Feuille de TD 9 : Fonctions à plusieurs variables

Exercice 1. Ensembles de définition

Expliciter l'ensemble de définition de chacune des fonctions suivantes et le représenter dans \mathbb{R}^2 :

1.
$$f:(x,y)\mapsto \sqrt{x+y}$$

2.
$$f:(x,y)\mapsto \sqrt{(1-x^2)(1-y^2)}$$

3.
$$f:(x,y)\mapsto \sqrt{\arctan x - \arctan y}$$

4.
$$f:(x,y) \mapsto \frac{\sqrt{y-x}}{x} + \ln(x)$$

5.
$$f:(x,y) \mapsto -\ln(x-y) + \frac{y}{x}$$

6.
$$f:(x,y)\mapsto \frac{1}{\sqrt{\ln(x+y)}} + \arctan(x-y)$$

7.
$$f:(x,y) \mapsto \ln(\sqrt{x^2 - 9y^2})$$

8.
$$f:(x,y)\mapsto \sqrt{1-x^2}+\sqrt{1-y^2}$$

9.
$$f:(x,y)\mapsto \sqrt{x^2+y^2-1}$$

10.
$$f:(x,y)\mapsto \frac{x^2+y^2-2x+k}{x^2+y^2+2x+k}$$

Exercice 2. Dérivées partielles

Calculer les dérivées partielles des fonctions suivantes en tout point (x, y) de leur ensemble de dérivabilité :

1.
$$f:(x,y) \mapsto \sqrt{(1-x^2)(1-y^2)}$$

2.
$$f:(x,y)\mapsto \sqrt{\arctan x - \arctan y}$$

3.
$$f:(x,y) \mapsto \frac{e^{xy} + e^{-xy}}{e^{xy} - e^{-xy}}$$

4.
$$f:(x,y) \mapsto \frac{x^2-y^2}{2xy}$$

5.
$$f:(x,y) \mapsto \frac{e^{xy} - e^{-xy}}{2xy}$$
5. $f:(x,y) \mapsto \frac{x^2 - y^2}{\sqrt{\ln(x+y)}} + \arctan(x-y)$

6.
$$f:(x,y) \mapsto \ln(\sqrt{x^2 - 9y^2})$$

Exercice 3. Plan tangent

Donner l'équation du plan tangent à la surface d'équation z = f(x, y) au point donné dans les cas suivants :

1.
$$f:(x,y)\mapsto \sqrt{(1-x^2)(1-y^2)}$$
 au point $(\sqrt{2},\sqrt{2},1)$.

2.
$$f:(x,y)\mapsto \sqrt{\arctan x -\arctan y}$$
 au point $(1,0,f(1,0))$.

3.
$$f:(x,y)\mapsto \frac{e^{xy}+e^{-xy}}{e^{xy}-e^{-xy}}$$
 au point $(1,1,f(1,1))$.

4.
$$f:(x,y)\mapsto \frac{x^2-y^2}{2xy}$$
 au point $(1,1,0)$

4.
$$f:(x,y)\mapsto \frac{x^2-y^2}{2xy}$$
 au point $(1,1,0)$.
5. $f:(x,y)\mapsto \frac{1}{\sqrt{\ln(x+y)}}+\arctan(x-y)$ au point $(1,1,f(1,1))$

6.
$$f:(x,y)\mapsto \ln(\sqrt{x^2-9y^2})$$
 au point $(5,1,\ln(4))$

Exercice 4. Ligne de niveau

Déterminer les lignes de niveaux suivantes :

1.
$$f(x,y) = 0$$
 où $f:(x,y) \mapsto \frac{x^2 - y^2}{2xy}$.

2.
$$f(x,y) = 0$$
 où $f:(x,y) \mapsto \frac{x^2 + y^2}{2xy}$.

3.
$$f(x,y) = 1$$
 où $f: (x,y) \mapsto \frac{x^2 + y^2}{2xy}$

4.
$$f(x,y) = 1$$
 où $f: (x,y) \mapsto \ln(x^2 + y^2)$.