Homework

- (1) In Merton's model, show that the default probability is decreasing as the equity value increases. In particular, if the equity value goes to infinity, prove that the default probability goes to zero.
- (2) Show that, under the Merton's model, the credit spread on a *T*-year zero bond (with face value 1) is given by:

Credit Spread =
$$-\frac{\log (V_0 e^{rT} \Phi(-d_1) + \Phi(d_2))}{T}$$
.

where

$$d_1 = \frac{\log(V_0) + (r + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$$
$$d_2 = d_1 - \sigma\sqrt{T}$$

- (3) Consider a firm with the following parameters:
 - Current asset value: $V_0 = 120 million
 - Debt obligation: B = \$90 million
 - Asset volatility: $\sigma = 0.25 \ (25\% \text{ per year})$
 - Drift rate: $\mu = 0.06$ (6% per year)
 - Risk-free rate: r = 0.04 (4% per year)
 - Time to maturity: T=2 years

Answer all questions.

- 1. Compute the default probability $P(V_T \leq B)$ using the Merton model framework.
- 2. Compute the equity value S_0 using the risk-neutral valuation approach.
- 3. Compute the debt value B_0 using the risk-neutral valuation approach.
- 4. Compute the credit spread using the risk-neutral valuation approach.
- 5. Compute the default probability under the risk-neutral measure.
- 6. Compute the rate of the expected loss on the debt.
- 7. Compute the Delta of the equity.
- 8. Compute the equity volatility.
- 9. Compute the recovery rate on the debt.
- (4) Consider a firm with the following parameters:
 - The value of a company's equity is 3 million and the volatility of the equity is 80%.
 - The debt that will have to be paid in one year is 10 million.
 - The risk-free rate is 5% per annum.

Answer all questions.

1. Find the current asset value V_0 and the asset volatility σ_V .

Hint: S_0 and σ_S are given instead of V_0 and σ_V . One may solve these two equations:

$$S_0 = V_0 \Phi(d_1) - B e^{-rT} \Phi(d_2)$$

$$S_0 \sigma_S = \Phi(d_1) V_0 \sigma_V$$

This is a system of two nonlinear equations in two unknowns and can be solved using numerical methods.

- 2. Compute the default probability under risk-neutral measure.
- 3. Compute the recovery rate on the debt.