That is, if (23)(23)=0, either x+3=0,00 case0 or page bith equal term. In output that the factor x+3be equal codo, x fast have in trail yet of the values x=3 and be 260 ip x=5 thus beth the values x=3 and x=5 intify the legistion, 3+32+1520, with in gaten y mutifying (2+3) by (2+5). The x=3, yet have: (3)+3(3)+1520 Q f(24)+1520 Q f(24)+1520 Q f(24)+1520 Q f(24)+1520 Q f(24)+1520 G factoring is the seen to be an informat approach to the solution of gampanic equations. Forther Illustromoni. (3) What immediate the contient (24)(2-3) 20 Fector less size Solution: x-9=0 sentes the contient (24)(2-3) 20 Fector less size Solution: x-9=0 sentes the contient x+3=0, solutions and x+ first x+3=0, x=3=0 (20) when values of x sattisfy effe equations x+6x+1207 24-30 x+3=0, x=3=0, x=3=0, x=0 (21) when values of x sattisfy effe equations x+6x+1207 25-0 x+0=0 x+0=0 x+0 x+0 (21) when values of x sattisfy effe equations x+6x+1207 25-0 x+0=0 x+0=0 x+0 x+0 (21) x+0=0 x+0=0 x+0 x+0 (21) x+0=0 x+0=0 x+0 Cantion but the x+0 x+0 x+0 Cantion but the x+0 x+0 x+0 Licotrus tiglist to be not then the time unthoo. Uncotrus tiglist to be not by completing the solute 15 2=9, take the square took of both sizes. Then x+0=0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 quantities that x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 quantities that x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 quantities that x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 quantities that x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 quantities that x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 25-0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+0 x+	Time of the Country of the	
THE SHOP IN THE SAVING OF US SILEDED CONTROL SHOP IN SOLVE FOR SILED SHOP IN SOLVE SHOP IN SOL	hill could some Two	O SITHER X 15 = 0 7 DE RETO OR PRO
DE 260 : p 26 = 5. Thus both the values 2 = 3 and X = 5 & ATTICKY the equation, at \$3 x + 15 x 0, with it option Y martiplying (2x3) by (2x45). If x = -3, we have: (3) 73 (-3) + 15 = 0 Q t(-24) + 15 = 0 Partering 15 those seen to be an important approach to the solution of quarantic equations (3) what Yaues or a sattisfy the equation 2 = 9? Solution 2 = 9 = 0 courte the equation (3x-3) (2x-3) (2x-3) the three the same feet one or flow To seen that protocol the the same feet one or flow (2x-3) (2x-3) 20 the tree of an 3 solve from an increase of the control to the same feet one or flow (2x-3) (2x-3) 20 the tree of an 3 solve from an increase of the control to the same feet one or flow (2x-3) (2x-3) 20 the tree of an 3 solve from an increase of the control to the same feet one or flow (2x-3) 20 the tree to select from the first approach (2x-3) 2 and (3) = 9 (2x-3) 2 and (3x-3) 2 22-3 = 0 30 22-3 the king: (2x-3) 2 and (3x-3) 2 22-3 = 0 30 22-3 the king: (2x-3) 2 and (3x-3) 2 22-3 and solve from an (2x-3) 2 and (3x-3) 2 22-3 and solve from an (2x-3) 2 and (3x-3) 2 2 2 2 3 2 2 2 2 3 the king: (2x-3) 2 and (3x-3) 2 2 2 2 3 2 2 2 2 3 the king: (2x-3) 2 and (3x-3) 2 2 2 2 3 2 2 2 2 3 the control (2x-3) 2 and (3x-3) 2 2 2 2 3 2 2 2 2 3 the control (2x-3) 2 and (3x-3) 2 2 2 2 3 2 2 2 2 3 the control (2x-3) 2 and (3x-3) 2 2 2 2 3 2 2 2 2 3 the control (2x-3) 2 and (3x-3) 2 2 2 2 3 2 2 2 2 3 the control (2x-3) 2 and (3x-3) 2 2 2 2 2 3 2 2 2 2 3 the control (2x-3) 2 and (3x-3) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Xe - S * ATTIFY THE EQUATION of \$30 + 1500, with 15 golden by MULTIPLYING (2+3) by (2+3). IF x = 3, we have: IF x = 3, we have: IF x = 5, we have: Q + (-14) + 15 = 0 Extering 1: this seem to be an important approach to the solvition of gimpardic equations. Expected 1 of the protocol of the equations of 2 = 9; Solvition: Q + 3) + 00 + Fretton test side Since both frotocol has the equation of 2 = 9; See each from to zero and solve for an See each from to zero and solve for an As = 0 / 50 x = 3 + 2x 3 = 0 + 30 x = 3 + 30 x		
THE X=-3, you have: TF X=-5, we have: Q f(-14)+15=0 Q f(-14)+15=0 Enctoring is this seen to be an imperant approach to the solution of quaptrice equations. Evition: To the solution of quaptrice equations Solution: To -9=0 remete the equation Solution: To -9=0 remete the equation (X+3)(X-3)±0 Factor less side Since beth protoes post the same feet one or then To -2=0 so reas; x-3=0; so x=+3. (Heking): (-3)=9 and (3)=9 (2) where values of x satisfy effe equation: X(x+120) (-3)=9 and (3)=9 (2) where values of x satisfy effe equation: X(x+120) Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Set one or them To zeen and solve for x. Solved in this value is thought of as being a remain Direction his time value is thought of as being a remain Solved in order to Device a methor to solve Quantities of the square tope of the solve Then x=18 and x the square tope of the solve Then x=18 and x the square tope of the solve Then x=18 and x the square tope of the solve Then x=18 and x the square tope of the solve Then x=18 and x the square tope of the solve Then x=18 and x the square tope of the solve Then x=18 and x the square tope of the solve Then x=18 and x the square tope of the solve Then x=18 and x the square tope of the solve The x=18 and x the square tope of the solve The x=18 and x the square tope of the solve The x=18 and x the square tope of the solve The x=18 and x the square tope of the solve The x=18 and x the x the square tope of the solve The x=18 and x the x the square tope o		
TF x=-3, we have: TF x=-8, we have: (3)78(-3)115-0 (6)79(-0)15-0 25+(-40)15-0 Encreasing is the seen to be an imagerant approach to the solution of gardentic equations. Further Illustration: (3) What Majues or satisfy the equation x2=9? Solution: X2-9=0 Remember the equation x2=3? Solution: Parties present to sepon and solve form and x2=30, x2=30, x2=30, x2=30. Solution: Factor to sepon and solve form and x2=30, x2=30, x2=30, x2=30. (2) where values at x satisfy effe equation: x2(x1)=0. (3) *** (4) ** (4) ** (3) ** (4) ** (4) ** (5) ** (5) ** (6) ** (7) ** (8) ** (9) ** (1) ** (1) ** (2) ** (2) ** (3) ** (4) ** (5) ** (5) ** (6) ** (7) ** (7) ** (8) ** (9) ** (9) ** (1) ** (1) ** (2) ** (2) ** (3) ** (4) ** (5) ** (5) ** (6) ** (7) ** (7) ** (8) ** (9) ** (9) ** (10) ** (11) ** (12) ** (13) ** (14) ** (15) ** (15) ** (16) ** (17) ** (17) ** (18		
(3) + 8(-3) + 15 = 0 Q = (-24) + 15 = 0 Q = (-24) + 15 = 0 Excepting is the seen to be an imagetant approach to the southon of approache equesions. Fronther Illustremon. (3) What Mayes of a satisfy the equation of 9? Solution: 7 - 9=0 seneth the equation (2+3) (2-3) ± (0) seneth the equation (2+3) (2-3) ± (0) seneth the equation (2+3) (2-3) ± (0) seneth the equation To seed photos poetre same feet one or then To seed photos to seed and solve for an See each factor to seed and solve for an (2) = 9 and (3) = 9. (3) what values of a satisfy effe equation is silkely. (3) what values of a satisfy effe equation is silkely. (4) (2+3) ± (0) since ooth factors are the stress. (5) = 9 and (3) = 9. (6) what values of a satisfy effe equation is silkely. (7) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (3) = (4) = (3) = (4) = (3) = (4) = (3) = (4)		
TREATING IS THOS SEEN TO BE AN IMPORTANT APPROPRIED FRACTORING IS THOS SEEN TO BE AN IMPORTANT APPROPRIED TO THE SOLUTION OF QUADRATIC EQUATIONS. [2) WHAT YAILUS OF TO SATISFY THE EQUATION 2=9? SOLUTION: 2 -90 REMETS THE SAME SET ONE OF THAM [2+3)(2-3) ±0 FROTOR LEFT SIDE STORE DATH PROTORS ARE THE SAME SET ONE OF THAM TO SERVE MAD SOLVE FOR MISSOLVE FOR MISSO		Delta De la Carta de la Carta de Carta
FACTORING IS THOS SEEN TO BE AN IMPORTANT APPROPRIED TO BE SHOULD		
to the solution of guarantic equations. Forther Illustrations: (2) WHAT PRICES OF a SANTISFY the Equation 2 = 9? Solution: 2 - 9=0 Remembe the Equation (243)(2-3) ±0 Factor Less side Since both pactors has the same set one or than To refle and sol to feel at 250 (25 = 3) See each pactor to zero and solve for an: (2) what values of a santisfy effe equation; 21(x19x0) (2) what values of a santisfy effe equation; 21(x19x0) (2) what values of a santisfy effe equation; 21(x19x0) (2) what values of a santisfy effe equation; 21(x19x0) (2) what values of a santisfy effe equation; 21(x19x0) (2) what values of a santisfy effe equation; 21(x19x0) (2) what values of a santisfy effe equation; 21(x19x0) (2) what values of a santisfy effe equation; 21(x19x0) (2) what value of a santisfy effe equation; 21(x19x0) (2) solution; 21 this value is employed as a being a repair (2) what is a santisfy in does not have a work so easily. 29 solution of quartic noot by completing the square values in order to device a methor to solve operatatics that are not for the equation; blendy 24 = 9, take the square tope of act side. Then zere a sa sa where the means top . It		15. No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
FURTHER Illustrations: (3) White Majures of a Sattisfy the Equation 22=9? Solution: 2 -9=0 Remerie the Equation (243)(2-3) ±0 Petchen less side Since both protosis has the same set one or then To 2600 min sol VB For a 282-0, 20 22-13. (Heking: 264 each protosi to 2600 And Solve for min 265 =0 100 28=3; 273-0, 30 28+3. (Heking: (3)=9 And (3)=9. (2) White Values of a Sattisfy effe Equation: 216x49.0°. 261 one of them to 2600 And Solve for a 262 one of them to 2600 And Solve for a 263 one of them to 2600 And Solve for a 264 one of them to 2600 And Solve for a 264 one of them to 2600 And Solve for a 264 one of them to 2600 And Solve for a 264 one of them to 2600 And Solve for a 264 one of them to 2600 And Solve for a 264 one of them to 2600 And Solve for a 264 one of them to 2600 And Solve for a 264 one of them to 2600 And Solve for a 264 one of them to 2600 And Solve for a 264 one of the solve of a them the time after a 265 one of them to 2600 And Solve for a solve a solve of the solve of solve of solve of the solve of the solve of solve of solve of solve of the solve of the solve of solve of solve of the solve of solve of solve of the solve of	Factoring is thus so	een to be an important approach
(2) WHAT VALUES OF A SATISFY THE EQUATION 22 9? Solution: 2°-9=0. RAMERS HEEDARD AND SOLVE FOR AND		proble equations.
Solution: 22-9-0 Remerie He Egyption (2+3)(2-3) 20 FRICTOR LEFT SIDE State both Protors for the same set one or Them To 2600 and 30 Ve for a 1843-0, x=3. Set each Protor to 200 And Solve for a: 243=0 ; So x=3; 2x3=0; So 2x+3. (Hexing: (3) What Values of x Satisfy & the Equation: x16x49=0. (2) What Values of x Satisfy & the Equation: x16x49=0. 2+3)(x+3)=0. Since both Protors the these me, 2+3)(x+3)=0. Since both Protors the these me, 2+3=0, x=-3. Since both from 10 x to any 3, there is 2+3=0, x=-3. Since x=3; And only-3, there is Calation but this whale is thought to as being a upono Calation but this whale is thought to as being a upono Line proton at the time that the time method Informally method is partice than the time method 29. Solution of quadratic root by completing the solute Now we stall examine some of the equation; also solve our static that are not protor to solve our static that are not protor to solve our static that are not the form 10012-0.	Funther Illustrations:	有多年中
(2+3)(2-3) 20 FRICTOR LEST SIDE STORE DURTH PROTORS PRETHE SAME SET ONE OF THEM TO 26AC AND SOLVE FOR A 243=0, 20= 3= Set each factor to zero And solve for a: 243=0, 50 24=3; 22-3=0; so 22-43. CHEKING: (2) WHAT VALUES OF 22 SATISFY ELLE EQUATION: 21/24940. JOHNSTON FACTOR LEST SIDE: 10764 SAME THE SAME, (2+3)(2+3)20. SINCE DOTH FACTORS AND THESE SAME, 262 ONE OF THEM TO 2640 AND SOLVE FOR 22. 243=0, 25=3. SINCE 25=3, AND ONLY-3, THERET'S ONLY ONE VALUE OF 26 EHAT CATSURES FIRE QUENT CASSION DUBTINS STANDS WERE THAN THE TENN METHOD. UNFORTUNATED IT THESE THAN THE TENN METHOD. 29. Solution of QUADENTIC TOOK DV COMPRETING THE SQUART NOW WE SHALL EXAMINE SOME OF THE EQUATION HIERDY SOLVED IN OXIDER TO DEVISE A METHOD TO SOLVE OUNT STATES. THAT ASENDT PACTORADIO. IF 2=9, TAXE THE SQUARE TOOK OF SOCIAL SIDES. THEN 22-45 THE SQUARE TOOK OF SOCIAL SIDES.		
(2+3)(2-3) 20 FRICTOR LEST SIDE STORE DURTH PROTORS PRETHE SAME SET ONE OF THEM TO 26AC AND SOLVE FOR A 243=0, 20= 3= Set each factor to zero And solve for a: 243=0, 50 24=3; 22-3=0; so 22-43. CHEKING: (2) WHAT VALUES OF 22 SATISFY ELLE EQUATION: 21/24940. JOHNSTON FACTOR LEST SIDE: 10764 SAME THE SAME, (2+3)(2+3)20. SINCE DOTH FACTORS AND THESE SAME, 262 ONE OF THEM TO 2640 AND SOLVE FOR 22. 243=0, 25=3. SINCE 25=3, AND ONLY-3, THERET'S ONLY ONE VALUE OF 26 EHAT CATSURES FIRE QUENT CASSION DUBTINS STANDS WERE THAN THE TENN METHOD. UNFORTUNATED IT THESE THAN THE TENN METHOD. 29. Solution of QUADENTIC TOOK DV COMPRETING THE SQUART NOW WE SHALL EXAMINE SOME OF THE EQUATION HIERDY SOLVED IN OXIDER TO DEVISE A METHOD TO SOLVE OUNT STATES. THAT ASENDT PACTORADIO. IF 2=9, TAXE THE SQUARE TOOK OF SOCIAL SIDES. THEN 22-45 THE SQUARE TOOK OF SOCIAL SIDES.	Solution: 2-9=0. REW	with the countries and a second and and
STORE DOWN PROTORS PRE THE SAME SET ONE OF THEM TO 26HO AND 301 VE FOR A 243 = 0, x = 3 = Set EACH FROTOR TO ZEPO AND SOLVE FOR A: 245 = 0, 50 26 = 3; 20 = 0, 30 20 20 20 20 20 20 20 20 20 20 20 20 20	(92+3)(2-3) £0 FAC	CTERULERT SIDE (x) In "EX SC) 23 AVAILA 1914
TO 2600 mb 30) YE FOR a RH3=0, x=3. Set each factor to 2000 And 30 live for mi. 263=0,50 x=3; 2=3=0; so 20 x+3. (Heking: (-3)=9 and (3)=9. (2) What values of x satisfy effe equation: xi(xt9=0). Jointion: Factor Let side: infect contact. (2+3)(x+3)=0. Since both factors are the same, Set one of them to 2000 And solve for x. 262 one of them to 2000 And solve for x. 263=0, x=-3. Since x=-7. And only-3, theoreis Only one value of se that catisfies the given a regard Courtion bits this while is thought be as being a regard Root. Uncorrowately it does not humps work so easily. 29 solution of quadratic Root by completing the soluble Now we stall examine some of the equation below, Solved in order to Devise a method to solve operation that are not performed. If 2=9, taxe the squark roof of both side. Then x=2 the fact we can got it into the form (xxi)=0.		
Set each factor to zero And Solve for mi 263=0,50 xe-3; 2x3=0; 30 2xx+3. (Heking: (-3)=9 And (3)=9. (2) What values of x satisfy effe equation: xicxigat. Jelphioni factor Let side: intext factors the these me, (x+3)(x+3)=0. Since both factors the these me, Set one of them to zero And solve for x. x+3=0, x=-3. Since x=-2, and only-3, there is only one value of se that fatishes the given caustion but this value: ethought be as being a terrain Vert The factoring metad is pasted than the tein method. Unfortunately it does not have work so easily. 29 Solution of quadratic host by completing the squate Now we stall examine some of the equation; alterdy solved in oxide to devise a method to solve Operations that although to petite a method to solve If x=9, tax e the square tode of both side. Then x==8 x= 13, where t means to y - It 20 tok 4 = 0, we can got it into the form (2xi)=0.		
RES = 0, 50 x = 3 f x = 3 = 0, 30 x x + 3. (HEKING: (-3) = 9 AND (3) = 9. (2) WHATE VALUES OF X SATISFY ELLE EQUATION: XICXIPLOT. JOLYPHONT FACTOR LEP SIDE: AFTER CONTINCT (X+3)(x+3) = 0. SINCE BOOCH FACTORS ARE THE SAME. SET ONE OF THEM TO ZEED AND SOLVE FOR X. SET ONE OF THEM TO ZEED AND SOLVE FOR X. SET ONLY ONE YANDE OF SE THAT EXTINGES THE OF YEAR CAUSTION DIT THIS WHILE IS CHOUGHT OF IS DESING A REPORTOR PLOTE UNFORTUN ACTOR IS PASTED THAN THE TEIN METHOD. 29. SOLUTION OF OMNOBATIC ROOT DY COMPLETING THO SOLVE SOLVED IN OXIDER TO DEVISE A METHOD TO SOLVE OMNOBATICS THAT APPENDT PACTORANDO. IF Z = 9, TAXE THE SQUAKE MORE OF BOOTH SIDES. THEN X = 13, WHERE T MEANS + OX - IF 2° + 6 K + 9 = 0, WE CAN got IT INTO THE FORM (201) = 0.		
(2) WHAT VALUES OF & SATISFY ELLE EQUATION: XICKPLO? JOLUPION FACTOR LEP SIDE: THE EXAMINET (X+3)(x+3)=0. SINCE both FACTORS ARE THE SAME, SET ONE OF THEM TO ZEED AND SOLVE FOR X X+3=0, x=-3. SINCE X=-7, AND ONLY-3, THERE'S DONLY ONE VALUE OF & CHART CATISPIES THE QUENT CASSION, DIFTING VALUE IS CHOUGHT OF AS DOING A REPORT ROOT. THE PACTORING METOD IS PASTED THAN THE TEIN METHOD. UNFORTUNATELY IT DOES NOT HOWAYS WORK SO EDDING. 29. SOLUTION OF QUADRATIC TROOT DY COMPLETING THE SQUARE NOW WE SHIPL EXAMINE SOME OF THE EQUATION RISERRY SOLVED IN ORDER TO DEVISE A METHOD TO SOLVE OUTSTANTICE THAT ARE NOT PACTORALLY. IF Z=9, TAXE THE SQUARE ROOF OF BOTH SIDES. THEN X==0, WE CAN POT IT INTO THE FORM (XXI)=0.		
(2) WHAT VALUES OF & SATISFY EGG EQUATION: \$16x49.00. JOLUPIONT FACTOR LEP SIDE: MFTEE SOMEWITH (X+3)(X+3)=0. SIUCE DOTH FACTORS ARE THESE AME, SET OND OF THEM TO ZEED AND SOLVE FOR X 243=0, X=-3. SINCEX==7, AND ONLY-3, THEORERS ONLY DHE VALUE OF SE THAT TATISHES THE QUENT COLUTION, DIE THIS VIEWE IS CHOUGHT OF AS DOING A REPORT ROOT UNFORTUNATELY IT DOES HOW THE TITM METHOD. 29. SOUTON OF QUADRATIC ROOT BY COMPLETING THE SQUARE NOW WE SHALL EXAMINE SOME OF THE EQUATION; HISERDY SOMED IN OXECUTO DEVISE A MOTHOD TO SOLVE OUNTSTATICS THAT RED NOT PACTORALIS. IF Z=9, TAXE THE SQUARE ROOF OF BOTH SIDES. THEN X==E = 13, WHERE T MEANS + DY - IT 24 + 6 to 4 = 0, WE CAN POOL IT INTO THE FORM (XXXX=0.)	(-3)=9 AND (3)=9.	10 250 TO THE REAL PROPERTY.
Telephion Frator Lep side in the comment (2+3) (2+3) = 0. Since both frators the thesame, Set one of them to zee And solve for 2. 2+3=0, x = -3. Since x = -7, And only -3, there is Only one value of se that catishes the given Caustion but this value; chaught of as being a require Viet The particular methors pasted than the tent method. Unfortunately it does not humps work so easily. 29. Solution of quadratic Root by completing the soluble Non we shall examine some of the equations kineary solved in order to devise a methor to solve Operatatics that are not proceeding. If 2=9, taxe the square root of both side. Then 2=8, taxe the square root of both side. Then 2=2 for the can got it into the form (201) = 0.		
(2 + 3)(x+3) =0. Since both factors muethesome, 20t one of them to see any solve for x. 2+3=0, x=-3. Since x=-3, and only-3, there is only one value of se that fatishes the given casation by this value is thought of as being a repeato left factoring metod is pasted than the tein method. Unfortunately it does not having work so casily. 29. Solution of quadratic root by completing the solute Now we shall examine some of the equation history solved in order to benize a method to solve operatatics that are not period to solve If X=9, taxe the square roof of both side. If then x=13, where the mans to y- If 246649=0, we can got it into the form (xxi)=0.		
Set one of them to zeen AND Solve FOR 2. 2+3=0, x=-3. Since x=-7, AND ONLY-3, THENETS DUTY ONE VALUE OF SE THAT CATISHES THE QUENT CALLTION DIE THIS VALUE IN EHOUGHE OF ES DEING A THENTO REET. THE PACTORING METED IS PHOTED THAN THE TEIGH METHOD. Unfortunately it does not have, work so easily. 29. Solution of Quadratic Root by completing the sound. NOW WE SHILL EXAMINE SOME OF THE EQUATION, RISERDY SOLVED IN OXIDER TO DEVISE A METHOD TO SOLVE OUNDRATICS THAT ARE NOT PACTORNADO. IF 2=9, TAXE THE SQUARE ROOF OF BOTH SIDES. THEN 2=13, WHERE T MEANS + OY - IT 2+68+ 9=0, WE can got it into the Form (2xi)=0.		
243=0, R=-3. Since x=-7, AND ONLY-3, EHERETS ONLY ONE VALUE OF SEE HART EXTINGES THE QUENT CAUSTION DUE THIS VALUE IN EHOUGHE OF ES DEING A REPORTO PORT. THE PROTECULAR REGIO IS PARTED THAN THE TEIR METHOD. LINFORTUNATELY IT DOES NOT HUMBE WORK SO EASILY. 29. Solution of QUADRATIC ROST BY COMPLETING tHE SQUARE NOW WE SHALL EXAMINE SOME OF THE EQUATION HISTORY SOLVED IN ORDER TO DEVISE A METHOD TO SOLVE OUR DIATIES THAT ARE NOT PROTOCOLOGO. IF 2 = 9, TAXE THE SQUARE ROSE OF BOTH SIDE. THEN 2 = 4 TAXE THE SQUARE ROSE OF BOTH SIDE.		
Dolly one Value of se that cationes the que is casation but this value is enough of as being a require Root. The particular method is pasted than the time method. Unfortunately it does not always work so easily. 29. Solution of quadratic proof by completing thosophie Now we stall examine some of the equation; already solved in or dex to devise a method to solve operatatics that are not presented to the solution. If 2 = 9, tax & the square tode of both side. Then reserved as is, where t means top . If 2° +6x + 9 = 0, we can got it into the form (201) = 0.		
EQUATION DUE THIS VALUE IS EHOUGHE OF ES DESING A REGISTOR RECT. THE PROTOCING METERY IT DOES NOT HAVE THE TRIPL METHOD. DUFORTUN ATERY IT DOES NOT HAVING WORK SO EASILY. 29. SOLUTION OF QUADRATIC ROOT BY COMPLETING THE SQUARE NOW WE SHALL EXAMINE SOME OF THE EQUATION HISERDY SOLVED IN ORDER TO DEVISE A METHOD TO SOLVE OUR DIATICS THAT ARE NOT PACTORALIS. IF Z=9, TAXE THE SQUARE ROOF OF BOTH SIDE. THEN X=XX 24 MEGGE & MEANS + OV - IT X2+6K+4=Q, WE CAN POT IT INTO THE FORM (2017)=0.		
The pactering method is purifice than the Teinh method. Duffortun attery it does not however work so Edding. 29. Solution of quadratic root by completing the square in now we stall examine some of the equation history. Solved in order to Devise a method to solve operation that are not particle that are not particle. If $Z = 9$, take the square tode of both sides. Then and the square tode of both sides. Then and the square tode of both sides.		
THE PACTORING METOD IS PHOTED THAN THE TEIN METHOD. UNFORTUNATERY IT DOES NOT HUMBYS WOUNT SO EASILY. 29. Solution of QUADRATIC ROOT BY COMPLETING tHE SQUARE NOW WE SHILL EXAMINE SOME OF THE EQUATION HIMMAY SOLVED IN ORDER TO DEVISE A METHOD TO SOLVE OPETITIATICS THAT ARE NOT PACTORALIS. IF $2^2 = 9$, TAKE THE SQUARE TOOK OF BOTH SIDE. THEN XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Root Halle Sauta	Salar accorded Abadinate and the Contract of
Unfortunetally it does not plumps work so easily. 29. Solution of quadratic root by completing the sound. NOW WE SHALL EXAMINE SOME OF THE EQUATION'S ALLERDY Solved in Oxider to Devise a method to solve Operatatics that are not perceable. If $2^2 = 9$, taxe the square note of both side. Then x = 23, where ± means + ox - If $2^2 + 6 + 9 = 9$, we can got it into the form $(201)^2 = 0$.		
29. Solution of QUADRATIC Most by completing the square NOW WE SHALL EXAMINE SOME OF THE EQUATION! HIREADY Solves in Oxider to Devise a Method to solve QUADRATICS THAT are NOT pacrolable. IF X=9, Taxe the square rose of both sides. Then x=13, where ± means + oy - If x2+6x+9=0, we can got it into the Form (201)=0.		
NOW WE SHALL EXAMINE SOME OF THE EQUATION'S HIREADY SOLVED IN OXIDER TO DEVISE A METHOD TO SOLVE OUNDXIATICS THAT REDUCT PROTORNIA. IF X=9, TAXE THE SQUARE ROSE OF BOTH SIDES. THEN X=13, WHERE ± MEANS + DY - IF R2+6R+9=0, WE CAN POB IT INTO LIFE FORM (2017)=0.		
Solves in Oricer to Devise a mother to solve Operation that are not pacrolable. If $X^2 = 9$, take the square rose of both sides. Then $x = 13$, where \pm means $+ \infty - Tr$ $x^2 + 6x + 9 = 0$, we can pot it into the form $(\infty)^2 = 0$.		
THEN 2= 9, WE can got it INTO the FORM (2017)=0.		
IF $2=9$, taxe the square tope of both side. Then $2=6$ as 13, where \pm means $\pm \infty = 1$. $2^{2}+6+9=0$, we can pot it into the form $(2+3)^{2}=0$.		42.5 (All 10.5 (
THEN 2 = 23, WHERE + MEANS + OV - IF 2 + 6 k + 9 = 0, WE can pot it INTO the Form (201) = 0.	2.	
of thet 9=0, we can put it into the form (out) =0.	THU - THE	square took of both 2:00.
15 entology	2+6+4=0	WHERE - MEANI + DV - TF
	middlesoc	15 entolling