

BC817 ... BC818 SMD General Purpose NPN Transistors SMD Universal-NPN-Transistoren

 $\begin{array}{lll} \textbf{I}_{\text{C}} & = 800 \text{ mA} & \textbf{V}_{\text{CES}} \\ \textbf{h}_{\text{FE}} & \sim 160/250/400 & \textbf{P}_{\text{tot}} \end{array}$

 $T_{imax} = 150$ °C

 $V_{CES} = 30...50 V$ $P_{tot} = 310 mW$

Besonderheiten

Universell anwendbar

Konfliktmineralien 1)

Drei Stromverstärkungsklassen

Konform zu RoHS, REACH,

Mechanische Daten 1)

Version 2018-10-10

Typical ApplicationsSignal processing,
Switching, Amplification
Commercial grade
Suffix -Q: AEC-Q101 compliant 1)
Suffix -AQ: in AEC-Q101 qualification 1
Suffix -AQ: in AEC-Q101 Qualifikation 1

Features
General Purpose
Three current gain groups
Compliant to RoHS, REACH,
Conflict Minerals 1)

Mechanical Data 1)

Taped and reeled 3000 / 7° Gegurtet auf Rolle Weight approx. $0.01 \, \mathrm{g}$ Gewicht ca. Case material UL 94V-0 Gehäusematerial Solder & assembly conditions $260 \, ^{\circ}\text{C}/10\text{s}$ Löt- und Einbaubedingungen

MSL = 1

Type		Recommended complementary PNP transistors		
Code		Empfohlene komplementäre PNP-Transistoren		
BC817-16/-Q = 6A or 6CR BC817-25/-Q/-AQ = 6B or 6CS BC817-40/-Q/-AQ = 6C or 6CT		BC807, BC808		

Maximum ratings ²) Grenzwerte ²)

			BC817	BC818
Collector-Emitter-voltage – Kollektor-Emitter-Spannung	E-B short	V_{CES}	50 V	30 V
Collector-Emitter-voltage – Kollektor-Emitter-Spannung	B open	V_{CEO}	45 V	25 V
Emitter-Base-voltage – Emitter-Basis-Spannung	C open	V_{EBO}	5 V	
Power dissipation – Verlustleistung		P _{tot}	310 mW ³)	
Collector current – Kollektorstrom	DC	Ic	800 mA	
Peak Collector current – Kollektor-Spitzenstrom		\mathbf{I}_{CM}	1 A	
Peak Emitter current – Emitter-Spitzenstrom		- I _{EM}	1 A	
Peak Base current – Basis-Spitzenstrom		I_{BM}	200 mA	
Junction temperature – Sperrschichttemperatur Storage temperature – Lagerungstemperatur		T _j T _S	-55+150°C -55+150°C	

¹ Please note the <u>detailed information on our website</u> or at the beginning of the data book Bitte beachten Sie die <u>detaillierten Hinweise auf unserer Internetseite</u> bzw. am Anfang des Datenbuches

² $T_A = 25$ °C, unless otherwise specified – $T_A = 25$ °C, wenn nicht anders angegeben

³ Mounted on P.C. board with 3 mm2 copper pad at each terminal Montage auf Leiterplatte mit 3 mm2 Lötpad je Anschluss

Characteristics Kennwerte

		T _i = 25°C	Min.	Тур.	Max.
		1j = 23 C	141111.	iyp.	riax.
DC current gain – Kollektor-Basis-Stromverhältnis ¹)					
V_{CE} = 1 V, I_{C} = 100 mA	Group -16 Group -25 Group -40	h _{FE}	100 160 250	_ _ _	250 400 630
$V_{CE} = 1 \text{ V, } I_{C} = 500 \text{ mA}$		h _{FE}	40	_	-
Collector-Emitter saturation voltage – Kollektor-Emitter	-Sättigungsspg. ²)			
I_{C} = 500 mA, I_{B} = 50 mA		V_{CEsat}	_	_	0.7 V
Base-Emitter saturation voltage – Basis-Emitter-Sättigu	ngsspannung ²)				
I_C = 500 mA, I_B = 50 mA		V_{BEsat}	_	_	1.3 V
Base-Emitter-voltage – Basis-Emitter-Spannung ²)					
$V_{CE} = 1 V$, $I_C = 500 \text{ mA}$		V_{BE}	_	_	1.2 V
Collector-Base cutoff current – Kollektor-Basis-Reststrom					
$V_{CB}=20$ V, (E open) $V_{CB}=20$ V, $T_{\rm j}=125^{\rm o}$ C, (E open)		${ m I}_{{ m CB0}}$	_ _	_ _	100 nA 5 μA
Emitter-Base cutoff current – Emitter-Basis-Reststrom					
$V_{EB} = 4 \text{ V, (C open)}$		I_{EB0}	_	_	100 nA
Gain-Bandwidth Product – Transitfrequenz					
V_{CE} = 5 V, I_C = 10 mA, f = 50 MHz		f⊤	_	100 MHz	-
Collector-Base Capacitance – Kollektor-Basis-Kapazität					
$V_{CB}=10~V,~I_{E}=i_{e}=0,~f=1~MHz$		Ссво		12 pF	
Typical thermal resistance junction to ambient Typischer Wärmewiderstand Sperrschicht – Umgebung		R _{thA}	420 K/W ²)		

Disclaimer: See data book page 2 or <u>website</u> **Haftungssauschluss:** Siehe Datenbuch Seite 2 oder <u>Internet</u>

2 http://www.diotec.com/ © Diotec Semiconductor AG

 $^{1 \}quad \text{Tested with pulses } t_{\text{p}} = 300 \; \mu\text{s, duty cycle} \leq 2\% \; - \; \text{Gemessen mit Impulsen } t_{\text{p}} = 300 \; \mu\text{s, Schaltverh\"{a}ltnis} \leq 2\%$

² Mounted on P.C. board with 3 mm² copper pad at each terminal Montage auf Leiterplatte mit 3 mm² Kupferbelag (Lötpad) an jedem Anschluss