Project Development Phase Model Performance Test

Date	19-11-2022
Team ID	PNT2022TMID39782
Project Name	Fertilizers Recommendation System for Disease Prediction
Maximum Marks	8mark

Model Performance Testing:

S.No.	Parameter Values		Screenshot		
1.	Model Summary	Total params: 5,082,202	model.summary() Model: "sequential_1"		
		3,002,202	Layer (type)	Output Shape	Param #
		Tainable params:	conv2d_6 (Conv2D)	(None, 126, 126, 32)	896
		5,082,202	max_pooling2d_2 (MaxPooling2D)	g (None, 63, 63, 32)	0
		Non-trainable	flatten_2 (Flatten)	(None, 127008)	0
			dense_6 (Dense)	(None, 40)	5080360
		params: 0	dense_7 (Dense)	(None, 20)	820
			dense_8 (Dense)	(None, 6)	126
			Total params: 5,082,202 Trainable params: 5,082,202 Non-trainable params: 0		

2.	Accuracy	Training Accuracy – 96.55 Validation Accuracy – 97.45	Sport 1/19 1-965 42569/1569 18651 1.1895 - accoracy: 8,7820 - val_loss: 0.1357 - val_accoracy: 0.888 1872
			225/225 [

Model Summary

model.summary()

Model: "sequential_1"

Output Shape	Param #
(None, 126, 126, 32)	896
(None, 63, 63, 32)	0
(None, 127008)	0
(None, 40)	5080360
(None, 20)	820
(None, 6)	126
	(None, 126, 126, 32) (None, 63, 63, 32) (None, 127008) (None, 40) (None, 20)

Total params: 5,082,202

Trainable params: 5,082,202

Non-trainable params: 0

Accuracy

0.9745

```
model.fit\_generator(x\_train,steps\_per\_epoch=len(x\_train),validation\_data=x\_test,validation\_steps=len(x\_test),epochs=10)
 \hbox{C:\Users\Sree Ram\AppData\Local\Temp\ipykernel\_13228\1582812018.py:1: UserWarning: `Model.fit\_generator` is deprecated and will a superior of the property of the propert
be removed in a future version. Please use `Model.fit`, which supports generators
    \verb|model.fit_generator(x_train, steps_per_epoch=len(x_train), \verb|validation_data=x_test, \verb|validation_steps=len(x_test), epochs=10|| \\
225/225 [==========] - 96s 425ms/step - loss: 1.1095 - accuracy: 0.7829 - val_loss: 0.3157 - val_accuracy:
0.8861
Epoch 2/10
225/225 [==
                                   =========] - 88s 393ms/step - loss: 0.2825 - accuracy: 0.9042 - val_loss: 0.3015 - val_accuracy:
0.9075
Epoch 3/10
225/225 [===========] - 85s 375ms/step - loss: 0.2032 - accuracy: 0.9303 - val_loss: 0.2203 - val_accuracy:
0.9288
Epoch 4/10
0.9164
Epoch 5/10
225/225 [===========] - 84s 372ms/step - loss: 0.1719 - accuracy: 0.9389 - val_loss: 0.1330 - val_accuracy:
0.9632
Epoch 6/10
0.9573
Epoch 7/10
225/225 [============] - 87s 388ms/step - loss: 0.1235 - accuracy: 0.9591 - val_loss: 0.1638 - val_accuracy:
0.9478
Epoch 8/10
0.9561
Epoch 9/10
225/225 [==
                             :============================== ] - 83s 367ms/step - loss: 0.0967 - accuracy: 0.9655 - val_loss: 0.1412 - val_accuracy:
Epoch 10/10
225/225 [==========] - 83s 369ms/step - loss: 0.0954 - accuracy: 0.9655 - val_loss: 0.0905 - val_accuracy:
```