Première partie

Enoncés des exercices

1 Nombres réels

Exercice 1. Montrer que $\sqrt{2} + \sqrt{3} \notin Q$

Exercice 2

- 1. Montrer que $\sqrt{6}$ est un nombre irrationnel.
- 2. Montrer qu' un entier naturel q tel que q^2 soit un multiple de 3 est aussi un multiple de
- 3. En déduire que $\sqrt{3}$ est irrationnel.
- 3. Soient a, b et c trois entiers relatifs tels que $a + b\sqrt{2} + c\sqrt{3} = 0$. Montrer que a = b =c = 0.

Exercice 3.

- 1. Montrer que si $x \in \mathbb{Q}$ et $y \notin \mathbb{Q}$, alors que $x + y \notin \mathbb{Q}$.
- 2. Montrer que si $x \in \mathbb{Q} \setminus \{0\}$ et $y \notin \mathbb{Q}$, alors que $xy \notin \mathbb{Q}$.
- 3. La somme de deux nombres irrationnels est -il toujours un nombre irrationnel? Même question pour le produit.

Exercice 4 . Résoudre sur $\mathbb R$ le système d'inéquations $|x+1|<\frac{5}{2}$ et $\sqrt{x^2+x-2}>1+\frac{x}{2}$

Exercice 5. Déterminer (s'ils existent): les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$\mathbf{A} = [0,1] \cap \mathbb{Q}, \ \mathbf{B} =]0,1[\cap \mathbb{Q}, \ \mathbf{C} = \left\{ (-1)^n + \frac{1}{n^2} \ / \ n \in \mathbb{N}^* \right\}.$$

Exercice 6. Soient A et B deux parties bornées de \mathbb{R} . On note

$$A + B = \{a + b \mid a \in A, b \in B\}$$

- 1. Montrer que sup $A + \sup B$ est un majorant de A + B.
- 2. Montrer que sup $(A + B) = \sup A + \sup B$.

Exercice 7. Soient A et B deux parties bornées de \mathbb{R} .

Répondre en justifiant par Vrai ou faux

- 1. $A \subset B \Rightarrow \sup A \leq \sup B$,
- 2. $A \subset B \Rightarrow \inf A < \inf B$,
- 3. $\sup (-A) = -\inf A$;
- 4. $\sup A + \inf B \le \sup (A + B)$.

Exercice 8 Soient a et b deux nombres réels donnés. Démontrer les équivalences :

- 1. $a \le b \Leftrightarrow (\forall \varepsilon > 0, a \le b + \varepsilon)$
- 2. $a = 0 \Leftrightarrow (\forall \varepsilon > 0, |a| < \varepsilon)$.

Exercice 9. Soit $n \in \mathbb{N}$.

https://sigmoid.ma 1. Montrer qu'il existe $(a_n, b_n) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que $(2 + \sqrt{3})^n = a_n + b_n \sqrt{3}$ et $3b_n^2 = a_n^2 - 1$.

2. Montrer que la partie entière de $(2+\sqrt{3})^n$ est un entier impair.

Exercice 10.

1. Montrer que pour tout entier $n \geq 1$ on a l'encadrement :

$$2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}} < 2(\sqrt{n} - .\sqrt{n-1})$$

- 2. En déduire un encadrement de la somme $\sum_{n=1}^{p} \frac{1}{\sqrt{n}}$ pour tout $p \in \mathbb{N}^*$ 3. Quelle est la partie entière de $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{10000}}$?

Exercice 11. Montrer que

- $i) \ \forall x, y \in \mathbb{R}, (x \le y \Rightarrow E(x) \le E(y)...$
- $ii) \ \forall x \in \mathbb{R} \mathbb{Z}, E(-x) = -E(x) 1$
- $iii) \ \forall x \in \mathbb{R}, \forall a \in \mathbb{Z}, E(x+a) = E(x) + a.$

Exercice 12 Soit $n \in \mathbb{N}^*, x \in \mathbb{R}$. Montrer que : $E(\frac{E(nx)}{n}) = E(x)$.

Exercice 13

1. Montrer que : $\forall x \in \mathbb{R}$,

$$E(x) + E(-x) = -1$$
 si $x \notin Z$ et $E(x) + E(-x) = 0$ si $x \in Z$.

2. En déduire que si p et q sont deux entiers naturels premier entre eux alors :

$$\sum_{k=1}^{q-1} E\left(\frac{kp}{q}\right) = \frac{(p-1)(q-1)}{2}.$$

Exercice 14. Montrer que l'ensemble $\{r^3, r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

2 Suites numériques

Exercice 1. Soient (u_n) et (v_n) deux suites convergentes. Etudier la convergence de la suite (w_n) définie par $w_n = \max(u_n, v_n)$.

Exercice 2. Montrer qu'une suite d'entiers relatifs (u_n) converge si et seulement si elle est stationnaire.

Exercice 3.

Soit (u_n) une suite de réels non nuls vérifiant $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=0$. Déterminer la limite de (u_n) .

Exercice 4. Soit (u_n) une suite qui tend vers $l \in \mathbb{R}$.

1. Montrer que si $l = \pm \infty$, alors $(E(u_n))$ tend vers l.

On suppose dans la suite que $l \in \mathbb{R}$.

- 2. Montrer que si $l \notin \mathbb{Z}$, alors $(E(u_n))$ converge vers E(l).
- 3. On suppose que $l \in \mathbb{Z}$.
- a) On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que $n \geq n_0 \Rightarrow u_n \geq l$, alors $(E(u_n))$ converge vers l. b) On suppose qu'il existe $n_1 \in \mathbb{N}$ tel que $n \geq n_1 \Rightarrow u_n < l$, alors $(E(u_n))$ converge vers
- l 1.

c) On suppose que a) et b) ne sont pas réalisées, c'est à dire que pour tout $N \in \mathbb{N}$, il existe $n_0 \ge N$ et $n_1 \ge N$ tel que $u_{n_0} < l$ et $u_{n_0} \ge l$. Montrer que la suite $(E(u_n))$ est divergente.

Exercice 5. Moyenne de Cesaro :

Soient (u_n) une suite réelle et (v_n) la suite définie par : $v_n = \frac{u_1 + ... + u_n}{n}$

- 1. Montrer que si la suite (u_n) converge vers un réel l, la suite (v_n) converge et a pour limite l. A t'on la réciproque?
- 2. Montrer que si la suite (u_n) est bornée, la suite (v_n) est bornée. A t'on la réciproque?
- 3. Montrer que si la suite (u_n) est croissante alors la suite (v_n) l'est aussi.

Exercice 6. Soit (u_n) une suite de réels strictement positifs. On suppose que

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l.$$

- $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l.$ 1. Montrer que si l < 1 alors $\lim_{n \to +\infty} u_n = 0.$ 2. Montrer que si l > 1 alors $\lim_{n \to +\infty} u_n = +\infty$
- 3. Montrer que si l=1, On ne peut rien conclure.

Exercice 7. Déterminer si elle existent les limites des suites suivantes

a)
$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$$
, b) $u_n = \sqrt[n]{n}$, c) $u_n = \sqrt[n]{n!}$,

a)
$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$$
, b) $u_n = \sqrt[n]{n}$, c) $u_n = \sqrt[n]{n!}$, d) $u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n}$ et e) $u_n = \frac{\sin n}{n + (-1)^{n+1}}$.

Exercice 8. Etudier la convergence des suites (u_n) définies par :

i)
$$u_n = \sum_{k=1}^n \frac{1}{k}$$
, ii) $u_n = \sum_{k=1}^n \sqrt{k}$, iii) $u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$.

Exercice 9. Soit θ un réel de l'intervalle $\left[0,\frac{\pi}{2}\right]$

Montrer que les suites (u_n) et (v_n) définies par :

$$u_n = 2^{n+1} \sin \frac{\theta}{2^n}$$
$$v_n = 2^{n+1} \tan \frac{\theta}{2^n}$$

sont adjacentes. Calculer leur limite.

Exercice 10. Moyenne arithmico-géometrique :

Soit
$$(a,b) \in (\mathbb{R}^{*+})^2$$
 tel que $a > b$, on pose $a_0 = a, b_0 = b, a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \sqrt{a_n b_n}$

- 1. Montrer que ces suites sont bien définies
- 2. Montrer qu'elles sont adjacentes, on note par M(a,b) leurs limite communes appelle moyenne arithmico - $g\acute{e}om\acute{e}trique$ de a et b
- 3. Calculer M(a, a) et M(a, 0).
- 4. Montrer que $M(\lambda a, \lambda b) = \lambda M(a, b)$ pour $\lambda \in \mathbb{R}^+$.

Exercice 11. Soit (u_n) une suite telle que $(u_{2n}), (u_{2n+1}), (u_{3n})$ convergent.

Montrer que (u_{2n}) et (u_{2n+1}) convergent vers la même limite.

En déduire que (u_n) converge.

https://sigmoid.ma

Exercice 12. Justifier que la suite (u_n) définie par $u_n = \sin n$ diverge.

Exercice 13. Soit (u_n) une suite de réels décroissante et de limite nulle.

Pour tout
$$n \in \mathbb{N}$$
, on pose $S_n = \sum_{k=0}^n (-1)^k u_k$.

Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes et en déduire que (S_n) converge.

Exercice 14. Soient
$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n \times n!}$.

1. Montrer que les suites (u_n) et (v_n) sont strictement monotones et adjacentes.

On admet que leur limite commune est e. On désire montrer que $e \notin \mathbb{Q}$. Pour cela on raisonne par l'absurde en supposant $e = \frac{p}{a}$ avec $p \in \mathbb{Z}^{n}, q \in \mathbb{N}$.

2. Montrer que $u_q < e < v_q$ et en déduire une contradiction.

Exercice 15.

Soit
$$H_n = \sum_{k=1}^n \frac{1}{k}$$
.

- 1. En utilisant une intégrale, montrer que pour tout n > 0: $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$.
- 2. En déduire que $\ln(n+1) \le H_n \le \ln(n) + 1$.
- 3. Déterminer la limite de (H_n) .
- 4. Montrer que la suite (u_n) définie par $u_n = H_n \ln(n)$ est décroissante .
- 5. En déduire que la suite (u_n) est convergente.

Exercice 16. Soit q un entier au moins égal à 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \cos \frac{2n\pi}{q}$.

- 1. Montrer que $u_{n+q} = u_n$ pour tout $n \in \mathbb{N}$.
- 2. Calculer u_{nq} et u_{nq+1} . En déduire que la suite (u_n) n'a pas de limite.

Exercice 17. Soit a > 0. On définit la suite (u_n) par $u_0 > 0$ et par la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$$

On se propose de montrer que (u_n) tend vers \sqrt{a} .

- 1. Montrer que $u_{n+1}^2 a = \frac{(u_n^2 a)^2}{4u_n^2}$.
- 2. Montrer que si $n \ge 1$ alors $u_n \ge \sqrt{a}$ puis que la suite (u_n) est décroissante.
- 3. En déduire que la suite (u_n) converge vers \sqrt{a} . 4. En utilisant la relation $u_{n+1}^2 a = (u_n \sqrt{a})(u_n + \sqrt{a})$ donner une majoration de $u_{n+1} - \sqrt{a}$ en fonction de $u_n - \sqrt{a}$.
- 5. Supposons que $u_1 \sqrt{a} \le k$, montrer que pour $n \ge 1$:

$$u_n - \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}$$

6. Application : Calculer $\sqrt{10}$ avec une précision de 8 chiffres après la virgule, en prenant $u_0 = 3.$

Exercice 18. Soient a et b deux réels, a < b. On considère la fonction $f: [a, b] \to [a, b]$ supposée continue et une suite récurrente (u_n) définie par :

$$\begin{cases} u_0 \in [a,b] & et \\ u_{n+1} = f(u_n) \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

- 1. On suppose ici que f est croissante. Montrer que (u_n) est monotone et en déduire sa convergence vers une solution de l'équation f(x) = x.
- 2. Application. Calculer la limite de la suite définie par :

$$\begin{cases} u_0 = 4 & et \\ u_{n+1} = \frac{4u_n + 5}{u_n + 3} \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

- 3. On suppose maintenant que f est décroissante. Montrer que les suites (u_{2n}) et (u_{2n+1}) sont monotones et convergentes.
- 4. Application. Soit (u_n) la suite définie par

$$\begin{cases} u_0 = \frac{1}{2} \ et \\ u_{n+1} = (1 - u_n)^2 \ \text{pour tout } n \in \mathbb{N}. \end{cases}$$
Calculer les limites des suites (u_{2n}) et (u_{2n+1}) .

Continuité et dérivabilité des fonctions numériques 3 d'une variable réelle

Exercice 1. Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par $f(x) = xE\left(x - \frac{1}{x}\right)$.

Montrer que f admet une limite en 0 et déterminer cette limite.

Exercice 2

Soit f une fonction croissante définie sur [0,1] à valeurs dans [0,1].

- 1. Montrer que s'il existe $x \in [0,1]$ et $k \in \mathbb{N}$ tels que $f^k(x) = x$ alors x est un point fixe pour f.
- b) Montrer que f admet un point fixe.

Exercice 3. Soit $f:[0,+\infty[\to [0,+\infty[$ une fonction continue, qui tend vers 0 quand x tend vers $+\infty$.

- 1. Montrer que f est bornée et atteint sa borne supérieure.
- 2. Atteint-elle toujours sa borne inférieure?

Exercice 4. Montrer que toute fonction polynôme de $\mathbb R$ dans $\mathbb R$, de degré impair, s'annule en au moins un point.

Exercice 5

- 1. Soit $f:[a,b] \to [a,b]$ une fonction continue. Montrer qu'il existe $x_0 \in [a,b]$ tel que
- 2. Montrer que l'équation $\cos x = x$ admet une solution comprise entre 0 et 1.
- 3. Donner un exemple de fonction continue $g: [0,1] \to [0,1]$ qui n'admet pas de point fixe.

Exercice 6. Soit $f: \mathbb{R}^* \to \mathbb{R}$, la fonction définie par : $f(x) = x^2 \sin \frac{1}{x}$.

Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Exercice 7. Montrer que le polynôme défini par $P_n(x) = x^n + ax + b$, (a et b réels) admet au plus trois racines réelles.

Exercice 8

- 1. Montrer que $\forall x > 0, \frac{1}{1+x} < \ln(x+1) \ln(x) < \frac{1}{x}$.
- 2. En déduire, pour $k \in \mathbb{N} \setminus \{0,1\}$, $\lim_{n \to +\infty} \sum_{p=n+1}^{kn} \frac{1}{p}$.

Exercice 9

- Soient x et y deux réels avec 0 < x < y.

 1. Montrer que $x < \frac{y-x}{\ln(y) \ln(x)} < y$.
- 2. En étudiant la fonction f définie sur [0,1] par $\alpha \mapsto f(\alpha) = \ln(\alpha x + (1-\alpha)y) \alpha \ln(x) \alpha \ln(x)$ $(1-\alpha)\ln(y)$, montrer que $\alpha \ln(x) + (1 - \alpha) \ln(y) < \ln(\alpha x + (1 - \alpha) y).$

Donner une interprétation géométrique.

Exercice 10. Dans l'application du théorème des accroissements finis à la fonction f définie par $f(x) = \alpha x^2 + \beta x + \gamma$ sur l'intervalle [a, b] préciser le nombre "c" de [a, b]. Donner une interprétation géométrique.

Exercice 11. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction définie continue telle que $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = +\infty.$ Montrer que f admet un minimum absolu.

Exercice 12.

Soit $f: [-1, +\infty[\to \mathbb{R} \text{ la fonction définie par } f(x) = \frac{1}{\sqrt{x^2 + 2x + 2}}$.

Montrer que f réalise une bijection de $[-1, +\infty[$ sur son image, que l'on déterminera. Expliciter la bijection réciproque.

Exercice 13.

Etablir les relations

https://sigmoid.ma

$$\arccos(x) + \arcsin(x) = \frac{\pi}{2};$$

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{x}{|x|}\frac{\pi}{2} \text{ pour } x \neq 0;$$

$$\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}};$$

$$\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}} \text{ et}$$

$$\sin(2 \arcsin x) = 2x\sqrt{1-x^2}$$

Exercice 14.

Calculer les limites suivantes en utilisant la règle de l'Hospital après avoir vérifié sa validité:

$$\lim_{x\to 0} \frac{x}{\sqrt{1+x^2} - \sqrt{1+x}}; \lim_{x\to -\infty} \frac{2ch^2x - sh\left(2x\right)}{x - \ln\left(chx\right) - \ln\left(2\right)} \text{ et } \lim_{x\to 1^-} \frac{\arccos x}{\sqrt{1-x^2}}.$$

Deuxième partie

Corrigés des exercices

4 Nombres réels

Exercice 1.

Montrons que $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.

Supposons que
$$\sqrt{2} + \sqrt{3} \in \mathbb{Q}$$
. Alors $\sqrt{2} - \sqrt{3} \in \mathbb{Q}$ car $\sqrt{2} - \sqrt{3} = \frac{-1}{\sqrt{2} + \sqrt{3}}$. Or $\sqrt{2} = \frac{1}{2} ((\sqrt{2} + \sqrt{3}) + (\sqrt{2} - \sqrt{3}))$

On aurait donc aussi $\sqrt{2} \in \mathbb{Q}$.

Exercice 2

1. Montrons que $\sqrt{6}$ est un nombre irrationnel.

Supposons que $\sqrt{6} = \frac{p}{q}, q \neq 0$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, p et q premiers entre eux. On a alors $p^2 = 6q^2$. Par conséquent, p^2 est pair, donc p l'est aussi et ainsi p = 2k. D'où $p^2 = 4k^2 = 6q^2$ et $2k^2 = 3q^2$. Par suite q est pair. Ce qui contredit le fait que p et q sont premiers entre eux.

2. Supposons que q^2 soit un multiple de 3 et q n'est pas un multiple de 3.

On a alors q = 3k + 1 ou q = 3k + 2.

Si
$$q = 3k + 1$$
, alors $q^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$. Donc q^2 ne serait pas un multiple de 3.

Si q = 3k + 2, alors $q^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$. Donc q^2 ne serait pas un multiple de 3.

Application

Supposons que $\sqrt{3} = \frac{p}{q}, q \neq 0$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, p et q premiers entre eux. Alors $3q^2 = p^2$ et donc p^2 est un multiple de 3 et donc p est aussi un multiple de 3, c'est à dire p = 3k. D'où $p^2 = 9k^2 = 3q^2$, donc $q^2 = 3k$.

Par suite q est un multiple de 3 . Ce qui contredit le fait que p et q sont premiers entre eux.

3. Supposons que a, b et c trois entiers relatifs tels que $a + b\sqrt{2} + c\sqrt{3} = 0$ et $a \neq 0, b \neq 0$ ou $c \neq 0$.

On $a = a + b\sqrt{2} + c\sqrt{3} = 0 \Rightarrow a = -b\sqrt{2} - c\sqrt{3} \Rightarrow a^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2b^2 - 3c^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \Rightarrow a^2 - 2$

■ Si $b \neq 0$ et $c \neq 0$ alors $\sqrt{6} = \frac{a^2 - 2b^2 - 3c^2}{2bc}$. Ce qui n'est pas possible car $\sqrt{6} \notin \mathbb{Q}$ et $\frac{a^2 - 2b^2 - 3c^2}{2bc} \in \mathbb{Q}$.

 \blacksquare Si b=0 et $c\neq 0$ alors $a-c\sqrt{3}=0,$ d'où $\sqrt{3}=$

Ce qui n'est pas possible car $\sqrt{3} \notin \mathbb{Q}$ et $\frac{a}{c} \in \mathbb{Q}$.

De même si $b \neq 0$ et c = 0 alors $\sqrt{2} = \frac{a}{b}$ Ce qui n'est pas possible car $\sqrt{2} \notin \mathbb{Q}$ et $\frac{a}{b} \in \mathbb{Q}$.

Par conséquent b=0 et c=0. Par suite a=0.

Exercice 3.

1. Montrons que si $x \in \mathbb{Q}$ et $y \notin \mathbb{Q}$, alors que $x + y \notin \mathbb{Q}$.

Soit $x \in \mathbb{Q}$ et $y \notin \mathbb{Q}$. Par l'absurde : Si $z = x + y \in \mathbb{Q}$, alors par différence de deux nombres rationnels $y = z - x \in \mathbb{Q}$

Or y est irrationnel donc $x + y \notin \mathbb{Q}$.

2. Montrons que si $x \in \mathbb{Q} \setminus \{0\}$ et $y \notin \mathbb{Q}$, alors que $xy \notin \mathbb{Q}$.

Soit $x \in \mathbb{Q} \setminus \{0\}$ et $y \notin \mathbb{Q}$. Par l'absurde : Si $z = xy \in \mathbb{Q}$, alors par quotient de deux nombres rationnels $y = \frac{z}{x} \in \mathbb{Q}$

Or y est irrationnel $xy \notin \mathbb{Q}$.

3. La somme et le produit de deux nombres irrationnels ne sont pas toujours un nombre irrationnel.

Exemple: $x = \sqrt{2} \notin \mathbb{Q}$ et $y = -\sqrt{2} \notin \mathbb{Q}$ alors que $x + y = 0 \in \mathbb{Q}$ et $xy = -2 \in \mathbb{Q}$.

Exercise 4. On a
$$|x+1| < \frac{5}{2} \Leftrightarrow -\frac{5}{2} < x+1 < \frac{5}{2} \Leftrightarrow -\frac{3}{2} < x < 3 \Leftrightarrow x \in \left] -\frac{3}{2}, 3 \right[.$$

$$\sqrt{x^2 + x - 2} > 1 + \frac{x}{2} \Leftrightarrow \left\{ \begin{array}{c} x^2 + x - 2 > \left(1 + \frac{x}{2}\right)^2 \text{ th} \left\{ \begin{array}{c} x^2 + x - 2 > \frac{x}{4} + x + 1 \\ x^2 + x - 2 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} x^2 + x - 2 > 0 \\ x^2 + x - 2 > 0 \end{array} \right.$$

$$\Leftrightarrow \left\{ \begin{array}{l} x^2 - 4 > 0 \\ x \in]-\infty, -2[\,\cup\,]1, +\infty[\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \in]-\infty, -2[\,\cup\,]2, +\infty[\\ x \in]-\infty, -2[\,\cup\,]1, +\infty[\end{array} \right. \Leftrightarrow x \in x \in]-\infty, -2[\,\cup\,]1, +\infty[\times x \in x \in x \in x \in x] \right.$$

Exercice 5.

Les majorants de $\mathbf{A} = [0,1] \cap \mathbb{Q}$ sont $[1,+\infty[$ et ses minorants sont $]-\infty,0]$, donc sa borne supérieure est 1, sa borne inférieure est 0, son plus grand élément est 1 et son plus petit élément est 0.

Les majorants de $\mathbf{B} = [0, 1] \cap \mathbb{Q}$ sont $[1, +\infty[$ et ses minorants sont $]-\infty, 0[$, donc sa borne supérieure est 1, sa borne inférieure est 0, B n'admet pas de plus grand élément ni de plus

Les majorants de $\mathbf{C} = \left\{ (-1)^n + \frac{1}{n^2} / n \in \mathbb{N}^* \right\}$ sont $\left[\frac{5}{4}, +\infty \right[$ et ses minorants sont $]-\infty, -1]$, donc sa borne supérieure est $\frac{5}{4}$, sa borne inférieure est -1, son plus grand élément est $\frac{5}{4}$,

mais n'a pas de plus petit élément.

Exercice 6.

Soient A et B deux parties bornées de \mathbb{R} . On note

$$A + B = \{a + b \mid a \in A, b \in B\}$$

1. $\sup A$ est un majorant de A, donc pour tout $a \in A, a \leq \sup A$. De même, pour tout $b \in B, b \leq \sup B$.

 $x \in A + B$, il existe alors $a \in A$ et $b \in B$ tel que x = a + b, d'où $x \le \sup A + \sup B$. C'est à dire que $\sup A + \sup B$ est un majorant de A + B.

2. Soit $\varepsilon > 0$, $\exists a \in A$ et $b \in B$ tel que $\sup A - \frac{\varepsilon}{2} < a \le \sup A$ et $\sup B - \frac{\varepsilon}{2} < b \le \sup B$ d'où $\sup A + \sup B - \varepsilon < a + b \le \sup A + \sup \tilde{B}$

On a donc: $\sup A + \sup B$ est un majorant de A + B et $\forall \varepsilon > 0$, $\exists x = a + b \in A + B$ tel que $\sup A + \sup B - \varepsilon < a + b \le \sup A + \sup B$.

D'après la caractérisation de la borne supérieure sup $(A + B) = \sup A + \sup B$.

Exercice 7.

Soient A et B deux parties bornées de \mathbb{R} .

1. Vrai.

En effet si $a \in A, a \in B$, donc $a \leq \sup B$, c'est à dire sup B est un majorant de A. Or $\sup A$ est le plus petit des majorants donc $\sup A \leq \sup B$.

2. Faux. Par exemple, soit
$$A = \left\lfloor \frac{1}{2}, 1 \right\rfloor$$
 et $B = \left\lfloor 0, 1 \right\rfloor$. On a $A \subset B$, inf $A = \frac{1}{2}$ et inf $B = 0$.

https://sigmoid.ma

3. Vrai . En effet;

$$M = \sup(-A) \Leftrightarrow \begin{cases} i) \ \forall x \in -A, \ x \leq M \\ ii) \ \forall \varepsilon > 0, \ \exists x \in -A : \ M - \varepsilon < x \leq M \end{cases}$$
$$\Leftrightarrow \begin{cases} i) \ \forall x \in -A, \ -x \geq -M \\ ii) \ \forall \varepsilon > 0, \ \exists x \in -A : \ -M < -x \leq -M + \varepsilon \end{cases}$$
$$\Leftrightarrow \inf A = -M.$$

4. Vrai . En effet;

On a inf $B \le \sup B$, donc $\sup A + \inf B \le \sup A + \sup B = \sup (A + B)$.

Exercice 8

1. $a \le b \Leftrightarrow (\forall \varepsilon > 0, a \le b + \varepsilon)$

$$\Rightarrow$$
) $a \le b \Rightarrow a \le b + \varepsilon, \forall \varepsilon > 0$

 \Leftarrow) Supposons que $\forall \varepsilon > 0$, $a \leq b + \varepsilon$ et a > b.

Pour $\varepsilon = \frac{a-b}{2} > 0$, on aurait $a \le b + \frac{a-b}{2}$, D'où $(a-b) - \left(\frac{a-b}{2}\right) \le 0$ et par suite $a - b \le 0.$

2.
$$a = 0 \Leftrightarrow (\forall \varepsilon > 0, |a| \le \varepsilon)$$
.

 \Rightarrow) immédiat

 \Leftarrow) Supposons que $\forall \varepsilon > 0$, $|a| \leq \varepsilon$ et $a \neq 0$.

Pour $\varepsilon = \frac{|a|}{2} > 0$, on aurait $|a| \le \frac{|a|}{2}$, d'où a = 0.

Exercice $\bar{\mathbf{9}}$. Soit $n \in \mathbb{N}$

1. Montrer qu'il existe $(a_n, b_n) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que $(2 + \sqrt{3})^n = a_n + b_n \sqrt{3}$ et $3b_n^2 = a_n^2 - 1$. On fait une récurrence sur $n \in \mathbb{N}$.

Four n = 1, on a $a_1 = 2$ et $b_1 = 1$. Supposons la propriété établie au rang n > 1.

$$(2+\sqrt{3})^{n+1} = (a_n + b_n\sqrt{3})(2+\sqrt{3}) = a_{n+1} + b_{n+1}\sqrt{3}$$
 avec $a_{n+1} = 2a_n + 3b_n$ et $b_{n+1} = a_n + 2b_n$.

On a bien $3b_{n+1}^2 - a_{n+1}^2 = -1$.

2. Montrer que la partie entière de
$$(2+\sqrt{3})^n$$
 est un entier impair.
On a $a_n-1 \le b_n\sqrt{3} < a_n$, donc $2a_n-1 \le a_n+b_n\sqrt{3}=(2+\sqrt{3})^n < 2a_n$. Donc $E\left((2+\sqrt{3})^n\right)=2a_n-1$. C'est donc un entier impair.

Exercice 10.

1. Montrons que pour tout entier $n \geq 1$, l'encadrement :

$$2(\sqrt{n+1} - \sqrt{n}) < \frac{1}{\sqrt{n}} < 2(\sqrt{n} - \sqrt{n-1}).$$

$$\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}}.$$

De même

$$\sqrt{n} - \sqrt{n-1} = \frac{1}{\sqrt{n} + \sqrt{n-1}} > \frac{1}{2\sqrt{n}}.$$

2. Encadrement de la somme $\sum_{n=1}^{p} \frac{1}{\sqrt{n}}$ pour tout $p \in \mathbb{N}^*$.

On écrit
$$\sum_{n=1}^{p} \frac{1}{\sqrt{n}} = 1 + \sum_{n=2}^{p} \frac{1}{\sqrt{n}}$$
.

Or

$$2\sqrt{2} - 2 < 1 = 2 - 1 \tag{1}$$

et

$$\sum_{n=2}^{p} \left(\sqrt{n+1} - \sqrt{n} \right) = -\sum_{n=2}^{p} \left(\sqrt{n} - \sqrt{n+1} \right)$$

$$= -\left(\left(\sqrt{2} - \sqrt{3} \right) + \left(\sqrt{3} - \sqrt{4} \right) + \dots + \left(\sqrt{p} - \sqrt{p+1} \right) \right)$$

$$= \sqrt{p+1} - \sqrt{2}$$
https://sigmoid.ma

De même

$$\sum_{n=2}^{p} \left(\sqrt{n} - \sqrt{n-1} \right) = -\sum_{n=2}^{p} \left(\sqrt{n-1} - \sqrt{n} \right)$$

$$= -\left(\left(\sqrt{1} - \sqrt{2} \right) + \left(\sqrt{2} - \sqrt{3} \right) + \dots + \left(\sqrt{p-1} - \sqrt{p} \right) \right)$$

$$= \sqrt{p} - 1$$

Ainsi

$$2\sqrt{p+1} - 2\sqrt{2} \le \sum_{n=2}^{p} \frac{1}{\sqrt{n}} \le 2\sqrt{p} - 2 \quad (2)$$

On additionnant membre à membre (1) et (2), on obtient

$$2\sqrt{p+1} - 2 \le \sum_{n=1}^{p} \frac{1}{\sqrt{n}} \le 2\sqrt{p} - 1$$

3. Pour p = 10000, on a

$$2\sqrt{10001} - 2 \le \sum_{n=1}^{10000} \frac{1}{\sqrt{n}} \le 2\sqrt{10000} - 1$$

Or $2\sqrt{10000} - 1 = 199$ et $2\sqrt{10001} - 2 = 198,0099 > 198$, Donc $198 \le \sum_{i=0}^{10000} \frac{1}{\sqrt{n}} \le 199$

$$198 \le \sum_{n=1}^{10000} \frac{1}{\sqrt{n}} \le 199$$

et par suite $E\left(\sum_{n=1}^{10000} \frac{1}{\sqrt{n}}\right) = 198$

Exercice 11.

i) Montrons que $x \le y \Rightarrow E(x) \le E(y)$

$$x \le y \Rightarrow E(x) \le x \le y$$
.

Donc E(x) est un entier relatif inférieur ou égal à y, Comme E(y) est le plus grand entier relatif inférieur ou égal à y, on a donc $E(x) \leq E(y)$.

$$ii) \ \forall x \in \mathbb{R} - \mathbb{Z}, E(-x) = -E(x) - 1.$$

Soit
$$f(x) = E(x) + E(-x)$$

On a
$$f(x+1) = E(x+1) + E(-x-1) = E(x) + 1 + E(-x) - 1 = f(x)$$
.

Donc la fonction f est périodique de période 1.

Or si
$$x \in (0, 1)$$
, on a $f(x) = -1$ et $f(0) = 0$.

$$iii) \ \forall x \in \mathbb{R}, \forall a \in \mathbb{Z}, E(x+a) = E(x) + a.$$

On traite d'abords le cas a = 1M

$$E(x) \le x < E(x) + 1 \Rightarrow E(x) + 1 \le x + 1 < (E(x) + 1) + 1$$

Donc
$$E(x + 1) = E(x) + 1$$

Si
$$a \in \mathbb{N}$$
, $E(x+a) = E(x+(a-1)) + 1 = E(x+(a-2)) + 2 = \dots = E(x) + a$.

Si
$$a < 0, E(x) = E((x+a) - a) = E(x+a)$$
 (puisque $-a > 0$)

Exercice 12

Soit $n \in \mathbb{N}^*, x \in \mathbb{R}$.

https://sigmoid.ma

On a

$$E(x) \leq x < E(x) + 1 \Rightarrow nE(x) \leq nx < nE(x) + n$$

$$\Rightarrow nE(x) \leq nx < nE(x) + n \Rightarrow nE(x) \leq E(nx) < nE(x) + n$$

$$\Rightarrow E(x) \leq \frac{E(nx)}{n} < E(x) + 1$$

Donc
$$E(\frac{E(nx)}{n}) = E(x)$$
.

Exercice 13

1. Montrons que : $\forall x \in \mathbb{R}$,

$$E(x) + E(-x) = -1$$
 si $x \notin Z$ et $E(x) + E(-x) = 0$ si $x \in Z$.

Soit f(x) = E(x) + E(-x)

On a
$$f(x+1) = E(x+1) + E(-x-1) = E(x) + 1 + E(-x) - 1 = f(x)$$
.

Donc la fonction f est périodique de période 1.

Or si $x \in [0, 1]$, on a f(x) = -1 et f(0) = 0.

2. En déduire que si $\,p$ et $\,q$ sont deux entiers naturels premier entre eux alors :

$$\sum_{k=1}^{q-1} E\left(\frac{kp}{q}\right) = \sum_{k=1}^{q-1} E\left((q-k)\frac{p}{q}\right) = \sum_{k=1}^{q-1} E\left(p-k\frac{p}{q}\right)$$

$$= \sum_{k=1}^{q-1} E\left(-k\frac{p}{q}\right) + p = \sum_{k=1}^{q-1} \left(-E\left(k\frac{p}{q}\right) - 1\right) + p$$

$$= -\sum_{k=1}^{q-1} E\left(k\frac{p}{q}\right) + (p-1)(q-1)$$

Ainsi

$$2 \sum_{k=1}^{q-1} E\left(\frac{kp}{q}\right) = (p-1)(q-1).$$

Exercice 14.

Montrons que l'ensemble $\{r^3, r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

Soient x un réel et ε un réel strictement positif. On a $\sqrt[3]{x} < \sqrt[3]{x+\varepsilon}$. Comme $\mathbb Q$ est dense dans $\mathbb R$, il existe un rationnel r tel que $\sqrt[3]{x} < r < \sqrt[3]{x+\varepsilon}$. Comme la fonction $x \mapsto x^3$ est croissante sur $\mathbb R$, on a donc $x < r^3 < x + \varepsilon$. On a ainsi montré que l'ensemble $\{r^3, \ r \in \mathbb Q\}$ est dense dans $\mathbb R$.

5 Suites numériques

https://sigmoid.ma

Exercice 1. On pose $\lim_{n\to+\infty}(u_n)=l$ et $\lim_{n\to+\infty}(v_n)=l'$

On sait que $\max(a, b) = \frac{1}{2} ((a + b) + |a - b|)$

donc $\max(u_n, v_n) = \frac{1}{2} ((u_n + v_n) + |u_n - u_n|) \to \frac{1}{2} ((l + l') + |l - l'|) = \max(l, l').$

Exercice 2. Montrer qu'une suite d'entiers (u_n) converge si et seulement si elle est stationnaire.

Si (u_n) est stationnaire, il est clair que cette suite converge.

Réciproquement, supposons que (u_n) converge et notons l sa limite. Montrons que $l \in \mathbb{Z}$. Par l'absurde, si $l \notin \mathbb{Z}$ alors E(l) < l < E(l) + 1 donc à partir d'un certain rang $E(l) < u_n < E(l) + 1$. Ce qui est en contradiction avec $u_n \in \mathbb{Z}$. Ainsi $l \in \mathbb{Z}$.

Puisque $u_n \to l$ et l-1 < l < l+1, à partir d'un certain rang $l-1 < u_n < l+1$. Or $u_n \in \mathbb{Z}$ et $l \in \mathbb{Z}$ donc $u_n = l$.

Exercice 3.

Puisque $\lim_{n\to+\infty} \frac{u_{n+1}}{u_n} = 0$, il existe un entier N tel que $n > N \Rightarrow \left| \frac{u_{n+1}}{u_n} \right| < \frac{1}{2}$

D'où $n > N \Rightarrow |u_{n+1}| < \frac{1}{2} |u_n|$

On a alors par récurrence $\forall n > N, |u_{n+1}| < \frac{1}{2^{n-N}} |u_N|$ et donc par comparaison $\lim_{n \to +\infty} u_n = 0$.

Exercice 4.

Soit (u_n) une suite qui tend vers $l \in \overline{\mathbb{R}}$.

1. On suppose que $l = \pm \infty$. Montrer que $(E(u_n))$ tends vers l.

On a $E(u_n) \le u_n < E(u_n) + 1$, donc $u_n - 1 < E(u_n) \le u_n$

Si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} u_n - 1 = +\infty$ et puisque $E(u_n) > u_n - 1$, $\lim_{n \to +\infty} E(u_n) = +\infty$.

De même si $\lim_{n \to +\infty} u_n = -\infty$, puisque $E(u_n) \le u_n$, $\lim_{n \to +\infty} E(u_n) = -\infty$.

On suppose dans la suite que $l \in \mathbb{R}$.

2. On suppose que l n'est pas un entier. Montrer que $(E(u_n))$ converge vers E(l).

Montrons d'abord que $E(l) < u_n < E(l) + 1$ à partir d'un certain rang.

On a $E(l) \le l < E(l) + 1$

Or $\lim_{n \to +\infty} u_n = l \Leftrightarrow \forall \varepsilon > 0, \exists N / (n > N \Rightarrow l - \varepsilon < u_n < l + \varepsilon)$

D'où $\forall \varepsilon > 0, \exists N / n > N \Rightarrow E(l) - \varepsilon < u_n < E(l) + 1 + \varepsilon$

Ainsi $E(l) < u_n < E(l) + 1$ à partir d'un certain rang.

Du fait que $E(l) < u_n < E(l) + 1$, on a $E(E(l)) \le E(u_n) < E(E(l) + 1)$

Ainsi $E(l) \le E(u_n) < E(l) + 1$

Or $E(u_n)$ étant un entier, donc $E(u_n) = E(l)$, c'est à dire que la suite $(E(u_n))$ est une suite d'entiers stationnaire à partir d'un certain rang, donc $(E(u_n))$ converge (exercice 1).

- 3. On suppose $l \in \mathbb{Z}$.
- a) On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que $n \geq n_0 \Rightarrow u_n \geq l$. Dans ce cas $(E(u_n))$ stationne en l; donc elle converge vers l.
- b) On suppose qu'il existe $n_1 \in \mathbb{N}$ tel que $n \geq n_1 \Rightarrow u_n < l$.

Dans ce cas $(E(u_n))$ stationne en l-1; donc elle converge vers l-1.

c) On suppose que a) et b) ne sont pas réalisées, c'est à dire que pour tout $N \in \mathbb{N}$, il existe $n_0 \geq N$ et $n_1 \geq N$ tel que $u_{n_0} < l$ et $u_{n_0} \geq l$.

La suite $(E(u_n))$ est divergente puisque elle aura une sous suite qui converge vers l et une sous suite qui converge vers l-1.

Exemple:
$$u_n = \frac{(-1)^n}{n+1}$$

$$\frac{-1}{n+1} \le u_n \le \frac{1}{n+1}, \text{ donc } \lim_{n \to +\infty} u_n = 0 \in \mathbb{Z}. \text{ De plus, on a } \lim_{n \to +\infty} E(u_{2n}) = \lim_{n \to +\infty} E\left(\frac{1}{n+1}\right) = 0 \text{ et } \lim_{n \to +\infty} E(u_{2n+1}) = \lim_{n \to +\infty} E\left(\frac{-1}{n+1}\right) = -1$$

Exercice 5. Moyenne de Cesaro:

Soient (u_n) une suite réelle et (v_n) la suite définie par : $v_n = \frac{u_1 + ... + u_n}{n}$.

1. Soit $\varepsilon > 0$. Il existe un entier naturel N tel que, si n > N alors $|u_n - l| < \frac{\varepsilon}{2}$. On a

$$|v_{n} - l| = \left| \frac{(u_{1} + \dots + u_{n}) - nl}{n} \right| \le \frac{1}{n} (|u_{1} - l| + |u_{2} - l| + \dots + |u_{n} - l|)$$

$$\le \frac{1}{n} \left(\sum_{k=1}^{N} |u_{k} - l| + \sum_{k=N+1}^{n} |u_{k} - l| \right)$$

$$\le \frac{1}{n} \left(\sum_{k=1}^{N} |u_{k} - l| + \sum_{k=N+1}^{n} \frac{\varepsilon}{2} \right)$$

$$\le \frac{1}{n} \sum_{k=1}^{N} |u_{k} - l| + \frac{1}{n} \sum_{k=1}^{n} \frac{\varepsilon}{2}$$

$$\le \frac{1}{n} \sum_{k=1}^{N} |u_{k} - l| + \frac{\varepsilon}{2}$$

Or $\sum_{k=1}^{N} |u_k - l|$ est une constante, donc $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{N} |u_k - l| = 0$.

Par suite, il existe un entier N' tel que si n > N' alors $\frac{1}{n} \sum_{k=1}^{N} |u_k - l| < \frac{\varepsilon}{2}$.

Par suite si $n > \max(N, N')$, alors $|v_n - l| < \varepsilon$

Ainsi si la suite (u_n) converge vers un réel l, la suite (v_n) converge et a pour limite l.

La réciproque est fausse. Pour n dans \mathbb{N} , posons $u_n = (-1)^n$. La suite (u_n) est divergente.

D'autre part, $\sum_{k=0}^{n} (-1)^k$ vaut 0 ou 1 suivant la parité de n et donc, dans tous les cas,

 $|v_n| < \frac{1}{n}$. Par suite, la suite (v_n) converge et a pour limite 0.

2. Si la suite (u_n) est bornée, il existe un réel M tel que, $|u_n| \leq M$. On a alors $|v_n| \leq \frac{1}{n} \sum_{k=1}^{n} |u_k| \leq \frac{M \times n}{n} = M$.

La réciproque est fausse. Soit (u_n) la suite définie par $u_n = (-1)^n E\left(\frac{n}{2}\right) = \begin{cases} 0 & \text{si } n = 2p \\ -p & \text{si } n = 2p + 1 \end{cases}$

La suite (u_n) n'est pas bornée car la suite extraite (u_{2n}) tend vers $+\infty$. Or, si n est impair, $v_n = 0$, et si n est pair, $v_n = \frac{n}{2n}$.

3. Si la suite (u_n) est croissante alors la suite (v_n) l'est aussi.

Exercice 6

1. Si l < 1, on pose $\alpha = \frac{l+1}{2}$, alors $l < \alpha < 1$. Comme $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l$, Pour $\varepsilon < \alpha - l$, il

existe N tel que si n > N, $\frac{\tilde{u}_{n+1}}{u_n} < l + \varepsilon < \alpha$ On a alors $0 \le u_n = \frac{u_n}{u_{n-1}} \times \frac{u_{n-1}}{u_{n-2}} \times \dots \times \frac{u_{N+1}}{u_N} \times u_N < \alpha^{n-N} u_N$. Comme $\alpha < 1$, donc $\lim_{n \to +\infty} \alpha^{n-N} = 0$, donc $\lim_{n \to +\infty} u_n = 0$.

2. Si l > 1, on pose $\alpha = \frac{l+1}{2}$, alors $1 < \alpha < l$. Comme $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l$, Pour $\varepsilon < \alpha + l$, il existe N tel que si n > N, $\frac{u_{n+1}}{u_n} > l - \varepsilon > \alpha$

On a alors $u_n = \frac{u_n}{u_{n-1}} \times \frac{u_{n-1}}{u_{n-2}} \times \dots \times \frac{u_{N+1}}{u_N} \times u_N > \alpha^{n-N} u_N$. Comme $\alpha > 1 \lim_{n \to +\infty} \alpha^{n-N} = +\infty$, donc $\lim_{n \to +\infty} u_n = +\infty$.

3. On prend par exemple $u_n = n$, on a $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\lim_{n \to +\infty} u_n = +\infty$. Si on prend $u_n = 1$, on a $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\lim_{n \to +\infty} u_n = 1$. Si on prend $u_n = \frac{1}{n}$, on a $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\lim_{n \to +\infty} u_n = 0$.

Exercice 7.

i)

$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n} = \frac{\left(\sqrt{n + \sqrt{n}} - \sqrt{n}\right)\left(\sqrt{n + \sqrt{n}} + \sqrt{n}\right)}{\sqrt{n + \sqrt{n}} + \sqrt{n}}$$
$$= \frac{\sqrt{n}}{\sqrt{n + \sqrt{n}} + \sqrt{n}} = \frac{1}{\left(\sqrt{1 + \frac{1}{\sqrt{n}}} + 1\right)}$$

D'où (u_n) converge vers $\frac{1}{2}$.

ii) On a $\ln v_n = \frac{1}{n} \ln n$. Ainsi $\lim_{n \to +\infty} \ln v_n = 0$, donc $\lim_{n \to +\infty} u_n = 1$. iii) Dans le produit $n! = \frac{n}{n} k$, il y a au moins $\frac{n}{2}$ termes qui sont supérieurs ou égaus à $\frac{n}{2}$.

Ainsi $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$ et $w_n \ge \sqrt{\frac{n}{2}}$, donc $\lim_{n \to +\infty} w_n = +\infty$.

d)
$$u_n = \frac{3^n - (-2)^n}{3^n + (-2)^n} = \frac{1 - \left(\frac{-2}{3}\right)^n}{1 + \left(\frac{-2}{3}\right)^n} \to 1,$$

e)
$$u_n = \frac{\sin n}{n + (-1)^{n+1}}$$

On a Pour $n \in N^*$, $0 \le n - 1 \le n + (-1)^{n+1} \le n + 1$, d'où $\frac{1}{n+1} \le \frac{1}{n+(-1)^{n+1}} \le \frac{1}{n-1}$

Ainsi
$$\left| \frac{\sin n}{n + (-1)^{n+1}} \right| \le \frac{1}{n-1} \to 0.$$

Exercice 8.

Etudier la convergence des suites (u_n) définies par :

i)
$$u_n = \sum_{k=1}^n \frac{1}{k}$$
,

On a l'inégalité $u_{2n} - u_n > \frac{1}{2}$. La suite n'est pas de Cauchy, elle ne converge donc pas.

ii)
$$u_n = \sum_{k=1}^n \sqrt{k} \ge \sum_{k=1}^n 1 = n$$
. Donc (u_n) ne converge pas.,

iii)
$$u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$$
.
On a $\frac{n}{n^2 + n} \le \sum_{k=1}^n \frac{1}{n^2 + k^2} \le \frac{n}{n^2 + 1}$

Donc
$$u_n \to 0$$

Exercice 9

 θ est un réel de l'intervalle $]0,\frac{\pi}{2}[$

On considère les suites définies par :

$$u_n = 2^{n+1} \sin \frac{\theta}{2^n}$$

$$v_n = 2^{n+1} \tan \frac{\theta}{2^n}$$

Comme
$$\sin 2x = 2 \sin x \cos x$$
, on obtient $u_n = 2^{n+2} \sin \frac{\theta}{2^{n+1}} \cos \frac{\theta}{2^{n+1}} \le 2^{n+2} \sin \frac{\theta}{2^{n+1}} = u_{n+1}$.

Donc la suite (u_n) est croissante

Comme $\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$, on obtient

$$v_n = 2^{n+1} \tan \frac{\theta}{2^n} = 2^{n+2} \frac{\tan \frac{\theta}{2^{n+1}}}{1 - \tan^2 \frac{\theta}{2^{n+1}}} \ge v_{n+1}.$$

Donc la suite (v_n) est décroissante

$$v_n - u_n = 2^{n+1} \left(\sin \frac{\theta}{2^n} - \tan \frac{\theta}{2^n} \right) = 2\theta \left(\frac{\sin \frac{\theta}{2^n}}{\frac{\theta}{2^n}} - \frac{\tan \frac{\theta}{2^n}}{\frac{\theta}{2^n}} \right) \to 0.$$

$$u_n = 2^{n+1} \sin \frac{\theta}{2^n} = 2\theta \frac{\sin \frac{\theta}{2^n}}{\frac{\theta}{2^n}} \to 2\theta$$

La limite comune est 2θ .

Exercice 10. Moyenne arithmico-géometrique:

Soit
$$(a,b) \in (\mathbb{R}^{*+})^2$$
 tel que $a > b$, on pose $a_0 = a, b_0 = b, a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \sqrt{a_n b_n}$
1. Montrons par récurrence que $a_n > 0$ et $b_n > 0$.

On a $a_0 > 0$ et $b_0 > 0$.

On a
$$a_0 > 0$$
 et $b_0 > 0$.
Supposons que $a_n > 0$ et $b_n > 0$ alors $a_{n+1} = \frac{a_n + b_n}{2} > 0$ et b_{n+1} est bien définie, de plus $b_{n+1} > 0$.

2. Pour tout
$$(x,y) \in (\mathbb{R}^+)^2$$
 on a $\sqrt{xy} \leq \frac{x+y}{2}$, en effet Pour $(x,y) \in (\mathbb{R}^+)^2$

$$\sqrt{xy} \le \frac{x+y}{2} \Leftrightarrow 4xy \le (x+y)^2 \Leftrightarrow (x-y)^2 \ge 0.$$

On en déduit que $b_n \leq a_n$.

Il en résulte que : $b_{n+1} = \sqrt{a_n b_n} \ge \sqrt{b_n^2} = |b_n| = b_n$ et $a_{n+1} - a_n = \frac{b_n - a_n}{2} \le 0$.

De plus $a_{n+1} - b_{n+1} \le a_{n+1} - b_n = \frac{a_n + b_n}{2} - b_n = \frac{a_n - b_n}{2}$.

Ainsi par récurrence, on a $a_n - b_n \leq \frac{a-b}{2^n}$. Or $a_n - b_n \geq 0$ et $\lim_{n \to +\infty} \frac{a-b}{2^n} = 0$, donc $\lim_{n \to +\infty} a_n - b_n = 0$

Les suites (a_n) et (b_n) sont adjacentes , on note par M(a,b) leurs limite communes appelle moyenne arithmico - géométrique de a et b

3. Si a = b, alors les deux suites (a_n) et (b_n) sont constantes égales à a et donc M(a, a) = a. Si b = 0, alors la suite (b_n) est constante égales à 0 et donc M(a, 0) = 0.

e) Notons (a'_n) et (b'_n) les suites définies par le procédé précédent à partir de $a'_0 = \lambda a$ et $b_0' = \lambda b$.

Par récurrence, on montre $a'_n = \lambda a_n$ et $b'_n = \lambda b_n$ donc $M(\lambda a, \lambda b) = \lambda M(a, b)$ pour $\lambda \in \mathbb{R}^+$.

Exercice 11.

Soit (u_n) une suite telle que $(u_{2n}), (u_{2n+1}), (u_{3n})$ convergent.

Montrons que (u_{2n}) et (u_{2n+1}) convergent vers la même limite

Supposons que $\lim_{n\to+\infty} u_{2n} = l$, $\lim_{n\to+\infty} u_{2n+1} = l'$ et $\lim_{n\to+\infty} u_{3n} = l''$. La suite (u_{6n}) est extraite de (u_{2n}) et de (u_{3n}) , donc l = l''.

De même La suite (u_{6n+3}) est extraite de (u_{2n+1}) et de (u_{3n}) , donc l'=l''.

Ainsi l = l' = l''

Par conséquent (u_{2n}) et (u_{2n+1}) convergent vers la même limite.

Montrons que (u_n) converge.

Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > N \Rightarrow |u_{2n} - l| < \varepsilon$ et Il existe $N' \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > N \Rightarrow |u_{2n+1} - l| < \varepsilon$.

donc si $m \in \mathbb{N}$, m est soit pair ou impair,

 $m > \max(N, N') \Rightarrow |u_m - l| < \varepsilon.$

Exercice 12.

Par l'absurde, supposons $\lim_{n\to+\infty} \sin n = l \in \mathbb{R}$.

On a sin
$$(p)$$
 – sin (q) = $2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$

D'où $\sin (n+1) - \sin (n-1) = 2 \sin 1 \cos n$

En passant à la limite, on obtient $\lim_{n \to \infty} \cos n = 0$.

Or $\cos 2n = 2\cos^2 n - 1$, on aurait alors $\lim_{n \to +\infty} \cos 2n = -1$. Ce qui est absurde, donc la suite (u_n) définie par $u_n = \sin n$ diverge.

Exercice 13. Soit (u_n) une suite de réels décroissante et de limite nulle.

Pour tout
$$n \in \mathbb{N}$$
, on pose $S_n = \sum_{k=0}^n (-1)^k u_k$.

Montrons que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes :

 $S_{2(n+1)}-S_{2n}=S_{2n+2}-S_{2n}=u_{2n+2}-u_{2n+1}$. Comme (u_n) est une suite de réels décroissante, $S_{2(n+1)} - S_{2n} \le 0.$

Donc la suite (S_{2n}) est décroissante. De même $S_{2(n+1)+1} - S_{2n+1} = S_{2n+3} - S_{2n+1} =$ $u_{2n+2} - u_{2n+3} \ge 0$, Donc la suite (S_{2n+1}) est décroissante.

De plus
$$\lim_{n \to +\infty} S_{2n+1} - S_{2n} = \lim_{n \to +\infty} -u_{2n+1} = 0.$$

Il en résulte que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes. Elles sont donc convergentes et ont la même limite. On en déduit que (S_n) est convergente.

Exercice 14. Soient
$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n \times n!}$.

1. Montrons que les suites (u_n) et (v_n) sont strictement monotones et adjacentes.

On a

$$u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$$
 et

$$v_{n+1} - v_n = \frac{1}{(n+1)!} + \frac{1}{(n+1) \times (n+1)!} - \frac{1}{n \times n!}$$

$$= \frac{n(n+1) + n - (n+1)^2}{n(n+1) \times (n+1)!} = \frac{-1}{n(n+1) \times (n+1)!} < 0$$

Ainsi la suite (u_n) est strictement croissante et la suite (v_n) est strictement Décroissante.

De plus
$$\lim_{n \to +\infty} u_{2n+1} - u_{2n} = \lim_{n \to +\infty} \frac{1}{n \times n!} = 0$$
. Les suites (u_n) et (v_n) sont donc adjacentes.

2. On admet que leur limite commune est e. On désire montrer que $e \notin \mathbb{Q}$. Pour cela on raisonne par l'absurde en supposant $e = \frac{p}{q}$ avec $p \in \mathbb{Z}$; $q \in \mathbb{N}$. On a $u_q < u_{q+1} \le e \le v_q < v_{q+1}$. Il en résulte que $u_q < \frac{p}{q} < u_q + \frac{1}{q \times q!}$, Ainsi $q \times q!u_q < pq! < q \times q!u_q + 1$.

On a
$$u_q < u_{q+1} \le e \le v_q < v_{q+1}$$
.

Il en résulte que
$$u_q < \frac{p}{q} < u_q + \frac{1}{q \times q!}$$
, Ainsi $q \times q! u_q < pq! < q \times q! u_q + 1$.

Or $pq! \in \mathbb{Z}$ et $q \times q! u_q = q \sum_{k=0}^{q} \frac{q!}{k!} \in \mathbb{Z}$ car la somme apparaît comme une somme d'entiers. Ce qui est absurde.

Soit
$$H_n = \sum_{k=1}^n \frac{1}{k}$$
.

1. Montrons que
$$\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}$$
.

On a pour tout
$$n > 0$$
, $\int_{n}^{n+1} \frac{dx}{x} = \ln(n+1) - \ln(n)$.

Or
$$n \le x \le n+1 \Rightarrow \frac{1}{n+1} \le \int_n^{n+1} \frac{dx}{x} \le \frac{1}{n}$$
.

Ainsi
$$\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}$$
.

2. Montrons que $\ln (n+1) \le H_n \le \ln (n) + 1$.

Comme pour tout
$$k > 0$$
, $\frac{1}{k+1} \le \ln(k+1) - \ln(k) \le \frac{1}{k}$, on a $\sum_{k=1}^{n} \frac{1}{k+1} \le \sum_{k=1}^{n} (\ln(k+1) - \ln(k)) \le 1$

$$\sum_{k=1}^{n} \frac{1}{k} \text{ et}$$

$$\sum_{k=1}^{n-1} \frac{1}{k+1} \le \sum_{k=1}^{n-1} (\ln(k+1) - \ln(k)) \le \sum_{k=1}^{n-1} \frac{1}{k}.$$
 https://sigmoid.ma

On en déduit que $\ln(n+1) \le H_n$ et $H_n - 1 \le \ln n$. Ainsi $\ln(n+1) \le H_n \le \ln(n) + 1$.

3. Déterminons la limite de (H_n) .

Puisque $\ln(n+1) \le H_n \le \ln(n) + 1$ et $\lim_{n \to +\infty} \ln(n) = +\infty$.

4. Montrons que la suite (u_n) définie par $u_n = H_n - \ln(n)$ est décroissante.

$$u_{n+1} - u_n = H_{n+1} - H_n + \ln(n) - \ln(n+1) = \frac{1}{n+1} + \ln(n) - \ln(n+1) \le 0$$
 d'après la première question.

5. En déduire que la suite (u_n) est convergente.

D'après la question 3, $H_n - \ln(n) \ge \ln(n+1) - \ln(n) \ge \frac{1}{n+1} > 0$.

La suite (u_n) est décroissante et minorée donc elle est convergente.

Exercice 16. Soit q un entier au moins égal à 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \cos \frac{2n\pi}{q}$.

1. Montrons que $u_{n+q} = u_n$ pour tout $n \in \mathbb{N}$.

On a
$$u_{n+q} = \cos \frac{2(n+q)\pi}{q} = \cos \left(\frac{2n\pi}{q} + 2\pi\right) = \cos \frac{2n\pi}{q} = u_n$$
.

2. Calculons u_{nq} et u_{nq+1} .

$$u_{nq} = \cos\frac{2nq\pi}{q} = \cos(2n\pi) = 1 \text{ et } u_{nq+1} = \cos\frac{2(nq+1)\pi}{q} = \cos\left(\frac{2\pi}{q} + 2n\pi\right) = u_1.$$

Montrons que la suite (u_n) n'a pas de limite.

Supposons, par l'absurde que (u_n) converge vers une limite l. D'une part, la sous-suite (u_{nq}) converge vers l. Comme $u_{nq}=1$, pour tout n alors l=1. D'autre part la sous-suite (u_{nq+1}) converge aussi vers l, mais $u_{nq+1}=u_1=\cos\frac{2\pi}{q}$, donc $l=\cos\frac{2\pi}{q}$. On a ainsi une contradiction car pour $q\geq 2$, $\cos\frac{2\pi}{q}\neq 1$. Donc la suite (u_n) ne converge pas.

Exercice 17. Soit a > 0. On définit la suite (u_n) par $u_0 > 0$ et par la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$$

On se propose de montrer que (u_n) tend vers \sqrt{a} .

1. Montrons que $u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2}$.

$$u_{n+1}^{2} - a = \frac{1}{4} \left(u_{n} + \frac{a}{u_{n}} \right)^{2} - a = \frac{1}{4} \left(\frac{u_{n}^{2} + a}{u_{n}} \right)^{2} - a$$
$$= \frac{1}{4} \frac{u_{n}^{4} - 2au_{n}^{2} + a^{2}}{u_{n}^{2}} = \frac{1}{4} \frac{(u_{n}^{2} - a)^{2}}{u_{n}^{2}}.$$

2. Montrons que si $n \ge 1$ alors $u_n \ge \sqrt{a}$:

D'après la question 1, $u_n^2 - a = \frac{\left(u_{n-1}^2 - a\right)^2}{4u_{n-1}^2} > 0$. Donc $u_n^2 > a$. Comme $u_n > 0$, alors $u_n \ge \sqrt{a}$.

Montrons que la suite (u_n) est décroissante :

Pour cela, on compare le quotient $\frac{u_{n+1}}{u_n}$ et 1.

$$\frac{u_{n+1}}{u_n} = \frac{1}{2} \left(1 + \frac{a}{u_n^2} \right)$$
 sigmoid.ma

Or $u_n \ge \sqrt{a}$, donc $\frac{a}{u_n^2} \le 1$ et par suite $\frac{u_{n+1}}{u_n} \le 1$. Comme $u_n > 0$, alors $u_{n+1} \not \le u_n$.

3. Montrons que la suite (u_n) converge vers \sqrt{a} .

La suite (u_n) est décroissante et minorée par \sqrt{a} donc elle converge vers une limite $l \geq 0$.

Comme $u_{n+1} = f(u_n)$ avec $f(x) = \frac{1}{2}\left(x + \frac{a}{x}\right)$, et f est continue, l vérifie l = f(l). La seule solution positive de cette équation est $l = \sqrt{a}$.

Ainsi (u_n) converge vers \sqrt{a} .

4. En utilisant la relation $u_{n+1}^2 - a = (u_{n+1} - \sqrt{a})(u_{n+1} + \sqrt{a})$, on donne une majoration de $u_{n+1} - \sqrt{a}$ en fonction de $u_n - \sqrt{a}$.

Comme

$$u_{n+1}^2 - a = (u_{n+1} - \sqrt{a})(u_{n+1} + \sqrt{a}) = \frac{(u_n^2 - a)^2}{4u_n^2} = \frac{(u_n - \sqrt{a})^2(u_n + \sqrt{a})^2}{4u_n^2},$$

On a

$$u_{n+1} - \sqrt{a} = \frac{(u_n - \sqrt{a})^2 (u_n + \sqrt{a})^2}{4u_n^2 (u_{n+1} + \sqrt{a})} = (u_n - \sqrt{a})^2 \frac{1}{4 (u_{n+1} + \sqrt{a})} \left(\frac{u_n + \sqrt{a}}{u_n}\right)^2$$

$$\leq (u_n - \sqrt{a})^2 \frac{1}{8\sqrt{a}} \left(1 + \frac{\sqrt{a}}{u_n}\right)^2 \leq \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2.$$

Ainsi

$$u_{n+1} - \sqrt{a} \le \frac{1}{2\sqrt{a}} \left(u_n - \sqrt{a} \right)^2.$$

5. Supposons que $u_1 - \sqrt{a} \le k$, montrons que pour $n \ge 1$: $u_n - \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}$.

Par récurence, si $n = 1, u_1 - \sqrt{a} \le k = 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)$.

Supposons que la propriété est vraie jusqu'au rang n. Alors

$$u_{n+1} - \sqrt{a} \le \frac{1}{2\sqrt{a}} \left(u_n - \sqrt{a} \right)^2 \le \frac{1}{2\sqrt{a}} 2\sqrt{a} \left(\frac{k}{2\sqrt{a}} \right)^{2 \times 2^{n-1}}.$$

c'est à dire

$$u_{n+1} - \sqrt{a} \le \left(\frac{k}{2\sqrt{a}}\right)^{2^n}.$$

6. Application : Calculons $\sqrt{10}$ avec une précision de 8 chiffres après la virgule, en prenant $u_0 = 3$.

On a $u_0=3$, alors $u_1=3,166...$ Comme $3 \le \sqrt{10} \le u_1, u_1-\sqrt{10} \le 0,166.$ Nous pouvons choisir k=0,17. Pour que l'erreur $u_n-\sqrt{10}$ soit inférieure à 10^{-8} ,il suffit de calculer le terme u_4 car alors l'erreur (calculée par la formule de la question précédente) est inférieure à $1,53\times 10^{-10}.$ On obtenient ainsi $u_4=3,16227766...$

On déduit que $\sqrt{10} = 3,16227766...$ avec une précision de 8 chiffres aprèsla virgule.

Exercice 18. Soient a et b deux réels, a < b. On considère la fonction $f: [a, b] \rightarrow [a, b]$ supposée continue et une suite

récurrente (u_n) définie par : $\begin{cases} u_0 \in [a,b] & et \\ u_{n+1} = f(u_n) \text{ pour tout } n \in \mathbb{N}. \end{cases}$

1. On suppose ici que f est croissante. Montrer que (u_n) est monotone et en déduire sa convergence vers une solution de l'équation f(x) = x.

Si $u_0 < u_1$, Puisque f est croissante, on montre par récurrence que $u_n \leq u_{n+1}$. Ainsi la suite (u_n) est croissante.

Comme f est à valeurs dans [a, b], (u_n) est majorée par b. Donc (u_n) est convergente.

Si $u_0 > u_1$, Puisque f est croissante, on montre par récurrence que $u_n \geq u_{n+1}$. Ainsi la suite (u_n) est décroissante.

Comme f est à valeurs dans [a, b], (u_n) est minorée par a. Donc (u_n) est convergente.

Notons l la limite de (u_n) . Comme f est continue alors $(f(u_n))$ tend vers f(l). En passant à la limite dans l'expression $u_{n+1} = f(u_n)$, on obtient l'égalité l = f(l).

2. Application.

Soit $f(x) = \frac{4x+5}{x+3}$, f est continue, dérivable sur $]-3, +\infty[$. $f'(x) = \frac{7}{(x+3)^2} > 0$, donc f est strictement croissante sur $]-3, +\infty[$, de plus $f([0,4]) \subset$

Comme $u_0 = 4$ et $u_1 = 2, 25$, la suite (u_n) est décroissante. Calculons la valeur de sa limite l. Elle est solution de l'équation f(x) = x. Soit 4x + 5 = x(x + 3) ou encore $x^2 - x - 5 = 0$.

Or $u_n > 0$ pour tout n, donc l > 0. La seule solution positive de l'équation est $l = \frac{1 + \sqrt{21}}{2}$ 3. Si f est décroissante alors $f \circ f$ est projecte Q

3. Si f est décroissante alors $f \circ f$ est croissante. On applique alors la première question

avec la fonction $f \circ f$. La suite (u_{2n}) définie par $\begin{cases} u_0 \\ u_{2n+2} = f \circ f(u_{2n}) \end{cases}$ est monotone et convergente. De même pour la suite (u_{2n}) définie par $\begin{cases} u_1 \\ u_{2n+1} = f \circ f(u_{2n-1}) \end{cases}$.

4. La fonction f définie par $f(x) = (1-x)^2$ est continue et dérivable de [0,1] dans [0,1].

Elle est décroissante sur cet intervalle. Nous avons $u_0 = \frac{1}{2}, u_1 = \frac{1}{4}, u_2 = \frac{9}{16}, u_3 = \left(\frac{15}{16}\right)^2 \simeq$

 $0, 19, \dots$ Donc la suite (u_{2n}) est croissante et elle est convergente. Soit l'sa limite, la suite (u_{2n+1}) est décroissante et elle est convergente. Soit l' sa limite.

Les limites l et l' sont des solutions de l'équation $f \circ f(x) = x$. Cette équation s'écrit $(1 - (1 - x)^2)^2 = x.$

Soit $x^2(2-x)^2 = x$, ou encore $x^4 - 4x^3 + 4x^2 - x = 0$. If y a deux solutions évidentes 0 et 1. On factorise le

polynôme par x(x-1). On obtient alors $x(x-1)(x^2-3x+1)=0$

$$(x^2 - 3x + 1) = 0 \Leftrightarrow x = \frac{3 - \sqrt{5}}{2} \approx 0,38 \text{ ou } x = \frac{3 + \sqrt{5}}{2} > 1.$$

Comme (u_{2n}) est croissante et que $u_0 = \frac{1}{2}$, alors (u_{2n}) converge vers l = 1 qui est le seul point fixe de [0,1] supérieur à $\frac{1}{2}$. Comme (u_{2n+1}) est décroissante et que $u_1 = \frac{1}{4}$ alors (u_{2n+1}) converge vers l'=0 qui est le seul point fixe de [0,1] inférieur à $\frac{1}{4}$.

Continuité et dérivabilité des fonctions numériques 6 d'une variable réelle

Exercice 1 Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par $f(x) = xE\left(\sum_{x=0}^{n} x - \sum_{x=0}^{n} x\right)$. Montrons que f admet une limite en 0 et déterminons cette limite.

Supposons d'abord que
$$x > 0$$
.

On a
$$E\left(\frac{1}{x}\right) \le \frac{1}{x} < E\left(\frac{1}{x}\right) + 1$$

On pose
$$n = E\left(\frac{1}{x}\right)$$
. On a donc $n \le \frac{1}{x} < n+1$

On déduit que
$$-n-1 < -\frac{1}{x} \le -n$$
 et $\frac{1}{n+1} < x \le \frac{1}{n}$

Donc
$$\frac{1}{n+1} - n - 1 < x - \frac{1}{x} \le \frac{1}{n} - n$$
. Ce qui équivaut à $\frac{-n}{n+1} - n < x - \frac{1}{x} \le \frac{1}{n} - n$.

D'où
$$E\left(\frac{-n}{n+1}-n\right) \le E\left(x-\frac{1}{x}\right) \le E\left(\frac{1}{n}-n\right)$$

Donc
$$E\left(x-\frac{1}{x}\right)=-n-1$$
 ou $-n$, ce qu'on peut écrire : $-n-1 \le E\left(x-\frac{1}{x}\right) \le -n$.

on a alors
$$0 \le n \le -E\left(x - \frac{1}{x}\right) \le n + 1$$
, or $0 \le \frac{1}{n+1} < x \le \frac{1}{n}$

On multiplie membre à membre ces deux inégalités, on obtient :

$$1 \le -xE\left(x - \frac{1}{x}\right) \le \frac{n+1}{n}$$
, d'où $-\frac{n+1}{n} \le xE\left(x - \frac{1}{x}\right) \le -1$.

On en déduit que
$$\lim_{x\to 0^+} xE\left(x-\frac{1}{x}\right) = -1$$
.

Supposons x < 0,

Supposons
$$x < 0$$
,
On sait que si y n'est pas un entier on a $E(-y) = -E(-y) - 1$
Donc $f(x) = xE\left(x - \frac{1}{x}\right) = x\left(-E\left(-x + \frac{1}{x}\right) - 1\right) = -xE\left(-x + \frac{1}{x}\right) - x = f(-x) - x$

Donc
$$\lim_{x \to 0^{-}} f(x) = \lim_{y \to 0^{+}} f(y) = -1$$
.

Exercice 2 Soit f une fonction croissante définie sur [0,1] à valeurs dans [0,1].

1. Montrons que s'il existe $x \in [0,1]$ et $k \in \mathbb{N}$ tels que $f^k(x) = x$ alors x est un point fixe pour f.

Supposons que f(x) > x, alors puisque f est croissante

$$f^{k}(x) > f^{k-1}(x) > \dots > f(x) > x$$

ce qui est absurde. Une étude analogue contredit f(x) < x.

2. Montrons que f admet un point fixe.

On a $f(0) \geq 0$ et $f(1) \leq 1$, On peut construire deux suites (a_n) et (b_n) telles que $f(a_n) \ge a_n$ et $f(b_n) \le b_n$. On pose $a_0 = 0$ et $b_0 = 1$. Une fois les termes a_n et b_n déterminés, on introduit $m = \frac{a_n + b_n}{2}$. Si $f(m) \ge m$, on pose $a_{n+1} = m$ et $b_{n+1} = b_n$. Sinon, on pose $a_{n+1} = a_n \text{ et } b_{n+1} = \bar{m}$

Les suites (a_n) et (b_n) ainsi déterminées sont adjacentes et convergent donc vers une limite commune l telle que $a_n \leq l \leq b_n$. Comme f est croissante $f(a_n) \leq f(l) \leq f(b_n)$ et donc $a_n \leq f(l) \leq b_n$. Or (a_n) et (b_n) convergent vers l' donc par encadrement f(l) = l.

Soit $f:[0,+\infty[\to [0,+\infty[$ une fonction continue, qui tend vers 0 quand x Exercice 3 tend vers $+\infty$.

1. Montrons que f est bornée et atteint sa borne supérieure. On distingue deux cas: ou bien f est la fonction nulle, dans ce cas il n'y a rien à montrer, ou bien f n'est pas toujours nulle, dans ce cas il existe $x_0 \in [0, +\infty[$ tel que $f(x_0) > 0$. D'autre part, on sait que f tend vers 0 quand x tend vers $+\infty$, donc en appliquant la définition de la limite avec $\varepsilon = \frac{f(x_0)}{2}$, on trouve qu'il existe un réel A > 0 tel que $\forall x \in [0, +\infty[$, $x \ge A \Rightarrow |f(x)| \le \frac{f(x_0)}{2}$

Comme f est à valeurs dans $[0, +\infty[$, on obtient : $\forall x \in [A, +\infty[$, $f(x) \le \frac{f(x_0)}{2}$ Donc f est bornée sur l'intervalle $[A, +\infty[$. D'autre part, le théorème des bornes montre que f est bornée sur l'intervalle [0, A], plus précisément il existe des réels $0 \le m \le M$ tels que f([0, A]) = [m, M]. Il en résulte que f est majorée sur $[0, +\infty[$ par $\max\left(\frac{f(x_0)}{2}, M\right)$. Or on constate que $x_0 \in [0, A]$ (sinon la propriété $\forall x \in [A, +\infty[$, $f(x) \le \frac{f(x_0)}{2}$ serait contredite), donc $M \ge \frac{f(x_0)}{2}$. Il en résulte que f est majorée par M sur $[0, +\infty[$. Or, toujours d'après le théorème de bornes, il existe $c \in [0, A]$ tel que f(c) = M, donc f atteint

2. La fonction $f:[0,+\infty[$ $\to [0,+\infty[$ définie par $f(x)=\frac{1}{x+1}$ satisfait les hypothèses de l'énoncé, mais n'atteint pas sa borne inférieure (qui est 0).

Exercice 4.

sa borne supérieure.

Soit n=2k+1 le degré de P, alors le terme de plus haut degré de P est de la forme ax^{2k+1} avec $a\neq 0$. On a donc $\lim_{x\to -\infty}P(x)=\lim_{x\to -\infty}ax^{2k+1}=a\times (-\infty)$ et $\lim_{x\to -\infty}P(x)=\lim_{x\to +\infty}ax^{2k+1}=a\times (+\infty)$

Or $a \times (-\infty)$ et $a \times (+\infty)$ sont deux infinis de signes contraires. La fonction $P : \mathbb{R} \to \mathbb{R}$ étant continue, le théorème des valeurs intermédiaires prouve que l'image de \mathbb{R} par la fonction P est l'intervalle $]-\infty, +\infty[$. Donc il existe au moins un réel $c \in \mathbb{R}$, tel que P(c) = 0.

Exercice 5

1. Considérons la fonction $f:[a,b]\to\mathbb{R}$ définie par g(x)=f(x)-x.

Comme f est continue, g l'est aussi. Il est clair par construction de g que notre problème se ramène à montrer l'existence d'un réel $x_0 \in [a,b]$ tel que $g(x_0) = 0$. On a $f(a) \in [a,b]$, donc $f(a) \ge a$ et $f(b) \in [a,b]$, donc $f(b) \le b$. Donc $g(a) = f(a) - a \ge 0$ et $g(b) = f(b) - b \le 0$. D'après le théorème des valeurs intermédiaires, il existe donc $x_0 \in [a,b]$ tel que $g(x_0) = 0$. 2. Comme $\cos\left(\left[0,\frac{\pi}{2}\right]\right) = [0,1]$ et que $[0,1] \subset \left[0,\frac{\pi}{2}\right]$, on en déduit que $\cos([0,1]) \subset [0,1]$. Il suffit d'appliquer le résultat de la question précédente à la fonction $\cos:[0,1] \to [0,1]$. 3. Il suffit de considérer la fonction $x \mapsto x^2$.

Exercice 6. On a $\left|\sin\frac{1}{x}\right| \le 1$, donc $\left|x^2\sin\frac{1}{x}\right| \le x^2$. On en déduit que $\lim_{x\to 0} f(x) = 0$, donc f est prolongeable par continuité en 0 en posant f(0) = 0

La fonction f est dérivable sur \mathbb{R}^* comme produit et composé de fonctions dérivables sur \mathbb{R}^* . Sa dérivée est $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$

https://sigmoid.ma

En
$$0: \lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} x \sin\frac{1}{x} = 0 \text{ car } \left|x\sin\frac{1}{x}\right| \le x$$
. Ainsi f est dérivable sur $\mathbb R$ et $f'(x) = \begin{cases} 2x\sin\frac{1}{x}-\cos\frac{1}{x} & \text{si } x\neq 0 \\ 0 & \text{si } x=0 \end{cases}$

On a $\lim_{x\to 0} 2x \sin \frac{1}{x} = 0$ et $\lim_{x\to 0} \cos \frac{1}{x}$ n'existe pas, donc f' n'est pas continue en 0.

Exercice 7.

Par l'absurde on suppose qu'il y a (au moins) quatre racines distinctes pour $P_n(x)$. On les note par $x_1 < x_2 < x_3 < x_4$. Par le théorème de Rolle appliqué trois fois (sur $[x_1, x_2], [x_2, x_3]$ et $[x_3, x_4]$, il existe $\alpha_1 < \alpha_2 < \alpha_3$ des racines de $P'_n(x) = nx^{n-1} + a$. On applique deux fois le théorème Rolle sur $[\alpha_1, \alpha_2]$, $[\alpha_2, \alpha_3]$.

On obtient deux racines distinctes pour $P''_n(x) = n(n-1)x^{n-2}$ qui ne peut avoir que 0 comme racines. Donc nous avons obtenu une contradiction.

Exercice 8

1. La fonction $x \mapsto \ln(x)$ étant continue et dérivable sur $]0, +\infty[$, on lui applique le théorème des accroissements finis entre x et x+1. Il existe $c \in]x, x+1[$ tel que $\ln(x+1)$ – $\ln\left(x\right) = \frac{1}{c}$

Or
$$x < c < x + 1$$
 donne $\frac{1}{1+x} < \frac{1}{c} < \frac{1}{x}$. D'où $\frac{1}{1+x} < \ln(x+1) - \ln(x) < \frac{1}{x}$

Or
$$x < c < x + 1$$
 donne $\frac{1}{1+x} < \frac{1}{c} < \frac{1}{x}$. D'où $\frac{1}{1+x} < \ln(x+1) - \ln(x) < \frac{1}{x}$.
2. D'après 1., on a $\sum_{p=n+1}^{kn} (\ln(p+1) - \ln(p)) < \sum_{p=n+1}^{kn} \frac{1}{p}$ et $\sum_{p=n+1}^{kn} \frac{1}{p} < \sum_{p=n+1}^{kn} (\ln(p) - \ln(p-1))$.

Donc
$$\ln\left(\frac{kn+1}{n+1}\right) < \sum_{n=n+1}^{kn} \frac{1}{p} < \ln\left(k\right)$$

Par le théorème des gendarmes $\lim_{n\to+\infty} \sum_{n=n+1}^{kn} \frac{1}{n} = \ln(k)$.

Exercice 9 Soient x et y deux réels avec 0 < x < y.

1. Montrons que $x < \frac{y - x}{\ln(y) - \ln(x)} < y$.

La fonction $x \mapsto \ln(x)$ étant continue et dérivable sur $]0, +\infty[$, on lui applique le théorème des accroissements finis entre x et x+1. Il existe $c \in]x, x+1[$ tel que $\ln(x+1)-\ln(x)=\frac{1}{c}$ Or x < c < x + 1 donne $\frac{1}{1+x} < \frac{1}{c} < \frac{1}{x}$. D'où $\frac{1}{1+x} < \ln(x+1) - \ln(x) < \frac{1}{x}$.

2. En étudiant la fonction f définie sur [0, 1] par $\alpha \mapsto f(\alpha) = \ln(\alpha x + (1 - \alpha)y) - \alpha \ln(x) - (1 - \alpha) \ln(y)$, montrer que $\alpha \ln(x) + (1 - \alpha) \ln(y) < \ln(\alpha x + (1 - \alpha) y).$

Donner une interprétation géométrique.

On a
$$f'(\alpha) = \frac{x-y}{\alpha x + (1-\alpha)y} - \ln(x) + \ln(y)$$
, et $f''(\alpha) = -\frac{(x-y)^2}{(\alpha x + (1-\alpha)y)^2} - \ln(x) + \ln(y)$. Comme $f''(\alpha) < 0$, f' est décroissante sur $[0,1]$. De plus d'après la première question, on a $f'(0) = \frac{x-y-y(\ln(x)-\ln(y))}{y} > 0$ et $f'(0) = \frac{x-y-x(\ln(x)-\ln(y))}{x} < 0$. D'après le théorème des valeurs intermédiaires il existe $c \in [x,y]$ tel que $f'(c) = 0$. On a

f' est positive sur [0,c] et n égative sur [c,1]. Donc f est croissante sur [0,c] et décroissante

sur [c, 1]. Or f(0) = 0 et f(1) = 0 donc pour tout $x \in [0, 1]$, f(x) > 0. Ce qui prouve l'inégalité demandée.

Géométriquement nous avons prouver que la fonction ln est concave, c'est-à-dire que la le segment qui va de (x, f(x)) à (y, f(y)) est sous la courbe d'équation y = f(x).

Exercice 10. La fonction f est continue et dérivable sur \mathbb{R} donc en particulier sur [a,b]. Le théorème des accroissements finis assure l'existence d'un nombre $c \in [a,b]$ tel que f(b) - f(a) = f'(c)(b-a). Pour cette fonction particulière nous pouvons expliciter ce c. En effet

$$f(b) - f(a) = f'(c)(b - a) \Leftrightarrow \alpha(b^2 - a^2) + \beta(b - a) = (2\alpha c + \beta)(b - a)$$
$$\Leftrightarrow (b + a) = 2c \Leftrightarrow c = \frac{a + b}{2}.$$

Géométriquement, le graphe \mathcal{P} de f est une parabole. Si l'on prend deux points A = (a, f(a)) et B = (b, f(b)) appartenant à cette parabole, alors la droite (AB) est parallèle à la tangente en \mathcal{P} qui passe en $M\left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right)$. L'abscisse de M étant le milieu des abscisses de A et B.

Exercice 11.

Posons M = f(0) + 1.

Puisque $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = +\infty$, il existe $A, B \in \mathbb{R}$ tels que $\forall x \leq A, \forall x \geq B$, f(x) > M

On a $A \le 0 \le B$ car f(0) < M.

Sur [A, B], f admet un minimum en un point $a \in [A, B]$ car continue sur un segment.

On a f(a) < f(0) car $0 \in [A, B]$ donc f(a) < M.

Pour tout $x \in [A, B]$, on a f(x) > f(a) et pour tout $x \in]-\infty, A[\cup]B, +\infty[, f(x) > M > f(a).$

Ainsi f admet un minimum absolu en a.

Exercice 12.

La fonction $x \mapsto x^2 + 2x + 2$ étant strictement croissante sur $[-1, +\infty[$, à valeurs positives, la fonction $x \mapsto \sqrt{x^2 + 2x + 2}$ l'est aussi. Par conséquent, la fonction f est strictement décroissante sur $[-1, +\infty[$. D'après le théorème de la bijection, la fonction f étant continue strictement décroissante, elle réalise une bijection de l'intervalle $[-1, +\infty[$ sur son image.

De plus :
$$f([-1, +\infty[) = \lim_{x \to +\infty} f(x), f(-1)] = [0, 1].$$

Il nous reste à déterminer la bijection réciproque f^{-1} . Pour cela, on se donne $y \in]0,1]$, et on cherche à déterminer (en fonction de y) l'unique $x \in [-1, +\infty[$ tel que f(x) = y.

Cette équation s'écrit : $\frac{1}{\sqrt{x^2+2x+2}} = y$. Comme y est strictement positif, cette équation

équivaut à : $x^2 + 2x + 2 = y^2$, c'est-à-dire : $(x+1)^2 = \frac{1}{y^2} - 1$. Comme x+1 est positif, on

en déduit que
$$x + 1 = \sqrt{\frac{1}{y^2} - 1}$$
. Ainsi : $f^{-1}(y) = \sqrt{\frac{1}{y^2} - 1} - 1$. / sigmoid ma

Exercice 13.

 \blacksquare On pose $f(x) = \arccos(x) + \arcsin(x)$

f est dérivable sur]-1,1[de dérivée $f'(x) = \frac{-1}{\sqrt{1-x^2}} + \frac{-1}{\sqrt{1-x^2}} = 0$

Ainsi f est constante sur]-1, 1[, donc sur [-1, 1] (car continue aux extrémités). Or $f(0) = \arccos 0 + \arcsin(0) = \frac{\pi}{2}$,

Par conséquent $f(x) = \frac{\pi}{2}$ pour tout $x \in [-1, 1]$.

■ On pose $g(x) = \arctan(x) + \arctan(\frac{1}{x})$ g est définie dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$ de dérivée

$$g'(x) = \frac{1}{1+x^2} + \left(\frac{-1}{x^2}\right) \frac{1}{\sqrt{1-\left(\frac{1}{x}\right)^2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0.$$

donc g est constante sur chacun de ses intervalles de définition : $g(x) = c_1$ sur $]-\infty, 0[$ et $g(x) = c_2$ sur $]0, +\infty[$. Sachant $\arctan(1) = \frac{\pi}{4}$ et $\arctan(-1) = -\frac{\pi}{4}$, on obtient : $c_1 = \frac{\pi}{2}$ et $c_2 = -\frac{\pi}{2}$

Pour rout $x \in \mathbb{R}$, on a

on a
$$\cos^2(\arctan x) = \frac{1}{1+x^2}$$
$$\cos(\arctan x) = \pm \frac{1}{1+x^2}$$

d'où

$$\cos(\arctan x) = \pm \frac{1}{1 + x^2}$$

Or $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ et } \cos y \ge 0 \text{ si } y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \text{ donc} \right]$

$$\cos\left(\arctan x\right) = \frac{1}{1+x^2}$$

Pour rout $x \in \mathbb{R}$, on a

$$\sin^2(\arctan x) = 1 - \cos^2(\arctan x) = 1 - \frac{1}{1 + \tan^2(\arctan x)}$$
$$= 1 - \frac{1}{1 + x^2} = \frac{x^2}{1 + x^2}$$

D'où $|\sin(\arctan x)| = \frac{|x|}{\sqrt{1+x^2}}$.

Or $\arctan(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\sin y$ et du même signe que $y \sin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, donc

$$\sin\left(\arctan x\right) = \frac{x}{1+x^2}.$$

Pour rout $x \in [-1, 1]$, on a : $\sin(2 \arcsin x) = 2\sin(\arcsin x)\cos(\arcsin x)$ Or $\sin(\arcsin x) = x$ et $\cos^2(\arcsin x) = 1 - \sin^2(\arcsin x) = 1 - x^2$, donc $\cos(\arcsin x) = 1 - x^2$

Mais $\arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\cos \ge 0$ sur cet intervalle, donc $\cos(\arcsin x) = \sqrt{1-x^2}$. Ainsi $\sin(2 \arcsin x) = 2x\sqrt{1-x^2}$

Exercice 14.

$$\lim_{x \to 0} \frac{x}{\sqrt{1+x^2} - \sqrt{1+x}} = \lim_{x \to 0} \frac{1}{\frac{x}{\sqrt{1+x^2}} - \frac{1}{2\sqrt{1+x}}} = \frac{1}{-\frac{1}{2}} = -2.$$

$$2ch^{2}x - sh(2x) = 2\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \frac{e^{2x} - e^{-2x}}{2}$$
$$= \frac{e^{2x} + e^{-2x} + 2}{2} - \frac{e^{2x} - e^{-2x}}{2}$$
$$= e^{-2x} + 1.$$

et

$$x - \ln(chx) - \ln(2) = x - \ln\left(\frac{e^x + e^{-x}}{2}\right) - \ln(2)$$

$$= x - \ln\left(e^x + e^{-x}\right) = x - \ln\left(e^x \left(1 + e^{-2x}\right)\right)$$

$$= x - \ln\left(e^x\right) - \ln\left(1 + e^{-2x}\right) = -\ln\left(1 + e^{-2x}\right)$$

$$\lim_{x \to -\infty} \frac{2ch^2x - sh\left(2x\right)}{x - \ln\left(chx\right) - \ln\left(2\right)} = \lim_{x \to -\infty} \frac{e^{-2x} + 1}{-\ln\left(1 + e^{-2x}\right)} = \lim_{x \to -\infty} \frac{2e^{-2x}}{\frac{2e^{-2x}}{1 + e^{-2x}}}$$

Ainsi

$$\lim_{x \to -\infty} \frac{2ch^{2}x - sh(2x)}{x - \ln(chx) - \ln(2)} = \lim_{x \to -\infty} \frac{e^{-2x} + 1}{-\ln(1 + e^{-2x})} = \lim_{x \to -\infty} \frac{2e^{-2x}}{\frac{2e^{-2x}}{1 + e^{-2x}}}$$
$$= -\lim_{x \to -\infty} 1 + e^{-2x} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{\arccos x}{\sqrt{1 - x^2}} = \lim_{x \to 1^{-}} \frac{\frac{-1}{\sqrt{1 - x^2}}}{\frac{-x}{\sqrt{1 - x^2}}} = \lim_{x \to 1^{-}} \frac{1}{x} = 1$$