赖于课程大纲的要求、个人喜好、学生的背景和能力。图中的课程从左往右越来越强调以 程序员的角度来看待系统。以下是简单的描述。

- ORG: 一门以非传统风格讲述传统主题的计算机组成原理课程。传统的主题包括逻辑设计、处理器体系结构、汇编语言和存储器系统,然而这里更多地强调了对程序员的影响。例如,要反过来考虑数据表示对 C 语言程序的数据类型和操作的影响。又例如,对汇编代码的讲解是基于 C 语言编译器产生的机器代码,而不是手工编写的汇编代码。
- **ORG**十: 一门特别强调硬件对应用程序性能影响的 ORG 课程。和 ORG 课程相比, 学生要更多地学习代码优化和改进 C 语言程序的内存性能。
- ICS: 基本的 ICS 课程,旨在培养一类程序员,他们能够理解硬件、操作系统和编译系统对应用程序的性能和正确性的影响。和 ORG+课程的一个显著不同是,本课程不涉及低层次的处理器体系结构。相反,程序员只同现代乱序处理器的高级模型打交道。ICS课程非常适合安排到一个 10 周的小学期,如果期望步调更从容一些,也可以延长到一个 15 周的学期。
- ICS+: 在基本的 ICS 课程基础上,额外论述一些系统编程的问题,比如系统级 I/O、网络编程和并发编程。这是卡内基-梅隆大学的一门一学期时长的课程,会讲述本书中除了低级处理器体系结构以外的所有章。
- SP: 一门系统编程课程。和 ICS+课程相似,但是剔除了浮点和性能优化的内容, 更加强调系统编程,包括进程控制、动态链接、系统级 I/O、网络编程和并发编程。
- 指导教师可能会想从其他渠道对某些高级主题做些补充,比如守护进程(daemon)、 终端控制和 Unix IPC(进程间通信)。

图 2 要表达的主要信息是本书给了学生和指导教师多种选择。如果你希望学生更多地

章号	主题	课程				
		ORG	ORG+	ICS	ICS+	SP
1	系统漫游	•	•	•	•	•
2	数据表示		•	•		⊙ (d)
3	机器语言			•		•
4	处理器体系结构					
5	代码优化			•		
6	存储器层次结构	⊙ ^(a)		•	•	⊙ (a
7	链接			(c)	⊙ (c)	•
8	异常控制流			•	•	•
9	虚拟内存	⊙ ^(b)		•	•	•
10	系统级 I/O				•	•
11	网络编程				•	•
12	并发编程				•	•

图 2 五类基于本书的课程

注: 符号⊙表示覆盖部分章节,其中: (a)只有硬件; (b)无动态存储分配; (c)无动态链接; (d)无浮点数。 ICS+是卡内基-梅隆的 15-213 课程。