TEMA: Capa de red

CURSO: Redes y Comunicación de Datos I

Dr. Alex Coronado Navarro

Normas y comportamientos dentro de la sesión

✓ Levantar o pedir la palabra para participar

 ✓ Activar micrófono para participar y desactivar luego de concluir con la participación (para sesiones virtuales)

Respetar la opinión de sus compañeros

¿Qué tema tratamos la clase pasada?

Logro de aprendizaje

Al finalizar la sesión, el estudiante calculará subredes IPv4 de acuerdo a los requerimientos de número de host en una subred, mediante la configuración de direcciones IPv4 en una simulación de red.

Saberes previos

¿Qué es IPv4?

Temario

- 1. Segmentación de las redes
- 2. Dividir en subredes una red IPv4
- 3. Subredes IPv4 para cumplir con los requerimientos
- 4. VLSM IPv4
- 5. División de Subredes IPv6

1. Segmentación de las Redes

Network Segmentation

Broadcast Domains and Segmentation

 Muchos protocolos usan multicast o broadcast (por ejemplo, ARP usa broadcast para localizar otros dispositivos, los hosts envían broadcast de discovery DHCP para ubicar un servidor DHCP).

Los switchs difunden los broadcast por todas las interfaces, excepto la interfaz en la

que se recibió.

El único dispositivo que detiene los broadcast es un router.

- Los routers no propagan broadcast.
- Cada interfaz de un router se conecta a un dominio de broadcast y los broadcast solo se propagan dentro de ese dominio de broadcast específico.

Network Segmentation

Problems with Large Broadcast Domains

- Un problema con un dominio de broadcast grande es que estos hosts pueden generar broadcast excesivas y afectar negativamente a la red.
- La solución es reducir el tamaño de la red para crear dominios de broadcast más pequeños en un proceso llamado subred.
- Dividiendo la dirección de red 172.16.0.0 / 16 en dos subredes de 200 usuarios cada una: 172.16.0.0 / 24 y 172.16.1.0 / 24.
- Los broadcast solo se propagan dentro de los dominios de broadcast más pequeños

Network Segmentation

Reasons for Segmenting Networks

- La división en subredes reduce el tráfico general de la red y mejora el rendimiento de la red.
- Se puede usar para implementar políticas de seguridad entre subredes.
- La división en subredes reduce la cantidad de dispositivos afectados por el tráfico de broadcast anormal.
- Las subredes se usan por una variedad de razones, que incluyen:

2. Dividir en subredes una red IPv4

Subnet an IPv4 Network Subnet on an Octet Boundary

- Las redes se subdividen más fácilmente en el límite de octeto de / 8, / 16 y / 24.
- Tenga en cuenta que el uso de prefijos más largos disminuye el número de hosts por subred

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of hosts
/8	255 .0.0.0	nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhhhhhh	16,777,214
/16	255.255 .0.0	nnnnnnn.nnnnnnn.hhhhhhhh.hhhhhhhhhhhhh	65,534
/24	255.255.25 .0	nnnnnnn.nnnnnnnn.hhhhhhh 1111111.1111111.1111111.00000000	254

Subnet an IPv4 Network Subnet on an Octet Boundary

En la primera tabla 10.0.0.0/8 se divide en subredes usando / 16 y en la segunda tabla, una máscara / 24.

Subnet Address (256 Possible Subnets)	Host Range (65,534 possible hosts per subnet)	Broadcast
10.0.0.0/16	10.0 .0.1 - 10.0 .255.254	10.0 .255.255
10.1. 0.0 /16	10.1 .0.1 - 10.1 .255.254	10.1 .255.255
10.2 .0.0 /16	10.2 .0.1 - 10.2 .255.254	10.2 .255.255
10.3 .0.0 /16	10.3 .0.1 - 10.3 .255.254	10.3 .255.255
10.4 .0.0 /16	10.4 .0.1 - 10.4 .255.254	10.4 .255.255
10.5 .0.0 /16	10.5 .0.1 - 10.5 .255.254	10.5 .255.255
10.6 .0.0 /16	10.6 .0.1 - 10.6 .255.254	10.6 .255.255
10.7 .0.0 /16	10.7 .0.1 - 10.7 .255.254	10.7 .255.255
10.255 .0.0 /16	10.255 .0.1 - 10.255 .255.254	10.255 .255.255

Subnet Address (65,536 Possible Subnets)	Host Range (254 possible hosts per subnet)	Broadcast
10.0.0.0/24	10.0.0 .1 - 10.0 . 0 .254	10.0.0 .255
10.0.1.0/24	10.0.1 .1 - 10.0.1 .254	10.0.1 .255
10.0.2.0/24	10.0.2 .1 - 10.0.2 .254	10.0.2 .255
10.0.255.0/24	10.0.255 .1 - 10.0.255 .254	10.0.255 .255
10.1.0.0/24	10.1.0 .1 - 10.1.0 .254	10.1.0 .255
10.1.1.0/24	10.1.1 .1 - 10.1.1 .254	10.1.1 .255
10.1.2.0/24	10.1.2 .1 - 10.1.2 .254	10.1.2 .255
10.100.0.0/24	10.100.0 .1 - 10.100.0 .254	10.100.0 .255
10.255.255.0/24	10.255.255 .1 - 10.2255.255 .254	10.255.255 .255

Subnet an IPv4 Network Subnet within an Octet Boundary

Consulte la tabla para ver seis formas de subred a una red / 24.

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn. n hhhhhhh 11111111.11111111.1111111. 1 0000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn. nn hhhhhh 11111111.11111111.1111111. 11 000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhhh 11111111.11111111.11111111. 111 00000	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnn. nnnn hhhh 11111111.11111111.11111111. 1111 0000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnn hhh 11111111.11111111.11111111. 11111 000	32	6
/30	255.255.252	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnnn hh 11111111.11111111.11111111. 111111 00	64	2

Subnet a Slash 16 and a Slash 8 Prefix

Create Subnets with a Slash 16 prefix

 La tabla resalta todos los escenarios posibles para dividir en subredes un prefijo /16.

Prefix Length	Subnet Mask	Network Address (n = network, h = host)	# of subnets	# of hosts
/17	255.255. 128 .0	nnnnnnn.nnnnnnn. n hhhhhhh.hhhhhhh 11111111.11111111. 1 0000000.00000000	2	32766
/18	255.255. 192 .0	nnnnnnn.nnnnnnn. nn hhhhhh.hhhhhhh 11111111.11111111. 11 000000.00000000	4	16382
/19	255.255. 224 .0	nnnnnnn.nnnnnnn. nnn hhhhh.hhhhhhh 11111111.11111111. 111 00000.00000000	8	8190
/20	255.255. 240 .0	nnnnnnn.nnnnnnn. nnnn hhhh.hhhhhhh 11111111.11111111. 1111 0000.00000000	16	4094
/21	255.255. 248 .0	nnnnnnn.nnnnnnn. nnnnn hhh.hhhhhhh 11111111.11111111. 11111 000.00000000	32	2046
/22	255.255. 252 .0	nnnnnnn.nnnnnnn. nnnnnn hh.hhhhhhh 11111111.11111111. 111111 00.00000000	64	1022
/23	255.255. 254 .0	nnnnnnn.nnnnnnnn. nnnnnn h.hhhhhhh 11111111.11111111. 111111 0.00000000	128	510
/24	255.255. 255.0	nnnnnnn.nnnnnnnn. nnnnnnn .hhhhhhh 11111111.11111111. 1111111 .00000000	256	254
/25	255.255. 255.128	nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhh 11111111.11111111. 11111111.1 0000000	512	126
/26	255.255. 255.192	nnnnnnn.nnnnnnnn. nnnnnnn.nn hhhhhh 11111111.11111111. 11111111.11 000000	1024	62
/27	255.255. 255.224	nnnnnnn.nnnnnnnn. nnnnnnn.nnn hhhhh 11111111.11111111. 11111111.111 00000	2048	30
/28	255.255 .255.240	nnnnnnn.nnnnnnnn. nnnnnnn.nnnn hhhh 11111111.11111111. 11111111.1111 0000	4096	14
/29	255.255. 255.248	nnnnnnn.nnnnnnnn. nnnnnnn.nnnnn hhh 11111111.11111111. 11111111.1111 000	8192	6
/30	255.255. 255.252	nnnnnnn.nnnnnnnn. nnnnnnn.nnnnnn hh 11111111.111111111. 11111111.111111 00	16384	2

Subnet a Slash 16 and a Slash 8 Prefix

Create 100 Subnets with a Slash 16 prefix

Consideremos una gran empresa que requiere al menos 100 subredes y ha elegido la dirección privada 172.16.0.0/16 como su dirección de red interna.

- La figura muestra el número de subredes que se pueden crear al tomar prestados bits del tercer octeto y el cuarto octeto.
- Observe que ahora hay hasta 14 bits de host que pueden ser prestados (es decir, los últimos dos bits no pueden ser prestados).

Para satisfacer el requisito de 100 subredes para la empresa, se necesitarían prestar 7 bits (es decir, $2^7 = 128$ subredes) (para un total de 128 subredes).

Subnet a Slash 16 and a Slash 8 Prefix

Create 1000 Subnets with a Slash 8 prefix

Considere un ISP pequeño que requiere 1000 subredes para sus clientes que usan la dirección de red 10.0.0.0/8, lo que significa que hay 8 bits en la porción de red y 24 bits de host disponibles para tomar prestados para la división en subredes.

- La figura muestra el número de subredes que se pueden crear al tomar prestados bits de la segunda y la tercera.
- Observe que ahora hay hasta 22 bits de host que pueden ser prestados (es decir, los últimos dos bits no pueden ser prestados).

Para satisfacer el requisito de 1000 subredes para la empresa, se necesitarán prestar 10 bits (es decir, $2^{10} = 1024$ subredes) (para un total de 128 subredes)

3. Subredes para cumplir con los requerimientos

Subnet to Meet Requirements

Subnet Private versus Public IPv4 Address Space

Las redes empresariales tendrán una:

- Intranet: la red interna de una empresa que generalmente usa direcciones IPv4 privadas.
- DMZ A los servidores de Internet de las empresas. Los dispositivos en la DMZ usan direcciones IPv4 públicas.
- Una compañía podría usar el 10.0.0.0/8 y la subred en el límite de la red / 16 o / 24.
- Los equipos de la DMZ tendrían que configurarse con direcciones IP públicas.

Subnet to Meet Requirements Minimize Unused Host IPv4 Addresses and Maximize Subnets

Hay dos consideraciones al planificar subredes:

- El número de direcciones de host requeridas para cada red
- El número de subredes individuales necesarias

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn. n hhhhhhh 11111111.11111111.1111111. 1 0000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn. nn hhhhhh 11111111.11111111.11111111. 11 000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhhh 11111111.111111111111111111111111	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnn. nnnn hhhh 11111111.11111111.11111111. 1111 0000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnn hhh 11111111.11111111.11111111. 11111 000	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnnn hh 11111111.11111111.11111111. 111111 00	64	2

Subnet to Meet Requirements

Example: Efficient IPv4 Subnetting

- En este ejemplo, su ISP ha asignado una dirección de red 172.16.0.0/22 (10 bits de host) a su sede central que proporciona 1.022 direcciones de host.
- Hay cinco sitios y, por lo tanto, cinco conexiones a Internet, lo que significa que la organización requiere 10 subredes y la subred más grande requiere 40 direcciones.
- Asignó 10 subredes con una máscara de subred / 26 (es decir, 255.255.255.192)

4. VLSM

IPv4 Address Conservation

Dada la topología, se requieren 7 subredes (es decir, cuatro LAN y tres enlaces WAN) y el mayor número de hosts se encuentra en el Edificio D con 28 hosts.

 La máscara A / 27 proporcionaría 8 subredes de 30 direcciones IP de host y, por lo tanto, admitiría esta topología

VLSM

IPv4 Address Conservation (Cont.)

Sin embargo, los enlaces WAN punto a punto solo requieren dos direcciones y, por lo tanto, desperdician 28 direcciones cada una para un total de 84 direcciones no utilizadas.

Host portion $2^5 - 2 = 30$ host IP addresses per subnet 30 - 2 = 28Each WAN subnet wastes 28 addresses $28 \times 3 = 84$ 84 addresses are unused

- La aplicación de un esquema de subredes tradicional a este escenario no es muy eficiente y es un desperdicio.
- VLSM fue desarrollado para evitar el desperdicio de direcciones al permitirnos subred a subred.

VLSM VLSM

- El lado izquierdo muestra el esquema de subred tradicional (es decir, la misma máscara de subred) mientras que el lado derecho ilustra cómo se puede usar VLSM para dividir en subredes una subred y dividir la última subred en ocho / 30 subredes.
- Cuando use VLSM, siempre comience por satisfacer los requisitos de host de la subred más grande y continúe dividiendo en subredes hasta que se cumplan los requisitos de host de la subred más pequeña.
- La topología resultante con VLSM aplicado

VLSM VLSM Topology Address Assignment

 Usando subredes VLSM, las redes LAN y entre routers pueden direccionarse sin desperdicio innecesario, como se muestra en el diagrama de topología lógica.

5. División de subredes IPv6

Subnet an IPv6 Network Subnet Using the Subnet ID

IPv6 fue diseñado con subredes en mente.

- Se utiliza un campo Subnet ID separado en la GUA de IPv6 para crear subredes.
- El campo de Subnet ID es el área entre el Global Routing Prefix y la Interface ID.

Subnet an IPv6 Network IPv6 Subnetting Example

Dado el 2001:db8:acad::/48 prefijo de enrutamiento global con una ID de subred de 16 bits.

- Permite 65536 /64 subredes
- El Global Routing Prefix es el mismo para todas las subredes.
- Solo el hexteto de Subnet ID se incrementa en hexadecimal para cada subred

Subnet an IPv6 Network IPv6 Subnet Allocation

La topología de ejemplo requiere cinco subredes, una para cada LAN, así como para el enlace serial entre R1 y R2.

Se asignaron las cinco subredes IPv6, con el campo Subred ID 0001 a 0005. Cada subred /64 proporcionará más direcciones de las que se necesitarán

Subnet an IPv6 Network Router Configured with IPv6 Subnets

El ejemplo muestra que cada una de las interfaces del router en R1 se ha configurado para estar en una subred IPv6 diferente

```
R1(config) # interface gigabitethernet 0/0/0
R1(config-if) # ipv6 address 2001:db8:acad:1::1/64
R1(config-if) # no shutdown
R1(config-if) # exit
R1(config) # interface gigabitethernet 0/0/1
R1(config-if) # ipv6 address 2001:db8:acad:2::1/64
R1(config-if) # no shutdown
R1(config-if) # exit
R1(config) # interface serial 0/1/0
R1(config-if) # ipv6 address 2001:db8:acad:3::1/64
R1(config-if) # ipv6 address 2001:db8:acad:3::1/64
R1(config-if) # no shutdown
```


Simulación de una Red

TAREA

Simulación en Packet Tracert.

Ingresar a la plataforma canvas y descargar:

√ 08 PRACTICA 08 - Lab - Sub Redes

Conclusión

- ¿Qué aprendimos el día de hoy?
- ¿Qué les gustaría que se mejore de nuestras sesiones de clase?

Universidad Tecnológica del Perú