Switching and Bridging

COS 460 - Fall 2019

Ethernet as we know it

All hosts connected to same "wire" All hosts see the same signals

The Star Topology

Hosts connected to central intelligent "switch"

The Star Topology

- Fixed number of ports
- Interconnect <u>hosts</u> or <u>switches</u>
 - ...to form larger networks
- No reduction in performance of network*

The Star Topology

interconnecting networks

Interconnected Stars

let's just worry about any path right now. later we will talk about routing.

Some Switching Options

- 1. Datagram Switching
- 2. Virtual Circuit Switching
- 3. Source Routing

Datagram Switching

- Run Ethernet protocol on each link
- Broadcast when needed

Datagram Switching

- A host can send a packet anywhere at any time (connectionless)
- When sending, the host does not know if the network can deliver it or not (unreliable)
- Each packet is delivered independently of all other packets
- Switches and links fail, alternate paths route around problems

Datagram Forwarding

...

Destination	Port
A	3
В	0
C	3
D	3
E	2
F	1
	•••

Destination	Port
A	0
В	3
C	0
D	0
E	0
F	0

Forwarding Tables

Destination	Port
Α	?
В	?
C	?
D	?
E	2
F	1

Destination	Port
Α	?
В	3
C	?
D	?
E	?
F	?

Forwarding Tables

Switch 2

Destination	Port
	3
В	?
С	?
D	?
E	2
F	1

Switch 3

Destination	Port
Α	3
В	3
C	?
D	?
E	?
F	?

Virtual Circuit Switching

- Set up connection between hosts through network
- Datagrams then go through connection
- Only need addresses to set up connection

Virtual Circuit Switching

How do we set up the connection?

Virtual Circuit Setup

- Signaling protocol, out of band data between switches
- Host embeds global unique address of destination
- Broadcast like through switches to find destination
- Circuit set up on return path confirmations

Virtual Circuit Switching

Pros:

- Less overhead on individual packets (less addressing)
- Less variability in delivery time across network
- Lots of knowledge about the network after setup (times, buffers, etc.)
- Quality of Service (QoS) easier* to implement

Cons:

- At least 1 x RTT to setup connection
- If switch or link fails, need to make new connection
- Convoluted out-of-band setup and signaling needed.

Source Routing

"Rotate" the address field to create return path

Bridges and L2 Switches

- Learning Bridges
- Spanning Tree Algorithm
- Broadcast and Multicast
- Limitations

Learning Bridge

Same as we saw earlier, listen to the source addresses on each port (promiscuously)

More Complex Connections

When the extended LAN has a <u>loop</u> in it, our previous strategies may have delivery problems

Which roads should we pave to get complete yet least expensive connectivity?

Spanning Tree

 Which connections would you choose to build to keep total cost down?

 Can you come up with a strategy or process to solve this problem? ...for any network?

Spanning Tree

The Big Idea

- Bridges select ports they will forward packets
- These ports will cover the network without loops
- Some switches will <u>disable</u> ports to prevent loops
- <u>Distributed Algorithm</u>, all bridges run it independently

Spanning Tree Result

Spanning Tree Algorithm

- Exchange Configuration Messages on all ports <BridgeID, RootID, Distance>
 - My Bridge Identifier
 - Bridge I think is the root bridge
 - Distance (in hops) from me to root
- Pretend I'm the root bridge and send out configuration <me, me, 0>
- Record best configuration messages on each port
 - Root ID is smaller than the what I think is the Root ID
 - Root ID is the same but shorter distance
 - Root ID and distance are the same but sending bridge ID is smaller
- If new configuration is better than old one
 - Discard old one
 - Stop generating own configuration messages
 - Send out new configuration adding one (1) to distance field

Broadcast & Multicast

Broadcast — forward out other ports (simple)

- Multicast forward out other ports (simple)
 - A bridge <u>could</u> however be intelligent about it and pay attention to hosts on LANs that subscribe to multicast addresses

Limitations

- Spanning Tree <u>does not scale well</u> beyond "tens of" bridges (linear)
- Broadcasting of frames across large network eats up bandwidth
 - Virtual LANs (VLANs) offer a solution to this

Virtual LANs

fin

Switching Options

- Datagram (connectionless)
- Circuit Switched (connection-oriented)
- Source Routing

Bridges

- Learning
- Spanning Tree Algorithm
- Limitations and Virtual LANs