Esercizio 1: Trasmissioni da Marte

I rover esploratori di Marte immagazzinano dati scientifici tramite i numerosi strumenti di cui sono dotati. Ogni strumento genera dati per un diverso banco di memoria. In dati intervalli di tempo è possibile trasmettere questi dati a Terra. Durante ognuno di questi intervalli le memorie possono essere lette – e quindi parzialmente svuotate – una sola per volta e con un bit-rate noto, che può essere diverso da intervallo ad intervallo. Il tempo disponibile per la trasmissione in ogni intervallo può essere distribuito a piacimento ai diversi banchi di memoria. Ogni banco di memoria, collegato ad un diverso dispositivo scientifico, ha capacità finita ed è gestito come un buffer first-infirst-out. Nel caso in cui la quantità di dati generati dallo strumento ad esso collegato ecceda la capacità del banco di memoria, i dati più antichi vengono sovrascritti da quelli più recenti ed ovviamente si vuole evitare – o per lo meno minimizzare la probabilità - che questo accada. Perciò l'obiettivo del pianificatore delle trasmissioni è di mantenere il più basso possibile in ogni banco di memoria il rapporto tra il livello di occupazione e la capacità. Questo serve a garantire la massima robustezza rispetto a possibili variazioni delle quantità di dati scientifici generati.

Formulare il problema, classificarlo e risolverlo con i dati del file MARTE.TXT. Discutere l'ottimalità della soluzione trovata.

Si consideri il problema con 6 banchi di memoria e 9 intervalli temporali.

Tab.1: Produzione dati (Mbit)

Tab.	3:	Live	ello i	niziale	di
occu	paz:	ione	della	nemoria	(Mbit)

							OCCUPULION	c acrra mem	_
		5	Strume	nto					
Intervallo	1	2	3	4	5	6	Strumento	Occupazione	
1	4	11	31	3	18	27	1	8	
2	6	8	34	4	19	23	2	15	
3	7	23	38	5	21	19	3	25	
4	3	31	35	6	15	18	4	5	
5	3	14	37	7	14	23	5	16	
6	8	8	35	6	14	24	6	23	
7	1	10	31	5	14	25			
8	3	20	40	4	18	20	Tab. 4: Te	mpo disponil	0
9	4	13	28	5	19	13	trasmissio	ne (secondi))

Tempo disponibile per la sione (secondi)

(Khit/sec)

Intervallo Durata Bit-rate

Tab. 2: Capacità memoria (Mbit)

			(100 ± 07 000)
Strumento	Capacità	1 490	195
1	32	2 420	160
2	60	3 460	180
3	100	4 485	195
4	30	5 400	160
5	50	6 455	180
6	80	7 480	195
		8 380	160
		9 450	180