Autores: Ing. Andrés D. Cassagnes, Ing. Federico G. Zacchigna, Ing. Octavio Alapago, Dr. Ing. Ariel Lutenberg

Laboratorio de Sistemas Embebidos Facultad de Ingeniría Universidad de Buenos Aires

16/08/2018

OFDM

Orthogonal Frequency Divider Multiplexing

OFDM

Introducción •00

- Orthogonal Frequency Divider Multiplexing
- Divide la información en múltiples frecuencias

16/08/2018

2/29

OFDM

- Orthogonal Frequency Divider Multiplexing
- Divide la información en múltiples frecuencias
- Bandas de frecuencia solapadas

OFDM

- Orthogonal Frequency Divider Multiplexing
- Divide la información en múltiples frecuencias
- Bandas de frecuencia solapadas
 - Representación matemática

Selección de las arquitecturas

atematica
$$s_{k}(t - kT) = \sum_{i=1}^{N/2-1} x_{i,k} e^{j2\pi (\frac{i}{T})(t-kT)}$$
 (1)

2/29

Introducción

•00

OFDM

- Orthogonal Frequency Divider Multiplexing
- Divide la información en múltiples frecuencias
- Bandas de frecuencia solapadas
 - Representación matemática

$$s_k(t - kT) = \sum_{i = -N/2}^{N/2 - 1} x_{i,k} e^{j2\pi \left(\frac{i}{T}\right)(t - kT)}$$
(1)

Asumiendo que x_{i,k} es constante a lo largo del período de símbolo T, se puede utilizar una IDFT/DFT para modular.

LSE-FIUBA SASE 2018 16/08/2018

FFT

■ Transformada rápida de Fourier

FFT

- Transformada rápida de Fourier
- Sumas/restas y multiplicaciones

LSE-FIUBA SASE 2018 16/08/2018

FFT

- Transformada rápida de Fourier
- Sumas/restas y multiplicaciones
- Cada salida = suma y resta de todas las entradas

Objetivos

■ Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.

LSE-FIUBA **SASE 2018** 16/08/2018 4/29

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.

LSE-FIUBA **SASE 2018** 16/08/2018

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).

LSE-FIUBA SASE 2018 16/08/2018

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (ISDB-T).

LSE-FIUBA SASE 2018 16/08/2018

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (ISDB-T).
 - Entrada y salida continua.

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (ISDB-T).
 - Entrada y salida continua.
 - Aritmética de punto fijo.

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (ISDB-T).
 - Entrada y salida continua.
 - Aritmética de punto fijo.
 - Unidad de escalamiento configurable en ejecución con opción de seleccionar la etapa a escalar y el método (redondeo/truncamiento).

LSE-FIUBA SASE 2018 16/08/2018

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
 - Longitud configurable, incluyendo al menos 2K, 4K y 8K muestras (ISDB-T).
 - Frecuencia de muestreo mínima de 8, 126, 984 muestras garantizada (ISDB-T).
 - Entrada y salida continua.
 - Aritmética de punto fijo.
 - Unidad de escalamiento configurable en ejecución con opción de seleccionar la etapa a escalar y el método (redondeo/truncamiento).
 - Menor consumo de espacio/recursos que otras implementaciones (ref: Xilinx IP FFT 7.0 y un core FFT abierto diseñado para modulación OFDM ISDB-T).

LSE-FIUBA SASE 2018 16/08/2018

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
- Realizar una evaluación de desempeño

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
- Realizar una evaluación de desempeño
 - Funcionamiento

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
- Realizar una evaluación de desempeño
 - Funcionamiento
 - Ruido / error

16/08/2018

4/29

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
- Realizar una evaluación de desempeño
 - Funcionamiento
 - Ruido / error
 - Distorsión armónica

16/08/2018

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
- Realizar una evaluación de desempeño
 - Funcionamiento
 - Ruido / error
 - Distorsión armónica
 - Recursos

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
- Realizar una evaluación de desempeño
- Realizar una comparativa con desarrollos de terceros para evaluar el diseño realizado

LSE-FIUBA SASE 2018 16/08/2018

Objetivos

- Diseñar un modulador/demodulador OFDM para un sistema de telecomunicaciones definido por software que cumpla con el estandard ISDB-T.
- Que sirva también como unidad de cómputo FFT/IFFT para procesamiento de señales.
- Requerimientos
- Realizar una evaluación de desempeño
- Realizar una comparativa con desarrollos de terceros para evaluar el diseño realizado
- Proponer trabajos futuros para continuar y mejorar el diseño.

LSE-FIUBA SASE 2018 16/08/2018

Transformada de Fourier

Existen varios algoritmos

Algoritmos FFT

- Existen varios algoritmos
 - Good-Thomas

LSE-FIUBA SASE 2018 16/08/2018

6/29

Algoritmos FFT

- Existen varios algoritmos
 - Good-Thomas
 - Winograd

LSE-FIUBA **SASE 2018** 16/08/2018

6/29

- Existen varios algoritmos
 - Good-Thomas
 - Winograd
 - Cooley-Tuckey

- Existen varios algoritmos
 - Good-Thomas
 - Winograd
 - Cooley-Tuckey
- Se selecciona el algoritmo Radix-r (Cooley-Tuckey)

- Existen varios algoritmos
 - Good-Thomas
 - Winograd
 - Cooley-Tuckey
- Se selecciona el algoritmo Radix-r (Cooley-Tuckey)
 - Flexibilidad en la longitud

- Existen varios algoritmos
 - Good-Thomas
 - Winograd
 - Cooley-Tuckey
- Se selecciona el algoritmo Radix-r (Cooley-Tuckey)
 - Flexibilidad en la longitud
 - Simplicidad en la implementación

- Existen varios algoritmos
 - Good-Thomas
 - Winograd
 - Cooley-Tuckey
- Se selecciona el algoritmo Radix-r (Cooley-Tuckey)
 - Flexibilidad en la longitud
 - Simplicidad en la implementación
 - Posibilidad de reutilizar módulos

Cantidad de puntos por operación

Cantidad de etapas

LSE-FIUBA SASE 2018 16/08/2018 7 / 29

Transformada de Fourier

Cantidad de puntos por operación

- Cantidad de etapas
- Cantidad de operaciones por etapa

LSE-FIUBA **SASE 2018** 16/08/2018 7/29

Cantidad de puntos por operación

- Cantidad de etapas
- Cantidad de operaciones por etapa

Long. del bloque	Mult.	Mult. no triv	sumas
2	2	0	2
3	3	2	6
4	4	0	8
5	6	5	17
7	9	8	36
8	8	2	26
9	11	10	44

Cantidad de puntos por operación

- Cantidad de etapas
- Cantidad de operaciones por etapa

Long. del bloque	Mult.	Mult. no triv	sumas
2	2	0	2
3	3	2	6
4	4	0	8
5	6	5	17
7	9	8	36
8	8	2	26
9	11	10	44

■ Se decide implementar dos arquitecturas: radix-2 y radix-4

Transformada de Fourier

Arquitecturas para la implementación radix-r

Arquitectura paralela

Arquitectura desenrrollada

Arquitectura iterativa

Transformada de Fourier

Arquitecturas para la implementación radix-r

Arquitectura paralela

Arquitectura desenrrollada

Arquitectura iterativa

Arquitecturas para la implementación radix-r

Arquitectura paralela

Arquitectura desenrrollada

Arquitectura iterativa

Arquitecturas para la implementación radix-r

Arquitectura paralela

Transformada de Fourier

Arquitectura desenrrollada

Arquitectura iterativa

Arquitecturas para la implementación radix-r

Arquitectura paralela

Arquitectura desenrrollada

Arquitectura iterativa

LSE-FIUBA **SASE 2018** 16/08/2018

Radix-2 Iterativa

LSE-FIUBA SASE 2018 16/08/2018

0.00

Arquitecturas radix

Radix-4 Iterativa

SASE 2018 LSE-FIUBA 16/08/2018 11 / 29

Radix-4 Iterativa

Arquitecturas radix

Unidad aritmética (incluyendo unidad de escalamiento)

LSE-FIUBA SASE 2018 16/08/2018 12 / 29

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
 - Algoritmo Cordic

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
 - Algoritmo Cordic
 - Multiplicador comlejo eficiente

Arquitecturas radix

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
- Memoria

LSE-FIUBA SASE 2018 16/08/2018 12 / 29

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
- Memoria
 - Radix-2: Dual-port RAM

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
- Memoria
 - Radix-2: Dual-port RAM
 - Radix-4: Triple in/Triple out RAM

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
- Memoria
 - Datapath

- Unidad aritmética (incluyendo unidad de escalamiento)
- Multiplicador
- Memoria
- Datapath
- Unidad de control

■ Transformación de señales patrón

- Transformación de señales patrón
- Medición del error

- Transformación de señales patrón
- Medición del error
- Medición de la THD

- Transformación de señales patrón
- Medición del error
- Medición de la THD
- Efecto del escalamiento

- Transformación de señales patrón
- Medición del error
- Medición de la THD
- Efecto del escalamiento
- Medición de los recursos necesarios

- Transformación de señales patrón
- Medición del error
- Medición de la THD
- Efecto del escalamiento
- Medición de los recursos necesarios
- Comparación con core FFT abierto para modulación OFDM/ISDB-T

LSE-FIUBA SASE 2018 16/08/2018 14 / 29

Señales patrón

Se realizaron pruebas utilizando como entrada deltas en diferentes compoenentes y se analizó su salida. Por ejemplo:

LSE-FIUBA SASE 2018 16/08/2018 15 / 29

Señales patrón

- Se realizaron pruebas utilizando como entrada deltas en diferentes compoenentes y se analizó su salida. Por ejemplo:
 - Una delta en posición '0'

Señales patrón

- Se realizaron pruebas utilizando como entrada deltas en diferentes compoenentes y se analizó su salida. Por ejemplo:
 - Una delta en posición '0'
 - Una delta en posición '6'

Resultados de la medición de error

	1024, 12	1024, 16	4096, 12	4096, 16
R-2, cordic	0,092	0,006	0,099	0,008
R-2, Mult.	0,232	0,003	0,340	0,108
R-4, cordic	0,077	0,003	0,074	0,007
R-4, Mult.	0,224	0,002	0,334	0,105
Kiss FFT		0,017		0,035
Xilinx FFT v7.1	0.0007	0.0001	0.0008	0.0004

SASE 2018 LSE-FIUBA 16/08/2018 17 / 29

Medición de la THD

THD - Resultados

Radix-2, Cordic, 16 bits

Radix-4, Mult., 16 bits

Kiss FFT. C++. 16 bits

Xilinx LogiCORE FFT 7.1

19 / 29

16/08/2018

20 / 29

Recursos de Implementación

Recursos de implementación

Uno de los requerimientos es la economía de recursos

- Uno de los requerimientos es la economía de recursos
- FPGA XC5VLX110, de la familia Virtex-5 de Xilinx.

- Uno de los requerimientos es la economía de recursos
- FPGA XC5VLX110, de la familia Virtex-5 de Xilinx.
- Se comparó con dos arquitecturas

- Uno de los requerimientos es la economía de recursos
- FPGA XC5VLX110, de la familia Virtex-5 de Xilinx.
- Se comparó con dos arquitecturas
 - Radix-2 desenrrollada

- Uno de los requerimientos es la economía de recursos
- FPGA XC5VLX110, de la familia Virtex-5 de Xilinx.
- Se comparó con dos arquitecturas
 - Radix-2 desenrrollada
 - Xilinx LogiCORE FFT 7.1

Resultados para 1024 puntos

Resultados para 4096 puntos

LSE-FIUBA **SASE 2018** 16/08/2018

22 / 29

Conclusiones y trabajos futuros

23 / 29

Comparación con IP Core FFT abierto

■ IP Core abierto para modulación/demodulación OFDM para ISDB-T (Melo, R., Salomón, F., Valinoti, B., (2016) "IP core FFT configurable en Runtime")

Comparación con IP Core FFT abierto

- IP Core abierto para modulación/demodulación OFDM para ISDB-T (Melo, R., Salomón, F., Valinoti, B., (2016) "IP core FFT configurable en Runtime")
- Comparación con la versión básica del IP Core, 8K muestras, 16 bits

LSE-FIUBA SASE 2018 16/08/2018

23 / 29

Comparación con IP Core FFT abierto

- IP Core abierto para modulación/demodulación OFDM para ISDB-T (Melo, R., Salomón, F., Valinoti, B., (2016) "IP core FFT configurable en Runtime")
- Comparación con la versión básica del IP Core, 8K muestras, 16 bits

	Iterative radix-2	Reference core
FF	533	1334
LUT	3046	4133
BRAM	62	62
MUL		48
MHz	107	61

CONCLUSIONES Y TRABAJOS FUTUROS

Conclusiones

 Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.
 - Radix-4: clock: 81 MHz -> 11.57 Msamples/sec.

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.
 - Radix-4: clock: 81 MHz -> 11.57 Msamples/sec.
- Se cumplió el requerimiento de baja demanda de recursos/espacio.

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.
 - Radix-4: clock: 81 MHz -> 11.57 Msamples/sec.
- Se cumplió el requerimiento de baja demanda de recursos/espacio.
- Las argiutecturas fueron implementadas en Verilog HDL.

Conclusiones

- Se presentaron dos arquitecturas radix-r iterativas para cómputo de FFT/IFFT
 - Radix-2 iterativa
 - Radix-4 iterativa
 - Unidad de multiplicación por Twiddle Factors basada en algoritmo Cordic
 - Unidad de multiplicación compleja eficiente para producto por Twiddle Factors
 - Unidad de escalamiento (redondeo/truncamiento) configurable en ejecución
- Frecuencia de muestreo por encima de la frecuencia mínima
 - Radix-2: clock: 107 MHz -> 8.23 Msamples/sec.
 - Radix-4: clock: 81 MHz -> 11.57 Msamples/sec.
- Se cumplió el requerimiento de baja demanda de recursos/espacio.
- Las argiutecturas fueron implementadas en Verilog HDL.
- Se generaron además herramientas de testing en Verilog, C++ y Matlab scriptng.

Trabajos Futuros

Trabajos futuros

 Estudiar posibles implementaciones de algoritmos de dithering para reducir el ruido generado en las arquitecturas.

Trabajos Futuros

- Estudiar posibles implementaciones de algoritmos de dithering para reducir el ruido generado en las arquitecturas.
- Modificar el módulo de rotación Cordic agregando un pipeline que permita aumentar la velocidad de *clock* de las arquitecturas, sin agregar ciclos de clock extra al cómputo total de la FFT.

Trabajos futuros

PREGUNTAS?

LSE-FIUBA SASE 2018 16/08/2018 27 / 29

MUCHAS GRACIAS!

Trabajos futuros

FIN!

LSE-FIUBA SASE 2018 16/08/2018 29 / 29