Lab 4

Name: Huiyu Hu

```
#CHANGE WORKING DIRECTORY
setwd("/Users/huiyuhu/Desktop/Study/UCLA_Biostat/BIOSTAT234/lab/Lab 4")
getwd()
## [1] "/Users/huiyuhu/Desktop/Study/UCLA_Biostat/BIOSTAT234/lab/Lab 4"
#LOAD NECESSARY PACKAGES
library(R2jags)
## Loading required package: rjags
## Loading required package: coda
## Linked to JAGS 4.3.0
## Loaded modules: basemod, bugs
##
## Attaching package: 'R2jags'
## The following object is masked from 'package:coda':
##
##
       traceplot
load("AddBurnin.RData")
library(lattice)
library(knitr)
# useful function
mysummary = function(invector) {
c(mean(invector), sd(invector), quantile(invector, .025),
   quantile(invector, .975),
    length(invector[invector>0])/length(invector))
}
# load the data.
load("lab4 data.RData")
```

```
#Create the model
# sink("lab4model.txt")
# cat("
# model
#
           {
                    for( i in 1 : 64 ) {
#
                             for( j in 1 : 4 ) {
#
                                 s[i, j] < -4*(i-1)+j
#
                                 y[i, j] ~ dnorm(mu[i , j],tau.e)
#
                                     mu[i, j] \leftarrow inprod(x[s[i,j],],alpha[])+beta[i]
#
#
                             beta[i]~dnorm(0, tau.b)
                    }
# for( k in 1:8) {
                    alpha[k]~dnorm(m[k], varinv[k])
#
                    alphasign[k] <- step(alpha[k])</pre>
# }
#
                    tau.e ~ dgamma(ea,eb)
#
                    tau.b~dgamma(ba,bb)
#
#
                    sigma <- 1 /sqrt( tau.e)</pre>
                    sqrtD <- 1 /sqrt( tau.b)</pre>
#
                    rho <- sqrtD*sqrtD/(sigma*sigma + sqrtD *sqrtD)</pre>
#
#
           }
       ", fill = TRUE)
# sink()
```

```
## module glm loaded
```

```
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 245
## Unobserved stochastic nodes: 85
## Total graph size: 3256
##
## Initializing model
```

```
names(run1)
```

```
## [1] "model" "BUGSoutput" "parameters.to.save"
## [4] "model.file" "n.iter" "DIC"
```

```
Output1=AddBurnin(run1$BUGSoutput$sims.array,burnin=100,n.thin=1)
print(Output1$Burnin.Summary)
```

```
##
                                                  2.5%
                                                                        P > 0
                                                               97.5%
                     mu.vect
                                  sd.vect
## alpha[1]
                  3.13991168
                                            2.90082146
                                                         3.37577693 1.0000
                              0.12265553
## alpha[2]
                  0.32949375
                              0.17206185
                                           -0.01243767
                                                         0.65950190 0.9688
## alpha[3]
                                           -0.20161267
                                                         0.35291316 0.7084
                  0.07747821
                              0.14328781
                                                         0.29974675 0.5642
## alpha[4]
                  0.02451773
                              0.14610770
                                           -0.26539296
## alpha[5]
                 -0.07127580
                              0.14559454
                                           -0.35855445
                                                         0.21022848 0.3072
## alpha[6]
                 -0.23910454
                              0.14376971
                                           -0.52462382
                                                         0.03952644 0.0466
                                                         0.65377737 0.9978
## alpha[7]
                  0.38836439
                              0.13736935
                                            0.12411749
                              0.14851067
## alpha[8]
                 -0.32343569
                                           -0.61366522
                                                        -0.02624460 0.0164
                              0.0000000
                                            1.00000000
                                                         1.00000000 1.0000
## alphasign[1]
                  1.00000000
## alphasign[2]
                  0.96880000
                              0.17387526
                                            0.0000000
                                                         1.00000000 0.9688
## alphasign[3]
                  0.70840000
                              0.45454457
                                            0.00000000
                                                         1.00000000 0.7084
## alphasign[4]
                                            0.0000000
                                                         1.00000000 0.5642
                  0.56420000
                              0.49591082
## alphasign[5]
                  0.30720000
                              0.46137917
                                            0.0000000
                                                         1.00000000 0.3072
## alphasign[6]
                  0.04660000
                              0.21080163
                                            0.00000000
                                                         1.00000000 0.0466
                  0.99780000
                              0.04685722
                                            1.0000000
                                                         1.00000000 0.9978
## alphasign[7]
## alphasign[8]
                  0.01640000
                              0.12702073
                                            0.00000000
                                                         0.00000000 0.0164
                 -0.21409041
## beta[1]
                              0.22146941
                                           -0.65319245
                                                         0.21432333 0.1684
## beta[2]
                              0.22203640
                                           -0.86679294
                                                        -0.01381099 0.0226
                 -0.44706980
## beta[3]
                 -0.70175484
                              0.22506546
                                           -1.15067284
                                                        -0.25315208 0.0010
                                                         0.10469642 0.0586
## beta[4]
                 -0.44002733
                              0.28128124
                                           -0.98765792
## beta[5]
                  0.13898659
                              0.22534131
                                           -0.29991760
                                                         0.57844514 0.7308
## deviance
                253.82378759 13.72778552 229.04329447 282.42032430 1.0000
                                                         0.80098408 1.0000
## rho
                  0.71841913
                              0.04473987
                                            0.62339288
## sigma
                  0.40517581
                              0.02127233
                                            0.36655417
                                                         0.44781623 1.0000
## sqrtD
                                                         0.78487403 1.0000
                  0.65277619
                              0.06287705
                                            0.54021145
## tau.b
                  2.41238879
                              0.46575929
                                            1.62330483
                                                         3.42667113 1.0000
                                                         7.44258253 1.0000
## tau.e
                  6.14164538
                              0.64316357
                                            4.98655189
## y[4,3]
                                                         3.94614860 1.0000
                  3.02250112
                              0.48259079
                                            2.09578165
## y[4,4]
                  2.79114738
                              0.51207358
                                            1.78315205
                                                         3.81804720 1.0000
```

```
# sink("lab4Tmodel.txt")
# cat("
# model
           {
#
                    for( i in 1 : 64 ) {
#
                             for( j in 1 : 4 ) {
#
                                 s[i, j] < -4*(i-1)+j
#
                                 y[i, j] \sim dt(mu[i, j], tau.e, df1) # change to t
#
#
                                 mu[i, j] \leftarrow inprod(x[s[i,j],],alpha[])+beta[i]
#
                             }
#
                             beta[i]~dt(0, tau.b, df2) # change to t
#
                    }
# for( k in 1:8) {
                    alpha[k]~dnorm(m[k], varinv[k])
#
                    alphasign[k] <- step(alpha[k])</pre>
# }
                    df1 <- 1/invdf1
#
#
                    invdf1 \sim dunif(0, 0.5)
#
                    df2 <- 1/invdf2
#
                    invdf2 \sim dunif(0, 0.5)
#
                    tau.e ~ dgamma(ea,eb)
#
                    tau.b~dgamma(ba,bb)
#
#
                    sigma <- 1 /sqrt( tau.e)</pre>
#
                    sqrtD <- 1 /sqrt( tau.b)</pre>
#
                    rho <- sqrtD*sqrtD/(sigma*sigma + sqrtD *sqrtD)</pre>
#
           }
#
#
       ", fill = TRUE)
# sink()
```

```
# T
parameters = c("alpha", "alphasign", "tau.e", "tau.b", "sigma", "sqrtD", "rho", "beta[1:
5]", "y[4,3:4]", "df1", "df2")
run2 = jags(priordata, inits, parameters, "lab4Tmodel.txt", n.chains=5, n.iter=11000,
n.burnin=0, n.thin=1)
```

```
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 245
## Unobserved stochastic nodes: 87
## Total graph size: 3261
##
## Initializing model
```

```
Output2 = AddBurnin(run2$BUGSoutput$sims.array,burnin=1000,n.thin=1)
```

- 1. Turn in results from the t-model. Be sure to run sufficient iterations.
- a. How is the convergence? Show an illustrative autocorrelation function and time-series plot for two parameters of interest.

```
temp2= Output2$Burnin.sims.array
# par(mfrow = c(1,2))
# acf(temp2[,1,"alpha[2]"], main="")
# acf(temp2[1:5000,1,1], main="beta1", lag.max = 200)

# auto-correlation
par(mfrow=c(2,2))
acf(temp2[1:5000,1,3], main="Auto Correlation of Interaction AA", lag.max = 30)
acf(temp2[1:5000,1,4], main="Interaction AD", lag.max = 30)

plot(temp2[1:1000,1,3], main="Trace of Interaction AA", type ="1")
plot(temp2[1:1000,1,4], main="Interaction AD", type ="1")
```

Auto Correlation of Interaction AA

Interaction AD

femp2[1:1000, 1, 3] -0.2 0.1 0.4 0 200 400 600 800 1000 Index

Trace of Interaction AA

- The parameters shown above converge well.
- b. Turn in a table of results for the fixed effects, the two standard deviations sqrtD and □, and the two degrees of freedom parameters. Label rows appropriately and format the table carefully.

```
temp2 = Output2$Burnin.Summary
temp = Output1$Burnin.Summary
desired_rows = c(paste0("alpha[", 1:8, "]"), "sigma", "sqrtD", "df1", "df2")
table = round(temp2[desired_rows, ],3)
table2 = temp[c(paste0("alpha[", 1:8, "]"), "sigma", "sqrtD"), ]
colnames(table2) = c("mean", "sd","2.5%", "97.5%", "P>0")
kable(table)
```

	mu.vect	sd.vect	2.5%	97.5%	P>0
alpha[1]	3.093	0.112	2.878	3.317	1.000
alpha[2]	0.277	0.165	-0.046	0.597	0.954
alpha[3]	0.060	0.115	-0.165	0.287	0.703
alpha[4]	0.120	0.141	-0.159	0.393	0.805
alpha[5]	-0.067	0.113	-0.290	0.151	0.276
alpha[6]	-0.240	0.121	-0.480	0.001	0.025
alpha[7]	0.202	0.155	-0.090	0.518	0.911

	mu.vect	sd.vect	2.5%	97.5%	P>0
alpha[8]	-0.260	0.125	-0.507	-0.016	0.018
sigma	0.256	0.025	0.212	0.309	1.000
sqrtD	0.561	0.073	0.434	0.717	1.000
df1	3.092	0.758	2.097	4.951	1.000
df2	14.006	558.398	2.294	37.078	1.000
2.	the		normal	odel	he results from the t model: What changes are there? In
Compare	result	the	m	to t	particular, what scientific conclusions change?

- According to the result, most of the parameter do not have big difference, expect alpha[7] (Normal: 0.39 -> t-model: 0.204). Therefore, the benefit of teaching distractors to distract may be less significant than estimated by the normal model.
- 3. Reproduce figures 1-5 (see below for the normal model figures) for your t model. Label your figures appropriately.

```
out.q3 = Output2$Burnin.sims.matrix
# Plot 1
plot(density((out.q3[,"y[4,3]"])), xlim = c(0, 8), ylim = c(0, 1.5), col = "blue", lty =
2, xlab = "ln(time) (seconds)", main = "")
lines(density((out.q3[,"y[4,4]"])), col = "green", lty = 1)
legend("topright", col = c("blue","green"), legend = c('y[4,3]','y[4,4]'), bty = 'n', lt
y = c(2,1))
title("1. Predictions")
```

1. Predictions

2. Baseline


```
# Plot 3
# Treatment effect for attenders
# Log scale
par(mfrow = c(1,2), oma = c(0,0,4,0), mar = c(5,3,1,0))
plot(density((out.q3[, "alpha[3]"])), main = "Effects on attenders", lty = 1)
lines(density((out.q3[, "alpha[4]"])), col = "red", lty = 2)
lines(density((out.q3[, "alpha[5]"])), col = "blue", lty = 4)
plot(density((out.q3[, "alpha[6]"])), main = "Effects on distracters", lty = 1, xlim = c
(-1, 1.5))
lines(density((out.q3[, "alpha[6]"])), col = "red", lty = 2)
lines(density((out.q3[, "alpha[8]"])), col = "blue", lty = 4)
legend("topright", col = c("black", "red", "blue"), legend = c("attend", "distract", "nu
ll"), lty = c(1,2,4), bty = "n", cex = 0.8)
title("3. Treatment effect ", outer = T)
```

3. Treatment effect


```
# Plot 4
# Multiplicative scale
par(mfrow = c(1,2), oma = c(0,0,4,0), mar = c(5,3,1,0))
plot(density(exp(out.q3[, "alpha[3]"])), main = "Effects on attenders", xlab = "seconds"
, ylim = c(0, 4), lty = 1)
lines(density(exp(out.q3[, "alpha[4]"])), col = "red", lty = 2)
lines(density(exp(out.q3[, "alpha[5]"])), col = "blue", lty = 4)
plot(density(exp(out.q3[, "alpha[6]"])), main = "Effects on distracters", xlab = "second s", xlim = c(0,2.5), lty = 1)
lines(density(exp(out.q3[, "alpha[7]"])), col = "red", lty = 2)
lines(density(exp(out.q3[, "alpha[8]"])), col = "blue", lty = 4)
title("4. Treatment effect by personality", outer = T)
legend("topright", col = c("black", "red", "blue"), legend = c("attend", "distract", "nu
ll"), lty = c(1,2,4), bty = "n", cex = 0.8)
```

4. Treatment effect by personality


```
# Plot 5
# Difference
par(mfrow = c(1,2), oma = c(0,0,4,0), mar = c(5,3,1,0))
plot(density((out.q3[, "alpha[4]"]-out.q3[,"alpha[3]"])), main = "Differences for attend
ers", xlab = "attenders", ylim = c(0, 3), lty = 1)
lines(density((out.q3[,"alpha[4]"]-out.q3[,"alpha[5]"])), col = "red", lty = 2)
lines(density((out.q3[,"alpha[3]"]-out.q3[,"alpha[5]"])), col = "blue", lty = 4)
legend("topleft", col = c("black", "red", "blue"), legend = c("D-A", "D-N", "A-N"), lty
= c(1,2,4), bty = "n", cex = 0.8)
plot(density((out.q3[, "alpha[7]"]-out.q3[,"alpha[6]"])), main = "Differences for distra
cter", xlab = "distracter", ylim = c(0, 2.5), xlim = c(-1.5, 1.75), lty = 1)
lines(density((out.q3[,"alpha[7]"]-out.q3[,"alpha[8]"])), col = "red", lty = 2)
lines(density((out.q3[,"alpha[6]"]-out.q3[,"alpha[8]"])), col = "blue", lty = 4)
legend("topleft", col = c("black", "red", "blue"), legend = c("D-A", "D-N", "A-N"), lty
= c(1,2,4), bty = "n", cex = 0.8)
title("5. Differences in treatment effect" ,outer = T)
```

5. Differences in treatment effect

- 4. Invent another prior for the df, and in one sentence explain its properties (ie support, mean, sd or other characteristics) and why it is better than the above prior.
- I suggust that df = Gamma(3969/200, 63/200), since the distribution has mean of 63 (df = n-1 for y in our dataset), also has sd of 200. It may become better since the mean will become closer to sample size and keep wide range of df.