Overview of a System Systems Programming (CST-210)

Dr. Arka P. Mazumdar

Outline

- Revisit C Compilation
- Tour of a Computer System
- Running a C program
- Cache Memory
- Storage Hierarchy
- Operating System Concepts

Revisit C Compilation

▶ A very simple C program:

```
#include<stdio.h>
void main() {
    printf("Hello World \n");
}
```

▶ We stored the program in *hello.c*

STEP 1:

STEP 2:

▶ STEP 3

▶ STEP 4:

Tour of a Computer System

Running a C program

Compile:

```
$ gcc -o hello hello.c
```

Run

```
$ ./helloHello World$ _
```

Running a C program (contd.)

Reading ./hello

Running a C program (contd.)

Loading the executable

Running a C program (contd.)

Writing output "String"

Storage Hierarchy

Cache Memory

Cache Memory (contd.)

Intel Core i7

Cache Memory (contd.)

- Cache: L1
 - As fast as the Registers
- Cache: L2
- Cache: L3
 - About 2-times faster
- All types are implemented using SRAM

Operating System Concepts

- A software layer that abstracts away the messy details of hardware into a useful, portable, powerful interface
 - Modules:
 - File-system, virtual memory management, network stack, protection system, scheduler
 - Each of these "subsystems" is a major system of its own!
- Design and implementation has many engineering tradeoffs
 - e.g., speed vs. portability, maintainability, simplicity etc.

Operating System Concepts

- Single-Tasking
- Multi-Tasking
- Multi-User / Time-Shared
- Real-Time
- Distributed
- Embedded

- Process: Program in Execution
- Processes are independent programs running concurrently within the operating system

to see what processes are running on a UNIX system, use the

ps command

Process States

Process States (advanced)

Layered view

Abstraction view

Process Creation

```
Parent
                                           Child
main()
           pid = 3456
                                  main()
                                               pid = 0
                                    pid=fork();
  pid=fork();
                                     if (pid == 0)
   if (pid == 0)
                                        ChildProcess();
      ChildProcess();
   else
                                     else
                                        ParentProcess();
      ParentProcess();
void ChildProcess()
                                  void ChildProcess()
                                      . . . . .
   . . . . .
void ParentProcess()
                                  void ParentProcess()
   .....
                                     . . . . .
```

Context Switching

Threads

Overlays

Paging

Virtual Memory

Diagram showing virtual memory that is larger than main memory

Files:

- Files are FILES
- Folders are FILES
- Devices are alsoFILES

UserSpace

Kernel Space

Operating System – Tasks

- Memory management
- Device management
- Processor management
- ▶ I/O programs
- File systems
- Searching / sorting
- Scheduler
- Libraries

Other System Software

- Compiler-compiler
- Cross compiler
- Cross assembler
- Emulator
- Preprocessor
- Macro-processor
 - MASM, NASM, TASM, VAX

Programming Considerations

- Development and Production environments
- Making Software Portable
- Software over Internet
- Programs as Components
- Quick-and-Dirty Programming
- Dynamic/Flexible/Adaptive Software

Take Away

- Concurrency
 - Multiple simultaneous activities
- Parallelism
 - Concurrency to make systems run faster

Hardware Threads:

- Thread-level Concurrency
 - Uni-processor
 - Multi-processor
- Hyper-threading
 - Simultaneous multithreading
 - Multiple: PC, other registers
 - Single: ALU, FPU

Instruction-level Concurrency:

- Previous Systems:
 - 1 instruction takes 3–4 Machine Cycles
- Superscalar
 - System that can execute more than ONE instructions per Cycle