PROBABILITY & STATISTICS

Lecture 4: Random variables

LAST TIME

- Independent events
- Conditional probability
- Bayes' rule
- Law of total probability

TODAY

- Random variables and their properties
- Probability distributions

Random variables

https://youtu.be/S_obHZJZ5EM

MOTIVATION

- We usually focus on some numerical aspects of the experiment
 - number of heads in 100 coin tosses;
 - number of boys among 4 kids;
 - sum on the two dice;
 - etc.

MOTIVATION

- We usually focus on some numerical aspects of the experiment
 - number of heads in 100 coin tosses;
 - number of boys among 4 kids;
 - sum on the two dice;
 - etc.
- These are random variables
 - A real-valued variable whose value is determined by an underlying random experiment.

$$S = \{HHHHHH, HHHHT, ..., TTTTTT\},$$

$$S = \{HHHHHH, HHHHT, \dots, TTTTTT\}, \quad |S| =$$

$$S = \{HHHHHH, HHHHT, ..., TTTTTT\}, |S| = 2^5$$

• We toss a coin 5 times:

$$S = \{HHHHHH, HHHHT, ..., TTTTTT\}, |S| = 2^5$$

Let X be the number of heads in this experiment.

$$S = \{HHHHHH, HHHHT, ..., TTTTTT\}, |S| = 2^5$$

- Let X be the number of heads in this experiment.
- X is a random variable.
 - The value of X depends on the outcome of the random experiment

$$S = \{HHHHHH, HHHHT, ..., TTTTTT\}, |S| = 2^5$$

- Let X be the number of heads in this experiment.
- X is a random variable.
 - The value of X depends on the outcome of the random experiment
 - Possible values:

$$S = \{HHHHHH, HHHHT, ..., TTTTTT\}, |S| = 2^5$$

- Let X be the number of heads in this experiment.
- X is a random variable.
 - The value of X depends on the outcome of the random experiment
 - Possible values: 0, 1, 2, 3, 4, 5

• Random variable assigns a value to each outcome of the underlying random experiment.

- Random variable assigns a value to each outcome of the underlying random experiment.
- Example:

We toss a coin 5 times

X – number of heads in this experiment:

 $HHHHHH \rightarrow$

- Random variable assigns a value to each outcome of the underlying random experiment.
- Example:

We toss a coin 5 times

$$HHHHH \rightarrow X = 5$$

$$TTTTT \rightarrow$$

- Random variable assigns a value to each outcome of the underlying random experiment.
- Example:

We toss a coin 5 times

$$\begin{array}{ccc} HHHHHH & \rightarrow & X = 5 \\ TTTTTT & \rightarrow & X = 0 \\ HHHTT & \rightarrow & \end{array}$$

- Random variable assigns a value to each outcome of the underlying random experiment.
- Example:

We toss a coin 5 times

$$HHHHHH \rightarrow X = 5$$

$$TTTTTT \rightarrow X = 0$$

$$HHHTT \rightarrow X = 3$$

$$HTHTH \rightarrow$$

- Random variable assigns a value to each outcome of the underlying random experiment.
- Example:

We toss a coin 5 times

$$HHHHHH \rightarrow X = 5$$

$$TTTTTT \rightarrow X = 0$$

$$HHHTT \rightarrow X = 3$$

$$HTHTH \rightarrow X = 3$$

• A random variable is a *function* from the sample space to the real numbers:

$$X: S \to \mathbb{R}$$

• A random variable is a *function* from the sample space to the real numbers:

$$X: S \to \mathbb{R}$$

• A set of all possible values a random variable can take is called **range**.

• A coin is tossed 100 times. X is the number of heads observed.

• A coin is tossed 100 times. *X* is the number of heads observed.

$$R_X =$$

• A coin is tossed 100 times. *X* is the number of heads observed.

$$R_X = \{0, 1, 2, ..., 99, 100\}$$

• A coin is tossed 100 times. *X* is the number of heads observed.

$$R_X = \{0, 1, 2, ..., 99, 100\}$$

• A coin is tossed until the first heads appears. *Y* is the total number of coin tosses.

• A coin is tossed 100 times. *X* is the number of heads observed.

$$R_X = \{0, 1, 2, \dots, 99, 100\}$$

• A coin is tossed until the first heads appears. *Y* is the total number of coin tosses.

$$R_Y =$$

• A coin is tossed 100 times. *X* is the number of heads observed.

$$R_X = \{0, 1, 2, \dots, 99, 100\}$$

• A coin is tossed until the first heads appears. Y is the total number of coin tosses.

$$R_Y = \{1, 2, 3, ...\}$$

$$A = \{1, 2, 3\}, \qquad B = \{2, 4, 6, ...\}, \qquad C = [1; 2], \qquad D = \mathbb{R}$$

• You know that sets can be finite and infinite.

$$A = \{1, 2, 3\}, \qquad B = \{2, 4, 6, ...\}, \qquad C = [1; 2], \qquad D = \mathbb{R}$$

• They can also be countable or uncountable.

$$A = \{1, 2, 3\}, \qquad B = \{2, 4, 6, ...\}, \qquad C = [1; 2], \qquad D = \mathbb{R}$$

- They can also be countable or uncountable.
- Countable sets = elements can be "counted" = there is a one-to-one correspondence between the element of set and \mathbb{N} :

$$A = \{1, 2, 3\}, \qquad B = \{2, 4, 6, ...\}, \qquad C = [1; 2], \qquad D = \mathbb{R}$$

- They can also be countable or uncountable.
- Countable sets = elements can be "counted" = there is a one-to-one correspondence between the element of set and \mathbb{N} :

$$A = \{1, 2, 3\},\$$

$$A = \{1, 2, 3\}, \qquad B = \{2, 4, 6, ...\}, \qquad C = [1; 2], \qquad D = \mathbb{R}$$

- They can also be countable or uncountable.
- Countable sets = elements can be "counted" = there is a one-to-one correspondence between the element of set and \mathbb{N} :

$$A = \{1, 2, 3\}, B = \{2, 4, 6, ...\}$$

You know that sets can be finite and infinite.

$$A = \{1, 2, 3\}, \qquad B = \{2, 4, 6, ...\}, \qquad C = [1; 2], \qquad D = \mathbb{R}$$

- They can also be countable or uncountable.
- Countable sets = elements can be "counted" = there is a one-to-one correspondence between the element of set and \mathbb{N} :

$$A = \{1, 2, 3\}, \qquad B = \{2, 4, 6, ...\}$$

• Uncountable sets = all the other sets

You know that sets can be finite and infinite.

$$A = \{1, 2, 3\}, \qquad B = \{2, 4, 6, ...\}, \qquad C = [1; 2], \qquad D = \mathbb{R}$$

- They can also be countable or uncountable.
- Countable sets = elements can be "counted" = there is a one-to-one correspondence between the element of set and \mathbb{N} :

$$A = \{1, 2, 3\}, \qquad B = \{2, 4, 6, ...\}$$

• Uncountable sets = all the other sets

$$C = [1; 2], \qquad D = \mathbb{R}$$

DISCRETE RANDOM VARIABLES

• **Discrete** random variables have countable range.

• **Discrete** random variables have countable range.

Example 1:

• **Discrete** random variables have countable range.

Example 1:

X – sum on the two rolled dice R_X =

• Discrete random variables have countable range.

Example 1:

X – sum on the two rolled dice $R_X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

• Discrete random variables have countable range.

Example 1:

X – sum on the two rolled dice $R_X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

Example 2:

• Discrete random variables have countable range.

Example 1:

X – sum on the two rolled dice $R_X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

Example 2:

Y – the total number of coin tosses before the first tails appears.

$$R_Y =$$

• Discrete random variables have countable range.

Example 1:

X – sum on the two rolled dice $R_X = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

Example 2:

Y – the total number of coin tosses before the first tails appears.

$$R_Y = \{1, 2, 3, ...\}$$

• Continuous random variables have uncountable range.

• Continuous random variables have uncountable range.

Example 1:

X – waiting time (in min) for a train that comes every 15 min R_X =

• Continuous random variables have uncountable range.

Example 1:

X – waiting time (in min) for a train that comes every 15 min $R_X = [0, 15]$

• Continuous random variables have uncountable range.

Example 1:

X – waiting time (in min) for a train that comes every 15 min $R_X = [0, 15]$

Example 2:

Y-% of the population that supports legalization of marijuana.

$$R_Y =$$

• Continuous random variables have uncountable range.

Example 1:

X – waiting time (in min) for a train that comes every 15 min $R_X = [0, 15]$

Example 2:

Y-% of the population that supports legalization of marijuana.

$$R_Y = [0, 100]$$

- You are tossing a coin twice.
- Random variable X number of heads: R_X =

- You are tossing a coin twice.
- Random variable X number of heads: $R_X = \{0, 1, 2\}$

- You are tossing a coin twice.
- Random variable X number of heads: $R_X = \{0, 1, 2\}$
- We are interested in the following probabilities:

$$P(X = 0) =$$

$$P(X=1) = P(X=2) =$$

$$P(X = 2) =$$

- You are tossing a coin twice.
- Random variable X number of heads: $R_X = \{0, 1, 2\}$
- We are interested in the following probabilities:

$$P(X = 0) = 0.25, \qquad P(X = 1) = \qquad P(X = 2) =$$

- You are tossing a coin twice.
- Random variable X number of heads: $R_X = \{0, 1, 2\}$
- We are interested in the following probabilities:

$$P(X = 0) = 0.25,$$
 $P(X = 1) = 0.5,$ $P(X = 2) =$

- You are tossing a coin twice.
- Random variable X number of heads: $R_X = \{0, 1, 2\}$
- We are interested in the following probabilities:

$$P(X = 0) = 0.25,$$
 $P(X = 1) = 0.5,$ $P(X = 2) = 0.25$

- You are tossing a coin twice.
- Random variable X number of heads: $R_X = \{0, 1, 2\}$
- We are interested in the following probabilities:

$$P(X = 0) = 0.25,$$
 $P(X = 1) = 0.5,$ $P(X = 2) = 0.25$

χ	0	1	2
P(x)	0.25	0.5	0.25

- You are tossing a coin twice.
- Random variable X number of heads: $R_X = \{0, 1, 2\}$
- We are interested in the following probabilities:

$$P(X = 0) = 0.25,$$
 $P(X = 1) = 0.5,$ $P(X = 2) = 0.25$

• **Probability distribution** of *X*:

χ	0	1	2
P(x)	0.25	0.5	0.25

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

Example:

$$R_X = \{ \}$$

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

Example:

$$R_X = \{0, 1, 2\}$$

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

Example:

$$P_X(x) = \begin{cases} x = 0 \\ x = 1 \\ x = 2 \end{cases}$$

$$otherwise$$

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

Example:

$$P_X(x) = \begin{cases} 0.25, & x = 0 \\ & x = 1 \\ & , & x = 2 \\ & , & otherwise \end{cases}$$

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

Example:

$$P_X(x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ & , & x = 2 \\ & , & otherwise \end{cases}$$

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

Example:

$$P_X(x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 2 \\ , & otherwise \end{cases}$$

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

Example:

$$P_X(x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 2 \\ 0, & otherwise \end{cases}$$

x	0	1	2
P(x)	0.25	0.5	0.25

X	0	1	2
P(x)	0.25	0.5	0.25

- The following holds:
 - 1. For all x, $0 \le P_X(x) \le 1$

X	0	1	2
P(x)	0.25	0.5	0.25

- The following holds:
 - 1. For all x, $0 \le P_X(x) \le 1$
 - $2. \sum_{x_k \in R_X} P_X(x_k) = 1$

X	0	1	2
P(x)	0.25	0.5	0.25

- The following holds:
 - 1. For all x, $0 \le P_X(x) \le 1$

2.
$$\sum_{x_k \in R_X} P_X(x_k) = 1$$

 $P_X(0) + P_X(1) + P_X(2) = 0.25 + 0.5 + 0.25 = 1$

X	0	1	2
P(x)	0.25	0.5	0.25

- The following holds:
 - 1. For all x, $0 \le P_X(x) \le 1$
 - 2. $\sum_{x_k \in R_X} P_X(x_k) = 1$ $P_X(0) + P_X(1) + P_X(2) = 0.25 + 0.5 + 0.25 = 1$
 - 3. For any set $A \subseteq R_X$, $P(X \in A) = \sum_{x_k \in A} P_X(x_k)$

χ	0	1	2
P(x)	0.25	0.5	0.25

- The following holds:
 - 1. For all x, $0 \le P_X(x) \le 1$
 - 2. $\sum_{x_k \in R_X} P_X(x_k) = 1$ $P_X(0) + P_X(1) + P_X(2) = 0.25 + 0.5 + 0.25 = 1$
 - 3. For any set $A \subseteq R_X$, $P(X \in A) = \sum_{x_k \in A} P_X(x_k)$ $A = \{0, 1\}, \quad P(X = 0 \text{ or } X = 1) = 0.25 + 0.5 = 0.75$

UNFAIR COIN

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable X denote the total number of heads.

$$R_X = \{0, 1, 2\}$$

UNFAIR COIN

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable X denote the total number of heads.

$$R_X = \{0, 1, 2\}$$

PMF:

UNFAIR COIN

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable X denote the total number of heads.

$$R_X = \{0, 1, 2\}$$

PMF:

$$P_X(x) = \begin{cases} x = 0 \\ x = 1 \\ x = 2 \end{cases}$$

$$otherwise$$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable X denote the total number of heads.

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ x = 1\\ x = 2\\ otherwise \end{cases}$$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable X denote the total number of heads.

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ 2 \cdot 0.4 \cdot 0.6, & x = 1\\ & x = 2\\ & otherwise \end{cases}$$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable X denote the total number of heads.

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ 2 \cdot 0.4 \cdot 0.6, & x = 1\\ 0.6^2, & x = 2\\ & otherwise \end{cases}$$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable X denote the total number of heads.

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ 2 \cdot 0.4 \cdot 0.6, & x = 1\\ 0.6^2, & x = 2\\ 0, & otherwise \end{cases}$$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable *X* denote the total number of heads.

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ 2 \cdot 0.4 \cdot 0.6, & x = 1\\ 0.6^2, & x = 2\\ 0, & otherwise \end{cases}$$

$$P(X = 10) =$$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable *X* denote the total number of heads.

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ 2 \cdot 0.4 \cdot 0.6, & x = 1\\ 0.6^2, & x = 2\\ 0, & otherwise \end{cases}$$

$$P(X = 10) = P_X(10)$$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable *X* denote the total number of heads.

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ 2 \cdot 0.4 \cdot 0.6, & x = 1\\ 0.6^2, & x = 2\\ 0, & otherwise \end{cases}$$

$$P(X = 10) = P_X(10) = 0,$$

 $P(X \le 1) =$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable *X* denote the total number of heads.

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ 2 \cdot 0.4 \cdot 0.6, & x = 1\\ 0.6^2, & x = 2\\ 0, & otherwise \end{cases}$$

$$P(X = 10) = P_X(10) = 0,$$

 $P(X \le 1) = P_X(1) + P_X(0) =$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable *X* denote the total number of heads.

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ 2 \cdot 0.4 \cdot 0.6, & x = 1\\ 0.6^2, & x = 2\\ 0, & otherwise \end{cases}$$

$$P(X = 10) = P_X(10) = 0,$$

 $P(X \le 1) = P_X(1) + P_X(0) = 0.16 + 0.48,$
 $P(X \le 2) =$

• You are tossing an unfair coin with the probability of heads 0.6 twice. Let random variable *X* denote the total number of heads.

$$P_X(x) = \begin{cases} 0.4^2, & x = 0\\ 2 \cdot 0.4 \cdot 0.6, & x = 1\\ 0.6^2, & x = 2\\ 0, & otherwise \end{cases}$$

$$P(X = 10) = P_X(10) = 0,$$

 $P(X \le 1) = P_X(1) + P_X(0) = 0.16 + 0.48,$
 $P(X \le 2) = P_X(2) + P_X(1) + P_X(0) = 1$

CUMULATIVE DISTRIBUTION FUNCTION

- Another way to represent distribution.
- Cumulative distribution function (CDF) of a random variable X is defined as follows:

$$F_X(x) = P(X \le x) \quad \forall x \in \mathbb{R}$$

CUMULATIVE DISTRIBUTION FUNCTION

- Another way to represent distribution.
- Cumulative distribution function (CDF) of a random variable X is defined as follows:

$$F_X(x) = P(X \le x) \quad \forall x \in \mathbb{R}$$

• Example: X – total number of heads after two tosses of a coin.

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ 0, & otherwise \end{cases}$$

CUMULATIVE DISTRIBUTION FUNCTION

- Another way to represent distribution.
- Cumulative distribution function (CDF) of a random variable X is defined as follows:

$$F_X(x) = P(X \le x) \quad \forall x \in \mathbb{R}$$

• Example: X – total number of heads after two tosses of a coin.

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ 0, & otherwise \end{cases}$$
$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.25, & 0 \le x < 1 \\ 0.75, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

- You are rolling a fair die. Y the outcome.
- Define PMF $P_Y(y)$ and CDF $F_Y(y)$ of Y.

$$P_Y(y) = P(Y = y) =$$

- You are rolling a fair die. Y the outcome.
- Define PMF $P_Y(y)$ and CDF $F_Y(y)$ of Y.

$$P_{Y}(y) = P(Y = y) = \begin{cases} 1/6, & x = 1\\ 1/6, & x = 2\\ 1/6, & x = 3\\ 1/6, & x = 4\\ 1/6, & x = 5\\ 1/6, & x = 6\\ 0, & otherwise \end{cases}$$

- You are rolling a fair die. Y the outcome.

• Define PMF
$$P_Y(y)$$
 and CDF $F_Y(y)$ of Y .

$$P_Y(y) = P(Y = y) = \begin{cases} 1/6, & x = 1\\ 1/6, & x = 2\\ 1/6, & x = 3\\ 1/6, & x = 4 \end{cases}$$

$$P_Y(y) = P(Y = y) = \begin{cases} 1/6, & x = 4\\ 1/6, & x = 5\\ 1/6, & x = 6\\ 0, & otherwise \end{cases}$$
Probability & Statitsics - January 2023

- You are rolling a fair die. Y the outcome.
- Define PMF $P_Y(y)$ and CDF $F_Y(y)$ of Y.

$$P_{Y}(y) = P(Y = y) = \begin{cases} 1/6, & x = 1\\ 1/6, & x = 2\\ 1/6, & x = 3\\ 1/6, & x = 4 \end{cases}$$

$$P_{Y}(y) = P(Y = y) = \begin{cases} 0, & x < 1\\ 1/6, & 1 \le x < 2\\ 2/6, & 2 \le x < 3\\ 3/6, & 3 \le x < 4\\ 4/6, & 4 \le x < 5\\ 1/6, & x = 6\\ 0, & otherwise \end{cases}$$

$$1/6, & x = 6\\ 0, & otherwise$$

Expected value

• Consider the following random variable:

\boldsymbol{x}	-1	0	1
P(x)	1/3	1/3	1/3

• Consider the following random variable:

\boldsymbol{x}	-1	0	1
P(x)	1/3	1/3	1/3

• Which value would you expect to get on average?

• Consider the following random variable:

\boldsymbol{x}	-1	0	1
P(x)	1/3	1/3	1/3

- Which value would you expect to get on average?
- And now?

χ	-1	0	1
P(x)	0.1	0.1	8.0

• Let X be a discrete random variable with a finite range $R_X = \{x_1, \dots, x_n\}$. The expected value of X is defined as:

$$EX = \sum_{x_k \in R_X} x_k \cdot P(X = x_k)$$

• Let X be a discrete random variable with a finite range $R_X = \{x_1, \dots, x_n\}$. The expected value of X is defined as:

$$EX = \sum_{x_k \in R_X} x_k \cdot P(X = x_k)$$

• Different notations: EX, E[X], μ_X , ...

• EX = -1

\boldsymbol{x}	-1	0	1
P(x)	1/3	1/3	1/3

• EY =

χ	-1	0	1
P(x)	0.1	0.1	8.0

•
$$EX = -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = 0$$

\boldsymbol{x}	-1	0	1
P(x)	1/3	1/3	1/3

•
$$EY =$$

χ	-1	0	1
P(x)	0.1	0.1	8.0

•
$$EX = -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = 0$$

\boldsymbol{x}	-1	0	1
P(x)	1/3	1/3	1/3

•
$$EY = -1 \cdot 0.1 + 0 \cdot 0.1 + 1 \cdot 0.8 = 0.7$$

$\boldsymbol{\chi}$	-1	0	1
P(x)	0.1	0.1	0.8

Variance

χ	-100	0	100
P(X=x)	1/3	1/3	1/3

у	-1	1
P(Y=y)	1/2	1/2

$\boldsymbol{\mathcal{X}}$	-100	0	100
P(X=x)	1/3	1/3	1/3

у	-1	1
P(Y=y)	1/2	1/2

$$EX =$$
 , $EY =$

χ	-100	0	100
P(X=x)	1/3	1/3	1/3

y
 -1
 1

$$P(Y = y)$$
 1/2
 1/2

$$EX = \frac{1}{3} \cdot (-100) + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 100 = 0,$$
 $EY = 0$

χ	-100	0	100
P(X=x)	1/3	1/3	1/3

y
 -1
 1

$$P(Y = y)$$
 1/2
 1/2

$$EX = \frac{1}{3} \cdot (-100) + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 100 = 0, \qquad EY = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0$$

$$EY = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0$$

• Consider the following two random variables X and Y:

χ	-100	0	100
P(X=x)	1/3	1/3	1/3

у	-1	1
P(Y=y)	1/2	1/2

$$EX = \frac{1}{3} \cdot (-100) + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 100 = 0, \qquad EY = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0$$

But *X* and *Y* are very different....

• The **variance** of a random variable X with $EX = \mu_X$ is defined as

$$Var(X) = E(X - EX)^2 = E(X^2) - (EX)^2$$

• The **variance** of a random variable X with $EX = \mu_X$ is defined as

$$Var(X) = E(X - EX)^2 = E(X^2) - (EX)^2$$

• "How often does X take values far from its mean?"

$$Var(X) \geq 0$$

$$Var(X) \geq 0$$

because by definition it's the expected value of $(X - \mu_X)^2 \ge 0$

VARIANCE

• Consider the following two random variables *X* and *Y*:

\boldsymbol{x}	-100	0	100
P(X=x)	1/3	1/3	1/3

у	-1	1	
P(Y=y)	1/2	1/2	

$$EX = \frac{1}{3} \cdot (-100) + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 100 = 0, \qquad EY = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0$$

$$EY = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0$$

$$Var(X) =$$

$$Var(Y) =$$

VARIANCE

• Consider the following two random variables X and Y:

χ	-100	0	100
P(X=x)	1/3	1/3	1/3

Var(Y) =

$$y$$
 -1 1 $P(Y = y)$ 1/2 1/2

$$EX = \frac{1}{3} \cdot (-100) + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 100 = 0, \qquad EY = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0$$
$$Var(X) = E(X - EX)^2 = EX^2 = \frac{2}{3} \cdot 10^4$$

VARIANCE

• Consider the following two random variables X and Y:

\boldsymbol{x}	-100	0	100
P(X=x)	1/3	1/3	1/3

$$y$$
 -1 1 $P(Y = y)$ 1/2 1/2

$$EX = \frac{1}{3} \cdot (-100) + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 100 = 0, \qquad EY = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0$$

$$Var(X) = E(X - EX)^2 = EX^2 = \frac{2}{3} \cdot 10^4$$

$$Var(Y) = E(X - EY)^2 = E(Y^2) = 1$$

- What are the measurement units of EX?
- What are the measurement units of Var(X)?

- What are the measurement units of EX? Same as those of X.
- What are the measurement units of Var(X)?

- What are the measurement units of EX? Same as those of X.
- What are the measurement units of Var(X)? $[units \ of \ X]^2$
 - Difficult to interpret.

- What are the measurement units of EX? Same as those of X.
- What are the measurement units of Var(X)? $[units\ of\ X]^2$
 - Difficult to interpret.

Standard deviation:

$$std(X) = \sqrt{Var(X)}$$

Practice problems

$$R_X = \{ \}$$

$$R_X = \{0, 1, 2\}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} F_X(x) = P(X \le x) = \begin{cases} F_X(x) = P(X \le x) \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} x = 0 \\ x = 1 \\ x = 2 \end{cases}$$

$$otherwise$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ x = 1 & F_X(x) = P(X \le x) = \\ x = 2 & otherwise \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ & x = 2 \end{cases}$$

$$otherwise$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ otherwise \end{cases} F_X(x) = P(X \le x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$
 $F_X(x) = P(X \le x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} x < 0 \\ 0 \le x < 1 \\ 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0 \le x < 1 \\ 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.1 & 0 \le x < 1 \\ 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.1 & 0 \le x < 1 \\ 0.7, & 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.1 & 0 \le x < 1 \\ 0.7, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{$$

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

χ			
P(X=x)			

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

X	1	2	3	4	5	6
P(X=x)						

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

χ	1	2	3	4	5	6
P(X=x)				$1+2\cdot 3$		
I (X - X)				36		

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

\boldsymbol{x}	1	2	3	4	5	6
P(X=x)	1			$1+2\cdot 3$		
I(X-X)	36			36		

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

\boldsymbol{x}	1	2	3	4	5	6
P(X=x)	1	1 + 2		$1+2\cdot 3$		
I(X - X)	36	36		36		

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

\boldsymbol{x}	1	2	3	4	5	6
P(X = x)	1	1+2	$1+2\cdot 2$	$1+2\cdot 3$		
I (X - X)	36	36	36	36		

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

χ	1	2	3	4	5	6
P(X = x)	1	1+2	$1+2\cdot 2$	$1+2\cdot 3$	$1+2\cdot 4$	
I(X-X)	36	36	36	36	36	

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

\boldsymbol{x}	1	2	3	4	5	6
P(X = x)	1	1 + 2	$1+2\cdot 2$	$1+2\cdot 3$	$1+2\cdot 4$	$1+2\cdot 5$
I(X - X)	36	36	36	36	36	36

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

\boldsymbol{x}	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	5 36	$\frac{7}{36}$	9 36	$\frac{11}{36}$

K	U		G	ICE

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

• CDF of *X*:

$$F_X(x) = \left\{ \begin{array}{c} \\ \end{array} \right.$$

K		G	ICE

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

• CDF of *X*:

$$F_X(x) = \begin{cases} x < 1 \\ 1 \le x < 2 \\ 2 \le x < 3 \\ 3 \le x < 4 \\ 4 \le x < 5 \\ 5 \le x < 6 \\ x \ge 6 \end{cases}$$

DO		
KU	NG	ICE

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1 \\ 1 \le x < 2 \\ 2 \le x < 3 \\ 3 \le x < 4 \\ 4 \le x < 5 \\ 5 \le x < 6 \\ x \ge 6 \end{cases}$$

DO		
KU	NG	ICE

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1/36, & 1 \le x < 2\\ 2 \le x < 3\\ 3 \le x < 4\\ 4 \le x < 5\\ 5 \le x < 6\\ x \ge 6 \end{cases}$$

KU	NG	ICE

х	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1/36, & 1 \le x < 2\\ 4/36, & 2 \le x < 3\\ 3 \le x < 4\\ 4 \le x < 5\\ 5 \le x < 6\\ x \ge 6 \end{cases}$$

	NIC	
KU	NG	ICE

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1/36, & 1 \le x < 2\\ 4/36, & 2 \le x < 3\\ 9/36, & 3 \le x < 4\\ & 4 \le x < 5\\ & 5 \le x < 6\\ & x \ge 6 \end{cases}$$

	NIC	
KU	NG	ICE

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1/36, & 1 \le x < 2\\ 4/36, & 2 \le x < 3\\ 9/36, & 3 \le x < 4\\ 16/36, & 4 \le x < 5\\ 5 \le x < 6\\ x \ge 6 \end{cases}$$

K	U	ᄔᄔ	IIN	G	ICE

х	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1 \\ 1/36, & 1 \le x < 2 \\ 4/36, & 2 \le x < 3 \\ 9/36, & 3 \le x < 4 \\ 16/36, & 4 \le x < 5 \\ 25/36, & 5 \le x < 6 \\ x \ge 6 \end{cases}$$

KU	ᆫᆫ	ING	

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1/36, & 1 \le x < 2\\ 4/36, & 2 \le x < 3\\ 9/36, & 3 \le x < 4\\ 16/36, & 4 \le x < 5\\ 25/36, & 5 \le x < 6\\ 1, & x \ge 6 \end{cases}$$

- Random experiment: tossing a fair coin until heads appear.
- Random variable X number of total tosses needed

- Random experiment: tossing a fair coin until heads appear.
- Random variable X number of total tosses needed

$$R_X = \{$$

- Random experiment: tossing a fair coin until heads appear.
- Random variable X number of total tosses needed

$$R_X = \{1, 2, 3, ...\}$$

- Random experiment: tossing a fair coin until heads appear.
- Random variable X number of total tosses needed

$$R_X = \{1, 2, 3, ...\}$$

- Random experiment: tossing a fair coin until heads appear.
- Random variable X number of total tosses needed

$$R_X = \{1, 2, 3, ...\}$$

$$P_X(k) = P(X = k) =$$

- Random experiment: tossing a fair coin until heads appear.
- Random variable X number of total tosses needed

$$R_X = \{1, 2, 3, \dots\}$$

$$P_X(k) = P(X = k) = \begin{cases} 0.5^k, & k \ge 1\\ 0, & otherwise \end{cases}$$

- Random experiment: tossing a fair coin until heads appear.
- Random variable X number of total tosses needed

$$R_X = \{1, 2, 3, ...\}$$

$$P_X(k) = P(X = k) = \begin{cases} 0.5^k, & k \ge 1\\ 0, & otherwise \end{cases}$$
$$E(X) = \sum_{k=1}^{+\infty} k \cdot P(X = k) = \sum_{k=1}^{+\infty} k \cdot 0.5^k = \cdots?$$

• Consider the following random variable *X*:

$\boldsymbol{\chi}$	-1	1
P(x)	1/3	2/3

$$EX = -1$$

• Consider the following random variable *X*:

$\boldsymbol{\chi}$	-1	1
P(x)	1/3	2/3

$$EX = -1 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{1}{3}$$

• Consider the following random variable *X*:

\boldsymbol{x}	-1	1
P(x)	1/3	2/3

$$EX = -1 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{1}{3}, \qquad EX^2 = \frac{1}{3}$$

• Consider the following random variable *X*:

\boldsymbol{x}	-1	1
P(x)	1/3	2/3

$$EX = -1 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{1}{3}, \qquad EX^2 = \frac{1}{3}$$

• Let $Y = X^2$. Distribution of Y:

• Consider the following random variable *X*:

\boldsymbol{x}	-1	1
P(x)	1/3	2/3

$$EX = -1 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{1}{3}, \qquad EX^2 = \frac{1}{3}$$

• Let $Y = X^2$. Distribution of Y:

У	1
P(y)	1

• Consider the following random variable *X*:

\boldsymbol{x}	-1	1
P(x)	1/3	2/3

$$EX = -1 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{1}{3}, \qquad EX^2 = EY = 1$$

• Let $Y = X^2$. Distribution of Y:

у	1
P(y)	1

PROPERTIES OF EXPECTED VALUE 2

• Let X be a random variable with range $R_X = \{x_1, \dots, x_n\}$ and Y = g(X). Then

$$EY = E(g(X)) = \sum_{x_k \in R_X} g(x_k) \cdot P(X = x_k)$$

$$EX =$$

$$Var(X) =$$

$$EX = \frac{1}{6}(1+2+3+4+5+6) =$$

$$Var(X) =$$

$$EX = \frac{1}{6}(1+2+3+4+5+6) = \frac{21}{6} = \frac{7}{3}$$

$$Var(X) =$$

$$EX = \frac{1}{6}(1+2+3+4+5+6) = \frac{21}{6} = \frac{7}{3}$$

$$Var(X) = (EX)^2 - E(X^2) =$$

$$EX = \frac{1}{6}(1+2+3+4+5+6) = \frac{21}{6} = \frac{7}{3}$$

$$Var(X) = (EX)^2 - E(X^2) =$$

$$EX^2 =$$

$$EX = \frac{1}{6}(1+2+3+4+5+6) = \frac{21}{6} = \frac{7}{3}$$

$$Var(X) = (EX)^2 - E(X^2) =$$

$$EX^2 = \frac{1}{6}(1+4+9+16+25+36) = \frac{91}{6}$$

$$EX = \frac{1}{6}(1+2+3+4+5+6) = \frac{21}{6} = \frac{7}{3}$$

$$Var(X) = (EX)^2 - E(X^2) = \frac{91}{6} - \frac{49}{9} \sim 2.92$$

$$EX^2 = \frac{1}{6}(1+4+9+16+25+36) = \frac{91}{6}$$