

NATURAL DISASTER PRESENTATION

ANALYSIS OF EARTHQUAKE/TSUNAMI USING SQL AND CANVA.

Name: Piyush Kumar Mishra

Date: 24 - 10 - 2025

1. HOW MANY EARTHQUAKES CAUSED A TSUNAMI?

```
SELECT COUNT(*) AS tsunami_events
FROM earthquake_data_tsunami
WHERE tsunami = 1;
```


WHAT PERCENTAGE OF EVENTS RESULTED IN A TSUNAMI?

COMPARE MAGNITUDE AND DEPTH OF EVENTS THAT CAUSED A TSUNAMI VS THOSE THAT DIDN'T.

HOW MANY TSUNAMI EVENTS OCCURS EACH YEARS?


```
year,

COUNT(*) AS tsunami_events

FROM earthquake_data_tsunami

WHERE tsunami = 1

GROUP BY year

ORDER BY year;
```

year tsunami_events 2013 34 2014 40 2015 33 2016 31 2017 27 2018 33
2014 40 2015 33 2016 31 2017 27
2015 33 2016 31 2017 27
2016 31 2017 27
2017 27
2018 33
2019 26
2020 15
2021 33
2022 32

IDENTIFY ANY TRENDS OR SPIKE OVER TIME.


```
SELECT year, COUNT(*) AS tsunami_events
FROM earthquake_data_tsunami
WHERE tsunami = 1
GROUP BY year
ORDER BY tsunami_events DESC
limit 5;
```

Re	sult Grid	ı <u> </u>	Filter
	year	tsuna	mi_events
•	2014	40	
	2013	34	34
	2021	33	
	2015	33	
	2018	33	

WHICH MAGNITUDE RANGES ARE MOST LIKELY CAUSED TSUNAMI?


```
SELECT
   CASE
       WHEN magnitude < 5 THEN '<5'
       WHEN magnitude BETWEEN 5 AND 6 THEN '5-6'
       WHEN magnitude BETWEEN 6 AND 7 THEN '6-7'
       WHEN magnitude BETWEEN 7 AND 8 THEN '7-8'
       ELSE '>=8'
    END AS mag range,
    COUNT(*) AS total_events,
    SUM(tsunami) AS tsunami_events,
    ROUND(100.0 * SUM(tsunami)/COUNT(*),2) AS tsunami_percentage
FROM earthquake_data_tsunami
GROUP BY mag_range
ORDER BY mag_range;
                                                 Export: Wr
                                                    mag_range total_events tsunami_events
                                                                                    tsunami_percentage
                                                                       215
                                                                                    39.23
                                                                                    38.39
```

EFFECT OF LOW VS HIGH MAGNITUDE.

TYPICAL VALUES OF CDI, MMI, SIG, NST, DMIN, GAP FOR TSUNAMI EVENTS.

```
SELECT
    ROUND(AVG(cdi),2) AS avg_cdi,
    ROUND(AVG(mmi),2) AS avg_mmi,
    ROUND(AVG(sig),2) AS avg_sig,
    ROUND(AVG(nst),2) AS avg_nst,
    ROUND(AVG(dmin),4) AS avg_dmin,
    ROUND(AVG(gap),2) AS avg_gap
FROM earthquake_data_tsunami
WHERE tsunami = 1;
           Result Grid Filter Rows:
                                                 Export: V
              avg cdi
                     avg mmi avg sig
                                    avg nst
                                            avg dmin
                                                    avg gap
             4.97
                     5.69
                             863.85
                                                    28.58
                                    42.07
                                           2.44
```

AVERAGE MAGNITUDE PER MONTH (SEASONAL PATTERN)

SELECT

month,
ROUND(AVG(magnitude),2) AS avg_magnitude,

SUM(tsunami) AS tsunami_events

FROM earthquake_data_tsunami

GROUP BY month ORDER BY month;

Re	sult Grid	Filter R	lows:
	month	avg_magnitude	tsunami_events
•	1	6.95	28
	2	6.91	23
	3	6.98	23
	4	6.92	29
	5	6.99	31
	6	6.89	16
	7	6.95	25
	8	6.96	26
	9	7.01	27
	10	6.89	23
	11	6.92	36
	12	6.92	17

ARE TSUNAMI EVENTS MORE FREQUENT IN CERTAIN MONTHS?

```
SELECT
```

month,

COUNT(*) AS tsunami_events

FROM earthquake_data_tsunami

WHERE tsunami = 1

GROUP BY month

ORDER BY month;

Re	sult Grid	Filter R
	month	tsunami_events
•	1	28
	2	23
	3	23
	4	29
	5	31
	6	16
	7	25
	8	26
	9	27
	10	23
	11	36
	12	17

EXPLORE POTENTIAL SEASONAL PATTERNS.

SELECT

month,

COUNT(*) AS tsunami_events,

ROUND(AVG(magnitude),2) AS avg_magnitude

FROM earthquake_data_tsunami

WHERE tsunami = 1

GROUP BY month

ORDER BY month;

Re	Result Grid 1			
	month	tsunami_events	avg_magnitude	
•	1	28	6.89	
	2	23	6.93	
	3	23	6.94	
	4	29	6.96	
	5	31	7	
	6	16	6.96	
	7	25	7.04	
	8	26	6.9	
	9	27	6.95	
	10	23	6.83	
	11	36	6.89	
	12	17	7.02	

IDENTIFY THE TOP REGIONS (LAT/LON) WITH THE MOST TSUNAMI EVENTS.

```
select
  count(*) as total_events,
  round((latitude),1) as top_lat,
  round((longitude),1) as top_lon
  from earthquake_data_tsunami
  where tsunami=1
  group by top_lat, top_lon
  order by total_events desc
  limit 5;
```

Re	Result Grid		
	total_events	top_lat	top_lon
•	2	14.7	-92.5
	2	52.5	-167.7
	2	-6.8	155
	2	-26	178.4
	2	52.5	-168.1

IDENTIFY THE TOP REGIONS (LAT/LON) WITH THE MOST TSUNAMI EVENTS.

```
select
  count(*) as total_events,
  round((latitude),1) as top_lat,
  round((longitude),1) as top_lon
  from earthquake_data_tsunami
  where tsunami=1
  group by top_lat, top_lon
  order by total_events desc
  limit 10;
```

Result Grid		Filter Rows:	
	total_events	top_lat	top_lon
١	2	-6.8	155
	2	-11	165.7
	2	-26	178.4
	2	14.7	-92.5
	2	52.5	-167.7
	2	52.5	-168.1
	1	-20.1	-178.3
	1	-25.6	178.3
	1	7.7	-82.3
	1	18.4	-103.3

IN THIS PROJECT, I PERFORMED A DETAILED ANALYSIS OF GLOBAL EARTHQUAKE/TSUNAMI DATA USING SQL.

THE GOAL WAS TO EXPLORE HOW TSUNAMIS HAVE IMPACTED DIFFERENT **REGIONS OVER TIME.**

• TOTAL NUMBER OF TSUNAMI EVENTS RECORDED

- YEAR AND LOCATION WITH THE HIGHEST MAGNITUDE
- TOP AFFECTED COUNTRIES BASED ON DEATHS AND DAMAGES
- YEAR-WISE ANALYSIS OF TSUNAMI OCCURRENCES
- AVERAGE MAGNITUDE AND DEATH RATE COMPARISON

USING SQL QUERIES LIKE JOIN, GROUP BY, ORDER BY, AND AGGREGATE FUNCTIONS (SUM(), MAX(), AVG()), I TRANSFORMED RAW DATA INTO VALUABLE INSIGHTS.

THIS PROJECT HIGHLIGHTS HOW SQL CAN BE USED FOR REAL-WORLD DISASTER DATA ANALYSIS AND DECISION-MAKING.

THANK YOU.