Nearest Neighbour Algorithms, Trees and Forests

Maschinelles Lernen 1 - Grundverfahren WS20/21

Prof. Gerhard Neumann KIT, Institut für Anthrophomatik und Robotik

Learning Outcomes

What will we learn today?

Nearest Neighbors:

- What an non-parametric/instance based learning algorithm is
- ... start with the most simple non-parametric algorithm: k-Nearest Neighbor
- What is the curse of dimensionality
- How to compute the nearest neighbors efficiently

Trees:

- How can we use trees for classification and regression
- Why should we use ensembles of trees (forests)?
- Why should these be random to some extend?

Today's Agenda!

Nearest Neighbour Algorithms:

- k-Nearest Neigbhour Classifiers
- Curse of dimensionality
- Indexing with KD-trees

Tree-based methods

- For regression: Regression Tree
- For classification: Decision Tree
- Almost the same algorithms!

Random forest

- Bagging predictors
- Randomization

K-Nearest Neighbor Algorithms

Non-parametric Methods

Non-parametric methods store all the training data and use the training data for doing predictions. They do not adapt parameters or a parametric model. They are also often referred to as instance-based methods.

- ✓ Complexity adapts to training data
- ✓ Very fast at training
- × Slow for prediction
- Hard to use for high-dimensional input

Algorithms:

- k-Nearest Neighbor Algorithm (today)
- Locally Weighted Regression (not covered)
- Kernel Methods and Gaussian Processes (later)

K-Nearest Neighbour Classifier

To classify a new input vector x, examine the kclosest training data points to x and assign the object to the most frequently occurring class

common values for k: k = 3, k = 5

When to consider:

- Can measure distances between data-points
- Less than 20 attributes per instance
- Lots of training data

Advantages:

- Training is very fast
- Learn complex target functions
- Similar algorithm can be used for regression

Decision Boundaries

- The nearest neighbour algorithm does not explicitly compute decision boundaries.
- However, the decision boundaries form a subset of the Voronoi diagram for the training data.
- The more data points we have, the more complex the decision boundary can become

1-NN Decision Surf ace

Example Result

- Bayes error: error of perfect decision boundary
- Increasing k reduces variance, increases bias
 - K < 7: overfitting
 - K > 7: underfitting
- Has to be selected by cross-validation

7-Nearest Neighbors

Distance Metrics

Most common distance metric is Euclidean distance (ED):

$$d(oldsymbol{x},oldsymbol{y}) = ||oldsymbol{x}-oldsymbol{y}|| = \sqrt{\left(\sum_{k=1}^d (oldsymbol{x}_k - oldsymbol{y}_k)^2
ight)^2}$$

- ED makes sense when different features are commensurate; each is variable measured in the same units.
- If the units are different, say length and weight, data needs to be normalized:

$$ilde{m{x}} = (m{x} - m{\mu}) \oslash m{\sigma}$$

- Mean μ , standard deviation σ , element-wise division \oslash
- I.e. resulting input dimensions are zero mean, unit variance

Distance Metrics

• Cosine Distance: Good for documents, images, etc.

$$d(x, y) = 1 - \frac{x^T y}{\|x\| \|y\|}$$

Hamming Distance: For string data / categorical features

$$d(oldsymbol{x},oldsymbol{y}) = \sum_{k=1}^d (oldsymbol{x}_k
eq oldsymbol{y}_k)$$

Manhattan Distance: Coordinate-wise distance

$$d(oldsymbol{x},oldsymbol{y}) = \sum_{k=1}^d |oldsymbol{x}_k - oldsymbol{y}_k|$$

Distance Metrics

• **Mahalanobis Distance:** Normalized by the sample covariance matrix – unaffected by coordinate transformations.

$$d(x, y) = ||x - y||_{\Sigma^{-1}} = \sqrt{(x - y)^T \Sigma^{-1}(x - y)}$$

k-NN and irrelevant features

No irrelevant input:

Class can be clearly determined

Added irrelevant dimension:

- Neighborhood needs to be increased
- Heavily affected by noise
- Needs much more training data

The performance of k-NN degrades with more (irrelevant) dimensions

Gerhard Neumann | Machine Learning 1 | KIT | WS 2020/2021

Curse of dimensionality

Example 1: What fraction of the points in a cube lie outside the sphere inscribed in it?

• For $d \to \infty$ this fraction approaches 1!

Curse of dimensionality

Most of the points in high dimensional spaces are far away from the origin!

- In 2 or 3 dimensions, most points are near the center
- Need more data to "fill up the space"

Bad news for nearest neighbor classification in high dimensional spaces

- Even if most/all features are relevant, in high dimensional spaces, most points are equally far from each other!
- "Neighborhood" becomes very large

Remedies (to some extend):

- Most "real-world" data is not uniformly distributed in the high dimensional space
- E.g.: Dimensionality reduction techniques, manifold learning
- Feature selection (pick a good set based on a validation set)

Finding the neighbours: KD-Trees

Problem: given a sample set $S = \{ m{x}_1, \dots, m{x}_N \}$, find the k-NNs of test point $m{x}^*$

Building the tree: for each non-leaf node

- Choose dimension (e.g., longest hyperrectangle).
- Choose median as pivot
- Split node according to (pivot, dimension).

Balanced tree, binary space partitioning.

KD-Trees

Finding the neighbours (k = 1):

- Find region containing x (starting from root node, move to child node based on node test).
- Save region point x* = x₀ as current best.
- Move up tree and recursively search regions intersecting hypersphere $S(x, ||x x^*||)$
- Update x* if new nearest neighbour has been found

For k > 1:

- Same algorithm, but save x* as knearest neighbour.
- Complexity: O(k log N)

k-NN Summary

Probably the oldest and simplest learning algorithm

- Prediction is expensive.
- Efficient data structures help. k-D trees: the most popular, works well in low dimensions
- Good baseline: If you do not beat k-NN, you are doing something wrong

Requires a distance measure between instances

- Partitions the space into a Voronoi Diagram
- Beware the curse of dimensionality

Trees and Forests

Regression and Classification Trees

Grow a binary tree

- At each node, "split" the data into two "daughter" nodes.
- Splits are chosen using a splitting criterion.
- Bottom nodes are "terminal" nodes.

 the predicted value at a node is the average response variable for all observations in the node.

For classification:

- the predicted class is the most common class in the node (majority vote).
- Can also get estimated probability of membership in each of the classes

A classification tree

A regression tree

Predict (log) prostate specific antigen from

- Log cancer volumne
- Log prostate weight

Splitting criterion

Regression: Minimum residual sum of squares

$$RSS = \sum_{\text{left}} (y_i - \bar{y}_L)^2 + \sum_{\text{right}} (y_i - \bar{y}_R)^2$$

- where \bar{y}_L and \bar{y}_R are the average label values in the left and right subtree
- Split such that variance in subtrees is minimized

Splitting criterion (thats the second mathy slide...)

Classification: Minimum entropy in subtrees

$$score = N_L H(p_L) + N_R H(p_R)$$

- where $H(p_L) = -\sum_k p_L(k) \log p_L(k)$ is the entropy in the left sub-tree
- and $p_L(k)$ is the proportion of class k in left tree
- Entropy is a measure of uncertainty
 - Split such that class-labels in sub-trees are "pure"

Finding the best horizontal split

Best horizontal split is at 3.67 with RSS = 68.09.

Finsing the best vertical split

Best vertical split is at 1.05 with RSS = 61.76.

Creating the root node

Finding the best split in the left node

Best horizontal split is at 3.66 with RSS = 16.11.

Finding the best split in the left node

Best vertical split is at -.48 with RSS = 13.61.

Building the regression tree...

Finding the best split in the right node...

Best horizontal split is at 3.07 with RSS = 27.15.

Skipping some steps... final result

When do we stop?

There are many stopping criterias, the 2 main ones are:

Stop if:

- Minimum number of samples per node
- Maximum depth

... has been reached

Both criterias again influence the **complexity** of the tree!

Controlling the tree complexity

Small number of samples per leaf:

• Tree is very sensitive to noise

Controlling the tree complexity

Small number of samples per leaf:

• Tree is very sensitive to noise

Controlling the tree complexity

Small number of samples per leaf:

Tree is very sensitive to noise

Large number of samples per leaf:

Tree not expressive enough

Model-Selection for Regression Trees

Evaluate error on validation-set

- Overfitting for min_samples = 1
- Underfitting for min_sampes > 2
- Larger min_samples -> lower complexity

Classification and Regression Trees

Advantages

- Applicable to both regression and classification problems.
- Handle categorical predictors naturally.
- Computationally simple and quick to fit, even for large problems.
- No formal distributional assumptions
- Can handle highly non-linear interactions and classification boundaries.
- Automatic variable selection.
- Very easy to interpret if the tree is small.

Classification and Regression Trees (CART)

Disadvantages

- Accuracy current methods, such as NNs, support vector machines and ensemble classifiers often have 30% lower error rates than CART.
- Instability if we change the data a little, the tree picture can change a lot. So the
 interpretation is not as straightforward as it appears.

Nowadays, we can do better! Random Forests!

Key Idea: Use multiple trees to improve accuracy

Key Idea: Use multiple trees to improve accuracy

Hard problem for a single tree:

How do we get variability in the trees?

Bagging (Bootstrap Aggregating)

Breiman, "Bagging Predictors", Machine Learning, 1996.

Fit classification or regression models to **bootstrap samples** from the data and combine by **voting** (classification) or **averaging** (regression).

Bootstrap sample
$$\Rightarrow$$
 $f_1(x)$
Bootstrap sample \Rightarrow $f_2(x)$
Bootstrap sample \Rightarrow $f_3(x)$
Combine $f_1(x),..., f_M(x) \Rightarrow f(x)$
...

Bootstrap sample \Rightarrow $f_M(x)$
 $f_i(x)$'s are "base learners"

Bagging (Bootstrap Aggregating)

A **bootstrap sample** is chosen at **random** *with* **replacement** from the data. Some observations end up in the bootstrap sample more than once, while others are not included ("out of bag").

Variance reduction

In general:
$$\operatorname{Var}\left[\frac{1}{M}\sum_{i=1}^{M}X_i\right] = \frac{1}{M^2}\operatorname{Var}\left[\sum_{i=1}^{M}X_i\right] = \frac{1}{M}\operatorname{Var}\left[X\right], \text{ if } X \text{ i.i.d.}$$

• i.e., ideally, the variance would reduce linearly with the number of trees

In practice:
$$\operatorname{Var}\left[\frac{1}{M}\sum_{i=1}^{M}\operatorname{Tree}_{i}\right] > \frac{1}{M}\operatorname{Var}\left[\operatorname{Tree}\right],$$
 as trees are still correlated

- But variance reduction is still significant
- Bagging reduces the variance of the base learner but has limited effect on the bias
 - I.e. no overfitting: The more trees the better
- It's most effective if we use *strong* base learners that have very little bias but high variance (unstable). E.g. trees.

Bagging CART

Dataset	# cases	# vars	# classes	CART	Bagged CART	Decrease %
Waveform	300	21	3	29.1	19.3	34
Heart	1395	16	2	4.9	2.8	43
Breast Cancer	699	9	2	5.9	3.7	37
Ionosphere	351	34	2	11.2	7.9	29
Diabetes	768	8	2	25.3	23.9	6
Glass	214	9	6	30.4	23.6	22
Soybean	683	35	19	8.6	6.8	21

Leo Breiman (1996) "Bagging Predictors", Machine Learning, 24, 123-140.

Randomization

Grow a **forest** of many trees. (R default is 500)

Grow each tree on an independent bootstrap sample from the training data.

Sample N cases at random with replacement.

At each node:

- Select m variables at random out of all M possible variables (independently for each node).
- 2. Find the best split on the selected *m* variables.

Grow the trees to maximum depth (classification).

Vote/average the trees to get predictions for new data.

Why does that work?

Intuition: Why randomization?

- Increase variability of the single trees
- A single tree is less likely to over-specialize
- The trees are less likely to overfit

Random Regression Forests

We can represent almost continuous functions!

Random Forests

Dataset	# cases	# vars	# classes	CART	Bagged CART	Random Forests
Waveform	300	21	3	29.1	19.3	17.2
Breast Cancer	699	9	2	5.9	3.7	2.9
Ionosphere	351	34	2	11.2	7.9	7.1
Diabetes	768	8	2	25.3	23.9	24.2
Glass	214	9	6	30.4	23.6	20.6

Leo Breiman (2001) "Random Forests", Machine Learning, 45, 5-32.

Random Forests

Advantages

- Applicable to both regression and classification problems. Yes
- Handle categorical predictors naturally. Yes
- Computationally simple and quick to fit, even for large problems. Yes
- No formal distributional assumptions (non-parametric). Yes
- Can handle highly non-linear interactions and classification boundaries. Yes
- Automatic variable selection. Yes
- Very easy to interpret if the tree is small. No

Random Forests

Improve on CART with respect to:

- Accuracy Random Forests is competitive with the best known machine learning methods
- Instability if we change the data a little, the individual trees may change but the forest is relatively stable because it is a combination of many trees.

Random Forests and the Kinect

Gerhard Neumann | Machine Learning 1 | KIT | WS 2020/2021

Random Forests and the Kinect

Random Forests and the Kinect

Use computer graphics to generate plenty of data

Shotton, et. al., Real-Time Human Pose Recognition in Parts from a Single Depth Image, CVPR 2011

Take-home messages

- CART: Binary decision trees can be used for classification and regression
- Complexity can be set by minimum samples per leaf
- Variability in the trees:
 - Bootstrap
 - Randomized splits
- Averaging over multiple trees reduces variance while bias is unaffected!

Self-test questions

You should know now:

- What we mean with non-parametric / instance-based machine learning algorithms?
- How k-NN works?
- How to choose the k?
- Why is it hard to use for high-D data?
- How do search for nearest neighbours efficiently?
- What a binary regression / decision tree is
- What are useful splitting criterions
- How can we influence the model complexity of the tree?
- Why is it useful to use multiple trees and randomization?