CS 154

Finite Automata,
Nondeterminism,
Regular Expressions

Read string left to right

The DFA accepts a string if the process ends in a double circle

A DFA is a 5-tuple M = $(Q, \Sigma, \delta, q_0, F)$

Q is the set of states (finite)

\(\Sigma\) is the alphabet (finite)

 $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is the transition function

 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept/final states

L(M) = set of all strings that M accepts = "the language recognized by M"

A DFA is a 5-tuple M = $(Q, \Sigma, \delta, q_0, F)$

L(M) = set of all strings that M accepts = "the language recognized by M"

Definition: A language L is regular if it is recognized by a DFA; that is, there is a DFA M where L = L(M).

Union Theorem for Regular Languages

The union of two regular languages is also a regular language

Intersection Theorem for Regular Languages

The intersection of two regular languages is also a regular language

Complement Theorem for Regular Languages

The complement of a regular language is also a regular language

The **Reverse** of a Language

Reverse of L:

$$L^{R} = \{ w_{1} ... w_{k} \mid w_{k} ... w_{1} \in L, w_{i} \in \Sigma \}$$

If L is recognized by the usual kind of DFA,
Then L^R is recognized by a DFA that reads its strings
from right to left!

Question: If L is regular, then is L^R also regular?

Can every "Right-to-Left" DFA be replaced by a normal "Left-to-Right" DFA?

L(M) = { w | w begins with 1}

Suppose our machine reads strings from right to left...

Then L(M) = {w | w ends with a 1}. Is this regular?

Reversing DFAs

Assume L is a regular language. Let M be a DFA that recognizes L

We'll build a machine M^R that accepts L^R

If M accepts w, then w describes a directed path in M from start to an accept

First Attempt: Try to define M^R as M with the arrows reversed, turn start state into a final state, turn final states into starts

Problem: M^R IS NOT ALWAYS A DFA!

It could have many start states

Some states may have more than one outgoing edge, or none at all!

Non-deterministic Finite Automata (NFA)

What happens with 100?

We will say this new machine accepts a string x if there is some path reading in x that reaches some accept state from some start state

Non-deterministic Finite Automata (NFA)

Then, this machine recognizes: {w | w contains 100}

We will say this new machine accepts a string x if there is some path reading in x that reaches some accept state from some start state

Another Example of an NFA

At each state, we can have any number of out arrows for a letter $\sigma \in \Sigma$, including ε

Set of strings accepted by this NFA = {w | w contains a 0}

Multiple Start States

We allow *multiple* start states for NFAs, and Sipser allows only one

Can easily convert NFA with many start states into one with a single start state:

A non-deterministic finite automaton (NFA) is a 5-tuple N = (Q, Σ , δ , Q₀, F) where

Q is the set of states

\Sigma is the alphabet

 $\delta: \mathbf{Q} \times \mathbf{\Sigma}_{\varepsilon} \to \mathbf{2}^{\mathbf{Q}}$ is the transition function

 $Q_0 \subseteq Q$ is the set of start states

 $F \subseteq Q$ is the set of accept states

 2^Q is the set of all possible subsets of Q $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ Def. Let $w \in \Sigma^*$. Let N be an NFA. N accepts w if there's a sequence of states $r_0, r_1, ..., r_k \in Q$ and w can be written as $w_1 ... w_k$ with $w_i \in \Sigma \cup \{\epsilon\}$ such that

- 1. $r_0 \in Q_0$
- 2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for all i = 0, ..., k-1, and
- 3. $r_n \in F$

L(N) = the language recognized by N = set of all strings machine N accepts

A language L' is recognized by an NFA N if L' = L(N).

Deterministic Computation

Non-Deterministic Computation

Are these equally powerful???

NFAs are generally simpler than DFAs

An NFA recognizing the language {1}

$$\longrightarrow \bigcirc \longrightarrow \bigcirc$$

Every NFA can be perfectly simulated by some DFA!

Theorem: For every NFA N, there is a DFA M such that L(M) = L(N)

Corollary: A language L is regular if and only if L is recognized by an NFA

Corollary: L is regular iff L^R is regular

From NFAs to DFAs

Input: NFA N = (Q, Σ , δ , Q₀, F)

Output: DFA M = (Q', Σ , δ' , q_0' , F')

To learn if an NFA accepts, we could do the computation in parallel, maintaining the set of *all* possible states that can be reached

Idea: Set $Q' = 2^Q$

From NFAs to DFAs: Subset Construction

```
Input: NFA N = (Q, \Sigma, \delta, Q<sub>0</sub>, F)
Output: DFA M = (Q', \Sigma, \delta', q_0', F')
                   Q' = 2^Q
                   \delta': \mathbf{Q}' \times \mathbf{\Sigma} \rightarrow \mathbf{Q}'
                   \delta'(R,\sigma) = \bigcup \epsilon(\delta(r,\sigma))^*
                                     r∈ R
                   q_0' = \varepsilon(Q_0)
                     F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \}
```

For $S \subseteq Q$, the ε -closure of S is $\varepsilon(S) = \{q \in Q \text{ reachable from some } s \in S \text{ by taking 0 or more } \varepsilon \text{ transitions} \}$

Example of the ε-closure

Given: NFA N = ($\{1,2,3\}$, $\{a,b\}$, δ , $\{1\}$, $\{1\}$)

Construct: Equivalent DFA M

$$M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, ...)$$

Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

If a language can be recognized by a DFA that reads strings from right to left, then there is an "normal" DFA that accepts the same language

Proof?

Given a DFA for a language L, "reverse" its arrows and flip its start and accept states, getting an NFA.

Convert that NFA back to a DFA.

Using NFAs in place of DFAs can make proofs about regular languages *much* easier!

Remember this on homework/exams!

Union Theorem using NFAs?

Regular Languages are closed under concatenation

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$ Given DFAs M_1 and M_2 , connect the accept states of M_1 to the start states of M_2

Regular Languages are closed under star

 $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$

Let M be a DFA, and let L = L(M)

We can construct an NFA N that recognizes L*

Formally, the construction is:

Input: DFA M = (Q,
$$\Sigma$$
, δ , q₁, F)

Output: NFA N = (Q',
$$\Sigma$$
, δ' , {q₀}, F')

$$\mathbf{Q}' = \mathbf{Q} \cup \{\mathbf{q}_0\}$$

$$\mathsf{F}'=\mathsf{F}\cup\{\mathsf{q}_0\}$$

$$\begin{cases} \{\delta(q,a)\} & \text{if } q \in Q \text{ and } a \neq \epsilon \\ \{q_1\} & \text{if } q \in F \text{ and } a = \epsilon \\ \{q_1\} & \text{if } q = q_0 \text{ and } a = \epsilon \\ \emptyset & \text{if } q = q_0 \text{ and } a \neq \epsilon \\ \emptyset & \text{else} \end{cases}$$

Regular Languages are closed under star

How would we *prove* that this NFA construction works?

Want to show:
$$L(N) = L^*$$

2.
$$L(N) \subseteq L^*$$

1. $L(N) \supseteq L^*$

Assume $w = w_1...w_k$ is in L* where $w_1,...,w_k \in L$ We show N accepts w by induction on k

Base Cases:

$$k = 0$$
 $(w = \varepsilon)$
 $k = 1$ $(w \in L)$

Inductive Step:

Assume N accepts all strings $v = v_1...v_k \in L^*$, $v_i \in L$ Let $u = u_1...u_k u_{k+1} \in L^*$, $u_j \in L$

Since N accepts $u_1...u_k$ (by induction) and M accepts u_{k+1} , N also accepts u (by construction)

2. $L(N) \subseteq L^*$

Assume w is accepted by N; we want to show $w \in L^*$

If $w = \varepsilon$, then $w \in L^*$

I.H. N accepts u and takes at most kε-transitions ⇒ u ∈ L*

Let w be accepted by N with k+1.

Write w as w=uv, where v is the substring read after the *last* \varepsilon-transition

Regular Languages are closed under all of the following operations:

- \rightarrow Union: A \cup B = { w | w \in A or w \in B }
- \rightarrow Intersection: A \cap B = { w | w \in A and w \in B }
- **Complement:** ¬A = { w ∈ Σ* | w ∉ A }
- Reverse: $A^R = \{ w_1 ... w_k \mid w_k ... w_1 \in A \}$
- \rightarrow Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$
- → Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

Homework 1 is coming out today... watch for it!

Regular Expressions

Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular expressions over Σ inductively:

For all $\sigma \in \Sigma$, σ is a regexp ϵ is a regexp

is a regexp

If R_1 and R_2 are both regexps, then (R_1R_2) , $(R_1 + R_2)$, and $(R_1)^*$ are regexps

Precedence Order:

*

then ·

then +

Example: $R_1 * R_2 + R_3 = ((R_1 *) \cdot R_2) + R_3$

Definition: Regexps Represent Languages

```
The regexp \sigma \in \Sigma represents the language \{\sigma\}
              The regexp \varepsilon represents \{\varepsilon\}
              The regexp \varnothing represents \varnothing
        If R<sub>1</sub> and R<sub>2</sub> are regular expressions
             representing L<sub>1</sub> and L<sub>2</sub> then:
               (R_1R_2) represents L_1 \cdot L_2
               (R_1 + R_2) represents L_1 \cup L_2
               (R_1)^* represents L_1^*
```

Regexps Represent Languages

For every regexp R, define L(R) to be the language that R represents

A string $w \in \Sigma^*$ is accepted by R (or, w matches R) if $w \in L(R)$

Example: 01010 matches the regexp (01)*0

end