Kræsjkurs MNF130

Steinar Simonnes og Carina Seidel

Institutt for Informatikk Universitetet i Bergen

22. Mai 2024

Agenda

Intro Følger og summer

Slides 'n' Slido

Dere kan stille spørsmål digitalt og anonymt her: sli.do, med koden "MNF130"

Dere finner presentasjonen og kildekoden på mittuib, eller her: tinyurl.com/MNF130-Slides

Følger (Sequences)

Definisjon

- diskret struktur som representerer en ordnet list
- ullet funksjon fra en undermengde av heltall (vanligvis $\mathbb N$ eller $\mathbb N_0$) til en mengde S
- vanlig notasjon er $\{a_n\}$ der a_n kalles for en term av følgen. IKKE bland med mengder!
- Eksempel: Følge $\{a_n\}$ der $a_n=\frac{1}{n}$, altså $a_1=\frac{1}{1}=1, a_2=\frac{1}{2},...$

Progressioner (progressions)

Geometrisk progresjon

- følge som har form $a, ar, ar^2, ..., ar^n, ...$
- a kalles for startterm (initial term) og r kalles for fellesforhold (common ratio)

Eksempler:

- Følge $\{b_n\}$ der $b_n=2\cdot 5^n$, altså $b_1=2\cdot 5^0=2, b_2=10,...$
- Følge $\{c_n\}$ der $c_n=6\cdot \frac{1}{3}^n$, altså $c_1=6\cdot \frac{1}{3}^0=6, b_2=2,...$

Modulo regneregler

Kongruens ≡

- $a \equiv b \pmod{m}$: a og b kongruent i forhold til mod m
- $a \equiv b \pmod{m}$ betyr $a \mod m = b \mod m$
- vi skriver $[a]_m := a \pmod{m}$
- Eksempel: $8 \equiv 3 \pmod{5} \equiv [3]_5$ betyr $[8]_5 = 3 = [3]_5$
- Addisjon: $[a + b]_m = [[a]_m + [b]_m]_m$
- $[8+21]_6 = [[8]_6 + [21]_6]_6 = [2+3]_6 = [5]_6 = 5$
- Multiplikasjon: $[a \cdot b]_m = [[a]_m \cdot [b]_m]_m$
- $[8 \cdot 21]_6 = [[8]_6 \cdot [21]_6]_6 = [2 \cdot 3]_6 = [6]_6 = 0$

Eksempel

- $x \equiv 3 \, (mod \, 5)$ eller $[x]_5 = 3$
- $y \equiv 4 \pmod{5}$ eller $[y]_5 = 4$
- Finn løsningen: $(3 \cdot x + 2 \cdot y^2) \mod 5$

$$[3 \cdot x + 2 \cdot y^2]_5 = [[3 \cdot x]_5 + [2 \cdot y^2]_5]_5$$

$$[3 \cdot x]_5 = [[3]_5 \cdot [x]_5]_5 = [3 \cdot 3]_5 = [9]_5 = 4$$

$$[2 \cdot y^2]_5 = [[2]_5 \cdot [y \cdot y]_5]_5 = [[2]_5 \cdot [y]_5 \cdot [y]_5]_5 = [2 \cdot 4 \cdot 4]_5 = [32]_5 = 2$$

$$[[3 \cdot x]_5 + [2 \cdot y^2]_5]_5 = [4+2]_5 = [6]_5 = 1$$

Modulo ved subtraksjon

Vi vet at vi har addisjon, men hva er med subtrasjon?

Substraksjon:

$$[6-3]_8 = [3]_8$$

$$[3-6]_8$$
?

$$[3-6]_8 = [-3]_8 = [0-3]_8 = [8-3]_8 = [5]_8 = 5$$

Subtraksjon fungerer også for modulo.

Modulo ved divisjon

Vi vet at vi har multiplikasjon, men hva med divisjon?

Divisjon:

$$[6/3]_8 = [2]_8$$
? ja, fordi $[2 \cdot 3]_8 = [6]_8$

 $[3/6]_8$?

Nei, noen ganger fungerer det, noen ganger fungerer det ikke.

Vi kan ikke alltid dele!

Lykke til på eksamen!

Takk for oss:)