ML2: Exam Preparation

Denis Baskan 10 March 2019

Exercise: Tree Models

In the following code, a Regression tree and Classification tree will be applied. Some parts are from the book James et. al. Lab 8.3.2.

Load Packages

If packages are not installed, then they will be installed.

```
#load needed packages; if not installed, then do so
required.packages = c('MASS') #c('forecast', 'tseries', 'ggplot2', 'gsubfn', 'Metrics') #, 'prophet
load.packages <- function(packages) {
    for (pckg in packages) {
        if (!(pckg %in% installed.packages()[,"Package"])) {
            install.packages(pckg)
        }
        library(pckg, character.only = TRUE)
    }
}
load.packages(required.packages)
```

Show Boston data set and some scatterplots

The data set contains data on housing values and other information about Boston suburbs.

```
Hide
#The data set contains data on housing values and other information about Boston suburbs.
?Boston
head (Boston)
                                                                                                            Hide
cat("Number of rows: ", nrow(Boston))
Number of rows: 506
                                                                                                            Hide
cat("Number of columns: ", ncol(Boston))
Number of columns: 14
                                                                                                            Hide
cat("Column names: ", colnames(Boston))
Column names: crim zn indus chas nox rm age dis rad tax ptratio black 1stat medv
                                                                                                            Hide
plot(black,crim,main="Relationship between blacks and crime rate (by town)", xlab="Blacks", ylab="Crime rate
", pch=19)
```

Relationship between blacks and crime rate (by town)

Hide

plot(tax,crim,main="Relationship between paid taxes and crime rate (by town and \$10,000)", xlab="Taxes", yl ab="Crime rate", pch=19)

Relationship between paid taxes and crime rate (by town and /\$10,000)

Hide

plot(rm, medv, main="Relationship between rooms and owner-occupied homes) (in /\$1000s)", xlab="Average Rooms", ylab="Owner-Occupied Homes", pch=19)

Relationship between rooms and owner-occupied homes) (in /\$1000s)

Any suburbs with particularly high crime rate? Tax rates? Pupil-teacher ratios?

```
#x-axis has no meaning

plot(Boston[order(Boston$crim),]$crim,main="Crime Rate", xlab="Suburb", ylab="Crime rate (by town)", pch=19, type='l')

plot(Boston[order(Boston$tax),]$tax,main="Taxes", xlab="Suburb", ylab="Taxes", pch=19,type='l')

plot(Boston[order(Boston$ptratio),]$ptratio,main="Pupil-Teacher ratio", xlab="Suburb", ylab="Pupil-Teacher ratio", pch=19,type='l')
```

One can observe suburbs with really high values and almost exponential slope for the column crime rate.

Some Statistics

```
Hide

cat("Number of suburbs bound the Charles river: ",sum(Boston$chas==1))

Number of suburbs bound the Charles river: 35

Hide

cat("Median value of pupil-teacher ratio: ",median(Boston$ptratio))

Median value of pupil-teacher ratio: 19.05

Hide

cat("Lowest median value of owner-occupied homes: ",min(Boston$medv))

Lowest median value of owner-occupied homes: 5

Hide

cat("Number of suburbs with more than 7 rooms per dwelling: ",sum(Boston$rm > 7))

Number of suburbs with more than 7 rooms per dwelling: 64
```

1000

```
cat("Number of suburbs with more than 8 rooms per dwelling: ",sum(Boston$rm > 8))

Number of suburbs with more than 8 rooms per dwelling: 13

Hide

#compare some data
Boston[Boston$medv==min(Boston$medv),]

Hide

print("These 2 suburbs have high values for the predictors crime, black, tax, pt-ratio.")
```

The data with more than 8 rooms have a low crime rate and high values for age, tax, black for example. The 2 suburbs with the lowest medv values have high values for the predictors crime, black, tax, pt-ratio. One can conclude that populations with a lower status and cheap houses are at increased risk of being a crime victim.

Fit a Regression tree using column medv as outcome variable

```
#Note: outcome variable should be continuous. Exercise follows Lab 8.3.2 in James et al. set.seed(1) #set a fix random generator to reproduce the same results next time train = sample(1:nrow(Boston), nrow(Boston)/2) #split data randomly tree.boston = rpart(medv ~.,Boston,subset=train) # create a tree print(tree.boston) #only 3 variables were used
```

```
n = 253
node), split, n, deviance, yval
      * denotes terminal node
1) root 253 20894.66000 22.67312
  2) lstat>=9.715 150 3464.71500 17.55133
    4) lstat>=21.49 30 311.88970 11.10333 *
    5) lstat< 21.49 120 1593.69900 19.16333
     10) lstat>=14.48 58 743.28220 17.15690 *
     11) lstat< 14.48 62 398.48920 21.04032 *
  3) lstat< 9.715 103 7764.58400 30.13204
    6) rm< 7.437 89 3310.16000 27.57640
     12) rm< 6.7815 61 1994.62200 25.52131
       24) dis>=2.85155 54 544.00830 24.32778
                            47.17864 21.82273 *
         48) rm< 6.36 22
                         263.86000 26.05000 *
         49) rm>=6.36 32
       25) dis< 2.85155 7
                           780.27430 34.72857 *
     13) rm>=6.7815 28 496.64960 32.05357 *
     7) rm>=7.437 14 177.84360 46.37857 *
```

Hide

rpart.plot(tree.boston)

The tree indicates that a higher socioeconomic status leads in buying more expensive houses. A median house price of \$46,000 can be observed when lstat is lower than 9.7% and number of rooms are higher than 7.4 on average.

Can pruning the tree improve our model?

Rule: Choose the smalles number of nodes (largest cp value) which lies within 1 std. dev. of the smallest deviance, i.e. lies below the dotted line.

```
Hide
printcp(tree.boston)
Regression tree:
rpart(formula = medv ~ ., data = Boston, subset = train)
Variables actually used in tree construction:
[1] dis lstat rm
Root node error: 20895/253 = 82.588
n = 253
       CP nsplit rel error xerror
1 0.462576
            0 1.00000 1.01273 0.117728
2 0.204673
               1 0.53742 0.56339 0.059699
3 0.074618
               2 0.33275 0.34949 0.039945
4 0.039191
               3 0.25813 0.29608 0.039976
5 0.032082
               4 0.21894 0.31072 0.048076
6 0.021629
              5 0.18686 0.29508 0.048053
7 0.011150
               6 0.16523 0.26146 0.042604
8 0.010000
                  0.15408 0.25032 0.037014
```

plotcp(tree.boston)

Hide

cp=0.016 lies below the dotted line and could improve our model

Prune the tree and compare models

```
prune.boston = prune(tree.boston,cp=0.016)
prune.boston
n = 253
node), split, n, deviance, yval
     * denotes terminal node
1) root 253 20894.6600 22.67312
  2) lstat>=9.715 150 3464.7150 17.55133
    4) lstat>=21.49 30 311.8897 11.10333 *
    5) lstat< 21.49 120 1593.6990 19.16333
     10) lstat>=14.48 58
                          743.2822 17.15690 *
     11) lstat< 14.48 62
                          398.4892 21.04032 *
  3) lstat< 9.715 103 7764.5840 30.13204
    6) rm< 7.437 89 3310.1600 27.57640
     12) rm< 6.7815 61 1994.6220 25.52131
       24) dis>=2.85155 54 544.0083 24.32778 *
       25) dis< 2.85155 7
                           780.2743 34.72857 *
     13) rm>=6.7815 28
                        496.6496 32.05357 *
     7) rm>=7.437 14
                     177.8436 46.37857 *
```

Hide

Hide

rpart.plot(prune.boston)


```
#compare models by calculating MSE (Mean Squarred Error)
pred.train<-predict(tree.boston,newdata=Boston[train,])
mean((Boston$medv[train]-pred.train)^2)

[1] 12.72517

Hide

pred.train.prune<-predict(prune.boston,newdata=Boston[train,])
mean((Boston$medv[train]-pred.train.prune)^2)

[1] 13.646
```

Calculate the MSE for the test set

```
Hide

pred.test<-predict(tree.boston,newdata=Boston[-train,])
mean((Boston$medv[-train]-pred.test)^2)

[1] 25.35825

Hide

pred.test<-predict(prune.boston,newdata=Boston[-train,])
mean((Boston$medv[-train]-pred.test)^2)

[1] 25.82207
```

Pruned tree performes slightly worse applied on train and test set, but we gained a simpler model. Taking the square root of the test set MSE gives \$5,000 rounded. That's the range where test prediction lay in.

Plot observed median values medv agains predictions

```
boston.test=Boston[-train,"medv"]
plot(pred.test,boston.test)
abline(c(0,1))
```

