1er Control Arquitectura de Computadors					Curs 2012-2013 Q	
oblema 1. (3 pu	ntos)					
	computador con un procesa to flotante y ejecuta 1200 mi					
erduones de pan	10 Hotalite y ejecuta 1200 mi		icciones que s	e distribuyen	ue la siguiente locina	
		punto flotante	enteras	memoria		
	Nunero de instrucciones	500 millones	300 millones	400 millones		
	СРІ	4	2	7]	
Calcula el tiem	po de ejecución del program	a P.				
Calcula el CPI d	lel programa P.					
Calcula el rend	imiento en MIPS y MFLOPS d	de P.				
		and different for			1.0	
•	ocesador está estudiando un				_	
instrucciones de	coma flotante, una ganancia				_	
instrucciones de	coma flotante, una ganancia				_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de rucciones de me	coma flotante, una ganancia	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de trucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	
instrucciones de rucciones de me	coma flotante, una ganancia moria.	de 0,75 en las i	nstrucciones (de enteros y ι	_	

	a CPU, tiene una carga capacitiva equivalente de 15 nF (nanofaradios), y una corriente de fugas de 10 A y funciona n voltaje de 1,2 V.
e)	Calcula la potencia media debida a fugas, la debida a conmutación y la total para el programa P.
Ecto	e computador está formado por los componentes mostrados en la tabla siguiente. La tabla también muestra el

Este computador está formado por los componentes mostrados en la tabla siguiente. La tabla también muestra el numero de componentes de cada tipo y el tiempo medio hasta fallo (MTTF) de cada componente.

Componente	Fuente alimentación	СРИ	Ventilador CPU	Placa base	DIMMs	Discos duros	Tarjetas graficas
Nº	1	1	1	1	4	2	2
MTTF (horas)	100.000	1.000.000	100.000	200.000	1.000.000	125.000	500.000

	No	1	1	1	1	4	2	2	
	MTTF (horas)	100.000	1.000.000	100.000	200.000	1.000.000	125.000	500.000	
-	El tiempo medio para reemplazar un componente que ha fallado (<i>mean time to repair</i>) es de 5 horas y la probabilidad de fallo sigue una distribución exponencial.								
-	c ula el tiempo conibilidad del :		a fallos de	l hardware	(MTTF), e	el tiempo r	nedio entre	e fallos (M	ГВF) y la

Cognoms:	. Nom:
1er Control Arquitectura de Computadors	Curs 2012-2013 Q1

Problema 2. (3 puntos)

Dado el siguiente código escrito en C:

```
typedef struct {
   int a;
      char b;
   char c;
   int *d;
   short e;
} s1;

short F(s1 *alto, int bola);
int examen(s1 uno, char dos, s2 *tres){
   int i, j;
   s2 M[10][10];
   ...
}
```

a) **Dibuja** como quedarían almacenadas en memoria las estructuras s1 y s2, indicando claramente los deplazamientos respecto al inicio y el tamaño de todos los campos.

b) **Dibuja** el bloque de activación de la función examina, indicando claramente los desplazamientos relativos al registro EBP necesarios para acceder a los parámetros y a las variables locales.

M[i][7].f.c = dos;
d) Traduce la siguiente sentencia a ensamblador del x86, suponiendo que está dentro de la función examina:
tres->g[1]=F(&uno, 47);
e) Traduce la siguiente sentencia a ensamblador del x86, suponiendo que está dentro de la función examina (es código se ha de traducir a 8 instrucciones x86):
M[0][0].f.a = uno.a;
M[1][0].f.c = uno.c; M[0][1].f.d = uno.d;
M[1][1].f.e = uno.e;

Cognoms:	
1er Control Arquitectura de Computadors	Curs 2012-2013 Q1
2-112-(4	
Problema 3. (4 puntos)	
Dada la siguiente subrutina escrita en C: void sumar (int V[], int W[])	
{	
int i; for (i=0; i<1000000; i++)	
V[i] = V[i]+W[i];	
}	
 a) Traduce la subrutina a lenguaje ensamblador x86 sin hacer ningún ti i en un registro). 	po de optimización (salvo poner la variable
 Suponiendo que todas las instrucciones x86 tardasen 2 ciclos en eje GHz, calcula los MIPS y el tiempo de ejecución de la subrutina. 	cutarse en un procesador que funciona a 2

En el modo de 32 bits que estudiamos en este curso, las instrucciones multimedia SSE usan los 8 registros de 128 bits %xmm0 -%xmm7. La instrucción **paddd op1, op2** realiza la operación **op2 = op2 + op1**. Los dos operandos son de 128 bits, y la instrucción realiza la suma de 4 enteros de 32 bits empaquetados en cada uno de los operandos. La instrucción **movdqa op1, op2** realiza la operación **op2 <- op1**, donde op1 y op2 son operandos de 128 bits.

c)	Optimiza la subrutina usando estas instrucciones.
d)	Suponiendo que todas las instrucciones x86 tardasen 2 ciclos en ejecutarse en un procesador que funciona a 2 GHz, a excepción de las instrucciones multimedia, que tardan 4 ciclos, calcula los MIPS en el código optimizado
	y la ganancia respecto al código original en tanto por ciento.
e)	La opción SIMD es más eficiente que la original, pero sin embargo tiene menos MIPS. Justifica este hecho.