FR patent n°4,936,961 - Demonstration for isotopic generator FR 268,061,3

Jason ALOYAU

February 5, 2021

Calculations

- Be B1 the magnetic field of the coil 1.
- Be B2 the magnetic field of the coil 2.
- Be B3 the magnetic field of the coil 3.
- Be N1 the number of turns of the coil 1.
- Be N2 the number of turns of the coil 2.
- Be $\overline{N3}$ the number of turns of the coil 3.
- Be l1 the length of the coil 1.
- Be l2 the length of the coil 2.
- Be l3 the length of the coil 3.
- Be |i1| the current across the coil 1.
- Be |i2| the current across the coil 2.
- Be $\overline{i3}$ the current across the coil 3.
- Be |u1| the voltage across in the coil 1.
- Be $|u|^2$ the voltage across in the coil 2.
- Be |u3| the voltage across in the coil 3.
- Be |f| the frequency across in the coil 1.
- Be $|f|^2$ the frequency across in the coil 2.
- Be |f3| the frequency across in the coil 3.
- Be L1 the inductance of the coil 1.
- Be L2 the inductance of the coil 2.
- Be L3 the inductance of the coil 3.
- Be S the area of the iron core.
- Be |l| the length of the iron core.
- Be D the diameter of the iron core.
- Be μ the permeability of the iron core.
- Be μ_r the relative permeability of the iron core.

Be μ_0 the permeability of the empty space. We have :

$$\begin{cases} L = (N^2 * \mu_0 * S)/l \\ N = \sqrt{(L*l)/(\mu_0 * S)} \\ B = (\mu_0 * N * I_L)/l \\ N = (B*l)/(\mu_0 * I_L) \\ I_L = (B*l)/(\mu_0 * N) \\ |U_L| = \omega_L * L * |I_L| = 2 * \pi * f_L * L * |I_L| \\ |I_L| = |U_L|/(2 * \pi * f_L * L) \end{cases}$$