东南大学考试卷(A 卷)

课	程	名	称	线性代数 B	考试学期	10-11-3	得分

适用专业 13、42系 考试形式 考试时间长度 120分钟 开卷

可带教材:《线性代数》,陈建龙、周建华、韩瑞珠、周后型编、科学出版社

题号	_	=	三	四	五	六	七
得分							

- 一. (30%) 填空题 (E表示n 阶单位矩阵, O表示n 阶零矩阵):
- 1. 若对任意 3 维列向量 $\eta = (x, y, z)^T$,矩阵 A 满足 $A\eta = \begin{pmatrix} 3x 2y \\ x + 5z \end{pmatrix}$,则 $A = \underline{\qquad}$
- 2. 假设 $\alpha = (1, -1)$, $\beta = (1, 2)$, 则 $(\alpha^T \beta)^{2011} = ______$;
- 3. 若 $A = \begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix}$, 则 $A^* =$ _____;
- 4. 如果向量组 $\alpha = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\beta = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\gamma = \begin{pmatrix} 2 \\ 1 \\ k \end{pmatrix}$ 线性相关,则参数 $k = \underline{\qquad}$;
- 5. 假设n阶方阵A满足 $A^2-2A+E=O$,则 $A^{-1}=$ ___
- 6. 齐次线性方程组x+2y-z=0的一个基础解系是____

- 9. 若矩阵 $A = \begin{pmatrix} 2 & k \\ k & 1 \end{pmatrix}$ 为正定矩阵,则参数 k 的取值范围是_______;
- 10. 已知 2×2 矩阵 A, P 满足 $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$ 。 若 $P = (\alpha, \beta), Q = (-\beta, \alpha)$, 则 $Q^{-1}AQ =$

共4页

第 1 页

二.
$$(12\%)$$
已知 $P = \begin{pmatrix} -1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, $\Lambda = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $AP = P\Lambda$, 求 A^{2011} .

四.
$$(14\%)$$
设 $A = \begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$, 讨论方程组 $Ax = b$ 的解的情况。如果有无穷多个解、写出其通解。

五.
$$(14\%)$$
已知 $A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & x & 1 \\ 0 & 1 & 0 \end{pmatrix}$ 与 $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似,

- (1) 求参数 x, y 的值;
- (2) 求一正交矩阵 Q 使得 $Q^T A Q = B$.

六. (9%) 二次型 $f(x_1, x_2, x_3) = x_1^2 - 2x_1x_2 - x_2^2 + x_2x_3 + kx_3^2, g(z_1, z_2, z_3) = -z_1^2 + 2z_3^2$ 。

- (1) 求一可逆线性变换 x = Cy 将 f 化成标准型。
- (2) 当参数 k 满足什么条件时,存在可逆线性变换将 f 变成 g?

七. (9%)设A, B 为n 阶正定矩阵.

- 1) 若 AB 为对称矩阵,证明: AB = BA.
- 2) 若 AB = BA, 证明: AB 为正定矩阵.