Sthir

Release 1

Parth Parikh, Mrunank Mistry, Dhruvam Kothari

CONTENTS:

1	statio	c_site_search	1
	1.1	CLI module	1
	1.2	Test module	1
	1.3	convert_2p15 module	2
	1.4	convert_byte module	2
	1.5	generate_search module	2
	1.6	parse module	2
	1.7	scan module	3
	1.8	spectral_bloom_filter module	3
2	Indic	ces and tables	7
Рy	thon I	Module Index	9
In	dex		11

CHAPTER

ONE

STATIC_SITE_SEARCH

1.1 CLI module

```
CLI.chunk_size_arg(val)
Validates the chunk_size for the arg parser

CLI.create_arg_parser()
Returns a well-setup argument-parser object

CLI.dir_path(path)
Validates path to the source folder

CLI.error_rate_arg(val)
Validates the error_rate for the arg parser
```

1.2 Test module

```
class Test.Tester(doc_name: str, chunk_size: int = 4, fp_rate: int = 0.1)
    Bases: object

Class for testing the bloom filters

generate_Filter(remove_stopwords, lemmetize)
    Returns the counter and params for the specified document in Testing Folder

read_dict_words()
    Reads and returns a list of words in the english_dict.txt file

test_filter_for_FP()
    Tests and logs the stats after testing the provided file

Test.create_logger()
    Returns a logger object
```

1.3 convert_2p15 module

1.4 convert_byte module

1.5 generate search module

```
generate_search.base2p15_decode (base2p15: str) \rightarrow str generate_search.base2p15_encode (bit_string: str) \rightarrow str generate_search.base2p15_get_range (base2p15: str, start: int, end: int) \rightarrow str generate_search.gen_chunks (string: str, chunk_size: int, drop_remaining: bool = False) \rightarrow Iterable[str] Yields an iterator of chunks of specified size
```

If drop_remaining is specified, the iterator is guaranteed to have all chunks of same size.

```
>>> list(gen_counter_chunks('123456789A', 4)) == ['1234', '5678', '9A']
>>> list(gen_counter_chunks('123456789A', 4, drop_remaining = True)) == ['1234', '5678']
```

1.6 parse module

```
parse.extract_html_bs4 (html_file_path: str, remove_stopwords: bool = True, enable_lemmetization: bool = False)
```

Given a path to html file it will extract all text in it and return a list of words (using library: BeautifulSoup4)

Parameters

- html_file_path (str) Path to html file, will be called with open()
- remove_stopwords (bool, optional) Will remove stopwords like ["the", "them",etc], defaults to False
- enable_lemmetization (bool, optional) Will lemmetize words if set to True. Ex: cats->cat, defaults to False

Returns A list of words all in lowercase

Return type List[str]

```
parse.extract_html_newspaper(html_file: str, remove_stopwords=True, enable_lemmetization=False) \rightarrow List[str] Given a path to html file it will extract all text in it and return a list of words (using library: Newspaper3k)
```

Parameters

- html_file_path (str) Path to html file, will be called with open()
- remove_stopwords (bool, optional) Will remove stopwords like ["the", "them",etc], defaults to False

Returns A list of words all in lowercase

Return type List[str]

1.7 scan module

 $scan.create_search_page (directory, output_file='search.html', false_positive=0.1, chunk_size=4, remove_stopwords=True)$

Generates the search output file using the directory path.

Parameters

- directory Directory path where HTML files are located
- output_file name of the output file (Default "search.html")
- **false_positive** Acceptable false positive rate during search (Default 0.1) 0.01 is a better alternative, at the cost of increase in file size.
- **chunk_size** Size of each counter in Spectral Bloom Filter (Default 4) Default of 4 means that the maximum increment a counter can perform is 2**4, which is 16.
- remove_stopwords To remove stopwords (Default True)

It saves the search file in the output_file path.

```
scan.download_urls (json_file, output_file=")
```

Downloads and saves HTML files using a JSON file containing list of URLs. (For Debugging purposes)

```
scan.generate_bloom_filter(file, false_positive=0.1, chunk_size=4, remove_stopwords=True)
```

Generates a bloom filter and saves it in .bin file.

The saved .bin filename is same as that of the .html file name.

Returns a dictionary containing the -

length of the bitarray (m), no of hash functions used (k), chunk size (chunk_size), binary file name (bin_file), and HTML file's title (title).

This method is internally used in method - create search page

```
scan.get_all_bin_files(directory)
```

Returns list of bin files located in the directory

```
scan.get_all_html_files(directory)
```

Returns list of html files located in the directory

1.8 spectral bloom filter module

```
class spectral_bloom_filter.Hash_Funcs (k: int, m: int)
Bases: object

static check_duplicates (indices_list: list)

check_hashes (word_list: list)

Logs the duplicate hashed indices for words in words_list

Parameters word_list - List of words

get_hashes (word: str) → list

Returns a list of k hashed indices for the input word

Parameters word - Word to be hashed
```

Returns List of hashes of the word

1.7. scan module 3

Creates a Spectral Bloom Filter using the words parsed from the documents

Paper: SIGMOD '03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, June 2003 Pages 241–252

DOI: https://doi.org/10.1145/872757.872787

```
create_filter(tokens: list, m: int, chunk_size: int = 4, no_hashes: int = 5, method:

str = 'minimum', to_bitarray: bool = True, bitarray_path: str = 'docu-
ment.bin') → <module 'bitarray' from '/home/parthparikh/.local/lib/python3.6/site-
packages/bitarray/__init__.py'>
```

Creates a spectral bloom filter.

Paper: SIGMOD '03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, June 2003 Pages 241–252

DOI: https://doi.org/10.1145/872757.872787

Parameters

- tokens List of words to index in spectral bloom filter
- m size of the bitarray
- **chunk_size** Size of each counter in Spectral Bloom Filter (default: 4). Default of 4 means that the maximum increment a counter. Can perform is 2**4, which is 16.
- no_hashes No. of hashes to index word with, (default: 5)
- **method** Currently only "minimum" is supported, (default: "minimum"). "minimum" stands for Minimum Increment
- to_bitarray If True, will convert and save as bitarray in bitarray_path. If False, method will return list of lists containing the entire bitarray with chunks. (Default: True).
- bitarray_path Path to store the bitarray, (default:"document.bin").

create_hashes (*token: str, hashes: int, max_length: int*) \rightarrow list Get the hased indices for the string

Parameters

- token token to index
- hashes no. of hashes (k)
- max_length maximum length of the hash (m)

Returns list of hashes

 $gen_counter_chunks$ (string: str, chunk_size: int, drop_remaining: bool = False) \rightarrow Iterable[str] Yields an iterator of chunks of specified size

If drop_remaining is specified, the iterator is guaranteed to have all chunks of same size.

Parameters

- string bit string whose chunks are to be obtained
- **chunk_size** size of each chunk (optimal: 4)
- **drop_remaining** to drop the extra string, if left, (default: False)

Returns generator object containing the list of chunks

```
init_counter(counter_length: int) → dict
```

To initialize a binary counter for incrementing Spectral Bloom Filter's counters.

```
Example: For counter_length = 2 Method returns - {'00': '01', '01': '10', '10': '11', '11': '11'}
```

Parameters counter_length - No. of bits in each counter

Returns Dictionary used for binary counter operation

```
initialize\_string(length: int) \rightarrow str
```

Returns string of zeros of width "length".

Parameters length - size of the string

Returns string of 0s of the specified length

```
optimal_m_k (n: int, p: int) \rightarrow tuple
```

From: https://stackoverflow.com/questions/658439/how-many-hash-functions-does-my-bloom-filter-need

Parameters

- n items expected in filter
- **p** false positive rate
- **chunk_size** number of bits in each counter

Returns Tuple containing: m for number of bits needed in the bloom filter (index 0) and k for number of hash functions we should apply (index 1)

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
C
CLI, 1
convert_2p15, 2
convert_byte, 2

G
generate_search, 2

p
parse, 2

$
scan, 3
spectral_bloom_filter, 3

t
Test, 1
```

10 Python Module Index

INDEX

B base2p15_decode() (in module generate_search), 2 base2p15_encode() (in module generate_search), 2 base2p15_get_range() (in module generate_search), 2 C check_duplicates() (spectral_bloom_filter.Hash_Funcs static method), 3 check_hashes() (spectral_bloom_filter.Hash_Funcs method), 3 chunk_size_arg() (in module CLI), 1 CLI	<pre>gen_counter_chunks()</pre>
<pre>module, 1 convert_2p15 module, 2 convert_byte module, 2 create_arg_parser() (in module CLI), 1 create_filter()</pre>	<pre>init_counter()</pre>
<pre>method), 4 create_hashes()</pre>	<pre>M module CLI, 1 convert_2p15, 2 convert_byte, 2 generate_search, 2 parse, 2 scan, 3 spectral_bloom_filter, 3 Test, 1 O optimal_m_k()</pre>

R read_dict_words() (Test.Tester method), 1 S scan module, 3 spectral_bloom_filter module, 3 Spectral_Bloom_Filter (class in spectral_bloom_filter), 3 T

Test
 module, 1
test_filter_for_FP() (Test.Tester method), 1
Tester (class in Test), 1

12 Index