

Klasifikasi Biji Kopi Arabika dan Robusta Menggunakan Ekstraksi Fitur GLCM dan Algoritma Klasifikasi Random Forest

Rashif Dhafin Fairiza - 24060119140079

Dosen Pembimbing:

- Drs. Eko Adi Sarwoko, M.Kom.
- Edy Suharto, S.T., M.Kom.

Latar Belakang

Kopi merupakan minuman hasil olahan dari biji tanaman kopi (Solihin dkk, 2019). Kopi berdasarkan jenis dibagi menjadi dua yaitu kopi arabika dan kopi robusta (Cahyono dkk, 2022). Namun, masih banyak orang yang mengalami kesusahan dalam membedakan biji kopi arabika dan biji kopi robusta dari bentuk visual. Oleh karena itu, diperlukan sebuah teknologi yang mampu mengklasifikasikan biji kopi arabika dan biji kopi robusta.

Perbedaan Biji Kopi Arabika dan Robusta (Panggabean, 2011)

No	Deskripsi	Arabika	Robusta
01	Bentuk biji	Memanjang	Bulat
02	Celah tengah	Berlekuk	Lurus Memanjang
03	Kulit ari pada celah tengah	Masih ada	Tidak ada

Studi Pustaka

No	Peneliti	Metode Ekstraksi Fitur	Fitur yang diekstraksi	Metode Klasifikasi	Hasil
01	Pamuji & Supatman (2019)	Morfologi dan Statistik objek	Luas, Tinggi, Lebar, Mean, Variance, dan Standar Deviasi	Learning Vector Quantization (LVQ)	Akurasi rata- rata = 97%
02	Solihin dkk (2019)	Invariant moment.	M1, M2, M3, M4, M5, M6, dan M7.	K-Nearest Neigbour (KNN)	Akurasi = 67.5%
03	Jatmoko & Sinaga (2022)	GLCM dengan orientasi sudut 0°, 45°, 90°, dan 135°.	Contrast, Correlation, Energy, dan Homogeneity.	K-Nearest Neigbour (KNN)	Akurasi = 95%

Studi Pustaka (Lanjutan)

No	Peneliti	Metode Ekstraksi Fitur	Fitur yang diekstraksi	Metode Klasifikasi	Hasil
04	Rahmawati dkk (2021)	GLCM dengan orientasi sudut 0°.	Contrast, Correlation, Homogeneity, ASM, Dissimilarity, dan Energy.	Algoritma C4.5	Akurasi = 94%
05	Syahputra dkk (2019)	GLCM, Invariant moment, dan morfologi.	GLCM: ASM, Contrast, Correlation, IDM, dan Entropy. Invariant Moment: M1, M2, M3, M4, M5, M6, dan M7. Morfologi: Area, Compactness, Roundness, dan Leaning.	Artificial Neural Network(ANN)	Akurasi GLCM = 97% Akurasi Invariant moment = 79% Akurasi Morfologi = 69%

Studi Pustaka (Lanjutan)

No	Peneliti	Metode Ekstraksi Fitur	Fitur yang diekstraksi	Metode Klasifikasi	Hasil
06	Pramunendar dkk (2020)	GLCM dengan orientasi sudut 0°.	Contrast, Angular Second Moment (ASM), Correlation, IDM, dan Entropy	Random Forest	Akurasi = 98.54%

Rumusan Masalah

2

Bagaimana cara mengklasifikasikan biji kopi arabika dan robusta menggunakan ekstraksi fitur GLCM dan algoritma Random Forest? Berapa nilai akurasi yang didapatkan dari klasifikasi biji kopi arabika dan robusta menggunakan ekstraksi fitur GLCM dan algoritma Random Forest?

Tujuan

2

Mengklasifikasikan biji kopi arabika dan robusta menggunakan ekstraksi fitur GLCM dan algoritma Random Forest. Mengetahui nilai akurasi yang didapatkan dari klasifikasi biji kopi arabika dan robusta menggunakan ekstraksi fitur GLCM dan algoritma Random Forest.

Manfaat

2

Mengetahui cara mengklasifikasi biji kopi arabika dan robusta menggunakan ekstraksi fitur GLCM dan algoritma Random Forest. Berkontribusi terhadap perkembangan penelitian tentang klasifikasi biji kopi arabika dan robusta.

Ruang Lingkup

Perkakas

Menggunakan bahasa pemrograman Python dan perkakas Google Colaboratory

Jumlah Citra

200 citra terdiri dari 100 citra biji kopi Arabika Gayo dan 100 citra biji kopi Robusta Temanggung

Biji Kopi

Biji kopi Arabika Gayo dan biji kopi Robusta Temanggung yang didapat dari Toko Kopi Podjok Solo

Pembagian Data

80% data latih dan 20% data uji

Citra Biji Kopi

Citra dari biji kopi yang sudah dipanggang

Langkah Klasifikasi

Gray Level Co-occurrence Matrix (GLCM)

Gray Level Co-occurrence Matrix (GLCM) adalah metode ekstraksi fitur berdasarkan tekstur. GLCM menggunakan perhitungan tekstur pada orde kedua dengan memperhitungkan pasangan dua piksel citra asli, sedangkan pada orde pertama memakai perhitungan statistik berdasarkan citra asli tanpa memperhatikan piksel ketetanggaan. Co-occurrence merupakan banyaknya kejadian pada satu level piksel yang bertetangga dengan piksel lainnya berdasar jarak (d) dan orientasi suatu sudut (θ) .

Gray Level Co-occurrence Matrix (GLCM)

Empat langkah ekstraksi fitur:

Menghitung matriks Cooccurrence dengan
parameter jarak antar piksel
dan orientasi sudut yang
digunakan

Simetriskan matriks Co-occurrence

Normalisasi matriks Cooccurrence

Menghitung nilai fitur yang diekstraksi dari matriks *Co-occurrence*

Gray Level Co-occurrence Matrix (GLCM)

Contrast

Mengukur perbedaan intensitas keabuan pada citra

Dissimilarity

Mengukur ketidakmiripan pada suatu tekstur

Homogeneity

Mengukur tingkat homogenitas citra yang memiliki derajat keabuan yang sama

ASM

Mengukur homogenitas sebuah citra

Energy

Nilai akar dari ASM untuk mengukur sebuah tekstur

Correlation

Mengukur dependensi linear tingkat keabuan pada pasangan piksel yang bertetangga

Random Forest

Skenario

Parameter Sudut

- n°
- 45°
- 90°
- 135°

Jumlah Pohon

- 50
- 100
- 150
- 200

Demo Program

Kesimpulan & Saran

- Cara mengklasifikasi adalah akuisisi citra, cropping citra, resize citra, grayscaling citra, ekstraksi fitur dengan GLCM, pemisahan data latih dan data uji, melatih model klasifikasi menggunakan data latih dan jumlah pohon keputusan yang digunakan, pengujian model klasifikasi menggunakan data uji dan evaluasi.
- Nilai akurasi tertinggi yang didapat adalah 92.5%.
- Penelitian ini masih dapat dikembangkan dengan mengubah tahap preprocessing, ekstraksi fitur maupun algoritma klasifikasi yang digunakan.
- Tahap preprocessing dapat diubah menyesuaikan citra dan jenis ekstraksi fitur yang digunakan.
- Jika algoritma klasifikasi yang digunakan adalah Random Forest, bisa mengubah parameter lain selain jumlah pohon seperti splitting pohon menggunakan entropy.

