

EE 604 Digital Image Processing

Lecture outline

- Sampling (contd.)
- Quantization
- Digital image representation

- digitation of space
- determines spatial resolution

What is understood by frequency in the context of images?

What is understood by frequency in the context of images?

What is understood by frequency in the context of images?

Example

• Example:

$$f(x,y) = 2 \cos 2\pi (3x + 4y)$$
$$\Delta x = \Delta y = 0.2$$

- Will it cause aliasing?
- How will the reconstructed spectrum look like?

Aliasing in an image

- Can we recover the original signal from an aliased spectrum?
- What to do when increasing the sampling rate is not possible?
- Can we do better than uniform sampling?
- Practical limitations of optimal sampling.

Lecture outline

- Sampling (contd.)
- Quantization
- Digital image representation

Quantization

Quantization

Quantization

- Quantization: digitization of amplitude (intensity)
- determines gray-level resolution
- Llyod-Max quantization algorithm (class notes)

Graylevel resolution

storage required for an MxN image with 256 gray levels = MXNx8 bits

Lecture outline

- Sampling (contd.)
- Quantization
- Digital image representation

Representing a digital image

Neighborhoods

Distance measures

$$D(p,q) \ge 0$$
 $(D(p,q) = 0$ iff $p = q)$, $D(p,q) = D(q,p)$, and $D(p,z) \le D(p,q) + D(q,z)$.

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^{\frac{1}{2}}.$$

$$D(p,q) = |x - s| + |y - t|.$$