

Multiple Testing Correction

(F)

Problem with running a large number of experiments, e.g. A/B
Testing

Number of dice	Chance of getting 6
1	0.167
2	0.306
3	0.421
4	0.518
25	0.999

If you repeat the experiment will the probability be the same?

5% chance of error in 10,000 genes

500 genes of false positive

Multiple testing!

Gene	Gene 1	Gene 2	Gene 3
Gene 1			
Gene 2	\checkmark		
Gene 3	\checkmark	\checkmark	
Gene4	\checkmark	\checkmark	\checkmark

We need 6 tests!

Familywise Error Rate

Formula

$$FWER = 1-(1-\alpha)^k$$

FWER for 6 tests

$$1-(1-0.05)^6 = 26.5\%$$

FWER for 1 test

$$FWER = 1-(1-0.05)^1 = 5\%$$

It is a problem!

Controlling the familywise error rate: Bonferroni correction

α/n

Example:

 $\alpha/6 = 0.05/6 = 0.008$

We only reject a null hypothesis if the p-value is less than 0.008

Familywise Error Rate

Formula

$$FWER = 1-(1-\alpha)^k$$

FWER for 6 tests

$$1-(1-0.05)^6 = 26.5\%$$

FWER for 1 test

$$FWER = 1-(1-0.05)^1 = 5\%$$

Corrected FWER for 6 tests

$$1-(1-0.05/6)^6 = 4.9\%$$

	Gene	α =0.05	$\alpha = 0.008$
1	Gene 1 vs Gene 2	0.98	0.348
2	Gene 1 vs Gene 3	.012	.111
3	Gene 1 vs Gene 4	.011	.003
4	Gene 2 vs Gene 3	.0.36	.493
5	Gene 2 vs Gene 4	0.02	.078
6	Gene 3 vs Gene 4	0.028	0.234

Do you think Bonferroni correction (α/n) is good for testing 10,000 genes?

Type I error Type II error

Type I error Type II error

Controlling the false discovery rate: Benjamini-Hochberg procedure

i	variables	P value	(
1	А	0.008	
2	В	0.039	
3	С	0.062	
4	D	0.071	

(i/n)*Q	
0.010	
0.030	
0.060	
.0.071	

Now, let's play!

Summary!

You cannot repeat your experiment

Bonferroni very strict **BH** more Powerful

using suitable pvalue adjustment method

you can skip pvalue adjustment method

References

McDonald, J. H. (2009). *Handbook of biological statistics* (Vol. 2, pp. 6-59). Baltimore, MD: sparky house publishing.] Retrieved from <u>Multiple comparisons</u> - <u>Handbook of Biological Statistics (biostathandbook.com)</u>

Goldman, M. (2008). Spring 2008-stat c141/bioeng c141-statistics for bioinformatics. *Course Website*.] Retrieved from <u>Section0402.pdf</u> (berkeley.edu)

McNamara, A. (2020). *Correcting for multiple comparisons in R (STAT 320 week 10 video 5 of 5)* [Video]. Retrieved from https://www.youtube.com/watch?v=pevqgRKjlk4