R Do Anything Function over Dataframe Rows Expansion, (Mx1 by N) to (MxQ by N+1)

Fan Wang

2020-05-27

Contents

1	(Mx1 by N) to (MxQ by N+1)					
	1.1 Generate Dataframe with M Rows	1				
	1.2 Random Normal Draw Expansion	2				
1	(Mx1 by N) to (MxQ by N+1)					

Go to the RMD, R, PDF, or HTML version of this file. Go back to fan's REconTools Package, R Code Examples Repository (bookdown site), or Intro Stats with R Repository (bookdown site).

Case One: There is a dataframe with M rows, based on these m specific information, generate dataframes for each m. Stack these individual dataframes together and merge original m specific information in as well. The number of rows for each m is Q_m , each m could have different number of expansion rows.

Generate a panel with M individuals, each individual is observed for different spans of times (uncount). Before expanding, generate individual specific normal distribution standard deviation. All individuals share the same mean, but have increasing standard deviations.

1.1 Generate Dataframe with M Rows.

This is the first step, generate M rows of data, to be expanded. Each row contains the number of normal draws to make and the mean and the standard deviation for normal daraws that are m specific.

ID	Q	sd	mean
1	3	0.010	1000
2	5	100.005	1000
3	4	200.000	1000

1.2 Random Normal Draw Expansion

The steps are:

- 1. do anything
- 2. use ".\$" sign to refer to variable names, or [['name']]
- 3. unnest
- 4. left_join expanded and original

Note these all give the same results

Use dot dollar to get variables

```
# Generate $Q_m$ individual specific incomes, expanded different number of times for each m
tb_income <- tb_M %>% group_by(ID) %>%
    do(income = rnorm(.$Q, mean=.$mean, sd=.$sd)) %>%
    unnest(c(income))

# Merge back with tb_M
tb_income_full_dd <- tb_income %>%
    left_join(tb_M)

# display
kable(tb_income) %>%
    kable_styling_fc()
```

ID	income
1	999.9988
1	1000.0018
1	1000.0128
2	827.2643
2	1169.0269
2	1050.3838
2	1252.8463
2	1054.9124
3	1047.6426
3	790.2214
3	1258.9527
3	1165.1080

```
kable(tb_income_full_dd) %>%
kable_styling_fc()
```

ID	income	Q	sd	mean
1	999.9988	3	0.010	1000
1	1000.0018	3	0.010	1000
1	1000.0128	3	0.010	1000
2	827.2643	5	100.005	1000
2	1169.0269	5	100.005	1000
2	1050.3838	5	100.005	1000
2	1252.8463	5	100.005	1000
2	1054.9124	5	100.005	1000
3	1047.6426	4	200.000	1000
3	790.2214	4	200.000	1000
3	1258.9527	4	200.000	1000
3	1165.1080	4	200.000	1000