Dynamics of Rotational Motion

Nitesh Khatiwada January 3, 2021

0.1 Part 2

[17]:

	Height	\overline{t}	Т	ω^2
0	30	0.216100	1.7288	13.209009
1	40	0.183000	1.4640	18.419489
2	50	0.165150	1.3212	22.616355
3	60	0.154300	1.2344	25.908837
4	70	0.140675	1.1254	31.170654
5	80	0.132650	1.0612	35.056234

Table of h vs ω^2 for m = 30g

 $R^2 = 0.9967145034156386$

f(x) = 0.02313604038636388x - 0.01444448971893475 $I = 0.0136 \ kgm^2$

 $R^2 = 0.9994260034678575$ f(x) = 0.010161405884977744x - 0.014454159936804989 $I = 0.0119 \ kgm^2$

[6] : Height [cm] $\bar{t}[s]$ T [s] ω^2 0 30 0.111600 0.8928 49.528066 1 40 0.096350 0.7708 66.447145 2 50 0.087800 0.7024 80.018560 3 60 0.080625 0.6450 94.894340 4 70 0.073950 0.5916 112.798521 5 80 0.070075 0.5606 125.618485

 $R^2 = 0.9984834259758607$ f(x) = 0.006539688827993439x - 0.026915126144064994 $I = 0.0115 \ kgm^2$

0.2 Part 4

[9]:

 $R^2 = 0.997336044683989$

$$f(x) = 0.20962434609630795x - 1.3244636934185197$$

$$I = 0.0062$$

Graph of T_p and 1/Tr when measure from second light barrier

 $R^2 = 0.9987049833658189$

f(x) = 0.8628134862229484x1.9179656204934474

 $I=0.0015\;kgm^2$

0.3 Part 5

0.4 Error Analysis

(2.46+/-0.12)e-08 (2.48+/-0.13)e-08 (6.9+/-0.7)e-12