

Logiques temporelles pour la spécification

UE « Modélisation et spécification » — 2021-2022

Spécifier un système

système = programme, un algorithme, un protocole, ...

spécifier =

- énoncer la « correction » du système
- ▶ énoncer les propriétés attendues pour le système.
- énoncer l'absence de bug

Modélisation -> Arnaud Sangnier Spécification -> François Laroussinie

Page web du cours:

https://www.irif.fr/~sangnier/enseignement/modspec.html

Spécifier un système exemple

- des boutons pour choisir la boisson
- des boutons pour fixer le niveau de sucre
- un bouton annulation
- un moyen de paiement
- un voyant pour chaque boisson
- 4 voyants pour indiquer le niveau de sucre
- un voyant pour indiquer que la boisson est en préparation et un bip pour signaler qu'elle est prête.
- un voyant pour inviter à payer

Spécifier un système exemple

- Initialement tous les voyants sont éteints.
- On sélectionne une boisson en appuyant sur le bouton correspondant.
- Dès qu'une boisson est sélectionné, le voyant pour payer est allumé. Il s'éteint dès que la transaction a eu lieu.
- Après le paiement, la préparation commence (avec allumage du voyant correspondant) et un bip retentit à la fin de la préparation.
- Appuyer sur le bouton annulation avant le paiement revient dans l'état d'accueil.

Voir les cours d'Arnaud Sangnier

pour la construction de modèles.

C'est une étape cruciale!
Un modèle faux ne sert pas à grand chose...

Ici on supposera toujours que l'on dispose d'un « STE »: un système de transitions étiquetés.

$$S = (Q,Act, \rightarrow, q_0,AP,L)$$

NB: on ne construit pas un STE « à la main »!

On utilise des langages de haut niveau pour décrire le comportement du système étudié (produit synchrone, réseau de Pétri, programmes, etc.).

Et ces langages ont une sémantique définie sous la forme d'un STE.

Même idée pour la spécification:

On utilise des langages de spécification avec une sémantique précise!

algorithme d'exclusion mutuelle

boolean D1:= False

Processus P1:
loop forever:
p1: Section NC
p2: D1 := True
p3: await (not D2)
p4: section critique
p5: D1 := False

Processus P2:
loop forever:
p1: Section NC
p2: D2 := True
p3: await (not D1)
p4: section critique
p5: D2 := False

- + hypothèse d'atomicité
- → un STE (voir la construction précise avec Arnaud Sangnier!)

remple

algorithme d'exclusion mutuelle

- \rightarrow un STE avec AP={D₁,D₂,SC₁,SC₂}
- ▶ D₁ étiquette les états où la variable D1 est vraie.
- ▶ D₂ étiquette les états où la variable D2 est vraie,
- ▶ SC₁ étiquette les états où le processus 1 est en section critique,
- ▶ SC₂ étiquette les états où processus 2 est en section critique.

$$Act = \{ a_1, a_2 \}$$

Et Q contient 8 états.

algorithme d'exclusion mutuelle (F,F,F,F) (F,F,T,T) (F,T,T,T) (F,T,T,T) (F,T,T,T) Equité = infinité de transitions bleues *et* de rouges. SC termine = infinité de transitions bleues *et* de rouges

pleines.

algorithme d'exclusion mutuelle propriétés attendues

- Exclusion mutuelle: Jamais les deux processus ne peuvent se trouver en SC au même moment.
- ▶II n'y a jamais pas de blocage.
- Absence de famine: Si un processus demande l'accès à la SC, il y arrivera un jour.
- Attente bornée: Si un processus demande l'accès à la SC, l'autre processus ne peut pas passer avant lui plus d'une fois.

En général, on vérifie ces propriétés sous hypothèses d'équité entre processus et en supposant que chaque section critique se termine.

→ un ensemble d'exécutions possibles du système modélisé.

Vérifient-elles les propriétés attendues ?

algorithme d'exclusion mutuelle propriétés attendues

▶ Exclusion mutuelle: Jamais les deux processus ne peuvent se trouver en SC au même moment.

Il n'y a jamais pas de blocage.

?

▶ Absence de famine: Si un processus demande l'accès à la SC, il y arrivera un jour.

▶ Attente bornée: Si un processus demande l'accès à la SC, l'autre processus ne peut pas passer avant lui plus d'une fois.

?

(→ l'algorithme n'est pas bon!)

Spécifier un distributeur de café

- Initialement tous les voyants sont éteints.
- On sélectionne une boisson en appuyant sur le bouton correspondant.
- Dès qu'une boisson est sélectionné, le voyant pour payer est allumé. Il s'éteint dès que la transaction a eu lieu.
- Après le paiement, la préparation commence (avec allumage du voyant correspondant) et un bip retentit à la fin de la préparation.
- Appuyer sur le bouton annulation avant le paiement revient dans l'état d'accueil.

Comment énoncer précisément ce genre de propriétés ?

- Exclusion mutuelle: <u>Jamais</u> les deux processus ne peuvent se trouver en SC au même moment.
- ▶II n'y a jamais pas de blocage.
- Absence de famine: Si un processus demande l'accès à la SC, il y arrivera un jour.
- Attente bornée: Si un processus demande l'accès à la SC, l'autre processus ne peut pas passer <u>avant</u> lui plus d'une fois

Spécifier un distributeur de billets

- Si le bon code est donné, on peut choisir une somme et on <u>obtiendra</u> de l'argent.
- Après avoir fait trois erreurs de code, la carte est bloquée.
- ▶ <u>Après</u> avoir obtenu l'argent, la carte est éjectée.
- A tout moment, si on appuie sur annulation, la carte est éjectée sans donner d'argent sauf si l'utilisateur a fait trois erreurs avant.

Spécifier un système réactif

système réactif = système qui interagit avec un environnement

- Il ne calcule pas un résultat en un temps fini.
- Il maintient une interaction avec son environnement.
- Sa correction se base sur l'<u>ordre</u> des actions/ évènements tout au long de son exécution.

Logiques temporelles

Les logiques temporelles étendent la logique propositionnelle avec:

- des « modalités temporelles » (ou des « opérateurs temporels »)
- Elles sont interprétées dans des modèles munis d'une notion de temps.

Il y a de nombreuses logiques temporelles! (et encore plus que ça!)

- LTL « Linear-time Temporal Logic »
- CTL « Computation Tree Logic »

Logique propositionnelle

Syntaxe: $P \in AP$ $\Phi, \psi ::= P | \neg \Phi | \Phi \lor \psi | \Phi \land \psi$

carte_éjectée \land argent_distribué erreur \lor annulation \neg ($CS_1 \land CS_2$) \neg $CS_1 \lor \neg$ CS_2 (\neg CS_1) \lor (\neg CS_2) $D_1 \land \neg$ D_2

L'évaluation d'une formule dépend de la valeur de vérité de chaque proposition atomique dans un état.

LTL « Linear-time Temporal Logic »

Logique de temps linéaire.

Le <u>comportement</u> d'un système est vu comme l'ensemble de ses exécutions prises séparément.

La notion de temps (avant/après/jusqu'à/depuis) s'interprète donc le long d'une exécution d'un STE.

LTL- (premier fragment)

Syntaxe:

 $P \in AP$

$$\phi, \psi ::= \mathsf{P} \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{X}^{-1} \phi \mid \mathbf{F}^{-1} \phi$$

X φ : demain φ

F φ : un jour dans le futur φ

 $X^{-1} \varphi$: hier φ

F-1 φ : un jour dans le passé φ

Exemple

Exec(q₁)= { (q₁q₂q₁q₂..., q₁q₂q₂q₂..., ...}
ie Exec(q₁) = (q₁q₂+)+q₂
$$^{\omega}$$
 \cup (q₁q₂+) $^{\omega}$

STE

$$S = (Q, Act, \rightarrow, q_0, AP, L)$$

NB: ici on n'utilisera pas les actions sur les transitions (Act). NB: on supposera que tout état a au moins un succ. par →.

Exécutions:

séquence infinie $\rho = s_0 s_1 s_2 s_3 \dots$ telle que:

$$\triangleright s_i \in Q \quad \forall i = 0,1,2,...$$

$$(S_i, S_{i+1}) \in \rightarrow \qquad (OU S_i \rightarrow S_{i+1})$$

Notation:
$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ... \rightarrow s_k \rightarrow$$

et $\rho(i) = s_i$, $\rho^i = s_i s_{i+1} s_{i+2}... \rho_{|i|} = s_0 s_1...s_i$

Exec(q) = ensemble des exécutions issues de q.

LTL- (premier fragment)

Syntaxe:

 $P \in AP$

$$\phi, \psi ::= P \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{X}^{-1} \phi \mid \mathbf{F}^{-1} \phi$$

 $\mathbf{X} \boldsymbol{\phi}$: demain $\boldsymbol{\phi}$

 $\mathbf{F} \boldsymbol{\varphi}$: un jour dans le futur $\boldsymbol{\varphi}$

 $X^{-1} \varphi$: hier φ

 $F^{-1} \varphi$: un jour dans le passé φ

→ on interprète les formules de LTL- sur une position i le long d'une exécution p d'un STE.

$$\rho = S_0 S_1 S_2 S_3 ... S_i S_{i+1}...$$
+L pour les val. des AP.

LTL- (premier fragment)

Syntaxe:

 $P \in AP$

$$\phi, \psi ::= \mathsf{P} \mid \neg \varphi \mid \varphi \lor \psi \mid \varphi \land \psi \mid \mathbf{X} \varphi \mid \mathbf{F} \varphi \mid \mathbf{X}^{-1} \varphi \mid \mathbf{F}^{-1} \varphi$$

Sémantique:

soit ρ une exécution d'un STE $\mathbf{S} = (Q, Act, \rightarrow, q_0, AP, L)$ soit i un entier ≥ 0

Exemples de formules

Comparer $\mathbf{F} \mathsf{P} \wedge \mathbf{F} \mathsf{P}'$ et $\mathbf{F} (\mathsf{P} \wedge \mathsf{P}')$

$$\rho, i \models \mathbf{F} P \wedge \mathbf{F} P' \\
\rho \downarrow \downarrow \downarrow \\
0 1 2 \\
\rho \downarrow \downarrow \downarrow \\
0 1 2
\\
\mathbf{F} P \wedge P' \Rightarrow \mathbf{F} P \wedge P' \\
\rho \downarrow \downarrow \downarrow \\
\rho \downarrow \downarrow \downarrow \\
\rho, i \models \mathbf{F} (P \wedge P') ? \\
\rho, i \models \mathbf{F} (P \wedge P') ? \\
\rho, i \models \mathbf{F} (P \wedge P') ?$$

$$S = (Q, Act, \rightarrow, q_0, AP, L)$$

ρ,i ⊨ φ est désormais défini!

Et
$$S \models \varphi$$
?

Rappel:

Avec les logiques de temps linéaire, le <u>comportement</u> d'un système est vu comme l'ensemble de ses exécutions prises séparément.

 $S \models \varphi$ si et seulement si $\rho, 0 \models \varphi$ $\forall \rho \in Exec(q_0)$

Exemples de formules

$$\rho, i \models \mathbf{F} (P \wedge \mathbf{F} P')$$
 ?

$$\rho, i \models \mathbf{F} (P \land \mathbf{X} P')$$
 ?

Exemples de formules

$$\rho, i \models \neg \mathbf{F} \neg \phi$$
 ??

0 12

 \rightarrow φ est vrai pour tous les états i, i+1, i+2,...

« toujours dans le futur »

On le note: $\mathbf{G} \phi = \neg \mathbf{F} \neg \phi$

Exemples de formules

$$\rho, i \models \neg X \varphi$$

$$\iff \rho, i \models X \neg \varphi$$

(car exécutions infinies)

(sans cette hypothèse, on aurait:

$$\rho, i \models X \neg \varphi \quad \Rightarrow \quad \rho, i \models \neg X \varphi$$

Exemples de formules

$$\rho, i \models \neg F^{-1} \neg \varphi$$
 ??

→ φ est vrai pour tous les états du passé: i, i-1, i-2...

« toujours dans le passé »

On le note: $G^{-1} \varphi = \neg F^{-1} \neg \varphi$

Exemples de formules

G (problème \Rightarrow F alarme)

G (alarme \Rightarrow F^{-1} problème)

G (request \Rightarrow F service)

G (¬ bug)

Exemples de formules

G F accueil

FG ok

GF request \Rightarrow GF service

 $\mathbf{GF} (a \wedge b)$ implique $\mathbf{GF} a \wedge \mathbf{GF} b$

 $\mathbf{GF} \ \mathsf{a} \land \ \mathbf{GF} \ \mathsf{b}$ n'implique pas $\mathbf{GF} \ (\mathsf{a} \land \mathsf{b})$

 $Ga \Rightarrow FGa \Rightarrow GFa \Rightarrow Fa$