Oxford A1 - Differential Equations

Dan Davison

December 6, 2017

1 Sheet 1

1.1 Let [a, b] be a closed and bounded interval of the real line and let $\{y_n\}_{n\geq 0}$ be a sequence of real-valued functions, each of which is defined on [a, b]. What does it mean to say that **the sequence converges uniformly on** [a, b] **to a limit function** y? If each y_n is continuous on [a, b] show that the uniform limit y is continuous on [a, b] and that, when $n \to \infty$,

$$\int_a^b |y_n(x) - y(x)| dx \to 0, \quad \int_a^b y_n(x) dx \to \int_a^b y(x) dx.$$

(a) Definition of uniform convergence

The sequence of functions $\{y_n\}_{n\geq 0}$ converges uniformly on [a,b] to y if and only if for all $\epsilon > 0$ there exists an $m \in \mathbb{N}$ such that for all n > m and for all $x \in [a,b]$, $|y_n(x) - y(x)| < \epsilon$.

(b) Show that the limit function is continuous

The claim is that if each y_n is continuous on [a, b] then y is continuous on [a, b]. We are told that

- 1. $\{y_n\}_{n\geq 0}$ converges uniformly to y, and
- 2. each y_n is continuous on [a, b].

https://courses.maths.ox.ac.uk/node/5372

Informal illustration of proof:

Fix arbitrary $\epsilon > 0$ and $x_0 \in [a, b]$.

Let $m \in \mathbb{N}$ be such that $|y_m(x_0) - y(x_0)| < \epsilon/3$. Such an m exists because the $\{y_n\}$ converge uniformly to y.

Let δ be such that $|x - x_0| < \delta \implies |y_m(x) - y_m(x_0)| < \epsilon/3$. Such a δ exists because y_m is continuous on [a, b].

Fix an arbitrary x such that $|x - x_0| < \delta$.

Now we have the following:

- 1. $|y(x_0) y_m(x_0)| < \epsilon/3$ by convergence of the $\{y_n\}$
- 2. $|y_m(x_0) y_m(x)| < \epsilon/3$ by continuity of y_m
- 3. $|y_m(x) y(x)| < \epsilon/3$ by convergence of the $\{y_n\}$

Therefore $|y(x_0) - y(x)| < \epsilon$, proving continuity of y on [a, b].

(Approximate time taken for reading and producing an answer: 4hrs)

(c) Show limit of definite integral I

Let $I_n = \int_a^b |y_n(x) - y(x)| dx$.

The claim is that $\lim_{n\to\infty} I_n = 0$.

In other words $\forall \epsilon > 0 : \exists m \in \mathbb{N} : \forall n > m : |I_n - 0| < \epsilon$.

Fix an $\epsilon > 0$.

Since the $\{y_n\}$ converge uniformly to y, there exists an $m \in \mathbb{N}$ such that for all n > m and for all $x \in [a, b]$

$$|y_n(x) - y(x)| < \epsilon/(b - a).$$

Therefore $\int_a^b |y_n(x) - y(x)| dx < \epsilon$ for all n > m, as required.

(d) Show limit of definite integral II

The claim is that $\lim_{n\to\infty} \int_a^b y_n(x) dx = \int_a^b y(x) dx$.

In other words: $\forall \epsilon > 0 : \exists m \in \mathbb{N} : \forall n > m :$

$$\left| \left(\int_a^b y_n(x) \, \mathrm{dx} \right) - \left(\int_a^b y(x) \, \mathrm{dx} \right) \right| < \epsilon.$$

This is equivalent to: $\forall \epsilon > 0 : \exists \ m \in \mathbb{N} : \forall \ n > m :$

$$A_1 := \left| \int_a^b (y_n(x) - y(x)) \, \mathrm{d}x \right| < \epsilon.$$

From part (c) above, we know that: $\forall \epsilon > 0 : \exists m \in \mathbb{N} : \forall n > m :$

$$A_2 := \int_a^b |y_n(x) - y(x)| \, \mathrm{d} x < \epsilon.$$

Now¹ if the sign of $y_n(x) - y(x)$ is constant for all $x \in [a, b]$ (i.e. the graphs do not cross over), then $A_1 = A_2 < \epsilon$. Otherwise, there is some cancellation in the integral A_1 and $0 \le A_1 < A_2 < \epsilon$. So the same choice of m as was used in part (c) works here, since for that value of m, we have $A_1 < \epsilon$ as required.

(Approximate time taken for (c) and (d): 2hrs)

¹This is related to the triangle inequality. I should prove it properly.

If [a,b] = [0,1] and $y_n(x) = nxe^{-nx^2}$ show that, for each $x \in [0,1], y_n(x) \to 0$ but $\int_0^1 y_n(x) dx \to \frac{1}{2}$. Thus the convergence must be non-uniform. Show that

$$\max_{0 \le x \le 1} y_n(x) = \sqrt{\frac{n}{2e}}$$

and sketch the graph of $y_n(x)$ versus x.

To show that $y_n(x) := \frac{nx}{e^{nx^2}} \to 0$ for all $x \in [0,1]$, first note that it is true for x = 0 since $y_n(0) = 0$ for all $n \in \mathbb{N}$. So we have to show it is true for $x \in (0,1]$.

Fix $x \in (0,1]$ and define $f(\alpha) = \frac{\alpha x}{e^{\alpha x}}$ for $\alpha \in \mathbb{R}$. $\lim_{\alpha \to \infty} f(\alpha)$ is an indeterminate form $\frac{\infty}{\infty}$ and we can use l'Hôpital's rule, differentiating with respect to α :

$$\lim_{\alpha \to \infty} \frac{\alpha x}{e^{\alpha x^2}} = \lim_{\alpha \to \infty} \frac{x}{x^2 e^{\alpha x^2}} = 0.$$

Since $f(\alpha) = y_n$ at integer values of α it follows that $\lim_{n\to\infty} y_n(x) = 0$ for all $x \in (0,1]$. \square For the limit of the definite integral we have

$$\int_0^1 nxe^{-nx^2} dx = \left[-\frac{1}{2}e^{-nx^2} \right]_0^1 = \frac{1}{2}(1 - e^{-n}),$$

and so $\lim_{n\to\infty} \int_0^1 y_n(x) dx = \frac{1}{2}$.

To find the maximum value attained by $y_n(x)$ for $x \in [0, 1]$, note that the derivative is

$$\frac{\mathrm{d} y_n(x)}{\mathrm{d} x} = nx(-2nx)e^{-nx^2} + ne^{-nx^2} = ne^{-nx^2}(1 - 2nx^2),$$

and therefore that the only solution to $\frac{dy_n(x)}{dx} = 0$ for $x \in [0,1]$ is $x = \frac{1}{\sqrt{2n}}$.

The second derivative is

$$ne^{-nx^2}(-4nx) - 2n^2xe^{-nx^2}(1-2nx^2) = 2n^2xe^{-nx^2}(2nx^2-3)$$
.

This is negative at the critical point $x = \frac{1}{\sqrt{2n}}$ showing that it is a maximum. Therefore

$$\max_{x \in [0,1]} y_n(x) = n \frac{1}{\sqrt{2n}} e^{-n(\frac{1}{\sqrt{2n}})^2} = \sqrt{\frac{n}{2e}}. \quad \Box$$

(Approximate time for reading and producing answer: $3\ hrs$)

1.2 Let $\sum_{n=0}^{\infty} u_n$ be a series of real-valued functions defined on [a, b]. State the **Weierstrass**

 \mathbf{M} -test for the uniform convergence of the series.

Show that the series $\sum_{n=0}^{\infty} (-1)^n \frac{\cos nx}{1+n^2}$ converges uniformly on $[-\pi,\pi]$.

Weierstrass M-test

Suppose

- 1. there exists a sequence $(M_n)_{n\geq 0}$ such that $|u_n(x)|\leq M_n$ for all $n\geq 0$ and for all $x\in [a,b]$, and
- 2. the series $\sum_{n=0}^{\infty} M_n$ converges.

Then the series of functions $\sum_{n=0}^{\infty} u_n$ converges uniformly on [a, b].

Define $u_n(x) = (-1)^n \frac{\cos nx}{1+n^2}$.

Let $M_n = \frac{1}{1+n^2}$ and note that $|u_n| \leq M_n$ for all $x \in [-\pi, \pi]$.

Note that the integral $\int_1^\infty \frac{1}{x^2} dx = [-\frac{1}{x}]_1^\infty = 1$ converges, therefore the series $\sum_{n=1}^\infty \frac{1}{n^2}$ converges by the integral test for convergent series.

Now $M_n < \frac{1}{n^2}$ for n > 0, so the series $\sum_{n=1}^{\infty} M_n$ converges. Therefore the series $\sum_{n=0}^{\infty} M_n$ also converges, since its tail converges.

Therefore the series $\sum_{n=0}^{\infty} u_n$ converges uniformly on $[-\pi, \pi]$.

1.3 Consider the initial-value problems

$$y' = x^2 + y^2, \quad y(0) = 0,$$
 (1)
 $y' = (1 - 2x)y, \quad y(0) = 1.$ (2)

In each case find y_0, y_1, y_2, y_3 , where $\{y_n\}_{n\geq 0}$ is the sequence of Picard approximations. By considering the behaviour of x^2+y^2 on the square $\{(x,y): |x|\leq \frac{1}{\sqrt{2}}, \ |y|\leq \frac{1}{\sqrt{2}}\}$ and appealing to Picard's theorem show that in case (1) the sequence converges uniformly for $|x|\leq \frac{1}{\sqrt{2}}$.

In case (2), use Picard's theorem to show that the problem has a unique solution for all x. Now find the solution explicitly and, by expanding as a series, show that the sequence $\{y_n\}_{n\geq 0}$ converges to the solution.

Consider an ODE y' = f(x, y(x)) with initial condition y(a) = b.

The sequence of Picard approximations are defined by

$$y_0(x) = b$$

$$y_{n+1}(x) = b + \int_a^x f(t, y_n(t)) dt.$$

(1)

$$y_0(x) = 0$$

$$y_1(x) = 0 + \int_0^x t^2 + 0^2 dt$$

$$= \frac{x^3}{3}$$

$$y_2(x) = 0 + \int_0^x t^2 + \left(\frac{t^3}{3}\right)^2 dt = 0 + \int_0^x t^2 + \frac{t^6}{9}$$

$$= \frac{x^3}{3} + \frac{x^7}{63}$$

$$y_3(x) = 0 + \int_0^x t^2 + \left(\frac{t^3}{3} + \frac{t^7}{63}\right)^2 dt = 0 + \int_0^x t^2 + \frac{t^6}{9} + \frac{2t^{10}}{189} + \frac{t^{14}}{3969} dt$$

$$= \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

We need to show that this situation satisfies the requirements of Picard's theorem.

Define $v(x,y) = x^2 + y^2$ and let $h = \frac{1}{\sqrt{2}}$ be half the width of the square, which is centered at (0,0).

- 1. |v| must be bounded by some M > 0 in the rectangle, with $Mh \le h$ True. The maximum value attained by |v| in the rectangle is M = 1.
- 2. v must be Lipschitz continuous in y

True. The maximum value of $\left|\frac{\partial v}{\partial y}\right|$ on the rectangle is $2 \cdot \frac{1}{\sqrt{2}} = \sqrt{2}$. Let (x, y_0) and (x, y_1) be two points lying on a line parallel to the y axis in the rectangle. By the Mean Value Theorem, the partial derivative at some point in this line is equal to the slope of the line joining $v(x, y_0)$ and $v(x, y_1)$. Therefore the slope of this line cannot exceed $\sqrt{2}$. I.e. $|v(x, y_1) - v(x, y_0)| \leq \sqrt{2}|y_1 - y_0|$; v is Lipschitz continuous in the y direction within the rectangle.

Therefore the sequence of functions given by the Picard iterates y_0, y_1, \ldots converge uniformly to a solution of the ODE on $|x| \leq \frac{1}{\sqrt{2}}$.

1.3 Consider the initial-value problems

$$y' = x^2 + y^2, \quad y(0) = 0,$$
 (1)
 $y' = (1 - 2x)y, \quad y(0) = 1.$ (2)

In each case find y_0, y_1, y_2, y_3 , where $\{y_n\}_{n\geq 0}$ is the sequence of Picard approximations. By considering the behaviour of x^2+y^2 on the square $\{(x,y): |x|\leq \frac{1}{\sqrt{2}}, \ |y|\leq \frac{1}{\sqrt{2}}\}$ and appealing to Picard's theorem show that in case (1) the sequence converges uniformly for $|x|\leq \frac{1}{\sqrt{2}}$.

In case (2), use Picard's theorem to show that the problem has a unique solution for all x. Now find the solution explicitly and, by expanding as a series, show that the sequence $\{y_n\}_{n\geq 0}$ converges to the solution.

(2)

Show that a unique solution exists for all x

The ODE is

$$y'(x) = (1 - 2x)y.$$

Let v(x,y) = (1-2x)y and define an arbitrary rectangle $\{(x,y) : |x| \le h, |y| \le k\}$.

- 1. |v| must be bounded by some M > 0 in the rectangle, with $Mh \le k$ False. The maximum value attained by |v| in the rectangle is M = (1+2h)k. Therefore Mh = h(1+2h)k > k. But this contradicts the question.
- 2. v must be Lipschitz continuous in y The maximum value of $\left|\frac{\partial v}{\partial y}\right|$ on the rectangle is 1+2h, so v is Lipschitz continuous in the y direction.

Find the solution via Picard's theorem

Picard iterates are

$$\begin{split} y_0(x) &= 1 \\ y_1(x) &= 1 + \int_0^x (1-2t) \cdot 1 \, \mathrm{d}t \\ &= 1 + [t-t^2]_0^x \\ &= 1 + x - x^2 \\ y_2(x) &= 1 + \int_0^x (1-2t)(1+t-t^2) \, \mathrm{d}t \\ &= 1 + \int_0^x 1 + t - t^2 - 2t - 2t^2 + 2t^3 \, \mathrm{d}t \\ &= 1 + \int_0^x 1 - t - 3t^2 + 2t^3 \, \mathrm{d}t \\ &= 1 + x - \frac{1}{2}x^2 - x^3 + 8x^4 \\ y_3(x) &= 1 + \int_0^x (1-2t)(1+t-\frac{1}{2}t^2-t^3+\frac{1}{2}t^4) \\ &= 1 + \int_0^x 1 + t - \frac{1}{2}t^2 - t^3 + \frac{1}{2}t^4 - 2t - 2t^2 + t^3 + 2t^4 - t^5 \\ &= 1 + \int_0^x 1 - t - \frac{5}{2}t^2 + \frac{5}{2}t^4 - t^5 \\ &= 1 + x - \frac{1}{2}x^2 - \frac{5}{6}x^3 + \frac{1}{2}x^5 - \frac{1}{6}x^6 \end{split}$$

Check solution with sympy

```
from sympy import latex, integrate, symbols
t, y, tau = symbols('t y tau')

def picard(f, y_prev, a, b):
    return b + integrate(f.subs([(t, tau), (y, y_prev)]), (tau, a, t))

a, b = 0, 1

y = b
for i in [1, 2, 3]:
    f = (1 - 2*t) * y
    y_next = picard(f, y, a, b)
    print(latex(y_next))
    y = y_next
```

$$-t^{2} + t + 1$$

$$\frac{t^{4}}{2} - t^{3} - \frac{t^{2}}{2} + t + 1$$

$$-\frac{t^{6}}{6} + \frac{t^{5}}{2} - \frac{5t^{3}}{6} - \frac{t^{2}}{2} + t + 1$$

Find the solution explicitly

Find general solution using separation of variables:

$$\frac{dy}{dx} = (1 - 2x)y$$

$$\frac{1}{y}\frac{dy}{dx} = (1 - 2x)$$

$$\int \frac{1}{y}\frac{dy}{dx} dx = \int (1 - 2x)y dx$$

(Note²)

$$\log y = x - x^2 + C$$
$$y = Ae^{x(1-x)}$$

Use initial values to find particular solution:

$$1 = Ae^0 = A$$
$$y(x) = e^{x-x^2}$$

The first few derivatives, evaluated at x = 0, are

$$y^{(1)}(0) = (1 - 2x)e^{x - x^2}$$

$$= 1$$

$$y^{(2)}(0) = (1 - 2x)^2 e^{x - x^2} + (-2)e^{x - x^2}$$

$$= (4x^2 - 4x - 1)e^{x - x^2}$$

$$= -1$$

$$y^{(3)}(0) = (4x^2 - 4x - 1)(1 - 2x)e^{x - x^2} + (8x - 4)e^{x - x^2}$$

$$= (4x^2 - 4x - 1 - 8x^3 + 8x^2 + 2x + 8x - 4)e^{x - x^2}$$

$$= (-8x^3 + 12x^2 + 6x - 5)e^{x - x^2}$$

$$= -5$$

²We don't use the Leibnitz notation to perform "cancellations". This is asking for the antiderivative, with respect to x, of $\frac{1}{y(x)}y'(x)$, the answer to which is $\log(y(x)) + C$.

The Taylor series expansion of the solution around x = 0 is

$$y(x) = e^{x-x^2}$$

$$= \sum_{n=0}^{\infty} \frac{y^{(n)}(0)}{n!} x^n$$

$$= 1 + x - \frac{x^2}{2} - \frac{5}{6}x^3 + \dots$$

So the first few terms appear to match the Picard iterates.

TODO: prove that the Picard iterates converge to the Taylor series.

1.4 Consider the initial-value problem

$$y' = xy^{1/3}, \quad y(0) = b,$$

a) (i) Does the function $F(x,y)=xy^{1/3}$ satisfy a Lipschitz condition on the rectangle $\{(x,y):|x|\leq h,\ |y|\leq k\}$, where h>0 and k>0?

The partial derivative with respect to y is $\frac{\partial F}{\partial y} = \frac{x}{3}y^{-2/3}$.

Note that the rectangle necessarily includes the origin. But $\frac{\partial F}{\partial y} \to \infty$ as $y \to 0$. So F does not satisfy a Lipschitz condition in the y direction.

(ii) If b > 0 use Picard's theorem to show that there is a unique solution on an interval [-h,h], for a suitable h > 0 which you should specify (you must check carefully that the assumptions of Picard's theorem are satisfied).

First note that we can solve this by separation-of-variables:

$$y' = xy^{1/3}$$

$$\int y^{-1/3} \, dy = \int x \, dx$$

$$\frac{3}{2}y^{2/3} = \frac{1}{2}x^2 + C$$

$$y = \left(\frac{1}{3}x^2 + C\right)^{3/2}$$

$$y(0) = C^{3/2} = b$$

$$y = \left(\frac{1}{3}x^2 + b^{2/3}\right)^{3/2}$$

- iii) If b = 0, show that for any c > 0 there is a solution y which is identically zero on [-c, c] and positive when |x| > c.
- b) [Optional] Now return to the case b > 0. Consider the set $R = \{(x,y) : y \ge b, |x| \le h\}$. By working in this R, and adapting the proof of Picard's theorem, prove that in fact there is a unique solution of the problem on $|x| \le h$ for any h and hence that there is global existence of solutions.

1.5 Suppose that $f:[a,b]\to\mathbb{R}$ and $K:[a,b]\times[a,b]\to\mathbb{R}$ are continuous. Consider the integral equation for y(x)

$$y(x) = f(x) + \int_a^x K(x,t)y(t)dt, \quad x \in [a,b].$$

For $x \in [a, b]$ define

$$y_0(x) = f(x)$$

$$y_{n+1}(x) = f(x) + \int_a^x K(x,t)y_n(t)dt.$$

Adapt the proof of Picard's theorem to show that y_n converges uniformly to a solution of the integral equation for all $x \in [a,b]$. [You may assume that if $y:[a,b] \to \mathbb{R}$ is continuous then so too is $f(x) + \int_a^x K(x,t)y(t)dt$ for $x \in [a,b]$.]

Now show that the solution is unique.

Prove also that the solution depends continuously on f. [You will need to decide what this means.]

We have to show the following:

- 1. that the sequence of functions converges uniformly to a limiting function,
- 2. that the limiting function is a solution, and
- 3. that the solution is unique, and
- 4. that the solution "depends continuously on f".

1. Proof that the sequence converges uniformly to a limiting function

Proof. Restrict attention to a rectangle with width 2h and height 2k, centered on (a, f(a)).

Note that, since f and K are continuous, there exist bounds $B, C \in \mathbb{R}$ such that $\left| f(x) \right| < B$ and $\left| K(x, x') \right| \le C$, for $x, x' \in [a, b]$.

Define $y_{\infty} = \lim_{n \to \infty} y_n$.

Define $e_n(x) = y_{n+1}(x) - y_n(x)$.

Note that $y_{\infty}(x) = \sum_{i=0}^{\infty} e_n(x) + y_0(x) = \sum_{i=0}^{\infty} e_n(x) + f(x)$.

Therefore, to show that $(y_n)_{n\geq 0}$ converges uniformly, it suffices to show that $\sum_{i=0}^{\infty} e_n(x)$ converges uniformly.

We will use the Weierstrass M-test for this. Therefore, for each n we need to find a constant bound W_n such that $|y_n(x)| \leq W_n$ for all $x \in [a, b]$, and we need to show that the sequence W_n converges.

Note that for $n \geq 1$

$$|e_n(x)| = \left| \int_a^x K(x,t) \Big(y_n(x) - y_{n-1}(x) \Big) dt \right|$$

$$\leq \left| \int_a^x \left| K(x,t) \right| \left| y_n(x) - y_{n-1}(x) \right| dt \right|$$

$$\leq \left| \int_a^x \left| K(x,t) \right| \left| e_{n-1}(t) \right| dt \right|.$$

The first two terms are

$$|e_0(x)| = y_1(x) - f(x)$$

$$= \int_a^x K(x,t)f(t) dt$$

$$\leq BC|x - a|$$

$$|e_1(x)| \leq \left| \int_a^x \left| K(x,t) \right| \left| e_0(t) \right| dt \right|$$

$$\leq BC \left| \int_a^x \left| K(x,t) \right| \left| t - a \right| dt \right|$$

$$\leq BC^2 \frac{|x - a|^2}{2}.$$

Let $W_n = BC^{n+1} \frac{h^{n+1}}{(n+1)!}$

It seems that $|e_n(x)| \leq W_n$ for all $n \geq 0$. To prove this, note that it is true for n = 0. For induction, suppose that it is true for n. Then

$$|e_{n+1}(x)| \le \left| \int_{a}^{x} \left| K(x,t) \right| \left| e_{n}(t) \right| dt \right|$$

$$\le \left| \int_{a}^{x} \left| K(x,t) \right| BC^{n+1} \frac{(t-a)^{n+1}}{(n+1)!} dt \right|$$

$$\le BC^{n+2} \frac{(x-a)^{n+2}}{(n+2)!}$$

$$\le BC^{n+2} \frac{h^{n+2}}{(n+2)!}$$

$$= W_{n+1},$$

as required. Therefore $|e_n| \leq W_n$ holds for all $n \geq 0$. The Ratio Test shows that the sequence $(W_n)_{n\geq 0}$ converges to zero:

$$\lim_{n \to \infty} \frac{W_{n+1}}{W_n} = \lim_{n \to \infty} \frac{BC^{n+2} \frac{h^{n+2}}{(n+2)!}}{BC^{n+1} \frac{h^{n+1}}{(n+1)!}} = \lim_{n \to \infty} \frac{Ch}{n+2} = 0.$$

Therefore the series $\sum_{i=0}^{\infty} e_n(x)$ converges uniformly by the Weierstrass M-test, and therefore $(y_n)_{n>0}$ converges uniformly to a limiting function, which we will denote as y_{∞} .

2. Proof that the limiting function is a solution

Proof. To prove that y_{∞} is a solution we need to show that

$$y_{\infty}(x) = \lim_{n \to \infty} y_n(x) = f(x) + \int_a^x K(x, t) y_{\infty}(t) dt$$
 and $y_{\infty}(a) = f(x)$.

The second requirement, $y_{\infty}(a) = f(x)$, is clearly true.

The definition of y_n is

$$y_n(x) = f(x) + \int_a^x K(x,t)y_{n-1}(t) dt$$
.

If it were valid to take the limit inside the integral then we would have

$$y_{\infty}(x) = \lim_{n \to \infty} y_n(x) = f(x) + \int_a^x K(x, t) y_{\infty}(t) dt$$

as required. To justify taking the limit inside the integral it's sufficient to prove that $K(x,t)y_n(t)$ converges uniformly to $K(x,t)y_\infty(t)$. But this simply requires that $y_n(t)$ converges uniformly to $y_\infty(t)$, which has been proved already.

3. Proof that the solution is unique

Proof. Suppose that Y is a solution and define $e_n(x) = Y(x) - y_n(x)$. We will show that $\lim_{n\to\infty} |e_n(x)| = 0$.

Recall that we are working in a rectangle with width 2h and height 2k, centered on (a, f(a)).

We have

$$|e_0(x)| = \left| \int_a^x K(x,t)Y(t) \, dt \right|$$

$$\leq \left| \int_a^x \left| K(x,t) \right| \left| Y(t) \right| \, dt \right|$$

$$\leq Ck|x-a|.$$

For $n \geq 1$ we have

$$|e_n(x)| = \left| \int_a^x K(x,t) \Big(Y(t) - y_{n-1}(t) \Big) dt \right|$$

$$\leq \left| \int_a^x \left| K(x,t) \Big| \left| d_{n-1}(t) \right| dt \right|$$

For induction, suppose that $|e_n(x)| \leq C^{n+1} k^{\frac{|t-a|^{n+1}}{(n+1)!}}$. This is true for n=0. For n+1, we have

$$|e_{n+1}(x)| \le \left| \int_{a}^{x} \left| K(x,t) \right| \left| d_{n}(t) \right| dt \right|$$

$$= \left| \int_{a}^{x} \left| K(x,t) \right| C^{n+1} k \frac{|t-a|^{n+1}}{(n+1)!} dt \right|$$

$$= C^{n+2} k \frac{|t-a|^{n+2}}{(n+2)!}$$

$$\le C^{n+2} k \frac{h^{n+2}}{(n+2)!},$$

which, as shown above, converges to 0 as $n \to \infty$. Therefore $\lim_{n \to \infty} |e_n(x)| = 0$ and therefore if Y is a solution then $y_{\infty} = Y$.

3. Proof that the solution "depends continuously on f"

I've attempted to prove two similar theorems that match the description: "depends continuously on f".

Let $f, g : [a, b] \to \mathbb{R}$ and let $y_f(x)$ and $y_g(x)$ be solutions to the respective IVPs:

$$y_f(x) = f(x) + \int_a^x K(x,t)y_f(t) dt$$
$$y_g(x) = g(x) + \int_a^x K(x,t)y_g(t) dt.$$

Theorem (Version 1: "pointwise" continuity). For all $x \in [a,b]$ and for all $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - g(x)| < \delta \implies |y_f(x) - y_g(x)| < \epsilon.$$

Proof. We have

$$\left| y_f(x) - y_g(x) \right| \le \left| f(x) - g(x) \right| + \left| \int_a^x K(x, t) y_f(t) - y_g(t) dt \right|$$

$$\le \left| f(x) - g(x) \right| + C \left| \int_a^x \left| y_f(t) - y_g(t) \right| dt \right|,$$

therefore by Gronwall's inequality

$$\left| y_f(x) - y_g(x) \right| \le \left| f(x) - g(x) \right| e^{C|x-a|}$$
$$\le \left| f(x) - g(x) \right| e^{Ch}.$$

Therefore we can choose $\delta(\epsilon) = e^{-Ch}\epsilon$.

Let ||g|| be the sup norm for a real-valued function g defined on [a, b]:

$$||g|| := \sup_{x \in [a,b]} \left| g(x) \right|.$$

Theorem (Version 2: continuity in function space). For all $\epsilon > 0$ there exists $\delta > 0$ such that

$$||f - g|| < \delta \implies ||y_f - y_g|| < \epsilon.$$

Proof. We have

$$(y_f - y_g)(x) = (f - g)(x) + \int_a^x K(x, t)(y_f - y_g)(t) dt.$$

Therefore

$$||y_f - y_g|| = \sup_{x \in [a,b]} \left| (f - g)(x) + \int_a^x K(x,t)(y_f - y_g)(t) dt \right|$$

$$\leq \sup_{x \in [a,b]} \left| (f - g)(x) \right| + \sup_{x \in [a,b]} \left| \int_a^x K(x,t)(y_f - y_g)(t) dt \right|$$

$$= ||f - g|| + \left| \left| \int_a^x K(x,t)(y_f - y_g)(t) dt \right| .$$

2 Sheet 2

Systems of non-linear ODEs.

2.1 The aim of this question is to fill in the details of the proof of Theorem 1.6 in the lecture notes of Picard's theorem for a system of two first order ODEs via the CMT.

Consider the system of first order ODEs, for the functions y_1 and y_2

$$y_1'(x) = f_1(x, y_1(x), y_2(x))$$
 (1)

$$y_2'(x) = f_2(x, y_1(x), y_2(x))$$
 (2)

with initial condition
$$y_1(a) = b_1, \quad y_2(a) = b_2.$$
 (3)

If we write

$$\underline{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad \underline{f} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}, \quad \underline{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix};$$

then we can write the problem (1), (2), (3) in vector form as

$$\underline{y}'(x) = \underline{f}(x,\underline{y}(x)), \qquad (4)$$

$$y(a) = \underline{b}, \qquad (5)$$

$$y(a) = \underline{b}, \tag{5}$$

We will use the l^1 norm in \mathbb{R}^2 , $||(y_1, y_2)||_1 = |y_1| + |y_2|$. Let $B_k(\underline{b})$ be the disc in \mathbb{R}^2 , centre \underline{b} , radius k. Define the set $S = \{(x, \underline{y}) \in \mathbb{R}^3 : |x - a| \leq h, \ \underline{y} \in B_k(\underline{b})\}.$ We assume \underline{f} is continuous on the set S, with $\sup_{x} ||\underline{f}(x,\underline{y})||_1 \leq \overline{M}$, and for $x \in [a-h,a+h], f(x,y)$ is Lipschitz continuous with respect to y on S. That is, there exists L such that for $x \in [a-h, a+h]$ and $\underline{u}, \underline{v} \in B_k(\underline{b})$,

$$||f(x,\underline{u}) - f(x,\underline{v})||_1 \le L||\underline{u} - \underline{v}||_1.$$
(6)

We will work in the space $C_h = C([a-h, a+h]; B_k(\underline{b}))$ of continuous functions from [a-h,a+h] to the disc $B_k(\underline{b})$ in \mathbb{R}^2 , with the sup norm defined for $y \in C_h$

$$||\underline{y}||_{\sup} := \sup_{x \in [a-h,a+h]} ||\underline{y}(x)||_1.$$

We can write the initial value problem (4), (5) as an integral equation

$$\underline{y}(x) = \underline{b} + \int_{a}^{x} \underline{f}(s, \underline{y}(s)) ds \tag{7}$$

where by the integral we mean that we integrate componentwise.

Now we define

$$(T\underline{y})(x) = \underline{b} + \int_{a}^{x} \underline{f}(s,\underline{y}(s))ds$$

so we can write equation (6) as a fixed point problem in C_{η} , for $0 < \eta \le h$.

$$y = Ty$$
.

(i) Prove that for $g \in \mathcal{C}_h$,

$$\left\| \int_{a}^{x} \underline{g}(t)dt \right\|_{1} \leq \left| \int_{a}^{x} \left\| \underline{g}(t) \right\|_{1} dt \right|.$$

[You may assume that if $h:[a,x]\to\mathbb{R}$ is continuous then $\left|\int_a^x h(t)dt\right| \leq \left|\int_a^x |h(t)|\,dt\right|$.]

$$\left\| \int_{a}^{x} \underline{g}(t) dt \right\|_{1} := \left| \int_{a}^{x} g_{1}(t) dt \right| + \left| \int_{a}^{x} g_{2}(t) dt \right|$$

$$\leq \left| \int_{a}^{x} |g_{1}(t)| dt \right| + \left| \int_{a}^{x} |g_{2}(t)| dt \right|$$

$$\leq \left| \int_{a}^{x} |g_{1}(t)| dt + \int_{a}^{x} |g_{2}(t)| dt \right|$$

$$=: \left| \int_{a}^{x} \|\underline{g}(t)\|_{1} dt \right|$$

(ii) Prove that for suitable $0 < \eta \le h$, T satisfies the conditions of the CMT so has a unique fixed point. Explain why this solution is also the unique solution of (4), (5).

We need to show that $T: \mathcal{C}_h \to \mathcal{C}_h$ and that T is a contraction.

Let $u, v \in \mathcal{C}_h$.

Claim. $T(u) \in \mathcal{C}_h$ for all $u \in \mathcal{C}_h$.

Claim. There exists 0 < K < 1 such that $||T(y)||_1 \le K||y||_1$ for all $y \in C_h$.

Proof.

$$||T(\underline{y})||_1 = \sup_{x \in [a,b]} \left\| \int_a^x \underline{f}(s, \underline{y}(s)) \, ds \right\|_1$$
$$= \left| \int_a^x f_1(s, y_1(s)) \, ds \right| + \left| \int_a^x f_2(s, y_2(s)) \, ds \right|$$