Sprawozdanie Obliczenia naukowe - lista 4

Kamil Król

244949

Zadanie 1

Celem tego zadania było napisanie funkcji w języku Julia, która oblicza ilorazy różnicowe. Dodatkowym wymaganiem było nieużywanie tablicy dwuwymiarowej.

Dane:

x – wektor długości n+1 zawierający węzły x_0, \ldots, x_n ,

f – wektor długości n+1 zawierający wartości interpolowanej funkcji w poprzednio podanych węzłach tj. $f(x_0), \ldots, f(x_n)$.

Oczekiwany wynik:

fx — wektor długości n + 1 zawierający obliczone ilorazy różnicowe

Opis:

Najpierw przyjrzyjmy się temu w jaki sposób można obliczyć ilorazy różnicowe. Poniżej znajduje się wzór rekurencyjny pozwalający na obliczenie ilorazu różnicowego k-tego rzędu.

dla
$$k=0$$

$$f[x_i] = f(x_i),$$
 dla $k=1$
$$f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i},$$
 dla $k>1$
$$f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_k - x_i}.$$

Ważnym faktem jest to, że wartość ilorazu różnicowego nie zależy od kolejności węzłów (x_i) . Kolejny użyteczny fakt to to, że znajomość węzłów x_i i wartości funkcji $f(x_i)$ (a więc też ilorazów różnicowych zerowego rzędu tj. $f[x_i] = f(x_i)$) pozwala, przy użyciu powyższego wzoru rekurencyjnego, na stworzenie tzw. tablicy ilorazów różnicowych dla wyższych rzędów. Przyjmując, że $d_{ik} = f[x_i, x_{i+1}, \dots, x_{i+k}]$ można wyrazić ją w następujący sposób:

Pierwsza intuicja co do zaprogramowania funkcji obliczającej ilorazy różnicowe to użycie macierzy – tablicy dwuwymiarowej. Zastanówmy się najpierw czy można to zrobić bardziej efektywnie i jakich danych z powyższej tablicy ilorazów różnicowych potrzebujemy. Interesujące dla nas są tylko dane w pierwszym wierszu tej tablicy. Jeśli dodatkowo zauważymy, że każda kolumna zależy tylko i wyłącznie od poprzedniej

kolumny możemy zaproponować rozwiązanie używające tablicy jednowymiarowej. W pierwszym kroku powinniśmy zapisać wartości pierwszej kolumny do jednowymiarowej tablicy. Te dane już mamy, ponieważ są to wartości funkcji w danych węzłach. (Przypomnijmy, że $f[x_i] = f(x_i)$). Następnie w każdym kolejnym kroku powinniśmy wpisywać odpowiednie wartości z kolejnych kolumn na ostatnie miejsca w tablicy. W rezultacie w naszej tablicy otrzymamy tylko wartości ilorazów z pierwszego wiersza.

Pseudokod algorytmu

Algorytm 1: Obliczanie ilorazów różnicowych

```
 \begin{aligned} & \textbf{function ilorazyRoznicowe}(x,f) \\ & | & \textbf{for } i \leftarrow 1 \textbf{ to length}(f) \textbf{ do} \\ & | & fx[i] \leftarrow f[i] \\ & \textbf{for } i \leftarrow 1 \textbf{ to length}(f) \textbf{ do} \\ & | & \textbf{for } j \leftarrow \textbf{length}(f) \textbf{ downto } i \textbf{ do} \\ & | & fx[j] \leftarrow \frac{fx[j] - fx[j-1]}{x[j] - x[j-i]} \\ & \textbf{return } fx \end{aligned}
```

Zadanie 2

Celem tego zadania było napisanie funkcji obliczającej wartość wielomianu interpolacyjnego stopnia n w postaci Newtona $N_n(x)$ w punkcie x = t za pomocą uogólnionego algorytmu Hornera, która działa w czasie liniowym (O(n)).

Dane:

x – wektor długości n+1 zawierający węzły x_0, \ldots, x_n ,

fx – wektor długości n+1 zawierający ilorazy różnicowe,

t – punkt, w którym należy obliczyć wartość wielomianu.

Oczekiwany wynik:

 ${\tt nt}$ – wartość wielomianu w punkcie t

Opis:

Wzór na wielomian interpolacyjny Newtona N_n pokazuje w jaki sposób zależy on od funkcji f. Wzór ten można przedstawić używając ilorazów różnicowych:

$$N_n(x) = \sum_{i=0}^n f[x_0, x_1, \dots, x_i] \prod_{j=0}^{i-1} (x - x_j).$$

Z numerycznego punktu widzenia takie przedstawienie wielomianu interpolacyjnego jest bardzo atrakcyjne. Zauważmy, że w sytuacji kiedy chcielibyśmy dodać nowe węzły (x_i, y_i) możemy to zrobić korzystając ze wcześniej policzonych $d_k = f[x_0, x_1, \ldots, x_k]$. Kluczowa jest tu własność ilorazów różnicowych mówiąca, że wartość ilorazu nie zależy od kolejności węzłów. Kolejną zaletą takiego zapisu jest to, że wartość tego wielomianu możemy łatwo obliczyć korzystając z uogólnionego algorytmu Hornera. Sposób w jaki można to zrobić przedstawiono poniżej.

$$w_n(x) := f[x_0, x_1, \dots, x_n]$$

$$w_k(x) := w_{k+1}(x - x_k) + f[x_0, x_1, \dots, x_k] \quad (k = n - 1, n - 2, \dots, 0)$$

$$N_n(x) = w_0(x)$$

Algorytm 2: Obliczanie wartości wielomianu interpolacyjnego w punkcie t.

```
 \begin{array}{c|c} \mathbf{function} \ \mathbf{warNewton}(x,\ fx,\ t) \\ n \leftarrow \mathbf{length}(fx) \\ nt \leftarrow fx[n] \\ \mathbf{for} \ i \leftarrow n-1 \ \mathbf{downto} \ 1 \ \mathbf{do} \\ \mid \ nt \leftarrow fx[i] + (t-x[i]) \times nt \\ \mathbf{return} \ nt \end{array}
```

Zadanie 3

Celem tego zadania było napisanie funkcji obliczającej współczynniki a_0, \ldots, a_n postaci naturalnej wielomianu interpolacyjnego dla zadanych współczynników $d_0 = f[x_0], d_1 = f[x_0, x_1], \ldots d_n = f[x_0, \ldots, x_n]$ tego wielomianu w postaci Newtona oraz węzłów x_0, \ldots, x_n . Ponadto funkcja miała działać w czasie $O(n^2)$.

Dane:

x – wektor długości n+1 zawierający węzły x_0, \ldots, x_n ,

fx – wektor długości n+1 zawierający ilorazy różnicowe.

Oczekiwany wynik:

a – wektor długości n+1 zawierający obliczone współczynniki postaci naturalnej.

Opis:

Przypomnijmy, że wartości d_0, d_1, \ldots, d_n są współczynnikami wielomianu interpolacyjnego w postaci Newtona. Punktem wyjściowym to wyprowadzenia algorytmu będzie uogólniony algorytm Hornera. Najpierw jednak zapiszmy wielomian interpolacyjny w postaci Newtona:

$$p(x) = d_0 + (x - x_0)(d_1 + (x - x_1)(d_2 + \dots + (x - x_{n-2})(d_{n-1} + (x - x_{n-1}) \underbrace{d_n}_{W_n})) \dots)$$

Idea jest bardzo podobna do wyprowadzania uogólnionego algorytmu Hornera w poprzednim zadaniu. Teraz przyjrzyjmy się zaznaczonym wielomianom W_k . Zauważmy też, że ich stopnie rosną (patrząc od góry do dołu).

$$W_n(x) = d_n$$

$$W_{n-1}(x) = d_{n-1} + (x - x_{n-1})W_n$$

$$\dots = \dots$$

$$W_k(x) = d_k + (x - x_k)W_{k+1} \text{ dla } 0 \le k < n$$

$$\dots = \dots$$

$$W_0(x) = p_0(x)$$

Dodatkowo mamy też, że $deg(W_k) = deg(W_{k+1}) + 1$. Obie te obserwacje są kluczowe dla wyprowadzenia algorytmu. Przypomnijmy, że wartości d_0, d_1, \ldots, d_n oraz x_0, \ldots, x_n są danymi, a więc są znane. Zastanówmy się jak obliczyć współczynniki wielomianu W_{n-1} w postaci naturalnej. Mamy $deg(W_{n-1}) =$

 $deg(W_n) + 1 = 0 + 1 = 1$, a zatem W_{n-1} możemy ogólnie zapisać jako $W_{n-1}(x) = a_0 x^0 + a_1 x^1$. Z drugiej strony patrząc na tabelę wyżej możemy go zapisać jako

$$W_{n-1}(x) = d_{n-1} + (x - x_{n-1})W_n = d_{n-1} + (x - x_{n-1})d_n = d_{n-1} + xd_n - x_{n-1}d_n = (d_{n-1} - d_n x_{n-1})x^0 + (d_n)x^1$$

Otrzymaliśmy współczynniki naturalne wielomianu W_{n-1} . Konkretniej mamy, że $a_0 = d_{n-1} - d_n x_{n-1}$ i $a_1 = d_n$. Zróbmy to samo dla W_{n-2} .

$$W_{n-2}(x) = d_{n-2} + (x - x_{n-2})W_{n-1} = d_{n-2} + (x - x_{n-2})(a_0x^0 + a_1x^1) = (d_{n-2} - x_{n-2}a_0)x^0 + (a_0 - a_1x_{n-2})x^1 + a_1x^2$$

Obliczyliśmy współczynniki W_{n-2} w postaci naturalnej. Jeśli ten wielomian zapiszemy jako $W_{n-2}=b_0x^0+b_1x^1+b_2x^2$ to współczynniki będą następujące: $b_0=d_{n-2}-x_{n-2}a_0$, $b_1=a_0-a_1x_{n-2}$, $b_2=a_1$. Widzimy zatem, że współczynniki przy najwyższej potędze wielomianów W_{n-1} i W_{n-2} są sobie równe. Ogólnie mamy, że współczynniki przy najwyższej potędze dla wielomianów W_k i W_{k-1} są sobie równe. Inna kluczowa obserwacja to fakt, że licząc współczynniki naturalne wielomianu W_{n-2} korzystaliśmy tylko z danych i ze współczynników naturalnych wielomianu W_{n-1} . Podobnie obliczając współczynniki wielomianu W_n korzystaliśmy tylko z danych i współczynników wielomianu W_n . Widzimy zatem, że współczynniki naturalne wielomianu W_k jesteśmy w stanie obliczyć znając współczynniki wielomianu W_{k+1} . Oznacza to, że możemy to zrobić używając jednej tablicy. Ponadto jesteśmy w stanie zrobić to w czasie O(n). W szczególności możemy obliczyć współczynniki wielomianu $W_0=p_0$ w postaci naturalnej licząc kolejno współczynniki wielomianów W_n , W_{n-1} , ..., W_1 , W_0 każdy w czasie O(n) co daje łączny czas $O(n^2)$. Teraz dla podsumowania pseudokod.

Pseudokod algorytmu

Algorytm 3: Obliczanie współczynników naturalnych wielomianu interpolacyjnego.

```
\begin{array}{c|c} \mathbf{function} \ \mathbf{naturalna}(x,\,fx) \\ & n \leftarrow \mathbf{length}(fx)\text{-}1 \\ & a[n] \leftarrow fx[n] \\ & \mathbf{for} \ i \leftarrow n-1 \ \mathbf{downto} \ 0 \ \mathbf{do} \\ & \quad | \ a[i] \leftarrow fx[i] - a[i+1] \times x[i] \\ & \quad | \ \mathbf{for} \ j \leftarrow i+1 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ & \quad | \ a[j] \leftarrow a[j] - a[j+1] * x[i] \\ & \quad \mathbf{return} \ a \end{array}
```

Zadanie 4

Celem zadania było napisanie funkcji interpolującej zadaną funkcję f(x) w przedziale [a,b] za pomocą wielomianu interpolacyjnego stopnia n w postaci Newtona, a także rysującej wykresy funkcji f oraz otrzymanego wielomianu interpolacyjnego. W interpolacji funkcji należało użyć węzłów równoodległych. **Dane:**

f - zadana funkcja,

a, b - przedział interpolacji,

n – stopień wielomianu interpolacyjnego.

Oczekiwany wynik:

– wykres funkcji f oraz wielomianu interpolacyjnego w przedziale [a, b].

Opis:

Na początku wyznaczyłem węzły interpolacyjne x_1, \ldots, x_{n+1} w taki sposób aby odległość między nimi

wynosiła $\frac{b-a}{n}$. Następnie obliczyłem wartości funkcji w tych punktach tj. $f(x_1), \ldots, f(x_{n+1})$. W celu obliczenia ilorazów różnicowych posłużyłem się funkcją z zadania pierwszego – ilorazyRoznicowe. Następnie użyłem funkcji z zadania drugiego tj. warNewton do obliczenia wartości wielomianu interpolacyjnego w potrzebnych punktach. W celu uzyskania dokładniejszego wykresu, punkty dla których rysowałem wykres musiałem zagęścić. Zrobiłem to mnożąc dane n razy obrany przeze mnie parametr gęstości równy 40. Dzięki temu uzyskałem dokładniejsze wykresy.

Zadanie 5

Celem zadania było przetestowanie funkcji rysujNnfx(f,a,b,n) (z zadania 4) na następujących przykładach:

(a)
$$f(x) = e^x$$
, $[a, b] = [0, 1]$, $n \in \{5, 10, 15\}$,

(b)
$$f(x) = x^2 \sin x$$
, $[a, b] = [-1, 1]$, $n \in \{5, 10, 15\}$.

Poniżej narysowane wykresy dla obu funkcji.

Wykres funkcji e^x i jej wielomianu interpolacyjnego dla danego stopnia n

Na przykładach tych funkcji widać, że wybranie równoodległych węzłów dało bardzo dokładne przybliżenia funkcji. Dla żadnego z wykresów nie zaobserwowano rozbieżności. Kolejna rzecz warta zaobserwowania to fakt, że dla wszystkich wartości n funkcje były bardzo dobrze przybliżone.

Wykres funkcji $x^2 \sin x$ i jej wielomianu interpolacyjnego dla danego stopnia n

Zadanie 6

Celem zadania było