2019W2_ELEC_221_201

Assignment Problem_Set_9 due 04/08/2020 at 11:59pm PDT

Determine the Fourier series coefficients for each of the following discrete-time periodic signals. For the signal, x[n], shown in the figure below, determine the Fourier coefficients X_k (for $k \neq 0$). Simplify your answer as much as possible.

$$X_k = \underline{\hspace{1cm}} e \quad j \underline{\hspace{1cm}} sin(\underline{\hspace{1cm}})sin(\underline{\hspace{1cm}})$$

Correct Answers:

- 0.5
- k*(-pi/2+pi/18)
- k*pi/2
- k*pi/18

JY Note Apr 4, 2020: Explicitly request a specific form for part

A causal discrete-time LTI system is described by the difference equation $y[n] - \frac{1}{9}y[n-1] = 11x[n] + \frac{1}{7}x[n-1]$, where x[n] is the input and y[n] is the output signal.

a) Determine the frequency response, $H(\Omega)$, of the system. Enter Ω as "O".

$$H(\Omega) = \underline{\hspace{1cm}}$$

b) Find the impulse response, h[n], of the system (enter this as a linear combination of step functions).

$$h[n] =$$

c) Determine the response of the system, y[n] to the input $x[n] = cos(\frac{n\pi}{\Omega}).$

$$y[n] = _{--}$$

In your answers, enter z(n) for a discrete-time function z[n]. WebWork is unable to parse a function that uses square brackets.

Correct Answers:

- 11*0.111111^n*u(n)+0.142857*0.1111111^(n-1)*u(n-1)
- 12.4212*cos(n*pi/9+(-0.0467954))

Consider an LTI discrete-time system that has impulse
$$\operatorname{response} h[n] = \begin{cases} \frac{\sin(\pi(n-10)/4)}{\pi(n-10)} & if \\ n \neq 10 \\ \frac{1}{4} & if \\ otherwise \end{cases}$$

a) Determine the magnitude $|H(\Omega)|$ and the phase response $\angle H(\Omega)$ for $-\pi < \Omega < \pi$. Enter Ω as "O" and enter the piecewise function $|H(\Omega)|$ using the heaviside function.

$$|H(\Omega)| = \underline{\hspace{1cm}} \angle H(\Omega) = \underline{\hspace{1cm}}$$

b) Determine the output of the system, y[n], if the input is given by $x[n] = \delta[n-5] + cos(\frac{\pi n}{5})$. Enter your answer in terms of h[n].

$$y[n] = _{--}$$

In your answers, enter z(n) for a discrete-time function z[n]. WebWork is unable to parse a function that uses square brack-

Correct Answers:

- u(O+pi/4)-u(O-pi/4)
- −10*0
- h(n-5) + cos(n*pi/5)

JY Note Mar 31, 2020: Removed ambiguous stipulation that the calculation must be done in the time-domain. I suspect the initial rationale for the remark is that the question was adapted from an exam in which the students were effectively being warned not to leave the answer as a Z-transform.

Consider a discrete-time system that has the impulse response $h[n] = \left(\frac{1}{8}\right)^n u(n)$. Find the response of the system to each of the input signals given in the table below.

	Input signal, $x[n]$	Output signal, $y[n]$
1	$e^{j\pi n/2}$	
2	$cos(\frac{\pi n}{3} + \frac{pi}{2})$	

Correct Answers:

- 2.71828^(i*pi*n/2)/[1-0.125*2.71828^(-i*pi/2)]
- [11+0.142857*2.71828^(-i*0)]/[1-0.111111*2.71828^(-i*0)] [cos(n*pi/3+pi/2)-0.125*cos(n*pi/3+pi/2+pi/3)]/[1.01562-0.

1

The block diagram below represents a discrete-time LTI system. Assume $\alpha=4,\,\beta=-\frac{1}{18},\,\gamma=9.$

a) Write the difference equation that describes this system.

b) Find the impulse response of the system (write this as the product of a function with the unit step).

$$h[n] =$$

c) Evaluate the phase and magnitude of the frequency response of the system at each of the frequencies given in the table below.

Frequency, Ω	$ H(\Omega) $	$\angle H(\Omega)$ (rad)
0		
$\frac{\pi}{4}$		
$-\frac{2\pi}{3}$		

JY Note Apr 4, 2020: Explicitly note that phase should be entered in radians.

In your answers, enter z(n) for a discrete-time function z[n]. WebWork is unable to parse a function that uses square brackets.

Correct Answers:

- 4*x(n-1)+9*y(n-1)+y(n-2) = -18*y(n)
- (-1.33333)*(-0.166667)^n*u(n)+1.33333*(-0.333333)^n
- 0.142857
- 3.14159
- 0.157155
- 2.64971
- 0.271538
- −1.53685

a) Find the Fourier transform of the rectangular pulse sequence, $x_1[n]$, given in the figure below. *Enter* Ω *as "O"*.

$$X_1(\Omega) = \underline{\hspace{1cm}}$$

b) Use your answer from part **a** to find the Fourier transform of the rectangular pulse sequence, $x_2[n]$, given in the figure below.

$$X_2(\Omega) =$$

- ?
- Linearity
- Time-shifting
- Duality
- Reflection
- Modulation

Part **c** will only be marked correct if part **b** is correct.

Correct Answers:

- $7*2.71828^{(-i*0*8)} \sin(0*8.5) / [\sin(0/2)]$
- $7*\sin(0*8.5)/[\sin(0/2)]$
- Time-shifting

JY Note Mar 30, 2020: Corrected result from part (d).

The transfer function of a FIR filter is $H(z) = z^{-2}(7.5z + 1.1 + 7.5z^{-1})$.

a) Find the frequency response, $H(\Omega)$ of the system. *Enter* Ω as "O".

$$H(\Omega) =$$

- **b)** Is the phase response of the system linear? [?/Yes/No]
- Find the impulse response, h[n], of the system.

$$h[n] =$$

In your answer, enter z(n) for a discrete-time function z[n] and enter D(n) instead of $\delta[n]$. WebWork is unable to parse a function that uses square brackets.

d) Is the impulse response symmetric in the y-axis? [?/Yes/No]

Part b will only be marked correct if part a is correct. Part d will only be marked correct if part c is correct.

Correct Answers:

- 2.71828^{[(-2i)*0]*[1.1+15*cos(0)]}
- Yes
- 7.5*D(n-2+1)+1.1*D(n-2)+7.5*D(n-2-1)
- No

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America