Data Science com Python

Módulo 5 - Modelagem Clustering

Professor: Lucas Roberto Correa

LEMBRETE: Fazer o import dos datasets usados no ambiente do colab antes de executar os comandos.

Import dos pacotes

```
# Manipulação dados
import pandas as pd
# Visualização de dados
import seaborn as sns
import matplotlib.pyplot as plt
# Pre processamento
from sklearn.preprocessing import StandardScaler
# Modelos de agrupamento
from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import DBSCAN
#Métricas
from sklearn.metrics import silhouette_score
# Limpeza de memória
import gc
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set option('display.max colwidth', None)
```

Import dos metadados

link da base: https://www.kaggle.com/rashmiranu/banking-dataset-classification?select=new_train.csv

meta = pd.read_excel('metadata.xlsx')

meta

	Feature_Type	Feature	
	numeric	age	0
type of job ('admin.','blue-collar','entrepreneur', employed','services','stude	Categorical,nominal	job	1
marital status ('divorced','married','single','unknown'; note	categorical,nominal	marital	2
('basic.4y','basic.6y','basic.9y','high.school','illiterate','profession	categorical,nominal	education	3
ha	categorical,nominal	default	4
	categorical,nominal	housing	5
	categorical,nominal	loan	6
contact co	categorical,nominal	contact	7
last contact month	categorical,ordinal	month	8
last contact da	categorical,ordinal	dayofweek	9
last contact duration, in seconds . Important note: this attribut	numeric	duration	10
number of contacts performed during this campaign	numeric	campaign	11
number of days that passed by after the client was last co	numeric	pdays	12
number of contacts performed	numeric	previous	13
→			4

▼ Import da base

```
df = pd.read_csv('new_train.csv', sep=',')
df.head()
```

	age	job	marital	education	default	housing	loan	contact	month
0	49	blue-collar	married	basic.9y	unknown	no	no	cellular	nov
1	37	entrepreneur	married	university.degree	no	no	no	telephone	nov
2	78	retired	married	basic.4y	no	no	no	cellular	jul
3	36	admin.	married	university.degree	no	yes	no	telephone	may
4	59	retired	divorced	university.degree	no	no	no	cellular	jun
4									•

Retirando a target, pois o conjunto de dados será usado para uma análise não supervionada

	age	job	marital	education	default	housing	loan	contact	month
0	49	blue-collar	married	basic.9y	unknown	no	no	cellular	nov
1	37	entrepreneur	married	university.degree	no	no	no	telephone	nov
2	78	retired	married	basic.4y	no	no	no	cellular	jul
3	36	admin.	married	university.degree	no	yes	no	telephone	may
4	59	retired	divorced	university.degree	no	no	no	cellular	jun
4									•

Resultado a ser considerado na modelagem

expl_num.head()

	duration	campaign	pdays	previous
0	227	4	999	0
1	202	2	999	1
2	1148	1	999	0
3	120	2	999	0
4	368	2	999	0

Checagem de nulos

```
expl_num.isnull().sum()

duration 0
campaign 0
pdays 0
previous 0
dtype: int64
```

Transformação dos dados com Padronização

→ O algoritmo

```
km = KMeans(n_clusters=5, random_state=42)
km

KMeans(n_clusters=5, random_state=42)
agg = AgglomerativeClustering(n_clusters=5)
agg

AgglomerativeClustering(n_clusters=5)
```

Aplicando no conjunto de dados

```
expl['km_05'] = km.fit_predict(expl_num_scale)
expl['agg_05'] = agg.fit_predict(expl_num_scale)
gc.collect()
```

253

▼ Avaliação de métrica

```
# Kmeans
centroides = [2,3,4,5,6,7,8,9,10]
for num_centroide in centroides:
    clusters = KMeans(n_clusters=num_centroide)
    predicao = clusters.fit_predict(expl_num_scale)
    score = silhouette_score(expl_num_scale, predicao)
    print('O valor de silhouette_score é {}, para n_clusters igual a {}'.format(score, num
     O valor de silhouette_score é 0.7402315385741535, para n_clusters igual a 2
     O valor de silhouette_score é 0.49370005842359754, para n_clusters igual a 3
     O valor de silhouette_score é 0.5351424511751384, para n_clusters igual a 4
     O valor de silhouette_score é 0.5835357761705634, para n_clusters igual a 5
     O valor de silhouette score é 0.5097146809826781, para n clusters igual a 6
     O valor de silhouette_score é 0.4984423997440828, para n_clusters igual a 7
     O valor de silhouette_score é 0.4993336457007373, para n_clusters igual a 8
     O valor de silhouette_score é 0.4847810948605838, para n_clusters igual a 9
     O valor de silhouette_score é 0.4583793318818555, para n_clusters igual a 10
# Aglomerativo
n_{clusters} = [2,3,4,5,6,7,8,9,10]
for num_cluster in n_clusters:
    clusters = AgglomerativeClustering(n_clusters=num_cluster)
    predicao = clusters.fit_predict(expl_num_scale)
    score = silhouette_score(expl_num_scale, predicao)
    print('O valor de silhouette score é {}, para n clusters igual a {}'.format(score, num
     O valor de silhouette_score é 0.7400764067995907, para n_clusters igual a 2
     O valor de silhouette_score é 0.46001091987589987, para n_clusters igual a 3
     O valor de silhouette_score é 0.5182638090537325, para n_clusters igual a 4
     O valor de silhouette score é 0.5438837083028822, para n clusters igual a 5
     O valor de silhouette score é 0.4623811376016544, para n clusters igual a 6
     O valor de silhouette_score é 0.4437816163884292, para n_clusters igual a 7
     O valor de silhouette_score é 0.41209524550135684, para n_clusters igual a 8
     O valor de silhouette_score é 0.41165993887296853, para n_clusters igual a 9
     O valor de silhouette score é 0.3859081975419649, para n clusters igual a 10
gc.collect()
     150
```

Avaliação dos resultados considerando os dados de explicativas categóricas

expl.head()

	age	job	marital	education	default	housing	loan	contact	month
0	49	blue-collar	married	basic.9y	unknown	no	no	cellular	nov
1	37	entrepreneur	married	university.degree	no	no	no	telephone	nov
2	78	retired	married	basic.4y	no	no	no	cellular	jul
3	36	admin.	married	university.degree	no	yes	no	telephone	may
4	59	retired	divorced	university.degree	no	no	no	cellular	jun
4									•

sns.scatterplot(data=expl, x="age", y="campaign", hue=km.labels_)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd2c748a6d0>

sns.scatterplot(data=expl, x="age", y="campaign", hue=agg.labels_)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd2c74a7690>

sns.catplot(x="age", y="poutcome", hue="km_05", kind="box", data=expl)

<seaborn.axisgrid.FacetGrid at 0x7fd2c91996d0>

sns.catplot(x="age", y="poutcome", hue="agg_05", kind="box", data=expl)

<seaborn.axisgrid.FacetGrid at 0x7fd2c70b5290>

×