The linear model

Kristian Wichmann

November 13, 2016

The *linear model* is a theoretical framework that unifies a number of statistical concepts, like ANOVA and regression.

1 Definition of a linear model

This section will deal with the linear model in its most abstract form.

Let V be a vector space of finite dimension N. To specify a linear model we need two ingredients:

- A subspace $L \subset V$. Do note that we require L to be a proper subset of V, i.e. $\dim L < N$. This subspace is known as the *mean value subspace*.
- An inner product $\langle \cdot, \cdot \rangle$ on V.

The inner product induces a family of inner products $\langle \cdot, \cdot \rangle_{\sigma^2}$ parametrized by $\sigma^2 > 0$:

$$\langle\!\langle \cdot, \cdot \rangle\!\rangle_{\sigma^2} = \frac{\langle \cdot, \cdot \rangle}{\sigma^2} \tag{1}$$

These inner products are known as *precisions*. While they do not agree on distances, the inner products do agree on orthogonality.

2 Derivatives and linear algebra

We will need a few results concerning derivatives of linear algebra expressions. Consider a linear function:

$$f: \mathbb{R}^n \to \mathbb{R}, f(\beta) = A\beta = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$
 (2)

Here, $A \in \mathbb{R}^{1 \times n}$ and $\beta \in \mathbb{R}^{n \times 1}$, so in other words:

$$f(\beta) = a_1 \beta_1 + a_2 \beta_2 + \dots + a_n \beta_n \tag{3}$$

The (multidimensional) derivate is therefore:

$$\frac{\partial f}{\partial \beta} = \nabla_{\beta} f = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = A^t \tag{4}$$

Similarly, consider a quadratic form in β :

$$g: \mathbb{R}^n \to \mathbb{R}, g(\beta) = \beta^t A \beta = \begin{pmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$
(5)

Here, $A \in \mathbb{R}^{n \times n}$ and $\beta \in \mathbb{R}^{n \times 1}$. Furthermore, A is assumed to be symmetric, such that $a_{ij} = a_{ji}$. Multiplying out, this means that:

$$g(\beta) = \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_i a_{ij} \beta_j \tag{6}$$

Differentiating with respect to β_k only terms where i = k or i = j will contribute. However, the case i = j = k is distinct. So, when i = k we get the contribution $a_{kj}\beta_j$. When j = k we get $\beta_i a_{ij}$. And when i = j = k we get $2a_{kk}\beta_k$. All in all, when summing up, we get two of each a- β set (because of the symmetry of A). So:

$$\frac{\partial g}{\partial \beta_k} = 2\sum_{i=1}^n a_{ik}\beta_i \tag{7}$$

Or more compactly:

$$\frac{\partial g}{\partial \beta} = \nabla_{\beta} g = 2A\beta \tag{8}$$

3 Least squares estimation

3.1 Statement of the problem

The general problem is this: We wish to model a linear relationship between a response variables Y and p predictor variables $X_1, X_2, \dots X_p$. In other words:

$$Y = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p \tag{9}$$

Here, the β 's are the coefficients corresponding to the X's. Now, assume that we have n 'data points', so that y_i corresponds to $x_{i1}, x_{i2}, \dots x_{ip}$. In matrix form equation (9) now becomes:

$$y = X\beta \tag{10}$$

Here, $y \in \mathbb{R}^{n \times 1}$, $X \in \mathbb{R}^{n \times p}$ and $\beta \in \mathbb{R}^{p \times 1}$:

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}$$
(11)

X is known as the design matrix. Given y and X, we seek the best fit for β .

3.2 Least squares

There's a number of criteria one could use to pick the best fitting β . Here, we will search for the one that minimizes the square of the differences in predicted and actual y values. We'll denote this set of parameters as $\hat{\beta}$. The squared difference is:

$$||y - X\hat{\beta}||^2 = (y - X\hat{\beta})^t (y - X\hat{\beta}) = (y^t - \hat{\beta}^t X^t)(y - X\hat{\beta})$$
$$= y^t y - 2y^t X\hat{\beta} + \hat{\beta}^t X^t X\hat{\beta}$$

Taking the derivative with respect to β we can now use equations (4) and (8) to yield:

$$2X^t y - 2X^t X \hat{\beta} \tag{12}$$

Since we're looking for a minimum, this vector should be equal to zero:

$$2X^{t}y - 2X^{t}X\hat{\beta} = 0 \Leftrightarrow \hat{\beta} = (X^{t}X)^{-1}X^{t}y \tag{13}$$

Here it has been assumed that X^tX is invertible. These are known as the normal equations for the model. Inserting into equation (10) we get the corresponding predicted y-values, also denoted by a hat:

$$\hat{y} = X\hat{\beta} = \underbrace{X(X^tX)^{-1}X^t}_{H} y \tag{14}$$

The matrix $H = X(X^tX)^{-1}X^t$ is often called the *hat matrix*, since it puts the hat on the y's. The hat matrix can also be used to find *residuals*, i.e. the difference between actual and predicted y-values:

$$e = y - \hat{y} = y - Hy = \underbrace{(I - H)}_{M} y \tag{15}$$

4 Geometric picture

It is useful to adapt the picture of the columns of X spanning a p-dimensional hyperplane in n-dimensional space. y is then a vector, and $X\hat{\beta}$ is found by projecting y onto the hyperplane; The corresponding point is exactly the one that minimizes the distance between y (as a point) and the hyperplane.

4.1 Projection operators

A linear map that is symmetric and idempotent is called a *projection*. A matrix corresponding to such a mapping is a projection matrix.

Theorem 1. The hat matrix H is a projection matrix.

Proof. We need to show that H is symmetric and idempotent. Symmetry:

$$X(X^{t}X)^{-1}X^{t})^{t} = X\left[(X^{t}X)^{-1}\right]^{t}X^{t}$$
(16)

But the transpose of an inverse is the same as the inverse of the transpose, so:

$$[(X^{t}X)^{-1}]^{t} = [(X^{t}X)^{t}]^{-1} = (X^{t}X)^{-1}$$
(17)

This proves the symmetry of H. Idempotency:

$$H^{2} = \left[X(X^{t}X)^{-1}X^{t}\right]^{2} = X(X^{t}X)^{-1}X^{t}X(X^{t}X)^{-1}X^{t} = X(X^{t}X)^{-1}X^{t} = H$$
(18)

This also turns out to be true for the matrix used to find residuals:

Theorem 2. The matrix M = I - H is a projection matrix.

Proof. Symmetry follows from the symmetry of H. Idempotency:

$$M^{2} = (I - H)^{2} = I^{2} + H^{2} - 2H = I + H - 2H = I - H = M$$
 (19)

5 The error term

Obviously, the model described by equation (10) allows for no random variation as written. We need an *error term* to describe the random variation:

$$y = X\beta + \epsilon \tag{20}$$

Here ϵ is a stochastic vector of dimension n. The basic assumption of the linear model is that the elements of ϵ are i.i.d. and normally distributed with mean zero: $\epsilon_i \sim N(0, \sigma^2)$. Or equivalently, that the error term vector follows a multivariate normal distribution: $\epsilon \sim N(0, \sigma^2 I)$.