Satellite Communications - RRY100 -

2024 Study Period 1 Lecturer: Rüdiger Haas

Lecture-09: Modulation and multiplex

What was special on the last weekend?

No, it is not (only) Oktoberfest...

Figure 2.28 Apparent movement of the sun with respect to the orbit of geostationary satellites.

Reference: Maral, Gérard Michel, Bousquet Sun, Zhili. (2020). *Satellite Communications Systems - Systems, Techniques and Technology (6th Edition).*John Wiley & Sons. Retrieved from https://app.knovel.com/hotlink/toc/id:kpSCSSTT02/satellite-communications/satellite-communications/

Figure 2.32 Daily duration of eclipses as a function of the date (simplified assumptions).

Reference: Maral, Gérard Michel, Bousquet Sun, Zhili. (2020). *Satellite Communications Systems - Systems, Techniques and Technology (6th Edition).*John Wiley & Sons. Retrieved from https://app.knovel.com/hotlink/toc/id:kpSCSSTT02/satellite-communications/satellite-communications/

Baseband vs. RF transmission:

Modulation:

- Superimposing signals on a high frequency carrier
 - Amplitude modulation (AM)
 - Varying the amplitude of the carrier signal
 - Old technique
 - Suspect to interference, noise and non-linearity

$$\frac{S}{N} = m^2 \cdot \frac{C}{N}$$
 m=modulation index [0 1]

- Frequency modulation (FM)
 - Varying the frequency of the carrier signal
 - Robust, less suspective to noise an interference than AM
 - Power versus bandwidth tradeoff possible

$$\frac{S}{N} = \frac{R_b}{R_t} \cdot \frac{C}{N}$$

R_b= baseband bandwidth, R_t=transmission bandwidth

- Phase modulation (PM)
 - Varying the phase of the carrier signal
 - Phase shift keying (PSK)

Example: Amplitude modulation (AM)

Waveform for ASK using on/off keying

Waveform for ASK using different amplitude signals for the logic levels

Example: Frequency modulation (FM)

Example: Phase modulation (PM)

Example: AM – FM – PM

Digital communications channel model:

Information:

- Usually measured in units bits (binary digit)
- The amount of information associated with the choice between two states with equal probability is equal to one bit
- Information of the jth symbol from a digital source is:

$$I(x_j) = \log_2\left(\frac{1}{p(x_j)}\right) = -\log_2\left(p(x_j)\right)$$

- For p(x)=1/2 follows that information l=1
- For p(x)=1 follows that information l=0
- In general does the information in each symbol vary because of different probabilities p(x) for each symbol

Example

- Assume a twelve digit word, e.g. ABCDABDCDCBA
- Assume that each digit can take 4 possible stages (A, B, C, D) with equal probability and independent of the others
- Thus, the number of possible combinations 4¹²
- Probability of one combination (word) $p(x)=4^{-12}$
- Information of one combination $I(x)=log_2(4^{12})=24$ bit

Entropy:

Is the average information of L possible messages

$$H = \sum_{j=1}^{L} p(x_j) \cdot I(x_j) = -\sum_{j=1}^{L} p(x_j) \cdot \log_2(p(x_j))$$

• A binary source transmitting 'ones' and 'zeros' with probabilities $p_1=\alpha$ and $p_2=(1-\alpha)$

$$H = -\sum_{j=1}^{2} p_j \cdot \log_2 p_j = -[\alpha \cdot \log_2 \alpha + (1 - \alpha) \cdot \log_2 (1 - \alpha)]$$
$$= -\alpha \cdot \log_2 \alpha - (1 - \alpha) \cdot \log_2 (1 - \alpha)$$

- Symmetric curve
- Entropy reaches maximum for α =0.5
- In general: entropy is always highest when the probability is the same for all L states, i.e. $p(x_i)=1/L$
- Maximum entropy:

$$H_{max} = -\sum_{i=1}^{L} \left(\frac{1}{L}\right) \cdot \log_2\left(\frac{1}{L}\right) = \log_2 L$$

Information rate:

- Information rate is entropy per time: $R = \frac{H}{T}$ [bit/s
- In a completely noise-free environment (i.e. no disturbances) the necessary energy to transmit one bit can be as low as we wish.
- However, in practice there is of course always noise present.
- Thus, a minimum energy E_b [J/bit] or [Ws/bit] is needed to transmit one bit.
- We introduce γ , the "system-to-noise-ratio per bit of information".
- It is a useful parameter to compare different systems:

$$\gamma = \frac{E_b}{N_0} = \frac{S}{N_0 \cdot R} = \frac{S}{N} \cdot \frac{B}{R}$$

 Here, S is the minimum necessary signal power [W], N is the noise power [W] within the bandwidth B [Hz], N₀ the corresponding noise spectral density in [W/Hz], and R is the information rate in [bit/s]

- The number of significant different stages (levels) of a signal is at most (S/N+1)
- During time T we can transmit $B \cdot T$ pulses
- The maximum number of different messages that can be transmitted is thus

$$L = \left(1 + \frac{S}{N}\right)^{B \cdot T}$$

- L corresponds to the maximum amount of information that can be transmitted in the time interval T
- When all messages have identical probabilities we can calculate the maximum entropy H_{max} and relate it to the time interval T to express the information rate R_{max} or often called 'channel capacity' $_{\rm C}$:

$$C = R_{\text{max}} = \frac{H_{\text{max}}}{T} = \left(\frac{1}{T}\right) \log_2(L)$$

$$= \left(\frac{1}{T}\right) \log_2\left((1 + \frac{S}{N})^{B \cdot T}\right) = B \cdot \log_2\left(1 + \frac{S}{N}\right) \quad \text{[bit/s]}$$

=> "Shannon's equation" or "Shannon-Hartley law"

Shannon-Hartley law:

- Used to improve the S/N ratio in the detection process
- Information is coded (modulated) so that is occupies a larger bandwidth B in the transmission channel compared to the original signal bandwidth f_m
- Information rate is constant R_{in}=R_{out}
- Theoretically we can thus reach exponential improvement in signal to noise ratio S/N
- In reality the S/N improvement depends on the type of modulation and is significantly lower than theory

$$R_{in} = B \cdot \log_2 \left(1 + \frac{S}{N} \right)_{in}$$

$$= f_m \cdot \log_2 \left(1 + \frac{S}{N} \right)_{out} = R_{out}$$

$$(S/N)_{in}$$

$$B$$
Decoder
$$f_m$$

=> it follows:
$$\left(\frac{S}{N}\right)_{out} = \left(\frac{S}{N}\right)_{in} \frac{B}{f_{in}}$$

- Assumption: maximum channel capacity $C=R_{max}$ can be realized
- Reformulation of Shannon's equation:

$$\frac{C}{B} = \log_2\left(1 + \frac{S}{N}\right) = \log_2\left(1 + \frac{S}{N_0 \cdot C} \cdot \frac{C}{B}\right) = \log_2\left(1 + \frac{E_b}{N_0} \cdot \frac{C}{B}\right)$$

• Finally we get:

$$\frac{E_b}{N_0} = \frac{B}{C} \cdot \left(2^{(\frac{C}{B})} - 1 \right)$$

• Limit:

$$\lim_{B\to\infty}\left(\frac{E_b}{N_0}\right) = \log_e 2$$

Limit expressed in dB: -1.59 dB

Analogue modulation:

- Amplitude, frequency or phase of the carrier is modulated continuously
- Determined by incoming information
- Quality factor for modulation is (S/N)out for given (S/N)in

Digital modulation:

- Discontinuous change of amplitude, frequency or phase of the carrier
- Controlled by digital flow of information
- Quality factor is the probability of occurrence of an error

In both cases:

– quality factor depends on bandwidth expansion factor μ and the modulation process

Bandwidth expansion factor μ:

- ratio of transmitted RF bandwidth B and highest modulation frequency f_m (analogue)
- ratio of data transmission rate (or information rate) to R (digital)

$$\mu = \frac{B}{f_m} \qquad \qquad \mu = \frac{B}{R}$$

Shannon's equation for analogue modulation:

$$\left(\frac{S}{N}\right)_{out} \leq \left[1 + \left(\frac{S_m}{N_0 \cdot f_m} \cdot \frac{1}{\mu}\right)^{\mu}\right] - 1$$

For digital modulation E_b/N₀ is directly related to μ:

$$\frac{E_b}{N_0} \ge \mu \cdot \left(2^{1/\mu} - 1\right)$$

- Gives a lower limit for required E_b/N₀
- Probability of an error is a function of E_b/N₀
- μ can be smaller or larger than 1
- If μ < 1: more than one bit of information per symbol, bandwidth reduction is compensated by increasing transmitting power
- If μ > 1: more than one symbol used for each bit of information, the bandwidth requirement increases but power requirement decreases

- Due to noise there is always a probability that a symbol is misinterpreted
- Error probabilities can be strictly derived
- We assume gaussian noise and absence of inter-symbol interference (ISI)
- It can be shown that the error probability is:

$$P(E) = \frac{1}{2} \cdot erfc\left(\frac{A}{\sigma \cdot \sqrt{2}}\right)$$

Using the complementary error function:

$$erfc(x) = \frac{2}{\sqrt{\pi}} \cdot \int_{x}^{\infty} e^{-u^{2}} du$$
 $u = \frac{x}{\sigma \cdot \sqrt{2}}$

Digital phase modulation PSK:

- well suited for satellite communications
- constant envelope, bandwidth efficient
- main types BPSK, QPSK, 8PSK
- direct or differential

Example: BPSK, direct encoding

DIRECT ENCODING:

BPSK direct encoding:

```
Input bit stream: b_k = 0, 1, 1, 1, 0, 1, 0, 1 Modulating data: m_k = 0, 1, 1, 1, 1, 0, 1, 1, 0, 1 Carrier phase: \pi, 0, 0, 0, \pi, 0, \pi, 0
```

Example: BPSK, differential encoding

BPSK differential encoding, with initial phase = π , $m_0 = 0$:

```
Input bit stream: b_k = 0, 1, \bar{1}, 1, 0, 1, 0, 1 Modulating data: m_k = 00, 1, 0, 1, 0, 1, 0, 0, 1 Carrier phase: \pi, 0, \pi, 0, 0, \pi, 0, 0, \pi, 0
```

BPSK differential encoding, with initial phase = 0, $m_0 = 1$:

- Bit 0 produces no phase shift
- Bit 1 produces phase shift by π
- Opposite phase sequences can be interpreted by demodulator as same bit sequences: => differential encoding oversteps any phase ambiguity at the demodulator side

QPSK example:

(b)

QPSK: (0) (1) input bit ν₁(t) stream cosoct ⊕ **+** C(t) SYMBOL ENCODER u(t) GENERATOR Bk (NRZ) (1)4+900 (D)¥-90° 0 1 1 0 0 time

CHANNEL SYMBOL GENERATOR:

serial/parallel converter → one symbol = 2 bits

(T_s= 2T_c)

Siven input bit stream : $b_k = (0,1,1,0,0,0,1,1)$

DIFFERENTIAL ENCODING:

dibit	phase shift		
00	0		
01	π/2		
11	π		
10	311/2		

8PSK

32 APSK

Summary PSK:

With QPSK the four possible dibits (pairs of bits) are mapped in accordance with the Gray code : adjacent symbols differ by only one bit.

Direct modulation:

- BPSK, QPSK

Differential modulation:

- DE-BPSK, DE-QPSK

Coherent demodulation:

Differential demodulation:

- D-BPSK, D-QPSK

Bit Error Probability (BEP):

BPSK, QPSK

$$P(E) = \frac{1}{2} erf\left(\frac{E_b}{N_0}\right)$$

DE-BPSK, DE-QPSK

$$P(E) = erf\left(\frac{E_b}{N_0}\right)$$

Theoretical E/N₀ needed to achieve a given error probabilities (ref. Maral & Bousquet, 1998)

	BPSK QPSK	DE-BPSK DE-QPSK
BEP	E/N_0 (dB)	E/N ₀ (dB)
10E-3	6.8	7.4
10E-4	8.4	8.8
10E-5	9.6	9.9
10E-6	10.5	10.8
10E-7	11.3	11.5
10E-8	12.0	12.2
10E-9	12.6	12.8

Power spectral density:

$$L(f) = T_{S} \cdot \left(\frac{\sin(\pi \cdot f \cdot T_{S})}{\pi \cdot f \cdot T_{S}}\right)^{2}$$

$$T_{S} = T_{D} \text{ for BPSK}$$

$$T_{S} = 2 \cdot T_{D} \text{ for QPSK}$$

Filtering needed to avoid infinite bandwidth. => Nyquist filter with cosine roll-off

$$h(t) = \frac{\cos(\beta \cdot \pi \cdot t/T_S)}{1 - (2 \cdot \beta \cdot t/T_S)^2} \cdot \frac{\sin(\pi \cdot t/T_S)}{\pi \cdot t/T_S}$$

Required bandwidth B:

$$B = \frac{1+\beta}{T_s} = \frac{(1+\beta) \cdot R_b}{\log_2 M}$$

Normalized frequency offset from carrier, $(f - f_c)T_s$ Power spectral densities for BPSK, QPSK, O-QPSK, and MSK

Additional channel coding:

- trades power efficiency against spectral efficiency
- Reed-Solomon coding
- Interleaving
- Convolutional coding

e.g. Reed-Solomon coding

Interleaving

Interleaving coding and decoding.

Convolutional 1/2 coding.

Example for interleaving:

Original message:

THE CAT SAT ON THE TABLE

Т	*	E		С
Α	*		S	Α
*		0	N	
Т	Н	*		Т
*	В	L	*	

Rain and no interleaving:

T*E CA* SA* ON TH* T*BL*

Reconstructed message:

T*E CA* SA* ON TH* T*BL*

Original message:

THE CAT SAT ON THE TABLE

Т	Н	*		*
*	*		S	Α
Т		0	*	
Т	Н	E		*
Α	В	L	E	

Rain and interleaving:

T*TTAH* HB* OEL S* E*A *

Reconstructed message:

THE *** SAT O* THE *ABLE³⁷

FEC – forward error correction

1/2 corrects 99 %

7/8 corrects 80 %

- Several dB can be gained by appropriate coding.
- However, larger bandwidth is needed.

Various "rates":

R_b [bit/s] => bit rate (i.e. the "real information")

 R_c [bit/s] => channel rate (after coding, i.e. added code bits) R_c = R_b / ρ with ρ =n/(n+r); n = information bits, r = coding bits

```
R_s [bit/s] => symbol rate (after modulation)

R_s = R_c/(log_2 M) (e.g. with M=2 for BPSK, M=4 for QPSK)
```

E_b [Ws/bit] => energy per bit
C [W] => carrier power

$$C = E_b \cdot R_b$$

 N_0 => noise spectral density [W/Hz]

Multiplexing:

- Sharing a channel when the users are co-located
- Point-to-point or point-to-multipoint
- e.g. several users at a ground station
- e.g. satellite to several ground stations
- Keeping the signals seperate and avoid interference
 - Frequency division multiplex (FDM)
 - Composing several user frequencies
 - Using microwave filters, resonance cavities
 - Analogue signals usually use FDM
 - Time division multiplex (TDM)
 - Composing several user signals into time frames
 - Digital signals usually use TDM

TDM example:

Hierarchy level	CEPT		USA/Canada		Japan	
	Throughput (Mbit/s)	Capacity (channels)	Throughput (Mbit/s)	Capacity (channels)	Throughput (Mbit/s)	Capacity (channels)
1	2 0 4 8	30	1 544	24	1 544	24
2	8 448	120	6312	96	6312	96
3	34 368	480	44736	672	32 064	480
4	139 264	1 920	274 176	4032	97728	1 440
5	557 056	7 680	Constitution and Additional States		400 352	5760

Short summary of today's topics

- Modulation: AM, FM, PM
- Information rate, Shannon-Hartley law
- BPSK, QPSK, other variants
- Necessary E_b/N_0
- Filtering, rolloff
- Channel coding, Reed-Solomon, Vitterbi
- Multiplexing in frequency and time domain