Теория конечных автоматов

Практическое занятие 8

В задачах понимается, что пустые клетки на ленте обозначаются символом λ . Программа для машины Тьюринга принимается только в виде таблицы с комментариями по всем состояниям. Каждое задание должно сопровождаться примерами, демонстрирующими работу машины Тьюринга.

Задача 1. $A = \{0,1\}$. Считая непустое слово P записью двоичного числа, удалить из него незначащие нули, если таковые имеются.

Задача 2. $A = \{0,1\}$. Для непустого слова P определить, является ли оно записью степени двойки (1,2,4,8,...) в двоичной системе счисления. Результат работы программы 1 (является) или 0 (не является).

Задача 3. $A = \{0, 1, 2, 3\}$. Считая непустое слово P записью числа в четверичной системе счисления, определить, является оно чётным числом или нет. Результат работы программы 1 (является) или 0 (не является).

Задача 4. $A = \{0,1\}$. Считая непустое слово P записью числа в двоичной системе, получить двоичное число, равное учетверённому числу P, например: $101 \rightarrow 10100$.

Задача 5. $A = \{0,1\}$. Считая непустое слово P записью числа в двоичной системе, получить двоичное число, равное неполному частному от деления числа P на 2, например: $1011 \rightarrow 101$.

Задача 6. $A = \{a, b, c\}$. Если P — слово чётной длины (0, 2, 4, ...), то выдать ответ a, иначе — пустое слово.

Задача 7. $A = \{a, b, c\}$. Пусть P имеет нечётную длину. Оставить в P только средний символ.

Задача 8. $A = \{a, b, c\}$. Если слово P имеет чётную длину, то оставить в нём только левую половину.

Задача 9. $A = \{a, b, c\}$. Приписать справа к непустому слову P его первый символ.

Задача 10. $A = \{0, 1, 2\}$. Считая непустое слово P записью числа в троичной системе счисления, определить, является оно чётным числом или нет. Результат работы программы 1 (является) или 0 (не является). В чётном троичном числе должно быть чётное количество единиц.