RoboSim

FRC Team 1736 Robot Casserole

Overview

What:

- A flexible platform to simulate FRC robot hardware components
- A tool to increase development speed, test coverage, code and electrical robustness
- A platform for teaching concepts such as Plant Models, Design-For-Test, C coding, Digital Logic, Analog-Digital conversion, low-level embedded coding.

Overview

- Why
 - Historically, electrical and software validation has been slowed due to lack of hardware to use for test
 - Mistakes can also be costly as mechanical components are damaged by errors in SW or wiring.
 - Mass permutation and regression testing is not feasible
 - Importance of testing has not been addressed.

Overview

- How
 - Core real-time plant model running on Arduino Uno
 - Modularized SW for stable HW interface code with easy-to-modify plant model
 - Visualization through connected PC
 - Python-based GUI
 - Custom-built interface electronics to replicate CIM motors, encoders, analog sensors, limit switches, etc.

Design Philosophy

- Simulate Motors, Mechanical linkages & mechanisms, and sensor feedback only
 - Input is voltage from motor controllers, output is simulated response of sensors and visualization
 - Agnostic to electronics hardware technology
 - Zero intrusion into electrical or SW design
 - 100% of SW which impacts control can be tested

Software Technologies Involved

- Arduino
 - Embedded C & C++
- Python
- Git
- Future potential for Matlab/Simulink or Dynasty integration

Initial Spec for IO Capabilities

- 6 Motor Inputs (analog)
 - Filtered by PWM Card, read by Arduino
- 8 Solenoid Inputs (digital)
 - Read by IO card
- 8 Limit Switch Outputs (digital)
 - Produced by IO Card
- 2 Analog Sensor Outputs
 - R-R2 ladder DAC on IO Card, 0-5V
- 4 Quadrature Encoder Outputs
 - Emulated in SW by Arduino

Initial Spec for SW Capabilities

- 100ms Main plant model loop
 - Processor load metric generated
- Serial port broadcast of state
 - User defined update rate and message contents
- Interrupt-based emulation of Encoders onboard
- Isolated HW interfacing and Plant model code
 - Plant custom to year, while HW interfacing stays constant

IO Board

IO Board - Description

- Eight Digital Inputs
- Eight Digital Outputs
- Two Analog Outputs
- Serial/Clock/Sync interface with Arduino
- Can stack an arbitrary number of boards to increase IO

PWM Input Card

PWM Input Card - Description

- Six Low-Pass Filter and Offset Units
- Converts PWM output from any Motor Controller into 0-5V signal readable by Arduino Analog Inputs
- One card for Arduino Uno

PWM Input Card - pSpice Simulation

PWM Input Card - pSpice Simulation

Quadrature Encoder Emulation

Initial Cost Estimates

- Arduino Uno \$30.00 New
 - Can use existing
- 1 IO Card + 1 PWM Card = \$58.68
 - No spare parts included in cost
 - Can possibly source some parts from Cat B-Stock

Community

- Prototype source code is already available
 - https://github.com/RobotCasserole1736/RoboSim
- All designs will be open source
 - Software (Arduino and PC)
 - Hardware (Schematics, BOM, PCB designs)
 - Documentation

Future Expandability

- Design and validate plant models in Matlab, run generated code on Arduino
- Use larger Arduino with more Analog or Digital IO
- Controllable electronic loads to simulate motors in various operating conditions
- GPIB control of power supply to simulate battery voltage fluctuation with load
- Hardware-based Encoder Emulation
- More-robust electrical fault protection
- Automated regression testing routines