1 Énoncés - Séries

Question de cours.

Énoncé du théorème des valeurs intermédiaires.

Exercice.

Est-ce que les suites suivantes convergent ? Si oui, donner leur limite.

1.
$$u_n = \sum_{k=0}^n kx^k$$
 avec $x \in \mathbb{R}$.

2.
$$v_n = \sum_{k=1}^n \frac{1}{k(k+1)}$$

Question de cours.

Donner la définition d'une série, de la convergence d'une série et de la somme d'une série dans le cas de la convergence.

Exercice.

Étudier la convergence et, eventuellement, calculer la somme de la série définie

$$\sum_{n\geq 2} \ln(1 - \frac{1}{n^2})$$

Question de cours.

Définition de la convergence d'une suite vers sa limite avec les quantificateurs.

Exercice.

Après avoir montré la convergence, calculer la somme de la série suivante :

$$k \in \mathbb{N}^* \sum_{n \ge k} \frac{\binom{n}{k}}{n!}$$

2 Exercices supplémentaires.

2.1 Développement décimal d'un nombre rationnel.

Écrire le nombre x = 0,03547474747... sous forme d'une fraction.

2.2 Constante d'Euler.

1. On considère les suites $(H_n)_{n\geqslant 1}$ et $(u_n)_{n\geqslant 1}$ définies par :

$$H_n = \sum_{k=1}^{n} \frac{1}{k}$$
 et $u_n = H_n - \ln(n)$.

a. Montrer que :

$$\forall n \geqslant 1, \ \frac{1}{n+1} \leqslant \int_{n}^{n+1} \frac{\mathrm{d}x}{x} \leqslant \frac{1}{n}.$$

b. En déduire que la suite $(u_n)_{n\geqslant 1}$ est décroissante.

c. Montrer que, pour tout $n \ge 2$, $u_n \ge \frac{1}{n}$.

d. En déduire que la suite $(u_n)_{n\geqslant 1}$ converge vers un réel positif ou nul γ . Cette constante est appelée la **constante d'Euler** ($\gamma \approx 0,577215665$).

e. En déduire que :

$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{=} \ln(n) + \gamma + o(1).$$

2.3 Comparaison.

1. Vérifier que $\frac{1}{\sqrt{n!}} = o\left(\frac{1}{n^2}\right)$.

2. En déduire qu'il existe un entier n_0 tel que, pour tout $n \ge n_0$, $0 \le \frac{1}{\sqrt{n!}} \le \frac{1}{n^2}$.

3. En déduire la nature de la série $\sum_{n\geqslant 1} \frac{1}{\sqrt{n!}}$.

2.4 Résultats classiques.

1. a. Soit $\sum_{n\in\mathbb{N}}u_n$ une série convergente. Montrer que $\lim_{n\to+\infty}u_n=0$.

b. En déduire la nature de la série $\sum_{n\in\mathbb{N}} \ln n$.

2. Montrer qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ converge si, et seulement si, la série $\sum_{n\in\mathbb{N}} (u_{n+1}-u_n)$ converge.

2.5 Critère spécial des séries alternées.

1. Démonstration du critère spécial

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de réels positifs et convergeant vers 0.

Pour tout $n \in \mathbb{N}$, on pose :

$$S_n = \sum_{k=0}^{n} (-1)^k u_k.$$

- a. Montrer que les suite $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- b. En déduire la nature de la série $\sum_{n\in\mathbb{N}} (-1)^n u_n$.

2. Applications

- a. Déterminer la nature de la série $\sum_{n\in\mathbb{N}^*} (-1)^n \sin\left(\frac{1}{n}\right)$.
- b. Discuter de la nature de la série $\sum_{n\in\mathbb{N}^*} \frac{(-1)^n}{n^{\alpha}}$ en fonction du réel α .

3 Corrections.

Élève 1.

Théorème des valeurs intermédiaires.

Soit f une fonction continue sur l'intervalle [a, b], et soit y_0 un réel entre f(a) et f(b). Alors, il existe $c \in [a, b]$ tel que $f(c) = y_0$.

Exercice.

1. Remarquons que:

$$u_n = \sum_{k=1}^{n} kx^k = \sum_{k=0}^{n-1} (k+1)x^{k+1}$$

Alors:

$$xu_n - u_n = \sum_{k=1}^{n} kx^{k+1} - \sum_{k=0}^{n-1} (k+1)x^{k+1}$$

$$u_n(x-1) = nx^{n+1} - x\sum_{0}^{n-1} x^k$$

$$u_n(x-1) = \frac{nx^{n+1} - nx^{n+2} - x + x^{n+1}}{1 - x}$$

Donc, avec |x| < 1, lorsque n tend vers $+\infty$, on obtient :

$$\lim_{n \to +\infty} u_n = \frac{x}{(1-x)^2}$$

2. Par recurrence, on montre que :

$$\forall n \in \mathbb{N} \qquad v_n = \frac{n}{n+1}$$
$$v_1 = 1/2$$

Hérédité :

$$v_{n+1} = v_n + \frac{1}{n(n+1)}$$

$$v_{n+1} = \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$

Bref : $v_n \longrightarrow 1$

Élève 2.

Définition d'une série.

Soit $(u_n)_{n\geq 0}$ une suite réelle. La série associée est la suite des sommes partielles définie par

$$S_N = \sum_{n=0}^N u_n.$$

Convergence d'une série. La série $\sum_{n=0}^{\infty} u_n$ converge si la suite (S_N) des sommes partielles admet une limite finie quand N tend vers l'infini, c'est-à-dire s'il existe $S \in \mathbb{R}$ tel que

$$\lim_{N \to +\infty} S_N = S.$$

Somme d'une série. Si la série converge, cette limite S est appelée la somme de la série :

$$\sum_{n=0}^{\infty} u_n = S.$$

Exercice.

6. Soit $N \geqslant 2$.

$$\sum_{n=2}^{N} \ln\left(1 - \frac{1}{n^2}\right) = \sum_{n=2}^{N} \left(\ln\left(n+1\right) + \ln\left(n-1\right) - 2\ln\left(n\right)\right)$$
$$= \ln\left(\frac{N+1}{N}\right) - \ln 2 \underset{N \to +\infty}{\longrightarrow} - \ln 2.$$

On en déduit que la série $\sum_{n\geqslant 2}\ln\left(1-\frac{1}{n^2}\right)$ converge et a pour somme :

$$\sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right) = -\ln 2.$$

Élève 3.

Question de cours.

Soit $(u_n)_{n\geq 0}$ une suite réelle et $l\in\mathbb{R}$. On dit que u_n converge vers l si :

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad |u_n - l| < \varepsilon.$$

Exercice.

7. Soit $k \in \mathbb{N}^*$ et soit $N \geqslant k$.

$$\sum_{n=k}^N \frac{\binom{n}{k}}{n!} = \frac{1}{k!} \sum_{n=k}^N \frac{1}{(n-k)!} = \frac{1}{k!} \sum_{n=0}^{N-k} \frac{1}{n!} \underset{N \to +\infty}{\longrightarrow} \frac{e}{k!}.$$

On en déduit que la série $\sum_{n\geqslant k}\frac{\binom{n}{k}}{n!}$ converge et a pour somme $\sum_{n=k}^{+\infty}\frac{\binom{n}{k}}{n!}=\frac{e}{k!}$.

4 Corrections des exercices supplémentaires.

4.1 Comparaison.

1. Par croissances comparées, on a $\lim_{n\to+\infty}\frac{n^4}{n!}=0$ donc $\lim_{n\to+\infty}\frac{n^2}{\sqrt{n!}}=0$, i.e. :

$$\frac{1}{\sqrt{n!}} \underset{n \to +\infty}{=} o\left(\frac{1}{n^2}\right).$$

- 2. Puisque $\lim_{n\to+\infty}\frac{n^2}{\sqrt{n!}}=0$, il existe $n_0\in\mathbb{N}$ tel que, pour tout $n\geqslant n_0,\ \frac{n^2}{\sqrt{n!}}\geqslant 1$, i.e. $0\leqslant\frac{1}{\sqrt{n!}}\leqslant\frac{1}{n^2}$.
- 3. Puisque la série de Riemann $\sum_{n \geqslant n_0} \frac{1}{n^2}$ est convergente, la série $\sum_{n \geqslant n_0} \frac{1}{\sqrt{n!}}$ converge par comparaison de séries à termes positifs et donc $\sum_{n \geqslant 1} \frac{1}{\sqrt{n!}}$ aussi.

4.2 Résultats classiques.

1. a. Notons $S = \sum_{n=0}^{+\infty} u_n$ la somme de la série $\sum_{n \in \mathbb{N}} u_n$.

$$\forall n \in \mathbb{N}^*, \ u_n = \sum_{k=0}^n u_k - \sum_{k=0}^{n-1} u_k \underset{n \to +\infty}{\longrightarrow} S - S = 0.$$

Le terme général d'une série convergente converge donc vers 0.

- b. Puisque $\lim_{n\to +\infty} \ln n \neq 0$, la série $\sum_{n\in \mathbb{N}} \ln n$ diverge par contraposée du résultat démontré à la question précédente.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$. Pour tout $n\in\mathbb{N}^*$, on a :

$$u_n = \sum_{k=0}^{n-1} (u_{k+1} - u_k)$$

On en déduit immédiatement le résultat : la suite $(u_n)_{n\in\mathbb{N}}$ converge si, et seulement si, la série $\sum_{n\in\mathbb{N}}(u_{n+1}-u_n)$ converge.

4.3 Développement décimal d'un nombre rationnel.

On trouve : $\frac{439}{12375}$.

4.4 Constante d'Euler.

1. a. Soit $n \in \mathbb{N}^*$. La fonction inverse étant décroissante sur [n, n+1], on a :

$$\forall x \in [n, n+1], \ \frac{1}{n+1} \leqslant \frac{1}{x} \leqslant \frac{1}{n}.$$

Par croissance de l'intégrale, on a alors :

$$\frac{1}{n+1} = \int_{n}^{n+1} \frac{\mathrm{d}x}{n+1} \le \int_{n}^{n+1} \frac{\mathrm{d}x}{x} \le \int_{n}^{n+1} \frac{\mathrm{d}x}{n} = \frac{1}{n}.$$

b. Soit $n \in \mathbb{N}^*$. Remarquons que $u_{n+1} - u_n = \frac{1}{n+1} - (\ln(n+1) - \ln(n))$. Or d'après la question 1.a, on a $\frac{1}{n+1} \leq \ln(n+1) - \ln(n)$, i.e. $u_{n+1} - u_n \leq 0$.

La suite $(u_n)_{n\geqslant 1}$ est donc bien décroissante.

c. Soit n un entier supérieur ou égal à 2. On a : $u_n - \frac{1}{n} = \sum_{k=1}^{n-1} \frac{1}{k} - \ln n$. Or :

$$\forall k \in [1, n-1], \ \int_{k}^{k+1} \frac{\mathrm{d}x}{x} \leqslant \frac{1}{k}.$$

Ainsi, en sommant ces inégalités on $\int_1^n \frac{\mathrm{d}x}{x} \leqslant \sum_{k=1}^{n-1} \frac{1}{k}$, i.e. $u_n \geqslant \frac{1}{n}$.

- d. La suite $(u_n)_{n\geqslant 1}$ est décroissante et minorée par 0, elle converge donc vers un réel positif ou nul, qu'on notera γ .
- e. Par définition de γ , $u_n = \gamma + o(1)$, donc :

$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{=} \ln(n) + \gamma + o(1)$$

- Critère spécial des séries alternées. 4.5
 - 1. a. Soit $n \in \mathbb{N}$.

$$S_{2n+2} - S_{2n} = (-1)^{2n+1} u_{2n+1} + (-1)^{2n+2} u_{2n+2} = u_{2n+2} - u_{2n+1} \le 0.$$

$$S_{2n+3} - S_{2n+1} = (-1)^{2n+2} u_{2n+2} + (-1)^{2n+3} u_{2n+3} = u_{2n+2} - u_{2n+3} \ge 0.$$

On a de plus:

$$|S_{2n+1} - S_{2n}| = u_{2n+1} \underset{n \to +\infty}{\longrightarrow} 0.$$

On en déduit que les suite $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.

- b. D'après le théorème des suites adjacentes, la suite $(S_n)_{n\in\mathbb{N}}$ converge, ce qui revient à dire que la série $\sum_{n\in\mathbb{N}} (-1)^n u_n$ converge.
- 2. a. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sin\left(\frac{1}{n}\right)$.

Pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} \in \left[0, \frac{\pi}{2}\right]$ donc $u_n \ge 0$. La suite $(u_n)_{n \in \mathbb{N}^*}$ est décroissante car la suite inverse est décroissante et la fonction sin est croissante sur $\left[0, \frac{\pi}{2}\right]$.

La suite $(u_n)_{n\in\mathbb{N}^*}$ étant convergente vers 0, la série $\sum_{n\in\mathbb{N}^*} (-1)^n \sin\left(\frac{1}{n}\right)$ est donc convergente d'après le critère spécial des séries alternées

b. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \frac{1}{n^{\alpha}}$. La suite $(u_n)_{n \in \mathbb{N}^*}$ est bien (strictement) positives. Pour tout $n \in \mathbb{N}^*$, $\frac{u_{n+1}}{u_n} = \left(\frac{n}{n+1}\right)^{\alpha} \quad (\leqslant 1 \text{ si } \alpha > 0)$

Pour tout
$$n \in \mathbb{N}^*$$
, $\frac{u_{n+1}}{u_n} = \left(\frac{n}{n+1}\right)^{\alpha} \quad (\leqslant 1 \text{ si } \alpha > 0)$

- Si $\alpha > 0$, la suite $(u_n)_{n \in \mathbb{N}^*}$ est bien décroissante et convergente vers 0. La série $\sum_{n\in\mathbb{N}^*} \frac{(-1)^n}{n^{\alpha}}$ est donc convergente d'après le critère spécial des séries alternées.
- Si $\alpha \leq 0$, le terme général de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{n^{\alpha}}$ ne tend pas vers 0 (on pourra séparer les cas $\alpha=0$ et $\alpha<0$ pour le vérifier), donc la série diverge.