Overview: Digital Circuits

- * Logic Signals
- * Logic Families
- * IC Fabrication
- * CMOS Logic

Chapters 1 & 3 – "Digital Design: Principles and Practices" book

Note: Some pictures in this topic were extracted from the web.

Logic Signals & Gates

- Logical signals are often called low and high, to refer to the values 0 and 1 (not necessarily in this order!).
- Also, low often corresponds to algebraically lower voltages while high corresponds to higher voltages.
- Types of logic:

The most natural type.

- Positive Logic assigns 0 to low and 1 to high.
- Negative Logic assigns 0 to high and 1 to low.

Not often used.

Positive and Negative Logic

Signal Variation

- A binary value represents a wide range of voltages, so digital signals are highly immune to voltage variation!
- Example (typical ranges):
 - For a CMOS gate, its high ranges from 3.5 V to 5.0 V while its low ranges from 0 V to 1.5 V.
- Note: CMOS means Complementary MOS, and MOS (short for Metal-Oxide Semiconductor Field-Effect) is a type of transistor with low power consumption and high level of integration.

Operation of Logic Gates

- "Ideal" Logic Gates:
 - Input and output voltages are at either the high or the low value specified for the logic family.
 - Inputs draw no current from whatever drives them, and outputs can supply as much current as necessary for whatever follows.
 - Any change to an input will immediately be reflected on the output.

Real logic gates operate under several restrictions!

Overview: Digital Circuits

- * Logic Signals
- * Logic Families
- * IC Fabrication
- * CMOS Logic

More *detailed information* at (especially important if you are taking the 3rd year courses EBU5335 and EBU5475): http://www.opamp-electronics.com/ tutorials/digital theory ch 003.htm.

Chapters 1 & 3 – "Digital Design: Principles and Practices" book

Logic Families

There are other logic families and sub-families (but out of scope here).

- Logic family: Collection of different IC chips that have similar input, output, and internal circuit characteristics, but perform different logic functions.
 - Thus, chips from different logic families may not be compatible.
- Two most common logic families:
 - Transistor-Transistor Logic (TTL), and
 - Complementary Metal-Oxide Semiconductor field effect transistor (CMOS).
- Differences between TTL and CMOS: materials, fabrication methods, and electrical behaviours.

Logic Levels: TTL & CMOS

- CMOS (Complementary MOS): built on MOS transistors.
 - (*) Logic values:

- (*) Typical values only.
- $0 \rightarrow \text{voltages: } 0\text{-}1.5 \text{ Volts; } 1 \rightarrow \text{voltages: } 3.5\text{-}5.0 \text{ Volts.}$
- Used by most large-scale ICs (e.g., microprocessors and memory).
- TTL (Transistor-Transistor Logic): built on bipolar junction transistors.
 - (*) Logic values:
 - $0 \rightarrow \text{voltages: } 0\text{-}0.8 \text{ Volts; } 1 \rightarrow \text{voltages: } 2.0\text{-}5.0 \text{ Volts.}$
 - Once used for small to medium-scale applications, now usually replaced by CMOS devices. TTL components can still be found in university labs.

Logic Family Parameters

- Characteristics of digital logic families are compared by analysing the circuit of the basic gate in each family, using parameters:
 - Fan-out, Fan-in (measured in number of inputs)
 - Power Dissipation (measured in watts): power consumed by the gate that must be available from the power supply.
 - Propagation Delay (measured in seconds)
 - Noise margin (measured in volts)

	T_p (ns)	P (mW)	<i>Noise Margin</i> (mV)	Fan-out
TTL	9	10	400 (OH); 400 (OL)	10
CMOS	18	0.01 (static)	1050 (OH); 1340 (OL)	≤ 50

 T_p : propagation delay

P: power dissipation per gate

Logic Levels

- Different logic families may have different logic levels.
- Noise Margin: maximum external noise voltage that can be added to an input signal without causing an undesirable change in the circuit output.

Fan-in & Fan-out: Definition

- Fan-in refers to the number of inputs a gate can have in a particular logic family.
 - In other words, it's the number of inputs that a gate can practically have.
- Fan-out refers to the maximum number of logic inputs that an output can drive reliably.
 - It depends not only on the characteristics of the output, but also depends on the characteristics of the input.

Fan-in

Fan-in & Fan-out: Characteristics

• Fan-in:

- Too many inputs for a gate may lead to significant delay.
- The number of inputs on most CMOS gates is limited to between 4 and 6.
- Gates with a large number of inputs can be made faster and efficient by cascading gates with fewer inputs.

Fan-out:

- If too much fan-out is connected to an output, the DC noise margin may not be adequate.
- Fan-out may also affect speed.

Impedance (aka resistance for very simple circuits)

- Impedance: measure of the overall opposition of a circuit to current.
- Input impedance (as "seen" by anything connected to the input of a circuit) should be at least 10 times higher than the output impedance of the circuit supplying a signal to the input.
 - This is to avoid the input overloading the source of the signal and reducing the strength (voltage) of the signal by a substantial amount.
- If an output impedance is too high, it will be unable to supply a sufficiently strong signal to the load because most of the signal's voltage will be "lost" inside the circuit driving current through the output impedance; the load could be e.g., the input impedance of another circuit.

Ideal values for impedance (i.e., what is assumed when designing circuits at gate and system level of abstraction):

$$Z_{in} = \infty$$
 // $Z_{out} = 0$.

Unused Inputs

- Digital devices can only deal with signals that have well defined logic levels (i.e., a 0 or a 1).
- Floating signals can cause unpredictable behaviour in circuits.
- Pull-up and pull-down resistors: ensure that given no other input, a circuit assumes a default value (i.e., a 1 or a 0, respectively).

Timing Diagrams

- Dimensions on which logic circuits work: truth tables & time.
- Timing diagrams: describe how a circuit behaves in response to varying input signals over time.
 - Show that signals do not change between 0 and 1 instantaneously,
 and there is a transition period between input and output.

Speed, Propagation Delay & Data Sheets

- Speed limitations:
 - Delay encountered by a signal going through a single gate.
 - Number of levels in the circuit.
- Propagation delay: the amount of time needed for a change in the input signal to produce a change in the output signal.
- Data sheet of a chip (or digital device): specifies the device's logical and electrical characteristics, as well as operating conditions.

To ensure the device works properly, the operating conditions must be satisfied.

Example: Data Sheet

Note: Taken from course textbook (page 98).

Table 3-3 Manufacturer's data sheet for a typical CMOS device, a 54/74HC00 quad NAND gate.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

The following conditions apply unless otherwise specified:

Commercial: $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 5.0 \text{V} \pm 5\%$; Military: $T_A = -55^{\circ}\text{C}$ to $+125^{\circ}\text{C}$, $V_{CC} = 5.0 \text{ V} \pm 10\%$

Sym.	Parameter	Test Conditions(1)		Min.	Typ.(2)	Max.	Unit
V_{Bf}	Input HIGH level	Guaranteed logic HIGH level		3.15		-	V
V_{II}	Input LOW level	Guaranteed logic LOW level		-		1.35	V
I_{SH}	Input HIGH current	$V_{\text{CC}} = \text{Max.}, \ V_1 = V_{\text{CC}}$		-	-	1	μΛ
I_{2L}	Input LOW current	$V_{CC} = \text{Max.}, V_{I} = 0 \text{ V}$		-	-	~1	μΛ
$V_{\rm IK}$	Clamp diode voltage	$V_{\rm CC} = {\rm Min., I_N} = -18 \text{ mA}$		-	-0.7	-1.2	V
I_{los}	Short-circuit current	$V_{CC} = \text{Max.}^{(3)} V_{C} = \text{GND}$		-		-35	mA
ν	V_{OH} Output HIGH voltage	$V_{\text{CC}} = \text{Min.,}$ $V_{\text{IN}} = V_{\text{E.}}$	$I_{\rm OH} = -20~\mu{\rm A}$	4.4	4.499	-	V
OH			$I_{\mathrm{OH}} = -4 \mathrm{\ mA}$	3.84	4.3	-	V
v	V _{OL} Output LOW voltage	$V_{\rm CC} = M$ in.	$I_{OL} = 20 \mu\text{A}$	-	.001	0.1	V
OL		$V_{\mathrm{IN}} = V_{\mathrm{IH}}$	$I_{\rm OL} = 4~{ m mA}$		0.17	0.33	
l_{cc}	Quiescent power supply current	$V_{CC} = Max$. $V_{IN} = GND \text{ or } V_{CC} I_{O} = 0$		-	2	10	μА

Overview: Digital Circuits

- Logic Signals
- * Logic Families
- * IC Fabrication
- → Self-study topic (*)

* CMOS Logic

Chapters 1 & 3 – "Digital Design: Principles and Practices" book

(*) This is complemented by a video shown in class.

ICs: back to basics

 Integrated Circuits (ICs) are made of silicon, which in turn is created from sand. However, the manufacturing process of ICs is extremely complex and expensive.

Silicon and ICs

• **Silicon** is a semiconductor. This means that it can be altered to act as either a conductor, allowing electricity to flow, or as an insulator preventing the flow of electricity.

Silicon chips:

- have a surface area of similar dimensions to a thumb nail (or even smaller);
- are 3-dimensional structures composed of microscopically thin layers (perhaps as many as 20) of insulating and conducting material on top of the silicon.

Silicon Ingots: Definition

Semiconductor devices are produced from silicon ingots.

Silicon ingots is the name given to silicon in a single crystal form.

 Ingots are produced in a number of ways, but essentially, high purity silicon is melted down and then formed into cylindrical rods

as shown below.

Silicon ingots are made to the customer's specifications (usual diameter ~15-20cm).

Wafers versus Silicon Ingots

- Rods (or silicon ingots) are sliced into very thin wafers, using special diamond cutting technology.
- Wafers:
 - are treated (i.e., polished and chemically treated) to remove any roughness and/or damage;
 - are very thin (usually only 0.06mm in width).
- ICs are built from the wafers.

Silicon ingot and the wafers that are cut from the ingot.

Creating ICs on Wafers

Wafers are divided up so that many chips can be printed on them.

Finished wafers.

- How are all connectors, resistors, transistors and capacitors added to the wafer to make up an IC?
 - New (very thin) layers are added to the original wafer.
 - Each additional layer defines more and more of the completed IC.

The Die

- Wafers versus chips: One wafer can yield hundreds of finished chips, that are cut individually using a diamond saw.
- Die: The industry term for individual chips.
- Die size varies depending on the chip:
 - The larger the individual chip's die size, the greater the waste of silicon area when a fault arises on a chip.
 - Example: If a wafer is divided to make 40 chips and 10 random faults occur, then there'll be a wastage of 25%.
 But if the wafer is divided to make 200 chips and 10 random faults occur, then wastage will be only 5%.

Wafer Yield

- Yield of the wafer: The percentage of functioning chips.
- Yields vary substantially depending on:
 - complexity of the device being produced;
 - feature size used.
- Acceptable yield values:
 - any yield value of 50% is reported;
 - yield values of 80% to 90% are regarded as very good.

Producing good yield values is important, since a single short circuit, caused by two wires touching in a 30+ million transistor chip, is enough to cause chip failure!

Feature Size

- Feature Size: Refers to the size of a transistor or to the width of the wires connecting transistors on the chip. Examples:
 - One micron (i.e., 1/1000 of a millimetre)
 used to be a common feature size.
 - State of the art chips are now using sub-micron feature sizes between 0.25 (in 1997) to 0.13 (in 2001) (i.e., between 250 and 130 nanometres).

The smaller the feature size, the more transistors there are available on a given chip area.

A million nanometers

The pinhead sized patch of this thumb is a million nanometers across.

Smaller Feature Size (1/2)

Advantages:

- A greater number of transistors per die means a smaller die size,
 and this means more chips per wafer.
- A microprocessor using a smaller feature size than its predecessor will be smaller, run faster and use less power.
- Since more of these smaller chips can be obtained from a single wafer, each chip will cost less (this is one of the reasons for cheaper processor chips).
- A reduced feature size makes it possible to build more complex microprocessors, e.g., the Pentium III which uses around 30 million transistors.

Smaller Feature Size (2/2)

Disadvantages

 A reduced feature size means an increase in the density of transistors per chip area, and this has led to power consumption and power dissipation problems.

Example:

 CPUs typically dissipate about the same heat per square inch as an electric cooker generates (and sometimes require cooling fans or water cooling systems).

Overview: Digital Circuits

- Logic Signals
- * Logic Families
- * IC Fabrication
- * CMOS Logic

Chapters 1 & 3 – "Digital Design: Principles and Practices" book

CMOS Logic

- As seen before:
 - The building blocks in CMOS are MOS transistors.
 - CMOS operates from a 5 volts power supply (usually!).
- The Voltage-logic connection is interpreted as follows:

MOS Transistors

- MOS transistor: a 3-terminal device.
 - The voltage applied to one terminal controls the resistance between the remaining two terminals.
 - The three terminals are:
 - Gate;
 - Source;
 - Drain.

The *names* refer to the type of semiconductor material used for the resistance-controlled terminals.

- Types of MOS transistors:
 - n-channel
 - p-channel

N-Channel MOS (NMOS) Transistor

Drain on NMOS: usually is at a higher voltage than the source.

Notation:

- $V_{gs} = voltage from gate to source$
- $-R_{ds}$ = resistance from *drain* to *source*

How it works:

- V_{gs} ≥ 0 (usually).
- If $V_{gs} = 0$, then R_{ds} will be very high (so, *no output*).
- If voltage on the *gate* is increased (i.e., increase on V_{gs}), then R_{ds} decreases there is an output).

(so,

P-Channel MOS (PMOS) Transistor

PMOS operation similar to NMOS, but drain is usually at a lower voltage than the source.

Notation:

- V_{qs} = voltage from **source** to **gate**
- R_{ds} = resistance from *source* to *drain*

How it works:

- V_{gs} ≤ 0 (usually).
- If $V_{gs} = 0$, then R_{ds} will be very high (so, *no output*).
- If voltage on the *gate* is decreased (i.e., decrease on V_{gs}), then R_{ds} decreases (so, *there is an output*).

CMOS Inverter

CMOS inverter circuit: the simplest CMOS circuit, requires only one each of a PMOS and an NMOS.

Functional behaviour.

V _{IN}	Q1	Q2	V_{OUT}
0V (L)	off	on	5V
5V (H)	on	off	0V

Logic symbol:

CMOS 2-Input NAND

 CMOS NAND circuit: a k-input gate uses both k PMOS and k NMOS transistors.

Functional behaviour.

Α	В	Q1	Q2	Q3	Q4	Z
L	L	off	on	off	on	Н
L	Н	off	on	on	off	Н
Н	L	on	off	off	on	Н
Н	Н	on	off	on	off	L

Logic symbol:

CMOS 2-Input NOR

CMOS NOR circuit: a k-input gate uses both k PMOS and k NMOS transistors.

Functional behaviour.

Α	В	Q1	Q2	Q3	Q4	Z
L	L	off	on	off	on	Н
L	Н	off	on	on	off	L
Н	L	on	off	off	on	L
Н	Н	on	off	on	off	L

Logic symbol:

CMOS Electrical Properties

- The electrical behaviour of a CMOS gate can be characterised by its electrical properties. They include, apart from logic voltage levels:
 - Noise margins → How much noise it takes to corrupt a worst-case output voltage into a value that can not be recognised by an input.
 - Fan-out → Number of inputs that the gate can drive/feed without exceeding its worst-case specifications.
 - Speed (propagation delay) → Time necessary for a change in the input signal to result in a change to the output signal.
 - Power consumption → Most CMOS circuits have low static power dissipation.

Dilemma faced in electronic design – increasing the *speed* (i.e., decreasing the *propagation delay*) typically results in higher *power dissipation*, and vice versa.

