

proof of Bondy and Chvátal theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfBondyAndChvatalTheorem}$

Date of creation 2013-03-22 14:48:33 Last modified on 2013-03-22 14:48:33 Owner taxipom (3607) Last modified by taxipom (3607)

Numerical id 8

Author taxipom (3607)

Entry type Proof Classification msc 05C45 *Proof.* The sufficiency of the condition is obvious and we shall prove the necessity by contradiction.

Assume that G + uv is Hamiltonian but G is not. Then G + uv has a Hamiltonian cycle containing the edge uv. Thus there exists a path $P = (x_1, \ldots, x_n)$ in G from $x_1 = u$ to $x_n = v$ meeting all the vertices of G. If x_i is adjacent to x_1 ($2 \le i \le n$) then x_{i-1} is not adjacent to x_n , for otherwise $(x_1, x_i, x_{i+1}, \ldots, x_n, x_{i-1}, x_{i-2}, \ldots, x_1)$ is a Hamiltonian cycle of G. Thus $d(x_n) \le (n-1) - d(x_1)$, that is $d(u) + d(v) \le n-1$, a contradiction \square