

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesor: Mauricio Bustamante – Estudiante: Benjamín Mateluna

Topología Álgebraica - MAT2850 Tarea 4 07 de noviembre de 2025

Problema 1

(1) En primer lugar veamos que • esta bien definida, es decir, dados α, β caminos basados en x_0 tales que $[\alpha] = [\beta]$, entonces $\widehat{x} \cdot [\alpha] = \widehat{x} \cdot [\beta]$. En efecto, por levantamiento de homotopías relativas, se sigue que $\widehat{\alpha}(1) = \widehat{\beta}(1)$, lo que implica que

$$\widehat{x} \cdot [\alpha] = \widehat{\alpha}(1) = \widehat{\beta}(1) = \widehat{x} \cdot [\beta]$$

Además, como $p\widehat{\alpha} = \alpha$, se sigue que $\widehat{\alpha}(1) \in p^{-1}(x_0)$. Veamos que • induce una acción por la derecha de $\pi_1(X, x_0)$ en $p^{-1}(x_0)$. Sea $\widehat{x} \in p^{-1}(x_0)$ y ct_{x_0} el lazo constante basado en x_0 . Notemos que el lazo $ct_{\widehat{x}}$ levanta a ct_{x_0} , luego $\widehat{x} \cdot [ct_{x_0}] = ct_{\widehat{x}}(1) = \widehat{x}$.

Sean α, β lazos basados en x_0 y $\widehat{x} \in p^{-1}(x_0)$. Afirmamos que $[p(\widehat{\alpha}^{-1} * \widehat{\alpha} * \widehat{\beta})] = [\beta]$ en $\pi_1(X, x_0)$. En primer lugar, vemos que

$$p(\widehat{\alpha}^{-1} * \widehat{\alpha * \beta})(0) = \alpha(1) = x_0 \quad \text{y} \quad p(\widehat{\alpha}^{-1} * \widehat{\alpha * \beta})(1) = \beta(1) = x_0$$

por lo que la expresión tiene sentido. Por otro lado, notemos que $p(\widehat{\alpha}^{-1} * \widehat{\alpha * \beta}) = p(\widehat{\alpha}^{-1}) * \alpha * \beta$ y adicionalmente tenemos que

$$[\alpha] * [p\widehat{\alpha^{-1}}] = [ct_{x_0}] = p_*[ct_{\widehat{\alpha}}] = p_*[\widehat{\alpha} * \widehat{\alpha}^{-1}] = [p(\widehat{\alpha} * \widehat{\alpha}^{-1})] = [p\widehat{\alpha} * p\widehat{\alpha}^{-1}] = [p\widehat{\alpha}] * [p\widehat{\alpha}^{-1}] = [\alpha] * [p\widehat{\alpha}^{-1}]$$

lo que implica que $p\hat{\alpha}^{-1} \sim \alpha^{-1}$, lo que prueba la afirmación. Así, se tiene lo siguiente

$$(\widehat{x} \boldsymbol{\cdot} [\alpha(1)]) \boldsymbol{\cdot} [\beta] = \widehat{\alpha}(1) \boldsymbol{\cdot} [\beta] = \widehat{\alpha}(1) \boldsymbol{\cdot} [p(\widehat{\alpha}^{-1} \ast \widehat{\alpha \ast \beta})] = \widehat{\alpha \ast \beta}(1) = \widehat{x} \boldsymbol{\cdot} [\alpha \ast \beta]$$

Notar que $\widehat{\alpha}^{-1} * \widehat{\alpha * \beta}(0) = \widehat{\alpha}(1)$.

(2) Supongamos que \widehat{X} es arcoconexo, sean $\widehat{x}_1, \widehat{x}_2 \in p^{-1}(x_0)$, existe $\widehat{\gamma}: [0,1] \to \widehat{X}$ continua tal que $\widehat{\gamma}(0) = \widehat{x}_1$ y $\widehat{\gamma}(1) = \widehat{x}_2$. Definimos $\gamma = p\widehat{\gamma}$, un lazo basado en x_0 , entonces

$$\widehat{x}_1 \cdot [\gamma] = \widehat{\gamma}(1) = \widehat{x}_2$$

Por otro lado, supongamos que • es transitiva. Sean $\widehat{x}, \widehat{y} \in \widehat{X}$, tenemos dos casos, $\widehat{x}, \widehat{y} \in p^{-1}(x_0)$ para algún $x_0 \in X$, entonces, existe un lazo γ basado en x_0 tal que $\widehat{\gamma}(0) = \widehat{x}$ y

$$\widehat{\gamma}(1) = \widehat{x} \cdot [\gamma] = \widehat{y}$$

por lo tanto, $\widehat{\gamma}$ es el camino buscado. En cambio, si $\widehat{x} \in p^{-1}(x)$ e $\widehat{y} \in p^{-1}(y)$ con $x \neq y$, como X es arcoconexo, existe un camino γ de modo que $\gamma(0) = x$ y $\gamma(1) = y$. Por lema del levantamiento $\widehat{\gamma}(0) = \widehat{x}$ y $\widehat{\gamma}(1) = \widehat{y'} \in p^{-1}(y)$ y por el caso anterior concluimos.

(3) Debemos probar que dado $\widehat{x} \in \widehat{X}$ se tiene que

$$p_*(\pi_1(\widehat{X},\widehat{x})) = S_{\widehat{x}}$$

donde $S_{\widehat{x}}$ es el estabilizador de \widehat{x} . Sea $[\alpha] \in S_{\widehat{x}}$, entonces $\widehat{x} = \widehat{x} \cdot [\alpha] = \widehat{\alpha}(1)$, como $p\widehat{\alpha} = \alpha$, concluimos que $[\alpha] \in p_*(\pi_1(\widehat{X}, \widehat{x}))$. Sea $[\alpha] \in p_*(\pi_1(\widehat{X}, \widehat{x}))$, entonces existe un lazo basado en \widehat{x} , digamos $\widehat{\alpha}$, tal que $[p\widehat{\alpha}] = [\alpha]$, entonces

$$\widehat{x} \cdot [\alpha] = \widehat{x} \cdot [p\widehat{\alpha}] = \widehat{\alpha}(1) = \widehat{x}$$

(4) Usando la parte anterior y orbita establizador, resulta que

$$\left| \frac{\pi_1(X, x_0)}{p_*(\pi_1(\widehat{X}, \widehat{x}))} \right| = |O_{\widehat{x}}| = |p^{-1}(x_0)|$$

donde en la última igualdad usamos que la acción es transitiva, o equivalentemente, que \hat{X} es arcoconexo.

Problema 2

Problema 3