Ψηφιακή Σχεδίαση

Άλγεβρα Boole & Λογικές Πύλες

ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ

ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2019-2020 | ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Περίληψη

στην παρούσα διάλεξη...

- Θα συζητήσουμε για τη δυαδική λογική και τις λογικές πύλες
- Θα κάνουμε μία εισαγωγή στην άλγεβρα Boole, παρουσιάζοντας το παράδειγμα της δύτιμης άλγεβρας Boole
- θα συζητήσουμε τα αξιώματα και τις ιδιότητες της άλγεβρας Boole
- θα μελετήσουμε τις συναρτήσεις Boole και τον τρόπο απλοποίησής τους
- θα παρουσιάσουμε τις κανονικές και πρότυπες μορφές συναρτήσεων Boole
- Θα συζητήσουμε το σύνολο των λογικών πράξεων και των λογικών πυλών

Εισαγωγή

Δυαδική λογική & λογικές πύλες

Δυαδική λογική

αφορά δυαδικές μεταβλητές και λογικές πράξεις

- δυαδικές μεταβλητές: παίρνουν δύο διακριτές τιμές
 - ναι/όχι, σωστό/λάθος
 - ▶ δυαδικό ψηφίο (bit): Ø ή 1 (→ Άλγεβρα Boole)
- λογικές πράξεις
 - 1. AND (KAI): $x \cdot y = z (\dot{\eta} \times y = z)$
 - $\mathbf{z} = \mathbf{1}$ av kai µoʻvo av $\mathbf{x} = \mathbf{1}$ kai $\mathbf{y} = \mathbf{1}$
 - ▶ αλλιώς z = 0
 - 2. OR ('H): x + y = z
 - $\mathbf{z} = \mathbf{1}$ av sits $\mathbf{x} = \mathbf{1} \dot{\eta} \mathbf{y} = \mathbf{1}$
 - ► αλλιώς αν x = 0 και y = 0 → z = 0
 - 3. NOT (OXI): x' = z
 - \rightarrow av x = 0 \rightarrow z = 1, αλλιώς εάν x = 0 \rightarrow z = 1
 - αναφέρεται και ως πράξη συμπληρώματος

πίνακες αληθείας λογικών πράξεων

X	у	х·у
0	0	0
0	1	0
1	0	0
1	1	1

Х	у	x + y
0	0	0
0	1	1
1	0	1
1	1	1

X	x'
0	1
1	0

Δυαδική λογική

σε σχέση με τη δυαδική αριθμητική

- η δυαδική λογική έχει ομοιότητες με τη δυαδική αριθμητική
- οι πράξεις AND και OR, έχουν ομοιότητες με τις πράξεις πρόσθεση και πολλαπλασιασμό
 - τα σύμβολα είναι δανεισμένα από τη δυαδική αριθμητική

ύμως, η δυαδική λογική και δυαδική αριθμητική έχουν διαφορές

μια αριθμητική μεταβλητή μπορεί να πάρει την τιμή ενός αριθμού

ο αριθμός μπορεί να αποτελείται από πολλά ψηφία

Π.χ.
$$\mathbf{1}_2 + \mathbf{1}_2 = \mathbf{10}_2$$
 (το οποίο σημαίνει "ένα συν ένα ίσον δύο")

μία λογική μεταβλητή έχει πάντα τιμή 1 ή 0

Π.Χ.
$$\mathbf{1} + \mathbf{1} = \mathbf{1}$$
 (το οποίο διαβάζεται "ένα OR ένα ίσον με ένα")

Λογικές πύλες

- μαθηματικές οντότητες που αντιστοιχούν σε ηλεκτρονικά κυκλώματα
 - δέχονται ένα ή περισσότερα σήματα εισόδου -> παράγουν ένα σήμα εξόδου

πύλη **NOT**

Λογικές πύλες

Ηλεκτρικά σήματα & Διακριτές λογικές τιμές

στο ψηφιακό σύστημα, όλες οι τιμές των σημάτων είναι διακριτές (θ ή 1)

- τα ηλεκτρικά σήματα (τάση, ρεύμα) είναι αναλογικά (ή συνεχή)
 - τιμές από 0 έως 3V

Δυαδική λογική & λογικές πύλες

- δυαδικές μεταβλητές: παίρνουν δυαδικές τιμές (θ ή 1)
- οι λογικοί τελεστές λειτουργούν σε δυαδικές τιμές και δυαδικές μεταβλητές
 - οι βασικοί λογικοί τελεστές είναι οι λογικές συναρτήσεις AND, OR και NOT
 - πίνακας αληθείας
 - η αναπαράσταση των τιμών μιας συνάρτησης σε πίνακα για όλους τους δυνατούς συνδυασμούς των μεταβλητών (ορισμάτων) της συνάρτησης
- Οι λογικές πύλες υλοποιούν λογικές συναρτήσεις

- ένα χρήσιμο μαθηματικό σύστημα για περιγραφή και μετασχηματισμούς λογικών συναρτήσεων
- στόχος: εξεύρεση
 - λειτουργικά ισοδύναμων,
 - αλλά απλούστερων και
 - οικονομικότερων

υλοποιήσεων ενός ψηφιακού κυκλώματος

μελετούμε την Άλγεβρα Boole διότι είναι η βάση για σχεδιασμό και ανάλυση Ψηφιακών Συστημάτων!

Βασικοί ορισμοί

- 1. κλειστότητα (closure): ένα σύνολο **5** θεωρείται κλειστό ως προς ένα δυαδικό τελεστή * αν
 - για κάθε ζεύγος στοιχείων του S
 - ο τελεστής * καθορίζει έναν κανόνα για την εύρεση ενός μοναδικού στοιχείου, το οποίο ανήκει στο

Π.χ.

- α) το σύνολο N των φυσικών αριθμών (N={1,2,3,...}) είναι κλειστό ως προς το δυαδικό τελεστή + (πρόσθεση)
 - ▶ επειδή για κάθε a, b στο N υπάρχει ένα μοναδικό c τέτοιο ώστε: a + b = c
- b) ωστόσο, το σύνολο των φυσικών αριθμών δεν είναι κλειστό ως προς το δυαδικό τελεστή (αφαίρεση)
 - ► επειδή 2 3 = -1
 - 2, 3 είναι φυσικοί αριθμοί ανήκουν στο N,
 - το -1 δεν είναι φυσικός αριθμός

Βασικοί ορισμοί (II)

έστω, ένας δυαδικός τελεστής *, ορισμένος σε ένα σύνολο \$

2. προσεταιριστικός κανόνας (associative law): ο τελεστής * είναι προσεταιριστικός όταν για κάθε στοιχείο x, y, z του S

(x * y) * z = x * (y * z),

3. αντιμεταθετικός κανόνας (commutative law): ο τελεστής * είναι αντιμεταθετικός όταν: για κάθε στοιχείο x, y του S

x * y = y * x

4. ουδέτερο στοιχείο (identity element): το σύνολο **S** έχει το ουδέτερο στοιχείο **e** ως προς τον τελεστή *, εάν υπάρχει **e** στο **S** με την εξής ιδιότητα: για κάθε στοιχείο **x** του **S**

- e * x = x * e = x,
- π.χ. το 0 είναι ουδέτερο στοιχείο ως προς το δυαδικό τελεστή + στο σύνολο των ακεραίων I = {...,-2,-1,0,1,2,...}, επειδή για κάθε στοιχείο x του S

- 0 + x = x + 0 = x
- π.χ. το 1 είναι ουδέτερο στοιχείο ως προς τον τελεστή στο I, επειδή για κάθε στοιχείο x του S
- $1 \cdot x = x \cdot 1 = x,$

Βασικοί ορισμοί (III)

έστω, ένας δυαδικός τελεστής *, ορισμένος σε ένα σύνολο 5

- 5. αντίστροφο (inverse):
 - για το ένα σύνολο **S** που έχει ουδέτερο στοιχείο **e** ως προς τον τελεστή *, λέμε ότι εάν υπάρχει αντίστροφο, όταν για κάθε **x** στο **S** υπάρχει ένα στοιχείο **y** στο **S** ώστε:

- x * y = e
- π.χ. στο σύνολο των ακεραίων I με τον τελεστή + και το ουδέτερο στοιχείο Ø, το αντίστροφο ενός στοιχείου x είναι το (-x), επειδή:

- x + (-x) = 0
- π.χ. στο σύνολο των πραγματικών αριθμών με τον τελεστή · και το ουδέτερο στοιχείο 1, το αντίστροφο ενός στοιχείου x είναι το (1/x), επειδή:
 x · (1/x) = 1

έστω, δύο δυαδικοί τελεστές * και · ορισμένοι σε ένα σύνολο \$

6. επιμεριστικός κανόνας (distributive law): λέμε ότι ο τελεστής * είναι επιπεριστικός σε σχέση με τον τελεστή · όταν:

$$x * (y \cdot z) = (x * y) \cdot (x * z)$$

Παράδειγμα - Πεδίο πραγματικών αριθμών

- * πεδίο: σύνολο από στοιχεία, στο οποίο έχουν οριστεί δύο δυαδικοί τελεστές, οι οποίοι ικανοποιούν τις ιδιότητες 1 έως 6
 - π.χ. για το πεδίο πραγματικών αριθμών, με τους δυαδικούς τελεστές + (πρόσθεση)
 και · (πολλαπλασιασμός), ισχύουν οι ιδιότητες 1 έως 3, καθώς επίσης:
 - 4. το ουδέτερο στοιχείο
 - α) της πρόσθεσης είναι το 0
 - b) του πολλαπλασιασμού είναι το 1
 - 5. η αντίστροφη πράξη
 - α) της πρόσθεσης είναι η αφαίρεση
 - b) του πολλαπλασιασμού είναι η διαίρεση
 - 6. ο μόνος επιμεριστικός κανόνας που ισχύει είναι αυτός του ως προς το +:

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

Παράδειγμα - Άλγεβρα Boole

μία αλγεβρική δομή που ορίζεται σε ένα σύνολο στοιχείων Β

- έχει δύο δυαδικούς τελεστές: + και •
- ισχύουν οι ιδιότητες 1 έως 3, καθώς επίσης:
 - 4. το ουδέτερο στοιχείο
 - α) ως προς + είναι το 0
 - b) ως προς · είναι το 1
 - 5. για κάθε στοιχείο **x** υπάρχει ένα στοιχείο **x'** (συμπλήρωμα του **x**), ώστε
 - a) x + x' = 1
 - b) $x \cdot x' = 0$
 - 6. ισχύουν:
 - α) η πράξη είναι επιμεριστική ως προς την +: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
 - b) η πράξη + είναι επιμεριστική ως προς την \cdot : $x + (y \cdot z) = (x + y) \cdot (x + z)$

Δύο τιμών ή άλγεβρα διακοπτών ή δυαδική λογική

- ❖ ορίζεται σε ένα σύνολο δύο στοιχείων, δηλαδή Β = {0,1}
- * κανόνες για τους δυαδικούς τελεστές δυαδικούς τελεστές: + (OR) και · (AND) που ορίζονται ως εξής:

X	y	x · y	х	y	x + y	X	x'
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

οι κανόνες αυτοί είναι ακριβώς ίδιοι με εκείνους που χρησιμοποιήθηκαν για τον ορισμό των πράξεων AND, OR και NOT

Άλγεβρα Boole Ιδιότητα δυϊσμού

η άλγεβρα Boole ικανοποιεί την αρχή του δυϊσμού:

κάθε αλγεβρική έκφραση που συνάγεται με βάση τα αξιώματα της άλγεβρας Boole παραμένει σε ισχύ αν οι τελεστές και τα ουδέτερα στοιχεία εναλλαχθούν

Αξιώματα και Θεωρήματα

	(a)	(β)	
Αξίωμα 2	x + 0 = x	$x \cdot 1 = x$	
Αξίωμα 5	x + x' = 1	x · x' = 0	
Θεώρημα 1	x + x = x	$x \cdot x = x$	
Θεώρημα 2	x + 1 = 1	$x \cdot 0 = 0$	
Θεώρημα 3, Διπλή άρνηση	(x')' = x		
Αξίωμα 3 (αντιμεταθετική ιδιότητα)	x + y = y + x	xy = yx	
Θεώρημα 4 (προσεταιριστική ιδιότητα)	x + (y + z) = (x + y) + z	x(yz) = (xy)z	
Αξίωμα 4 (επιμεριστική ιδιότητα)	x(y + z) = xy + xz	x + yz = (x + y)(x + z)	
Θεώρημα 5, DeMorgan	(x + y)' = x'y'	(xy)' = x' + y'	
Θεώρημα 6, Απορρόφηση	x + xy = x	x(x+y) = x	

- τα Αξιώματα αποτελούν μέρος του ορισμού της Άλγεβρας Boole (→ δε χρειάζονται απόδειξη)
- τα Θεωρήματα αποδεικνύονται

Θεώρημα 1 - Απόδειξη

 τα Θεωρήματα που εμπλέκουν μία μόνο μεταβλητή αποδεικνύονται βάσει των Αξιωμάτων

	(a)	(β)
Αξίωμα 2	x + 0 = x	x · 1 = x
Αξίωμα 5	x + x' = 1	x · x' = 0
Αξίωμα 3 (αντιμεταθετική ιδιότητα)	x + y = y + x	xy = yx
Αξίωμα 4 (επιμεριστική ιδιότητα)	x(y + z) = xy + xz	x + yz = (x + y)(x + z)

Θεώρημα 1 (α): x + x = x

<u>πρόταση</u>	<u>αιτιολογία</u>
$x + x = (x + x) \cdot 1$	Αξίωμα 2(β)
= (x + x)(x + x')	Αξίωμα 5(α)
= x + xx'	Αξίωμα 4(β)
= x + 0	Αξίωμα 5(β)
= x	Αξίωμα 2(α)

Θεώρημα 1 (β): $x \cdot x = x$

<u>πρόταση</u>	<u>αιτιολογία</u>
$x \cdot x = xx + 0$	Αξίωμα 2(α)
= xx + xx '	Αξίωμα 5(β)
= x(x + x')	Αξίωμα 4(α)
= x · 1	Αξίωμα 5(α)
= X	Αξίωμα 2(β)

Θεώρημα 1 - Απόδειξη

 τα Θεωρήματα που εμπλέκουν μία μόνο μεταβλητή αποδεικνύονται βάσει των Αξιωμάτων

	(α)	(β)
Αξίωμα 2	x + 0 = x	x · 1 = x
Αξίωμα 5	x + x' = 1	x · x' = 0
Αξίωμα 3 (αντιμεταθετική ιδιότητα)	x + y = y + x	xy = yx
Αξίωμα 4 (επιμεριστική ιδιότητα)	x(y + z) = xy + xz	x + yz = (x + y)(x + z)

Θεώρημα 1 (α): x + x = x

πρόταση	<u>αιτιολογία</u>
$x + x = (x + x) \cdot 1$	Αξίωμα 2(β)
= (x + x)(x + x')	Αξίωμα 5(α)
= x + xx '	Αξίωμα 4(β)
= x + 0	Αξίωμα 5(β)
= x	Αξίωμα 2(α)

Θε<u>ώοημα 1 (β): $x \cdot x = x$ </u>

- το Θέωρημα 1 (β) είναι η **δυϊκή μορφή** του Θεωρήματος 1 (α)
- κάθε βήμα της απόδειξης στο τμήμα (β) είναι το δυϊκό του αντίστοιχου βήματος του τμήματος (α)
- → οποιοδήποτε Θεώρημα μπορεί να αποδειχθεί από το δυϊκό του με ανάλογο τρόπο

Θεώρημα 2 - Απόδειξη

 τα Θεωρήματα που εμπλέκουν μία μόνο μεταβλητή αποδεικνύονται βάσει των Αξιωμάτων

	(α)	(β)
Αξίωμα 2	x + 0 = x	x · 1 = x
Αξίωμα 5	x + x' = 1	x · x' = 0
Αξίωμα 3 (αντιμεταθετική ιδιότητα)	x + y = y + x	xy = yx
Αξίωμα 4 (επιμεριστική ιδιότητα)	x(y + z) = xy + xz	x + yz = (x + y)(x + z)

Θεώρημα 2 (α): x + 1 = 1

<u>πρόταση</u>

$x + 1 = 1 \cdot (x + 1)$ $A\xi i \omega \mu \alpha 2(\beta)$

$$= (x + x')(x + 1) \qquad A\xi i \omega \mu \alpha \ 5(\alpha)$$

$$= x + x' \cdot 1$$
 Aξίωμα 4(β)

αιτιολογία

$$= x + x'$$
 Aξίωμα 2(β)

$$=$$
 1 Αξίωμα $5(α)$

Θεώρημα 2 (β): $x \cdot \theta = \theta$

ισχύει λόγω δυϊσμού

Θεώρημα 3 - Απόδειξη

τα Θεωρήματα που εμπλέκουν μία μόνο μεταβλητή αποδεικνύονται βάσει των Αξιωμάτων

	(a)	(β)
Αξίωμα 2	x + 0 = x	x · 1 = x
Αξίωμα 5	x + x' = 1	x · x' = 0
Αξίωμα 3 (αντιμεταθετική ιδιότητα)	x + y = y + x	xy = yx
Αξίωμα 4 (επιμεριστική ιδιότητα)	x(y + z) = xy + xz	x + yz = (x + y)(x + z)

Θεώρημα 3: (x')'= x

πρόταση

αιτιολογία

- οι σχέσεις ορισμού του συμπληρώματος του χ
- το συμπλήρωμα του x' είναι
 - x Kai
 - **(x')'**
- επειδή το συμπλήρωμα είναι μοναδικό -> (x')'= x

Αξίωμα 5

Θεώρημα 6 - Απόδειξη

 τα Θεωρήματα που εμπλέκουν δύο ή τρεις μεταβλητές αποδεικνύονται βάσει των Αξιωμάτων και των Θεωρημάτων που έχουν ήδη αποδειχθεί

	(a)	(β)
Αξίωμα 2	x + 0 = x	x · 1 = x
Αξίωμα 5	x + x' = 1	x · x' = 0
Αξίωμα 3 (αντιμεταθετική ιδιότητα)	x + y = y + x	xy = yx
Αξίωμα 4 (επιμεριστική ιδιότητα)	x(y + z) = xy + xz	x + yz = (x + y)(x + z)
Θεώρημα 2	x + 1 = 1	x · 0 = 0

Θεώρημα 6 (α): x + xy = x

πρόταση αιτιολογία $x + xy = x \cdot 1 + xy$ = x(1 + y) = x(y + 1) $= x \cdot 1$ = x = x = x = x = x = x = x = x = x = x = x = x = x = x

Θεώρημα 6 (β):
$$x(x + y) = x$$

ισχύει λόγω δυϊσμού

Απόδειξη Θεωρημάτων με πίνακα αληθείας

- τα Θεωρήματα της άλγεβρας Boole μπορούν να αποδειχθούν
 - με αλγεβρικό τρόπο (όπως στις προηγούμενες διαφάνειες)
 - με χρήση πινάκων αληθείας π.χ.
 - ▶ απόδειξη Θεωρήματος 6(α) (απορρόφηση): x + xy = x

x y xy x + xy 0 0 0 0

οι πίνακες αληθείας των x και x+xy είναι ἰδιοι→ επομένως το Θεώρημα 6 <u>ισχύει</u>

	απόδειξη	Θεωρήματος	5(a)	DeMorgan): ((x + y)	')' =	x'\	, '
--	----------	------------	------	-----------------	------	---------	--------------	-----	------------

X	у	x + y	(x + y)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x'	y'	x'y'
1	1	1
1	0	0
0	1	0
0	0	0

οι πίνακες αληθείας των (x + y)' και x'y' είναι <u>ίδιοι</u>

→ επομένως το
Θεώρημα 5α <u>ισχύει</u>

0

0

Προτεραιότητα τελεστών

παρενθέσεις > NOT > AND > OR

επομένως,

- πριν από όλες τις άλλες πράξεις πρέπει να υπολογίζονται οι εκφράσεις που είναι μέσα σε παρενθέσεις
- έπειτα, τα συμπληρώματα
- έπειτα η πράξη AND
- και τέλος, η πράξη OR

Π.χ.

Х	у	(x + y)'	x'y'
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Συναρτήσεις Boole

- εκφράζει τη λογική σχέση ανάμεσα
 - σε μία εξαρτημένη δυαδική μεταβλητή και
 - έναν αριθμό από ανεξάρτητες δυαδικές μεταβλητές

$$\pi.\chi.$$
 $F = x + y'z$

- περιγράφεται από μία αλγεβρική έκφραση Boole που μπορεί να έχει:
 - ανεξάρτητες δυαδικές μεταβλητές
 - σταθερές (θ ή 1)
 - σύμβολα λογικών πράξεων
- οι τιμές που μπορεί να πάρει η συνάρτηση (δηλαδή η εξαρτημένη μεταβλητή) βρίσκονται εάν υπολογίσουμε την τιμή της έκφρασης Boole
 - για οποιοδήποτε συνδυασμό τιμών των ανεξάρτητων μεταβλητών, η συνάρτηση θα πάρει τιμή 0 ή 1

Πίνακας αληθείας

- μία συνάρτηση Boole μπορεί να παρασταθεί με έναν πίνακα αληθείας
 - έστω n το πλήθος των ανεξάρτητων μεταβλητών
 - ▶ τότε, το πλήθος των γραμμών είναι: 2ⁿ

π.χ. η συνάρτηση

$$F = x + y'z$$

έχει το διπλανό πίνακα αληθείας

παρατηρήστε ότι η F παίρνει τιμή 1

ενώ σε οποιαδήποτε άλλη περίπτωση παίρνει τιμή 0

Λογικό κύκλωμα

- μία συνάρτηση Boole σε αλγεβρική μορφή μπορεί να μετασχηματιστεί σε ένα λογικό κύκλωμα
 - διασυνδεδεμένες λογικές πύλες που σχηματίζουν μια συγκεκριμένη δομή

π.χ. ακολουθεί η υλοποίηση με λογικές πύλες της συνάρτησης $\mathbf{F} = \mathbf{x} + \mathbf{y}'\mathbf{z}$

Τρόποι αναπαράστασης

- υπάρχει ένας και μοναδικός τρόπος αναπαράστασης με πίνακα αληθείας
- ωστόσο, εάν η συνάρτηση Boole είναι σε αλγεβρική μορφή
 - μπορεί να εκφραστεί με πολλούς τρόπους
 - καθένας από τους οποίους έχει ένα ισοδύναμο λογικό κύκλωμα
- αλγεβρική ἐκφραση που χρησιμοποιείται -> υποδεικνύει τον τρόπο διασύνδεσης των πυλών στο αντίστοιχο λογικό κύκλωμα
 - □ απλούστερη αλγεβρική ἐκφραση → λιγότερες πύλες, με λιγότερες εισόδους ανά πύλη → οικονομικότερο ψηφιακό κύκλωμα
 - 🗷 είναι ο βασικός λόγος που μελετάμε την άλγεβρα Boole

Διαφορετικά λογικά κυκλώματα - Παράδειγμα

η συνάρτηση: F = x'y'z + x'yz + xy'
 έχει το διπλανό πίνακα αληθείας
 και αντιστοιχεί στο ακόλουθο λογικό κύκλωμα

X	у	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

- παρατηρήστε ότι η F παίρνει τιμή 1
 - όταν xyz = 001 ή 011 →
 άρα όταν xz = 01, και

ενώ σε οποιαδήποτε άλλη περίπτωση παίρνει τιμή **0**

Π.χ.

Διαφορετικά λογικά κυκλώματα -Παράδειγμα (II)

μπορούμε να απλοποιήσουμε τη συνάρτηση:

	(α)	(β)	
Αξίωμα 2	x + 0 = x	x · 1 = x	
Αξίωμα 5	x + x' = 1	x · x' = 0	
Θεώρημα 1	x + x = x	$x \cdot x = x$	
Θεώρημα 2	x + 1 = 1	x · 0 = 0	
Θεώρημα 3	(x')' = x		
Αξίωμα 3	x + y = y + x	xy = yx	
Θεώρημα 4	x + (y + z) = (x + y) + z	x(yz) = (xy)z	
Αξίωμα 4	x(y + z) = xy + xz	x + yz = (x + y)(x + z)	
Θεώρημα 5	(x + y)' = x'y'	(xy)' = x' + y'	
Θεώρημα 6	x + xy = x	x(x+y) = x	

πρόταση αιτιολογία x'y'z + x'yz + xy' = x'z(y' + y) + xy' Αξίωμα $4(\alpha)$ $= x'z \cdot 1 + xy'$ Αξίωμα $5(\alpha)$ = x'z + xy' Αξίωμα $2(\beta)$ F = x'z + xy'

Διαφορετικά λογικά κυκλώματα - Παράδειγμα (III)

μία απλοποίηση της συνάρτησης:

$$F = x'y'z + x'yz + xy'$$

$$\epsilon i vai$$
: $F = x'z + xy'$

η οποία έχει το διπλανό πίνακα αληθείας

και αντιστοιχεί στο ακόλουθο λογικό κύκλωμα

X	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

παρατηρήστε ότι η F παίρνει τιμή 1

ενώ σε οποιαδήποτε άλλη περίπτωση παίρνει τιμή **0**

Σύνοψη

- κάθε συνάρτηση αποτελείται από όρους και μεταβλητές
- κατά τη μετατροπή της συνάρτησης σε λογικό κύκλωμα
 - οι όροι μετατρέπονται σε πύλες και
 - κάθε μεταβλητή του όρου, αποτελεί είσοδο της αντίστοιχης πύλης
- ονομάζουμε παράγοντα μία μεταβλητή (ως συμπλήρωμα ή μη) που εμφανίζεται σε κάποιο όρο π.χ. η συνάρτηση
 F = x'y'z + x'yz + xy'
 - έχει τρεις όρους με οκτώ παράγοντες
 - ενω η συνάρτηση <math>F = x'z + xy'
 - έχει δύο όρους με τέσσερις παράγοντες

- κάθε μεταβλητή μπορεί να είναι είτε στην κανονική της μορφή είτε ως συμπλήρωμα,
- εάν εμφανίζεται και στις δύο μορφές → μετρά ως δύο παράγοντες

αν σε μία συνάρτηση, μειώσουμε είτε τον αριθμό των όρων είτε τον αριθμό των παραγόντων ->
 επιτυγχάνουμε απλούστερο κύκλωμα

Συναρτήσεις Boole

Απλοποίηση

Απλοποίηση - 1° & 2° παράδειγμα

- στόχος: η μείωση
 - είτε του αριθμού των όρων
 - είτε του αριθμού των παραγόντων μίας συνάρτησης
- το επιτυγχάνουμε μέσω της αλγεβρικής επεξεργασίας της άλγεβρας Boole

	(α)	(β)	
Αξίωμα 2	x + 0 = x	x · 1 = x	
Αξίωμα 5	x + x' = 1	x · x' = 0	
Θεώρημα 1	x + x = x	$x \cdot x = x$	
Θεώρημα 2	x + 1 = 1	x · 0 = 0	
Θεώρημα 3	(x')' = x		
Αξίωμα 3	x + y = y + x	xy = yx	
Θεώρημα 4	x + (y + z) = (x + y) + z	x(yz) = (xy)z	
Αξίωμα 4	x(y + z) = xy + xz	x + yz = (x + y)(x + z)	
Θεώρημα 5	(x + y)' = x'y'	(xy)' = x' + y'	
Θεώρημα 6	x + xy = x	x(x+y) = x	

1° παράδειγμα: **x(x' + y)**

<u>πρόταση</u>	<u>αιτιολογία</u>
x(x' + y) = xx' + xy	Αξίωμα 4(α)
= 0 + xy	Αξίωμα 5(β)
= xy	Αξίωμα 2(α)

2° παράδειγμα: x + x'y

<u>πρόταση</u>	<u>αιτιολογία</u>
x + x'y = (x + x')(x + y)	Αξίωμα 4(α)
$= 1 \cdot (x + y)$	Αξίωμα 5(α)
= x + y	Αξίωμα 2(β)

Απλοποίηση - 1° & 2° παράδειγμα (ΙΙ)

- στόχος: η μείωση
 - είτε του αριθμού των όρων
 - είτε του αριθμού των παραγόντων μίας συνάρτησης
- το επιτυγχάνουμε μέσω της αλγεβρικής επεξεργασίας της άλγεβρας Boole

1ο παράδειγμα:	
----------------	--

$$x(x' + y)$$

πρόταση

$$x(x' + y) = xx' + xy$$
$$= 0 + xy$$

= xy

αιτιολογία

Αξίωμα 4(α)

Αξίωμα 5(β)

Αξίωμα 2(α)

	(α)	(β)		
Αξίωμα 2	x + 0 = x	x · 1 = x		
Αξίωμα 5	x + x' = 1	x · x' = 0		
Θεώρημα 1	x + x = x	$x \cdot x = x$		
Θεώρημα 2	$x + 1 = 1$ $x \cdot 0 = 0$			
Θεώρημα 3	(x')' = x			
Αξίωμα 3	x + y = y + x	xy = yx		
Θεώρημα 4	x + (y + z) = (x + y) + z	x(yz) = (xy)z		
Αξίωμα 4	x(y + z) = xy + xz	x + yz = (x + y)(x + z)		
Θεώρημα 5	(x + y)' = x'y'	(xy)' = x' + y'		
Θεώρημα 6	x + xy = x	x(x+y) = x		

2° παράδειγμα:

πρόταση

αιτιολογία

η 2^η συνάρτηση είναι η δυϊκή της 1^{ης}

⇒ άρα θα μπορούσαμε να την
απλοποιήσουμε εφαρμόζοντας την
ιδιότητα δυϊσμού

Απλοποίηση - 1° & 2° παράδειγμα (III)

- στόχος: η μείωση
 - είτε του αριθμού των όρων
 - είτε του αριθμού των παραγόντων μίας συνάρτησης
- το επιτυγχάνουμε μέσω της αλγεβρικής επεξεργασίας της άλγεβρας Boole

1° παράδειγμα:

$$x(x' + y) = xy$$

2° παράδειγμα:

$$x + x'y$$

πρόταση

$$x + x'y = \left(x + y\right)$$

	(α)	(β)	
Αξίωμα 2	x + 0 = x	x · 1 = x	
Αξίωμα 5	x + x' = 1	x · x' = 0	
Θεώρημα 1	x + x = x	$x \cdot x = x$	
Θεώρημα 2	x + 1 = 1	x · 0 = 0	
Θεώρημα 3	(x')' = x		
Αξίωμα 3	x + y = y + x	xy = yx	
Θεώρημα 4	x + (y + z) = (x + y) + z	x(yz) = (xy)z	
Αξίωμα 4	x(y + z) = xy + xz	x + yz = (x + y)(x + z)	
Θεώρημα 5	(x + y)' = x'y'	(xy)' = x' + y'	
Θεώρημα 6	x + xy = x	x(x+y) = x	

η 2^η συνάρτηση είναι η δυϊκή της 1^{ης}

→ άρα μπορούμε να την
απλοποιήσουμε <u>εφαρμόζοντας</u>
την <u>ιδιότητα δυϊσμού</u>

αιτιολογία

εφαρμόζοντας την ιδιότητα δυισμού στην απλοποιημένη μορφή της 1^{ης} συνάρτησης

Απλοποίηση - 3° Παράδειγμα

- στόχος: η μείωση
 - είτε του αριθμού των όρων
 - είτε του αριθμού των παραγόντων μίας συνάρτησης
- το επιτυγχάνουμε μέσω της αλγεβρικής επεξεργασίας της άλγεβρας Boole

πρόταση

$$(x + y)(x + y') = (x + y)x + (x + y)y'$$

 $= xx + xy + xy' + yy'$
 $= x + xy + xy' + yy'$
 $= x + xy + xy' + 0$
 $= x + xy + xy'$
 $= x(1 + y + y') = x(1 + 1) = x \cdot 1$
 $= x$

	(α)	(β)	
Αξίωμα 2	x + 0 = x	x · 1 = x	
Αξίωμα 5	x + x' = 1	x · x' = 0	
Θεώρημα 1	x + x = x	$x \cdot x = x$	
Θεώρημα 2	x + 1 = 1	x · 0 = 0	
Θεώρημα 3	(x')' = x		
Αξίωμα 3	x + y = y + x	xy = yx	
Θεώρημα 4	x + (y + z) = (x + y) + z	x(yz) = (xy)z	
Αξίωμα 4	x(y + z) = xy + xz	x + yz = (x + y)(x + z)	
Θεώρημα 5	(x + y)' = x'y'	(xy)' = x' + y'	
Θεώρημα 6	x + xy = x	x(x+y) = x	

αιτιολογία

Αξίωμα 4(α)

Αξίωμα 4(α)

Θεώρημα 1(β)

Αξίωμα 5(β)

Αξίωμα 2(α)

Αξίωμα 4(α), Αξίωμα 5(α)

Αξίωμα 2(β)

Απλοποίηση - 40 παράδειγμα

- στόχος: η μείωση
 - είτε του αριθμού των όρων
 - είτε του αριθμού των παραγόντων μίας συνάρτησης
- το επιτυγχάνουμε μέσω της αλγεβρικής επεξεργασίας της άλγεβρας Boole

4° παράδειγμα: **xy + x'z + yz**

	(α)	(β)		
Αξίωμα 2	x + 0 = x	x · 1 = x		
Αξίωμα 5	x + x' = 1	x · x' = 0		
Θεώρημα 1	x + x = x	$x \cdot x = x$		
Θεώρημα 2	$x + 1 = 1$ $x \cdot 0 = 0$			
Θεώρημα 3	(x')' = x			
Αξίωμα 3	x + y = y + x	xy = yx		
Θεώρημα 4	x + (y + z) = (x + y) + z	x(yz) = (xy)z		
Αξίωμα 4	x(y + z) = xy + xz	x + yz = (x + y)(x + z)		
Θεώρημα 5	(x + y)' = x'y'	(xy)' = x' + y'		
Θεώρημα 6	x + xy = x	x(x+y) = x		

πρόταση

$xy + x'z + yz = xy + x'z + yz \cdot 1$ = xy + x'z + yz(x + x')= xy + x'z + xyz + x'yz= xy(1 + z) + x'z(1 + y)= $xy \cdot 1 + x'z \cdot 1 = xy + x'z$

αιτιολογία

Αξίωμα 2(β) Αξίωμα 5(α) Αξίωμα 4(α) Αξίωμα 4(α)

Θεώρημα 2(α), Αξίωμα 2(β)

Απλοποίηση - 5° παράδειγμα

- στόχος: η μείωση
 - είτε του αριθμού των όρων
 - είτε του αριθμού των παραγόντων μίας συνάρτησης
- το επιτυγχάνουμε μέσω της αλγεβρικής επεξεργασίας της άλγεβρας Boole

	/	
4° παράδειγμα:	xy + x'z + yz =	xy + x'z

5° παράδειγμα:

$$(x + y)(x' + z)(y + z)$$

	(α)	(β)		
Αξίωμα 2	x + 0 = x	x · 1 = x		
Αξίωμα 5	x + x' = 1	x · x' = 0		
Θεώρημα 1	x + x = x	$x \cdot x = x$		
Θεώρημα 2	x + 1 = 1	x · 0 = 0		
Θεώρημα 3	(x')' = x			
Αξίωμα 3	x + y = y + x	xy = yx		
Θεώρημα 4	x + (y + z) = (x + y) + z	x(yz) = (xy)z		
Αξίωμα 4	x(y + z) = xy + xz	x + yz = (x + y)(x + z)		
Θεώρημα 5	(x + y)' = x'y'	(xy)' = x' + y'		
Θεώρημα 6	x + xy = x	x(x+y) = x		

η 5^η συνάρτηση είναι η <u>δυϊκή</u> της 4^{ης}

→ άρα μπορούμε να την
απλοποιήσουμε <u>εφαρμόζοντας</u>
την <u>ιδιότητα δυϊσμού</u>

πρόταση

$$(x + y)(x' + z)(y + z) = (x + y)(x' + z)$$

αιτιολογία

εφαρμόζοντας την ιδιότητα δυισμού στην απλοποιημένη μορφή της 4^{ης} συνάρτησης

Συμπλήρωμα

Συμπλήρωμα συνάρτησης - Πίνακας αληθείας

το συμπλήρωμα Ε' μιας συνάρτησης Ε

προκύπτει από τον πίνακα αληθείας
 ἐάν εναλλάξουμε τα bits (0→1 και 1→0)

X	у	Z	F	F'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	0	1
1	1	1	0	1

Συμπλήρωμα συνάρτησης - 10ς αλγεβρικός τρόπος

το συμπλήρωμα Ε' μιας συνάρτησης Ε

- παράγεται με χρήση του Θεωρήματος DeMorgan (Θεώρημα 5)
 - για δύο μεταβλητές:

(α)	(β)
(x + y)' = x'y'	(xy)' = x' + y'

για τρεις μεταβλητές:

► απόδειξη:

(
$$\alpha$$
) (β)
($x + y + z$)' = $x'y'z'$ (xyz)' = $x' + y' + z'$

πρόταση αιτιολογία $(x + y + z)' = (x + A)' \qquad \text{έστω ότι } y + z = A$ $= x'A' = x'(y + z)' \qquad \Thetaεώρημα 5(α), αντικατάσταση του A με το y + z$ $= x'(y'z') = x'y'z' \qquad \Thetaεώρημα 5(α), Θεώρημα 4(β)$

Συμπλήρωμα συνάρτησης - 1ος αλγεβρικός τρόπος (ΙΙ)

το συμπλήρωμα Ε' μιας συνάρτησης Ε

- ► παράγεται με χρήση του Θεωρήματος DeMorgan (Θεώρημα 5)
 - για δύο μεταβλητές:

(α)	(β)
(x + y)' = x'y'	(xy)' = x' + y'

για τρεις μεταβλητές:

<u>απόδειξη</u>:

(a) (b)
$$(x + y + z)' = x'y'z'$$
 $(xyz)' = x' + y' + z'$

γενική μορφή:

(
$$\alpha$$
) (β) ($x + y + z + ... + w$)' = $x'y'z'...w'$ ($xyz...w$)' = $x' + y' + z' + ... + w'$

- το συμπλήρωμα μίας συνάρτησης παράγεται:
 - 1. αν αλλάξουμε τους τελεστές AND και OR, και
 - 2. συμπληρώσουμε κάθε παράγοντα
 - δηλαδή εκτελέσουμε την πράξη NOT σε κάθε παράγοντα

Συμπλήρωμα συνάρτησης - 10ς αλγεβρικός τρόπος - 10 παράδειγμα

βρείτε το συμπλήρωμα Ε' της συνάρτησης: Ε = x'yz' + x'y'z

```
\star F' = (x'yz' + x'y'z)'
```

```
πρόταση αιτιολογία  (x'yz' + x'y'z)' = (x'yz')'(x'y'z)'  Θεώρημα 5(\alpha) (για τρεις μεταβλητές)  = ((x')' + y' + (z')')((x')' + (y')' + z')  Θεώρημα 5(\beta) (για τρεις μεταβλητές)  = (x + y' + z)(x + y + z')  Θεώρημα 3
```

Συμπλήρωμα συνάρτησης - 10ς αλγεβρικός τρόπος - 20 παράδειγμα

βρείτε το συμπλήρωμα F' της συνάρτησης: F = x(y'z' + yz)

$$F' = (x(y'z' + yz))'$$

πρόταση

(x(y'z' + yz))' = x' + (y'z' + yz)'= x' + (y'z')'(yz)'= x' + ((y')' + (z')')(y' + z')= x' + (y + z)(y' + z')

= x' + (y + z)y' + (y + z)z'

$$= x' + yy' + y'z + yz' + zz'$$

$$= x' + 0 + y'z + yz' + 0 = x' + y'z + yz'$$

<u>αιτιολογία</u>

$$Αξίωμα 5(β)$$
, $Αξίωμα 2(α)$

Συμπλήρωμα συνάρτησης - 20ς αλγεβρικός τρόπος

το συμπλήρωμα Ε' μιας συνάρτησης Ε μπορεί να παραχθεί ως εξής:

- 1. να πάρουμε τη δυϊκή μορφή της F και
- 2. να συμπληρώσουμε κάθε παράγοντα
- π.χ. βρείτε το συμπλήρωμα F' της συνάρτησης:
 - 1. η δυική μορφή της F είναι:
 - 2. η συμπλήρωση κάθε παράγοντα δίνει:
- π.χ. βρείτε το συμπλήρωμα F' της συνάρτησης:
 - 1. η δυική μορφή της F είναι:
 - 2. η συμπλήρωση κάθε παράγοντα δίνει:

$$F = x'yz' + x'y'z$$

 $(x' + y + z')(x' + y' + z)$
 $(x + y' + z)(x + y + z') = F'$

$$F = x(y'z' + yz)$$

 $x + (y' + z')(y + z)$
 $x' + (y + z)(y' + z') = F'$

Κανονική μορφή: άθροισμα ελαχιστόρων ή γινόμενο μεγιστόρων

Ελαχιστόροι

- μία δυαδική μεταβλητή x μπορεί να εμφανιστεί σε μία αλγεβρική έκφραση
 - είτε στην κανονική της μορφή: x
 - ▶ είτε συμπληρωμένη: x¹
- για το γινόμενο (πράξη AND) δύο δυαδικών μεταβλητών x και y υπάρχουν 2² διαφορετικές δυνατές μορφές

- « κάθε ένας από τους όρους ονομάζεται ελαχιστόρος
- * γενικά, n μεταβλητές μπορούν να σχηματίσουν 2ⁿ ελαχιστόρους

Ελαχιστόροι (II)

γενικά, η μεταβλητές μπορούν να σχηματίσουν 2ⁿ ελαχιστόρους οι οποίοι προκύπτουν ως εξής:

- 1. οι δυαδικοί αριθμοί των n bits τοποθετούνται κατά αύξουσα σειρά, κάτω από τις n μεταβλητές
- 2. κάθε ελαχιστόρος είναι ένα γινόμενο n μεταβλητών, με κάθε μεταβλητή:
 - σε συμπληρωμένη μορφή,
 αν το αντίστοιχο bit του δυαδικού αριθμού είναι 6
 - σε κανονική μορφή,
 αν το αντίστοιχο bit του δυαδικού αριθμού είναι 1
- κάθε ελαχιστόρος ονομάζεται m_j όπου j είναι ο δεκαδικός αριθμός που έχει την ίδια τιμή με τον δυαδικό αριθμό που αντιστοιχεί στον ελαχιστόρο

			ελαχιστόροι	
Х	у	Z	όρος	όνομα
0	0	0	x'y'z'	$m_{\scriptscriptstyle{\Theta}}$
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m ₃
1	0	0	xy'z'	m ₄
1	0	1	xy'z	m ₅
1	1	0	xyz'	m_{6}
1	1	1	xyz	m ₇

παράδειγμα για n = 3

Μεγιστόροι

- μεγιστόρος ονομάζεται το άθροισμα (πράξη OR) η δυαδικών μεταβλητών, όπου κάθε μεταβλητή είναι
 - σε συμπληρωμένη μορφή,
 αν το αντίστοιχο bit του δυαδικού αριθμού είναι 1
 - σε κανονική μορφή,
 αν το αντίστοιχο bit του δυαδικού αριθμού είναι 0
- ❖ υπάρχουν 2ⁿ μεγιστόροι των n μεταβλητών
- κάθε **μεγιστόρος** ονομάζεται M_j όπου **j** είναι ο δεκαδικός αριθμός που έχει την ίδια τιμή με τον δυαδικό αριθμό που αντιστοιχεί στο **μεγιστόρο**

			μεγιστόροι		
X	у	Z	όρος	όνομα	
0	0	0	x + y + z	M_{Θ}	
0	0	1	x + y + z'	M_1	
0	1	0	x + y' + z	M_2	
0	1	1	x + y' + z'	M_3	
1	0	0	x' + y + z	M_4	
1	0	1	x' + y + z'	M_5	
1	1	0	x' + y' + z	M_6	
1	1	1	x' + y' + z'	M_7	

παράδειγμα για n = 3

Ελαχιστόροι & μεγιστόροι

- παρατηρείστε ότι κάθε ελαχιστόρος είναι το συμπλήρωμα του αντίστοιχου μεγιστόρου
 - και αντίστροφα
 - δηλαδή ισχύει ότι:

$$\mathbf{m'_i} = \mathbf{M_i} \text{ KOI}$$

$$M'_{j} = M_{j}$$

			ελαχια	στόροι	μεγιστόροι				
X	у	Z	όρος	όνομα	όρος	όνομα			
0	0	0	x'y'z'	$m_{\scriptscriptstyle{\mathcal{O}}}$	x + y + z	M_{Θ}			
0	0	1	x'y'z	$\mathbf{m_1}$	x + y + z'	M_1			
0	1	0	x'yz'	m ₂	x + y' + z	M_2			
0	1	1	x'yz	m ₃	x + y' + z'	M_3			
1	0	0	xy'z'	m ₄	x' + y + z	M_4			
1	0	1	xy'z	m ₅	x' + y + z'	M_5			
1	1	0	xyz'	m ₆	x' + y' + z	M_6			
1	1	1	xyz	m ₇	x' + y' + z'	M ₇			

παράδειγμα για η = 3

Κανονική μορφή - Άθροισμα ελαχιστόρων

- χρησιμοποιώντας τον πίνακα αληθείας μίας συνάρτησης, μπορούμε να την εκφράσουμε ως άθροισμα ελαχιστόρων
 - επιλέγουμε όσους δίνουν τιμή 1 στη συνάρτηση

				ελαχια	στόροι
X	У	z	F	όρος	όνομα
0	0	0	0	x'y'z'	m_{o}
0	0	1	1	x'y'z	m ₁
0	1	0	0	x'yz'	m_2
0	1	1	0	x'yz	m ₃
1	0	0	1	xy'z'	m_4
1	0	1	0	xy'z	m ₅
1	1	0	0	xyz'	m ₆
1	1	1	1	xyz	m ₇

$$F = x'y'z + xy'z' + xyz$$

= $m_1 + m_4 + m_7$

Κανονική μορφή - Γινόμενο μεγιστόρων

- χρησιμοποιώντας τον πίνακα αληθείας μίας συνάρτησης, μπορούμε να την εκφράσουμε ως γινόμενο μεγιστόρων
 - επιλέγουμε όσους δίνουν τιμή Ø στη συνάρτηση

				μεγιστόρ	οι	
X	у	Z	F	όρος	όνομα	
0	0	0	0	x + y + z	M_{o}	
0	0	1	1	x + y + z'	M_1	F = (x + y + z)
0	1	0	0	x + y' + z	M_2	(x + y' + z)
0	1	1	0	x + y' + z'	M_{3}	(x + y' + z')
1	0	0	1	x' + y + z	M_4	(x' + y + z')
1	0	1	0	x' + y + z'	M_{5}	
1	1	0	0	x' + y' + z	M_{6}	$= M_0 \cdot M_2 \cdot M_3 \cdot M_3$
1	1	1	1	x' + y' + z'	M ₇	

Κανονική μορφή

- χρησιμοποιώντας τον πίνακα αληθείας μίας συνάρτησης, μπορούμε να την εκφράσουμε ως:
 - 1. άθροισμα ελαχιστόρων
 - ▶ επιλέγουμε όσους δίνουν τιμή 1 στη συνάρτηση
 - 2. γινόμενο μεγιστόρων
 - επιλέγουμε όσους δίνουν τιμή 0 στη συνάρτηση
- μία συναρτήση Boole είναι σε κανονική μορφή, όταν έχει εκφραστεί ως άθροισμα ελαχιστόρων ή ως γινόμενο μεγιστόρων

Κανονική μορφή - Παράδειγμα

				ελαχιστόροι		μεγιστόροι			
X	у	z	F	όρος	όνομα	όρος	όνομα		
0	0	0	0	x'y'z'	$m_{\scriptscriptstyle{\Theta}}$	x + y + z	M _o		
0	0	1	0	x'y'z	m_1	x + y + z'	M_1		
0	1	0	0	x'yz'	m ₂	x + y' + z	M_2		
0	1	1	1	x'yz	m ₃	x + y' + z'	M_3		
1	0	0	0	xy'z'	m ₄	x' + y + z	M_4		
1	0	1	1	xy'z	m ₅	x' + y + z'	M ₅		
1	1	0	1	xyz'	m ₆	x' + y' + z	M_6		
1	1	1	1	xyz	m ₇	x' + y' + z'	M ₇		

$$F = (x + y + z) \cdot (x + y + z') \cdot (x + y' + z) \cdot (x' + y + z) \cdot (x' + y + z)$$

$$= M_0 \cdot M_1 \cdot M_2 \cdot M_4$$

$$F = x'yz + xy'z' + xyz' + xyz$$

= $m_3 + m_5 + m_6 + m_7$

Μετατροπή σε <u>άθροισμα ελαχιστόρων</u> - 1^η μέθοδος

ακολουθούμε την εξής διαδικασία:

- αναπτύσουμε την αλγεβρική έκφραση σε μορφή αθροίσματος γινομένων (όρων AND)
- εάν κάποιος όρος δεν περιέχει όλες τις μεταβλητές της συνάρτησης
 - για κάθε μεταβλητή A που λείπει → πολλαπλασιάζουμε τον όρο με το (A + A')
- π.χ. γράψτε τη συνάρτηση Boole F = x + y'zως άθροισμα ελαχιστόρων

 $F = m_1 + m_4 + m_5 + m_6 + m_7$

$$F = x + y'z$$

2. $1^{\circ\varsigma} \dot{\circ} \rho \circ \varsigma$: x = x(y + y')= xy + xy' = (xy + xy')(z + z')= xyz + xyz' + xy'z + xy'z'

$$2^{\circ\varsigma}$$
 $\dot{\circ}$ $\dot{\circ}$

η F είναι ήδη σε μορφή αθροίσματος γινομένων (1° βήμα) και αποτελείται από δύο όρους

- από τον πρώτο όρο λείπουν οι ν και z
- από τον δεύτερο όρο λείπει η χ

καθώς (από το Θεώρημα 1α) ισχύει ότι: x + x = x

Μετατροπή σε <u>άθροισμα ελαχιστόρων</u> - 2^η μέθοδος

ακολουθούμε την εξής διαδικασία:

- 1. κατασκευάζουμε τον πίνακα αληθείας της συνάρτησης, χρησιμοποιώντας την αλγεβρική έκφραση
- προσδιορίζουμε τους ελαχιστόρους από τον πίνακα αληθείας
- π.χ. γράψτε τη συνάρτηση Boole F = x + y'zως άθροισμα ελαχιστόρων

 - κατασκευάζουμε τον πίνακα αληθείας βάζοντας την τιμή 1 στην F, στις γραμμές όπου:

προσδιορίζουμε τους ελαχιστόρους

F = xyz + xyz' + xy'z + xy'z' + x'y'z
F =
$$m_1 + m_4 + m_5 + m_6 + m_7$$

				ελαχισ	τόροι
X	У	z	F	όρος	όνομα
0	0	0	0	x'y'z'	m _o
0	0	1	1	x'y'z	m_1
0	1	0	0	x'yz'	m ₂
0	1	1	0	x'yz	m ₃
1	0	0	1	xy'z'	m_4
1	0	1	1	xy'z	m ₅
1	1	0	1	xyz'	m ₆
1	1	1	1	xyz	m ₇

Μετατροπή σε <u>γινόμενο μεγιστόρων</u> - 1^η μέθοδος

ακολουθούμε την εξής διαδικασία:

- 1. αναπτύσουμε την αλγεβρική έκφραση σε μορφή γινομένου αθροισμάτων (όρων OR)
 - χρησιμοποιούμε τον επιμεριστικό κανόνα: A + BC = (A + B)(A + C)
- 2. εάν κάποιος όρος δεν περιέχει όλες τις μεταβλητές της συνάρτησης
 - ▶ για κάθε μεταβλητή A που λείπει → προσθέτουμε στον όρο το AA¹
- π.χ. γράψτε τη συνάρτηση Boole
 ως γινόμενο μεγιστόρων
- F = xy + x'z

- x + x' = 1 (Αξίωμα 5α)
- στο 1° βήμα εφαρμόζουμε επαναληπτικά τον επιμεριστικό κανόνα

1.
$$F = xy + x'z = (xy + x')(xy + z) = (x + x')(y + x')(x + z)(y + z)$$

= $(x' + y)(x + z)(y + z)$

- 2. $\frac{1 \circ \varsigma \circ \rho \circ \varsigma}{\circ \rho \circ \varsigma}$: x' + y = x' + y + zz' = (x' + y + z)(x' + y + z') $\frac{2 \circ \varsigma \circ \rho \circ \varsigma}{\circ \rho \circ \varsigma}$: x + z = x + z + yy' = (x + y + z)(x + y' + z) $\frac{3 \circ \varsigma \circ \rho \circ \varsigma}{\circ \rho \circ \varsigma}$: y + z = y + z + xx' = (x + y + z)(x' + y + z)
- χρησιμοποιούμε το Θεώρημα 1β (xx = x) ώστε να διώξουμε ίδιους όρους

$$F = (x' + y + z)(x' + y + z')(x + y + z)(x + y' + z)(x' + y + z)(x' + y + z')(x' + y + z')$$

$$= (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z')$$

$$F = M_0 \cdot M_2 \cdot M_4 \cdot M_5$$

Μετατροπή σε <u>γινόμενο μεγιστόρων</u> - 2^η μέθοδος

ακολουθούμε την εξής διαδικασία:

- κατασκευάζουμε τον πίνακα αληθείας της συνάρτησης, χρησιμοποιώντας την αλγεβρική έκφραση
- προσδιορίζουμε τους μεγιστόρους από τον πίνακα αληθείας
- π.χ. γράψτε τη συνάρτηση Boole F = xy + x'zως γινόμενο μεγιστόρων

$$F = xy + x'z$$

1. κατασκευάζουμε τον πίνακα αληθείας βάζοντας την τιμή 1 στην F, στις γραμμές όπου:

$$\rightarrow$$
 xz = 01

προσδιορίζουμε τους μεγιστόρους

$$F = (x + y + z)(x + y' + z)$$

$$(x' + y + z)(x' + y + z')$$

$$F = M_0 \cdot M_2 \cdot M_4 \cdot M_5$$

				μεγιστόρο	วเ
X	у	Z	F	όρος	όνομα
0	0	0	0	x + y + z	M_{Θ}
0	0	1	1	x + y + z'	M_1
0	1	0	0	x + y' + z	M_2
0	1	1	1	x + y' + z'	M ₃
1	0	0	0	x' + y + z	M_4
1	0	1	0	x' + y + z'	M ₅
1	1	0	1	x' + y' + z	M_6
1	1	1	1	x' + y' + z'	M_7

Κανονική μορφή - Συντομεύσεις

έστω η συνάρτηση Boole:

$$F = xyz + xyz' + xy'z + xy'z' + x'y'z' = m_1 + m_4 + m_5 + m_6 + m_7$$

$$F(x,y,z) = \Sigma(1,4,5,6,7)$$

∠ η συντόμευση της είναι:

οι μεταβλητές της συνάρτησης, διατεταγμένες όπως εμφανίζονται στους <u>ελαχιστόρους</u> οι <u>δείκτες</u> των ελαχιστόρων

έστω η συνάρτηση Boole:

$$F = (x + y + z)(x + y' + z)$$

$$(x' + y + z)(x' + y + z')$$

$$= M_0 \cdot M_2 \cdot M_4 \cdot M_5$$

$$F(x,y,z) = \Pi(0,2,4,5)$$

∠ η συντόμευση της είναι:

οι μεταβλητές της συνάρτησης, διατεταγμένες όπως εμφανίζονται στους <u>μεγιστόρους</u> οι <u>δείκτες</u> των μεγιστόρων

Μετατροπή από άθροισμα ελαχιστόρων σε γινόμενο μεγιστόρων

 το συμπλήρωμα μιας συνάρτησης που εκφράζεται ως άθροισμα ελαχιστόρων ισούται με το άθροισμα των ελαχιστόρων που λείπουν από την αρχική παράσταση

π.χ. ἑστω: $F(x,y,z) = \Sigma(1,4,5,6,7)$ οι δείκτες των ελαχιστόρων που δίνουν τιμή 1 στην F

TÖΤΕ: $F'(x,y,z) = \Sigma(0,2,3)$ οι δείκτες των ελαχιστόρων που δίνουν τιμή 0 στην F

▶ επίσης ισχύει: F(x,y,z) = (F')'(x,y,z) $= (m_0 + m_2 + m_3)'$ $= m_0' \cdot m_2' \cdot m_3' \qquad \leftarrow Θεώρημα 5a (DeMorgan)$ $= M_0 \cdot M_2 \cdot M_3 \qquad \leftarrow καθώς ισχύει ότι: <math>m'_j = M_j$ $= \Pi(0,2,3)$

► επομένως: F(x,y,z) = Σ(1,4,5,6,7) = Π(0,2,3)

Μετατροπή μεταξύ κανονικών μορφών

- στην προηγούμενη διαφάνεια παρουσιάστηκε η μετατροπή μίας συνάρτησης από άθροισμα ελαχιστόρων σε γινόμενο μεγιστόρων
 - η αντίστροφη μετατροπή είναι αντίστοιχη
- « <u>γενικά</u>, για να μετατρέψουμε τη μία κανονική μορφή στην άλλη
 - 1. εναλλάσουμε τα σύμβολα Σ και Π
 - 2. στη μορφή που προκύπτει, <mark>αντικαθιστούμε</mark> τους δείκτες με όσους <mark>έλειπαν</mark> από την αρχική μορφή
 - για να εντοπίσουμε σωστά τους δείκτες που λείπουν πρέπει να γνωρίζουμε το πλήθος των μεταβλητών (n) → καθώς υπάρχουν 2ⁿ δείκτες

Π.χ.
$$F_1(x,y,z) = \Sigma(1,4,5,6,7) = \Pi(0,2,3)$$

$$F_2(x,y) = \Pi(0,1,2) = \Sigma(3)$$

$$F_3(x,y,z,w) = \Sigma(0,4,7) = \Pi(1,2,3,5,6,8,9,10,11,12,13,14,15)$$

Κανονικές μορφές - Συμπέρασμα

- 🗷 οι κανονικές μορφές σπάνια έχουν τον ελάχιστο αριθμό παραγόντων
 - ? γιατί; → εξαιτίας του ορισμού του ελαχιστόρου/μεγιστόρου
 - περιέχει όλες τις ανεξάρτητες μεταβλητές στην κανονική τους μορφή ή ως συμπλήρωμα
- εκτός από τις κανονικές μορφές, υπάρχουν και οι πρότυπες μορφές
 - κάθε όρος μπορεί να αποτελείται απο οποιονδήποτε αριθμό παραγόντων
 - υπάρχουν δύο τύποι
 - 1. άθροισμα γινομένων
 - 2. γινόμενο αθροισμάτων

Πρότυπες μορφές: άθροισμα γινομένων ή γινόμενο αθροισμάτων

Πρότυπες μορφές: Άθροισμα γινομένων

- μία συνάρτηση Boole που περιέχει όρους γινομένου (πράξη AND), για τους οποίους η λέξη άθροισμα αναφέρεται στην πράξη OR
 - κάθε όρος μπορεί να περιέχει οποιοδήποτε αριθμό παραγόντων
 - το αντίστοιχο λογικό διάγραμμα αποτελείται από μία ομάδα πυλών AND που τροφοδοτούν μία πύλη OR

Μυλοποίηση δύο επιπέδων

Πρότυπες μορφές: Γινόμενο αθροισμάτων

- μία συνάρτηση Boole που περιέχει όρους αθροισμάτων (πράξη OR), για τους οποίους η λέξη γινόμενο αναφέρεται στην πράξη AND
 - κάθε όρος μπορεί να περιέχει οποιοδήποτε αριθμό παραγόντων
 - το αντίστοιχο λογικό διάγραμμα αποτελείται από μία ομάδα πυλών OR που τροφοδοτούν μία πύλη AND

🗷 υλοποίηση δύο επιπέδων

Πρότυπη μορφή - Μετατροπή - Παράδειγμα

- μία συνάρτηση Boole μπορεί να εκφραστεί σε μία μη πρότυπη μορφή
 - δεν είναι ούτε άθροισμα γινομένων, ούτε γινόμενο αθροισμάτων

$$\pi.\chi.$$
 F = AB + C(D + E)

$$F = AB + C(D + E) = AB + CD + CE$$

Λογικές πράξεις

Λογικές πράξεις

- ★ το πλήθος όλων των δυνατών συναρτήσεων η μεταβλητών είναι 2²n , επειδή:
 - η μεταβλητές μπορούν να σχηματίσουν 2ⁿ διαφορετικούς συνδυασμούς ανεξάρτητων μεταβλητών (→ δηλαδή, ελαχιστόρους)
 - 2. κάθε συνάρτηση μπορεί να πάρει τιμή θ ή 1 σε κάθε ελαχιστόρο
- * έτσι, για n=2 μεταβλητές το πλήθος των συναρτήσεων Boole ή λογικών πράξεων είναι 16
 - οι συναρτήσεις AND και OR είναι δύο από αυτές

			AND						OR								
X	У	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1		1		0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Πίνακας αληθείας για τις 16 συναρτήσεις δύο δυαδικών μεταβλητών

Λογικές πράξεις Εκφράσεις Boole

X	у	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Συναρτήσεις Boole	Σύμβολο τελεστή	Όνομα	Σχόλια
F ₀ = 0		Null	δυαδική σταθερά 0
$F_1 = xy$	$x \cdot y$	AND	χ και γ
$F_2 = xy'$	x/y	αποτροπή	χ αλλά όχι y
$F_3 = x$		μεταφορά	х
$F_4 = x'y$	y/x	αποτροπή	y αλλά όχι x
$F_5 = y$		μεταφορά	у
$F_6 = xy' + x'y$	$x \oplus y$	αποκλειστικό-OR	x ή y, αλλά όχι και τα δύο
$F_7 = x + y$	x + y	OR	хήу

Συναρτήσεις Boole	Σύμβολο τελεστή	Όνομα	Σχόλια
$F_8 = (x+y)'$	$x \downarrow y$	NOR	Όχι-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	ισοδυναμία	χ ίσον γ
F ₁₀ = y'	y'	συμπλήρωμα	Όχι y
$F_{11} = x + y'$	$x \subset y$	συνεπαγωγή	Αν y, τότε x
F ₁₂ = x'	x'	συμπλήρωμα	Όχι χ
$F_{13} = x' + y$	$x\supset y$	συνεπαγωγή	Αν χ, τότε y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Όχι-AND
F ₁₅ = 1		ταυτότητα	δυαδική σταθερά 1

Δύο εισόδων - AND, OR, NOT

οι συναρτήσεις Boole εκφράζονται με χρήση των τελεστών AND, OR και NOT

Λογικές πύλες Δύο εισόδων - NAND, NOR

- οι συναρτήσεις NAND και NOR είναι το συμπλήρωμα των συναρτήσεων AND και OR, αντίστοιχα
- έτσι, η διαφορά των πυλών NAND και NOR από τις πύλες AND και OR, αντίστοιχα, είναι ο μικρός κύκλος

- ♦ ΟΙ πύλες NAND και NOR
 - 🗷 χρησιμοποιούνται πιο συχνά από τις πύλες AND και OR
 - ✓ κατασκευάζονται εύκολα
- ✓ τα ψηφιακά κυκλώματα μπορούν να υλοποιηθούν πολύ εύκολα με πύλες NAND και NOR.

Δύο εισόδων - XOR, XNOR

η διαφορά των πυλών XOR και XNOR από τις πύλες OR και NOR, αντίστοιχα, είναι η επιπλέον καμπύλη γραμμή στην είσοδο

Μίας εισόδου - ΝΟΤ, Απομονωτής

η μεταξύ τους διαφορά είναι ο μικρός κύκλος

Σύνοψη

AND	<i>x</i>	$F = x \cdot y$	$ \begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} $
OR	<i>x</i>	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	xF	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
Buffer	<i>x</i> —— <i>F</i>	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

Λογικές πύλες Πολλών εισόδων - AND & OR

- κάθε πύλη (δύο εισόδων) μπορεί να επεκταθεί ώστε να αποκτήσει περισσότερες εισόδους
 - αρκεί η δυαδική πράξη που παριστάνει να είναι αντιμεταθετική και προσεταιριστική
- οι πράξεις AND και OR έχουν αυτές τις ιδιότητες
 π.χ. για την OR ισχύουν:

$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$
 (αντιμεταθετική ιδιότητα)
 $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$ (προσεταιριστική ιδιότητα)

Λογικές πύλες Πολλών εισόδων - NAND & NOR

- κάθε πύλη (δύο εισόδων) μπορεί να επεκταθεί ώστε να αποκτήσει περισσότερες εισόδους
 - αρκεί η δυαδική πράξη που παριστάνει να είναι αντιμεταθετική και προσεταιριστική
- ♦ οι πράξεις NAND και NOR
 - ✓ έχουν την αντιμεταθετική ιδιότητα
 - δεν έχουν την προσεταιριστική ιδιότητα

π.χ. για την **NOR**:

$$(x \downarrow y) \downarrow z = ((x + y)' + z)' = (x + y)z' = xz' + yz'$$

$$\times \downarrow (y \downarrow z) = (x + (y + z)')' = x'(y + z) = x'y + x'z$$

$$\longrightarrow (x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$$

Πολλών εισόδων - NAND & NOR (II)

- × οι πράξεις NAND και NOR δεν έχουν την προσεταιριστική ιδιότητα
 - γραφική απεικόνιση για την NOR

πύλη NAND τριών εισόδων χρησιμοποιώντας πύλες NAND δύο εισόδων

πύλη NAND τριών εισόδων χρησιμοποιώντας πύλες NAND δύο εισόδων

$$x \downarrow (y \downarrow z) = x' (y + z)$$

$$y \downarrow z$$

Πολλών εισόδων - NAND & NOR (III)

- × οι πράξεις NAND και NOR δεν έχουν την προσεταιριστική ιδιότητα
- για να ξεπεράσουμε αυτή τη δυσκολία → ορίζουμε την πύλη NOR (ή NAND) πολλών εισόδων ως το συμπλήρωμα της αντίστοιχης πύλης OR (ή AND)
 - οπότε, εξ ορισμού ισχύει:

-
$$x \downarrow y \downarrow z = (x + y + z)'$$

-
$$x \uparrow y \uparrow z = (xyz)'$$

πύλη **NAND** τριών εισόδων

Λογικές πύλες Πολλών εισόδων - XOR

πύλη **ΧΟR** τριών εισόδων

- κάθε πύλη (δύο εισόδων) μπορεί να επεκταθεί ώστε να αποκτήσει περισσότερες εισόδους
 - αρκεί η δυαδική πράξη που παριστάνει να είναι αντιμεταθετική και προσεταιριστική
- ♦ η πράξη XOR ικανοποιεί και τις δύο αυτές ιδιότητες

▶ είναι μία περιττή συνάρτηση → παίρνει τιμή 1 όταν και μόνο όταν στις μεταβλητές

εισόδου εμφανιστεί περιττός αριθμών άσων (1)

x y $F = x \oplus$	$y \oplus z$
<mark>πύλη ΧΟR τριών</mark> εισόδων χρησιμοποιώντας πύλες ΧΟR δύο εισόδων	

X	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Λογικές πύλες NAND

- 🗷 τα ψηφιακά κυκλώματα μπορούν να υλοποιηθούν πολύ εύκολα με πύλες NAND
 - π.χ. μία ἐκφραση σε πρότυπη μορφή αθροίσματος γινομένων: F = ABC + DE μπορεί να υλοποιηθεί μόνο με πύλες NAND

Λογικές πύλες Θετική και αρνητική λογική

- στο ψηφιακό σύστημα, όλες οι τιμές των σημάτων είναι διακριτές (θ ή 1)
- τα ηλεκτρικά σήματα (τάση, ρεύμα) είναι αναλογικά (ή συνεχή)
 - π.χ. τιμές από 0 έως 3V
- σε οποιαδήποτε χρονική στιγμή, το δυαδικό σήμα στις εισόδους ή εξόδους οποιασδήποτε πύλης μπορεί να έχει μόνο μία από τις δύο τιμές
 - εξαιρουμένων των περιόδων μετάβασης
- υπάρχουν δύο διαφορετικοί τρόποι αντιστοίχισης επιπέδου σήματος (τιμή τάσης) στη λογική τιμή
 - 1. <u>Θετική λογική</u>: επιλογή του υψηλότερου επιπέδου (**H**) για τη λογική τιμή **1**
 - 2. αρνητική λογική: επιλογή του χαμηλότερου επιπέδου (L) για τη λογική τιμή 1

Θετική και αρνητική λογική (ΙΙ)

- η λειτουργία των ηλεκτρονικών ψηφιακών πυλών ορίζεται με χρήση των τιμών σήματος Η και L
- ο χρήστης αποφασίζει εάν θα χρησιμοποιήσει θετική ή αρνητική λογική

Θετική και αρνητική λογική - Σύνοψη

- ∠ από την προηγούμενη διαφάνεια → η ίδια φυσική πύλη μπορεί να λειτουργήσει ως πύλη ΑΝΟ θετικής λογικής ή ως πύλη ΟR αρνητικής λογικής
- π αλλαγή* όλων των ακροδεκτών από μία πολικότητα στην άλλη,
 *δηλαδή η μετατροπή από τη θετική στην αρνητική λογική (και αντίστροφα)
 - αλλάζει τα 1 σε 0 και τα 0 σε 1
 - → οπότε, παράγεται η δυϊκή μορφή μιας συνάρτησης
 - → άρα, όλες οι πράξεις AND μετατρέπονται σε πράξεις OR, και αντίστροφα

Ολοκληρωμένο κύκλωμα

- Φ αποτελείται από έναν κρύσταλλο ημιαγωγού πυριτίου → τσιπ (chip)
 - περιέχει διασυνδεδεμένα ηλεκτρονικά στοιχεία που υλοποιούν τις ψηφιακές πύλες
 - οι πύλες (του τσιπ) σχηματίζουν τα επιθυμητά κυκλώματα
 - ▶ το τσιπ τοποθετείται σε κεραμική ή πλαστική θήκη → συσκευασία
- οι ακροδέκτες του ενώνονται σε εξωτερικούς της θήκης ακροδέκτες ->
 σχηματισμός ολοκληρωμένου κυκλώματος
 - μπορεί να υπάρχουν (από 14) έως και χιλιάδες ακροδέκτες
- στην επιφάνειά του χαράζεται ένας αριθμός -> ταυτότητα

ταξινομούνται βάσει:

- 1. του επιπέδου ολοκλήρωσης
- 2. της οικογένειας ψηφιακής λογικής

Επίπεδα ολοκλήρωσης

ταξινόμηση σύμφωνα με την πολυπλοκότητα των κυκλωμάτων τους (-> δηλαδή τον αριθμό των πυλών σε κάθε συσκευασία)

- μικρής κλίμακας ολοκλήρωσης (small-scale integration, SSI)
 - αρκετές ανεξάρτητες πύλες σε μία συσκευασία
 - συνήθως, λιγότερες από 10
 - εισοδοί/έξοδοι πυλών συνδέονται απευθείας στους ακροδέκτες της συσκευασίας
- 2. μέτριας κλίμακας ολοκλήρωσης (medium-scale integration, MSI)
 - 10 έως 1000 πύλες σε μία συσκευασία
 - εκτελούν στοιχειώδεις πράξεις
 - π.χ. αποκωδικοποιητές, αθροιστές, πολυπλέκτες, καταχωρητές και μετρητές

Επίπεδα ολοκλήρωσης (ΙΙ)

- 3. μεγάλης κλίμακας ολοκλήρωσης (large-scale integrations, LSI)
 - αρκετές χιλιάδες πύλες, σε μία συσκευασία
 - π.χ. επεξεργαστές, τσιπ μνήμης και προγραμματίσιμες λογικές διατάξεις
- 4. πολύ μεγάλης κλίμακας ολοκλήρωσης (very large-scale integrations, VLSI)
 - εκατοντάδες χιλιάδες πύλες, σε μία συσκευασία
 - π.χ. μεγάλες διατάξεις μνήμης και σύνθετα τσιπ μικροϋπολογιστών
 - - ✓ δυνατότητα σχεδιασμού υπολογιστικών δομών που παλιότερα ήταν οικονομικά ασύμφορες

Οικογένειες ψηφιακής λογικής

ταξινόμηση σύμφωνα με την τεχνολογία που κατασκευάζονται

- κάθε οικογένεια έχει το δικό της βασικό ηλεκτρονικό κύκλωμα, βάσει του οποίου αναπτύσσονται σύνθετες ψηφιακές διατάξεις και κυκλώματα
 - μία πύλη NAND ή μία πύλη NOR
- ονομασίες ανάλογα με τα ηλεκτρονικά στοιχεία που χρησιμοποιούνται για την κατασκευή του βασικού κυκλώματος

1. TTL

υψυλή ταχύτητα

υψυλή <u>πυ</u>κνότητα transistor-transistor logic

ECL

emitter-coupled logic

3. MOS

metal-oxide-semiconductor

4. CMOS

complementary metal-oxide-semiconductor (λογική τρανζίστορ-τρανζίστορ)

(λογική σύζευξης εκπομπού)

(τεχνολογία μετάλλου-οξειδίου-ημιαγωγού)

(τεχνολογία συμπληρωματικού μετάλλουοξειδίου-ημιαγωγού)

χαμηλή κατανάλωση ενέργειας → κυρίαρχη οικογένεια (π.χ. ψηφιακές φωτογραφικές μηχανές και φορητές συσκευές)

Σύνοψη

- Δυαδική λογική
 - πίνακες αληθείας
- Αλγεβρα Boole
 - βασικοί ορισμοί
 - άλγεβρα Boole δύο τιμών
 - ιδιότητα δϋισμού, αξιώματα και θεωρήματα (αποδείξεις)
 - προτεραιότητα τελεστών
- Συναρτήσεις Boole
 - αναπαράσταση με πίνακα
 - πολλαπλές αλγεβρικές εκφράσεις -> πολλαπλά λογικά κυκλώματα
 - απλοποίηση
 - συμπλήρωμα
 - κανονική & πρότυπη μορφή

- Λογικές πράξεις
- Λογικές πύλες
 - πύλες δύο εισόδων
 - πύλες πολλαπλών εισόδων
 - θετική και αρνητική λογική