

Examen - Session 1

Tous les documents sont autorisés.

Les trois exercices sont à rédiger sur des feuilles séparées.

Le barême donné est indicatif.

 \triangleright Exercice 1. (8 points) On considère, pour a > b > 0, le problème

$$(P) \left\{ \begin{array}{l} \min f(\theta, z) = (a^2 \cos^2 \theta + b^2 \sin^2 \theta)/z^2 + z^2 \\ (\theta, z) \in \mathbb{R} \times \mathbb{R}_+^*. \end{array} \right.$$

- **1.1.** Résoudre la condition nécessaire du premier ordre du problème (P).
- **1.2.** Parmi les points de la question précédente, quels sont ceux qui sont des minima locaux?
- **1.3.** Le problème (P) est-il un problème convexe?
- **1.4.** 1. Montrer que l'on peut supposer que $z \ge z_0$, avec $z_0 > 0$ suffisamment petit.
 - 2. En déduire l'existence de solutions et donner ces solutions.
- ▶ Exercice 2. (5 points) On s'intéresse ici à la modélisation via les réseaux de neurones.

Définition 1. Un neurone formel est une fonction paramétrée par n+1 paramètres w_1, \ldots, w_n, θ :

$$g: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$$
$$x \mapsto g(x, w, \theta) = \sigma(\sum_{i=1}^n w_i x_i + \theta)$$

où σ est une fonction donnée qui s'appelle une fonction d'activation. Chaque paramètre w_i s'appelle le poids synaptique associé au signal d'entrée x_i .

On prendra dans la suite, sauf mention contraire, comme fonction σ la fonction tangente hyperbolique

$$\sigma: \quad \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{1 - e^x}{1 + e^x}$$

Définition 2. On a à notre disposition K points $x^k \in \mathbb{R}^n$ et $y^k \in \mathbb{R}$, on appelle apprentissage du neurone l'estimation par les moindres carrés des paramètres du neurone.

- **2.1.** Écrire le problème au moindres carrés qui défini l'apprentissage. On donnera en particulier la fonction résidu r en précisant clairement l'espace de départ et l'espace d'arrivée.
- **2.2.** Ce problème est-il un problème aux moindres carrés linéaires? Si oui, on donnera la matrice X.
- **2.3.** Si on prend comme fonction d'activation σ l'identité, le problème au moindres carrés devient-il linéaire? Si oui, on donnera la matrice X.
- ▷ Exercice 3. (7 points) Equation d'advection-diffusion 1D

Soit $u:[0,1]\times[0,T]\to\mathbb{R}$ solution du problème

$$\begin{cases}
\frac{\partial u}{\partial t}(x,t) + a\frac{\partial u}{\partial x}(x,t) - \nu \frac{\partial^2 u}{\partial x^2}(x,t) = 0, & \forall (x,t) \in]0,1[\times]0,T[,\\ u(0,t) = u(1,t) = 0, & \forall t \in]0,T[,\\ u(x,0) = u_0(x), & \forall x \in [0,1].
\end{cases}$$
(1)

avec
$$(a, \nu) \in (\mathbb{R}_+^*)^2$$
, et $u_0(0) = u_0(1) = 0$.

On souhaite approcher u par la méthode des différences finies. Pour cela, on considère une discrétisation régulière de $[0,1] \times [0,T]$, de pas d'espace h et de pas de temps Δt , tous les deux supposés constants. Soit $(x_i)_{i=0:N+1}$, avec $x_0 = 0$ et $x_{N+1} = 1$, et $(t_n)_{n=0:M+1}$, avec $t_0 = 0$ et $t_{M+1} = T$, les points de discrétisation du maillage.

On suppose u suffisamment régulière. On se propose d'étudier les propriétés de consistance et de stabilité d'un schéma numérique, pour la norme infinie $\|.\|_{\infty}$ sur \mathbb{R}^N . Celui-ci s'écrit :

$$(\mathcal{S}) \quad \forall n = 0: M, \forall i = 1: N, \quad \frac{u_i^{n+1} - u_i^n}{\Delta t} + a \frac{u_{i+1}^n - u_{i-1}^n}{2h} - \nu \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2} = 0.$$

$$(2)$$

On pose
$$\lambda = \frac{a\Delta t}{h}$$
 et $c = \frac{\nu \Delta t}{h^2}$.

3.1. Montrer que ce schéma s'écrit matriciellement :

$$\forall n = 0: M, \quad u_h^{n+1} = A_h u_h^n + \Delta t F^n$$
(3)

avec $u_h^n = (u_i^n)_{i=1:N}$ et $A_h \in \mathcal{M}_N(\mathbb{R})$ et $F^n \in \mathbb{R}^N$ que vous préciserez en fonction de λ et c. Préciser u_0^n et u_{N+1}^n satisfaisant les conditions aux limites.

3.2. Montrer que ce schéma est consistant pour la norme $\|.\|_{\infty}$ sur \mathbb{R}^N et préciser les ordres de consistance en temps et en espace de ce schéma pour cette même norme. Vous justifierez votre réponse et préciserez les hypothèses de régularité sur la solution u dont vous vous êtes servis.

- **3.3.** On suppose les conditions $0 < \lambda \le 2c \le 1$ vérifiées. Montrer que le schéma est alors stable pour la norme $\|.\|_{\infty}$ sur \mathbb{R}^N .
- **3.4.** Conclure quant à la convergence du schéma pour la norme $\|.\|_{\infty}$ sur \mathbb{R}^N