

大模型数据建设探索与实践

赵宇

中国电信人工智能研究院 (TeleAI)

2024年8月

TeleAI (中国电信人工智能研究院)

由中国电信集团CTO、首席科学家李学龙教授 (Prof. Dr. Xuelong Li) 发起并组建,围绕大模型、具身智能、AIGC等方向开展基础研究、技术 攻关和应用落地,旨在打造人工智能研发与产业转化标杆性平台

大模型核心研发成果

• TeleChat TeleAI 自主研发的通用语义大模型基座,已开源1B、7B、12B、52B等多个版本

· TeleChat-PTD 开源 1TB 综合性中文预训练数据集,来源于网页、书籍、官方媒体

• Tele-FLM-1T TeleAl 与北京智源研究院共同研发,全球首个开源稠密万亿参数大模型

- 从工程化视角看数据建设
- 预训练数据配比
- ■后训练数据筛选

01

从工程化视角看数据建设

工程化思考

· 问题:从零开始训练干亿参数大模型,任务流程是如何执行的?

数据准备 预训练 后训练

设想中的训练流程

工程化思考

- 超大规模参数的模型预训练,时间跨度往往长达几个月
- 伴随模型训练进度变化,数据版本必然会持续动态调整

影响数据版本更新的因素

• 数据来源变更 & 新数据引入

影响数据版本更新的因素

• 自然配比与理想配比

红色代表数据消耗速度过快 蓝色代表数据消耗速度偏慢

・ 先导模型

・ 先导模型

・ 先导模型

· 多级先导模型

· 多级先导模型

多级先导模型loss曲线

主模型数据块切换loss曲线

即使不做数据调整,分批制作数据块也更符合工程化设计

影响数据版本更新的因素

· 先导模型评测实验效果

影响数据版本更新的因素

• 不同的数据版本变更方式,触发不同的数据处理流程

来源更新 \mathbf{x} X (\mathbf{x}) 评测引导 数据去重 毒性过滤 语言选择 规则初筛 内容质量 知识领域 数据配比

02

预训练数据配比

数据混合 (Data Mixing)

· DoReMi: 不依赖特定下游任务, 在小模型上寻找最优数据混合比例

使用 Group DRO 训练"代理模型",侧重学习与"参考模型" Loss差异最大的域

· DoReMi: 相比原始权重,预训练效果提升,且参数规模增长后实验结论一致

· DoGE: 借助双层优化算法 (BLO), 直接训练代理模型并调整域权重

无需训练参考模型

侧重学习对整体梯度更新贡献最大的域

· ODM: 借用多臂老虎机 (MAB) 框架, 在训练过程中不断调整领域采样权重

无需训练代理模型

现有方法观察

更换数据集和领域会影响效果

权重变更过程与下游评测无关

• 每一级先导模型,根据评测指标下降趋势,主动尝试触发配比调整

· 增大中文比例, 文本理解、推理、考试能力提升明显, 数学能力提升偏小

17%

增大数学和题库比例,考试和代码评测指标的"提升速率"加快(6%~10%)

Fig. 6: Ratios of various data sources in the pre-training data for existing LLMs.

• 具备复杂文档解析能力,有助于获取高质量知识类数据

3. 确定下列函数在给定区间内的单调性.

12 高等数学(上)

(1)
$$y = 3x + \ln x, x \in (0, +\infty)$$
;

(2)
$$y = \frac{-x}{1-x}, x \in (-\infty, 1)$$
.

4. 判断下列函数的奇偶性.

(1)
$$x \sin \frac{1}{x}$$
;

(2)
$$x^2 \sin \frac{1}{x}$$
;

$$(3) \frac{e^x + e^{-x}}{2};$$

(4)
$$3x^2 - x^3$$
.

- 3. 确定下列函数在给定区间内的单调性.(1) \$y=3 x+\ln x, x \in(0,+\infty)\$;
- (2) $y=\frac{-x}{1-x}$, $x \in -\infty$, 1)\$.
- 4. 判断下列函数的奇偶性.
- (1) \$x \sin \frac{1}{x}\$;
- (2) $x^{2} \sin \frac{1}{x}$;
- (3) $\frac{mathrm{e}^{x}+mathrm{e}^{-x}}{2}$;
- (4) \$ 3 $x^{2}-x^{3}$ \$.

解析结果

(要点:页面排版、公式、表格、阅读顺序、无关内容去除)

- 3. 确定下列函数在给定区间内的单调性.(1) $y=3x+\ln x, x\in (0,+\infty)$; (2) $y=\frac{-x}{1-x}, x\in (-\infty,1)$.
- 4. 判断下列函数的奇偶性. (1) $x \sin \frac{1}{x}$; (2) $x^2 \sin \frac{1}{x}$; (3) $\frac{e^x + e^{-x}}{2}$; (4) $3x^2 x^3$.

原始PDF文件

复原效果

· 具备复杂文档解析能力,有助于获取高质量知识类数据

(1) 金属氢化物储氢原理。

 H_2 分子与金属间化合物的反应可以分成 4 个步骤: a) H_2 分子接近金属表面; b) H_2 分子通过范德华力吸附在金属表面(物理吸附状态; c) H_2 分子解离为 H 原子,并在金属表面化学吸附(公式 1-1; d)占据金属次表面位点并扩散到基体内。吸氢是一个放热的过程,释放的热量称为氢化物的形成焓 ΔH 。 \leftarrow

```
H_2 \leftrightarrow 2H
M + xH \leftrightarrow MH_x(\alpha) \pm \Delta H \leftarrow
MH_x(\alpha_{\text{max}}) + yH \leftrightarrow MH_{x+y}(\beta) \pm \Delta H
```

```
=\section*{(1)\begin{CJK}{UTF8}{mj}金属氢化物储氢原理\end{CJK}}
\(\mathrm{H} {2}\) \begin{CJK}{UTF8}{mj}
分子与金属间化合物的反应可以分成\end{CJK} 4 \begin{CJK}{UTF8}{mj}
 个步骤\end{CJK}: a) \(\mathrm{H} {2}\\) \begin{CJK}{UTF8}{mj}
分子接近金属表面\end{CJK}; b) \(\mathrm{H} \{2}\)\\ \begin{CJK} {UTF8} {
mj}分子通过范德华力吸附在金属表面\end{CJK} (\begin{CJK}{UTF8}{mj}
物理吸附状态\end{CJK}; c) \((\mathrm{H} {2}\) \(\begin{CJK}{UTF8}{mj}\)
分子解离为\end{CJK} \(\mathrm{H}\)\)\begin{CJK}{UTF8}{mj}原子\end{CJK}
 , \begin{CJK}{UTF8}{mj}并在金属表面化学吸附\end{CJK}(\begin{CJK}{
UTF8}{mj}公式\end{CJK} 1-1; \(\mathrm{d}\) ) \begin{CJK}{UTF8}{mj}
 占据金属次表面位点并扩散到基体内\end{CJK}。\begin{CJK}{UTF8}{mj}
吸氢是一个放热的过程\end{CJK}, \begin{CJK}{UTF8}{mi}
释放的热量称为氢化物的形成焓\end{CJK}\(\Delta\mathrm{H}\)。
\begin{gathered}
H {2} \leftrightarrow 2 H \\
M+x H \leftrightarrow M H {x} (\alpha) \pm \Delta H \\
M H {x}\left(\alpha {\max }\right)+y H \leftrightarrow M H {x+y}(
\beta) \pm \Delta H
-\end{gathered}
```

原始Word文件

解析结果

03

后训练数据筛选

后训练发展趋势

预训练缺失,后训练弥补

基模与微调维持高度相关

多而无序,来源多样

答案文风迥异

少而全面,指令多样

答案格式规范

数据筛选 (Data Filtering)

· CherryLLM: 少量数据训练经验模型,根据指令追随难度 (IFD) 筛选数据

· Superfiltering: 以IFD为基础,利用小参数模型执行筛选,减少时间开销

模型越小,困惑度越大,但IFD分布一致

· MoDS: 借助奖励模型对数据进行评价和筛选

Instruction Data Selection

根据预训练模型的偏好,从HQID中再筛选出一些增强数据作为SID的补充

数据筛选 (Data Filtering)

· NUGGETS: 评估每条样本作为One-Shot样例的价值增益

数据筛选 (Data Filtering)

· LESS: 根据模型梯度优化方向评估样本对测试集损失的降低程度

现有方法观察

- · "模型类方法"依赖外部模型能力,计算开销大
- · "指标类方法"计算效率高,潜在误差大
- ? 是否存在"相对稳定"的指标

精确性: 描述模型输出与标准答案

的匹配程度

确定性: 描述模型对生成内容的

确定程度

理想指标

确定性低

模型训练越充分, 符合条件的结果越少

精确性高

- ★ 结合 PPL 与 RFT, 筛选任务更优数据
- ★ 面向标准评测集,定向提升单项重点能力

- ★ 按认知、逻辑、理解划分能力维度,关联任务互促强化
- ★ 迭代优化数据配比,提升通用能力整体效果

优化效果

通用问答效果

类型	输入问题	优化前	优化后
逻辑推理	烧一根不均 匀的绳子, 从头烧到尾	这个脑筋急转弯的答 案是"从头烧到尾需要 1小时,现在有若干条	要利用不均匀的绳子来准确计时45分钟,我们需要运用一些逻辑分析和策略。首先,我们知道一根绳子从头烧到尾需要1小时。这意味着如果我们同时点燃绳子的两端,它会在半小时内完全烧完,因为两端同时燃烧,速度加倍。
	需要1小时, 现有若干条 这种绳子, 如何记时45 分钟	这种绳子,可以同时烧"。 也就是说,你只需要把绳子首尾相连,然后从一端开始烧,烧到另一端需要45分钟。	接下来,我们可以按照以下步骤来计时45分钟: 准备两根绳子:我们取两根绳子,分别标记为绳子A和绳子B。 点燃绳子A的两端:由于绳子A的两端同时被点燃,它将在半小时内完全烧完。 点燃绳子B的一端:在点燃绳子A的同时,我们也点燃绳子B的一端。这样,绳子B将开始从一端燃烧。 等待绳子A烧完:当绳子A完全烧完时,已经过去了半小时。此时,绳子B已经燃烧了半小时,但只从一端燃烧,所以它还有半小时才会烧完。 绳子B继续燃烧:点燃B的另一头,继续让绳子B燃烧。由于绳子B还需要半小时才能完全烧完,因此当绳子B完全烧完时,总时间就是
		因为绳子是均匀烧的, 所以不管你烧多长的 绳子,所需要的时间 都是相同的。	1小时的一半再加上半小时,即45分钟。 综上所述,通过同时点燃一根绳子的两端和另一根绳子的一端,并在第一根绳子烧完时,点燃B的另一头继续等待第二根绳子烧完, 我们可以准确地计时45分钟。这个策略的关键在于利用绳子两端同时燃烧速度加倍的特性,以及控制不同绳子燃烧的开始和结束时间。

逻辑推理

'%

幻觉问题

18%

数学计算

40%

翻译能力

11%

- ・ 仅用3万条数据微调52B模型,效果达到 GPT-4 的91%,GPT-4-1106 的82%
- 其中2.5万条数据与数学相关, 其余数据为代码和多轮对话

Table 1: Performance of Tele-FLM-Chat and baselines on Alignbench, rated by CritiqueLLM.

		Reasoning			Language						
Model	Overall	Avg.	Math.	Logi.	Avg.	Fund.	Chi.	Open.	Writ.	Role.	Pro.
gpt-4-1106-preview	7.58	7.11	7.39	6.83	8.05	7.69	7.07	8.66	8.23	8.08	8.55
gpt-4-0613	6.83	6.41	6.49	6.33	7.26	7.16	6.76	7.26	7.31	7.48	7.56
chatglm-turbo	6.36	4.99	4.88	5.09	7.73	7.50	7.03	8.45	8.05	7.67	7.70
Tele-FLM-Chat	6.20	4.61	4.21	5.00	7.79	7.22	7.64	8.53	8.08	7.72	7.59
vs. gpt-4-1106 (%)	82	65	57	73	97	94	108	98	98	95	89
vs. gpt-4-0613 (%)	91	72	65	79	107	101	113	117	111	103	100

THANKS

