FISTA algorithm: so fast?

Mathis Scheffler and Constantin Vaillant-Tenzer

January 8, 2025

Objectives of the FISTA Algorithm

• Minimize a function of the form:

$$\min_{x} \left\{ F(x) = f(x) + g(x) \right\}$$

- $x \in \mathcal{R}^d$
- \bullet f(x): convex and smooth (differentiable) function with L-Lipschitz gradient
- *g*(*x*): convex, and lower-semi continuous (potentially non-smooth and non continuous function) function

Algorithm Steps: FISTA

Algorithm 1 FISTA

Initialize:
$$y_1 = x_0$$
, $t_1 = 1$
for $k = 1, 2, ...$ **do**
 $x_k = \operatorname{prox}_{\lambda g}(y_k - \lambda \nabla f(y_k))$
 $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$
 $y_{k+1} = x_k + (\frac{t_k - 1}{t_{k+1}})(x_k - x_{k-1})$
end for

$$\operatorname{Prox}_{\gamma,g}(\tau) :=_{\theta \in \Theta} \left(g(\theta) + \frac{1}{2\gamma} \|\theta - \tau\|^2 \right)$$

MS and CVT

What happens if ∇f is untracktable?

• Suppose that ∇f is untracktable and that :

$$\nabla f(\theta) = \int_X H(\theta, x) \, \pi_{\theta}(dx)$$

• We can approximate stochastically ∇f !

Stochastic Fista or Perturbed Fista (P-FISTA)

Classic Fista:

$$x_k = \operatorname{prox}_{\gamma g} (y_k - \gamma \nabla f(y_k))$$

p-Fista:

$$x_k = \operatorname{prox}_{\gamma g} (y_k - \gamma H_{n+1})$$

with H_{n+1} a stochastic approximation of $\nabla f(y_k)$ obtained with MCMC

Does P-FISTA theoretically works?

Assumptions:

0

$$\mathcal{L} = \arg\min_{x} (f + g) \neq 0$$

2

$$t_0 = 1; t_n \ge 1; \gamma_n \in \left[0, \frac{1}{L}\right]; \tau_n := \gamma_n t_{n-1}^2 - \gamma_{n+1} t_n (t_n - 1) > 0.$$

3

With

$$z_n := \theta_n + t_n \left(\operatorname{Prox}_{\gamma_{n+1}, g} \left(\vartheta_n - \gamma_{n+1} \nabla f(\vartheta_n) \right) - \theta_n \right)$$

and

$$\eta_{n+1} := H_{n+1} - \nabla f(\vartheta_n)$$

Then

The series $\sum_{n} \gamma_{n+1} t_n \langle z_n - \theta_*, \eta_{n+1} \rangle$ exists for some $\theta_* \in \mathcal{L}$.

Does P-FISTA theoretically works?

Results:

- The algorithm converges to a minimum of f+g
- Under conditions such as the following:
 - $(a \in [0,1], c = 3-2a)$ or $(a \in [1,2[,c=2-a)]$ and b > 1
 - $t_n = O(n)$
 - $\gamma_n = \gamma n^{-a}$
 - $m_n = m(\ln n)^b n^c$ = Samples to estimate H_n

We obtain convergence at rate n^{a-2} . The optimal rate is Fista's rate ie. $0(n^{-2})$ but taking a = 0 leads to a huge computation as it would imply that $n^3 = o(m_n)$.

Numerical Results Implementation

Performance of FISTA:

- Slow in Python (3,5 days on an i7-12700K processor) with p = 10 and N = 25.
- Bottleneck: Large sample size.

Processing Time Distribution:

- Algo 1 (P-PG, $m_n = O(\sqrt{n})$, $t_n = 1$): 4%
- Algo 2 (P-FISTA, $m_n = O(n^3)$, $t_n = O(n)$): 19%
- Algo 3 (P-FISTA, $m_n = O(n^3)$, $t_n = O(\sqrt{n})$: 31%
- Algo 4 (P-FISTA, $m_n = O(n^3)$, $t_n = O(n^{\epsilon})$: 45%
- Algo 5 (P-PG, $m_n = 10$, S_n computed iteratively): 1%

Limitations:

- Convergence threshold: 10^{-2} (not all 2000 steps completed).
- Sample cap: 10,000 (growth stops after 22 iterations in algorithms 2–4).

Optimization Attempts:

- Parallelization with JAX: Faster but limited.
 - Potential C implementation: Estimated ×87 speedup (Heer and al. 2023).

MS and CVT FISTA, so fast? January 8, 2025 8/21

Numerical analysis

Study of the sparcity of the non-zero components of θ_n :

Figure: [left]: number of non-zeros components θ_n , [right]: probability to be non-nul for each component avec n iterations.

Our code is available here: https://github.com/cvt8/fista_sofast.

MS and CVT FISTA, so fast? January 8, 2025

9/21

References I

Beck, Amir and Marc Teboulle (2009). "A fast iterative shrinkage-thresholding algorithm for linear inverse problems". In: *SIAM journal on imaging sciences* 2.1, pp. 183–202.

Fort, Gersende et al. (2018). "Stochastic FISTA algorithms: so fast?" In: 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE, pp. 796–800.

Heer, Niklas and et al. (2023). *Speed Comparison of Programming Languages*. Accessed: 2025-01-05. URL:

https://github.com/niklas-heer/speed-comparison.

Wolff, Ulli (1989). "Collective Monte Carlo updating for spin systems". In: *Physical Review Letters* 62.4, p. 361.

Questions

Metropolis-Hastings Algorithm

- Goal: Sample from a target distribution p(x) when direct sampling is difficult
- Algorithm Steps:
 - Start with initial state x_t
 - 2 Propose new state x' from proposal distribution $q(x'|x_t)$
 - Calculate acceptance ratio:

$$\alpha = \min\left(1, \frac{p(x')q(x_t|x')}{p(x_t)q(x'|x_t)}\right)$$

- **a** Accept x' with probability α :
 - If accepted: $x_{t+1} = x'$
 - If rejected: $x_{t+1} = x_t$
- Key feature: Only needs to know p(x) up to a normalizing constant
- Converges to the target distribution as $t \to \infty$

Gibbs Sampling

- Special case of MH with acceptance rate always 1
- Used when sampling from conditional distributions is easier
- For variables $\mathbf{x} = (x_1, ..., x_n)$:
 - Initialize $\mathbf{x}^{(0)}$
 - For each iteration t:

$$\begin{split} x_1^{(t+1)} &\sim p(x_1|x_2^{(t)}, x_3^{(t)}, ..., x_n^{(t)}) \\ x_2^{(t+1)} &\sim p(x_2|x_1^{(t+1)}, x_3^{(t)}, ..., x_n^{(t)}) \\ &\vdots \\ x_n^{(t+1)} &\sim p(x_n|x_1^{(t+1)}, ..., x_{n-1}^{(t+1)}) \end{split}$$

- Advantages:
 - No tuning of proposal distributions needed
 - Higher acceptance rate than MH
 - ► Works well for high-dimensional problems

Approximate Bayesian Computation (ABC)

Key Idea: Approximate posterior when likelihood is intractable

Algorithm:

- Sample $\theta^* \sim p(\theta)$ from prior
- ② Simulate data $D^* \sim p(D|\theta^*)$
- **Outpute** Summary statistics $S^* = S(D^*)$

Key Components:

- Summary statistics $S(\cdot)$
- Distance metric $\rho(\cdot, \cdot)$
- Tolerance threshold ε

Variants:

• ABC-MCMC: Uses Markov Chain exploration

14/21

MS and CVT FISTA, so fast? January 8, 2025

Wolf Sampling (Wolff 1989)

Context: Designed for Monte Carlo simulations of spin-lattice systems (e.g., Ising model).

Uses cluster updates to improve efficiency.

Main Steps:

- **10 Initialization:** Select a random spin s_0 as the cluster seed.
- Cluster Growth:
 - Add aligned neighboring spins to the cluster with probability $P_{\rm add} = 1 e^{-2\beta J}$, where β is the inverse temperature and J the interaction energy.
- Oluster Flip: Flip all spins in the cluster.

Advantages:

- Reduces correlations between successive configurations.
- Effective near the critical temperature.

MS and CVT FISTA, so fast? January 8, 2025 15/21

Numerical Simulations: Overview

- Goal: Compare five algorithms in optimizing a likelihood function in binary graphical models.
- Setting:
 - Sparse matrix θ with p = 100, N = 250.
 - Penalty term: $g(\theta) = \lambda \sum |\theta_{ij}| + \mu \sum \theta_i^2$.
- Algorithms:
 - ► Alg1: Perturbed Proximal Gradient (P-PG).
 - ► Alg2–4: Variants of Perturbed FISTA (P-FISTA).
 - ► Alg5: Averaging-based Perturbed Proximal Gradient.

16/21

Algorithm 1: Perturbed Proximal Gradient (P-PG)

• Update rule:

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_n, g} (\theta_n - \gamma_n H_n),$$

where H_n is a Monte Carlo approximation of the gradient.

- Parameters:
 - Step size: $\gamma_n = O(1/\sqrt{n})$.
 - Sample size: $m_n = O(\sqrt{n})$.
- Results:
 - ▶ Convergence rate: O(1/n) (logarithmic terms ignored).
 - Baseline for comparison.

MS and CVT

Algorithm 2: P-FISTA with $t_n = O(n)$

Accelerated update rule:

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_n, g} (\varphi_n - \gamma_n H_n),$$

where
$$\varphi_n = \theta_n + \frac{t_{n-1}-1}{t_n}(\theta_n - \theta_{n-1})$$
.

- Parameters:
 - Step size: $\gamma_n = O(1)$.
 - Sample size: $m_n = O(n^3)$.
 - ► Momentum: $t_n = O(n)$.
- Results:
 - ► In practice, slower convergence than Alg1.
 - Optimal convergence rate $O(1/n^2)$.

Algorithm 3: P-FISTA with $t_n = O(\sqrt{n})$

- Same update rule as Algorithm 2.
- Parameters:
 - Step size: $\gamma_n = O(1)$.
 - Sample size: $m_n = O(n^3)$.
 - Momentum: $t_n = O(\sqrt{n})$.
- Results:
 - Convergence slower than $t_n = O(n)$ but better than Alg1.
 - Computational cost remains high due to $m_n = O(n^3)$.

Algorithm 4: P-FISTA with $t_n = O(n^{\epsilon})$

- Same update rule as Algorithm 2.
- Parameters:
 - Step size: $\gamma_n = O(1)$.
 - Sample size: $m_n = O(n^3)$.
 - ▶ Momentum: $t_n = O(n^{\epsilon}), \epsilon \ll 1$.
- Results:
 - Practical trade-off between convergence speed and stability.
 - ► The slower convergence in practice
 - Requires further theoretical analysis.

Algorithm 5: Averaging-based P-PG

• Update rule:

$$S_{n+1} = (1 - \delta_{n+1})S_n + \delta_{n+1} \frac{1}{m_n} \sum_{j=1}^{m_n} S(X_j),$$

where $\delta_n = O(n^{-0.9})$.

- Parameters:
 - Sample size: $m_n = O(1)$.
 - Uses all past samples iteratively.
- Results:
 - Improves convergence rate significantly.
 - ▶ Best performance in the simulations.

21/21