Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 11 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i) Sei der Satz φ definiert als:

$$\varphi = \bigwedge_{(a,b)\in E(G)}(a,b)$$

(ii)

Aufgabe 2

Es wurde in den Präzensübungen gezeigt, dass die Duplikatorin das EF Spiel zwischen $(\mathbb{Q},<)$ und $(\mathbb{R},<)$ immer gewinnt, d.h. diese Strukturen sind Elementar äquivalent. Somit kann es keine Menge Φ an $FO[\sigma]$ geben, sodass $Mod(\Phi)$ genau die Klasse aller zu $(\mathbb{Q},<)$ isomorphen Mengen ist, da $(\mathbb{R},<)$ nicht isomorph ist.

Aufgabe 3

(i) Es wird im folgenden widerlegt, dass *T* eine vollständige Theorie ist.

(ii)

Aufgabe 4

Die Struktur der unendlichen σ -Strukturen ist axiomatisierbar mit:

$$\Phi = \{\varphi_n | n \in \mathbb{N}\} \text{ wobei } \varphi_n = \exists x_1 ... \exists x_n. \bigwedge_{1 \le i \le n} \bigwedge_{1 \le j \le i \ne j} x_i \ne x_j$$

Falls es ein endliches Φ geben sollte heisst das man könnte die Konjunktion über Φ bilden:

$$\varphi = \bigwedge_{\psi \in \Phi} \psi$$

Da φ endlich ist kann man den Quantorenrang bestimmen: $m = qr(\varphi)$.

Wähle zwei σ -Strukturen ($\mathcal{A}=(A,<),\mathcal{B}=(B,<)$), wobei die Menge A die grösse 2^{m+1} hat und B unendlich ist. Würden wir nun eine EF-Spiel auf diesen Strukturen spielen, würde die Duplikatorin das m-Runden Spiel gewinnen (siehe Satz aus der Vorlesung), daraus folgt die m-Äquivalenz zwischen diesen Strukturen, d.h. f.a. $\varphi \in FO[\sigma]$ mit $qr(\varphi)=m$ gilt $\mathcal{A}\models\varphi\Leftrightarrow\mathcal{B}\models\varphi$. Somit kann es kein endliches Axiomsystem geben, dass die Menge der undendlichen Mengen axiomatisiert.