Adjustable Robust Optimization: Approximate Solution via Decision Rules

Ayse N. Arslan

ayse-nur.arslan@inria.fr

Centre Inria de l'Université de Bordeaux Bâtiment A33 - Bureau 266

CR03 - Robust combinatorial optimization, ENS-Lyon

Little reminder

 We are interested in the solution of adjustable robust optimization problems of the form:

$$\min_{\mathbf{x} \in \mathcal{X}, \mathbf{y}(\cdot)} \quad \mathbf{c}^{\top} \mathbf{x} + \max_{\boldsymbol{\xi} \in \Xi} \quad \mathbf{f}(\boldsymbol{\xi})^{\top} \mathbf{y}(\boldsymbol{\xi}) \\
\text{s.t.} \quad \mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W}(\boldsymbol{\xi}) \mathbf{y}(\boldsymbol{\xi}) \leq \mathbf{h}(\boldsymbol{\xi}) \qquad \forall \boldsymbol{\xi} \in \Xi \\
\mathbf{y}(\boldsymbol{\xi}) \in \mathcal{Y} \qquad \forall \boldsymbol{\xi} \in \Xi$$

• $\mathbf{y}(\cdot) : \Xi \to \mathcal{Y}$ are functionals to be optimized.

Remark

- Can be solved to exact optimality when $\mathcal{Y} = \mathbb{R}^{n_y}_+$ and $\mathbf{f}(\boldsymbol{\xi}) = \mathbf{f}$ and $\mathbf{W}(\boldsymbol{\xi}) = \mathbf{W}$ for $\boldsymbol{\xi} \in \Xi$.
- Resulting algorithms have exponential worst-case complexity and require solution of difficult optimization problems at each iteration.

Decision rule approximations

$$\begin{aligned} & \underset{\mathbf{x} \in \mathcal{X}, \mathbf{y}(\cdot), \theta \in \mathbb{R}}{\text{min}} & \mathbf{c}^{\top} \mathbf{x} + \theta \\ & \text{s.t.} & \theta \geq \mathbf{f}(\boldsymbol{\xi})^{\top} \mathbf{y}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ & \mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W}(\boldsymbol{\xi}) \mathbf{y}(\boldsymbol{\xi}) \leq \mathbf{h}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ & \mathbf{y}(\boldsymbol{\xi}) \in \mathcal{Y} & \forall \boldsymbol{\xi} \in \Xi \end{aligned}$$

Idea

- Restrict the form of $y(\xi)$ to a simple family of functions.
- Optimize within the chosen family.
- Most common restrictions: affine, piecewise affine/constant.

Attention!

- Being restrictions, decision rule approximations may be infeasible.
- If feasible, they provide feasible solutions (primal bounds) to (2ARO).
- They typically improve upon the static robust solution.

Decision rule approximations

$$\sup_{oldsymbol{\xi}\in\mathbb{R}^2|-1\leqoldsymbol{\xi}\leq 1} \min_{oldsymbol{y}\in\{0,1\}^2} rac{(\xi_1+\xi_2)(y_2-y_1)}{\mathsf{s.t.}}$$
 s.t. $y_1+y_2=1$ $y_1\geq \xi_1$ $y_1\geq \xi_2$

either
$$\xi_1$$
 or $\xi_2 > 0$ forces $y_2 = 1$:

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is the only feasible sol. in that case when $\xi_1, \xi_2 \le 0$ we can choose btw.:

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 $\begin{pmatrix} 1,0 \end{pmatrix}$ gives $-(\xi_1 + \xi_2)$ in the obj. function

 $\rightarrow (0,1)$ gives $(\xi_1 + \xi_2)$ "

Set of realizations &E = for which

(1/0) is feasible & optimal is non-convex & open

$$\sup_{\xi \in \Xi} Q(\xi) = \sup \left\{ \sup_{\xi \in \Xi \setminus \xi_1 > 0} -(\xi_1 + \xi_2) : \sup_{\xi \in \Xi \setminus \xi_1 \leq 0} (\xi_1 + \xi_2) \right\}$$

= 1
$$\left(\begin{array}{ccc} \xi_2 = -1 & \text{and} & \xi_1 \rightarrow 0 \\ \text{or} & \xi_1 = -1 & \xi_2 \rightarrow 0 \end{array}\right)$$

$$\begin{aligned} & \min_{\mathbf{x} \in \mathcal{X}, \mathbf{y}(\cdot)} \quad \mathbf{c}^{\top} \mathbf{x} + \max_{\boldsymbol{\xi} \in \Xi} \quad \mathbf{f}(\boldsymbol{\xi})^{\top} \mathbf{y}(\boldsymbol{\xi}) \\ & \text{s.t.} \quad \mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W}(\boldsymbol{\xi}) \mathbf{y}(\boldsymbol{\xi}) \leq \mathbf{h}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ & \mathbf{y}(\boldsymbol{\xi}) \in \mathcal{Y} & \forall \boldsymbol{\xi} \in \Xi \end{aligned}$$

Assume

- ullet $\mathcal{Y} = \mathbb{R}^{n_y}_+ o$ continuous recourse
- ullet $\mathbf{f}(\xi)$ and $\mathbf{W}(\xi)$ are deterministic o fixed recourse

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}, \mathbf{y}(\cdot)} \quad \mathbf{c}^{\top} \mathbf{x} + \max_{\boldsymbol{\xi} \in \Xi} \quad \mathbf{f}^{\top} \mathbf{y}(\boldsymbol{\xi}) \\ \text{s.t.} \quad \sum_{i=1}^{n_{\xi}} \mathbf{T}_{i} \xi_{i} \mathbf{x} + \mathbf{W} \mathbf{y}(\boldsymbol{\xi}) \leq \mathbf{H} \boldsymbol{\xi} \\ \mathbf{y}(\boldsymbol{\xi}) \geq \mathbf{0} & \forall \boldsymbol{\xi} \in \Xi \end{aligned}$$

Idea

• Restrict $\mathbf{y}(\boldsymbol{\xi})$ to be an affine function of $\boldsymbol{\xi}$

$$\mathbf{y}_i(\boldsymbol{\xi}) = \alpha_{i0} + \boldsymbol{\alpha}_i^{\top} \boldsymbol{\xi} \quad \forall i = 1, \dots, n_y \rightarrow \mathbf{y}(\boldsymbol{\xi}) = \mathbf{A} \boldsymbol{\xi}$$

• Optimize $\mathbf{A} \in \mathbb{R}^{n_y \times (n_{\xi}+1)}$ to obtain the best such approximation.

$$\min_{\mathbf{x} \in \mathcal{X}, \mathbf{A} \in \mathbb{R}^{n_{\mathcal{Y}} \times (n_{\xi}+1)}} \mathbf{c}^{\top} \mathbf{x} + \theta \qquad \qquad (\mathsf{Aff})$$
 s.t.
$$\theta \geq \mathbf{f}^{\top} \mathbf{A} \boldsymbol{\xi} \qquad \forall \boldsymbol{\xi} \in \Xi \qquad \text{Fixed recourse ensures that}$$
 we maintain linear
$$\sum_{i=1}^{n_{\xi}} \mathbf{T}_{i} \boldsymbol{\xi}_{i} \mathbf{x} + \mathbf{W} \mathbf{A} \boldsymbol{\xi} \leq \mathbf{H} \boldsymbol{\xi} \qquad \forall \boldsymbol{\xi} \in \Xi \qquad \text{functions in } \boldsymbol{\xi}$$

$$\mathbf{A} \boldsymbol{\xi} \geq 0 \qquad \forall \boldsymbol{\xi} \in \Xi$$

Remark

- (Aff) is a static linear robust optimization problem with a polyhedral uncertainty set.
- It can be reformulated into a deterministic equivalent problem through LP-duality.

Remark

Reformulations require only a polynomial number of additional variables and constraints.

¹Ben-Tal et al., 2004

$$\min_{\mathbf{x} \in \mathcal{X}, \mathbf{A} \in \mathbb{R}^{n_{\mathcal{Y}} \times (n_{\xi}+1)}} \mathbf{c}^{\top} \mathbf{x} + \theta$$

$$\text{s.t.} \qquad \theta \geq \mathbf{f}^{\top} \mathbf{A} \boldsymbol{\xi} \qquad \forall \boldsymbol{\xi} \in \Xi$$

$$\sum_{i=1}^{n_{\xi}} \mathbf{T}_{i} \xi_{i} \mathbf{x} + \mathbf{W} \mathbf{A} \boldsymbol{\xi} \leq \mathbf{H} \boldsymbol{\xi} \qquad \forall \boldsymbol{\xi} \in \Xi$$

$$\mathbf{A} \boldsymbol{\xi} \geq 0 \qquad \forall \boldsymbol{\xi} \in \Xi$$

Remark

If the fixed recourse assumption is not satisfied quadratic terms in ξ appear in semi-infinite constraints. In that case, reformulation through strong duality arguments is restricted to few special cases.

for instance Ξ is ellipsoidal

¹Ben-Tal et al., 2004

Weaknesses of affine decision rules

• They are only effective when the recourse variables are continuous. Indeed, imposing

$$\mathbf{y}(\boldsymbol{\xi}) = \alpha_0 + \boldsymbol{\alpha}^{\top} \boldsymbol{\xi} \in \mathbb{Z}$$
 $\forall \boldsymbol{\xi} \in \Xi$

implies that only α_0 can take a strictly positive value. This is equivalent to a static robust approach in which $\mathbf{y}(\boldsymbol{\xi}) = \bar{\mathbf{y}}$ for $\boldsymbol{\xi} \in \Xi$.

- They are most effective under the fixed recourse assumption.
- They can be highly suboptimal in which case piecewise affine decision rules can be useful. (For certain problems the pap scales with min () where m is the # of constraints)
- To handle the cases of random recourse and integer recourse piecewise constant decisions are more appropriate.

Piecewise affine decision rules

$$\begin{aligned} & \underset{\mathbf{x} \in \mathcal{X}, \mathbf{y}(\cdot), \theta \in \mathbb{R}}{\text{min}} & \mathbf{c}^{\top} \mathbf{x} + \theta \\ & \text{s.t.} & \theta \geq \mathbf{f}(\boldsymbol{\xi})^{\top} \mathbf{y}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ & \mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W}(\boldsymbol{\xi}) \mathbf{y}(\boldsymbol{\xi}) \leq \mathbf{h}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ & \mathbf{y}(\boldsymbol{\xi}) \in \mathcal{Y} & \forall \boldsymbol{\xi} \in \Xi \end{aligned}$$

Assume

- ullet $\mathcal{Y} = \mathbb{R}^{n_y}_+ o$ continuous recourse
- ullet $\mathbf{f}(oldsymbol{\xi})$ and $\mathbf{W}(oldsymbol{\xi})$ are deterministic o fixed recourse

Piecewise affine decision rules

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{X}, \mathbf{y}(\cdot), \theta \in \mathbb{R}} \quad \mathbf{c}^{\top} \mathbf{x} + \theta \\ \text{s.t.} \quad \theta \geq \mathbf{f}^{\top} \mathbf{y}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ \mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W} \mathbf{y}(\boldsymbol{\xi}) \leq \mathbf{h}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ \mathbf{y}(\boldsymbol{\xi}) \geq 0 & \forall \boldsymbol{\xi} \in \Xi \end{aligned}$$

Idea

Partition the uncertainty set into K subsets, i.e.,

$$\equiv = \bigcup_{k=1}^K \equiv_k.$$
 For the moment we do not assume Ξ_k to be closed or convex neither disjoint.

Define one affine policy over each subset

$$\mathbf{y}(\boldsymbol{\xi}) = \mathbf{A}^k \boldsymbol{\xi} \quad \forall k \in [K], \boldsymbol{\xi} \in \Xi_k.$$

 $\mathbf{y}(\xi)=\mathbf{A}^k \xi \quad \forall k\in [K], \xi\in \Xi_k.$ Assign at least one feasible affine policy to each realization

Piecewise affine decision rules

Remark

- How many subsets do we create? Do the subsets have a specific form?
- Is the number of subsets fixed? Does it evolve throughout the solution process?
- Are subsets chosen a priori to optimization or not? (implicit/explicit design)?
- How do we handle realizations at the intersection of subsets?

If multiple solutions are feasible for a realization & they have diff. costs then we may choose the best or the worst

$$\begin{aligned} & \min_{\mathbf{x} \in \mathcal{X}, \mathbf{y}(\cdot), \theta \in \mathbb{R}} \quad \mathbf{c}^{\top} \mathbf{x} + \theta \\ & \text{s.t.} \quad \theta \geq \mathbf{f}^{\top} \mathbf{y}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ & \quad \mathbf{W} \mathbf{y}(\boldsymbol{\xi}) \leq \mathbf{h}(\boldsymbol{\xi}) - \mathbf{T}(\boldsymbol{\xi}) \mathbf{x} & \forall \boldsymbol{\xi} \in \Xi \\ & \quad \mathbf{y}(\boldsymbol{\xi}) \geq 0 & \forall \boldsymbol{\xi} \in \Xi \end{aligned}$$

Idea

- Iteratively partition the uncertainty set into polyhedral subsets.
- Define one affine recourse policy over each subset (note the fixed recourse assumption).
- At the intersection of subsets assume that the policy with worst objective value is implemented.

 $^{^2}$ Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016 $\checkmark \square \lor \checkmark \square \lor \checkmark \trianglerighteq \lor \checkmark \blacksquare \lor \lor \bot \blacksquare \blacksquare$

• When there is no partitioning $\mathbf{y}(\boldsymbol{\xi}) = \mathbf{A}\boldsymbol{\xi}$ for $\boldsymbol{\xi} \in \Xi \to \mathsf{affine}$ decision rule:

$$\min_{\mathbf{x} \in \mathcal{X}, \mathbf{A} \in \mathbb{R}^{n_{y} \times n_{\xi}}, \theta \in \mathbb{R}} \mathbf{c}^{\top} \mathbf{x} + \theta$$

$$\mathbf{x} \in \mathcal{X}, \mathbf{A} \in \mathbb{R}^{n_{y} \times n_{\xi}}, \theta \in \mathbb{R}}$$

$$\mathbf{x} \in \mathcal{X} + \theta$$

$$\mathbf{x} \in$$

- Let $(\mathbf{x}^*, \mathbf{A}^*, \theta^*)$ be the optimal affine decision rule solution.
- Extract the "binding" scenarios:

$$\hat{\boldsymbol{\xi}}_0 \in \operatorname{argmax}_{\boldsymbol{\xi} \in \Xi} \quad \mathbf{f}^{\top} \mathbf{A}^* \boldsymbol{\xi} - \boldsymbol{\theta}^*$$

$$\hat{\boldsymbol{\xi}}_i \in \operatorname{argmax}_{\boldsymbol{\xi} \in \Xi} \quad \mathbf{T}_i(\boldsymbol{\xi}) \mathbf{x}^* + \mathbf{W} \mathbf{A}^* \boldsymbol{\xi} - \mathbf{h}_i(\boldsymbol{\xi}) \qquad \forall i \in [m]$$

• Let
$$\hat{\Xi} = \bigcup_{i=0}^m \{\hat{\xi}_i\}$$
.

'set of scenarios bounding the current solution

²Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

- Let $\Xi_1 = \{ \boldsymbol{\xi} \in \Xi \mid \boldsymbol{\beta}^{\top} \boldsymbol{\xi} \leq \beta \}$ and $\Xi_2 = \{ \boldsymbol{\xi} \in \Xi \mid \boldsymbol{\beta}^{\top} \boldsymbol{\xi} \geq \beta \}.$
- The problem becomes:

$$\min_{\mathbf{x} \in \mathcal{X}, \mathbf{A}_{1}, \mathbf{A}_{2} \in \mathbb{R}^{n_{y} \times n_{\xi}}} \mathbf{c}^{\top} \mathbf{x} + \theta$$

$$\text{s.t.} \qquad \theta \geq \mathbf{f}^{\top} \mathbf{A}_{s} \boldsymbol{\xi} \qquad \forall s = 1, 2, \boldsymbol{\xi} \in \Xi_{s}$$

$$\mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W} \mathbf{A}_{s} \boldsymbol{\xi} \leq \mathbf{h}(\boldsymbol{\xi}) \qquad \forall s = 1, 2, \boldsymbol{\xi} \in \Xi_{s}$$

Proposition

If $\hat{\Xi} \subseteq \Xi_1$ or $\hat{\Xi} \subseteq \Xi_2$ then $z^{2-{\rm AFF}}=z^{{\rm AFF}}$. Otherwise, we have that $z^{2-{\rm AFF}} \le z^{{\rm AFF}}$.

Indeed all realisations bounding the solution (x^4, A^4, θ^4) are present in one of the partitions. The value that we obtain from this partition cannot be better than θ^* .

²Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016 $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$

• Postek and Den Hertog propose separating with a hyperplane $\mathbf{g}^{\top}\boldsymbol{\xi} = h$ such that at least one element of $\hat{\Xi}$ is on either side, *i.e.*,

$$\exists \hat{\boldsymbol{\xi}}_i, \hat{\boldsymbol{\xi}}_j \in \hat{\Xi} \text{ s.t. } \boldsymbol{g}^{\top} \hat{\boldsymbol{\xi}}_i \leq h \text{ and } \boldsymbol{g}^{\top} \hat{\boldsymbol{\xi}}_j \geq h.$$

- Heuristic: identify two elements in $\hat{\Xi}$ that are farthest from each other and partition with a hyperplane that separates them strongly.
- Let, $\hat{\xi}_{i^*}$ and $\hat{\xi}_{j^*}$ represent the two vectors that maximize $||\hat{\xi}_i \hat{\xi}_j||$ for $\hat{\xi}_i, \hat{\xi}_j \in \hat{\Xi}$.
- Then the hyperplane $\mathbf{g}^{\top} \boldsymbol{\xi} \leq h$ with

$$\mathbf{g} = \hat{\mathbf{\xi}}_{i^*} - \hat{\mathbf{\xi}}_{j^*}$$
 and $h = \frac{\mathbf{g}^{\top}(\hat{\mathbf{\xi}}_i + \hat{\mathbf{\xi}}_j)}{2}$

achieves the desired result.

\$; ···· &

Remark

Two subsets will be created as a result of this approach.

²Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016

- Bertsimas and Dunning propose Voronoi diagrams.
- For each $\hat{\xi_i} \in \hat{\Xi}$:

 The set of realisations in Ξ that are closer to $\hat{\xi_i}$ than any other $\hat{\xi_i} \in \hat{\Xi}$ $\Xi(\hat{\xi_i}) \stackrel{\checkmark}{=} \{ \xi \in \Xi \mid ||\hat{\xi_i} \xi|| \leq ||\hat{\xi_j} \xi|| \quad \forall \hat{\xi_j} \in \hat{\Xi} \}$

• This yields for $\hat{\boldsymbol{\xi}}_i \in \hat{\Xi}$:

$$\Xi(\hat{oldsymbol{\xi}}_i) = \Xi \cap \{oldsymbol{\xi} \mid oldsymbol{\xi}^ op (\hat{oldsymbol{\xi}}_j - \hat{oldsymbol{\xi}}_i) \leq rac{1}{2} (\hat{oldsymbol{\xi}}_j + \hat{oldsymbol{\xi}}_i)^ op (\hat{oldsymbol{\xi}}_j - \hat{oldsymbol{\xi}}_i) \quad orall \hat{oldsymbol{\xi}}_j \in \hat{\Xi}, j
eq i \}.$$

ullet This is a polyhedron with $|\hat{\Xi}|-1$ additional linear constraints.

Remark

 $|\hat{\Xi}|$ subsets will be created as a result of this approach.

If I is a polyhedron then subsets are polyhedra as well.

 $2\xi^{\tau}(\hat{\xi}_{r}^{-}\hat{\xi}_{i}) \leq \hat{\xi}_{r}^{\tau}\hat{\xi}_{r}^{2} - \hat{\xi}_{i}^{\tau}\hat{\xi}_{i}^{2}$

²Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016

• Let at iteration r:

Each of these are defined as a
$$\equiv \bigcup_{k \in N_r} \equiv_{rk}.$$
 polyhedron + linear constraints added through the iterations

• We solve:

$$\min_{\substack{\mathbf{x} \in \mathcal{X}, \theta \in \mathbb{R} \\ \mathbf{A}^{(r,1)}, \dots, \mathbf{A}^{(r,N_r)} \in \mathbb{R}^{n_y \times n_\xi}}} \mathbf{c}^{\mathsf{T}} \mathbf{x} + \theta \tag{Part-r}$$

$$\mathbf{s.t.} \qquad \theta \ge \mathbf{f}^{\mathsf{T}} \mathbf{A}^{(r,k)} \boldsymbol{\xi} \qquad \forall k \in [N_r], \boldsymbol{\xi} \in \Xi_{rk}$$

$$\mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W} \mathbf{A}^{(r,k)} \boldsymbol{\xi} \le \mathbf{h}(\boldsymbol{\xi}) \qquad \forall k \in [N_r], \boldsymbol{\xi} \in \Xi_{rk}$$

Remark

- (Part-r) is a static robust optimization problem, it is semi-infinite.
- Under the polyhedral subsets assumption it can be reformulated as a monolithic LP/MILP.

²Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

- Let $(\mathbf{x}^{r*}, \mathbf{A}^{*(r,1)}, \dots, \mathbf{A}^{*(r,N_r)}, \theta^{r*})$ be an optimal solution.
- Extract the worst realizations for each constraint by solving, for $k \in [N_r]$:

realisations constraining
$$\hat{\boldsymbol{\xi}}_{k0} \in \operatorname{argmax}_{\boldsymbol{\xi} \in \Xi_{rk}} \quad \mathbf{f}^{\top} \mathbf{A}^{*(r,k)} \boldsymbol{\xi} - \boldsymbol{\theta}^{*}$$
 the kin solution $\hat{\boldsymbol{\xi}}_{ki} \in \operatorname{argmax}_{\boldsymbol{\xi} \in \Xi_{rk}} \quad \mathbf{T}_{i}(\boldsymbol{\xi}) \mathbf{x}^{r*} + \mathbf{W}_{i} \mathbf{A}^{*(r,k)} \boldsymbol{\xi} - \mathbf{h}_{i}(\boldsymbol{\xi}) \qquad \forall i \in [m_{y}]$

- Let $\hat{\Xi}_{rk} = \bigcup_{i=0}^{m_y} \{\hat{\xi}_{ki}\}$ and partition each Ξ_{rk} based on the realizations in $\hat{\Xi}_{rk}$.
- Let $\hat{\Xi} = \bigcup_{r'=1}^r \bigcup_{k \in [N_r]} \hat{\Xi}_{r'k}$ be the set of realizations identified in iterations $1, \ldots, r$.
- Calculate a dual bound by solving:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

²Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

Remark

• Illustration of the algorithm with the partitioning approach of Postek and Den Hertog (2016).

²Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016

A.N. Arslan (Inria-Bordeaux)

Remark

Convergence criterion can be established for purely continuous problems.

²Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016

Piecewise constant decision rules

$$\begin{aligned} & \underset{\mathbf{x} \in \mathcal{X}, \mathbf{y}(\cdot), \theta \in \mathbb{R}}{\text{min}} & \mathbf{c}^{\top} \mathbf{x} + \theta \\ & \text{s.t.} & \theta \geq \mathbf{f}(\boldsymbol{\xi})^{\top} \mathbf{y}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ & & \mathbf{W}(\boldsymbol{\xi}) \mathbf{y}(\boldsymbol{\xi}) \leq \mathbf{h}(\boldsymbol{\xi}) - \mathbf{T}(\boldsymbol{\xi}) \mathbf{x} & \forall \boldsymbol{\xi} \in \Xi \\ & & \mathbf{y}(\boldsymbol{\xi}) \in \mathcal{Y} & \forall \boldsymbol{\xi} \in \Xi \end{aligned}$$

Idea

• Partition the uncertainty set into K subsets, i.e.,

$$\Xi = \bigcup_{k=1}^{K} \Xi_k.$$

Define one recourse policy over each partition

$$\mathbf{y}(\boldsymbol{\xi}) = \mathbf{y}^k \quad \forall \boldsymbol{\xi} \in \Xi_k.$$

Attention!

ullet ${\cal Y}$ can contain continuous and integer variables.

• This allows handling f and W as affine functions of ξ .

Since yk is assumed constant over

~ \(\bar{\parabole{\parab

$$\begin{aligned} & \underset{\mathbf{x} \in \mathcal{X}, \mathbf{y}(\cdot), \theta \in \mathbb{R}}{\text{min}} & \mathbf{c}^{\top} \mathbf{x} + \theta \\ & \text{s.t.} & \theta \geq \mathbf{f}(\boldsymbol{\xi})^{\top} \mathbf{y}(\boldsymbol{\xi}) & \forall \boldsymbol{\xi} \in \Xi \\ & \mathbf{W}(\boldsymbol{\xi}) \mathbf{y}(\boldsymbol{\xi}) \leq \mathbf{h}(\boldsymbol{\xi}) - \mathbf{T}(\boldsymbol{\xi}) \mathbf{x} & \forall \boldsymbol{\xi} \in \Xi \\ & \mathbf{y}(\boldsymbol{\xi}) \in \mathcal{Y} & \forall \boldsymbol{\xi} \in \Xi \end{aligned}$$

Idea

- Iteratively partition the uncertainty set into polyhedral subsets.
- Define one recourse policy over each subset.

 $^{^3}$ Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016 $\checkmark \square \lor \checkmark \boxdot \lor \checkmark \trianglerighteq \lor \checkmark \trianglerighteq \lor$

• Let at iteration *r*:

$$\Xi = \bigcup_{k \in N_r} \Xi_{rk}.$$

• We solve:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathcal{X}, \theta \in \mathbb{R} \\ \mathbf{y}^{(r,1)}, \dots, \mathbf{y}^{(r,N_r)} \in \mathcal{Y} \end{aligned}} \mathbf{c}^{\top} \mathbf{x} + \theta \tag{Part-r}$$

$$\text{s.t.} \qquad & \theta \geq \mathbf{f}(\boldsymbol{\xi})^{\top} \mathbf{y}^{(r,k)} \qquad \forall k \in [N_r], \boldsymbol{\xi} \in \Xi_{rk}$$

$$& \mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W}(\boldsymbol{\xi}) \mathbf{y}^{(r,k)} \leq \mathbf{h}(\boldsymbol{\xi}) \qquad \forall k \in [N_r], \boldsymbol{\xi} \in \Xi_{rk}$$

Remark

- (Part-r) is a static robust optimization problem, it is semi-infinite.
- Under the polyhedral subsets assumption it can be reformulated as a monolithic LP/MILP.
- Rest of the algorithm follows similarly.

 $^{^{3}}$ Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016

- When mixed-integer recourse is considered the numerical burden of the algorithm becomes more important.
- This burden increases with the number of subsets in the partition.
- We described a nested partitioning approach and partitioned each subset at each iteration.
- One can instead partition the original uncertainty set from scratch or choose not to further partition certain subsets. In particular:

r partition certain subsets. In particular:
$$\min_{\substack{\mathbf{x} \in \mathcal{X}, \theta \in \mathbb{R} \\ \mathbf{y}^{(r,1)}, \dots, \mathbf{y}^{(r,N_r)} \in \mathcal{Y}}} \mathbf{c}^{\top} \mathbf{x} + \theta + \epsilon \sum_{k \in [N_r]} \theta_k \text{ for all push each } \theta_k \text{ as}$$
 (Part-r)
$$\mathbf{s}.\mathbf{t}. \qquad \theta \geq \theta_k \qquad \qquad \forall k \in [N_r]$$

$$\mathbf{s}.\mathbf{t}. \qquad \theta_k \geq \mathbf{f}(\boldsymbol{\xi})^{\top} \mathbf{y}^{(r,k)} \qquad \forall k \in [N_r], \boldsymbol{\xi} \in \Xi_{rk}$$

$$\mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W}(\boldsymbol{\xi}) \mathbf{y}^{(r,k)} \leq \mathbf{h}(\boldsymbol{\xi}) \qquad \forall k \in [N_r], \boldsymbol{\xi} \in \Xi_{rk}$$

if $\theta_k \neq \theta$ then no need to further partition the subset k. ~

Partition only the subsets blocking the objective function

 $^{^3}$ Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016 \prec \square \rightarrow \prec \square \rightarrow \prec \supseteq \rightarrow \prec \supseteq \rightarrow \rightarrow \supseteq

An example ⁴

• Consider for $\epsilon \in (0,1)$:

$$egin{aligned} z(\epsilon) &= \min_{ heta \in \mathbb{R}, y_1 \in \{0,1\}, y_2 \in \{0,1\}} heta \ & ext{s.t.} & heta \geq y_1(\xi) + y_2(\xi) & heta \xi \in [0,1] \ & y_1(\xi) \geq \epsilon - \xi & heta \xi \in [0,1] \ & y_2(\xi) \geq -\epsilon + \xi & heta \xi \in [0,1] \end{aligned}$$

- Optimal static solution $\theta = 2$ with $y_1, y_2 = 1$.
- Optimal adjustable solution $\theta = 1$ with policy:

$$y_1(\xi) = egin{cases} 1 & 0 \leq \xi < \epsilon \ 0 & \epsilon \leq \xi \leq 1 \end{cases} \qquad \qquad y_2(\xi) = egin{cases} 0 & 0 \leq \xi \leq \epsilon \ 1 & \epsilon < \xi \leq 1 \end{cases}$$

Attention!

• Partitioning methods will never find an optimal solution or decrease the bound gap unless a subset [a, b] such that $a = \epsilon$ or $b = \epsilon$ is created.

⁴from Bertsimas and Dunning, 2016

An example 4

- Starting from the static solution, $\xi=0$ and $\xi=1$ are identified as the worst case realizations.
- Then partitioning $\Xi = [0,1]$ based on these realizations will create $\Xi_1 = [0,0.5]$ and $\Xi_2 = [0.5, 1].$
- The resulting optimization problem that needs to be solved is then:

$$z(\epsilon) := \min_{\substack{\theta \in \mathbb{R}, y_1^{(1,1)}, y_2^{(1,1)} \in \{0,1\} \\ y_1^{(1,2)}, y_2^{(1,2)} \in \{0,1\}}} \theta$$

s.t.
$$\theta \geq y_1^{(1,1)}(\xi) + y_2^{(1,1)}(\xi)$$
 $\forall \xi \in [0, 0.5]$ $\theta \geq y_1^{(1,2)}(\xi) + y_2^{(1,2)}(\xi)$ $\forall \xi \in [0.5, 1]$ $y_1^{(1,1)}(\xi) \geq \epsilon - \xi = \epsilon > 0$ $\forall \xi \in [0, 0.5]$ $y_2^{(1,1)}(\xi) \geq -\epsilon + \xi = 0.5 - \epsilon$ one of these $\forall \xi \in [0, 0.5]$ $y_1^{(1,2)}(\xi) \geq \epsilon - \xi = \epsilon - 0.5$ is > 0 unless $\xi \in [0.5, 1]$ $y_2^{(1,2)}(\xi) \geq -\epsilon + \xi = 1 - \epsilon > 0$ $\forall \xi \in [0.5, 1]$.

• Optimal solution: $\theta = 2$, $y_1^{(1,1)}(\xi) = 1$, $y_2^{(1,1)}(\xi) = 1$, $y_1^{(1,2)}(\xi) = 1$, $y_2^{(1,2)}(\xi) = 1$.

⁴from Bertsimas and Dunning, 2016

An example ⁴

- At each iteration, the algorithm will indentify the extreme points of each sub-interval and create new sub-intervals based on these extreme points.
- If one of these sub-intervals, say [a, b], is such that $a < \epsilon < b$, then:

$$y_1(\xi) \ge \epsilon - \xi > 0$$
 $\xi \in [a, b]$
 $y_2(\xi) \ge \xi - \epsilon > 0$ $\xi \in [a, b]$

- This implies that θ will be lower bounded by $y_1(\xi) + y_2(\xi) = 2$.
- Indeed, given a finite number of iterations, the uncertainty set partitioning algorithms will never find a solution of value 1 or decrease the bound gap unless a subset [a, b] such that $a = \epsilon$ or $b = \epsilon$ is created.
- Assuming that each iteration a sub-interval is divided into two from the middle of the sub-interval, such a sub-interval will only be created if $\epsilon = \frac{q}{2^p}$ for some $q, p \in \mathbb{Z}_+$.

⁴from Bertsimas and Dunning, 2016

Combining piecewise affine and constant rules⁵

$$\begin{aligned} & \underset{\mathbf{x} \in \mathcal{X}, \theta \in \mathbb{R}}{\text{min}} & \mathbf{c}^{\top} \mathbf{x} + \theta \\ \mathbf{y}^{C}(\cdot) : \Xi \to \mathbb{R}^{n_{y}^{C}} \\ \mathbf{y}^{D}(\cdot) : \Xi \to \mathbb{Z}^{n_{y}^{D}} \end{aligned}$$

$$\text{s.t.} \qquad \theta \geq \mathbf{f}_{C}(\boldsymbol{\xi})^{\top} \mathbf{y}^{C}(\boldsymbol{\xi}) + \mathbf{f}_{D}(\boldsymbol{\xi})^{\top} \mathbf{y}^{D}(\boldsymbol{\xi}) \qquad \forall \boldsymbol{\xi} \in \Xi$$

$$\mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W}_{C}(\boldsymbol{\xi}) \mathbf{y}^{C}(\boldsymbol{\xi}) + \mathbf{W}_{D}(\boldsymbol{\xi}) \mathbf{y}^{D}(\boldsymbol{\xi}) \leq \mathbf{h}(\boldsymbol{\xi}) \qquad \forall \boldsymbol{\xi} \in \Xi$$

$$(\mathbf{y}^{C}(\boldsymbol{\xi}), \mathbf{y}^{D}(\boldsymbol{\xi})) \in \mathcal{Y} \subseteq \mathbb{R}^{n_{y}^{C}} \times \mathbb{Z}^{n_{y}^{d}} \qquad \forall \boldsymbol{\xi} \in \Xi$$

Assumptions

• \mathbf{f}_C and \mathbf{W}_C are deterministic

Idea

- Let $\mathbf{y}^{C}(\cdot)$ be piecewise affine and $\mathbf{y}^{D}(\cdot)$ be piecewise constant.
- Iteratively partition the uncertainty set into polyhedral subsets.
- Define one recourse policy over each subset.

⁵Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016

A.N. Arslan (Inria-Bordeaux)

Combining piecewise affine and constant rules⁵

• Let at iteration *r*:

$$\Xi = \bigcup_{k \in N_r} \Xi_{rk}.$$

• We solve:

$$\min_{\mathbf{x} \in \mathcal{X}, \theta \in \mathbb{R}} \mathbf{c}^{\top} \mathbf{x} + \theta \qquad (Part-r)$$

$$\mathbf{y}^{(r,1)}, \dots, \mathbf{y}^{(r,N_r)} \in \mathbb{Z}^{n_y^d}$$

$$\mathbf{A}^{(r,1)}, \dots, \mathbf{A}^{(r,N_r)} \in \mathbb{R}^{n_y^c \times n_\xi}$$
s.t.
$$\theta \ge \mathbf{f}_C^{\top} \mathbf{A}^{(r,k)} \boldsymbol{\xi} + \mathbf{f}_D(\boldsymbol{\xi})^{\top} \mathbf{y}^{(r,k)} \qquad \forall k \in [N_r], \boldsymbol{\xi} \in \Xi_{rk}$$

$$\mathbf{T}(\boldsymbol{\xi}) \mathbf{x} + \mathbf{W}_C \mathbf{A}^{(r,k)} \boldsymbol{\xi} + \mathbf{W}_D(\boldsymbol{\xi}) \mathbf{y}^{(r,k)} \le \mathbf{h}(\boldsymbol{\xi}) \qquad \forall k \in [N_r], \boldsymbol{\xi} \in \Xi_{rk}$$

$$(\mathbf{A}^{(r,k)} \boldsymbol{\xi}, \mathbf{y}^{(r,k)}) \in \mathcal{Y} \qquad \forall k \in [N_r], \boldsymbol{\xi} \in \Xi_{rk}$$

Remark

- (Part-r) is a static robust optimization problem, it is semi-infinite.
- Under the polyhedral subsets assumption it can be reformulated as a monolithic MILP.

⁵Postek and Den Hertog, 2016 and Bertsimas and Dunning, 2016