POLITECHNIKA OPOLSKA	Politechnika Opolska Wydział Elektrotechniki, Automatyki i Informatyki Instytut Informatyki	
Rok akademicki	2024/2025	
Przedmiot	Zaawansowane systemy baz danych	
Forma zajęć	Laboratorium	
Prowadzący zajęcia	Dr inż. Bogdan Ruszczak	
Nr grupy	3	

Diagram z modelem relacyjnej bazy danych

Nazwisko i imię	Nr indeksu
Garncarek Dawid	101095

Uwagi

1. Diagram

Cały diagram został podzielony na cztery części. Na rys 1. przedstawiono pierwszą część diagramu, który przedstawia pojedyncze tabele odpowiedzialne za przechowywanie danych o wadze oraz wskaźniku masy ciała. Ponadto znajdują się tam tabele, które zbierają informacje z formularza kontaktowego, z czatu oraz donacji od użytkowników, którzy dobrowolnie wsparli aplikację. Drugą część diagramu przedstawiono na rys. 2. i ukazano na nim relacje między tabelami przechowującymi informacje logowania i rejestracji użytkownika. W centralnym punkcie znajduje się najważniejsza tabela, która zawiera wszystkie informacje o danych rejestracyjnych użytkownika. Tabele relacyjne łączące się z tabelą AspNetUsers, wspierają kontrolę nad danymi logowania. Są to między innymi informacje o rolach użytkownika czy tokenach.

Rys. 1. Pierwsza część diagramu.

Rys. 2.Druga część diagramu.

W trzeciej części diagramu na rys. 3. zaprezentowano tabele odpowiedzialne za poszczególne funkcje takie jak licznik kalorii, plan diety i ćwiczeń. Są to między innymi tabele odpowiedzialne za funkcje licznika kalorii, które zawierają informacje o zapotrzebowaniu kalorycznym i liczeniu kalorii, do której jest połączona tabela FoodProducts, która zawiera bazę produktów spożywczych. Dalej są to tabele od ćwiczeń, które przechowują pytania, możliwe odpowiedzi oraz odpowiedzi użytkownika. Na podstawie tych odpowiedzi algorytm wybiera z tabeli Exercises te ćwiczenia, które pasują do odpowiedzi użytkownika i generuje plan ćwiczeniowy do tabeli UserExercisesSets. Na tym samym działaniu polega przechowywanie danych od diety w tabelach, które przedstawiono na rys. 4. Tutaj dodatkowo utworzono tabelę UserAnswersDietCalories, która będzie przechowywać odpowiedź numeryczną użytkownika. Ponadto algorytm działa na tych tabelach praktycznie na takiej samej zasadzie co algorytm od ćwiczeń z tym wyjątkiem, że w tym przypadku dieta jest generowana, aby nie przekraczała zapotrzebowania kalorycznego.

Rys. 3. Trzecia część diagramu.

Rys. 4. Czwarta część diagramu.