Теоретический сведения

При заходе на посадку пилот ВС должен обеспечить его движение по заданной траектории с определёнными допусками по горизонтали и вертикали. В связи с этим можно выделить две задачи управления ВС: наведение в горизонтальной плоскости — по курсу и наведение в вертикальной плоскости — по глиссаде. Для решения задач наведения необходимо иметь информацию об отклонениях ВС от заданной траектории. Для получения такой информации широко применяются радиотехнические средства обеспечения посадки.

Одним из подходов к навигационному обеспечению задачи наведения ВС на ВПП является применение радиомаячных — инструментальных систем посадки (РМС). В этом случае определение текущего местоположения на заключительном этапе снижения по глиссаде также проводится на борту ВС на основе обработки сигналов радионавигационного поля, создаваемого наземными радиомаяками: курсовым — для наведения в горизонтальной и глиссадным — для наведения в вертикальной плоскости. Продольное положение ВС относительно порога ВПП оценивается пилотом путём фиксации пролёта маркерных радиомаяков. Для этого в современных РМС всё шире используются специальные высокоточные дальномерные радиомаяки.

Радиомаячные системы посадки метрового диапазона. Система ILS

Радиомаячные системы (РМС) инструментального захода ВС на посадку метрового диапазона волн ILS предназначены для обеспечения точной (категорированной) посадки ВС в сложных метеоусловиях с вертикальным наведением на ВПП. В зависимости от сложности метеоусловий, в которых возможно использование РМС, по своей точности они делятся на системы первой, второй и третьей категорий в соответствии с обеспечиваемыми ими требованиями метеоминимумов ICAO

РМС — это совокупность наземных и бортовых радиотехнических устройств, обеспечивающих пилотов точной информацией о положении ВС относительно курса посадки и глиссады снижения. Они также сигнализируют о пролёте ВС маркированных точек на предпосадочной прямой, удаление которых от порога ВПП известно. В состав наземного оборудования РМС входят курсовой, глиссадный и три маркерных радиомаяка.

В плоскостях курса и глиссады образуются равносигнальные зоны, определяющие траекторию снижения ВС по глиссаде и обеспечивающие его наведение в горизонтальной и вертикальной плоскостях. По разности амплитуд выделенных модулирующих сигналов с частотами 90 и 150 Гц в бортовой аппаратуре возможно определение величины и направления углового отклонения ВС от плоскостей курса и глиссады.

Курсовой радиомаяк

Курсовой радиомаяк — это передающее устройство с антенной системой. Антенная система КРМ размещается на продолжении оси ВПП на противоположной направлению посадки стороне и на удалении от 400 до 1150 м от порога ВПП. При этом боковое смещение антенн недопустимо. **KPM** излучает горизонтально поляризованные непрерывные электромагнитные колебания на одной из 40 фиксированных частот в диапазоне 108,10-111,95 МГц (с разносом несущих частот 50 кГц при нечётных десятых долях МГц). Радиосигналы несущей частоты в разных ДΗ промодулированы амплитуде лепестках ПО непрерывными гармоническими колебаниями с частотами 90 и 150 Гц.

Во время захода на посадку при уклонении ВС вправо от линии курса преобладают по амплитуде колебания с частотой 150 Гц; при уклонении влево— колебания с частотой 90 Гц. Достижение равенства этих сигналов позволяет устранить боковые уклонения и навести ВС на ВПП вдоль её осе вой линии, как в штурвальном, так и в автоматическом режиме пилотирования.

Глиссадный радиомаяк

Глиссадный радиомаяк — это передающее устройство со своей антенной системой. Антенная система ГРМ размещается у начала ВПП на удалении 200—450м от порога ВПП со стороны захода на посадку и на расстоянии 120—180 м от её оси в сторону грунтовой части лётного поля. Такое размещение ГРМ позволяет обеспечить номинальное значение угла наклона глиссады в пределах 2°40′—4° и необходимую высоту средней линии глиссады над порогом ВПП — высоту опорной точки ≈15 м.

ГРМ формирует горизонтально поляризованное излучение непрерывных колебаний в двух лепестках ДН на частотах, спаренных с соответствующими частотами КРМ, в диапазоне 328,6—335,4 МГц, также промодулированных по амплитуде гармоническими колебаниями с частотами 90 и 150 Гц. Выше плоскости глиссады преобладает результирующее колебание с частотой 90 Гц, а ниже — с частотой 150 Гц.

Маркерные радиомаяки

Маркерные радиомаяки при заходе на посадку по РМС предназначены для информирования членов лётного экипажа об удалении ВС от порога ВПП, фиксация пролёта над которыми осуществляется по звуковой и световой сигнализации. ДН маркерных радиомаяков направлены вверх. Они являются узкими в продольной вертикальной плоскости, проходящей через ось ВПП, и достаточно широкими в вертикальной плоскости, перпендикулярной оси ВПП. При пролёте над маркерным радиомаяком даже в случае незначительного бокового смещения ввиду неточности пилотирования приёмник на борту ВС принимает его радиосигналы, и пилот в этот момент фиксирует соответствующую дальность до порога ВПП. МРМ используются как в упрощённых системах посадки (ОСП), так и в точных системах инструментального захода на посадку.

	1	
OMI	OMI	OMI
Размещается на удалении	Размещается на удалении	Размещается на удалении
850 1200 метров от её	4000 ± 200 метров от её	3,8-7 км от её порога
порога (допускается боковое	порога.	(допускается боковое
смещение ±75 метров)	•	смещение ±75 метров)
		1 /
Сигналами опознавания	Сигналами опознавания	Сигналами опознавания
должна быть непрерывная	должна быть непрерывная	должна быть непрерывная
передача 6 точек в секунду.	передача чередующихся	передача 2 тире в секунду.
	точек и тире	
Модулирующая частота 3000	Модулирующая частота 1300	Модулирующая частота 400
Гц.	Гц	Гц
Zono nonombra Magrob no	Zovo noŭozpug Magrop vo	Zono noŭembra Magres no
Зона действия маяков на	Зона действия маяков на	Зона действия маяков на
линии курса и глиссады ИЛС	линии курса и глиссады ИЛС	линии курса и глиссады
должна составлять 150±50 м	должна составлять 300±100	ИЛС должна составлять
	M.	600±200 м.
должна составлять 130±30 м		

Схема размещения компонентов радиомаячной системы посадки ILS

