
Sequence Listing was accepted with existing errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Tue Jun 05 19:54:47 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10507446 Version No: 2.1

Input Set:

Output Set:

Started: 2007-06-05 19:54:40.016 **Finished:** 2007-06-05 19:54:40.692

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 676 ms

Total Warnings: 6

Total Errors: 6

No. of SeqIDs Defined: 10
Actual SeqID Count: 10

Error code		Error Description							
W	213	Artificial or Unknown found in <213> in SEQ ID (5)							
E	224	<220>, $<223>$ section required as $<213>$ has Artificial sequence or Unknown in SEQID (5)							
W	213	Artificial or Unknown found in <213> in SEQ ID (6)							
Ε	224	<220>, $<223>$ section required as $<213>$ has Artificial sequence or Unknown in SEQID (6)							
W	213	Artificial or Unknown found in <213> in SEQ ID (7)							
E	224	<220>, $<223>$ section required as $<213>$ has Artificial sequence or Unknown in SEQID (7)							
W	213	Artificial or Unknown found in <213> in SEQ ID (8)							
E	224	$<\!220\!>, <\!223\!>$ section required as $<\!213\!>$ has Artificial sequence or Unknown in SEQID (8)							
W	213	Artificial or Unknown found in <213> in SEQ ID (9)							
E	224	<220>, $<223>$ section required as $<213>$ has Artificial sequence or Unknown in SEQID (9)							
W	213	Artificial or Unknown found in <213> in SEQ ID (10)							
E	224	$<\!220\!>$, $<\!223\!>$ section required as $<\!213\!>$ has Artificial sequence or Unknown in SEQID (10)							

SEQUENCE LISTING

<110>), Hidetsugu ANO, Shigeru					
<120>	BRE	ED USING THE		PROCESS FOR	· ·	ETIC ACID BACT	
<130>	4439	9-4024					
<140>	US	5/10/507,446	5				
<141>	20	004-09-13					
<150>	PCT/	JP03/02946					
<151>	2003	3-03-12					
.7.60	7.0						
<160>	10						
<170>	Pate	entIn versio	on 3.2				
<210>	1						
<211>	2016	5					
<212>	DNA						
<213>	Gluc	conacetobact	er entanii				
<400>	1						
gatatca	aatg	gcagcagcaa	gatcgttgag	gatctggcct	ttgattcact	ggccgtcatg	60
aatttto	gtca	tggaaatcga	ggacacgctc	gacgtttccg	tgccgcttga	ccggctggct	120
gatatco	cgca	ccattgatga	tctggctgcc	tgtatcgtct	ctctcaagca	ggcatcctga	180
tacacca	atgt	cgattttctc	gaaatatgaa	ggccttgcgt	ccgccctgtc	ggcggtaacg	240
gccgato	ggtg	ggcgcaaccc	gttcaacgtc	gtgatcgaaa	agcccatttc	ctccacggtc	300
gggctga	atcg	aagggcgcga	gacgcttctg	ttcggcacca	acaactatct	tgggctgagc	360
cagtccc	ccgg	ccgcgatcga	agcggcggtg	gaagccgcca	gggcttatgg	tgtcggcacg	420
accggat	cgc	gcatcgccaa	tggcacgcag	ggtctgcacc	gccagttgga	agagcggctg	480
tgcacct	tct	tccgtcgtcg	gcactgcatg	gtgttttcca	ccggttacca	ggccaatctg	540
ggcacga	attt	ccgcactggc	gggcaaggac	gattatctgc	tgcttgatgc	ggacagccat	600
gccagca	atct	atgatggcag	ccgccttggc	catgcgcagg	tcatccgctt	ccgtcacaac	660
gacgccc	gatg	acctgcataa	acgcctgcgc	cgccttgatg	gtacgcccgg	agcgaaactg	720
gtcgtgg	gtcg	aaggcatcta	ttccatgatg	ggcgacgtcg	ttcccatggc	ggaattcgcg	780
gccgtca	aagc	gggaaaccgg	tgcatggctg	ctggcggatg	aagcacattc	cgttggtgta	840

atgggcgaac atggccgtgg cgtggcggaa tccgacggcg tggaagatga tgtcgatttt 900

gtcgtcggca ccttttccaa aagccttggc acggttggtg gctactgtgt ttccaaccat 960 geogggetgg acctgateeg getgtgtteg egteegtaea tgtteacege atecetgeeg 1020 ccqqaaqtca tcqccqcqac catqqccqcq ctqactqaac tqqaaaaccq qccqqaactq 1080 cgcgtgcggt tgatggacaa tgcacgcagg cttcatgacg ggctgcaggc ggccggcctg 1140 cgcaccggcc cgcaggccag tcctgtcgtg tccgtcattc tggatgatgt ggcggttgcc 1200 gtggcgttct ggaaccggct gctggacctt ggggtttacg tcaacctcag cctgccgcct 1260 gcaacgcccg accagcatcc cctgctgcgg acctccgtca tggcgaccca tacgccggag 1320 caqataqacc qqqccqtqqa aatcttcqcc qttqtaqcqq qcqaqatqqq tatcaaccqc 1380 gccgcctgaa aaaacctgcc tgccgtaatt tccacagcag atacggcagg cagaccagcg 1440 gatgeegtte egaaaaegge eecageggea gtteaatgee ggaatgeege etgatettee 1500 atgcgatata gcgcgcgcca ccttcaaacg tgaaggcccc cttgaacagg cggctgacat 1560 tcagcacgcg ccccagccga ccacgcagcc accagccttc gtacatcttc cggcgcagtt 1620 caggtgtcag ctggggggtt agttgatcgc cctcagaccg gaacggcagg ccatcggcgc gccatacatc cggcagcagg cgcctgtacc gtgcttcctg cccctgtagc aggctacgcg 1740 gcctgcggcc gttctccaca cgcagttccg caccgtaagt atgggcgaac agggccagcc 1800 agtagtcatc ggccgtgccc tgtgccggac ccagggcggc agcccagcgc cccgcctgcc 1860 ccaccgcgcg gataatgcag gccaggatgg catcggccgc gtccggttcc ctgacccata 1920 caagecqcac aggetggeag aagegtgeec agacegtggt atccaaegtg gegegteeeg 1980 2016 tcatgcggcg gaactgcgct atggacagga tggcca

<210> 2

<211> 400

<212> PRT

<213> Gluconacetobacter entanii

<400> 2

Met Ser Ile Phe Ser Lys Tyr Glu Gly Leu Ala Ser Ala Leu Ser Ala 1 5 10 15

Val Thr Ala Asp Gly Gly Arg Asn Pro Phe Asn Val Val Ile Glu Lys
20 25 30

Pro Ile Ser Ser Thr Val Gly Leu Ile Glu Gly Arg Glu Thr Leu Leu 35 40 45

Phe	Gly 50	Thr	Asn	Asn	Tyr	Leu 55	Gly	Leu	Ser	Gln	Ser 60	Pro	Ala	Ala	Ile
Glu 65	Ala	Ala	Val	Glu	Ala 70	Ala	Arg	Ala	Tyr	Gly 75	Val	Gly	Thr	Thr	Gly 80
Ser	Arg	Ile	Ala	Asn 85	Gly	Thr	Gln	Gly	Leu 90	His	Arg	Gln	Leu	Glu 95	Glu
Arg	Leu	Суз	Thr 100	Phe	Phe	Arg	Arg	Arg 105	His	Суз	Met	Val	Phe 110	Ser	Thr
Gly	Tyr	Gln 115	Ala	Asn	Leu	Gly	Thr 120	Ile	Ser	Ala	Leu	Ala 125	Gly	Lys	Asp
Asp	Tyr 130	Leu	Leu	Leu	Asp	Ala 135	Asp	Ser	His	Ala	Ser 140	Ile	Tyr	Asp	Gly
Ser 145	Arg	Leu	Gly	His	Ala 150	Gln	Val	Ile	Arg	Phe 155	Arg	His	Asn	Asp	Ala 160
Asp	Asp	Leu	His	Lys 165	Arg	Leu	Arg	Arg	Leu 170	Asp	Gly	Thr	Pro	Gly 175	Ala
Lys	Leu	Val	Val 180	Val	Glu	Gly	Ile	Tyr 185	Ser	Met	Met	Gly	Asp 190	Val	Val
Pro	Met	Ala 195	Glu	Phe	Ala	Ala	Val 200	Lys	Arg	Glu	Thr	Gly 205	Ala	Trp	Leu
Leu	Ala 210	Asp	Glu	Ala	His	Ser 215	Val	Gly	Val	Met	Gly 220	Glu	His	Gly	Arg
Gly 225	Val	Ala	Glu	Ser	Asp 230	Gly	Val	Glu	Asp	Asp 235	Val	Asp	Phe	Val	Val 240
Gly	Thr	Phe	Ser	Lys 245	Ser	Leu	Gly	Thr	Val 250	Gly	Gly	Tyr	Суз	Val 255	Ser
Asn	His	Ala	Gly 260	Leu	Asp	Leu	Ile	Arg 265	Leu	Суз	Ser	Arg	Pro 270	Tyr	Met

Phe Thr Ala Ser Leu Pro Pro Glu Val Ile Ala Ala Thr Met Ala Ala 275 280 285

Leu Thr Glu Leu Glu Asn Arg Pro Glu Leu Arg Val Arg Leu Met Asp
290 295 300

Asn Ala Arg Arg Leu His Asp Gly Leu Gln Ala Ala Gly Leu Arg Thr 305 310 315 320

Gly Pro Gln Ala Ser Pro Val Val Ser Val Ile Leu Asp Asp Val Ala 325 330 335

Val Ala Val Ala Phe Trp Asn Arg Leu Leu Asp Leu Gly Val Tyr Val 340 345 350

Asn Leu Ser Leu Pro Pro Ala Thr Pro Asp Gln His Pro Leu Leu Arg 355 360 365

Thr Ser Val Met Ala Thr His Thr Pro Glu Gln Ile Asp Arg Ala Val 370 375 380

Glu Ile Phe Ala Val Val Ala Gly Glu Met Gly Ile Asn Arg Ala Ala 385 390 395 400

<210> 3

<211> 1360

<212> DNA

<213> Acetobacter aceti

<400> 3

gaagacaget tggatgtate tatecegete gacaaactgg etgatateeg aacgattaat 60 gaccttgccg cttgcattgt tgctctgaaa aacaaagggt gaggcgtgga tgacatcact attttccaaa tttgaaggta cggcaggcgc gctgggttcc gttgtggccg taggcggtcg 180 caaccetttt getgttgtta ttgaaaaace tgtetettea aetgttggaa ttattgaagg 240 tcgggaaacg cttctttttg gcaccaataa ctatttgggg cttagtcaat ccaaaaatgc 300 cattcaagca gcccagcagg ctgccgcggc atgtggcgta ggcacaacgg gctcacgcat 360 tgcaaatggc acacaatccc tgcaccgaca gcttgaaaaa gatattgccg cgttttttgg 420 tcggcgtgat gccatggttt tttccacggg gtatcaggca aacctcggca ttatttccac 480 gctggcaggt aaggatgacc acctgtttct ggatgctgat agccacgcca gtatctatga 540 600 tggcagccgc ctgagtgcag cagaagttat tcgcttccgc cataatgatc cagacaacct

ttataaacgc	cttaaacgca	tggatggcac	gccaggcgcc	aaattgattg	tggttgaagg	660
catttattcc	atgacgggta	atgttgcccc	gattgcagaa	tttgttgctg	ttaaaaaaga	720
aacaggcgct	tacctgctgg	tagatgaagc	ccattctttt	ggcgtgttgg	gtcaaaatgg	780
gcgtggtgcc	gctgaggctg	atggcgtgga	agctgatgtg	gactttgttg	tcggcacatt	840
ttccaaaagc	ttgggcacag	ttggcggtta	ctgcgtatct	gaccatcctg	agctggagtt	900
tgtgcgctta	aactgccggc	cctatatgtt	tacggcatcg	ctaccgccgg	aagttattgc	960
tgccacaacg	gctgccttga	aagatatgca	ggcacatcct	gaattgcgta	agcagcttat	1020
ggcaaacgcg	cagcaactac	atgcaggttt	tgtagatatt	gggctaaatg	ccagcaaaca	1080
cgcaacccca	gttattgccg	ttacattgga	aacagctgaa	gaagctattc	ccatgtggaa	1140
caggettttg	gaacttggtg	tttatgtaaa	tctcagcctt	cctccggcta	caccagattc	1200
gcggccgttg	ctccgttgtt	ccgtaatggc	cacccatacg	cccgaacaaa	ttgcgcaggc	1260
tattgccata	ttcaggcagg	ctgcggcaga	agtaggcgta	accatcacac	cctccgctgc	1320
ttaaaaaaaa	gctatttgcg	cttgaatgcc	ccttgctgcc			1360

<210> 4

<211> 404

<212> PRT

<213> Acetobacter aceti

<400> 4

Met Thr Ser Leu Phe Ser Lys Phe Glu Gly Thr Ala Gly Ala Leu Gly 5 10

Ser Val Val Ala Val Gly Gly Arg Asn Pro Phe Ala Val Val Ile Glu 20 25 30

Lys Pro Val Ser Ser Thr Val Gly Ile Ile Glu Gly Arg Glu Thr Leu 35 40

Leu Phe Gly Thr Asn Asn Tyr Leu Gly Leu Ser Gln Ser Lys Asn Ala 55 60 50

Ile Gln Ala Ala Gln Gln Ala Ala Ala Cys Gly Val Gly Thr Thr 70 75 65

Gly Ser Arg Ile Ala Asn Gly Thr Gln Ser Leu His Arg Gln Leu Glu 85

90

Lys Asp Ile Ala Ala Ph 100	e Phe Gly Arg Arg 105	Asp Ala Met Val	
Thr Gly Tyr Gln Ala As	n Leu Gly Ile Ile 120	Ser Thr Leu Ala 125	Gly Lys
Asp Asp His Leu Phe Le	u Asp Ala Asp Ser 135	His Ala Ser Ile	Tyr Asp
Gly Ser Arg Leu Ser Al 145 15		Arg Phe Arg His	Asn Asp 160
Pro Asp Asn Leu Tyr Ly	s Arg Leu Lys Arg	Met Asp Gly Thr	Pro Gly
165	170		175
Ala Lys Leu Ile Val Va 180	l Glu Gly Ile Tyr 185	Ser Met Thr Gly	
Ala Pro Ile Ala Glu Ph	e Val Ala Val Lys	Lys Glu Thr Gly	Ala Tyr
195	200	205	
Leu Leu Val Asp Glu Al	a His Ser Phe Gly	Val Leu Gly Gln	Asn Gly
210	215	220	
Arg Gly Ala Ala Glu Al		Ala Asp Val Asp	Phe Val
225 23		235	240
Val Gly Thr Phe Ser Ly	s Ser Leu Gly Thr	Val Gly Gly Tyr	Cys Val
245	250		255
Ser Asp His Pro Glu Le	u Glu Phe Val Arg	Leu Asn Cys Arg	Pro Tyr
260	265	270	
Met Phe Thr Ala Ser Le	u Pro Pro Glu Val	Ile Ala Ala Thr	Thr Ala
275	280	285	
Ala Leu Lys Asp Met Gl	n Ala His Pro Glu	Leu Arg Lys Gln	Leu Met
290	295	300	
Ala Asn Ala Gln Gln Le	_	Val Asp Ile Gly	Leu Asn
305 31		315	320

Ala Ser Lys His Ala Thr Pro Val Ile Ala Val Thr Leu Glu Thr Ala 325 330 Glu Glu Ala Ile Pro Met Trp Asn Arg Leu Leu Glu Leu Gly Val Tyr 340 345 Val Asn Leu Ser Leu Pro Pro Ala Thr Pro Asp Ser Arg Pro Leu Leu 355 360 365 Arg Cys Ser Val Met Ala Thr His Thr Pro Glu Gln Ile Ala Gln Ala 370 375 380 Ile Ala Ile Phe Arg Gln Ala Ala Glu Val Gly Val Thr Ile Thr 390 395 Pro Ser Ala Ala <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> (1)..(30) <223> synthetic primer <400> 5 30 ctggctgcct gtatcgtctc tctcaagcag <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> (1)..(30) <223> synthetic primer <400> 6 acggctgcag ctggtctgcc tgccgtatct 30

<210> 7 <211> 30

```
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(30)
<223> synthetic primer
<400> 7
                                                                     30
ggcaaacctc ggcattattt ccacgctggc
<210> 8
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(29)
<223> synthetic primer
<400> 8
gcgaatctgg tgtagccgga ggaaggctg
                                                                     29
<210> 9
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(30)
<223> synthetic primer
<400> 9
gccagcgtgg aaataatgcc gaggtttgcc
                                                                     30
<210> 10
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(29)
<223> synthetic primer
<400> 10
cagcetteet eeggetacae eagattege
                                                                     29
```