

Border Gateway Protocol (BGP)

ROUTE Module 7

Logický pohľad na Internet

Internet je skupina navzájom poprepájaných Autonómnych systémov (AS)

Autonómny systém

- Autonómny systém (AS) je skupina sietí a smerovačov, ktorá používajú spoločnú smerovaciu politiku a patria pod spoločnú administratívnu doménu
 - Smerovacia politika: spôsob výberu ciest do rôznych cieľov, filtrovanie smerovacích informácií, oznamovanie smerov...
 - Administratívna doména: dosah administratívnej právomoci správcu
- Vo vnútri AS môže pracovať jeden alebo niekoľko IGP
 - AS však ako celok patrí spravidla jednej organizácii
- Zvonku je AS vnímaný ako jedna nerozdelená entita
 - Všetky členské siete v AS sú v ňom z pohľadu iných AS priamo dostupné
- V prípade, že je AS pripojený na verejný Internet s použitím EGP (BGP)
 - AS musí byť pridelené IANA

Autonómny systém

- AS sú číslované ASN
 - Čísla AS rozdeľuje IANA na regionálne internetové registre,
 - Tí následne prideľujú AS jednotlivým žiadateľom
 - Regional Internet Registry (RIR):
 - ARIN (Severná Amerika)
 - RIPE NCC (Európa, Stredný Východ, Stredná Ázia)
 - APNIC (Ázia, Pacifická oblasť)
 - LACNIC (Latinská Amerika, Karibik)
 - AfriNIC (Afrika)
 - V súčasnosti sa používajú 2B čísla (0 65535)
 - RFC 4893 špecifikuje použitie 4B čísel (v dekadickom zápise 2B.2B)
 - Časť priestoru od 64512 po 65535 je vyhradená pre privátne ASN
- IANA nástojí na tom, aby organizácie, ktoré chcú mať vlastné číslo AS, avšak majú iba jediného ISP a zdieľajú jeho smerovacie politiky, zásadne používali privátne ASN
 - Privátne čísla AS sa objavujú len v sieti ISP a sú zamenené za ASN providera, keď sa prenášajú do iných AS

Štruktúra Internetu - AS infraštruktúra

- Jednotlivé AS (ISP AS) sa prepájajú cez Internet Packet Exchange (IPX)
 Gateways v tzv. Internet Exchange Points (IXP)
 - IXP je priamy prepoj, cez ktorý si ISP vymieňajú navzájom svoje dáta
 - A redukujú množstvo, ktoré musia posielať cez svojich tranzitných providerov
 - Peering:
 - dobrovoľný prepoj AS za účelom vzájomnej výmeny dát ("ak prepošleš moje ja prepošlem tvoje")

ISP AS infraštruktúra

Svetové IXP

http://www.datacentermap.com

Európske IXP

IXP na Slovensku

- Slovensko má dva IXP body
 - BA a KE
- Slovak IXP (SIX) –

www.six.sk

- Špičková prevádzka okolo 58Gbps
- Priemer: okolo 28Gbps
- 53 peerov

PEERING

DOKUMENTY

LINKY

ENGLISH VERSION

Prehľad aktívnych peeringov:

Prehľad aktívnych peeringov Prehľad záťaže liniek Looking glass

Stalo sa...

Centrum výpočtovej techniky STU

Nám. slobody 17, 812 43 Bratislava tel.: 02/524 51 301, 02/529 61 573, fax: 02/524 94 351, e-mail: six-ba@six.sk Prehľad záťaže liniek Looking glass

Stalo sa...

Ústav výpočtovej techniky TU Košice

B. Nemcovej 3, 042 01 Košice tel.: 055/602 51 56, 055/602 50 00, fax: 055/625 35 82, e-mail: six-ke@six.sk

Webstránky používajú kódovanie UTF-8

Druhy atonómnych systémov

- Autonómne systémy sa tradične rozdeľujú na 3 druhy
- Single-homed
 - AS, ktorý má jediný hraničný router do ostatného sveta
 - Single-homed AS častokrát vôbec nepotrebujú EGP routing

Multihomed

- AS, ktorý má viacero hraničných routerov do ostatného sveta
- Napriek tomu, že sa pripája viacerými výstupnými bodmi, nedovoľuje, aby cez neho tiekla cudzia prevádzka

Transit

 AS, ktorý má viacero hraničných routerov do ostatného sveta a slúži na prenos tranzitnej prevádzky (medzi inými AS)

Smerovanie medzi AS

- Vo vnútri AS sa používajú IGP
- Medzi AS sa informácie vymieňajú pomocou BGP
- Smerovanie medzi AS
 - Cez aký ďalší AS sa dostanem k cieľu?
 - Ako sa po najkratšej ceste dostanem k tomuto susednému AS?

IGP verzus **EGP**

- Interior gateway protocol (IGP)
 - Smerovací protokol pracujúci vo vnútri Autonomous System (AS).
 - Napr. RIP, OSPF, a EIGRP
- Exterior gateway protocol (EGP)
 - Smerovací protokol pracujúci medzi rôznymi AS
 - BGP je tzv. interdomain routing protocol (IDRP) a je aj EGP

Smerovanie medzi vs. vnútri AS

- Smerovanie medzi AS sa zásadne líši od smerovania vo vnútri AS
- IGP protokoly:
 - Susedné smerovače sa navzájom objavujú automaticky
 - Snahou IGP je vymeniť si čo najkompletnejšiu informáciu o vnútornej topológii AS a jeho členských sieťach
 - Svet za hranicami AS je "zahmlený"
 - Nahradený sumárnymi smermi alebo využitím default route, vždy bez topologickej predstavy
 - Metrika odráža výhodnosť trasy na základe počtu hopov, prenosovej rýchlosti, oneskorenia, záťaže, teda jej prenosové vlastnosti

Smerovanie medzi vs. vnútri AS

- Smerovanie medzi AS sa zásadne líši od smerovania vo vnútri AS
- EGP protokoly (BGP):
 - Susedné smerovače musia pre vzájomnú komunikáciu byť explicitne nakonfigurované
 - EGP protokoly sa nezaujímajú o vnútornú topológiu AS
 - Riešenie vnútornej dosiahnuteľnosti prenechávajú IGP
 - EGP protokoly sa zaujímajú o hraničné smerovače na okrajoch AS a o vzájomné prepojenie AS medzi sebou
 - Metrika sa skladá z parametrov, ktoré vyjadrujú pôvod siete a cestu cez tranzitné AS (Path), jej lokálnu preferenciu
 - neodráža nutne fyzický charakter cesty, ale jej administratívne vlastnosti;

Smerovanie medzi AS

- Smerovanie medzi AS musí byť zaručene bezslučkové
- Objem vymieňaných informácií je obrovský desiatky až stovky megabajtov informácií obsiahnutých v smerovacích tabuľkách
 - http://bgp.potaroo.net/
 - Internet Core (http://www.cidr-report.org/)
 - => 636106 v roku 2016 (529 189 v 2014, (482.880 v 2013 (407.000 v 2012)))
 CIDR položiek
 - = > 55542 v roku 2016 (48 913 v 2014 (45.592 v 2013 (40659 v 2012))) AS

 Výber ciest sa nerealizuje na základe ich prenosových charakteristík, ale na základe dohodnutých smerovacích politík a administratívnych

rozhodnutí

Možnosti nasadenia BGP v "Enterprise"

Štruktúra AS

- Môže byť hierarchická
 - Ale nie je podmienka
- Rozlišujú sa tri typy vzťahov
 - Customer Provider
 - Zákazník (AS) platí poskytovateľovi (AS) za prístup k internetu.
 - Poskytovateľ poskytuje tranzitnú službu
 - Koncový zákazník platí ISP,
 - a ISP na nižšej úrovni ("tiers") platí ISP na vyššej úrovni
 - Peers
 - AS ktoré si umožňujú navzájom tranzit
 - Napr. ISP na rovnakej úrovni
 - Customer-Backup Provider
 - Záložný ISP

Možnosti pripojenia na ISP (medzi AS)

AS BGP politiky – multihomed prostredie

BGP multihoming

 Multihoming je najvodnejšie prostredie pre nasadenie BGP

 Pozor však na situáciu aby sa sieť zákazníka nestala tranzitnou AS pre dáta ISP

2. Riešenie prepoja ISP a zákazníka

- Každý ISP informuje zákazníka (AS) <u>len</u> o default route
 - Default route je posunutá zákazníkovi a ten ďalej interným smerovačom cez IGP
 - Najmenšie nároky na zdroje
 - Môže viesť k neoptimálnemu smerovaniu mimo AS zákazníka
 - Nemáme veľa možnosti na manipuláciu so smerovacími cestami mimo AS

2. Každý ISP informuje o default route a o sieťach jeho zákazníkov

- Tieto cesty sú ďalej posunuté interným smerovačom
- Smerovanie je presnejšie ako v prvom prípade
- Def. routing môže viesť k neoptimálnemu smerovaniu mimo AS zákazníka
- Potencionálna záťaž pri redistribúcii veľa ciest z BGP do IGP

3. Každý ISP informuje o všetkých sieťach.

- Všetky smerovače v tranzit ceste musia mať BGP na výmenu updates
- Smerovanie je najpresnejšie
- Najvyššie požiadavky na zdroje zákazníka

Príklad: Default Routes from All Providers

 Zákazník distribuuje svoje siete na ISP dynamicky

 ISP na okrajové smerovače posiela info len o default route (BGP)

> Tie ďalej distribuujú cez IGP

 Ostatné si vyberú Def.
 Route na základe metriky IGP protokolu

 Pri použití niektorých IGP protokolov (RIP), môže byť dosiahnuté neoptimálne smerovanie

Kedy použiť/nepoužiť BGP

Použiť BGP

- Najvhodnejšie ak je jasný prínos nasadenia BGP a existuje najmenej jedna z nasledujúcich situácií
 - "Naše" AS má viaceré prepojenia na iné AS
 - "Naše" AS umožňuje tranzit paketom cez seba na ceste do iných AS
 - Je potrebná manipulácia s výberom smerovacích ciest pre pakety opúšťajúce AS
 - Firma chce odlíšiť svoju prevádzku od prevádzky ISP

Nepoužiť BGP

- Ak existuje najmenej jedna z nasledujúcich situácií
 - Jedno pripojenie na Internet alebo AS
 - Slabé zariadenie na pozícii okrajových smerovačov
 - Malo pamäte, nízky výkon
 - "Slabé vedomosti o filtrácii ciest a činnosti BGP" (dnes odstránime)
- V týchto prípadoch výhodné nasadenie statických ciest or default smerovania

BGP Základné pojmy

Border Gateway Protocol

- BGP je v súčasnosti prakticky jediný používaný smerovací protokol pre inter-AS smerovanie
 - Je typu Path vector (zoznam AS a atribútov)
 - Garantuje bezslučkovú výmenu smerovacích informácii
 - Nedovoľuje akceptovať update, ktorý obsahuje jeho vlastné číslo AS
- Aktuálna verzia: BGPv4 špecifikovaná v RFC 4271
 - Početné ďalšie RFC rozširujú schopnosti BGP o smerovanie multicastov, podporu MPLS a ďalšie
- BGP beží nad TCP protokolom, cieľový port 179
 - Preto BGP nepotrebuje vlastné error recovery mechanizmy
- BGP patrí do rodiny EGP protokolov, no pojem EGP je zároveň aj meno staršieho externého smerovacieho protokolu, s ktorým BGP nesúvisí
 - Exterior Gateway Protocol je popísaný v RFC 904

BGP Path Vector

- IGP fungujú na princípe oznámenia zoznamu sietí a zoznamu parametrov (atribútov) o ceste do nich (metrika)
- BGP používa informácie o dostupností sietí, volaných path vector
 - Path vector informácie zahŕňajú napr.
 - Zoznam BGP AS čísel (hop by hop) potrebných traverzovať na dosiahnutie cieľovej siete
 - Na ktoré môžeme aplikovať Policy routing
 - A iné atribúty zahŕňajúce IP adresu ako sa dostať do ďalšieho AS (next-hop attribute) a ako sa dostali koncové siete do BGP (origin code attribute).

BGP – Hop by Hop správanie (best)

- Aké sú možnosti pre AS 64512 dostať sa cez 64520 do 64700?
 - **•** 64512 => 64520 => 64600 => 64700
 - 64512 => 64520 => 64540 => 64700
 - 64512 => 64520 => 64540 => 64550 => 64700
- AS64512 sa však od 64520 dozvie len info o <u>najlepšej route</u>, napr. prvej, nie o všetkých
 - Všetky ďalšie pakety medzi AS 64512 a 64700 cez 64520 pôjdu touto cestou
 - Lebo BGP ma hop by hop AS správanie
- Alebo cez úplne iný AS, napr. 64530, podľa politík v 64512

BGP speaker, sused (peer, neighbor)

- BGP speaker je každý router, ktorý hovorí BGP protokolom
 - Je na ňom spustený BGP
- BGP peers or neighbors (susedia) je pojem, ktorý označuje dvojicu vzájomne komunikujúcich BGP speakerov
 - Všetky BGP smerovače nie sú susedia každý s každým
 - Majú založené TCP spojenie za účelom výmeny smerovacích informácii

Komunikácia v BGP

- Keď BGP susedia vytvoria spojenie, vzájomne sa synchronizujú
 - Navzájom si oznámia všetky najlepšie smery zo svojich BGP tabuliek
- Po úvodnej synchronizácii sa posielajú iba inkrementálne aktualizácie – zmeny (pridanie alebo odobranie smeru)
 - Inkrementálne aktualizácie sú efektívnejšie než prenosy úplných smerovacích tabuliek
 - Pri BGP sa jedná o obzvlášť zásadnú záležitosť, keďže veľkosť smerovacích tabuliek na chrbticových smerovačoch dosahuje rádovo desiatky až stovky MB
- Udržiavanie susedstva
 - Keepalive správy
 - Niečo ako Hello v OSPF a EIGRP

Nasadenie BGP v AS

- Z pohľadu nasadenia sa rozlišujú dva typy BGP
 - Internal BGP (iBGP or IBGP)
 - External BGP (eBGP or EBGP)

- Ak pomocou BGP komunikujú smerovače v rôznych AS, hovoríme o eBGP (external BGP)
- eBGP susedia
 - Musia byť za normálnych okolností priamo prepojený linkou
 - Zvyčajne dosiahnuteľný bez pomoci IGP protokolu
 - Musia byť zadefinovaný (nakonfigurovaný príkazom neighbor)
 - TCP spojenie musí byť založené skôr ako si vymenia BGP updates
 - Musia mať odlišné čísla AS

- Ak pomocou BGP komunikujú smerovače v tom istom AS, hovoríme o iBGP (internal BGP)
- iBGP susedia
 - Nemusia byť priamo spojení
 - Konektivita na základe IGP or static routes
 - Za týmto účelom sa často používa loopback int
 - Musia byť zadefinovaný (nakonfigurovaný príkazom neighboor)
 - TCP spojenie musí byť založené skôr ako sa vymenia BGP updates
 - Musia mať rovnaké čísla AS

Špecifiká - Nasadenie BGP v Tranzitných AS

- Tranzitná AS je AS ktorá umožňuje smerovanie premávky z jednej externej AS do inej externej AS cez seba
- Príklad: AS 65102 je sieť ISP
 - Máme dva okrajové smerovače (router B a E) s BGP
 - Medzi sebou majú založený IBGP vzťah
 - Dosiahnuteľnosť iBGP peerov je cez OSPF

- Všetky smerovače tranzitnej AS musia mať informácie o všetkých externých cestách
 - "celom internete"
- Riešenie: redistribúcia BGP do OSPF
 - problém č.2: ?
 - OSPF nie je stavané na redistribúciu tak veľkých smerovacích tabuliek

Nasadenie BGP v Tranzitných AS - riešenie

- Riešením je nasadenie BGP na všetkých smerovačoch.
 - iBGP na interných smerovačoch s konfiguráciou každý s každým
 - iBGP majú kompletnú smerovaciu tabuľku o všetkých externých cestách
 - Vyhneme sa komplikovanej redistribúcii

Poznámka:

BGP musí byť spustené na všetkých smerovačoch "po tranzitnej ceste"

Rozdiel medzi iBGP a eBGP?

- Správanie BGP sa líši v závislosti od toho, či komunikácia prebieha na úrovni iBGP alebo eBGP
- Zásadný rozdiel:
 - eBGP susedia si navzájom odovzdávajú BGP smery obvyklým spôsobom
 - čo som sa cez eBGP naučil, to cez ľubovoľné BGP odovzdám,
 - a obrátene
 - iBGP susedia si odovzdávajú informáciu len priamo, nikdy nie sprostredkovane
 - Ak sa router o nejakej ceste dozvie cez iBGP, neodovzdá túto informáciu nijakému ďalšiemu susedovi cez iBGP
 - čo som sa cez iBGP naučil, to si v iBGP nechám len pre seba, smiem to však povedať eBGP susedom (synchronization off)
 - Je to prísna, ale účinná ochrana pred vznikom smerovacích slučiek

Prečo sa rozlišuje iBGP a eBGP?

- Nasadenie iBGP prináša komplikáciu v tom, že jeho nasadenie na všetkých smerovačoch v AS nie je povinné/nevyhnutné
 - Non Tranzit AS
 - Je potrebné zabezpečiť aby každý iBGP mal rovnakú smerovaciu informáciu bez možnosti vzniku smerovacích slučiek vo vnútri AS
 - Preto existuje dané spomínané pravidlo, kde
 - "iBGP susedia si odovzdávajú informáciu len priamo, nikdy nie sprostredkovane"
- Toto správanie si vynucuje závažný architekturálny rys pri implementácii BGP vo vnútri AS
 - Všetky iBGP smerovače v danom AS musia byť navzájom BGP peermi (konfiguračne, nie fyzicky)
 - zapojenie iBGP smerovačov v topológii každý s každým, tzv. "Full Mesh"
 - Nedodržanie tohto predpokladu vedie k nekonzistencii smerovacích tabuliek a potencionálnemu vzniku smerovacích slučiek

Dopad správania iBGP v AS

- Partial mesh,
 B a E nie sú
 iBGP susedia
 - ■B príjme info o zmene od A cez eBGP a pošle iBGP update na D a C
 ■D a C
 preodpokladajú spojenia full
 - ■E nemá info o dostupnosti sieti cez B

mesh, preto E o

neinformujú,

zmene

- •Full mesh, B je iBGP sused s C, D, E
- •B príjme info o zmene od A cez eBGP a pošle iBGP update na C, D a E

BGP Synchronizácia

- BGP synchronizácia definuje, že:
 - "A BGP router should not use, or advertise to an external neighbor, a route learned by IBGP, unless that route is local or is learned from the IGP."
 - Ak je synchronizácia zapnutá,
 - Smerovač nesmie propagovať cestu naučenú cez iBGP na eBGP router až kým sa o nej sám nedozvie cez IGP
 - Ak je synchronizácia vypnutá
 - BGP môže informovať externého BGP suseda aj o cestách naučených cez iBGP a ktoré nie sú v smerovacej tabuľke
 - BGP synchronizácie je defaultne vypnutá v Cisco IOS Software Release 12.2(8)T a novších

- Príklad
 - Na A a B nie je redistribúcia eBGP od IGP
 - A, B, C, a D sú iBGP susedia
 - •Čo sa stane v sieti AS 65500 ak F proklamuje sieť 172.16.0.0 ak
 - Synchro Off
 - Synchro On

Tabuľky v BGP

- Tabuľka susedov Neighbor table
 - Obsahuje zoznam a stav BGP susedov

BGP tabuľka

- (forwarding database, topology database)
- Obsahuje zoznam všetkých sietí získaných od každého suseda
- K jednému cieľu môže obsahovať niekoľko záznamov
- Ku každej ceste si eviduje jej BGP atribúty
- Z viacerých ciest do toho istého cieľa je vždy len jedna BEST
- Smerovacia tabuľka IP routing table
 - Zoznam najlepších ciest do cieľových sietí
 - Z BGP tabuľky sú vybraté len najlepšie cesty
 - Pozor: klasický postup cez AD, prefix, metrika

Typy správ a stavy komunikácie v BGP

BGP Správy

Open Message

Octets	16	2	1	1		2	4	1	7
	Marker	Length	Туре	Version	AS	Hold Time	BGP ID	Optional Length	Optional

Update Message

Octets	16	2	1	2	Variable		Variable	Variable
	Marker	Length	Туре	Unfeasible (withdrawn) Routes length	Withdrawn Routes	Attribute Length	Attributes	NLRI

Notification Message

Octets	16	2	1	1	1	Variable
	Marker	Length	Туре	Error Code	Error Sub-code	Diagnostic Data

Keepalive Message

Octets	16	2	1
	Marker	Length	Туре

Každá zo správ obsahuje prvé tri polia hlavičky

BGP správy

Open

Octets

- Obsahuje číslo verzie, ASN, holdtime, BGP router ID
- Posiela sa pri otváraní BGP spojenia medzi susedmi ako prvá správa
 - Ak druhá strana s Open súhlasí, pošle Keepalive správu
- Ak je príjem potvrdený môžu byť vymenené ďalšie typy správ

3	16	2	1	1	2	2	4	1	7
	Marker	Length	Туре	Version	AS	Hold Time	BGP ID	Optional Length	Optional

Keepalive

- Posiela sa periodicky na overenie, či sused žije, zodpovedajúco podľa dohodnutého holdtime
 - Default 60sekúnd, hold time je 3x keepalive

Octets	16	2	1
	Marker	Length	Туре

Open a keepalive správa - wireshark

```
_ D X
4 0.020181 10.0.0.2 10.0.0.1 BGP 89 OPEN Message
□ Frame 4: 89 bytes on wire (712 bits), 89 bytes captured (712 bits)
⊕ Cisco HDLC
Internet Protocol Version 4, Src: 10.0.0.2 (10.0.0.2), Dst: 10.0.0.1 (10.0.0.1)
⊞ Transmission Control Protocol, Src Port: 35184 (35184), Dst Port: bgp (179), Seq: 1, Ack: 1, Len: 45
■ Border Gateway Protocol - OPEN Message
  Lenath: 45
  Type: OPEN Message (1)
  Version: 4
  Mv AS: 100
  Hold Time: 180
  BGP Identifier: 2.2.2.2 (2.2.2.2)
  Optional Parameters Length: 16
 ■ Optional Parameters
  □ Optional Parameter: Capability
     Parameter Type: Capability (2)
     Parameter Length: 6

■ Capability: Multiprotocol extensions capability

  □ Optional Parameter: Capability
     Parameter Type: Capability (2)
     Parameter Length: 2

■ Capability: Route refresh capability

  □ Optional Parameter: Capability
     Parameter Type: Capability (2)
     Parameter Length: 2

■ Capability: Route refresh capability
```


BGP správy

Update

- Prenáša všetky informácie potrebné BGP na získanie bezslučkového obrazu siete
- Jedna správa prenáša informáciu len o jednej ceste
 - Cestou sa rozumie postupnosť AS, táto cesta môže viesť k rozličným cieľovým sieťam
 - Viac ciest = viac správ
- Správa obsahuje:
 - Informácia o nedostupných sieťach
 - Atribúty cesty
 - Network Layer Reachability Information (NLRI)

Zoznam sietí (IP prefixy a netmask) dostupných touto cestou

				Unreachable Routes Information		Path Attributes Information		NLRI Information
Octets	16	2	1	2	Variable	2	Variable	Variable
	Marker	Length	Туре	Unfeasible Routes Length	Withdrawn Routes	Attribute Length	Path Attributes	NLRI

Formát NLRI

- NLRI je list < length, prefix > n-tíc.
 - Jedna n-tica pre každý dosiahnuteľný cieľ.
 - Prefix reprezentuje dosiahnuteľný cieľ
 - Prefix length reprezentuje počet bitov subsieťovej masky

IP Address Subnet Mask	NLRI
10.1.1.0 255.255.255.0	24 , 10.1.1.0
192.24.160.0 255.255.224.0	19 , 192.24.160.0

Update – nová cesta

BGP správy

Notification

- Posiela sa v prípade chyby a obsahuje kód chyby a jej popis
- BGP spojenie sa po odoslaní Notification ukončí

Error Code	Error Subcode
1Message Header Error	1Connection Not Synchronized 2Bad Message Length 3Bad Message Type
2OPEN Message Error	1Unsupported Version Number 2Bad Peer AS 3Bad BGP Identifier 4Unsupported Optional Parameter 5Authentication Failure 6Unacceptable Hold Time
3UPDATE Message Error	1Malformed Attribute List 2Unrecognized Well-Known Attribute 3Missing Well-Known Attribute 4Attribute Flags Error 5Attribute Length Error 6Invalid Origin Attribute 7AS Routing Loop 8Invalid NEXT_HOP Attribute 9Optional Attribute Error 10Invalid Network Field 11Malformed AS_path
4Hold Timer Expired 5Finite State Machine Error (for errors detected by the FSM)	NOT applicable
6Cease (for fatal errors besides the ones already listed)	NOT applicable

BGP stavy pri komunikácii so susedom

BGP sa riadi stavovým strojom a stavmi, ktorými proces prechádza

Idle

 Štartovací stav. Sused je definovaný, ale zatiaľ sme sa nepokúsili kontaktovať ho (neighbor príkaz)

Mali by sme mat' info o ceste na suseda

Connect

- So susedom sme začali nadväzovať TCP spojenie
 - TCP SYN odoslané, čakáme SYN/ACK

Active

TCP založené, zatiaľ žiadne BGP správy odosl./prij.

Open sent

- Susedovi sme poslali správu OPEN obsahujúcu parametre spoločnej relácie, čakáme na Open z druhej strany
 - Ak na odoslanú OPEN správu v stave Open Sent do 5 sekúnd nepríde potvrdenie ani zamietnutie, presúvame sa do stavu Active

Open confirm

 Od suseda sme prijali správu Open, v ktorej sused vyjadruje súhlas pre peering s nami, čakáme na Keepalive or Notification

Established

- Sme úspešní susedia, môže začať výmena smerovacích informácií
 - Môžeme vymeniť keepalive, notification a update správy

Debug ip bgp all

```
*Mar 1 01:29:30.215: BGP: 10.255.255.3 passive open to 10.255.255.1
*Mar 1 01:29:30.215: BGP: 10.255.255.3 went from Idle to Connect
*Mar 1 01:29:30.223: BGP: 10.255.255.3 rcv message type 1, length (excl. header) 26
*Mar 1 01:29:30.223: BGP: 10.255.255.3 rcv OPEN, version 4, holdtime 180 seconds
*Mar 1 01:29:30.227: BGP: 10.255.255.3 went from Connect to OpenSent
*Mar 1 01:29:30.227: BGP: 10.255.255.3 sending OPEN, version 4, my as: 110, holdtime 180
seconds
*Mar 1 01:29:30.227: BGP: 10.255.255.3 rcv OPEN w/ OPTION parameter len: 16
*Mar 1 01:29:30.227: BGP: 10.255.255.3 rcvd OPEN w/ optional parameter type 2 (Capability)
len 6
*Mar 1 01:29:30.231: BGP: 10.255.255.3 OPEN has CAPABILITY code: 1, length 4
*Mar 1 01:29:30.231: BGP: 10.255.255.3 OPEN has MP EXT CAP for afi/safi: 1/128
*Mar 1 01:29:30.231: BGP: 10.255.255.3 rcvd OPEN w/ optional parameter type 2 (Capability)
len 2
*Mar 1 01:29:30.231: BGP: 10.255.255.3 OPEN has CAPABILITY code: 128, length 0
*Mar 1 01:29:30.235: BGP: 10.255.255.3 OPEN has ROUTE-REFRESH capability(old) for all
address-families
*Mar 1 01:29:30.235: BGP: 10.255.255.3 rcvd OPEN w/ optional parameter type 2 (Capability)
len 2
*Mar 1 01:29:30.235: BGP: 10.255.255.3 OPEN has CAPABILITY code: 2, length 0
    1 01:29:30.235: BGP: 10.255.255.3 OPEN has ROUTE-REFRESH capability(new) for all
address-families
BGP: 10.255.255.3 rcvd OPEN w/ remote AS 110
*Mar 1 01:29:30.239: BGP: 10.255.255.3 went from OpenSent to OpenConfirm
*Mar 1 01:29:30.239: BGP: 10.255.255.3 send message type 1, length (incl. header) 45
*Mar 1 01:29:30.395: BGP: 10.255.255.3 went from OpenConfirm to Established
*Mar 1 01:29:30.395: %BGP-5-ADJCHANGE: neighbor 10.255.255.3 Up
R1#
```

Riešenie BGP stavov Active a Idle

- Idle: Ak sused zostáva v stave Idle, z nejakého dôvodu nie je možné vytvoriť s ním TCP spojenie
 - Existuje v našej smerovacej tabuľke cesta k tomuto susedovi? Táto cesta nesmie byť default route!
 - Nie je v IP adrese suseda preklep?
- Active: Router poslal OPEN správu susedovi a čaká (zatiaľ neúspešne) na odpoveď, alebo čaká na vytvorenie TCP spojenia z druhej strany
- Stav môže oscilovať medzi Active a Idle.
- Táto situácia naznačuje na problém vo vzájomnej komunikácii medzi susedmi. Niektoré možné príčiny:
 - Sused nemá cestu nazad k nám alebo my k nemu
 - Nesprávne adresy susedov v konfigurácii BGP
 - Sused nás nemá nakonfigurovaných ako svojho suseda
 - Nezhoda v číslach AS
 - Firewall blokuje komunikáciu medzi nami a susedom

Konfigurácia BGP

Spustenie BGP

Router (config)

router bgp AUTONOMOUS-SYSTEM

- Príkaz definuje, v akom AS sa router nachádza, a otvorí konfiguračný kontext pre protokol BGP
- Na routeri môže bežať najviac jedna inštancia protokolu BGP
- Číslo AS v záhlaví príkazu sa porovná s číslami AS definovanými pri jednotlivých susedoch
 - Tak sa zistí, či je sused v tom istom alebo v inom AS, než sme my.
 - Podľa toho sa so susedom vytvorí iBGP alebo eBGP peering
- BGP má svoje RouterID
 - Vyberá sa rovnakým algoritmom ako pri OSPF, resp. EIGRP

Konfigurácia BGP suseda

- príkaz neighbor remote-as

Router (config-router) #

```
neighbor {ip-address | peer-group-name}
remote-as autonomous-system
```

- Príkaz neighbor definuje suseda a aktivuje s ním peering
- Ip-address špecifikuje cieľovú adresu, na ktorú sa budú posielať BGP pakety pre tohto suseda
 - K danej IP adrese musí existovať v našej smerovacej tabuľke nejaká cesta
 - Pozor default route sa na dosiahnutie suseda nikdy nepoužije!
- Argument remote-as hovorí, v akom AS sa nachádza príslušný sused
 - Podľa toho sa zakladá iBGP alebo eBGP relácia.
 - iBGP, adresa nemusí byť z priamo pripojených
 - eBGP, adresa musí byť z priamo pripojených
 - Týmto príkazom sa definujú všetci susedia externí aj interní
- Medzi dvojicou BGP susedov musia IP adresy uvedené v príkaze neighbor vzájomne korešpondovať
 - Zdrojová IP adresa BGP paketov od jedného suseda musí zodpovedať IP adrese v príkaze neighbor u druhého suseda, a obrátene

Príklad: BGP príkaz neighbor

Problém so zdrojovou adresou pri BGP

- BGP neprijíma nevyžiadané updates
 - Musí mať jasne definovaných susedov (príkaz neighbor)
 - BGP paket musí prísť z danej IP adresy suseda
 - Nie je problém pri eBGP (musí byť priamo pripojený), problém je pri iBGP
- Problém pri viacerých rozhraniach iBGP peerov

Router D pre router A: neighbor 10.3.3.1 remote-as 65102

Ale IGP dostupnosť D z pohľadu A je cez B:

Cisco smerovače defaultne ako source IP dávajú IP adresu outgoing rozhrania, tu 10.1.1.1

BGP relácia medzi D a A sa nezaloží z dôvodu odlišnosti adries

Riešenie - príkaz neighbor update-source

Router(config-router)#

```
neighbor {ip-address | peer-group-name} update-source
interface-type interface-number
```

- Zdrojová IP adresa BGP paketov odosielaných danému susedovi bude nastavená na IP adresu uvedeného rozhrania
- Najvhodnejšie je použiť loopback
 - ktorý je samozrejme potrebné ohlásiť v IGP, aby sused vedel odpovedať
- IP adresa v príkaze neighbor u suseda bude cieľovou adresou jeho BGP paketov, a teda musí byť nastavená na IP adresu nášho loopbacku

Príkaz: iBGP s použitím loopbackov


```
R2(config) # router bgp 65101
R2(config-router) # neighbor 172.16.1.1 remote-as 65100
R2(config-router) # neighbor 192.168.3.3 remote-as 65101
R2(config-router) # neighbor 192.168.3.3 update-source loopback0
R2(config-router) # exit
R2(config) # router eigrp 1
R2(config-router) # network 10.0.0.0
R2(config-router) # network 192.168.2.0
R2(config-router) #
```

```
R3(config) # router bgp 65101
R3(config-router) # neighbor 192.168.1.1 remote-as 65102
R3(config-router) # neighbor 192.168.2.2 remote-as 65101
R3(config-router) # neighbor 192.168.2.2 update-source loopback0
R3(config-router) # exit
R3(config) # router eigrp 1
R3(config-router) # network 10.0.0.0
R3(config-router) # network 192.168.3.0
R3(config-router) #
```

eBGP: Dual-Homed Problem

- Pri eBGP peeringu
 - IGP sa nepoužíva
 - Jediná adresa dosiahnuteľná bez ďalšej konfigurácie je IP adresa suseda na priamo pripojenej sieti, a loopback nie je priamo pripojené rozhranie
- Ak máme navyše eBGP peerov v dual home zapojení nastáva problém:
 - Ak na oboch smerovačoch použijeme len jeden príkaz neighbor
 - Napr. použitie linky 192.168.1.16/28
 - A ak linka zlyhá, BGP relácia je stratená, a pakety nebudú doručované z AS do AS
 - Bez ohľadu na existenciu druhej linky
 - Ak na oboch použijeme dva príkazy neighbor
 - Napr. použitie linky 192.168.1.16/28 a linky 192.168.1.32/28
 - Máme redundaciu, ale aj zdvojenie BGP komunikácie

EBGP: Dual-Homed riešenie

Riešenie:

- Použitie loopback adries ako pri iBGP
- Konfigurácia príkazom neighbor ebgp-multihop aby BGP proces vedel, že sused je ďalej ako jeden hop
 - Defaultne nastavenie je, že eBGP sused je priamo pripojený (def. TTL 1)
- Konfigurácia statických ciest aby boli loopback adresy vzájomne dosiahnuteľné

Prínos

Použitie rozhraní s redundaciou, load balancing

BGP príkaz neighbor ebgp-multihop

Router(config-router)#

```
neighbor {ip-address | peer-group-name} ebgp-multihop [ttl]
```

- Tento príkaz umožňuje zvýšiť počet hopov medzi nami a eBGP peerom
- Počet hopov sa rieši elegantne využitím hodnoty TTL v IP paketoch
- Ak sa ttl neuvedie, použije sa hodnota 255

Príklad na Multihop EBGP


```
R1(config) # router bgp 65102
R1(config-router) # neighbor 172.16.1.1 remote-as 65101
R1(config-router) # neighbor 172.16.1.1 update-source loopback0
R1(config-router) # neighbor 172.16.1.1 ebgp-multihop 2
R1(config-router) # exit
R1(config) # ip route 172.16.1.1 255.255.255.255 192.168.1.18
R1(config) # ip route 172.16.1.1 255.255.255.255 192.168.1.34
R1(config) #
```

```
R2(config) # router bgp 65101
R2(config-router) # neighbor 172.17.1.1 remote-as 65102
R2(config-router) # neighbor 172.17.1.1 update-source loopback0
R2(config-router) # neighbor 172.17.1.1 ebgp-multihop 2
R2(config-router) # exit
R2(config) # ip route 172.17.1.1 255.255.255.255 192.168.1.17
R2(config) # ip route 172.17.1.1 255.255.255.255 192.168.1.33
R2(config) #
```

BGP príkaz neighbor shutdown

Router(config-router)#

```
neighbor {ip-address | peer-group-name} shutdown
```

- Administratívne deaktivuje vybraného suseda
 - Príkaz nielen ukončí BGP reláciu ale aj odstráni všetky týkajúce sa smerovacie informácie
- Využíva sa pri údržbe konfigurácie a zmenách smerovacích politík

Router(config-router)#

```
no neighbor {ip-address | peer-group-name} shutdown
```

- Opätovne aktivuje suseda, ktorý bol deaktivovaný
 - Pozor príkaz neighbor activate slúži na mierne iný účel: aktivácia suseda pre konkrétny typ sieťových adries (nebudeme sa učiť)

Nastavenie sietí v BGP - príkaz network

- Sú dve možnosti na šírenie sietí v BGP
 - Príkaz network
 - Redistribúcia z IGP

Router(config-router)#

```
network NETWORK-NUMBER [mask NETMASK] [route-map MAP-TAG]
```

- Správanie príkazu je zásadne odlišné od jeho významu v IGP protokoloch
 - IGP prehľadá rozhrania ak nejaké rozhranie má IP adresu z rozsahu adries daného týmto príkazom, potom do IGP bude zaradená celá sieť tohto rozhrania
 - BGP prehľadá smerovaciu tabuľku musí v nej nájsť sieť so zhodným číslom a maskou (nezávisí na pôvode informácie)
- BGP zaradí sieť s presne danou adresou siete a presnou maskou do zoznamu sietí, ktoré oznámi svojim susedom
- Ak je zadaný príkaz network s classfull sieťou bez masky, a BGP má aspoň jednu subnet z rozsahu v smerovacej tabuľke
 - Ak je zapnuté auto-summary Pošle info o classfull sieti (nie subnete)
 - Ak je vypnuté (no) auto-summary Neoznámi nič (čaká net mask syntax)

BGP cesta musí byť v IP smerovacej tabuľke

- Je dôležité zdôrazniť, že ak má byť daná sieť šírená cez BGP musí daná sieť s danou maskou existovať v smerovacej tabuľke
 - Ak nie je definovaná maska, použije sa classful default maska
- Napríklad sumarizácia viac sietí do CIDR bloku 192.168.0.0/16:

```
network 192.168.0.0 mask 255.255.0.0 ip route 192.168.0.0 255.255.0.0 null0
```

 Až teraz BGP nájde presnú zhodu pre sieť a masku v smerovacej tabuľke a informuje o sieti 192.168.0.0/16 jeho susedov

Sumarizácia – agregácia v BGP

- Do BGP sa siete vnášajú spravidla pomocou redistribúcie
- Sumarizácia (v BGP terminológii sa tento proces nazýva agregácia) sa realizuje príkazom

```
Router(config-router)#

aggregate-address NETWORK MASK [summary-only]
```

```
    Parameter summary-only zabezpečí, že sa rozpošle iba
agregovaná sieť, nie aj jej komponenty
```

- Potrebné v prípadoch, že niekomu chceme poslať agregát, inému zasa špecifickejšie komponenty
- Príkaz aggregate vyžaduje aby agregované siete boli v smerovacej tabuľke (aj zadané príkazom network)

BGP RIB

BGP RIB

OUT Process

- BGP "in" proces
 - Príjem info o ceste od suseda (peer)
 - Umiestnenie BGP cesty do BGP tabuľky
 - "najlepšia cesta" je označená (denoted by ">")

BGP Routing Information Base

BGP Routing Information Base

BGP RIB

Routing Table

- Best paths installed in routing table if:
 - · prefix and prefix length are unique
 - lowest "protocol distance"

Posielanie default route v BGP

 V BGP sa dá poslať default route vybranému susedovi príkazom

```
Router(config-router)#

neighbor {ip-address | peer-group-name} default-originate
```

 Default route na aktuálnom BGP routeri nemusí existovať (na chrbtici internetu neexistuje default route)

BGP Synchronizácia

- Disabled by default in Cisco IOS Software Release 12.2(8)T and later
- Povolenie

```
Router(config-router) # synchronization
```

Zakázanie

Router(config-router)# no synchronization

Autentifikácia v BGP

Autentifikácia v BGP

Router(config-router)#

```
neighbor {ip-address | peer-group-name} password string
```

- BGP používa MD5 autentifikáciu
 - Hash sa počíta z hesla (key) a správy
- Pre každého suseda sa môže definovať nezávislý kľúč (heslo)


```
router bgp 65500
neighbor 10.64.0.2 remote-as 65500
neighbor 10.64.0.2 password v61ne0qke133&
```

```
router bgp 65500
neighbor 10.64.0.1 remote-as 65000
neighbor 10.64.0.1 password v61ne0qke133&
```

Príklad konfigurácie MD5 autentifikácie


```
R1(config)# router bgp 65000
R1(config-router)# neighbor 10.64.0.2 remote-as 65500
R1(config-router)# neighbor 10.64.0.2 password BGP-Pa55w0rd
R1(config-router)#
```

```
R2(config)# router bgp 65500
R2(config-router)# neighbor 10.64.0.1 remote-as 65000
R2(config-router)# neighbor 10.64.0.1 password BGP-Pa55w0rd
R2(config-router)#
```

Diagnostika:

Ak jeden smerovač má heslo pre suseda a druhý nemá:

```
%TCP-6-BADAUTH: No MD5 digest from 10.1.0.2(179) to 10.1.0.1(20236)
```

Ak oba smerovače majú heslá, ale nesprávne:

```
%TCP-6-BADAUTH: Invalid MD5 digest from 10.1.0.1(12293) to 10.1.0.2(179)
```


Diagnostika BGP

Príkazy na overenie a diagnostiku BGP

Command	Description			
show ip bgp	Zobrazi položky v BGP tabuľke Môžeme špecifikovať adresu siete na získanie bližších informácii o danej sieti.			
show ip bgp neighbors	Zobrazí detailné informácie o TCP a BGP spojeniach na susedov (BGP table).			
show ip bgp summary	Zobrazí stav všetkých BGP spojení.			
<pre>show ip bgp neighbors {address} advertised- routes</pre>	Zobrazí všetky cesty (smery) ktoré sú zasielané na susedov.			
show ip bgp rib-failure	Zobrazí BGP cesty (smery) ktoré neboli inštalované do routing information base (RIB), a dôvod z akého sa tak stalo.			
<pre>debug ip bgp [dampening events keepalives updates]</pre>				
Show tcp brief inc 179	Zobrazí, či je otvorená TCP relácia na BGP peera			

Overenie BGP: show ip bgp

Zobrazí BGP topologickú databázu (BGP tabuľku).

Prvý stĺpec: STATUS CODE

- * znamená, že next hop adresa v piatom stĺpci je platná
- r znamená RIB chybu, a cesta (smer, route) nebola inštalovaná do RIB
- môžu byť ešte ďalšie kódy

Druhý stĺpec: Znak ">" označuje, ktorú cestu BGP vybralo ako najlepšiu

Táto route bude umiestnená do smerovacej tabuľky.

Tretí stĺpec: Je buď prázdny alebo obsahuje znak "**i**"

- Ak obsahuje znak i, smerovač sa dozvedel o tejto sieti cez iBGP suseda
- Ak je prázdny, BGP sa naučilo o sieti od externého peera

```
R1# show ip bgp
BGP table version is 14, local router ID is 172.31.11.1
Status codes: s suppressed, d damped, h history, * valid, > best, i -
internal, r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
   Network
                    Next Hop
                                        Metric LocPrf Weight Path
*> 10.1.0.0/24
                    0.0.0.0
                                                       32768 i
                    10.1.0.2
                                                  100
                                                            0
*> 10.1.1.0/24
                    0.0.0.0
                                                       32768 i
*>i10.1.2.0/24
                    10.1.0.2
                                                  100
                                                            0
*> 10.97.97.0/24
                    172.31.1.3
                                                            0 64998 64997 i
                                                            0 64999 64997 i
                    172.31.11.4
                                                            0 64999 64997 i
                    172.31.11.4
                                             0
                                                  100
                                                            0 64998 i
*> 10.254.0.0/24
                    172.31.1.3
                                                            0 64999 64998 i
                    172.31.11.4
                                                           0 64998 i
                                                  100
                    172.31.1.3
                                             0
                                                           0 64998 i
r > 172.31.1.0/24
                    172.31.1.3
                                                           0 64999 64998 i
                    172.31.11.4
                                                           0 64998 i
r i
                    172.31.1.3
                                             0
                                                  100
                                                            0 64998 i
*> 172.31.2.0/24
                    172.31.1.3
                                             0
```

Obsahuje zoznam troch BGP atribútov cesty: metric (MED), local preference, a weight. Časť Path obsahuje zoznam AS ciest. Posledné AS číslo je originating AS.

Ak je prázdne, sieť je z daného AS

Posledný stĺpec zobrazuje atribút ORIGIN.

- i znamená, že prvý smerovač pravdepodobne použil príkaz network na distribúciu info cez BGP.
- ? **z**namená, že sieť bola pravdepodobne redistribuovaná z IGP do BGP

Overenie BGP: show ip bgp rib-failure

- Zobrazí BGP cesty (smery) ktoré neboli inštalované do routing information base (RIB), a dôvod z akého sa tak stalo
- Príklad
 - V Routing tabuľke už existuje daná cesta s lepším AD.

```
R1# show ip bgp rib-failure

Network Next Hop RIB-failure RIB-NH Matches

172.31.1.0/24 172.31.1.3 Higher admin distance n/a

172.31.11.0/24 172.31.11.4 Higher admin distance n/a
```

Overenie BGP: show ip bgp PREFIX

```
ISP2# sh ip bqp 192.168.0.0/24
BGP routing table entry for 192.168.0.0/24, version 3
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
  100
    172.16.0.2 from 172.16.0.2 (192.168.1.1)
     Origin IGP, metric 0, localpref 100, valid, external, best
```

Overenie BGP: show ip bgp summary

Overenie BGP susedov a stavu.

```
RouterA# show ip bgp summary
   BGP router identifier 10.1.1.1, local AS number 65001
   BGP table version is 124, main routing table version 124
   9 network entries using 1053 bytes of memory
   22 path entries using 1144 bytes of memory
   12/5 BGP path/bestpath attribute entries using 1488 bytes of memory
   6 BGP AS-PATH entries using 144 bytes of memory
   0 BGP route-map cache entries using 0 bytes of memory
   O BGP filter-list cache entries using O bytes of memory
  BGP using 3829 total bytes of memory
  BGP activity 58/49 prefixes, 72/50 paths, scan interval 60 secs
  Neighbor
               V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
   10.1.0.2 4 65001
                                             124
                                                          0 00:02:28
                             11
                                     11
   172.31.1.3 4 64998
                             21
                                     18
                                             124
                                                         0 00:01:13
   172.31.11.4 4 64999
                                     10
                                             124
                                                         0 00:01:11
                             11
 RID
        Verzia
                                             Posledná
                                                       Počet
                                                                          Koľko Prefixov
                           Počet
                Susedovo
                                    Počet
                                                               Ako dlho
suseda
        BGP u
                                              verzia
                                                      správ v In
                                                                          som prijal od
```

správ

odoslaných

na suseda

tabuľky

zaslaná

susedovi

je sused

UP

a Out

fronte

suseda (State je

logicky

established)

správ

prijatých

od suseda

AS

suseda

Overenie BGP: debug ip bgp updates

Overenie BGP susedstva po resetovaní BGP procesu

```
R1# debug ip bgp updates
Mobile router debugging is on for address family: IPv4 Unicast
R1# clear ip bgp 10.1.0.2
<output omitted>
*May 24 11:06:41.309: %BGP-5-ADJCHANGE: neighbor 10.1.0.2 Up
*May 24 11:06:41.309: BGP(0): 10.1.0.2 send UPDATE (format) 10.1.1.0/24, next 10.1.0.1, metric 0,
path Local
*May 24 11:06:41.309: BGP(0): 10.1.0.2 send UPDATE (prepend, chqflags: 0x0) 10.1.0.0/24, next
10.1.0.1, metric 0, path Local
*May 24 11:06:41.309: BGP(0): 10.1.0.2 NEXT HOP part 1 net 10.97.97.0/24, next 172.31.11.4
*May 24 11:06:41.309: BGP(0): 10.1.0.2 send UPDATE (format) 10.97.97.0/24, next 172.31.11.4, metric
0, path 64999 64997
*May 24 11:06:41.309: BGP(0): 10.1.0.2 NEXT HOP part 1 net 172.31.22.0/24, next 172.31.11.4
*May 24 11:06:41.309: BGP(0): 10.1.0.2 send UPDATE (format) 172.31.22.0/24, next 172.31.11.4,
metric 0, path 64999
<output omitted>
*May 24 11:06:41.349: BGP(0): 10.1.0.2 rcvd UPDATE w/ attr: nexthop 10.1.0.2, origin i, localpref
100, metric 0
*May 24 11:06:41.349: BGP(0): 10.1.0.2 rcvd 10.1.2.0/24
*May 24 11:06:41.349: BGP(0): 10.1.0.2 rcvd 10.1.0.0/24
```

Overenie BGP: show ip bgp neighbors

Overenie BGP stavu so susedom.

```
R1# show ip bgp neighbors
BGP neighbor is 172.31.1.3, remote AS 64998, external link
  BGP version 4, remote router ID 172.31.2.3
 BGP state = Established, up for 00:19:10
  Last read 00:00:10, last write 00:00:10, hold time is 180, keepalive
interval is 60 seconds
 Neighbor capabilities:
    Route refresh: advertised and received(old & new)
    Address family IPv4 Unicast: advertised and received
  Message statistics:
    InQ depth is 0
    OutQ depth is 0
                         Sent
                                    Rcvd
    Opens:
    Notifications:
                                      38
    Updates:
                           13
<output omitted>
```

Overenie: sh tcp brief

```
R2# sh tcp brief | include 179
6A7B27A0 172.16.0.2.55333 172.16.0.1.179
                                                    ESTAB
6A723F68 10.0.0.2.179 10.0.0.1.62492
                                                    ESTAB
```


Reset BGP spojení

Prestávka, Lab 7-1

Reštart BGP spojenia

- Po zmene politík (access-listy pre filtrovanie, zmena hodnôt atribútov) sa zmeny prejavia len na nových prijatých alebo nových odoslaných prefixoch
- Zmena na doposiaľ odoslaných a prijatých prefixoch sa sama od seba neuskutoční
 - Administrátor musí ručne vyvolať akciu, ktorá spôsobí aplikovanie nových politík
- Spôsoby na vynútenie aktualizácie prefixov:
 - Hard reset
 - Soft reset
 - Route refresh

Hard Reset BGP spojení

- Reset je technika na informovanie susedov o nastaní zmeny politík
 - Ak nastane Reset relácie, všetky informácie spojené s reláciou sú zneplatnené a vymazané

Router#

```
clear ip bgp *
```

- Zruší BGP spojenia so všetkými susedmi
- Celá BGP tabuľka sa zahodí (flush daných ciest v RT)
- Všetky spojenia prejdú do stavu Idle (zatvorí sa tcp) a informácie sa kompletne musia preniesť od susedov nanovo

Router#

```
clear ip bgp neighbor-address
```

- Zruší BGP spojenie s daným susedom (flush daných ciest v RT)
- Spojenie s týmto susedom prejde do stavu Idle (zatvorí sa tcp) a
 je potrebné nanovo sa s ním synchronizovať
- Menej drastické než clear ip bgp *

Outbound Soft Reset

Router#

```
clear ip bgp {* | neighbor-address} [ soft out | out]
```

- Cesty od daného suseda sa ponechajú v našich tabuľkách
- Prepošleme však susedovi všetky naše BGP smery nanovo bez resetu spojenia
 - Spojenie so susedom zostáva v stave Established
- Táto voľba je ideálna pre situácie, keď sa mení outbound policy
 - Príkaz soft out nemá efekt, ak sa mení inbound policy

Inbound Soft Reset

Router(config-router)#

```
neighbor [ip-address] soft-reconfiguration inbound
```

- Idea Inbound Soft Reset je pamätať si všetky informácie od BGP suseda nefiltrované v osobitnej databáze
 - Pri zmene inbound policy sa využije obsah tejto databázy namiesto opätovného stiahnutia dát od suseda
- Táto funkcionalita je pamäťovo náročná
- Výhoda: Nevyžaduje sa akcia druhej strany (resend)

Router#

```
clear ip bgp {* | neighbor-address} soft in
```

 Príkaz spôsobí zabudnutie naučených informácií od daného suseda a aplikuje aktuálnu inbound policy na údaje z hore vytvorenej osobitnej databázy

Route Refresh: Dynamický Inbound Soft Reset

Router#

```
clear ip bgp {* | neighbor-address} [soft in | in]
```

- Táto funkcionalita umožňuje nanovo si vyžiadať od suseda odoslanie informácií, pričom budú podrobené aktuálnej inbound policy
 - Pôvodná špecifikácia BGP to neumožňovala, pri Route Refresh sa jedná o dodatočné RFC 2918
 - Zavedená nová BGP správa ROUTE-REFRESH
- Smery odoslané danému susedovi nie sú dotknuté
- Nevyžaduje sa kópia informácií v osobitnej databáze
- Spojenie zostáva v stave Established
- Podporované od verzie IOS 12.0(2)S and 12.0(6)T
- Ak všetci susedia podporujú Route Refresh, netreba písať soft

Overenie či sused podporuje soft refresh

```
ISP2# sh ip bgp neighbors

BGP neighbor is 172.16.0.2, remote AS 100, external link

BGP version 4, remote router ID 192.168.1.1

BGP state = Established, up for 03:12:30

Last read 00:00:30, last write 00:00:30, hold time is

180, keepalive interval is 60 seconds

Neighbor capabilities:

Route refresh: advertised and received(old & new)

Address family IPv4 Unicast: advertised and received

...
```

Monitoring prijatých BGP Routes

Command	Description		
<pre>show ip bgp neighbors {address} received-routes</pre>	Displays all received routes (both accepted and rejected) from the specified neighbor		
received-routes	Have to be neighbor 172.16.0.1 soft-reconfiguration inbound Turned on		
<pre>show ip bgp neighbors {address}</pre>	Displays all routes that are received and accepted from the specified neighbor.		
routes	This output is a subset of the output displayed by the received-routes keyword.		
show ip bgp	Displays entries in the BGP table.		
<pre>show ip bgp neighbors {address} advertised-routes</pre>	Displays all BGP routes that have been advertised to neighbors.		

Atribúty v BGP

BGP updates a atributy cesty

- Smerovač posiela BGP update s informáciou o jednej ceste
 - Správa obsahuje
 - Network Layer Reachability Information (NLRI)
 - Informácia o sieťach dosiahnuteľných touto cestou
 - Atribúty cesty (Path attributes)
- Atribúty cesty sú BGP metriky popisujúce cestu do týchto sietí/siete
 - BGP ich používa na výber najlepšej cesty
 - Môžu byť použité na policy routing
 - Umožňujú adminom lepšiu kontrolu nad výberom cesty
 - Filtrovanie, preferovanie ciest, kustomizácia BGP správania apod.
 - Type, Length & Value (TLV)

BGP Attribute Type

- Type code 1 ORIGIN
- Type code 2 AS_PATH
- Type code 3 NEXT_HOP
- Type code 4 MULTI EXIT DISC
- Type code 5 LOCAL_PREF
- Type code 6 ATOMIC_AGGREGATE
- Type code 7 AGGREGATOR
- Type code 8 Community (Cisco-defined)
- Type code 9 Originator-ID (Cisco-defined)
- Type code 10 Cluster list (Cisco-defined)

Update Message

Octets 16 2

Path	Attributes
Info	ormation

ets	16	2	1	2	Variable	2	Variable	Variable
	Marker	Length	Туре	Unfeasible Routes Length	Withdrawn Routes	Attribute Length	Path Attributes	NLRI

BGP atribúty

- Atribút je vlastnosť smeru, ktorá charakterizuje nejakú jeho vlastnosť, a na základe ktorej si BGP vyberá najvhodnejšiu cestu
- BGP pozná mnoho atribútov, ktoré sú 4 základných druhov:
 - Well-known mandatory:
 - atribút, ktorý musí povinne podporovať každá implementácia BGP (well-known) a ktorý musí byť prítomný pri každom popise nejakej cesty (mandatory)
 - Well-known discretionary:
 - atribút, ktorý musí povinne podporovať každá implementácia BGP (well-known), ale ktorý nemusí byť prítomný v popise cesty (discretionary)
 - Optional transitive:
 - atribút, ktorý nemusí podporovať každá implementácia BGP (optional), avšak musí ho preposlať susedom napriek tomu, že mu nerozumie (transitive)
 - Optional nontransitive:
 - atribút, ktorý nemusí podporovať každá implementácia BGP (optional), a ak mu nerozumie, nesmie ho preposlať susedom (nontransitive)
- Všetky well-known atribúty majú tranzitívnu povahu

BGP atribúty

- Well-known mandatory: (pomôcka: MONA)
 - ORIGIN: pôvod smeru (iBGP, eBGP, neznámy)
 - NEXT_HOP: next hop pre daný smer
 - AS_PATH: zoznam AS na ceste k danému smeru
- Well-known discretionary: (pomôcka: DALA)
 - ATOMIC_AGGREGATE: info o nerozdeliteľnej sieti
 - LOCAL_PREF: vyjadrenie lokálnej preferencie
- Optional Transitive:
 - AGGREGATOR: zdroj agregovanej informácie
 - COMMUNITY:
- Optional Nontransitive:
 - MULTI_EXIT_DISC: odporúčanie pre výstup z jedného AS do druhého

BGP atribúty - Weight

- Okrem toho Cisco zavádza vlastný atribút Weight
 - Lokálny pre daný router, nepreposiela sa nikomu
- BGP atribúty možno nastavovať alebo kontrolovať pomocou route-map konštruktov
- Každá kontrola, nastavovanie a filtrovanie sa deje pomocou príkazu neighbor pre každého suseda alebo peer group nezávisle
 - Na rozdiel od IGP, kde sa filtrovanie robí spravidla hromadne, nezávisle od odosielateľa informácie,
 - v BGP sa zasa spravidla realizuje filtrovanie pre každého suseda zvlášť
- BGP má stanovené poradie, v akom vyhodnocuje jednotlivé atribúty pre výber najlepšej cesty

Well-known mandatory atribút: AS_PATH

- Atribút AS_PATH predstavuje zoznam AS, cez ktoré treba prejsť, než sa dostaneme do cieľovej siete
- Keď informácia o nejakej sieti prechádza medzi eBGP susedmi, odosielateľ pripojí číslo svojho AS na začiatok tohto zoznamu (prepending)

 AS_PATH slúži ako prostriedok na eliminovanie smerovacej slučky AS 300

 Router v istom AS nemôže akceptovať cez eBGP informáciu, ktorá už toto číslo AS v atribúte AS_PATH obsahuje

 iBGP AS do AS_PATH nepridáva AS 500

Well-known mandatory atribút NEXT_HOP

- Atribút NEXT_HOP je IP adresa nasledujúceho hopu
 - BGP vidí cestu ako poradie AS systémov, nie ako poradie routerov
 - NEXT_HOP vyjadruje IP adresu hraničného routera v nasledujúcom AS
- Z toho logicky vyplýva správanie sa atribútu NEXT_HOP
 - Pri eBGP (medzi AS) ho nastaví odosielateľ na svoju IP adresu (podľa update-source)
 - Prechodom cez iBGP (vo vnútri AS) sa jeho hodnota nebude meniť
- To má závažný dôsledok
 - Daný iBGP v AS musí poznať cestu k príslušnému hraničnému routeru v inom AS (Next-HOP)
 - Inak nebude možné vložiť tento BGP smer do smerovacej tabuľky
 - Alebo budú pakety pre daný smer dropnuté

BGP third party next hop

Za istých okolností na multiaccess sieťach môže byť hodnota NEXT_HOP odlišná, vždy však bude na spoločnej IP sieti s eBGP peerom

- Ak B pošle A update o sieti 192.168.1.0 uvedie ako next hop nie seba ale 10.10.10.2
- Optimálnejšie z pohľadu smerovania do cieľa

BGP atribút NEXT_HOP

Tieto vlastnosti môžu komplikovať situáciu pri NBMA sieťach alebo v topológiách, kde nie je všetkým BGP speakerom známa cesta k príslušnému hraničnému routeru

Riešenie: neighbor A.B.C.D next-hop-self

- V smeroch získaných z eBGP a preposielaných na daného iBGP suseda A.B.C.D zmeníme NEXT_HOP na seba
- Príkaz neplatí pri route reflectoroch v takom prípade sa dá NEXT_HOP modifikovať pomocou route-map

Priklad Next Hop Self


```
R2(config) # router bgp 65101
R2(config-router) # neighbor 172.16.1.1 remote-as 65100
R2(config-router) # neighbor 192.168.3.3 remote-as 65101
R2(config-router) # neighbor 192.168.3.3 update-source loopback0
R2(config-router) # neighbor 192.168.3.3 next-hop-self
R2(config-router) # exit
R2(config) # router eigrp 1
R2(config-router) # network 10.0.0.0
R2(config-router) # network 192.168.2.0
R2(config-router) #
```

Elegantné riešenie ako zabezpečiť aby iBGP peer nemusel riešiť dostupnosť IP adresy externého eBGP

Well-known mandatory atribút ORIGIN

- Atribút ORIGIN vyjadruje pôvod informácie o ceste
 - "i" sieť má pôvod v súčasnom AS
 - Sieť je interná pre AS (internal)
 - vnesená do BGP príkazom network
 - Je v RT napr. cez IGP
 - "e" sieť je redistribuovaná z historického EGP protokolu
 - EGP už nie je podporované
 - "?" pôvod siete nie je známy (Incomplete)
 - Alebo naučený nejakým iným spôsobom (redistribúcia)
- Pri výbere cesty sa berie do úvahy poradie
 - IGP (i) < EGP (e) < INCOMPLETE (?)
 - Nižší je lepší

Well-Known Discretionary atribut LOCAL_PREF

- Atribút LOCAL_PREF označuje preferenciu výstupnej cesty z AS
 - Atribút LOCAL_PREF sa odovzdáva len cez iBGP
 - Neprechádza cez eBGP
 - Je uzatvorený vo vnútri AS (local)
 - Čím vyššia hodnota, tým lepšie
 - Implicitná hodnota je 100

Príklad

- Dve cesty z AS 64520 do siete 172.16.0.0 v AS 65530
- Ktorú vybrať?

Zmena štandardnej LOCAL_PREF hodnoty

Router (config-router) #

bgp default local-preference value

- Zmení hodnotu LOCAL_PREF zo štandardnej hodnoty 100 na definovanú hodnotu
- Všetky smery ohlásené iBGP susedom budú mať nastavenú danú hodnotu LOCAL_PREF

Well-Known Discretionary ATOMIC_AGGREGATE

- Atribút Atomic Aggregate indikuje, že cesta bola sumarizovaná
 - Atribút varuje, že získaná informácia nemusí byť úplná
- Atribút je nastavený buď na
 - True or False
 - True = Výstraha že viaceré siete boli zlúčené do jedného update
 - Update zahŕňa router ID a AS číslo spolu s číslom supernet siete
 - Za účelom zjednodušenia identifikácie smerovača zodpovedného za agregáciu

Optional Transitive atribút Community

- Atribút Community sa používa na filtrovanie vstupujúcich a vystupujúcich ciest
 - Pomocou tohto atribútu môžu BGP smerovače značkovať (tagovať) cesty značkou (indicator/tag)
 - Na základe značky je možné vykonávať filtrovanie alebo akcie manipulácie s update
- Smerovač, ktorý rozumie atribútu ho musí propagovať ďalej
 - Ináč drop atribútu

Optional non-Transitive atribút MED

- MED je indikácia pre susedný (externý) AS, ktorú z viacerých možných ciest do nášho AS má použiť
 - MED sa iniciálne prenesie z nášho AS cez eBGP do susedného AS a v ňom sa rozšíri, avšak z neho už nevychádza ďalej
 - z neho sa ďalej preposiela s hodnotou 0
 - MED sa zvykne nazývať aj "metrika" a v tomto zmysle platí
 - čím menšia, tým lepšie
 - Štandardne sa MED porovnáva medzi rôznymi cestami do toho istého cieľa len vtedy, ak tieto cesty prišli z rovnakého susedného AS
 - Prepisuje príkaz always-compare-med

Príklad

- Smerovače B a C distribuujú MED atribút za účelom informovania smerovača A o preferencii vstupu do AS 65500
- A si vyberie vstup cez B
 - Nižšia hodnota MED

Zmena štandardnej hodnoty MED

Router(config-router)#

default-metric number

- Zmení hodnotu MED zo štandardnej hodnoty 0 na definovanú hodnotu
- Všetky smery ohlásené eBGP susedom budú mať nastavenú hodnotu MED (metriku) na definovanú hodnotu

Cisco BGP atribút WEIGHT

- Je to Cisco proprietárny atribút
- Využiteľný ak daný smerovač má viaceré výstupné linky
- Atribút WEIGHT vyjadruje "mikrolokálnu" preferenciu smeru
 - Atribút lokálny len pre daný router, nepreposiela sa ďalej žiadnemu susedovy
 - Čím vyššia hodnota, tým viac preferovaný smer
 - Možné hodonoty od <0,65635>
 - Smery, ktoré do BGP vnášame my, majú default WEIGHT 32768
 - Smery, ktoré sme sa cez BGP naučili, majú default WEIGHT 0

Príklad

- Smerovač A má dve cesty na dosiahnutie siete 172.20.0.0. v AS 65250
 - Cez B a cez C
- A na vstupujúce updates aplikuje lokálnu váhu
- A si vyberie výstup cez B
 - Vyššia hodnota WEIGHT

Zmena prednastavenej váhy

Zmeň default váhu pre všetky cesty od daného suseda

```
Router(config-router)#
```

```
neighbor {ip-address | peer-group-name} weight number
```

number: pridelené váha <0, 65535>

Poznámka:

Váhy pridelené v route map cez set weight route-map prepisujú váhu danú príkazom neighbor weight.

Poradie vyhodnocovania atribútov

Uvažujú sa len (synchronizované) smery bez AS slučiek a s dosiahnuteľným next hop routerom:

- Cesta s najvyšším atribútom WEIGHT (lokálny pre router)
- Cesta s najvyšším atribútom LOCAL_PREF (globálny v rámci AS)
- 3. Cesta, ktorú sme do BGP my sami vniesli (localy originated)
- 4. Cesta s najmenším počtom AS v zozname AS_PATH
- 5. Cesta s najnižším kódom pôvodu (IGP < EGP < incomplete)
- 6. Cesta s najnižším MED
- 7. Preferujú sa cesty naučené cez eBGP voči cestám naučeným cez iBGP
- 8. Preferuje sa cesta s najnižšou IGP metrikou k BGP next-hopu
- 9. Pre eBGP sa preferujú najstaršie (prvé naučené) cesty
- Preferujú sa cesty od peera s najnižším BGP router ID
- 11. Preferujú sa cesty od peera s najnižšou IP adresou

Z pohľadu cert skúšky CCNP ROUTE treba vedieť

BGP Peer Groups, Router Reflectors

Používanie Peer Group

Router(config-router)#

```
neighbor PEER-GROUP-NAME peer-group
```

Týmto príkazom sa vytvorí peer group

Router(config-router)#

```
neighbor IP-ADDRESS peer-group PEER-GROUP-NAME
```

- Tento príkaz zaradí suseda do vybranej peer group
- Peer groups je možné s výhodou použiť, ak máme skupinu susedov, ktorí majú spoločnú "outbound policy" – politiku, ktorá filtruje prenos informácie od nás k nim
- Členovia peer group môžu mať rozličné "inbound policies" – vstupné politiky, ktoré filtrujú prenos informácie od nich k nám

Používanie Peer Group

- Peer Groups sú veľmi výhodné, pretože
 - Aktualizácie sú vygenerované pre celú grupu iba raz
 - Zjednodušuje sa konfigurácia
 - Všetky filtre, route-mapy a podobné konštrukcie sa aplikujú na grupu, netreba na jednotlivých členov
 - Šetrí sa procesorový čas a pamäť, pretože smerovacia tabuľka sa pre peer group kontroluje len raz, takisto aktualizácie sa generujú len raz a replikujú sa
- Peer Group zjednodušujú konfiguráciu, avšak stále je zachovaná požiadavka na full-mesh peerov

Príklad: Použitie Peer Group pomenovanej internal

AS 65101 192.168.26.1 AS 65100

Router C Without a Peer Group

```
router bgp 65100
neighbor 192.168.24.1 remote-as 65100
neighbor 192.168.24.1 update-source Loopback 0
neighbor 192.168.24.1 next-hop-self
neighbor 192.168.24.1 distribute-list 20 out
neighbor 192.168.25.1 remote-as 65100
neighbor 192.168.25.1 update-source Loopback 0
neighbor 192.168.25.1 next-hop-self
neighbor 192.168.25.1 distribute-list 20 out
neighbor 192.168.26.1 remote-as 65100
neighbor 192.168.26.1 update-source Loopback 0
neighbor 192.168.26.1 next-hop-self
neighbor 192.168.26.1 next-hop-self
```

Router C Using a Peer Group

```
router bgp 65100
neighbor internal peer-group
neighbor internal remote-as 65100
neighbor internal update-source Loopback 0
neighbor internal next-hop-self
neighbor internal distribute-list 20 out
neighbor 192.168.24.1 peer-group internal
neighbor 192.168.25.1 peer-group internal
neighbor 192.168.26.1 peer-group internal
```

```
access-list 20 deny 10.0.0.0 0.255.255.255
access-list 20 deny 172.16.0.0 0.31.255.255
access-list 20 deny 192.168.0.0 0.0.255.255
access-list 20 permit any
```

Distribučný list sa používa ako v IGP, ale filtruje len updates na susedov

iBGP peering – problém

5 iBGP Speakers

Route reflector

- Route reflector (RR) je BGP router, ktorý obchádza pravidlo, že cez iBGP sa nesmie odovzdať informácia, ktorá bola práve cez iBGP naučená
- Pomocou RR je možné zásadne zjednodušiť konfiguráciu BGP speakerov v AS
 - Z full meshed logickej topológie vznikne logická hub-and-spoke
 - RR si nakonfiguruje všetky ostatné routery ako svojich susedov a pridá si ku každému z týchto susedov riadok

```
Router(config-router)#
```

```
neighbor {ip-address | pg-name} route-reflector-client
```

 Všetky ostatné BGP routery si nakonfigurujú RR router ako svojho suseda úplne bežným spôsobom

Manipulácia s výberom cesty v BGP s použitím route maps

Route mapy v BGP

- Route mapy môžu byť v BGP použité na pridelenie alebo modifikáciu BGP atribútov cesty
- Implementujú sa príkazom

```
Router(config-router)#

neighbor {ip-address | peer-group-name} route-map map-name
{in | out}
```

- Postup
 - Definuj a pomenuj route map (ako popísané v kapitole 4)
 - Definuj match kritéria
 - Definuj set zmeny
 - Urči, ktorý atribút a na ktorého suseda sa bude meniť
 - Over výsledky
 - Flushni BGP tabuľku (hard/soft)

match príkazy použiteľné v BGP

Command	Description
match as-path	Matches the AS_PATH attribute
match ip address	Matches any routes that have a destination network number address that is permitted by a standard or extended ACL
match metric	Matches routes with the metric specified
match community	Matches a BGP community
match interface	Matches any routes that have the next hop out of one of the interfaces specified
match ip next-hop	Matches any routes that have a next-hop router address that is passed by one of the ACLs specified
match ip route-source	Matches routes that have been advertised by routers and access servers at the address that is specified by the ACLs
match route-type	Matches routes of the specified type
match tag	Matches tag of a route * Partial list

* Partial list

Prikaz match as-path

Kontrola voči BGP AS ACL listu

```
Router(config-route-map)#
```

```
match as-path path-list-number
```

path-list-number identifikuje AS ACL <1, 199>

Konfigurácia Autonomous System ACL

Konfigurácia AS-path filtra

```
Router(config-router)#
```

```
ip as-path access-list acl-number {permit | deny} regexp
```

- Konfigurujú sa podobne ako IP ACL
- acl-number: hodnota v rozsahu <1, 500> špecifikujúca AS-path ACL
- regexp regulárny výraz ktorý definuje podmienku AS-path filtra

Syntax regulárnych výrazov

- Atom: Jeden znak.
 - Vyhovuje ľubovoľný jeden znak
 - ^ musí obsahovať začiatok reťazca.
 - \$ musí obsahovať koniec reťazca
 - \ musí odpovedať znak.

• Quanitifiers (kvantifikátory):

- * vyhovuje výraz so žiadnym alebo viac výskytmi (max neobmedzené)
- + vyhovuje výraz aspoň s jedným alebo viac výskytmi (max neobmedzené)
- ? daný znak (atom) so žiadnym alebo max 1 výskytom
- {n} práve n-krát, {m,n} max. m-krát a min. n-krát
- Range: Sekvencia znakov v hranatých zátvorkách.
 - Príklad [abcd], [1-5], [a-e]

Príklady regulárnych výrazov

Regular Expression	Resulting Expression
a*	Expression indicates any occurrence of the letter "a", which includes none
a+	indicates that at least one occurrence of the letter "a" must be present
ab?a	Expression matches "aa" or "aba".
100	Expression means via AS100.
_100\$	Expression indicates an origin of AS100.
^100.*	Expression indicates transmission from AS100
^\$	Expression indicates origination from this AS

Príkazy set použiteľné v BGP

Command	Description
set weight NUMBER	Sets the BGP weight value. <0,65535>
set local-preference NUMBER	Sets the LOCAL-PREF attribute value. Integer from 0 to 4294967295. Default 100.
set as-path	Modifes an AS path for BGP routes
set origin	Sets the ORIGIN attribute value
set metric <i>VALUE</i>	Sets the Multi-Exit_Disc (MED) value. Integer from 0 to 294967295
set community	Sets the BGP communities attribute
set automatic-tag	Computes automatically the tag value
set ip next-hop	Indicates which IP address to output packets
set interface	Indicates which interface to output packets
set ip default next- hop	Indicates which default IP address to use to output packets
set default interface	* Partial list Indicates which default interface to use to output packets

Príkaz set as-path

Modifikuje AS cestu pre BGP routes.

Router(config-route-map)#

```
set as-path {tag | prepend as-path-string}
```

Parameter	Description
tag	Converts the tag of a route into an autonomous system path. Applies only when redistributing routes into BGP.
prepend	Pripoj číslo ktoré nasleduje za prepend k atribútu AS_PATH pre route, ktorá sa zhoduje s route map. Aplikovateľné na inbound a outbound BGP route maps.
as-path-string	AČ9slo AS pridané do atribútu AS_PATH. Rozsah je od 1 do 65535. Max 10 AS čísel môže byť pripnutých.

Route mapy v BGP

- NEXT_HOP
 - match ip next-hop {1-99 | 1300-1999 | MENO | prefix-list MENO}
 - set ip next-hop A.B.C.D

ORIGIN

- match route-type local
- set origin {igp | egp | incomplete}

AS_PATH

- match as-path 1-500 (číslo označuje tzv. AS path list)
- set as-path prepend N N N ...

Route mapy v BGP

- LOCAL_PREF:
 - match local-preference N
 - set local-preference N
- MULTI_EXIT_DISC:
 - match metric N
 - set metric N
- WEIGHT:
 - match neexistuje (atribút sa neposiela)
 - set weight N

Zmena atribútu Weight (Váha)

- Použitie ak je smerovač s viac rozhraniami (multihomed).
 - Váha ovplyvní len lokálny smerovač
 - Cesty s vyššou váhou sú preferované
- Existujú dve možnosti ako ovplyvniť váhu:
 - Zmena váhy pre všetky cesty od suseda
 - Aplikuj ako súčasť neighbor príkazu (weight)
 - Zmena váhy pre špecifickú sieť/cestu – route map

BGP Route Selection Process

- 1. Prefer highest Weight
- Prefer highest LOCAL_PREF
- 3. Prefer locally generated routes
- Prefer shortest AS_PATH
- Prefer lowest ORIGIN (IGP < EGP < incomplete)
- 6. Prefer lowest MED
- Prefer EBGP over IBGP
- 8. Prefer routes through closest IGP neighbor
- Prefer routes with lowest BGP router ID
- Prefer routes with lowest neighbor
 IP address

Zmena váhy pomocou Route Map

Príklad:

- Smerovacie politiky pre AS 65040 vyžadujú, aby sa pre siete z AS 65020 použila cesta cez AS 65030
- Ako to dosiahneme?
 - AS path ACL
 - Spravíme route map pre AS65020
 - Zvýšime váhu pre updates od suseda z 65030 (10.0.0.1), ktoré nesú info o sieťach z AS 65020

```
R1(config) # route-map SET-WEIGHT permit 10
R1(config-route-map) # match as-path 10
R1(config-route-map) # set weight 150
R1(config-route-map) # route-map SET-WEIGHT permit 20
R1(config-route-map) # set weight 0
R1(config-route-map) # exit
R1(config) # ip as-path access-list 10 permit _65020$
R1(config) #
R1(config) # router bgp 65040
R1(config-router) # neighbor 10.0.0.1 remote-as 65030
R1(config-router) # neighbor 10.0.0.1 route-map SET-WEIGHT in
```

Zmena Local Preference

- Použité len v AS (medzi iBGP speekrami)
 - Špecifikuje naj cestu ako opustiť AS
 - Vyššia hodnota je preferovaná
 - Defaut local preference je 100.
- Dve možnosti modifikácie:
 - Pre všetky cesty odosielané smerovačom
 - bgp default localpreference value
 - Aplikácia na špecifické cesty s route mapami

BGP Route Selection Process

- Prefer highest Weight
- 2. Prefer highest LOCAL_PREF
- 3. Prefer locally generated routes
- Prefer shortest AS_PATH
- Prefer lowest ORIGIN (IGP < EGP < incomplete)
- 6. Prefer lowest MED
- Prefer EBGP over IBGP
- 8. Prefer routes through closest IGP neighbor
- Prefer routes with lowest BGP router ID
- Prefer routes with lowest neighbor
 IP address

Príklad local preference – všetky cesty

BGP smerovacie politiky vyžadujú použitie R2 na výstup z AS

```
R1(config) # router bgp 65001
R1(config-router) # bgp default local-preference 200
R1(config-router) #

R2(config) # router bgp 65001
R2(config-router) # bgp default local-preference 500
R2(config-router) #
```

Príklad Local Preference a Route Map

- 10% prevádzky ide cez R1 na ISP1 do siete 172.16.0.0
- 50% prevádzky ide cez R2 na ISP2 do sietí 172.24.0.0 a 172.30.0.0.
- Zvyšných 40 percent ide do iných cieľov
- Bola zadefinovaná smerovacia politika
 - Presmerovať prevádzku do siete 172.30.0.0 cez R1

Použitie LOCAL PREF: Route Map na smerovači R1

```
access-list 65 permit 172.30.0.0 0.0.255.255
route-map LOKALNA PREF permit 10
 match ip address 65
  set local-preference 400
route-map LOKALNA PREF permit 20
router bgp 65001
neighbor 192.168.2.2 remote-as 65001
neighbor 192.168.2.2 update-source loopback0
neighbor 192.168.3.3 remote-as 65001
neighbor 192.168.3.3 update-source loopback0
neighbor 192.168.28.1 remote-as 65002
neighbor 192.168.28.1 route-map LOKALNA PREF in
```

```
R3# show ip bqp
BGP table version is 7, local router ID is 192.168.3.3
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r
  RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
                 Next Hop Metric LocPrf Weight Path
  Network
* i172.16.0.0
                                        100 0 65005 65004 65003 i
               172.20.50.1
*>i
                 192.168.28.1
                                        100
                                                0 65002 65003 i
*>i172.24.0.0 172.20.50.1
                                       100
                                                0 65005 i
* i
                                        100
                 192.168.28.1
                                                0 65002 65003 65004 65005 i
* i172.30.0.0
                                        100
              172.20.50.1
                                                0 65005 65004 i
                  192.168.28.1
                                        400
                                                 0 65002 65003 65004i
*>i
```

Zmena AS Path

BGP politika požaduje aby prevádzka do AS 65040 vstupovala cez R6 v AS 65030

A nie cez R4 v AS 65010.
 Jeden zo spôsobov je zhoršiť AS path atribút (zvýšiť počet AS) a tým znevýhodniť cestu

```
R1(config) # route-map SET-AS-PATH permit 10
R1(config-route-map) # set as-path prepend 65040 65040 65040
R1(config-route-map) # exit
R1(config) # router bgp 65040
R1(config-router) # neighbor 172.16.1.1 remote-as 65010
R1(config-router) # neighbor 172.16.1.1 route-map SET-AS-PATH out
R1(config-router) # exit
R1(config) #
```

Zmena MED

- MED sa používa na ovplyvnenie vstupu do AS
 - Preferovaná je nižšia hodnota
 MED
 - Default je 0

Pozor:

- MED je vyhodnocovaný BGP až ako 6 parameter
- Sú dve možnosti
 - Pre všetky cesty defaultmetric
 - Na špecifické cesty s route map

BGP Route Selection Process

- 1. Prefer highest Weight
- Prefer highest LOCAL_PREF
- 3. Prefer locally generated routes
- Prefer shortest AS_PATH
- Prefer lowest ORIGIN (IGP < EGP < incomplete)
- 6. Prefer lowest MED
- 7. Prefer EBGP over IBGP
- Prefer routes through closest IGP neighbor
- Prefer routes with lowest BGP router ID
- 10. Prefer routes with lowest neighbor IP address

Zmena MED – všetky cesty


```
R1(config)# router bgp 65001
R1(config-router)# default metric 1001
R1(config-router)#
```

```
R2(config)# router bgp 65001
R2(config-router)# default metric 99
R2(config-router)#
```

- Výsledok
 - Preferovane sa použije len R2 na vstup

Zmena MED s Route Mapou

Konfigurácia smerovača R1

```
R1(config) # access-list 66 permit 192.168.25.0 0.0.0.255
R1(config) # access-list 66 permit 192.168.26.0 0.0.0.255
R1(config)#
R1(config) # route-map MED-65004 permit 10
R1(config-route-map) # match ip address 66
R1(config-route-map) # set metric 100
R1(config-route-map)#
R1(config-route-map) # route-map MED-65004 permit 100
R1(config-route-map) # set metric 200
R1(config-route-map)# exit
R1(config) # router bgp 65001
R1(config-router) # neighbor 192.168.2.2 remote-as 65001
R1(config-router) # neighbor 192.168.2.2 update-source loopback0
R1(config-router) # neighbor 192.168.3.3 remote-as 65001
R1 (config-router) # neighbor 192.168.3.3 update-source loopback0
R1(config-router) # neighbor 192.168.28.1 remote-as 65004
R1(config-router) # neighbor 192.168.28.1 route-map MED-65004 out
R1(config-router)#exit
```

Konfigurácia smerovača R2

```
R2(config) # access-list 66 permit 192.168.24.0 0.0.0.255
R2(config)#
R2(config) # route-map MED-65004 permit 10
R2(config-route-map) # match ip address 66
R2(config-route-map) # set metric 100
R2(config-route-map)#
R2(config-route-map) # route-map MED-65004 permit 100
R2(config-route-map) # set metric 200
R2(config-route-map)# exit
R2(config) # router bgp 65001
R2(config-router) # neighbor 192.168.1.1 remote-as 65001
R2 (config-router) # neighbor 192.168.1.1 update-source loopback0
R2(config-router) # neighbor 192.168.3.3 remote-as 65001
R2 (config-router) # neighbor 192.168.3.3 update-source loopback0
R2(config-router) # neighbor 172.20.50.1 remote-as 65004
R2(config-router) # neighbor 172.20.50.1 route-map MED-65004 out
R2(config-router)# exit
```

Ako to vidí ISP smerovač


```
ISP3# show ip bgp
BGP table version is 7, local router ID is 192.168.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i -
  internal, r RIB-failure, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
  Net.work
                             Metric LocPrf Weight Path
                  Next Hop
*>i192.168.24.0
                  172.20.50.2
                                 100
                                        100
                                                 0 65001 i
                  192.168.28.2
                                  200
                                        100
                                                  0 65001 i
* i192.168.25.0
                  172.20.50.2
                              200 100
                                                  0 65001 i
*>i
                  192.168.28.2 100 100
                                                  0 65001 i
* i192.168.26.0
               172.20.50.2 200 100
                                                  0 65001 i
*>i
                  192.168.28.2
                                  100
                                        100
                                                  0 65001 i
```

Filtering BGP Routing Updates

Filtrovanie BGP smerovacích updates

- BGP môže dostávať veľké množstvo smerovacích informácii
 - Je vhodné optimalizovať jeho činnosť nasadením filtrov
- Dostupné techniky:
 - Filter lists
 - Prefix lists
 - Route maps

Filtrovanie vstupných a výstupných updates

- Update pre vstupujúce cesty (prefixy) môže byť upravený pred vložením do BGP tabuľky
 - prechodom cez prefix lists, filter-lists, a route mapy v smere IN
- Podobne pre vystupujúce smery skôr ako je updates odoslaný
 - prechodom cez route-mapy v smere out (outgoing), filter listy, a prefix listy

Filtrovanie pri redistribúcii

Aplikáciou prefix listov, route máp na proces redistribúcie

Aplikácia BGP filtra (filter-list)

Aplikuj filter list na cesty z alebo na suseda

Router(config-router)#

```
neighbor {ip-address | peer-group-name} filter-list
  access-list-number {in | out}
```

Parameter	Popis
ip-address	IP addresa BGP suseda
peer-group-name	Meno BGP peer groupy
access-list- number	Číslo AS-path access listu.
in	Aplikácia na incoming routes.
out	Aplikácia na outgoing routes.

Príklad BGP Filtra s využitím Prefix Lists


```
R1(config)# ip prefix-list ANY-8to24-NET permit 0.0.0.0/0 ge 8 le 24
R1(config)# router bgp 65001
R1(config-router)# neighbor 172.16.1.2 remote-as 65002
R1(config-router)# neighbor 172.16.1.2 prefix-list ANY-8to24-NET in
R1(config-router)# end
R1#
R1# show ip prefix-list detail ANY-8to24-NET
ip prefix-list ANY-8to24-NET:
Description: test-list
count: 1, range entries: 1, sequences: 10 - 10, refcount: 3
seq 10 permit 0.0.0.0/0 ge 8 le 24 (hit count: 0, refcount: 1)
```

Príklad BGP Filtra s využitím Route Maps


```
R1(config) # ip as-path access-list 10 permit _65387$
R1(config) # ip prefix-list DEF-ONLY seq 10 permit 0.0.0.0/0
R1(config) #
R1(config) # route-map FILTER permit 10
R1(config-route-map) # match ip address prefix-list DEF-ONLY
R1(config-route-map) # match as-path 10
R1(config-route-map) # set weight 150
R1(config-route-map) #
R1(config-route-map) # route-map FILTER permit 20
R1(config-route-map) # match ip address prefix-list DEF-ONLY
R1(config-route-map) # set weight 100
R1(config-route-map) # set weight 100
R1(config-route-map) # set weight 100
```

Príklad BGP Filtra s využitím Route Maps


```
R1(config) # router bgp 65213
R1(config-router) # neighbor 10.2.3.4 remote-as 65527
R1(config-router) # neighbor 10.2.3.4 route-map FILTER in
R1(config-router) # neighbor 10.4.5.6 remote-as 65387
R1(config-router) # neighbor 10.4.5.6 route-map FILTER in
R1(config-router) #
```

