(Discrete Mathematics)

Tutorial sheet

Introduction to Proofs

Question 1.

Prove that the sum of any two even integers is even. In an other way show that:

 $\forall n, m \in \mathbb{Z}$, if n and m are even numbers then n+m is also an even number.

Question 2.

Use direct proof to show that: $\forall n, m \in \mathbb{Z}$, if n is an even number and m is an odd number then 3n + 2m is also an even number.

Question 3.

Prove that the sum of any two odd integers is odd . In an other way show that:

 $\forall n, m \in \mathbb{Z}$, if n and m are odd numbers then n + m is an even number.

Question 4.

Show that for any odd number integer n, n^2 is also odd. in another way show that:

 $\forall n \in \mathbb{Z}$, if n is odd then n^2 is also odd.

Question 5.

Show that: $\forall x \in \mathbb{R} \ \forall m \in \mathbb{Z}, |x+m| = |x| + m$.

Question 6.

Use proof by contraposition show that for any integer n, if n^2 is even then n is even

Question 7.

topic6

Use proof by contraposition show that for any integer n, if $5 \nmid n^2$ then $5 \nmid n$ Question 8.

Use proof by contradiction to show that for any integer n, if n^2 is even then n is even

Question 9.

Use proof by contradiction to show that for any integer n, 3n + 2 is not divisible by 3.

Question 10.

Use proof by contradiction to show that for any integer n, 7n + 4 is not divisible by 7.

Question 11.

Write the following series in \sum notation:

1.
$$1+3+5\cdots(2n-1)$$

2.
$$1+2+4+8+16+\cdots+1024$$

Question 12.

Given the following formulae

$$\sum_{k=1}^{n} 1 = n \qquad \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Evaluate the following

1.
$$\sum_{k=1}^{10} (4k - 2)$$

2.
$$\sum_{k=41}^{100} k$$

3.
$$3+6+9+12+\cdots+300$$

Question 13.

Given the following arithmetic sequence:

$$a_n: 2, 5, 8, 11, 14, \cdots$$

- 1. Find the common difference d
- 2. Calculate the next term;
- 3. Write down the n^{th} term in terms of n.
- 4. Let $S_n = \sum_{k=1}^n a_n$ be the sum of the first n^{th} terms of this sequence. Write down S_n in terms of n and a_1 .
- 5. Workout the value of S_{100}

Question 14.

Let the sequence u_n be defined by the recurrence relation

$$u_{n+1} = u_n + 2n$$
, for $n = 1, 2, 3, ...$ and let $u_1 = 1$.

Use mathematical induction to show that the *nth* term, where $n \geq 0$, is given by

$$u_n = n^2 - n + 1.$$

Question 15.

Screencast 4

Let S_n be a series defined as follows:

$$S_n = 1^2 + 2^2 + 3^3 + \dots + n^2 = \sum_{k=1}^n k^2$$

Use mathematical induction to prove that each positive integer n, $S_n = \frac{n(n+1)(2n+1)}{6}$.

Question 16.

Let
$$S_n = \sum_{i=1}^{n} (2i - 1) = n^2$$
 for all $n \in \mathbb{Z}^+$.

- 1. Find S_1 and S_2 .
- 2. Prove by induction that $S_n = n^2$ for all $n \in \mathbb{Z}^+$.

Question 17.

Use mathematical induction to show that for all integer $n \geq 3$, $2n + 1 < 2^n$ Question 18.

Given the following sequence defined by

$$u_{n+2} = 4u_{n+1} - 3u_n$$

and initial terms $u_1 = 4$ and $u_2 = 10$.

- 1. Calculate u_3
- 2. Use strong mathematical induction to prove that

$$u_n = 3^n + 1, \ \forall \ n > 1.$$

Question 19.

Use strong mathematical induction to prove that if n is an integer greater than 1, then it is either a prime or can be written as the product of primes.