1.	Zmie Wyz	enn znac	a lo czyć	sow	a (2 stry	X, Ybua	′) n ntę	na g $F(s)$	(x,t)	ość o tej z	okre zmie	éslor enne	ıą w ej.	zor	em	f(x)	(y)	=	xy	na [[0, 1]	×	[0, 2].

4. (Chernoff) Wykazać, że $P(X \ge a\lambda) \le \left(\frac{1}{a}\right)^{a\lambda} \exp\left[\lambda(a-1)\right]$. $P(x \ge a / 1) = P(x - \lambda \ge \lambda(a - 1)) = P(e_{x}p(x - \lambda) \ge e_{x}p(\lambda(a - 1))) \le$ $\leq M(1)e \times (-\sqrt{(a-1)}) = e \times p(\lambda(e-1) - \lambda(a-1)) =$ $= e \times \rho (\lambda(e-1)-2\lambda(a-1)+\lambda(a-1)) =$ $= \exp(|e-\lambda-2|a+2\lambda)\cdot \exp(|\lambda(a-1)|) =$ $=e_{XP}(\Lambda(e-2\alpha+1))$

