Linear Algebra: Take Home Test

Due on April 17, 2019 at 11:59pm

Dr. Munevver Subasi Section 01

Eric Pereira

Let A be an $n \times n$ matrix.

(a) (5 points) if λ is an eigenvalue of A, find an eigenvalue A^k where k is a positive integer. **Solution:**

$$Ax = \lambda x$$

$$AAX = A\lambda x$$

$$A^{2}x = \lambda Ax$$

$$A^{2}x = \lambda(\lambda x) = \lambda^{2}x$$

Now to introduce A^k ...

$$A^{k-1}Ax = A^{k-1}\lambda x$$
$$A^k x = \lambda(\lambda^{k-1}x)$$
$$A^k x = \lambda^k x$$

The eigenvalue of A^k is λ^k

(b) (5 points) if v is an eigenvector of A corresponding to an eigenvalue λ , find an eigenvector of A^k where k is a positive integer.

Solution:

As shown in problem 1(a), where v and x are eigenvectors you can see that when finding the eigenvalues of A^k the vectors are never changed, therefore the eigenvector of A^k where k is a positive integer is v.

Let A and B be two $n \times n$ matrices. Assume that B is similar to A, i.e, there exists an $n \times n$ nonsingular matrix S such that $B = S^{-1}AS$. Let $x \neq 0$ be an eigenvector of B corresponding to eigenvalue λ .

(a) (5 points) Prove that A and B have some eigenvalues, i.e, λ is also an eigenvalue of A. Solution:

$$\begin{split} \det |\lambda I - A| &= \det |\lambda I - S^{-1}BS| \\ \det |\lambda I - A| &= \det |\lambda S^{-1}IS - S^{-1}BS| \\ \det |\lambda I - A| &= \det |S^{-1}(\lambda I - B)S| \\ \det |\lambda I - A| &= \det |\frac{1}{S}(\lambda I - B)S| \\ \det |\lambda I - A| &= \det |\lambda I - B| \end{split}$$

If this is true then A and B must have the same eigenvalues.

(b) (5 points) Find the eigenvector of A corresponding to eigenvalue λ . Solution:

$$B = S^{-1}AS$$

$$Bx = \lambda x$$

$$S^{-1}ASx = \lambda x$$

$$ASx = \lambda Sx$$

We are able to move lambda because it is an integer and commutative.

Used Class notes to answer question 2(a) and 2(b)

Let V be a subspace of \mathbb{R}^n . The orthogonal complement of V in \mathbb{R}^n is defined as

$$V^{\perp} = \{ x \in \mathbb{R}^n | x \cdot v = 0 \ \forall \ v \in V \}$$

Prove that V^{\perp} is also a subspace of \mathbb{R}^n .

Solution:

Expanding the vectors out we get:

$$V^{\perp} = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | (x_1, x_2, ..., x_n) \cdot (v_1, v_2, ..., v_n) = 0 \ \forall \ (v_1, v_2, ..., v_n) \in V \}$$

Doing the dot product out it will look like:

$$V^{\perp} = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | (x_1v_1 + x_2v_2 + ... + x_nv_n) = 0 \ \forall \ (v_1, v_2, ..., v_n) \in V \}$$

v is 0 vector, because $x \cdot v = 0$, which means that either the x or v is the zero vector and because x is all reals that means v is the 0 vector.

$$V^{\perp} = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | (x_1 + x_2 + ... + x_n) \cdot (0 + 0 + ... + 0) = 0 \}$$
$$V^{\perp} \in \mathbb{R}^n$$

Let A and B be two $n \times n$ orthogonal matrices. Answer the following questions.

(a) (2 points) Is -3A orthogonal? Justify your answer.

Solution:

Yes, the orthogonality of a set is closed under scalar multiplication

(b) (2 points) Is -B orthogonal? Justify your answer.

Solution:

Yes, for the same reason as A, the orthogonality of a set is closed under scalar multiplication.

(c) (2 points) Is A + B orthogonal? Justify your answer.

Solution

Yes, because the orthogonality of a set is closed under addition.

(d) (2 points) Is $B^{-1}AB$ orthogonal? Justify your answer.

Solution:

Yes, because the set is closed under multiplication.

(e) (2 points) Is A^T invertible? if yes, find its inverse.

Solution:

Yes, because the transpose of an orthogonal matrix is its inverse (i.e $A^T = A^{-1}$). This means that the inverse of the transpose the original matrix itself.

(f) (2 points) Is AB orthogonal? Justify your answer.

Solution:

Yes, because the set is closed under multiplication.

(g) (2 points) Is A^2B^2 orthogonal? Justify your answer.

Solution:

Yes, because the set is closed under multiplication.

(a) (5 points) Let A be an $n \times n$ orthogonal matrix. Prove that $det(A) = \pm 1$. Solution:

$$A^{-1} = A^{T}$$

$$det(AA^{T}) = det(AA^{-1})$$

$$[det(A)]^{2} = 1$$

$$\sqrt{[det(A)]^{2}} = \sqrt{1}$$

$$det(A) = \pm 1$$

(b) (5 points) Let A be an $n \times n$ orthogonal matrix. Prove that only eigenvalues of A are 1 and -1. **Solution:**

$$det(A) = \pm 1$$

$$det(A - \lambda I) = 0$$

$$det(A) - \lambda det(I) = 0$$

$$det(A) = \lambda det(I)$$

$$det(I) = 1$$

$$det(A) = \lambda$$

$$\pm 1 = \lambda$$

Used class notes to answer question 5(a) and 5(b)