数据挖掘导论

实验一数据预处理

Author:

200809010431 莫康龙

2022年9月22日

1 实验目的

- 1、理解数据预处理的常用方法及实际意义
- 2、熟练掌握数据预处理的典型操作,并能根据实际数据特点对数据进行有效的预处理。

2 实验环境

表 1: env

系统 wsl2 Ubuntu22.04LST						
CPU	Intel(R) Xeon(R) E5-2689 8*2*2.6GHz					
Python	3.9					
虚拟环境	anaconda3					

3 数据集介绍

$3.1 \quad ./data/catering_sale.xls$

shape(201.2)

snape(201,2)					
describe	销量				
count	200.000000				
mean	2755.214700				
std	751.029772				
min	22.000000				
25%	2451.975000				
50%	2655.850000				
75%	3026.125000				
max	9106.440000				

${\it 3.2} \quad ./{\rm data/discretization_data.xls}$

shape (930, 1)

describe	肝气郁结证型系数
count	930.000000
mean	0.232154
std	0.078292
min	0.026000
25%	0.176250
50%	0.231000
75%	0.281750
max	0.504000

$3.3 \quad ./data/normalization_data.xls$

shape (7, 4)

	0	1	2	3
count	7.0	7.0	7.0	7.0
mean	117.57	200.43	405.71	1712.57
std	43.71	504.15	422.55	1441.37
min	69.0	-600.0	-521.0	-1283.0
25%	86.5	-27.0	451.5	1552.5
50%	101.0	413.0	470.0	2245.0
75%	145.0	524.0	646.5	2529.0
max	190.0	596.0	695.0	2863.0

$3.4 \quad ./data/catering_sale_all.xls$

shape (29, 11)

describe	count	mean	std	min	25%	50%	75%	max
百合酱蒸凤爪	29.0	8.172	3.197	3.0	6.0	8.0	10.0	17.0
翡翠蒸香茜饺	29.0	8.552	2.72	5.0	7.0	8.0	10.0	15.0
金银蒜汁蒸排骨	29.0	9.897	3.004	4.0	8.0	11.0	12.0	14.0
乐膳真味鸡	29.0	10.207	4.609	3.0	7.0	9.0	13.0	24.0
蜜汁焗餐包	28.0	8.536	2.603	4.0	7.0	8.0	10.25	14.0
生炒菜心	29.0	8.828	3.001	3.0	7.0	9.0	11.0	15.0
铁板酸菜豆腐	29.0	9.862	4.291	1.0	7.0	9.0	13.0	19.0
香煎韭菜饺	29.0	9.69	2.941	5.0	7.0	10.0	12.0	16.0
香煎罗卜糕	29.0	9.172	2.829	3.0	7.0	10.0	11.0	14.0
原汁原味菜心	29.0	10.517	4.315	4.0	9.0	10.0	13.0	27.0

4 实验内容

4.1 第一题

4.1.1 题目描述

查看 catering sale.xls 数据集,完成以下题目:

- (1)查看数据的基本情况(平均值、标准差、最小值、最大值以及极差、1/4、1/2、3/4分位数、四分位数间距);
- (2)查找该数据集中的缺失值,使用盒图检测异常值(异常值通常被定义为小于 Q1-1.5IQR 或大于 Q3+1.5IQR, IQR=Q3-Q1),并且用合理的方法进行填充。

4.1.2 代码

```
columns
  \# t-1.py
  from numpy import NaN
3 import pandas as pd
  import matplotlib.pyplot as plt
  import numpy as np
  import sys
  sys.path.append('../utils/')
  import pretreatment as pret
9
10
  data = pd.read_excel(io="./data/catering_sale.xls", sheet_name="Sheet1")
11
  data.rename(columns={'销量':'sales'}, inplace = True)
12
13
  # 查看原始数据基本情况
14
  print(data.describe())
15
16
  #原始数据作图
17
  data.plot.box()
18
  plt.savefig("./img/1-1.jpg")
20
  # 挑选出箱线图离群点索引并丢弃
21
22 droplist = pret.plot_box(data)
  data.drop(data.index[droplist['sales']], inplace = True)
23
24 \mid \# print(droplist)
25 # print(data.describe())
26 # 以平均值填充缺失值
27 data.fillna(value = data.sales.mean(), inplace = True)
28 | # print(data.describe())
```

```
29
30 # 处理后数据作图
31 data.plot.box()
32 plt.savefig("./img/1-2.jpg")
```

4.1.3 附加注释

通过箱线图概念,并考虑到离群点数量很少,所以对离群点采取 drop 操作。对于缺失值采取以平均值 fill 操作。

4.1.4 结果

数据基本情况已在数据集介绍展示,下面两图分别是数据集处理前后处理后的箱线图展示。

4.2 第二题

4.2.1 题目描述

使用 3 种规范化(最小-最大规范化、零-均值规范化、小数定标规范化)的方法处理相同数据集 nor-malization_data.xls,并对比结果。

4.2.2 代码

columns # t-2.pyimport pandas as pd import numpy as np 3 data = pd.read_excel("./data/normalization_data.xls", sheet_name="Sheet1", header = None) 6 #最大-最小、零-均值、小数定标规范化 data1 = data.copy() data1 = (data1 - data1.min()) / (data1.max() - data1.min()) data2 = data.copy() data2 = (data2 - data2.mean()) / data2.std() 11 data3 = data.copy() 12 data3 = data3 / 10**np.ceil(np.log10(data3.abs().max())) 13 14 print(data)

```
print(data1)
print(data2)
print(data3)
```

4.2.3 结果

原始数据

	0	1	2	3
0	78	521	602	2863
1	144	-600	-521	2245
2	95	-457	468	-1283
3	69	596	695	1054
4	190	527	691	2051
5	101	403	470	2487
6	146	413	435	2571

最大-最小规范化

	0	1	2	3
0	0.074	0.937	0.924	1.0
1	0.62	0.0	0.0	0.851
2	0.215	0.12	0.813	0.0
3	0.0	1.0	1.0	0.564
4	1.0	0.942	0.997	0.804
5	0.264	0.839	0.815	0.909
6	0.636	0.847	0.786	0.93

零-均值规范化

	0	1	2	3
0	-0.905	0.636	0.465	0.798
1	0.605	-1.588	-2.193	0.369
2	-0.516	-1.304	0.147	-2.078
3	-1.111	0.785	0.685	-0.457
4	1.657	0.648	0.675	0.235
5	-0.379	0.402	0.152	0.537
6	0.65	0.422	0.069	0.596

小数定标规范化

	0	1	2	3
0	0.078	0.521	0.602	0.286
1	0.144	-0.6	-0.521	0.225
2	0.095	-0.457	0.468	-0.128
3	0.069	0.596	0.695	0.105
4	0.19	0.527	0.691	0.205
5	0.101	0.403	0.47	0.249
6	0.146	0.413	0.435	0.257

4.3 第三题

4.3.1 题目描述

对 catering_sale_all.xls 数据集中任意两种菜品做相关性分析(Pearson),得到任意两款菜品之间的相关系数。

4.3.2 代码

columns

```
# t-3.py
import pandas as pd
import numpy as np

data = pd.read_excel("./data/catering_sale_all.xls", sheet_name="Sheet1")
print(data.corr('pearson'))
```

4.3.3 结果

表 2:

	百合酱蒸凤爪	翡翠蒸香茜饺	金银蒜汁蒸排骨	乐膳真味鸡	蜜汁焗餐包	生炒菜心	铁板酸菜豆腐	香煎韭菜饺	香煎罗卜糕	原汁原味菜心
百合酱蒸凤爪	1.0	0.009	0.017	0.456	0.098	0.308	0.205	0.127	-0.09	0.428
翡翠蒸香茜饺	0.009	1.0	0.304	-0.012	0.059	-0.18	-0.027	0.062	0.27	0.02
金银蒜汁蒸排骨	0.017	0.304	1.0	0.035	0.096	-0.184	0.187	0.122	0.078	0.029
乐膳真味鸡	0.456	-0.012	0.035	1.0	0.016	0.325	0.298	-0.069	-0.03	0.422
蜜汁焗餐包	0.098	0.059	0.096	0.016	1.0	0.308	0.502	0.155	0.171	0.528
生炒菜心	0.308	-0.18	-0.184	0.325	0.308	1.0	0.37	0.038	0.05	0.123
铁板酸菜豆腐	0.205	-0.027	0.187	0.298	0.502	0.37	1.0	0.096	0.158	0.567
香煎韭菜饺	0.127	0.062	0.122	-0.069	0.155	0.038	0.096	1.0	0.178	0.05
香煎罗卜糕	-0.09	0.27	0.078	-0.03	0.171	0.05	0.158	0.178	1.0	0.089
原汁原味菜心	0.428	0.02	0.029	0.422	0.528	0.123	0.567	0.05	0.089	1.0

4.4 第四题

4.4.1 题目描述

使用等宽法、等频法两种离散化方法对"医学中中医证型的相关数据"进行连续属性离散化,并进行对比。

4.4.2 代码

columns

```
\# t-4.py
2 from itertools import count
3 import pandas as pd
4 import matplotlib.pyplot as plt
  import numpy as np
  import sys
  # sys.path.append('../utils/')
  # import pretreatment as pret
9
10
  # pret.sheet("./data/discretization_data.xls")
11
  data = pd.read_excel("./data/discretization_data.xls", sheet_name="Sheet1")
12
  col = data.columns.tolist()[0]
14
15 # 等宽法
16 data1 = data.copy()
17 bins = 5
18 | labels = ["lower", "low", "mid", "high", "higher"]
```

```
data1[col] = pd.cut(data1[col], bins, labels=labels)
19
20
   1 = []
21
   for la in labels:
22
       1.append(data1[col].value_counts()[la])
23
   df = pd.DataFrame({col : 1},index=labels)
24
   plt.figure()
25
   plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
   plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的"-"负号的乱码
      问题
   df.plot(kind = 'bar')
28
   plt.savefig("./img/4-1.jpg")
29
30
31
   # 等频法
   data2 = data.copy()
   labels = ["lower", "low", "mid", "high", "higher"]
33
   data2[col] = pd.qcut(data2[col], bins, labels=labels)
34
35
   1 = []
36
   for la in labels:
37
       1.append(data2[col].value_counts()[la])
   df = pd.DataFrame({col : 1},index=labels)
39
   plt.figure()
40
41 df.plot(kind = 'bar')
   plt.savefig("./img/4-2.jpg")
```

4.4.3 附加注释

cut 默认为等宽划分, qcut 默认为等频划分。

4.4.4 结果

两图分别为等宽法、等频法对数据的离散化可视化。

5 实验收获

通过翻阅文档,熟悉了 pandas 库的一些基本操作。通过动手实验的方式更加深刻地理解了相关知识。