

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 9 по курсу «Функциональное и Логическое Программирование» на тему: «Использование правил в программе на Prolog»

Студент <u>ИУ7-61Б</u> (Группа)	(Подпись, дата)	Корниенко К. Ю. (И. О. Фамилия)
Преподаватель	(Подпись, дата)	Строганов Ю. В. (И. О. Фамилия)

1 Практический раздел

1.1 Задание

Создать базу знаний: «ПРЕДКИ», позволяющую наиболее эффективным способом (за меньшее количество шагов, что обеспечивается меньшим количеством предложений БЗ – правил), и используя разные варианты (примеры) одного вопроса, определить (указать: какой вопрос для какого варианта):

- 1. по имени субъекта определить всех его бабушек,
- 2. по имени субъекта определить всех его дедушек,
- 3. по имени субъекта определить всех его бабушек и дедушек,
- 4. по имени субъекта определить его бабушку по материнской линии,
- 5. по имени субъекта определить его бабушку и дедушку по материнской линии.

Минимизировать количество правил и количество вариантов вопросов. Использовать конъюнктивные правила и простой вопрос.

Для одного из вариантов ВОПРОСА и конкретной БЗ составить таблицу, отражающую конкретный порядок работы системы.

Дополнить базу знаний правилами, позволяющими найти:

- 1. максимум из двух чисел (с/без использования отсечения);
- 2. максимум из трех чисел (с/без использования отсечения).

Убедиться в правильности результатов.

Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов ВОПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы.

1.2 Текст программы

Листинг 1.1 – Текст программы

```
father (ivan, petya).
father (petya, vasya).
father(nastya, grisha).
mother(ivan, nastya).
mother(petya, lera).
mother (nastya, masha).
parent(X, Y) :-
                     father(X, Y); mother(X, Y).
grandfather(X, Y) := parent(X, Z), father(Z, Y).
grandmother(X, Y) :- parent(X, Z), mother(Z, Y).
grandparent(X, Y) := parent(X, Z), parent(Z, Y).
allgrandfathers(X, L) :- findall(Name, grandfather(X, Name), L).
allgrandmothers(X, L) :- findall(Name, grandmother(X, Name), L).
allgrandparents(X, L) :- findall(Name, grandparent(X, Name), L).
grandmothermline(X, Y) :-
                                mother(X, Z), mother(Z, Y), !.
grandparentsmline(X, GF, GM) :- mother(X, M), father(M, GF),
  mother (M, GM), !.
max(A, A, B) :- A >= B, !.
max(B, _, B).
max(A, B, C, A) :- A >= B, A >= C, !.
max(_, B, C, B) :- B >= C, !.
max(_, _, C, C).
\max([X], X) :- !.
\max([X | Y], Z) :- \max(Y, Z), Z > X, !.
max([X | _], X).
```

Порядок поиска ответа

№ шаг	Сравниваемые термы; результат; подстановка	Дальнейшие действия	Резольвента
1	T1=grandmothermline(ivan, GM) T2=grandmothermline(X, Y) унифицированы theta={X=ivan, Y=GM}	Прямой ход, замена терма вопроса в резольвенте на тело правила.	mother(ivan, Z) mother(Z, GM)
2	T1=mother(ivan, Z) T2=mother(ivan, nastya) унифицированы theta={Z=nastya}	Подобран факт. Удаление терма из резольвенты.	mother(nastya, GM)
3-4	T1=mother(nastya, GM) T2=mother(ivan, nastya) не унифицированы	Переход к следующему правилу в базе знаний.	mother(nastya, GM)
5	T1=mother(nastya, GM) T2=mother(nastya, masha) унифицированы theta={GM=masha}	Подобран факт. Вывод найденного решения. Отсечение дерева поиска, поиска других рещений не происходит. Завершение работы.	

Рисунок 1.1 – Порядок ответа на вопрос «по имени субъекта определить его бабушку по материнской линии»

№ шаг	Сравниваемые термы; результат; подстановка	Дальнейшие действия	Резольвента
1	T1=max(X, 10, 24) T2=max(A, A, B) унифицированы theta={X=A, A=10, B=24}	Прямой ход, замена терма вопроса в резольвенте на тело правила.	10 >= 24
2	Системный предикат >= 10 >= 24 результат: по	Тупиковая ситуация. Откат к предыдущему состоянию резольвенты.	max(X, 10, 24)
3	T1=max(X, 10, 24) T2=max(B, _, B) унифицированы theta={X=B, B=24}	Подобран факт. Резольвента пуста, вывод результата.	пуста

Рисунок 1.2 — Порядок поиска ответа для 1 варианта max

№ шага	Сравниваемые термы; результат; подстановка	Дальнейшие действия	Резольвента
1	T1=max(X, 8, 3, 11) T2=max(A, A, B, C) унифицированы theta={X=A, A=8, B=3, C=11}	Прямой ход, замена терма в резольвенте на тело правила.	8 >= 3, 8 >= 11
2	Системный предикат >= 8 >= 3 результат: yes	Прямой ход. Удаление терма резольвенты.	8 >= 11
3	Системный предикат >= 8 >= 11 результат: по	Тупиковая ситуация. Откат к предыдущему состоянию резольвенты.	max(X, 8, 3, 11)
4	T1=max(X, 8, 3, 11) T2=max(B, _, B, C) унифицированы theta={X=B, B=3, C=11}	Прямой ход, замена терма в резольвенте на тело правила.	8 >= 11
5	Системный предикат >= 8 >= 11 результат: по	Тупиковая ситуация. Откат к предыдущему состоянию резольвенты.	max(X, 8, 3, 11)
6	T1=max(X, 8, 3, 11) T2=max(C, _, _, C) унифицированы theta={X=C, C=11}	Подобран факт. Завершение работы алгоритма. Вывод результата.	

Рисунок 1.3 – Порядок поиска ответа для 2 варианта тах