Full 1. Problemes d'equacions de Maxwell i solucions bàsiques

Donades les expressions del gradient

coordenades cartesianes:
$$\vec{\nabla}\psi = \vec{\nabla}(\psi) \equiv \frac{\partial\psi}{\partial x}\hat{x} + \frac{\partial\psi}{\partial y}\hat{y} + \frac{\partial\psi}{\partial z}\hat{z}$$

coordenades cilíndriques: $\vec{\nabla}\psi = \vec{\nabla}(\psi) \equiv \frac{\partial\psi}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial\psi}{\partial\varphi}\hat{\varphi} + \frac{\partial\psi}{\partial z}\hat{z}$

coordenades esfèriques: $\vec{\nabla}\psi = \vec{\nabla}(\psi) \equiv \frac{\partial\psi}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial\psi}{\partial\theta}\hat{\theta} + \frac{1}{r\cdot\sin\theta}\frac{\partial\psi}{\partial\varphi}\hat{\varphi}$

i la divergència

$$\begin{array}{c} coordenades\ cartesianes:\ \ \vec{\nabla}\cdot\vec{F}\equiv\frac{\partial F_x}{\partial x}+\frac{\partial F_y}{\partial y}+\frac{\partial F_z}{\partial z}\\ \\ coordenades\ cilíndriques:\ \ \vec{\nabla}\cdot\vec{F}\equiv\frac{1}{r}\frac{\partial(rF_r)}{\partial r}+\frac{1}{r}\frac{\partial F_{\varphi}}{\partial \varphi}+\frac{\partial F_z}{\partial z}\\ \\ coordenades\ esf\`{e}riques:\ \ \vec{\nabla}\cdot\vec{F}\equiv\frac{1}{r^2}\frac{\partial(r^2F_r)}{\partial r}+\frac{1}{r\cdot sin\theta}\frac{\partial(sin\theta F_{\theta})}{\partial \theta}+\frac{1}{r\cdot sin\theta}\frac{\partial F_{\varphi}}{\partial \varphi} \\ \end{array}$$

en diferents sistemes de coordenades.

Calcula l'expressió de la Laplaciana ($\Delta \psi = \vec{\nabla}^2 \psi \equiv \vec{\nabla} \cdot \vec{\nabla} \psi$) per cadascú dels sistemes de coordenades.

2. Utilitzant la formulació per mitjà del tensor de Levi-Civita:

$$\varepsilon_{i,j,k} = \begin{cases} +1, & i,j,k \ permutaci\'o \ parella: \ \varepsilon_{1,2,3} = \varepsilon_{3,1,2} = \varepsilon_{2,3,1} = +1 \\ -1, & i,j,k \ permutaci\'o \ imparella: \varepsilon_{1,3,2} = \varepsilon_{3,2,1} = \varepsilon_{2,1,3} = -1 \\ 0, & i,j,k \ amb \ \'indexos \ repetits \end{cases}$$

I el criteri d'Einstein, per tal d'expressar el producte vectorial de dos vectors:

$$\left(\vec{A}x\vec{B}\right)_i = \varepsilon_{i,j,k}A_jB_k$$

Demostrar les següents igualtats:

a)
$$\vec{\nabla} \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot \vec{\nabla} \times \vec{A} - \vec{A} \cdot \vec{\nabla} \times \vec{B}$$

b)
$$\vec{\nabla} x (\vec{\nabla} x \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \vec{\nabla} \cdot \vec{\nabla} (\vec{A})$$

c)
$$\vec{\nabla} x (\psi \vec{A}) = \vec{\nabla} (\psi) x \vec{A} + \psi \vec{\nabla} x \vec{A}$$

d)
$$\vec{\nabla} \cdot (\varepsilon \vec{E}) = \vec{\nabla}(\varepsilon) \cdot \vec{E} + \varepsilon \vec{\nabla} \cdot \vec{E}$$

e)
$$\vec{\nabla} x \left(\mu \frac{\partial \vec{H}}{\partial t} \right) = \vec{\nabla} (\mu) x \frac{\partial \vec{H}}{\partial t} + \mu \frac{\partial}{\partial t} (\vec{\nabla} x \vec{H})$$

3. A partir de les equacions de Maxwell bulk amb els 4 camps i sense paràmetres del medi material:

1.
$$\overrightarrow{\nabla} \cdot \overrightarrow{\mathbf{D}} = \rho_f$$

2.
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\mathbf{3.} \ \, \vec{\nabla} \cdot \mathbf{B} = 0$$

4.
$$\vec{\nabla} \times \vec{H} = \vec{\mathbf{j}}_f + \frac{\partial \vec{\mathbf{D}}}{\partial t}$$

Utilitza les relacions constitutives per a posar-les en funció dels camps \vec{E} i \vec{B} només. Considera un medi uniforme. Valora la negligibilitat d'alguns dels termes que apareixen en el cas d'estar en el buit.

4. Considera una ona plana (TEM) que es dirigeix al llarg de l'eix de les z, i amb els camps \vec{E} i \vec{H} en els plans x i y respectivament, és a dir $\vec{k} = k\hat{z}$. Estem situats en un medi homogeni de permitivitat i permeabilitat relatives ϵ_r i μ_r i respectivament.

Considera una partícula amb càrrega q>0, que es mou seguint l'eix z amb velocitat positiva u.

Calcula la direcció i sentit de la força del camp magnètic i del camp elèctric de l'ona sobre la partícula carregada. Dibuixa-les en un diagrama.

Per a quin valor de la velocitat u es cancel·len ambdues forces. Que ocorre per a velocitats inferiors? I per velocitats superiors?

5. Escriu el camp elèctric \vec{E} d'una ona electromagnètica propagant-se al llarg de l'eix de les z a velocitat +v i una altra a velocitat -v. Utilitza la longitud d'ona λ i la velocitat v com a únics paràmetres per a escriure-la.

Demostra que una funció $E=f(z-v\cdot t)$, amb f () una funció d'una variable analítica qualsevol, és vàlida com a solució de l'equació d'ones:

$$\vec{\nabla}^2 \mathbf{E} - \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E} = 0$$

Demostra que això correspon a ones propagant-se en direcció z positiva.

Demostra que igualment E=g(z+v·t), amb g () una funció d'una variable analítica qualsevol, és també vàlida com a solució de l'equació d'ones i correspon a ones propagant-se en direcció z negativa.

6. (Reiz/millford/Christy, capítol 16) Es dona l'ona electromagnètica:

$$\vec{E} = \hat{\imath} E_0 cos \left(\omega \left(\sqrt{\varepsilon \mu} z - t \right) \right) + \hat{\jmath} E_0 sin \left(\omega \left(\sqrt{\varepsilon \mu} z - t \right) \right)$$

Troba els corresponent camp magnètic \vec{H} i el corresponent vector de Poynting.

7. (Reiz/millford/Christy, capítol 16) Demostra que les equacions de Maxwell per a un medi isòtrop i homogeni no conductor i lliure de càrrega poden ser satisfetes prenent, ja sigui:

$$\vec{E} = \vec{\nabla} \times \vec{\nabla} \times (F\hat{a})$$

$$\vec{B} = \varepsilon \mu \ \frac{\partial}{\partial t} \ \vec{\nabla} \ \mathbf{x}(F\hat{a})$$

O ja sigui:

$$\vec{B} = \vec{\nabla} \times \vec{\nabla} \times (F\hat{a})$$

$$\vec{E} = -\frac{\partial}{\partial t} \, \vec{\nabla} \, \mathbf{x}(F\hat{a})$$

On és un vector unitari constant i $F(\vec{r},t)$ un camp escalar que satisfà l'equació d'ones escalar:

$$\vec{\nabla}^2 F - \varepsilon \mu \frac{\partial^2}{\partial t^2} F = 0$$

- **8.** Es te un punter làser de longitud d'ona 532 nm. Amb una energia total de 10 mW. El feix del punter fa 1 mm de radi. Es demana.
- a) A quin tipus de radiació de l'espectre correspon? Quin color?
- b) Calcula la freqüència f en Hz de la radiació en el buit.
- c) Calcula la magnitud del vector de Poynting.
- d) Calcula l'amplitud del camp E_0 i H_0 de l'ona

9. Un camp electromagnètic en forma d'ona quadrada on el camp $\vec{E} = (0, E, 0)$ que va de 0 a 10 V/m es propaga en direcció x.

El medi pel qual circula és un medi dielèctric anomenat polietilè ($\varepsilon_r = 2,3$).

Calcula la velocitat v de propagació en aquest medi.

La freqüència del senyal quadrat és de f=1 MHz. Els polsos tenen un duty Cycle (tant per u de temps a nivell alt) de 0,25. El senyal es transmet per una línia de longitud L=15 m i quan arriba a l'extrem d'aquesta rebota completament, es dona la volta i es propaga enrere a la mateixa velocitat fins al principi de la línia.

Per superposició dels dos senyals, quina forma tindran els polsos del camp E en un punt al principi de la línia?

Descriu la direcció i sentit calcula la component del camp \vec{H} del senyal d'anada.

Calcula la magnitud del vector de Poynting.