How does this balance?

Chapter 12 – Rotation of a Rigid Body

- Centre of mass and moment of inertia
- Torque and cross product F_{riday}
- Rolling motion and rotational energy \ Monday
- Angular momentum

Center of Mass

$$x_{cm} = \frac{1}{M} \sum_{i} m_{i} x_{i} = \frac{m_{1}x_{1} + m_{2}x_{2} + m_{3}x_{3} + \cdots}{m_{1} + m_{2} + m_{3} + \cdots}$$

$$x_{cm} = \frac{1}{M} \sum_{i} m_{i} y_{i} = \frac{m_{1}y_{1} + m_{2}y_{2} + m_{3}y_{3} + \cdots}{m_{1} + m_{2} + m_{3} + \cdots}$$

© 2022 Pearson Education, Inc.

 $x_{\rm cm} = \frac{1}{M} \left| x \, dm \right|$ and $y_{\rm cm} = \frac{1}{M} \left| y \, dm \right|$

© 2022 Pearson Education, Inc.

$$m_1 = 2.0 \text{ kg}$$
 $m_2 = 500 \text{ g}$
 $x_1 = 0 \text{ m a.l.} \times \text{cm}$
 $x_2 = 0.50 \text{ m}$
 $x_3 = 0.50 \text{ m}$
 $x_4 = 1.5 \text{ m.x.}$
 $x_6 = 1.5 \text{ m.x.}$

2500

= 0 4 m

A small cell of width
$$dx$$
 at position x has mass $dm = (M/L)dx$. $dm = \lambda - M$

This was $dx = \lambda - M$

A small cell of width dx at position $dx = \lambda - M$

This $dx = \lambda - M$

This $dx = \lambda - M$

The same $dx = \lambda - M$

The same

$$m = \frac{1}{\sqrt{2}} \int_{0}^{\infty} x dx - \frac{1}{\sqrt{2}} \left(\frac{1}{2} x^{2} - 0 \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{2} x^{2} - 0 \right)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{2} x^{2} - 0 \right)$$

The moment of inertia
$$I = \sum_{i} m_{i} r_{i}^{2} = \int r^{2} dm$$

$$I = \sum_{i} m_{i} r_{i}^{2} = \int r^{2} dm$$
oscillational equivalent of mass. The moment of inertia depends

on how the mass is distributed around the axis. If I_{cm} is known, I

about a parallel axis distance d away is given by the parallel-axis

© 2022 Pearson Education, Inc.

theorem: $I = I_{cm} + Md^2$.

Team Up Questions

STOP TO THINK 12.1 A baseball bat is cut into two pieces at its center of mass.

Which end is heavier?

- a. The handle end (left end).
- b. The hitting end (right end).
- c. The two ends weigh the same.

© 2022 Pearson Education, Inc.

$$X_{cm} = 0 = \frac{1}{M} \underbrace{\sum_{m_1 \times 1}^{m_1 \times 1}}_{m_1 + m_2} \longrightarrow m_1 \times_1 = m_2 \times_2$$

Team Up Questions

STOP TO THINK 12.2 A solid cylinder and a cylindrical shell, each with radius R and mass M, rotate about their axes with the same angular velocity ω . Which has more kinetic energy?

- a. The solid cylinder.
- b. The cylindrical shell.
- c. They have the same kinetic energy.
- d. Neither has kinetic energy because they are only rotating, not moving.

© 2022 Pearson Education, Inc.

Team Up Questions

STOP TO THINK 12.3 Four Ts are made from two identical rods of equal mass and length. Rank in order, from largest to smallest, the moments of inertia I_A to I_D for rotation about the dashed line.

How does this balance?

