Kernels and kernel nearest means

Usman Roshan

Feature space representation

- Consider two classes shown below
- Data cannot be separated by a hyperplane

Feature space representation

- Suppose we square each coordinate
- In other words $(x_1, x_2) => (x_1^2, x_2^2)$
- Now the data are well separated

Feature spaces/Kernel trick

- Using a linear classifier (nearest means or SVM) we solve a non-linear problem simply by working in a different feature space.
- With kernels
 - we don't have to make the new feature space explicit.
 - we can implicitly work in a different space and efficiently compute dot products there.

Computing Euclidean distances in a different feature space

 The advantage of kernels is that we can compute Euclidean and other distances in different features spaces without explicitly doing the feature space conversion.

Computing Euclidean distances in a different feature space

 First note that the Euclidean distance between two vectors can be written as

$$||x - y||^2 = (x - y)^T (x - y) = x^T x + y^T y - 2x^T y$$

In feature space we have

$$\|\phi(x) - \phi(y)\|^2 = (\phi(x) - \phi(y))^T (\phi(x) - \phi(y))$$

$$= \phi(x)^T \phi(x) + \phi(y)^T \phi(y) - 2\phi(x)^T \phi(y)$$

$$= K(x, x) + K(y, y) - 2K(x, y)$$

where K is the kernel matrix.

Recall that the mean of a class (say C₁) is given by

$$m_{1} = \left(\frac{1}{n_{1}}\right) x_{1} + x_{2} + \Box + x_{n_{1}}$$

$$= \left(\frac{1}{n_{1}}\right) \sum_{i=1}^{n_{1}} x_{i}$$

In feature space the mean Φ_m would be

$$\phi_{m} = \left(\frac{1}{n_{1}}\right) \phi(x_{1}) + \phi(x_{2}) + \Box + \phi(x_{n_{1}}) = \left(\frac{1}{n_{1}}\right) \sum_{i=1}^{n} \phi(x_{1})$$

$$K(m,m) = \phi_m^T \phi_m$$

$$= \left(\left(\frac{1}{n} \right) \sum_{i=\Pi} \phi(x_i) \right)^T \left(\left(\frac{1}{n} \right) \sum_{j=\Pi} \phi(x_j) \right)$$

$$= \frac{1}{n^2} \sum_{i=\Pi} \sum_{n} \sum_{j=\Pi} \phi(x_i)^T \phi(x_j)$$

$$= \frac{1}{n^2} \sum_{i=\Pi} \sum_{n} \sum_{j=\Pi} K(x_i, x_j)$$

$$K(x,m) = \phi_x^T \phi_m$$

$$= \phi(x)^T \left(\left(\frac{1}{n} \right) \sum_{i=1}^n \phi(x_i) \right)$$

$$= \frac{1}{n} \sum_{i=1}^n \phi(x)^T \phi(x_i)$$

$$= \frac{1}{n} \sum_{i=1}^n K(x, x_i)$$

 Replace K(m,m) and K(m,x) with calculations from previous slides

$$||\phi(m) - \phi(x)||^{2} = K(m,m) + K(x,x) - 2K(m,x)$$

$$= \frac{1}{n^{2}} \sum_{i=\square} \sum_{n} K(x_{i},x_{j}) + K(x,x) - 2 \frac{1}{n} \sum_{i=\square} K(x,x_{j})$$

Kernel nearest means algorithm

- Compute kernel
- Let x_i (i=0..n-1) be the training datapoints and y_i (i=0..n'-1) the test.
- For each mean mi compute K(m_i,m_i)
- For each datapoint y_i in the test set do
 - For each mean m_i do
 - $d_j = K(m_j, m_j) + K(y_i, y_i) 2K(m_i, y_j)$
 - Assign y_i to the class with the minimum d_i