Модели безопасности на основе ролевой ПОЛИТИКИ

- 1. Модели ролевого доступа
- 2. Модели индивидуально-группового доступа
- 3.MMS-модель

Впервые в продуктах управления доступом корп. IBM(70-80.гг.)

1. Модели ролевого доступа

Основная идея:
-политика и система защиты должны учитывать организационно-технологическое взаимодействие пользователей

Вместо субъекта

- *пользователь* (конкретная активная сущность)
- роль (абстрактная активная сущность)

Неформально Роль: - типовая работа в КС (ИС) определенной группы пользователей

Аналог -нормативное положение, функциональные обязанности и права сотрудников по определенной должности

например м.б. роли-

кассира, бухгалтера, делопроизводителя, менеджера и т.п.

Формально РОЛЬ - активно действующая в КС абстрактная сущность, обладающая логически взаимосвязанным набором полномочий, необходимых для выполнения определенных функциональных обязанностей

- выделенная и обособленная совокупность полномочий над определенной группой или тематикой ресурсов (объектов), имеющая отдельное и самостоятельное значение в предметной области КС (ИС)

Организация доступа в две стадии-

-создаются роли и для каждой из них определяются полномочия -каждому пользователю назначается список доступных ролей

Система защиты при ролевой политики

U - множество пользователей;

 \mathcal{R} - множество ролей;

P - множество полномочий на доступ к объектов;

S - множество сеансов системы

Устанавливаются отношения:

 $F_{P\mathscr{R}}$ - P х \mathscr{R} - отображение множества полномочий на множество ролей, например в виде ролевой матрицы доступа (A_{po})

 $F_{U\mathscr{R}}$ - U х \mathscr{R} - отображение множества пользователей на множество ролей, например, в виде матрицы пользователи-роли", задающая набор доступных пользователю ролей $(A_{u\rho})$

Устанавливаются функции:

 f_{user} - $S \rightarrow U$ - для каждого сеанса s функция f_{user} определяет пользователя, который осуществляет этот сеанс работы с системой - $f_{user}(s)$ =u

 f_{roles} - $S \rightarrow P(\mathcal{R})$ - для каждого сеанса s функция f_{roles} определяет набор ролей, которые могут быть одновременно доступны пользователю в этом сеансе: $f_{roles}(s) = \{ \rho_i \mid (f_{user}(s), \rho_i) \in A_{u\rho} \}$

 $f_{permissions}$ - $S \rightarrow P$ - для каждого сеанса s функция $f_{permissions}$ задает набор доступных в нем полномочий, который определяется как совокупность полномочий всех ролей, задействованных в этом сеансе $f_{permissions}(s) = \bigcup_{\rho \in froles(s)} \{ p_i | (p_i, \rho) \in A_{p\rho} \}$

Критерий безопасности:

еистема считается безопасной, если любой пользователь, работающий в сеансе *s*, может осуществить действия, требующие полномочий *p*, только в том случае , если

$$p = f_{permissions}(s)$$

Ролевая политика — особый тип политики, основанный на компромиссе между гибкостью управлением доступа дискреционных моделей и жесткостью правил контроля доступа мандатных моделей

Разновидности ролевых моделей определяется особенностями функций f_{user} , f_{roles} , $f_{permissions}$, и ограничений, накладываемых на отношения A_{pp} и A_{up}

- -чем выше роль по иерархии, тем больше полномочий
- -если пользователю присвоена какая-то роль, то ему автоматически присваиваются все роли ниже по иерархии

Отношения и функции при иерархической организации ролей

Отношения:

 $F^h_{\mathcal{RR}}$ - \mathcal{R} х \mathcal{R} - частичное отношение порядка на множестве \mathcal{R} , которое определяет иерархию ролей и задает на множестве \mathcal{H} оператор доминирования \geq , такой, что если $\rho_1 \ge \rho_2$, то роль ρ_1 находится выше по иерархии, чем роль ρ_2

 $F^h_{U\mathcal{R}}$ - U х \mathcal{R} - назначает каждому пользователю набор ролей, причем вместе с каждой ролью в него (набор ролей) включаются все роли, подчиненные ей по иерархии, т.е. для $\forall \ \rho, \rho' \in \mathcal{R}, \ u \in U \colon \rho \geq \rho' \land (u, \rho) \in A^h_{u\rho} \Rightarrow (u, \rho') \in A^h_{u\rho}$

Функции:

 f^h_{roles} - $S \rightarrow P(\mathcal{R})$ — назначает каждому сеансу s определяет набор ролей из иерархии ролей пользователя, работающего в этом сеансе: $f^h_{roles}(s) = \{ \rho_i / (\exists \ \rho' \ge \rho_i \ (f_{user}(s), \ \rho') \in A^h_{u\rho}) \}$

 $f^h_{permissions}$ - $S \rightarrow P$ — определяет полномочия сеанса s как совокупность полномочий всех задействованных пользователем в нем ролей и полномочий всех ролей, подчиненных им: $f^h_{permissions}(s) = \bigcup_{\rho \in f} f^h_{roles(s)}\{p_i/(\exists \; \rho'' \leq \rho \; (p_i, \rho'') \in A_{p\rho})\}$

Агрегация прав при иерархической организации ролей (виды отношения $F_{P\mathcal{R}}$)

- строго таксономический листовой подход;
- нетаксономический листовой подход;
- иерархически охватный подход

Строго таксономический листовой подход

Агрегация прав при иерархической организации ролей (виды отношения $F_{P\mathcal{R}}$)

Нетаксономический листовой подход

$$F^{h}_{P\mathcal{R}}(\rho^{\Lambda}_{j}) = \{p^{(j)}_{1}, p^{(j)}_{2}, ...\},$$
 $F^{h}_{P\mathcal{R}}(\rho^{\Lambda}_{j}) \cap F^{h}_{P\mathcal{R}}(\rho^{\Lambda}_{i}) \cap ... \neq \emptyset,$
 $F^{h}_{P\mathcal{R}}(\rho^{\mathrm{M}}_{k}) = F^{h}_{P\mathcal{R}}(\rho^{(k)}_{i}) \cup \dots,$
 $F^{h}_{P\mathcal{R}}(\rho^{(k)}_{j}) \cup ...,$
 $F^{h}_{P\mathcal{R}}(\rho^{(k)}_{j}, \dots) - nonhый$
 $F^{h}_{P\mathcal{R}}(\rho^{(k)}_{i}, \rho^{(k)}_{j}, \dots) - nonhый$

Агрегация прав при иерархической организации ролей (виды отношения $F_{P\mathcal{R}}$)

Иерархически охватный подход

$$F^{h}_{P\mathcal{R}}(\rho^{\mathcal{I}}_{j}) = \{p^{(j)}_{1}, p^{(j)}_{2}, \dots\},$$

$$F^{h}_{P\mathcal{R}}(\rho^{\mathcal{I}}_{j}) \cap F^{h}_{P\mathcal{R}}(\rho^{\mathcal{I}}_{i}) \cap \dots \neq \emptyset,$$

$$F^{h}_{P\mathcal{R}}(\rho^{\mathcal{I}}_{k}) \cap F^{h}_{P\mathcal{R}}(\rho_{i}) = \emptyset,$$

$$\mathcal{E}\partial e \qquad \{\rho^{\mathcal{I}}_{k} \geq \rho_{i}\}.$$

Другие разновидности организации ролей

Взаимоисключающие роли

т.н. статическое разделение обязанностей

- множество ролей разбивается на подмножества, объединяющие роли, которые не м.б. назначены одновременно одному пользователю (z.b. "кассир"-"контроллер"). Задается функция $f_{exclusive}$: $\mathcal{R} \rightarrow P(\mathcal{R})$, которая для каждой роли определяет множество несовместимых с ней ролей.

Ограничения на одновременное использование ролей в одном сеансе

т.н. динамическое разделение обязанностей

- множество ролей разбивается на подмножества, несовместимых ролей(z.b. "администратор"-"аудитор"). В ходе одного сеанса пользователь может активизировать из каждого подмножества не более одной роли.

Количественные ограничения по назначению ролей одному пользователю

Групповое назначение ролей одному пользователю

- роль м.б. назначена тогда, когда одновременно назначена еще группа обязательных для данной роли других ролей

1. КС представляется совокупностью следующих наборов сущностей: множества объектов доступа $O\left(\mathbf{o}_{1},\,o_{2},...,\,o_{M}\right)$; множества пользователей $U\left(u_{1},\,u_{2},...,\,u_{N}\right)$;

множества рабочих групп пользователей $G(g_1, g_2, ..., g_K)$;

множества прав доступа и привилегий $R(r_1, r_2, ..., r_J)$;

матрицей доступа A размерностью $((N+K) \times M)$, каждая ячейка которой специфицирует права доступа и привилегии пользователей или их рабочих групп к объектам из конечного набора прав доступа и привилегий $R(r_1, r_2, ..., r_I)$, т. е. $A[u, o] \subseteq R$, $A[g, o] \subseteq R$.

Определение.Рабочейгруппойназываетсясовокупностьпользователей,объединенныхединымиправамидоступакобъектами(или)единымипривилегиями(полномочиями)выполненияопределенныхпроцедуробработкиданных

Рабочая группа в отличие от роли не является самостоятельным субъектом доступа

		Объекты						
	1		o_1	$ o_2 $		• • •		O_M
A =	Группы Пользователи	u_1						
		u_2						
						a_{ij}		
		u_N						
		g_1						
		g_K						

2. Групповые отношения в системе устанавливаются отображением множества пользователей на множество рабочих групп:

 F_{UG} : U х G — такое, что одна рабочая группа объединяет нескольких пользователей, а один пользователь может входить в несколько рабочих групп.

 $f_{\rm groups}\colon U {\to} \, G$ — значением функции $f_{\rm groups}(u) = G$ является набор рабочих групп $G = \{g_{u_1},\,g_{u_2},\dots\} \subseteq G$, в которые пользователь $\,u\,$ включен по отображению F_{UG} ;

 f_{users} : $G \to U$ – значением функции $U = f_{\mathrm{users}}(g)$ является набор

пользователей $U = \{u_{g_1}, u_{g_2}, \dots\} \subseteq U$, ковключает по отношению F_{UG} .

Отношение «Пользователигруппы» - «многие-ко-многим»

3. Управление индивидуально-групповым доступом в системе осуществляется на основе следующего правила (критерия безопасности) индивидуально-группового доступа.

Критерий безопасности индивидуально-группового доступа: Система функционирует безопасно, если и только если любой пользователь $u \in U$ по отношению к любому объекту $o \in O$ может осуществлять доступ с правами R, не выходящими за пределы совокупности индивидуальных прав A[u,o] и прав рабочих групп $A[g^u{}_i,o]$, в которые пользователь входит по отношению F_{UG} :

$$R \subseteq \{A[u,o] \cup A[g^u_{\ 1},\,o] \cup A[g^u_{\ 2},\,o] \cup \ldots \},$$
 где $\{g^u_{\ 1},\,g^u_{\ 2},\ldots\} = f_{\mathrm{groups}}(u).$

Разделение процесса функционирования на КС не является существенным, поскольку пользователь всегда получает полномочия всех групп, в которые входит

4. Членами рабочих групп могут быть коллективные члены, т.е. другие рабочие группы. Вхождение одних групп в другие д.б. транзитивно, антисимметрично и рефлексивно:

 F_{GG} : G х G - отношение частичного порядка, определяющее иерархию (вложенность) рабочих групп и задающее оператор доминирования \geq такое, что

если для $g_1, g_2 \in G, \ g_1 \ge g_2$, то g_1 включает g_2 .

 $f_{
m hgroups}$: G o G — значением функции $f_{
m groups}(g)$ является набор рабочих групп $\{g_{g_1}, g_{g_2}, \ldots\} \subseteq G$, в которые рабочая группа g включена по отношению F_{GG} .

Наследование прав по групповой иерархии происходит «сверху-вниз»

$$R_g = A[g,o] + A[g_{g_1},o] + A[g_{g_2},o] + \dots$$
, где $\{g_{g_1}, g_{g_2}, \dots\} = f_{\text{groups}}(g)$

19

5. На графе вхождения одних групп в другие не должно быть циклов

Теоретико-графовые методы поиска циклов, в т.ч. по матрице смежности

Определения MMS-модели (формализация системы защиты)

Классификация- обозначение, накладываемое на информацию, отражающее ущерб, который м.б. причинен неавторизованным доступом (TOP SECRET, SECRET, + возможно дополн. функц. разгр. - CRYPTO, NUCLEAR и т.п.)

Степень доверия пользователю- уровень благонадежности персоны (иначе допуск пользователя) - априорно заданная характеристика

Пользовательский идентификатор- строка символов, используемая для того, чтобы отметить пользователя в системе. Для использова- ния системы пользователь д. предъявить ей идентификатор, система должна провести аутентификацию пользователя (login)

Пользователь- персона, уполномоченная для использования системы

Роль - работа, исполняемая пользователем. Пользователь в любой момент времени (после login до logon) всегда ассоциирован как минимум с одной ролью из нескольких. Для действий в данной роли пользователь д.б. уполномочен. Некоторые роли в конкр. момент времени м.б. связаны только с одним пользователем. С любой ролью связана способность выполнения определенных операций

Объект- одноуровневый блок информации. Это минимальный блок информации в системе, который м. иметь классификацию, т.е. м.б. раздельно от других поименован. Объект не содержит других объектов (т.е. он не многоуровневый)

Определения MMS-модели (продолжение)

Контейнер- многоуровневая информационная структура. Имеет классификацию и м. содержать объекты (со своей классификацией) и др. контейнеры (также со своей классификацией)

Сущность- объект или контейнер

Требование степени доверия объектов- атрибут некоторых контей- неров. Для некоторых контейнеров важно требовать минимум сте- пени доверия, т.е. пользователь, не имеющий соответствующего уровня благонадежности, не может просматривать содержимое контейнера. Такие контейнеры помечаются соотв. атрибутом.

Идентификатор (ID)- имя сущности без ссылки на другие сущности

Ссылка на сущность прямая- если это идентификатор сущности

Ссылка на сущность косвенная- если это последовательность двух и более идентификаторов (имен) сущностей, первая из которых - контейнер.

Операция- функция, которая м.б. применена к сущности (читать, модифицировать и т.д.). Некоторые операции м. использовать более одной сущности (z.b. Copy)

Множество доступа- множество троек (Пользовательский идентификатор или роль - Операция - Индекс операнда), которое связано с сущностью (т.е. дескрипторы доступа объекта)

Основная схема функционирования системы -пользователи после идентификации запрашивают у системы операции над сущностями от своего ID или от имени Роли, с которой в данный момент авторизованы

Система функционирует безопасно, если

- -пользователи ведут себя корректно (не компрометируют систему) на основе некоторых предположений
- система защиты (монитор безопасности) реализует определенные ограничения политики безопасности)

Предположения MMS-модели, которым д. следовать пользователи системы

- A1. Администратор безопасности корректно присваивает уровни доверия, классификацию устройств и правильные множества ролей
- A2. Пользователь определяет корректную классификацию, когда вводит, изменяет, объединяет или переклассифицирует информацию
- АЗ. В пределах установленной классификации пользователь классифицирует сообщения (информацию) и определяет набор (множество) доступа (роли, операции, требуемые степени доверия) для сущностей, которые он создает
- A4. Пользователь должным образом контролирует информацию объектов, требующих благонадежности

Ограничения безопасности в MMS-модели

- В1. Авторизация пользователь м. запрашивать операции над сущностями, если только пользовательский идентификатор или его текущая роль присутствуют в множестве доступа сущностей вместе с этой операцией и с этим значением индекса, соответствующим позиции операнда, в которой сущность относят в требуемой операции
- *B2. Классификационная иерархия* классификация контейнера всегда больше или равна классификации сущностей, которые он содержит
- ВЗ. Изменения в объектах информация, переносимая из объекта всегда содержит классификацию объекта. Информация, вставляемая в объект, должна иметь классификацию ниже классификации этого объекта (аналог NWD)
- В4. Просмотр пользователь может просматривать (на некотором устройстве вывода) только сущности с классификацией меньше, чем классификация устройства вывода и степень доверия контейнера-устройства к пользователям (аналог NRU + NRUустройств)
- В5. Доступ к объектам, требующим степени доверия пользователь может получить доступ к косвенно адресованной сущности внутри контейнера, требующего степени доверия, если только его степень доверия не ниже классификации контейнера
- В6. Преобразование косвенных ссылок пользовательский индикатор признается законным для сущности, к которой он обратился косвенно, если только он авторизован для просмотра этой сущности через ссылку

Ограничения безопасности в MMS-модели (продолжение)

- *В7. Требование меток* сущности, просмотренные пользователем, д.б. помечены его степенью доверия (т.е. впоследствии они ему доверяют)
- В8. Установка степеней доверия, ролей, классификация устройств только пользователь с ролью администратора безопасности системы м. устанавливать данные значения. Текущее множество ролей пользователя м.б. изменено только администратором безопасности системы или самим же этим пользователем
- В9. Понижение классификации информации никакая классифицированная информация не м.б. понижена в уровне своей классификации, за исключением случая, когда эту операцию выполняет пользователь с ролью "Пользователь, уменьшающий классификацию информации"
- B10. Уничтожение операция уничтожения информации проводится только пользователем с ролью "Пользователь, уничтожающий информацию"

Модель Лендвера-Маклина (MMS) сочетает принципы:

ролевого, дискреционного и мандатного принципов и оказывает сильное влияние на модели и технологии современных защищенных КС