The FlexRay Bus

Raj Rajkumar Lecture #16

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Carnegie Mellon

Outline

- FlexRay Basics
- FlexRay Topology and Layout
- The FlexRay Protocol
- The FlexRay Communication Cycle
- Signals
- Clock Synchronization and Cold Starting
- In-Cycle Control
- FIBEX: The FlexRay Network Database

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Communication Demands in Automobiles

- Automobiles continue to improve safety, increase performance, reduce environmental impact, and enhance comfort, the speed, quantity and reliability of data communicated between a car's electronic control units (ECU) must increase.
- Advanced control and safety systems, combining multiple sensors, actuators and electronic control units, require synchronization and performance past what CAN can provide.
- The FlexRay network standard has emerged as a new in-vehicle communications bus.

18-648: Embedded Real-Time Systems

Carnegie Mellon

FlexRay Positioning

Bus	LIN	CAN	FlexRay
Speed	40 kbit/s	1 Mbit/s	10 Mbit/s
Cost	\$	\$\$	\$\$\$
Wires	1	2	2 or 4
Typical Applications	Body Electronics (Mirrors, Power Seats, Accesories)		High-Performance Powertrain, Safety (Drive-by-wire, active suspension, adaptive cruise control)

Electrical & Computer FNGINFFRING

18-648: Embedded Real-Time Systems

FlexRay Basics

- Uses unshielded twisted pair cabling
 - Differential signaling on each pair of wires reduces the effects of external noise on the network without expensive shielding.
 - Most FlexRay nodes typically also have power and ground wires to power transceivers and microprocessors.
- Supports single- and dual-channel configurations which consist of one or two pairs of wires respectively.
- Dual-channel configurations offer enhanced fault-tolerance and/or increased bandwidth.
- Most first-generation FlexRay networks only utilize one channel to keep wiring costs down.
- FlexRay buses require termination at the ends.

18-648: Embedded Real-Time Systems

Carnegie Mellon

FlexRay Channel A

FlexRay Channel B

FlexRay Topology and Layout

FlexRay can be used in any of the following configurations:

• Multi-Drop Bus

Star Network

ENGINEERING Networks: Embedded Real-Time Systems

The FlexRay Protocol

- Supports unique time-triggered protocol that provides options for
 - deterministic data that arrives in a predictable time frame, and
 - CAN-like dynamic event-driven data.
- FlexRay manages multiple access with a Time
 Division Multiple Access or TDMA scheme.
 - Every FlexRay node is synchronized to the same clock, and each node waits for its turn to write on the bus.
- For a TDMA network to work correctly, <u>all</u> nodes on the network must be configured correctly.

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Carnegie Mellon

The FlexRay Communication Cycle Cycle Start Cycle time: 1 ms Static Segment Dynamic Segment Symbol Window Network Idle Time • Static Segment: Reserved slots for deterministic data arriving at a

- Static Segment: Reserved slots for deterministic data arriving at a fixed period.
- Dynamic Segment: The dynamic segment behaves in a fashion similar to CAN and is used for a variety of event-based data that does "not" require determinism.
- Symbol Window: Typically used for network maintenance and signaling for starting the network.
- Network Idle Time: A known "quiet" time used to maintain synchronization between node clocks.

The FlexRay macrotick

- Macrotick is the smallest practical unit of time on a FlexRay network
- FlexRay controllers actively synchronize themselves and adjust their local clocks
 - Macro-tick occurs at the same point in time on every node across the network.
- While configurable, macro-ticks are normally 1 μs long.
- Because the macro-tick is synchronized, data that rely on it are also synchronized.

18-648: Embedded Real-Time Systems

Carnegie Mellon

The Static Segment

- The static segment shown in blue is that portion of the cycle dedicated to scheduling a number of time-triggered frames.
- The static segment is broken up into slots, each slot containing a reserved frame of data.
- At each slot, the corresponding ECU can transmit its data into that slot.
- Once that slot passes, the ECU must wait until the next cycle to use that slot
- Due to clock synchronization, data transmission is deterministic and programs know exactly how old the data are.
- FlexRay networks may contain up to several dozen static slots.

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Static Segments and 'Missing' ECUs

 If an ECU goes offline or decides not to transmit data, its slot remains open and is not used by any other ECU

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Carnegie Mellon

The Dynamic Segment Minislots are unused dynamic slots ECU #1 broadcasts in its minislot since the first 7 mini-slots chose not to broadcast.

- The dynamic segment allows "occasionally" transmitted data.
 - The segment is a fixed length.
 - To prioritize the data, mini-slots are pre-assigned to each frame of data that is eligible for transmission in the dynamic segment. A mini-slot is typically a macro-tick long.
 - Higher priority data receive a mini-slot closer to the beginning of the dynamic frame.
- Once a mini-slot occurs, an ECU has a brief opportunity to broadcast its frame.
- If it does not broadcast, it loses its spot in the dynamic frame and the next minislot occurs. This process repeats until an ECU elects to broadcast data.
- If data is broadcast, future mini-slots must wait until transmission is complete.
- If the dynamic window ends, lower-priority mini-slots must wait for the next cycle.

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Priorities in the Dynamic Segment

High-priority data pushes off low-priority

ECUs 2 and 3 broadcast in their mini-slots and leave no time for the lower-priority mini-slots.

18-648: Embedded Real-Time Systems

Carnegie Mellon

The "Symbol" Window

- Used for maintenance and identification of special cycles such as cold-start cycles.
- Most high-level applications do not interact with the symbol window.

Electrical & Computer FNGINFFRING

18-648: Embedded Real-Time Systems

Network Idle Time

- The *network idle* time is of a pre-defined, known length by ECUs.
- The ECUs use this idle time to adjust for any drift that may have occurred during the previous cycle.

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

The Frame Header

- The header is 5 bytes (40 bits) long and includes the following fields:
 - Status Bits (5 bits)
 - Frame ID (11 bits): defines the slot in which the frame should be transmitted and is used for prioritizing event-triggered frames
 - Payload Length (7 bits): # of words transferred in the frame
 - Header CRC (11 bits): detect errors during the transfer
 - Cycle Count (6 bits): contains the value of a counter that advances incrementally each time a Communication Cycle starts.

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Carnegie Mellon

The Payload

0...254 Bytes

- The payload contains the actual data transferred by the frame.
- The length of the FlexRay payload or data frame is up to 127 words (254 bytes)
 - Over 30 times greater compared to CAN.

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

Clock Synchronization and Cold Start

Sync Node 1 Sync Node 2

- FlexRay can sync nodes on a network <u>without</u> an external synchronization clock.
 - Uses 2 special types of frames: Startup Frames and Sync Frames.
 - To start a FlexRay cluster, at least 2 different nodes are required to send startup frames.
 - The action of starting up the FlexRay bus is known as a cold-start and the nodes sending the startup frames are usually known as cold-start nodes.
 - The startup frames are analogous to a start trigger, which tells all the nodes on the network to start.

18-648: Embedded Real-Time Systems

Carnegie Mellon

Clock Synchronization (cont'd)

- Once the network is started, all nodes must synchronize their internal oscillators to the network's macro-tick.
 - Two separate nodes called synchronization nodes are pre-designated to broadcast special sync frames when they are first turned on.
 - Other nodes wait for the sync frames to be broadcast, and measure the time between successive broadcasts in order to calibrate their internal clocks to the FlexRay time.
 - The sync frames are designated in the FIBEX configuration for the network.
- Once the network is synchronized and on-line, the network idle time ("white space" in the pictures) is measured and used to adjust the clocks from cycle-tocycle to maintain tight synchronization.

Electrical & Computer ENGINEERING

18-648: Embedded Real-Time Systems

18-648: Embedded Real-Time Systems

Carnegie Mellon

Electrical & Computer ENGINEERING

Conclusions

• The FlexRay communications network delivers deterministic, fault-tolerant and high-speed bus system performance requirements for next-generation automobiles.

18-648: Embedded Real-Time Systems