Comp 7005 – Data Communication Principles

Assignment Three - November, 2009

Due Date: 1730 hrs - Tuesday, November 17, 2009

Criteria: You may work in groups of two. Assignments must be word-processed

and submitted by the date and time specified above.

Note: Clearly state any assumptions that you make in the solution of any of the

questions. Substantiate your answers and show all your work for each problem – the answer alone is insufficient to receive credit for the

question.

Section A

Work out the following problems in your textbook:

Chapter 4: P22.

Step		D(s),p(s)	D(t),p(t) D(u	ı),p(u)	D(v),p(v)	/) D(w),p(w)	D(y),p(y)
D(z)	,p(z)								
0	X	∞	∞	∞		3,x	6,x	6,x	∞
1	XV	∞	7,v	6,v	3	,x 6	,x	4,v	∞
2	xvy	∞	7,v	6,v	3	,x 6	,x	4,v	18,y
3	xvyu	10,u	7,v	6,v	3	,x 6	5,x	4,y	18,y
4	xvyuw	10,u	7,v	6,v	3	,x 6	5,x	4,y	18,y
5	xvyuwt	8,t	7,v	6,v	3	,x 6	5,x	4,y	12,t
6	xvyuwts		8,t	7,v	6,۱	<i>i</i> 3,:	x 6	,x	4,y
12,t									
7	xvyuwts	Z	8,t	7,v	6,۱	<i>i</i> 3,:	x 6	,x	4,y
12,t									

Chapter 5: P14

Wait for 51,200 bit times. For 10 Mbps, this wait time is:

$$\frac{51.2 \times 10^3 bits}{10 \times 10^6 bps} = 5.12 msec$$

For 100 Mbps, the wait is 512 μ sec.

Chapter 5: P15.

At t = 0 A transmits. At t = 576, A would finish transmitting. In the worst case, B

begins transmitting at time t = 224. At time t = 224 + 225 = 449 B 's first bit arrives at

A . Because 449 < 576 , A aborts before completing the transmission of the packet, as it is supposed to do.

Thus A cannot finish transmitting before it detects that B transmitted. This implies that if

A does not detect the presence of a host, then no other host begins transmitting while A is transmitting.

Section B

1. Assume that you have been given the following information for a system link:

Frequency of operation = 2.45 GHz

Transmit power = 15 dBm (Output power of the transmitting access point)

Connector + Cable loss = 3 dB (applied at both the transmit and receive ends)

Transmit/Receive antennae gain = 9 dBi

Receive power = Assume that the receiver gets the minimum required signal to meet its sensitivity specification (-50 dBm for a typical access point at 54 Mbit/s)

Distance = 1 Km.

Determine the link budget for this system. Comment on whether or not this is enough of a margin for the system to function reliably.

Use the Link budget equation: -23 dB – This is clearly not enough. We require at least a 5 dB margin for system to work properly.

- 2. A LinksysWRT-54G 802.11g wireless base station/router transmits 20 mW into a monopole antenna (assume antenna gain = 1.5 dBi). The signal is received by a laptop with antenna gain -1.5 dBi. Express your answers to the following questions in both mW and dBm.
 - (a) Estimate the received power at 200 m for free-space propagation.

$$P_R = -103.2 \text{ dB} = > -73.2 \text{ dBm}$$

(b) Estimate the received power at 2 km for free-space propagation.

$$P_R = -123.2 \text{ dB} = > -93.2 \text{ dBm}$$

- (c) Suppose that we need a minimum received power of -80 dBm for the receiver at the laptop to properly work. Determine whether the receiver will work at the distances in (a) and (b).
 - for a sensitivity of -80 dBm,
 - (a). $P_R = -73.2 \text{ dBm} > -80 \text{ dBm}$; will work
 - (b). $P_R = -93.2 \text{ dBm} < -80 \text{ dBm}$; will not work
- (d) Now suppose that you replace the monopole antenna in the Linksys router by a parabolic dish antenna with gain 15 dBi. Repeat (a), (b), and (c).

$$GT = 15 dBi$$

- (a). $P_R = -59.7 \text{ dBm} > -80 \text{ dBm}$; will work
- (b). P_R = -79.7 dBm > -80 dBm; will not work but barely! Not much of a margin here.