First Come First Serve (FCFS) Scheduling

Advance OS

1. Taking Input (Process Name, Arrival Time, CPU Time) form User

1.1 Enter Process Names

```
In [1]:
print("Enter Name of Processes as PO, P1, P2..... with space separted")
# This will Make the list of Processes Names entered by user
processList = list(map(str, input().split()))
processList
Enter Name of Processes as PO, P1, P2..... with space separted
```

```
Out[1]:

['P0', 'P1', 'P2', 'P3']
```

1.2 Enter Arrival Time

```
In [2]:
```

```
print("Enter Arrival Time for each Process mentioned above with space separted")
# This will Make the list of Processes arrival time entered by user
arrivalTime = list(map(float, input().split()))
arrivalTime
```

Enter Arrival Time for each Process mentioned above with space separted Out[2]: [2.0, 1.0, 0.0, 4.0]

1.3 Enter CPU Time

```
In [3]:
```

```
print("Enter CPU Time for each Process mentioned above with space separted")
# This will Make the list of Processes CPU time entered by user
CPUTime = list(map(float, input().split()))
CPUTime
```

```
Enter CPU Time for each Process mentioned above with space separted
Out[3]:
[20.0, 25.0, 14.0, 10.0]
```

1.4 Display in the form Table

```
In [4]:
```

FCFS

Input Matirx with Arrival Time and CPU Time

Out[4]:

Process Name		Process Name	Arrival Time (AT)	CPU Time / Burst Time		
	0	P0	2.0	20.0		
	1	P1	1.0	25.0		
	2	P2	0.0	14.0		
	3	P3	4.0	10.0		

2. Sort the Data frame on the basis of arrival time

In [5]:

```
sortedECTMatrix = ECTMatrix.sort_values('Arrival Time (AT)')
print("=========="")
print("\t\tFCFS")
print("\t\t Sorted Matrix")
print("=============="")
sortedECTMatrix
```

FCFS

Sorted Matrix

Out[5]:

Process Name		Process Name	Arrival Time (AT)	CPU Time / Burst Time		
	2	P2	0.0	14.0		
	1	P1	1.0	25.0		
	0	P0	2.0	20.0		
	3	P3	4.0	10.0		

2.1 Reset the index values

In [6]:

```
sortedECTMatrix.reset_index(drop=True, inplace=True)
sortedECTMatrix
```

	Process Name	Arrival Time (AT)	CPU Time / Burst Time
0	P2	0.0	14.0
1	P1	1.0	25.0
2	P0	2.0	20.0
3	P3	4.0	10.0

3. Findng the start time and Completion time of each Process

```
In [7]:
```

```
currentTime = sortedECTMatrix["Arrival Time (AT)"][0]
gantChart = []
for p in range(len(sortedECTMatrix)):
   gantChart.append([currentTime, currentTime + sortedECTMatrix["CPU Time / Burst Time"
[[p]]
   currentTime+= sortedECTMatrix["CPU Time / Burst Time"][p]
gantChart
```

Out[7]:

```
[[0.0, 14.0], [14.0, 39.0], [39.0, 59.0], [59.0, 69.0]]
```

3.1 Add start time and Completion time of each process in data frame

In [8]:

```
startTime = []
complTime = []
for i in range(0,len(sortedECTMatrix)):
   startTime.append(gantChart[i][0])
   complTime.append(gantChart[i][1])
sortedECTMatrix["Start Time"] = startTime
sortedECTMatrix["Completion Time"] = complTime
sortedECTMatrix
```

Out[8]:

	Process Name	Arrival Time (AT)	CPU Time / Burst Time	Start Time	Completion Time
0	P2	0.0	14.0	0.0	14.0
1	P1	1.0	25.0	14.0	39.0
2	P0	2.0	20.0	39.0	59.0
3	P3	4.0	10.0	59.0	69.0

4. Find Turn Around time for each process and average Turn Around Time

```
Turn around Time = Completion Time - Arrival Time
```

In [9]:

```
TurnAroundTime = []
for i in range(0,len(sortedECTMatrix)):
```

```
TurnAroundTime.append(sortedECTMatrix["Completion Time"][i] - sortedECTMatrix["Arriv
al Time (AT)"][i])
TurnAroundTime
```

Out[9]:

[14.0, 38.0, 57.0, 65.0]

4.1 Add Turn Around column in current data frame

In [10]:

```
sortedECTMatrix["Turnaround Time"] = TurnAroundTime
sortedECTMatrix
```

Out[10]:

	Process Name	Arrival Time (AT)	CPU Time / Burst Time	Start Time	Completion Time	Turnaround Time
0	P2	0.0	14.0	0.0	14.0	14.0
1	P1	1.0	25.0	14.0	39.0	38.0
2	P0	2.0	20.0	39.0	59.0	57.0
3	P3	4.0	10.0	59.0	69.0	65.0

4.2 Finding Average Turn Around Time and Maskespan

Average Turn Around Time = Sum of Turn around Time / Total no. of Process Makespan = Maximum of Turn around Time

In [11]:

```
averageTurnAroundTime = sortedECTMatrix["Turnaround Time"].sum()/len(sortedECTMatrix)
makespan = max(sortedECTMatrix["Turnaround Time"])
print(f"The average turn around time: {averageTurnAroundTime}")
print(f"The Makespan is: {makespan}")
```

The average turn around time: 43.5 The Makespan is: 65.0

5. Finding the Waiting Time for each Process

Waiting Time = Turn Around Time - CPU Time

In [12]:

```
WeightingTime = []
for i in range(0,len(sortedECTMatrix)):
   WeightingTime.append(sortedECTMatrix["Turnaround Time"][i] - sortedECTMatrix["CPU Ti
me / Burst Time"][i])
WeightingTime
```

Out[12]:

[0.0, 13.0, 37.0, 55.0]

5.1 Add Waiting Time column in current Data Frame

```
In [13]:
```

```
sortedECTMatrix["Waiting Time"] = WeightingTime
sortedECTMatrix
```

Out[13]:

	Process Name	Arrival Time (AT)	CPU Time / Burst Time	Start Time	Completion Time	Turnaround Time	Waiting Time
0	P2	0.0	14.0	0.0	14.0	14.0	0.0
1	P1	1.0	25.0	14.0	39.0	38.0	13.0
2	P0	2.0	20.0	39.0	59.0	57.0	37.0
3	P3	4.0	10.0	59.0	69.0	65.0	55.0

5.2 Average Waiting Time

```
In [14]:
```

```
averageWeightingTime= sortedECTMatrix["Waiting Time"].sum()/len(sortedECTMatrix)
print(f"The average waiting time: {averageWeightingTime}")
```

The average waiting time: 26.25

6. Draw Start Time, Completion Time, Turnaround Time, and Waiting Time for each Process

In [15]:

```
import matplotlib.pyplot as plt
# plt.figure(figsize=(5,5))
# plt.bar(sortedECTMatrix["Process Name"], sortedECTMatrix["Completion Time"])
# # plt.bar(sortedECTMatrix["Process Name"], sortedECTMatrix["Completion Time"])
# plt.show()
plt.figure(figsize=(10,10))
plt.subplot(221)
plt.plot(sortedECTMatrix["Process Name"], sortedECTMatrix["Start Time"])
plt.bar(sortedECTMatrix["Process Name"], sortedECTMatrix["Start Time"], width=0.5)
# Add labels to the bars
for i, v in enumerate(sortedECTMatrix["Start Time"]):
   plt.text(i, v + 3, str(v), ha='center', fontweight='bold')
plt.title("Start Time", fontweight = 'bold', fontsize = '14')
plt.xlabel("Processes", fontweight = 'bold', fontsize = '10')
plt.grid("on")
plt.subplot(222)
plt.plot(sortedECTMatrix["Process Name"], sortedECTMatrix["Completion Time"])
plt.bar(sortedECTMatrix["Process Name"], sortedECTMatrix["Completion Time"],
       width = 0.5, color = "orange")
# Add labels to the bars
for i, v in enumerate(sortedECTMatrix["Completion Time"]):
   plt.text(i, v + 3, str(v), ha='center', fontweight='bold')
plt.title("Completion Time", fontweight = 'bold', fontsize = '14')
plt.xlabel("Processes", fontweight = 'bold', fontsize = '10')
plt.grid("on")
plt.subplot(223)
plt.plot(sortedECTMatrix["Process Name"], sortedECTMatrix["Turnaround Time"])
plt.bar(sortedECTMatrix["Process Name"], sortedECTMatrix["Turnaround Time"],
       width=0.5, color = 'green')
```

```
# Add labels to the bars
for i, v in enumerate(sortedECTMatrix["Turnaround Time"]):
   plt.text(i, v + 3, str(v), ha='center', fontweight='bold')
plt.title("Turnaround Time", fontweight = 'bold', fontsize = '14')
plt.xlabel("Processes", fontweight = 'bold', fontsize = '10')
plt.grid("on")
plt.subplot(224)
plt.plot(sortedECTMatrix["Process Name"], sortedECTMatrix["Waiting Time"])
plt.bar(sortedECTMatrix["Process Name"], sortedECTMatrix["Waiting Time"],
        width=0.5, color = "purple")
# Add labels to the bars
for i, v in enumerate(sortedECTMatrix["Waiting Time"]):
    plt.text(i, v + 3, str(v), ha='center', fontweight='bold')
plt.title("Waiting Time", fontweight = 'bold', fontsize = '14')
plt.xlabel("Processes", fontweight = 'bold', fontsize = '10')
plt.grid("on")
plt.suptitle("First Come First Serve (FCFS) OS Scheduling Algorithm", fontweight = 'bold'
, fontsize = '14')
# Show the plot
plt.show()
```

First Come First Serve (FCFS) OS Scheduling Algorithm

In [17]:

```
forPlot = [averageTurnAroundTime, averageWeightingTime, makespan]
hBary = ["Average Turnaround Time", "Average Waiting Time", "Makespan"]

colors = ['BLUE', 'purple', 'green']

plt.figure(figsize=(5,5))
plt.barh(hBary,forPlot, color = colors, height=0.4)

for i, v in enumerate(forPlot):
    plt.text(v + 4, i , str(v), ha='center', fontweight='bold')

plt.title("FCFS OS Algorithm", fontweight = 'bold', fontsize = '14')
plt.grid("on")
    # set grid transparency to 0.5
plt.show()
```

