TTT4275 Summary from February 11th Spring 2019

Lecturer: Magne Hallstein Johnsen,

IES, NTNU

The Likelihood Ratio Test (LRT) - 1

• Given hypothesis distributions $p(x, H_i) = p(x, \theta_i)$ i = 0, 1 the so-called "most powerful" test is the LRT

$$L(x) = \frac{p(x/H_1)}{p(x/H_0)} \le \lambda \tag{1}$$

- The ratio (i.e distributions) is problem dependent while the threshold λ is mainly dependent of the choice of detection method.
- The simplest method is the maximum likelihood test, i.e. $\lambda = 1$
- The most general method is called the Bayes risk where

$$\lambda = \frac{P_0 C_{10}}{P_1 C_{01}} \tag{2}$$

where P_i i = 0, 1 is the hypothesis priors while C_{01} and C_{10} are respectively the costs of miss and false alarm. These two costs are usually chosen by the developer.

The Likelihood Ratio Test (LRT) - 2

- In for instance medical applications the misses usually are more costly than false alarms.
- In other applications the two types of errors are equally costly, i.e $C_{01}=C_{10}$. Using the Bayes law $p(x/H_i)P_i=P(H_i/x)p(x)$ we then can reformulate the LRT to

$$L(x) = \frac{P(H_1/x)}{P(H_0/x)} \le 1$$
 (3)

- This is called the Maximum A Posteriori (MAP) detector and corresponds to the detector with minimum number of errors.
- In some applications there is a required maximum value on one of the error types.
- The Neyman-Pearson (NP) detector assumes a fixed P_{FA} . From this the threshold and thus the P_M is found.
- Instead we can start with a fixed P_M and derive the threshold and P_{FA}