

Current status of the MMC data analysis

Francesco Toschi 08.06.2023

Data

We have a total of 8654 traces.

Noise PSD could be retrieved in two ways:

- Noise background data (not clear time and condition of data taking);
- Noise extracted from data.

Noise from fitting the second half of each trace. No time variation observed.

Using a previous noise template, we use the difference between the OF fit template and the trace. We consider only the second half of the trace (exlclude peak region).

Optimum filter: the template

■ Using previous template (thanks Greta!) there is a small dependence of the OF χ^2 on the trace amplitude (i.e., energy).

Optimum filter: the templates

■ Two templates (one for K_{α} and one for K_{β}) were produced.

Baseline quality cut

Rejected traces

600

500

$\Delta \chi^2$ quality cut

Time correction

TF ampl

TF_chi2

TF_baseline

time shift

OF_ampl_0

OF_chi2_0

OF_time_0

OF_ampl_1
OF_chi2_1

OF_time_1

baseline_slope

Averaged over time and corrected for linear interpolation

Fitting procedure

- After all the cuts we are left with 8014 traces (92.6% acceptance):
 - Statistic allows for unbinned likelihood.

$$\mathcal{L} = \prod_{i}^{N} \left(k_{\alpha} \cdot f_{K_{\alpha}}(E, \sigma_{E}) + (1 - k_{\alpha}) \cdot f_{K_{\beta}}(E, \sigma_{E}) \right) \qquad E = p_{2} \cdot A_{OF}^{2} + p_{1} \cdot A_{OF}$$

$$E = p_2 \cdot A_{OF}^2 + p_1 \cdot A_{OF}$$

Four variables:

- Signal intensity K_a
- Energy calibration **p**₁ and **p**₂
- Energy resolution σ_{E}

Fit results

Minimization is done using *iminuit*, initial conditions were selected after random selections.

X² upper cut has no impact on the fit convergence. Uncertainties correlated!

Fit results

Covariance suggests degeneracy between p₁ and p₂

sigma_0	E _0	E_1	E_2	ka	
5.59e-09	0	1.15e-09	-1.09e-13	2.65e-05	ka
-1.09e-10 (-0.062)	0	-8.14e-12 (-1.000)	7.76e-16	-1.09e-13	E_2
1.18e-06 (0.064)	0	8.55e-08	-8.14e-12 (-1.000)	1.15e-09	E_1
0	0	0	0	0	E_0
0.00398	0	1.18e-06 (0.064)	-1.09e-10 (-0.062)	5.59e-09	sigma_0

Fit results

■ Energy resolution $\sigma_E = (0.63 \pm 0.06) \text{ eV} \rightarrow \Delta E_{FWHM} = (1.49 \pm 0.15) \text{ eV}$

Comparison to previous works

Comparison to previous works

Krantz thesis

What next? Fitting

- Cross-check results using χ^2 minimization (binned fit);
- Improve noise selection;
- Better understanding of the degeneracy of p₁ and p₂, maybe different parameterization?
- Increase statistics with multichannel data.