CSC236 Week 08: Machines, Expressions: Equivalence

Hisbaan Noorani

October 28 - November 3, 2021

Contents

- 1 NFSA that accepts $L((0+10)(0+10)^*)$
- 2 NFSA that accepts $Rev(L((0+10)(0+10)^*))$ 2
- 3 FSAs and regexes are equivalent.
- 1 NFSA that accepts $L((0+10)(0+10)^*)$

The ε transition makes it non deterministic. $A \xrightarrow{0} A \cup B$ and $C \xrightarrow{0} A \cup B$. The corresponding DFSA is as follows:

2 NFSA that accepts $Rev(L((0+10)(0+10)^*))$

The corresponding DFSA is as follows:

3 FSAs and regexes are equivalent.

L=L(M) for some DFSA $M\iff L=L(M')$ for some NFSA $M'\iff L=L(R)$ for some regular expression R.

Step 1.0: convert L(R) to L(M').

Start with $\emptyset, \varepsilon, a \in \Sigma$.

• Base case: Let s in $\{\emptyset, \varepsilon, a\}$ for some $a \in \Sigma$. $L(\emptyset) = L(M)$, where M is:

 $L(\varepsilon) = L(M)$, where M is:

For correctness, assume a=0

L(0) = L(M), where M is:

