Caching Ch. 5.

Single-cycle and pipelined datapaths

CPU speed vs. Memory speed

Memory Hierarchy

Latency Numbers Every Programmer Should Know

Locality

Programs tend to use.

the same data/inst. that
were used recently

100p: --- XX beg..., :..., loop.

Program Characteristic

• Temporal Locality - items accessed recently are likely to be accessed in the near future

• Spatial Locality - if an item is accessed, a program (Space)

Cache Design to use locality

Temporal Locality

Spatial Locality

Placing data in a cache

Definitions

- · Block (Line) the unit of data transferred into a cache
- · Hit data is found in the cache
- · Miss data is not found
- Hit time (Access time) how long to get the data.
- · Miss Penalty time to receive the data from a lower level

Accessing a cache

Address stream:

Index

Cache

- HW due Friday

Addressing into a cache

Valid bit

2 Reasons:

1. On power inp, the CPU clears all

2. Chrone Word
Spotify
- When a context
switch, the CPU can
invalidate
switching the cache
programs

Taking advantage of spatial locality

Multi-Word Cache Block - store neighboring words in the same block

Address with multi-word blocks

Example (15 bits)

- You are implementing a 128-Kbyte cache
- The block size (line size) is 16 bytes.
- Each word is 4 bytes, address 32 bits

• How many bits is the index?

16
$$\rightarrow$$
 24

How many bits is the index?

18 \rightarrow 24

19 \rightarrow 24

10 \rightarrow 24

How many bits is the tag?

-Lab 5

