

Si tratta di modelli che considerano il problema di come dividere (allocare) risorse limitate tra varie esigenze in competizione tra loro.

Si tratta di modelli che considerano il problema di come dividere (allocare) risorse limitate tra varie esigenze in competizione tra loro.

Con *risorse* si possono intendere disponibilità di macchinari, mano d'opera, energia, tempi macchina, capitali, etc...

Si tratta di modelli che considerano il problema di come dividere (allocare) risorse limitate tra varie esigenze in competizione tra loro.

Con *risorse* si possono intendere disponibilità di macchinari, mano d'opera, energia, tempi macchina, capitali, etc...

(l'esempio sulla produzione di fertilizzanti visto nella prima lezione è un esempio di modello di allocazione ottima di risorse)

Un colorificio produce due tipi di coloranti **C1** e **C2** utilizzando 3 preparati base in polvere **P1**, **P2**, **P3** che vengono sciolti in acqua.

Un colorificio produce due tipi di coloranti **C1** e **C2** utilizzando 3 preparati base in polvere **P1**, **P2**, **P3** che vengono sciolti in acqua.

La differente concentrazione dei preparati base dà origine ai due diversi tipi di coloranti.

Un colorificio produce due tipi di coloranti **C1** e **C2** utilizzando 3 preparati base in polvere **P1**, **P2**, **P3** che vengono sciolti in acqua.

La differente concentrazione dei preparati base dà origine ai due diversi tipi di coloranti.

Le quantità (in ettogrammi) di preparati base necessarie per produrre un litro di colorante di ciascuno dei due tipi è riportato nella seguente tabella

	C 1	C 2
P1	1	1
P2	1	2
P3	_	1

continua...

Ogni giorno la quantità di ciascuno dei preparati base (in ettogrammi) della quale il colorificio può disporre è la seguente

P1	P2	Р3
750	1000	400

Ogni giorno la quantità di ciascuno dei preparati base (in ettogrammi) della quale il colorificio può disporre è la seguente

P1	P2	Р3
750	1000	400

Il prezzo di vendita del colorante **C1** è di 7 Euro al litro, mentre il colorante **C2** viene venduto a 10 Euro al litro. Determinare la strategia ottimale di produzione giornaliera in modo da **massimizzare i ricavi ottenuti dalla vendita** dei due coloranti.

Una azienda automobilistica produce tre diversi modelli di autovettura: un modello economico, uno normale ed uno di lusso.

Una azienda automobilistica produce tre diversi modelli di autovettura: un modello economico, uno normale ed uno di lusso.

Ogni autovettura viene lavorata da tre robot: A, B e C.

Una azienda automobilistica produce tre diversi modelli di autovettura: un modello economico, uno normale ed uno di lusso.

Ogni autovettura viene lavorata da tre robot: A, B e C.

I tempi necessari alla lavorazione sono riportati, in minuti, nella tabella seguente insieme al profitto netto realizzato per autovettura

	Economica	Normale	Lusso
Α	20	30	62
В	31	42	51
C	16	81	10
profitto netto	1000	1500	2200

Una azienda automobilistica produce tre diversi modelli di autovettura: un modello economico, uno normale ed uno di lusso.

Ogni autovettura viene lavorata da tre robot: A, B e C.

I tempi necessari alla lavorazione sono riportati, in minuti, nella tabella seguente insieme al profitto netto realizzato per autovettura

	Economica	Normale	Lusso
Α	20	30	62
В	31	42	51
C	16	81	10
profitto netto	1000	1500	2200

I robot A e B sono disponibili per 8 ore al giorno mentre il robot C è disponibile per 5 ore al giorno.

Il numero di autovetture di lusso prodotte non deve superare il 20% del totale mentre il numero di autovetture economiche deve costituire almeno il 40% della produzione complessiva.

Il numero di autovetture di lusso prodotte non deve superare il 20% del totale mentre il numero di autovetture economiche deve costituire almeno il 40% della produzione complessiva.

Supponendo che tutte le autovetture prodotte vengano vendute, formulare un problema di Programmazione Lineare che permetta di decidere le quantità giornaliere da produrre per ciascun modello in modo tale da massimizzare i profitti rispettando i vincoli di produzione.

Esercizio 5. (Modello di allocazione ottima di risorse) Un'industria manifatturiera pu fabbricare 5 tipi di prodotti che indichiamo genericamente con P_1 , P_2 , P_3 , P_4 , P_5 usando 2 processi di produzione che avvengono mediante l'uso di due macchine che indichiamo con M_1 e M_2 . Dopo aver dedotto il costo del materiale grezzo, ciascuna unità di prodotto dà i seguaneti profitti (in euro):

	P_1	P_2	P_3	P_4	P_5
Profitti(€)	250	300	500	450	180

Ciascuna unità di prodotto richiede un certo tempo di ciascuno dei 2 processi; la tabella che segue riporta i tempi (in ore) di lavorazione di ciascuna macchina per ottenere una unità di ciascuno dei prodotti finiti.

		P_1	P_2	P_3	P_4	P_5
M	1	10	15	7	18	-
M	2	9	13	-	-	20

 $S = 1R^s$

Inoltre, l'assemblaggio finale per ciascuna unità di ciascun prodotto richiede 18 ore di lavoro di un operaio. La fabbrica possiede 4 macchine M_1 e 3 macchine M_2 che sono in funzione 5 giorni alla settimana per 2 turni di 8 ore al giorno. Gli operai impiegati nell'assemblaggio sono 10 e ciascuno di essi lavora 5 giorni alla settimana per un turno di 8 ore al giorno. Trovare la quantità che conviene produrre di ciascun prodotto per massimizzare il profitto totale.