Cours : GIF-21947 Électronique pour ingénieurs informaticiens GEL-21948 Électronique des composants discrets

**Professeur : Maxime Dubois** 

### Examen partiel #2

## Question #1 (15 points)

Pour chacune des descriptions suivantes, indiquer si cette description correspond à un transistor PNP ou NPN :

a) Son symbole est le suivant :



- b) La base de ce transistor est faite de Silicium faiblement dôpé avec des Accepteurs d'électrons;
- c) En opération normale, on pousse du courant dans sa base;
- d) En opération normale, V<sub>collecteur</sub> > V<sub>émetteur</sub>
- e) La courbe caractéristique de sa base est la suivante :



# Question #2 (25 points)



où  $R_1 = 5.2 \text{ k}\Omega$ ,  $R_3 = 1 \text{ k}\Omega$ . Pour les jonctions base-émetteur, faites l'hypothèse de  $V_{BE}$  constant ( $2^{\text{ème}}$  approximation) lorsque la base est en conduction. Sachant que les transistors PNP et NPN ont des courbes  $I_C(V_{CE})$  comme suit:



- a) déterminer la valeur maximale de  $R_2$  pour avoir  $V_{sortie} > 4,6$  V lorsque la lampe est allumée.
- b) déterminer la valeur de  $V_{sortie}$  lorsque la lampe est en position OFF (i.e.  $I_{lampe} = 0$ ).
- c) SUR UN MÊME GRAPHIQUE, tracez les formes d'onde du voltage à l'entrée  $V_{entrée}$  et du voltage à la sortie  $V_{sortie}$ . Bien identifier les deux courbes et toutes les valeurs distinctement.
- d) déterminer la puissance fournie par  $V_{entrée}$  et la puissance dissipée par la lampe lorsque celle-ci est en position ON.

## Question #3 (35 points)

Soit le circuit suivant:



L'interrupteur K permet de mettre la charge  $R_c$  sous tension ou hors tension. Pour les jonctions base-émetteur, faites l'hypothèse de  $V_{BE}$  constant ( $2^{\text{ème}}$  approximation) lorsque la base est en conduction.

 $V_{entr\'ee}$  est un voltage variant entre  $V_{entr\'eemin}$  = 6 V et  $V_{entr\'eemax}$  = 25 V et dont la valeur moyenne est  $V_{moyen}$  = 18 V.



a) Déterminer la valeur maximale de R permettant de conserver une valeur de  $V_{sortie}$  constante peu importe que l'interrupteur K soit ouvert ou fermé. Dans ce problème, le gain statique du transistor est  $h_{FE}$  = 200. On utilise  $V_z$  = 5,7 V et  $R_c$  = 25  $\Omega$ .

b) Le gain statique du transistor varie en fonction de la température. La valeur de  $h_{FE}$  est représentée sur le graphique suivant, en fonction de la température.





On choisit des pièces différentes de a), lesquelles nous permettront d'opérer le circuit sur une plage de température de -40 °C à +75 °C. Pour  $V_z = 5,7$  V et  $R_c = 5$   $\Omega$ , quelle devra être la puissance moyenne maximale que devra pouvoir dissiper la diode Zener et quelle valeur minimale de R devra être utilisée afin de supporter une opération sur toute cette plage de température. Tout comme en a), on doit conserver une valeur de  $V_{sortie}$  constante peu importe que l'interrupteur K soit ouvert ou fermé.

#### Question #4 (25 points)

Soit le circuit suivant:



où  $V_{CC}=8$  V,  $R_B=14,6$  k  $\Omega$  et  $R_C=66$   $\Omega$ . Le transistor utilisé possède une caractéristique  $I_C$  ( $V_{CE}$ ) telle que décrite ici-bas.



On souhaite utiliser ce montage afin d'amplifier le signal alternatif  $v_{entr\'ee}$ . Quelle sera l'amplitude maximale de  $v_{entr\'ee}$  admissible avant que la sortie de cet ampli ne distorsionne. On considère l'impédance c.a. du condensateur de liaison comme étant nulle.

Note: On peut approcher le gain alternatif du transistor par l'expression suivante:

$$A \cong \frac{R_C I_E}{25mV}$$

Pour le calcul de la polarisation de la base, faites l'hypothèse de  $V_{BE}$  constant (2<sup>ème</sup> approximation) lorsque la base est en conduction.