City University of Hong Kong epartment of Economics and Figure Course EF5213 Assignment #3

1. Consider the MVO problem that determines the optimal portfolio content w and w_0 by minimizing the portfolio risk as

minimize $w + w_0 = 1$, and $a_1 \ge w_1 \ge -b_1$, ..., $a_n \ge w_n \ge -b_n$

 \mathbf{L}_{0} , asset mean returns $\mathbf{\mu}$, and their variance-covariance $\mathbf{\sigma}$. given portfolio mean There are buy and self limits in the optimization according to the given positive quantities $\{a_1, \dots, a_n\}$ and $\{b_1, \dots, b_n\}$. It should be noted that the optimal portfolio content can be determined through the

Kuhn-Tucker conditions as $\frac{\partial L}{\partial w_i} = (\mathbf{\sigma} \mathbf{w} - \lambda_1 \mathbf{\mu} + \mu_0 \lambda_1 \mathbf{u})_i = 0 \text{ when } a_i \ge w_i \ge -b_i$ $\mathbf{Assignment} \quad \mathbf{We} \quad \mathbf{E} \quad \mathbf$

Modify the Markowitz algorithm in the lecture and develop a VBA implementation for the current MVO problem.

Email: tutorcs@163.com

(80 points)

Consider the following procedures in your implementation: (1) Define an OUT subset Ω , and separate Ω into two disjoint subsets A and B. You can use the given subroutine GetSeparation() for these purposes. Consider the MVO problem with $w_i = -b_i$ for $i \in B$,

and $w_i = a_i$ for $i \in A$. The optimal solution of this MVO problem is given by $\frac{\mathbf{v}_i = \mathbf{v}_i}{\mathbf{v}_i} = \frac{\mathbf{v}_i}{\mathbf{v}_i} = \frac{\mathbf{v}_i}{\mathbf{$ $w_0 = 1 - \mathbf{u}^T \mathbf{w}$

$$\lambda_1 = \frac{\mu_p - \mu_0 + \mu_0 \mathbf{u}^T \sigma_m^{-1} \mathbf{h} - \mu^T \sigma_m^{-1} \mathbf{h}}{C_m \mu_0^2 - 2A_m \mu_0 + B_m}$$

Here, $\{\sigma_m, \mu_m, \mathbf{u}_m\}$ refer to the modified versions of $\{\sigma, \mu, \mathbf{u}\}$ according to the assets in the *OUT* subset Ω .

- (2) Check that all the entries of w satisfy both the buy and sell limits. If so, proceed to step (3). If this is not the case, return to step (1) and try another separation of Ω or another *OUT* subset.
- (3) Check that KKT conditions have been satisfied. If so, w_0 and w defined in (1) will be an optimal solution. Otherwise, return to step (1) and try another separation of Ω or another *OUT* subset.