The Entropy of Hawking Radiation

Sriram Akella

TIFR, Mumbai

June 23, 2023

Introduction The Paradox (Version 1)

Entropy in Quantum Systems
Replica Trick
Holographic Entanglement Entropy
Quantum Extremal Surfaces

Paradox (Version 2)

JT Gravity + CFT

The Geometry of the black hole
Single Interval

Two Intervals

Introduction

- ▶ Black Hole Information Paradox deepest mystery of the universe.
- ▶ Black holes radiate¹:

$$T_H = \frac{\hbar \kappa}{2\pi},\tag{1}$$

4 D > 4 P > 4 E > 4 E > 9 Q P

where κ is the surface gravity.

► Unitary evolution leading to information loss?²

¹Hawking, S.W., 1975. Particle creation by black holes. Communications in mathematical physics, 43(3), pp.199-220.

²Hawking, S.W., 1976. Breakdown of predictability in gravitational collapse. Physical Review D, 14(10), p.2460.

The Paradox (Version 1)

Figure: A star in a pure state collapses to a black hole which evaporates and leaves thermal radiation behind.

- ► If the fundamental theory is unitary, the above process is impossible.
- ▶ Where did we go wrong? To answer this, we consider

Entropy in Quantum Systems

▶ Given a pure state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$, the von Neumann entropy is

$$S_A = -\operatorname{Tr} \rho_A \log \rho_A = S_B = -\operatorname{Tr} \rho_B \log \rho_B, \qquad (2)$$

where $\rho_A = \operatorname{Tr}_B |\psi\rangle \langle \psi|$.

▶ Alternatively, the $n \to 1$ limit of the Rényi entropies:

$$S^{(n)}(\rho) = \frac{1}{1-n} \log \operatorname{Tr} \rho^n.$$
 (3)

▶ In field theories, there is the *replica trick* to compute $Tr(\rho^n)$.

Replica Trick

Figure: The density matrix ρ_A in a (1+1)-dimensional QFT.

- ► States are prepared by a path integral with fixed Cauchy data.
- ▶ To get ρ_A for a region A on a Cauchy slice, take two copies, glue A^c , and path integrate.

Figure: The computation for $\operatorname{Tr} \rho^3$.

▶ To get $\operatorname{Tr} \rho_A^n$, we take n copies of the sheet and glue the A's cyclically.

Holographic Entanglement Entropy

- ▶ Let $\tilde{\mathcal{M}}_n$ be the ramified cyclic cover. We assume it has a symmetry under Z_n ³. Let $\mathcal{M}_n = \tilde{\mathcal{M}}_n/Z_n$ be the quotient space.
- ► Insert cosmic branes with tension

$$4G_N T_n = 1 - \frac{1}{n} \tag{4}$$

to reproduce conical singularities.

► The gravitational action is then

$$\frac{1}{n}I_{\mathsf{grav}}[\tilde{\mathcal{M}}_n] = I_{\mathsf{grav}}[\mathcal{M}_n] + T_n \int_{\Sigma_{d-2}} \sqrt{g}. \tag{5}$$

- ► The position of the cosmic branes are fixed by Einstein's equations.
- ▶ The entanglement entropy on \mathcal{M}_n with the cosmic branes is

$$S = \frac{A_{\text{minimal}}}{4G_N}.$$
 (6)

Quantum Extremal Surface

▶ In the presence of matter, the gravitational entropy is

$$S_{\text{gen}} = \frac{A(X)}{4G_N} + S_{\text{matter}}(B), \tag{7}$$

where \boldsymbol{B} is the region between minimal surface \boldsymbol{X} and the boundary.

► The QES proposal⁴ states that

$$S = \min_{X} \left\{ \text{ext}_{X} \left[\frac{A(X)}{4G_{N}} + S_{\text{matter}}(\Sigma_{X}) \right] \right\}, \tag{8}$$

where Σ_X is the region between X and the boundary.

We'll use this to compute entropy of the black hole and Hawking radiation.

⁴Engelhardt, N. and Wall, A.C., 2015. Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime. Journal of High Energy Physics, 2015(1), pp.1 -27.

Paradox (Version 2)

► The *fine-grained entropy* of a state ρ is the von Neumann entropy:

$$S(\rho) = -\operatorname{Tr} \rho \log \rho. \tag{9}$$

- ▶ Say $\{O_i\}$ are some simple observables we're interested in.
- ▶ The *coarse-grained entropy* of a state ρ is

$$S_{cg}(\rho) = \max_{\tilde{\rho}} S(\tilde{\rho}) \tag{10}$$

where the $\tilde{\rho}$ are such that

$$\operatorname{Tr} \tilde{\rho} O_i = \operatorname{Tr} \rho O_i. \tag{11}$$

► The Bekenstein entropy

$$S = \frac{A}{4G_N} \tag{12}$$

is to be thought of as the coarse-grained entropy of the black hole⁵.

► We run into a paradox if the entropy of radiation exceeds the Bekenstein entropy.

⁵Almheiri, A., Hartman, T., Maldacena, J., Shaghoulian, E. and Tajdini, A., 2021. The entropy of Hawking radiation. Reviews of Modern Physics, 93(3), p.035002.

JT Gravity + CFT

lacktriangle The model we'll consider is JT Gravity coupled to a CFT. In addition, the same CFT in flat space is glued to the AdS boundary.

Figure: Thermofield double prepared as a path integral.

- ▶ The matter CFT is free to leak out.
- ► The action for this theory is

$$S = \frac{S_0}{4\pi} \int_{\Sigma_2} R + \int_{\Sigma_2} \frac{\phi}{4\pi} (R+2) + \log Z_{\mathsf{CFT}[g]} + \mathsf{GHY}. \tag{13}$$

▶ We'll consider a simple thermofield double state in this theory.

▶ On the manifold $\tilde{\mathcal{M}}_n$, the gravitational part of the action becomes (ignoring the Gibbons-Hawking term)

$$-\frac{1}{n}I_{\rm grav} = \frac{S_0}{4\pi} \int R + \int \frac{\phi}{4\pi} (R+2) - \left(1 - \frac{1}{n}\right) \sum_i \left[S_0 + \phi(w_i)\right],\tag{14}$$

where w_i are the positions of the cosmic branes.

The Geometry of the black hole

- ▶ The JT gravity theory above describes an AdS_2 black hole glued to flat space.
- ▶ In complex co-ordinates, the metric is

$$ds_{\mathsf{in}}^2 = \frac{4\pi^2}{\beta^2} \frac{dy d\bar{y}}{\sinh^2 \frac{\pi}{\beta} (y + \bar{y})} \tag{15}$$

inside, and

$$ds_{\mathsf{out}}^2 = \frac{1}{\epsilon^2} dy d\bar{y} \tag{16}$$

outside.

Single Interval

- ▶ In this setup we consider a single interval B = [0, b] in the flat region joined to the AdS boundary.
- ▶ In \mathcal{M}_n , we introduce a cosmic brane at -a as shown above.
- ► The generalized entropy is

$$S_{\text{gen}} = S_0 + \phi(-a) + S_{\text{CFT}}([-a, b]).$$
 (17)

- ► We know the black hole metric. We can solve for the dilaton from the action.
- ▶ The entanglement entropy of an interval in a CFT is known⁶.
- ightharpoonup Extremizing S_{gen} as a function of a, we get

$$\sinh\left(\frac{2\pi a}{\beta}\right) = \frac{12\pi\epsilon\phi}{\beta c} \frac{\sinh\left(\frac{\pi}{\beta}(b+a)\right)}{\sinh\left(\frac{\pi}{\beta}(a-b)\right)}.$$
 (18)

⁶Calabrese, P. and Cardy, J., 2009. Entanglement entropy and conformal field theory. Journal of physics A: Mathematical and Theoretical, 42(50), p.504005.

Two Intervals

ightharpoonup Collect the Hawking radiation in R shown above.

- ► From the QES proposal, let's choose *X* so that we have the island *I* contribution. At late times, this dominates the Hawking saddle.
- ► Say, $P_1 = (-a, t_a)$, $P_2 = (b, t_b)$, then $P_3 = (-a, -t_a + i\pi)$, and $P_4 = (b, -t_b + i\pi)$.
- ► The generalized entropy is

$$S_{\text{gen}} = 2S_0 + 2\phi(-a) + S_{\text{CFT}}([P_4, P_3] \cup [P_1, P_2]).$$
 (19)

- ► The entropy of two intervals is non-universal. It depends on the CFT under consideration.
- ► At late times, the island contribution dominates, and the QES proposal gives

$$S_{\text{radiation}} = \min\{S_{\text{gen}}^{\text{island}}, S_{\text{gen}}^{\text{no island}}\},$$
 (20)

and reproduces the expected Page curve.