8장 인자분석

덕성여자대학교 정보통계학과 김 재희

≪예제 8.3 ≫ 신체 측정 데이터에 대해 상관행렬을 이용하여 인자 분석을 하여 인자적재값, 공통성과 특수성을 구하여 [표 8.1]에 정리하였다.

공통인자인 인자1은 길이부분에 더 많이 내재하는 인자로 '길이 인자'로 볼 수 있으며 인자2는 무게와 둘레에 기여하는 부분이 큰 '무게 인자'로 볼 수 있다.

공통인자에 의해 설명되는 분산인 공통성은 각 변수에 대해 2개 인자의 인자적재값제곱의 합으로 계산되고, 특수인자에 의해 설명되는 분산은 $\psi_i = Var(X_i) - h_i^2 = 1 - h_i^2$ 으로 계산된다. 여기서 상관행렬을 이용했으므로 $Var(X_i) = 1$ 이다.

[표 8.1] 신체 측정 자료에 대한 인자분석 결과

	주성분법		공통성	특수성
변 1	인자1	인자2	h_i^2	ψ_i
X ₁ (신장)	1.00	0.00	1.00	0.00
<i>X</i> ₂ (앉은키)	0.90	-0.12	0.82	0.18
X_3 (가슴둘레)	0.31	0.68	0.56	0.44
X_4 (흉골길이)	0.55	0.12	0.32	0.68
X_5 (머리둘레)	0.11	0.18	0.04	0.96
X_6 (엉덩이둘레)	0.34	0.62	0.50	0.50
<i>X</i> ₇ (몸무게)	0.50	0.86	0.99	0.01

≪예제 8.4≫ 100명 고등학생들의 성적에 대한 데이터의 상관행렬을 이용하여 인자분석을 하여 인자적재값, 공통성과 특수성을 구하여 [표 8.2]에 정리하였다.

[표 8.2] 과목성적에 대한 인자분석 결과

	주성분법		공통성	특수성
변수	인자1	인자2	h_i^2	$ \psi_i $
X ₁ (국어)	0.90	0.10	0.82	0.18
X_2 (영어)	0.73	0.12	0.55	0.45
X_3 (사회)	0.55	0.23	0.36	0.54
X ₄ (물리)	0.23	0.87	0.32	0.68
X ₅ (수학)	0.34	0.93	0.81	0.19
X ₆ (생물)	0.36	0.50	0.38	0.62
<i>X</i> ₇ (국사)	0.60	0.30	0.45	0.55

인자1은 국어, 영어, 사회, 국사 과목에 비중이 큰 인자로 '인문학 학습능력 인자' 인자2는 수학, 물리, 생물의 과목에서의 비중이 높은 것으로 보아 '자연과학 학습능력 인자'

≪예제 8.5≫ 엔지니어 견습생 20명과 비행조종사(pilot) 20명의 여섯 가지의 테스트 결과 비교자료가 [표 8.3]에 정리 되어있다. 인자분석을 통해 변수에 내재하는 공통인자들을 찾고, 여러가지 인자적재 추정방법을 사용해 비교하고자 한다.

 $X_1 =$ 지능(intelligence)

 X_2 = 상황설명능력(form relations)

 $X_3 =$ 동력측정검력계(dynamometer)

 $X_4 =$ 상세 표시 능력(dotting)

 $X_5 =$ 지각 기구 좌표화 능력(sensory motor coordination)

 $X_6 =$ 인내력(perseveration)

[표 8.3] 엔지니어와 비행조종사 검사 자료

엔지니어 수습생							파일	 럿			
$\overline{X_1}$	X_2	X_3	X_4	X_5	X_6	X_1	X_2	X_3	X_4	X_5	X_6
121	22	74	223	54	254	132	17	77	232	50	249
108	30	80	175	40	300	123	32	79	192	64	315
122	49	87	266	41	223	129	31	96	250	55	319
77	37	66	178	80	209	131	23	67	291	48	310
140	35	71	175	38	261	110	24	96	239	42	268
108	37	57	241	59	245	47	22	87	231	40	217
124	39	52	194	72	242	125	32	87	227	30	324
130	34	89	200	85	242	129	29	102	234	58	300
149	55	91	198	50	277	130	26	104	256	58	270
129	38	72	162	47	268	147	47	82	240	30	322
154	37	87	170	60	244	159	37	80	227	58	317
145	33	88	208	51	228	135	41	83	216	39	306
112	40	60	232	29	279	100	35	83	183	57	242
120	39	73	159	39	233	149	37	94	227	30	240
118	21	83	152	88	233	149	38	78	258	42	271
141	42	80	195	36	241	153	27	89	283	66	291
135	49	73	152	42	249	136	31	83	257	31	311
151	37	76	223	74	268	97	36	100	252	30	225
97	46	83	164	31	243	141	37	105	250	27	243
_109	42	82	188	57	267	164	32	76	187	30	264

[표 8.4] 인자분석 결과 인자적재값 비교

	주성분법		주성분법	(Varimax)	주성분법	(Promax)
변수	인자1	인자2	인자1	인자2	인자1	인자2
X_1	0.5369	0.4614	-0.0634	0.8344	0.1311	0.6922
X_2	-0.1294	0.8696	-0.3578	0.1005	-0.6438	0.6126
X_3	0.5135	-0.2538	0.7237	-0.0262	0.5598	0.1099
X_4	0.7239	-0.3659	0.7391	0.2947	0.7942	0.1486
X_5	-0.4155	-0.4142	-0.4833	-0.0126	-0.0663	-0.5815
X_6	0.7145	0.1236	0.2389	0.8001	0.4813	0.5321
분산 설명양	1.7751	1.3544	1.4930	1.4344	1.6113	1.5094

	주축인지	- 법 (SMC)	최대우도법		최대우도법	(Varimax)
변수	인자1	인자2	인자1	인자2	인자1	인자2
X_1	0.4029	0.3120	0.1886	0.4790	0.3540	0.3737
X_2	-0.1062	0.5686	1.0000	0.0000	-0.4239	0.9059
X_3	0.3426	-0.1385	-0.1209	0.2697	0.2956	0.0046
X_4	0.5586	-0.2467	-0.2664	0.5089	0.5738	-0.0258
X_5	-0.2864	-0.2464	-0.2445	-0.2914	-0.1604	-0.3449
X_6	0.5557	0.0889	-0.0673	0.6513	0.6185	0.2148
분산	0.9939	0.5694	1.4930	1.4344	1.1297	1.1261
설명양	0.0000	0.0004	1.4000	1.1011	1.1231	1.1201

8.8 R을 이용한 인자분석

[프로그램 8.1] 비행조종사 자료에 대한 인자분석

```
pilot=read.csv("C:/data/pilot_f header=T)
pilot ; attach(pilot)
x=pilot[,2:7]
m=mean(x) ; m
S=cov(x) ; S
R=cor(x) ; R
fact1=factanal(x, factors=2, rotation="none")  # no rotation
fact2=factanal(x, factors=2, scores = "regression")  # varimax is the default
fact3=factanal(x, factors=2, rotation="promax")  # promax rotation
fact1 ; fact2 ; fact3
```

```
# scree plot
library(graphics)
prin=princomp(x)
screeplot(prin, npcs=6, type="lines", main="scree plot") # 그림 8.7
# plot of factor pattern
namevar=names(fact2$loadings)=c
plot(fact2$loadings[,1],fact2$l
    xlab="factor1",ylab="factor2", main="factor pattern") # 그림 8.8
 text(x=fact2$loadings[,1], y=fact2$loadings[,2], labels=namevar, adj=0)
 abline(v=0,h=0)
# plot of factor scores
plot(fact2$scores[,1], fact2$scores[,2], pch="*",
    xlab="factor1",ylab="factor2", main="factor scores") # 그림 8.9
```

● R에서는 factanal() 함수를 이용하여 상관행렬을 이용한 인자분석을 할 수 있다. default는 상관행렬로 최대우도법을 이용하고 varimax 회전을 하여 주성분분석을 한다. 주성분법을 이용한 인자분석은 princomp()를 활용한다.

인자분석시 여러 방법으로 인자분석 수행 후 출력결과 중 특히 인자패턴을 비교하며 인자의 의미를 파악하도록 해야 한다.

[결과 8.1]에서 각 방법에 따른 인자적재값을 비교할 수 있다.

$$H_0$$
: 인자 개수 2 개다 vs H_0 : not H_0

varimax 회전 인자분석의 카이제곱검정 결과

$$p-$$
값 $=0.333>0.05=\alpha$ 이므로

인자 2 개인 모형이 적합하다.

[결과 8.1] 인자분석 결과

```
> fact1=factanal(x, factors=2, rotation="none", scores = "Bartlett") #no rotation
> fact1
factanal(x = x, factors = 2, scores = "Bartlett", rotation = "none")
Uniquenesses:
      x2 x3 x4 x5 x6
  x1
0.734 0.005 0.913 0.671 0.856 0.570
Loadings:
  Factor1 Factor2
x1 0.189 0.480
x2 0.997
x3 -0.121 0.269
x4 -0.267 0.508
x5 -0.245 -0.291
x6 0.652
```

```
Factor1 Factor2
SS loadings 1.181 1.071
Proportion Var 0.197 0.178
Cumulative Var 0.197 0.375
Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 4.59 on 4 degrees of freedom.
The p-value is 0.333
> fact2=factanal(x, factors=2, scores = "regression") # varimax is the default
> fact2
factanal(x = x, factors = 2, scores = "regression")
Uniquenesses:
  x1
        x2.
           x3
                    x4
                         х5
                               хб
0.734 0.005 0.913 0.671 0.856 0.570
```

```
Loadings:
  Factor1 Factor2
x1 0.354
          0.375
x2 -0.425
          0.903
x3 0,295
x4 0.573
x5 -0.159 -0.345
x6 0.619
          0.217
              Factor1 Factor2
SS loadings 1.130 1.122
Proportion Var
               0.188 0.187
Cumulative Var 0.188 0.375
Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 4.59 on 4 degrees of freedom.
The p-value is 0.333
```

```
> fact3=factanal(x, factors=2, rotation="promax")
                             # promax rotation
> fact3
Call:
factanal(x = x, factors = 2, rotation = "promax")
Uniquenesses:
  x1
        x2
           x3
                   x4
                         х5
                               хб
0.734 0.005 0.913 0.671 0.856 0.570
Loadings:
  Factor1 Factor2
x1 0.231 0.404
x2 1.032 -0.345
x3 -0.105
          0.305
x4 -0.239 0.589
x5 -0.275 -0.200
хб
           0.661
The p-value is 0.333
```

Factor1 Factor2

SS loadings 1.262 1.199

Proportion Var 0.210 0.200

Cumulative Var 0.210 0.410

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 4.59 on 4 degrees of freedom.

scree plot

[그림 8.7] 인자 개수에 대한 스크리 그래프

[그림 8.8] Varimax 회전된 인자 패턴

[그림 8.9] Varimax 회전된 인자 점수 그래프