Problème sur la fonction Gamma

Définition énoncé : $\forall x \in]0, +\infty[$ $\Gamma_n(x) = \frac{n! \cdot n^x}{x(x+1) \cdots (x+n)}.$

Partie A. Une suite d'intégrales.

Définition énoncé : $\forall n \in \mathbb{N}^* \ \forall x \in]0, +\infty[F_n(x) = \int_0^n \left(1 - \frac{u}{n}\right)^n u^{x-1} du.$

- 1. On rappelle que pour $a \in \mathbb{R}_+$, $x \mapsto x^a$ est définie sur \mathbb{R}_+^* et prolongeable par continuité en 0. On considère donc cette fonction comme continue sur $[0, +\infty[$. Ainsi, pour $x \in [1, +\infty[$, la fonction $u \mapsto (1 \frac{u}{n})^n u^{x-1}$ est continue sur [0, n]: l'intégrale $F_n(x)$ est donc bien définie.
- 2. (a) Soit un couple (a,b) de réels tels que 0 < a < b. La fonction ln est continue sur [b-a,b] et dérivable sur]b-a,b[. D'après l'égalité des accroissements finis,

$$\exists c \in]b-a,b[\quad \frac{\ln(b)-\ln(b-a)}{b-(b-a)} = \frac{1}{c}.$$

Puisque $\frac{1}{c} \in [\frac{1}{b}, \frac{1}{b-a}]$, on bien

$$\frac{a}{b} \le \ln(b) - \ln(b - a) \le \frac{a}{b - a}.$$

(b) La fonction f_u est définie sur $]u, +\infty[$ et elle y est dérivable. Pour tout réel x dans cet intervalle, le calcul donne

$$f'_u(x) = -\left(\ln(x) - \ln(x - u) - \frac{u}{x - u}\right).$$

D'après la question précédente, si $x \in]u, +\infty[$, on peut écrire l'inégalité pour a = u et b = x et obtenir $f'_u(x) \ge 0$, ce qui établit la croissance de f_u sur $]u, +\infty[$.

(c) Soit $n \in \mathbb{N}^*$. On se donne $u \in [0, n[$. Puisque u < n < n+1, la croissance de la fonction f_u sur $[u, +\infty[$ donne

$$f_u(n) \le f_u(n+1)$$
 soit $n \ln \left(1 - \frac{u}{n}\right) \le (n+1) \ln \left(1 - \frac{u}{n+1}\right)$.

En passant à l'exponentielle (croissante), on obtient bien

$$\left(1 - \frac{u}{n}\right)^n \le \left(1 - \frac{u}{n+1}\right)^{n+1},$$

et l'inégalité est facile à vérifier pour u = n.

(d) L'énoncé a fixé $x\in [1,+\infty[$; fixons un entier $n\in \mathbb{N}^*.$ La question précédente amène

$$\forall u \in [0, n] \quad \left(1 - \frac{u}{n}\right)^n u^{x-1} \le \left(1 - \frac{u}{n+1}\right)^{n+1} u^{x-1}.$$

Par croissance de l'intégrale,

$$\int_0^n \left(1 - \frac{u}{n}\right)^n u^{x-1} du \le \int_0^n \left(1 - \frac{u}{n+1}\right)^{n+1} u^{x-1} du.$$

Le nombre $\int_{n}^{n+1} \left(1 - \frac{u}{n+1}\right)^{n+1} u^{x-1} du$ est positif (c'est l'intégrale d'une fonction c.p.m. et positive entre deux bornes bien rangées). On déduit donc de la ligne précédente que

$$\int_0^n \left(1 - \frac{u}{n}\right)^n u^{x-1} du \le \int_0^{n+1} \left(1 - \frac{u}{n+1}\right)^{n+1} u^{x-1} du$$
i.e. $F_n(x) \le F_{n+1}(x)$.

- 3. Dans cette question, on fixe un entier $n \in \mathbb{N}^*$ et un réel $x \in [1, +\infty[$.
 - (a) On a

$$\left(1-\frac{u}{n}\right)^n = \exp\left(n\ln\left(1-\frac{u}{n}\right)\right) = \exp\left(n\left(\ln(n-u) - \ln(n)\right)\right) \leq \exp\left(-n\cdot\frac{u}{n}\right)$$

en utilisant l'inégalité de gauche de la question 2.(a).

On obtient donc $\left(1-\frac{u}{n}\right)^n \leq e^{-u}$. Reste à multiplier par u^{x-1} et à intégrer : la croissance de l'intégrale donne

$$F_n(x) \le \int_0^n e^{-u} u^{x-1} du.$$

(b) Par croissances comparées, on a

$$u^{x-1}e^{-u/2} \underset{u \to +\infty}{\longrightarrow} 0.$$

Ainsi l'inégalité $u^{x-1}e^{-u/2} \le 1$ est vraie au voisinage de l'infini. Il existe un réel A strictement positif tel que

$$\forall u \ge A \quad u^{x-1} \le e^{u/2}.$$

Dans la suite, on travaille avec un tel réel A.

(c) La majoration donnée à la question (a) ainsi que la relation de Chasles donne

$$F_n(x) \le \int_0^A e^{-u} u^{x-1} du + \int_A^n e^{-u} u^{x-1} du.$$

Nous noterons $I_A(x)$ la première intégrale.

- Supposons $n \leq A$. Alors dans le membre de droite de l'inégalité, deuxième terme est négatif. On a alors $F_n(x) \leq I_A(x)$.
- Supposons n > A. On utilise alors la majoration prouvée en (b) ainsi que la croissance de l'intégrale pour obtenir

$$\int_A^n e^{-u} u^{x-1} du \le \int_A^n e^{-u} e^{u/2} du.$$

Or, $\int_A^n e^{-u} e^{u/2} du = \left[e^{-u/2} \right]_A^n = 2e^{-A/2} - 2e^{-n/2}$. On obtient donc

$$F_n(x) \le I_A(x) + 2e^{-A/2}$$

et on remarque grâce au traitement du cas particulier $n \leq A$ que cette majoration de $F_n(x)$ par une constante indépendante de n est vraie $n \leq A$. On a

$$\forall n \in \mathbb{N}^* \quad F_n(x) \le I_A(x) + 2e^{-A/2}.$$

Partie B. La fonction Gamma comme limite.

1. (a) Soient a et b deux réels positifs. On calcule

$$(a+1)I(a,b+1) = (a+1)\int_0^1 t^a (1-t)^{b+1} dt = \int_0^1 \underbrace{(a+1)t^a}_{:=u'(t)} \underbrace{(1-t)^{b+1}}_{:=v(t)} dt$$

Les fonctions $u: t \mapsto t^{a+1}$ et $v: t \mapsto (1-t)^{b+1}$ sont de classe \mathcal{C}^1 . Une intégration par parties amène

$$(a+1)I(a,b+1) = \left[t^{a+1}(1-t)^{b+1}\right]_0^1 - \int_0^1 t^{a+1} \cdot \left(-(b+1)(1-t)^b\right) dt$$
$$= [0-0] + (b+1) \int_0^1 t^{b+1} (1-t)^b dt$$
$$= (b+1)I(a+1,b).$$

On a bien

$$(a+1)I(a,b+1) = (b+1)I(a+1,b).$$

(b) Soit $a \in [1, +\infty[$ un réel supérieur à 1 et $n \in \mathbb{N}^*$.

$$I(a,n) = \frac{n}{a+1}I(a+1, n-1)$$

$$= \frac{n}{a+1} \cdot \frac{n-1}{a+2}I(a+2, n-2)$$

$$= \cdots \text{ (on itère)}$$

$$= \frac{n}{a+1} \cdot \frac{n-1}{a+2} \cdot \frac{n-2}{a+3} \cdots \frac{n-(n-1)}{a+n}I(a+n, 0).$$

Or, un rapide calcul donne $I(a+n,0) = \int_0^1 t^{a+n} dt = \left[\frac{t^{a+n+1}}{a+n+1}\right]_0^1 = \frac{1}{a+n+1}$. Ceci amène

$$I(a,n) = \frac{n!}{(a+1)(a+2)\cdots(a+n+1)}$$

2. (a) On pose le changement de variable u = nt (du = ndt). Il amène

$$F_n(x) = \int_0^1 (1-t)^n (nt)^{x-1} n dt = n^x \int_0^1 (1-t)^n t^{x-1} dt,$$

ce qui laisse $F_n(x) = n^x I(x-1,n)$.

En utilisant l'expression de I trouvée à la question 1, on obtient

$$F_n(x) = \frac{n^x \cdot n!}{x(x+1)\cdots(x+n)},$$

ce qui prouve bien l'égalité $\Gamma_n(x) = F_n(x)$ pour un réel $x \in [1, \infty[$.

- (b) Soit $x \in [1, +\infty[$. Les suites $(\Gamma_n(x))_{n \in \mathbb{N}^*}$ et $(F_n(x))_{n \in \mathbb{N}^*}$ sont égales. La question 2 (d) de la partie A donne la croissance de la suite. La question 2 (c) en propose une majoration par une constante indépendante de n. Le théorème de la limite monotone donne alors que $(\Gamma_n(x))_{n \in \mathbb{N}^*}$ est convergente.
- 3. (a) $\Gamma_{n+1}(x) = \frac{(n+1)^x \cdot (n+1)!}{x(x+1)\cdots(x+n+1)}$ $= \frac{(n+1)^{x+1} \cdot n!}{x(x+1)\cdot((x+1)+n)}$ $= \frac{(n+1)^{x+1}}{xn^{x+1}} \cdot \frac{n^{x+1} \cdot n!}{(x+1)\cdots((x+1)+n)},$

ce qui laisse $\Gamma_{n+1}(x) = \frac{1}{x} \cdot \left(1 + \frac{1}{n}\right)^{x+1} \Gamma_n(x+1)$.

(b) Soit $x \in]0,1[$. D'après la question 2(b), la suite $(\Gamma_n(x))_{n\in\mathbb{N}^*}$ est convergente. La suite $(1+\frac{1}{n})^{x+1}$ tend vers 1 lorsque n tend vers $+\infty$. Par produit, $(\Gamma_n(x))_{n\in\mathbb{N}^*}$ est convergente.

Pour tout réel strictement positif x, on peut poser $\Gamma(x) = \lim_{n \to +\infty} \Gamma_n(x)$.

4. (a) Soit $n \in \mathbb{N}^*$. On a

$$\Gamma_n(1) = \frac{n! \cdot n}{1 \cdot 2 \cdots (n+1)} = \frac{n}{n+1}.$$

Un passage à la limite donne $\Gamma(1) = 1$

(b) Soit $x \in \mathbb{R}_+^*$. On a prouvé à la question 3 (a) de cette partie que

$$\forall n \in \mathbb{N}^* \quad \left(1 + \frac{1}{n}\right)^{x+1} \Gamma_n(x+1) = x\Gamma_n(x).$$

Un passage à la limite donne

$$\Gamma(x+1) = x\Gamma(x).$$

(c) Soit $n \in \mathbb{N}^*$. On a

$$\Gamma(n) = (n-1)\Gamma(n-1) = (n-1)(n-2)\Gamma(n-2) = \cdots = (n-1)(n-2)\cdots 1 \cdot \Gamma(1).$$

Or, $\Gamma(1) = 1$; on a donc $\forall n \in \mathbb{N}^*$ $\Gamma(n) = (n-1)!$ (on peut écrire une récurrence si on trouve que l'itération ci-dessus n'est pas suffisante).

Partie C. Intermède : deux petits résultats de convexité.

1. Soient $(x,y)\in I^2$ et $\lambda\in[0,1]$. Pour un entier $n\in\mathbb{N}^*,$ la convexité de la fonction f_n donne l'inégalité

$$f_n((1-\lambda)x + \lambda y) \le (1-\lambda)f_n(x) + \lambda f_n(y).$$

On a $f_n(x) \to f(x)$, $f_n(y) \to f(y)$ et $f_n((1-\lambda)x + \lambda y) \to f((1-\lambda)x + \lambda y)$, par hypothèse. Les inégalité larges étant stables pas par passage à la limite, on obtient

$$f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y),$$

ce qui prouve la convexité de f sur I

2. La fonction $\ln \circ g$ est deux fois dérivable sur I comme composée et

$$(\ln g)' = \frac{g'}{g}$$
 et $(\ln g)'' = \frac{g''g - (g')^2}{g^2}$.

La log-convexité de g (c'est-à-dire la convexité de $\ln g$) donne que $(\ln g)'' \ge 0$. On a donc $g''g - (g')^2 \ge 0$ i.e. $g''g \ge (g')^2 \ge 0$. Puisque g > 0, on obtient $g'' \ge 0$, ce qui établit la convexité de g sur l'intervalle I.

Partie D. Convexité et log-convexité de Γ .

1. (a) Un entier $n \in \mathbb{N}^*$ a été fixé. La fonction Γ_n est clairement strictement positive sur \mathbb{R}_+^* . On calcule

$$\forall x \in \mathbb{R}_+^* \quad \ln\left(\Gamma_n(x)\right) = \ln(n!) + x \ln(n) - \sum_{k=0}^n \ln(x+k).$$

La fonction $\ln \Gamma_n$ est deux fois dérivable sur \mathbb{R}_+^* et on a

$$\forall x \in \mathbb{R}_{+}^{*} \quad (\ln \Gamma_n)''(x) = \sum_{k=0}^{n} \frac{1}{(x+k)^2} \ge 0.$$

Ceci établit que $\ln \Gamma_n$ est convexe sur l'intervalle $]0, +\infty[$. La deuxième question de la partie C permet d'en déduire que Γ_n est convexe sur $]0, +\infty[$.

- (b) Fixons x un réel strictement positif. Par définition dans ce problème, $\Gamma(x) = \lim_{n \to \infty} \Gamma_n(x)$.
 - Pour $x \geq 1$, nous avons vu que $(\Gamma_n(x))_{n \in \mathbb{N}^*}$ est croissante. On peut donc écrire par exemple $\Gamma(x) \geq \Gamma_1(x) > 0$.
 - Pour $x \in]0,1[$, l'identité $\Gamma(x)=\frac{1}{x}\Gamma(x+1)$ et le point précédent donnent que $\Gamma(x)>0$.

Puisque Γ est strictement positive sur \mathbb{R}_+^* , on peut écrire

$$\forall x \in \mathbb{R}_{+}^{*} \quad \Gamma_{n}(x) \to \Gamma(x) \quad \text{ et } \quad \ln(\Gamma_{n}(x)) \to \ln(\Gamma(x)).$$

Dans la question précédente, nous avons prouvé que Γ_n et $\ln \Gamma_n$ sont convexes sur \mathbb{R}_+^* . D'après la question 1 de la partie C, cela autorise à conclure que

$$\ln \Gamma$$
 et Γ sont convexes sur $]0, +\infty[$.

2. (a) L'énoncé a fixé $x \in]0,1[$ et $n \in \mathbb{N}^*$. Comme on l'avait fait pour Γ , en utilisant la valeur en 1 et la relation $\Upsilon(x+1) = x\Upsilon(x)$, on se convainc que $\Upsilon(n) = (n-1)!$. Par hypothèse sur Υ , on a peut écrire

$$\Upsilon(x) = \frac{1}{x}\Upsilon(x+1) = \frac{1}{x(x+1)}\Upsilon(x+2) = \dots = \frac{1}{x(x+1)\cdots(x+n)}\Upsilon(x+n+1)$$

Ceci permet d'écrire

$$\psi(x) - \ln\left(\Gamma_n(x)\right) = \ln\left(\frac{\Upsilon(x+n+1)}{x(x+1)\cdots(x+n)}\right) - \ln\left(\frac{n!\cdot n^x}{x(x+1)\cdots(x+n)}\right)$$
$$= \ln\left(\Upsilon(x+n+1)\right) - \ln\left(n!\cdot n^x\right)$$
$$= \psi(n+1+x) - \psi(n+1) - x\ln(n)$$

On a n < n+1 < n+1+x < n+2. L'inégalité des pentes pour la fonction ψ convexe sur \mathbb{R}_+^* donne

$$\frac{\psi(n+1) - \psi(n)}{n+1-n} \le \frac{\psi(n+1+x) - \psi(n+1)}{(n+1+x) - (n+1)} \le \frac{\psi(n+2) - \psi(n+1)}{(n+2) - (n+1)},$$

ce qui donne bien l'inégalité souhaitée :

$$\psi(n+1) - \psi(n) \le \frac{\psi(n+1+x) - \psi(n+1)}{x} \le \psi(n+2) - \psi(n+1).$$

(b) En combinant les deux résultats de la question précédente, on obtient que pour $x \in]0,1[$ et $n \in \mathbb{N}^*$,

$$x\left(\psi(n+1)-\psi(n)\right)-x\ln(n)\leq \psi(x)-\ln\left(\Gamma_n(x)\right)\leq x\left(\psi(n+2)-\psi(n+1)\right)-x\ln(n)$$
 Or, $\psi(n+1)-\psi(n)=\ln\left(\frac{n!}{(n-1)!}\right)=\ln(n)$ et $\psi(n+2)-\psi(n+1)=\ln\left(\frac{(n+1)!}{n!}\right)=\ln(n+1)$. Ceci amène l'encadrement

$$0 \le \psi(x) - \ln(\Gamma_n(x)) \le x \ln\left(1 + \frac{1}{n}\right).$$

Il reste à passer à limite pour obtenir $\psi(x) = \ln(\Gamma(x))$ et à l'exponentielle pour avoir que $\Gamma(x) = \Upsilon(x)$.

Nous venons de montrer que les fonction Γ et Υ coïncident sur]0,1]. Puisqu'elle satisfont toutes les deux l'équation fonctionnelle « $\forall x \in \mathbb{R}_+^* f(x+1) = xf(x)$ », une récurrence facile permet de prouver que pour tout $n \in \mathbb{N}^*$, elles coïncident sur]n, n+1]. Ceci achève de prouver que $[\Upsilon = \Gamma]$.