PHYS 161 Lecture Notes Prof. Scott MacDonald

Martin Gong / 七海喬介

Jan 9 - ??, 2024

Contents

1	Mat	thematical Interlude 1
	1.1	Units & Dimensions
	1.2	Coordinate System
		1.2.1 Cartesian Coordinates
		1.2.2 Spherical Coordinates
		1.2.3 Cylindrical Coordinates
	1.3	Position Vectors
	1.4	Vector Algebra
		1.4.1 Vector Addition
		1.4.2 Vector Subtraction
		1.4.3 Vector Multiplication
	1.5	Components of Vectors Basis Vectors
	1.6	Vectors in Different Basis
		1.6.1 Cartesian Coordinates
		1.6.2 Polar Coordinates
	1.7	Calculus with Vectors
		1.7.1 With Cartesian Components
		1.7.2 With Polar Components
2	Kin	nematics 8
	2.1	Displacement
	2.2	Velocity
	2.3	Acceleration
		2.3.1 Cartesian Coordinates
	2.4	Formal Solution of Kinematic Equations
		2.4.1 \vec{v} from \vec{a}
		2.4.2 \vec{r} from \vec{v} (from \vec{a})
	2.5	Constant Acceleration Motion
		2.5.1 Components of the Equations
	2.6	Two-Dimensional Motion
		2.6.1 Free Fall
		2.6.2 Projectile Motion
	2.7	Kinematics in Plane Polar Coordinates
3	Nev	vton's Laws
		Dynamics 91

CONTENTS ii

		3.1.1 Within Context
	3.2	Newton's Laws
		3.2.1 First Law
		3.2.2 Second Law
		3.2.3 Third Law
	3.3	Forces
		3.3.1 Contact Forces
		3.3.2 Tension Forces
		3.3.3 Long-Range Forces
		3.3.4 Friction
		3.3.5 Comments
	3.4	Scenarios of Newton's Laws
		3.4.1 Constant Forces
		3.4.2 Variable Forces with Time
		3.4.3 Variable Forces with Position
		3.4.4 Variable Forces with Velocity
	3.5	Algorithm for Solving Constant-Force Newton's Laws Problems
	3.6	Pulleys
	3.7	Newton's Laws in Polar Coordinates
	3.8	Simple Harmonic Motion
4	T	
4	Ene 4.1	Derivation from Newton's Laws
	$\frac{4.1}{4.2}$	-
	4.2	Work & Energy 29 4.2.1 Kinetic Energy 30
		4.2.1 Knietic Energy
	4.3	Conservative Force Fields
	4.4	Different Potential Energies
	4.4	4.4.1 Gravitational Potential Energy
		4.4.2 Spring/Elastic Potential Energy
		4.4.3 Central Force
	4.5	Definition of Energy
	4.6	Examples
	1.0	<u> </u>

Chapter 1

Mathematical Interlude

Definition 1.0.1

Kinematics is the study of motion without regard to its cause.

1.1 Units & Dimensions

In *Classical Mechanics* all quantities are expressed in terms of three dimensions, and we use SI units to define them:

- length meters, m
- time seconds, s
- mass kilograms, kg

How do we measure distance? Sometimes it is easier to use the **point particle** approximation where we think of an object just as a point object with all of its mass concentrated at that point.

1.2 Coordinate System

A coordinate system is a collection of coordinate axis & a point called the origin.

A coordinate system is often called a **frame of reference**.

Physics should apply in whatever coordinate system (**covariant**), so scalars, vectors, tensors, ...

1.2.1 Cartesian Coordinates

$$\{(x,y,z)|x,y,z\in\mathbb{R}\}\tag{1.2.1}$$

1.2.2 Spherical Coordinates

$$\{(r,\theta,\phi)|0 \le r \le \infty, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi\}$$

$$(1.2.2)$$

where ϕ is the angle of the radius deviating from the z-axis and θ is the deviation from the x-axis.

The coordinate conversions are

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arctan(y/x) \\ \phi = \arctan(\sqrt{x^2 + y^2}/z) \end{cases}$$
 (1.2.3)

1.2.3 Cylindrical Coordinates

$$\{(s, \theta, z) | 0 \le s \le \infty, 0 \le \theta \le 2\pi, -\infty \le z \le \infty\}$$

$$(1.2.4)$$

$$\begin{cases} s = \sqrt{x^2 + y^2} \\ \theta = \arctan(y/x) \\ z = z \end{cases}$$
 (1.2.5)

1.3 Position Vectors

The position of a particle can be specified by its *unique* coordinates or by a **position vector**, \vec{r} .

A vector is just an arrow, an arrow is a vector – a geometric quantity.

Definition 1.3.1 (Vector)

A **vector** is a directed line segment, i.e. an arrow.

A vector has both **magnitude** and **direction**.

1.4 Vector Algebra

Notation

 \vec{A} the vector

$$A = \left| \vec{A} \right|$$
 the magnitude

 $\hat{A} = \vec{A}/A$ direction / unit vector

Remark

Technically, magnitude cannot be negative, but notation wise we do that anyways. $-\vec{A} = A(-\hat{A})$

1.4.1 Vector Addition

$$\vec{C} = \vec{A} + \vec{B} \tag{1.4.1}$$

Note that addition is commutative and associative.

1.4.2 Vector Subtraction

$$\vec{C} = \vec{A} - \vec{B} = \vec{A} + (-\vec{B}) \tag{1.4.2}$$

Final - Initial

1.4.3 Vector Multiplication

Dot product

$$\vec{A} \cdot \vec{B} = AB\cos(\theta) \tag{1.4.3}$$

Facts:

- if $\vec{A} \perp \vec{B} \iff \vec{A} \cdot \vec{B} = 0$
- if $\vec{A} \parallel \vec{B} \iff \vec{A} \cdot \vec{B} = AB$ is maximal

 $\begin{cases} \vec{A} \cdot \vec{B} > 0 & \Longrightarrow \text{ point in similar directions} \\ \vec{A} \cdot \vec{B} < 0 & \Longrightarrow \text{ point in opposite directions} \end{cases}$

• $\vec{A} \cdot \vec{A} = A^2$

Also defined component wise

$$\vec{A} \cdot \vec{B} = \sum_{i} A_i B_i \tag{1.4.4}$$

Example 1.4.1

Prove the law of cosines.

Consider the triangle, ABC where θ is the angle between vectors \vec{A} and \vec{B} .

$$c^2 = a^2 + b^2 - 2ab\cos(\theta) \tag{1.4.5}$$

Proof. Define $\vec{A}, \vec{B}, \vec{C}$ by $A = a, B = b, C = c; \vec{C} = \vec{A} - \vec{B}$

Then,

$$\vec{C} \cdot \vec{C} = C^2 = (\vec{A} - \vec{B}) \cdot (\vec{A} - \vec{B})$$
 (1.4.6)

$$= A^2 - 2\vec{A} \cdot \vec{B} + B^2 \tag{1.4.7}$$

$$= a^2 + b^2 - 2ab\cos(\theta) \tag{1.4.8}$$

Cross Product

$$\vec{A} \times \vec{B} \equiv AB\sin(\theta)\hat{n} \tag{1.4.9}$$

Facts:

- If $\vec{A} \parallel \vec{B}$ or antiparallel $\implies \vec{A} \times \vec{B} = 0$
- If $\vec{A} \perp \vec{B} \implies \vec{A} \times \vec{B}$ is maximal.
- $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$
- $\vec{A} \times \vec{A} = \vec{0}$

Also defined component wise as

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{x} & \vec{y} & \vec{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$
 (1.4.10)

1.5 Components of Vectors Basis Vectors

Say we have in Cartesian coordinates (x, y)

$$\vec{A} = \vec{A}_x + \vec{A}_y \tag{1.5.1}$$

Then,

$$\begin{cases} A_x = A\cos\theta \\ A_y = A\sin\theta \end{cases} \tag{1.5.2}$$

$$\begin{cases} \vec{A}_x = A\cos\theta\vec{x} \\ \vec{A}_y = A\sin\theta\vec{y} \end{cases}$$
 (1.5.3)

$$\begin{cases} \hat{x} &= \langle 1, 0, 0 \rangle \\ \hat{y} &= \langle 0, 1, 0 \rangle \\ \hat{z} &= \langle 0, 0, 1 \rangle \end{cases}$$
 (1.5.4)

1.6 Vectors in Different Basis

1.6.1 Cartesian Coordinates

This is to say the same vectors but different components represented in different coordinates.

We can express them in the same way where θ is the original relative angle and θ' is the new relative angle:

$$\begin{cases} \vec{A} = A\cos\theta \hat{x} + A\sin\theta \hat{y} \\ \vec{A'} = A\cos\theta' \hat{x} + A\sin\theta' \hat{y} \end{cases}$$
(1.6.1)

Now, say we want to express our components in a different basis that rotates our standard basis by an angle of ϕ in the counterclockwise direction.

$$\begin{bmatrix} A'_x \\ B'_x \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} A_x \\ B_x \end{bmatrix}$$
 (1.6.2)

1.6.2 Polar Coordinates

We have two basis vectors defined by the following

$$\vec{A} = A_r \hat{r} + A_\theta \hat{\theta} \tag{1.6.3}$$

 \hat{r} is in the direction

The conversion between the bases of Cartesian and Polar are the following:

$$\begin{bmatrix} \hat{r} \\ \hat{\theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix}$$
 (1.6.4)

$$\begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \hat{r} \\ \hat{\theta} \end{bmatrix}$$
 (1.6.5)

Remark

It can be useful because coordinates will be much easier to express with

$$\vec{A} = A(\theta, r)\hat{r} \tag{1.6.6}$$

1.7 Calculus with Vectors

$$\frac{d\vec{A}}{dt} \equiv \lim_{\Delta t \to 0} \frac{\vec{A}(t + \Delta t) - \vec{A}(t)}{\Delta t}$$
(1.7.1)

 $\vec{A}(t)$ generally changes in magnitude and direction and this does capture both.

There are two cases:

Case 1: $\vec{A}(t)$ changes in magnitude only

Then $d\vec{A}$ is parallel to $\vec{A}(t)$ (or antiparallel).

Let $\frac{d\vec{A}_{\parallel}}{dt}$ the component of $\frac{d\vec{A}}{dt} \parallel \vec{A}$.

then here

$$\left| \frac{d\vec{A}_{\parallel}}{dt} \right| = \frac{dA}{dt} \tag{1.7.2}$$

Case 2: $\vec{A}(t)$ changes in direction only

Then $d\vec{A}$ is perpendicular to $\vec{A}(t)$ (Almost, if we see the angle as small enough, the $d\vec{A}$ would be at a right angle).

Call $\frac{d\vec{A}_{\perp}}{dt}$ the component of $\frac{d\vec{A}}{dt} \perp \vec{A}(t)$.

then here

$$\left| \frac{\mathrm{d}\vec{A}_{\perp}}{\mathrm{d}t} \right| = A \frac{\mathrm{d}\theta}{\mathrm{d}t} \tag{1.7.3}$$

Generally

$$\frac{\mathrm{d}\vec{A}}{\mathrm{d}t} = \frac{\mathrm{d}\vec{A}_{\parallel}}{\mathrm{d}t} + \frac{\mathrm{d}\vec{A}_{\perp}}{\mathrm{d}t} \tag{1.7.4}$$

But $\vec{A} = A\hat{A}$ is naively

$$\frac{\mathrm{d}\vec{A}}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}t}\hat{A} + A\frac{\mathrm{d}\hat{A}}{\mathrm{d}t} \tag{1.7.5}$$

and

$$\frac{d\vec{A}_{\parallel}}{dt} = \frac{dA}{dt}\hat{A} \qquad \frac{d\vec{A}_{\perp}}{dt} = A\frac{d\hat{A}}{dt}$$
(1.7.6)

1.7.1 With Cartesian Components

Derivative

$$\vec{A}(t) = A_x(t)\hat{x} + A_y(t)\hat{y} \to \frac{d\vec{A}}{dt} = \frac{dA_x}{dt}\hat{x} + \frac{dA_y}{dt}\hat{y}$$
(1.7.7)

Notation

$$\dot{f} \equiv \frac{\mathrm{d}f}{\mathrm{d}t}$$
 $f' = \frac{\mathrm{d}f}{\mathrm{d}x}$ space derivative (1.7.8)

Hence

$$\dot{\vec{A}} = \dot{A}_x \hat{x} + \dot{A}_y \hat{y} \tag{1.7.9}$$

Integral

$$\int \vec{A}(t) dt \equiv \left(\int A_x dt \right) \hat{x} + \left(\int A_y dt \right) \hat{y}$$
(1.7.10)

Note that the fundamental theorem of calculus still applies.

1.7.2 With Polar Components

$$\vec{A}(t) = A_r(t)\hat{r}(t) + A_{\theta}(t)\hat{\theta}(t) \tag{1.7.11}$$

Then

$$\frac{d\vec{A}}{dt} = \frac{dA_r}{dt}\hat{r} + A_r \frac{d\hat{r}}{dt} + \frac{dA_\theta}{dt}\hat{\theta} + A_\theta \frac{d\hat{\theta}}{dt}$$
(1.7.12)

If we derive Eq. (1.6.4), we obtain

$$\begin{cases} \dot{\hat{r}} &= (-\sin\theta)\dot{\theta}\hat{x} + (\cos\theta)\dot{\theta}\hat{y} = \dot{\theta}\hat{\theta} \\ \dot{\hat{\theta}} &= (-\cos\theta)\dot{\theta}\hat{x} + (-\sin\theta)\dot{\theta}\hat{y} = -\dot{\theta}\hat{r} \end{cases}$$
(1.7.13)

which means that

$$\dot{\hat{r}} = \dot{\theta}\hat{\theta} \qquad \dot{\hat{\theta}} = -\dot{\theta}\hat{r} \tag{1.7.14}$$

which makes sense if we think about it.

And if we put it together

$$\dot{\vec{A}} = \dot{A}_r \hat{r} + A_r \dot{\theta} \hat{\theta} + \dot{A}_\theta \hat{\theta} - A_\theta \dot{\theta} \hat{r} \tag{1.7.15}$$

$$\implies \dot{\vec{A}} = (\dot{A}_r - A_\theta \dot{\theta})\hat{r} + (A_r \dot{\theta} + \dot{A}_\theta)\hat{\theta}$$
 (1.7.16)

Chapter 2

Kinematics

We have our position vector

$$\vec{r}(t) = (x(t), y(t))$$
 (2.0.1)

We use \vec{r} because it seems natural, it is the direction we are pointing in.

Remark

Sometimes when reference to radial \vec{r} is misleading, we use $\vec{x}(t)$.

The change of the vector in space across time sweeps over some **trajectory**.

2.1 Displacement

Definition 2.1.1 (Displacement)

The displacement vector $\Delta \vec{r}$ is a measure of where the particle went (which depends on the origin!).

$$\Delta \vec{r} \equiv \vec{r}_f - \vec{r}_i = \vec{r}(t_f) - \vec{r}(t_i) \tag{2.1.1}$$

- 1. $\|\Delta \vec{r}\| \neq \text{distance travelled in general}$
 - distance traveled = arc length of trajectory
- 2. $\Delta \vec{r}$ is coordinate independent.

Take two coordinate systems S and S'. Let them be defined with the relation $\vec{r} = \vec{r}' + \vec{R}$ where \vec{r} and \vec{r}' are vectors in the respective coordinate systems.

$$\begin{cases} S: & \Delta \vec{r} = \vec{r}_f - \vec{r}_i \\ S': & \Delta \vec{r}' = \vec{r}_f' - \vec{r}_i' \end{cases}$$

$$(2.1.2)$$

If we plug in the relation, we realize that they are the same, $\Delta \vec{r} = \Delta \vec{r}'$

2.2 Velocity

Definition 2.2.1 (Average Velocity)

$$\vec{v}_{\rm avg} \equiv \frac{\Delta \vec{r}}{\Delta t}$$
 (2.2.1)

Let $d\vec{r}$ be the infinitesimal displacement.

When we consider a smaller interval:

$$\lim_{\Delta t \to 0} \implies \| \, d\vec{r} \| = dr \quad \text{(distance traveled)} \tag{2.2.2}$$

A small change to t results in a small change in dS (the distance / speed), proportionally

$$dS \propto dt$$
 (2.2.3)

$$\implies dS = \left(\frac{dS}{dt}\right) dt$$
 (2.2.4)

Definition 2.2.2 (Velocity)

AKA the instantaneous velocity

$$\vec{v}(t) \equiv \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \tag{2.2.5}$$

- $\|\vec{v}\| = \text{speed}$
- $\hat{v} = \text{direction of motion}$

Remark

A note on average velocity:

$$\vec{v}_{\text{avg}} = \frac{1}{\Delta t} \int_{t_i}^{t_f} \vec{v}(t) \, dt = \frac{1}{\Delta t} \int_{t_i}^{t_f} \frac{d\vec{r}}{dt} \, dt = \frac{\Delta \vec{r}}{\Delta t}$$
 (2.2.6)

Note also if we find the magnitude, it would not be the same as the average speed since the norm would go over the integrals instead of what is being integrated.

- \vec{v} a vector, so write $\vec{v}(t) = \dot{x}\hat{x} + \dot{y}\hat{y} = \dot{\vec{r}}$
- Compare to frames of reference, $S \ \& \ S'$.

Suppose $\dot{\vec{R}} \neq 0$.

Then we have

$$\begin{cases} \vec{r} = \vec{r}' + \vec{R} \\ \vec{v} = \vec{v}' + \vec{V} \end{cases}$$
 (2.2.7)

This is known as the Galilean transformations, which, at higher velocities, "translates" to the Lorentz transformations.

We can also obtain $\vec{r}(t)$ given $\vec{v}(t)$

$$\Delta \vec{r} = \int d\vec{r} = \int_{t_i}^{t_f} \vec{v} dt \qquad (2.2.8)$$

and

$$\vec{r}(t) = \vec{r}_i + \vec{v}_i(t - t_i) \tag{2.2.9}$$

2.3 Acceleration

Definition 2.3.1

$$\vec{a}(t) = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}^2\vec{r}}{\mathrm{d}^2t} \tag{2.3.1}$$

Similar to what is mentioned in section 1.7, \vec{a}_{\parallel} is change in speed, \vec{a}_{\perp} is change in direction of motion.

Remark

We do have the *jerk*, but it just seems that it never really matters, and acceleration is fully sufficient.

2.3.1 Cartesian Coordinates

$$\begin{cases} \vec{r}(t) &= x(t)\hat{x} + y(t)\hat{y} + z(t)\hat{z} \\ \vec{v}(t) &= \dot{x}(t)\hat{x} + \dot{y}(t)\hat{y} + \dot{z}(t)\hat{z} \\ \vec{a}(t) &= \ddot{x}(t)\hat{x} + \ddot{y}(t)\hat{y} + \ddot{z}(t)\hat{z} \end{cases}$$
(2.3.2)

Example 2.3.1

Suppose particle's position is $\vec{r}(t) = A(e^{\alpha t}\hat{x} + e^{-\alpha t}\hat{y})$ with A and α constants. ([A] = m, [α] = m^{-1}) Find $\vec{v}(t)$ and $\vec{a}(t)$ and sketch trajectory.

Solution:

Velocity

$$\vec{v}(t) = \frac{d\vec{r}}{dt}$$

$$= A(\alpha e^{\alpha t}\hat{x} - \alpha e^{-\alpha t}\hat{y})$$
(2.3.4)

$$= A(\alpha e^{\alpha t} \hat{x} - \alpha e^{-\alpha t} \hat{y}) \tag{2.3.4}$$

$$= \alpha A(e^{\alpha t}\hat{x} - e^{-\alpha t}\hat{y}) \tag{2.3.5}$$

Acceleration

$$\vec{a}(t) = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} \tag{2.3.6}$$

$$= \alpha^2 A (e^{\alpha t} \hat{x} + e^{-\alpha t} \hat{y}) \tag{2.3.7}$$

$$=\alpha^2 \vec{r}(t) \tag{2.3.8}$$

Speed

$$|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}} \tag{2.3.9}$$

$$=\sqrt{(\alpha A)^2 \left[e^{2\alpha t} + e^{-2\alpha t}\right]}$$
 (2.3.10)

$$= \alpha A \sqrt{2 \cosh(2\alpha t)} \tag{2.3.11}$$

Note that (by definition)

$$\begin{cases} x(t) = Ae^{\alpha t} \\ y(t) = Ae^{-\alpha t} \end{cases}$$
 (2.3.12)

We can try to find y(x) by eliminating t, which is the equation for the trajectory, we obtain:

$$y(x) = \frac{A^2}{x} \qquad y \propto \frac{1}{x} \tag{2.3.13}$$

So although the velocity and acceleration changes at a exponential rate, the trajectory that it produces exhibits the inverse curve.

Example 2.3.2

A particle moves in the plane with trajectory of a circle of radius R. The particle sweeps out the circle at a uniform and constant rate. That is, it undergoes uniform circular motion. Find $\vec{r}(t)$, $\vec{v}(t)$, and $\vec{a}(t)$.

Solution:

We know that the magnitude of the position vector $|\vec{r}| = R$ and that

$$\vec{r} = R\cos\theta(t)\hat{x} + R\sin\theta(t)\hat{y} \tag{2.3.14}$$

Remark

 \vec{v} changes direction, but with uniform rate $|\vec{v}| = c$.

From our $\vec{r}(t)$ we have that

$$\vec{v}(t) = -R\sin\theta(t) \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right) \hat{x} + R\cos\theta(t) \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right) \hat{y}$$
 (2.3.15)

$$= R\dot{\theta} \left[-\sin\theta \hat{x} + \cos\theta \hat{y} \right] \tag{2.3.16}$$

We know that v is constant and that $v=R\dot{\theta}$, so $R\dot{\theta}$ must also be constant. Since R is constant, $\dot{\theta}$ is constant.

$$\dot{\theta} \equiv \omega \implies \theta(t) = \omega t \tag{2.3.17}$$

This is assuming $\theta(0) = 0$.

As a result of our derivation, we find

$$\begin{cases} \vec{r}(t) = R\cos(\omega t)\hat{x} + R\sin(\omega t)\hat{y} \\ \vec{v}(t) = -\omega R\sin(\omega t)\hat{x} + \omega R\cos(\omega t)\hat{y} \end{cases}$$
(2.3.18)

Now, noting the magnitude:

$$\begin{cases} r = R \\ v = \omega R \\ a = \omega^2 R = \frac{v^2}{R} \end{cases}$$
 (2.3.19)

Acceleration

$$\vec{a}(t) = -\omega^2 R \cos(\omega t) \hat{x} - \omega^2 R \sin(\omega t) \hat{y}$$
 (2.3.20)

$$= -\omega^2 \vec{r}(t) \tag{2.3.21}$$

Remark

Because \hat{a} points towards the origin $[\hat{a} = -\hat{r}]$, we call it "centripetal" (\leftarrow central seeking).

2.4 Formal Solution of Kinematic Equations

We want to obtain $\vec{v}(t)$ and $\vec{r}(t)$ given $\vec{a}(t)$.

2.4.1 \vec{v} from \vec{a}

$$\int_0^t \vec{a}(t) \, \mathrm{d}t' = \int_{\vec{v}_0}^{\vec{v}} \frac{\mathrm{d}\vec{v}}{\mathrm{d}t'} \, \mathrm{d}t' \tag{2.4.1}$$

$$= \vec{v}(t) - \vec{v}_0 \tag{2.4.2}$$

2.4.2 \vec{r} from \vec{v} (from \vec{a})

$$\int_0^t \vec{v}(t') dt' = \int_{\vec{r}_0}^{\vec{r}} \frac{d\vec{r}}{dt} dt$$
 (2.4.4)

$$= \vec{r}(t) - \vec{r}_0 \tag{2.4.5}$$

$$\vec{r}(t) = \vec{r}_0 + \int_0^t \vec{v}(t') \, dt'$$
 (2.4.6)

$$= \vec{r}_0 + \int_0^t \left[\vec{v}_0 + \int_0^{t'} \vec{a}(t'') dt'' \right] dt'$$
 (2.4.7)

$$\vec{r}(t) = \vec{r}_0 + \vec{v}_0 t + \int_0^t \int_0^{t'} \vec{a}(t'') dt'' dt'$$
(2.4.8)

Remark

We need to know \vec{r}_0 .

To find $\vec{r}(t)$ given $\vec{a}(t)$ we need also to know the initial conditions, \vec{r}_0 and \vec{v}_0 .

2.5 Constant Acceleration Motion

Theorem 2.5.1 (Kinematic Equations with Constant \vec{a})

There are many cases of constant \vec{a} motion. With our previous analysis, the cases of when $\vec{a} = \text{const gives}$:

$$\begin{cases} \vec{r}(t) &= \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2 \\ \vec{v}(t) &= \vec{v}_0 + \int_0^t \vec{a} \, dt' = \vec{v}_0 + \vec{a} t \\ v^2 &= v_0^2 + 2 \vec{a} \cdot \Delta \vec{r} \end{cases}$$
(2.5.1)

Remark

if $t_0 \neq 0$, the $t \to \Delta t$ in formulas.

Let's eliminate t from these equations:

From $\vec{v} = \vec{v}_0 + \vec{a}t$, compute $v^2 = \vec{v} \cdot \vec{v}$

$$v^2 = v_0^2 + 2\vec{v}_0 \cdot \vec{a}t + a^2t^2 \tag{2.5.2}$$

$$\frac{1}{2}v^2 = \frac{1}{2}v_0^2 + \vec{v}_0 \cdot \vec{a}t + \frac{1}{2}a^2t^2$$
 (2.5.3)

Now, from \vec{r} compute

$$\vec{a} \cdot \vec{r} = \vec{a} \cdot \vec{r}_0 + \vec{a} \cdot \vec{v}_0 t + \frac{1}{2} a^2 t^2$$
 (2.5.4)

Then, we take the difference, we have

$$\frac{1}{2}v^2 - \vec{a} \cdot \vec{r} = \frac{1}{2}v_0^2 - \vec{a} \cdot \vec{r}_0 \tag{2.5.5}$$

$$\frac{1}{2}v^2 = \frac{1}{2}v_0^2 + \vec{a} \cdot (\vec{r} - \vec{r}_0)$$

$$v^2 = v_0^2 + 2\vec{a} \cdot \Delta \vec{r}$$
(2.5.6)
$$(2.5.7)$$

$$v^2 = v_0^2 + 2\vec{a} \cdot \Delta \vec{r}$$
 (2.5.7)

2.5.1Components of the Equations

Remark

These laws are also applicable in components.

2.6 Two-Dimensional Motion

2.6.1 Free Fall

All objects regardless of mass, shape, composition, etc., fall downward towards earth with same motion – free fall.

Free fall is vertical motion subject only to earth's gravity, which is constant acceleration motion.

The acceleration due to gravity, g, is

$$g = 9.8 \,\mathrm{m/s^2}$$
 $\vec{a} = -g\hat{z}^1$ (2.6.1)

2.6.2 Projectile Motion

Projectile motion is motion subject only to gravity, that is, motion for which $\vec{a} = -g\hat{z}$.

Projectile motion lies in the plane formed by \vec{v}_0 and \vec{a} . This implies 2D motion.

¹True near earth's surface

Now, the equations:

But a lot of times what we do is to consider the two components in Cartesian.

$$x \text{ component} \implies x(t) = x_0 + v_{0x}t$$
 (2.6.2)

$$y \text{ component} \implies 0$$
 (2.6.3)

$$z \text{ component } \Longrightarrow \begin{cases} z(t) &= z_0 + v_{0z}t - \frac{1}{2}gt^2 \\ v_z(t) &= v_{0z} - gt \\ v_z^2 &= v_{0z}^2 - 2g\Delta z \end{cases}$$
 (2.6.4)

Example 2.6.1

Consider a projectile launched with initial velocity \vec{v}_0 that makes angle θ with the horizontal. Choose coordinates s.t. $(x_0, y_0, z_0) = (0, 0, h)$ with the plane of motion the xz-plane. Find:

- a) the trajectory of the projectile, z = z(x)
- b) the maximum height and horizontal distance (i.e. range) of the projectile
- c) the velocity of the projectile when it hits the ground
- d) the launch angle, ϕ , that maximizes the range. Here, let h=0.

Solution:

a) Equations for the motion are:

$$\begin{cases} z(t) &= h + v_0 \sin \theta t + \frac{1}{2}gt^2 \\ v_z(t) &= v_0 \sin \theta + gt \\ v_z^2 &= v_0^2 \sin^2 \theta - 2g(z - h) \\ x(t) &= v_0 \cos \theta t \end{cases}$$
(2.6.5)

We simply have to find z in terms of x, notice how z(x) = z(t(x)). We just need t(x). We find that

$$x = v_0 \cos \theta t \tag{2.6.6}$$

$$t = \frac{x}{v_0 \cos \theta} \tag{2.6.7}$$

Now we substitute

$$z(t) = h + v_0 \sin \theta t + \frac{1}{2}gt^2 \tag{2.6.8}$$

$$z(t) = h + v_0 \sin \theta \left(\frac{x}{v_0 \cos \theta}\right) + \frac{1}{2}g \left(\frac{x}{v_0 \cos \theta}\right)^2$$
 (2.6.9)

$$z(t) = h + v_0 \sin \theta \left(\frac{x}{v_0 \cos \theta}\right) + \frac{1}{2}g \left(\frac{x}{v_0 \cos \theta}\right)^2$$

$$= h + x \tan \theta + \frac{gx^2}{2v_0^2 \cos^2 \theta}$$
(2.6.10)

b) Maximum Heigh z_{max}

Obtained when $v_z = 0$

$$\implies 0 = v_0 \sin \theta - gt_{\text{max}} \tag{2.6.11}$$

$$t_{\text{max}} = \frac{v_0 \sin \theta}{q} \tag{2.6.12}$$

Sub into z-equation

$$z_{\text{max}} = h + v_0 \sin \theta \left(\frac{v_0 \sin \theta}{g} \right) - \frac{1}{2} g \left(\frac{v_0 \sin \theta}{g} \right)^2$$
 (2.6.13)

$$= h + \frac{v_0^2 \sin^2 \theta}{2q}$$
 (2.6.14)

Alternatively,

$$0 = v_0^2 \sin^2 \theta - 2g(z_{\text{max}} - h) \tag{2.6.15}$$

$$z_{\text{max}} = h + \frac{v_0^2 \sin^2 \theta}{2g}$$
 (2.6.16)

Range x_{max}

Occurs when z = 0

$$0 = h + v_0 \sin \theta t_f - \frac{1}{2}gt_f^2 \tag{2.6.17}$$

$$t_f = \frac{-v_0 \sin \theta \pm \sqrt{v_0^2 \sin^2 \theta + 2gh}}{-g}$$
 (2.6.18)

$$t_{f} = \frac{-v_{0} \sin \theta \pm \sqrt{v_{0}^{2} \sin^{2} \theta + 2gh}}{-g}$$

$$= \frac{v_{0} \sin \theta}{g} \mp \sqrt{\left(\frac{v_{0} \sin \theta}{g}\right)^{2} + \frac{2h}{g}}$$
(2.6.18)

Remark

We have to chose the positive of the \mp because larger time.

We notice that if h = 0 (more generally, $\Delta z = z_f - z_0 = 0$)

$$t_f = \frac{2v_0 \sin \theta}{g} = 2t_{\text{max}} \implies \text{symmetry of } z(t) \text{ parabola}$$
 (2.6.20)

From x-equation:

$$x_{\text{max}} = \frac{v_0^2 \sin \theta \cos \theta}{g} + v_0 \cos \theta \sqrt{\left(\frac{v_0 \sin \theta}{g}\right)^2 + \frac{2h}{g}}$$
 (2.6.21)

Use the identity $2\sin\theta\cos\theta = \sin(2\theta)$

Which gives us

$$x_{\text{max}} = \frac{v_0^2 \sin(2\theta)}{2g} + \sqrt{\left(\frac{v_0^2 \sin(2\theta)}{2g}\right)^2 + \frac{2hv_0^2 \cos^2 \theta}{g}}$$
 (2.6.22)

$$= \frac{v_0^2 \sin(2\theta)}{2g} \left[1 + \sqrt{1 + \frac{2gh}{v_0^2 \sin^2 \theta}} \right]$$
 (2.6.23)

Now, if we solve for the case wehre h=0, we get

$$x_{\text{max}} = \frac{v_0^2 \sin(2\theta)}{g} \tag{2.6.24}$$

c) We want \vec{v}_f , which is $\vec{v}_f = \vec{v}_0 - gt_f\hat{z}$

$$\vec{v}_f = v_0 \cos \theta \hat{x} - \left(v_0 \sin \theta \sqrt{1 + \frac{2gh}{v_0^2 \sin^2 \theta}} \right) \hat{z}$$
 (2.6.25)

We can also write it in terms of magnitude and angle:

First to find the magnitude

$$v_f^2 = v_0^2 \cos^2 \theta + v_0^2 \sin^2 \theta \left(1 + \frac{2gh}{v_0^2 \sin^2 \theta} \right)$$
 (2.6.26)

$$= v_0^2 + 2gh (2.6.27)$$

$$\implies v_f = \sqrt{{v_0}^2 + 2gh} \tag{2.6.28}$$

Now, for the angle of the projectile when it hits the ground

$$\tan \theta_f = \left| \frac{v_{fz}}{v_{fx}} \right| = \tan \theta \sqrt{1 + \frac{2gh}{v_0^2 \sin^2 \theta}}$$
 (2.6.29)

$$\theta_f = \arctan \left[\tan \theta \sqrt{1 + \frac{2gh}{v_0^2 \sin^2 \theta}} \right]$$
 (2.6.30)

Remark

Notice now when h = 0, $\theta_f = \theta$.

d) Since h=0, the range is $x_{\max}=\frac{v_0^2\sin(2\theta)}{g}$

We want to maximize, so we can think that $x_{\max} = x_{\max}(\theta)$ and find $\theta = \phi$ s.t. $\frac{dx_{\max}}{d\theta}\Big|_{\phi} = 0$

$$\frac{2v_0^2 \cos(2\theta)}{g} \bigg|_{\phi} = \frac{2v_0^2}{g} \cos(2\phi) = 0 \tag{2.6.31}$$

$$\implies \cos(2\phi) = 0 \tag{2.6.32}$$

$$\phi = \frac{\pi}{4} = 45 \deg \tag{2.6.33}$$

Example 2.6.2

A hunter is trying to hunt a bear on a tree with heigh h distance d away. The moment the hunter shoots, the bear is scared and drops from the tree. What angle relative to the bear should the hunter aim at to hit the bear?

Solution:

We can consider the vertical component, which must match for the hunter's arrow to hit

$$y + 0 + v_{0y}t - \frac{1}{2}gt^2 (2.6.34)$$

$$v_0 \sin \theta t - \frac{1}{2}gt^2 = h - \frac{1}{2}gt^2 \tag{2.6.35}$$

$$v_0 \sin \theta t = h \tag{2.6.36}$$

$$t = \frac{h}{v_0 \sin \theta} \tag{2.6.37}$$

then we plug the vertical to horizontal

$$\frac{h}{v_0 \sin \theta} \cos \theta = d \tag{2.6.38}$$

$$d = h \cot \theta \tag{2.6.39}$$

$$\theta = \left| \operatorname{arccot} \left(\frac{d}{h} \right) \right| \tag{2.6.40}$$

We notice that θ then is essentially directly at the bear.

Remark

Another way of thinking about it, is if we consider g = 0, then consider the problem, we would come to the conclusion that we should aim at the bear too. Adding g to both bodies shouldn't change that fact.

Since we also want the hunder to hit the bear before it hits the ground, we can find that

$$h = \frac{1}{2}gt^2 (2.6.41)$$

$$t = \sqrt{\frac{2h}{g}} \tag{2.6.42}$$

$$t < \sqrt{\frac{2h}{g}} \tag{2.6.43}$$

Consequently

$$\sqrt{\frac{2h}{g}}v_0\cos\theta = \sqrt{\frac{2h}{g}}\frac{d}{d^2 + h^2}v_0$$
 (2.6.44)

$$v_0 > \sqrt{\frac{g(d^2 + h^2)}{2d}} \tag{2.6.45}$$

Remark

The **Frenet-Serret Formulas** gives a way of finding motion only based on the particle's current motion relative to itself.

2.7 Kinematics in Plane Polar Coordinates

Definition 2.7.1

$$\vec{r}(t) = r\hat{r} = r(t)\hat{r}(t) \tag{2.7.1}$$

$$\dot{\vec{r}}(t) = \dot{r}\hat{r} + r\dot{\hat{r}} \tag{2.7.2}$$

$$=\dot{r}\hat{r} + r\dot{\theta}\hat{\theta} \tag{2.7.3}$$

$$= \dot{r}\hat{r} + r\omega\hat{\theta} \tag{2.7.4}$$

$$\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \ddot{r}\hat{r} + \dot{r}\dot{\dot{r}} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}\dot{\hat{\theta}}$$
 (2.7.5)

$$= (\ddot{r} - r\dot{\theta}^2)\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$$
 (2.7.6)

Remark

If we have the trajectory being a circle, we have velocity $\vec{v} = r\omega\hat{\theta}$.

 \ddot{r} is radial acceleration, and $-r\dot{\theta}^2=-r\omega^2$ is the centripetal acceleration. $r\ddot{\theta}$ is angular acceleration ($\alpha\equiv\ddot{\theta},r\alpha$), and $2\dot{r}\dot{\theta}$ is the Coriolis Acceleration^a

Once again, we can see for circular motion

$$\dot{r} = \ddot{r} = 0 \tag{2.7.7}$$

$$\implies \vec{a} = (-r\dot{\theta}^2)\hat{r} + (r\ddot{\theta})\hat{\theta} = -r\omega^2\hat{r} + r\alpha\hat{\theta}$$
 (2.7.8)

Note the above is from constant speed only

Remark

Three examples from the notes are not included.

^aThis is related to the Coriolis Effect in non-inertial frames.

Chapter 3

Newton's Laws

3.1 Dynamics

Newton's Laws provide the framework for the dynamics of classical particle motion.

Question of Classical Mechanics:

Given $\vec{r_0}$ and $\vec{v_0}$ of the particle, with mass m, determine its subsequent motion, $\vec{r}(t)$, for all time t.

3.1.1 Within Context

Newton originally formulated the laws to solve the question of gravity – along the way, he formulated concepts like forces and momentum.

3.2 Newton's Laws

Definition 3.2.1 (Newton's Laws)

The three laws of motion:

Law of Invertia A particle remains at rest or moving with constant velocity unless influenced by a force.

 $\mathbf{F} = \mathbf{ma}$ The change in a particle's motion (i.e. its acceleration) is proportional to the force impressed, as vectors.

Action / Reaction Forces come in pairs: to every action by one particle on another, there is an equal and opposite force in return.

3.2.1 First Law

There exist intertial frames of reference, that is, a frame in which a free particle¹ has constant velocity.

Remark

Essentially, a frame at rest and a frame with constant velocity are the same.

¹particle subject to absolutely no influences

Mathematically, this is expressed as

$$\frac{\mathrm{d}^2 \vec{r}}{\mathrm{d}^2 t} = 0 \tag{3.2.1}$$

3.2.2 Second Law

Denote the force by \vec{F}

Two different particles subject to the same force (e.g. a spring). After the unfluence of the force (e.g. left spring), particle 1 has speed v_1 and particle 2 has speed v_2 .

Consider the ratio

$$\frac{v_1}{v_2} \equiv \frac{m_2}{m_1} \tag{3.2.2}$$

where m_i is an intrinsic property of the *i*-th particle we call its mass [unit: kg].

Assumption: m is independent of \vec{F} and \vec{v} .

So we can write a relation:

$$m_1 v_1 = m_2 v_2 (3.2.3)$$

Assume we start from rest and apply some force for some duration, then we have

$$m_1 \Delta v_1 = m_2 \Delta v_2 = F \Delta t \tag{3.2.4}$$

And thus we have

$$F\Delta t = m\Delta v \implies F = \frac{m\Delta v}{\Delta t} = \frac{\Delta(mv)}{\Delta t}$$
 (3.2.5)

Definition 3.2.2

Define the (physical) momentum of a particle to be

$$\vec{p} = m\vec{v} \tag{3.2.6}$$

As so we have with Eq. (3.2.5) the following

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} \tag{3.2.7}$$

1. As $\Delta t \to 0$, we have that

$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} \tag{3.2.8}$$

2. Forces (empirical) obey the principle of superposition.

$$\vec{F}_{\text{net}} = \sum_{i} \vec{F}_{i} \tag{3.2.9}$$

Altogether we have that

$$\vec{F}_{\text{net}} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} \tag{3.2.10}$$

If m is constant, then we have

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = m\vec{a} \implies \left[\vec{F}_{\mathrm{net}} = m\vec{a}\right] \tag{3.2.11}$$

mass is a measure of an object's inertia – tendency to persist in its state of motion.

3.2.3 Third Law

Definition 3.2.3

A force is a directed influence between pairs of particles.

If force of 1 on 2 is \vec{F}_{12} ,

then force of 2 on 1 is $\vec{F}_{21} = -\vec{F}_{12}$.

IMPORTANT: Forces always come in pairs! (e.g. When we are sitting on our seats, its us pushing on the seat, and the seat pushing on us. The force of us pushing on the seat comes from gravity.)

Example 3.2.1

Given \vec{r}_0 , \vec{v}_0 , and m, fint $\vec{r}(t)$

Newton's laws:

- 1. go to an intertial frame: $\vec{r}(t)$
- 2. Identify forces acting on particle: \vec{F}
- 3. Then we just solve the differential equation.

$$\vec{F}_{\text{net}} = m \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d}t^2} \tag{3.2.12}$$

Our initial conditions are the two givens.

3.3 Forces

There are two types of forces:

- 1. Contact forces
- 2. Long range forces

3.3.1 Contact Forces

arises due to contact between bodies.

Deconstruct the force into components parallel and perpendicular to the surface of contact.

- The component \perp is called the **normal force**, \vec{F}_N .
- The component \parallel is called the **frictional force**, $\vec{F}_f.$

Remark

Normal forces are constraint² forces.

3.3.2 Tension Forces

arise due to internal elastic forces of a one-dimensional string (rope / chain / etc.)

An ideal massless string has a uniform tension force throughout. (Otherwise parts of the string can have infinite acceleration.)

Remark

If any body is considered to be massless, we assume automatically $F_{\text{NET}} = 0$ for that body.

The direction of the force is:

- Directed away from the string for the string
- Directed away from the body if the string is attached to some

3.3.3 Long-Range Forces

Forces exerted over a distance between bodies not in contact.

e.g. gravity, electromagnetic, (strong nuclear, weak nuclear)

• Weight $\vec{F}_g = -mg$ downward – the downward force exerted by a body near earth's surface.

Remark

Why does the specific force F_g involved m, when m is part of the 2nd law and independent of forces?

Perhaps, $F_g = m_g g$, then free fall means $m_g g = m_I a = m_I g$ which means

$$m_q = m_I (3.3.1)$$

The above is called the **Principle of Equivalence**

²They generally constraint the motion rather than "generating" the motion.

3.3.4 Friction

Component of contact force parallel to surface of contact.

Based on experiment, friction has two behaviors:

- **Static** when *no* relative motion between objects in contact. Acts to balance forces to ensure constant relative velocity. Has max value.
- **Kinetic** *is* relative motion between objects in contact. Acts in opposition to relative motion (i.e. to decelerate the object). Constant in magnitude (independent of relative speed & surface area).

The phenomenological models are:

Static Friction

$$F_{f_s} \le \mu_s F_N \tag{3.3.2}$$

- μ_s is coefficient of static friction.
- F_N is between the objects in contact.

$$F_{f_k} = \mu_k F_N \tag{3.3.3}$$

- μ_k is coefficient of kinetic friction
- F_N is between the objects in contact.

Remark

Generally, $\mu_s \geq \mu_k$.

3.3.5 Comments

These forces are *phenomenological* in character.

That is, models based on empirical observation disregarding their fundamental origin.

However, so far as we know, there are only 4 fundamental forces in nature:

- Gravity
- Electromagnetic
- Strong Nuclear
- Weak Nuclear

All these 4 forces are long range and position dependent.

3.4 Scenarios of Newton's Laws

- 3.4.1 Constant Forces
- 3.4.2 Variable Forces with Time
- 3.4.3 Variable Forces with Position
- 3.4.4 Variable Forces with Velocity

3.5 Algorithm for Solving Constant-Force Newton's Laws Problems

- 1) Isolate relevant bodies for analysis
- 2) For each body in 1), draw a free body diagram (FBD) which includes
 - (a) all forces acting on body (may on occassion ignore some forces)
 - (b) an inertial coordinate system for analysis
- 3) Write down the equations of motion for each body in 1) using the FBD in 2); i.e. write Newton's 2nd Law in component form.
- 4) Impose any kinematic constraints on the bodies in your equations from 3), along with Newton's 3rd law relation.
- 5) Solve for desired unknowns. Treat the equations from 4) as a system of algebraic equations, regardless of the origin.

3.6 Pulleys

Mechanical device used to redirect tension forces. An ideal pulley is massless and frictionless. If pulley doesn't rotate, then $F_{T_1} = F_{T_2}$. Redirects F_T . If they are not equal, the pulley rotates.

3.7 Newton's Laws in Polar Coordinates

3.8 Simple Harmonic Motion

Figure 3.1: DALLE is Smart

A spring (massless) exerts a linear restoring force, \vec{F}_s , given by (Hooke's Law):

$$\vec{F}_S = -k\Delta \vec{r} \tag{3.8.1}$$

where k is the spring constant (N m) and $\Delta \vec{r}$ is displacement of spring from equilibrium length.

Example 3.8.1

We have a block of mass M connected to a wall by a spring of constant k.

If we setup Newton's second law:

$$\sum F = ma \implies -kx = m\ddot{x} \tag{3.8.2}$$

Let $\omega \equiv \sqrt{\frac{k}{m}}$, the this equation is

$$\ddot{x} = -\omega^2 x \tag{3.8.3}$$

Our guess ansatz for the solution:

$$x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) \tag{3.8.4}$$

Aside: Euler identity $e^{i\theta} = \cos \theta + i \sin \theta$ allows us to construct complex solutions

$$\tilde{x} = \tilde{c}_1 e^{i\alpha t} + \tilde{c}_2 e^{i\beta t} \tag{3.8.5}$$

If we have initial conditions $x(0) = x_0$ and $\dot{x}(0) = 0$, then we have:

$$x(t) = x_0 \cos(\omega t) \tag{3.8.6}$$

Example 3.8.2

We have a mass m hung from the ceiling by a spring with spring constant k.

Solution:

CHECK TABLET FILL

We have $cos(\theta + 2\pi) = cos(\theta)$,

here, $\cos(\omega t + 2\pi) = \cos(\omega t)$

let $t = t_0 - T$

$$\cos(\omega t_0 - \omega T + 2\pi) = \cos(\omega t_0) \tag{3.8.7}$$

$$\omega T - 2\pi = 0 \tag{3.8.8}$$

$$T = \frac{2\pi}{\omega} \tag{3.8.9}$$

T is the **period**: time to complete one oscillation.

Then, $T = \frac{2\pi}{\omega}$

f is the **frequency**, $f \equiv \frac{1}{T}$: number of oscillations per unit time ($[f] = s^{-1} \equiv \text{Hz}$)

$$\omega = 2\pi f \tag{3.8.10}$$

One is angular, one is frequency.

Example 3.8.3

The pendulum

Solution:

CHECK TABLET

Chapter 4

Energy

4.1 Derivation from Newton's Laws

FILL

Theorem 4.1.1 (Work-Energy Theorem)

In simple form:

$$W = \Delta K \tag{4.1.1}$$

In general form:

$$\int_{C} \vec{F} \cdot d\vec{l} = \frac{1}{2} m v^{2} - \frac{1}{2} m v_{0}^{2}$$
(4.1.2)

4.2 Work & Energy

We know $\vec{F} \propto \vec{a} \implies \vec{F} \parallel d\vec{r}$ changes speed; $\vec{F} \perp d\vec{r}$ changes direction.

In our process of deriving $W = \Delta K$, we turned a vector equation into a scalar equation. Hence, here we are concerned only with \vec{F}_{\parallel} (moreover, if I draw trajectory I know what \vec{F}_{\perp} does but not \vec{F}_{\parallel})

Evidently, $\vec{F}_{\parallel} \implies \vec{F} \cdot \, \mathrm{d}\vec{r} \propto \mathrm{change}$ in speed.

$$d\vec{v} \cdot \vec{v} \sim \frac{1}{2} d\left(v^2\right) \tag{4.2.1}$$

More precisely, the 2nd law of motion:

$$\vec{F} \cdot d\vec{r} = \frac{1}{2}m \ d\left(v^2\right) \tag{4.2.2}$$

Infinitesimally, this would be:

$$\vec{F}(\vec{r}_j) \cdot d\vec{r}_j = \frac{1}{2} m \left[v_{j+1}^2 - v_j^2 \right]$$
 (4.2.3)

We can informally sum all these parts as

$$\sum_{\vec{r}=\vec{r}_0}^{\vec{r}} \vec{F}(\vec{r}_j) \cdot d\vec{r}_j = \frac{1}{2} m \left(v^2 - v_0^2 \right) = \int_{\vec{r}_0}^{\vec{r}} \vec{F}(\vec{r}) \cdot d\vec{r}$$
 (4.2.4)

Conclusion

W is adding up all the infinitesimal contributions of the force tangent to the trajectory (i.e. ones that change the speed) along the trajectory from start to finish.

K measures the change in speed due to \vec{F} as required by Newton's 2nd law.

W is a sum of infinitesimal scalar quantities along a curve which is a line integral.

In cartesian:

$$\int \vec{F}(\vec{r}) \cdot d\vec{r} = \int \vec{F}(x, y, z) \cdot [dx\hat{x} + dy\hat{y} + dz\hat{z}]$$
(4.2.5)

4.2.1 Kinetic Energy

$$K \equiv \frac{1}{2}mv^2 \tag{4.2.6}$$

- Kinetic energy is, well, energy associated with motion.
- \bullet K is frame-dependent.
- And the units are Joules.

4.2.2 Work

$$W = \int_{C} \vec{F} \cdot d\vec{l} \tag{4.2.7}$$

Since $W = \Delta K$ is the change in energy of our particle/system.

- If $W > 0 \implies K > K_0 \implies$ gained energy/speed
- If $W < 0 \implies K < K_0 \implies$ loses energy/speed
- If $W = 0 \implies K = K_0 \implies$ no change in energy/speed

Work is the energy transferred into/out-of a system by mechanical means (i.e. application of a fore over a displacement)

We say "Work is done by force \vec{F} along the path" when writing Eq. (4.2.7).

It is useful to measure rate at which work is done – called the **power** [units: Watts 1 W = 1 J/s]

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(W) \tag{4.2.8}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left[\int_{\vec{r}_0}^{\vec{r}} \vec{F}(\vec{r}') \cdot d\vec{r}' \right]$$
 (4.2.9)

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left[\int_{t_0}^t \vec{F}(\vec{v}) \cdot \vec{v}(t') \, \mathrm{d}t' \right]$$
 (4.2.10)

And so we have:

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \vec{F} \cdot \vec{V} \tag{4.2.11}$$

in this case, dW refers to an infinitesimal amount of work instead of it's change. It is technically dW – inexact differential.

Example 4.2.1

Consider constant force $\vec{F} = F_0 \hat{n}$, $F_0 = \text{const}$, \hat{n} constant unit vector.

Compute work done over displacement $\Delta \vec{r} = \vec{f} - \vec{f_0}$

Solution:

$$W = \vec{F} \cdot \Delta \vec{r} \tag{4.2.12}$$

Example 4.2.2

Consider a central force, $\vec{F}(\vec{r}) = f(r)\hat{r}$ work in 2-dim

- (a) Show W is independent of path
- (b) Let $f(r) = -A/r^2$ for A > 0 a constant. Find v(r) if $v(r = r_0) = 0$.

Solution:

(a) Work in polar coords

$$d\vec{l} = dr\hat{r} + r d\theta \hat{\theta}$$

Thus,

$$W = \int_{C} \vec{F} c dot \, d\vec{l} \tag{4.2.13}$$

$$= \int_{C} f(r)\hat{r} \cdot (dr\hat{r} + r d\theta \hat{\theta})$$
 (4.2.14)

$$= \int_{r_0}^{r} f(r) \, \mathrm{d}r \tag{4.2.15}$$

Since it only requires the endpoints, it does not require the path, it is independent.

(b)
$$f(r) = -\frac{A}{r^2}$$

$$W = \int_{r_0}^{r} -\frac{A}{r^2} dr = A(\frac{1}{r} - \frac{1}{r_0})$$
 (4.2.16)

We can apply $W = \Delta K$

$$A\left(\frac{1}{r} - \frac{1}{r_0}\right) = \frac{1}{2}mv^2(r) \tag{4.2.17}$$

$$v(r) = \pm \sqrt{\frac{2A}{m} \left(\frac{1}{r} - \frac{1}{r_0}\right)}$$

$$(4.2.18)$$

Example 4.2.3

A particle, mass m, is pulled across a horizontal force with coefficient of kinetic friction μ_k . First it is posted along C_1 , then pushed along C_2 , bringing it back to where it started. Compute W along total path by friction. where B = (4d, 4d).

Solution:

Find W_{C_1} :

We know that

$$\vec{F}_{fk} = \mu_k mg \left[-\alpha(\hat{x} + \hat{y}) \right] \tag{4.2.19}$$

then

$$\vec{F}_{fk} \cdot d\vec{l} = \left[-\frac{\mu_k mg}{\sqrt{2}} (\hat{x} + \hat{y}) \right] \cdot \left[\frac{1}{\sqrt{2}} ds \hat{x} + \frac{1}{\sqrt{2}} ds \hat{y} \right] = -\mu_k mg ds \tag{4.2.20}$$

Then we calculate

$$W_{C_1} = \int_{C_1} \vec{F}_{fk} \cdot d\vec{l} \tag{4.2.21}$$

$$= -4\sqrt{2}\mu_k mgd \tag{4.2.22}$$

 W_{C_2} is trivial.

$$W_{C_2} = -8\mu_k mgd (4.2.23)$$

If we sum it up, we realize that it is not equal to 0.

Conclusion:

Friction is not a nonconservative force.

4.3 Conservative Force Fields

Theorem 4.3.1

The following statements are equivalent:

- 1. The work done by \vec{F} is path-independent
- 2. The work done by \vec{F} along any closed path is 0.

$$\oint_C \vec{F} \cdot d\vec{l} = 0 \tag{4.3.1}$$

- 3. $\nabla \times \vec{F} = 0$
- 4. There exists a scalar function $u(\vec{r})$ s.t. $\vec{F} = -\nabla u$

$$u(\vec{r}_a) - u(\vec{r}_b) = -\int_{\vec{r}_a}^{\vec{r}_b} \vec{F} \cdot d\vec{l}$$
 (4.3.2)

We call $u(\vec{r})$ the **potential energy** associated with force \vec{F} . Moreover:

$$W = -\Delta u \tag{4.3.3}$$

If u exist for \vec{F} we say \vec{F} is a **conservative force**.

Recall $\forall \vec{F}, W = \Delta K$

If \vec{F} is conservative, then $W = -\Delta u = \Delta K$

Thus,

$$\Delta K + \Delta u = 0 \tag{4.3.4}$$

Three examples of conservative forces are:

- 1. Constant force
- 2. Spring force
- 3. Central force

4.4 Different Potential Energies

4.4.1 Gravitational Potential Energy

Definition 4.4.1 (Gravitational Potential Energy)

The gravitational potential energy is defined as

$$U_g(y) = mgy (4.4.1)$$

obtained via

$$U_g(y) - U_g(y_0) = -\int_{y_0}^{y} \vec{F}_g \cdot (dy\hat{y})$$
(4.4.2)

$$= mg(y - y_0) (4.4.3)$$

$$= mgy - mgy_0 \tag{4.4.4}$$

Note that

- It is typical to take $U_g = 0$ at y = 0; i.e. reference point y_0 is $y_0 = 0$
- Physically, only the difference in u matters, so shifting u by a constant leaves physics unaltered.

4.4.2 Spring/Elastic Potential Energy

Definition 4.4.2 (Spring/Elastic Potential Energy)

The spring potential energy is defined as

$$U_s(x) = \frac{1}{2}k\Delta x^2 \tag{4.4.5}$$

but it is usually referred to as

$$U_s(x) = \frac{1}{2}kx^2 (4.4.6)$$

where it is assumed $x_0 = l_0$ where x = 0 is rest length.

We know that $\vec{F}_s = -k\Delta \vec{r}$, so we choose coordinates so that $\Delta \vec{r} = \Delta x \hat{x} = (x - l_0)\hat{x}$.

$$U_s(x) - U_s(x_0) = -\int_{x_0}^x \vec{F}_s \cdot (dx\hat{x})$$
 (4.4.7)

$$= +k \int_{x_0}^x (x - l_0) \, \mathrm{d}x \tag{4.4.8}$$

$$= \frac{1}{2}k(x - l_0)^2 - \frac{1}{2}k(x_0 - l_0)^2$$
(4.4.9)

4.4.3 Central Force

Definition 4.4.3 (Central Force Potential Energy)

The general form for potential energy related to central forces is

$$U_c(r) - U_c(r_0) = -\frac{A}{r} + \frac{A}{r_0}$$
(4.4.10)

which means

$$U_c(r) = -\frac{A}{r} \tag{4.4.11}$$

We have $\vec{F} = f(r)\hat{r} = -A/r^2\hat{r}$

$$U_c(r) - U_c(r_0) = -\int_{r_0}^{r} \vec{F} \cdot (dr\hat{r})$$
(4.4.12)

$$= -\int_{r_0}^{r} f(r) \, \mathrm{d}r \tag{4.4.13}$$

$$= A \int_{r_0}^{r} \frac{1}{r^2} \, \mathrm{d}r \tag{4.4.14}$$

Typically speaking, we take $r_0 = \infty$ s.t. $U_c(r_0 = \infty) = 0$.

Remark

Both Newton's law of universal gravitation and Coulomb's law for electrostatics are of the form $\vec{F} \propto \frac{1}{r^2} \hat{r} \implies u \propto -\frac{1}{r}$.

4.5 Definition of Energy

Definition 4.5.1 (Mechanical Energy)

We define

$$E = K + U \qquad \Delta E = 0 \tag{4.5.1}$$

Then, $\Delta E = 0$ a dynamical quantity that does not change in time is called "conserved". If \vec{F} is conservative, then, energy is conserved.

Now, consider a system of particles interacting only via conservative forces.

A **system** is an arbitrary division of a collection of particles declared to be either in the system or not and hence part of the environment.

Supposed there are no external forces on the system, then:

$$W_{\text{total}} = \Delta K_{\text{total}} = -\Delta U_{\text{total}}$$
 (4.5.2)

where total refers to sum over all particles & interactions.

This means, then,

$$\Delta K_{\text{total}} + \Delta U_{\text{total}} = 0 \tag{4.5.3}$$

Potential energy is energy stored in a system due to conservative interactions that is reversibly transmutable to other forms (i.e. kinetic energy).

In other terms, potential energy exist with regards to fields (e.g. EM fields, gravitational fields).

Definition 4.5.2 (Law of Conservation of Mechanical Energy)

In a closed and isolated system, all of whose internal interactions are conservative, the total mechanical energy is constant in time, or conserved, along the motion.

Proof. Consider a closed and isolated system with only a conservative force. Then, $E=K+U=\frac{1}{2}mv^2+U(\vec{r})$.

$$\frac{\mathrm{d}E}{\mathrm{d}t} = m\vec{v} \cdot \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \nabla u \cdot \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$$
(4.5.4)

$$= \vec{v} \cdot \left[m \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \nabla u \right] \tag{4.5.5}$$

$$= \vec{v} \cdot \left[\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} - \vec{F} \right] \tag{4.5.6}$$

but Newton's 2nd law says $\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}$ i.e. $\frac{\mathrm{d}E}{\mathrm{d}t} = 0$.

Note if $U=U(\vec{r},t),$ then $\frac{\mathrm{d}E}{\mathrm{d}t}=\frac{\partial U}{\partial t}$ and so not conserved.

Think of my dynamical law as

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = -\nabla U \tag{4.5.7}$$

then if U does not depend explicitly on time, E is conserved. We say that law that time-translation symmetry.

Definition 4.5.3 (A Definition of Energy)

Energy is the quantity that is constant in time because the laws of physics has time-translation symmetry.

An extention from **Noether's Theorem**.

A slight extension:

- Symmetry in space/location conservation of momentum
- Symmetry in angles/rotation conservation of angular momentum
- Gauge symmetry electric charge

4.6 Examples

Example 4.6.1

Segway to the average of a periodic function over time (i.e. $\sin(t), \cos(t)$) for integral number of periods.

Solution:

$$\overline{K} = \frac{1}{nT} \int_0^{nT} K \, \mathrm{d}t \tag{4.6.1}$$

$$= \frac{1}{nT} \cdot \frac{1}{2} m \int_0^{nT} \dot{x}^2 \, \mathrm{d}t$$
 (4.6.2)

$$= \frac{m\omega^2}{2nT} A^2 \int_0^{nT} \sin^2(\omega t + \phi) dt$$
 (4.6.3)

$$= \frac{m\omega^2}{2nT} A^2 \int_0^{nT} \frac{1}{2} \left(1 - \cos\left[2(\omega t + \phi)\right] \right) dt \tag{4.6.4}$$

$$= \frac{m\omega^2}{2nT}A^2 \left[\frac{1}{2}nT + \frac{\sin\left[2(\omega t + \phi)\right]}{2\omega} \Big|_0^{nT} \right]$$
(4.6.5)

$$= \left(\frac{1}{2}m\omega^2 A^2\right) \cdot \frac{1}{2} + \frac{m\omega^2 A^2}{4nT\omega} \left[\sin(2n\omega T + 2\phi) - \sin(2\phi)\right]^{1}$$
 (4.6.6)

$$= \frac{1}{2} \left(\frac{1}{2} k A^2 \right) = \frac{1}{2} E \tag{4.6.7}$$

Similarly, $\overline{U_s} = \frac{1}{2}E = \overline{K}$.

Conclusion:

K and U are $\frac{\pi}{2}$ out of phase, and follows the above relation.

¹Note that this, if we expand with sum of angles, evaluates to 0 (the expression in the square brackets)

Example 4.6.2

Example of central force

Solution:

omitted

Example 4.6.3

Use energy methods to show the motion of a simple pendulum (mass m, length l) is simple harmonic for small angles. What is the first correction to period if θ is not small?

Solution:

a) From the figure,²

$$U_g = mg(l - l\cos\theta) = mgl(1 - \cos\theta) \tag{4.6.8}$$

Let the initial angle be θ_0 , then $\theta = \theta_0 \implies K = 0$ and $U_g = mgl(1 - \cos \theta)$.

TBF

b) Given the original equation:

$$\dot{\theta}^2 = -2\left(\frac{g}{l}\right)\left[\cos\theta_0 - \cos\theta\right] \tag{4.6.9}$$

which becomes

$$\int_{\theta_0}^{\theta} \frac{\mathrm{d}\theta}{\sqrt{\cos\theta - \cos\theta_0}} = \sqrt{2}\sqrt{\frac{g}{l}}t \tag{4.6.10}$$

For a period, t = T change variables in integral: $\sin u \equiv \sin(\theta/2)/\sin(\theta_0/2)$ and $K \equiv \sin(\theta_0/2)$. Then show

$$\sqrt{2} \int_0^{2\pi} \frac{\mathrm{d}u}{\sqrt{1 - k^2 \sin^2 u}} = \sqrt{2} \sqrt{\frac{g}{l}} T = \sqrt{2} \left(\frac{2\pi}{T_0}\right) T \tag{4.6.11}$$

 $^{^2\}mathrm{TBA}$