A számításelmélet alapjai gyakorlati jegyzet

Boda Bálint 2023. tavaszi félév

Tartalomjegyzék

1.	Alaj	pfogalmak	2
	1.1.	Szavak	3
		1.1.1. Alapfogalmak	3
		1.1.2. Műveletek	3
		1.1.3. Résszavak	4
		1.1.4. Résszó	4
	1.2.	Nyelv	4
		1.2.1. Műveletek	4
		1.2.2. Feladatok	6
2.	Gen	neratív grammatika	7
	2.1.	Generatív grammatika	8
		2.1.1. Feladatok	Ĝ
	2.2.	A grammatikák Chomsky féle osztályzása	
			10
	2.3.		10
3.	Vég	es automaták	11
٠.	_		12
		Feladatok	14

1. fejezet

Alapfogalmak

Definíció (ábécé). Szimbólumok egy véges nemüres halmaza. Például. $V = \{a, b\}$.

 ${\bf Definíció}$ (szimbólum). Egy tetszőleges Vábécé elemeit szimbólumoknak vagy betűknek nevezzük.

Definíció (szó). Egy $u \in V^*$ (V ábécé elemiből álló véges) sorozatot V feletti szónak (vagy sztringnek) nevezünk.

1.1. Szavak

1.1.1. Alapfogalmak

Definíció. Legyen $u \in V^*$ egy szó, ekkor a benne lévő betűk számát u hosszának nevezzük és l(u)-val vagy |u|-el jelöljük.

Jelölés. Egy $\delta \in V$ betű az $u \in V^*$ szóban lévő előfordulásinak számát $l(u)_{\delta}$ -val vagy $|u|_{\delta}$ -val jelöljük.

Definíció (üres szó). Legyen V egy ábécé, ekkor üres szónak nevezzük azt az ε szót melyre $|\varepsilon|=0$.

Megjegyzés. Világos, hogy $\varepsilon \in V^*$ bármely V abécé esetén.

Definíció (V^+) . Tetszőleges V ábécé esetén V^+ jelöli az V feletti nemüres szavak halmazát, azaz a $V^+ = V^* \setminus \{\varepsilon\}$ halmazt.

1.1.2. Műveletek

Konkatenáció

Definíció. Legyen V egy ábécé és legyenek $u = s_1 \dots s_n$ és $v = t_1 \dots t_k$ V feletti szavak. Ekkor az $uv \coloneqq s_1 \dots s_n t_1 \dots t_k$ szót u és v konkatenáltjának nevezzük.

Tulajdonságok

- 1. |uv| = |u| + |v|
- 2. általában nem kommutatív (kivétel egyetlen betűből álló ábécék)
- 3. asszociatív: $u, v, w \in V^* \implies u(vw) = (uv)w$
- 4. $\forall u,v \in V^*: uv \in V^*$ (V^* a konkatenáció műveletére zárt)
- 5. létezik egységelem: $\forall u \in V^* : u\varepsilon = u$

Így V^* félcsoport.

Hatványozás

Definíció. Legyen $i \in \mathbb{N}^+$ és $u \in V^*$. Ekkor u i-edik hatványának nevezzük az u szó i darab példányának konkatenáltját.

$$u^0 = \varepsilon, \ u^i = uu^{i-1} \ (i \in \mathbb{N}^+)$$

Megjegyzés. Nyilván $\varepsilon^0 = \varepsilon$.

Tulajdonságok

- 1. $u^{n+k} = u^n u^k \ (k, n \in \mathbb{N})$
- $2. (ab)^n \neq a^n b^n$

Tükörkép

Definíció. Legyen $u = a_1 \dots a_n$, ekkor a szó tükörképének (megfordítottjának) nevezzük a

$$u^{R} = a_{n} \dots a_{1} \ (1 \le i \le n : u_{i} = u_{n+1-i}^{R})$$

szót. Alternatív jelölés: u^{-1} , rev(u).

 $\mathbf{Megjegyz\acute{e}s.}$ Ha $u=u^R$ a szót palindrómának (vagy palindrom tulajdonságúnak) nevezzük.

Tulajdonságok

1.
$$\varepsilon^R = \varepsilon$$

$$3. (uv)^R = v^R u^R$$

$$2. \left(u^R\right)^R = u$$

4.
$$(u^i)^R = (u^R)^i \ (i \in \mathbb{N})$$

1.1.3. Résszavak

1.1.4. Résszó

Legyen V egy ábécé és legyenek u és v szavak V felett.

Definíció (résszó). Az u szó résszava a v szónak, ha $\exists x, y \in V^* : v = xuy$.

Definíció (valódi résszó). Az u szó valód résszava a v szónak, ha résszó és $u \neq v$ és $u \neq \varepsilon$.

Definíció (prefixum). Ha, v = xuy, úgy hogy $x = \varepsilon$, akkor u-t v prefixumának nevezzük.

Definíció (szuffixum). Ha, v = xuy, úgy hogy $y = \varepsilon$, akkor u-t v szuffixumának nevezzük.

Az u szót v valódi prefixumainak/szuffixumainak nevezzük, ha $u \neq \varepsilon \land u \neq v$.

1.2. Nyelv

Definíció (nyelv). Legyen V egy ábécé, ekkor nyelvnek nevezzük az $L\subseteq V^*$ halmazt. Ekkor L-t V

Jelölés. Ø-el jelöljük az üres nyelvet. $\emptyset \neq \{\varepsilon\}$

1.2.1. Műveletek

Mivel a nyelvek halmazok értelmezzük az unió, metszet, különbség és komplementer műveleteket.

Konkatenáció

Definíció. Legyen V^* egy ábécé és $L_1, L_2 \subseteq V^*$, ekkor L_1 és L_2 konkatenációjának nevezzük az

$$L_1L_2 = \{u_1, u_2 | u_1 \in L_1, u_2 \in L_2\}$$

a nyelvet.

Példa.

$${a,b}{ab,b} = {aab,ab,bab,bb}$$

Tulajdonságok

- 1. Minden Lnyelv esetén: $\left\{ \varepsilon\right\} L=L\left\{ \varepsilon\right\}$
- 2. Asszociatív
- 3. Egységelem: $\{\varepsilon\}$.

Hatványozás

Definíció. Legyen V^* egy ábécé és $L\subseteq V^*$, ekkor L i-edik hatványának nevezzük a

$$L^0 = \{\varepsilon\}, \qquad L^i = LL^{i-1} \quad (i \ge 1)$$

a nyelvet.

Megjegyzés. $\emptyset^0 = \{\varepsilon\}.$

Iteratív lezárt

Definíció. Egy L nyelv iteratív lezártjának nevezzük az

$$L^* = \bigcup_{i \ge 0} L^i = L^0 \cup L^1 \cup \dots$$

nyelvet.

Pozitív lezárt

Definíció. Egy L nyelv pozitív lezártjának nevezzük az

$$L^+ = \bigcup_{i \ge 1} L^i = L^0 \cup L^1 \cup \dots = L^* \setminus \{\varepsilon\}$$

nyelvet.

1.2.2. Feladatok

Legyenek

$$L_{1} = \{a, bb, aba\}$$

$$L_{2} = \{ab^{n} \mid n \geq 0\} = \{a, ab, abb, \dots\}$$

$$L_{3} = \{u \in \{a, b\}^{*} \mid l_{a}(u) = l_{b}(u)\} = \{\varepsilon, ab, ba, \dots\}$$

$$L_{4} = \{u \in \{a, b\}^{*} \mid l_{b}(u) \mod 2 = 0\} = \{\varepsilon, a, bb, abb, aabb, \dots\}$$

$$L_{5} = \{\varepsilon, ba\}$$

nyelvek. Határozzuk meg:

$$L_{1} \cap L_{2} = \{a\}$$

$$L_{1} \cap L_{3} = \emptyset$$

$$L_{1} \cap L_{4} = \{a, bb\}$$

$$L_{2} \setminus L_{1} = \{ab^{n} \mid n \ge 1\}$$

$$L_{1}L_{5} = \{a, aba, bb, bbba, ababa\}$$

$$L_{1}^{2} = \{aa, abb, aaba, bba, bbbb, bbaba, abaa, ababb, abaaba\}$$

Legyenek

$$L_1 = \{a^n b^m \mid m \ge n \land n \ge 0\} = \{\varepsilon, b, ab, abb, \dots\}$$

$$L_2 = \{ab\}^* = \{\varepsilon, ab, abab, \dots\}$$

nyelvek. Határozzuk meg:

$$L_{1} \cap L_{2} = \{\varepsilon, ab\}$$

$$L_{1} \setminus L_{2}^{*} = \{a^{n}b^{m} \mid m \geq n \geq 2\} \cup \{b\}^{+} \cup \{ab^{n} \mid n \geq 1\}$$

$$L_{1}^{*} = \{\varepsilon, b, ab, abb, bb, bab, abab, \dots\}$$

$$L_{2} L_{1}^{*} = \emptyset \qquad (ab \in L_{1}^{*} \text{ miatt})$$

$$L_{2}^{*} = L_{2}$$

2. fejezet

Generatív grammatika

2.1. Generatív grammatika

Definíció (grammatika). Egy G = (N, T, P, S) rendezett négyest (generatív) grammatikának vagy nyelvtannak nevezünk, ha N és T diszjunkt (azaz $N \cap T = \emptyset$) véges ábécék. Ekkor

- \bullet N a nem terminális szimbólumok halmaza,
- T (vagy Σ) a terminális szimbólumok halmaza,
- $S \in N$ a grammatika kezdőszimbóluma,
- $P = \{(x,y) \mid x,y \in (N \cup T)^* \text{ szavak úgy, hogy } x \text{ legalább egy nem terminális betűt tartalmaz}\},$ az ún. (átírási) szabályok (vagy produkciók) halmaza.

Jelölés. Gyakran (x, y) helyett az $x \to y$ jelölést használjuk, egy szabály leírására. Természetesen ez csak akkor lehetséges ha az adott ábécének nem eleme \to .

Definíció (egylépéses levezetés). Legyen G=(N,T,P,S) egy grammatika és legyen $u,v\in (N\cup T)^*$. Azt mondjuk v közvetlen levezethető az u szóból G-ben (jelekkel: $u\Rightarrow_G v$), ha

$$\exists (x,y) \in P : u = u_1 x u_2 \text{ és } v = u_1 y u_2, \quad (u_1, u_2 \in (N \cup T)^*)$$

Definíció (többlépéses levezetés). Legyen G=(N,T,P,S) egy grammatika és legyen $u,v\in (N\cup T)^*$. Azt mondjuk v több lépésben levezethető az u szóból G-ben (jelekkel: $u\Rightarrow_G^* v$), ha

$$u = v \vee \exists (n \ge 1 \wedge w_0, \dots, w_n \in (N \cup T)^*), \text{ hogy } w_{i-1} \Rightarrow_G w_i (1 \le i \le n), w_0 = u \text{ és } w_n = v$$

Definíció (generált nyelv). Legyen G=(N,T,P,S) egy grammatika, ekkor a G által generált nyelvnek nevezzük az S kezdőszimbólumból több lépésben levezethető terminális szavak halmazát, azaz a

$$L(G) = \{ u \in T^* \mid S \Rightarrow_G^* u \}$$

nyelvet.

Példa. Legyen

$$G = (\{S, A, B\}, \{a, b\} P, S)$$

$$P = \{S \to B | bb, B \to aaA, A \to a | \varepsilon \}$$

Adjuk meg L(G)-t!

Megjegyzés. Egy $S \to B|bb$ az $S \to B$ és $S \to bb$ szabályokat jelöli.

$$S \to bb$$

$$S \to B \to aaA \to a$$

$$S \to B \to aaA \to \varepsilon$$

Így: $L(G) = \{bb, aa, a\}.$

2.1.1. Feladatok

- 1. Feladat Legyen $G_i = (\{S, A, B\}, \{a, b\}, P_i, S)$. Határozzuk meg az $L(G_i)$ nyelvet, ha
 - $P_1 = \{S \rightarrow aaS|a\}$
 - $P_2 = \{S \to aSb|\varepsilon\}$
 - $P_3 = \{S \to ASB | \varepsilon, AB \to BA, BA \to AB, A \to a, B \to b\}$

Megoldás

$$L(G_1) = \{a, aaa, aaaaa \dots\} = \{a^{(2n+1)} \mid n \ge 0\}$$

 $L(G_2) = \{\varepsilon, ab, aabb \dots\} = \{a^n b^n \mid n > 0\}$

A harmadik nyelv meghatározása már nehezebb feladat. Tekintsünk pár példa levezetést:

$$S \to A\underline{S}B \to \underline{A}B \to a\underline{B} \to ab$$

$$S \to ASB \to AB \to BA \to bA \to ba$$

$$S \to A\underline{S}B \to AA\underline{S}BB \to A\underline{A}BB \to \underline{A}BAB \to BA\underline{A}B \to \underline{B}ABA \to \cdots \to baba$$

$$S \to ASB \to AASBB \to AABB \to ABAB \to BAAB \to baab$$

Ezek alapján $L(G_3) = \{u \in \{a, b\}^* \mid l_a(u) = l_b(u)\}.$

2.2. A grammatikák Chomsky féle osztályzása

Legyen G=(N,T,P,S) egy grammatika. A G grammatika i-típusú (i=0,1,2,3), ha a P szabályhalmazra teljesülnek a következők:

- i = 0 (mondatszerkezetű grammatika): nincs korlátozás
- i = 1 (környezetfüggő grammatika):
 - -P minden szabálya $u_1Au_2 \to u_1vu_2$ alakú, ahol $u_1, u_2, v \in (N \cup T)^*, A \in N$ és $v \neq \varepsilon$
 - Kivétel: P tartalmazhatja az $S \to \varepsilon$ szabályt, de csak akkor, ha S nem fordul elő egyetlen szabály jobb oldalán sem.
- i=2 (környezetfüggetlen): P minden szabálya $A \to v$ alakú $(A \in N, v \in (N \cup T)^*)$
- i=3 (reguláris): P minden szabálya $A \to uB$ vagy $A \to u$ alakú $(A, B \in N, u \in T^*)$

Az adott osztályokat \mathcal{G}_i -vel jelöljük.

Definíció (nyelvosztály). Az *i* típusú nyelvek osztályának nevezzük a

$$\mathcal{L}_i = \{L \mid \exists G \in \mathcal{G}_i, \text{ hogy } L = L(G)\}$$

1. Tétel (Chomsky nyelvhierarchia tétel).

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$

2.2.1. Feladatok

1. Feladat Írjuk fel azt a grammatikát, mely a 4-el osztható bináris számok nyelvét generálja! Milyen osztályba sorolható a generált nyelv?

Megoldás Egy kettes számrendszerbeli szám akkor osztható néggyel, ha utolsó két számjegye 0. Gondoskodnunk kell továbbá arról, hogy ne legyenek felesleges nullák az elején. Így

$$G = \left(\left\{ S, B \right\}, \, \left\{ 0, 1, \varepsilon \right\}, \, \left\{ S \to \underbrace{0}_{3.} \mid \underbrace{1B00}_{2.}, \, B \to \underbrace{\varepsilon}_{3.} \mid \underbrace{0B}_{3.} \mid \underbrace{1B}_{3.} \right\}, \, S \right)$$

(Az adott szabály jobb oldala alatt tüntettem fel annak szintjét.) Mivel kettes a legkisebb szint ezért a generált nyelv is 2-es szintű.

A feladat megoldható más módon is:

$$G = (\{S, A\}, \{0, 1, \varepsilon\}, \{S \to 0 | 1A, A \to \varepsilon | 0A | 1A\}, S)$$

amiből már reguláris nyelv adódik.

2. Feladat Írjuk fel azt a grammatikát, ami az $L(G) = \{a^n b^m c^n | n \ge 0, m \ge 3\}$, nyelvet generálja!

Megoldás Írjuk fel L(G) néhány elemét: $\{bbb, abbbc, aabbbcc ... \}$. Így $G = (\{S, A, B, C\}, \{a, b, c\}, P, S)$, ahol

$$P = \left\{ \begin{array}{l} S \to ASC, \\ S \to BBB, \\ A \to a, \\ B \to b, \\ C \to c \end{array} \right\}$$

2.3. Reguláris kifejezések

3. fejezet

Véges automaták

Véges automatának nevezünk egy olyan analitikus eszközt, mely képes eldönteni egy adott szóról, hogy az általa ismert reguláris nyelv eleme-e.

3.1. Alapfogalmak

Definíció. Determinisztikus véges automatának (DVA) nevezünk egy $A=(Q,\Sigma,\delta,Q_0,F)$ rendezett ötöst, ahol

- Q a lehetséges állapotok véges nemüres halmaza
- Σ az inputszimbólumok ábécéje
- $\delta:Q\times\Sigma\to Q$ az ún. állapotátmeneti függvény
- $q_0 \in Q$ a kezdőállapot
- $F \subseteq Q$ az elfogadó állapotok halmaza.

Legyen $A = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\}) \delta$ több módon is megadható:

- Függvény: $\delta(q_0, a) = q_1, \ \delta(q_0, b) = q_2, \ \delta(q_1, a) = q_0$
- Grammatikaszerűen: $M_{\delta} = \{q_0 a \to q_1, q_0 b \to q_2, q_1 a \to q_0\}$
- Táblázatosan:

	a	b
$\rightarrow q_0$	q_1	q_2
q_1	q_0	_
$\leftarrow q_2$	_	_

A kezdőállapotot →-val, az elfogadó állapotokat ←-val jelöljük.

• Állapotátmeneti gráffal:

ahol, \rightarrow jelöli a kezdőállapotot és dupla kör az elfogadó állapotokat.

Definíció. Nemdeterminisztikus véges automatát hasonlóan definiáljuk, annyi különbséggel, hogy a δ függvény Q helyett, Q hatványhalmazába képez, azaz $\delta: Q \times \Sigma \to \mathcal{P}(Q)$.

12

 δ hasonlóan adható meg mint DVA esetén, és a nemdeterminisztikusság minden esetben könnyen leolvasható:

- függvény értéke halmaz lesz
- grammatika szerű jelölésben vagy (|) jelenik meg valamelyik kifejezés jobb oldalán
- táblázatban halmazok vannak
- egy csúcsból több azonos címkéjű él vezet ki

Definíció (konfiguráció). Legyen $A = (Q, \Sigma, \delta, Q_0, F)$ egy véges automata, ekkor **konfigurációnak** nevezünk egy $u \in Q\Sigma^*$ szót.

Definíció (konfiguráció). Legyen $A = (Q, \Sigma, \delta, Q_0, F)$ egy véges automata, ekkor **konfigurációnak** nevezünk egy $u \in Q\Sigma^*$ szót.

Definíció. Legyen $A = (Q, \Sigma, \delta, Q_0, F)$ egy véges automata és legyenek u, v konfigurációk. Azt mondjuk u egy lépésben redukálható v-re, ha létezik $p \in \delta(q, a)$ szabály és $w \in \Sigma^*$ szó, hogy u = qaw és v = pw.

Definíció. Az $A = (Q, \Sigma, \delta, Q_0, F)$ véges automata az $u \in Q\Sigma^*$ szót a $v \in Q\Sigma^*$ szóra redukálja (jelölés: $u \Rightarrow_A^* v$), ha vagy u = v vagy valamely $k \geq 1$ -re léteznek w_0, \ldots, w_k konfigurációk melyekre $w_{i-1} \Rightarrow_A w_i (1 \geq i \geq k)$, $w_0 = u$ és $w_k = v$.

Definíció. Legyen $A = (Q, \Sigma, \delta, Q_0, F)$ egy véges automata. Az A automata által elfogadott (vagy felismert) nyelvnek nevezzük az

$$L(A) = \{ u \in \Sigma^* | q_0 u \Rightarrow_A^* p \land q_0 \in Q \land p \in F \}$$

nyelvet.

3.2. Feladatok

1. Feladat Adjunk meg automatát és generatív grammatikát a következő reguláris kifejezésekhez:

a)
$$(a + b)^* a$$

b)
$$1(1+0)^*0+0$$

c)
$$a(a+b+c(a+b))^*$$

Megoldás

a) Grammatika: ({S, A, B}, {a,b}, {S \to aA|bB, A \to aA, B \to bB, A \to a, B \to a}, S) Automata:

b) Grammatika: ({S, A, B, C}, {0,1}, P, S), ahol $P=\{S\to 0,\,S\to 1C,\,C\to 0A|1B,\,B\to 1B,\,A\to 0A,\,B\to 0,\,A\to 0\}$

Automata:

c) Grammatika: $(\{S, C, E\}, \{a, b, c\}, P, S)$, ahol

$$P = \left\{ \begin{array}{c} S \rightarrow aE, \\ E \rightarrow \varepsilon \mid aE \mid bE \mid cC, \\ C \rightarrow aE \mid bE \end{array} \right\}$$

Automata:

- 2. Feladat Adjunk meg automatát, mely felismeri a következő nyelveket:
 - a) 3-al osztható természetes számok (vezető nullákat nem kezelve)
 - b) 3-al osztható egész számok (vezető nullákat kezelve)

Megoldás

a) Egy szám akkor osztható hárommal, ha számjegyeinek összege osztható hárommal. Az automata azonban nem képes sem aritmetikai műveletekre, sem ezek eredményének eltárolására. Megfeleltethetjük, azonban a különböző állapotokat a hárommal való osztás maradékosztályainak.

Például: Legyen a vizsgálandó szám 156. Az automata először feldolgozza az 1-es szimbólumot, melynek hatására a q_1 állapotba kerül, mivel 1 mod 3 = 1. Ezt követően, mivel jelenleg a q_1 állapotban vagyunk és 5 mod 3 = 2, ezért a 0-ás maradékosztályba azaz q_0 -ba kerülünk. Ezután mivel 6 mod 3 = 0, ezért a q_0 állapotban maradunk.

b) A megoldás nagyon hasonló annyi különbséggel, hogy fel kell vennünk két extra állapotot. Az egyik állapot a mínusz jelet a másik pedig a vezető nullákat fogja kezelni.

