Faculté d'Électronique et d'Informatique Département d'Informatique Master 2 SII Représentation des connaissances 2

> TD N° 3 Théorie des possibilités

Année Universitaire: 2018-2019

Exercice 1:

Considérons trois variables binaires, relatives à l'apparition de la jaunisse (I) chez un malade, l'hépatite (H) et la cirrhose (C). La table suivante donne la distribution de possibilités initiale.

I	Н	С	$\pi(I \land H \land C)$
n	n	n	0.6
n	n	0	0.2
n	0	n	0.1
n	0	0	1
0	n	n	0.4
О	n	0	0.8
О	0	n	0.9
О	0	0	1

1- La distribution initiale est-elle normalisée.

Supposons qu'une nouvelle information certaine arrive relative au fait que le patient a une hépatite. La croyance est représentée par φ.

- 2- Calculez le degré de possibilité de $\Pi(\varphi)$ et le degré de nécessité $N(\varphi)$.
- 3- En utilisant les deux équations du conditionnement, calculez les nouvelles distributions $\pi(I \land H \land C|\phi)$ dans les cas où le conditionnement est basé sur le minimum et sur le produit.

Exercice 2:

Considérons le problème pour définir l'ère à laquelle appartient un fossile. Supposons que les géologues utilisent un test radioactif sur les fossiles afin de définir à quelle race ils appartiennent telles que race={Mammifère, poisson, oiseau} et ère ={Ceno,Méso,Paleo}. Les distributions initiales sont données par le tableau suivant :

Ere Race		$\pi(\text{Ere} \wedge \text{Race})$	
Ceno	Mammifère	0.2	
Ceno	Poisson	1	
Ceno	Oiseau	0	
Méso	Mammifère	0.3	
Méso	Poisson	0.7	
Méso	Oiseau	0.7	
Paléo	Mammifère	0.5	

Paléo	Poisson	0.2
Paléo	Oiseau	1

Supposons que nous avons une information certaine indiquant que le fossile appartient à la classe des mammifères. La croyance est représentée par ϕ .

- 1- Calculez le degré de possibilité de $\Pi(\varphi)$ et le degré de nécessité $N(\varphi)$.
- 2- En utilisant les deux équations du conditionnement, calculez les nouvelles distributions $\pi(\text{Ere } \wedge \text{Race}|\phi)$ dans les cas où le conditionnement est basé sur le minimum et sur le produit.

Exercice 3 : (probabilités et possibilités)

Soit X={J, JPlus1, JPlus2, JPlus3, JPlus4, JPlusn} représentant les jours consécutifs à l'envoi d'un courrier.

Jour	Probabilité(Jour)	Possibilité(Jour)	
J	0	0	
JPlus1	0.25	1	
JPlus2	0.55	1	
JPlus3	0.1	1	
JPlus4	0.07	0.5	
JPlusn	0.03	0.3	

- a- Le courrier peut-il parvenir au plus tôt à J+2?
- b- Le courrier peut-il parvenir entre 1 et 3 jours ?

L'information certaine ϕ : mammifère.

1-
$$\omega_1 \models \varphi$$
; $\omega_4 \models \varphi$; $\omega_7 \models \varphi$; d'où

$$\Pi(\phi)=\max\{\pi(\omega):\omega\models\phi\}=\max(0.2,0.3,0.5)=0.5$$

$$N(\phi)=\min\{1-\pi(\omega):\omega \not\models \phi\}=\min\{1-1,1-0,1-0.7,1-0.2\}=0$$

$$\omega_2, \, \omega_3, \, \omega_5, \, \omega_6, \, \omega_8, \, \omega_9 \quad \not\models \phi$$

	Ere	Race	π(ω)	$\pi(\omega *\phi)$	$\pi(\omega _{\min}\phi)$
ω_1	Ceno	Mammifère	0.2	0.2	0.4
ω_2	Ceno	Poisson	1	0	0
ω3	Ceno	Oiseau	0	0	0
ω4	Méso	Mammifère	0.3	0.3	0.6
ω ₅	Méso	Poisson	0.7	0	0
ω ₆	Méso	Oiseau	0.7	0	0
ω ₇	Paléo	Mammifère	0.5	1	1
ω8	Paléo	Poisson	0.2	0	0
ω9	Paléo	Oiseau	1	0	0