Hong Kong Mathematics Olympiad (2005 – 2006) Final Event 1 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 若 a 為實數且滿足方程 $\log_2(x+3) - \log_2(x+1) = 1$, 求 a 的值。 If a is a real number satisfying $\log_2(x+3) - \log_2(x+1) = 1$, find the value of a.

a =

2. 如圖一,O 是半徑 1 cm 的圓的圓心。若弧 AB 的長度是 a cm 及著色部份扇形 OAB 的面積是 b cm², 求 b 的值。(取 $\pi=3$)

In Figure 1, O is the centre of the circle with radius 1 cm. If the length of the arc AB is equal to a cm and the area of the shaded sector OAB is equal to b cm², find the value of b. (Take $\pi = 3$)

3. 一個正 C 邊形的一隻內角是 $288b^\circ$,求 C 的值。

An interior angle of a regular C-sided polygon is $288b^{\circ}$, find the value of C.

4. 已知 10 是方程 $kx^2 + 2x + 5 = 0$ 的一個根,其中 k 為常數。 若 D 是另一個根,求 D 的值。

Given that C is a root of the equation $kx^2 + 2x + 5 = 0$, where k is a constant. If D is another root, find the value of D.

D=		
----	--	--

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time Min. Sec.

C:\Users\85290\Dropbox\Data\My Web\Competitions\HKMO\HKMOFinal\HKMO2006final.docx

Final Events (Individual)

Hong Kong Mathematics Olympiad (2005 – 2006) Final Event 2 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 已知 a:b:c=6:3:1。若 $R=\frac{3b^2}{2a^2+bc}$,求 R 的值。

R =

Given that a:b:c=6:3:1. If $R=\frac{3b^2}{2a^2+bc}$, find the value of R.

2. 已知 $\frac{|k+R|}{|R|} = 0$,若 $S = \frac{|k+2R|}{|2k+R|}$,求 S 的值。

S =

Given that $\frac{|k+R|}{|R|} = 0$. If $S = \frac{|k+2R|}{|2k+R|}$, find the value of S.

3. 已知 $T = \sin 50^{\circ} \times (S + \sqrt{3} \times \tan 10^{\circ})$,求 T 的值。 Given that $T = \sin 50^{\circ} \times (S + \sqrt{3} \times \tan 10^{\circ})$, find the value of T.

T =

4. 已知 x_0 和 y_0 是實數且滿足方程組 $\begin{cases} y = \frac{T}{x} \\ y = |x| + T \end{cases}$

W =

若 $W=x_0+y_0$, 求 W 的值。

Given that x_0 and y_0 are real numbers satisfying the system of equations $\begin{cases} y = \frac{T}{x} \\ y = |x| + T \end{cases}$.

If $W = x_0 + y_0$, find the value of W.

FOR OFFICIAL USE

Score for accuracy

Mult. factor for speed

=

Team No.

+ Bonus score

Time

Can

Total score

Min.

Sec.

Hong Kong Mathematics Olympiad (2005 – 2006) Final Event 3 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 已知 $\frac{2x-3}{x^2-x} = \frac{A}{x-1} + \frac{B}{x}$, 其中 A 和 B 是常數。若 $S = A^2 + B^2$,求 S 的值。

S =

Given that $\frac{2x-3}{x^2-x} = \frac{A}{x-1} + \frac{B}{x}$, where A and B are constants.

If $S = A^2 + B^2$, find the value of S.

2. 如圖一,ABCD 是圓內長方形,AB = (S-2) cm 及 AD = (S-4) cm。若圓形的圓周是 R cm,求 R 的值。(取 $\pi = 3$)

In Figure 1, ABCD is an inscribed rectangle, AB = (S-2) cm and AD = (S-4) cm. If the circumference of the circle is R cm, find the value of R. (Take $\pi = 3$)

R =

圖一 Figure 1

3. 已知整數 x 和 y 滿足 $\frac{R}{2}xy = 21x + 20y - 13$ 。若 T = xy,求 T 的值。

T =

Given that x and y are integers satisfying the equation $\frac{R}{2}xy = 21x + 20y - 13$.

If T = xy, find the value of T.

4. 設 a 是方程 $x^2 - 2x - T = 0$ 的一個正根。若 $P = 3 + \frac{T}{2 + \frac{T}{2 + \frac{T}{a}}}$,求 P 的值。 $P = \frac{T}{2 + \frac{T}{2 + \frac{T}{a}}}$

Let a be the positive root of the equation $x^2 - 2x - T = 0$.

If $P=3+\frac{T}{2+\frac{T}{2+\frac{T}{2+\frac{T}{2+\cdots}}}}$, find the value of P.

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (2005 – 2006) Final Event 4 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form.

除非特別聲明,答案須用數字表達,並化至最簡。

設 $\frac{k}{4} = \left(1 + \frac{1}{2} + \frac{1}{3}\right) \times \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right) \times \left(\frac{1}{2} + \frac{1}{3}\right)$, 求 k 的值。 1. Let $\frac{k}{4} = \left(1 + \frac{1}{2} + \frac{1}{3}\right) \times \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right) \times \left(\frac{1}{2} + \frac{1}{3}\right)$, find the value of k.

設x和y是實數且滿足方程 $y^2 + 4y + 4 + \sqrt{x + y + k} = 0$ 。若r = |xy|,求r的值。 2. Let x and y be real numbers satisfying the equation $y^2 + 4y + 4 + \sqrt{x + y + k} = 0$. If r = |xy|, find the value of r.

如圖一,八個正數排成一列,從第三個數開始,每個數都等於前面兩個數的乘積。 3. 已知第五個是 $\frac{1}{r}$, 而第八個數是 $\frac{1}{r^4}$ 。若第一個是 s, 求 s 的值。

In Figure 1, there are eight positive numbers in series. Starting from the 3rd number, each number is the product of the previous two numbers. Given that the 5th number is $\frac{1}{4}$ and the 8th number is $\frac{1}{4}$.

If the first number is s, find the value of s.

- S

- - 圖一 Figure 1

設 [x] 表示不大於 x 的最大整數,例如 [2.5]=2。 4. 若 $w = 1 + [10 \times s^2] + [10 \times s^4] + [10 \times s^6] + \dots + [10 \times s^{2n}] + \dots$,求 w 的值。 Let [x] be the largest integer not greater than x. For example, [2.5] = 2. Let $w = 1 + [10 \times s^2] + [10 \times s^4] + [10 \times s^6] + \dots + [10 \times s^{2n}] + \dots$, find the value of w.

FOR OFFICIAL USE

Score for Mult. factor for Team No. = accuracy speed **Bonus** Time score Total score

Min. Sec.

Hong Kong Mathematics Olympiad (2005 – 2006) Final Event 1 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 已知 k 為實數。若 $x^2 + 2kx - 3k^2$ 能被 x - 1 整除,求 k 最大可能的值。 Given that k is a real number. If $x^2 + 2kx - 3k^2$ can be divisible by x - 1, find the greatest value of k.

$$k =$$

2. 已知 $x = x_0$ 及 $y = y_0$ 满足方程组 $\begin{cases} \frac{x}{3} + \frac{y}{5} = 1 \\ \frac{x}{5} + \frac{y}{3} = 1 \end{cases}$ 。若 $B = \frac{1}{x_0} + \frac{1}{y_0}$,求 B 的值。

$$B =$$

Given that $x = x_0$ and $y = y_0$ satisfy the system of equations $\begin{cases} \frac{x}{3} + \frac{y}{5} = 1\\ \frac{x}{5} + \frac{y}{3} = 1 \end{cases}$.

If $B = \frac{1}{x_0} + \frac{1}{y_0}$, find the value of B.

3. 已知 $x = 2 + \sqrt{3}$ 是方程 $x^2 - (\tan \alpha + \cot \alpha)x + 1 = 0$ 的一個根。 若 $C = \sin \alpha \times \cos \alpha$,求 C 的值。

$$C =$$

- Given that $x = 2 + \sqrt{3}$ is a root of the equation $x^2 (\tan \alpha + \cot \alpha)x + 1 = 0$. If $C = \sin \alpha \times \cos \alpha$, find the value of C.
- 4. 設 a 為整數。若不等式 |x+1| < a-1.5 沒有整數解,求 a 最大可能的值。 Let a be an integer. If the inequality |x+1| < a-1.5 has no integral solution, find the greatest value of a.

a	=		

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time Min. Sec.

Hong Kong Mathematics Olympiad (2005 – 2006) Final Event 2 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

圖一 Figure 1

2. 設
$$f(x) = px^7 + qx^3 + rx - 5$$
,其中 $p \cdot q$ 及 r 是實數。 若 $f(-6) = 3$ 及 $z = f(6)$,求 z 的值。 Let $f(x) = px^7 + qx^3 + rx - 5$, where p, q and r are real numbers. If $f(-6) = 3$ and $z = f(6)$, find the value of z .

3. 若
$$n \neq 0$$
 及 $s = \left(\frac{20}{2^{2n+4} + 2^{2n+2}}\right)^{\frac{1}{n}}$, 求 s 的值。

If $n \neq 0$ and $s = \left(\frac{20}{2^{2n+4} + 2^{2n+2}}\right)^{\frac{1}{n}}$, find the value of s .

$$s =$$

4. 已知 x 和 y 是正整數及 x+y+xy=54。若 t=x+y,求 t 的值。 Given that x and y are positive integers and x+y+xy=54. If t=x+y, find the value of t.

$$t =$$

FOR OFFICIAL USE

Score for accuracy

× Mult. factor for speed

=

Team No.

+ Bonus score

Time

Total score

Min.

Sec.

Hong Kong Mathematics Olympiad (2005 – 2006) Final Event 3 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 已知 $r = 2006 \times \frac{\sqrt{8} - \sqrt{2}}{\sqrt{2}}$, 求 r 的值。

Given that $r = 2006 \times \frac{\sqrt{8} - \sqrt{2}}{\sqrt{2}}$, find the value of r.

2. 已知 $6^{x+y} = 36$ 及 $6^{x+5y} = 216$,求 x 的值。 Given that $6^{x+y} = 36$ and $6^{x+5y} = 216$, find the value of x. x =

3. 已知 $\tan x + \tan y + 1 = \cot x + \cot y = 6 \circ 若 z = \tan(x + y)$,求 z 的值。 Given that $\tan x + \tan y + 1 = \cot x + \cot y = 6$. If $z = \tan(x + y)$, find the value of z.

z =

4. 如圖一,ABCD 是一長方形,F 是 CD 的中點及 BE: A EC=1:3。若長方形 ABCD 的面積是 $12 \,\mathrm{cm}^2$ 及陰影部份 BEFD 的面積是 $R \,\mathrm{cm}^2$,求 R 的值。 In Figure 1, ABCD is a rectangle, F is the midpoint of CD and BE:EC=1:3. If the area of the rectangle ABCD is $12 \,\mathrm{cm}^2$ and the area of BEFD is $R \,\mathrm{cm}^2$, find the value of R.

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time Min. Sec.

Hong Kong Mathematics Olympiad (2005 – 2006) Final Event 4 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 如圖一,平行四邊形 ABCD 中, $BE \perp CD$, $BF \perp AD$, CE = 2 cm , DF = 1 cm 及 $\angle EBF = 60^{\circ}$ 。若平行四邊形 ABCD 的面積是 R cm² ,求 R 的值。 In Figure 1, ABCD is a parallelogram, $BE \perp CD$, $BF \perp AD$, CE = 2 cm, DF = 1 cm and $\angle EBF = 60^{\circ}$. If the area of the parallelogram ABCD is R cm² , find the value of R.

圖一 Figure 1

- 2. 已知 a 和 b 是正數且 a+b=2。若 $S=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2$,求 S 的最小值。 S= Given that a and b are positive numbers and a+b=2. If $S=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2$, find the minimum value S.
- 3. 設 $2^x = 7^y = 196$ 。若 $T = \frac{1}{x} + \frac{1}{y}$,求 T 的值。
 Let $2^x = 7^y = 196$. If $T = \frac{1}{x} + \frac{1}{y}$, find the value of T.
- 4. 若 $W = 2006^2 2005^2 + 2004^2 2003^2 + \dots + 4^2 3^2 + 2^2 1^2$,求 W 的值。
 If $W = 2006^2 2005^2 + 2004^2 2003^2 + \dots + 4^2 3^2 + 2^2 1^2$, find the value of W.

###