RL Overview

Code for the Reinforcement Learning program can be found here: https://github.com/rfebbo/ReinforcementLearning Cpp

Defining the Environment

The pole is simulated using a set of equations derived from a free body diagram.

https://coneural.org/florian/papers/05_cart_pole.pdf

Defining the State Space

- The agent is sent a state value from the environment.
- The state consists of the angle of the pole.
- The agent is only aware of the different descritized states which the pole can exist in. (The poles angle is not continuous from the agents point of view)
- A higher "resolution" can lead to better training results
- This discretization limitation can be eliminated with modern RL approaches such as DeepQ Learning

Defining the Action Space

Defining the Reward

This is somewhat of an open question for this problem. Reward can be defined in many ways. Here are a few examples:

- The angular distance from the terminal state in which the pole exists
- 0 for all states and -1 for the terminal state

```
double body::get R(double p) {
 switch (bp.r type) {
   case R Type::ENDS: {
     if (p >= bp.end position 2 || p <= bp.end position 1)</pre>
       return -1;
     return 0;
     break;
   case R Type::DISTANCE: {
     if (p == positions[mid point])
       return 0;
     double distance = p - positions[mid point];
     return - (distance * distance);
     break;
   default:
     break;
 fprintf(stderr, "INVALID R Type\n");
 return 0;
```

Defining the Agent

The agents objective is to maximize rewards

At each timestep in the episode:

- 1. Agent receives a state value [0:8]
- 2. Agent uses Q table to lookup the best action to take (maxQ(s))
- 3. Agent sends action to environment
- 4. Environment simulates and sends the new state and a reward
- 5. Agent updates Q table for previous state based on:
 - a. Reward
 - Value at Q table for current state
 - c. The action taken from step 2
- 6. Determine if the episode is over

```
double delta = p.reward_incentive * reward;
delta += p.discount * max_q;
delta -= Q[prev_state * num_actions + prev_action];
delta *= p.learning_rate;

Q[prev_state * num_actions + prev_action] += delta;
```

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$

A Trained Q Table		State								
		S0	S1	S2	S3	S4	S5	S6	S7	S8
Actions	Left	0.0	0.1	0.1	0.2	0.2	0.6	0.7	0.8	0.9
	Nothing	0.1	0.1	0.2	0.2	0.6	0.2	0.2	0.1	0.1
	Right	0.9	8.0	0.7	0.6	0.2	0.2	0.1	0.1	0.0

https://en.wikipedia.org/wiki/Q-learning