计算机视觉 § 7b 特征匹配

王文中 安徽大学计算机学院

内容

- 特征匹配
- 图像拼接

全景拼接

特征匹配

特征点匹配

特征点匹配算法

两个特征集合: $\left\{F_i^{(1)}\right\}_{i=1}^n$, $\left\{F_i^{(2)}\right\}_{i=1}^m$, 如何找到这两组特征之间的匹配关系?

特征之间的距离反映了特征之间的相似程度:

$$d_{i,j} = d\left(F_i^{(1)}, F_j^{(2)}\right) = \left\|F_i^{(1)} - F_j^{(2)}\right\|$$
 $d_{i,j}$ 越小, $F_i^{(1)}, F_j^{(2)}$ 越相似,匹配程度越高。

与 $F_i^{(1)}$ 最匹配的特征点是 $F_k^{(2)}$,满足 $k = argmin_j d_{i,j} & d_{i,k} < \tau$

```
for(i=1;i<=n; i++){
    M[i] = 0;
    min_dist = Inf;
    for(j=1;j<=m; j++){
        if(d[i][j]<tau && d[i][j]<min_dist){
            min_dist = d[i][j];
            M[i] = j;
        }
    }
}</pre>
```

特征点匹配算法

假设 $d_{i,1}$, $d_{i,2}$ 是 $d_{i,j}$, j = 1...m中的最小距离与次小距离:

如果 $d_{i,1}$ 与 $d_{i,2}$ 相差很小 $\rightarrow \langle F_i^{(1)}, F_1^{(2)} \rangle$ 很可能是错误匹配,为什么?

例如:

第一幅图像中的 $F_i^{(1)}$ 是背景点,与第2幅图像中的所有特征的距离都很大;

第二幅图像中有很多重复的模式, $F_i^{(1)}$ 与第2幅图像中的某些重复模式的特征距离都很小

解决办法: 拒绝 $\frac{d_{i,1}}{d_{i,2}} > \gamma$ 的匹配

Jpmig, LUZJ

ROBOT

用RANSAC找出一致特征(模型拟合)

观测数据:

$$F^{1} = \left\{ \left(x_{i}, y_{i}, o_{i}^{1}, s_{i}^{1} \right) \right\}_{i=1}^{l}, F^{2} = \left\{ \left(u_{i}, v_{i}, o_{i}^{2}, s_{i}^{2} \right) \right\}_{i=1}^{l}$$

$$(x_i, y_i, o_i^1, s_i^1) \leftrightarrow (u_i, v_i, o_i^2, s_i^2)$$

x, y: 坐标; o: 方向; s: 尺度

模型:
$$\begin{bmatrix} u_i \\ v_i \end{bmatrix} = SR \begin{bmatrix} x_i \\ y_i \end{bmatrix} + T = \begin{bmatrix} S_x \cdot cos\theta & -S_x \cdot sin\theta \\ S_y \cdot sin\theta & S_y \cdot cos\theta \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} T_x \\ T_y \end{bmatrix}$$

用最小二乘法确定坐标变换

$$\{(x_i, y_i) \leftrightarrow (u_i, v_i)\}_{i=1}^K$$

$$\begin{bmatrix} u_i \\ v_i \end{bmatrix} = SR \begin{bmatrix} x_i \\ y_i \end{bmatrix} + T = \begin{bmatrix} S_x \cdot \cos\theta & -S_x \cdot \sin\theta \\ S_y \cdot \sin\theta & S_y \cdot \cos\theta \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} T_x \\ T_y \end{bmatrix} \Rightarrow \begin{bmatrix} u_i \\ v_i \end{bmatrix} = \begin{bmatrix} S_x \cdot \cos\theta & -S_x \cdot \sin\theta & T_x \\ S_y \cdot \sin\theta & S_y \cdot \cos\theta & T_y \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$\begin{cases} ax_i + by_i + c = u_i \\ dx_i + ey_i + f = v_i \end{cases} \Rightarrow \begin{cases} x_i \cdot a + y_i \cdot b + 1 \cdot c + 0 \cdot d + 0 \cdot e + 0 \cdot f = u_i \\ 0 \cdot a + 0 \cdot b + 0 \cdot c + x_i \cdot d + y_i \cdot e + 1 \cdot f = v_i \end{cases}$$

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ \vdots & & & & \\ x_k & y_k & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_k & y_k & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} u_1 \\ v_1 \\ \vdots \\ u_k \\ v_k \end{bmatrix}$$

$$A \qquad \theta \qquad \mu$$

$$A\theta = \mu$$

用最小二乘法确定坐标变换

$$A\theta = \mu$$

$$\theta = A^{-1}\mu$$
? ×

$$\theta = A^T A^{-1} A^T \mu \quad \checkmark$$

伪逆(pseudo inverse): $A^+ = (A^T A)^{-1} A^T$ $A^{+}A = AA^{+} = I$

$$\theta = argmin_{\theta} ||A\theta - \mu||^2$$

$$E(\theta) = ||A\theta - \mu||^2$$

$$= (A\theta - \mu)^T (A\theta - \mu)$$

$$= \theta^T A^T A \theta - 2\theta^T A^T \mu + \mu^T \mu$$

$$\frac{\partial E(\theta)}{\partial \theta} = 2A^T A\theta - 2A^T \mu = 0 \Rightarrow$$

Normal Equation
$$A^T A \theta = A^T \mu \Rightarrow$$

$$\theta = (A^T A)^{-1} A^T \mu$$

用特征匹配识别目标

Spring,2023

图像拼接(Image Stiching)

Image Credit:

参考图像

- 1.确定运动模型(Motion Model)
 - 一幅图像中的像素坐标到另一幅图像像素坐标的映射
 - 参数化模型 $q = M(p; \theta)$
- 2.模型拟合(确定模型参数)
 - 建立样本集合
 - 特征匹配/像素匹配
 - 拟合模型参数
- 3.全局配准(Global Registration)
 - 全局优化多幅图像之间的所有运动模型
- 4.图像合成(Compositing)
 - 选择参考视角
 - 合成像素值
 - 去鬼影...

运动模型

Name	Matrix	Number of d.o.f.	Preserves	Icon
Translation	$ig[oldsymbol{I} oldsymbol{t} ig]_{ 2 imes 3}$	2	Orientation $+\cdots$	
Rigid (Euclidean)	$ig[oldsymbol{R} oldsymbol{t} ig]_{2 imes 3}$	3	Lengths $+\cdots$	
Similarity	$\left[\ s m{R} m{t} \ ight]_{2 imes 3}$	4	Angles $+\cdots$	
Affine	$\left[oldsymbol{A} ight]_{2 imes 3}$	6	Parallelism $+\cdots$	
Projective	$\left[\; ilde{m{H}} \; ight]_{3 imes 3}$	8	Straight lines	

情形1: 纯旋转相机(Rotation Camera): 光心位置不变,只改变相机的朝向

世界坐标系=相机坐标系:

$$P_1 = K(I_{3\times 3}, \vec{0})$$

$$m_1 \sim P_1 \begin{bmatrix} X \\ 1 \end{bmatrix} = KX$$

情形1: 纯旋转相机(Rotation Camera): 光心位置不变,只改变相机的朝向

相机旋转之后,外参数为 $(R, \vec{0})$: $P_2 = K(R, \vec{0})$ $m_2 \sim P_2 \begin{bmatrix} X \\ 1 \end{bmatrix} = KRX$

情形1: 纯旋转相机(Rotation Camera): 光心位置不变,只改变相机的朝向

$$P_{1} = K(I_{3\times3}, \vec{0})$$

$$m_{1} \sim P_{1} \begin{bmatrix} X \\ 1 \end{bmatrix} = KX$$

$$P_{2} = K(R, \vec{0})$$

$$m_{2} \sim P_{2} \begin{bmatrix} X \\ 1 \end{bmatrix} = KRX$$

$$\downarrow \downarrow$$

$$X = K^{-1}m_{1}$$

$$m_{2} = KRX = KRK^{-1}m_{1}$$

$$m_{2} = Hm_{1}$$

Homography: $H = KRK^{-1}$

情形2: 光心位置可变, 但是拍摄对象为静止的平面景物

$$m_1 = P_1 X = (p_1, p_2, p_3, p_4) \begin{pmatrix} x \\ y \\ 0 \\ 1 \end{pmatrix} = (p_1, p_2, p_4) \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = H_1 u$$

$$u = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} : 平面点 \begin{pmatrix} x \\ y \end{pmatrix} 的齐次坐标$$

$$H_1 : 景物平面\pi到成像平面的单应变换$$

 $m_1 = H_1 u, m_2 = H_2 u \Rightarrow m_2 = H_2 H_1^{-1} m_1 = H m_1$ $H = H_2 H_1^{-1}$: 成像平面1到成像平面2的单应变换

不同位置的相机,拍摄同一个平面场景,得到的两幅照片的像素坐标变换为单应变换

情形2: 光心位置可变, 但是拍摄对象为静止的平面景物

特例: 相机静止不动, 平面景物相对 于相机有运动。等效于平面景物不动, 但是相机发生了运动。

两个不同位置的平面景物的像坐标之间的变换是单应变换。

情形2: 光心位置可变, 但是拍摄对象为静止的平面景物

特例:拍摄的非平面景物距离相机非常远(无穷远),景物上的点可以看作是无穷远点。那么景物本身可以看作是无穷远平面。

无穷远平面π∞到两个不同相机成像平面的坐标映射为无穷远单应:

$$\forall u \in \pi_{\infty} : m_1 = H_1 u, m_2 = H_2 u \Rightarrow m_2 = H m_1, H = H_2 H_1^{-1}$$

从不同位置和角度拍摄的距离相机非常远的同一个非平面景物,那么得到的两幅图像之间的坐标变换可以近似看作是单应变换。

假设通过特征点匹配已经确定了K对匹配点 $(x_i, y_i)_{i=1}^K \leftrightarrow (u_i, v_i)_{i=1}^K$,如何估计单应矩阵 $H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$?

$$\begin{pmatrix} u_i \\ v_i \\ 1 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_i \\ y_i \\ 1 \end{pmatrix} \Rightarrow \begin{cases} u_i = \frac{h_{11}x_i + h_{12}y_i + h_{13}}{h_{31}x_i + h_{32}y_i + h_{33}} \\ v_i = \frac{h_{21}x_i + h_{22}y_2 + h_{23}}{h_{31}x_i + h_{32}y_i + h_{33}} \end{cases}$$

$$\Rightarrow \begin{cases} x_i \cdot h_{11} + y_i \cdot h_{12} + 1 \cdot h_{13} + 0 \cdot h_{21} + 0 \cdot h_{22} + 0 \cdot h_{23} - u_i x_i \cdot h_{31} - u_i y_i \cdot h_{32} - u_i \cdot h_{33} = 0 \\ 0 \cdot h_{11} + 0 \cdot h_{12} + 0 \cdot h_{13} + x_i \cdot h_{21} + y_i \cdot h_{22} + 1 \cdot h_{23} - v_i x_i \cdot h_{31} - v_i y_i \cdot h_{32} - v_i \cdot h_{33} = 0 \end{cases}$$

假设通过特征点匹配已经确定了K对匹配点 $(x_i, y_i)_{i=1}^K \leftrightarrow (u_i, v_i)_{i=1}^K$,如何估计单应矩阵 $H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$?

$$\begin{cases} x_i \cdot h_{11} + y_i \cdot h_{12} + 1 \cdot h_{13} + 0 \cdot h_{21} + 0 \cdot h_{22} + 0 \cdot h_{23} - u_i x_i \cdot h_{31} - u_i y_i \cdot h_{32} - u_i \cdot h_{33} = 0 \\ 0 \cdot h_{11} + 0 \cdot h_{12} + 0 \cdot h_{13} + x_i \cdot h_{21} + y_i \cdot h_{22} + 1 \cdot h_{23} - v_i x_i \cdot h_{31} - v_i y_i \cdot h_{32} - v_i \cdot h_{33} = 0 \end{cases}$$

$$\begin{bmatrix} x_1, y_1, 1, 0, 0, 0, -u_1x_1, -u_1y_1, -u_1 \\ 0, 0, 0, x_1, y_1, 1, -v_1x_1, -v_1y_1, -v_1 \\ \vdots \\ \vdots \\ x_k, y_k, 1, 0, 0, 0, -u_kx_k, -u_ky_k, -u_k \\ 0, 0, 0, x_k, y_k, 1, -v_kx_k, -v_ky_k, -v_k \end{bmatrix}$$

 $[h_{11}, h_{12}, h_{13}, h_{21}, h_{22}, h_{23}, h_{31}, h_{32}, h_{33}]^T = \vec{0}$

$$A\mu = \vec{0}$$

$$A\mu = \vec{0}$$

$$\mu = [h_{11}, h_{12}, h_{13}, h_{21}, h_{22}, h_{23}, h_{31}, h_{32}, h_{33}]^T \Leftrightarrow H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

$$H \sim \lambda H$$
: $H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} \lambda u \\ \lambda v \\ \lambda \end{bmatrix} = \lambda H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ H 的9个参数 μ 是冗余的

$$A\mu = \vec{0}$$
有无穷多个解 加入约束条件: $\|\mu\|^2 = \mu^T \mu = 1$

$$\mu^* = argmin_{\mu} ||A\mu||^2$$
, s.t. $\mu^T \mu = 1$

其它方法请参考Szeliski: Computer Vision –Algorithms and Applications, 第9章

假设通过特征点匹配已经确定了K对匹配点 $(x_i, y_i)_{i=1}^K \leftrightarrow (u_i, v_i)_{i=1}^K$,

如何估计单应矩阵
$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$
?

$$\mu^* = argmin_{\mu} ||A\mu||^2$$
, s.t. $\mu^T \mu = 1$

匹配点中包含外点? RANSAC, M-Estimator......

全局优化

多幅图像直接拼接的误差积累效应

全局优化

拼接多幅图像 $\{I_i\}_{i=1}^n$: I_i 到 I_j 的坐标变换为 $T_{ij}(\theta_{ij})$

$$I_i$$
中的第 l 个特征点为 x_i^l $c_{i,j}^{l,m} = \begin{cases} 1 & x_i^l \leftrightarrow x_j^m \\ 0 & otherwise \end{cases}$

$$x_i^l \leftrightarrow x_j^m \Rightarrow \begin{cases} T_{ij}(x_i^l; \theta_{ij}) = x_j^m \\ T_{ji}(x_j^m; \theta_{ji}) = x_i^l \end{cases}$$

$$E(\Theta) = \sum_{i=1}^{n} \sum_{j \neq i} \sum_{l,m} c_{i,j}^{l,m} \| T_{ij} (x_i^l; \theta_{ij}) - x_j^m \|^2$$

总结

- 1. 特征匹配
 - 匹配准则
 - 模型估计
- 2. 图像拼接
 - 由特征匹配计算图像运动模型
 - 利用运动模型把图像变换到统一坐标系中
 - 像素融合