UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA ENGENHARIA DE COMPUTAÇÃO

GLAICE KELLY DA SILVA QUIRINO WANCHARLE SEBASTIÃO QUIRINO

PROJETO DE MICROELETRÔNICA II

VITÓRIA 2012

GLAICE KELLY DA SILVA QUIRINO WANCHARLE SEBASTIÃO QUIRINO

MONITOR DE BATIMENTOS CARDÍACOS

Projeto da disciplina de Microeletrônica II, a ser entregue ao professor Hans Jorg Andreas Schneebeli como requisito de avaliação relativo ao semestre de 2012/1.

OBJETIVO

Construir um monitor de batimentos cardíacos utilizando-se de um microcontrolador MSP430, um display LCD 16X2 para exibir os batimentos cardíacos e um circuito sensor externo para medir os batimentos.

ESTRUTURA

O projeto é composto basicamente por três blocos:

- 1. Display LCD;
- 2. MSP430;
- 3. Sensor de batimentos (circuito externo);
- 4. Humano;

Figura 1: Estrutura do Monitor de batimentos cardíacos.

DESENVOLVIMENTO

Sensor de batimentos cardíacos

O circuito externo utilizado para servir como sensor de batimentos cardíacos foi o circuito abaixo:

Figura 2: Esquemático do circuito externo.

Esse circuito foi baseado no artigo [1]. Porém, fizemos duas modificações. A primeira, foi a remoção do transistor BC547, que era desnecessário para o nosso projeto. A segunda foi a troca dos resistores de 68K por 33K, aumentando a freqüência de corte, mas sem impactar no projeto.

O funcionamento do circuito é razoavelmente simples. Ele consiste de dois blocos. O primeiro é composto por dois filtros passa-baixa, com frequência de corte de aproximadamente

4.8Hz, e ganho de 101, por estágio. O segundo bloco é o bloco sensor composto por dois leds infravermelhos, modelos TIL32 (emissor) e TIL78 (receptor).

Ao colocarmos o dedo sobre os dois leds, a luz emitida pelo TIL32 é refletida e captada pelo TIL78. A reflexão varia de acordo com o fluxo sanguíneo no dedo e essa variação produz um sinal que é filtrado e amplificado pelo primeiro bloco.

A saída do circuito é conectada ao pino P1.4 do MSP430, que irá processar o sinal adequadamente, fazendo a conversão da tensão em frequência cardíaca, e exibir o resultado no LCD.

Microcontrolador MSP430

O papel do MSP430 nesse projeto é basicamente captar o sinal, convertê-lo e processá-lo de modo que identifique-se os batimentos de acordo com a frequência de que eles ocorrem.

A captação e conversão do sinal é feito utilizando o pino P1.4, que está ligado diretamente ao seu conversor AD interno. A identificação dos batimentos é feita quando o valor lido pelo conversor AD chega a 600 na escala de conversão, que usa como referência a tensão máxima de VCC igual a 1024, e tensão mínima, terra, igual a zero.

Tendo o pico captado, ou seja, identificado o início de um batimento, por meio das interrupções do relógio, contamos o intervalo de tempo entre esse pico e o próximo. Ao terminarmos a contagem, temos um valor que é o número de interrupções ocorridas nesses intervalo de tempo. Esse valor é multiplicado pelo período da interrupção e o resultado é invertido e multiplicado por 60 (segundos), obtendo assim, o valor da frequência cardíaca, por minuto.

Após o cálculo, a frequência é exibido no display LCD.

O código utilizado para esta parte encontra-se em anexo.

Display LCD

Inicialmente tentamos implementar o protocolo de LCD. Usamos como referência a página [2] que explica o protocolo e a página [3], que além de também explicar um pouco o protocolo, possui um código de exemplo.

Não obtivemos sucesso com essas tentativas. Consideramos a inexperiência um fator decisivo para esses resultados.

Após essa etapa, encontramos um conjunto de laboratórios para iniciantes do MSP430, no [4], que ampliou nosso conhecimentos sobre o funcionamento do MSP430. Com destaque para os laboratórios sobre interrupções e sobre o conversor AD. Nesse meio tempo encontramos em [5] a biblioteca lcd16.h que abstrai o uso do LCD no MSP430.

A biblioteca usa por padrão certos pinos para se comunicar com o LCD. Estes pinos entravam em conflito com os pinos que já estávamos usando em outra parte do circuito, por isso alteramos a biblioteca para adequá-la ao nosso projeto. O código da biblioteca segue no anexo.

Primeiramente, chama-se a função "lcdinit" que faz todo o protocolo de inicialização do LCD. Para imprimir, chama-se a função "prints" somente para textos e "intergerToLcd" para números. A função "gotoXy" é utilizada para posicionar o cursor onde será impresso o texto.

Referência Bibliográfica

- (1) http://embedded-lab.com/blog/?p=1671
- (2) http://picminas.forumeiros.com/t25-uso-do-lcd-tutorial
- (3) https://sites.google.com/site/cacheattack/msp-projects/msp430-launchpad-with-lcd-module#TOC-MSP430-Pin-Interface-to-LCD
- (4) http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/LaunchPad_ndf
- (5) http://www.circuitvalley.com/2011/12/16x2-char-lcd-with-ti-msp430-launch-pad.html.

Anexo