International Rectifier

IRF7842

HEXFET® Power MOSFET

Applications

- Synchronous MOSFET for Notebook Processor Power
- Secondary Synchronous Rectification for Isolated DC-DC Converters
- Synchronous Fet for Non-Isolated DC-DC Converters

Benefits

- Very Low R_{DS(on)} at 4.5V V_{GS}
- Low Gate Charge
- Fully Characterized Avalanche Voltage and Current

V _{DSS}	R _{DS(on)} max	Qg (typ.)
40V	5.0 m Ω @ $V_{GS} = 10V$	33nC

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	40	V
V_{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	18	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	14	А
I _{DM}	Pulsed Drain Current ①	140	
P _D @T _A = 25°C	Power Dissipation ④	2.5	W
P _D @T _A = 70°C	Power Dissipation ®	1.6	
	Linear Derating Factor	0.02	W/°C
TJ	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ®		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient @⑤		50	

Notes ① through ⑤ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	40	_		٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}} / \Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient	_	0.037		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	4.0	5.0	mΩ	V _{GS} = 10V, I _D = 17A ③
			4.7	5.9	1	V _{GS} = 4.5V, I _D = 14A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35	_	2.25	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		- 5.6	_	mV/°C	
I _{DSS}	Drain-to-Source Leakage Current	_	_	1.0	μΑ	$V_{DS} = 32V, V_{GS} = 0V$
			_	150	1	$V_{DS} = 32V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage		_	100	nΑ	V _{GS} = 20V
	Gate-to-Source Reverse Leakage		_	-100	1	V _{GS} = -20V
gfs	Forward Transconductance	81	_	_	S	$V_{DS} = 20V, I_{D} = 14A$
Q_g	Total Gate Charge	_	33	50		
Q _{gs1}	Pre-Vth Gate-to-Source Charge	_	9.6		1	$V_{DS} = 20V$
Q_{gs2}	Post-Vth Gate-to-Source Charge	_	2.8	_	nC	V _{GS} = 4.5V
Q_{gd}	Gate-to-Drain Charge	_	10	_	1	I _D = 14A
Q_{godr}	Gate Charge Overdrive	_	10.6	_	1	
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})	_	12.8		1	
Q _{oss}	Output Charge	_	18	_	nC	V _{DS} = 16V, V _{GS} = 0V
R_G	Gate Resistance	_	1.3	TBD	Ω	
t _{d(on)}	Turn-On Delay Time	_	14	_		$V_{DD} = 20V, V_{GS} = 4.5V$ ③
t _r	Rise Time	_	12		1	I _D = 14A
t _{d(off)}	Turn-Off Delay Time		21		ns	Clamped Inductive Load
t _f	Fall Time	_	5.0	_		
C _{iss}	Input Capacitance	_	4500			$V_{GS} = 0V$
C _{oss}	Output Capacitance		680		pF	$V_{DS} = 20V$
C _{rss}	Reverse Transfer Capacitance		310		1	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		50	mJ
I_{AR}	Avalanche Current ①		14	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			3.1		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			140		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage		_	1.0	V	$T_J = 25^{\circ}C$, $I_S = 14A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time	_	99	150	ns	$T_J = 25^{\circ}C$, $I_F = 14A$, $V_{DD} = 20V$
Q_{rr}	Reverse Recovery Charge		11	17	nC	di/dt = 100A/µs ③

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF7842

International TOR Rectifier

12 I_D= 14A V_{DS}= 30V -VDS= 20V V_{GS}, Gate-to-Source Voltage (V) 10 8 6 4 2 0 0 20 40 60 80 Q_G Total Gate Charge (nC)

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Threshold Voltage Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance Vs. Gate Voltage

Fig 13a. Unclamped Inductive Test Circuit

Fig 13b. Unclamped Inductive Waveforms

Fig 13c. Maximum Avalanche Energy Vs. Drain Current

Fig 14a. Switching Time Test Circuit

Fig 14b. Switching Time Waveforms www.irf.com

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16. Gate Charge Test Circuit

Fig 17. Gate Charge Waveform

MILLIMETERS

SO-8 Package Details

I DIM					
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
еl	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

INCHES

NOTES

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

SO-8 Tape and Reel

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.5mH $R_G = 25\Omega$, $I_{AS} = 14A$.
- 3 Pulse width \leq 400µs; duty cycle \leq 2%.
- When mounted on 1 inch square copper board
- S R_θ is measured at T_J approximately 90°C

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.4/04 www.irf.com 9