Fall 2020 EE 236A

Prof. Christina Fragouli

TAs: Mine Dogan and Kaan Ozkara

EE236A Linear Programming Quiz 3 Tuesday November 10, 2020

NAME:	UID:

This quiz has 3 questions, for a total of 20 points.

Open book.

The exam is for a total of 1:00 hour. Please, write your name and UID on the top of each sheet.

Good luck!

Problem	Mark	Total
P1		6
P2		7
P3		7
Total		20

Problem 1 (6 points) Prove that the optimization problem in (1) is not feasible.

$$\min_{x_1, x_2, x_3, x_4, x_5} \quad \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \\
\text{subject to} \quad \begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 0 & 2 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 5 \\ 2 \end{bmatrix} \tag{1}$$

 $x_i \ge 0$ for $i = 1, \dots, 5$

Problem 2 (7 points) Show that any k+2 points in \mathbb{R}^k can be partitioned into two groups: $(v_i), i \in I$, and $(v_j), j \notin I$, whose convex hulls intersect.

(*Hint*: Argue that the vectors $\begin{pmatrix} v_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} v_{k+2} \\ 1 \end{pmatrix}$ are linearly dependent, and thus there exists a set of not-all-zero coefficients a_1, \dots, a_{k+2} such that: $\sum_{i=1}^{k+2} a_i \begin{pmatrix} v_i \\ 1 \end{pmatrix} = \mathbf{0}$.)

Problem 3 (7 points): Assume we are given an LP in the standard form, with A an $m \times n$ matrix:

$$\min_{x \in \mathbb{R}^n} c^T x$$
subject to $Ax = b$

$$x > 0$$
(2)

Recall that, as we derived in class, the associate dual program can be expressed as:

$$\max_{y} -b^{T} y$$
subject to $A^{T} y + c \ge 0$ (3)

Assume now that the primal LP has a very large number of variables (i.e. n is very large). A friend of yours claims that we can use the following trick to solve this LP more efficiently: She claims that we can consider a subset of $n_I \ll n$ variables, say all variables x_i with $i \in I$, where I is a set of indices, and solve instead the following LP:

$$\min_{x_I \in \mathbb{R}^{n_I}} c_I^T x_I$$
subject to $A_I x_I = b$

$$x_I \ge 0$$
(4)

where c_I only keeps the values corresponding to the indices in I, and A_I keeps the columns of A corresponding to the indices in I. Assume the optimal solution to the problem in (4) is x_I^* and the corresponding dual optimal variables are y_I^* . Your friend claims that for the dual optimal variables, if $c_i + a_i^T y_I^* \geq 0$ for all i = 1, ..., n, where a_i is the i^{th} column vector of A, then you can directly find from x_I^* the optimal solution for the problem in (2) x^* . Is your friend right or wrong? Prove your claim.