Cryptographic Engineering

Çetin Kaya Koç Editor

Cryptographic Engineering

Editor
Çetin Kaya Koç
City University of Istanbul
Tophane, Istanbul
Turkey
and
University of California Santa Barbara
Santa Barbara, CA
USA

ISBN: 978-0-387-71816-3 e-ISBN: 978-0-387-71817-0

DOI 10.1007/978-0-387-71817-0

Library of Congress Control Number: 2008935379

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

springer.com

To all scientists and engineers whose ideas gave birth to modern cryptography, particularly, Claude Shannon, Whit Diffie, Martin Hellman, Ralph Merkle, Don Coppersmith, Ron Rivest, Adi Shamir, Len Adleman, and Neal Koblitz.

Preface

Cryptography is an ancient art. Chinese, Roman, and Arab cultures often used ciphers to protect military and state communications or secret society documents. Cryptographic engineering, on the other hand, is a relatively new subject. A cryptographic engineer designs, implements, tests, validates, and sometimes reverse-engineers or attempts to break cryptographic systems. The designers of Enigma, an electromechanical cipher machine, were cryptographic engineers; so was Alan Turing who contributed to its cryptanalysis. In our view, anyone who designs and builds electromechanical, electronic, or quantum-mechanical systems in order to encrypt, decrypt, sign or authenticate data is a cryptographic engineer. However, in this book we have narrowed our definition to only electronic systems, specifically, hardware and software systems.

Cryptographic engineering is a complicated, multidisciplinary field. It encompasses mathematics (algebra, finite groups, rings, and fields), electrical engineering (hardware design, ASIC, FPGAs) and computer science (algorithms, complexity theory, software design, embedded systems). It is rather difficult to be a master of all subjects; one usually has to be content with being a master of one. In order to practice state-of-the-art cryptographic design, mathematicians, computer scientists, and electrical engineers need to collaborate.

This book was born out of the class notes of the lecturers who have been meeting since 2002 in Lausanne, Switzerland, at the campus of EPFL, to teach a one-week course to graduate students, faculty, and researchers from academia, and engineers from industry. In order to create this book, I compiled the lecture notes together, wrote some of the material, and also invited other prominent researchers to contribute. This book is intended to constitute a first step towards becoming a cryptographic engineer. We hope that it will successfully serve its purpose.

Istanbul & Santa Barbara

Çetin Kaya Koç

Contents

1	Abou	ut Cryptographic Engineering	J				
	Çetir	ı Kaya Koç					
	1.1	Introduction	1				
	1.2	Chapter Contents	2				
	1.3	Exercises and Projects	4				
2	Ran	dom Number Generators for Cryptographic Applications	5				
	Werr	ner Schindler					
	2.1	Introduction	5				
	2.2	General Requirements	6				
	2.3	Classification	7				
	2.4	Deterministic Random Number Generators (DRNGs)	7				
		2.4.1 Pure DRNGs	8				
		2.4.2 Hybrid DRNGs	11				
		2.4.3 A Word of Warning	13				
	2.5	Physical True Random Number Generators (PTRNGs)	14				
		2.5.1 The Generic Design	14				
		2.5.2 Entropy and Guesswork	16				
	2.6	Non-physical True Random Number Generators (NPTRNGs):					
		Basic Properties	18				
	2.7	Standards and Evaluation Guidances	20				
	2.8	Exercises	20				
	2.9	Projects	21				
	Refe	rences	21				
3	Eval	Evaluation Criteria for Physical Random Number Generators					
	Werr	Werner Schindler					
	3.1	Introduction	25				
	3.2	Generic Design	26				
	3.3	Evaluation Criteria for the Principle Design	27				
	3.4	The Stochastic Model	20				

x Contents

	3.5	Algorit	hmic Postprocessing	37		
	3.6	Online	Test, Tot Test, and Self Test	41		
		3.6.1	Online Tests	42		
	3.7	Alterna	tive Security Philosophies	49		
	3.8	Side-ch	annel Attacks and Fault Attacks	50		
	3.9	Exercis	es	51		
	3.10	Projects	s	51		
	Refer	ences		52		
4	True	Random	Number Generators for Cryptography	55		
	Berk	Sunar				
	4.1		ction			
	4.2		Building Blocks			
	4.3		ble Features			
	4.4		of TRNG Designs			
		4.4.1	Baggini and Bucci			
		4.4.2	The Intel TRNG Design			
		4.4.3	The Tkacik TRNG Design			
		4.4.4	The Epstein et al. TRNG Design			
		4.4.5	The Fischer–Drutarovský Design			
		4.4.6	The Golić FIGARO Design			
		4.4.7	The Kohlbrenner–Gaj Design			
		4.4.8	The Bucci-Luzzi Testable TRNG Design Framework .			
		4.4.9	The Rings Design			
		4.4.10	The PUF–RNG Design			
		4.4.11	The Yoo et al. Design			
		4.4.12	The Dichtl and Golić RNG Design			
	4.5		ocessing Techniques			
	4.6	Exercises				
	Refer	ences		71		
5			eld Multiplication	75		
			dem, Tuğrul Yanık, and Çetin Kaya Koç			
	5.1		ction			
	5.2		Fields			
	5.3	-	ication in Prime Fields			
		5.3.1	Integer Multiplication			
		5.3.2	Integer Squaring			
		5.3.3	Integer Modular Reduction			
	5.4	-	ication in Binary Extension Fields			
		5.4.1	Polynomial Multiplication over \mathbb{F}_2			
		5.4.2	Polynomial Squaring over \mathbb{F}_2			
		5.4.3	Polynomial Modular Reduction over $\mathbb{F}_2 \dots \dots$			
	5.5	Multipl	lication in General Extension Fields			
		5.5.1	Field Multiplication in OEF			
		5.5.2	Coefficient Multiplication and Reductions	98		

Contents xi

	5.6	Karatsuba–Ofman Algorithm	99
		5.6.1 Complexity	100
		5.6.2 Number of Scalar Multiplications	100
	5.7	Exercises	102
	5.8	Projects	103
	Refe	rences	103
6	Effic	eient Unified Arithmetic for Hardware Cryptography	105
		y Savaş and Çetin Kaya Koç	
	6.1	Introduction	105
	6.2	Fundamentals of Extension Fields	106
	6.3	Addition and Subtraction	
	6.4	Multiplication	110
		6.4.1 Montgomery Multiplication Algorithm	110
		6.4.2 Dual-Radix Multiplier	116
		6.4.3 Support for Ternary Extension Fields, $GF(3^n)$	118
	6.5	Inversion	
		6.5.1 Montgomery Inversion for $GF(p)$ and $GF(2^n)$	
	6.6	Conclusions	
	6.7	Exercises	
	6.8	Projects	
	Refe	rences	123
7	Space	etral Modular Arithmetic for Cryptography	125
,		ay Saldamlı and Çetin Kaya Koç	123
	7.1	Introduction	125
	7.1	Notation and Background	
	1.2	7.2.1 Evaluation Polynomials	
		7.2.1 Evaluation Foryilonnals	
		7.2.2 Properties of DFT: Time–frequency dictionary	
	7.3	Spectral Modular Arithmetic	
	1.3	7.3.1 Time Simulations and Spectral Algorithms	
		7.3.2 Modular Reduction	
		7.3.3 Spectral Modular Reduction	
		7.3.4 Time Simulation of Spectral Modular Reduction	
		7.3.5 Spectral Modular Reduction in a Finite Ring Spectrum	
		7.3.6 Spectral Modular Multiplication (SMM)	
		7.3.7 Spectral Modular Exponentiation	
	7.4	7.3.8 Illustrative Example	152
	7.4	Applications to Cryptography	
		7.4.1 Mersenne and Fermat rings	
		7.4.2 Pseudo Number Transforms	
		7.4.4 Parameter Selection for RSA	
	75	7.4.4 Parameter Selection for ECC over Prime Fields	
	7.5	Spectral Extension Field Arithmetic	
		7.5.1 Binary Extension Fields	158

xii Contents

		7.5.2 Midsize Characteristic Extension Fields	161
		7.5.3 Parameter Selection for ECC over Extension Fields	164
	7.6	Notes	165
	7.7	Exercises	166
	7.8	Projects	167
	Refer	rences	168
8	Ellipt	tic and Hyperelliptic Curve Cryptography	171
	Nigel	Boston and Matthew Darnall	
	8.1	Introduction	171
	8.2	Diffie – Hellman Key Exchange	172
	8.3	Introduction to Elliptic and Hyperelliptic Curves	172
	8.4	The Jacobian of a Curve	
		8.4.1 The Principal Subgroup and $Jac(C)$	174
	8.5	Computing on $Jac(C)$	174
	8.6	Group Law for Elliptic Curves	176
	8.7	Techniques for Computations in Hyperelliptic Curves	178
		8.7.1 Explicit Formulae	178
		8.7.2 Projective Coordinates	178
		8.7.3 Other Optimization Techniques	179
	8.8	Counting Points on $Jac(C)$	179
	8.9	Attacks	181
		8.9.1 Baby-Step Giant-Step Attack	181
		8.9.2 Pollard Rho and Lambda Attacks	181
		8.9.3 Pohlig–Hellman Attack	182
		8.9.4 Menezes–Okamoto–Vanstone Attack	182
		8.9.5 Semaev, Satoh-Araki, Smart Attack	183
		8.9.6 Attacks employing Weil descent	
	8.10	Good Curves	184
	8.11	Exercises	184
	8.12	Projects	185
	Refer	rences	185
9	Instr	uction Set Extensions for Cryptographic Applications	191
	Sandı	ro Bartolini, Roberto Giorgi, and Enrico Martinelli	
	9.1	Introduction	191
		9.1.1 Instruction Set Architecture	191
	9.2	Applications and Benchmarks	194
		9.2.1 Benchmarks	
		9.2.2 Potential Performance	195
	9.3	ISE for Cryptographic Applications	
		9.3.1 Instructions for Information Confusion and Diffusion.	
		9.3.2 ISE for AES	
		9.3.3 ISE for ECC applications	
	9.4	Exercises	
	9.5	Projects	
		rences	229

Contents xiii

10	FPG A	and AS	SIC Implementations of AES	. 235		
	Kris Gaj and Pawel Chodowiec					
	10.1	Introdu	ction	. 235		
	10.2	AES Ci	ipher Description	. 236		
		10.2.1	Basic Features	. 236		
		10.2.2	Round Operations	. 237		
		10.2.3	Iterative Structure	. 242		
		10.2.4	Key Scheduling	. 243		
	10.3	FPGA a	and ASIC Technologies	. 247		
	10.4	Parame	ters of Hardware Implementations	. 250		
		10.4.1	Throughput and Latency	. 250		
		10.4.2	Area	. 250		
	10.5	Hardwa	are Architectures of Symmetric Block Ciphers	. 251		
		10.5.1	Hardware Architectures vs. Block Cipher Modes			
			of Operation	. 251		
		10.5.2	Basic Iterative Architecture	. 252		
		10.5.3	Loop Unrolling	. 253		
		10.5.4	Pipelining	. 254		
		10.5.5	Limits on the Maximum Clock Frequency of Pipelined			
			Architectures	. 258		
		10.5.6	Compact Architectures with Resource Sharing			
	10.6	Implem	nentation of Basic Operations of AES in Hardware	. 261		
		10.6.1	SubBytes and InvSubBytes			
		10.6.2				
	10.7	Hardwa	are Architectures of a Single Round of AES	. 274		
		10.7.1				
		10.7.2	T-Box-Based Architecture	. 276		
		10.7.3	Compact Architectures	. 282		
	10.8		nentation of Key Scheduling			
	10.9		Im Choice of a Hardware Architecture for AES			
			es			
	10.11	Projects	s	. 290		
	Refere	ences		. 291		
	G					
11			fficient Implementation of Symmetric Encryption	205		
	Schemes using FPGAs					
	,			205		
	11.1		ction			
	11.2		nt FPGA Implementations			
		11.2.1	Exploiting the Slice Structure			
		11.2.2	Exploiting Embedded Blocks			
		11.2.3	Exploiting Further Features	. 302		
		11.2.4	Combining the Tricks: The Flexibility <i>Versus</i>	202		
	11.0	г. г	Efficiency Tradeoff			
	11.3	rair Ev	aluation of a Cryptographic FPGA Design	. 303		

xiv Contents

		11.3.1	Design Goals	304
		11.3.2	Performance Evaluation	304
	11.4	Security	y of FPGAs Against Side-Channel Attacks	305
		11.4.1	Applicability of the Attack and FPGA Properties	
		11.4.2	Countermeasures	
		11.4.3	Measuring Side-Channel Resistance	311
	11.5	Other S	ecurity Issues	312
		11.5.1	Fault Attacks	312
		11.5.2	Bitstream Security	312
	11.6	Conclus	sions and Open Questions	315
	11.7	Exercise	es	315
	11.8	Projects	3	317
	Refer	ences		318
12	Dlask	Cimbon	Modes of Onesetion from a Handware	
12		_	Modes of Operation from a Hardware on Perspective	221
			aborty and Francisco Rodríguez-Henríquez	321
	12.1		ction	321
	12.1		Ciphers	
	12.3		ction to AES	
	12.3	12.3.1	Byte Substitution (BS) Step	
		12.3.1	Shift Rows (SR) Step	
		12.3.3	Mix Columns (MC) Step	
		12.3.4	Add Round Key (ARK) Step	
		12.3.5	Key Scheduling Algorithm	
	12.4		ground in Binary Extension Finite Fields	
	12	12.4.1	Rings	
		12.4.2	Fields	
		12.4.3	Finite Fields	
		12.4.4	Binary Finite Field Arithmetic	
	12.5		onal Modes of Operations	
		12.5.1	Electronic Code Book Mode	
		12.5.2	Cipher Block Chaining Mode	333
		12.5.3	Cipher Feedback Mode	
		12.5.4	Output Feedback Mode	334
		12.5.5	Counter Mode	335
	12.6	Security	y Requirements for Modes of Operations	336
		12.6.1	The Adversary	336
		12.6.2	Privacy Only Modes	337
		12.6.3	Authenticated Encryption	338
		12.6.4	Disk Encryption Schemes	
		12.6.5	Security Proofs	341
	12.7	Some M	Modern Modes	341
		12.7.1	The Offset Codebook Mode	
		12.7.2	ECB-Mask-ECB Mode	344

Contents xv

	12.8	The CCM Mode: A Case Study	347
		12.8.1 The CCM Mode	347
		12.8.2 AES Encryptor Core Implementation	350
		12.8.3 Hardware Implementation of the CCM Mode	
		12.8.4 Experimental Results and Comparison	357
	12.9	Conclusions	
	12.10	Exercises	
		Projects	
		ences	
13	Basics	s of Side-Channel Analysis	365
	Marc	· · · · · · · · · · · · · · · · · · ·	
	13.1	Introduction	365
	13.2	Timing Analysis	365
		13.2.1 Attack on a Password Verification	
		13.2.2 Attack on an RSA Signature Scheme	367
	13.3	Simple Power Analysis	
		13.3.1 Reverse-Engineering of an Algorithm	
		13.3.2 Attack on a Private RSA Exponentiation	
		13.3.3 Attack on a DES Key Schedule	
	13.4	Differential Power Analysis	
		13.4.1 Bit Tracing	
		13.4.2 Attack on an AES Implementation	
		13.4.3 Attack on an RSA Signature Scheme (2)	
	13.5	Countermeasures	
	13.6	Exercises	
	13.7	Projects	
	Refere	ences	
14	Impr	oved Techniques for Side-Channel Analysis	201
17	_	j Rohatgi	501
	14.1	•	381
	14.2	CMOS Devices: Side-Channel Leakage Perspective	
	17.2	14.2.1 Intentional Current Flows	
		14.2.2 Leakage Current Flows	
		14.2.3 Information Leakage in Power and EM Side-Channels	
	14.3	Characterizing Side-Channel Leakage Using Maximum	505
	17.5	Likelihood	385
		14.3.1 Adversarial Model	
		14.3.2 Maximum Likelihood and Best Attack Strategy14.3.3 Gaussian Assumption	
	14.4	Template Attacks	
	14.4	14.4.1 Classical Template Attacks: The Case of RC4	
	115	8 1	
	14.5	Improved DPA/DEMA Metric	
		14.5.1 Improving DPA	395

xvi Contents

	14.6	Multi-Channel Attacks	397
		14.6.1 Multiple Channel Selection	397
		14.6.2 Multi-Channel Template Attacks	
		14.6.3 Multi-Channel DPA	400
	14.7	Toward Information Leakage Assessment	401
		14.7.1 Practical Considerations	402
	14.8	Projects	403
	Refere	ences	405
15	Electi	romagnetic Attacks and Countermeasures	407
		j Rohatgi	
	15.1	Introduction and History	407
	15.2	EM Emanations Background	409
		15.2.1 Types of EM Emanations	409
		15.2.2 EM Propagation	410
	15.3	EM Capturing Equipment	413
	15.4	EM Leakage Examples	415
		15.4.1 Examples: Amplitude Modulation	
		15.4.2 Examples: Angle Modulation	422
	15.5	Multiplicity of EM Channels and Comparison with Power	
		Channel	
	15.6	Using EM to Bypass Power Analysis Countermeasures	
	15.7	Quantifying EM Exposure	
	15.8	Countermeasures	
	15.9	Projects	
	Refere	ences	430
16	Leaka	age from Montgomery Multiplication	431
	Colin	D. Walter	
	16.1	Introduction	
	16.2	Montgomery Reduction	
	16.3	Montgomery Modular Multiplication	
	16.4	Exponentiation	
	16.5	Space and Time Comparisons	
	16.6	Side Channel Analysis	
	16.7	Frequencies of Conditional Subtractions	
	16.8	Variance in Frequencies and SCA Errors	
	16.9	A Surprising Improvement	
		Conclusions	
		Exercises	
		Projects	
	Ketere	ences	448
17		omized Exponentiation Algorithms	451
		D. Walter	
	17.1	Introduction	451

Contents xvii

	17.2	The Big Mac Attack	. 452
	17.3	Digit Representation and Exponentiation Algorithms	. 454
	17.4	Liardet–Smart	. 457
		17.4.1 Attacking the Algorithm	. 459
	17.5	Oswald–Aigner Exponentiation	. 460
		17.5.1 Attacking the Algorithm	. 461
	17.6	Ha–Moon	. 462
		17.6.1 Attacking the Algorithm	. 463
	17.7	Itoh's Overlapping Windows	. 464
		17.7.1 Attacking the Algorithm	. 465
	17.8	Randomized Table Method	. 466
		17.8.1 Attacking the Algorithm	. 466
	17.9	The MIST Algorithm	. 467
		17.9.1 Attacking the Algorithm	. 468
	17.10	Conclusions	
	17.11	Exercises	. 469
	17.12	Projects	. 470
	Refere	ences	. 472
18		architectural Attacks and Countermeasures	475
		Acıiçmez and Çetin Kaya Koç	
	18.1	Introduction	
	18.2	Overview and Brief History	
	18.3	Cache Analysis	
		18.3.1 Basics of Cache	
		18.3.2 Overview of Cache Attacks	
		18.3.3 A Brief Survey on Cache Analysis	
		18.3.4 Time-Driven and Trace-Driven Attacks	
		18.3.5 Exploiting Internal Collisions in Time-Driven Attacks	
		18.3.6 Access-Driven Attacks	
		18.3.7 Percival's Hyper-Threading Attack on RSA	
	18.4	Branch Prediction Analysis	
		18.4.1 The Concept of Branch Prediction	
		18.4.2 Simple Branch Prediction Analysis	
	18.5	I-cache Analysis	
	18.6	Exploiting Shared Functional Units	
	18.7	Comparing Microarchitectural Analysis Types	
	18.8	Countermeasures for Microarchitectural Analysis	
	18.9	Exercises	. 499
	18.10	Projects	. 500
	Refere	ences	. 501
Aut	hors' B	Biographies	. 505
		•	
Ind	ex		. 513

Acronyms

2DEM 2D-Encryption Mode

ABC Accumulated Block Chaining
ABL Arbitrary Block Length

ACM Association for Computing Machinery
AES Advanced Encryption Standard

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AIS Anwendungshinweise und Interpretationen zum Schema AIS Application Notes and Interpretation of the Scheme

ALU Arithmetic Logic Unit

ANSI American National Standards Institute

ARK Add Round Key

ASIC Application Specific Integrated Circuits

BPA Branch Prediction Analysis
BPU Branch Prediction Unit
BTB Branch Target Buffer
BS Byte Substitution

CASR Cellular Automata Shift Register

CBC Cipher Block Chaining CCM Counter with CBC-MAC

CFB Cipher Feedback

CHES Cryptographic Hardware and Embedded Systems

CISC Complex Instruction Set Computer

CLB Configurable Logic Block

CMAC Cipher Based MAC CMC CBC Mask CBC

CMOS Complementary Metal-Oxide Semiconductor

CPLD Complex Programmable Logic Device

CPU Central Processing Unit CRT Chinese Remainder Theorem

CS Cipher State

xx Acronyms

CTR Counter Mode

CWC Carter Wegman with Counter

das digitized analog signal

DE Disk Encryption

DEA Data Encryption Algorithm

DEMA Differential Electromagnetic Analysis

DES Data Encryption Standard
DFT Discrete Fourier Transform
DPA Differential Power Analysis
DRM Digital Rights Management

DRNG Deterministic Random Number Generator

DSA Digital Signature Algorithm
DLP Discrete Logarithmic Problem
DSS Digital Signature Standard

EAX Conventional Authenticated-Encryption Mode

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EME ECB Mix ECB

FEAL Fast Data Encipherment Algorithm FFSEM Feistel Finite Set Encryption Mode

FFT Fast Fourier Transform

FIGARO Fibonacci Galois Ring Oscillator

FIPS Federal Information Processing Standard

FIPS PUB Federal Information Processing Standard Publication

FPGA Field Programmable Gate Array FPLD Field Programmable Logic Device

gcd Greatest Common Divisor GCM Galois Counter Mode

GF Galois Field

HCH Hash Encrypt Hash HCTR Hash Counter Hash

HECC Hyperelliptic Curve Cryptography

HEH Hash ECB Hash

IACBC Integrity Aware Cipher Block Chaining
IAPM Integrity Aware Parallelizable Mode

IEEE Institute of Electrical and Electronics Engineers

IDEA International Data Encryption Algorithm

IDFT Inverse Discrete Fourier Transform

IGE Infinite Garble Extension

iid independent and identically distributed IMA Institute of Mathematics and its Applications

ISA Instruction Set Architecture
ISE Instruction Set Extension
KFB Key Feedback Mode

Acronyms xxi

LFSR Linear Feedback Shift Register
LNCS Lecture Notes in Computer Science

LRU Least Recently Used LRW Liskov Rivest Wagner LT LaGrande Technology

LUT Lookup Table

MA Microarchitectural Analysis
MAC Message Authentication Code

MC Mixed Columns
MD Message Digest

MDC Manipulation Detection Code

MMX Multimedia Extension

MSMP Modified Spectral Modular Product

MULGF Multiply in Galois Field

MULGF2 Multiply in Galois Field Base 2

NACSIM National Communications Security Information Memorandum NACSEM National Communications Security Emanation Memorandum

NTT Number Theoretical Transform

NIST National Institute of Standards and Technology NPTRNG Non-Physical Random Number Generator

NSA National Security Agency

NSTISSI National Training Standard for Information Systems Security

OCB Offset Code Book

OEF Optimal Extension Fields
OFB Output Feedback

OMAC One-Key CBC
ONB Optimal Normal Basis
OS Operating System

OS Operating System
PC Personal Computer

PCFB Propagating Cipher Feedback

PEP Polynomial Hash Encrypt Polynomial Hash

PKC Public Key Cryptography

PKCS Public Key Cryptography Standards

PL Phase Locked Loop

PMAC Parallelizable Message Authentication Code

PNT Pseudo Number Transform

PRNG Physical Random Number Generator PTRNG Physical True Random Number Generator

PUF Physically Unclonable Functions

RAM Random Access Memory

RAMB Block RAM

RFID Radio Frequency Identification Device

RIPEMD RACE Integrity Primitives Evaluation Message Digest

RISC Reduced Instruction Set Computer

RMAC Randomized MAC

xxii Acronyms

RNG Random Number Generator RSA Rivest Shamir Adleman RSD Redundant Signed Digit

SBPA Simple Branch Prediction Analysis

SCA Side Channel Analysis

SEMA Simple Electromagnetic Analysis

SFU Shared Functional Units SHA Secure Hash Algorithm

SIAM Society for Industrial and Applied Mathematics

SIMD Single Instruction Multiple Data

SIV Synthetic IV

SME Spectral Modular Exponentiation
SMM Spectral Modular Multiplication
SMP Spectral Modular Product
SMT Simultaneous Multithreading
SPA Simple Power Analysis

SPRP Strong Pseudo Random Permutation

SR Shift Rows

TDEA Triple Data Encryption Algorithm

TEMPEST Transient Electromagnetic Pulse Emanation Standard

TET Hash ECB Hash
TMAC Two-Key CBC MAC

TRNG True Random Number Generator
TXT Trusted Execution Technology
VCO Voltage Controlled Oscillator

VHDL Very High Level Hardware Description Language

VLIW Very Long Instruction Word VT Virtualization Technology

WAIFI Workshop on the Arithmetic of Finite Fields

XCB Extended Code Book

XCBC Extended Cipher Block Chaining XECB Extended Electronic Code Book