(8) Tópicos Avançados em Deep Learning Redes Neurais e Arquiteturas Profundas

Moacir A. Ponti CeMEAI/ICMC, Universidade de São Paulo MBA em Ciência de Dados

www.icmc.usp.br/~moacir — moacir@icmc.usp.br

São Carlos-SP/Brasil

Agenda

Detecção de Objetos, regressão+classificação e pixel-to-pixel

Redes multi-fluxo e aprendizado de métricas

Aprendizado auto-supervisionado

BERT: pré-treinamento de encoders de transformers bidirecionais

Agenda

Detecção de Objetos, regressão+classificação e pixel-to-pixel

Redes multi-fluxo e aprendizado de métricas

Aprendizado auto-supervisionado

BERT: pré-treinamento de encoders de transformers bidirecionais

Classificação + regressão

Objetivo: classificar e localizar

Saída da rede

- ► Classes
- ► Valores de uma caixa (bounding box)

Classificação + regressão

Formato da predição (saída da rede): presença do objeto, bounding box e classes.

Classificação + regressão: em um grid

Treinamento considera grid $S \times S$ (comumente 19×19) e B caixas em formatos pré-definidos, chamados de âncoras.

YOLO: You Only Look Once

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224 \times 224 input image) and then double the resolution for detection.

Confiança é calculada com: $P(classe) \cdot loU$

Saída é de tamanho $S \times S \times (5B + C)$

YOLO: You Only Look Once + IoU

Intersecção sobre União

YOLO: You Only Look Once + Non-Max Supression

Supressão de não máximos

- descartar $p_c \leq 0.6$
- \triangleright selecionar maior p_c
- ▶ descartar caixas com *IoU* > 0.5 da anterior

YOLO: You Only Look Once + Non-Max Supression

Supressão de não máximos

- descartar $p_c \leq 0.6$
- \triangleright selecionar maior p_c
- ▶ descartar caixas com *IoU* > 0.5 da anterior

Detecção de pontos de referência (landmark)

Exemplo: encontrar pontos de uma face

Formato da predição (saída da rede): presença do objeto de interesse, coordenadas para cada landmark

Função de custo

- ► Softmax pixel-a-pixel (ao longo dos canais) + Entropia Cruzada
- Pesos computados para:
 - 1. compensar desbalanceamento (fundo é comumente mais proeminente do que os alvos)
 - 2. dar mais peso às bordas das regiões a serem segmentadas

Treinamento:

- ▶ Data augmentation: utilizando deformação suave das imagens
- Inicialização dos pesos por camada
 - 1. baseada na camada anterior
 - 2. distribuição Gaussiana/normal $\sigma = \sqrt{2/N}$, N sendo o número de nós de entrada
 - exemplo: camada anterior com 64 filtros 3 × 3, $\sigma = \sqrt{2/(9 \cdot 64)} = \sqrt{2/576}$

Agenda

Detecção de Objetos, regressão+classificação e pixel-to-pixe

Redes multi-fluxo e aprendizado de métricas

Aprendizado auto-supervisionado

BERT: pré-treinamento de encoders de transformers bidirecionais

Lidando com variações intra-classe

Lidando com variações intra-classe

- Aprender a partir de instâncias diretamente para a saída pode tornar o modelo dependente de características que não representam o que gostaríamos
- A saída: aprender a partir de grupos de exemplos, em particular pares ou triplas

FaceNet / Triplet loss

$$X_{a}, X_{p}, X_{n} \longrightarrow \text{Modelo } f() \longrightarrow Z \longleftrightarrow f(X_{p}) = p$$

$$\text{Embedding} \downarrow f(X_{n}) = n$$

 $||a-p||^2-||a-n||^2$

O objetivo é aprender representação que obedeça distâncias

Lidando com variações intra-classe

Redes multi-fluxo e aprendizado multimodal

Redes multi-fluxo e aprendizado multimodal

Redes com função contrastiva

- ▶ Entrada: par de exemplos x_1, x_2
- Modelos podem ser os mesmos ou diferentes (depende dos domínios)
- Função de custo considera as representações a, p obtidas da saída de uma das camadas
- ▶ Se p é positivo, então y = 0, senão y = 1, cancelando sempre um dos termos

$$L(a,p) = \frac{1}{2}(1-y)|a-p|^2 + \frac{1}{2}y[\max(0, m-|a-p|^2)]$$

Redes triplet

- ► Entrada: tripla x_a, x_p, x_n
- Modelos podem ser os mesmos ou diferentes (depende dos domínios)
- Função de custo considera as representações obtidas da saída de uma das camadas: a, p, n

$$L(a, p, n) = \frac{1}{2} [\max(0, m + |a - p|^2 - |a - n|^2)]$$

Intuição das funções de custo

Before training

Contrastive loss

$$L(a,p) = \frac{1}{2}(1-y)|a-p|_2^2 + \frac{1}{2}y \{\max(0,m-|a-p|_2^2)\}$$

Triplet loss

$$L(a, p, n) = \frac{1}{2} \{ \max(0, m + |a - p|_2^2 - |a - n|_2^2) \}$$

Intuição das funções de custo

Before training

Contrastive loss

$$\begin{split} L(a,p) &= \frac{1}{2}(1-y)|a-p|_2^2 + \\ &+ \frac{1}{2} y \left\{ \max(0, m - |a-p|_2^2 \right\} \end{split}$$

Triplet loss

$$L(a, p, n) = \frac{1}{2} \{ \max(0, m + |a - p|_2^2 - |a - n|_2^2) \}$$

Intuição das funções de custo

Before training

Contrastive loss

$$L(a,p) = \frac{1}{2}(1-y)|a-p|_2^2 + \frac{1}{2}y\{\max(0,m-|a-p|_2^2)\}$$

Triplet loss

$$L(a, p, n) = \frac{1}{2} \{ \max(0, m + |a - p|_2^2 - |a - n|_2^2) \}$$

Compartilhamento de pesos

Estratégia de treinamento: hard positive/negative

Agenda

Detecção de Objetos, regressão+classificação e pixel-to-pixe

Redes multi-fluxo e aprendizado de métricas

Aprendizado auto-supervisionado

BERT: pré-treinamento de encoders de transformers bidirecionais

Revisitando categorias de aprendizado

Aprendizado por reforço

- retorno fraco a cada etapa
- ▶ funciona bem quando episódios são fáceis de computar/simular

Aprendizado supervisionado

- retorno a cada etapa depende da variabilidade e quantidade de dados
- mas raramente há dados abundantes

Aprendizado auto-supervisionado

- retorno a cada etapa é similar ao supervisionado, mas computado a partir dos dados de entrada
 - ▶ podemos gerar número enorme de dados para treinamento

Aprendizado supervisionado para auto-supervisionado

Aprendizado supervisionado para auto-supervisionado

Rótulos computáveis: rotação e quebra-cabeça

Tarefas computáveis: colorização

Deixa o menino _____ bola e _pren___

Deixa o menino pegar bola e aprender

Outras tarefas possíveis

- ► Redes geradoras
- ▶ Denoising Autoencoders
- ► Pseudo-labels com agrupamento
- ► Aprendizado constrastivo multidomínio: áudio + imagem, áudio + texto

Agenda

Detecção de Objetos, regressão+classificação e pixel-to-pixe

Redes multi-fluxo e aprendizado de métricas

Aprendizado auto-supervisionado

BERT: pré-treinamento de encoders de transformers bidirecionais

BERT e Transformer

Método para pré-treinar encoders to tipo Transformer

- BERT Base e BERT Large, modelos com blocos Transformer:
 - ► Base:
 - ► 12 camadas (blocos Transformer)
 - ► Embedding com 768 dimensões
 - ► 110 milhões de parâmetros
 - ► Large:
 - 24 camadas (blocos Transformer)
 - ► Embedding com 1024 dimensões
 - ► 336 milhões de parâmetros

BERT Treinamento e Embeddings

BERT: pré-treinamento inspirado em ELMo

- ▶ GloVe e similares
 - vetor fixo por palavra independente do contexto
 - ex. manga, bateria, pilha.
- ► ELMo olha para a sentença antes de atribuir vetor
 - usa LSTM bidirecional para criar o embedding
 - aprende (sem labels) a predizer a próxima palavra (e a anterior)
 - ▶ BERT usa essa ideia mas com transformers

vamos deixar o menino jogar bola

→ vamos deixar o menino jogar [mask]
[mask] deixar o menino jogar bola ←
vamos deixar o → [mask] ←jogar bola

BERT Bidirectional Transformer

BERT: segunda tarefa de pré-treinamento

BERT: ULM-FiT

- ▶ ULM-FiT usa metodos efetivos para pré-treinamento para além:
 - de word embeddings
 - de word embeddings contextualizados
- ► Modelo de linguagem + estratégia para ajustar modelo para várias tarefas
- Descongelamento gradual: da última camada até a primeira

BERT: datasets

- ► Book Corpus: 800M palavras
- ► Wikipedia Inglês: 2.4B palavras

BERT: para classificação

BERT: para encontrar resposta em texto

Considerações finais

- Redes profundas podem ser adaptadas e usadas em arquiteturas com mais componentes
- ► Funções de custo e outras tarefas tem potencial para resolver problemas aplicados
- Auto-supervisão e pré-treinamento são indicadas como potenciais para diminuir dependência de dados
- O desafio é adaptar as arquiteturas e métodos aos casos em particular: estruturados, não estruturados (texto, áudio, imagens, vídeo) de acordo com a natureza dos dados.

Referências: Classificação e regressão para detecção de objetos

- Material em Português sobre YOLO: https://iaexpert.academy/2020/10/13/deteccao-de-objetos-com-volo-uma-abordagem-moderna/
- ▶ Blog com implementação básica em Keras: https: //machinelearningmastery.com/how-to-perform-object-detection-with-volov3-in-keras/
- Artigo sobre detecção de objetos: https://www.researchgate.net/profile/Liu-76/publication/327550187_Deep_Learning_for_Generic_Object_Detection_A_Survey/links/5ddf876aa6fdcc2837f083ea/Deep-Learning-for-Generic-Object-Detection-A-Survey.pdf

Referências: Redes multi-fluxo e aprendizado de métricas

- Blog com conteúdo sobre redes siamesas (multi-fluxo): https://towardsdatascience.com/illustrated-guide-to-siamese-network-3939da1b0c9d
- ▶ Blog com conteúdo sobre aprendizado de métricas: https://towardsdatascience.com/the-why-and-the-how-of-deep-metric-learning-e70e16e199c0
- Artigo survey na área: https://www.researchgate.net/publication/335314481_Deep_Metric_Learning_A_Survey
- ► Notebook com exemplo de Contrastive Learning: https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/ vision/ipynb/supervised-contrastive-learning.ipynb

Referências: Aprendizado auto-supervisionado

- Lista de recursos: https://github.com/jason718/awesome-self-supervised-learning
- Artigo "self-taught learning" (2007): https://ai.stanford.edu/~hllee/icm107-selftaughtlearning.pdf
- ► Artigo "How Well Do Self-Supervised Models Transfer?" (2021): https://arxiv.org/pdf/2011.13377
- ► Artigo "Predicting What You Already Know Helps" (2021): https://arxiv.org/pdf/2008.01064.pdf
- ► Palestra do Yan LeCun https://www.youtube.com/watch?v=SaJL4SLfrcY
- ▶ Notebook com exemplo de Self-supervised contrastive learning: https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/simsiam.ipynb

Referências: BERT

- ► Tutorial em Keras: https://www.youtube.com/watch?v=7kLi8u2dJz0
- ► Post da Google sobre BERT: https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
- ► Tutorial em Blog: https: //towardsml.com/2019/09/17/bert-explained-a-complete-guide-with-theory-and-tutorial/
- ► Notebook com uso de Bert em Tensorflow: https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb#scrollTo=xiYrZKaHwV81