一、 选择题(每小题3分, 共24分)

1		A D 为事件				· 学 正	7条65月	,				
1.		A,B 为事件, $P(A \cup B)$					(BA) = I		•			
	С.	P(AB) =	P(B)		Г). <i>F</i>	P(A-B)	=P(A	-P(B)		
2.	设 <i>A</i>	A,B 为对立事	事件, 0	< P(B) < 1	则下	列概率	率值为1日	的是().			
	Α.	$P(\overline{A} \mid \overline{B})$	В.	$P(B \mid A)$	1)	С.	$P(\overline{A} \mid B)$	3)		D.	P(AB)
3.	设 <i>f</i>	f(x)是随机	.变量 <i>X</i> f	的概率密度	,则一定	成立	的是() .				
	Α.	f(x)定义	.域为[0,1	1]		в. ƒ	(x) 非负					
	С.	f(x)的值均	或为[0,1]			D. <i>f</i>	(x)连续					
4.	设 <i>P</i>	$P\{X \le 1, Y \le$	1 } = $\frac{4}{9}$,	$P\{X \le 1\}$	$= P\{Y$	≤ 1} =	$=\frac{5}{9}$, $\bowtie I$	P{min{	X,Y	≤1}:	=().
	A.	$\frac{2}{3}$	В.	$\frac{4}{9}$	C.	$\frac{20}{81}$		D.	$\frac{1}{3}$			
5.	设随	机变量 $(X,$	Y)满足	方差 D(X	+Y)=I	D(X	-Y),贝	刂必有()	٠.		
	A.	<i>X</i> 与 <i>Y</i> 独					/ 不相关) (V)	0			
		X 与Y 不犯		(\mathbf{v}, \mathbf{o})		` ')=0或L	` /				
6.		$X \sim N(\mu, 1)$,		$\{X > 2\} =$		≥ 2} #		= (D. 3				
7	宓昙	·) .	쑺 ᆉ V 코	医白台体 V	. D (1	n)	甘山会粉	0 < n	√1 ∏	ul /).	
/.	分里	:为n =1的 h	+4 A ₁ A		~ D(1,	<i>p)</i> , ;	六丁少奴	.0 <p<< td=""><td>、1 , 火</td><td>.J (</td><td>).</td><td></td></p<<>	、1 , 火	.J ().	
	Α.	X ₁ 是 <i>p</i> 的 ラ	无偏估计:	星		В. Х	₁ 是 <i>p</i> 的 ²	有偏估记	十量			
	С.	X_1^2 是 p^2 的	J无偏估;	十量		D. <i>X</i>	· ² 是 <i>p</i> 的	有偏估	计量			
		•					-					

8. 在假设检验中,显著性水平 α 用来控制 ().

A. 犯"弃真"错误的概率 B. 犯"纳伪"错误的概率

C. 不犯"弃真"错误的概率 D. 不犯"纳伪"错误的概率

二、填空题(每小题3分,共18分)

- 1. 设 X 的概率密度为 p(x) ,则 Y=2X+1 的概率密度 $p_{y}(y)=$ ______
- 2. 设 A, B 是两个随机事件, P(A)=0.7, P(A-B)=0.3, 则事件 "A, B 同时发生"的对立事件的概率为 ______.
- 3. 设随机变量 X 的期望 E(X) = 3,方差 D(X) = 5,则期望 $E[(X+4)^2] = _____.$
- 4. 设随机变量 X 与 Y 相互独立, $X \sim N(1,2)$, $Y \sim N(0,1)$, 则随机变量 Z = 2X 4Y + 3 的 方差为______.
- 5. 设随机变量 X 的数学期望 E(X)=75 ,方差 D(X)=5 ,用切比雪夫不等式估计得 $P\{|X-75|\geq \varepsilon\}\leq 0.05, 则 \,\varepsilon=\underline{\hspace{1cm}}.$
- 6. 设 X_1, X_2 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本,若 $CX_1 2X_2$ 是 μ 的一个无偏估计,则常数 C = ______.

三、实验解读应用题(每空2分,共24分)

(-) 用一个仪表测量某一物理量 9 次,为了求测量方差 σ^2 的 0.95 的单侧置信上限,由所得数据得到右表的实验结果. 本实验用到的样本函数为<u>1</u>,由实验结果 σ^2 的置信水平为 0.95 的单侧置信上限为

ハロオーエーナ
计活动表
0.95
9
56.32
0.0484
)24968865
41694645
022082123
77636618

(二)设机床加工的轴直径服从正态分布,现从甲、乙两台机床加工的轴中分别抽取若干个测其直径,在显著性水平 $\alpha=0.05$ 下,检验两台机床加工的轴直径的精度是否有明显差异.检验的原假设为 H_0 :___3__,得到如右表的实验结果.由于检验的P-value=__4__,因此,__5__.

F-检验 双样本方差分析								
	甲	乙						
平均	19.925	20.14285714						
方差	0.21642857	0.272857143						
观测值	8	7						
df	7	6						
F	0.79319372							
P(F<=f) 单尾	0.38039466							
F 单尾临界	0.25866737							

(三)进行农业实验,选择四个不同品种的小麦其三块试验田,每块试验田分成四块面积相等的小块,各种植一个品种的小麦,在显著性水平 $\alpha=0.05$ 下,检验小麦品种及实验田对收获量是否有显著影响。由试验得到如下的方差分析表,表中的丢失的 $F_A=\underline{6}$,由于检验的P-value= $\underline{7}$,所以,小麦品种对收获量的影响 $\underline{8}$ (是否显著).

方差分析						
差异源	SS	df	MS	F	P-value	F crit
品种 A	78	3	26		0.013364	4.757063
试验田 B	14	2	7	2.333333	0.177979	5.143253
误差	18	6	3			
总计	110	11				

(四)随机调查 10 个城市居民的家庭平均收入 x 与电器用电支出Y情况得数据,得到如下表的回归分析表,由此可知求电器用电支出Y与家庭平均收入 x 之间的线性回归方程为 9 ,由于检验的 P-value= 10 ,所以,在显著性水平 α = 0. 05 下,线性回归关系 11 (是否显著),当 x = 25 时,电器用电支出的点估计值 12

	Coefficients	标准误差	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-1.425424	0.2142448	-6.653247	0.0001603	-1.919473	-0.931374
收入	0.1231638	0.0077491	15.894001	2.458E-07	0.1052944	0.1410332

四、应用题(每小题5分,共10分)

1. 两个箱子中都有10个球,其中第一箱中4个白球,6个红球,第二箱中6个白球,4个红球,现从第一箱中任取2个球放入第二箱中,再从第二箱中任取1个球,求从第二箱中取的球为白球的概率.

2. 某车间用一台包装机包装葡萄糖,每包的重量 $X \sim N(\mu, 0.015^2)$,在包装机正常工作情况下,其均值为 0.5 kg. 某天开工后为检验包装机是否正常,随机地抽取它所包装的 9 袋葡萄糖,得样本均值 $\overline{x} = 0.5112$ 在显著性水平 0.05 下,问包装机工作是否正常?

(査表
$$Z_{0.05} = 1.645$$
, $Z_{0.025} = 1.96$)

五、综合计算题(每问3分,共24分)

1. 设二维随机变量(X,Y)的联合密度函数为

$$p(x, y) = \begin{cases} A, & 0 < x < 2, |y| < x \\ 0, & 其他 \end{cases}$$
.

- (1) 验证常数 A = 1/4; (2) 求概率 $P\{X > 1/2\}$; (3) 求 X 的边缘概率密度 $p_X(x)$;
- (4) $E(X^3)$.
- 2. 总体 X 的概率密度函数为 $p(x) = \begin{cases} \sqrt{\theta} x^{\sqrt{\theta}-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$, $\theta > 0$ 未知, X_1, X_2, \cdots, X_n 是

来自该总体的一个样本.(1)求X的数学期望E(X);(2)求参数 θ 的矩估计;(3)求关于参数 θ 的似然函数;(4)求参数 θ 最大似然估计.