Intro to Math Thinking Fall 2024: Assignment 9

- 1. $b \mid a$ is equivalent to saying $b \mid a \Leftrightarrow (\exists n \in \mathbb{Z})[a = nb]$, which is either true or false. a/b is a rational number.
- 2. The following use definition of divisible.
 - (a) False, $b \neq 0$.
 - (b) True, $9 \mid 0$ because 9 * 0 = 0.
 - (c) False, $b \neq 0$.
 - (d) True, 1 * 1 = 1.
 - (e) False, 44 = 6 * 7 + 2.
 - (f) True, 7*-6 = -42.
 - (g) True, -7 * -7 = 49.
 - (h) True, -7 * 8 = -56.
 - (i) True, 1 * n = n.
 - (j) True, n * 0 = 0.
 - (k) False, $0 \in \mathbb{Z}$, and $b \neq 0$.
- 3. For the following let $a, b, c, d \in \mathbb{Z}$ with $a \neq 0$.
 - (a) $a|0 \Leftrightarrow (\exists n \in \mathbb{Z})[a*n=0]$, choose n=0. $a|a \Leftrightarrow (\exists n \in \mathbb{Z})[a*n=a]$, choose n=1.
 - (b) (\Rightarrow) Since $a \mid 1$, $\exists b$ such that 1 = ab. If b = 1, then a = 1. If b = -1, then a = -1. Hence $a = \pm 1$.
 - (\Leftarrow) Let $a = \pm 1$. $\exists c$ such that 1 = ac. If a = 1, then c = 1. If a = -1, then c = -1. Hence, $a \mid 1$.

That proves the statement.

- (c) If $a \mid b$ and $c \mid d$, then b = qa and d = rc, respectively, for some $q, r \in \mathbb{Z}$ where $c \neq 0$. Multiplying both equations together, we get bd = acqr. Hence, $ac \mid bd$.
- (d) $\exists d, e \in \mathbb{Z}$ such that b = da, c = eb. Substituting, c = (de)a. Hence, $a \mid c$.
- (e) (\Rightarrow) If $(a \mid b) \land (b \mid a)$, then $\exists c \in \mathbb{Z}$ such that b = ca and a = cb. If c = 1, then a = b. If c = -1, then a = -b. Hence, $a = \pm b$.
 - (\Leftarrow) Let $a = \pm b$. $\exists c \in \mathbb{Z}$ such that b = ca and a = cb. If c = 1, then a = b. If c = -1, then a = -b. Hence, $(a \mid b) \land (b \mid a)$.

Thus, proving the statement.

(f) If $a \mid b$, then $\exists c$ such that b = ca. Then |b| = |c||a|. Since $|c| \ge 1$, $a \ne 0 \Rightarrow b \ne 0$ and $|b| \ge 1$. Hence, $|a| \le |b|$.

(g) If $a \mid b$ and $a \mid c$, then $\exists d, e \in \mathbb{Z}$ such that b = da (*) and c = ea (**), respectively. $\exists x, y \in \mathbb{Z}$. Multiply both sides of (*) by x, bx = xda. Multiply both sides of (**) by y, cy = yea. Add the newly formed equations together.

$$bx + cy = xda + yea$$

 $bx + cy = a(xd + ye)$, factor out a

Hence, $a \mid (bx + cy)$.

1 OPTIONAL PROBLEMS

- 1. Counterexample. $\exists p \in \mathbb{N}$ where p > 1, and $\exists a, b \in \mathbb{Z}$ where $b \neq 0$. If $p \mid ab$, then p = ab. Let b = 1, then p = a. Hence, $p \mid a$. But p = a = 4 is not prime since 4 = 4 * 1 = 2 * 2, which is a contradiction. Thus, the converse of Euclid's Lemma is false.
- 2. Prove existence, then prove uniqueness.

Existence. Contradiction. Let p be prime where $p \in \mathbb{N}$ and p > 1. Let $p \mid ab$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. Then p = ab. By definition of divisible $p \mid a$ or $p \mid b$. Thus, p divides at least 1 of a, b. That proves existence.

Uniqueness. Show that if there are 2 representatives of p, a prime number,

$$p = ab = cd, \ a, b, c, d \in \mathbb{Z} \text{ and } b, d \neq 0$$

then a = c and b = d. Rearranging the above equations

$$\frac{ab}{p} = \frac{cd}{p} \ (*)$$

Since (*) is equivalent and p divides at least 1 of a, b, p also divides at least 1 of c, d. Hence, a = c and b = d. That proves uniqueness.

That proves Euclid's Lemma.