Formulário

Ricardo Mendes Ribeiro

19 de Maio de 2009

Conteúdo

Notação	2
Constantes físicas	4
Constantes Astronómicas	5
Propriedades físicas de alguns materiais	6
Relações trigonométricas	7
Números complexos	8
Outras relações matemáticas	9
Geometria	10
Letras gregas	11
Prefixos SI	12
Factores de Conversão	13
Partículas	14

Notação

Uma notação correcta e coerente é essencial para se levar a bom termo um exercício de Física. Ajuda muito a compreender o próprio problema, os dados que se têm e os que é necessário calcular. Também permite que outras pessoas possam entender bem a resolução e os raciocínios subjacentes.

Vectores Há várias maneiras de representar um vector:

- \bullet \vec{V}
- \bullet (V_x, V_y, V_z)
- $V_x \vec{e}_x + V_u \vec{e}_y + V_z \vec{e}_z$
- $V_x\hat{i} + V_u\hat{j} + V_z\hat{k}$

Qualquer uma delas é aceitável, embora aqui usaremos essencialmente a primeira e a terceira: \vec{V} é utilizado quando não queremos explicitar as componentes do vector e $V_x \vec{e}_x + V_y \vec{e}_y + V_z \vec{e}_z$ é usado quando as queremos explicitar.

Assume-se que quando se escreve:

 $ec{V}$ quer-se dizer o vector;

V quer-se dizer o módulo do vector;

 V_x quer-se dizer a componente segundo o eixo dos xx do vector;

 V_y quer-se dizer a componente segundo o eixo dos yy do vector;

 V_z quer-se dizer a componente segundo o eixo dos zz do vector.

Logo tem-se:

$$V = \sqrt{{V_x}^2 + {V_y}^2 + {V_z}^2}$$

e portanto $V \geq 0$. Exceptua-se o caso de um problema a uma dimensão em que, por uma questão de leveza na notação, se poderá omitir o índice x da componente do vector; neste caso, V não representaria o módulo do vector mas sim a sua componente segundo o eixo, podendo portanto ser positivo ou negativo, conforme o sentido do vector.

 V, V_x, V_y e V_z são escalares (i.e. números), e não podem ser igualados a vectores. É portanto <u>incorrecto</u> escrever: $\vec{V} = V$ ou $\vec{V} = V_x$. Uma igualdade deste tipo num exame, naturalmente, desconta na cotação.

Já se pode escrever $\vec{V} = V_x \vec{e}_x$, por exemplo. A regra é que só se podem igualar vectores a vectores e escalares a escalares: V_x é um escalar, mas $V_x \vec{e}_x$ já é um vector, de módulo V_x e com a direcção do versor \vec{e}_x .

Operações vectoriais Há duas operações com vectores que é fundamental entender bem: o produto interno e o produto externo.

O produto interno de dois vectores é dado por:

$$\vec{V} \cdot \vec{W} = V_x W_x + V_y W_y + V_z W_z$$

Do lado direito da expressão temos um escalar, pelo que o produto interno de dois vectores é um escalar.

Se tivermos o ângulo (α , por exemplo) que os dois vectores fazem entre si, pode-se utilizar a expressão (equivalente à anterior):

$$\vec{V} \cdot \vec{W} = V.W.cos(\alpha)$$

O produto externo de dois vectores é dado por:

$$\vec{V} imes \vec{W} = egin{array}{cccc} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ V_x & V_y & V_z \\ W_x & W_y & W_z \\ \end{array}$$

que é uma maneira compacta de representar

$$\vec{V} \times \vec{W} = (V_y W_z - V_z W_y) \vec{e}_x + (V_z W_x - V_x W_z) \vec{e}_y + (V_x W_y - V_y W_x) \vec{e}_z$$

Ao contrário do produto interno, que resulta num escalar, o resultado do produto externo de dois vectores é sempre um vector. O seu módulo pode ser calculado sabendo o ângulo que os dois vectores fazem entre si $(\alpha$, por exemplo):

$$||\vec{V} \times \vec{W}|| = V.W.sin(\alpha)$$

Atenção: o produto externo de dois vectores não goza da propriedade comutativa; logo

$$\vec{V} \times \vec{W} \neq \vec{W} \times \vec{V}$$

Não se pode trocar a ordem com que se escrevem os vectores.

Outra forma frequente de se representar o produto externo de dois vectores é $\vec{V} \wedge \vec{W}$, que em geral não será usada nesta disciplina.

Constantes físicas

Velocidade da luz	c	3.00×10^{8}	$\mathrm{m/s}$
Constante gravitacional	G	6.67×10^{-11}	$\rm N.m^2/kg^2$
Número de Avogadro	N_A	6.02×10^{23}	mol^{-1}
Constante universal dos gases	R	8.31	$\rm J/mol.K$
Constante de Planck	h	6.63×10^{-34}	J.s
Constante de Boltzmann	k_B	1.38×10^{-23}	${ m J/K}$
Constante de Stephan-Boltzmann	σ	5.67×10^{-8}	$\mathrm{W}/\mathrm{m}^2.\mathrm{K}^4$
Constante de Wien	σ_w	2.898×10^{-3}	m.K
Permitividade eléctrica	ϵ_0	8.85×10^{-12}	$\mathrm{C^2/N.m^2}$
Constante de Coulomb	$k = \frac{1}{4\pi \epsilon_0}$	8.99×10^{9}	${ m N.m^2/C^2}$
Permeabilidade magnética	μ_0	1.26×10^{-6}	${ m N/A^2}$
Massa do electrão	m_e	9.11×10^{-31}	kg
Massa do protão	m_p	1.67×10^{-27}	kg
Carga do protão	e	1.6022×10^{-19}	С

Constantes Astronómicas

Astro	Raio	Massa	Densidade	Órbita	Excentr.	Inclinação	Período	Gravidade
	(km)	(10^{24} kg)	$(g.cm^{-3})$	(AU)			(s)	$(\mathrm{m/s^2})$
Mercúrio	2439	0.33	5.43	0.38	0.206	7.0044	7.60×10^{6}	3.14
Vénus	6051	4.87	5.24	0.72	0.007	3.3945	1.94×10^7	8.91
Terra	6378	5.97	5.52	1.00	0.017	0	3.156×10^7	9.81
Marte	3396	0.64	3.93	1.52	0.093	1.8499	5.94×10^7	3.73
Júpiter	70850	1898.80	1.36	5.20	0.048	1.3056	3.74×10^8	25.48
Saturno	60330	568.41	0.71	9.57	0.052	2.4859	9.35×10^8	11.37
Urano	25400	86.97	1.30	19.31	0.050	0.7727	2.64×10^9	10.98
Neptuno	24300	102.85	1.80	30.20	0.004	1.7725	5.22×10^9	11.87
Plutão	1150	0.013	2.03	39.91	0.257	17.135	7.82×10^9	4.61
Lua	1738	0.074						1.63
Sol	696100	1990000		_	_	_	_	273.42

- Equinócio da Primavera 20 Março
- Equinócio do Outono 22 Setembro
- Solstício de Verão 20 Junho
- $\bullet\,$ Solstício de Inverno 21 Dezembro
- Estrela mais próxima (Alfa Centauro) 4.34 a.l.
- Distância do Sol ao centro da Galáxia: 8 kpc
- Diâmetro da galáxia 50 kal
- Distância a Andrómeda 2 Mal
- Diâmetro do Grupo 75 Mal

(al=anos-luz)

Propriedades físicas de alguns materiais

	Ar	Água	Diamante	NaCl	Silício
$\rm Densidade~(kg/m^3)$	1.21	1000	3510		2329
$Velocidade\ do\ som\ (m/s)$	343	1460			
Índice de refracção	1.00	1.33	2.419	1.5	5.22
Temperatura de liquefacção (K)	77	273.15	4100		1687

Relações trigonométricas

$$\cos x + \cos y = 2\cos\frac{1}{2}(x-y)\cos\frac{1}{2}(x+y)$$

$$\cos x - \cos y = -2\sin\frac{1}{2}(x-y)\sin\frac{1}{2}(x+y)$$

$$\sin x + \sin y = 2\cos\frac{1}{2}(x-y)\sin\frac{1}{2}(x+y)$$

$$\sin x - \sin y = 2\sin\frac{1}{2}(x-y)\cos\frac{1}{2}(x+y)$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

Números complexos

Seja um número complexo z=x+iy.

Complexo conjugado

$$z^* = x - iy$$

Módulo

$$|z| = \sqrt{zz^*} = \sqrt{x^2 + y^2}$$

Relações trigonométricas complexas

$$e^{i\theta} = \cos \theta + i \sin \theta$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Outras relações matemáticas

Teorema binomial

$$(1+x)^n = 1 + \frac{n x}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$

Expansão da exponencial

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Expansão do logaritmo

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots$$

Expansões trigonométricas

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \cdots$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \cdots$$

$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \cdots$$

Geometria

Círculo de raio r

- Área πr^2
- \bullet Perímetro $2\pi~r$

Esfera de raio r

- Volume $\frac{4}{3}\pi r^3$
- Área $4\pi r^2$

Seja um triângulo de lados a, b, c, de ângulos opostos respectivamente α, β, γ e perímetro p = a + b + c

Fórmula de Héron

Area =
$$\frac{1}{2}\sqrt{p(p-a)(p-b)(p-c)}$$

Fórmulas dos cossenos

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

Fórmula dos senos

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2 \times \text{(raio da circunferência circunscrita)}$$

Letras gregas

minúscula	maiúscula	nome
α	A	Alfa
β	В	Beta
γ	Γ	Gama
δ	Δ	Delta
$arepsilon,\epsilon$	E	Epsilon
ζ	Z	Zeta
η	Н	Eta
θ, ϑ	Θ	Teta
ι	I	Iota
κ	K	Kapa
λ	Λ	Lambda
μ	M	Miu
ν	N	Niu
ξ	Ξ	Csi
0	О	Omicron
π, ϖ	Π	Pi
ho, arrho	Р	Ró
σ , ς	Σ	Sigma
au	Τ	Tau
v	Υ	Upsilon
ϕ, φ	Φ	Fi
χ	X	Chi
ψ	Ψ	Psi
ω	Ω	Omega

Prefixos SI

Factor	Nome	Símbolo	Factor	Nome	Símbolo
10^{24}	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	\mathbf{c}
10^{18}	exa	E	10^{-3}	mili	m
10^{15}	peta	Р	10^{-6}	micro	μ
10^{12}	tera	Τ	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
10^{6}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	Z
$\frac{10^{1}}{10^{1}}$	deka	da	10^{-24}	yocto	У

Factores de Conversão

• Massa

$$\begin{array}{l} 1~\rm{kg} = 6.02 \times 10^{26}~\rm{u} \\ 1~\rm{u} = 1.66 \times 10^{-27}~\rm{kg} \\ 1~\rm{lb} = 0.4536~\rm{kg} \end{array}$$

• Comprimento

```
1 m = 39.4 in = 3.28 ft

1 mi = 1.61 km = 5280 ft

1 in = 2.54 cm

1 ano luz = 9.46 \times 10^{15} m

1 AU = 1.4959787 \times 10^{11} m

1 Parsec = 2.06265 \times 10^{5} AU

1 ano luz (al) = 9.46052973 \times 10^{15} m
```

• Tempo

1 ano = 365.25 dias =
$$8.766 \times 10^3$$
 horas = 5.259×10^5 min = 3.156×10^7 s 1 dia = 1440 min = 8.640×10^4 s

• Energia

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

• Volume

1 galão = 3.7854 litros

Partículas

Partículas elementares

Leptões

Símbolo	Nome	Massa (GeV)	Carga
e	electrão	$5.10998902{\times}10^{-4}$	-1
μ	muão	0.105658357	-1
au	taão	1.77699	-1
$ u_e$	neutrino electónico	0. $(<3 \text{ eV})$	0
$ u_{\mu}$	neutrino muónico	$0.~(<190~{ m keV})$	0
$ u_{ au}$	neutrino taónico	$0.~(<18.2~{ m MeV})$	0

Quarks

Símbolo	Nome	Massa (GeV)	Carga
u	up	$1.5 - 4 \times 10^{-3}$	+2/3
d	down	$4-8\times10^{-3}$	-1/3
s	strange	$80 - 130 \times 10^{-3}$	-1/3
c	$_{ m charm}$	1.15 - 1.35	+2/3
b	bottom	4.1 - 4.4	-1/3
t	top	170.9	+2/3

Mediadores

Nome	Massa (GeV)	Carga
γ	0.	0
W	80.42	+/-
Z	91.1876	0
gluões	0.	0

Partículas compostas - Hadrões

Bariões (spin 1/2)

Nome	Quarks	Massa (GeV)	Carga
p	uud	0.93827200	+
n	udd	0.93956533	0
Λ	uds	1.115683	0
Σ^+	uus	1.18937	+
Σ^0	uds	1.192642	0
Σ^-	dds	1.197449	-
Ξ^0	uss	1.31483	0
Ξ^-	dss	1.32131	-
Λ_c	udc	2.2849	+

Bariões (spin 3/2)

Nome	Quarks	Massa (GeV)	Carga
$\Delta^{++}(1232)$	uuu	1.2320	++
$\Delta^+(1232)$	uud	1.2320	+
$\Delta^0(1232)$	udd	1.2320	0
$\Delta^-(1232)$	ddd	1.2320	-
$\Sigma^*(1385)$	uus	1.3828	+
$\Sigma^*(1385)$	uds	1.3837	0
$\Sigma^*(1385)$	dds	1.3872	-
$\Xi^*(1530)$	uss	1.53180	0
$\Xi^*(1530)$	dss	1.5350	-
Ω	sss	1.67245	-

Mesões (spin 0)

Nome	Quarks	Massa (GeV)	Carga
π	$uar{d}$	0.13957018	+
π	$dar{u}$	0.13957018	-
π	$(u\bar{u}-d\bar{d})/\sqrt{2}$	0.1349766	0
K^+	$uar{s}$	0.493677	+
K^-	$sar{u}$	0.493677	-
K^0	$dar{s}$	0.497672	0
$ar{K}^0$	$sar{d}$	0.497672	0
η	$(u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$	0.54730	0
$\eta'(958)$	$(u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$	0.95778	0
D^+	$car{d}$	1.8693	+
D^{-}	$dar{c}$	1.8693	-
D^0	$car{u}$	1.8645	0
$ar{D}^0$	$uar{c}$	1.8645	0
B^+	$uar{b}$	5.2790	+
B^-	$bar{u}$	5.2790	-
B^0	$dar{b}$	5.2794	0
$ar{B}^0$	$bar{d}$	5.2794	0
η_c	$c\bar{c}$	2.9797	0