

Voice Cloning Detection: Deep4SNet Counter to SiF-DeepVC

Thomas Snipes, MS. CSE **Shuang Lin**, BS. COGS

Impersonation

Doctor's voice cloned to advertise a product as "doctor approved"

@footdocdana

Device Hijack

Smart speaker hijacking to perform personal actions

AI-Synthesized Voice Threat Model in Home IoT - X. Liu et al.

Goal

Improve upon the Deep4SNet deep learning model to counter the voice clones camouflaged by SiF-DeepVC

Deep4SNet

- Convolutional Neural Network
- Trained on Deep Voice & Imitation
- 98.5% global accuracy
- Computer vision approach
 - Histogram input
 - Supervised learning
 - Less layers

SiF-DeepVC vs. Deep4SNet

- 300 Hz to 3400 Hz = human voice
- 4000 Hz+ = vast majority of SiFs
- Can effectively confuse the detection systems.

- False Positive Percentages
- High accuracy ≠ correctness
- Deep4SNet = 66.61%

Approach	Туре	Language	Baseline FPR	Denoised FPR	Diff *
Farid et al.	CV-based	English Mandarin	67.70% 45.39%	75.09% 84.37%	↑ 10.92% ↑ 85.88%
Deep4SNet	CV-based	English Mandarin	66.61% 90.95%	59.85% 99.37%	$\downarrow 10.15\% \\ \uparrow 9.26\%$
DeepSonar	NNF-based	English Mandarin	52.56% 37.99%	53.43% 36.68%	$\uparrow 1.66\% \\ \downarrow 3.45\%$
RawNet2	E2E-based	English Mandarin	94.43% 47.70%	97.22% 55.74%	$\uparrow 2.95\% \\ \uparrow 16.86\%$
			V0		

* Compared with original baseline results

Data - 1/2

SiF-DeepVC

- .WAV Audio files
- Fake 4.5k samples
 - 1k Target set
- Real 4.5k samples

Split

- Train: 70%

- Validation: 15%

- Test: 15%

Source	Files	Label	
FoR	4500	Real	
Farid et al.	2995	Fake	
RawNet2	1505	Fake	
Deep4SNet	1000	Fake	

TABLE I: Audio Files From SiF-DeepVC

Data - 2/2

H-Voice

- .jpg Histograms
- Using all files
- Fake 3404 samples
- Real 3268 samples

Split (provided)

- Train: 61.57%

- Validation: 25.90%

- Test: 12.53%

Source	Files	Label	
Original	3268	Real	
Imitation	3260	Fake	
Deep Voice	144	Fake	

TABLE II: Audio Files From H-Voice

Filtering

H-Voice

Figure 8 - Deep4SNet: deep learning for fake speech classification

SiF-DeepVC (Ours)

Methodology

- 1. Gather a large amount of diverse data
- 2. Create histograms from audio
- 3. Train models in 5 categories:
 - a. SiF Regular
 - b. SiF Filtered
 - c. H-Voice
 - d. H-Voice + SiF Regular
 - e. H-Voice + SiF Filtered
- 4. Recreate the Deep4SNet CNN as a baseline
- 5. Match the accuracy and beat the FPR

Algorithm

- Custom combined & filtered datasets
- Model using different architectures:
 - Multiple dropout layers: test for overfitting
 - Added convolutional layers: test overcomplexity

Results - 1/3

TABLE III: Test on Data - SiF-DeepVC - Regular

Model	Accuracy - Test	FPR - Test	Accuracy - Target	TPR - Target
Original-HVoice	53.78%	52.38%	9.00%	17.71%
Our-HVoice	50.74%	52.38%	0.00%	17.71%
Our-HVoice-Dropout	50.74%	52.38%	0.00%	15.55%
Our-HVoice-Deep	49.26%	52.38%	100.00%	15.55%
Our-SiF-Regular	93.85%	53.08%	94.00%	17.71%
Our-SiF-Regular-Dropout	93.48%	52.03%	94.80%	17.71%
Our-SiF-Regular-Deep	93.93%	48.87%	98.30%	17.71%
Our-SiF-Filtered	64.52%	52.38%	62.40%	15.55%
Our-HVoice_SiF-Regular	53.11%	52.38%	99.30%	15.55%
Our-HVoice_SiF-Filtered	56.00%	52.38%	99.00%	15.55%

Results - 2/3

TABLE IV: Test on Data - SiF-DeepVC - Filtered

Model	Accuracy - Test	FPR - Test	Accuracy - Target	TPR - Target
Original-HVoice	51.04%	49.81%	5.70%	21.50%
Our-HVoice	48.52%	99.86%	0.10%	21.50%
Our-HVoice-Dropout	48.59%	98.92%	0.00%	0.02%
Our-HVoice-Deep	51.41%	98.92%	100.00%	17.71%
Our-SiF-Regular	50.74%	90.06%	11.30%	0.02%
Our-SiF-Regular-Dropout	52.96%	93.66%	8.40%	0.02%
Our-SiF-Regular-Deep	50.15%	91.35%	14.00%	0.02%
Our-SiF-Filtered	94.44%	44.96%	98.30%	21.50%
Our-HVoice_SiF-Regular	67.33%	17.43%	92.60%	21.50%
Our-HVoice_SiF-Filtered	70.30%	23.20%	92.10%	21.50%

Results - 3/3

TABLE V: Test on Data - H-Voice

Model	Accuracy - Test	FPR - Test
Original-HVoice	97.61%	42.92%
Our-HVoice	54.07%	47.35%
Our-HVoice-Dropout	93.18%	48.89%
Our-HVoice-Deep	54.07%	98.92%
Our-SiF-Regular	56.71%	28.54%
Our-SiF-Regular-Dropout	55.38%	20.13%
Our-SiF-Regular-Deep	54.78%	0.66%
Our-SiF-Filtered	49.28%	73.23%
Our-HVoice_SiF-Regular	95.93%	45.35%
Our-HVoice_SiF-Filtered	98.68%	44.03%

Thanks!

Any Questions?

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>