

Escuela Profesional de Ciencia de la Computación

ICC Fase 1

Análisis y Diseño de Algoritmos

Adaptado del material de Paulo Feofilof y aportes de Coelho, Cris y Alair

Mg. Carlos Eduardo Atencio Torres

Universidad Nacional de San Agustín de Arequipa

2021/Semestre Impar

Índice

- 1 Aula 3
 - Repasando
 - Recordando Análisis Asintótico
 - Análisis asintótico del algoritmo de INSERCIÓN
 - Algoritmo de Intercalación
 - Ejercicios
 - Divide y vencera?
 - Problema Maestro

Notación O(f(n))

significa la familia de funciones que no crecen más que f(n). incluye el conjunto de funciones que son menores que f(n). indica una cota superior

Notación O(f(n))

significa la familia de funciones que no crecen más que f(n).

incluye el conjunto de funciones que son menores que f(n).

indica una cota superior

Notación

T(n) = O(f(n)) se lee "T(n) es O de (f(n))".

• T(n) < cf(n), en que c es una constante positiva, y $n > n_0$.

Notación O(f(n))

significa la familia de funciones que no crecen más que f(n).

incluye el conjunto de funciones que son menores que f(n).

indica una cota superior

Notación

T(n) = O(f(n)) se lee "T(n) es O de (f(n))".

• T(n) < cf(n), en que c es una constante positiva, y $n > n_0$.

Ejemplo

 $3n^2$ es $O(n^2)$. Probamos:

- Consideramos $T(n) = 3n^2$ y $f(n) = n^2$.
- Según definición, $3n^2 \le cn^2$, para una constante positiva c y un $n > n_0$
- Para la prueba, consideramos c = 3 y $n_0 = 1$.

una cota inferior

Recordando las primeras aulas de análisis asintótico

Notación $\Omega(f(\mathbf{n}))$ significa la familia de funciones que no crecen menos que f(n). incluye el conjunto de funciones que son mayores que f(n).

indica

Recordando las primeras aulas de análisis asintótico

Notación $\Omega(f(n))$

significa la familia de funciones que no crecen menos que f(n). el conjunto de funciones que son mayores que f(n). incluye indica una cota inferior

Notación

 $T(n) = \Omega(f(n))$ se lee "T(n) es omega de (f(n))".

• T(n) > cf(n), en que c es una constante positiva, y $n > n_0$.

Recordando las primeras aulas de análisis asintótico

Notación $\Omega(f(n))$

significa la familia de funciones que no crecen menos que f(n). incluye el conjunto de funciones que son mayores que f(n). indica una cota inferior

Notación

 $T(n) = \Omega(f(n))$ se lee "T(n) es omega de (f(n))".

• T(n) > cf(n), en que c es una constante positiva, y $n > n_0$.

Ejemplo

 $0.01n^2$ es $\Omega(n^2)$. Probamos:

- Consideramos $T(n) = 0.01n^2$ y $f(n) = n^2$.
- Según definición, $0.01n^2 \ge cn^2$, para una constante positiva c y un $n > n_0$
- Para la prueba, consideramos c = 0.001 y $n_0 = 1$.

Notación $\Theta(f(n))$

significa familia de funciones que crecen en un orden igual a f(n). conforma las familias pertenecientes a O(f(n)) y $\Omega(f(n))$

Recordando las primeras aulas de análisis asintótico

Notación $\Theta(f(n))$

significa familia de funciones que crecen en un orden igual a f(n). conforma las familias pertenecientes a O(f(n)) y $\Omega(f(n))$

Notación

 $T(n) = \Theta(f(n))$ se lee "T(n) es theta de (f(n))".

• $c_1 f(n) \le T(n) \le c_2 f(n)$, en que c_1 y c_2 es una constante positiva, y $n > n_0$.

Recordando las primeras aulas de análisis asintótico

Notación $\Theta(f(n))$

significa familia de funciones que crecen en un orden igual a f(n). conforma las familias pertenecientes a O(f(n)) y $\Omega(f(n))$

Notación

 $T(n) = \Theta(f(n))$ se lee "T(n) es theta de (f(n))".

• $c_1 f(n) \le T(n) \le c_2 f(n)$, en que c_1 y c_2 es una constante positiva, y $n > n_0$.

Ejemplo

 $(3/2)n^2$ es $\Theta(n^2)$. Probamos:

- Consideramos $T(n) = (3/2)n^2$ y $f(n) = n^2$.
- Según definición, $c_1 n^2 \le (3/2)n^2 \le c_2 n^2$, para las constantes positivas c_1 y c_2 , además $n \ge n_0$
- Para la prueba, consideramos $c_1 = (1/2)$, $c_2 = 2$ y $n_0 = 1$.

Análisis asintótico del algoritmo de INSERCIÓN

ORDENA-POR-INSERCION(A,p,r)

- 1: **para** $j \leftarrow p + 1$ hasta r **hacer**
- 2: $clave \leftarrow A[j]$
- 3: $i \leftarrow j 1$
- 4: **mientras** $i \ge p$ AND A[i] > clave **hacer**
- 5: $A[i+1] \leftarrow A[i]$, \triangleright Haciendo campo
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow clave$, \triangleright Insertando

¿Cuánto tiempo consume el algoritmo?

Supongamos que n = r - p + 1

Consumo de tiempo

línea	Consumo de tiempo
1	O(n)
2	O(n)
3	O(n)
4	nO(n)
5	nO(n)
6	nO(n)
7	O(n)
Total	$O(3n^2+4n)=O(n^2)$

Observaciones

- Las líneas 4-6 son ejecutadas $\leq n$ veces. Cada ejecución consume O(n). Todas juntas consumen nO(n).
- Probar $nO(n) = O(n^2)$.
- Probar $O(n^2) + O(n^2) + O(n^2) = O(3n^2)$.
- Probar $O(3n^2 + 4n) = O(n^2)$.

Problema

Para los segmentos A[p...q] y A[q+1...r], ambos crecientes, deseamos ordenar A[p...r] de modo que quede en orden creciente.

Problema

Para los segmentos A[p...q] y A[q+1...r], ambos crecientes, deseamos ordenar A[p...r] de modo que quede en orden creciente.

Entra

p				q						r
10	35	38	60	25	40	45	50	65	77	99

Problema

Para los segmentos A[p...q] y A[q+1...r], ambos crecientes, deseamos ordenar A[p...r] de modo que quede en orden creciente.

Entra

р				q						r
10	35	38	60	25	40	45	50	65	77	99

Sale

1 n 10 25 35 38 40 45 50 60 65 77 99

catencio@unsa.edu.pe

Algoritmo de Intercalación

catencio@unsa.edu.pe

Algoritmo de Intercalación

catencio@unsa.edu.pe

Algoritmo de Intercalación

catencio@unsa.edu.pe

Algoritmo de Intercalación

INTERCALA(A,p,q,r)

- 1: $\triangleright B[p..r]$ es un vector auxiliar 2: para $i \leftarrow p$ hasta q hacer
- 3: $B[i] \leftarrow A[i]$
- 4: para $i \leftarrow q + 1$ hasta r hacer
- 5: $B[r+q+1-j] \leftarrow A[j]$
- 6: $i \leftarrow p$
- 7: $i \leftarrow r$
- 8: para $k \leftarrow p$ hasta r hacer
 - si $B[i] \leq B[j]$ entonces
- 10: $A[k] \leftarrow B[i]$
- 11: $i \leftarrow i + 1$
- 12: **si no**
- 13: $A[k] \leftarrow B[j]$
- $i \leftarrow i 1$ 14:

Ejercicios

- Si cada línea de código consume <u>1 unidad</u> de tiempo. Cuál sería el consumo total?. n = r - p + 1
- Cómo sería el análisis asintótico por cada línea?.
- Demuestre que el algoritmo Intercalación es $\Omega(n)$.

Soluciones

Si cada línea de código consume <u>1 unidad</u> de tiempo...

línea		consumo
1	=	1
2	=	q - p + 2 = n - r + q + 1
3	=	q - p + 1 = n - r + q
4	=	r - (q+1) + 2 = n - q + p
5	=	r - (q+1) + 1 = n - q + p - 1
6	=	1
7	=	1
8	=	r - p + 2 = n + 1
9	=	r - p + 1 = n
10-14	=	2(r - p+1) = 2n
Total	=	8n - 2(r-p+1)+5 = 6n+5

Si cada línea de código consume 1 unidad de tiempo...

línea		consumo
1	=	1
2	=	q - p + 2 = n - r + q + 1
3	=	q - p + 1 = n - r + q
4	=	r - (q+1) + 2 = n - q + p
5	=	r - (q+1) + 1 = n - q + p - 1
6	=	1
7	=	1
8	=	r - p + 2 = n + 1
9	=	r - p + 1 = n
10-14	=	2(r - p+1) = 2n
Total	=	8n - 2(r-p+1)+5 = 6n+5

Soluciones

Análisis asintótico...

línea	consumo
1-4	O(n)
5-6	O(1)
7	nO(1) = O(n)
8	nO(1) = O(n)
9-14	nO(1) = O(n)
Total	O(4n+1) = O(n)

El algoritmo por lo tanto consume O(n).

Soluciones

Demuestre que el algoritmo de intercalación es $\Omega(n)$

- Sabemos que el algoritmo consume 6n + 5 unidades de tiempo, suponiendo que cada línea toma 1 unidad de tiempo.
- Probaremos por lo tanto que 6n + 5 es $\Omega(n)$
- Según definición de Ω , para c > 0 y $n > n_0$

$$6n + 5 \ge cn$$

 $6n + 5 \ge 6n$
 $c = 6$
 $n_0 = 1$... Probado!

Podemos decir más aún..

• El algoritmo de intercalación es O(n)

Soluciones

Demuestre que el algoritmo de intercalación es $\Omega(n)$

- Sabemos que el algoritmo consume 6n + 5 unidades de tiempo, suponiendo que cada línea toma 1 unidad de tiempo.
- Probaremos por lo tanto que 6n + 5 es $\Omega(n)$
- Según definición de Ω , para c > 0 y $n > n_0$

$$6n + 5 \ge cn$$

 $6n + 5 \ge 6n$
 $c = 6$
 $n_0 = 1$... Probado!

Podemos decir más aún..

- El algoritmo de intercalación es O(n)
- El algoritmo de intercalación es $\Omega(n)$

Soluciones

Demuestre que el algoritmo de intercalación es $\Omega(n)$

- Sabemos que el algoritmo consume 6n + 5 unidades de tiempo, suponiendo que cada línea toma 1 unidad de tiempo.
- Probaremos por lo tanto que 6n + 5 es $\Omega(n)$
- Según definición de Ω , para c > 0 y $n > n_0$

$$6n + 5 \ge cn$$

 $6n + 5 \ge 6n$
 $c = 6$
 $n_0 = 1$... Probado!

Podemos decir más aún..

- El algoritmo de intercalación es O(n)
- El algoritmo de intercalación es $\Omega(n)$
- Por lo tanto el algoritmo de intercalación es $\Theta(n)$.

Divide y vencerás (Divide and Conquer)

- Estos algoritmos tienen 3 pasos:
 - 1 Dividir: Generación de subproblemas.
 - Conquistar: Resolver cada subproblemas de forma recursiva.
 - Ombinar: Cada solución de los subproblemas es combinada

ntender el concepto de subproblema es importante para probar los problemas de Programación Dinámica.

Divide y vencerás (Divide and Conquer)

- Estos algoritmos tienen 3 pasos:
 - 1 Dividir: Generación de subproblemas.
 - Conquistar: Resolver cada subproblema de forma recursiva.
 - Combinar: Cada solución de los subproblema es combinada.

Entender el concepto de subproblema es importante para probar los problemas de Programación Dinámica.

Merge Sort

Problema

Reordenar A[p..r] de modo que esté en orden creciente.

Entra

Sale

p r A 11 22 33 44 55 66 77 88 99

Algoritmos - p.126/106

Algoritmos - p.132/106

Algoritmos - p.135/1060

catencio@unsa.edu.pe

catencio@unsa.edu.pe

MERGE-SORT(A, p, r)

- 1: si p < r entonces
- 2: $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3: MERGE-SORT(A,p,q-1)
- 4: MERGE-SORT(A,q+1,r)
- 5: INTERCALA(A,p,q,r)

Invariantes

- i1 Al final de la línea 3, los elementos entre p y q-1 están ordenados.
- i2 Al final de la línea 4, los elementos entre q + 1 y r están ordenados.
- i3 Al final de la línea 5, los elementos entre p y r están ordenados.

Algoritmo de MergeSort

MERGE-SORT(A, p, r)

- 1: si p < r entonces
- 2: $q \leftarrow |(p+r)/2|$
- 3: MERGE-SORT(A,p,q-1)
- 4: MERGE-SORT(A,q+1,r)
- 5: INTERCALA(A,p,q,r)

Corrección del algoritmo (Prueba inductiva)

- Para el primer caso, cuando el arreglo tiene tamaño n = 1, es decir, p = r, el algoritmo sólo trabaja hasta la línea 1 dejando el arreglo intacto. Este arreglo por tener 1 elemento ya está ordenado.
- Para el caso de n > 1, el problema será subdivido en subproblemas y al final de las llamadas recursivas, el algoritmo de intercala retornará un arreglo ordenado de tamaño n.
- Note que el algoritmo de intercalación no puede ser probado a no ser que las invariantes i1 e i2 sean falsas.

Consumo de Tiempo del Merge-Sort

línea		Consumo en la línea
1	=	$\theta(1)$
2	=	$\theta(1)$
3	=	$T(\lceil n/2 \rceil)$
4	=	$T(\lfloor n/2 \rfloor)$
5	=	$\theta(n)$
T(n)	=	$T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \theta(n+2)$

Consumo de Tiempo del Merge-Sort

línea		Consumo en la línea
1	=	$\theta(1)$
2	=	$\theta(1)$
3	=	$T(\lceil n/2 \rceil)$
4	=	$T(\lfloor n/2 \rfloor)$
5	=	$\theta(n)$
T(n)	=	$T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \theta(n+2)$

Conclusión

Por la segunda regla del Teorema Maestro, obtenemos que la complejidad del Merge-Sort queda en $\theta(n|g(n))$

Teorema Maestro

Suponga:

$$T(n) = aT(n/b) + f(n)$$

para algún $a \ge 1$ y b > 1 y donde n/b significa $\lceil n/b \rceil$ o |n/b| entonces en general:

Si
$$f(n) = O(n^{\log_b a - e})$$
 entonces $T(n) = \theta(n^{\log_b a})$
Si $f(n) = \Theta(n^{\log_b a})$ entonces $T(n) = \theta(n^{\log_b a} \lg n)$
Si $f(n) = \Omega(n^{\log_b a + e})$ entonces $T(n) = \theta(f(n))$

para un e > 0

Teorema Maestro Simplificado

Suponga

$$T(n) = aT(n/b) + cn^k$$

para algun $a \ge 1$ y b > 1 y donde n/b significa $\lceil n/b \rceil$ o |n/b|. Entonces en general:

Si
$$a > b^k$$
 entonces $T(n) = \theta(n^{\log_b a})$

Si
$$a = b^k$$
 entonces $T(n) = \theta(n^k \lg n)$

Si
$$a < b^k$$
 entonces $T(n) = \theta(n^k)$