1. Introduction and Overview

EECS 370 – Introduction to Computer Organization - Winter 2016

Profs. Valeria Bertacco & Reetu Das

EECS Department University of Michigan in Ann Arbor, USA

© Bertacco-Das, 2016

The material in this presentation cannot be copied in any form without our written permission

Sections 001 and 002 - Your profs

□ Prof. Valeria Bertacco (CSE 4645) http://web.eecs.umich.edu/~valeria

Prof. Reetu Das (CSE 2649)
http://web.eecs.umich.edu/~reetudas

Your student instructors

Anoushe Jamshidi

□Nate Jones

Nathan Immerman

□Jack Kosaian

Harry Davis

□Jasmine Liu

Gabe Hodge

□Tim MacPherson

Olena Huang ■Alan Zhen

The University of Michigan

Class resources

Course homepage: http://www.eecs.umich.edu/courses/eecs370

Piazza forum: http://piazza.com/umich/winter2016/eecs370/home

use this to:

- ask general questions on lectures, projects and homeworks

- discuss with your classmates

For personal, administrative issues (conflicts, sickness, etc.) -- form link reachable from "Administrative Requests" tab:

For course material-related personal questions (e.g. my code does not compile): email eecs370instr@umich.edu (reaches all teaching staff)

Goals of the course

- To understand how computer systems are organized and what tradeoffs are made in the design of these systems
 - Instruction set architecture
 - Processor microarchitecture
 - Systems architecture
 - Memory systems
 - I/O systems

Where does EECS 370 fit in our curriculum?

- Software view
 - EECS 183/100, EECS 280, EECS 281
 - Turning specs into high level language
- Hardware view
 - EECS 270, **EECS 370**
 - gates → logic circuits → computing structures
- □ Prereqs: C or C++ programming experience

Basics: lectures and discussions

Lectures:

 Space is limited: on any lecture day you should attend the lecture for which you are enrolled. If attendance drops, we'll relax this expectation and communicate this to the class

Discussions:

- Each week you should attend your assigned discussion session
- There are 11 discussion sessions each week
- Discussion sections begin meeting tomorrow, Friday January 8
- The EECS370 week starts on Tuesday and ends the following Monday E.g., Monday's discussion is synch'ed with Friday's in the previous week

Office hours

- □ Prof. Bertacco OH: T-Th noon-1.30pm (when teaching, BBB 4th floor yellow chairs alcove)
- Prof. Das OH: T-Th noon-1.30pm (when teaching, BBB 2th floor yellow chairs alcove)
- Student instructors
 - Office hours held in Tishman Hall corner between the two entrances
 - Office hours are available every day, utilize them!
 - Office hours schedule: check course home page
- Additional office hours on need basis (exams, etc.)
- Watch announcements on course homepage

Your work in 370

- Programming assignments (4 x 10% each)
 - Assembly / functional processor simulation
 - Processor datapath simulation
 - Pipeline simulation
 - Cache simulation
- ☐ Three exams (50% total)
 - 2 midterms @ 15%
 - Midterm 1: Feb. 11@ 7pm, Midterm 2: Mar. 15@ 7pm
 - 1 final @ 20% Apr. 20 @ 10.30am
- Homeworks (10% total)
 - Total of 7 homeworks, grade is best-of-6

Grades will be posted in ctools

Programming assignments

- 4 programming assignments simulating the execution of a simple microprocessor
- First programming assignment available today
 First part due on 1/21, second and third parts due on 2/4
- □ Using C to program, C is a subset of C++ without the facilities for abstraction
- The challenge is to understand computer organization enough that you can build a complete computer emulator

Auto-grading assignments

- We use a program to grade your assignments
 - Program submitted using <u>submit370</u> script available from CAEN machines
- Assignments due at 6:00pm on due date; assignment must have been received by 11:55pm on due date
- 3 late days/semester for emergencies
- Assignments require access to a CAEN workstation (to run submit370 and use the same compiler)
- □ Due today: make sure to have a CAEN account
- Help on C/C++ available from GSIs

Do your own project!

- All projects must be your OWN work
 - Using others' code, algorithm details, previous semester solutions is NOT permitted
- Suspected violations will result in initiation of formal procedures with the Engineering Honor Council – Violators receive 0 on the project and grade penalties as recommended by the EHC
- Auto-correlation program used to identify unacceptable collaboration
 - It is good enough that the work needed to avoid detection is at least as much as the work needed to do the projects
- Do not post your work online
- EECS370 cheating results in ~10 HC convictions each semester...don't do it!

Homework assignments

- 7 written homework assignments
 - Cover lecture material
 - Good practice problems
 - No late days
- We will only record your 6 best homework grades
- You can discuss homework problems with your classmates, however you need to turn in your own write-up of the solution.
- □ First homework will be available on Tuesday, January 12

How we assign course grades

- Class is curved
- Historically, about 1/3 As, 1/3 Bs, 1/3 other
- Disclaimer: Past grading is no evidence of future results

Course textbook

Structured Computer Organization, 6th Edition

by Tanenbaum and Austin

On reserve @AAEL:

- Computer Organization and Design: The Hardware/Software Interface - by Patterson and Hennessy (e-copy)
- Fundamentals of Computer Organization and Architecture - by Abd-El-Barr and El-Rewini (e-copy)
- Digital Design by Frank Vahid

Reading assignments

- Suggested reading assignments will be posted on the website, along with the lecture notes
- You are responsible for knowing the reading material in the slides, the reading material will help support this learning
- We reserve the right to make you think

Course topics

- Introduction (this lecture)
- ISAs and Assembly (2 weeks)
- Processor implementation (3 weeks)
- □ Pipelining/Performance (2 weeks)
- Memory (2 weeks)
- I/O, parallel processing (1 week)
- Advanced topics (1 week)
- Exams/reviews (2 weeks)

Exercise: What kind of chip is in your devices?

- Look up a device you have (or want!)
 - Example: Google "Galaxy S5 chip"
- What make and model chip does it have?
 - Example: Qualcomm Snapdragon 801
- How many cores does it have? What is the clock speed?
 - Example: 4 cores at 2.5GHz
- 32 bit? 64 bit? Process technology You might need to search the chip "snapdragon 801 specs"
 - Example: 32 bit
 - 28nm process technology
- What does all this *mean*? We will learn in this class!

Where does this course material fits in the system stack

- Quantum-level, solid state physics
- Conductors, Insulators, Semiconductors.

Doping silicon to make diodes and transistors.

■ Building simple gates, boolean logic and truth tables

- Combinatorial logic: muxes, decoders, adders
- Clocks
- Sequential logic: latches memory
- State machines

- Processor Control: Machine instructions
- □ Computer Architecture: Defining a set of instructions

Computer ancient history

"Astrolavos" artifact discovered in ship wreckage (ca. 65BC) outside Anticethira, Greece, in 1900.

Complicated cogwheel system made of brass (16x32x9 cm).

Chronological data entry.

Used as a "differential" cogwheel system to compute moon phases and rising/setting of moon and planets.

Derek Price, "An ancient Greek computer," *Scientific American*, June 1959.

Other early "computers"

Music Box

Automaton – early '1800

About 1,800 years later

Charles Babbage

- Analytical Engine
- Started in 1834Never finished
- No Hertz RatingHeinrich Hertz 1857-1894

Modern computer history

Eckert and Mauchly

- 1st working electronic computer (1946)
- □ 18,000 Vacuum tubes
- □ 1,800 instructions/sec
- \Box 3,000 ft³

Computer history in the UK

EDSAC 1 (1949)

Maurice Wilkes

- □ 1st stored program computer
- □ 650 instructions/sec
- □ 1,400 ft³

http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/

The mainframe era - IBM 360 - circa 1970

Intel 4004 die photo

- Introduced in 1970
 - First microprocessor
- 2,250 transistors
- □ 12 mm²
- □ 108 KHz
- □ 10µm technology (~1/2 human hair)

Intel 8086 die scan

- 29,000 transistors
- □ 33 mm²
- □ 5 MHz
- Introduced in 1979
 - Basic architecture of the IA32 PC

Intel 80486 die scan

- □ 1,200,000 transistors
- □ 81 mm²
- □ 25 MHz
- ☐ Introduced in 1989
 - 1st pipelined implementation of IA32

Pentium die photo (overlays)

- 3,100,000 transistors
- 296 mm² (0.8 µm technology)
- 60 MHz
 - Introduced in 1993
 - 1st superscalar implementation of IA32

Pentium 4

- □ 55,000,000 transistors
- □ 146 mm² (180nm technology)
- □ 3 GHz
- □ Introduced in 2000
- Out-of-order execution (not the first)

http://www.chip-architect.com

IBM POWER4

- **174**,000,000 transistors
- 412 mm² (180nm technology)
- □ 1.3 GHz
- Introduced in 2001
- □ 1st commercial multi-core

Intel core duo

- **291,000,000 transistors**
- □ 143 mm² (65nm technology)
- □ 3 GHz
- □ Introduced in 2006

UltraSparc T2 (Niagara 2)

- □ 500,000,000 transistors
- □ 342 mm² 65nm
- □ 1.2 1.4 GHz
- 8 cores 64 threads
- □ 1 FPU per core
- □ Introduced in 2007

NVIDIA Tegra 2 System-on-a-Chip (SoC)

- **260,000,000 transistors**
- Dual ARM cores
- Plus, GPU and DSP
- □ 49 mm² 65nm
- □ 1.2 GHz
- □ Introduced in 2010
- Integrated in Tesla and Audi cars

Intel Core i7 (Sandy Bridge E)

- □ 2,270,000,000 transistors
- 6-cores (8 for Xeon)
- SSE (vector) execution
- □ 435 mm² 32nm
- □ 3.5 GHz
- □ Introduced in 2012
- □ 150W!

What overclockers do

The near future of computing: many cores and GPUs

- Intel Polaris chip: 80 cores experimental design
- □ Tilera TILE-Gx: 100-core processor

Nvidia: 512-core Fermi GPU array

- Implications to you:
 - The hardware designer: hardware designs getting bigger and more complex
 - The programmer: coding will be much more difficult

Computer architecture's secret sauce: "Moore's Law"

"The number of transistors in a chip doubles every 18 months"

Bell's Law of Computer Classes:

A new computing class roughly every decade

"Roughly every decade a new, lower priced computer class forms based on a new programming platform, network, and interface resulting in new usage and the establishment of a new industry."

"Winter is coming"... and Moore's Law will end

Tuesday's sneakpeak

- ISA = instruction set architecture
- The programming language of microprocessors

Application software

Compilers

ARCHITECTURE – a.k.a. ISA (Instruction Set Architecture)

- Platform-specific
- a limited set of assembly language commands "understood" by hardware (e.g. ADD, LOAD, STORE, RET)

The hw/sw divide

MICROARCHITECTURE (Hardware implementation of the ISA) - Core i7 implements the x86 ISA - OMAP 4430 implements the ARM ISA

Circuits

Devices

Last but not least...know your basics

- Powers of 2, at least up to 2¹⁰
- Metric prefixes
 - milli, micro,nano, pico, femto
 - kilo, mega, giga, tera, peta, exa

REMINDERS

- Make sure you have a CAEN account! (today)
- Project 1 posted
- Discussions start tomorrow/Monday
 - learn about C programming, debugging methods and tools, and more.