

Shannon Barretto

Evidence Detection Task

Yash Mahajan

The Task: Given a claim and a piece of evidence, determine if the evidence is relevant to the claim.

Deep Learning with Transformers (Approach C)

Model Description

This is a model based on the **Bidirectional Encoder Representations from Transformers (BERT)**

It processes the input sequence formatted as: [CLS] Claim tokens [SEP] Evidence Tokens [SEP]

[CLS] Token: Added at the beginning, its final hidden state serves as an aggregate representation of the entire input.

[SEP] Token: Separates the claim and evidence, helping the model understand their boundary.

To improve the performance, we added **dropout regularisation** and a **fully connected layer** on top of the existing BERT architecture. This helped in reducing overfitting to the training data.

Results

The model achieved an accuracy of 87.65% which is similar to the baseline BERT model (87%)

We also plot the receiver operating characteristic (ROC). The final model achieved an AUC score of 0.85, suggesting that it can distinguish between relevant and irrelevant evidence

The model correctly predicts a large proportion of **true** negatives (3924) and **true positives** (1271). There are **362 false positives** and **369 false negatives**, which are relatively balanced. This suggests the model is not heavily biased toward predicting one class over the other.

Conclusion and Future Work

Our BERT-based evidence classifier achieved strong performance with an accuracy of 87.6%, demonstrating its effectiveness in distinguishing between relevant and irrelevant evidence.

There is a class imbalance in the training data with most examples (72%) labelled 0 (not relevant). Expanding the dataset with more diverse claim-evidence pairs may further improve performance and help address any residual issues related to class imbalance.

Training Data: 21K claim-evidence pairs
Validation Data: 6K pairs
Format: (Claim, Evidence, Label)

Deep Learning W/O Transformers (Approach B)

Neural Network Model

This model uses a **Bidirectional Long shortterm memory (LSTM) with Attention** mechanism.

We initialized our model with pre-trained **GloVe 300d** embeddings. While training, we used just **1 layer** of LSTM, as it was over fitting and our training loss was decreasing after the first epoch itself when more layers were added to the model.

We used special token in our model; <PAD>
Padding and <UNK> Unknown to handle text processing challenges:

- <PAD> token (index 0): used to make variable-length texts uniform by padding shorter sequences to match the batch's longest input.
- **VOCABULARY WORDS NOT SEEN DESCRIPTION**VOCABULARY WORDS NOT SEEN DURING TRAINING OF BELOW OUR frequency threshold (3).

Conclusion and future work

Even though we experimented with different parameters, the accuracy gets capped at ~81-82%, likely due to limited training data. Despite the class imbalance(72% non-relevant vs 28% relevant), the model correctly identifies 3803 true negatives and 1042 true positives.

Model performance could be improved by using different embeddings, which would be interesting to explore in future work.

Results

The model achieved an accuracy of 81.76% on the dev set provided to us, which is 1% more compared to the baseline LSTM model (80.58%).

It even achieved an AUC of 0.76 on the dev set, indicating good discriminative ability between relevant and non-relevant claim-evidence pairs.

