MChaudry Database Design/Data Modeling Lab

Part 1: Conceptual Planning

Step1: Brainstorming

Users:

- 1. ID (serial primary key)
- 2. Name (Username)
- 3. Email
- 4. Password

Grocery Lists:

- 1. ID (serial primary key)
- 2. Ingredients ID (foreign key references ingredients_id)

Recipe:

- 1. ID (serial primary key)
- 2. Recipe name
- 3. Public or Private
- 4. View (text)

Instructions:

- 1. ID(serial primary key)
- 2. Recipe ID (foreign key references recipe_id)
- 3. Ingredient_id (foreign key references ingredients_id)

Ingredients:

- 1. ID(serial primary key)
- 2. Recipe ID (foreign key references recipe_id)
- 3. Name of ingredients

Reviews:

- 1. ID
- 2. Comments
- 3. User ID (foreign key references user_id)

Occasions:

- 1. ID
- 2. Ingredients ID (foreign key references recipe_id)

Image:

- 1. ID (serial primary key)
- 2. Image_url
- 3. Recipe ID (foreign key references recipe_id)

Step 2: Table Ideas

Users:

This table will have information about each user.

Recipe:

This table will have information (info) about each recipe

Instructions:

This table will have info about how to prepare the meal **Ingredients**:

This table will have all the ingredients for all the recipe

Reviews:

This will have user comments about the recipe

Grocery Lists:

This will have the selected ingredients pulled for each recipe **Image:**

Images related to each recipe

Occasion:

This will have the list of different occasions for different meal prep.

Step 3: Relationships

One to One:

- 1. User to Grocery List (One user should only have One grocery list)
- 2. User to Image

One to Many:

- 1. Recipe to Ingredients (one recipe has many ingredients)
- User to reviews (a user can have multiple reviews for multiple recipes)
- 3. Recipe to Reviews

Many to Many:

1. Recipes to Occasions (one recipe can be used for multiple occasions and one occasion can have many recipes)

Part 2: Table Planning - DB Designer & Pages Doc

Step 1:

Columns:

Users:

- 1. ID (serial primary key) INTEGER (ID is a integer number)
- 2. Name (Username) VARCHAR (Name is a string)
- 3. Email VARCHAR (STRING)
- 4. Password VARCHAR (STRING)

Grocery Lists:

- 1. ID (serial primary key) INTEGER (unique identification)
- 2. Ingredients ID (foreign key) INTEGER (List can access the ingredients through its ID which is an integer number)

Recipe:

- 1. ID (serial primary key) INTEGER
- 2. Recipe name TEXT
- 3. Public or Private BOOLEAN (either public or private requires true/false statements)
- 4. View (text)

Instructions:

- 1. ID(serial primary key) INTEGER
- 2. Recipe ID (foreign key)
- 3. Ingredient id (foreign key)

Ingredients:

- 1. ID(serial primary key) INTEGER
- 2. Recipe ID (foreign key) INTEGER
- 3. Name of ingredients TEXT (names will be alphabets and letters)

Reviews:

- 1. ID (serial primary key) INTEGER
- 2. Comments TEXT (needs a lot of space for comments)
- 3. User ID (foreign key) INTEGER

Occasions:

- 1. ID (serial primary key) INTEGER
- 2. Ingredients ID (foreign key) INTEGER

Image:

- 1. ID (serial primary key) INTEGER
- 2. Image_url TEXT (needs a lot space for url. It is a string datatype)
- 3. Recipe ID (foreign key) INTEGER

Part 3 : Create Tables in SQL - Postgres SandBox & Pages Doc

Users:

```
CREATE TABLE Users (
user_id SERIAL PRIMARY KEY,
name VARCHAR(255),
email VARCHAR(255),
Password VARCHAR(255)
);
```

Recipes:

```
CREATE TABLE Recipe (
recipe_id SERIAL PRIMARY KEY,
recipe_name VARCHAR(255),
ingredients_id INTEGER NOT NULL REFERENCES
ingredients(ingredients_id),
instructions_id INTEGER NOT NULL REFERENCES
instructions(instructions_id),
occasion_id INTEGER NOT NULL REFERENCES
occasion(ocasion_id),
image_id INTEGER NOT NULL REFERENCES image(image_id),
recipe_privacy BOOLEAN default TRUE
);
```

Ingredients:

```
CREATE TABLE Ingredients (
ingredients_id SERIAL PRIMARY KEY,
ingredients_name VARCHAR(255)
);
```

Instructions:

```
CREATE TABLE Instructions (
instructions_id SERIAL PRIMARY KEY,
recipe_id INTEGER NOT NULL REFERENCES recipe(recipe_id)
);
```

Reviews:

```
CREATE TABLE Reviews (
review_id SERIAL PRIMARY KEY,
Comments TEXT
);
```

Grocery List:

```
CREATE TABLE Grocery List (
grocery_list_id SERIAL PRIMARY KEY,
ingredients_id INTEGER NOT NULL REFERENCES
ingredients(ingredients_id)
);
```

Occasion:

```
CREATE TABLE Occasion (
occasion_id SERIAL PRIMARY KEY,
recipe_id INTEGER NOT NULL REFERENCES recipe(recipe_id)
);
```

```
Image:
```

```
CREATE TABLE Image (
image_id SERIAL PRIMARY KEY,
image_url VARCHAR (400);
recipe_id INTEGER NOT NULL REFERENCES recipe(recipe_id)
);
```

Intermediate:

Users:

```
INSERT INTO users(name, email, password)
VALUES ('Adam Smith', 'adam@yahoo.com', 'password1');
```

```
INSERT INTO users(name, email, password)
VALUES ('John Smith', 'john@yahoo.com', 'password2');
```

```
INSERT INTO users(name, email, password)
VALUES ('Evans Smith', 'evans@yahoo.com', 'password3');
```

Recipes:

```
INSERT INTO recipe(recipe_name,recipe_privacy)
     VALUES ('Apple Pie', TRUE);
```

```
INSERT INTO recipe(recipe_name,recipe_privacy) VALUES ('Lemon Pie', TRUE);
```

Ingredients:

INSERT INTO ingredients(ingredients_name) VALUES ('Sugar');

INSERT INTO ingredients(ingredients_name)
 VALUES ('Salt');

INSERT INTO ingredients(ingredients_name) VALUES ('Spice');