Stat 235 Exercise 1

Joseph S. Tabadero, Jr.

February 19, 2016

Theorem (*). If \mathcal{J} is a π -system and \mathcal{D} is a d-system with $\mathcal{J} \subset \mathcal{D}$, then $\sigma(\mathcal{J}) \subset \mathcal{D}$.

Note(s) 1. $\sigma(\mathcal{J}) \subset \mathcal{D}$ means that \mathcal{D} contains the smallest σ -algebra contained in \mathcal{J} .

Proof. To show $\sigma(\mathcal{J}) \subset \mathcal{D}$, we need only show that \mathcal{D} is a π -system. Why? If \mathcal{D} is a π -system, then, since it is also a d-system, then it is a σ -algebra. $\sigma(\mathcal{J})$ and \mathcal{D} both being σ -algebras and $\sigma(\mathcal{J})$ being the smallest σ -algebra containing \mathcal{J} means $\sigma(\mathcal{J}) \subset \mathcal{D}$.

Now without loss of generality, we can also let \mathcal{D} be the smallest such d-system that contains \mathcal{J} . If it holds that $\sigma(\mathcal{J}) \subset \mathcal{D}$ for this \mathcal{D} then it will hold for other bigger \mathcal{D} 's.

Consider $\mathcal{F} = \{ A \in \mathcal{D} \mid A \cap B \in \mathcal{D} \text{ for all } B \in \mathcal{J} \}$. We need to show that $\mathcal{J} \subset \mathcal{F}$ and \mathcal{F} is a d-system.

Note than since \mathcal{J} is a π -system, for $A \in \mathcal{J}$ then $A \cap B \in \mathcal{D}$ for all $B \in \mathcal{J}$. Hence, $A \in \mathcal{F}$ and $\mathcal{J} \subset \mathcal{F}$.

We now proceed to show that \mathcal{F} is a d-system.

- (i) Now $\Omega \cap B = B \in \mathcal{J}$ for all $B \in \mathcal{J}$ and hence $\Omega \in \mathcal{F}$.
- (ii) Moreover, if $A, C \in \mathcal{F}$ and $A \subset C$ then for any $B \in \mathcal{J}$, $(C \setminus A) \cap B = (C \cap B) \setminus (A \cap B)$. Now $C \cap B \in \mathcal{D}$ and $A \cap B\mathcal{D}$ by definition of \mathcal{F} . So $(C \setminus A) \cap B \in \mathcal{D}$ since \mathcal{D} is a d-system. Thus $C \setminus A$ satisfies the condition of \mathcal{F} so $C \setminus A \in \mathcal{F}$.
- (iii) $A_1, A_2, \ldots \in \mathcal{F}$ and $A_1 \subset A_2 \subset \cdots$. Then for any $B \in \mathcal{J}$, $(\bigcup_{i=1}^{\infty} A_i) \cap B = \bigcup_{i=1}^{\infty} (A_i \cap B)$. Now $A_i \cap B \in \mathcal{D}$ for all i since $A_i \in \mathcal{F}$ and $(A_1 \cap B) \subset (A_2 \cap B) \subset (A_3 \cap B) \subset \cdots$. This means that $(\bigcup_{i=1}^{\infty} A_i) \cap B = \bigcup_{i=1}^{\infty} (A_i \cap B) \in \mathcal{D}$, since \mathcal{D} is a d-system. Therefore, $(\bigcup_{i=1}^{\infty} A_i) \in \mathcal{F}$. Therefore, \mathcal{F} is a d-system.

Now since \mathcal{D} is the smallest d-system containing \mathcal{J} , and $\mathcal{J} \subset \mathcal{D}$ it follows that $\mathcal{F} = \mathcal{D}$. Therefore, if $A \in \mathcal{D}$ and $B \in \mathcal{J}$, then $A \cap B \in \mathcal{D}$.

Now define $\mathcal{G} = \{B \in \mathcal{D} \mid A \cap B \in \mathcal{D} \text{ for all } A \in \mathcal{D}\}$. Note that $\mathcal{J} \subset \mathcal{G}$. We can show in a similar fashion that \mathcal{G} is a d-system (see Exercise 1). Hence, $\mathcal{G} = \mathcal{D}$. Therefore, if $A, B \in \mathcal{D}$ then $A \cap B \in \mathcal{D}$ and hence \mathcal{D} is a π -system. Now \mathcal{D} is then both a π -system and a d-system, and, whence, a σ -algebra. Therefore, $\sigma(\mathcal{J}) \subset \mathcal{D}$.

Exercises

- 1. Show that $\mathcal{G} = \{B \in \mathcal{D} \mid A \cap B \in \mathcal{D} \text{ for all } A \in \mathcal{D}\}$ in the proof of Theorem (\star) is a d-system.
 - *Proof.* (i) Now $\Omega \in \mathcal{D}$ since \mathcal{D} is a d-system. Let $A \in \mathcal{D}$. Now, $\Omega \cap A = A \in \mathcal{D}$. Therefore, $\Omega \in \mathcal{G}$.
 - (ii) Moreover, if $B, C \in \mathcal{G}$ and $B \subset C$ then for any $A \in \mathcal{D}$, $(C \setminus B) \cap A = (A \cap C) \setminus (A \cap B)$. Now $A \cap C \in \mathcal{D}$ and $A \cap B \in \mathcal{D}$ by definition of \mathcal{G} . So $(C \setminus A) \cap B \in \mathcal{D}$ since \mathcal{D} is a d-system. Thus $C \setminus A$ satisfies the condition of \mathcal{G} so $C \setminus A \in \mathcal{G}$.

(iii) Suppose $B_1, B_2, \ldots \in \mathcal{G}$ and $B_1 \subset B_2 \subset \cdots$. Then for any arbitrary $A \in \mathcal{D}$, $(\bigcup_{i=1}^{\infty} B_i) \cap A = \bigcup_{i=1}^{\infty} (B_i \cap A)$. Now $B_i \cap A \in \mathcal{D}$ for all i since $B_i \in \mathcal{G}$ and $(B_1 \cap A) \subset (B_2 \cap A) \subset (B_3 \cap A) \subset \cdots$. This means that $(\bigcup_{i=1}^{\infty} B_i) \cap A = \bigcup_{i=1}^{\infty} (B_i \cap A) \in \mathcal{D}$, since \mathcal{D} is a d-system. Therefore, $(\bigcup_{i=1}^{\infty} B_i) \in \mathcal{G}$. Therefore, \mathcal{G} is a d-system.