「データの表示」

参考書:

「ハーバード大学講義テキスト生物統計学入門」2章 (1章は序論なので飛ばします)

頻度は貴重な情報1:ヒストグラム

図 2.2 ヒストグラム: 25~34 歳の米国男性 1067 人の 血清コレステロール値の絶対頻度 (1976-1980)

図2.15 1986年に米国で生まれた新生児3,751,275人の出生 時体重の相対頻度

頻度は貴重な情報2:箱ひげ図

頻度は貴重な情報3:離散データ

2つの変数の関連を捉える

「数字による要約尺度」 (3章)

・ 平均、分散、標準偏差、中央値などが手計算できるようになることが目標です。

平均と分散の計算法(喘息患者肺活量)

被験者	x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
1	2.30	-0.65	0.4225
2	2.15	-0.80	0.6400
3	3.50	0.55	0.3025
4	2.60	-0.35	0.1225
5	2.75	-0.20	0.0400
6	2.82	-0.13	0.0169
7	4.05	1.10	1.2100
8	2.25	-0.70	0.4900
9	2.68	-0.27	0.0729
10	3.00	0.05	0.0025
11	4.02	1.07	1.1449
12	2.85	-0.10	0.0100
13	3.38	0.43	0.1849
計	38.35	0.00	4.6596

x:最初の1秒間に肺から排出できる空気の体積

$$s^{2} = \frac{1}{(13-1)} \sum_{i=1}^{13} (x_{i} - 2.95)^{2}$$
$$= \frac{4.6596}{12}$$
$$= 0.39 \quad \text{If } \text{If$$

分散(variance)

$$s = \sqrt{s^2}$$

$$= \sqrt{0.39} \quad \forall y \vdash \mathcal{V}^2$$

$$= 0.62 \quad \forall y \vdash \mathcal{V}$$

標準偏差(standard deviation)

小さい順に並べ替え:

2.15, 2.25, 2.30, 2.60, 2.68, 2.75, 2.82, 2.85, 3.00, 3.38, 3.50, 4.02, 4.05 中央値(median)

平均と比べて中央値は頑健である

表 3.5 呼吸停止の状態 にある喘息患者 10 人の 心拍数

患者	心拍数(每分)	
1	167	
2	150	
3	125	
4	120	
5	150	
6	150	
7	40 ← 異常値	
8	136	
9	120	
10	150	

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 平均(異常値も含む)
$$= \left(\frac{1}{10}\right) (167 + 150 + 125 + 120 + 150 + 150 + 40 + 136 + 120 + 150)$$

$$= \frac{1308}{10}$$

$$= 130.8 回/分$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
 平均(異常値を除く)
$$= \left(\frac{1}{9}\right) (167 + 150 + 125 + 120 + 150 + 136 + 120 + 150)$$

$$= \frac{1268}{9}$$

$$= 140.9 回/分$$

小さい順に並べ替え:

中央値(異常値を除く)

40, 120, 120, 125, 136, 150, 150, 150, 150, 167

(136+150)/2=143 回

中央値(異常値も含む)

例題:試験の得点(70,70,80,90,90)の、 平均、分散、標準偏差、中央値を求めよ

[標準偏差] = 分散のルート = $\sqrt{100}$ = 10

平均 士標準偏差は、80 ± 10と書ける。

中央値は、3番目に小さい値であるので、<u>80</u>である。