

Laboratuvar 07

BİL 210-Olasılık ve İstatistik

Olasılık Dağılımları

Örnek: MENSA IQ Testi, Kümülatif Olasılık

- MENSA IQ Testi sonuçları, ortalama: 100 ve standart sapma: 16 olmak üzere, normal dağılım göstermektedir.
- Testi geçebilmek için, en yüksek %2'lik dilimde yer almak gerekmektedir.
- MENSA testini geçebilmek için gerekli en düşük IQ testi sonucunu belirleyiniz.

Örnek: MENSA IQ Testi, Kümülatif Olasılık

Örnek: MENSA IQ Testi, Kümülatif Olasılık

MENSA testini geçebilmek için gerekli en düşük IQ testi sonucunu:

Inverse Cumulative Distribution Function

```
Normal with mean = 100 and standard deviation = 16

P(X <= x) x

0,98 132,860
```

Örnek: Göreceli Sınav Derecesinin Belirlenmesi

- Bir sınavın sonuçları, ortalama: 500 ve standart sapma: 100 olmak üzere, normal dağılım göstermektedir.
- Sınavdan 650 puan alan bir öğrencinin göreceli sınav derecesinin belirlenmesi.

Örnek: Göreceli Sınav Derecesinin Belirlenmesi

Normal Distribution		×
	 Probability density Cumulative probability Inverse cumulative probability Mean: 500 Standard deviation: 100 	
Select	Optional storage: Optional storage: Optional storage:	
Help	OK Cancel	

Örnek: Göreceli Sınav Derecesinin Belirlenmesi

Cumulative Distribution Function

```
Normal with mean = 500 and standard deviation = 100 \times P( X <= \times ) 0,933193
```

- Burada elde edilen oran, X'in 650'den küçük olması durumuna ilişkin sonuçtur.
- 650'den daha yüksek puan alan öğrenci oranının belirlenmesi için 1-0,9332=0,0668 işleminin gerçekleştirilmesi gerekmektedir.

- Bir dersin dönem sonu notu belirlenirken, dönem sonu notu 80-90 arasında olan tüm öğrencilere B harf notu verilmektedir.
- Belirli bir öğretim yılında, dersi alan öğrencilerin dönem sonu notları normal dağılım göstermektedir.
- Dönem Sonu Notları Ortalaması: 83
- Standart Sapma: 5

- Sınıfta B harf notu alacak öğrenci oranının belirlenmesi:
- Bu oranın belirlenmesi için X=80 ve X=90 için iki farklı kümülatif olasılık hesaplaması yapılması,
- Bu iki olasılığın birbirlerinden çıkarılması gerekmektedir.

Cumulative Distribution Function

```
Normal with mean = 83 and standard deviation = 5

x P( X <= x )
80 0,274253
```

Cumulative Distribution Function

```
Normal with mean = 83 and standard deviation = 5

x P( X <= x )
90 0,919243
```

■ 0,9192-0,2743=0,6449 (Yaklaşık olarak sınıfın %64'ü dönem sonu notu olarak B almış)

Örnek: Enerji Kullanımı

- Bir kentte enerji kullanımı normal dağılım göstermektedir.
- Bu kentte ortalama enerji tüketimi: 673 kilovat/saat
- Standart sapma: 556 kilovat/saattir.
- Enerji tüketimi 1000 kilovat saatin üstünde olan evlerin oranını belirleyiniz.

Örnek: Enerji Kullanımı

Normal Distribution		X	
	C Probability density		
	C Inverse cumulative probability		
	Mean: 673		
	Standard deviation: 556		
	C. Innut column		
	Optional storage:		
	Input constant: 1000		
Select	Optional storage:		
		,	
Help	OK Cancel	┚	

Örnek: Enerji Kullanımı

Cumulative Distribution Function

```
Normal with mean = 673 and standard deviation = 556

x P( X <= x )

1000 0,721777
```

- 1000 Kilovat saatin üzerinde enerji tüketimi olan evlerin oranının belirlenmesi:
- 1-0,7217=0,2783 (Yaklaşık olarak evlerin %28'inde 1000 Kilovat saatin üzerinde enerji tüketimi vardır)

- Bir apartmanda, ev kiraları normal dağılım göstermektedir.
- Bu apartmanda, ortalama aylık kira: 700 TL
- Kiraların standart sapması: 150 TL dir.
- Bu apartmanda kirası en az 1000 TL olan daire oranını belirleyiniz.
- Bu apartmanda kirası 500 TL'nin altında olan daire oranını belirleyiniz.

Bu apartmanda kirası en az 1000 TL olan daire oranını

Cumulative Distribution Function

```
Normal with mean = 700 and standard deviation = 150 \times P( X <= \times ) 1000 0,977250
```

- Bu apartmanda kirası en az 1000 TL olan daire oranını:
- 1-0,977250=0,02275 (Dairelerin yaklaşık %2'sinin kirası 1000 TL'ye eşit veya üzerindedir)

 Bu apartmanda kirası 500 TL'nin altında olan daire oranını

- Bu apartmanda kirası 500 TL'nin altında olan daire oranını:
- 0,0912112 (Dairelerin yaklaşık %9'unun kirası 500 TL'nin altındadır)

Cumulative Distribution Function

```
Normal with mean = 700 and standard deviation = 150

x P( X <= x )

500 0,0912112
```

- Kirası 500 TL ile 1000 TL arasında olan dairelerin oranının belirlenmesi.
- P(X < 500) = 0.0912112
- \blacksquare P(X<1000)=0,977250
- 0,977250-0,0912112=0,8860388 (Dairelerin yaklaşık olarak %89'u)

Örnek: Eleman Seçimi

■ 10 elemanlık rastgele bir örneklemden seçilen kadın eleman sayısı X ile gösterilmektedir. X, 1-10 aralığında herhangi bir değer alabilmektedir.

Simple Set of Numbers		
C1	Store patterned data in: C1 From first value: 1 To last value: 10	
	In steps of: In steps of: Number of times to list each value: Number of times to list the sequence:	-
Select	OK Cancel	

Örnek: Eleman Seçimi

Bu örneklem için Binom Olasılık Dağılımının belirlenmesi:

Binomial Distribution			X
	Probability		
	C Cumulative probabi	ility	
	C Inverse cumulative	probability	
	Number of trials:	10	
	Event probability:	0,5	
		C1	
	Optional storage:		
	C Input constant:		
Select	Optional storage:		
usts 1		OK Consul	1
Help		OK Cancel	_

Örnek: Eleman Seçimi

Bu örneklem için Binom Olasılık Dağılımının belirlenmesi:

Probability Density Function

```
Binomial with n = 10 and p = 0.5
   P(X = x)
   0,009766
     0,043945
     0,117188
   0,205078
  0,246094
     0,205078
     0,117188
     0,043945
     0,009766
10
      0,000977
```