Inverzna kinematika manipulatora ostvarena pomoću dubokog potpornog učenja

Autor: Josip Torić Mentor: izv. prof. dr. sc. Marija Seder

Fakultet elektrotehnike i računarstva, Sveučilište u Zagrebu

10. srpnja 2020.

1 Uvod

2 Teorijske osnove potpornog učenia

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

optimizacije politike

4 Algoritmi

Algoritam jednostavnog gradijenta politike

> olitike uz regije ovjerenja . koritam proksimalno

Algoritam proksimalni optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta Problem bez prepreka

Sadržaj

Uvod

Teorijske osnove potpornog učenja

Potporno učenje

Teoretska pozadina potpornog učenja

Podjela algoritama potpornog učenja

Praktične primjene potpornog učenja

Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

Algoritam optimizacije politike uz regije povjerenja

Algoritam proksimalne optimizacije politike

Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta

Problem bez prepreka

Problem s preprekama

Zaključak

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja Izoritam proksimalne

Algoritam proksimaln optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultat

Izlaz age

Problem bez prepreka Problem s preprekama

Sadržaj

Uvod

Teorijske osnove potpornog učenja

Potporno učenje

Teoretska pozadina potpornog učenja

Podjela algoritama potpornog učenja

Praktične primjene potpornog učenja

Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

Algoritam optimizacije politike uz regije povjerenja

Algoritam proksimalne optimizacije politike

Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta

Problem bez prepreka

Problem s preprekam

Zaključak

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja

Algoritam proksimaln optimizacije politike

5 Inverzna kinematika robotske ruke

Rezultat

Izlaz age

Problem bez prepreka Problem s preprekama

Uvod

Živimo u svijetu prepunom informacija, zadataka i problema.

Znanstvenici su nakon Drugog svjetskog rata krenuli razvijati umjetnu inteligenciju iz koje su se kasnije razvili strojno učenje, duboko učenje i potporno učenje.

Cilj ovog diplomskog rada je naučiti inverznu kinematiku robotske ruke Jaco uz primjenu dubokog potpornog učenja.

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno ucenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja krovitam prokrimalne

Algoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Problem bez prepreka

Sadržaj

Uvod

Teorijske osnove potpornog učenja

Potporno učenje

Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

Praktične primjene potpornog učenja

Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

Algoritam optimizacije politike uz regije povjerenja

Algoritam proksimalne optimizacije politike

Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta

Problem bez prepreka

Problem s preprekama

Zaključak

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje
Teoretska pozadina
pot pornog učenja
Podjela algoritama

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

. Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja

Algoritam proksimal optimizacije politike

5 Inverzna kinematika robotske ruke

Rezultat

iziaz agenta Problem bez prepr

Problem bez prepreka Problem s preprekama

Koncept potpornog učenja

Potporno učenje je grana strojnog učenja koja proučava agente i kako oni uče na temelju pokušaja i pogreške.

Osnovna ideja potpornog učenja je da postoji agent u svojem okruženju.

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

- 3 Praktične primjene potpornog učenja
- 4 Algoritmi optimizacije politike

. Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja

Algoritam proksimalni optimizacije politike

- 5 Inverzna kinematika robotske ruke Jaco
 - Rezultati

Izlaz agenta Problem bez prepreka Problem s preprekama

Odnos agenta i okruženja

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

politike uz regije povjerenja Akroritam proksimalni

Algoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

6 Rezultat

izlaz agenta Problem bez preprek

⁰Preuzeto sa https://spinningup.openai.com

Duboko potporno učenje

Politike odabira akcija u potpornom učenju se spremaju u funkcije.

No, kao i svaka funkcija ona je ograničena s parametrima i klasom funkcija koje pripada. Zbog toga u prošlosti, potporno učenje je imalo limitirane primjene.

Pravi proboj u potpornom učenju se dogodio kada su počeli umjesto funkcija aproksimirati dubokim neuronskim mrežama.

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja kroritam proksimalne

lgoritam proksimalne ptimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta Problem bez prepreka Problem s preprekama

Osnovni pojmovi potpornog učenja

- Prostor opservacija
- ► Prostor akcija
- ► Politika
- Putanja
- Nagrada

1 Uvod

2 Teorijske osnove potpornog učenja

Teoretska pozadina
pot pornog učenja
Podjela algoritama

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

politike uz regije povjerenja

Algoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

6 Rezultat

Problem bez prepreka Problem s preprekama

Problem potpornog učenja

Problem potpornog učenja je odabrati optimalnu politiku koja će maksimizirati očekivanu nagradu.

$$P(\tau|\pi) = \rho_0(s_0) \prod_{t=0}^{T-1} P(s_{t+1}|s_t, a_t) \pi(a_t|s_t)$$
 (1)

$$J(\pi) = \int_{\tau} P(\tau|\pi)R(\tau) = \mathop{E}_{\tau \sim \pi}[R(\tau)] \tag{2}$$

$$\pi^* = \arg\max_{\pi} J(\pi) \tag{3}$$

1 Uvod

- 2 Teorijske osnove potpornog učenja
 - Potporno učenje
 Teoretska pozadina
 potpornog učenja
 Podjela algoritama
 potpornog učenja
 - 3 Praktične primjene potpornog učenja
 - optimizacije politike

4 Algoritmi

- Algoritam jednostavnog gradijenta politike
- politike uz regije povjerenja Algoritam proksimalne
- Algoritam proksimalne optimizacije politike
- 5 Inverzna kinematika robotske ruke Jaco
 - Rezultati

Izlaz agenta
Problem bez prepreka
Problem s preprekama

Vrijednosne funkcije

$$V^{\pi}(s) = \mathop{E}_{\tau \sim \pi}[R(\tau) | s_0 = s] \tag{4}$$

$$Q^{\pi}(s,a) = \mathop{E}_{\tau \sim \pi}[R(\tau) | s_0 = s, a_0 = a]$$
 (5)

$$V^*(s) = \max_{\pi} \mathop{E}_{\tau \sim \pi} [R(\tau) | s_0 = s]$$
 (6)

$$Q^*(s,a) = \max_{\pi} \mathop{E}_{\tau \sim \pi} [R(\tau) | s_0 = s, a_0 = a]$$
 (7)

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$
 (8)

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje
Teoretska pozadina
pot pornog učenja
Podjela algoritama
pot pornog učenja

3 Praktične primjene potpornog učenja

optimizacije politike Algoritam jednostavnog

4 Algoritmi

Algoritam jednostavnog gradijenta politike Algoritam optimizacije

povjerenja Algoritam proksimalne optimizacije politike

optimizacije politike 5. Inverzna

kinematika robotske ruke Jaco

Rezultati

iziaz agenta Problem bez prepreka Problem s preprekama

Bellmanove jednadžbe

$$V^{\pi}(s) = \mathop{E}_{s' \sim P}[r(s, a) + \gamma V^{\pi}(s')] \tag{9}$$

$$Q^{\pi}(s,a) = \mathop{E}_{s' \sim P}[r(s,a) + \gamma \mathop{E}_{a' \sim \pi}[Q^{\pi}(s',a')]]$$
 (10)

$$V^*(s) = \max_{\substack{a \ s' \sim P}} [r(s, a) + \gamma V^*(s')]$$
 (11)

$$Q^*(s,a) = \mathop{E}_{s' \sim P}[r(s,a) + \gamma \max_{a'} Q^*(s',a')]$$
 (12)

1 Uvod

2 Teorijske osnove potpornog učenja

> Teoretska pozadina potpornog učenja Podjela algoritama

3 Praktične primjene potpornog učenja

4 Algoritmi

optimizacije politike

Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja Igoritam proksimalne

Algoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Problem bez prepreka Problem s preprekama

Podjela algoritama potpornog učenja

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje
Teoretska pozadina
pot pornog učenja
Podjela algoritama
pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

> olitike uz regije ovjerenja kroritam proksimalne

lgoritam proksima ptimizacije politik

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Problem bez prepreka

Problem s preprekama

⁰Preuzeto sa https://spinningup.openai.com

Sadržaj

Uvod

Teorijske osnove potpornog učenja

Potporno učenje

Teoretska pozadina potpornog učenja

Praktične primjene potpornog učenja

Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

Algoritam optimizacije politike uz regije povjerenja

Algoritam proksimalne optimizacije politike

Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta

Problem bez prepreka

Problem s preprekam

Zaključak

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog

litike uz regije vjerenja

Algoritam proksimaln optimizacije politike

5 Inverzna kinematika robotske ruke

Rezultat

iziaz agenta Problem bez preprei

Primjene u igranju šaha

Postoji otprilike 10¹²⁰ mogućih šahovskih partija.

Većina današnjih računalnih programa za igranje šaha počiva na nekom principu pretraživanja prostora.

Algoritmi bazirani na dubokom potpornom učenju, kao što su AlphaZero i Leela Chess Zero, uspjeli su kombinirati računalnu snagu s ljudskom intuicijom.

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje
Teoretska pozadina
pot pornog učenja
Podjela algoritama
pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja krovitam prokrimalne
- Algoritam proksimalne optimizacije politike

i Inverzna iinematika obotske ruke laco

Rezultati

iziaz agenta Problem bez prepre

Primjene u igranju računalnih igara

Računalne igre, za razliku od igara na ploči, su korak bliže realnom svijetu.

Vjerojatno jedna od najpoznatijih primjena dubokog potpornog učenja u zadnje vrijeme je kada je skupina znanstvenika okupljena u OpenAl timu razvila botove koji su postali bolji od svjetskih prvaka u računalnoj igri Dota 2.

Također, jedan od čestih benchmarkova za evaluiranje rada algoritama je igranje igara na konzoli Atari 2600.

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja Uzoritam proksimalne
- Algoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

iziaz agenta Problem bez prepreka Problem s preprekama

Atari 2600

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

- Algoritam jednostavnog gradijenta politike
 - Algoritam optimizacije politike uz regije povierenia
- Algoritam proksimalne optimizacije politike
- 5 Inverzna kinematika robotske ruke

Rezultati

Problem bez prepreka Problem s preprekama

⁰Preuzeto sa https://openai.com

Primjene u robotici

Kod robota okruženje je stvarni svijet i njihove akcije imaju posljedice u stvarnom svijetu.

Robotu su najčešće dostupne informacije o položaju u kojem se nalazi, zatim o kutevima zglobova koji ga pokreću, trenutnoj brzini, itd.

Jedan od najvećih problema vezano za robotiku je nepraktičnost treniranja robota.

Glavni zadatak ovog diplomskog rada je naučiti inverznu kinematiku robotske ruke Jaco prilikom dohvaćanja loptice iz okruženja, prvo bez prepreka te zatim s preprekama

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja kroritam proksimalne
- Ngoritam proksimaln ptimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta Problem bez prepreka Problem s preprekama

Sadržaj

Uvod

Teorijske osnove potpornog učenja

Potporno učenje

Teoretska pozadina potpornog učenja

Podjela algoritama potpornog učenja

Praktične primjene potpornog učenja

Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

Algoritam optimizacije politike uz regije povjerenja

Algoritam proksimalne optimizacije politike

Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta

Problem bez prepreka

Problem s preprekama

Zaključak

1 Uvod

2 Teorijske osnove potpornog učenia

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

> olitike uz regije ovjerenja Igoritam proksimalne

Algoritam proksimal optimizacije politike

5 Inverzna kinematika robotske ruke

Rezultat

Izlaz ageni

Problem bez prepreka Problem s preprekama

Pregled algoritama optimizacije politike

Najosnovniji algoritam optimizacije politike je algoritam jednostavnog gradijenta politike, ali problem kod njega je prevelika nestabilnost.

Zbog toga ću iznijeti još dva algoritma, algoritam optimizacije politike uz regije povjerenja i algoritam proksimalne optimizacije politike.

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno ucenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja
- Algoritam proksimaln optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Problem bez prepreka

Algoritam jednostavnog gradijenta politike

- 1: Ulaz: Inicijalni parametri politike θ_0 , inicijalni parametri funkcije vrijednosti ϕ_0
- 2: **for** k = 0, 1, 2, ... **do**
- 3: Prikupimo listu putanja $\mathcal{D}_k = \{\tau_i\}$ prateći politiku $\pi_k = \pi(\theta_k)$ u okruženju.
- 4: Izračunajmo nagrade \hat{R}_t .
- 5: Izračunajmo funkciju prednosti \hat{A}_t koristeći trenutnu funkciju vrijednosti V_{ϕ_k} .
- 6: Izračunajmo gradijent prema formuli:

$$\hat{g}_k = \frac{1}{|\mathcal{D}_k|} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T |\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)|_{\theta_k} \hat{A}_t.$$

7: Izračunajmo nove parametre uz pomoć gradijentnog spusta:

$$\theta_{k+1} = \theta_k + \alpha_k \hat{g}_k$$

Izračunajmo nove parametre funkcije vrijednosti

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_t} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

9: end for

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje
Teoretska pozadina
potpornog učenja
Podjela algoritama
potpornog učenja

- 3 Praktične primjene potpornog učenja
- 4 Algoritmi optimizacije politike
- Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja Igoritam proksimalne

- Ngoritam proksimaln ptimizacije politike
- 5 Inverzna kinematika robotske ruke Jaco
 - Rezultati

Izlaz agenta Problem bez prepreka Problem s preprekama

Algoritam optimizacije politike uz regije povjerenja

- 1: Ulaz: Inicijalni parametri politike θ_0 , inicijalni parametri funkcije vrijednosti ϕ_0
- 2: Hiperparametri: Limit KL udaljenosti, koeficijent traženja unazad α , maksimalan broj koraka traženja unazad K
- 3: for $k = 0, 1, 2, \dots$ do
- 4: Prikupimo listu putanja $\mathcal{D}_k = \{\tau_i\}$ prateći politiku $\pi_k = \pi(\theta_k)$ u okruženju.
- Izračunajmo nagrade R̂_t.
- 6: Izračunajmo funkciju prednosti \hat{A}_t koristeći trenutnu funkciju vrijednosti V_{ϕ_k} .
- 7: Izračunajmo gradijent prema formuli:

$$\hat{g}_k = \frac{1}{|\mathcal{D}_k|} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T |\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)|_{\theta_k} \hat{A}_t.$$

8: Uz pomoć algoritma konjugatnog gradijenta izračunajmo:

$$\hat{x} \approx \hat{H}_k^{-1} \hat{g}_k$$

9: Izračunajmo nove parametre uz pomoć pretrage unatrag

$$\theta_{k+1} = \theta_k + \alpha^j \sqrt{\frac{2\delta}{\hat{x}_k^T \hat{H}_k \hat{x}_k}} \hat{x}_k$$

10: Izračunajmo nove parametre funkcije vrijednosti

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2$$

1 Uvod

2 Teorijske osnove potpornog učenia

Pot porno ucenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

optimizacije politike

4 Algoritmi

Algoritam jednostavnog gradijenta politike Algoritam optimizacije

politike uz regije povjerenja Algoritam proksimalne

Inverzna

kinematika robotske ruk Jaco

Rezultati

Problem bez prepreka Problem s preprekam

Algoritam proksimalne optimizacije politike

- 1: Ulaz: Inicijalni parametri politike θ_0 , inicijalni parametri funkcije vrijednosti ϕ_0
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: Prikupimo listu putanja $\mathcal{D}_k = \{\tau_i\}$ prateći politiku $\pi_k = \pi(\theta_k)$ u okruženju.
- Izračunajmo nagrade R

 _t.
- 5: Izračunajmo funkciju prednosti \hat{A}_t koristeći trenutnu funkciju vrijednosti V_{ϕ_k} .
- 6: Izračunajmo nove parametre politike

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} L(s, a, \theta_k, \theta),$$

gdje je

$$L(s,a,\theta_k,\theta) = \min \left(\tfrac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s,a), \ \operatorname{clip} \left(\tfrac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, 1-\epsilon, 1+\epsilon \right) A^{\pi_{\theta_k}}(s,a) \right),$$

Izračunajmo nove parametre funkcije vrijednosti

$$\phi_{k+1} = \arg \min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2$$

8: end for

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje
Teoretska pozadina
potpornog učenja
Podjela algoritama
potpornog učenja

- 3 Praktične primjene potpornog učenja
- 4 Algoritmi optimizacije politike
- Algoritam jednostavnog gradijenta politike
 - politike uz regije povjerenja Akrositam prokrimalne
- Algoritam proksimalne optimizacije politike
- 5 Inverzna kinematika robotske ruke Jaco
 - Rezultati

Izlaz agenta Problem bez prepreka Problem s preprekama

Sadržaj

Uvod

Teorijske osnove potpornog učenja

Potporno učenje

Teoretska pozadina potpornog učenja

Podjela algoritama potpornog učenja

Praktične primjene potpornog učenja

Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

Algoritam optimizacije politike uz regije povjerenja

Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta

Problem bez prepreka

Problem s preprekam

Zaključak

1 Uvod

2 Teorijske osnove potpornog učenia

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja Igoritam proksimalne

Algoritam proksimaln optimizacije politike

5 Inverzna kinematika robotske ruke

Rezultat

Izlaz agent

Problem bez prepreka Problem s preprekama

Robotski manipulatori

Robotski manipulatori sastoje se od čvrstih tijela koji su međusobno povezanih zglobovima.

Upravljanje robotima se dijeli na direktnu i inverznu kinematiku.

Jaco je učvršćen za podlogu, ima šest zglobova na čijem vrhu se nalazi efektor, a robotom se upravlja tako da se zadaju brzine zglobova.

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno ucenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

optimizacije politike

4 Algoritmi

Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja kroritam proksimalne

Algoritam proksimalni optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta

Problem bez prepreka Problem s preprekama

Robotska ruka Jaco

1 Uvod

2 Teorijske osnove potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi

5 Inverzna kinematika robotske ruke Jaco

⁰Preuzeto sa https://smashingrobotics.com

Problem dohvaćanja objekta

Cilj problema je efektorom robotske ruke doći do objekta, prvo u prostoru bez prepreka, onda s preprekama.

Prostor opservacija će se sastojati od položaja efektora, cilja i prepreka, a prostor akcija će biti šest brzina zglobova.

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno ucenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

optimizacije politike

4 Algoritmi

Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja kroritam proksimalne

Algoritam proksimaln ptimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultat

Izlaz agen

Problem bez prepreka Problem s preprekama

Implementacija manipulatora u simulatoru

Robotska ruka Jaco ostvarena je u simulatoru s programskim jezikom Python i njegovim bibliotekama.

Fizički model ostvaren je uz pomoć PyBulleta i Pyb-Manipulatora, a algoritmi su ostvareni uz pomoć Gyma i Baselinesa.

Ovo je sve trebalo povezati u okruženje za treniranje te pronaći odgovarajuću funkciju nagrade, odnosno gubitka.

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog

- politike uz regije povjerenja
- Algoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke

Rezultati

Problem bez prepreka Problem s preprekama

Problem bez prepreka

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

. Algoritam jednostavnog gradijenta politike

politike uz regije povjerenja Ukroritam proksimalne

Ngoritam proksimaln ptimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultat

Izlaz agenta Problem bez prepr

Problem s preprekama

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

. Algoritam jednostavnog gradijenta politike

oovjerenja Ngoritam proksimalne

Algoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultat

Izlaz agenta Problem bez prepre

Sadržaj

Uvod

Teorijske osnove potpornog učenja

Potporno učenje

Teoretska pozadina potpornog učenja

Podjela algoritama potpornog učenja

Praktične primjene potpornog učenja

Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

Algoritam optimizacije politike uz regije povjerenja

Algoritam proksimalne optimizacije politike

Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta

Problem bez prepreka

Problem s preprekam

Zaključak

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

olitike uz regije ovjerenja Igoritam proksimalne

Algoritam proksimaln optimizacije politike

5 Inverzna kinematika robotske ruke

6 Rezultati

Izlaz agenta Problem bez preprek

Izlaz agenta

lme parametra	Vrijednost
eplenmean	5e+03
eprewmean	-5.09e+03
fps	5.54e + 03
loss/approxkl	0.0064
loss/clipfrac	0.0686
loss/policy_entropy	8.43
loss/policy_loss	-0.0045
loss/value_loss	104
misc/explained variance	0.00614
misc/nupdates	3
misc/serial_timesteps	6.14e + 03
misc/time_elapsed	141
misc/total_timesteps	7.86e+05

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

optimizacije politike

- Algoritam jednostavnog gradijenta politike
 - politike uz regije povjerenja Ukoritam proksimalne
- Algoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke

6 Rezultati Izlaz agenta

Problem bez prepreka Problem s preprekam

Udaljenost i brzina

```
observation = self.get_observation()
distance_vector = observation[:3] - self.target
distance_reward = - np.linalg.norm(distance_vector)
speed_reward = - np.linalg.norm(action)
reward = distance_reward + speed_reward
```

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje
Teoretska pozadina
potpornog učenja
Podjela algoritama
potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog

olitike uz regije ovjerenja

Algoritam proksimalne

5 Inverzna kinematika robotske ruke Jaco

Rezultat

Izlaz ag

Problem bez prepreka Problem s preprekama

Udaljenost i brzina

eplenmean	eprewmean	misc/total_timesteps
5001.00	-4644.67	1.57e+06
5001.00	-4405.25	2.88e+06
4934.95	-4400.78	4.19e+06
5001.00	-4487.64	5.51e+06
4976.26	-4392.46	6.82e+06
4860.11	-4157.88	8.13e+06
4916.93	-4253.58	9.44e+06
4879.62	-4589.74	1.07e + 07
4953.33	-4476.76	1.21e+07
4911.33	-4511.79	1.34e + 07
4862.73	-4430.52	1.47e+07
4928.81	-4643.92	1.60e+07
4973.91	-4636.84	1.73e+07
5001.00	-4764.21	1.86e+07
4968.79	-4585.88	1.99e+07

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja Igoritam proksimalne
- Algoritam proksimalne optimizacije politike

5 Inverzna Kinematika Kobotske ruke Jaco

Rezultati

Izlaz age

Problem bez prepreka

Napredak i brzina

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog

politike uz regije povjerenja

Algoritam proksimalni

5 Inverzna kinematika robotske ruke Jaco

Rezultat

Izlaz ag

Problem bez prepreka Problem s preprekama

Napredak i brzina

eplenmean	eprewmean	misc/total_time	steps
4558.74	-2145.22	1.57e+06	
3990.53	-1814.93	2.88e+06	
1933.10	-884.44	4.19e + 06	
1260.32	-582.99	5.51e+06	
1300.25	-597.80	6.82e+06	
1016.17	-468.28	8.13e+06	
885.16	-409.56	9.44e + 06	
824.18	-381.70	1.07e + 07	
928.05	-428.19	1.21e + 07	
890.89	-412.20	1.34e + 07	
793.56	-358.08	1.47e + 07	
854.25	-394.39	1.60e + 07	
711.99	-326.41	1.73e + 07	
746.49	-337.91	1.86e+07	
791.45	-361.71	1.99e+07	

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja Igoritam proksimalne
- Algoritam proksimalne optimizacije politike

5 Inverzna Kinematika Kobotske ruke Jaco

6 Rezultat

Problem bez prepreka Problem s preprekama

' Zaključak

Udaljenost, napredak i brzina

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno ucenje
Teoretska pozadina
pot pornog učenja
Podjela algoritama
pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog

oolitike uz regije povjerenja

Algoritam proksimalne

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz age

Problem bez prepreka Problem s preprekama

Udaljenost, napredak i brzina

eplenmean	eprewmean	misc/total_	_timesteps
3819.96	-3031.81	1.57e+06	
3578.17	-2906.71	2.88e + 06	
2264.80	-1710.63	4.19e + 06	
1791.30	-1360.40	5.51e + 06	
1497.91	-1119.63	6.82e + 06	
1110.11	-774.56	8.13e + 06	
971.30	-714.09	9.44e + 06	
977.26	-753.41	1.07e + 07	
1102.77	-832.46	1.21e + 07	
830.59	-669.11	1.34e + 07	
779.17	-604.76	1.47e + 07	
773.30	-599.63	1.60e + 07	
807.47	-645.58	1.73e + 07	
719.24	-580.12	1.86e+07	
701.33	-577.36	1.99e+07	

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja Igoritam proksimalne
- Algoritam proksimalne optimizacije politike

5 Inverzna Kinematika Kobotske ruke Jaco

6 Rezultat

Problem bez prepreka

المقابلات

Linearno kažnjavanje blizine i fiksne nagrade na kraju epizode

```
#reward calculation
observation = self.get observation()
distance_vector = observation[:3] - self.target
distance reward = - np.linalg.norm(distance vector)
progress reward = -300 * (-distance reward +
                self.distance reward old)
self distance reward old = distance reward
speed_reward = - np.linalg.norm(action)
min_obstacle_distances = self.min_obstacle_distances()
obstacle reward = -0.4/np. min (min obstacle distances)+1.2
reward = distance reward + progress reward +
                speed reward + obstacle reward
# check if the goal has been reached
# otherwise check if the episode is over
if np.linalg.norm(distance vector) < 0.05:
    reward = 2000
    done = True
elif np.anv(min obstacle distances < 0.15):
    reward = -1000
    done = True
elif self.numberOfSteps > self.episodeLength:
    done = True
else ·
    done - False
```

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno ucenje
Teoretska pozadina
pot pornog učenja
Podjela algoritama
pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

•
Algoritam jednostavnog gradijenta politike

politike uz regije povjerenja

Algoritam proksimaln optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

6 Rezultat

Problem bez prepreka

Linearno kažnjavanje blizine i fiksne nagrade na kraju epizode

4660.64 -4230.35 1.57e+06 4067.72 -3506.76 2.88e+06 3041.90 -2856.47 4.19e+06 3681.57 -3091.60 5.51e+06 3496.40 -3116.02 6.82e+06 3568.77 -3106.93 8.13e+06 3296.14 -2790.05 9.44e+06 3704.81 -2935.27 1.07e+07 3625.26 -3061.75 1.21e+07 3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07 1786.80 -1134.73 1.99e+07	eplenmean	eprewmean	misc/total	timesteps
4067.72 -3506.76 2.88e+06 3041.90 -2856.47 4.19e+06 3681.57 -3091.60 5.51e+06 3496.40 -3116.02 6.82e+06 3568.77 -3106.93 8.13e+06 3296.14 -2790.05 9.44e+06 3704.81 -2935.27 1.07e+07 3625.26 -3061.75 1.21e+07 3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07		<u>'</u>		
3041.90 -2856.47 4.19e+06 3681.57 -3091.60 5.51e+06 3496.40 -3116.02 6.82e+06 3568.77 -3106.93 8.13e+06 3296.14 -2790.05 9.44e+06 3704.81 -2935.27 1.07e+07 3625.26 -3061.75 1.21e+07 3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	4660.64	-4230.35	1.57e+06	
3681.57 -3091.60 5.51e+06 3496.40 -3116.02 6.82e+06 3568.77 -3106.93 8.13e+06 3296.14 -2790.05 9.44e+06 3704.81 -2935.27 1.07e+07 3625.26 -3061.75 1.21e+07 3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	4067.72	-3506.76	2.88e+06	
3496.40 -3116.02 6.82e+06 3568.77 -3106.93 8.13e+06 3296.14 -2790.05 9.44e+06 3704.81 -2935.27 1.07e+07 3625.26 -3061.75 1.21e+07 3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	3041.90	-2856.47	4.19e + 06	
3568.77 -3106.93 8.13e+06 3296.14 -2790.05 9.44e+06 3704.81 -2935.27 1.07e+07 3625.26 -3061.75 1.21e+07 3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	3681.57	-3091.60	5.51e + 06	
3296.14 -2790.05 9.44e+06 3704.81 -2935.27 1.07e+07 3625.26 -3061.75 1.21e+07 3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	3496.40	-3116.02	6.82e + 06	
3704.81 -2935.27 1.07e+07 3625.26 -3061.75 1.21e+07 3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	3568.77	-3106.93	8.13e + 06	
3625.26 -3061.75 1.21e+07 3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	3296.14	-2790.05	9.44e + 06	
3196.91 -2385.26 1.34e+07 2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	3704.81	-2935.27	1.07e + 07	
2445.88 -1936.88 1.47e+07 2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	3625.26	-3061.75	1.21e + 07	
2597.89 -1847.29 1.60e+07 2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	3196.91	-2385.26	1.34e + 07	
2053.09 -1335.68 1.73e+07 1389.56 -628.74 1.86e+07	2445.88	-1936.88	1.47e + 07	
1389.56 -628.74 1.86e+07	2597.89	-1847.29	1.60e + 07	
	2053.09	-1335.68	1.73e + 07	
1786.80 -1134.73 1.99e+07	1389.56	-628.74	1.86e + 07	
	1786.80	-1134.73	1.99e + 07	

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje
Teoretska pozadina
potpornog učenja
Podjela algoritama
potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja Ugoritam proksimalne
- Algoritam proksimalne optimizacije politike

inverzna inematika obotske ruke Jaco

Rezultati

Izlaz agenta
Problem bez prepreka
Problem s preprekama

Linearno kažnjavanje blizine i bez završavanja prilikom udarca u prepreku

```
observation = self.get observation()
distance vector = observation[:3] - self.target
distance reward = - np.linalg.norm(distance vector)
progress_reward = - 300 * (-distance_reward +
                self. distance reward old)
self. distance reward old = distance reward
speed reward = - np.linalg.norm(action)
min obstacle distances = self.min obstacle distances()
obstacle reward = -0.4/np. min (min obstacle distances)+1.2
reward = distance_reward + progress_reward +
                speed reward + obstacle reward
# check if the goal has been reached or episode over
if np.linalg.norm(distance vector) < 0.05:
    done = True
elif np.anv(min obstacle distances < 0.15):
    done = False
elif self.numberOfSteps > self.episodeLength:
    done = True
else:
    done = False
```

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno ucenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične

primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

> olitike uz regije ovjerenja

Algoritam proksimaln optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Problem s prepreka

Linearno kažnjavanje blizine i bez završavanja prilikom udarca u prepreku

eplenmean	eprewmean	misc/total_	_timesteps
4853.53	-9865.14	1.57e+06	
4960.64	-10915.79	2.88e+06	
4919.95	-9538.70	4.19e+06	
4625.72	-8614.35	5.51e + 06	
4683.32	-9372.60	6.82e+06	
4557.16	-8919.95	8.13e+06	
4165.51	-7997.34	9.44e+06	
4299.81	-8486.60	1.07e + 07	
4245.40	-8459.33	1.21e + 07	
3756.71	-7258.29	1.34e + 07	
4494.71	-8596.00	1.47e + 07	
4400.12	-7979.35	1.60e + 07	
4069.01	-7443.17	1.73e + 07	
4042.78	-7213.07	1.86e+07	
3930.52	-7177.77	1.99e + 07	

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

- 4 Algoritmi optimizacije politike
- Algoritam jednostavnog gradijenta politike
 - olitike uz regije ovjerenja Igoritam proksimalne
- Algoritam proksimalne optimizacije politike
- i Inverzna Linematika obotske ruke Jaco

Rezultati

Izlaz agenta Problem bez prepreka Problem s preprekama

Eksponencijalno kažnjavanje blizine i bez završavanja prilikom udarca u prepreku

```
observation = self.get observation()
distance_vector = observation[:3] - self.target
distance reward = - np.linalg.norm(distance vector)
progress_reward = - 2 * 300 * (-distance_reward +
                self. distance reward old)
self.distance_reward_old = distance_reward
speed reward = - np.linalg.norm(action)
min obstacle distances = self.min obstacle distances()
obstacle_reward = -0.02/(np.min(min_obstacle_distances)**3)
reward = distance reward + progress reward +
                speed reward + obstacle reward
# check if the goal has been reached
# otherwise check if the episode is over
if np.linalg.norm(distance vector) < 0.05:
    done = True
elif np.any(min_obstacle_distances < 0.15):
    done = False
elif self.numberOfSteps > self.episodeLength:
    done = True
else:
    done = False
```

1 Uvod

2 Teorijske osnove potpornog učenja

Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

- 3 Praktične primjene potpornog učenja
- 4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

> lgoritam optimizacije olitike uz regije ovjerenja

Algoritam proksimaln optimizacije politike

- 5 Inverzna kinematika robotske ruke Jaco
 - Rezultati

Problem bez prepreka

Problem s preprekama

Eksponencijalno kažnjavanje blizine i bez završavanja prilikom udarca u prepreku

eplenmean	eprewmean	misc/total_	timesteps
4877.34	-11253.18	1.57e+06	
4679.16	-10129.53	2.88e+06	
4122.46	-9429.34	4.19e+06	
3730.75	-8085.56	5.51e + 06	
4014.43	-7986.74	6.82e+06	
3106.13	-6309.29	8.13e + 06	
3120.73	-6476.75	9.44e + 06	
1998.13	-3773.81	1.07e + 07	
1702.80	-2987.62	1.21e + 07	
2300.74	-4048.41	1.34e + 07	
2318.29	-4525.41	1.47e + 07	
1770.62	-3393.89	1.60e + 07	
2229.36	-4106.26	1.73e + 07	
1683.42	-3848.00	1.86e + 07	
1239.36	-2636.43	1.99e+07	

1 Uvod

2 Teorijske osnove potpornog učenia

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja Igoritam proksimalne
- Ngoritam proksimalne optimizacije politike

kinematika robotske ruke Jaco

Rezultati

Izlaz agenta Problem bez prepreka Problem s preprekama

Eksponencijalno kažnjavanje blizine i bez završavanja prilikom udarca u prepreku

eplenmean	eprewmean	misc/total_tim	esteps
4661.85	-9838.50	2.88e+06	
4137.11	-8440.07	5.51e + 06	
3791.15	-7692.32	8.13e+06	
2962.36	-5753.18	1.07e + 07	
2715.98	-5039.09	1.34e + 07	
2221.33	-4388.06	1.60e + 07	
1667.47	-3272.12	1.86e + 07	
1704.15	-3254.69	2.12e + 07	
1323.04	-2676.78	2.39e + 07	
1401.51	-2744.61	2.65e + 07	
1364.24	-2430.31	2.91e + 07	
1106.77	-2208.91	3.17e + 07	
1154.20	-2399.01	3.43e + 07	
1256.99	-2446.23	3.70e + 07	
1100.65	-2358.74	3.96e+07	

1 Uvod

2 Teorijske osnove potpornog učenja

Potporno učenje Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja Igoritam proksimalne
- Ngoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta Problem bez prepreka Problem s preprekama

Eksponencijalno kažnjavanje blizine i bez završavanja prilikom udarca u prepreku

eplenmean	eprewmean	misc/total_	_timesteps
4887.21	-16079.80	2.88e+06	
4490.02	-12362.30	5.51e + 06	
4715.55	-17295.69	8.13e + 06	
4389.97	-14387.87	1.07e + 07	
3545.18	-10016.69	1.34e + 07	
3276.90	-10959.46	1.60e + 07	
2771.84	-7745.69	1.86e + 07	
2524.67	-8585.83	2.12e + 07	
2393.39	-7386.62	2.39e + 07	
2620.81	-8626.77	2.65e + 07	
2077.17	-6748.79	2.91e + 07	
2084.14	-7185.85	3.17e + 07	
1545.79	-5538.39	3.43e + 07	
1880.94	-6492.34	3.70e + 07	
1663.24	-5263.44	3.96e+07	

1 Uvod

2 Teorijske osnove potpornog učenia

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

- olitike uz regije ovjerenja Igoritam proksimalne
- Algoritam proksimalne optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

Rezultat

Izlaz agenta Problem bez prepreka Problem s preprekama

Sadržaj

Uvod

Teorijske osnove potpornog učenja

Potporno učenje

Teoretska pozadina potpornog učenja

Podjela algoritama potpornog učenja

Praktične primjene potpornog učenja

Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

Algoritam optimizacije politike uz regije povjerenja

Algoritam proksimalne optimizacije politike

Inverzna kinematika robotske ruke Jaco

Rezultati

Izlaz agenta

Problem bez prepreka

Problem s preprekama

Zaključak

1 Uvod

2 Teorijske osnove potpornog učenja

Pot porno učenje Teoretska pozadina pot pornog učenja Podjela algoritama pot pornog učenja

3 Praktične primjene potpornog učenja

4 Algoritmi optimizacije politike

Algoritam jednostavnog gradijenta politike

litike uz regije vjerenja

Algoritam proksimalr optimizacije politike

5 Inverzna kinematika robotske ruke

Rezultat

Izlaz agen

Problem bez prepreka Problem s preprekama

Zaključak

Problem inverzne kinematike riješili smo pomoću dubokog potpornog učenja, no povećanjem težine zadataka, rješavanje problema postaje još teže.

Prije desetak godina, kada je umjetna inteligencija uzela maha, jako mnogo se pričalo o takozvanoj "tehnološkoj singularnosti", točki u vremenu kada će računala poprimiti vlastitu svijest i postati ravnopravna ljudima.

Mišljenja sam da ako će nas išta dovesti do "tehnološke singularnosti", onda je to duboko potporno učenje.

1 Uvod

2 Teorijske osnove potpornog učenia

Podiela algoritama

3 Praktične primiene potpornog učenja

4 Algoritmi optimizacije politike

5 Inverzna

7 Zakliučak

Hvala na pažnji!

1 Uvod

2 Teorijske osnove potpornog učenja

Teoretska pozadina potpornog učenja Podjela algoritama potpornog učenja

3 Praktične primjene potpornog učenja

optimizacije politike

Algoritam jednostavnog gradijenta politike

politike uz regije povjerenja Akoritam proksimalne

Algoritam proksimalni optimizacije politike

5 Inverzna kinematika robotske ruke Jaco

6 Rezultat

Izlaz

Problem bez prepreka Problem s preprekama