REFRACTIVE INDEX OF WATER BY CONVEX LENS

Aim: To determine the refractive index of water using convex lens and plane mirror.

Apparatus: Plane mirror, convex lens, laboratory stand with rigid base and clamp arrangement, water, a pin, a plumb line, spherometer and a meter scale.

Principle: The reciprocal of the equivalent focal length of the combination of the lens is the equal to the sum of the reciprocal of focal lengths of individual lenses.

In figure -1, OF = f is the focal length of the convex lens. In figure- 2, OF' = f ' is the equivalent focal length of combination of convex lens and the plano - concave lens of water. If f_w is the focal length of plano - concave lens of water.

$$\frac{1}{f'} = \frac{1}{f} + \frac{1}{f_w} = \frac{1}{f_w} - \frac{1}{f}$$

$$\therefore f_w = \frac{ff'}{f - f'}$$

From lens maker formula the focal length of Plano – concave water lens

$$\frac{1}{f_w} = (n_w - 1)(\frac{1}{R})$$
 Where F_w – magnitude of the focal length of plano-concave water lens $n_w = 1 + \frac{R}{|f_w|}$

Formula:

- 1. Focal length of Plano-concave water lens, $f_w = \frac{ff'}{f-f'}$
- 2. Refractive index of water, $n_w = 1 + \frac{R}{f_w}$

Where: f – Focal length of convex lens.

f' – Equivalent focal length of combination of convex lens and Plano-concave water lens.

Procedure:

- 1. A plane mirror is placed on the base of laboratory stand keeping its reflecting surface upward.
- 2. A convex lens is placed on the plane mirror as shown in figure.
- 3. A sharp edged bright pin AB is placed horizontally just above the optic center (O) of the convex lens and clamped.
- 4. The position of the pin AB is adjusted such that it coincide with its image A'B' without parallax.
- 5. The vertical distance between the optic center (O) of convex lens and pin is measured using plumb line. It's equal to the focal length f of convex lens.
- 6. A few drops of water are put under the lens with the help of syringe so that the space between the mirror and lens is filled with water.
- 7. The position of the pin AB is raised such that it coincides with its image A"B" without parallax.
- 8. Then vertical distance between the optic center (O) of convex lens and pin AB is measured by plumb line, which is equal to the effective focal length f ' of combination of convex lens and water lens.
- 9. The focal length of water lens is calculated using the relevant formula.
- 10. The radius of curvature of the spherical surface of the convex lens in contact with water is found by using spherometer.
- 11. Refractive index of water is calculated using the formula.

Diagram:

Where:

 $L-convex\ lens,\ MM'-plane\ mirror,\ AB-\ object\ Pin$, $A'B'-image\ by\ convex\ lens,$

A"B" - image by combination of water lens end convex lens, O- optic centre

Observations:

1. The radius of curvature of the given convex lens $(R) = \dots cm$

To measure the focal length of water lens:

S. No	Position of pin with respect to the optical center O						£ £!
	Distance of the pin without water from			Distance of the pin with water from			$f_w = \frac{\int \int}{f - f'}$
	Upper surface of the lens (d ₁ cm)	Plane mirror (d ₂ cm)	$f = \frac{d_1 + d_2}{2}$ in cm	Upper surface of the lens (d' ₁ cm)	Plane mirror (d' ₂ cm)	$f' = \frac{d'_1 + d'_2}{2}$ in cm	in cm
1							
2							

Mean $f_w = \dots cm$

Calculation:

Focal length of the plano-concave lens of water $f_w = \frac{f f'}{f - f'}$

Refractive index of water $n_w = 1 + \frac{R}{f_w}$

Precautions:

- 1. The parallax should not be there
- 2. Meter scale should be straight while taking reading.
- 3. Air Bubbles should not be there in water.

Sources of error:

- 1. Formation air bubbles in water
- 2. Impurities in water.