Домашнее задание

Идеалом I кольца A называется подмножество A такое, что:

- 1. I абелева группа по сложению.
- 2. $\forall a \in A, \forall i \in I$ выполняется $ai \in I$.

Любое кольцо содержит тривиальные идеалы $I = \{0\}$ и I = A.

Идеал кольца A, не совпадающий с A называется собственным.

Собственный идеал называется максимальным, если он не лежит в другом собственном идеале.

Идеал называется главным, если он порожден одним элементом. Запись I=(a) означает, что $I=\{ax\}$, где x — любой элемент из кольца. Например, идеал $2\mathbb{Z}=(2)$ — главный.

- **1.** Определите, является ли множество I идеалом кольца A:
- а) $A = \mathbb{Z}$, I все целые числа, кратные 100.
- б) $A = \mathbb{R}[x]$, I множество всех многочленов, имеющих корень 2.
- в) $A = \mathbb{R}[x]$, I множество всех многочленов, касающихся оси Ox в точке 2.
- г) $R=\mathbb{Z}^{2 imes 2}$ множество матриц 2 imes 2 с целочисленными коэффициентами.
- I множество матриц вида $\begin{pmatrix} a & 2b \\ 0 & c \end{pmatrix}$, где $a,b,c \in \mathbb{Z}$.
- **2.** Перечислите все максимальные идеалы в кольце \mathbb{Z}_{60} .
- **3.** Рассмотрим кольцо $\mathbb{F}_{2}[x]$ и идеал $I = (x^{2} + 1)$
- а) Приведите примеры 3-х элементов из I.
- б) Приведите примеры 3-х элементов из $\mathbb{F}_2[x]$, не принадлежащих I.
- в) Сколько существует идеалов, содержащих I?
- г) Приведите примеры 3-х элементов из $\mathbb{F}_2[x]$, эквивалентных 0 ($p \sim q$, если $p-q \in I$).
- д) Приведите примеры 3-х элементов из $\mathbb{F}_2[x]$, эквивалентных 1.
- е) Приведите примеры 3-х элементов из $\mathbb{F}_2[x]$, эквивалентных x^3 .
- **4.** Пусть $I = (x^2 + 1) \subset \mathbb{Z}[x]$. Определите, содержит ли I многочлены:

- a) $x^5 + 4x^3 + x^2 + 3x + 4$, 6) $x^5 + 6x^3 + 2x^2 + 5x + 2$.
- **5.** Докажите, что идеал $I = (x^3 + 1)$ не является максимальным в $\mathbb{Z}_2[x]$. Перечислите максимальные идеалы, содержащие I.
- **6.** Пусть I = (18), J = (24) идеалы в \mathbb{Z} . Найдите а) $I \cap J$, б) I + J.
- 7. Докажите, что кольцо A матриц $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha+3\beta \end{pmatrix}$, где $\alpha,\beta\in\mathbb{F}_5$ не является полем.
- а) Сколько в нем элементов?
- б) Найдие все необратимые элементы.
- в) Перечислите все идеалы в A.
- r) Можно ли разложить A в прямое произведение колец?
- **8.** С помощью алгоритма Евклида найдите НОД многочленов u и v над полем \mathbb{F}_p .
- a) $u = x^3 + x^2 + 1$, v = x + 1, p = 2
- 6) $u = x^7 + x^5 + 2x^4 + x^3 + 2x^2 + 2$, $v = x^4 + 2x^3 + x + 2$, p = 3
- 9. Пусть I = (1+3i) максимальный идеал в $\mathbb{Z}[i]$ ($\mathbb{Z}[i]$ минимальное кольцо, содержащее \mathbb{Z} и i, где $i^2 = -1$). Докажите, что $\mathbb{Z} \cap I = 10\mathbb{Z}$.