

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

NOVEMBER 2011

MEMORANDUM

MARKS: 150

This memorandum consists of 28 pages.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in all aspects of the marking memorandum.

QUESTION 1

	1			ı
1.1.1	x(x+1) = 6			
	$x^2 + x = 6$		Note: Answers by inspection:	
	$x^2 + x - 6 = 0$		award 3/3 marks	✓ standard form
	(x+3)(x-2)=0			✓ factors ✓ answers
	x = -3 or 2		Note:	(3)
	OR		Answer only of $x = 2$: award 1/3 marks	
	$x^2 + x - 6 = 0$		awaru 1/3 marks	✓ standard form
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		Note:	✓ substitution
	$\frac{2a}{}$		If candidate converts	into correct
	$-1 \pm \sqrt{1^2 - 4(1)(-1)^2}$	-6)	equation to linear:	formula
	$=-1\pm\sqrt{1^2-4(1)(-1)^2-4(1)(1)(-1)^2-4(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)($		award 0/3 marks	✓ answers
	x = -3 or 2			(3)
1.1.2	$3x^2 - 4x = 8$			(, 1 1 6
	$3x^2 - 4x - 8 = 0$		Note:	✓ standard form
			If candidate uses	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		incorrect formula:	
	$x = {2a}$	-	maximum 1/4 marks	
	$-(-4) \pm \sqrt{(-4)^2}$	-4(3)(-8)	(for standard form)	✓ substitution into
	$= \frac{-(-4) \pm \sqrt{(-4)^2}}{2(3)}$	(-)(-)		correct formula
	()	Note: Penalise	Note:	
	$= \frac{4 \pm \sqrt{16 + 96}}{6}$	1 mark for	If an error in subs and	
	$=\frac{4\pm\sqrt{112}}{}$	inaccurate rounding off to	gets: $\frac{4 \pm \sqrt{-80}}{6}$ and	$\checkmark \sqrt{112}$
	=6	ANY number	states "no solution":	
	$2\pm2\sqrt{7}$	of decimal	maximum 3/4 marks	$\checkmark \frac{4 \pm \sqrt{112}}{}$ or
	$=\frac{2\pm2\sqrt{7}}{3}$	places if		6
	= 2,43 or -1,10	candidate gives decimal	If doesn't conclude with	decimal answer
		answers.	"no solution": maximum 2/4 marks	(4)
			maximum 2/ 1 many	

NSC – Memorandum

OR

OR

$$3x^{2} - 4x = 8$$

$$3x^{2} - 4x - 8 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(3)(-8)}}{2(3)}$$

Note: Penalise 1 mark for inaccurate rounding off to ANY number of decimal places if candidate gives decimal answers

- ✓ standard form
- ✓ substitution into correct formula
- ✓ answer
- ✓ answer

√ factors

(4)

1.1.3

$$4x^2 + 1 \ge 5x$$

$$4x^2 - 5x + 1 \ge 0$$

$$(4x-1)(x-1) \ge 0$$

✓ both critical values of
$$\frac{1}{4}$$
 and

$$x \le \frac{1}{4}$$
 or $x \ge 1$ **OR** $\left(-\infty; \frac{1}{4}\right] \cup \left[1; \infty\right)$

OR

OR

Note: If candidate gives either of these correct graphical solutions but writes down the incorrect intervals or uses AND: max 3/4 marks

(4)

NOTES:

If a candidate gives an answer of $1 \le x \le \frac{1}{4}$ then max 3/4 marks.

If a candidate gives an answer of $\frac{1}{4} \le x \le 1$ then max 2/4 marks.

If a candidate gives an answer of $x \le \frac{1}{4}$ and $x \ge 1$ then max 3/4 marks.

If the candidate leaves out the equality of the notation then penalty of 1 mark.

If a candidate gives an answer of $x \le \frac{1}{4}$; $x \ge 1$ then max 3/4 marks.

If candidate gives $x \ge \frac{1}{4}$ and/or $x \ge 1$, BREAKDOWN: max 2/4 marks.

If candidate gives:
$$+ 0 - 0 + \frac{1}{4}$$

Note:

$$(x+3y)(x+2y) = 0$$

$$x+3y=0$$

$$x=-3y$$

$$\frac{x}{y}=-3$$

$$\frac{x}{y}=-3$$

$$x+2y=0$$

$$x=-2y$$

$$x=-2y$$

$$\frac{x}{y}=3 \text{ or } -\frac{x}{y}=2$$

$$x=-2y$$

✓ factors

✓ ✓ answers

1.2.1

Let
$$k = \frac{x}{y}$$

$$x^2 + 5xy + 6y^2 = 0$$

(x+3y)(x+2y)=0

$$\left(\frac{x}{y}\right)^2 + 5\left(\frac{x}{y}\right) + 6 = 0$$

$$k^2 + 5k + 6 = 0$$

$$(k+3)(k+2) = 0$$

 $k=-3$ or $k=-2$

$$\frac{x}{y} = -3$$
 or $\frac{x}{y} = -2$

✓ factors

✓ ✓ answers

(3)

(3)

$$x^2 + 5xy + 6y^2 = 0$$

$$x = \frac{-5y \pm \sqrt{(5y)^2 - 4(1)(6y^2)}}{2(1)}$$

$$x = \frac{-5y \pm \sqrt{y^2}}{2}$$

$$x = \frac{-5y \pm y}{2}$$

$$x = -3y \qquad x = -2y$$

$$x = -3y \qquad x = -2y$$

$$\frac{x}{y} = -3$$
 or $\frac{x}{y} = -2$

✓ substitutes correctly into correct formula

✓✓ answers

(3)

$$x^2 + 5xy + 6y^2 = 0$$

$$x^{2} + 5xy + \left(\frac{5}{2}y\right)^{2} = -6y^{2} + \left(\frac{5}{2}y\right)^{2}$$
$$\left(x + \frac{5}{2}y\right)^{2} = \frac{1}{4}y^{2}$$
$$x + \frac{5}{2}y = \pm \frac{1}{2}y$$

$$x = -\frac{5}{2}y \pm \frac{1}{2}y$$

✓ completing the square

Copyright reserved

Please turn over

i		NSC – Memorandu		
x = -3y	x = -2y		✓✓ answers	
$\frac{x}{y} = -3$	$\frac{x}{y} = -2$			(3)

OR

Let
$$k = \frac{x}{y}$$

 $x = ky$
 $x^2 + 5xy + 6y^2 = 0$
 $(ky)^2 + 5y(ky) + 6y^2 = 0$
 $k^2y^2 + 5y^2k + 6y^2 = 0$
 $y^2(k^2 + 5k + 6) = 0$
 $(k^2 + 5k + 6) = 0$
 $(k^2 + 5k + 6) = 0$
 $(k + 3)(k + 2) = 0$
 $k = -3$ or $k = -2$
 $\frac{x}{y} = -3$ or $\frac{x}{y} = -2$
 \checkmark answers

(3)

Note: (x;y) = (0;0) is also a solution, but in this case $\frac{x}{y}$ is undefined

OR

Let
$$y = 1$$
,
 $x^2 + 5x + 6 = 0$
 $(x+2)(x+3) = 0$
 $x = -2$ or $x = -3$

$$\frac{x}{y} = -2$$
 or $\frac{x}{y} = -3$

$$x + y = 8$$

OR

$$\frac{8-y}{y} = -3 \quad \text{OR} \quad \frac{8-y}{y} = -2$$

$$8-y = -3y \quad 8-y = -2y$$

$$8 = -2y \quad 8 = -y$$

$$y = -4 \quad y = -8$$

$$x = 12 \quad x = 16$$

$$\checkmark x = 8-y$$

$$\checkmark \text{ substitution}$$

$$\checkmark \checkmark y \text{ values}$$

$$\checkmark \text{ both correct } x \text{ values}$$

$$(5)$$

Copyright reserved

✓ substitution

 $\checkmark \checkmark x$ values

✓ both *y* values

(5)

(5)

correct

correct

OR x + y = 8 $\checkmark y = 8 - x$

$$y = 8 - x$$

$$\frac{x}{x} = -3 \qquad OR \qquad \frac{x}{x} = -2$$

$$\frac{x}{8-x} = -3$$
 OR $\frac{x}{8-x} = -2$
 $x = -3(8-x)$ $x = -2(8-x)$
 $x = -24 + 3x$ $x = -16 + 2x$

$$x = -24 + 3x \qquad x = -16 + 2x$$

$$-2x = -24$$

$$x = 12$$

$$-x = -16$$

$$x = 16$$

$$y = -4 \qquad \qquad y = -8$$

OR

$$(x+2y)(x+3y) = 0$$

$$(x+2y)(x+3y) = 0$$
Substitution

$$x + y = 8$$

$$(y+8)(2y+8)=0$$

$$y = -8$$
 or $y = -4$

$$x = 16$$
 $x = 12$

✓✓ y values x = 8 - ycorrect (y+8)(2y+8)=0✓ both x values

correct

OR

$$x = 8 - y$$

$$(8-y)^2 + 5(8-y)y + 6y^2 = 0$$

64-16y + y² + 40y - 5y² + 6y² = 0

$$2y^2 + 24y + 64 = 0$$

$$2y^2 + 24y + 64 = 0$$

$$y^2 + 12y + 32 = 0$$

$$(y+8)(y+4)=0$$

$$y = -8$$
 or $y = -4$

$$x = 16 \qquad x = 12$$

OR

 $\checkmark x = 8 - y$

✓ substitution

✓ factors

✓ both *y* values

correct

✓ both x values

correct

(5)

OR

$$x = 8 - y$$

$$(8-y)^2 + 5(8-y)y + 6y^2 = 0$$

$$64 - 16y + y^2 + 40y - 5y^2 + 6y^2 = 0$$

$$2y^2 + 24y + 64 = 0$$

$$y^2 + 12y + 32 = 0$$

$$y = \frac{-12 \pm \sqrt{12^2 - 4(1)(32)}}{2(1)}$$

$$=\frac{-12\pm\sqrt{16}}{2}$$

$$y = -8$$
 or $y = -4$

$$x = 16$$
 $x = 12$

Note:

If a candidate uses the formula and replaces x for y and then answers are swapped:

maximum 4/5 marks

 $\checkmark x = 8 - y$

✓ substitution

✓ substitutes into correct formula

✓ both y values correct

 \checkmark both x values correct

(5)

OR

$$y = 8 - x$$

$$x^{2} + 5x(8-x) + 6(8-x)^{2} = 0$$

$$x^{2} + 40x - 5x^{2} + 6(64 - 16x + x^{2}) = 0$$

$$2x^2 - 56x + 384 = 0$$

$$x^2 - 28x + 192 = 0$$

$$(x-16)(x-12)=0$$

$$x = 12$$
 $x = 16$

$$x = 12$$

$$y = -4$$
or
$$x = 16$$

$$y = -8$$

 \checkmark y = 8 - x

✓ substitution

✓ factors

✓ both x values

correct

✓ both y values

correct

(5)

OR

$$y = 8 - x$$

$$x^{2} + 5x(8 - x) + 6(8 - x)^{2} = 0$$
$$x^{2} + 40x - 5x^{2} + 6(64 - 16x + x^{2}) = 0$$

$$2x^2 - 56x + 384 = 0$$

$$x^2 - 28x + 192 = 0$$

✓
$$y = 8 - x$$

✓ substitution

$$x = \frac{-(-28) \pm \sqrt{(-28)^2 - 4(1)(192)}}{2(1)}$$

$$=\frac{28\pm\sqrt{416}}{2}$$

$$x = 12$$
 $x = 16$

$$x = 12$$
 or $x = 16$
 $y = -4$ or $y = -8$

✓ substitutes into correct formula

✓ both x values correct

✓ both correct y values

(5)

[19]

2.1.1	x-4=32-x
	2x = 36
	x = 18

OR

$$a = 4$$

 $a + 2d = 32$
 $2d = 28$
 $d = 14$
 $x = 14 + 4$
 $x = 18$

OR

$$x = \frac{4+32}{2} = 18$$

Note:

If answer only: award 2/2 marks

Note:

If candidate writes
$$x-4$$
 32- x only (i.e. omits equality): $0/2$ marks

 $\checkmark T_2 - T_1 = T_3 - T_2$

✓ answer

(2)

✓ a + 2d = 32 and a = 4

✓ answer

(2)

✓ substitutes correctly into arithmetic mean formula i.e. $\frac{4+32}{2}$

✓ answers

(2)

$$\begin{array}{c|c}
2.1.2 & \frac{x}{4} = \frac{32}{x}
\end{array}$$

$$x^2 = 128$$

$$x = \pm \sqrt{128}$$

$$x = \pm 8\sqrt{2}$$
 OR $x = \pm 11{,}31$ OR $x = \pm 2^{\frac{7}{2}}$

Note: If candidate

writes
$$\frac{x}{4}$$
 $\frac{32}{x}$ only

(i.e. omits equality):

0/2 marks

If only $x = \sqrt{128}$ then

penalty 1 mark

Note:

 $\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2}$

$$\checkmark x^2 = 128$$

✓ both answers (surd or decimal or exponential form)

(3)

$$a = 4$$

$$r = \frac{x}{4}$$

$$ar^2 = 4\left(\frac{x}{4}\right)^2$$

$$32 = 4\left(\frac{x}{4}\right)^2$$

$$x^2 = 128$$

$$x = \pm \sqrt{128}$$

$$x = \pm 8\sqrt{2}$$
 or $x = \pm 11{,}31$ or $x = \pm 2^{\frac{7}{2}}$

OR

$$x = \pm \sqrt{4 \times 32}$$

$$x = \pm \sqrt{128}$$
 or $x = \pm 8\sqrt{2}$ or $x = \pm 11{,}31$ or $x = \pm 2^{\frac{7}{2}}$

 $\checkmark 32 = 4 \left(\frac{x}{4}\right)^2$

$$\checkmark x^2 = 128$$

✓ both answers (surd or decimal or exponential form)

(3)

✓✓ substitutes correctly into geometric mean formula i.e. $\pm \sqrt{4 \times 32}$ ✓ both answers (surd or decimal or

exponential form)

(3)

 $P = \sum_{k=0}^{13} 3^{k-5}$ $=3^{1-5}+3^{2-5}+3^{3-5}+...+3^{13-5}$ $=3^{-4}+3^{-3}+3^{-2}+...+3^{8}$ $=\frac{3^{-4}(3^{13}-1)}{3^{-1}}$ =9841,49 or $9841\frac{40}{81}$ or $\frac{797161}{81}$

Note:

Correct answer only: 1/4 marks only

 $\checkmark a = 3^{-4} \text{ or } \frac{1}{81}$

 $\checkmark r = 3$ ✓ subs into correct formula

✓ answer

OR

$$P = \sum_{k=1}^{13} 3^{k-5}$$

$$= 3^{1-5} + 3^{2-5} + 3^{3-5} + \dots + 3^{13-5}$$

$$= 3^{-4} + 3^{-3} + 3^{-2} + \dots + 3^{8}$$

$$= \frac{1}{81} + \frac{1}{27} + \frac{1}{9} + \dots + 6561$$

Note: If the candidate rounds off and gets 9841,46 (i.e. correct to one decimal place): DO NOT penalise for the rounding off.

✓✓ expand the sum ✓ 13 terms in expansion

✓ answer

(4)

(4)

 $= 9841,49 \quad \text{or} \quad 9841\frac{40}{81} \quad \text{or} \quad \frac{797161}{81}$ $S_n = a + [a+d] + [a+2d] + \dots + [a+(n-2)d] + [a+(n-1)d]$ 2.3 $S_{n} = [a + (n-1)d] + [a + (n-2)d] + ... + [a+d] + a$ $2S_n = [2a + (n-1)d] + [2a + (n-1)d] + \dots + [2a + (n-1)d] + [2a + (n-1)d]$ = n[2a + (n-1)d] $S_n = \frac{n}{2} [2a + (n-1)d]$

✓ writing out S_n \checkmark "reversing" S_n

 \checkmark expressing $2S_n$ ✓ grouping to get $2S_n = n[2a + (n-1)d]$ **(4)**

OR

$$S_{n} = a + [a + d] + [a + 2d] + \dots + (T_{n} - d) + T_{n}$$

$$S_{n} = T_{n} + (T_{n} - d) + \dots + [a + d] + a$$

$$2S_{n} = a + T_{n} + a + T_{n} + a + T_{n} + \dots + a + T_{n}$$

$$= n[a + a + (n - 1)d]$$

$$= [2a + (n - 1)d]$$

$$S_{n} = \frac{n}{2}[2a + (n - 1)d]$$
Not If a circ S_{n+1}

Note:

If a candidate uses a circular argument (eg $S_{n+1} = S_n + T_n):$ max 1/4 marks (for writing out S_n)

✓ writing out S_n \checkmark "reversing" S_n

 \checkmark expressing $2S_n$ ✓ grouping to get $2S_n = n[a+a+(n-1)d]$

Note: If a candidate uses a specific linear sequence, then NO marks.

[13]

3.1	21; 24		✓ 21
3.1	21, 21	Note: If candidate writes $T_8 = 21$ $T_7 = 24$: award 1/2 marks	√ 24 (2)
3.2	$T_{2k} = 3.2^{k-1}$ and so $T_{52} = 3.2^{26-1} = 100663296$ $T_{2k-1} = 3 + 6(k-1) = 6k - 3$	Note: If candidate writes out all 52 terms and	$\checkmark 3.2^{k-1}$ $\checkmark T_{52}$ $\checkmark 6k-3$
	and so $T_{51} = 6(26) - 3 = 153$ $T_{52} - T_{51} = 100663296 - 153$	gets correct answer: award 5/5 marks	✓ T ₅₁
	=100663143 OR	Note: If candidate used $k = 52$: max 2/5	✓ answer (5)
	Consider sequence <i>P</i> : 3; 6; 12 $P_n = 3.2^{n-1}$ $P_{26} = 3.2^{26-1} = 100663296$ Consider sequence <i>Q</i> : 3; 9; 15	Note: if candidate interchanges order i.e. does $T_{51} - T_{52}$: max 4/5 marks	$\checkmark P_n = 3.2^{n-1}$ $\checkmark P_{26}$ $\checkmark Q_n = 6n - 3$ $\checkmark Q_{26}$
	$Q_n = 6n - 3$ $Q_{26} = 6(26) - 3 = 153$ $T_{52} - T_{51} = P_{26} - Q_{26}$ $= 100663296 - 153$ $= 100663143$	Note: writes out all 52 terms and subtracts $T_{51} - T_{52}$: max 4/5 marks	✓ answer (5)

3.3 For all $n \in \mathbb{N}$, n = 2k or n = 2k - 1 for some $k \in \mathbb{N}$

If n = 2k:

$$T_n = T_{2k} = 3.2^{k-1}$$

If n = 2k - 1:

$$T_n = T_{2k-1}$$

= $6k - 3$
= $3(2k - 1)$

In either case, T_n has a factor of 3, so is divisible by 3.

Note:

If a candidate only illustrates divisibility by 3 with a specific finite part of the sequence, not the general term: 0/2 marks

✓ factors 3.2^{k-1}

✓ factors 3(2k-1)

(2)

OR

$$P_n = 3.2^{n-1}$$

Which is a multiple of 3

$$Q_n = 6n - 3$$
$$= 3(2n - 1)$$

Which is also a multiple of 3

Since $T_n = Q_{2k-1}$ or $T_n = P_{2k}$ for all $n \in \mathbb{N}$, T_n is always divisible by 3

✓ factors 3.2^{n-1}

 \checkmark factors 3(2n-1) (2)

OR

The odd terms are odd multiples of 3 and the even terms are 3 times a power of 2. This means that all the terms are multiples of 3 and are therefore divisible by 3.

- ✓ odd multiples of 3
- ✓ 3 times a power of 2

(2) [**9**]

The second, third, fourth and fifth terms are $1 : -6 : T_4$ and -14

First differences are: -7; T_4+6 ; $-14-T_4$ So $T_4 + 6 + 7 = -14 - 2T_4 - 6$

$$T_4 = -11$$

$$d = -11 + 6 + 7 = 2$$
 or $-14 + 22 - 6 = 2$

$$-14 + 22 - 6 = 2$$

Note: Answer only (i.e. d = 2) with no working: 3 marks

Note: Candidate gives $T_4 = -11$ and d = 2 only: award 5/5 marks

> T_5 -14

$$\checkmark - 7$$
 $\checkmark T_4 + 6$
 $\checkmark - 14 - T_4$

✓ setting up equation

$$T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$$
 \checkmark answer

(5)

OR

-7+2dd

 $T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$ Note: Candidate uses trial -15 = (-7 + 2d) + (-7 + d) + -7and error and shows this: award 5/5 marks

 $\sqrt{-7+d}$ $\sqrt{-7+2}d$

√ – 7

✓ setting up equation

 $T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$

✓ answer

(5)

OR

$$4a + 2b + c = 1$$

$$9a + 3b + c = -6$$

-15 = -21 + 3d

6 = 3dd = 2

$$5a + b = -7$$

 $\checkmark 4a + 2b + c = 1$

$$\checkmark 9a + 3b + c = -6$$

25a + 5b + c = -14

$$16a + 2b = -8$$

$$10a + 2b = -14$$

$$6a = 6$$

$$a = 1$$

$$d = 2a = 2$$

 $\checkmark 25a + 5b + c = -14$

✓ solved simultaneously

✓ answer

(5)

(5)

OR

$$T_1$$
 T_1 T_2 T_4 T_4

$$\checkmark -14-T$$

 $T_4 + 13 = -20 - 2T_4$

$$3T_4 = -33$$

$$T_4 = -11$$

$$d = -11 + 13$$

$$d = 2$$

$$\checkmark T_4 + 6$$

$$\checkmark -14 - T_4$$

✓ setting up equation

✓ answer

Please turn over

OR

$$T_1$$
 x
 T_2
 T_3
 T_4
 T_5
 T_5
 T_6
 T_7
 T_8
 T_9
 T_9

$$\begin{array}{c} \checkmark - 7 \\ \checkmark y + 6 \\ \checkmark - 14 - y \end{array}$$

$$y+13 = -20 - 2y$$
$$3y = -33$$
$$y = -11$$

(5)

(2)

Second difference = y + 13 = -11 + 13 = 2

✓ method

✓ $T_1 = 10$

 $T_1 = 10$

OR

If incorrect
$$d$$
 in 4.1,
 $2/2$ CA marks for
 $T_1 = d + 8$ (since
 $1 - T_1 = -7 - d$)

$$a = 1$$
$$5a + b = -7$$

$$5(1) + b = -7$$

$$b = -12$$

$$a+b+c=1$$

$$4(1) + 2(-12) + c = 1$$

$$c = 21$$

$$T_n = n^2 - 12n + 21$$

$$T_1 = (1)^2 - 12(1) + 21$$
$$= 10$$

✓
$$T_1 = 10$$

OR

$$T_4 + 13 = -8 + T_1$$
 $y + 13 = -8 + x$

$$y + 13 = -8 + x$$

$$-11+13 = -8+T_1$$
 OR $-11+13 = -8+x$
 $T_1 = 10$ $x = 10$

$$\mathbf{OR} \quad -11 + 13 = -8 + x$$

$$x = 10$$

✓ method

✓
$$T_1 = 10$$

(2)

(2)

Copyright reserved

Please turn over

5.1.1	y = f(0)		
5.1.1	$= \frac{-6}{0-3} - 1$ $= 1$ $(0; 1) \mathbf{OR} x = 0 \text{ and } y = 1$ $0 = \frac{-6}{x-3} - 1$ $1 = \frac{-6}{x-3}$ $x - 3 = -6$ $x = -3$	Note: Mark 5.1.1 and 5.1.2 as a single question. If the intercepts are interchanged: max 3/5 marks	✓ y = 1 $ ✓ x = 0 $ (2) $ ✓ y = 0 $ $ ✓ x - 3 = -6 $ ✓ answer
	(-3;0)		(3)
5.1.3	$(-3; 0) \qquad (0; 1) \qquad 0 \qquad 3$ $y = -1 \qquad -1$	Note: The graph must tend towards the asymptotes in order to be awarded the shape mark	✓ shape ✓ both intercepts correct ✓ horizontal asymptote ✓ vertical asymptote (4)
	x = 3	draw of the 's	indidate who sonly one 'arm' e hyperbola loses shape' mark i.e. 3/4 marks
5.1.4		ote: if candidate writes	✓ –3 and 3 ✓ inequality OR interval notation
	-3 < x only: 1/2 marks x	< 3 only: 1/2 marks	(2)

Copyright reserved

	NSC – Memorandum	
5.1.5	$y = \frac{-6}{-2 - 3} - 1$ $= \frac{1}{5}$ $m = \frac{1 - \frac{1}{5}}{0 - (-2)}$ $= \frac{2}{5}$	✓ $\frac{1}{5}$ ✓ formula ✓ substitution ✓ answer (4)
	OR $m = \frac{f(0) - f(-2)}{0 - (-2)}$ $= \frac{1 - \frac{1}{5}}{0 + 2}$ $= \frac{2}{5}$	✓ formula ✓ $f(-2) = \frac{1}{5}$ ✓ substitution ✓ answer (4)
5.2	$x = -\frac{b}{2a} < 0 \text{ since } b < 0 \text{ and } a < 0$	✓y-intercept negative ✓ turning point on the x axis ✓ turning point on the left of the y axis ✓ maximum TP and quadratic shape
		(4) [19]

Copyright reserved

6.2	$0 = 2^{x} - 8$ $8 = 2^{x}$ $2^{3} = 2^{x}$ $x = 3$ $A(3; 0)$ $y = -8$ $0 = 2^{x} - 8$ $= 1 - 8$ $= -7$ $B(0; -7)$ Note: no CA marks $h(x) = f(2x) + 8$	✓ $y = 0$ ✓ answer for A ✓ $x = 0$ ✓ answer for B (4) ✓ answer
	$= (2^{2x} - 8) + 8$ $= 4^{x} \text{ or } 2^{2x}$ Note: answer only: award 2/2 marks	$\checkmark (2^{2x} - 8)$ $\checkmark \text{ answer of}$ $h(x) = 4^x \text{ or } 2^{2x}$ (2)
6.4	$x = 4^{y} \qquad \text{OR} \qquad x = 2^{2y}$ $y = \log_{4} x \qquad 2y = \log_{2} x$ $y = \frac{1}{2}\log_{2} x \qquad \text{OR} \qquad y = \log_{2} \sqrt{x}$ $\text{Note: answer only award 2/2 marks}$ $\text{Note: candidate works out } f^{-1}$ and gets $y = \log_{2}(x + 8)$ award 1/2 marks	✓ switch x and y ✓ answer in the form $y =$ (2)
6.5	$p(x) = -\log_4 x$ OR $p(x) = \log_{\frac{1}{4}} x$ OR $p(x) = \log_4 \frac{1}{x}$ OR $p(x) = -\frac{1}{2} \log_2 x$ OR $y = -\log_2 \sqrt{x}$	✓answer (1)

 $\sum_{k=0}^{3} g(k) - \sum_{k=1}^{5} g(k)$

= g(0) + g(1) + g(2) + g(3) - g(4) - g(5)

x = 3 is the axis of symmetry of g

∴ by symmetry

g(2) = g(4) and g(1) = g(5)

Answer = g(0) + g(3)

$$= 4.5 + 0$$

= 4.5

OR

 $\sum_{k=0.5}^{3} g(k) - \sum_{k=0.5}^{5} g(k)$

 $\sum_{k=0}^{3} g(k) = g(0) + g(1) + g(2) + g(3)$

 $\sum_{k=1}^{5} g(k) = g(4) + g(5)$

x = 3 is the axis of symmetry of g

∴ by symmetry

g(4) = g(2)

g(5) = g(1)

 $\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$

= g(0) + g(3)

=4.5+0

=4.5

OR

 $g(x) = a(x-3)^2 + 0$

 $4.5 = a(0-3)^2 + 0$

4.5 = 9a

 $g(x) = \frac{1}{2}(x-3)^2$

 $\sum_{k=0}^{3} g(k) - \sum_{k=0}^{5} g(k)$

 $\sum_{k=0}^{3} g(k) = g(0) + g(1) + g(2) + g(3)$ =4.5+2+0.5+0

 $\checkmark = g(0) + g(1) + g(2) + g(3) - g(4) - g(5)$

 \checkmark g(2) = g(4) and g(1) = g(5)

 $\checkmark g(0) + g(3)$

✓ answer

(4)

✓ expansion

 \checkmark g(2) = g(4) and g(1) = g(5)

 $\checkmark g(0) + g(3)$

✓ answer

(4)

 $\checkmark g(x) = \frac{1}{2}(x-3)^2$

✓ expansion

Copyright reserved

Please turn over

(4)

NSC – Memorando

$$\sum_{k=4}^{5} g(k) = g(4) + g(5)$$
$$= 0.5 + 2$$
$$= 2.5$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$$

$$=7-2,5$$

$$\sqrt{7-2.5}$$

✓ answer

OR

$$g(x) = ax^2 + bx + c$$

$$g(k) = ak^2 + bk + c$$

$$g(0) = c$$

$$g(1) = a + b + c$$

$$g(2) = 4a + 2b + c$$

$$g(3) = 9a + 3b + c$$

$$\sum_{k=0}^{3} g(k) = 14a + 6b + 4c$$

$$g(4) = 16a + 4b + c$$

$$g(5) = 25a + 9b + c$$

$$\sum_{k=4}^{5} g(k) = 41a + 9b + 2c$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k) = -27a - 3b + 2c$$

$$g(x) = a(x-3)^2 + 0$$

$$4.5 = a(0-3)^2 + 0$$

$$4,5 = 9a$$

$$a = \frac{1}{2}$$

$$g(x) = \frac{1}{2}(x-3)^2$$

$$= \frac{1}{2}x^2 - 3x + \frac{9}{2}$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k) = -27a - 3b + 2c$$
$$= -27\left(\frac{1}{2}\right) - 3\left(-3\right) + 2\left(\frac{9}{2}\right)$$

$$\checkmark \checkmark -27a-3b+2c$$

$$\checkmark g(x) = \frac{1}{2}(x-3)^2$$

✓ answer

[14

(4)

7.1 $A = P(1-i)^n$ $\checkmark A = \frac{P}{2}$ $A = P(1-i)^n$ $\frac{P}{2} = P(1-0.07)^n$ $\frac{P}{2} = P(1 - 0.07)^n$ ✓ subs into correct formula $\frac{1}{2} = 0.93^n$ $\frac{1}{2} = 0.93^n$ OR √ log $\log \frac{1}{2} = n \log 0.93$ $\log_{0,93} \frac{1}{2} = n$ n = 9,55 years ✓ answer = 9,55 years (4) Note: Note: If candidate uses incorrect If candidate interchanges A and Pformula: max 1/4 marks

for $A = \frac{P}{2}$

i.e. uses $P = \frac{A}{2}$: max 2/4 marks

Mathematics/PI DBE/November 2011

7.2	Radesh:
-----	---------

$$A = P(1+in)$$
= 6 000(1+0,085×5)
= 8 550
$$A = 6 000 + 8,5\% \text{ of } 6000 \times 5$$

$$= 6000 + 510 \times 5$$

$$= 6000 + 2550$$

$$= 8 550$$

Bonus =
$$0.05 \times 6000$$

= 300

Received =
$$8550 + 300$$

= $R8850$

Thandi:

$$A = P(1+i)^n$$
= 6 000\(\big(1+\frac{0.08}{4}\)\)^{20}
= R 8 915.68

$$\checkmark n = 20$$

$$\checkmark i = \frac{0.08}{4}$$

Thandi's investment is bigger.

✓ choice made

7.3 F_{y} = initial deposit with interest + annuity

$$=1000\left(1+\frac{0{,}15}{12}\right)^{18}+700\left(\frac{\left(1+\frac{0{,}15}{12}\right)^{18}-1}{\frac{0{,}15}{12}}\right)$$

$$\checkmark i = \frac{0.15}{12} \text{ or } \frac{1}{80} \text{ or } 0.0125$$

$$\checkmark n = 18$$
 $\checkmark n = 18$

$$\checkmark 1000 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$= 1250,58 + 14032,33$$
$$= R15282,91$$

=1250.58+14032.33

= R15 282,91

$$\checkmark 700 \left(\frac{\left(1 + \frac{0,15}{12}\right)^{18} - 1}{\frac{0,15}{12}} \right)$$

OR

✓ answer

 F_{v} = initial deposit with interest + annuity

$$= 1000 \left(1 + \frac{0.15}{12}\right)^{18} + 700 \left(\frac{1 - \left(1 + \frac{0.15}{12}\right)^{-18}}{\frac{0.15}{12}}\right) \left(1 + \frac{0.15}{12}\right)^{18}$$

$$= 1250.58 + 11220.68 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$= 1250.58 + 11220.68 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$= 1250.58 + 11220.68 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$\checkmark i = \frac{0,15}{12} \text{ or } \frac{1}{80} \text{ or } 0,0125$$

(6)

$$\checkmark n = 18$$

$$\checkmark n = 18$$

$$\checkmark 1000 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$700 \left(\frac{1 - \left(1 + \frac{0,15}{12}\right)^{-18}}{\frac{0,15}{12}} \right) \left(1 + \frac{0.15}{12}\right)^{18}$$

✓ answer

(6)

Copyright reserved

NSC - Memorandum

OR
$$F_{v} = 300 \left(1 + \frac{0.15}{12} \right)^{18} + 700 \left(\frac{\left(1 + \frac{0.15}{12} \right)^{19} - 1}{\frac{0.15}{12}} \right)$$

$$= 37517 + 1490774$$

$$= 375,17 + 14907,74$$
$$= R15282,91$$

$$\checkmark i = \frac{0.15}{12} \text{ or } \frac{1}{80} \text{ or } 0.0125$$

DBE/November 2011

- \checkmark *n* = 19 (corresponding to 700)
- $\checkmark n = 18$ (corresponding to 300)

$$\checkmark 300 \left(1 + \frac{0.15}{12}\right)^{18}$$

$$\checkmark 700 \left(\frac{\left(1 + \frac{0,15}{12}\right)^{19} - 1}{\frac{0,15}{12}} \right)$$

(6)[16]

QUESTION 8

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 8.1 $= \lim_{h \to 0} \frac{-4(x+h)^2 - (-4x^2)}{h}$ $= \lim_{h \to 0} \frac{-4(x^2 + 2xh + h^2) + 4x^2}{h}$ $= \lim_{h \to 0} \frac{-4x^2 - 8xh - 4h^2 + 4x^2}{h}$

$$= \lim_{h \to 0} \frac{-8xh - 4h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(-8x - 4h)}{h}$$

$$= \lim_{h \to 0} (-8x - 4h)$$

$$= -8x$$

Note:

Incorrect notation:

no lim written: penalty 2 marks

lim written before equals sign: penalty 1 mark

Note:

A candidate who gives -8x only: 0/5 marks

A candidate who omits brackets in the line $\lim (-8x-4h)$: $h\rightarrow 0$ NO penalty

√ formula

✓ substitution

✓ expansion

 $\checkmark -8x-4h$

✓ answer

(5)

OR

Mathemati		SC – Memorandum		DBE/November	2011
	$f(x) = -4x^2$			✓ substitution	
	$f(x+h) = -4(x+h)^2$			✓ expansion	
	$= -4x^2 - 8xh - 4h^2$			capansion	
	$f(x+h) - f(x) = -8xh - 4h^{2}$			✓ formula	
	$f'(x) = \lim_{h \to 0} \frac{-8xh - 4h^2}{h}$				
	$= \lim_{h \to 0} \frac{h(-8x - 4h)}{h}$			$\checkmark -8r-4h$	
	$= \lim \left(-8x - 4h \right)$			$\checkmark -8x-4h$	
	$h \to 0$ $= -8x$			✓ answer	
8.2.1	2 2				(5)
8.2.1	$y = \frac{3}{2x} - \frac{x^2}{2}$				
	$= \frac{3}{2}x^{-1} - \frac{1}{2}x^2$			31	
	2 2			$\frac{\mathbf{v}}{2}x$	
	$\frac{dy}{dx} = -\frac{3}{2}x^{-2} - x$			$\checkmark \frac{3}{2}x^{-1}$ $\checkmark -\frac{3}{2}x^{-2}$	
	$=-\frac{3}{2x^2}-x$	N T 4	1	2 "	
	$-\frac{1}{2x^2}-x$	Note: Incorrect notation in		$\checkmark - x$	(2)
8.2.2	$f(x) = (7x+1)^2$	8.2.1 and/or 8.2.2: Penalise 1 mark			(3)
	$= 49x^2 + 14x + 1$			✓ multiplication	
	f'(x) = 98x + 14			✓ 98 <i>x</i>	
	f'(1) = 98(1) + 14			√ 14	
	=112			✓ answer	(4)
	OR				
	$f(x) = (7x+1)^2$				
	f'(x) = 2(7x+1)(7) By the chain ru f'(x) = 98x+14	ile		✓✓ chain rule	
	f'(1) = 98(1) + 14				
	=112			✓✓ answer	(4)
					[12]

OUESTION 9

9.1
$$f(x) = -2x^{3} + ax^{2} + bx + c$$
$$f'(x) = -6x^{2} + 2ax + b$$
$$= -6(x - 5)(x - 2)$$
$$= -6(x^{2} - 7x + 10)$$
$$= -6x^{2} + 42x - 60$$

$$2a = 42$$
$$a = 21$$

$$f(5) = -2(5)^3 + 21(5)^2 - 60(5) + c$$

b = -60

$$18 = -25 + c$$
$$c = 43$$

Note:

A candidate who substitutes the values of a, b and c and then checks (by substitution) that T(2;-9) and S(5;18) lie on the curve: award max 2/7 marks

$$f(2) = -2(2)^{3} + 21(2)^{2} - 60(2) + c$$
OR $-9 = -52 + c$
 $c = 43$

$$\checkmark f'(x) = -6x^2 + 2ax + b$$

$$\checkmark \checkmark -6(x-5)(x-2)$$

$$\checkmark$$
 b= -60
 \checkmark 2a = 42

✓ subs (5; 18) or (2; -9)
✓
$$c = 43$$
 (7)

Note:

a = 21; b = -60; c = 43

A candidate who substitutes the values of a, b and c into the function i.e. gets $f(x) = -2x^3 - 21x^2 - 60x + 43$ and then shows by substitution that T(2,-9) and S(5,18) are on the curve **and** works out the derivative i.e. gets $f'(x) = -6x^2 - 42x - 60$ and shows (by substitution into the derivative) that the turning points are at x = 2and x = 5 (assuming what s/he sets out to prove and proving what is award max 4/7 marks as follows:

 $\checkmark x = 2$ from f'(x) = 0 OR subs x = 2 into the derivative and gets 0 $\checkmark x = 5$ from f'(x) = 0 OR subs x = 5 into the derivative and gets 0 ✓ substitution of x = 2 in f and gets -9✓ substitution of x = 5 in f and gets 18

Note:

If derivative equal to

zero is not written: penalize once only

OR

 $f'(x) = -6x^2 + 2ax + b$ $f'(2) = -6(2)^2 + 2a(2) + b$ 0 = -24 + 4a + bb = 24 - 4a

$$f'(5) = -6(5)^{2} + 2a(5) + b$$

$$0 = -150 + 10a + b$$

$$0 = -150 + 10a + (24 - 4a)$$

$$0 = -126 + 6a$$

$$6a = 126$$

$$a = 21$$
$$b = -60$$

$$f(5) = -2$$

$$f(5) = -2(5)^3 + 21(5)^2 - 60(5) + c$$
 $f(2) = -2(2)^3 + 21(2)^2 - 60(2) + c$
 $18 = -25 + c$ OR $-9 = -52 + c$
 $c = 43$ $c = 43$
 $a = 21$; $b = -60$; $c = 43$

$$✓ f'(x) = -6x^2 + 2ax + b$$
✓ $f'(2) = 0$
✓ $f'(5) = 0$

$$✓ 6a = 126$$

✓
$$b = -60$$

✓ subs
$$(5; 18)$$
 or $(2; -9)$

$$\checkmark c = 43 \tag{7}$$

atticitiatics/11	24
	NSC – Memorandum

•	NSC – Memorandum	
	OR	
	f(2) = -9 i.e. $-16 + 4a + 2b + c = -94a + 2b + c = 7f(5) = 18$ i.e. $-250 + 25a + 5b + c = 1825a + 5b + c = 268$	\checkmark -16+4a+2b+c=-9 and -250+25a+5b+c=18
	$21a + 3b = 261$ $f'(x) = -6x^{2} + 2ax + b \text{ and } f'(2) = 0 \text{OR} f'(5) = 0$ $4a + b = 24 10a + b = 150$	✓ $f'(x) = -6x^2 + 2ax + b$ ✓ $f'(2) = 0$ or $f'(5) = 0$
	$12a + 3b = 72$ $9a = 189$ $a = \frac{189}{9}$ $a = 21$ $30a + 3b = 450$ $9a = 189$ $a = \frac{189}{9}$ $a = 21$	✓ 9a = 189
	12(21) + 3b = 72 $3b = -180$ $b = -60$	✓ b = -60
	4a + 2b + c = 7 $4(21) + 2(-60) + c = 7$ $c = 43$ $25a + 5b + c = 268$ $25(21) + 5(-60) + c = 268$ $c = 43$	✓ subs (5; 18) or (2; -9) ✓ $c = 43$ (7)
9.2	$f'(x) = -6x^{2} + 42x - 60$ $m_{tan} = -6(1)^{2} + 42(1) - 60$ $= -24$ $f(1) = -2(1)^{3} + 21(1)^{2} - 60(1) + 43$ $= 2$	✓ $f'(x) = -6x^2 + 42x - 60$ ✓ subs $f'(1)$ ✓ $m_{tan} = -24$ ✓ $f(1) = 2$
	Point of contact is (1; 2) $y - 2 = -24(x - 1)$ $y = -24x + 26$ OR $y = -24x + c$ $2 = -24(1) + c$ $c = 26$ $y = -24x + 26$	$ \sqrt{y-2} = -24(x-1) $ OR $y = -24x + 26$ (5)
9.3	$f'(x) = -6x^{2} + 42x - 60$ $f''(x) = -12x + 42$ $0 = -12x + 42$	$\checkmark f''(x) = -12x + 42$
	$x = \frac{7}{2}$ OR	$\checkmark x = \frac{7}{2}$ $\checkmark x = \frac{2+5}{2}$ (2)

Copyright reserved

$$x = \frac{2+5}{2}$$

$$x = \frac{7}{2}$$
OR

$$x = \frac{-21}{3(-2)}$$

$$\checkmark x = \frac{7}{2}$$

$$\checkmark x = \frac{-21}{3(-2)}$$

$$\checkmark x = \frac{7}{2}$$

(2) [**14**]

(3)

(2)

QUESTION 10

10.1 x-value of turning point:

$$x = \frac{1}{2}$$

$$= -\frac{3}{2}$$

$$\therefore x > -\frac{3}{2} \quad \text{OR} \quad \therefore x \in \left(-\frac{3}{2}; \infty\right)$$

$$\checkmark x > -\frac{3}{2} \text{ OR} \left(-\frac{3}{2}; \infty\right)$$
(1)

10.2 f has a local minimum at x = -4 because:

$$\checkmark x = -4$$

 $\checkmark \checkmark \text{ graph}$

OR

$$f'(x) < 0$$
 for $x < -4$, so f is decreasing for $x < -4$.
 $f'(x) > 0$ for $-4 < x < 1$, so f is increasing for $-4 < x < 1$.

$$\checkmark x = -4$$
 $\checkmark f'(x) < 0$ for $x < -4$
 $\checkmark f'(x) > 0$ for $-4 < x < 1$

i.e.

 $\therefore f \text{ has a local minimum at } x = -4$

 $4 < x < 1 \tag{3}$

OR

NSC – Memorandum				
OR	$\checkmark x = -4$			
Gradient of f changes from negative to positive at $x = -4$	✓ gradient negative for			
	x < -4			
	✓ gradient positive			
OR	for $-4 < x < 1$			
f'(-4) = 0	(3)			
f''(-4) > 0 so graph is concave up at $x = -4$, so f has a local				
minimum at $x = -4$.	f'(-4) = 0			
	$\checkmark f'(-4) = 0$ $\checkmark f''(-4) > 0$ $\checkmark x = -4$			
	$\checkmark x = -4$			
	(3)			
	[4]			

11.1	V(0) = 100 - 4(0)		
	= 100 litres		✓ answer
			(1)
11.2	Rate in – rate out		$\checkmark 5-k$
	$=5-k$ l/\min		
			√ - 4
	$V'(t) = -4 l / \min$		✓ units stated once
11.2			(3)
11.3	5 - k = -4		$ \sqrt{5-k} = -4 $ $ \sqrt{k} = 9 $
	$k = 9$ l / \min	Note:	,
		Answer only:	(2)
	OR	award 2/2 marks	
	Volume at any time $t = \text{initial volume} + \text{incortotal}$ 100 + 5t - kt = 100 - 4t 5t - kt = -4t 9t - kt = 0 t(9 - k) = 0 At 1 minute from start, $t = 1$, $9 - k = 0$, so $k = 9$	ming total – outgoing	✓ $100+5t-kt=100-4t$ ✓ $k=9$ (2)
	OR Since $\frac{dV}{dt} = -4$, the volume of water in the tallitres every minute. So k is greater than 5 by $\frac{dV}{dt}$		\checkmark \checkmark $k = 9$ (2) [6]

Mathematics/PI 27 DBE/November 2011

QUESTION 12

Note: If the wrong inequality $50x + 25y \le 500$ is used, candidate wrongly says that there are more learners than available seats. Maximum of 10 marks.

12.1	$x, y \in \mathbf{N}$	$\checkmark \checkmark x + y \le 15$
	x + y < 15 $y < -x + 15$ Note: If candidate	✓✓ y ≤ 8
	50x + 25y > 500 OP $ y > 2x + 20 $ gives $30x + 25y = 300$:	$\checkmark \checkmark 50x + 25y \ge 500$
	$y \le 8$	·
	Note: for the inequality's marks to	he awarded
	the LHS and the RHS must be cor	
	WAY 2212 WAY 1412 MAGO 6 4 61	(6)
12.2	 	
	21 9	$\checkmark x + y \le 15$
	20	$\checkmark 50x + 25y \ge 500$
	18	$\checkmark 30x + 23y \ge 300$ $\checkmark y \le 8$
	17-16-	✓ feasible region
	15	(4)
	S14 S13 D ₁₂	
	512	
	9	
	7	
	6	
	4	
	3	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Red buses	
12.3	C = 600x + 300y	✓ answer
		(1)
12.4.1	(6; 8); (7; 6); (8; 4); (9; 2) and (10; 0)	3 marks for all correct
	NOTE: The gradient of the search line is $m = -\frac{2}{1}$	solutions 2 marks if only 3 or 4
		correct solutions
		1 mark if only 1 or 2
		correct solutions
		(3)
12.4.2	C = 6(600) + 8(300) = R6000 or	✓ subs
	C = 7(600) + 6(300) = R6000 or	✓ answer
	C = 8(600) + 4(300) = R6000 or	(2)
	C = 9(600) + 2(300) = R6000 or	
	C = 10(600) + 0(300) = R6000	
12.5	8 red; 4 blue	✓ answer
		(1)
		[17]

TOTAL: 150

QUESTION 12.2

