Kolloquium

Die geometrische Brownsche Bewegung und Anwendungen

Ablauf

- Presentation der Inhalte der Bachelorarbeit
 - Grundlagen zu Stochastischen Prozessen und der Brownschen Bewegung
 - Herleitung der geometrischen Brownschen Bewegung aus dem Binomialmodell
 - Modellierung von Finanzzeitreihen mit der geometrischen Brownschen Bewegung
 - Bewertung von Aktienoptionen mit Black Scholes
 - Weiterführende Themen: Stochastische Differentialgleichungen und das CEV-Modell
- Diskussion

Stochastische Prozesse

Folgen bzw. Familien von Zufallsvariablen

$$X_t, \quad t \in \mathbb{N} \quad \text{bzw.} \quad t \in \mathbb{R}_{\geq 0}$$

- Zeitdiskrete Prozesse: Wiederholter Münzwurf, Zufallsspaziergang
- Zeitstetige Prozesse: Brownsche Bewegung

Die diskrete Brownsche Bewegung

- Konstruktion durch aufsummierte unabhängige Normalvariablen
- Skaliertes Interpolationsverfahren (N-ter Ordnung) (\rightarrow Varianz \rightarrow t)
- Martingal-Eigenschaft und Varianzwachstum linear in der Zeit

Klassische Axiome

- 1. $W_0 = 0$ (fast-sicher)
- 2. Die Pfade $t \mapsto W_t$ sind (fast-sicher) stetig
- 3. Für Zeitpunkte $0 \le t_0 < t_1 \dots$ sind die Zuwächse $W_{t_1} W_{t_0}$ unabhängig
- 4. Die Zuwächse sind normalverteilt mit $W_{t_1} W_{t_0} \sim N(0, t_1 t_0)$

Die Brownsche Bewegung

- Klassische Axiome
 - 1. $W_0 = 0$ (fast-sicher)
 - 2. Die Pfade $t \mapsto W_t$ sind (fast-sicher) stetig
 - 3. Für Zeitpunkte $0 \le t_0 < t_1 \dots$ sind die Zuwächse $W_{t_1} W_{t_0}$ unabhängig
 - 4. Die Zuwächse sind normalverteilt mit $W_{t_1} W_{t_0} \sim N(0, t_1 t_0)$
- Brownsche Bewegung als Grenzwert
 - Diskrete Brownsche Bewegung und dann $N o \infty$
 - Um die Axiome Nachzuweisen und Verteilungskonvergenz im Funktionenraum: Satz von Donsker
 - In der Arbeit: Existenz der endlich-dimensionalen Verteilungen (mit Cramér-Wold) und Nachweis der Stetigkeit

- Kovarianz: $Cov(W_s, W_t) = min(s, t)$
- Bedingte Verteilung: $W_t \mid W_s \sim \mathcal{N}(W_s, t-s)$

Eigenschaften der Brownschen Bewegung

- Martingal-Eigenschaft
- Stationäre, unabhängige Inkremente, normalverteilt
- Pfade sind stetig aber nicht differenzierbar (fast-sicher)
- Somit eignet sich die Brownsche Bewegung zur Modellierung von Rauschen (Zufälliges Element in einem Prozess)

Die geometrische Brownsche Bewegung

- Multiplikatives Modell: $S_{k+1} = S_k(1 + X_{k+1})$
- Annahme: $X_{k+1} = \mu \Delta t + \sigma \sqrt{\Delta t} \, \varepsilon_{k+1}$
- ε_k i.i.d mit $E(\varepsilon_k) = 1$, $V(\varepsilon_k) = 0$. (Z. B. $\mathcal{N}(0,1)$ -Verteilt)
- Dies kann man als diskrete stochastische Differenzengleichung (SDE) interpretieren.
- Genauer: Euler-Maruyama-Approximation der SDE

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

- Geschlossene Lösung der SDE / Grenzwert der diskreten Ubergangsvariablen
 - Limes: $\Delta t \to 0$ (Zeit-Schritt) und $n \to \infty$ (Anzahl der Messungen)
- $S_T = S_0 \exp((\mu \frac{1}{2}\sigma^2)T + \sigma W_T)$
- S_T ist log-normalverteilt

Beweisskizze

- Ausgangspunkt: $S_{k+1} = S_k(1 + X_{k+1})$ mit $X_{k+1} = \mu \Delta t + \sigma \sqrt{\Delta t} \, \varepsilon_{k+1}$
- Logarithmierung: $\log S_n = \log S_0 + \sum \log(1 + X_i)$
- Taylor-Entwicklung bis 2. Ordnung, danach

$$\log S_n \approx \log S_0 + \sum_{j=1}^n \left(\underbrace{\mu \Delta t + \sigma \sqrt{\Delta t} \varepsilon_j}_{X_j} - \underbrace{\frac{1}{2} \sigma^2 \Delta t \varepsilon_j}_{-\frac{1}{2} X_j^2} \right)$$

$$= \log S_0 + \mu T + \underbrace{\sigma \sqrt{\Delta t} \sum_{j=1}^n \varepsilon_j}_{[ZGWS]} - \underbrace{\frac{1}{2} \sigma^2 \sum_{j=1}^n \Delta t \varepsilon_j^2}_{[GGZ]}$$

• Letztlich $\log S_T \stackrel{a}{=} \log S_0 + (\mu - \frac{1}{2}\sigma^2)T + \sigma W_T$

Fazit und Eigenschaften

- Positivität: $S_t > 0$ fast sicher
- fast sicher stetige Pfade
- Log-Normalverteilt mit log $S_t \sim N(\log S_0 + \mu \frac{1}{2}\sigma^2, \sigma^2)$

Kalibrierung

- Schätzung von μ, σ über Log-Returns
 - Daten sind zu einem festen Δt gegeben
 - Aus $\log S_{t+\Delta t} |\log S_t \sim \mathcal{N}(\mu \frac{1}{2}\sigma^2, \sqrt{\Delta t}\sigma^2)$ folgt der Schätzer
 - $\sigma^2 = s(\Delta \log S_t)$ und $\mu = m(\Delta \log S_t)$ wobei s die empirische Varianz und m das Mittel ist

Kalibrierung

- Schätzung von μ, σ über Log-Returns
 - Daten sind zu einem festen Δt gegeben
 - Aus $\log S_{t+\Delta t} |\log S_t \sim N(\mu \frac{1}{2}\sigma^2, \sqrt{\Delta t}\sigma^2)$ folgt der Schätzer
 - $\sigma^2 = s(\Delta \log S_t)$ und $\mu = m(\Delta \log S_t)$ wobei s die empirische Varianz und m das Mittel ist
- Konfidenzintervalle und Unsicherheitsschätzung (Bootstrap)
 - Die Daten sind ggf. unrein
 - Schätze μ und σ wiederholt sud einer Teilmenge der Daten schätzt
 - \bullet Ein Konfidenzband ergibt probabilistische Schätzung von μ und σ

Simulation

- Exakte Pfadsimulation für GBM mit der geschlossenen Formel und der diskreten Brownsche Bewegung
- Anwendung z. B. Monte-Carlo-Simulation für Optionspreise
- Numerik: Euler–Maruyama für verallgemeinerte Modelle (CEV etc.)

Backtests

- Validierung eines Modells anhand historischer Daten
- Metriken zur Bewertung

HitratioMSE% im Konfidenzintervall
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
NRMSEMAPE
$$\frac{\sqrt{\text{MSE}}}{y_{\text{max}} - y_{\text{min}}}$$
$$\frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Die Brownsche Bewegung Die geometrische Brownsche Bewegung Anwendungen Black-Scholes Ausblick

Visualisierung von Backtests

Optionen

- Eine europäische Call Option gibt dem Käufer das Recht, aber nicht die Pflicht, eine Aktie am Zeitpunkt T zum Ausübungspreis K zu kaufen.
- Put Option: Recht auf Verkauf (an den Anbieter der Option)
 - Beispiel: Absicherung von Getreide-Ernte
- Auszahlungsfunktion $\max(S_T K, 0)$ (Call), $\max(K S_T, 0)$ (Put)
- Amerikanische Optionen: jederzeit Einlösbar
- Es gibt viele weitere Optionstypen mit anderen Auszahlungen

 Naiver Ansatz: Erwartungswert der Ausübungsfunktion unter einem Aktienkursmodell wie der GBM

- Naiver Ansatz: Erwartungswert der Ausübungsfunktion unter einem Aktienkursmodell wie der GBM
- Was ist mehr Wert? 100€ jetzt oder 100€ in einem Jahr?

- Naiver Ansatz: Erwartungswert der Ausübungsfunktion unter einem Aktienkursmodell wie der GBM
- Was ist mehr Wert? 100€ jetzt oder 100€ in einem Jahr?
- 100€ jetzt, denn man könnte das Geld anlegen, und 2% Zinsen erhalten
- Modellerweiterung: Bank bietet risikofreien Zinssatz r

- Naiver Ansatz: Erwartungswert der Ausübungsfunktion unter einem Aktienkursmodell wie der GBM
- Was ist mehr Wert? 100€ jetzt oder 100€ in einem Jahr?
- 100€ jetzt, denn man könnte das Geld anlegen, und 2% Zinsen erhalten
- Modellerweiterung: Bank bietet risikofreien Zinssatz r
- Arbitrage-Prinzip: Der Trend der Aktie muss beim Preis der Option beachtet werden

Herleitung des Black-Scholes Modells

- 1. Diskretes Modell: Binomialmodell
- 2. Options-Bewertung Binomialmodell
- 3. Black-Scholes als Limes $N \to \infty$

Diskretes Modell: Binomialmodell

$$S_{t+1} = \begin{cases} d \cdot S_t, & \text{mit Wahrscheinlichkeit } p \\ u \cdot S_t, & \text{mit Wahrscheinlichkeit } 1 - p \end{cases}$$

Parameter: Aufstieg u > 1Abstieg 0 < d < 1Wkt. $p \in (0, 1)$

• Unter Beachtung des risikofreien Zinssatzes wird der Kurs diskontiert: $\tilde{S}_t = e^{-rt}S_t$

Einleitung

Black-Scholes

Unter Beachtung des risikofreien Zinssatzes wird der Kurs diskontiert: $\tilde{S}_t = e^{-rt}S_t$

- Arbitrage-Prinzip: Der Preis der Option muss unabhängig vom Trend der Aktie sein
- Mathematisch Formuliert: Martingal-Eigenschaft: für s < tgilt

$$E(e^{-rt}S_t|S_s=v)=e^{-rs}v$$

- Unter Beachtung des risikofreien Zinssatzes wird der Kurs diskontiert: $\tilde{S}_t = e^{-rt}S_t$
- Arbitrage-Prinzip: Der Preis der Option muss unabhängig vom Trend der Aktie sein
- Mathematisch Formuliert: Martingal-Eigenschaft: für s < t gilt

$$E(e^{-rt}S_t|S_s=v)=e^{-rs}v$$

 Man konstruirt das risikoneutrale Maß Q, um die Martingaleigenschaft des diskontierten Kurses zu garantieren, und nutzt dieses zur Bewertung der Option

Einleitung

Ausblick

Ausblick

Beispiel: risikoneutrale ein-Schritt-Wahrscheinlichkeit

Frage: wie muss p aussehen, damit $e^{-rt}S_t$ im Binomialmodell ein Martingal ist? Diese Wahrscheinlichkeit wird im folgenden q genannt.

$$E(e^{-r(n+1)\Delta t}S_{n+1} \mid S_n = v) = e^{-rn\Delta t}v$$

$$\iff E(e^{-r\Delta t}S_{n+1} \mid S_n = v) = v.$$

Setzt man die möglichen Werte für S_{n+1} ein $(S_{n+1} = uS_n \text{ mit})$ Wahrscheinlichkeit q, $S_{n+1} = dS_n$ mit Wahrscheinlichkeit 1 - q) folgt

$$e^{-r\Delta t} \left(quS_n + (1-q)dS_n \right) = v.$$
 $e^{-r\Delta t} \left(qu + (1-q)d \right) = 1$
 $q = \frac{e^{r\Delta t} - d}{u - d}$

Bewertung von Optionen im Binomialmodell

- Zum Zeitpunkt N der Auszahlung ist der Wert der Option genau die Auszahlungsfunktion, z. B. $\max(S_T K, 0)$
- Zum Zeitpunkt N-1 und davor durch Rückwärtsinduktion gilt mit der risikoneutralen Wahrscheinlichkeit q

$$C_{n-1} = E_Q(e^{-r\Delta t}C_n \mid S_{n-1})$$

= $e^{-r\Delta t}\left(qC_n^{up} + (1-q)C_n^{down}\right)$

Ausblick

Das Black-Scholes Modell

- Modellannahmen: GBM, konstante r, σ , keine Transaktionskosten
- Die diskrete Zeit im Binomialmodell wird stetig durch den Limes $N \to \infty$
- In der Arbeit wird gezeigt, dass S_t unter Q wieder eine GBM ist. Damit kann man Aktien direkt durch Simulation bewerten (Monte-Carlo-Verfahren)
- Für europäische Optionen gilt darüber hinaus die explizite Formel

$$C_0^{\mathrm{BS}} = S_0 \, \Phi(d_1) - \mathcal{K} e^{-rT} \, \Phi(d_2)$$

mit

$$d_1 = \frac{\ln(S_0/K) + \left(r + \frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}}, \qquad d_2 = d_1 - \sigma\sqrt{T}.$$

Beispiele

- Numerische Bewertung vs. geschlossene Formel: Vergleich für DAX-Calls
- Monte-Carlo- vs. Black-Scholes-Ergebnisvergleiche

CEV-Modell

- Alternative zur GBM
- Stochastische Differentialgleichung:

$$dS_t = \mu S_t dt + \sigma S_t^{\beta} dW_t$$

Diskretisierung:

$$\Delta S_i := S_{t_{i+1}} - S_{t_i} pprox \mu S_{t_i} \Delta t + \sigma S_{t_i}^{eta} \sqrt{\Delta t} \, arepsilon_i, \quad arepsilon_i \sim \mathcal{N}(0,1)$$

• Übergangswahrscheinlichkeit:

$$\Delta S_i \mid S_{t_i} \sim \mathcal{N}\left(\mu S_{t_i} \Delta t, \, \sigma^2 S_{t_i}^{2\beta} \Delta t\right)$$

Kalibrierung des CEV-Modell

Ubergangswahrscheinlichkeit:

$$\Delta S_i \mid S_{t_i} \sim \mathcal{N}\left(\mu S_{t_i} \Delta t, \, \sigma^2 S_{t_i}^{2\beta} \Delta t\right)$$

Dichte:

Einleitung

$$p(x) = \frac{1}{\sqrt{2\pi v}} \exp\left(-\frac{(x-m)^2}{2v}\right), \quad m = \mu S_{t_i}, v = \sigma^2 S_{t_i}^{2\beta}$$

 ML-Schätzer: Betrachte alle Realisierungen der Zeitreihe, und maximiere die Dichte in Abhängigkeit der Parameter

$$L(\mu, \sigma, \beta) = \prod_{i=0}^{n-1} \rho(\Delta S_i \mid S_{t_i})$$

Dies wurde in der Arbeit implementiert und mit der GBM verglichen

Schlusswort

Vielen Dank für Ihre Aufmerksamkeit