Министерство образования и науки Российской Федерации САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО

Исследование производственных систем с маршрутизацией, зависящей от состояния

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА СПЕЦИАЛИСТА

студента 5 курса 511 группы специальности 010501 — прикладная математика и информатика факультета компьютерных наук и информационных технологий Салина Романа Владимировича

Научный руководитель доцент, к.ф.-м.н.

В. И. Долгов

Цели и задачи работы

- исследование производственных систем с маршрутизацией, зависящей от состояния;
- разработка алгоритма метода анализа производственных систем с маршрутизацией, зависящей от состояния;
- программная реализация алгоритма;
- проведение численных экспериментов с разработанной программой.

Гибкие производственные системы

- $\mathfrak{C} = \{C_i\}$ множество рабочих станций ГПС, $i \in I \equiv \{i \mid i = 1, ..., L\}; I_t \subseteq I;$
- $\mathfrak{T} = \{1, 2, ..., T\}$ множество типов деталей ГПС;
- κ_i число параллельно работающих приборов на станции C_i , i=1,...,L; $\kappa=(\kappa_i)$;
- C_0 система транспортировки; κ_0 число транспортеров;
- ullet N_t число деталей типа t в ГПС, $\sum_t N_t = N$; $\mathbf{N} = (N_t)$, t=1,...,T;
- s_{it} емкость рабочей станции C_i для деталей типа t, $i \in I_t$, t = 1, ..., T; $s = (s_{it})$;
- μ_{it} интенсивность обработки детали типа t на станции C_i , $i \in I_t$, t = 1, ..., T;
- $D_i = RANDOM$ дисциплина обработки на станциях $C_i, i = 1, ..., L.$
- $\overline{\eta}=(\overline{\eta}_0,\overline{\eta}_1,...,\overline{\eta}_L)$ состояние ГПС, где $\overline{\eta}_i=(n_{i1},...,n_{iT})$ состояние рабочей станции $C_i,\ i=1,...,L$.

Гибкие производственные системы

PSQ-маршрутизация

$$heta_{0t,it} = rac{r_{it}(n_{it})}{r_{0t}(n_{0t})},$$
 (1)

где $r_{it}(\cdot)$ и $r_{0t}(\cdot)$ — две линейные функции:

$$r_{it}(n_{it}) = s_{it} - n_{it}$$
 и $r_{0t}(n_{0t}) = \sum_{C_i \in I_t} s_{it} + n_{0t} - N_t$.

Стационарное решение

Теорема¹. Марковский процесс $\overline{\eta}(\tau)$, определенный в пространстве состояний S и управляемый PSQ-маршрутизацией, как определено в (1), является обратимым относительно времени и имеет следующую мультипликативную форму стационарного распределения вероятностей:

$$\pi(\overline{\eta}) = G^{-1} \prod_{i=0}^{L} \left[\prod_{j=1}^{n_i} \nu_i^{-1}(j) \right] \left[\prod_{t=1}^{T} \prod_{j=1}^{n_{it}} \frac{r_{it}(j-1+\delta_{i0})}{j\mu_{it}} \right], \quad \overline{\eta} \in S, \quad (2)$$

где $\delta_{i0}=1$, если i=0, иначе $\delta_{i0}=0$, G — нормализующая константа и

$$u_i(n_i) = \frac{\min(n_i, \kappa_i)}{n_i}.$$

¹Yao D. D., Buzacott J. A. Modeling a class of state-dependent routing in flexible manufacturing systems // Annals of Operations Research. – 1985. – No. 3. – P. 153-167.

Структура алгоритма

Шаг 1. Ввод исходных данных

- *L* число СМО в СеМО;
- $N = (N_t)$ вектор начального числа требований в СеМО, t = 1, ..., T;
- $\kappa = (\kappa_i)$ вектор числа приборов в системах обслуживания CeMO, i = 0, ..., L;
- $s = (s_{it})$ матрица емкостей систем в СеМО, $i = 0, ..., L, \ t = 1, ..., T$;
- $\mu = (\mu_{it})$ матрица интенсивностей обслуживания требований системами CeMO, $i = 0, ..., L, \ t = 1, ..., T$.

Шаг 2. Положить i = 1.

Шаг 3. Перестановка СМО C_i и C_L

Структура алгоритма

Шаг 4. Вычисление стационарного распределения вероятностей состояний СМО C_i

Входные данные: L, T, $\mathbf{N}=(N_t)$, $\kappa=(\kappa_i)$, $s=(s_{it})$, $\mu=(\mu_{it})$, $i=0,...,L,\ t=1,...,T$. Выходные данные: $\pi_i(\mathbf{n},\mathbf{N})$, i=1,...,L.

Шаг 5. Обратная перестановка СМО C_L и C_i

Шаг 6. Если i < L, то положить i = i + 1 и перейти на **шаг 3**, иначе перейти к **шагу 7**.

Шаг 7. Вычисление стационарных характеристик СеМО

Входные данные: L, T, $\mathbf{N}=(N_t)$, $\pi_m(\mathbf{n},\mathbf{N})$, $\kappa=(\kappa_i)$, $s=(s_{it})$, $\mu=(\mu_{it})$, $i=0,...,L,\ m=1,...,L,\ t=1,...,T$. Выходные данные: \overline{n}_{it} , λ_{it} , ψ_{it} , $i=0,...,L,\ t=1,...,T$.

Шаг 8. Вывод результатов

- \bar{n}_{it} м. о. числа требований, $i=0,...,L,\ t=1,...,T$;
- λ_{it} интенсивности потока требований, $i = 0, ..., L, \ t = 1, ..., T$;
- ψ_{it} коэффициенты использования обслуживающих приборов, $i=0,...,L,\ t=1,...,T$;

Интерфейс программы

Интерфейс программы

Эксперимент

```
L=9;\ T=2;\ \mathbf{N}=(20,30);
I_1=\{1,2,3,7,8,9\},\ I_2=\{4,5,6,7,8,9\};
\kappa_1=\kappa_2=\kappa_3=1;\ \kappa_4=\kappa_5=\kappa_6=2;\ \kappa_7=\kappa_8=\kappa_9=7;
\mu_{11}=\mu_{21}=\mu_{31}=2;\ \mu_{42}=\mu_{52}=\mu_{62}=1,5;\ \mu_{71}=\mu_{81}=\mu_{91}=1;
\mu_{72}=\mu_{82}=\mu_{92}=0,75;
s_{11}=s_{21}=s_{31}=4;\ s_{42}=s_{52}=s_{62}=6;\ s_{71}=s_{81}=s_{91}=3;
s_{72}=s_{82}=s_{92}=4.
Для C_0:\ \mu_{01}=\mu_{02}=3;\ s_{01}=20;\ s_{02}=30.
```

C_i	C_0		$C_{1,2,3}$	$C_{4,5,6}$	$C_{7,8,9}$	
t	Тип 1	Тип 2	Тип 1	Тип 2	Тип 1	Тип 2
\overline{n}_i	4,102	5,395	3,182	5,002	2,117	3,200
λ_i	12,307	16,184	1,985	2,995	2,117	2,400
ψ_i	-	-	0,993	0,998	0,706	0,800

Результаты работы

- рассмотрены производственные системы с маршрутизацией, зависящей от состояния;
- разработан алгоритм метода анализа производственных систем с маршрутизацией, зависящей от состояния;
- разработана программа, вычисляющая основные стационарные характеристики;
- проведены численные эксперименты с разработанной программой и приведены соответствующие результаты.