

Amendment to the Claims

Please amend claim 1 as follows.

1 1. (currently amended) A zoom lens formed of only two lens groups, in order from the object
2 side, as follows:

3 a first lens group; and

4 a second lens group;

5 wherein

6 the first lens group includes, in order from the object side: a first lens component of
7 negative refractive power that is made of plastic and has at least one aspheric lens surface; and a
8 second lens component of positive refractive power;

9 the second lens group includes, in order from the object side: a stop; a first lens
10 component consisting of a first lens element having a biconvex shape and made of plastic with at
11 least one lens surface aspheric; and a second lens component that includes, in order from the
12 object side, a lens element having negative refractive power with the absolute value of the curvature of the
13 curvature of its object-side lens surface being smaller than the absolute value of the curvature of
14 its image-side lens surface, said lens element being joined at said image-side lens surface to a
15 lens element having a biconvex shape; and

16 the following conditions are satisfied:

17 $B^{1/2} < f_{G2} / f_w < 0.9 \cdot B$

18 $-2.0 < f_{G1-1} / f_w < -1.5$

19 $R_{G2-1} / f_w > 0.8$

20 $| f_{G1} / f_w | < 3 \cdot B$

21 where

22 B is the zoom ratio of the zoom lens, namely, the ratio of the focal length at the telephoto
23 end divided by the focal length at the wide-angle end,

24 f_{G2} is the focal length of the second lens group,

25 f_w is the focal length of the zoom lens at the wide-angle end,

26 f_{G1-1} is the focal length of the first lens component of the first lens group,
27 R_{G2-1} is the radius of curvature of the object-side lens surface of the first lens element of
28 the second lens group, and
29 f_{G1} is the focal length of the first lens group.

- 1 2. (original) The zoom lens of claim 1, wherein the first lens group consists of the first lens
2 component of the first lens group and the second lens component of the first lens group.

- 1 3. (original) The zoom lens of claim 1, wherein each of the first lens component of the first lens
2 group and the second lens component of the first lens group consists of a lens element.

- 1 4. (original) The zoom lens of claim 2, wherein each of the first lens component of the first lens
2 group and the second lens component of the first lens group consists of a lens element.

- 1 5. (original) The zoom lens of claim 1, wherein the second lens group consists of three lens
2 elements.

- 1 6. (original) The zoom lens of claim 5, wherein the first lens group consists of the first lens
2 component of the first lens group and the second lens component of the first lens group.

- 1 7. (original) The zoom lens of claim 5, wherein each of the first lens component of the first lens
2 group and the second lens component of the first lens group consists of a lens element.

- 1 8. (original) The zoom lens of claim 6, wherein each of the first lens component of the first lens
2 group and the second lens component of the first lens group consists of a lens element.

- 1 9. (original) A zoom lens formed of only two lens groups, arranged along an optical axis in order

2 from the object side as follows:

3 a first lens group; and

4 a second lens group;

5 wherein

6 the first lens group includes, arranged along the optical axis in order from the object side,
7 a first lens component made of plastic, having negative refractive power, and having at least one
8 aspheric lens surface, and a second lens component having positive refractive power;

9 the second lens group includes, in order from the object side: a stop; a first lens
10 component consisting of a first lens element with a biconvex shape that is made of plastic and
11 has at least one aspheric lens surface; and a second lens component that includes, in order from
12 the object side, a lens element of negative refractive power with the absolute value of the
13 curvature of its object-side lens surface being smaller than the absolute value of the curvature of
14 its image-side lens surface, said lens element being joined at said image-side lens surface to a
15 lens element having a biconvex shape;

16 focusing is performed by movement of the second lens group along the optical axis; and
17 the following conditions are satisfied:

18 $B^{1/2} < f_{G2} / f_w < 0.9 \cdot B$

19 $-2.0 < f_{G1-1} / f_w < -1.5$

20 $R_{G2-1} / f_w > 0.8$

21 $| f_w / R_1 | < 0.08$

22 $10 < | f_{G2-2,3} / f_w | < 100$

23 where

24 B is the zoom ratio of the zoom lens, namely, the ratio of the focal length at the telephoto
25 end divided by the focal length at the wide-angle end,

26 f_{G2} is the focal length of the second lens group,

27 f_w is the focal length of the zoom lens at the wide-angle end,

28 f_{G1-1} is the focal length of the first lens component of the first lens group,

29 R_{G2-1} is the radius of curvature of the object-side lens surface of the first lens element of
30 the second lens group,

31 R_1 is the radius of curvature of the object-side lens surface of the first lens component of
32 the first lens group, and
33 f_{G2-3} is the composite focal length of the joined lens elements of the second lens group.

1 10. (original) The zoom lens of claim 9, wherein the first lens group consists of the first lens
2 component of the first lens group and the second lens component of the first lens group.

1 11. (original) The zoom lens of claim 9, wherein each of the first lens component of the first lens
2 group and the second lens component of the first lens group consists of a lens element.

1 12. (original) The zoom lens of claim 10, wherein each of the first lens component of the first
2 lens group and the second lens component of the first lens group consists of a lens element.

1 13. (original) The zoom lens of claim 9, wherein the second lens group consists of three lens
2 elements.

1 14. (original) The zoom lens of claim 13, wherein the first lens group consists of the first lens
2 component of the first lens group and the second lens component of the first lens group.

1 15. (original) The zoom lens of claim 13, wherein each of the first lens component of the first
2 lens group and the second lens component of the first lens group consists of a lens element.

1 16. (original) The zoom lens of claim 14, wherein each of the first lens component of the first
2 lens group and the second lens component of the first lens group consists of a lens element.

1 17. (original) The zoom lens of claim 1, wherein at least three lens surfaces of the zoom lens are
2 aspheric lens surfaces.

1 18. (original) The zoom lens of claim 9, wherein at least three lens surfaces of the zoom lens are
2 aspheric lens surfaces.

1 19. (original) The zoom lens of claim 1, wherein the following condition is satisfied:

2 $| f_w / R_1 | < 0.025$

3 where

4 R_1 is the radius of curvature of the object-side lens surface of the first lens element of the
5 first lens component of the first lens group.

1 20. (original) The zoom lens of claim 9, wherein the following condition is satisfied:

2 $| f_w / R_1 | < 0.025.$