Spline mimimizing rotation-invariant semi-norms in Sobolev spaces

Jean Duchon

Université Scientifique et Médicale, Laboratoire de Mathématiques Appliquées, B.P. 53, 38041, Grenoble, France

Abstract

We define a family of semi-norms $\|u\|_{m,s} = \left(\int_{\mathbb{R}^n} |\tau|^{2s} |\mathfrak{F}D^m u(\tau)|^2 d\tau\right)^{1/2}$. Minimizing such semi-norms, siubject to some interpolating conditions, leads to function of very simple forms, providing interpolation methods that: 1) preserve polynomials of degree $\leq m-1$; 2) commute with similarities as well as translations and rotations of \mathbb{R}^n ; and 3) converge in Sobolev spaces $H^{m+s}(\Omega)$.

Typical examples of such splines are: "thin plate" functions $(\sum_{a\in A}\lambda_a|t-a|^2\log|t-a|+\alpha t+\beta$ with $\sum \lambda_a=0, \sum \lambda_a a=0$, "multi-conic" functions $(\sum \lambda_a|t-a|+C$ with $\sum \lambda_a=0$, pseudo-cubic splines $(\sum \lambda_a|t-a|^3+\alpha t+\beta$ with $\sum \lambda_a=0, \sum \lambda_a a=0$, as well as usual polynomial splines in one dimension. In general, data functional are only supposed to be distributions with compact supports, belonging to $H^{-m-s}(\mathbb{R}^n)$; there may be infinitely many of them. Splines are then expressed as convolutions $\mu \odot |t|^{2m+2s-n}$ (or $\mu \odot |t|^{2m+2s-n} \log |t|$) + polynomials.

0 Introduction

Splines in more than one dimension are usually constructed from one-dimensional ones, via tensor products. We follow here another point of view (more analogous to the physical interpretation of elementary cubic splines as equilibrium positions of a beam) developed by M. Atteia [1, 2, 3]: his splines (minimizing $\int_{\Omega} \left|D^2v\right|^2$, a functional similar to the bending energy of a thin plate) are uneasy to compute, because their characterization involves a kernel given by series. But things are much simpler if we replace Ω by the whole plane \mathbb{R}^2 , as is shown in [5](where present extensions are announced). This leads to what we call "thin plate" functions in \mathbb{R}^2 (engineers say "surface splines" [6]). Of course, it is possible to minimize $\int \left|D^mv\right|^2$ instead of $\int \left|D^2v\right|^2$, and deal with \mathbb{R}^n instead of \mathbb{R}^2 (with some restriction: $m > \frac{n}{2}$, if point values are used).

We notice that these functionals $\int_{\mathbb{R}^n} |D^m v|^2$ are invariant through translations and rotations. Moreover, if a similarity $t \to \lambda t$ is applied to v, they are

multiplied by some power of $|\lambda|$. Thus, corresponding interpolation methods will *commute with similarities*: interpolating on a contracted set of points λA gives the same result as interpolating on A (with same values) and then applying contraction $t \to \lambda t$.

Now, since Fourier transform is isometric on $L^2(\mathbb{R}^n)$, we may write $\int_{\mathbb{R}^n} |D^m v(t)|^2 dt = \int_{\mathbb{R}^n} |\mathfrak{F}D^m v(\tau)|^2 d\tau$. A natural idea, to get other interpolation methods, would be to introduce a weighting function w and minimize $\int_{\mathbb{R}^n} w(\tau) |\mathfrak{F}D^m v(\tau)|^2 d\tau$. In view of the above invariance properties, it is natural to put $w(\tau) = |\tau|^{\theta}$ and try to minimize $\int_{\mathbb{R}^n} |\tau|^{\theta} |\mathfrak{F}D^m v(\tau)|^2 d\tau$, a functional which is invariant through translations and rotations, and is multiplied by a constant if the variable t is changed into λt . This is actually possible (at least if -2m - n < 0 < n and $2m + \theta$ is sufficiently large, depending on which kind of data are used), in a precise sense, as we shall see.

We first introduce some "Sobolev-type" spaces such as \tilde{H}^s , $D^{-m}\tilde{H}^s$, H^{m+s}_{loc} , H^{-m-s}_{comp} , and compare them. Central space is $D^{-m}\tilde{H}^s/P_{m-1}$ with Hilbert structure. Its dual contains $H^{-m-s}_{comp}\cap P^o_{m-1}$ as a dense subset (1).

In 2 we prove existence and uniqueness for interpolation problems, and abstract characterization using reproducing kernels of semi-Hilbert spaces.

3 is the crucial one. We compute the reproducing kernel of $D^{-m}\tilde{H}^s/P_{m-1}$ in H^{m+s}_{loc}/P_{m+1} , i.e. the natural isometric mapping from $H^{-m-s}_{comp}\cap P^o_{m-1}$, embedded in $(D^{-m}\tilde{H}^s/P_{m-1})$ into $D^{-m}\tilde{H}^s/P_{m-1}$.

4 summarizes our main result (theorems 4 and 4 bis). In 5 we apply it to various examples.

6 is concerned with convergence in Sobolev space $H^{m+s}(\Omega)$ (Ω bounded) for an interpolated function $f \in H^{m+s}(\Omega)$.

For brevity, we use classical or natural notations without explicit statement. Moreover, some familiarity with distributions is assumed (convolution, derivation, Fourier transform, multiplication with C^{∞} functions, and their relations; correspondence between locally summble functions and distributions, etc.; standard reference is [9]). $D^m v(t)$ is the n^m -tuple of partial derivatives

$$(D_{i_1} \dots D_{i_m} v(t); i_1, \dots, i_m = 1, \dots, n)$$
, with Euclidian norm $\left(\sum |D^m v(t)| = |D_{i_1} \dots D_{i_m} v(t)|^2\right)^{1/2}$.
Pseudo-functions $Pf. |\tau|^{\theta}$ are to be found in [9, p. 44] and their Fourier transforms p. 257. Fourier transform is \mathfrak{F} or $\hat{}$.

The letter c is used to denote various constants, to avoid useless complication.

1 Functional spaces

1.1 Sobolev spaces H^s , H^s_{loc} , H^{-s}_{comp}

For any real $s, H^s(\mathbb{R}^n)$ is the set of tempered distributions u on \mathbb{R}^n whose Fourier transform \hat{u} is a (locally summable) function such that $\int_{\mathbb{R}^n} \left(1+|\tau|^2\right)^s |\hat{u}(\tau)|^2 d\tau < 1$

 ∞ . In other words $H^s = \mathfrak{F}\left(1+\left|\tau\right|^2\right)^{-s/2}L^2$. It is a Hilbert space. Its dual

is naturally identified with $H^{-s}(\mathbb{R}^n)$. When s is a positive integer, $H^s(\mathbb{R}^n) = \{u \in L^2(\mathbb{R}^n); D^{\alpha}u \in L^2(\mathbb{R}^n), \forall |\alpha| \leq s\}.$

If K is a closed subset of \mathbb{R}^n , $H_K^s(\mathbb{R}^n)$ is the set of distributions $\in H^s(\mathbb{R}^n)$ whose support is contained in K. H_K^s is a closed linear subspace of H^s .

If Ω is an open subset of \mathbb{R}^n , $H^s(\Omega)$ is the set of restrictions, to Ω , of distributions $\in H^s(\mathbb{R}^n)$. It is isomorphic to the quotient space $H^s(\mathbb{R}^n)/H^s_{\Omega^c}(\mathbb{R}^n)$ hence a Hilbert space too. Its dual is naturally identified with $H^s_{\Omega^c}(\mathbb{R}^n)$.

If Ω is bounded and sufficiently regular (e.g. Ω satisfies some "uniform cone" condition) then (for non integer s > 0) $H^s(\Omega)$ is the set of distributions u on Ω whose derivatives of order [s] (integralpart of s) are in $L^2(\Omega)$, with

$$\iint_{\Omega\times\Omega}\frac{\left|D^{[s]}u(t)-D^{[s]}u(t')\right|^2}{|t-t'|^{n+2(s-[s])}}dtdt'<\infty.$$

For integer $s \geq 0$ it suffices that $D^{\alpha}u \in L^2(\Omega), \forall |\alpha| = s$.

Now $H^s_{loc}(\mathbb{R}^n)$ is the set of distributiors on \mathbb{R}^n whose restriction to any bounded open set Ω is in $H^s(\Omega)$. Of course $C^k \subset H^s_{loc}$ for integer $k \geq s$. On the other hand, Sobolev embedding theorems assert that $H^s_{loc}(\mathbb{R}^n) \subset C^k$ for $s > k + \frac{n}{2}$.

 H^s_{loc} may be equipped with a Fréchet space structure: putting $B_N =$ the open ball |t| < N, one defines a countable family of semi-norms $u \mapsto$ norm of $u_{|B_N}$ in $H^s(B_N)$. It is reflexive, and its dual is naturally identified with $H^{-s}_{comp}(\mathbb{R}^n)$, the union of $H^{-s}_{\bar{B}_N}(\mathbb{R}^n)$, equipped with the topology of (strict) inductive limit of this countable family of Hilbert spaces.

All previous norms could have been replaced by equivalent ones, they do not play a role by themselves in our problem. We now come to definig spaces \tilde{H}^s and $D^{-m}\tilde{H}^s$, whose semi-norms $\|.\|_{m,s}$ are fundamental.

1.2 $\tilde{H}^s(\mathbb{R}^n)$, $s < \frac{n}{2}$

We put $\tilde{H}^s(\mathbb{R}^n) = \left\{u \in \mathfrak{I}'(\mathbb{R}^n); \hat{u} \in L^1_{loc}, \int_{\mathbb{R}^n} |\tau|^{2s} |\hat{u}(\tau)|^2 d\tau < \infty\right\}$. We equip it with norm $\|u\|_{0,s} = \left(\int_{\mathbb{R}^n} |\tau|^{2s} |\hat{u}(\tau)|^2 d\tau\right)^{1/2}$. $\tilde{H}^s(\mathbb{R}^n)$ is a Hilbert space if (and only if) $s < \frac{n}{2}$: for $f \in L^2(\mathbb{R}^n)$, the function $|\tau|^{-s} f(\tau)$ is locally summable, since $\int_K |\tau|^{-s} |f(\tau)| d\tau \leq \left(\int_K |\tau|^{-2s}\right)^{1/2} \left(\int_K |f(\tau)|^2 d\tau\right)^{1/2}$ and $|\tau|^{\lambda}$ is locally sunnmble if (and only if) $\lambda > -n$; therefore $|\tau|^{-s} f$ defines a distribution, easily seen to be tempered, so that $f \mapsto \mathfrak{F}\left(|\tau|^{-s} f\right)$ is an isometry from $L^2(\mathbb{R}^n)$ onto $\tilde{H}^s(\mathbb{R}^n)$. Moreover if $f_j \to 0$ in L^2 , one can prove that $|\tau|^{-s} f_j \to 0$ in \mathfrak{I}' (it suffices to show that $\int |\tau|^{-s} f_j(\tau) \varphi(\tau) d\tau \to 0$ for any C^∞ function φ rapidly decreasing at ∞). This implies that inclusion $\tilde{H}^s \curvearrowright \mathfrak{I}'$ (a fortiori $\tilde{H}^s \curvearrowright \mathfrak{D}'$) is continuous, or that \tilde{H}^s is a Hilbert subspace of \mathfrak{D}' .

We might even prove that, for $-\frac{n}{2} < s < \frac{n}{2}$, \tilde{H}^s is a normal subspace of \mathfrak{D}' (i.e. contains \mathfrak{I} as a dense subspace) with dual \tilde{H}^s .

(Some of these spaces are known and used in other fields. For example, $\tilde{H}^{-1}(\mathbb{R}^3)$ and $\tilde{H}^1(\mathbb{R}^3)$ are respectively spaces of charges and potentials of finite energy, in the theory of Newtonian potentials in \mathbb{R}^3 . See [10, §11]).

From definitions, it is obvious that $H^s(\mathbb{R}^n) \subset \tilde{H}^s(\mathbb{R}^n)$ if s > 0, the converse if s < 0 (and $\tilde{H}^o = H^o = L^2$). In general $H^s(\mathbb{R}^n) \neq \tilde{H}^s(\mathbb{R}^n)$ (\tilde{H}^s is not contained in L^2 , for s > 0, while $H^s \subset L^2$). But (at least for $-\frac{n}{2} < s < \frac{n}{2}$) equality holds on bounded subsets, as we now see.

1.3
$$H^s(\Omega) = \tilde{H}^s(\Omega), \text{ if } -\frac{n}{2} < s < \frac{n}{2}$$

Of course, $H^s(\Omega)$ is the set of restrictions, to Ω (bounded), of elements of $\tilde{H}^s(\Omega)$, with corresponding Hilbert structure. In fact, we can prove that any $u \in \tilde{H}^s(\Omega)$ (s>0) is sum of $u_1 \in H^s(\mathbb{R}^n)$ and a C^∞ function u_2 . We first note that $|\tau|^{2s} \leq \left(1+|\tau|^2\right)^s \leq 2\,|\tau|^{2s}$ except for $\tau \in \text{some ball }B$. Now for $u \in \tilde{H}^s$, \hat{u} is a function. We write it as v_1+v_2 where v_2 coincides with \hat{u} a.e. on B and is zero outside, v_i satisfies $\int_{\mathbb{R}^n} \left(1+|\tau|^2\right)^s |v_1(\tau)|^2 d\tau = \int_{B^C} \left(1+|\tau|^2\right)^s |v_1(\tau)|^2 d\tau \leq \int_{B^C} |\tau|^{2s} |v_1(\tau)|^2 d\tau < \infty$, so that its inverse Fourier transform $u_1 \in H^s(\mathbb{R}^n)$. On the other hand, v_2 has compact support, hence its (inverse) Fourier transform u_2 is a C^∞ function (in fact, an "entire function of exponential type", moreover $\to 0$ at ∞ since $v_2 \in L^1$). Case s < 0 is exactly similar: we prove $H^s \subset \tilde{H}^s + C^\infty$.

We have already seen that $C^{\infty} \subset H^s_{loc}$, so that $\tilde{H}^s(\Omega) = H^s(\Omega)$ if s > 0. For s < 0 we must prove that $C^{\infty} \subset \tilde{H}^s_{loc}$; but for $s > \frac{n}{2}$ we have $\mathfrak{D} \subset \tilde{H}^s$, which gives the result. So in general $\tilde{H}^s(\Omega) = H^s(\Omega)$ for Ω bounded, whenever $-\frac{n}{2} < s < \frac{n}{2}$.

Inclusion $H^s(\Omega) \curvearrowleft \tilde{H}^s(\Omega)$ for s > 0 ($\tilde{H}^s(\Omega) \backsim H^s(\Omega)$ for s < 0) is continuous, so that the two Hilbert structures induced on $\tilde{H}^s(\Omega) = H^s(\Omega)$ are comparable, hence equivalent, from one of Banach's theorems.

1.4 Semi-Hilbert spaces $D^{-m}\tilde{H}^s$

We put $D^{-m}\tilde{H}^s=\left\{u\in\mathfrak{D}'(\mathbb{R}^n);D^{\alpha}u\in\tilde{H}^s(\mathbb{R}^n),\forall\,|\alpha|=m\right\}$, equipped with natural semi-norm $\|u\|_{m,s}=\left(\int_{\mathbb{R}^n}|\tau|^{2s}\left|\mathfrak{F}D^mu(\tau)\right|^2d\tau\right)^{1/2}$. We also consider the quotient space $D^{-m}\tilde{H}^s/P_{m-1}$ with corresponding norm. These are spaces of Beppo Levi type (see [4], where these spaces would be denoted $BL_m\left(\tilde{H}^s\right)$ and $BL_m\left(\tilde{H}^s\right)$ respectively): since \tilde{H}^s is a Hilbert subspace of $\mathfrak{D}',D^{-m}\tilde{H}^s/P_{m-1}$ is a Hilbert subspace of \mathfrak{D}'/P_{m-1} (i.e. $D^{-m}\tilde{H}^s$ is a semi-Hilbert subspace of $\mathfrak{D}',$ see 2). In fact, since $\tilde{H}^s\subset\mathfrak{I}'$, and a distribution whose derivatives are tempered is tempered, we have $D^{-m}\tilde{H}^s\subset\mathfrak{I}'$, hence $D^{-m}\tilde{H}^s/P_{m-1}\subset\mathfrak{I}'/P_{m-1}$ and the closed graph theorem shows that this inclusion is continuous. So $D^{-m}\tilde{H}^s$ is even a semi-Hilbert subspace of \mathfrak{I}' .

We now come to comparing $D^{-m}\tilde{H}^s$ with H^{m+s} . For Ω bounded we have :

1.5
$$\left(D^{-m} \tilde{H}^{s} \right) (\Omega) = H^{m+s} (\Omega), \text{ if } -m - \frac{n}{2} < s < \frac{n}{2}$$

We first prove that any $u \in H^{m+s}(\Omega)$ extends to an element of $D^{-m}\tilde{H}^s(\mathbb{R}^n)$. We know that u extends to some $Pu \in H^{m+s}(\mathbb{R}^n)$ with compact support. Then $\hat{P}u$ is C^{∞} and we can easily see that $\int |\tau|^{2s} \left|\tau^{\alpha}\hat{P}u(\tau)\right|^2 d\tau < \infty$, $|\alpha| = m$, since $|\tau^{\alpha}|^2 \leq |\tau|^{2m}$ and $|\tau|^{2m+2s}$ is locally summble (since 2m + 2s > -n), and $|\tau|^{2m+2s} \leq 2\left(1+|\tau|^2\right)^{m+s}$ outside some ball. Thus $H^{m+s}(\Omega) \subset \left(D^{-m}\tilde{H}^s\right)(\Omega)$.

Conversely, we may write $D^{-m}\tilde{H}^s\left(\Omega\right)\subset D^{-m}\left(\tilde{H}^s\right)\left(\Omega\right)$, with obvious meaning; on the other hand, $\tilde{H}^s\left(\Omega\right)$ is always contained in $H^s\left(\Omega\right)$ for $s<\frac{n}{2}$; and it is known that $D^{-m}(H^s\left(\Omega\right))=H^{m+s}\left(\Omega\right)$.

is known that $D^{-m}(H^s(\Omega)) = H^{m+s}(\Omega)$. This proves that $D^{-m}\tilde{H}^s(\mathbb{R}^n) \subset H^{m+s}_{loc}(\mathbb{R}^n)$, hence $D^{-m}\tilde{H}^s(\mathbb{R}^n)/P_{m-1} \subset H^{m+s}_{loc}(\mathbb{R}^n)/P_{m-1}$, and the closed graph theorem tells us this inclusion is continuous. Thus $D^{-m}\tilde{H}^s(\mathbb{R}^n)$ is a (dense) semi-Hilbert subspace of $H^{m+s}_{loc}(\mathbb{R}^n)$.

Another point is that, on $\left(D^{-m}\tilde{H}^s\right)(\Omega)/P_{m-1} \subset H^{m+s}(\Omega)/P_{m-1}$, the two Hilbert structures are equivalent (both of them are Hilbert subspaces of $\mathfrak{D}'(\Omega)/P_{m-1}$, so apply the closed graph theorem). From this one can easily deduce that $H_{\bar{\Omega}}^{-m-s}(\mathbb{R}^n) \cap P_{m-1}^o$, the dual of $H^{m+s}(\Omega)/P_{m-1}^o$, is closed in $\left(D^{-m}\tilde{H}^s/P_{m-1}\right)'$.

2 Existence and uniqueness

We begin with stating an abstract frame: let E be a locally convex topological vector space, E' its dual, N a finite-dimensional (for simplicity) subspace of E, N^o its orthogonal in E'. N^o is naturally identified with the dual space of E/N.

A linear subspace X of E is called a semi-Hilbert subspace of E with nullspace N if X is equipped with a semi-norm $\|.\|$ (with nullspace N) deriving from a "semi-inner product" (nonnegative bilinear form) ((.,.)) such that X/N equipped with the natural norm $\|x+N\|=\|x\|$ is a Hilbert space, and inclusion $X/N \hookrightarrow E/N$ is continuous. Equivalently, X/N is a Hilbert subspace of E/N in the sense of Schwartz [10]. We know that X/N has a (unique) reproducing kernel in E/N, which is a linear mapping E from E/N into E/N, satisfying E/N in the sense of E/N is a linear mapping E/N in the sense of Schwartz [10]. We know that E/N has a (unique) reproducing kernel in E/N, which is a linear mapping E/N from E/N into E/N into E/N is reproducing kernel of E/N in E/N in E/N is a reproducing kernel of E/N in E/N in E/N into E/N into E/N in E/N into E/N i

Semi-Hilbert spaces and reproducing kernels provide a simple and convenient language for splines. However, following theorems 2.1. and 2.2. could be easily deduced from [8, chapter 4].

Theorem 2.1. Let M be a linear subspace of E' such that, if $x \in N$ and

 $\langle e', x \rangle = 0 \forall e' \in M$, then x = 0. Let $f^M \in X$. There exists a unique element f^M in X satisfying $\langle e', f^M \rangle = \langle e', f \rangle \forall e' \in M$, with $||f^M||$ minimum.

Proof. The set $f + M^o \cap X + N$ is a nonempty closed affine subspace of X/N, it has an element of minimum norm which is exactly $f^M + N$, which in turn contains one element $f^M \in f + M^o \cap X$, i.e. f^M satisfies $\langle e', f^M \rangle = \langle e', f \rangle \, \forall e' \in M$

Theorem 2.2. Let us suppose that X is dense is E, so that $N^o \subset (X/N)'$; and assume that $M \cap N^o$ is closed in (X/N)'. Let θ be a reproducing kernel of X in E. Then f^M coincides with the only $g \in \theta(M \cap N^o) + N$ satisfying $\langle e', g \rangle = \langle e', f \rangle \, \forall e' \in M$.

Proof. $f^M + N$ is the orthogonal projection of $O \in X/N$ onto $f + M^o \cap X + N$ and therefore is the only element of $f + M^o \cap X + N$ belonging to the orthogonal of $M^o \cap X + N$ (in X/N for Hilbert structure), which is the image of $(M^o \cap X + N)^o$ (orthogonal in (X/N)') by the canonical isometry from (X/N)' onto X/N. But if $M \cap N^o$ is closed in (X/N)', $(M^o \cap X + N)^o$ is exactly $M \cap N^o$, whose image is $\theta (M \cap N^o) + N$.

Remark: Frequently M is finite-dimensional (finitely many data to interpolate) so that $M \cap N^o$ is automatically closed in (X/N)'.

Applying this to $X = D^{-m}\tilde{H}^s$ with $N = P_{m-1}$ and $E = H_{loc}^{m+s}$, $E' = H_{comp}^{-m-s}$, we get:

Theorem 2.3. Let M be a closed linear subspace of $H_{\bar{\Omega}}^{-m-s}(\mathbb{R}^n)$ (Ω bounded), such that if $p \in P_{m-1}$ and $\langle \mu, p \rangle = 0 \forall \mu \in M$ then p = 0. Let $f \in H_{\bar{\Omega}}^{m+s}(\Omega)$. There exists exactly one element $f^M \in D^{-m}\tilde{H}^s$ satisfying $\langle \mu, f^M \rangle = \langle \mu, f \rangle$, $\forall \mu \in M$, with minimum semi-norm $\|f^M\|_{m,s}$. Let θ be a reproducing kernel of $D^{-m}\tilde{H}^s$ in H_{loc}^{m+s} . Then the only g of the form $\theta \mu + p$ with $\mu \in M \cap P_{m-1}^o$ $p \in P_{m-1}$ satisfying $\langle \mu, g \rangle = \langle \mu, f \rangle$, $\forall \mu \in M$, is f^M .

Proof. We just have to check that $M \cap P_{m-1}^o$ is closed in $\left(D^{-m}\tilde{H}^s/P_{m-1}\right)'$. But M is closed in $H_{\bar{\Omega}}^{-m-s}$, hence $M \cap N^o$ is closed in $H_{\bar{\Omega}}^{-m-s} \cap N^o$, which is exactly the orthogonal, in $\left(D^{-m}\tilde{H}^s/P_{m-1}\right)'$, of the subset of (equivalence classes mod P_{m-1} of) elements in $D^{-m}\tilde{H}^s$ which are zero on Ω . Thus $M \cap N^o$ is closed in a closed subset of $\left(D^{-m}\tilde{H}^s/P_{m-1}\right)'$, hence closed itself. All this is useless if M is finite-dimensional.

3 Reproducing kernel of $D^{-m}\tilde{H}^s$

Theorem 3.1. $\theta: \mu \mapsto (2\pi)^{-2m} \mu \odot \mathfrak{F}Pf. |\tau|^{-2m-2s} maps H_{comp}^{-m-s} \cap P_{m-1}^o into D^{-m}\tilde{H}^s$ and is a reproducing kernel of $D^{-m}\tilde{H}^s$ as a semi-Hilbert subspace of $H_{loc}^{m+s}(\mathbb{R}^n)$.

Proof. Since $D^{-m}\tilde{H}^s/P_{m-1}$ is a Hilbert subspace of H^{m+s}_{loc}/P_{m-1} it has a reproducing kernel, say L, which maps $H^{-m-s}_{comp}\cap P^o_{m-1}$ (dual space of $D^{-m}\tilde{H}^s/P_{m-1}$) into $D^{-m}\tilde{H}^s/P_{m-1}$ and is characterized by: $L\mu$ is the set of distributions $u \in D^{-m}\tilde{H}^s$ satisfying:

$$(2\pi)^{2m} \int_{\mathbb{R}^n} |\tau|^{2s} \left(\tau^m \hat{u}\right) \left(\tau\right) . \left(\tau^{m\bar{\gamma}}\right) \left(\mathbf{w}\right) d\tau = \left\langle \mu, w \right\rangle, \forall w \in D^{-m} \tilde{H}^s \tag{1}$$

We first deduce that $|2\pi\tau|^{2m} \hat{u} = \hat{\mu} |\tau|^{-2s}$ (1). Now it is easily seen that $v = (2\pi)^{-2m} \mu \odot \mathfrak{F} Pf. |\tau|^{-2m-2s}$ satisfies $|2\pi\tau|^{-2m} \hat{v} = \hat{\mu} |\tau|^{-2s}$, since $\hat{v} = (2\pi)^{2m} \hat{\mu} Pf. |\tau|^{-2m-2s}$ and $|2\pi|^{2m} Pf. |\tau|^{-2m-2s} = |\tau|^{-2s}$. On the other hand, lemma 2 proves $\tau^{\alpha} \hat{v} \in L^1_{loc}, \forall |\alpha| = m$. So that for any $u \in L\mu$ we have $|\alpha|^{2m} (\hat{u} - \hat{v}) = 0$ and $\tau^{\alpha} (\hat{u} - \hat{v}) \in L^1_{loc}, \forall |\alpha| = m$. Lemma3 then shows that $u - v \in P_{m-1}$, i.e. $v \in L\mu$ since $L\mu$ is an equivalence class modulo P_{m-1} . In other words $L\mu = (2\pi)^{2m} \mu \odot \mathfrak{F} Pf. |\tau|^{-2m-2s} + P_{m-1}$, i.e. θ is a reproducing kernel of $D^{-m} \tilde{H}^s$.

Lemma 1. $|2\pi\tau|^{2m} \hat{\mu} = \hat{\mu} |\tau|^{-2s} \text{ if } u \in L\mu.$

Proof. Conditions $s > -m - \frac{n}{2}$ implies $\mathfrak{I} \subset D^{-m}\tilde{H}^s$, so that we may apply (1) whith $w = \hat{\varphi}, \varphi \in \mathfrak{D}$, and get $(2\pi)^{2m} \int |\tau|^{2s} (\tau^m \hat{u})(\tau) . \tau^m \varphi(\tau) d\tau = \langle \mu, \hat{\varphi} \rangle = \langle \hat{\mu}, \varphi \rangle, \forall \varphi \in \mathfrak{D}$. This implies $(2\pi)^{2m} |\tau|^{2s} \tau^m . (\tau^m \hat{u})(\tau) . = \hat{\mu}(\tau)$ a.e., hence $(2\pi)^{2m} \tau^m . (\tau^m \hat{u})(\tau) = |\tau|^{-2s} \hat{\mu}(\tau)$ a.e. and $(2\pi\tau)^{2m} \hat{u} = \mu |\tau|^{-2s}$ as distributions.

Lemma 2. If μ is a distribution with compact support, orthogonal to P_{m-1} i.e. $\mu \in \mathfrak{E}' \cap P_{m-1}^o$, then $\tau^{\alpha} \hat{\mu} Pf. |\tau|^{-2m-2s} \in L^1_{loc}, \forall |\alpha| = m$.

Proof. It suffices to show that the function (in usual sense) $\tau^{\alpha}\hat{\mu}(\tau)|\tau|^{-2m-2s}$ is locally sunmable. But, since μ is orthogonal to P_{m-1} , the C^{∞} function $\hat{\mu}$ has derivatives of order $\leq m-1$ vanishing at 0, so that $|\hat{\mu}(\tau)| \leq c|\tau|^m$ on a neighbourhood of 0. Then $\tau^{\alpha}\hat{\mu}(\tau)|\tau|^{-2m-2s} \leq c|\tau|^{-2s}$ on that neighbourhood of 0, and is C^{∞} elsewhere, so is locally summable since $s < \frac{n}{2}$.

Lemma 3. Any tempered distribution T such that $|\tau|^{2m} \hat{T} = 0$ and $\tau^{\alpha} \hat{T} \in L^1_{loc}$ is in P_{m-1} .

Proof. Tis supported by 0, since $|\tau|^{2m}$ $\tau=0$. Then $\tau^{\alpha}\hat{T}$ is also supported by 0 and should be in L^1_{loc} which is possible only if $\tau^{\alpha}\hat{T}=0$, and then $D^{\alpha}T=0, \forall |\tau|=m$, i.e. $T\in P_{m-1}$.

4 A general characterization result

To be more explicit, we now use formulas giving Fourier transforms of pseudo-flanctions $Pf. |\tau|^{\lambda}$. In general $Pf. |\tau|^{\lambda} = cPf. |t|^{-n-\lambda}$ except if λ or $-n-\lambda$ is an even positive integer $2k: \mathfrak{F}|\tau|^{2k} = c\Delta^k \delta, \mathfrak{F}Pf. |\tau|^{-n-2k} = c|t|^{2k} \log|t| + |t|^{2k}$.

For simplicity, we assume s > -m. Then $\mathfrak{F}Pf$. $|\tau|^{-2m-2s}$ is $c|t|^{2m+2s-n}\log|t|+c|t|^{2m+2s-n}$ if 2m+2s-n is an even positive integer, $c|t|^{2m+2s-n}$ if not. It is easyly seen that, in the first case (2m+2s-n=2k), if $\mu \in P_{m-1}^o$ then $\mu \odot |t|^{2m+2s-n} \in P_{m-1}$. So that, putting $K_{\lambda}(t) = |t|^{\lambda} \log |t|$ if λ is an even positive integer $K_{\lambda}(t) = |t|^{\lambda}$ otherwise, the mapping $\mu \mapsto \mu \odot K_{2m+2s-n}$ is proportional to a reproducing kernel of $D^{-m}\tilde{H}^s$ when m+s>0.

Now we are able to explicit theorem 2.3 (in the case m + s > 0, that is, H_{loc}^{m+s} is a space of (classes of locally summable) functions):

Theorem 4. Let M be a closed linear, subspace of some $H_{\bar{\Omega}}^{-m-s}(\mathbb{R}^n)$ (Ω bounded), satisfying: if $p \in P_{m-1}$ and $\langle \mu, p \rangle = 0, \forall \mu \in M$, then p = 0. Let $f \in H^{m+s}(\Omega)$. Then there exists a unique function $f \in D^{-m}\tilde{H}^s(\mathbb{R}^n)$ satisfying $\langle \mu, f^M \rangle = \langle \mu, f \rangle \forall \mu \in M$, with minimum semi-norm $\|f^M\|_{m,s}$. Moreover, if $g = \nu \odot K_{2m+2s-n} + p$ (with $\nu \in M \cap P_{m-1}^o$ and $p \in P_{m-1}$) satisfies $\langle \mu, g \rangle = \langle \mu, f \rangle \forall \mu \in M$, then $g = f^M$.

Let us now restrict ourselves to the important case where $m + s > \frac{n}{2}$, so that H_{loc}^{m+s} is a space of continuous functions (Sobolev theorem), and data are finitely many point values.

Theorem 4. bis Let A be a finite subset of \mathbb{R}^n , containing a P_{m-1} - unisolvent subset. Then there exists exactly one function of the form $\sigma(t) = \sum_{a \in A} \lambda_a K_{2m+2s-n}(t-a) + p(t)$ with $p \in P_{m-1}$ and $\sum_{a \in A} \lambda_a q(a) = 0, \forall q \in P_{m-1}$, taking prescribed values on A. Moreover, if f is another function taking the same values on A, one has $\|f\|_{m,s} \geq \|\sigma\|_{m,s}$.

Actually, $\sum_{a\in A} \lambda_a K_{2m+2s-n}(t-a)$ is $\left(\sum_{a\in A} \lambda_a \delta_a \odot K_{2m+2s-n}\right)(t)$ Existence of a function $f\in D^{-m}\tilde{H}^s$ taking prescribed values on A (finite) is obvious: f nmay even be chosen in \mathfrak{D} .

5 Examples

5.1 Pseudo-polynomial splines

We put $s=\frac{n-1}{2}$ and consider a finite set $A\subset\mathbb{R}^n$ containing some P_{m-1} -unisolvent subset. Then there exists exactly one function of the form $\sigma(t)=\sum_{a\in A}\lambda_a\left|t-a\right|^{2m-1}+p\left(t\right)$ where $p\in P_{m-1}$ and $\sum_{a\in A}\lambda_aq\left(a\right)=0, \forall q\in P_{m-1}$, taking prescribed values on A. For all f taking the same values on A one has $\|f\|_{m,\frac{n-1}{2}}\geq \|\sigma\|_{m,\frac{n-1}{2}}$.

For m=1 we get multi-conic functions $\sum \lambda_a |t-a| + C$ with $\sum \lambda_a = 0$, and the set A must only contain two distinct points. The functional minimized is $\int_{\mathbb{R}^n} |\tau|^{n-1} |\mathfrak{F}Dv(\tau)|^2 d\tau$.

For m=2 we get *pseudo-cubic splines*, if A is not contained in a hyperplane (a line if n=2): functions of the form $\sum \lambda_a |t-a|^3 + \alpha t + \beta$ with $\sum \lambda_a = 0$ and $\sum \lambda_a a = 0$. Coefficients $(\lambda_a; a \in A)$ and $\alpha_{1,\alpha_{2},\beta}$ may be computed from the linear system:

$$\begin{cases} \sum_{a \in A} |a - b|^3 \lambda_a + b_1 \alpha_1 + b_2 \alpha_2 + \beta = f(b) & (b \in A) \\ \sum_{a \in A} \lambda_a a_1 = 0 \\ \sum_{a \in A} \lambda_a a_2 = 0 \\ \sum_{a \in A} \lambda_a = 0 \end{cases}$$

We notice that, for n=1, we get simply polynomial splines: polynomials of degree $\leq 2m-1$ on intervals, C^2 , and degenerating to polynomials of degree $\leq m-1$ at both ends (thanks to conditions $\sum \lambda_a a^k = 0, \dots m-1$).

5.2 Thin plate functions

Putting s=0 as an example, n=2 and m=2, we get functions of the form $\sigma\left(t\right)=\sum_{a\in A}\lambda_a\left|t-a\right|^2\log\left|t-a\right|+\alpha t+\beta$ with $\sum_{a\in A}\lambda_a=0$ and $\sum_{a\in A}\lambda_a a=0$ (function $\left|t\right|^2\log\left|t\right|$ is extended to 0 at 0, so as to be continuous). In this case we have $\int_{\mathbb{R}^2}\left|D^2\sigma\right|^2\leq\int_{\mathbb{R}^2}\left|D^2f\right|^2$ for all f that coincides with σ on A. The set A must not be contained in a line.

5.3 Hermite polynomials

Since $H_{loc}^{2+\frac{n-1}{2}}(\mathbb{R}^n)\subset C^1$, we may minimize semi-norm $\|.\|_{2,\frac{n-1}{2}}$ subject to Hermite conditions: values and gradients prescribed on a finite set A. We get functions of the form $\sigma(t)=\sum_{a\in A}\lambda_a|t-a|^3+\sum_a\lambda'_a(t-a)|t-a|+\alpha t+\beta$, with $\sum_a \lambda_a=0, \sum_a \lambda_a a+\frac{1}{3}\sum_a \lambda'_a=0$. In one dimension this corresponds to ordinary piecewise cubic Hermite interpolation.

6 Convergence in $H^{m+s}(\Omega)$

Let $f \in H^{m+s}(\Omega)$, and let (M_k) be a sequence of closed linear subspaces of $H_{\bar{\Omega}}^{-m-s}(\mathbb{R}^n)$. We suppose that for any $\mu \in H_{\bar{\Omega}}^{-m-s}(\mathbb{R}^n)$, the distance from μ to M_k converges to 0. Then:

- 1. For k sufficiently large, M_k is such that: if $p \in P_{m-1}$ satisfies $\langle \mu, p \rangle = 0, \forall \mu \in M_k$, then p = 0. So that there exists a unique $f_k \in D^{-m} \tilde{H}^s$ satisfying $\langle \mu, f_k \rangle = \langle \mu, f \rangle, \forall \mu \in M_k$, with $\|f_k\|_{m,s}$ minimum.
- 2. $f_k \to f$ in $H^{m+s}(\Omega)$.

This is a straightforward consequence of a general result of J.L. Joly [7], putting $X=H^{m+s}\left(\Omega\right), Y=H^{m+s}\left(\Omega\right)/P_{m-1}$ with a norm derived from $\|.\|_{m,s}$. Another way to see it (partially) is the following: put $f^{\Omega}=$ the minimal extension of f, relatively to $\|.\|_{m,s}$, i.e. the unique element in $D^{-m}\tilde{H}^3$ that coincides with f on Ω with minimum semi-norm $\|.\|_{m,s}$. It is uniquely written $\mu \odot K + p$ with $p \in P_{m-1}$ and $\mu \in H_{\bar{\Omega}}^{-m-s}\left(\mathbb{R}^n\right) \cap P_{m-1}^o(K=\mathfrak{F}Pf.|\tau|^{-2m-2s})$ Same thing for $f_k=\mu_k\odot A+p_k$ with $p_k\in P_{m-1}$ and $\mu_k\in M_k\cap P_{m-1}^o$. And

 μ_k is simply the orthogonal projection of μ onto $M_k \cap P_{m-1}^o$, in Hilbert space $H_{\bar{\Omega}}^{-m-s}(\mathbb{R}^n) \cap P_{m-1}^o$ equipped with norm induced by $\left(D^{-m}\tilde{H}^s/P_{m-1}\right)'$ (equivalent to that induced by $H_{\bar{\Omega}}^{-m-s}(\mathbb{R}^n)$. So that $\|\mu_k - \mu\| \leq cd(\mu, M_k) \to 0$, hence $\|\mu_k \odot K - \mu \odot K\|_{m,s} \to 0$ and this proves that $f_k + P_{m-1} \to f + P_{m-1}$ in $H^{m+s}(\Omega)/P_{m-1}$.

Let us now specialize to the case where $m+s>\frac{n}{2}$ and M_k is spanned by Dirac masses $(\delta_a; a\in A_k)$ where (A_k) is a sequence of subsets of $\bar{\Omega}$. Then the condition $\mathrm{d} d (\mu, M_k) \to 0, \forall \mu \in H_{\bar{\Omega}}^{-m-s}$ is equivalent to saying that any point in Ω is limit of a sequence $(a_k \in A_k)$, or that Hausdorff distance from A_k to Ω tends to zero. This results from complete continuity of inclusion $H_{\bar{\Omega}}^{m+s}(\Omega) \curvearrowleft C(\Omega)$ (a bounded subset of $H_{\bar{\Omega}}^{m+s}(\Omega)$ is an equicontinuous set of functions on $\bar{\Omega}$). We then get:

Theorem 5. If (A_k) is a sequence of subsets of $\bar{\Omega}$ (Ω bounded open subset of \mathbb{R}^n) such that $d(t, A_k) \to 0, \forall t \in \Omega$, and $f \in H^{m+s}(\Omega)$ with $m + s > \frac{n}{2}$, then the sequence (f_k) of functions coinciding with f on A_k with minimum seminorm $\|.\|_{m,s}$ (uniquely determined for sufficiently large k) satisfies $f_k \to f$ in $H^{m+s}(\Omega)$.

References

- [1] M. ATTEIA: Etude de certains noyaux et théorie des fonctions "spline" en analyse nunérique. Thése, Grenoble (1966).
- [2] M. ATTEIA: Existence et détermination des fonctions "spline" à plusieurs variables. C.R. Acad. Sci. Paris 262 (1966), 575-578.
- [3] M. ATTEIA: Fonctions "spline" et noyaux reproduisants d'Aronszajn-Bergman. Revue Frençaise d'Informatique et de Recherche Opérationnelle, R-3 (1970), 31-43.
- [4] J. DENY & J.L. LIONS: Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1954), 305-370.
- [5] J. DUCHON: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. Revue Française d'Automatique, Informatique, Recherche Opérationnelle (to appear, 1976).
- [6] R.L. HARDER & R.N. DESMARAIS: Interpolation using surface splines.J. Aircraft, U.S.A., 9, N° 2 (1972), 189-191.
- [7] J.L. JOLY: Théorèmes de convergence des fonctions "spline" générales d'interpolation et d'ajustement. C.R. Acad. Sci. Paris 264 (1967), 126-128.
- [8] P.J. LAURENT: Approximation et Optimisation. Hemmann, Paris (1972).
- [9] L. SCHWAHTZ: Théorie des distributions. Henmman, Paris (1966).

[10] L.SCHWARTZ: Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J. Anal. Math. 13 (1964), 115-256.