(e) (ii) sin 15° - coo 15° => (sin15 4 couls)	(SIn 15-00 15) = 11-5m 30	$(a) x^{2} = 4 y (b) x^{2} = 4 y (c) x^{2} = 4 y (d) (d) $	$\int_{0}^{\infty} \Gamma(2t,t^{2}) \qquad \int_{0}^{\infty} \frac{y}{m_{r}} = y$	0 True 42 m = 26	mr = t	26,62) -mmn	Lan 0 = mr - m FT	$=\frac{\xi-\frac{\xi^2_{-1}}{2\xi}}{(f^2_{-1})}$	1 + 2 (24)	1+26-2	= 262-271	26-163-1		11	(4150 45 651 7)
EXTENSION 1 2003 CSSA	(ii) LMBC = LBAC Angle in Alt. Segment Th.	3	(COINT. LS SUPP. BA MIN)	MNCB is cyclic quad (opp. angles supp.)	Q2 (a) y = (x2+1)5	1.2x /	$y^{11} = 40 \times (x^2 + 1), 2x + 10(x^2 + 1)^{14}$	$= (\chi^{2}+1)^{3} 80x^{2} + (0x^{2}+10)(x^{2}+1)^{3}$ $u^{4} = (\chi^{2}+1)^{3} (90x^{2}+10)$	1 =	(b) 5, nc2=2C2+3C2+4C2+5C2 V	1 + 3 + 6 + 10	- 20	(e) (i) (SIMA-COOA) = 1-8IM2A RHS=1-SIM(A+A)	= 1 - (SINACOSA+ SINACOSH) = 1 - 2SINACOSA	LMS = SIntA + COO2A - 281nACOOA = 1-281nACOOA
or in the 5(10")+3 1. 5+3(10")	1 n 5 00 2 (100) +1 = 1 m 2 + 1 (10-0)	2+0	$A(-2,5) = (x_2, y_1) = 2.4$ $A(-2,5) = 6(2-1) = 2.4$		y + 1x-2 y=	$\kappa = \frac{12}{3} \qquad y = 3$ $\therefore (\kappa, y) = (4, 1)$	(3) 2 > x-1	हे इ.स. १	1 ×	0 × (x - x) x (x - x) x	11 0 14x xx-1 0xxx2				

(i) $\frac{dV}{dt} = \frac{d}{dt} (A - Ae^{-kt})$ $A - V = A - (A - Ae^{-kt})$ $A - V = A - (A - Ae^{-kt})$ $A - Ae^{-kt}$ $A - Ae^{-kt}$ $A - Ae^{-kt}$ Ae^{-kt} Ae^{-kt} Ae^{-kt}

(ii) k=2 $V=\frac{A}{4}$ $\frac{A}{4}=A (1-e^{-2k})$ $1-e^{-2k}=\frac{1}{4}$ $e^{-2k}=-\frac{3}{4}$ $e^{-2k}=\frac{3}{4}$ 0 $e=A(1-e^{-4k})$ $=A(1-(e^{-2k})^2)$ from $=A(1-(\frac{3}{4})^2)$ 0 $=\frac{70}{16}$ $=\frac{70}{16}$ $=\frac{70}{16}$ in next 2 minites.

(b) P(0) = P O < P < I $P \neq 0.5$ i) S_{LX} throws:

P(A+ Most 1E) = P(50 or 60)

= $6C_5 p^5 (1-p) + p^6$

= 6p5_5p6

: Water level falling O.5cm/sec

1101

(ii) P(Product Even) = 1-P(Product Odd) V

=1-p6

(c) 400 25 x 400

√2161/sec

(Not: all mecouvements changed to cm)

(i) By similar as: $\frac{x}{200} = \frac{h}{25}$ $\frac{25x}{200} = \frac{200h}{x}$ x = 8h $V = \frac{1}{2} \times 8h^2 \times 400$ $V = 1600 h^2$ (ii) $\frac{dh}{dt} = ? \text{ when } h=10$ $\frac{dh}{dt} = \frac{dh}{dV} \cdot \frac{dV}{dt} \cdot 0$ $\frac{dV}{dt} = \frac{1600 \text{ cryse}}{4V} \cdot \frac{dV}{dt} \cdot 0$

 $\frac{dV}{dh} = 3200h \Rightarrow \frac{dh}{dV} = \frac{3200h}{32000}$ $h = 10 \quad \frac{dV}{dh} = \frac{32000}{32000}$ $\therefore 0 \quad \frac{dh}{dk} = \frac{-16000}{32000}$

