Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2

Segundo parcial - 4 de Julio de 2014

Segundo parcial - soluciones

Ejercicio 1.

- **a**. Si a es el orden de \overline{g} en $U(p^2)$, en particular tenemos que $g^a \equiv 1 \pmod{p^2}$. Entonces p^2 divide a $g^a 1$ y entonces (por la transitiva de la divisibilidad) tenemos que p divide a $g^a 1$. Por lo tanto tenemos que $g^a \equiv 1 \pmod{p}$. Y como b es el orden de \overline{g} concluímos que $b \mid a$.
- b. i) Para probar que 10 es raíz primitiva módulo 19, basta con probar que para cada primo q divisor de 19-1=18, $10^{18/q}\not\equiv 1\pmod{19}$. Es decir (tomando q=2 y q=3), tenemos que probar que $10^9\not\equiv 1\pmod{19}$ y que $10^6\not\equiv 1\pmod{19}$. Como $20\equiv 1\pmod{19}$, tenemos que $10^2=100=20\times 5\equiv 5\pmod{19}$; luego $10^4\equiv 5^2\pmod{19}\equiv 6\pmod{19}$ Por lo tanto $10^6=10^410^2\equiv 6(5)\pmod{19}\equiv 11\pmod{19}$. Por otro lado $10^8\equiv 36\pmod{19}\equiv -2\pmod{19}$, y por lo tanto $10^9\equiv -20\pmod{19}\equiv 18\pmod{19}$.
 - ii) Por la parte i) el orden de 10 en U(19) es 18 y por la parte a) tenemos que si b es el orden de 10 en U(19²), entonces 18 | b.
 Por otro lado, como φ(19²) = 19² − 19 = 19(18) y b | φ(19²) concluímos que b = 18 o b = 19(18). Para probar que 10 es raíz primitiva módulo 19² tenemos que probar que b = 19(18). Por lo tanto basta con probar que b ≠ 18. Para ésto, basta con ver que 10¹8 ≠ 1 (mód 19²).
 - Por el dato brindado en la letra tenemos que $10^5 \equiv 3 \pmod{19^2}$; entonces $10^{10} \equiv 9 \pmod{19^2}$ y $10^{15} \equiv 27 \pmod{19^2}$. Utilizando el dato que y $3(19)^2 = 1083$, tenemos que $10^3 = 1000 \equiv (-83) \pmod{19^2}$.
 - Por lo tanto, $10^{18} = 10^{15}10^3 \equiv 27(-83) \pmod{19^2} \equiv -2241 \pmod{19^2} \equiv 2(-1083) 75 \pmod{19^2} \equiv -75 \pmod{19^2}$. Como $19^2 = 361$, concluímos que $10^{18} \equiv -75 \pmod{361} \not\equiv 1 \pmod{19^2}$.
 - iii) Ya vimos que 10 es raíz primitiva módulo 19^2 . Por lo visto en teórico tenemos que 10 es raíz primitiva módulo 19^k para todo k. Como 10 es par, por lo visto en teórico (y práctico), para cada k tenemos que $10 + 19^k$ es raíz primitiva módulo $2(19)^k$.

Ejercicio 2.

- a. Ver teórico.
- b. Por el Teorema de órdenes para homomorfismos, tenemos que si $f: S_4 \to \mathbb{Z}_{35}$ es un homomorfismo, entonces $4! = |S_4| = |\operatorname{Ker}(f)||\operatorname{Im}(f)|$. Por lo tanto, $|\operatorname{Im}(f)|$ divide a 4!. Por otro lado, por el Teorema de Lagrange, como $\operatorname{Im}(f) < \mathbb{Z}_{35}$ tenemos que también $|\operatorname{Im}(f)|$ divide a 35. Como $\operatorname{mcd}(4!,35) = 1$ concluímos que $|\operatorname{Im}(f)| = 1$ y por lo tanto $\operatorname{Im}(f) = \{\overline{0}\}$ y entonces el único homomorfismo es el trivial.
- c. En este caso, si $f: \mathbb{Z}_{15} \to \mathbb{Z}_6$ es un homorfismo, como $\mathbb{Z}_{15} = \langle \overline{1} \rangle$ veamos las posibilidades para $f(\overline{1})$ (ya que sabiendo el valor de $f(\overline{1})$, si f es homomorfismo tendremos que para todo $m \in \{0, \dots, 14\}, f(\overline{m}) = f(m\overline{1}) = f(\underline{\overline{1} + \dots + \overline{1}}) = \underbrace{f(\overline{1}) + \dots + f(\overline{1})}_{m \text{ veces}} = mf(\overline{1})$. Como $o(f(\overline{1}))$

divide a $o(\overline{1}) = 15$, tenemos que las posibilidades para $o(f(\overline{1}))$ son 1, 3, 5 y 15. Pero además, como $f(\overline{1}) \in K$, tenemos que $o(f(\overline{1}))$ también divide a |K| = 6. Por lo tanto, $o(f(\overline{1}))$ es 1 o 3.

- Si $o(f(\overline{1})) = 1$, entonces $f(\overline{1})$ es el neutro de K, es decir $f(\overline{1}) = \overline{0}$, y entonces $f(\overline{m}) = m\overline{0} = \overline{0}$ para todo $m \in \{0, \dots, 14\}$.
- Si $o(f(\overline{1})) = 3$ entonces $f(\overline{1})$ es $\overline{2}$ o $\overline{4}$. Entonces tenemos dos posibilidades para $f: f(\overline{m}) = m\overline{2} = \overline{2m}$ para todo $m \in \{0, \dots, 14\}$ y $f(\overline{m}) = m\overline{4} = \overline{4m}$ para todo $m \in \{0, \dots, 14\}$.

Ejercicio 3. Ver teórico.

Ejercicio 4.

- **a.** La clave es $c \equiv 1005^8 \pmod{1009} \equiv (-4)^8 \pmod{1009} \equiv 2^{16} \pmod{1009} = 2^{10}2^6 \pmod{1009} \equiv 1024(64) \pmod{1009} \equiv 15(64) \pmod{1009} \equiv 960 \pmod{1009}.$ Por lo tanto c = 960.
- **b**. Tenemos que 960 = (28)34 + 8 y 34 = (28) + 6, tenemos que $960 = 28^2 + 6(28) + 8$, y por lo tanto la clave es k = (1, 6, 8) o pasado a letras es k = BGI.
- c. Para desencriptar el mensaje, primero lo convertimos a una sucesión de números según la tabla: WUFAGHFCWÑKZBXHEÑ__DXMUG correponde a la sucesión

$$(23, 21, 5, 0, 6, 7, 5, 2, 23, 14, 10, 26, 1, 24, 7, 4, 14, 27, 3, 24, 12, 21, 6).$$

Restando (módulo 28) la sucesión

$$(1,6,8,1,6,8,1,6,8,1,6,8,1,6,8,1,6,8,1,6,8,1,6)$$

obtenemos

$$(22, 15, 25, 27, 0, 27, 4, 24, 15, 13, 4, 18, 0, 18, 27, 3, 8, 19, 2, 18, 4, 20, 0),$$

que corresponde al texto: VOY_A_EXONERAR_DISCRETA.

Ejercicio 5. Ver teórico.