3 Quadrado de pares (+)

Escreva um programa para ler um valor inteiro N e que gere o quadrado de cada um dos valores pares, de 1 até N, inclusive N, se for o caso.

Entrada

A entrada conterá uma linha com um valor inteiro N, 5 < N < 2000.

Saída

A saída deve conter, uma linha para cada quadrado computado. Em cada linha deve constar uma expressão do tipo $x^2 = y$, onde x é um número par e y é o seu valor elevado ao quadrado. Imediatamente após o valor de y deve aparecer o caractere de quebra de linha: '\n'.

Entrada							
6							
Saíd	a						
2^2	=	4					
4^2	=	16					
6^2	=	36					

¹Fonte: Site do URI - https://www.urionlinejudge.com.br/judge/pt/problems/view/1073.

10 Descrição de inteiros (++)

Escreva um algoritmo em Linguagem C que leia um número inteiro (maior que zero e de no máximo 4 dígitos), imprima na tela quantas unidades de milhar, centenas, dezenas e unidades formam o número e a qual ordem o número pertence.

Entrada

O programa deve ler um número inteiro.

Saída

O algoritmo deve imprimir a mensagem "Numero invalido!" se o número não está dentro do intervalo estabelecido e, caso seja válido, realizar a decomposição do número e decidir se as palavras devem ser impressas no singular ou no plural. Caso a quantidade de uma ordem seja 0, o algoritmo não deve imprimir a quantidade da ordem. O algoritmo deve reproduzir fielmente os exemplos abaixo.

Entrada
1257
Saída
(quarta ordem) 1257 = 1 unidade de milhar + 2 centenas + 5 dezenas + 7 unidades = 1000 + 200 + 50 + 7

Entrada											
725											
Saída											
(terceira ordem	725 = 7	centenas	+ 2	dezenas	+ 5	unidades	= 700) +	20	+	5

Entrada	
203	
Saída	
(terceira ordem)	203 = 2 centenas + 3 unidades = 200 + 3

Entrada										
12										
Saída										
(segunda	ordem)	12 =	1	dezena	+	2	unidade =	10	+	2

1 Achei (+)

Faça um programa que receba um vetor V com N números inteiros e posteriormente receba M números e verifique se eles estão ou não no vetor.

Entrada

O programa terá apenas um caso de teste. Na primeira linha do caso de teste há um número inteiro N, $1 \le N \le 100000$, representando o tamanho do vetor V. Na linha seguinte haverá N números inteiros separados por um espaço em branco, que são nos N valores do vetor V. Na terceira linha será informado um número inteiro M, $1 \le M \le 1000$, representando a quantidade de buscas que serão efetuadas no vetor. Logo em seguida haverá M linhas, cada uma com um número inteiro que deve ser buscado no vetor V.

Saída

Seu programa gera M linhas de saída. Cada uma com o resultado da Busca dos M números inteiros no vetor V. Quando o valor estiver no vetor V escreva "ACHEI", quando não estiver escreva "NAO ACHEI", com todas as letras maiúsculas e sem acentos. Ao final quebre uma linha.

Entr	ada	a						
10								
9 0	1	3	8	2	7	4	6	5
4								
1								
23								
4								
7								
Saída	a							
ACHI	ΞΙ							
NAO	A	CHE	ΞΙ					
ACHI	ΞΙ							
ACHI	ΞΙ							

10 Frequência e Maior (++)

Dada uma sequência de N notas entre 0 e 10, escreva um programa que exiba o valor da última nota informada e quantas vezes ela apareceu no conjunto. O programa deve exibir ainda a maior nota informada e a posição (índice do vetor) da sua primeira ocorrência.

Entrada

Na primeira linha há um inteiro N, sendo $1 \le N \le 10000$ representando a quantidade de notas da sequência. Não é necessário validar o valor de N na entrada. Nas N linhas seguintes haverá um número inteiro entre 0 e 10, inclusive, em cada linha.

Saída

O programa gera 2 linhas de saída. A primeira linha exibirá a frequência da última nota informada e a segunda linha exibirá a maior nota e a posição (índice do vetor) da sua primeira ocorrência, seguindo o formato da saída apresentado a seguir. Não se esqueça de quebrar uma linha após a última impressão.

Entra	da	
11		
5		
6		
3		
4		
3		
8		
7		
4		
8		
6		
4		
Saída		
Nota	4,	3 vezes
Nota	8,	indice 5

100 Departamento

Utilize uma tabela Lua (e o construtor de tabela) para fazer uma estrutura que armazene os dados do departamento de uma empresa descrito abaixo:

Departamento:

- Nome: Compra e venda exterior
- Responsável: Vladmir Brasileiro
- Telefones: 1234-9832, 3832-3984 e 3782-3823
- Colaboradores
 - Nome: Maria dos Santos, e-mail: mds@dep.br
 Nome: Jessika Bragança, e-mail: jb@dep.br
 Nome: Filipino Bergonha, e-mail: fb@dep.br

Depois, imprima as informações do departamento (valores da variável) na tela.

101 Alunos

Faça um programa que leia uma sequência de alunos do teclado. Cada aluno possui as seguintes informações:

- matricula
- nome
- idade.

Quando a matrícula igual a 0 (zero), a leitura termina.

Em seguida:

- Exiba a maior idade, menor idade e a média das idades.
- Exiba a matrícula e o nome de todos os alunos, mas ordenados por nome.

Obs:

- Utilize o algoritmo "selection sort" com um array auxiliar para ordenar.
- A função "table.remove" podem ajudar no programa.