CSC 411

Computer Organization (Spring 2024) Lecture 7: Floating Point

Prof. Marco Alvarez, University of Rhode Island

Fractional binary numbers

- Bits to the right of binary point
 - fractional powers of 2
 - · don't worry about negatives for now

$$\sum_{k=-i}^{i} b_i 2^k$$
11.010 =

Practice

Convert fractional binary numbers to decimal

Observations

- Not all decimal fractions have exact binary equivalents
 - . can only represent numbers of the form $\frac{x}{2^k}$
 - e.g., 1/5 and 1/10
- Limited precision due to finite number of bits
 - · can't easily represent very small or very large values
- ▶ 0.111111... represents a number just below 1.0

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^i} + \dots = 1.0 - \varepsilon$$

IEEE Floating Point

- ► IEEE standard 754
 - defines a common format for representing real numbers in computers
 - developed in response to divergence of representations
 - supported by major CPUs (almost universally adopted)
 - provides different precision levels (single, double, extended) for various needs.
 - standardizes sign, exponent, and fraction components

sign	exponent	fraction
------	----------	----------

Floating point representation

Numerical form

$$(-1)^s M 2^E$$

- sign bit s: 0 for positive, 1 for negative
- **exponent E**: magnitude of the number (power of 2)
 - · encoded in exp
- **significand M**: captures the fractional part, scaled by the exponent, normally in range [1.0,2.0)
 - encoded in frac

s exp	frac
-------	------

Precision options

- Single-precision (32 bits)
 - good balance of performance and range (7 decimal digits)

S	exp	frac
1	8 bits	23 bits

- Double-precision (64 bits)
 - higher precision (15-17 decimal digits) for demanding calculations

S	exp	frac
1	11 bits	52 bits

- Others
 - · half precision, quad precision

Normalized and denormalized numbers

- Normalized
 - maximizes precision
 - exp!= 000...000 and exp!= 111...111
- Denormalized
 - used for very small numbers, reducing precision
 - exp == 000...000
- Special
 - exp == 111...111

Normalized values

 $(-1)^s M2^E$

- ▶ Exponent E
 - E = exp bias
 - bias is $2^{k-1} 1$, where k is the number of bits in exp
 - single precision, bias = 127
 - double precision, bias = 1023
- Significand M
 - · assume xx...xx are the bits in frac
 - M = 1.xx...xx
 - always with an implied leading 1
 - minimum?
 - · maximum?

Decoding example

 $(-1)^s M2^E$

- ► Assume a float F = 0x43CDA000
 - write the binary
 - extract s, exp, frac
 - · calculate M and E
 - write final number

Encoding example

 $(-1)^s M 2^E$

- ► Assume a float F = 2024.0
 - fractional binary: 11111101000
 - make it form 1.xxx...: 1.1111101000 x 2¹⁰
 - M = 1.1111101000
 - calculate exp using E = exp bias
 - $\exp = E + \text{bias} = 10 + 127 = 137 = 10001001$

0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44FD0000