2017 A6. (1) $\dim \operatorname{Ker} A \neq \dim \operatorname{Ker} B \Longrightarrow [A] \neq [B]$ より $X = \{[O]\} \sqcup \{[I]\} \sqcup \{[A] : \dim \operatorname{Ker} A = 1\}$ が $\mathbb{R}P^1$ に同相であることを示せばよい。

claim 集合として次のような一致が成り立つ:

$$\{[A] \in X : \dim \operatorname{Ker} A = 1\} = \left\{ [P_{\theta}] \in X \middle| P_{\theta} = \begin{pmatrix} \cos^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^{2} \theta \end{pmatrix}, \ \theta \in \mathbb{R} \right\}$$
 (0.1)

① 「つ」は明らかなので、「 \subset 」を示す。各 $\alpha \in X$ に対し、 $\alpha = [A]$ となる $A \in M_2(\mathbb{R})$,dim Ker A = 1 をひとつ選ぶ。このとき dim(Ker f_A) $^{\perp} = 2$ – dim Ker $f_A = 1$ ゆえに (Ker f_A) $^{\perp}$ は \mathbb{R}^2 内の原点を通る直線だから、ある $\theta \in \mathbb{R}$ であって (Ker f_A) $^{\perp} = \mathbb{R}e^{i\theta}$ なるものが存在する。このとき P_{θ} は (Ker f_A) $^{\perp}$ への直交射影である。したがって Ker $A = \operatorname{Ker} P_{\theta}$ だから $\alpha = [A] = [P_{\theta}]$ となる。これで「 \subset 」が示されて、claim の証明が完了した。

あとは $X' := \{[P_{\theta}]: \theta \in \mathbb{R}\}$ とおいて $X' \approx \mathbb{R}P^1$ を示せばよい。まず写像 $\mathbb{R} \to M_2(\mathbb{R}), \ \theta \mapsto P_{\theta}$ は連続かつ $2\pi\mathbb{Z}$ の作用で不変だから、連続写像 $S^1 \to M_2(\mathbb{R}), \ e^{i\theta} \mapsto P_{\theta}$ が誘導される。これより連続全射 $S^1 \to X', \ e^{i\theta} \mapsto [P_{\theta}]$ が得られる。これは $\{\pm 1\}$ の作用で不変 $(:: P_{-\theta} \ \text{は} \mathbb{R}^t (\cos(-\theta), \sin(-\theta)) = \mathbb{R}^t e^{i\theta}$ への直交 射影ゆえに $\ker P_{-\theta} = \ker P_{\theta}$) だから、連続全射 $\mathbb{R}P^1 \to X', \ [e^{i\theta}]_{\text{proj}} \mapsto [P_{\theta}]$ が誘導される。ここで、この写像 は単射である。

 $\Theta, \theta' \in \mathbb{R}$ に関し、 $[P_{\theta}] = [P_{\theta'}]$ ならば $\operatorname{Ker} P_{\theta} = \operatorname{Ker} P_{\theta'}$ ゆえに $(\operatorname{Ker} P_{\theta})^{\perp} = (\operatorname{Ker} P_{\theta'})^{\perp}$ であり、 $e^{i\theta} \in (\operatorname{Ker} P_{\theta})^{\perp}$, $e^{i\theta'} \in (\operatorname{Ker} P_{\theta'})^{\perp}$ であることとあわせて $e^{i\theta}$, $e^{i\theta'}$ は同じ直線上にあることがわかる。したがって $[e^{i\theta}]_{\operatorname{proj}} = [e^{i\theta'}]_{\operatorname{proj}}$ である。

コンパクト空間から Hausdorff 空間への連続全単射は同相であるから、 $\mathbb{R}P^1 \approx X'$ が示された。

- (2) $[O] \in U$ open X とすると、 $O \in \pi^{-1}(U)$ open $M_2(\mathbb{R})$ である。ここで、任意の $A \in M_2(\mathbb{R})$ に対し、ある c > 0 であって $cA \in \pi^{-1}(U)$ となるものが存在することに注意すれば、 $[A] = [cA] \in U$ である。したがって U = X である。
 - (3) 次のことが成り立つ:
 - $\{[O]\}$ は X の開集合でなく、閉集合である。 $\{[O]\}$ を含む開集合は X 全体のみである。
 - {[*I*]} は *X* の開集合であり、閉集合でない。
 - X' は X の開集合でない。X' を含む開集合として $X \setminus \{[O]\}$ が存在する。

したがって X の自己同相写像は [O], [I] を固定する。よって、(1) の同相 $\mathbb{R}P^1 \to X'$ を F とおけば、各 $\varphi \in \operatorname{Homeo}(X)$ に対し $F^{-1} \circ (\varphi|_{X'}) \circ F \in \operatorname{Homeo}(\mathbb{R}P^1)$ を割り当てる対応が全単射 $\operatorname{Homeo}(X) \to \operatorname{Homeo}(\mathbb{R}P^1)$ を与える。