Fiche du chapitre III - intégrales et primitives

A-Primitives

- ✓ Si f est une fonction continue sur un intervalle I, une **primitive** de f est une fonction F dérivable vérifiant F'(x) = f(x) pour tout $x \in I$;
- ✓ Si f est une fonction continue sur I, et si F est une primitive de f, alors toutes les primitives de f sont de la forme $x \mapsto F(x) + c$, où c est une constante réelle.
- ✓ Soit f une fonction continue sur I, soit $x_0 \in I$ et $a \in \mathbb{R}$. Il existe une unique primitive F de f sur I qui vérifie $F(x_0) = a$.

(Primitives de fonctions usuelles)

fonction f	une primitive F
α (constante)	αx
x	$\frac{x^2}{2}$
$x^{\alpha} \ (\alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1}$
$\frac{1}{x}$	$\ln(x) \text{ (sur] } 0; +\infty[)$
e^x	e^x
$e^{\alpha x} \ (\alpha \neq 0)$	$\frac{1}{\alpha} e^{\alpha x}$

fonction f	une primitive F
$\sin(x)$	$-\cos(x)$
$\cos(x)$	$\sin(x)$
$\operatorname{sh}(x)$	$\operatorname{ch}(x)$
$\operatorname{ch}(x)$	$\operatorname{sh}(x)$
$\ln(x)$	$x \ln(x) - x$

Calcul de primitives : reconnaissance d'une dérivée de fonctions composées

Si f(x) = u'(x)g(u(x)), et si G est une primitive de g, alors la fonction F(x) = G(u(x)) est une primitive de f.

 ${\bf Quelques\ applications:}$

fonction f	une primitive F
$\frac{u'(x)}{u(x)^2}$	$\frac{-1}{u(x)}$
$\frac{u'(x)}{\sqrt{u(x)}}$	$2\sqrt{u(x)}$
$u(x)^{\alpha} u'(x) \ (\alpha \neq -1)$	$\frac{1}{\alpha+1}u(x)^{\alpha+1}$

fonction f	une primitive F
$\frac{u'(x)}{u(x)}$	$\ln(u(x)) \text{ (si } u(x) > 0 \text{ sur } I)$
$u'(x) e^{u(x)}$	$\mathrm{e}^{u(x)}$
G'(u(x))u'(x)	G(u(x))

Calcul de primitives : primitivation par parties

Si f(x) = u'(x)v(x), alors on a $f(x) = \left(u(x)v(x)\right)' - u(x)v'(x)$. Si H(x) est une primitive de h(x) = u(x)v'(x), alors la fonction F(x) = u(x)v(x) - H(x) est une primitive de f(x).

Exemple: sur]0; $+\infty$ [, $\ln(x) = 1 \cdot \ln(x) = (x)' \cdot \ln(x) = \left(x \ln(x)\right)' - x \cdot \frac{1}{x} = \left(x \ln(x)\right)' - \left(x\right)' = \left(x \ln(x) - x\right)'$, donc la fonction $x \mapsto x \ln(x) - x$ est une primitive de la fonction $\ln(x) = (x \ln(x) - x) \cdot \frac{1}{x} = (x \ln(x)) \cdot \frac{$

B-intégrales

Lien avec les primitives et propriétés

 \checkmark Soit f une fonction continue sur [a,b]. Soit F une primitive de f. Alors on a

$$\int_{a}^{b} f(t)dt = \left[F(t)\right]_{a}^{b} = F(b) - F(a).$$

 \checkmark Si f est continue sur un intervalle I contenant a, la primitive de f qui s'annule en a est la fonction

$$F(x) = \int_{a}^{x} f(t)dt.$$

 \checkmark Si f et g sont des fonctions continues sur [a,b], et si $k \in \mathbb{R}$, on a

$$\int_a^b (f(t) + g(t))dt = \int_a^b f(t)dt + \int_a^b g(t)dt \qquad \qquad \int_a^b kf(t)dt = k \int_a^b f(t)dt.$$

✓ On a la relation de Chasles :

$$\int_{a}^{c} f(t)dt = \int_{a}^{b} f(t)dt + \int_{b}^{c} f(t)dt.$$

Calcul d'intégrales : reconnaissance d'une dérivée de fonctions composées

Si f(x) = u'(x)g(u(x)), et si G est une primitive de g, alors

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} u'(x)g(u(x))dx = \left[G(u(x))\right]_{a}^{b} = G(u(b)) - G(u(a)).$$

Remarque : cette expression est donc égale à $\int_{u(a)}^{u(b)} g(t)dt$.

Calcul d'intégrales : intégration par parties

Si f(x) = u'(x)v(x), alors on a

$$\int_a^b f(t)dt = \int_a^b u'(t)v(t)dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)dt.$$

Cette formule est intéressante lorsque $\int_a^b u(t)v'(t)dt$ est plus simple à calculer que l'intégrale $\int_a^b u'(t)v(t)dt$.