Approach

1. Traditional Machine Learning

- Label Mapping: Ratings were grouped into three sentiment classes:
 - o Negative: 1-3
 - o Neutral: 4
 - o Positive: 5

Preprocessing:

- o Lowercasing, punctuation/special character removal, whitespace cleanup
- Lemmatization
- Feature extraction using TfidfVectorizer followed by dimensionality reduction via TruncatedSVD

Modeling:

- o Dealt with class imbalance using SMOTE
- o Logistic Regression selected via grid search and cross-validation
- Optimal hyperparameters: C=10, max_iter=1000

2. Transformer-Based Modeling (Hugging Face)

- Preprocessing: Same text cleaning steps as traditional ML
- Tokenization: Used AutoTokenizer.from_pretrained("distilbert-base-uncased")
- Data Preparation: Constructed DataLoader with input_ids, attention_mask, and labels
- Model Selection:
 - o Compared BERT, RoBERTa, and DistilBERT
 - Chose **DistilBERT** for its balance of speed and performance (~97% of BERT's accuracy with 60% faster inference)
 - o Dealt with the class imbalance by integrating weights in the loss function:

```
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

label_count = {i: 0 for i in range(3)}
for ii, am, labels in train_loader:
    batch_count = Counter(labels.tolist())
    for i in range(3):
        label_count[i] += batch_count[i]

total = sum(label_count.values())

weights = torch.tensor[[
    total / label_count[i] for i in range(len(label_count))
], dtype=torch.float[]

criterion = torch.nn.CrossEntropyLoss(weight = weights.to(device))
```

Results

Traditional ML

• Model: Logistic Regression

• Evaluation:

Classification report

	precision	recall	f1-score	support
0	0.7374	0.8382	0.7846	6782
1	0.5932	0.5310	0.5604	6783
2	0.6771	0.6554	0.6661	6782
accuracy			0.6749	20347
macro avg	0.6692	0.6749	0.6703	20347
weighted avg	0.6692	0.6749	0.6703	20347

o confusion matrix

Transformer Model

• Model: Fine-tuned DistilBERT

o Optimizer: AdamW

o Learning rate = 2e-5

o num_training_steps = len(train_loader) * 3

Evaluation:

o classification report:

Test Set Clas	sification precision	Report: recall	f1-score	support
0	0.6847	0.8159	0.7445	793
1	0.6071	0.6439	0.6249	2241
2	0.8949	0.8568	0.8754	6774
accuracy			0.8049	9808
macro avg	0.7289	0.7722	0.7483	9808
weighted avg	0.8121	0.8049	0.8076	9808

o confusion matrix:

Deployment: Model deployed on Hugging Face hub
 (https://huggingface.co/spaces/yang181614/customer-review-distilbert)

Analysis

• Traditional ML:

- o Efficient and interpretable
- o Performance may be limited by feature engineering and class imbalance

• Transformer Approach:

- o Superior contextual understanding and generalization
- o DistilBERT offered a practical trade-off between accuracy and speed
- o Hugging Face integration streamlined tokenization, training, and deployment

• Problems identifies:

- o Split train, validation and test data first, then apply SMOTE only on training data.
- Logistic regression:
 - By default, the regularization is L2.
 - C is the inverse of the regularization strength, a higher C means less regularization, allowing the model to fit the training data more closely.