Measure Theory

Kasper Rosenkrands

MATØK7 Fall 2020

Contents

1	Betingede forventningsværdier	2
2	Processer med uafhængige of stationære tilvækst, specielt standard brownske bevægelser	3
3	Martingaler og kvadratisk variation 3.1 Martingales	4 4
4	Itô-formlen	5
5	Girsanov-transformationen	6

Notation

Measure with densities

Theorem 0.1 (Measures with densities). Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $f: \Omega \to [0, \infty]$ be measureable. Then

$$(f \odot \mu)(A) := \int_A f \, d\mu = \int_\Omega \chi_A f \, d\mu, \quad A \in \mathcal{A},$$

defines a new measure $f \odot \mu : (A) \rightarrow [0, \infty]$, called the measure with density f with respect to μ . For every $N \in \mathcal{A}$, the following implication holds,

$$\mu(N) = 0 \Rightarrow (f \odot \mu)(N) = 0.$$

Product σ -algrebras

Definition 0.1. Let $n \in \mathbb{N}$, $n \ge 2$, and suppose that, for every $i \in \{1, ..., n\}$, we are given a measurable space $(\Omega_i, \mathcal{A}_i)$.

• The smallest σ -algebra on $\times_{i=1}^n \Omega_i$ containing

$$\mathcal{A}_1 * \cdots * \mathcal{A}_n := \{A_1 \times \cdots \times A_n \mid A_1 \in \mathcal{A}_1, \dots, A_n \in \mathcal{A}_n\} \subset \mathcal{P}\left(\underset{i=1}{\overset{n}{\times}} \Omega_i \right)$$

is called the product σ -algebra defined by measns of A_1, \ldots, A_n . It is denoted by

$$\bigotimes_{i=1}^n \mathcal{A}_i := \sigma \left(\mathcal{A}_1 * \cdots * \mathcal{A}_n \right).$$

• Let Γ be a set and let $f_i: \Gamma \to \Omega_i$ be an arbitrary map for every $i \in \{1, \ldots, n\}$. Then the smallest σ -algebra on Γ turning all maps f_1, \ldots, f_n into measurable maps, i.e.,

$$\sigma(f_1,\ldots,f_n) := \sigma\left(\left\{f_i^{-1}(A_i) \mid A_i \in \mathcal{A}_i, i \in 1,\ldots,n\right\}\right),\,$$

is called the initial σ -algebra generated by f_1, \ldots, f_n .

1 Betingede forventningsværdier

2 Processer med uafhængige of stationære tilvækst, specielt standard brownske bevægelser

3 Martingaler og kvadratisk variation

relevante dele til forelæsning 9

- afsnit 5.8.1
 - def 5.101
 - eks 5.103
 - def 5.104
 - eks 5.105
 - sæt 5.110
- afsnit 5.8.2
 - def 5.112
 - bem 5.114
 - bem 5.115
 - sæt 5.118
 - sæt 5.120
- afsnit 5.8.3
 - def 5.122
 - bem 5.123
 - sæt 5.125
 - sæt (med def) 5.126

3.1 Martingales

3.1.1 One-dimensional Brownian Motion

Let B be a one-dimensional $(\mathcal{F}_t)_{t\geqslant 0}$ -Brownian motion. Then B is a $(\mathcal{F}_t)_{t\geqslant 0}$ martingale. In particular, every one-dimensional standard Brownian motion B is a martingale with respect to its natural filtration $(\mathcal{B}^B_t)_{t\geqslant 0}$. By virtue of Remark 6.7 we can further conclude that every one-dimensional standard Brownian motion B is a martingale on the standard filtered probability space $(\Omega, \tilde{\mathcal{F}}, (\tilde{\mathcal{F}}^B_t)_{t\geqslant 0}, \tilde{\mathbb{P}})$ obtained by completing $(\Omega, \mathcal{F}, (\mathcal{F}^B_t)_{t\geqslant 0}, \mathbb{P})$.

Let us first recall that

$$\int_{\Omega} |B_t| d\mathbb{P} = \frac{1}{(2\pi t)^{1/2}} \int_{\mathbb{R}} |x| e^{-x^2/2t} dx < \infty, \mathbb{E}[B_t] = \frac{1}{(2\pi t)^{1/2}} \int_{\mathbb{R}} x e^{-x^2/2t} dx,$$
(3.1)

for every t>0. Since $B_0=0$, $\mathbb{P}-a.s.$, it follows in particular that B_t is \mathbb{P} -integrable with $\mathbb{E}[B_t]=0$ for all $t\geqslant 0$. For all $0\leqslant s\leqslant t<\infty$, we further observe that, $\mathbb{P}-a.s.$,

$$\mathbb{E}^{\mathcal{F}_s}[B_t] = \mathbb{E}^{\mathcal{F}_s}[B_t - B_s] + \mathbb{E}^{\mathcal{F}_s} = \mathbb{E}[B_t - B_s] + B_s = \mathbb{E}[B_t] - \mathbb{E}[B_s] + B_s,$$
(3.2)

since the increment $B_t - B_s$ is \mathcal{F}_s -independent and B_s is \mathcal{F}_s -measurable.

4 Itô-formlen

5 Girsanov-transformationen