Notes on: The Mechanics and Thermodynamics of Continua

 $June\ 13,\ 2017$

Contents

N	Motion of a Body				
1.1		Convection of Sets with the Body			
Γ	Γhe	e Deformation Gradient Approximation of a Deformation by a Homogeneous Deformation			
2.1	.1				
		2.1.1	Homegeneous Deformations		
		2.1.2	General Deformations		
2	.2		ection of Geometric Quantities		
		2.2.1	Infinitesimal Fibers		
		2.2.2	Curves		
		2.2.3	Tangent Vectors		
		2.2.4	Bases		
S	${ m tre}$	${ m tch,S}$	Strain, and Rotation		
3	.1	Stretc	ch and Rotation Tensors. Strain		
3	.2	Fibers	s. Properties of the Tensors U and C		

1 Motion of a Body

B is a reference body containing points ${\bf X}$ which are material points. There is a one-to-one function

$$\mathbf{x} = \boldsymbol{\chi}(\mathbf{X}, t)$$

taking reference material points X to spatial points x at time t. We require

$$J(\mathbf{X}, t) := \det \nabla \chi_t(\mathbf{X}) > 0$$

where J is the volumetric Jacobian of the mapping χ_t at X. Region occupied by body B at time t is

$$\mathcal{B}_t = \boldsymbol{\chi}_t(B)$$

is the deformed body at time t.

1.1 Convection of Sets with the Body

A is a material set. Then **deforms to** A_t at time t. A_t **convects with the body** if there is a set A of material points such that

$$A_t = \chi_t(A)$$

for all t. Note that material cannot cross the boundary of a spatial set which convects with the body. Also note that if \mathbf{X} is on ∂B (boundary), then $\chi(\mathbf{X},t)$ is on $\partial \mathcal{B}_t$ for all time t and conversely.

2 The Deformation Gradient

The **Deformation gradient** of a body is

$$\mathbf{F} = \nabla \chi, \qquad F_{ij} = \frac{\partial \chi_i}{\partial X_j},$$

the Jacobian matrix of $\mathbf{x} = \mathbf{x}(\mathbf{X})$. As above

$$J = \det \mathbf{F} > 0.$$

2.1 Approximation of a Deformation by a Homogeneous Deformation

2.1.1 Homegeneous Deformations

Fix time t so that

$$\chi(\mathbf{X}) \equiv \chi_t(\mathbf{X}).$$

 χ is a homogeneous deformation if $F(X) \equiv F(X,t)$ is independent of X. So

$$\chi(\mathbf{X}) - \chi(\mathbf{Y}) = \mathbf{F}(\mathbf{X} - \mathbf{Y})$$

for **all** material points \mathbf{X} and \mathbf{Y} . By the above, \mathbf{F} maps material vectors to spatial vectors. Then, also, $\mathbf{X} - \mathbf{Y} = \mathbf{F}^{-1}[\chi(\mathbf{X}) - \chi(\mathbf{Y})]$ so that \mathbf{F}^{-1} maps spatial vectors too material vectors. Taking the inner product with a spatial vector \mathbf{s} gives

$$\mathbf{s} \cdot [\chi(\mathbf{X}) - \chi(\mathbf{Y})] = \mathbf{s} \cdot [\mathbf{F}(\mathbf{X} - \mathbf{Y})] = (\mathbf{F}^T \mathbf{s}) \cdot (\mathbf{X} - \mathbf{Y})$$

so that \mathbf{F}^T maps spatial vectors to material vectors. Summarizing the mapping properties:

- 1. \mathbf{F} and \mathbf{F}^{-T} map material vectors to spatial vectors
- 2. \mathbf{F}^{-1} and \mathbf{F}^{T} map spatial vectors to material vectors

2.1.2 General Deformations

Let χ_t be an arbitrary deformation. Taylor expanding the deformation about material point **X** gives

$$\chi_t(\mathbf{Y}) - \chi(\mathbf{X}) = \mathbf{F}(\mathbf{X}, t)(\mathbf{Y} - \mathbf{X}) + o(|\mathbf{Y} - \mathbf{X})$$
 as $|\mathbf{Y} - \mathbf{X}| \to 0$.

Therefore, $\mathbf{F}(\mathbf{X},t)(\mathbf{Y}-\mathbf{X})$ is an approximation of $\chi_t(\mathbf{Y})-\chi(\mathbf{X})$. Also, since \mathbf{X} is fixed in the Taylor expansion, $\mathbf{F}(\mathbf{X},t)$ is constant. Thus the underlined portion is the second definition of a homogeneous deformation. Therefore, within a neighborhood of a material point \mathbf{X} and to within an error of $o(|\mathbf{Y}-\mathbf{X}|)$, a deformation behaves like a homogeneous deformation. So with $o(|\mathbf{Y}-\mathbf{X}|)$ small, we have:

- 1. (M1) $F(\mathbf{X}, t)$ can be thought of as a mapping of an infinitesimal neighborhood of \mathbf{X} in the reference body to an infinitesimal neighborhood of $\mathbf{x} \chi_t(\mathbf{X})$ in the deformed body.
- 2. (M2) This gives an asymptotic meaning to the formal relation

$$\mathbf{dx} = \mathbf{F}(\mathbf{X}, t)\mathbf{dX}$$

Now, we have that the mapping properties for a homogeneous deformation hold pointwise for the deformation gradient in an arbitrary deformation. For example, for a given \mathbf{X} , the linear transformation $\mathbf{F}(\mathbf{X},t)$ associates with each material vector \mathbf{m} a spatial vector $\mathbf{s} = \mathbf{F}(\mathbf{X},t)\mathbf{m}$.

2.2 Convection of Geometric Quantities

2.2.1 Infinitesimal Fibers

Define the temporally constant material vector field \mathbf{f}_R associated with a given spatial vector file \mathbf{f} by

$$\mathbf{f}(\mathbf{x}, t) = \mathbf{F}(\mathbf{X}, t)\mathbf{f}_{R}(\mathbf{X}) \qquad \mathbf{x} = \mathbf{\chi}_{t}(\mathbf{X}) \tag{6.8}$$

for all \mathbf{X} and t.

Now by the above statements about the local homogeneity of deformation, we can see equation 6.8 becomes

$$\epsilon \mathbf{f}(\mathbf{x}, t) = \mathbf{F}(\mathbf{X}, t) (\epsilon \mathbf{f}_R(\mathbf{X}))$$
 (6.9)

for $\epsilon > 0$. This can be considered as describing the local deformation when the neighborhood of **X** under consideration is magnified by a factor of ϵ^{-1} .

In equation 6.8, $\mathbf{f}_R(\mathbf{X})$ is an infinitesimal undeformed fiber and $\mathbf{f}(\mathbf{x},t) = \mathbf{F}(\mathbf{X},t)\mathbf{f}_R(\mathbf{X})$ is the corresponding (infinitesimal) deformed fiber. We can see the deformed fiber as **embedded** in the deforming body \mathcal{B}_t and we say $\mathbf{f}(\mathbf{x},t)$ convects with the body.

f convects with the body and **f is convecting** mean that there is a fixed (time independent) material vector field $\mathbf{f}_R(\mathbf{X})$ such that equation 6.8 holds.

2.2.2 Curves

C is a **material curve** with parameterization $\hat{\mathbf{X}}(\lambda)$, $\lambda \in [\lambda_0, \lambda_1]$ which does not intersect itself. The corresponding **spatial curve** is $\mathcal{C}_t = \chi_t(C)$. Note the time-dependent parameterization. Then \mathcal{C}_t is a curve **embedded** in the deforming body.

2.2.3 Tangent Vectors

Given \mathbf{X} on C, the tangent to C at \mathbf{X} is

$$\tau_R(\mathbf{X}) = \frac{d\hat{\mathbf{X}}(\lambda)}{d\lambda} \tag{6.12}$$

Then the corresponding tangent to C_t at \mathbf{x} is

$$\tau(\mathbf{x},t) = \frac{\partial \hat{\mathbf{x}}_t(\lambda)}{\partial \lambda} \tag{6.13}$$

which gives

$$\tau(\mathbf{x}, t) = \mathbf{F}(\mathbf{X}, t)\tau_R(\mathbf{X}) \tag{6.15}$$

Theorem 1 (Transformation Law for Tangent Vectors) At each time, the relation (6.15) associates with any vector τ_R at X a vector τ at $x = \chi_t(X)$ with the following property: if τ_R is tangent to a material curve at X, then τ is tangent to the corresponding deformed curve through x.

2.2.4 Bases

Fix a material basis

$$\{\mathbf{m}_i(\mathbf{X})\} = \{\mathbf{m}_1(\mathbf{X}), \mathbf{m}_2(\mathbf{X}), \mathbf{m}_3(\mathbf{X})\}.$$

Then the associated spatial basis is

$$\{\mathbf{s}_i(\mathbf{x},t)\} = \{\mathbf{F}(\mathbf{X},t)\mathbf{m}_i(\mathbf{X})\}\tag{6.16}$$

at $\mathbf{x} = \boldsymbol{\chi}(\mathbf{X}, t)$. This spatial basis convects with the body, ie is embedded in the deforming body.

3 Stretch, Strain, and Rotation

3.1 Stretch and Rotation Tensors. Strain

The polar decomposition (rotation \mathbf{R} and positive-definite symmetric tensors \mathbf{U} and \mathbf{V}) of the deformation gradient:

$$\mathbf{F} = \mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R} \tag{7.1}$$

U is the **right stretch tensor** and V is the **right stretch tensor**. The following is good for theoretical but difficult in application

$$\mathbf{U} = \sqrt{\mathbf{F}^T \mathbf{F}} \qquad \text{and} \qquad \mathbf{V} = \sqrt{\mathbf{F} \mathbf{F}^T} \qquad (7.2)$$

Left and Right Cauchy-Green (deformation) tensors C and B:

$$\mathbf{C} = \mathbf{U}^2 = \mathbf{F}^T \mathbf{F}, \quad C_{ij} = F_{ki} F_{kj} = \frac{\partial \mathbf{\chi}_k}{\partial \mathbf{X}_i} \frac{\partial \mathbf{\chi}_k}{\partial \mathbf{X}_j}$$

$$\mathbf{B} = \mathbf{V}^2 = \mathbf{F} \mathbf{F}^T, \quad B_{ij} = F_{ik} F_{jk} = \frac{\partial \mathbf{\chi}_i}{\partial \mathbf{X}_k} \frac{\partial \mathbf{\chi}_j}{\partial \mathbf{X}_k}$$

$$(7.3)$$

Then,

$$\mathbf{V} = \mathbf{R}\mathbf{U}\mathbf{R}^T \qquad and \qquad \mathbf{B} = \mathbf{R}\mathbf{C}\mathbf{R}^T \tag{7.4}$$

and

$$\mathbf{U}, \mathbf{V}, \mathbf{C}, \text{ and } \mathbf{B} \text{ are symmetric and positive-definite.}$$
 (7.5)

Green-St. Venant strain tensor:

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I}) = \frac{1}{2} (\mathbf{C} - \mathbf{I}) = \frac{1}{2} (\mathbf{U}^2 - \mathbf{I})$$
 (7.6,7.7.8)

As rotations tensors are orthogonal, Evanishes when F is a rotation. We now have properties

- 1. (M3) U,Cand Emap material vectors to material vectors
- 2. (M4) Vand Bmap spatial vectors to spatial vectors
- 3. (M5) Rmaps material vectors to spatial vectors

3.2 Fibers. Properties of the Tensors U and C