2012 年全国硕士研究生招生考试试题

	小题,每小题 4 分,共 32 的字母填在题后的括号内	分. 在每 <mark>小</mark> 题给出的四个选 ^执 .)	项中,只有一项符合题目
•	新近线的条数为()	<i>3.</i> /	
(A)0.	(B)1.	(C)2.	(D)3.
$(2) 设函数 f(x) = (e^{x})$	$(e^{2x} - 1)(e^{2x} - 2) \cdots (e^{nx} - n)$),其中 n 为正整数,则 $f'(0)$) = ()
$(A)(-1)^{n-1}(n-1)$	-1)!.	$(B)(-1)^n(n-1)$)!.
$(C)(-1)^{n-1}n!.$		$(D)(-1)^{n}n!.$	
(3)如果函数 $f(x,y)$	生点(0,0)处连续,那么了	下列命题正确的是()	
(A) 若极限 $\lim_{\substack{x \to 0 \ y \to 0}} \frac{f}{x}$	$\frac{f(x,y)}{ + y }$ 存在,则 $f(x,y)$	在点(0,0)处可微.	
(B)若极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x)}{x^2}$	$\frac{(x,y)}{(x,y)}$ 存在,则 $f(x,y)$ 在点	((0,0)处可微.	
(C)若f(x,y)在点	点(0,0)处可微,则极限lin _{x-}	$\underset{\rightarrow}{\operatorname{m}} \frac{f(x,y)}{ x + y }$ 存在.	
(D)若f(x,y)在点	点(0,0)处可微,则极限li ェー	$\underset{\rightarrow}{\text{m}} \frac{f(x,y)}{x^2 + y^2}$ 存在.	
$(4) \overset{\text{th}}{\boxtimes} I_k = \int_0^{k\pi} e^{x^2} \sin x$	xdx(k=1,2,3),则有()	
$(A)I_1 < I_2 < I_3.$	(B) $I_3 < I_2 < I_1$.	$(C)I_2 < I_3 < I_1.$	(D) $I_2 < I_1 < I_3$.
(5) 设 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix}, \boldsymbol{\alpha}_2 =$	$\begin{pmatrix} 0 \\ 1 \\ c_2 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}, \boldsymbol{\alpha}_4 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 1 \\ c_4 \end{pmatrix}$,其中 c_1 , c_2 , c_3 , c_4 为任	意常数,则下列向量组织
性相关的为()		
$(A)\alpha_1,\alpha_2,\alpha_3.$	$(B)\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_4.$	$(C)\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4.$	$(D)\alpha_2,\alpha_3,\alpha_4.$
		$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	
(6)设 A 为 3 阶矩	年, P 为 3 阶 可 逆 矩 阵	$\Xi, \ \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. 若 $P = (\alpha_1, \alpha_2, \alpha_3)$
$Q = (\alpha_1 + \alpha_2, \alpha_2)$	$(\boldsymbol{\alpha}_3)$,则 $\boldsymbol{Q}^{-1}\boldsymbol{A}\boldsymbol{Q}=($)	
$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$
(A) 0 2 0 .	$(B) \begin{vmatrix} 0 & 1 & 0 \end{vmatrix}.$	$ (C) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}. $	(D) 0 2 0 .
$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 2 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 2 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$
(7)设随机变量 X 与 Y	/相互独立,且分别服从参	参数为1与参数为4的指数分	\hbar ,则 $P\{X < Y\} = ($

 $(C)\frac{2}{3}$.

 $(B)\frac{1}{3}$.

 $(A)\frac{1}{5}$.

(8)将长度为1 m 的木棒随机地截成两段,则两段长度的相关系数为()

$$(B)\frac{1}{2}$$
.

$$(C) - \frac{1}{2}$$
.

(D) - 1.

二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)

(9)若函数f(x)满足方程f''(x) + f'(x) - 2f(x) = 0及 $f''(x) + f(x) = 2e^x$,则 $f(x) = _____.$

$$(10) \int_0^2 x \sqrt{2x - x^2} dx = \underline{\qquad}.$$

 $(11) \operatorname{grad} \left(xy + \frac{z}{y} \right) \Big|_{(2,1,1)} = \underline{\qquad}.$

(12) 设
$$\Sigma$$
 = { (x,y,z) | x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0}, 则 $\iint_{\Sigma} y^2 dS = \underline{\hspace{1cm}}$.

(13)设 α 为3维单位列向量,E为3阶单位矩阵,则矩阵 $E-\alpha\alpha^{T}$ 的秩为____.

(14) 设
$$A,B,C$$
 是随机事件, A 与 C 互不相容, $P(AB) = \frac{1}{2},P(C) = \frac{1}{3}$,则 $P(AB \mid \overline{C}) = ____.$

三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分10分)

证明:
$$x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2}$$
 (-1 < x < 1).

(16)(本题满分10分)

求函数
$$f(x,y) = xe^{-\frac{x^2+y^2}{2}}$$
的极值.

(17)(本题满分10分)

求幂级数
$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$$
的收敛域及和函数.

淘宝店铺:筑梦教育

30

(18)(本题满分10分)

已知曲线 $L: \begin{cases} x = f(t), \\ y = \cos t \end{cases}$ (0 $\leq t < \frac{\pi}{2}$),其中函数 f(t) 具有连续导数,且 f(0) = 0, f'(t) > 0 (0 $< t < \frac{\pi}{2}$).

若曲线 L 的切线与 x 轴的交点到切点的距离恒为 1 ,求函数 f(t) 的表达式,并求以曲线 L 及 x 轴和 y 轴为边界的区域的面积.

(19)(本题满分10分)

已知 L 是第一象限中从点(0,0) 沿圆周 $x^2 + y^2 = 2x$ 到点(2,0), 再沿圆周 $x^2 + y^2 = 4$ 到点(0,2) 的曲线段, 计算曲线积分 $I = \int_I 3x^2y dx + (x^3 + x - 2y) dy$.

(20)(本题满分11分)

读
$$\mathbf{A} = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}.$$

- (I)计算行列式 | A |;
- (Ⅱ) 当实数 a 为何值时,方程组 $Ax = \beta$ 有无穷多解,并求其通解.

31

淘宝店铺:筑梦教育

(21)(本题满分11分)

已知
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{pmatrix}$$
, 二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}}(\mathbf{A}^{\mathrm{T}}\mathbf{A})\mathbf{x}$ 的秩为 2.

- (I)求实数 a 的值;
- (Ⅱ)求正交变换 x = Qy 将二次型 f 化为标准形.

(22)(本题满分11分)

设二维离散型随机变量(X,Y)的概率分布为

Y X	0	1	2
0	$\frac{1}{4}$	0	$\frac{1}{4}$
1	0	$\frac{1}{3}$	0
2	$\frac{1}{12}$	0	$\frac{1}{12}$

- (I) 求 $P\{X=2Y\}$;
- (\mathbb{I})求 Cov(X Y, Y).

(23)(本题满分11分)

设随机变量 X 与 Y 相互独立且分别服从正态分布 $N(\mu,\sigma^2)$ 与 $N(\mu,2\sigma^2)$,其中 σ 是未知参数 且 $\sigma > 0$. 记 Z = X - Y.

- (I)求Z的概率密度 $f(z;\sigma^2)$;
- (\mathbb{I})设 Z_1, Z_2, \cdots, Z_n 为来自总体Z的简单随机样本,求 σ^2 的最大似然估计量 $\widehat{\sigma^2}$;

32

(Ⅲ)证明 $\hat{\sigma}^2$ 为 σ^2 的无偏估计量.

淘宝店铺:筑梦教育