ELEC5690 Assignment 1

Problem 1: Skin Lesion Image Classification

Model used: ResNet50 Loss functions used:

• Cross-entropy loss

• Cross-entropy + focal loss

Model Parameters

Model	Cross-entropy loss only	Cross-entropy + focal loss
Learning Rate	0.001	0.001
Number of epochs trained	15	10
Optimizer function	Adam	Adam
Pre-trained	Yes	Yes

Overall Metrics

Loss Function	Training Loss	Validation Loss	Training Accuracy	Validation Accuracy	Testing Accuracy
Cross-entropy loss only	0.3188	0.7262	88.33%	78.76%	71.16%
Cross-entropy + focal	0.0681	0.3373	92.97%	79.27%,	73.94%
loss					

Metrics on Test Dataset

1. Cross-entropy loss only

Class	Precision	Recall	F1-score	Support
MEL	0.55	0.44	0.49	171
NV	0.78	0.92	0.85	909
BCC	0.44	0.48	0.46	93
AKIEC	0.32	0.21	0.25	43
BKL	0.64	0.35	0.46	217
DF	0.70	0.16	0.26	44
VASC	0.57	0.74	0.64	35
Accuracy		_	0.71	1512
Macro Average	0.57	0.47	0.49	1512
Weighted Average	0.69	0.71	0.69	1512

2. Cross-entropy + Focal loss

Class	Precision	Recall	F1-score	Support
MEL	0.66	0.23	0.34	171
NV	0.79	0.95	0.86	909
BCC	0.57	0.63	0.60	93
AKIEC	0.35	0.21	0.26	43
BKL	0.62	0.58	0.60	217
DF	1.00	0.09	0.17	44
VASC	0.68	0.60	0.64	35
Accuracy			0.74	1512
Macro Average	0.67	0.47	0.50	1512
Weighted Average	0.73	0.74	0.71	1512

Training and Validation curves

1.

2. Cross-entropy + Focal loss

ROC curves

1. Cross-entropy loss only

2. Cross-entropy + Focal loss

According to the above metrics on test dataset, it is evident that the second model is better, hence we use that model for the below examples.

<u>Gradient class-activation map (Using Cross-entropy + focal loss model)</u>

Examples for the first Class – MEL:

Examples for the second Class – NV:

Examples for the third Class – BCC:

<u>Examples for the fourth Class – AKIEC:</u>

Examples for the fifth Class – BKL:

Examples for the sixth Class – DF:

Examples for the seventh Class – VASC:

Problem 2: 3D medical image segmentation

Model used: 3D Unet

Note: Metrics are rounded to 3 decimal places

First Training Configuration:

Learning rate = 0.001 Optimizer = Adam

Loss function = Binary Cross entropy

Data Augmentations = None

Batch Size = 4

Final Training loss = 0.311

Epoch trained = 50

Metrics on test dataset:

Dice Coefficient: 0.758 Jaccard Index: 0.639

ASD: 1.945 95HD: 8.606

Second Training Configuration:

Learning rate = 0.00001

Optimizer = Adam

Loss function = Dice Loss

Data Augmentations = None

Batch Size = 2

Final Training loss = 0.359

Epochs trained = 75

Metrics on test dataset:

Dice Coefficient: 0.810 Jaccard Index: 0.686

ASD: 0.930 95HD: 6.087

Third Training Configuration:

Learning rate = 0.00001

Optimizer = Adam

Loss function = Dice Loss

Data Augmentations = Random rotate, Random flip

Batch Size = 2

Final Training loss = 0.387

Epochs trained = 75

Metrics on test dataset:

Dice Coefficient: 0.737 Jaccard Index: 0.593

ASD: 1.612 95HD: 9.047

Training Loss curves

First Training configuration

Second Training configuration

Third Training Configuration

According to the above metrics on test dataset, it is evident that the second training configuration provides the best model, hence we use that model for the below example segmentations.

2D segmentation results compared with ground truth label

Visualising prediction masks in 3D

