Bases de Datos

Protocolos de bloqueo: 2 fases y Arbol

Dr. Diego R. Garcia

DEPARTAMENTO DE CIENCIAS E INGENIERÍA DE LA COMPUTACIÓN UNIVERSIDAD NACIONAL DEL SUR

Cada transacción:

- Antes de escribir W(X) o leer R(X) un dato X se debe solicitar y obtener el bloqueo correspondiente sobre X. Si no logra obtener un bloqueo la transacción espera hasta que ese dato es liberado por otra transacción.
- Debe respetar 2 fases:
 - Fase de crecimiento: la transacción solo puede solicitar o aumentar (upgrade) bloqueos
 - Fase de Decrecimiento: una vez que una transacción liberó o disminuyó (downgrade) un bloqueo no puede a solicitar o aumentar mas bloqueos, solo puede liberar o disminuir.

Analizaremos la planificación anterior puede obtenerse con un protocolo de bloqueo 2 fases utilizando distintas posibilidades de bloqueo.

Para verificar si es posible obtener la planificación agregaremos los bloqueos a la misma siguiendo la siguiente política:

- solicitar el bloqueo mínimo permitido para poder ejecutar la instrucción.
- solicitar los bloqueos lo mas tarde posible en la planificación.
- liberar los bloqueos lo antes posible (siempre respetando 2 fases!)

T1	T2
R(C)	
	R(B)
	R(C)
R(A)	
W(A)	
	R(A)
R(B)	
	W(B)

Utilizando solo bloqueos exclusivos Lock-X(A) (o abreviado L-X(A)) tanto para leer como para escribir un dato A.

T1	T2
R(C)	
	R(B)
	R(C)
R(A)	
W(A)	
	R(A)
R(B)	
	W(B)

Utilizando bloqueos compartidos (Lock-S(A) o L-S(A)) y exclusivos (Lock-X(A) o L-X(A))

T1	T2
R(C)	
	R(B)
	R(C)
R(A)	
W(A)	
	R(A)
R(B)	
	W(B)

T1	T2	
L-S(C)		
R(C)		
	L-X(B)	
	R(B)	
	L-S(C) -	T2 logra obtener el bloqueo
	R(C)	porque T1 tiene bloqueado
L-X(A) €		C en modo compartido.
R(A)		
W(A)		
	L-S(A)∕₁	T2 no obtiene Lock-S(A) porque A
		lo tiene bloqueado T1 en modo
		exclusivo. T2 debe esperar y no podrá ejecutar R(A) hasta que T1 obtenga L-S(B) para R(B) y pueda comenzar a liberar bloqueos.

T1	T2
L-S(C)	
R(C)	
	L-X(B)
	↑ R(B)
	L-S(C)
	R(C)
L-X(A)	
R(A)	
W(A)	
L-S(B)	

Otra alternativa sería que T1 solicite L-S(B) antes, para poder liberar el bloqueo de A.

Tampoco podría obtener L-S(B) porque T lo tiene bloqueado en modo exclusivo

Utilizando bloqueos compartidos (L-S(A)), exclusivos (L-X(A)), upgrade (Up(A)) y downgrade (Do(A)). Utilizaremos Un(A) como abreviatura de Unlock(D).

T1	T2
R(C)	
	R(B)
	R(C)
R(A)	
W(A)	
	R(A)
R(B)	
	W(B)

T1 debe desbloquear A para que T2 pueda obtener L-S(A), pero antes debe solicitar L-S(B) que necesitará después. Recuerde que para respetar 2 fases, una vez liberado un bloqueo no se pueden solicitar mas

T1	T2
L-S(C)	
R(C)	
	L-S(B)
	R(B)
	L-S(C)
	R(C)
L-X(A)	
R(A)	
W(A)	
L-S(B)	
Un(A)	
	L-S(A)
	D(A) /

R(A)

T1	T2
	R(A)
R(B)	
Un(C)	
Un(B)	
	Up(B)
	W(B)
	Un(A)
	Un(B)
	Un(C)

Deadlock: ejemplo usando bloqueos compartidos y exclusivos

T1	T2
R(C)	
	R(B)
	R(C)
R(A)	
W(A)	
	R(A)
R(B)	
	W(B)

esperar que T2 libere B

Protocolo de Arbol

Un árbol define el ordenamiento de los bloqueos para todos los datos del sistema, siguiendo las siguientes reglas:

- El único bloqueo permitido es el exclusivo: Lock-X(A) o L-X(A)
- El primer bloqueo de cada transacción puede ser sobre cualquier dato.

 Después de su primer bloqueo una transacción puede bloquear un dato Q si tiene bloqueado al padre de Q en el árbol.

El 1er dato R que bloquea una transacción restringe los datos que podrá bloquear a lo largo de su ejecución. Solo podrá bloquear a los datos descendientes en el sub-árbol que tenga el dato R como raíz, avanzando de padres a hijos.

- Cuando una transacción desbloquea un dato Q (Un(Q)) no puede volver a bloquear a Q.
- Los datos pueden desbloquearse en cualquier momento, es decir, puede no respetar 2 fases.

Analizaremos 2 planificaciones distintas con las misma transacciones T1 y T2 que utilizamos para el protocolo de 2 fases. Verificaremos si es posible obtener las planificaciones considerando el árbol:

Protocolo de Arbol

Consideremos la planificación:

T1	T2
	R(B)
	R(C)
R(C)	
	R(A)
	W(B)
R(A)	
W(A)	
R(B)	

T1	T2
	L-X(C)
	L-X(B)
	R(B)
	R(C)
	Un(C)
L-X(C)	
R(C)	
	L-X(A)
	R(A)
	Un(A)
	W(B)
	Un(B)
L-X(B)	
L-X(A)	

T1	T2
L-X(A)	
R(A)	
W(A)	
R(B)	
Un(C)	
Un(B)	
Un(A)	

Protocolo de Arbol

Consideremos la planificación:

T1	T2
R(C)	
	R(B)
	R(C)
R(A)	
W(A)	
	R(A)
R(B)	
	W(B)

