习题讨论课01题目:不等式、确界、幂指对函数

★号(越)多表示题目(越)难

一、不等式

微积分的核心思想是通过近似和逼近来解决问题,所以不等式是重要的工具。不等式的来源:

- 不等式的基本性质: 传递 $(x \le y, y \le z \Rightarrow x \le z)$, 运算性质 $(x \le y \Rightarrow x + z \le y + z; x \le y, z > 0 \Rightarrow xz \le yz)$ 。以及基本性质的推论,比如 $\forall x \in \mathbb{R}, x^2 \ge 0$ 。
- 函数的单调性: $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$ 。 比如对正整数 n, x^n 在区间 $(0, +\infty)$ 是严格增函数 x^{-n} 在区间 $(0, +\infty)$ 是严格减函数。
- 函数的最大值与最小值。
- 一些常见不等式。

例 1. (Cauchy-Schwarz不等式). 证明对任意实数 $a_1, \ldots, a_n, b_1, \ldots, b_n$,

$$(a_1b_1 + \dots + a_nb_n)^2 \le (a_1^2 + \dots + a_n^2)(b_1^2 + \dots + b_n^2).$$

等式成立当且仅当存在实数 λ 使得

$$a_k = \lambda b_k$$
, $\forall 1 \le k \le n$, \vec{y} \vec{z} \vec{z}

事实上,成立等式

$$(a_1^2 + \dots + a_n^2) (b_1^2 + \dots + b_n^2) - (a_1b_1 + \dots + a_nb_n)^2 = \sum_{1 \le i < j \le n} (a_ib_j - a_jb_i)^2.$$

其几何意义是 \mathbb{R}^n 中由向量 $\mathbf{a} = (a_1, a_2, \dots, a_n)^T$ 和 $\mathbf{b} = (b_1, b_2, \dots, b_n)^T$ 所形成的平行四边形的面积与它在各 2 维坐标平面中的投影平行四边形面积之间的关系。

注: Cauchy-Schwarz 不等式是一类普遍成立的不等式,它反映了空间的内 积构造,具有特殊的几何意义。

例 2. (Bernoulli 不等式). 设 $x_1, \ldots, x_n > -1$, 且 $x_i x_j \ge 0 (\forall i, j \in \{1, 2, \ldots, n\})$ 。证明

$$(1+x_1)\cdots(1+x_n) \ge 1 + (x_1+\cdots+x_n)$$

其中等号成立当且仅当 n=1 或者 x_1, \ldots, x_n 中至多有一个非零。 经典的 Bernoulli 不等式:

$$(1+x)^n > 1 + nx$$
, $\forall n \in \mathbb{N}, \forall x > -1$.

注: Bernoulli 不等式是本次习题课中最重要的不等式,可以把乘方运算降级为乘法运算。

例 3. 利用 Bernoulli 不等式证明对任何正整数 n 以及任何正数 a, b, 都有

$$ab^n \le \left(\frac{a+nb}{n+1}\right)^{n+1},$$

且等号成立当且仅当 a=b。并利用这个不等式证明对任何正整数 n,都有

$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n+1}\right)^{n+1} < \left(1+\frac{1}{n+1}\right)^{n+2} < \left(1+\frac{1}{n}\right)^{n+1}.$$

例 4. (算术几何平均值不等式) 利用例 3 中不等式证明: 对任意正整数 n 和非负数 x_1, x_2, \ldots, x_n , 都成立

$$x_1 x_2 \cdots x_n \le \left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right)^n$$
.

其中等号成立当且仅当 $x_1 = x_2 = \cdots = x_n$ 。

例 5. (广义的算术几何平均值不等式) 证明对任何非负数 $x_1, x_2, ..., x_n$ 和任何 正整数 $p_1, p_2, ..., p_n$ 都成立

$$x_1^{p_1}x_2^{p_2}\cdot\dots\cdot x_n^{p_n} \le \left(\frac{p_1x_1+p_2x_2+\dots+p_nx_n}{p_1+p_2+\dots+p_n}\right)^{p_1+p_2+\dots+p_n}.$$

其中等号成立当且仅当 $x_1 = x_2 = \cdots = x_n$ 。

二、确界

上确界: $\mu = \sup A$

- $\mu \neq A$ 的上界: $x \in A \Rightarrow x \leq \mu$;
- μ 是 A 的最小上界:

$$\mu_1$$
 是 A 的上界 $\Rightarrow \mu_1 \geq \mu$,

或等价的,

 $\forall \mu_1 < \mu, \mu_1$ 不是 A 的上界, 即存在 $x \in A$ 使得 $x > \mu_1$.

类似地, 定义下确界。

确界公理:任何非空有上(下)界的实数子集必有上(下)确界。

例 6. (阿基米德性质). 证明对任意正数 ε , 存在正整数 n 使得 $\frac{1}{n} < \varepsilon < n$ 。

例 7. 设 $a > 1, \varepsilon > 0$ 。证明存在正整数 m 使得 $a^{-m} < \varepsilon < a^{m}$ 。

例 8. 证明: 实数 α 是实数子集 A 的上确界当且仅当

- 任何比 α 小的有理数都不是 A 的上界;
- 任何比 α 大的有理数都是 A 的上界。

例 9. (\bigstar) 设 A,B 是非空有上界的实数子集,且存在 $a_0,b_0>0$ 满足 $a_0\in A,b_0\in B$ 。记

$$AB = \{c \in \mathbb{R} \mid \text{ 存在 } a, b > 0 \text{ 使得 } a \in A, b \in B, c \leq ab\}.$$

证明 AB 非空有上界,且 $\sup(AB) = \sup A \cdot \sup B$ 。

注:这本质上是用 Dedekind 分割作为实数时,定义两个正实数乘积的办法。

三、关于乘方、开方、幂指对函数

虽然我们在中学学习了开方和幂指对函数,但它们不是用算术运算(有限次加减乘除)得到的,它们的很多性质需要用到实数的本质性质(确界公理)。

例 10. (★)(从乘方到开方)设 n 是正整数。证明函数 $f: \mathbb{R}^+ \to \mathbb{R}^+, x \mapsto x^n$ 是严格增满射。

定义: 对正数 y 和正整数 n,定义 $y^{\frac{1}{n}}$ 是 $x^n=y$ 的唯一正数解 x. 对整数 m,定义 $y^{\frac{m}{n}}=\left(y^{\frac{1}{n}}\right)^m$.

例 11. (\bigstar *) (从乘方到对数函数) 设 a > 1, x > 0, 记

- 1. 证明 A_x 非空有上界。记 $\log_a x = \sup A_x$.
- 2. 证明对任意正数 x, y, $\log_a(xy) = \log_a x + \log_a y$. 并且 $\log_a a = 1$.
- 3. 对任何有理数 $\frac{m}{n}$, $\log_a(a^{\frac{m}{n}}) = \frac{m}{n}$.
- 4. 证明 $\log_a: \mathbb{R}^+ \to \mathbb{R}$ 是严格增满射。

定义:指数函数 a^x 是对数函数 \log_a 的反函数。

所以 a^x 是 \mathbb{R} 到 \mathbb{R}^+ 的严格增满射。

由于

$$\log_a(a^x a^y) = \log_a(a^x) + \log_a(a^y) = x + y,$$

所以

$$a^x a^y = a^{x+y}$$
.

思考题: $(\bigstar \bigstar)$ 如何证明对任意正数 a,b 和任意实数 x,y,都有 $(a^x)^y=a^{xy}$ 以及 $a^xb^x=(ab)^x$?

定义:幂函数 $x^{\mu} = 2^{\mu \log_2 x}$.