4.2 Storage file format

1Function

This section shows a file format specification for which the LS-7000XT stores to a CF card.

2File

For files for which an LS-7000XT stores (refers to) to a CF card, a setting file, setting analysis result file, time calibration information file, trigger information file and data file exist.

Data of a short period 1 minute file (WIN file) is generated.

Table File type

File type	File name	Storage directory				
Setting XML	LS7000.XML	¥				
Setting analysis result	XMLTOSYS.TXT	¥				
Time calibration information	TCAL.TXT	¥				
Trigger information	TRIGGER.TXT	¥				
Short period data	Year, month, day, o'clock, minutes	DATA¥SHORT¥ Year, month, day¥ Year, month, day, o'clock				

Figure Directory structure of a CF card

③File format

The set file is of well-formed XML document and has the following content.

```
<?xml version="1.0" >
<Is7000 version="0.91">
   <title>DATAMARK</title>
 - <measure>
    - <channel>
          <ch>1</ch>
                                                                 Specify first ch.
          <win>0000</win>
                                                                 Win channel No. of measurement block 1
          <gain unit="dB">0</gain>
                                                                 ch1 gain, select from 0, 20, OFF.
          <frequency unit="Hz">100</frequency>
                                                                 Measurement interval of measurement block 1
                                                                 Select from 200, 100, 50,1.
          <br/><bits>24</bits>
                                                                 Effective bit number of measurement block 1
                                             Select from 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14.
       </channel>
    - <channel>
          <ch>2</ch>
                                                                 Specify second ch.
          <win>0001</win>
                                                                 Setting of ch2 is ineffective, setting of ch1 + 1 is
             effective.
          <qain unit="dB">0</qain>
                                                                 ch2 gain, select from 0, 20, OFF.
          <frequency unit="Hz">100</frequency>
                                                                 Setting of ch2 is ineffective, setting of ch1 is
             effective.
          <br/><bits>24</bits>
                                                                 Setting of ch2 is ineffective, setting of ch1 is
             effective.
       </channel>
    - <channel>
          <ch>3</ch>
                                                                 Specify third ch.
          <win>0002</win>
                                                                 Setting of ch3 is ineffective, setting of ch1 + 2 is
             effective.
          <gain unit="dB">0</gain>
                                                                 ch3 gain, select from 0, 20, OFF.
          <frequency unit="Hz">100</frequency>
                                                                 Setting of ch3 is ineffective, setting of ch1 is
             effective.
          <br/><bits>24</bits>
                                                                 Setting of ch3 is ineffective, setting of ch1 is
             effective.
       </channel>
    - <channel>
                                                                 Specify fourth ch.
          < ch > 4 < /ch >
          <win>0003</win>
                                                                 Win channel No. of measurement block 2
          <gain unit="dB">0</gain>
                                                                 ch4 gain, select from 0, 20, OFF.
          <frequency unit="Hz">100</frequency>
                                                                 Measurement interval of measurement block 2
                                                                 Select from 200, 100, 50,1.
          <br/><bits>24</bits>
                                                                 Effective bit number of measurement block 2
                                              Select from 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14.
       </channel>
    - <channel>
          <ch>5</ch>
                                                                 Specify fifth ch.
          <win>0004</win>
                                                                 Setting of ch5 is ineffective, setting of ch4 + 1 is
             effective.
          <gain unit="dB">0</gain>
                                                                 ch5 gain, select from 0, 20, OFF.
          <frequency unit="Hz">100</frequency>
                                                                 Setting of ch5 is ineffective, setting of ch4 is
              effective.
          <br/><bits>24</bits>
                                                                 Setting of ch5 is ineffective, setting of ch4 is
             effective
       </channel>
    - <channel>
          <ch>6</ch>
                                                                 Specify sixth ch.
          <win>0005</win>
                                                                 Setting of ch6 is ineffective, setting of ch4 + 2 is
             effective.
          <gain unit="dB">0</gain>
                                                                 ch6 gain, select from 0, 20, OFF.
          <frequency unit="Hz">100</frequency>
                                                                 Setting of ch6 is ineffective, setting of ch4 is
              effective.
          <br/><bits>24</bits>
                                                                 Setting of ch6 is ineffective, setting of ch4 is
             effective.
       </channel>
       <filter>LINEAR</filter>
                                                                 Filter setting, select from LINEAR, MINIMUM.
       <cut_off unit="%">40</cut_off>
   </measure>
```

</ls7000>

```
<timezone>-09:00</timezone>
<latitude>N3540.4362</latitude>
<longitude>E13928.3881</loopitude>
<altitude>000108.0</altitude>
</location>
<mode>AUTO</mode>
AUTO, FIX.
<interval>1:00</interval>

12:00, 24:00.
<adjust>ON</adjust>
</time_cal>
```

Local zone time Latitude Longitude Altitude

Time calibration mode, select from NONE,

Time calibration interval Select from 0:00, 1:00, 2:00, 3:00, 4:00, 6:00, 8:00,

Adjust TCXO according to time calibration result. ON: Adjust. OFF: Does not adjust.

Time calibration information

Time calibration information file is a text file. Each line is appended for each time calibration.

Note: When data is not saved, time calibration information is not saved.

The following shows a format of a one time calibration information.

Position (byte)	Item	Size (byte)	Model	Content		
0	Time calibration completion time	18	Char[18]	(Example) "01/05/24 15:38:52" May 24, 2001, 15 hours 38minutes 52 seconds		
18	Error (msec)	8	Char[8]	(Example) "002msec" 2msec		
26	Error (count)	9	Char[9]	The unit is 76.294nsec unit. Represented in hexadecimal number 8 digits (Example) "FFFFF5C" =-164 =-12.512µsec		
35	TCXO adjustment (for maker maintenance)	10	Char[10]	For maker maintenance (Example) "TCX0= 2"		
45	Temperature (for maker maintenance)	11	Char[11]	For maker maintenance (Example) "TEMP=36.5"		
56	Time calibration result	6	Char[6]	"TRUE" : Success "FALSE" : Failure		
62	Return and start new line	2	Char[2]	ODH, OAH		

^{*} The position means position from the head of line.

TCAL.TXT Example

02/03/24 18:00:09 000msec 00000430 TCXO= 2 TEMP= 36.0 TRUE

02/03/24 19:00:41 000msec FFFFF5C TCXO= 2 TEMP= 36.5 TRUE

02/03/24 20:00:10 000msec FFFFA87 TCXO= 2 TEMP= 37.5 TRUE

⑤TRIGGER file

Trigger file is a file in which trigger information of STA/LTA trigger is recorded. Each line is appended for each event (Start, Stop, Restart).

The following shows a format of trigger information for one time STA/LTA trigger.

Position* (byte)	Item	Size (byte)	Model	Content	
0	Status	7	Char[7]	"Start" Start trigger when earthquake occurs "Stop" Stop trigger when earthquake converges "Restart" Re-trigger when post-trigger data is measured when earthquake occurs after earthquake converges	
8	Trigger time	21	Char[21]	(Example) "01/01/01 19:17'03.270" January 1, 2001, 19 hours, 17 minutes, 03.270 seconds	
30	Measurement data	8	Char[8]	Represented in hexadecimal number 8 digits (Example) "0000003C" = 60	
39	STA total value	8	Char[8]	Represented in hexadecimal number 8 digits (Example) "00000659" = 1625	
48	STA number	8	Char[8]	Represented in hexadecimal number 8 digits (Example) "00000020" = 32	
57	LTA total number	8	Char[8]	Represented in hexadecimal number 8 digits (Example) "00000B36" = 2870	
66	LTA number	8	Char[8]	Represented in hexadecimal number 8 digits (Example) "00000100" = 256	
75	Offset	8	Char[8]	This is always 0. Represented in hexadecimal number 8 digits (Example) "00000000"	

XThe position means position from the head of line.

The following shows an example of TRIGGER. TXT.

Start	01/01/01 19:17'03.270 0000003C 00000659 00000020 00000B36 00000100 00000000
Stop	01/01/01 19:17'23.990 00000002 000002B2 00000020 00000B36 00000100 00000000
Restart	01/01/01 19:18'03.270 00000617 00000FC4 00000020 00000B36 00000100 00000000
Stop	01/01/01 19:18'08.760 00000009 000002B3 00000020 00000B36 00000100 00000000
Start	01/01/01 19:20'03.480 0000094F 00001DBB 00000020 00002530 00000100 00000000
Stop	01/01/01 19:20'23.080 00000016 00000921 00000020 00002530 00000100 00000000

Short period data file

The format of a short period data file is WIN format, which can couple data in the unit of a second block. This device stores all the measurement data within the same minute, and whose sampling frequencies are 1, 40, 100, and 200Hz, in the same 1 minute file.

The following shows a format of a second block.

4.3 Asynchronous WIN protocol specifications

4.3.1 Overview

This section describes specifications of asynchronous WIN protocol of the LS-7000XT, which can be used as an observation device for a real time telemeter using RS-232C by selecting Device=COM2 of [RT-OUTPUT] section.

Format of the communications data depends on which PktType=A1 or PktType=A0 of the [RT-OUTPUT] section is selected.

Extended WIN format (*) used mainly for communications on the measurement side is transmitted by selecting packet type A1.

* Extended WIN format is a format highly compatible with LT8500 and LS-7000. For the format, refer to the "4.3.2 Packet type A1 selection."

WIN format used mainly for communications on the analysis side is transmitted by selecting the packet type A0.

Both of the data formats use protocol to transmit re-transmission request for the packet when continuity of control No. is checked and missing is detected.

All communication data have a basic structure of asynchronous packet as follows.

4Byte		4Byte	NByte		
Start code		Packet data length	Packet data		
	STX(0x02)×4	N	variable length (Specified in packet data length)		

Figure Asynchronous packet basic structure

4.3.2 Packet type A1 selection

When PktType=A1 of [RT-OUTPUT] is selected, data (packet type: A1) and status (packet type: A8, A9) are transmitted.

And, when re-transmission request (packet type: DE) is received, the requested packet is transmitted.

Note: Observation status is always 0.

Figure Data packet structure

Data obtained by coupling motion status information is of XML format.

Figure Data packet structure

Data obtained by coupling setting status information is of XML format, is the same content as that of the setting XML file.

Figure Setting status packet structure

Figure Re-transmission request packet structure

4.3.3 Packet type A0 selection

When PktType=A0 of [RT-OUTPUT] section is selected, data (packet type: A0) and status (packet type: A8, A9) are transmitted.

And, when re-transmission request packet is received, the requested packet is transmitted.

Figure Data packet structure

Data obtained by coupling motion status information is of XML format.

Figure Motion status packet structure

Data obtained by coupling setting status information is of XML format, is the same content as that of the setting XML file.

Figure Setting status packet structure

	4Byte	4Byte	TByte	
Asynchronous packet	Start code	Packet data length	Re- transmission	
Asynchronous packet	STX(0x02)×4	0001	packet control	

Figure Re-transmission request packet structure

4.4 WIN_UDP protocol specifications

4.4.1 Overview

This section describes specifications of WIN_UDP protocol of the LS-7000XT, which can be used as an observation device for a real time telemeter using Ethernet by selecting Device=WIN_UDP of [RT-OUTPUT] section.

Format of the communications data depends on which PktType=A1 or PktType=A0 of the [RT-OUTPUT] section is selected.

Extended WIN format (*) used mainly for communications on the measurement side is transmitted by selecting packet type A1.

* Extended WIN format is a format highly compatible with LT8500 and LS-7000. For the format, refer to the "4.4.2 Packet type A1 selection."

WIN format used mainly for communications on the analysis side is transmitted by selecting the packet type A0.

Both of the data formats use protocol to transmit re-transmission request for the packet when continuity of control No. is checked and missing is detected.

Since WIN_UDP protocol uses separate ports for data and status to communicate, the checking and re-transmission request in recontinuity of control No. is individually checked for data and status.

4.4.2 Packet type A1 selection

When PktType=A1 of [RT-OUTPUT] section is selected, data (packet type: A1) and status (packet type: A8, A9) are transmitted.

And, when re-transmission request (packet type: DE) is received, the requested packet is transmitted.

Figure Data packet structure

Data obtained by coupling motion status information is of XML format.

Figure Motion status packet structure

Data obtained by coupling setting status information is of XML format, is the same content as that of the setting XML file.

Figure Setting status packet structure

2Byte	1Byte	1Byte	1Byte	2Byte	1Byte
Address	Control	Sub-control	Packet type DE	Re-transmission request destination address	Re- transmission packet control

Figure Re-transmission request packet structure

4.4.3 Packet type A0 selection

When PktType=A0 of [RT-OUTPUT] section is selected, data (packet type: A0) and status (packet type: A8, A9) are transmitted.

And, when re-transmission request is received, the requested packet is transmitted.

Figure Data packet structure

Data obtained by coupling motion status information is of XML format.

Figure Motion status packet structure

Data obtained by coupling setting status information is of XML format, is the same content as that of the setting XML file.

Figure Setting status packet structure

Figure Re-transmission request packet structure