Plugging back w from $(*_w)$ and b from $(*_b)$ into the Lagrangian we get

$$\begin{split} G(\lambda,\mu,\alpha,\beta) &= -\frac{1}{2} \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} P \begin{pmatrix} \lambda \\ \mu \end{pmatrix} - q^\top \begin{pmatrix} \lambda \\ \mu \end{pmatrix} + \frac{1}{2} b^2 - b^2 \\ &= -\frac{1}{2} \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} P \begin{pmatrix} \lambda \\ \mu \end{pmatrix} - q^\top \begin{pmatrix} \lambda \\ \mu \end{pmatrix} - \frac{1}{2} b^2 \\ &= -\frac{1}{2} \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} \begin{pmatrix} P + \begin{pmatrix} \mathbf{1}_m \mathbf{1}_m^\top & -\mathbf{1}_m \mathbf{1}_m^\top \\ -\mathbf{1}_m \mathbf{1}_m^\top & \mathbf{1}_m \mathbf{1}_m^\top \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} - q^\top \begin{pmatrix} \lambda \\ \mu \end{pmatrix}, \end{split}$$

with

$$P = \begin{pmatrix} XX^{\top} & -XX^{\top} \\ -XX^{\top} & XX^{\top} \end{pmatrix} = \begin{pmatrix} \mathbf{K} & -\mathbf{K} \\ -\mathbf{K} & \mathbf{K} \end{pmatrix}$$

and

$$q = \begin{pmatrix} y \\ -y \end{pmatrix}.$$

The new dual program is

Dual Program ν -SV Regression Version 2

minimize
$$\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \begin{pmatrix} P + \begin{pmatrix} \mathbf{1}_{m} \mathbf{1}_{m}^{\top} & -\mathbf{1}_{m} \mathbf{1}_{m}^{\top} \\ -\mathbf{1}_{m} \mathbf{1}_{m}^{\top} & \mathbf{1}_{m} \mathbf{1}_{m}^{\top} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} + q^{\top} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
subject to
$$\sum_{i=1}^{m} \lambda_{i} + \sum_{i=1}^{m} \mu_{i} = C\nu$$
$$0 \leq \lambda_{i} \leq \frac{C}{m}, \quad 0 \leq \mu_{i} \leq \frac{C}{m}, \quad i = 1, \dots, m.$$

Definition 56.1 and Definition 56.2 are unchanged. We have the following version of Proposition 56.2 showing that p_f, q_f, p_m an q_m have direct influence on the choice of ν .

Proposition 56.7. (1) Let p_f be the number of points x_i such that $\lambda_i = C/m$, and let q_f be the number of points x_i such that $\mu_i = C/m$. We have $p_f + q_f \leq m\nu$.

- (2) Let p_m be the number of points x_i such that $\lambda_i > 0$, and let q_m be the number of points x_i such that $\mu_i > 0$. We have $p_m + q_m \ge m\nu$.
- (3) If $p_f \ge 1$ or $q_f \ge 1$, then $\nu \ge 1/m$.

Proof. (1) Let K_{λ} and K_{μ} be the sets of indices corresponding to points failing the margin,

$$K_{\lambda} = \{i \in \{1, \dots, m\} \mid \lambda_i = C/m\}$$

 $K_{\mu} = \{i \in \{1, \dots, m\} \mid \mu_i = C/m\}.$