Лабораторная работа 3

РАБОТА С ТАЙМЕРАМИ-СЧЁТЧИКАМИ

Цель работы

Получение практических навыков по работе с таймерами-счётчиками и применению механизма прерываний.

Теоретические сведения

Микроконтроллеры AVR имеют в своём составе от 1 до 4 таймеровсчётчиков с разрядностью 8 или 16 бит, которые могут работать и как таймеры от внутреннего источника тактовой частоты, и как счётчики внешних событий.

Рис. 1. Схема работы восьмиразрядного таймера TMR0

Таймеры-счётчики можно использовать для точного формирования временных интервалов, подсчёта импульсов на выводах микроконтроллера, формирования последовательности импульсов, тактирования приёмопередатчика последовательного канала связи. В режиме широтно-импульсной модуляции (ШИМ, PWM) таймер-счётчик используется для генерирования сигнала с программируемой частотой и способны Таймеры-счётчики скважностью. вырабатывать запросы прерываний, переключая процессор на их обслуживание по событиям и освобождая его от необходимости периодического опроса состояния таймеров.

Значение таймера можно прочитать или изменить программным образом в произвольный момент времени. Далее рассматривается конфигурирование таймера ТО микроконтроллера ATmega32.

Таймеры-счётчики

За конфигурацию таймера-счётчика T0 отвечает регистр TCCR0, он определяет источник тактирования таймера, коэффициент предделителя, режим работы таймера-счётчика T0 и поведение вывода OC0.

Биты *CS02*, *CS01*, *CS00* (Clock Select) — определяют источник тактовой частоты для таймера T0 и задают коэффициент предделителя. Все возможные состояния описаны в спецификации контроллера.

7	6	5	4	3	2	1	0
FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00
W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Рис. 2. Регистр TCCR0 (Timer/Counter Control Register)							

Биты *WGM01*, *WGM00* (Wave Generator Mode) – определяют режим работы таймера-счётчика Т0. Всего их может быть четыре – нормальный режим (Normal), сброс таймера при совпадении (СТС), и два режима широтно-импульсной модуляции (FastPWM и Phase Correct PWM).

WGM01	WGM00	Режим работы таймера-счётчика	
0	0	Normal	
0	1	PWM, Phase correct	
1	0	CTC	
1	1	Fast PWM	

Биты *COM01*, *COM00* (Compare Match Output Mode) — определяют поведение вывода *OC0*. Если хоть один из этих битов установлен в единицу, то вывод *OC0* перестаёт функционировать как обычный вывод общего назначения и подключается к схеме сравнения таймера счётчика T0. Однако при этом он должен быть ещё настроен как выход.

Поведение вывода *OC0* зависит от режима работы таймера-счётчика Т0. В режимах normal и СТС вывод OC0 ведёт себя одинаково, а вот в режимах широтно-импульсной модуляции его поведение отличается.

Бит регистра TCCR0 — это бит FOC0 (Force Output Compare). Этот бит предназначен для принудительного изменения состояния вывода OC0. Он работает только для режимов Normal и CTC. При установке бита FOC0 в единицу состояние вывода меняется соответственно значениям битов COM01, COM00. FOC0 бит не вызывает прерывания и не сбрасывает таймер в CTC режиме.

Регистр TCNT0 — восьми разрядный счётный регистр. Когда таймер работает, по каждому импульсу тактового сигнала значение TCNT0 изменяется на единицу. В зависимости от режима работы таймера, счётный регистр может или увеличиваться, или уменьшаться.

Регистр TCNT0 можно как читать, так и записывать. Последнее используется, когда требуется задать его начальное значение. Когда таймер работает, изменять его содержимое TCNT0 не рекомендуется, так как это блокирует схему сравнения на один такт.

Регистр ОСR0 — восьмиразрядный регистр сравнения. Его значение постоянно сравнивается со счётным регистром TCNT0, и в случае совпадения таймер может выполнять какие-то действия — вызывать прерывание, менять состояние вывода ОС0 и т.д. в зависимости от режима работы. Значение ОСR0 можно как читать, так и записывать.

Содержание отчёта

- 1. Схема установки (задействованные узлы отладочной платы).
- 2. Блок-схема алгоритма работы программы.
- 3. Комментированный листинг программы на языке ассемблера.
- 4. Ответы на контрольные вопросы.

Контрольные вопросы

- 1. Посредством каких регистров производится конфигурирование таймера-счётчика?
- 2. Какие источники импульсов могут применяться для увеличения таймера-счётчика и для каких целей?
- 3. В каких режимах могут работать таймеры-счётчики?
- 4. Как рассчитать начальное значение таймера-счётчика по заданному времени, которое должен отмерить таймер-счётчик до своего переполнения?
- 5. В чём состоит отличие работы таймера-счётчика в режиме таймера и в режиме счётчика?

Общее описание и требования к программе

Не допускается применение функции delay_ms() и подобных, для реализации временных задержек необходимо использовать прерывания таймеров-счётчиков T0-T2 по переполнению (OVF) и/или сравнению (_СОМР). Точность временных интервалов должна достигаться за счёт правильного выбора предделителей таймеров-счётчиков и применением глобальных переменных. В различных режимах таймеры могут решать задачи, например, отсчёт различные временных промежутков обеспечение «визуально одновременного» вывода информации на семисегментные индикаторы.

Номер варианта	Задание							
	Секундомер. Программа должна предостав							
	возможность запуска секундомера, сохранения							
	зафиксированных значений, отображения текущего и							
	сохранённых значений секундомера на блоке из четырёх							
	семисегментных индикаторов (формат ММ.СС, где ММ –							
	минуты, СС – секунды). Используемые кнопки:							
	– кнопка PD2 (прерывание INT0) –							
	запуск/останов/возобновление секундомера;							
1	– кнопка PD0 – сохранение текущего значения							
	секундомера (работает только при запущенном секундомере);							
	– кнопка PD1 – циклическое пролистывание							
	сохранённых значений на семисегментных индикаторах с							
	первого до последнего (работает только при остановленном							
	секундомере);							
	– кнопка PD3 (прерывание INT1) – останов и сброс							
	секундомера в состояние 0 минут, 0 секунд, удаление							
	сохранённых значений.							
2	Модуль настройки ПИН-кода. Программа должна							
	предоставлять возможность по настройке четырёхзначного							
	ПИН-кода. ПИН-код должен храниться в EEPROM, считываться							
	при запуске МК и сохраняться при каждом изменении. Для							
	отображения ПИН-кода используется блок из четырёх							
	семисегментных индикаторов. Ввод четырёхзначного ПИН-кода							
	осуществляется поразрядно, от младшего к старшему. Для							
	изменения значения вводимой цифры ПИН-кода используются							

кнопки PD0 и PD1, позволяющие соответственно увеличить или уменьшить вводимое значение, изменение циклическое, то есть при увеличении цифра 9 переходит в цифру 0 и наоборот, изменение значений происходит следующим образом:

- в момент нажатия кнопки значение сразу изменяется на единицу;
- если кнопка зажата дольше 2-х секунд, то, начиная со 2-й секунды, значение начинает изменяться на 1 каждые 0,25 с.

При срабатывании прерывания INT1 (кнопка PD3) во время настройки 1-3 разряда ПИН-кода программа перейдёт к настройке следующего разряда, если выполнялась настройка 4 разряда – программа завершится, сохранив новое значение ПИН-кода в EEPROM. При срабатывании прерывания INT0 (кнопка PD2) во время настройки 2-4 разряда ПИН-кода программа перейдёт к настройке предыдущего разряда. Изначально отображается предыдущее значение ПИН-кода, настраиваемый разряд мигает с частотой 2 Гц.

Модуль часов. Программа должна предоставлять возможность настройки текущего времени и отображения времени на блоке из четырёх семисегментных индикаторов (формат «ЧЧ.ММ.» или «ММ.СС», где ЧЧ – часы, ММ – минуты, СС – секунды). Использование внешних прерываний: кнопка PD2 (прерывание INT0) – переключение между режимами настройки и отображения, кнопка PD3 (прерывание INT1) переход между форматами «ЧЧ.ММ.» или «ММ.СС» в режиме отображения циклическое переключение настраиваемыми элементами $44 \rightarrow MM \rightarrow CC \rightarrow 44$ в режиме настройки. В режиме настройки текущий настраиваемый элемент должен мигать с частотой 2 Гц. Изменение значения элемента должно осуществляться с помощью кнопок PD0 и PD1, которые соответственно должны увеличивать и уменьшать значение следующим образом:

- в момент нажатия кнопки значение сразу изменяется на единицу;
- если кнопка зажата дольше 2-х секунд, то, начиная со 2-й секунды, значение начинает изменяться на 1 каждые 0,2 с;

3

если кнопка зажата дольше 4-х секунд, то, начиная со 4-й секунды, значение начинает изменяться на 1 каждые 0,1 с;
 после отпускания кнопки изменение немедленно прекращается.

настройки Модуль ПИН-кода. Программа должна предоставлять возможность по настройке четырёхзначного ПИН-кода. ПИН-код должен храниться в EEPROM, считываться при запуске МК и сохраняться при каждом изменении. Для отображения ПИН-кода используется блок ИЗ четырёх семисегментных индикаторов. Для ввода цифры ПИН-кода используются кнопки, подключённые к PORTA и PORTB: PB0 – цифра 0, PB1 - 1, PB2 - 2, PB3 - 3, PB4 - 4, PB5 - 5, PB6 - 6, PB7 - 7, PA6 - 8, PA7 - 9. Ввод четырёхзначного ПИНкода осуществляется поразрядно, от младшего к старшему, если в течение 10 секунд с момента ввода 1-3 цифры ПИН-кода не была введена следующая цифра программа возвращается к началу ввода ПИН-кода, изображение на семисегментных индикаторах замещается сохранённым ранее в EEPROM. Изначально отображается предыдущее значение ПИН-кода, младший разряд мигает с частотой 2 Гц, сразу после ввода нового значения младшего разряда (нажатия ДЛЯ соответствующую кнопку PORTA / PORTB) значение разряда обновляется, а мигание переносится на следующий разряд. После ввода старшего разряда новое значение ПИН-кода сохраняется в EEPROM, настройка ПИН-кода завершается. При срабатывании прерывания INTO (кнопка PD2) настройки 2-4 разряда ПИН-кода программа перейдёт к настройке предыдущего разряда. При срабатывании прерывания INT1 (кнопка PD3) во время настройки 1-3 разряда ПИН-кода программа перейдёт к настройке следующего разряда, если выполнялась настройка 4 разряда – программа завершится, сохранив новое значение ПИН-кода в EEPROM.

5

4

Таймер. Программа должна предоставлять возможность настройки, запуска и приостановки таймера, отображения настраиваемого и текущего значений таймера на блоке из четырёх семисегментных индикаторов (формат «ММ.СС», где ММ – минуты, СС – секунды). Использование внешних

прерываний: кнопка PD2 (прерывание INT0) — запуск/приостановка/возобновление таймера, кнопка PD3 (прерывание INT1) — переход между режимами настройки и работы таймера. Изменение значения таймера в режиме настройки должно осуществляться с помощью кнопок PD0 и PD1, которые соответственно должны увеличивать и уменьшать значение следующим образом:

- в момент нажатия кнопки значение сразу изменяется на одну секунду;
- если кнопка зажата дольше 2-х секунд, то, начиная со 2-й секунды, значение начинает изменяться на 1 секунду каждые 0,2 с;
- если кнопка зажата дольше 4-х секунд, то, начиная со 4-й секунды, значение начинает изменяться на 1 секунду каждые 0,1 с;
- после отпускания кнопки изменение немедленно прекращается.

Когда таймер доходит до нулевого значения отсчёт прекращается, на семисегментном индикаторе отображается значение 00.00, мигая с частотой 2 Гц.

Модуль часов. Программа должна предоставлять возможность настройки текущего времени и отображения времени на блоке из четырёх семисегментных индикаторов (формат «ЧЧ.ММ.» или «ММ.СС», где ЧЧ – часы, ММ – минуты, СС – секунды). Использование внешних прерываний: кнопка PD2 (прерывание INT0) – переключение между режимами настройки и отображения, кнопка PD3 (прерывание INT1) – переход между форматами «ЧЧ.ММ.» или «ММ.СС» в режиме отображения И циклическое переключение между настраиваемыми элементами ЧЧ → ММ → СС → ЧЧ в режиме настройки. В режиме настройки текущий настраиваемый элемент должен мигать с частотой 2 Гц. Изменение значения элемента должно осуществляться с помощью кнопок PD0 и PD1, которые соответственно должны увеличивать и уменьшать значение следующим образом:

в момент нажатия кнопки значение сразу изменяется на единицу;

6

- если кнопка зажата дольше 2-х секунд, то, начиная со 2-й секунды, значение начинает изменяться на 1 каждые 0,2 с;
- если кнопка зажата дольше 4-х секунд, то, начиная со 4-й секунды, значение начинает изменяться на 1 каждые 0,1 с;
 после отпускания кнопки изменение немедленно

прекращается.

Модуль проверки ПИН-кода. Программа должна предоставлять возможность по проверке введённого ПИН-кода на соответствие заданному. ПИН-код должен храниться в EEPROM и считываться при запуске МК (запись ПИН-кода в EEPROM следует выполнять с помощью AVRFlash). Для отображения проверяемого ПИН-кода используется блок из четырёх семисегментных индикаторов. Для ввода цифры ПИНкода используются кнопки, подключённые к PORTA и PORTB: PB0 – цифра 0, PB1 - 1, PB2 - 2, PB3 - 3, PB4 - 4, PB5 - 5, PB6-6, PB7-7, PA4-8, PA5-9. При вводе неправильного ПИН-кода загорается светодиод РА6 на 20 секунд, после чего возвращается к началу ввода ПИН-кода проверки. При вводе неправильного ПИН-кода три раза подряд загораются светодиод РА7 и РА6, а программа перестаёт работать. При правильного ПИН-кода вводе загорается светодиод РА7, вернуться к началу режима проверки ПИН-кода (завершить текущий сеанс) можно с помощью прерывания INT1 (кнопка PD3) очистка выполнится семисегментных индикаторов и погаснет светодиод РА7. Ввод четырёхзначного ПИН-кода осуществляется поразрядно, если в течение 7 секунд с момента ввода 1-3 цифры ПИН-кода не была введена следующая цифра программа возвращается к началу ввода ПИНкода для проверки. Ввод ПИН-кода осуществляется от младшего работы разряда старшему. В начале программы семисегментном индикаторе нет цифр, сразу после ввода каждой цифры она дописывается на семисегментный индикатор.

8

7

Секундомер. Программа должна предоставлять возможность запуска секундомера, сохранения зафиксированных значений, отображения текущего и сохранённых значений секундомера на блоке из четырёх

семисегментных индикаторов (формат ММ.СС, где ММ - минуты, СС – секунды). Используемые кнопки:

- кнопка PD2 (прерывание INT0) –
 запуск/останов/возобновление секундомера;
- кнопка PD0 сохранение текущего значения секундомера (работает только при запущенном секундомере);
- кнопка PD1 циклическое пролистывание сохранённых значений на семисегментных индикаторах с первого до последнего (работает только при остановленном секундомере);
- кнопка PD3 (прерывание INT1) останов и сброс секундомера в состояние 0 минут, 0 секунд, удаление сохранённых значений.

Модуль ПИН-кода. Программа проверки должна предоставлять возможность по проверке введённого ПИН-кода на соответствие заданному. ПИН-код должен храниться в EEPROM и считываться при запуске МК (запись ПИН-кода в EEPROM следует выполнять с помощью AVRFlash). Для отображения проверяемого ПИН-кода используется блок из четырёх семисегментных индикаторов. настраиваемый разряд мигает с частотой 4 ГЦ. Ввод четырёхзначного ПИН-кода осуществляется поразрядно, от младшего к старшему. Для изменения значения вводимой цифры ПИН-кода используются кнопки PD0 и PD1, позволяющие соответственно увеличить или уменьшить вводимое значение, изменение циклическое, то есть при увеличении цифра 9 переходит в цифру 0 и наоборот, изменение значений происходит следующим образом:

- в момент нажатия кнопки значение сразу изменяется на единицу;
- если кнопка зажата дольше 2-х секунд, то, начиная со 2-й секунды, значение начинает изменяться на 1 каждые 0,25 с.

При срабатывании прерывания INT0 (кнопка PD2) во время настройки 2-4 разряда ПИН-кода программа перейдёт к настройке предыдущего разряда. При срабатывании прерывания INT1 (кнопка PD3) во время ввода 1-3 разряда ПИН-кода программа перейдёт к вводу следующего разряда, если выполнялась настройка 4 разряда — ввод ПИН-кода завершится,

9

а программа сверит введённое значение ПИН-кода со значением в EEPROM. При вводе неправильного ПИН-кода загорается светодиод РА6 на 20 секунд, после чего программа возвращается к началу ввода ПИН-кода для проверки. При вводе неправильного ПИН-кода три раза подряд загораются светодиод РА7 и РА6, а программа перестаёт работать. При вводе правильного ПИН-кода загорается светодиод РА7, программа завершает работу (переходит в бесконечный цикл, отключаются прерывания INT0 и INT1. В начале работы программы на семисегментном индикаторе отображено значение «0000».

Таймер. Программа должна предоставлять возможность настройки, запуска и приостановки таймера, отображения настраиваемого и текущего значений таймера на блоке из четырёх семисегментных индикаторов (формат «ММ.СС», где ММ – минуты, СС – секунды). Использование внешних прерываний: кнопка PD2 INT0) (прерывание запуск/приостановка/возобновление таймера, PD3 кнопка (прерывание INT1) – переход между режимами настройки и работы таймера. Изменение значения таймера в режиме настройки должно осуществляться с помощью кнопок PD0 и PD1, которые соответственно должны увеличивать и уменьшать значение следующим образом:

10

- в момент нажатия кнопки значение сразу изменяется на одну секунду;
- если кнопка зажата дольше 2-х секунд, то, начиная со 2-й секунды, значение начинает изменяться на 1 секунду каждые 0,2 с;
- если кнопка зажата дольше 4-х секунд, то, начиная со 4-й секунды, значение начинает изменяться на 1 секунду каждые 0,1 с;
- после отпускания кнопки изменение немедленно прекращается.

Когда таймер доходит до нулевого значения отсчёт прекращается, на семисегментном индикаторе отображается значение 00.00, мигая с частотой 2 Гц.