

Notas de Aula – Matemática Discreta 1º módulo - Análise e Desenvolvimento de Sistemas Prof^a Renata N. Imada

LÓGICA FORMAL

Questão: (FATEC - 2016) Considerando que x = 9, y = 12 e z = 15, assinale a alternativa que apresenta uma expressão cujo valor lógico é verdadeiro.

a)
$$(4y + 2z < 8x)$$
 ou $(3z - 2y = 3x + 5)$

d)
$$(x + z \ge y)$$
 e $(y - z = 3)$

b)
$$(2z = x + y)$$
 ou $(x + y - z < 5)$

e)
$$(x + y > z) e (xy < xz)$$

c)
$$(3x - y = z)$$
 e $(x - y + z \neq y)$

Conectivos: são palavras que se usam para formar novas proposições a partir de outras.

O valor lógico de uma proposição composta depende dos valores lógicos de seus componentes e dos conectivos usados.

Operações Lógicas Básicas

Expressão	Conjunção	Disjunção	Condicional	Bicondicional	Negação
			(Implicação)	(Equivalência)	
Expressão Lógica	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$	A' , $\neg A$ ou $\sim A$
Representação	A e B	A ou B	A implica B	A se, e só se B	Não A

Expressões comuns em Português associadas a diversos conectivos lógicos:

Expressões em Português	Conectivo lógico	Expressão Lógica
e; mas; também; além disso	Conjunção	$A \wedge B$
Ou	Disjunção	$A \vee B$
Se A, então B.	Condicional	$A \rightarrow B$
A implica B.	(Implicação)	
A, logo B		
A só se B; A somente se B.		
B segue de A.		
A é uma condição suficiente para B.		
Basta A para B.		
B é uma condição necessária para A.		
A se e somente se B	Bicondicional	$A \leftrightarrow B$
A é uma condição necessária e suficiente para B	(Equivalência)	
Não A.	Negação	A' , $\neg A$ ou $\sim A$
É falso que A.		
Não é verdade que A.		

Exercícios:

- **1.** Sejam as proposições *A*: Marcos é alto e *B*: Marcos é elegante. Traduzir para a linguagem simbólica as seguintes proposições:
 - a) Marcos é alto, mas não é elegante.
 - **b**) Marcos é baixo ou elegante.
 - c) Se Marcos é baixo, então ele não é elegante.

- **2.** Sejam as proposições *A*: Jorge é rico e *B*: Carlos é feliz. Traduzir para a linguagem corrente as seguintes proposições:
 - a) $\neg A \rightarrow B$

c) $\sim A \land \sim B$

b) $A \vee B'$

d) $B \leftrightarrow \sim A$

Tabela-Verdade

É possível explorar todos os valores lógicos possíveis de uma proposição. Para isso, usaremos um recurso chamado de tabela-verdade.

A	В	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$	~ A
V	V	V	V	V	V	F
V	F	F	V	F	F	
F	V	F	V	V	F	V
F	F	F	F	V	V	

A tabela-verdade de uma proposição composta com n proposições simples contém 2^n linhas.

Tabela-verdade para 3 letras de proposição.

Conjunção: $A \wedge B$

Se A e B são verdadeiras, então $A \wedge B$ é verdadeira, caso contrário, $A \wedge B$ é falsa.

Reflete uma noção de simultaneidade:

- verdadeira, apenas quando A e B são simultaneamente verdadeiras;
- falsa, em qualquer outro caso (quando pelo menos uma das preposições é falsa).

Exemplo:

a) Paris fica na França e 2 + 2 = 4.

c) Paris fica na Austrália e 2 + 2 = 4.

b) Paris fica na França e 2 + 2 = 5.

d) Paris fica na Austrália e 2 + 2 = 5.

Disjunção (inclusiva): $A \lor B$

Se A e B são falsas, então $A \lor B$ é falsa, caso contrário, $A \lor B$ é verdade.

Reflete uma noção de "pelo menos uma":

- verdadeira, quando pelo menos uma das proposições é verdadeira.
- falsa, somente quando A e B são simultaneamente falsas.

Exemplo:

a) Paris fica na França ou 2 + 2 = 4.

c) Paris fica na Austrália ou 2 + 2 = 4.

b) Paris fica na França ou 2 + 2 = 5.

d) Paris fica na Austrália ou 2 + 2 = 5.

Obs.: A palavra "ou" é normalmente usada de duas maneiras distintas, às vezes é usada com o sentido de "A ou B ou ambas", isto é, pelo menos uma das alternativas ocorre, como acima, e outras vezes tem o significado de "A ou B, mas não ambas", isto é, apenas uma das duas alternativas ocorre. Por exemplo, a sentença "Michel irá para Regente Feijó ou Osvaldo Cruz" utiliza "ou" da segunda forma, conhecida como *disjunção exclusiva*.

Condicional: $A \rightarrow B$

A condicional $A \to B$ é falsa apenas quando a primeira parte A é verdadeira e a segunda parte B é falsa. Consequentemente, quando A é falsa, a condicional $A \to B$ é verdadeira, não importando o valor lógico de B.

Exemplo:

"Se choveu agora a pouco, então a rua está molhada".

Adotando os fatos de que A (choveu agora a pouco) é uma proposição VERDADEIRA e que B (a rua está molhada) também é VERDADEIRA e analisando os dados na tabela, temos que:

- A 1ª linha (V V → V) faz sentido, pois choveu e a rua está molhada, é uma conexão VERDADEIRA.
- A 2ª linha (V F → F) também faz sentido, já que se é verdadeiro que choveu, e a rua não está molhada, temos uma situação FALSA.
- A 3ª linha (F V → V) talvez seja a única que pode gerar dúvida em nossas intuições. No exemplo, podemos entender que não choveu, mas a rua está molhada. Isso quer dizer o seguinte: se chove, então a rua fica molhada, mas se a rua está molhada, isso não significa, necessariamente, que choveu. Uma pessoa (ou um carro de bombeiro) pode ter usado uma enorme mangueira e ter feito jorrar bastante água nessa rua. Ou seja, chover é uma **condição** que proporciona o fato da rua estar molhada, mas não é uma única condição. Na expressão A → B, B pode ser verdadeira mesmo se A não ocorreu, e por isso temos F V → V.
- A 4ª linha (F F → V) faz sentido, pois se não choveu e a rua não está molhada, temos uma conexão VERDADEIRA.

Bicondicional: $A \leftrightarrow B$

A bicondicional $A \leftrightarrow B$ é verdadeira sempre que A e B tem os mesmos valores lógicos, e falsa caso contrário.

Reflete a noção de condição "nos dois sentidos":

- considera simultaneamente
 - ida: A é premissa e B é conclusão
 - volta: B é premissa e A é conclusão

Exemplo:

Dadas as seguintes proposições:

M = x e y são números pares. N = x + y é um número par.

Perceba que $M \to N$ é verdadeiro, mas não vale a recíproca, ou seja, $N \to M$ é uma proposição falsa. Mas nem sempre é dessa forma que ocorre, conforme veremos no exemplo a seguir:

R = x ou y é um número par. $S = x \cdot y$ é um número par.

Perceba que, sendo o **ou** (inserido na proposição R) um conectivo inclusivo, tanto $R \to S$ quanto $S \to R$ são verdadeiras.

Negação: ~ A

Se A é verdade, então $\sim A$ é falso; se A é falso, então $\sim A$ é verdade.

Exemplo:

- a) Paris fica na França.
- b) Paris não fica na França.
- c) Não ocorre que Paris fica na França.

As duas últimas declarações são a negação da primeira. Como a) é verdade, b) e c) são falsas.

Exercício:

3. Qual o valor lógico de cada uma das proposições a seguir?

a) 8 é par ou 6 é ímpar.

e) Se 8 for ímpar, então 6 é ímpar.

b) 8 é par e 6 é ímpar.

f) Se 8 for par, então 6 é ímpar g) Se 8 for ímpar, então 6 é par.

c) 8 é ímpar ou 6 é ímpar.

d) 8 é ímpar e 6 é ímpar.

Ordem de precedência dos conectivos lógicos:

- 1. entre parênteses, dos mais internos para os mais externos
- 2. negação (~)
- 3. conjunção (A) e disjunção (V)
- 4. condicional (\rightarrow)
- 5. bicondicional (\leftrightarrow)

Exemplo: Fazer a tabela-verdade para $A \lor B' \rightarrow (A \lor B)'$.

A	В	B'	$A \vee B'$	$A \vee B$	$(A \vee B)'$	$A \lor B' \to (A \lor B)'$
V	V	F	V	V	F	F
V	F	V	V	V	F	F
$\overline{\mathbf{F}}$	V	F	F	V	F	V
F	F	V	V	F	V	V

Exercícios:

4. Sabendo que as proposições "x = 0" e "x = y" são verdadeiras e que as proposições "y = z" e "z = z" t" são falsas, determinar o valor lógico de cada uma das seguintes proposições:

a)
$$x = 0 \land x = y \rightarrow y \neq z$$

c)
$$x \neq 0 \lor y = t \rightarrow y = z$$

b)
$$x \neq y \lor y \neq z \rightarrow y = t$$

5. Sabendo que os valores lógicos das proposições A, B, C e D são respectivamente V, V, F e F, determinar o valor lógico de cada uma das seguintes proposições:

a)
$$(A \rightarrow C) \rightarrow (\sim A \rightarrow \sim C)$$

$$\mathbf{c}) \sim (A \wedge D) \rightarrow \sim A \wedge \sim D$$

b)
$$\sim (A \wedge B) \rightarrow \sim A \vee \sim B$$

$$\mathbf{d}$$
) $\sim ((A \lor D) \land (D \lor C))$

6. Sabendo que os valores lógicos das proposições A e B são respectivamente F e V, determinar o valor lógico da proposição:

$$(A \land (\sim B \rightarrow A)) \land \sim ((A \leftrightarrow \sim B) \rightarrow B \lor \sim A)$$

7. Construir as tabelas-verdade das seguintes proposições.

a)
$$A \wedge B \rightarrow B \vee A$$

$$(A \rightarrow \sim B)$$

a)
$$A \wedge B \rightarrow B \vee A$$
 b) $\sim (A \rightarrow \sim B)$ **c)** $(A \leftrightarrow \sim B) \leftrightarrow B \rightarrow A$ **d)** $A \wedge \sim B \rightarrow \sim C$

$$A \land \sim B \to \sim C$$