

دانشکده مهندسی کامپیوتر دکتر بهادر بخشی

مجازىسازى كاركردهاى شبكه

🕦 مجازیسازی کارکردهای شبکه

🕦 مجازیسازی کارکردهای شبکه

🕜 شبکههای قطعی

🕦 مجازیسازی کارکردهای شبکه

- 🕜 شبکههای قطعی
 - 🕝 مرور ادبیات

🕦 مجازیسازی کارکردهای شبکه

- \Upsilon شبکههای قطعی
 - 🕝 مرور ادبیات
- ۴ مسالهی پیشنهادی

🕦 مجازیسازی کارکردهای شبکه

- \Upsilon شبکههای قطعی
 - ۳ مرور ادبیات
- ۴ مسالهی پیشنهادی

۱. مجازیسازی کارکردهای شبکه

مجازىسازى قطعى كاركردهاى شبكه

شبكههاي سنتى

- ◄ یک سرویس شبکه به صورت تعدادی کارکرد مشخص که ترافیک با ترتیب مشخصی از آن ها عبور میکند، تعریف میشود.
- ◄ کارکردهای شبکه به صورت سختافزار و نرمافزار اختصاصی تهیه شده
 از سازندگان مختلف استفاده میشوند.
- ◄ کارکردها باید در مکان مناسب در شبکه قرار گیرند و ترافیک به سمت
 آنها هدایت شود.

مجازى سازى كاركردهاي شبكه

- ◄ افزایش نیازمندی به سرویسهای متنوع با عمرکوتاه و نرخ بالای ترافیک
 - خریداری، انبارداری و استقرار سختافزارهای اختصاصی
 - افزایش هزینههای خرید، آموزش و انبارداری
 - کاهش فضای فیزیکی
 - سربار آموزش کارکنان
 - محدودیت نوآوری در سختافزار و سرویس

Network Functions Virtualization مجازىسازى كاركردهاي شبكه

شبکه های سنتی

- ◄ ترافیک کاربر باید از تعدادی کارکرد شبکه به ترتیب معینی عبور کند.
- ◄ کارکردها به صورت سختافزاری به یکدیگر متصل هستند و ترافیک با استفاده از جداول مسیریابی به سمت آنها هدایت میشود.
- ◄ نیاز به تغییر همبندی سریع و یا مکان کارکردها برای سرویسدهی بهتر
 - استقرار و تغییر ترتیب کارکردها دشوار است
 - امکان رخدادن خطاهای متعدد

Service Function Chaining زنجیرهسازی کارکرد سرویس

00000000000000

مجازىسازى كاركردهاى شبكه

◄ مجازیسازی کارکردهای شبکه

- اواخر سال ۲۰۱۲، ETSI NFV ISG توسط هفت اپراتور جهانی شبکه تأسیس شد.
 - اکنون بیش از ۲۵۰ سازمان با آن همکاری میکنند.
 - اجرای کارکردها بر روی سرورهای استاندارد با توان بالا به وسیله مجازیسازی کارکردها
 - کاهش نیاز به تجهیزات سختافزاری خاص منظوره
 - اشتراک گذاری منابع بین کارکردها
- كاهش هزينههاي تجهيزات و مصرف انرژي از طريق تجميع كاركردها

- ◄ زنجيرهسازي كاركرد سرويس
- امکان تعریف زنجیره کارکردها به صورت پویا و بدون تغییر در زیرساخت فیزیکی
 - قابل اجرا بر بستر شبکههای سنتی یا نرمافزار بنیان
 - RFC 7665 •

- ◄ زنجیرههای مرتب تمام◄ زنجیرههای مرتب جزئی

شکل ۱: زنجیرههای مرتب جزئی و کامل

Song Yang et al. "Recent Advances of Resource Allocation in Network Function Virtualization". In: IEEE Transactions on Parallel and Distributed Systems 32.2 (Feb. 2021), pp. 295-314. DOI: 10.1109/tpds.2020.3017001. URL: https://doi.org/10.1109/tpds.2020.3017001

شکل ۲: معماری سطح بالای مجازیسازی کارکردهای شبکه

- ▶ NFVO وظیفهی استقرار زنجیرههای کارکرد سرویس را برعهده دارد.
 - ▼ VNFM مسئول چرخهی زندگی کارکردهای مجازی شبکه میباشد.

تخصيص منابع

- ◄ جایگذاری کارکردهای مجازی شبکه به همراه مسیریابی ترافیک
 VPTR: VNF Placement and Traffic Routing
 - ◄ جایگذاری کارکردهای مجازی شبکه

VNFP: VNF Placement

◄ مسيريابي ترافيک

TRR: Traffic Routing

▶ بازاستقرار و تثبیت کارکردهای مجازی شبکه

VRC: VNF Redeployment and Consolidation

اهداف

- ◄ هزينه
- مسالهی پایهای در بحث تخصیص منابع
- وجود جواب با برآورده شدن محدودیتهای نودها و لینکها
 - NP-Hard •
 - ◄ كيفيت سرويس• تاخير
 - l A mal
 - انتشار
 - انتقال
 - صف
 - یردازش
 - دسترسی پذیری

اهميت تاخير

- ◄ کیفیت سرویس انتها به انتها یک زنجیره در واقع معیار کارآیی است که توسط کاربران احساس میشود.
 - ▶ ظهور اینترنت اشیا و شبکههای نسل پنجم
 - Tactile Internet •
 - شبكههاى باتاخير بسيار كم

مدلسازی تاخیر

- ◄ برای محاسبه تاخیر نیاز به مدلسازی میباشد.
- ◄ مىتوان تاخير را ثابت فرض كرده يا آن را به صورت معين در نظر گرفت.
 - ◄ تاخير تصادفي
 - تئوری صف: حالت میانه را پیدا میکند.
 - Network Calculus: بدترین حالت را پیدا میکند و میبایست مدل مناسب با کمترین فاصله را بدست آورد.

مجازیسازی کارکردهای شبکه

- 🕜 شبکههای قطعی
 - 🕝 مرور ادبیات
- ۴ مسالهی پیشنهادی

۲. شبکههای قطعی

مجازىسازى قطعى كاركردهاى شبكه

مقدمه

- ◄ حضور کاربردهای بلادرنگ بسیار حساس به تاخیر و خرابی
- Controller (HDMI)، Interface Multimedia High-Definition etc. bus)، (CAN Network Area
 - مهاجرت از شبکههای خاصمنظوره به شبکههای IP
 - تاخیر قطعی در مقابل تاخیر احتمالی
 - ◄ عدم قطعیت ذاتی شبکههای فعلی
 - الگوريتمهاي زمانبندي
 - ازدحام
 - خرابی
 - ...•

◄ نیاز به ایجاد قطعیت در معماری شبکه

شبکهسازی حساس به زمان (Time Sensitive Networking)

- ▼ کارگروه IEEE 802.1 TSN
 - ◄ تمركز بر لايه پيوند داده
- ◄ جریان TSN: یک ارتباط شبکهای تکپخشی یا چندپخشی از یک ایستگاه انتهایی به یک ایستگاه انتهایی دیگر

شبکهسازی حساس به زمان (Time Sensitive Networking)

- ◆ Flow Concept: A TSN flow (data link flow) is characterized by the QoS properties.
- ◆ Flow Synchronization: IEEE 802.1AS Time Synchronization for Time-Sensitive Applications
- Flow Management: Enables operators to dynamically discover, configure, monitor, and report bridge and end station capabilities.
- ◆ Flow Control: Specifies how frames belonging to a prescribed traffic class are handled within TSN enabled bridges.
- ▼ Flow Integrity: Deliver frames regardless of the dynamic network conditions, including physical breakage and link failures.

شبکهسازی قطعی (Deterministic Networking)

- ▼ کارگروه IETF DetNet
 - ▶ تمرکز بر لایه شبکه
- ▶ برای شبکههایی با مدیریت مشترک یا تحت مدیریت گروه کوچک
- ◄ شبکهسازی قطعی نمونهای از سرویس گارانتیشده IntServ میباشد.
- ◄ جریانهای DetNet بر اساس کلاسهای کیفیت سرویس مشخص میشوند.
 - ◄ در نظر گرفتن جریانهای DetNet در کنار جریانهای
 - ◄ اهداف
 - کران معین برای تاخیر
 - كران معين تغييرات تاخير
 - کمترین میزان از دست رفتن بسته

شبکهسازی قطعی (Deterministic Networking)

Norman Finn et al. *Deterministic Networking Architecture*. RFC 8655. Oct. 2019. DOI: 10.17487/RFC8655. URL:

https://rfc-editor.org/rfc/rfc8655.txt Balazs Varga et al. Deterministic Networking (DetNet) Data Plane Framework.

RFC 8938. Nov. 2020. doi: 10.17487/RFC8938. URL:

https://rfc-editor.org/rfc/rfc8938.txt Balazs Varga et al. Deterministic Networking (DetNet) Data Plane: IP. RFC

8939. Nov. 2020. DOI: 10.17487/RFC8939. URL:

https://rfc-editor.org/rfc/rfc8939.txt

معماري شبكهسازي قطعي

- ▶ کیفیت سرویس در شبکههای قطعی:
- کران بالا و پایین برای تاخیر انتها به انتها از مبدا به مقصد، تغییرات تاخیر کران دار، ارسال زمان دار
 - نسبت از دست رفتن بستهها تحت فرضهای مختلف
 - كران بالا براى بستههاى خارج از ترتيب
 - ▶ تنها دغدغه در شبکهسازی قطعی بدترین حالتها میباشند.
 - ◄ اینجا حالتهای میانگین و ... از اهمیت کمی برخوردار هستند.
 - ▶ تکنیکهای برآورده ساختن نیازمندیهای کیفیت سرویس
 - تخصیص منابع
 - حفاظت از سرویس
 - مسیرهای صریح

معماري شبكهسازي قطعي

- ▶ تخصیص منابع
- بدست آوردن کیفیت سرویس با از بین بردن یا کاهش اثر از دست رفتن بستهها در اثر ازدحام
 - كاهش تغييرات تاخير
- ◄ حافظت از سرویس با تحمل یا از بین بردن از دست رفتن بستهها در اثر خرابی تجهیزات
 - ارسال به ترتیب بستهها
 - تكرار بستهها
 - کد کردن بستهها
- ◄ مسیرهای صریح در اثر تغییرات بلافلاصه تغییر نمیکند و تلاش میکند
 تا حد امکان تغییر نکند.

معماري شبكهسازي قطعي

```
packets going
                               packets coming
 v down the stack v
                                 up the stack
       Source
                                  Destination
 Service sub-layer:
                              Service sub-layer:
 Packet sequencing
                            Duplicate elimination
  Flow replication
                                  Flow merging
  Packet encoding
                               Packet decoding
Forwarding sub-laver:
                            Forwarding sub-layer:
Resource allocation
                             Resource allocation
   Explicit routes
                               Explicit routes
   Lower layers
                                Lower layers
```

شکل ۳: معماری یشته شبکههای قطعی

▶ جریانهای تجمعی

$$R(t)$$
, non – decreasing, $R(0) = 0$

شكل ۴: انواع جريانها

شکل ۵: معماری سیستم

شکل ۶: جریان ورودی و خروجی

◄ اندازه بافر

$$backlog(t) = R(t) - R^*(t)$$

◄ تاخير

$$d(t) = \inf\{d|R(t) \le R^*(t+d)\}$$

$$(R \cup +\infty, \wedge, +) \blacktriangleleft$$

- ▶ جمع تبدیل به محاسبهی infimum میشود.
 - ◄ ضرب به جمع تبدیل میشود.

$$(3 \land 4) + 5 = (3+5) \land (4+5) = 8 \land 9 = 8$$

▶ پیچیش کمینه - جمع

$$(f \otimes g)(t) = \int_0^t f(t-s)g(s)ds$$

$$(f \otimes g)(t) = \inf_{0 \le s \le t} \{f(t-s) + g(s)\}$$

منحنی ورودی، جریان R با $\alpha(.)$ محدود شده است.

$$R(t) - R(s) \le \alpha(t-s)$$

b برابر با R^* برابر با R^* و جریان خروجی R^* برابر با R^*

$$R^* > R \otimes b$$

◄ منحنی ورودی برای یک سطل سوراخ دار

$$\alpha(t) = rt + b$$

مجازیسازی کارکردهای شبکه

- ۳ شبکههای قطعی
 - 🕝 مرور ادبیات
- ۴ مسالهی پیشنهادی

۳. مرور ادبیات

مجازىسازى قطعى كاركردهاى شبكه

مجازىسازى كاركردهاى شبكه

00000000000000

- ◄ مسالهی زمانبندی سرویسهای شبکه
- ◄ سرویسهای شبکه در قالب تعداد کارکرد مجازی با عمرمحدود
- ▶ کارکردهای مجازی شبکه به صورت store-and-foward عمل می کنند.
 - ◄ تاخير انتقال و تاخير پردازش
- ◄ این مقاله محدودیت پردازش برای نودها و ظرفیت برای لینکها را در نظر گرفته است.
- ▶ کارکردها میتوانند میزان جریان عبوری را تغییر دهند. مثلا دیوار آتش مىتواند بستهها را عبور ندهد.

Long Qu, Chadi Assi, and Khaled Shaban. "Delay-Aware Scheduling and Resource Optimization With Network Function Virtualization". In: IEEE Transactions on Communications 64.9 (Sept. 2016), pp. 3746-3758. DOI:

^{10.1109/}tcomm.2016.2580150. URL:

https://doi.org/10.1109/tcomm.2016.2580150

مرجع [۳]

- ▶ ارائهی یک چهارچوب مدیریتی براساس مدل تاخیر ارائه شده
 - ◄ تاخير پردازش برای تعداد مشخصی نمونه از کارکرد
 - ◄ دستەبندى كاركردھا
 - وابسته به اندازه بسته (exponential)
 - مستقل از اندازه بسته (deterministic)

Qing Li et al. "Quokka: Latency-Aware Middlebox Scheduling with dynamic resource allocation". In: Journal of Network and Computer Applications 78 (Jan. 2017),

pp. 253-266. DOI: 10.1016/j.jnca.2016.10.021. URL:

https://doi.org/10.1016/j.jnca.2016.10.021

- ◄ تاخير انتقال و تاخير پردازش
- ◄ در نظر گرفتن زنجیرههای مرتب جزئی و تاثیر آنها بر تاخیر
- ▶ قطعه قطعه کردن زنجیرههای مرتب جزئی برای تبدیل آنها به تعدادی زنجیره مرتب کامل

Song Yang et al. "Delay-Sensitive and Availability-Aware Virtual Network Function Scheduling for NFV". In: IEEE Transactions on Services Computing (2019), pp. 1-1. DOI: 10.1109/tsc.2019.2927339. URL: https://doi.org/10.1109/tsc.2019.2927339

مرجع [۶]

- ◄ تاخير انتقال ثابت در نظر گرفته شده است.
- ◄ زنجيرهها نيازمندي تاخير انتها به انتها دارند.
 - ◄ مسالهی بهینهسازی چند دورهای
 - ◄ به اشتراک گذاری نمونهها
 - ▶ گسترش عرضی و طولی
- ◄ عدم توانایی در نظر گرفتن همه این شرایط در مسالهی بهینهسازی

Meitian Huang et al. "Maximizing Throughput of Delay-Sensitive NFV-Enabled Request Admissions via Virtualized Network Function Placement". In: *IEEE Transactions on Cloud Computing* (2019), pp. 1–1. DOI: 10.1109/tcc.2019.2915835. URL: https://doi.org/10.1109/tcc.2019.2915835

▶ یافتن کران پایین سرویسدهی و استفاده از Network Calculus برای زنحیرهسازی آنها

◄ در نظر گرفتن نمایه Latency Rate (LR) برای سرویسها

$$P[r,\theta](t) = \max\{0, r(t-\theta)\}\$$

 θ : latency

r : rate

Qiang Duan. "Modeling and Performance Analysis for Service Function Chaining in the SDN/NFV Architecture". In: 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE, June 2018. DOI: 10.1109/netsoft.2018.8460068. URL: https://doi.org/10.1109/netsoft.2018.8460068

- ▶ ارائه یک چهارچوب برای محاسبه کران تاخیر
 - Stochastic Network Calculus <
 - ▶ کران یا احتمال تخطی

Wang Miao et al. "Stochastic Performance Analysis of Network Function Virtualization in Future Internet". In: IEEE Journal on Selected Areas in Communications 37.3 (Mar. 2019), pp. 613-626. DOI: 10.1109/jsac.2019.2894304. URL:

https://doi.org/10.1109/jsac.2019.2894304

◄ در نظر گرفتن دو معماری مختلف برای ترکیب شبکههای NFV و SDN

- Controller interacts with VNFs
- Switches interacts with VNFs

Ahmed Fahmin et al. "Performance Modeling of SDN with NFV under or aside the Controller". In: 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). IEEE, Aug. 2017. DOI: 10.1109/ficloudw.2017.76. URL: https://doi.org/10.1109/ficloudw.2017.76

شکل ۷: معماری SDN و NFV در کنار یکدیگر

شکل ۸: معماری SDN و NFV در کنار یکدیگر

سابقەي كارھا

جدول ۱: جمعبندی مقالات کیفیت سرویس

اندازه بافر				تاخير		مدلسازي	مرجع
	پردازش	صف	انتقال	انتشار	Net. Calculus	تئوری صف	#
√	✓	✓	-	-	✓	-	[v]
_	_	_	✓	✓	_	✓	[1]
_	_	_	✓	_	_	✓	[٣]
_	_	✓	_	✓	_	✓	[٨]
_	_	✓	✓	_	_	✓	[۶]
_	_	✓	✓	✓	✓	_	[4]

فهرست

مجازیسازی کارکردهای شبکه

- ۲ شبکههای قطعی
 - 🕝 مرور ادبیات
- ۴ مسالهی پیشنهادی

۴. مسالهی پیشنهادی

يرهام الوانى

مسالهي پيشنهادي

- ◄ نیازمندیهای شبکههای قطعی
- ◄ كران بالاي پارامترهاي غيرقطعي
 - ▶ مجازیسازی کارکردهای شبکه

مرور ادبيات شبكههاي قطعي مجازىسازى كاركردهاى شبكه مراجع مسالهي پيشنهادي 000000 0000000000000 000000000000000

مسالهي پيشنهادي

پرهام الوانی

جایگذاری قطعی زنجیرههای کارکرد در زیرساخت مجازیسازی شبکه

مجازىسازى قطعى كاركردهاى شبكه

- ۱. مدلسازی تاخیر با استفاده از Network Calculus برای محاسبه کرانهای
 - ۲. مدلسازی مسالهی بهینهسازی
 - ۳. تخمین مسالهی بهینهسازی با یادگیری تقویتی و ...

ىادگىرى تقوىتى

۱. استفاده از عاملهای یادگیری تقویتی در مساله عامل برنامهریزی خطی

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. "Reinforcement Learning for Integer Programming: Learning to Cut". In: Proceedings of the 37th International Conference on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020, pp. 9367-9376. URL: http://proceedings.mlr.press/v119/tang20a.html

- ۲. استفاده از عاملهای یادگیری تقویتی در مساله جایگذاری سرویسهای مجازي شبكه
- ۳. در این قسمت میتوان برای آموزش عامل از الگوریتمهای یادگیری عميق مانند DQN استفاده كرد.

Jianing Pei et al. "Optimal VNF Placement via Deep Reinforcement Learning in SDN/NFV-Enabled Networks". In: IEEE Journal on Selected Areas in Communications 38.2 (Feb. 2020), pp. 263-278. DOI: 10.1109/jsac.2019.2959181. URL: https://doi.org/10.1109/jsac.2019.2959181

- [1] Long Qu, Chadi Assi, and Khaled Shaban. "Delay-Aware Scheduling and Resource Optimization With Network Function Virtualization". In: IEEE Transactions on Communications 64.9 (Sept. 2016), pp. 3746-3758. DOI: 10.1109/tcomm.2016.2580150. URL: https://doi.org/10.1109/tcomm.2016.2580150.
- [2] Ahmed Fahmin et al. "Performance Modeling of SDN with NFV under or aside the Controller". In: 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). IEEE, Aug. 2017. DOI: 10.1109/ficloudw.2017.76. URL: https://doi.org/10.1109/ficloudw.2017.76.

- [3] Qing Li et al. "Quokka: Latency-Aware Middlebox Scheduling with dynamic resource allocation". In: Journal of Network and Computer Applications 78 (Jan. 2017), pp. 253–266. DOI: 10.1016/j.jnca.2016.10.021. URL: https://doi.org/10.1016/j.jnca.2016.10.021.
- [4] Qiang Duan. "Modeling and Performance Analysis for Service Function Chaining in the SDN/NFV Architecture". In: 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE, June 2018. DOI: 10.1109/netsoft.2018.8460068. URL: https://doi.org/10.1109/netsoft.2018.8460068.

[5] Norman Finn et al. Deterministic Networking Architecture. RFC 8655. Oct. 2019. DOI: 10.17487/RFC8655. URL: https://rfc-editor.org/rfc/rfc8655.txt.

شبكههاى قطعى

[6] Meitian Huang et al. "Maximizing Throughput of Delay-Sensitive NFV-Enabled Request Admissions via Virtualized Network Function Placement", In: IEEE Transactions on Cloud Computing (2019), pp. 1–1. DOI: 10.1109/tcc.2019.2915835.URL: https://doi.org/10.1109/tcc.2019.2915835.

- [7] Wang Miao et al. "Stochastic Performance Analysis of Network Function Virtualization in Future Internet". In: IEEE Journal on Selected Areas in Communications 37.3 (Mar. 2019), pp. 613–626. DOI: 10.1109/jsac.2019.2894304. URL: https://doi.org/10.1109/jsac.2019.2894304.
- [8] Song Yang et al. "Delay-Sensitive and Availability-Aware Virtual Network Function Scheduling for NFV". In: IEEE Transactions on Services Computing (2019), pp. 1–1. DOI: 10.1109/tsc.2019.2927339. URL: https://doi.org/10.1109/tsc.2019.2927339.

[9] Jianing Pei et al. "Optimal VNF Placement via Deep Reinforcement Learning in SDN/NFV-Enabled Networks".

In: IEEE Journal on Selected Areas in Communications

38.2 (Feb. 2020), pp. 263-278. DOI:

10.1109/jsac.2019.2959181. URL:

https://doi.org/10.1109/jsac.2019.2959181.

- [10] Yunhao Tang, Shipra Agrawal, and Yuri Faenza.

 "Reinforcement Learning for Integer Programming:

 Learning to Cut". In: Proceedings of the 37th International

 Conference on Machine Learning. Ed. by Hal Daumé III

 and Aarti Singh. Vol. 119. Proceedings of Machine

 Learning Research. PMLR, 2020, pp. 9367–9376. URL:

 http://proceedings.mlr.press/v119/tang20a.html.
- [11] Balazs Varga et al. Deterministic Networking (DetNet)
 Data Plane Framework. RFC 8938. Nov. 2020. DOI:
 10.17487/RFC8938. URL:
 https://rfc-editor.org/rfc/rfc8938.txt.

[12] Balazs Varga et al. Deterministic Networking (DetNet)
Data Plane: IP. RFC 8939. Nov. 2020. Doi:

10.17487/RFC8939. URL:

https://rfc-editor.org/rfc/rfc8939.txt.

[13] Song Yang et al. "Recent Advances of Resource Allocation in Network Function Virtualization". In: IEEE Transactions on Parallel and Distributed Systems 32.2 (Feb. 2021), pp. 295–314. DOI:

10.1109/tpds.2020.3017001.URL:

https://doi.org/10.1109/tpds.2020.3017001.