Trigonometry and Vector Decomposition

1. Two position vectors, U and V, are superimposed on a grid. Each square is one meter long and one meter wide. Write each vector as a coordinate pair $A = (A_x, A_y)$, using +/- signs for direction.

$$\vec{U}$$
 =

$$\vec{V}$$
 =

- 2. The vector E in the figure has a magnitude of 10 m, and the angle $\theta = 60^{\circ}$.
 - a. Draw a triangle using E as the hypotenuse and θ as one of the angles. Then, sketch the vector components E_x and E_y .

b. What is the magnitude (size or amount) of E_x ? **First** write it in terms of E and a function of the angle θ , **then** calculate the value. Include units at every step of the calculation.

c. What is the magnitude (size or amount) of E_y ? **First** write it in terms of E and a function of the angle θ , **then** calculate the value. Include units at every step of the calculation.

d. Draw a triangle using E as the hypotenuse and ϕ as one of the angles. Then, sketch the vector components E_x and E_y .

e. What is the magnitude (size or amount) of E_x ? **First** write it in terms of E and a function of the angle ϕ , **then** calculate the value. Include units at every step of the calculation.

f. What is the magnitude (size or amount) of E_y ? **First** write it in terms of E and a function of the angle ϕ , **then** calculate the value. Include units at every step of the calculation.

- g. How does the value of E_x in part b compare with the value of E_x in part e?
- h. How does the value of E_y in part c compare with the value of E_y in part f?