

Introducción a las Bases de Datos

Dr. Leon Felipe Palafox Novack Ipalafox@up.edu.mx

1

Anuncios Parroquiales

Examen

- Queda para el 26 de Noviembre.
 - Asuntos Administrativos
 - Nos da 2 semanas.

Proyecto

- Trabajo Escrito:
 - Introducción
 - Origen de los datos
 - "Historia de los datos"
 - Base De Datos
 - Diagrama Entidad-Relación
 - Pasos para normalizar
 - Preguntas ejemplo
 - Algebra Relacional y SQL

2

Bases de Datos basadas en Grafos

Desventajas de Modelo Relacional

¿Qué desventajas tiene el modelo relacional?

Modelo relacional

- La normalización:
 - Limita la forma en la que podemos hacer las conexiones
 - A veces complica, mas que ayuda, en la creación de vistas
 - Aun con un diagrama entidad relación, es difícil ver la relación entre elementos

Soluciones

- Las bases de datos basadas en grafos:
 - Tratan de volver a las bases de mostrar los datos como relaciones
 - El lenguaje esta basado en relaciones entre "tablas"

Ejemplo

people

person_id	person_name	
1	Jack	
2	Mike	

friend

person_id	friend_id
1	2
1	3
1	8

Ejemplo

person_id	person_name	friend_id
1	Jack	2
1	Jack	3
1	Jack	8

Ejemplo


```
SELECT p2.person_name
FROM people p1

JOIN friend on (p1.person_id == friend.person_id)

JOIN people p2 on (p2.person_id == friend.friend_id)

WHERE p1.person_name = 'Jack';
```

```
MATCH (ee:person) -[:FRIEND-with] - (friend)

WHERE ee.name = "Jack"

RETURN ee, friend
```


Bases basadas en Grafos

Bases basadas en Grafos

Cypher

```
MATCH (nicole:Actor {name: 'Nicole Kidman'}) -[:ACTED_IN]-> (movie:Movie)

WHERE movie.year < $yearParameter

RETURN movie
```


DBMS

- Como toda buena BD, tiene un DBMS:
 - Neo4j
 - Ranking: https://db-engines.com/en/ranking
 - Ranking: GDBMS: https://db-engines.com/en/ranking/graph+dbms

Neo4j

Es el motor mas popular

Se basa en Cypher

Es Open Source

Vamos a ver Ejemplos

https://neo4j.com/sandbox-v2/

Bitcoin

Es un archivo distribuido en una red de computadoras.

Cada dato que se adjunta al archivo es una transacción, y el conjunto de estas transacciones es como un libro contable o "ledger"

Blockchain

- Las transacciones se almacenan en el archivo <u>blk.dat</u>
- Las transacciones están separadas por "bytes mágicos"

Relación con NodeJS

https://neo4j.com/blog/import-bitcoin-blockchain-neo4j/

