ECE 550/650 – Intro to Quantum Computing

Robert Niffenegger

UMassAmherst | College of Engineering

Outline of the course

Quantum Optics

- What is interference (classical vs. single particle)
- Superposition of states
- Measurement and measurement basis

Atomic physics

- Spin states in magnetic fields and spin transitions
- Transitions between atomic states (Rabi oscillations of gubits)

Single qubits

- Single qubit gates (electro-magnetic pulses, RF, MW, phase)
- Error sources (dephasing, spontaneous decay)
- Ramsey pulses and Spin echo pulse sequences
- Calibration (finding resonance and verifying pulse time and amplitudes)

Two qubit gates

- Two qubit interactions gate speed vs. error rates
- Entanglement correlation at a distance
- Bell states and the Bell basis
- XX gates, Controlled Phase gates, Swap

Quantum Hardware

- Photonics nonlinear phase shifts
- Transmons charge noise, SWAP gate

Quantum Circuits

- Single and two qubit gates
- Hadamard gate , CNOT gate

Quantum Algorithms

- Amplitude amplification
- Grover's Search
- Oracle Deutsch Jozsa
- Bernstein Vazirani
- Quantum Fourier Transform and period finding
- Shor's algorithm

If time permits

Error Correction

- Repetition codes
- Color Codes
- Surface code

Lecture 3/3

Applying Radiation (B_x) to Control Qubit State

Strong applied Field $(\overrightarrow{B_z})$ = Defines Basis

Smaller perturbation($\overrightarrow{B_X}(t)$) \rightarrow Rotates state in stronger fields basis

Calculate Coupling with realistic experimental parameters


```
'''Calculate the Rabi coupling rate from first principles'''
from scipy import constants as const
g_s = 2 \# Land'e g-factor of the spin (~2)
'''Specify the geometry of the antenna applying the radiation to the spin'''
power = 0.05 # applied RF power in Watts ( 50 mW )
print('Applied Power = ', round(power,3) , '[W]')
r = 0.01 \# Distance from antenna in meters (10 cm)
print('Distance from antenna to spin = ', round(r,3) , '[m]')
irradiance = power/(4*pi*r**2) #Irradiance from the antenna at the spin spreads out over a sphere
print('Irradiance = ', round(irradiance,3) , '[W/m^2]')
Bfield_AC = 2* sqrt( const.mu_0 / const.c * irradiance)
print('Bfield AC =', round(Bfield AC*1e4,4), '[Gauss]')
'''Omega Rabi coupling from the applied perturbing magnetic field'''
Omega Rabi rads = const.value('Bohr magneton')*g s*Bfield AC / const.hbar #units of radians/second
Omega Rabi freq = Omega Rabi rads / (2*pi) # Convert from radians/second to revolutions/second (Hz)
period Omega Rabi = 1 / Omega Rabi freq # Calculating the period of a full oscillation in seconds
print('Rabi coupling rate= ', round(Omega Rabi freq/1e3,2),'[kHz]')
print('Period of Rabi flopping = ', round(period Omega Rabi*1e6,2) ,'[us]')
Applied Power = 0.05 [W]
Distance from antenna to spin = 0.01 [m]
Irradiance = 39.789 [W/m^2]
Bfield AC = 0.0082 [Gauss]
Rabi coupling rate= 22.86 [kHz]
Period of Rabi flopping = 43.74 [us]
```

RWA – vs – Exact integration of the Schrodinger Equation

Rotating Frame - with residual relative rotation (<u>detuning</u>!)

Rotating Frame - with residual relative rotation (detuning!)

Pulses vs. Detuning

$$\delta = \Omega$$

X –vs- Y – in a rotating frame???

Rotate at ω_{AC} : drivephase = 0

Rotate at ω_{AC} : $drivephase = -\pi/2$

X, Y, -X, -Y: Rotation axis set by phase of drive

Short pulses (Amplitude Noise)

```
Hamiltonian of the RY pulse
HX = Omega/2*sigmay()
1 1 1
Setup pulse timing
Add 20% Error to the amplitude of the field (or equivalently
to the timing of the pulse)
percent error = 0.20
pulse error= 1-percent error
times = np.linspace(0, pulse error*(pi)/Omega, 10) # pi pulse
with error
```


Spin Echo

```
Circuit representation
qc = QubitCircuit(1)
rotation = pi
qc.add gate("RX", 0, arg value=rotation/2)
qc.add_gate("RY", 0, arg value=rotation)
qc.add gate("RX", 0, arg value=rotation/2)
qasmstr = circuit to qasm str(qc) #Convert to QASM
qkqc = QuantumCircuit.from qasm str(qasmstr)#Import to Qisket
qkqc.draw('mpl')# Draw the circuit using QISKET
```


Compensation for Off-Resonance with a Pulse SEquence (CORPSE) - Frequency noise

```
Circuit representation
qc = QubitCircuit(1)
qc.add gate("RX", 0, arg value=7*pi/3)
qc.add gate("RX", 0, arg value=-5*pi/3)
qc.add_gate("RX", 0, arg_value=pi/3)
qasmstr = circuit to qasm str(qc) #Convert to QASM
qkqc = QuantumCircuit.from qasm str(qasmstr) #Import to Qisket
qkqc.draw('mpl')# Draw the circuit using QISKET
                                            \Omega=100.0[kHz]
                                            Period= 10.0 [us]
                                            \delta=30.0[kHz]
```


Common Composite Pulse Sequences

Composite Pulse	Type	Rotation Sequence θ_{ϕ}	Leading order		total angle	$\mathcal{F}(\sigma^+ - \sigma^+)$	$\mathcal{F}(\pi^+ - \pi^-)$
Rabi π -pulse	GR	180_{0}	ϵ^2	f^2	180°	0.47	0.73
CORPSE	GR	$60_0300_{180}420_0$	ϵ^2	f^4	780°	0.61	0.79
KNILL	GR	$180_{240}180_{210}180_{300}180_{210}180_{240} \\$	ϵ^4	f^4	900°	0.64	0.89
вв1	GR	$180_{104.5}360_{313.4}180_{104.5}180_0$	ϵ^6	f^2	900°	0.56	0.80
90-360-90	PP	$90_0360_{120}90_0$	ϵ^6	f^2	540°	0.59	0.82
SCROFULOUS	GR	$180_{60}180_{300}180_{60}$	ϵ^6	f^2	540°	0.44	0.72
LEVITT	PP	$90_{90}180_090_{90}$	ϵ^6	f^2	360°	0.70	0.86
90-240-90	GR	$90_{240}240_{330}90_{240}$	ϵ^2	f^2	420°	0.63	0.88
90-225-315	PP	$90_0225_{180}315_0$	ϵ^2	f^2	630°	0.71	0.89
WALTZ	PP	$90_0180_{180}270_0$	ϵ^2	f^2	540°	0.77	0.88

TABLE I. Common composite inversion pulses. The theoretical fidelity \mathcal{F} depends upon the atom cloud temperature as shown in Figure 8, and is from simulations for typical parameters given in Table II. Bold values indicate best performance at $\delta = 0$, which reflects the leading-order terms in the fidelity and their coefficients. PP: point-to-point, GR: general rotor.

Lecture - 3/5

Mach Zehnder/Ramsey Interferometer

MZI = Ramsey Interferometer

MZI = Ramsey

Ramsey Interference

Ramsey Interference

Phase Rotation $\theta = \delta \cdot t$

