NOM: GROUPE:

Exercice 0.1

si u ets une suite aritmétique de 1^{er} terme $u_0 = 3$ et raison r = 2, que vaut u_{10} ?

si u ets une suite géométrique de 1^{er} terme $u_0 = 3$ et raison q = 2, que vaut u_{10} ?

Exercice 0.2

Donner la définition de $\lim_{n\to+\infty}u_n=L$:

et de $\lim_{n\to+\infty}u_n=+\infty$:

Exercice 0.3

u suite arithhmétique.Rappeler ce que vaut : $S_n = u_0 + u_1 + \ldots + u_{n-1} =$ Donner l'idée de la démonstration :

Exercice 0.4

Déterminer, en justifiant, les limites des 2 suites

$$\bullet u_n = \sum_{k=n+1}^{2n} e^{-k}.$$

$$\bullet v_n = \sqrt{n+1} - \sqrt{n}.$$

Exercice 0.5

u suite géométrique de raison $q \in \mathbb{R}$. Rappeler ce que vaut : $S_n = u_0 + u_1 + \ldots + u_{n-1} = D$ onner l'idée de la démonstration dans le cas où $q \neq 1$:

Exercice 0.6

- 1) Ecrire, avec des quantificateurs, qu'une suite u est majorée.
- 2) Puis écrire, toujours avec des quantificateurs, la négation.
- 3) Donner, sans justification, un exemple de suite non majorée et non minorée :

Exercice 0.7

Exercice 0.8

Exercice traité en cours et en TD : soit $u_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \quad (n \in \mathbb{N}^*).$

- 1) Etudier le sens de variation de u.
- 2) Prouver que u est convergente.

Exercice 0.9

- 1) Définition de la notion de suites u et v adjacentes.
- 2) Rappeler l'exemple classique donné en cours.

Exercice 0.10

u suite vérifiant : $(\forall n \in \mathbb{N})$ $u_{n+2} = u_{n+1} + u_n$. Donner **la forme** du terme général en fonction de n.

NOM: GROUPE: