

软件项目管理

6 项目时间 (进度) 管理

6 项目时间管理

使项目沿着既定进度轨道前进

目 录

- 6.1 规划进度管理
- 6.2 定义活动
- 6.3 排列活动顺序
- 6.4 估算活动持续时间
- 6.5 制定进度计划
- 6.6 控制进度

规划过程组

监控过程组

6 项目时间管理

软件项目的项目时间管理示例

学习目标

- 1、理解时间管理各个过程的作用
- 2、了解时间管理各个过程的重要输入和输出
- 3、掌握活动的概念及排序方法
- 4、掌握估算活动持续时间的常用方法
- 5、重点掌握制定进度计划的关键路径法
- 6、掌握调整和改进项目进度的常用方法
- 7、了解发现进度偏差的常用方法

6.1

规划进度管理

■ 规划进度管理:

为规划、编制、管理、执行和控制项目进度而制定政策、程序、文档

■ 主要作用: 为如何在整个项目过程中管理项目进度提供<u>指南和方向</u>

规划进度管理的数据流向图

输入

- 1、项目章程
- 2、范围基准
- 3、项目管理计划

工具与技术

- 1、专家判断
- 2、会议
- 3、分析技术

输出

进度管理计划

规划会议:

参会人员可能包括项目经理、项目发起人、选定的项目团队成员、 选定的干系人、进度规划或执行负责人,以及其他必要人员。

输入

- 1、项目章程
- 2、范围基准
- 3、项目管理计划

工具与技术

- 1、专家判断
- 2、会议
- 3、分析技术

輸出

进度管理计划

分析技术: 选择项目进度估算和规划的战略方法

例如: 进度规划方法论、进度规划工具与技术、估算方法、

格式和项目管理软件

输入

- **1**、项目章程
- 2、范围基准
- 3、项目管理计划

工具与技术

- 1、专家判断
- 2、会议
- 3、分析技术

输出

讲度管理计划

进度管理计划:项目管理计划的组成部分

- (1) 为编制、监督和控制项目进度建立准则
- (2) 规定如何报告和评估进度紧急情况

6.2

定义活动

■ 定义活动:

将WBS的工作包细分(分解)为活动(任务)

■ 主要作用:作为对项目工作进行估算、进度规划、执行、 监督和控制的基础

定义活动的数据流向图

输入

- 1、进度管理计划
- 2、范围基准 (WBS)

工具与技术

- 1、专家判断
- 2、分解(滚动规划)
- 3、故事板
- 4、用例

输出

- 1、活动清单
- 2、活动属性
- 3、里程碑清单

6.2 过程工具与技术

■ 用例:提供用户和软件之间操作(逐步交互)的场景

输入

- 1、进度管理计划
- 2、范围基准(WBS)

工具与技术

- 1、专家判断
- 2、分解(滚动规划)
- 3、故事板
- 4、用例

输出

- 1、活动清单
- 2、活动属性
- 3、里程碑清单

活动清单:

一份含有项目所需的全部进度活动的综合清单

输入

- 1、进度管理计划
- 2、范围基准(WBS)

工具与技术

- 1、专家判断
- 2、分解(滚动规划)
- 3、用例
- 4、故事板

- 1、活动清单
- 2、活动属性
- 3、里程碑清单

活动属性:

每项活动所具有的多种属性,用来扩展对该活动的描述

输入

- 1、进度管理计划
- 2、范围基准(WBS)

工具与技术

- 1、专家判断
- 2、分解(滚动规划)
- 3、用例
- 4、故事板

- 1、活动清单
- 2、活动属性
- 3、里程碑清单

里程碑清单:

列出了所有里程碑(项目的重要时点或事件(一个时间点))

6.3

排列活动顺序

6.3 排列活动顺序

■ 排列活动顺序: 识别和记录项目活动之间的关系

■ 主要作用: 定义工作之间的逻辑顺序,以便在既定的所有 项目制约因素下获得最高的效率

6.3 工具与技术

PDM (Precedence Diagramming Method)

紧前关系绘图法, 优先图法, 节点法, 单代号网络图

ADM (Arrow Diagramming Method)

箭线法, 双代号网络图

排列活动顺序的数据流向图

6.3 排列活动顺序

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、里程碑清单

工具与技术

- 1、紧前关系绘图法 (PDM)
- 2、双代号网络图(ADM)
- 3、提前量与滞后量

输出

项目进度网络图

- **PDM (又称前导图法、优先图法、节点法、单代号网络图):**
 - (1) 用节点(方框或矩形)表示活动
 - (2) 用箭线连接活动,表示活动的依赖关系(逻辑先后顺序)

单代号网络图

A称为B的紧前活动,B称为A的紧后活动

■ 依赖关系的分类: 与项目干系人一起讨论

■ 项目活动间的4种依赖关系

PDM (一种软件项目示例)

6.3 排列活动顺序

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、里程碑清单

工具与技术

- **1**、紧前关系绘图法 (PDM)
- 2、双代号网络图 (ADM)
- 3、提前量与滞后量

输出

项目进度网络图

6.3.3 工具与技术: 双代号网络图ADM

ADM: (1) 箭线代表活动, (2) 节点代表活动的开始或结束

(3) $a_n = X$ 代表活动n的持续时间为X

双代号网络图

6.3.3 工具与技术: 双代号网络图ADM

6.3.3 工具与技术: 双代号网络图ADM

虚活动

- > 避免出现并行活动
- > 不消耗资源 (持续时间为零)

6.3 排列活动顺序

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、里程碑清单

工具与技术

- **1**、紧前关系绘图法 (PDM)
- 2、双代号网络图 (ADM)
- 3、提前量与滞后量

输出

项目进度网络图

6.3 工具与技术:提前量与滞后量

- 滞后量 (lag)
 - (1) 相对于紧前活动、紧后活动需要推迟的时间量
 - (2) 在紧前和紧后活动之间增加一段不需工作或资源的自然时间

6.3 工具与技术:提前量与滞后量

- 提前量 (lead)
 - (1) 相对于紧前活动、紧后活动可以提前的时间量
 - (2) 用于在条件许可的情况下提早开始紧后活动

6.3 排列活动顺序

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、里程碑清单

工具与技术

- 1、紧前关系绘图法 (PDM)
- 2、双代号网络图 (ADM)
- 3、提前量与滞后量

项目进度网络图:

- (1) 项目进度活动之间的逻辑关系的图形
- 附有简要文字描述
- (3) 详细说明任何异常的活动序列

6.3 输出: 项目进度网络图

项目进度网络图示例(带提前和滞后量的PDM)

6.3 输出: 项目进度网络图

聊天软件

1. 基础功能

1.1 注册账户

1.2 添加好友

2. 聊天

2.1 文字聊天

2.2 语音聊天

2.3 表情包

3. 朋友圈

3.1 发布动态

3.2 查看动态

工作包及任务

6.4

估算活动持续时间

■ 估算活动持续时间 (Duration):

估算完成单项活动所需工作时段数

估算活动持续时间的数据流向图

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、资源日历
- 5、资源分解结构

工具与技术

- 1、类比估算
- 2、参数估算
- 3、三点估算
- 4、储备分析

输出

活动持续时间估算

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、资源日历
- 5、资源分解结

工具与技术

- 1、类比估算
- 2、参数估算
- 3、三点估算
- 4、储备分析

输出

活动持续时间估算

- 1、类比估算:
- (1) 使用相似活动或项目的历史数据估算当前活动的持续时间
- (2)可以针对整个项目或项目中的某个部分
- (3)成本较低、耗时较少,但准确性也较低

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、资源日历
- 5、资源分解结构

工具与技术

- 1、类比估算
- 2、参数估算
- 3、三点估算
- 4、储备分析

输出

活动持续时间估算

6.4 工具与技术:参数估算

2、参数估算:基于历史数据之间的统计关系和其他变量来估算

工作量E(人月)

D:工期(持续时间、以月单位)

E:工作量(以人月单位)

a:2—4之间

b:1/3左右:依赖于项目的自然属性

6.4 工具与技术:参数估算

2、参数估算

□ (1) Walston-Felix模型: D=2.4*E^{0.35}

□ (2) 基本COCOMO模型:

软件类型	特点	b取值
有机	受硬件的约束比较小,程序的规模不是很大	0.38
半有机	介于有机型和嵌入式软件之间	0.35
嵌入式	紧密联系的硬件、软件和操作的限制条件下运行,软件规模任意	0.32

6.4 工具与技术:三点估算

3、三点估算:考虑估算中的不确定性和风险

(源于计划评审技术PERT)

■ 活动时间估算依赖于三个时间:

1) 最可能时间(t_M):完成活动概率最高的时间

2) 最乐观时间(t_O): 完成活动最短的时间

3) 最悲观时间(tp):完成活动最长的时间

6.4 工具与技术:三点估算

三角分布

■ 期望持续时间t_E的计算公式:

- **三角分布**: $t_E = (t_O + t_M + t_P) / 3$
- 贝塔分布: $t_E = (t_O + 4t_M + t_P) / 6$ (源自传统的PERT技术)

期望持续时间te作为活动的持续时间

- 期望持续时间的不确定区间
 - ■贝塔分布 标准差 $d = (t_P t_O) / 6$ (源自传统的PERT技术)

贝塔分布

6.4 工具与技术:储备分析

4、储备分析: 应急储备 (有时称为时间储备或缓冲时间)

应对进度方面的不确定性

方法:

- (1) 取活动持续时间估算值的某一百分比、某一固定的时间段
- (2) 通过定量分析来确定,如蒙特卡洛模拟法

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、资源日历
- 5、资源分解结构

工具与技术

- 1、类比估算
- 2、参数估算
- 3、三点估算
- 4、储备分析

输出

活动持续时间估算

活动持续时间估算:

- (1)对完成某项活动所需的工作时段数的定量评估
- (2)在活动持续时间估算中,可以指出一定的变动区间,例如:2周
- ±2天(至少8天,最多不超过12天)(假定每周工作5天)

聊天软件 持续时间 估算 1. 基础功能

1.1 注册账户

1.2 添加好友

2. 聊天

2.1 文字聊天

2.2 语音聊天

2.3 表情包

3. 朋友圈

3.1 发布动态

3.2 查看动态

工作包及任务

6.5

制定进度计划

6.5 制定进度计划

制定项目进度计划:

分析活动顺序、持续时间、资源需求和进度制约因素,创

建项目进度模型

6.5 制定进度计划

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、项目进度网络图
- 5、活动持续时间

工具与技术

- 1、关键路径法
- 2、进度压缩
- 3、资源优化
- 4、关键链法

输出

- 1、项目进度计划
- 2、进度基准
- 3、进度数据
- 4、项目日历

■ 关键路径法 (CPM, 也称为关键路径分析):

在进度模型中,估算完成项目的最短工期,确定进度灵活性大小

- (1) 关键路径: 项目进度网络图中完成项目的最短日程路线
- (2) 关键路径活动:关键路径上的活动

■ 关键路径的求解:

沿进度网络进行顺推与逆推分析

■ 关键路径的求解:

七格图法

 最早开始时间ES
 持续时间Duration
 最早完成时间EF

 活动名称

 最晚开始时间LS
 总浮动时间TF
 最晚完成时间LF

总浮动时间=最晚开始时间-最早开始时间 =最晚完成时间-最早完成时间

最早开始时间	持续时间	最早完成时间		
活动名称				
最晚开始时间	总浮动时间	最晚完成时间		

正常情况下,关键路径活动的总浮动时间为零

关键路径:活动序列A-C-D

实际中: 关键路径的总浮动时间可能是正值、零或负值

(1) 正常情况: 总浮动时间为正值或零

(2) 异常情况: 总浮动时间为负值

通过调整以<mark>避</mark> 免发生此情况

- 1) 调整活动持续时间(增加资源或缩减范围)
- 2) 调整逻辑关系 (针对选择性依赖关系)
- 3) 调整提前量和滞后量及其他手段

总浮动时间TF:进度活动可以从最早开始日期推迟或拖延的时间,而不至于延误项目完成日期或违反进度制约因素。

总浮动时间TF:进度活动可以从最早开始日期推迟或拖延的时间,而不至于延误项目完成日期或违反进度制约因素。

6.5 工具与技术: 进度压缩

进度压缩: 在不缩减项目范围的前提下, 缩短项目的进度时间

6.5 工具与技术: 进度压缩

6.5 工具与技术: 进度压缩

进度压缩的几个重要结论:

预防问题的出现往往 重于出现问题后解决

200/20/6X现象:人数增加1倍,工期缩短20%,缺陷增加6倍

Bohem提出的著名法则: 当项目进度被压缩超过25%, 不管

有多少人加入这个项目,软件项目也很少会成功

布鲁克斯定律: 往延迟的项目中增加人手会让项目更加延迟

6.5 工具与技术:资源优化技术

资源优化技术: 根据资源供需情况, 调整进度模型

6.5 工具与技术: 资源优化技术

(1)资源平滑

6	5	10					
B (非关键路径活动)							
11	5	15					

关键路径法结果

活动B初始计划:

开始时间: 6

完成时间: 10

发现开发人员在第6、 7天被其他任务占用

活动B调整后计划:

开始时间:8

完成时间: 12

汤姆:8小时 活动A

活动 B 休:8小时

汤姆: 8 小时

休:8小时

开始

休:8小时

资源平衡前

汤姆:8小时

(2) 资源平衡

活动 C 汤姆:8小时

休:8小时

6.5 工具与技术: 关键链法

关键链法: 在任何项目进度路径上设置缓冲(冗余), 以应对风险

放在非关键链与关键链的接合点, 保护关键链不受非关键链延误的影响

6.5 制定进度计划

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、项目进度网络图
- 5、活动持续时间

工具与技术

- 1、关键路径法
- 2、进度压缩
- 3、资源优化
- 4、关键链法

项目进度计划:

- (1)展示活动之间的相互关联,以及计划日期、持续日期、里程碑和所需资源
- (2)形式:列表、图形(更常见)

6.5.9 输出:项目进度计划

①里程碑进度计划 (里程碑图)

活动标识	活动描述	日历 单位	项目进度计划时间区间					
			阶段 1	阶段 2	阶段 3	阶段 4	阶段 5	
1.1.MB	开始新产品 Z	0	♦					
1.1.1.M1	完成组件 1	0			♦			
1.1.2.M1	完成组件 2	0						
1.1.3.M1	完成组件 1 和 2 的集成	0			I		\Diamond	
1.1.3.MF	完成新产品Z	0					\Diamond	

◆ 数据日期

6.5.9 输出:项目进度计划

② 概括性进度计划 (横道图, 甘特图)

活动标识	活动描述	日历 単位	项目进度计划时间区间					
			阶段 1	阶段 2	阶段3	阶段 4	阶段 5	
1.1	开发和交付新产品 Z	120						
1.1.1	工作包 1: 组件 1	67						
1.1.2	工作包 2: 组件 2	53						
1.1.3	工作包 3: 集成组件 1 和 2	53						

详细进度计划

6.5.9 输出: 项目

③ 详细进度计划 (项目进度网络图)

24-44-25	活动描述	日历 单位	项目进度计划时间区间					
活动标识			阶段 1	阶段 2	阶段 3	阶段 4	阶段 5	
1.1.MB	开始新产品 Z	0						
1.1	开发和交付产品 Z	120						
1.1.1	工作包 1: 组件 1	67						
1.1.1.D	设计组件 1	20		完成到	 开始			
1.1.1.B	建造组件 1	33		-				
1.1.1.T	测试组件 1	14	开始到开续					
1.1.1.M1	完成组件 1	0	71 X0 ±1717			1		
1.1.2	工作包 2: 组件 2	53			ן י			
1.1.2.D	设计组件 2	14		<u> </u>				
1.1.2.B	建造组件 2	28	-]			
1.1.2.T	测试组件 2	11		 				
1.1.2.M1	完成组件 2	0		4	₹			
1.1.3	工作包 3: 集成组件 1 和 2	53			_i ∥⊏			
1.1.3.G	将组件1和2集成为产品Z	14			┆╙⊏			
1.1.3.T	完成组件 1 和 2 的集成	32						
1.1.3.M1	将集成组件作为产品Z进行测试	0					•	
1.1.3.P	交付产品 Z	7						
1.1.3.MF	完成新产品 Z	0					→ ♦	
						数据日期		

6.5.9 输出:项目进度计划

软件项目的项目时间管理示例

6.5 制定进度计划

输入

- 1、进度管理计划
- 2、活动清单
- 3、活动属性
- 4、项目进度网络图
- 5 活动挂缔时间

工具与技术

- 1、关键路径法
- 2、关键链法
- 3、进度压缩
- 4、资源优化

输出

- 1、项目进度计划
- 2、进度基准
- 3、进度数据
- 4、项目日历

进度基准: 相关干系人接受和批准的进度模型

进度数据:描述和控制进度计划的信息集合,至少包括进度里程碑、

进度活动、活动属性,以及已知的全部假设条件与制约因素

项目日历: 开展进度活动的工作日和工作班次

6.5 制定进度计划

聊天软件 进度计划 1. 基础功能

1.1 注册账户

1.2 添加好友

2. 聊天

2.1 文字聊天

2.2 语音聊天

2.3 表情包

3. 朋友圈

3.1 发布动态

3.2 查看动态

工作包及任务

6.6

安色能源 双眼接应接

控制进度

6.6 控制进度

■ 控制进度:

监督项目状态,更新项目进展、管理进度基准变更,以实现进度计划

(1) 发现计划 的偏离 纠正和预防措施

降低风险

控制进度的数据流向图

6.6 控制进度

- 1、进度管理计划
- 2、进度基准
- 3、项目日历
- 4、工作绩效信息
- 5、项目管理计划

工具与技术

- **1**、分析
- 2、控制

- 1、工作绩效信息
- 2、进度预测
- 3、变更请求

1、分析

发现计划的偏离

2、控制

及时采取纠正和预防措施

6.6 工具与技术: 分析技术

■ 分析技术

6.6 工具与技术:分析技术

趋势分析: 检查项目绩效随时间的变化情况, 确定绩效是改善还是在恶化

6.6 工具与技术:分析技术

累积流量图 (差价合约)

6.6 工具与技术:分析技术

燃耗图

6.6 工具与技术: 分析技术

燃尽图

6.6 工具与技术:控制

(1) 提前量与滞后量

(2) <u>资源优化技术</u>:在同时考虑资源可用性和项目时间的情况下,对活动和活动所需资源进行进度规划。

(3) 进度压缩:使进度落后的活动赶上计划,对剩余工作使用快速跟进或赶工方法。

6.5 制定进度计划

输入

- 1、进度管理计划
- 2、进度基准
- 3、项目日历
- 4、工作绩效信息
- 5、项目管理计划

工具与技术

- **1**、分析
- 2、控制

輸出

1、工作绩效信息

进度预测

变更请求

工作绩效信息:针对WBS组件,特别是工作包与控制账户,计算出:

(1)进度偏差 (SV) 、(2)进度绩效指数 (SPI)

挣值管理技术

总结

- 6.1 规划进度管理
- 6.2 定义活动
- 6.3 排列活动顺序
- 6.4 估算活动持续时间
- 6.5 制定进度计划
- 6.6 控制进度

规划过程组

监控过程组

学习目标

- 1、理解时间管理各个过程的作用
- 2、了解时间管理各个过程的重要输入和输出
- 3、掌握活动的概念及活动的排序方法
- 4、掌握估算活动持续时间的常用方法
- 5、掌握制定进度计划的关键路径法
- 6、掌握调整和改进项目进度的常用方法
- 7、了解发现进度偏差的常用方法