Recalage d'images

Traitement d'images

Objectifs

Amélioration d'image

Extractiond'informationdans l'image

Segmentation

Comparer 2 images

Recalage & fusion

Recalage

Définition

Consiste à trouver une transformation spatiale permettant d'aligner une image (source ou flottante) sur une autre (cible ou référence).

Image registration Image matching

Recalage

Définition

Consiste à trouver une transformation spatiale permettant d'aligner une image (source ou flottante) sur une autre (cible ou référence).

Recalage monomodal ou multimodal

Recalage

Définition

Consiste à trouver une transformation spatiale permettant d'aligner une image (source ou flottante) sur une autre (cible ou référence).

Recalage intra- ou inter-sujets

Le recalage d'images

- Connaître la notion de primitive permettant le recalage des images (pixel, voxel, surface, centre de gravité, repères internes ou externes,...)
- Connaître quelques grandes méthodes de recalage (méthode du chanfrein, méthode de Woods) ou de logiciel (AIR)

- 1) Intra-patient, mono-modalité
- Exemple : évolution de lésions (images IRM d'un patient atteint de SEP à quelques mois d'intervalle)

Source Cible

Source : Université Louis Pasteur, Strasbourg

- 1) Intra-patient, mono-modalité
- Exemple : évolution de lésions (images IRM d'un patient atteint de SEP à quelques mois d'intervalle)

Source Cible Source recalée

Source : Université Louis Pasteur, Strasbourg

- 1) Intra-patient, mono-modalité
- Exemple : évolution de lésions (images IRM d'un patient atteint de SEP à quelques mois d'intervalle)

Différence Source Cible Source recalée finale

Source : Université Louis Pasteur, Strasbourg

- 2) Intra-patient, multi-modalité
- Exemple : fusion d'informations provenant de 2 modalités différentes

Source (scanner)

Cible (TEP)

Source: EPFL

- 2) Intra-patient, multi-modalité
- Exemple : fusion d'informations provenant de 2 modalités différentes

Source: EPFL

- 2) Intra-patient, multi-modalité
- Exemple : fusion d'informations provenant de 2 modalités différentes

Source : Université de Hambourg

- 2) Intra-patient, multi-modalité
- Exemple : fusion d'informations provenant de 2 modalités différentes

Source : Université de Hambourg

- 3) Inter-patient, intra-modalité
- Exemple : Segmentation à partir d'un atlas anatomique

Source (individu)

Cible (atlas)

Source recalée

Source : INRIA

- 3) Inter-patient, intra-modalité
- Exemple : Segmentation à partir d'un atlas anatomique

Cible (atlas)

Source recalée

Atlas segmenté et étiqueté

Source: INRIA

Pourquoi faire du recalage?

- Le recalage vise à compenser les variations de mesure
 - variations géométriques (position du patient) et d'intensité
- Multiples sources d'information (Scanner, IRM, TEMP)
 - Difficulté d'interprétation des images
- Aide au diagnostic
- Planification et suivi des traitements

Comparaison d'images avant/après

Source : Université Louis Pasteur, Strasbourg

■ Comparaison d'images complémentaires

IRM

Source : EPFL

Scanner

■ Comparaison d'images complémentaires

Scanner

TEP

Source : EPFL

Atlas d'organes

Source: INRIA

http://www.imaios.com/fr/e-Anatomy/Genou-IRM

Etapes de recalage

Primitives géométriques

Structures particulières dans l'image

Points, courbes, surfaces

- Extraits automatiquement ou

manuellement

Primitives géométriques

- Structures particulières dans l'image
 - Points, courbes, surfaces
 - Extraits automatiquement ou manuellement

Détection des primitives : ici points de forte courbure

Critère de similarité

- Recalage monomodal
- Minimiser le critère des moindres carrés (SSD = sum of squared differences)

$$SSD(IoT, J) = \sum_{pixels \ x} (IoT(x) - J(x))^{2}$$

Critères de similarité

- Recalage multimodal
 - -SSD pas utilisable!

- Critère d'uniformité inter-images (partitioned image uniformity, PIU)
 - Roger Woods (UCLA) in 1993 for MRI/PET

Critère PIU

- Pour chaque NdG n présent dans A:
 - on note les coord des pixels de valeur n
 - On va chercher dans B les pixels de mêmes coordonnées
 - On calculer la moy, l'écart-type sur ces pixels

Domaine de la transformation utilisée

- Globale
 - S'applique de manière identique à toute l'image
- Locale
 - Des sous-sections de l'image ont leurs propres transformations

- Rigide
 - Translation rotation
 - Conservation des angles et des distances
 - + pour recalage intra-patient / intra modalité

- Affine
 - Des droites parallèles restent parallèles après transformation

Elastique
 Toutes les transformations sont possibles

Exemple : recalage inter-patient de mammographies en IRM

Source recalée par transformation affine

Source: King's College, Londres

Exemple : recalage inter-patient de mammographies en IRM

Source recalée par transformation élastique

Différents types de transformation : résumé

- Recalage rigide ou affine
 - Erreur de positionnement
 - Pas de déformations de tissus mous
- Recalage non-rigide ou élastique
 - Petites déformations locales

Source: http://www.inf.uszeged.hu/~ssip/2007/lectures/AttilaTanacs-Registration.pdf

Méthodes de recalage

2 grandes familles :

 Approches géométriques : recalage de points, courbes, surfaces

 Approches iconiques : recalage voxel à voxel

Approches géométriques

 Mise en correspondance de points, courbes, etc positionnés manuellement ou automatiquement

- Très souvent recalage rigide
- Un exemple : recalage par chanfrein (Chamfer matching)

 Recalage rigide nécessitant les contours initiaux

Image de référence

Image flottante

 Calcul d'une carte de distance au contour sur l'image de référence

- Contour de l'image flottante superimposé sur la carte de distance
- Calcul de la moyenne des valeurs "sous" les pixels (Chamfer Distance)

R.M.S. Chamfer Distance =

$$\frac{1}{3}\sqrt{\frac{1}{n}\sum_{i=1}^{n}v_{i}^{2}}$$

v_i = valeur de la distance

n = nombre de points

Distance de chanfrein = 1.12

 Calcul de la distance de Chanfrein sous le contour flottant

 Déplacement du C(flottant) jusqu'à ce que la distance de Chanfrein soit minimum

 Déplacement du C(flottant) jusqu'à ce que la distance de Chanfrein soit minimum

 Déplacement du C(flottant) jusqu'à ce que la distance de Chanfrein soit minimum

Approches iconiques

- N'utilisent pas de primitives géométriques
- Evite une étape de segmentation
- Préférées quand il est difficile d'extraire des structures communes des jeux de données

Source : Cours D. Sarrut, Univ. Lyon 2

Approches iconiques

 Utilisent l'intensité et la position des voxels

Recalage rigide ou non-rigide

- Un exemple : méthode de Woods (1992)
 - Logiciel AIR: Automated Image Registration

Méthode de Woods

- Basée sur le pixel
- Recalage rigide
- Zones uniformes → correspondent à des régions anatomiques

A une zone uniforme dans une image correspond une zone uniforme dans l'autre image

