- Mhai triển Taylor
 - Công thức và ý nghĩa
 - Khai triển Maclaurint một số hàm thường gặp

- 2 Hàm số cho bởi phương trình tham số
 - Giới thiệu đường cong tham số
 - Đạo hàm của hàm số cho bởi phương trình tham số

- Cho hàm số f có đạo hàm đến cấp n trong một lân cận của điểm cho trước x_0 .
- Khai triển Taylor đến cấp n của hàm số f(x) trong lân cận điểm $x=x_0$ là

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n,$$

trong đó R_n là **phần dư (remainder)** được xác định như sau:

- $R_n = o[(x x_0)^n]$ (dạng Peano).
- $R_n = \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1}$ (dạng Lagrange), nếu f khả vi đến cấp n+1, và c là một điểm trung gian nào đó nằm trong lân cân của x_0 .

Ý nghĩa của khai triển Taylor

Hàm số f(x) được xấp xỉ bởi những đa thức để thuận tiện cho việc tính toán.

Công thức Maclaurint

Khai triển Taylor của hàm số f(x) trong lân cận điểm x=0 được gọi là **khai triển Maclaurint**

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n),$$

trong đó $o(x^n)$ là VCB cấp cao hơn x^n khi $x \to 0$.

(1)
$$\frac{1}{1+x} = 1-x+\cdots+(-1)^n x^n + o(x^n).$$

(2)
$$e^x = 1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} + o(x^n).$$

(3)
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$
.

(4)
$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}).$$

(5)
$$\cos x = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}).$$

$$-x^6/6 + x^5/5 - x^4/4 + x^3/3 - x^2/2 + x$$

(6)
$$\sinh x = x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}).$$

(7)
$$\cosh x = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1}).$$

(8)
$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + o(x^n).$$

(9)
$$\arctan x = x - \frac{x^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)} + o(x^{2n+2}).$$

$$- x^7/7 + x^5/5 - x^3/3 + x$$

Ví du

Khi $x \rightarrow 0$, tìm cấp của các VCB sau:

(a)
$$f(x) = e^x - x - \cos x$$
;

(b)
$$f(x) = \sqrt{1-2x} - x - \cos x$$
.

Ví du

Khai triển Maclaurin của các hàm số sau đến cấp 5:

(a)
$$f(x) = \cos(x - \pi/3)$$
;

(b)
$$g(x) = \tan x$$
.

 Giả sử rằng cả hai thành phần x và y đều là các hàm số theo biến thứ ba t:

$$\begin{cases} x = x(t), \\ y = y(t). \end{cases}$$

• Khi t thay đổi, điểm (x,y) = (x(t),y(t)) vạch ra một đường cong C, và ta gọi đường cong này là **đường cong tham số** (parametric curve).

Ví dụ

Đường cong tham số C

$$\begin{cases} x = \cos t, \\ y = \sin t, \end{cases} \quad 0 \le t \le 2\pi.$$

chính là đường tròn đơn vị $x^2 + y^2 = 1$.

Xét đường cong tham số

$$\begin{cases} x = x(t), \\ y = y(t). \end{cases}$$

 Trong một số trường hợp đặc biệt, bằng cách khử tham số t, phương trình tham số trên có thể được biểu diễn lại dưới dạng hàm số của y theo x:

$$y = y(x)$$

Cho hàm số y = y(x) xác định bởi phương trình tham số:

$$\begin{cases} x = x(t), \\ y = y(t). \end{cases}$$

Công thức tính đạo hàm cấp một:

$$y'(x) = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)}.$$

• Công thức tính đạo hàm cấp hai:

$$y''(x) = \frac{d(y'(x))/dt}{dx/dt}.$$

Ví du

Cho hàm số y = y(x) xác định bởi phương trình tham số

$$\begin{cases} x = t^2, \\ y = t^3 - 3t, \end{cases} \quad t \ge 0.$$

- (a) Tính giá trị các đạo hàm y'(x), y''(x) tại x=4.
- (b) Tìm cực trị của hàm số.