Lecture 31: Gaussian mixture models with

multivariate data

Ciaran Evans

Previously

Previously: Gaussian mixture model

- ightharpoonup Observe data $X_1, ..., X_n$
- Assume each observation i comes from one of k groups. Let $Z_i \in \{1, ..., k\}$ denote the group assignment
 - ► The group *Z* is an unobserved (**latent**) variable

Model:

- $P(Z_i = j) = \lambda_j$
- $\triangleright X_i | (Z_i = j) \sim N(\mu_j, \sigma_j^2)$

Posterior probabilities and parameter estimation

▶ **If** we know the parameters λ , μ , σ , we can calculate posterior probabilities:

$$P(Z_i = j | X_i) = \frac{\lambda_j f(X_i | Z_i = j)}{\lambda_1 f(X_i | Z_i = 1) + \dots + \lambda_k f(X_i | Z_i = k)}$$

▶ If we know the posterior probabilities, we can estimate the model parameters λ , μ , and σ :

$$\widehat{\lambda}_{j} = \frac{1}{n} \sum_{i=1}^{n} P(Z_{i} = j | X_{i})$$

$$\widehat{\mu}_{j} = \frac{\sum_{i=1}^{n} X_{i} P(Z_{i} = j | X_{i})}{\sum_{i=1}^{n} P(Z_{i} = j | X_{i})}$$

$$\widehat{\sigma}_{j} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \widehat{\mu}_{j})^{2} P(Z_{i} = j | X_{i})}{\sum_{i=1}^{n} P(Z_{i} = j | X_{i})}}$$

Putting everything together

Model:
$$P(Z_i = j) = \lambda_j$$
 $X_i | (Z_i = j) \sim N(\mu_j, \sigma_j^2)$
Parameters: $\lambda = (\lambda_1, ..., \lambda_k), \ \mu = (\mu_1, ..., \mu_k), \ \sigma = (\sigma_1, ..., \sigma_k)$

Estimation:

- 1. Initialize parameter guesses $\lambda^{(0)}$, $\mu^{(0)}$, $\sigma^{(0)}$
- 2. Given current parameter estimates, compute $P^{(0)}(Z_i = j|X_i)$ for all i, j
- 3. Given current posterior probabilities $P^{(0)}(Z_i = j|X_i)$, update parameter estimates to $\lambda^{(1)}$, $\mu^{(1)}$, $\sigma^{(1)}$
- 4. Iterate: repeat steps 2–3 until convergence

Multivariate data

Question: What do you notice about this scatterplot?

Multivariate data

Multivariate data

Question: How should we generalize our Gaussian mixture model to multivariate data?

Multivariate normal distribution

Definition: Let $X = (X_1, ..., X_k)^T$. We say that $X \sim N(\mu, \Sigma)$ if for any $\mathbf{a} \in \mathbb{R}^k$, $\mathbf{a}^T X$ follows a (univariate) normal distribution.

$$\blacktriangleright \mu =$$

$$\Sigma =$$

Multivariate normal distribution

Multivariate Gaussian mixture model


```
## [1] 1.966059 55.430121
```

em_res\$mu[[2]]

em res\$mu[[1]]

[1] 4.250835 81.114547

Multivariate Gaussian mixture model

