

A Convolutional Neural Network for Image Classification of Cats and Dogs

Status update

Structure

- Neural Nets (NN)
- Convolution NN (CNN)
- Problem
- Evaluation
- Aims

NEURAL NETS

Introduction – Neural Nets

Quelle: http://cs231n.github.io/convolutional-networks/

Neuron Model

Mathematical view

- Input, Weights
- Compute Sigmoid (Activation Function)
- Measure how much we missed (Cost Function)
- Multiply Err by the Sigmoid slope
- Update Weights

•
$$l_0 = X_i$$
, W = rand()

•
$$l_1 = Sig(X_i . W)$$

• Err =
$$l_0 - l_1$$

•
$$\Delta l_1 = \text{Err}^* \Delta (Sig(Err))$$

• W = W+(
$$l_0$$
. Δl_1)

Activation Functions

- Non-Linear
 - sigmoid, tanh, elu, softplus, and softsign
- continuous but not everywhere differentiable functions
 - relu, relu6, crelu and relu_x

Activation functions

- Why Sigmoid?
 - Not telling in which direction should we move in.

Non-differentiability at certain points

Activation functions

- Why Relu?
 - Accelerates the convergence rate
 - Simply implementation

Cost Functions

Squared Error Measure

Softmax Cross-entropy Function

Squared Error Measure Function

•
$$Error = \frac{1}{2}(Y_{actual} - Y_{predicted})^2$$

- Drawbacks
 - No gradient to get from 0.000...1 to 1.
 - To do so it will take quite longer.
 - Deprives NN of probability information.

Advantages to Squared Error Measure

- $C = -\sum_{j} t_{j} \log Y_{j}$
- Very big gradient when:
 - Target value is 1.
 - Actual output is 0.
- Balance between
 - Steepness of $\frac{dC}{dy}$ and
 - Flatness of $\frac{dy}{dz}$

$$\frac{\partial C}{\partial Z_j} = \sum_{i} \frac{\partial C}{\partial y_j} \frac{\partial y_j}{\partial Z_j}$$

CONVOLUTIONAL NN

Neural Nets to CNN

Quelle: http://cs231n.github.io/convolutional-networks/

Introduction – Neural Nets

Layer Quelle: http://cs231n.github.io/convolutional-networks/

TensorFlow

- Developed by Google Brain Team
- Use cases
 - Handwritten patterns, image recognition, Word2Vec
- Input data
 - Audio, image, text
- Used techniques
 - Linear classifiers, NN

Structure of the CNN we used

Input layer

Convolutional layer - Filter

http://cs231n.github.io/convolutional-networks/

Aditya Raj, Sören Schleibaum Institut für Informatik

Convolutional layer - Parameters

- Input volume size
- Number of filters
- Filter size
- Zero padding

Aditya Raj, Sören Schleibaum Institut für Informatik

Convolutional layer – Activation function

conv

- Sigmoid
 - Not telling in which direction should we move in.
 - Non-differentiability at certain points

pool

norm

conv

input

TU Clausthal

Convolutional layer – Activation function

- Rectified linear
 - *Element Wise*: max(0, x)
 - Leaky ReLU
 - If x < 0, Output = 0.01x.
 - Non-zero gradient when the input is negative

Aditya Raj, Sören Schleibaum Institut für Informatik

Pool layer

Pool layer – Max pooling

Reduce the spatial dimension of an image

http://cs231n.github.io/convolutional-networks/

Aditya Raj, Sören Schleibaum Institut für Informatik

Norm layer

Local layer

Softmax-linear layer

Softmax Output Function

- Soft continuous version of Max Function
- Forces $\sum (Output \ of \ NN) = 1$.

Derivative Softmax

$$\bullet \frac{\delta Y_i}{\delta Z_i} = Y_i (1 - Y_i)$$

- Nice Simple derivative
- Even though Y_i depends of Z_i ,
 - Derivative
 - for an individual neuron
 - of an I/P in respect to O/P is just Y_i (1 Y_i)

Cost Measure for Softmax Output Function

•
$$C = -\sum_{j} t_{j} \log Y_{j}$$

- Negative log probability of correct answer
- Maximise the log probability of getting answer right

HYPERPARAMETERS

Learning Rate

- how fast the network trains
- High learning rate
 - Convergence or global minimum finding is problem
- Low learning rate
 - High training times

Learning Rate decay

- Learning rate decay means the learning rate decreases over time
 - higher learning rate is well suited to get close to the global minimum
 - small learning rate is better at fine tuning the global minimum
- Several ways to do it:
 - Exponential decay, reduction by factor of n
 - GoogLeNet: function to decrease the learning rate by 4%

Overfitting or Underfitting

Example: Logistic regression

Weight Penalty

- Adding λ to penalise
 - Keeps weight small
 - Big error derivatives

Aditya Raj, Sören Schleibaum Institut für Informatik

$$C = E + \frac{\lambda}{2} \sum_{i=1}^{\infty} w_i^2$$

• When
$$\frac{\partial C}{\partial w_i} = 0$$
;

•
$$w_i = -\frac{1}{\lambda} \frac{\partial E}{\partial w_i}$$

• So, at minimum of Cost function if $\frac{\partial E}{\partial w_i}$ is big, the weights are big

Weight Penalty - Advantages

- Preventing network from the weights it does not need
 - Don't have a lot of weights not doing anything
 - So output changes more slowly as input changes.
- Putting half the weight on each and not on one

PROBLEM

The data

Images of cats and dogs

File format is *.jpg

Color space is RGB

Training data

- 25,000 images
 - 12,500 of dogs
 - 12,500 of cats
- Avg. file size
 - 22.34 kB

Test data

- 12,500 images
 - x of dogs
 - y of cats
 - x + y = 12,500

Process images

- Resize to 32 * 32 * 3
- Convert to array
 - **25,000** * **3,073**

dog1.jpg

cat10.jpg

Process images

- Resize to 32 * 32 * 3
- Convert to array
 - **25,000** * **3,073**

dog1.jpg

EVALUATION

AIMS

Aims

Removing normalization layer

QUESTIONS

Quellen

- http://cs231n.github.io/convolutional-networks/
- https://www.tensorflow.org/tutorials/deep_cnn/
- Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural network acoustic models." *Proc. ICML*. Vol. 30. No. 1, 2013.