

(AP1) → ACTIVIDAD PRÁCTICA 1

Responde las siguientes preguntas, de una forma concisa.

1. Busca en Internet las 10 bases de datos más grandes del mundo. Anota su nombre y tamaño.

BASE DE DATOS	TAMAÑO
World Data Center for Climate (WDCC)	140+ petabytes
Amazon Web Services (AWS)	100+ petabytes
Faceboock (Meta)	300+ petabytes
Google	15+ petabytes
Large HAdron Collider (LHC) - CERN	530+ petabytes
National Security Agency (NSA)	Calificado (Especula 1 yottabytes = 1 trillón de TB)
Youtube	1.000+ petabytes
Internet Archive	70+ petabytes
Spotify	100+ petabytes
Wayback Machine	70+ petabytes

 Busca en Internet las leyes de CODD para el funcionamiento de SGBD relacionales y establece una relación entre cada una de las leyes de CODD y las funciones que proporcionan los SGBD actuales.

Regla 0: Un SGBD relacional debe gestionar sus BD de forma completa usando el modelo relacional

Regla 1: Información

- Todos los datos deben estar almacenados en tablas.
- Estas deben cumplir las premisas de modelo relacional.
- No puede haber información a la que accedamos por otra vía.

Regla 2: Acceso garantizado

- Cualquier dato es accesible sabiendo la clave de su fila y el nombre de su columna o atributo.
- Si un dato no podemos acceder de esta forma, no estamos usando un modelo relacional.

Regla 3: Tratamiento sistemático de los valores nulos

- Estos valores pueden dar significado a la columna que los contiene.
- El SGBD debe tener capacidad de manejar valores nulos.
- El SGBD reconocerá este valor como un valor distinto de cualquier otro.
- El SGBD sabrá aplicarle la lógica apropiada.
- Es un valor independiente del tipo de datos de la columna.

Regla 4: Catalogo en línea relacional

- El catálogo en línea es el diccionario de datos.
- ♣ El diccionario de datos se debe poder consultar usando las mistas técnicas que para los datos.
- Los metadatos, se organizan en tablas relacionales.
- Si SELECT es la instrucción que consulta datos, también será la que consulta los metadatos.

Regla 5: Sublenguaje de datos completo

- Tiene que existir, al menos, un lenguaje capaz de hacer todas las funciones del SGBD.
- No puede haber funciones fuera de ese lenguaje.
- ❖ Puede haber otros lenguajes en el SGBD para hacer ciertas tareas.
- Deben poder hacerse con el 'lenguaje completo'

Regla 6: Vistas actualizadas

- Las vistas tienen que mostrar información actualizada.
- No puede haber diferencia entre los datos de las vistas y los de las tablas base.

Regla 7: Inserciones, modificaciones y eliminaciones de alto nivel

- La idea es que el lenguaje que maneja la BD sea muy humano.
- > Implica que las operaciones DML trabajen con conjuntos de filas a la vez.
- ▶ Para modificar, eliminar o añadir datos, no hará falta programar de la forma que lo hacen los lenguajes de 3ª generaciones (C o Java).

Regla 8: Independencia física

- ✓ Cambios en la física de la BD no afecta a las aplicaciones ni a los esquemas lógicos.
- ✓ El acceso a las tablas no cambia porque la física de la base de datos cambie.

Regla 9: Independencia lógica

- Cambios en el esquema lógico (tablas) no afectan al resto de esquemas.
- Si cambiamos nombres de tabla, o columna o modificamos información de las filas, las aplicaciones (esquema externo) no se ven afectadas.
- Es más difícil de conseguir.

Regla 10: Independencia de integridad

 Las reglas de integridad (restricciones) deben ser gestionadas y almacenadas por el SGBD.

Regla 11: Independencia de distribución

- Que la base de datos se almacene o gestione de forma distribuida en varios servidores, no afecta al uso de la misma ni a la programación de las aplicaciones de usuario.
- El esquema lógico es el mismo independientemente de si la BD es distribuida o no.

Regla 12: No subversión

 La BS no permitirá que exista un lenguaje o forma de acceso, que permita saltarse las reglas anteriores.

3. Busca el término SQL e indica las revisiones que ha sufrido el lenguaje a lo largo del tiempo.

Structured Query Lenguage. Es un lenguaje de consultas estructurado diseñado para interactuar con bases de datos relacionales. Tiene capacidad de hacer cálculos avanzados y algebra.

Es el estándar para gestionar y manipular los datos dentro de un SGBDR.

EVOLUCION	
	Basado en el modelo relacional de Edgar Codd, IBM comienza a desarrollar un
1974 – 1975	sistema de bases de datos, SEQUEL-XRM
	Se implementa el prototipo SEQUEL-XRM
1976 – 1977	Revisión del lenguaje, llamado SEQUEL/2
	Cambia nombre a SQL (razones legales)
	IBM adopta SQL en su prototipo de BD System R
1979	Relational Software, que luego se convierte en Oracle, lanza su propia versión
	comercial de SQL, Oracle V2.
1986 – 1987 ANSI publica el 1er estándar par	ANSI publica el 1er estándar para SQL
1900 - 1907	SQL se transforma en estándar internacional bajo ISO
1989	Estándar SQL es revisado, resultado en versión SQL/89, es una actualización
	menor del estándar original
1992	Se lanza SQL-92, versión mas robusta que introduce mejoras significativas
	(subconsultas, uniones externas)
199 – 2000	Se introduce la versión SQL:1999, con consultas recursivas, soporte para
	objetos, y la estandarización de secuencias y columnas autonuméricas
	Algunas características de XML se incluyen en esta versión
2003	Microsoft lanza la versión SQL Server 2000 64 bit-Edition, compatible con
	Windows XP 64 bits y Windows Server
2005	El estándar ISO/IEC 9075-14:2005 define como SQL puede integrarse con XML.
	Importar, guardar y manipular datos XML dentro de una base de datos SQL,
	asi como el uso del lenguaje XQuery
administración de BD para entornos críticos	Se lanza SQL Server 2008 R2, con mejoras de escalabilidad, rendimiento y
	·
2012	SQL Server 2012 mejora la confiabilidad para aplicaciones de misión crítica,
	con mejor rendimiento y seguridad.
2016	SQL Server 2016 incluye soporte para búsqueda de patrones, funciones de
	tabla polimórficas y compatibilidad con ficheros JSON.

4. Busca el término SQL Injection e indica por qué un administrador debe protegerse frente a él.

Es una técnica de ataque utilizada por los cibercriminales para explotar vulnerabilidades en las aplicaciones que interactúan con BD SQL. Permite al atacante ejecutar comandos SQL maliciosos en BD subyacentes a través de la entrada no validada de un usuario.

- 1. Acceso no autorizado a datos sensibles.
- 2. Modificación o eliminación de datos.
- 3. Compromiso del sistema.
- 4. Daños a la reputación.
- 5. Costos de remediación.
- 6. Cumplimiento normativo.