Regression

Contents

- 1. Linear regression
- 2. Multiple regression
- 3. Logistic regression

1. Linear Regression

- Linear regression attempts to fit a straight line through a plot of *numeric* data
- Suppose that we have known numeric data points

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

These points are in effect our training set

A straight line has formula y = a + bx

Persistent over-estimation

Residuals and the best fit

 In ordinary least squares regression the "best fit" is provided by the line that minimizes

$$R_1^2 + R_2^2 + \ldots + R_n^2$$

where R_i is the ith residual

$$R_i = (a+bx_i) - y_i$$

Calculating the best fit

- Let $f = R_1^2 + R_2^2 + ... + R_n^2$
- The expression f contains 2 unknowns (a and b): we want to find the values of a and b that minimize f
- When a curve finds its minimum value its gradient is 0. This yields two equations in two unknowns

$$\partial f/\partial a = 0$$
 and $\partial f/\partial b = 0$

How good is the best fit?

- Let M be the average y-value of the data points
- Consider the most primitive prediction of y values, i.e., y=M
- Given that this prediction is so primitive,
 we'd expect its residuals to be *much* higher

A trivial prediction using the average y-value

Pearson's correlation coefficient

is given by

$$1 - \frac{R_1^2 + R_2^2 + \dots + R_n^2}{P_1^2 + P_2^2 + \dots + P_n^2}$$

where P_1 , P_2 , ..., P_n are the residuals from the primitive prediction line y=M

Pearson's correlation coefficient

Pearson's correlation coefficient

Linear Regression

- Sensitive to the presence of outliers
- Only works well with linear data
 - Most data is not linear. Non-linear regression may help, but won't handle all cases
- Can produce the full range of y-values
 - This may not be appropriate
- Finds global patterns in the data
 - Not good for finding local patterns

The data is not inherently linear

Linear regression assumes that there is a single linear relationship that holds across the range of data values. But here for example there is not a single global pattern – two effects are at play. We could therefore create two models – *piecewise* regression.

The linear model might be inadequate

2. Multiple regression

 With several inputs (say x₁ and x₂) the equation for a linear model is

$$y = a + b_1 x_1 + b_2 x_2$$

- If say $b_1>0$, then an increase in x_1 causes an increase in y (& vice versa); the larger the value of $|b_1|$, the more sensitive y is to changes in x_1
 - provided x_1 and x_2 are independent

3. Logistic regression

- Linear regression is not applicable when the target variable takes on a limited subset of values
- Suppose for example we wish to predict a probability
 - Probabilities range from 0 to 1

Converting probabilities to odds

 The odds of something happening is given by the formula

odds =
$$p/(1-p)$$

where p is its probability

- Whereas p ranges from 0 to 1, the odds range from 0 to ∞
- Taking In (natural logarithms) yields values that can take any value (from -∞ to ∞)

probabilities vs odds

p	0	0.01	0.1	0.3	0.5	0.7	0.9	0.99	1
odds= p/(1-p)	0	1/99	1/9	3/7	1	7/3	9	99	∞
In(p/(1-p))	_∞	-4.6	-2.2	-0.85	0	0.85	2.2	4.6	∞

Applying linear regression

We can apply linear regression

$$ln(p/(1-p)) = a + bx$$

to find values for the constants a and b, and then rearranging yields

$$p = 1/(1+exp(-a-bx))$$

Fitting the data

x =	0-20	20-40	40-60	60-80	80-100	100-120	120-140
Defaulters	2	5	10	16	23	25	31
Non- defaulters	25	21	18	8	7	4	1
Probability (p) of default	2/27	5/26	10/28	16/24	23/30	25/29	31/32
In(p/(1-p))	-2.5	-1.4	-0.6	0.7	1.2	1.8	3.4

Fitting the data

