■ NetApp

스토리지 **VM** 관리 Cloud Volumes ONTAP

NetApp June 20, 2022

This PDF was generated from https://docs.netapp.com/ko-kr/cloud-manager-cloud-volumes-ontap/azure/task-managing-svms.html on June 20, 2022. Always check docs.netapp.com for the latest.

목차

<u> </u>	·토리지 VM 관리 · · · · · · · · · · · · · · · · · ·	. 1	1
	Cloud Manager에서 스토리지 VM을 관리합니다 · · · · · · · · · · · · · · · · · · ·	. 1	1
	Azure에서 Cloud Volumes ONTAP를 위한 데이터 서비스 스토리지 VM을 생성합니다	. 3	3

스토리지 VM 관리

Cloud Manager에서 스토리지 VM을 관리합니다

스토리지 VM은 ONTAP 내에서 실행되는 가상 머신으로, 클라이언트에 스토리지 및 데이터서비스를 제공합니다. 이를 SVM 또는 _vserver_로 알고 있을 수 있습니다. Cloud Volumes ONTAP는 기본적으로 하나의 스토리지 VM으로 구성되지만 일부 구성에서는 추가 스토리지 VM을 지원합니다.

지원되는 스토리지 VM 수입니다

특정 구성에서는 여러 스토리지 VM이 지원됩니다. 로 이동합니다 "Cloud Volumes ONTAP 릴리즈 노트" 사용 중인 Cloud Volumes ONTAP 버전에 대해 지원되는 스토리지 VM 수를 확인하려면 다음을 수행합니다.

여러 스토리지 **VM**과 함께 작업

Cloud Manager는 System Manager 또는 CLI에서 생성하는 추가 스토리지 VM을 지원합니다.

예를 들어, 다음 이미지는 볼륨을 생성할 때 스토리지 VM을 선택하는 방법을 보여줍니다.

다음 이미지는 다른 시스템으로 볼륨을 복제할 때 스토리지 VM을 선택하는 방법을 보여 줍니다.

기본 스토리지 VM의 이름을 수정합니다

Cloud Manager에서 Cloud Volumes ONTAP에 대해 생성한 단일 스토리지 VM의 이름을 자동으로 지정합니다. 엄격한 명명 규칙이 있는 경우 스토리지 VM 이름을 수정할 수 있습니다. 예를 들어, 이름이 ONTAP 클러스터에 대한 스토리지 VM의 이름을 지정하는 방법과 일치할 수 있습니다.

Cloud Volumes ONTAP용 추가 스토리지 VM을 생성한 경우 Cloud Manager에서 스토리지 VM의 이름을 바꿀 수 없습니다. System Manager 또는 CLI를 사용하여 Cloud Volumes ONTAP에서 직접 변경해야 합니다.

단계

- 1. 작업 환경에서 메뉴 아이콘을 클릭한 다음 * 정보 * 를 클릭합니다.
- 2. 스토리지 VM 이름 오른쪽에 있는 편집 아이콘을 클릭합니다.

Working Environment Information					
ONTAP					
Serial Number:					
System ID:	system-id-capacitytest				
Cluster Name:	capacitytest				
ONTAP Version:	9.7RC1				
Date Created:	Jul 6, 2020 07:42:02 am				
Storage VM Name:	svm_capacitytest				

3. Modify SVM Name(SVM 이름 수정) 대화 상자에서 이름을 변경한 다음 * Save * (저장 *)를 클릭합니다.

재해 복구를 위한 스토리지 VM 관리

Cloud Manager는 스토리지 VM 재해 복구에 대한 설정 또는 오케스트레이션 지원을 제공하지 않습니다. System Manager 또는 CLI를 사용해야 합니다.

- "SVM 재해 복구 준비 Express 가이드"
- "SVM 재해 복구 익스프레스 가이드 를 참조하십시오"

Azure에서 Cloud Volumes ONTAP를 위한 데이터 서비스 스토리지 VM을 생성합니다

스토리지 VM은 ONTAP 내에서 실행되는 가상 머신으로, 클라이언트에 스토리지 및 데이터서비스를 제공합니다. 이를 SVM 또는 _vserver_로 알고 있을 수 있습니다. Cloud Volumes ONTAP는 기본적으로 하나의 스토리지 VM으로 구성되지만 Azure에서 Cloud Volumes ONTAP를 실행할 때 추가 스토리지 VM이 지원됩니다.

데이터를 지원하는 스토리지 VM을 추가로 생성하려면 Azure에서 IP 주소를 할당한 다음 ONTAP 명령을 실행하여 스토리지 VM 및 데이터 LIF를 생성해야 합니다.

지원되는 스토리지 VM 수입니다

9.9.0 릴리즈부터 특정 Cloud Volumes ONTAP 구성에서 여러 스토리지 VM이 지원됩니다. 로 이동합니다 "Cloud Volumes ONTAP 릴리즈 노트" 사용 중인 Cloud Volumes ONTAP 버전에 대해 지원되는 스토리지 VM 수를

확인하려면 다음을 수행합니다.

다른 모든 Cloud Volumes ONTAP 구성에서는 재해 복구에 사용되는 1개의 데이터 서비스 스토리지 VM과 1개의 대상 스토리지 VM을 지원합니다. 소스 스토리지 VM에 중단이 발생할 경우 데이터 액세스를 위해 대상 스토리지 VM을 활성화할 수 있습니다.

Azure에서 IP 주소를 할당합니다

스토리지 VM을 생성하고 LIF를 할당하기 전에 Azure에서 IP 주소를 할당해야 합니다.

단일 노드 시스템

스토리지 VM을 생성하고 LIF를 할당하기 전에 Azure에서 nic0에 IP 주소를 할당해야 합니다.

데이터 LIF 액세스를 위한 IP 주소와 스토리지 VM(SVM) 관리 LIF를 위한 선택적 IP 주소를 생성해야 합니다. 이 관리 LIF는 SnapCenter과 같은 관리 툴에 연결할 수 있습니다.

단계

- 1. Azure 포털에 로그인하고 * Virtual Machine * 서비스를 엽니다.
- 2. Cloud Volumes ONTAP VM의 이름을 클릭합니다.
- 3. 네트워킹 * 을 클릭합니다.
- 4. nic0의 네트워크 인터페이스 이름을 클릭합니다.
- 5. 설정 * 에서 * IP 구성 * 을 클릭합니다.
- 6. 추가 * 를 클릭합니다.
- 7. IP 구성의 이름을 입력하고 * Dynamic * 을 선택한 다음 * OK * 를 클릭합니다.
- 8. 방금 만든 IP 구성의 이름을 클릭하고 * Assignment * 를 * Static * 으로 변경한 다음 * Save * 를 클릭합니다.

정적 IP 주소를 사용하면 IP 주소가 변경되지 않으므로 정적 IP 주소를 사용하는 것이 가장 좋습니다. 이렇게 하면 응용 프로그램이 불필요하게 중단되는 것을 방지할 수 있습니다.

SVM 관리 LIF를 생성하려면 이 단계를 반복하여 추가 IP 주소를 생성합니다.

방금 만든 개인 IP 주소를 복사합니다. 새 스토리지 VM에 대한 LIF를 생성할 때 이러한 IP 주소를 지정해야 합니다.

HA 쌍

HA 쌍에 대한 IP 주소를 할당하는 방법은 사용 중인 스토리지 프로토콜에 따라 다릅니다.

iSCSI

스토리지 VM을 생성하고 LIF를 할당하기 전에 Azure의 nic0에 iSCSI IP 주소를 할당해야 합니다. iSCSI는 페일오버에 ALUA를 사용하므로 iSCSI용 IPS는 로드 밸런서가 아니라 nic0에 할당됩니다.

다음 IP 주소를 만들어야 합니다.

- 노드 1에서 iSCSI 데이터 LIF 액세스를 위한 단일 IP 주소
- 노드 2에서 iSCSI 데이터 LIF 액세스를 위한 단일 IP 주소
- 스토리지 VM(SVM) 관리 LIF의 선택적 IP 주소입니다
 - 이 관리 LIF는 SnapCenter과 같은 관리 툴에 연결할 수 있습니다.

단계

- 1. Azure 포털에 로그인하고 * Virtual Machine * 서비스를 엽니다.
- 2. 노드 1의 Cloud Volumes ONTAP VM 이름을 클릭합니다.
- 3. 네트워킹 * 을 클릭합니다.
- 4. nic0의 네트워크 인터페이스 이름을 클릭합니다.
- 5. 설정 * 에서 * IP 구성 * 을 클릭합니다.
- 6. 추가 * 를 클릭합니다.
- 7. IP 구성의 이름을 입력하고 * Dynamic * 을 선택한 다음 * OK * 를 클릭합니다.
- 8. 방금 만든 IP 구성의 이름을 클릭하고 * Assignment * 를 * Static * 으로 변경한 다음 * Save * 를 클릭합니다.

정적 IP 주소를 사용하면 IP 주소가 변경되지 않으므로 정적 IP 주소를 사용하는 것이 가장 좋습니다. 이렇게 하면 응용 프로그램이 불필요하게 중단되는 것을 방지할 수 있습니다.

- 9. 노드 2에서 이 단계를 반복합니다.
- 10. SVM 관리 LIF를 생성하려면 노드 1에서 이 단계를 반복합니다.

NFS 를 참조하십시오

NFS에 사용하는 IP 주소는 로드 밸런싱 장치에 할당되어 페일오버 이벤트가 발생할 경우 IP 주소가 다른 노드로 마이그레이션될 수 있습니다.

다음 IP 주소를 만들어야 합니다.

- 노드 1에서 NAS 데이터 LIF 액세스를 위한 단일 IP 주소
- 노드 2에서 NAS 데이터 LIF 액세스를 위한 단일 IP 주소
- 스토리지 VM(SVM) 관리 LIF의 선택적 IP 주소입니다
 - 이 관리 LIF는 SnapCenter과 같은 관리 툴에 연결할 수 있습니다.

단계

- 1. Azure 포털에서 * 로드 밸런서 * 서비스를 엽니다.
- 2. HA 쌍에 대한 로드 밸런싱 장치의 이름을 클릭합니다.

- 3. 노드 1에서 데이터 LIF 액세스를 위한 프런트엔드 IP 구성을 하나 생성하고, 노드 2에서 데이터 LIF 액세스를 위한 또 다른 프런트엔드 IP를 생성하고, 스토리지 VM(SVM) 관리 LIF를 위한 또 다른 선택적 프런트엔드 IP를 생성합니다.
 - a. Settings * 에서 * Frontend IP configuration * 을 클릭합니다.
 - b. 추가 * 를 클릭합니다.
 - c. 프런트엔드 IP의 이름을 입력하고, Cloud Volumes ONTAP HA 쌍의 서브넷을 선택하고, * Dynamic * 을 선택한 상태로 두고, 가용성 영역이 있는 지역에서는 * Zone-Redundant * 를 선택된 상태로 두어 존이 실패하는 경우 IP 주소를 계속 사용할 수 있도록 합니다.

d. 방금 만든 프런트엔드 IP 구성의 이름을 클릭하고 * Assignment * 를 * Static * 으로 변경하고 * Save * 를 클릭합니다.

정적 IP 주소를 사용하면 IP 주소가 변경되지 않으므로 정적 IP 주소를 사용하는 것이 가장 좋습니다. 이렇게 하면 응용 프로그램이 불필요하게 중단되는 것을 방지할 수 있습니다.

- 4. 방금 생성한 각 프런트엔드 IP에 대해 상태 탐침을 추가합니다.
 - a. 부하 분산 장치의 * 설정 * 에서 * 상태 프로브 * 를 클릭합니다.
 - b. 추가 * 를 클릭합니다.
 - c. 상태 프로브의 이름을 입력하고 63005에서 65000 사이의 포트 번호를 입력합니다. 다른 필드의 기본값을 유지합니다.

포트 번호는 63005에서 65000 사이여야 합니다. 예를 들어 상태 프로브를 3개 생성하는 경우 포트 번호 63005, 63006 및 63007을 사용하는 프로브를 입력할 수 있습니다.

- 5. 각 프런트엔드 IP에 대한 새 로드 밸런싱 규칙을 생성합니다.
 - a. 부하 분산 장치의 * 설정 * 아래에서 * 로드 밸런싱 규칙 * 을 클릭합니다.
 - b. 추가 * 를 클릭하고 필요한 정보를 입력합니다.
 - * 이름 *: 규칙의 이름을 입력합니다.
 - * IP 버전 *: * IPv4 * 를 선택합니다.
 - * 프런트엔드 IP 주소 *: 방금 생성한 프런트엔드 IP 주소 중 하나를 선택합니다.
 - * HA 포트 *: 이 옵션을 활성화합니다.
 - * 백엔드 풀 *: 이미 선택된 기본 백엔드 풀을 유지합니다.
 - * 상태 프로브 *: 선택한 프런트엔드 IP에 대해 생성한 상태 프로브를 선택합니다.
 - * 세션 지속성 *: * 없음 * 을 선택합니다.
 - * Floating IP *: * Enabled * 를 선택합니다.

6. Cloud Volumes ONTAP에 대한 네트워크 보안 그룹 규칙을 통해 로드 밸런서가 위의 4단계에서 만든 상태 탐침에 대한 TCP 탐침을 보낼 수 있는지 확인합니다. 이 작업은 기본적으로 허용됩니다.

중소기업

SMB 데이터에 사용하는 IP 주소는 로드 밸런서에 할당되어 페일오버 이벤트가 발생할 경우 IP 주소가 다른 노드로 마이그레이션될 수 있습니다.

다음 IP 주소를 만들어야 합니다.

- 노드 1에서 NAS 데이터 LIF 액세스를 위한 단일 IP 주소
- 노드 2에서 NAS 데이터 LIF 액세스를 위한 단일 IP 주소
- 노드 1의 iSCSI LIF에 대한 1개의 IP 주소입니다
- 노드 2의 iSCSI LIF에 대한 1개의 IP 주소입니다

iSCSI LIF는 DNS 및 SMB 통신에 필요합니다. iSCSI LIF는 페일오버 시 마이그레이션되지 않으므로 이용도로 사용됩니다.

- 스토리지 VM(SVM) 관리 LIF의 선택적 IP 주소입니다
 - 이 관리 LIF는 SnapCenter과 같은 관리 툴에 연결할 수 있습니다.

단계

- 1. Azure 포털에서 * 로드 밸런서 * 서비스를 엽니다.
- 2. HA 쌍에 대한 로드 밸런싱 장치의 이름을 클릭합니다.
- 3. 필요한 프런트엔드 IP 구성 수 생성:
 - a. Settings * 에서 * Frontend IP configuration * 을 클릭합니다.
 - b. 추가 * 를 클릭합니다.
 - c. 프런트엔드 IP의 이름을 입력하고, Cloud Volumes ONTAP HA 쌍의 서브넷을 선택하고, * Dynamic * 을 선택한 상태로 두고, 가용성 영역이 있는 지역에서는 * Zone-Redundant * 를 선택된 상태로 두어 존이 실패하는 경우 IP 주소를 계속 사용할 수 있도록 합니다.

d. 방금 만든 프런트엔드 IP 구성의 이름을 클릭하고 * Assignment * 를 * Static * 으로 변경하고 * Save * 를 클릭합니다.

정적 IP 주소를 사용하면 IP 주소가 변경되지 않으므로 정적 IP 주소를 사용하는 것이 가장 좋습니다. 이렇게 하면 응용 프로그램이 불필요하게 중단되는 것을 방지할 수 있습니다.

- 4. 방금 생성한 각 프런트엔드 IP에 대해 상태 탐침을 추가합니다.
 - a. 부하 분산 장치의 * 설정 * 에서 * 상태 프로브 * 를 클릭합니다.
 - b. 추가 * 를 클릭합니다.
 - c. 상태 프로브의 이름을 입력하고 63005에서 65000 사이의 포트 번호를 입력합니다. 다른 필드의 기본값을 유지합니다.

포트 번호는 63005에서 65000 사이여야 합니다. 예를 들어 상태 프로브를 3개 생성하는 경우 포트 번호 63005. 63006 및 63007을 사용하는 프로브를 입력할 수 있습니다.

- 5. 각 프런트엔드 IP에 대한 새 로드 밸런싱 규칙을 생성합니다.
 - a. 부하 분산 장치의 * 설정 * 아래에서 * 로드 밸런싱 규칙 * 을 클릭합니다.
 - b. 추가 * 를 클릭하고 필요한 정보를 입력합니다.
 - * 이름 *: 규칙의 이름을 입력합니다.
 - * IP 버전 *: * IPv4 * 를 선택합니다.
 - * 프런트엔드 IP 주소 *: 방금 생성한 프런트엔드 IP 주소 중 하나를 선택합니다.
 - * HA 포트 *: 이 옵션을 활성화합니다.
 - * 백엔드 풀 *: 이미 선택된 기본 백엔드 풀을 유지합니다.
 - * 상태 프로브 *: 선택한 프런트엔드 IP에 대해 생성한 상태 프로브를 선택합니다.
 - * 세션 지속성 *: * 없음 * 을 선택합니다.
 - * Floating IP *: * Enabled * 를 선택합니다.

방금 만든 개인 IP 주소를 복사합니다. 새 스토리지 VM에 대한 LIF를 생성할 때 이러한 IP 주소를 지정해야 합니다.

스토리지 VM 및 LIF 생성

Azure에서 IP 주소를 할당한 후에는 단일 노드 시스템 또는 HA 쌍 에 새 스토리지 VM을 생성할 수 있습니다.

단일 노드 시스템

단일 노드 시스템에서 스토리지 VM 및 LIF를 생성하는 방법은 사용 중인 스토리지 프로토콜에 따라 다릅니다.

iSCSI

필요한 LIF와 함께 새 스토리지 VM을 생성하려면 다음 단계를 따르십시오.

단계

1. 스토리지 VM을 생성하고 스토리지 VM으로 가는 경로를 생성합니다.

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 데이터 LIF 생성:

network interface create -vserver <svm-name> -home-port e0a -address
<iscsi-ip-address> -lif <lif-name> -home-node <name-of-node1> -data
-protocol iscsi

3. 선택 사항: 스토리지 VM 관리 LIF를 생성합니다.

network interface create -vserver <svm-name> -lif f-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default

4. 스토리지 VM에 하나 이상의 애그리게이트를 할당합니다.

vserver add-aggregates -vserver svm 2 -aggregates aggr1,aggr2

스토리지 VM에서 볼륨을 생성하기 전에 새 스토리지 VM이 적어도 하나의 애그리게이트에 액세스해야 하기 때문에 이 단계가 필요합니다.

NFS 를 참조하십시오

필요한 LIF와 함께 새 스토리지 VM을 생성하려면 다음 단계를 따르십시오.

단계

1. 스토리지 VM을 생성하고 스토리지 VM으로 가는 경로를 생성합니다.

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 데이터 LIF 생성:

network interface create -vserver <svm-name> -lif f-name> -role
data -data-protocol cifs,nfs -address <nfs--ip-address> -netmask
-length <length> -home-node <name-of-node1> -status-admin up
-failover-policy disabled -firewall-policy data -home-port e0a -auto
-revert true -failover-group Default

3. 선택 사항: 스토리지 VM 관리 LIF를 생성합니다.

network interface create -vserver <svm-name> -lif <lif-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default

4. 스토리지 VM에 하나 이상의 애그리게이트를 할당합니다.

vserver add-aggregates -vserver svm 2 -aggregates aggr1,aggr2

스토리지 VM에서 볼륨을 생성하기 전에 새 스토리지 VM이 적어도 하나의 애그리게이트에 액세스해야 하기 때문에 이 단계가 필요합니다.

중소기업

필요한 LIF와 함께 새 스토리지 VM을 생성하려면 다음 단계를 따르십시오.

단계

1. 스토리지 VM을 생성하고 스토리지 VM으로 가는 경로를 생성합니다.

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 데이터 LIF 생성:

network interface create -vserver <svm-name> -lif f-name> -role data -data-protocol cifs,nfs -address <nfs--ip-address> -netmask -length <length> -home-node <name-of-node1> -status-admin up -failover-policy disabled -firewall-policy data -home-port e0a -auto -revert true -failover-group Default

3. 선택 사항: 스토리지 VM 관리 LIF를 생성합니다.

network interface create -vserver <svm-name> -lif <lif-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default

4. 스토리지 VM에 하나 이상의 애그리게이트를 할당합니다.

vserver add-aggregates -vserver svm 2 -aggregates aggr1,aggr2

스토리지 VM에서 볼륨을 생성하기 전에 새 스토리지 VM이 적어도 하나의 애그리게이트에 액세스해야 하기 때문에 이 단계가 필요합니다.

HA 쌍

HA 쌍에서 스토리지 VM 및 LIF를 생성하는 방법은 사용 중인 스토리지 프로토콜에 따라 다릅니다.

iSCSI

필요한 LIF와 함께 새 스토리지 VM을 생성하려면 다음 단계를 따르십시오.

단계

1. 스토리지 VM을 생성하고 스토리지 VM으로 가는 경로를 생성합니다.

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

- 2. 데이터 LIF 생성:
 - a. 다음 명령을 사용하여 노드 1에 iSCSI LIF를 생성합니다.

network interface create -vserver <svm-name> -home-port e0a
-address <iscsi-ip-address> -lif <lif-name> -home-node <name-ofnode1> -data-protocol iscsi

b. 다음 명령을 사용하여 노드 2에 iSCSI LIF를 생성합니다.

network interface create -vserver <svm-name> -home-port e0a
-address <iscsi-ip-address> -lif <lif-name> -home-node <name-ofnode2> -data-protocol iscsi

3. 선택 사항: 노드 1에 스토리지 VM 관리 LIF를 생성합니다.

network interface create -vserver <svm-name> -lif f-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default

- 이 관리 LIF는 SnapCenter과 같은 관리 툴에 연결할 수 있습니다.
- 4. 스토리지 VM에 하나 이상의 애그리게이트를 할당합니다.

vserver add-aggregates -vserver svm 2 -aggregates aggr1,aggr2

스토리지 VM에서 볼륨을 생성하기 전에 새 스토리지 VM이 적어도 하나의 애그리게이트에 액세스해야 하기 때문에 이 단계가 필요합니다.

5. Cloud Volumes ONTAP 9.11.1 이상을 실행 중인 경우 스토리지 VM에 대한 네트워크 서비스 정책을 수정합니다.

Cloud Volumes ONTAP가 아웃바운드 관리 연결에 iSCSI LIF를 사용할 수 있도록 하기 때문에 서비스를 수정해야 합니다.

```
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service data-fpolicy-client
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service management-ad-client
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service management-dns-client
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service management-ldap-client
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service management-nis-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service data-fpolicy-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service management-ad-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service management-dns-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service management-ldap-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service management-nis-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service data-fpolicy-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service management-ad-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service management-dns-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service management-ldap-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service management-nis-client
```

NFS 를 참조하십시오

필요한 LIF와 함께 새 스토리지 VM을 생성하려면 다음 단계를 따르십시오.

단계

1. 스토리지 VM을 생성하고 스토리지 VM으로 가는 경로를 생성합니다.

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. 데이터 LIF 생성:

a. 다음 명령을 사용하여 노드 1에 NAS LIF를 생성합니다.

network interface create -vserver <svm-name> -lif <lif-name>
-role data -data-protocol cifs,nfs -address <nfs--ip-address>
-netmask-length <length> -home-node <name-of-nodel> -status-admin
up -failover-policy system-defined -firewall-policy data -home
-port e0a -auto-revert true -failover-group Default -probe-port
<port-number-for-azure-health-probel>

b. 다음 명령을 사용하여 노드 2에 NAS LIF를 생성합니다.

network interface create -vserver <svm-name> -lif <lif-name>
-role data -data-protocol cifs,nfs -address <nfs-cifs-ip-address>
-netmask-length <length> -home-node <name-of-node2> -status-admin
up -failover-policy system-defined -firewall-policy data -home
-port e0a -auto-revert true -failover-group Default -probe-port
<port-number-for-azure-health-probe2>

3. 선택 사항: 노드 1에 스토리지 VM 관리 LIF를 생성합니다.

network interface create -vserver <svm-name> -lif f-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default -probe-port <port-number-for-azurehealth-probe3>

- 이 관리 LIF는 SnapCenter과 같은 관리 툴에 연결할 수 있습니다.
- 4. 스토리지 VM에 하나 이상의 애그리게이트를 할당합니다.

vserver add-aggregates -vserver svm 2 -aggregates aggr1,aggr2

스토리지 VM에서 볼륨을 생성하기 전에 새 스토리지 VM이 적어도 하나의 애그리게이트에 액세스해야 하기 때문에 이 단계가 필요합니다.

5. Cloud Volumes ONTAP 9.11.1 이상을 실행 중인 경우 스토리지 VM에 대한 네트워크 서비스 정책을 수정합니다.

Cloud Volumes ONTAP가 아웃바운드 관리 연결에 iSCSI LIF를 사용할 수 있도록 하기 때문에 서비스를 수정해야 합니다.

```
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service data-fpolicy-client
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service management-ad-client
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service management-dns-client
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service management-ldap-client
network interface service-policy remove-service -vserver <svm-name>
-policy default-data-files -service management-nis-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service data-fpolicy-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service management-ad-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service management-dns-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service management-ldap-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-blocks -service management-nis-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service data-fpolicy-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service management-ad-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service management-dns-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service management-ldap-client
network interface service-policy add-service -vserver <svm-name>
-policy default-data-iscsi -service management-nis-client
```

중소기업

필요한 LIF와 함께 새 스토리지 VM을 생성하려면 다음 단계를 따르십시오.

단계

1. 스토리지 VM을 생성하고 스토리지 VM으로 가는 경로를 생성합니다.

vserver create -vserver <svm-name> -subtype default -rootvolume
<root-volume-name> -rootvolume-security-style unix

network route create -destination 0.0.0.0/0 -vserver <svm-name>
-gateway <ip-of-gateway-server>

2. NAS 데이터 LIF 생성:

a. 다음 명령을 사용하여 노드 1에 NAS LIF를 생성합니다.

network interface create -vserver <svm-name> -lif <lif-name>
-role data -data-protocol cifs,nfs -address <nfs--ip-address>
-netmask-length <length> -home-node <name-of-nodel> -status-admin
up -failover-policy system-defined -firewall-policy data -home
-port e0a -auto-revert true -failover-group Default -probe-port
<port-number-for-azure-health-probel>

b. 다음 명령을 사용하여 노드 2에 NAS LIF를 생성합니다.

network interface create -vserver <svm-name> -lif <lif-name>
-role data -data-protocol cifs,nfs -address <nfs-cifs-ip-address>
-netmask-length <length> -home-node <name-of-node2> -status-admin
up -failover-policy system-defined -firewall-policy data -home
-port e0a -auto-revert true -failover-group Default -probe-port
<port-number-for-azure-health-probe2>

- 3. iSCSI LIF를 생성하여 DNS 및 SMB 통신 제공:
 - a. 다음 명령을 사용하여 노드 1에 iSCSI LIF를 생성합니다.

network interface create -vserver <svm-name> -home-port e0a
-address <iscsi-ip-address> -lif <lif-name> -home-node <name-ofnode1> -data-protocol iscsi

b. 다음 명령을 사용하여 노드 2에 iSCSI LIF를 생성합니다.

network interface create -vserver <svm-name> -home-port e0a
-address <iscsi-ip-address> -lif <lif-name> -home-node <name-ofnode2> -data-protocol iscsi

4. 선택 사항: 노드 1에 스토리지 VM 관리 LIF를 생성합니다.

network interface create -vserver <svm-name> -lif f-name> -role
data -data-protocol none -address <svm-mgmt-ip-address> -netmask
-length <length> -home-node nodel -status-admin up -failover-policy
system-defined -firewall-policy mgmt -home-port e0a -auto-revert
false -failover-group Default -probe-port <port-number-for-azurehealth-probe3>

- 이 관리 LIF는 SnapCenter과 같은 관리 툴에 연결할 수 있습니다.
- 5. 스토리지 VM에 하나 이상의 애그리게이트를 할당합니다.

vserver add-aggregates -vserver svm_2 -aggregates aggr1,aggr2

스토리지 VM에서 볼륨을 생성하기 전에 새 스토리지 VM이 적어도 하나의 애그리게이트에 액세스해야 하기 때문에 이 단계가 필요합니다.

6. Cloud Volumes ONTAP 9.11.1 이상을 실행 중인 경우 스토리지 VM에 대한 네트워크 서비스 정책을 수정합니다.

Cloud Volumes ONTAP가 아웃바운드 관리 연결에 iSCSI LIF를 사용할 수 있도록 하기 때문에 서비스를 수정해야 합니다.

network interface service-policy remove-service -vserver <svm-name> -policy default-data-files -service data-fpolicy-client network interface service-policy remove-service -vserver <svm-name> -policy default-data-files -service management-ad-client network interface service-policy remove-service -vserver <svm-name> -policy default-data-files -service management-dns-client network interface service-policy remove-service -vserver <svm-name> -policy default-data-files -service management-ldap-client network interface service-policy remove-service -vserver <svm-name> -policy default-data-files -service management-nis-client network interface service-policy add-service -vserver <svm-name> -policy default-data-blocks -service data-fpolicy-client network interface service-policy add-service -vserver <svm-name> -policy default-data-blocks -service management-ad-client network interface service-policy add-service -vserver <svm-name> -policy default-data-blocks -service management-dns-client network interface service-policy add-service -vserver <svm-name> -policy default-data-blocks -service management-ldap-client network interface service-policy add-service -vserver <svm-name> -policy default-data-blocks -service management-nis-client network interface service-policy add-service -vserver <svm-name> -policy default-data-iscsi -service data-fpolicy-client network interface service-policy add-service -vserver <svm-name> -policy default-data-iscsi -service management-ad-client network interface service-policy add-service -vserver <svm-name> -policy default-data-iscsi -service management-dns-client network interface service-policy add-service -vserver <svm-name> -policy default-data-iscsi -service management-ldap-client network interface service-policy add-service -vserver <svm-name> -policy default-data-iscsi -service management-nis-client

HA 쌍에서 스토리지 VM을 생성하면 해당 SVM에서 스토리지를 프로비저닝하기 전에 12시간을 기다리는 것이 좋습니다. Cloud Volumes ONTAP 9.10.1 릴리즈부터 Cloud Manager가 12시간 간격으로 HA 쌍의 로드 밸런서에 대한 설정을 검색합니다. 새로운 SVM이 있을 경우 Cloud Manager에서 짧은 계획되지 않은 페일오버를 제공하는 설정을 지원합니다.

저작권 정보

Copyright © 2022 NetApp, Inc. All rights reserved. 미국에서 인쇄됨 본 문서의 어떤 부분도 저작권 소유자의 사전 서면 승인 없이는 어떠한 형식이나 그래픽, 전자적 또는 기계적 수단(사진 복사, 레코딩 등)으로도 저작권 소유자의 사전 서면 승인 없이 전자 검색 시스템에 저장 또는 저장.

NetApp이 저작권을 가진 자료에 있는 소프트웨어에는 아래의 라이센스와 고지 사항이 적용됩니다.

본 소프트웨어는 NetApp에 의해 "있는 그대로" 제공되며 상품성 및 특정 목적에 대한 적합성에 대한 명시적 또는 묵시적 보증을 포함하여 이에 제한되지 않고, 어떠한 보증도 하지 않습니다. NetApp은 대체품 또는 대체 서비스의 조달, 사용 불능, 데이터 손실, 이익 손실, 또는 파생적 손해(소계 물품 또는 서비스의 조달, 사용 손실, 데이터 또는 수익 손실, 계약, 엄격한 책임 또는 불법 행위(과실 또는 그렇지 않은 경우)에 관계없이 어떠한 책임도 지지 않으며, 이는 이러한 손해의 가능성을 사전에 알고 있던 경우에도 마찬가지입니다.

NetApp은 본 문서에 설명된 제품을 언제든지 예고 없이 변경할 권리를 보유합니다. NetApp은 NetApp의 명시적인 서면 동의를 받은 경우를 제외하고 본 문서에 설명된 제품을 사용하여 발생하는 어떠한 문제에도 책임을 지지 않습니다. 본 제품의 사용 또는 구입의 경우 NetApp에서는 어떠한 특허권, 상표권 또는 기타 지적 재산권이 적용되는 라이센스도 제공하지 않습니다.

권리 제한 표시: 정부에 의한 사용, 복제 또는 공개에는 DFARS 252.277-7103(1988년 10월) 및 FAR 52-227-19(1987년 6월)의 기술 데이터 및 컴퓨터 소프트웨어의 권리(Rights in Technical Data and Computer Software) 조항의 하위 조항 (c)(1)(ii)에 설명된 제한사항이 적용됩니다.

상표 정보

NETAPP, NETAPP 로고 및 에 나열된 마크는 NetApp에 있습니다 http://www.netapp.com/TM 는 NetApp, Inc.의 상표입니다. 기타 회사 및 제품 이름은 해당 소유자의 상표일 수 있습니다.