

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$\therefore \left(\frac{s+t}{C}+\frac{C+sn}{Cmn}\right)y = \left(\frac{C+s+t}{C}+\frac{s}{Cm}\right)x...(3); y = \frac{(C+sn)x}{sn}...(4).$$

(4) in (3) gives C = mn(sn - s - t) - 2sn.

292. Proposed by REV. R. D. CARMICHAEL, Anniston, Ala.

Find the sum of the series
$$1^2 + 5^2 + 14^2 + 30^2 + ... + \left[\frac{1}{6}n(n+1)(2n+1)\right]^2$$
.

Solution by THEODORE L. DeLAND, Treasury Department, Washington, D. C.

The differences and the terms of this special series may be arranged as follows for the first seven terms:

$u_1 = 1^2$		5^2		14^2		30^{2}		55^{2}		91^{2}		140^{2}
$u_1=1$		25		196		900)	3025	i	8281	1	L 96 00
$\triangle u_1 = .$	24		171		704		2125		5256		11319	•
$\Delta^2 u_1 = .$		147		533		1421		3131		6063		•
$\triangle u_1 = .$			386		888		1710		2932	•		•
$\triangle u_1 = .$				502		822		1222	·	•		
$\Delta^5 u_1 = .$			•		320		400	•	•	•	•	•
$\Delta^{6}u_{1}=.$		• •	•	•	•	80	•		•	•	•	•

Compute the series for ten terms, or more, and it will be found that $\triangle^{6}u_{1}$ are all 80, or constant, therefore all the higher differences vanish. To sum the series we have the value of the leading term and the six leading differences. I have given a general formula for S_{n} , on page 163, of The American Mathematical Monthly for August-September, 1906, see equation (E). We have:

$$S_n = nu_1 + \frac{n(n-1)}{2} \triangle u_1 + \frac{n(n-1)(n-2)}{3!} \triangle u_1 + \dots + \frac{n(n-1)\dots(n-6)}{7!} n^6 u_1 \dots (1).$$

From the problem and the above table we have: $u_1=1$, $\triangle'=24$, $\triangle^2=147$, $\triangle^3=386$, $\triangle^4=502$, $\triangle^5=320$, and $\triangle^6=80$. Substitute numerical values in (1), expand the terms, consolidate like terms, reduce, and we have:

$$S_n = \frac{20n^7 + 140n^6 + 371n^5 + 455n^4 + 245n^3 + 35n^2 - 6n}{1260} \dots (2),$$

$$=\frac{1}{1260}[n(n+1)(n+2)(2n+1)(2n+3)(5n^2+10n-1)].$$

Also solved by E. B. Escott, and G. B. M. Zerr. Professor Escott solved the problem by putting the general term equal to A+Bn+Cn(n+1)+...+Gn(n+1)(n+2)(n+3)(n+4)(n+5). Then by letting n=0,-1,-2, etc., he determines A,B,...,G. The general term is thus reduced to five terms of the form n(n+1)...(n+r-1). Since the sum of a series whose general term is n(n+1)(n+2)...(n+r-1) is [n(n+1)...(n+r-1)]/[r+1] finds the sum which agrees with that obtained by Mr. DeLand.

Dr. Zerr decomposed the general term in a similar way and after summing the five similar series thus arising he gets the same result as that given above.

GEOMETRY.

326. Proposed by L. E. NEWCOMB, Los Gatos, Cal.

The circle C of radius pR encloses the circles A_1 , B_1 of radii R and (p-1)R, respectively; the circle B_1 is tangent to A_1 , B_1 , C_1 ; the circle B_2 is tangent to A, B_1 , C; the circle B_3 to A, B_2 , C, ..., B_n to A, B_{n-1} , C. Find the radius of the circle B_n .

Solution by the PROPOSER.

First find the locus of centers of circles tangent to A and C, taking A' the point of contact of A and C as the origin.

Let $r, r_1, r_2, ..., r_n$ be the radii of $B, B_1, ..., B_n$, respectively; r'=radius of any circle tangent to circles whose centers are A, C; and x, y co-ordinates of its

centers. Then
$$(r'+R)^2 - (R-x')^2 = (pR-r')^2 - (pR-x')^2 = y'^2 \dots (1)$$
.

$$\therefore r = \frac{(p-1)x'}{p+1}...(2)$$
, and $x' = \frac{(p+1)r'}{p-1}...(3)$.

Substituting the value of x' in (1), we have

$$(R+r')^2-(R-\frac{p+1}{p-1}r')^2=y'^2.$$

$$\therefore y' = \frac{2}{p-1} \sqrt{[p(p-1)Rr' - pr'^2]}. \quad \text{Since } r = (p-1)R \text{ and } x = R(p+1),$$

$$(p-1)R \text{ is of the form } \frac{p(p-1)R}{0^2(p-1)^2 + p}.$$

2. Find r_1 . Join centers of A, B, and C with B_1 , B_2 , ..., B_n . Draw perpendiculars from centers B_1 , B_2 , ..., to the diameter of C passing through A'.

$$(r+r'_1)^2-(x-x_1)^2=(pR-r_1)^2-(pR-x_1)^2...(4).$$
 $x_1=\left(\frac{p+1}{p-1}\right)r_1.$

Substitute the values of x, r, x_1 in (4); whence

$$4Rr_1(p^2-p+1) = (p-1)pR^2. \quad \therefore r_1 = \frac{p(p-1)R}{(p-1)^2+p} = \frac{p(p-1)R}{1^2(p-1)^2+p}.$$