1. 
$$\neg ((p \land q) \land r) = (\neg (p \land q)) \lor (\neg r) = (\neg p) \lor (\neg q) \lor (\neg r)$$

Amazon is not straight or Andromeda has black holes or sensors don't need low duty-cycle.

2. Assuming  $(((p \land \neg q) \lor r) \land \neg s = m, ((\neg p \lor \neg q \lor s) \land (r \lor \neg s) = n$ So now we have  $m \Rightarrow n$ 

Truth Table:

| Tall lable. |   |   |   |   |   |                   |
|-------------|---|---|---|---|---|-------------------|
| р           | q | r | S | m | n | $m \Rightarrow n$ |
| Т           | Т | T | Т | F | Т | Т                 |
| Т           | Т | Т | F | Т | F | F                 |
| Т           | Т | F | Т | F | F | Т                 |
| Т           | Т | F | F | F | F | Т                 |
| Т           | F | Т | Т | F | Т | Т                 |
| Т           | F | Т | F | Т | Т | Т                 |
| Т           | F | F | Т | F | Т | Т                 |
| Т           | F | F | F | Т | Т | Т                 |
| F           | Т | Т | Т | F | Т | Т                 |
| F           | Т | Т | F | Т | Т | Т                 |
| F           | Т | F | Т | F | F | Т                 |
| F           | Т | F | F | F | Т | F                 |
| F           | F | T | Т | F | Т | Т                 |
| F           | F | Т | F | T | T | Т                 |
| F           | F | F | T | F | F | Т                 |
| F           | F | F | F | F | Т | Т                 |

3.

i.

| р | q | $(p \Rightarrow q) \land p$ | q |
|---|---|-----------------------------|---|
| Т | Т | Т                           | Т |
| Т | F | F                           | F |
| F | Т | F                           | Т |
| F | F | F                           | F |

It can be proved that  $((p \Rightarrow q) \land p) \Rightarrow q$  is valid.

ii.

 $a. ((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$ 

| (1) |   | u |                                             |                   |
|-----|---|---|---------------------------------------------|-------------------|
| р   | q | r | $(p \Rightarrow q) \land (q \Rightarrow r)$ | $p \Rightarrow r$ |
| Т   | Т | Т | Т                                           | T                 |
| Т   | Т | F | F                                           | F                 |

| Т | F | Т | F | Т |
|---|---|---|---|---|
| Т | F | F | F | F |
| F | Т | Т | Т | Т |
| F | Т | F | F | Т |
| F | F | Т | T | Т |
| F | F | F | Т | Т |

The chain argument has been proved to be valid.

b.  $((p \Rightarrow (q \Rightarrow r)) \Leftrightarrow ((p \land q) \Rightarrow r)$ 

| ((p + (q + 1)) + ((p + (q) + 1)) |   |   |                                    |                             |  |  |
|----------------------------------|---|---|------------------------------------|-----------------------------|--|--|
| р                                | q | r | $(p \Rightarrow (q \Rightarrow r)$ | $(p \land q) \Rightarrow r$ |  |  |
| Т                                | Т | Т | Т                                  | Т                           |  |  |
| Т                                | Т | F | F                                  | F                           |  |  |
| Т                                | F | Т | Т                                  | Т                           |  |  |
| Т                                | F | F | Т                                  | Т                           |  |  |
| F                                | Т | Т | Т                                  | Т                           |  |  |
| F                                | Т | F | Т                                  | Т                           |  |  |
| F                                | F | Т | Т                                  | Т                           |  |  |
| F                                | F | F | Т                                  | T                           |  |  |

The Exportation is valid.

$$63234_7 = 4 + 7 * 3 + 7 ^ 2 * 2 + 7 ^ 3 * 3 + 7 ^ 4 * 6 = 15558_{10}$$

$$58392_9 = 2 + 9 * 9 + 9 ^ 2 * 3 + 9 ^ 3 * 8 + 9 ^ 4 * 5 = 38963_{10}$$

$$10010111100101_2 = 1 + 2 ^ 2 + 2 ^ 5 + 2 ^ 6 + 2 ^ 7 + 2 ^ 8 + 2 ^ 10 + 2 ^ 13 = 9701_{10}$$

$$6341_{10} = 2 ^ 12 + 2 ^ 11 + 2 ^ 8 + 2 ^ 5 + 2 ^ 3 + 1 = 1100011000101_2$$

$$89983_{10} = 3 ^ 10 + 3 ^ 9 + 3 ^ 8 + 3 ^ 7 * 2 + 3 ^ 5 + 3 ^ 3 * 2 + 3 ^ 2 * 2 + 1 = 11120102201_3$$

$$4444_{10} = 4 ^ 6 + 4 ^ 4 + 4 ^ 3 + 4 ^ 2 + 4 * 3 = 1011130_4$$

5.





6.

a. worst case:

Time for finding and transferring 2 pages from the hard disk to RAM consists of seek time, transfer time and rotational latency.

For two pages, worst rotational latency time is 8ms and the worst seek time is 40ms.

The transfer time for one page is 400/25 = 16s

$$T = 40ms + 8ms + 16s = 16.048s$$

b. average case:

$$T = \left(\frac{400}{25}\right) + 2 * (2 + 20)/2 = 16.024$$
ms