

Vorbesprechung Digitale Integrierte Schaltungen 2018 WS

Prof. Axel Jantsch

DI. Christian Krieg (UE)

Dr. Michael Rathmair

Allgemeines

- Informationen werden über TISS ausgesandt
- LVA-Nummer: 384.086
- Kontakt mit den Vortragenden vorzugsweise per Mail:
 - <u>axel.jantsch@tuwien.ac.at</u>
 Prof. Axel Jantsch
 - <u>christian.krieg@tuwien.ac.at</u> Christian krieg
 - <u>rathmair@ict.tuwien.ac.at</u> DI Michael Rathmair
- Anmeldung zur LVA notwendig: bis 14.10.2018
 - Download der Folien
 - Anmeldung zu den Übungsgruppen
 - Planung der Übungen

Unterlagen

- VU basiert auf "Lehrbuch Digitaltechnik" von Jürgen Reichardt
 - Bibliothek der TU stellt eine digitale Version (PDF) zur Verfügung: http://www.degruyter.com/viewbooktoc/product/228761
 - Nur aus dem TU Netz verfügbar (VPN, WLAN...)

Prof. Dr. J. Reichardt Lehrbuch Digitaltechnik Eine Einführung mit VHDL, 3. A Oldenbourg Wissenschaftsverlag München 2013 ISBN 978-3-486-72765-4

- "Logic Synthesis in a Nutshell", Jie-Hong Jiang and Srinivas Devadas, http://www.sciencedirect.com/science/article/pii/B9780123743640500138
 - Nur aus dem TU Netz verfügbar (VPN, WLAN...)
- VU Folien sind im Downloadbereich der LVA im TISS
- zusätzliche Folien ebenso im Downloadbereich

Übungen

- VHDL Modellierung, Simulation und Implementation
 - 1. E-Learning basierend mit VELS System
 - 2. FPGA Basierende Übungen

Leistungsnachweis

Prüfung:

- Prüfungstermin zur aktuellen VU: 23.01.2017, 9:00 11:00
- Raumänderungen bei großer TeilnehmerInnenzahl möglich (TISS News)
- Schriftlich; bei den Nebenterminen meist m

 ündlich

Punkte	Note
0-74	N5
75-93	G4
94-112	В3
113-131	U2
132-150	S1

Leistungsnachweis

Übungen:

- 4 VELS/Simulationsbeispiele: 12,5 Punkte jedes → 50 Punkte
- 2 FPGA Labore: 25 Punkte jeweils → 50 Punkte
- Aus den Übungen müssen mindestens 50 Punkte erreicht werden, um zur Prüfung zugelassen zu werden.
- Die Überschusspunkte 51-100 werden zur Notenbewertung mitgenommen.
- Prüfung: 100 Punkte
- Bewertung: maximal 150 Punkte möglich:

Punkte	Note
0-74	N5
75-93	G4
94-112	В3
113-131	U2
132-150	S1

Organisatorisches

¿ Fragen ?

Masterstudium Embedded Systems

SoC Track im Embedded Systems Programm

Projekt im SoC Track

- Projektdefinition: Je früher desto besser
- Themenvorschlag von uns oder von Ihnen
- Betreuer vom ICT
- Alle SoC Track LVAs können zum Projekt beitragen
- Andere LVAs können nach Projektbedarf gewählt werden
 - Einzeln oder im Team

Application-Specific Computing: Architectures and Systems

- Prof. Muhammad Shafique, ECS, Tech. Informatik
- 182.744; VU 3.0 ECTS
 - Thursday 14:00-16:00 and Fr 10:00–12:00;
 ECS Library, TreitIstrasse 3, 2nd floor.
 Begin: 11.10.
 - Basics of application-specific computing systems and architectures.
 - Different characterization of camera processing algorithms requiring application-specific architectures and design constraints.
 - Interplay of application-specific architectures and run-time management techniques for high energy efficiency or performance-per-power efficiency.
 - Access to modern architectural trends and corresponding research themes.
 - Ability to design, develop, and apply concepts to real-world applications
 of camera-based processing systems, for instance in advance driver

Advanced Computer Architecture

- Prof. Muhammad Shafique, ECS, Tech. Informatik
- 191.105; VU 4.5 ECTS
- Ziele:
 - Detailed knowledge about the structure and organization of advanced processors in different fields of applications, including superscalar and VLIW processors, multi-core and many-cores, heterogeneous architectures, advanced memory hierarchies, and on-chip interconnection networks.
 - The ability to design, evaluate and optimize processors and memory sub-system for various fields of applications in a systematic way following a quantitative approach.
 - The ability to design, evaluate and optimize advanced architectural features of microprocessors to accelerate different functions of given applications.

¿ Fragen ?