Database relazionali: normalizzazione

Classi quarte Scientifico - opzione scienze applicate
Bassano del Grappa, Maggio 2023
Prof. Giovanni Mazzocchin

La normalizzazione di uno schema relazionale

Intuitivamente:

- 1. una relazione di uno schema relazionale dovrebbe derivare da una singola entità
- 2. uno schema relazionale dovrebbe essere semplice da spiegare in linguaggio naturale
- ecco un esempio di relazione che viola delle linee guida descritte sopra:

La normalizzazione di uno schema relazionale

Brutta cosa:

abbiamo mescolato 2 entità diverse dello schema concettuale in un'unica relazione nello schema logico

Questo schema logico 'soffre' di una insertion anomaly:

- per inserire un employee, dovremmo specificare anche tutte le informazioni relative al dipartimento per cui lavora;
- se non lavora per nessun dipartimento, dovremmo inserire valori NULL per dept_id, dept_name e dept_manager_id
- e se volessimo archiviare le informazioni relative ad un dipartimento che non ha ancora dipendenti?

Questo schema logico 'soffre' di una deletion anomaly:

 se cancelliamo il record dell'ultimo impiegato rimasto in un dipartimento, scompariranno anche le informazioni relative al dipartimento

Questo schema logico 'soffre' di una modification anomaly:

- se il manager di un dipartimento cambia, dobbiamo aggiornare tutte le tuple degli impiegati che lavorano in quel dipartimento
- se ci dimentichiamo di aggiornare anche solo una tupla, il database sarà in uno stato *inconsistente*

Questo schema logico 'soffre' di una modification anomaly:

- se il manager di un dipartimento cambia, dobbiamo aggiornare tutte le tuple degli impiegati che lavorano in quel dipartimento
- se ci dimentichiamo di aggiornare anche solo una tupla, il database sarà in uno stato *inconsistente*

Le dipendenze funzionali

- **Definizione**: una *dipendenza funzionale* X -> Y, dove X e Y sono due insiemi di attributi di una relazione R è il seguente vincolo:
 - per ogni coppia di tuple t_1 e t_2 di R tali che $t_1[X] = t_2[X]$, vale anche $t_1[Y] = t_2[Y]$
- Esempio: relazione R(A, B, C, D), con una sua estensione (record)

Α	В	С	D
a1	b4	c1	d1
a2	b4	c1	d2
a3	b1	c2	d3
a1	b4	c3	d4

Le dipendenze funzionali

- **Definizione**: una *dipendenza funzionale* X -> Y, dove X e Y sono due insiemi di attributi di una relazione R è il seguente vincolo:
 - per ogni coppia di tuple t_1 e t_2 di R tali che $t_1[X] = t_2[X]$, vale anche $t_1[Y] = t_2[Y]$
- **NB**: una FD X -> Y sussiste se non è violata
- Esempio: relazione R(A, B, C, D), con una sua estensione (record)

Α	В	С	D
a1	b4	c1	d1
a2	b4	c1	d2
a3	b1	c2	d3
a1	b4	c3	d4

La normalizzazione

- Gli obiettivi della **normalizzazione** sono:
 - 1. <u>la minimizzazione delle ridondanze</u>
 - 2. <u>la minimizzazione delle anomalie</u>

• Uno schema relazionale che non rispetta una forma normale verrà quindi scomposto in più schemi relazionali (conservando però le stesse informazioni)

First Normal Form (1NF)

• La **1NF** richiede che in una relazione i valori degli attributi debbano essere tutti **atomici**

DEPARTMENT			
id	name	locations	
1	IT	San Francisco, Cupertino, Los Angeles	
2	Sales	San Diego	
3	HR	San Diego, Sacramento	

la relazione DEPARTMENT viola la 1NF: i valori di locations non sono atomici

First Normal Form (1NF)

 La 1NF richiede che in una relazione i valori degli attributi debbano essere tutti atomici

DEPARTMENT			
id	name		
1	IT		
2	Sales		
3	HR		

DEPT_LOCS			
id_dept	location		
1	San Francisco		
1	Cupertino		
1	Los Angeles		
2	San Diego		
3	San Diego		
3	Sacramento		

Questa progettazione logica rispetta la 1NF. Le informazioni della versione non normalizzata (slide precedente) sono conservate

Second Normal Form (2NF)

- La **2NF** richiede che in una relazione R tutti gli attributi non parte della PK siano <u>completamente funzionalmente dipendenti</u> dalla PK
- X -> Y è una **full functional dependency** se X {A} -> Y non è più una functional dependency

doct_pat			
doct_ssn	pat_ssn	doct_name	pat_name
1	2	giovanni	maria
1	3	giovanni	mario
2	5	giuseppe	francesco

la relazione doct_pat è in 2NF?
Considerare gli attributi doc_name e pat_name

Second Normal Form (2NF)

- La **2NF** richiede che in una relazione R tutti gli attributi non parte della PK siano <u>completamente funzionalmente dipendenti</u> dalla PK
- X -> Y è una **full functional dependency** se X {A} -> Y non è più una functional dependency

doct_pat			
doct_ssn	pat_ssn	doct_name	pat_name
1	2	giovanni	maria
1	3	giovanni	mario
2	5	giuseppe	francesco

non è in 2NF, infatti:
doct_ssn -> doc_name
pat_ssn -> pat_name

La PK è {doct_ssn, pat_ssn} ma gli altri attributi dipendono da sottoinsiemi della PK

Third Normal Form (3NF)

• Uno schema relazionale R è in **3NF** se rispetta la 2NF e nessun attributo non primo di R è transitivamente funzionalmente dipendente dalla PK

Una FD X -> Y è transitiva se esiste un insieme di attributi Z non primi tale che valgono le FD X -> Z e Z -> Y

DOCT_HSP_WARD				
<u>d ssn</u>	d_name	w_number	w_name	w_head_ssn
1	mario	3	cardiology	4
2	maria	3	cardiology	4
3	giuseppe	4	ER	6
4	francesca	4	ER	6

d_ssn -> w_head_ssn HOLDS

BUT ALSO: d_ssn -> w_number HOLDS

w_number -> w_head_ssn
HOLDS

Z: w_number

DOCT_HSP_WARD viola la 3NF