Смежные классы. Фактор-группы.

Сопряженные элементы

Определение 1. Элемент a группы G сопряжен b, если $\exists g \in G : a = g^{-1}bg$.

Если a сопряжен b, то b сопряжен a. Покажем это.

a сопряжен b: $a=g^{-1}bg$. В группе существуют обратные элементы. Домножим равенство слева на $(g=(g^{-1})^{-1})$, а затем справа на g^{-1} . Получим

$$(g^{-1})^{-1}a = bg \Rightarrow (g^{-1})^{-1}ag^{-1} = bgg^{-1} \Rightarrow b = (g^{-1})^{-1}ag^{-1} \Rightarrow \exists g^{-1} \in G.$$

Из последнего равенства следует, что b сопряжен a.

Теорема 1. Подгруппа H — нормальный делитель группы G тогда и только тогда, когда вместе с каждым своим элементом H содержит и все сопряженные.

Доказательство.

- 1. Докажем, что если H нормальный делитель, то H содержит вместе с любым своим элементом h и все сопряженные к нему. H нормальный делитель. Тогда gH = Hg, $\forall g \in G$. $\forall h, \exists h' \in H$: gh = h'g, домножим на g^{-1} : $g^{-1}gh = g^{-1}h'g \Rightarrow h = g^{-1}h'g$ для $\forall g \in G$.
- 2. Докажем, что если H содержит вместе с любым своим элементом h все сопряженные, то H нормальный делитель. Пусть для $\forall g \in G$ и $\forall h \in H$ выполняется $g^{-1}hg = h' \in H$. Домножим равенство на $g \colon gg^{-1}hg = gh' \Rightarrow hg = gh'$. Следовательно, все элементы правого смежного класса являются элементами левого смежного класса (ПСК \subseteq ЛСК). Аналогично $(g^{-1})^{-1}hg^{-1} = h'' \in H \Rightarrow ghg^{-1} = h''$. Домножим равенство на $g \colon gh = h''g$, следовательно, элементы левого смежного класса являются элементами правого смежного класса (ЛСК \subseteq ПСК). Получим: левые и правые смежные классы совпадают, и H нормальный делитель: gH = Hg, ($\forall g \in G$).

Фактор-группа

Пусть H — нормальный делитель группы G.

G/H – фактор-множество группы G по нормальной подгруппе H.

Введем операцию на множестве следующим образом:

$$A * B = \{a * b \mid a \in A, b \in B\}.$$

Очевидно, что $H*H\equiv H,$ $(g_1H)*(g_2H)=(g_1g_2)H,$ т.к. H- нормальный делитель и $Hg_2=g_2H.$

Утверждение 1. Фактор-множество G/H группы G по нормальной подгруппе H является фактор-группой.

Доказательство.

1. Ассоциативность:

 $(g_1H*g_2H)*g_3H=g_1H*(g_2H*g_3H)$ – следует из ассоциативности групповой операции G.

2. Единичный элемент принадлежит фактор-множеству и равен E = eH:

$$eHgH = egH = gH = geH = gHeH$$
 – существует единичный элемент.

3. Для каждого элемента gH множества G/H обратный элемент $(gH)^{-1}$ также принадлежит этому множеству и равен $(gH)^{-1} = g^{-1}H$:

$$g^{-1}H \cdot gH = g^{-1}gH = eH = E$$

$$gHg^{-1}H = gg^{-1}H = eH = E$$
 – все элементы G обратимы.

1∪ 2 ∪ 3
$$\Rightarrow$$
 G/H – группа.

Пример 1.
$$G_Z = <\mathbb{Z}$$
, +,0 > , $H = \{4k\} = \{0; \pm 4; \pm 8; \dots\}$ $k \in \mathbb{Z}$.

В силу коммутативности сложения H — нормальный делитель, следовательно, смежные классы совпадают.

1.
$$0 + H = H + 0 = E$$

2.
$$1 + H = \{1, 5, -3, 9, -7, ...\} = H + 1$$

3.
$$2 + H = \{2, 6, -2, 10, -6, ...\} = H + 2$$

4.
$$3 + H = \{3, 7, -1, 11, -5, ...\} = H + 3$$

Фактор-множество $\frac{G_Z}{H}$ = { H = E, 1 + H, 2 + H, 3 + H} является фактор-группой;

$$H^{-1}=H,$$

$$(1+H)+(3+H)=(4+H)=H=E$$
, следовательно,

$$(1+H)^{-1} = 3 + H \text{ is } (2+H)^{-1} = 2 + H.$$

Составим таблицу Кэли этой группы с элементами – смежными классами.

Напомним, что $(g_1H)*(g_2H)=(g_1g_2)H$

+	Н	1 + <i>H</i>	2 + H	3 + H
Н	Н	1 + <i>H</i>	2 + <i>H</i>	3 + <i>H</i>
1 + H	1 + H	2 + <i>H</i>	3 + <i>H</i>	Н
2 + H	2 + H	3 + <i>H</i>	Н	1 + H
3 + H	3 + <i>H</i>	Н	1 + <i>H</i>	2 + <i>H</i>

 G_Z/H – циклическая группа: $G_Z/H = <1+H> = <3+H>$.

Пример 2. Группа самосовмещений квадрата:

$$G_{\square} = \{\varphi_0, \varphi_{\frac{\pi}{2}}, \varphi_{\pi}, \varphi_{\frac{3\pi}{2}}, \psi_1, \psi_2, \psi_3, \psi_4\}.$$

Таблица Кэли для G_\square была уже построена (пред. лекция). Были найдены смежные классы группы G_\square по подгруппе $H=\{\varphi_0,\varphi_\pi\}$ и показано, что подгруппа $H=\{\varphi_0,\varphi_\pi\}$ – нормальный делитель.

Обозначим

$$E = \varphi_0 H = \{\varphi_0, \varphi_\pi\}$$

$$A = \varphi_{\frac{\pi}{2}}H = \{\varphi_{\frac{\pi}{2}}, \varphi_{\frac{3\pi}{2}}\}$$

$$B = \psi_1 H = \{\psi_1, \psi_3\}$$

$$C = \psi_2 H = \{\psi_2, \psi_4\}$$

Составим таблицу Кэли для смежных классов.

•	Е	A	В	С
E	E	А	В	С
A	A	Е	С	В
В	В	С	E	A
С	С	В	A	E

Проверим замкнутость:

$$A \cdot B = C, \text{ t.k. } A \cdot B = \varphi_{\frac{\pi}{2}} H \cdot \psi_1 H = \left(\varphi_{\frac{\pi}{2}} \cdot \psi_1\right) H = \psi_4 H = \psi_2 H = \{\psi_2, \psi_4\} = C = B \cdot A$$

$$A \cdot C = B, \text{ t.k. } A \cdot C = \varphi_{\frac{\pi}{2}} H \cdot \psi_2 H = \left(\varphi_{\frac{\pi}{2}} \cdot \psi_2\right) H = \psi_1 H = \{\psi_1, \psi_3\} = B = C \cdot A$$

$$B \cdot C = A, \text{ t.k. } B \cdot C = \psi_1 H \cdot \psi_2 H = (\psi_1 \cdot \psi_2) H = \varphi_{\frac{\pi}{2}} H = \left\{\varphi_{\frac{\pi}{2}}, \varphi_{\frac{3\pi}{2}}\right\} = A = C \cdot B$$

Получим фактор-группу G_{\square}/H . Группа из четырех элементов всегда коммутативна. Легко убедиться, что каждый элемент сам себе обратный. Следовательно, G_{\square}/H – четвертная группа Клейна.

В примерах рассмотрены две фактор-группы четвёртого порядка: циклическая и четвертная группа Клейна.

Гомоморфизм групп

Определение 1. Отображение $\varphi: G \to G'$ называется гомоморфизмом, если оно сохраняет групповую операцию:

$$\varphi(g_1 \circ g_2) = \varphi(g_1) * \varphi(g_2).$$

$$g_1, g_2, (g_1 \circ g_2) \in G$$
, $\varphi(g_1 \circ g_2)$, $\varphi(g_1) \in G'$, $\varphi(g_2) \in G'$.

Виды гомоморфизма:

- сюръективный (эпиморфизм), отображение «НА»;
- инъективный (мономорфизм);
- биективный (изоморфизм);
- • φ : $G \to G$ (эндоморфизм);
- • φ : $G \to G/H$ (естественный гомоморфизм).

Свойства гомоморфизма:

- 1. $\varphi(e) = e'$ единичный элемент переходит в единичный.
- 2. $\varphi(g^{-1}) = (\varphi(g))^{-1}$ обратный элемент переходит в обратный.

Ядро и образ гомоморфизма

Пусть отображение $\varphi: G \to G'$,

Определение 2. Образ гомоморфизма – это элементы группы G', у которых существует прообраз в группе G:

$$Im \varphi = \{ h \in G' \mid \exists g \in G, \varphi(g) = h \}.$$

 $Im \varphi$ — образ гомоморфизма. $Im \varphi \subseteq G'$.

Если $Im\ \varphi=G'$, то $\varphi\colon G\to G',\ \varphi$ — сюръективное отображение G "на" G'.

Теорема 1. Образ гомоморфизма $Im \varphi$ – подгруппа группы G'.

Доказательство.

- 1) Т.к. все элементы образа также элементы группы, то ассоциативность очевидна.
- 2) $e' \in Im \ \varphi$, т.к. $\varphi(e) = e', e \in G, e' \in G'$. e прообраз e'. Единичный элемент переходит в единичный.
- 3) Если $h \in Im \ \varphi \Rightarrow h^{-1} \in Im \ \varphi. \ h \in Im \ \varphi \Rightarrow \exists g \in G: h = \varphi(g).$ Тогда $\varphi(g^{-1}) = (\varphi(g))^{-1} = h^{-1}, \text{ следовательно, т.к. } \exists g^{-1} \in G, \text{ то } h^{-1} \in Im \ \varphi.$
- 4) Замкнутость:

Определение 3. Ядро гомоморфизма – все элементы группы G, которые переходят в единичный элемент G':

$$Ker \varphi = \{g \mid g \in G, \varphi(g) = e' \in G'\}.$$

Теорема 2. Ядро $Ker \varphi$ – нормальная подгруппа группы G.

Доказательство.

- I. Покажем, что $Ker \varphi$ подгруппа группы G.
- 1. $e \subseteq Ker \, \varphi$, т.к. $\varphi(e) = e'$. Единичный элемент переходит в единичный.
- 2. Если $a \in Ker \ \varphi \Rightarrow a^{-1} \in Ker \ \varphi$. $\varphi(a) = e' \Rightarrow \varphi(a^{-1}) = (\varphi(a))^{-1} = (e')^{-1} = e'$, т.к. обратный элемент переходит в обратный.
- 3. Замкнутость: $a_1 \in Ker \ \varphi, \ a_2 \in Ker \ \varphi \Rightarrow a_1 \cdot a_2 \in Ker \ \varphi$ $\varphi(a_1) = e'. \varphi(a_2) = e' \Rightarrow \varphi(a_1 \cdot a_2) = \varphi(a_1) \cdot \varphi(a_2) = e' \cdot e' = e'.$

II. Покажем, что $Ker \varphi$ – нормальный делитель группы G.

Используем доказанное ранее необходимое и достаточное условие того, что подгруппа является нормальным делителем: ядро — нормальный делитель тогда и только тогда, когда вместе с каждым своим элементом оно содержит и все к нему сопряженные. Покажем, что для $\forall a \in Ker \ \varphi, \forall g \in G$ выполняется $g^{-1}ag \in Ker \ \varphi$.

$$\varphi(g^{-1}ag) = \varphi(g^{-1})\varphi(a)\varphi(g) = \varphi(g^{-1})e'\varphi(g) = (\varphi(g))^{-1}\varphi(g) = e'.$$

Пример 1. Рассмотрим G_{\square} – группа самосовмещений квадрата.

Группа самосовмещений квадрата: $G_{\square}=\{\varphi_0,\varphi_1,\varphi_2,\varphi_3,\psi_1,\psi_2,\psi_3,\psi_4\}$

 ψ_i соответствует оси l_i

Таблица Кэли:

0	$arphi_0$	$arphi_1$	φ_2	φ_3	ψ_1	ψ_2	ψ_3	ψ_4
φ_0	$arphi_0$	φ_1	φ_2	φ_3	ψ_1	ψ_2	ψ_3	ψ_4
φ_1	φ_1	φ_2	φ_3	$arphi_0$	ψ_4	ψ_1	ψ_2	ψ_3
φ_2	φ_2	φ_3	$arphi_0$	φ_1	ψ_3	ψ_4	ψ_1	ψ_2
φ_3	φ_3	$arphi_0$	φ_1	φ_2	ψ_2	ψ_3	ψ_4	ψ_1
ψ_1	ψ_1	ψ_2	ψ_3	ψ_4	$arphi_0$	$arphi_1$	φ_2	φ_3
ψ_2	ψ_2	ψ_3	ψ_4	ψ_1	φ_3	φ_0	φ_1	φ_2
ψ_3	ψ_3	ψ_4	ψ_1	ψ_2	φ_2	φ_3	$arphi_0$	φ_1
ψ_4	ψ_4	ψ_1	ψ_2	φ_3	$arphi_1$	φ_2	φ_3	$arphi_0$

Гомоморфизм групп: $\chi: G_{\square} \to S_4$ зададим следующим образом: каждому элементу группы G_{\square} поставим в соответствие подстановку осей симметрии квадрата (в подстановке будем писать номер оси):

$$\varphi_0 \leftrightarrow \pi_0$$

$$\varphi_{\frac{\pi}{2}} \leftrightarrow (1\ 3)(2\ 4)$$

$$\varphi_{\pi} \leftrightarrow \pi_0$$

$$\varphi_{\frac{3\pi}{2}} \leftrightarrow (1\ 3)(2\ 4)$$

$$\psi_1 \leftrightarrow (2.4)$$

$$\psi_2 \leftrightarrow (13)$$

$$\psi_3 \leftrightarrow (2.4)$$

$$\psi_4 \leftrightarrow (13)$$

$$L = \{\pi_0, (1\,3)(2\,4), (1\,3), (2\,4)\,\}$$

 $L = Im G_{\square}, L -$ подгруппа S_4 .

Рассмотрим подгруппу в G_{\square} :

$$H=\mathit{Ker}\ \chi=\{\varphi_0,\varphi_\pi\} \hspace{0.5cm} (\varphi_0,\varphi_\pi$$
 переходят в $\pi_0)$

Фактор-группа G_{\square}/H и соответствующие ей элементы из L:

$$E=\varphi_0H=\{\varphi_0,\varphi_\pi\}\leftrightarrow\pi_0$$

$$A = \varphi_{\frac{\pi}{2}}H = \left\{\varphi_{\frac{\pi}{2}}, \varphi_{\frac{3\pi}{2}}\right\} \leftrightarrow (1\ 3)(2\ 4)$$

$$B = \psi_1 H = \{\psi_1, \psi_3\} \leftrightarrow (2\ 4)$$

$$C = \psi_2 H = \{\psi_2, \psi_4\} \leftrightarrow (1\ 3)$$

0	Е	A	В	С
E	E	A	В	С
A	A	E	С	В
В	В	С	Е	A
С	С	В	A	Е

Каждый элемент сам себе обратен – четвертная группа Клейна.

Отображение $\varphi: G_{\square} \to L$ — сюръективный гомоморфизм (у каждого элемента в L есть прообраз, даже два).

Отображение ψ : $G_{\square} \to G_{\square}/H$ – группы G_{\square} в фактор-группу по ядру H (естественный гомоморфизм группы на свою фактор-группу). $H = Ker \chi$.

Отображение $f: G_{\square}/H \to L$ фактор-группы по ядру в L биективно — изоморфизм.

Природа всех сюръективных гомоморфизмов исчерпывается естественным гомоморфизмом, т.е. гомоморфизмом группы на свою фактор-группу по ядру. Обобщим этот результат.

Теорема (Основная теорема о гомоморфизме)

Пусть φ — сюрьективный гомоморфизм группы G в группу G' (φ : $G \to G'$) с ядром $H = Ker \ \varphi$; ψ — естественный гомоморфизм группы G на свою фактор-группу G/H по ядру $H = Ker \ \varphi \ (\psi: G \to G/H)$. Тогда отображение $f: G' \to G/H$ — изоморфизм. Причем выполняется $\varphi = \psi \circ f$.

фактически

Естественный гомоморфизм сюръективный: у смежных классов прообразы — элементы этих классов. $f: G' \to G/H$ — биекция (можно установить взаимно-однозначное соответствие между элементами фактор-группы G/H и G').