The Macroeconomic Consequences of Subsistence Self-Employment

Juan Herreño¹ Sergio Ocampo²

¹UC San Diego

²Western University

February 1, 2022

Self-employment in developing countries

- ► High self-employment rates in developing countries (Poshke, 2019)
- ▶ High prevalence of *subsistence entrepreneurship* (Schoar, 2010)

Self-employment in developing countries

- ► High self-employment rates in developing countries (Poshke, 2019)
- ► High prevalence of *subsistence entrepreneurship* (Schoar, 2010)

Self-employment concentrated among the rich and the poor

(Data from 9 developing countries)

Policies aimed at the self-employed

- Grants, loans, transfers (varied designs and generosity)
- ▶ Policies meant to spur firm creation/growth but target the self-employed in practice
- Evidence of small effects on individual outcomes (income, firm creation, consumption)

(Angelucci, Karlan, & Zinman, 2015; Banerjee, Duflo, Glennerster, & Kinnan, 2015; Maeger, 2019)

Policies aimed at the self-employed

- Grants, loans, transfers (varied designs and generosity)
- ▶ Policies meant to spur firm creation/growth but target the self-employed in practice
- ▶ Evidence of small effects on individual outcomes (income, firm creation, consumption)

```
(Angelucci, Karlan, & Zinman, 2015; Banerjee, Duflo, Glennerster, & Kinnan, 2015; Maeger, 2019)
```

Effects of these policies (micro & macro) depend on many factors:

- ► Financial frictions affect occupational sorting (Buera, Kaboski, & Shin, 2015; Midrigan & Xu, 2014)
 - Self-employed choose worse technologies/smaller scale
- ► Subsistence concerns (Poshke, 2013; Breza, Kaur & Shamdashani, 2021)
 - Reflect labor rationing

What we do

- 1. Study the effects of development policies when subsistence entrepreneurship is prevalent
 - ▶ Heterogeneous agents macro-development model
 - Financial and subsistence concerns (labor market frictions) driving occupational choices

What we do

- 1. Study the effects of development policies when subsistence entrepreneurship is prevalent
 - Heterogeneous agents macro-development model
 - Financial and subsistence concerns (labor market frictions) driving occupational choices
- 2. Use a set of cross-sectional moments to evaluate importance of subsistence concerns
 - Joint distribution of occupations and income
 - Labor market response to labor demand shocks

What we do

- 1. Study the effects of development policies when subsistence entrepreneurship is prevalent
 - ► Heterogeneous agents macro-development model
 - Financial and subsistence concerns (labor market frictions) driving occupational choices
- 2. Use a set of cross-sectional moments to evaluate importance of subsistence concerns
 - Joint distribution of occupations and income
 - Labor market response to labor demand shocks
- 3. Evaluate macro-effects of policies
 - 3.1 Micro loans and grants to the self-employed (loosen financial frictions)
 - 3.2 Targeted transfers to the unemployed (insure labor risk)

1. Model consistent with joint distribution of occupations and income

- 1. Model consistent with joint distribution of occupations and income
- 2. Model consistent with small micro effects of credit interventions
 - ► Hard to reject null effects with micro data (occ. choices, income, consumption)
 - ▶ Hard to tell apart micro loans and grants at the micro level

- 1. Model consistent with joint distribution of occupations and income
- 2. Model consistent with small micro effects of credit interventions
 - ► Hard to reject null effects with micro data (occ. choices, income, consumption)
 - ▶ Hard to tell apart micro loans and grants at the micro level
- 3. Non-negligible macro effects of policies
 - ► Grants: Negative TFP effects (increases scale of unproductive firms)
 - ▶ Loans: Positive TFP Effects (improves selection into self-employment, only productive benefit)

- 1. Model consistent with joint distribution of occupations and income
- 2. Model consistent with small micro effects of credit interventions
 - ► Hard to reject null effects with micro data (occ. choices, income, consumption)
 - ▶ Hard to tell apart micro loans and grants at the micro level
- 3. Non-negligible macro effects of policies
 - ► Grants: Negative TFP effects (increases scale of unproductive firms)
 - ▶ Loans: Positive TFP Effects (improves selection into self-employment, only productive benefit)
- 4. Generosity of the safety net to the unemployed is TFP enhancing (increases selection into self-employment)

Model

- ► Heterogeneous agents:
 - Agents can be Employed, Unemployed or Self-Employed
 - ▶ Agents differ in Assets (a), Idiosyncratic Productivity (z)

- ► Heterogeneous agents:
 - Agents can be Employed, Unemployed or Self-Employed
 - ▶ Agents differ in Assets (a), Idiosyncratic Productivity (z)
- Financial frictions:
 - Self-employed subject to collateral constraints
 - Employed and unemployed subject to borrowing constraints

- Heterogeneous agents:
 - Agents can be Employed, Unemployed or Self-Employed
 - ▶ Agents differ in Assets (a), Idiosyncratic Productivity (z)
- Financial frictions:
 - Self-employed subject to collateral constraints
 - Employed and unemployed subject to borrowing constraints
- Labor market frictions:
 - Unemployed and Self-Employed have to wait for an offer to become Employed
 - ▶ Any agent can become Unemployed or Self-Employed at any time

- Heterogeneous agents:
 - Agents can be Employed, Unemployed or Self-Employed
 - ▶ Agents differ in Assets (a), Idiosyncratic Productivity (z)
- Financial frictions:
 - Self-employed subject to collateral constraints
 - Employed and unemployed subject to borrowing constraints
- Labor market frictions:
 - Unemployed and Self-Employed have to wait for an offer to become Employed
 - ▶ Any agent can become Unemployed or Self-Employed at any time

Agents' problems

- Income of agents depends on occupation (wages, benefits, profits)
- ► Shocks also depend on occupations: Job offers to U and SE and job separations to E
 - ▶ All agents receive productivity shocks (z)

Agents' problems

- Income of agents depends on occupation (wages, benefits, profits)
- ► Shocks also depend on occupations: Job offers to U and SE and job separations to E
 - ► All agents receive productivity shocks (z)

Occupation	Flow Income (y)	Occupational Choice	Shocks	_
Employed	$r \cdot a + w \cdot \epsilon(z)$	U or S	γ^z , γ^E	\longleftarrow Job separation
Unemployed	$r \cdot a + b$	S	γ^z , γ^U	\longleftarrow Job offer
Self-employed	$r \cdot a + \pi (a, z)$	U	γ^z , γ^s	← Job offer
	$y^{\circ}(a,z)$		↑ Prod.	-

Profits and value functions

Self-employed profits:

$$\pi(a,z) = \max_{\substack{k < \lambda \cdot a, n}} f(z,k,n) - (r+\delta) \cdot k - w \cdot n$$

▶ Collateral constraints depend on assets: $k \leq \lambda \cdot a$

Profits and value functions

Self-employed profits:

$$\pi(a,z) = \max_{k \leq \lambda \cdot a, n} f(z,k,n) - (r+\delta) \cdot k - w \cdot n$$

▶ Collateral constraints depend on assets: $k \leq \lambda \cdot a$

Value function for occupation $o \in \{E, U, S\}$:

$$\rho V^{o}(a,z) = \max_{\text{s.t. } a \geq \underline{a}} u(c) + V_{a}^{o} \cdot (\underbrace{y^{o}(a,z) - c}) + \frac{E[dV^{o}]}{dt}$$

- Standard Hamilton- Jacobi-Bellman formulation
- ▶ Change in value depends on savings: $\dot{a} = y^o(a, z) c$
- ▶ Last term captures productivity and occupational shocks

details

Optimal choices

Savings Choice, $o \in \{E, U, S\}$:

$$c^{o}(a,z) = u^{'-1}(V_{a}^{o}(a,z))$$

Optimal choices

Savings Choice, $o \in \{E, U, S\}$:

$$c^{o}(a,z) = u^{'-1}(V_{a}^{o}(a,z))$$

Occupational Choice:

Agents can move freely to unemployment or self-employment so

$$V^{E}\left(a,z\right) \geq \max\left\{V^{U}\left(a,z\right),V^{S}\left(a,z\right)\right\}$$
 $V^{U}\left(a,z\right) \geq V^{S}\left(a,z\right)$
 $V^{S}\left(a,z\right) \geq V^{U}\left(a,z\right)$

Optimal choices

Savings Choice, $o \in \{E, U, S\}$:

$$c^{o}(a,z) = u^{'-1}(V_{a}^{o}(a,z))$$

Occupational Choice:

Agents can move freely to unemployment or self-employment so

$$V^{E}\left(a,z\right) \geq \max\left\{V^{U}\left(a,z\right),V^{S}\left(a,z\right)\right\}$$
 $V^{U}\left(a,z\right) \geq V^{S}\left(a,z\right)$
 $V^{S}\left(a,z\right) \geq V^{U}\left(a,z\right)$

▶ Occ. choice defines regions $\Omega^o \in \mathcal{S} \equiv [\underline{a}, \infty) \times \mathbb{R}_+$ where occupation 'o' prevails

Example:
$$\Omega^{U} = \left\{ (a, z) \in \mathcal{S} \mid V^{U}(a, z) > V^{S}(a, z) \right\}$$

(Stationary) Equilibrium

- Solve agents' problems given prices
 - Value functions solved as HJB variational inequalities.
- ▶ Small open economy: $r = r^*$
- ▶ Wage (w) clears labor market:
 - Labor demand firms of the self-employed: $N^d = \int n^*(a,z)dG^S$
 - ▶ Labor supply from the employed: $N^s = \int \epsilon(z) dG^E$
- Stationary distribution of agents: G^E, G^U, G^S
 - y distribution of agents. Co., Co.
 - Solve system of Kolmogorov-Forward-Equations
 - ▶ Reflects both exogenous shocks and endogenous occ. choice

details

Main mechanism: Occupational choice

- ▶ (Min) Productivity threshold for self-employment
- lacktriangle Subsistence concerns: Low threshold for poor agents \longrightarrow Unproductive self-employed

Calibration and Model Performance

Parametrization

- ▶ Interest rate: $r^* = 3\%$
- ► Collateral constraint: $\lambda = 1.42$ to match debt-to-asset ratio of large Mexican firms
- ▶ Utility and production function: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$ and $f(z,k,n) = z(k^{\alpha}n^{1-\alpha})^{\nu}$

$$\sigma = 2$$
 $\alpha = 0.3$ $\nu = 0.85$

Parametrization

- ▶ Interest rate: $r^* = 3\%$
- ▶ Collateral constraint: $\lambda = 1.42$ to match debt-to-asset ratio of large Mexican firms
- ▶ Utility and production function: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$ and $f(z, k, n) = z(k^{\alpha}n^{1-\alpha})^{\nu}$

$$\sigma = 2$$
 $\alpha = 0.3$ $\nu = 0.85$

Internally calibrated parameters:

- Labor income is a function of productivity: $\epsilon(z) = z^{\eta}$
- ▶ Shocks follow Poisson processes with arrival rates: γ^z , γ^E , γ^U , γ^S
- ightharpoonup z discretized with transition matrix $Pr^z(z'|z)$
 - ▶ Discretization from AR(1) process Rowenhurst (1995) method

Model performance: Targeted moments

			-
Occupational Rates	Data	Model	Incom
Unemployment	4.4	4.1	$-std(y_t^S)$
Self-employment	26.7	26.2	$std(y_t^E)$
Employment	69.1	69.7	corr(y
			corr(y

Income Moments	Data	Model
$std(y_t^S)$	0.86	0.86
$std(y_t^E)$	0.54	0.58
$\operatorname{corr}(y_t^S, y_{t+1}^S)$	0.59	0.59
$corr(y_t^E, y_{t+1}^E)$	0.60	0.58

Model performance: Targeted moments

Occupational Rates	Data	Model
Unemployment	4.4	4.1
Self-employment	26.7	26.2
Employment	69.1	69.7

Income Moments	Data	Model
$std(y_t^S)$	0.86	0.86
$std(y_t^E)$	0.54	0.58
$\operatorname{corr}(y_t^{\mathcal{S}}, y_{t+1}^{\mathcal{S}})$	0.59	0.59
$\operatorname{corr}(y_t^E, y_{t+1}^E)$	0.60	0.58

Data from ENOE:

sample details more moments

- Household Survey Quarterly rotating panel (up to 5 quarters)
- ▶ Information on labor status, search activities, transitions, and earnings
- ▶ Key: Observe transitions and earnings dynamics

Model performance: Untargeted moments

1. Joint distribution of occupations and income

- Model matches profile of self-employment across earnings
 - ightharpoonup Key: Subsistence concerns of the unemployed \longrightarrow Occupational Choice
- Model with only financial frictions fails in doing so

details

Model performance: Untargeted moments

1. Joint distribution of occupations and income

- Model matches profile of self-employment across earnings
 - ▶ Key: Subsistence concerns of the unemployed → Occupational Choice
- Model with only financial frictions fails in doing so

2. Reaction after labor demand shocks

- Dev. Literature on response of local labor market to labor demand shocks
 - Imbert and Papp (2015), Breza, Kaur & Shamdasani (2021) and Muralidharan, Niehaus & Sukhtankar (2017)
- Low response of wages $\left(\frac{\Delta \log w}{\Delta \log N} < 1\right)$: self-employment "hides" slack
- ► Model simulation $\frac{\Delta \log w}{\Delta \log N} = 0.16$ (vs 1.6 with only financial frictions)
 - **EXECUTE:** Very consistence of the Key: Occupational transitions $SE \to U$ rather than $SE \to E$

Development Policies

What are the (macro) effects of policies aimed at self-employed?

- ▶ Literature finds overall small effects of micro-credit programs on individuals
 - Angelucci, Karlan, Zinman (2015): "small effects on 37 outcomes" from loans to women entrepreneurs in Mexico
 - ► Loans have high interest rates (110 APR) and group liability (10-50 women per group)
 - ▶ Maeger (2019): "the impact on household business and consumption variables is unlikely to be transformative and may be negligible"
 - ► Meta-study (Boznia, Ethiopia, India, Mexico, Mongolia, Morocco and The Phillipines)
 - ▶ Varied conditions (13% to 100% APR, individual or group liability, rural or urban, women and men, collateralized or not)

What are the (macro) effects of policies aimed at self-employed?

Literature finds overall small effects of micro-credit programs on individuals

- Data from Angelucci, Karlan, Zinman (2015)
- ► Effects of a \$540 dollar loan on business income
- No change in self-employed' earnings

What are the (macro) effects of policies aimed at self-employed?

Literature finds overall small effects of micro-credit programs on individuals

- Data from Angelucci, Karlan, Zinman (2015)
- ► Effects of a \$540 dollar loan on business income
- No change in self-employed' earnings

Objective:

- 1. Can the model match the muted effects at the micro-level?
- 2. Test macro effects of policies using the model

Policy design

- 1. Micro-Loans: Credit lines of around USD \$500 to rent physical capital
- 2. Micro-Grants: Zero interest lease of around USD \$500 of physical capital
- 3. Transfers to Unemployed: Transfer of around USD \$20 to unemployed individuals

Policy design

- 1. Micro-Loans: Credit lines of around USD \$500 to rent physical capital
- 2. Micro-Grants: Zero interest lease of around USD \$500 of physical capital
- 3. Transfers to Unemployed: Transfer of around USD \$20 to unemployed individuals
 - ▶ (1) and (2) are credit reforms of different generosity
 - ▶ (3) Changes the outside option for unemployed individuals

Policy design

- 1. Micro-Loans: Credit lines of around USD \$500 to rent physical capital
- 2. Micro-Grants: Zero interest lease of around USD \$500 of physical capital
- 3. Transfers to Unemployed: Transfer of around USD \$20 to unemployed individuals
 - ▶ (1) and (2) are credit reforms of different generosity
 - ▶ (3) Changes the outside option for unemployed individuals

- 1. Do small micro effects imply negligible macro effects?
- 2. How does design of policy affect micro vs macro effects?

Micro Loans

- ▶ Relaxation of collateral constraint $k \le \lambda a + \lambda$
- lacktriangle Policy is self-financed. Recepients pay $(r+\delta)$ to rent capital
- ▶ <u>\alpha</u>: Ave. loan size of micro-credit interventions in Mexico Angelucci, Karlan, Zinman (2015)

Micro Loans

- ▶ Relaxation of collateral constraint $k \le \lambda a + \lambda$
- lacktriangle Policy is self-financed. Recepients pay $(r+\delta)$ to rent capital
- ▶ <u>\(\)</u>: Ave. loan size of micro-credit interventions in Mexico Angelucci, Karlan, Zinman (2015)

Policy effects:

Moment		Moment	
$\%$ Δ Wage	0.06	Δ Employment	0.08
$\% \Delta Income(E)$	0.04	Δ Unemployment	0.16
$\%$ Δ Income (S)	0.95	Δ Self-employment	-0.24

Micro Loans - Occupational Choices

Baseline Model Gov. Loan Share of Self-Employed Agents Earnings Deciles

Some changes in thresholds

Small effects across distribution of income

Micro Loans - Self-Employment Income

Negligible effects in the distribution

Micro Loans - Aggregate effects are non-negligible

	Output	TFP Assets		Consumption	
% Δ	0.20	0.15	-0.40	0.02	

- ▶ Small changes in selection into SE → Effects in agg. TFP
- ▶ Decrease in assets from insurance effect of loans (loosen collateral constraint)
- ▶ Heterogeneity in consumption effects, e.g., $\%\Delta(C^U) = 1.25$
- ► Small welfare gains for poor agents 0.1pp

Micro Grants

- ▶ Relaxation of collateral constraint $k \le \lambda a + \frac{\lambda}{\lambda}$ + Recipients pay 0 to rent capital
- ▶ À: Ave. loan size of micro-credit interventions in Mexico Angelucci, Karlan, Zinman (2015)

Micro Grants

- ▶ Relaxation of collateral constraint $k \le \lambda a + \frac{\lambda}{\lambda}$ + Recipients pay 0 to rent capital
- ▶ A: Ave. loan size of micro-credit interventions in Mexico Angelucci, Karlan, Zinman (2015)

Policy effects:

Moment	
Δ Employment	-0.24
Δ Unemployment	-0.72
Δ Self-employment	0.96
$\%$ Δ Wage	0.32
$\% \Delta Income(E)$	0.50
$\%$ Δ Income (S)	-2.40

Micro Grants - Aggregate effects are non-negligible

	Output		Assets	Consumption	
% Δ	0.23	-0.45	-1.11	0.15	

- ▶ Small changes in selection into SE → Effects in agg. TFP
- ▶ Decrease in assets from insurance effect of loans (loosen collateral constraint)
- ▶ Heterogeneity in consumption effects, e.g., $\%\Delta(C^U) = -2.38$
- Small but broad welfare gains 0.7pp

Transfers to the unemployed

The policy grants \$20 USD (10% of min wage) to the unemployed (Similar to Δ in profits from other policies)

$$y^U = r \cdot a + b + \frac{b_{UB}}{}$$

Transfers to the unemployed

The policy grants \$20 USD (10% of min wage) to the unemployed (Similar to Δ in profits from other policies)

$$y^U = r \cdot a + b + \frac{b_{UB}}{a}$$

Policy effects:

Moment	
Δ Employment	0.06
Δ Unemployment	0.85
Δ Self-employment	-0.90
$\%$ Δ Wage	-0.16
$\% \Delta Income(E)$	-0.40
% Δ Income (S)	3.70

Increase in productivity selection

Transfers to the unemployed - Aggregate effects are non-negligible

	Output	TFP	Assets	Consumption
% Δ	0.25	0.42	-0.52	-0.26

ightharpoonup Changes in selection into SE \longrightarrow Increase aggregate TFP

- ▶ Decrease in assets from insurance effect of payments
- ▶ Heterogeneity in consumption effects, e.g., $\%\Delta(C^U) = 3.95$
- ► Small welfare losses (0.9pp) due to lower (after-tax) wages

Transfers to the non-employed

Hard to effectively target transfers to the unemployed

Likely that transfers go to low-earning self-employed too

The policy grants \$20 USD to the unemployed + self-employed (income below minimum wage)

$$y^U = r \cdot a + b + b_{UB}$$
 $y^S = r \cdot a + \pi + b_{UB}$

Transfers to the non-employed

Hard to effectively target transfers to the unemployed

▶ Likely that transfers go to low-earning self-employed too

The policy grants \$20 USD to the unemployed + self-employed (income below minimum wage)

$$y^U = r \cdot a + b + \frac{b_{UB}}{b_{UB}}$$
 $y^S = r \cdot a + \pi + \frac{b_{UB}}{b_{UB}}$

	Output	TFP Assets		Consumption	
% Δ	-0.04	-0.32	-1.90	-0.61	

Transfers to the non-employed

Hard to effectively target transfers to the unemployed

▶ Likely that transfers go to low-earning self-employed too

The policy grants \$20 USD to the unemployed + self-employed (income below minimum wage)

$$y^U = r \cdot a + b + b_{UB}$$
 $y^S = r \cdot a + \pi + b_{UB}$

	Output	TFP	Assets	Consumption	
% Δ	-0.04	-0.32	-1.90	-0.61	

- Transfers affect asset accumulation
- ▶ Occ. Choice: More self-employment

Small micro effects on income distribution

Conclusions

- ▶ High SE among the poor in developing economies
- ▶ Subsistence self-employment shapes economies response to shocks and policy
- ▶ Policies that alleviate subsistence concerns improve productivity
- Policies that target the self-employed can backfire

Thank You

Please send your questions to juanherreno@ucsd.edu or socampod@uwo.ca

Appendix

Data Appendix

Mexican sample details

back

- Our Sample: 1995Q1 2015Q4.
 - ▶ Males, Head of households, Prime age workers (23 to 65)
 - Ten largest municipalities
 - Unbalanced panel for 250 thousand individuals (1m obs.)

- Labor Status (Self-Reported)
 - Employed: Has a job, has a supervisor
 - Unemployed: Does not have a job, is looking for one
 - ▶ Self-Employed: Has a job, reports to be his own employer

Workforce composition in Mexico: Time series

Self-employment across countries

Self-employment and earnings distribution: Details

▶ Run a regression of the form:

$$\log(w_{i,t}) = \alpha + \gamma_t + \beta X_{i,t} + \eta_{i,t}$$

- ▶ Rank $\eta_{i,t}$ and classify them in bins of 3% of the sample
- Compute the statistics for each bin
- Results are robust to direct earnings comparison

Self-employment and earnings distribution: Raw data

Model Appendix

Agent's problem: Value functions

Employed agents:

$$\rho V^{E}(a,z) = \max_{c} u(c) + V_{a}^{E}(a,z) \dot{a} + \gamma^{E} \left(V^{U}(a,z) - V^{E}(a,z) \right)$$

$$+ \gamma^{z} \int \left(V^{E}(a,z') - V^{E}(a,z) \right) d \mathsf{Pr}^{z} \left(z'|z \right)$$
s.t.
$$\dot{a} = w \epsilon(z) + ra - c, \quad a \ge \underline{a}.$$

Unemployed and Self-employed agents, $o \in \{U, S\}$:

$$\rho V^{o}(a,z) = \max_{c} u(c) + V_{a}^{o}(a,z) \dot{a} + \gamma^{o} \max \left\{ V^{E}(a,z,\epsilon) - V^{o}(a,z), 0 \right\}$$

$$+ \gamma^{z} \int \left(V^{o}(a,z') - V^{o}(a,z) \right) d \operatorname{Pr}^{z}(z'|z)$$
s.t.
$$\dot{a} = b \mathbb{1}_{o=U} + \pi(a,z) \mathbb{1}_{o=S} + ra - c, \quad a \ge \underline{a}.$$

Agent's distribution: Kolmogorov Forward Equations

lacktriangle Characterize stationary distributions $\{G^o\}_{o\in\{E,U,S\}}$ by their densities $\{g^o\}_{o\in\{E,U,S\}}$

$$\begin{split} 0 &= -\frac{\partial}{\partial a} \left[\dot{a} g^E \left(a, z \right) \right] - \left(\gamma^E + \gamma^z \right) g^E \left(a, z \right) & \longleftarrow \text{Holds for } \left(a, z \right) \in \Omega^E \\ &+ \gamma^z \int \Pr^z \left(z | z' \right) g^E \left(a, z' \right) dz' + \gamma^U g^U \left(a, z \right) + \gamma^S g^S \left(a, z \right) \mathbbm{1}_{\left\{ (a, z) \in \Omega^E \right\}} \\ 0 &= -\frac{\partial}{\partial a} \left[\dot{a} g^U \left(a, z \right) \right] - \left(\gamma^U + \gamma^z \right) g^U \left(a, z \right) & \longleftarrow \text{Holds for } \left(a, z \right) \in \Omega^U \\ &+ \gamma^z \int \Pr^z \left(z | z' \right) g^U \left(a, z' \right) dz' + \gamma^E g^E \left(a, z \right), \\ 0 &= -\frac{\partial}{\partial a} \left[\dot{a} g^S \left(a, z \right) \right] - \left(\gamma^S \mathbbm{1}_{\left\{ (a, z) \in \Omega^E \right\}} + \gamma^z \right) g^S \left(a, z \right) & \longleftarrow \text{Holds for } \left(a, z \right) \notin \Omega^U \\ &+ \gamma^z \int \Pr^z \left(z | z' \right) g^S \left(a, z' \right) dz' + \gamma^E g^E \left(a, z \right) \mathbbm{1}_{\left\{ (a, z) \notin \Omega^U \right\}}, \end{split}$$

Model performance: Untargeted moments

Occupational Transition Rates									
	Data	Model			Data	Model		Data	Model
$U \rightarrow U$	27.4	29.3		$S \rightarrow U$	1.9	4.6	$E \rightarrow U$	3.1	2.5
U o S	14.6	23.6		$S \rightarrow S$	76.8	62.2	$E \rightarrow S$	8.1	12.8
$U \rightarrow E$	58.0	47.1		$S \rightarrow E$	21.3	33.1	$E \rightarrow E$	88.8	84.7
Income Moments									
			Data	Model			Data	Model	
	$corr(y_i)$	(x, y_{t+1}^S)	0.43	0.39	cori	y_t^S, y_{t+1}^E	0.43	0.34	

Model Performance: The role of labor vs financial frictions

- Model without labor frictions misses
 Self-employment out-of-necessity
- ► There is also no unemployment risk for employed agents
- Self-employment is only taken by agents who can generate higher profits than wages

Toy Model Appendix

Selection into self-employment

Static Model Continuum of unemployed (U) agents

- ▶ Choose to stay unemployed (U) or become self-employed (SE)
- ▶ Heterogeneity: Assets (a) and productivity (z)
- ► CRRA utility: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$

Selection into self-employment

Static Model Continuum of unemployed (U) agents

- ► Choose to stay unemployed (*U*) or become self-employed (*SE*)
- ▶ Heterogeneity: Assets (a) and productivity (z)
- ► CRRA utility: $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$

Unemployment

- U get a job with probability p
- ▶ If employed, consume: a + w
- ▶ If not, consume: a + b

Self-Employment

- ► SE produce using own assets
- **Consume:** $a + za^{\alpha}$

Mechanisms behind policies depend on selection into self-employment

Self-employment as an outside option to employment

High unemployment benefits (b) or no unemployment (p=1)

- "Positive" selection to SE
- Productive/Wealthy agents
- No low-earning SE

Self-employment as an outside option to unemployment

Selection breaks for resource constrained agents:

- ► Poor + Unemployed
- → Unproductive SE
- \rightarrow Low-earning SE
- Large share of SE if lots of poor/constrained agents

Assets

Policy Appendix

Micro Transfers - Occupational Choices

Gov. Transfer Share of Self-Employed Agents Earnings Deciles

Some changes in thresholds

Small effects across distribution of income

Micro Transfers - Self-Employment Income

Small profit gains to poor & productive

Negligible effects in the distribution

Unemployment benefits - Occupational Choices

Raseline Model Unemployment Benefits Share of Self-Employed Agents Earnings Deciles

Increase in productivity selection

Lower mass of low-earning SE

Unemployment benefits - Self-Employment Income

Productive SE take advantage of $w \downarrow$

Noticeable effects on earnings

Unemployment benefits - Productivity Distribution

 $Change \ in \ selection \ improves \ productivity$

Unemployment Benefits: Self-employment ↓ among the poor

Baseline Model Unemployment Benefits Share of Self-Employed Agents 40 Earnings Deciles

Productivity distribution improves (FOSD)

In GE self-employment ↓ among poor (↓ wages benefit high-productivity)

Unemployment benefits: productivity ↑, unemployment ↑

GE	Moment	GE
-2.0	Δ Employment	0.46
-2.3	Δ Self-employment	-5.8
2.9	Δ Unemployment	5.1
	-2.0 -2.3	 -2.0 Δ Employment -2.3 Δ Self-employment

Credit Deepening: Relaxing Collateral Constraints

- Financial frictions prevent self-employed to produce at optimal scale
- ► Capture financial reform as credit deepening

$$k \leq (\lambda + \lambda_{CD}) \cdot a$$

Two exercises:

- 1. Relaxed collateral constraint: $\lambda_{CD} > 0$ (In paper)
- 2. No collateral constraint: $\lambda_{CD} \rightarrow \infty$

Elimination of Collateral Constraints: $\lambda_{CD} \rightarrow \infty$

Productivity distribution improves $\mathsf{TFP} \uparrow 11\%$

Credit Deepening: $\lambda_{CD} > 0$

Productivity distribution improves

 $SE \downarrow$ because wages \uparrow (subsistence SE persists)

Elimination of Collateral Constraints

Does not solve occupational choices at the bottom

Transfers to the self-employed

Transfers of 17% of labor incomes to the lowest 10% Banerjee, Niehaus, and Suri (2019)

$$y^S = r \cdot a + \pi(a, z) + b_{MG} \mathbb{1}_{MG}$$

Transfers to the self-employed

Transfers of 17% of labor incomes to the lowest 10% Banerjee, Niehaus, and Suri (2019)

$$y^S = r \cdot a + \pi(a, z) + b_{MG} \mathbb{1}_{MG}$$

Productivity distribution worsens (FOSD)

Self-employment \(\ \) among the poor (productive SE do not benefit)

Transfers to the self-employed

Moment	GE	Moment	GE
% Δ Wage	1.0	Δ Employment	-2.5
$\%$ Δ Output	-2.4	Δ Self-employment	6.6
% Δ TFP	-2.5	Δ Unemployment	-4.1

- ► Transfers heavily influence occupational choice
- Unemployed agents prefer self-employment regardless of productivity
- Aggregate producitivity decreases as a result

Transfers to the non-employed: Occupational choice

Policy effects:

Moment	
Δ Employment	-0.22
Δ Unemployment	-0.14
Δ Self-employment	0.36
$\%$ Δ Wage	-0.04
$\% \Delta Income(E)$	-0.22
$\%$ Δ Income (S)	-1.40

Increase in productivity selection

Transfers to the non-employed: Self-employed income

Increase in productivity selection

Increase in productivity selection