Ax-Grothendieck via model theory

July 19, 2022

Definition 0.0.1. We define \mathcal{F} , the first order theory of fields, beginning with the first order language of fields. Let Σ be a signature consisting of a single sort A. We introduce 5 function symbols.

- 0, 1: A,
- $\bullet -: A \longrightarrow A,$
- \bullet +, \cdot : $A \times A \longrightarrow A$.

The first order language of fields has no relation symbols.

The axioms are given as follows.

$$(x+y) + z = x + (y+z)$$
 (1)

$$x + y = y + x \tag{2}$$

$$x + 0 = x \tag{3}$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z) \tag{4}$$

$$x \cdot 1 = 1 \cdot x = x \tag{5}$$

$$x \cdot (y+z) = x \cdot y + x \cdot z \tag{6}$$

$$x + (-x) = 0 \tag{7}$$

$$x \neq 0 \Rightarrow \exists y, xy = 1 \tag{8}$$

This set of formulas forms the axioms of \mathcal{F} .

Definition 0.0.2. For each $d \ge 1$ define the following formula.

$$P_d := \forall a_0 \dots \forall a_d \exists x, a_d \neq 0 \land a_0 + a_1 x + \dots + a_{d-1} x^{d-1} + a_d x^d = 0$$
 (9)

For each prime number p define the following formula.

$$S_d := 1 + \ldots + 1 = 0 \tag{10}$$

where there are d instances of 1 in (10).

Definition 0.0.3. Let \mathcal{ACF} denote the first order theory of algebrically closed fields which is over the same language as \mathcal{F} and consists of all the axioms of Definition 0.0.1 along with P_d for each $d \geq 1$.

The first order theory of algebraically closed fields of characteristic p is denoted \mathcal{ACF}_p and consists of all the axioms of \mathcal{ACF} along with S_p .

Lastly, the first order theory of algebraically closed fields of characteristic 0 is denoted \mathcal{ACF}_0 and consists of all the axioms of \mathcal{ACF} along with the formula $\neg S_p$ for each prime number p.

Lemma 0.0.4. Let $f: \overline{\mathbb{F}_p}^n \longrightarrow \overline{\mathbb{F}_p}^n$ be a polynomial. If f is injective then it is surjective.

Proof. Let $\underline{y} = (y_1, \ldots, y_n) \in \overline{\mathbb{F}_p}^n$ be arbitrary. Consider the field extension $K \supseteq \mathbb{F}_p$ generated by y_1, \ldots, y_n as well as the coefficients of f. Since every element of $\overline{\mathbb{F}_p}$ is algebraic over \mathbb{F}_p (by the definition of an algebraic closure) we have K is an algebraic extension and thus finite of \mathbb{F}_p . Since \mathbb{F}_p is finite, this implies K is finite. Lastly, we notice that fields are closed under polynomial expressions, and so $f(K^n) \subseteq K^n$, which by injectivity and finiteness implies surjectivity.

Corollary 0.0.5. Let k be an algebraically closed field and $f: k^n \longrightarrow k^n$ a polynomial. If f is injective then it is surjective.

Proof. There is a small slieght of hand involved, we need to turn the statement of the corollary into a first order formula, but we cannot do that if try to work with a polynomial of arbitrary degree. So instead we will consider the statement "If f is injective and has degree at most d then it is surjective". The idea is to write out the following statement

$$\forall a_0 \dots \forall a_d (\forall x \forall y, f(x) = f(y) \Rightarrow x = y) \tag{11}$$

$$\Longrightarrow \forall y \exists x, y = f(x) \tag{12}$$

however we need to write out f explicitly. This is where we use the fact that f is a polynomial. Our first order statement is:

$$\forall a_0 \dots \forall a_d (\forall x \forall y, a_0 + a_1 x + \dots + a_{d-1} x^{d-1} + a_d x^d)$$

$$= a_0 + a_1 y + \dots + a_{d-1} y^{d-1} + a_d y^d \Rightarrow x = y)$$

$$\implies \forall y \exists x, y = a_0 + a_1 x + \dots + a_{d-1} x^{d-1} + a_d x^d$$

Denote this formula B_d .

Since \mathcal{ACF}_0 is complete, this statement is either proveable or its negation is proveable. That is, either $\mathcal{ACF}_0 \vdash B_d$ or $\mathcal{ACF}_0 \vdash \neg B_d$. Suppose $\mathcal{ACF}_0 \vdash \neg B_d$ and let π be such a proof. Since π is finite, only finitely many axioms of \mathcal{ACF}_0 appear amongst its premises. This, there exists some prime q such that $\neg S_q$ does *not* appear amongst the premises of π . That is, π is a valid proof in \mathcal{ACF}_q ! By soundness of \mathcal{ACF}_q we derive a contradiction to Lemma 0.0.4, and so we must have $\mathcal{ACF}_0 \vdash B_d$. The result then follows by soundness of \mathcal{ACF}_0 .

Lemma 0.0.6. Every field F can be embedded into an algebraically closed field \bar{F} .

Proof. Let Λ be the collection of monic, irreducible polynomials with coefficients in F. For each $f \in F$, let $u_{f,0}, ..., u_{f,d}$ be formal indeterminants, where d is the degree of f. Let $F[\{U\}]$ be the polynomial ring over F where U is the collection of all $u_{f,i}$. Write

$$f - \prod_{i=0}^{d} (x - u_{f,i}) = \sum_{i=0}^{d-1} \alpha_{f,i} x^{i} \in F[\{U\}][x]$$

Let I be the ideal generated by $\alpha_{f,i}$. I is not all of $F[\{U\}]$ so there exists a maximal ideal M containing I. Let $F_1 = F[\{U\}]/M$. Repeat this process to define f_i for all i > 0. Then $\bigcup_{i=1}^{\infty} F_i$ is algebraically closed which F embeds into, and moreover is an algebraic extension of F.

Corollary 0.0.7. If F is infinite, then the cardinality of F is equal to the cardinality of \overline{F} .

If F is finite, then the cardinality of \overline{F} is countably infinite.

Proof. Using the notation of the proof of Lemma 0.0.6, we first observe that the $|\{U\}| = |F|$

Lemma 0.0.8. Let p be either a prime number or 0 and let $\kappa \geq \aleph_1$ be an uncountable cardinal. There exists an algebraically closed field of characteristic p whose cardinality is κ . Moreover, this field is unique up to isomorphism.

Proof. Define F to be

$$p = \begin{cases} \mathbb{Q}, & p = 0\\ \mathbb{F}_p, & p \neq 0 \end{cases}$$
 (13)

Let X be any set of cardinality κ (eg, $X = \mathbb{R}$) and consider the polynomial ring $F[\{X\}]$. The ideal $I \subseteq F[\{X\}]$ generated by X is not all of $F[\{X\}]$ and so is contained in some maximal ideal \mathfrak{m} (using Zorn's Lemma). The field $F[\{X\}]/\mathfrak{m}$ has cardinality \aleph_1 , as there are countably many polynomials over a single indeterminant, and we claim that the algebraic closure $F[\{X\}]/\mathfrak{m}$ of $F[\{X\}]/\mathfrak{m}$ also has cardinality κ .

The argument above show that in the notation of Lemma 0.0.6, that F_i has cardinality κ for all $i \geq 0$. Since $\overline{F[\{X\}]/\mathfrak{m}}$ is the countable union of all of these fields, it follows that the cardinality of $\overline{F[\{X\}]/\mathfrak{m}}$ is κ .

The uniqueness claim follows easily by considering a transcendental basis of $\overline{F}[\{X\}]/\mathfrak{m}$ and observing that this basis has cardinality κ . The rest follows from the universal property of the algebraic closure.

Corollary 0.0.9. There is only one model (up to isomorphism) of \mathcal{ALG}_0 and of \mathcal{ALG}_p for each cardinal $\kappa \geq \aleph_1$.