Performance Evaluation of Stein's Two-Stage Estimation Procedure

Zhou Wang

Capstone Seminar

Department of Mathematical Sciences Binghamton University

April 4, 2019

Let X_1, X_2, \cdots be a sample drawn from a normal population with mean μ and variance σ^2 , where both μ and σ are unknown. We wish to construct a $(1-\alpha)\%$ CI, say I, for μ with a given length 2d>0, which means

$$\mathbb{P}_{\mu,\sigma}(\mu \in I) \geq 1 - \alpha$$
 for all μ and σ ; length of I is $2d$.

There is no fixed sample size estimation method to solve this problem but it can be solved sequentially.

For fixed sample size n, we know

$$I = \bar{X}_n \pm t_{1-\frac{\alpha}{2}}(n-1)\frac{S_n}{\sqrt{n}},$$

but it cannot guarantee the length of I to be fixed because of unknown σ .

However, if we know σ , then for fixed CI length 2d, the ideal (minimum) sample size is

$$n_{\mathsf{opt}} = \left[z_{1-\frac{lpha}{2}}^2 \sigma^2 / d^2 \right].$$

Stage 1: Pick a pilot size $m \geq 2$ and sample X_1, X_2, \dots, X_m .

Then compute sample variance $S_m^2 = \frac{1}{m-1} \sum\limits_{i=1}^m (X_i - \bar{X}_m)$ and

$$\hat{n}_{\mathrm{opt}} = \left[t_{1-\frac{\alpha}{2}}^2(m-1)S_m^2/d^2\right].$$

If $m > \hat{n}_{opt} \Rightarrow$ Stop. Otherwise, go to

Stage 2: Sample $\hat{n}_{\sf opt} - m$ more observations.

Therefore, the total sample size

$$N = \max\left\{m, \left\lceil t_{1-\frac{\alpha}{2}}^2(m-1)S_m^2/d^2\right\rceil\right\}.$$

Based on this method, $I_N = \bar{X}_N \pm d$ obviously has the length 2d. Moreover,

$$P_{\mu,\sigma}(\mu \in I_N) \ge 1 - \alpha,$$

which was shown by Charles Stein in 1945.

Characteristics of interest for two-stage estimation:

- i) $\mathbb{E}_{\mu,\sigma}[N]$
- ii) $Var_{\mu,\sigma}[N]$
- iii) $\mathbb{P}_{\mu,\sigma}(\mu \in I_N)$
- iv) $\mathbb{E}_{\mu,\sigma}[N]/n_{\mathsf{opt}}$

The potential value N takes are $m, m+1, m+2, \cdots$.

$$\begin{split} \mathbb{P}_{\mu,\sigma} \left(N = m \right) &= \mathbb{P}_{\mu,\sigma} \left(m \geq \left\lceil t_{1 - \frac{\alpha}{2}}^2 (m - 1) S_m^2 / d^2 \right\rceil \right) \\ &= \mathbb{P}_{\mu,\sigma} \left(m \geq t_{1 - \frac{\alpha}{2}}^2 (m - 1) S_m^2 / d^2 \right) \\ &= \mathbb{P}_{\mu,\sigma} \left(\frac{(m - 1) S_m^2}{\sigma^2} \leq \frac{m(m - 1) d^2}{\sigma^2 t_{1 - \frac{\alpha}{2}}^2 (m - 1)} \right) \\ &= \mathbb{P}_{\mu,\sigma} \left(\chi^2 (m - 1) \leq \frac{m(m - 1) d^2}{\sigma^2 t_{1 - \frac{\alpha}{2}}^2 (m - 1)} \right) \end{split}$$

oo **Q1** Q2 Q3 Q4 Q5 Q6 ooo

Find the distribution for N

The potential value N takes are $m, m+1, m+2, \cdots$.

$$\begin{split} \mathbb{P}_{\mu,\sigma} \left(N = m + k \right) &= \mathbb{P}_{\mu,\sigma} \left(m + k = \left\lceil t_{1 - \frac{\alpha}{2}}^2 (m - 1) S_m^2 / d^2 \right\rceil \right) \\ &= \mathbb{P}_{\mu,\sigma} \left(m + k - 1 < t_{1 - \frac{\alpha}{2}}^2 (m - 1) S_m^2 / d^2 \le m + k \right) \\ &= \mathbb{P}_{\mu,\sigma} \left(\frac{(m + k - 1)(m - 1) d^2}{\sigma^2 t_{1 - \frac{\alpha}{2}}^2 (m - 1)} < \frac{(m - 1) S_m^2}{\sigma^2} \le \frac{(m + k)(m - 1) d^2}{\sigma^2 t_{1 - \frac{\alpha}{2}}^2 (m - 1)} \right) \\ &= \mathbb{P}_{\mu,\sigma} \left(\frac{(m + k - 1)(m - 1) d^2}{\sigma^2 t_{1 - \frac{\alpha}{2}}^2 (m - 1)} < \chi^2 (m - 1) \le \frac{(m + k)(m - 1) d^2}{\sigma^2 t_{1 - \frac{\alpha}{2}}^2 (m - 1)} \right), \end{split}$$

where $k = 1, 2, 3, \cdots$.

$$\mathbb{E}_{\mu,\sigma}[N] = \sum_{n=m}^{\infty} n \mathbb{P}_{\mu,\sigma}(N=n)$$
, $\mathsf{Var}_{\mu,\sigma}[N] = \mathbb{E}_{\mu,\sigma}[N^2] - \mathbb{E}_{\mu,\sigma}^2[N]$.

$$\begin{split} \mathbb{E}_{\mu,\sigma}[N] &= \sum_{n=m}^{\infty} n \mathbb{P}_{\mu,\sigma}(N=n), \, \mathsf{Var}_{\mu,\sigma}[N] = \mathbb{E}_{\mu,\sigma}[N^2] - \mathbb{E}_{\mu,\sigma}^2[N]. \\ \mathbb{P}_{\mu,\sigma}(\mu \in I_N) &= \mathbb{P}_{\mu,\sigma}(|\bar{X}_N - \mu| \leq d) \\ &= \sum_{n=m}^{\infty} \mathbb{P}_{\mu,\sigma}(|\bar{X}_n - \mu| \leq d \bigcap N = n) \\ &= \sum_{n=m}^{\infty} \mathbb{P}_{\mu,\sigma}(|\bar{X}_n - \mu| \leq d) \mathbb{P}_{\mu,\sigma}(N=n) \\ &= \sum_{n=m}^{\infty} \left[2\Phi(\sqrt{n}d/\sigma) - 1 \right] \mathbb{P}_{\mu,\sigma}(N=n). \end{split}$$

Experimental Results

Compute $\mathbb{E}_{\mu,\sigma}[N], \sqrt{\mathsf{Var}_{\mu,\sigma}[N]}$ and $\mathbb{P}_{\mu,\sigma}(\mu \in I_N)$ for below 4 scenarios:

i)
$$\alpha = 0.05, \sigma = 1, d = 0.5$$

ii)
$$\alpha = 0.05, \sigma = 2, d = 0.5$$

iii)
$$\alpha = 0.1, \sigma = 1, d = 0.5$$

iv)
$$\alpha = 0.1, \sigma = 1, d = 0.3$$

。。。 Q1 **Q2** Q3 Q4 Q5 Q6 。。。

Experimental Results

```
twoStageSamp <- function(m, d, sigma, alpha) {
 2
      X \leftarrow \text{rnorm}(m, 0, \text{sigma}); \text{nopt} \leftarrow \text{ceiling}((\text{qnorm}(1 - \text{alpha/2}) * \text{sigma/d})^2)
 3
      Ntilde \leftarrow ceiling((qt(1 - alpha/2, m - 1)/d)^2 * var(X))
      N \leftarrow max(m, Ntilde); X \leftarrow c(X, rnorm(N - m, 0, sigma))
      Ncandi <- m: (50 * N)
      Qchi <- c(0, Ncandi) * (m - 1) * (d/(sigma * qt(1 - alpha/2, m - 1)))^2
 8
      dist <- diff(pchisq(Ochi, m - 1))
 9
10
      ch <- t(dist) %*% cbind(Ncandi, Ncandi^2, pnorm(d * sqrt(Ncandi)/sigma))
      list (DistN = dist, EN = ch[1], SigN = sqrt(ch[2] - ch[1]^2),
11
12
           CovProb = 2 * ch[3] - 1, Nopt = nopt)
13 }
```


。。。 Q1 **Q2** Q3 Q4 Q5 Q6 。。。

Experimental Results

m	$\alpha = 0.05, \sigma = 1, d = 0.5$			$\alpha = 0.05, \sigma = 2, d = 0.5$		
	$\mathbb{E}[N]$	$\sqrt{Var[N]}$	$\mathbb{P}(\mu \in I_N)$	$\mathbb{E}[N]$	$\sqrt{\operatorname{Var}[N]}$	$\mathbb{P}(\mu \in I_N)$
5	31.389	21.736	0.958	123.842	87.209	0.951
10	21.196	9.346	0.960	82.379	38.596	0.951
20	21.473	3.081	0.978	70.594	22.738	0.951
30	30.015	0.247	0.994	67.439	17.552	0.951
500	500	0	1	500	0	1
n_{opt}		16			62	

ooo Q1 **Q2** Q3 Q4 Q5 Q6 ooo

Experimental Results

m	$\alpha = 0.1, \sigma = 1, \frac{d}{d} = 0.5$			$\alpha = 0.1, \sigma = 1, \frac{\mathbf{d}}{\mathbf{d}} = 0.3$		
	$\mathbb{E}[N]$	$\sqrt{\operatorname{Var}[N]}$	$\mathbb{P}(\mu \in I_N)$	$\mathbb{E}[N]$	$\sqrt{\operatorname{Var}[N]}$	$\mathbb{P}(\mu \in I_N)$
5	18.822	12.690	0.918	51.019	35.680	0.904
10	14.717	5.520	0.929	37.864	17.556	0.904
20	20.093	0.635	0.975	33.970	10.398	0.906
30	30.000	0.005	0.994	34.698	6.242	0.919
500	500	0	1	500	0	1
$\overline{n_{opt}}$		11			31	

Plot
$$\mathbb{P}_{u,\sigma}(N=m+k)$$
 for $k=0,1,2,\cdots$.

Figure: Plot for $P_{\mu,\sigma}(N=m+k)$ given m=10

In each picture, the peak of probability and its corresponding k will drop and increase respectively as d decreases.

Plot $\mathbb{E}_{\mu,\sigma}[N]$ as a function of m.

Figure: Plot for $\log \mathbb{E}_{\mu,\sigma}[N]$

All the curves for different scenarios go down first and then go up. For fixed α and σ , $\mathbb{E}_{\mu,\sigma}[N]$'s from different scenarios are going to be close when m is really large.

Plot $\inf \mathbb{E}_{\mu,\sigma}[N]$ and n_{opt} as functions of d.

Figure: Plot for $\inf \mathbb{E}_{\mu,\sigma}[N]$ and n_{opt}

Figure: Plot for $\frac{\inf \mathbb{E}_{\mu,\sigma}[N]}{n_{\mathsf{opt}}}$

The two figures assume that $\sigma = 1$, $\alpha = 0.05$ and $d \in (0.05, 0.5)$.

ooo Q1 Q2 Q3 Q4 Q5 **Q6** ooo

Inspect the behavior of $\lim_{d\to 0} \mathbb{P}_{\mu,\sigma}(\mu\in I_N)$.

Figure: Plot for coverage probability

Both plots show that $\mathbb{P}_{\mu,\sigma}(\mu \in I_N)$ converges to $1-\alpha$ as d goes down to 0. Moreover, the larger m is, the faster coverage probability converges.

Conclusion

- i) Stein's method tends to oversample.
- ii) It is asymptotically $(d \downarrow 0)$ consistent.

Thanks!