3.27 Theorem. Let $a, b, m, n \in \mathbb{Z}$ with m, n > 0. Then the system

$$x \equiv a \pmod{n}$$
$$x \equiv b \pmod{m}$$

has a solution if and only if (n, m)|(a - b).

Proof. Let the system

$$x \equiv a \pmod{n}$$
$$x \equiv b \pmod{m}$$

have a solution. Since $x \equiv a \pmod{n}$ and $x \equiv b \pmod{m}$, x = a + nt = b + mu for $t, u \in \mathbb{Z}$. Thus,

$$nt + a = mu + b,$$
$$a - b = mu - nt.$$

By Theorem 1.48, (n, m)|(a - b).

Now let (n,m)|(a-b) be given. By definition, a-b=(n,m)k for $k \in \mathbb{Z}$. By Theorem 1.40, there exists $t', u' \in \mathbb{Z}$ such that (n,m)=nt'+mu'. Thus,

$$a - b = (nt' + mu')k$$
$$= nt'k + mu'k,$$
$$a - nt'k = b + mu'k.$$

By CPI, let integers x = a - nt'k = b + mu'k, T = -t'k, and U = u'k. We have

$$x = nT + a$$
 $x = mU + b,$
 $x - a = nT$ $x - b = mU.$

By definition, $x \equiv a \pmod{n}$ and $x \equiv b \pmod{m}$. Thus, the system has a solution if and only if (n, m) | (a - b).