- (4pts) Give some examples for each of the four different types of attributes: Nominal; Ordinal; Interval; Ratio. For each of them, define a distance measure that is meaningful.
 - 1. Nominal
 - a. Barcode
 - b. Color
 - c. Distinctness
 - 2. Ordinal
 - a. Gold, Silver, Bronze Medals
 - b. Company Employee Tier
 - c. Distinctness & Order
 - 3. Interval
 - a. Time between events
 - b. Age ranges
 - c. Distinctness & Order & Meaningful Differences
 - 4. Ratio
 - a. Weight
 - b. Poverty rate
 - c. Distinctness & Order & Meaningful Differences & Meaningful Ratios
 - (2pts) Show that Extended Jaccard Coefficient (EJ) reduce to Jaccard coefficient if x and y are binary vectors.

$$EJ(\mathbf{x},\mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - \mathbf{x} \cdot \mathbf{y}}$$

$$J = (f_{11}) / (f_{01} + f_{10} + f_{11}),$$

where f_{01} = the number of attributes where x was 0 and y was 1; f_{10} = the number of attributes where x was 1 and y was 0, f_{00} = the number of attributes where x was 0 and y was 0, f_{11} = the number of attributes where x was 1 and y was 1.

$$EJ(x, y) = \frac{x \cdot y}{||x||^2 + ||y||^2 - x \cdot y}$$

$$x \cdot y = f_{11}$$

This is because the dot product result is the sum of all the matches where x and y are 1 since otherwise they would be 0.

$$EJ(x,y) = \frac{f_{11}}{||x||^2 + ||y||^2 - f_{11}}$$
$$||x||^2 + ||y||^2 = f_{01} + f_{11} + f_{10} + f_{11}$$

This is because the left side is the lengths of the two vectors which is equivalent to the number of unique elements in x and y and two times the duplicates since they are double counted.

$$EJ(x,y) = \frac{f_{11}}{f_{01} + f_{11} + f_{10} + f_{11} - f_{11}}$$
$$EJ(x,y) = \frac{f_{11}}{f_{01} + f_{11} + f_{10}}$$

And Thus they are equivalent.

3. (10pts) Mutual information of two variables X and Y can be defined as the difference between the summation of the entropy of X and Y, and their joint entropy. It can also be defined in three other ways as shown in the formula below:

$$I(X;Y) \equiv H(X) - H(X|Y)$$

$$\equiv H(Y) - H(Y|X)$$

$$\equiv H(X) + H(Y) - H(X,Y)$$

$$\equiv H(X,Y) - H(X|Y) - H(Y|X)$$

Prove all these four definitions are equivalent. You can assume X and Y are discrete variables.

We Know the following equation.

$$H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)$$
2.
$$H(Y) - H(Y|X) = H(X) - H(Y|X)$$

$$H(X,Y) - H(X|Y) - H(Y|X)$$

$$H(X) - H(Y|X) = H(X) - H(Y|X)$$
3.
$$H(X) + H(Y) - H(X,Y) = H(X) - H(X|Y)$$

$$H(X) + H(Y) - H(Y) - H(X|Y)$$

$$H(X) - H(X|Y) = H(X) - H(X|Y)$$
4.
$$H(X,Y) - H(X|Y) - H(Y|X) = H(X) - H(X|Y)$$

H(Y|X) + H(X) - H(X|Y) - H(Y|X)

H(X) - H(X|Y) = H(X) - H(X|Y)

- (10pts) Perform the following exercises to get you familiar with the steps in data analysis.
 - Read data from csv format (housing.csv) into DataFrame. Check the data information (e.g., structure, summary statistics) using functions such as head(), info(), describe().
 - 2) Visualize the data (the nine numerical attributes) using hist(), boxplot(). 3) Draw the scatter plot of the first two variables (longitude and latitude). You can change the size each circle and its color based on the size of population and median house price (see references).
 - 4) Draw the scatter plot of the two variables median house price and median income. Calculate the correlation coefficient of the two variables.

5. (4pts). Generate a random data matrix of the size 500X50. All of the values a uniformly distributed in the interval [0, 1]. For each index i from 2 to 50, use the first i variables to calculate the pairwise Euclid distance, we use Max_dist and Min_dist to represent the current max and min distance, respectively. Then calculate the value: log_10((Max_dist - Min_dist)/Min_dist) for each index i and draw the line diagram of these values (see slide 86 in Lecture 2, also shown here).

ForQ4&Q5, please export a PDF file from Jupyter Notebook that includes both code and results, and merge it with your answer to other questions and submit the final merged pdf file.

Notes Q4: if you need help with the functions, you can check the example code from the following references.

- 1. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems By Géron, 2017. Chapter
- 2. End-to-End Machine Learning Project
- 2. http://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial4/tutorial4.html

HW #1

```
In [89]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data = pd.read_csv('housing.csv')
```

1. Data Information

```
In [14]: print('Data Head\n')
   head = data.head()
   print(head)
   print('\nData Info\n')
   info = data.info()
   print('\nData Description\n')
   describe = data.describe()
   print(describe)
```

Data Head

	longitude	latitude ho	ousing_median_ag	e total_rooms t	total_bedrooms \
0	-122.23	37.88	41.	0 880.0	129.0
1	-122.22	37.86	21.	0 7099.0	1106.0
2	-122.24	37.85	52.	0 1467.0	190.0
3	-122.25	37.85	52.	0 1274.0	235.0
4	-122.25	37.85	52.	0 1627.0	280.0
	population	households	median_income	median_house_val	lue ocean_proximi
ty					
0	322.0	126.0	8.3252	452600	0.0 NEAR B
ΑY					
1	2401.0	1138.0	8.3014	358500	0.0 NEAR B
ΑY					
2	496.0	177.0	7.2574	352100	0.0 NEAR B
ΑY					
3	558.0	219.0	5.6431	341300	0.0 NEAR B
ΑY					
4	565.0	259.0	3.8462	342200	0.0 NEAR B
ΑY					

Data Info

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	median_house_value	20640 non-null	float64
9	ocean_proximity	20640 non-null	object

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

Data Description

	longitude	latitude	housing_median_ag	e total_rooms	\
count	20640.000000	20640.000000	20640.00000	0 20640.000000	
mean	-119.569704	35.631861	28.63948	6 2635.763081	
std	2.003532	2.135952	12.58555	8 2181.615252	
min	-124.350000	32.540000	1.00000	0 2.000000	
25%	-121.800000	33.930000	18.00000	0 1447.750000	
50%	-118.490000	34.260000	29.00000	0 2127.000000	
75%	-118.010000	37.710000	37.00000	0 3148.000000	
max	-114.310000	41.950000	52.00000	9 39320.000000	
	total_bedrooms	populatior	n households m	edian_income \	
count	20433.000000	20640.000000	20640.000000	20640.000000	
mean	537.870553	1425.476744	499.539680	3.870671	
std	421.385070	1132.462122	382.329753	1.899822	
min	1.000000	3.000000	1.000000	0.499900	
25%	296.000000	787.000000	280.000000	2.563400	

50%	435.000000	1166.000000	409.000000	3.534800
75%	647.000000	1725.000000	605.000000	4.743250
max	6445.000000	35682.000000	6082.000000	15.000100

median_house_value 20640.000000 count 206855.816909 mean std 115395.615874 14999.000000 min 25% 119600.000000 50% 179700.000000 75% 264725.000000 500001.000000 max

2. Visualize the Data


```
In [81]: # Remove ocean_proxmitity
    numerical_cols = data.columns.delete(9)
    fig, axes = plt.subplots(3,3, figsize=(15, 15))
    for index, col_name in enumerate(numerical_cols):
        row = index % 3
```


3. Longitude and Latitude Scatterplots

```
In [86]: plt.scatter(data['longitude'], data['latitude'])
    plt.show()
    plt.scatter(data['longitude'], data['latitude'],data['population'], data[
```


Out[86]: <matplotlib.collections.PathCollection at 0x78288d194f20>

4. Median House Price and Median Income Correlation

Q5

```
In [146...
         import math
         differences = []
         MIN DIM = 2
         MAX DIM = 50
         SIZE = 500
         DIM_RANGE = range(MIN_DIM, MAX_DIM)
         for dim in DIM RANGE:
             matrix_500_dim = np.random.rand(SIZE, dim)
             matrix dim = np.random.rand(dim)
             diff = [np.linalg.norm(matrix 500 sliced - matrix dim) for matrix 500
             max_diff = max(diff)
             min diff = min(diff)
             log_diff = math.log10((max_diff-min_diff)/min_diff)
             differences.append(log diff)
         plt.plot(DIM RANGE, differences)
         plt.xlabel('Number of dimensions')
         plt.ylabel('log 10((MAX DIST = MIN DIST) / MIN DIST)')
         plt.show()
```

