Identity Based Encryption: An Overview

Palash Sarkar

Indian Statistical Institute

Structure of Presentation

- Conceptual overview and motivation.
- Some technical details.
- Brief algebraic background.
- Some constructions.
- News from the industry.

Conceptual Overview and Motivation

Science of Encryption

Evolution

- Classical cryptosystems.
 - encryption and decryption keys are same.
 - both are secret.
 - Problems: key distribution and management.
- Public key cryptosystems. A paradigm shift.
 - encryption and decryption keys are different.
 - encryption key is public; decryption key is secret.
 - Problems: Operational issues.

Public Key Encryption (PKE)

- Alice has two keys
 - pk_A : Available in a public directory.
 - sk_A : Kept secret by Alice.
- Bob encrypts a message using pk_A .
- Alice decrypts the ciphertext using sk_A .
- Problem: (Wo)man in the middle.
 - Eve impersonates Alice.
 - Puts a public key pk_E in Alice's name.
 - Eve decrypts any message encrypted using pk_E .

Digital Signature Protocol

- Consists of algorithms (Setup, Sign, Verify).
- Setup generates (pk_C, sk_C) for Charles.
- pk_C is made public (placed in a public directory).
- Charles signs message M using sk_C to obtain signature σ .
- Anybody can verify the validity of (M, σ) using pk_C .

Certifying Authority (CA)

- Consider Charles to be CA.
- Alice obtains certificate.
 - Alice generates (pk_A, sk_A) ; sends pk_A to CA.
 - CA signs (Alice, pk_A) using sk_C to obtain σ ; Alice's certificate: (Alice, pk_A , σ).
- Bob sends message M to Alice.
 - Verifies (Alice, pk_A , σ) using pk_C .
 - Encrypts M using pk_A .

X.509 Certificates Structure.

- version number
- serial number
- signature algorithm ID
- issuer name
- validity period
- subject name (i.e., certificate owner)
- certificate owner's public key
- optional fields
- the CA's signature on all previous fields

Setting Up an SSL Session

- Hello: I am Alice (client); I am Bob (server); agree on specific cryptographic algorithms to be used during the session;
- Bob sends his certificate to Alice;
- Alice verifies certificate using CA's public key;
- Alice generates a random master secret key MS;
- Alice encrypts MS using Bob's public key and sends to Bob;
- Using MS, both Alice and Bob generate two keys K_1 and K_2 .
- K_1 : used for authentication; K_2 : used for encryption.

CA: Operational Issues

- How long will Alice's certificate be valid?
 - CA publishes certificate status information.
 - This information has to be fresh (to a day, for example).
 - Bob has to verify that Alice's certificate has not been revoked.
- Does Bob trust Alice's CA?
 - Alice and Bob may have different CAs.
 - This may lead to a chain (or tree) of CAs.
 - CAs have to certify each other.

Public Key Infrastructure

- Consists of certifying authorities and users.
- Certificate status information.
 - Certificate revocation list (CRL).
 - Online certificate status protocol (OCSP).
 - One-way hash chains.
- A major stumbling block for widespread adoption of PKE.

Certificate Revocation Lists

- CA periodically issues the list of revoked certificates.
 - Delta-CRL: incremental update;
 - Example: issue new CRL every month and delta-CRL every day.
- High transmission cost: complete list must be downloaded by any party who wants to check the status of a certificate.

OCSP

- CA maintains an online server.
- Responds to any certificate status query by generating a fresh signature on the current status.
- Reduces transmission cost to a single signature per query.
- Substantially increases computation load for the server.
 - Vulnerable to a denial-of-service attack if server is centralized;
 - If the service is distributed, then compromising any server compromises the entire system.

One-Way Hash Chains

"Novomodo" (Micali): simplified description.

- Suppose Alice's certificate is to be valid for *n* days.
- For Alice, CA chooses a random value X_0 and computes

$$X_1 = H(X_0), X_2 = H(X_1), \dots, X_n = H(X_{n-1});$$

H is a one-way hash function.

• Puts X_n in Alice's certificate, i.e.,

(Alice,
$$pk_A$$
, X_n , sign _{sk_C} (Alice, pk_A , X_n)).

One-Way Hash Chains (contd.)

- If Alice's certificate is valid on the i-th day, CA sends X_{n-i} to the directories; otherwise it does not.
- Bob checks freshness by reading X_{n-i} and verifying

$$X_n \stackrel{?}{=} H^i(X_{n-i}).$$

- Advantages.
 - Computational: hashing is much faster than signing.
 - Transmission: the directory's response to a status query is X_{n-i} ;
 - Security: the directories need not be trusted.

Identity Based Encryption

Identity Based Encryption

- Alice's e-mail id alice@gmail.com is her public key.
- Alice authenticates herself to an "authority" and obtains the private key corresponding to this id.
- Bob uses alice@gmail.com and some public parameters of the "authority" to encrypt a message to Alice.
- Alice decrypts using her private key.
- No CA; no certificates; no CRLs; no chain of CAs!

Hierarchical IBE (HIBE)

"authority" is called a private key generator (PKG)

- Delegate the capability for providing private keys to lower level entities.
- This creates a hierarchy.
- There are no lower level public parameters. Only the PKG has public parameters.
- Alice obtains her private key from her "local" key generation centre.
- Bob does not have to bother about who generated Alice's private key.

IBE Problems

- Sending Alice's private key requires a secure channel.
- Inherent key escrow: Alice's private key is known to the PKG.
- How does Alice regain her privacy?
 - Basic idea: double encryption; combine a PKE and an IBE; many subtleties to take care of.
 - Examples:
 - 1. Certificateless encryption.
 - 2. Certificate based encryption.

Some Historical Milestones

Classical: ..., Enigma, DES, AES.

Public key: Diffie-Hellman, 1976.

- RSA, 1978.
- El Gamal, 1984.
- Cramer-Shoup, 1998.

IBE: Proposed by Shamir, 1984.

- Cocks, 2000 (or earlier).
- Sakai-Ohgishi-Kasahara, 2000.
- Boneh-Franklin, 2001.
 Led to major research effort.

Some Technical Details

Definition of IBE

Set-Up:

Input: desired security level.

Output: PP and msk for the PKG.

Key Generation:

Input: identity ID, PP and msk.

Output: d_{ID} , the secret key for ID.

Encryption:

Input: identity ID, msg M, PP.

Output: ciphertext C.

Decryption:

Input: ID, C, d_{ID} .

Output: M or bad.

Who Does What?

- PKG runs **Set-Up**.
- PKG runs Key Generation.
- Bob runs Encryption.
- Alice runs Decryption.

Adversary Does What?

Intuitive goals of an adversary.

- Get the master secret key of the PKG.
- Get the decryption key of Alice.
- Try to decipher a ciphertext intended for Alice.
- Indistinguishability of ciphertext distributions.
 - Obtain the decryption keys of some other persons.
 - Ask Alice to decrypt a few other (possibly mal-formed) ciphertexts.

Modelling Paranoid Security

Adversarial goal: Weak.

Notion of indistinguishability.

- Let M_0 and M_1 be two distinct equal length messages.
- Let C_0 be the set of all ciphertexts which can arise from M_0 . Similarly define C_1 .
- Task: given C from C_b , for a randomly chosen b, determine b.

Oracles.

- Allowed to obtain other decryption keys.
- Allowed to ask Alice for decryption of other ciphertexts.

Modelling Paranoid Security

Adversarial resources: maximum practicable.

Probabilistic algorithm.

- Asymptotic setting: polynomial time (in the security parameter) computation.
- Concrete setting: relate success probability to running time.

Security Definition

Game between adversary and simulator.

Set-Up: simulator

- Generates PP and msk.
- Provides the adversary with PP.
- Keeps msk secret.

Phase 1: adversarial queries.

- Key extraction oracle: ask for the key of any identity.
- Decryption oracle: ask for the decryption of any ciphertext on any identity.
- Restriction: cannot ask for decryption using ID, if a key for ID has been asked earlier.

Security Definition (contd.)

Challenge:

- Adversary outputs ID^* and two equal length messages M_0 and M_1 .
- Adversary should not have asked for the private key of ID*.
- Simulator chooses a random bit b; encrypts M_b using ID^* to obtain C^* ; gives C^* to the adversary.

Phase 2: adversarial queries.

- Same as Phase 1.
- More restrictions: cannot ask for the private key of ID*; cannot ask for the decryption of C^* under ID*.

Security Definition (contd.)

Guess:

- adversary outputs a bit b';
- adversary wins if b = b'.

Advantage:

$$\epsilon = 2 \times |\Pr[b = b'] - 1/2|.$$

 (ϵ, t) -adversary: running time t; advantage ϵ .

Security Definition (contd.)

- Strongest definition: Full model: adaptive-ID and CCA-secure.
- Weaker definitions:
 - Adaptive-ID and CPA-secure.
 Adversary not provided with the decryption oracle.
 - Selective-ID.

 Adversary has to commit to the target identity even before the protocol is set-up.
 - CPA-secure.
 - CCA-secure.

Brief Algebraic Background

Bilinear Map

$$e:G_1\times G_1\to G_2.$$

- G_1 , G_2 are cyclic groups of same prime order p;
- G_1 : additively written, $G_1 = \langle P \rangle$;
- G_2 : multiplicatively written.
- Known examples: Weil and Tate pairings.
 - G_1 : subgroup of an elliptic curve group.
 - G_2 : subgroup of the multiplicative group of a finite field.

Bilinear Map: Properties

Binlinearity:

$$e(aP, bP) = e(P, P)^{ab}.$$

Non-degeneracy: $e(P, P) \neq 1$.

Computability: e(Q, R) can be "efficiently" computed.

Gap DH Groups

Consider DDH in $\overline{G_1}$.

- Instance: (P, aP, bP, Z).
- Verify

$$e(P,Z) \stackrel{?}{=} e(aP,bP).$$

• Verification succeeds iff Z = abP.

Thus, G is a group where it is easy to solve DDH but hard to solve CDH.

Hardness Assumption

Bilinear Diffie-Hellman Problem (BDH)

Instance: (P, aP, bP, cP).

Task: compute $e(P, P)^{abc}$.

Decisional Bilinear Diffie-Hellman Problem (DBDH)

Instance: (P, aP, bP, cP, Z).

Task: Decide between

- $Z = e(P, P)^{abc}$ (i.e., Z is real)
- Z is random.

Several variants of the DBDH assumption are also used.

DBDH Advantage

Let A be a probabilistic algorithm

- input: $(P, P_1, P_2, P_3, Z) \in G_1^4 \times G_2$;
- output: a bit b (denoted by $A \Rightarrow b$).

Advantage of A.

$$\begin{array}{l} \mathsf{Adv}(\mathcal{A}) \\ = |\Pr[\mathcal{A} \Rightarrow 1|Z \text{ is real}] \\ - \Pr[\mathcal{A} \Rightarrow 1|Z \text{ is random}|. \end{array}$$

Adv(t) is the supremum of advantages over all algorithms \mathcal{A} running in time at most t.

DBDH is (ϵ, t) -hard if $Adv(t) \leq \epsilon$.

Joux's Key Agreement Protocol

3-party, single-round.

- Three users U_1, U_2 and U_3 ;
- U_i chooses a uniform random r_i and broadcasts $X_i = r_i P$;
- U_i computes $K = e(X_j, X_k)^{r_i}$, where $\{j, k\} = \{1, 2, 3\} \setminus \{i\};$

$$K = e(P, P)^{r_1 r_2 r_3}.$$

Some Constructions

Cocks' IBE

- N = pq;
- J(N): set of elements with Jacobi symbol 1 modulo N;
- QR(N): set of quadratic residues modulo N.

Public Parameters.

- N; $u \stackrel{\$}{\leftarrow} J(N) \setminus QR(N)$; u is a random pseudo-square;
- hash function H() which maps identities into J(N).

Master Secret Key: p and q.

Cocks' IBE (contd.)

Key Generation for ID:

- $R = H(\mathsf{ID});$
- $r = \sqrt{R}$ or \sqrt{uR} according as R is square or not;
- secret key corresponding to ID is $d_{ID} = r$.

Cocks' IBE (contd.)

Encryption of a bit m using an identity ID.

- $R = H(\mathsf{ID}); t_0, t_1 \overset{\$}{\leftarrow} \mathbb{Z}_N;$
- compute $d_a=(\overline{t_a^2}+\overline{u^aR})/t_a$ and $c_a=(-1)^m\cdot(\frac{t_a}{N});$
- ciphertext: $((d_0, c_0), (d_1, c_1))$.

Decryption of $((d_0, c_0), (d_1, c_1))$ using ID and $d_{ID} = r$:

- R = H(ID); set $a \in \{0, 1\}$ such that $r^2 = u^a R$;
- set $g=d_a+2r$; (note $g=\left(\frac{(t_a+r)^2}{t_a}\right)$ and so, $\left(\frac{g}{N}\right)=\left(\frac{t_a}{N}\right)$;)
- compute $(-1)^m$ to be $c_a \cdot (\frac{g}{N})$.

Cocks IBE: Issues

- One main problem: size of the ciphertext is very large; two elements of \mathbb{Z}_N per bit.
- Boneh, Gentry and Hamburg:
 - 1. An IBE which encrypts a single bit. (A general description of which the Cocks-IBE is *not* an instantiation.)
 - 2. Reuse of randomness for encrypting more than one bit.
- Significantly reduces the size of the ciphertext.
- Trade-off: substantial increase in encryption time.
- Better balance: ongoing research work.

Boneh-Franklin IBE

- Setup: $\langle P \rangle = G_1, s \leftarrow \mathbb{Z}_p, P_{\mathsf{pub}} = sP$ $\mathsf{PP} = \langle P, P_{\mathsf{pub}}, H_1(), H_2() \rangle, \mathsf{msk} = s.$
- Key-Gen: Given ID compute $Q_{\rm ID}=H_1({\rm ID}),$ $d_{\rm ID}=sQ_{\rm ID}.$
- Encrypt: Choose $r \leftarrow \mathbb{Z}_p$, $C = rP, M \oplus H_2(e(Q_{\mathsf{ID}}, P_{\mathsf{pub}})^r)$
- Decrypt: Given $C = \langle U, V \rangle$ and d_{ID} compute $V \oplus H_2(e(d_{\mathsf{ID}}, U)) = M.$

The Pairing Magic

Public parameter: $p_{pub} = \overline{sP}$.

Decryption key: $d_{ID} = sQ_{ID}$.

Encryption Mask: $e(Q_{ID}, P_{pub})^r$.

Decryption Mask: $e(Q_{ID}, P_{pub})^r$.

Correctness:

$$e(d_{ID}, U) = e(sQ_{ID}, rP)$$

$$= e(Q_{ID}, sP)^{r}$$

$$= e(Q_{ID}, P_{pub})^{r}.$$

BF-IBE (contd.)

- Basic construction: CPA-secure.
- Can be converted to CCA-secure protocol.
- Corrected analysis due to Galindo.
- Drawbacks.
 - Assumes all the hash functions to be random functions.
 - Has a large security degradation.

Subsequent Work

Goal: Remove the random oracle heuristic.

- Weaker security model:
 - selective-id: Canetti-Halevi-Katz, 2003; construction: Boneh-Boyen, 2004;
 - generalised selective-id (model and construction): Chatterjee-Sarkar, 2006.
- Stronger hardness assumptions: the instance contains more information.
 - DBDHE: Boneh-Boyen, 2005; special case (mBDDH): Kiltz-Vahlis, 2008.
 - *q*-ABDHE: Gentry, 2006.
 - Others.

Subsequent Work (contd.)

- Adaptive-id, CPA-secure IBE:
 - Boneh-Boyen, 2004.
 - Waters, 2005.
 A very important work for several reasons.
 - Chatterjee-Sarkar (2006), Naccache (2006). Improvement of Waters protocol.
- Adaptive-id, CPA-secure HIBE:
 - Gentry-Silverburg, 2002: uses random oracles.
 - Waters, 2005.
 - Chatterjee-Sarkar, 2006: most efficient till date.

From CPA to CCA-Security

- Canetti-Halevi-Katz, 2003: generic construction.
- Boneh-Katz, 2005: generic construction with efficiency improvement.
- Boyen-Mei-Waters, 2005: non-generic, but applies to many protocols.

Basic Setting

Full model security:

adaptive-id and CCA-security.

Assumptions:

- DBDH assumption (basic assumption in the area);
- no random oracles.

Efficiency:

- speed of encryption/decryption/key generation;
- size of keys and public parameters;
- depends on desired security level;

Basic Setting: Protocol

Sarkar-Chatterjee (2007).

- Based on Chatterjee-Sarkar extension of Waters CPA-secure IBE.
- Incorporates BMW techniques to achieve CCA-security.
- Uses hybrid encryption.
- Uses a few other techniques.
- Can be used to obtain a HIBE.

Currently known most efficient protocol in the basic setting.

Set-Up

Pairing:
$$e: G_1 \times G_1 \to G_2, G_1 = \langle P \rangle.$$

PP:
$$P, P_1, P_2, U'_1, U_1, \dots, U_l \text{ and } W.$$

- $P_1 = \alpha P$, where $\alpha \stackrel{\$}{\leftarrow} \mathbb{Z}_p$;
- $P_2, U_1', U_1, \dots, U_l$ and W are random elements of G_1 ;
- $H_s: G_1 \to \mathbb{Z}_p$ is randomly chosen from a UOWHF.

Master secret key: αP_2 .

Key Generation

Identity $ID = (ID_1, ..., ID_l)$, each ID_i is an (n/l)-bit string, considered to be an element of $\mathbb{Z}_{2^{n/l}}$.

(modified) Waters hash.

$$V(ID) = U'_1 + \sum_{i=1}^{l} ID_iU_i.$$

(Waters' proposal: l = n.)

$$d_{\mathsf{ID}} = (d_0, d_1)$$
.

- $d_0 = \alpha P_2 + rV(\mathsf{ID})$, where $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$.
- $d_1 = rP$.

Encryption

Input: Identity ID; message M.

Output: (C_1, C_2, B, cpr, tag) .

- $C_1 = tP$, $B = tV(\mathsf{ID})$, where $t \stackrel{\$}{\leftarrow} \mathbb{Z}_p$.
- $K = e(P_1, P_2)^t$.
- $\overline{(\mathsf{IV},dk)} = \mathsf{KDF}(K).$
- $(cpr, tag) = AE.Encrypt_{dk}(IV, M).$
- $\bullet \ \gamma = H_s(C_1); W_{\gamma} = W + \gamma P_1.$
- $C_2 = \overline{tW_{\gamma}}$.

Decryption

Input: Identity ID; ciphertext (C_1, C_2, B, cpr, tag) .

Output: Message M or bad.

- $\gamma = H_s(C_1); W_{\gamma} = W + \gamma P_1.$
- If $e(C_1, W_{\gamma}) \neq e(P, C_2)$ return \perp .
- $K = e(d_0, C_1)/e(B, d_1)$.
- $(\mathsf{IV}, dk) = \mathsf{KDF}(K)$.
- $M = AE.Decrypt_{dk}(IV, C, tag)$. (This may abort and return \bot).

Correct Decryption

• The test $e(C_1, W_{\gamma}) \stackrel{?}{=} e(P, C_2)$, $C_1 = tP$ and $C_2 = tW_{\gamma}$ $e(C_1, W_{\gamma}) = e(tP, W_{\gamma})$ $= e(P, tW_{\gamma})$

 $= e(P, C_2).$

Correct Decryption (contd.)

• Reconstruction of K. During encryption: $K = e(P_1, P_2)^t$. During decryption:

$$K = \frac{e(d_0, C_1)}{e(B, d_1)}$$

$$= \frac{e(\alpha P_2 + rV(\mathsf{ID}), tP)}{e(tV(\mathsf{ID}), rP)}$$

$$= e(\alpha P_2, tP) \times \frac{e(rV(\mathsf{ID}), tP)}{e(tV(\mathsf{ID}), rP)}$$

$$= e(P_1, P_2)^t.$$

Efficiency

Recall $e: G_1 \times G_1 \to G_2$.

- Public parameters: (l+4) elements of G_1 ; 1 element of G_2 .
- Decryption key: 2 elements of G_1 .
- Key generation: $2[SM]+1[H_{n,l}]$.
- Encryption: $4[SM]+1[e]+1[H_{n,l}]$.
- Decryption: 1[SM]+1[VP]+2[P].
- Cost of symmetric operations not mentioned.

[SM]: scalar multiplication in G_1 ; [e]: exponentiation in G_2 ; [P]: pairing; [VP]: pairing based verification; [H_{n,l}]: modified Waters hash.

Security

A proof is given to show that the scheme is secure assuming

- DBDH problem is hard;
- H_s is a secure UOWHF;
- KDF is a secure key derivation function;
- AE provides both privacy and authenticity.

A rather long and complex proof is used to show this.

The techniques and ideas used in the proof have evolved gradually in several papers.

Security

 $(\epsilon_{ibe}, t, q_{\mathrm{ID}}, q_{\mathrm{C}})$ -secure.

$$\epsilon_{ibe} \leq 2\epsilon_{uowhf} + \frac{\epsilon_{dbdh}}{\lambda} + 4\epsilon_{kdf} + \epsilon_{enc} + 2q_{C}\epsilon_{auth}.$$

- ϵ_{xxx} denotes advantage of an adversary in breaking component XXX.
- $\lambda \approx 1/(8ql2^{n/l}), q = q_{\text{ID}} + q_{\text{C}}.$
- Security degradation (with respect to ϵ_{dbdh}) is $1/\lambda \approx 8ql2^{n/l}$.

News From the Industry

Companies and Products

- Voltage Security: USA based.
 - Secure e-mail.
 - Uses BF-IBE.
 - Boneh and his students are founders.
- Identum: UK based.
 - Secure e-mail.
 - Uses SK-IBE.
 - Smart (University of Bristol) is one of the technical advisors.

Standards

IEEE P1363.3 standard.

- Boneh-Franklin: secure under random oracle heuristic.
- Boneh-Boyen: selective-id security.
- Chen et al (modified Sakai-Kasahara): secure under random oracle heuristic.

IETF standard.

- Boneh-Boyen: selective-id security.
- others

Indian Scenario

- Market for crypto products.
 - Huge and (mostly) untapped.
 - Lack of crypto awareness; security does not come for free.
- Indian crypto industry: lack of vision.
 - Import and sell approach.
 - Development requires major investment; recruit and retain super specialised people; high salary levels; (possibly higher than financial jobs!)
- Academic administration: sluggish.

 Prevents meaningful industry interaction.

Thank you for your kind attention!