Exploring mathematics of rolling bridges Extended essay

Word count: 1

Contents

1	Research question	3
2	Introduction	3
3	References	3
4	Work plan	4
5	"Smoothly" rolling square	5

1 Research question

How can catenary curves be used in construction of non-circular "rolling" bridges?

2 Introduction

- 1. My personal interest I am interested in architecture and urban planning and this topic combines this with my passion for mathematics
- 2. I have found this bridge in an internet video as an interesting mathematical phenomena existing in real life

Figure 1: Bridge photo

https://newatlas.com/architecture/cody-dock-rolling-bridge/

3 References

- 1. https://community.wolfram.com/groups/-/m/t/2917199
- 2. https://youtu.be/SsGEcLwjgEg
- 3. https://youtu.be/xGxSTzaID3k

4 Work plan

- 1. square bridge
 - (a) simple rolling square
 - i. finding polar form straight line times 4
 - ii. finding relation between road and "wheel"
 - iii. get y(t), then find road equation in y(x) form
 - iv. catenary road = -cosh x
 - (b) rounded square
 - i. why rounded gears teeth
 - ii. why rounded corners are hard rolling on a circle, but centre of mass is outside of it
 - iii. calculating road for the rounded square
 - A. polar form of a rounded corner
 - B. symbolic solution
 - definite integration
 - elliptic integral of 2nd kind
 - cant get y(x)
 - C. numerical solution
 - iv. setting centre of mass to be at geometric centre (adding additional weight at the top of the bridge)
 - v. find location of gear teeth roll the track around and trace intersection with bridge inverse transformation of track around the bridge
 - vi. calculating work needed to be done to roll the bridge the centre of mass is actually 2inches below the geometric centre
- 2. triangle bridge
 - (a) normally cannot too steep road and triangle crashes, but with rounded corners its possible
 - (b) the catenary curve is steeper, so more friction is needed
- 3. polygonal bridge

- (a) pentagon and hexagon
- 4. conclusion

5 "Smoothly" rolling square