MACHINE LEARNING

Uma introdução prática

HELLO WORLD!

Autores

@colombelli

fcolombelli@inf.ufrgs.br

@jpelax

jprodrigues@inf.ufrgs.br

Monitores

@birromer

bhflores@inf.ufrgs.br

@phpgit2

pedro.fiorentin@inf.ufrgs.br

2. Enfoque do curso

Redes neurais artificiais na prática

TECNOLOGIAS E FERRAMENTAS

- Python + Google Colab
- Keras
- TensorFlow
- PyTorch
- Scikit-Learning

3. Motivação

Por que estudar machine learning?

Para quê?

Robótica

Governo

Transporte

Negócios

Varejo

Saúde

Data doesn't lie

 "In the past year, the number of PhD graduates on LinkedIn who say they have AI expertise has risen by 66%" - Nature.com

"Machine learning engineer is the best job of 2019 due to growing demand and high salaries" - Indeed.com

 "Global machine learning market is expected to grow from \$1.4B in 2017 to \$8.8B by 2022" -ResearchAndMarkets.com

Indeed's best jobs of 2019

Rank	Job title	% growth in # of postings, 2015–2018	Average base salary	# of postings per 1million total tobs, 2018
1	Machine Learning Engineer	344%	\$146,085	179
2	Insurance Broker	242%	\$86,498	32
3	Full-stack Developer	206%	\$114,316	828
4	Insurance Advisor	190%	\$81,479	45
5	Litigation Attorney	168%	\$101,289	92
6	Litigation Associate	165%	\$98,982	53
7	Dental Hygienist	157%	\$78,110	878
8	Associate Attorney	149%	\$75,515	281
9	Realtor	138%	\$96,820	221
10	Salesforce Developer	129%	\$112,031	170

Job title's

Fonte: http://blog.indeed.com/2019/03/14/best-jobs-2019/

Fonte: https://www.nature.com/articles/s41746-018-0061-1

Number of publications per year from a web of science search for articles with topics of machine learning and either chemistry or materials.

Fonte:https://www.researchgate.net/figure/Number-of-publications-per-year-from-a-web-of-science-search-for-articles-with-topics-of_fig1_326028833

Conceitos envolvidos Situando-se nesse universo de informações

Artificial Intelligence vs Machine Learning

- Conceito mais amplo
- Uso de computadores para imitar funções cognitivas de seres humanos
- Algoritmos que funcionam de maneira inteligente

- Subárea de IA
- Foca na habilidade possuída por máquinas de receber um conjunto de dados e aprenderem por si próprias

Data Science vs Data Mining

- Uma área
- Multidisciplinar
- Análise social, construção de modelos preditivos, descobrimento de fatos desconhecidos, etc
- Foco na ciência

- Um conjunto de técnicas
- Faz parte de Data Science
- Achar padrões e tendências
- Foco no processo / algoritmos

Supervised vs Unsupervised Learning

Supervised learning trabalha em cima de dados rotulados

- Classificação: quando a variável de saída é uma categoria
- Regressão: quando a variável de saída é um número real
- Algoritmos: SVM, Random Forest, Linear Regression, Redes neurais

Unsupervised learning só tem os dados "crus"

- Clustering: agrupamentos de dados (k-means)
- Association: quando se quer descobrir regras que governam os dados como "pessoas que compram X também tendem a comprar Y" (Apriori algorithm)

E quanto a redes neurais vs deep learning?

Guardem no buffer...

5.
Redes Neurais
Artificiais, Teoria

Primeiro vamos entender teoricamente como uma ANN funciona.

- Como seu cérebro consegue classificar cada dígito?
- Como você escreveria um algoritmo para identificar cada imagem como um dígito específico?
- Tarefas complexas!

Há diversas variações de redes neurais

Neste curso focaremos em Multilayer Perceptron (obrigado 3b1b)

NEURAL NETWORK ARCHITECTURE TYPES

Inspiração Biológica

28

 $28 \times 28 = 784$

0.58

"Activation"

A camada de Output

Hidden Layers

HIDDEN LAYERS

- Quebrar tarefas complexas
- Melhorar performance
- Muitos exemplos podem explorar essa característica

Reconhecimento facial, reconhecimento de fala, etc

COMO FAZEMOS AS ATIVAÇÕES DE UMA CAMADA AFETAR AS OUTRAS?

Problema: valor de ativação muito alto

Solução: espremer valores num intervalo

COMO FAZER COM QUE AS ATIVAÇOES **ESTEJAM** DELIMITADAS EM UM INTERVALO ESPECÍFICO?

Função de Ativação

Bias

E isso para todos os neurônios...

Representação compacta formal

Feedforward

O PROCESSO DE APRENDIZAGEM

- 1. Iniciamos a rede com pesos e bias aleatórios
- 2. Alimentamos com uma amostra
- 3. Calculamos o erro do output
- 4. Atualizamos os pesos baseado nesse erro
- 5. Retornamos ao passo 2.

COMO CALCULAR O ERRO ENTRE A SAIDA DA REDE NEURAL E A SAIDA IDEAL?

Cost Functions!

Alto quando ela ainda não foi treinada

Baixo quando ela se aproxima do correto

CALCULADO O CUSTO, COMO ATUALIZAMOS OS VALORES DOS PESOS?

"Bola descendo um morro"

Vários mínimos locais

Você pode acabar em diversos vales distintos dependendo do input randômico inicial.

Não há nenhuma garantia de que o mínimo local encontrado seja o menor valor possível para a função de custo.

O algoritmo para minimizar a função

GRADIENT DESCENT

- "Método do gradiente" / "método do máximo declive"
- Procura mínimos locais na função
- Na prática nos diz como alterar os pesos e bias das conexões para diminuir o custo eficientemente

Backtracking

Hidden layers na prática...

Hidden layers na prática... Alquimia.

6. Keras

Redes neurais artificiais na prática

0 que é Keras?

- Biblioteca open source licenciada pelo MIT
- Cross-Platform: TensorFlow (que utilizaremos),
 Microsoft Cognitive Toolkit, Theano ou PlaidML
- Construção de redes neurais
- Escrita em Python

Por que utilizar Keras?

- Setup de modelos rápido
- User-friendly
- Experimentação
- Backend otimizado

HANDS ON!

Bora criar nossa primeira rede neural artificial :))

Inicialização

```
[3] import tensorflow as tf

model = tf.keras.models.Sequential()
```

Adicionando camadas

```
[5] import tensorflow as tf

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Dense(16, activation=tf.nn.sigmoid, input_dim=784))

model.add(tf.keras.layers.Dense(16, activation=tf.nn.sigmoid))
model.add(tf.keras.layers.Dense(10, activation=tf.nn.sigmoid))
```

.Flatten()

```
[14] import tensorflow as tf

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(16, activation=tf.nn.sigmoid, input_dim=784))
model.add(tf.keras.layers.Dense(16, activation=tf.nn.sigmoid))
model.add(tf.keras.layers.Dense(10, activation=tf.nn.sigmoid))
```

Optimizer e loss

Treino

```
[14] model.fit(x_train, y_train, epochs=5, batch_size=5)
```

TL;DR

```
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(16, activation=tf.nn.sigmoid,
                                input dim=784))
model.add(tf.keras.layers.Dense(16, activation=tf.nn.sigmoid))
model.add(tf.keras.layers.Dense(10, activation=tf.nn.sigmoid))
opt = tf.keras.optimizers.SGD(lr=0.1)
model.compile(loss='mean squared error',
             metrics=['accuracy'], optimizer=opt)
model.fit(x train, y train, epochs=5, batch size=5)
```