

FIG. 1**FIG. 2**

FIG. 3(a)

FIG. 3(b)

3 / 16

FIG. 4(a)**FIG. 4(b)**

FIG. 5(a)

RECIPE NO.	PRECURSOR OF CHEMICAL VAPOR DEPOSITION	RUTHENIUM SEED LAYER	EXPERIMENTAL CONDITIONS	CVD GROWTH TEMPERATURE (°C)	STEP 1 : INCREASING THE WAFER TEMPERATURE	STEP 2 : SUPPLYING THE PRECURSOR	STEP 3 : DECREASING THE WAFER TEMPERATURE	AMOUNT OF OXYGEN CONTAMINATION atom/cm ²
1	Ru(C ₅ H ₄ C ₂ H ₅) ₂	NON LAYER	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220—270	650 20 250 920 5	650 20 250 920 5	650 20 250 920 5	7.0E+15
2	Ru(C ₅ H ₄ C ₂ H ₅) ₂	NON LAYER	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220—270	650 20 250 920 5	650 20 250 920 5	650 20 250 900 5	5.0E+14
3	Ru(C ₅ H ₄ C ₂ H ₅) ₂	NON LAYER	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220—270	650 0 250 900 5	650 20 250 920 5	650 20 250 920 5	7.0E+15
4	Ru(C ₅ H ₄ C ₂ H ₅) ₂	NON LAYER	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220—270	650 0 250 900 5	650 20 250 920 5	650 0 250 900 5	<1E14
5	Ru(C ₅ H ₄ C ₂ H ₅) ₂	NON LAYER	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220—270	650 0 250 900 5	650 500 250 1400 5	650 0 250 900 5	1.0E+17

FIG. 5(b)

RECIPE NO.	PRECURSOR OF CHEMICAL VAPOR DEPOSITION	RUTHENIUM SEED LAYER	EXPERIMENTAL CONDITIONS	CVD GROWTH TEMPERATURE (°C)	STEP 1: INCREASING THE WAFER TEMPERATURE	STEP 2: SUPPLYING THE PRECURSOR	STEP 3: DECREASING THE WAFER TEMPERATURE	AMOUNT OF OXYGEN CONTAMINATION atom/cm²
6	Ru(C ₅ H ₄ C ₂ H ₅) ₂	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220~270	650 20 250 920	650 20 250 920	650 0 250 900	2.0E+15
7	Ru(C ₅ H ₄ C ₂ H ₅) ₂	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220~270	650 20 250 900	650 20 250 920	650 20 250 920	7.0E+15
8	Ru(C ₅ H ₄ C ₂ H ₅) ₂	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220~270	650 20 250 900	650 20 250 920	650 0 250 900	<1E14
9	Ru(C ₅ H ₄ C ₂ H ₅) ₂ /THF 0.1mol/l	NON LAYER	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) THF GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	270~350	1150 0 0 250 1400 5	1150 50 1300 250 2250 5	1150 0 0 250 1400 5	<1E14
10	Ru(C ₅ H ₄ C ₂ H ₅) ₂ /THF 0.1mol/l	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) THF GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	270~350	1150 0 0 250 1400 5	1150 50 1300 250 2250 5	1150 0 0 250 1400 5	<1E14

FIG. 6

FIG. 8(a)

RECIPE NO.	PRECURSOR OF CHEMICAL VAPOR DEPOSITION	RUTHENIUM SEED LAYER	EXPERIMENTAL CONDITIONS	CVD GROWTH TEMPERATURE (°C)	STEP 1 : INCREASING THE WAFER TEMPERATURE	STEP 2 : SUPPLYING THE PRECURSOR	STEP 3 : DECREASING THE WAFER TEMPERATURE	AMOUNT OF OXYGEN CONTAMINATION atom/cm ²
11	Ru(C ₅ H ₅) ₂	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220~270	650 0 250 900	650 20 250 920	650 0 250 900	<1E14
12	Ru(C ₅ H ₄ CH ₃) ₂	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220~270	650 0 250 900	650 20 250 920	650 0 250 900	<1E14
13	Ru(C ₁₁ H ₁₉ O ₂) ₃	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	220~280	650 0 250 900	650 20 250 920	650 0 250 900	5.0E+14
14	Ru(OD) ₃	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	240~300	650 0 250 900	650 20 250 920	650 0 250 900	6.0E+14
15	Ru(C ₅ H ₄ C ₂ H ₅) ₂ /CH ₃ OH 0.1mol/l	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) CH ₃ OH GAS(sccm) N ₂ BALANCE GAS(sccm) TOTAL AMOUNT OF SUPPLIED GASES(sccm) PRESSURE(torr)	250~350	1150 0 250 1400	650 100 250 3800	1150 0 250 1400	<1E14

FIG. 8(b)

RECIPE NO.	PRECURSOR OF CHEMICAL VAPOR DEPOSITION	RUTHENIUM SEED LAYER	EXPERIMENTAL CONDITIONS	CVD GROWTH TEMPERATURE (°C)	STEP 1 : INCREASING THE WAFER TEMPERATURE	STEP 2 : SUPPLYING THE PRECURSOR	STEP 3 : DECREASING THE WAFER TEMPERATURE	AMOUNT OF OXYGEN CONTAMINATION atom/cm ²
16	Ru(C ₅ H ₄ C ₂ H ₅) ₂ /C ₈ H ₁₈ 0.1mol/l	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) C ₈ H ₁₁ GAS(sccm)	250~350	1150 0 0	650 50 600 250 1640	1150 0 0 250 1400	<1E14
17	Ru(C ₅ H ₅) ₂ /THF 0.1mol/l	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) THF GAS(sccm)	260~350	1150 0 0	650 50 1300 250	1150 0 0 250	<1E14
17	Ru(C ₁₁ H ₁₉ O ₂) ₃ /THF 0.1mol/l	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) THF GAS(sccm)	220~350	1150 0 0	650 50 1300 250 1400	1150 0 0 250 1400	3.0E+14
18	Ru(CD) ₃ /THF 0.1mol/l	1nm~2nm	N ₂ CARRIER GAS(sccm) OXYGEN GAS(sccm) THF GAS(sccm)	220~350	1150 0 0	650 50 1300 250 1400 5	1150 0 0 250 1400 5	4.0E+14

10 / 16

FIG. 9**FIG. 10**

11 / 16

FIG. 11

12 / 16

FIG. 12(a)**FIG. 12(b)****FIG. 12(c)**

FIG. 13(a)**FIG. 13(b)****FIG. 13(c)**

14 / 16

FIG. 14(a)**FIG. 14(b)**

15 / 16

FIG. 15

ENLARGED FIGURE OF FIG. 14(b)

16 / 16

**FIG. 16(a)
PRIOR ART**

**FIG. 16(b)
PRIOR ART**

**FIG. 16(c)
PRIOR ART**

**FIG. 16(d)
PRIOR ART**

**FIG. 16(e)
PRIOR ART**

