SOLUTIONS DES EXERCICES SUR LES PROBABILITÉS DISCRÈTES

Exercice 1 Variables aléatoires et arbres

1. a) L'arbre ci-contre décrit les différentes situations possibles.

Soit la tablette est gagnante, soit elle ne l'est pas.

Si elle est gagnante, elle contient soit une, soit deux place(s) $% \left(s\right) =\left(s\right) \left(s\right) \left($

de cinéma.

On a immédiatement :

$$P(G) = \frac{1}{2}$$

$$P_G(U) = 0.6$$

$$P_G(D) = 0.4$$

D'après les formules de cours (ou à l'aide de l'arbre), on a :

$$P(G \cap U) = P(U \cap G) = P_G(U) P(G) = 0.6 \times 0.5 = 0.3$$

0,6

G

c) Calculons la probabilité de gagner respectivement 0, 1 et 2 place(s) de cinéma.

$$P(X = 0) = P(\overline{G}) = 0.5$$

$$P(X = 1) = P(G \cap U) = 0.3$$

$$P(X = 2) = P(G \cap D) = P_G(D) P(G) = 0.4 \times 0.5 = 0.2$$

On résume la loi de probabilité de X dans le tableau suivant :

X	0	1	2	Total	
Probabilités	0,5	0,3	0,2	1	

D

 \overline{G}

L'espérance mathématique E(X) de la variable aléatoire X est donnée par la formule :

$$E(X) = \sum_{i} p_i x_i = 0.5 \times 0 + 0.3 \times 1 + 0.2 \times 2 = 0.7$$

2. Notons Y la variable aléatoire correspondant au nombre de tablettes gagnées par ce client.

Les différentes valeurs possibles de Y sont : 0 ou 1 ou 2 ou 3 ou 4.

L'arbre ci-dessous illustre toutes les situations possibles :

(On a noté Z l'événement "la tablette rapporte zéro place de cinéma". En fait, $Z = \overline{G}$)

- a) Probabilité qu'il ne gagne aucune place de cinéma : $P(Y = 0) = 0.5 \times 0.5 = 0.25$ (Chemin Z-Z sur l'arbre)
- b) L'événement "il gagne au moins une place de cinéma" est le contraire de l'événement "il ne gagne aucune place de cinéma" : $P(Y \ge 1) = 1 p(Y = 0) = 1 0.25 = 0.75$.
- c) Probabilité qu'il gagne exactement deux places de cinéma :

$$P(Y = 2) = 0.5 \times 0.2 + 0.3 \times 0.3 + 0.2 \times 0.5 = 0.29$$

(Chemins *D-Z* ou *U-U* ou *Z-D*)

Exercice 2 Détermination de la composition d'une urne pour obtenir une espérance de gain souhaitée

1. Comme chaque boule a autant de chance d'être tirée, on est dans une situation d'équiprobabilité. La probabilité *p* d'un événement peut donc se calculer à l'aide de la formule :

$$p = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$$

On a ainsi:

$$P(J) = \frac{3}{10} \qquad P(B) = \frac{2}{10} = \frac{1}{5} \qquad P(R) = \frac{1}{10} \qquad P(V) = \frac{4}{10} = \frac{2}{5}$$

$$P(X = 2) = P(V) = \frac{4}{10} = \frac{2}{5}$$

2. a. On a:

10

Comme les événements J et B sont incompatibles, on a :

$$P(J \cup B) = P(J) + P(B)$$

D'où:
$$P(X=3) = P(J \cup B) = P(J) + P(B) = \frac{3}{10} + \frac{2}{10} = \frac{5}{10} = \frac{1}{2}$$
$$P(X=10) = P(R) = \frac{1}{10}$$

b. La loi de probabilité de X est donnée par le tableau ci-dessous

Valeurs de X	$x_1 = 2$	$x_2 = 3$	$x_3 = 10$
probabilités	$p_1 = \frac{4}{10}$	$p_2 = \frac{5}{10}$	$p_3 = \frac{1}{10}$

L'espérance mathématique de X est donnée par :

$$E(X) = \sum_{i=1}^{3} p_i x_i = \frac{4}{10} \times 2 + \frac{5}{10} \times 3 + \frac{1}{10} \times 10 = \frac{33}{10} = 3,3$$

La variance de X est donnée par :

$$V(X) = \sum_{i=1}^{3} p_i x_i^2 - (E(X))^2$$
$$V(X) = \frac{4}{10} \times 2^2 + \frac{5}{10} \times 3^2 + \frac{1}{10} \times 10^2 - 3,3^2 = 16,1 - 10,89 = 5,21$$

Et enfin, l'écart-type de X est donné par $:\sigma(X) = \sqrt{V(X)}$

$$\sigma(X)=\sqrt{5,21}\simeq 2,28$$

3. Notons Y la nouvelle variable aléatoire correspondant au gain moyen dans cette situation.

La loi de probabilité de Y est donnée par le tableau suivant :

Valeurs de Y	$y_1 = 2$	$y_2 = 3$	$y_3 = m$	$y_4 = 10$
probabilités	$p_1 = \frac{4}{10}$	$p_2 = \frac{3}{10}$	$p_3 = \frac{2}{10}$	$p_4 = \frac{1}{10}$

On souhaite avoir:

$$E(Y) = 4.5$$

C'est à dire:

$$\frac{4}{10} \times 2 + \frac{3}{10} \times 3 + \frac{2}{10} \times m + \frac{1}{10} \times 10 = 4,5$$
$$27 + 2m = 45$$

m = 9

Il faut donc que la boule bleue rapporte 9 €pour que le gain moyen espéré soit de 4,5 €

Exercice 3 Problème de déconditionnement

Notons:

R l'événement "l'appareil choisi est rouge" et M_i = "l'appareil choisi provient de la marque M_i ", $1 \le i \le 3$.

Arbre illustrant la situation:

- 1) La probabilité que l'appareil vienne de M_3 est $P(M_3) = \frac{3}{8}$. (On a de même $P(M_1) = \frac{1}{2}$ et $P(M_2) = \frac{1}{8}$)
- 2) La probabilité que l'appareil soit rouge sachant qu'il vienne de M_2 est :

$$P_{M_2}(R) = \frac{5}{100} = \frac{1}{20}$$

On a de même :

$$P_{M_1}(R) = \frac{13}{100}$$
 et $P_{M_3}(R) = \frac{10}{100} = \frac{1}{10}$

3) Comme les événements M_1 , M_2 et M_3 constituent une partition de l'univers, on a, d'après le théorème des probabilités totales :

$$P(\overline{R}) = P_{M_1}(\overline{R})p(M_1) + P_{M_2}(\overline{R})P(M_2) + P_{M_3}(\overline{R})P(M_3) = \frac{87}{100} \times \frac{1}{2} + \frac{95}{100} \times \frac{1}{8} + \frac{90}{100} \times \frac{3}{8} = \frac{713}{800}$$

4) Il s'agit de calculer $P_R(M_1)$:

$$P_R(M_1) = \frac{P(M_1 \cap R)}{P(R)} = \frac{P_{M_1}(R)P(M_1)}{1 - P(\overline{R})} = \frac{13/100 \times 1/2}{87/800} = \frac{52}{87}$$

Exercice 4 Probabilités conditionnelles et suite arithmético-géométrique

Notons F_n l'événement "l'individu fume le $n^{\text{ème}}$ jour".

Illustrons, à l'aide d'un arbre la situation entre le $n^{\text{ème}}$ jour et le $(n+1)^{\text{ème}}$ jour :

D'après la formule des probabilités totales appliquée à la partition $\Omega = F_n \cup \overline{F_n}$, on a :

$$p_{n+1} = P(F_{n+1}) = P(F_{n+1} \cap F_n) + P(F_{n+1} \cap \overline{F_n}) = P_{F_n}(F_{n+1})P(F_n) + P_{\overline{F_n}}(F_{n+1})P(\overline{F_n})$$

$$p_{n+1} = P_{F_n}(F_{n+1})p_n + P_{\overline{F_n}}(F_{n+1})(1 - p_n) = 0.2p_n + 0.4(1 - p_n)$$

$$p_{n+1} = -0.2p_n + 0.4$$

Soit ω le réel tel que :

$$\omega = -0.2\omega + 0.4$$

En soustrayant membre à membre :

$$p_{n+1} - \omega = -0.2(p_n - \omega)$$

La suite $(p_n - \omega)$ est donc géométrique de raison q = -0.2, d'où :

$$p_n - \omega = (-0.2)^n p_0$$

On ne connaît pas p_0 mais cela ne nous empêche pas d'étudier la limite. On sait que :

$$\lim_{n \to +\infty} (-0,2)^n = 0$$

(Limite d'une suite géométrique de raison $q = 0,2 \in]-1, 1[$)

D'où:
$$\lim_{n \to +\infty} p_n = \omega = \frac{1}{3}$$

Conclusion : avec ces données, à long terme, notre individu tendra à fumer un jour sur trois. Impossible de s'arrêter complètement tant que les conditions C_1 et C_2 sont appliquées. Notons que cette limite est indépendante de la probabilité initiale p_0 . Autrement dit, que notre individu soit un grand ou un petit fumeur, au bout du compte, il fumera en moyenne un jour sur trois.

Exercice 5 Loi de l'équilibre génétique lors de l'appariements au hasard - Loi de Hardy-Weinberg

1.

2. D'après les règles de calculs sur les arbres, on a pour tout $n \in \mathbb{N}$:

$$p_{n+1} = p_n^2 + \frac{1}{2}p_nq_n + \frac{1}{2}p_nq_n + \frac{1}{4}q_n^2 = p_n^2 + p_nq_n + \left(\frac{q_n}{2}\right)^2 = \left(p_n + \frac{q_n}{2}\right)^2$$

De même :

$$r_{n+1} = \left(\frac{q_n}{2} + r_n\right)^2$$

Et puisque $p_{n+1} + q_{n+1} + r_{n+1} = 1$:

$$q_{n+1} = 1 - \left(p_n + \frac{q_n}{2}\right)^2 - \left(\frac{q_n}{2} + r_n\right)^2$$

3. a) D'où, pour tout $n \in \mathbb{N}$:

$$p_{n+1} - r_{n+1} = \left(p_n + \frac{q_n}{2}\right)^2 - \left(\frac{q_n}{2} + r_n\right)^2 = (p_n - r_n)(p_n + q_n + r_n) = p_n - r_n$$

On en déduit que, pour tout $n \in \mathbb{N}$:

$$p_n - r_n = p_0 - r_0 = \alpha$$

Ceci peut se démontrer proprement par récurrence.

b) On a alors, pour tout $n \in \mathbb{N}$:

$$p_{n+1} = \left(p_n + \frac{q_n}{2}\right)^2 = \left(p_n - r_n + \frac{2r_n + q_n}{2}\right)^2$$
$$p_n + \frac{q_n}{2} = p_n - r_n + \frac{2r_n + q_n}{2}$$

Et comme $p_n - r_n = \alpha$ et $2r_n + q_n = 1 - p_n + r_n = 1 - \alpha$, on obtient :

$$p_n + \frac{q_n}{2} = \alpha + \frac{1-\alpha}{2} = \frac{1+\alpha}{2}$$

D'où: $p_{n+1} = \left(\frac{1+\alpha}{2}\right)^2$

De même :

$$\frac{q_n}{2} + r_n = \frac{q_n + 2p_n}{2} + r_n - p_n = \frac{1 + p_n - r_n}{2} + r_n - p_n = \frac{1 + \alpha}{2} - \alpha = \frac{1 - \alpha}{2}$$

$$r_{n+1} = \left(\frac{1-\alpha}{2}\right)^2$$

$$q_{n+1} = 1 - \left(\frac{1+\alpha}{2}\right)^2 - \left(\frac{1-\alpha}{2}\right)^2 = \frac{1-\alpha^2}{2}$$

On a prouvé que les suites (p_n) , (q_n) et (r_n) sont constantes à partir du rang n = 1.

Exercice 6 Variables aléatoires et dénombrement

1. Pour calculer la probabilité de A, on utilise la formule :

$$P(A) = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$$

<u>Première méthode</u> : (simple et naturelle)

Calcul du nombre de cas possibles :

Le premier élève a 10 choix de parfums.

Le second élève a 10 choix de parfums.

Le troisième élève a 10 choix de parfums.

Au total, nous obtenons : $10 \times 10 \times 10 = 10^3 = 1000$ cas possibles.

Calcul du nombre de cas favorables :

Le premier élève a 10 choix de parfums.

Le second élève a 9 choix de parfums. (Car on souhaite qu'il ait un parfum différent du premier)

Le troisième élève a 8 choix de parfums. (Car on souhaite qu'il ait un parfum différent des deux premiers)

Au total, nous obtenons : $10 \times 9 \times 8 = 720$ cas favorables.

Bilan:

$$P(A) = \frac{720}{1000} = \frac{18}{25} = 0.72$$

<u>Deuxième méthode</u>: (utilisant des notions de dénombrement)

Notons E l'ensemble $\{a; b; c; d; e; f; g; h; i; j\}$ où chaque lettre désigne un parfum.

À chaque choix de parfum des trois élèves, on peut associer une **liste**. Par exemple, la liste *gag* signifie que le premier élève a choisi le parfum *g*, le second le parfum *a* et le troisième le parfum *g*.

Le nombre de cas possibles est égal au nombre de 3-listes de l'ensemble E. Il y en a $10^3 = 1000$.

Le nombre de cas favorables est égal au nombre de 3-listes d'éléments distincts de l'ensemble E, c'est-à-dire au nombre de 3-arrangements de E. Il y en a $A_{10}^3 = 720$.

On retrouve:

$$P(A) = \frac{720}{1000} = \frac{18}{25} = 0.72$$

2. Les différentes valeurs possibles de *X* sont 1 ou 2 ou 3.

On sait déjà, d'après la question 1 que : $P(X = 3) = P(A) = \frac{18}{25}$

Calcul de P(X = 1):

Nombre de cas favorables : $10 \times 1 \times 1$. (Le premier élève a 10 choix, les deux suivants sont contraints de prendre le même parfum).

D'où:
$$P(X=1) = \frac{10}{1000} = \frac{1}{100}$$

Par ailleurs, les événements "X = 1", "X = 2" et "X = 3" forment une partition de l'univers. On a donc :

$$P(X = 1) + P(X = 2) + P(X = 3) = 1$$

D'où:
$$P(X=2) = 1 - P(X=1) - P(X=3) = 1 - \frac{1}{100} - \frac{18}{25} = \frac{27}{100}$$

Remarque: on peut aussi calculer P(X = 2) directement:

nombre de cas favorables : nombre de 3-listes de E qui contiennent 2 lettres distinctes (et donc une lettre répétée deux fois) :

choix de la lettre répétée : 10 choix. (Exemple g)

choix de l'autre lettre (distincte de la lettre répétée) : 9 choix (Exemple a)

choix de la position de la lettre non répétée : 3 choix (agg ou gag ou gga)

Au total : $10 \times 9 \times 3 = 270$ cas favorables.

On retrouve bien : $P(X=2) = \frac{270}{1000} = \frac{27}{100}$

On résume maintenant la loi de probabilité de X sous forme de tableau :

X	1	2	3	Total
Probabilités	0,01	0,27	0,72	1

Calcul de l'espérance mathématique de X :

$$E(X) = \sum_{i} p_{i} x_{i} = 0.01 \times 1 + 0.27 \times 2 + 0.72 \times 3 = 2.71$$

En moyenne, le nombre de parfums distincts choisis par les trois élèves est 2,71.

Exercice 7 Sur la double partition d'une population. Différents cas de figure

Premier cas : on connaît P(A), P(B) et une probabilité conditionnelle

Supposons connue $P_A(B)$ (Méthode analogue si c'est une autre probabilité conditionnelle qui est donnée)

On peut alors calculer:

$$P(A \cap B) = P_A(B)P(A)$$

D'où: $P_B(A) = \frac{P(A \cap B)}{P(B)} \tag{1}$

En utilisant la formule des probabilité totales, on a :

Avec la partition $\Omega = A \cup \overline{A}$: $P(B) = P(B \cap A) + P(B \cap \overline{A})$

C'est-à-dire : $P(B) = P_A(B)P(A) + P_{\overline{A}}(B)(1 - P(A))$

D'où: $P_{\overline{A}}(B) = \frac{P(B) - P_A(B)P(A)}{1 - P(A)}$ (2)

Et avec la partition $\Omega = B \cup \overline{B}$: $P(A) = P(A \cap B) + P(A \cap \overline{B})$

 $P(A) = P_B(A)P(B) + P_{\overline{R}}(A)(1 - P(B))$

D'où: $P_{\overline{B}}(A) = \frac{P(A) - P_B(A)P(B)}{1 - P(B)}$ (3)

On a bien retrouvé les 3 probabilités restantes.

Deuxième cas : on connaît P(A) mais pas P(B) (ou le contraire) et deux probabilités conditionnelles

Supposons connues:

$$P(A)$$
, $P_A(B)$ et $P_{\overline{A}}(B)$

Par la formule des probabilités totales appliquée à la partition $\Omega = A \cup \overline{A}$, on a :

$$P(B) = P_A(B)P(A) + P_{\overline{A}}(B)(1 - P(A))$$

On est ramené au premier cas.

Supposons connues: P(A), $P_A(B)$ et $P_B(A)$

On calcule alors : $P(A \cap B) = P_A(B)P(A)$

D'où :
$$P(B) = \frac{P(A \cap B)}{P_{B}(A)}$$

On est ramené au premier cas.

Si ce sont d'autres probabilités conditionnelles qui sont connues, on raisonne de manière analogue.

Troisième cas: on connaît trois probabilités conditionnelles

Supposons, par exemple, connues : $P_A(B)$, $P_{\overline{A}}(B)$ et $P_B(A)$

D'une part : $P(A \cap B) = P_A(B)P(A) = P_B(A)P(B)$

D'autre part : $P(B) = P_A(B)P(A) + P_{\bar{A}}(B)(1 - P(A))$

D'où:
$$P_A(B)P(A) = P_B(A)[P_A(B)P(A) + P_{\overline{A}}(B)(1 - P(A))]$$

$$P(A)[P_A(B) - P_B(A)P_A(B) + P_{\overline{A}}(B)] = P_B(A)P_{\overline{A}}(B)$$

$$P(A) = \frac{P_B(A)P_{\bar{A}}(B)}{P_A(B) - P_B(A)P_A(B) + P_{\bar{A}}(B)}$$

On est ramené au deuxième cas.

Exercice 8 Loi hypergéométrique, loi de Bernoulli, loi binomiale

1. Le nombre de façons de choisir 5 cartes parmi 12 est : $\binom{12}{5}$

Le nombre de façons de choisir k rois ($k \in \{0; 1; 2; 3; 4\}$) parmi 4 est : $\begin{pmatrix} 4 \\ k \end{pmatrix}$

Le nombre de façons de choisir 5 - k autres cartes (non rois) parmi les 8 restantes est : $\binom{8}{5-k}$

On a donc:
$$P(X = k) = \frac{\binom{4}{k} \binom{8}{5 - k}}{\binom{12}{5}} \text{ pour tout } k \in \{0; 1; 2; 3; 4\}$$

À l'aide de la calculatrice, on obtient

X	0	1	2	3	4	Total
Probabilités	$\frac{7}{99}$	35 99	42 99	14 99	1 99	1

Calcul de l'espérance mathématique de X :

$$E(X) = \sum_{i} p_i x_i = \frac{165}{99} = \frac{5}{3}$$

En moyenne, le nombre de rois obtenus, par cette méthode de tirage, est $\frac{5}{3}$ ($\simeq 1,67$).

- 2. Soit & l'expérience : "on tire, au hasard et avec remise, une carte de l'enveloppe et on regarde si c'est un roi" Cette expérience aléatoire possède deux issues : obtenir un roi (Succès) ou non (Echec).
 - C'est donc une **épreuve de Bernoulli** de paramètre $p = P(Succès) = \frac{4}{12} = \frac{1}{3}$.

On **répète, de manière indépendante**, n = 5 fois cette épreuve de Bernoulli.

La variable aléatoire Y (nombre de rois obtenus) représente le **nombre de succès** obtenus ($0 \le Y \le 5$)

On peut donc affirmer que la variable aléatoire Y est **binomiale** de paramètre n = 5 et $p = \frac{1}{3}$:

$$Y \longrightarrow B\left(5; \frac{1}{3}\right)$$

Dans ce cas, on sait alors que:

$$P(Y=k) = {5 \choose k} \left(\frac{1}{3}\right)^k \left(\frac{2}{3}\right)^{5-k} \text{ pour tout } k \in \{0; 1; 2; 3; 4; 5\}$$

À l'aide de la calculatrice, on obtient (à 10^{-3} près):

Y	0	1	2	3	4	5	Total
Probabilités	0,132	0,329	0,329	0,165	0,041	0,004	1

Espérance mathématique de Y:

$$E(Y) = np = 5 \times \frac{1}{3} = \frac{5}{3}$$

En moyenne, le nombre de rois obtenus, par cette méthode de tirage, est $\frac{5}{3}$ (\simeq 1,67).

Exercice 9 *Notion d'indépendance - Utilisation d'un arbre.*

Comparons $p(B_1)p(B_2)$ et $P(B_1 \cap B_2)$:

$$p(B_1) = 0.5 \times 0.7 + 0.5 \times 0.5 = 0.35 + 0.25 = 0.6$$

$$p(B_2) = 0.5 \times 0.7 \times 0.7 + 0.5 \times 0.3 \times 0.7 + 0.5 \times 0.5 \times 0.5 + 0.5 \times 0.5 \times 0.5 = 0.6$$

Donc $p(B_1)p(B_2) = 0.36$.

$$p(B_1 \cap B_2) = 0.5 \times 0.7 \times 0.7 + 0.5 \times 0.5 \times 0.5 = 0.37.$$

Comme $p(B_1)p(B_2) \neq p(B_1 \cap B_2)$, on déduit : B_1 et B_2 ne sont pas indépendants.

L'événement B_1 correspond au chemin U_1 B ou au chemin U_2 B

L'événement B_2 correspond aux chemins U_1BB ; U_1NB ; U_2BB ; U_2NB

L'événement $B_1 \cap B_2$ correspond aux chemins : U_1BB ; U_2BB

<u>Remarque</u> : ce résultat peut paraître surprenant. Il est dû à la composition différente entre boules blanches et noires dans les deux urnes et qu'on ne sait pas, a priori, dans quelle urne seront effectués les tirages.

Exercice 10 Dénombrement - Loi binomiale

Partie A

Il y a donc 10 câbles du type C_1 et 40 câbles du type C_2 dans la livraison.

Notons qu'il y a $\binom{50}{4}$ façons de choisir 4 câbles parmi 50.

1) Nombre de façons de choisir 4 câbles de type $C_1: \begin{pmatrix} 10\\4 \end{pmatrix}$

D'où:
$$P(E) = \frac{\binom{10}{4}}{\binom{50}{4}} = \frac{3}{3290} \approx 0,00091 \text{ à } 10^{-5} \text{ près}$$

2) Nombre de façons de choisir 1 câble du type C_1 : 10

Nombre de façons de choisir 3 câbles du type $C_2: \begin{pmatrix} 40 \\ 3 \end{pmatrix}$

D'où :
$$P(F) = \frac{10 \times \binom{40}{3}}{\binom{50}{4}} = \frac{988}{2303} \approx 0,429 \text{ à } 10^{-3} \text{ près}$$

3) On a : \overline{G} = "aucun câble n'est du type C_1 " = "les 4 câbles sont du type C_2 "

Nombre de façons de choisir 4 câbles du type $C_2: \begin{pmatrix} 40\\4 \end{pmatrix}$

D'où:
$$P(G) = 1 - P(\overline{G}) = 1 - \frac{\binom{40}{4}}{\binom{50}{4}} = \frac{13891}{23030} \approx 0,603 \text{ à } 10^{-3} \text{ près}$$

Partie B

Comme le tirage se fait avec remise, les n réalisations de l'expérience \mathscr{E} se font de manière identiques et indépendantes. On a ainsi un schéma de Bernoulli. La probabilité d'obtenir un câble du type C_1 étant égale à 0,2 on peut affirmer que la variable aléatoire X suit une loi binomiale de paramètre n et p = 0,2.

On a donc pour tout entier k compris entre 0 et n:

$$P(X = k) = \binom{n}{k} 0.2^k \times 0.8^{n-k}$$

- 1) n = 4.
 - a) Probabilité d'obtenir 2 câbles du type C_1 :

$$P(X = 2) = {4 \choose 2} 0.2^2 \times 0.8^2 = 0.1536$$

b) Probabilité d'obtenir au moins un câble de type C_1 :

$$P(X \ge 1) = 1 - P(X = 0) = 1 - 0.8^4 = 0.5904$$

c) L'espérance d'une variable aléatoire suivant une loi binomiale est donnée par :

$$E(X) = np = 4 \times 0.2 = 0.8$$

En moyenne, on obtient 0,8 câble du type C_1 .

2) Dans cette question n est inconnu.

a) On a:
$$P(X \ge 1) = 1 - P(X = 0) = 1 - 0.8^n$$

b) On cherche *n* tel que :
$$P(X \ge 1) \ge 0.9$$

$$1-0.8^n \geqslant 0.9$$

$$0.8^n \leq 0.1$$

Par croissance du logarithme : $n \ln 0.8 \le \ln 0.1$

Et comme ln
$$0.8 < 0$$
:
$$n \ge \frac{\ln 0.1}{\ln 0.8}$$

La calculatrice donne :
$$\frac{\ln 0.1}{\ln 0.8} \simeq 10.32 \text{ à } 10^{-2} \text{ près}$$

Et comme
$$n$$
 est un entier : $n \ge 11$

On doit répéter l'expérience \mathscr{E} au moins 11 fois pour être sûr à 90% d'obtenir au moins un câble C_1 .

Exercice 11 Test de séropositivité

Notons S l'événement "l'individu est séropositif" et T "le test est positif"

Illustrons la situation à l'aide d'un arbre :

$$p(S|T) = \frac{p(S \cap T)}{p(T)} = \frac{p(T|S)p(S)}{p(T)} = \frac{p(T|S)p(S)}{p(T|S)p(S) + p(T|\overline{S})p(\overline{S})} = \frac{1}{1 + \frac{p(T|\overline{S})p(\overline{S})}{p(T|S)p(S)}} \approx 0,090 \text{ à } 10^{-3} \text{ près}$$

Conclusion : même si le test est positif, on a environ 9 chances sur 100 de ne pas être malade !

Voir l'exercice n°13 sur la pertinence d'un test de dépistage

Exercice 12 Comparaison de l'efficacité de deux vaccins.

On a:

$$\lambda = \frac{P_{\overline{V}}(M)}{P_{V}(M)} = \frac{P(M \cap \overline{V})P(V)}{P(M \cap V)P(\overline{V})} = \frac{P_{M}(\overline{V})P(M)P(V)}{P_{M}(V)P(M)P(\overline{V})} = \frac{P_{M}(\overline{V})P(V)}{P_{M}(V)P(\overline{V})} = \frac{(1 - P_{M}(V))P(V)}{P_{M}(V)(1 - P(V))}$$

 $\underline{\text{Vaccin } A}$:

$$\lambda_A = \frac{(1-0,008)\times0,25}{0,008\times(1-0,25)} \simeq 41,33 \text{ à } 10^{-2} \text{ près}$$

Vaccin B:

$$\lambda_B = \frac{(1-0,006)\times0,2}{0,006\times(1-0,2)} = 41,42 \text{ à } 10^{-2} \text{ près}$$

Les deux vaccins ont quasiment la même efficacité...

L'effectif de la population étudiée est bien trop faible pour tirer des conclusion plus précises.

Exercice 13 Pertinence d'un test de dépistage

1. Notons Ω la population.

On a:
$$f(x) = P_T(M) = \frac{P(M \cap T)}{P(T)}$$

Et d'après la formule des probabilités totales appliquée à la partition $\Omega = M \cup \overline{M}$:

$$P(T) = P(T \cap M) + P(T \cap \overline{M})$$

D'où:
$$f(x) = \frac{P(M \cap T)}{P(T \cap M) + P(T \cap \overline{M})}$$

$$f(x) = \frac{P_M\left(T\right)x}{P_M\left(T\right)x + P_{\overline{M}}\left(T\right)(1-x)} = \frac{P_M\left(T\right)x}{\left(P_M\left(T\right) - P_{\overline{M}}\left(T\right)\right)x + P_{\overline{M}}\left(T\right)}$$

Application numérique avec $P_M(T) = 0.98$ et $P_{\overline{M}}(T) = 0.01$

$$f(x) = \frac{0.98x}{0.97x + 0.01} = \frac{98x}{97x + 1}$$

Représentation graphique de la fonction f:

2. On a:
$$f(0.05) = \frac{98 \times 0.05}{97 \times 0.05 + 1} \approx 0.8376 \text{ à } 10^{-4} \text{ près}$$

Le test n'est pas fiable si 5% de la population est malade...

On résout l'inéquation :

$$f(x) \ge 0.95$$

$$\frac{98x}{97x+1} \ge 0.95$$

Et comme 97x + 1 > 0 (car $0 \le x \le 1$):

$$98x \ge 0.95 \times 97x + 0.95$$

$$5,85x \ge 0,95$$

$$x \ge \frac{19}{117}$$

Or,
$$\frac{19}{117} \approx 0.16239 \text{ à } 10^{-5} \text{ près. On en déduit :}$$

le test est fiable si au moins 17% de la population est malade (au pourcent près)

Exercice 14 Estimation de la composition d'une urne.

1. Considérons l'expérience aléatoire & consistant à choisir un jeton blanc ou un jeton noir.

Cette expérience comporte deux issues, il s'agit d'une expérience de Bernoulli.

Notons S l'événement "obtenir un jeton blanc". Par équirépartition, la probabilité p de S est :

$$p = \frac{1}{2}$$

On répète n=10 fois cette expérience (on fait un schéma de Bernoulli). Le nombre X de réalisation de S suit donc une loi binomiale de paramètre n=10 et $p=\frac{1}{2}$.

On a donc, pour tout $k \in [0, 10]$:

$$P(X = k) = {10 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{10-k} = {10 \choose k} \times \frac{1}{2^{10}}$$

L'espérance d'une variable aléatoire de loi binomiale de paramètres n et p est donnée par :

$$E(X) = np$$

$$E(X) = 10 \times \frac{1}{2} = 5$$

En moyenne, l'urne contient 5 jetons blanc (et donc 5 jetons noirs) ce qui ne devrait surprendre personne.

2. Notons A l'événement : "l'urne contient 4 jetons blancs et 6 jetons noirs".

D'après la formule des probabilités totales appliquée à la partition $\Omega = \coprod_{k=0}^{n} (X = k)$, on a :

$$P(A) = \sum_{k=0}^{10} P_{(X=k)}(A) P(X=k)$$

Il est clair que $P_{(X=0)}(A)=0$. (Si l'urne ne contient aucun jeton blanc, l'événement A ne peut pas se réaliser) Supposons que l'urne contienne k jetons blancs $(1 \le k \le n)$ et n-k jetons noirs. Notons Y le nombre de jetons blancs obtenus lors du tirage successif et avec remise de 10 jetons. La variable aléatoire Y suit une loi binomiale de paramètres $q=\frac{k}{10}$ et n=10. D'où :

$$P(Y=4) = {10 \choose 4} \left(\frac{k}{10}\right)^4 \left(\frac{10-k}{10}\right)^6$$

D'où :
$$P_{(X=k)}(A) = \frac{1}{2^{10}} \binom{10}{4} \sum_{k=1}^{10} \left(\frac{k}{10}\right)^4 \left(\frac{10-k}{10}\right)^6 \binom{10}{k} \simeq 0,15675 \text{ à } 10^{-5} \text{ près}$$