CS 305 Computer Networks

Chapter 3 Transport Layer (2)

Jin Zhang

Department of Computer Science and Engineering

Southern University of Science and Technology

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

Performance of rdt3.0

- rdt3.0 is correct, but performance is bad
- e.g.: link rate R=I Gbps, prop. delay T_{pd}=I5 ms, packet length L=8000 bit

Calculate U sender: utilization – fraction of time sender busy sending

Performance of rdt3.0

❖ link rate R=I Gbps, prop. delay T_{pd}=I5 ms, packet length L=8000 bit

$$D_{trans} = t = \frac{L}{R} = \frac{8000 \text{ bits}}{10^9 \text{ bits/sec}} = 8 \text{ microsecs}$$

U_{sender}: <u>utilization</u> – fraction of time sender busy sending

$$U_{\text{sender}} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$

- RTT=30 msec, IKB pkt every 30 msec:
 33kB/sec throughput over I Gbps link
- network protocol limits use of physical resources!

Pipelined protocols

pipelining: sender allows multiple, "in-flight", yetto-be-acknowledged pkts

- range of sequence numbers must be increased
- buffering at sender and/or receiver

two generic forms of pipelined protocols: go-Back-N, selective repeat

Pipelining: increased utilization

Go-Back-N overview

Go-Back-N: sender

- k-bit seq # in pkt header (not 0 or 1)
- At most N pkts in flight: window size = N, (N consecutive unacked pkts allowed

- ACK(n) means all pkts before pkt n are correctly received "cumulative ACK"
 - Sender may receive duplicate ACKs (see receiver)
- timer for oldest in-flight pkt
- timeout(n): retransmit packet n and all higher seq # pkts in window

GBN: sender extended FSM

```
rdt send(data)
                        if (nextseqnum < base+N) {
                          sndpkt[nextseqnum] = make pkt(nextseqnum,data,chksum)
                          udt send(sndpkt[nextseqnum])
                          if (base == nextsegnum)
                            start timer
                          nextseqnum++
                        else
                         refuse data(data)
  base=1
  nextsegnum=1
                                           timeout
                                           start timer
                             Wait
                                           udt send(sndpkt[base])
                                           udt send(sndpkt[base+1])
rdt rcv(rcvpkt)
 && corrupt(rcvpkt)
                                           udt send(sndpkt[nextseqnum-
                          rdt_rcv(rcvpkt) &&<sup>1])</sup>
                            notcorrupt(rcvpkt)
                          base = getacknum(rcvpkt)+1
                          If (base == nextseqnum)
                            stop timer
                           else
                            start timer
```

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with highest *in-order* seq

- may generate duplicate ACKs
- need only remember expectedseqnum
- out-of-order pkt:
 - discard (don't buffer): no receiver buffering!
 - re-ACK pkt with highest in-order seq #

Selective repeat

Selective repeat

- receiver individually acknowledges all correctly received pkts
 - buffers pkts, as needed, for eventual in-order delivery to upper layer
- sender only resends pkts for which ACK not received
 - sender timer for each unACKed pkt
- sender window
 - N consecutive seq #'s
 - limits seq #s of sent, unACKed pkts

Selective repeat: sender, receiver windows

Transport Layer 3-13

Selective repeat

sender

data from above:

if next available seq # in window, send pkt

timeout(n):

resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

- mark pkt n as received
- if n smallest unACKed pkt, advance window base to next unACKed seq #

receiver-

pkt n in [rcvbase, rcvbase+N-1]

- send ACK(n)
- out-of-order: buffer
- in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-I]

ACK(n)

otherwise:

ignore

GBN and SR comparison

Go-back-N:

- sender can have up to N unacked packets in pipeline
- receiver only sends cumulative ack
 - doesn't ack packet if there's a gap
- sender has timer for oldest unacked packet
 - when timer expires, retransmit all unacked packets

Selective Repeat:

- sender can have up to N unack ed packets in pipeline
- rcvr sends individual ack for each packet

- sender maintains timer for each unacked packet
 - when timer expires, retransmit only that unacked packet

Selective repeat: dilemma

example:

- * seq #' s: 0, 1, 2, 3
- window size=3
- receiver sees no difference in two scenarios!
- duplicate data accepted as new in (b)
- Q: what relationship between seq # size and window size to avoid problem in (b)?

sender window

receiver can't see sender side. receiver behavior identical in both cases! something's (very) wrong!

receiver window

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte stream:
 - no "message boundaries"
 - Seq # and Ack # are in unit of byte, or pkt
- pipelined:
 - TCP congestion and flow control set window size

full duplex data:

- bi-directional data flow in same connection
- MSS: maximum segment size

connection-oriented:

 handshaking (exchange of control msgs) inits sender, receiver state before data exchange

flow controlled:

sender will not overwhelm receiver

TCP seq. numbers, ACKs

simple telnet scenario

TCP without retransmission

TCP seq. numbers, ACKs

sequence numbers:

• byte stream "number" of first byte in segment's data

acknowledgements:

- seq # of next byte expected from other side
- cumulative ACK
- Q: how receiver handles out-of-order segments
 - A: TCP spec doesn't say,
 - up to implementor

TCP segment structure

URG: urgent data (generally not used)

ACK: ACK # valid

PSH: push data now (generally not used)

RST, SYN, FIN: connection estab (setup, teardown commands)

Internet checksum (as in UDP)

counting
by bytes
of data
(not segments!)

bytes
rcvr willing
to accept

TCP round trip time, timeout

- Q: how to set TCP timeout value?
- Ionger than RTT
 - but RTT varies
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

- Q: how to estimate RTT?
- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent measurements, not just current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- * typical value: $\alpha = 0.125$

TCP round trip time, timeout

- * timeout interval: EstimatedRTT plus "safety margin"
 - large variation in EstimatedRTT -> larger safety margin
- estimate SampleRTT deviation from EstimatedRTT:

```
DevRTT = (1-\beta) *DevRTT +
                \beta* | SampleRTT-EstimatedRTT |
                (typically, \beta = 0.25)
```

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT "safety margin"

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

TCP reliable data transfer

- TCP creates rdt service on top of IP's unreliable service
 - pipelined segments
 - cumulative acks
 - single retransmission timer
 - Similar with Go-Back-N
- retransmissions triggered by:
 - timeout events
 - duplicate acks

let's initially consider simplified TCP sender:

- ignore duplicate acks
- ignore flow control, congestion control

TCP without retransmission

TCP sender events:

data rcvd from app:

- create segment with seq #
- seq # is byte-stream number of first data byte in segment
- start timer if not already running
 - think of timer as for oldest unacked segment
 - expiration interval: TimeOutInterval

timeout:

- retransmit segment that caused timeout
- restart timer ack rcvd:
- if ack acknowledges previously unacked segments
 - update what is known to be ACKed
 - start timer if there are still unacked segments

TCP: retransmission scenarios

TCP: retransmission scenarios

cumulative ACK

TCP receiver [RFC 1122, RFC 2581]

event at receiver	TCP receiver action
arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed	delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK
arrival of in-order segment with expected seq #. One other segment has ACK pending	cumulative ACK. immediately send single cumulative ACK, ACKing both in-order segments
arrival of out-of-order segment higher-than-expect seq. # . Gap detected	immediately send <i>duplicate ACK</i> , indicating seq. # of next expected byte
arrival of segment that partially or completely fills gap	immediate send updated ACK, provided that segment starts at lower end of gap

delayed and cumulative ACK

delayed and cumulative ACK

duplicate ACK

Updated ACK

TCP fast retransmit

- time-out period often relatively long:
 - long delay before resending lost packet
- detect lost segments via duplicate ACKs.
 - sender often sends many segments backto-back
 - if segment is lost, there will likely be many duplicate ACKs.

TCP fast retransmit

if sender receives 3
ACKs for same data
("triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

likely that unacked segment lost, so don't wait for timeout

TCP fast retransmit

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

TCP flow control

application may remove data from TCP socket buffers

... slower than TCP receiver is delivering (sender is sending)

application process application OS TCP socket receiver buffers TCP code ĬΡ code from sender

receiver protocol stack

flow control

receiver controls sender, so sender won't overflow receiver's buffer by transmitting too much, too fast

TCP flow control

- receiver "advertises" free buffer space by including rwnd value in TCP header of receiver-to-sender segments
 - RcvBuffer size set via socket options (typical default is 4096 bytes)
 - many operating systems autoadjust RcvBuffer
- sender limits amount of unacked ("in-flight") data to receiver's rwnd value
- guarantees receive buffer will not overflow

receiver-side buffering

Chapter 3 outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

Connection Management

before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters


```
connection state: ESTAB connection Variables:
    seq # client-to-server
        server-to-client
    rcvBuffer size
    at server,client

network
```

```
Socket clientSocket =
  newSocket("hostname","port
  number");
```

```
Socket connectionSocket =
  welcomeSocket.accept();
```

Two general's problem

- AI and A2 need to attack B simultaneously
- AI and A2 should agree on the attack time first
- Communication between AI and A2 may be captured by B
- How can they agree on the attack plan?

Two general's problem (From wiki)

- The result is: no matter how many rounds of confirmation are made, no may to guarantee they agreed on the plan.
- How about AI and A2 are the radio transceiver?
 - 3-way handshaking is enough

Agreeing to establish a connection

3-way handshake:

- TI: B knows A's transmitter and B's receiver is OK
- T2: A knows A's transceiver and B's transceiver is OK, B has no more information than TI
- T3: Both A and B know their transceiver are OK, they can start the communication!

TCP 3-way handshake

TCP: closing a connection

TCP: closing a connection

- Four-way handshaking
- client, server each close their side of connection
 - send TCP segment with FIN bit = I
- respond to received FIN with ACK
 - on receiving FIN, ACK can be combined with own FIN
- Why FIN and ACK can not be sent in one msg as SYNACK in connection establishment?
 - The other side may still have packets need to be sent.
 It can not send FIN until the transmission is finished.