Teorema 11.4 Se L'è un linguaggio in PS (rispettivamente NPS), allora L è accettato da una TM deterministica (rispettivamente non deterministica), con limite polinomiale sullo spazio, che si arresta dopo aver fatto al più $c^{q(n)}$ mosse, per un polinomio q(n) e una costante c > 1.

DIMOSTRAZIONE Dimostreremo l'enunciato per le TM deterministiche; lo stesso ragionamento vale per le NTM. Sappiamo che L è accettato da una TM M_1 che ha un limite polinomiale p(n) sullo spazio. Allora, per il Teorema 11.3, se M_1 accetta w lo fa in non più di $c^{1+p(|w|)}$ passi.

Definiamo una nuova TM M_2 dotata di due nastri. Sul primo nastro M_2 simula M_1 , sul secondo conta in base c fino a $c^{1+p(|w|)}$. Se M_2 raggiunge questo numero, si arresta senza accettare. Perciò M_2 usa 1+p(|w|) celle sul secondo nastro. Abbiamo ipotizzato che M_1 non impieghi più di p(|w|) celle, per cui anche M_2 non usa più di p(|w|) celle sul primo nastro.

Se convertiamo M_2 in una TM M_3 a nastro singolo, possiamo essere certi che M_3 non usa più di 1 + p(n) celle di nastro, su qualsiasi input di lunghezza n. M_3 può impiegare il quadrato del tempo di esecuzione di M_2 , ma non più di $O(c^{2p(n)})$. Dato che M_3 non compie più di $dc^{2p(n)}$: mosse per una costante d_i possiamo scegliere $q(n) := 2p(n) + \log_c d$. M_3 fa dunque al massimo $c^{q(n)}$ passi. Poiché M_2 si arresta sempre, anche M_3 : fa lo stesso. Dal momento che M_1 accetta L, lo fanno anche M_2 ed M_3 . Di conseguenza M_3 soddisfa l'enunciato del teorema; \square