Lie group notes

 ${\rm Giorgos}$

June 12, 2024

Contents

1 Lie groups: basic definitions

3

Conventions

- $\bullet\,$ By Lie group, we mean either real or complex.
- A Lie subgroup of a Lie group is called a closed Lie subgroup (see Theorem 3).

Chapter 1

Lie groups: basic definitions

The following theorem allows us to reduce the study of Lie groups to the study of finite groups and connected Lie groups, since for a general Lie group G we have

$$G = G^0 \times G/G^0$$
,

where G^0 is the identity component of G.

Theorem 1 (Theorem 2.6, [Kir08]). Let G be a real or complex Lie group and G^0 its identity component. Then G^0 is a normal subgroup of G and G/G^0 is a discrete group.

In fact, we can reduce the case of connected Lie groups to simply connected Lie groups:

Theorem 2 (Theorem 2.7, [Kir08]). Let G be a connected Lie group. Then its universal cover \tilde{G} has a canonical structure of a Lie group such that the covering map $p: \tilde{G} \to G$ is a homomorphism of Lie groups whose kernel is isomorphic to the fundamental group of G. Moreover, in this case, ker p is a discrete central subgroup in \tilde{G} .

We have the following connection between subgroups and Lie subgroups (i.e. subgroups that are also submanifolds):

Theorem 3 (Theorem 2.8, [Kir08]). • Any Lie subgroup of a Lie group is closed in the topology of the ambient group.

• Any closed subgroup of a Lie group is a real Lie subgroup.

Bibliography

[Kir08] Alexander A Kirillov. An introduction to Lie groups and Lie algebras. Vol. 113. Cambridge University Press, 2008 (cit. on p. 3).