BMS: CAN BUS COMMUNICATION SPECIFICATION

1. Communication Specification

The principle for data link layer.

Communication speed for bus line: 250Kbps.

The provision for data link layer: Refer to the related regulation of CAN2.0B and J1939.

Use and redefine 29 identifiers of CAN extended frame. The distribution of 29 identifiers are listed below:

	IDENTIFIER 11BITS							S R	I D		IDENTIFIER EXTENSION 18BITS																				
							R	Е																							
					S	I		_		PDU SPECIFIC(PS) SOURCE ADDRESS(SA)																					
	PRIORITY			R	DP		PDU	J FOF	RMAT	(PF)		R	D	P	PF			PDU	SPEC	CIFIC	(PS)				SO	URC	CE AI	DDRE	ESS(S	SA)	
					R	Е																									
	3	2	1	1	1	8	7	6	5	4	3			2	1	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
2	28	27	26	25	24	23	22	21	20	19	18			17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Priority has 3 bits so there can be 8 priorities. R is generally 0. DP is fixed at 0. 8-bit PF is the code for the message. 8-bit PS refers to destination address. 8-bit SA refers to the source address.

>There is a name and an address for every node which accesses to the network. The name is used for nodes identification and address arbitration. The address is used for data communication to node.

>Every node has at least one function. Multiple nodes might have the same function or one node might have multiple functions.

CAN Network Address Distribution

Obtain the node address of CAN Bus from the definition of J1939 Standard:

Node Name	SOURCE ADDRESS(SA)
Motor Controller	239(0xEF)
Battery Management System (BMS)	244(0xF4)
Charger Control System (CCS)	229(0xE5)
Broadcast Address (BCA)	80(0x50)

CAN Protocol V1.0

Message Format:

Message 1: (CAN ID: 0x1806E5F4)

OUT	IN			Cycle Time (ms)					
		P	R	DP	PF	1000			
BMS	CCS	6	0	0	6				
	Data								
Position		Data Name							
BYTE1	Max Allowable C	Charging Terminal V	oltage High Byte	- 0.1V/bit offset: 0 case.: Vset =3201, its corresponding 320.1v					
BYTE2	Max Allowable (Charging Terminal V	oltage Low Byte						
BYTE3	Max Allowa	ble Charging Curren	t High Byte	0.1A/bit offset: 0 case.: Iset =582, its corresponding 58.2A					
BYTE4	Max Allowa	able Charging Currer	nt Low Byte	0.1A/oft offset: 0 case.: 1set -302, its corresponding 38.2A					
BYTE5		Control		0: Start charging. 1: battery protection, stop charging					
BYTE6	BYTE6 Control				0: Charging mode.1: Heating mode.				
BYTE7		Reserved							
BYTE8		Reserved							

Message 2: (CAN ID: 0x18FF50E5)

OUT	IN		ID					
		P	R	DP	PF	1000		
CCS	BCA	6	0	0	0xFF			
			Data					
Position		Data Name						
BYTE1	Ou	tput Voltage High B	yte	0.1V/bit offset: 0 case: Vout = 3201, its corresponding 320.1v				
BYTE2	Οι	tput Voltage Low By	yte					
BYTE3	Ου	tput Current High B	yte	0.1 A /hit offert 0 coss Jour 592 its common ding 59.2 A				
BYTE4	Οι	tput Current Low By	yte	0.1A/bit offset: 0 case: Iout =582, its corresponding 58.2A				
BYTE5		Status Flags						
BYTE6		Reserved						
BYTE7		Reserved						
BYTE8		Reserved						

STATUS	Mark	Description
Bit0	Hardware Failure	0: Normal. 1: Hardware Failure
Bit1	Temperature of Charger	0: Normal. 1: Over temperature protection
Bit2	Input Voltage	0: Input voltage is normal. 1. Input voltage is wrong, the charger will stop working.
Bit3	Starting state	0: Battery is connected normally.
		1: Battery is not connected or the battery is connected reversely.
Bit4	Communication State	0: Communication is normal. 1: Communication receive time-out.
Bit5		
Bit6		
Bit7		

Control Mode

- 1. The BMS sends operating information(Message 1) to charger at fixed interval of 1s. After receiving the message, the charger will work under the Voltage and Current in Message. If the Message is not received within 5s, it will enter into communication error state and stop charging.
- 2. The charger send broadcast message (Message 2) at intervals of 1s. The display meter can show the status of the charger according to up-to-date information.