CHAPTER 6

Graph Theory

6.1. Graphs

6.1.1. Graphs. Consider the following examples:

- 1. A road map, consisting of a number of towns connected with roads.
- 2. The representation of a binary relation defined on a given set. The relation of a given element x to another element y is represented with an arrow connecting x to y.

The former is an example of (undirected) *graph*. The latter is an example of a *directed graph* or *digraph*.

FIGURE 6.1. Undirected Graph.

In general a graph G consists of two things:

- 1. The $vertex\ set\ V$, whose elements are called $vertices,\ nodes$ or points.
- 2. The edge set E or set of edges connecting pairs of vertices. If the edges are directed then they are also called directed edges or arcs. Each edge $e \in E$ is associated with a pair of vertices.

FIGURE 6.2. Directed Graph.

A graph is sometimes represented by the pair (V, E) (we assume V and E finite).

If the graph is undirected and there is a unique edge e connecting x and y we may write $e = \{x, y\}$, so E can be regarded as set of unordered pairs. In this context we may also write e = (x, y), understanding that here (x, y) is not an ordered pair, but the name of an edge.

If the graph is directed and there is a unique edge e pointing from x to y, then we may write e = (x, y), so E may be regarded as a set of ordered pairs. If e = (x, y), the vertex x is called *origin*, *source* or *initial point* of the edge e, and y is called the *terminus*, *terminating* vertex or terminal point.

FIGURE 6.3. Graph with parallel edges.

Two vertices connected by an edge are called adjacent. They are also the endpoints of the edge, and the edge is said to be incident to each of its endpoints. If the graph is directed, an edge pointing from vertex x to vertex y is said to be incident from x and incident to y. An edge connecting a vertex to itself is called a loop. Two edges connecting the same pair of points are called parallel. A graph with neither loops nor parallel edges is called a simple graph.

The degree of a vertex v, represented $\delta(v)$, is the number of edges that contain it (loops are counted twice). A vertex of degree zero (not connected to any other vertex) is called *isolated*. A vertex of degree 1 is called *pendant*.

A path is a sequence of vertices (v_k) and edges (e_k) of the form $v_0, e_1, v_1, e_2, v_2, \ldots, e_n, v_n$, where each edge e_k connects v_{k-1} with v_k (and points from v_{k-1} to v_k if the graph is directed).

A weighted graph is a graph whose edges have been labeled with numbers. The *length* of a path in a weighted graph is the sum of the weights of the edges in the path.

FIGURE 6.4. Weighted Graph.

6.1.2. Special Graphs. Here we examine a few special graphs.

The n-cube: A graph with with 2^n vertices labeled $0, 1, \ldots, 2^n - 1$ so that two of them are connected with an edge if their binary representation differs in exactly one bit.

FIGURE 6.5. 3-cube.

Complete Graph: a simple undirected graph G such that every pair of distinct vertices in G are connected by an edge. The complete graph

of n vertices is represented K_n (fig. 6.6). A complete directed graph is a simple directed graph G = (V, E) such that every pair of distinct vertices in G are connected by exactly one edge—so, for each pair of distinct vertices, either (x, y) or (y, x) (but not both) is in E.

FIGURE 6.6. Complete graph K_5 .

Bipartite Graph: a graph G = (V, E) in which V can be partitioned into two subsets V_1 and V_2 so that each edge in G connects some vertex in V_1 to some vertex in V_2 . A bipartite simple graph is called *complete* if each vertex in V_1 is connected to each vertex in V_2 . If $|V_1| = m$ and $|V_2| = n$, the corresponding complete bipartite graph is represented $K_{m,n}$ (fig. 6.7).

A graph is bipartite iff its vertices can be colored with two colors so that every edge connects vertices of different color.

Question: Is the n-cube bipartite. Hint: color in red all vertices whose binary representation has an even number of 1's, color in blue the ones with an odd number of 1's.

FIGURE 6.7. Complete bipartite graph $K_{3,4}$.

Regular Graph: a simple graph whose vertices have all the same degree. For instance, the n-cube is regular.

6.1.3. Subgraph. Given a graph G=(V,E), a subgraph G'=(V',E') of G is another graph such that $V'\subseteq V$ and $E'\subseteq E$. If V'=V then G' is called a spanning subgraph of G.

Given a subset of vertices $U \subseteq V$, the subgraph of G induced by U, denoted $\langle U \rangle$, is the graph whose vertex set is U, and its edge set contains all edges from G connecting vertices in U.