NAME: Jinyi Xia STUDENT ID: 2021212057 CLASS NUMBER: 2021211802

ASSIGNMENT 2

1 Required Exercises

1.1 Exercise 1

1. $L((a|b)^*b)$

2. $L(((\varepsilon|a)^*b)^*)$

3. $L((a|b)^*a(a|b)(a|b))$

4. $L(a^*ba^*ba^*ba^*)$

1.2 Exercise 2

- 1. $((\varepsilon|a)^*b)^*$
 - (a) Construct the NFA for $R_1 = \varepsilon |a$.

(b) Construct the NFA for $R_2 = (\varepsilon | \mathbf{a})^* = R_1^*$.

(c) Construct the NFA for $R_3 = (\varepsilon | a)^* b = R_2 b$.

(d) Construct the NFA for $((\varepsilon|a)^*b)^* = R_3^*$.

- 2. $(a|b)^* a (a|b) (a|b)$
 - (a) Construct the NFA for $R_1 = a|b$.

(b) Construct the NFA for $R_2 = (a|b)^* = R_1^*$.

(c) Construct the NFA for $R_3 = (a|b)^* a = R_2 a$.

(d) Construct the NFA for $R_4 = (a|b)^* a(a|b) = R_3R_1$.

(e) Construct the NFA for $(a|b)^* a (a|b) (a|b) = R_4 R_1$.

- 3. a*ba*ba*ba*
 - (a) Construut the NFA for $R_1 = a^*$.

(b) Construtt the NFA for $R_2 = a^*b = R_1b$.

(c) Construtt the NFA for $a^*ba^*ba^*ba^* = R_2R_2R_2R_1$.

1.3 Exercise 3

```
1. A = \varepsilon-closure(\{0\}) = \{0, 1, 2, 3, 4, 5, 7, 8, 10\}.

B = \delta_D(A, a) = \varepsilon-closure(\{6\}) = \{2, 3, 4, 5, 6, 7, 8\}.

C = \delta_D(A, b) = \varepsilon-closure(\{9\}) = \{1, 2, 3, 4, 5, 7, 8, 9, 10\}.

D = \delta_D(B, a) = \varepsilon-closure(\{6\}) = B.

E = \delta_D(B, b) = \varepsilon-closure(\{9\}) = C.

F = \delta_D(C, a) = \varepsilon-closure(\{6\}) = B.

G = \delta_D(C, b) = \varepsilon-closure(\{9\}) = C.
```

Therefore, the transition table of the DFA, whose starting state is A and finite states are $\{A, C\}$, is as follows.

NFA STATE	DFA STATE	a	b
$\{0,1,2,3,4,5,7,8,10\}$	A	В	C
$\{2,3,4,5,6,7,8\}$	B	B	\boldsymbol{C}
$\{1,2,3,4,5,7,8,9,10\}$	C	$\boldsymbol{\mathit{B}}$	C

Its transition diagram is depicted as follows.


```
2. A = \varepsilon-closure(\{0\}) = \{0, 1, 2, 4, 7\}.
    B = \delta_D(A, a) = \varepsilon-closure({3,8}) = {1,2,3,4,6,7,8,9,11}.
    C = \delta_D(A, b) = \varepsilon-closure({5}) = {1,2,4,5,6,7}.
    D = \delta_D(B, a) = \varepsilon-closure(\{3, 8, 10\}) = \{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 16\}.
    E = \delta_D(B, b) = \varepsilon-closure(\{5, 12\}) = \{1, 2, 4, 5, 6, 7, 12, 13, 14, 16\}.
    F = \delta_D(C, \mathbf{a}) = \varepsilon-closure(\{3, 8\}) = B.
    G = \delta_D(C, b) = \varepsilon-closure(\{5\}) = C.
    H = \delta_D(D, a) = \varepsilon-closure({3, 8, 10, 15}) = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18}.
    I = \delta_D(D, b) = \varepsilon-closure(\{5, 12, 17\}) = \{1, 2, 4, 5, 6, 7, 12, 13, 14, 16, 17, 18\}.
    J = \delta_D(E, a) = \varepsilon-closure({3, 8, 15}) = {1, 2, 3, 4, 6, 7, 8, 9, 11, 15, 18}.
    K = \delta_D(E, b) = \varepsilon-closure(\{5, 17\}) = \{1, 2, 4, 5, 6, 7, 17, 18\}.
    L = \delta_D(H, a) = \varepsilon-closure({3, 8, 10, 15}) = H.
    M = \delta_D(H, b) = \varepsilon-closure(\{5, 12, 17\}) = I.
    N = \delta_D(I, \mathbf{a}) = \varepsilon-closure(\{3, 8, 15\}) = J.
    O = \delta_D(I, b) = \varepsilon-closure(\{5, 17\}) = K.
    P = \delta_D(J, a) = \varepsilon-closure({3, 8, 10}) = D.
    Q = \delta_D(J, b) = \varepsilon-closure(\{5, 12\}) = E.
    R = \delta_D(K, \mathbf{a}) = \varepsilon-closure(\{3, 8\}) = B.
    S = \delta_D(K, b) = \varepsilon-closure(\{5\}) = C.
```

Therefore, the transition table of the DFA, whose starting state is A and finite states are $\{H, I, J, K\}$, is as follows.

NFA STATE	DFA STATE	a	b
{0,1,2,4,7}	A	В	\overline{C}
$\{1, 2, 3, 4, 6, 7, 8, 9, 11\}$	B	D	\boldsymbol{E}
{1,2,4,5,6,7}	C	\boldsymbol{B}	C
$\{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 16\}$	D	H	I
$\{1, 2, 4, 5, 6, 7, 12, 13, 14, 16\}$	E	J	K
$\{1,2,3,4,6,7,8,9,10,11,13,14,15,16,18\}$	H	H	I
$\{1,2,4,5,6,7,12,13,14,16,17,18\}$	I	J	K
$\{1,2,3,4,6,7,8,9,11,15,18\}$	J	D	\boldsymbol{E}
{1,2,4,5,6,7,17,18}	K	В	C

Its transition diagram is depicted as follows.

3.
$$A = \varepsilon$$
-closure($\{0\}$) = $\{0,1,3\}$.
 $B = \delta_D(A, a) = \varepsilon$ -closure($\{2\}$) = $\{1,2,3\}$.
 $C = \delta_D(A, b) = \varepsilon$ -closure($\{4\}$) = $\{4,5,7\}$.
 $D = \delta_D(B, a) = \varepsilon$ -closure($\{2\}$) = B .
 $E = \delta_D(B, b) = \varepsilon$ -closure($\{4\}$) = C .
 $F = \delta_D(C, a) = \varepsilon$ -closure($\{6\}$) = $\{5,6,7\}$.
 $G = \delta_D(C, b) = \varepsilon$ -closure($\{8\}$) = $\{8,9,11\}$.
 $H = \delta_D(F, a) = \varepsilon$ -closure($\{6\}$) = F .
 $I = \delta_D(F, b) = \varepsilon$ -closure($\{8\}$) = G .
 $J = \delta_D(G, a) = \varepsilon$ -closure($\{10\}$) = $\{9,10,11\}$.
 $K = \delta_D(G, b) = \varepsilon$ -closure($\{10\}$) = $\{12,13,15\}$.
 $L = \delta_D(J, a) = \varepsilon$ -closure($\{10\}$) = J .
 $M = \delta_D(J, b) = \varepsilon$ -closure($\{12\}$) = K .
 $N = \delta_D(K, a) = \varepsilon$ -closure($\{14\}$) = $\{13,14,15\}$.
 $O = \delta_D(K, b) = \emptyset$.
 $P = \delta_D(N, a) = \varepsilon$ -closure($\{14\}$) = N .
 $Q = \delta_D(N, b) = \emptyset = O$.
 $S = \delta_D(O, b) = \emptyset = O$.

Therefore, the transition table of the DFA, whose starting state is A and finite states are $\{K, N\}$, is as follows.

NFA STATE	DFA STATE	a	b
$-$ {0,1,3}	A	В	\overline{C}
$\{1,2,3\}$	B	\boldsymbol{B}	\boldsymbol{C}
$\{4, 5, 7\}$	C	$\boldsymbol{\mathit{F}}$	G
$\{5,6,7\}$	F	$\boldsymbol{\mathit{F}}$	G
$\{8, 9, 11\}$	G	J	K
$\{9, 10, 11\}$	J	J	K
$\{12, 13, 15\}$	K	N	O
$\{13, 14, 15\}$	N	N	O
Ø	O	O	0

Its transition diagram is depicted as follows.

2 Optional Exercises

2.1 Exercise 1

- Regular expression 2:
 - 1. Initial partition: $G_1 = \{A, B, C, D, E\}, G_2 = \{H, I, J, K\}.$
 - 2. Handling group G_1 : b splits it into two groups $G_3 = \{A, B, C, D\}$, $G_4 = \{E\}$.
 - 3. Handling group G_3 : a splits it into two groups $G_5 = \{A, B, C\}$, $G_6 = \{D\}$.
 - 4. Handling group G_5 : b splits it into two groups $G_7 = \{A, C\}$, $G_8 = \{B\}$.
 - 5. Handling group G_2 : a splits it into two groups $G_9 = \{H, I, J\}$, $G_{10} = \{K\}$.
 - 6. Handling group G_9 : b splits it into two groups $G_{11} = \{H, J\}$, $G_{12} = \{I\}$.
 - 7. Handling group G_{11} : a splits it into two groups $G_{13} = \{H\}$, $G_{14} = \{J\}$.
 - 8. Picking A, B, D, E, H, I, J, K as the representatives to construct the minimum-state DFA.

• Regular expression 3:

- 1. Initial partition: $G_1 = \{A, B, C, F, G, J, O\}, G_2 = \{K, N\}.$
- 2. Handling group G_1 : a splits it into two groups $G_3 = \{A, B, C, F, O\}$, $G_4 = \{G, J\}$.
- 3. Handling group G_3 : b splits it into two groups $G_5 = \{A, B, O\}$, $G_6 = \{C, F\}$.
- 4. Handling group G_5 : b splits it into two groups $G_7 = \{A, B\}$, $G_8 = \{O\}$.
- 5. Picking A, C, G, K, O as the representatives to construct the minimum-state DFA.

