

ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ: ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΑΝΑΛΥΤΙΚΗ

MAOHMA: Data Management And Business Intelligence

ΔΙΔΑΣΚΟΝΤΕΣ: Δ.ΧΑΤΖΗΑΝΤΩΝΙΟΥ, Σ.ΣΑΦΡΑΣ

ΦΟΙΤΗΤΕΣ: Χαρίλαος Πετρακόγιαννης(F282211), Ηλίας Δήμος (F2822102)

Περιεχόμενα

ΣΚΟΠΟΣ ΤΗΣ ΕΡΓΑΣΙΑΣ :	2
ΕΡΩΤΗΜΑΤΑ ΠΡΟΣ ΑΠΑΝΤΗΣΗ:	3
ΔΗΜΙΟΥΡΓΙΑ ΠΙΝΑΚΩΝ ΚΑΙ ΕΙΣΑΓΩΓΗ ΔΕΔΟΜΕΝΩΝ ΣΤΗ ΒΑΣΗ «dmbi»	4
EER DIAGRAM FOR THE «dmbi» DATABASE	4
ΥΛΟΠΟΙΗΣΗ ΕΡΩΤΗΜΑΤΩΝ ME SQL QUERIES	11
ΣΥΝΛΕΣΗ ΣΤΗ ΒΑΣΗ ΛΕΛΟΜΕΝΟΝ «dmbi» ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΤΟΥ ΕΡΟΤΗΜΑΤΟΣ (i) ΧΟΡΙΣ GROUP BY	17
/ TINNE/ D / LD DA/ D NENUNICINUN «UIIIUI» KAI TNUTUDIA TUT EPUTUNATU/ UI XUPI/ UKUUP BY	1 /

ΣΚΟΠΟΣ ΤΗΣ ΕΡΓΑΣΙΑΣ :

Σκοπός της εργασίας είναι η δημιουργία μιας βάσης δεδομένων και η εισαγωγή πινάκων και δεδομένων σε αυτή.

Στη εργασία μας δημιουργούμε μια βάση δεδομένων ονόματι «dbmi» η οποία έχει ως σκοπό τη απάντηση ερωτημάτων όσον αφορά την εταιρεία εκτίμησης ακίνητων "E-Properties". Αναλυτικότερα δημιουργούνται οι πίνακες που αφορούν:

Με παρενθέσεις αναφέρονται τα ονόματα των Columns του κάθε Table.

1. Εκτιμητές (Table: Auditor)

Ο πίνακας των εκτιμητών αποτελείται από τον μοναδικό κωδικό τους (AU_ID) , το όνομα τους (FIRST_NAME) , το επίθετο τους (LAST_NAME), το φύλο (SEX) , ηλικία (AGE) και διεύθυνση(A_ADDRESS).

2. Εκτιμήσεις (Table: Assessment)

Ο πίνακας των εκτιμήσεων αποτελείται από μοναδικό κωδικό τους (A_CODE) , τιμή εκτίμησης(PRICE) και ημερομηνία της εκτίμησης(DATE).

3. Ακίνητα (Table: RealEestate)

Ο πίνακας των ακινήτων περιλαμβάνει τον μοναδικό κωδικό τους (RE_ID) , τη διεύθυνση τους RE_ADDRESS) , όροφο (RE_FLOOR) , μέγεθος (RE_SIZE) σε τ.μ. και έτος κατασκευής (RE_YEAR).

4. Περιοχή που ανήκει το ακίνητο (Table : Location)

Ο πίνακας της περιοχής των ακίνητων περιλαμβάνει τον κωδικό της περιοχής (L_CODE) , τη ονομασία της (TITLE), τον πληθυσμό της (POPULATION) , και το μέσο εισόδημα των κατοίκων της (INCOME).

5. Κατοικίες (Table : Houses)

Ο πίνακας των κατοικιών αποτελείται από τον αριθμό ταυτότητας του ιδιοκτήτη (OWNER_ID).

6. Γραφεία (Table : Offices)

Ο πίνακας τον γραφείων περιλαμβάνει τον αριθμό φορολογικού μητρώου του ιδιοκτήτη (OWNER_SSN).

ΕΡΩΤΗΜΑΤΑ ΠΡΟΣ ΑΠΑΝΤΗΣΗ:

2) [10%] Περιγράψτε την εφαρμογή σας χρησιμοποιώντας το μοντέλο οντοτήτων-συσχετίσεων. Χρησιμοποιήστε οποιοδήποτε πρόγραμμα θέλετε για να σχεδιάσετε το διάγραμμα.

3) [10%] Μεταφέρετε τη σχεδίαση σας στο σχεσιακό μοντέλο και κατόπιν δημιουργήστε τους πίνακες, γνωρίσματα, και περιορισμούς στο SQL Server, χρησιμοποιώντας SQL (δλδ. CREATE TABLE). Εισάγετε γραμμές στους πίνακες με INSERT INTO.

ΔΗΜΙΟΥΡΓΙΑ ΠΙΝΑΚΩΝ ΚΑΙ ΕΙΣΑΓΩΓΗ ΔΕΔΟΜΕΝΩΝ ΣΤΗ ΒΑΣΗ «dmbi»

EER DIAGRAM FOR THE «dmbi» DATABASE

1. ASSESSMENT

```
CREATE TABLE `assessment` (
   `A_CODE` int NOT NULL,
   `PRICE` int NOT NULL,
   `DATE` date NOT NULL,
   `AU_ID` int NOT NULL,
   `RE_ID` int NOT NULL,
   PRIMARY KEY (`A_CODE`),
   KEY `AU_ID_idx` (`AU_ID`),
   KEY `RE_ID_idx` (`RE_ID`),
   CONSTRAINT `AU_ID` FOREIGN KEY (`AU_ID`) REFERENCES `auditor` (`AU_ID`),
   CONSTRAINT `RE_ID` FOREIGN KEY (`RE_ID`) REFERENCES `realestate` (`RE_ID`)
);
```

INSERT INTO assessment

```
(10,25000,'2020-10-25',1,1001),
(11,30000,'2020-12-20',2,1002),
(12,37200,'2020-12-31',3,1003),
(13,40000,'2019-12-27',4,1004),
(14,86400,'2016-12-25',5,1005),
(15,23400,'2020-12-01',6,1006),
(16,76300,'2019-11-21',7,1007),
(17,29999,'2019-12-02',8,1008),
(18,39200,'2020-12-24',9,1009),
(19,89000,'2014-09-13',10,1010),
(20,25000,'2020-10-26',1,1001),
(21,25000,'2020-10-27',1,1001),
(22,30000,'2019-05-19',6,1011);
```

	A_CODE	PRICE	DATE	AU_ID	RE_ID
•	10	25000	2020-10-25	1	1001
	11	30000	2020-12-20	2	1002
	12	37200	2020-12-31	3	1003
	13	40000	2019-12-27	4	1004
	14	86400	2016-12-25	5	1005
	15	23400	2020-12-01	6	1006
	16	76300	2019-11-21	7	1007
	17	29999	2019-12-02	8	1008
	18	39200	2020-12-24	9	1009
	19	89000	2014-09-13	10	1010
	20	25000	2020-10-26	1	1001
	21	25000	2020-10-27	1	1001
	22	30000	2019-05-19	6	1011
	NULL	NULL	NULL	NULL	NULL

2. AUDITOR

```
CREATE TABLE `auditor` (
   `AU_ID` int NOT NULL,
   `FIRST_NAME` varchar(45) NOT NULL,
   `LAST_NAME` varchar(45) NOT NULL,
   `AGE` int NOT NULL,
   `SEX` varchar(45) NOT NULL,
   `A_ADDRESS` varchar(45) NOT NULL,
   PRIMARY KEY (`AU_ID`)
);
```

INSERT INTO auditor

- (1, 'GEORGE', 'PAPANDREOU', 38, 'M', 'MALTEZOY 30'),
- (2, 'JOHN', 'KARAMANLIS', 45, 'M', 'KAPODISTRIA 4'),
- (3, 'IOANNA', 'PAPAMIHAIL', 30, 'F', 'IOAKEIM 78'),
- (4, 'JENNY', 'COBANAJ', 20, 'F', 'BOTSARI 2'),
- (5, 'KONSTANTINOS', 'PETRAKOPOULOS', 55, 'M', 'VENIZELOU 12'),
- (6, 'GEORGIA', 'NASIOU', 46, 'F', 'NIGRITIS 56'),
- (7, 'THEOFILOS', 'PALAIOKOSTAS', 29, 'M', 'SERRWN 99'),
- (8, 'XARILAOS', 'PETRAKOGIANNIS', 30, 'M', 'THESSALONIKIS 6'),
- (9, 'JOHN', 'PAPALOUKAS', 43, 'M', 'FILIS 8'),
- (10, 'CHRYSA', 'MANDYLI', 66, 'F', 'SYNDIKA 71');

	AU_ID	FIRST_NAME	LAST_NAME	AGE	SEX	A_ADDRESS
•	1	GEORGE	PAPANDREOU	38	М	MALTEZOY 30
	2	JOHN	KARAMANLIS	45	M	KAPODISTRIA 4
	3	IOANNA	PAPAMIHAIL	30	F	IOAKEIM 78
	4	JENNY	COBANAJ	20	F	BOTSARI 2
	5	KONSTANTINOS	PETRAKOPOULOS	55	M	VENIZELOU 12
	6	GEORGIA	NASIOU	46	F	NIGRITIS 56
	7	THEOFILOS	PALAIOKOSTAS	29	M	SERRWN 99
	8	XARILAOS	PETRAKOGIANNIS	30	M	THESSALONIKIS 6
	9	JOHN	PAPALOUKAS	43	M	FILIS 8
	10	CHRYSA	MANDYLI	66	F	SYNDIKA 71
	NULL	NULL	NULL	NULL	NULL	NULL

3. HOUSES

```
CREATE TABLE `houses` (
   `RE_ID` int NOT NULL,
   `OWNER_ID` varchar(45) NOT NULL,
   PRIMARY KEY (`RE_ID`, `OWNER_ID`),
   CONSTRAINT `houses_ibfk_1` FOREIGN KEY (`RE_ID`) REFERENCES `realestate` (`RE_ID`)
);
```

INSERT INTO houses

```
(1001,987123),
(1002,456753),
(1003,123951),
(1004,179352),
(1005,783549);
```

	RE_ID	OWNER_ID
•	1001	987123
	1002	456753
	1003	123951
	1004	179352
	1005	783549
	NULL	NULL

4. LOCATION

```
CREATE TABLE 'location' (
    `L_CODE' int NOT NULL,
    `TITLE' varchar(45) NOT NULL,
    `POPULATION' int NOT NULL,
    `INCOME' int NOT NULL,
    PRIMARY KEY ('L_CODE')
);
```

INSERT INTO location **VALUES**

(101,'N.IONIA', 66000,15000), (102,'XOLARGOS',90000,41000), (103,'PATHSIA',34000,100000), (104,'PAPAGOU',20000,80000), (105,'PERISTERI',50000,20000), (106,'METAKSOURGIO',10000,42000), (107,'KIFISIA',70000,97000), (108,'ILION',43900,10000), (109,'VIKTORIA',50003,7000), (110,'KIPSELI',28400,23000);

	L_CODE	TITLE	POPULATION	INCOME
•	101	N.IONIA	66000	15000
	102	XOLARGOS	90000	41000
	103	PATHSIA	34000	100000
	104	PAPAGOU	20000	80000
	105	PERISTERI	50000	20000
	106	METAKSOURGIO	10000	42000
	107	KIFISIA	70000	97000
	108	ILION	43900	10000
	109	VIKTORIA	50003	7000
	110	KIPSELI	28400	23000
	NULL	NULL	NULL	NULL

5. OFFICES

```
CREATE TABLE `offices` (
    `RE_ID` int NOT NULL,
    `OWNER_SSN` varchar(45) NOT NULL,
    PRIMARY KEY (`RE_ID`, `OWNER_SSN`),
    CONSTRAINT `offices_ibfk_1` FOREIGN KEY (`RE_ID`) REFERENCES `realestate` (`RE_ID`)
) ;
```

INSERT INTO offices

```
(1006,937293),
(1007,938110),
(1008,382610),
(1009,398127),
(1010,293003),
(1011,131225);
```

	RE_ID	OWNER_SSN
•	1006	937293
	1007	938110
	1008	382610
	1009	398127
	1010	293003
	1011	131225
	NULL	HULL

6. REALESTATE

```
CREATE TABLE `realestate` (
    `RE_ID` int NOT NULL,
    `RE_ADDRESS` varchar(45) NOT NULL,
    `RE_FLOOR` int NOT NULL,
    `RE_SIZE` varchar(45) NOT NULL,
    `RE_YEAR` int NOT NULL,
    `L_CODE` int NOT NULL,
    'L_CODE` int NOT NULL,
    PRIMARY KEY (`RE_ID`),
    KEY `L_CODE_idx` (`L_CODE`),
    CONSTRAINT `L_CODE` FOREIGN KEY (`L_CODE`) REFERENCES `location` (`L_CODE`)
);
```

INSERT INTO realestate

```
(1001,'XOREMI 73',2,110,2020,101),
(1002,'KREONTOS 29',3,90,1867,102),
(1003,'ANTIGONIS 29',6,120,2001,103),
(1004,'AMFIARAOU 34',3,130,2020,104),
(1005,'GERAKIOU 39',2,70,2019,105),
(1006,'APSOU 30',8,110,2020,106),
(1007,'THEOFANOUS 12',9,130,2015,107),
(1008,'DRAGOUMI 29',2,100,1978,108),
(1009,'KIFISIAS 39',5,170,2020,109),
(1010,'TSALDARI 20',2,50,1847,110),
(1011,'APSOU 34',3,110,1950,106);
```

	RE_ID	RE_ADDRESS	RE_FLOOR	RE_SIZE	RE_YEAR	L_CODE
•	1001	XOREMI 73	2	110	2020	101
	1002	KREONTOS 29	3	90	1867	102
	1003	ANTIGONIS 29	6	120	2001	103
	1004	AMFIARAOU 34	3	130	2020	104
	1005	GERAKIOU 39	2	70	2019	105
	1006	APSOU 30	8	110	2020	106
	1007	THEOFANOUS 12	9	130	2015	107
	1008	DRAGOUMI 29	2	100	1978	108
	1009	KIFISIAS 39	5	170	2020	109
	1010	TSALDARI 20	2	50	1847	110
	1011	APSOU 34	3	110	1950	106
	NULL	NULL	NULL	NULL	NULL	NULL

ΥΛΟΠΟΙΗΣΗ ΕΡΩΤΗΜΑΤΩΝ ME SQL QUERIES

- 4) [60%] Γράψτε SQL και εκτελέστε τα παρακάτω ερωτήματα:
 - α) Δείξε τον κωδικό και τη διεύθυνση των ακινήτων που ανήκουν σε περιοχή με μέσο εισόδημα μεγαλύτερο των 40.000€ και έχουν εκτιμηθεί μεταξύ 24/12/2020 και 31/12/2020.

SQL QUERY

SELECT realestate.RE_ID, realestate.RE_ADDRESS

FROM realestate, location, assessment

WHERE realestate.L_CODE=location.L_CODE AND realestate.RE_ID=assessment.RE_ID AND location.INCOME > 40000 AND assessment.DATE BETWEEN '2020-12-24' AND '2020-12-31';

Outcome:

b) Για κάθε εκτιμητή δείξε το πλήθος των εκτιμήσεων που έχει πραγματοποιήσει το 2020.

SQL QUERY

SELECT count(assessment.A_CODE) as COUNT_OF_ASSESSEMENTS_IN_2020, auditor.AU_ID, auditor.FIRST_NAME, auditor.LAST_NAME

FROM assessment
right JOIN AUDITOR

ON assessment.AU_ID=auditor.AU_ID and year(assessment.date)=2020

GROUP BY auditor.AU_ID;

	COUNT_OF_ASSESSEMENTS_IN_2020	AU_ID	FIRST_NAME	LAST_NAME
•	3	1	GEORGE	PAPANDREOU
	1	2	JOHN	KARAMANLIS
	1	3	IOANNA	PAPAMIHAIL
	0	4	JENNY	COBANAJ
	0	5	KONSTANTINOS	PETRAKOPOULOS
	1	6	GEORGIA	NASIOU
	0	7	THEOFILOS	PALAIOKOSTAS
	0	8	XARILAOS	PETRAKOGIANNIS
	1	9	JOHN	PAPALOUKAS
	0	10	CHRYSA	MANDYLI
	0	10	CHRYSA	MANDYLI

c) Δείξε τον κωδικό των ακινήτων που έχουν εκτιμηθεί περισσότερες από δύο φορές μέσα στο 2020.

SQL QUERY

SELECT DISTINCT (assessment.RE_ID)
FROM assessment
WHERE EXTRACT (YEAR FROM assessment.DATE)=2020
GROUP BY assessment.RE_ID
HAVING COUNT (assessment.RE_ID)>2;

Outcome:

d) Χρησιμοποιώντας εμφωλευμένα ερωτήματα, δείξε τον κωδικό των εκτιμήσεων που έχουν πραγματοποιηθεί σε περιοχές με μέσο εισόδημα μεγαλύτερο των 25.000€.

SQL QUERY

SELECT assessment.A_CODE AS ASSESSMENT_CODE
FROM assessment
WHERE assessment.RE_ID IN (SELECT realestate.RE_ID
FROM realestate
WHERE realestate.L_CODE IN (SELECT location.L_CODE
FROM location
WHERE location.INCOME > 25000));

	ASSESSMENT_CODE
•	11
	12
	13
	15
	22
	16

e) Δείξε το πλήθος των εκτιμήσεων του 2020 για ακίνητα που ανήκουν σε περιοχές με πληθυσμό > 50.000.

SQL QUERY

SELECT COUNT(A_CODE)
FROM assessment
INNER JOIN REALESTATE
ON assessment.RE_ID=realestate.RE_ID
INNER JOIN location
ON realestate.L_CODE=location.L_CODE
WHERE location.POPULATION > 50000 AND YEAR(assessment.date)=2020;

Outcome:

f) Για κάθε κωδικό περιοχής, δείξε τον κωδικό της περιοχής και τη μέση τιμή εκτίμησης ανά τ.μ. της περιοχής, σε αύξουσα σειρά της μέσης τιμής εκτίμησης.

SQL QUERY

SELECT location.L_CODE AS LOCATION_CODE, AVG(assessment.PRICE)/realestate.RE_SIZE as AVERAGE_PRICE_PER_REALESTATE_SIZE
FROM location, assessment, realestate
WHERE location.L_CODE=realestate.L_CODE AND assessment.RE_ID=realestate.RE_ID
GROUP BY location.L_CODE
ORDER BY AVERAGE_PRICE_PER_REALESTATE_SIZE ASC;

	LOCATION_CODE	AVERAGE_PRICE_PER_REALESTATE_SIZE
•	101	227.27272727272728
	109	230.58823529411765
	106	242.72727272727272
	108	299.99
	104	307.6923076923077
	103	310
	102	333.333333333333
	107	586.9230769230769
	105	1234.2857142857142
	110	1780

g) Για κάθε εκτιμητή και για το 2020, δείξε τον κωδικό του εκτιμητή, το πλήθος των εκτιμήσεων κατοικιών που έχει πραγματοποιήσει, και το πλήθος των εκτιμήσεων γραφείων που έχει πραγματοποιήσει (3 στήλες).

SQL QUERY

CREATE VIEW OFFICES ASS AS

SELECT auditor.AU_ID **AS** AUDITOR_ID, assessment.DATE **AS** DATE_OF_ASSESSMENT, COUNT(offices.RE_ID) **AS** TOTAL_OFFICE_ASSESSMENTS_2020

FROM offices, assessment, auditor

WHERE offices.RE ID=assessment.RE ID

AND YEAR(assessment.DATE)=2020

AND assessment.AU_ID=auditor.AU_ID

GROUP BY auditor.AU_ID;

CREATE VIEW HOUSES ASS AS

SELECT auditor.AU_ID **AS** AUDITOR_ID,assessment.DATE **AS** DATE_OF_ASSESSMENT, COUNT(houses.RE_ID) **AS** TOTAL_HOUSE_ASSESSMENTS_2020

FROM houses, assessment, auditor

WHERE houses.RE_ID=assessment.RE_ID

AND YEAR(assessment.DATE)=2020

AND assessment.AU_ID=auditor.AU_ID

GROUP BY auditor.AU ID;

SELECT auditor.AU_ID **AS** AUDITOR_ID, TOTAL_OFFICE_ASSESSMENTS_2020, TOTAL_HOUSE_ASSESSMENTS_2020 **FROM** auditor

LEFT JOIN HOUSES_ASS **ON** (auditor.AU_ID=houses_ass.AUDITOR_ID)

LEFT JOIN OFFICES_ASS **ON** (auditor.AU_ID=offices_ass.AUDITOR_ID)

GROUP BY auditor.AU_ID;

	AUDITOR_ID	TOTAL_OFFICE_ASSESSMENTS_2020	TOTAL_HOUSE_ASSESSMENTS_2020
•	1	0	3
	2	0	1
	3	0	1
	4	0	0
	5	0	0
	6	1	0
	7	0	0
	8	0	0
	9	1	0
	10	0	0

h) Για κάθε κωδικό περιοχής, δείξε τη μεταβολή της μέσης τιμής εκτίμησης ανά τ.μ. μεταξύ 2020 και 2019.

SQL QUERY

CREATE VIEW AVG_2020 AS

SELECT LOCATION.L_CODE, AVG (assessment. Price)/realestate.RE_SIZE AS AV_2020

from location

inner join realestate

on location.L_CODE=realestate.L_CODE

inner join assessment

on realestate.RE_ID=assessment.RE_ID

WHERE YEAR(assessment.DATE)=2020

GROUP BY location.L CODE;

CREATE VIEW AVG 2019 AS

SELECT LOCATION.L_CODE, AVG (assessment.Price)/realestate.RE_SIZE AS AV_2019

from location

inner join realestate

on location.L_CODE=realestate.L_CODE

inner join assessment

on realestate.RE_ID=assessment.RE_ID

WHERE YEAR(assessment.DATE)=2019

GROUP BY location.L_CODE;

SELECT LOCATION.L_CODE,(av_2020-av_2019)/av_2019 AS CHANGE_OF_PRICE

FROM location

LEFT JOIN AVG_2020 ON (location.L_CODE=AVG_2020.L_CODE)

 $\textbf{LEFT JOIN} \ \mathsf{AVG} _ 2019 \ \textbf{ON} \ (\mathsf{location.L} _ \mathsf{CODE} \texttt{=} \mathsf{AVG} _ 2019.\mathsf{L} _ \mathsf{CODE})$

GROUP BY location.L_CODE;

	L_CODE	CHANGE_OF_PRICE
•	101	0
	102	0
	103	0
	104	0
	105	0
	106	-0.220000000000000008
	107	0
	108	0
	109	0
	110	0

 Για κάθε κωδικό περιοχής και για το 2020, δείξε το πλήθος των εκτιμήσεων της περιοχής σαν ποσοστό του συνολικού πλήθος εκτιμήσεων του 2020 (μία στήλη), και τον πληθυσμό της περιοχής σαν ποσοστό του συνολικού πληθυσμού όλων των περιοχών.

SQL QUERY

CREATE VIEW NUMBER_OF_2020_ASSESSMENTS AS SELECT COUNT(assessment.A_CODE) AS COUNT_2020 FROM assessment WHERE YEAR(assessment.date)=2020;

CREATE VIEW TOTAL_NUMBER_OF_POPULATION **AS SELECT** SUM(location.POPULATION) **AS** TOTAL_POPULATION **FROM** location;

SELECT location.L_CODE AS LOCATION_CODE, COUNT(assessment.A_CODE)/COUNT_2020*100 AS PERCENT_ASSESSMENT, location.POPULATION/TOTAL_POPULATION*100 AS PERCENT_POPULATION FROM NUMBER_OF_2020_ASSESSMENTS,TOTAL_NUMBER_OF_POPULATION,realestate INNER JOIN location ON (location.L_CODE=realestate.L_CODE)

LEFT JOIN assessment ON (realestate.RE_ID = assessment.RE_ID AND YEAR(assessment.DATE)=2020) GROUP BY location.L_CODE;

	LOCATION_CODE	PERCENT_ASSESSMENT	PERCENT_POPULATION
•	101	42.8571	14.2764
	102	14.2857	19.4678
	103	14.2857	7.3545
	104	0.0000	4.3262
	105	0.0000	10.8154
	106	14.2857	2.1631
	107	0.0000	15.1416
	108	0.0000	9.4959
	109	14.2857	10.8161
	110	0.0000	6.1432

ΣΥΝΔΕΣΗ ΣΤΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ «dmbi» ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΤΟΥ ΕΡΩΤΗΜΑΤΟΣ (i) ΧΩΡΙΣ GROUP BY

5) [20%] Χρησιμοποιώντας όποια γλώσσα προγραμματισμού επιθυμείτε, συνδεθείτε στη ΒΔ και υλοποιήστε το ερώτημα (i) παραπάνω χωρίς τη χρήση GROYP BY στο SQL Statement, δλδ μπορείτε να χρησιμοποιήσετε μόνο SELECT...FROM...WHERE.

Python Code

```
import mysql.connector
import pandas as pd
mydb = mysql.connector.connect(
 host="127.0.0.1",
 user="root",
 password="trav4-mk3",
 database="dmbi"
mycursor=mydb.cursor()
print("MySQL Database connection is successful")
sql=("SELECT L.L CODE AS LOCATION CODE, (count/COUNT 2020) AS PERCENT ASSESSMENT,
loc population/tot population*100 AS PERCENT POPULATION "
     "FROM ( "
         "SELECT L1.L CODE "
     ",(SELECT COUNT(assessment.A CODE)*10 FROM assessment,location,realestate WHERE
realestate.L_CODE=L1.L_CODE AND assessment.RE_ID=realestate.RE_ID AND
YEAR(assessment.DATE)=2020) AS count "
     ",(SELECT location.POPULATION FROM location WHERE location.L CODE=L1.L CODE) AS
loc_population "
     ",(SELECT COUNT_2020 FROM NUMBER_OF_2020_ASSESSMENTS) AS count 2020
     ",(SELECT TOTAL_POPULATION FROM TOTAL_NUMBER_OF_POPULATION) AS tot_population "
    "FROM (SELECT distinct location.L CODE FROM location, realestate, assessment WHERE
location.L CODE=realestate.L CODE AND realestate.RE ID=assessment.RE ID) AS L1 "
     ") AS L " )
mycursor.execute(sql)
#Making the outcome of the sql query a data frame
df=pd.DataFrame(mycursor,columns=['LOCATION CODE','PERCENT ASSESSMENT','PERCENT POPULATION '])
```

print (df) Python Outcome:

MySQL	Database connection	on is success	ful	
LOC	CATION CODE PERCEN	T ASSESSMENT	PERCENT POPULATION	
Θ	101	42.8571	14.2764	
1	102	14.2857	19.4678	
2	103	14.2857	7.3545	
3	104	0.0000	4.3262	
4	105	0.0000	10.8154	
5	106	14.2857	2.1631	
6	107	0.0000	15.1416	
7	108	0.0000	9.4959	
8	109	14.2857	10.8161	
9	110	0.0000	6.1432	
Proces	s finished with ex	xit code 0		