美國地區 電影首週票房預測

Prediction for Opening Week Box Office of Movies in US

製作人:楊雅筑

專案範圍

■ 鑒於資料完整性,選擇美國市場在2009年至 2019年9月近十年的資料,利用演員卡司、檔 期、類型等電影資訊,以及觀眾在 Youtube 官方預告片上的留言聲量,進行預測。

2 近十年平均首週票房約佔總票房40%,且首週 票房對於電影上映時間長短有關鍵性影響,故 針對首週票房建立預測模型。

資料來源與預處理 團隊介紹 專案簡介 機器學習 專案成果

專案流程與使用工具

團隊介紹

專案簡介

大數據平台建置

資料來源與預處理

資料視覺化與分析

機器學習

專案成果

Hadoop平台架構

叢集架構

硬體設備介紹

實體主機:6台

CPU: Intel® Core™ i7-4790 @3.60 GHz

4核8緒

RAM: DDR3 8GB*4 (1600MHZ)

HDD: 1TB (7200RPM)

虚擬主機:12台

CPU:每台均配置2顆cpu

RAM:每台均配置12GB

HDD: 500GB

團隊介紹

專案簡介

大數據平台建置

資料來源與預處理

資料視覺化與分析

機器學習

專案成果

資料來源

資料處理流程

特徵工程

- 一部電影含多種電影類型,一部電影含多位演員
 - → 視為元素組合與單一元素兩種特徵

電影類型

- Action (動作)
- Adventure (冒險)
- Comedy (喜劇)
- Science Fiction (科幻)

動作類型: **True** / False 冒險類型: **True** / False 喜劇類型: **True** / False 科幻類型: **True** / False

. . .

警悚類型:True/False

Source: https://www.themoviedb.org

特徵工程

• 卡司:比對奧斯卡金像獎資料,計算演員以及導演得獎、提名數量

• 評論:透過情感分析套件(vaderSentiment),計算預告片正負面評論 數量

• 最終以54種欄位特徵建立機器學習模型

電影產業市場概況分析

- 電影總票房分布
- 票房分布極端
- 總票房百萬以下電影佔70%

專案成果

電影產業市場概況分析

• 首週票房與總票房

樣本數:6368部電影

特徵工程

• 資料分佈離散度高:高票房的電影資料易被當作離群值

總票房	金額分佈(萬美元)	首週票房	言金額分佈(萬美元)
mean	1827.750191	mean	683.981240
std	5506.506645	std	2296.342253
min	0.007200	min	0.001100
25%	2.937175	25%	0.817475
50%	21.248950	50%	4.367250
75%	577.910700	75%	88.860600
max	93666.222500	max	39085.605400

→ 依據首週票房金額分為4類

1) Level 1: 大於4千萬美元以上

2) Level 2:1千萬美元~4千萬美元

3) Level 3:1百萬美元~1千萬美元

4) Level 4: 小於1百萬美元

機器學習

專案成果

團隊介紹 專案簡介 大數據平台建置 資料來源與預處理 資料視覺化與分析

模型建置:多元分類

learn 隨機森林(Random Forest)

- 決策樹(Decision Tree)為基礎的集成學習法(ensemble method)
- Bagging 隨機抽樣樣本與特徵,建立多個決策樹,對於各決策樹分類結果以平均 機率值估計取得最終分類結果

		precision	recall	f1-score
樹的數量				
樹深	1	0.64	0.64	0.64
	2	0.51	0.50	0.51
抽樣的特徵數量	3	0.31	0.13	0.19
分類權重	4	0.89	0.95	0.92
Out-of-bag	accuracy			0.82
	macro avg	0.59	0.56	0.56
	weighted avg	0.79	0.82	0.80

模型建置:多元分類

Marker XGBoost 梯度提升決策樹(Gradient Boosting Decision Tree)

- 決策樹(Decision Tree)為基礎的集成學習法(ensemble method)
- Boosting 根據前一個決策樹模型的錯誤率學習, 迭代多顆決策樹擬合為一顆決策樹, 取得最終分類結果

		precision	recall	f1-score
樹深 葉節點數量 學習率 L1, L2 正則項	0 1 2 3	0.70 0.58 0.41 0.92	0.64 0.64 0.16 0.98	0.67 0.61 0.23 0.95
	accuracy macro avg weighted avg	0.65 0.83	0.60 0.85	0.85 0.61 0.83

模型建置:預測Level 1首週票房金額

類神經網路(Artificial Neural Network)

激發函數:ReLU

優化器:Adam演算法

MSE平方誤差值學習,RMSE均方根誤差評估

模型建置:預測Level 1首週票房金額

Marker XGBoost 梯度提升決策樹(GBDT+gblinear)

\$137,728,787

In [185]: 1 int(np.exp(y_pred))
Out[185]: 115968432

Source: https://www.themoviedb.org

專案成果與商業應用

- 提供投資者與電影製片業者票房價格落點
- 2. 由分類模型中,可看出**各價格區段**的重要區分特徵:
 - 預告片評論
 - 演員

資料來源與預處理 資料視覺化與分析 團隊介紹 專案簡介 大數據平台建置 機器學習 專案成果

成果分析:預告片評論

- 預告片評論與首週票房成正比
- 高票房的預告片初期評論比例較高

成果分析:演員

- 第二演員欄位重要性高於第一演員
 - 高票房的演員與低票房演員的重複性:第一演員(79%) > 第二演員(69%)
- 票房毒藥?
 - 高票房電影的第一要角演員名單中,其主演電影中低票房數量比例高,且主 演作品數量大於平均值者

Nicolas Cage

Meryl Streep

Michael Fassbender

Source: https://www.themoviedb.org

團隊介紹

專案成果與商業應用

- 1. 預測票房價格
- 2. 由分類模型中,可看出各價格區段的重要區分特徵:
 - 預告片評論
 - 演員
- 3. 由高票房電影價格預測模型中,看出票房表現重要區分特徵:
 - 上映檔期 🛊
 - •電影類型 👚
 - 預告片評論
 - 演員

成果分析:上映檔期

•暑假期間(5~7月份)上映,電影間競爭高,但票房金額分布普遍表現較好

成果分析:上映檔期

- •暑假期間(5~7月份)上映,電影間競爭高,但票房金額分布普遍表現較好
- 不在國定假日週上映對票房表現較佳
- 於星期五上映是不變的定律

團隊介紹

專案簡介

大數據平台建置

資料來源與預處理

資料視覺化與分析

機器學習

專案成果

成果分析:電影類型

- 歷史、紀錄片類型完全不受觀眾青睞
- 累積票房收入最高的電影類型組合:冒險+動作+科幻
- 在類型組合中多加上**犯罪、愛情**元素會增加票房表現

依平均首週票房收入之Top10 類型組合

Source: https://www.themoviedb.org

感謝聆聽