Exercices: Barbara Tumpach Relecture: François Lescure



# Intersections des $L^p$ et convergences

### 1 Cas d'une mesure finie

#### **Exercice 1**

Soit  $\Omega$  un sous-ensemble de  $\mathbb{R}^n$  dont la mesure de Lebesgue est  $finie: \mu(\Omega) < +\infty$ . Pour tout  $1 \leq p < +\infty$ , on note  $L^p(\Omega)$  l'espace des fonctions  $f: \Omega \to \mathbb{C}$  telles que  $||f||_p := (\int_{\Omega} |f|^p(x) \, dx)^{\frac{1}{p}} < +\infty$  modulo l'équivalence  $f \sim g \Leftrightarrow f - g = 0 \; \mu - p.p$ . L'espace des fonctions essentiellement bornées sera noté  $L^\infty(\Omega)$ .

1. Montrer que si  $q \le p$ , alors  $L^p(\Omega) \subset L^q(\Omega)$ . En particulier, pour 1 < q < 2 < p, on a :

$$L^{\infty}(\Omega) \subset L^{p}(\Omega) \subset L^{2}(\Omega) \subset L^{q}(\Omega) \subset L^{1}(\Omega).$$

2. Soit  $\mathcal{B}^n(0,1)$  la boule unité centrée en 0 de  $\mathbb{R}^n$ . En considérant les fonctions

$$f_{\alpha}(x) = |x|^{-\alpha}$$

montrer que pour q < p, l'inclusion  $L^p(\mathscr{B}^n(0,1)) \subset L^q(\mathscr{B}^n(0,1))$  est stricte.

Correction ▼ [005964]

# 2 Cas de la mesure de comptage sur $\mathbb N$

#### **Exercice 2**

Soit  $\Omega = \mathbb{N}$  muni de la mesure de comptage. Pour tout  $1 \leq p < +\infty$ , on note  $\ell^p$  l'espace des suites complexes  $(u_n)_{n \in \mathbb{N}}$  telles que  $||u||_p := \left(\sum_{i=0}^{+\infty} |u_n|^p\right)^{\frac{1}{p}} < +\infty$ . L'espace des suites bornées sera noté  $\ell^\infty$ .

1. Montrer que si  $q \le p$ , alors  $\ell^q \subset \ell^p$ . En particulier, pour 1 < q < 2 < p, on a :

$$\ell^1 \subset \ell^q \subset \ell^2 \subset \ell^p \subset \ell^\infty$$
.

2. En considérant les suites  $u_n^{(\alpha)} = n^{-\alpha}$ , montrer que pour q < p, l'inclusion  $\ell^q \subset \ell^p$  est stricte.

Correction ▼ [005965]

# 3 Cas de la mesure de Lebesgue sur $\mathbb{R}^n$

#### **Exercice 3**

Soit  $\Omega = \mathbb{R}^n$  muni de la mesure de Lebesgue. Pour tout  $1 \le p < +\infty$ , on note  $L^p(\mathbb{R}^n)$  l'espace des fonctions  $f: \mathbb{R}^n \to \mathbb{C}$  telles que  $\|f\|_p := (\int_{\mathbb{R}^n} |f|^p(x) \, dx)^{\frac{1}{p}} < +\infty$  modulo l'équivalence  $f \sim g \Leftrightarrow f - g = 0 \ \mu - p.p$ . L'espace des fonctions essentiellement bornées sera noté  $L^\infty(\mathbb{R}^n)$ .

- 1. Pour quelle valeur de  $\alpha$  la fonction  $x \mapsto \frac{1}{(1+|x|^2)^{\alpha}}$  appartient-elle à  $L^p(\mathbb{R}^n)$ ?
  - Pour quelle valeur de  $\beta$  la fonction  $x \mapsto \frac{1}{|x|^{\beta}} e^{-\frac{|x|^2}{2}}$  appartient-elle à  $L^p(\mathbb{R}^n)$ ?

- Soit  $1 \le q . En utilisant <math>(a)$  et (b), trouver une fonction f qui appartienne à  $L^q(\mathbb{R}^n)$  mais pas à  $L^p(\mathbb{R}^n)$  et une fonction g qui appartienne à  $L^p(\mathbb{R}^n)$  mais pas à  $L^q(\mathbb{R}^n)$ .
- 2. Soit  $1 \le q . Montrer que l'espace <math>L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$  est un espace de Banach pour la norme  $\|\cdot\|_{p,q} = \|\cdot\|_p + \|\cdot\|_q$ .
  - Soit r tel que q < r < p. Montrer que

$$||f||_r \le ||f||_p^{\alpha} ||f||_q^{1-\alpha}$$

- où  $\frac{1}{r}=\frac{\alpha}{p}+\frac{1-\alpha}{q}$ ,  $\alpha\in[0,1]$ . On pourra écrire  $r=r\alpha+r(1-\alpha)$  et utiliser l'inégalité de Hölder pour un couple de réels conjugués bien choisi.
- En déduire que si  $f_n$  converge vers f dans  $L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$  alors  $f_n$  converge vers f dans  $L^r(\mathbb{R}^n)$ , i.e  $L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$  est un sous-espace de Banach de  $L^r(\mathbb{R}^n)$ .
- 3. Soit  $f \in L^p([0,+\infty[) \cap L^q([0,+\infty[) \text{ avec } 1 \leq q < 2 < p.$  Montrer que la fonction h définie par  $h(r) = \frac{1}{\sqrt{r}}f(r)$  appartient à  $L^1([0,+\infty[) \text{ et trouver des constantes } C_{p,q} \text{ et } \gamma \text{ telles que } ||h||_1 \leq C_{p,q}||f||_q^{\gamma}||f||_p^{(1-\gamma)}$ .

Correction ▼ [005966]

## 4 Convergences

#### **Exercice 4**

Soit  $\{f_n\}_{n\in\mathbb{N}}$  la suite de fonctions définies par :

$$f_n(x) = \frac{1}{\sqrt{n}} \mathbf{1}_{[n,2n]}(x).$$

- 1. Montrer que  $f_n$  converge faiblement vers 0 dans  $L^2([0,+\infty[)$  mais ne converge pas fortement dans  $L^2([0,+\infty[)$ .
- 2. Montrer que  $f_n$  converge fortement vers 0 dans  $L^p([0,+\infty[)$  pour p>2.

Correction ▼ [005967]

### **Exercice 5**

Soit  $\{f_n\}_{n\in\mathbb{N}}$  la suite de fonctions définies par :

$$f_n(x) = \sqrt{n} \mathbf{1}_{[n,n+\frac{1}{n}]}(x).$$

- 1. Montrer que  $f_n$  converge faiblement vers 0 dans  $L^2([0,+\infty[)$  mais ne converge pas fortement dans  $L^2([0,+\infty[)$ .
- 2. Montrer que  $f_n$  converge fortement vers 0 dans  $L^p([0,+\infty[)$  pour p < 2.

Correction ▼ [005968]





### Correction de l'exercice 1 A

Soit  $\Omega$  un sous-ensemble de  $\mathbb{R}^n$  dont la mesure de Lebesgue est *finie* :  $\mu(\Omega) < +\infty$ . Pour tout  $1 \leq p < +\infty$ , notons  $L^p(\Omega)$  l'espace des fonctions  $f: \Omega \to \mathbb{C}$  telles que  $||f||_p := (\int_{\Omega} |f|^p(x) \, dx)^{\frac{1}{p}} < +\infty$  modulo l'équivalence  $f \sim g \Leftrightarrow f - g = 0 \; \mu - p \cdot p$ . L'espace des fonctions essentiellement bornées sera noté  $L^\infty(\Omega)$ .

1. Si  $f \in L^{\infty}(\Omega)$ , alors

$$||f||_p^p = \int_{\Omega} |f|^p(x) dx \le ||f||_{\infty}^p \mu(\Omega) < +\infty,$$

ainsi  $L^{\infty}(\Omega) \subset L^p(\Omega)$  pour tout p et  $||f||_p \leq ||f||_{\infty} (\mu(\Omega))^{\frac{1}{p}}$ . Montrons que si  $q \leq p$ , alors  $L^p(\Omega) \subset L^q(\Omega)$ . Soit  $f \in L^p(\Omega)$ , on a par exemple :

$$||f||_{q}^{q} = \int_{\Omega} |f|^{q}(x) dx = \int_{\{|f| \ge 1\}} |f|^{q}(x) dx + \int_{\{|f| < 1\}} |f|^{q}(x) dx$$

$$\leq \int_{\{|f| \ge 1\}} |f|^{p}(x) dx + \int_{\{|f| < 1\}} 1 dx$$

$$< ||f||_{p}^{p} + \mu(\Omega) < +\infty.$$

Ou encore, en utilisant l'inégalité de Hölder pour les réels conjugués  $r = \frac{p}{q} > 1$  et  $r' = \frac{p}{p-q}$ :

$$||f||_{q}^{q} = \int_{\Omega} |f|^{q}(x) dx = \left( \int_{\Omega} |f|^{q \cdot \frac{p}{q}}(x) dx \right)^{\frac{q}{p}} \left( \int_{\Omega} 1^{\frac{p}{p-q}}(x) dx \right)^{\frac{p-q}{p}}$$
$$= ||f||_{p}^{q} \mu(\Omega)^{\frac{p-q}{p}},$$

ce qui implique:

$$||f||_q \leq ||f||_p \mu(\Omega)^{\frac{p-q}{qp}}.$$

En conclusion, pour 1 < q < 2 < p:

$$L^{\infty}(\Omega) \subset L^p(\Omega) \subset L^2(\Omega) \subset L^q(\Omega) \subset L^1(\Omega)$$
.

2. Montrons que pour q < p, l'inclusion  $L^p(\mathscr{B}^n(0,1)) \subset L^q(\mathscr{B}^n(0,1))$  est stricte. La fonction  $f_\alpha$  appartient à  $L^\infty(\mathscr{B}^n(0,1))$  si et seulement  $\alpha \leq 0$ , et à  $L^p(\mathscr{B}^n(0,1))$  avec  $p < +\infty$  si et seulement si

$$p\alpha - n + 1 < 1 \Leftrightarrow \alpha < \frac{n}{p}$$

Soit  $1 \leq q < p$ , alors  $f_{\frac{1}{2}\left(\frac{n}{p}+\frac{n}{q}\right)}$  appartient à  $L^q(\mathscr{B}^n(0,1)) \setminus L^p(\mathscr{B}^n(0,1))$ . En particulier,  $f_{\frac{1}{2}\left(\frac{n}{p}+\frac{n}{q}\right)}$  appartient à  $L^q(\mathscr{B}^n(0,1)) \setminus L^\infty(\mathscr{B}^n(0,1))$ .

## Correction de l'exercice 2 A

Soit  $\Omega = \mathbb{N}$  muni de la mesure de comptage. Pour tout  $1 \leq p < +\infty$ , on note  $\ell^p$  l'espace des suites complexes  $(u_n)_{n \in \mathbb{N}}$  telles que  $||u||_p := \left(\sum_{i=0}^{+\infty} |u_n|^p\right)^{\frac{1}{p}} < +\infty$ . L'espace des suites bornées sera noté  $\ell^\infty$ .

1. Montrons que si  $q \le p$ , alors  $\ell^q \subset \ell^p$ . Soit  $(u_n)_{n \in \mathbb{N}} \in \ell^q$ . Comme

$$\sum_{i=0}^{+\infty} |u_n|^q < +\infty,$$

il existe un rang N tel que pour n > N,  $|u_n|^q < 1$ . En particulier la suite  $(u_n)_{n \in \mathbb{N}}$  appartient à  $\ell^{\infty}$  et

$$||u||_{\infty} \leq \max\{u_0,\ldots,u_N,1\}.$$

De plus, pour n > N, on a  $|u_n|^p \le |u_n|^q$  et

$$\sum_{i=N+1}^{+\infty} |u_n|^p \le \sum_{i=N+1}^{+\infty} |u_n|^q \le ||u||_q^q < +\infty,$$

ce qui implique que  $||u||_p < +\infty$ . En conclusion, pour 1 < q < 2 < p, on a :

$$\ell^1 \subset \ell^q \subset \ell^2 \subset \ell^p \subset \ell^\infty$$
.

2. La suite  $u_n^{(\alpha)} = n^{-\alpha}$  appartient à  $\ell^{\infty}$  pour tout  $\alpha \ge 0$  et à  $\ell^p$  avec  $1 \le p < +\infty$  si et seulement si  $\alpha p > 1$ , i.e  $\alpha > \frac{1}{p}$ . En particulier la suite constante égale à 1 appartient à  $\ell^{\infty}$  mais n'appartient à aucun  $\ell^p$  pour  $p < +\infty$ . Soit  $1 < q < p < +\infty$ . Pour tout  $\alpha$  tel que  $\frac{1}{p} < \alpha < \frac{1}{q}$ , la suite  $u^{(\alpha)}$  appartient à  $\ell^p \setminus \ell^q$ . C'est le cas en particulier pour  $\alpha = \frac{1}{2} \left( \frac{1}{p} + \frac{1}{q} \right)$ . Ainsi l'inclusion  $\ell^q \subset \ell^p$  est stricte lorsque q < p.

## Correction de l'exercice 3 A

Soit  $\Omega = \mathbb{R}^n$  muni de la mesure de Lebesgue. Pour tout  $1 \le p < +\infty$ , on note  $L^p(\mathbb{R}^n)$  l'espace des fonctions  $f: \mathbb{R}^n \to \mathbb{C}$  telles que  $||f||_p := (\int_{\mathbb{R}^n} |f|^p(x) \, dx)^{\frac{1}{p}} < +\infty$  modulo l'équivalence  $f \sim g \Leftrightarrow f - g = 0 \ \mu - p.p.$  L'espace des fonctions essentiellement bornées sera noté  $L^{\infty}(\mathbb{R}^n)$ .

- 1. La fonction  $x \mapsto \frac{1}{(1+|x|^2)^{\alpha}}$  appartient à  $L^p(\mathbb{R}^n)$  pour  $2\alpha p > n$ .
  - La fonction x → <sup>1</sup>/<sub>|x|β</sub>e<sup>-|x|<sup>2</sup>/2</sup> appartient à L<sup>p</sup>(ℝ<sup>n</sup>) pour pβ < n.</li>
    Soit 1 ≤ q

$$f(x) = (1 + |x|^2)^{-\frac{n}{p+q}}$$

vérifient  $f \in L^p(\mathbb{R}^n)$  et  $f \notin L^q(\mathbb{R}^n)$ . La fonction

$$g(x) = |x|^{-\frac{n}{2}(\frac{1}{p} + \frac{1}{q})} e^{-\frac{|x|^2}{2}}$$

vérifient  $g \in L^q(\mathbb{R}^n)$  et  $g \notin L^p(\mathbb{R}^n)$ .

- 2. Soit  $1 \le q et <math>f_n$  une suite de Cauchy pour la norme  $\|\cdot\|_{p,q} = \|\cdot\|_p + \|\cdot\|_q$ . Comme  $\|\cdot\|_p \le$  $\|\cdot\|_{p,q}$ ,  $f_n$  est une suite de Cauchy dans  $L^p(\mathbb{R}^n)$ , donc elle converge vers une fonction  $f\in L^p(\mathbb{R}^n)$ pour la norme  $\|\cdot\|_p$ . De même,  $\|\cdot\|_q \le \|\cdot\|_{p,q}$ , donc  $f_n$  converge vers une fonction  $g \in L^q(\mathbb{R}^n)$  pour la norme  $\|\cdot\|_q$ . De plus, il existe une sous-suite de  $f_{n_k}$  qui converge vers f presque-partout et il existe une sous-suite de  $f_{n_k}$  qui converge vers g presque-partout. Ainsi f = g  $\mu$ -p.p. et  $f_n$  converge vers f = gdans  $L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$ .
  - Soit r tel que q < r < p. Montrons que

$$||f||_r \le ||f||_p^{\alpha} ||f||_q^{1-\alpha}$$

où  $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$ ,  $\alpha \in [0,1]$ . Puisque  $1 = \frac{\alpha r}{p} + \frac{(1-\alpha)r}{q}$ , les réels  $p' = \frac{p}{\alpha r}$  et  $q' = \frac{q}{(1-\alpha)r}$  sont conjugués. D'après l'inégalité de Hölder,

$$\int_{\mathbb{R}^{n}} |f|^{r}(x) dx = \int_{\mathbb{R}^{n}} |f|^{r\alpha}(x) \cdot |f|^{(1-\alpha)r}(x) dx$$

$$\leq \left( \int_{\mathbb{R}^{n}} |f|^{\alpha r p'}(x) dx \right)^{\frac{1}{p'}} \left( \int_{\mathbb{R}^{n}} |f|^{(1-\alpha)r q'}(x) dx \right)^{\frac{1}{q'}}$$

$$\leq \left( \int_{\mathbb{R}^{n}} |f|^{p}(x) dx \right)^{\frac{\alpha r}{p}} \left( \int_{\mathbb{R}^{n}} |f|^{q}(x) dx \right)^{\frac{(1-\alpha)r}{q}}$$

$$\leq \|f\|_{p}^{\alpha r} \|f\|_{q}^{(1-\alpha)r},$$

ce qui équivaut à  $\|f\|_r \le \|f\|_p^{\alpha} \|f\|_q^{(1-\alpha)}$ . On peut également écrire  $r = \beta q + (1-\beta)p$  avec  $\beta \in ]0,1[$  et appliquer Hölder avec les réels conjugués  $\frac{1}{B}$  et  $\frac{1}{1-B}$ :

$$\int_{\mathbb{R}^n} |f|^r(x) dx = \int_{\mathbb{R}^n} |f|^{\beta q}(x) \cdot |f|^{(1-\beta)p}(x) dx 
\leq \left( \int_{\mathbb{R}^n} |f|^q(x) dx \right)^{\beta} \left( \int_{\mathbb{R}^n} |f|^p(x) dx \right)^{(1-\beta)},$$

ce qui implique

$$||f||_r \le ||f||_q^{\frac{q\beta}{r}} ||f||_p^{\frac{p(1-\beta)}{r}}$$

qui est l'inégalité cherchée car  $\alpha = \frac{p\beta}{r}$  vérifie bien  $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$ .

- Si  $f_n$  converge vers f dans  $L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$  alors  $f_n$  converge vers f dans  $L^p(\mathbb{R}^n)$  et dans  $L^q(\mathbb{R}^n)$ , donc dans  $L^r(\mathbb{R}^n)$  d'après l'inégalité précédente. En conclusion,  $L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$  est fermé dans  $L^r(\mathbb{R}^n)$  donc un sous-espace de Banach de  $L^r(\mathbb{R}^n)$ .
- 3. Soit  $f \in L^p([0,+\infty[) \cap L^q([0,+\infty[)$  et h la fonction définie par  $h(r) = \frac{1}{\sqrt{r}}f(r)$ . On notera p' le conjugué de p et q' le conjugué de q. Montrons que h appartient à  $L^1([0,+\infty[)$ . On a :

$$\begin{split} \int_0^{+\infty} \frac{1}{\sqrt{r}} |f(r)| \, dr &= \int_0^R \frac{1}{\sqrt{r}} |f(r)| \, dr + \int_R^{+\infty} \frac{1}{\sqrt{r}} |f(r)| \, dr \\ &\leq \left( \int_0^R r^{-\frac{p'}{2}} \, dr \right)^{\frac{1}{p'}} \left( \int_0^R |f(r)|^p \, dr \right)^{\frac{1}{p}} + \left( \int_R^{+\infty} r^{-\frac{q'}{2}} \, dr \right)^{\frac{1}{q'}} \left( \int_R^{+\infty} |f(r)|^q \, dr \right)^{\frac{1}{q}} \\ &\leq \left( \frac{1}{1 - \frac{p'}{2}} \right)^{\frac{1}{p'}} R^{\left(\frac{1}{p'} - \frac{1}{2}\right)} \|f\|_p + \left( \frac{1}{\frac{q'}{2} - 1} \right)^{\frac{1}{q'}} R^{\left(\frac{1}{q'} - \frac{1}{2}\right)} \|f\|_q. \end{split}$$

En optimisant par rapport à R, on obtient :

$$\int_{0}^{+\infty} \frac{1}{\sqrt{r}} |f(r)| dr \leq C_{p,q} ||f||_{p}^{1-\gamma} ||f||_{q}^{\gamma},$$

où, en posant  $\alpha = \frac{1}{2} - \frac{1}{p}$  et  $\beta = \frac{1}{q} - \frac{1}{2}$ , on a  $\gamma = \frac{\alpha}{\alpha + \beta}$ , et  $C_{p,q} = \frac{\alpha + \beta}{\alpha^{\gamma} \beta^{1-\gamma}} \left(1 - \frac{p'}{2}\right)^{-\frac{1-\gamma}{p'}} \left(\frac{q'}{2} - 1\right)^{-\frac{\gamma}{q'}}$ .

#### Correction de l'exercice 4 A

Soit  $\{f_n\}_{n\in\mathbb{N}}$  la suite de fonctions définies par :

$$f_n(x) = \frac{1}{\sqrt{n}} \mathbf{1}_{[n,2n]}(x).$$

1. Quelque soit g continue à support compact,

$$\int_{[0,+\infty[} f_n(x)g(x) \, dx = \frac{1}{\sqrt{n}} \int_n^{2n} g(x) \, dx \to 0$$

quand  $n \to +\infty$ . Par densité des fonctions continues à support compact,  $f_n$  converge faiblement vers 0. D'autre part,  $f_n$  converge presque partout vers 0. Supposons que  $f_n$  converge fortement vers une fonction f dans  $L^2([0,+\infty[)$ . Alors il existe une sous-suite de  $f_n$  qui converge presque-partout vers f, ce qui implique que f=0 est la seule limite possible. Or :

$$||f_n||_2 = 1$$

pour tout n, donc  $||f_n||_2$  ne tend pas vers  $||f||_2 = 0$  ce qui contredit le fait que  $f_n$  converge vers f dans  $L^2([0,+\infty[).$ 

2. Pour p > 2, on a :

$$\int_{[0,+\infty[} |f_n(x)|^p dx = \int_n^{2n} n^{-\frac{p}{2}} dx = n^{1-\frac{p}{2}} \to 0,$$

quand  $n \to +\infty$  donc  $f_n$  converge fortement vers 0 dans  $L^p([0, +\infty[)$ .

#### Correction de l'exercice 5

Soit  $\{f_n\}_{n\in\mathbb{N}}$  la suite de fonctions définies par :

$$f_n(x) = \sqrt{n} \mathbf{1}_{[n,n+\frac{1}{n}]}(x).$$

1. Quelque soit g continue à support compact,

$$\int_{[0,+\infty[} f_n(x)g(x) \, dx = \sqrt{n} \int_n^{n+\frac{1}{n}} g(x) \, dx \to 0$$

quand  $n \to +\infty$ . Par densité des fonctions continues à support compact,  $f_n$  converge faiblement vers 0. Comme  $f_n$  converge presque partout vers 0 on conclut comme précédemment que  $f_n$  ne converge pas fortement vers 0 dans  $L^2([0,+\infty[)$  car

$$||f_n||_2 = 1.$$

2. Pour p < 2, on a :

$$\int_{[0,+\infty[} |f_n(x)| \, dx = \int_n^{n+\frac{1}{n}} n^{\frac{p}{2}} \, dx = n^{\frac{p}{2}-1} \to 0,$$

donc  $f_n$  converge fortement vers 0 dans  $L^p([0,+\infty[)$ .