The "Data Mining" Specialization

Learn More

×

Feedback — Week 2 Quiz

Help Center

Thank you. Your submission for this quiz was received.

You submitted this quiz on **Wed 18 Feb 2015 8:25 AM PST**. You got a score of **10.50** out of **11.00**. You can attempt again, if you'd like.

Question 1

Suppose a school collected some data on students' preference for hot dogs(HD) vs. hamburgers(HM). We have the following 2×2 contingency table summarizing the statistics. If lift is used to measure the correlation between HD and HM, what is the value for lift(HD, HM)?

	HD	¬HD	Σ_{row}
НМ	40	24	64
¬HM	210	126	336
Σ_{col}	250	150	400

Your Answer		Score	Explanation	
O -1				
∞				
0				
1	~	1.00		
Total		1.00 / 1.00		

Question Explanation

The correct answer is: "1".

The lift can be calculated by

$$Lift = \frac{\operatorname{supp}(A \cup B)}{\operatorname{supp}(A) \cdot \operatorname{supp}(B)},$$

where supp(A) and supp(B) refer to the relative support of A and B respectively. Thus,

$${\rm Lift} = \frac{40/400}{250/400 \times 64/400} = 1.$$

Question 2

Suppose Coursera collected statistics on the number of students who take courses on data mining (DM) and machine learning (ML). We have the following 2×2 contingency table summarizing the statistics. If χ^2 is used to measure the correlation between DM and ML, what is the χ^2 score?

	DM	¬DM	Σ_{row}
ML	700	300	1000
¬ML	500	1500	2000
Σ_{col}	1200	1800	3000

Your Answer		Score	Explanation
O -562.5			
O -225			
O 225			
• 562.5	~	1.00	
Total		1.00 / 1.00	

Question Explanation

The correct answer is: "562.5".

The contingency table with expected values is following table

	DM	¬DM	Σ_{row}
ML	700 (400)	300 (600)	1000
¬ML	500 (800)	1500 (1200)	2000

 Σ_{col}

1200

1800

3000

 χ^2 can be evaluated as follows

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

where O_i is the observed frequency, and E_i is the expected frequency, thus

$$\chi^2 = \frac{(700 - 400)^2}{400} + \frac{(300 - 600)^2}{600} + \frac{(500 - 800)^2}{800} + \frac{(1500 - 1200)^2}{1200} = 562.5.$$

Question 3

What is the value range of the Lift measure?

Your Answer	Score	Explanation
[-1, 1]		
	1.00	
O [0, 1]		
○ (-∞, +∞)		
Total	1.00 / 1.00	

Question Explanation

By definition, the correct answer is: "[0, +∞)".

Question 4

Which of the following measures is NOT null invariant?

Your Answer		Score	Explanation
Cosine			
	~	1.00	
Kulcyzynski			
All confidence			

Total

Question Explanation

The correct answer is: " χ^2 ".

Null transactions are considered in χ^2 .

Question 5

Suppose we are interested in analyzing the transaction history of several supermarkets with respect to purchase of apples(A) and bananas(B). We have the following table summarizing the transactions.

1.00 / 1.00

Supermarket	AB	¬АВ	А¬В	¬A ¬B
S1	100,000	7,000	3,000	300
S2	100,000	7,000	3,000	90,000

Denote I_i as the lift measure and ki as the Kulcyzynski measure for supermarket S_i (i = 1, 2). Which of the following is correct?

Your Answer		Score	Explanation
\bullet $I_1 \neq I_2, k_1 = k_2$	~	1.00	

- $I_1 = I_2, k_1 \neq k_2$
- $\bigcirc \ \mathsf{I}_1 \neq \mathsf{I}_2, \ \mathsf{k}_1 \neq \mathsf{k}_2$
- $I_1 = I_2, k_1 = k_2$

Total 1.00 / 1.00

Question Explanation

The correct answer is: " $l_1 \neq l_2$, $k_1 = k_2$ ".

Lift is not null invariant and therefore sensitive to the number of null transactions, while Kulcyzynski is null invariant.

Question 6

Consider the support-based and null-invariant definitions for negative patterns. For negative pattern threshold ε = 0.011, which of the following patterns would be considered a negative pattern by the null-invariant definition but not the support-based definition?

Your Answer		Score	Explanation
• A media content provider has 1,000,000 users. Movie A and Movie B were viewed by 1000 users each in the last month, but only 10 users viewed both.	~	1.00	
There are 5 million registered students on an online education website. 5000 students registered for Music 101, and 50,000 students registered for Data Mining, but only 500 students registered for both.			
Both of the above are correct.			
None of the above are correct.			
Total		1.00 /	

Question Explanation

The correct answer is: "A media content provider has 1,000,000 users. Movie A and Movie B were viewed by 1000 users each in the last month, but only 10 users viewed both."

1.00

Null-invariant:

$$\frac{P(A|B) + P(B|A)}{2} = \frac{10/1000 + 10/1000}{2} = 0.01 \le \epsilon$$

Support based:

$$\sup(\text{Movie A}) = \sup(\text{Movie B}) = \frac{1000}{1000000} = 10^{-3}$$

 $\sup(\text{Movie A} \cup \text{Movie B}) = \frac{10}{1000000} = 10^{-5}$
 $\sup(\text{Movie A}) * \sup(\text{Movie B}) = 10^{-3} * 10^{-3} = 10^{-6}$
 $< \sup(\text{Movie A} \cup \text{Movie B})$

Thus, {Movie A, Movie B} is a negative pattern by the null-invariant definition but not the support based definition.

Null-invariant:

$$\frac{P(DM|Music) + P(Music|DM)}{2} = \frac{500/5000 + 500/50,000}{2} = 0.055 > \epsilon$$

Support based:

$$\begin{split} \sup(\mathrm{DM}) &= \tfrac{50000}{50000000} = 0.01 \\ \sup(\mathrm{Music}) &= \tfrac{5000}{5000000} = 0.001 \\ \sup(\mathrm{DM} \cup \mathrm{Music}) &= \tfrac{500}{5000000} = 10^{-4} \\ \sup(\mathrm{DM}) * \sup(\mathrm{Music}) &= 0.01 * 0.001 = 10^{-5} < \sup(\mathrm{DM} \cup \mathrm{Music}) \end{split}$$

Thus, {DM, Music} is not a negative pattern by either definition.

Question 7

Pat-ID	Item-Sets	Support
P1	$\{A, C, E, S\}$	205227
P2	$\{F, A, C, E, S\}$	205211
P3	$\{F, A, C, E, T, S\}$	101758
P4	$\{F, A, C, T, S\}$	161563
P5	$\{A, C, T, S\}$	161576

Table 1: Support for frequent itemsets

Consider two patterns P_1 and P_2 such that $O(P_1) \subseteq O(P_2)$, where $O(P_i)$ is the corresponding itemset of pattern P_i . Take a second to convince yourself that the following is true:

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|} = 1 - \frac{|T(P_2)|}{|T(P_1)|}$$

Which of the following patterns in Table 1 is δ -covered by {F, A, C, E, T, S} for δ =0.4? Select all that apply.

Your Answer		Score	Explanation
	~	0.25	
	~	0.25	
	×	0.00	
	×	0.00	
Total		0.50 / 1.00	

Question Explanation

The correct answers are: "{F, A, C, T, S}" and "{A, C, T, S}".

Dist({F, A, C, E, T, S}, {A, C, E, S}) = 1- 101758/205227 = 0.504 *Dist*({F, A, C, E, T, S}, {F, A, C, E, S}) = 1- 101758/205211 = 0.504 *Dist*({F, A, C, E, T, S}, {F, A, C, T, S}) = 1- 101758/161563 = 0.370 *Dist*({F, A, C, E, T, S}, {A, C, T, S}) = 1- 101758/161576 = 0.370

Thus, {F, A, C, T, S}, {A, C, T, S} are 0.4-covered by {F, A, C, E, T, S}

Question 8

Transactions	# of Transactions
(abe)	100
(bcf)	100
(acf)	100
(abcef)	100

Table 2: # transactions in a database.

Given the transactions in Table 2, which of the following is a 0.5-core pattern of (abcef)? Select all that apply

Your Answer		Score	Explanation
(a)	~	0.20	
	~	0.20	
(abe)	~	0.20	
(acfe)	~	0.20	
(abcef)	~	0.20	
Total		1.00 / 1.00	

Question Explanation

The correct answers are: "(acfe)", "(abcef)", "(e)", and "(abe)".

Every pattern except (a) is contained in at most one other pattern in the database, making it a 0.5-core pattern of (abcef).

Question 9

A constraint is anti-monotone if an itemset S violates the constraint, so do all of its supersets.

Which of following constraints is anti-monotone?

Your Answer		Score	Explanation
Relative support of S > 0.3	~	1.00	
range(S.profit) > 10			
avg(S.price) < 10			
sum(S.price) > 25			
Total		1.00 / 1.00	

Question Explanation

The correct answer is: "Relative support of S > 0.3"

Suppose X is the superset of S; if so, the following inequalities always hold for all X:

- Relative support of X ≤ Relative support of S
- sum(X.price) ≥ sum(S.price)
- avg(X.price) <> avg(S.price)
- range(X.profit) ≥ range(S.profit)

From these inequalities, we can easily verify that relative support of S > 0.3 is anti-monotone.

Question 10

A constraint is monotone if an itemset S satisfies the constraint, so do all of its supersets. Which of following constraints is monotone?

Your Answer		Score	Explanation
sum(S.price) > 20	~	1.00	
avg(S.price) < 10			
min(S.price) > 10			
○ Support of S > 100			
Total		1.00 / 1.00	

Question Explanation

The correct answer is: "sum(S.price) > 20"

Suppose X is the superset of S; if so, the following inequalities always hold for all X:

- support of $X \le \text{support of } S$
- min(X.price) ≤ min(S.price)
- avg(X.price) <> avg(S.price)
- $sum(X.price) \ge sum(S.price)$

From these inequalities, we can easily verify that sum(S.price) > 20 is monotone.

Question 11

A constraint is succinct if the constraint c can be enforced by directly manipulating the data.

Which of following constraints is NOT succinct?

Your Answer	Score	Explanation
min(S.profit) < 40		
range(S.price)2	✔ 1.00	It cannot be determined beforehand since range of the price of itemset S keeps increasing.
\bigcirc v \in S		
min(S.profit) > 40		
Total	1.00 / 1.00	

Question Explanation

The correct answer is: "range(S.price) > 2"