EXPONENTIABLE VIRTUAL DOUBLE CATEGORIES

By: Ea E T (they/she)¹ (joint work with Kevin Carlson²)

¹Department of Mathematics University of Illinois Urbana-Champaign ²Topos Institute

2025 Category Theory Octoberfest

ROADMAP

Intro to VDCs:

Exponentiability:

Representability:

REPRESENTABILITY

19

Motivating Question:

Under what conditions is the exponential $\mathbb{E}^{\mathbb{D}}$ representable? What about $\mathbb{M}od(\mathbb{E}^{\mathbb{D}})$?

Note: When \mathbb{E} arises from a multicategory, this is equivalent to asking when these are symmetric monoidal categories.

Roadmap:

Conclusions and Future Work:

KEY TAKEAWAYS

- VDCs provide the necessary flexibility to characterize universal properties of double categorical constructions
- Exponentiable VDCs are those admitting essentially unique cell decompositions

UPCOMING/FUTURE DIRECTIONS

- · Paper in progress with Kevin Carlson
- Extend the proof techniques to pseudo and lax tight transformations appearing in [LP24]
- Determine sufficient conditions for virtual equipments to be exponentiable

VIRTUAL DOUBLE CATEGORIES

Definition: VDCs

A virtual double category $\mathbb D$ consists of

- 1. A category $Tight(\mathbb{D})$ of objects and tight, or vertical arrows
- 2. For every pair of objects a, b a collection of loose arrows $a \nrightarrow b$
- 3. For every boundary of loose and tight arrows a collection of cells

Along with an associative and unital composition of cells:

Note: Together with VD functors and tight transformations, VDCs form a (co)complete 2-category with finitely presentable underlying category

MULTICATEGORIES AS VDCS

Example: Multicategories as VDCs

Multicategories embed fully-faithfully into VDCs:

as the VDCs with trivial underlying tight category.

That is, for a multicategory \mathcal{M} , multicells in $\Sigma \mathcal{M}$ are precisely multimorphisms in \mathcal{M} :

PSEUDO VS. VIRTUAL CONSTRUCTIONS

(Pseudo-)Double Categories:

- If $\mathcal E$ is a category with pushouts, we have a double category $\mathbb C$ ospan $(\mathcal E)$
- If $(\mathcal{V}, \otimes, I)$ is a monoidal category with finite coproducts that are preserved by \otimes , then we have a double category \mathcal{V} Mat
- If D is a double category with local reflexive co-equalizers, we have a double category Mod(D) of modules in D

Virtual Double Categories:

- For any category \mathcal{E} , we have a virtual double category \mathbb{C} ospan (\mathcal{E})
- For any virtual double category $\mathbb D$ we have a virtual double category $\mathbb D \mathbb M$ at
- For any virtual double category D, we have a unital virtual double category Mod(D) of modules in D

UNIVERSALITY OF VIRTUAL CONSTRUCTIONS

Universality of Constructions on Virtual Double Categories:

- For any category \mathcal{E} , the virtual double category \mathbb{C} ospan(\mathcal{E}) is the free virtual equipment on \mathcal{E} [DPP10]
- For any virtual double category $\mathbb D$ the virtual double category $\mathbb D$ Mat is the free coproduct completion of $\mathbb D$ [Ark25]
- For any virtual double category \mathbb{D} , $\mathbb{M}od(\mathbb{D})$ is the cofree normal completion of \mathbb{D} [CS10]
- For any virtual double category \mathbb{D} , $\mathbb{DProf} = Mod(\mathbb{DMat})$ is the free collage cocompletion of \mathbb{D} [Ark25]

Definition: Exponentiable VDCs

A virtual double category $\mathbb D$ is said to be exponentiable if the functor given by sending a virtual double category $\mathbb A$ to $\mathbb A \times \mathbb D$ admits a right adjoint:

EXPONENTIALS

Explication: Exponential

If $\mathbb D$ and $\mathbb E$ are VDCs for which $\mathbb E^{\mathbb D}$ exists, then it must consist of the following data:

- Objects are functors Tight(D) → Tight(E)
- Tight arrows are natural transformations
- Loose arrows are maps of spans

• n-ary multicells assign to each n-ary multicell in $\mathbb D$ an n-ary multicell in $\mathbb E$ with the following boundary:

... (cont. on next slide)

EXPONENTIALS

Explication: Exponential (cont.)

The assignment on multicells is subject to functoriality with respect to vertical pasting:

Theorem: Characterization of Exponentiable VDCs

For a VDC \mathbb{D} , the following are equivalent:

- 1. The VDC \mathbb{D} is exponentiable
- 2. The multicells in \mathbb{D} admit essentially unique decompositions up to associativity
- 3. The multicells in $\mathbb D$ admit essentially unique decompositions up to associativity through binary, unary, and nullary multicells
- 4. The exponential \mathbb{S} pan \mathbb{D} exists

Explication: Characterization of Pro-representable VDCs

In terms of pasting diagrams, condition (2) says that a VDC \mathbb{D} is exponentiable precisely when for any $N \geq 0$ and any partition $0 \leq m_1 \leq \cdots \leq m_n = N$, N-ary multicells decompose as vertical pastings:

and any two decompositions are equivalent up to associativity of pasting with cells in the center of the decomposition.

Explication: Yoneda Characterization of Exponentiable VDCs

Condition (5) hints at, and follows from, the Yoneda theory of VDCs:

Yoneda Lemma for VDCs

For any VDC \mathbb{D} , there is a fully-faithful embedding of VDCs

$$\mathbb{D} \hookrightarrow \mathbb{S} \mathrm{pan}^{\mathbb{F}_{\mathcal{S}}(\mathbb{D})^{op_t}}$$

where $\mathbb{F}_s(\mathbb{D})$ is the free strict double category generated by \mathbb{D} .

REPRESENTABLE VDCS

Corollary: Representable ⇒ **Exponentiable**

Representable VDCs (i.e. pseudo-double categories) are exponentiable.

Proof Idea:

Let $\mathbb D$ be a representable VDC. Then any cell admits a canonical decomposition

REPRESENTABLE VDCS

Corollary: Representable ⇒ **Exponentiable**

Representable VDCs (i.e. pseudo-double categories) are exponentiable.

Proof Idea: (cont.)

Any other decomposition below left can be canonically factored through the

composition cells:

COSPANS ARE EXPONENTIABLE

Proposition: Cospan VDCs are Exponentiable

For any category \mathcal{E} the VDC \mathbb{C} ospan(\mathcal{E}) is exponentiable, and it is representable if and only if \mathcal{E} has finite pushouts.

Proof Idea:

An arbitrary multicell:

admits a canonical decomposition:

for any partition of n (the case where k_1 , $k_n \ge 1$ is shown for simplicity).

COSPANS ARE EXPONENTIABLE

Proof Idea (cont):

For uniqueness consider the case where n=3, $k_1=2$, $k_2=1$ as an example. Then an arbitrary decomposition, below left, can be seen to be equivalent to the canonical decomposition via sliding cells:

NON-EXPONENTIABLE VDC

Non-example: Non-unital Walking Loose Arrow

The VDC Loose consisting of two objects 0 and 1 and a single loose arrow $0 \nrightarrow 1$ is not exponentiable. Consider the diagram and colimit \mathbb{C} in VDC depicted below:

Then $\mathbb{C} \times \mathbb{L}$ oose has two non-identity cells, while the VDC obtained by applying $-\times \mathbb{L}$ oose to the diagram before taking the colimit only has one.

MODULES IN EXPONENTIAL VDC

Explication: Modules in Exponential

If $\mathbb D$ and $\mathbb E$ are VDCs for which $\mathbb E^{\mathbb D}$ exists, then the VDC $\mathrm{Mod}(\mathbb E^{\mathbb D})$ consists of the following data:

- An object is a virtual double functor $F: \mathbb{D} \to \mathbb{E}$
- A tight arrow is a tight transformation between virtual double functors
- A loose arrow is a virtual double functor $F: \mathbb{L}oose_u \times \mathbb{D} \to \mathbb{E}$, where $\mathbb{L}oose_u$ is the unital walking loose arrow
- An n-multicell is a virtual double functor $\Gamma: \mathbb{S}q_{n,u} \times \mathbb{D} \to \mathbb{E}$, where $\mathbb{S}q_{n,u}$ is the unital walking n-multicell

Motivating Question:

Under what conditions is the exponential $\mathbb{E}^{\mathbb{D}}$ representable? What about $\mathbb{M}od(\mathbb{E}^{\mathbb{D}})$?

Note: When \mathbb{E} arises from a multicategory, this is equivalent to asking when these are symmetric monoidal categories.

Definition: AFP Conditions (c.f. [Par13] for pseudo case)

A virtual double category $\mathbb D$ has AFP_n for $n \geq 2$ if any n-ary multicell α :

admits a unique up to associativity decomposition through a special n-ary multicell

Example: VDCs Satisfying AFP Conditions

The following VDCs always satisfy the AFP conditions:

- 1. The cospan VDC, \mathbb{C} ospan(\mathcal{E}), for any category \mathcal{E}
- 2. The VDC $\Sigma\mathcal{M}$ associated to an arbitrary multicategory \mathcal{M}
- 3. The VDC $\mathbb{L}oose_u(\mathcal{B})$ for any bicategory \mathcal{B}

Theorem: Non-nullary composites for Exponentials

If $\mathbb A$ is an exponentiable VDC satisfying the AFP conditions, and $\mathbb X$ is a (weakly) locally cocomplete VDC with (weak) non-nullary composites, then the exponential $\mathbb X^{\mathbb A}$ has (weak) non-nullary composites.

Corollary: Representability of $Mod(\mathbb{E}^{\mathbb{D}})$

If $\mathbb A$ is an exponentiable VDC satisfying the AFP conditions, and $\mathbb X$ is a (weakly) locally cocomplete VDC with (weak) non-nullary composites, then $\mathbb Mod(\mathbb E^{\mathbb D})$ is (weakly) representable.

Theorem: (Weak) composites for Exponentials into Tightly Discrete VDCs

If \mathbb{A} is an exponentiable VDC and \mathbb{X} is a locally cocomplete VDC with discrete tight category and weak composites, then the exponential $\mathbb{X}^{\mathbb{A}}$ has (weak) non-nullary composites.

Example: Colax Monoidal Convolution Structure

If \mathbb{A} is an exponentiable VDC and $(\mathcal{C}, \otimes, I)$ is a cocomplete colax monoidal category with \otimes preserving colimits in either variable, then $\mathcal{C}^{\operatorname{Sq}(\mathbb{A})}$ has a colax monoidal convolution structure induced by the weak representability of $\mathbb{L}\operatorname{oose}_{n}(B\mathcal{C})^{\mathbb{A}}$:

$$\int^{(p_1;...;p_n)\in\operatorname{Sq}(\mathbb{A})^{\times_{\operatorname{Tight}(\mathbb{A})}n}} \mathbb{A}[p_1;...;p_n,-]\star (F_1(p_1)\otimes\cdots\otimes F_n(p_n))$$

KEY TAKEAWAYS

- VDCs provide the necessary flexibility to characterize universal properties of double categorical constructions
- Exponentiable VDCs are those admitting essentially unique cell decompositions

UPCOMING/FUTURE DIRECTIONS

- Paper in progress with Kevin Carlson
- Extend the proof techniques to pseudo and lax tight transformations appearing in [LP24]
- Determine sufficient conditions for virtual equipments to be exponentiable

REFERENCES

[P14] Pisani, C. (2014, February 2). Sequential multicategories. arXiv. https://doi.org/10.48550/arXiv.1402.0253

[CS10] Cruttwell, G. S. H., & Shulman, M. A. (2010, December 8). A unified framework for generalized multicategories. arXiv. https://doi.org/10.48550/arXiv.0907.2460

[LP24] Lambert, M., & Patterson, E. (2024). Cartesian double theories: A double-categorical framework for categorical doctrines. Advances in Mathematics, 444, 109630. https://doi.org/10.1016/j.aim.2024.109630

[FL25] Fujii, S., & Lack, S. (2025, July 7). The familial nature of enrichment over virtual double categories. arXiv. https://doi.org/10.48550/arXiv.2507.05529

[Ark25] Arkor, N. (2025, June 6). Virtual Double Categories: Past, Present, and Future. Séminaire Itinérant de Catégories. <u>Virtual double categories</u> (SIC 2025).pdf

[Par13] Pare, R.: Composition of modules for lax functors. Theory and Applications of Categories 27(16), 393–444 (2013) 1, 2, 58, 60, 61

[Kaw25] Kawase, Y. (2025, April 26). Double categories of profunctors. arXiv. https://doi.org/10.48550/arXiv.2504.11099

[Kou25] Koudenburg, S. R. (2025, March 3). Augmented virtual double categories. arXiv. https://doi.org/10.48550/arXiv.1910.11189

[Kou24] Koudenburg, S. R. (2024, April 2). Formal category theory in augmented virtual double categories. arXiv. https://doi.org/10.48550/arXiv.2205.04890

[LM25] Libkind, S., & Myers, D. J. (2025, May 28). Towards a double operadic theory of systems. arXiv. https://doi.org/10.48550/arXiv.2505.18329

[DPP10] Dawson, R., Paré, R., & Pronk, D. (2010). The span construction. In: Theory and Applications of Categories 24.13, p. 302-377.