Définitions 1

Suites de fonctions 1.1

Définition 1

On appelle suite de fonctions de I vers \mathbb{R} , toute suite $(f_n)_{n\in\mathbb{N}}\in(\mathbb{R}^I)^{\mathbb{N}}$.

Exemple

 (f_n) la suite de fonctions définie pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$ par $f_n(x) = x^n$.

1.2Convergence simple

Définition 2

Soient $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et $f \in \mathbb{R}^I$. On dit que (f_n) converge simplement vers f sur I si

$$\forall x \in I, \quad f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$

autrement dit si $\forall x \in I \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n \geqslant N \Longrightarrow |f_n(x) - f(x)| < \varepsilon)$

Exemple

Soit (f_n) la suite de fonctions définie pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$ par $f_n(x) = x^n$. Soit $x \in [0, 1]$.

Alors
$$f_n(x) = x^n \xrightarrow[n \to +\infty]{} \begin{cases} 0 & \text{si } x \in [0, 1[\\ 1 & \text{si } x = 1 \end{cases}$$

Alors $f_n(x) = x^n \xrightarrow[n \to +\infty]{} \begin{cases} 0 & \text{si } x \in [0,1[\\ 1 & \text{si } x = 1 \end{cases}$ Ainsi (f_n) converge simplement vers la fonction $f: \begin{cases} [0,1] & \longrightarrow \mathbb{R} \\ x & \longmapsto \begin{cases} 0 & \text{si } x \in [0,1[& \text{sur } [0,1]. \\ 1 & \text{si } x = 1 \end{cases} \end{cases}$

2 Propriétés de la convergence simple

Proposition 1

Soient $\lambda \in \mathbb{R}$, $(f_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ et $(g_n) \in (\mathbb{R}^I)^{\mathbb{N}}$ convergeant simplement respectivement vers $f \in \mathbb{R}^I$ et $g \in \mathbb{R}^I$ sur I.

- 1. $(f_n + \lambda g_n)$ converge simplement vers $f + \lambda g$ sur I.
- 2. $(f_n g_n)$ converge simplement vers fg sur I.

Remarques

- 1. La limite simple d'une suite de fonctions continues sur I n'est pas nécessairement continue sur I.
- 2. Si (f_n) converge simplement vers f sur [a,b], où a et b sont deux réels avec a < b, alors la limite quand n tend vers $+\infty$ de $\int_a^b f_n(x) dx$ n'est pas nécessairement égale à $\int_a^b \lim_{n \to +\infty} f_n(x) dx$.