MAE 511 Function List

EMSSL

Below is a list of the basic functions included in the package "MazzoleniNotation" written for MAE 511 and EMSSL.

Function Syntax	Example	Output
\AngMom{derivative-frame}{reference-point}{point}	\AngMom{O}{P}{A}	$\stackrel{ar{O}}{P}ec{h}_A$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\AcclVec{0}{A}{Q}$	$ar{O}_{ec{d}^{A}\!/Q}$
\AngAccl{frame-1}{frame-2}	\AngAccl{0}{B}	$^{ar{O}}ec{lpha}^{ar{B}}$
\AngVel{frame-1}{frame-2}	\AngVel{0}{B}	$ar{O}_{ec{\omega}}ar{B}$
\Cross{vector-1}{vector-2}	\Cross{A}{B}	$A \times B$
$\label{lem:crossProd} $$ \crossProd{frame}{a_1}{a_2}{a_3}{b_1}{b_2}{b_3} $$$		$egin{array}{cccccccccccccccccccccccccccccccccccc$
\Deriv[order]{with-respect-to-variable}	\Deriv[]{x}	$\frac{d}{dx}$

Function Syntax	Example	Output
	\Deriv[3]{t}	$\frac{d^3}{dt^3}$
\DirectCosMat	\DirectCosMat	$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$
\Fext	\Fext	$\sum ec{F}_{ext}$
\Frame{vector}{frame}	\Frame{A}{B}	$\{A\}_{ar{B}}$
\FrameDef{point}{frame}	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\{Q,\vec{i}_{\bar{O}},\vec{j}_{\bar{O}},\vec{k}_{\bar{O}}\}$
\Inert{point}	\Inert{A}	$ ilde{I}_A$
\InertF{point}{frame}	\InertF{A}{B}	$[ilde{I}_A]_{ar{B}}$
\InertMat	\InertMat	$\begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix}$
\Lagr	\Lagr	\mathcal{L}

Function Syntax	Example	Output
\OmegaMat	\OmegaMat	$\begin{bmatrix} 0 & -\omega_x & -\omega_y & -\omega_z \\ \omega_x & 0 & \omega_z & -\omega_y \\ \omega_y & -\omega_z & 0 & \omega_x \\ \omega_z & \omega_y & -\omega_x & 0 \end{bmatrix}$
\Partl[order]{with-respect-to-variable}	\Part1[]{x}	$\frac{\partial}{\partial x}$
	\Part1[3]{t}	$\frac{\partial^3}{\partial t^3}$
\PosVec{point}{with-respect-to-point}	\PosVec{A}{Q}	$ec{r}_{A/Q}$
\QuatAngle	\QuatAngle	$q_0 = cos(\frac{\phi}{2})$ $q_1 = a_x sin(\frac{\phi}{2})$ $q_2 = a_y sin(\frac{\phi}{2})$ $q_3 = a_z sin(\frac{\phi}{2})$
\QuatBC0	\QuatBCO	$\begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 + q_0q_3) & 2(q_1q_3 - q_0q_2) \\ 2(q_1q_2 - q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 + q_0q_1) \\ 2(q_1q_3 + q_0q_2) & 2(q_2q_3 - q_0q_1) & q_0 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$
\QuatDef{frame}	\QuatDef{B}	$q_0 + q_1 \vec{i}_{ar{B}} + q_2 \vec{j}_{ar{B}} + q_3 \vec{k}_{ar{B}}$

Function Syntax	Example	Output
\QuatDot	\QuatDot	$ \begin{cases} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{cases} = \frac{1}{2} \begin{bmatrix} 0 & -\omega_x & -\omega_y & -\omega_z \\ \omega_x & 0 & \omega_z & -\omega_y \\ \omega_y & -\omega_z & 0 & \omega_x \\ \omega_z & \omega_y & -\omega_x & 0 \end{bmatrix} \begin{cases} q_0 \\ q_1 \\ q_2 \\ q_3 \end{cases} $
\QuatMat	\QuatMat	$\begin{bmatrix} -q_1 & q_0 & q_3 & -q_2 \\ -q_2 & -q_3 & q_0 & q_1 \\ -q_3 & q_2 & -q_1 & q_0 \\ q_0 & q_1 & q_2 & q_3 \end{bmatrix}$
\Rfrac{numerator}{denominator}	\Rfrac{A}{B}	$^{A}\!/_{B}$
\Rotate{angle}{axis}	\Rotate{\phi}{X}	$[R\phi]_X$
\RotateMat{frame-1}{frame-2}	\RotateMat{B}{0}	$^{ar{B}}[C]^{ar{O}}$
\RotateMatDot{frame-1}{frame-2}	\RotateMatDot{B}{0}	$^{ar{B}}[\dot{C}]^{ar{O}}$
\RotateMatX{angle}	\RotateMatX{\theta}	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(\theta) & sin(\theta) \\ 0 & -sin(\theta) & cos(\theta) \end{bmatrix}$

Function Syntax	Example	Output
\RotateMatY{angle}	\RotateMatY{\phi}	$\begin{bmatrix} cos(\phi) & 0 & -sin(\phi) \\ 0 & 1 & 0 \\ sin(\phi) & 0 & cos(\phi) \end{bmatrix}$
\RotateMatZ{angle}	\RotateMatZ{\psi}	$\begin{bmatrix} cos(\psi) & sin(\psi) & 0 \\ -sin(\psi) & cos(\psi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$
\Text[point]	\Text	$\sum ec{ au}$
	\Text[P]	$\sum ec{ au}_P$
\TransOne{frame-1}{frame-2}{vector}	\TransOne{0}{B}{A}	${}^{\bar{O}}\frac{d}{dt}A = {}^{\bar{B}}\frac{d}{dt}A + {}^{\bar{O}}\vec{\omega}^{\bar{B}} \times A$
\TransTwo{frame-1}{frame-2}{vector}	\TransTwo{O}{B}{A}	
\UnitDyad{unit-vector}{unit-vector}{frame}	$\UnitDyad\{i\}\{k\}\{B\}$	$ec{i}_{ar{B}}ec{k}_{ar{B}}$
\UnitVec{vector}{frame}	\UnitVec{i}{0}	$ec{i}_{ar{O}}$
\UpRight{frame}{quantity}	\UpRight{0}{A}	$^{ar{o}}A$

Function Syntax	Example	Output
\VecExpressH{frame}{element-1}{element-2}{element-3}	\VecExpressH{D}{a}{b}{c}	$\{a\vec{i}_{\bar{D}}+b\vec{j}_{\bar{D}}+c\vec{k}_{\bar{D}}\}$
\VecExpressV{element-1}{element-2}{element-3}	\VecExpressV{a}{b}{c}	
\VecExpressVF{element-1}{element-2}{element-3}{element-4}	-\VecExpressVF{a}{b}{c}{d}	$ \begin{cases} a \\ b \end{cases} $ $ \begin{cases} c \\ d \end{cases} $
\VelVec{derivative-frame}{point}{with-respect-to-point}	\VelVec{0}{A}{Q}	$^{ar{O}}ec{v}_{^{A/_{Q}}}$
\wX{frame-1}{frame-2}	\wX{B}{O}	$\{0,0,1\} *^{\bar{B}} [C]^{\bar{O}} *^{\bar{O}} [\dot{C}]^{\bar{B}} * \begin{cases} 0 \\ 1 \\ 0 \end{cases}$
\wY{frame-1}{frame-2}	\wY{B}{O}	$\{1,0,0\} *^{\bar{B}} [C]^{\bar{O}} *^{\bar{O}} [\dot{C}]^{\bar{B}} * \begin{cases} 0 \\ 0 \\ 1 \end{cases}$

Function Syntax	Example	Output
		$\begin{pmatrix} 1 \end{pmatrix}$
$\wz{frame-1}{frame-2}$	\wZ{B}{0}	$\{0,1,0\} *^{\bar{B}} [C]^{\bar{O}} *^{\bar{O}} [\dot{C}]^{\bar{B}} * \left\{0\right\}$
		[0]

Below is a list with useful functions which are generally available when using Latex.

Function Syntax \bar{frame}	Package amsmath	Example \bar{A}	${\bf Output}\\ \bar{A}$
\cdot	amsmath	A\cdot{B}	$A \cdot B$
\dot{element}	amsmath	\dot{x}	\dot{x}
\ddot{element}	amsmath	\ddot{x}	\ddot{x}
\sum		\sum	\sum
\vec{vector}	amsmath	\vec{A}	$ec{A}$