A Book of Abstract Algebra (2nd Edition)

` _	oon of Alboniaet Augeb	ra (Ziia Zo	
	Chapter 33, Problem 2EC	Bookmark	Show all steps: ON
	Problem		
	Let a be a prime number, and a primitive of the	root of unity in the field	E
	Let p be a prime number, and ω a primitive p th root of unity in the field F . Explain why $x^p - a$ factors in $F[x]$ as $x^p - a = p(x)f(x)$, where both factors have degree ≤ 2 . Step-by-step solution Step 1 of 3 Here, objective is to explain why $x^p - a$ factors in $F(x)$ Comment Step 2 of 3 Consider the polynomial $x^p - a \in F(x)$ Where, P is a prime and $x^p - a$ is reducible in $F(x)$ And the factors $p(x)$ and $f(x)$ have degree ≤ 2 .		
	Comment		
	Step 3 of 3		
	Let		
	$x^p - a = p(x)f(x)$		

 $0 < \deg p(x), \deg f(x) \le \deg x^p - a$

 $\deg x^p - a = \deg p(x) + \deg f(x)$

We know that,

```
Then, one of the factors are taking of the form x-a; a \in F

Thus x^p-a has zero a in F(x).

That is, p(x) and f(x) both the factors are in F(x)

Hence, x^p-a Factors in F(x), where both the factors p(x) and f(x) have degree \leq 2.

Comment
```