aws Invent

NET402

Transit Gateway and Transit VPCs Reference Architectures for Many VPCs

Nick Matthews Principal Solutions Architect AWS

@nickpowpow

What to expect

How it works

Transit VPC **Transit Gateway**

Build out a reference architecture:

Strategy

Account Segmentation Model

Shared Services Connectivity

Network Services

Multi-Region **Options**

Challenges with many VPCs

VPC management differences

Access models

Diverse ownership

Our starting point

Challenge: Adding more VPCs

Challenge: Peering VPCs

Transit VPC Mechanics

Transit VPC: Routing

Why doesn't peering work?

Why doesn't peering work?

Why does VPN work?

Transit VPC: Availability

Transit VPC: Performance

re:Invent

10.1.0.0/16 10.2.0.0/16 Spoiler: We'll need to know this for Transit Gateway also The VGW will only choose a single tunnel for outbound traffic (1.25 gbps) Virtual private gateway (VGW) Virtual Private The VGW accepts packets on Network (VPN) any tunnel or connection The VPN instance must forward all traffic, the maximum is based on instance size. Internet ~1-3 gbps on M4 and C4 10.0.0.0/16 families. Transit VPC

Transit VPC: Security Services

What is the AWS Transit Gateway?

Introducing: Transit Gateway

Regional router

 Centralize VPN and AWS Direct Connect

Scalable

- Thousands of VPCs across accounts
- Spread traffic over many VPN connections

Flexible routing

- Network interfaces in subnets
- Control segmentation and sharing with routing

re:Invent

AWS HyperPlane and AWS Transit Gateway

Attachments

- One network interface per Availability Zone
- Highly available per Availability Zone
- Network capacity shards
- Tens of microseconds of latency

AWS HyperPlane

- Horizontally-scalable state management
- Terabits of multi-tenant capacity
- Supports NLB, NAT Gateway, Amazon EFS and now Transit Gateway

Transit Gateway example time!

Flat: Every VPC should talk to every VPC!

Isolated: Don't let anything talk! Send everything back over VPN!

Flat: Transit Gateway route domains (route tables)

Flat: Transit Gateway route domains (route tables)

Wording warning: In this presentation a route domain is a route table of a Transit Gateway

Isolated: Transit Gateway route domains

Isolated: Transit Gateway route domains

Isolated: Transit Gateway route domains

Quick comparison: Transit Gateway and Transit VPC

Transit VPC

- Customer managed instances
- Uses VPN and virtual private gateways
- Hard to scale and manage
- Difficult to segment

Transit Gateway

- AWS native service
- Uses elastic network interfaces
- Scales horizontally
- Flexible segmentation

Transit Gateway details

Find on YouTube

NET 331: NEW LAUNCH: Introduction to Transit Gateway

Are there any reasons to use a Transit VPC?

- You currently use one, and it works for you
 - Migration to Transit Gateway
- Additional visibility and monitoring
- Automated VPC networking using tagging
- You want to use additional services:
 - Security features
 - SD-WAN
 - NAT
 - Proprietary features

We will cover how adding Transit
Gateway makes these easier

We're only adding things

You can use all existing options with Transit Gateway:

- VPC peering
- AWS Direct Connect
- Elastic Load Balancing
- AWS PrivateLink
- AWS CloudWatch metrics
- AWS CloudFormation
- Transit VPC

Reference Network Architecture

Administrative accounts (logging, AWS Organizations, billing, landing zone)

Available Q1 2019

Architecture walk through

strategy

Account Segmentation model

Shared services

Connectivity

Network services

Multi-region options

Account strategy

Account and VPC segmentation

Larger VPCs or accounts

Smaller VPCs or accounts

AWS Identity and Access Management Strict security groups and routing Identifying resources with tags

Policy and IAM

Automation of infrastructure AWS Direct Connect and VPN standards Subnet and routing standards

Infrastructure and Networking

Why not both?

Provide granular account control with centralized infrastructure

VPC Sharing and Resource Access Manager Share subnets between accounts in an AWS Organization

VPC Sharing and Resource Access Manager Account owners only see subnets and their resources

Accounts see their resources and have control:

- Security groups
- Data
- Instance details
- Account configuration

VPC Sharing and Resource Access Manager Account owners only see subnets and their resources

Accounts see their resources and have control:

- Security groups
- Data
- Instance details
- Account configuration

VPC Sharing benefits

- Infrastructure strictly controls routing, IP addresses, and VPC structure
- Developers own their resources, accounts, and security groups

Less unused resources

- Higher density subnets, add up to 5 additional CIDRs
- More efficient use of VPN and AWS Direct Connect

Decouple accounts and networks

- Account protection and billing without additional infrastructure
- Many accounts with fewer networks
- Avoid VPC peering charges

Other account considerations

One size does not need to fit all

- Example: production may use separate VPCs, development can use a shared VPC
- AWS Transit Gateway can handle large amounts of VPCs if needed

VPC Sharing works within an AWS Organization

VPC Sharing doesn't restrict resource utilization

- NAT gateways, VPN, subnet address space, and security groups have shared limits
- VPC Sharing doesn't change any VPC limits, only account limits
- Give highly scalable services like AWS Lambda dedicated IP space

Segmentation

Segmentation: Decision inputs

Relationship between accounts, VPCs, and tenants?

- Do accounts and tenants trust each other?
- Is the current network segmentation intentional or a side effect?

Who owns security and networking?

Each team or a centralized team?

Compliance and governance requirements?

Scope can be reduced at an account or a VPC level

Segmentation options: Layers

Inside the account

- IAM users and roles
- Security groups

At the VPC

- Route tables
- Network ACLs
- Separate VPCs

Tenant configuration

Tenant and infrastructure Shared Security line

Infrastructure configuration

re:Invent

Baseline security

IAM: Control actions and privileges inside the account between users and role

Security groups: Whitelist ports, protocols, and other security groups for network access

Network security

Route tables: Route table policy defines what VPC resources can access on the network

Network ACLs: Fence off access between specific subnets, ports, or destinations.

Separate VPCs: Full separation from other tenants.

Segmentation options: Layers

Inside the account

- IAM users and roles
- Security groups

At the VPC

- Route tables
- Network ACLs
- Separate VPCs

Transit Gateway

Route tables

Security services

- Firewalls
- Proxies
- Intrusion Detection / Prevention

Segmentation in a Shared VPC with network ACLs

Flat: Transit Gateway route domains

10.1.0.0/16 10.2.0.0/16 10.3.0.0/16 All routes and attachments are in a single route table (]On-premis **Full connectivity Destination** Route 10.1.0.0/16 vpc-att-1xxxxxxx Default 10.2.0.0/16 vpc-att-2xxxxxxx routing domain **Transit Gateway** 10.3.0.0/16 vpc-att-3xxxxxxx 10.0.0.0/8 **VPN** Ces S re: Invent

Isolated: Transit Gateway route domains

VPCs attach to a route table with routes to shared resources

Shared resources attach to a route table with routes to all resources

Transit Gateway

Segmentation considerations: Where to start

Security groups and IAM are effective and proven

Encourage IAM and security group use and monitor security configuration

Shared VPCs

- Tenants should limit access from the internet and other tenants
- VPCs using VPC peering are likely to benefit from Shared VPCs
- Design around resource and limit contention

Separate VPCs

- Often the best security decision is the simplest. Separate VPCs are simple.
- Use separate VPCs for strong network segmentation and resource isolation
- Transit Gateway removes the scaling issues with many VPCs (peering, VPN, routes)

Transit Gateway route tables define multi-VPC policy

• Consider isolating environments (dev and prod) and allow access to shared resources

Shared services

Shared services connectivity options

VPC peering

- One-to-one connectivity
- Scales to 100 VPCs
- Security groups across VPCs
- Inter-region peering

AWS PrivateLink

- One-to-many connectivity
- Highly scalable
- Supports overlapping CIDRs
- Uses Elastic Load Balancing
- Load balancing and hourly endpoint costs

Transit VPC

- Shared services as a spoke
- Bandwidth constrained
- Complex management
- Instance and licensing costs

- Many-to-many or one-to-many with route tables
- Highly scalable
- Hourly per AZ endpoint costs

Shared services connectivity options at scale

VPC Peering

- 1-to-1 connectivity
- Scales to 100 VPC
- Security groups across VPCs
- Inter-region peering

AWS PrivateLink

- One-to-many connectivity
- Highly scalable
- Supports overlapping CIDRs
- Uses Elastic Load Balancing
- Load balancing and hourly endpoint costs

Transit VPC

Shared services as a spoke
Bandwidth restricted
Complex management

AWS Transit Gateway

- Many-to-many or one-to-many with route tables
- Highly scalable
- Hourly per AZ endpoint costs

Shared services with Transit Gateway

Security resources

Works with flat or isolated segmentation

Using Transit Gateway and PrivateLink

AWS PrivateLink

VPC VPC

- One-to-many connectivity
- Highly scalable
- Supports overlapping CIDRs
- Uses Elastic Load Balancing
- Load balancing and hourly endpoint costs

AWS Transit Gateway

- Many-to-Many or one-to-many with route tables
- Highly scalable
- Hourly per AZ endpoint costs

Scope: Application shared services

Trust model: No mutual trust

Dependencies: Load balancing and application architecture

Scale: Thousands of spoke VPCs

Scope: Network shared services to many VPCs

Trust model: Per VPC trust, centralized control

Dependencies: Centralized control of the Transit Gateway

Scale: Thousands of spoke VPCs

Connecting on-premises

Connecting to on-premises

Virtual Private Gateway VPN

- Per VPC
- 1.25 gbps per tunnel
- Encrypted in transit

AWS Direct Connect

- Per VPC (50 per port)
- Multiple VPCs with Direct Connect gateway
 - No bandwidth restraint

Amazon EC2 customer VPN

- Per VPC or multiple (Transit VPC)
- Bandwidths vary by instance type
- AWS Marketplace options
- Scalability is generally limited by management complexity

AWS Transit Gateway VPN

- Multiple VPCs
- Add VPN connection as needed
- 1.25 gbps per tunnel
- Roadmap: AWS Direct Connect

Connecting to On-premises at Scale

Virtual Private Gateway VPN

- Per VPC
- 1.25 gbps per tunnel
- Encrypted in transit

AWS Direct Connect

- Per VPC (50 per port)
- Multiple VPCs with Direct Connect gateway
 - No bandwidth restraint

- WAN

Amazon EC2 Customer VPN

- Per VPC or multiple (Transit VPC)
- Bandwidths vary by instance type
- AWS Marketplace options
- Scalability is generally limited by management complexity

AWS Transit Gateway VPN

- Multiple VPCs
- Add VPN connection as needed
- 1.25 gbps per tunnel
 - Roadmap: AWS Direct Connect

AWS Direct Connect to Many VPCs

AWS Direct Connect: Link Aggregation

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Direct Connect gateway

direct connect gateway

AWS Direct Connect and Transit Gateway

Use Direct Connect in parallel

Use VPN over a Direct Connect public virtual interface (VIF)

^{Aws} Invent

aws

Native Direct Connect support planned for Q1 2019

AWS Direct Connect and Transit Gateway

Use an edge services VPC in front of a private virtual interface

- More detail in the network services section
- Also how used to migrate or extend existing Transit VPCs
- Helpful for single-VIF (<1 Gbps) Direct Connect
- Can be used for North-South inspection usecases

VPN With Transit Gateway

Consolidate VPN at the Transit Gateway (TGW)

- VPN acts similar to the Virtual Private Gateway (VGW)
 - Bandwidth, configuration, APIs, cost, and experience
 - VPN is attached to a TGW instead of a VGW
 - Same 1.25 gbps bandwidth per tunnel applies

Encryption to the edge of many VPCs

- Traffic is encrypted until it's inside the VPC
- Does not natively encrypt traffic between VPCs
 - Inter-region VPC peering does

VPN with Transit Gateway: Add more bandwidth

Support for spreading traffic across many tunnels

- Equal Cost Multi-Path (ECMP) support with BGP multipath
- Tested up to 50 Gbps of traffic
- Split traffic into smaller flows, multi-part uploads, etc.

Check your on-premises configuration

- Multi-path BGP
- ECMP support, amount of equal paths, reverse-path forwarding/spoofing checks
- Only supported with BGP, not static routing

Transit VPC 1.1

نے

Neat. But, why?

Network services

Reference Network Architecture

Optional network services

Do I need to put service each into their own VPC?

No, but let's understand the routing separately first.

Outbound services VPC

Use cases:

URL filtering, NAT gateway, data-loss prevention (DLP), web proxy services

Spoke route table

Route	Destination
10.2.0.0/16	Local
0.0.0.0/0	tgw-xxxxxxxxx

Outbound VPC route table

Route	Destination
100.64.0.0/16	Local
10.0.0.0/8	tgw-xxxxxxxxx
0.0.0.0/0	igw-xxxxxxxxx

0.0.0.0/0 Outbound VPC VPN

VPC route domain

10.1.0.0/16 vpc-att-a 10.2.0.0/16 vpc-att-b

Outbound route domain

Transit Gateway

SNAT SNAT

Apply SNAT outbound to the internet

Outbound VPC 100.64.0.0/16

BGP prefix Next hop
0.0.0.0/0 Local IP

BGP advertisement

re: Invent

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

VPN service insertion design notes

Instance must be able to support:

- VPN to the Transit Gateway
- BGP to the Transit Gateway (ECMP requirement)
- Source NAT to the internet

Performance

- IPsec overhead
- Compatible with auto-scaling architectures
- No cumulative bandwidth limit

High availability

- BGP and VPN Dead Peer Detection handle failover
- No API calls required for fault tolerance
- Optionally place instances in Amazon EC2 automatic recovery

Stateful services

Use Source NAT to guarantee the return flow to the same instance

Horizontally scalable service pattern

Preferred method if the service supports BGP, VPN and NAT.

Outbound services VPC: Interface

Interface service insertion design notes

Instance must be able to support:

Source NAT to the internet

Performance

- No overhead (8500 MTU)
- Limited to one Transit Gateway attachment per Availability Zone, so one route table
- Traffic is forwarded within the same Availability Zone if possible
 - Likely that traffic isn't evenly distributed across instances

High availability

- There are no built-in health checks for the VPC routes, requires monitoring and management
- Optionally place instances in Amazon EC2 automatic recovery

Stateful services

Use Source NAT to guarantee the return flow to the same instance

Simpler performance pattern

Stay within the performance of a single service instance (worst-case scenario) and configure your own high availability checks.

BGP prefix Next hop
100.64.0.0/16 Local IP

Spoke route table

Route	Destination
10.1.0.0/16	Local
100.64.0.0/16	tgw-xxxxxxxxx

Edge VPC route table

Destination
Local
tgw-xxxxxxxxx
igw-xxxxxxxxx

VPC route domain

10.1.0.0/16 vpc-att-a

Edge route domain

Transit Gateway

WAF, inspection, Load balancing

Internet

SNAT

BGP prefix **Next hop** Local IP Many prefixes

SNAT

SNAT

SNAT

Spoke route table

Route	Destination
10.1.0.0/16	Local
0.0.0.0/0	tgw-xxxxxxxxx

Can be a summary or default route in each VPC

Edge VPC route table

Route	Destination
100.64.0.0/16	Local
10.0.0.0/8	tgw-xxxxxxxxx
0.0.0.0/0	igw-xxxxxxxxx

Edge VPC 100.64.0.0/16

Only stateful services require NAT

Tunnels

and BGP

VPN

ECMP

Internet

Data Center, Branches, Clients, etc.

Many Prefixes Edge VPC VPN

VPC route domain

Edge route domain

10.1.0.0/16

Transit Gateway

Use cases:

SD-WAN, Routing, Third-party client VPN, AWS Direct Connect over a Private VIF

vpc-att-a

Reminder:

Existing network services or DMZs may be convenient, but they may also be the problem.

Remember to evaluate operational processes, alternatives, and automation

VPC to VPC service insertion

Use cases:

Intrusion detection/prevention (IDS/IPS), firewalls, NextGen

VPC to on-premises service insertion

VPC A

Spoke route table

Destination
Local
tgw-xxxxxxxxx
tgw-xxxxxxxxx

VPCs will see traffic sourced from the inline VPC CIDR range due to SNAT

This forces VPC-to-VPC and between on-premises and VPCs through the inline VPC

Using an edge services model with VPN terminated on the firewalls may be simpler

Inline VPC route table

Route	Destination
100.64.0.0/16	Local
10.0.0.0/8	tgw-xxxxxxxxx
On-premises	tgw-xxxxxxxxx
0.0.0.0/0	igw-xxxxxxxxx

Apply SNAT between VPCs for flow affinity

Inline VPC 100.64.0.0/16

ECMP VPN SNAT **SNAT SNAT**

BGP prefix **Next hop** 0.0.0.0/0 Local IP

BGP advertisement

0.0.0.0/0 Inspection VPC VPN

VPC/VPN route domain

10.1.0.0/16 vpc-att-a On-premises **On-premises VPN** Inline route domain

Transit Gateway

On-premises re:Invent

BGP prefix **Next hop** Local IP **On-premises**

BGP advertisement

Transit Gateway launch partners

OEIM

OEIM

OEIM

OEIM

Management

Orchestration: Dev & prod isolated transit network

Check Point Auto-Scaling integration

Xero TPZ est. 2015

Explicit proxy

Xero TPZ future state

Multiple Regions

AWS Region

Inter-region VPC peering

Multiple Regions

Transit Gateway in multiple Regions

Connecting Regions with VPN

Transit Gateway inter-region support coming soon!

Inter-region peering

Conclusions

Takeaways

We have tools and architectures that horizontally scale to many VPCs

There's wiggle room for your specific use cases

Use services in combination to meet scale and security requirements

Advice

Networking changes fast, no more crystal balls

- Start simple! Stay simple. Reduce complexity to smaller scopes
- Segment and modify as needed
- Experiment and test

Thank you!

Nick Matthews @nickpowpow

Please complete the session survey in the mobile app.

