

Markscheme

May 2018

Chemistry

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Question	Answers	Notes	Total
1.	а	$n(H_2SO_4)$ «= 0.0500 dm ³ × 0.100 mol dm ⁻³ » = 0.00500/5.00 × 10 ⁻³ «mol» \checkmark		1
1.	b	$H_2SO_4(aq) + Mg(OH)_2(s) \rightarrow MgSO_4(aq) + 2H_2O(I)$	Accept an ionic equation.	1
1.	С	$\operatorname{wn}(H_2SO_4) = \frac{1}{2} \times \operatorname{n}(NaOH) = \frac{1}{2} \ (0.02080 \ dm^3 \times 0.1133 \ mol \ dm^{-3}) w$ $0.001178/1.178 \times 10^{-3} \ \mathsf{wmol} \mathsf{w} \checkmark$		1
1.	d	$n(H_2SO_4)$ reacted «= 0.00500 – 0.001178» = 0.00382/3.82 × 10 ⁻³ «mol» \checkmark		1
1.	е	$n(Mg(OH)_2)$ «= $n(H_2SO_4)$ =» = $0.00382/3.82 \times 10^{-3}$ «mol» \checkmark $m(Mg(OH)_2)$ «= 0.00382 mol \times 58.33 g mol ⁻¹ » = 0.223 «g» \checkmark	Award [2] for correct final answer.	2
1.	f	% Mg(OH) ₂ «= $\frac{0.223 \text{ g}}{1.24 \text{ g}}$ × 100» = 18.0 «%» ✓	Answer must show three significant figures.	1
1.	g	to reduce random errors OR to increase precision ✓	Accept "to ensure reliability".	1

Question	Answers	Notes	Total
2. a		M1: Accept "speed" for x-axis label. Accept "number of particles", "N", "frequency" or "probability «density»" for y-axis label. Do not accept "potential energy" for x-axis label. M2: Do not accept a curve that touches the x-axis at high energy. Do not award M2 if two curves are drawn. M3: Ignore any shading under the curve.	3

C	Question		Answers	Notes	Total
2.	b	i	Time curve starting from origin with steeper gradient <i>AND</i> reaching same maximum volume ✓		1
2.	b	ii	rate decreases OR slower reaction ✓ «ethanoic acid» partially dissociated/ionized «in solution/water» OR lower [H ⁺] ✓	Accept "weak acid" or "higher pH".	2

C	Question		Answers	Notes	Total
2.	С		«pH» converts «wide range of [H ⁺]» into simple «log» scale/numbers OR «pH» avoids need for exponential/scientific notation OR «pH» converts small numbers into values «typically» between 0/1 and 14 OR «pH» allows easy comparison of values of [H ⁺] ✓	Accept "uses values between 0/1 and 14". Do not accept "easier to use". Do not accept "easier for calculations".	1
2.	d	i	A: CH₃COOH/ethanoic/acetic acid <i>AND</i> CH₃COO⁻/ethanoate/acetate ions ✓ B: CH₃COO⁻/ethanoate/acetate ions ✓	Penalize "sodium ethanoate/acetate" instead of "ethanoate/acetate ions" only once.	2
2.	d	ii	$K_a = 1.74 \times 10^{-5} = \frac{[H^+]^2}{0.10}$ OR $[H^+] = 1.32 \times 10^{-3} \text{ «mol dm}^{-3} \text{»} \checkmark$ «pH =» 2.88 \checkmark	Accept [2] for correct final answer.	2
2.	d	iii	«forms weak acid and strong base, thus basic» CH₃COO⁻(aq) + H₂O(I) ⇌ CH₃COOH(aq) + OH⁻(aq) ✓	$Accept o for \rightleftharpoons$.	1
2.	d	iv	less than 7 ✓		1

C	Question		Answers	Notes	Total
2.	е	i	$2NO_2(g) + H_2O(I) \rightarrow HNO_2(aq) + HNO_3(aq) \checkmark$		1
2.	е	ii	$2HNO_2(aq) + CaCO_3(s) \rightarrow \ Ca(NO_2)_2(aq) + CO_2(g) + H_2O(I)$		
			OR		1
			$2HNO_3\left(aq\right) + CaCO_3\left(s\right) \to \ Ca(NO_3)_2\left(aq\right) + CO_2\left(g\right) + H_2O\left(I\right) \checkmark$		
3.	a	i	n = 4 n = 3 n = 2		1
			n = 1		
			4 levels showing convergence at higher energy ✓		

C	uesti	on	Answers	Notes	Total
3.	а	ii	$ \begin{array}{c} $		1
			arrows (pointing down) from $n = 3$ to $n = 2$ AND $n = 4$ to $n = 2$ \checkmark		

(Question 3a continued)

C	uesti	on	Answers	Notes	Total
3.	а	iii	IE «= $\Delta E = h v = 6.63 \times 10^{-34} \text{ J s} \times 3.28 \times 10^{15} \text{ s}^{-1}$ » = $2.17 \times 10^{-18} \text{ «J» } \checkmark$		1
3.	а	iv	$\alpha \lambda = \frac{C}{V} = \frac{3.00 \times 10^8 \text{ ms}^{-1}}{3.28 \times 10^{15} \text{ s}^{-1}} = 9.15 \times 10^{-8} \text{ m/s} \checkmark$		1
3.	b	i	same number of shells/«outer» energy level/shielding <i>AND</i> nuclear charge/number of protons/Z _{eff} increases «causing a stronger pull on the outer electrons» ✓		1
3.	b	ii	 K⁺ 19 protons <i>AND</i> Cl[−] 17 protons <i>OR</i> K⁺ has «two» more protons ✓ same number of electrons/isoelectronic «thus pulled closer together» ✓ 		2
3.	С	i	1 1111111		1
3.	С	ii	Anode (positive electrode): $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-} \checkmark$ $Cathode (negative electrode):$ $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) \checkmark$	Accept $Cu(s) - 2e^{-} \rightarrow Cu^{2+}$ (aq). Accept \rightleftharpoons for \rightarrow . Award [1 max] if the equations are at the wrong electrodes.	2

(Question 3c continued)

C	Question		Answers	Notes	Total
3.	С	iii	«external» circuit/wire <i>AND</i> from positive/anode to negative/cathode electrode ✓	Accept "through power supply/battery" instead of "circuit".	1
3.	С	iv	no change «in colour» ✓	Do not accept "solution around cathode will become paler and solution around the anode will become darker".	1
3.	С	v	oxygen/O₂ ✓	Accept "carbon dioxide/CO ₂ ".	1
3.	d		Transition metals: «contain» d and s orbitals «which are close in energy» OR «successive» ionization energies increase gradually ✓ Alkali metals: second electron removed from «much» lower energy level OR removal of second electron requires large increase in ionization energy ✓		2

Q	Question		Answers	Notes	Total
4.	а		BrO ₃ ⁻ (aq) + 6H ⁺ (aq) + 6I ⁻ (aq) \rightleftharpoons Br ⁻ (aq) + 3I ₂ (s) + 3H ₂ O (I) ✓	$Accept \rightarrow for \rightleftharpoons$.	1
4.	b		n = 6 ✓		
					2
4.	С		« $E^{\ominus} = E^{\ominus}$ (BrO ₃ ⁻ /Br ⁻) − E^{\ominus} (I ₂ /I ⁻)» « E^{\ominus} (BrO ₃ ⁻ /Br ⁻) = E^{\ominus} + E^{\ominus} (I ₂ /I ⁻) = 0.888 + 0.54 =» «+» 1.43 «V» ✓		1

C	Questi	on	Answers	Notes	Total
5.	а		bonds broken: 4(C–H) + 2(H–O) / 4(414) + 2(463) / 2582 «kJ» ✓ bonds made: 3(H–H) + C≡O / 3(436) + 1077 / 2385 «kJ» ✓	Award [3] for correct final answer. Award [2 max] for –197 «kJ».	3
5.	b	i	$\Delta H \ll \sum BE_{\text{(bonds broken)}} - \sum BE_{\text{(bonds made)}} = 2582 - 2385 \text{»} = \text{«+» } 197 \text{ «kJ» } \checkmark$ $\Delta H_{\text{f}}^{\ominus} \text{ for any element} = 0 \text{ «by definition»}$ OR		4
			no energy required to form an element «in its stable form» from itself ✓		1
5.	b	ii	$\Delta H^{\ominus} = \sum \Delta H_{f \text{ (products)}}^{\ominus} - \sum \Delta H_{f \text{ (reactants)}}^{\ominus} = -111 + 0 - [-74.0 + (-242)] $ $= \text{ 4-$} \times 205 \text{ 4-$} \times \text{$4$-$} \times 4-$$		1
5.	b	iii	«bond enthalpies» averaged values «over similar compounds» OR «bond enthalpies» are not specific to these compounds ✓		1
5.	С		$\text{$^{\circ}$} = \sum S^{\circ}_{\text{products}} - \sum S^{\circ}_{\text{reactants}} = 198 + 3 \times 131 - (186 + 189) = \text{$^{\circ}$} \text{ $^{\circ}$} \times 216 \text{ $^{\circ}$} \text{ $^{\circ}$}$		1
5.	d		$\mbox{$^{\circ}$} = \Delta H^{\ominus} - \mbox{T} \Delta S^{\ominus} = 205 \mbox{ kJ} - 298 \mbox{ K} \times \frac{216}{1000} \mbox{ kJ K}^{-1} = \mbox{$^{\circ}$} \times + \mbox{$^{\circ}$} 141 \mbox{ «kJ} \mbox{$^{\checkmark}$}$		1

C	Question		Answers	Notes	Total
5.	е			Do not award a mark for negative value of T.	1

C	Question		Answers	Notes	Total
6.	а		 Q: non-equilibrium concentrations AND K_c: equilibrium concentrations OR Q: «measured» at any time AND K_c: «measured» at equilibrium ✓ 		1
6.	b			Do not award M2 without M1.	2
6.	С	i	[N₂O₂] decreases AND exothermic «thus reverse reaction favoured» ✓	Accept "product" for [N ₂ O ₂]. Do not accept just "reverse reaction favoured/shift to left" for "[N ₂ O ₂] decreases".	1

(Question 6c continued)

C	uesti	on	Answers	Notes	Total
6.	c	ii	Answers ALTERNATIVE 1: «from equilibrium, step 1» $K_c = \frac{[N_2O_2]}{[NO]^2}$ OR $[N_2O_2] = K_c [NO]^2 \checkmark$ «from step 2, rate $= k_1 [N_2O_2][O_2] = k_2K [NO]^2[O_2]$ » rate $= k [NO]^2[O_2] \checkmark$ ALTERNATIVE 2: «from step 2» rate $= k_2 [N_2O_2] [O_2] \checkmark$ «from step 1, rate ₍₁₎ $= k_1 [NO]^2 = k_{-1} [N_2O_2], [N_2O_2] = \frac{k_1}{k_{-1}} [NO]^2$ » «rate $= \frac{k_1}{k_{-1}} k_2 [NO]^2 [O_2] \checkmark$ rate $= k [NO]^2 [O_2] \checkmark$	Award [2] for correct rate expression.	Total 2
6.	d		«In $\frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$ » T ₂ = «273 + 35 =» 308 K AND T ₁ = «273 + 25 =» 298 K ✓ E _a = 52.9 «kJ mol ⁻¹ » ✓	Award [2] for correct final answer.	2

C	Questi	on	Answers	Notes	Total
7.	а	i	polar bonds «between H and group 16 element» OR difference in electronegativities «between H and group 16 element» ✓ uneven distribution of charge/electron cloud OR non-linear/bent/V-shaped/angular shape «due to lone pairs» OR polar bonds/dipoles do not cancel out ✓	M2: Do not accept "net/overall dipole moment" without further explanation. Accept "non-symmetrical «shape/distribution of charge»".	2
7.	а	ii	number of electrons increases ✓ London/dispersion/instantaneous induced dipole-induced dipole forces increase ✓	M1: Accept "M _r /A _r increases" or "molecules become larger in size/mass/surface area".	2
7.	b		Electron domain geometry: tetrahedral ✓ Molecular geometry: bent/V-shaped/angular ✓	Both marks can be awarded for clear diagrams. Electron domain geometry requires a 3-D diagram showing the tetrahedral arrangement.	2

C	Questi	ion		Α	nswers		Notes	Total
7.	С	i	Structure: O atom labelled (1) O atom labelled (2)	0 0	### ##################################	√ √	Award [1] for any two correctly filled cells.	2
7.	С	ii	structure I <i>AND</i> no forma <i>OR</i> structure I <i>AND</i> no charge		etween atom	s» √		1
7.	d		O ₃ has bond between sin <i>OR</i> O ₃ has bond order of 1.5 <i>OR</i> bond in O ₃ is weaker/long O ₃ requires longer waveled	$m{AND}$ $m{O}_2$ has er than in $m{O}_2$	bond order c		M1: Do not accept "ozone has one single and one double bond".	2
7.	е		CO ₂ «non-polar» «weak» induced dipole forces bet SiO ₂ network/lattice/3D/g	ween molecu	lles √	s/instantaneous induced dipole-	M1: The concept of "between" is essential.	2

(Question	Answers	Notes	Total
8.	а	Physical evidence:	M1:	
		equal C–C bond «lengths/strengths»	Accept "all C–C–C bond angles are	
		OR	equal".	
		regular hexagon		
		OR		
		«all» C–C have bond order of 1.5		
		OR		
		«all» C–C intermediate between single and double bonds ✓		
		Chemical evidence:		
		undergoes substitution reaction «more readily than addition»		2
		OR		
		does not discolour/react with bromine water		
		OR		
		substitution forms only one isomer for 1,2-disubstitution «presence of alternate double bonds would form two isomers»		
		OR		
		more stable than expected «compared to hypothetical molecule cyclohexa-1,3,5-triene»		
		OR		
		enthalpy change of hydrogenation/combustion is less exothermic than predicted «for cyclohexa-1,3,5-triene» ✓		

C	uesti	on	Answers	Notes	Total
8.	b	i	$3CH_3CH_2CH_2OH(I) + Cr_2O_7^{2-}(aq) + 8H^+(aq) \rightarrow 3CH_3CH_2CHO(aq) + 2Cr^{3+}(aq) + 7H_2O(I)$ correct reactants and products ✓ balanced equation ✓		2
8	b	ii	Aldehyde: by distillation «removed from reaction mixture as soon as formed» ✓ Carboxylic acid: «heat mixture under» reflux «to achieve complete oxidation to –COOH» ✓	Accept clear diagrams or descriptions of the processes.	2
8.	С	i			1
8.	С	ii	A: C–H «in alkanes, alkenes, arenes» AND B: C=O «in aldehydes, ketones, carboxylic acids and esters» ✓		1

(Question 8c continued)

Questic	on	Answers	Notes	Total
8. C	iii	Any two of: OR C ₆ H ₅ COOCH ₃ ✓ OR CH ₃ COOC ₆ H ₅ ✓ OR HCOOCH ₂ C ₆ H ₅ ✓	Do not penalize use of Kekule structures for the phenyl group. Accept the following structures: H ₃ C CH ₃ CH ₃ Award [1 max] for two correct aliphatic/linear esters with the molecular formula $C_8H_8O_2$.	2
8. c	iv	C ₆ H ₅ COOCH ₃ «signal at 4 ppm (3.7–4.8 range in data table) due to alkyl group on ester» ✓		1

C	Questi	on	Answers	Notes	Total
9.	a	i	O CH ₃ O C	Accept condensed formulas.	2
9.	а	ii	A: CH ₃ CH ₂ COCH ₂ CH ₃ AND «peak at» 29 due to (CH ₃ CH ₂) ⁺ /(C ₂ H ₅) ⁺ /(M – CH ₃ CH ₂ CO) ⁺ OR CH ₃ CH ₂ COCH ₂ CH ₃ AND «peak at» 57 due to (CH ₃ CH ₂ CO) ⁺ /(M – CH ₃ CH ₂) ⁺ /(M – C ₂ H ₅) ⁺ ✓ B: CH ₃ COCH ₂ CH ₂ CH ₃ AND «peak at» 43 due to (CH ₃ CH ₂ CH ₂) ⁺ /(CH ₃ CO) ⁺ /(C ₂ H ₃ O) ⁺ / (M – CH ₃ CO) ⁺ ✓	Penalize missing "+" sign once only. Accept "CH ₃ COCH ₂ CH ₂ CH ₃ by elimination since fragment CH ₃ CO is not listed" for M2.	2

C	Questi	on	Answers	Notes	Total
9.	b	i	heterolytic/heterolysis ✓		1
9.	b	ii	polar protic ✓		1
9.	b	iii	R_1 R_2 R_3 R_2 R_3 R_4 R_5 R_7 R_8 R_8 R_8 R_8 R_8 R_8 R_8 R_8 R_9		2
9.	b	iv	«around» 50 % «each» OR similar/equal percentages ✓ nucleophile can attack from either side «of the planar carbocation» ✓	Accept "racemic mixture/racemate" for M1.	2
9.	С		Stage one: $C_6H_5NO_2(I) + 3Sn(s) + 7H^+(aq) \rightarrow C_6H_5NH_3^+(aq) + 3Sn^{2+}(aq) + 2H_2O(I) \checkmark$ Stage two: $C_6H_5NH_3^+(aq) + OH^-(aq) \rightarrow C_6H_5NH_2(I) + H_2O(I) \checkmark$		2