| Please check the examination details belo | w before ente      | ering your candidate informa | ation       |
|-------------------------------------------|--------------------|------------------------------|-------------|
| Candidate surname                         |                    | Other names                  |             |
|                                           |                    |                              |             |
| Centre Number Candidate Nu                | ımber              |                              |             |
|                                           |                    |                              |             |
| Pearson Edexcel Interi                    | nation             | al Advanced                  | Level       |
| Monday 9 June 2025                        | 5                  |                              |             |
| Morning (Time: 1 hour 20 minutes)         | Paper<br>reference | WPH16                        | 5/01        |
| Physics                                   |                    |                              | •           |
| International Advanced Le                 | امير               |                              |             |
|                                           |                    |                              |             |
| UNIT 6: Practical Skills in               | Physics            | II                           |             |
|                                           |                    |                              |             |
|                                           |                    |                              |             |
| You must have:                            |                    |                              | Total Marks |
| Scientific calculator, ruler              |                    | ll.                          | Total Marks |
| Selection careatator, railer              |                    | Jl                           | J           |
|                                           |                    |                              |             |

### Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
  - there may be more space than you need.
- Show all your working out in calculations and include units where appropriate.

#### Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
  - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.

## **Advice**

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶





### Answer ALL questions.

- 1 A student investigated the charging and discharging of a capacitor.
  - (a) The student connected a  $680\,\mu\text{F}$  electrolytic capacitor in a circuit with a power supply and a switch.
    - (i) Describe two safety precautions the student should take when using electrolytic capacitors in a circuit.

(2)

(ii) The student moved the switch to position A to charge the  $680\,\mu F$  electrolytic capacitor.

She moved the switch to position B to connect the capacitor to another capacitor X.

She measured the potential difference across the  $680\,\mu F$  electrolytic capacitor when the switch was in position A and in position B.

Complete the diagram to show the circuit the student used.

**(2)** 





(b) The student charged the  $680\,\mu\text{F}$  capacitor to different potential differences,  $V_1$ .

For each value of potential difference  $V_1$ , she connected the  $680\,\mu\mathrm{F}$  capacitor to capacitor X. The final value of the potential difference across the  $680\,\mu\mathrm{F}$  capacitor was  $V_2$ .

She recorded the corresponding values of  $\boldsymbol{V_1}$  and  $\boldsymbol{V_2}$  and plotted the graph below.



Criticise the student's graph.

(3)

(Total for Question 1 = 7 marks)



**(6)** 

2 A student investigated how the pressure of a fixed volume of air varied with temperature using the apparatus shown.



(a) The student used temperatures ranging from 0 °C to 100 °C.

Devise a method the student could use to estimate a value for absolute zero.

Your method should include any additional apparatus and the use of a suitable graph.

| <br>The student suggested that using a data logger with a temperature probe and a pressure sensor would improve the investigation. |        |
|------------------------------------------------------------------------------------------------------------------------------------|--------|
| Explain how using a data logger could improve the accuracy of the measurements.                                                    | (3)    |
|                                                                                                                                    |        |
|                                                                                                                                    |        |
|                                                                                                                                    |        |
| <br>(Total for Ouestion 2 = 9 m                                                                                                    | narks) |

**BLANK PAGE** 



3 A student investigated the absorption of light by glass using the apparatus shown.



The student varied the thickness w of glass by placing glass slides on the solar cell.

(a) The student used a micrometer screw gauge to measure the thickness of one glass slide. She recorded a single measurement as 1.21 mm.

Explain why a micrometer screw gauge was an appropriate instrument to use for this measurement.

Your answer should include a calculation.

**(2)** 

(b) For each value of w the student recorded the potential difference V across the solar cell.

Explain one variable she should control in this investigation.

(2)



(c) The relationship between V and w is given by

$$V = Ae^{-Bw}$$

where *A* and *B* are constants.

| (i) Explain how a graph of ln V against w could be used to determine a value for B |
|------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------|

**(2)** 

(ii) The student recorded the following results.

| w/mm  | V/mV |  |
|-------|------|--|
| 1.21  | 381  |  |
| 2.46  | 375  |  |
| 4.88  | 366  |  |
| 6.10  | 361  |  |
| 8.55  | 352  |  |
| 10.97 | 344  |  |

Plot a graph of  $\ln V$  against w on the grid opposite.

Use the additional column to record your processed data. You should keep the values of V in mV.

**(5)** 

(iii) Determine the gradient of the graph.

(3)

| <br> |  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|      |      |      |      |      |      |      |      |      |      |      |      |      |  |
|      |      |      |      |      |      |      |      |      |      |      |      |      |  |
| <br> |  |
|      |      |      |      |      |      |      |      |      |      |      |      |      |  |
| <br> |  |
|      |      |      |      |      |      |      |      |      |      |      |      |      |  |
|      |      |      |      |      |      |      |      |      |      |      |      |      |  |

Gradient =







| (iv) | The mean thickness of each glass slide was 1.22 mm.                                            |
|------|------------------------------------------------------------------------------------------------|
|      | Determine the minimum number of glass slides needed to reduce $V$ to 75% of the initial value. |
|      | (4)                                                                                            |
|      |                                                                                                |
|      |                                                                                                |
|      |                                                                                                |
|      |                                                                                                |
|      |                                                                                                |
|      |                                                                                                |
|      |                                                                                                |
|      | Minimum number of glass slides =                                                               |
|      | (Total for Question 3 = 18 marks)                                                              |

4 A student investigated the properties of a spring using the apparatus shown.



(a) The student determined the time period *T* of the oscillations of the mass-spring system.

The student displaced the mass downwards. He released the mass so that the mass oscillated vertically. He used a stopwatch to measure the time for multiple oscillations.

(i) Explain why timing multiple oscillations improves the measurement of T.

| (ii) Describe two techniqu | ag tha gtudant ghaul | d man villam timaina a | raillations |  |
|----------------------------|----------------------|------------------------|-------------|--|
| THE DESCRIPE TWO TECHNIQUE | es me suident snom   | a use when liming os   | SCHIALIONS. |  |

(ii) Describe two techniques the student should use when timing oscillations. (2)

(3)

(iii) The student recorded the following results.

| 10 <i>T</i> /s 6.88 | 6.93 | 6.84 | 6.96 |
|---------------------|------|------|------|
|---------------------|------|------|------|

Calculate the mean value of *T*.

**(2)** 

Mean value of T =

(iv) Determine the percentage uncertainty in the mean value of T.

**(2)** 

Percentage uncertainty =

(b) The Poisson Ratio is a property of the material the spring is made from.

For oscillations on a spring, the Poisson Ratio v can be calculated using

$$v = N^2 \frac{D^2}{2d^2} - 1$$

where N is a constant related to the time period of oscillations D is the diameter of the mass d is the internal diameter of the coiled part of the spring.

(i) The student used vernier calipers to measure *d*.

Explain one technique he should use to determine an accurate value for d.

**(2)** 

| (ii)  | Show that the percentage uncertainty in the term $\frac{D^2}{2d^2}$ is about 2%.                             |     |
|-------|--------------------------------------------------------------------------------------------------------------|-----|
|       | $D = 59.4 \text{ mm} \pm 0.2 \text{ mm}$<br>$d = 13.9 \text{ mm} \pm 0.1 \text{ mm}$                         | (3) |
|       |                                                                                                              |     |
|       |                                                                                                              |     |
|       |                                                                                                              |     |
|       |                                                                                                              |     |
|       |                                                                                                              |     |
|       |                                                                                                              |     |
|       |                                                                                                              |     |
| (iii) | The student determined the value of the constant $N$ experimentally and estimate its percentage uncertainty. | ed  |
|       | He determined the value of $v$ as 0.276 with a percentage uncertainty of 6%.                                 |     |
|       | The value of $v$ for steel is 0.265                                                                          |     |
|       | Deduce whether this spring was made from steel.                                                              | (2) |
|       |                                                                                                              |     |
|       |                                                                                                              |     |
|       |                                                                                                              |     |
|       |                                                                                                              |     |
|       | (Total for Question 4 = 16 m                                                                                 |     |

**TOTAL FOR PAPER = 50 MARKS** 



# List of data, formulae and relationships

Acceleration of free fall 
$$g = 9.81 \text{ m s}^{-2}$$
 (close to Earth's surface)

Boltzmann constant 
$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

Coulomb's law constant 
$$k = 1/4\pi\varepsilon_0$$

$$= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

Electron charge 
$$e = -1.60 \times 10^{-19} \text{ C}$$

Electron mass 
$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

Electronvolt 
$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

Gravitational constant 
$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

Gravitational field strength 
$$g = 9.81 \text{ N kg}^{-1}$$
 (close to Earth's surface)

Permittivity of free space 
$$\varepsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F m^{-1}}$$

Planck constant 
$$h = 6.63 \times 10^{-34} \text{ J s}$$

Proton mass 
$$m_{\rm p} = 1.67 \times 10^{-27} \, \text{kg}$$

Speed of light in a vacuum 
$$c = 3.00 \times 10^8 \text{ m s}^{-1}$$

Stefan-Boltzmann constant 
$$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

Unified atomic mass unit 
$$u = 1.66 \times 10^{-27} \text{ kg}$$

### Unit 1

## **Mechanics**

Kinematic equations of motion 
$$s = \frac{(u+v)t}{2}$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

 $\Sigma F = ma$ Forces

$$g = \frac{F}{m}$$

$$W = mg$$

Momentum p = mv

Moment of force moment = Fx

 $\Delta W = F \Delta s$ Work and energy

$$E_{\rm k} = \frac{1}{2} m v^2$$

 $\Delta E_{\rm grav} = mg\Delta h$ 

$$P = \frac{E}{t}$$

$$P = \frac{W}{4}$$





Efficiency

$$efficiency = \frac{useful energy output}{total energy input}$$

$$efficiency = \frac{useful power output}{total power input}$$

Materials

Density

Stokes' law

Hooke's law

Elastic strain energy

Young modulus

 $\rho = \frac{m}{V}$ 

 $F = 6\pi \eta r v$ 

 $\Delta F = k \Delta x$ 

 $\Delta E_{\rm el} = \frac{1}{2} F \Delta x$ 

 $E = \frac{\sigma}{\varepsilon}$  where

Stress  $\sigma = \frac{F}{A}$ 

Strain  $\varepsilon = \frac{\Delta x}{x}$ 



### Unit 2

#### Waves

Wave speed  $v = f\lambda$ 

Speed of a transverse wave  $v = \sqrt{\frac{T}{\mu}}$  on a string

Intensity of radiation  $I = \frac{P}{A}$ 

Refractive index  $n_1 \sin \theta_1 = n_2 \sin \theta_2$ 

 $n=\frac{c}{v}$ 

Critical angle  $\sin C = \frac{1}{n}$ 

Diffraction grating  $n\lambda = d\sin\theta$ 

## **Electricity**

Potential difference  $V = \frac{W}{Q}$ 

Resistance  $R = \frac{V}{I}$ 

Electrical power, energy P = VI

 $P = I^2 R$ 

 $P = \frac{V^2}{R}$ 

W = VIt

Resistivity  $R = \frac{\rho l}{A}$ 

Current  $I = \frac{\Delta Q}{\Delta t}$ 

I = nqvA

Resistors in series  $R = R_1 + R_2 + R_3$ 

Resistors in parallel  $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ 

Particle nature of light

Photon model E = hf

Einstein's photoelectric  $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$ 

equation

de Broglie wavelength  $\lambda = \frac{h}{p}$ 



## Unit 4

Further mechanics

|  | Impulse | $F\Delta t = \Delta p$ |
|--|---------|------------------------|
|--|---------|------------------------|

Kinetic energy of a non-relativistic particle 
$$E_{k} = \frac{p^{2}}{2m}$$

Motion in a circle 
$$v = \omega r$$

$$T = \frac{2\pi}{\omega}$$

$$a = \frac{v^2}{r}$$

$$a = r\omega^2$$

Centripetal force 
$$F = ma = \frac{mv^2}{r}$$

$$F = mr\omega^2$$

Electric and magnetic fields

Electric field 
$$E = \frac{F}{O}$$

Coulomb's law 
$$F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

$$E = \frac{V}{d}$$

Electrical potential 
$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

Capacitance 
$$C = \frac{Q}{V}$$

Energy stored in capacitor 
$$W = \frac{1}{2}QV$$

$$W = \frac{1}{2}CV^2$$

$$W = \frac{1}{2} \frac{Q^2}{C}$$

Capacitor discharge 
$$Q = Q_0 e^{-t/RC}$$



Resistor-capacitor discharge

$$I = I_0 \mathrm{e}^{-t/RC}$$

$$V = V_0 e^{-t/RC}$$

$$\ln Q = \ln Q_0 - \frac{t}{RC}$$

$$\ln I = \ln I_0 - \frac{t}{RC}$$

$$\ln V = \ln V_0 - \frac{t}{RC}$$

In a magnetic field

$$F = Bqv \sin \theta$$

$$F = BIl \sin \theta$$

Faraday's and Lenz's laws

$$\mathcal{E} = \frac{-\mathrm{d}(N\phi)}{\mathrm{d}t}$$

Nuclear and particle physics

In a magnetic field

$$r = \frac{p}{BQ}$$

Mass-energy

$$\Delta E = c^2 \Delta m$$

## Unit 5

Thermodynamics

Heating  $\Delta E = mc\Delta\theta$ 

 $\Delta E = L\Delta m$ 

Ideal gas equation pV = NkT

Molecular kinetic theory  $\frac{1}{2}m < c^2 > = \frac{3}{2}kT$ 

Nuclear decay

Mass-energy  $\Delta E = c^2 \Delta m$ 

Radioactive decay  $A = \lambda N$ 

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

$$N = N_0 e^{-\lambda t}$$

$$A = A_0 e^{-\lambda t}$$

**Oscillations** 

Simple harmonic motion F = -kx

 $a = -\omega^2 x$ 

 $x = A \cos \omega t$ 

 $v = -A\omega \sin \omega t$ 

 $a = -A\omega^2 \cos \omega t$ 

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f$$

Simple harmonic oscillator  $T = 2\pi \sqrt{\frac{m}{k}}$ 

$$T = 2\pi \sqrt{\frac{l}{g}}$$



# Astrophysics and cosmology

Gravitational field strength  $g = \frac{F}{m}$ 

Gravitational force  $F = \frac{Gm_1m_2}{r^2}$ 

Gravitational field  $g = \frac{Gm}{r^2}$ 

Gravitational potential  $V_{\text{grav}} = \frac{-Gm}{r}$ 

Stefan-Boltzmann law  $L = \sigma A T^4$ 

Wien's law  $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \,\text{mK}$ 

Intensity of radiation  $I = \frac{L}{4\pi d^2}$ 

Redshift of electromagnetic  $z = \frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}$  radiation

Cosmological expansion  $v = H_0 d$