(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-169694 (P2002-169694A)

(43)公開日 平成14年6月14日(2002.6.14)

(51) Int.Cl.7		膜別記号	FΙ		. 5	テーマコード(参考)
G06F	9/445		G06F	13/00	5 2 0 C	5B076
•	13/00	520	H04L	12/56	В	5 K 0 3 0
H04L	12/56		G06F	9/06	610K	

審査請求 有 請求項の数19 OL (全 12 頁)

(21)出顧番号 特顧2001-256374(P2001-256374)

(22)出顧日 平成13年8月27日(2001.8.27)

(31) 優先権主張番号 09/655093

(32) 優先日 平成12年9月5日(2000.9.5).

(33)優先権主張国 米国 (US)

(71)出竄人 390009531

インターナショナル・ビジネス・マシーン ズ・コーポレーション

INTERNATIONAL BUSIN ESS MASCHINES CORPO

RATION

アメリカ合衆国10504、ニューヨーク州

アーモンク (番地なし)

(74)代理人 100086243

弁理士 坂口 博 (外2名)

最終頁に続く

(54) 【発明の名称】 ネットワーク上のPXEクライアントにDHCPサーバを介してプート・サーバを自動的に割り 当てる方法とシステム

(57)【要約】

【課題】 割り当てられたブート・サーバが多重にロードされるのを回避して、PXEクライアントの応答を速める

【解決手段】 (1)各ブート・サーバごとに、クライアントが当該ブート・サーバをロードした回数の現在値を含むサーバ割り当てテーブル(SAT)を保持する。(2)各クライアントIPアドレスと対応するブート・サーバのIPアドレスとを関連付けるクライアント割り当てテーブル(CAT)を保持する。(3)SATを更新するときは常に、ブート・サーバをロードした回数の昇順にSATをソートすることにより、ブート・サーバに優先順位を付与する。(4)クライアントがDHCPサーバを要求するときは常に、アクセスごとにSAT中にリストされている順番にブート・サーバのIPアドレスを提供する。これにより、最もロードした回数が少ないブート・サーバに、サービスに関して高い優先順位が与えられるから、ブート・サーバの多重ロードを回避することができる。

【特許請求の範囲】

【請求項1】特定の型の複数のクライアントおよびブート・サーバと、単一のDHCP/PXEサーバとを備えたコンピューティング・システムにおいて、

前記DHCP/PXEサーバにおいて、要求したクライアントの各々にブート・サーバを割り当てる方法であって、

前記方法は、最もロードした回数が少ないブート・サー バに、サービスに関して高い優先順位を与えるものであ り、

各ブート・サーバごとに、クライアントが当該ブート サーバをロードした回数の現在値を含むサーバ割り当て テーブル (SAT)を保持するステップと、

各クライアント I Pアドレスと対応するブート・サーバ の I Pアドレスとを関連付けるクライアント割り当てテ ーブル (CAT) を保持するステップと、

前記SATを更新するときは常に、ブート・サーバをロードした回数の昇順に前記SATをソートすることにより、ブート・サーバに優先順位を付与するステップと、クライアントがDHCPサーバを要求するときは常に、アクセスごとに前記SAT中にリストされている順番にブート・サーバのIPアドレスを提供するステップとを備えた方法。

【請求項2】特定のブート・サーバが、要求を発したクライアントに確認応答(ACK)を送信するときは常に、前記ブート・サーバをロードした回数をインクリメントするように前記SATを更新する、請求項1に記載の方法。

【請求項3】特定のブート・サーバが、要求を発したクライアントに確認応答(ACK)を送信するときは常に、前記クライアントと前記ブート・サーバとを関連付けるエントリを含むように前記CATを更新する、請求項1に記載の方法。

【請求項4】DHCPサーバがそのIPアドレス・プールをリフレッシュするときに、特定のクライアントと連絡がつかないのを発見したときは常に、前記クライアントに対応するエントリを除去するように前記CATを更新する、請求項1に記載の方法。

【請求項5】DHCPサーバがそのIPアドレス・プールをリフレッシュするときに、特定のクライアントと連 40 絡がつかないのを発見したときは常に、前記CATに記録されている前記クライアントと特定のブート・サーバとの間の関連付けを使って、前記ブート・サーバをロードした回数をデクリメントするように前記SATを更新する、請求項1に記載の方法。

【請求項6】前記サーバ割り当てテーブル (SAT) が、ブート・サーバの I Pアドレスと、ネットワーク上 でブートするのに当該ブート・サーバが使われた回数とを含んでいる、請求項1に記載の方法。

【請求項7】特定の型の複数のクライアントおよびブー 50 ードした回数の昇順に前記SATをソートすることによ

ト・サーバと、単一のDHCP/PXEサーバとを備え たコンピューティング・システムにおいて、

前記DHCP/PXEサーバにおいて、要求したクライアントの各々にブート・サーバを割り当てる方法であって

前記方法は、最もロードした回数が少ないブート・サー バに、サービスに関して高い優先順位を与えるものであ り、

- (i) DHCPサーバを初期化して、ブート・サーバ I 10 Pアドレス (BSIP)、サーバ割り当てテーブル (S AT)、およびクライアント割り当てテーブル (CA T)を取得するステップと、
 - (ii) DHCPサーバが、新たなクライアントにサービスを提供しているブート・サーバから確認応答(AC K)を受信したとき、SATの当該ブート・サーバをロードした回数をインクリメントすると共に、前記新たなクライアントおよびそのIPアドレスを搭載して前記CATを更新するステップと、
- (iii) ACKを受信しない場合、更新したCATと以前 20 のCATイメージ (CATP) とを比較してCATの変 化を特定し、これにより特定されたブート・サーバをロ ードした回数をSAT中でデクリメントし、以前のCA Tイメージ (CATP) を現在のCATイメージで置き 換えて、次のサイクルにおいてネットワーク状態の変化 を特定するのに資するようにするステップと、
 - (iv) SATのブート・サーバをロードした回数を昇順 にソートすることにより、ブート・サーバの割り当てに 優先順位を付与するステップと、
- (v) SATからブート・サーバの優先順位を付与されめ たIPアドレスのリストを抽出して、DHCPオプションおよびPXEブート・サーバ・タグに記録するステップと、
 - (vi) 前記ステップ(ii) ~(v) を繰り返すステップ とを備えた方法。

【請求項8】特定の型の複数のクライアントおよびブート・サーバと、単一のDHCP/PXEサーバとを備えたコンピューティング・システムであって、

前記DHCP/PXEサーバにおいて、要求したクライアントの各々にブート・サーバを割り当て、

が記システムは、最もロードした回数が少ないブートサーバに、サービスに関して高い優先順位を与えるものであり。

各ブート・サーバごとにクライアントが当該ブート・サーバをロードした回数の現在値を含むサーバ割り当てテーブル (SAT) 手段と、

各クライアント I Pアドレスと対応するブート・サーバ の I Pアドレスとを関連付けるクライアント割り当てテ ーブル (CAT) 手段と、

前記SATを更新するときは常に、ブート・サーバをロードした回数の見順に前記SATをソートすることによ

り、ブート・サーバに優先順位を付与する手段と、 クライアントがDHCPサーバを要求するときは常に、 アクセスごとに前記SAT中にリストされている順番に ブート・サーバの I Pアドレスを提供手段とを備えたシ ステム。

【請求項9】特定のブート・サーバが、要求を発したク ライアントに確認応答(ACK)を送信するときは常 に、前記ブート・サーバをロードした回数をインクリメ ントするように前記SAT手段を更新する、請求項8に 記載のシステム。

【請求項10】特定のブート・サーバが、要求を発した クライアントに確認応答(ACK)を送信するときは常 に、前記クライアントと前記ブート・サーバとを関連付 けるエントリを含むように前記CAT手段を更新する、 請求項8に記載のシステム。

【請求項11】 DHCPサーバがその IPアドレス・プ ールをリフレッシュするときに、特定のクライアントと 連絡がつかないのを発見したときは常に、前記クライア ントに対応するエントリを除去するように前記CAT手 段を更新する、請求項8に記載のシステム。

【請求項12】DHCPサーバがそのIPアドレス・プ ールをリフレッシュするときに、特定のクライアントと 連絡がつかないのを発見したときは常に、前記CAT手 段に記録されている前記クライアントと特定のブート・ サーバとの間の関連付けを使って、前記ブート・サーバ をロードした回数をデクリメントするように前記SAT 手段を更新する、請求項8に記載のシステム。

【請求項13】前記サーバ割り当てテーブル (SAT) 手段が、ブート・サーバの I Pアドレスと、ネットワー 数とを含んでいる、請求項8に記載のシステム。

【請求項14】最もロードした回数の少ないブート・サ ーバをPXEクライアントに割り当てる、DHCP/P XEサーバに常駐するコンピュータ読み取り可能なコー ドを含むコンピュータ記憶媒体を備えたコンピューター ・プログラム製品。

【請求項15】 さらに、各ブート・サーバごとにクラ イアントが当該ブート・サーバをロードした回数の現在 値を含むサーバ割り当てテーブル (SAT)を保持し、 特定のブート・サーバが、要求を発したクライアントに 40 確認応答(ACK)を送信するときは常に、前記ブート サーバをロードした回数をインクリメントするように 前記SATを更新するコンピュータ読み取り可能なコー ド手段を備えた、請求項14に記載のコンピューター・ プログラム製品。

【請求項16】 さらに、

各クライアント I Pアドレスと対応するブート・サーバ のIPアドレスとを関連付けるクライアント割り当てテ ーブル(CAT)を保持し、

確認応答(ACK)を送信するときは常に、前記クライ アントと前記ブート・サーバとの関連付けを搭載するよ うに前記CATを更新するコンピュータ読み取り可能な コード手段を備えた、請求項15に記載のコンピュータ ー・プログラム製品。

4

【請求項17】DHCPサーバがそのIPアドレス・プ ールをリフレッシュするときに、特定のクライアントと 連絡がつかないのを発見したときは常に、前記コンピュ ータ読み取り可能なコード手段が、前記クライアントに 10 対応するエントリを除去するようにも前記CATを更新 する、請求項16に記載のコンピューター・プログラム 製品。

【請求項18】 さらに、

クライアントがDHCP/PXEサーバを要求するとき は常に、前記コンピュータ読み取り可能なコード手段 が、アクセスごとに、前記SAT中にリストされている 願番にブート・サーバの I Pアドレスを提供する、請求 項17に記載のコンピューター・プログラム製品。

【請求項19】 さらに、

20 DHCPサーバがその I Pアドレス・プールをリフレッ シュするときに、特定のクライアントと連絡がつかない のを発見したときは常に、前記CATに記録されている 前記クライアントと特定のブート・サーバとの間の関連 付けを使って、前記ブート・サーバをロードした回数を デクリメントするように前記SATを更新するステップ を含み、

前記SATを更新するときは常に、ブート・サーバをロ ードした回数の昇順で前記SATをソートすることによ り、ブート・サーバに優先順位を付与するように構成さ ク上でブートするのに当該ブート・サーバが使われた回 30 れたコンピュータ読み取り可能なコード手段を備えた、 請求項18に記載のコンピューター・プログラム製品。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、最もロードした回 数が少ないブート・サーバをネットワーク上のPXE (Pre Boot Execution Environment) クライアントにD HCP (Dynamic Host Configuration Protocol)サーバ を介して自動的に割り当てる方法に関する。

[0002]

【従来の技術】ネットワーク・コンピューティング・シ ナリオとは、同一のネットワーク上に多数のネットワー ク・コンピュータと共に少なくとも1つのブート・サー バが存在するもののことである (ブートとは、コンピュ ータを起動することである)。これらのネットワーク・ コンピュータは、自分用のオペレーティング・システム を、これらのブート・サーバ上に存在するブート・イメ ージと共にロードする(イメージとは、主記憶装置に格 枘されている、システムの動作状態のことである)。こ れらのネットワーク・コンピュータは、DHCP (Dyna 特定のブート・サーバが、要求を発したクライアントに 50 mic Host Configuration Protocol:動的ホスト構成プロ

トコル)サーバに依存している。DHCPサーバは、ネットワーク・コンピュータに、IP (Internet Protoco 1)アドレスと共に、ネットワーク・コンピュータがネットワークからブート (boot up:起動) するのを可能にする、ブート・ファイル・サーバ・アドレスなど他の特定のパラメータをも与える。

【0003】DHCP/PXEプロキシ・サーバの基本機能を図1を用いて説明する。図1には、2つのPXE (Pre Boot Execution Environment: ブート前実行環境) クライアント、2つのブート・サーバ、および1つ 10のDHCP/PXEプロキシ・サーバを備えたネットワーク・コンピューティング環境が示されている(PXEとは、BOOTPプロトコルを利用した遠隔起動技術のことである。BOOTP [Boot Protocol]とは、TCP/IP [Transmission Control Protocol / Internet Protocol]ネットワークのクライアントが各種パラメータをサーバから自動的にロードするためのプロトコルのことである)。DHCP/PXEサーバの動作は、次に示すとおりである。

- (1) PXEクライアントは、ネットワークからブート 20 ・サービスを得るときに、PXEクライアント拡張タグ を含むディスカバー・パケットを67番ポートに送信す る(ポート番号とは、アプリケーションを識別する数字 のことである)。
- (2) DHCPサーバは、PXEサーバ拡張タグと共に クライアントIPアドレスを含む他のDHCPオプション・タグを含む拡張DHCPオファー・パケットを68 番ポートに送信する。
- (3)次いで、PXEクライアントは、PXEクライアント拡張タグと共に他のDHCPオプション・タグを含 30

- む、インストールを求める要求をDHCPサーバの67 番ポートに送信する。
- (4) DHCPサーバは、DHCP確認応答 (ACK) を68番ポートに送信する。
- (5) PXEクライアントは、PXEクライアント拡張 タグを含むブート・サーバ・ディスカバー・パケット を、ネットワーク上の割り当てられたブート・サーバの 67番ポート (または4011番ポート) に送信する。
- (6)割り当てられたブート・サーバは、PXEサーバ拡張タグを含むブート・サーバ確認応答(ACK)を、ネットワーク上のクライアントの送信元ポートに送信する。
 - (7) PXEクライアントは、ネットワーク・ブートストラップ・プログラムのダウンロードを求める要求を、MTFTP (Multi Cast File Transfer Protocol)ポートのうちのTFTP (Tivial File Transfer Protocol)の69番ポートに送信する。
- (8) ブート・サーバは、ネットワーク・ブートストラップ・プログラム (ブート・イメージ) をクライアント のポートにダウンロードする。

【0004】以上の点から、次のことが分かる。すなわち、このネットワークでは、PXEクライアントは、DHCPサーバに対してIPアドレスを要求すると、当該ネットワークで利用可能なブート・サーバの型とIPアドレスのリストを含むDHCPオファー・パケットを受信する。このDHCPオファー・パケットの形式は、次に示すとおりである。

[0005]

【表1】

		<u> </u>
フ ィールド長 (パイト)	住	注釈
Op (1)	2	ブート応答用のオペレーション ・コード
Htype (1)	*	MACTFUX
Hien (1)	*	MACアドレス長
Hops (1)	*	ホップ数
Xid (4)	*	トランザクション機別子
Secs (2)	*	プート動作開始以降の経過時間
Flags (2)	*	フラグ・フィールド
Ciaddr (4)	0.0.0.0	クライアントの I Pアドレスに 関する自身の情報 サーバは常にこの彼を零に設定
Yladdr (4)	e0, a1, a2, a3	サーバが提供するクライアント のIPアドレス
Siaddr (4)	a0, a1, a2, a3	次のブートストラップ・サーバ の I Pアドレス
Gladdr (4)	*	ゲートウェイのIPアドレス
Chaddr (16)	*	クライアントのMACアドレス
Sname (6,4)	*	サーバのホスト名 オプション 6 6を使って 多重ロード可能
Bootfile (128)	*	ブート・ファイル名 オプション 6 7を使って 多重ロード可能

[0006]

* *【表2】

9			10	
	99.130.	83.99		
	DHCP	ナプショ	עי	
タグ名	タグ 番号	長さ	データ・フィールド	
DHCPメッセージ型	5 3	1	2 = DHCPOFFER	
SERVER IDENTIFIER	5 4	4	al. a2. a3. a4	
クライアント・マシン 鎌房子	9 7	17	型(1) UUID(16) Q=UUID	
クラス鐵房子	6 0	9	"PXEClient"	
ペンダー オプション	4 3	可変	カプセル化したオプション	
PXE DISCOVER	Y 6	1		
DISCOVERY_MC	7	4	マルチキャストJPアドレス	
RXE BOOT SERVERS	8	可変	ブート・サーバ型(2), Ipcnt(2), IP-addr-list(IPCnt*4), ブート・サーバ型(2),	
PXE BOOT MENU	9	可変	ブート・サーパ型(2), desclen(1), "description", ブート・サーパ型(2),	
PXE MENU PROMPT	10	可変	タイムアウト (1)。 プロンプト	

【0007】PXEクライアント・ユーザは、人手で介入することにより、すなわちブートしたのちに「F8」キーを押下することにより、ネットワーク上に存在する様々な型のブート・サーバの中から選択することができる。ブート・サーバの型は、オプションのブート・サーバ型(2)フィールドに示されている。

【0008】しかしながら、ユーザがこのように介入すると、DHCPオファー・パケットのリストの最初に現れるブート・サーバが選択されることになる。これによ 40 り、通常、割り当てられたブート・サーバが多重にロードされる結果、PXEクライアントの応答が遅くなってしまう。

[0009]

【発明が解決しようとする課題】本発明の目的は、最もロードした回数の少ないブート・サーバをネットワーク上のPXEプロキシ・サーバを介して自動的に割り当てることにより、上述した欠点を除去することである。

[0010]

*【課題を解決するための手段】上記の目的を達成するために、本発明は、以下のように構成する。

【0011】特定の型の複数のクライアントおよびブー ト・サーバと、単一のDHCP/PXEサーバとを備え たコンピューティング・システムにおいて、前記DHC P/PXEサーバにおいて、要求したクライアントの各 々にブート・サーバを割り当てる方法であって、前記方 法は、最もロードした回数が少ないブート・サーバに、 サービスに関して高い優先順位を与えるものであり、各 ブート・サーバごとに、クライアントが当該ブート・サ ーバをロードした回数の現在値を含むサーバ割り当てテ ーブル (SAT) を保持するステップと、各クライアン トIPアドレスと対応するブート・サーバのIPアドレ スとを関連付けるクライアント割り当てテーブル (CA T)を保持するステップと、前記SATを更新するとき は常に、ブート・サーバをロードした回数の昇順に前記 SATをソートすることにより、ブート・サーバに優先 順位を付与するステップと、クライアントがDHCPサ *50 一バを要求するときは常に、アクセスごとに前記SAT

11 中にリストされている順番にブート・サーバのIPアド レスを提供するステップとを備えた方法。

【0012】前記SATは、特定のブート・サーバが、 要求を発したクライアントに確認応答(ACK)を送信 するときは常に、前記ブート・サーバをロードした回数 をインクリメントするように更新する。

【0013】前記CATは、特定のブート・サーバが、 要求を発したクライアントに確認応答(ACK)を送信 するときは常に、前記クライアントと前記ブート・サー バとを関連付けるエントリを含むように更新する。

【0014】前記CATは、DHCPサーバがそのIP アドレス・プールをリフレッシュするときに、特定のク ライアントと連絡がつかないのを発見したときは常に、 前記クライアントに対応するエントリを除去するように 更新する。

【0015】前記SATは、DHCPサーバがそのIP アドレス・プールをリフレッシュするときに、特定のク ライアントと連絡がつかないのを発見したときは常に、 前記CATに記録されている前記クライアントと特定の ブート・サーバとの間の関連付けを使って、前記ブート ・サーバをロードした回数をデクリメントするように更 新する。

【0016】前記サーバ割り当てテーブル(SAT) は、ブート・サーバの I Pアドレスと、ネットワーク上 でブートするのに当該ブート・サーバが使われた回数と を含んでいる。

【0017】特定の型の複数のクライアントおよびブー ト・サーバと、単一のDHCP/PXEサーバとを備え たコンピューティング・システムにおいて、前記DHC 々にブート・サーバを割り当てる方法であって、前記方 法は、最もロードした回数が少ないブート・サーバに、 サービスに関して高い優先順位を与えるものであり、(i)DHCPサーバを初期化して、ブート・サーバIP アドレス (BSIP)、サーバ割り当てテーブル (SA T) 、およびクライアント割り当てテーブル (CAT) を取得するステップと、(ii) DHCPサーバが、新た なクライアントにサービスを提供しているブート・サー バから確認応答(ACK)を受信したとき、SATの当 該ブート・サーバをロードした回数をインクリメントす 40 ると共に、前記新たなクライアントおよびそのIPアド レスを搭載して前記CATを更新するステップと、(ii i) ACKを受信しない場合、更新したCATと以前の CATイメージ (CATP) とを比較してCATの変化 を特定し、これにより特定されたブート・サーバをロー ドした回数をSAT中でデクリメントし、以前のCAT イメージ (CATP) を現在のCATイメージで置き換 えて、次のサイクルにおいてネットワーク状態の変化を 特定するのに資するようにするステップと、(iv) SA

ることにより、ブート・サーバの割り当てに優先順位を 付与するステップと、(v.) SATからブート・サーバ の優先順位を付与されたIPアドレスのリストを抽出し て、DHCPオプションおよびPXEブート・サーバ・ タグに記録するステップと、(vi) 前記ステップ(ii) ~(v) を繰り返すステップとを備えた方法。

12

【0018】特定の型の複数のクライアントおよびブー ト・サーバと、単一のDHCP/PXEサーバとを備え たコンピューティング・システムであって、前記DHC P/PXEサーバにおいて、要求したクライアントの各 10 々にブート・サーバを割り当て、前記システムは、最も ロードした回数が少ないブート・サーバに、サービスに 関して高い優先順位を与えるものであり、各ブート・サ ーバごとにクライアントが当該ブート・サーバをロード した回数の現在値を含むサーバ割り当てテーブル (SA T) 手段と、各クライアント I Pアドレスと対応するブ ート・サーバの I Pアドレスとを関連付けるクライアン ト割り当てテーブル(CAT)手段と、前記SATを更 新するときは常に、ブート・サーバをロードした回数の 昇順に前記SATをソートすることにより、ブート・サ ーバに優先順位を付与する手段と、クライアントがDH CPサーバを要求するときは常に、アクセスごとに前記 SAT中にリストされている順番にブート・サーバのI Pアドレスを提供手段とを備えたシステム。

【0019】前記SAT手段は、特定のブート・サーバ が、要求を発したクライアントに確認応答(ACK)を 送信するときは常に、前記ブート・サーバをロードした 回数をインクリメントするように更新する。

【0020】前記CAT手段は、特定のブート・サーバ P/PXEサーバにおいて、要求したクライアントの各 30 が、要求を発したクライアントに確認応答(ACK)を 送信するときは常に、前記クライアントと前記プート・ サーバとを関連付けるエントリを含むように更新する。 【0021】前記CAT手段は、DHCPサーバがその IPアドレス・プールをリフレッシュするときに、特定 のクライアントと連絡がつかないのを発見したときは常 に、前記クライアントに対応するエントリを除去するよ うに更新する。

> 【0022】前記SAT手段は、DHCPサーバがその IPアドレス・プールをリフレッシュするときに、特定 のクライアントと連絡がつかないのを発見したときは常 に、前記CAT手段に記録されている前記クライアント と特定のブート・サーバとの間の関連付けを使って、前・ 記ブート・サーバをロードした回数をデクリメントする ように更新する。

【0023】前記サーバ割り当てテーブル (SAT)手 段は、ブート・サーバの I Pアドレスと、ネットワーク 上でブートするのに当該ブート・サーバが使われた回数 とを含んでいる。

【0024】最もロードした回数の少ないブート・サー Tのブート・サーバをロードした回数を昇順にソートす 50 バをPXEクライアントに割り当てる、DHCP/PX Eサーバに常駐するコンピュータ読み取り可能なコードを含むコンピュータ記憶媒体を備えたコンピューター・プログラム製品。

【0025】コンピューター・プログラム製品は、さら に、各ブート・サーバごとにクライアントが当該ブート ・サーバをロードした回数の現在値を含むサーバ割り当 てテーブル (SAT) を保持し、特定のブート・サーバ が、要求を発したクライアントに確認応答(ACK)を 送信するときは常に、前記ブート・サーバをロードした 回数をインクリメントするように前記SATを更新する 10 コンピュータ読み取り可能なコード手段を備えている。 【0026】コンピューター・プログラム製品は、さら に、各クライアント I Pアドレスと対応するブート・サ ーバの I Pアドレスとを関連付けるクライアント割り当 てテーブル (CAT) を保持し、特定のブート・サーバ が、要求を発したクライアントに確認応答(ACK)を 送信するときは常に、前記クライアントと前記ブート・ サーバとの関連付けを搭載するように前記CATを更新 するコンピュータ読み取り可能なコード手段を備えてい る。

【0027】コンピューター・プログラム製品は、DHCPサーバがそのIPアドレス・プールをリフレッシュするときに、特定のクライアントと連絡がつかないのを発見したときは常に、前記コンピュータ読み取り可能なコード手段が、前記クライアントに対応するエントリを除去するようにも前記CATを更新する。

【0029】コンピューター・プログラム製品は、DH CPサーバがそのIPアドレス・プールをリフレッシュ するときに、特定のクライアントと連絡がつかないのを 発見したときは常に、前記CATに記録されている前記 クライアントと特定のブート・サーバとの間の関連付け を使って、前記ブート・サーバをロードした回数をデク リメントするように前記SATを更新するステップを含 み、前記SATを更新するときは常に、ブート・サーバ をロードした回数の昇順で前記SATをソートすること 40 により、ブート・サーバに優先順位を付与するように構 成されたコンピュータ読み取り可能なコード手段を備え ている。

[0030]

【発明の実施の形態】図2は、本発明による、最もロードした回数の少ないブート・サーバに優先順位を付与する方法のフローチャートを示す図である。図2を用いて、本発明による、最もロードした回数の少ないブート・サーバに優先順位を付与する方法を説明する。

○まず、DHCPサーバは、初期化すると(ステップ

1)、ブート・サーバIPアドレス・リスト(BSIP)を取得した(ステップ2)のち、サーバ割り当てテーブル(SAT)とクライアント割り当てテーブル(CAT)を取得する(ステップ3)。

14

ODHCPサーバは、クライアントにサービスを提供しているブート・サーバからACK (確認応答) パケットを受信すると (ステップ4)、SATのロード回数をインクリメント (+1) する (ステップ5)。次いで、新たなクライアントと、それにサービスを提供しているブート・サーバの IPアドレスとを搭載することにより、CATを更新する (ステップ6)。

〇ステップ4で結果としてACKパケットを受信しなかった場合、DHCPサーバは、シャットダウンしようとしているクライアント(すなわちログオフしようとしているクライアント)のネットワーク・メッセージがないかどうか調べる、あるいは連絡がつかないクライアントがないかどうか調べる(ステップ10)。

○上記ステップ10の結果がYESの場合、DHCPサーバは、CATを更新する(ステップ11)。次いで、 20 このCATと以前のCATイメージ(CATP)とを比較して(ステップ12)、CATの変更箇所を特定する(ステップ13)。

○クライアントにサービスを提供することから解放されているのが確認されたブート・サーバのロード回数は、SAT上でデクリメント (-1) する (ステップ14)。

○以前のCATイメージ(CATP)は、現在のCAT イメージで置き換えて(ステップ7)、次回のサイクル でネットワーク状態の変化を特定する際に役立つように 参照の用に供される。

○SATのロード回数を昇順にソートして (ステップ8)、ブート・サーバの割り当てに優先順位を付与する。

OSATからブート・サーバの優先順位を付与されたI Pアドレスのリストを抽出し、それを、DHCPオプション、PXEブート・サーバ・タグに記入する(ステップ9)。

〇ブート・サーバが出すACKメッセージを受信していないかどうか調べる(ステップ4)ために、あるいは、 PXEクライアントがログオフしていないか調べた結果 がNOの場合、上述したプロセスを繰り返す。

【0031】次に、実例を用いて本発明の一実施形態を 説明する。

【0032】例えば1つのDHCP/PXEプロキシ・サーバ、ブート用のブート・サーバとして3つのIBM WSOD (Work Space On Demand) サーバ、そして50個のPXEネットワーク・コンピュータを備えたネットワーク・コンピューティング環境を考える。

【0033】ネットワーク・コンピュータは、ネットワ 50 ークに接続するときには常に、DHCP/PXEサーバ から自分用のIPアドレスとブート・サーバのリストを 取得する。

【0034】この方法のアプリケーションはないので、デフォルトで利用可能なブート・サーバはWSODしかないから、50個のネットワーク・コンピュータは、すべて、DHCPOFFERパケットがIPアドレス・リストを構成する仕方に応じて、同一のIPアドレスからブートする。

【0035】この方法を使うと、このDHCPOFFE Rパケットによって、ネットワーク上の同一の型の様々 10 なブート・サーバの間に負荷を均等に分散させることが 可能になる。

【0036】この場合、2つのブート・サーバはそれらからブートした17個のネットワーク・クライアントを有しており、1つのブート・サーバはそれからブートした16個のネットワーク・コンピュータを有している(17×2+16=50)。

【0037】これは、多数のブート・サーバが同時に現れ、TFTP/MTFTPサーバがこれら多数のブート・サーバに対して同時にサービスを提供することが必要 20 になる状況で有利である。この方法を適用すると、TFTP/MTFTPサーバの間で負荷が共有されるようになるので、ブート・サーバの性能は顕著に向上する。 【0038】以上のように、負荷は様々なブート・サーバの間で共有されている。

【0039】ブート・サーバとDHCP/PXEプロキシが多数存在するネットワーク・コンピューティング環境では、特定のブート・サーバがサポートしているクライアントの数が多い場合、ネットワークに新たなブート・サーバを付加して、DHCP/PXEサーバを再度初 30 期化する。これにより、新たなネットワーク・コンピュータがすべてこの新たなブート・サーバからブートするようになる。そして、これは、新たなネットワーク・コンピュータの数が以前から存在するブート・サーバからブートしたマシンの数と等しくなるまで続く。

【0040】上述した方法の利点は、次のとおりである。すなわち、上述した方法によれは、ネットワークPC(パーソナル・コンピュータ)が順番にブートするのを可能にしながら、ブート・サーバにかかる負荷を軽減させることができる。これにより、様々なコンピュータ 40の間で負荷を共有することができるから、ネットワークの管理が容易になる。この結果、ネットワークの性能を向上させることができる。

【0041】参考文献。

- 1. PXE仕様、第2. 1版、1999年9月20日、インテル・コーポレーション (PreBoot Execution Environment(PXE Specification) Version 2.1, Sep20, 1999, Intel Corporation)。
- 2. DHCP (動的ホスト構成プロトコル)、RFC2 するのに当該ブート・サーバが使 131 (Dynamic Host Configuration Protocol, RFC 2 50 いる、上記 (1) に記載の方法。

131).

3. DHCPオプションおよびBOOTPベンダー拡張、RFC2132 (DHCPOptins and BOOTP Vendor Extensions, RFC 2132)。

16

【0042】まとめとして以下の事項を開示する。

- (1)特定の型の複数のクライアントおよびブート・サ ーバと、単一のDHCP/PXEサーバとを備えたコン ピューティング・システムにおいて、前記DHCP/P XEサーバにおいて、要求したクライアントの各々にブ ート・サーバを割り当てる方法であって、前記方法は、 最もロードした回数が少ないブート・サーバに、サービ スに関して高い優先順位を与えるものであり、各ブート サーバごとに、クライアントが当該ブート・サーバを ロードした回数の現在値を含むサーバ割り当てテーブル (SAT) を保持するステップと、各クライアントIP アドレスと対応するブート・サーバのIPアドレスとを 関連付けるクライアント割り当てテーブル (CAT)を 保持するステップと、前記SATを更新するときは常 に、ブート・サーバをロードした回数の昇順に前記SA Tをソートすることにより、ブート・サーバに優先順位 を付与するステップと、クライアントがDHCPサーバ を要求するときは常に、アクセスごとに前記SAT中に リストされている順番にブート・サーバのIPアドレス を提供するステップとを備えた方法。
- (2)特定のブート・サーバが、要求を発したクライアントに確認応答(ACK)を送信するときは常に、前記ブート・サーバをロードした回数をインクリメントするように前記SATを更新する、上記(1)に記載の方法
- 30 (3)特定のブート・サーバが、要求を発したクライアントに確認応答(ACK)を送信するときは常に、前記クライアントと前記ブート・サーバとを関連付けるエントリを含むように前記CATを更新する、上記(1)に記載の方法。
 - (4) DHCPサーバがそのIPアドレス・プールをリフレッシュするときに、特定のクライアントと連絡がつかないのを発見したときは常に、前記クライアントに対応するエントリを除去するように前記CATを更新する、上記(1)に記載の方法。
 - (5) DHCPサーバがそのIPアドレス・アールをリフレッシュするときに、特定のクライアントと連絡がつかないのを発見したときは常に、前記CATに記録されている前記クライアントと特定のブート・サーバとの間の関連付けを使って、前記ブート・サーバをロードした回数をデクリメントするように前記SATを更新する、上記(1)に記載の方法。
 - (6) 前記サーバ割り当てテーブル (SAT) が、ブート・サーバの I Pアドレスと、ネットワーク上でブートするのに当該ブート・サーバが使われた回数とを含んでいる。 ト記 (1) に記載の方法

1.8

(7)特定の型の複数のクライアントおよびブート・サ ーバと、単一のDHCP/PXEサーバとを備えたコン ピューティング・システムにおいて、前記DHCP/P XEサーバにおいて、要求したクライアントの各々にブ ート・サーバを割り当てる方法であって、前記方法は、 最もロードした回数が少ないブート・サーバに、サービ スに関して高い優先順位を与えるものであり、(i) D HCPサーバを初期化して、ブート・サーバ IPアドレ ス(BSIP)、サーバ割り当てテーブル(SAT)、 およびクライアント割り当てテーブル(CAT)を取得 するステップと、(ii) DHCPサーバが、新たなクラ イアントにサービスを提供しているブート・サーバから 確認応答(ACK)を受信したとき、SATの当該ブー ト・サーバをロードした回数をインクリメントすると共 に、前記新たなクライアントおよびその I Pアドレスを 搭載して前記CATを更新するステップと、(iii) AC Kを受信しない場合、更新したCATと以前のCATイ メージ (CATP) とを比較してCATの変化を特定 し、これにより特定されたブート・サーバをロードした 回数をSAT中でデクリメントし、以前のCATイメー 20 ジ(CATP)を現在のCATイメージで置き換えて、 次のサイクルにおいてネットワーク状態の変化を特定す るのに資するようにするステップと、(iv) SATのブ ート・サーバをロードした回数を昇順にソートすること により、ブート・サーバの割り当てに優先順位を付与す るステップと、(v) SATからブート・サーバの優先 順位を付与された I Pアドレスのリストを抽出して、D HCPオプションおよびPXEブート・サーバ・タグに 記録するステップと、(vi) 前記ステップ(ii) ~(v)を繰り返すステップとを備えた方法。

(8)特定の型の複数のクライアントおよびブート・サ ーバと、単一のDHCP/PXEサーバとを備えたコン ピューティング・システムであって、前記DHCP/P XEサーバにおいて、要求したクライアントの各々にブ ート・サーバを割り当て、前記システムは、最もロード した回数が少ないブート・サーバに、サービスに関して 高い優先順位を与えるものであり、各ブート・サーバご とにクライアントが当該ブート・サーバをロードした回 数の現在値を含むサーバ割り当てテーブル(SAT)手 段と、各クライアントIPアドレスと対応するブート・ サーバの I Pアドレスとを関連付けるクライアント割り 当てテーブル (CAT) 手段と、前記SATを更新する ときは常に、ブート・サーバをロードした回数の昇順に 前記SATをソートすることにより、ブート・サーバに 優先順位を付与する手段と、クライアントがDHC Pサ ーバを要求するときは常に、アクセスごとに前記SAT 中にリストされている順番にブート・サーバのIPアド レスを提供手段とを備えたシステム。

(9)特定のブート・サーバが、要求を発したクライアントに確認応答(ACK)を送信するときは常に、前記 50

ブート・サーバをロードした回数をインクリメントするように前記SAT手段を更新する、上記(8)に記載のシステム。

(10)特定のブート・サーバが、要求を発したクライアントに確認応答(ACK)を送信するときは常に、前記クライアントと前記ブート・サーバとを関連付けるエントリを含むように前記CAT手段を更新する、上記(8)に記載のシステム。

(11) DHCPサーバがそのIPアドレス・プールを 10 リフレッシュするときに、特定のクライアントと連絡が つかないのを発見したときは常に、前記クライアントに 対応するエントリを除去するように前記CAT手段を更 新する、上記(8)に記載のシステム。

(12) DHCPサーバがそのIPアドレス・プールを リフレッシュするときに、特定のクライアントと連絡が つかないのを発見したときは常に、前記CAT手段に記 録されている前記クライアントと特定のブート・サーバ との間の関連付けを使って、前記ブート・サーバをロー ドした回数をデクリメントするように前記SAT手段を 更新する、上記(8)に記載のシステム。

(13) 前記サーバ割り当てテーブル (SAT) 手段が、ブート・サーバの I P アドレスと、ネットワーク上でブートするのに当該ブート・サーバが使われた回数とを含んでいる、上記 (8) に記載のシステム。

(14)最もロードした回数の少ないブート・サーバを PXEクライアントに割り当てる、DHCP/PXEサーバに常駐するコンピュータ読み取り可能なコードを含むコンピュータ記憶媒体を備えたコンピューター・プログラム製品。

30 (15)さらに、各ブート・サーバごとにクライアントが当該ブート・サーバをロードした回数の現在値を含むサーバ割り当てテーブル(SAT)を保持し、特定のブート・サーバが、要求を発したクライアントに確認応答(ACK)を送信するときは常に、前記ブート・サーバをロードした回数をインクリメントするように前記SATを更新するコンピュータ読み取り可能なコード手段を備えた、上記(14)に記載のコンピューター・プログラム製品。

(16)さらに、各クライアントIPアドレスと対応す の るブート・サーバのIPアドレスとを関連付けるクライ アント割り当てテーブル(CAT)を保持し、特定のブ ート・サーバが、要求を発したクライアントに確認応答 (ACK)を送信するときは常に、前記クライアントと 前記ブート・サーバとの関連付けを搭載するように前記 CATを更新するコンピュータ読み取り可能なコード手 段を備えた、上記(15)に記載のコンピューター・プログラム製品。

(17) DHCPサーバがそのIPアドレス・プールを リフレッシュするときに、特定のクライアントと連絡が つかないのを発見したときは常に、前記コンピュータ読 み取り可能なコード手段が、前記クライアントに対応するエントリを除去するようにも前記CATを更新する、 上記(16)に記載のコンピューター・プログラム製

19

上記 (16) に記載のコンピューター・プログラム製品。

(18) さらに、クライアントがDHCP/PXEサーバを要求するときは常に、前記コンピュータ読み取り可能なコード手段が、アクセスごとに、前記SAT中にリストされている順番にブート・サーバのIPアドレスを提供する、上記(17)に記載のコンピューター・プログラム製品。

(19) さらに、DHCPサーバがそのIPアドレス・プールをリフレッシュするときに、特定のクライアントと連絡がつかないのを発見したときは常に、前記CATに記録されている前記クライアントと特定のブート・サーバとの間の関連付けを使って、前記ブート・サーバを

ロードした回数をデクリメントするように前記SATを 更新するステップを含み、前記SATを更新するときは 常に、ブート・サーバをロードした回数の昇順で前記S ATをソートすることにより、ブート・サーバに優先順 位を付与するように構成されたコンピュータ読み取り可 能なコード手段を備えた、上記(18)に記載のコンピューター・プログラム製品。

【図面の簡単な説明】

【図1】 2つのPXEクライアントと2つのブート・ 10 サーバを備えた既存のネットワーク・コンピューティン グ環境を示す図である。

【図2】 本発明による、最もロードした回数の少ない ブート・サーバに優先順位を付与する方法のフローチャ ートを示す図である。

【図1】

フロントページの続き

(72)発明者 ヘマング・チャマクジ・スプラマニアン インド国 560085、バンガロール、バナシャンカリ サード ステージ、アイ メイン ロード、チェンナマナケレ アトカット、サビサ、ナンバー299

Fターム(参考) 5B076 BB02 BB06 BB18 5K030 HA08 HB17 HB19 KA01 KA05 LE05