ΗΥ-111 Απειροστικός Λογισμός ΙΙ

Εαρινό εξάμηνο 2023

1^η σειρά ασκήσεων Παράδοση: 05/03/2023

Γενικές οδηγίες

Το όνομα του παραδοτέου πρέπει να είναι της μορφής **ask1_AM** (όπου AM ο αριθμός μητρώου π.χ. ask1_1234). Μπορείτε να κάνετε χρήση των equation tools στο Word ή κάποιου άλλου λογισμικού για συγγραφή εξισώσεων ή του Latex. Αν οι ασκήσεις παραδοθούν σε doc/pdf με χρήση Word θα έχετε bonus +5% ενώ αν χρησιμοποιήσετε Latex θα έχετε bonus +10% (μέγιστη βαθμολογία 105% ή 110% αντίστοιχα). Αν παραδώσετε σκαναρισμένες ή με φωτογραφίες τις ασκήσεις σας θα βαθμολογηθείτε με μέγιστο 100%. Στην περίπτωση παράδοσης με φωτογραφίες, τοποθετήστε όλες τις εικόνες σε <u>ένα ενιαίο</u> αρχείο κειμένου/pdf ώστε να διευκολύνετε την διόρθωση. Η παράδοση των ασκήσεων θα γίνει **ηλεκτρονικά** μέχρι και τις 05/03/2023 και ώρα 23:59 από την ιστοσελίδα του

Η παράδοση των ασκήσεων θα γίνει **ηλεκτρονικά** μέχρι και τις 05/03/2023 και ώρα 23:59 από την ιστοσελίδα του μαθήματος στο eLearn. Προσοχή: Δεν θα δοθεί παράταση, υπάρχει όμως δυνατότητα καθυστερημένης παράδοσης με ποινή -10% ανά ημέρα και μέχρι 3 ημέρες καθυστέρηση το αργότερο.

Άσκηση 1 (14 Μονάδες)

α) Για τα διανύσματα $\mathbf{v} = 3\mathbf{i} - \mathbf{j}$ και $\mathbf{u} = 3\mathbf{j} + 2\mathbf{k}$ του \mathbb{R}^3 βρείτε το $|\mathbf{v}|$, $|\mathbf{u}|$, $\mathbf{v} \cdot \mathbf{u}$, $\mathbf{u} \times \mathbf{v}$, $\mathbf{v} \times \mathbf{u}$, $|\mathbf{v} \times \mathbf{u}|$, την γωνία μεταξύ των \mathbf{u} και \mathbf{v} σε ακτίνια, και την διανυσματική προβολή του \mathbf{u} πάνω στο \mathbf{v} . β) Υπολογίστε όλα τα ζητούμενα του (α) ερωτήματος με χρήση του GeoGebra και προσθέστε στην απάντησή σας την εικόνα των σχημάτων και των εντολών που χρησιμοποιήσατε.

Άσκηση 2 (10 Μονάδες)

α) Υπολογίστε την οξεία γωνία (σε μοίρες και ακτίνια) μεταξύ των ευθειών 4x + 3y = 2 και 5x - 2y = 3 β) Υπολογίστε με GeoGebra την γωνία του ερωτήματος (α) και προσθέστε στην απάντησή σας την εικόνα των σχημάτων και των εντολών που χρησιμοποιήσατε.

Άσκηση 3 (8 Μονάδες)

Έστω \mathbf{v} = <1, 1> . Δώστε μια περιγραφή όλων των διανυσμάτων θέσης \mathbf{w} που έχουν την ίδια προβολή στο \mathbf{v} με το \mathbf{u} = <1, 2> δηλαδή proj_v \mathbf{w} = proj_v<1,2> . Σχεδιάστε στο χαρτί (ή με GeoGebra) το σχήμα της λύσης.

Άσκηση 4 (28 Μονάδες)

Διερευνήστε αν οι ακόλουθες προτάσεις είναι σωστές και δώστε μια εξήγηση ή απόδειξη ή ένα αντιπαράδειγμα για κάθε μια από αυτές. Θεωρήστε ότι τα ${\bf u}$, ${\bf v}$, ${\bf w}$ είναι μη μηδενικά διανύσματα του ${\mathbb R}^3$

$$\alpha) (\mathbf{u} \cdot \mathbf{i})^2 + (\mathbf{u} \cdot \mathbf{j})^2 + (\mathbf{u} \cdot \mathbf{k})^2 = |\mathbf{u}|^2$$

- β) Αν το $\bf u$ είναι κάθετο στο $\bf v$ και το $\bf v$ είναι κάθετο στο $\bf w$, τότε το $\bf u$ είναι κάθετο στο $\bf w$
- γ) Τα διανύσματα που είναι κάθετα στο <1,1,1> βρίσκονται στην ίδια ευθεία
- δ) Αν $proj_{v} \mathbf{u} = 0$ τότε τα διανύσματα \mathbf{u} και \mathbf{v} (όχι μηδενικά και τα δύο) είναι κάθετα.

$$\varepsilon$$
) u x (u x v) = 0

στ)
$$proj_{v} \mathbf{u} = proj_{u} \mathbf{v}$$

$$\zeta$$
) ($u - v$) x ($u + v$) = $2u \times v$

Άσκηση 5 (14 Μονάδες)

α) Βρείτε την απόσταση που χωρίζει το επίπεδο x+2y+6z=6 από την ευθεία με παραμετρικές εξισώσεις x=2+t, y=1+t, z=-1/2-(1/2)t (10 Μονάδες). β) Με χρήση GeoGebra σχεδιάστε την ευθεία, το επίπεδο, υπολογίστε την απόσταση και προσθέστε στην απάντησή σας την εικόνα των σχημάτων μαζί με τις εντολές που χρησιμοποιήσατε (4 Μονάδες).

Άσκηση 6 (8 Μονάδες)

Έστω η ευθεία x = 3-2t, y = 1+5t, z = -2-3t. Είναι η ευθεία παράλληλη με το επίπεδο 2x+y-z=17; Αιτιολογήστε την απάντησή σας.

Άσκηση 7 (18 Μονάδες)

α) (8 Μονάδες) Βρείτε ένα επίπεδο που να διέρχεται από το σημείο P(1,1,1) και να τέμνει κάθετα το επίπεδο 2x+3y+z=13 β) (6 Μονάδες) Βρείτε την εξίσωση της ευθείας τομής των δύο επιπέδων γ) (4 Μονάδες) Σχεδιάστε τα δύο επίπεδα και την ευθεία τομής με χρήση GeoGebra και προσθέστε την εικόνα στην απάντησή σας.