Splinter on PDR/XDR models

Background:

The differences in the model comparison are totally dominated by gas temperature differences. The heating efficiency is the critical parameter for the CO ladder.

Effects of debated microphysics/chemistry:

Fixed processes with unknown/uncertain parameters

Convergence/major progress on:

- Coolants
 - traditional coolants; OI, CII, H₂, Ly α, CO, H₂O, ¹³CO, OH, ...
 - should take full rotational or ro-vib description
 - Ionic coolants important in case of significant hard radiation: NeIII, OIII, MgII ...
 - needed in case of XDR contributions or enhanced CR
- IR/UV pumping
 - Approximations/omissions in molecule description and RT
 - use full ro-vib description for affected molecules
 - relevant if UV input is large enough that thermal re-emission creates significant MIR/FIR field
 - pumping of H₂O, OH, ...
 - CO only in extreme cases
- H2 formation rate
 - Hot-dust H₂ formation needed
 - Formalism based on Cazaux & Tielens
 - Consistency with Jura (1974) to be checked
 - Major boost of warm gas temperature and resulting high-J CO
- H₂ level treatment → vibrational heating
 - H₂* is essential for chemistry
 - many levels needed if chemistry depends on particular levels
 - in most cases reduced set accurate enough

Remaining main uncertainty on:

- Gas-grain thermal coupling
 - Accomodation coefficient unknown
 - stick to "standard value"
 - Affects temperature of dense regions
- CO collisional excitation
 - H₂ well established now (Yang 2010)
 - H still uncertain
 - wait for new results from Phil Stancil
 - electrons and formation excitation relevant in extreme cases
- Ices, grain surface chemistry
 - important if cold
 - not that relevant for warm CO in PDRs/XDRs
- PAH physics
 - To large degree unknown
 - Does H₂ form on PAHs?
 - May significantly change gas temperature and CO excitation!

Variable parameters/processes to be set per source

- Elemental abundances:
 - Galactic gradient, "There is more than a single metallicity number."
 - Main effect: e⁻ density, chem. Network
 - o potentially significant impact on temperature
- SED of illuminating UV field
 - Uncertainty: Spectral shape of input UV field at short wavelengths from HII/HI layer
 - Proposed solution: treat by tabulated UV from HII region
 - Suppression of high-J CO at moderate UV fields
- Turbulent velocity
 - Current models inconsistent with turbulence models
 - Implement variable, Larson-type relation as function of depth
 - small impact on CO ladder expected
- PAH abundance
 - major impact on e⁻ density
 - changes PE efficiency and resulting gas temperature
- Dust grain distribution
 - UV/IR connection
 - affects all major heating processes