Оглавление

1. Постановка задачи №1	3
2. Структурные требования	
3. Описание работы	
3.1. Используемые переменные	2
3.2. Псевдокод программы	
3.3. Блок схема алгоритма	2
3.4. Листинг программной реализации	3
3.5. Результат	4
3.6. Тесты	4
1. Постановка задачи №2	5
2. Структурные требования	5
3. Описание работы	· 5
3.1. Используемые переменные	5
3.2. Псевдокод программы	5
3.3. Блок схема алгоритма	5
3.4. Листинг программной реализации	6
3.5. Результат	7
3.6. Тесты	7
1. Постановка задачи №3	
2. Структурные требования	8
3. Описание работы	8
3.1. Используемые переменные	8
3.2. Псевдокод программы	8
3.3. Блок схема алгоритма	9
3.4. Листинг программной реализации	
3.5. Результат	11
3.6. Тесты	
1. Постановка задачи №4	12
2. Структурные требования	12
3. Описание работы	
3.1. Используемые переменные	12
3.2. Псевдокод программы	12
3.3. Блок схема алгоритма	
3.4. Листинг программной реализации	13
3.5. Результат	
3.6. Тесты	
1. Постановка задачи №6	
2. Структурные требования	
3. Описание работы	
3.1. Используемые переменные	
3.2.Псевдокод программы	15

3.3. Блок схема алгоритма	15
3.4. Листинг программмной реализации	16
3.5. Результат	16
3.6. Тесты	16
1. Постановка задачи №7(а)	
2. Структурные требования	17
3. Описание работы	17
3.1. Используемые переменные	17
3.2. Псевдокод программы	17
3.3. Блок схема алгоритма	17
3.4. Листинг программной реализации	18
3.5. Результат	19
3.6. Тесты	19
1. Постановка задачи №7(б)	
2. Структурные требования	19
2. Структурные требования 3. Описание работы	19 19
3. Описание работы 3.1. Используемые переменные	19 19
3. Описание работы	19 19 19
3. Описание работы	19 19 19
3. Описание работы 3.1. Используемые переменные	19 19 19
3. Описание работы	19 19 19 21
3. Описание работы	19 19 19 21

1. Постановка задачи №1

1. Дан радиус окружности. Найти длину окружности, её диаметр и площадь круга.

2. Структурные требования

R > 0.

3. Описание работы

3.1. Используемые переменные Pi, SS, D, R, S

3.2. Псевдокод программы

Пользователь вводит R. Далее идет проверка если R>0, так как радиус не может быть отрицательным, тогда происходит подсчет D=R*2, SS=2*Pi*R, S=Pi*R*R. После этого выводится D, SS, S. Если радиус, введенный пользователем, не подходит под условие, выводится сообщение "Радиус не может быть отрицательным"

3.4. Листинг программной реализации

```
#include <stdio.h>
int main() {
    const float Pi = 3.14;
    float SS, S;
    int R, D;
    printf("Введите радиус окружности: ");
    scanf("%d", &R);

if (R > 0) {
    D = R*2;
    SS = 2*Pi*R;
    S = Pi*R*R;
    printf("%d\n%f\n%f", D, SS, S);
    }
    else {
    printf("Радиус не может быть отрицательным");
```


3.6. Тесты

R=12	D=24
	SS=75.360001
	S=452.160004
R=8	D=16
	lol = 50.240002
	S=200.960007
R=-9	-
	-
	-

1. Постановка задачи №2

Треугольник задан координатами своих вершин. Найти периметр и площадь треугольника.

2. Струтурные требования

$$(((W - X) * (Y - Q) - (S - X) * (A - Q) 0)$$
 и $((X - S) * (A - Y) - (W - S) * (Q - Y) \neq 0$

3. Описание работы

3.1. Используемые переменные

3.2. Псевдокод программы

Пользователь вводит координаты треугольника: X, Q, S, Y, W, A. Далее. происходит подсчет сторон по формулам: $a = (\sqrt{(C - X)^2}) + (Y-Q)^2$, $b = (\sqrt{(W - C)^2}) + (A-Y)^2$, $c = (\sqrt{(X - W)^2}) + (Q-A)^2$. Далее мы можем высчитать P и S: P = (a + b + c)/2 и S = 0.5*((X-W)*(Y-A)-(S-W)*(Q-A))

3.4. Листинг программной реализации

```
#include<stdio.h>
#include<math.h>
int main()
  int X, C, W, Q, Y, A;
  float a, b, c, S, P;
  printf("Введите координаты треугольника: X, Q, S, Y, W, A \n");
  scanf("%d %d %d %d %d %d", &X, &Q, &S, &Y, &W, &A);
    if (((W - X) * (Y - Q) - (C - X) * (A - Q) != 0) \& \& ((X - S) * (A - Y))
-(W-S)*(Q-Y)!=0)&&((S-X)*(A-Q)-(W-X)*(Y-Q)!=0)
       a = sqrt(pow((C-X), 2) + pow((Y-Q), 2));
       b = sqrt(pow((W-C), 2) + pow((A-Y), 2));
       c = sqrt(pow((X-W), 2) + pow((Q-A), 2));
       P = a + b + c;
       S = 0.5*(fabs((X-W)*(Y-A)-(C-W)*(Q-A)));
       printf("площадь = %f периметр = %f", S, P);
    else{
    printf("Не правильно введены координаты треугольника");
}
                       10.000000 периметр = 16.542515
                .. Program finished with exit code 0
3.5. Результат Ресси
```

3.6. Тесты

X=2	S=7.500000
Q=4	
S=5	P=22.037979
Y=7	

X=10	S=4.000000
Q=2	
S=5	P=21.714602
Y=6;	

1. Постановка задачи №3

Возраст Тани - Х лет, а возраст Мити - У лет. Найти их средний возраст, а также определить, на сколько отличается возраст каждого ребенка от среднего значения.

2. Структурные требования

Во-первых, возраст каждого не может быть чисто логически отрицательным, поэтому мы это указываем для пользователя — Z>-1 и D>-1. Также мы ведем подсчет месяцев, поэтому указываем, что G1>-1 и G1<13 и a1>-1 и a1<13.

3. Описание работы

3.1. Используемые переменные Z, D, G, G1, a1, S, D1, Z1, a, S1, S2

3.2. Псевдокод программы

Введите возраст Тани и Мити. Год и месяц каждого. Если Z=0 и D=0 и G1=0 и a1=0, тогда выводится сообщение о том, что введены неправильные значения. Иначе если G1>-1 и G1<13 и a1>-1 и a1<13 и Z>-1 и D>-1, тогда G1=G1+(Z*12) — месяцы Тани. a1=a1+(D*12) — месяцы Мити. Далее высчитывается среднее значение S=(G1+a1)/2 — среднее значение месяцев. Далее Z=abs((G1+a1)/2-G1) — среднее значение по годам у Тани. D=((G1+a1)/2-a1) — среднее

значение по годам у Мити. Далее Z1=Z. Пока Z1 >11, G=G+1и Z1=Z1-12. D1=D. Пока D1>11, a=a+1 и D1=D1-12. S1=S. Пока S1>11, S2=S+1 и S1=S1-12. Далее выводится среднее значение в годе и месяце и разницы возраста от среднего значения Тани и Мити в годах и месяцах.

3.4. Листинг програмной реализации

#include <stdio.h>

```
int main() { int Z, D, G1, a1, S, D1,Z1,G=0,a=0,S1=0,S2=0; printf("Возраст тани и мити, сначало год тани потом мясяц "); scanf("%i%i %i %i",&Z,&G1,&D,&a1); if(G1 == 0 && a1 == 0 && Z == 0 && D==0) printf("Веденыее значение не должно равняться: 0"); else { if (G1 > -1 && G1 < 13 && a1>-1 && a1 < 13 && Z>-1 && D>-1) {
```

```
G1 += Z * 12;//месецев тани
  a1 += D * 12;//месецев мити
  S = (G1 + a1) / 2;//среднее значение
  Z = abs((G1 + a1) / 2 - G1);
  D = abs((G1 + a1) / 2 - a1);
  Z1 = Z;
  while (Z1 > 11)
    G += 1;
    Z1 = 12;
  D1 = D;
  while (D1 > 11)
    a += 1;
    D1 = 12;
  S1 = S;
  while (S1 > 11)
    S2 += 1;
    S1 = 12;
  printf("\nСреднее Значение: год: %і месяц: %і\nОтличие возраста
от среднего значение\пТаня год: %і месяц: %і\пМитя год: %і
месяц: %i", S2, S1, Z1, G, D1, a);//выводит результат
  }
  else
  printf("Веденены некоретные значение");
}
3.5. Результат
                        input
```

```
v 2 3
Среднее Эначение: год: 5 месяц: 8
тличие возраста от среднего значение
Ганя год: 5 месяц: 0
итя год: 5 месяц: 0
 ..Program finished with exit code 0
ress ENTER to exit console
```

3.6. Тесты

Митя	Лет = 3	Сред. значение =3
		года и 1 мес
	Mec=6	Отличие возраста
Таня	Лет = 2	Таня = Митя
	Mec=9	5 лет и 0 4 года и 0
		мес мес

Митя	Лет = 9	Сред. значение = 12
		лет и 9 мес
	Mec=4	Отличие возраста
Таня	Лет = 16	Таня = Митя
	Mec=3	5 лет и 3 6 лет и 3
		мес. мес.

1. Постановка задачи №4

Вычислить значение логического выражения при следующих значениях логических величин I, L, Ll: I = Истина, L = Ложь, Ll= Ложь.

- а) I или L
- б) I и L
- в) L или Ll.

2. Структурные требования

- а) I или L
- б) І и L
- в) L или L1.

3. Описание работы

- 3.1. Используемые переменные
- I, Ll, L, D, E, F
- 3.2. Псевдокод программы

Есть переменные I, L, L1. I=1; L=0; L1=0; D=A||B (А или В),

E=A&&D (A и B), F=B||C (В или C). Вывод D, E, F.

3.4. Листинг программной реализации

```
#include <stdio.h>

int main()
{

int I, L, Ll, D, E, F;

I = 1;

L = 0;

Ll = 0;

D = I||L;

E = I&&L;

F = L||Ll;

printf("%i\n%i\n%i", D, E, F);

return 0;
}
```

3.5. Результаты

3.6. Тесты

Условие	Ответ
0	0
0	0
0	0

1. Постановка задачи №6

Пусть в прямоугольной системе координат задана точка, для которой. Найти номер четверти плоскости, которой принадлежит заданная точка. Считать, что номер определяется по формуле

$$N = \begin{cases} 1, ecли x > 0, y > 0, \\ 2, ecли x < 0, y > 0, \\ 3, ecли x < 0, y < 0, \\ 4, ecли x > 0, y < 0. \end{cases}$$

2. Структурные требования

Z>0, A>0 (первая четверть); - Z<0, A>0 (вторая четверть); - Z<0, A<0 (третья четверть); - Z>0, A<0 (четвертая четверть).

3. Описание работы

- 3.1. Используемые перенменные
- Z, A
- 3.2. Псевдокод программы

Пользователь вводит х и у. Далее происход расчет четверти, в которой находятся чиста. Если Z>0 и A>0, то выводится сообщение «Первая четверть». Если Z<0 и A>0, то выводится сообщение «Вторая четверть». Если Z<0 и A<0, то выводится сообщение «Третья четверть». Если Z>0 и A<0, то выводится сообщение «Четвертая четверть».

3.4. Листинг програмной реализиации

```
#include <stdio.h>
int main()
{
    int Z, A;
    printf("Введите Z,A:\n");
    scanf("%i%i", &Z, &A);
    if(Z>0 && A>0)
        printf("Первая четверть");
    if(Z<0 && A>0)
        printf("Вторая четверть");
    if(Z<0 && A<0)
        printf("Третья четверть");
    if(Z>0 && A<0)
        printf("Четвертая четверть");
    return 0;
}
```

3.5. Результат

```
input

BBEQUITE Z,A:

5
4

Hepbas четверть

...Program finished with exit code 0

Press ENTER to exit console.
```

3.6. Тесты

Z=11	Вторая четверть
A=5	

1. Постановка задачи №7 (а)

Дано действительное число а. Вычислить f(a), если

$$f(x) = \begin{cases} 0, ecлu \, x \le 0, \\ x, ecлu \, 0 < x \le 1, \\ x^3, \, B \, octaльных cлучаях; \end{cases}$$

2. Структурные требования

Задано число а. Вычислить f(i), если f(x): - 0, если $x \le 0$; - x, если $0 < x \le 1$; - , в остальных случаях.

3. Описание работы

- 3.1. Используемые переменные і
- 3.2. Псевдокод программмы

Пользователь вводит і. Если $i \le 0$, тогда выводится 0. Если i > 0 и $i \le 1$, тогда выводится a, иначе, а возводится в третью степень и выводится.

3.3. Блок-схема

Основная функция:

3.4. Листинг Програмной реализации

```
#include <stdio.h>
#include <math.h>
float f (float a);
int main()
{
  float i;
printf("Введите i");
scanf("%f", &i);
  printf("%f", f(i));
   return 0;
}
float f(float i){
    if(i <= 0){
       return 0;
       }
    if(i>0 && i<=1) {
    return i;
    } else{
       i = pow(i, 3);
       return i;
    }
  }
```

3.5. Результат

3.6. Тесты

Введите і=9	I=729.0000000
Введите і=6	i=216.0000000
Введите і=3	i=27.000000

1. Постановка задачи №7 (б)

Дано действительное число а. Вычислить f(a), если

$$f(x) = \begin{cases} 0, ecлu \ x \le 0, \\ x^2 + x, ecлu \ 0 < x \le 1, \\ x^2 - \sin(\pi x), B octaльных случаях. \end{cases}$$

2. Структурные требования

Задано число а. Вычислить f(a), если f(x): - 0, если $x \le 0$; - +x, если $0 < x \le 1$; - - $\sin(x)$, в остальных случаях.

3. Описание работы

3.1. Используемые переменные

L, Pi

3.2. Псевдокод программмы

Пользователь вводит а. Если L<=0, тогда выводится 0. Если L>0 и L<=1, тогда а возводится в квадрат и еще прибавляется (L 2 +L), иначе, а возводится в квадрат и из а вычитается $\sin(L^*Pi)$

3.3. Блок схема алгоритма

Блок-схема основной функции:


```
3.4. Листинг програмной реализицаии
#include <stdio.h>
#include <math.h>
float f (float L);
int main()
{
 float L;
 printf("Введите L");
 scanf("%f", &L);
 printf("%f", f(L));
  return 0;
}
float f(float L){
    const float Pi = 3.14;
    if(L<=0){
      return 0;
    }
    if(L>0 && L<=1) {
      L = pow(L, 2)+L;
      return L;
    }
    else{
```

```
L = pow(L, 2) - sin(L*Pi);

return L;
}
```

3.5. Резульат

3.6. Тесты

Введите L=3	1=8 995222
DDCAILC L-3	L-0.333222

Список литературы

- 1. Конова Е.А., Поллак Г.А. Алгоритмы и программы. Язык С++: Учебное пособие. 2-е изд., стер. СПб.: Издательство "Лань", 2017. 384 с.
- 2. Седжвик Роберт. Алгоритмы на C++.: Пер. с англ. М.: ООО "И.Д. Вильямс", 2011. 1056 с.
- 3. Лафоре Р. Объектно-ориентированное программирование в C++. Классика Computer Science. 4-е изд. - СПб.: Питер, 2015. - 928 с.
- 4. Орлов С.А. Теория и практика языков программирования: Учебник для вузов. Стандарт 3-го поколения. СПб.: Питер, 2014. 688 с.
- 5. Павловская Т.А. С/С++. Процедурное и объектноориентированное программирование: Учебник для вузов. Стандарт 3-го поколения. - СПб.: Питер, 2015. - 496 с.
- 6. Павловская Т.А. С#. Программирование на языке высокого уровня: Учебник для вузов. СПб.: Питер, 2014. 432 с.
- 7. Плаксин М.А. Тестирование и отладка программ для профессионалов будущих и настоящих. М.: БИНОМ. Лаборатория знаний, 2013. 167 с.