••••••••••••••••••••			•••••			•••••		
-																97	97			
unknown (?)								•••••				•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	******	********			••••••		
not sequenced								•••••			•				**********	····				
sum of seq'.	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
	97	:			:	•							********	********	**********	********				
mcaa'			Р				L			М		ı	1	•••••••••••••••••••••••••••••••••••••••	Р	••••••••	•••••••	G	******	5
rel. oomcaas	100%	95%	%66	100%	92%	%66	97%	100%	97%	92%	%86	77%	95%	78%	%96	100%	100%	71%	%96	%66
pos occupied"	1	5	2	1	2	2	7	1	2	4	2	7	٠.	c	c .		•			า

Table 6F: Analysis of V heavy chain subgroup 5

									·		-	×::					 -			_	
											Τ.				CDR					L	
amino acid'	21	22	23	24	25	26	. 27	28	200	30	7	5 <	(a	, -	۶۲ . د د	3	4	32	36	37	
Α				3	3 2	2					4			T				8		1	ı
В																					Ī
. C		96	3						1		<u> </u>	1					Ī	Ī	••••		Ť
D									2	•		2				<u> </u>		1	••••	****	Ť
E						2	2				Ī	1					-	1			Ť
F .					3		(6	9	7	1		••••••		2	***		Ť		•••••	-
G				92		93	}					1						72		*****	-
. Н												 I			4			-			-
·I									•	4		•				9	3	1		•••	
Κ.			89					1	· • • • • • • • • • • • • • • • • • • •	<u> </u>	<u> </u>	<u> </u>			"		1				
L				<u> </u>					·····	<u> </u>		<u> </u>		·		1	1	<u>†</u>	1	2	
M			1		!				1	<u> </u>		<u> </u>	<u> </u>	-			1			1	!
N			1		<u> </u>	 !		2		4	14			2	?			···•			
Р				•	1	••••••			-						-			1	Ť		
Q			4												-			-	•		
R			1			1		2		<u></u>					1						ç
S	94			1	90		ļ	84		10	61	<u> </u>		2	2	2	1	5	•••••		••••
T	2					••••••		5		75	16					·:	·‡ }				****
V												<u> </u>	<u> </u>		 -		ļ			93	
W											••••••	<u></u>	<u> </u>		93	-	·····	ç	97		••••
Χ										•	•••••					<u> </u>		-			****
Υ							90				••••••			87			<u> </u>			 	
Z																·····					
-												97	97					Ī		Ť	=
unknown (?)									********		*******		•••••	••••••	••••••		 !	-			. ***
ot sequenced	1	1	1	1	1	1	1				*******			•••••	*******	********		Ť			••••
sum of seq?	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	9	7 9	7	9
•	94	96	89	92	90	93	90	84	•				********	*********	*** **** ***		*******	· • • • • • • •	-	<u>.</u>	
mcaa*	S	С	K	G	S	G	Υ	S		•	S	-	-	•••••••	••••••		·G	N	···•		R
rel. oomcaa'	98%	100%	93%	%96	94%	97%	94%	87%	100%	77%	53%	100%	100%	90%	%96	%96	74%	100%		0,0	%86
oos occupied [«]													•	•	65 4			 -			6

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

								,						Fr	ame	wor	kΙ	•		
amino acid'	-	2	က	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
. A					1			1	89		1			1						
В																				
· C							1													
D										2										
E	88	1			2				4	93						92				
F														*****			1			
G	1							92					•••••	********	94			<u></u>		
Н																				
																				9
K												94	94						77	
L		1		91		2												95		
M							••••				3				*******				1	
N				.,		•••••														
Р				1		••••••			1					94						
Q	. 3		92		1	90										3			1	
R						1						1	1		1				17	
S							92										94			
T																	*******			
<u> </u>		90			89	•••••	•••••		1		91									
W						···														
Χ	ļ																	•••••		
ΥΥ	 														••••••					
Z	<u> </u>																			
		ļ		*******																
unknown (?)	 	<u></u>	<u></u>					•••••												
not sequenced				_			_			_		-	-						_	-
sum of seq'	ļ										•••••••••••••••••••••••••••••••••••••••			•••••••••••••••••••••••••••••••••••••••	••••••					*****
oomcaa,	·····	••••••	÷			· · · · · · · · · · · · · · · · · · ·		·····			••••••••	94		•				·	•••••••••••••••••••••••••••••••••••••••	•••••
mcaa'	Ł	 						G			•••••••••••••••••••••••••••••••••••••••				G			L		1
rel. oomcaas	%96	%86	100%	%66	%96	97%	99%	%66	94%	%86	%96	99%	%66	%66	%66	97%	%66	100%	%08	100%
pos occupied ^a	3		:		:	:	•				•	:	•	•					4	

Table 6E: Analysis of V heavy chain subgroup 4

					Fra	ame	wor	k IV					
amino acid	102	103	104	105	106	107	108	109	110	111	112	113	su
Α						1			1		Ī		3:
В													
С		<u> </u>		<u> </u>		<u> </u>	<u> </u>		-	<u> </u>			1
D		<u></u>	<u></u>	·			<u> </u>	<u></u>		<u> </u>			2
E		-		<u> </u>	·		<u></u>	<u> </u>					1
F							 !	<u></u>					1:
G			41		40	1		•		· · · · · · · · · · · · · · · · · · ·			67
Н	1						 !	••••••• • •	1		<u> </u>		
<u> </u>	9					1	 !		<u> </u>	÷	!		28
K				3									27
L	4						19			<u> </u>			54
М							9			<u> </u>			4
N				*******	•••••	1	********			: :			20
Р	3		•	2	•••••				••••••••••••••••••••••••••••••••••••••			2	28
Q			•••••	29	••••	••••							33
R	1		*********	.4			1						25
S	1			1							36	33	98
T				1		33	8		34				53
V	12							36		36			48
W		46											26
X													
Υ	16												45
Z													
-													46
unknown (?)													
not sequenced	10	11	16	17	17	20	20	21	21	21	21	22	42
sum of seq ²	47	46	41	40	40	37	37	36	36	36	36	35	
oomcaa¹	16	46	41	29	40	33	19	36	34	36	36	33	
mcaa'	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa ^s	34%	100%	100%	73%	100%	9068	51%	100%	94%	100%	100%	94%	
pos occupied ^a	8	1	1	6	1	5	4	1	3	1	1	2	

17.0

Table 6E: Analysis of V heavy chain subgroup 4

										CD	R III									
amino acid'	93	94	95	96	97	98	66	100	۷	8	ပ	۵	ш	щ.	g	I	_	_	¥	101
Α	56		3	3	3	2	5	4	2	2	· 4		2	1		1	1	12		
В																		<u> </u>	<u> </u>	
. с					1				1											
D			- 6		5	5	5	4	3	2	4	3	1		1	2	1			41
E			- 6	1	1	2	1			1	3	1	2	1						
F				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1						1	*********		1				2
				1		2	4	1	3	2	3		1	********		<u></u>			1	
K			2	1						2	2			1						
L			2	6	7	3	5	3	2	4	1	5	3	3		1				
M				1	4		3	1		2	1								9	
N				3					2	1	1	5	1	1			2			
Р .				4	5	3	1	1	2	1	1	1	2	3	1	2	1			
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	1	2			2	1				
5		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
T		1	1	2	1	3	4	4	3	3			1	1	1					
V	1	1	4	2	2	5	4	4	7	3	1	2	1							
<u> </u>			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X																				
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z																				
-						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)														1			1	1	1	
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq ²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa,	····						••••••			9	11	16	23	27	29	34	31	14		41
mcaa'	Α	R	G	R	G	G	G	G	٧	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	%86	92%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	%29	30%	9029	9%68
pos occupied ⁶											:						*****			:

Table 6E: Analysis of V heavy chain subgroup 4

•					Fran	new	ork l					:								
amino acid'	92	77	78						8	U	83	84	85	98	87	88	68	06	91	92
Α												55	57	7	-	5	-	1	T	
В		<u></u>							<u> </u>	<u> </u>				-						<u> </u>
С			-	<u></u>		<u></u>				<u> </u>		<u> </u>		†				İ	-	57
D					1					<u> </u>				57	,	<u> </u>	<u> </u>	<u> </u>	İ	
E						1														
F			54						1											
G			<u></u>					1												
Н			<u></u>							<u> </u>		<u></u>								-
1			1					1	<u>.</u>	<u></u>	3	<u></u>	<u></u>							
K	3					46		2	<u></u>	<u> </u>		<u> </u>								
L		3	1		55		53			2					<u>.</u>	<u> </u>	1			
<u>M</u> .						1	1			1				<u></u>			1			
N	54					3	••••	3	1										<u></u>	
P								••••							ļ	<u></u>	ļ	<u></u>		
0		54			1	1						••••••				ļ	ļ		ļ	
R						2	•••••	2				1			ļ		ļ			
<u>S</u>			1	57		2	1	44	55		1				2				1	
T						1		4	••••••		53				55					
V							2		•••••	54		1					55			
W															••••••					
X														•••••••	********				••••••••	
Y .														••••••				57	56	
<u> </u>	_	-		-	_	-	_	_		-		-		-				-		_
- (2)																				
unknown (?)																				
not sequenced		E 7	<u></u>	6 - 3	رع	<u></u>		ر ج								_	_			_
sum of seq'	:	:			:						······		••					·····		
		0 Q		5/ S	55 L	46 K	53: L		55 S	54 V			5/ A	5/ D	55 T	57 A	55. V	57 Y	56 Y	57 C
	•••••								-	····										
rel. oomcaas	92%	95%	95%	100%	₀ 96	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	100%
pos occupied [«]	2	2	4	1	3	8	4	7	3	3	3	3	1	1	2	1	3	1	2	1

Table 6E: Analysis of V heavy chain subgroup 4

	С	DR	11																	
amino acid	99	22	28	59	09	9	62	83	64	65	99	67	89	69	70	7.1	72	73	74	75
Α		1									1		1			1				1
В																	<u></u>			
. С																				
D			2									1					55			
E																	1			
F .				3														1		•••••
G	1						*******			1										
Н			2																	•
<u> </u>	1	1										1	1	48		3				
K					1				53									1		51
L						1		55				1		••••	••••••	3				1
M														7	••••			2		
N	2		40		53								2							1
Р						54		1												
Q																	1			
R	2								3		56									2
S	49		1		2		56			56			1		56			1	57	
T	1	54	1			1			1				51		1			52		
V	1	1										53		2	••••	50				1
W																				
X																				
Υ			11	54																
Z																				
-														••••••						
unknown (?)							****													
not sequenced	<u>L</u>				1	1	1	1				1	1							
sum of seq ²	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	57
oomcaa3	į	:	40		·····	••••	*********				•••••••	53	51	48	56	50	55	52		51
mcaa*	S	T	N	Υ	N	Ρ	S	L	K	S	R	٧	T	ı	S	٧	D	T	S	K
rel. oomcaas	96%	95%	20%	95%	95%	%96	100%	%86	93%	%86	%86	95%	91%	84%	%86	%88	%96	91%	100%	%68
pos occupied			:			:	•												1	

Table 6E: Analysis of V heavy chain subgroup 4

				Fr	ame	wor	k II													
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	51	52	4	. ac	ر د	, 23	54	L
Α			8	1														T		Ī
В .																				
. C																				<u> </u>
D							:			•			·		1		<u> </u>		1	
E				1				56				22	2							
F .							******	<u> </u>				1		1						
G		······		55		55				†	56	1						1		5
Н		2							•	•	<u> </u>	·		-		•		24	, <u></u>	
		:			*******		•••••			54		1	54			<u> </u>		•		-
K				•••••	54	•••			•••••••	 	 -		<u> </u>	 	<u> </u>	-		<u> </u>	İ	-
L		1					55	•••••		2	 -		 			<u> </u>		<u> </u>		<u> </u>
М						•••••	•••••	•				!	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	
N						•	•••••					<u> </u>		21	<u> </u>	<u> </u>	······	<u> </u>		<u></u>
Р		50	49				2					!	<u> </u>			······				
Q	56				*******	••••••	•••••	1	• ••••••		•••••••	1	·			-	• •••••	†	•	
R		•			3	2	••••	********				9		1	· · · · · · · · · · · · · · · · · · ·	 	<u> </u>	<u></u>	<u></u>	ļ
S		3				•••••		*******			********	7	···········	1		ļ		<u></u>	52	
T	1	1				•••••	*******	*******			•••••							8		
V			•••••		•••••••					1	*****		3							
W									56	*****										
Χ					******		******					•••••	••••••	•••••	••••••					
Y									1		••••	15		32	••••••	••••••	•••••	23		••••
Z .							•••••				•••••		••••••	•	**********	•••••	•••••			
-				\$ 33					Ì						57	57	57			_
unknown (?)										•••••				••••••						••••
ot sequenced			<u> </u>								-						*******			•••••
sum of seq'	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa'			49																	
mcaa'	Q	Р		G	Κ	G	L	Ε	W	1	G	Ε	ı	Υ	-	-	-	•••••••	S	
rel. oomcaa ^s	98%	%88	86%	%96	95%	%96	%96	%86	%86	95%	%86	39%	95%	26%	100%	%00 l	%001	42%	91%	100%
os occupied"	:			:	2	•	2	:	:	:	:			:			·····-†	:	ე 2	

Table 6E: Analysis of V heavy chain subgroup 4

														CI	DRI					
amino acid'	21	22	23	24	25	26	27	28	53	30	31	∢	8	32	33	34	35	36	37	38
Α			22											1						
В																				
. С		53													1					
D			1								4	1	1	1			1			
Е																				
F				• • • • • • • • • • • • • • • • • • • •	1	******			22		•••••	••••		1	1				1	• • • • • • • • • • • • • • • • • • • •
G	ļ					53	5 3				21	3	4				8			
Н							1						•••••	2						
<u> </u>	<u> </u>		1					1	32										51	•••••
K	ļ																			
L																			1	
M	ļ																	*******		
N	<u> </u>					•••••		••••••		1	1		2	2			1			
P	 			••••••				3												
Q	 										1									•
R	 			.		1				3			1							5
S	 	<u></u>	2		35			51	1	52	25	•••••••••••••••••••••••••••••••••••••••		1			44		1	•••••
T	53	<u>.</u>	29								2	1					3			
<u> </u>	ļ	<u> </u>	<u></u>	55		1	•••		1										3	
W	<u> </u>	<u></u>					•					1			2	56		57		•••••
<u>X</u>	ļ	<u>.</u>																		
<u>Y</u>	<u></u>				19		1		•					48	52					
<u>Z</u>	L		_			_														_
		<u> </u>										45	39							
unknown (?)		<u></u>	<u> </u>																	
not sequenced	-			늘	_		_	_	1					1						
sum of seq ²		<u> </u>	55	<u> </u>		·····													••••••••	•••••
oomcaa,	··	÷	29 T	÷	·····		•••••					••••••			*********		***********			•
mcaa'	T	ļ	!	V	ļ		ļ						-		Υ			W		F
rel. ooṃcaas	,000t	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	%08	70%	%98	93%	100%	77%	100%	%68	1000
pos occupied	1	:	5	<u> </u>	:	:	:					6					5		5	

Table 6E: Analysis of V heavy chain subgroup 4

• .														F	ram	iewo	ork I			
amino acid'	-	7	က	4	Ŋ	9	7	œ	6	0		12	13	14	15	16	17	28	19	20
Α					1				19						1		T	1		1
В				<u> </u>					•	·							<u> </u>	-		
· C								·	•		·	-	· *			<u> </u>		-	-	
D								·				<u> </u>				<u> </u>		<u> </u>		
Е						32		·	<u> </u>	<u> </u>	<u> </u>	<u> </u>				44	1	†	<u> </u>	
F																	<u> </u>	†	•	
G								54	1	53					-	2	?	İ		
Н			4		2															
دد ا		<u> </u>																<u> </u>		
K		<u></u>	<u> </u>									1	54						1	
L		7		54							53	19		1				53		50
M																				
N		<u>.</u>																		
Р	ļ			•••••••					33					51	1					2
Q	52		50		51	20		ļ								7				
R	1				•••••	·										<u></u>				
<u>S</u>							33								52				52	
T					•••••				1					•••••			52			
<u>V</u>		47	•••••		******	1		.				34		•••••••	••••••		••••••			1
WW				•		•••	20							•••••••	••••••					
X						••••••								•	*******					
<u>Y</u>							•••••													
Z	1								_			_	_							
- (2)	ļ						•••••													
unknown (?)																	<u>.</u>			
not sequenced			-	:				_						4	4	4		4		
sum of seq ²	•	•		:		:							•••••••••••••••••••••••••••••••••••••••				···	•••••••••••••••••••••••••••••••••••••••	·····†	
:	52 Q	•	50 Q	54 L	51 Q	32 E	33 S	54 G	33 P	53 G	53 L	34 V	54 K	51 P	*******	······································	÷	53		
mcaa•	<u>u</u>	••••••							····	<u>.</u>	<u>.</u>			Г.	S	E	T	L	S	L
rel. oomcaas	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	%86	83%	%86	100%	%96	94%
pos occupied ^a	3	2	2	1	2	3	2	1	4	1	1	3	1	3	2	3	2	1	3	3

172

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amev	vork l	IV				
amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113
А	1		1			2						
В				1								
С												
D	2											
Е					1							
F	2											
G			140		130		1					
Н	4											
l,	15								1	1		
K			<u> </u>	13						••••		
L .	10			1			91					2
. М							6					
N	1					1						
Р	17					1	1					
Q				111								
R				8								
S	7	1									118	110
Τ						123	27		122			1
<u> </u>	34		1			1		125		119		
W		158										
Χ												
Y	82								•••••			
Z												
-	9	2	2	2	2	2	2	2	2	2	1	1
unknown (?)									• • • • • • • • • • • • • • • • • • • •		••••••	•••••••
not sequenced												
sum of seq ²			144				************	127	125	122	119	114
oomcaa ₃			140					125	***********		***********	• • • • • • • • • • • • • • • • • • • •
mcaa*	Y	W	G	Q	G	T	L	V	T	V	S	S
rel. oomcaa ^s	45%	%86	92%	82%	%86	95%	71%	%86	%86	98%	%66	%96
pos occupied		3	:								2	

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

					CD	R III									
amino acid'	86	66	100	٧	ക	ပ	٥	ш	u.	9	x	_		×	101
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2		:			1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
E	6	3	1	13		1	1	•••••••••••••••••••••••••••••••••••••••							1
F .	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
l I	6	11	4	4	3	1	3	10	3	3	2		1	2	
К	2	11			3	1									
L	26	13	4	12	8	2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	:
Q	4		1	1	1	1	. 1					1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2	3	1	1	1
Т	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4				1	••••••••	6	10		
X				1		•••••					•••••				1
Y	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z															
-	12	21	35	54	73	87	102	110	126	135	134	120	91	71	21
unknown (?)							3	2	1	1			3	2	
not sequenced	14	14	14	14	15	19	21	22	23	23	23	25	25	. 26	25
sum of seq?	198	198	198	197	196	192	190	189	188	188	188	186	186	185	186
oomcaa,	34		35	54	73	87	102	110	126	135	134	120	91	71	146
mcaa•	G	S	G	-	-	-	-	-	-	-		-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	71%	65%	49%	38%	78%
pos occupied ^e	20	20	19	20	:		:	•••••••••••••••••••••••••••••••••••••••	14	•••••••••••••••••••••••••••••••••••••••				:	11

Table 6D: Analysis of V heavy chain subgroup 3

amino acid'	83	84	85	98	87	88	83	90	91	92	93	94	95	96	97
Α		149	1		1	207					173	2	15	9	11
В															
· C									1	21Ó		5	2		1
D		5	15	209								2	54	7	6
. E	1		190										11	2	11
F		************					1	}	15			1		9	6
G	1	1	6	·····	·	4	1	<u>.</u>		<u>.</u>	2	8	34	26	35
Н		1					<u></u>		1					3	11
ļ		8					2				: : : :		4	15	10
K	30									<u>.</u>		60	4	3	5
L		••••••					18					1	6	11	7
M		•••••	********		2	,	1				************			6	1
N		1		1							••••••	2	20	4	3
P		9	• • • • • • • • • • • • • • • • • • • •			••••••	*************		J		1	3	4	29	10
Q				1		·····						5	3	9	2
R	177						0+10=010=10+					103	9	30	19
S		1			1	•••••						3	9	8	11
Т	3	28			207	••••••	1				25	15	7	6	20
V		9				**********	187				10	1	7	7	15
W										1			3	4	3
X				1		•••••		•••••••••••••••••••••••••••••••••••••••							
Y								211	194				12	9	8
Z															
													1	3	4
unknown (?)															
not sequenced					1	1									13
sum of seq ²			•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••		211	··········			205	200	199
oomcaa,									194				54	30	35
mcaa'	R	Α	E	D	T	Α	V	Υ	Υ	С	Α	R	D	R	G
rel. oomcaas	83%	20%	%06	%66	98%	%86	9068	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ^a	5	10	4	4	4	2	:	1	4	2	5	14	18	20	21

169

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

										Fra	mewo	ork III			
amino acid'	71	72	73	74	75	9/	77	78	79	80	81	82	∢	8	U
Α				57			1	8						1	
В											2	2			
· C															
D		199	38	**************************************	2	2			1			<u> </u>	10)	
E		6			4						5				
F .									13						
G													1	4	
Н						1			1		2		2		
1			1				2	- 2				3	1	1	
К					186	6							3		
L								188		209		3	1		212
M	1				2		10	3		2	-	205			
N		5	170		2	188					3		181	10	
Р							1								
Q					7						199				
R	211				1	1							2	8	
5 .				153	8	10	56		3				6	186	
T							142				1		4	2	
V				1				11		1		1			
W						••••									
X		. 2	2			4	••••••						1		
Υ						• • • • • • • • • • • • • • • • • • • •			194						
Z						1.00									
-															
unknown (?)															
not sequenced			1	1											
sum of seq?	212	212	211	211	212	212	212	212	212	212	212	212	212	212	212
oomcaa³	211	199	170	153	186	188	142	188	194	209	199	205	181	186	212
mcaa*	R	D	N.	5	K	N	T	L	Υ	L	Q	М	N	S	L
rel. oomcaa'	100%	94%	81%	73%	88%	9/068	67%	%68	92%	%66	94%	97%	85%	88%	100%
pos occupied ^a	2		••••••	3	8	:		5		3	6	4	11	7	1

Table 6D: Analysis of V heavy chain subgroup 3

	(CDR I	<u> </u>												
amino acid'	26	57	58	59	09	61	62	63	64	65	99	67	89	69	20
Α	9	1	2		174	33							1		
В	1	2				<u> </u>	<u></u>			<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
. c						<u> </u>	<u>.</u>	<u>.</u>		<u>.</u>				<u> </u>	<u>.</u>
D	11		17			160		<u>.</u>		• • • • • •					
E	8	3	2	••••••		1			2						
F .	1		3	2								207			
G	5	1	5		4	5				212	1				
Н	1		4												
	3	37	2					8					14	208	
К	1	61							199		8				
L	1	1	1		1							1		1	
М	8		2		1										
N	51		4			2			. 2						
Р	1	1			6	8	18		1						
Q	3	2							2		2				
R	5	4			5				6		201				
S	48		11		4		193					2	7		211
T	42	97	5		7								189		1
V		2			10	2		204				1		3	
w			2		•										
Х	4		1			1									
Υ	9		151	210			1					1	1		
Z															
-															
unknown (?)															
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa,	51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa'	N	Ţ	Υ	Υ	Α	D	S	٧	Κ	G	R	F	T	ı	S
rel. oomcaa'	24%	46%	71%	%66	82%	7.5%	91%	%96	94%	100%	95%	%86	89%	%86	100%
pos occupied"		12								••••••		:		•	2

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

	work	11													
amino acid'	44	45	46	47	48	49	20	51	52	٧	8	U	53	54	55
А	1					77	42		1	1 2	2	14	1		
В			3							1					
- С									:		i			I	
D			1							7	,		94	1 8	;
E			198						3	3 2	1		2	2	
F							7	1	2	1				1	{
G	207					33	11		10	46			4	163	85
Н							6			1					
		_			3		3	191		1					1
K								1	37	2	30)	3	1	
L		211			5	: :	12	1							
М			·	!			1	1							
N			: :			: :	13	**************************************	7	9	2		13	11	1
Р		1						***************************************		1	·	•	1		
Q			7				7	************		10		·}			
R	1	,					24	1	17	5	1		2	} 	16
S	3			1		102	11	9	118	43		1	74	17	82
T							3	5	4	2		13	12	3	3
V			3		204		49	2		1		6	••••••		
W				210			1		8	6					
Х													4		3
Y				1			22	•	5	58			•	•••••	. 8
Z													*********	54 74 NA O SEC-14	
-										14	178	178	2	1	1
unknown (?)													•		•
not sequenced															
sum of seq?	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa³							••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••			178	•••••••••••••••••••••••••••••••••••••••		85
mcaa'	G	L	E	W	·V	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	98%	100%	93%	%66	%96	48%	23%	%06	26%	27%	84%	84%	44%	77%	40%
pos occupied ^e	4	***************************************	:			:		:	11		5		12	9	12

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

				CC	RI									F	ran
amino acid'	31	⋖	82	32	33	34	35	36	37	38	39	40	41	42	43
Α	1			17	80		1			1		187		1	
В				·											
· C												1		1	
D	26			3	7		2								
E	1				10									1	
F .				5											
G	13				31		1					2		209	
Н				4			88								
	1			1		15			12						
K	7								••••••••••••••••••••••••••••••••••••••		1				20
L	3					3	••••		2	3	1	2	1		
M		•			•••••	193	***********	•••••			·		•••••		
N	35	••••••		8	3		34	••••••	***************************************		***********				
Р		••••••		1		•••••	1		••••••		********	4	191		
Q		•••••••	••••			••••		••••••	••••••		209		1		
R	7	•••••								207	*******	7	*******		
S	103		•••••	17	8	••••••	72		**********	2-14-4 bg 2 g 2 s	*******	3	14		
T	9				15		10			••••••••		4	5		
V	2				7	1			197			2	**********		
W					30			212					•••••••		
Χ	1			•••••		**********	***********				•		************		
Υ	1			154	19		3						••••••		
Z				••••••											••••
_		210	210												
unknown (?)															
not sequenced	2			2	2				1	1	1				
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	2
oomcaai	103	210	210	154	80	193	88	212	197	207	209	187	191	209	20
mcaa*	S	-	-	Y	Α	М	Н	W	٧	R	Q	Α	Р	G	K
rel. oomcaas	49%	100%	100%	73%	38%	91%	42%	100%	93%	98%	%66	9/088	%06	99%	
pos occupied ⁶	:		1											1	

Table 6D: Analysis of V heavy chain subgroup 3

	work	. 1													
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Α								183	192		1				
В															
. C						1	209								
D											<u>.</u>				7
E	8							8			3		1		
F .		1	1			1					<u>.</u>	201		201	<u>.</u>
G	134								2		207				3
Н		***************************************					<u>.</u>	: : :	<u>.</u>			<u></u>			1
								2		<u>.</u>	<u></u>	3	17	1	
K				15											4
L			205		201							6		3	
M			1										1		
N													10		10
P								1					2		
Q			1												
R	62			191											11
S		206	••••••			207		4	2	209		******	15		174
Ţ	4	1		2				4	4			1	163		
V					8			7	9			•••••	1	6	
W															
X			•••••												
Y					•••••							********			ada angga paga
Z															
-					•••••										
unknown (?)															
not sequenced	4	4	4	4	3	3	3	3	3	3	1	1	2	1	2
sum of seq ²	208	208	208	208	209	209	209	209	209	209	211	211	210	211	210
oomcaa,	134	206	205	191	201	207	209	183	192	209	207	201	163	201	174
mcaa'	G	S	L	R	L	S	С	Α	Α	S.	G	F	T	F.	S
rel. oomcaas	64%	966	%66	92%	%96	%66	100%	%88	92%	100%	98%	95%	78%	95%	83%
pos occupied ⁶	4						1			1	3	4			7

Table 6D: Analysis of V heavy chain subgroup 3

															rame
amino acid'	-	2	ဗ	4	S	9	7	8	6	10	-	12	13	14	15
Α					1		1			12		-1		3	1
В			1			1							1		
· c															
D	1					1				16					
E	110		9		15	166			9				8		2
F											4				
G								181	193	174	••••	1			202
Н			5										4		
												9			
К		5	3					•••••					26		
L		1	5	176	43	•••••					140		•	1	
М		12		1							**********		••••		
N		••••••			***************************************	••••••	***************************************	•••••		1	*********	***********	••••••		
Р						••••••			***************************************		******		1	194	
Q	41		138	1	3	12		••••••••			*******		162	-	
R			6	***************************************	••••••	***************************************					***************************************		4		
S							178	••••		2	•••••	***************************************		8	
Т				•••••			1	••••••				************			
V	5	147		1	118			**********		***************************************	62	195	***************************************		
w					•		************	•••••••				************	•••••		1
X				***************************************			***************************************				***********	•••••••••••••••••••••••••••••••••••••••			
Y	•**************************************			•••••		•••••••••	***************************************	***************************************							
Z	8	••••••••		••••••		***************************************									
-															
unknown (?)							***********				***********		••••		
not sequenced	47	47	45	33	32	32	32	31	10	7	6	6	6	6	6
sum of seq ²	165	165	167	179	180	180	180	181	202	205	206	206	206	206	206
oomcaa ³	110	147	138	176	118	166	178	181	193	174	140	195	162	194	202
mcaa'	Ε	٧	Ω	L	٧	Ε	S	G	G	G	L	٧	Q	Р	G
rel. oomcaas	67%	89%	83%	%86	%99	92%	%66	100%	%96	85%	%89	95%	79%	94%	%86
pos occupied"	5		7									:			•

Table 6C: Analysis of V heavy chain subgroup 2

					Fra	me	worl	k IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α									1				35
В													
С													16
D													43
E													21
F													18
G			6		6					<u></u>			55
Н											<u>.</u>		6
									<u>.</u>	<u>.</u>			29
K				1			1				<u></u>		42
L	1						3						78
M				••••	•••••						<u></u>		20
N					••••••						<u></u>		23
Р	1						1						41
Q				3									23
R				2									41
S									•••••		6	3	82
T						6	1		5				102
V	3			••••				6		6			68
W		6			•••••				••••		•••••		29
χ											••••		4
Υ	1												35
Z													3
-										•••••			56
unknown (?)											·····		
not sequenced	-		_					-					54
sum of seq ²	6					······ i	•••••••	•••••••••••••••••••••••••••••••••••••••				•••••••••••••••••••••••••••••••••••••••	
oomcaa ₃	3			3	••••••	6		6	5			•••••••••••••••••••••••••••••••••••••••	
mcaa'	٧			Ω	G	Ţ	L	V	T	٧	S	S	
rel. oomcaa ^s	20%	100%	100%	20%	100%	100%	20%	100%	83%	100%	100%	100%	
pos occupied ⁶	4	1	1	3	1	1	4	1	2	1	1	1	

Table 6C: Analysis of V heavy chain subgroup 2

										CD	R III									
amino acid¹	93	94	98	96	97	86	66	100	۷	80	U	۵	ш	u.	၅	Ι	_	_	×	101
Α	5							1	2	1			<u></u>						<u> </u>	
В													<u></u>	<u></u>			<u>.</u>	<u>.</u>	<u> </u>	
. С																	<u> </u>			
D																				6
E								2			1									
F																			3	
G						1	1		1	2	1	1	1	1						
Н		1		1																
1			3			2											<u></u>	<u></u>		
K							1											<u>.</u>		
L								1		1		•••••						<u>.</u>	1	
M.								1									<u></u>	<u>:</u>	2	
N				1	2	••••											1			
Р				1	1	••••••	1		1					• • • • • • • • • • • • • • • • • • • •						
Q			1																	
R		6	1			1			1											
S				1		1	1													
T				1			1		1	<u></u>										
V	2		1	1	1		1	1			1									
W						1.									1			1		
X																				
Y					2						1	2	1	1	1			2		
Z ·																				
-										2	2	3	4	4	4	6	5	3		
unknown (?)																			·	
not sequenced			1	1	1	1	1	_1	1	1	1	1	1	1	1	1	1	1	1	_1
sum of seq ²	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa,	5				2	••••			····÷	2	2	3	4	4	4	6	5	3	3	6
mcaa⁴	Α	R	1	Н	N	ı	G	E	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	71%	%98	20%	17%	33%	33%	17%	33%	33%	33%	33%	20%	67%	67%	67%	100%	83%	20%	20%	100%
pos occupied ^a	: :		: ;							4	:	:	;		:	:	:	3	3	1

Table 6C: Analysis of V heavy chain subgroup 2

•	_						ا باد	11												
					Fran															
amino acid¹	9/	77	78	79	80	8	82	۷	8	U	83	84	85	98	87	88	83	96	91	92
Α													1			5				
В			<u> </u>																	<u> </u>
. C																				7
D		<u>.</u>									6			7						
Ε					<u></u>															
F					1	<u> </u>														
G																2				
Н																				
			<u>.</u>	:		2		. 1												
K																				
L			<u> </u>	<u>.</u>	6									-						
M			<u>.</u>	<u> </u>			7			5										
N	5		<u>.</u>						6.		1									
Р			.									7								
Q		7																		
R																				
S	2																		<u></u>	
T						5		5							7		7			
V			7	7						1			6	•						
<u>W</u>																				
X																				
Υ																		7	7	
Z																				
-								1	1	1										
unknown (?)																				
not sequenced								_											_	
sum of seq'	7	7	7	7	7	7	7	7	7	7	7	· 7	7	7	7	7	7	7	7	7
oomcaa³	5			•••••••••••••••••••••••••••••••••••••••	6	5	•••••••••••••••••••••••••••••••••••••••	5	6	5	6	7	6	7	7	5	7	7	7	7
mcaa'	N	Q	٧	٧	L	T	М	Ţ	N	М	D	Р	٧	D	T	Α	T	Υ	Υ	С
rel. oomcaas	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	9/098	100%	%98	100%	100%	71%	100%	100%	100%	100%
pos occupied"	2	1	1	1	2	2	1		2 60	3	2	1	2	1	1	2	1	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

	(DR	11																	_
amino acid'	26	22	28	29	9	61	62	63	64	65	99	29	89	69	70	7	72	73	74	75
Α																				
В					<u></u>					<u> </u>	: : :	<u> </u>	<u></u>			<u>.</u>	<u></u>		<u></u>	
. C																	<u> </u>	<u>.</u>		
D	5									<u>.</u>							6	1		
E	1								1							<u> </u>	<u> </u>			
F		1		1											<u> </u>					
G																				
Н				1																
1														6						
K	1	6							4							6				6
L								7				7								
М.																				
N																	1			
. Р						2														
Q																				
R			2			1			2		7					1				1
S			2		6		7			4			1		5			<u></u>	7	
T						4				3			6		2			6		
V														1				<u></u>		
W				1														į		
X					1															
ΥΥ			3	4		••••••														
Z																				

unknown (?)																				
not sequenced																				
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa,	5			*********		•	•••••••••••••••••••••••••••••••••••••••	7	·····÷	••••••••••	••••••••	7	6	6	•••••••••	6	6	6	7	6
mcaa'	Ď	K	Y	Υ	S	T	S	L	K	5	R	L	T	1	S	K	D	T	S	K
rel. oomcaas	71%	%98	43%	57%	%98	27%	100%	100%	57%	57%	100%	100%	%98	96%	71%	%98	%98	96%	100%	86%
pos occupied ⁶	: :				2	3	1	150		2			•	•	;	:	2	2	1	2

Table 6C: Analysis of V heavy chain subgroup 2

•				Fr	ame	wor	k II						Ι							
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	21	52	<	. ~	٠ (, 5	54	55
Α						6					7	7			·					T
В		<u> </u>		<u>!</u>																
. С																				
D		<u> </u>												2	2				3	6
E		ļ						7	,											
F	<u> </u>													2	2					
G		1	<u>.</u>	7		1														
Н	L	<u></u>	<u>.</u>									2								1
1													6							
K		<u> </u>		<u> </u>	6				·											
L		<u> </u>	<u> </u>	<u> </u>			7			7		2	1	1						
M		<u>.</u>	<u>.</u>	<u> </u>				<u></u>			<u> </u>									
N	<u> </u>			<u></u>															3	
Р		5	7																	
a	6		<u> </u>																	
R	1		<u> </u>		1							2								
S		1	<u> </u>								<u></u>					<u> </u>		2		
T			<u> </u>																	
V			<u> </u>				•••••													
W							••••••		7			1						4		
X										•				1				1	1	
Y														1	1					
Z																				
															6	7	7			
unknown (?)																				
not sequenced										_										
sum of seq²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ³	6	•••••••	•••••••		6	6	7	7	7	7	7	2	6	2	6	7	7	4	3	6
mcaa'	Q	Р	Р	G	K	Α	L	Ε	W	L	Α	Н	1	D	-	-	- [W	D	D
rel. oomcaas	%98	71%	100%	100%	%98	96%	100%	100%	0,001	100%	100%	29%	%98	29%	%98	100%	100%	57%	43%	%98
pos occúpied ⁶	2	3	1	1	2	2	1	1	1	1	1	•	2		1	1	7	3	3	

Table 6C: Analysis of V heavy chain subgroup 2

				•,										CD	RI	_				
amino acid'	21	22	23	24	25	56	27	28	29	30	31	Α	ω	32	33	34	32	36	37	38
Α								1				1			1					
В																				
. С		7													2					
. D												1								
E																				
F				3			6		1											
G						7					,		4		3		3			
Н																				
۱.													1						7	
K																				
F .				2			1		6											
M														5						
N											2									
Р																				
Q																				
R													2		1					
S			1		6			6		6	2	4					4			
T	6		6							1	3	1								
V				2	<u>.</u>									2		7				
W																		7		
X					<u>.</u>														.,,.	
Υ					1			<u></u>	<u></u>											-
Z									Ŀ											
-									ļ	<u></u>	ļ									
unknown (?)		<u>.</u>	<u> </u>	<u></u>		<u> </u>	<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>				•••••					_
not sequence	d 1				<u> </u>		<u> </u>	<u> </u>				<u> </u>								<u>_</u>
sum of seq ²	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	-
oomcaa³	E	3 7	6	3	6	7	6	6	6	6	3	÷	4	5	3	7	4	7	7	-
mcaa'	T	С	Ţ	F	S	G	F	S	L	S	T	S	G	М	••••••			W	ı	-
rel. oomcaas	100%	100%	%98	43%	%98	100%	%98 86%	%98	86%	%98	43%	57%	57%	71%	43%	100%	57%	100%	100%	
pos occupied	6	1		2 3	3 2	:	2	:	2	:	:	•	_			1			1	

Table 6C: Analysis of V heavy chain subgroup 2

														F	ram	ewo	rk I			
amino acid'	_	7	3	4	2	9	7	æ	6	10	=	12	13	14	15	16	17	18	19	20
Α										3										
В			<u> </u>						<u></u>	<u> </u>	••••••••••••••••••••••••••••••••••••••	<u> </u>								
. C																				
D																				
E	1					6										2				
F																				
G								6												
Н																				
1		1																		
K					3								6		1					
L				6							6							6		6
М														• • • • •						
N							1													
Р							1		6					6			1			
Q	2															4				
R					2															
S							4													
ī			6		1		·			2					5		5		6	
V		5								1		6								
W																				
X																				
Υ										Ì										
Z	3																			
_																				
unknown (?)																				
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq²	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
oomcaa³ ִ	3	5	6	6	3	6	4	6	6	3	6	6	6	6	5	4	5	6	6	6
mcaa'	Z	٧	T	L	K	E	S	G	Р	Α	L	٧	K	Ρ	Ţ	Q	T	L	T	L
rel. oomcaas	20%	83%	100%	100%	20%	100%	67%	100%	100%	20%	100%	100%	100%	100%	83%	67%	83%	100%	100%	100%
pos occupied ^a	3	2	1	1	3	1	3	1	1	3	1	1	1	1	2	2	2	1	1	1

Table 6B: Analysis of V heavy chain subgroup 1B

							vork					
amino acid'	102	103	104	105	106	107-	108	109	110	111	112	113
Α												
В												
С												
D	2											
E				1								
F	1											
G			27		26					1		
Н	1											
ļ	7				,				3			
K				2								
L							12			1		
М							2					
N	1											
Р	1			1								
Q				23								
R							1					
S	3								1		18	18
T						21	6		16		1	
٧	6							21		18		
W		29										,
Χ												
Υ	11											
Z												
-	3											
unknown (?)												
not sequence	d 4	11	13	13	14	19	19	19	20	20	21	2 2
sum of seq²	36	29	27	27	26	21	21	21	20	20	19	18
oomcaa ³	11	29	27	23	26	21	12	21	16	18	18	18
mcaa'	Υ	W	G	Ω	G	T	L	٧	T	٧	S	S
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	80%	%06	95%	100%
pos occupied			:	:	:	-	<u> </u>	·			Ī	
	·	· <i>i</i> · · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •		15	•••••	۵		£	·····	•••••

Table 6B: Analysis of V heavy chain subgroup 1B

						-				CD	R III					_				
amino acid'	93	94	92	96	97	98	66	100	∢	8	ပ	۵	ш	LL	ပ	I		_	×	101
Α	37	1	6		1	1		2	3	1	3		1						5	
В	Ĭ																			
. C		1				3				2	1									
D			7		5	2	3	1	5	4		1		2	2	2	1 2	2		27
E			2		1			1	1		2		1		1					
· F				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									
		1		1	1	3	1	1	1	1	1	1							1	
K		1			1		********	•••••	1	1		1		1		<u> </u>	1			
L			2	4	4	4	3	•••••	******	1	2	1	1	2		1		<u> </u>	2	
M				2		1	1		•••••			••••••••	•••••		1	<u> </u>			4	
N					1			1	•	1	1	1	•••••••	*********	3		1	<u> </u>		1
Р				6	4				1	1		3	2				1	<u> </u>		
Q					1							1	2	1						
·R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1	•••••					
Т		2	1	1	2	2	1	5	1	1	1		1	********		1	·······	1		
V	1		7	1	1	*******	1	3	1	2	•	1			1	2	1			1
W			1		1		2	2		1	1					1		4		
Х									******				•		••••••	*****				
Υ				5	5	4	2	3	•	4	3	3	2	1	2	· 5	6	2		
Z															********					
				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)						•••••••••••••••••••••••••••••••••••••••								******		**********			3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa³ ·	37	31	7	7	5	5	9	8	10	11	14	20	23	25	25	25	23	18	15	27
mcaa*	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	26%	64%	%69	%69	%69	64%	50%	42%	75%
pos occupied ⁶		:	:	:	:	:	:		12					•	:	:		- 1	5	5

Table 6B: Analysis of V heavy chain subgroup 1B

•				F	ram	ewo	rk II	ı												
amino acid'	92	77	7.8	79	8	81	82	∢	8	U	83	84	85	98	87	88	68	6	91	92
Α			35									1	2			40				
В							<u></u>			<u> </u>										
· C																				37
D	1					4							19	40			1			
E						35							19							
F			1									2							2	1
G						1		1	2											
Н																				
1		1															1			
К											1									
L					2		39			39							2			1
М					37		1										2			
N	7							1	2											
Р												1							1	
Q																				
R	4							2	.16		37		-							
S	27			1			•••••	35	20		1	36						1	1	
T	1	39						1			1				40					
V			4		1					1							33			
W																				
X																				
Υ				39	•••••••											••••		38	35	
Z																				
				<u></u>																
unknown (?)	.	<u>.</u>	<u></u>	<u></u>						••••••										
not sequenced	==		_														1			
sum of seq ²	ž	÷~~~~			·····	·		•	·····	•				:					39	
oomcaa,		ė	÷	********	·	:	. :		÷	:	······								35	
mcaa ⁴	į	T	-	<u> </u>	ļ		·•·		S	.		<u>.</u>	D	D			٧		Y	Ċ
rel. oomcaas	%89	%86	88%	98%	93%	%88	98%	88%	20%	%86	93%	%06	48%	100%	100%	100%	85%	92%	%06 30%	95%
pos occupied															•	•	5	:	•	3

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

	(CDR	II																	
amino acid'	26	23	28	59	09	19	62	63	64	65	99	67	89	69	20	71	72	73	74	ļ
Α	1	2			27	2				1		1					2			
В		<u> </u>	<u> </u>	<u>.</u>	<u></u>	<u></u>		<u></u>	<u>.</u>		<u> </u>	<u> </u>	<u> </u>						<u>.</u>	
. C		<u> </u>									<u> </u>	<u>.</u>	<u>.</u>					<u>.</u>	<u> </u>	<u>.</u>
D	1	<u> </u>	<u> </u>		<u> </u>			ļ	<u></u>	4						<u>.</u>	35	5		ļ
E	2		2		<u></u>	1			<u>.</u>	1	<u> </u>	<u>.</u>	<u>.</u>			1	<u> </u>	<u>.</u>		ļ
F	ļ			4	ļ	••••••		39		ļ	<u> </u>		ļ	3	3		<u>.</u>	<u>.</u>	<u>.</u>	
G	15	<u></u>	6	<u></u>	1			ļ		34	<u></u>		<u></u>				<u>.</u>	<u>.</u>	<u>.</u>	ļ
Н	ļ	<u></u>	1	1	<u></u>				<u>.</u>	<u> </u>	<u></u>	<u>.</u>		<u></u>			1			
<u> </u>		1	1	<u>.</u>			••••••		<u> </u>	<u> </u>	<u> </u>	1	1	13		<u> </u>	<u> </u>	<u> </u>	<u>.</u>	2
. К	2	2	8	<u> </u>			36		1							1				
L				<u></u>		1	• ••• •••	1	<u></u>	<u>.</u>	<u>.</u>	<u> </u>	<u>.</u>	1			<u> </u>			
M ·				<u> </u>					<u>.</u>			<u> </u>		23		<u></u>	<u></u>	1	<u> </u>	
N	17		18	<u></u>			1		ļ								4	<u></u>		
Р								••••••							<u></u>	<u> </u>		<u></u>	3	
Q						36			37								<u></u>	<u></u>		
R			2				1		2		37					34		1		
S	1			2	11		1				•••••					1			37	
T		35	2		1		1						39		40	1		38		
V	1											38								
W			•••••								3									••••
Χ			••••											****						
Υ				33										••••						
<u> Z</u>																				
_																				
unknown (?)																				
not sequenced																				
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
oomcaa,	17	35	18	33	27	36	36	39	37	34	37	38	39	23	40	34	35	38	37	2
mcaa'	N	T	N	Υ	Α	Q	K	F	Q	G	R	٧	T	М	T	R	D	T	S	Ī
rel. oomcaas	43%	%88	45%	83%	%89	%06	%06	%86	93%	85%	93%	%56	%86	58%	100%	85%	%88	95%	93%	550%
pos occupied ⁶	•••••••••••••••••••••••••••••••••••••••	:	:	:	:	:	5	2		4	2			4		•	3	•	2	. <u></u>

Table 6B: Analysis of V heavy chain subgroup 1B

				Fra	me	worl	(II													
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	⋖	æ	U	53	54	אַ
Α		39				1					1				7			1		
В																				
. С																				
D													,	1					1	
E				1	******			39										1	1	••••
F .							. 2						1					1		
G				39		28					39	1			1			9	1	
Н																		2		
1										3			34							
K					1														1	
L			1				37						1							
Ņ					- F7 100 11	•••••				37		2	4							
N					•••••									35				20	12	
P	1	1	34		*********	•	1								31					
Q	39				39			1												
R	1				,	10						4						3	1	
S			1			1								2				1	20	
T			4											1					3	
V								·						1	1					
W							٠		40			33								
Χ		-																		
Υ	1	-																2		
Z																				
-																40	40			
unknown (?)																				
not sequence	B																			
sum of seq'	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
oomcaa ¹	39	39	34	39	39	28	37	39	40	37	39	33	34	35	31	40	40	20	20	
mcaa*	Q	Α	Р	G	Q	G	L	Ε	W	М	G	W	l	N	Ρ	-	-	N	S	
rel. oomcaas	%86	98%	85%	%86	%86	70%	93%	98%	100%	93%	%86	83%	85%	88%	78%	100%	100%	20%	20%	
pos occupied		:	1	:	:	:		:	i			4			. ;					

Table 6B: Analysis of V heavy chain subgroup 1B

						•								С	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	∢	ဆ	32	33	34	35	36	37	38
Α				30				:			2				6	3			Ī	
В			<u></u>	<u></u>					Ī	<u></u>						-		<u> </u>		
С		35	<u> </u>		 !				<u> </u>	<u></u>	<u> </u>						·	<u> </u>		
D			<u></u>			· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u> </u>	1	<u> </u>			5	·	1	Ī		1
Ε			3								1									
F			•				2		39	••••••••••••••••••••••••••••••••••••••	<u></u>	••••••• •	:···	2	2					
G				1		40	}		•	1	14				1	***************************************				1
Ĥ						••••••	••••••••••••••••••••••••••••••••••••••				••••••	••••••••••••••••••••••••••••••••••••••		3	1		34			
- 1						•••••		1	ļ	1						9		<u>:</u>	<u> </u>	
K		••••••	28			••••••								 		÷	• !	†·······	<u> </u>	
L		••••••		••••		••••••		<u></u>	1		1	••••		<u> </u>		5	<u> </u>	<u> </u>	2	
M.						•						•••••				23	<u> </u>		<u></u>	
N							1			1	3	••••••				1	3			••••
Р		••••			•••••	********	•••••			•••••			••••••		-1			•••••••		
Q			2		•	••••••		**********			1		•••••		1		1	•••••		1
R			2					2			•••••	•		1				•••••		37
S	35				40	•••••		5		2	15	•••••	*********	2	1					
T			••••	3		•••••		32		34		•••••	••••	•••••	1		•	*******	••••••	•••••
V			*****	1			1			1	1				2	2			38	
W			•••••				•••••						•••••					40	•	
Х							******					••••	•••••			•				
Y							36				1			32	19	•••••	1		••••	
Z													*******							
-												40	·40							
unknown (?)				-									••••		*********		•••••••••••••••••••••••••••••••••••••••			*******
not sequenced	5	5	5	5																
sum of seq²	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa³	35	35	28	30	40	40	36	32	39	34	15	40	40	32	19	23	34	40	38	37
mcaa*		*********				********	********		F	•••••••	S	-	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		М	·····÷		٠ ب	
rel. oomcaa ^s	100%	100%	%08	%98	100%	100%	%06	%08	%86	35%	38%	00001	100%	30%	48%	28%	35%	%001	92%	93%
pos occupied ⁶	:	;	•	;	:		:	•••••••••••••••••••••••••••••••••••••••	•••••••		••••••	••••••	•••••••••••••••••••••••••••••••••••••••				······································	1		

Table 6B: Analysis of V heavy chain subgroup 1B

					٠									Fr	ame	wor	kΙ			
amino acid		7	ო	4	ა	9	7	∞	6	10	=	12	13	4	15	16	17	18	19	20
A									32							34				
В																				
. С																		<u></u>		
D																		<u>.</u>		
Ε		1			5	1				35					•••••					
F .								******					•••••		*******					
G								27							35					
H			1										••••••	1						
K		3	1									34	33						33	
L			3	26	1	••••														
М				1	1															
N								•••••												
Р						*******			1					3 3			1			
Q	21		20			26														
R	1											1	2							
<u>S</u>			•••••				27									1	34			
Ţ									1					1					2	
V	3	21			20						∙35							35		3
W																				
X																				
Υ		···			•••••															
Z																				
-																				
unknown (?)		<u></u>				····														
not sequenced	-		-				=	-			_	_			_					=
sum of seq ²	<u>:</u>	<u> </u>	:			······			:			35	•••••••			••••••				•••••
oomcaa,	;	÷	••••••			·		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •		********	34	•;	*******		********		******		*****
mcaa'	Q	٧	Q	L	٧	Q	S	G	Α	Ε	V	K	K	Р	G	Α	S	٧	K	١
rel. oomcaas	84%	84%	80%	%96	74%	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	97%	97%	100%	94%	5
pos occupied ^a		1	:	:	4	:	:	:	:			2								

Table 6A: Analysis of V heavy chain subgroup 1A

		•			Fr	ame	wor	k IV					
amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113	sun
Α													67
В													
С													16
D		1	1										308
E	1	1											297
F	2												226
G			58		59	1	1						928
Н				1									14
1	3								4				286
K				3		1							325
L	3			1			40	1		<u>.</u>			386
M	1						3	<u> </u>	<u></u>	<u>.</u>			189
N				1				<u> </u>	<u>.</u>		<u></u>		176
Р	5								<u> </u>	ļ	<u></u>	1	238
Q				52						·	<u></u>		494
R				1					<u></u>		ļ		351
S											53	51	972
T						54	11	1	51		1		736
<u> </u>	15		1				1	54		54		1	699
W		59		1						••••••••			243
X										••••••	••••••		
Y	34		1	*******									542
<u>Z</u>													3
***************************************	1		•••••										5 78
unknown (?)													8
not sequenced						-				16			406
sum of seq'	65	61	61	60	59	56	56	56	55	54	54	53	
		• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	••••••••••••		÷		•••••••••••••••••••••••••••••••••••••••		54		••••••	
mca _. a•	Υ	W	G	Q	G	Ţ	L	٧	T	٧	S	S	•
rel. oomcaa⁵	52%	97%	95%	87%	100%	%96	71%	%96	93%	100%	%86	%96	
pos occupied ^a	9	3	4	7	1	3	5	3	2	1	2	3	

148

Table 6A: Analysis of V heavy chain subgroup 1A

		_~-								CDI	R []]	- "								
amino acid'	93	94	92	96	97	98	66	100	∢	8	ပ	0	w	u_	g	I	_	_	×	101
Α	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																				
. С					1	1	16	2		1	1	7	2	1						
D			16	5	3		3	5	4	3	4			1	1	14				59
E			9				2			1			1			1				•••••
F .					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
н										1	1	1		1						
1				2	5	2	2		2	2	1	1			1					
К		5			2	1			1											
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
М			1		2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
P				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		1		16						
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
Т	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
X																				
Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z																				
-				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)		<u>.</u>	<u>.</u>	<u>.</u>					<u> </u>				1		1	1		2	3	.,
not sequenced		<u> </u>	2	2	2	4	4	4	4	5	5	_ 5	5	5	5	5	5	5	5	5
sum of seq?	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa,	*******	55	•	*********	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•;•••••	·•••••		15	16	23	26	26	31	34	46	39	28	
mcaa'	Α	R	Α	Р	G	Υ	С	S	G	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied ⁶	:	i	:	:	:	i	:	:	:	•	:		: :	•					6	6

14 X
SUBSTITUTE SHEET (RULE 26)

Table 6A: Analysis of V heavy chain subgroup 1A

				F	ram	ewo	rk I	II												
amino acid'	9/	11	78	79	80	8	82	٧	8	ပ	83	84	82	98	81	88	83	90	91	92
Α			64			1						3			1	70				
В																		<u> </u>		<u> </u>
· C																				7(
D						2							26	70						
E						64							44							
F .																	1	1	2	
G									1			_								
Н				1				1												
		1					3	1	1								2			
K											3									
L					3		63			70							2			
М					67										1		1			
N	4							1	16											
Р																				
Q				1		3														
R	3							23	1		62									
S	62		1					41	49			67			1					
T	.1	69	2					3	2		4				67					
V			3				4				1						64			
W															••••					
X			•••••		•••••		•••••													
ΥΥ	<u> </u>			68														69	68	
Z																				_
-																				
unknown (?)																				
not sequenced	<u> </u>																			
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	7(
oomcaa,	62	69	64	68	67	64	63	41	49	*********		•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	70	••••••	•••••••		7(
mcaa*	S	Ţ	Α	Υ	М	Ε	L	S	S	L	R	S	Ε	D	Ţ	Α	٧	·Y	Y	C
rel. oomcaas	89%	%66	91%	97%	%96	91%	%06	29%	20%	100%	%68	%96	63%	100%	%96	100%	91%	%66	97%	100%
pos occupied ^a	:	:								1	. :	:	:	:	:	•		•		

Table 6A: Analysis of V heavy chain subgroup 1A

v. .		DR	11																	
amino acid ¹				59	09	61	62	63	64	65	99	29	89	69	20	7.1	72	73	74	75
Α	1	34			69											43				
В														******						•••••
· C										·				• • • • • • • • • • • • • • • • • • • •						
D	15		1							2							70	.,		
Ε									1						*******			33		
F .				1				48				3		4	•••••					
G	1						3			67										
Н			1											•••••	•••••					
l	4												1	44				1		•••••
K	1		2	1			47		1		1							8		•••••
L	1	1						22				2		1		3				•••••
М														21						
N	9		59				18													••••
Р	1	7														********				
Q	1	1				70			64								· · · ·		i	
R	2						2		1		69							1		
S '		1	2		1										5				70	
T	34	26	4						3				66		65	24		27		6
V										1		65	3							
W.																				
X																				
Υ			1	68																
Z	L															0,5		- : ·		
		<u></u>																		
unknown (?)		<u> </u>	<u> </u>																	
not sequenced	<u></u>		<u>.</u>																	
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	7
oomcaa,	34	34	59	68	69	70	47	48	64	67	69	65	66	44	65	43	70	33	70	6
mcaa'	T	Α	N	Υ	Α	Q	K	F	Q	G	R	٧	T	١	T	Α	D	Ε	S	T
rel. oomcaas	49%	49%	84%	92%	%66	100%	%29	%69	91%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	9050
pos occupied	:	1	÷	•	:	:	:	:	:	:									1	

Table 6A: Analysis of V heavy chain subgroup 1A

				Fr	ame	wor	k II						T							
amino acid'	39	40	41	42	43	44	45	46	47	48	49	20	51	52	<	· œ	U	53	54	55
А		70									1					5				
В												<u> </u>								
. С				:				<u> </u>									<u> </u>			
D				:	<u> </u>			1	<u> </u>	1								İ	<u> </u>	
E		<u> </u>		<u> </u>				69)	†	<u> </u>							•		-
F .		-			···········	!··							2	2	-			3	39	
G			1	68	••••••••••••••••••••••••••••••••••••••	69			1		69	39		******	1				-	68
Н		··········	1	• •												••••••			-	
1			 -	<u> </u>				ļ		<u> </u>	<u> </u>	<u> </u>	65	38			·	34	-	
K		•••••••	<u></u>					 -						•••••	<u> </u>			İ		
L		<u> </u>		1		••••	68			1	<u> </u>	1	·		<u> </u>		<u> </u>	2	4	
M					••••	•	••••••			67		<u> </u>	<u> </u>	2	<u> </u>		<u> </u>	4	-	
N						•••••	•••••		<u></u>		<u> </u>	<u> </u>		4	: -	 	 	÷	22	
Р			68		•••••		1								44		<u>.</u>	<u> </u>		, w + + + + + + + + + + + + + + + + + +
Q	69				69		•••••				•							1	1	1
R	1			1		1	••••••	•••••	}			4				·	<u> </u>	1		
S					1				1	1				22		·····	······		1	1
T													1	2	4			1	3	
V						***************************************	*******			1			2	2	16			1		
W							1		67			26			:			••••••		
X															•••••••	••••••				
Υ									1									20		
Z																	- :			
																70	70			
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa		:		•••••••••••••••••••••••••••••••••••••••						•••••••	········· ː	•••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••			34	·····÷	
mcaa'	Q	Α	Р	G	Q	G	L	Ε	W	М	G	G	1	ı	Р	-	-	ı	F	G
rel. oomcaa⁵	%66	100%	97%	97%	%66	%66	92%	%66	%96	%96	%66	26%	93%	54%	63%	100%	%001	49%	26%	92%
pos occupied ^a				3	•	2			:	4	:	:	:	:	•		÷	:		3

Table 6A: Analysis of V heavy chain subgroup 1A

														CD	RI					
amino acid¹	21	22	23	24	25	26	27	28	29	30	3	۷	ω .	32	33	34	35	36	37	38
Α				62				1							41					
В							·													
. С		63																		
D							1													
E																				•••••
F .									69					3		3				
G				1		69	41		1		_				23					
Н										1				1			1			
1								1								61	1		1	
K			63							1	1									•••••
L															1	2				•••••
М																4				
N										2	5				•••••		4			
Р															1					•
Q									******											
R		1	1	-						.1	1									7
5	63				68		1			40	60			2			60			
T	1			2				68		25	3				3		4			
V															1				69	
W		<u> </u>																70		
X																				
Υ							27							64	•••••					
Z																				
_		<u>.</u>	<u>.</u>									70	70							
unknown (?)		<u>.</u>	<u> </u>											•••••••						
not sequenced	6	6	6	5	2	1														
sum of seq	64	64	64	65	68	69	70	70	70	70	70	70	70	70	70	70	70	70	70	7
oomcaa ³	63	63	63	62	68	69	41	68	69	40	60	70	70	********	****	*********	******	*********	*****	••••
mcaa'	S	С	K	Α	5	G	G	T	F	S	S	-	-	Υ	Α	1	S	W	٧	
rel. oomcaas	98%	38%	%86	95%	100%	100%	59%	97%	%66	57%	%98	100%	100%	91%	29%	87%	%98	100%	%66	
pos occupied		:		:	:	:	•	•	:	;	:									:

Table 6A: Analysis of V heavy chain subgroup 1A

·														F	ram	ewo	rk i			
amino acid'		7	<u>س</u>	4	ა	9	7		6	10	=	12	13	14	15	16	17	18	19	20
А					1	14			60			Ī	Ī		Ī	24	1			
В		<u> </u>	<u></u>									<u> </u>					•			
· c		<u> </u>								•							<u> </u>			
D											-		<u> </u>					Ī		
E	1				2	1		2		64										
F .																				
G								58	1						64					
Н			2	·													·······	-		
		2								 !								-	Ī.,	
K		2		<u>.</u>					<u> </u>	 !	<u></u>	57	64			ļ	ļ	<u> </u>	60	
L			2	59					<u> </u>		3	<u> </u>					<u></u>	<u> </u>		
М		1															<u> </u>			
· N												6					: :	•		
Р														63						
Q ·	53		56		2	45											•••••			
R												1							3	
S							60	<u></u>	3					1		40	63			
T											,								1	
V	2	55		1	55						61							64		64
W		•••••				*******														
X		•••••					••••••													
Υ																				
Z	3																			
-						*****														
unknown (?)																				
not sequenced	11	10	10	10	10	10	10	10	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ²	59	60	60	60	60	60	60	60	64	64	64	64	64	64	64	64	64	64	64	64
oomcaa,	53	55	56	59	55	45	60	58	60	64	61	57	64	63	64	40	63	64	60	64
mcaa•	Q	٧	Q	L	٧	Ω	S	G	Α	Ε	٧	K	K	Р	G	S	S	٧	Κ	٧
rel. oomcaas	%06	92%	93%	986	92%	75%	100%	97%	94%	100%	95%	%68	100%	%86	100%	63%	98%	100%	94%	100%
pos occupied ⁶		•			•	:	- 3	2		1	:	•			:	·····		1	3	1

Table 5C: Analysis of V lambda subgroup 3

			<u>, , , , , , , , , , , , , , , , , , , </u>	Fran	iewo	ork I	V					
amino acid'	66	100	101	102	.103	104	105	106	A	107	108	sum
А												265
В							· · · · · · · · · · · · · · · · · · ·		<u> </u>			
С		********								1		82
D												225
E					2							145
. F												90
G	35	31	35							24		461
Н							·					32
. 1												160
K				1,1	30							110
L						28			33			233
М												17
N												126
Р									1			249
Q											7	275
R	·				2							154
S						·				2		501
T		4		35			35					347
V			·			7		35		<u></u>		308
W												62
X				•••••								
Y												211
Z												
<u>-</u>												603
unknown (?)												1
not sequenced	3	3	3	3	4	3	3	3	4	11	28	. 89
sum of seq ²	35	35	35	35	34	35	35	35	34	27	7	
oomcaa,	35	31	35	35	30	28	35	35	33	24	7	
mcaa¹	G	G	G	Ţ	Κ	L	T	٧	L	G	Q	
rel. oomcaa'	100%	%68	100%	100%	88%	80%	100%	100%	97%	9068	100%	
pos occupied ⁶	1	2	1	1	3	2	1	1	2	3	1	

141

Table 5C: Analysis of V lambda subgroup 3

				1 v.	····													_	
										CI	OR II	1							
amino acid'	98	87	88	83	90	91	92	93	94	95	Ø	ω	ن	۵	u	ш	96	97	86
А					13	3	2				:	2			T			1	
В			Ī	<u> </u>		•					1		<u> </u>			·			
· c			38	Ī		• · · · · · · · · · · · · · · · · · · ·					· • • • • • • • • • • • • • • • • • • •		-		<u>-</u>		-	<u> </u>	
D				Ţ			32	1	1		(5	-	·	******			-	<u> </u>
Ε				1								2	2		-		7		
F .		2				•••••	•••••	2							<u> </u>		<u> </u>	 	35
G				·			**********		· <u>·</u> ······	14	3	1	•	1		-	3	1	
Н	1								•		:	12	1	· [<u> </u>			
1				<u> </u>			•••••••				†				·		·	4	
К							••••••				1			<u> </u>		<u> </u>		<u> </u>	<u> </u>
L		<u> </u>		1			••••••	1		1		1	1		<u> </u>	†	4	2	
М		<u> </u>		<u> </u>			*******	••••••	1	<u> </u>	<u> </u>				<u> </u>		1	 	
N				10		***************************************	2	1	2		10	1	 !			<u> </u>			
Р						*******			1				3		÷		1		
Q				25		********		********		1	1	<u> </u>				·	<u> </u>		
R						10		1	2		• 	2	•		·	ļ			
S				1	14	1		28	26	13		1				1			
T						1		3	********	7	2					<u> </u>		•••••	
V					11				•••••••	********	*********		*********	••••••			18	28	
W						23			*******	*******	••••		••••••		•••••		1		
X											*******		•	•••••••	********	•••••			
Y	38	36					1		1		1	3	1	********			3		
Z													*******		••••••				
					•						10	15	31	36	37	36		1	
unknown (?)				٠									*********	•••••••	•		i		
not sequenced							1	1	1	1	2	1	1	1	1	1	1	1	3
sum of seq²	38	38	38	38	38	38	37	37	37	37	36	37	37	37	37	37	37	37	35
oomcaa,	•	:	:	:	14	:						••••••	••••••			~~····		*********	
mcaa'	Υ				:	•			S		N	-	-	-	-	-	٧	••••	F
rel. oomcaas	100%	95%	100%	96%	37%	51%	36%	0/9/	0,00,	38%	%8%	11%	34%	%2(100%	92%	•••••	0/9/	100%
pos occupied		2	•••••••••••••••••••••••••••••••••••••••	•	:		•			:	:			2	1		9	6	1

Table 5C: Analysis of V lambda subgroup 3

											<u> </u>								
				Fra	ame	vork	: 111												
amino acid'	67	89	69	20	71	72	73	74	75	9/	77	78	79	8	8	82	83	84	.85
Α				1	36	1		1				11	1	34				38	
В																			
· C	·																		
D												••••••				38			37
E													10		14		38		1
F .							******								•	•••••			
G		37				•••••					28				10				
H.			1													•••••			
						1		1	37	1					1				
K			1																
L							38								2				
М															10				
N			28							1									
Р					_	•••••													
Q		1					********						25						10010-001
R										1	10		1						
S	37		2			11				23				1					
ī	1		6	37		25		36		12		13		2					
V					2				1			14	1	1	1				
W																			
X																į	į		
Υ																			
Z																			
-																			
unknown (?)																			
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa ³	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa*	S	G	N	T	Α	Ţ	L	Ţ	١	S	G	٧	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	97%	97%	74%	97%	95%	%99	100%	95%	97%	51%	74%	37%	%999	%68	37%	%001	100%	100%	97%
pos occupied ⁶					•				:	5	:		5		6	1	1		2

Table 5C: Analysis of V lambda subgroup 3

	CI	DR II						T											
amino acid'	55	56	⋖	8	U	۵	L	. 73	3 2	2 0	3 6	3 5	10	70	3 3	04 C.	3 4	8 4	<u> </u>
А			1												Ī			T	T
В		<u> </u>												****					
С	Ŀ										1				···				
D											···	9	İ		***	···		-	
E											2	7					··•	_	1
F													3	8	-		<u> </u>		1
G			•					38	3						3	8			
Н						<u> </u>							1				-		-
.				<u> </u>		-		<u> </u>	3	7	<u> </u>					<u> </u>	<u>-</u>		+
K									1	<u> </u>				*******	<u> </u>			-	
L						<u> </u>		Ī		<u> </u>			<u> </u>	<u> </u>	*******	*******	<u> </u>	· • • • • • • • • • • • • • • • • • • •	†
М								<u> </u>			·		<u> </u>	*	·•••••	·	<u> </u>		-
N						-							·	<u> </u>	- <u>†</u>		21		-
Р	37	1	·······	<u> </u>				<u> </u>		36	 S		·		1		ļ. <u></u> -	<u> </u>	-
Q						<u></u>			•		<u> </u>		<u> </u>	·	· • · · · · · · · · · · · · · · · · · ·		<u> </u>	·	-
R					·			<u> </u>	-	<u> </u>		38	}		· <u>i</u>			·	<u> </u>
S	1	36								1	· • • • • • • • • • • • • • • • • • • •	-	<u>-</u>	38	- -	38	12	<u> </u>	-
T								<u></u>				<u> </u>	<u> </u>		<u> </u>		5	÷	-
V								<u> </u>			<u> </u>	†*****	<u> </u>	·	<u> </u>	 -	<u> </u>	<u> </u>	-
W											<u> </u>	†******	†	!		<u> </u>		<u> </u>	-
Χ				·				•			<u> </u>		<u> </u>		<u> </u>			ļ ļ	
Y				•••••••	••••••	•	*********				<u> </u>		<u> </u>		 		•••••		
Z											1								ļ
_			38	38	38	38	38						7.50					38	3
unknown (?)									••••••		1					••••••			
ot sequenced							*******		1	1	1		•••••		••••••				******
sum of seq'	38	38	38	38	38	38	38	38	37	37	37	38	38	38	38	38	38	38	31
oomcaa³	37	36	38	38	38	38	38	38	37	36	27	38	38	38	38	38	21	38	31
mcaa'	Р		-	-	-	-	-	G			E		_ :	:			N	-	
rel. oomcaas	9,2%	95%	100%	100%	100%	100%	100%	100%	100%				100%		**********	, %001	55%	%00 ₁	
pos occupied ^a	**************	3	1	1	1	1	1	1	1	2	2	1	1	1	1	- 1	••••••		1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

						Fran	iewo	rk II									<u>. </u>		_
amino acid'	36	37	38	33	40	41	42	43	44	45	46	47	48	49	20	51	52	53	2
Α								23							<u></u>	1		1	
В															<u>.</u>				<u></u>
С		į	,																<u> </u>
D		į													9	22	2	8	
E			1												5	3		3	
F	3													2			1		
G						36								*********	9	2			
Н							1							1	3			1	_
										1	<u>.</u>		28				1		
K				32											2	6	1	13	
L			2							6	33	1							
М											1		1						
N																1	19	9	
Р					36		1		38										
Q		37	35	1			36								9			1	
R		1		4		2									1	1		1	,
S				1	2			14									10	1	_
T																2	4		
V								1		31	4	37	9						
W																			
X																			
Υ	35													35					
Z			·														·		_
-																			
unknown (?)						••••												••••••	_
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	
oomcaa	35	37	35	32	36	36	36	23	38	31	33	37	28	35	9	22	19	13	
mcaa*	Υ	Q	Q	K	Р	G	Q	Α	Р	٧	L	٧	1	Υ	D	D	N	K	_
rel. oomcaas	92%	37%	92%	34%	95%	95%	95%	61%	100%	82%	87%	92%	74%	92%	24%	28%	20%	34%	
pos occupied ⁶	:	:	:	:	;	:								3			:		-

SUBSTITUTE SHEET (RULE 26)

Table 5C: Analysis of V lambda subgroup 3

											С	DRI							
amino acid'	20	21	22	23	24	25	26	27	a	'n	28	29	30	31	⋖	32	33	34	35
Α			1					5					1	1	١		2	3	3
В		<u></u>						<u>:</u>											
· c		<u>!</u>		38														5	
D							30	1					10			3	I .	1	
E							2	2				1	3	6					
F.														1		2			
G					9	38		1				23	4						
Н							1									2		9	
1		38									9			1					
K								7					2	13	:		:		
L											28								
M.	1													1					
N			2				4	9			1		2			1		2	
Р			1									3							
Q					10									4					
R	25							2				10	1				1		
S	9		1		19			10					11	2		8		14	
T	3		33					1				1	4						
V																1	15		
W		,					٠												38
X																			•••••
Υ							1					į		8		20	1	4	********
Z								į											
-									38	38					37				
unknown (?)																			
not sequenced															1	1			
sum of seq'	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	38
oomcaa,		•										23		. -		••••••••			
mcaa'	R	. :		С								G	**********		••••••	······································	•••••••••••••••••••••••••••••••••••••••		W
rel. oomcaa ^s	%99	100%	87%	100%	20%	100%	79%	26%	100%	100%	74%	61%	9%62	35%	100%	54%	55%	37%	100%
pos occupied ^a	4	:	5		3			9	•	•		:	9	:	1		4	7	1

Table 5C: Analysis of V lambda subgroup 3

											Frai	mew	ork	1					
amino acid'	-	2	3	4	2	9	7	8	6	10	=	12	13	14	15	16	17	18	19
А					1		1	2	7					20	1				27
В																	<u> </u>		<u> </u>
. С																			<u> </u>
D			5				10												
E			20										1			1			
F .	1	1										1			1				
G		••••	1							••••••	••••••••••••••••••••••••••••••••••••••			•	••••	37			
Н										••••••					••••••	•			
<u> </u>						*****				•••••••					•••••	••••••			
K		•••••		•••••	*****		*******		********			•••••	•••••••				2		•••••
L		••••		37		••••			•••••	••••	4		1		9			••••	•••••
М		••••••				••••••					••••••								• •••••
N						•					•••••		•••••		•••••				• ••••••
Р		•••••				•••••••	26	35	1						27			,	•••••
Q	4	••••	4			38	•••••••••••••••••••••••••••••••••••••••									***************************************	36		•
R							**********									*******			
S	13	14		••••	1		1		28			37		18					•••••
T		••••••	•••••		36	*******	•	1	•••••••••••••••••••••••••••••••••••••••									38	
V		•••••	8	1		••••••	•••••		2		34		36						1(
w		•••••		•••••		•••••			••••••					•••••••••••••••••••••••••••••••••••••••					
Χ						•							•••••						
Υ		23				•••••								•••••					
Z						•••••								••••••				••••••	******
······································	20									38			4						
unknown (?)															*****		••••••		
not sequenced								••••••	·······		•••••				*****	•••••••••••••••••••••••••••••••••••••••			.
sum of seq²		38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa¹	••••••••••••	**********	******	•••••••••••••••••••••••••••••••••••••••	••••••				•••••••••••••••••••••••••••••••••••••••		:		••••••	20		······÷			••••••
mcaa ⁴	-	Υ		************		**********	•••••••••••••••••••••••••••••••••••••••		•••••		•••••••••••••••••••••••••••••••••••••••	**********	•••••••	Α	•••••••••••••••••••••••••••••••••••••••	G	••••••	Ţ	
	_	•••••				••••••			••••			-		•		•••••••••••••••••••••••••••••••••••••••		••••••	••••
rel. oomcaas	53%	61%	53%	97%	95%	100%	9089	92%	74%	100%	%68	97%	95%	53%	71%	97%	95%	100%	7 1%
pos occupied ⁶	4	3	5		3	1	:	:	:	•		2			4	2	<u>-</u>	1	-

Table 5B: Analysis of V lambda subgroup 2

					Fra	mew	ork	IV					7
	amino acid'	66	9	101	102	103	104	105	106	4	107	108	sum
	А		1							T			280
	В											· • ······	
	С												99
	D												188
	<u>E</u>												107
	F	 			<u></u>								113
	G	42	33	42	<u>.</u>		<u>.</u>				19		567
	Н	<u> </u>	<u></u>				<u> </u>						48
		ļ		<u></u>	<u></u>			1	<u>.</u>	<u>.</u>			184
	<u> </u>	ļ	<u></u>	<u></u>	<u> </u>	36			<u>.</u>	ļ			189
-	L		<u>.</u>	<u></u>	ļ	ļ	28	<u> </u>	<u>.</u>	40)		264
-	<u>M</u>	ļ		<u> </u>	<u> </u>	<u>.</u>	<u></u>	<u> </u>	ļ	ļ			29
-	<u>N</u>	ļ	<u>.</u>		<u> </u>	1		ļ		ļ			146
-	<u>P</u>	ļ	ļ			<u> </u>		ļ	<u> </u>	<u></u>			238
-	Q	ļ	<u></u>	ļ		1	:	ļ	ļ	ļ		14	250
-	<u>R</u>	ļ	1	·		2			ļ	<u> </u>	4		121
-	<u>S</u>					<u> </u>		1	<u> </u>		2		831
-	T		7		41			40	÷				398
-	<u>V</u>				•••		14		42	1			327
-	W		******		••••••								48
-	X		•••••••							•••••			
1	Y 7					1	•••••••						285
1	Z			_								_	16
$\ \cdot\ $	unknown (?)												555
 	not sequenced	1		1		2	1						8
Ľ		42				41			_			ہــــــ	80
	oomcaa,	42		········ <u>·</u>	•••••••••	36	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••	•••••••••••••••••••••••••••••••••••••••	······• 	14	
	mcaa*	G	G	G	T	K	20 L	40 T	42 V	•••••••••••••••••••••••••••••••••••••••	•••••	14	
				······	•••••••••••••••••••••••••••••••••••••••			•••••	•••••••••••••••••••••••••••••••••••••••	L	G	0	
	rel. oomcaas	100%	29%	100%	000%	88%	9/2/9	95%	%00 I	98%	%9 ,	%00	
i	pos occupied"	1	4	1	1	5	2	3	1	2	3	1	

134

Table 5B: Analysis of V lambda subgroup 2

										CD	R III								
amino acid'	98	87	88	83	90	91	92	93	94	95	∢	ထ	J	۵	w	u.	96	6	ab
Α				2	1		21		1								1	1	
В																			
· C			43	11															
D								3	1	2							1		
E							1	1											
F .		3				3				1		1					5		2
G							1	21	3	4							1		
Н						1								•					
							1	1		1	2						1	7	
K										3									
L												1	1	*********			6	5	
M														•••••			1	1	
N									.5	7	5						1		
Р								1				4							
Q										1	2								
R							2		3			1					5		
S ·		1		30	41			12	23	14	9						1		
Ţ							16	4	4	3	21						· <u> </u>		
V							1										11	28	
W																	5		
X																			
Υ	43	39				39		••••	1	6							4		
Z																		_	
-										1	3	36	42	43	43	43			
unknown (?)									2										
not sequenced					1						1							1	_
sum of seq ²	43	43	43	43	42	43	43	43	43	43	42	43	43	43	43	43	43	42	
oomcaa,	43	39	43	30	41	39	21	21	23	14	21	36	42	43	43	43	11	28	4
mcaa'	Υ	Υ	С	S	S	Υ	Α	G	S	S	Ţ	-	-	-	-		٧	٧	1
rel. oomcaas	100%	91%	100%	70%	%86	91%	49%	49%	53%	33%	50%	84%	%86	100%	100%	100%	26%	67%	,
pos occupied	1	3	:		2					11					1	1	13	5	••••

Table 5B: Analysis of V lambda subgroup 2

				Fr	ame	wor	k III												
amino acid'	29	89	69	. 70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	2
А		3		1	43									36	5			43	}
В		<u></u>	<u> </u>	<u>.</u>		<u>!</u>		<u> </u>											
C	<u> </u>	<u> </u>																	
D		1	2												3	3 42	2		3
E											1				38	3	43	3	
F .																			
G		39									42				1				
Н																			
l	ļ							-	35										
K	.		1																
L	ļ			: :	<u></u>	<u>.</u>	43					43							
M	 .				<u></u>														
N			38					<u>.</u>							1	1			
Р								<u> </u>						2					
Q								<u>.</u>					41						
R								<u>.</u>					2						
S	42			1		43		<u>.</u>		42									
T			1	41				43		1				2					
V			•••••						8					3				·	
W																			
X				•••••		••••••	********												•
Y																			•••••
Z																			
-																			
unknown (?)		<u>i</u>	1																1
not sequenced	1																		
sum of seq ²	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa ³	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa'	S	G	N	Ţ	Α	S	L	T	1	S	G	L	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	100%	91%	88%	95%	100%	100%	100%	100%	81%	98%	%86	100%	92%	84%	%88	%86	100%	100%	910%
pos occupied ⁶	1	3	:		1		•	:	2	:	:	:			:		•••••••	1	3

Table 5B: Analysis of V lambda subgroup 2

· •	CDI	R 11																	
amino acid'	22	26	∢	8	ပ	٥	ш	57	28	29	09	61	62	63	64	65	99	۷	8
А															2				
В																			
C																1			
D											17								
E																			
F													42	•••••					
G								43	1						41				
Н											2								
1									3										•••••
K										<u></u>		<u></u>					42		
L	·										1		1						
M																			
N											19								
Р	43									15									
Q																			
R												43					1		*********
S		43								28	2			43		42			
T																			
V									39										
W				•															*******
X																			
Υ											2								
Z																			
•			43	43	43	43	43											43	43
unknown (?)	ļ																		
not sequenced																			
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa,	43	43	43	43	43	43	43	43	39	28	19	43	42	43	41	42	42	43	43
mcaa'	Р	S	-	-	-	-	-	G	٧	S	N	R	F	S	G	S	K	-	-
rel. oomcaa'	100%	100%	100%	100%	100%	100%	100%	100%	91%	9059	44%	100%	%86	100%	95%	%86	98%	100%	100%
pos occupied ^a		:									6			1					1

Table 5B: Analysis of V lambda subgroup 2

						Fran	new	ork I	1										
amino acid'	. 36	37	38	33	9	41	42	43	44	45	46	47	48	49	20	51	52	53	54
А					1	· 4		40											
В																			
С										-					Ī	:			
D				1		2							-		20	1	2	1	
E						••••••	*******								20			2	
F .	2													7		1			
G						36	*******								2	2		1	
Н			2	34														1	
ı		-					1				1	9	43				1		
Κ .							40		••••••	41					<u></u>		1	21	
L			1	1						••••••••••••••••••••••••••••••••••••••	38	6	: : : :	<u> </u>				·	•••••
М												26	-				1		******
N				2											1		. 8	12	
Р	·				41				43										
Q		41	39							2									
R		1					1										2		4:
S					1									2			21	3	
T							1										7		
V						1		3			4	2				39			
W							٠												
X																			
Y	41			5										34				2	
Z																			
-																			
unknown (?)		1	1	<u> </u>	<u></u> į														
not sequenced																			
sum of seq ²	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa¹	41	41	39	34	41	36	40	40	43	41	38	26	43	34	20	39	21	21	43
mcaa'	Υ	Q	Q	Н	Р	G	К	Α	Р	K	L	М	١	Υ	D	٧	S	K	R
rel. oomcaa³	95%	95%	91%	%62	95%	84%	93%	93%	100%	95%	%88	%09	100%	79%	47%	91%	49%	49%	100%
pos occupied ⁶	:	:	:	•	:		•	:	•	•	:	4		:		:	8	8	_ <u></u> 1

Table 5B: Analysis of V lambda subgroup 2

		y • `			Г		-					DRI			<u> </u>				
amino acidi	20	<u></u>	22	23	24	25	26	27	_	ш	28	29	30	31		32	33	34	35
A					3		1						1			1	!		
В					J										<u> </u>	<u>!</u>	<u> </u>	<u></u>	
. С				42					1		 !			1	<u></u>	<u></u>	<u></u>		
D		••		72						39		1	4		5				
E			••••							33			7		1				
F .		1						•					1	••••	<u>.</u>	4			
G				·····		43		1				૧વ	26	•••••					
Н				••••••				1						•••••	1	1			•••••
1		41			1						6			********			•••••		•••••
· K						••••••	•••••						••••	•••••	4				••••
L		1	•••••	•••••		•••••			••••		•••					4			
M									••••					••••••	•••••				
N								1	3	4		1	4	3	28		•••••		•••••
Р				••••		••••••		1	•••••		•••••					••••••			•••••
Q			••••••	•••••				••••••		••••••				*******	••••				•••••
R						•••••		•••••	1				2						*****
S		•••••	42		3		3	35	38				5	1	2	4	1	42	*****
T	43				36		39					1		1			••••••	•••••	* **** **
V				••••		•••••		•••••	•		37	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••			41	********	•••••
W																Ī			4
Χ																			• • • • • • •
Y								1				1		37		29			
Z																			
-	·														1				
unknown (?)				٠											1	į			
not sequenced			1	1													1	1	
sum of seq ²	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	42	42	4:
oomcaa ³	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	43
mcaa'	Ţ	ı	S	С	Ţ	G	Ţ	S	S	D	٧	G	G	Υ	N	Υ	٧	S	W
rel. oomcaas	100%	95%	100%	100%	84%	100%	91%	81%	88%	91%	%98	91%	%09	. %98	65%	9/0/9	%86	0001	100%
pos occupied ⁶	1	3			4		:			:	:	:	:	5		•	2	1	1

Table 5B: Analysis of V lambda subgroup 2

•											Fr	ame	wor	k I					
amino acid'		7	ı m	. 4	L)	ي ر	, ,	. α	0	, 5	2 :	12	12	5 5	<u> </u>	ر د	0 [> 0	5 6
Α .			3	5				3	0		Ī	6		1	1		Ī		T
В											Ī				····				-
· c																•••••			
D				-											******		1		
Е															-				
F .														-					***************************************
G										•••••			4	2		4	2		***************************************
Н	2													•		-	••••••	1	
1		<u>.</u>	1																28
K	<u> </u>		<u>.</u>														•••••••		
L			<u>.</u>	40											3	3			1
M															1				
N	 			<u>.</u>															
Р		ļ	<u>.</u>	ļ		<u>.</u>	42	6							40)			
Q	22	ļ	4	ļ		41		ļ		<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>				42	2	
R	 	<u></u>				<u></u>		6	1	<u></u>	.i	<u></u>	<u>.</u>	<u></u>	<u> </u>				
S	<u> </u>	41	<u>.</u>		ļ	<u></u>		<u></u>	40)	<u>.</u>	42	<u> </u>	42	<u> </u>			43	
T			<u> </u>		42	<u></u>		<u> </u>	1	<u>.</u>	<u> </u>		<u></u>		<u> </u>				
<u>V</u>		1	2			: : :		<u> </u>	<u></u>		36		<u>.</u>		<u></u>				14
W								<u>.</u>											
X				*******						<u></u>	ļ								
ΥΥ										<u></u> .				******					
Z	16																		
-									•••••	42	<u></u>					**********			
unknown (?)						1			••••••										
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1							
sum of seq?	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43
<u> </u>	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa'	Q	S	Α	L	T	Q	Р	Α	S	-	٧	S	G	S	Р	G	Q	S	ŀ
rel. oomcaa ^s	25%	%86	83%	100%	100%	%86	100%	71%	95%	100%	86%	100%	98%	98%	93%	%86	%86	100%	65%
pos occupied ⁶		:		•		•		3		:	•	1	:		•	2	2	·····	3

Table 5A: Analysis of V lambda subgroup 1

			•		Fran	iewo	ork I	V					
	amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
	Α								-				285
	В				*********			<u></u>	Ī				
	С				••••				<u> </u>				84
	D		•••••		••••	•••••			<u> </u>				224
	E		1		•••••	••••			• ••••••••••••••••••••••••••••••••••••	•			81
	F		•		••••	•••••	••••••			•••• •• •			87
	· G	36	31	36	•	••••••					26		559
	Н		•••••		••••••								25
	. 1												188
	K					30							141
	L						25			34			344
	М										-		5
	N					1							176
	Р											1	296
	Q					3				1		18	251
	R					1					2		156
	S		1								2		720
	Ţ		3		36	1		36					359
	V						11		36	1			282
	W		•••••		*********						1		92
	X		•••••										
	Υ		••••••										202
	Z												16
													524
	unknown (?)		•••••										
Į	not sequenced	4	6	6	6	6	6	6	6	6	10	22	141
	sum of seq'	36	36	36	36	36	36	36	36	36	31	19	
	oowcaa,	36		36	36	30	25	36	36	34	•••••••••	•••••••••••••••••••••••••••••••••••••••	
	mcaa'	G	G	G	Ţ	K	L	T	٧	L	G	0	
	rel. oomcaa ^s	100%	96%	100%	100%	83%	%69	100%	100%	94%	84%	95%	
	pos occupied ⁶	1	4	1	1	5	2	1	1	-3	4	2	

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

									·	CD	R III								
amino acid¹	98	87	88	83	90	91	92	93	94	95	∢	&	ပ	۵	ш	Ъ	96	-97	98
Α				22	15			1				16					4	1	
В																			<u></u>
С			42															4	
D							39	17			7								
E												1					1		
F		2								1									36
G				14				1				-17	1				5	1	<u></u>
Н		1											1						
l											1							1	
K											1								
L				1						37			1					1	
М																		1	
N							2	2			9	1		•••••					
Р										1							6		
Q				3				.,											
R									5	1	2						2		
S					4			17	35		18		1				1		
T					22			1	1		1								
V				1				1		1		2					9	34	
W						38											7		
X																			
Y	42	39				3		1									3		
Z												_				_	_	_	_
-											2	4	35	39	38	38	1		
unknown (?)																			
not sequenced				1			-	_				 ÷		3		:			_4
sum of seq ²		**********			********			•••••••••••••••••••••••••••••••••••••••											
oomcaa³	42									•••••••••			35	39	38	38		34	•••••••••••••••••••••••••••••••••••••••
mcaa*	Y	Υ	С	Α	Ţ	W	D	D	S	L	S	G	-	-	-	-	٧	٧	F
rel. oomcaas	100%	93%	100%	54%	54%	93%	95%	41%	85%	%06	44%	41%	%06	100%	100%	100%	23%	87%	100%
pos occupied ^a											•		5	1	1	1	10	6	1

SUBSTITUTE SHEET (RULE 26)

Table 5A: Analysis of V lambda subgroup 1

									٨,										_
				Fra	ame	work	: 111												
amino acid'	67	89	69	70	11	72	73	74	75	9/	11	78	79	80	81	82	83	84	85
A		1	3		41			24						2				38	1
В						: : : : :				<u> </u>	: : : :				<u>.</u>			<u>.</u>	<u> </u>
· c																			
D		1													1	41			37
E													1		24		42		1
F .																			
G		40						17		1	42	•••••••			15				
Н													1						2
.									41							•			1
K						•			•							•••••			********
L							42		••••	••••••		41							******
М									••••••										*** 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 *
N						••••	••••••		•							1			*******
Р				·			•••••							2		*******			********
Q									*******				31						
R									*********				8						*******
S	42		1	42		24				20				20			i	1	********
Т			38			18				21	*********		***************************************	17				3	••••••
٧					1			1	1		••••••	1	***************************************	1	•				*******
W													1		2	Ì			********
X																			*******
Y																			
Z						•								:					*******
-																			
unknown (?)										Ī		•	•••••		*******				
not sequenced																			
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa,	42	40	38	42	41	24	42	24	41	21	42	41	31	20	24	41	42	38	37
mcaa'	S	G	Ţ	S	Α	S	L	Α	1	T	G	L	Q	S	E	D	E	Α	D
rel. oomcaas	0001	95%	%0€	%001	%86	57%	%00 ₁	57%	98%	20%	%00 ₁	%86	74%	%81	57%	%86	100%	%06	88%
pos occupied [«]							;	:	:	:	:	:				2	1	3	:

Table $\frac{5A}{v}$: Analysis of V lambda subgroup 1

	CD	R II																	
amino acid'	55	26	V	8	ပ	٥	ш	23	58	59	09	61	62	63	64	65	99	∢	æ
Α	1															5			
В																			
· C																			
D											38								
E																			
F .													38						
G								41			2				36				
Н											1		-						
			Ī .	<u>.</u>					17			<u> </u>	3		<u> </u>				
К													<u> </u>		Ī		38		
Ĺ		1				:		:		1	<u></u>		<u> </u>		-				<u> </u>
М		: :		 !	!	**************************************	 !			•			<u> </u>						
N		 				•••••••		<u> </u>					••••••						·
Р	38									38			·····		<u> </u>				
Q												•		********	<u></u>				
R												42					4	•••••	
S	2	40								2				42		42			
T															1				
V									24				1						
W							٠												
X																			
Υ																			
Z												į		•••••••••••••••••••••••••••••••••••••••					
- 1			41	41	41	41	42											42	42
unknown (?)										Ī		•		······			•		
not sequenced	1	1						1	1	1	1	Ī							
sum of seq ²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	42
oomcaa,					:					•••••••		*********	•••••••		36			·····	******
mcaa'	Р			-	-	-	:		:			•••••••	••••••••••	*****	•••••••••••••••••••••••••••••••••••••••	S	•••••••••••••••••••••••••••••••••••••••	-	-
rel. oomcaa ^s	93%	%86	100%	100%	,000 °	100%	:	•••••••••••••••••••••••••••••••••••••••	••••••	••••••	93%	•••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••••••••••••••••	100%	%06	0,001	100%
pos occupied [©]		•••••	•••••••••	•	•	•	•				:	:			3	••••••••	<u>ი</u> 2	1	

Table 5A: Analysis of V lambda subgroup 1

•				•		Fram	iewo	rk II						.`					
amino acidi	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
Α							4	40									1		
В							<u> </u>										<u></u>		
С									••••										
D						1									13	10	8		
E										2					5			1	
F	1			4			į							1					
G						39									1				
Н	1	1	6	1										1				1	
1									•••••				40		1				
К							1			35					1	1		18	•••••
L			1	31							41	40						1	1
М							1						1					1	
N										1					3	28	30	2	
P					42	1			42										
Q ·		39	34															15	
R		2	<u></u>	1		1				4					7			2	40
S								1							9	2	3	1	
T							36	1							. 1				••••••
V			1	5							1	2	1	•••••	• • • • • • • • • • • • • • • • • • • •				•••••
W														•••••					1
X	.,													•••••	•••••				
Y	40													40	1	1			
Z																			
									••••										
unknown (?)																			••••
not sequenced																			
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa,	40	39	34	31	42	39	36	40	42	35	41	40	40	40	13	28	30	18	40
mcaa*	Υ	Q	Q	L	Р	G	T	Α	Ρ	K	L	L	١	Υ	D	N	N	K	R
rel. oomcaas	95%	93%	81%	74%	100%	93%	%98	95%	100%	83%	%86	95%	95%	95%	31%	%29	71%	43%	95%
pos occupied"	:	:			;			:	•••••••						10	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

											CI	ORI							
amino acid'	20	21	22	23	24	25	56	27	۵	ш	28	29	30	31	4	32	33	34	
А	2							1				2	2			1			
В																			
С				42															
D										3			3	1		3		1	
E													1						
F		·			1		*********		1						1	1			
G		•		•••••		42	3	1			2	39	4	2					
Н				•••••			•••••							2		2	i	2	
	- 1	41			*******		*******		********	1	37			••••••				1	
K					••••••					1			1						
L		1			*******		*******				1		••••						
М											1								
N								2	1	37			13	31	2		1	9	
Р					*********				•						• • • • • • • • • • • • • • • • • • •	1			
Q							• • • • • • • • • • • • • • • • • • • •					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			• • • • • • • • • • • • • • • • • • •	1			
R							1	1					5	**************					
S	1		42		38		34	34	38				13	1	1	3		19	
T	38				3		4	3	2			1		1		7		2	
٧				••••••			********				1					2	40		
W											-								4
Χ							********												
Y							********							4	1	20		7	
Z												i							
-												i			36				
unknown (?)																			
not sequenced															1	1	1	1	
sum of seq'	42	42	42	42	42	42	42	42	42	42	42	42	42	42	41	41	41	41	4
oomcaa,	38	41	42	42	38	42	34	34	38	37	37	39	13	31	36	20	40	19	4
mcaa'	T	l	S	С	S	G	S	S	S	N	1	G	N	N	-	Υ	٧	S	٧
rel. oomcaas	%06	%86	100%	100%	%06	100%	81%	81%	%06	. 9/088	98%	93%	31%	74%	88%	49%	%86	46%	,
pos occupied ^a			1	:	:	·		6		•	•	<u>-</u>	•		:	10	:	7	

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

	L										Fran	new	ork						
amino acid'	-	7	က	4	5	9	7	. &	6	5	Ξ	12	13	7	15	16	17	18	10
Α											19		18	20					
В				<u>.</u>		<u></u>		<u></u>											
· C														·				<u></u>	
D																			
E								<u> </u>										1	
F .																			
G													22			42			
Н	2					<u> </u>						••••							
			1						<u>.</u>		1	••••••							
K									• • •									14	
L			1	41							1								
M																			
N																			
Р					٠.		41	41						1	41				
Q	22		1			41											42		
R																		25	
5		39							41			41			1			1	
T			*******		41		•••••							19				1	
V		1	38				*****				20		1	1					4
W								*****											
X																			
Y																			
Z	16																		
-										41									
unknown (?)							•••••										<u></u>		
ot sequenced	2	2	1	1	1	1	1	1	1	1	1	1	1	_1					
sum of seq ²	40	40	41	41	41	41	41	41	41	41	41	41	41	41	42	42	42	42	4
oowcaa,	22	39	38	41	41	41	41	41		41	20	41	22	20	41	42	42	25	4
mcaa'	Q	S	٧	L	T	Q	Р	Р	S	-	٧	S	G	Α	Р	G	Q	R	٧
rel. oomcaas	55%	98%	33%	100%	100%	100%	100%	١ 00%		100%	49%	0001	54%	49%	%86	100%	00001	%09	1000
pos occupied"										•		1		4	2	1	1	<u>ق</u> 5	••••

Table 4D: Analysis of V kappa subgroup 4

						F	ram	ewoi	rk IV	′]
amino acid'	97	86	66	100	101	102	103	104	105	106	§ 4	107	108	– su
Α														1
В														
С														
D							<u> </u>				···			1
E									1.	4				11
F		15									:			
G			15	4	15									2:
Н														
<u> </u>										14	1			1:
K		<u> </u>		<u></u>	<u> </u>	<u>.</u>	14		<u>.</u>			1;	3	15
<u> </u>		ļ					ļ	4			<u>.</u>			25
M	1	<u> </u>				<u> </u>	<u></u>	<u></u>	<u></u>		<u>.</u>			2
<u>N</u>	ļ	<u></u>		<u></u>		<u> </u>		<u></u>	<u></u>	<u></u>	<u>.</u>	1		13
Р	ļ					1	<u></u>	<u> </u>	ļ	<u></u>				19
Q				11		<u>.</u>	<u></u>	1	<u></u>	ļ	<u> </u>	ļ		26
R		••••				<u>.</u>	1	<u></u>	1	ļ	<u></u>	1	11	11
5	2	•••••								1	<u></u>			49
	12			••••••		14		<u></u>	ļ. .		<u></u>			23
V				•				9	<u> </u>		ļ	<u></u>		19
<u>W</u>				••••••	•••••		-	1						6
<u>X</u>				•••••		•••••••								
Υ														25
-											15			10
unknown (?)							•••••••							
	18	- :										-		51
sum of seq'	:	· 15	•	:	······	:				•••••••	••••••	15		
oomcaa,	······••	15	•••••	•••••	•••••••••••••••••••••••••••••••••••••••	14	•••••••	•••••••••••••••••••••••••••••••••••••••	14	14	15	13		
mcaa*	T	F	G	Q	G	Ţ	K	V			-	K	R	
rel. oomcaaʻ	%08	100%	100%	73%	100%	93%	93%	%09	93%	93%	%001	87%	100%	
pos occupied"	3	1	1	2	1	2	2		:		1	:	1	

Table 4D: Analysis of V kappa subgroup 4

											(DR	111					
amino acid'	85	98	87	88	83	90	91	92	93	94	95	A	8	. ں	٥	w	ш	96
Α										1								
В																		
· C				33														
D								1	1									
E																		
F.			1					1										
G									2	_								
. н			1		3													
1										2								
K																		
L						1		2		1	3							1
· M															•••••			
N									4	4								
Р										1	29	1						4
Q .					30	32					1							1
R									1			1						2
S							2		23	2								1
Т.									2	22								
V	33																	
W																		2
. X		•••••																
Y		33	31				31	29										_1
_												13	15	15	15	15	15	3
unknown (?)																		
not sequenced										_		18	18	18	18	18	18	18
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	15	15	15	15	15	15	15
oomcaa³	33	33	31	33	30	32	31	29	23	22	29	13	15	15	15	15	15	4
mcaa⁴	٧		Y	С	Q	Q	Υ	Y	S	Ţ	Р	-	-		-	-		Р
rel. oomcaas	100%	100%	94%	100%	91%	92%	94%	%88	20%	%29	9/088	87%	100%	100%	100%	100%	100%	27%
pos occupied ⁶	1	1	3	1	2	. :				•		:	1	1	1	1	1	8

Table 4D: Analysis of V kappa subgroup 4

							ame	wor	k III										- ;
a	ımino acid'	67	89	69	70	7.1	72	73	74	75	9/	77	78	5	80	3 2	5 6	83	84
	. A									Ī					3	3			32
	В																		
	С																		
	D				32	<u></u>									<u> </u>		3	3	
	E												<u></u>		•	3	3		
	F.					32				-									
	G		33		1					†					<u> </u>		•		1
	Н							<u></u>	·		<u> </u>	-			•••••				
	ı					: :		**************************************		33		•			•				
	K																		
	L							33					32		•		·····		
	. М												1						•
	N										2	1			-				
	Р																-		
	Q													32					
	R		<u> </u>			••••••								1					
	S	33				*********					30	32							
	<u>T</u>			33			33		33		1		ı						
	V					1												33	
	. W																		
	Χ .																		
	Υ																		
	_																		
ur	nknown (?)																		
not	t sequenced																		
St	um of seq'	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
	oomcaa¹	33	33	33	32	32	33	33	33	33	30	32	32	32	33	33	33	33	32
	mcaa'	S	G	Ţ	D	F	Ţ	L	Ţ	1	S	S	L	Q	Α	Ε	D	٧	Α
· re	l. oomcaa ^s	100%	100%	100%	92%	92%	100%	100%	100%	100%	91%	92%	97%	97%	100%	100%	100%	100%	97%
po	s occupied ^a	1	1	1	2		1	•••••••••••••••••••••••••••••••••••••••	1 &	•••••••••••••••••••••••••••••••••••••••	3		2	<u>-</u>	1	1	1		

Table 4D: Analysis of V kappa subgroup 4

4				i.	CDR	11												
amino acid'	49	20	51	52	53	54	55	56	57	58	59	09	61	62	63	64	65	99
Α			30													T		T
В																		
. с														•				
D												33	3					
E							32							·				
F -														33	}		•••	
G									33						1	33	3	33
Н																		
		<u>.</u>			1													
K		<u>.</u>																
L																		
M																		
N					2											-		
Р				1							33		1					
Q																		
R						3 3				<u>.</u>			32					
S			1	31	1			33							32		33	
T			2	1	29	•••••	<u></u>						•••••••					
V							1			33								
W		33				•••••									••••			
X					••••				• 60 - 10 - 1 - 1				•••••					
Y	33																	
_						•••••••												
unknown (?)						••••••		••••										
not sequenced																		
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,	33	33	30	31	29	33	32	33	33	33	33	33	32	33	32	33	33	33
mcaa*	Υ	W	Α	S	T	R	Ε	S	G	٠٧	Р	D	R	F	S	G	S	G
rel. oomcaa'	100%	100%	91%	94%	%88	100%	97%	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	100%
pos occupied ⁶	1	1	<u>:</u>	•	4			:	1		1	1	2	1	2	•••••	1	1

リア

Table 4D: Analysis of V kappa subgroup 4

40. Allalysis of V					· V						Fra	mev	vork	II				
amino acid'	31	32	33	34	35	36	37	38	39	9	4	42	43	44	45	46	47	48
А				32						2	2							
В		<u></u>			<u>:</u>													<u> </u>
· C					<u> </u>													
D					<u></u>													
<u>E</u>											1							
F .																		
G		<u></u>	<u></u>	<u>.</u>			<u> </u>				32							
Н			·		<u>.</u>	2												
<u> </u>	<u> </u>	<u> </u>								<u>.</u>		<u> </u>						32
K	<u> </u>	<u></u>				<u> </u>	, 		33		<u>.</u>				32	<u>.</u>	<u></u>	<u></u>
L	<u> </u>		33								<u>.</u>			<u>.</u>		29	33	
· M																		1
N	33				********			<u></u>	<u> </u>		<u>.</u>	<u></u>						
Р										31			31	33				
Q					********		32	33	<u>.</u>			32						
R					•••••		1		<u>.</u>			1			1			
<u>S</u>					•••••								2					
T				1	•••••		•••••											
<u> </u>		••••														4		
W					33							******						
X												*******	********					,
Υ		3 3				31												
-																		
unknown (?)																		
not sequenced																		
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,	33	33	33	32	33	31	32	33	33	31	32	32	31	33	32	29	33	32
mcaa*	N	Υ	L	Α	W	Υ	Q	Q	Κ	Р	G	Q	Р	Р	Κ	L	L	1
rel. oomcaas	100%	100%	100%	97%	100%	94%	92%	100%	100%	94%	92%	92%	94%	100%	97%	88%	100%	97%
pos occupied ^a	1	1	1	2	1		2		1	2		:	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	······································		1	2

Table 4D: Analysis of V kappa subgroup 4

4D. Allalysis of V									-					CDF	₹I			
amino acid'	19	20	21	22	23	24	25	26	27	A	В	ပ	٥	ш	ᇿ	28	29	30
Α	26						1				1							
В																		
· c					33													
D											1		1			1		
E																		
F ·		٠																
G																		
Н																		
			26								1	••••••••••••••••••••••••••••••••••••••		†				
K				•		33										2		30
<u> </u>			•••••		•••		•	••••••	•		2	_31						
· M		********	•														•••••	
N	Ì			26		•••••			•••••	•••••		•	••••••			30	31	1
Р							1								1			
Q									32									1
R .									1								1	1
S .							31	33		33				32	32		1	
Ţ		26												1			•••	
V											28	2			********			
W																		
X																		
Y													32					
-																		
unknown (?)										·								
not sequenced	7	7	7	7														
sum of seq ²	26	26	26	26	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa ³	26	26	26	26	33	33	31	33	32	33	28	31	32	32	32	30	31	30
mcaa'	Α	T	1	N	С	K	S	S	Q	S	٧	L	Υ	S	S	N	N	K
rel. oomcaas	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	97%	97%	97%	91%	94%	910%
pos occupied ⁶	1	1	1	1	1	1			•••••••••••••••••••••••••••••••••••••••		5		•					4

Table 4D: Analysis of V kappa subgroup 4

									ψ.		Fra	me	worl	c I				
amino acid'	-	2	က	4	2	9	7	œ	6	2	=	2	-	. 4	7	. .	2 7	2 2
А												2	4		Ī.			1
В																		
· с										1							1	
D	25								26									
E																	2	5
F		<u>.</u>	<u></u>															
G		<u></u>														24	4	
Н																		
<u> </u>		26																
Κ			<u></u>	<u>.</u>	<u></u>	1												
L				1							26				26	3		
. М				24														
N	1				<u></u>	<u></u>												
Р	<u> </u>			<u> </u>	<u></u>		<u> </u>	26		******		1						
Q	 		1	<u></u>		25	<u>.</u>											
R				<u></u>			<u>.</u>						<u></u>					26
S							26			25		******		26		1		
T					26						••••••							
V			25	1									26					
W			••••••									*******		<u>.</u>				
X												********						
· Y																		
_												••••						
unknown (?)													**********					
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq'	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa,	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa ⁴	D	1	٧	М	Ţ	Q	S	Р	D	S	L	Α	٧	S	L	G	E	R
rel. oomcaa ^s	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	%00I	92%	%96	0001
pos occupied ^a	2	1	2	•	1	:			1		······†·		1	1		•	•	

Table 4C: Analysis of V kappa subgroup 3

	F	rame	work	: IV]
101	102	103	104	105	106	A	107	108	sum
								T	1345
									2
									375
	Ī			23					564
		3		141					759
					6				765
166								1	1804
	<u>.</u>			1					64
	<u></u>			<u> </u>	143				803
	<u></u>	152	<u></u>	<u></u>	<u> </u>	<u> </u>	157		489
	<u> </u>	<u></u>	54	<u>.</u>	1	•••••		2	1596
	<u></u>	<u></u>	<u> </u>	<u>.</u>	3	<u></u>	<u> </u>		36
	1	<u></u>	<u></u>	<u> </u>	<u></u>	<u></u>	3		255
	1	<u></u>	1				<u></u>		1147
		1		1					1314
		9	<u> </u>		2		4	134	1326
	2								2629
	162	1					1		1593
			111		11				646
	•••••				••••				287
		•••••							
		1							1014
1	1	1	1	1	1	166	1	1	2151
		•••••	•••••						4
									337
:				•••••••	••••••••••••		• • • • • • • • • • • • • • • • • • • •		
	162		111	141	143	166	157	134	
G	T	K	V	Ε		-	K	R	
%66	97%	%06	%99	84%	%98	100%	95%	92%	•
2	5	7	4	5	7	1	5	4	
	166 167 166 G %66	101 101 101 101 101 101 101 101 101 101	101	Total Tota		Total Tota			

Table 4C: Analysis of V kappa subgroup 3

				oup.		CDR	111									
		~~														_
amino acid'	9	92	93	94	95	∀	<u>ھ</u>	ں —	۵	ш	LL.	- 36	9	86	66	100
Α	<u> </u>	1	8	3	3	}	<u>.</u>	<u>.</u>	<u>.</u>					<u>.</u>		1
В				<u>.</u>	<u>.</u>			<u> </u>							<u>.</u>	
· C	2			1	<u> </u>								2			<u> </u>
D		8	5											1	<u> </u>	<u>.</u>
E		2	<u> </u>			<u>.</u>							1			
F .	5	<u></u>	2									;	7	166	3	
G	1	104	15		1	1	2					1	I		166	41
Н	4	1										2	2			
- 1			1		<u>.</u>	1						4	l .			
K		<u></u>	2		<u> </u>	1						1				1
L				2	7	5						42				
·M		1			1	2										
N		28	71									1				
ρ		•		1	139	24						7	2			9
Q	1		1		3	1				<u>:</u>		3				114
R	34	2	3		2	2	<u></u>	<u>.</u>	<u> </u>			19				
S	2	33	58	102	15	2	<u></u>	<u>.</u>	<u>.</u>		<u></u>	1	8			
T		2	13	1	1	·2						1	154			
V					3	• 1		<u> </u>				2				
W				69								24				
X																
Υ	134	1	1									43				
-			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)						******										
not sequenced						14	14	14	14	14	14	14	17	16	16	16
sum of seq'	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
;	:	:	:	:	:									166	•	
mcaa'	Υ	G	N	S	Р	-	-	-	-	-	-	Υ	Ţ	F	G	Q
rel. oomcaas	Q.	Q	Q	Q	Q	Ç	,o	%	%	%	%	ی.		.0	.0	.0
ici. Uumcaa	73%	57%	39%	26%	76%	75%	%66	100%	100%	100%	100%	25%	93%	99%	%66	68%
pos occupied ⁶	8	11	13	8	11	12	2	1	1	1	1	18	5	2	2	6

Table 4C: Analysis of V kappa subgroup 3

amino acid'	75	9/	77	78	79	80	81	82	83	84	85	98	87	88	83	S
Α							3			174	l l	T				T
В					1											
· C		: :							2		Ī			1. 18:	2	
D			1				3	182								
E			:	:	149		175					•		•		
F		1					:		178		2		1 4	,		
G			3					1	<u> </u>	2					Ī	
Н											1				1	1
<u> </u>	178							1	1		9					
K							1									
L				178		1			1		7		1			
· M										1	5					
N	1	5												-		
Р						149						<u>.</u>				
Q					34									1	181	15
R		1	111							3						
S		169	65			34			1				2			
Ţ		8	4							1						
V	4			6					1	3	159					
W																
Χ																
Y	1										1	183	176		1	
-																
unknown (?)																
ot sequenced																
sum of seq?	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa³	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	15
mcaa'	1	S	R	L	Ε	Р	Ε	D	F	Α	٧	Υ	Υ	С	Q	Q
rel. oomcaa ⁵	97%	92%	%09	97%	81%	81%	%96	%66	92%	92%	86%	99%	96%	%66	%66	85%
		· • • • • • • • • • • • • • • • • • • •		.	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								 ;	

Table 4C: Analysis of V kappa subgroup 3

														Fram	ewor	cIII
amino acid'	29	09	61	62	63	64	65	99	67	89	69	70	71	72	73	74
A		68						3	3		5 :	3	1		3	
В																
C																
D		112				1		<u> </u>	Ī		<u> </u>	152	2			<u> </u>
E								1			1	30)			•
F				183		Į.							183	}	2	
G						184	3	178	_	177	,				Ī	
Н		1														
1		<u>.</u>		1		<u></u>	<u>.</u>		<u> </u>					1		3
K		<u></u>	1	<u></u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u></u>		<u>.</u>					
L				1	<u></u>	<u> </u>	<u> </u>		<u></u>						182	
· M			<u> </u>	<u>.</u>	<u>.</u>	ļ	<u> </u>	1	<u> </u>	<u> </u>						
N		1	<u></u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	<u>.</u>	<u>.</u>		1		
P	177		<u></u>			<u></u>			<u></u>	<u>.</u>	<u></u>	<u></u>		<u>.</u>		
<u>Q</u>			<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>			<u>.</u>	<u> </u>	1	<u>.</u>	<u> </u>	<u> </u>	
R	ļ		182	<u></u>	2		1				2	<u> </u>	<u> </u>		<u></u>	
5	7		<u>.</u>		180		179		185		3	<u></u>	<u>.</u>	7		2
T	1		2		3		2	•••			177	<u>:</u>	<u></u>	172		179
V		3						1		1	<u>.</u>					
<u>W</u>							<u></u>			1						
X								•••••		•••••						
Y													1			
-																
unknown (?)						•••••		1								
not sequenced																_
3	185							:				•••••••••••••••••••••••••••••••••••••••	••••••••	······	· ÷	
	177	•							185	177	177	152	183	172	182	179
mcaa*	Р	D _.	R	F	S	G	S	G	S	G	T	D	F	T	L	Ţ
rel. oomcaas	%96	61%	%86	%66	92%	%66	%26	96%	100%	%96	%96	83%	%66	93%	%66	92%
pos occupied [*]	3	5	3	3	3	2	. 4 11	••••••	1	5	4	4	·········· <u> </u>	······ <u> </u>	······· ·	3

Table 4C: Analysis of V kappa subgroup 3

	rk II										CDR	11				
amino acid'	43	44	45	46	47	48	49	20	51	52	53	54	55	56	57	28
Α	176							4	147				176	1		
В																
. c									1							
D								43					2		4	
E																
F .				1		1	4					<u>:</u>				
G							<u></u>	125	<u></u>	<u></u>	<u></u>		2	10	179	
Н							9		1	<u></u>	<u> </u>	<u>.</u>			<u></u>	
<u> </u>						178	<u></u>			<u>.</u>	<u></u>	<u></u>	<u></u>	1	<u>.</u>	168
K			1				<u></u>				7	1	<u>.</u>			
L		1		179	174	1					<u>.</u>	<u></u>				
· M						3					1	<u> </u>				
N			1					1			53	• • •		2		
Р	5	184								2			2	2		
Q							1									
R			182			••••		1			4	180				
S							3	6	4	179	74	1		5		
T	3								11	2	44			164		2
V		•••••••••••••••••••••••••••••••••••••••		3	9			3	19				3			15
W							1				······································	1				
X																
Y							165								2	
-																
unknown (?)			1													
not sequenced																_
sum of seq'	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa,	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	168
mcaa*	Α	Р	R	L	L	1	Υ	G	Α	S	S	R	Α	Τ.	G	1
rel. oomcaa'	%96	%66	%86	%86	95%	97%	%06	68%	%08	98%	40%	98%	95%	%68	97%	91%
pos occupied"	3	2		•	•			:			6	4	5	7	3	

Table 4C: Analysis of V kappa subgroup 3

		ppa 3		<u> </u>					T						Fra	mew
amino acid'	u.	28	29	30	31	32	33	34	35	36	37	38	39	9	41	42
А				1	1			18								
В																
. C						<u>.</u>										
D			1	1	2	1										
<u>E</u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u></u>	1	<u>.</u>							1		1
F .	<u> </u>	1	<u> </u>	<u>.</u>	<u>.</u>	7			<u>.</u>	1		<u>.</u>				
G	<u> </u>		2	7	3	1	<u>.</u>	2		<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	1	184	
Н	.		1	<u></u>	ļ	2			<u></u>	1	<u> </u>	12	1	1		
1		24	4	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>		<u> </u>			
K	<u> </u>	<u> </u>	<u> </u>	1	1	<u> </u>	<u>.</u>	<u>.</u>	<u></u>	<u>.</u>	<u> </u>	<u>.</u>	153		<u></u>	
· L		8	1		ļ	1	176					3			<u>.</u>	2
-M	ļ	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	
N		<u> </u>	3	12	25	32	<u> </u>	<u></u>	ļ	<u> </u>	<u>.</u>	<u>.</u>	<u>.</u>	<u> </u>	<u> </u>	
. Р		<u></u>			1		<u> </u>	<u> </u>	ļ	ļ	ļ	<u></u>	<u> </u>	170		
Q	ļ	<u> </u>		<u> </u>	1	1		<u> </u>	ļ	<u></u>	183	167	-1	<u> </u>		181
R		<u>.</u>	10	3	18	16	<u> </u>	1	<u>:</u>	<u> </u>	1	<u> </u>	27	5		
· S	ļ	72	86	151	118		<u>:</u>	<u> </u>	<u></u>	<u></u>	<u>.</u>	<u> </u>		5		
T		1			8	1		<u>.</u>		<u> </u>	<u> </u>	ļ	1	<u></u>		
<u> </u>		76	68		1		7	<u> </u>				3		2		
<u> </u>			5						185					············		
X						•••••					••••••		•••••••••			
<u>Y</u>				1	1	115	- 35			183	_					_
	182						••••••							•••••		
unknown (?)		•••••					•••••			••••••	1					
not sequenced	•															_
	182					:				:				••••••	·····÷	······································
oomcaa¹	182			:	:	***************************************				:	•••••••••••••••••••••••••••••••••••••••	167	•••••••••••••••••••••••••••••••••••••••	170	184	181
mcaa'	-	V	S	S	S	Υ	L	Α	:	Υ	Q	Q	K	Р	G	Q
rel. oomcaas	100%	42%	47%	83%	65%	63%	%96	98%	100%	%66	%66	%06	83%	92%.	100%	%86
pos occupied ^e	1	6	11	10	13	12	2	3	1	3	2	4	:	······	1	3

108

Figure 4C: V lambda 3 (VA3) gene sequence

S V A P G Q T SexAI	CAGGTCAGAC GTCCAGTCTG	W	TACGCGAGCT ATGCGCTCGA	D	TTATGATGAT
Ŋ	~~ GTC CAG	ø	30G	Ω	GAC
P exAI	AC CAGGT FG GTCCA	×	TAC(ATG(≯	TTA1 AATA
S. S.	CAC	×	AAA FTT	H	AT.
>	ltg AAC	Д	SATZ TA	>	GTC
ω	AGCGTTGCAC TCGCAACGTG	Ŋ	GGGCGATAAA CCCGCTATTT	1	TTCTGGTGAT TTATGATGAT AAGACCACTA AATACTA
>		H		>	
W	CTTCAG GAAGTC ECO57I	K	909 000	A P Bbel	3CC/
т о р в у	GCCTTCAGTG CGGAAGTCAC Eco57I	DALGDKYAS	GCGATGCGCT CGCTACGCGA	Q A P V L V I Y D D Bber	CAGGCGCCAG GTCCGCGGTC
Д		Q			
O	TGACCCAGCC ACTGGGTCGG	S C S G	TCGTGTAGCG	K P G Xmal	GAAACCCGGG CTTTGGGCCC
E	ACC. TGG	SCBSSSI	STG1	ш х	AACC TGG
T	A A C	S S BssSI	TCC	124	GAA
印	SAAC	H	ATC TAG	O.	GCA
⊁	PATG ATAC	A R	CGT	α	CCA(GGT(
.ω	AGCTATGAAC TCGATACTTG	4	CGCGCGTATC GCGCGCATAG	W Y KpnI	GGTACCAGCA CCATGGTCGT

Figure 4C: V lambda 3 (VA.3) gene sequence (continued)

N N	CCAACAGCGG GGTTGTCGCC	D E A	~~~ GACGAAGCGG CTGCTTCGCC	G G G TGGCGGCGC ACCGCCGCG	
F S G S BamHI	TTTAGCGGAT CC AAATCGCCTA GG	Q A E BbsI	TCAGGCGGAA GAC AGTCCGCCTT CTG	P V F CGCCTGTGTT T GCGGACACAA A	·
PSGIPER Bsu36I	CCTCAGGCAT CCCGGAACGC	T L T I S G T	ACCCTGACCA TTAGCGGCAC T TGGGACTGGT AATCGCCGTG A	Q Q H Y T T P CCAGCAGCAT TATACCACCC C GGTCGTCGTA ATATGGTGGG G	MscI MscI CCGTTCTTGG C
S U	TCTGACCGTC AGACTGGCAG	N T A	CAACACCGCG GTTGTGGCGC	D Y Y C ATTATTATTG TAATAATAAC	T K L T V L G HpaI ACGAAGTTAA CCGTTCTTGG TGCTTCAATT GGCAAGAACC

	Ŋ	AG	A	GA	Ŋ	Ω Ω Ω	2 0 0 0	·
	Ø	CGGGCAGCAG GCCCGTCGTC	¥	AGCTATGCGA TCGATACGCT	O	GATGGGCGGC CTACCCGCCG	Q G R TTCAGGGCCG AAGTCCCGGC	니
	Ŋ	200	×	TA		990	A PG(印
		000	ഗ	AGC	×	GAT	TTC AAG	Σ
	Д		70		M		ĮĮ.	
,	X	AA2 TTT	W	TAG	ыH	AGT TCA	K AAG I'TC	Ħ
	×	AAA I'T'I	ഥ	rtt. Jaa	L. E XhoI	ctcgag gagctc	O PAG TC	Ø
	>	GTGAAAAAAC CACTTTTTTG	E	CACTTTTAGC GTGAAAATCG		GTCTCGAGTG CAGAGCTCAC	A Q K GCGCAGAAGT	Ħ
	臼	AA TT	Q	0 C C	Ŋ	9 0 0	K FG FG	Ŋ
	A	0 0 0 0 0	S G BspEI	CCGGA	Q	3CA CGT	V Y ACTA(₽
	O	TGGCGCGGAA ACCGCGCCTT	S Bsj	CCTCCGGAGG GGAGGCCTCC	Ö	ccreeccaee GGACCCGTCC	A N Y GGCGAACTAC CCGCTTGATG	Ŋ
	O	TGC		CC1 GG2	д . Н	CGG GGACC	GGC	
٦	W	FC AG	Ø	7 G	A BstXI	₹		田
duenc	Q	AG.	×	AAZ	Bs Bs	AGC TCC	GCA CGI	Ω
ene se	>	TTC	O	TGC		CCAA GGTT	F TTG AAC	Ø
H1A) g	2	TGGTTCAGTC	ഗ	AGCTGCAAAG TCGACGTTTC	K	GCGCCAAGCC CGCGGTTCGG	FGT TTTTGGCAC AAAAACCGTG	E
1A (V					>		H	
/ chair	Ø Mfe ∞	CA2 GTJ	K V	AGT	3	000	Р ССС ССС	Η
hean,	>	GTG	×	SAA	ഗ	GGA	I ATT	TI
Figure 5A: V heavy chain 1A (VH1A) gene sequence	Q	CAGGTGCAAT GTCCACGTTA	\triangleright	CGTGAAAGTG GCACTTTCAC	Н	TTAGCTGGGT AATCGACCCA	I I P ATTATTCCGA TAATAAGGCT	V T BstEII
Figur					—	[4 H	Щ

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

CACCGCGTAT ATGGAACTGA GTGGCGCATA TACCTTGACT	C A R W G BssHII	ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG	Styl	GGCCAAGGCA CCCTGGTGAC		
CACC	λ		D S	2000 2000		
AAAGCACCAG TTTCGTGGTC	T A V Y EagI	ACGGCCGTGT TGCCGGCACA	M X Q	GGATTATTGG CCTAATAACC		
ACCGCGGATG TGGCGCCTAC	S E	TAGCGAAGAT	Y A M	TTTATGCGAT AAATACGCTA		ڻ ن ن
GGTGACCATT CCACTGGTAA	S S	GCAGCCTGCG	G D G	GGCGATGGCT CCGCTACCGA	V S S BlpI	GGTTAGCTCA CCAATCGAGT

Figure 5B: V heavy chain 1B (VH1B) gene sequence

W	AG		TA AT	3	0 0 0	# U U
8	CGGGCGCGAG GCCCGCGCTC	¥	AGCTATTATA TCGATAATAT		GATGGGCTGG CTACCCGACC	A Q K F Q G R GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC
O))))	>	TA1 AT2	W W	999	AGG FICO
	0 0 0 0 0	လ	AGC ICG	Σ	3AT CTA	PTC
Д				M		
×	AA	H	AC		GT(K AG:
V K K P	GTGAAAAAAC CACTTTTTTG	T F T	TACCTTTACC ATGGAAATGG	L E XhoI	GTCTCGAGTG CAGAGCTCAC	A Q K GCGCAGAAGT
	GA	H	CC.	ЧX	CTC	A CGC7 GCG1
>	GT		TA AT	(D	GT CA	Q Q Q
臼	AA TT	×	TA AT	_ე	(b) (c)	K F F G
_	16G	O E	GA	O	CA	Y CTA GAT
7	300	S G BSPEI	3 3 3 3 3 3	O		N SAA CTT
V Q S G A E	CGGCGCGGAA GCCGCGCCTT	i		വ	CCAAGCC CCTGGGCAGG GGTTCGG GGACCCGTCC	T N Y CACGAACTAC GTGCTTGATG
ß		A		A P BstXI	1	
	TGGTTCAGAG ACCAAGTCTC	S C K	AGCTGCAAAG TCGACGTTTC	A Bst	CCGCCAAGCC	A S G G A ATAGCGGCGC
Q	CCA AGT	r.\	SCA	Q	AA TT	0 0 0 0 0 0 0
>	GTJ CA2	O	CTC	R Q	200 000	S AGC ICG
7	TG	" ເ	AG		0.00	AT
Q L MfeI	AT IA	>	H G	>	E S S	\sim
OZI	CA	V K V	AG	3) (C) (C)	CCC GGC
>	STG	×	SAA	H	ACT FGA	N AAC ITG
Q	CAGGTGCAAT GTCCACGTTA	>	CGTGAAAGTG GCACTTTCAC		TGCACTGGGT ACGTGACCCA	I N P ATTAACCGA TAATTGGGCT
	O O		O O	Σ	HA	A H

	T A Y M E L		CACCGCGTAT ATGGAACTGA GTGGCGCATA TACCTTGACT	Y Y C A R W G BSSHII	ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG	G Q G T L V T	GGCCAAGGCA CCCTGGTGAC		
	w		TAG	>	TGT	3	TGG ACC		
	н		CAT	A EagI	555555	×	TAT		. •
Figure 58: V heavy chain 18 (VH1B) gene sequence (continued)	വ		CCAGCATTAG GGTCGTAATC	T E	ACGGCCGTGT TGCCGGCACA	Ω	GGATTATTGG CCTAATAACC		
اردو (دور	H			Д		Σ			
sedne.	Ω		ACCCGTGATA TGGGCACTAT	<u>ы</u>	TAGCGAAGAT ATCGCTTCTA	Ø	TTTATGCGAT AAATACGCTA		
) gene	R R		30C/3		3CG2	×	ATC		
(VH1B	E		ACC TGC	S	TAG	_	ttt Aaa		ຸ ບ
hain 18	Z		TG	ĸ		Eri		SpI	(
eavy c	EнН	1	GGTGACCATG CCACTGGTAC	H	GCAGCCTGCG CGTCGGACGC	Ŋ	GGCGATGGCT CCGCTACCGA	Щ	GGTTAGCTCA
58: V h	V T Bsteii	111	TGA ACT	ß	AGC ICG	Ω	CGA 3CT.	>	rTA(
Figure	Bs	1	990	ഗ	000	Ŋ	000		661

CGGACTTTTG

ATATCGTGGT

ACTATTCATA

TAACCCTACT

CGAGACTAAC

GCCTGAAAAC MluI CAGCCGCCTG GGAAAGCCCT CGAGTGGCTG CCTTTCGGGA GCTCACCGAC ACGTCTGGCG TGCAGACCGC GCTGGGTTTG CGACCCAAAC 딘 Н 又 C O 3 ഗ Н ۲ 团 XhoI \vdash ഗ TATAGCACCA ATCGGACAGG TAGCCTGTCC Д GACCACTTTG CTGGTGAAAC S E X Ø Ц ഗ > 又 ഗ \succ 口 G TGATAAGTAT GACCTAAGCG GTCGGCGGAC TGGACATGGA AAAGGCCTAA TTTCCGGATT CAGGTGCAAT TGAAAGAAAG CGGCCCGGCC 9900999009 لتا × A Ы BstXI BSPEI U X ш Д ഗ Ω O G GCTCTGATTG ATTGGGATGA TTGGCGTGGG CTGGATTCGC Ω لعاً ACCTGTACCT GTCCACGTTA ACTTTCTTTC ഗ K Figure 5C: V heavy chain 2 (VH2) gene sequence H Ω 口 Н C 3 又 3 ᇊ. Ω AACCGCACCC П MfeI CCTGACCCTG GGACTGGGAC G 口 Н O > H 口 > G Н Ø >

Figure 5C: V heavy chain 2 R L T	in 2 (VH2) gene sequence (continued) ISKDT		A A Ö N	I T
TnTW				
GCGTCTGACC	ATTAGCAAAG TAATCGTTTC	NG ATACTTCGAA	AAATCAGGTG GT TTTAGTCCAC CA	GTGCTGACTA
M N T M	о О	D T A T	Y Y C BssH	A R W
TGACCAACAT ACTGGTTGTA	GGACCCGGTG CCTGGGCCAC	rg garacggcca	CCTATTATTG CGCGC GGATAATAAC GCGCG	CGCGCGTTGG GCGCGCAACC
Ο Ο	G F	A M D Y	W G Q G StyI	T L V
GGCGGCGATG	GCTTTTATGC	SC GATGGATTAT	TGGGGCCAAG GC ACCCCGGTTC CG	~ GCACCCTGGT CGTGGGACCA
T V S	S BlpI			
GACGGTTAGC	040E 00			

A D S V K G R GCGGATAGCG TGAAAGGCCG CGCCTATCGC ACTTTCCGGC

ഗ

I S G ATTAGCGGTA

Figure 5D: V heavy chain 3 (VH3) gene sequence

W	CAG	A1	GA	Æ	3CG
O	CGGGCGGCAG		AGCTATGCGA TCGATACGCT	တ	GGTGAGCGCG CCACTCGCGC
Ŋ	999 000	×	CTA GAT	>	TGA
VESGGGLVQPGGS	, 0,0	T F S S Y A	AG	L E W V S A Xhol	99
	ပ္ခု ပ္မ	**	C G	M	ည် ပို
Q	CTGGTGCAAC GACCACGTTG	01	TACCTTTAGC ATGGAAATCG	ध म	GTCTCGAGTG CAGAGCTCAC
>	GTG	ĬΉ	CTT GAA	L E	CTCGAG
H	CTG	H	rac Atg	i	GTC
		r.		Ŋ	
O		<u>ы</u> н ≀	נדו קלי		တ္ဆည
	Ö	O E	S C I	环	AA
G	ဗ္ဗ	S G BSPEI	ဗ္ဗဗ္ဗ	r c	မ္မာ သ
_დ	ອວວອວວອວວອ	S E	CCTCCGGATT GGAGGCCTAA	} }	TG AC
	ָט ט ט ט		ည်ဗ	дн≀	ည်
ro.		Ø		T X	t) th
· ·	AA(IT(₫:	ÖÖ	A BstXI	ÖÖ
দ্র	TGGTGGAAAG	S C A A	AGCTGCGCGG TCGACGCGCC	R Q A P G K G BstXI	GCGCCAAGCC CCTGGGAAGG CGCGGTTCGG GGACCCTTCC
_	1GC	Ö	IG AC		
	5 2	r 0	33.2	∝ `	900
	TG AC		A T		\mathcal{G}
Q L MfeI	TA	. 7	rg S	>	TAU
QM	CAAT GTTA	H	က် (၁)	M	990
_		K	55,75	>	SAC
>	GT CA	-	ည်	လ))))
ជ	GAAGTGCAAT	H	CCTGCGTCTG GGACGCAGAC	Σ	TGAGCTGGGT ACTCGACCCA

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

FTT I S R D N S K PmlI NSPV TTTTACCATT TCACGTGATA ATTCGAAA AAAATGGTAA AGTGCACTTT N S L R A E D T A V EagI ACAGCCTGCG TGCGGAAGAT TGCGGCCGT TGTCGGACGC ACGCCTTCTA TGCGCCGCA G D G F Y A M D Y G D G F Y A M D Y GGCGATGGCT TTTATGCGAT GGATTATT CCGCTACCGA AAATACGCTA GGATTATT CGCCTACCGA AAATACGCTA GCTAATAA V S S BlpI GGTTAGCTCA G	N T L Y L Q M	AAA CACCCTGTAT CTGCAAATGA	¥	GT ATTATTGCGC GCGTTGGGGC	W G Q G T L V T Styl	GG GGCCAAGGCA CCCTGGTGAC		
	T I S R D N S K N T PmlI Nspv	TCACGTGATA ATTCGAAAAA AGTGCACTAT TAAGCTTTTT	S L R A E D T A V Y Y Eagl	TGCGGAAGAT ACGGCCGTGT ATTATT ACGCCTTCTA TGCCGGCACA TAATAA	DGFYAMDYWGQ Styl	TTTATGCGAT GGATTATTGG AAATACGCTA CCTAATAACC	S S BlpI	

AAAGCCGGGT TTTCGGCCCA

CCGAGCCTGA GGCTCGGACT

CAACTATAAT GTTGATATTA

GCGCCAGCAC

ATTTATTATA TAAATAATAT

R V BstEII

ß

×

Н

ഗ

Д

Z

Z

H

S

G

ഗ

×

Figure 5E: V heavy chain 4 (VH4) gene sequence

E	AAC	2	ATT	X	rat Ata
ស ធ	CGAGCGAAAC GCTCGCTTTG	X X S X I S	AGCTATTATT TCGATAATAA	I G Y	GATTGGCTAT CTAACCGATA
	AGC	1 24	CTZ	Н	TTG
Д				_	
×	AAC	ß	AGC	A	GTG
>	CTGGTGAAAC GACCACTTTG	Н	CAGCATTAGC GTCGTAATCG	T X	GTCTCGAGTG CAGAGCTCAC
ī	TGG ACC	W	AGC TCG	ч×	TCT AGA
		Ŋ			
G	ညည		TTTCCGGAGG AAAGGCCTCC	×	AAG TTC
Д	TCC AGG	S G BSPEI	၁၅၅	r U	⊃ 000 000
G P G L V K P	TGGTCCGGGC ACCAGGCCCG		TTTCCGGAGG AAAGGCCTCC	P G K G tXI	CCTGGGAAGG GGACCCTTCC
တ		T C T V		PBStXI)
S E	GAA CTT	Ξ	CAC GTG	B O	AGC
Q	GCAAGAAAG CGTTCTTTC	Ü	ACCTGCACCG TGGACGTGGC	R Q P Bs	TCGCCAGCCG
ਮ ਮ ਮ	HA	E4			
Q L MfeI	AAT	ы	CTG	Н _	GAT
>	CAGGTGCAAT GTCCACGTTA	ഗ	CCTGAGCCTG GGACTCGGAC	X	ggagctggat cctcgaccta
Q	AGG TCC	H	CTG	S	GAG
	U U		O	M	90

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

	•					
လ	GCA	Ŋ	500 000 000	>	GGT	·
н	CTGA	U	3660	7 T	GAC	
×	AAACTGAGCA TTTGACTCGT	M	TTGGGGCGGC AACCCCGCCG		TGGTGACGGT ACCACTGCCA	
Ţ		H H		H		
တ	AGCC	C A BssHI	000000 000000	e E	SCAC	
្រ	GTTTAGCCTG CAAATCGGAC		ATTGCGCGCG TAACGCGCGC	Q (Styl	CAAGGCACCC GTTCCGTGGG	
Oi	CA GT	×	TT AA	ტ	l	
Z	AAC TTG	Ħ	GTA CAT		999	
×	GTTGATACTT CGAAAAACCA CAACTATGAA GCTTTTTGGT	>	GCCGTGTATT CGGCACATAA	X X	TTATTGGGGC	
S NspV	ł	EagI	2552 5225 5225 5225 5222 5222 5222 522		TT AA	
Z E	CTT 3AA	日田	ACG FGC	Ω	SGA	
- Д	ATA(Ω	AT	Σ	AT(
H	GTTGATACTT CAACTATGAA	A	GGCGGATACG	Ø	ATGCGATGGA TACGCTACCT	
>	0 0	٠		⋈		
S	AGC TCG	A	500 000	Ĺτι	TTT AAA	(י) (י)
нн	~~~~ GACCATTAGC CTGGTAATCG	E	GCGTGACGGC CGCACTGCCG	O	GATGGCTTTT CTACCGAAAA	S S BlpI ~~~~~ TAGCTCAG
T BstEI	GACC	>	CGT 3CA	Q	ATG(PAC(S B. AGC:
B	i & 5	Ŋ	\ddot{o}	 	$\mathfrak{G} \mathfrak{S}$	T.Z.

CGGGCGAAAG GCCCCCTTTC ഗ 国 G Д CACTTTTTG GTGAAAAAAC 又 又 > GCCGCGCCTT CGGCGCGGAA 团 Ø G ACCAAGTCTC GAAGTGCAAT TGGTTCAGAG Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Q L MfeI CTTCACGTTA 口

AGCTATTGGA TCGATAACCT AAGGAAATGC TTCCTTTACG CAAGGCCTAT GTTCCGGATA BSPEI TCGACGTTTC AGCTGCAAAG GGACTTTTAA CCTGAAAATT

3

ഗ

⊱

لتا

ഗ

 \succ

G

ഗ

G

×

Ö

က .

Н

 \simeq

口

G Σ 3 ഥ XhoI G × C Д BstXI Σ Ø α > 3 G Н

Н

CTACCCGTAA GATGGGCATT CAGAGCTCAC GTCTCGAGTG AACCGACCCA CGCGGTCTAC GGACCCTTCC CCTGGGAAGG GCGCCAGATG TTGGCTGGGT

Ø TCTCCGAGCT TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT ഗ ഥ ഗ Д ഗ ATGGGCAATA TACCCGTTAT . [TAAATAGGCC CGCTATCGCT Ω ATTTATCCGG GCGATAGCGA ഗ Ω <u>ග</u> Ы

		GA	Ŋ	55 55	[AC
	SADKSIS TAY LOW	CTTCAATGGA GAAGTTACCT	K A S D T A M Y Y C A R W G BSSHII	ACGGCCATGT ATTATTGCGC GCGTTGGGGC TGCCGGTACA TAATAACGCG CGCAACCCCG	F Y A M D Y W G Q G T L V T Styl	CCCTGGTGAC
	Q	STT	\leq	TTG	7]GG
	. 7	rt vag	以	3C.7	H	3GZ
	П		H	90 9090 09 0909	F-4	50 50
	> -1	AT TA	AsH		2	CA
		GT	C A BssHII		°× H €	99
	Ø	AAAGCATTAG CACCGCGTAT TTTCGTAATC GTGGCGCATA		TT	Q G StyI	GGCCAAGGCA CCGGTTCCGT
	₽) () ()	X	TT.	ຸ້ ເກັ) (GG
	·	C_{I}	~	AT TP	O	900
	ω .	AG IC		ACGGCCATGT TGCCGGTACA	.\ <u>\</u>	3 3 3 3
	H	TT. AA	Σ	AT(TA(TT(AA(
		CA	Ø	ညည	\succ	GGATTATTGG CCTAATAACC
ued)	Ω .	AAG TTC	5 .	953	Q	AT:
ontin	~	AZ TT				
<u>ပ</u> ၂၁	121	IA AT	0	AT IA	Σ	
quen	Ω	AGCGCGGATA TCGCGCCTAT	_	, 100 100	Æ	207 CG/2
ne se	A	$\ddot{\mathcal{Q}}$	S	AG	•	TGAC
5) ge		900	Ø	9 9 9 9 9	>-	TA
5 (YH	(O)	AG	•	AG	[±.i	TT AA
nain	Н	TT AA	又	AA TT		CT
avy C		~ CA GT	ᆸ	TG AC	Ŋ	99
V he	TI	~ AC TG		55	Ω	AT
. 5F:	V T BstEII	GGTGACCATT AGCGCGGATA AAAGCATTAG CCACTGGTAA TCGCGCCTAT TTTCGTAATC	ഗ	GCAGCCTGAA AGCGAGCGAT CGTCGGACTT TCGCTCGCTA		GGCGATGGCT TTTATGCGAT CCGCTACCGA AAATACGCTA
Figure 5F: V heavy chain 5 (VH5) gene sequence (continued)	BS	~ 00 00	ഗ	90	Ŋ	00
_						

V S S
BlpI

GGTTAGCTCA G

Figure 5G: V heavy chain 6 (VH6) gene sequence

E	
Ø	
ഗ	
Ъ	
×	
\triangleright	
ı	
_{(D}	
Д	
ഗ	
ഗ	
Ø	
Ø	
e L	5
Q Mf	~ ~ ~ ~
>	,
Ø	

CGAGCCAAAC GCTCGGTTTG CTGGTGAAAC GACCACTTTG ACGTTGTCAG ACCAGGCCCG TGCAACAGTC TGGTCCGGGC GTCCACGTTA CAGGTGCAAT

ഗ \mathbf{z} ഗ ഗ > ഗ BSPEI G ഗ Н Ø O ٠ ا П ഗ 口

AGCAACAGCG TCGTTGTCGC TAGCGTGAGC ATCGCACTCG TTTCCGGAGA AAAGGCCTCT TGGACACGCT ACCTGTGCGA CCTGAGCCTG GGACTCGGAC

Z 团 XhoI G K S Д BstXI ഗ Ø 召 3 Z 3 K . K

Н

GGCGTGGCCT CGAGTGGCTG CCGCACCGGA GCTCACCGAC CAGTCTCCTG GTCAGAGGAC GACCTAAGCG CGGCGTGGAA CTGGATTCGC GCCGCACCTT

TIGCTAATAC GCCACTCGCA CGGTGAGCGT ഗ > AACGATTATG >-Ω Z CAAATGGTAT GTTTACCATA 3 又 G R T Y Y R S GGCCGTACCT ATTATCGTAG CCGGCATGGA TAATAGCATC α, ග

L V T V S S
BlpI

CCTGGTGACG GTTAGCTCAG
GGACCACTGC CAATCGAGTC

			<i>r</i> >	r D				<i>.</i> D			_				
	ഗ		900	CGC	Ø	BSSHII	~~~~	300	CGC		_			CAC	3TG
	_		TA(AT	Ö	SS	; ?	CC	CG		Ŋ	Н	?	GG(CC
	ΙŦΙ		TTS	ZAA	ν,	М		ΊLΤ	AA		Q	StyI	~~~~	AA	TT
	Ø		CAGTTTAGCC	GTCAAATCGG	,,,			TTATTGCGCG	AATAACGCGC			נט	?	GCCAAGGCAC	CGGTTCCGTG
	S K N Q F S				S V T P E D T A V Y Y C A	•					G. D. G. F. Y. A. M. D. Y. W. G. Q. G. T.				
	2.		AAA	TTI	>			TGI	ACA		3			IGG	ACC
	×	20	~~~~~~ TTCGAAAAAC	AAGCTTTTTG		I	?	CGGCCGTGTA	GCCGGCACAT		≻			GATTATTGGG	CTAATAACCC
	ഗ	Nsp	\tilde{r}	AGC	A.	Eac	~ ~ ~ ~ ~ ~	360	CCG		Ω			ATT	IAA
					E										
	P D T		ACCCGGATAC	TGGGCCTATG		•		CCGGAAGATA	GGCCTTCTAT		Σ			TTATGCGATG	CGCTACCGAA AATACGCTAC
	Ω		'GA'	CT				AG	L C L		Ø			CG/	GC
ued)	Д		S	3GC	· [1]		; (3GA	CCT		_			ATG	lAC
Contin			ACC	TG	Д		($\frac{1}{2}$	99	1				$_{ m LL}$	AA1
o) apui	N H			E	<u></u>					ı	T.			E.	\$
sedne	Н	H	AT(TA(ביי		1	GA(CIC	(<u>.</u>			ည်	CG7
gene	드	BsaBI	√~~ ACC	rgg	>		(SCA		\sim			\TG	AC
(VH6)	I I	ğ	ATTACCATCA	TAATGGTAGT	S		Ì	CAGCGTGACC	GTCGCACTGG	•	_			GCGATGGCTT	CJ CJ
aın 6			?		רבים ביים					(ق				
Ğ ✓	ĸ		CGC	900	L		; ;	CA.	CTJ		<u>ر</u>			900) CCC
V hea	ഗ		\GC	SS.	H		(CI	GA		- H	- !			Σ
Figure 5G: V heavy chain 6 (VH6) gene sequence (continued)	X S		GAAAAGCCGG	CTTTTCGGCC	r V		(TGCAACTGAA	ACGTTGACTT		Υ. Σ.	BSSH11		CGTTGGGGCG	GCAACCCCGC
Figur			GA	CI	H		({	<u>.</u>	AC	Ç	ር ጚ (n D t	,	(U)	

- Figure 6: oligonucleotides for gene synthesis
- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
- **O1K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGCTACCAGCAG -3'
- **01K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- O1K6 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- O2K1 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- O2K3 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- O2K4 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- O2K5 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- O3K3 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG-3'

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **04K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- **04K2** 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGCAC-3'
- O4K6 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

- O1L6 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-Figure 6: CAAGGCTCGCGCTGG -3'
- O2L1 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- O2L2 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- O2L3 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- O2L4 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCTTCCCGGGATGCTGCTGGTAC -3'
- O2L5 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- O2L6 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- O3L1 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-GCCTTCAGTGAGCG -3' CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- O3L3 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- O3L4 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-
- 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-TCAGGGTC -3' O1246H1
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCCCGG-GTGCAATTG -3' TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

- **O1AH3** 5 ' GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAGGCTC -3 '
- O1AH45'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- O1AH5 5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- O1BH25'- GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- O1BH45'- GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3'
- **O1BH5**5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

Figure 6: (continued)

- O2H5 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **02H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- **O3H1** 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCT-GGTGCAACCGGGCGCAG -3'
- **O3H2** 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCC-AGCTCAGACGCAGGCTGCCCCCGGTTGCAC -3'
- **O3H3** 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- **O3H4** 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAAACACCCTGTATCTGCAAATGAACAG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **04H2**. 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H4** 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **04H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

WO 97/08320 PCT/EP96/03647

- Figure 6: (continued)
- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'.
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTT C -3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- O6H2 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- O6H5 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 ' GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC 3 '
 SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

- OCLK2 5 ' GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC 3 '
- OCLK3 5 ' GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGTGCCTGCTG -3 '
- OCLK4 5'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5 ' GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3 '
- OCLK6 5 ' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG - 3 '
- OCLK7 5 ' GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK8 5 ' GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- **OCH2** 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- **OCH4** 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- **OCH5** 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTGCTCGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

T L T L S K A A ACCCTGACC TGAGCAAAGC TGGGACTGGG ACTCGTTTCG

L S S TCTGAGCAGC AGACTCGTCG

Figure 7A: sequence of the synthetic Ck gene segment

С	Ŋ	CA	TC ATC	0 0 0 0 0	A G
[<u>F</u>]	I)	GAZ	Y TTP AAT	8 GCG CGC	Y TAT ATA
Q		GCGATGAACA CGCTACTTGT	N F Y AACTTTTATC TTGAAAATAG	Q S G GCAAAGCGGC CGTTTCGCCG	S K D S T Y S AGCAAAGATA GCACCTATTC TCGTTTCTAT CGTGGATAAG
വ				D H &C	S G G
Д		TTTCCGCCGA AAAGGCGGCT	N GAA(CTT(N A L ACGCGCT	D SATZ CTA:
Д		000 000	L GCT CGA	N ACGO	K AAA(ITT(
দ		TTTCCGCCGA AAAGGCGGCT	L L N CCTGCTGAAC GGACGACTTG	ACA	S AGC TCG
Н		ATT TAA	C GTG CAC	W K V D FGGAAGTAG ACI ACCTTTCATC TG1	D GAT CTA
ĮΞι		TTT	V GGT CCA	K AAG TTC	Q CAG GTC
APSVFIFPPSDE.O		CGTGTTTATT GCACAAATAA	G T A S V V C GCACGCGA GCGTGGTG CGTGCCGCT CGCACACAC	W K V D N A L Q S G TGGAAAGTAG ACAACGCGCT GCAAAGCGGC ACCTTTCATC TGTTGCGCGA CGTTTCGCCG	E Q D CGAACAGGAT GCTTGTCCTA
ß			S GA CT	D AG TC	
വ))))	660 000	V TTC AAG	S V GCGTGA CGCACT
A		CTGCTCCGAG GACGAGGCTC	G T A GCACGGCGA CGTGCCGCI	GAAAGTTCAG CTTTCAAGTC	S AGC TCG
A			O O	CT CT	E AA TT
V V A		STGC	S AAGC ITCC	E A	Q CCAGG GGTCC
•	BsiWI	ACG(FGC(L K TGAAA ACTTT	R 1 GTGZ CACT	S AGC TCG(
	BS	CGTACGGTGG GCATGCCACC	L K S ACTGAAAAGC TGACTTTTCG	P R E A CGCGTGAAGC GCGCACTTCG	N S Q E S V T AACAGCCAGG AAAGCGTGAC TTGTCGGTCC TTTCGCACTG

٠.

Figure 7A: sequence of the synthetic Ck gene segment (continued)

SSPVTK	GGTGACTAAA	CCACTGATTT
Ъ	CCC	366
ഗ	AGC	TCC
	TGAGCAGCCC	ACTCGTCGGG
Н		
H Q G L	CATCAAGGTC	GTAGTTCCAG
Ø	CAA	GTT
H		GTA
E V T	ACC	$^{\mathrm{TGG}}$
>	GTG	CAC
田	CGAAGTGACC	GCTTCACTGG
ပ	TG	AC
Ø	ATGCG	ACGCAC
×		Y
>	TG	AC

S F N R G E A * StuI SphI TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

Figure 7B: sequence of the synthetic CH1 gene segment

S ഗ Д Ø Н Д لتا > ഗ Д G X ₽ Sal ഗ Ø

GGTTCGCACA AAGGCGACCG AGGCTCGTCG TCCGAGCAGC Trcccrccc CCAAGCGTGT CTGGTTTCCA GACCAAAGGT CGAGTCGCAG GCTCAGCGTC

~~~~~~

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT >  $^{\rm C}$ G GCGCCGCAC GCCTGCCCTG CCGACGGGAC A L Ø CGCCGCCGTG E ິ ີ ບ ഗ TTTTCGTGGT AAAAGCACCA ഗ

CTGACCAGCG GACTGGTCGC GTCGCCCGC CAGCGGGCG <u>ග</u> ഗ GGTCAGTGGC ACTCGACCTT CCAGTCACCG TGAGCTGGAA 3 ഗ > Ę > Д TTTCCCGGAA AAAGGGCCTT ہم

GTATAGCCTG CATATCGGAC × GCAGCGGCCT CGTCGCCGGA G ഗ ഗ GTGCTGCAAA CACGACGTTT O ᆸ > GCGTGCATAC CTTTCCGGCG GAAAGGCCGC Ø Д CGCACGTATG 工 >

TTAGGCACTC AGACCTATAT AATCCGTGAG TCTGGATATA Ø ഗ GAGCAGCAGC CTCGTCGTCG ഗ ഗ ഗ AGCAGCGTTG TGACCGTGCC TCGTCGCAAC ACTGGCACGG H > ഗ S

Figure 7B; sequence of the synthetic CH1 gene segment (continued)

| K K<br>AAAAAA<br>TTTTTT                                                                                                                 |                     |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|
| C N V N H K P S N T K V D K K<br>TGCAACGTG AACCATAAAC CGAGCAACAC CAAAGTGGAT AAAAAA<br>ACGTTGCAC TTGGTATTTG GCTCGTTGTG GTTTCACCTA TTTTTT |                     | ·                  |
| S N T<br>CGAGCAACAC<br>GCTCGTTGTG                                                                                                       | HindIII             | TAAGCTT<br>ATTCGAA |
| C N V N H K P S N T<br>TTGCAACGTG AACCATAAAC CGAGCAACAC<br>AACGTTGCAC TTGGTATTTG GCTCGTTGTG                                             | E ECORI             | CGAATTCTGA         |
| C N V<br>TTGCAACGTG<br>AACGTTGCAC                                                                                                       | E P K S E F * ECORI | AACCGAAAAG         |
|                                                                                                                                         |                     |                    |

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)



47 / 204

Figure 7C: functional map and sequence of module 24 comprising the synthetic Cl gene segment (huCL lambda) (continued)

| CCCCGCCTGT                                | DraIII<br>~~~<br>AAAGCCGCAC<br>TTTCGGCGTG      | GGCGAACAAA                                     | CCGTGACAGT<br>GGCACTGTCA | GAGACCACCA<br>CTCTGGTGGT |
|-------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------|--------------------------|
| CATTATACCA<br>GTAATATGGT                  | MscI<br>~~~~~~<br>TGGCCAGCCG<br>ACCGGTCGGC     | CCGAGCAGCG AAGAATTGCA<br>GGCTCGTCGC TTCTTAACGT | TATCCGGGAG<br>ATAGGCCCTC | GGCGGGAGTG<br>CCGCCCTCAC |
| TTGCCAGCAG                                | HpaI<br>~~~~~~<br>T TAACCGTTCT<br>A ATTGGCAAGA | CCGAGCAGCG<br>GGCTCGTCGC                       | TAGCGACTTT<br>ATCGCTGAAA | GCCCCGTCAA<br>CGGGGCAGTT |
| CGGATTATTA<br>GCCTAATAAT                  | Hp<br><br>GGCACGAAGT<br>CCGTGCTTCA             | GCTGTTTCCG<br>CGACAAAGGC                       | TGTGCCTGAT<br>ACACGGACTA | GCAGATAGCA<br>CGTCTATCGT |
| BbsI<br>~~~~~<br>GAAGACGAAG<br>CTTCTGCTTC | GTTTGGCGGC                                     | DrallI<br>~~~~~~<br>CGAGTGTGAC<br>GCTCACACTG   | GCGACCCTGG<br>CGCTGGGACC | GGCCTGGAAG<br>CCGGACCTTC |
| 1                                         | . 21                                           | 101                                            | 151                      | 201                      |

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

GCCGGTCGTC GATAGACTCG CGGCCAGCAG CTATCTGAGC AACAAGTACG TTGTTCATGC CACCCTCCAA ACAAAGCAAC TGTTTCGTTG GTGGGAGGTT 251

RleAI

GCCAGGTCAC AGCTACAGCT GTCCCACAGA CTGACGCCTG AGCAGTGGAA

301

CGGTCCAGTG TCGATGTCGA CAGGGTGTCT TCGTCACCTT GACTGCGGAC

GAGGCCTGAT StuI TGCGCCGACT AAAAAACCGT GCATGAGGG AGCACCGTGG 351

CTCCGGACTA

ACGCGGCTGA

TTTTTGGCA

TCGTGGCACC

CGTACTCCCC

SphI

? ?

AAGCATGC TTCGTACG

401

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

## M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTGCCAGCAGCATTATACCACCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

• GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-**TTATCCGGGAGCCGTGACA** 

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

Д

Н Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 ہتا Sapi Н Н Д Н Н Ø Н ď Н E S Ø ×

TCTTCACCCC AGAAGTGGGG AATGGCAACG TTACCGTTGC TGACCGTGAG ACTGGCACTC CGTGATAACG GCACTATTGC TACTTTGTTT ATGAAACAAA

C S 回  $\gt$ 111111 Н MfeI Ø > 团 Ω ×  $\Rightarrow$ Ω K × EH >

GAAAGCGGCG CTTTCGCCGC CGTTAACCAC GCAATTGGTG TTCTACTTCA AAGATGAAGT GCCGACTACA CGGCTGATGT ACAATGGTTT TGTTACCAAA

Ø  $\mathcal{O}$ S Н K Н S Ü Ç Д Q > 口

BSPEI

Ø

CGCGGCCICC GCGCCGGAGG CAGACTCGAC GTCTGAGCTG CCGTCGGACG GGCAGCCTGC GCAACCGGGC CGTTGGCCCG GCGCCTGGT CGCCGGACCA

Д BStXI Ø O K  $\gt$ 3 S Σ K  $\succ$ ഗ ഗ Ľ E BspEI G

C

TGGGTGCGCC AAGCCCCTGG TGCGATGAGC TTAGCAGCTA GGATTTACCT

TTCGGGGACC ACCCACGCGG ACGCTACTCG CCTAAATGGA AATCGTCGAT

G

C

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vκ2 (continued) CCGTCGTGGA GGCAGCACCT TGATAATTCG ACTATTAAGC NspVവ Z ഗ Д G PmlI CCATTTCACG GGTAAAGTGC GCCATCGCCG CGGTAGCGGC K U ഗ ഗ Н G H CGCGCTAATC GCGCGATTAG ഗ GGCCGTTTTA CCGGCAAAAT ہتا Н 召 Ø Ç ഗ CTCACCCACT ATCGCACTTT GAGTGGGTGA TAGCGTGAAA × > > 3 ß 回 XhoI CTTCCCAGAG TAATACGCCT GAAGGGTCTC ATTATGCGGA Ω П Ø C × × ×

Ø EagI AAGATACGGC TTCTATGCCG H Д 口 CTGCGTGCGG GACGCACGCC Ø K Н TTACTTGTCG AATGAACAGC ഗ Z Σ TGTATCTGCA Ø ACATAGACGT Н Н TTTTTGTGGG AAAAACACCC H Z NspV

GCGATGGATT Ω Σ Ø GGGGCGCGA TGGCTTTTAT  $\succ$ ഥ G Ω G C Z TGCGCGCGTT  $\alpha$ BSSHII Ø CGTGTATTAT EagI

CAACGGCTAT GTTGCCGATA

TGCTGCATAG

AGCCAAAGCC TCGGTTTCGG

CTGCAGAAGC

CGAGCATTAG GCTCGTAATC

ACGACGTATC

CCGCTCGGAC

TCACTGAGGC

ACTCGGACGG

GTCTCGGGTG

GCACTACTGG

C

Z

ഗ

耳

Н

Н

S

O

ഗ

S

 $\alpha$ 

O

ഗ

Н

S

Ø

PstI

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) GGCGAGCCTG GTTCCGATAT CAAGGCTATA ACCGCCAAGA ECORV CGCTACCTAA TGGCGGTTCT S Д Ω 
 O
 团 ß U G U CGAGTCGCCC CCGCCACCAC AGTGACTCCG CCCCGCCGCT ACCGAAATA GCTCAGCGGG GGCGGTGGTG U д G Ø H O BlpI ഗ > O ഗ GCCACCAAGA TGAGCCTGCC CACTGCCAAT CGGTGGTTCT GTGACGGTTA Д വ Н C S U > Н CCTCGCCACC GCACATAATA ACGCGCGCAA ATTGGGGCCA AGGCACCCTG TCCGTGGGAC GGAGCGGTGG CAGAGCCCAC U Д BanII U ഗ വ U O StyI G CCGCCGCCAC TAACCCCGGT GGCGGCGGTG CGTGATGACC Н U U  $\mathbf{z}$ C ECORV 3 > Ç

| H3-Vk2 (continued)<br>Q L L<br>ASEI                                                                                                                                               | CGCAGCTATT<br>GCGTCGATAA | R<br>F<br>S | CGTTTTAGCG<br>GCAAAATCGC         | V E A              | TGTGGAAGCT<br>ACACCTTCGA         | E G         | CCCCCCCGAC                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|----------------------------------|--------------------|----------------------------------|-------------|----------------------------------|
| Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vx2 (continued)  N Y L D W Y L Q K P G Q S P Q L L  KpnI SexAI ASEI | GGTCAAAGCC<br>CCAGTTTCGG | Q           | GGTCCCGGAT                       | K I S R            | AAATTAGCCG<br>TTTAATCGGC         | нутт        | CATTATACCA<br>GTAATATGGT         |
| nthetic gene encoding the CL QK PS                                                                                                                                                | TCAAAAA<br>AGTTTTT       | R A S C     | GTGCCAGTG                        | I<br>L             | T TTTACCCTGA<br>A AAATGGGACT     | O O O       | A TTGCCAGCAG<br>T AACGGTCGTC     |
| E and restriction map of the syn  L D W Y  KpnI                                                                                                                                   | ATTG                     | N S ·       | CTG GGCAGCAACC<br>GAC CCGTCGTTGG | G S G T D<br>BamHI | ATC CGGCACCGAT<br>TAG GCCGTGGCTA | V G V Y Y   | TGG GCGTGTATTA<br>ACC CGCACATAAT |
| Figure 8: sequence<br>N Y ]                                                                                                                                                       | AACTATCTGG<br>TTGATAGACC | Asel Y      | AATTTATCTG<br>TTAAATAGAC         | S<br>S<br>S        | $\mathcal{O}$                    | E D<br>BbsI | GAAGACGTGG<br>CTTCTGCACC         |

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vx2 (continued) Ö <u>ෆ</u> ſτι

回 > × H G

MscI

×

R T BsiWI

ECORI

~~~~~~~~~

ACGTACGGAA

AAG TGCATGCCTT AACTTTAATT TTGAAATTAA GGTACGAAAG CCATGCTTTC

CTTTGGCCAG

SUBSTITUTE SHEET (RULE 26) 56 / 204

E01	<u>></u>	<u> </u>		3	≥	>	3	≥	≥	≥	≥	≥	≥
Z0 l	>	>	>	>	>-	>	>	>	>-	>-	>	>	>
101													
100E	¸Σ	1	1	1	1	ı	ı	ı	ı	1	ı	1	1
100D	ı	ŧ	ı	1	ı	1	1	t	1	1	·t	ı	1
J001	ŧ	1	i	ı	1	1	ŧ	1	ı	1	ı	ı	ı
1008	\triangleleft	ı	ı	ı	ι	1	ı	1	ı	1	ı	1	ı
A001	>	1	ı	1	1	1	t	1	1	1	ı	ı	1
001	LL.	>	I	I	\propto	>-	۵	ı	S	\checkmark	⋖		Σ
66	Ö	Z	≥	>	⋖	9	0	\propto	Z	S	⋖	>-	≥
86		Σ	ш		\leq	H	⋖	 	\propto		щ	0	ш
<i>26</i>	G	¥	—	ш		— '	ш		Z	9	—	م	S
96	G	Ö	\propto	\propto	ட	Z	Z	4	>	>	\checkmark	⋖	0'
<i>S6</i>	≥	ш	エ	>	\checkmark	≥	_	—	≥	S	Ś	>	Σ
<i>b</i> 6	\simeq	8	~	\propto	\propto	\propto	\propto	œ	\propto	\propto	<u>~</u>	\propto	~
86	<u> </u>	4	4	4	⋖	⋖	4	⋖	⋖	⋖	⋖	⋖_	⋖
<i>Z6</i>	C	ပ	ပ	C	ပ	ပ	ပ	ပ	C	C	C	ပ	C
4		8											

Figure 10: Sequence analysis of initial libraries

C

3333333333 $\Sigma \Sigma \Gamma \Sigma \Sigma \Gamma \Gamma \Sigma \Sigma \Sigma \Sigma$ >- ス> ローエト> - ロ $\Sigma \succ R \land Z \land \neg \Box \Box \neg \Box$ $F \times A Q = S \times D F Z Q$ \succ O I Q L I Z K H P X **」SFENE>NLYK** $\Gamma \land > \geqslant \circ \circ \circ \circ \supset \bot \sqcap \Box \vdash$ $IXZ\Gamma XQ \geqslant Z \Pi Z \vdash$ $> 100 \times 000 \times 000$ $\succ \Sigma \times \vdash \succ * \ltimes \Sigma \times \circ \succ$ xxxxxxxxxxxx4 4 4 4 4 4 4 4 4 4 0000000000000

Figure 11: Expression analysis of initial library

Figure 12: Increase of specificity during the panning rounds

Figure 13: Phage ELISA of clones after the 3rd round of panning

Figure 14: Competition ELISA

- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

 $0001 \times \times \times \times \times \times \times - 0 \times \times$ 0001 LRIKZO4> YOZLYX48001 RZRXXIIX+>ZZRRRII 001 Z K I K K G L D \succ K C L C \succ K \succ $89 \ge Q \times R - > \Sigma I \ge Q R \times I - X \times$ 76 Z × O Z × u o r + k o × > x + 1 96 ~ W Z X ~ - X X X X Z Q Z X \ X

Figure 16: Purification of fluorescein binding scFv fragments

Figure 17: Enrichment factors after three rounds of panning

Figure 19: Selectivity and cross-reactivity of HuCAL antibodies

Frequency 103 33333333333 10.5 101 $\mathsf{T} \geq \mathsf{T} \cdot \mathsf{T} \cdot \mathsf{T} \geq \mathsf{T} \geq \mathsf{T} = \mathsf{T} \cdot \mathsf{T} =$ 100E $0 \times \pi \pi \pm \Sigma$ - \times > - - \sim \sim 1000 J001 100B FZ-OST | LOLKZ A001 A X T T T K T \geqslant V K V K 00 i $Q \sqcap S \bowtie Q \neg G \sqcap S \boxtimes \neg S$ 66 86 46 x Q x v T Q Z x x x Z Z Z96 $\vdash Z \times \succ > Z - \propto$ $\leq Z \times Z$ 96 xxxxxxxxxxxxx*t*6 4444444444 63

Figure 21: Sequence analysis of testosterone binders

Frequency	4	က	2	-	-	-
103	3	≥	3	≥	≥	≥
105	>	>	<u>`</u>	>	>-	>-
101	Ω					
100E	ட	ட	ட	ட	ட	ட
100D	V	O	O	Σ	≥	O
J001		Σ	Σ	-	\checkmark	Σ
1008	\checkmark	¥	\checkmark	\checkmark	Σ	O
A001	α	O	Z	≥	_	\propto
100	\checkmark	≥	α	≥	≃.	S
66	Ø	⋖	⋖	Ø	~	Ø
86	O	工	>	9	_	\propto
	\checkmark	~	\checkmark	œ	٥	\checkmark
96		Z	>	¥	¥	œ
<i>9</i> 6	>	>	>	>	.∝	>-
7 6	æ	8	œ	\propto	æ	\propto
63	A	A	A	×	A	A
76	ပ	ں	ں	ں	ں	ں

Figure 22: Sequence analysis of lymphotoxin-B binders

Frequency	16		-	_		-	-	
103	3	3	3	3	≥	≥	≥	3
105	>	>-	>	>	>	>	>	>
101	Ω							
100E	ய	Σ	ட	Σ	Σ	ட	Σ	ய
100D	エ	م	O	≥	>	S	≥	≥
J001	9	۵	>	工	エ	O	ш	>
1008	\checkmark	>	≥	工	0	-	Z	≥
A001	_	S	>	م	\propto	ட	ш	ட
001	\checkmark	z	z	\checkmark	<	O	—	_
66	S	ட		بــــ	O	S	Q	
86	~	0		>-	ш	Z	ட	—
∠ 6	>	œ	۵	V		I	エ	۵
96	œ	≥	Ø	O		≥	Ω	≥
<i>9</i> 6	O	ı	Σ		~	S	>	۵
7 6	<u>~</u>	œ	æ	œ	œ	8	\propto	8
63	⋖	4	A	4	Ø	A	⋖	⋖
76	ر	ں	U	C	ပ	ပ	ن	ں

```
103
     33333333333
 105
     101
     100E
       \  \  \, \sqcap \, \boxtimes \, \boxtimes \, \boxtimes \, \boxtimes \, \sqcap \, \sqcap \, \boxtimes \, \sqcap \, \boxtimes \, \sqcap
000 L
      · K Q — Q D Y Y K F F
100Ca
            1 22 1 1
      · K K K K L L K K Z K
J001
1008
      - > S-┏->mox-m
      · T X A S Z S H H N · O
A001
     ESSGSDRKVKFK
 001
     T D S Y K S P L H L
     r m m m m \geqslant m m Q m \lessgtr m
  86
     ら D k D F E S k T R - E
  Z6
          」OエΖ>ᄔY>>ᄔ
  96
     50-9290
  96
     x
  t6
     4444444444
  63
     0000000000000
  76
```

Frequency	2			-	_	
103	3	≥	3	≥	≥	3
105	>-	>	>	>	>	>
101		۵	0			
100E	Σ	ட	Σ	≥	≥	ட
J001	>	<u>«</u>	\propto	O	>	ட
J001	>	ய	>	S	≥	エ
1008	۵	>-	>	≥	Z	—
A001	-	Z	w	S	م	_
100	4	>-	Σ	_	V	٩
66	>	Σ	O	œ	≥	¥
86	ட	>-	ш	>	~	ட
∠ 6	9	\vdash	ட	ш	S	G
96	O	ட	u_	\checkmark	م	G
96		>	>	ш	>	
* 6	α	<u>~</u>	\propto	∝	\propto	œ
83	A	⋖	⋖	A	X	4
76	ں	Ú	ں	ن	U	ر ا

BgIII a lox site ompA Xbal lox site ColEI Ext2 origin p15A module Aat cat Jac p/o phoA pCAL system Nhel fl ori lox' site Fsel BsrGII gIII ss EcoRi Pack | Pack | Ipp-Terminator-(His, myc) Hind||7 tails domains module assóc. IMP-Figure 25: modular pCAL vector system functions (IL2) lacI effector long SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

are 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

. intian sites u	sed in or sultable 10
are 25a: List of unique restriction sites u	Isoschizomers
cite	ISOSCIIIZO
unique restriction site	TI Dct981
A - til	Bfrl, BspTl, Bst981
Aatll	
AfIII	Vspl, Asnl, PshBl
Ascl	Bstl
Asel	Ehel, Kasl, Narl
BamHI	Ehel, Rasil
Bbel	BpuAl, Bpil
	III Plot
Bbsl	Bpu1102I,CellI, BlpI BrBRI
Bglil	1 Dch 13031, 0
Blpl	Mami, BSI 1300 Pfl23II, Spil, Suni Pfl23II, Spil, Suni
BsaBI	A RSIVII, RPI
BsiWI	Pfl23II, SpII, Sum AccIII, BseAI, BsiMI, Kpn2I, Mrol Bsp1407I, SspBI
BspEl	DSPTTO
BsrGl	11 Fc00651
BssHII	BstPl, Eco911, Eco0651
BstEll	
BSILII	Aocl, Cvnl, Eco811
BstXI	
Bsu361	
Dralli	BstZI, EclXI, Eco52I, XmalII
DsmAl	BStZI, LCIXII
Eagl	Drall
Fc0571	- Diam
Eco01091	Eco321
EcoRI	ECOSZI
EcoRV	
Fsel	710
Hindiii	Acc651, Asp7181
Hpal	
: Kpnl	Ball, MluNl
Miul	50
· Mscl	74 (204 mu = 26)
	SUBSTITUTE SPEET (RULE 26)

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Munl	Mfel
Nhel	/
Nsil	Ppu10l, EcoT22l, Mph1103l
NspV	Bsp1191, BstBl, Csp451, Lsp1, Sful
Pacl	
Pmel	1
PmII	BbrPl, Eco72l, PmaCl
Psp5II	PpuMI
Pstl	1
RsrII	(Rsril), Cpol, Cspl
SanDI	1
Sapl	
SexAl	1
Spel	1
Sfil	1
Sphl	Bbul, Pael,Nspl
Stul	Aatl, Eco147l
Styl	Eco130l, EcoT14l
Xbal	BspLU11II
Xhol	PaeR7I
Xmal	Aval, Smal, Cfr9l, PspAl

gure 26: list of pCAL vector modules

	WO 97/08320				PCT/EP96/0364
	reference	Skerra et al. (1991) Bio/Technology 9, 273-278	Hoess et al. (1986) Nucleic Acids Res. 2287-2300	see M2	Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approac: IRL Press, New York, pp 229-266
	template	vector pASK30	(synthetic)	(synthetic)	vector plG10
,	sites to be inserted	Aatll	lox, BgIII	lox', Sphl	none
	sites to be removed	2x Vspl (Asel)	2x Vspl (Asel)	none	Sphl, BamHl
HIODUICS	functional element	lac promotor/operator	Cre/lox recombination site	Cre/lox' recombination site	gllip of filamentous phage with N- terminal myctail/amber codon
Figure 26: 11St Of pLAL Vector modules	module/flan- king restriction sites	Aatil-lacp/o- Xbal	BgIII-lox- Aatii	Xbal-lox'- Sphl	EcoRI- gllllong- Hindlll
Figure 2	°Z	M 1	M2	M3	1-7M

Figure 26: list of pCAL vector modules

M7-11	EcoRI-gIIIss- HindIII	truncated gillp of filamentous phage with N-terminal Gly- Ser linker	Sphl		vector plG10	see M7-I
M7-III	EcoRI-gIIIss- HindIII	truncated gillp of filamentous phage with N-terminal myctail/amber codon	Sphl, Bbsl	·	vector plG10	see M7-1
M8	SphI-lox- HindIII	Cre/lox recombination site	none	xol	(synthetic)	see M3
M9-11	HindIII-lpp- Pacl	lpp-terminator	none	Pacl, Fsel	(synthetic)	see M1
M10-	PacI/FseI-bla- BsrGI	beta-lactamase/bla (ampR)	Vspl, Eco571, BssSI	Pacl, Fsel, BsrGl	pASK30	see M1
M11-	BsrGI-f1 ori- Nhel	origin of single- stranded replication	Dralll (Banll not removed)	BsrGI, Nhel	pASK30	see M1
M11-	BsrGI-f1 ori- Nhel	origin of single- stranded replication	DrallI, BanlI	BsrGl, Nhel	pASK30	see M1

Figure 26: list of pCAL vector modules

		, 			1CI/LI3
Rose, R.E. (1988) Nucleic Acids Res. 16, 355	see M3	Yanisch-Peron, C. (1985) Gene 33,103-1194	Cardoso, M. & Schwarz,S. (1992) J. Appl. Bacteriol.72, 289- 293	see M1	Knappik, A & Blückthun, A. (1994) BioTechniques 17, 3
pACYC184	(synthetic)	pUC19	pACYC184	(synthetic)	(synthetic)
Nhel, BgIII	BgIII, lox, Xmnl	BgIII, Nhel			•
BssSI, VspI, NspV	none	Eco57l (BssSl not removed)	BspEI, MscI, Styl/Ncol	(synthetic)	(synthetic)
origin of double- stranded replication	Cre/lox recombination site	origin of double- stranded replication	chloramphenicol- acetyltransferase/ cat (camR)	signal sequence of phosphatase A	signal sequence of phosphatase A + FLAG detection tag
Nhel-p15A- Bglll	BgIII-lox- BgIII	Bgill-ColEl- Nhel	Aatll-cat- Bglll	Xbal-phoA- EcoRl	Xbal-phoA- FLAG-EcoRI
M12	M13	M14- Ext2	M17	M19	M20

		,	
	ĕ	Ĺ	į
•	7		֡
	÷	=	ί
	ì	=	Ś
		Ĭ	:
	3		
	3	=	
	•		,
	٩		
	-		4
	٢		ļ
	•		
	٩	-	

	WO 97/08320)	
	Lee et al. (1983) Infect. Immunol. 264-268	see M1	Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41-
	(synthetic)	pASK30	(synthetic)
			-
	(synthetic)	BstXI, Mlul,BbsI, BanlI, BstEII, Hpal, BbeI, VspI	(synthetic)
modules	heat-stable enterotoxin II signal (synthetic) sequence		poly-histidine tail
Figure 26: list of pCAL vector modules	Xbal-stll- Sapl	Afill-laci- Nhel	EcoRI-Histail- HindIII
Figure 2	M21	M41	M42

SUBSTITUTE SHEET (RULE 25) 79 / 204

Figure 27: functional map and sequence of MCS module (continued)

	HindIII	II	PacI	BsrGI	H
	? ? ? ? ? ?	?	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	?
Н	ACATGTAAGC TGTACATTCG	TTCCCCCCCC AAGGGGGGGGG	TTCCCCCCC CCTTAATTAA AAGGGGGGG GGAATTAATT	CCCCCCCCC TGTAC GGGGGGGGG ACATG	TGTACACCCC ACATGTGGGG
	NheI		BglII	AatII	XbaI
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ ~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	}
51	CCCCCCGCTA	9999999999 22222222	GCCCCCCCC CCAGATCTCC CGGGGGGGG GGTCTAGAGG	CCCCCCCGA CGTCCCCCCT GGGGGGGCT GCAGGGGGGA	CCCCCT
•	XhaT	Sphī		FCORT BALTT	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		H	
101	CTAGACCCCC	CCCCGCATG	CCCCCGCATG CCCCCCCCC	CGAATTCGAC GTC	
	GATCTGGGGG	GGGGCGTAC	9999999999	GGGGGCGTAC GGGGGGGG GCTTAAGCTG CAG	

Figure 28: functional map and sequence of pMCS cloning vector

Figure 28: functional map and sequence of pMCS cloning vector (continued)

Н	CAGGTGGCAC	TTTTCGGGGA	AATGTGCGCG	TTTTCGGGGA AATGTGCGCG GAACCCCTAT TTGTTTATTT	TTGTTTATTT
	GTCCACCGTG	AAAAGCCCCT	TTACACGCGC	AAAAGCCCCT TTACACGCGC CTTGGGGATA AACAAATAAA	AACAAATAAA
51	TTCTAAATAC	ATTCAAATAT	GTATCCGCTC	ATTCAAATAT GTATCCGCTC ATGAGACAAT AACCCTGATA	AACCCTGATA

TTGGGACTAT	CAACATTTCC GTTGTAAAGG
TACTCTGTTA	TATGAGTATT ATACTCATAA
CATAGGCGAG	AAAGGAAGAG TTTCCTTCTC
TAAGTTTATA	TAATATTGAA AAAGGAAGAGAGATTTTTTTTTTTTTTT
AAGATTTATG	AATGCTTCAA TTACGAAGTT
	101

TGTTTTTGCT	ACAAAAACGA	
PATTCCCTTT TTTGCGGCAT TTTGCCTTCC	AACGGAAGG	
TTTGCGGCAT	ATAAGGGAAA AAACGCCGTA A	
TATTCCCTTT	ATAAGGGAAA	
GTGTCGCCCT	CACAGCGGGA	
151		

Eco57I

	AGTTGGGTGC	TCAACCCACG	BSSSI
? ? ? ? ?	GCTGAAGATC AGTTGGGTGC	CGACTTCTAG	
	AGTAAAAGAT	TCATTTTCTA	
	CGCTGGTGAA	GCGACCACTT	
	CACCCAGAAA	GTGGGTCTTT	
	201		

251	ACGAGTGGGT TGCTCACCCA BssSI	TACATCGAAC	TGGATCTCA. ACCTAGAGT	A CAGCGGTAAG F GTCGCCATTC	ATCCTTGAGA: TAGGAACTCT
	1				

Figure 28: functional map and sequence of pMCS cloning vector (continued)

XmnI

		2	? ? ? ?		
301	GTTTTCGCCC CAAAAGCGGG	CGAAGAACGT	TTTCCAATGA AAAGGTTACT	TGAGCACTTT ACTCGTGAAA	TAAAGTTCTG ATTTCAAGAC
351	CTATGTGGCG GATACACCGC	CGGTATTATC GCCATAATAG	CCGTATTGAC GGCATAACTG	GCCGGGCAAG CGGCCCGTTC	AGCAACTCGG TCGTTGAGCC
401	TCGCCGCATA	CACTATTCTC GTGATAAGAG	AGAATGACTT TCTTACTGAA	GGTTGAGTAC CCAACTCATG	TCACCAGTCA AGTGGTCAGT
451	CAGAAAAGCA GTCTTTTCGT	TCTTACGGAT AGAATGCCTA	GGCATGACAG CCGTACTGTC	TAAGAGAATT ATTCTCTTAA	ATGCAGTGCT TACGTCACGA
501	GCCATAACCA CGGTATTGGT	TGAGTGATAA ACTCACTATT	CACTGCGGCC GTGACGCCGG	AACTTACTTC TTGAATGAAG	TGACAACGAT ACTGTTGCTA
551	CGGAGGACCG	AAGGAGCTAA TTCCTCGATT	CCGCTTTTTT GGCGAAAAAA	GCACAACATG CGTGTTGTAC	GGGGATCATG CCCCTAGTAC
601	TAACTCGCCT ATTGAGCGGA	TGATCGTTGG ACTAGCAACC	GAACCGGAGC CTTGGCCTCG	TGAATGAAGC ACTTACTTCG	CATACCAAAC GTATGGTTTG
651	GACGAGCGTG	ACACCACGAT	GCCTGTAGCA	ATGGCAACAA	CGTTGCGCAA

Figure 28: functional map and sequence of pMCS cloning vector (continued)

GCAACGCGTT
TACCGTTGTT
CGGACATCGT
TGTGGTGCTA
CTGCTCGCAC

AseI	CAATTAATAG GTTAATTATC	CTCGGCCCTT GAGCCGGGAA	AGCGTGGGTC TCGCACCCAG	TCCCGTATCG AGGGCATAGC	ACGAAATAGA TGCTTTATCT	AACTGTCAGA TTGACAGTCT	CATTTTTAAT GTAAAAATTA
	TTCCCGGCAA C	CACTTCTGCG C GTGAAGACGC G	GGAGCCGGTG A	TGGTAAGCCC TACCATTCGGG	CTATGGATGA P GATACCTACT I	AAGCATTGGT P TTCGTAACCA 1	TTTAAAACTT AAATTTTGAA
	TTACTCTAGC AATGAGATCG	GTTGCAGGAC CAACGTCCTG	TGATAAATCT ACTATTTAGA	TGGGGCCAGA ACCCCGGTCT	AGTCAGGCAA TCAGTCCGTT	CTCACTGATT GAGTGACTAA	TTTAGATTGA AAATCTAACT
	GGCGAACTAC CCGCTTGATG	GGCGGATAAA CCGCCTATTT	GGTTTATTGC CCAAATAACG	ATTGCAGCAC TAACGTCGTG	CACGACGGGG GTGCTGCCCC	AGATAGGTGC TCTATCCACG	TCATATATAC AGTATATATG
	ACTATTAACT TGATAATTGA	ACTGGATGGA TGACCTACCT	CCGGCTGGCT	TCGCGGTATC	TAGTTATCTA ATCAATAGAT	CAGATCGCTG GTCTAGCGAC	CCAAGTTTAC GGTTCAAATG
	701	751	801	851	901	951	1001
		8	UBSTITUTE	SHEET (AUL	E 26)		

Figure 28: functional map and sequence of pMCS cloning vector (continued)

GACCAAAATC	TAGAAAAGAT	TGCTGCTTGC	GGATCAAGAG	CGCAGATACC		TTCAAGAACT	ACCAGTGGCT
CTGGTTTTAG	ATCTTTTCTA	ACGACGAACG	CCTAGTTCTC	GCGTCTATGG		AAGTTCTTGA	TGGTCACCGA
ATAATCTCAT TATTAGAGTA	TCAGACCCCG AGTCTGGGGC	GCGCGTAATC CGCGCATTAG	TTTGTTTGCC AAACAAACGG	C TTCAGCAGAG G AAGTCGTCTC Eco57I	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AGGCCACCAC TCCGGTGGTG	TAATCCTGTT ATTAGGACAA
ATCCTTTTTG TAGGAAAAAC	CCACTGAGCG GGTGACTCGC	CTTTTTTTCT GAAAAAAAGA	CCAGCGGTGG GGTCGCCACC	GGTAACTGGC CCATTGACCG EC		AGCCGTAGTT TCGGCATCAA	CTCGCTCTGC GAGCGAGACG
CTAGGTGAAG	AGTTTTCGTT	TCTTGAGATC	ACCACCGCTA	TTTTTCCGAA		CTTCTAGTGT	GCCTACATAC
GATCCACTTC	TCAAAAGCAA	AGAACTCTAG	TGGTGGCGAT	AAAAAGGCTT		GAAGATCACA	CGGATGTATG
TTAAAAGGAT	CCTTAACGTG	CAAAGGATCT	AAACAAAAA	CTACCAACTC	J	AAATACTGTC	CTGTAGCACC
AATTTTCCTA	GGAATTGCAC	GTTTCCTAGA	TTTGTTTTTT	GATGGTTGAG		TTTATGACAG	GACATCGTGG
1051	1101	1151	1201	1251		1301	1351

CGTGCACAC	CTACAGCGT	GGACAGGTA	AGCTTCCAG TCGAAGGTC	CACCTCTGA	CCTATGGAA GGATACCTT	TGCTGGCCTT
AACGGGGGGT T TTGCCCCCCA A	AACTGAGATA C TTGACTCTAT G	GGGAGAAAGG C CCCTCTTTCC G	GCGCACGAGG G CGCGTGCTCC C BssSI	TCGGGTTTCG C AGCCCAAAGC G	GGGGGCGGA G	CCTGGCCTTT I
GGTCGGGCTG	ACCTACACCG	GCTTCCCGAA CGAAGGGCTT	GAACAGGAGA CTTGTCCTCT	TATAGTCCTG ATATCAGGAC	ATGCTCGTCA TACGAGCAGT	TTTTACGGTT
AAGGCGCAGC TTCCGCGTCG	GGAGCGAACG CCTCGCTTGC	AAAGCGCCAC TTTCGCGGTG	GGCAGGGTCG CCGTCCCAGC	CTGGTATCTT GACCATAGAA	GATTTTTGTG CTAAAAACAC	AACGCGGCCT
GTTACCGGAT CAATGGCCTA	AGCCCAGCTT TCGGGTCGAA	GAGCTATGAG CTCGATACTC	TCCGGTAAGC AGGCCATTCG	GGGGAAACGC CCCCTTTGCG	CTTGAGCGTC GAACTCGCAG	AAACGCCAGC
1451	1501	1551	1601	1651	1701	1751
	GTTACCGGAT AAGGCGCAGC GGTCGGGCTG	GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT CAATGGCCTA TTCCGCGTCG CCAGCCCGAC TTGCCCCCCA AGCCCCAATA AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA TCGGGTCGAA CCTCGCTTGC TGGATGTGGC TTGACTCTAT	1451 GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT 1501 AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA TCGGGTCGAA CCTCGCTTGC TGGATGTGG TTGACTCTAT 1551 GAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CTCGATACTC TTTCGCGGTG CGAAGGGCTT CCCTCTTTCC	1451 GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT 1501 AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA TCGGGTCGAA CCTCGCTTGC TGGATGTGGC TTGACTCTAT TCGGGTCGAA CCTCGCTTGC GCTTCCCGAA GGGAGAAAGG CTCGATACTC TTTCGCGGTG GCAAGGGCTT CCCTCTTTCC 1601 TCCGGTAAGC GCCAGGGTCG GAACAGGAGA GCGCACGAGG AGGCCATTCG CCGTCCCAGC CTTGTCCTCT CGCGTGCTCC BSSSI	GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT CAATGGCCTA TTCCGCGTCG CCAGCCCGAC TTGCCCCCCA AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA TCGGGTCGAA CCTCGCTTGC TGGATGTGGC TTGACTCTAT GAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CTCGATACTC TTTCGCGGTG CGAAGGGCTT CCCTCTTTCC TCGGTAAGC GCAGGGTCG GAACAGGAGA GCGCACGAGG AGGCCATTCG CCGTCCCAGC CTTGTCCTCT CGCGTGCTCC BSSSI GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCCCTTTGCG GACCATAGAA ATATCAGGAC AGCCCAAAGC	1451 GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TTCCGCCTCA TTCCGCGTCG CCAGCCCGAC TTGCCCCCCA TTGCCCCCCA TTGCCCCCCA TTGCCCCCCA TTGCCCCCCA TTGCCCCCCA TTGCCCCCCA TTGCCCCCA TTGCCCCTAT CTCGGTCGTTGC TGGATGTGGC TTGACTCTTTCC TTTCGCGGTG CGAAGGGCTT CCCTCTTTCC TTTCGCGGTG CGAAGGGCTT CCCTCTTTCC AGGCCATCG CGCAGGGCTT CGCGTGCTCC BSSSI 1601 TCCGGTAAGC GCCAGGGTCG GAACAGGAGA GCCCACGAGG AGGCCATTCG CCTCCCAGC CTTGTCCTCT CGCGTGCTCC BSSSI 1651 GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCCCTTTGCG GACCATAGAA ATATCAGGAC AGCCCAAAGC 1701 CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGCGGA GAACTCGCAG CTAAAAACAC TACGAGCAGT CCCCCCCCCC

AC TG ATT		·	
of pcal module M1 of pcal module M1 TGTGAGTTAG TCCGTGGGGT TGTGAGTTAG TCCGTGGGGT TCTGAGTTAG TCTGAGTTAG TCTGAGTTAG TCTGAGTTAG TCTGAGTGAGTTAA TCTGTGAGTGAGTTAA TCTGTGAGTGAGTTAA TCTGTGAGTGAGTTAA TCTGTGAGTGAGTTAA TCTGTGAGTGAGTTAA TCTGTGAGTGAGTTAA TCTGTGAGTGAGTTAA TCTGTGAGTGAGTTAA TCTGTGAGTGAGTGAGTTAA TCTGTGAGTGAGTGAGTTAA TCTGTGAGTGAGTGAGTTAA TCTGTGAGTGAGTGAGTGAGTTAA	CGGCTCGTAT GTTGTGTGGA ALLOCACTCGC CIALLOCACTCGC CACTCGCC CIALLOCACTCGC CIALLOCACTCGC CIALLOCACTCGC CIALLOCACTCGC CACTCGCCC CACTCGCC CACTCGCCC CACTCGCCCC CACTCGCCCCC CACTCGCCCCCCCCCC	<i>א</i> [4	
GGCG GGAT	CCI	TCTA GA	
CCCCP GGGG ¹ IGAGC	ACTCG	ATTTC TAAAG	
AGGCA TCCGT	TAAC	CGA	4
CATT	TGGA	GATTZ	101 Pt
CACT(TTGTG	ACCAT	TGGT
PAG CY	TAT G	TATG.	ATAC
F pCAL module M1 TGTGAGTTAG ACACTCAATC	GCTCG	CGARTTA CGARTTA GA CTAAAGAT CT	ACAGO
ce of pCal		2	
ional map and sequence of AatII	CTGCAGARITA TTTATGCTTC	AAATACGAAO	TCACACAGGA AGTGTGTCCT
re 29: functional map and sequence of p AALII AACITAA T GACGTCTTAA T	CTGC	AAA	
re 29: func	٦ ٢	1	101

SUBSTITUTE SHEET (AULE 28)
90 / 204

ATTAAGTGGA

CACTGCCACT

CGAGTTCAGC

Figure 30: functional map and sequence of pCAL module M7-II (continued)

		GTGGTGGCTC	CACCACCGAG
		CTCTGAGGAG GATCTGTAGG	CTAGACATCC
		CTCTGAGGAG	GAGACTCCTC
		AGAAGCTGAT	TCTTCGACTA
EcoRI	? ? ? ? ?	GAATTCGAGC	CTTAAGCTCG
		႕	

CGCTAAAGGC	AAATGCCGAT GAAAACGCGC TACAGTCTGA CGCTAAAGGC	GAAAACGCGC	AAATGCCGAT	CTATGACCGA	101
TTATTCCCCC	CTAAAACTAA TACTTTCTA CCGTTTGCGA TTATTCCCCC	TACTTTTCTA	CTAAAACTAA	ACCAAGGCCA	
AATAAGGGGG	SA'I"I"I"I"GA'I"I' A'I'GAAAAGA'I' GGCAAACGC'I' AA'I'AAGGGGG	A'I'GAAAAGA'I'	GA'I"I"I"I'GA'I"I'	TGG:I"I'CCGG:I'	51

T 0 T	GCT	AAATGCCGAT TTTACGGCTA	AAATGCCGAT GAAAACGCGC TACAGTCTGA TTTACGGCTA CTTTTGCGCG ATGTCAGACT	TACAGTCTGA	CGCTAAAGGC GCGATTTCCG
151	AAACTTGATT TTTGAACTAA	CTGTCGCTAC GACAGCGATG	TGATTACGGT ACTAATGCCA	TGATTACGGT GCTGCTATCG ATGGTTTCAT ACTAATGCCA CGACGATAGC TACCAAAGTA	ATGGTTTCAT TACCAAAGTA

GTGACGGTGA TAATTCACCT	GTGACGGTGA	3 GCTCAAGTCG	TTCCCAAATG	CTGGCTCTAA	251	`
GGTGATTTTG CCACTAAAAC	TCCGGCCTTG CTAATGGTAA TGGTGCTACT AGGCCGGAAC GATTACCATT ACCACGATGA	CTAATGGTAA GATTACCATT	TCCGGCCTTG AGGCCGGAAC	TGGTGACGTT ACCACTGCAA	201	/31U F 66

XmnI

GACCGAGATT AAGGGTTTAC

AATCGGTTGA TTAGCCAACT TCCCTCCCTC ATATTTACCT TATAAATGGA ATTTCCGTCA TAAAGGCAGT TTAATGAATA AATTACTTAT 301

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

AAAAGATAAC	TCTTTTATAT AGAAAATATA	TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT		
ACCATATGAA TGGTATACTT	TCTTTGCGTT AGAAACGCAA	TTTGCTAACA AAACGATTGT		
TTTGTCTTTG GCGCTGGTAA ACCATAIGAA 1111CTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AATAAACTTA TTCCGTGGTG TCTTTGCGTT TCTTTTATAT TTATTTGAAT AAGGCACCAC AGAAACGCAA AGAAATATA	TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT		
TTTGTCTTTG AAACAGAAAC	AATAAACTTA TTATTTGAAT	TTATGTATGT AATACATACA	HindIII TGATAAGCTT	
ATGTCGCCCT			TOLEACEA	ATTCCTCAGA
351	401	451	, (7 O C

SUBSTITUTE SHEET (RULE 28) 93 / 204

SUBSTITUTE SHEET (RULE 26)

Figure 31: functional map and sequence of pCAL module M9-II (continued)

HindIII

AGATTGTGCG TCTAACACGC AAAATGGCGC TTTTACCGCG TGTGAAGTGA ACACTTCACT TTCGAACTGG AAGCTTGACC 5555555555 מככככככככ

FseI PacI

GCCGGCCTGG CGGCCGGACC 9999999999 CCCCCCCCC TTAATTAAAG AATTAATTTC TGTCTGCCGT ACAGACGGCA TGTAAAAAA ACATTTTTT 51

BsrGI

101 GGGGGGGTGT ACAGGGGGGG GGC

SUBSTITUTE SHEET (RULE 26) 96 / 204

ATAGAGCCAG

CACTCAACCC GTGAGTTGGG

TGACCTTGTT

7 -- - -

TATCTCGGTC

TGCAAGAAAT

CAACCTCAGG

CGGGAAACTG.

TGCCAAAAAG

CGGGACTATC

ATAGTGGACT CTTGTTCCAA ACTGGAACAA

GAACAAGGTT

TATCACCTGA

301

Figure 32: functional map and sequence of pCAL module M11-III (continued)

NheI

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	GCTAGCACGC CGATCGTGCG	GCCCTGTAGC CGGGACATCG	GGCGCATTAA CCGCGTAATT	2229229292 9992993929	TGTGGTGGTT ACACCACCAA
51	ACGCGCAGCG TGCGCGTCGC	TGACCGCTAC ACTGGCGATG	ACTTGCCAGC TGAACGGTCG	GCCCTAGCGC CGGGATCGCG	CCGCTCCTTT
101	CGCTTTCTTC	CCTTCCTTTC GGAAGGAAAG	TCGCCACGTT AGCGGTGCAA	CGCCGGCTTT	CCCCGTCAAG GGGGCAGTTC
151	CTCTAAATCG GAGATTTAGC	GGGCATCCCT CCCGTAGGGA	TTAGGGTTCC AATCCCAAGG	GATTTAGTGC CTAAATCACG	TTTACGGCAC AAATGCCGTG
201	CTCGACCCCA GAGCTGGGGT	AAAAACTTGA TTTTTGAACT	TTAGGGTGAT AATCCCACTA	GGTTCTCGTA CCAAGAGCAT	GTGGGCCATC CACCCGGTAG
251	GCCCTGATAG	ACGGTTTTTC GCCCTTTG	AC.	GTTGGAGTCC	ACGTTCTTTA

TATTCTTTTG ATTTATAAGG GATTTTGCCG ATTTCGGCCT ATTGGTTAAA 351

Figure 32: functional map and sequence of pCAL module M11-III (continued)

ATAAGAAAAC TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT

TTTATATT AAAATATTAA CTTAAAATTG GAATTTTAAC AATTTAACGC TTAAATTGCG ATTTAACAAA TAAATTGTTT AAATGAGCTG TTTACTCGAC 401

BsrGI

451 CGTTTACAAT TTCATGTACA

GCAAATGTTA AAGTACATGT

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

-	1
-	1
_	•
ל	Ŋ
α	1

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Н	AGATCTGACC TCTAGACTGG	AAAATCCCTT TTTTAGGGAA	AACGTGAGTT TTGCACTCAA	TTCGTTCCAC AAGCAAGGTG	TGAGCGTCAG ACTCGCAGTC
51	ACCCCGTAGA TGGGGCATCT	AAAGATCAAA TTTCTAGTTT	GGATCTTCTT CCTAGAAGAA	GAGATCCTTT CTCTAGGAAA	TTTTCTGCGC
101	GTAATCTGCT CATTAGACGA	GCTTGCAAAC CGAACGTTTG	AAAAAAACCA TTTTTTGGT	CCGCTACCAG GGCGATGGTC	CGGTGGTTTG GCCACCAAAC
151	TTTGCCGGAT	CAAGAGCTAC GTTCTCGATG	CAACTCTTTT GTTGAGAAAA	TCCGAAGGTA AGGCTTCCAT	ACTGGCTACA TGACCGATGT
201	GCAGAGCGCA CGTCTCGCGT	GATACCAAAT CTATGGTTTA	ACTGTTCTTC TGACAAGAAG	TAGTGTAGCC ATCACATCGG	GTAGTTAGGC CATCAATCCG
251	CACCACTTCA GTGGTGAAGT	AGAACTCTGT TCTTGAGACA	AGCACCGCCT TCGTGGCGGA	ACATACCTCG TGTATGGAGC	CTCTGCTAAT GAGACGATTA
301	CCTGTTACCA GGACAATGGT	GTGGCTGCTG	CCAGTGGCGA GGTCACCGCT	TAAGTCGTGT ATTCAGCACA	CTTACCGGGT GAATGGCCCA
351	TGGACTCAAG	ACGATAGTTA	CCGGATAAGG	CGCAGCGGTC GGGCTGAACG	GGGCTGAACG

	C
	CAAT GGCCTATTCC GCGTCGCCAG CC
xt2 (continued)	GGCCTATTCC
ce of pCAL module M14-E	TGCTATCAAT
gure 33: functional map and sequenc	ACCTGAGTTC TGCTATCAAT GGCCTATTCC GCGTCGCCAG CC
gure 3	

CCCGACTTGC	ACACCGAACT TGTGGCTTGA	CCCGAAGGGA GGGCTTCCCT	AGGAGAGCGC TCCTCTCGCG BSSSI	GTCCTGTCGG	TCGTCAGGGG AGCAGTCCCC	ACGGTTCCTG TGCCAAGGAC
GCGTCGCCAG	CGAACGACCT GCTTGCTGGA	CGCCACGCTT GCGGTGCGAA	GGGTCGGAAC CCCAGCCTTG	TATCTTTATA ATAGAAATAT	TTTGTGATGC AAACACTACG	CGGCCTTTTT GCCGGAAAAA
xt2 (continued) GGCCTATTCC	CAGCTTGGAG GTCGAACCTC	TATGAGAAAG ATACTCTTTC	GTAAGCGGCA CATTCGCCGT	AAACGCCTGG TTTGCGGACC	AGCGTCGATT	GCCAGCAACG CGGTCGTTGC
e of pCAL module M14-E ^s TGCTATCAAT	GCACACAGCC CGTGTGTCGG	CAGCGTGAGC GTCGCACTCG	CAGGTATCCG GTCCATAGGC	TTCCAGGGGG	CTCTGACTTG GAGACTGAAC	ATGGAAAAAC TACCTTTTTG
Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued) ACCTGAGTTC TGCTATCAAT GGCCTA'	GGGGGTTCGT CCCCCAAGCA	GAGATACCTA CTCTATGGAT	GAAAGGCGGA CTTTCCGCCT	ACGAGGGAGC TGCTCCCTCG BssSI	GTTTCGCCAC	GGCGGAGCCT CCGCCTCGGA
Figure 33: fu	401	451	501	551	601	651

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

701

Figure 34: functional map and sequence of pCAL module M17. (continued)

Aatil		
a L	-	
ัส	4	
	u	
	์ส	
~		
	٧	

AGCAAACTGA	GTTTTCCATG	TTGTTACACC	GTGTTCACCC	ATATGGGATA	351
TGAGCTGGTG	TGAAAGACGG	CGTATGGCAA	CCCGGAGTTC	TGAATGCTCA	301
ACTCGACCAC	ACTTTCTGCC	GCATACCGTT	GGGCCTCAAG	ACTTACGAGT	
GCCCGCCTGA CGGGCGGACT	TCACATTCTT AGTGTAAGAA	CGGCCTTTAT	AAGTTTTATC TTCAAAATAG	AAATAAGCAC TTTATTCGTG	251
CCGTAAAGAA	TTTTTAAAGA	TATTACGGCC	TTCAGCTGGA	AACCAGACCG	201
GGCATTTCTT	AAAAATTTCT	ATAATGCCGG	AAGTCGACCT	TTGGTCTGGC	
ATGTACCTAT	CAGTTGCTCA	GCATTTCAGT	ACATTTTGAG	ATCGTAAAGA	151
TACATGGATA	GTCAACGAGT	CGTAAAGTCA	TGTAAAACTC	TAGCATTTCT	
TCCCAATGGC	CGTTGATATA	GATATACCAC	AAAATCACTG	AATGGAGAAA	101
AGGGTTACCG	GCAACTATAT	CTATATGGTG	TTTTAGTGAC	TTACCTCTTT	
AGGAAGCTAA TCCTTCGATT	TCAGGAGCTA AGTCCTCGAT	ATCGAGATTT TAGCTCTAAA	TTTTTGAGTT AAAAACTCAA	CCGGGCGTAT	51
AAGATCACTA	ATAATGAAAT	AACTTTCACC	GTGAGGTTCC	GGGACGTCGG	Н
TTCTAGTGAT	TATTACTTTA	TTGAAAGTGG	CACTCCAAGG	CCCTGCAGCC	

I map and sequence of pCAL module M17 (continued)
17
Σ
듬
po
Ε
Æ
ದ
õ
પુ
Ē
ъ
š
nd
<u>م</u>
33
=
ä
Ë
S
<u> </u>
34
Figure 34: functional
igi
u.

		TATACCCTAT	CACAAGTGGG	AACAATGTGG	CAAAAGGTAC	TCGTTTGACT
-	401	AACGTTTTCA TTGCAAAAGT	TCGCTCTGGA AGCGAGACCT	GTGAATACCA CACTTATGGT	CGACGATTTC GCTGCTAAAG	CGGCAGTTTC GCCGTCAAAG
-	451	TACACATATA ATGTGTATAT	TTCGCAAGAT AAGCGTTCTA	GTGGCGTGTT CACCGCACAA	ACGGTGAAAA TGCCACTTTT	CCTGGCCTAT GGACCGGATA
	501	TTCCCTAAAG AAGGGATTTC	GGTTTATTGA CCAAATAACT	GAATATGTTT CTTATACAAA	TTCGTCTCAG AAGCAGAGTC	CCAATCCCTG GGTTAGGGAC
	551	GGTGAGTTTC	ACCAGTTTTG TGGTCAAAAC	ATTTAAACGT TAAATTTGCA	AGCCAATATG TCGGTTATAC	GACAACTTCT CTGTTGAAGA
	601	TCGCCCCCGT AGCGGGGGCA	TTTCACTATG AAAGTGATAC	GGCAAATATT CCGTTTATAA	ATACGCAAGG TATGCGTTCC	CGACAAGGTG GCTGTTCCAC
	651	CTGATGCCGC GACTACGGCG	TGGCGATTCA ACCGCTAAGT	GGTTCATCAT CCAAGTAGTA	GCCGTTTGTG CGGCAAACAC	ATGGCTTCCA
	701	TGTCGGCAGA ACAGCCGTCT	ATGCTTAATG TACGAATTAC	AATTACAACA TTAATGTTGT	GTACTGCGAT CATGACGCTA	GAGTGGCAGG CTCACCGTCC
	751	GCGGGGCGTA	ATTTTTTAA	GGCAGTTATT	GGGTGCCCTT	BAACCACA

Figure 34: functional map and sequence of pCAL module M17 (continued)

TAAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC CGCCCCGCAT

BglII

TGCTAGATCT TC

801

ACGATCTAGA AGG

functional ssori Bsr61 (612) Hind 111 (515) Fsel (599) glil supershort Pac! (579) GenII-Nick Banli (919) Nhel (1076) replication start Ecori (1) 2755 bp pCAL4 Sph1 (2749) **BSSSI (1254)** Colel Ext2 origin **Kbal** (2739) Hatll (2608) lac p/o Bg111 (1803) cat

Figure 35: functional map and sequence of modular vector pCAL4

ATCGGTTGAA

CCCTCCCTCA

TATTTACCTT ATAAATGGAA

TTTCCGTCAA AAAGGCAGTT

> TAATGAATAA ATTACTTATT

> > 301

XmnI

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

1	TGGTGGCTCT ACCACCGAGA	ATAAGGGGGC TATTCCCCCG	GCTAAAGGCA CGATTTCCGT	TGGTTTCATT ACCAAAGTAA	GTGATTTTGC CACTAAAACG	AATTCACCTT TTAAGTGGAA
	ATCTGTAGGG TAGACATCCC	GCAAACGCTA CGTTTGCGAT	ACAGTCTGAC TGTCAGACTG	CTGCTATCGA GACGATAGCT	GGTGCTACTG CCACGATGAC	TGACGGTGAT ACTGCCACTA
	TCTGAGGAGG	TGAAAAGATG ACTTTTCTAC	AAAACGCGCT TTTTGCGCGA	GATTACGGTG CTAATGCCAC	TAATGGTAAT ATTACCATTA	CTCAAGTCGG GAGTTCAGCC
•	GAAGCTGATC CTTCGACTAG	ATTTTGATTA TAAAACTAAT	AATGCCGATG TTACGGCTAC	TGTCGCTACT ACAGCGATGA	CCGGCCTTGC	TCCCAAATGG AGGGTTTACC
EcoRI	AATTCGAGCA TTAAGCTCGT	GGTTCCGGTG CCAAGGCCAC	TATGACCGAA ATACTGGCTT	AACTTGATTC TTGAACTAAG	GGTGACGTTT CCACTGCAAA	TGGCTCTAAT
	⊣	. 51	101	151	201	251
			01	י הדו ידו סמו	HEFT (RULE	26)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

351	TGTCGCCCTT ACAGCGGGAA TTGTGACAAA	TTGTCTTTGG AACAGAAACC ATAAACTTAT	CGCTGGTAAA GCGACCATTT TCCGTGGTGT	CCATATGAAT GGTATACTTA CTTTGCGTTT GAAACGCAAA	TTTCTATTGA AAAGATAACT CTTTTATATG
451	TTGCCACCTT	TATGTATGTA	TTTTCTACGT AAAAGATGCA	TTGCTAACAT AACGATTGTA	ACTGCGTAAT TGACGCATTA
501	AAGGAGTCTT TTCCTCAGAA	HindIII ~~~~~~ GATAAGCTTG CTATTCGAAC	ACCTGTGAAG TGGACACTTC	TGAAAAATGG ACTTTTTACC	CGCAGATTGT GCGTCTAACA
551	GCGACATTTT	TTTTGTCTGC	PacI ~~~~~~~ CGTTTAATTA GCAAATTAAT	AAGGGGGGG	Fsel
601	TGGGGGGGG	BsrGI ~~~~~~ TGTACATGAA ACATGTACTT	ATTGTAAACG TAACATTTGC	ТТААТАТТТТ ААТТАТАААА	GTTAAAATTC CAATTTTAAG

08320					. ,	n ()	ပု ပ္ပ	
CATTT TITAACCAAT AGGCCGAAAT	GAATA GACCGAGATA (GAATA CHGCCTCTAT	TAAAGAACGT C	GATGGCCCAC	GATAGICCCC GAGGGGTCGAG GTGCCGTAAA GCACTAAATC TGGGGTCGAG GTGCCGTAAA CGTGATTTAG		_	GCTAAATCTC GAAGAAAGCG	CTTCTTTCGC
<₹	GCGTTAAATT TTTGTTAAA, GTC GCGAATTTAA AAACAATTTA GTC	CGGCAAAATC CCTTATAATTTA CGCGTTTTAG GGAATATTTAG GGAATATTTAG	C .		851 ATCACCCTAA TCAAGILIII		901 GGAACCCTAA AGGGAGCCCC	951 AACGTGGCGA GAAAGGAAGG 951 AACGTGCGCT CTTTCCTTCC
Finure 3	651	701		SUBSTIT	UTE SHEE	T (RULE 21	6)	

. I am di amilian i

	GIAGCGGICA CGCIGCGCGI AACCACCACA CCCGCCGCGC	A CATCGCCAGT GCGACGCGCA TTGGTGGTGT GGGCGGCGCG
	CGCGT AAC	GCGCA TTG(
pCAL4 (continued)	CA CGCTG	GT GCGAC
e of modular vector	GTAGCGGT	CATCGCCA
Figure 35: functional map and sequence of modular vector pCAL4 (continued)	GCTGGCAAGT	CGACCGTTCA
Figure 35: F	1001	

H
Jhe
Z

AAAGGCCAGC	TTTCCATAGG	GTCAGAGGTG	CCTGGAAGCT
TTTCCGGTCG	AAAGGTATCC	CAGTCTCCAC	GGACCTTCGA
	TGCTGGCGTT TT	CGACGCTCAA GI	GGCGTTTCCC CC
	ACGACCGCAA AA	GCTGCGAGTT CA	CCGCAAAGGG GG
GCGTGCTAGC CATGTGAGCA		TCACAAAAAT	AAAGATACCA
CGCACGATCG GTACACTCGT		AGTGTTTTTA	TTTCTATGGT
GCTACAGGGC	GAACCGTAAA AAGGCCGCGT	CTGACGAGCA	ACAGGACTAT
CGATGTCCCG	CTTGGCATTT TTCCGGCGCA		TGTCCTGATA
TTAATGCGCC	AAAAGGCCAG TTTTCCGGTC	CTCCGCCCCC	GCGAAACCCG CGCTTTGGGC
1051	1101	1151	1201
	SUBS	TITUTE SHE	ET (RULE 26

BSSSI

CACGCTGTAG GTGCGACATC ATACCTGTCC TATGGACAGG TCTCATAGCT CGCTTACCGG AGAGTATCGA GCGAATGGCC GGCTGGGACG CGTGGCGCTT GCACCGCGAA CCGACCCTGC CTCTCCTGTT CTTCGGGAAG GAAGCCCTTC GAGAGGACAA CGGAAAGAGG GGGAGCACGC CCCTCGTGCG GCCTTTCTCC 1 1 1 1 1 1 1 1301 1251

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

	1351	GTATCTCAGT CATAGAGTCA	TCGGTGTAGG	TCGTTCGCTC AGCAAGCGAG	CAAGCTGGGC GTTCGACCCG	TGTGTGCACG ACACACGTGC
	1401	AACCCCCCGT TTGGGGGGCA	TCAGCCCGAC AGTCGGGCTG	CGCTGCGCCT GCGACGCGGA	TATCCGGTAA ATAGGCCATT	CTATCGTCTT GATAGCAGAA
-	1451	GAGTCCAACC CTCAGGTTGG	CGGTAAGACA GCCATTCTGT	CGACTTATCG GCTGAATAGC	CCACTGGCAG GGTGACCGTC	CAGCCACTGG GTCGGTGACC
) IDOT::::::::::::::::::::::::::::::::::::	1501	TAACAGGATT ATTGTCCTAA	AGCAGAGCGA TCGTCTCGCT	GGTATGTAGG CCATACATCC	CGGTGCTACA GCCACGATGT	GAGTTCTTGA CTCAAGAACT
OUTT (DIS	1551	AGTGGTGGCC TCACCACCGG	TAACTACGGC ATTGATGCCG	TACACTAGAA ATGTGATCTT	GAACAGTATT CTTGTCATAA	TGGTATCTGC ACCATAGACG
E 60\	1601	GCTCTGCTGT CGAGACGACA	AGCCAGTTAC TCGGTCAATG	CTTCGGAAAA GAAGCCTTTT	AGAGTTGGTA TCTCAACCAT	GCTCTTGATC CGAGAACTAG
	1651	CGGCAAACAA GCCGTTTGTT	ACCACCGCTG TGGTGGCGAC	GTAGCGGTGG CATCGCCACC	TTTTTTTGTT AAAAAAACAA	TGCAAGCAGC
	1701	AGATTACGCG TCTAATGCGC	CAGAAAAAA GTCTTTTTTT	GGATCTCAAG CCTAGAGTTC	AAGATCCTTT TTCTAGGAAA	GATCTTTTCT

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

				٧.	•	
GGATTTTGGT	ТТАААААААТ	CATTAAGCAT	TGAATCGCCA	CATAGTGAAA	CAAAACTGGT	TCAATAAACC
CCTAAAAACCA	ААТТТТТТБ	GTAATTCGTA	ACTTAGCGGT	GTATCACTTT	GTTTTGACCA	AGTTATTTGG
TCACGTTAAG	AATAACTGCC	TGTTGTAATT	ATGATGAACC	AATATTTGCC	ACGTTTAAAT	AAACATATTC
AGTGCAATTC	TTATTGACGG	ACAACATTAA	TACTACTTGG	TTATAAACGG	TGCAAATTTA	TTTGTATAAG
GAACGAAAAC	TAAGGGCACC	ATCGCAGTAC	CACAAACGGC	CCTTGCGTAT	CATATTGGCT	CTGAGACGAA
CTTGCTTTTG		TAGCGTCATG	GTGTTTGCCG	GGAACGCATA	GTATAACCGA	GACTCTGCTT
ACGCTCAGTG	ACCAGGCGTT	CCTGCCACTC	TGGAAGCCAT	CACCTTGTCG	AGAAGTTGTC	CAGGGATTGG
TGCGAGTCAC	TGGTCCGCAA	GGACGGTGAG	ACCTTCGGTA	GTGGAACAGC	TCTTCAACAG	GTCCCTAACC
ACGGGGTCTG TGCCCCAGAC	BglII ~~~~~~ CAGATCTAGC GTCTAGATCG	TACGCCCCGC	TCTGCCGACA	GCGGCATCAG	ACGGGGGCGA TGCCCCCGCT	GAAACTCACC CTTTGAGTGG
1751	1801	1851	1901	1951	2001	2051
		SUBSTITE	JTE SHEET ((RULE 26)		

AA	GA	CAC	366 366	CTT GAA	GAA	TGT	TTT AAA
ATCTTGCGAA TAGAACGCTT	TCCAGAGCGA AGGTCTCGCT	GGGTGAACAC CCCACTTGTG	GAACTCCGGG CTTGAGGCCC	GATAAAACTT CTATTTTGAA	TCCAGCTGAA AGGTCGACTT	CTCAAAATGT GAGTTTTACA	CAGTGATTTT GTCACTAAAA
AACACGCCAC TTGTGCGGTG	TGGTATTCAC ACCATAAGTG	GGTGTAACAA CCACATTGTT	TTGCCATACG AACGGTATGC	ATAAAGGCCG TATTTCCGGC	GGCCGTAATA CCGGCATTAT	ACTGAAATGC TGACTTTACG	GTGGTATATC CACCATATAG
(continued) TTTTCACCGT AAAAGTGGCA	GAAATCGTCG CTTTAGCAGC	CATGGAAAAC GTACCTTTTG	CCGTCTTTCA GGCAGAAAGT	AAGAATGTGA TTCTTACACT	TCTTTAAAAA AGAAATTTTT	TGAGCAACTG ACTCGTTGAC	TATATCAACG ATATAGTTGC
e of modular vector pCAL4 (continued) ATAGGCCAGG TTTTTC? TATCCGGTCC AAAAGJ	GAAACTGCCG CTTTGACGGC	TCAGTTTGCT AGTCAAACGA	CACCAGCTCA GTGGTCGAGT	TCAGGCGGGC AGTCCGCCCG	TTCTTTACGG AAGAAATGCC	ATAGGTACAT TATCCATGTA	GCCATTGGGA
Figure 35: functional map and sequence 2101 CTTTAGGGAA CAAATCCCTT	TATATGTGTA	TGAAAACGTT ACTTTTGCAA	TATCCCATAT	TGAGCATTCA	GTGCŸTATTT CACGAATAAA	CGGTCTGGTT	TCTTTACGAT AGAAATGCTA
Figure 35: fu 2101	2151	2201	2251	2301	2351	2401	2451
			CHECTITI	ITE QUEET (BIII F 26)		

GAT AACTCAAAAA		CCC AGGCTTTACA GGG TCCGAAATGT	AGC GGATAACAAT TCG CCTATTGTTA	xbal Sphi ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
AAATCTCGAT	GGTGAAAGTT	TAGGCACCCC	AATTGTGAGC TTAACACTCG	Xb. ~~~ ACGAATTTCT TGCTTAAAGA		
4 (continued) TAGCTCCTGA ATCGAGGACT	ATTTCATTAT TAAAGTAATA	GCTCACTCAT	TGTTGTGTGG	GACCATGATT		
TTAGCTTCCT	TAGTGATCTT	ATGTGAGTTA TACACTCAAT	CCGGCTCGTA GGCCGAGCAT	AAACAGCTAT TTTGTCGATA		
Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2501 TTTCTCCATT TTAGCTTCCT TAGCTCACT AATCGACGA ATCGAC	ATACGCCCGG	Aatii ~~~~~~ CCGACGTCTA GGCTGCAGAT	CTTTATGCTT GAAATACGAA	TTCACACAGG	EcoRI	00000 00000
Figure 35: 1 2501	2551	2601	2651	ET (RULE 26)		2751
		SUB		F1 (110FF 50)		

115 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors

SUBSTITUTE SHEET (RULE 26) 116 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. 7 Σ AatII

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG ACACTCAATC GACGTCTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 51

XmnI

XbaI

GTATAATGTA CATATTACAT GAATAACTIC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

~~~~~

SphI

ACG TGC AGTTATCGCA TCAATAGCGT CGCTATACGA GCGATATGCT

151

SUBSTITUTE SHEET (RULE 26)

101

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



AatII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. ო Z BglII

TGACGIC ACTGCAG TACGAAGTTA ATGCTTCAAT ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# M 7-I (long):

ECORI

| TT         | CA         | CA           | SCA        | TG         | AG         | 0<br>0<br>0<br>0 |
|------------|------------|--------------|------------|------------|------------|------------------|
| AAAGTTGTTT | AAAGACGACA | GAATGCTACA   | GTACATGGGT | TCTGAGGGTG | ACCTCCTGAG | CTCTCGACGG       |
| TTTCAACAAA | TTTCTGCTGT | CTTACGATGT   | CATGTACCCA | AGACTCCCAC | TGGAGGACTC | GAGAGCTGCC       |
| AAA<br>TTT | AAA        | GAA          | GT?<br>CA1 | TCT        | ACC        | CTC              |
| GAAACGGTTG | TAACGTCTGG | GCTGTCTGTG   | CAGTGTTACG | GGGTGGTGGC | GCGGTACTAA | TATATCAACC       |
| CTTTGCCAAC | ATTGCAGACC | CGACAGACAC   | GTCACAATGC | CCCACCACCG | CGCCATGATT | ATATAGTTGG       |
| TGCGTGCGCT | ATTCATTTAC | AACTATGAGG   | TGACGAAACT | CTGAAAATGA | TCTGAGGGTG | GGGCTATACT       |
| ACGCACGCGA | TAAGTAAATG | TTGATACTCC   | ACTGCTTTGA | GACTTTTACT | AGACTCCCAC | CCCGATATGA       |
| GTGGTGGATC | CATACAGAAA | TCGTTACGCT   | TTTGTACTGG | CTTGCTATCC | GGGTGGCGGT | CACCTATTCC       |
| CACCACCTAG | GTATGTCTTT | AGCAATGCGA   | AAACATGACC | GAACGATAGG | CCCACCGCCA | GTGGATAAGG       |
| GAATTCGGTG | AGCAAAATCC | AAACTTTAGA   | GGCGTTGTAG | TCCTATTGGG | GCGGTTCTGA | TACGGTGATA       |
| CTTAAGCCAC | TCGTTTTAGG | TTTGAAATCT   |            | AGGATAACCC | CGCCAAGACT | ATGCCACTAT       |
| ۲          | 51         | 101          | 151        | 201        | 251        | 301              |
|            |            | CHOCTIT! IT! | FOURT ON   | U F 00\    |            |                  |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 351     | CACTTATCCG<br>GTGAATAGGC | CCTGGTACTG<br>GGACCATGAC | AGCAAAACCC<br>TCGTTTTGGG | CGCTAATCCT<br>GCGATTAGGA | AATCCTTCTC<br>TTAGGAAGAG |
|---------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 401     | TTGAGGAGTC<br>AACTCCTCAG | TCAGCCTCTT<br>AGTCGGAGAA | AATACTTTCA<br>TTATGAAAGT | TGTTTCAGAA<br>ACAAAGTCTT | TAATAGGTTC<br>ATTATCCAAG |
| 451     | CGAAATAGGC<br>GCTTTATCCG | AGGGGGCATT<br>TCCCCCGTAA | AACTGTTTAT<br>TTGACAAATA | ACGGGCACTG<br>TGCCCGTGAC | TTACTCAAGG<br>AATGAGTTCC |
| 501     | CACTGACCCC<br>GTGACTGGGG | GTTAAAACTT<br>CAATTTTGAA | ATTACCAGTA<br>TAATGGTCAT | CACTCCTGTA<br>GTGAGGACAT | TCATCAAAAG<br>AGTAGTTTTC |
| <br>551 | CCATGTATGA<br>GGTACATACT | CGCTTACTGG<br>GCGAATGACC | AACGGTAAAT<br>TTGCCATTTA | TCAGAGACTG<br>AGTCTCTGAC | CGCTTTCCAT<br>GCGAAAGGTA |
| <br>601 | TCTGGCTTTA<br>AGACCGAAAT | ATGAGGATTT<br>TACTCCTAAA | ATTTGTTTGT<br>TAAACAAACA | GAATATCAAG               | GCCAATCGTC               |
| 651     | TGACCTGCCT<br>ACTGGACGGA | CAACCTCCTG<br>GTTGGAGGAC | TCAATGCTGG<br>AGTTACGACC | CGGCGGCTCT               | GGTGGTGGTT<br>CCACCACCAA |
| 701     | CTGGTGGCGG<br>GACCACCGCC | CTCTGAGGGT<br>GAGACTCCCA | GGTGGCTCTG               | AGGGTGGCGG               | TTCTGAGGGT<br>AAGACTCCCA |

122 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 4                        |                          |                          | v.                       |                          |                                              |                          |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------------|--------------------------|
| CCGGTGATTT<br>GGCCACTAAA | ACCGAAAATG<br>TGGCTTTTAC | TGATTCTGTC<br>ACTAAGACAG | ACGTTTCCGG<br>TGCAAAGGCC | TCTAATTCCC<br>AGATTAAGGG | XmnI<br>~~~~~~~~<br>GAATAATTTC<br>CTTATTAAAG | GCCCTTTTGT<br>CGGGAAAACA |
| GGCTCTGGTT               | GGGGGCTATG               | AAGGCAAACT               | TTCATTGGTG               | TTTTGCTGGC               | CACCTTTAAT                                   | GTTGAATGTC               |
| CCGAGACCAA               | CCCCCGATAC               | TTCCGTTTGA               | AAGTAACCAC               |                          | GTGGAAATTA                                   | CAACTTACAG               |
| TTCCGGTGGT               | ACGCTAATAA               | TCTGACGCTA               | TATCGATGGT               | CTACTGGTGA               | GGTGATAATT                                   | CCCTCAATCG               |
| AAGGCCACCA               | TGCGATTATT               | AGACTGCGAT               | ATAGCTACCA               | GATGACCACT               | CCACTATTAA                                   | GGGAGTTAGC               |
| AGGGAGGCGG               | AAGATGGCAA               | CGCGCTACAG               | ACGGTGCTGC               | GGTAATGGTG               | AGTCGGTGAA                                   | TACCTTCCAT               |
| TCCCTCCGCC               | TTCTACCGTT               | GCGCGATGTC               | TGCCACGACG               | CCATTACCAC               | TCAGCCACTT                                   | ATGGAAGGTA               |
| GGCGGCTCTG               | TGATTATGAA               | CCGATGAAAA               | GCTACTGATT               | CCTTGCTAAT               | AAATGGCTCA                                   | CGTCAATATT               |
| CCGCCGAGAC               | ACTAATACTT               | GGCTACTTTT               |                          | GGAACGATTA               | TTTACCGAGT                                   | GCAGTTATAA               |
| 751                      | 801                      | 851                      | 901                      | 951                      | 1001                                         | 1051                     |
|                          |                          |                          | SUBSTITUT                | E SHEET (RL              | ILE 26)                                      |                          |

| g)                     |   |
|------------------------|---|
| ž<br>Ž                 |   |
| ont                    |   |
| ũ                      |   |
| tor                    |   |
| Ve                     |   |
| 7                      |   |
| b<br>D                 |   |
| au                     |   |
| z es                   |   |
| por                    |   |
| בו זכ                  |   |
| ect                    |   |
| <b>}</b>               |   |
| Š                      |   |
| na.                    |   |
| : <u>:</u>             | • |
| ppe                    |   |
| o                      |   |
| Ses                    |   |
| uen                    |   |
| ps and sequences of ad |   |
| pue                    |   |
| ps :                   |   |
| E                      |   |
| Jua                    |   |
| icti                   |   |
| F                      |   |
| 59:                    |   |
| Fe 3                   |   |
| Figu                   |   |
| _                      |   |

| •                                                                                       |                                                |                                                                      | ₩                      |
|-----------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|------------------------|
| GACAAAATAA<br>CTGTTTTATT                                                                | CACCTTTATG<br>GTGGAAATAC                       | HindIII<br>AGTCTTGATA<br>TCAGAACTAT                                  |                        |
| ĠTAAACCCT ATGAATTTTC TATTGATTGT GACAAAATAA<br>CATTTGGGA TACTTAAAG ATAACTAACA CTGTTTTATT |                                                | CGTAATAAGG<br>GCATTATTCC                                             |                        |
| ATGAATTTTC<br>TACTTAAAAG                                                                | GCGTTTCTTT TATATGTTGC<br>CGCAAAGAAA ATATACAACG | TAACATACTG                                                           |                        |
| GĠTAAACCCT<br>CCATTTGGGA                                                                | TGGTGTCTTT<br>ACCACAGAAA                       | TATGTATTTT CTACGTTTGC TAACATACTG<br>ATACATAAAA GATGCAAACG ATTGTATGAC |                        |
| CTTTGGCGCT<br>GAAACCGCGA                                                                | ACTTATTCCG<br>TGAATAAGGC                       | TATGTATTTT                                                           | HindI<br>~~~~<br>AGCTT |
| 1101                                                                                    | 1151                                           | 1201                                                                 | 1551                   |
|                                                                                         |                                                |                                                                      |                        |

124 / 204



SUBSTITUTE SHEET (RULE 26) 125 / 204

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# M 7-II (SS-TAG)

### ECORI

| GTGATTTTGA                  | CACTAAAACT         |
|-----------------------------|--------------------|
| GETTC CGGTGGTGGC TCTGGTTCCG | G AGACCAAGGC CACT? |
| CGGTGGTGGC                  | GCCACCACCG AGA     |
| GAGGCGGTTC                  | CTCCGCCAAG         |
| CGGGAATTCG                  | GCCCTTAAGC         |
| <b>-</b>                    |                    |

| GGCTATGACC GAAAATGCCG | CTTTTACGGC            |
|-----------------------|-----------------------|
| GGCTATGACC            | GATTATTCCC CCGATACTGG |
| CTAATAAGGG            | GATTATTCCC            |
| ATGGCAAACG CTAATAAGGG | TACCGTTTGC            |
| TTATGAAAAG            | AATACTTŤTC            |
| 51                    | c                     |

| A TTCTGTCGCT          | CGATGTCAGA CTGCGATTTC CGTTTGAACT AAGACAGCGA |
|-----------------------|---------------------------------------------|
| GACGCTAAAG GCAAACTTGA | CGTTTGAACT                                  |
| GACGCTAAAG            | CTGCGATTTC                                  |
| GCTACAGTCT            | CGATGTCAGA                                  |
| ATGAAAACGC            | TACTTTTGCG                                  |
| 101                   |                                             |
| BSTI                  | דעד                                         |

| C ATTGGTGACG TTTCCGGCCT | TGC AAAGGCCGGA        |
|-------------------------|-----------------------|
| ATTGGTG                 | ; TAACCACTGC          |
| T CGATGGTTTC            | GCTACCAAAG            |
| GTGCTGCTAT CGATGGTTTC   | CACGACGATA GCTACCAAAG |
| ACTGATTACG              | TGACTAATGC            |
| 151                     |                       |
| HEET                    | i (2)                 |

| AATTCCCAAA                | TTAAGGGTTT      |
|---------------------------|-----------------|
| A CTGGTGATTT TGCTGGCTCT A | A ACGACCGAGA    |
| CTGGTGATTT                | CGAT GACCACTAAA |
| AATGGTGCTA                | TTACCACGAT      |
| TGCTAATGGT                | ACGATTACCA      |
| 201                       |                 |
| E 26)                     |                 |

## TAATTTCCGT ATTAAAGGCA ~~~~~~~~~~~ GATAATTCAC CTTTAATGAA GAAATTACTT CTATTAAGTG CGGTGACGGT GCCACTGCCA TGGCTCAAGT ACCGAGTTCA 251

SUBSTITUTE SHEET (RULE 20

126 / 204

| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| È                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COURT BECOME FACE TO THE TENTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| :<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CCECE RRO DECOME FOR CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE |
| ,<br>ה                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ֖֝֝֝֝֝֝֡֝֝֝֡֝֝֡֝֝֡֓֓֓֓֓֓֓֓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 301 | 301 CAATATTAC<br>GTTATAAATG    | CTTCCCTCCC               | TCAATCGGTT<br>AGTTAGCCAA | GAATGTCGCC<br>CTTACAGCGG | CTTTTGTCTT<br>GAAAACAGAA                    |  |
|-----|--------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------|--|
| 351 | TGGCGCTGGT<br>ACCGCGACCA       | AAACCATATG<br>TTTGGTATAC | ААТТТТСТАТ<br>ТТААААGАТА | TGATTGTGAC<br>ACTAACACTG | AAAATAAACT<br>TTTTATTTGA                    |  |
| 401 | TATTCCGTGG<br>ATAAGGCACC       | TGTCTTTGCG<br>ACAGAAACGC | TTTCTTTTAT<br>AAAGAAAATA | ATGTTGCCAC<br>TACAACGGTG | CTTTATGTAT<br>GAAATACATA                    |  |
| 451 | GTATTTTCTA<br>CATAAAAGAT<br>Hi | CGTTTGCTAA               | CATACTGCGT<br>GTATGACGCA | AATAAGGAGT<br>TTATTCCTCA | HindIII<br>~~~~<br>CTTGATAAGC<br>GAACTATTCG |  |
| 501 | ∏ 4                            |                          |                          |                          |                                             |  |

|   |           | Badhistoner ark. |
|---|-----------|------------------|
|   |           |                  |
|   |           |                  |
|   |           | :                |
|   |           | ;                |
|   |           |                  |
| * | · **      | 1                |
|   |           |                  |
|   |           |                  |
|   |           | •<br>•<br>•      |
|   |           | 2                |
|   | <b>a.</b> |                  |
|   | . *       |                  |
|   |           |                  |
|   |           |                  |
|   |           | 1                |
|   |           | 1                |
|   |           | 1                |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# M 10-II:

BsrGI

| AACCCTGATA    | CAACATTTCC               |
|---------------|--------------------------|
| TTGGGACTAT    | GTTGTAAAGG               |
| ATGAGACAAT    | TATGAGTATT               |
| TACTCTGTTA    | ATACTCATAA               |
| GTATCCGCTC    | AAAGGAAGAG<br>TTTCCTTCTC |
| ATTCAAATAT    | TAATATTGAA               |
| TAAGTTTATA    | ATTATAACTT               |
| GGGGGTGTAC    | AATGCTTCAA<br>TTACGAAGTT |
| <del></del> 1 | 51                       |

|     | TGTTTTGCT  | A ATAAGGGAAA AAACGCCGTA AAACGGAAGG ACAAAAACGA |
|-----|------------|-----------------------------------------------|
|     | TTTGCCTTCC | AAACGGAAGG                                    |
|     | TTTGCGGCAT | AAACGCCGTA                                    |
|     | TATTCCCTTT | ATAAGGGAAA                                    |
|     | 5          | 3005                                          |
|     | 101        |                                               |
| IR! | TITS       | TITE                                          |

| AGTTGGGTGC | GCGACCACTT TCATTTTCTA CGACTCCTAG TCAACCCACC |
|------------|---------------------------------------------|
| GCTGAGGATC | CGACTCCTAG                                  |
| AGTAAAAGAT | TCATTTTCTA                                  |
| CGCTGGTGAA | GCGACCACTT                                  |
| CACCCAGAAA | GTGGGTCTTT                                  |
| 151        | (D.)                                        |

XmnI

|            | ATTTOANT                                    |
|------------|---------------------------------------------|
| TGAGCACTT  | GCTTCTTGCA AAAGGTTACT ACTCGTGAAA ATTTCAAGAC |
| TTTCCAATGA | AAAGGTTACT                                  |
| CGAAGAACGT | GCTTCTTGCA                                  |
| GTTTTCGCCC | CAAAAGCGGG                                  |
| 251        |                                             |

|      |  |          | A . A shicknesses in . |
|------|--|----------|------------------------|
|      |  |          |                        |
|      |  |          | a Transference .       |
|      |  |          | a                      |
|      |  |          |                        |
|      |  |          | :<br>:                 |
| \$~~ |  | <b>e</b> |                        |
|      |  |          | 4                      |
|      |  |          |                        |
|      |  |          |                        |

HindIII 1111

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. დ Σ SphI

11111

TAAGCTT TACGAAGTTA ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT GCATGCCATA

ATTCGAA ATGCTTCAAT CGTACGGTAT



137 / 204

GCAAATGTTA AAGTACATGT

| utitsau <b>s</b><br>i                   |                                                                      |                                                                      | Figure 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 451                                     | 401                                                                  | 351                                                                  | a: Functiona<br>301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CGTTTACAAT                              | AAATGAGCTG<br>TTTACTCGAC                                             | TATTCTTTTG<br>ATAAGAAAAC                                             | Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)  301 ATAGTGGACT CTTGTTCCAA ACTGGAACAA CACT TATCACCTGA GAACAAGGTT TGACCTTGTT GTGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BsrgI<br>~~~~~<br>CGTTTACAAT TTCATGTACA | AAATGAGCTG ATTTAACAAA AATTTAACGC<br>TTTACTCGAC TAAATTGTTT TTAAATTGCG | TATTCTTTTG ATTTATAAGG GATTTTGCCG<br>ATAAGAAAAC TAAATATTCC CTAAAACGGC | maps and sequences of additional pCAL vector modules and pCAL vectors (cATAGTGGACT CTTGTTCCAA ACTGGAACAATATCACCTGA GAACAAGGTT TGACCTTGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | AATTTAACGC<br>TTAAATTGCG                                             | GATTTTTGCCG<br>CTAAAACGGC                                            | nules and pCAL vectors (control of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the polic |
| ·                                       | GAATTTTAAC<br>CTTAAAATTG                                             | ATTTCGGCCT ATTGGTTAAA<br>TAAAGCCGGA TAACCAATTT                       | ontinued) CACTCAACCC GTGAGTTGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | GAATTTTAAC AAAATATTAA<br>CTTAAAATTG TTTTATAATT                       | ATTGGTTAAA<br>TAACCAATTT                                             | TATCTCGGTC<br>ATAGAGCCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





HindIII ~~~~

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. & W Sphī

TAAGCTT ATTCGAA TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT GCATGCCATA CGTACGGTAT



SUBSTITUTE SHEET (RULE 26) 130 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

### 10-II Σ

### BsrGI

| TATGAGTATT CAACATTTCC | TAATATTGAA AAAGGAAGAG TATGAGTATT CAACATTTCC  | AAAGGAAGAG | TAATATTGAA AAAGGAAGAG | AATGCTTCAA<br>TTACGAAGTT | 51       |
|-----------------------|----------------------------------------------|------------|-----------------------|--------------------------|----------|
| TIGGGACTAT            | TACTCTGTTA                                   | CATAGGCGAG | TAAGTTTATA            | CCCCCACATG               | 4        |
| AACCCTGATA            | ATTICAAATAT GTATCCGCTC ATGAGACAAT AACCCTGATA | GTATCCGCTC | ATTCAAATAT            | GGGGGTGTAC               | <b>-</b> |

|                      | աշնափանանա |
|----------------------|------------|
| )<br> <br> <br> <br> | TO THE     |
|                      |            |
|                      | TTTGCGGCAT |
|                      | TATTCCCTTT |
|                      | GTGTCGCCCT |
|                      | 101        |
| SUE                  | 3.STi      |

| TITGCCTICC IGITITIGCT       | ACAAAAACGA              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TTTGCCTTCC                  | A AAACGCCGTA AAACGGAAGG | THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O |
| TTTGCGGCAT                  | AAACGCCGTA              | E 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TATTCCCTTT                  | ATAAGGGAAA              | * * CECCECC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathcal{E}_{\mathcal{E}}$ | CACAGCGGGA              | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 101                         |                         | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| STIT                        | UTE                     | SHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

ACCTAGAGTT

CGCTCACCCA

TAGGAACTCT

|            | GCTTCTTGCA AAAGGTTACT ACTCGTCAAA ATTTCAAA |
|------------|-------------------------------------------|
| TGAGCACTTT | A A A DILUTIA                             |
| TTTCCAATGA | AAAGGTTACT                                |
| CGAAGAACGT | GCTTCTTGCA                                |
| GTTTTCGCCC | CAAAAGCGGG                                |
| 251        |                                           |

| $\overline{\Xi}$ |
|------------------|
| ĕ                |
| <u>.</u> ≦       |
| =                |
| g                |
| <u> </u>         |
| ŏ                |
| $\overline{z}$   |
| ž                |
| AL               |
| ပွဲ              |
| Ð                |
| Ë                |
| S                |
| ≝                |
| ğ                |
| Ĕ                |
| =                |
| 끍                |
| Š                |
| ب                |
| స్త              |
| <u> </u>         |
| Па               |
| Ō                |
| ÷                |
| Ď                |
| Ĵ.               |
| 2                |
| ဗ                |
| e<br>L           |
| 2                |
| ပ္ထ              |
| ъ                |
| au               |
| ps               |
| na<br>na         |
|                  |
| ПЗ               |
| .⊵               |
| $\overline{z}$   |
| Ë                |
| <u></u>          |
| 53               |
| e,               |
| ž                |
| ō                |
| 4                |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|                          |                          |                          | SUBS                     | TITI ITE QUE             | T (2111 F 26)            |                          | 7          |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| 701                      | 751                      | 801                      | 851                      | 901                      | 951                      | 1001                     | 1051       |
| ACTGGATGGA               | CCGGCTGGCT               | TCGCGGTATC<br>AGCGCCATAG | TAGTTATCTA<br>ATCAATAGAT | CAGATCGCTG<br>GTCTAGCGAC | ACCAAGTTTA<br>TGGTTCAAAT | TTTAAAAGGA<br>AAATTTTCCT | CCCTTAACGT |
| GGCGGATAAA<br>CCGCCTATTT | GGTTTATTGC<br>CCAAATAACG | ATTGCAGCAC<br>TAACGTCGTG | CACGACGGGG<br>GTGCTGCCCC | AGATAGGTGC               | CTCATATATA<br>GAGTATATAT | TCTAGGTGAA<br>AGATCCACTT | GAGTTTTCGT |
| GTTGCAGGAC               | TGATAAATCT<br>ACTATTTAGA | TGGGGCCAGA<br>ACCCCGGTCT | AGTCAGGCAA<br>TCAGTCCGTT | CTCACTGATT<br>GAGTGACTAA | CTTTAGATTG<br>GAAATCTAAC | GATCCTTTTT<br>CTAGGAAAAA | TCCACTGAGC |
| CACTTCTGCG<br>GTGAAGACGC | GGAGCCGGTG<br>CCTCGGCCAC | TGGTAAGCCC<br>ACCATTCGGG | CTATGGATGA<br>GATACCTACT | AAGCATTGGG<br>TTCGTAACCC | ATTTAAAACT<br>TAAATTTTGA | GATAATCTCA<br>CTATTAGAGT | GTCAGACCCC |
| CTCGGCCCTT<br>GAGCCGGGAA | AGCGTGGGTC<br>TCGCACCCAG | TCCCGTATCG<br>AGGCCATAGC | ACGAAATAGA<br>TGCTTTATCT | TAACTGTCAG<br>ATTGACAGTC | TCATTTTTAA<br>AGTAAAAATT | TGACCAAAAT<br>ACTGGTTTTA | GTAGAAAAGA |
|                          |                          |                          |                          |                          |                          |                          |            |

133 / 204

| ם                                                                                                       |
|---------------------------------------------------------------------------------------------------------|
| ت                                                                                                       |
| ⋾                                                                                                       |
| _                                                                                                       |
| =                                                                                                       |
| =                                                                                                       |
| <u></u>                                                                                                 |
| ວ                                                                                                       |
| _                                                                                                       |
| Š                                                                                                       |
| ≍                                                                                                       |
| ≌                                                                                                       |
| U                                                                                                       |
| ىي                                                                                                      |
| >                                                                                                       |
| _                                                                                                       |
| 4                                                                                                       |
| $\sim$                                                                                                  |
| $\simeq$                                                                                                |
| _                                                                                                       |
| 0                                                                                                       |
| _                                                                                                       |
| G                                                                                                       |
| S                                                                                                       |
| نهٔ                                                                                                     |
| =                                                                                                       |
| <b>≍</b>                                                                                                |
| ×                                                                                                       |
| $\simeq$                                                                                                |
|                                                                                                         |
| _                                                                                                       |
| 0                                                                                                       |
| بنيد                                                                                                    |
| ž                                                                                                       |
| ×                                                                                                       |
| ٠.                                                                                                      |
| 7                                                                                                       |
| ٩.                                                                                                      |
| پ                                                                                                       |
| <b>Q</b>                                                                                                |
| _                                                                                                       |
| <u>@</u>                                                                                                |
| =                                                                                                       |
| 0                                                                                                       |
|                                                                                                         |
| ≔                                                                                                       |
| ₩                                                                                                       |
| ä                                                                                                       |
| additi                                                                                                  |
| additi                                                                                                  |
| of additi                                                                                               |
| of additi                                                                                               |
| s of additi                                                                                             |
| es of additi                                                                                            |
| nces of additi                                                                                          |
| ences of additi                                                                                         |
| rences of additi                                                                                        |
| quences of additi                                                                                       |
| equences of additi                                                                                      |
| sequences of additi                                                                                     |
| d sequences of additi                                                                                   |
| nd sequences of additi                                                                                  |
| and sequences of additi                                                                                 |
| and sequences of additi                                                                                 |
| ss and sequences of additi                                                                              |
| ips and sequences of additi                                                                             |
| naps and sequences of additi                                                                            |
| maps and sequences of additi                                                                            |
| I maps and sequences of additi                                                                          |
| ial maps and sequences of additi                                                                        |
| inal maps and sequences of additi                                                                       |
| onal maps and sequences of additi                                                                       |
| tional maps and sequences of additi                                                                     |
| ctional maps and sequences of additi                                                                    |
| nctional maps and sequences of additi                                                                   |
| unctional maps and sequences of additi                                                                  |
| Functional maps and sequences of additi                                                                 |
| :: Functional maps and sequences of additi                                                              |
| ia: Functional maps and sequences of additi                                                             |
| 15a: Functional maps and sequences of additi                                                            |
| 35a: Functional maps and sequences of additi                                                            |
| e 35a: Functional maps and sequences of additi                                                          |
| ire 35a: Functional maps and sequences of additi                                                        |
| jure 35a: Functional maps and sequences of additi                                                       |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued |

|                  |                                         |            |            | FseI       | Pacl      |
|------------------|-----------------------------------------|------------|------------|------------|-----------|
| 1101             | TCAAAGGATC                              | TTCTTGAGAT | CCTTTTTGAT | AATGGCCGGC | CCCCCCCTT |
| H<br>><br>H<br>H | AGTTTCCTAG                              | AAGAACTCTA | GGAAAAACTA | TTACCGGCCG | GGGGGGGAA |
|                  | PacI                                    |            |            |            |           |
|                  | * * * * * * * * * * * * * * * * * * * * |            |            |            |           |
| 1151             | AATTAAGGGG                              | 999        |            |            |           |
|                  | TTAATTCCCC                              | CCC        |            |            |           |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# M11-II:

|      | TGTGGTGGTT<br>ACACCACCAA                | CCGCTCCTTT<br>GGCGAGGAAA | CCCCGTCAAG<br>GGGCAGTTC  | TTTACGGCAC<br>AAATGCCGTG                   | GTGGGCCATC<br>CACCCGGTAG | ACGTTCTTTA<br>TGCAAGAAAT |
|------|-----------------------------------------|--------------------------|--------------------------|--------------------------------------------|--------------------------|--------------------------|
|      | 000000000000000000000000000000000000000 | GCCCTAGCGC               | CGCCGGCTTT               | GATTTAGTGC<br>CTAAATCACG                   | GGTTCTCGTA CCCAAGAGCAT   | GTTGGAGTCC CAACCTCAGG    |
|      | GGCGCATTAA                              | ACTTGCCAGC<br>TGAACGGTCG | TCGCCACGTT<br>AGCGGTGCAA | TTAGGGTTCC                                 | TTAGGGTGAT<br>AATCCCACTA | GCCCTTTGAC<br>CGGGAAACTG |
|      | GCCCTGTAGC<br>CGGGACATCG                | TGACCGCTAC               | CCTTCCTTTC               | BanII<br>~~~~~~<br>GGGCTCCCT<br>CCCCGAGGGA | AAAAACTTGA<br>TTTTTGAACT | ACGGTTTTTC<br>TGCCAAAAAG |
| NheI | GCTAGCACGC                              | ACGCGCAGCG<br>TGCGCGTCGC | CGCTTTCTTC<br>GCGAAAGAAG | CTCTAAATCG<br>GAGATTTAGC                   | CTCGACCCCA<br>GAGCTGGGGT | GCCCTGATAG<br>CGGGACTATC |
|      | H                                       | 51                       | 101                      | 151                                        | 201                      | 251                      |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26)

TCGCCAGCCT GACTTGCCCC CCAAGCACGT ATGTCAGGTC GAACCTCGCT AGCGGTCGGA CTGAACGGGG GGTTCGTGCA TACAGTCCAG CTTGGAGCGA TGCATGTCTT TCCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGCGC TCTGATTGAG GAGATTTAGT TAATGGTCAC CGACGACGGT CACCACGAAA AGACTAACTC CTCTAAATCA ATTACCAGTG GCTGCTGCCA GTGGTGCTTT CAGTGATTTT GAACAGGAAA GTCAAATCGG AATTGGCCGC GTACTGAAGT GTCACTARAR CTTGTCCTTT CAGTTTAGCC TTAACCGGCG CATGACTTCA GAGACTCGAT GGTTGAGAAA CTTGGCTCCA TTGACCGAAC CTCCTCGCT CTCTGAGCTA CCAACTCTTT GAACCGAGGT AACTGGCTTG GAGGAGCGA GAACGAGACT TTTGCTTTTT TGGCGGAACG TCCCGCCAAA AAGCATCCAA CTTGCTCTGA AAACGAAAA ACCGCCTTGC AGGGCGGTTT TTCGTAGGTT TCTAGATTAT TCTACTAGAA GAACTCTAGC AAAACCAGAC GCGCATTAGA AGATCTAATA AGATGATCTT CTTGAGATCG TTTTGGTCTG CGCGTAATCT ACGTACAGAA AGGCCCAACC TGAGTTCTGC TATCAATGGC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 301 251 201 151 101 51

SUBSTIT

CAGTGAGCGA GTCACTCGCT

CGTAGCGAGT

AACGACCGAG TTGCTGGCTC

GCCGCAGTCG CGGCGTCAGC

ATTTCCGCTC TAAAGGCGAG

651

GCATCGCTCA

TTCGTAAGCC AAGCATTCGG

CTCCGCCCCG GAGGCGGGGC

TCCAGGAAAT AGGTCCTTTA

CCTGGCATCT

TAAGTATCTT ATTCATAGAA

601

GGACCGTAGA

|                                                                                                          | CGGAACTGAG TGTCAGGCGT GGAATGAGAC AAACGCGGCC<br>GCCTTGACTC ACAGTCCGCA CCTTACTCTG TTTGCGCCGG |      | AATGACACCG GTAAACCGAA AGGCAGGAAC AGGAGAGCGC TTACTGTGGC CATTTGGCTT TCCGTCCTTG TCCTCTCGCG |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------|
| . vectors (continued)                                                                                    | CGGAACTGAG TGTCAGGCGT GGAATGAGAC AAACGCGGCC<br>GCCTTGACTC ACAGTCCGCA CCTTACTCTG TTTGCGCCGG |      | AATGACACCG GTAAACCGAA AGGCAGGAAC AGGAGAGCGC TTACTGTGGC CATTTGGCTT TCCGTCCTTG TCCTCTGGCG |
| vector modules and pCAI                                                                                  | TGTCAGGCGT<br>ACAGTCCGCA                                                                   |      | GTAAACCGAA<br>CATTTGGCTT                                                                |
| ences of additional pCAL                                                                                 | CGGAACTGAG<br>GCCTTGACTC                                                                   | AgeI | AATGACACCG<br>TTACTGTGGC                                                                |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | ACTGCCTACC<br>TGACGGATGG                                                                   |      | ATAACAGCGG<br>TATTGTCGCC                                                                |
| Figure 35a                                                                                               | 351                                                                                        |      | 401                                                                                     |

| 451 AGGAGGGAGC CGCCAGGGGG AAACGCCTGG TATCTTTATA GTCCTGTCGG<br>TCCTCCCTCG GCGGTCCCCC TTTGCGGACC ATAGAAATAT CAGGACAGCC |
|----------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------|

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

1.

| Agel<br>~~~~~~<br>ACCGGTGCAG<br>TGGCCACGTC     | TCATCAGTGC<br>AGTAGTCACG                               | . ·                                                          |
|------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|
| CTGCTGACGC<br>GACGACTGCG                       | ACTGACACCC<br>TGACTGTGGG                               | ე<br>ეე<br>ზე                                                |
| TATATCCTGT ATCACATATT<br>ATATAGGACA TAGTGTATAA | XmnI<br>CCTGCCACAT GAAGCACTTC<br>GGACGGTGTA CTTCGTGAAG | Nhei<br>AGCCAGTATA CACTCCGCTA GC<br>TCGGTCATAT GTGAGGCGAT CG |
| ТАТАТССТGТ<br>АТАТАGGACA                       | CCTGCCACAT<br>GGACGGTGTA                               | AGCCAGTATA<br>TCGGTCATAT                                     |
| GGAAGCGGAA<br>CCTTCGCCTT                       | CCTTTTTTCT<br>GGAAAAAAGA                               | CAACATAGTA<br>GTTGTATCAT                                     |
| 701                                            | 751                                                    | 801                                                          |





BglII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 13:

XmnI 111111 Bglii

TTCAGATCT AAGTCTAGA ATGCTTCAAT TACGAAGTTA ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT





144 / 204

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 19:

XbaI SphI

GATAACGTGA CTATTGCACT AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT AGATCTCGTA TCTAGAGCAT

GAATTC 11111 TACCAAAGCC TCACCCCTGT CCGTTGCTCT GGCACTCTTA

Sapi

ECORI

CTTAAG ATGGTTTCGG AGTGGGGACA GGCAACGAGA CCGTGAGAAT

SUBSTITUTE SHEET (RULE 26)

51

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20:

XbaI SphI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT TCTAGAGCAT AGATCTCGTA

SapI

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG TCACCCCTGT AGTGGGGACA CCGTTGCTCT. GGCAACGAGA GGCACTCTTA CCGTGAGAAT

MunI EcoRI

ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

SUBSTITUTE SHEET (RULE 26)

101

147 / 204

51





Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21: Σ XbaI

11111

AAGAAGAACG TTCTTCTTGC AATATCGCAT TTATAGCGTA TATGAAAAAG ATACTTTTTC CTCCACTAAA GAGGTGATTT TCTAGAGGTT AGATCTCCAA

ECORI

11111

GAATTC TIGCTACAAA IGCATACGCI 1111

Nsil

CTTAAG ACGTATGCGA AACGATGTTT GTTTTTTCTA CAAAAAAGAT ATCTATGTTC TAGATACAAG

SUBSTITUTE SHEET (PULE 26)

51

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41:

NheI

| _ | じつはないじなぜいじ | それ とび とび とば 本本           |                          |            |                          |
|---|------------|--------------------------|--------------------------|------------|--------------------------|
|   | CGATCGTAGC | TTACCGCGTT               | TTGGAAAGCG               | CCATACCGTA | GTATCGCGGG               |
|   | GGAAGAGAGT | CAATTCAGGG               | TGGTGAATGT               | GAAACCAGTA | ACGTTATACG               |
|   | CCTTCTCTCA | GTTAAGTCCC               | ACCACTTACA               | CTTTGGTCAT | TGCAATATGC               |
|   | ATGTCGCAGA | GTATGCCGGT               | GTCTCTTATC               | AGACCGTTTC | CCGCGTGGTG               |
|   | TACAGCGTCT | CATACGGCCA               | CAGAGAATAG               | TCTGGCAAAG | GGCGCACCAC               |
|   | AACCAGGCCA | GCCACGTTTC               | TGCGAAAACG               | CGGGAAAAAG | TGGAAGCGGC               |
|   | TTGGTCCGGT | CGGTGCAAAG               | ACGCTTTTGC               | GCCCTTTTTC | ACCTTCGCCG               |
|   | GATGGCGGAG | CTGAATTACA               | TTCCTAACCG               | CGTGGCACAA | CAACTGGCGG               |
|   | CTACCGCCTC | GACTTAATGT               | AAGGATTGGC               | GCACCGTGTT | GTTGACCGCC               |
|   | GCAAACAGTC | GTTGCTGATT               | GGCGTTGCCA               | CCTCCAGTCT | GGCCCTGCAC               |
|   | CGTTTGTCAG | CAACGACTAA               | CCGCAACGGT               | GGAGGTCAGA | CCGGGACGTG               |
|   | GCGCCGTCGC | AAATTGTCGC<br>TTTAACAGCG | GGCGATTAAA<br>CCGCTAATTT | TCTCGCGCCG | ATCAACTGGG<br>TAGTTGACCC |

SUBSTITUTE SHEET (AULE 26) 151 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|               | 351 | TGCCAGCGTG<br>ACGGTCGCAC | GTCGTGTCGA<br>CAGCACAGCT | TGGTAGAACG<br>ACCATCTTGC      | AAGCGGCGTC<br>TTCGCCGCAG | GAAGCCTGTA<br>CTTCGGACAT |
|---------------|-----|--------------------------|--------------------------|-------------------------------|--------------------------|--------------------------|
|               | 401 | AAGCGGCGGT<br>TTCGCCGCCA | GCACAATCTT<br>CGTGTTAGAA | CTCGCGCAAC<br>GAGCGCGTTG      | GTGTCAGTGG               | GCTGATTATT<br>CGACTAATAA |
|               | 451 | AACTATCCGC<br>TTGATAGGCG | TGGATGACCA<br>ACCTACTGGT | GGATGCTATT<br>CCTACGATAA      | GCTGTGGAAG<br>CGACACCTTC | CTGCCTGCAC<br>GACGGACGTG |
|               | 501 | TAATGTTCCG<br>ATTACAAGGC | GCGTTATTTC<br>CGCAATAAAG | TTGATGTCTC<br>AACTACAGAG      | TGACCAGACA<br>ACTGGTCTGT | CCCATCAACA<br>GGGTAGTTGT |
| - 411557 (51  | 551 | GTATTATTTT<br>CATAATAAAA | CTCCCATGAG<br>GAGGGTACTC | GACGGTACGC<br>CTGCCATGCG      | GACTGGGCGT<br>CTGACCCGCA | GGAGCATCTG<br>CCTCGTAGAC |
| <b>" = 00</b> | 601 | GTCGCATTGG<br>CAGCGTAACC | GCCACCAGCA<br>CGGTGGTCGT | -<br>AATCGCGCTG<br>TTAGCGCGAC | TTAGCTGGCC<br>AATCGACCGG | CATTAAGTTC<br>GTAATTCAAG |
|               | 651 | TGTCTCGGCG               | CGTCTGCGTC<br>GCAGACGCAG | TGGCTGGCTG<br>ACCGACCGAC      | GCATAAATAT<br>CGTATTTATA | CTCACTCGCA<br>GAGTGAGCGT |
|               | 701 | ATCAAATTCA<br>TAGTTTAAGT | GCCGATAGCG<br>CGGCTATCGC | GAACGGGAAG<br>CTTGCCCTTC      | GCGACTGGAG<br>CGCTGACCTC | TGCCATGTCC<br>ACGGTACAGG |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CTGC                     | ATTA<br>TAAT             | ACGAC                    | AAACA                    | ACTCT                    | rggrg<br>Accac           | 30000                                   | GAAA                     |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------------|--------------------------|
| TTCCCACTGC<br>AAGGGTGACG | CGTGCCATTA<br>GCACGGTAAT | GGGATACGAC<br>CCCTATGCTG | CCATCAAACA<br>GGTAGTTTGT | CTGCAACTCT<br>GACGTTGAGA | CTCACTGGTG<br>GAGTGACCAC | CTCCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG | CGACTGGAAA<br>GCTGACCTTT |
| GAGGGCATCG<br>CTCCCGTAGC | GGGCGCAATG<br>CCCGCGTTAC | TCTCGGTAGT<br>AGAGCCATCA | CCGCTGACCA<br>GGCGACTGGT | GGACCGCTTG<br>CCTGGCGAAC | TGTTGCCCGT<br>ACAACGGGCA | CAAACCGCCT<br>GTTTGGCGGA                | ACAGGTTTCC<br>TGTCCAAAGG |
| AATGCTGAAT<br>TTACGACTTA | AGATGGCGCT<br>TCTACCGCGA | GGTGCGGACA<br>CCACGCCTGT | TTATATCCCG<br>AATATAGGGC | AAACCAGCGT<br>TTTGGTCGCA | GGCAATCAGC<br>CCGTTAGTCG | TCCCAATACG                              | AGCTGGCACG<br>TCGACCGTGC |
| AAACCATGCA<br>TTTGGTACGT | GCCAACGATC<br>CGGTTGCTAG | GCTGCGCGTT<br>CGACGCGCAA | ACAGCTCATG<br>TGTCGAGTAC | CTGCTGGGGC               | GGCGGTGAAG<br>CCGCCACTTC | CCACCCTGGC                              | TCACTGATGC<br>AGTGACTACG |
| GGTTTTCAAC               | GATGCTGGTT<br>CTACGACCAA | CCGAGTCCGG<br>GGCTCAGGCC | GATACCGAGG<br>CTATGGCTCC | GGATTTTCGC<br>CCTAAAAGCG | CTCAGGGCCA               | AAAAGAAAAA<br>TTTTCTTTTT                | GTTGGCCGAT<br>CAACCGGCTA |
| 751                      | 801                      | 851                      | 901                      | 951                      | 1001                     | 1051                                    | 1101                     |
|                          |                          |                          | SUESTITUT                | TE SHEET (R              | ULE 26)                  |                                         |                          |

SUESTITUTE SHEET (RULE 26 153 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GGAGGCCGTT CCTCCGGCAA CTTCCTGACA TATTTTCGCC ATAAAAGCGG AGGCTACCCG TCCGATGGGC CGCCCGTCAC GCGGCCAGTG 1151

Aflii

GCCCACTTAA TTGTTTTGCA 1201

<u>ပ</u> ပ CGGGTGAATT

> SUBSTITUTE SHEET (RULE 26) 154 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 155 / 204

TTATTTGGGA

TGTATAAGAG

CTCTGCTTTT

CCCTAACCGA

TTGAGTGGGT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCAL0-1:

BglII

| ААААААТТА                | TTAAGCATTC                                  |
|--------------------------|---------------------------------------------|
| ТТТТТТААТ                | AATTCGTAAG                                  |
| TAACTGCCTT               | TGCCACTCAT CGCAGTACTG TTGTAATTCA TTAAGCATTC |
| ATTGACGGAA               | ACGGTGAGTA GCGTCATGAC AACATTAAGT AATTCGTAAG |
| CAGGCGTTTA AGGGCACCAA    | CGCAGTACTG                                  |
| GTCCGCAAAT TCCCGTGGTT    | GCGTCATGAC                                  |
| CAGGCGTTTA               | TGCCACTCAT                                  |
| GTCCGCAAAT               | ACGGTGAGTA                                  |
| GATCTAGCAC<br>CTAGATCGTG | ອອອວອອອອວອ                                  |
| П                        | 51                                          |

| AATCGCCAGC                                  | P GTTTGCCGTA CTACTTGGAC TTAGCGGTCG |
|---------------------------------------------|------------------------------------|
| GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC | CTACTTGGAC                         |
| CAAACGGCAT                                  | GTTTGCCGTA                         |
| GAAGCCATCA                                  | CTTCGGTAGT                         |
| TGCCGACATG                                  | ACGCCTGTAC                         |
| 101                                         |                                    |
| SUB                                         | STITUT                             |

| TTGCGTATAA TATTTGCCCA TAGTGAAAAC | HAACGCATATT ATAAACGGGT ATCACTTTTG |
|----------------------------------|-----------------------------------|
| TATTTGCCCA                       | ATAAACGGGT                        |
| TTGCGTATAA                       | AACGCATATT                        |
| CCTTGTCGCC                       | GGAACAGCGG                        |
| GGCATCAGCA                       | CCGTAGTCGT                        |
| 151                              |                                   |
| E SH                             | EET (R                            |

| TCA AAACTGGTGA<br>AGT TTTGACCACT                                     | CTC AATAAACCCT                   |
|----------------------------------------------------------------------|----------------------------------|
| GTTTAAATCA<br>CAAATTTAGT                                             | ACATATT                          |
| AAGTTGTCCA TATTGGCTAC GTTTAAATCA<br>TTCAACAGGT ATAACCGATG CAAATTTAGT | GGGATTGGCT GAGACGAAAA ACATATTCTC |
| AAGTTGTCCA<br>TTCAACAGGT                                             | GGGATTGGCT                       |
| GGGGCGAAG                                                            | AACTCACCCA                       |
| 201                                                                  | 251                              |

| AGGCCAGGTT TTCACCGTAA CACGCCACAT CTTGCGAATA | AAGTGGCATT GTGCGGTGTA GAACCCTTAT |
|---------------------------------------------|----------------------------------|
| TAA CACGCCACAT (                            | GTGCGGTGTA                       |
| I TTCACCGTAA                                | AAGTGGCATT                       |
| AGGCCAGGTT                                  | A TCCGGTCCAA AAG                 |
| TTAGGGAAAT                                  | AATCCCTTTA                       |
| 301                                         |                                  |

SUBSTITUTE SHEET (RULE 26)

CTCAAAAAT GAGTTTTTTA

ATCTCGATAA TAGAGCTATT

GCTCCTGAAA CGAGGACTTT

AGCTTCCTTA TCGAAGGAAT

AGAGGTAAAA TCTCCATTTT

701

CACTAAAAAA

CCATATAGGT

ATAGTTGCCA

GTAACCCTAT

AAATGCTACG

651

GTTTTACAAG GTGATTTTT GTCGACTTGC CAAAATGTTC CAGCTGAACG ATTTTGAACA TGAGGCCCAC TAAAACTTGT ACTCCGGGTG GTGAACACTA CACTTGTGAT GTCTCGCTAC CAGAGCGATG GGTATATCCA AGCAACTGAC TGAAATGCCT ACTTTACGGA CGGTATGCCT AAAGGCCGGA TTTCCGGCCT GCCATACGGA GGCATTATAG CCGTAATATC ACCTTTTGCC ACATTGTTCC CATAAGTGAG TGTAACAAGG GTATTCACTC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) CATTGGGATA TATCAACGGT TCGTTGACTG TTTAAAAAGG CTTACACTTA AAATTTTCC CAGAAAGTAA GTCTTTCATT GAATGTGAAT AGTTTGCTCA TGGAAAACGG TTAGCAGCAC AATCGTCGTG AGGTACATTG TCCATGTAAC CTTTACGGTC GAAATGCCAG TCAAACGAGT GGTCGAGTGG AGGCGGGCAA TCCCCCCGTT CCAGCTCACC TTGACGGCCT AACTGCCGGA CAGACCAATA CGAATAAAAA GTCTGGTTAT TTTACGATGC TCGTAAGTAG GCTTATTTT TTTTGCAAAG AGGGTATAGT AGCATTCATC TCCCATATCA ATACACATCT AAAACGTTTC TATGTGTAGA 601 551 501 451 401 351 SUBSTITUTE SHEET (RULE 26)

TTTGTCTGCC

CGACATTTTT GCTGTAAAAA

GCAGATTGTG

GAAAAATGGC CTTTTTACCG

GGACACTTCA

CCTGTGAAGT

1001

TATTCGAACT

TATGCTTCAA

TTACATGCGA

TTGAAGCATA

GCGTACGGTA

| =        |   |
|----------|---|
| nued     |   |
| conti    |   |
| ors (    |   |
| vect     |   |
| ঠ        |   |
| and p    |   |
| les a    |   |
| nodt     |   |
| tor      |   |
| ار<br>دو |   |
| న్డ      |   |
| ional    |   |
| addit    |   |
| s of a   |   |
| ence     |   |
| sedu     | , |
| and      |   |
| Sder     |   |
| naln     |   |
| ctio     |   |
| :.<br>Fu |   |
| 358      |   |
| iaure    |   |
| 4        |   |

|                          |                                             | ٧                        | r                                              |            |
|--------------------------|---------------------------------------------|--------------------------|------------------------------------------------|------------|
| AACCTCACCC<br>TTGGAGTGGG | GCTTTACACT<br>CGAAATGTGA                    | ATAACAATTT<br>TATTGTTAAA | Xbal CAATTTCTAG ACCCCCCCC CTTAAAGATC TGGGGGGGG | ATAAGCTTGA |
| TGAAAGTTGG<br>ACTTTCAACC | GGCACCCCAG<br>CCGTGGGGGTC                   | TTGTGAGCGG               | Xbal.<br>~~~~~<br>GAATTTCTAG<br>CTTAAAGATC     | ATACGAAGTT |
| TTCATTATGG<br>AAGTAATACC | TCACTCATTA<br>AGTGAGTAAT                    | TTGTGTGGAA<br>AACACACCTT | CCATGATTAC<br>GGTACTAATG                       | AATGTACGCT |
| GTGATCTTAT<br>CACTAGAATA | GTGAGTTAGC<br>CACTCAATCG                    | GGCTCGTATG<br>CCGAGCATAC | ACAGCTATGA<br>TGTCGATACT                       | AACTTCGTAT |
| ACGCCCGGTA<br>TGCGGGCCAT | Aatii<br>~~~~~~<br>GACGTCTAAT<br>CTGCAGATTA | TTATGCTTCC<br>AATACGAAGG | CACACAGGAA<br>GTGTGTCCTT                       | CGCATGCCAT |
| 751                      | 801                                         | 851                      | 901                                            | 951        |
|                          |                                             | SUBS                     | TITUTE SHEET (RULE 23)                         | <b>)</b>   |

SUBSTITUTE SHEET (RULE 23)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|       | 4 -                               | <b>.</b>                 |                          |                          | , , ,                    | e                        |                                              |
|-------|-----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------------|
| BsrGI | ~~~~~<br>GTACATGAAA<br>CATGTACTTT | TTGTTAAATC<br>AACAATTTAG | CTTATAAATC<br>GAATATTTAG | TGGAACAAGA<br>ACCTTGTTCT | AAAAACCGTC<br>TTTTGGCAG  | CAAGTTTTTT<br>GTTCAAAAAA | Banll<br>~~~~~~<br>GGGAGCCCCC<br>CCCTCGGGGGG |
|       | GGGGGGGGGT                        | CGTTAAATTT<br>GCAATTTAAA | GGCAAAATCC<br>CCGTTTTAGG | TGTTCCAGTT<br>ACAAGGTCAA | TCAAAGGGCG<br>AGTTTCCCGC | TCACCCTAAT<br>AGTGGGATTA | GAACCCTAAA<br>CTTGGGATTT                     |
| FSGI  | GGGCCGGCCT                        | TTAAAATTCG<br>AATTTTAAGC | GGCCGAAATC<br>CCGGCTTTAG | GGTTGAGTGT<br>CCAACTCACA | GACTCCAACG<br>CTGAGGTTGC | ACGAGAACCA<br>TGCTCTTGGT | CACTAAATCG<br>GTGATTTAGC                     |
|       | AGGGGGGGGG<br>TCCCCCCCC           | TAATATTTTG<br>ATTATAAAAC | TTAACCAATA<br>AATTGGTTAT | ACCGAGATAG<br>TGGCTCTATC | AAAGAACGTG<br>TTTCTTGCAC | ATGGCCCACT<br>TACCGGGTGA | TGCCGTAAAG<br>ACGGCATTTC                     |
| PacI  | GTTTAATTAA<br>CAAATTAATT          | TTGTAAACGT<br>AACATTTGCA | AGCTCATTTT<br>TCGAGTAAAA | AAAAGAATAG<br>TTTTCTTATC | GTCCACTATT<br>CAGGTGATAA | TATCAGGGCG<br>ATAGTCCCGC | GGGGTCGAGG                                   |
|       | 1051                              | 1101                     | 1151                     | 1201                     | 1251                     | 1301                     | 1351                                         |
|       |                                   |                          | SUBS                     | TITUTE SHE               | ET (BULE 26              | 5)                       |                                              |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AAAGGAAGGG<br>TTTCCTTCCC | TAGCGGTCAC<br>ATCGCCAGTG | CTACAGGGCG<br>GATGTCCCGC | GATGAGGGTG                                | AgeI    | CCGGTGCGTC               | CACTGACTCG<br>GTGACTGAGC | ACGAACGGGG |
|--------------------------|--------------------------|--------------------------|-------------------------------------------|---------|--------------------------|--------------------------|------------|
| ACGTGGCGAG<br>TGCACCGCTC | CTGGCAAGTG<br>GACCGTTCAC | TAATGCGCCG<br>ATTACGCGGC | TGTTGGCACT                                |         | AAAGGCTGCA<br>TTTCCGACGT | CTTCCTCGCT<br>GAAGGAGCGA | GAAATGGCTT |
| AAGCCGGCGA<br>TTCGGCCGCT | CGCTAGGGCG<br>GCGATCCCGC | CCGCCGCGCT               | TGGCTTACTA                                |         | GCAGGAGAAA               | ATATATTCCG<br>TATATAAGGC | GCGGCGAGCG |
| TTGACGGGGA<br>AACTGCCCCT | AAGGAGCGGG<br>TTCCTCGCCC | ACCACCACAC<br>TGGTGGTGTG | GAGTGTATAC<br>CTCACATATG                  | II      | GCTTCATGTG               | GTGATACAGG<br>CACTATGTCC | TCGTTCGACT |
| GATTTAGAGC<br>CTAAATCTCG | AAGAAAGCGA<br>TTCTTTCGCT | GCTGCGCGTA<br>CGACGCGCAT | Nhel<br>~~~~~<br>CGTGCTAGCG<br>GCACGATCGC | Xmx     | TCAGTGAAGT<br>AGTCACTTCA | AGCAGAATAT<br>TCGTCTTATA | CTACGCTCGG |
| 1401                     | 1451                     | 1501                     | 1551                                      |         | 1601                     | 1651                     | 1701       |
|                          |                          | S                        | SUBSTITUTE SHEET (<br>160 / 204           | (RULE 2 | 6)                       |                          |            |

|                                                                                                          | TGCTTG                                                     |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | AGCAAGCTGA CGCCGCTCGC TGCTTGA CGCCGCTCGC CTTTACCGAA TGCTTG |

|                                                                  |                          |                          | <b>A.</b> ,              |                          |      |                          |                          |                          |
|------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------|--------------------------|--------------------------|--------------------------|
| TGCTTGCCCC                                                       | GAAGTGAGAG<br>CTTCACTCTC | GACAAGCATC<br>CTGTTCGTAG | AGGACTATAA               | CTCCTGTTCC<br>GAGGACAAGG |      | CGTTTGTCTC<br>GCAAACAGAG | CCAAGCTGGA<br>GGTTCGACCT | TTATCCGGTA<br>AATAGGCCAT |
| CTTTACCGAA                                                       | ACTTAACAGG<br>TGAATTGTCC | CCGCCCCCT                | GAAACCCGAC<br>CTTTGGGCTG | CTCCTGCGCT               |      | GTTATGGCCG<br>CAATACCGGC | GCAGTTCGCT<br>CGTCAAGCGA | CCGCTGCGCC               |
| CGCCGCTCGC                                                       | CCAGGAAGAT<br>GGTCCTTCTA | TCCATAGGCT<br>AGGTATCCGA | CAGTGGTGGC<br>GTCACCACCG | TGGCGGCTCC               |      | TCATTCCGCT<br>AGTAAGGCGA | TTCCGGGTAG               | TTCAGTCCGA<br>AAGTCAGGCT |
| GCAAGCTGA                                                        | CTGGAAGATG<br>GACCTTCTAC | AAGCCGTTTT<br>TTCGGCAAAA | ACGCTCAAAT<br>TGCGAGTTTA | CGTTTCCCCC<br>GCAAAGGGGG | AgeI | TTTACCGGTG<br>AAATGGCCAC | TGACACTCAG<br>ACTGTGAGTC | GAACCCCCCG               |
| Figure 35a: Functional maps and sequences of addi<br>GATGCGAGC 7 | CGGAGATTTC<br>GCCTCTAAAG | GGCCGCGGCA               | ACGAAATCTG<br>TGCTTTAGAC | AGATACCAGG<br>TCTATGGTCC | ·    | TGCCTTTCGG<br>ACGGAAAGCC | ATTCCACGCC<br>TAAGGTGCGG | CTGTATGCAC               |
| ia: Functional                                                   | 1751                     | 1801                     | 1851                     | 1901                     |      | 1951                     | 2001                     | 2051                     |
| igure 3£                                                         |                          |                          | SUB                      | 161 / 2                  |      | E 26)                    |                          |                          |
|                                                                  |                          |                          |                          | .0,, 2                   |      |                          |                          |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|   | . •                      |                                                | ~<br>САТСТТАТТА<br>GTAGAATAAT | TCAAGAAGAT<br>AGTTCTTCTA | CAAAACGATC<br>GTTTTGCTAG | 2351 |
|---|--------------------------|------------------------------------------------|-------------------------------|--------------------------|--------------------------|------|
|   |                          |                                                | BgllI                         |                          |                          |      |
|   | ACGCGCAGAC<br>TGCGCGTCTG | GCAAGAGATT<br>CGTTCTCTAA                       | CGTTTTCAGA<br>GCAAAAGTCT      | GCGGTTTTTT<br>CGCCAAAAAA | GCCCTGCAAG<br>CGGGACGTTC | 2301 |
|   | ACGAAAAACC<br>TGCTTTTTGG | CAGAGAACCT<br>GTCTCTTGGA                       | GTTGGTAGCT<br>CAACCATCGA      | GGTTCAAAGA<br>CCAAGTTTCT | CAGTTACCTC<br>GTCAATGGAG | 2251 |
|   | TCCTCCAAGC<br>AGGAGGTTCG | GTGACTGCGC<br>CACTGACGCG                       | ACAAGTTTTA<br>TGTTCAAAAT      | AACTGAAAGG<br>TTGACTTTCC | GTTAAGGCTA<br>CAATTCCGAT | 2201 |
|   | TCATGCGCCG               | TAGAGGAGTT AGTCTTGAAG<br>ATCTCCTCAA TCAGAACTTC | TAGAGGAGTT<br>ATCTCCTCAA      | GTAATTGATT<br>CATTAACTAA | GCAGCCACTG               | 2151 |
| A | ACCACTGGCA               | ATGCAAAAGC<br>TACGTTTTCG                       | CCGGAAAGAC<br>GGCCTTTCTG      | TGAGTCCAAC<br>ACTCAGGTTG | ACTATCGTCT<br>TGATAGCAGA | 2101 |

SUBSTITUTE SHEET (AULG 26) 162 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 7             |
|---------------|
|               |
| C             |
| 7             |
| <u>ک</u>      |
| $\overline{}$ |

BsrGI

CGTTAAATTT GCAATTTAAA TTAAAATTCG AATTTTAAGC TAATATTTTG ATTATAAAAC TTGTAAACGT AACATTTGCA GTACATGAAA CATGTACTTT

CCGTTTTAGG GGCAAAATCC GGCCGAAATC CCGGCTTTAG TTAACCAATA AATTGGTTAT TCGAGTAAAA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

ACAAGGTCAA GGTTGAGTGT TGTTCCAGTT CCAACTCACA ACCGAGATAG TGGCTCTATC AAAAGAATAG TTTTCTTATC GAATATTTAG CTTATAAATC 101

TCAAAGGGCG AGTTTCCCGC GACTCCAACG CTGAGGTTGC AAAGAACGTG TTTCTTGCAC GTCCACTATT CAGGTGATAA TGGAACAAGA ACCTTGTTCT 151

AGTGGGATTA ACGAGAACCA TCACCCTAAT TGCTCTTGGT ATGGCCCACT TACCGGGTGA TATCAGGGCG ATAGTCCCGC TTTTTGGCAG AAAAACCGTC 201

CTTGGGATTT GAACCCTAAA CACTAAATCG GTGATTTAGC TGCCGTAAAG ACGGCATTTC GGGGTCGAGG CCCCAGCTCC CAAGTTTTT GTTCAAAAAA 251

BanII

111111

TTGACGGGGA AAGCCGGCGA ACGTGGCGAG GGGAGCCCCC GATTTAGAGC 301

| TGCACCGCTC                                                | CTGGCAAGTG<br>GACCGTTCAC     | TAATGCGCCG<br>ATTACGCGGC      | TGTTGGCACT                                 | AgeI    | $\widetilde{\mathtt{AAAGGCTGCA}}$ | CTTCCTCGCT<br>GAAGGAGCGA                  | GAAATGGCTT |
|-----------------------------------------------------------|------------------------------|-------------------------------|--------------------------------------------|---------|-----------------------------------|-------------------------------------------|------------|
| GGCCGCT                                                   | CGCTAGGGCG C                 | CCGCCGCGCT T.<br>GGCGGCGCGA A | TGGCTTACTA T<br>ACCGAATGAT A               |         | GCAGGAGAAA A<br>CGTCCTCTTT I      | ATATATTCCG C<br>TATATAAGGC G              | GCGCCGAGCG |
| ditional pCAL vector modules and pCAL vectors (continued) | AAGGAGCGGG (<br>TTCCTCGCCC ( | ACCACCACAC (TGGTGTGTG         | GAGTGTATAC                                 | н       | GCTTCATGTG                        | GTGATACAGG                                | TCGTTCGACT |
| iliional pCAL vector modu<br>CTAAATCTCG                   | AAGAAAGCGA<br>TTCTTTCGCT     | GCTGCGCGTA                    | NheI<br>~~~~~~<br>CGTGCTAGCG<br>GCACGATCGC | IcmX    | TCAGTGAAGT<br>AGTCACTTCA          | AGCAGAATAT<br>TCGTCTTATA                  | CTACGCTCGG |
| Figure 35a: Functional maps and sequences of add          | AAAGGAAGGG                   | TAGCGGTCAC<br>ATCGCCAGTG      | CTACAGGGCG                                 |         | GATGAGGGTG<br>CTACTCCCAC          | Agel<br>~~~~~<br>CCGGTGCGTC<br>GGCCACGCAG | CACTGACTCG |
| a: Functional r                                           | 351                          | 401                           | 451                                        |         | 501                               | 551                                       | 601        |
| Figure 35                                                 |                              |                               | SUBSTITUTE S                               | SHEET ( | (RULE 26)                         |                                           |            |

|                                                                 | Ò                                                     |
|-----------------------------------------------------------------|-------------------------------------------------------|
|                                                                 | È                                                     |
|                                                                 | Ī                                                     |
|                                                                 | (                                                     |
| _                                                               | ζ                                                     |
| B                                                               | ζ                                                     |
| 2                                                               | Ç                                                     |
| 글                                                               | (                                                     |
| S                                                               | _                                                     |
| 2                                                               | 7                                                     |
| ₫                                                               | Ļ                                                     |
| ۾                                                               | ť                                                     |
| dules and pCAL vectors                                          | Ò                                                     |
| odules and pCAI                                                 | f                                                     |
| <u>a</u>                                                        | f                                                     |
| Ē                                                               | (                                                     |
| S                                                               | (                                                     |
| 半                                                               | f                                                     |
| ਨੂ                                                              |                                                       |
| Ĕ                                                               | ,                                                     |
| ō                                                               | ;                                                     |
| ۲,                                                              | `                                                     |
| >                                                               | i                                                     |
| ₹                                                               | ì                                                     |
| 2                                                               | CHCCCCC FORCE FOR FOR FOR FOR FOR FOR FOR FOR FOR FOR |
| 13                                                              | 1                                                     |
| <u>ō</u> .                                                      | •                                                     |
| ä                                                               | (                                                     |
| ğ                                                               |                                                       |
| 5                                                               | (                                                     |
| S                                                               |                                                       |
| ĕ                                                               |                                                       |
| ř                                                               | Ì                                                     |
| ed                                                              |                                                       |
| ds                                                              |                                                       |
| ä                                                               |                                                       |
| S                                                               |                                                       |
| -E                                                              |                                                       |
| =                                                               |                                                       |
| ng                                                              |                                                       |
| ÷.                                                              |                                                       |
| ñ                                                               |                                                       |
| Functional maps and sequences of additional pCAL vector modules |                                                       |
| .e.                                                             |                                                       |
| 3                                                               |                                                       |
| Figure 35a: Fi                                                  |                                                       |
| į                                                               | ì                                                     |
| 证                                                               |                                                       |

| ر<br>ر      |     | GTGACTGAGC               | GATGCGAGCC               | AGCAAGCTGA               | CGCCGCTCGC               | CTTTACCGAA               |
|-------------|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|             | 651 | ACGAACGGGG<br>TGCTTGCCCC | CGGAGATTTC<br>GCCTCTAAAG | CTGGAAGATG<br>GACCTTCTAC | CCAGGAAGAT<br>GGTCCTTCTA | ACTTAACAGG<br>TGAATTGTCC |
|             | 701 | GAAGTGAGAG               | GGCCGCGGCA               | AAGCCGTTTT<br>TTCGGCAAAA | TCCATAGGCT<br>AGGTATCCGA | CCGCCCCCCT               |
| SUBS        | 751 | GACAAGCATC<br>CTGTTCGTAG | ACGAAATCTG<br>TGCTTTAGAC | ACGCTCAAAT<br>TGCGAGTTTA | CAGTGGTGGC<br>GTCACCACCG | GAAACCCGAC<br>CTTTGGGCTG |
| STITUTE SHE | 801 | AGGACTATAA<br>TCCTGATATT | AGATACCAGG<br>TCTATGGTCC | CGTTTCCCCC               | TGGCGGCTCC<br>ACCGCCGAGG | CTCCTGCGCT<br>GAGGACGCGA |
| ET (RULE 2  |     |                          |                          | AgeI                     |                          |                          |
| ie)         | 821 | CTCCTGTTCC<br>GAGGACAAGG | TGCCTTTCGG<br>ACGGAAAGCC | TTTACCGGTG<br>AAATGGCCAC | TCATTCCGCT<br>AGTAAGGCGA | GTTATGGCCG<br>CAATACCGGC |
|             | 901 | CGTTTGTCTC<br>GCAAACAGAG | ATTCCACGCC<br>TAAGGTGCGG | TGACACTCAG<br>ACTGTGAGTC | TTCCGGGTAG<br>AAGGCCCATC | GCAGTTCGCT<br>CGTCAAGCGA |
|             | 951 | CCAAGCTGGA<br>GGTTCGACCT | CTGTATGCAC<br>GACATACGTG | GAACCCCCCG               | TTCAGTCCGA               | CCGCTGCGCC               |

SUBSTITUTE SHEET (RULE 28)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATGCAAAAGC<br>TACGTTTTCG | AGTCTTGAAG<br>TCAGAACTTC | GTGACTGCGC<br>CACTGACGCG | CAGAGAACCT<br>GTCTCTTGGA | GCAAGAGATT               | Bglii<br>~~~~~~<br>GATCTAGCAC<br>CTAGATCGTG | 22292295525              |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------|--------------------------|
| CCGGAAAGAC<br>GGCCTTTCTG | TAGAGGAGTT<br>ATCTCCTCAA | ACAAGTTTTA<br>TGTTCAAAAT | GTTĞGTAGCT<br>CAACCATCGA | CGTTTTCAGA<br>GCAAAAGTCT | CATCTTATTA<br>GTAGAATAAT                    | AAAAAATTA<br>TTTTTTAAT   |
| TGAGTCCAAC<br>ACTCAGGTTG | GTAATTGATT<br>CATTAACTAA | AACTGAAAGG<br>TTGACTTTCC | GGTTCAAAGA<br>CCAAGTTTCT | GCGGTTTTTT<br>CGCCAAAAAA | TCAAGAAGAT<br>AGTTCTTCTA                    | TAACTGCCTT<br>ATTGACGGAA |
| ACTATCGTCT<br>TGATAGCAGA | GCAGCCACTG               | GTTAAGGCTA<br>CAATTCCGAT | CAGTTACCTC<br>GTCAATGGAG | GCCCTGCAAG<br>CGGGACGTTC | CAAAACGATC<br>GTTTTGCTAG                    | AGGGCACCAA               |
| TTATCCGGTA<br>AATAGGCCAT | ACCACTGGCA<br>TGGTGACCGT | TCATGCGCCG               | TCCTCCAAGC<br>AGGAGGTTCG | ACGAAAAACC<br>TGCTTTTTGG | ACGCGCAGAC<br>TGCGCGTCTG                    | CAGGCGTTTA<br>GTCCGCAAAT |
| 1001                     | 1051                     | 1101                     | 1151                     | 1201                     | 1251                                        | 1301                     |
|                          |                          | S                        | UBSTITUTE                | SHEET (RULE              | E 26)                                       |                          |

|          | į |
|----------|---|
| (g       | 1 |
| Ē        | - |
| out      |   |
| ت<br>د   | , |
| ğ        |   |
| Š        |   |
| ¥        |   |
| <u>a</u> |   |
| and      |   |
| S        |   |
| D D      |   |
| Ĕ        |   |
| ģ        |   |
| Š        |   |
| ¥        |   |
| ₾.       |   |
| ona      |   |
| e<br>E   |   |
| aq       |   |
| š of     |   |
| S.       |   |
| Uer      |   |
| Sec      |   |
| and      |   |
| S        |   |
| E        |   |
| Le L     |   |
| :5:      |   |
| ŭ        |   |
| 35a: F   |   |
| 35       |   |
| ure      |   |
| Figur    | , |

GTGAGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC

2101

| AGCATTCATC<br>TCGTAAGTAG                                                                                                                                                                  | GCTTATTTT<br>CGAATAAAAA  | GTCTGGTTAT<br>CAGACCAATA | TTTACGATGC<br>AAATGCTACG   | TCTCCATTTT<br>AGAGGTAAAA | ACGCCCGGTA<br>TGCGGGCCAT | Aatii<br>~~~~~~<br>GACGTCTAAT<br>CTGCAGATTA |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|----------------------------|--------------------------|--------------------------|---------------------------------------------|
| CCGGGTG                                                                                                                                                                                   | TAAAACTTGT<br>ATTTTGAACA | CAGCTGAACG               | CAAAATGTTC '<br>GTTTTACAAG | GTGATTTTTT               | CTCAAAAAAT<br>GAGTTTTTTA | AACCTCACCC                                  |
| ules and pCAL vectors (cor<br>GCCATACGGA<br>CGGTATGCCT                                                                                                                                    | AAAGGCCGGA<br>TTTCCGGCCT | CCGTAATATC<br>GGCATTATAG | TGAAATGCCT<br>ACTTTACGGA   | GGTATATCCA<br>CCATATAGGT | ATCTCGATAA<br>TAGAGCTATT | TGAAAGTTGG<br>ACTTTCAACC                    |
| ditional pCAL vector mod<br>GTCTTTCATT<br>CAGAAAGTAA                                                                                                                                      | GAATGTGAAT<br>CTTACACTTA | TTTAAAAAGG<br>AAATTTTTCC | AGCAACTGAC                 | TATCAACGGT<br>ATAGTTGCCA | GCTCCTGAAA<br>CGAGGACTTT | TTCATTATGG                                  |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 1751 CCAGCTCACC GTCTTTCATT GCCATACGGA ACTO GGTCGAGTGG CAGAAAGTAA CGGTATGCCT TGAO | AGGCGGGCAA<br>TCCGCCCGTT | CTTTACGGTC<br>GAAATGCCAG | AGGTACATTG<br>TCCATGTAAC   | CATTGGGATA<br>GTAACCCTAT | AGCTTCCTTA<br>TCGAAGGAAT | GTGATCTTAT                                  |
| Figure 35a: Functional<br>1751                                                                                                                                                            | 1801                     | 1851                     |                            | T                        | T 00 2 8 RULE <b>26)</b> | 2051                                        |

| GA AATACGAAGG                                                                                                                                 | TT CACACAGGAA<br>AA GTGTGTCCTT | Sphi | CC CGCATGCCAT<br>GG GCGTACGGTA |                 | GA CCTGTGAAGT<br>CT GGACACTTCA | Pacl    | CC GTTTAATTAA<br>GG CAAATTAATT |               | GA TCCTTTGATC<br>CT AGGAAACTAG |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|--------------------------------|-----------------|--------------------------------|---------|--------------------------------|---------------|--------------------------------|
| ontinued)<br>CGAAATGTGA                                                                                                                       | ATAACAATTT<br>TATTGTTAAA       |      | ACCCCCCCCC<br>TGGGGGGGGG       | HindIII         | ATAGCTTGA<br>TATTCGAACT        |         | TTTGTCTGCC                     |               | CTCAAGAAGA<br>GAGTTCTTCT       |
| ules and pCAL vectors (co                                                                                                                     | TTGTGAGCGG<br>AACACTCGCC       | XbaI | GAATTTCTAG<br>CTTAAAGATC       | E E C C K E E K | TATGCTTCAA                     |         | CGACATTTTT<br>GCTGTAAAAA       |               | CAAAAAGGAT<br>GTTTTTCCTA       |
| ditional pCAL vector mod<br>AGTGAGTAAT                                                                                                        | TTGTGTGGAA<br>AACACACCTT       |      | CCATGATTAC<br>GGTACTAATG       |                 | TTACATGCGA                     |         | GCAGATTGTG<br>CGTCTAACAC       | eI            | CGGCCATTAT                     |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) CACTCAATCG AGTGAGTAAT CCGTGGGGTC CGA | GGCTCGTATG<br>CCGAGCATAC       |      | ACAGCTATGA<br>TGTCGATACT       |                 | TTGAAGCATA                     |         | GAAAAATGGC<br>CTTTTTACCG       | <u>ተ</u><br>ጼ | ອວວວວວວວວວ<br>ວອອອອອອອອອ       |
| Sa: Functional                                                                                                                                | 2151                           |      | 2201                           | C<br>C          | T C 2 2                        |         | 2301                           |               | 2351                           |
| Figure 3                                                                                                                                      |                                |      | S                              | UBSTITUTE       | SHEET (1<br>/ 204              | RULE 20 | 6)                             |               |                                |
|                                                                                                                                               |                                |      |                                | - 170           | 1 204                          |         |                                |               |                                |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TTTC<br>LAAAC<br>LAAAA<br>LACAC<br>LACAC<br>TTTT<br>TATTI<br>TATCC<br>CCAC | TTTTCTACGG GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT<br>AAAAGATGCC CCAGACTGCG AGTCACCTTG CTTTTGAGTG CAATTCCCTA | FICATG AGATTATCAA AAAGGATCTT CACCTAGATC CTTTTAAATT | NTGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT<br>PACTTC AAAATTTAGT TAGATTTCAT ATATACTCAT TTGAACCAGA | FITACC CAATGCTTAA TCAGTGAGGC ACCTATCTCA GCGATCTGTC | CGTTC ATCCATAGTT GCCTGACTCC CCGTCGTGTA GATAACTACG<br>AGCAAG TAGGTATCAA CGGACTGAGG GGCAGCACAT CTATTGATGC | GGAGG GCTTACCATC TGGCCCCAGT GCTGCAATGA TACCGCGAGA | GCTCA CCGGCTCCAG ATTTATCAGC AATAAACCAG CCAGCCGGAA<br>3CGAGT GGCCGAGGTC TAAATAGTCG TTATTTGGTC GGTCGGCCTT |                                                |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------|
| a back the med back the till the                                           | AAAAGATGCC CC                                                                                                    | TTTGGTCATG AGA                                     | AAAAATGAAG TTI<br>TTTTTACTTC AAI                                                                         | GACAGTTACC CAA<br>CTGTCAATGG GT                    | TATTTCGTTC ATC<br>ATAAAGCAAG TAC                                                                        | ATACGGGAGG GC1<br>TATGCCCTCC CG1                  | CCCACGCTCA CCC<br>GGGTGCGAGT GGO                                                                        | GGGCCGAGCG CAGAAGTGGT<br>CCCGGCTCGC GTCTTCACCA |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TTAATAGTTT               | CGCTCGTCGT               | GCGAGTTACA | GTCCTCCGAT               | GTTATGGCAG               | CTTTTCTGTG | TGCGGCGACC               | CCACATAGCA                |
|--------------------------|--------------------------|------------|--------------------------|--------------------------|------------|--------------------------|---------------------------|
| AATTATCAAA               | GCGAGCAGCA               | CGCTCAATGT |                          | CAATACCGTC               | GAAAAGACAC | ACGCCGCTGG               | GGTGTATCGT                |
| AGTTCGCCAG               | CGTGGTGTCA               | AACGATCAAG | AGCTCCTTCG               | ATCACTCATG               | CCGTAAGATG | GAATAGTGTA               | TAATACCGCG                |
| TCAAGCGGTC               | GCACCACAGT               | TTGCTAGTTC | TCGAGGAAGC               | TAGTGAGTAC               | GGCATTCTAC | CTTATCACAT               | ATTATGGCGC                |
| TAGAGTAAGT<br>ATCTCATTCA | CTACAGGCAT<br>GATGTCCGTA | TCCGGTTCCC | AAAAGCGGTT<br>TTTTCGCCAA | CCGCAGTGTT<br>GGCGTCACAA | GTCATGCCAT | GTCATTCTGA<br>CAGTAAGACT | CAATACGGGA<br>GTTATGCCCCT |
| GCCGGGAAGC               | GTTGCCATTG               | TTCATTCAGC | TGTTGTGCAA               | AGTAAGTTGG               | TTCTCTTACT | ACTCAACCAA               | TGCCCGGCGT                |
| CGGCCCTTCG               | CAACGGTAAC               | AAGTAAGTCG | ACAACACGTT               | TCATTCAACC               | AAGAGAATGA | TGAGTTGGTT               |                           |
| ATTAACTGTT               | GCGCAACGTT               | TTGGTATGGC | TGATCCCCCA               | CGTTGTCAGA               | CACTGCATAA | ACTGGTGAGT               | GAGTTGCTCT                |
| TAATTGACAA               |                          | AACCATACCG | ACTAGGGGGGT              | GCAACAGTCT               | GTGACGTATT | TGACCACTCA               | CTCAACGAGA                |
| 2801                     | 2851                     | 2901       | 2951                     | 3001                     | 3051       | 3101                     | 3151                      |

SUBSTITUTE SHEET (RULE 20)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## XmnI

|                                    | . A.,                    |                          |                          |                          |       |                          |
|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|--------------------------|
| GCGAAAACTC<br>CGCTTTTGAG           | CCACTCGCGC<br>GGTGAGCGCG | TCTGGGTGAG<br>AGACCCACTC | GGCGACACGG<br>CCGCTGTGCC | GAAGCATTTA<br>CTTCGTAAAT |       |                          |
| GTTCTTCGGG                         | TCGATGTAAC<br>AGCTACATTG | CACCAGCGTT<br>GTGGTCGCAA | AGGGAATAAG<br>TCCCTTATTC | CAATATTATT<br>GTTATAATAA | BsrGI | ATTTGAAT<br>TAAACTTA     |
| ATTGGAAAAC GTTC<br>TAACCTTTTG CAAG | GAGATCCAGT<br>CTCTAGGTCA | CTTTTACTTT<br>GAAAATGAAA | GCCGCAAAAA<br>CGGCGTTTTT | CTTCCTTTTT<br>GAAGGAAAAA |       | GCGGATACAT<br>CGCCTATGTA |
| AGTGCTCATC<br>TCACGAGTAG           | TACCGCTGTT<br>ATGGCGACAA | TCCTCAGCAT<br>AGGAGTCGTA | AAGGCAAAAT<br>TTCCGTTTTA | TACTCATACT               |       | TGTCTCATGA<br>ACAGAGTACT |
| GAACTTTAAA<br>CTTGAAATTT           | TCAAGGATCT<br>AGTTCCTAGA | ACCCAACTGA<br>TGGGTTGACT | CAAAAACAGG<br>GTTTTTGTCC | AAATGTTGAA<br>TTTACAACTT |       | TCAGGGTTAT<br>AGTCCCAATA |
| 3201                               | 3251                     | 3301                     | 3351                     | 3401                     |       | 3451                     |
|                                    |                          | SUBSTITU                 | TE SHEET (S              | ULE 28)                  |       |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (FIULE 26) 174 / 204

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|          | AatII          | AT GACGTCTAAT<br>TA CTGCAGATTA | CT TTATGCTTCC<br>GA AATACGAAGG | TT CACACAGGAA<br>AA GTGTGTCCTT | Sphi     | Ŭΰ                       | H       | GA CCTGTGAAGT<br>CT GGACACTTCA |
|----------|----------------|--------------------------------|--------------------------------|--------------------------------|----------|--------------------------|---------|--------------------------------|
|          |                | ACGAAGTTAT<br>TGCTTCAATA       | GCTTTACACT<br>CGAAATGTGA       | АТААСААТТТ<br>ТАТТGТТААА       | }        | ACCCCCCCCC<br>TGGGGGGGGG | HindIII | ATAAGCTTGA<br>TATTCGAACT       |
|          |                | TGTATGCTAT<br>ACATACGATA       | GGCACCCCAG<br>CCGTGGGGTC       | TTGTGAGCGG<br>AACACTCGCC       | XbaI     | GAATTTCTAG<br>CTTAAAGATC | . •     | ATACGAAGTT<br>TATGCTTCAA       |
|          |                | CTTCGTATAA<br>GAAGCATATT       | TCACTCATTA<br>AGTGAGTAAT       | TTGTGTGGAA<br>AACACACCTT       |          | CCATGATTAC<br>GGTACTAATG |         | AATGTACGCT<br>TTACATGCGA       |
| 0-3:     | BglII<br>~~~~~ | GATCTCATAA<br>CTAGAGTATT       | GTGAGTTAGC<br>CACTCAATCG       | GGCTCGTATG<br>CCGAGCATAC       |          | ACAGCTATGA<br>TGTCGATACT |         | AACTTCGTAT<br>TTGAAGCATA       |
| pCALO-3: |                | Н                              | 51                             | 101                            |          | 151                      |         | 201                            |
|          |                |                                | SUR                            | STITI ITE QUE                  | EET /DUI | T 00\                    |         |                                |

SUBSTITUTE SHEET (RULE 26)

|  |   | en for sent 1971 of the section of the Balletines sent and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |   | e en en est est en en est est est est est est est est est est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|  | • | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

GATAACTACG CTATTGATGC

CCGTCGTGTA GGCAGCACAT

GCCTGACTCC

TATTTCGTTC ATCCATAGTT ATAAAGCAAG TAGGTATCAA

551

CTGTCAATGG

GTTACGAATT AGTCACTCCG TGGATAGAGT CGCTAGACAG

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|                                                | ٨٠,                   |                                             |                                                |                          |                          |                       |
|------------------------------------------------|-----------------------|---------------------------------------------|------------------------------------------------|--------------------------|--------------------------|-----------------------|
| GTTTAATTAA<br>CAAATTAATT                       |                       | TCCTTTGATC<br>AGGAAACTAG                    | GTTAAGGGAT<br>CAATTCCCTA                       | CTTTTAAATT<br>GAAAATTTAA | AACTTGGTCT<br>TTGAACCAGA | GCGATCTGTC            |
| TTTGTCTGCC<br>AAACAGACGG                       |                       | CTCAAGAAGA<br>GAGTTCTTCT                    | GAAACTCAC<br>CTTTTGAGTG                        | CACCTAGATC<br>GTGGATCTAG | TATATGAGTA<br>ATATACTCAT | ACCTATCTCA GCGATCTGTC |
| CGACATTTTT<br>GCTGTAAAAA                       |                       | CAAAAAGGAT<br>GTTTTTCCTA                    | TCAGTGGAAC<br>AGTCACCTTG                       | AAAGGATCTT<br>TTTCCTAGAA | ATCTAAAGTA<br>TAGATTTCAT | AATGCTTAA TCAGTGAGGC  |
| GCAGATTGTG<br>CGTCTAACAC                       | FSeI                  | CGGCCATTAT<br>GCCGGTAATA                    | GGTCTGACGC<br>CCAGACTGCG                       | AGATTATCAA<br>TCTAATAGTT | TTTTAAATCA<br>AAAATTTAGT | CAATGCTTAA            |
| GAAAAATGGC GCAGATTGTG<br>CTTTTTAÇCG CGTCTAACAC | 于<br>日<br>日<br>日<br>5 | GGGGGGGC CGGCCATTAT<br>CCCCCCCCG GCCGGTAATA | TTTTCTACGG GGTCTGACGC<br>AAAAGATGCC CCAGACTGCG | TTTGGTCATG               | AAAAATGAAG<br>TTTTTACTTC | GACAGTTACC            |
| 251                                            |                       | 301                                         | 351                                            | 401                      | 451                      | 501                   |
|                                                |                       |                                             | SUBSTIT                                        | UTE SHEET                | (RULE 26)                |                       |

|           | 1 |
|-----------|---|
| <u>rd</u> |   |
| ti.       | - |
| Son       |   |
| S         | 1 |
| ctc       | 1 |
| ×<br>-    | - |
| ঠু        |   |
| pu        | , |
| S.        |   |
| gan       |   |
| Ē         |   |
| cto       |   |
| Lve       |   |
| Š         |   |
| lan       |   |
| ij        |   |
| add       |   |
| o ç       |   |
| nces      |   |
| dne       |   |
| 58        |   |
| and       |   |
| aps       |   |
| E         |   |
| ion       |   |
| ınct      |   |
| 표         |   |
| 358       |   |
| ure       |   |
| Fig       |   |
|           |   |

|                                                                                                  |                          | . v                      |                          |                          |                          |                          |                          |
|--------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TACCGCGAGA<br>ATGGCGCTCT                                                                         | CCAGCCGGAA<br>GGTCGGCCTT | CATCCAGTCT<br>GTAGGTCAGA | TTAATAGTTT<br>AATTATCAAA | CGCTCGTCGT<br>GCGAGCAGCA | GCGAGTTACA<br>CGCTCAATGT | GTCCTCCGAT               | GTTATGGCAG               |
| GCTGCAATGA<br>CGACGTTACT                                                                         | AATAAACCAG<br>TTATTTGGTC | TATCCGCCTC<br>ATAGGCGGAG | AGTTCGCCAG<br>TCAAGCGGTC | CGTGGTGTCA               | AACGATCAAG<br>TTGCTAGTTC | AGCTCCTTCG<br>TCGAGGAAGC | ATCACTCATG<br>TAGTGAGTAC |
| TGGCCCCAGT                                                                                       | ATTTATCAGC<br>TAAATAGTCG | CCTGCAACTT<br>GGACGTTGAA | TAGAGTAAGT<br>ATCTCATTCA | CTACAGGCAT<br>GATGTCCGTA | TCCGGTTCCC               | AAAAGCGGTT<br>TTTTCGCCAA | CCGCAGTGTT<br>GGCGTCACAA |
| GCTTACCATC                                                                                       | CCGGCTCCAG<br>GGCCGAGGTC | CAGAAGTGGT<br>GTCTTCACCA | GCCGGGAAGC<br>CGGCCCTTCG | GTTGCCATTG<br>CAACGGTAAC | TTCATTCAGC<br>AAGTAAGTCG | TGTTGTGCAA<br>ACAACACGTT | AGTAAGTTGG<br>TCATTCAACC |
| 601 ATACGGGAGG GTACCGGAGG GTACCGGGAGG GTACCGGGAGG GTACCGGGAGG GTACCGGGAGG GTACCGGGAGG GTACCGTACC | CCCACGCTCA<br>GGGTGCGAGT | GGGCCGAGCG<br>CCCGGCTCGC | ATTAACTGTT<br>TAATTGACAA | GCGCAACGTT<br>CGCGTTGCAA | TTGGTATGGC<br>AACCATACCG | TGATCCCCCA               | CGTTGTCAGA<br>GCAACAGTCT |
| 601<br>601                                                                                       | 651                      | 701                      | 751                      | 801                      | 851                      | 901                      | 951                      |
| re 55                                                                                            |                          |                          | SUBSTITU                 | TE SHEET (P              | ULE 26)                  |                          |                          |

|                | ,                                       |
|----------------|-----------------------------------------|
| ontinued)      |                                         |
| L vectors (cc  | -                                       |
| lules and pCAI | 1 1 E E E E E E E E E E E E E E E E E E |
| ector modul    |                                         |
| al pCAL v      |                                         |
| additions      | •                                       |
| sequences of   |                                         |
| maps and sec   |                                         |
| Functional     |                                         |
| Figure 35a:    |                                         |
| _              |                                         |

| ۸, .                                                           |                          |                          |      |                          |                          |                          |                          |            |
|----------------------------------------------------------------|--------------------------|--------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| CTTTTCTGTG<br>GAAAGACAC                                        | TGCGGCGACC<br>ACGCCGCTGG | CCACATAGCA<br>GGTGTATCGT |      | GCGAAAACTC<br>CGCTTTTGAG | CCACTCGCGC<br>GGTGAGCGCG | TCTGGGTGAG<br>AGACCCACTC | GGCGACACGG<br>CCGCTGTGCC | GAAGCATTTA |
| CCGTAAGATG                                                     | GAATAGTGTA<br>CTTATCACAT | TAATACCGCG<br>ATTATGGCGC |      | GTTCTTCGGG               | TCGATGTAAC<br>AGCTACATTG | CACCAGCGTT<br>GTGGTCGCAA | AGGGAATAAG<br>TCCCTTATTC | CAATATTATT |
| GTCATGCCAT                                                     | GTCATTCTGA<br>CAGTAAGACT | CAATACGGGA<br>GTTATGCCCT | IcmX | ATTGGAAAAC<br>TAACCTTTTG | GAGATCCAGT<br>CTCTAGGTCA | CTTTTACTTT<br>GAAAATGAAA | GCCGCAAAAA<br>CGGCGTTTTT | CTTCCTTTTT |
| TTCTCTTACT AAGAGAATGA                                          | ACTCAACCAA<br>TGAGTTGGTT | TGCCCGGCGT<br>ACGGGCCGCA | v.   | AGTGCTCATC<br>TCACGAGTAG | TACCGCTGTT<br>ATGGCGACAA | TCCTCAGCAT<br>AGGAGTCGTA | AAGGCAAAAT<br>TTCCGTTTTA | TACTCATACT |
| TOOL CACTGCATAA TTCTCTTACT GTCATG GTGACGTATT AAGAGAATGA CAGTAC | ACTGGTGAGT<br>TGACCACTCA | GAGTTGCTCT<br>CTCAACGAGA |      | GAACTTTAAA<br>CTTGAAATTT | TCAAGGATCT<br>AGTTCCTAGA | ACCCAACTGA<br>TGGGTTGACT | CAAAAACAGG               | AAATGTTGAA |
| ure 35a: Functional<br>1001                                    | 1051                     | 11.01                    | SUE  | 1151<br>1151             | 1201<br>1201             | 1251                     | 1301                     | 1351       |
| =                                                              |                          |                          |      |                          |                          |                          |                          |            |

TITACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT · Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

BsrGI

| GCGGATACAT ATTTGAATGT ACATGAAATT | TGTACTTTAA              |
|----------------------------------|-------------------------|
| ATTTGAATGT                       | A TAAACTTACA TGTACTTTAA |
| GCGGATACAT                       | CGCCTATGTA              |
| TGTCTCATGA                       | CAGAGTACT               |
| TCAGGGTTAT                       | AGTCCCAATA              |
| 1401                             |                         |

| GTTAAATCAG   | . CAATTTAGTC |
|--------------|--------------|
| TTAAATTTTT ( | AATTTAAAAA   |
| AAAATTCGCG   | TTTTAAGCGC   |
| ATATTTTGTT   | TATAAAACAA   |
| GTAAACGTTA   | CATTTGCAAT   |
| 1451         |              |

| CAAAATCCCT TATAAATCAA | AGGGA ATATTTAGTT |
|-----------------------|------------------|
| AAA                   | C GTTTTAGGGA A   |
| ATAGG CCGAAATCGG C    | GGCTTTAGC        |
| AACCAATAGG            | TTGGTTATCC       |
| CTCATTTTT             | GAGTAAAAAA       |
| 1501                  |                  |

| GAACAAGAGT                                  | CTTGTTCTCA                       |
|---------------------------------------------|----------------------------------|
| CGAGATAGGG TTGAGTGTTG TTCCAGTTTG GAACAAGAGT | AAC AAGGTCAAAC                   |
| TTGAGTGTTG                                  | GCTCTATCCC AACTCACAAC AAGGTCAAAC |
| CGAGATAGGG                                  | GCTCTATCCC AACTCAC               |
| AAGAATAGAC                                  | TTCTTATCTG                       |
| 1551                                        | יבו די                           |
| SUC:                                        | et (R                            |

AAACCGTCTA TTTGGCAGAT

AAAGGGCGAA TTTCCCGCTT

CCACTATTAA AGAACGTGGA CTCCAACGTC GGTGATAATT TCTTGCACCT GAGGTTGCAG

1601

| 1651 TCA<br>AGT | GGGCGAT | IT GGCCCACTAC GAGAACCATC ACCCTAATCA AGTTTTTTGG | GAGAACCATC<br>CTCTTGGTAG | ACCCTAATCA<br>TGGGATTAGT | AGTTTTTTGG<br>TCAAAAAACC |
|-----------------|---------|------------------------------------------------|--------------------------|--------------------------|--------------------------|
|-----------------|---------|------------------------------------------------|--------------------------|--------------------------|--------------------------|

BanII

2222

.

SUBSTITUTE SHEET (RULE 26) 179 / 204

GGTGCGTCAG CCACGCAGTC

TCCGACGTGG

AGGCTGCACC

AGGAGAAAAA TCCTCTTTTT

TTCATGTGGC

AGTGAAGTGC TCACTTCACG

1951

AAGTACACCG

GACTGAGCGA

AGGAGCGAGT

TCCTCGCTCA

ATATTCCGCT TATAAGGCGA

GATACAGGAT CTATGTCCTA

GTCTTATACA

CAGAATATGT

2001

CTGACTCGCT

|                                                                                                          | AGG GAGCCCCCGA<br>TCC CTCGGGGGCT               | GAA AGGAAGGGAA<br>CTT TCCTTCCCTT | GTA GCGGTCACGC<br>CAT CGCCAGTGCG | GCT ACAGGGCGCG                                 | TGA TGAGGGTGTC                             | AgeI | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------------|--------------------------------------------|------|-----------------------------------------|
| ntinued)                                                                                                 | ACCCTAAAGG<br>TGGGATTTCC                       | GTGGCGAGAA<br>CACCGCTCTT         | GGCAAGTGTA<br>CCGTTCACAT         | ATGCGCC<br>_TACGCGG                            | TTGGCACTGA                                 |      |                                         |
| ules and pCAL vectors (co                                                                                | CTAAATCGGA ACCCTAAAGG<br>GATTTAGCCT TGGGATTTCC | GCCGGCGAAC<br>CGGCCGCTTG         | CTAGGGCGCT<br>GATCCCGCGA         | GCCGCGCTTA ATGCGCCGCT<br>CGGCGCGAAT TACGCGGCGA | GCTTACTATG<br>CGAATGATAC                   |      |                                         |
| litional pCAL vector modu                                                                                | CCGTAAAGCA<br>GGCATTTCGT                       | GACGGGGAAA<br>CTGCCCCTTT         | GGAGCGGGCG                       | CACCACACCC<br>GTGGTGTGGG                       | GTGTATACTG<br>CACATATGAC                   | ua*  | ~ ~ ~                                   |
| Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | GGTCGAGGTG                                     | TTTAGAGCTT<br>AAATCTCGAA         | GAAAGCGAAA<br>CTTTCGCTTT         | TGCGCGTAAC<br>ACGCGCATTG                       | NheI<br>~~~~~~<br>TGCTAGCGGA<br>ACGATCGCCT | ImmX | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
| 5a: Functional                                                                                           | 1701                                           | 1751                             | 1801                             | 1851                                           | 1901                                       |      |                                         |
| Figure 3                                                                                                 |                                                |                                  |                                  | SUBSTITU                                       | JTE SHEET (RULE 26)<br>180 / 204           |      |                                         |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GAACGGGGGG<br>CTTGCCCCGC | AGTGAGAGGG<br>TCACTCTCCC | CAAGCATCAC<br>GTTCGTAGTG | GACTATAAAG<br>CTGATATTTC | CCTGTTCCTG<br>GGACAAGGAC |       | TTTGTCTCAT<br>AAACAGAGTA  | AAGCTGGACT               |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|---------------------------|--------------------------|
| AATGGCTTAC<br>TTACCGAATG | TTAACAGGGA<br>AATTGTCCCT | GCCCCCCTGA<br>CGGGGGGACT | AACCCGACAG<br>TTGGGCTGTC | CCTGCGCTCT<br>GGACGCGAGA |       | TATGGCCGCG<br>ATACCGGCGC  | AGTTCGCTCC<br>TCAAGCGAGG |
| GGCGAGCGGA<br>CCGCTCGCCT | AGGAAGATAC<br>TCCTTCTATG | CATAGGCTCC<br>GTATCCGAGG | GTGGTGGCGA<br>CACCACCGCT | GCGGCTCCCT<br>CGCCGAGGGA |       | ATTCCGCTGT.<br>TAAGGCGACA | CCGGGTAGGC<br>GGCCCATCCG |
| GTTCGACTGC<br>CAAGCTGACG | GGAAGATGCC<br>CCTTCTACGG | GCCGTTTTTC<br>CGGCAAAAAG | GCTCAAATCA<br>CGAGTTTAGT | TTTCCCCCTG               | AgeI  | TACCGGTGTC<br>ATGGCCACAG  | ACACTCAGTT<br>TGTGAGTCAA |
| ACGCTCGGTC<br>TGCGAGCCAG | GAGATTTCCT<br>CTCTAAAGGA | CCGCGGCAAA<br>GGCGCCGTTT | GAAATCTGAC<br>CTTTAGACTG | ATACCAGGCG<br>TATGGTCCGC |       | CCTTTCGGTT<br>GGAAAGCCAA  | TCCACGCCTG               |
| 2051                     | 2101                     | 2151                     | 2201                     | 2251                     |       | 2301                      | 2351                     |
|                          |                          | S                        | UBSTITUTE                | SHEET (RUL               | E 26) |                           |                          |

| ਛ        |
|----------|
| Ž        |
| nt:      |
| ଥ        |
| <u>ج</u> |
| 유        |
| Š        |
| ۲        |
| <u>ದ</u> |
| <u>_</u> |
| <u></u>  |
| ules     |
| ρg       |
| Ĕ        |
| ō        |
| E C      |
| _        |
| S        |
| <u>_</u> |
| na       |
| æ        |
| ᄝ        |
| Ę a      |
| S        |
| ĕ        |
| Ä        |
| Šeq      |
| 9        |
| ar       |
| ap:      |
| Ξ        |
| ual      |
| €.       |
| Juc      |
| 3        |
| 35a:     |
| 3        |
| gur      |
| Fig      |

| TAAC                                           | CAGC                                           | CGGT                  |
|------------------------------------------------|------------------------------------------------|-----------------------|
| ATCCGG<br>TAGGCC                               | CACTGGCAGC                                     | ATGCGCCGGT            |
| GCTGCGCCTT ATCCGGTAAC<br>CGACGCGGAA TAGGCCATTG | GGAAAGACAT GCAAAAGCAC<br>CCTTTCTGTA CGTTTTCGTG | TCTTGAAGTC            |
| ACCCCCGGTT CAGTCCGACC<br>TGGGGGCAA GTCAGGCTGG  | AGTCCAACCC GGAAAGACAT<br>TCAGGTTGGG CCTTTCTGTA | AATTGATTTA GAGGAGTTAG |
| ACCCCCCGTT<br>TGGGGGGCAA                       | AGTCCAACCC<br>TCAGGTTGGG                       | AATTGATTTA            |
| GTATGCACGA<br>CATACGTGCT                       | TATCGTCTTG<br>ATAGCAGAAC                       | AGCCACTGGT            |
| 2401                                           | 2451                                           | 2501                  |

| 25 | 2501 | AGCCACTGGT | AATTGATTTA | GAGGAGTTAG | AATTGATTTA GAGGAGTTAG TCTTGAAGTC ATGCGCCGGT | ATGCGCCGGT |
|----|------|------------|------------|------------|---------------------------------------------|------------|
|    |      | TCGGTGACCA | TTAACTAAAT | CTCCTCAATC | CTCCTCAATC AGAACTTCAG TACGCGGCCA            | TACGCGGCCA |
|    |      |            |            |            |                                             |            |
| ,  |      |            |            |            |                                             |            |

| CTCCAAGCCA                       | GAGGTTCGGT                       |      |
|----------------------------------|----------------------------------|------|
| GACTGCGCTC                       | CTGACGCGAG                       |      |
| CTGAAAGGAC AAGTTTTAGT GACTGCGCTC | TTCAAAATCA CTGACGCGAG GAGGTTCGGT |      |
| CTGAAAGGAC                       | GACTTTCCTG                       |      |
| TAAGGCTAAA                       | TTCCGATTT                        |      |
| 2551                             |                                  | •    |
| SUE                              | STI                              | TUTE |

|   | GAAAAACCGC            | CTTTTTGGCG            |    |
|---|-----------------------|-----------------------|----|
|   | TGGTAGCTCA GAGAACCTAC | CTCTTGGATG            |    |
| • | TGGTAGCTCA            | AAGTTTCTCA ACCATCGAGT |    |
|   | TTCAAAGAGT            | AAGTTTCTCA            |    |
|   | CCTCGG                |                       |    |
|   | 2601                  |                       |    |
| T | E SH                  | EET                   | (i |

| AGAGATTAC GCGCAGACCA | CGCGTCTGGT                  |
|----------------------|-----------------------------|
|                      | AGTCTCG TTCTCTAATG CGCGTCTG |
| TTTTCAGAGC A         | AAAAGTCTCG TT               |
| GGTTTTTTCG           | CCAAAAAAGC                  |
| CCTGCAAGGC           | GGACGTTCCG                  |
| 2651                 | 251                         |

BglII

TCTTATTA AGAATAAT AAGAAGATCA TTCTTCTAGT AAACGATCTC TTTGCTAGAG

2701

SUBSTITU (RULE 28) 182 / 204

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

**AAGTTAT** 

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

**AGATCTCA** 

M3: PCR, NoVspAatII as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-

TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-1: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

gllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued) \*

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

**TATGGCATG** 

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

**GAGGCGG** 

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

**AAGGATCTCAAGAAGATCC** 

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCGCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

## M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

**CAAGGCG** 

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

## M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

**TGAGA** 

## M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (BUILE 26)

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

1289 bp

Figure 36: functional map and sequence of ß-lactamase-MCS module

| Bbe I (1361)<br>Ase I (1364)<br>Eco 57I (1366)                                      | Xho I (1371)<br>Bss HII (1376)<br>Bbs I (1386)   | Bsp EI (1397)<br>Bsr GI (1403) |                                                              |
|-------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|--------------------------------------------------------------|
| Bam H I (192) Pst I (1356)<br>Kpn I (202) Bss SI (1346)<br>Fse I (210) Eag I (1340) | -35 (bla)<br>-10 (bla)                           | bla-term                       | bla MCS                                                      |
| <i>Pml</i> I (189)<br>Bsa BI (182)<br>Nsp V (173)                                   | Bsi WI (166)<br>Eco O109I (161)<br>Psp 5II (161) | Msc I (156)<br>Bst XI (152)    | Bst Ell (140)<br>Bsu 36l (136)<br>Hpa I (132)<br>Mlu I (126) |

SUBSTITUTE SHEET (RULE 28)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

|      |        |          | BsiwI NspV       | C GTACGTTCGA<br>G CATGCAAGCT                   |       | ·         | TCAAAAAGGA<br>AGTTTTTCCT             | CTCAGTGGAA<br>GAGTCACCTT | AAAAGGATCT<br>TTTTCCTAGA |
|------|--------|----------|------------------|------------------------------------------------|-------|-----------|--------------------------------------|--------------------------|--------------------------|
| StyI | Psp5II | Ecool091 |                  | }                                              |       | FseI      | CATTA                                | GGGTCTGACG<br>CCCAGACTGC | GAGATTATCA<br>CTCTAATAGT |
|      |        | BstXI    | MscI             | AAGCCCCTGG CCAAGGTCCC<br>TTCGGGGACC GGTTCCAGGG |       |           | GGATC CGGTACCAGG<br>CCTAG GCCATGGTCC | CTTTTCTACG<br>GAAAAGATGC | TTTTGGTCAT<br>AAAACCAGTA |
|      |        |          | ~~~~~~<br>BstEII | TCAGGTGACC<br>AGTCCACTGG                       | Pml I |           | CACGTGGATC GTGCACCTAG                | ATCCTTTGAT<br>TAGGAAACTA | CGTTAAGGGA<br>GCAATTCCCT |
|      |        | MluI Bsu | HpaI             | CGCGTTAACC<br>GCGCAATTGG                       |       | NspVBsaBI | AGATTACCAT<br>TCTAATGGTA             | TCTCAAGAAG<br>AGAGTTCTTC | CGAAAACTCA<br>GCTTTTGAGT |
|      |        |          |                  | 126                                            |       |           | 176                                  | 226                      | 276                      |

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of ß-lactamase-MCS module (continued)

| AA GITITAANC AANCIAAAGI<br>TT CAAAATTTAG TTAGATTTCA | AC CAATGCTTAA TCAGTGAGGC<br>TG GTTACGAATT AGTCACTCCG | TC ATCCATAGTT GCCTGACTCC<br>AG TAGGTATCAA CGGACTGAGG | GG GCTTACCATC TGGCCCCAGT | CA CCGGCTCCAG ATTTATCAGC | CG CAGAAGTGGT CCTGCAACTT | TT GCCGGGAAGC TAGAGTAAGT | STT GTTGCCATTG CTACAGGCAT |
|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
| TAAAAATGAA<br>ATTTTTACTT                            | TGACAGTTAC<br>ACTGTCAATG                             | TATTTCGTTC<br>ATAAAGCAAG                             | ATACGGGAGG<br>TATGCCCTCC | CCCACGCTCA<br>GGGTGCGAGT | GGGCCGAGCG               | ATTAACTGTT<br>TAATTGACAA | GCGCAACGTT                |
| CCTTTTAAAT<br>GGAAAATTTA                            | AAACTTGGTC<br>TTTGAACCAG                             | GCGATCTGTC<br>CGCTAGACAG                             | GATAACTACG<br>CTATTGATGC | TACCGCGAGA<br>ATGGCGCTCT | CCAGCCGGAA<br>GGTCGGCCTT | CATCCAGTCT               | TTAATAGTTT<br>AATTATCAAA  |
| TCACCTAGAT<br>AGTGGATCTA                            | ATATATGAGT<br>TATATACTCA                             | ACCTATCTCA<br>TGGATAGAGT                             | CCGTCGTGTA               | GCTGCAATGA<br>CGACGTTACT | AATAAACCAG<br>TTATTTGGTC | TATCCGCCTC               | AGTTCGCCAG<br>TCAAGCGGTC  |
| 326                                                 | 376                                                  | 426                                                  | 476                      | 526                      | 576                      | 626                      | 929                       |

SUBSTITUTE SHEET (RULE 26)

190 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| SC TCCGGTTCCC | AA AAAAGCGGTT<br>FT TTTTCGCCAA | GCCCAGTGTT               | CT GTCATGCCAT<br>SA CAGTACGGTA | AA GTCATTCTGA<br>TT CAGTAAGACT | GT CAATACGGGA<br>CA GTTATGCCCT | TC ATTGGAAAAC<br>AG TAACCTTTTG | TT GAGATCCAGT<br>AA CTCTAGGTCA |
|---------------|--------------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| TTCATTCAGC    | TGTTGTGCAA                     | AGTAAGTTGG               | TTCTCTTACT                     | ACTCAACCAA                     | TGCCCGGCGT                     | AGTGCTCATC                     | TACCGCTGTT                     |
| AAGTAAGTCG    | ACAACACGTT                     | TCATTCAACC               | AAGAGAATGA                     | TGAGTTGGTT                     |                                | TCACGAGTAG                     | ATGGCGACAA                     |
| TTGGTATGGC    | TGATCCCCCA                     | CGTTGTCAGA               | CACTGCATAA                     | ACTGGTGAGT                     | GAGTTGCTCT                     | GAACTTTAAA                     | TCAAGGATCT                     |
| AACCATACCG    | ACTAGGGGGGT                    | GCAACAGTCT               | GTGACGTATT                     | TGACCACTCA                     | CTCAACGAGA                     | CTTGAAATTT                     | AGTTCCTAGA                     |
| CGCTCGTCGT    | GCGAGTTACA                     | GTCCTCCGAT               | GTTATGGCAG                     | CTTTTCTGTG                     | TGCGGCGACC                     | CCACATAGCA                     | GCGAAAACTC                     |
| GCGAGCAGCA    | CGCTCAATGT                     |                          | CAATACCGTC                     | GAAAAGACAC                     | ACGCCGCTGG                     | GGTGTATCGT                     | CGCTTTTGAG                     |
| CGTGGTGTCA    | AACGATCAAG<br>TTGCTAGTTC       | AGCTCCTTCG<br>TCGAGGAAGC | ATCACTCATG<br>TAGTGAGTAC       | CCGTAAGATG<br>GGCATTCTAC       | GAATAGTGTA<br>CTTATCACAT       | TAATACCGCG                     | GTTCTTCGGG<br>CAAGAAGCCC       |
| 726           | 176                            | 826                      | 876                            | 926                            | 916                            | 1026                           | 1076                           |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of 8-lactamase-MCS module (continued)

| •                                  |                          |                          |                          |          |           |                          |             |
|------------------------------------|--------------------------|--------------------------|--------------------------|----------|-----------|--------------------------|-------------|
| CTTTTACTTT<br>GAAAATGAAA           | GCCGCAAAAA<br>CGGCGTTTTT | CTTCCTTTTT<br>GAAGGAAAAA | GCGGATACAT<br>CGCCTATGTA | XhoI     | BssHI     | ATGGCTCGAG<br>TACCGAGCTC |             |
| TCTTCAGCAT<br>AGAAGTCGTA<br>Eco57I | AAGGCAAAAT<br>TTCCGTTTTA | TACTCATACT<br>ATGAGTATGA | TGTCTCATGA<br>ACAGAGTACT | }        | Bbel Asel | GGCGCCATTA               | IE          |
| ACCCAACTGA<br>TGGGTTGACT           | CAAAAACAGG<br>GTTTTTGTCC | AAATGTTGAA<br>TTTACAACTT | TCAGGGTTAT<br>AGTCCCAATA | PstI     | BssSI     | ACGAGCTGCA<br>TGCTCGACGT | BspEI BsrGI |
| CCACTCGTGC<br>GGTGAGCACG<br>BSSSI  | TCTGGGTGAG<br>AGACCCACTC | GGCGACACGG<br>CCGCTGTGCC | GAAGCATTTA<br>CTTCGTAAAT |          | EagI      |                          |             |
| TCGATGTAAC<br>AGCTACATTG           | CACCAGCGTT<br>GTGGTCGCAA | AGGGAATAAG<br>TCCCTTATTC | CAATATTATT<br>GTTATAATAA |          |           | ATTTGAATGT<br>TAAACTTACA | BssHII      |
| 1126                               | 1176                     | 1226                     | 1276                     |          |           | 1326                     |             |
|                                    |                          | SUBSTITU                 | ITE SHEET (I             | RULE 26) | )         |                          |             |
|                                    |                          |                          |                          |          |           |                          |             |

192 / 204

CATGAAATT TCCGGATGTA AGGCCTACAT Figure 36: functional map and sequence of ß-lactamase-MCS module (continued) CGCTTTGTCT GCGAAACAGA CGCGCTTCAG GCGCGAAGTC Eco57I ~ ~ ~ ~ ~ ~ ~ 1376

SUBSTITUTE SHEET (RULE 26)

Figure 37: Oligo and primer design for Vk CDR3 libraries

Vk4

5'- G C C C T G C A A G C G G A A G A C

E

D

Figure 37: Oligo and primer design for  $V\kappa$  CDR3 libraries

-3, 05 08 04

F A TW Y C Q
T T T G C G A C T T A T T A T T G C C A

V G V Y Y C
G T G G C G T G T A T T A T T G C C A

V A V Y C
G T G G C G G T G T A T T A T T G C C A

C D E G CA Н M N P CAG Q R S T ٧ W .80% Q

SUBSTITUTE SHEET (RULE 26) 195 / 204 G

ACCT

Figure 37: Oligo and primer design for  $V\kappa$  CDR3 libraries

|   | נ | 09 |     |             |   |   |
|---|---|----|-----|-------------|---|---|
|   |   |    | 3'- | G           | G | Α |
| G |   |    | Α   | T<br>C      | С | Τ |
| G |   |    | Α   | T<br>C<br>T | С | Τ |

| , |    |   | ********** |                                         |        |           |             |         |         |   |   |          | ******* | •••••   | · |   | ·····                                  |
|---|----|---|------------|-----------------------------------------|--------|-----------|-------------|---------|---------|---|---|----------|---------|---------|---|---|----------------------------------------|
| G | C  | T |            |                                         |        |           |             |         | G       | C | l |          |         |         | G | C |                                        |
|   |    |   |            |                                         |        |           |             |         |         |   |   |          |         |         |   |   |                                        |
| G | Α  | Τ | G          | Α                                       | Τ      | G         | Α           | Τ       | G       | Α | T |          | ••••••  |         | G | Α | T                                      |
| G | Α  | G | *********  | *******                                 |        | ********* |             |         | G       | Α | G | 4        | ••••••• |         | G | A | G                                      |
| T | T  | T |            |                                         |        | •••••     | **********  |         | T       | T | Τ | •••••    |         | ******* | Τ | T | · T                                    |
| G | G  | Τ | G          | G                                       | T      | G         | G           | Τ       | G       | G | T | ••••••   | ••••••  | ••••••  | G | G | T                                      |
|   | Α  |   | •••••      |                                         |        | •••••     | *********** |         | С       |   |   | •••••••  |         | ••••••  | С | Α | T                                      |
| Α | T  | T |            |                                         |        |           | *********   |         | Α       | T | T |          |         |         | Α | T | Τ                                      |
| A | Α  | G | ••••       |                                         | •••••  |           |             |         | Α       | Α | G | ••••••   | ••••    | ******* | Α | Α | G                                      |
| C | T  | T |            | *******                                 | •••••  | ••••••    | *******     |         | С       | T | Τ |          |         |         | С | T | T                                      |
| Α | T  | G |            | • • • • • • • • • • • • • • • • • • • • |        |           | ••••••      |         | Α       | T | G |          | •••••   | •       | Α | T | G                                      |
| Α | A  | T | Α          | A                                       | T      | Α         | Α           | T       | Α       | Α | T | ******** |         | •••••   | Α | Α | T                                      |
|   |    |   |            | • • • • • • • • • • • • • • • • • • • • |        | .,        | *********** |         |         |   |   |          | C       | T       | С | C | T                                      |
| C | Α  | G |            |                                         |        |           | ******      | ••••••  | С       | Α | G |          |         | ******  | С | Α | G                                      |
|   | G  |   |            | *********                               |        |           |             |         |         |   |   |          |         |         | C |   | Ţ                                      |
| T | C  | T | T          | C                                       | T      | Τ         | С           | T       | T       | C | Τ | Τ        | C       | T       | Τ | С | Τ                                      |
| Ā | C  | T | ······     |                                         | ****** |           |             | ******* | Α       | C | Τ | *******  |         |         | Α | C | Τ                                      |
| G | T  | T |            |                                         | ****   | <u></u>   |             |         | G       | T | Τ |          |         | •••••   | G | T | T                                      |
| T | G  | G |            |                                         |        | :         |             |         | T       | G | G | ·        | ••••••  | •••••   | T | G | G                                      |
| T | A  | T | T          | Α                                       | T      |           |             |         | T       | Α | Τ |          |         |         | Τ | Α | T                                      |
|   | 0% |   | <b></b>    |                                         | ••••   | i         |             |         | ······· |   |   | 80       | )%      | P       |   |   | ······································ |

SUBSTITUTE SHEET (RULE 20) 196 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 198 / 204 WO 97/08320 PCT/EP96/03647

Figure 38: Oligo and primer design for VA CDR3 libraries

| 30        | 40                  |     | 50      |
|-----------|---------------------|-----|---------|
| Y Y C     | Q S                 | D   |         |
| -ATTATTGC | CAGAGC              | GAC | ······  |
|           | Α                   |     | GCTGCT- |
|           | С                   |     |         |
|           | D                   |     | GATGAT  |
|           | E                   |     | GAGGAG  |
|           | F                   |     |         |
|           | G                   |     | GGTGGT  |
|           | H                   |     | CATCAT  |
|           | l<br>V              |     | ATTATT  |
|           | . K                 |     | CITCII  |
|           | L <sub>i</sub><br>M |     | ATGATG  |
|           | N                   |     | AATAAT  |
|           | P                   |     | CCTCCT  |
|           | Q                   |     | CAGCAG  |
|           | RCGT                |     | CGTCGT  |
|           | S                   |     | TCTTCT  |
|           | · T                 | 9   | ACTACT  |
|           | V                   |     | GTTGTT  |
|           | WTGG                |     |         |
|           | Y T A T             |     | TATTAŢ  |
|           |                     | 1   | 18 18   |
|           | 3                   | 1   | 18 18   |
|           | 3                   | . 1 | 18 18   |

SUBSTITUTE SHEET (RULE 26) 199 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

| 09                                                                      | 70                                                   | . 80                |
|-------------------------------------------------------------------------|------------------------------------------------------|---------------------|
|                                                                         | G G G G G G G                                        | T K L<br>CACGAAGTTA |
| gap gap - G C T G C T G C                                               |                                                      |                     |
| G A T G A T G A T G A G G A G G A G G A G G A G G A G G A G G A T T T T | A G<br>T T<br>A T<br>A G<br>T T<br>C T<br>C T<br>C T |                     |
| TATTATTATTA                                                             | A T Variability                                      |                     |
|                                                                         | 9 3.32E+05<br>9 5.98E+06                             |                     |
| 10 .0                                                                   | 9 1.08E+08                                           | •                   |
| ·                                                                       | SUBSTITUTE SHEET (RULE 26)                           |                     |

200 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 25)
201 / 204



Figure 39: functional map of expression vector series pBS13

SUBSTITUTE SHEET (RULE 25) 202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| % soluble | 77          | K2     | $\mathfrak{D}$ | <b>К</b> 4 | λ1  | λ2  | λ3  |
|-----------|-------------|--------|----------------|------------|-----|-----|-----|
| H1A       | 61%         | 58%    | 52%            | 42%        | %06 | 61% | %09 |
| H1B       | 39%         | 48%    | %99            | 48%        | 47% | 39% | 36% |
| H2        | 47%         | 57%    | 46%            | 49%        | 37% | 36% | 45% |
| H3        | 85%         | 9/0/29 | 76%            | 61%        | 80% | 71% | 83% |
| H4        | %69         | 52%    | 51%            | 44%        | 45% | 33% | 42% |
| H5        | 49%         | 49%    | 46%            | %29        | 54% | 46% | 47% |
| 9H        | <b>%</b> 06 | 58%    | 54%            | 47%        | 45% | 20% | 51% |

| Total amount     |      |              |          |            |      |      |          |
|------------------|------|--------------|----------|------------|------|------|----------|
| compared to H3K2 | ス    | $\mathbf{Z}$ | $\Sigma$ | <b>К</b> 4 | 7    | 77   | <u>ک</u> |
| H1A              | 289% | 94%          | 166%     | 272%       | 20%  | 150% | 78%      |
| H1B              | 219% | 122%         | 89%      | 139%       | 117% | 158% | 101%     |
| H2               | 186% | 223%         | 208%     | 182%       | 126% | %09  | 97%      |
| H3               | 20%  | •            | 71%      | 54%        | 23%  | 130% | 47%      |
| H4               | 37%  | 25%          | %09      | 77%        | 195% | 107% | 251%     |
| H5               | %86  | 201%         | 167%     | 83%        | 93%  | 128% | 115%     |
| 9H               | 65%  | 117%         | 89%      | 109%       | 299% | 215% | 278%     |

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| Soluble amount   | ,    | ,    | ć,   | 7.       | 7.1   | 11   | 7.2  |
|------------------|------|------|------|----------|-------|------|------|
| compared to H3K2 | Z    | ל    | 2    | <b>4</b> | ₹     | 77   | 3    |
| H1A              | 191% | 988% | 121% | 122%     | 26%   | 211% | 76%  |
| H1B              | 124% | 95%  | 83%  | 107%     | 79%   | 142% | 29%  |
| H2               | 126% | 204% | 139% | 130%     | 0/099 | 20%  | 70%  |
| H3               | 63%  | i    | 81%  | 49%      | %69   | 143% | 61%  |
| H4               | 40%  | 47%  | 49%  | 54%      | 95%   | 55%  | 125% |
| H5               | %69  | 158% | 116% | 80%      | 72%   | 84%  | 84%  |
| 9H               | 85%  | 122% | 87%  | 77%      | 162%  | 162% | 212% |
|                  | McPC |      |      |          |       |      |      |
| soluble          | 38%  |      |      |          |       |      |      |
| %H3k2 total      | 117% |      |      |          |       |      |      |
| %H3k2 soluble    | 69%  |      |      |          |       |      |      |
|                  |      |      |      |          |       |      |      |

SUBSTITUTE SHEET (RULE 26)
204 / 204

Inv onal Application No PCT/EP 96/03647

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/13 C12N15/10 C12N15/62 C12N15/70 C12N1/21 C07K1/04 G01N33/53 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC~6~C12N~C07K~G01NDocumentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 368 684 A (MEDICAL RES COUNCIL) 16 1-55 A May 1990 cited in the application see the whole document EUROPEAN J. IMMUNOLOGY. 1-55 A vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIM, BRD, pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: "Cloning and sequencing of human immunoglobulin V-lambda gene segments" cited in the application see the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search .1 1. 02 97 30 January 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Td. (+31-70) 340-2040, Tx. 31 651 epo nl, Hornig, H Fax: (+31-70) 340-3016

1

Ir stonal Application No PCT/EP 96/03647

|                         | - A DOCUMENT CONFIDENCE TO BE BELLIANT                                                                                                                                                                                                                                           | PCT/EP 96/0364/       |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| C.(Continue<br>Category | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                   | Relevant to claim No. |
| Category                | Claudi of document was made and where appropriately of the research                                                                                                                                                                                                              |                       |
| A                       | PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document | 1-55                  |
| <b>A</b>                | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET T A ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document                                       | 1-55                  |
| <b>A</b>                | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398 GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document            | 1-55                  |
| Α                       | PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document                                                             | 1-55                  |
| <b>A</b> .              | ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document                                                                                 | 1-55                  |
| A                       | JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document                                     | 1 <b>-55</b>          |

1

Int sonal Application No PCT/EP 96/03647

| (Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                        | Relevant to claim No. |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Aucgory  | Creatility of document, with maceston, where appropriately of the fellowing passages                                                                                                                                                                                                                                                                                  |                       |
| A        | NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document                                                                                                                                | 1-55                  |
| A        | WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document                                                                                                                                                                                                                                                                                               | 1-55                  |
| A        | ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4                                                                                               | 1-55                  |
|          | CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994, | 1-55                  |

anformation on patent family members

Int onal Application No PCT/EP 96/03647

| Patent document cited in search report | Publication date |       | t family<br>nber(s) | Publication date |
|----------------------------------------|------------------|-------|---------------------|------------------|
| EP-A-0368684                           | 16-05-90         | AU-B- | 634186              | 18-02-93         |
|                                        |                  | AU-A- | 4520189             | 28-05-90         |
|                                        |                  | CA-A- | 2002868             | 11-05-90         |
|                                        |                  | DE-D- | 68913658            | 14-04-94         |
|                                        |                  | DE-T- | 68913658            | 08-09-94         |
|                                        |                  | ES-T- | 2052027             | 01-07-94         |
| •                                      | •                | WO-A- | 9005144             | 17-05-90         |
|                                        |                  | JP-T- | 3502801             | 27-06-91         |
| WO-A-9511998                           | 04-05-95         | AU-A- | 8091694             | 22-05-95         |
|                                        |                  | EP-A- | 0725838             | 14-08-96         |