Aufgabe A. (3 Punkte)

Man beweise, unter Verwendung des Hauptzweiges des Logarithmus, für alle $z\in\mathbb{C}$ die Gleichung

$$(-i)^{z-1} + i^{z-1} = 2\sin\left(\frac{\pi z}{2}\right).$$

Wie verändert sich die linke Seite für andere Zweige des Logarithmus?

Lösung. Für den Hauptzweig des Logarithmus gilt $\log(i) = i\frac{\pi}{2}$, $\log(-i) = -i\frac{\pi}{2}$. Es folgt, dass $i^{z-1} = \exp\left(i\frac{\pi(z-1)}{2}\right) = \frac{1}{i}\exp\left(i\frac{\pi z}{2}\right)$, und $(-i)^{z-1} = \exp\left(-i\frac{\pi(z-1)}{2}\right) = -\frac{1}{i}\exp\left(-i\frac{\pi z}{2}\right)$. Wir bekommen:

$$(-i)^{z-1} + i^{z-1} = \frac{1}{i} \left(\exp\left(i\frac{\pi z}{2}\right) - \exp\left(-i\frac{\pi z}{2}\right) \right) = 2\sin\left(\frac{\pi z}{2}\right).$$

Für andere Zweige gilt $\log(i) = i\frac{\pi}{2} + 2\pi i k$, $\log(-i) = -i\frac{\pi}{2} + 2\pi i k$, wobei $k \in \mathbb{Z}$. Dann wird die linke Seite mit $\exp(2\pi i k(z-1))$ multipliziert.

Aufgabe B. (5 Punkte)

Man bestimme alle Werte, die das Integral

$$I(\gamma) \coloneqq \int_{\gamma} \frac{1}{1+z^2} dz$$

für geschlossene Wege $\gamma \colon [0,1] \to \mathbb{C} \setminus \{\pm i\}$ annehmen kann.

Lösung. Wir benutzen den Residuensatz. Es sei $U \subset \mathbb{C}$ ein Gebiet, γ ein geschlossener nullhomotoper Weg in U, und f eine meromorphe Funktion auf U, so dass $\operatorname{Im}(\gamma) \cap P(f) = \emptyset$ gilt. Hierbei bezeichnet P(f) die Menge der Polstellen von f. Dann gilt

$$\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{z \in P(f)} n(\gamma, z) \operatorname{res}_{z}(f).$$

In dieser Formel ist $n(\gamma, z) \in \mathbb{Z}$ die Umlaufzahl von γ um z und $\mathrm{res}_z(f)$ das Residuum von f in z.

In unserem Fall: $U = \mathbb{C}$, $f(z) = \frac{1}{1+z^2}$, so dass $P(f) = \{\pm i\}$, und $\operatorname{Im}(\gamma) \cap P(f) = \emptyset$. Wir sollen die Residuen von f in $\pm i$ berechnen.

Wir haben:

$$f(z) = \frac{1}{1+z^2} = \frac{1}{2i} \left(\frac{1}{z-i} - \frac{1}{z+i} \right).$$

Sei g eine meromorphe Funktion mit Laurententwicklung $g(z) = \sum_{n \geq n_0} g_n (z - z_0)^n$ in einer Umgebung von z_0 . Dann gilt $\operatorname{res}_{z_0}(g) = g_{-1}$. Da $\frac{1}{z+i}$ holomorph in z = i ist, erhalten wir: $\operatorname{res}_i(f) = \frac{1}{2i}$. Analog wird der andere Pol behandelt: $\operatorname{res}_{-i}(f) = -\frac{1}{2i}$. Schließlich:

$$I(\gamma) = \int_{\gamma} f(z)dz = 2\pi i \left(n(\gamma, i) \frac{1}{2i} - n(\gamma, -i) \frac{1}{2i} \right) = \pi (n(\gamma, i) - n(\gamma, -i)).$$

Für $\gamma \colon t \mapsto i + re^{2\pi i n t}$ mit 0 < r < 1 und $n \in \mathbb{Z}$ haben wir $n(\gamma, i) = n$, und $n(\gamma, -i) = 0$. Deshalb kann $I(\gamma)$ alle Werte der Form πn , $n \in \mathbb{Z}$ annehmen.

Aufgabe C. (5 Punkte)

Es sei $f: D_{0,1}(0) \to \mathbb{C}$ eine holomorphe Funktion ohne Nullstellen. Man beweise, dass f eine hebbare Singularität in 0 hat, falls dies für f'/f gilt. Man zeige darüberhinaus, dass in diesem Fall $\lim_{z\to 0} f(z) \neq 0$ gilt.

Lösung. Die Funktion f'/f hat nach Voraussetzung eine hebbare Singularität in 0. Also existiert eine holomorphe Funktion g auf $D_1(0)$, so dass f'(z)/f(z) = g(z) für alle $z \in D_{0,1}(0)$ gilt. Jede holomorphe Funktion auf einem einfach zusammenhähgenden Gebiet hat eine Stammfunktion. Da das Gebiet $D_1(0)$ einfach-zusammenhängend ist, existiert eine holomorphe Funktion F mit F'(z) = g(z) für alle $z \in D_1(0)$. Wir berechnen die Ableitung: $(fe^{-F})'(z) = (f'(z) - f(z)F'(z))e^{-F(z)} = 0$ für $z \in D_{0,1}(0)$. Es folgt, dass die holomorphe Funktion fe^{-F} auf $D_{0,1}(0)$ lokal konstant ist. Da $D_{0,1}(0)$ zusammenhängend ist, muss diese sogar konstant sein, also $f(z)e^{-F(z)} = c \in \mathbb{C}$. Da f keine Nullstellen besitzt, gilt $c \neq 0$. Die Funktion ce^F ist auf $D_1(0)$ holomorph, und setzt f dorthin fort. Wir schließen, dass f eine hebbare Singularität in z = 0 hat. Außerdem gilt $\lim_{z\to 0} f(z) = ce^{F(0)} \neq 0$.

Aufgabe D. (5 Punkte)

Man bestimme die Anzahl der Nullstellen (mit Vielfachheit) der Funktion $\mathbb{C} \to \mathbb{C}$, $z \mapsto \sin(z)(z^6 - 4z^2 - 2z + 8)$ in den Gebieten $D_1(0)$ und $D_2(0)$.

Lösung. Wir wenden den Satz von Rouché an. Es seien f und g holomorphe Funktionen auf einem Gebiet U. Es sei $\gamma \colon [0,1] \to U$ ein geschlossener Weg, so dass $\mathrm{Im}(\gamma) = \partial D$, wobei $D \subset U$ eine beschränkte einfach zusemmenhängende offene Menge ist, und |f(z) - g(z)| < |g(z)| für alle $z \in \mathrm{Im}(\gamma)$ gilt. Dann haben f und g gleich viele Nullstellen in D (mit Vielfachheit).

Wir setzen: $U = \mathbb{C}$, $f(z) = z^6 - 4z^2 - 2z + 8$, g(z) = 8, $D = D_1(0)$, $\gamma(t) = e^{2\pi it}$. Für $z \in \partial D_1(0)$ haben wir:

$$|f(z) - g(z)| = |z^6 - 4z^2 - 2z| \le 1 + 4 + 2 = 7 < 8 = |g(z)|.$$

Da die Funktion g keine Nullstellen in $D_1(0)$ hat, gilt dies auch für f. Die Nullstellen (alles einfache) der Funktion $\sin(z)$ sind die Punkte $z = \pi n, n \in \mathbb{Z}$. Damit liegt genau eine Nullstelle von $\sin(z)$ in $D_1(0)$. Somit hat die Funktion $z \mapsto \sin(z)(z^6 - 4z^2 - 2z + 8)$ in $D_1(0)$ genau eine Nullstelle, die darüberhinaus einfach ist.

Nun setzen wir: $f(z) = z^6 - 4z^2 - 2z + 8$, $g(z) = z^6$, $D = D_2(0)$, $\gamma(t) = 2e^{2\pi it}$. Für $z \in \partial D_2(0)$ haben wir:

$$|f(z) - g(z)| = |-4z^2 - 2z + 8| \le 16 + 4 + 8 = 28 < 64 = |g(z)|.$$

Die Funktion g hat 6 Nullstellen (mit Vielfachheit gezählt) in $D_2(0)$. Das gilt mithin auch für f. Da $\sin(z)$ genau eine Nullstelle in $D_2(0)$ besitzt (und diese ist einfach), hat $z \mapsto \sin(z)(z^6-4z^2-2z+8)$ in $D_2(0)$ genau 7 Nullstellen (mit Vielfachheit gezählt).

Aufgabe E. (5 Punkte)

Man bestimme die Pol- und Nullstellen folgender Funktion

$$f(z) = z \frac{(z-1)^2(z+3)}{\cos(\frac{\pi}{2}z)}$$

und berechne die Residuen in den Polstellen.

Lösung. Die Funktion $z \mapsto \cos(\frac{\pi}{2}z)$ hat einfache Nullstellen in z = 2n + 1, $n \in \mathbb{Z}$. So ist die Funktion f meromorph auf \mathbb{C} . Der Zähler $z(z-1)^2(z+3)$ hat einfache Nullstellen in z=0, z=-3, und eine doppelte Nullstelle in z=1. Es folgt, dass f einfache Nullstellen in

 $z=0,\ z=1,$ und eine hebbare Singularität in z=-3 hat, also $f(-3)\neq 0$. Die Pole sind in $z_n=2n+1,\ n\in\mathbb{Z},\ n\neq 0,-2$.

Wir berechnen die Residuen. Es sei f(z) = g(z)/h(z) meromorph in einer Umgebung von z_n , so dass $g(z_n) \neq 0$ gilt, und h ein einfache Nullstelle in z_n hat. Dann gilt $\operatorname{res}_{z_n}(f) = g(z_n)/h'(z_n)$. Wir haben $h'(z_n) = -\frac{\pi}{2}\sin(\frac{\pi}{2}z_n) = -\frac{\pi}{2}\sin(\frac{(2n+1)\pi}{2}) = (-1)^{n+1}\frac{\pi}{2}$. Wir erhalten:

$$\operatorname{res}_{z_n}(f) = (-1)^{n+1} \frac{2}{\pi} (z_n)(z_n - 1)^2 (z_n + 3) = (-1)^{n+1} \frac{8}{\pi} n^2 (2n+1)(2n+4).$$

Aufgabe F. (5 Punkte)

Man zeige, dass eine nichtkonstante ganze holomorphe Funktion ein in \mathbb{C} dichtes Bild hat.

Lösung. Es sei f eine nichtkonstante ganze holomorphe Funktion. Falls $\operatorname{Im}(f)$ nicht dicht in $\mathbb C$ ist, dann finden wir einen Punkt $z_0 \in \mathbb C$ und r > 0, so dass $D_r(z_0) \cap \operatorname{Im}(f) = \emptyset$ gilt. Es folgt, dass $|f(z) - z_0| > r$ für alle $z \in \mathbb C$ ist. Dann ist die Funktion $g(z) = \frac{1}{f(z) - z_0}$ holomorph auf $\mathbb C$, und außerdem |g(z)| < 1/r für $z \in \mathbb C$ gilt. Der Satz von Liouville lautet: eine beschränkte ganze Funktion ist konstant. So gilt $g(z) = c \in \mathbb C$. Dann ist $f(z) = z_0 + 1/c$ auch konstant, widerspruch.

Aufgabe G. (5 Punkte)

Man beweise die folgende Formel

$$\pi z \cos(\pi z) + 2\pi z^3 \sum_{n=1}^{\infty} \frac{1}{n^2} \prod_{m=1, \neq n}^{\infty} \left(1 - \frac{z^2}{m^2}\right) = \sin(\pi z).$$

Lösung. Es genügt, die nötige Formel für $z \in \mathbb{C} \setminus \mathbb{Z}$ zu beweisen (nach Identitätssatz). Wir benutzen die Produktformel für sin:

$$\sin(\pi z) = \pi z \prod_{m=1}^{\infty} \left(1 - \frac{z^2}{m^2} \right),$$

und die Partialbruchzerlegung für cot:

$$\pi z \cot(\pi z) = 1 + \sum_{n=1}^{\infty} \frac{2z^2}{z^2 - n^2}.$$

Damit:

$$2\pi z^3 \sum_{n=1}^{\infty} \frac{1}{n^2} \prod_{m=1, \neq n}^{\infty} \left(1 - \frac{z^2}{m^2} \right) = 2z^2 \sum_{n=1}^{\infty} \frac{1}{n^2} \cdot \frac{\sin(\pi z)}{1 - \frac{z^2}{n^2}}$$
$$= -\sin(\pi z) \sum_{n=1}^{\infty} \frac{2z^2}{z^2 - n^2} = -\sin(\pi z)(\pi z \cot(\pi z) - 1) = \sin(\pi z) - \pi z \cos(\pi z).$$

Die erforderliche Formel folgt.

Alternativ kann man die Produktformel für $\sin(z)$ ableiten, wobei man argumentieren muss, dass dies für unendliche Produkte erlaubt ist.