Matrix Multiplication

Parllelism

Link:

Implementation Link

Applications

- Quantum Computing: Quantum circuits are represented as matrices, and operations on qubits are implemented using matrix multiplication. Quantum algorithms such as quantum Fourier transform and Shor's algorithm heavily rely on matrix operations.
- Machine Learning and Data Analysis: Matrix multiplication plays a fundamental role in machine learning algorithms, particularly in neural networks. It is used for operations like forward and backward propagation, weight updates, and computing activations.

• Matrix multiplication can be parallelized using threads by dividing the workload among multiple threads, with each thread computing a portion of the resulting matrix. This involves partitioning the input matrices into smaller blocks or rows/columns, and assigning each thread to work on a separate block or set of rows/columns. Synchronization mechanisms ensure data consistency, enhancing performance and efficiency through thread-level parallelism on multi-core processors.

Table

No. of Samples(n)	Serial Time(sec)	Parllel Time(sec)	Speed Up
1000	4.4	1.9	2.1
1500	19.6	8.3	2.3
2000	125	35	2.4
2500	203	78	2.6

4

(Control of

Number of Threads vs Time Taken

1000

Speedup vs Population Size

N vs Parallel Efficiency

Thank You