FICHE - Actions mécaniques

1 Concept d'action mécanique

Un champ de force ${f modelise}$ une action mécanique $i \to j$. Le moment désigne l'effet d'un champ de force à distance.

Graphe de structure

Un **graphe de structure** ou graphe d'analyse est **un graphe des liaisons** complété des **actions mécaniques** sollicitant le mécanisme étudié. Il permet de faire l'IAME

2 Modélisation locale des AM

AM à distance et de contact

Nature du domaine	Elément géométrique différentiel	Nom	Unité	Force élémentaire $dec{F}_{1 o 2}$
Point	1	Force F	[<i>N</i>]	\vec{F}
Ligne	dl	Force linéique p	$[Nm^{-1}]$	р́dl
Surface	dS	Force surfacique p	$[Pa] = [Nm^{-2}]$	р́dS
Volume	dV	Force volumique q	$[Nm^{-3}]$	₫dV

Modèle local d'une AM à distance

L'action mécanique locale de la pesanteur sur un solide 1 : $d\vec{F}_{pes o 1} = -dm \ g \ \vec{z} = -\rho g \ dV \ \vec{z}$

Modèle local d'une AM de contact

$$d\vec{F}_{1\to 2} = d\vec{N}_{1\to 2} + d\vec{T}_{1\to 2} = dN_{1\to 2}\vec{n} + dT_{1\to 2}\vec{t}$$

- $-d\vec{N}_{1\rightarrow2}$ est la **force élémentaire de pression** normale au plan de contact ;
- $d\vec{T}_{1\rightarrow2}$ est la force élémentaire de résistance au glissement appartenant au plan tangentiel de contact :

$$|dT_{1\to 2}| \le f|dN_{1\to 2}|$$

Phénomènes d'adhérence et de glissement

	sans FROTTEMENT	avec FROTTEMENT
ADHERENCE (absence de mouvement relatif)		On pose : $d\vec{F}_{j\to i} = dN_{j\to i}\vec{n} + dT_{j\to i}\vec{t}$ avec $ dT_{j\to i} < f dN_{j\to i} $ On ne sait pas toujours résoudre l'exercice car on a ajouté une inconnue.
GLISSEMENT (mouvement relatif)	On pose : $d \overrightarrow{F}_{j \rightarrow i} = d N_{j \rightarrow i} \vec{n}$	On pose : $d\vec{F}_{j\rightarrow i} = dN_{j\rightarrow i}\vec{n} + dT_{j\rightarrow i}\vec{t}$ avec $ dT_{j\rightarrow i} = f dN_{j\rightarrow i} $ On sait résoudre l'exercice car on a ajouté une équation et une inconnue. Cette composante tangentielle est : $-\text{colinéaire au vecteur vitesse de glissement}: \ dT_{j\rightarrow i}\vec{t} \land \vec{V}_{i/j}(I) = \vec{0}$ $-\text{de sens opposé au vecteur vitesse de glissement}: dT_{j\rightarrow i}\vec{t}. \ \vec{V}_{i/j}(I) < 0$

Relation entre le modèle local et le modèle global

Le modèle global d'une action mécanique est l'action équivalente à l'ensemble des actions locales.

Soit une AM de $1\to 2$ décrite du point de vue local sur un domaine D par la force élémentaire $d\vec{F}_{1\to 2}$, le torseur des AM de $1\to 2$ s'écrit :

$$\overrightarrow{M}_{1\rightarrow 2} = {}_{A} \left\{ \overrightarrow{R}_{1\rightarrow 2} \right\} = {}_{A} \left\{ \overrightarrow{R}_{1\rightarrow 2} \right\} = {}_{A} \left\{ \int_{D} d\vec{F}_{1\rightarrow 2} \right\}$$

Réel Modèle local Modèle global

Exemples de répartitions de pression

Pression constante	Pression linéaire	Pression affine	Pression quadratique
p x	p _{max} x 0 L	p_{min} p_{max} x 0 L	$ \begin{array}{c} p_{max} \\ x \\ 0 \\ \end{array} $
$ \begin{array}{c c} L \\ \hline 2 \\ \end{array} $	$ \begin{array}{c c} \frac{2L}{3} & \stackrel{p}{\searrow} L \\ & \xrightarrow{x} \end{array} $	Barkentre entre le triangle et le rectangle. X	$ \begin{array}{c} 3L \\ 4 \end{array} $
p(x) = p	$p(x) = \frac{p_{max}}{L}x$	$p(x) = \frac{p_{max} - p_{min}}{L}x + p_{min}$	$p(x) = \frac{p_{max}}{L^2} x^2$

3 Modélisation globale des AM

On appelle **torseur des actions mécaniques** exercées de i sur j le torseur construit par dualité avec la cinématique pour exprimer la puissance développée lors d'un mouvement j/i.

$$\begin{array}{ccc} \overrightarrow{\mathrm{M}}_{i \to j} : & \mathcal{E} \to & \mathsf{E} \\ & \mathrm{A} \mapsto \overrightarrow{M}_{i \to j}(\mathrm{A}) = \overrightarrow{\mathrm{M}}_{i \to j}(\mathrm{B}) + \overrightarrow{\mathrm{AB}} \wedge \overrightarrow{\mathrm{R}}_{i \to j} \end{array}$$

Les éléments de réduction du torseur sont :

$$\overrightarrow{M}_{i \rightarrow j} = A \begin{cases} \overrightarrow{R}_{i \rightarrow j} \\ \overrightarrow{M}_{i \rightarrow j}(A) \end{cases} = A \begin{cases} X_{i \rightarrow j} \overrightarrow{x} + Y_{i \rightarrow j} \overrightarrow{y} + Z_{i \rightarrow j} \overrightarrow{z} \\ L_{i \rightarrow j} \overrightarrow{x} + M_{i \rightarrow j} \overrightarrow{y} + N_{i \rightarrow j} \overrightarrow{z} \end{cases} = \begin{pmatrix} X_{i \rightarrow j} L_{i \rightarrow j} \\ Y_{i \rightarrow j} M_{i \rightarrow j} \\ Z_{i \rightarrow j} N_{i \rightarrow j} \end{pmatrix}_{(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})} (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$$

 $\vec{R}_{i \to j}$ est la **résultante** de l'AM de $i \to j$ en [N] et est **invariante** ;

 $\vec{M}_{i \to i}(A)$ le moment de l'AM de $i \to j$ en [Nm] et dépend du point d'expression du torseur.

Cas particulier d'un torseur glisseur

Une force est modélisée par un torseur glisseur :

$$\vec{M}_{i \to j} = A \begin{cases} \vec{F}_{i \to j} \\ \vec{0} \end{cases} = B \begin{cases} \vec{F}_{i \to j} \\ \pm d \| \vec{F}_{i \to j} \| \vec{z} \end{cases}$$

 $\operatorname{car} \overrightarrow{M}_{i \to j}(B) \ = \overrightarrow{M}_{i \to j}(A) + \overrightarrow{BA} \wedge \overrightarrow{F}_{i \to j} = \pm \operatorname{d} \bigl\| \overrightarrow{F}_{i \to j} \bigr\| \overrightarrow{z}$

d est appelé bras de levier

sens trigo \rightarrow + et sens horaire \rightarrow -

Ce torseur est **invariant** pour tous les points $P \in (A, \vec{F}_{l \to j})$ appelée **droite d'action**. Le **moment central** d'une force résultante est **nu**l.

Cas particulier d'un torseur couple

$$\vec{M}_{i \to j} = P \begin{cases} \vec{0} & \vec{C}_{i \to j} \\ \vec{C}_{i \to j} & \vec{j} \end{cases}$$

Ce torseur est **invariant** pour tous les points *P* de l'espace

$$\vec{M}_{i \to i}(B) = \vec{M}_{i \to i}(A) + \vec{B}\vec{A} \wedge \vec{R}_{i \to i} = \vec{M}_{i \to i}(A) + \vec{0} = \vec{C}_{i \to i}$$

Exemple: champs de moments d'un torseur

Torseur glisseur $\vec{M}_{i \rightarrow j} = \begin{cases} 1 \ \vec{z} \\ \vec{0} \end{cases}$	Torseur couple $\vec{M}_{i \to j} = \begin{cases} \vec{0} \\ 1 \vec{z} \end{cases}$

En chaque point, le vecteur moment indique l'intensité du moment, et la direction autour de laquelle on va tourner.

AM réciproques

$$\label{eq:Théorème des actions réciproques} \text{Théorème des actions réciproques}: \overrightarrow{M}_{i \to j} = -\overrightarrow{M}_{j \to i} \Rightarrow \begin{cases} \overrightarrow{R}_{i \to j} \\ \overrightarrow{M}_{i \to j}(A) \end{cases} = -\begin{cases} \overrightarrow{R}_{j \to i} \\ \overrightarrow{M}_{j \to l}(A) \end{cases}$$

Modéliser les AM usuelles

	Gravité	Vérin	Moteur	Ressort de traction / compression	Ressort de torsion	Force de traînée	Poussée d'Archimède
\vec{M}_{pe}	$G = \begin{cases} -mg\vec{z} \\ \vec{0} \end{cases}$	$\vec{M}_{v \neq r} = A \begin{cases} pS \vec{u} \\ \vec{0} \end{cases}$	$= \bigvee_{1 \to 2}^{M \text{ mot}} \left\{ \begin{matrix} \vec{0} \\ C_{1 \to 2} \vec{u} \end{matrix} \right\}$	$\vec{M}_{1 \to 2}^{res} = A \begin{cases} -k(\lambda - \lambda_0)\vec{u} \\ \vec{0} \end{cases}$	$= \begin{cases} \vec{M}_{1 \to 2}^{res} \\ = \begin{cases} \vec{0} \\ -k(\alpha - \alpha_0)\vec{u} \end{cases}$	$= A \begin{cases} \overrightarrow{M}_{\text{air}} \\ = A \begin{cases} \frac{1}{2} C_x \rho S V^2 \overrightarrow{u} \\ \overrightarrow{0} \end{cases}$	$\vec{M}_{1 \to 2}^{eau} = G_{flu} \begin{cases} \rho V g \vec{z} \\ \vec{0} \end{cases}$

AM transmissibles par une liaison

Les composantes des vecteurs $\vec{R}_{1\to 2}$ et $\vec{M}_{1\to 2}(A)$ sont appelées inconnues de liaisons.

A un degré de liberté en translation supprimé correspond une composante de la résultante de l'action mécanique

A un degré de liberté en rotation supprimé correspond une composante du moment de l'action mécanique

4 Statique

Equilibre et statique

On appelle **équilibre** un mouvement nul. La **statique** est l'étude des états d'équilibres.

domaine	grandeurs physiques	
géométrie	[longueur] et [angle]	
statique	[longueur], [angle] et [masse]	
dynamique	[longueur], [angle], [temps] et [masse]	

Théorème de l'équilibre

Théorème de l'équilibre :

Si un système matériel Σ est à l'équilibre par rapport à un référentiel Galiléen alors la somme des torseurs des actions mécaniques du milieu extérieur sur Σ est nulle.

$$\forall \mathsf{t}, \forall \mathsf{P} \quad \vec{V}_{\Sigma/R_g}(P) = \vec{0} \quad \Rightarrow \quad \forall \mathsf{t} \ \ \underline{\Sigma}_i \quad \vec{M}_{i \to \Sigma} = 0 \quad \Rightarrow \sum_i \ \ _A \left\{ \begin{matrix} \vec{R}_{i \to \Sigma} \\ \vec{M}_{i \to \Gamma}(A) \end{matrix} \right. = \left. A \left(\begin{matrix} \vec{0} \\ \vec{0} \end{matrix} \right. \right. \right. \\ TMS$$

Théorème d'un système soumis à 2 torseurs glisseurs

exemple: Soit un solide S à l'équilibre, soumis à 2 forces:

On isole $\{S\}$

On fait l'Inventaire des Actions Mécaniques Extérieures à $\{S\}$:

Rédaction 1

$$\vec{M}_{1 \to S} = {}_{A} \left\{ \begin{matrix} \vec{R}_{1 \to S} \\ \vec{0} \end{matrix} = {}_{B} \left\{ \begin{matrix} \vec{R}_{1 \to S} \\ \overrightarrow{BA} \land \vec{R}_{1 \to S} \end{matrix} \right. \quad \text{et} \quad \vec{M}_{2 \to S} = {}_{B} \left\{ \begin{matrix} \vec{R}_{2 \to S} \\ \vec{0} \\ \end{aligned} \right. \\ \left. \text{car } \vec{M}_{1 \to S}(B) = \vec{M}_{1 \to S}(A) + \overrightarrow{BA} \land \vec{R}_{1 \to S} \right\}$$

On applique le Principe Fondamental de la Statique en B à $\{S\}$:

$$\vec{M}_{1\to S} + \vec{M}_{2\to S} = \vec{0}$$

$$\Rightarrow B \begin{cases} \vec{R}_{1 \to S} + \vec{R}_{2 \to S} = \vec{0} & \to \overrightarrow{R_1} \text{ et } \overrightarrow{R_2} \text{ sont de même direction, de même norme et sens contraire} \\ \overrightarrow{BA} \land \vec{R}_{1 \to S} = \vec{0} & \to \text{les deux droites d'actions sont identiquent et passent par A et B} \end{cases}$$

Rédaction 2

$$\vec{M}_{1 \rightarrow S} = {}_{A} \left\{ \begin{matrix} X_{1 \rightarrow S} \vec{x} + Y_{1 \rightarrow S} \vec{y} \\ \vec{0} \end{matrix} \right. = {}_{B} \left\{ \begin{matrix} X_{1 \rightarrow S} \vec{x} + Y_{1 \rightarrow S} \vec{y} \\ -\mathrm{d}\vec{x} \wedge (X_{1 \rightarrow S} \vec{x} + Y_{1 \rightarrow S} \vec{y}) \end{matrix} \right. \quad \text{et} \quad \vec{M}_{2 \rightarrow S} = {}_{B} \left\{ \begin{matrix} X_{2 \rightarrow S} \vec{x} + Y_{2 \rightarrow S} \vec{y} \\ \vec{0} \end{matrix} \right.$$

On applique le Principe Fondamental de la Statique en B à $\{S\}$:

$$\overrightarrow{M}_{1 \to S} + \overrightarrow{M}_{2 \to S} = \overrightarrow{0}$$

$$\Rightarrow \begin{cases} X_{1 \to S} + X_{2 \to S} = 0 \\ Y_{1 \to S} + Y_{2 \to S} = 0 \\ -d\vec{x} \wedge (X_{1 \to S}\vec{x} + Y_{1 \to S}\vec{y}) = 0 \end{cases} \Rightarrow \begin{cases} X_{1 \to S} = -X_{2 \to S} \\ Y_{1 \to S} = -Y_{2 \to S} \\ Y_{1 \to S} = 0 \end{cases}$$

Conclusion :

donc
$$\vec{M}_{1\to S} = -\vec{M}_{2\to S} = A\begin{cases} \vec{F} \cdot \vec{x} \\ \vec{0} \end{cases}$$
 il n'y a plus qu'une inconnue, l'intensité de la force.

Si un système matériel Σ est en **équilibre** soumis à **2 torseurs glisseurs** alors les torseurs glisseurs sont opposés, autrement dit :

- les résultantes sont opposées (même direction, même norme, sens contraire);
- les droites d'action sont identiques et passent par A et B.

Théorème d'un solide soumis à 3 torseurs glisseurs

Si un solide est en équilibre et est soumis à 3 forces, alors ces forces sont coplanaires et de somme nul, de plus elles sont concourantes en un même point ou parallèles et la somme des moments est nulle.

Hypothèse problème plan

Problème plan	$\vec{M}_{1 \to 2} = \begin{cases} X_{1 \to 2} \vec{x} + Y_{1 \to 2} \vec{y} + Z_{1 \to 2} \vec{z} \\ X_{1 \to 2} \vec{x} + Y_{1 \to 2} \vec{y} \end{cases}$
$(0,\vec{x},\vec{y})$	$M_{1\to 2} - A \left(L_{1\to 2}\vec{x} + M_{1\to 2}\vec{y} + N_{1\to 2}\vec{z} - A \right) $ $N_{1\to 2}\vec{z}$

Méthodologie pour une étude statique

- dessiner le graphe de structure ;
- réaliser les figures de changement de base ;
- représenter des forces et distances sur le schéma cinématique.
- Définir un isolement :

Dans une chaîne ouverte, isoler l'extrémité de la chaîne ouverte en conservant l'actionneur à dimensionner

Dans une chaîne fermée, isoler les ensembles de solides soumis à deux forces (bielle, vérin, roue non-motrice, bouée...) puis isoler un ensemble de solides qui permet de relier les actions mécaniques extérieures aux actions mécaniques à déterminer (liaison ou actionneur).

- lister les hypothèses (problème plan, liaison parfaite, pesanteur négligée...);
- faire l'Inventaire des Actions Mécaniques Extérieures, en écrivant leur torseur, et en tenant compte des
- appliquer le TRS/TMS/PFS afin d'éliminer les inconnues ou utiliser sans démonstration les résultats concernant les solides soumis à deux glisseurs ;
- résoudre le système d'équations ;
- application numérique et comparaison au CdCF.

5 Modélisation des AM de contact ponctuel non-parfait

Modélisation globale des AM avec frottement

La force résultante $\vec{R}_{1\rightarrow2}$ ne sort jamais du cône de frottement.

Elle est à l'intérieur du cône en cas d'adhérence.

Elle est sur le cône en cas de glissement.

La résultante de l'action mécanique de 1 sur 2 au point P s'écrit :

$$\vec{R}_{1\to 2} = \vec{N}_{1\to 2} + \vec{T}_{1\to 2} = N_{1\to 2}\vec{n} + T_{1\to 2}\vec{t}$$

- $-\vec{N}_{1\rightarrow 2}$ est la composante normale de l'effort de contact de 1 sur 2 ;
- $-\vec{T}_{1\rightarrow 2}$ est la **composante tangentielle** de l'effort de contact de 1 sur 2. C'est cette composante qui modélise la résistance au glissement.

Loi de Coulomb :
$$|T_{1\rightarrow 2}| \le f|N_{1\rightarrow 2}|$$
 avec $f = tan(\varphi)$

evec
$$f = tan(\varphi)$$

- f le coefficient de frottement [sans dimension].
- $-\varphi$ le demi-angle au sommet du cône de frottement.

Coefficient de frottement

Coefficient de frottement f				
Matériaux en contact	Nature du frottement		F	
Materiaux en contact	à sec	lubrifié	Exemples d'utilisation	
Acier / Acier	0,15 à 0,20	0,10	Variateur à friction	
Acier / Bronze	0,15	0,10	Roue-vis, coussinet	
Acier / Caoutchouc	0,25 à 0,45		Poulie-courroie	
Acier / garnitures	0,20 à 0,50		Frein, embrayage	
Caoutchouc / Goudron	0,8	0,5	Pneumatique	

Résolution

On fera souvent l'hypothèse que l'on se trouve à la limite du glissement, on ajoute ainsi une équation de

Phénomène d'arc-boutement

On appelle arc-boutement, le phénomène issu du frottement pour lequel un équilibre subsiste indépendamment de l'intensité de l'effort qui tend à le rompre.

On appelle coincement, le phénomène issu du frottement pour lequel un équilibre persiste alors que la même cause de l'équilibre a disparu.

Modélisation des AM de résistance au roulement et au pivotement

Pivotement ou tendance au pivotement	Roulement ou tendance au roulement
$\vec{M}_{1 \rightarrow 2} = I \begin{cases} \vec{N}_{1 \rightarrow 2} \\ \vec{M}_{piv 1 \rightarrow 2}(I) \end{cases}$	$\vec{M}_{1\rightarrow 2} = \int_{I}^{\vec{P}} \left\{ \vec{M}_{roul 1\rightarrow 2}(I) \right\}$

 $\overline{M}_{roul \; 1 o 2}(I)$ est le moment de résistance au $\vec{M}_{piv \, 1 o 2}(I)$ est le moment de résistance au pivotement en I. $\|\vec{M}_{roul \ 1\to 2}(I)\| \le \eta \|\vec{N}_{1\to 2}\|$ $\|\vec{M}_{piv \ 1\to 2}(I)\| \le \delta \|\vec{N}_{1\to 2}\|$

Avec δ , le **coefficient** de **résistance** au pivotement en [m].

Avec η coefficient de résistance au roulement en [m]

6 Loi entrée-sortie en effort

Loi entrée-sortie des transmetteurs usuels sans transformation de mouvement

Transmetteurs train d'engrenages, poulies-courroie crantée, pignons-chaîne

Loi entrée-sortie cinématique :

$$|\omega_s| = r|\omega_e|$$
 avec

avec r le rapport de transmission

Loi entrée-sortie en effort :

$$|C_s| = \frac{\eta}{r} |C_e|$$

Un réducteur diminue la vitesse de rotation et augmente le couple.

Loi entrée-sortie des transmetteurs usuels avec transformation de mouvement

Transmetteur pignon-crémaillère

Loi entrée-sortie cinématique :

$$|V_s| = R|\omega_e|$$

Loi entrée-sortie en effort :

$$|F_s| = \frac{1}{R} \eta |C_e|$$

Transmetteur vis-écrou

Loi entrée-sortie cinématique :

$$|V_s| = \frac{pas}{2\pi} |\omega_e|$$

Loi entrée-sortie en effort :

$$|F_s| = \frac{2\pi}{pas} \eta |C_e|$$