# Восстановление особых областей по данным ультразвуковой томографии

Турсунова Мунира Бахромовна, 371 группа Научный руководитель: д.ф.-м.н., профессор Граничин Олег Николаевич СПбГУ, 2019

## Введение

#### Актуальность



Статистика заболеваемости раком у женщин (%)

# Введение

|                                                         | Среднее значение скорости звука (м/с) |
|---------------------------------------------------------|---------------------------------------|
| Жир                                                     | 1478                                  |
| Молочная железа                                         | 1510                                  |
| Доброкачественная опухоль                               | 1513                                  |
| Злокачественная опухоль                                 | 1548                                  |
| Среднее значение жира и молочной железы в постменопаузе | 1468                                  |
| Среднее значение жира и молочной железы в пременопаузе  | 1510                                  |
| Паренхима молочной железы                               | 1487                                  |
| Фиброаденома молочной железы                            | 1584                                  |
| Киста молочной железы                                   | 1568                                  |

# Введение



- Кольцо из 2112 элементов одинакового размера
- 2048 датчиков
- 8 групп по 8 «пустые»
- 3750 тактов с частотой 25МГц

# Цель работы

Восстановить изображение и вычислить плотность особых областей используя матрицу time of flight (времени прихода сигнала) для конкретного эксперимента в котором присутствует(ют) объект(ы) для восстановления и для воды (в котором объект(ы) для восстановления отсутствует(ют))

## Постановка задач

- Изучить модель аппарата, сделать обзор существующих решений
- Разработать и реализовать алгоритм восстановления изображения по данным из датчиков
- Смоделировать данные для тестирования алгоритма (посчитать time of flight для картинки)
- Разработать и реализовать алгоритм нахождения скорости звука в объекте
- Запустить алгоритм на реальных данных

# Обзор

- $\bullet Y = A * X$
- Размер восстановленной картинки [100×100]
- 1024 датчиков
- Каждый датчик испускает сигнал и 10 датчиков слушают
- X вектор [10000×1], равный скорости прохождения сигнала в і-ом пикселе
- *A* это матрица [10240×10000]

$$Aij = \left\{ \begin{array}{l} 1, \;\; \text{если сигнал между $i$-ой парой датчиков проходит} \\ \;\; \text{через пиксель $j$,} \\ 0, \;\; \text{иначе} \end{array} \right.$$

• Метод наименьших квадратов:  $X_1 = (A^T * A)^{-1} * A^T * Y$ 







- 1. Проверить условие равенства time of flight в воде и time of flight в эксперименте для каждой пары датчиков
- 2. Для каждой пары датчиков, в которых условие 1 не выполнилось используя алгоритм Брезенхема увеличить значение пикселей на линии между двумя датчиками
- 3. Закрасить пиксели значение в которых превысило пороговое

## Реализация

- Реализация алгоритма с использованием массива значений увеличений пикселя для каждого испускающего датчика.
  ( Размер массива [2000 × 2000 × 2048] )
- 2. Реализация с вычислением значения увеличения пикселя для каждого датчика.

#### 2 реализация алгоритма восстановления изображения



Восстановленное из изображение, полученное из смоделированных данных эксперимента, когда 50 датчиков излучают и 2048 датчиков принимают сигнал



#### 1 реализация алгоритма восстановления изображения



Восстановленное изображение, полученное из смоделированных данных эксперимента, когда 50 датчиков излучают и 2048 датчиков принимают сигнал



#### 2 реализация алгоритма восстановления изображения



Восстановленное изображение, полученное из смоделированных данных эксперимента, когда 70 датчиков излучают и 2048 датчиков принимают сигнал



#### 1 реализация алгоритма восстановления изображения



Восстановленное изображение, полученное из смоделированных данных эксперимента, когда 70 датчиков излучают и 2048 датчиков принимают сигнал



#### Алгоритм восстановления изображения



Восстановленное изображение, полученное из реальных данных эксперимента, в котором каждый 8-ой датчик испускает сигнал и все 2048 принимают.



#### Алгоритм восстановления изображения



Каждый восьмой датчик испускает сигнал и все датчики, исключая ближайшие 600 датчиков слева и справа, принимают сигнал.



#### Алгоритм расчета скорости звука



• Перебор точки N из всех точек объекта:

$$\|\overrightarrow{AN}\| + \|\overrightarrow{NR}\| \approx C_{water} * tof_{reflection}[a, r]$$

- •Перебор скорости звука C в объекте:
  - •По закону Снеллиуса можно найти угол β:

$$C * sin\beta = C_{water} * sin\alpha$$

$$\frac{(\|\overrightarrow{AN}\| + \|\overrightarrow{MB}\|)}{C_{water}} + \frac{\|\overrightarrow{NM}\|}{C} = tof[a, b]$$

•Усреднение значения C при разных A,B,C

#### Алгоритм расчета скорости звука

Случай перпендикулярного падения луча



- А и В диаметрально противоположные
- •Скорость звука в объекте С

$$\frac{(\|\overrightarrow{AN}\| + \|\overrightarrow{MB}\|)}{C_{water}} + \frac{\|\overrightarrow{NM}\|}{C} = tof[a, b]$$



| Номера датчиков                        | Значение скорости<br>звука(м/с) |
|----------------------------------------|---------------------------------|
| испускающий – 15, принимающий – 1039   | 1609.33264                      |
| испускающий – 33, принимающий – 1057   | 1607.26334                      |
| испускающий – 1000, принимающий – 2024 | 1609.33264                      |
| испускающий – 1700, принимающий – 676  | 1609.33264                      |
| испускающий – 1800, принимающий – 776  | 1594.958457                     |



| Номера датчиков                       | Значение скорости<br>звука(м/с) |
|---------------------------------------|---------------------------------|
| испускающий – 513, принимающий – 1537 | 1632.451629                     |
| испускающий – 515, принимающий – 1539 | 1596.996171                     |
| испускающий – 510, принимающий – 1534 | 1607.26334                      |
| испускающий – 511, принимающий – 1535 | 1611.407274                     |

## Заключение

- Произведён анализ предметной области, изучена модель аппарата, сделан обзор существующих решений.
- Разработаны и реализованы алгоритмы восстановления изображений особых областей по данным ультразвуковой томографии
- Смоделированы данные time of flight сквозных сигналов для тестирования алгоритма восстановления изображения.
- Разработаны и реализованы алгоритмы нахождения плотности особых областей.
- Получены результаты применения алгоритма как на смоделированных данных, так и на данных, полученных с помощью работы аппарата ультразвуковой томографии.