Notes from Sankar Meeting

Last Modified: 08/17/2021 09:36 AM

This weeks TODO:

- Fit sin curve to monthly intercepts: $m=\beta_0+\beta_1\times sin(\omega t)$
 - Each of the parameters above are fit for each reservoir

Reservoir	eta_0	β_1	ω	R^2
Wilbur	0.0011	0.0002	0.5003	0.0052
Nikajack	0.0023	-0.0042	0.3508	0.2731
Wilson	0.0019	0.0215	0.6620	0.2777
MeltonH	0.0004	0.0268	0.8642	0.2899
FtPatrick	0.0047	-0.0094	0.3763	0.3584
Apalachia	0.0076	-0.0155	0.5369	0.5402
Kentucky	0.1036	-0.1680	0.3074	0.7817
Douglas	0.1096	-0.2436	0.4129	0.7997
Hiwassee	0.0857	-0.2175	0.4460	0.8129
Fontana	0.0547	-0.1583	0.5058	0.8138
Watauga	0.0329	-0.1195	0.5703	0.8213
Ocoee1	0.2640	-0.3900	0.2753	0.8255
Chatuge	0.0602	-0.1806	0.4628	0.8345
Guntersville	0.0767	-0.1189	0.2954	0.8493
Norris	0.0422	-0.1361	0.5054	0.8535
WattsBar	0.2402	-0.3646	0.2675	0.8646
Wheeler	0.1567	-0.2488	0.2991	0.8649
Cherokee	0.0551	-0.1881	0.4966	0.8752
FtLoudoun	0.1956	-0.2985	0.2628	0.8767
Pickwick	0.0942	-0.1484	0.3028	0.8787
Chikamauga	0.2051	-0.3164	0.2817	0.8832
SHolston	0.0524	-0.1773	0.5052	0.8890
Boone	0.0475	-0.1750	0.4454	0.8981
TimsFord	0.1180	-0.2249	0.3447	0.9079
Nottely	0.0472	-0.1718	0.5131	0.9244
BlueRidge	0.0299	-0.1319	0.5447	0.9279
Ocoee3	0.0290	-0.0494	0.2966	0.9686

Figure 1: Wave Intercept Plots

- Create a road map for synthesizing what we have done:
 - 2 part series paper:
 - * 1 Synthesis
 - * 2 Prediction
 - Title: A Data-driven approach to quantify TVA's Reservoir Operation: Part I Synthesis Part II: Validation
- Pull together some slides that show this projects process and get to Sankar
 - Sent to sankar Friday morning at 8:24
- Meet Sankar on Friday at 10 am
 - Decided to move meeting to Monday at 9 am so he can go over the slides over the weekend
 - Moved meeting to 10:30 am on Tuesday

Sankar Comments on Slide Deck

- Watts Bar should be upstream reservoir because its residence time is so high
 - This was actually just slip up on my part. Watts Bar and Watauga were just swapped
 - * So were Wilbur and Wilson actually
- Calculate correlation between observed and predicted release values. This will let us know if we biased or if we are not capturing patterns.
 - Intercepts are there to capture temporal variability in reservoir operations that can not be captured by a simple day ahead parameterization.
 - Examining the plots on slide 20, we can see there are several reservoir that exhibit no monthly bias (as they have near zero intercepts throughout the year)
 - In this context (where we fit a model for each reservoir), no reservoir will have bias over the entire modeled period (BLUE)
 - * This indicates that poor performance must be dictated by poor correlation.
 - I will check this to be thorough and we can discuss it.
- Estimate sin wave parameters as a function of residence time.
 - I regressed all wave parameters against RT, MStL, and MRel with an intercept (separately). None of the independent variables had any predictive power for any parameter.

- To assess all their possible relationships at the same time, I checked the cross-correlation of all of those variables
- None have a significant correlation with the wave parameters (>0.4)
- The wave offset and amplitude modifier are highly negatively correlated
- As are the offset and the frequency modifier $\boldsymbol{\omega}$
- $\,\omega$ and the amplitude term are positively correlated
- Score is positively correlated with offset, and negative with other two terms
 - * As the changes in operation increase in frequency, the sin wave becomes worse
 - $^{\star}~$ Same can be said for larger swings in amplitude
 - · i.e. if the changes in operation are larger the sine wave is worse.
 - * Both of these effects are not that strong though and there are definitely samples that do not fit this trend
 - · Ocoee3 for example

	β_0	eta_1	ω	R^2	$ar{S}/ar{R}$	$ar{S}/S_{\sf max}$	\bar{R}
eta_0	1.00	-0.92	-0.67	0.49	-0.15	-0.01	0.25
eta_1	-0.92	1.00	0.59	-0.69	-0.11	0.09	-0.04
ω	-0.67	0.59	1.00	-0.43	0.27	0.36	-0.37
R^2	0.49	-0.69	-0.43	1.00	0.37	-0.27	-0.06
$ar{S}/ar{R}$	-0.15	-0.11	0.27	0.37	1.00	0.04	-0.47
$ar{S}/S_{\sf max}$	-0.01	0.09	0.36	-0.27	0.04	1.00	-0.12
$ar{R}$	0.25	-0.04	-0.37	-0.06	-0.47	-0.12	1.00

- Interpret each tree on page 12
 - I also need to rerun this model and get an updated tree and parameters.
 - I reran, and provided interpretation in the slides