测度与积分 教学讲义

讲课教材: Real Analysis, E.M.Stein & R. Shakarchi 编著, 普林斯顿大学出版2005.

参考书:《实变函数》和《实变函数解题指南》周民强,北大出版社;

《实分析与复分析》[美] W.Rudin, 有中译本.

清华大学数学科学系本科教学 卢旭光 Feb. 2018

第一次作业题

- 1. 周民强《实变函数论》(2001年版, 北大出版社)P8: 1,2,3 (集合习题), P12: 1,2 (集合与函数), P16: 6,7 (集合与映射), P65: 8 (关于可数集) 【注: 原来留的第6题是错的(感谢汪圣同学指出错误), 现改为该页第8题。】, P66:18 (关于紧集), P68: 29 (关于覆盖).
 - 2. Stein 和Shakarchi 的实分析第一章第12 题(可以考虑闭包...).
 - 3. 完成课上给出的命题(区间估计)的证明。

周民强的书因各版页码可能不同, 故将上面留的题目抄录如下:

周P8: 1,2,3 (集合习题) 证明下列命题:

1. 设A, B, E是全集X的子集, 则

$$B = (E \cap A)^c \cap (E^c \cup A) \iff B^c = E.$$

2. 设 $A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots, B_1 \subset B_2 \subset \cdots \subset B_n \subset \cdots,$ 则

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \bigcap \left(\bigcup_{n=1}^{\infty} B_n\right) = \bigcup_{n=1}^{\infty} A_n \cap B_n.$$

3. 设 $A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots, B_1 \supset B_2 \supset \cdots \supset B_n \supset \cdots,$ 则

$$\left(\bigcap_{n=1}^{\infty} A_n\right) \bigcup \left(\bigcap_{n=1}^{\infty} B_n\right) = \bigcap_{n=1}^{\infty} (A_n \cup B_n).$$

周P12: 1,2 (集合与函数) 试证明下列命题:

1. 设

$$A_n = \left\{ \frac{m}{n} \mid m \in \mathbb{Z} \right\}, \quad B_n = \left(\frac{1}{n}, 1 + \frac{1}{n} \right), \quad n = 1, 2, 3, \dots.$$

则

$$\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n = \mathbb{Q}, \quad \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = \mathbb{Z}, \qquad \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} B_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} B_n = (0,1].$$

2. 设 $f_n(x)$, f(x) 都是定义在 \mathbb{R} 上的实值函数且有

$$\lim_{n \to \infty} f_n(x) = f(x), \quad x \in \mathbb{R}.$$

则对任意 $t \in \mathbb{R}$ 有

$$\{x \in \mathbb{R} \mid f(x) \le t\} = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \left\{ x \in \mathbb{R} \mid f_n(x) < t + \frac{1}{k} \right\}.$$

周P16: 6,7 (集合与映射) 试证明下列命题:

- 6. 设E是由10个两位数字的数形成的集合,则E中必有两个不相交的子集,其元素个数相同.
 - 7. 设 $f: X \to Y, q: Y \to X$ 满足

$$g(f(x)) = x \quad \forall x \in X.$$

则f是单射,g是满射.

周P65: 8 (关于可数集)

8. 设f(x)是 \mathbb{R} 上的实值函数。假设 \mathbb{R} 中每一点都是f的局部极小值(即对任意 $x_0 \in \mathbb{R}$ 存在 $\delta > 0$ 使得 $f(x) \geq f(x_0)$ for all $x \in (x_0 - \delta, x_0 + \delta)$). 证明f的值域是可数集,即 $f(\mathbb{R})$ 是可数集。【本题或许用选择公理能较快获证.】

周P66:18 (关于紧集, 注意连续映射把紧集映为紧集)

18. 设映射 $f: \mathbb{R}^d \to \mathbb{R}^d$ 连续, $E_k \subset \mathbb{R}^d$ 是非空紧集且递减: $E_1 \supset E_2 \supset E_3 \supset \cdots$. 证明

$$f\Big(\bigcap_{k=1}^{\infty} E_k\Big) = \bigcap_{k=1}^{\infty} f(E_k).$$

周P68: 29 (关于覆盖).

29. 设 $K \subset \mathbb{R}^n$ 是有界闭集, $\{B_\alpha\}_{\alpha \in A}$ 是K的开球覆盖(即每个 B_α 是 \mathbb{R}^n 中的开球且 $K \subset \bigcup_{\alpha \in A} B_\alpha$). 试证明存在 $\delta > 0$ 使得对每个 $x \in K$ 都存在 $\alpha \in A$ 使得 $B(x, \varepsilon) \subset B_\alpha$.

这里
$$B(x,\varepsilon) = \{y \in \mathbb{R}^n \mid |y-x| < \varepsilon\}$$
 (即是以 x 为中心、 ε 为半径的开球).