

COMPUTER NETWORKS AND INTERNET PROTOCOLS

SOUMYA K GHOSH
COMPUTER SCIENCE AND ENGINEERING,
IIT KHARAGPUR

SANDIP CHAKRABORTY
COMPUTER SCIENCE AND ENGINEERING,
IIT KHARAGPUR

Transport Layer - VI (Primitives)

Transport Layer – Interfacing with Application and Network

Port Number

IP Address

Source: Computer Networks (5th Edition) by Tanenbaum,

Wetherell

Transport Layer – Interfacing with Application and Network

Source: Computer Networks (5th Edition) by Tanenbaum, Wetherell

Create a logical pipe between the sender and the receiver and monitor the data transmission through this pipe

Transport Service Primitives

 To allow users to access transport service, the transport layer must provide some operations to the application programs.

Primitive	Packet sent	Meaning	
LISTEN	(none)	Block until some process tries to connect	
CONNECT	CONNECTION REQ.	Actively attempt to establish a connection	
SEND	DATA	Cond information	+
RECEIVE	(none)	Block until a DATA packet arrives	
DISCONNECT	DISCONNECTION REQ.	Request a release of the connection	

The transport layer needs to remember the state of the pipe, so that appropriate actions can be taken. We need a stateful protocol for transport layer.

Transport Service Primitive – Connection Establishment

Transport Layer Protocol – State Diagram

Source: Computer Networks (5th Edition) by Tanenbaum, Wetherell

Transport Layer Protocol – State Diagram

Connection request Connect primitive segment received executed **IDLE PASSIVE** ACTIVE ESTABLISHMENT **ESTABLISHMENT** PENDING **PENDING** Connection accepted Connect primitive segment received execute **ESTABLISHED CLIENT** Disconi ection Disconnect request segment primitive **ACTIVE PASSIVE** r ceived . executed DISCONNECT DISCONNECT PENDING PENDING IDLE Disconnection request Disconnect primitive executed segment received

Source: Computer Networks (5th Edition) by Tanenbaum, Wetherell

Segment, Packet (or Datagram) and Frame

Source: Computer Networks (5th Edition) by Tanenbaum, Wetherell

Transport Layer Process Flow

- Connection Establishment Initiate a connection by selecting the initial sequence numbers, ensuring that the initial sequence numbers do not fall within the forbidden region of the previous connection between the same <source IP, source port, destination IP, destination port>
 - Sequence number becomes a part of a transport layer connection
 - <source IP, source port, source initial sequence number, destination IP, destination port, destination initial sequence number> - uniquely identifies a connection

Transport Layer Process Flow

- Flow Control and Reliability Use ARQ protocols for ensuring flow control and reliability
 - Sender will not send data at a rate higher than the receiver rate
 - Sequence numbers are used to uniquely identify each byte/each packet
 - Loss in the communication path is handled through retransmission
- Congestion Control reduce transmission rate once congestion is detected

Transport Layer Process Flow

- Congestion Control reduce transmission rate once congestion is detected
 - Improves performance for end-to-end data delivery

- Connection Closure close the connection when data transmission is complete
 - Synchronous closure with timeout

