Parametric Models: from data to models

Pradeep Ravikumar (Instructor), HMW-Alexander (Noter)

January 23, 2017

Back to Index

Contents

1	Recall Model-based ML	1
	Model Learning: Data to Model 2.1 Bernoulli Distribution Example	1 1
3	Maximum Likelihood Estimation (MLE)	2
	How Good is the Maximum Likelihood Estimation? 4.1 Unbiasedness	

Resources

• Lecture

1 Recall Model-based ML

Model-based ML

2 Model Learning: Data to Model

Questiongs:

- What are the principles in going from data to model?
- What are the guarantees of these methods?

2.1 Bernoulli Distribution Example

- Bernoulli distribution model
 - -X is a random variable with Bernoulli distribution when:
 - * X takes values in $\{0,1\}$
 - * $P(X = 1) = \theta$, $P(X = 0) = 1 \theta$
 - * Where $\theta \in [0, 1]$

- Draw **independent** samples that are **identically distributed** from same distribution model, Bernoulli distribution.
 - If we observe an event $X \in \{0,1\}$, its probability P(X) is $\theta^X (1-\theta)^{1-X}$
 - Then the probability of data:

$$\mathbb{P}(X_{1}, X_{2}, ..., X_{n}; \theta) = \prod_{i=1}^{n} P(X_{i})
= \prod_{i=1}^{n} p^{X_{i}} (1-p)^{1-X_{i}}
= p^{\sum_{i=1}^{n} X_{i}} (1-p)^{n-\sum_{i=1}^{n} X_{i}}
= p^{n_{1}} (1-p)^{n-n_{1}}$$
(1)

- Maximum Likelihood $(p(D|\theta))$ Estimator (MLE)
 - Choose θ that maximizes the probability of observed data.

$$\hat{\theta} = \arg \max_{\theta} \mathbb{P}(X_1, \dots, X_n; \theta)
= \arg \max_{\theta} \theta^{n_1} (1 - \theta)^{n - n_1}
= \arg \max_{\theta} n_1 \log \theta + (n - n_1) \log(1 - \theta)
\Rightarrow \frac{n_1}{\hat{\theta}} - \frac{n - n_1}{1 - \hat{\theta}} = 0
\Rightarrow \hat{\theta}_{MLE} = \frac{n_1}{n}$$
(2)

2.2 How good is this MLE?

- Consistency:
 - As we sample more and more times, we want our estimator to converge (in probability) to the true probability.
 - For Bernoulli distribution example, we get the $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i \to \theta$ in probability as $n \to \infty$ by the **Law of Large Numbers!**

3 How Good is the Maximum Likelihood Estimation?

- 3.1 Unbiasedness
- 3.2 title