Approximate алгоритмы для больших данных

Андрей Кузнецов 26.11.2022

Структура курса

- 1. Введение в Большие Данные
- 2. Hadoop экосистема и MapReduce
- 3. SQL поверх больших данных
- 4. Инструменты визуализации при работе с Большими Данными
- 5. Введение в Scala
- 6. Устройство и API Spark
- 7. Approximate алгоритмы для больших данных 🕒
- 8. Потоковая обработка данных (Kafka, Spark Streaming, Flink)
- 9. Основы распределённой СУБД Apache Cassandra

Hadoop ecosystem

План лекции

- 1. Хэш и примеры применений
 - а. Расчет статистик
 - b. Извлечение признаков
 - с. Разделение на группы
 - d. Фильтрация
- 2. Поиск ближайших соседей
 - а. Примерный подсчет расстояния
 - b. Примерный поиск ближайших соседей

Зачем примерные методы?

Считать в лоб - дорого

Зачем примерные методы?

Задача: посчитать статистики большого распределенного датасета

Считать в лоб - дорого

Решение:

df.stat.approxQuantile("x", Array(0.5), 0.25)

This method implements a variation of the Greenwald-Khanna algorithm

Хэш

Хэш функция переводит вход (число / строку / whatever) в целочисленный номер корзины (bucket number)

Хороший хэш должен равномерно распределять по корзинам ключи.

Хэш от одного ключа всегда попадает в одну корзину

Пример: остаток от деления на простое число для целочисленных ключей

Пример: конвертируем символ для строки в Int (Unicode / ASCII), суммируем.

Hashing trick

Реальные данные могут оказаться гораздо более динамичными, и мы не всегда можем рассчитывать, что категориальные признаки не будут принимать новых значений. Все это сильно затрудняет использование уже обученных моделей на новых данных. Кроме того, **LabelEncoder** подразумевает предварительный анализ всей выборки и хранение построенных отображений в памяти, что затрудняет работу в режиме больших данных.

Аналог One-Hot-encoding

- 1. Рассмотрим фичу с именем "country"
- 2. Создаем хэш-таблицу с весами линейной модели
- 3. Пусть для текущей строки ее значение "russia"
- 4. Берем хэш от "country_russia" и достаем из хэш-таблицы соответствующий вес

HashingTF в Spark

- 1. Вместо сохранения конкретных слов, берем хэши от них
- 2. Сохраняем это в хэш-таблицу (хэш слова -> встречаемость)

A/B/n-тесты

- 1. Берем id пользователя превращаем в строку
- 2. Конкатенируем с солью (например, название текущего теста)
- 3. Берем от этого хэш (MurMurHash3 хороший вариант)
- 4. Выделяем остаток от деления значения хэша на большое простое число

Задача

У нас есть очень большое множество Хотим проверить входят ли какие-то элементы в него

Подход в лоб

Делаем хэш-таблицу по данным Смотрим, что хэш для нового элемента уже существует Быстро (лукап по хэш-таблице – константа), но требует много места

Вероятностный подход - Блум Фильтр

Имеет две операции:

- 1.добавление в множество
- 2.проверка на отсутствие

Состоит из n бит (сначала все 0) и k хэш-функций, которые кладут в один из n бит

Добавление

- 1. Считаем k хэш-функций от элемента
- 2. Меняем 0 на 1 (или оставляем 1) в корзинках, которые вернули хэши

Поиск

- 1. Считаем k хэш-функций от элемента
- 2. Если какой-то бит равен 0, то элемента нет в множестве

Но могут быть коллизии!

Но могут быть коллизии!

Давайте посчитаем вероятность False Positive через параметры n, k и количества элементов в множестве (m)

- 1. Каждая хэш-функция попадает равномерно в одну из n корзинок, тогда вероятность промаха по конкретной корзинке $1-\frac{1}{n}$
- 2. Тогда вероятность, что все хэш-функции промахнуться мимо этого бита равна $\left(1-\frac{1}{n}\right)^k$
- 3. Всего m элементов, поэтому вероятность, что в заполненном фильтре пустой бит равна $\left(1-\frac{1}{n}\right)^{km}$
- 4. Вероятность того, что все хэши выставлены для нового элемента

$$\left(1 - \left(1 - \frac{1}{n}\right)^{km}\right)^k \approx \left(1 - e^{-\frac{km}{n}}\right)^k$$

Вероятность коллизии $p = \left(1 - e^{-\frac{km}{n}}\right)^k$ минимальна при $k = \frac{n}{m} \ln 2$

Подставив k в формулу p получим $\ln p = -\frac{n}{m} (\ln 2)^2$

Отсюда

$$n = -\frac{m \ln p}{(\ln 2)^2} \approx -1.44 m \log_2 p$$
$$k = -\log_2 p$$

Если у нас $m=10^6$ элементов и хотим ошибаться не чаще p=0.01

Количество требуемых бит $n \approx 10^7$, $k \approx 7$

Обычная хэш-таблица при хэше в 32 бита — $3.2 * 10^7$

Bloom filter. Parquet

Bloom filter. Cassandra

Count-min sketch

Задача

Имеем нагруженный поток данных Хотим посчитать как часто конкретный элемент встречается в потоке

Подход в лоб

Делаем хэш-таблицу элемент – встречаемость Смотрим по хэшу встречаемость элемента Быстро (лукап по хэш-таблице – константа), но требует много места

Count-min sketch

Операции

- •Инкремент счетчика для элемента
- •Извлечение счетчика для элемента

Состоит из d разных хэш-функций с w корзинками

Добавление

- 1. Считаем d хэш-функций от элемента
- 2. Добавляем 1 в соответствующие ячейки

Извлечение

- 1. Считаем d хэш-функций от элемента
- 2. Берем минимум из полученных значений в ячейках

Поиск похожих

Поиск наиболее похожих элементов (документов, товаров, пользователей...) согласно заданной метрике близости или расстояния (Жаккард, Косинус, Евклид,...)

Классические примеры: k-ближайших соседей, ранжирование (рексистемы,чат-боты, распознавание лиц,), дедупликация документов

Расстояние – переводит пару элементов некоторого пространства в вещественное число

Должно удовлетворять условиям:

- 1. Расстояние неотрицательно
- 2. Расстояние равно нулю только тогда, когда совпадают элементы
- 3. Расстояние симметрично

Примеры: Jaccard, Euclidian, Cosine

Min-hash

Позволяет быстро посчитать меру Жаккарда

Element	S_1	S_2	S_3	S_4
\overline{a}	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Предположим, у нас есть: два множества А, Б и хэш-функция h, которая умеет считать хэши для элементов этих множеств. Далее, определим функцию hmin(S), которая вычисляет функцию h для всех членов какого-либо множества S и возвращает наименьшее её значение. Теперь, начнём вычислять hmin(A) и hmin(Б) для различных пар множеств, вопрос: чему равна вероятность того, что hmin(A) = hmin(Б)?

Если задуматься, эта вероятность должна быть пропорциональна размеру пересечения множеств — при отсутствии общих членов, она стремится к нулю, и к единице, когда множества равны, в промежуточных случаях она где-то посередине. Ничего не напоминает? Ага, всё верно, это и есть J(A, Б) — коэффициент Жаккара!

Bucketed random projection (Euclidean)

- 1. Проводим прямую
- 2. Делим на корзинки равной длины
- 3. Смотрим попали ли две точки в одну корзину

Для проекции используем хэш-функцию

$$h(x) = \left\lfloor \frac{v \cdot x}{a} \right\rfloor$$

v — случайный единичный вектор

Annoy

Выберем две случайные точки и проведем к ним нормаль

Повторим для подплоскости, пока в листе останется не больше заданного К элементов

Сохраним индекс в бинарное дерево

Но одно дерево слишком неточное Соберем лес!

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

Navigable Small World (NSW)

Строим Small World граф по данным

При запросе попадаем на случайную вершину

Идем в ближайшую к запросу соседнюю вершину

Повторяем, пока не окажемся в ближайшей точке.

Navigable Small World (NSW)

Теперь разделим граф на слои Все точки со слоя n переходят на слой n+1

- 1. Выбираем случайную точку на верхнем слое
- 2. Используем механизм NSW
- 3. Как только нашли ближайшую точку на слое, спускаемся ниже

Facebook AI research Similarity Search (FAISS)

FAISS состоит из трех основных частей

- 1. Asymmetric distance computation (ADC)
- 2. Inverted file (IVF)
- 3. Product quantization (PQ)

FAISS. ADC

- 1. Воспользуемся идеей корзинок и разделим наше пространство на кластеры с помощью K-Means
- 2. Для репрезентации корзины возьмем вектор центрального элемента
- 3. При запросе находим ближайший центр
- 4. Достаем элементы кластера через IVF

FAISS IVF

Для центров кластера просто храним список элементов в нем

FAISS: PQ

- 1. Вычитаем элементы центроида из вектора
- 2. Делим полученный вектор на корзинки
- 3. Каждую из частей кластеризуем и заменяем индексом центра

FAISS: Поиск

- 1. При запросе находим несколько ближайших центров кластеров
- 2. Достаем элементы кластера через IVF
- 3. Остаток вектора от запроса до центра кластера кодируется через РО
- 4. Расстояние от запроса до элемента определяется, как сумма расстояний от центров кластеров между всеми корзинками
- 5. Достаем ближайших

BLISS

BLISS

BLISS

	QPS				Recall10@10			Index size (construction time)				
Dataset	BLISS	BLISS+	HNSW	FAISS	BLISS	BLISS+	HNSW	FAISS	BLISS	BLISS+	HNSW	FAISS
Deep1B	249	400	277	222	0.9183	0.81	0.8825	0.919	15.5GB	137MB	437GB	97GB
	384	1724	476	769	0.8828	0.6	0.846	0.7887	(1hr)	(1.2hrs)	(9hrs)	(>5days)
BIGANN	121	344	909	243	0.8443	0.658	0.8734	0.8764	15.5GB	137MB	557GB	127GB
	344	909	625	526	0.792	0.516	0.76	0.7495	(1hr)	(1.1hrs)	(10hrs)	(>5days)
Yandex TI	110	384	15	4	0.568	0.434	0.566	0.4919	15.5GB	137MB	826GB	194GB
	1631	1470	102	18	0.4544	0.3053	0.2629	0.272	(1hr)	(1.3hrs)	(16hrs)	(>5days)
MSSpaceV	220	270	322	613	0.8328	0.73	0.830	0.843	15.5GB	137MB	452GB	101GB
	416	1333	1075	1216	0.7879	0.6705	0.784	0.7852	(1hr)	(1.1hrs)	(9hrs)	(>5days)

Table 2: Query Per Sec, Recall10@10, Index size and construction time number on 4 Large scale data [2] [17] [26] [37] against the popular baselines FAISS[18] and HNSW [24]. FAISS took a long time for indexing, it couldn't finish the construction for Yandex and MSSpaceV in the given time constraint.

Odrant

Odrant (read: quadrant) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload.

Odrant is tailored to extended filtering support. It makes it useful for all sorts of neural network or semantic-based matching, faceted search, and other applications.

Lecture summary

Хэши позволяют многое ускорить:

- 1. Подготовка фичей
- 2. Фильтрация данных
- 3. Подсчет статистик
- 4. Оценка похожести
- 5. Поиск ближайших

Но нужно помнить, что они вносят ошибку

Recommended literature

