

SCHOOL OF MECHANICAL ENGINEERING

CURRICULUM FOR APPLIED LEARNING

B.Tech Mechanical Engineering

(2015 - 16 Batch onwards)

Breakup of Courses

Sl. No.	Category	Credits				
1	University Core	70				
2	2 University Elective					
3	Programme Core	62				
4	Programme Elective	36				
	Minimum credits required to qualify	180				
	Credits Offered	180				

Category-wise Breakup of Credits

Category	Proposed Number of Credits	Proposed Credit Distribution (%)
Engineering	108	60
Sciences	45	25
Humanities	18	10
Management	09	5
Total	180	100

University Core Courses

Course Code	Course Title	L	T	P	J	С	Area	Prerequisite
STS1001/ 1002/2001/ 2002/3001/ 3002	Soft Skills* [6x1 credit each]	0	0	0	0	1 (6)	Humanities	Nil
FLC4097	Foreign Language (basket)	1	0	2	0	2	Humanities	Nil
ENG1011	English for Engineers	1	0	2	0	2	Humanities	Nil
CSE1001	Problem Solving and Programming	0	0	6	0	3	Engineering	Nil
CSE1002	Problem Solving and Object Oriented Programming	0	0	6	0	3	Engineering	Nil
MAT1011	Calculus for Engineers	3	0	2	0	4	Science	Nil
MAT2001	Statistics for Engineers	2	1	2	0	4	Science	MAT1011
PHY1001	Engineering Physics	3	0	2	4	5	Science	Nil
CHY1001	Engineering Chemistry	3	0	2	4	5	Science	Nil
HUM1021	Ethics and Values	1	0	0	4	2	Humanities	Nil
EXE4097	Personality Development (Co/Extra-curricular Activity)	0	0	0	0	2	Management	Nil
MGT1022	Lean Start-up Management	1	0	0	4	2	Management	Nil
PHY1999	Introduction to Innovative Projects	1	0	0	4	2	Science	Nil
CHY1002	Environmental Sciences	2	0	0	4	3	Science	Nil
MEE3999	Tech Answers for Real world Problems	1	0	0	8	3	Engineering	PHY1999
MEE4098	Comprehensive Examination	0	0	0	0	2	Engineering	End of 7 th Semester
MEE4099	Capstone Project (1 Semester)	0	0	0	0	20	Engineering	Completion of 7 semesters
	Total					70		

^{*}Project Based Courses (PBCs) – 13

University Elective:

Course Title	Credit	Area
Science Elective - I	3	Science
Science Elective - II	3	Science
Humanities Elective - I	3	Humanities
Management Elective – I	3	Management
Total	12	

Program Core Courses (61 Credits)

	Course Title	L	Т	P	J	C	Area	Pre requisites
EEE1001	Basic Electrical & Electronics Engineering	2	0	2	0	3	Engineering	Nil
MAT2002	Applications of Differential and Difference Equations	3	0	2	0	4	Science	MAT1011
MAT3003	Complex variables and Partial Differential Equations	3	1	0	0	4	Science	MAT2002
MAT3005	Applied Numerical Methods	3	1	0	0	4	Science	MAT2002
MEE1001	Engineering Drawing	1	0	4	0	3	Engineering	Nil
MEE1002	Engineering Mechanics	2	1	0	0	3	Engineering	Nil
MEE1003	Engineering Thermodynamics	2	1	0	0	3	Engineering	Nil
MEE1004	Fluid Mechanics	2	1	2	0	4	Engineering	Nil
MEE1005	Materials Engineering and Technology	2	0	2	4	4	Science/ Engineering	Nil
MEE1007	Manufacturing Processes	2	0	2	0	3	Engineering	Nil
MEE2001	Machine Drawing	1	0	2	4	3	Engineering	MEE1001
MEE2002	Strength of Materials	2	1	2	0	4	Engineering	MEE1002
MEE2003	Thermal Engineering Systems	2	1	2	0	4	Engineering	MEE1003
MEE2004	Mechanics of Machines	2	1	0	4	4	Engineering	MEE1002
MEE2005	Heat Transfer	2	1	0	4	4	Engineering	MEE1003
MEE2006	Machining Process and Metrology	2	0	0	4	3	Engineering	MEE1007
MEE3001	Design of Machine Elements	2	1	0	0	3	Engineering	MEE2002
MEE3099	Industry Internship*	0	0	0	0	2	Engineering	After 2 years
	TOTAL CREDITS					62		

^{*}Project based courses (PBC) -6

Proposed Program Electives (36 Credits to be earned): (31+3+2)

Humanities Elective	S. No	Course Code	Course Title	L	T	P	J	C	Category	Pre-requisite
A	1.		Humanities Elective					3	Humanities	Nil
3. CHE2006 Fuels and combustion 3 0 0 0 3 Engineering EEE1001	2.		Management Elective					2	Management	Nil
4. EEE2007 Controllers* 2 0 0 4 3 3 6 6 MEE1008 MEMS 3 0 0 0 3 Engineering Nil	3.	CHE2006	Fuels and combustion	3	0	0	0	3	Engineering	MEE1003
S. EEE3001 Control systems			Electronics and Micro						Engineering	EEE1001
6. MEE1008 MEMS	4.	EEE2007	controllers*		0	0	4	3		
7. MEE1009 New Product Development 2 0 0 4 3 Engineering Nil 9. MEE1012 Alternative Fuels 3 0 0 0 3 Engineering Nil 10. MEE1014 Industrial Engineering and Management and Reliability 2 0 0 4 3 Engineering Engineering Into Mil 11. MEE1015 Total quality management and Reliability 3 0 0 0 3 Engineering Engineering Into Mil 12. MEE1016 Lean Enterprises and New Manufacturing Technology 3 0 0 3 Engineering Nil 13. MEE1017 New Venture Planning and Management 3 0 0 3 Engineering Nil 14. MEE1018 Facilities and Process Planning 3 0 0 3 Engineering Nil 15. MEE1018 Facilities and Process Planning 2 0 0 4 3 Engineering Nil	5.		Control systems			2	0			
8. MEE1011 Renewable Energy sources 2 0 2 4 4 Engineering Nil 9. MEE1012 Alternative Fuels 3 0 0 0 3 Engineering Nil 10. MEE1014 Industrial Engineering and Management and Reliability 2 0 0 4 3 Engineering Nil 11. MEE1015 Total quality management and Reliability 3 0 0 0 3 Engineering Nil 12. MEE1016 Lean Enterprises and New Manufacturing Technology 3 0 0 0 3 Engineering Nil 13. MEE1017 New Venture Planning and Management 2 0 0 4 Engineering Nil 14. MEE1018 Facilities and Process Planning 3 0 0 3 Engineering Nil 15. MEE1018 Operations Research 2 1 0 0 3 Engineering Nil		MEE1008			0	0	0			
9. MEE1012 Alternative Fuels 3 0 0 0 3 Engineering Nil			*				4			
MEE1014 Industrial Engineering and Management and Reliability 3 0 0 0 3 Engineering Nil	8.	MEE1011	<u> </u>		0	2	4			
MEE1015	9.	MEE1012		3	0	0	0	3		
MEE1015 And Reliability S O O O S Engineering Nil	10.	MEE1014		2	0	0	4	3	Engineering	Nil
12. MEE1016 Manufacturing Technology 3 0 0 0 3 5 5 5 5 5 5 5 5 5	11.	MEE1015		3	0	0	0	3	Engineering	Nil
MEE1017	12.	MEE1016		3	0	0	0	3	Engineering	Nil
14. MEB1018 Planning 3 0 0 0 3	13.	MEE1017	New Venture Planning and	2	0	0	4	3	Engineering	Nil
Instrumentation and Control Engineering Capineering	14.	MEE1018		3	0	0	0	3	Engineering	Nil
16. MEE1027 Engineering 2 0 2 4 4 Engineering Nil 17. MEE1030 Robotics 2 0 0 4 3 Engineering MEE1007 18. MEE2007 CAD/CAM 2 0 2 4 4 Engineering MEE1007 19. MEE2008 Product Design for Manufacturing 2 0 0 4 3 20. MEE2009 Tribology 2 1 0 0 3 Engineering MEE1002, MEE1004 21. MEE2010 Design of Composite Materials 2 1 0 0 3 22. MEE2011 Welding Engineering 2 0 0 4 3 Engineering MEE1007 23. MEE2012 Manufacturing Automation 2 0 2 4 4 Engineering MEE1007 24. MEE2013 Modelling and simulation of Manufacturing Systems 3 0 0 4 4 Engineering MEE1007 25. MEE2014 Metal Casting Technology 2 0 0 4 3 Engineering MEE1007 26. MEE2015 Non-Destructive testing 2 0 0 4 3 Engineering MEE1005 27. MEE2016 Rapid Manufacturing 2 0 0 4 3 Engineering MEE1007 28. MEE2019 Materials Characterization Technologies 2 0 0 4 3 Engineering MEE1007 29. MEE2020 Practice 3 0 0 0 3 Engineering MEE1007 MEE1007 MEE1007 MEE1007 MEE1007 29. MEE2020 Practice 3 0 0 0 3 Engineering MEE1007 20.	15.	MEE1024	Operations Research	2	1	0	0	3	Engineering	MAT2001
18. MEE2007 CAD/CAM 2 0 2 4 4 Engineering MEE1007 19. MEE2008 Product Design for Manufacturing 2 0 0 4 3 Engineering MEE1007 20. MEE2009 Tribology 2 1 0 0 3 Engineering MEE1004 21. MEE2010 Design of Composite Materials 2 1 0 0 3 Engineering MEE1005 22. MEE2011 Welding Engineering 2 0 0 4 3 Engineering MEE1007 23. MEE2012 Manufacturing Automation 2 0 2 4 4 Engineering MEE1007 24. MEE2013 Modelling and simulation of Manufacturing Systems 3 0 0 4 4 Engineering MEE1007 25. MEE2014 Metal Casting Technology 2 0 0 4 3 Engineering MEE1007 27. MEE2016 Rapid Manufacturing Technologies 2 0	16.	MEE1027		2	0	2	4	4	Engineering	Nil
MEE2008 Product Design for Manufacturing 2 0 0 4 3 Engineering MEE1007	17.	MEE1030	Robotics	2	0	0	4	3	Engineering	Nil
19. MEE2008 Manufacturing 2 0 0 4 3 Engineering MEE1002, MEE1004	18.	MEE2007	CAD/CAM	2	0	2	4	4	Engineering	MEE1007
MEE2009 Tribology 2 1 0 0 3 Engineering MEE1002, MEE1004	19.	MEE2008		2	0	0	4	3	Engineering	MEE1007
MEE2010 Design of Composite Materials 2 1 0 0 3 Engineering MEE1005	20.	MEE2009		2	1	0	0	3	Engineering	· · · · · · · · · · · · · · · · · · ·
22. MEE2011 Welding Engineering 2 0 0 4 3 Engineering MEE1007 23. MEE2012 Manufacturing Automation 2 0 2 4 4 Engineering MEE1007 24. MEE2013 Modelling and simulation of Manufacturing Systems 3 0 0 4 4 Engineering MEE1007 25. MEE2014 Metal Casting Technology 2 0 0 4 3 Engineering MEE1007 26. MEE2015 Non-Destructive testing 2 0 2 4 4 Engineering MEE1005 27. MEE2016 Rapid Manufacturing Technologies 2 0 0 4 3 Engineering MEE1007 28. MEE2019 Materials Characterization Techniques 2 0 0 4 3 Engineering MEE1005 29. MEE2020 Practice 3 0 0 0 3 Engineering		MEE2010	Design of Composite		1	0	0		Engineering	
23. MEE2012 Manufacturing Automation 2 0 2 4 4 Engineering MEE1007 MEE2013 Modelling and simulation of Manufacturing Systems 25. MEE2014 Metal Casting Technology 2 0 0 4 3 Engineering MEE1007 26. MEE2015 Non-Destructive testing 2 0 2 4 4 Engineering MEE1007 MEE2016 Rapid Manufacturing Technologies 2 0 0 4 3 Engineering MEE1005 MEE2019 Materials Characterization Techniques 2 0 0 4 3 Engineering MEE1005 MEE2019 Metal Forming Theory and Metal Forming Theory and Practice 3 0 0 0 3 Engineering MEE1007	22.	MEE2011	Welding Engineering	2	0	0	4	3	Engineering	MEE1007
MEE2013 Modelling and simulation of Manufacturing Systems 25. MEE2014 Metal Casting Technology 26. MEE2015 Non-Destructive testing 27. MEE2016 Rapid Manufacturing Technologies MEE2016 Materials Characterization Techniques MEE2019 Metal Forming Theory and Practice MEE2020 ME	23.	MEE2012	1	2	0	2	4	4	Engineering	MEE1007
25. MEE2014 Metal Casting Technology 2 0 0 4 3 Engineering MEE1007 26. MEE2015 Non-Destructive testing 2 0 2 4 4 Engineering MEE1005 27. MEE2016 Rapid Manufacturing Technologies 2 0 0 4 3 Engineering MEE1007 28. MEE2019 Materials Characterization Techniques 2 0 0 4 3 Engineering MEE1005 29. MEE2020 Practice 3 0 0 0 3 Engineering MEE1007	24.	MEE2013	Modelling and simulation of	3	0	0	4	4	Engineering	MEE1007
26. MEE2015 Non-Destructive testing 2 0 2 4 4 Engineering MEE1005 27. MEE2016 Rapid Manufacturing Technologies 2 0 0 4 3 Engineering MEE1007 28. MEE2019 Materials Characterization Techniques 2 0 0 4 3 Engineering MEE1005 29. MEE2020 Practice 3 0 0 0 3 Engineering MEE1007	25.	MEE2014	<u> </u>	2	0	0	4	3	Engineering	MEE1007
MEE2016 Rapid Manufacturing Technologies 2 0 0 4 3 Engineering MEE1007 MEE2019 Materials Characterization Techniques 2 0 0 4 3 Engineering MEE1005 MEE2020 Practice 3 0 0 0 3 Engineering MEE1007	26.	MEE2015	i -	2	0	2	4	4	Engineering	MEE1005
28. MEE2019 Techniques 2 0 0 4 3 Engineering Metal Forming Theory and 29. MEE2020 Practice 3 0 0 0 3 Engineering MEE1007	27.	MEE2016	Rapid Manufacturing	2	0	0	4	3	Engineering	MEE1007
29. MEE2020 Practice 3 0 0 0 3	28.	MEE2019	Techniques	2	0	0	4	3	Engineering	MEE1005
	29.	MEE2020		3	0	0	0	3	Engineering	MEE1007
									Engineering	MEE1003

				•					
		Gas dynamics and Jet						Engineering	MEE1003,
31.	MEE2023	propulsion	2	1	0	0	3		MEE1004
32.	MEE2025	Fluid Power systems	3	0	2	0	4	Engineering	MEE1004
	MEE2026	Turbomachines	2	0	2	4	4	Enginopping	MEE1003,
33.	MEE2020	Turbomachines	2	U	2	4	4	Engineering	MEE1004
	MEE3002	Einite Element Analysis						Engineering	MEE2002,
34.	MEE3002	Finite Element Analysis	2	1	0	4	4	Engineering	MAT3005
35.	MEE3003	Engineering Failure Analysis	3	0	0	4	4	Engineering	MEE2002
36.	MEE3004	Internal Combustion Engines	3	0	0	0	3	Engineering	MEE2003
		Refrigeration and Air						Engineering	MEE2003
37.	MEE3005	Conditioning	2	1	0	4	4		
38.	MEE3006	Automobile Engineering	2	0	2	0	3	Engineering	MEE2003
39.	MEE3008	Mechanical Vibrations		1	2	0	4	Engineering	MEE2004
		Robot Dynamics and						Engineering	MEE2004
40.	MEE3010	Applications	3	0	0	0	3		
41.	MEE4001	Tool design	3	0	0	4	4	Engineering	MEE2006
	MEE4002	Advanced Machining	2	0	0	4	3	English and a	MEE2006
42.	MEE4002	Processes	2	U	0	4	3	Engineering	
43.	MEE4003	Micro and Nano Machining	3	0	0	0	3	Engineering	MEE2006
44.	MEE4005	Surface Engineering	3	0	0	0	3	Engineering	MEE2006
									MEE1004,
	MEE4006	Computational Fluid	2	1	2		4	En ain a anin -	MEE2005,
	WIEE4006	Dynamics	2	1	2	0	4	Engineering	MAT3005
45.									
	MEE4007	Design of Transmission					_	Engineering	MEE2004/
46.	WIEE4007	Systems	2	1	0	4	4		MEE3001

No of *Project based courses (PBC) offered under Program Electives- 24

PROGRAMME CORE COURSES

Course Code: EEE1001								
Pre-re	equisite: NIL	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING	L 2	T 0	P 2	J 0	C 3	
Module		L Hrs SLO						
1	laws, series and	asic circuit elements and sources, Ohms law, Kirchhoff's d parallel connection of circuit elements, Node voltage current analysis, Thevenin's and Maximum power transfer		1, 2,9				
2	RL, RC, RLC S Phase Systems Measurement – E	Alternating voltages and currents, AC values, Single Phase Series circuits, Power in AC circuits-Power Factor- Three — Star and Delta Connection- Three Phase Power Electrical Safety –Fuses and Earthing, Residential wiring.		6		1	1, 2, 9	
3	DC Machines,	tines: Construction, Working Principle and applications of Transformers, Single phase and Three-phase Induction Machines-Stepper motor, Servo Motor and BLDC motor		7			1,2	
4	· ·	Basic logic circuit concepts, Representation of Numerical Form- Combinational logic circuits, Synthesis of logic		5			1,2	
5	materials, PN ju Feedback Ampl	devices and Circuits: Conduction in Semiconductor nction diodes, Zener diodes, BJTs, MOSFETs, Rectifiers, lifiers using transistors. Communication Engineering: Demodulation - Amplitude and Frequency Modulation		7			1, 2	
industries	. Minimum of 2 le	n, Use of physical and computer models to lecture, visit to ctures by industry experts. ourse, students should be able to use standard laboratory	30					
equipmen	t to analyze the ch	naracteristics of basic electronic devices and to design and taining these devices.						
- Ex	xperiments should b	be application based						
	ovide Circuit desig	-						
- Us	se P-Spice / Matlab	as circuit simulation tools.						
Sample L	Sample Laboratory Experiments: (Hardware and Simulation)							
50 2. Sin 3. Th 4. Sta 5. Fa 6. Ha 7. Fu of 8. Re	source and load. 2. Sinusoidal steady state Response of RLC circuits. 3. Three phase power measurement for ac loads. 4. Staircase wiring circuit layout for multi storey building. 5. Fabricate and test a PCB layout for a rectifier circuit.							

Study the characteristics of the transistor used.

10. Characteristics of MOSFET.

Text Books:

1. John Bird, 'Electrical circuit theory and technology', Newnes publications, 4th Edition, 2010.

- 1. Allan R. Hambley, 'Electrical Engineering-Principles & Applications' Pearson Education, First Impression, 6/e, 2013.
- 2. Simon Haykin, 'Communication Systems', John Wiley & Sons, 5th Edition, 2009.
- 3. Charles K Alexander, Mathew N O Sadiku, 'Fundamentals of Electric Circuits', Tata McGraw Hill, 2012.
- 4. Batarseh, 'Power Electronics Circuits', Wiley, 2003.
- 5. W. H. Hayt, J.E. Kemmerly and S. M. Durbin, 'Engineering Circuit Analysis', 6/e, Tata McGraw Hill, New Delhi, 2011.
- 6. Fitzgerald, Higgabogan, Grabel, 'Basic Electrical Engineering', 5th edn, McGraw Hill, 2009.
- 7. S.L.Uppal, 'Electrical Wiring Estimating and Costing', Khanna publishers, NewDelhi, 2008.

Mode of Evaluation	Continuous Assessment includes CAT I/II,
	Assignments/Quizzes, Practical (60%), Term End
	Examination (40%)
Recommended by the Board of Studies on:	05.06.2015
Date of Approval by the Academic Council:	16.06.2015
Compiled by	

Course C	Course Code: MAT2002						
Pre-requi	site: MAT1011	APPLICATIONS OF DIFFERENTIAL AND DIFFERENCE EQUATIONS	L 3	T 0	P 2	J 0	C 4
Module		I	Н	rs	S	LO	
1	<u> </u>	values and eigen vectors - properties of eigen values and imilarity of transformationorthogonal transformation		6		1,2	2,7,9
2		uler's formulae- Dirichlet's conditions - change of interval- – RMS value – Parseval's identity – computation of		6		1,2	2,7,9
3	Linear second or coefficients— solu method of undete	inary differential equations: der ordinary differential equation with constant utions of homogenous and non homogenous equations- ermined coefficients –method of variation of parameters- chy-Euler and Cauchy Legendre differential equations		6		1,2	2,7,9
4	The Strum-Liouv solutions of diffe	Problems and Power Series Solutions: ville Problem-orthogonality of eigen functions - Series erential equation about ordinary and regular singular points- ntial equations - Bessel's differential equations -		6		1,2	2,7,9
5	Solving non hom	em of equations by matrix approach nogeneous first order system of differential equations (ction of nth order differential equation to first order system.		5		1,2	2,7,9
6	Solution of different transform: Solution of ODE	erential equations through Laplace Ss - Non homogeneous terms involving Heaviside function Solving non homogeneous system using Laplace		5		1,2	2,7,9
7	Z-Transform: Z-transform-rela transforms of sta	tion between Z-transform and Laplace transforms – Z ndard functions-inverse Ztransforms :by partial fraction olution method		5		1,2	2,7,9
8	method, by convolution method Difference equation: Difference equation-first and second order difference equations with constant coefficients-Fibonacci sequencesolution of difference equations-complementary functions - particular integrals by the method of undetermined coefficients -						2,7,9
• V	concepts through N Working on Engine ware(MATLAB, N Class room teachin	eer ing problems through Mathemat ical Sof MATHEMATICA, MAPLE, SAGE etc)	45				
• I Tutorial	Min of 2 lectures b	y experts	No			tact	Hour

Minimum of 10 problems per module		
Mode: Individual Exercises to be submitted to designated RAs		
Laboratory Exercises	L Hrs	SLO
Understanding of the concepts through Mathemat ics LAB – 12 experiments		
 Solving Homogeneous differential equations arising in engineering problems 		
 Solving non-homogeneous differential equations and Cauchy, Legendre 		
equations		
Applying the technique of Laplace transform to solve differential equations		
 Applications of Second order differential equations to Mass spring system (damped, 		
undamped, Forced oscillations), LCR circuits etc		
Visualizing Eigen value and Eigen vectors		
Solving system of di fferential equations arising in engineering applications		
Applying the Power series method to solve differential equations arising in		
engineering applications	30	
 Applying the Frobenius method to solve di fferential equations arising in engineering applications 		
Visul izing Bessel and Legendre polynomials		
Evaluat ing Fourier series -Harmonic series		
Applying Z-Transforms to functions encountered in engineering		
Solving Difference equations arising in engineering applications		
Application of the concepts to a minimum of 5 engineering problems f rom a common		
pool of problems		
Report to be submitted in Digital format		
 Assessment on a continuous basis with a min of 3 reviews 		
Texthooks.		

Textbooks:

1. Advanced Engineering Mathematics by Erwin Kreyszig, 10 t h Edition, John Wiley India, 2015.

- 1. Higher Engineering Mathematics by B.S.Grewal , 42 nd Edition, Khanna Publishers, India, 2012.
- 2. Advanced Engineering Mathematics by Michael D. Greenberg, 2 nd Edition, Pearson Education, Indian Edition, 2006.

Edition, 2000.	
Mode of Evaluation	Digital Assignments (Solutions by using softs kill),
	Continuous Assessment Test
	Final Assessment Test
Recommended by the Board of Studies	05.06.2015
Date of Approval of Academic council:	16.06.2015
Compiled by	

Module 1 2 3	Riemann equations Construction of I analytic functions Conformal and Elementary trans Exponential and	Topics Topics Topics Topics Tonics Topics Topics	L 3 I	T 1 L Hr	P 0	S	C 4 LO
1 2 3 4	Riemann equations Construction of I analytic functions Conformal and Elementary transe Exponential and - Cross-ratio-Image	ons: Complex variable-Analytic functions and Cauchy – ions - Laplace equation and Harmonic functions - Harmonic conjugate and analytic functions - Applications of s to fluid-flow and Field problems d Bilinear transformations: Conformal mapping - formations: translation, magnification, rotation, inversion,	I		-1	S	LO
3 4	Riemann equations Construction of I analytic functions Conformal and Elementary transe Exponential and - Cross-ratio-Image	Harmonic conjugate and analytic functions - Applications of s to fluid-flow and Field problems d Bilinear transformations: Conformal mapping - sformations: translation, magnification, rotation, inversion,	6			1,2	
3	Elementary trans Exponential and - Cross-ratio-Ima	sformations: translation, magnification, rotation, inversion,					2,7,9
4		Square transformations ($w = e^z$, z^2) - Bilinear transformation ges of the regions bounded by straight lines under the above	5			1,2	2,5,7,9
	Power series - F - singularities - p	functions given by Power Series - Taylor and Laurent series oles - Residues	3			1,2,7,9	
	Complex Integrate Cauchy-Goursat	ation Integration of a complex function along a contour - theorem- Cauchy's integral formula -Cauchy's residue tion of real integrals - Indented contour integral	5			1,2,7,9	
5	Partial Differential equations of first order Formation and solution of partial differential equation - General, Particular, Complete and Singular integrals - Partial Differential equations of first order of the forms: $F(p,q)=0$, $F(z,p,q)=0$, $F(x,p)=G(y,q)$ and Clairaut form - Lagrange's equation: $Pp+Qq=R$					1,2	2,7,9
	Partial Differential equations of higher order: Solution of a partial differential equation by separation of variables - Linear partial differential equations of higher order with constant coefficients					1,2	2,7,9
7	Fourier transforms: Complex Fourier transform and properties - Relation between Fourier and Laplace transforms - Fourier sine and cosine transforms - Simple applications Boundary Value Problems- one dimensional wave equation-Fourier series solution					1,2	2,7,9
	methods in Engir	applications of Fourier transforms and complex integration neering problem	2				2,7,9 ,17
	Tutorial # A minimum of 5 problems to be worked out by students in every Tutorial Class #Another 5 problems per Tutorial Class to be given as home work.					1,2	2,7,9
	Mode: Lectures Class room teaching # Introducing modules through applications Total Lecture Hours # Introducing modules through applications					I	

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons (Wiley student Edison) (2011)

- 1. B. S. Grewal, Higher Engineering Mathematics, 42nd Edition (2013), Khanna Publishers, New Delhi
- 2. G.Dennis Zill, Patrick D. Shanahan, A first course in complex analysis with applications, 2nd Edition,

2013, Jones and Bartlett Publishers Series in Mathematics: Complex-

- 3. Michael, D. Greenberg, Advanced Engineering Mathematics, 2nd Edition, Pearson Education (2002)
- 4. Peter V. O' Neil, Advanced Engineering Mathematics, 7th Edition, Cengage Learning (2011)
- 5. JH Mathews, R. W. Howell, Complex Analysis for Mathematics and Engineers, Fifth Edition (2013), Narosa Publishers

Mode of Evaluation	Digital Assignments (Solutions by using softs kill), Continuous Assessment Test
	Final Assessment Test
Recommended by the Board of Studies	09-03-2016
Date of Approval of Academic council:	18.03.2016
Compiled by	Prof. K.Vijaya, Prof. K.Uma.,
	Prof. T.Phaneedra, Prof. M.s.jagadeeshkumar,
	Prof. G.Murugusundaramoorthy

Course Code: MAT3005 Pre-requisite: MAT2002		APPLIED NUMERICAL METHODS	L	Т	P	J	С		
			3	1	0	0	4		
Module		Topics	L Hrs			SLO			
1	Algebraic and Transcendental Equations: General iterative method Newton – Raphson method- Secant method -rates of convergence-System on non-linear equations-Newton's method						1,2,7		
2	iteration methodological decomposition -	ar Equations and Eigen Value Problems: Gauss –Seidel ed. Convergence analysis of iterative methods-LU Tri diagonal system of equations: Thomas algorithm- Eigen by Power and Jacobi methods					1,2, 11,18		
3	Backward- Cer	Finite difference operators- Newton's forward-Newton's atral differences-Stirling's interpolation - Lagrange's ewton's divided difference-Interpolation with cubic splinestion.				1, 2, 12,17			
4	Numerical Differentiation and Integration: Numerical differentiation with interpolation polynomials-maxima and minima for tabulated values-Trapezoidal rule, Simpsons 1/3 rd and 3/8 th rules. –Romberg's method. Two and Three point Gaussian quadrature formula.					1, 2, 7,8			
5	Numerical Solution of Ordinary Differential Equations: Taylor Series method-Runge — Kutta method of order four for first and second order differential equations— Adams-Bashforth-Moulton predictor-corrector methods. Finite difference solution for the second order ordinary differential equations.					1,2 9,1			
6						1, 2 3,4			
7	functional - Extr	thods: Introduction to calculus of variations -Definition of remals of functional of a single dependent variable and its cayleigh-Ritz method, Galerkin method.		6		1, 1 17,	2, ,18		
8		y experts: Finite element method for solving Differential		2		1,2 7,1			
 Tutorial A minimum of 5 problems to be worked out by students in every Tutorial Class Another 5 problems per Tutorial Class to be given as home work. 				15		5,6	5,8 ,15		
		Total Lecture Hours							
• Int	ass room teaching roducing Units thro in of 1 lecture by e		45						

Textbooks:

- **1.** M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical methods for scientific and Engineering, New Age International Ltd., 5th Edition (2010).
- 2. C. F. Gerald and P.V. Wheatley. Applied Numerical analysis, Addition-Wesley, 7th Edition (2004).

- 1. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI Pvt Ltd, 5th Edition, New Delhi (2009).
- **2.** W.Y. Yang, W. Cao, T.S. Chung and J. Morris, Applied Numerical Methods Using MATLAB, Wiley India Edt (2007).
- **3.** Steven C. Chapra and Ra P. Canale, Numerical methods for Engineers with Programming and software applications, 7th Edition, Tata McGraw Hill (2014).
- 4. R. L. Burden and J. D. Faires, Numerical Analysis, 4th Edition, Brooks Cole, (2012).

Mode of Evaluation	Digital Assignments,			
	Continuous Assessment Test			
	Final Assessment Test			
Recommended by the Board of Studies	09-03-2016			
Date of Approval of Academic council:	18.03.2016			
Compiled by	Prof. B.Rushi Kumar,			
	Prof. R Hemmandri Reddy,			
	Prof. Dr. B.S.R.V. Prasad			
	Prof. Dr. Nageshwar Rao Ragi,			
	Prof. Dr. Peri Kameswara Kameswaran			

Course Code: MEE1001 Pre-requisite: Nil		ENGINEEDING DD AWING			P	J	<u>C</u>
					4	0	3
Module		Topics	L Hrs		S	S LO	
1	\sim	Dimensioning: Introduction, lettering practice, Elements of ystems of dimensioning.	1			6, 17	
2		structions: Free hand sketching, Conic sections, Special		2		(6, 17
3	Projection of Points: First and Third Angle Projections; Projection of points. Projection of Lines: Projection of straight lines (First angle projection only); Projection of lines inclined to one plane and both planes, true length and true inclinations.						
4	Projection of solids: Classification of solids, Projection of solids in simple position, Projection of solids inclined to one plane. Sections of Solids: Right regular solids and auxiliary views for the true shape of the sections.					5,	, 6, 17
5		f Surfaces: Development of surfaces for various regular		2		5,	, 6, 17
6	Isometric Projection: Isometric scales, Isometric projections of simple and combination of solids. Perspective Projection: Orthographic representation of a perspective views — Plane figures and simple solids - Visual ray method.					5,	, 6, 17
7		Projection: Conversion of pictorial view into orthographic		1		5,	, 6, 17
# Mode: F	, J	m, Video Lectures.		15		1	

1. Venugopal K and Prabhu Raja V, "Engineering Graphics", New AGE International Publishers, 2015.

References

1. N. D. Bhatt, Engineering Drawing, Charotar publishing House, 2012.

2. Natarajan, K. V., A Text book of Engineering Graphics, Dhanalakshmi Publishers, 2009.

Lab Exercises	Hours	SLO
1. Identifying the wrong dimensioning and correct it as per BIS standards	60	17
2. Tutorials on free hand sketching and geometric constructions like conics and special		
curves		
3. Representation of orthographic projection of points		
4. Representation of orthographic projection of lines (First angle projection only)		
inclined to one plane and projection of lines inclined to both the planes		
5. Sketching orthographic projection of solids in simple position and projection of solids		
inclined to one plane.		
6. Drawing the auxillary views, orthographic views and true shape of sectioned regular		
solids		

7. Develo	pment of	lateral	surfaces of	of the	regular	shapes	and	sectioned	shapes

- 8. Conversion of orthographics views to isometric views
- 9. Tutorial problems on perspective projection of plane figures and simple solids 10. Conversion of pictorial drawing into orthographic projection

Experiments are to be done on both manual and CAD tool. Examination and evaluation is to be done separately for manual and CAD and marks are combined.

Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test /CAT/FAT
Recommended by the Board of Studies	10.06.2015
Date of Approval of Academic council:	16.06.2015
Compiled by	Dr. Jegadeeshwaran
	Dr. A. Ananda Babu
	Dr. E. Rajkumar

Course Co	ode: MEE1003							
Pre-requisite : NIL		ENGINEERING THERMODYNAMICS	L 2	T 1	P 0	J 0	C 3	
Module		Topics	L Hrs				SLO	
1	Thermodynamics system - State a	Basic Concepts in Thermodynamics : Basic concepts of Thermodynamics - Thermodynamics and Energy - Closed and open systems - Properties of a system - State and equilibrium - Processes and cycles - Forms of energy - Work and heat transfer - Temperature and Zeroth law of thermodynamics -					2, 9,	
2	First law of the	ermodynamics - Energy balance for closed systems - First eady – flow engineering devices.		3		1,2	2,5,9	
3	Second Law of Thermodynamics: Limitations of the first law of Thermodynamics - Kelvin-Planck and Clausius statements and its					1,2	2,5 9	
4		rgy- Availability and irreversibility - Second law efficiency-	2			1,2.5,9		
5	Properties of pure substance- Property diagram for water-phase change processes-refrigerants-real gases-Compressibility factor				3			
6	Thermodynamic relations- Gibbs and Helmholtz function-Maxwell's relations-Clapeyron equations-general relations of properties					1,2		
7	Gas power cycles - Air standard assumptions - Otto cycle - Diesel and Dual cycles - Brayton cycle					3 1, 2,		
8	_	efrigeration Cycles- Rankine cycle-reheat-regeneration- on refrigeration cycle	4			1, 1 11	2, 5,	
9	Ideal Gas Mixtures: Composition of gas mixtures - Mass and mole fractions - Dalton's law of additive pressures - Amagat's law of additive volumes - Evaluating properties of gas mixtures							
# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Industrial Visit, challenging assignments, minimum of 2 guest lectures by industry experts.								
# A minimum of 5 problems to be worked out by students in every Tutorial Class. Another 5 problems per Tutorial Class to be given as home work. At least one open ended design problem to be given. # Mode: Individual Exercises, Team Exercises, Online Quizzes, Online Discussion Forums Text Books							2, 9,	

1. Yunus A. Cengel, (2011), Thermodynamics: An Engineering Approach, TataMcGraw- Hill Publishing Company Ltd.

- 1. P. K. Nag, (2009), Basic and Applied Thermodynamics, Tata McGraw-Hill Publishing Company Ltd.
- 2. Michael Moran and Howard Shapiro, (2010), Fundamentals of Engineering Thermodynamics, John Wiley and Sons

and Sons	
Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test
	/CAT/FAT

Recommended by the Board of Studies on:	10.6.15
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Dr. Manavalla Srikanth
	Prof. M. Senthil Kumar
	Prof. E. Porpatham

Course C	ode: MEE1004						
Pre-requi	site : NIL	FLUID MECHANICS	L	T	P	J	C
-			2	1	2	0	4
Module		Topics	I	. Hr	S	SLO	
1	Introduction to	Fluid Statics				1 ′	
		aid, Concept of Continuum, Fluid Properties, Classification s and Hydrostatic Law, Pressure and its Measurement.		2		1, 2	2, 9,
2		ces and Buoyancy					
_		es on Plane – Inclined and Curved surfaces – Buoyancy –		4		1, 2	2, 9,
	_	uilibrium for Submerged and Floating Bodies- Centre of		4		11	, ,
	•	acentre-Determination of Metacentric Height.					
3	Fluid Dynamics						
		Control Volume, Reynolds Transport Theorem, Continuity,		4			,6,9,1
	Equations-Applie	rnoulli's equations Momentum equation-Navier-Stokes eations.				1	
4	Flow Through I						
		pipe flow-Major loss – Minor losses – Multi reservoir		1		1,2	,6,9,1
		network design - Moody's diagram - Hagen Poiseuille					
	equation – Turbulent flow.						
5	Open Channel I				c 0 1		
		hannel flows - Specific Energy - Specific force - Critical	7			,6,9,1	
		c jumps/Surges and gradually varying flow concepts – discharge in open channels.					
6	Dimensional An						
		nogeneity – Raleigh and Buckingham p theorems – Non-		_		1,2	,6,9,1
		nbers – Model laws and distorted models-Modelling and				, - ,- ,	
	Similitude.						
7	Boundary Layer					_	
		- Laminar flow and Turbulent flow - Boundary layer		6		1,2	,6,9,1
		mentum – Integral equation – Drag and lift-Separation of				1	
	boundary layer-N	Methods of separation of boundary layer Total Lecture Hours					
# Mode: F	Flinned Class Roor	n, [Lecture to be videotaped], Use of physical and computer		30			
models to lecture, Industrial Visit, challenging assignments, minimum of 2 guest lectures							
by industry		visit, enumenging assignments, minimum of 2 gaost rectares					
Tutorial	v 1						
# <i>A</i>	# A minimum of 5 problems to be worked out by students in every Tutorial 1, 6, 9,11						5, 9,11
	Class. Another 5 problems per Tutorial Class to be given as home work.						
	-	led design problem to be given.					
		Exercises, Team Exercises, Online Quizzes, Online					
	Discussion Forums Text Books						

- 1. Philip J. Pritchard and John W. Mitchell (2015), "Fox and McDonald's Introduction to Fluid Mechanics", 9^{th} Edition, John Wiley & Sons.
- 2. Dr.R.K. Bansal (2015), "A Text Book of Fluid Mechanics and Hydraulic Machines", 9th Edition, Laxmi Publication.

References

- 1. Dr. P.N. Modi and S.M. Seth (2011), "Hydraulics and Fluid Mechanics Including Hydraulic Machines", 18th Edition, Standard Book House.
- 2. Pijush K. Kundu, Ira M. Cohen and David R. Dowling (2012), "Fluid Mechanics", 5th Edition, Academic Press.
- 3. Yunus A. Cengel and John M. Cimbala, "Fluid Mechanics Fundamentals and Applications", 3rd Edition, McGraw Hill Publishers.
- 4. Frank M. White (2015), "Fluid Mechanics", 8th Edition, McGraw Hill Publishers.
- 5. Dr. A.K. Jain (2008), "Fluid Mechanics", Khanna Publishers.
- 6. Donald F. Elger, Barbara C. Williams, Clayton T. Crowe, John A. Roberson (2013), "Engineering Fluid Mechanics", 10thEdition, John Wiley & Sons.
- 7. V.L. Streeter (2010), "Fluid Mechanics", McGraw Hill Book Co.

Lab Exercises		Hours	SLO		
1. Flow through Orifice		15	14		
a) Constant Head Method					
b) Variable Head Method					
2. Flow through Mouth Piece					
a) Constant Head Method					
b) Variable Head Method					
3. Flow through Rectangular Notch					
4. Flow through Triangular Notch					
5. Verification of Bernoulli's Theorem					
6. Metacentric Height for a Ship Model					
7. Determination of Major Loss in a Single Pipe Flor	W				
8. Determination of Major Loss in an Annular Doub	le Pipe Flow				
9. Determination of Minor Losses in a Pipe Flow					
10. Flow through Venturimeter and Orificemeter					
11. Determination of Specific Energy in a Rectangular Channel Flow – Tilting Flume					
Experiment					
12. Demonstration of Reynolds Experiment – Determ	nine the state of flow				
13. Demonstration of Wind Tunnel – Measurement o	f lift and drag of an aerofoil				
Mode of Evaluation	Digital Assignments /Semina	rs/ Surprise T	est		
	/CAT/FAT				
Recommended by the Board of Studies on:	ndies on: 10.6. 2015				
Date of Approval by the Academic Council:	18.3.2016	18.3.2016			
Compiled by	Dr. Shyam				
	Dr. A. Satheesh				

Course C	ode: MEE1005							
Pre-requisite: NIL		MATERIALS ENGINEERING AND TECHNOLOGY	L	T	P	J	C	
			2	0	2	4	4	
Module		Topics	I	L Hı	`S	S	LO	
1	Structure of Materials							
	Introduction to engineering materials – significance of structure property correlations in all classes of engineering materials, Unit Cells, Metallic Crystal Structures, Density Computations, Crystal Systems, Crystallographic Points, Crystallographic Directions, Crystallographic Planes, Linear and Planar Densities, Close-Packed Crystal Structures, Crystalline and Noncrystalline Materials, Single Crystals, Polycrystalline Materials, Imperfection in solids – Point, Line, Surface and Volume defects - Polymorphism and Allotropy			lic nic 7 nd on- on			1, 2	
2	Constitution of Alloys Mechanism of Crystallization- Nucleation-Homogeneous and Heterogeneous Nucleation- Growth of crystals- Planar growth – dendritic growth – Cooling curves - Diffusion - Construction of Phase diagram -Binary alloy phase diagram – Cu-Ni alloy; Cu-Zn alloy and Pb-Sn alloy; Iron-Iron carbide phase diagram – Invariant reactions – microstructural changes of hypo and hyper- eutectoid steel- TTT and CCT diagram							
3	Heat Treatment and Surface Heat treatment Heat treatment – Overview – Objectives – Annealing and types, normalizing, quenching, austempering and martempering – microstructure changes – Surface hardening processes - Carburizing –, nitriding – cyaniding and carbonitriding, induction and flame hardening, Laser and Electron beam hardening– principles and case depths				,6			
4	Ferrous and Non-ferrous metals Steels – Types of Steels - White, Grey, Malleable and Nodular - Properties and application of cast irons, Effect of alloying elements on structure and properties of steels - Properties and uses of Silicon and Hadfield Manganese steels, High speed steels - Stainless steel and Types - Non Ferrous metals -					1,2		
5	Aluminum, Magnesium, Copper, Nickel, Titanium and their alloys Mechanical behavior of Materials Strengthening mechanisms – Hardness measurements – Tensileproperties of the materials – Fracture of metals – Ductile Fracture, Brittle Fracture, Ductile to Brittle Transition Temperature (DBTT) –Fatigue – Endurance limit of ferrous and non-ferrous metals -Fatigue test, S-N curves, factors affecting fatigue, structural changes accompanying fatigue; Creep and stress rupture– mechanism of creep – stages of creep and creep test				,6			
6	Introduction to Properties and A and applications	Advanced Materials pplications of Engineering polymers- Ceramics – properties of various ceramics – Composites – and their types; rocessing of composites – Manufacture of fibres		4		1		
models to	Total Lecture Hours Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer and lodels to lecture, Industrial Visit, challenging assignments, minimum of 2 guest lectures y industry experts.							

Practical						
1. Overview of Materials Characterization – Optical Microscopy, Scanning Electron						
Microscopy, X-Ray Diffraction and Energy Dispersive X-ray analysis						
2. Perform the metallographic studies and identify the given steel samples.						
3. Perform the metallographic studies and identify the given cast iron samples						
4. Conduct the metallographic examination on the given non-ferrous samples						
5. Design the heat treatments that result in the following microstructures						
(a) Coarse pearlite (b) Medium/Fine pearlite (c) 100% Martensite (d) Martensite and						
retained austenite	30	2,6,9,				
	30	13,14				
6. Perform the hardness examination on the given samples using Rockwell Hardness Tester and find out the equivalent Vickers hardness in HV.		and 17				
7. Conduct the tensile studies on the given sample and infer whether the given sample						
is ductile or brittle. Evaluate the elastic and plastic properties of the given sample.						
8. Perform the high cycle fatigue on the given standard sample. Report the inference.						
9. Use metallographic analysis software to establish the phases and average grain size						
of the given samples.						
10. Demonstration on the development of composites						
Project	60 [Non	5,9,14				
# Generally a team project of Five	Contact	and 17				
# Concepts studied in Modules 2, 4, 5 should have been used	hrs]					
# Down to earth application and innovative idea should have been attempted						
Comple projects such as						
Sample projects such as						
1. How to identify the given unknown sample? What are the metallurgical and						
mechanical tests to be conducted to assess the properties of the sample?						
2. A fractured sample is given for assessment to interpret the reasons for fracture.						
What are the various metallurgical tests to be carried out to infer the same?						
3. Design a sub-sized sample as per ASTM standard. Conduct the tensile test and						
assess the tensile properties. Comment on the sample on its character.						
4. Immerse the given sample in 3.5% NaCl solution to study the corrosion after 100						
hours. Study the microstructure and phases present using optical microscopy and						
XRD						
5. Compare the microstructures of the given steel sample before and after heat						
treatment. Also measure the hardness of the samples						
6. Design and fabricate the sample for conducting fatigue test. Conduct the high						
cycle fatigue and estimate the service life time.						
7. Perform high temperature corrosion studies on the given sample at 500°C in air						
oxidation and analyze the microstructure before and after corrosion						
8. Perform a stress-relieving heat treatment on the welded samples. How do you						
ensure the stresses are relieved?						
9. Conduct the corrosion studies on the given sample using electrochemical cell.						
What is the inference drawn from the polarization curves?						
10. Perform XRD analysis on the heat treated samples and identify the phases.						
11. Perform the metallographic examination on the given sample and determine the						
ASTM grain size number.						
12. Design a heat treatment for the steel that results in microstructure that contains						
pearlite and martensite. Also investigate the hardness and compare it with the						
fully quenched sample.						
runy quenence sample.						

- 13. Perform a simple arc welding on the given samples. Identify the microstructure at different zones of interest.
- 14. Prepare the ASTM sub-sized sample for conducting the impact test. Find out the mode of fracture using SEM analysis.
- # Assessment on a continuous basis with a min of 3 reviews.

1. W.D. Callister, David G. Rethwisch, (2010) Materials Science and Engineering: An Introduction, 8th ed., Wiley & Sons

- 1. Donald R. Askeland, Pradeep P. Fulay, Wendelin J. Wright (2010), The Science and Engineering of Materials 6th Edition, Cenage Publications
- 2. William F. Smith and Javad Hashemi (2006), Foundations of Materials Science and Engineering 5th Edition, McGraw Hill.
- 3. Sidney H Avner, (2008) "Introduction to Physical Metallurgy, 2nd Edition, Tata McGraw Hill Publishing Company Limited
- 4. ASM Handbook, Metallography and Microstructure, ASM International, Volume 9, 2004
- **5.** Jon L. Dossett, Howard E. Boyer (2006), Practical Heat Treating: 2nd Edition, ASM International.

Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test
	/CAT/FAT
Recommended by the Board of Studies on:	10.6.2015
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Dr. K. Devendranath Ramkumar
	Dr. Pankaj Balkrishna Tambe
	Dr. U. Narendra Kumar
	Dr. A. Raja Annamalai
	Dr. S.K. Ariful Rahaman

Course C	ode: MEE1007							
Pre-requi	site: NIL	MANUFACTURING PROCESSES	L	T	P	J	C	
			2	0	2	2 0 3		
Module		Topics	L	L Hrs S		LO		
1	Manufacturing Manufacturing- The Role of Manufacturing Development in the growth of a country –Classification of manufacturing processes Casting processes Casting: Fundamentals of metal casting –Pattern and mould making-Different casting techniques-Melting practice and furnaces - Defects in casting – Testing and inspection of casting.						17	
2	Joining Process Fusion welding			6			17	
3	Energy Rate Form	Processes orking-Bulk metal forming -Sheet metal forming – High ming Processes: Explosive Forming – Electro Hydraulic o Magnetic Forming.		6			17	
4	Powder metallur	owder Metals, Ceramics, Glass and Plastics gy- Shaping of ceramics-Glass-Processing of plastics: g – Blow molding – Compression molding – Transfer noforming.	6 17			17		
5	Cost modelling Case studies Aluminum Conn Joining a Steel R Devices to open	ess selection-Process selection charts-Ranking process cost- ecting Rod, Fan leaf with nylon material, Airbag canisters, adiator, Car bonnet, Spark Plug Insulators, Ceramic knife, corked bottle, Aircraft wing spar, Forks for a racing bicycle, ator, Insulation for refrigerator, etc.	6 6,1			5,17		
# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Industrial Visit, challenging assignments, minimum of 2 guest lectures by industry experts.				30				
Lab: 1. Plaster mould casting- Create a mould for slip casting of the given component using suitable material and fabricate the component using slurry casting technique 2. Metal casting: Preparation of Green sand mold using different levels of moisture content. 3. Join the given GI pipes as per the diagram and make it leak proof for supply of water. 4. Arc welding – Join the given thick metal sheets using suitable welding process. The weld finish quality is not a constrain. 5. TIG welding: Prepare the TIG weldment of steel with 316 stainless steel. Find out the efficiency of the weldment by tensile test 6. Make a Tray as per the given dimensions using sheet metal. The corners of the						7		

- tray has no leack proof constraint.
- 7. Identify the thickness variation of a sheet metal bend sample for different loading conditions and observe the changes in microstructure using optical microscope.
- 8. Finding the stress level of the sheet metal component before and after annealing
- 9. To find the Green Density & Strength (hardness) of Cold-compacted/sintered metal powder
- 10. Carpentry Dove tail joint: Join the given two wooden slabs perpendicular to each other in their longer edges by selecting suitable joint which gives maximum strength.
- 11. Make an wooden book stand without doors using suitable joints.
- 12. Demonstration of pouring the Non Ferrous Metal by using Crucible Tilting Furnace
- 13. Finding out the optimum method of producing a WC tool.

Evaluation mode: Marks distribution for:

- (i) selection of suitable process/materials
- (ii) completion and finishing quality of the exercise
- (iii) viva & record

Text Books

- 1. Serope Kalpakjian; Steven R. Schmid (2010), Manufacturing Engineering and Technology, 6th Edition, Publisher: Prentice Hall, ISBN-10 0-13-608168-1, ISBN- 13 978-0-13-608168-5
- 2. P.N.Rao. (2009), Manufacturing Technology Foundry, Forging and Welding, Tata McGraw Hill Publishing Company Ltd., New Delhi.

Reference Books

- 1. S.Kalpakjian and S.R.Schmid, (2004), Manufacturing Engineering and Technology, 4th Edition, Pearson Education (Singapore) Pte Ltd.
- 2. P.N.Rao. (1998), Manufacturing Technology Foundry, Forging and Welding, Tata McGraw Hill Publishing Company Ltd., New Delhi.

3. Haira Choudhury S.K. (2004), Elements of Manufacturing Technology, Vol. - I, Media Publications.

3. Hajia Chodanary 5.13. (2007), Elements of Manaractaring Technology, vol. 1, Media I done attoris.					
Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test				
	/CAT/FAT				
Recommended by the Board of Studies on:	10.6.2015				
Date of Approval by the Academic Council:	18.3.2016				
Compiled by	Dr. Jafferson				
	Dr.C. Pandivelan				
	Dr. Jacob Varghese				

Course Code : MEE2001								
Dwg wagus	igita - MEE1001	MACHINE DRAWING	L	T	P	J	С	
11e-requi	isite : MEE1001		1	0	2	4	3	
Module		Topics	I	L Hrs			SLO	
1	machine drawing Counter Sink,	ine Drawing: Introduction – Projections - Classifications of g- BIS specifications - Sectioning –Dimensioning methods: Counter Bores, Spot Faces, Chamfers, Screw Threads, s, Title block of Industrial drawing and Bill of Materials.				1,4,5		
2	Representation of Positions of To	Sits: Classifications and of Fits, Selection of Fits, on Drawings, Tolerance Grade, Computations of Tolerance, olerance, Fundamental of Deviations, Shaft and Hole ethod of placing limit dimensions.		2			1,4,5	
3	Characteristics of Indication of Geo	olerances: Need of Geometrical Tolerance, Geometrical of Symbols, Indication of MMC, LMC, Interpretation and ometrical Tolerance and Dimensioning.		2			1,4,5	
4		tepresentations: Materials - Interrupted views and Braking ar - Surface finishing & Machining Symbols.		2			4,5,6, 1,17	
5	Screwed Fastenings and Joints: Screwed Fastenings - Screw Thread Nomenclature and types, Joints: Bolts and Nuts, Key, Cotter, Riveted, Pin Welded joints. Pulleys and Couplings.					1,4,5,6, 11,17		
6	Contemporary D			2			2	
# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Industrial Visit, challenging assignments, minimum of 2 guest lectures by industry experts.				15				
Laboratory exercise, 3 1. 3D 2. 3D 3. 3D 4. 3D 5. 3D 6. 3D 7. 3D	Laboratory Laboratory: Minimum Seven exercises using CAD solid modeling software. For each exercise, 3D part modeling, Detailing and Assembly have to be submitted. 1. 3D Modeling, assembly and detailing of joints. 2. 3D Modeling, assembly and detailing of couplings. 3. 3D Modeling, assembly and detailing of bearings. 4. 3D Modeling, assembly and detailing of valves. 5. 3D Modeling, assembly and detailing of automotive components. 6. 3D Modeling, assembly and detailing of machine elements.							
existing product. The project content should have innovation and novelity in concepts. It contact 11, 1					4, 5, 6, 1, 17, 18			

- There will be a minimum of three reviews conducted in a semester and the marks will be awarded and taken for final assessment. The marks distribution for 3 reviews will be 20:30:50.
- Minimum pass marks for project is 50%. If the student fails to get 50%, he/she has to re-register and redo in a subsequent semester.
- If the student has got >= 50% in project, and fails in Theory, then the same marks can be taken up for grading purposes after he/she completes the Theory FAT.
- Evaluation is through continuous assessment with 3 reviews. No separate FAT.

Sample Project:

- Design and drafting of double wishbone suspension system for a passenger car.
- Design of five point toggle clamp for a plastic injection molding machine.
- Design of final drive assembly for an automobiles.

Text Book

1. Bhatt, N.D. (2014), Machine Drawing, Published by R.C.Patel, Chartstar Book Stall, Anand, India.

- 1. Ajeet Singh (2012), Machine drawing, Tata McGraw Hill, 2nd edition.
- 2. Brain Griffiths (2003), Engineering Drawing for manufacture, Kogan page science, USA.
- 3. N.D.Junnarkar. (2004), Machine Drawing, Pearson education, 1st edition.

Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. A. Ananda Babu
	Prof. K. Annamalai

Course C	ode : MEE2002						
Pre-requisite : MEE1002		STRENGTH OF MATERIALS	L	T	P	J	C
11c-requi	Site : 1412/21002		2	1	2	0	4
Module		Topics	I	L Hı	rs.	SLO	
1	stress and normal strain and shear strain – Stress-strain diagram for brittle and ductile materials - Poisson's ratio & volumetric strain – Elastic constants – relationship between elastic constants and Poisson's ratio – Generalised Hook's law – Deformation of simple and compound bars – Strain energy –					1,2	2,5,14
2	Resilience – Gradual, sudden, impact and shock loadings – thermal stresses. Bi-axial Stress system: Introduction – Stresses on an inclined section of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear – Mohr's circle of stresses – Principal stresses and strains – Analytical and graphical solutions, Theories of Failure.						9,11,18
3	Shear Force and Bending Moment: Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads and combination of these loads – Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam.					2,5,9	
4	Stresses in beams: Theory of simple bending – Assumptions – Derivation of bending equation - Neutral axis – Determination of bending stresses – section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections – Design of simple beam sections, Shear Stresses: Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, T angle sections.					2,5,12	
5	Deflection of beams: Deflection of beams by Double integration method – Macaulay's method – Area moment theorems for computation of slopes and deflections in beams – Conjugate beam method.					1,5,7,9, 17,18	
6					5,9,11,		
7	Columns: Theory of columns – Long column and short column - Euler's formula – Rankine's formula. Thin and thick cylinders: Thin cylinders and shells – deformation of thin cylinders and shells – thick cylindrical shell – Lame's equation.						9,17,18
8	Contemporary l	Discussion		2		2	
	lecture, Industrial	m, [Lecture to be videotaped], Use of physical and computer Visit, challenging assignments, minimum of 2 guest lectures		30			
	ass for Module 1 ass for Module 2	(3 hours) (1 hour)		15			2,7,9, ,17,18,

		T
Tutorial class for Module 3 (2 hours)		
Tutorial class for Module 4 (2 hours)		
Tutorial class for Module 5 (2 hours)		
Tutorial class for Module 6 (2 hours)		
Tutorial class for Module 7 (2 hours)		
Tutorial class for Module 8 (1 hour)		
# A minimum of 3 problems to be worked out by students in every tutorial class.		
Another 6 problems per Tutorial Class to be given as home work.		
# Mode: Individual Exercises, Team Exercises, Online Quizzes, Online Discussion		
Forums, Assignments		<u> </u>
Laboratory	30	1, 2, 4, 5,
		6, 7, 14
1. Evaluation of Engineering Stress/Strain diagram on different materials (ductile		
and brittle) and different shapes in geometry (bars and flat) under tension.		
2. Comprehension of different cross sections of beam on bending stress.		
3. Deflection test – Verification of Maxwell theorem.		
4. Comparison of hardness values of Steel, Copper and Aluminium using Rockwell,		
Brinell and Vickers hardness measuring machines.		
5. Estimation of Spring constant under Tension and Compression.		
6. Estimation of Notch Toughness of Steel using Charpy and Izod Impact Testing		
Machines.		
7. Torsion Test on Mild Steel Rod.		
8. Double shear test in U.T.M.		
9. Fatigue test on Steel.		
10. Strain measurement using Rosette Strain Gauge.		
11. Tensile strength of welded joints using UTM.		
12. Load measurement using Load indicator and Load coils.		
	1	

1. Ferdinand Beer, Russell Johnston, John T DeWolf (2009), Mechanics of Materials, Tata McGraw-Hill Education.

- 1. Rowland Richards (2000), Principles of Solid Mechanics, CRC Press.
- 2. Timoshenko, S.P. and Young, D.H. (2000), Strength of Materials, East West Press Ltd.
- 3. W. A. Nash and M. C. Potter (2011), Strength of Materials, Fifth Edition, Schaum's Outline Series, McGraw-Hill.
- 4. R.K. Bansal (2010), Strength of Materials, Laxmi Publications.

Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. G. Venkatachalam
	Prof. Christo Michael

Course Co	ode : MEE2003						
		THERMAL ENGINEERING SYSTEMS		Т	P	J	С
Pre-requisite : MEE1003			2	1	2	0	4
Module	Topics			L Hrs		SLO	
1	IC Engines – W	Yorking principle of 2 stroke and 4 stroke SI and CI engines		4		1, 2, 5	
		lve Timing Diagrams, Combustion process - Knocking and					
		ane and Octane numbers, Comparison of fuel system of ol engines, Cooling system, Lubrication system, Ignition					
		Magneto and Electronic systems.					
2		rformance – Performance test - Measurement of Brake		4		1	, 2, 9
	0	power, Fuel consumption, Air consumption;					, ,
	Heat balance test	t, Morse test and Retardation test on IC engine.					
3		s – Types of boilers, Reheating - Regeneration - Modern		4		1	,2, 9
	_	-pressure boilers - Heat Recovery Boilers - Mountings and					
		eam Nozzles – One-dimensional steady flow of steam					
4		gent and divergent nozzle. – Impulse and Reaction principle. Gas Turbine – Open and		4		1	, 2, 9
7		turbine, Reheating, Regeneration and Intercooling.		4		1	, 2, 9
5		ncement Compressors – Reciprocating compressors -		4		1,	2, 5, 9
	_	Working - Effect of clearance volume – Multi-staging -					, ,
		iency - Isothermal efficiency.					
6		Vapor compression system - Components - Working - P-H		4		1	,2, 9
	and T-S diagrams - Calculation of COP - Effect of sub-cooling and super-						
	heating - Vapor absorption system - NH ₃ - water system, Vapor adsorption system. Cryogenic engineering: Introduction, Application, Cryo-coolers						
7		g – Types, Working Principles - Psychrometry,		4		1	2, 5, 9
'	Psychrometric chart, cooling load calculations.		4		1,	2, 3, 9	
8	Contemporary Discussion		2			2	
	Total Lecture Hours						
# Mode: F	# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer						
models to lecture, Industrial Visit, challenging assignments, minimum of 2 guest lectures							
	by industry experts.						
Tutorials				15			
	Tutorial class for Module 1 (3 hours)						
	Tutorial class for Module 2 (2 hours)						
	Tutorial class for Module 3 (2 hours) Tutorial class for Module 4 (2 hours)						
	Tutorial class for Module 5 (2 hours)						
Tutorial class for Module 5 (2 hours) Tutorial class for Module 6 (2 hours)						1,2	2,9
Tutorial class for Module 7 (2 hours)							
Laboratory						1.2	2,14,18
Laboratory 1. Compare the performance of a single cylinder CI engine connected with different 1,2,14,18						.,. 1,10	
dynamometers and suggest a suitable dynamometer for better accuracy of the							
results.							
	2. Compare the energy distribution of a single cylinder CI engine connected with						
	different dynamometers and suggest a suitable dynamometer for better accuracy						
of t	of the results.						

- 3. Do the performance test on a single cylinder SI engine and compare your results with the engine specifications. Suggest a suitable method to improve the accuracy of your results.
- 4. Determine the friction power of a given four cylinder petrol engine by performing Morse test and compare the results with Willian's line method.
- 5. Determine the friction power of a given single cylinder diesel engine by performing retardation test and compare the results with Willian's line method.
- 6. Compare the properties of different fuels by performing flash point, fire point, viscosity and calorific value tests and find out which is suitable for the better performance of the given engine.
- 7. Determine the actual index of compression and compare with the isentropic compression for a given reciprocating air compressor.
- 8. Compare the performance of air blower with different vane profiles.
- 9. Calculate the COP of the given vapor compression refrigeration system and compare with your theoretical calculation.
- 10. Calculate the COP of the given air-conditioning test rig and compare with your theoretical calculation.
- 11. Compare the boiler efficiency for different load levels for the given boiler.
- 12. Compare the power output for the steam turbine at different load conditions.
- 13. Draw the valve timing and port timing diagrams for the given engines, compare with the theoretical value and give your comments.

3. Rajput R.K (2010), Thermal Engineering, Eighth Edition, Laxmi Publications(P) Ltd.

- 1. Mathur.M.L & Sharma R.P (2009), Internal Combustion Engine, Dhanpat Rai Publications.
- 2. Manohar Prasad (2007), Refrigeration and Air Conditioning, New Age International.
- 3. Soman.K (2011), Thermal Engineering, PHI Learning Private Ltd.

Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. K. Nanthagopal
	Prof. R. Sivakumar

Course Code : MEE2004							
Pre-requisite : MEE1002		MECHANICS OF MACHINES		T	P	J	C
			2	1	0	4	4
Module	Topics		L Hrs		rs	SLO	
1	Basics of Mechanisms: Introduction- Terminologies, Degree of Freedom –			3		1,2,4,6	
		nechanisms and their inversions.		3		1,	2,7,0
2	Velocity and accelerations in planar mechanisms, Coriolis component of acceleration.			4		1,2,4,6	
3		inematics of Cams: Cams with different Follower Motion.					
		Gears and Gear trains: Gear terminologies- Law of		4		1,	2,4,6
		ence and undercutting- Epicyclic gear train.	1,2,7,0				
4		echanisms: Two position and Three position synthesis of					
	planar mechanis	sm - Graphical and analytical methods - Freudentein		4		1,	2,4,6
	equation.						
5	•	Analysis: D'Alembert's Principle, Dynamic Analysis of		4		1	2,4,6
		m. Turning Moment Diagrams – Flywheels – Applications.				1,	2, 1,0
6		c and Dynamic Balancing of Rotating masses, Balancing of					
	Reciprocating ma			4		1,	2,4,6
		duction – Terminologies- Single degree of freedom- damped				ĺ	, ,
7		ee and forced vibration.					
7		Control: Governors- types and its characteristics.		5		1	216
	Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization.			3		1,	2,4,6
8	Contemporary I		2 2		2		
O	Contemporary	Total Lecture Hours					
	* Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Industrial Visit, challenging assignments, minimum of 2 guest lectures						
		visit, chancinging assignments, imminum of 2 guest rectures					
by industry experts. Tutorials						1 2	,6,9
Tutorial class for Module 1 (2 hours)				15		1,2	,0,5
	al class for Module						
	al class for Module	,					
	Tutorial class for Module 4 (2 hours)						
	Tutorial class for Module 5 (2 hours)						
	Tutorial class for Module 6 (2 hours)						
	Tutorial class for Module 7 (2 hours)						
	# A minimum of 3 problems to be worked out by students in every tutorial class.						
	Another 6 problems per Tutorial Class to be given as home work.						
	# Mode: Individual Exercises, Team Exercises, Online Quizzes, Online Discussion						
Forums, Assignments							
Project							
• Ge	Generally a team project [Maximum of 4 members only]						
• Co	 Concepts studied should have been used. 			[N	on	2,	6, 9,
 Down to earth application and innovative idea should have been attempted. 				ont			1, 16,
• Report in Digital format with all drawings using software package to be			Н	Iour	s]	1'	7, 18
	submitted.						
• As	 Assessment on a continuous basis with a minimum of 3 reviews. 						

- 1. Radius of gyration effect in machine components:
 - Connecting rod,
 - Shaft with gears at two end,
 - Automotive cam shaft.
- 2. Simulation software
 - Velocity, acceleration and jerk analysis of different cams.
 - Analysis of epicylic gear trains.
 - Analysis of planar mechanism windshield wiper mechanism.
 - Ackerman steering mechanism.
 - Automotive differential drive system.
 - Analysis of planar mechanism slider crank mechanism of an IC engine, manual water pump etc.,
 - Analysis of planar mechanism Power window mechanism in an automobile.
 - Analysis of planar mechanism Robot joints.
 - Kinematic and dynamic analysis of construction machinery like backhoe loader, bucket elevator etc.,
- 3. Real time analysis of quick return mechanism in a shaping machine, slotting machine.
- 4. Development of punching press for book binding application.
- 5. Develop a mechanism to crush aluminium foil tin- Validation of real time model with software.
- 6. Effect of balancing for vibration reduction in mechanical systems.
- 7. Modal analysis of composite beams and plates Applications in aerospace and automotive industry
 - Natural fiber reinforced composite materials,
 - CNT reinforced composite materials.
 - Sandwich materials.
- 8. Modal analysis of an engine assembly and mechanical systems- Validation of computer models with real time data.
- 9. Development of a base exciter table for testing small machine/electronic components using cam mechanism.
- 10. Effect of damper in automatic door closure mechanism.
- 11. Effect of viscous damping on torsional vibration characteristics of an automotive gear assembly.
- 12. Develop a mechanism for automatic page turner to assist a quadriplegic patient.
- 13. Design and development of a mechanism for pick and place application in automotive assembly line.
- 14. Design and development of a mechanism for bottle filling application in a beverage industry.
- 15. Develop a mechanism for package industry for automatic accurate packing of namkeens.
- 16. Develop a mechanism for balancing bicycle wheels.
- 17. Design and development of coin sorting mechanism.
- 18. Applications of governor
 - Hydraulic fluid flow control
 - Vehicle speed control

1. S. S. Rattan (2012), Theory of Machines, Tata McGraw Hill.

- 1. A. Ghosh and A. K. Mallick (2006), Theory of Mechanisms and Machines, East-West Press Pvt. Ltd.
- 2. Kenneth J Waldron, Gary L Kinzel and Sunil Agarwal (2016), Kinematics, Dynamics and Design of Machinery, John-Wiley and Sons.
- 3. A.G.Ambekar (2007), Mechanism and Machine Theory, Prentice Hall of India.
- 4. R.L.Norton (2003), Design of Machinery, Tata McGraw Hill.
- 5. Thomas Bevan (2010), Theory of Machines, Pearson Education Publishers.
- 6. William T Thomson, Marie Dillon Dahleh and Chandramouli Padmanabhan (2008), "Theory of Vibration with applications", Fifth Edition, Pearson Education Publishers.
- 7. John J Uicker, Jr., Gordon R Pennock and Joseph E Shigly (2008), "Theory of Machines and Mechanisms", Oxford University Press.

Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test /CAT/FAT				
Recommended by the Board of Studies on:	3.3.2016				
Date of Approval by the Academic Council:	18.3.2016				
Compiled by	Prof. Khalid Hussain Syed				
	Prof. K. Sridharan				
	Prof. Lenin Babu				

Course Code: MEE2005								
Pre-requisite : MEE1003		HEAT TRANSFER	L	T	P	J	C	
			2	1	0	4	4	
Module	Topics			L Hrs			SLO	
1	Fundamental Concepts: Basic principles of heat conduction, convection and thermal radiation; Fundamental laws; Identification of significant modes of heat transfer in practical applications.			2			1, 2	
2	Conduction I: General equation of heat conduction in Cartesian, cylindrical and spherical coordinates; One dimensional steady state conduction in simple geometries - plane wall, cylindrical and spherical shells; Electrical analogy; Conduction in composite walls and shells; Critical thickness of insulation; Thermal contact resistance; Overall heat transfer coefficient; One dimensional steady conduction heat transfer with internal heat generation in plane walls, cylinders and spheres.			8			1,2,9	
3	Conduction II: Steady state heat conduction in 2D systems - graphical and numerical methods of solution; Conduction shape factor; Unsteady state heat transfer – Systems with negligible internal resistance - lumped heat capacity analysis, infinite bodies – flat plate, cylinder and sphere – chart solutions.			4			1,2,7,	
4	Convection I: Review of fluid mechanics concepts; Equations of conservation of mass, momentum and energy. Forced convection: External flow over flat plate, cylinder, sphere and tube bundles; Internal flow through circular pipes; Boundary layer flow for flow over a flat plate, curved objects and flow through circular pipes.		, 2, 9					
5	Convection II: Natural convection: Steady one dimensional flow over vertical, horizontal and inclined plates; Steady one dimensional flow over cylinders and spheres. Combined free and forced convection. Introductory concepts on Boiling and Condensation.		, 2, 9					
6	Radiation: Terminology and laws; Black body; Radiation from real surfaces; Effect of orientation - view factor; Electrical analogy - surface and space resistances.		, 2, 9					
7	Practical appl Radiation shields	ications: Extended surfaces (fins); Heat exchangers; s.	2 1, 2		1, 2			
8	Contemporary 1	Discussion	2 2					
models to by industr	# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Industrial Visit, challenging assignments, minimum of 2 guest lectures by industry experts.							
## Anothe ### At lea Tutoria	### Another 5 problems to be worked out by students in every Tutorial Class. ### Another 5 problems per Tutorial Class to be given as home work. #### At least one open ended design problem to be given. Tutorial class for Module 1 (1 hour) Tutorial class for Module 2 (3 hours) Tutorial class for Module 3 (2 hours)						,2,7,9	

Tu	torial class for Module 4 (3 hours)					
Tu	torial class for Module 5 (1 hour)					
Tu	torial class for Module 6 (3 hours)					
Tu	torial class for Module 7 (2 hours)					
Projec						
	erally a team project [5 to 10 members]					
	cepts studied in Thermodynamics and Heat Transfer to be applied.					
	is on innovative design for real life application					
	ort in digital format with all drawings and analyses performed using software.					
# Asse	essment on a continuous basis with a minimum of 3 reviews.					
Sampl	le project:					
1.	1. Numerical solution of heat transfer in a 3D Cartesian geometry using FD/FV					
	methods - comparison of manual calculations and simulation results.					
2.	Analytical solution of 2D transient heat conduction in a rectangular solid. 5, 6, 7,					
3.	3. Fabrication of an apparatus for measuring thermal conductivity of a given 60 [Non-					
	solid/liquid sample.					
4.	4. Parametric studies of natural and forced convection over different geometries - hrs] hrs] 2					
	comparison of experimental and theoretical values.					
5.	Development of a software for computing radiation view factors of a gi	ven				
	composite system.					
6.	6. Design and fabrication of a radiation shield.					
7.	7. Evaluation of thermal storage capacities of various phase change materials.					
8.	Design, fabrication and testing of heat exchangers.					
9.	Fin design for laptop cooling/automobile engines.					
10.	Parametric analyses of different fin shapes and materials.					
11.	Theoretical and experimental determination of critical radiation thickness.					

1. Yunus A. Cengel (2006), Heat and Mass Transfer-A Practical Approach, McGraw Hill Education.

- 1. T. L. Bergman, A. S. Lavine, F. P. Incropera and D. P. DeWitt (2011), Fundamentals of Heat and Mass Transfer, 7th Edition, John Wiley & Sons.
- 2. J. P. Holman (2011), Heat Transfer, 10th Edition, McGraw-Hill Publishing Company Limited.
- 3. C. P. Kothandaraman and S. Subramanyan (2004), Heat and Mass Transfer Data Book, Fifth Edition, New Age International Publishers.
- 4. R. C. Sachdeva (2009), Fundamentals of Engineering Heat and Mass Transfer, New Age International (P) Ltd.

Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test					
	/CAT/FAT					
Recommended by the Board of Studies on:	3.3.2016					
Date of Approval by the Academic Council:	18.3.2016					
Compiled by	Prof. Y. Raja Sekhar					
	Prof. Saleel Ismail					

Course C	ode: MEE2006							
Pre-requi	isite : MEE1007	MACHINING PROCESSES AND METROLOGY	L	T		J	С	
Module		Topics	2	0 H	0 rs	4	3 SLO	
1	Metal Cutting	- Mechanics of metal cutting - cutting tool materials,						
1	temperature, wea	ar, and tool life considerations, geometry and chip formation, d machinability, optimization.		4		1, 1	2, 6,	
2	including access Contructional and	Tools - Lathe and its types - Constructional details sories and attachments, operations, types of lathe, doperational details of Shaping - Planing - Slotting - Reaming - Tapping - Broaching.		4		1,2	2,6,17	
3	Milling machin	e - Cutters - Milling operations - Indexing - Gear ar generating principles - Gear Hobber - Gear finishing		4		1,2	2,6, 17	
4	Grinding machi centreless grindi	ine- Operations and applications of surface, cylindrical and ng processes, dressing, truing and balancing of grinding and selection of grinding wheels, micro-finishing (honing,		4		1,2	2,6,17	
5	Unconventional	methods - Electro-chemical, electro-discharge, ultrasonic, beam, water jet machining.		4		1,2	2,6,17	
6	Introduction to measurement, the	Metrology - Linear and angular measurements – taper reads, surface finish, inspection of straightness, flatness and apparators - Gear testing.		4 1		4 1, 2		2,6,17
7	Advances in M Principals, Coord Tool Maker's Mi Nano-measureme	Metrology - Precision Instrumentation based on Laser dinate measuring machines, Optical Measuring Techniques: croscope, Profile Projector. ents: Scanning Electron Microscope Atomic Force asmission Electron Microscopy.		4		1,	2,6,17	
8	Contemporary l	Discussion		2		2		
	lecture, Industrial	Total Lecture Hours m, [Lecture to be videotaped], Use of physical and computer Visit, challenging assignments, minimum of 2 guest lectures		30				
## Conce ### Repor Sample P 1. Fa on 2. Ma the 3. Fa wo 4. Fa 5. Fa	rt in Digital format rojects: bricate a combinat the same part. anufacture a heel of workpiece. bricate abridge claprkpiece. brication of pneum brication of a Doul	rent Modules, as relevant, should have been used with to be submitted ion drill jig/milling fixture used for both types of operations clamp with the help of a lever pressure acting as a strap on mp with the help of a lever pressure acting as a strap on the	co	[No	t	1,2	2,5,14,	

- 7. Fabricate a Gear Test Rig.
- 8. Fabricate a cotter joint.
- 9. Fabricate a universal coupling.

1. Serope Kalpakjian; Steven R. Schmid (2013), Manufacturing Engineering and Technology, 6th Edition, Publisher: Prentice Hall, ISBN-10 0-13-608168-1, ISBN-13 978-0-13-608168-5.

- 1. P.N.Rao (2013), Manufacturing Technology, McGraw Hill Education, New Delhi.
- 2. R.K. Rajput (2015), A Textbook of Manufacturing Technology, Laxmi publications, New Delhi.
- 3. P.C. Sharma (2000), Text book of Production Technology, S.Chand & Company Ltd, New Delhi.
- 4. O.P. Khanna & M. Lal (2006), A Text book of Production Technology, Dhanpat Rai Publications, New Delhi.

Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. C. Pandivelan
	Prof. M. Senthil Kumar

Course Co	ode: MEE3001						
Pre-requis	site : MEE2002	DESIGN OF MACHINE ELEMENTS	L	T	P	J	С
			2 1 L Hrs	0	0	3	
Module		Topics	I	. Hr	:S	S	LO
1	Introduction to	Design Process: Introduction to Design process – Factors –		4		1,2	2,5,14
		on - direct - Bending and Torsional stress equation - Impact					
		ng - Factor of safety - Design stress - Theories of failures -					
2	Problems.	b. Change concentration—the continued atmosp concentration		4		1.0	
<i>L</i>		h: Stress concentration - theoretical stress concentration or - Surface limits factor - fatigue stress concentration factor		4		1,4	2,5,9
		y - Variable and cyclic loads – Fatigue strength – S-N curve					
		lic stress – Soderberg and Goodman equations.					
3		anical Springs: Stresses and deflections of helical springs –		4		1,5	,9,11,
		ression springs – springs for fatigue loading, energy storage				18	
		cal torsion springs – Flat Spiral Springs - leaf springs.					
4	-	design of springs.		4		1 2	5 10
4	_	ed, Welded and Bolted Joints: Riveted, Welded and Bolted aided design of joints		4		1,2	2,5,12
5		, cotters and knuckle joints: Design of keys-stresses in		4		1 5	5,7,9,
		s-spigot and socket, sleeve and cotter, jib and cotter joints-		•		17.	
	knuckle joints.	7 7 7					
6		ts and Couplings: Design of solid and hollow shafts for		6		1,5	,9,11,
		dity – design of shafts for combined bending and axial loads				17.	,18
		Computer aided design of shafts and analysis- Design of					
		id – Muff, Split muff and Flange couplings - Flexible –					
7		sal couplings. Computer aided design of Couplings ine Components: Design of Piston – Connecting rod –		2		5.0	,11,18
,	Crankshaft – Fly	•		2		3,7	,11,10
8	Contemporary			2		2	
	1 1	Total Lecture Hours				I	
# Mode: F	Flipped Class Rooi	m, [Lecture to be videotaped], Use of physical and computer		30			
models to	lecture, Industrial	Visit, challenging assignments, minimum of 2 guest lectures					
by industry	y experts.						
Tutorial				15			2,7,9,
	ass for Module 1	(3 hours)				12	,17,18,
	ass for Module 2	(2 hours)					19
	ass for Module 3	(2 hours)					
	ass for Module 4	(2 hours)					
	ass for Module 5	(2 hours)					
	ass for Module 6 ass for Module 7	(2 hours) (1 hour)					
	ass for Module 8	(1 hour)					
		to be worked out by students in every tutorial class.					
	-	orial Class to be given as home work.					
		es, Team Exercises, Online Quizzes, Online Discussion					
	nallenging Assign						

1. Joseph Edward Shigley and Charles, R. Mischke (2008), Mechanical Engineering Design, McGraw – Hill International Editions, 8th edition.

- 1. V.B. Bhandari (2010), Design of Machine elements, Tata Mc Graw Hill, 3rd Edition.
- 2. P.C.Sharma & D.K.Aggarwal (2012), A Text Book of Machine Design, S.K.Kataria & Sons, New Delhi,12th edition,.
- 3. Jack A.Collins, Henry Busby, George Staab (2011), Mechanical Design of Machine Elements and Machines, 2nd Edition, Wiley India Pvt. Limited.
- 4. B.J. Hamrock, and S.R. Schmid (2005), Fundamentals of Machine Elements, Tata McGraw Hill, New Delhi.
- 5. Juvinal, R.C and Kurt M.Marshek (2012), Machine component design, John Wiley.
- 6. Design Data (2010) PSG College of Technology, DPV Printers, Coimbatore.
- 7. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger (2003), Design of Machine Elements, 8th Edition, Printice Hall.

Mode of Evaluation	Digital Assignments /Seminars/ Surprise Test
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. E. Rajkumar
	Prof. Bhaskara Rao

Pre-requisit	le: MEE4099 te: of 7 semesters	CAPSTONE PROJECT (1 SEMESTER)	L	T	P	J	C 20
		Topics				SI	LO
6	experimentation & a	et may be a theoretical analysis, modeling & simulation, nalysis, prototype design, fabrication of new equipment, esis of data, software development, etc. or a combination				6,7 10 12 14	2,5, 7,9, , 11, ,13, ,16, ,18

Assessment / Criteria

- 1. Can be individual work or a group project, with a maximum of 3 students.
- 2. In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.
- 3. Carried out inside or outside the university, in any relevant industry or research institution.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation	Mid reviews, Final Viva-Voce, Thesis and Poster
	Submission
Recommended by the Board of Studies on:	03.03.2016
Date of Approval by the Academic Council:	
Compiled by	Prof. K. Devendranath Ramkumar
	Prof. R. Sivakumar
	Prof. M. Anthony Xavior

Course Co Pre-requis After 2 ye		INDUSTRY INTERNSHIP	L 	T	P	J 	C 2
		Topics				SI	O
	executio	e to managerial skills and understanding of the process in in industries				11,	
		eks of work at industry site				13,	,16,
	 Supervis 	ed by an expert at the industry				18	

Method:

- 1. Students have to maintain a written record of the assignments, progress and accomplishments. They have to submit a report at the end of this training.
- 2. An oral presentation on their experiences and the knowledge gained during their work.

Mode of Evaluation	Oral Viva-Voce, Report
Recommended by the Board of Studies on:	03.03.2016
Date of Approval by the Academic Council:	18.03.2016
Compiled by	Prof. K. Devendranath Ramkumar
	Prof. R. Sivakumar
	Prof. M. Anthony Xavior

J	P	T		L	L	L	L	Ĺ			7	T	T	Γ	P	?	J		$\overline{\mathbf{C}}$
+-	\vdash		+							\dashv	+	╁		—				+	<u> </u>
			1						•		-			-		•		-	4
															ı			ı	
_									•					<u>-</u>		-			

Weightage of Courses

Course Code	Course Name	% Weightage
MEE1002	Engineering Mechanics	8
MEE1005	Materials Engineering and Technology	8
MEE1003	Engineering Thermodynamics	8
MEE1007	Manufacturing Processes	6
MEE1004	Fluid Mechanics	6
MEE2001	Machine Drawing	3
MEE2002	Strength of Materials	8
MEE2004	Mechanics of Machines	8
MEE2003	Thermal Engineering Systems	6
MEE2006	Machining Processes and Metrology	6
MEE3001	Design of Machine Elements	6
MEE2005	Heat Transfer	6
MEE2026	Turbomachines	6
MEE4007	Design of Transmission Systems	5
MEE2007	CAD/CAM	4
MEE1014	Industrial Engineering and Management	3
MEE1024	Operations Research	3

Mode of Evaluation	Online Test
Recommended by the Board of Studies on:	03.03.2016
Date of Approval by the Academic Council:	
Compiled by	Prof. K. Devendranath Ramkumar
	Prof. R. Sivakumar
	Prof. M. Anthony Xavior

PROGRAMME ELECTIVES

		FUELS AND COMBUSTION	L	Т	P	J	C
Pre-requi	Fuel basics – Type Properties of Fuels Moisture Determina Fuel characterizatical Calorimetry - DuLo Orsat Apparatus - Formal Solid Fuel - Wood coal – Analysis and storage of coal - coal - Coal Calorific Fuel - Or Petroleum refining testing – Alcohol shouter Storage and handlin Storage and handlin Calorific Value – Ca		3	0	0	0	3
Module		Topics	I	H	rs	SI	0
1		s and Characteristics of Fuels – Determination of Fuels Analysis - Proximate and Ultimate Analysis - on.		5		1,2,4 11	.,5,
2	Calorimetry - DuLong Orsat Apparatus - Fue	a - Calorific Value - Gross and Net Calorific Values - g's Formula for CV Estimation - Flue gas Analysis - l and Ash Storage and Handling.		6		1,2,4 11	.,5,
3	coal – Analysis and p storage of coal - coal y			6		1,2,4 11	.,5,
4	Petroleum refining -	on of petroleum fuels - Production - Composition - Various grades of petro-Products - Properties and e oil - Gasification of liquid fuels - Synthetic fuels - of liquid fuels.		6		1,2,4 11	.,5,
5	Gaseous Fuel - Class Calorific Value – Ga Natural Gas - Dry and - LPG - LNG - CNG Town Gas - Coal Ga	ification - Composition and Properties – Estimation of Scalorimeter. Rich and Lean Gas - Wobbe Index - Wet Natural Gas - Stripped NG - Foul and Sweet NG - Methane - Producer Gas - Gasifiers - Water Gas - Sification – Gasification Efficiency - Non - Thermal Sters - Reactions – Viability – Economics.		8		1,2,4 11	.,5,
6	Volume Basis – Exces Calculations - Rapid M	and Stoichiometry - Stoichiometry - Mass Basis and as Air Calculation - Fuel and Flue Gas Compositions – Methods - Combustion Processes – Stationary Flame – Combustion – Submerged Combustion - Pulsating and closive Combustion.		6		1,2,4 11	.,5,
7	Energy - Spontaneous Gaseous Fuels Combi and Actual - Ignition I	- Mechanism of Combustion – Ignition and Ignition Combustion - Flame Propagation - Solid - Liquid and astion - Flame Temperature - Theoretical - Adiabatic Limits – Limits of Inflammability.		6		1,2,4 11	,5,
8	Contemporary Discu			2		2	
		Total Lecture Hours ecture to be videotaped], Use of physical and t to Industry, Min of 2 lectures by industry experts.		45			

1. Samir sarkar (2000), Fuels and Combustion, Orient Longman.

Reference Books

- 1. Roger A (2000), Combustion Fundamentals, MeGraw Hills, New Delhi.
- 2. Shaha AK (2003), Combustion Engineering & Fuel Technology, Oxford and IBH Publications, New York.

3. Kenneth K Kou (2002), Principles of Combustion, Wiley & Sons Publications, New York.

Mode of Evaluation	Digital Assignments / Surprise Tests / CATs /FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. S. Velu
	Prof. Feros Khan

Course C	ode: EEE2007							
Pre-requi	site : NIL	Electronics and Microcontroller	L 2		T 0	P 0	J	C 3
Module		Topics		L	Η	rs	SI	LO
1	representation-B conversion-Com	n and Codes: Introduction to Digital Systems-Number sinary, Octal, Decimal, Hexadecimal- Number Base aplements:1's and 2's-Signed binary numbers - cess3andGrayCodes -Parity	3			1,2,9		
2	Boolean algebra	onics: Introduction to basic gates-arithmetic operations-basic theorems and properties of Boolean algebra, Boolean nical and Standard Forms. Logic families: TTL, CMOS.			4		1,2	2,9
3	procedures - Cir and encoders - N	circuits: Combinational circuits – Analysis and design reuits for arithmetic operations - Code conversion. Decoders Multiplexers and demultiplexers.			4		1,2	2,9
4	Sequential circ Multiplier.	uits: Flip Flops-shift registers-Counters- Serial adder, Serial	3			1,2,9		
5	Introduction to Microcontroller: Introduction to microprocessor and microcontroller- Internal architecture of PIC18-Comparison of PIC with other CISC & RISC based systems and microprocessor-PIC family-features.				4		2	
6	Assembly language programming: Flag Register, stack- addressing modes, loop, jump, call instructions, arithmetic and logic instructions, Programming I/O ports- timers, counters, interrupts, serial communication				6		1,2 ,7	2,5,6
7	Interfacing with PIC Interfacing with real world devices: LCD, Keyboard, ADC, DAC, Sensors.				4		1,2	2,5,6
8	Contemporary				2			2
	# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts				30			
List of Pr	ojects: Digital countdow Digital Voltmete Water level Indic Remote room ter	vn timer r cator alarm mperature monitoring me appliance control stems g Machine sity control tection System					0,1	2,9,1 11,1 15,1 18

- 1. Donald G. Givone "Digital principles and Design" Tata McGraw Hill 2003.
- 2. Mohamed Ali Mazidi, Rolin D.McKinlay, Danny Causey,"Pic Microcontroller And Embedded Systems: Using Assembly And C For Pic 18", Pearson Education, 2009.

Reference Books

1. M. Morris Mano, "Digital Design", 4th Edition, *Prentice Hall of India Pvt.Ltd.*, 2012...

- 2. Charles H. Roth, Jr., "Fundamentals of Logic Design", 6th Edition, Brooks/Cole, 2009
- 3. Thomas L. Floyd & R P Jain, "Digital Fundamentals", PHI, 10th Edition, 2009
- 4. Barry B. Brey, "Applying PIC18 Microcontrollers", Pearson/Prentice Hall, 2008
- 5. Sid Katzen, "The Essential PIC18® Microcontroller", Springer, 2010

5. Sid Ratzen, The Essential Fields intercontroller, Springer, 2010							
Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT						
Recommended by the Board of Studies on:							
Date of Approval by the Academic Council:	18.3.2016						
Compiled by							

	ode : MEE1008	A 673 573	T.	Т	P	J	С		
Pre-requi	site : Nil	MEMS	3	_	0	0	3		
Module		Topics	L Hrs			,	SLO		
1		MEMS - Unique characteristics of MEMS, Microsystems Overview, typical MEMS and Microsystem Products.	4				2		
2	Laws and app	lications of MEMS - Scaling effects - scaling laws in Application of MEMS and Microsystems- Future Directions		4			1, 2,14		
3	materials - Silic	EMS and manufacturing - Structure of silicon and other con wafer processing - Bulk micromachining and Surface, Wafer-bonding. Thin-film deposition, Lithography, wet etching.		6			1, 2, 14		
4	Other Micro-fabrication methods - LIGA and other moulding techniques- Soft lithography and polymer processing- Thick-film processing; Low temperature co-fired ceramic processingSmart material processing.			5			5, 2,14		
5	MEMS components-micro sensors and Micro-actuators: Micro sensors - Basic principles and working of micro sensors- Acoustic wave micro sensors- Bio-medical micro sensors- Chemical micro sensors - Ontical Sensors - Pressure micro sensors - Thermal micro sensors-				2, 14				
6	Micro fluidics - Fundamentals of fluid mechanics- Basic components of a micro fluidic system- Micro flows- Micro pumps- Capillarity and Surface Tension- Micro pumping methods- Micro dispensers- Micro nozzles.			5			2,14		
7	Case studies - MEMS as Gas sensors - MEMS Accelerometer - Bevelopment of Proximity Sensor - MEMS based Current sensors - MEMS for Smart homes - MEMS for Visually impaired -MEMS Sensors for object detection - MEMS based touch sensor - Synthesis and characterization of Micro fluids - Development of thin film MEMS layers.				2,14				
8	Contemporary			2			2		
	lecture, Visit to I	m, [Lecture to be videotaped], Use of physical and computer ndustry, Min of 2 lectures by industry experts.		45	5				

1. Tai-Ran-Hsui (2013), MEMS & Microsystems: Design and Manufacture, McGraw Hill, 17th Reprint. **Reference Books**

- 1. Nadim Maluf and Kirt Williams (2004), An Introduction to Microelectro mechanical Systems Engineering, Second Edition, Artech House Print on Demand, ISBN-13 978-1580535908.
- 2. Stephen R.Santuria (2001), Microsystem Design, Springer Science-Business Media Inc.
- 3. Minhang Bao (2005), Analysis and Design Principles of MEMS devices, Elsevier.
- 4. Marc J. Madou (2002), Fundamentals of Micro Fabrication: The Science of Miniaturization, Second Edition, CRC.
- 5. Nitaigour Premchand Mahalick (2007), MEMS, Tata McGraw Hill.

Mode of Evaluation Digital Assignments /Surprise Test /CAT/FAT

Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. DRS Raghuraman
	Prof. Pratibha Nalini

Course C	ode: MEE1009						
Pre-requi	site : NIL	NEW PRODUCT DEVELOPMENT		T 0	P 0	J	C 3
Module		Topics	L	H	rs	SI	О
1	New Product Development: Introduction to New Product Development, Need for developing new products — Evolution of design, types of design – the design process –product life cycle – generic product development process – Strategic Planning and Opportunity Identification for new products – Identifying Market Opportunities.					1, 2 5,6 15,	Ō,
2	User Needs – c search-externally	needs into Specifications: Understanding Customer and ustomer survey – need gathering methods – clarification - y and internally - Explore systematically - needs importance product specification -competitive benchmarking. Case		4		6,	2,5, 10, , 17
3	creativity and placed design concepts	Innovation: Need for design creativity - Creative thinking — problem solving - creative thinking methods- generating - systematic methods for designing —morphological methods logy of Inventive Problem Solving. Case Studies-II.		4		1, 2 5,6 17,	Ō,
4	Concept Development: Concept Generations- Concept Screening- Concept Scoring - Concept Testing methods. Case Studies-III.			3		1, 2 6, 10,	2,5, ,17
5	Embodiment Design: Introduction to embodiment design – product architecture – types of modular architecture –steps in developing product architecture Industrial design – human factors design –user friendly design – Case Studies-IV.			4		1, 2 6,1 17	2,5, .0,
6	prototyping and costs – activity be Design for Qual	Design for serviceability – design for environment – testing – Cost evaluation –categories of cost – overhead pased costing. Case Studies-V. Lity - Reliability - Failure Mode and Effect Analysis - Test Maintenance - Warranty.		6		1, 2 6,1 17	2,5, 0,
7	Patents and In	tellectual Property: Patent – trademark - trade secret – aring a disclosure.		3			2,6 , 17
8	Contemporary	Discussion		2			2
	# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts						
CoDo	• Generally a team project [Maximum of 3 members only] [Non-					5,6 17,	
• Ne con	 Sample projects: New product development starting from customer survey, product specification, concept generation, concept selection, concept testing and prototyping. Redesign of an existing product from customer survey, product specification, concept generation, concept selection, concept testing and prototyping. 						

• Design modification of an existing product from customer survey, product specification, concept generation, concept selection, concept testing and prototyping.

Text Book

1. Karl T. Ulrich, Steven D. Eppinger (2015), Product Design and Development, Sixth Edition, McGraw-Hill. **Reference Books**

- 1. Kevin Otto, Kristin Wood (2004), Product Design, Pearson Education, ISBN 9788177588217.
- 2. Chandler Allen Phillips (2000), Human Factors Engineering, John Wiley and sons, New York.
- 3. Stephen C. Armstrong (2001), Engineering and product development management the holistic approach, Cambridge university press.
- 4. Semyon D. Savransky (2000), Engineering of Creativity TRIZ, CRC Press, New York, USA.
- 5. Clayton M. Christensen, Michael E. Raynor (2003), The Innovator"s Solution, Harvard Business School Press, Boston, USA.

11000, 2000011, 00111	
Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. C.D. Naiju
	Prof. K. Janardhan Reddy

Course C	Code : MEE1011						
Pre-requ	isite : Nil	RENEWABLE ENERGY SOURCES	L	T	P	J	C
		m ·	2	0	2	4	4
Module		Topics	ı	2 Hr 5	'S	SL	U
1	Classification of Energy – Energy chain and common forms of usable energy – Present energy scenario – World energy status – Energy scenario in India – Introduction to renewable energy resources – Introduction to Solar Energy – Energy from Sun – Spectra distribution of Solar radiation – Instruments for measurement of solar radiation – Solar radiation data analysis.					1,2	
2	to Solar thermal collectors - Flat pla parabolic collectors - solar stills - Solar por	r Energy – Thermal applications - Introduction ctors - Types - Principle of operation of different te - Evacuated tube collectors - Compound Solar air heaters - Solar dryers -solar cookers - ands - concentrating collectors - line type - point ar power generation - Power towers.		6		1,2,5	
3	Introduction to Solar Photovoltaics – Physics of solar cells - Cell and module. Manufacturing Process – Characteristics of cells and module - Performance parameters - BoS - PV System applications - Stand					1,2,5	
4	alone- Grid connected systems. Bio Energy Sources – Energy through various processes - Energy through fermentation - Gasification - various types of gasifiers - Pyrolysis - Fixed bed and fast Pyrolysis - Bio energy through digestion - Types of Digesters- Factors affecting the yield of products.					1,2,5	
5	Wind Energy – resource assessment - types of wind turbines - selection of components - blade materials - power regulation - various methods of control - wind farms - site selection - off shore wind farms - Solar Wind Hybrid energy systems.			4		1,2,5	
6		r Systems – Introduction - types - system ge curve and estimation of power potential -		2		1,2,5	
7	Ocean Energy – Power generation through OTEC systems - various types - Energy through waves and tides - Energy generation through geothermal systems – types.			2		1,2,5	
8	Contemporary Discu	ssion		2		2	
# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts.				30	ı		
 Te W W Te Fu 	stimation of Solar radia	ral Set up – II. m in PV training Kit.		30		5,7,9	

8. Production of Bio-diesel by Transesterification process.		
9. Flash Point and Fire point comparison for conventional fuels and alternate		
fuels.		
10. Production of Hydrogen from Electrolysis with PV system.		
11. Estimation of Figures of Merit in a Solar cooker.		
12. Performance characteristics of a Solar thermal collector.		
13. Exergy analysis of a Solar cabinet dryer.		
Project		
# Generally a team project of Five.		
# Concepts studied in Modules should have been used.		
# Down to earth application and innovative idea should have been		
attempted.		
Sample Projects:		
1. Development of software tools for estimation/ calculation of solar energy		
(apps/ Front end tool etc).		
2. Development of a Solar cooker with energy storage using scrap materials.		
3. Design and develop a Solar Lantern with suitable energy storage.		
4. Development of a solar thermo electric cooling system.	60	
5. Design of a smart grid involving various RE technologies.	[Non-	5,6,7,11
6. Resource assessment (Wind/Solar/Biomass energy).	Contact	3,0,7,11
7. Estimation of Solar radiation through ANN involving various atmospheric	hrs]	
factors.		
8. Tracking mechanism for any solar thermal concentrating device – cooker,		
Dish, PTC, etc.		
9. Energy and Exergy analysis of any renewable energy device – Based on		
Solar, Wind, Bio-mass, etc.		
10. Analysis of any renewable energy device using TRNSYS.		
11. Making and characterizing a DSSC solar cell. (Sun Simulator and IV		
measurement apparatus id required).		
12. Design and analysis of any Hybrid power generation system.		
13. Performance comparison of different renewable energy devices.		
Text Rook		

1. John Andrews, Nick Jelley (2013), Energy Science: Principles, technologies and impacts, Oxford Universities press.

- 1. Fang Lin You, Hong ye (2012), Renewable Energy Systems, Advanced conversion technologies and applications, CRC Press.
- 2. John.A.Duffie, William A.Beckman (2013), Solar Engineering of Thermal processes, Wiley.
- 3. A.R.Jha (2010), Wind Turbine technology, CRC Press.
- 4. Godfrey Boyle (2012), Renewable Energy, power for a sustainable future, Oxford University Press.

Mode of Evaluation	Digital Assignments / Surprise Tests / Seminars /
	CATs /FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. Y. Rajashekar
	Prof. Joseph Daniel

Course C	Code: MEE1012							
Pre-requisite : Nil		ALTERNATIVE FUELS		T 0	P 0	J	C 3	
Module	Module Topics			Hrs	SLO			
1		tus of petroleum reserves, economics; Need for eview of fuel properties.		2	1,1	1,10,11		
2		erties; Production and storage methods; Safety and CI engines; Performance and emissions.		6	1,2	2		
3	Organic gaseous fuels: Natural Gas, LPG, biogas, producer gas, syngas etc.; Properties; Production and storage methods - CNG and LNG, gasification, digesters; Use in SI and CI engines; Performance and emission characteristics; Dual fuel and HCCI modes.							
4	Alcohols and ethers: Methanol and ethanol; DME and DEE; 10 1,2 Properties; Production methods; Use in SI and CI engines - blends and emulsions; Performance and emissions.							
5	Vegetable oils: Types, composition and properties; Challenges of use in CI engines, solutions - preheating, blending; Transesterification; Performance and emissions; Oils from waste - cooking oil, wood, rubber, plastic etc.							
6	Ÿ	nass - processing and usage, forms - municipal		2	1,2	2		
7	Clean technology: Fuel cells - types, working; Hybrid and electric vehicles; Solar power; Challenges; Engine performance.							
8	Contemporary Discussion 2 2							
		Total Lecture Hours [Lecture to be videotaped], Use of physical and [Visit to Industry, Min of 2 lectures by industry]	4	15				

1. Thipse S. S. (2010), Alternative Fuels: Concepts, Technologies and Developments, Jaico Publishing House.

- 1. Ganesan V. (2012), Internal Combustion Engines, McGraw-Hill Education India Pvt. Ltd.
- 2. Michael F. Hordeski (2013), Alternative Fuels: The Future of Hydrogen, The Fairmont Press, Inc.
- 3. Larminie J., Lowry J. (2004), Electric Vehicle Technology Explained, Wiley.
- 4. Daniel J. Holt (2003), Fuel Cell Powered Vehicles: Automotive Technology of the Future, Society of Automotive Engineers (SAE).
- 5. Richard L.Bechtold (2014), Alternative Fuels Guidebook, Society of Automotive Engineers (SAE).

	, ,
Mode of Evaluation	Digital Assignments / Surprise Tests / Seminars /
	CATs /FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. Thangaraj
	Prof. Saleel Ismail

Course Co	ode: MEE1014							
Pre-requisite : Nil		INDUSTRIAL ENGINEERING AND MANGEMENT			P 0	J 4	C 3	
N/L 1 1	T	The state of		_				
Module	T. d. v. 1. v.d.	Topics	L	- 1	SLO			
1	micro economic	macro and micro economics: Macro economic measures – s – Demand and supply – Determinants of demand and					1, 2	
	supply – Elasticity of demand – Demand forecasting techniques (short te & long term) – Problems.						,	
2	Elements of cos	t: Determination of Material cost - Labour cost - Expenses -						
	Types of cost analysis - Proble	- Cost of production - Over-head expenses-break even ems.		3			1,2	
3		Definition – Factors affecting- Increasing productivity of s of productivity measures - Case study.		2			1,2	
4		work study: Method study – Time study – stopwatch time easurement - performance rating- allowances – Ergonomics.		4			1,2	
5	Plant location and Plant layout: Plant location –need - Factors – comparison – quantitative methods for evaluation Plant layout: objectives-principles – factors influencing – tools and techniques including computer based layout design – CRAFT, ALDEP, CORELAP.			6		6		1,2,5
6	Cellular Manufacturing: Group Technology – Cellular layout – Machine-Part Cell Formation (MPCF) – Heuristic approaches – Hierarchical clustering for MPCF.				4			
7	Material requirement Planning (MRP): Objectives – functions – MRP system – MRP logic – Management information from MRP – lot sizing consideration – Manufacturing resource planning – capacity requirement planning (CRP) –Bill of material.			4			1,2,5	
8	Contemporary			3			2	
	Flipped Class Roor	m, [Lecture to be videotaped], Visit to Industry, Min of 2	3	30		•		
Project	<u> </u>		60	ſΝ	on		6,7,9,	
_	nerally a team pro	ject [Maximum of 3 members only].	Co				14,17	
	• •	uld have been used.	Но	ours	s]		•	
 Down to earth application and innovative idea should have been attempted. 								
 Assessment on a continuous basis with a minimum of 3 reviews. 								
1. Sample projects: Demand Forecasting (Cars, food items, cell phones etc.,)								
2. Method study for reducing the cycle time								
3. TQM related projects including the '5S' approach								
4. MPCF using heuristics / soft computing tools								
5. La								
Assessmen	nt on a continuous	basis with a min of 3 reviews.						

1. R Dan Reid, and Nada R. Sanders (2012), Operations Management, John wiley& Sons, 5th Edition.

- 1. Martand Telsang (2006), Industrial Engineering and Production Management, S. Chand.
- 2. R Panneerselavam (2012), Production and Operations Management, PHI publications3rd Edition.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. N. Srinivasa Gupta
	Prof. Sugumaran

Course Code: MEE1015 Pre-requisite : Nil		TOTAL QUALITY MANAGEMENT AND		г Р	J	С
		RELIABILITY		0 0		3
Module		Topics	L	5	SLO	
1	Introduction: Definition of Quality, Differing perspectives of quality by Design, Manufacturing, Service, etc. Deming's 14 principles, Quality Planning, Customer orientation and Customer satisfaction measurement, Quality Control, Quality assurance and Total Quality Management definitions, Human influence on quality, Employee loyalty.					, 2
2	Quality Planning: Definition, P Diagram, Characteristics matrix, Process flow, Process FMEA, Special characteristics, Tolerance design, Process capability, Cp, Cpk, Statistical Process control, Measurement system analysis.					
3	TQM Techniques : Introduction to TQM, Principles of TQM, QFD, Bench Marking, 5S, Employee empowerment.				2	,5,6
4	Continuous Ir Marking, Poka Y	h 6				
5	Problem Solving tools: 7 QC tools, New Management tools, Six Sigma approach, TRIZ, Taguchi Loss function. case studies and problems.					,2
6	Reliability : Introduction to reliability, Failure rate, System reliability - Series, Parallel and mixed configuration, Problems, Weibull distribution and application.				2	,5,6
7	Maintenance Maintainability: Mean time to repair, Mean time between failures, Predictive maintenance, Reliability Centered Maintenance, Reliability improvement - Redundancy - Element - Unit and stand by 7					
8	Contemporary 1			2	2	,
	Flipped Class Room	m, [Lecture to be videotaped], Use of physical and computer dustry, Min of 2 lectures by industry experts.	2	15	1	

1. Dale S Besterfiled and Carol Besterfield (2002), Total Quality Management, Printice Hall, ISBN: 13: 978-0130993069.

- 1. Vincent K. Omachonu and Joel E. Rose (2005), Total Quality Management, CRC Press.
- 2. L.S. Srinath (2005), Reliability Engineering, Affiliated East West Press, New Delhi.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. V. Umasankar
	Prof. R. Vezhavendan

Course C	ode: MEE1016						
Pre-requisite : Nil		LEAN ENTERPRISES AND NEW	L	\mathbf{T}	P	J	C
		MANUFACTURING TECHNOLOGY	3	0	0	0	3
Module		Topics	L	Hrs	S	S	LO
1	Introduction to	Lean manufacturing: Definition and concept of lean		6		10	0,11
	_	Principles of lean manufacturing – Just in time – Types of					15
		byota Production systems – Benefits of lean manufacturing –					
	•	aints – Reduction of wastes.					
2		n Manufacturing Tools-1: Basic tools of lean manufacturing: 5S, Total 6					0,11
		ntenance, Key Performance Indicator, Overall Equipment					15
		an Do Check Act, Root Cause Analysis, Poka Yoke, Work					
		analysis, continuous flow.					2 4 4
3		turing tools –II: Secondary tools of lean manufacturing:		6			0,11,
	_	a, Hoshin Kanri, Jidoka, Load leveling, Mind maps, 5 whys,					15
	SMDE, Six Big Losses, Standardized work, Visual factory, Zero quality						
4	control.	and I can implementation. Strategic issues. Actions				1/) 11
4	Strategic Issues and Lean implementation: Strategic issues: - Actions - 6						0,11
	Issues - Focus - Leadership - Management of teams - Training. Focuse factory concept Availability, Variability, Lean implementation strategie						15
	factory concept –. Availability, Variability, Lean implementation strategies causes for failures, sustaining lean, constraint management.						
5		ng and Value stream mapping: Process mapping – Need for		6		1/	0,11
3		pes- Detailed instructions - common mistakes in mapping -		U),11 15
		ion; Value stream mapping: - Overview - Where to use -					13
		ep by step approach – How to use – Present and future states					
	- VSM symbols.	op by stop approach. Then to use threshold and rather states					
6	•	g: Lean accounting definition, Need for lean accounting,		6		10	0,11,
		accounting, Lean accounting Vs traditional cost accounting,					15
		costing - Product costing - Volume adjusted costing, Target					
	costing						
7	Cellular manuf	acturing and Group technology: Work cell – Cell design -		7		10),11,
		g – Plant layout – Balancing the work in work cells – Takt				15	í
	time – Defining - Benefits - Uses – Limitations; Facilities planning tools;						
		y coding classification; Productivity Improvement Aids.					
8	Contemporary			2		2	
		Total Lecture Hours		45			
	# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer			45			
models to	lecture, Visit to In	ndustry, Min of 2 lectures by industry experts					
models to Text Bool		ndustry, Min of 2 lectures by industry experts					

1. Pascal Dennis (2013), Lean production Simplified, Productivity press, New York.

Reference Books

1. P. James Womack (2003), Lean Thinking: Banish Waste and Create Wealth in Your Corporation, Simon & Schuster.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. R. Vezhavendan,
	Prof. K. Sakthivel

Course C	ode: MEE1017						
Pre-requisite : Nil		NEW VENTURE PLANNING AND MANGEMENT		T	P	J	C
rre requi	5166 • 1411		2	0	0	4	3
Module		Topics]	L Hı	'S	S	LO
1	Concepts of Entrepreneurship and Business: Entrepreneurship; Definition and Types - Entrepreneurship as a career - Competencies and qualities of an entrepreneur - Opportunity Identification and Trend Identification - Factors affecting entrepreneurship; Forms of business organization- Advantages and disadvantages - Steps involved in business establishment - Factors to be						0,1 15
2	considered in plant location. Feasibility analysis and Sales & Marketing: Product/service feasibility. Market feasibility, Organizational feasibility, Financial feasibility, Technical feasibility- Market Survey and Market research - Channels of distribution. Pricing methods - full cost, target pricing, marginal cost, go rate, customary, sealed bid etc.					10,11	
3	Financial estimatiopn and Sourcing: Estimation of capital requirements — Pre-operative expenses, Fixed expenses, Working capital; Project financing - Sources of funding- Equity financing - Venture Capital, Angel investors, Debentures and shares- types of shares - Crowd funding.					1	0,11 15
4	Financial Accounting: Financial analysis - Balance sheet - Income statement - Cash flow statement - Break even analysis; Pricing policy and Profit planning; Classification of costs; Break-even analysis - Book keeping and accounting terminology.					1	0,11 15
5	Legal aspects Related to business: Procedure and formalities - Legal aspects relating to Registration, labour, Licenses and clearances. Leasing and Franchising; Intellectual property rights - Patents, Trademarks, Copyrights, Royalty; Employee welfare measures: -Inside and outside organization - PF - ESI - Medical compensation - Risk coverage; Taxation -Income Tax, Service tax, VAT, TDS, and Excise.					1	0,11 15
6	Governmental assistance and support to Entrepreneurs- Incentives, subsidies and grants available from State Government - Incentives, subsidies and grants available from Central Government - Role of DIC and MSME, Role of TBIs, EDIs and other Agencies- Role and support of private agencies.					1	0,11 15
7						0,11 5	
8	Contemporary	Discussion		2		2	
models to	* *	m, [Lecture to be videotaped], Use of physical and computer dustry, Min of 2 lectures by industry experts.		30			
Project • Ge	Project 60 [Non- 1				10	0,11 5	

- Concepts studied should have been used.
- Down to earth application and innovative idea should have been attempted.
- Assessment on a continuous basis with a minimum of 3 reviews.

Sample projects:

- 1. Project Cost Estimation.
- 2. Market survey and Market research.
- 3. Business plan.

Text Book

1. Bruce R, Barringer, R Duane Ireland (2013), Entrepreneurship-Successfully launching new ventures.

Reference Books

- 1. David. F. Summen (2014), Forming Entrepreneurial Institution.
- 2. Sramana Mitra (2013), Entrepreneur Journeys.
- 3. Harold. P. Welsch (2003), The Entrepreneurship: The way ahead.
- 4. Hand Book for New Entrepreneurs (2008), P.C Jain Entrepreneurship Institute of India,

Ahmedabad, India.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. R. Vezhavendan
	Prof. V.G. Sridhar

Course Co	ode: MEE1018						
Pre-requisite : Nil		FACILITIES AND PROCESS PLANNING	L 3	T 0	P 0	J 0	C 3
Module		Topics	I	H	Irs	S	LO
1	Facilities Planning: Introduction to facilities Planning, Significance of Facilities Planning, Objectives of Facilities Planning, Facilities Planning Process, Strategic Facilities Planning, Developing Facilities Planning Strategies.					1	,2,3
2	Product process and schedule design, Flow systems, activity relationships and space requirements: Introduction, Product Design, Process Design, Schedule Design, Facilities Design, Flow Systems, Material Flow System, Departmental Planning, Activity Relationships, Space Requirements.					1	,2
3	Plant Location:Basic Factors to be considered – Plant location and site61, 2selection – Consideration in facilities planning and Layout capacity –4, 5Serviceability and flexibility – Analysis in selection of Equipment – Space10,						, 2, 3, , 5, 7, 0, 14, 6, 17, 8
4	Layout Planning: Types of Layout – Factors influencing product - Process - Tools and Techniques for developing Layout. Developing and Analysis of					,2,3,7 0, 12, 4, 16, 7	
5						,2,15, 6,17	
6	Material Handling: Objectives – Principles – Types – Degree of mechanization – Unit load concept – Material Handling cost – Relationship between Material Handling and Plant Layout – Material Handling system Design - Specification of the Design – Analyzing an existing material Handling system. Basics of material handling selection – AGVS in material Handling – Packing.					1	,2,3, 3,16, 7, 8
7	Evaluation and Implementation of layout: Evaluating the Layout – Qualitative Evaluation Techniques - Efficiency indices – Cost Evaluation of Layout – Quantitative evaluation Techniques – Evaluation procedures – Making the alteration – Presenting the Layout to management – Displaying the Layout – Follow up – Approval – Reproducing the Layout - Installing the Layout.					,2,11	
8	Contemporary	discussion	3 2			2	
		m, [Lecture to be videotaped], Use of physical and computer adustry, Min of 2 lectures by industry experts.		45	5		

1. James A Tompkins, John A White, Yavuz A Bozer, JMA Tanchoco (2010), Facilities planning, Fourth edition, Wiley.

- 1. John R. Immer (2004), Layout planning Techniques, McGraw-Hill Book Company.
- 2. James M. Apple (2000), Plant Layout and Material Handling, The Ronald Press Company.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. Vijayaram

Course Code: MEE1024 Pre-requisite : MAT 2			L	т	P	Т	С
		OPERATIONS RESEARCH		T 1	0	J	3
Module		Topics	I	H	rs	S	LO
1	Linear Program	mming Problem: Introduction to Operations Research –		4		1, 2, 4	
	_	ming - Mathematical Formulation - Graphical method -					7,
	_	- Penalty methods: M-method, Two Phase method- Duality.					17
2	•	problem: Introduction - Formulation - Solution of the		4			2, 5
	-	roblem (Min and Max): Northwest Corner rule, row minima					17
		minima method, Least cost method, Vogel's approximation					
		ality test: MODI method.					
3	Assignment and Sequencing Models: Assignment problems – Applications 3			1,	2		
	- Minimization and Maximization; Sequencing - Problem with N jobs and 2						
	machines – n jobs and 3 machines problem - n jobs and m machines problem.						
4	Project Management: Introduction - Phases of project management					1,	2, 4
	Construction of	Network diagrams- Critical path method (CPM) and Project					9,19
	evaluation and re	eview technique (PERT) - Crashing of project network.					
5	Inventory conti	rol: Necessity for maintaining inventory - Inventory costs -		4		1,	2, 4
	Inventory models with deterministic demand - inventory models with					7,	9,
	probabilistic den	nand - Inventory models with price breaks - Buffer stock.				17	7
6	Queuing model	s: Poisson arrivals and Exponential service times – Single		4		1,	2, 4
	channel models and Multi-channel models - Simulation: Basic concepts,					5,	7, 9
	Advantages and	disadvantages - Random number generation - Monte Carlo					
		ed to queuing problems.					
7		Competitive games - Useful terminology - Rules for game		5			2, 7
	_	erson zero sum game – Property of dominance - Graphic				9,	17
	solution – Algeb						
	_	odels: Replacement of items that deteriorate with time: No					
	_	value of money, changes in the value of money - Items that					
		Individual replacement and group replacement policies.				_	
8	Contemporary			2		2	
		Total Lecture Hours		30			
	* *	m, [Lecture to be videotaped], Use of physical and computer					
	lecture, Visit to In	dustry, Min of 2 lectures by industry experts.				1	
'utorial				. –			
	Class for Module 1			15		1	2 4
	Class for Module 2						2, 4
	Class for Module 3					$\begin{vmatrix} 3, \\ 17 \end{vmatrix}$	7, 9
Tutorial Class for Module 4 Tutorial Class for Module 5					,		
Tutorial Class for Module 6							
Tutorial Class for Module 7							
Tutorial Class for Module 8							
Tutoriai C	aass for iviodule 8						
# A minin	num of 3 problems	to be worked out by students in every tutorial class. Another					
-	•	to be given as home work.					
	ndividual exercises	s, Team exercises.					
Text Bool	k						

1. Hamdy A Taha (2014), Operations Research: An Introduction, 9th edition, Pearson Education, Inc.

- 1) Hira D S and Gupta P K (2014), Operations Research, Revised edition, S. Chand & Sons.
- 2) Panneerselvan. R. (2009), Operation Research, 2nd edition, Prentice Hall of India Pvt Ltd.
- 3) KantiSwarup, Gupta P.K., and Man Mohan (2015), Operations Research, 18th edition, S. Chand &Sons.
- 4) JK Sharma (2012), Operations Research: Theory and Applications, 5th edition, Lakshmi Publications, New Delhi
- 5) Manohar Mahajan (2013), Operations Research, Dhanpat Rai & Co.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. Dega Nagaraju
	Prof. Radha

Course C	Course Code: MEE1027							
Pre-requisite : Nil		INSTRUMENTATION AND CONTROL ENGINEERING		4	Γ)	P 2	J 4	C 4
Module	Module Topics				L Hrs			LO
1		to Measurement systems - Sensors, Transducers, tatic and dynamics characteristics, errors, transduction	3				2,5	
2	Measurement of measurement fo LVDT and RV	of Motion, Force and Torque - Displacement and speed r translational and rotation systems using potentiometers, DT, Encoders, accelerometers and gyroscopes. Force and ments using strain gauges and piezoelectric pickups.	5				2,5	
3	Measurement us sensors. Pressu diaphragm, diff	of temperature, pressure and flow - Temperature sing Thermistors, RTD, Thermocouple and semiconductor are measurement using gage, manometers, bellows, Ferential pressure transmitter. Flow measurement using otameters and anemometers.			5			2,5
4		ning and data acquisition - Basic signal conditioning – ers, filters, monitoring and indicating systems and data ms.			3		2	,5,17
5	Modelling and representation of systems - Model of a system Concept of					2	,5,17	
6	Control concepts - Open loop and closed loop systems with examples, controller design, and performance measurements-Design of P, PI, PD and PID controllers.					4		2,5
7		is - Concept of poles and zeros, Stability analysis of system Routh Hurwitz criterion and Phase and gain margins.			4		,	2,17
8	Contemporary	<u> </u>			2			2
# Mode: I	# Mode: Flipped Class Room, Video Lectures, Industrial visits and Guest Lectures.							
 Study, speed, Control Demon Use o 	Laboratory 1. Study, development and calibration of measuring instruments for displacement, speed, torque, force, temperature, pressure, flow, fluid level etc. 2. Control of DC motor, stepper motor and servomotor. 3. Demonstration of PID control system. 4. Use of MATLAB for control system simulation (Control Systems Toolbox) -				0			,5,6, ,17
Project	 Generally a team project [Maximum of 3 members only]. Concepts studied should have been used. Down to earth application and innovative idea should have been attempted. Assessment on a continuous basis with a minimum of 3 reviews. Sample Projects:					2,6,9, 1,16, 17,18		
2. Develo	2. Development of roughness measurement system using displacement sensors.							

- 4. Development of vibration measuring system for heavy machinery.
- 5. Design and development of monitoring and control system for steam turbine.

1. W. Bolton (2015), Instrumentation and Control Systems, Newnes-Elsevier publication, Second edition.

- 1. Ernest O. Doeblin (2004), Measurement Systems: Application and Design, 5th Edition, Tata McGraw-Hill
- 2. Katsuhiko Ogata (2010), Modern Control Engineering, 5th Edition, Prentice Hall of India Pvt. Ltd.
- 3. Patranabis D (2011), Instrumentation and Control, PHI Learning Pvt. Ltd.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. S. Senthil Kumar
	Prof. D. Saravana Kumar

Course C	ode: MEE1030								
Pre-requisite : Nil		ROBOTICS	L 2	T 0			J 4	C 3	
Module	dule Topics				L Hrs			SLO	
1	Introduction to Industrial robot - History of Robotics -Basics components of Robotics system - DOF and types of joints - Work space - Robot precession - Types of robotics configurations - Types of robotics drives - Basic motion of robot manipulator - Harmonics drives - Economics aspects of robotics system in industrial automations.							1,2	
2	Robot end effet mechanical grip gripper – other	or - Types of end effector - Mechanical gripper – types of pers – magnetic gripper – Vacuum gripper – Adhesive special grippers – RCC –Tools – painting gun – welding mechanical gripper.		۷	ļ		1,2,6		
3	Robot control system and Robot kinematics - Basic control system concepts - Control system analysis - Robot actuation and feedback - Manipulators - Position analysis and finite rotation and translation - Homogeneous matrices - forward and inverse kinematics - DH representation.						,5,7		
4	Manipulator Trajectory planning - Point-to-point and continuous path planning - trajectory planning - Cartesian space - joint space - bending path - problems in trajectory planning.					,5,7			
5	Sensor in robotics - Range sensing, Triangulation, structured light approach, Light-of-flight range finder — Proximity sensing: Inductive, Hall-effect, capacitive and ultrasonic sensor — Touch sensing — Force and Torque sensing.							1,2	
6	Machine vision system - Introduction to Machine vision – functional block diagram of machine vision system - Sensing and Digitizing – Image processing and analysis.							1,2	
7						,5,7			
8	Contemporary		2		2				
		m, [Lecture to be videotaped], Use of physical and computer adustry, Min of 2 lectures by industry experts.		3	0				
 Co Do As Sample pr Tw Ro Co Ma 	 Generally a team project [Maximum of 5 members only]. Concepts studied should have been used. Down to earth application and innovative idea should have been attempted. Assessment on a continuous basis with a minimum of 3 reviews. Sample projects:					1	,6,9, 1,16, 7,18		

1. Mikell P. Groover, Mitchell Weiss (2013), Industrial Robotics Technology – Programming and Applications, McGraw Hill Edition 2.

- 1. S. R. Deb, SankhaDeb (2009), Robotics Technology And Flexible Automation, McGraw Hill Edition.
- 2. Fu, K.S., Gonzalez, R.C. and Lee, C.S.G. (2008), Robotics: Sensing, Vision and Intelligence, Tata McGraw-Hill, New Delhi.
- 3. Craig, John. J. (2002), Introduction to Robotics: Mechanics and Control, Second Edition, Pearson Education, New Delhi.
- 4. Niku, Saeed.B (2005), Introduction to Robotics: Analysis, Systems, Applications, Prentice Hall of India Pvt. Ltd , New Delhi.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. G. Kalaiarassan
	Prof. D. Saravana Kumar

Course Code : MEE2007									
Pre-requisite : MEE1007		CAD/CAM		T	P	J	C		
				0	2	4	4		
Module		Topics	L	Hrs		SI	LO		
1	Introduction: Definition and scope of CAD/CAM- Computers in industrial manufacturing, design process-Computer Aided Design (CAD)-Computer Aided Manufacturing (CAM)-Computer Integrated Manufacturing (CIM) - Introduction to Computer graphics -Raster scan graphics-Co-ordinate systems.					1,2	1,2,6,9		
2	transformation g Colour-shading-S	computing standards - Data base for graphic modeling-eometry-3D transformations —Clipping-hidden line removal-Standardization in graphics- Open GL Data Exchange S, STEP - Graphic Kernal system (GKS).		4		1,2	2,6,9		
3		lelling - Geometric construction methods-Constraint based frame, Surface and Solid – Parametric representation of surfaces.		4		1,2	2,6,9		
4	CNC Machine Tools - Introduction to NC, CNC, DNC - Manual part Programming - Computer Assisted Part Programming - Examples using NC				2,6,9				
5	Role of information systems in manufacturing - Discrete part manufacture-information requirements of a production organization-manufacturing strategies-Integration requirement - Group technology-coding-Production flow analysis-computer part programming-CAPP implementation techniques.					1,2	2,6,9		
6	Introduction to FEA concepts – Nodes -Meshing – Pre and Post processing – Modal analysis – Stress analysis – Steady state and Transient analysis.			4		1,2,6,9			
7	Automated manufacturing systems - Flexible Manufacturing systems (FMS) – the FMS concepts – transfer systems – head changing FMS – Introduction to Rapid prototyping, Knowledge Based Engineering, Virtual Reality, Augmented Reality –automated guided vehicle-Robots-automated storage and retrieval systems - computer aided quality control-CMM-Non contact inspection methods. Communication and Expert systems in CIM - Networking standards in CIM Environment – Network structure – Network architecture – TCP/IP, MAP- Integration of CAQC with CAD and CAM-CIM Implementation-Lean manufacturing.					1,2	2,6,9		
8	Contemporary	Discussion		2			2		
# Mode: Flipped Class Room, Video Lectures, PPTs, Industrial Visits and Guest Lecture by Experts from Industry 30									
1. Plane stress/Plane strain analysis. 2. Model analysis of different structures.				6,7 17	2,3,5, 7,14, 7,18, 20				

3. Steady state thermal analysis.		
4. Transient thermal analysis.		
5. Flow analysis.		
6. Thermo-mechanical analysis.		
7. CNC Milling program involving linear motion and circular interpolation.		
8. CNC Milling program involving contour motion and canned cycles.		
9. CNC Milling program involving Pocket milling.		
10. Diagnosis and trouble shooting in CNC machine.		
11. CNC code generation using any CAM software.		
12. Simulation of machining operations using any CAM software.		
13. Route sheet generation using CAM software.		
14. Generation of CNC programming and machining using Master Cam.		
Project	60	2,6,9,
 Generally a team project [Maximum of 3 members only] 	[Non-	11,16,
 Concepts studied should have been used. 	Contact	17,18
 Down to earth application and innovative idea should have been attempted 	Hours]	
• Assessment on a continuous basis with a minimum of 3 reviews.		
Sample projects:		
1. Real time component analysis.		
2. Parametric optimization.		
3. Fatigue analysis.		
4. Path planning.		
5. Tolerance analysis.		
6. Generation of CNC programming using DXF file format using Wire EDM.		
7. Concurrent costing using DFMA.		
8. Industrial robot programming.		
9. Contact and Non - contact automated inspection.		
10. Generation of STL file format for the given component.		
Text Book		

1. P.N.RAO (2010), CAD/CAM: Principles and Applications -3rd Edition, Tata McGraw Hill, India.

- 1 Mikell P. Groover (2005), Automation, Production Systems and Computer Integrated Manufacturing, Pearson Education.
- 2. James A. Rehg, Henry W. Kraebber (2002), Computer Integrated Manufacturing, Pearson Education.
- 3. Ibrahim Zeid (2005), Mastering CAD/CAM, Tata McGraw Hill International Edition4.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. R. Oyyaravelu
	Prof. A. Deepa
	Prof. S. Jeyanthi

Course Co	ode : MEE2008						
Pre-requisite : MEE1007		PRODUCT DESIGN FOR MANUFACTURING		т Р	J	C	
			2	0 0	4	3	
Module		Topics	L	Hrs	SI	SLO	
1	Product Design:Introduction to Product design: Asimow's Model - Product design practice in Industry - Industrial design - Aesthetics in product design. Need Identification and Problem Definition, Concept Generation and Evaluation, Embodiment Design.					1, 2, 5,6, 15,17	
2	Material Selection: Physical and Mechanical Properties of Engineering Materials, Selection of Materials, Selection of Shapes, Strength consideration in product design, Design for stiffness and rigidity: Material					2,5, 10, , 17	
3	Design for Cast Sheet Metal For	Process Selection: Review of Manufacturing Processes, ing, Design for Bulk Deformation Processes, Design for ming Processes, Design for Machining, Design for Powder selection of Materials and Processes, Case Studies – II.		4	1, 5,6 17		
4	Assembly Process Selection: Review of Assembly Processes, Design for Welding, Design for Brazing and Soldering, Design for Adhesive Bonding, Design for Joining of Plastics, Design for Heat Treatment. Case Studies-IV.						
5	Use of Computer Aided Tools: Role of computers in Product design and manufacturing: CAD/CAM softwares - product life cycle - design process – 6,10 CIM - Collaborative manufacturing. Computer aided process planning.					10,	
6	Design for Manufacture and Assembly: Design for manufacturing and Assembly - principles of DFMA and applications (Boothroyd/ Dewhurst Method – case studies using DFMA software.) 4 1, 2, 6,10					10,	
7	New Product Development: Supporting techniques for new product 4					2,6 , 17	
8	Contemporary	Discussion	2			2	
		m, [Lecture to be videotaped], Use of physical and computer industry, Min of 2 lectures by industry experts.	3	30			
Project 60 [Non- 5						5,9, ,18	
Text Book							

1. A.K. Chitale, R.C. Gupta (2013), Product Design and Manufacturing, Sixth Edition, Printice –Hall of India.

Reference Book

1. Boothroyd, G., Peter Dewhurst, Winston A. Knight (2010), Product Design for Manufacture and Assembly, Third Edition, CRC Press, Taylor & Fancis.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. C.D. Naiju
	Prof. K. Janardhan Reddy

Course C	ode: MEE2009							
Pre-requi MEE1002	site : 2, MEE1004	TRIBOLOGY	L 2	T 1	P 0	J		
Module		Topics	L Hrs			SLO		
1		Tribology - Tribology in Design - Mechanical design of oil a - Tribological design of oil seals and gasket, Tribology in mance).				1, 2		
2	of metals and n friction. Wear	of friction - Stick-slip phenomenon - Friction characteristics on-metals - Ploughing theory of friction - Measurement of - Wear mechanisms – Interfacial wear and Chemical wearents - Ferrography and oil analysis.		4		1,2		
3	Lubrication an Lubrication, Pr Terminology –	d Bearings: Lubrication types, Regimes, Basic Modes of coperties of Lubricants, Lubricant Additives, Bearing Sliding contact bearings – Rolling contact bearings, ween Sliding and Rolling Contact Bearings.		4		1,2	,	
4	Hydrodynamic Lubrication: Fluid film in simple shear – Mechanism of pressure development in a convergent film – pressure induced and velocity induced flows - Reynolds equation for fluid film lubrication – Slider bearing-Load carrying capacity – Journal bearing – Pressure development. Squeeze film lubrication.			5			5,6	
5	Lubrication of bearings: Long bearing and short bearing approximations - Load carrying capacity – Sommerfeld Number – Friction – Petroff's equation – Oil flow and Thermal equilibrium.			4		2,5	,6	
6	Nanoscale Tribology: Interatomic Interactions, Atomic Force Microscope (AFM), Challenges of Tribological Testing at Small Scales.			4		4 1,2		į
7				3		1,2	į	
8	Contemporary			2		2		
# Mode: Use of physical and computer models to lecture, Visit to Industry and study the various types of bearings, gear boxes, seals and other equipment. Min of 2 lectures by industry experts.				30				
 • A minimum of 3 problems to be worked out by students in every tutorial class. • 5 problems per Tutorial Class to be given as homework. Tutorial class for Module 2 (2 hours) Tutorial class for Module 3 (4 hours) 				15		1,2, 9,14	5,6, 1	
develo	Tutorial class for Module 4 (5 hours) Tutorial class for Module 5 (4 hours) Tutorial class for Module 5 (4 hours) For modules 1, 6, 7 and 8 digital assignments are to be given focusing on latest developments in the area. Text Book							

1. Gwidon Stachowiak, Andrew W Batchelor (2013), Engineering Tribology, Butterworth-Heinemann. **Reference Books**

- 1. Prasantasahoo (2005), Engineering Tribology, PHI Learning.
- 2. Bernard J. Hamrock, Steven R. Schmid, Bo O. Jacobson (2004), Fundamentals of Fluid Film Lubrication, CRC Press.
- 3. Bharat Bhushan (2013), Introduction to Tribology, John Wiley & Sons.
- 4. A. Sethuramiah (2003), Lubricated Wear: Science and Technology, Elsevier.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. P.M. Anil
	Prof. Dondapati Sreekanth

Course C	ode : MEE2010		_		T_	Τ_	1	
Pre-requi	site : MEE1005	DESIGN OF COMPOSITE MATERIALS		T 1	P 0	J	C 3	
Module		Topics	I	∠ Hı	rs	SI	LO	
1	Introduction: Definitions: Composites, Multiscale Composites and Nanocomposites, Reinforcements and Matrices, Properties of these 2					1, 3		
2	Applications: composites, Mu	composites in comparison with standard materials. Applications: Applications of metal, ceramic and polymer matrix composites, Multiscale and nano composites, Hybird composites and Sandwich composites, self reinforced composites and carbon/carbon				1,	3	
3	Reinforcement and matrix processing methods: Methods of processing and manufacturing nano-fibres and fibres, dispersoids, single walled and multi-walled carbon nanotubes, Methods of processing thermosets and thermoplastic matrices, Ceramics and metallic matrix materials and fibres, Surface treatments for fibres and other reinforcements, Role of coupling agents on the interfacial adhesion.					1,	2,3	
4	Composites, multiscale composites and nanocomposites manufacturing: Wet lay-up and dry lay-up, Open contact molding, Pressure based and vacuum based manufacturing techniques, Thermoplastic and Thermoset based composite manufacturing techniques, Filament winding, Metallic and Ceramic composites manufacturing, Hybrid Composites and hybrid techniques to manufacture composites, Sandwich composites, Quality control.				d et d 4 d		2	
5	Mechanical performance: Influence of interface on mechanical properties of composite, Mechanical Testing: Tension, compression, flexure, buckling, shear, ILSS, torsion, impact, fatigue. Typical fracture processes; Review of fracture mechanics methods and application to composites. Fatigue damage — Damage tolerance, Reliability and durability of composites, Multiple					1		
6	Causes of Failure, Environmental Effects on Composites. Mechanics principles: Mechanics principles of micromechanics, mesomechanics and macro-mechanics, Types of Laminates, Stacking Sequence, Plate Stiffness and Compliance, Strains, Computation of Stresses, Coupling and balancing, Design Using Carpet Plots, Hygro-thermal Stresses, First Ply Failure and Last Ply Failure, Progressive failure, Failure modes and failure theories for composites.			4		1,	3	
7	Assembly and assembly of conselection princip of composite p	Composite Products: Smart composites, Joints and imposites, Design for assembly and environment, Materials bles in composites, Case studies in design and development arts, boats, pressure vessels, automotive parts, aerospace is parts and composites for space vehicles.	, Materials evelopment 6		2,	4		
8	Contemporary	• • •	2		2			
	* *	m, [Lecture to be videotaped], Use of physical and computer ndustry and study the composites equipment, Min of 2		30				

lectures by composites industry experts.		
Futorial	15	5,9,
Tutorial class for Module 1 (2 hours)		14,17
Tutorial class for Module 2 (3 hours)		
Tutorial class for Module 3 (3 hours)		
Tutorial class for Module 4 (2 hours)		
Tutorial class for Module 5 (2 hours)		
Tutorial class for Module 6 (2 hours)		
Tutorial class for Module 7 (1 hour)		

1. PK. Mallick (2007), Fibre Reinforced Composites, Materials, Manufacturing and Design, 3rd Edition, CRC Press.

- 1. K.K. Chawla (2012), Composite Materials, Springer-Verlag, New York, 3rd Edition.
- 2. Sanjay Majumdar (2001), Composite Manufacturing- Materials, Product and Process engineering, CRC Press.
- 3. ASM Handbook of Composites, Vol 21: Composites, ASM International, 2001.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. K. Padmanabhan
	Prof. R. Narayanan

Course C	ode : MEE2011						
Pre-requi	site : MEE1007	WELDING ENGINEERING	L	T	P		
	T		2	0	0	1 4	4 3
Module		Topics	L	Hrs	3	SI	LO
1	Power sources - Class	sification of welding processes - heat sources, power	r	4		2, 4	4
		eristics, V-I relationship, different types of electrodes	,				
		ion of electrode coverings, types of weld joints.		4			
2	Fusion welding processes - Shielded metal arc welding, TIG welding MIG welding, Submerged arc welding, Electron beam, laser beawelding, plasma arc processes, underwater welding processes.					2,6	
3	Solid state welding	processes - Resistance, friction, friction stir, ultrasonic iffusion welding processes, explosive welding.	,	4		17,	,11
4	Temperature Distribution - Heat flow - temperature distribution - cooling rates - influence of heat input, joint geometry, plate thickness, preheat, significance of thermal severity number.			4		2,14	
5	Solidification - Epitaxial growth - weld metal solidification - columnar 4 structures and growth morphology- effect of welding parameters - absorption of gases - gas/metal and slag/metal reactions.)		
6	Weldability of low alloy steels, welding of stainless steels use of Schaffler and Delong diagrams, welding of cast irons - Welding of Cu, Al, Ti and Ni alloys – processes.					2,8	,
7	Difficulties, microstructure changes, defects and remedial measures in the welding processes. 4 6,14				4		
8	Contemporary Disc	ussion		2		2	
# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts				30			
Project							
	ly a team project of Fiv						
		Modules, as relevant, should have been used.					
Sample P	_	all drawings using software package to be submitted.					
-	•	ostructure at the weld zone of AISI 304 obtained by	00				
2.	· ·	tructure and hardness across the weldment of dissimila	Contact			5,6 18	5,17,
3.	Estimate the tensile s	rength of stainless steel welds produced by gas tungstee. Compare the same with the base metal.	gsten Hours]				
4.	Study the effect of welding current on the heat input during GTA welding of Ni based super-alloy.						
5.		elding speed on the depth of penetration during the GTA inless steel.	\				
Torré Dool	Covt Rook						

1. Lancaster L.F (2013), The Physics of Welding: International Institute of Welding, Pergamon Press.

- 1. Cornu. J. (2004), Advanced Welding Systems, Volumes I, II and III, JAICO Publishers.
- 2. Parmer R.S (2005), Welding processes, Khanna publishers.

3. Srinivasan N.K (2004), Welding Engineering,", K	hanna publishers.					
4. Linnert G. E. (2015), Welding Metallurgy, Volum	ne I and II, 4th Edition, AWS.					
5. Sindo Kuo (2003), Welding Metallurgy, Wiley Publishing, II Edition.						
Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT					
Recommended by the Board of Studies on:	3.3.2016					
Date of Approval by the Academic Council:	18.3.2016					
Compiled by	Prof. N. Arivazhagan					
	Prof. R. Padmanabhan					

	ode : MEE2012	MANUEL CONTINUES AND CONTINUES.	L	т		_	~		
Pre-requi	site: MEE1007	MANUFACTURING AUTOMATION		<u>Γ</u>	P 2	$\frac{\mathbf{J}}{4}$	C		
Module		Topics	LH		1		20		
1	Factory Automation : Basic concepts of automated system, Advance automated functions, Levels of automation.			1 3			1, 2, 6		
2	Industrial Hydrau	lics: - Principles of hydraulics, Hydraulic fluids, y, Hydraulic pumps, Hydraulic valves, and hydraulic		3		1, 2, 6			
3	Hydraulic Systems: Design considerations for hydraulic circuit, Standards in circuit diagram representation, Power pack design layout, Basic hydraulic circuits such as regenerative circuits, sequencing circuit, meter in and meter out circuit, Design of reservoir based on heat transfer considerations, Design of accumulators and intensifiers, Selection of standard components for hydraulic circuits.			5		6,	8		
4	Pneumatic Systems: Pneumatic cylinders	Operational principles and application, air compressors, and air motors, Pneumatic valves, Design of pneumatic natic, Control in pneumatic system.		3		6,	8		
5	Design of Fluid Power Circuit: Design method consideration for sequential circuits - intuitive circuit design method - cascade method - sequential logic circuit design using KV method - compound circuit design -step counter design.			5		6,	8		
6	Programmable Logic Controllers: PLC Hardware- Electrical Design and Construction - Logical Sensors - Presence detection- Continuous Sensor-continuous actuators- PLC operation - Latches, Timers, Counters, Analog Inputs and Outputs – PLC- programming- Programming Methods- Design Cases.			5		1,	6, 8		
7	Communication Networking: Remote Monitoring System - Serial Communication – Net Working - Network standards - Human Machine Interfaces.			4		4,	6, 8		
8	Contemporary Disc	ussion	,	2		2			
# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts			3	30					
 Control solutions for process involving high temperature applications. Design a robust panel PC for intelligent machining. 				9,	5,6, 14, 3,19				
## Assessi	rojects:	10 members] basis with a minimum of 3 reviews. In strategy that suits todays industrial custom automated	60 [Nor cont hrs]			17 18	14, ,		

	. •	.1 1
inc	nection.	methods.
1110	pection	mentales.

- Design a pick-n-place stations that provide part inspection, sorting and packaging.
- Design an economical seamless part changing system.
- One size fits most of the applications.
- Design a system which operates with minimal human interface.

1. Hugh Jack (2005), Automating Manufacturing Systems with PLCs, Free Software Foundation.

- 1. Mujumdar S.R (2002), Oil Hydraulic Systems: Principles and Maintenance,. Tata McGraw-Hill Education.
- 2. Mujumdar S.R (2002), Pneumatic System, Tata McGraw Hill.
- 3. W. Bolton (2011), Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, Pearson.
- 4. D. A. Bradley, D.Dawson, N.C. Burd, A.J. Loader (2004), Mechatronics Nelson Thrones.
- 5. W. Bolton (2006), Programmable Logic Controllers, Elsevier Newnes.
- 6. James L.Johnson (2003), Introduction to Fluid power, Delmar Thomson Learning Inc.

Mode of Evaluation	Digital Assignments / Surprise Tests/ CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. M. Giriraj
	Prof. Giridharan

Course Co	ode: MEE2013						
Pre-requi	site: MEE1007	MODELING AND SIMULATION OF MANUFACTURING SYSTEMS	L 3	T	P	J	C
Module		Topics	L	Hrs	s	SL	O
1	Introduction to System Simulation: Introduction to system simulation – Applications – Discrete and Continuous simulation – Simulation models – Simulation procedure – Simulation Examples – General Principles - Simulation software.			6		1,2, 14	11,
2		d Statistical Models: Review of basic probability and tical models in simulation – Selecting input probability		6		1,2,	9
3		r Generation: Properties of random numbers - Generation numbers - Techniques for generating random numbers - n numbers.		6		1,2,9	
4	Random-Variate Generation: Inverse Transform techniques - Convolution method – Acceptance - Rejection techniques.			6		1,2,	9
5	Input modelling: Data collection – Identifying the distribution with data-Parameter estimation - Goodness of fit tests – Selecting input models without data - Multi Variate and Time Series Input Models.			6		1,2, 15	7,
6	Verification and Validation of Simulation Models: Model building, verification, and validation - Verification of simulation models - Calibration and validation of models.			6		1,2,	3
7				7		1,2, 11,1	
8	Contemporary D			2		2	
# Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts.			,	45			
 Generally a team project [Maximum 4 members]. Report in digital format which includes problem & system description, input data collection and analysis, arena model, experimentation & output analysis and conclusions. 			1,2, 7,8, 11,1 14,1 17,1	9, 3, 6,			
		e applications of simulation in manufacturing environment.					

1. Jerry banks, John S Carson, Barry L Nelson and David M Nicol (2013), Discrete Event System Simulation, 5th Edition, Pearson Education Asia.

- 1. Averill M. Law (2014), Simulation modeling and analysis, 5th edition, McGraw-Hill Education.
- 2. W. David Kelton, Randall P. Sadowski, Nancy B. Zupick (2014), Simulation with Arena, 6th edition, McGraw-Hill Education.
- 3. Sheldon M. Ross (2012), Simulation, Academic Press, 5th Edition.
- 4. William J. Stewart (2009), Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis

CD C M 11' D' (II ' '/ D								
of Performance Modeling, Princeton University Press.								
5. Barry L. Nelson (2010), Mathematics, Stochast	ic Modeling: Analysis and Simulation, Dover							
Publications.	·							
Mode of Evaluation	Digital Assignments /Surprise Test /Seminars							
	/CAT/FAT							
Recommended by the Board of Studies on:	3.3.2016							
Date of Approval by the Academic Council:	18.3.2016							
Compiled by	Prof. Dega Nagaraju							
	Prof. Jafferson							

Course C	ode : MEE2014			
Pre-requi	isite: MEE1007 METAL CASTING TECHNOLOG	Ϋ́	L T F	J C 0 4 3
Module	Topics		L Hrs	SLO
1	Moulding Practices -Production of Moulds and Cores: Introducasting and foundry industry; basic principles of casting processes; sin foundry operations; Moulding sand and its properties. Carbon moulding, Moulding Equipment, moulding technique, Patterns and Cores:	sequence dioxide	4	2,5,6
2	Melting technology: Melting furnaces for ferrous and non-ferrous for Electric and fuel fired furnaces. Induction Furnaces; Types of F Electromagnetic Stirring, power supplies; Recent developments in considerations. Melting practice – ferrous, non-ferrous metals and al composites. Melting practices; Fluxing, inoculation, degassing as refinement treatments. Control of pouring temperature Heat treatments, Shop floor melt quality tests.	Furnaces, n energy loys and nd grain	4	1,2,6, 14
3	Casting Processes – Detailed study: Shell moulding, Plaster Mould Squeeze casting, Investment Casting, Die-casting, Centrifugal cast casting - Fundamental principles, production techniques, characteristits applications.	ing, Stir	4	2,6,14
4	Solidification of Casting: Concept of solidification of metals. Home and heterogeneous nucleation. Growth mechanism. Solidification metals and alloys. Mechanism of columnar and dendritic Solidification time and Chvorinov's rule. Concept of progress directional solidifications.	of pure growth.	4	2,5,6
5	Principles of Gating and Risering : Purpose of the gating Components of the gating System and its functions. Design of th System. Different types of gates. Gating ratio and its functions. D and functions of the riser. Types of risers and their application. Designiser - its shape. Size and location. Use of insulating material and excompounds in risers.	e gating efinition gn of the	4	1,2,6,
6	Design of Casting: Factors to be considered in casting design. Design consideration in pattern making, moulding techniques and core making and assembly. Cooling stresses and hot spots in casting and modification in casting geometry to overcome them – Modeling and Simulation using Solidcast, Opticast and Flowcast. Casting Quality Control: Casting defects and factors responsible for them. Different inspection and testing methods to evaluate the casting. Quality control activities in a foundry.			
7	Structure and Properties of Cast Metal: Detailed study of micros mechanical and other properties of ferrous and non-ferrous metals an and composites. Techniques of strengthening and improving the properties metals and alloys.	nd alloys	3	2,6,14
8	Contemporary Discussion		2	2
# Mode: F	Total Lectur Flipped Class Room, [Lecture to be videotaped], Use of physical and collecture, Visit to Industry, Min of 2 lectures by industry experts.		30	
	ly a team project of Five. ts studied in Modules 2, 4, 6, 7 should have been used.		60 [Non-Contact	2,4,5, 6,7

# Down to earth application and innovative idea should have been attempted.	Hours]
# Report in Digital format with all drawings using software package to be submitted.	
Sample Projects:	
1. Molten Metal Flow Analysis for Different Casting Processes.	
2. Riser Design For Casting a Bracket.	
3. Thermal Analysis Of Die Casting Process.	
4. Alloy development by stir casting process.	
5. Optimization of gating system for reducing the casting defects.	

- 6. Non-destructive testing of casting.
- 7. Design of Pattern for casting different materials.
- 8. Melting practices for ferrous and non-ferrous alloys.
- 9. Development of composite materials by stir casting process.
- 10. Testing the properties of moulding sand.

1. Heine, et. al (2003), Principle of Metal Casting, Tata-McGraw-HiII Publication.

- 1. Campbell, J., Castings (2003), Butter Worth, Heinemann Publishers.
- 2. Beeley P.R. (2001), Foundry Technology, Buttersworth.
- 3. Srinath Viswanathan (2008), Metal Casting ASME Handbook

5. Simath viswanathan (2000), Wetar Cast	ing ABME Handbook.
Mode of Evaluation	Digital Assignments /Surprise Test /Seminars
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. G. Sundaramali
	Prof. Radha

Course Co	ode : MEE2015						
Pre-requi	site : MEE1005	NON-DESTRUCTIVE TESTING	L	T	P	J	C
			2	0	2	4	4
Module		Topics	L	Hrs		SL	O
1	Introduction to examination.	o NDT – Procedure, testing and evaluation, Visual		2		1, 2 14,	
2	Surface NDT T	echniques - Liquid penetrant testing and magnetic particle ages and limitations of each of these techniques.		4		1, 2 14,	, 6,
3	Radiographic 7 penetrameter, ra	Testing - Radiography principle, X-ray films, exposure, diographic imaging, inspection standards and techniques, plications, limitations and safety.		5		1, 2 14,	, 6,
4	Eddy Current Testing - Principle, depth of penetration, eddy current response, eddy current instrumentation, probe configuration, applications and limitations.			4		1, 2 14,1	
5		ting - Properties of sound beam, ultrasonic transducers, ods, flaw characterization technique, immersion testing.		5		1, 2 14,1	
6		on testing - Theory of AE sources and Waves, Equipment, s, Data display, source location, Barkhausen noise,		4		1, 2 14,	
7		ing Techniques - Leak testing, Holography, Thermography, nance Imaging, Magnetic Barkhausen Effect. In-situ		4		1, 2 14,	
8	Contemporary	Discussion		2		2	
	8 Contemporary Discussion Total Lecture Hours # Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts						
 De De De De De Th Co De De Co 	tection of sub surface tection of surface tection of surface tection of internal tection of surface ickness measurem rrosion survey usitection of surface tection of surface tection of surface tection of surface inductivity variation	face flaws using Magnetic Particle Testing. flaws using Magnetic Particle Testing. flaws of materials with visible dye. flaws of materials with fluorescent dye. flaws using Ultrasonic testing. and sub surface flaws using Ultrasonic testing. ents using Ultrasonic testing. ng Ultrasonic testing. flaws using eddy current testing in nonferrous material. flaws in bore holes using eddy current testing. on measurement using eddy current testing. ns measurement using eddy current testing.		30		1,2,6 14,1	
# # Conce ### Repor Sample P 1 1) Sel of a	t in Digital format rojects: lection of the best a nickel base super	erent Modules, as relevant, should have been used. with all drawings using software package to be submitted. method for non-destructive detection of pores in cast sticks	t	on- ntac ours]		1,2,5 14,1	

- ceramic-metal joints.
- 3) Designing a comprehensive non-destructive testing programme for manufacture of rocket motor casings.
- 4) Formulation of the best combination of non-destructive test techniques for comprehensive testing of end fitting forgings.
- 5) Design of a suitable non-destructive test procedure for segregating overheated steel bars from bars properly heated.
- 6) Design of a suitable non-destructive test method for segregating different grades of steel bars which got mixed up inadvertently during production.
- 7) Conception of a suitable non-destructive test technique for checking possible embrittlement in a superalloy used in plants for heavy water production.
- 8) Study of grain size variations in metallic materials, using an appropriate nondestructive test technique.

1. Baldevraj, Jayakumar T., Thavasimuthu M. (2008), Practical Non-Destructive Testing, 3rd edition, Narosa Publishers.

- 1. Paul E Mix (2005), Introduction to nondestructive testing: a training guide, Wiley, 2nd edition New Jersey.
- **2.** Ravi Prakash (2010), Nondestructive Testing Techniques, New Age International Publishers, 1st rev. edition.

Mode of Evaluation	Digital Assignments /Surprise Test /Seminars
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. S. Devendiran
	Prof. M. Senthil Kumar

Course Coo	de : MEE2016						
Pre-requisi	te : MEE1007	RAPID MANUFACTURING TECHNOLOGIES	L	T	P	J	
			2	0	0	4	
Module		Topics	L	Hrs	;	SLO	
1	Additive manufacturing, Adva	ring processes and their relationship with subtractive intages of RM. Generalized rapid manufacturing process		4		2, 5, 11, 17	
2	model preparation, d	ata formats – Conversion to STL file format, Fixing the		4		1, 2, 5 6	
3	Rapid Manufacturi Powder Bed Fusion sheet lamination, din	apid Manufacturing Processes, Materials and its application: Sintering, but one Bed Fusion, extrusion, jetting, Photopolymerization, direct-write, eet lamination, directed-energy deposition and the latest state of the art. ultiple Materials, Hybrids, Composite Materials, current and future rections. **Set-Processing: Support material removal, surface texture improvement,					
4	Module Topics L Hrs Introduction to Rapid Manufacturing: Additive Manufacturing evolution, Additive manufacturing processes and their relationship with subtractive manufacturing, Advantages of RM. Generalized rapid manufacturing process chain, Rapid Tooling —Benefits, Applications. Data Processing for Rapid Manufacturing: Conceptualization and CAD model preparation, data formats — Conversion to STL file format, Fixing the STL file, Part orientation, Support structure design, Model Slicing, Direct and adaptive slicing. Rapid Manufacturing Processes, Materials and its application: Sintering, Powder Bed Fusion, extrusion, jetting, Photopolymerization, direct-write, sheet lamination, directed-energy deposition and the latest state of the art. Multiple Materials, Hybrids, Composite Materials, current and future directions. Post-Processing: Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques. Design for Rapid Manufacturing (DFRM): Core DFAM Concepts and Objectives: Complex Geometry, Customized Geometry, Integrated Assemblies and Elimination of Conventional design for manufacture (DFM) Constraints. RM Unique Capabilities, Exploring Design Freedoms and Design Tools for RM. Guidelines for process selection: Introduction, selection methods for a part, challenges of selection, example system for preliminary selection, production planning and control. Rapid Tooling: Direct tooling & Indirect Tooling methods, Reaction Injection Molding, Wax Injection Molding, Vaccum Casting, RTV Silicone Rubber Molds, Spin-Casting, Cast Resin Tooling. Contemporary Discussion Total Lecture Hours Models to lecture, Visit to Industry, Min of 2 lectures by industry experts		1, 2, 17				
5	Design for Rapid Manufacturing (DFRM): Core DFAM Concepts and Objectives: Complex Geometry, Customized Geometry, Integrated Assemblies and Elimination of Conventional design for manufacture (DFM) Constraints. RM Unique Capabilities, Exploring Design Freedoms and Design Tools for RM.					1, 2, 17	
6	Constraints. RM Unique Capabilities, Exploring Design Freedoms and Design Tools for RM. Guidelines for process selection: Introduction, selection methods for a part, challenges of selection, example system for preliminary selection, production					4, 5, 6 18	
7	Injection Molding, V	Vax Injection Molding, Vaccum Casting, RTV Silicone		4		4, 5,6, 17	
8				2		2	
		cture to be videotaped], Use of physical and computer		30			
## Concept ### Report Sample Projection • Projection • Projection opting com • Desi	in Digital format with a ojects: ects on CAD data gerous scanning and reversects on CAD data prization, support and ponents with desired prign and fabrication of w	dodules, as relevant, should have been used. all drawings using software package to be submitted. Therefore are a software package to be submitted. Therefore a software package to be submitted. Therefore a software package to be submitted.	[N Co	on- ontac	t	1,5,6, 14,15	

- 1	
p.	lanning.

• Redesign the existing locomotive key-components for weight reduction without effecting the functionality that can be produced only by additive manufacturing.

Text Book

1. Ian Gibson, David W. Rosen, Brent Stucker (2015), Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 2nd Ed., Springer Science & Business Media.

Reference Books

- 2. Dongdong Gu (2014), Laser Additive Manufacturing of High-Performance Materials, , Springer Publications.
- 3. Ali K. Kamrani, Emad Abouel Nasr (2006), Rapid Prototyping: Theory and Practice, Springer.
- 4. D.T. Pham, S.S. Dimov (2001), Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling, Springer.

5. Andreas Gebhardt (2011), Understanding Additive Manufacturing, Hanser Publishers.

\	C ⁷
Mode of Evaluation	Digital Assignments / Surprise Tests/ CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. K. Raja
	Prof. A.S.S. Balan
	Prof. Raghu Kiran

Course Co	ode : MEE2019						
Pre-requi	site : MEE1005	MATERIAL CHARACTERIZATION TECHNIQUES	L 2	T	P 0	J	C
Module		Topics	L	Hrs		SL	O
1	cells, Crystal structure elements and point gr	and Need for Material Characterization - Unit e, Primitive and Non- primitive cells, Symmetry oup notations, Streographic projections - Need for on - Methodology for Material Characterization and		2		2	
2	Interactions and responsable phase identification, Sci Fundamentals of Imagin	ging - Phenomena of diffraction; Radiation-matter onse signals; X-ray diffraction: powder diffraction, where the formula, strain and grain size determination; and magnification, resolution, depth of field and depth astigmatism; X-Ray reflectivity.		3		1, 2	,14
3	applications: Bright fi interference microsco	Techniques - Special microscopy techniques and eld and dark field imaging; confocal microscopy; py; polarized light microscopy; phase contrast near field laser microscopy; Image processing and		3		1, 2	, 14
4	Optical Spectroscopic Analysis of Fourier	Techniques - Principle, Working and Result Transformation Infra-Red Spectroscopy; Raman Absorption Spectroscopy; Photoluminescence meter Spectroscopy.		3		1, 2	,14
5	Introduction - Princip Operational variables, S Limitations - FE-SEM Specimen preparation: milling, sputter coating	Techniques - Basics of Electron Microscopy - ble of SEM, Instrumentation, Contrast formation, Specimen preparation, imaging modes, Applications, , FIB, EDAX. TEM - Introduction, Instrumentation, Mechanical thinning, electrochemical thinning, ion and carbon coating, replica methods. Image modes - diffraction contrast, phase contrast, Applications,		8		2, 1	4
6	Thermal analysis - In thermal analysis, Diff Dilatometry, Dynam	strumentation, experimental parameters, Differential Ferential Scanning Calorimetry, Thermogravimetry, nic mechanical analysis- Basic principles, ag principles, Applications, Limitations.		4		2,14	ŀ
7	Advanced Character (RBS), Scanning Tunn (AFM) and different of (XPS): Auger Electron	ization Techniques - Rutherford back scattering neling Microscopy (STM), Atom Force Microscopy perational modes, X-ray Photoelectron Spectroscopy n Spectroscopy (AES), Dynamic SIMS and static ΓΕΜ, ΕΕLS - Characterization of Fluids - Viscosity,		5		2,14	ļ
8	Contemporary Discus	•		2		2	
		Total Lecture Hours eture to be videotaped], Use of physical and computer y, Min of 2 lectures by industry experts.	3	30			
Project # Generall	y a team project of Five.		60 [No	on-		5,9, 17	14,

# Concepts studied in Modules 2, 4, 6 should have been used.	Contact
# Down to earth application and innovative idea should have been attempted.	Hours]
# Report in Digital format with all drawings using software package to be submitted.	
Sample Projects:	
1. Analysis and data interpretation of SEM Images.	
2. Analysis and data interpretation of TEM Images.	
3. Interpreting and analyzing chemical composition from XPS.	
4. Investigation of optical properties through UV-Vis spectrophotometer.	
5. Chemical composition determination using FTIR.	
6. Structural investigations using XRD.	
7. Investigation of optical properties through photoluminescence.	
8. Ellipsometer investigation of materials.	
9. Microfluids characterization.	

1. Yang Leng, (2013), Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd Edition, Wiley Publications.

- 1. D. Brandon and W.D. Kaplan (2008), Microstructural Characterization of Materials –John Wiley and Sons.
- 2. S. Zhang, Lin Li and Ashok Kumar (2009), Materials Characterisation Techniques, CRC Press.
- 3. B.D.Williams and C.B.Carter (2009), Transmission Electron Microscopy Springer.
- **4.** E.J. Mittemeijer (2010), Fundamentals of Materials Science the microstructure-property relationship using metals as model systems. Springer.

relationship using metals as model systems.	, Springer.
Mode of Evaluation	Digital Assignments /Surprise Test /Seminars
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. A. Raja Annamalai
	Prof. Pratibha Nalini

Module Topics 1 Theory of Plasticity - stress tensor - hydrostatic & stress - flow curve - true stress strain - yielding octahedral shear stress and shear strains - invariant line field theory - plastic deformations of crystals. 2 Fundamentals of Metal working - Classification mechanics of metal working, temperature in meeffects, metallurgical structure, friction and lubric geometry, hydrostatic pressure, workability, residual forging process - classification, Forging in plane stopen die forging, closed die forging, calculation of die forging, Forging defects, powder metallurgy for forgings. 4 Rolling- classification - rolling mills - rolling of forces, analysis of rolling - defects in rolling- theoritorque power estimation. 5 Extrusion - classification - equipment - deformationally - analysis - hydrostatic extrusion - tube extrusion drawing, analysis of wire drawing, tube drawing process in rod, wire and tubes. 6 Sheet metal forming - methods - shearing and beforming - deep drawing - forming limit criteria - deforming - magnetic pulse forming - super plastic forming - magnetic pulse forming - super plastic forming - magnetic pulse forming - super plastic forming - super				<u>, </u>			
Pre-requi	site: MEE1007	METAL FORMING THEORY AND PRACTICE	<u>L</u>	T 0	$\begin{array}{c c} \mathbf{P} & \mathbf{J} \\ \hline 0 & 0 \end{array}$		
Module		Topics	L	Hrs	SI	LO	
1	Theory of Plasticity - stress tensor – hydrostatic & deviator components of stress – flow curve – true stress strain – yielding criteria – yield locus – octahedral shear stress and shear strains – invariants of stress strain – slip line field theory - plastic deformations of crystals.				1,5		
2	Fundamentals of mechanics of me effects, metallurg	Metal working - Classification of forming processes, etal working, temperature in metal working, strain rate ical structure, friction and lubrication, deformation zone		6 1,5			
3	Forging process open die forging, die forging, Forgi		6	1,5			
4	Rolling- classific forces, analysis of		6	1,5			
5	Extrusion - classification - equipment – deformation lubrication and defects – analysis – hydrostatic extrusion – tube extrusion - Drawing, rod & wire drawing, analysis of wire drawing, tube drawing processes, analysis of tube				1,5		
6	Sheet metal forn	ning – methods – shearing and blanking, bending, stretch awing – forming limit criteria – defects in formed parts.		6	1,5		
7	Unconventional I forming – magnet	Forming Methods - Explosive forming, Electro hydraulic ic pulse forming – super plastic forming – electro forming P/M forging-Isothermal forging – HERF.		7	1,5		
8	Contemporary D			2	2		
	Flipped Class Room	Total Lecture Hours, [Lecture to be videotaped], Use of physical and computer lustry, Min of 2 lectures by industry expert.s	4	45	•		

1. George E Dieter (2007), Mechanical Metallurgy, Tata McGraw Hill.

- 1. Wagoner, R. H., and Chenot, J.L (2001), Metal Forming Analysis, Cambridge University Press,
- 2. Henry S. Valberg (2010), Applied Metal Forming: Including FEM Analysis, Cambridge University Press.
- 3. William F. Hosford and Robert M. Caddell (2011), Metal Forming: Mechanics and Metallurgy, Cambridge University Press, 4/e.

Mode of Evaluation	Digital Assignments /Surprise Test /Seminars
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. A.K. Jeevanatham
	Prof. Vijayaram

Course C	Code: MEE2022												
	isite : MEE1003	POWER PLANT ENGINEERING	L 2	T	P	J	C						
11c-requ	ISICE: WIELTOOS			0	0	4	3						
Module		Topics	LI	Hrs		SLC)						
1		lant: Site selection, Components and Layout of	-	7		7		7		7		2, 5,	9, 11
		ant, vapor power cycles. Steam Generators –											
		d Types of Boilers - Fire tube and Water tube											
		ssure and Supercritical boilers - Positive circulation											
		ed bed boiler - Waste heat recovery boiler, Heat ed water heaters - Super heaters - Reheaters -											
	_	idenser-Cooling tower.											
2		Firing Methods: Coal handling and preparation -		4	1.	2, 9,1	1						
_		pment and firing methods - Mechanical stokers -			1,	_, ,,,	. 1						
		firing systems - Cyclone furnace - Ash handling											
	systems - Electro	ostatic precipator - Fabric filter and Bag house -											
		nduced draft fans.											
3		Plants: Site selection, Components and Layout	4	4	1,	2, 5,	9, 11						
	_	clear energy - Energy from nuclear reactions -											
		on and fuel Burnup - Decay rates and Half - Lives.											
	_	ctor - Pressurized water reactor Pressurized Heavy											
		Gas cooled reactor - High temperature gas cooled eeder reactor - Liquid metal fast breeder reactor-											
		Radiation shielding.											
4		Power Plants: Site selection, Components and		4	1.	2, 5,	9. 11						
•		ad closed cycles - Intercooling - Reheating and			1,	2, 5,	, 11						
	· ·	ombined cycle power plant types.											
5		Power Plants: Site selection, Components and	3	3	1,	2, 5,	9, 11						
	Layout, Classific	ation of Hydro - electric power plants and their											
		ection of prime movers - Governing of turbine.											
6	\sim	Power Plant: Site selection, Components and	3	3	1,	2, 5,	9, 11						
		ems - Starting and stopping - Heat balance -											
		Cooling startegies - Constraints in operating range.	,	<u> </u>	1	2.5							
7	and operating cos	Power Plants: Cost of electric Energy - Fixed ts - Energy rates - Types tariffs -	-	3	1,	2, 5							
	1	d sharing - Load Curves.											
8	Contemporary D			2	2								
-	Contemporary D	Total Lecture Hours	3		1-								
# Mode: 1	Flipped Class Roon	n, [Lecture to be videotaped], Use of physical and		•									
		Visit to Industry, Min of 2 lectures by industry											
experts.													
Project			60			6, 7,							
	•	roject [3 to 5 members].	[No			, 18,	19,						
	-	Power Plant Engineering to be applied.	con		20								
		e design for real life application.	hrs]										
		rmat with all analyses performed using software.											
		ontinuous basis with a minimum of 3 reviews.											
Sample I	roject.		İ		1								

- 1. Analysis of reheat and regeneration cycles.
- 2. Development of software for reheat and regeneration cycles.
- 3. Analysis of binary and ternary vapor power cycles.
- 4. Development of software for binary and ternary vapor power cycles.
- 5. Analysis of combined power cycle plants with waste heat recovery.
- 6. Software for Power Plant Economics.
- 7. CFD analysis of gas turbine and steam turbine blade cooling.

1. P. K. Nag (2013), Power Plant Engineering: Steam and Nuclear, Tata McGraw-Hill Publishing Company Ltd., Fifth Edition.

- 1. M. M. El-Wakil (2002), Power Plant Technology, McGraw-Hill International Editions.
- 2. Black and Veatch (2005), Power Plant Engineering, CBS Pub and Distributors, New Delhi.
- 3. R. K. Rajput (2015), A Text Book of Power Plant Engineering, Laxmi Publications (P) Ltd.

Mode of Evaluation	Digital Assignments /Seminars/Surprise Tests /
	CATs /FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. A. K. Karthikeyan
	Prof. Tamil Selvan

Pre-requ	Code : MEE2023 isite : MEE1003,	GAS DYNAMICS AND JET PROPULSION	L	T	P	J	(
MEE100	E1004			2 1		2 1		0	3																																																										
Module	Topics		Topics			Hrs		SLO)																																																										
1	analysis: Coeffic state - Various r number - Mach Compressible flo number on cor	compressible fluid flow and control volume ient of Compressibility - Stagnation state – Critical egions of flow - Physical significance of Mach cone - Differences between Incompressible and ws. Properties of atmosphere - Effect of Mach appressibility, Conservation laws for mass - nergy in steady flow.		3	1,2	2,5,9																																																													
2	Isentropic Varial area duct – Macl Mach number - In and diffusers. Pho- designs - Pressur	ble area flows: Isentropic flow through a variable in number variation - Area ratio as a function of impulse function - Mass flow rate through nozzles enomenon of choking – subsonic and supersonic e values for nozzles and diffusers. T-S and H-S Nozzle and Diffuser process.		5	1,2	2,5,9																																																													
3	Shocks and Exp normal shock w equation - Impo downstream of sh shock wave - en Relation between	ansion waves in compressible flows: Flow with vaves - Governing equations - Prandtl–Meyer ssibility of rarefaction shock - Mach number ock – Property variation across shock - Strength of tropy change, Oblique shock-Property relations, M_x and M_y , θ - β - M relation, Maximum Value of etached shock, Prandtl-Meyer Expansion fans.	5		5		5		5		5		5		5		5		5		5		5				5		5	5				5		5		5		5		5		5		5		5		5		5		5		5		5		5		5	5	5	1,2	2,5,9	
4	Flow through co	Equation and its solution - Variation of flow act length - Applications. Normal shocks in Fanno		4	1,2	2,5,9																																																													
5	flow - Rayleigh f	nstant area ducts with heat transfer: Rayleigh low equation - Rayleigh line - Variation of flow mum heat transfer - Applications. Normal shocks		5	1,2	2,5,9																																																													
6	Aircraft Propuls Energy flow thro Propulsive efficient	ion: Air craft propulsion – Types of jet engines - ough jet engines - Thrust - Thrust power and ncy - Turbojet components - Diffuser compressor - ber - Turbines - Exhaust system - Performance of		3	1,2	2,5,9																																																													
7	Rocket Propulsion theory of equation Rocket engine pe	on: Rocket propulsion – Rocket engines - Basic - Thrust effective jet velocity - Specific impulse - rformance - Solid and Liquid propellant rockets - rious propulsion systems.		3	1,2,5,9																																																														
8	Contemporary D			2	2		_																																																												
		Total Lecture Hours n, [Lecture to be videotaped], Use of physical and Visit to Industry, Min of 2 lectures by industry		30																																																															
Tutorials	s class for Module 1 (2 hours)		15	1	1,2,5	,9																																																												

Tutorial class for Module 2 (3 hours)	
Tutorial class for Module 3 (3 hours)	
Tutorial class for Module 4 (2 hours)	
Tutorial class for Module 5 (2 hours)	
Tutorial class for Module 6 (2 hours)	
Tutorial class for Module 7 (1 hour)	

1. S.M.Yahya (2012), Fundamentals of compressible flow with Aircraft and Rocket propulsion, 4th edition, New Age International Publisher.

- 1. J.D.Anderson, Jr (2004), Modern Compressible Flow with Historical Perspective, McGraw-Hill.
- 2. Babu, V. (2014), Fundamentals of Gas dynamics. John Wiley & Sons.
- 3. Robert D. Zucker, Oscar Biblarz (2002), Fundamentals of Gas Dynamics, John Wiley & Sons.

Mode of Evaluation	Digital Assignments / Seminars / CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. Bibin John
	Prof. Manimaran

Course C	Code : MEE2025			
Pre-regu	isite : MEE1004	FLUID POWER SYSTEMS	L T P	J C
- Tre-requ			3 0 2	0 4
Module		Topics	L Hrs	SLO
1		fluid power - Hydraulics Vs Pneumatics, Pascal's Law,	6	1,5,6
		of hydraulic fluids, Basic principle of Pneumatics, Gas		
2	laws, ISO symbol	ves - Types and construction of Hydraulic pumps and	6	1,5,6
4		c power supply source – Compressors, air distribution.		1,5,0
3		atrol Components - Valves – Pressure, direction and flow	6	1,5,6
	control valves, proportional and servo valve, Accumulators, Fil			
	_	ator(FRL), Actuators.	_	1.1=10
4		ver Circuits - Fail safe circuits, Regenerative circuits,	6	1,17,18
	circuit, Counter ba	ter out circuits, Accumulator circuits, Pressure intensifier		
5	, , , , , , , , , , , , , , , , , , ,	recuit Design - Multi cylinder sequencing circuits, Travel	6	1,6,18
		nchronizing circuit, cascade and Karnaugh – Veitch map		, , , ,
	method.			
6		Fluid Power Circuits - Low cost Automation, Bottling	6	1,2,6, 12
	0 0	ndustry, Material handling and assembly applications,		
7		cations, Car park barriers. Electrical controls for Fluid Power Systems - Electro	7	1,2,17,20
,		lectro hydraulics, solenoids, relays, proximity sensors,	,	1,2,17,20
	Programmable Lo	gic Controllers, Ladder diagram, Timers and Counters.		
		I troubleshooting of Fluid Power System - Maintenance		
		ng of Filters and strainers, Reservoir System, sealing		
8	Contemporary D	stant fluids, beta ratio of filters.	2	2
0	Contemporary D	Total Lecture Hours	45	
		n, [Lecture to be videotaped], Use of physical and Visit to Industry, Min of 2 lectures by industry experts.		
Laborato	ory			
. 1.4	iulti ordindan aasaa	sains sinovit voins tuoinsu kit. Dravers sino/Heduselee /		
	uiti cylinder sequer utomation studio so	ncing circuit using trainer kit, Pneumosim/ Hydrosim /		
		ign using trainer kit and software.		
		ign using trainer kit and software.	30	1,2,14
		d Electro Hydraulic circuit design using trainer kit and		
	ftware.			
		ut fluid power circuits.		
• De	etermining Cylinder	r force in various methods of linear motion.		

1. Anthony Esposito (2013), Fluid Power Systems, :Pearson New International edition.

- 1. James R.Daines (2013), Hydraulics and Pneumatics, 2nd Edition, The Goodheart-Willcox Company, Inc.
- 2. W.Bolton (2013), Mechatronics, Electronic control systems in Mechanical and Electrical Engineering, Perason Education.
- 3. Andrew Parr (2011), Hydraulics and Pneumatics, Butterworth and Heinmann.
- 4. (2015), Festo Basic Pneumatic, Electro pneumatic, Hydraulic text and work books.
- 5. John Pippenger (2012), Fluid Power Controls, Literary Licensing LLC.

5. voim 1 ippoinger (2012); 1 tota 1 e wer e en	210 ms is, 210 ms in g 22 0 i
Mode of Evaluation	Digital Assignments / Surprise Tests / Seminars / CATs
	/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. DRS Raghuraman
	Prof. Elango

Course C	ode : MEE2026									
Pre-requi MEE1004	isite : MEE1003,	TURBOMACHIN	ES	L 2	T 0	P 2	J 4	C		
Module		Topics		L Hrs		SLO)			
1	Specific work - T-s	efinition and classification of and H-s diagram - Equation of encies - Effect of reheat - Prehea	energy transfer -		4	1,2,5,9				
2	blades - Energy Ti	I section - Cascading of compressions of lift and drag the blades - Variation of lift - s with incidence.	co-efficient for		3		1,2,5,9			
3	- construction detail Diffuser - volute capressure co-efficient	sors: Centrifugal fans - Blowers a - Inducers - Backward and sing stage work - Stage pressu Stage efficiency - Degree of rea m for centrifugal compressor.	Radial blades - re rise - Stage		4		1,2,5	,9		
4	Axial Compressors: triangles - Blade loa H-S diagram - Deg	Axial flow Fans and Compressors ing and flow co-efficient - Statice of reaction - Work done factors formance - Stalling and Surging.	c pressure rise - tors - Free and	4 1,2,5		1,2,5	,9			
5	Radial Turbines: Inv	ard flow radial turbine stages - IF of reaction - Steam turbine gove	R Turbine - T-s	4			1,2,5,9			
6	Single stage Impulse Multistage velocity compounded impulse reaction stages - F	I turbine stages - Stage velocity to urbine - Speed ratio maximum un compounded impulse - Multi - reaction stages - Degree of the City percent reaction stages - In action - Free and Forced vortex flo	tilization factor - stage pressure reaction - Zero Hundred percent		4		1,2,5	,9		
7	Hydraulic Machine developed - Pump starting speed - permethods of prevention hydraulic turbines - Propeller turbines - V	- Centrifugal pumps — Work utput and Efficiencies - primit formance of multistage pumps n - Pump characteristics - Celton wheel - Francis turbine elocity triangles - Specific speed - rformance characteristics - Select	done - Head ng - minimum - Cavitation - Classification of - Kaplan and - Theory of draft	5					1,2,5	,9
8	Contemporary Discu				2	2				
		Total cture to be videotaped], Use of ph to Industry, Min of 2 lectures by	•		30					
Laborato	 To study the performance. To study the performance discharge pressures. 	mance of Gear Pump at different of mance of Reciprocating Pump at of the mance of Constant Speed Centrifu	lifferent		30		1,9,1	4		

	different discharge pressures.		
4.	To study the performance characteristics of Variable Speed		
	Centrifugal Pump at different speeds and different discharge		
	pressures.		
5.	To study the performance of Jet Pump at different discharge		
	pressures.		
6.	To study the performance of Submersible Pump at different		
	discharge pressures.		
7.	To study the performance of Kaplan Turbine at constant speed,		
	constant load and different vane and blade positions.		
8.	To study the performance of Francis Turbine at constant speed,		
	constant load and different vane positions.		
9.	To study the performance of Pelton Turbine at constant speed and		
	constant load conditions.		
Project			
# Generally a	team project of Five.	60	
# Report in D	igital format with all drawings using software package to be submitted.	[Non-	
Sample Proje	ects:	contact	2,5,6,9,17
 Fabric 	ate a mini-windmill useful for charging low power devices at home.	hours]	
2. Perfor	m a CFD analysis of a Hydraulic Turbine.	nours	
3. Disser	mble a centrifugal pump and carry out a reverse engineering process.		

1. S.M. Yahya (2002), Turbine, Fans and Compressors, TMH.

- 1. Dixon, S.L. (2014), Fluid Mechanics and Thermodynamics of Turbomachinery, 7th edition, Elsevier.
- 2. Kadambi and Prasad (2011), Energy conversion Vol. III Turbomachines, New Age International.
- 3. A.H. Church and Jagadish Lal (2000), Centrifugal Pumps and Blowers; Metropolitan Book Co, Pvt. Ltd
- 4. Kenneth C.Hall, Robert E.Kielb, Jeffrey P.Thomas (2006), Unsteadyaerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Springer, Netherlands.

Mode of Evaluation	Digital Assignments / Surprise Tests / Seminars /
	CATs /FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. C. G. Mohan
	Prof. Manavalla Srikanth

Course C	ode: MEE3002		L	Т	P	J	C
Pre-requi	site : MEE2002	FINITE ELEMENT ANALYSIS	2	1	0	4	4
Module		Topics	I	L H	rs	5	SLO
1	Introduction to	Finite Element Method - General description of Finite		3		1,2	2,7,11
	Element Method methods – Othe	1 – Historical development – Comparison with classical r numerical methods such as FDM, BEM etc - General M – Application software's in FEM.					, ,
2	Approximate So	olutions to Engineering Problems -		4		1,	7,12,17
	General field pro approximate Weighted residu	oblems - GDE formulation - discrete and continuous models solution as a polynomial - minimization of residue — all methods — collocation method, sub domain method, squares and Galerkin method - Variational formulation Ritz					
3	Finite Element Problem – Form domain (finite approximation to Assembly of element)	Formulations to 1-D problems – II order problems - Bar sulation for the whole domain – Formulation for the subelement) using interpolation polynomial - Nodal using shape function – computing element matrices - ement matrices – Application of B.Cs – solution – post		4		2,4	4,7,8
4	nodes – elemen	(IV order problems) – B.Cs & loading conditions on to t matrices - solution and post processing of results – I ems such as Heat transfer problems, Vibration problems in c.		4		2,4	4,7,8,
5	Simplification th of element types interpolation pol	al problems - Discretization: Geometrical approximations — rough symmetry — Element shapes and behaviour — Choice — Simplex - Complex and Multiplex elements — Selection of ynomials (shape functions) - Convergence requirements — and distortion — Location of nodes — Node and Element		5		7,8	8,12,13
6	Field problems such as heat tra	- scalar and vector variables – Scalar variable problems nsfer, torsion of non-circular shafts etc – Vector variable plane stress, plane strain and axi-symmetric problems.		4		13 18	3,14,15,
7	Natural coordin	nate systems - Derivation of shape functions for various rametric elements – 1D, 2D and 3 D elements - Numerical	4 17,1		7,18,19,)		
8	Contemporary	liscussion		2		2	
	Flipped Classroon scussion Forums, A	Total Lecture Hours ns, Individual Exercises, Team Exercises, Online Quizzes, Assignments.		30			
	problems per Tuto Tutorial class	o be worked out by students in every tutorial class. orial Class to be given as homework.) as for Module 2 (2 hours) as for Module 3 (3 hours)		15			2,7,9, 2,17,18,

Tutorial class for Module 4 (3 hours) Tutorial class for Module 5 (2 hours) Tutorial class for Module 6 (2 hours) Tutorial class for Module 7 (2 hours)		
Tutorial class for Module 8 (1 hour)		
 Project Generally a team project [Maximum of 3 members only]. Concepts studied should have been used. Down to earth application and innovative idea should have been attempted. Assessment on a continuous basis with a minimum of 3 reviews. 	60 [Non-contact hours]	1,2,7,9, 12,17,18, 19
Mechanical Engineering Field Problem solution using ANY commercial software or Open source software		

1. Seshu.P (2004), Finite Element Analysis, Prentice Hall of India.

- 1. Tirupathi R. Chandrupatla and Ashok D. Belugundu (2011), Introduction to Finite Elements in Engineering, 4th Edition, Prentice Hall.
- 2. David V Hutton (2009), Fundamentals of Finite Element Analysis, Tata McGraw-Hill Education.
- 3. Daryl L. Logan (2011), A First Course in the Finite Element Method, CengageLearning.
- 4. Reddy J.N (2005), Introduction to the Finite Element Method, III Edition, Tata McGraw Hill Edition.
- 5. Cook R.D (2007), Concepts and application of Finite Element Analysis, John Wiley and Sons.

5. Cook R.B (2007); Concepts and application of Th	inte Element / marysis, your viney and bons.
Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. R. Vasudevan
	Prof. Jebaraj

Course C	ode : MEE3003						
Pre-requi	site : MEE2002	ENGINEERING FAILURE ANALYSIS	1 3	T 0	P 0	J	C 4
Module		Topics	L Hrs			Sl	LO
1	failure analysis: C	terial failure modes and their identification; Tools for Optical microscopy, Transmission electron microscopy, microscopy. Systematic approach to failure analysis.		6		1,	,4, 5
2	stresses, Theories Plane strain, Stress impact loading.	ts: Tensile test, Static loading, Combined stress, Principal of failure, Triaxial stresses and constraint, Plane stress, s concentration factors and notch sensitivity. Shock and		6		1,	4, 5
3	curves, endurance fatigue; Fatigue de	under high cycle fatigue conditions, Test methods, S-N-P diagrams, influence factors - Low cycle fatigue, fretting esign for combined stress; cumulative damage and life al interpretation of fatigue test data.		10		1,4, 5, 6	
4	corrosion cracking;	ne: Failures related to corrosion, hot corrosion and stress. Damages due to hydrogen; Creep of metallic materials, ing high temperature service; Failures related to wear.		6			,4, ,6
5		chanisms: Fracture processes, Meaning of ductile and ect of strain rate and temperature.	5			1,4, 5, 6	
6	mechanics, fracture	s: Fracture mechanics and Failures, Linear elastic fracture e mechanics principles in design practice, Elastic Plastic Examples of crack-growth Analysis for cyclic loading.				1,	,4, ,6
7	Fracture mechan	ics and Failures: Welded constructions and screw mental degradation, Embrittlement of metals and alloys.		4			4,
8	Contemporary Dis			2			2
to Industry		Total Lecture Hours omputer models to lecture, Visit failed components, Min of 2 lectures by industry experts		45		ı	
• Ge • Co • Do	enerally a team project oncepts studied should own to earth applicati	et [Maximum of 3 members only].	Co	[No ontac ours]	t	6, 14	,4,5, ,11, 4, 7,18
Failure Ar choosen b 1. Failure 2. Cracked 3. A crack 4. Failed v 5. Broken It is essen project. Tl	Sample Projects: Failure Analysis Project – Team or Individual. Topic of the project work may be choosen based on Failure analysis and investigation of engineering component like 1. Failure of a large air conditioner fan blade. 2. Cracked automobile suspension lower arm. 3. A cracked vaccum bellows. 4. Failed welded railroads rails. 5. Broken stainless steel hinge for a check valve., etc It is essential to apply the knowledge gained in this course and incorporate them in the project. The project report should consist of Introduction, experimental and/or numerical investigation, results and discussion and conclusion. Final project report has to be						

submitted at the end of the course.

Guidelines for Project:

- The project will be a group project with a maximum of 3 members in a group. The size will reflect the complexity of the project. Students should make sure that the concepts to be studied are reflected in the project.
- There will be a minimum of three reviews conducted in a semester and the marks will be awarded and taken for final assessment. The marks distribution for 3 reviews will be 20:30:50.
- Minimum pass marks for project is 50%. If the student fails to get 50%, he/she has to re-register and redo in a subsequent semester.
- If the student has got >= 50% in project, and fails in Theory, then the same marks can be taken up for grading purposes after he/she completes the Theory FAT.

Evaluation is through continuous assessment with 3 reviews. No separate FAT.

Text Book

1. C. R. Brooks and A. Choudhury (2002), Failure Analysis of Engineering Materials, McGraw-Hill (ISBN: 0-07-135758-0).

- 1. McEvily (2001), Metal Failures, Wiley Interscience.
- 2. R.J. Shipley and W.T. Becker (2002), ASM Handbook -Failure Analysis and Prevention Vol. 11, © 2002, ISBN: 0-87170-704-7, ASM Publications.
- 3. A Venugopal Reddy (2004), Investigation of Aeronautical and Engineering Component Failures, CRC Press.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. M. Nageswara Rao
	Prof. K. Annamalai

Course C	Code: MEE3004							
Pre-regu	isite : MEE2003	INTERNAL COMBUSTION ENGINES	L	T	P	J	C	
Tre requ			3	0	0	0	3	
Module		Topics	L Hrs		SLO			
1	Engine mixture Properties of Fu injection – Gasoli Mixture prepara indirect injection Fuel spray beha	requirements - Feedback Control Carburetors — el - Injection systems -Monopoint and Multipoint ne Direct Injection — Airmotion. Airmotion Engines: Direct and systems — Combustion chambers - Properties of Fuel - Livior — spray structure — spray penetration and motion- Injectors and nozzles.	_ int nd 1 -			1,2,4,5,11		
2	Stages of combus release rate based SI engines- Meast	Spark Ignition and Compression Ignition Engines: tion in SI and CI engines – Combustion phasing - heat on cylinder pressure measurement-Knock in CI and arement and control of Knock.		5	1,2,4,5,11			
3	area turbocharge turbocharger - c	Systems: Supercharging – Turbocharging - Variable ers, twin entry turbochargers - waste gate in different arrangements of turbochargers and super on power and emission - basics of intake manifold	n r		1,2,4,5,11			
4	Engine Emission on environment a Emission Mecha emissions - Metho Particulate Traps Oxidation Catalys		6	1,2	,4,5,	11		
5	Emission Measurements – Communication Technic Euro norms.		6	1,2	,4,5,	11		
6	Petroleum Gas –	s: Alcohol - Hydrogen - Natural Gas and Liquefied Biodiesel- Biogas - Properties - Suitability - Engine Merits and Demerits as fuels.		6	1,2,4,5,11			
7	Recent Trends in IC Engines: LHR Engines - Learn Burn Engines - 4 Stratified charge spark ignition engine - Homogeneous charge compression Ignition -Reactivity Controlled Compression Ignition-Rotary engine-Six stroke engine concept.						11	
8	Contemporary D			2	2			
	* *	n, [Lecture to be videotaped], Use of physical and Visit to Industry, Min of 2 lectures by industry	4	15				

- John Heywood (2011), Internal Combustion Engine Fundamentals, Tata McGraw Hill .
 V Ganesan (2012), Internal Combustion Engine, 4th Edition, Tata Mc-Graw Hill.

- 1. Richard Stone (2012), Introduction to Internal Combustion Engines, 4th edition, Palgrave Macmillan.
- 2. Colin R. Ferguson, Allan Thomson Kirkpatrick (2001), Internal combustion engines: applied Thermosciences, John Wiley & Sons.

Mode of Evaluation	Digital Assignments /Seminars/Surprise Tests / CATs				
	/FAT				
Recommended by the Board of Studies on:	3.3.2016				
Date of Approval by the Academic Council:	18.3.2016				
Compiled by	Prof. P. Baskar				
	Prof. Venugopal				

Course C	Course Code: MEE3005									
Pro-regu	requisite: MEE2003 REFRIGERATION AND AIR CONDITIONING			L	T	P	J	C		
11e-requ	isite . WIEE2003		CONDITI	ONING		2	1	0	4	4
Module			Topics			LI	Irs)	
1		e from Rev s from ide	erse Carnot Cyc	le – conditions for session cycle – M	high	3	3	1,2		
2	System Compone Characteristics of	ents – Co Reciprocati tors & Cor	ompressor - Ty ing Compressors andensers and the	pes – performand – Capacity Contr oir functional aspec	ol –	۷	1	1,2		
3	- Oil Compatibil protocols - Eco	ity – Envi o Friendly s – Evacua	ironmental Impa Refrigerants. tion and Chargin	Refrigerant properate Montreal / K Different Types Grant Different Types Grant Different Types Grant Different Diffe	yoto of	4	1	1,2		
4	System Equilibrium Refrigerators – With	m and Cyc ndow A/C -	cling Controls – Types of motor		in –	۷	1	1,2		
5	_	_	-	F Psychrometric Ch — Adiabatic Satura		3	3	1,2,6,14		
6	RSHF – summer A Factor. Application	air condition ns with spe	ning – Winter Ai ecified ventilatio	conditioning process r conditioning – By n air quantity – Us ads and high latent	pass se of	2	1	1,2	,6,14	ļ
7	Shadowgraph – anemometer – Hot	Schileren wire anem Food proce	 interferoment ometer – Heat formula ssing and present 	and applications er – Laser Dop ux sensors – Telen vation – Freezing s and Trucks.	opler netry	6	6	1,2	,6,14	
8	Contemporary Di					2	2		2	
computer experts.	Flipped Class Room models to lecture,		-	- ·		30				
# A mining # Anothe # At least Tutor Tutor Tutor Tutor Tutor Tutor Tutor Tutor	Tutorial # A minimum of 5 problems to be worked out by students in every tutorial Class. # Another 5 problems per Tutorial Class to be given as home work. # At least one open ended design problem to be given. Tutorial class for Module 1 (2 hours) Tutorial class for Module 2 (23 hours) Tutorial class for Module 3 (2 hours) Tutorial class for Module 4 (2 hours) Tutorial class for Module 5 (2 hour) Tutorial class for Module 6 (2 hours) Tutorial class for Module 7 (2 hours) Tutorial class for Module 8 (1 hour)					1	5	1,2	,6,14	Į.

Project	60	1,2,6,14
# Group Project with a team of max. 5 members.	[Non-	
## Continuous Assessment will be done based on three reviews.	contact	
Sample Projects:	Hours]	
1. Evaporator/condenser analysis of a R134a refrigeration system.		
2. Boiling heat transfer studies of an R134a refrigerant.		
3. Studies on heat transfer coefficient of refrigerants.		
4. Double pipe heat exchangers for refrigeration systems.		
5. Throttle valve analysis of a VCR system.		
6. Pressure drop studies in a refrigeration system.		
7. Influence of evaporator pressures on cycle efficiency of a refrigeration		
system.		
8. Studies on sub-cooling and superheating of refrigerants.		
9. Two phase flow studies in an evaporator core of a refrigeration system.		
10. Tradeoff between single stage and two stage cascade refrigeration system.		
11. R1234yf – Scope and challenges ahead.		
12. Heat transfer studies on an air-washer used for air conditioning.		
13. Cooling load estimation for theatres, shopping complex, high rise		
buildings etc.		
14. Prototype designing and fabrication of components used in refrigeration		
and air conditioning.		
15. Vortex tubes for cryo-cooling.		
16. Methods to improve COP of refrigeration systems.		
Text Book	· · · · · · · · · · · · · · · · · · ·	•

1. W. F. Stocker and J. W. Jones (2002), Refrigeration and Air conditioning, McGraw Hill.

- 1. Manohar Prasad (2011), Refrigeration and Air conditioning, Wiley Eastern Ltd.
- 2. Arora, C. P. (2007), Refrigeration and Air Conditioning, Tata McGraw-Hill Publishing Company Ltd.

Eta:	
Mode of Evaluation	Digital Assignments / Surprise Tests / Seminars /
	CATs /FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. M. Boopathi
	Prof. C.P. Karthikeyan

Course C	Course Code : MEE3006						
	isite : MEE2003	AUTOMOBILE ENGINEERING	L	T	P	J	C
rre-requ	Isite: MEE2005		2	0	2	0	3
Module		Topics	L	L Hrs SLO		SLC)
1	Vehicle Structure		4	1,2			
	1	positions- Chassis, frame and body, front, rear					
		es, Operation and performance, Traction force					
		ce, Power required for automobile - Rolling, air					
2	and gradient resistan			1	2		
2	· · · · · · · · · · · · · · · · · · ·	ems – Clutch - Types- diaphragm type clutch, te clutches - Gear box: Types-constant mesh,		4	2		
		nchromesh gear box, layout of gear box, gear					
		mechanism, overdrive, automatic transmission,					
	_	ersal joint, slip joint, differential and real axle					
	arrangement, hydrau						
3	_ ,	Types of steering systems, Ackermann principle,		4	1,2	2	
		steering gear boxes, steering linkages, power					
	Alignment and balan	netry-caster, camber toe-in, toe out etc., wheel					
4		1 – Types - front and rear suspension,		4	2		
-		dependent type suspension, leaf springs, coil		•	-		
		rsion bars, stabilizer bars, arms, air suspension					
	systems.						
5		Forces on vehicles, tyre grip, load transfer,		4	1,2	2	
	_	between axles, stopping distance, Types of					
		Hydraulic, Air brakes, Disc & Drum brakes,					
6	Engine brakes anti-lo	cal System and Instrumentation - General	4	1,2	2		
U		attery, Starting motor, DC generator, Alternator,		7	1,4	_	
		board instrumentation, Lighting system.					
7		obile Engineering - Passenger comfort - Safety		4	1,2	2	
		AC - Seat belts - Air bags - Automotive					
		ronic Control Unit (ECU) - Variable Valve					
		ctive Suspension System (ASS) - Electronic					
		(EBD) – Electronic Stability Program (ESP) tem (TCS) - Global Positioning System (GPS) -					
	Xby- wire - Electric						
8	Contemporary Disc	•		2	2		
	1 0	Total Lecture Hours	3	0	1		
		Lecture to be videotaped], Use of physical and					
_	computer models to lecture, Visit to Industry, Min of 2 lectures by industry						
experts.					1		
Laborate	NAW.						
Laborato 1. St	•	ly (different types)					
	 Study of chassis and body (different types). Assembling and disassembling of gear box (different types). 						
	_	ropeller shaft, slip joint and universal joint.	•	30	2		
	_	mbling of steering box (different types).					

- 5. Assembling and disassembling of differential and rear axle.
- 6. Assembling and disassembling of clutch.
- 7. Determination of camber, caster, toe-in/toe-out.
- 8. Assembling and disassembling of components of hydraulic brake system.
- 9. Assembling and disassembling of components of air brake system.
- 10. Study on advanced technologies (ABS, EBD, VVT, Hybrid).

1. William. H. Crouse (2006), Automotive Mechanics, 10th Edition, McGraw-Hill.

- 1. David A. Corolla (2009), Automotive Engineering: Powertrain, Chassis System and Vehicle Body, Butterworth-Heinemann Publishing Ltd.
- 2. Richard Stone, Jeffrey K. Ball (2004), Automotive Engineering Fundamentals" SAE International
- 3. Bosch Automotive Hand Book (2007), 6th Edition, SAE Publications.
- 4. Kirpal Singh (2012), Automobile Engineering, Vol.1, Standard Publishers.
- 5. Kirpal Singh (2011), Automobile Engineering, Vol.2, Standard Publishers.
- 6. N. K. Giri (2008), Automobile Mechanics, 8th Edition, Khanna Publishers.

o. 11. 12. Off (2000), Futomobile Mechanics, o Edition, Rhama Luminers.						
Mode of Evaluation	Digital Assignments / Surprise Tests / Seminars /					
	CATs /FAT					
Recommended by the Board of Studies on:	3.3.2016					
Date of Approval by the Academic Council:	18.3.2016					
Compiled by	Prof. K. Ravi					
	Prof. R. Sivakumar					

Course C	ode : MEE3008							
Due need	site - MEE2004	MECHANICAL VIBRATIONS	L	Т	P	J	C	
Pre-requi	site : MEE2004	WECHANICAL VIDRATIONS	2	1	2	0	4	
Module		Topics	L Hrs		rs	SLO		
1	Fundamentals	of Vibration - Harmonic motion- periodic motion-						
	coordinates syste	em- types of vibration- vibration terminology- Duhamel's se response function - Virtual work - Euler and Lagrange's		3		1,2	2,4,6	
2	Single degree of freedom System - Free and forced vibration with and without elastically coupled viscous dampers – System identification from frequency response - Transient vibration - Laplace transformation formulation.			3		1,2	2,4,6	
3	_	Freedom System - Free vibration of spring- coupled system system - Forced vibration - Vibration Absorber - Vibration		3		1,2	2,4,6	
4	Multi Degree of Freedom System -Normal mode of vibration for free and forced vibration systems - Derivation of equation, calculation of natural frequencies by Rayleigh, Stodala, matrix, matrix iteration and Holzer methods.				4		1,2,4,6	
5	Eigen value and	perties of vibrating system - Flexiblity matrix and stiffness matrix - n value and Eigen vector — Orthogonal properties - Modal matrix - al analysis - Forced vibration by matrix inversion - Modal damping in ad vibration.				1,2	2,4,6	
6	Vibration of strir	ntinuous Systems - Systems governed by wave equations - ngs - Vibration of rods - Euler's equation for beams - Effect and shear deformation.		5		1,2	2,4,6	
7	Vibration exciter	Methods in Vibration Analysis - Vibration instruments - s Measuring Devices - Analysis - Vibration Tests -Free and tests. Examples of vibration tests - Industrial case studies.		5		1,2	2,4,6	
8	Contemporary 1	Discussion		2			2	
		Total Lecture Hours m, [Lecture to be videotaped], Use of physical and computer adustry, Min of 2 lectures by industry experts		30				
Tutorial Tutoria	al class for Module al class for Module	e-1 (2 Hours)		15		1,2,	4,6	
Tutoria Tutoria Tutoria Tutoria	al class for Module al class for Module al class for Module al class for Module al class for Module	e-3 (2 Hours) e-4 (2 Hours) e-5 (2 Hours) e-6 (2 Hours)						
Laborator 1. De ma 2. Es	y etermination of the aterials.	acceleration due to gravity using free vibration of different stiffness and natural frequency of a spring -mass system		30)	1,2,4 14	1,6,	

- 3. Free Vibration analysis of Cantilever beam.
- 4. Forced vibration analysis of Cantilever beam subjected to harmonic excitation.
- 5. Determining damping ratio of a given viscous fluid.
- 6. Estimation of the moment of inertia of a disc using torsional vibration.
- 7. Estimation of natural frequency of a beam with negligible damping.
- 8. Calculation of the natural frequency of a Tapered beam.
- **9.** Modal analysis of simply supported structure using FE software and comparison with exact solution.

1. S.S. Rao (2011), Mechanical Vibrations, 5th Edition, Pearson Education.

- 1. Dukkipati RV (2012), Advanced Mechanical Vibrations, Narosa Publications.
- 2. Kelly SG (2013), Mechanical Vibrations, Mcgraw Hill(India) Ltd.
- 3. W.T. Thomson (2013), Theory of Vibration with Applications, 5th Edition, Prentice Hall.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. R. Manoharan
	Prof. Kannan

	ode: MEE3010	ROBOT DYNAMICS AND APPLICATIONS	L	Т	P	J	C
Pre-requisite : MEE2004		ROBOT DINAMICS AND AFFLICATIONS	3	0	0	0	3
Module		Topics	I	L Hrs		SLO	
1	Basic classifications of	Robot manipulator - Components of Industrial robot – ations – DOF of serial and parallel manipulator – f industrial robots – Singularity in robot work envelop – duction to redundant manipulator.		6		1	,2
2	matrices - Forward	ics - Representing Position and orientation – Homogeneous and kinematics – Inverse Kinematics – Denavit hartenberg r two link and three link planner.		6		1,	5,7
3	angular and linea	atics - Velocity propagation — Velocity transformation — ar velocity - Static force analysis — Derivation of Jacobian — s and acceleration — wrist and arm singularity.		6		1,	5,7
4		es - Euler-Lagrange Equations – equation of motion – erse dynamics – properties of robot dynamics equations for k planner.		6		1,	5,7
5		ning - Trajectory Vs path planning — Cartesian space and polation — third and fifth polynomial equation for trajectory		6		1,	5,7
6		control - Disturbance rejection – PID control – Computer Adaptive control – Feedback linearization for under actuated		6		1,	5,7
7	Industrial appl Loading and Unl Social robots - I	ication - Welding - Assembly - Material handling - oading - Pressing - fettling - painting. Mobile robot - types of wheeled mobile robot - Underwater oot - service robot - surgical robot.		7		1	,2
8	Contemporary	Discussion		2			2
		m, [Lecture to be videotaped], Use of physical and computer adustry, Min of 2 lectures by industry experts.		45			

1. Mark W. Spong, Seth Hutchinson, and M. Vidyasagar (2008), Robot Dynamics and Control, John Wiley & Sons.

- 1. S. R. Deb, SankhaDeb (2009), Robotics Technology And Flexible Automation, McGraw Hill Edition.
- 2. Fu, K.S., Gonzalez, R.C. and Lee, C.S.G. (2008), "Robotics: Sensing, Vision and Intelligence", Tata McGraw-Hill, New Delhi.
- 3. Craig, John. J. (2002), Introduction to Robotics: Mechanics and Control, Second Edition, Pearson Education, New Delhi
- 4. Niku, Saeed.B (2005), Introduction to Robotics: Analysis, Systems, Applications, Prentice Hall of India Pvt. Ltd., New Delhi.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT

Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. G. Kalaiarassan
	Prof. Arockia Selvakumar

Course C	ode : MEE4001						
Pre-requi	site : MEE2006	TOOL DESIGN	L	T		J	C
24.11.		m t	3	0		4	4
Module	Topics		_		Irs		LO
1	Tool Design Object requirements- Standa and Tolerances - T Materials- Carbides, Designing with relati			7			, 6, 7
2	- Design of single	Tools - Metal cutting process - Selection of tool materials point and multipoint cutting tool - Form tools, Drills, ches and chip breakers – Problems on design of single ally.		6)	1	, 5, 9
3	methods and devices	ping Methods - Basic Principles of location - Locating s - Principles of clamping - Mechanical, Pneumatic and - Clamping force analysis – Design problems.		6)		, 6, , 12
4	drill jigs - Drill bush	es of drill jigs - General considerations in the design of ings - Types, methods of construction - Simple designs exes, Post, Angle plate, Turnovers and Pot Jigs.		6)	5	, 6, 8
5	_	- principles - Types of fixtures - Fixtures for machine, Boring, Broaching and grinding - Assembly fixtures - ing fixtures.		6	j	5	, 6, 8
6	Clearance and cuttin	pol Die - Types of Dies – Method of Die operation—g force calculations- Blanking and Piercing die design – ad pressure pads- Presswork materials – Strip layout – Piercing.		6	j	1,	, 14
7	Design of Forming Drawing dies- Desig	Dies - Bending dies – Forging dies – Extrusion dies - n and drafting		6)	4	5,6
8	Contemporary Disc			2)		2
	Flipped Class Room, [I	Total Lecture Hours Lecture to be videotaped], Use of physical and computer try, Min of 2 lectures by industry experts.		45		•	
• Co • Do • As Sample p 1. To 2. To 3. To 4. To 5. To 6. To	oncepts studied should own to earth application sessment on a continu- rojects: design a blanking pure design a stripper and design a forming die design an angular mile design a drill jig for a	and innovative idea should have been attempted. Sous basis with a minimum of 3 reviews. The and die for a given component. The plate. The sheet metal bending. The shift of machining a component. The given component. The die for the given dimension of pipe.	[No con Ho	nta	ct	5,0	3,4, 6,8, ,17,

- 8. To design the milling fixture.
- 9. To design a Broaching fixture.
- 10. To design a friction welding fixture.

1. Donaldson C., Lecain G.H. and Goold V.C. (2012), Tool Design, 4th edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi.

- 1. E.G.Hoffman (2004), Jig and Fixture Design, Thomson Asia Pvt Ltd, Singapore.
- 2. Prakash Hiralal Joshi (2000), Tooling data, Wheeler Publishing.
- 3. Venkataraman K. (2005), Design of Jigs, Fixtures and Press tools, TMH.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. M. Anthony Xavior
	Prof. Jeyapandiarajan
	Prof. Christo Michael

Course C	ode : MEE4002					
Pre-requi	site : MEE2006	ADVANCED MACHINING PROCESSES	L			C
				0 (3
Module		Topics	LH		Sl	LO
1	Introduction to Advanced machining Processes : Need and classification of non-traditional machining processes – Material removal in traditional and non-traditional machining process - considerations in process selection.				2,6	
2	Cold cutting process: Abrasive Jet Machining (AJM), Water Jet Machining (WJM) and Abrasive Water Jet Machining (AWJM) - Basic principles, process variables, process Mechanism of metal removal, applications and limitations.			3		6,14
3	Ultrasonic machining (UM): Working principle, Mechanism of metal removal, Theory of Shaw, Elements of the processes, Tool feed mechanism, Effect of process parameters – Application, Limitation and case studies.				2,6,	14
4	High Energy Be Beam Machining Machining (IBM	eam Machining: Laser Beam Machining (LBM) – Electron g (EBM) – Plasma Beam Machining (PBM) - Ion Beam I) – Mechanism of metal removal, Process characteristics, rface quality, Application.	4		2,5,	6
5	Electric Discharge Machining (EDM) — Theory of EDM, Working principle, Pulse generator circuit — RC and Controlled pulse generator—Analysis of RC circuit — Selection of process parameters, tool electrode dielectric fluid, Machining characteristics of spark eroded surface — Recendevelopment in EDM process — Wire Electrical discharge machining (WEDM) — working principle, process variables, characteristics applications.				1,2,6,14	
6	- Fundamental p Electro Chemica Mechanism of	Clectro Chemical Machining Process: Chemical machining rinciple, types of chemical machining, maskants, etchants - l Machining (ECM) – Theory of ECM – Working principle, metal removal, Tool design, Process characteristics – tations and applications.	3		1,2,	6,14
7	Electrolytic Mad Drilling – Electro Electro Chemic Electrical Disch Grinding (EDDC capabilities and a Advanced Finis Abrasive Finishin Mechanical Polis	hing Process: Electro Chemical Drilling – Shaped Tube chining – Electrostream Drilling – Electro Chemical Jet to Chemical Deburring - Electro Chemical Grinding (ECG) – al Honing (ECH) – Electrochemical super finishing – large Grinding (EDG) – Electrical Discharge Diamond G) - Electro Chemical Discharge Grinding (ECDG) – Process applications. hing Process: Abrasive Flow Machining (AFM) – Magnetic Ing (MAF) – Magnetorheological Finishing (MRH) - Chemo Shing (CMP) – Working principle – Mechanism of material the quality – Applications.	7		1,2,	6,14
8	Contemporary		2		2	
		Total Lecture Hours m, [Lecture to be videotaped], Use of physical and computer adustry, Min of 2 lectures by industry experts.	30	0		
Project # Generall	ly a team project o		60 [Nor			,9,11, 17,18

	# Dow	n to earth application and innovative idea should have been attempted.	hrs]				
	# Repo						
	# Assessment on a continuous basis with a min of 3 reviews.						
Sample Projects:							
	1.	To evaluate the machinability of difficult to machine materials and super alloys					
		using any of the advanced machining processes.					
	2.	To study the surface integrity of the electric discharge machined parts by					
		analyzing the surface finish, surface and subsurface cracks, heat affected zone,					
		etc.					
	3.	To analyse the geometry of small holes drilled by spark erosion machining using					
		coordinate measuring machine and video measurement system.		ļ			
	4.	Development of new attachments for enhancing the utility of EDM and Wire					
		EDM machines beyond their intended purpose. (e.g. orbital EDM, wire EDM					
		turning, Electric discharge grinding, etc.)					
	5.	Sustainable manufacturing practices in advanced machining (e.g. near dry/dry					
		EDM).					
	6.	Analyze the surface characteristics of Electro Chemical Machined component.					
	7.	To evaluate the performance of new wire material in wire-EDM.					
	8.	Analyse the surface characteristics of components machined using advanced					
		finishing process.					
	1		1	1			

1. H. El-Hofy (2005), Advanced Machining Processes, McGraw-Hill, New York.

Reference Books

1. V. K. Jain (2002), Advanced Machining Processes, Allied publishers Pvt. Ltd.

Mode of Evaluation	Digital Assignments /Surprise Test /Seminars /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. P. Kuppan
	Prof. Giridharan

Course Co	ode : MEE4003			
Pre-requi	site: MEE2006 MICRO AND NANO MACHINING	L	T P	, J C
110 roqui		3	0	0 0 3
Module	Topics	L	Hrs	SLO
1	Introduction to Micro and Nano machining - Classification and types machining processes, Fundamentals of Micro and Nano machining processes, Nano materials and their applications in various industrial applications.	ng	4	2
2	Traditional Micro and Nano machining Processes - Theory micromachining, Operating principles and process parameters of Mic turning, Micro-milling, Micro-grinding, Applications and Limitations micro machining.	ro	6	17
3	Advanced Mechanical Micro-Nano Machining processes – Introduction Classification of advanced Mechanical Micro - Nano Machining process Operating principles and process parameters of Abrasive Jet Micromachini (AJM), Water jet micro machining (WJM), Abrasive Water Jet Machini (AWJM), Ultrasonic Micromachining (USM), Abrasive Flow Nano finishing Magnetic Abrasive Nano finishing.	es, ng ng	6	2
4	Advanced Thermo-electric Micro-Nano machining Processes - Operation principles and process parameters of Electric Discharge Micromachinin Electric Discharge Grinding and Electric Discharge Diamond Grinding, W Electric Discharge Micromachining.	ıg,	6	17
5	High Energy Advanced Thermo-electric Micro-Nano machini Processes - Operating principles and process parameters of Laser Bea Micromachining (LBM), Electron Beam Micromachining (EBM), Focus Ion Beam Machining (IBM)	ım	5	2
6	Advanced Electro-chemical Micro-Nano Machining Processes Operating principles and process parameters of Electrochemical Micro Grinding, Electro stream Microfilling, Electrochemical Micro deburring.		6	2
7	Modern Finishing Processes- Advanced finishing processes (AFP abrasive flow machining (AFM), magnetic abrasive finishing (MAI magnetorheological finishing (MRF), magnetorheological abrasive flog finishing (MRAFF), magnetic float polishing (MFP), elastic emissis machining (EEM), ion beam machining (IBM), and chemical mechanic polishing (CMP). MEMS and Actuators - Sensors and Actuators, MEMs, Wet and Etching-Surface Micromachining, Metrology For Micro manufacture Products.	F), ow on cal	10	17
8	Contemporary Discussion		2	2
# Mode: F	Total Lecture Hour Flipped Class Room, [Lecture to be videotaped], Use of physical and comput lecture, Visit to Industry and equipment, Min of 2 lectures by industry		15	

1. V. K. Jain (2007), Advanced Machining Processes, Allied Publishers Private Limited, New Delhi.

Reference Books

1. V. K. Jain (2014) "Introduction to Micromachining", Narosa, Publishers, New Delhi.

- 2. Mohamed Gad-el-Hak (2005) "MEMS Introduction and Fundamentals", CRC Press.
- 3. J. Paulo Davim, Mark J. Jackson (2008) "Nano and Micromachining", John Wiley & Sons.
- 4. Groover, M.P. (2007) "Fundamentals of modern manufacturing processes Materials, Processes and Systems", 3rd Edition, John Wiley and Sons Inc.,
- 5. Abdel, H. and El -Hofy, G (2005) "Advanced Machining Processes", McGrawhill, USA.

Mode of Evaluation	Digital Assignments /Surprise Test /Seminars
	/CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. B. Venkateshwaralu
	Prof. Giridharan

Course C	ode : MEE4005							
Pre-requisite : MEE2006 SURFACE ENGINEERING		SURFACE ENGINEERING	L	T		J	C	
Module Topics		3 0 0 L Hrs			0 3 SLO			
1	Fundamental of surface engineering – Introduction - Surface dependent properties and failures of engineering components. Surface engineering – Scope, Classification, definition and general principles.			7			1, 2	
2	Conventional surface engineering - Cleaning, pickling, etching, grinding, polishing and diffusion process - carburizing, nitriding - Electroless and Electroplating - Anodization and Electrophoretic deposition.			6			1, 2	
3	Advanced Surface engineering practices - Thermal spray technologies - introduction - APS and HVOF - Effect of process parameters on coating properties - Cold spraying , warm spraying and Solution plasma spraying.			6			1,2	
4	Laser surface modification - Laser hardening - Laser cladding - Laser texturing.			6				
5	PVD and CVD Technologies - Evaporation –thermal and Electron beam - PVD, RF- DC, EBM, CVD-HFCVD, PECVD and ion implantation.			6			2,5,6	
6	Characterization of coatings and surfaces - Thickness and Roughness - Porosity and Adhesion - SEM and AFM - Raman and XPS - XRD - phases and stresses - Scratch and wear testing.			6			1,2	
7	Nanocoatings – Importance and applications – Preparation of nano-coatings.			6		2,5,6		
8	Contemporary discussion			2		2		
Total Lecture Hours # Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts.				45				

1. M.Ohring (2005), The Materials Science of Thin films, Academic Press Inc.

- 1. Kenneth Budinski (2009), Engineering Materials Properties and Selection, 9th Edition, Prentice Hall.
- 2. Peter Martin (2011), Introduction to Surface Engineering and Functionally Engineered Materials:, Interscience Wiley.
- 3. Steven Abbott and Nigel MacDermid (2013), Nanocoatings: Principles and Practice: From Research to Production, DEStech Publications.

Mode of Evaluation	Digital Assignments /Surprise Test /Seminars				
	/CAT/FAT				
Recommended by the Board of Studies on:	3.3.2016				
Date of Approval by the Academic Council:	18.3.2016				
Compiled by	Prof. Geetha Manivasagam				
	Dr. Narayanan R				

Course	Code : MEE4006							
Pre-requisite : MEE1004,		COMPUTATIONAL FLUID DYNAMICS	L	Γ	P J	C		
I	MEE2005		2	1	2 0	4		
Module	Topics		LH	Irs	SLO			
1	Introduction: CFI	overview - Applications of CFD.	1		2			
2	Governing Equat	ions of Fluid Dynamics and Heat Transfer:	5		1,2			
	Models of Flow	 Conservation and Non-conservation form - 						
		ntum and Energy Equation in conservation and						
		orm (differential equations only) - Characteristics						
		parabolic and hyperbolic.						
3		asic aspects of Discretization - Comparison of	7		1,2,5	5,9		
		nite volume and finite element techniques.						
		method: Forward, Backward and Central						
		, Transient one and two dimensional conduction -						
	error estimation.	nd semi-implicit methods – Stability analysis and						
4		on: Choice of grid, grid oriented velocity	5		1,2			
7	components, Car		3		1,2			
	collocated arranger	, , ,						
5		iffusion: Steady one-dimensional convection and	4		1,2,5	5.9		
		difference, upwind, quick, exponential, hybrid			, ,-	,-		
		emes- False diffusion, SIMPLE – Algorithm.						
6		ADI Technique - Pressure correction Technique	2	,	2			
	– SIMPLE algorithm.							
7	<i>U</i>		4		2			
		lds Time Averaging – Reynolds Time Averaged						
	conservation equations – Boussinesq approach – One equation k - 8							
8	model. 8 Contemporary Discussion		2		2			
0	Contemporary Di	Total Lecture Hours	30					
# Mode:	Flipped Class Room	[Lecture to be videotaped], Use of physical and		,				
	computer models to lecture, Visit to Industry, Min of 2 lectures by industry							
experts.								
Tutorials		15		1,2,9)			
	l or group exercise							
	Tutorial class for Module 3 (4 hours)							
	Tutorial class for Module 5 (4 hours)							
	Tutorial class for Module 6&7 (7 hours)							
(Case	(Case studies)							
Laborato	orv		30					
1. Modeling of simple and complex geometries.								
		simple geometries like square duct, circular pipe.						
	rid hexa meshing for				1	7		
	_	or simple geometries including fluid and solid			1	1		
	nains.							
_	•	NT – Case setup and analyzing for already mesh						
gen	erated model.							

- 6. Steady state temperature distribution in a rectangular plate (ANSYS Fluent and FDM).
- 7. Diffuser for a hydropower turbine.
- 8. Flow over an airfoil Laminar and turbulent flow.
- 9. Supersonic flow past a wedge in a channel.
- 10. Exercise (for each student different exercise) from FLUENT tutorial (case setup, analyzing, and post-processing).

1. John D Anderson (2012), Computational Fluid Dynamics – The Basics with Applications , McGraw Hill, New York.

- 1. Chung T.J (2014), Computational Fluid Dynamics, Cambridge University Press, London.
- 2. David C Wilcox (2006), Turbulence Modeling for CFD, DCW Industries, Inc.
- 3. Versteeg H.K and Malalasekara W (2008), An Introduction to Computational Fluid Dynamics The Finite Volume Method, Longman.
- 4. Muralidhar K and Sundararajan T (2014), Computational Fluid Flow and Heat Transfer , Narosa Publications, New Delhi.

r defications, riew Benn.					
Mode of Evaluation	Digital Assignments / Surprise Tests / Seminars /				
	CATs /FAT				
Recommended by the Board of Studies on:	3.3.2016				
Date of Approval by the Academic Council:	18.3.2016				
Compiled by	Prof. A. Satheesh				
	Prof. R. Sivakumar				

Course Co	Course Code : MEE4007							
Pre-requisite: MEE2004/ MEE3001 DESIGN OF TRANSMISSION SYSTEMS		L	T	P	J	C		
			2	1	0	4	4	
Module	Module Topics			Hrs	;	SL	O	
1	Flexible transmis	sion elements: Introduction to transmission systems –		7		1,2	2,5,	
	factors -materials selection –stresses – belt &chain drives, Design of flat and					6		
	V- belts, Design of	chain drives, Design of rope drives.						
2		gs - Lubrication, Design of journal bearings - using		4			2,5,	
		er – using McKee's equations, Selection of rolling contact				9,1	1	
	bearings – problem							
3		ars - Introduction - gear kinematics – forces & stresses –		4		1,5,6,		
		election – design of spur gears.			_	9,1		
4	O	gears- Introduction – types - gear kinematics – virtual		4		1,5,6,		
<i>E</i>		orces & stresses – factors – design of helical gears.		2	_	9,17		
5		gears - Introduction – classifications - gear kinematics –		3		1,5,6, 9,17		
6		bevel gears – force analysis. gears - Introduction – classifications – applications –		3	_	_		
U	efficiency – design			3		1,5,6,		
7	Design of gear h	oxes- Introduction – Types – Components – gear box		3		9,17		
'		ion ratio – kinematic arrangement – ray diagram – design		3		9,1		
	of multi speed gear					18	-,	
8	Contemporary Discussion			2		2		
	1 1	Total Lecture Hours	(30	- 1			
# Mode: I	ndividual Exercises a	and Team Exercises based on computer aided design of						
transmissi	on systems, Online q	uizzes, Online discussion forums, Open ended						
assignmen	ts.							
# A minim	num of 2 problems to	be worked out by students in every tutorial class.						
Another 2	problems per Tutoria	al Class to be given as home work.						
Futorial			-	15		1,5	,6,	
	class for Module 1 (•				9,1	8	
	class for Module 2 (•						
	class for Module 3 (•						
Tutorial class for Module 4 (2 hours)								
	class for Module 5 (,						
	Tutorial class for Module 6 (2 hours) Tutorial class for Module 7 (3 hours)							
Tutoriar	liass for Module / (3 flours)						
Project			60	1		2,6	7	
 Generally a team project [Maximum of 3 members only]. 				on-			,15,	
 Concepts studied should have been used. 			_	ntac	t		,20	
 Down to earth application and innovative idea should have been attempted. 				urs]		,		
	 Assessment on a continuous basis with a minimum of 3 reviews. 			- 1				
1 7 713	32 D 20 1							
Sample m	Sample projects:							
	1. A full journal bearing has a journal with a diameter of 50 mm and a unilateral							
		The bushing bore has a diameter of 50.06 mm and a						
		5 mm. The bushing is 25 mm long and support a load of						

2590 N at a speed of 800 rev/min. Find the minimum film thickness, the power loss and the total lubricant flow if the average film temperature is 54°C and SAE 20 lubricant is used. The tightest assembly is to be analysed. Show the pressure distribution by using the numerical simulation software (Like MATLAB, C language etc).

- 2. Design the spur pinion to transmit 15 kW at a speed of 600 rpm. The pinion is cut on the 20° full-depth system and has a module of 5 mm and 16 teeth. Find a suitable face width based on an allowable stress of 70 MPa. Ensure design safety by static and dynamic analysis with the help of simulation software (ANSYS, SolidWorks etc.).
- 3. Design the spur gear blank to transmit 20 kW at a speed of 400 rpm and has a module of 5 mm. compare the solid gear blank and rimmed gear blank strengths. Ensure design safety by static and dynamic analysis with the help of simulation software (ANSYS, SolidWorks etc.).
- 4. Design the spur gear blank to transmit 20 kW at a speed of 400 rpm and has a module of 5 mm. Compare the bolted gear blank and welded gear blank strengths. Ensure design safety by static and dynamic analysis with the help of simulation software (ANSYS, SolidWorks etc.).
- 5. Design the steel spur pinion and gear to transmit 25 kW at a speed of 1000 rpm and has a module of 5 mm. Ensure design safety by static and dynamic analysis with the help simulation software (ANSYS, SolidWorks etc.).
- 6. Design the steel spur pinion and gear to transmit 25 kW at a speed of 1000 rpm and has a module of 5 mm. Show the stresses developed by normal force in gear tooth and identify the highest stress locations. Identify the most suitable material for the gear drive.
- 7. In a turbine drive, 300 kW power is transmitted using a pair of double helical. gear. The pinion speed is 2950 rpm and that of the gear is about 816.5 rpm. There are no space constraints on the gear drive. Selecting suitable materials, design the pinion and the gear to last for 10⁸ cycles. Design the gearbox completely. Also, ensure the design by using simulation software.

Text Book

1. Joseph Edward Shigley and Charles, R. Mischke (2008), Mechanical Engineering Design, McGraw –Hill International Editions, 8th edition.

Reference Books

- 1. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger (2003), Design of Machine Elements, 8th Edition, Printice Hall.
- 2. Juvinal, R.C and Kurt M.Marshek. (2012), Machine component design, John Wiley.
- 3. V.B. Bhandari (2010) Design of Machine elements, Tata Mc Graw Hill, 3rd Edition.
- 4. Robert L. Norton (2013), Machine Design, Pearson Higher Education.
- 5. Robert C. Juvinall and Kurt M. Marshek (2005), Fundamentals of Machine Design, 4th Edition, Wiley.
- 6. B.J. Hamrock, and S.R. Schmid (2005), Fundamentals of Machine Elements, Tata McGraw Hill, New Delhi.

7. Design Data (2010), PSG College of Technology, DPV Printers, Coimbatore.

Mode of Evaluation	Digital Assignments /Surprise Test /CAT/FAT
Recommended by the Board of Studies on:	3.3.2016
Date of Approval by the Academic Council:	18.3.2016
Compiled by	Prof. Ramesh Babu Vemuluri
	Prof. Gobinath