Primer Trabajo: Diseño de un Experimento

Objetivo:

- Idear un experimento para comparar el comportamiento de un algoritmo recursivo con el de uno iterativo para resolver el mismo problema.
- Se trata de analizar las prestaciones de los algoritmos, en cuanto a:
 - Velocidad de ejecución, consumo de memoria, dimensiones de los datos, etc.

- ¿En qué consiste diseñar un experimento?
- Ejemplo: Práctica de laboratorio
 - El alumno realiza un experimento en las condiciones dadas en un guión, limitándose a contrastar los resultados.
 - El profesor previamente ha tenido que elaborar el guión, esto es, ha tenido que diseñar el experimento, estableciendo unas condiciones favorables para que la práctica pueda llevarse a cabo con éxito. Para ello, debe llevar a cabo numerosos experimentos hasta dar con el o los más adecuados, que serán los que luego replicará el alumno.

- Nuestro caso: Comparación de algoritmo iterativo frente a algoritmo recursivo
- Ejemplo de condiciones a determinar:
 - Problema a resolver
 - Tamaño de los datos a utilizar
 - Nivel de profundidad / número de iteraciones
 - Etc.

- El trabajo se desarrollará en tres fases:
 - a) Análisis sobre cómo debe diseñarse el experimento
 - b) Pruebas experimentales mediante un programa que valide el diseño del experimento
 - Documentación de la propuesta de experimento y resultados obtenidos

- a) Análisis sobre cómo debe diseñarse el experimento, decidiendo justificadamente:
 - Los parámetros a medir para poder comparar los experimentos (velocidad de ejecución, consumo de memoria, dimensiones de los datos, etc).
 - El método de medición a emplear.
 - El número de veces que se llevará a cabo el experimento.
 - Los casos más y menos favorables para la realización del experimento, así como algún caso que pueda considerarse promedio.

- b) Pruebas experimentales mediante un programa que valide el diseño del experimento
 - Medir los parámetros escogidos para diferentes condiciones experimentales.
 - Valorar la fiabilidad del experimento y sus posibles fuentes de error.
 - Para llevar a cabo esta fase se desarrollará un programa que:
 - Deberá estar escrito en ANSI C (portabilidad)
 - Deberá estructurarse en más de un fichero en C.
 - Toda entrada/ salida por pantalla o fichero la hará en modo texto
 - No deberá producir errores de compilación

- c) Documentación de la propuesta de experimento y resultados obtenidos:
 - Explicación de las condiciones escogidas para la realización del experimento.
 - Explicación del código fuente en C utilizado.
 - Explicación de las pruebas llevadas a cabo.
 - Explicación del reparto de roles dentro del equipo de trabajo.

Máximo 10 páginas

Roles

- Cada equipo deberá establecer distintos roles para cada uno de sus miembros, los cuales deberán indicarse en la documentación entregada.
- Algunos ejemplos de roles son:
 - Elaborar y coordinar el plan de trabajo a llevar a cabo.
 - Preparar y probar el código básico de los algoritmos.
 - Idear la técnica de medición a emplear y adaptar el código para el experimento.
 - Etc.
- Algunos de estos roles pueden ser compartidos.

Entrega en Moodle:

- Contendrá tanto los ficheros fuentes (.c y .h) y posibles ficheros de datos de entrada, como la documentación explicativa (en formato pdf).
- No deberá contener ficheros objetos, ejecutables o ficheros de salida generados en tiempo de ejecución.
- La fecha tope de entrega será la semana de la segunda prueba de evaluación continua (7 de abril).

- Evaluación del trabajo (parte A)
 - Diseño del experimento
 - Pruebas de validación
 - Documentación
 - Reparto de roles

La puntuación conducirá a la calificación.

- Evaluación del código (parte B)
 - Comentarios y legibilidad del código fuente
 - Estructuración de ficheros, variables y funciones
 - Portabilidad del código
 - Estilo de programación

Esta puntuación será sólo informativa (sin embargo, en el segundo trabajo y en la prueba final sí podrá formar parte de la calificación).

Primer Trabajo: Diseño de un Experimento