Ringen en Lichamen

Luc Veldhuis

25 September 2017

Isomorfiestellingen

- $\phi: R \to S$ een ringhomomorfisme dan is $\psi: R/Ker(\phi) \cong Im(\phi)$ met $\overline{a} \mapsto \phi(a)$.
- ② Als $S \subseteq R$ een deelring is, I een ideaal van R, dan is $S + I = \{s + i | s \in S, i \in I\}$ een deelring van R die I bevat, I een ideaal van S + I, $S \cap I$ een ideaal van S en $S/(S \cap I) \cong (S + I)/I$.
- In boek.
- In boek.

Bewijs 1e stelling

We weten alles uit de 1e isomorfiestelling voor groepen uit $\phi((R,+)) \to (S,+)$, behalve dat $\psi(\overline{a} \cdot \overline{b}) = \psi(\overline{a}) \cdot \psi(\overline{b})$. Dit geeft $\psi(\overline{a} \cdot \overline{b}) = \psi(\overline{ab}) = \phi(ab)$, en $\psi(\overline{a}) = \phi(a)$ en $\psi(\overline{b}) = \phi(b)$.

Maar we weten ook dat $\phi(ab) = \phi(a)\phi(b)$ omdat ϕ een ring homomorfisme is.

Bewijs 2e stelling

Ga na: S + I is een deelring van R, die I bevat als ideaal.

Neem ringhomomorfisme: $\phi: S \to (S+I)/I$ met $s \mapsto \overline{s+0}$, samenstelling van inclusie homomorfisme $S \to S+I$ en quotient homomorfisme $S+I \to (S+I)/I$.

Ga na: ϕ is surjectief, met $Ker(\phi) = S \cap I$.

Pas dan 1e isomorfie stelling toe op ϕ .

Voorbeeld

 $\phi: \mathbb{Z}[i] \to \mathbb{Z}/2\mathbb{Z}$ met $a+bi \mapsto \overline{a+b}$ is een surjectief ringhomormofisme want $\phi(0) = \overline{0}, \phi(1) = \overline{1}$. (ga na) Wat is $Ker(\phi)$?

Claim

$$Ker(\phi) = \{\beta(1-i)|\beta \in \mathbb{Z}[i]\} = I$$

Bewijs

'
$$\supseteq$$
': $\phi(\beta(1-i)) = \phi(\beta)\phi(1-i) = \phi(\beta)\overline{0} = \overline{0}$. Korter: $\phi(1-i) \in Ker(\phi)$, al gezien: $Ker(\phi)$ is ideaal. Dan geldt $\beta(1-i) \in \mathbb{Z}[i]$ foor alle β in $\mathbb{Z}[i]$. ' \subseteq ': Neem $\alpha = a + bi$ in $Ker(\phi)$. Dan is $\overline{a+b} = \overline{0} \in \mathbb{Z}/2\mathbb{Z}$. Dan is $a+b=2k$ voor een $k \in \mathbb{Z} \Rightarrow \alpha = a+bi = -b+2k+bi = ((1+i)k-b)(1-i)$ en dit zit zeker in $\{\beta(1-i)|\beta\in\mathbb{Z}[i]\}$ Gebruik dat $2=(1+i)(1-i)$. De eerste isomorfie stelling geeft nu $\mathbb{Z}[i]/I \cong \mathbb{Z}/2\mathbb{Z}$. $(a+bi)+I\mapsto \overline{a+b}$.

Voorbeeld 2e isomorfie stelling

```
k een lichaam, R=k[x,y]=k[x][y]. (Voorbeeld: xy+y+2=(x+1)y+2 in k[x][y], yx+(y+2) in k[y][x]) S=k[x], I=\{f\cdot y|f\in R\} Dan is S+I=R, S\cap I=\{0\}, uit 2e isomorfie stelling volgt: S/(S\cap I)\cong (S+I)/I dus k[x]/\{0\}\cong R/I.
```

Opgave

Bewijs $R/I \cong k[x]$ via de 1e isomorfie stelling. Hint: $R \to k[x]$ is surjectief ringhommomorfisme met $f(x,y) \mapsto f(x,0)$.

Definitie

I, J idealen van een ring R.

- De som $I + J = \{i + j | i \in I, j \in J\}$ een ideaal van R. Het is het kleinste ideaal van R dat I en J bevat.
- Het product $I \cdot J = \{ \sum_{l=1}^m i_l j_l | i_l \in I, j_l \in J, m \ge 0 \}$ is een ideaal.
- $I^n = I \cdot I \cdot I \cdots I$ (n keer)

Dan $R \supseteq I + J \supseteq I \supseteq I \cap J \supseteq I \cdot J$, allemaal een ideaal van R.

Opgave

Welke idealen zijn dit als $R = \mathbb{Z}$, $I = 6\mathbb{Z}$, $J = 9\mathbb{Z}$?

De idealen van \mathbb{Z} zijn $n\mathbb{Z}$ met $n \geq 0$.

Definitie

R altijd een ring met $1 \neq 0$.

 $A \subseteq R$ een deelverzameling.

- (A) = het kleinste ideaal van R dat A bevat = $\bigcap_{A\subseteq I,I}$ ideaal I.
- $RA = \{\sum_{i=1}^{m} r_i a_i | r_i \in R, a_i \in A, n \ge 0\}$ het kleinste linksideaal van R dat A bevat want $1 \in R$.
- AR = zelfde voor rechts.

$$(A) = \{\sum_{i=1}^{n} r_i a_i s_i | a_i \in A, r_i, s_i \in R, n \ge 0\} = RAR.$$

Als R **commutatief** is, dan is RAR = RA = AR = kleinste ideaal van R dat A bevat.

Als *R* commutatief is en $A = \{a_1, a_2, a_3, ...\}$ dan is $(\{a_1, ..., a_n\}) = \{\sum_{i=1}^n r_i a_i | r_i \in R\}$ $r_1 a + r_2 a = (r_1 + r_2)a$

Voorbeeld

- $R = \mathbb{Z}[i]$ $I = \{\beta(1-i)|\beta \in \mathbb{Z}[i]\} = (1-i)$ een ideaal, deelverzameling van $\mathbb{Z}[i]$.
- De idealen van Z zijn (n) met $n \ge 0$.

Voorbeeld

$$R = \mathbb{Z}[i]$$
 dan geeft dit $(1-i) \cdot (1-i) = \begin{cases} -2i & \in \mathbb{Z}[i] \\ (2) & \subseteq \mathbb{Z}[i] \end{cases}$

Als R commutatief is (met $1 \neq 0$) en

 $I=(a_1,\ldots,a_n)=\{r_1a_1+r_2a_2+\cdots+r_ma_m|a_i\in R\}$ is het ideaal voorgebracht door a_1,\ldots,a_m , deze elementen zijn de voortbrengers.

Een ideaal (a) heet een **hoofdideaal** (Engels: principal ideal) en a heet een voortbrenger.

Voorbeeld

 $R = \mathbb{Z}$, (4,6) = (2) is een hoofdideaal van \mathbb{Z} .

Dus in \mathbb{Z} met (4,6) = (2), en er geldt ' $(4,6) \subseteq (2) \Leftrightarrow 4,6 \in (2)$ ' en $2 \cdot 2 = 4$ en $2 \cdot 3 = 6$

We hebben ook dat '(2) \subseteq (4,6) \Leftrightarrow 2 \in (4,6)' want 2 = 4a + 6b met $a, b \in \mathbb{Z}$, klopt voor a = -1, b = 1.

Opgave

Als J een ideaal is van R, een commutatieve ring met $1 \neq 0$, en $a_1, \ldots, a_m \in R$, dan geldt:

$$(a_1,\ldots,a_m)\subseteq J\Leftrightarrow a_1,\ldots,a_m\in J$$

Voorbeeld

Met $R = \mathbb{Z}[x]$ is (2, x) is geen hoofdideaal (zie boek).

Stelling

R een ring met $1 \neq 0$, I een ideaal van R. Dan geldt:

- $I = R \Leftrightarrow I$ bevat een eenheid (element van R^*)
- Als R commutatief is dan geldt: R is een lichaam $\Leftrightarrow \{0\}$ en R zijn de enigste idealen van R.

Bewijs

1e stelling:

' \Rightarrow ': $1 \in I = R$ en $1 \in \mathbb{R}^*$.

' \Leftarrow ': Stel $u \in I$ en $u \in \mathbb{R}^*$. Dan bestaat $v \in \mathbb{R}^*$ met uv = 1 = vu,

 $1 \in I$, dus als $r \in R$ is $r \cdot 1 = r \in R$.

2e stelling:

Zie boek.

Definitie

In een willekeurige ring S (misschien niet commutatief, zonder 1) heet een ideaal M van S een maximaal ideaal als:

- M ≠ S
- Als N een ideaal is met $M \subseteq N \subseteq S$, dan geldt N = S of N = S

Voorbeeld

 $R = \mathbb{Z}$. Idealen: (n), $n \ge 0$.

n = 0 niet maximaal: $(0) \subsetneq (2) \subsetneq \mathbb{Z}$.

n=1 niet maximaal: $(1)=\mathbb{Z}$.

Opgave

In Z geldt $(a) \subseteq (b) \Leftrightarrow a \in (b) \Leftrightarrow b|a$.

Dus voor $n \ge 2$ geldt als n niet priem is, dan is (n) niet maximaal.

n=6, $(6)\subsetneq (2)\subsetneq \mathbb{Z}$.

Als n well priem, dan is (n) een maximaal ideaal.

Conclusie: de maximale idealen van \mathbb{Z} corresponderen met de priemgetallen: het zijn (p) met p priem.

