Transformations in the pipeline

Vertex Shader

Projection transformations

Introduction to Projection Transformations

```
Mapping: f: R<sup>n</sup> → R<sup>m</sup>
Projection: n > Mssignment Project Exam Help

Planar Projection: Photography Powcoder.com
a plane.

R<sup>3</sup>→R<sup>2</sup> or
R<sup>4</sup>→R<sup>3</sup> homogenous
coordinates.
```

Transformation: n = m

Basic projections

Parallel

Perspective

Taxonomy

Assignment Project Exam Help

perspectiventtps://poweagder.com

Add Welchat powerethic

cabinet cavalier top, ax

top, axonometric: front, isometric, side dimetric

Examples

All defined with respect to a unit cube Assignment Project Exam Help https://powcodericiom isometric Add WeChat powco two-point perspective y d/2 cabinet

cavalier

A basic orthographic projection

$$x' = x$$
 $y' = y$
 $z' = N$

Assignment Project Exam Help

Matrix Form

https://powcoder.com

Add WeChat powcoder

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & N \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ N \\ 1 \end{bmatrix}$$

A basic perspective projection

$$x'/d = x/(-z) \longrightarrow x' = x d/(-z)$$

 $y'/d = y/(-z) \longrightarrow y' = y d/(-z)$
 $z' = -d$

Matrix form?

Reminder: Homogeneous Coordinates

Canonical matrix form

Matrix form of

$$x' = x d/(-z)$$

$$y' = y d/(-z)$$

$$z' = -d$$

$$\begin{bmatrix} 0 & 0 & -1 & 0 \\ x & 1 & 0 \end{bmatrix}$$

Moving from 4D to 3D

f Assignment Project Exam z let
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 or https://powcoder.com

Add We Chat powcoder $\begin{bmatrix} xd \\ yd \\ 0 & 0 & d & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} xd \\ yd \\ zd \\ -z \end{bmatrix}$

$$\begin{bmatrix} x \\ y \\ z \\ -z/d \end{bmatrix} \xrightarrow{h=-z/d} \begin{bmatrix} x/h \\ y/h \\ z/h \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} xd/(-z) \\ yd/(-z) \\ -d \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$$

Things to notice

$$\begin{bmatrix} 1 & 0 & \text{Assignment Project Exam Help} \\ 0 & 1 & 0 & \text{https://powcoder@om} d & 0 & 0 \\ 0 & 0 & 1 & \text{Add WeChat powcoder} & d & 0 \\ 0 & 0 & \frac{1}{-d} & 0 & 0 & -1 & 0 \end{bmatrix}$$

Projections in OpenGL

Projections in OpenGL are defined in the camera coordinate system. Assignment Project Exam Help

Although not advisable, with shaders you can actually change that if http://www.coder.com

Add WeChat powcoder

 That means they are also applied in the camera coordinate system, i.e. they are applied to a point or vector given in camera coordinates

Camera coordinate system

- Camera at (0,0,0)
- Looking at -z
 Assignment Project Exam Help
 Image plane is the near plane
- z = -d, d > 0 https://powcoder.com

Add WeChat powcoder

(x*, y*)

Perspective projection of a point

Point or vector in eye coordinates

$$P_{eye} = (x, y, z)$$

 $P_{eye} = (x,y,z)$ Assignment Project Exam Help **Projected coordinates:**

$$x' = x d/(-z)$$

https://powcoder.com

$$y' = y d/(-z)$$

Add WeChat powcoder

$$z' = -d$$

d > 0

Observations

- Perspective foreshortening
- Denominator becomes $x' = -d\frac{1}{z}$ undefined for Azssignment Project Exam Help $y' = -d\frac{1}{z}$
- If P is behind the eye z https://powcoder.com z'=-d
- Near plane just scaled tweeChat powcoder picture
- Straight line -> straight line

Perspective projection of a line

$$L(t) = \mathbf{A} + \mathbf{\vec{c}}t = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix} + \begin{bmatrix} c_x \\ \text{signment Project Exam Help} \\ c_z \\ 0 \end{bmatrix}$$

$$\widetilde{L}(t) = \mathbf{M}L(t) = \mathbf{M}(\mathbf{A} + \mathbf{c}t) = \mathbf{M}\begin{bmatrix} \mathbf{W} + \mathbf{c} \mathbf{M} \\ A_y + c_y t \\ A_z + c_z t \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{N} \mathbf{G} \mathbf{W} + \mathbf{c} \mathbf{G} \mathbf{G} \\ \mathbf{N}(A_y + c_y t) \\ \mathbf{N}(A_z + c_z t) \\ -(A_z + c_z t) \end{bmatrix}$$
Perspective Division, drop fourth coordinate

$$L'(t) = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -N \end{bmatrix}$$

Is it a line?

Original:
$$L(t) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} A_x + c_x t \\ A_y + c_y t \\ A_z + c_z t \end{bmatrix}$$

Projected: $L'(t) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -Nx/2z \\ -Ny/z \\ -Nt/2z \end{bmatrix} = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -Nt/2z \end{bmatrix} = \begin{bmatrix} -N(A_y + c_y t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \end{bmatrix}$

Add WeChat powcoder

$$x' = -N(A_x + c_x t)/(A_z + c_z t) \Rightarrow x'(A_z + c_z t) = -N(A_x + c_x t) \Rightarrow$$

$$x' A_z + x' c_z t = -NA_x - Nc_x t \Rightarrow \begin{cases} x' A_z + NA_x = -(x' c_z + Nc_x)t \\ \text{and similarly for y} \end{cases}$$

$$y' A_z + NA_y = -(y' c_z + Nc_y)t$$

Cont'd next slide

Is it a line? (cont'd)

$$\begin{vmatrix} x'A_z + NA_x = -(x'c_z + Nc_x)t \\ y'A_z + NA_y = -(y'c_z + Nc_y)t \end{vmatrix} \Rightarrow \begin{vmatrix} x'A_z + NA_x = -(x'c_z + Nc_x)t \\ -(y'c_z + Nc_y)t = y'A_z + NA_y \end{vmatrix} \Rightarrow \\ Assignment Project Exam Help$$

$$(x'A_z + NA_x)(y'c_z + Nc_y) = (x'c_p \pm Na_y)(y'A_z + NA_x)$$

$$(x'A_zy'c_z) + x'A_zNc_y + NA_xy'A_zddV'W_xe_yChatypowcoder+ Nc_xy'A_z + N^2A_yc_x \Rightarrow$$

$$(A_z N c_y - c_z N A_y) x' + (N A_x c_z + N c_x A_z) y' + N^2 (A_x c_y + A_y c_x) = 0 \Rightarrow$$

$$\Rightarrow$$
 $ax'+by'+c=0$ which is the equation of a line.

So is there a difference?

Original:
$$L(t) = \begin{bmatrix} x \\ y \\ y \\ t \\ z \end{bmatrix} = \begin{bmatrix} A_y + c_y t \\ A_z + c_z t \end{bmatrix}$$
 oder.com

Projected:
$$L'(t) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -Nx/z \\ -Ny/z \\ -N \end{bmatrix} = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -N \end{bmatrix}$$

Add WeChat powcoder

Non-linearity of perspective projection

How do points on lines project?

NDCS and eventually Screen Space

Viewing space: R(g) = (1-g)A + gB

NDCS Coordinates: R'(f) = (1-f)A' + fB'

What is the relationship between g and f?

Non-linearity of perspective projection

Point goes through two stages

Viewing space: R(g) = (1-g)A + gB

Projected (4D): r = MR

Projected cartesian: R'(f) = (1-f)A' + fB'

What is the relationship between g and f?

First step

Viewing to homogeneous space (4D)

Add WeChat powcoder

$$R = (1 - g)A + gB$$

$$r = MR = M[(1 - g)A + gB] = (1 - g)MA + gMB \Rightarrow$$

$$r = (1 - g)a + gb$$

$$a = MA = (a_1, a_2, a_3, a_4)$$

$$b = MB = (b_1, b_2, b_3, b_4)$$

Second step

Perspective division

$$r = (1 - g)a + gb$$

$$r = (r_1, r_2, r_3, r_4)$$

$$a = (a_1, a_2, a_3, a_4)$$

$$b = (b_1, b_2, b_3, b_4)$$

$$\begin{vmatrix} r = (r_1, r_2, r_3, r_4) \\ a = (a_1, a_2, a_3, a_4) \end{vmatrix} \rightarrow R'_1 = \frac{r_1}{r_4} = \frac{(1-g)a_1 + gb_1}{(1-g)a_4 + gb_4}$$

Putting all together

$$R'_{1} = \frac{(1-g)a_{1} + Add}{(1-g)a_{4} + gb_{4}} = \frac{WeChat}{lerp(a_{1}, b_{1}, g)} eccenter$$

At the same time:

$$R' = (1 - f)A' + fB' \Rightarrow R'_1 = (1 - f)A'_1 + fB'_1$$

$$R'_1 = (1 - f)\frac{a_1}{a_4} + f\frac{b_1}{b_4} = lerp(\frac{a_1}{a_4}, \frac{b_1}{b_4}, f)$$

Relation between the fractions

$$R'_{1}(g) = \frac{lerp(a_{1},b_{1},g)}{lerp(a_{4},b_{4},g)}$$

$$R'_{1}(f) = \frac{Assignment}{lerp(\frac{a_{1}}{a_{4}},\frac{b_{1}}{b_{4}},f)}$$
substituting this in R(g) wowgoder. App yields
$$R_{1} = \frac{lerp(\frac{A_{1}}{a_{4}},\frac{B_{1}}{b_{4}}dd)}{lerp(\frac{1}{a_{4}},\frac{1}{b_{4}},f)}$$
We Chat powcoder
$$lerp(\frac{1}{a_{4}},\frac{1}{b_{4}},f)$$

THAT MEANS: For a given f in screen space and A,B in viewing space we can find the corresponding R (or g) in viewing space using the above formula.

"A,B" can be texture coordinates, position, color, normal etc.

Effect of perspective projection on lines

Equations

What happens to parallel lines?

Effect of perspective projection on lines

Parallel lines

Original:
$$L(z) = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} A_x + c_x t \\ Project Exam Help \\ A_y + c_y t \end{bmatrix}$$

https://powcoder.com

Projected: $LAxold \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -Nx/z \\ -Nx/z \end{bmatrix} = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N \end{bmatrix}$

If parallel to view plane then:

$$c_z = 0 \rightarrow L'(t) = -\frac{N}{A_z}(A_x + c_x t, A_y + c_y t)$$

slope $= \frac{c_y}{c_x}$

Effect of perspective projection on lines

Parallel lines

Original:
$$Z(z) = \begin{bmatrix} x \\ Project Exam Help \\ A_y + c_y t \end{bmatrix}$$

Projected: $Z(z) = \begin{bmatrix} x \\ A_y + c_y t \end{bmatrix}$

Projected: $Z(z) = \begin{bmatrix} -Nx/z \\ Y \end{bmatrix}$

If not parallel to view plane then:

$$c_z \neq 0 \rightarrow \lim_{t \to \infty} L'(t) = -\frac{N}{c_z}(c_x, c_y)$$

Vanishing point!

Summary

Forshortening

Non-linear Assignment Project Exam Help

Lines go to lines https://powcoder.com

Parallel lines either intersect or remain Add WeChat powcoder parallel

Inbetweeness (interpolation)

Screen space and viewing space are not linearly related

Projections in the Graphics Pipeline

View volumes

- Primarily two:
 - Orthog Assignment Project Exam Help
 - Perspectiventtps://powcoder.com
- This stage also defines the view window
- What is visible with each projection?
 - a cube
 - a truncated pyramid

z=-far

v=top

Projection Stage in Graphics Pipeline

Transformation vs Projection

We want to keep z

Why?

Assignment Project Exam Help

Pseudodepth

https://powcoder.com

Derivation of the orthographic transformation

x=left

v=top

Map each axis separately:

• Scaling and translation Project Example Lelp

Let's look at y: https://powcoder.com

• y' = ay + b such that bottom \rightarrow -1 Add WeChat powcoder

top \rightarrow 1

Note: left,right,near,far,top,bottom>0

z=-far

Derivation of the orthographic transformation

Scaling and Translation

$$y_{NDCS} \rightarrow y'$$

$$y_{NDCS}
ightarrow y'$$
 $(y_b, y_b') = (bottom, -1)$
https://powcoder.com

$$(y_t, y_t') = (top, 1)$$
 Add WeChat powcoder

Line equation
$$\frac{y' - y_b'}{y - y_b} = \frac{y_t' - y_b'}{y_t - y_b}$$
$$\frac{y' - (-1)}{y - bottom} = \frac{1 - (-1)}{top - bottom} \rightarrow$$
$$y' = \frac{2}{top - bottom} y - \frac{top + bottom}{top - bottom}$$

All three coordinates

Scaling and Translation

z=-near z=-far

x=left
y = top

x=right

z=-far

(-1,-1,-1) x (1,1,1)

$$x' = \frac{2}{right - left} x_{dd} \frac{right + left}{\text{Wightat powecoder}}$$

$$y' = \frac{2}{top - bottom}y - \frac{top + bottom}{top - bottom}$$

$$z' = \frac{-2}{far - near}z - \frac{far + near}{far - near}$$

Matrix form

$$P' = \begin{bmatrix} Assignment Project Exam Help \\ r-l & r-l \\ 0 & https://powcoder.com b \\ Add WeChat powcoder \\ 0 & 0 & f-n & f-n \\ 0 & 0 & 0 & 1 \end{bmatrix} P$$

Alternative way

Scaling and translation of a cube

Add WeChat powcoder

$$\mathbf{M}_{O} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\frac{l+r}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$