Introduction to methylation analysis Data processing, QC and alignment

Sergio Martínez Cuesta sermarcue@gmail.com

Employment:

Materials from:

Epigenetics

Studies changes in gene expression which are not encoded by the underlying DNA sequence

- histone modification
- non-coding RNAs
- higher order structure (accessibility/compaction)

DNA cytosine methylation

Types of DNA methylation

canonical

	Plants	Mammals
CG	symmetric	symmetric

CG context

non-CG context

DNA methylation is maintained

from W. Reik & J. Walter, Nat. Rev. Genet. 2001

Regulation by DNA methylation

Silencing of gene expression

Tissue differentiation and embryonic development

Faults in correct DNA methylation may result in

- early development failure
- epigenetic syndromes
- cancer

Repeat activity

Genomic stability

Imprinted Genes: mono-allelic expression

Imprinted Genes: Mono-allelic expression with parent-of-origin specificity. Have key roles in energy metabolism, placenta functions.

DNA methylation is reset during reprogramming

DNA Methylation

Other cytosine modifications

Miguel R. Branco, Gabriella Ficz & Wolf Reik Nature Reviews Genetics 13, 7-13 (January 2012)

Nature Reviews | Genetics

Measuring DNA methylation by Bisulfite-sequencing

Bisulfite Informatics

Unmethylated Methylated

CCAGTCGCTATAGCGCGATATCGTA

TTAGTTGCTATAGTGCGATATTGTA

TTAGTTGCTATAGTGCGATATTGTA

BS-Seq Analysis Workflow

Bisulfite conversion of a genomic locus

- 2 different PCR products and 4 possible different sequence strands from one genomic locus
- each of these 4 sequence strands can theoretically exist in any possible conversion state

3-letter alignment of Bisulfite-Seq reads

TTGGCATGTTTAAACGTT sequence of interest bisulfite convert read (treat sequence as both forward and reverse strand) 5'...TTGGTATGTTTAAATGTT...3' 5'...TTAACATATTTAAACATT...3' (2) align to bisulfite converted genomes **Bismark** (4) ...TTGGTATGTTTAAATGTT... ...CCAACATATTTAAACACT... ...AACCATACAAATTTACAA... ...GGTTGTATAAATTTGTGA... forward strand C -> T converted genome forward strand G -> A converted genome (equals reverse strand C -> T conversion) read all 4 alignment outputs and extract the unmodified genomic sequence if the sequence could be mapped uniquely 5'...CCGGCATGTTTAAACGCT...3' methylation call TTGGCATGTTTAAACGTTA read sequence h unmethylated C in CHH context **H** methylated C in CHH context CCGGCATGTTTAAACGCTA genomic sequence

methylation call XZ **H** **Z** h

x unmethylated C in CHG context X methylated C in CHG context z unmethylated C in CpG context

Z methylated C in CpG context

Common sequencing protocols

1) Directional libraries

(vast majority of kits, also EpiGnome/Truseq)

OT >>TCGGTATGTTTAAACGTT>> <<GGTCGTACAAATTTGCGA<< OB

2) PBAT libraries

CTOT <<AGCCATACAAATTTGCAA<<
>>CCAGCATGTTTAAACGCT>> CTOB

- 3) Non-directional libraries
 (e.g. single-cell BS-Seq, Zymo Pico Methyl-Seq)
- CTOT < < AGCCATACAAATTTGCAA< <

 >>CCAGCATGTTTAAACGCT>> CTOB
 < < GGTCGTACAAATTTGCGA< < OB

OT >>TCGGTATGTTTAAACGTT>>

Validation

Raw Sequence Data

```
@HS31 12166:1:1101:5279:2453#2/1
@C@DFD;DFFDHFHGEEECGHFHHICDFFGHDGHGDGHIGDFGG@8CHIHHIHIGIGHCHHHCHBE@D>BCEEEC;>CDACCCCCCCCCCCAACCCBCCC
@HS31 12166:1:1101:5276:2474#2/1
BBCDDFDBHFDCDCGIIJJJJJJJJJJJGIEIHJJIJJGH@GHIJJ=DAEEEHEFDFFFFFEDDDDDDDD-9BDDDDD(:@:>:(+(4>:C@((4:(((4
@HS31 12166:1:1101:5376:2480#2/1
@HS31 12166:1:1101:5674:2287#2/1
@HS31 12166:1:1101:5575:2309#2/1
@HS31 12166:1:1101:5709:2315#2/1
@HS31 12166:1:1101:5504:2338#2/1
BCCDDFEFHHHHHCGIJGJICFIHIJJJFFHIJJJJJJI7=CGCDEIHHHHHHCFFBCAEE>CDD=>@B>CDBACCDFEEEDDDDEDEEEDDDDEDEDDDD
@HS31 12166:1:1101:5513:2360#2/1
```

• • •

up to 1,000,000,000 lines per lane

Part I: Initial QC - What does QC tell you about your library?

- # of sequences
- Basecall qualities
- Base composition
- Potential contaminants
- Expected duplication rate

Measure	Value
Filename	s_4_1_sequence.txt
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	35290120
Sequence length	40
%GC	46

QC Raw data: Sequence Quality

QC: Base Composition

QC: Duplication rate

QC: Overrepresented sequences

Overrepresented sequences

<u> </u>			
Sequence	Count	Percentage	Possible Source
GAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTAT	6254891	23.52739098691508	Illumina Paired End PCR Primer 2 (100% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCT	1956005	7.357393503317777	Illumina Paired End PCR Primer 2 (100% over 40bp)
GAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGG	774763	2.9142237687587667	Illumina Paired End PCR Primer 2 (96% over 31bp)
GAAGAGCGGTTCAGCAGGAATGCCGAGGATCGGAAGAGCG	140148	0.5271581538405985	Illumina Paired End Adapter 2 (100% over 27bp)
${\tt AAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGT}$	105720	0.3976593317352233	Illumina Paired End PCR Primer 2 (96% over 30bp)
${\tt NAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTAT}$	98639	0.37102458213233724	Illumina Paired End PCR Primer 2 (97% over 40bp)
AAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATG	82413	0.30999147281777295	Illumina Paired End PCR Primer 2 (100% over 40bp)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAG	53872	0.20263624214188372	Illumina Paired End PCR Primer 2 (97% over 36bp)
${\tt NNAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTAT}$	36541	0.137446742725471	Illumina Paired End PCR Primer 2 (100% over 38bp)
${\tt ATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTC}$	35781	0.13458804908076072	Illumina Paired End PCR Primer 2 (100% over 40bp)
${\tt CGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGT}$	33905	0.1275315895051338	Illumina Paired End PCR Primer 2 (100% over 40bp)
${\tt NATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCT}$	30564	0.1149646217854272	Illumina Paired End PCR Primer 2 (97% over 40bp)
${\tt GAAGAGCGGTTCAGCAGGAATGCCGAGACGGATCTCGTAT}$	28274	0.10635092646123442	Illumina Paired End PCR Primer 2 (97% over 40bp)
CAAACAACTTCTAAAACAAAACAAAAACCACTAA	27952	0.10513974310123876	No Hit

Common problems in BS-Seq

Not observed in 'normal' libraries, e.g. ChIP or RNA-Seq

Removing poor quality basecalls

Removing adapter contamination

after trimming

Adapter trimming

(Illumina adapter: AGATCGGAAGAGC)

B: AGATCTTTTATTCGGTAGGATTAGCGGTAGTTATTTTATTTTTGGAGGAT

A: AGATCTTTTATTCGGTAGGATTAGCGGTAGTTATTTTTATTTTGGAGGAT

partial match

full match

A: AGATCTTTTATTCGGTAGGAT

B: AGATCTTTTATTCGGTAGGATTAGCGGTAGTTATTTTATTTTGGAGATC

A: AGATCTTTTATTCGGTAGGATTAGCGGTAGTTATTTTATTTTTGGAG

B: AGATCTTTTATTCGGTAGGATTAGCGGTAGTTATTTTATTTTGGAGGAG

B: AGATCTTTTATTCGGTAGGATTAGCGGTAGTTAT%TTATTTTGGAGGA<mark>A</mark>

A: AGATCTTTTATTCGGTAGGATTAGCGGTAGTTATTTTATTTTGGAGGA

Sequence content across all bases

15-19 25-29 35-39 45-49 55-59 65-69

Summary Adapter/Quality Trimming

Important to trim because failure to do so might result in:

- Low mapping efficiency
- Mis-alignments
- Errors in methylation calls since adapters are methylated
- Basecall errors tend toward 50% (C:mC)

Part II: Sequence alignment – Bismark primary alignment output (BAM file)

Sequence duplication

Complex/diverse library:

Duplicated library:

Deduplication - considerations

Advisable for large genomes and moderate coverage

- unlikely to sequence several genuine copies of the same fragment amongst >5bn possible fragments with different start sites
- maximum coverage with duplication may still be (read length)-fold (even more with paired-end reads)

NOT advisable for RRBS or other target enrichment methods where higher coverage is either desired or expected

Methylation extraction

Read 1

state

Methylation extraction I

meth

unmeth

Bismark methylation extractor version	v0.10.	1	
HS9_11915:8:2311:4022:38651#13/1	+	1	3029229 Z
HS9_11915:8:1208:13025:95413#13/1	+	1	3079409 Z
HS9_11915:8:1301:11752:81850#13/1		1	3104640 z
HS9_11915:8:2112:15483:84166#13/1	+	1	3104862 Z
HS9_11915:8:2110:8777:33683#13/1		1	3104862 z
HS9_11915:8:2208:16561:25806#13/1	+	1	3104862 Z

CpG methylation output

1	5705370	5705370	100	1	0		
1	5706335	5706335	60	3	2		
1	5706336	5706336	100	3	0		
1	5706453	5706453	75	3	1		
1	5706454	5706454	0	0	2		
1	5706845	5706845	71.4285	71428571	4	5	2
1	5706846	5706846	66.6666	6666666	7	2	1
1	5707925	5707925	0	0	1		
1	5707926	5707926	66.6666	6666666	7	2	1
1	5709177	5709177	100	2	0		
1	5709178	5709178	0	0	1		
1	5710030	5710030	66.6666	6666666	7	4	2

methylation

percentage

chr

pos

bedGraph/coverage output

Methylation extraction II

1	10525	10525	66.66	6666666	6667	2	1
1	10542	10542	100	3	0		
1	10563	10563	66.66	6666666	6667	2	1
1	10571	10571	100	3	0		
1	10577	10577	66.66	6666666	6667	2	1
1	10579	10579	100	3	0		
1	10589	10589	50	2	2		
1	10609	10609	0	0	1		
1	10617	10617	0	0	1		
1	10620	10620	0	0	1		

coverage output

coverage2cytosine

chr	pos	strand	meth	unmeth	di-nuc	tri-nuc
1	10589	+	2	2	CG	CGG
1	10580		0	0	CG	CGC
1	10579	+	3	0	CG	CGG
1	10578	_	0	0	CG	CGA
1	10577	+	2	1	CG	CGC
1	10572		0	0	CG	CGG
1	10571	+	3	0	CG	CGC
1	10564		0	0	CG	CGT
1	10563	+	2	1	CG	CGC
1	10543	_	0	0	CG	CGG
1	10542	+	3	0	CG	CGA
1	10526	_	0	0	CG	CGG
1	10525	+	2	1	CG	CGC

optional: merge into CpG dinucleotide entities

Genome wide CpG report

M-Bias Plot

Part III: Mapped QC - Methylation bias

good opportunity to look at conversion efficiency

Artificial methylation calls in paired-end libraries

end repair + A-tailing

o' -	GGGNNNNNNNNNNNNNNNNNNNNNNNNNCCCA	-3
3 ' –	ACCCNNNNNNNNNNNNNNNNNNNNNNNGGG	-5

Specialist applications (I): Reduced representation BS-Seq (RRBS)

Sequence composition bias

High duplication rate

Fragment size distribution in RRBS

Mspl sit		Aspl site
5'CCGG	NANANANANANANANANANANANAN NANANANANANAN	CCGG3'
3'	NUNUNUNUNUNUNUNUNUNUNUNUNNNNNN	GGCC 5'
aaa	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
CGG	<u>ANNANANANANANANANANANANANANANANANANANA</u>	NNNNNNNNNNNN)
	identical (redundant) methylation calls	
/		
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	<u> </u>	IGGC

Artificial methylation calls in RRBS libraries

```
Mspl site
                            Mspl site
3'-
         CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGGC
                    end repair + A-tailing
       CGGNNNNNNNNNNNNNNNNNNNNNNNNNNCCGA
3'-
                                       -5'
       adapter ligation (X = adapter sequence)
3'-XXXXXXAGCCNNNNNNNNNNNNNNNNNNNNNNNNNNNGGCTXXXXXXXXX-5'
                             C genomic cytosine
                             C unmethylated cytosine
```


Bismark User Guide

https://rawgit.com/FelixKrueger/Bismark/master/Docs/Bismark User Guide.html

Bismark Bisulfite Mapper

User Guide - v0.18.0

15 May, 2017

This User Guide outlines the Bismark suite of tools and gives more details for each individual step. For troubleshooting some of the more commonly experienced problems in sequencing in general and bisulfite-sequencing in particular please browse through the sequencing section at <u>OCFail.com</u>.

1) Quick Reference

Bismark needs a working version of Perl and it is run from the command line. Furthermore, <u>Bowtie</u> or <u>Bowtie</u> needs to be installed on your computer. For more information on how to run Bismark with Bowtie 2 please go to the end of this manual.

As of version 0.14.0 or higher, Bismark may be run using parallelisation for both the alignment and the methylation extraction step. Search for --multicore for more details below.

First you need to download a reference genome and place it in a genome folder. Genomes can be obtained e.g. from the <u>Ensembl</u> or <u>NCBI</u> websites. For the example below you would need to download the *Homo sapiens* genome. Bismark supports reference genome sequence files in FastA format, allowed file extensions are either either .fa or .fasta. Both single-entry and multiple-entry FastA files are supported.

The following examples will use the file test_dataset.fastq which is available for download from the Bismark project or Github pages (it contains 10,000 reads in FastQ format, Phred33 qualities, 50 bp long reads, from a human directional BS-Seq library). An example report for use with Bowtie 1 and Bowtie can be found in Appendix IV.

(I) Running bismark_genome_preparation

USAGE

bismark_genome_preparation [options] cpath_to_genome_folder>

A typical genome indexing could look like this:

/bismark/bismark_genome_preparation --path_to_bowtie /usr/bin/bowtie2/ --verbose /data/genomes/homo_sapiens/GRCh37/

(II) Running bismark

USAGE:

Table of Contents

Bismark Bisulfite Mapper

User Guide - v0.18.

1) Ouick Reference

(I) Running bismark_genome_preparation

(II) Running bismar

(III) Running bismark_methylation_extractor

(IV) Running bismark2report

(V) Running bismark2summary

2) Bismark - General Information

Wilde is Distillark

Dependencies

Hardware require

BS-Seq test data set

Vhich kind of BS-Seq files are supported?

low door Riemark work

Bismark alignment and methylation call report

3) Running Bismark

(I) Bismark Genome Preparation

(II) Bismark Alignment Ste

(III) Bismark methylation extractor

(IV) The Bismark HTML Processing Report

V) The Bismark Summary Report

(VI) Bismark Nucleotide Coverage report (bam2nuc)

(VII) Filtering out non-bisulfite converted reads

filter_non_conversion)

VIII) Notes about different library types and ommercial kits

4) APPENDIX - Full list of options

Appendix (I): Bismark Genome Preparation

Appendix (II): Bismark

Appendix (III): Bismark Methylation Extractor

Appendix (IV): Bismark reports for the test data set

Cradite

Bismark workflow

Pre Alignment

FastQC Initial quality control

Trim Galore Adapter/quality trimming using Cutadapt; handles RRBS

and paired-end reads; Trim Galore and RRBS User guide

Alignment

Bismark Output BAM

Post Alignment

Deduplication optional

Methylation extractor Output individual cytosine methylation calls; optionally

bedGraph or genome-wide cytosine report

M-bias analysis

bismark2report Graphical HTML report generation

Example: http://www.bioinformatics.babraham.ac.uk/projects/bismark/PE_report.html

Epigenesys protocol: *Quality Control, trimming and alignment of Bisulfite-Seq data*

Useful links

- FastQC <u>www.bioinformatics.babraham.ac.uk/projects/fastqc/</u>
- Trim Galore <u>www.bioinformatics.babraham.ac.uk/projects/trim_galore/</u>
- Cutadapt https://code.google.com/p/cutadapt/
- Bismark <u>www.bioinformatics.babraham.ac.uk/projects/bismark/</u>
- Bowtie http://bowtie-bio.sourceforge.net/
- Bowtie 2 http://bowtie-bio.sourceforge.net/bowtie2/
- SeqMonk <u>www.bioinformatics.babraham.ac.uk/projects/seqmonk/</u>
- Cluster Flow <u>www.bioinformatics.babraham.ac.uk/projects/clusterflow/</u>

Epigenesys protocol: Quality control, trimming and alignment of Bisulfite-Seq data

http://www.epigenesys.eu/en/protocols/bio-informatics/483-quality-control-trimming-and-alignment-of-bisulfite-seq-data-prot-57

*QCFAIL.com https://sequencing.qcfail.com/

Thank you for your attention

Questions?

Specialist application (II): Post-bisulfite adapter tagging (PBAT)

WGBS PBAT Sample DNA Sample DNA Sample DNA 1, Bisulfite treatment 1, Fragmentation 1. Bisulfite treatment (fragmentation) 2, 1st. random priming 2, Adaptor ligation Adaptors 1st. strand Adaptor sequence Streptavidin-coated magnetic beads 2, Adaptor tagging 3, Magnetic bead capture 3, Bisulfite treatment Adaptors 4, 2nd. random priming 2nd. strand 4, Global amplification 5, Elution Adaptor sequence

No fragmentation steps after adaptor tagging

→ suitable for low input material

PBAT-Seq

M-Bias Plot

