Joint Object Detection and Viewpoint Estimation using CNN features

Carlos Guindel, David Martín and José M. Armingol cguindel@ing.uc3m.es

Intelligent Systems Laboratory · Universidad Carlos III de Madrid Wien · 28 June 2017

- Introduction
- Object detection
- Viewpoint estimation
- Results
- Conclusion

- Introduction
- Object detection
- Viewpoint estimation
- Results
- Conclusion

Situational awareness for vehicles

- Advanced Driver Assistance Systems (ADAS) and autonomous vehicles rely on a trustable on-board obstacle detection module.
- A precise classification of the obstacles enables accurate predictions of future traffic situations, including those involving VRU.
- Another significant cue that can be used to anticipate future events is the
 orientation of the objects moving on the ground plane.

- Introduction
- Object detection
- Viewpoint estimation
- Results
- Conclusion

Object detection

Traffic environments

- Diversity of agents
- Unstructured environment
- Faster R-CNN
 - End-to-end feature learning
 - Highly efficient
 - No prior constraints about the location of objects in the image
 - Meant for more than 21 classes

S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2016.

Parameters are learned through a multi-task loss

Conv. features in these regions are pooled for **classification**

A **RPN** generates proposals wrt. a fixed set of anchors

Convolutional features computed **only once** per image

S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2016.

Fine-tuning for traffic environments

Optimized anchors

- Management of class imbalance
 - Information gain multinomial logistic loss for the class inference

$$L = L - \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \left(\frac{H_{0,0}}{0} \dots 0 \right)$$

$$= \lim_{n \to \infty} \left(\frac{H_{0,0}}{0} \dots 0 \right)$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

$$= \lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^{N} H_{l_n, k_n} \log(\hat{p}_{nkl_n})$$

- Introduction
- Object detection
- Viewpoint estimation
- Results
- Conclusion

Discrete viewpoint inference

N_b angle bins $\Theta_i \dots \Theta_{N_b}$

$$N_b = 8$$

Training: $\theta_{i_0} \rightarrow \Theta_i$

$$\Theta_i = \left\{ \theta \in [0, 2\pi) \mid \frac{2\pi}{N_b} \cdot i \le \theta < \frac{2\pi}{N_b} \cdot (i+1) \right\}$$

Inference output: $r \in \Delta^{N_b-1}$

$$\Delta^{N} = \left\{ x \in \mathbb{R}^{N+1} \mid \sum_{i=1}^{N+1} x_i = 1 \land \forall i \colon x_i \ge 0 \right\}$$

Final estimation: $\Theta_{i^*} \to \hat{\theta}$

$$\hat{\theta} = \frac{\pi(2i^* + 1)}{N_b}$$

CNN outputs

RPN

For each anchor:

- Objectness $a \in \{0,1\}$
- Predicted bounding box

$$b = (b_x, b_y, b_w, b_h)$$

Number of angle bins

Number of classes

Fast R-CNN

For each proposal:

Class

$$p = (p_0, \dots, p_K)$$

Bounding box refinement

$$t^{k} = (t_{x}^{k}, t_{y}^{k}, t_{w}^{k}, t_{h}^{k}) \text{ for } k = 0, \dots, K$$

Viewpoint

$$r^k = (r_0^k, \dots, r_{N_b}^k) \text{ for } k = 0, \dots, K$$

Per class

Loss function and training

- Approximate joint training strategy
- Unweighted muli-task loss with five components

- Introduction
- Object detection
- Viewpoint estimation
- Results
- Conclusion

Experiments

- On the KITTI Vision Benchmark Suite Object detection dataset
- Parameters:
 - Scale: 500 px. in height
 - 50k iter. $l_r = 0.001$ + 50k iter. $l_r = 0.0001$ + 50k iter. $l_r = 0.00001$
 - VGG16 architecture, initialized with ImageNet weights.

KITTI: A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite," in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3354–3361.

Experiments

- $N_b = 8$ (resolution: $\pi/4$ rad)
- Infogain matrix values:

Number of ocurrences of the less frequent class

Number of instances of class *k*

Evaluation criteria

- Average precision
- Average orientation similarity (performance of detection + orientation)

$$AOS = \frac{1}{11} \sum_{r \in \{0, 0.1, ..., 1\}} \max_{\tilde{r}: \tilde{r} \ge r} s(\tilde{r}) \qquad s(r) = \frac{1}{|\mathcal{D}(r)|} \sum_{i \in \mathcal{D}(r)} \frac{1 + \cos \Delta_{\theta}^{(i)}}{2} \delta_i$$

Minimum overlaps established by the KITTI benchmark

Results (KITTI submission: FRCNN+Or)

Detection (AP as %)	Easy	Moderate	Hard
Car	89.60	78.59	68.69
Pedestrian	72.21	56.99	53.72
Cyclist	68.81	55.80	50.52
mAP	76.87	63.79	57,64
SubCNN	84.52	77.14	64.44

- Slightly different (generally better) than the ones in the paper:
 - Used the whole KITTI training set
 - Trained only with Car, Pedestrian and Cyclist
 - Non-fixed weights (and bias) at the first convolutional layers

Det + Or (AOS as %)	Easy	Moderate	Hard
Car	88.93	77.8	67.87
Pedestrian	67.92	52.96	49.61
Cyclist	64.90	51.47	46.48
mAOS	73.92	60.74	54,65
SubCNN	80.37	72.85	65.45

SubCNN: Y. Xiang, W. Choi, Y. Lin and S. Savarese, "Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection," in IEEE Winter Conference on Applications of Computer Vision (WACV), 2017, pp. 924-933.

Comparison with other methods

TOP 10 **AOS** ranking · MODERATE difficulty · Only published methods

Global rankings (including unpublished methods): Car: 11st · Pedestrian: 9th · Cyclist: 10th

Comparison with other methods

*Average running time using an implementation based on py-faster-rcnn (Python & Caffe) and a NVIDIA **Titan Xp** kindly donated by NVIDIA Corporation

Sample test images

- Introduction
- Object detection
- Viewpoint estimation
- Results
- Conclusion

Conclusion

- Single-image object detection + orientation estimation in traffic scenes.
- The same convolutional features can be successfully used for both tasks.
- Results comparable with non-real-time, sophisticated approaches.
- Orientation is a step towards a real scene understanding.

Future work

Fine-grained orientation inference using the cross-entropy logistic loss

$$L = -\frac{1}{n} \sum_{n=1}^{n} [p_n \log \hat{p}_n + (1 - p_n) \log(1 - \hat{p}_n)]$$

- Improvements:
 - Network architecture
 - Methods to overcome the fixed-size receptive field

Continuously-evolving code at: https://github.com/cguindel/lsi-faster-rcnn

Thank you for your attention!

Carlos Guindel

cguindel@ing.uc3m.es

Intelligent Systems Laboratory · Universidad Carlos III de Madrid Wien · 28 June 2017

Precision change when introducing viewpoint

Detection (ΔAP as %)	Easy	Moderate	Hard
Car	+0,72	+0,47	+0,26
Pedestrian	-1,85	-2,47	-3,00
Cyclist	-12,16	-8,25	-8,11

Carlos Guindel · ICVES 2017

