Discrete Mathematics: Homework 5

Name ID: Number

2020.4.8

- 1. Let *p* be an odd prime and let $\mathbb{Z}_p^* = \{[1]_p, [2]_p, \dots, [p-1]_p\}.$
 - (a) Show that $([a]_p)^2 = [1]_p$ iff $[a]_p \in \{[1]_p, [p-1]_p\}$.
 - (b) Show that $[1]_p \cdot [2]_p \cdot \dots [p-1]_p = [-1]_p$ and thus conclude that $(p-1)! \equiv -1 \pmod{p}$.
 - (a) 证明. $[1]_p = 1 + np, n \in \mathbb{N}^*$. $[p-1]_p = p-1 + np = (n+1)p-1$. $[a]_p = a + np$ prove **IF**:

when
$$a+np=1+np$$
 , $([a]_p)^2=(1+np)^2=1+(2n+n^2p)p=[1]+p$ when $a+np=(n+1)p-1$, $([a]_p)^2=(n^2-1)p+1=[1]+p$

prive **ONLY IF**:

$$[a]_p^2=a^2+2anp+n^2p^2=a^2+(2an+n^2p)p=1+mp=[1]_p$$
 where $m,n\in\mathbb{N}^*$ so, $a^2=[1]_p,a=[\pm 1]_p$

(b) 证明. Because p is an odd prime number,

$$\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$$

So
$$\forall a \in \mathbb{N}^*, 0 < a < p, \exists a^{-1} \in [1, p-1], s.t. \ aa^{-1} \equiv 1 \ (mod \ p)$$

$$\forall a \in (1, p-1)$$
, we can find a unique $a^{-1} \in (1, p-1)$

By the muplication of
$$\mathbb{Z}_n$$
, $[2]_p \cdot \dots [p-2]_p = [1]_p$

And obviously,
$$[1]_p \cdot [p-1]_p = [-1]_p$$

So,
$$[1]_p \cdot [2]_p \cdot \dots [p-1]_p = [(p-1)!]_p = [-1]_p$$

Which equals to $(p-1)! \equiv -1 \pmod{p}$

2. Let x, y, z be integers such that $x^2 + y^2 \equiv 3z^2 \pmod{4}$. Show that x, y, z must be all even. Based on this result, show that the equation $x^2 + y^2 = 3z^2$ has no other integersolutions except (x, y, z) = (0, 0, 0).

适明.
$$x^2 + y^2 \equiv 3z^2 \pmod{4}$$
, we have $x^2 + y^2 = 3z^2 + 4n$, $n \in \mathbb{Z}$ so, $\frac{x^2 + y^2 - 3z^2}{4}$ is an integer. $4 \mid x^2 + y^2 - 3z^2$

if x, y are an odd and an even, z is an even.

Suppose
$$x = 2k + 1$$
, $y = 2q$, $z = 2r$, we have $(2k + 1)^2 + (2q)^2 - 3(2r)^2 \mod 4 = 1$

if x, y are an odd and an even, z is an odd.

Suppose
$$x = 2k + 1$$
, $y = 2q$, $z = 2r + 1$, we have $(2k + 1)^2 + (2q)^2 - 3(2r + 1)^2 \mod 4 = 2$

if x, y are odds, z is an even.

Suppose
$$x = 2k + 1$$
, $y = 2q + 1$, $z = 2r$, we have $(2k + 1)^2 + (2q)^2 - 3(2r)^2 \mod 4 = 2$

if x, y are odds, z is an odd.

Suppose
$$x = 2k + 1$$
, $y = 2q + 1$, $z = 2r + 1$, we have $(2k + 1)^2 + (2q)^2 - 3(2r)^2 \mod 4 = 3$

where $k, q, r \in \mathbb{Z}$

So, x, y, z must be all even.

$$let x^2 + y^2 \equiv 3z^2 \pmod{4}$$

let
$$x = 2k, y = 2q, z = 2r$$
, so we have $x^2 + y^2 = 4(k^2 + q^2) = 12(r^2) = 3z^2$

and we have $k^2 + q^2 = 3r^2$

and
$$|k| < |x|, |q| < |y|, |r| < |z|$$
 or $k = x = 0, q = y = 0, r = z = 0$

Assume the smallest integer positive solution is x_0, y_0, z_0 , but there exists $k_0 = \frac{1}{2}x_0, q_0 = \frac{1}{2}y_0, r_0 = \frac{1}{2}z_0$.

So nonzero integer solution doesn't exists.

$$(x, y, z) = (0, 0, 0)$$

3. Let a_1, a_2, a_3, a_4 be arbitrary integers. Find ALL integer solutions of the following equation system.

$$\begin{cases} x \equiv a_1 \pmod{11}; \\ x \equiv a_2 \pmod{13}; \\ x \equiv a_3 \pmod{17}; \\ x \equiv a_4 \pmod{19}; \end{cases}$$

Solution:

$$n = 11 \cdot 13 \cdot 17 \cdot 19 = 46189$$

$$m_1 = 4199 \quad m_2 = 3553 \quad m_3 = 2717 \quad m_4 = 2413$$

$$m_1^{-1} = 7 \quad m_2^{-1} = 10 \quad m_3^{-1} = 11 \quad m_4^{-1} = 18$$

$$c_1 = 29392 \quad c_2 = 35530 \quad c_3 = 29887 \quad c_4 = 43758$$

$$a = \sum_{i=1}^4 a_i c_i \pmod{n} = 29392a_1 + 35530a_2 + 29887a_3 + 43758a_4 \pmod{46189}$$

$$x \in [29392a_1 + 35530a_2 + 29887a_3 + 43758a_4]_{46189}$$

4. A composite integer N that satisfies the congruence $b^{N-1} \equiv 1 \pmod{N}$ for all positive integers b with gcd(b, N) = 1 is called a Carmichael number. Suppose that $N = p_1p_2p_3$ is an integer, where p_1 , p_2 , p_3 are primes such that $(p_i-1)|(N-1)$ for i=1,2,3. Show that N is a Carmichael number.

证明. By Fermat's Little Theorem, we have,

$$b^{p_1-1} \equiv 1 \pmod{p_1}$$

$$b^{p_2-1} \equiv 1 \pmod{p_2}$$

$$b^{p_3-1} \equiv 1 \pmod{p_3}$$

$$N-1=\mathbb{Z}(p_i-1)$$
, $b^{N-1}=b^{\mathbb{Z}(p_i-1)}$

 $\forall x \equiv 1 \pmod{y}$, we have $x^n \equiv 1 \pmod{y}$ Because $x = 1 + \mathbb{Z}y$ and $x^n = 1 + (2y + \mathbb{Z}y^2)\mathbb{Z}$

 $\forall x \equiv 1 \pmod{y}$, we have $x \equiv 1 \pmod{ky}$ Because $x = 1 + \mathbb{Z}y$ and $x = 1 + \mathbb{Z}y + \mathbb{Z}y$

So,
$$b^{N-1} \equiv b^{3(N-1)} \equiv b^{p_1-1}b^{p_2-1}b^{p_3-1} \pmod{p_1p_2p_3}$$

Which has the same reminder 1 as $b^{p_1-1} \equiv 1 \pmod{p_1}$

So,
$$b^{N-1} \equiv 1 \pmod{N}$$

So, N is a Carmichael number.

5. See the following figure. The RSA public keys of Alice, Bob and Charlie are $pk1 = (N_1, 3)$, $pk2 = (N_2, 3)$ and $pk3 = (N_3, 3)$, respectively. David wants to send a private message m to Alice, Bob and Charlie, where m is an integer and $0 < m < N_i$ for i = 1, 2, 3. In order to keep m secret from an eavesdropper Eve, David encrypts m as $c_1 = m^3 \mod N_1$, $c_2 = m^3 \mod N_2$ and $c_3 = m^3 \mod N_3$; and then sends c_1 to Alice, c_2 to Bob and c_3 to Charlie.

Suppose that N_1, N_2, N_3 are pairwise relatively prime. Show that with the knowledge of all public keys and all ciphertexts, Eve can decide the value of m.

证明. By RSA Theorem, we have

$$\begin{cases} x^3 \equiv c_1 \pmod{N_1} \\ x^3 \equiv c_2 \pmod{N_2} \\ x^3 \equiv c_3 \pmod{N_3} \end{cases}$$

so,
$$n = N_1 N_2 N_3$$

 $m_1 = N_2 N_3$ $m_2 = N_1 N_3$ $m_3 = N_1 N_2$
 $c_1 = m_1 m_1^{-1}$ $c_2 = m_2 m_2^{-1}$ $c_3 = m_3 m_3^{-1}$
 $a = \sum_{i=1}^k a_i c_i \pmod{n}$
 $x^3 \in [\sum_{i=1}^3 a_i c_i]_n$

so we can try to solve every x as a message.

6. See the following figure. Alice and Bob trust each other very much. They set their RSA public keys as pk1 = (N, e1) and pk2 = (N, e2), respectively. Charlie wants to send aprivate message m to Alice and Bob, where $0 \le m < N$ is an integer and gcd(m, N) = 1. In order to keep m secret from an eavesdropper Eve, Charlie encrypts m as $c_1 = m^{e1} \mod N$ and $c_2 = m^{e2} \mod N$; and then sends c1 to Alice and c2 to Bob.

Suppose that gcd(e1, e2) = 1. Show that with the knowledge of all public keys and all ciphertexts, Eve can decide the value of m.

证明. By RSA Theorem, we have

$$\begin{cases} x^{e_1} \equiv c_1 \pmod{N} \\ x^{e_2} \equiv c_2 \pmod{N} \end{cases}$$

Because $gcd(e_1, e_2) = 1$, we have $x_1e_1 + y_1e_2 = gcd(e_1, e_2) = 1$ by EXGCD.

so, $x^{x_1e_1+y_1e_2}\equiv c_1^{x_1}+c_2^{x_2}\equiv x^1\equiv\pmod N$, and N is a prime. so, Eve can solve m by solving $m\equiv c_1^{x_1}+c_2^{x_2}\pmod N$