SF3580 HW 2

Anna Broms & Fredrik Fryklund

2018/11/29

1 Task 2

2 Task 4

The linear system of equations

$$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} x = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(1)$$

is considered.

2.1 (a)

We determine the constants α , β and γ such that for the iterates $x_0, \dots x_3$ of the conjugate gradient method we obtain span $(x_0, x_1, x_2, x_3) = \text{span}(c_0, c_1, c_2, c_3)$, where

For this purpose, we use Lemma 2.2.4 from the lecture notes, stating that

$$\operatorname{span}(b, Ab, \dots A^{m-1}b) = \operatorname{span}(x_0, x_1, \dots, x_m).$$
 (3)

Thus, we want to compute α , β and γ such that

$$span(b, Ab, A^2b, A^3b) = span(c_0, c_1, c_2, c_3).$$
(4)

We can directly conclude that $\operatorname{span}(b) = \operatorname{span}(c_0)$. Next, we want to make sure that $\operatorname{span}(b, Ab) = \operatorname{span}(c_0, c_1)$. By column reduction we thus find that $\alpha = 0$. Using that $\operatorname{span}(b, Ab, A^2b) = \operatorname{span}(c_0, c_1, c_2)$, we can similarly find that $\beta = -1$ and finally, using (4), and again reduce columns, we identify that $\gamma = 6$.

2.2 (b)

See the implemented Julia code. We have replaced ??? with $||Ax - b||_{A^{-1}}$. Comparing \mathbf{x}_{opt} and \mathbf{x}_{cg} , we obtain a difference of $1.51 \cdot 10^{-11}$.

2.3 (c)

For GMRES, ??? is replaced by $||Ax - b||_2$. Now, comparing x_{opt} with x_{gmres} , we obtain the difference $1.06 \cdot 10^{-11}$.

3 Task 5

Given a real symmetric matrix A with eigenvalues 10, 10.5 and 100 eigenvalues in the interval [2, 3], we prove a bound for then number of steps needed for CG to reduce the error measured in $||Ax_n - b||_{A^{-1}} = ||x_n - x_*||$ by a factor 10^7 . We assume exact arithmetic and no breakdown.

4 Task 6

4.1 (a)

We compare GMRES and CGN for a given matrix B and right hand side b. The result of the comparison is visualised in Figure $\ref{eq:comparison}$.

4.2 (b)

The result can be related to the convergence theory for CGN and GMRES.

5 Task 7