Discrete Mathematics Topic 02 : Logic Logic Lecture 01: Introduction to Propositional Logic Dr Kieran Murphy (©) (*) Computing and Mathematics, SETU (Waterford). (kieran.murphy@setu.ie) Graphs and Collections Autumn Semester, 2025/26 Networks

Outline

- Propositions and fundamental logical operators (AND, OR and NOT).
- Evaluating logical expression using truth tables.
- Satisfiability, Tautologies and Contradictions.

Enumeration Relations & Functions

Thought for the day ...

While walking through a fictional forest, you encounter three identical trolls guarding a bridge. Each troll is either a knight, who always tells the truth, or a knave, who always lies. The trolls will not let you pass until you correctly identify each as either a knight or a knave. Each troll makes a single statement:

Which troll are knights? and which are knaves?

Outline

1. Introduction

	 ments). A proposition may be atomic or compound (build up using logical connectives). Constructing compound propositions using <i>And</i>, <i>Or</i> and <i>Not</i>. 	
2.	Truth tables • Evaluating an expression for all possible input combinations.	12

• Propositional logic is concerned with analysing propositions (true or false state-

• Statements that are always true or always false.

Logic

Logic is "science of reasoning"

- Allows us to represent knowledge in precise, unambiguous way.
- Allows us to make valid inferences using a set of consistent rule
- Roots of logic date back to the ancient Greeks, e.g., Aristotle.
- Greeks were interested in valid logical inference rules, such as syllogisms:

"All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal."

The Partially Examined Life podcast: www.partiallyexaminedlife.com The Fallacy-a-Day Podcast: http://fallacyaday.com

• The building blocks of propositional logic are propositions

Definition 1 (Proposition)

A proposition (statement) is a sentence that is either **True** or **False**.

• Examples:

"Java is a programming language."

"Cork is the capital of Ireland."

"
$$1 + 2 = 3$$
"

"True

"Today is Tuesday."

"The universe is fine-tuned."

True

unknown (at present)

• Examples of sentences that are not propositions/statements:

• "This sentence is false."

— Pathological example.

Propositional Variables, Truth Value

Given a proposition we are interested in knowing its truth value.

Definition 2 (Truth Value)

The truth value of a proposition identifies whether a proposition is false (written False or F or 0) or true (written True or T or 1).

Question

What is truth value of "Tuesday is the day after Sunday"?

F

> Notation >

- Variables that represent propositions are called propositional variables.
- Denote propositional variables using lower-case letters, such as $p, p_1, p_2, q, r, s, \dots$
- Truth value of a propositional variable is either **T** or **F**.

Compound vs Atomic Propositions

- Propositional logic allows constructing more complex propositions from atomic ones.
- More complex propositions formed using logical connectives (also called boolean connectives or logical operators).
- The three basic logical connectives:

Connective	Symbol	Python	
conjunction (AND)	\wedge	and	
disjunction (OR)	\vee	or	
negation (NOT)	「	not	

• Propositions formed using these logical connectives called compound propositions; otherwise called atomic propositions.

Today is wet and I am hungry

Compound vs Atomic Propositions

- Propositional logic allows constructing more complex propositions from atomic ones.
- More complex propositions formed using logical connectives (also called boolean connectives or logical operators).
- The three basic logical connectives:

Connective	Symbol	Python	
conjunction (AND)	\wedge	and	
disjunction (OR)	\vee	or	
negation (NOT)	_	not	

• Propositions formed using these logical connectives called compound propositions; otherwise called atomic propositions.

Exercise

Classify each of the sentences below as an atomic statement, a compound statement, or not a statement at all.

- The sum of the first 100 odd positive integers.
- ② Everybody needs somebody sometime.
- Waterford will win the All-Ireland or I'll eat my hat.
- Go to your room!
- **Solution** Every natural number greater than 1 is either prime or composite.
- This sentence is false.

Exercise

Classify each of the sentences below as an atomic statement, a compound statement, or not a statement at all.

• The sum of the first 100 odd positive integers.

—This is not even a sentence (no verb).

Everybody needs somebody sometime.

—This is an atomic statement.

3 Waterford will win the All-Ireland or I'll eat my hat.

—This is a compound statement.

Go to your room!

- —This is an order, not a statement
- Severy natural number greater than 1 is either prime or composite.
 - —This is a compound statement.

o This sentence is false.

—This is sentence but is not a statement.

Conjunction (AND)

- Conjunction of two propositions, p and q, written as $p \wedge q$, is the proposition: "p and q"
- What is the relationship between the truth value of p and of q and the truth value of $p \wedge q$?

$$p \wedge q = \begin{cases} \mathbf{T} & \text{if both } p \text{ is } \mathbf{T} \text{ and } q \text{ is } \mathbf{T} \\ \mathbf{F} & \text{otherwise} \end{cases}$$

Example

What is the conjunction and the truth value of $p \land q$ for . . .

- p = "It is a autumn semester", q = "Today is Thursday"
- p = "It is Tuesday", q = "It is morning"

Disjunction (OR)

- Disjunction of two propositions, p and q, written as $p \lor q$, is the proposition "p or q"
- What is the relationship between the truth value of p and of q and the truth value of $p \vee q$?

$$p \lor q = \begin{cases} \mathbf{T} & \text{if either } p \text{ is } \mathbf{T} \text{ or } q \text{ is } \mathbf{T}, \text{ or both are } \mathbf{T} \\ \mathbf{F} & \text{otherwise} \end{cases}$$

Example

What is the disjunction and the truth value of $p \lor q$ for ...

- p = "It is a autumn semester", q = "Today is Thursday"
- p = "It is Friday", q = "It is morning"

Negation (NOT)

- Negation of a proposition, p, written, $\neg p$, represents the proposition: "It is not the case that p."
- What is the relationship between the truth value of p and $\neg p$?

If p is **T**, then $\neg p$ is **F** and vice versa.

• In simple English, what is $\neg p$ if p stands for ...

"Today is Tuesday." "Today is not Tuesday." "
$$1+1=2$$
" " $1+1\neq 2$ "

- Properties of NoT
 - $\neg \neg p = p$

Outline

2.	Truth tables • Evaluating an expression for all possible input combinations.	12
1.	 Propositional logic is concerned with analysing propositions (true or false statements). A proposition may be atomic or compound (build up using logical connectives). Constructing compound propositions using <i>And</i>, <i>Or</i> and <i>Not</i>. 	3

• Statements that are always true or always false.

Propositional Formulas and Truth Tables

- A propositional formula is logical expression constructed from atomic and compound propositions and logical connectives.
- A truth table for a propositional formula, A, shows the truth value of A for every possible value of its constituent atomic propositions.

Other Resources

iPad/iPhone Apps (assume similar on Android)

Boolean Master

Videos

• https://class.coursera.org/cs101/lecture/17 Part of the Computer Science 101 by Nick Parlante on coursera.

Constructing Truth Tables

Useful strategy for constructing truth tables for a formula:

- **STEP 1** Identify the constituent atomic propositions of the formula.
- **STEP 2** Identify compound propositions in within the formula in increasing order of complexity, including the formula itself.
- (STEP 3) Construct a table enumerating all combinations of truth values for atomic propositions.
- (STEP 4) Fill in values of compound propositions for each row.

Examples

Construct truth tables for the following formulas:

- (STEP 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions.
- STEP 4) Fill in values of compound propositions for each row . .

Step 1) Identify the constituent atomic propositions ... p and q

(STEP 2) Identify compound propositions ...

(STEP 3) Enumerate all combinations of truth values for atomic propositions . .

 $\ensuremath{\mathtt{STEP}}\xspace4)$ Fill in values of compound propositions for each row . .

p

- (STEP 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row . .

p	q	$p \lor q$	$\neg p$	$(p \vee q) \wedge \neg p$

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row . .

p	q	$p \lor q$	$\neg p$	$(p \vee q) \wedge \neg p$
\mathbf{F}	F			
\mathbf{F}	T			
T	\mathbf{F}			
T	T			

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions . . .
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$(p \vee q) \wedge \neg p$
F	F	F	T	F
\mathbf{F}	T			
T	\mathbf{F}			
T	T			

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$(p \lor q) \land \neg p$
F	F	F	T	F
F	T	T	T	T
T	\mathbf{F}			
T	T			

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$(p \lor q) \land \neg p$
F	F	F	T	F
\mathbf{F}	T	T	T	T
T	F	T	\mathbf{F}	\mathbf{F}
T	T			

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$(p \lor q) \land \neg p$
F	F	F	T	F
\mathbf{F}	T	T	T	T
T	\mathbf{F}	T	\mathbf{F}	F
T	T	T	\mathbf{F}	F

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$(p \lor q) \land \neg p$
F	F	F	T	F
F	T	T	T	T
T	\mathbf{F}	T	\mathbf{F}	F
T	T	T	\mathbf{F}	F

Example 2: $(p \land q) \lor (\neg p \land \neg q)$

- (STEP 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row . .

Example 2: $(p \land q) \lor (\neg p \land \neg q)$

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- $\ensuremath{\mathtt{STEP}}\xspace4)$ Fill in values of compound propositions for each row . .

p - q

Example 2: $(p \land q) \lor (\neg p \land \neg q)$

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row . .

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions . . .
- (STEP 4) Fill in values of compound propositions for each row . .

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F	F					
\mathbf{F}	T					
T	\mathbf{F}					
T	T					

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F	F	F	T	T	T	T
\mathbf{F}	T					
\mathbf{T}	\mathbf{F}					
T	T					

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions . . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F		F				T
F	T	\mathbf{F}	T	F	${f F}$	\mathbf{F}
T	\mathbf{F}					
T	T					

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

						$(p \land q) \lor (\neg p \land \neg q)$
F	F	F F	T	T	T	T
\mathbf{F}	T	F	T	F	${f F}$	F
T	F	F	\mathbf{F}	T	${f F}$	F
T	T					

- Step 1) Identify the constituent atomic propositions ... p and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

						$(p \land q) \lor (\neg p \land \neg q)$
F	F	F F F T	T	T	T	T
\mathbf{F}	T	F	T	\mathbf{F}	${f F}$	F
T	\mathbf{F}	F	\mathbf{F}	T	${f F}$	F
T	T	T	F	F	${f F}$	T

- Step 1) Identify the constituent atomic propositions ... p and q
- STEP 2 Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \wedge \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F	F	F	T	T	T	T
${f F}$	\mathbf{T}	F F	\mathbf{T}	F	${f F}$	\mathbf{F}
T	F	F	\mathbf{F}	T	${f F}$	F
T	T	T	F	F	\mathbf{F}	T

- Step 1 Identify the constituent atomic propositions ... p, q, and p
- STEP 2 Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- STEP 4 Fill in values of compound propositions for each row . .

- Step 1) Identify the constituent atomic propositions ... p, q, and r
- (STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row . .

p q

Step 1) Identify the constituent atomic propositions ... p, q, and p

(STEP 2) Identify compound propositions ...

STEP 3 Enumerate all combinations of truth values for atomic propositions . .

(STEP 4) Fill in values of compound propositions for each row . .

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$

- Step 1) Identify the constituent atomic propositions ... p, q, and q
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row . . .

p	q	r	$\neg r (p \lor q \lor \neg r)$	$ (p \lor q \lor \neg r) \land r $
F	F	F		
${f F}$	${f F}$	T		
${f F}$	\mathbf{T}	\mathbf{F}		
\mathbf{F}	\mathbf{T}	T		
T	${f F}$	\mathbf{F}		
T	${f F}$	T		
\mathbf{T}	\mathbf{T}	\mathbf{F}		
T	\mathbf{T}	T		

- (STEP 1) Identify the constituent atomic propositions ... p, q, and q
- (STEP 2) Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
\mathbf{F}	${f F}$	T			
\mathbf{F}	\mathbf{T}	\mathbf{F}			
\mathbf{F}	\mathbf{T}	T			
\mathbf{T}	${f F}$	\mathbf{F}			
\mathbf{T}	${f F}$	T			
\mathbf{T}	\mathbf{T}	\mathbf{F}			
\mathbf{T}	T	T			

- (STEP 1) Identify the constituent atomic propositions ... p, q, and q
- (STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
\mathbf{F}	F	F	T	T	F
\mathbf{F}	\mathbf{F}	T	F	${f F}$	\mathbf{F}
${f F}$	\mathbf{T}	\mathbf{F}			
${f F}$	\mathbf{T}	T			
\mathbf{T}	${f F}$	\mathbf{F}			
\mathbf{T}	${f F}$	T			
\mathbf{T}	\mathbf{T}	\mathbf{F}			
\mathbf{T}	\mathbf{T}	T			

- (STEP 1) Identify the constituent atomic propositions $\dots p, q$, and
- (STEP 2) Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
\mathbf{F}	${f F}$	T	F	${f F}$	\mathbf{F}
F	T	F	T	${f T}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	T			
${f T}$	${f F}$	\mathbf{F}			
${f T}$	${f F}$	T			
\mathbf{T}	\mathbf{T}	\mathbf{F}			
\mathbf{T}	\mathbf{T}	T			

- (STEP 1) Identify the constituent atomic propositions ... p, q, and p
- (STEP 2) Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
${f F}$	${f F}$	T	\mathbf{F}	${f F}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$	${f T}$	\mathbf{F}
F	T	T	\mathbf{F}	${f T}$	T
\mathbf{T}	\mathbf{F}	\mathbf{F}			
\mathbf{T}	\mathbf{F}	T			
\mathbf{T}	\mathbf{T}	\mathbf{F}			
T	\mathbf{T}	T			

- (STEP 1) Identify the constituent atomic propositions ... p, q, and p
- (STEP 2) Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
\mathbf{F}	${f F}$	T	\mathbf{F}	${f F}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	T	T	\mathbf{F}
\mathbf{F}	\mathbf{T}	T	\mathbf{F}	T	T
T	\mathbf{F}	F	T	T	\mathbf{F}
${f T}$	\mathbf{F}	T			
\mathbf{T}	\mathbf{T}	\mathbf{F}			
\mathbf{T}	T	T			

- (STEP 1) Identify the constituent atomic propositions ... p, q, and p
- (STEP 2) Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
${f F}$	${f F}$	T	F	${f F}$	\mathbf{F}
${f F}$	\mathbf{T}	\mathbf{F}	T	T	\mathbf{F}
${f F}$	\mathbf{T}	T	F	T	T
\mathbf{T}	${f F}$	\mathbf{F}	T	T	\mathbf{F}
T	\mathbf{F}	T	F	T	T
\mathbf{T}	\mathbf{T}	\mathbf{F}			
\mathbf{T}	T	T			

- STEP 1) Identify the constituent atomic propositions ... p, q, and q
- (STEP 2) Identify compound propositions ...
- STEP 3 Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	\mathbf{F}	\mathbf{F}	T	T	F
\mathbf{F}	${f F}$	T	\mathbf{F}	${f F}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	T	T	\mathbf{F}
\mathbf{F}	\mathbf{T}	T	\mathbf{F}	${f T}$	T
${f T}$	\mathbf{F}	\mathbf{F}	T	\mathbf{T}	\mathbf{F}
${f T}$	\mathbf{F}	T	\mathbf{F}	\mathbf{T}	T
T	T	F	T	T	\mathbf{F}
\mathbf{T}	T	T			

- Step 1) Identify the constituent atomic propositions $\dots p, q$, and
- (STEP 2) Identify compound propositions ...
- STEP 3) Enumerate all combinations of truth values for atomic propositions . .
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	\mathbf{F}	\mathbf{F}	T	T	\mathbf{F}
${f F}$	${f F}$	T	F	${f F}$	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	T	\mathbf{T}	\mathbf{F}
${f F}$	\mathbf{T}	T	F	\mathbf{T}	T
${f T}$	${f F}$	\mathbf{F}	T	${f T}$	\mathbf{F}
\mathbf{T}	${f F}$	\mathbf{T}	\mathbf{F}	T	T
\mathbf{T}	\mathbf{T}	\mathbf{F}	T	${f T}$	\mathbf{F}
T	T	T	F	${f T}$	T

- (STEP 1) Identify the constituent atomic propositions ... p, q, and r
- (STEP 2) Identify compound propositions ...
- (STEP 3) Enumerate all combinations of truth values for atomic propositions ...
- (STEP 4) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \vee q \vee \neg r)$	$(p \lor q \lor \neg r) \land r$
F	F	F	T	T	F
${f F}$	\mathbf{F}	T	\mathbf{F}	${f F}$	\mathbf{F}
${f F}$	\mathbf{T}	\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{F}
F	T	T	F	T	T
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{F}
T	\mathbf{F}	T	F	T	T
\mathbf{T}	\mathbf{T}	\mathbf{F}	T	${f T}$	F
T	T	T	\mathbf{F}	T	T

Outline

3. Tautologies and Contradictions

• Statements that are always true or always false.

	 Propositional logic is concerned with analysing propositions (true or false statements). A proposition may be atomic or compound (build up using logical connectives). Constructing compound propositions using <i>And</i>, <i>Or</i> and <i>Not</i>. 	
2.	Truth tables • Evaluating an expression for all possible input combinations.	12

20

Introduction to Propositional Logic — Summary

3. Tautologies and Contradictions

• Statements that are always true or always false.

1,	Propositional logic is concerned with analysing propositions (true or false statements).	
	 A proposition may be atomic or compound (build up using logical connectives). Constructing compound propositions using <i>And</i>, <i>Or</i> and <i>Not</i>. 	
2.	Truth tables • Evaluating an expression for all possible input combinations.	12

Satisfiable, Tautologies and Contradictions

Satisfiable

A proposition is satisfiable if it is True for at least one set of inputs (case).

Tautology

A tautology is an expression involving logical variables that is **True** in all cases.

- Examples
 - $p \vee \neg p$

"Tomorrow, I will be dead or I will be alive"

 $\bullet \ (p \wedge q) \vee (p \wedge \neg q) \vee \neg p$

Contradiction

A contradiction is an expression involving logical variables that is **False** in all cases.

- Examples
 - $p \land \neg p$

"On Friday, I will win the lottery and not win the lottery."