TP1

Para 35º:

Registamos os seguintes dados:

$$y_0 = 0.263 m$$

$$x_0 = 0 m$$

$$D_{esfera} = 0.0255 m$$

$$T_{passagem} = 0.0075 s$$

$$v_0 = 3.4 m/s$$

$$\theta_0 = 35^{\circ}$$

Na equação:

$$y = y_0 + \tan(\theta) x - \frac{1}{2} \frac{g}{v_0^2(\cos^2(\theta))} x^2$$

$$y = a_1 + a_2 x - a_3 x^2$$

Temos como previsto os seguintes valores:

$$a_1 = 0.263$$

 $a_2 = tan\theta_0 = 0.7$
 $a_3 = 0.632$

Fazem se vários lançamentos, com a madeira a uma distância x. Na colisão, há uma folha que marca o ponto de colisão, assim sabemos uma média da altura y. Com vários valores de x com o respetivo y, obtém-se um conjunto de pontos da trajetória. Dessa forma, ajustase uma função quadrática e obtêm-se a trajetória da partícula.

$$a_1 = 0.26$$
 $a_2 = 0.64$
 $a_3 = 0.67$

Para 50º:

Registamos os seguintes dados:

$$y_0 = 0.263 m$$

$$x_0 = 0 m$$

$$D_{esfera} = 0.0255 m$$

$$T_{passagem} = 0.0075 s$$

$$v_0 = 3.4 m/s$$

$$\theta_0 = 50^{\circ}$$

Temos como previsto os seguintes valores:

$$a_1 = 0,263$$

$$a_2 = 1,19$$

$$a_3 = 1.03$$

Como resultado temos:

$$a_1 = 0.26$$

$$a_2 = 1.16$$

$$a_3 = 1,13$$

Para 60º:

Registamos os seguintes dados:

$$y_0 = 0,263 m$$

$$x_0 = 0 m$$

$$D_{esfera}=0.0255\,m$$

$$T_{passagem} = 0.0075 s$$

$$v_0 = 3.4 \, m/s$$

$$\theta_0 = 60^{\circ}$$

Temos como previsto os seguintes valores:

$$a_1 = 0.263$$

$$a_2 = 1,73$$

$$a_3 = 1,70$$

Como resultado temos:

$$a_1 = 0.25$$

$$a_2 = 1,64$$

$$a_3 = 1,75$$

Extra:

Como $\eta_{ar}=0.0000174\,Ns/m^2$, temos:

$$b = 6\pi r \eta_{ar}$$

Caso consideremos o atrito:

$$y = y_0 + (\tan(\theta) + \frac{gm}{bv_0\cos(\theta)})x + \frac{gm^2}{b^2}\ln\left(1 - \frac{bx}{mv_0\cos(\theta)}\right)$$

TP2

IMPORTANTE:

Alguns cuidados que nós tivemos:

- Manter sempre a bandeira na mesma posição;
- Nivelamento da calha (de modo a não criar uma aceleração segundo o eixo paralelo ao plano);
- Não acelerar o cavaleiro na região onde a bandeira passa pela fotocélula.
- -Após a realização da experiência e a análise dos resultados, temos alguns aspetos que podíamos ter melhorado durante a experiência:
- -Colisões com menores velocidades;
- -Alinhamento dos cavaleiros;
- -Para uma melhor análise de dados com incertezas e desvios, deveríamos ter anotado as velocidades iniciais e finais dos dois cavaleiros;
- -Colocar ponto do CM no centro do cavaleiro.

TP3

(Relatório)

TP4

1ºParte

L = 2,093 m (Medido do ponto da coluna ao centro da roldana)

 $\mu = 0.00022 \, kg/m$

T = mg

Quando $m = I = 0.0426 \ kg$:

Nº de antinodos	Frequência (Hz)	Frequência do ajuste (Hz)	Desvio percentual das frequências (%)
1	12,42	10,42	19,24
2	24,85	20,83	19,29
3	37,2	31,25	19,05
4	49,62	41,66	19,10
5	62,16	52,08	19,36
6	74,49	62,49	19,20
7	87,15	72,91	19,53

Regressão linear		
Declive, m	Ordenada na origem, b	
12,43	0	

Valor esperado de m	Desvio percentual de m (%)	
10,42	19,3	

Valor obtido da tensão	Desvio percentual da tensão (%)	
0,5955	29,8	

$$f = \frac{n}{2l} \sqrt{\frac{T}{\mu}} \leftrightarrow T = \mu (m2l)^2$$

E, assim sucessivamente...

No final juntando todos os valores temos:

	Valor	Velocidade esperada	Velocidade obtida	Desvio percentual das
Massa	(Kg)	(m/s)	(m/s)	velocidades (%)
1	0,04263	43,60	52,03	19,33
I+A	0,14252	79,72	77,42	2,88
I+A+C	0,24239	103,96	97,29	6,41
I+A+C+D	0,34239	123,56	120,06	2,83
I+A+C+D+F	0,44237	140,45	136,11	3,09

Verifica-se uma diminuição do desvio, conforme é aumentada a tensão.

2ºParte

$$L_{barra}=1{,}152\,m$$

$$T = 20^{\circ}C$$

Temos que,

$$\lambda_{barra} = \frac{L_{barra}}{2}$$

porque os pontos se encontram a ¼ e ¾ da barra. Também:

$$v_{som\ ar} = (331.45 + 0.6T)m/s$$

Com o espaçamento entre 2 máximos ou mínimos temos o valor de λ_{ar} e assim com a seguinte equação:

$$v_{som \ ar} = \frac{\lambda_{ar}}{\lambda_{barra}} v_{som \ barra}$$

TP5

(Relatório)

TP6

1ªParte

Pêndulo direita				
Medidas	Tempo de 10 oscilações (s)	Período (s)	Frequência (Hz) v _o	
1	16,7	1,67	0,60	
2	16,4	1,64	0,61	
3	16,5	1,65	0,61	
4	16,5	1,65	0,61	
5	16,4	1,64	0,61	
Valor médio:	16,5	1,65	0,61	

Massa blocos (kg)	1,88461
Massa parafuso (kg)	0,11907
(M)assa total (kg)	2,00368

	M colocado na extremidade inferior do pêndulo				
	Pêndulo esque	rda			
	Período				
Medidas	Tempo de 10 oscilações (s)	(s)	Frequência (Hz) v ₁		
1	19,1	1,91	0,52		
2	18,8	1,88	0,53		
3	19	1,9	0,53		
4	19	1,9	0,53		
5	19,1	1,91	0,52		
Valor médio:	19	1,9	0,53		

M colocado na extremidade superior do pêndulo					
	Pêndulo esquerda				
	Período				
Medidas	Tempo de 10 oscilações (s)	(s)	Frequência (Hz) v₂		
1	12,6	1,26	0,79		
2	12,7	1,27	0,79		
3	12,7	1,27	0,79		
4	12,6	1,26	0,79		
5	12,6	1,26	0,79		
Valor médio:	12,6	1,26	0,79		

Verifica-se então que:

$$v_1 > v_0 > v_2$$

Ou seja, a frequência do pêndulo depende do centro de massa da barra, quanto mais o centro de massa está afastado do eixo de oscilação menor a frequência (quanto maior a distância da massa ao eixo de oscilação menor a frequência).

Nota: A massa não foi colocada exatamente na extremidade superior em v_2 .

2ªParte

São registados os períodos do pendulo de ressonância e a sua amplitude máxima numa tabela:

Temos,

mac (Kg)	0,10003	
L (m)	1	

Ensaio	D (m)	Amplitude máxima (m)	Frequência (Hz)	Amplitude máxima ajustada (m)	Desvio ²	Chi²
1	0,067	0,067	0,53	0,002	0,004284	0,04
2	0,073	0,073	0,55	0,006	0,004480	
3	0,082	0,082	0,56	0,017	0,004266	
4	0,097	0,097	0,58	0,040	0,003283	
5	0,116	0,117	0,60	0,094	0,000496	
6	0,127	0,128	0,61	0,116	0,000125	
7	0,137	0,138	0,61	0,137	0,000001	
8	0,163	0,164	0,62	0,171	0,000043	
9	0,17	0,172	0,62	0,190	0,000327	
10	0,18	0,182	0,63	0,216	0,001157	
11	0,198	0,201	0,63	0,236	0,001282	
12	0,227	0,231	0,64	0,271	0,001614	
13	0,393	0,415	0,66	0,369	0,002072	
14	0,422	0,449	0,68	0,399	0,002470	
15	0,245	0,250	0,72	0,278	0,000759	
16	0,135	0,136	0,74	0,187	0,002627	
17	0,112	0,112	0,77	0,069	0,001925	
18	0,093	0,093	0,80	0,018	0,005648	

Onde a amplitude máxima corresponde a $\tan\left(\frac{D}{L}\right)$ e com os valores de amplitude máxima e frequência podemos ajustar uma gaussiana aos pontos experimentais, com os seguintes parâmetros:

Parâmetros da função gaussiana: G(x):A*exp(-(x-X)^2/2*σ^2)		
Α	0,400	
X	0,681	
σ	0,047	

Onde A corresponde a amplitude máxima, w0 a frequência de exitação.

Como:

(b) Efeitos de ressonância

O caso mais interessante é o do amortecimento fraco, $\gamma << \omega_{_0}$. No caso limite em que $\gamma \to 0$, as (4.4.6) e (4.4.7) reduzem-se às (4.3.10) e (4.3.11), que correspondem aos gráficos da Figura 4.6. Para $\gamma << \omega_{_0}$, devemos esperar, portanto, que, na vizinhança de $\omega = \omega_{_0}$, a amplitude seja máxima e a fase varie rapidamente.

Vamos tomar ω suficientemente próximo de ω, para que se tenha

$$|\omega - \omega_0| \ll \omega_0$$
 (4.4.9)

Neste caso,

$$\omega_0^2 - \omega^2 = \underbrace{\left(\omega_0 + \omega\right)}_{=2\omega_0 + \omega - \omega_0} \left(\omega_0 - \omega\right) = 2\omega_0 \left(\omega_0 - \omega\right)$$

e $\gamma \omega = \gamma (\omega_0 + \omega - \omega_0)$, de modo que as (4.4.6) e (4.4.7) ficam

$$A^{2}(\omega) = \frac{F_{0}^{2}}{m^{2} \left[4\omega_{0}^{2}(\omega_{0} - \omega)^{2} + \gamma^{2}\omega_{0}^{2} \right]}, \quad \varphi(\omega) = -\operatorname{tg}^{-1} \left[\frac{\gamma \omega_{0}}{2\omega_{0}(\omega_{0} - \omega)} \right]$$

ou seja,

$$A^{2}(\omega) = \left(\frac{F_{0}}{2m\omega_{0}}\right)^{2} \frac{1}{\left[\left(\omega - \omega_{0}\right)^{2} + \frac{\gamma^{2}}{4}\right]}$$
 (4.4.10)

Figura 4.8 Amplitude e fase perto de ressonância.

$$\varphi(\omega) = -tg^{-1} \left(\frac{\gamma}{2(\omega_0 - \omega)} \right)$$
(4.4.11)

A Figura 4.8 mostra o andamento de A^2 e ϕ dados pelas (4.4.10), (4.4.11). A forma de A^2 é típica de um pico de ressonância associado a uma ressonância estreita. O valor máximo A^2_{max} é atingido para $\omega = \omega_0$ e A^2 cai à metade do valor máximo nos pontos $\omega = \omega_0 \pm \gamma/2$. A distância $\Delta \omega = \gamma$ entre eles chama-se semilargura do pico de ressonância, e $A^2(\omega)$ cai rapidamente fora da semilargura do pico. A defasagem $\phi(\omega)$ entre o deslocamento e a força externa [cf. (4.4.1) e (4.4.8)] também varia rapidamente dentro da semilargura do pico, desde $\phi < 0$, $|\phi| <<1$, para $\omega <<\omega_0$ até $\phi \approx -\pi$ para $\omega >>\omega_0$ [cf. (4.4.11)], passando por $\phi = -\pi/2$ na ressonância, $\omega = \omega_0$ (Figura 4.8).

Gráfico:

			Amplitude	Frequência	Amplitude máxima		
Ensaio	D (m)	A^2	máxima (m)	(Hz)	ajustada^2 (m)	Desvio ²	Chi ²
1	0,067	0,004502	0,067	0,53	0,000	0,000020	0,00
2	0,073	0,005348	0,073	0,55	0,000	0,000029	
3	0,082	0,006754	0,082	0,56	0,000	0,000045	
4	0,097	0,009468	0,097	0,58	0,000	0,000085	
5	0,116	0,013578	0,117	0,60	0,003	0,000111	
6	0,127	0,016304	0,128	0,61	0,006	0,000113	
7	0,137	0,019006	0,138	0,61	0,009	0,000098	
8	0,163	0,027047	0,164	0,62	0,018	0,000090	
9	0,17	0,029466	0,172	0,62	0,024	0,000032	
10	0,18	0,033113	0,182	0,63	0,035	0,000003	
11	0,198	0,040252	0,201	0,63	0,045	0,000027	
12	0,227	0,053352	0,231	0,64	0,068	0,000209	
13	0,393	0,171865	0,415	0,66	0,165	0,000051	
14	0,422	0,201577	0,449	0,68	0,203	0,000002	
15	0,245	0,062511	0,250	0,72	0,064	0,000001	
16	0,135	0,018449	0,136	0,74	0,019	0,000000	
17	0,112	0,01265	0,112	0,77	0,001	0,000138	
18	0,093	0,008699	0,093	0,80	0,000	0,000075	

Temos:

Parâmetros da função gaussiana: G(x):A*exp(-(x-X)^2/2*σ^2)			
A^2	0,203		
X	0,680		
σ	-0,027		

Por isso:

Logo,

 $(A^2)/2=0,1$

Então y=0,06

Os gráficos são:

FASE 1	FASE 2		
-0,17365	-0,17365	-1,576	1,565589
-0,1877	-0,1877	-1,89499	1,246603
-0,20378	-0,20378	-2,1557	0,985892
-0,22239	-0,22239	-2,34806	0,793533
-0,24414	-0,24414	-2,48635	0,655245
-0,26991	-0,26991	-2,58702	0,554569
-0,30087	-0,30087	-2,66221	0,479386
-0,33872	-0,33872	-2,7199	0,421688
-0,3859	-0,3859	-2,76531	0,376279
-0,44608	-0,44608	-2,80185	0,339743
-0,52482	-0,52482	-2,83182	0,309777
-0,63072	-0,63072	-2,8568	0,284793
-0,77666	-0,77666	-2,87793	0,263663
-0,97952	-0,97952	-2,89602	0,24557
-1,25157	-1,25157	-2,91168	0,22991

Nota:

A maior dificuldade desta experiência era medir os valores de D.

TP7

1ªParte

	Medida
Massa atrito	
(Kg)	0,00791
Massa	
suspensa (Kg)	0,10682
Massa disco	
(Kg)	1,37702
Massa (Kg)	0,09891
Diâmetro disco	
(m)	0,228
Diâmetro eixo	
(m)	0,025

	Aceleração de descida (m/s)	Aceleração angular (m/s)
1	0,0183	1,39
2	0,0183	1,38
3	0,0183	1,39
4	0,0183	1,39
5	0,0183	1,39
Média	0,0183	1,388

Aceleração da gravidade (m/s)
9,81

Tensão (N)	Torque	Inércia experimental	Inércia teórica	Desvio (%)
0,97	0,012	0,0087	0,0089	2,52

Valores experimentais:

$$T = m(g - a)$$
$$t = rT$$
$$I = \frac{t}{a}$$

Valor teórico:

$$I_{CM} = \frac{1}{2}MR^2$$

Calculando um desvio entre o valor teórico e o experimental, observamos a coerência do valor experimental obtido.

1ªParte (Barra)

	Medida
Massa atrito	
(Kg)	0,00291
Massa suspensa	
(Kg)	0,10682
Massa barra	
(Kg)	0,61365
Massa (Kg)	0,10391
Diâmetro eixo	
(m)	0,025

	Aceleração de descida (m/s)	Aceleração angular (rad/s)	
1	0,0126	0,96	
2	0,0134	1,02	
3	0,0135	1,03	
4	0,0134	1,02	
5	0,0134	1,02	
Média	0,0133	1,01	

Aceleração da gravidade (m/s)			
9,81			
Tensão (N)	Torque	Inércia experimental	
1,018	0,013		0,0126

Valores experimentais:

$$T = m(g - a)$$
$$t = rT$$
$$I = \frac{t}{a}$$

2ªParte

	Medida
Massa atrito (Kg)	0,00791
Massa suspensa (Kg)	0,10682
Massa disco (Kg)	1,37702
Massa (Kg)	0,09891
Massa da barra (Kg)	0,61365
Diâmetro disco (m)	0,228
Diâmetro eixo (m)	0,025

Aceleração da gravidade (m/s)	
9,81	

Regista-se para várias distâncias entre o eixo do disco e o eixo de rotação a aceleração de descida e aceleração angular.

Os seguintes valores:

Distancia entre eixos	Aceleração de descida	Aceleração angular		
0	0,0074	0,561		
0,04	0,0066	0,505		
0,08	0,0052	0,398		
0,12	0,0038	0,293		
0,16	0,0028	0,206		
0,2	0,0020	0,153		

Por isso comas formulas acima e a inercia da barra calculada anteriormente:

Tensão (N)	Torque	Inércia total	Inércia da barra
0,97	0,0121	0,022	0,013
0,97	0,0121	0,024	
0,97	0,0121	0,030	
0,97	0,0121	0,041	
0,97	0,0121	0,059	
0,97	0,0121	0,079	

Ou seja,

Inércia do disco	Quadrado da distância (m*m)		
0,009	0,000		
0,011	0,0016		
0,018	0,0064		
0,029	0,0144		
0,046	0,0256		
0,066	0,0400		

Traçando o gráfico obtemos:

Com os seguintes valores da regressão:

Regressão linear					
Declive Ordenada na origem					
1,443	0,0088				

Teoricamente sabemos que o teorema de Steiner:

$$I_{Disco} = MD^2 + I_{CM}$$

onde,

$$I_{CM} = \frac{1}{2}MR^2$$

Logo:

$$I_{Disco} = 1,44 D^2 + 0,0088$$

Podendo assim fazer um desvio com os valores de M e de I_{CM} obtidos na 1^a parte (disco) da experiência.

Por isso:

Desvio M (%)	Desvio I (CM) (%)
4,8	1,6

IMPORTANTE:

Valores de D grande, existe um erro associado tendo em conta uma observação experimental de oscilações do centro de massa.

Por isso:

Com os seguintes valores da regressão:

Regressão linear					
Declive Ordenada na origem					
1,364	0,0091				

E:

Desvio M (%)	Desvio I (CM) (%)
0,9	1,9

z	0,0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5120	0,5557	0,5596		0,5675	0,5319	
0,2	0,5793	0,5832	0,5478	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054		0,7123	0,7157	0,7190	
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704			0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264		0,8315	0,8340	0,8365	
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599		0,9616	0,9625	
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	-	,	,	,	0,9992	,	,
3,2		0,9993	0,9994	0,9994	0,9994			0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8		0,9999	0,9999	0,9999	0,9999	0,9999		0,9999	0,9999	0,9999
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000