ITM426, Quiz 1, 2022 Fall

Solution and Grading

 \bullet ITM 426 Engineering Mathematics 22F

• Sep 23, 2022
• Duration: 60 minutes
\bullet Weights: 10% or 20% depending on other quiz scores
• 5 Questions
• Name:
• Student ID:
• E-mail:@seoultech.ac.kr
• Write legibly.
• Justification is necessary unless stated otherwise.

• Partial points are given only sparingly for the most problems because you are expected to 1) carry

out proper sanity check and 2) correct your mistake by doing so.

1	15
2	20
3	15
4	15
5	15
Total	80

#1. Show that the set of the following vectors are linearly dependent. [15pt]

$$(2,3,0), (0,2,-1), (4,8,-1)$$

Difficulty: Easy

Amount of work: 20 % Suggested answer:

With the three vectors notated as \mathbf{x} , \mathbf{y} , and \mathbf{z} , then $\mathbf{z} = 2\mathbf{x} + \mathbf{y}$. Hence, dependent.

#2. Complete the following theorem.[20pt]

For a $n \times n$ matrix A, the followings are all equivalents.

- \bullet (invertibility) The matrix A is invertible.
- (determinant)
- (solution of $A\mathbf{x} = \mathbf{b}$)
- (singularity)
- (column vectors)

Difficulty: Easy

Amount of work: 20 % Suggested answer:

(determinant) The determinant is not zero. $(A\mathbf{x} = \mathbf{b})$ The solution is unique (singularity) A is singular (column vectors) The set of column vectors are linear independent.

#3. Prove the following statement.[15pt]

ullet For a 2 × 2 matrix A, if its column vectors are independent, then its row vectors are independent.

Difficulty: Medium Amount of work: 20 % Suggested answer:

Let $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Since its column vectors are independent, the determinant $ad-bc\neq 0$. The row vectors of A are (a,b) and (c,d). Setting these two vectors into a column vector of a matrix, i.e. $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$. This matrix has non-zero determinant $ad-cb\neq 0$. Thus, the column vectors of this matrix, (a,b) and (c,d), are independent. In other words, the row vectors of A are independent.

#4. Write the matrix formular for the following system of linear equation. Find the inverse of the coefficient matrix. Find the solution to the system of linear equation in vector form. [15pt]

$$2x + 3y = 13$$
$$4x + 2y = 14$$

Difficulty: Medium Amount of work: 20 % Suggested answer:

After writing
$$\begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ 14 \end{bmatrix}$$
, the solution is $\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-8} \cdot \begin{bmatrix} 2 & -3 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 13 \\ 14 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

#5. Suppose that $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is a basis of 3-dimensional vector space. Carefully show that $\{\mathbf{x}, \mathbf{x} - \mathbf{y}, \mathbf{x} + \mathbf{y} - \mathbf{z}\}$ is a basis of 3-dimensional vector space as well. [15pt]

Difficulty: Medium-Hard **Amount of work**: 20%

 ${\bf Solution}.$ The proof is very similar to the one to Problem 11 in the prenote.

(blank)

	Write your name before	re detaching this page.	Your Name:	
--	------------------------	-------------------------	------------	--

(blank)