Prof. Dr. Klaus Hulek Benjamin Wieneck

ÜBUNGSBLATT 3

Aufgabe 1. Man zeige, dass die von $\mathcal{O}_{\mathbb{P}^1}(2)$ induzierte Abbildung $\varphi = \varphi_{\mathcal{O}_{\mathbb{P}^1}(2)} : \mathbb{P}^1 \to \mathbb{P}^2$ mit eine abgeschlossene Einbettung mit Bild

$$Y := V(z_1^2 - z_0 z_2) \subset \mathbb{P}^2$$

ist, d.h. $\varphi: \mathbb{P}^1 \to Y$ ist ein Isomorphismus. Zeige weiter, dass die homogenen Koordiantenringe $S(\mathbb{P}^1)$ und S(Y) nicht isomorph sind.

Bemerkung: Ebenso induziert $\mathcal{O}_{\mathbb{P}^n}(d)$ für $n \in \mathbb{N}$ und $d \geq 1$ eine abgeschlossene Einbettung $\varphi_{\mathcal{O}_{\mathbb{P}^n}(d)} : \mathbb{P}^n \to \mathbb{P}^N$ mit $N = \binom{n+d}{n} - 1$. Dies darf für die folgenden Aufgaben verwendet werden.

Aufgabe 2. Sei $C := V(f) \subset \mathbb{P}^2$ eine Kurve vom Grad d, d.h. $f \in \mathbb{C}[x_0, x_1, x_2]$ is ein homegenes Polynom vom Grad d. Man zeige, dass $\mathbb{P}^2 \setminus C$ eine affine Varietät ist.

Aufgabe 3. Man zeige, dass das Bild C, rationale Normkurve genannt, der von $\mathcal{O}_{\mathbb{P}^1}(3)$ induzierten Abbildung $\varphi = \varphi_{\mathcal{O}_{\mathbb{P}^1}(3)} : \mathbb{P}^1 \to \mathbb{P}^3, [x_0, x_1] \mapsto [x_0^3, x_0^2 x_1, x_0 x_1^2, x_1^3]$ dem Schnitt der drei Quadriken $Q_i = V(F_i), i = 1, 2, 3$, im \mathbb{P}^3 entspricht, welche durch die Polynome

$$F_1 = z_0 z_2 - z_1^2$$
, $F_2 = z_0 z_3 - z_1 z_2$ und $F_3 = z_1 z_3 - z_2^2$

gegeben sind.