Modal Symbolic Learning: Day 3

Symbolic Land Cover Classification (unimodal data, multimodal learning)

```
In [1]: using Pkg
            Pkg.activate(".")
            Pkg.instantiate()
            Pkg.update()
            Pkg.status()
             Activating project at `~/Desktop/modal-symbolic-learning-course`
               Updating registry at `~/.julia/registries/General`
               Updating git-repo `https://github.com/JuliaRegistries/General.git`
             No Changes to `~/Desktop/modal-symbolic-learning-course/Project.toml`
             No Changes to `~/Desktop/modal-symbolic-learning-course/Manifest.toml`
          Status `~/Desktop/modal-symbolic-learning-course/Project.toml`
             [acdeb78f] Catch22 v0.4.5
             [a93c6f00] DataFrames v1.6.1
             [864edb3b] DataStructures v0.18.15
             [7806a523] DecisionTree v0.12.4
             [7073ff75] IJulia v1.24.2
             [6a3955dd] ImageFiltering v0.7.8
             [033835bb] JLD2 v0.4.38
             [23992714] MAT v0.10.6
          [c6f25543] MLJDecisionTreeInterface v0.4.0
             [e54bda2e] ModalDecisionTrees v0.3.6
             [91a5bcddl Plots v1.39.0
             [7b3b3b3f] Sole v0.3.1
             [b002da8f] SoleLogics v0.6.14
             [4249d9c7] SoleModels v0.5.6
             [2913bbd2] StatsBase v0.34.2
             [9a3f8284] Random
          Info Packages marked with 

have new versions available but compatibility co
          nstraints restrict them from upgrading. To see why use `status --outdated`
   In [2]: # Import libraries for statistics & Machine Learning
            using Random
            using DataFrames
            using Plots
            using StatsBase
            using MLJ
            using Sole
   In [3]: include("land-cover.jl")
            data dir = "data/"
            X df v = IandCoverDataset(
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
"Pavia University";
             window size = 3,
             ninstances per class = 40,
             pad window size = 5,
         );
       Load LandCoverDataset: Pavia University...
       window size
                            = (3, 3)
       pad window size = (5, 5)
       ninstances_per_class = 40
       ninstances per class strategy = updownsampling
       flattened
                            = false
       apply filter
                            = false
       seed
                             = 1
       Image size: (610, 340, 103)
       class\_counts\_d = [("Asphalt", 1 => 6631), ("Meadows", 2 => 18649), ("Grave")
       l", 3 => 2099), ("Trees", 4 => 3064), ("Painted metal sheets", 5 => 1345),
        ("Bare Soil", 6 => 5029), ("Bitumen", 7 => 1330), ("Self-Blocking Bricks", 8
       => 3682), ("Shadows", 9 => 947)]
       no class counts = 164624
       n classes = 9
       ninstances = 40 * 9 = 360
       effective class counts d = [("Asphalt", 1 \Rightarrow 40), ("Meadows", 2 \Rightarrow 40), ("Gr
       avel", 3 \Rightarrow 40), ("Trees", 4 \Rightarrow 40), ("Painted metal sheets", 5 \Rightarrow 40), ("Ba
        re Soil", 6 \Rightarrow 40), ("Bitumen", 7 \Rightarrow 40), ("Self-Blocking Bricks", 8 \Rightarrow 40),
        ("Shadows", 9 => 40)]
       countmap(labels) = Dict(5 \Rightarrow 40, 4 \Rightarrow 40, 6 \Rightarrow 40, 7 \Rightarrow 40, 2 \Rightarrow 40, 9 \Rightarrow 4
       0, 8 \Rightarrow 40, 3 \Rightarrow 40, 1 \Rightarrow 40
In [4]: countmap(y)
Out[4]: Dict{String, Int64} with 9 entries:
            "Self-Blocking Bricks" => 40
            "Bitumen"
                                     => 40
            "Gravel"
                                     => 40
           "Bare Soil"
                                     => 40
           "Painted metal sheets" => 40
            "Shadows"
                                     => 40
            "Trees"
                                     => 40
            "Asphalt"
                                     => 40
           "Meadows"
                                     => 40
In [5]: length.(X df)
```

Row	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V1
	Int64	Int64	Int64	Int64	In						
1	9	9	9	9	9	9	9	9	9	9	
2	9	9	9	9	9	9	9	9	9	9	
3	9	9	9	9	9	9	9	9	9	9	
4	9	9	9	9	9	9	9	9	9	9	
5	9	9	9	9	9	9	9	9	9	9	
6	9	9	9	9	9	9	9	9	9	9	
7	9	9	9	9	9	9	9	9	9	9	
8	9	9	9	9	9	9	9	9	9	9	
9	9	9	9	9	9	9	9	9	9	9	
10	9	9	9	9	9	9	9	9	9	9	
11	9	9	9	9	9	9	9	9	9	9	
12	9	9	9	9	9	9	9	9	9	9	
13	9	9	9	9	9	9	9	9	9	9	
:	:	:	:	:	:	:	:	:	:	:	
349	9	9	9	9	9	9	9	9	9	9	
350	9	9	9	9	9	9	9	9	9	9	
351	9	9	9	9	9	9	9	9	9	9	
352	9	9	9	9	9	9	9	9	9	9	
353	9	9	9	9	9	9	9	9	9	9	
354	9	9	9	9	9	9	9	9	9	9	
355	9	9	9	9	9	9	9	9	9	9	
356	9	9	9	9	9	9	9	9	9	9	
357	9	9	9	9	9	9	9	9	9	9	
358	9	9	9	9	9	9	9	9	9	9	
359	9	9	9	9	9	9	9	9	9	9	
360	9	9	9	9	9	9	9	9	9	9	

In [49]: $X_df = broadcast(values -> Matrix{Float64}(values), X_df)$

: 360×1	L03 DataF	rame			3 с	olumns ar	nd 335 ro	ws omitte
Row	V1	V2	V3	V4	V5	V6	V7	V8
	Array	Array	Array	Array	Array	Array	Array	Array
1	[1186.0	[1069.0	[1176.0	[1318.0	[1278.0	[1183.0	[1120.0	[1199.0
	1294.0	1177.0	1179.0	1256.0	1286.0	1290.0	1238.0	1184.0
	1291.0;	1369.0;	1265.0;	1273.0;	1326.0;	1254.0;	1177.0;	1084.0;
	1701.0	1708.0	1686.0	1528.0	1414.0	1436.0	1423.0	1346.0
	1705.0	1463.0	1190.0	1106.0	1082.0	1130.0	1268.0	1293.0
	1373.0;	1041.0;	939.0;	1133.0;	1308.0;	1411.0;	1329.0;	1228.0;
	1823.0	2055.0	1967.0	1829.0	1759.0	1740.0	1731.0	1745.0
	1359.0	1229.0	1256.0	1267.0	1231.0	1150.0	1165.0	1214.0
	1616.0]	1440.0]	1245.0]	1085.0]	1031.0]	1087.0]	1165.0]	1167.0]
2	[1153.0	[1024.0	[1077.0	[1130.0	[1245.0	[1325.0	[1388.0	[1342.0
	1201.0	1258.0	1224.0	1124.0	1214.0	1287.0	1351.0	1401.0
	1563.0;	1480.0;	1397.0;	1341.0;	1330.0;	1352.0;	1362.0;	1351.0;
	784.0	1024.0	1147.0	1165.0	1122.0	1163.0	1184.0	1146.0
	1618.0	1548.0	1320.0	1220.0	1311.0	1357.0	1391.0	1392.0
	1508.0;	1368.0;	1266.0;	1282.0;	1406.0;	1463.0;	1468.0;	1367.0;
	1173.0	1110.0	1143.0	1233.0	1329.0	1368.0	1346.0	1268.0
	1071.0	1152.0	1276.0	1326.0	1316.0	1309.0	1323.0	1324.0
	1434.0]	1193.0]	1164.0]	1345.0]	1519.0]	1630.0]	1645.0]	1563.0]
3	[880.0	[726.0	[561.0	[579.0	[623.0	[690.0	[688.0	[644.0
	804.0	486.0	509.0	535.0	651.0	661.0	627.0	670.0
	727.0;	771.0;	648.0;	759.0;	684.0;	551.0;	530.0;	552.0;
	672.0	498.0	401.0	536.0	608.0	570.0	615.0	658.0
	865.0	629.0	548.0	768.0	809.0	701.0	613.0	663.0
	1067.0;	957.0;	808.0;	714.0;	736.0;	763.0;	713.0;	684.0;
	540.0	676.0	791.0	769.0	722.0	740.0	765.0	729.0
	757.0	886.0	784.0	773.0	758.0	654.0	602.0	705.0
	803.0]	817.0]	733.0]	669.0]	729.0]	694.0]	722.0]	700.0]
4	[1454.0	[1178.0	[952.0	[1071.0	[1162.0	[988.0	[921.0	[958.0
	1082.0	876.0	881.0	1034.0	1067.0	1072.0	1049.0	958.0
	1291.0;	1229.0;	1201.0;	1198.0;	1305.0;	1286.0;	1130.0;	1087.0;
	512.0	741.0	1074.0	1251.0	1243.0	1167.0	1161.0	1158.0
	985.0	1014.0	901.0	1039.0	1143.0	1080.0	1078.0	1004.0
	936.0;	1064.0;	1014.0;	996.0;	996.0;	1019.0;	1061.0;	1066.0;
	1430.0	1124.0	1149.0	1238.0	1206.0	1119.0	1075.0	1098.0
	1400.0	1259.0	1249.0	1215.0	1151.0	1053.0	1047.0	1095.0
	1098.0]	1282.0]	1286.0]	1107.0]	1054.0]	1019.0]	1030.0]	1084.0]
5	[1603.0	[1602.0	[1427.0	[1308.0	[1354.0	[1451.0	[1545.0	[1536.0
	1091.0	1092.0	1149.0	1144.0	1048.0	1027.0	1032.0	1057.0
	594.0;	689.0;	847.0;	893.0;	1008.0;	957.0;	842.0;	770.0;
	1003.0	804.0	790.0	901.0	976.0	993.0	977.0	954.0
	1260.0	1240.0	1191.0	1164.0	1227.0	1390.0	1572.0	1578.0
	891.0;	827.0;	905.0;	988.0;	978.0;	909.0;	916.0;	949.0;
	1222.0	1002.0	1081.0	1065.0	951.0	765.0	674.0	733.0
	801.0	941.0	1126.0	1273.0	1365.0	1500.0	1600.0	1553.0
	863.0]	736.0]	863.0]	1002.0]	1096.0]	1110.0]	1073.0]	1034.0]
6	[966.0	[1171.0	[999.0	[790.0	[632.0	[478.0	[523.0	[540.0
	632.0	630.0	505.0	450.0	420.0	470.0	551.0	511.0
	605.0;	451.0;	521.0;	483.0;	468.0;	549.0;	568.0;	471.0;
	482.0	446.0	413.0	359.0	350.0	446.0	532.0	473.0
	669.0	507.0	683.0	646.0	564.0	436.0	418.0	480.0
	511.0;	471.0;	462.0;	494.0;	476.0;	439.0;	410.0;	459.0;
	427.0	425.0	489.0	546.0	559.0	542.0	540.0	511.0

Row	V1	V2	V3	V4	V5	V6	V7	V8
	Array	Array						
	811.0	438.0	191.0	360.0	510.0	514.0	532.0	484.0
	640.0]	687.0]	701.0]	583.0]	436.0]	326.0]	350.0]	377.0]
7	[1219.0	[1377.0	[1391.0	[1359.0	[1411.0	[1388.0	[1306.0	[1215.0
	1459.0	1259.0	1225.0	1340.0	1436.0	1450.0	1389.0	1377.0
	1247.0;	1255.0;	1282.0;	1325.0;	1401.0;	1427.0;	1447.0;	1525.0;
	1377.0	1298.0	1223.0	1292.0	1366.0	1446.0	1398.0	1306.0
	483.0	885.0	1091.0	1260.0	1314.0	1241.0	1270.0	1261.0
	1501.0;	1456.0;	1404.0;	1356.0;	1262.0;	1351.0;	1468.0;	1383.0;
	1187.0	1380.0	1282.0	1327.0	1390.0	1370.0	1301.0	1325.0
	773.0	975.0	1141.0	1167.0	1176.0	1172.0	1245.0	1333.0
	1630.0]	1521.0]	1370.0]	1450.0]	1459.0]	1384.0]	1415.0]	1429.0]
8	[510.0	[365.0	[207.0	[445.0	[636.0	[689.0	[634.0	[646.0
	686.0	726.0	602.0	341.0	302.0	498.0	629.0	609.0
	863.0;	761.0;	854.0;	833.0;	736.0;	704.0;	646.0;	599.0;
	637.0	810.0	714.0	663.0	606.0	503.0	485.0	519.0
	748.0	639.0	523.0	670.0	728.0	583.0	548.0	557.0
	988.0;	713.0;	611.0;	695.0;	750.0;	737.0;	683.0;	619.0;
	815.0	875.0	711.0	616.0	579.0	553.0	602.0	592.0
	686.0	542.0	440.0	445.0	454.0	483.0	573.0	574.0
	872.0]	782.0]	681.0]	620.0]	553.0]	504.0]	508.0]	577.0]
9	[541.0	[530.0	[546.0	[718.0	[733.0	[783.0	[834.0	[762.0
	814.0	676.0	625.0	702.0	763.0	798.0	857.0	838.0
	1198.0;	910.0;	708.0;	791.0;	744.0;	638.0;	664.0;	793.0;
	857.0	697.0	709.0	759.0	813.0	876.0	836.0	781.0
	1166.0	848.0	541.0	646.0	759.0	716.0	730.0	803.0
	812.0;	546.0;	654.0;	872.0;	851.0;	747.0;	783.0;	819.0;
	1317.0	1170.0	1063.0	861.0	799.0	750.0	699.0	649.0
	620.0	713.0	754.0	592.0	669.0	861.0	794.0	727.0
	1044.0]	905.0]	778.0]	646.0]	595.0]	656.0]	747.0]	794.0]
10	[856.0	[698.0	[367.0	[264.0	[351.0	[379.0	[304.0	[257.0
	302.0	291.0	449.0	449.0	349.0	364.0	380.0	359.0
	568.0;	598.0;	460.0;	346.0;	209.0;	256.0;	335.0;	331.0;
	463.0	144.0	59.0	389.0	513.0	421.0	333.0	342.0
	460.0	563.0	527.0	444.0	392.0	311.0	284.0	311.0
	870.0;	822.0;	724.0;	586.0;	399.0;	245.0;	263.0;	341.0;
	631.0	494.0	292.0	211.0	179.0	117.0	133.0	195.0
	762.0	484.0	146.0	183.0	255.0	351.0	334.0	312.0
	801.0]	525.0]	293.0]	287.0]	352.0]	304.0]	258.0]	284.0]
11	[589.0	[671.0	[631.0	[614.0	[654.0	[725.0	[764.0	[771.0
	838.0	617.0	648.0	703.0	751.0	666.0	581.0	595.0
	602.0;	508.0;	605.0;	659.0;	614.0;	642.0;	634.0;	635.0;
	1055.0	800.0	715.0	763.0	821.0	841.0	845.0	735.0
	877.0	688.0	711.0	682.0	701.0	728.0	717.0	636.0
	1041.0;	749.0;	391.0;	381.0;	522.0;	674.0;	694.0;	611.0;
	747.0	659.0	700.0	663.0	643.0	646.0	669.0	720.0
	1016.0	839.0	772.0	925.0	898.0	744.0	653.0	612.0
	833.0]	655.0]	571.0]	601.0]	619.0]	614.0]	536.0]	505.0]
12	[967.0	[1125.0	[1173.0	[1176.0	[1226.0	[1365.0	[1408.0	[1338.0
	1086.0	1005.0	1057.0	1148.0	1260.0	1379.0	1479.0	1430.0
	1269.0;	1265.0;	1270.0;	1262.0;	1348.0;	1455.0;	1450.0;	1394.0;
	1147.0	1267.0	1250.0	1202.0	1240.0	1292.0	1309.0	1323.0
	1269.0	1122.0	1086.0	1128.0	1248.0	1317.0	1368.0	1398.0
	1194.0;	1452.0;	1417.0;	1290.0;	1195.0;	1212.0;	1353.0;	1389.0;
	907.0	992.0	1309.0	1347.0	1227.0	1298.0	1376.0	1424.0

Row	V1	V2	V3	V4	V5	V6	V7	V8	1
	Array	1							
	1052.0 1016.0]	988.0 1412.0]	1160.0 1498.0]	1202.0 1523.0]	1145.0 1541.0]	1213.0 1448.0]	1324.0 1280.0]	1386.0 1289.0]	
13	[663.0 1111.0 382.0; 627.0 642.0 816.0; 893.0 474.0 438.0]	[560.0 940.0 488.0; 488.0 548.0 802.0; 1093.0 577.0 388.0]	[585.0 621.0 578.0; 532.0 279.0 575.0; 679.0 767.0 569.0]	[561.0 362.0 652.0; 680.0 407.0 523.0; 338.0 710.0 578.0]	[582.0 495.0 692.0; 684.0 548.0 653.0; 446.0 567.0 600.0]	[528.0 551.0 703.0; 547.0 493.0 699.0; 501.0 485.0 638.0]	[511.0 498.0 688.0; 510.0 529.0 692.0; 589.0 522.0 666.0]	[578.0 549.0 622.0; 513.0 581.0 669.0; 625.0 567.0 549.0]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
:	:	:	:	:	:	:	:	:	
349	[2669.0 3073.0 2410.0; 2567.0 2651.0 2144.0; 2279.0 2681.0 2580.0]	[2734.0 3217.0 2570.0; 2533.0 2546.0 2403.0; 2360.0 2665.0 2600.0]	[3207.0 3370.0 2622.0; 2766.0 2217.0 2519.0; 2535.0 2891.0 2686.0]	[3649.0 3523.0 2791.0; 3125.0 2250.0 2601.0; 2859.0 3041.0 2833.0]	[3930.0 3777.0 3039.0; 3342.0 2717.0 2715.0; 3239.0 3190.0 3103.0]	[4067.0 3974.0 3113.0; 3453.0 2892.0 2862.0; 3496.0 3481.0 3303.0]	4108.0 3073.0; 3628.0 2941.0	[4241.0 4160.0 3094.0; 3890.0 3024.0 3015.0; 3650.0 3655.0 3382.0]	1
350	[3427.0 3340.0 2515.0; 2280.0 2584.0 1827.0; 2478.0 2516.0 2125.0]	[3685.0 3299.0 2416.0; 2496.0 2485.0 1910.0; 2369.0 2573.0 2141.0]	[4010.0 3260.0 2516.0; 2673.0 2348.0 2059.0; 2289.0 2370.0 2247.0]	[4351.0 3458.0 2762.0; 2769.0 2518.0 2358.0; 2494.0 2272.0 2393.0]	[4440.0 3801.0 2806.0; 2804.0 2681.0 2659.0; 2674.0 2380.0 2478.0]	[4583.0 3992.0 2912.0; 2978.0 2772.0 2793.0; 2804.0 2609.0 2601.0]	[4698.0 4085.0 3072.0; 3185.0 2815.0 2771.0; 2839.0 2818.0 2730.0]	[4861.0 4100.0 3176.0; 3290.0 2791.0 2720.0; 2897.0 2882.0 2777.0]	
351	[1300.0 1477.0 1108.0; 969.0 1080.0 1134.0; 1005.0 591.0 867.0]	[1289.0 1252.0 1139.0; 1172.0 1001.0 747.0; 1208.0 766.0 863.0]	[1184.0 1359.0 1037.0; 1054.0 1032.0 872.0; 1152.0 916.0 1018.0]	[1214.0 1273.0 1059.0; 1105.0 1051.0 1101.0; 1121.0 979.0 1180.0]	[1215.0 1225.0 1086.0; 1203.0 1025.0 1241.0; 1108.0 1125.0 1190.0]	[1213.0 1202.0 1089.0; 1223.0 1127.0 1316.0; 1152.0 1188.0 1202.0]	[1225.0 1183.0 1134.0; 1234.0 1288.0 1289.0; 1104.0 1148.0 1285.0]	[1190.0 1206.0 1193.0; 1196.0 1335.0 1182.0; 1095.0 1156.0 1307.0]	
352	[1505.0 1452.0 916.0; 1285.0 803.0 1408.0; 958.0 1101.0 896.0]	[1230.0 1355.0 1085.0; 1304.0 1095.0 1348.0; 1002.0 1088.0 991.0]	[1054.0 1062.0 1279.0; 1162.0 1205.0 1238.0; 870.0 1068.0 1298.0]	[1223.0 1032.0 1227.0; 1245.0 1299.0 1160.0; 1031.0 1175.0 1355.0]	[1414.0 1241.0 1091.0; 1406.0 1357.0 1180.0; 1204.0 1290.0 1186.0]	[1368.0 1350.0 1089.0; 1360.0 1268.0 1300.0; 1255.0 1274.0 1154.0]	[1275.0 1312.0 1080.0; 1270.0 1229.0 1351.0; 1300.0 1135.0 1214.0]	[1201.0 1301.0 1163.0; 1269.0 1217.0 1285.0; 1272.0 1061.0 1186.0]	
353 ax/output/C	[1290.0 889.0 1183.0; 1408.0 673.0	[1281.0 1061.0 1176.0; 989.0 949.0 fonts/TeX/fonto	[1287.0 1128.0 1065.0; 990.0 1215.0 lata.js 8.0;	[1300.0 1142.0 1207.0; 1143.0 1442.0 1052.0;	[1288.0 1155.0 1378.0; 1150.0 1348.0 1115.0;	[1341.0 1157.0 1321.0; 1116.0 1246.0 1212.0;	[1352.0 1210.0 1269.0; 1156.0 1308.0 1218.0;	[1311.0 1228.0 1240.0; 1208.0 1415.0 1202.0;	

Array 1292.0 1147.0 992.0] [728.0 888.0 643.0; 162.0 586.0 1005.0; 519.0 955.0 572.0] [462.0 546.0 801.0; 168.0	Array 1076.0 1165.0 941.0] [493.0 729.0 754.0; 485.0 367.0 845.0; 333.0 526.0 582.0]	Array 1029.0 1136.0 880.0] [458.0 560.0 663.0; 570.0 395.0 599.0; 389.0 457.0	Array 1199.0 1148.0 1084.0] [522.0 431.0 546.0; 573.0 466.0	1284.0 1196.0 1207.0] [542.0 304.0 498.0; 486.0	Array 1216.0 1207.0 1204.0] [374.0 399.0 459.0;	Array 1199.0 1231.0 1167.0] [337.0 465.0	Array 1140.0 1257.0 1242.0] [432.0 405.0	- - : :
1147.0 992.0] [728.0 888.0 643.0; 162.0 586.0 1005.0; 519.0 955.0 572.0] [462.0 546.0 801.0;	1165.0 941.0] [493.0 729.0 754.0; 485.0 367.0 845.0; 333.0 526.0	1136.0 880.0] [458.0 560.0 663.0; 570.0 395.0 599.0; 389.0	1148.0 1084.0] [522.0 431.0 546.0; 573.0	1196.0 1207.0] [542.0 304.0 498.0;	1207.0 1204.0] [374.0 399.0	1231.0 1167.0] [337.0 465.0	1257.0 1242.0] [432.0	
888.0 643.0; 162.0 586.0 1005.0; 519.0 955.0 572.0] [462.0 546.0 801.0;	729.0 754.0; 485.0 367.0 845.0; 333.0 526.0	560.0 663.0; 570.0 395.0 599.0; 389.0	431.0 546.0; 573.0	304.0 498.0;	399.0	465.0		1
546.0 801.0;		618.0]	542.0; 348.0 432.0 503.0]	467.0 467.0; 321.0 368.0 404.0]	464.0 437.0 372.0; 328.0 332.0 315.0]	380.0; 434.0 388.0 318.0; 294.0 308.0 262.0]	404.0; 361.0 376.0 313.0; 261.0 272.0 278.0]	
350.0 1261.0; 570.0 813.0 1019.0]	[539.0 362.0 800.0; 171.0 603.0 861.0; 476.0 669.0 966.0]	[576.0 235.0 748.0; 396.0 617.0 376.0; 459.0 586.0 693.0]	[514.0 210.0 621.0; 515.0 583.0 261.0; 404.0 435.0 548.0]	[442.0 241.0 511.0; 576.0 497.0 258.0; 334.0 404.0 568.0]	[396.0 314.0 468.0; 383.0 327.0 395.0; 310.0 366.0 586.0]	[322.0 316.0 453.0; 282.0 242.0 480.0; 389.0 335.0 465.0]	[153.0 252.0 391.0; 308.0 214.0 430.0; 411.0 366.0 350.0]	
[1072.0 652.0 1195.0; 1118.0 1023.0 561.0; 1557.0 780.0 609.0]	[1049.0 724.0 962.0; 1128.0 1006.0 651.0; 1491.0 663.0 496.0]	[900.0 779.0 716.0; 1053.0 832.0 496.0; 1279.0 656.0 484.0]	[716.0 769.0 715.0; 913.0 718.0 351.0; 1419.0 706.0 328.0]	[739.0 747.0 771.0; 907.0 655.0 318.0; 1488.0 705.0 277.0]	[816.0 664.0 700.0; 995.0 553.0 263.0; 1386.0 616.0 299.0]	[818.0 609.0 527.0; 964.0 475.0 249.0; 1452.0 509.0 288.0]	[751.0 631.0 355.0; 846.0 446.0 302.0; 1550.0 453.0 268.0]	
[1310.0 727.0 908.0; 759.0 824.0 758.0; 607.0 804.0 672.0]	[1364.0 780.0 947.0; 524.0 676.0 652.0; 402.0 763.0 400.0]	[1079.0 612.0 904.0; 539.0 450.0 429.0; 268.0 617.0 433.0]	[979.0 617.0 708.0; 532.0 460.0 400.0; 272.0 477.0 476.0]	[989.0 666.0 546.0; 585.0 511.0 398.0; 280.0 327.0 426.0]	[984.0 703.0 520.0; 612.0 494.0 388.0; 250.0 341.0 321.0]	[893.0 635.0 535.0; 480.0 447.0 456.0; 316.0 324.0 357.0]	[884.0 542.0 488.0; 425.0 338.0 433.0; 292.0 251.0 382.0]	
[1980.0 1828.0 1224.0; 1003.0 859.0 1056.0; 1269.0 780.0 521.0]	[2001.0 1745.0 1178.0; 1065.0 635.0 929.0; 878.0 1013.0 346.0]	[2061.0 1746.0 1217.0; 971.0 572.0 739.0; 651.0 667.0 340.0]	[2204.0 1681.0 1172.0; 932.0 593.0 637.0; 558.0 463.0 429.0]	[2433.0 1543.0 1096.0; 834.0 625.0 583.0; 506.0 518.0 354.0]	[2513.0 1641.0 864.0; 829.0 615.0 561.0; 468.0 523.0 351.0]	[2549.0 1848.0 841.0; 919.0 610.0 516.0; 369.0 441.0 435.0]	[2610.0 1919.0 929.0; 955.0 592.0 478.0; 381.0 382.0 391.0]	
[1672.0 1170.0 1006.0;	[1656.0 1129.0 873.0; 1746.0 1188.0	[1620.0 1006.0 765.0; 1694.0 1006.0	[1629.0 971.0 732.0; 1767.0 992.0 908.0;	[1691.0 852.0 725.0; 1808.0 1138.0 672.0;	[1689.0 762.0 809.0; 1781.0 1174.0 583.0;	[1826.0 824.0 819.0; 1827.0 1074.0	[1933.0 926.0 683.0; 1843.0 1025.0	1 1 1 1 1 1 1
	1261.0; 570.0 813.0 1019.0] [1072.0 652.0 1195.0; 1118.0 1023.0 561.0; 1557.0 780.0 609.0] [1310.0 727.0 908.0; 759.0 824.0 758.0; 607.0 804.0 672.0] [1980.0 1828.0 1224.0; 1003.0 859.0 1056.0; 1269.0 780.0 521.0] [1672.0 1170.0 1006.0; 1785.0 1247.0	1261.0; 861.0; 570.0 476.0 813.0 669.0 1019.0] 966.0] [1072.0 [1049.0 652.0 724.0 1195.0; 962.0; 1118.0 1128.0 1023.0 1006.0 561.0; 651.0; 1557.0 1491.0 780.0 663.0 609.0] 496.0] [1310.0 [1364.0 727.0 780.0 908.0; 947.0; 759.0 524.0 824.0 676.0 758.0; 652.0; 607.0 402.0 804.0 763.0 672.0] 400.0] [1980.0 [2001.0 1828.0 1745.0 1224.0; 1178.0; 1003.0 859.0 635.0 1056.0; 929.0; 1269.0 878.0 780.0 1013.0 521.0] 346.0] [1672.0 [1656.0 1170.0 1129.0<	1261.0; 861.0; 376.0; 570.0 476.0 459.0 813.0 669.0 586.0 1019.0] 966.0] 693.0] [1072.0 [1049.0 [900.0 652.0 724.0 779.0 1195.0; 962.0; 716.0; 1118.0 1128.0 1053.0 1023.0 1006.0 832.0 561.0; 651.0; 496.0; 1557.0 1491.0 1279.0 780.0 663.0 656.0 609.0] 496.0] 484.0] [1310.0 [1364.0 [1079.0 727.0 780.0 612.0 908.0; 947.0; 904.0; 759.0 524.0 539.0 824.0 676.0 450.0 758.0; 652.0; 429.0; 607.0 402.0 268.0 804.0 763.0 617.0 672.0] 400.0] 433.0] [1980.0 [2001.0 [2061.0 1828.0 1745.0 1746.0	1261.0; 861.0; 376.0; 261.0; 570.0 476.0 459.0 404.0 813.0 669.0 586.0 435.0 1019.0] 966.0] 693.0] 548.0] [1072.0 [1049.0 [900.0 [716.0 652.0 724.0 779.0 769.0 1195.0; 962.0; 716.0; 715.0; 1118.0 1128.0 1053.0 913.0 1023.0 1006.0 832.0 718.0 561.0; 651.0; 496.0; 351.0; 1557.0 1491.0 1279.0 1419.0 780.0 663.0 656.0 706.0 609.0] 496.0] 484.0] 328.0] [1310.0 [1364.0 [1079.0 [979.0 727.0 780.0 612.0 617.0 908.0; 947.0; 904.0; 708.0; 759.0 524.0 539.0 532.0 824.0 676.0 450.0 460.0 758.0; 652.0; 429.0; 400.0; 607.0	1261.0; 861.0; 376.0; 261.0; 258.0; 570.0 476.0 459.0 404.0 334.0 813.0 669.0 586.0 435.0 404.0 1019.0] 966.0] 693.0] 548.0] 568.0] [1072.0 [1049.0 [900.0 [716.0 [739.0 652.0 724.0 779.0 769.0 747.0 1195.0; 962.0; 716.0; 715.0; 771.0; 1118.0 1128.0 1053.0 913.0 907.0 1023.0 1006.0 832.0 718.0 655.0 561.0; 651.0; 496.0; 351.0; 318.0; 1557.0 1491.0 1279.0 1419.0 1488.0 780.0 663.0 656.0 706.0 705.0 609.0] 496.0] 484.0] 328.0] 277.0] [1310.0 [1364.0 [1079.0 [979.0 [989.0 727.0 780.0 612.0 617.0 666.0 908.0; 947.0; 904.0; 708.0; 546.0;	1261.0; 861.0; 376.0; 261.0; 258.0; 395.0; 570.0 476.0 459.0 404.0 334.0 310.0 813.0 669.0 586.0 435.0 404.0 366.0 1019.0] 966.0] 693.0] 548.0] 568.0] 586.0] [1072.0 [1049.0 [900.0 [716.0 [739.0 [816.0 652.0 724.0 779.0 769.0 747.0 664.0 1195.0; 962.0; 716.0; 715.0; 771.0; 700.0; 1118.0 1128.0 1053.0 913.0 907.0 995.0 1023.0 1006.0 832.0 718.0 655.0 553.0 561.0; 651.0; 496.0; 351.0; 318.0; 263.0; 1557.0 1491.0 1279.0 1419.0 1488.0 1386.0 780.0 663.0 656.0 706.0 705.0 616.0 609.0] 496.0] 484.0] 328.0] 277.0] 299.0] [1310.0 [1364.0 [1079.0 [979.0 <th>1261.0; 861.0; 376.0; 261.0; 258.0; 395.0; 480.0; 570.0 476.0 459.0 404.0 334.0 310.0 389.0 813.0 669.0 586.0 435.0 404.0 366.0 335.0 1019.0] 966.0] 693.0] 548.0] 568.0] 586.0] 465.0] [1072.0 [1049.0 [900.0 [716.0 [739.0 [816.0 [818.0 652.0 724.0 779.0 769.0 747.0 664.0 609.0 1195.0; 962.0; 716.0; 715.0; 771.0; 700.0; 527.0; 1118.0 1128.0 1053.0 913.0 907.0 995.0 964.0 1023.0 1006.0 832.0 718.0 655.0 553.0 475.0 561.0; 6651.0; 496.0; 351.0; 318.0; 263.0; 249.0; 1557.0 1491.0 1279.0 1419.0 1488.0 1386.0 1452.0</th> <th> 1261.0; 861.0; 376.0; 261.0; 258.0; 395.0; 480.0; 430.0; 570.0 476.0 459.0 404.0 334.0 310.0 389.0 411.0 813.0 669.0 586.0 435.0 404.0 366.0 335.0 366.0 366.0 1019.0 966.0 693.0 548.0 568.0 586.0 465.0 350.0 520.0 724.0 779.0 769.0 747.0 664.0 609.0 631.0 1195.0; 962.0; 716.0; 715.0; 771.0; 700.0; 527.0; 355.0; 118.0 1128.0 1053.0 913.0 907.0 995.0 964.0 846.0 1023.0 1006.0 832.0 718.0 655.0 553.0 475.0 446.0 561.0; 651.0; 496.0; 351.0; 318.0; 263.0; 249.0; 302.0; 1557.0 1491.0 1279.0 1419.0 1488.0 1386.0 1452.0 1550.0 609.0 484.0 328.0 277.0 299.0 288.0 268.0 (1310.0 1364.0 1079.0 617.0 666.0 703.0 635.0 542.0 908.0; 947.0; 904.0; 708.0; 546.0; 520.0; 535.0; 488.0; 759.0 524.0 539.0 532.0 585.0 612.0 480.0 425.0 824.0 676.0 450.0 460.0 511.0 494.0 447.0 338.0 758.0; 652.0; 429.0; 400.0; 398.0; 388.0; 456.0; 433.0; 607.0 402.0 268.0 272.0 280.0 250.0 316.0 292.0 804.0 763.0 617.0 616.0 509.0 455.0 804.0 763.0 617.0 477.0 327.0 341.0 324.0 251.0 804.0 763.0 617.0 477.0 327.0 341.0 324.0 251.0 804.0 763.0 617.0 477.0 327.0 341.0 324.0 251.0 822.0 824.0 763.0 617.0 477.0 327.0 341.0 324.0 251.0 822.0 804.0 763.0 617.0 6181.0 1543.0 1641.0 1848.0 1919.0 1224.0; 1178.0; 1217.0; 1172.0; 1096.0; 834.0 829.0 919.0 955.0 859.0 635.0 572.0 593.0 625.0 615.0 610.0 592.0 1056.0; 929.0; 739.0; 637.0; 583.0; 561.0; 516.0; 478.0; 1224.0; 1178.0; 1217.0; 1172.0; 1096.0; 878.0 651.0 578.0 572.0 593.0 625.0 615.0 610.0 592.0 1056.0; 929.0; 739.0; 637.0; 583.0; 561.0; 516.0; 478.0; 1224.0; 1178.0; 1217.0; 1172.0; 1096.0; 852.0 762.0 824.0 960.0 831.0 </th>	1261.0; 861.0; 376.0; 261.0; 258.0; 395.0; 480.0; 570.0 476.0 459.0 404.0 334.0 310.0 389.0 813.0 669.0 586.0 435.0 404.0 366.0 335.0 1019.0] 966.0] 693.0] 548.0] 568.0] 586.0] 465.0] [1072.0 [1049.0 [900.0 [716.0 [739.0 [816.0 [818.0 652.0 724.0 779.0 769.0 747.0 664.0 609.0 1195.0; 962.0; 716.0; 715.0; 771.0; 700.0; 527.0; 1118.0 1128.0 1053.0 913.0 907.0 995.0 964.0 1023.0 1006.0 832.0 718.0 655.0 553.0 475.0 561.0; 6651.0; 496.0; 351.0; 318.0; 263.0; 249.0; 1557.0 1491.0 1279.0 1419.0 1488.0 1386.0 1452.0	1261.0; 861.0; 376.0; 261.0; 258.0; 395.0; 480.0; 430.0; 570.0 476.0 459.0 404.0 334.0 310.0 389.0 411.0 813.0 669.0 586.0 435.0 404.0 366.0 335.0 366.0 366.0 1019.0 966.0 693.0 548.0 568.0 586.0 465.0 350.0 520.0 724.0 779.0 769.0 747.0 664.0 609.0 631.0 1195.0; 962.0; 716.0; 715.0; 771.0; 700.0; 527.0; 355.0; 118.0 1128.0 1053.0 913.0 907.0 995.0 964.0 846.0 1023.0 1006.0 832.0 718.0 655.0 553.0 475.0 446.0 561.0; 651.0; 496.0; 351.0; 318.0; 263.0; 249.0; 302.0; 1557.0 1491.0 1279.0 1419.0 1488.0 1386.0 1452.0 1550.0 609.0 484.0 328.0 277.0 299.0 288.0 268.0 (1310.0 1364.0 1079.0 617.0 666.0 703.0 635.0 542.0 908.0; 947.0; 904.0; 708.0; 546.0; 520.0; 535.0; 488.0; 759.0 524.0 539.0 532.0 585.0 612.0 480.0 425.0 824.0 676.0 450.0 460.0 511.0 494.0 447.0 338.0 758.0; 652.0; 429.0; 400.0; 398.0; 388.0; 456.0; 433.0; 607.0 402.0 268.0 272.0 280.0 250.0 316.0 292.0 804.0 763.0 617.0 616.0 509.0 455.0 804.0 763.0 617.0 477.0 327.0 341.0 324.0 251.0 804.0 763.0 617.0 477.0 327.0 341.0 324.0 251.0 804.0 763.0 617.0 477.0 327.0 341.0 324.0 251.0 822.0 824.0 763.0 617.0 477.0 327.0 341.0 324.0 251.0 822.0 804.0 763.0 617.0 6181.0 1543.0 1641.0 1848.0 1919.0 1224.0; 1178.0; 1217.0; 1172.0; 1096.0; 834.0 829.0 919.0 955.0 859.0 635.0 572.0 593.0 625.0 615.0 610.0 592.0 1056.0; 929.0; 739.0; 637.0; 583.0; 561.0; 516.0; 478.0; 1224.0; 1178.0; 1217.0; 1172.0; 1096.0; 878.0 651.0 578.0 572.0 593.0 625.0 615.0 610.0 592.0 1056.0; 929.0; 739.0; 637.0; 583.0; 561.0; 516.0; 478.0; 1224.0; 1178.0; 1217.0; 1172.0; 1096.0; 852.0 762.0 824.0 960.0 831.0

Row	V1	V2	V3	V4	V 5	V6	V7	V8	1
	Array	Array	Array	Array	Array	Array	Array	Array	1
	1431.0 748.0]	1426.0 632.0]	1272.0 452.0]	1115.0 491.0]	1110.0 540.0]	1186.0 564.0]	1069.0 468.0]	947.0 463.0]	!
360	[1206.0 494.0 969.0; 1037.0 587.0 628.0; 503.0 382.0 928.0]	[1140.0 818.0 659.0; 879.0 698.0 586.0; 439.0 525.0 693.0]	[899.0 840.0 692.0; 792.0 481.0 522.0; 345.0 588.0 454.0]	[784.0 739.0 743.0; 808.0 305.0 387.0; 339.0 509.0 247.0]	[769.0 779.0 612.0; 778.0 292.0 367.0; 370.0 278.0 234.0]	[720.0 813.0 508.0; 709.0 283.0 367.0; 412.0 287.0 163.0]	[585.0 809.0 479.0; 632.0 274.0 368.0; 373.0 306.0 84.0]	[606.0 792.0 384.0; 512.0 332.0 341.0; 303.0 247.0 111.0]	

```
In [50]: # Let's unwind the spatial axes
X_df_static = Matrix(X_df)
cols = []
for i_var in 1:size(X_df_static, 2)
    var_unroll = cat(X_df_static[:,i_var]...; dims = 3)
    append!(cols, eachrow(reshape(var_unroll, (9, nrow(X_df)))))
end
X_df_static = DataFrame(cols, ["$n[$i][$j]" for n in names(X_df) for i in 1:
```

Out[50]: 360×927 DataFrame

Row	V1[1] [1]	V1[1] [2]	V1[1] [3]	V1[2] [1]	V1[2] [2]	V1[2] [3]	V1[3] [1]	V1[3] [2]
	Float64							
1	1186.0	1701.0	1823.0	1294.0	1705.0	1359.0	1291.0	1373.0
2	1153.0	784.0	1173.0	1201.0	1618.0	1071.0	1563.0	1508.0
3	880.0	672.0	540.0	804.0	865.0	757.0	727.0	1067.0
4	1454.0	512.0	1430.0	1082.0	985.0	1400.0	1291.0	936.0
5	1603.0	1003.0	1222.0	1091.0	1260.0	801.0	594.0	891.0
6	966.0	482.0	427.0	632.0	669.0	811.0	605.0	511.0
7	1219.0	1377.0	1187.0	1459.0	483.0	773.0	1247.0	1501.0
8	510.0	637.0	815.0	686.0	748.0	686.0	863.0	988.0
9	541.0	857.0	1317.0	814.0	1166.0	620.0	1198.0	812.0
10	856.0	463.0	631.0	302.0	460.0	762.0	568.0	870.0
11	589.0	1055.0	747.0	838.0	877.0	1016.0	602.0	1041.0
12	967.0	1147.0	907.0	1086.0	1269.0	1052.0	1269.0	1194.0
13	663.0	627.0	893.0	1111.0	642.0	474.0	382.0	816.0
÷	:	:	:	:	:	:	:	÷
349	2669.0	2567.0	2279.0	3073.0	2651.0	2681.0	2410.0	2144.0
350	3427.0	2280.0	2478.0	3340.0	2584.0	2516.0	2515.0	1827.0
351	1300.0	969.0	1005.0	1477.0	1080.0	591.0	1108.0	1134.0
352	1505.0	1285.0	958.0	1452.0	803.0	1101.0	916.0	1408.0
353	1290.0	1408.0	1292.0	889.0	673.0	1147.0	1183.0	778.0
354	728.0	162.0	519.0	888.0	586.0	955.0	643.0	1005.0
355	462.0	168.0	570.0	546.0	350.0	813.0	801.0	1261.0
356	1072.0	1118.0	1557.0	652.0	1023.0	780.0	1195.0	561.0
357	1310.0	759.0	607.0	727.0	824.0	804.0	908.0	758.0
358	1980.0	1003.0	1269.0	1828.0	859.0	780.0	1224.0	1056.0
359	1672.0	1785.0	1511.0	1170.0	1247.0	1431.0	1006.0	1122.0
360	1206.0	1037.0	503.0	494.0	587.0	382.0	969.0	628.0

In [51]: **using** SoleData

X_multimodal = MultiModalDataset([X_df, X_df_static])

```
Out[51]: • MultiModalDataset{DataFrame}
             └ dimensionalities: (2, 0)
          - Modality 1 / 2
             └ dimensionality: 2
          360×103 SubDataFrame
                                                      V2
           Row | V1
          ٧ ...
                Array...
                                                      Array...
          Α ...
             1 | [1186.0 1294.0 1291.0; 1701.0 17... [1069.0 1177.0 1369.0; 1708.0 14...
             2 | [1153.0 1201.0 1563.0; 784.0 161... [1024.0 1258.0 1480.0; 1024.0 15...
             3 | [880.0 804.0 727.0; 672.0 865.0 ... [726.0 486.0 771.0; 498.0 629.0 ...
          [
             4 | [1454.0 1082.0 1291.0; 512.0 985...
                                                     [1178.0 876.0 1229.0; 741.0 1014...
          [
             5 | [1603.0 1091.0 594.0; 1003.0 126...
                                                     [1602.0 1092.0 689.0; 804.0 1240...
          [ ...
             6 | [966.0 632.0 605.0; 482.0 669.0 ...
                                                     [1171.0 630.0 451.0; 446.0 507.0...
             7 | [1219.0 1459.0 1247.0; 1377.0 48... [1377.0 1259.0 1255.0; 1298.0 88...
             8 | [510.0 686.0 863.0; 637.0 748.0 ... [365.0 726.0 761.0; 810.0 639.0 ...
             9 | [541.0 814.0 1198.0; 857.0 1166.... [530.0 676.0 910.0; 697.0 848.0 ...
            10 | [856.0 302.0 568.0; 463.0 460.0 ... [698.0 291.0 598.0; 144.0 563.0 ...
            11 | [589.0 838.0 602.0; 1055.0 877.0... [671.0 617.0 508.0; 800.0 688.0 ...
            :
           351 | [1300.0 1477.0 1108.0; 969.0 108... [1289.0 1252.0 1139.0; 1172.0 10...
           352 | [1505.0 1452.0 916.0; 1285.0 803...
                                                     [1230.0 1355.0 1085.0; 1304.0 10...
          [ ...
           353 | [1290.0 889.0 1183.0; 1408.0 673... [1281.0 1061.0 1176.0; 989.0 949...
           354 | [728.0 888.0 643.0; 162.0 586.0 ... [493.0 729.0 754.0; 485.0 367.0 ...
           355 | [462.0 546.0 801.0; 168.0 350.0 ... [539.0 362.0 800.0; 171.0 603.0 ...
           356 | [1072.0 652.0 1195.0; 1118.0 102...
                                                     [1049.0 724.0 962.0; 1128.0 1006...
           357 | [1310.0 727.0 908.0; 759.0 824.0...
                                                     [1364.0 780.0 947.0; 524.0 676.0...
           358 | [1980.0 1828.0 1224.0; 1003.0 85... [2001.0 1745.0 1178.0; 1065.0 63...
           359 | [1672.0 1170.0 1006.0; 1785.0 12... [1656.0 1129.0 873.0; 1746.0 118...
           360 | [1206.0 494.0 969.0; 1037.0 587.... [1140.0 818.0 659.0; 879.0 698.0...
```

itted

- Modality 2 / 2

└ dimensionality: 0

Row	V1[1][1]	V1[1][2]	V1[1][3]	V1[2][1]	V1[2][2]	V1[2][3]	V1[3][1]
V	1 = 3						
_	Float64						
F	ı						
1	1186.0	1701.0	1823.0	1294.0	1705.0	1359.0	1291.0
 2	1153.0	784.0	1173.0	1201.0	1618.0	1071.0	1563.0
3	880.0	672.0	540.0	804.0	865.0	757.0	727.0
4	1454.0	512.0	1430.0	1082.0	985.0	1400.0	1291.0
5	1603.0	1003.0	1222.0	1091.0	1260.0	801.0	594.0
						002.0	33
6	966.0	482.0	427.0	632.0	669.0	811.0	605.0
7	1219.0	1377.0	1187.0	1459.0	483.0	773.0	1247.0
8	510.0	637.0	815.0	686.0	748.0	686.0	863.0
9	541.0	857.0	1317.0	814.0	1166.0	620.0	1198.0
10	856.0	463.0	631.0	302.0	460.0	762.0	568.0
11	589.0	1055.0	747.0	838.0	877.0	1016.0	602.0
. :	1 .	:	:	:	:	:	
	·.	060.0	1005.0	1.477.0	1000 0	F01 0	1100 0
351	1300.0	969.0	1005.0	1477.0	1080.0	591.0	1108.0
352 	1505.0	1285.0	958.0	1452.0	803.0	1101.0	916.0
353	1290.0	1408.0	1292.0	889.0	673.0	1147.0	1183.0
354	728.0	162.0	519.0	888.0	586.0	955.0	643.0
355	462.0	168.0	570.0	546.0	350.0	813.0	801.0
356	1072.0	1118.0	1557.0	652.0	1023.0	780.0	1195.0
357	1310.0	759.0	607.0	727.0	824.0	804.0	908.0
358	1980.0	1003.0	1269.0	1828.0	859.0	780.0	1224.0
359	1672.0	1785.0	1511.0	1170.0	1247.0	1431.0	1006.0
360	1206.0	1037.0	503.0	494.0	587.0	382.0	969.0
•••							

920 columns and 339 rows om

itted

In [52]: using ModalDecisionTrees

model = ModalDecisionTree(; relations = :RCC8)

```
Out[52]: ModalDecisionTree(
           max depth = nothing,
           min samples leaf = 4,
           min purity increase = 0.002,
            max purity at leaf = Inf,
           max modal depth = nothing,
            relations = :RCC8,
            features = nothing,
            conditions = nothing,
            featvaltype = Float64,
            initconditions = nothing,
            downsize = ModalDecisionTrees.MLJInterface.var"#downsize#43"(),
            print progress = false,
            rng = Random. GLOBAL RNG(),
            display depth = nothing,
            min samples split = nothing,
           n subfeatures = identity,
            post prune = false,
            merge purity threshold = nothing,
            feature importance = :split)
In [28]: # Train in cross-validation!
         e = @time evaluate!(machine(model, X multimodal, y);
             resampling=StratifiedCV(rng = Random.Xoshiro(1), shuffle=true, nfolds =
             measures=[accuracy],
             verbosity=0,
             check measure=false
        [ Info: Precomputing logiset...
        warning: ScalarOneStepMemoset: Found globalrel in relations in a single-wo
        @ SoleModels ~/.julia/packages/SoleModels/xvfwj/src/logisets/scalar/oneste
        p-memoset.jl:304
        694.598215 seconds (7.75 G allocations: 729.113 GiB, 11.43% gc time, 12.83%
        compilation time: <1% of which was recompilation)
Out[28]: PerformanceEvaluation object with these fields:
            model, measure, operation, measurement, per fold,
            per observation, fitted params per fold,
            report per fold, train test rows, resampling, repeats
          Extract:
                                      | measurement | 1.96*SE | per fold
           measure
                       operation
           Accuracy() | predict mode | 0.775
                                                    0.0537 | [0.778, 0.833, 0.611,
          0. ...
```

1 column om

```
Out[30]: 10-element Vector{DecisionTree{String, MultiFormula{Atom{ScalarCondition{In
            t64, SoleModels.UnivariateValue, ScalarMetaCondition{SoleModels.UnivariateV
            alue, typeof(>=)}}}}, SoleModels.ConstantModel{String}}}:
             \blacksquare {2}(V923 \ge 1714)
            \[ \checkmark \] \{2\} (V52 \ge 1122) 
             \sqrt{(2)(V248 \ge 1882)}
              ├√ Painted metal sheets
             | L_{\mathbf{X}} \{1\} (\langle G \rangle (\min[V47] \ge 2103))
                ✓ Gravel
               L_{\mathbf{X}} {2}(V178 \geq 1476)
                 ├✓ Self-Blocking Bricks
                 L_{\mathbf{x}} {1}((G)(min[V2] < 1021))
                  ✓ Self-Blocking Bricks
                  ∟x Gravel
             ^{L}x {1}((G)(min[V68] < 563))
              → Trees
              L_{\mathbf{X}} {1}((G)(min[V29] \geq 1347))
                → Bare Soil
                L_{\mathbf{X}} {2}(V662 \geq 1915)
                 ⊢ Meadows
                 L_{\mathbf{x}} {2}(V63 \geq 579)
                  ✓ Meadows
                  Lx Bare Soil
            ^{L}x {1}((G)(min[V6] < 567))
             ✓ Shadows
             L_{\mathbf{X}} {2}(V593 \geq 1343)
               | \checkmark \{2\} (V917 \ge 1490)
                ✓ Gravel
               Lx {1}((G)(min[V3] < 754))
                 ├✓ Asphalt
                ∟x Bitumen
              Lx Asphalt
             \blacksquare {2}(V923 \ge 1714)
            | \checkmark \{2\} (V44 \ge 1109)
             [-4] \{1\} ((G) (min[V38] \ge 2424))
              → Painted metal sheets
              L_{x} {1}((G)(min[V67] \geq 2152))
                √ Gravel
                L_{\mathbf{X}} {2}(V743 \geq 1919)
                 ► Self-Blocking Bricks
                ∟x Gravel
             L_{\mathbf{X}} {1}((G)(min[V44] < 543))
              | ├✓ Meadows
               Lx Trees
               (G) (\min[V29] \ge 1347) 
                → Bare Soil
               L_{\mathbf{x}} {2}(V662 \geq 1908)
                 ├✓ Meadows
                 Lx Bare Soil
            ^{L}x {1}((G)(min[V6] < 567))
             ✓ Shadows
             L_{\mathbf{X}} {2}(V593 \geq 1343)
              \[ \checkmark \] \{2\} (V667 \ge 1686) \]
```

```
L_{\mathbf{x}} {2}(V201 \geq 1266)
     ├ Bitumen
   ∣ <sup>L</sup>x Asphalt
  Lx Asphalt
\blacksquare {2}(V923 \geq 1714)
| \checkmark \{2\} (V52 \ge 1114)
 | \checkmark \{1\}(\langle G \rangle (\min[V38] \ge 2267))
 | \cdot | \cdot | \langle G \rangle ((\min[V38] \ge 2267) \land (\min[V1] \ge 2642)))
 | L_{\mathbf{x}} \{2\} (V167 \ge 1475)
   [-4] \{1\} ((G) (min[V4] < 1185))
   ├ Self-Blocking Bricks
   | Lx Gravel
   ∟x Gravel
 ^{L}x {1}((G)(min[V68] < 563))
  ✓ Trees
  L_{\mathbf{X}} {1}((G)(min[V29] \geq 1347))
   → Bare Soil
   L_{\mathbf{X}} {2}(V877 \geq 2483)
     ✓ Meadows
     Lx Bare Soil
^{L}x {1}((G)(min[V5] < 516))
 -✓ Shadows
 L_{\mathbf{X}} {2}(V593 \geq 1343)
  | \checkmark \{2\} (V917 \ge 1490)
  | \cdot | \cdot | \langle 2 \rangle  (V106 \geq 1346)
  | | → Bitumen
  || Lx Gravel
  Lx Bitumen
  Lx Asphalt
\blacksquare {2}(V923 \geq 1714)
\[ \checkmark \] \{2\} (V52 \ge 1114)
\sqrt{2}(V248 \ge 1882)
  \{1\}((G)(\min[V1] \ge 2642))
 || Lx Bare Soil
  L_{\mathbf{X}} {1}((G)(min[V48] \geq 2114))
   √ Gravel
   L_{\mathbf{X}} {2}(V742 \geq 1915)
     ✓ Self-Blocking Bricks
     L_{\mathbf{X}} {2}(V132 \geq 1394)
      ► Self-Blocking Bricks
     ∟x Gravel
 L_{\mathbf{X}} {2}(V540 \geq 428)
  → Meadows
  Lx Trees
^{L}x {1}((G)(min[V6] < 567))
 ✓ Shadows
 L_{\mathbf{x}} {2}(V593 \geq 1343)
  \[ \checkmark \] \{2\} (V876 \ge 1600) 
    -✓ Gravel
   L_{\mathbf{X}} {2}(V155 \geq 1168)
```

```
Lx Asphalt
  Lx Asphalt
\blacksquare {2}(V923 \ge 1715)
| \checkmark \{2\} (V34 \ge 1009)
 \sqrt{(2)(V248 \ge 1882)}
 | \not \sim \{1\}(\langle G \rangle (min[V1] \ge 2642))
  ├ Painted metal sheets
  Lx Bare Soil
 \lfloor \frac{L}{x}  {1}((G)(min[V48] \geq 2114))
   ✓ Gravel
  L_{\mathbf{X}} {2}(V197 \geq 1459)
     ✓ Self-Blocking Bricks
    ∟x Gravel
 L_{\mathbf{X}} {2}(V540 \geq 428)
  | \checkmark \{1\}(\langle G \rangle (\min[V29] \ge 1347))
  | → Bare Soil
  | L_{\mathbf{x}} \{2\} (V662 \ge 1908)
    -✓ Meadows
    L_{\mathbf{X}} {1}((G)(min[V37] \geq 891))
     → Bare Soil
     Lx Meadows
   (G) (\min[V72] < 1534) 
   ✓ Trees
   Lx Meadows
^{L}x {1}((G)(min[V6] < 597))
 ✓ Shadows
 L_{\mathbf{X}} {2}(V593 \geq 1343)
  \[ \checkmark \] \{2\} (V876 \ge 1600) \]
   ✓ Gravel
  | L_{\mathbf{X}} \{1\} ((G) (\min[V18] \ge 1318))
     → Bitumen
  └× Asphalt
  Lx Asphalt
\blacksquare {2}(V860 \ge 1700)
\checkmark {2}(V52 \geq 1114)
 | \checkmark \{1\}(\langle G \rangle (\min[V38] \ge 2424)) 
| | ├✔ Painted metal sheets
 || Lx Bare Soil
  L_{\mathbf{X}} {1}((G)(min[V48] \geq 2114))
  -√ Gravel
  ^{L}x {2}(V743 \geq 1919)
     ✓ Self-Blocking Bricks
    ∟x Gravel
 L_{\mathbf{X}} {2}(V603 \geq 606)
  → Meadows
  Lx Trees
^{L}x {1}((G)(min[V6] < 567))
 ✓ Shadows
 L_{\mathbf{x}} {2}(V593 \geq 1343)
  \[ \checkmark \] \{2\} (V142 \ge 1281) 
   → Bitumen
   L_{\mathbf{x}} {2}(V917 \geq 1401)
```

```
∟x Bitumen
  Lx Asphalt
\blacksquare {2}(V923 \ge 1714)
| \checkmark \{2\} (V52 \ge 1114)
 \sqrt{(2)(V248 \ge 1882)}
 | \cdot | \cdot | \langle (G) (min[V1] \geq 2642) \rangle
 || - Painted metal sheets
 || ∟x Bare Soil
 Lx Self-Blocking Bricks
 L_{\mathbf{x}} {2}(V540 \geq 428)
  | \checkmark \{1\}(\langle G \rangle (\min[V29] \ge 1347))
   ► Bare Soil
   L_{\mathbf{x}} {1}((G)(min[V85] < 1923))
     ├ Bare Soil
    ^{L}x {2}(V6 \geq 969)
      → Bare Soil
     Ĺx Meadows
   (G) (\min[V72] < 1534) 
   ✓ Trees
   Lx Meadows
^{L}x {1}((G)(min[V6] < 567))

✓ Shadows

 L_{\mathbf{x}} {2}(V593 \geq 1343)
  | \checkmark \{2\} (V415 \ge 1666)
  | √ Gravel
  Lx Bitumen
  Lx Asphalt
\blacksquare {2}(V923 \ge 1714)
\checkmark {2}(V52 \geq 1114)
| \checkmark \{2\} (V248 \ge 1882)
 ├~ Painted metal sheets
 Lx Self-Blocking Bricks
L_{\mathbf{X}} {2}(V477 \geq 482)
   | \checkmark \{1\}(\langle G \rangle (\min[V29] \ge 1348)) 
   → Bare Soil
  L_{\mathbf{x}} {2}(V762 \geq 2450)
     → Meadows
    Lx Bare Soil
  Lx Trees
└x {1}(⟨G⟩(min[V4] < 496))
 ✓ Shadows
 L_{\mathbf{x}} {2}(V575 \geq 1369)
  \[ \checkmark \] \{2\} (V876 \ge 1600) 
  | ├✓ Gravel
  | Lx \{2\} (V155 \ge 1168)
  | ├✓ Bitumen
   ĺ '× Asphalt
  Lx Asphalt
\blacksquare {2}(V923 \geq 1714)
\[ \checkmark \] \{2\} (V52 \ge 1114)
 | \checkmark \{2\} (V239 \ge 1857)
 | \cdot \cdot \langle 1 \rangle (\langle G \rangle (\min[V1] \ge 2642))
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

```
Lx Bare Soil
                 L_{\mathbf{X}} {2}(V170 \geq 1534)
                  ├ Self-Blocking Bricks
                  L_{\mathbf{X}} {2}(V14 \geq 1205)
                    ├✓ Gravel
                    L_{\mathbf{X}} {2}(V528 \geq 1925)
                     ✓ Gravel
                    Lx Self-Blocking Bricks
               L_{\mathbf{X}} {2}(V540 \geq 428)
                 | \checkmark \{1\}(\langle G \rangle (\min[V28] \ge 1302))
                  → Bare Soil
                 | L_{\mathbf{X}} \{1\} (\langle G \rangle (\min[V102] < 2299))
                    ├✓ Meadows
                  Lx Meadows
                 Lx Trees
              ^{L}x {1}((G)(min[V6] < 567))
               ✓ Shadows
               L_{\mathbf{x}} {2}(V593 \geq 1343)
                 → Bitumen
                 Lx Asphalt
               \blacksquare {2}(V923 \ge 1649)
              \[ \checkmark \] \{2\} (V52 \ge 1114) 
               \sqrt{2}(V248 \ge 1882)
                \downarrow {1}((G)(min[V1] \geq 2642))
                | | -✓ Painted metal sheets
                || Lx Bare Soil
                ^{L}x {2}(V141 \geq 1464)
               ✓ Self-Blocking Bricks
                 ∟x Gravel
               L_{\mathbf{X}} {2}(V540 \geq 428)
                  | \checkmark \{1\}(\langle G \rangle (\min[V29] \ge 1347)) 
                 | → Bare Soil
                 | L_{\mathbf{X}} \{1\} (\langle G \rangle (\min[V102] < 2299))
                   → Bare Soil
                 Lx Meadows
                 Lx Trees
              ^{L}x {1}((G)(min[V6] < 567))
               -✓ Shadows
               L_{\mathbf{x}} {2}(V566 \geq 1385)
                 \[ \checkmark \] \{2\} (V845 \ge 1661) 
                  √ Gravel
                  L_{\mathbf{X}} {2}(V175 \geq 1261)
                    → Bitumen
                   Lx Asphalt
                 Lx Asphalt
In [31]: rules = vcat(listrules.(trees)...)
```

```
Out[31]: 134-element Vector{Rule{String, A, SoleModels.ConstantModel{String}} where
                                A<:Formula}:
                                   \blacksquare {2}(V248 ≥ 1882) \Rightarrow Painted metal sheets
                                   \blacksquare {1}((G)(min[V47] ≥ 2103)) \land {2}(V52 ≥ 1122) \land (V248 < 1882) \Rightarrow Gravel
                                   \blacksquare {1}([G](min[V47] < 2103)) \land {2}(V178 ≥ 1476) \land (V248 < 1882) \Rightarrow Self-Bl
                                 ocking Bricks
                                   ■ \{1\} \langle G \rangle (\min[V2] < 1021) \land [G] (\min[V47] < 2103) \land \{2\} (V52 \ge 1122) \land (V248)
                                 < 1882) ∧ (V178 < 1476) → Self-Blocking Bricks
                                   \blacksquare {1}[G](min[V47] < 2103) \land [G](min[V2] \ge 1021) \land {2}(V52 \ge 1122) \land (V248)
                                 < 1882) ∧ (V178 < 1476) → Gravel
                                   \blacksquare {1}(⟨G⟩(min[V68] < 563)) \land {2}(V923 ≥ 1714) \land (V52 < 1122) \Rightarrow Trees
                                   ■ \{1\} \langle G \rangle (\min[V29] \ge 1347) \land [G] (\min[V68] \ge 563) \land \{2\} (V923 \ge 1714) \land (V52) \land \{1\} \langle G \rangle (V52) \land \{1
                                 < 1122) ⇒ Bare Soil
                                   ■ \{1\}[G](\min[V68] \ge 563) \land [G](\min[V29] < 1347) \land \{2\}(V662 \ge 1915) \land (V52)
                                 < 1122) → Meadows
                                    \blacksquare {1}[G](min[V68] ≥ 563) \land [G](min[V29] < 1347) \land {2}(V63 ≥ 579) \land (V52 <
                                 1122) ∧ (V662 < 1915) → Meadows
                                   ■ \{1\}[G](\min[V68] \ge 563) \land [G](\min[V29] < 1347) \land \{2\}(V923 \ge 1714) \land (V52)
                                 < 1122) ∧ (V662 < 1915) ∧ (V63 < 579) → Bare Soil
                                   \blacksquare {1}([G](min[V6] ≥ 567)) \land {2}(V917 ≥ 1490) \land (V923 < 1714) \Rightarrow Gravel
                                    \blacksquare {1}(G)(min[V3] < 754) \land [G](min[V6] \ge 567) \land {2}(V593 \ge 1343) \land (V923 <
                                 1714) ∧ (V917 < 1490) → Asphalt
                                   ■ {1}([G](min[V1] < 2642)) Λ {2}(V248 ≥ 1882) → Bare Soil
                                   ■ {2}(V141 ≥ 1464) ∧ (V248 < 1882) → Self-Blocking Bricks</pre>
                                   \blacksquare {2}(V52 ≥ 1114) \land (V248 < 1882) \land (V141 < 1464) \Rightarrow Gravel
                                   \blacksquare {1}(⟨G⟩(min[V29] ≥ 1347)) \land {2}(V540 ≥ 428) \land (V52 < 1114) \Rightarrow Bare Soil
                                   ■ \{1\}(G)(\min[V102] < 2299) \land [G](\min[V29] < 1347) \land \{2\}(V540 \ge 428) \land (V52)
                                 < 1114) → Bare Soil
                                   ■ \{1\}[G](\min[V29] < 1347) \land [G](\min[V102] \ge 2299) \land \{2\}(V540 \ge 428) \land (V52)
                                 < 1114) → Meadows
                                   \blacksquare {2}(V923 ≥ 1649) \land (V52 < 1114) \land (V540 < 428) \Rightarrow Trees
                                   \blacksquare {1}((G)(min[V6] < 567)) \land {2}(V923 < 1649) \Rightarrow Shadows
```

```
\blacksquare {1}([G](min[V6] \ge 567)) \land {2}(V175 \ge 1261) \land (V923 < 1649) \land (V845 < 166
             1) → Bitumen
             \blacksquare {1}([G](min[V6] \geq 567)) \land {2}(V566 \geq 1385) \land (V923 < 1649) \land (V845 < 166
             1) ∧ (V175 < 1261) → Asphalt
             \blacksquare {1}([G](min[V6] ≥ 567)) \land {2}(V923 < 1649) \land (V566 < 1385) \Rightarrow Asphalt
  In [32]: # Every symbolic model (including rules) can have has additional information
            println(rules[1])
            ruleinfo = SoleModels.info(rules[1])
            println(keys(ruleinfo))
           \blacksquare {2}(V248 ≥ 1882) \Rightarrow Painted metal sheets
           (:supporting labels, :supporting predictions, :shortform)
  In [33]: ruleinfo[:supporting predictions] |> length
  Out[331: 4
  In [34]: sort(readmetrics.(rules), by=x->x[:coverage], rev = true)
  Out[34]: 134-element Vector{NamedTuple{(:ninstances, :confidence, :coverage), Tuple
             {Int64, Float64, Float64}}}:
              (ninstances = 7, confidence = 0.57, coverage = 0.19)
              (ninstances = 6, confidence = 0.67, coverage = 0.17)
              (ninstances = 6, confidence = 0.67, coverage = 0.17)
              (ninstances = 6, confidence = 0.67, coverage = 0.17)
              (ninstances = 6, confidence = 0.67, coverage = 0.17)
              (ninstances = 5, confidence = 0.4, coverage = 0.14)
              (ninstances = 5, confidence = 0.4, coverage = 0.14)
              (ninstances = 5, confidence = 0.8, coverage = 0.14)
              (ninstances = 5, confidence = 0.6, coverage = 0.14)
              (ninstances = 5, confidence = 0.8, coverage = 0.14)
              (ninstances = 5, confidence = 0.8, coverage = 0.14)
              (ninstances = 5, confidence = 0.6, coverage = 0.14)
              (ninstances = 5, confidence = 0.6, coverage = 0.14)
              (ninstances = 1, confidence = 0.0, coverage = 0.03)
              (ninstances = 1, confidence = 0.0, coverage = 0.03)
              (ninstances = 1, confidence = 1.0, coverage = 0.03)
              (ninstances = 1, confidence = 0.0, coverage = 0.03)
              (ninstances = 1, confidence = 1.0, coverage = 0.03)
              (ninstances = 1, confidence = 1.0, coverage = 0.03)
              (ninstances = 1, confidence = 0.0, coverage = 0.03)
              (ninstances = 1, confidence = 1.0, coverage = 0.03)
              (ninstances = 1, confidence = 0.0, coverage = 0.03)
              (ninstances = 1, confidence = 1.0, coverage = 0.03)
              (ninstances = 1, confidence = 0.0, coverage = 0.03)
              (ninstances = 1, confidence = 1.0, coverage = 0.03)
  In [53]: \# goodrules = filter(r->readmetrics(r)[:ninstances] > 1, rules)
                                     hy=r->readmetrics(r)[:coverage], rev = true)
            mondrules = sort(rules
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

printmodel.(goodrules; show_metrics = true, threshold_digits = 4);

```
■ {2}(V52 ≥ 1114.0) Λ (V248 < 1882.0) → Self-Blocking Bricks : (ninstances
            = 7, confidence = 0.57, coverage = 0.19)
            0)) \Lambda {2}(V923 ≥ 1714.0) \Lambda (V44 < 1109.0) \rightarrow Trees : (ninstances = 6, confi
            dence = 0.67, coverage = 0.17)
            \blacksquare {2}(V540 ≥ 428.0) \land (V52 < 1114.0) \Rightarrow Meadows : (ninstances = 6, confiden
            ce = 0.67, coverage = 0.17)
            ■ {2}(V52 ≥ 1114.0) Λ (V248 < 1882.0) → Self-Blocking Bricks : (ninstances
            = 6, confidence = 0.67, coverage = 0.17)
            \blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V593 ≥ 1343.0) \land (V923 < 1714.0) \Rightarrow Bitum
            en : (ninstances = 6, confidence = 0.67, coverage = 0.17)
            \blacksquare {1}[G](min[V68] ≥ 563.0) \land [G](min[V29] < 1347.0) \land {2}(V923 ≥ 1714.0) \land
            (V52 < 1114.0) \land (V877 < 2483.0) \rightarrow Bare Soil : (ninstances = 5, confidence)
            = 0.4, coverage = 0.14)
            \blacksquare {1}([G](min[V48] < 2114.0)) \land {2}(V197 ≥ 1459.0) \land (V248 < 1882.0) \Rightarrow Sel
            f-Blocking Bricks : (ninstances = 5, confidence = 0.4, coverage = 0.14)
            \blacksquare {1}((G)(min[V6] < 597.0)) \land {2}(V923 < 1715.0) → Shadows : (ninstances =
            5, confidence = 0.8, coverage = 0.14)
            ■ \{1\}[G](\min[V38] < 2424.0) \land [G](\min[V48] < 2114.0) \land \{2\}(V52 ≥ 1114.0) \land
            (V743 < 1919.0) \rightarrow Gravel : (ninstances = 5, confidence = 0.6, coverage = 1919.0)
            0.14)
            \blacksquare {2}(V603 ≥ 606.0) \land (V52 < 1114.0) \Rightarrow Meadows : (ninstances = 5, confiden
            ce = 0.8, coverage = 0.14)
            \blacksquare {1}([G](min[V6] \ge 567.0)) \land {2}(V593 \ge 1343.0) \land (V923 < 1714.0) \land (V415 <
            1666.0) \Rightarrow Bitumen: (ninstances = 5, confidence = 0.8, coverage = 0.14)
            \blacksquare {1}([G](min[V29] < 1348.0)) \land {2}(V762 ≥ 2450.0) \land (V52 < 1114.0) \Rightarrow Mead
            ows : (ninstances = 5, confidence = 0.6, coverage = 0.14)
            \blacksquare {1}([G](min[V4] ≥ 496.0)) \land {2}(V923 < 1714.0) \land (V575 < 1369.0) \Rightarrow Aspha
            lt : (ninstances = 5, confidence = 0.6, coverage = 0.14)
            \blacksquare {2}(V248 ≥ 1882.0) \rightarrow Painted metal sheets : (ninstances = 4, confidence
            = 1.0, coverage = 0.11)
            \blacksquare {1}[G](min[V68] ≥ 563.0) \land [G](min[V29] < 1347.0) \land {2}(V662 ≥ 1915.0) \land
            (V52 < 1122.0) \rightarrow Meadows : (ninstances = 4, confidence = 0.5, coverage = 1)
            0.11)
            ■ {1}((G)(min[V6] < 567.0)) Λ {2}(V923 < 1714.0) → Shadows : (ninstances =</p>
            4, confidence = 1.0, coverage = 0.11)
            \blacksquare {1}((G)(min[V38] ≥ 2424.0)) \land {2}(V44 ≥ 1109.0) \Rightarrow Painted metal sheets :
            (ninstances = 4, confidence = 1.0, coverage = 0.11)
            \blacksquare {1}((G)(min[V6] < 567.0)) \land {2}(V923 < 1714.0) → Shadows : (ninstances =
            4, confidence = 1.0, coverage = 0.11)
            \blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V923 < 1714.0) \land (V593 < 1343.0) \Rightarrow Aspha
            lt : (ninstances = 4, confidence = 1.0, coverage = 0.11)
            \blacksquare {1}((G)((min[V38] ≥ 2267.0) \land (min[V1] ≥ 2642.0))) \land {2}(V52 ≥ 1114.0) \Rightarrow
            Painted metal sheets : (ninstances = 4, confidence = 1.0, coverage = 0.11)
            \blacksquare {1}([G](min[V5] ≥ 516.0)) \land {2}(V106 ≥ 1346.0) \land (V923 < 1714.0) \Rightarrow Bitum
            en : (ninstances = 4, confidence = 1.0, coverage = 0.11)
            \blacksquare {1}([G](min[V5] ≥ 516.0)) \land {2}(V923 < 1714.0) \land (V593 < 1343.0) \Rightarrow Aspha
            lt : (ninstances = 4, confidence = 0.75, coverage = 0.11)
            ■ \{1\}((G)(\min[V1] \ge 2642.0)) \land \{2\}(V248 \ge 1882.0) \rightarrow Painted metal sheets :
            (ninstances = 4, confidence = 1.0, coverage = 0.11)
            \blacksquare {2}(V923 ≥ 1714.0) \land (V52 < 1114.0) \land (V540 < 428.0) \Rightarrow Trees : (ninstance
            es = 4, confidence = 1.0, coverage = 0.11)
            \blacksquare {1}((G)(min[V6] < 567.0)) \land {2}(V923 < 1714.0) → Shadows : (ninstances =
            4, confidence = 1.0, coverage = 0.11)
            \blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V155 ≥ 1168.0) \land (V923 < 1714.0) \land (V876 <
```

```
■ {1}((G)(min[V1] ≥ 2642.0)) ∧ {2}(V248 ≥ 1882.0) ⇒ Painted metal sheets :
(ninstances = 4, confidence = 1.0, coverage = 0.11)
■ \{1\}((G)(\min[V72] < 1534.0)) \land \{2\}(V923 \ge 1715.0) \land (V34 < 1009.0) \land (V540)
< 428.0) \rightarrow Trees : (ninstances = 4, confidence = 1.0, coverage = 0.11)
\blacksquare {1}([G](min[V6] ≥ 597.0)) \land {2}(V923 < 1715.0) \land (V593 < 1343.0) \Rightarrow Aspha
lt : (ninstances = 4, confidence = 1.0, coverage = 0.11)
■ \{1\}((G)(\min[V6] < 567.0)) \land \{2\}(V860 < 1700.0) \rightarrow Shadows : (ninstances = 1)
4, confidence = 1.0, coverage = 0.11)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V860 < 1700.0) \land (V593 < 1343.0) \rightarrow Aspha
lt : (ninstances = 4, confidence = 0.75, coverage = 0.11)
■ \{1\}((G)(\min[V1] \ge 2642.0)) \land \{2\}(V248 \ge 1882.0) \rightarrow Painted metal sheets :
(ninstances = 4, confidence = 1.0, coverage = 0.11)
■ \{1\}((G)(\min[V72] < 1534.0)) \land \{2\}(V923 \ge 1714.0) \land (V52 < 1114.0) \land (V540)
< 428.0) \rightarrow Trees : (ninstances = 4, confidence = 1.0, coverage = 0.11)
\blacksquare {1}((G)(min[V6] < 567.0)) ∧ {2}(V923 < 1714.0) \Rightarrow Shadows : (ninstances =
4, confidence = 1.0, coverage = 0.11)
\blacksquare {2}(V248 ≥ 1882.0) \rightarrow Painted metal sheets : (ninstances = 4, confidence
= 1.0, coverage = 0.11)
\blacksquare {1}([G](min[V4] \ge 496.0)) \land {2}(V155 \ge 1168.0) \land (V923 < 1714.0) \land (V876 <
1600.0) \Rightarrow Bitumen : (ninstances = 4, confidence = 1.0, coverage = 0.11)
■ \{1\}(\langle G \rangle (min[V1] \ge 2642.0)) \land \{2\}(V239 \ge 1857.0) \rightarrow Painted metal sheets :
(ninstances = 4, confidence = 1.0, coverage = 0.11)
\blacksquare {2}(V923 ≥ 1714.0) \land (V52 < 1114.0) \land (V540 < 428.0) \Rightarrow Trees : (ninstance
es = 4, confidence = 1.0, coverage = 0.11)
■ \{1\}((G)(min[V6] < 567.0)) \land \{2\}(V923 < 1714.0) \rightarrow Shadows : (ninstances = V9.0) \land V9.0 \land 
4, confidence = 1.0, coverage = 0.11)
■ \{1\}(\langle G \rangle (min[V1] \ge 2642.0)) \land \{2\}(V248 \ge 1882.0) \rightarrow Painted metal sheets :
(ninstances = 4, confidence = 1.0, coverage = 0.11)
■ {2}(V141 ≥ 1464.0) Λ (V248 < 1882.0) → Self-Blocking Bricks : (ninstance
s = 4, confidence = 0.75, coverage = 0.11)
\blacksquare \{1\} (G) (\min[V102] < 2299.0) \land [G] (\min[V29] < 1347.0) \land \{2\} (V540 \ge 428.0) \land \{2\} (V540 \ge 428
(V52 < 1114.0) \Rightarrow Bare Soil : (ninstances = 4, confidence = 0.25, coverage
= 0.11)
\blacksquare {2}(V923 ≥ 1649.0) \land (V52 < 1114.0) \land (V540 < 428.0) \Rightarrow Trees : (ninstance
es = 4, confidence = 1.0, coverage = 0.11)
\blacksquare {1}((G)(min[V6] < 567.0)) \land {2}(V923 < 1649.0) → Shadows : (ninstances =
4, confidence = 1.0, coverage = 0.11)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V923 < 1649.0) \land (V566 < 1385.0) \Rightarrow
                                                                                                                                                                                                            Aspha
lt : (ninstances = 4, confidence = 0.75, coverage = 0.11)
\blacksquare {1}(⟨G⟩(min[V68] < 563.0)) \land {2}(V923 ≥ 1714.0) \land (V52 < 1122.0) \Rightarrow Trees
: (ninstances = 3, confidence = 1.0, coverage = 0.08)
\blacksquare {1}⟨G⟩(min[V29] ≥ 1347.0) \land [G](min[V68] ≥ 563.0) \land {2}(V923 ≥ 1714.0) \land
(V52 < 1122.0) \Rightarrow Bare Soil : (ninstances = 3, confidence = 0.67, coverage)
= 0.08)
■ \{1\}[G](\min[V6] \ge 567.0) \land [G](\min[V3] \ge 754.0) \land \{2\}(V593 \ge 1343.0) \land (V92)
3 < 1714.0) \land (V917 < 1490.0) \Rightarrow Bitumen : (ninstances = 3, confidence = 0.
67, coverage = 0.08)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V923 < 1714.0) \land (V593 < 1343.0) \Rightarrow Aspha
lt : (ninstances = 3, confidence = 1.0, coverage = 0.08)
(V44 < 1109.0) \rightarrow Bare Soil : (ninstances = 3, confidence = 0.67, coverage)
= 0.08)
\blacksquare {1}([G](min[V6] \ge 567.0)) \land {2}(V201 \ge 1266.0) \land (V923 < 1714.0) \land (V667 <
1686.0) \Rightarrow Bitumen: (ninstances = 3, confidence = 1.0, coverage = 0.08)
\blacksquare {1}[G](min[V68] ≥ 563.0) \land [G](min[V29] < 1347.0) \land {2}(V877 ≥ 2483.0) \land
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js : (ninstances = 3, confidence = 0.33, coverage =

```
0.08)
■ \{1\}((G)(min[V5] < 516.0)) \land \{2\}(V923 < 1714.0) \Rightarrow Shadows : (ninstances = 1)
3, confidence = 1.0, coverage = 0.08)
■ \{1\}([G](min[V6] \ge 567.0)) \land \{2\}(V923 < 1714.0) \land (V593 < 1343.0) \rightarrow Aspha
lt : (ninstances = 3, confidence = 1.0, coverage = 0.08)
■ \{1\}(G)(\min[V18] \ge 1318.0) \land [G](\min[V6] \ge 597.0) \land \{2\}(V593 \ge 1343.0) \land (V)
923 < 1715.0) \Lambda (V876 < 1600.0) \Rightarrow Bitumen : (ninstances = 3, confidence =
1.0, coverage = 0.08)
\blacksquare {1}(⟨G⟩((min[V38] ≥ 2424.0) \land (min[V1] ≥ 2769.0))) \land {2}(V52 ≥ 1114.0) \Rightarrow
Painted metal sheets : (ninstances = 3, confidence = 1.0, coverage = 0.08)
∧ {2}(V52 ≥ 1114.0) ⇒ Bare Soil : (ninstances = 3, confidence = 1.0, cover
age = 0.08)
\blacksquare {2}(V860 ≥ 1700.0) \land (V52 < 1114.0) \land (V603 < 606.0) \Rightarrow Trees : (ninstance
es = 3, confidence = 1.0, coverage = 0.08)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V142 ≥ 1281.0) \land (V860 < 1700.0) \Rightarrow Bitum
en : (ninstances = 3, confidence = 0.67, coverage = 0.08)
■ \{1\}[G](\min[V29] < 1347.0) \land [G](\min[V85] \ge 1923.0) \land \{2\}(V540 \ge 428.0) \land \{2\}(V540 \ge 4
(V52 < 1114.0) \land (V6 < 969.0) \Rightarrow Meadows : (ninstances = 3, confidence = 0.
33, coverage = 0.08)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V923 < 1714.0) \land (V593 < 1343.0) \Rightarrow Aspha
lt : (ninstances = 3, confidence = 1.0, coverage = 0.08)
\blacksquare {2}(V923 ≥ 1714.0) \land (V52 < 1114.0) \land (V477 < 482.0) \Rightarrow Trees : (ninstance
es = 3, confidence = 1.0, coverage = 0.08)
■ {1}((G)(min[V4] < 496.0)) Λ {2}(V923 < 1714.0) → Shadows : (ninstances =</p>
3, confidence = 1.0, coverage = 0.08)
■ {2}(V170 ≥ 1534.0) ∧ (V239 < 1857.0) → Self-Blocking Bricks : (ninstance
s = 3, confidence = 0.33, coverage = 0.08)
■ \{1\}((G)(\min[V28] \ge 1302.0)) \land \{2\}(V540 \ge 428.0) \land (V52 < 1114.0) \Rightarrow Bare
Soil : (ninstances = 3, confidence = 0.67, coverage = 0.08)
\blacksquare {1}[G](min[V28] < 1302.0) \land [G](min[V102] \ge 2299.0) \land {2}(V540 \ge 428.0) \land
(V52 < 1114.0) \rightarrow Meadows : (ninstances = 3, confidence = 1.0, coverage = 1.0)
0.08)
\blacksquare {1}([G](min[V6] \ge 567.0)) \land {2}(V175 \ge 1261.0) \land (V923 < 1649.0) \land (V845 <
1661.0) \Rightarrow Bitumen: (ninstances = 3, confidence = 1.0, coverage = 0.08)
\blacksquare {1}(⟨G⟩(min[V47] ≥ 2103.0)) \land {2}(V52 ≥ 1122.0) \land (V248 < 1882.0) \Rightarrow Grav
el : (ninstances = 2, confidence = 0.5, coverage = 0.06)
■ {1}([G](min[V47] < 2103.0)) ∧ {2}(V178 ≥ 1476.0) ∧ (V248 < 1882.0) ⇒ Sel
f-Blocking Bricks : (ninstances = 2, confidence = 1.0, coverage = 0.06)
\blacksquare {1}⟨G⟩(min[V2] < 1021.0) \land [G](min[V47] < 2103.0) \land {2}(V52 ≥ 1122.0) \land (V
248 < 1882.0) ∧ (V178 < 1476.0) → Self-Blocking Bricks : (ninstances = 2,
confidence = 0.5, coverage = 0.06)
\blacksquare {1}[G](min[V68] ≥ 563.0) \land [G](min[V29] < 1347.0) \land {2}(V923 ≥ 1714.0) \land
(V52 < 1122.0) ∧ (V662 < 1915.0) ∧ (V63 < 579.0) → Bare Soil : (ninstances
= 2, confidence = 0.0, coverage = 0.06)
\blacksquare {1}⟨G⟩(min[V67] ≥ 2152.0) \land [G](min[V38] < 2424.0) \land {2}(V44 ≥ 1109.0) \Rightarrow
Gravel: (ninstances = 2, confidence = 0.5, coverage = 0.06)
■ \{1\}[G](\min[V38] < 2424.0) \land [G](\min[V67] < 2152.0) \land \{2\}(V743 \ge 1919.0)
Self-Blocking Bricks : (ninstances = 2, confidence = 1.0, coverage = 0.06)
\blacksquare {1}[G](min[V38] < 2424.0) \land [G](min[V67] < 2152.0) \land {2}(V44 \ge 1109.0) \land
(V743 < 1919.0) \rightarrow Gravel : (ninstances = 2, confidence = 0.5, coverage = 0.5)
■ \{1\}((G)((\min[V44] < 543.0) \land (\overline{NTPP})(\min[V28] \ge 620.0))) \land \{2\}(V923 \ge 1714.
0) \Lambda (V44 < 1109.0) \rightarrow Meadows : (ninstances = 2, confidence = 1.0, coverag
e = 0.06
```

```
Self-Blocking Bricks : (ninstances = 2, confidence = 0.5, coverage = 0.06)
■ \{1\}([G](min[V38] < 2267.0)) \land \{2\}(V52 \ge 1114.0) \land (V167 < 1475.0) \rightarrow Grav
el: (ninstances = 2, confidence = 0.0, coverage = 0.06)
\blacksquare {1}(⟨G⟩(min[V68] < 563.0)) \land {2}(V923 ≥ 1714.0) \land (V52 < 1114.0) \Rightarrow Trees
: (ninstances = 2, confidence = 1.0, coverage = 0.06)
■ \{1\}\G (min[V29] ≥ 1347.0) \Lambda [G](min[V68] ≥ 563.0) \Lambda \{2\} (V923 ≥ 1714.0) \Lambda
(V52 < 1114.0) \Rightarrow Bare Soil : (ninstances = 2, confidence = 0.5, coverage = 1)
0.06)
\blacksquare {1}([G](min[V5] \ge 516.0)) \land {2}(V917 \ge 1490.0) \land (V923 < 1714.0) \land (V106 <
1346.0) \Rightarrow Gravel: (ninstances = 2, confidence = 1.0, coverage = 0.06)
\blacksquare {1}([G](min[V1] < 2642.0)) ∧ {2}(V248 ≥ 1882.0) \Rightarrow Bare Soil : (ninstance
s = 2, confidence = 1.0, coverage = 0.06)
\blacksquare {1}([G](min[V48] < 2114.0)) \land {2}(V742 ≥ 1915.0) \land (V248 < 1882.0) \Rightarrow Sel
f-Blocking Bricks: (ninstances = 2, confidence = 0.5, coverage = 0.06)
■ \{1\}([G](\min[V48] < 2114.0)) \land \{2\}(V132 \ge 1394.0) \land (V248 < 1882.0) \land (V742)
< 1915.0) → Self-Blocking Bricks : (ninstances = 2, confidence = 1.0, cove
rage = 0.06)
\blacksquare {1}([G](min[V48] < 2114.0)) ∧ {2}(V52 ≥ 1114.0) ∧ (V248 < 1882.0) ∧ (V742
< 1915.0) ∧ (V132 < 1394.0) → Gravel : (ninstances = 2, confidence = 0.5,
coverage = 0.06)
\blacksquare {1}[G](min[V29] < 1347.0) \land [G](min[V37] < 891.0) \land {2}(V540 ≥ 428.0) \land (V
34 < 1009.0) \Lambda (V662 < 1908.0) \rightarrow Meadows : (ninstances = 2, confidence =
1.0, coverage = 0.06)
■ \{1\}[G](\min[V38] < 2424.0) \land [G](\min[V48] < 2114.0) \land \{2\}(V743 \ge 1919.0)
Self-Blocking Bricks : (ninstances = 2, confidence = 1.0, coverage = 0.06)
\blacksquare {1}([G](min[V6] \ge 567.0)) \land {2}(V917 \ge 1401.0) \land (V860 < 1700.0) \land (V142 <
1281.0) → Gravel : (ninstances = 2, confidence = 0.5, coverage = 0.06)
\blacksquare {1}(⟨G⟩(min[V29] ≥ 1348.0)) \land {2}(V477 ≥ 482.0) \land (V52 < 1114.0) \Rightarrow Bare
Soil : (ninstances = 2, confidence = 1.0, coverage = 0.06)
■ \{1\}([G](min[V29] < 1348.0)) \land \{2\}(V477 \ge 482.0) \land (V52 < 1114.0) \land (V762 < 1114
2450.0) \Rightarrow Bare Soil : (ninstances = 2, confidence = 0.0, coverage = 0.06)
■ {2}(V14 ≥ 1205.0) ∧ (V239 < 1857.0) ∧ (V170 < 1534.0) → Gravel : (ninsta
nces = 2, confidence = 0.5, coverage = 0.06)
\blacksquare {2}(V528 ≥ 1925.0) \land (V239 < 1857.0) \land (V170 < 1534.0) \land (V14 < 1205.0) \Rightarrow
Gravel: (ninstances = 2, confidence = 1.0, coverage = 0.06)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V923 < 1714.0) \land (V593 < 1343.0) \Rightarrow
                                                                                                                                     Aspha
lt : (ninstances = 2, confidence = 1.0, coverage = 0.06)
\blacksquare {1}(⟨G⟩(min[V29] ≥ 1347.0)) \land {2}(V540 ≥ 428.0) \land (V52 < 1114.0) \Rightarrow
                                                                                                                                     Bare
Soil : (ninstances = 2, confidence = 1.0, coverage = 0.06)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V845 ≥ 1661.0) \land (V923 < 1649.0) \Rightarrow Grave
l : (ninstances = 2, confidence = 1.0, coverage = 0.06)
\blacksquare {1}([G](min[V6] \ge 567.0)) \land {2}(V566 \ge 1385.0) \land (V923 < 1649.0) \land (V845 <
1661.0) \wedge (V175 < 1261.0) \rightarrow Asphalt : (ninstances = 2, confidence = 0.0, c
overage = 0.06)
\blacksquare {1}[G](min[V47] < 2103.0) \land [G](min[V2] ≥ 1021.0) \land {2}(V52 ≥ 1122.0) \land (V
248 < 1882.0) ∧ (V178 < 1476.0) → Gravel : (ninstances = 1, confidence =
1.0, coverage = 0.03)
\blacksquare {1}[G](min[V68] ≥ 563.0) \land [G](min[V29] < 1347.0) \land {2}(V63 ≥ 579.0) \land (V5)
2 < 1122.0) \Lambda (V662 < 1915.0) \Rightarrow Meadows : (ninstances = 1, confidence = 0.
0, coverage = 0.03)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V917 ≥ 1490.0) \land (V923 < 1714.0) \Rightarrow Grave
l : (ninstances = 1, confidence = 0.0, coverage = 0.03)
■ \{1\}(G)(\min[V3] < 754.0) \land [G](\min[V6] \ge 567.0) \land \{2\}(V593 \ge 1343.0) \land (V92)
3 < 1714.0) \land (V917 < 1490.0) \Rightarrow Asphalt : (ninstances = 1, confidence = 0.
0, coverage = 0.03)
```

```
(V44 < 1109.0) \rightarrow Meadows : (ninstances = 1, confidence = 1.0, coverage = 1)
0.03)
(V44 < 1109.0) \land (V662 < 1908.0) \rightarrow Bare Soil : (ninstances = 1, confidence)
= 1.0, coverage = 0.03)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V667 ≥ 1686.0) \land (V923 < 1714.0) \Rightarrow Grave
l: (ninstances = 1, confidence = 0.0, coverage = 0.03)
\blacksquare {1}([G](min[V6] \ge 567.0)) \land {2}(V593 \ge 1343.0) \land (V923 < 1714.0) \land (V667 <
1686.0) \land (V201 < 1266.0) \Rightarrow Asphalt : (ninstances = 1, confidence = 0.0, c
overage = 0.03)
\Lambda {2}(V52 ≥ 1114.0) \Rightarrow Bare Soil : (ninstances = 1, confidence = 0.0, cover
age = 0.03)
\blacksquare {1}[G](min[V38] < 2267.0) ∧ [G](min[V4] ≥ 1185.0) ∧ {2}(V167 ≥ 1475.0) \Rightarrow
Gravel: (ninstances = 1, confidence = 0.0, coverage = 0.03)
■ \{1\}([G](min[V5] \ge 516.0)) \land \{2\}(V593 \ge 1343.0) \land (V923 < 1714.0) \land (V917 < 1714
1490.0) \Rightarrow Bitumen: (ninstances = 1, confidence = 0.0, coverage = 0.03)
\blacksquare {1}(⟨G⟩(min[V48] ≥ 2114.0)) \land {2}(V52 ≥ 1114.0) \land (V248 < 1882.0) \Rightarrow Grav
el : (ninstances = 1, confidence = 1.0, coverage = 0.03)
\blacksquare {1}([G](min[V6] ≥ 567.0)) \land {2}(V876 ≥ 1600.0) \land (V923 < 1714.0) \Rightarrow Grave
l : (ninstances = 1, confidence = 1.0, coverage = 0.03)
\blacksquare {1}([G](min[V6] \ge 567.0)) \land {2}(V593 \ge 1343.0) \land (V923 < 1714.0) \land (V876 <
1600.0) \wedge (V155 < 1168.0) \rightarrow Asphalt : (ninstances = 1, confidence = 1.0, c
overage = 0.03)
■ \{1\}([G](\min[V1] < 2642.0)) \land \{2\}(V248 \ge 1882.0) \rightarrow Bare Soil : (ninstance)
s = 1, confidence = 1.0, coverage = 0.03)
\blacksquare {1}(⟨G⟩(min[V48] ≥ 2114.0)) \land {2}(V34 ≥ 1009.0) \land (V248 < 1882.0) \Rightarrow Grav
el: (ninstances = 1, confidence = 0.0, coverage = 0.03)
\blacksquare {1}([G](min[V48] < 2114.0)) \land {2}(V34 ≥ 1009.0) \land (V248 < 1882.0) \land (V197
< 1459.0) → Gravel : (ninstances = 1, confidence = 0.0, coverage = 0.03)
\blacksquare {1}((G)(min[V29] ≥ 1347.0)) \land {2}(V540 ≥ 428.0) \land (V34 < 1009.0) \Rightarrow Bare
Soil : (ninstances = 1, confidence = 1.0, coverage = 0.03)
\blacksquare {1}([G](min[V29] < 1347.0)) \land {2}(V662 ≥ 1908.0) \land (V34 < 1009.0) \Rightarrow Mead
ows: (ninstances = 1, confidence = 1.0, coverage = 0.03)
\blacksquare {1}⟨G⟩(min[V37] ≥ 891.0) \land [G](min[V29] < 1347.0) \land {2}(V540 ≥ 428.0) \land (V
34 < 1009.0) \Lambda (V662 < 1908.0) \rightarrow Bare Soil : (ninstances = 1, confidence =
1.0, coverage = 0.03)
\blacksquare {1}([G](min[V72] \ge 1534.0)) \land {2}(V923 \ge 1715.0) \land (V34 < 1009.0) \land (V540
< 428.0) \rightarrow Meadows : (ninstances = 1, confidence = 1.0, coverage = 0.03)
\blacksquare {1}([G](min[V6] ≥ 597.0)) \land {2}(V876 ≥ 1600.0) \land (V923 < 1715.0) \Rightarrow Grave
l: (ninstances = 1, confidence = 0.0, coverage = 0.03)
\blacksquare {1}[G](min[V6] ≥ 597.0) \land [G](min[V18] < 1318.0) \land {2}(V593 ≥ 1343.0) \land (V
923 < 1715.0) \Lambda (V876 < 1600.0) \rightarrow Asphalt : (ninstances = 1, confidence =
0.0, coverage = 0.03)
Gravel: (ninstances = 1, confidence = 0.0, coverage = 0.03)
\blacksquare {1}([G](min[V6] \ge 567.0)) \land {2}(V593 \ge 1343.0) \land (V860 < 1700.0) \land (V142 <
1281.0) \wedge (V917 < 1401.0) \rightarrow Bitumen : (ninstances = 1, confidence = 1.0, c
overage = 0.03)
■ {1}([G](min[V1] < 2642.0)) ∧ {2}(V248 ≥ 1882.0) → Bare Soil : (ninstance
s = 1, confidence = 1.0, coverage = 0.03)
\blacksquare {1}((G)(min[V29] ≥ 1347.0)) \land {2}(V540 ≥ 428.0) \land (V52 < 1114.0) \Rightarrow Bare
Soil : (ninstances = 1, confidence = 1.0, coverage = 0.03)
\blacksquare {1}⟨G⟩(min[V85] < 1923.0) \land [G](min[V29] < 1347.0) \land {2}(V540 ≥ 428.0) \land
(V52 < 1114.0) \Rightarrow Bare Soil : (ninstances = 1, confidence = 0.0, coverage = 1)
```

- $\{1\}[G](\min[V29] < 1347.0) \land [G](\min[V85] \ge 1923.0) \land \{2\}(V6 \ge 969.0) \land (V5 2 < 1114.0) \Rightarrow Bare Soil : (ninstances = 1, confidence = 0.0, coverage = 0.03)$
- $\{1\}([G](min[V72] \ge 1534.0)) \land \{2\}(V923 \ge 1714.0) \land (V52 < 1114.0) \land (V540)$
- < 428.0) → Meadows : (ninstances = 1, confidence = 1.0, coverage = 0.03)
- $\{1\}([G](min[V6] \ge 567.0)) \land \{2\}(V415 \ge 1666.0) \land (V923 < 1714.0) \Rightarrow Gravel: (ninstances = 1, confidence = 0.0, coverage = 0.03)$
- $\{1\}([G](min[V4] \ge 496.0)) \land \{2\}(V876 \ge 1600.0) \land (V923 < 1714.0) \Rightarrow Grave l: (ninstances = 1, confidence = 1.0, coverage = 0.03)$
- $\{1\}([G](\min[V4] \ge 496.0)) \land \{2\}(V575 \ge 1369.0) \land (V923 < 1714.0) \land (V876 < 1600.0) \land (V155 < 1168.0) \Rightarrow Asphalt : (ninstances = 1, confidence = 1.0, coverage = 0.03)$
- $\{1\}([G](min[V1] < 2642.0)) \land \{2\}(V239 \ge 1857.0) \Rightarrow Bare Soil : (ninstance s = 1, confidence = 0.0, coverage = 0.03)$
- $\{2\}$ (V52 ≥ 1114.0) \land (V239 < 1857.0) \land (V170 < 1534.0) \land (V14 < 1205.0) \land (V528 < 1925.0) \Rightarrow Self-Blocking Bricks : (ninstances = 1, confidence = 1.0, coverage = 0.03)
- $\{1\}\ (G)\ (\min[V102] < 2299.0)\ \Lambda\ [G]\ (\min[V28] < 1302.0)\ \Lambda\ \{2\}\ (V540 \ge 428.0)\ \Lambda\ (V52 < 1114.0)$ → Meadows : (ninstances = 1, confidence = 0.0, coverage = 0.03)
- $\{1\}([G](min[V1] < 2642.0)) \land \{2\}(V248 \ge 1882.0) \rightarrow Bare Soil : (ninstance s = 1, confidence = 1.0, coverage = 0.03)$
- $\{2\}$ (V52 \geq 1114.0) \land (V248 < 1882.0) \land (V141 < 1464.0) \Rightarrow Gravel : (ninstances = 1, confidence = 0.0, coverage = 0.03)
- $\{1\}[G]$ (min[V29] < 1347.0) \land [G] (min[V102] \ge 2299.0) \land $\{2\}$ (V540 \ge 428.0) \land (V52 < 1114.0) \Rightarrow Meadows : (ninstances = 1, confidence = 1.0, coverage = 0.03)