Summary of the T-varieties seminar

Leandro Meier

Contents

1	Toric Varieties	1
	1.1 Affine Toric Varieties	1
	1.2 The Toric Variety of a Fan	2
2	Divisors	4
	Affine T-varieties 3.1 Toric Bouquets	4

1 Toric Varieties

1.1 Affine Toric Varieties

Definition 1.1. A *toric variety* is an irreducible variety (in this, usually affine or projective) V such that

- (i) $(\mathbb{C}^*)^n$ is an open subset of V and
- (ii) the action of $(C^*)^n$ on itself extens to an action of $(\mathbb{C}^*)^n$ on V.

Examples are \mathbb{C}^n , $(\mathbb{C}^*)^n$ and \mathbb{P}^n , for the latter, use that $(\mathbb{C}^*)^n$ can be identified with one of the open subsets $U_i = \{(a_0: \ldots: a_{n+1}) \mid a_i \neq 0\}$.

The map $(\mathbb{C}^*)^n \to \mathbb{C}^*$ given by $\boldsymbol{t} \mapsto \boldsymbol{t^a}$ is called a *character*. A 1-parameter subgroup $\boldsymbol{\lambda^a} : \mathbb{C}^* \to (\mathbb{C}^*)^n$ is given by $\boldsymbol{\lambda^a} (t) = (t^{a_1}, \dots, t^{a_n})$.

Definition 1.2. A rational polyhedral cone $\sigma \subseteq \mathbb{R}^n$ is something of the form

$$\sigma = \{\lambda_1 \boldsymbol{u}_1 + \dots + \lambda_n \boldsymbol{u}_l \in \mathbb{R}^n \mid \lambda_1, \dots, \lambda_l \geq 0\},\$$

for $u_1, \ldots, u_l \in \mathbb{Z}^n$. We further define:

- σ is strongly convex if $\sigma \cap -\sigma = \{0\}$.
- The dimension of σ is the dimension of the smallest subspace of \mathbb{R}^n that contains σ .
- A face of σ is the intersection of the set $\{\ell=0\}$ with σ where ℓ is a linear form that is nononnegative on σ .
- 1-dimensional faces are called *edges*. For an edge ρ , its *primitive element* is the unique generator \mathbf{n}_{ρ} of $\rho \cap \mathbb{Z}^{n}$. The cone is generated by the \mathbf{n}_{ρ} for all its edges ρ .

• Codimension-1 faces are called facets.

Definition 1.3. For a cone (strongly convex, rational, polyhedral) $\sigma \subseteq \mathbb{N}_{\mathbb{R}}$, define its dual cone

$$\sigma^{\vee} = \{ \boldsymbol{m} \in M_{\mathbb{R}} \mid \langle \boldsymbol{m}, \boldsymbol{u} \rangle > 0 \text{ for all } \boldsymbol{u} \in \sigma \}.$$

Here $\langle \cdot, \cdot \rangle$ denotes the natural pairing between N and its dual lattice M. In the case of $N \cong M \cong \mathbb{Z}^n$, this is just the usual scalar product.

Using the dual cone σ^{\vee} , we can construct a variety U_{σ} as follows. Consider the lattice points of σ^{\vee} : $\sigma^{\vee} \cap \mathbb{Z}^n$. The lattice points are finitely generated (Gordan's Lemma). Let m_1, \ldots, m_l be generators, and consider the map

$$\varphi \colon \left(\mathbb{C}^*\right)^n \to \mathbb{C}^l$$

defined by $\varphi(t) = t^{m_1} \dots, t^{m_l}$ and let U_{σ} be the Zariski closure of φ . One can prove that this is a toric variety, and that the t^m are defined everywhere

One can prove that this is a toric variety, and that the t^m are defined everywhere on U_{σ} .

The coordinate ring of U_{σ} is given by $\mathbb{C}\left[\sigma^{\vee}\cap\mathbb{Z}^{n}\right]$, which is a notation for the ring of Laurent polynomials over \mathbb{C} generated by the $\boldsymbol{t^{m}}$ for $\boldsymbol{m}\in\sigma^{\vee}\cap\mathbb{Z}^{n}$.

Theorem 1.4 (Theorem 7.2). The Zariski closure of the image of the map φ from above is the normal afine toric variety U_{σ} determined by σ and \mathbb{Z}^n if and only if $\sigma^{\vee} \cap \mathbb{Z}^n$ is generated over $\mathbb{Z}_{\geq 0}$ by m_1, \ldots, m_l .

Alternative construction of U_{σ} : the Spectrum of the semigroup algebra $\mathbb{C}[\sigma^{\vee} \cap M]$. We also refer to the affine toric variety thus obtained by V_{σ} .

1.2 The Toric Variety of a Fan

Definition 1.5. A fan is a finite collection Σ of cones in \mathbb{R}^n such that :

- Each $\sigma \in \Sigma$ is a strongly convex rational polyhedral cone.
- If $\sigma \in \Sigma$ and τ is a face of σ , then $\tau \in \Sigma$.
- If $\sigma, \tau \in \Sigma$, then $\sigma \cap \tau$ is a face of each cone.

Let σ , τ be cones in a fan Σ and τ a face og σ . This implies that $\sigma^{\vee} \subseteq \tau^{\vee}$ and thus also $\mathbb{C}[s_{\sigma}] \subseteq \mathbb{C}[S_{\tau}]$, hence we get an embedding of V_{τ} as an open subset of V_{σ} . More precisely, V_{τ} is naturally isomorphic to the open subset defined by χ^m inside V_{σ} , since $\mathbb{C}[S_{\tau}] = \mathbb{C}[S_{\sigma}]_{\chi^m}$, where $m \in M$ is such that $H_m \cap \sigma = \tau$. The fact that any two cones in Σ intersect in a common face yields immmersions

$$V_{\sigma} \cap V_{\sigma'} \to V_{\sigma}$$
 and $V_{\sigma} \cap V_{\sigma'} \to V_{\sigma'}$.

Denoting the images of these immersions by $V_{\sigma\sigma'}$ and $V_{\sigma'\sigma}$, respectively, there are isomorphisms between them. Now we have all the data we need to glue an abstract variety, according to the next definition.

Definition 1.6. Given a fan Σ in $N_{\mathbb{R}}$, X_{Σ} is the abstract toric variety constructed using the gluing data $\left\{ \{V_{\sigma}\}_{\sigma \in \Sigma}, \{V_{\sigma\sigma'}\}_{\sigma,\sigma' \in \Sigma}, \{g_{\sigma\sigma'}\}_{\sigma,\sigma' \in \Sigma} \right\}$.

Theorem 1.7. The construction above yields a is a normal separated toric variety X_{Σ} .

In fact, the torus $T(N) = N \otimes_{\mathbb{Z}} C^* \cong (C^*)^n$ is the open subset obtained from the cone $\{0\}$.

Definition 1.8. A variety Y is called

- normal, if each local ring $\mathcal{O}_{Y,p}$ is normal, i.e. integrally closed in its field of fractions. (should we assume Y irreducible here? yes, but toric varieties are irreducible)
- separated, if the diagonal map $\Delta \colon Y \to Y \times Y$ is closed. (With respect to which topology on $Y \times Y$?)

Some examples like \mathbb{P}^2 , to be added.

2 Divisors

3 Affine T-varieties

We use different notation for the concepts known from the very first part: M, N are still mutually dual lattices. A cone in $N_{\mathbb{Q}}$ spanned by elements a_1, \ldots, a_m is now denoted by $\sigma = \langle a_1, \ldots, a_m \rangle$ and σ^{\vee} lives inside $M_{\mathbb{Q}}$. We assume that the a_i are primitive elements of $N_{\mathbb{Q}}$, and we denote the affine troic variety obtained from σ by $\mathrm{TV}(\sigma)$.

3.1 Toric Bouquets

Let Δ be a polyhedron, i.e. a finite intersection of hyperplanes, in $N_{\mathbb{Q}}$. We define its *tail cone*

$$tail (\Delta) = \{ a \in N_{\mathbb{Q}} \mid a + \Delta \subseteq \Delta \}.$$

Assume now that Δ is pointed, (i.e. strongly convex), then we can write it as the Minkowski sum $\Delta = \Delta^c + \text{tail}(\Delta)$, where Δ^c denotes the convex hull of the vetices of Δ , which in this case exist.