Практическое занятие № 9

Выполнил: студент гр. 850701 Филипцов Д. А.

Тема: Оценка технологичности конструкции электронного блока ЭВС

Расчёт основных коэффициентов технологичности печатного модуля. Комплексный показатель технологичности

Задание

Определить коэффициенты технологичности:

- коэффициент автоматизации пайки электронных компонентов;
- коэффициент автоматизации установки ЭК, подлежащих пайке;
- коэффициент снижения трудоемкости сборки и монтажа;
- коэффициент автоматизации операций контроля и настройки;
- коэффициент повторяемости ЭК;
- коэффициент применения типовых процессов;
- коэффициент сокращения применения деталей;
- комплексный показатель технологичности.

Ход выполнения работы

Для оценки технологичности электронных модулей применяют систему базовых коэффициентов, рекомендуемых отраслевыми стандартами. Каждый из коэффициентов технологичности имеет свою весовую характеристику ϕ_i , определяемую по таблице.

Таблица – Показатели технологичности электронных модулей

i	Коэффициенты технологичности	Обозначени е	$arphi_\iota$
1	Коэффициент автоматизации пайки ЭРЭ	$K_{A\Pi}$	1,0
2	Коэффициент автоматизации установки ЭРЭ	K _A y	1,0
3	Коэффициент снижения трудоемкости сборки и монтажа	Ктсб	0,36
4	Коэффициент автоматизации операций контроля и настройки	K _{AKH}	1,0
5	Коэффициент повторяемости ЭРЭ	Кпов эрэ	0,5
6	Коэффициент применения типовых техпроцессов	Ктп	1,0

7	Коэффициент сокращения применения деталей	Кепд	1,0
---	---	------	-----

Коэффициент автоматизации пайки электронных компонентов:

$$K_{A\Pi} = H_{A\Pi} / H_{9K} = 0.68,$$

где H_{3K} — количество 3K (электронных компонентов) в модуле, которое подсчитывается по спецификации на сборочный чертеж;

 H_{AII} – количество ЭК, пайка которых осуществляется на автоматах:

$$H_{A\Pi} = H_{ACKB} - H_{CKB} + H_{A\Pi M} - H_{\Pi M} = 10$$
,

где $H_{A CKB}$ и $H_{A \Pi M}$ — соответственно количество ЭК сквозного и поверхностного монтажа, монтируемых на автоматах;

 H_{CKB} и $H_{\Pi M}$ — соответственно количество вручную монтируемых ЭК обычного и поверхностного монтажа.

Соответственно получим следующие величины:

Коэффициент автоматизации установки ЭК, подлежащих пайке:

$$K_{AY} = H_{AY} / H = 0.68$$
,

где H_{Ay} – количество ЭК, устанавливаемых на плату автоматизированными способами, которое определяется как:

$$H_{AY} = H_{YCKB} + H_{YIIM} = 10$$
,

где $H_{\text{У СКВ}}$ и $H_{\text{У ПМ}}$ — соответственно количество ЭК, монтируемых в отверстия платы, и поверхностного монтажа, устанавливаемых на плату автоматизированными способами.

Коэффициент снижения трудоемкости сборки и монтажа равен:

$$K_{TCD} = 1 / H_{BM} = 0.357$$
,

где H_{BM} – вид монтажа, определяется по таблице.

Таблица – Выбор вида монтажа

Вид	Поверхностный	Поверхностный	Смешанно-	Смешанный
монтажа	односторонний	двухсторонний	разнесенный	
$H_{\scriptscriptstyle \mathrm{BM}}$	1,2	1,4	1,8	2,8

Коэффициент автоматизации операций контроля и настройки:

$$K_{A KH} = (H_{AT} + H_{A\Phi}) / H_{KH} = 1,5,$$

где H_{AT} — число автоматизированных операций внутрисхемного тестирования модуля;

 $H_{A\Phi}$ — число автоматизированных операций приемочного функционального контроля модуля,

Н_{кн} – число операций контроля и настройки.

Контроль детали является обязательным и осуществляется двумя способами: визуальным и электрическим. Если в конструкции имеются регулировочные элементы, то количество операций регулировки увеличивается пропорционально числу этих элементов.

Коэффициент повторяемости ЭК:

$$K_{\text{HOB}} = 1 - H_{\text{T9K}} / H_{\text{9K}} = 0.75,$$

где $H_{T \ni K}$ – количество типоразмеров $\ni K$ в модуле.

Под типоразмером ЭК понимаются его габаритные размеры и конфигурация (например, две микросхемы разного назначения, но в одинаковых корпусах имеют один и тот же типоразмер).

Количество типоразмеров ЭК в модуле $H_{T\to K}$ определяется по спецификации к сборочному чертежу электронного модуля.

Коэффициент применения типовых процессов (ТП) равен:

$$K_{TII} = (\Pi_{TII} + E_{TII}) / \Pi + E = 1$$

где $Д_{T\Pi}$, $E_{T\Pi}$ — число деталей и сборочных единиц, изготавливаемых с применением типовых и групповых $T\Pi$;

Д, Е – общее число деталей и сборочных единиц, кроме крепежа.

Коэффициент сокращения применения деталей:

$$K_{\text{с пд}} = 1 / Д = 1,$$

где Д – количество деталей в модуле (без учета нормализованного крепежа). Количество деталей Д определяется по спецификации.

Таблица – Показатели технологичности устройства

Коэффициенты технологичности	Обозначение	i	Значение
Коэффициент автоматизации пайки ЭРЭ	$K_{A\Pi}$	1,0	1,0
Коэффициент автоматизации установки	K_{AY}	1,0	1,0

ЭPЭ			
Коэффициент снижения трудоемкости	Ктсь	0,8	0,56
сборки и монтажа			
Коэффициент автоматизации операций	K_{AKH}	0,5	1,0
контроля и настройки			
Коэффициент повторяемости ЭРЭ	К _{пов ЭРЭ}	0,3	0,82
Коэффициент применения типовых	$K_{T\Pi}$	0,2	1,0
техпроцессов			
Коэффициент сокращения применения	Кспд	0,1	1,0
деталей			

Комплексный показатель технологичности:

$$K = \frac{\sum_{i=1}^{7} K_{i} \cdot \varphi_{i}}{\sum_{i=1}^{7} \varphi_{i}} = 0,66$$

Для определения базового значения комплексного показателя технологичности вычисляется количество электронных компонентов обычного и поверхностного монтажа в партии изготавливаемых модулей:

$$N_{C KB} = N x H_{C KB}$$
, $N_{\Pi M} = N x H_{\Pi M}$,

где N – объем партии изготавливаемых модулей.

Базовое значение комплексного показателя равно:

$$K_{\scriptscriptstyle B}\!=\!(K_c*N_{\scriptscriptstyle C\;KB\,+}0\text{,}8*N_{\scriptscriptstyle \Pi M})\,/\,N_{\scriptscriptstyle C\;KB\,+}\,N_{\scriptscriptstyle \Pi M}=0\text{,}51$$

где $K_c = 0,55$, если $N_{\text{C KB}} < 50~000$, и $K_{\text{C}} = 0,70$, если $N_{\text{C KB}} {\ge} 50~000$.

Уровень технологичности рассчитывается:

$$K_{\rm YT} = K \ / \ K_{\scriptscriptstyle B} = 1{,}13$$

Уровень технологичности КУТ≥ 1, что свидетельствует о высоком уровне организации производства электронного блока, его ремонтопригодности и эксплуатационных качествах.