Лабораторная работа № 4

Дискретный вариант среднеквадратических приближений

Вариант 12

По условию x = (-1, 0, 1, 2), f = (13, 9, 1, 1, -10, 1, -18, 9).

Найдём приближения функции f(x) многочленами нулевой, первой и второй степени.

а) n=0. Тогда $f\sim P_0(x)=a_0^*$. Можем найти a_0^* , решив уравнение $(1,1)a_0^*=(1,f)$.

Воспользовавшись написанной программой, получаем $a_0^* = -3.5$. Т.е. $P_0(x) = -3.5$.

$$||f - P_0(x)|| = \sqrt{||f||^2 - (1, f) \cdot a_0^*} \approx 24,5894.$$

б) n=1. Тогда $f \sim P_1(x) = a_0^* + a_1^* x$. Можем найти a_0^* и a_1^* , решив систему уравнений

$$\begin{cases} (1,1)a_0^* + (1,x)a_1^* = (1,f), \\ (x,1)a_0^* + (x,x)a_1^* = (x,f). \end{cases}$$

Воспользовавшись написанной программой, получаем $a_0^*=1,98,\ a_1^*=-10,96.$ Т.е. $P_1(x)=1,98-10,96x.$

$$||f - P_1(x)|| = \sqrt{||f||^2 - ((1, f) \cdot a_0^* + (x, f)a_1^*)} \approx 2,00798.$$

в) n=2. Тогда $f\sim P_2(x)=a_0^*+a_1^*x+a_2^*x^2$. Можем найти $a_0^*,\ a_1^*$ и $a_2^*,$ решив систему уравнений

$$\begin{cases} (1,1)a_0^* + (1,x)a_1^* + (1,x^2)a_2^* = (1,f), \\ (x,1)a_0^* + (x,x)a_1^* + (x,x^2)a_2^* = (x,f), \\ (x^2,1)a_0^* + (x^2,x)a_1^* + (x^2,x^2)a_2^* = (x^2,f). \end{cases}$$

Воспользовавшись написанной программой, получаем $a_0^*=0.98,\ a_1^*=-11.96,\ a_2^*=1.$ T.e. $P_2(x)=0.98-11.96x+x^2.$

$$||f - P_2(x)|| = \sqrt{||f||^2 - ((1, f) \cdot a_0^* + (x, f)a_1^* + (x^2, f)a_2^*)} \approx 0.178885.$$

