EE2801: DSP Lab (Jan – Apr 2022)

Lecture 1

Contents

- Analog vs Digital frequencies
- Sampling Theorem
- Convolution
- Correlation
- Downsampling
- Upsampling

Analog vs Digital frequencies

- Consider the continuous time signal $Sin(\Omega t)$, where $\Omega=2\pi f$, $-\infty < f < \infty$, Ω is known as big omega
- To convert it into discrete time signal put $t = nT_s$, where $T_s = \text{sampling interval}$ and $f_s = \frac{1}{T_s} = \text{sampling frequency}$ $Sin(2\pi f \ nT_s) = Sin\left(\frac{2\pi f}{f_s}n\right) = Sin(\omega n)$

where ω is known as small omega

- Ω represents analog frequencies and ω represents digital frequencies.
- $\omega = \Omega T_{S}$, $\Omega \in (-\infty, \infty)$, $\omega \in [-\pi, \pi]$

Analog vs Digital frequencies(contd...)

• Why digital frequency ω has finite range?

Reason : As per sampling theorem $f_s \ge 2f$

We know,
$$\omega = \frac{2\pi f}{f_S}$$

min value of $f_{\mathcal{S}}$ can be 2f , so max value of $\omega = \frac{2\pi f}{2f} = \pi$

max value of $f_{\mathcal{S}}$ can be ∞ , so min value of $\omega \to 0$

Similarly for –ve frequencies, min value is $-\pi$ and max is 0

So
$$-\pi \le \omega \le \pi$$

Spectrum of a analog signal

• Spectrum of a digital signal

Sampling Theorem

- x(t) is analog signal.
- $\delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t nT_S)$
- $y(t) = x(t) . \delta_T(t)$
- $Y(\omega) = \frac{1}{T_S} \sum_{n=-\infty}^{\infty} X(\omega n\omega_0)$
- Nyquist rate $f_s \ge 2f$ where f is max freq of input signal.

Convolution

Convolution of two sequence x[n] and h[n] is given as

$$y[n] = \sum_{k=-\infty} x(k) h(n-k)$$

Application:

1. Wireless communication

2. Discrete time systems

Correlation

Correlation of two sequence x[n] and y[n] is given as

$$R_{xy}[k] = \sum_{n=0}^{\infty} x(n) y(n-k)$$

Application:

- 1. Finding Similarity between two signals or sequences.
- 2. Synchronization between base station and mobile station.

Downsampling

Given a discrete sequence x[n], the downsampled signal y[n] is y[n] = x[Mn]

Application:

• To reduce the sampling rate of a signal.

Upsampling

Given a discrete sequence x[n], the upsampled signal y[n] is

$$y[n] = \begin{cases} x[n/L], & if n is a multiple of L \\ 0, & otherwise \end{cases}$$

Application:

• To Increase the sampling rate of a signal.