

Signaldarstellung

Hinweis: Im Modul Signaldarstellung ist keine Formelsammlung im üblichen Sinn zugelassen. Deshalb ist dies nur eine Sammlung von Informationen, die auf den freien Seiten im Manuskript Platz finden können.

1. Additionstheoreme

1.1. sinh, cosh $\cosh^2(x) - \sinh^2(x) = 1$ $\sinh x = \frac{1}{2}(e^x - e^{-x})$ arsinh $x := \ln \left(x + \sqrt{x^2 + 1} \right)$ $\operatorname{arcosh} x := \ln \left(x + \sqrt{x^2 - 1} \right)$ $\cosh x = \frac{1}{2}(e^x + e^{-x})$ Additionstheoreme Stammfunktionen $\cosh x + \sinh x = e^x$ $\int \sinh x \, dx = \cosh x + C$ $\sinh(\operatorname{arcosh}(x)) = \sqrt{x^2 - 1}$ $\int \cosh x \, dx = \sinh x + C$

1.2. sin, cos $\sin^2(x) + \cos^2(x) = 1$

 $\cosh(\operatorname{arsinh}(x)) = \sqrt{x^2 + 1}$

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$\frac{3}{2}\pi$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	-1 0 $-\infty$	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	0	$-\infty$	0

Additionstneoreme Stamm	tunktionen
$\cos(x - \frac{\pi}{2}) = \sin x \qquad \int x$	$\cos(x) dx = \cos(x) + x \sin(x)$
$\sin(x + \frac{\pi}{2}) = \cos x \qquad \int x$	$\sin(x) dx = \sin(x) - x \cos(x)$
$\sin 2x = 2\sin x \cos x \qquad \int$	$\sin^2(x) dx = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$
$\cos 2x = 2\cos^2 x - 1$	$\int \cos^2(x) \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$
$\sin(x) = \tan(x)\cos(x)$	$\int \cos(x)\sin(x)\mathrm{d}x = -\frac{1}{2}\cos^2(x)$
$\sin x = \frac{1}{2i} (e^{ix} - e^{-ix})$	$\cos x = \frac{1}{2}(e^{\mathrm{i}x} + e^{-\mathrm{i}x})$

2. Signaldarstellung

2.1. Signale & Systeme

Allgemeine Form:
$$x_i(t) = \underbrace{g}_{\text{3}} \cdot [x(\underbrace{s}_{\text{2}} \cdot t + \underbrace{v}_{\text{2}})] + \underbrace{r}_{\text{4}}$$

- ①: Translation \rightleftharpoons
- ②: Skalierung ←→
- (3): Gewichtung 1
- ④: Verschiebung ↓↑

2.2. Analytische Darstellung, Stochastische Darstellung

Zeitkontinuierliches Signal x(t) und diskretes Signal x[n]

2.2.1 Besondere Grundfunktionen

Einheitsimpuls
$$\delta[n-n_0]=\begin{cases} 1, & n=n_0\\ 0, & n\neq n_0 \end{cases}$$
 Zeitdiskreter Einheitssprung $u[n-n_0]=\begin{cases} 1, & n\geq n_0\\ 0, & n< n_0 \end{cases}$

Zeitdiskreter Einheitssprung
$$u[n-n_0] = egin{cases} 1, & n \geq n_0 \\ 0, & n < n_0 \end{cases}$$

oder
$$u[n] = \sum_{l=0}^{\infty} \delta[n-l]$$

$$\begin{array}{l} \operatorname{oder} u[n] = \sum\limits_{l=0}^{\infty} \delta[n-l] \\ \operatorname{Diracsche} \delta\text{-Funktion} \\ \int\limits_{-\infty}^{\infty} \delta(t-t_0) = 1 \text{ und } \delta(t-t_0) = \begin{cases} \infty, & t=t_0 \\ 0, & t \neq t_0 \end{cases} \\ \int\limits_{-\infty}^{\infty} f(t) \delta(t-t_0) \, \mathrm{d}t = f(t_0) \\ \int\limits_{-\infty}^{\infty} e^{\pm j\omega t} \delta(t) \, \mathrm{d}t = 1 \text{ und } \delta(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} e^{\pm j\omega t} \, \mathrm{d}\omega \end{cases}$$

Zeitkontinuierlicher Einheitssprung
$$u(t-t_0) = \begin{cases} 1, & t \geq t_0 \\ 0, & t < t_0 \end{cases}$$

Es gilt:
$$u(t-t_0) = \int_{-\infty}^{t} \delta(\tau - t_0) d\tau$$

2.3. LTI-Systeme

Alle Angaben gelten gleichermaßen für zeitdiskrete Signale. i. Allg. lin. DGL: $a_0y + a_1\dot{y} + a_2\ddot{y} + \dots = b_0x + b_1\dot{x} + b_2\ddot{x} + \dots$

$$y(t) = \overline{T}\{x(t)\}$$

$$\begin{array}{|c|c|c|} & \text{Input} & \text{Output} \\ \hline \textit{linear} & ax_1(t) + bx_2(t) & \Rightarrow ay_1(t) + by_2(t) \\ \textit{zeitinvariant} & x(t-t_0) & \Rightarrow y(t-t_0) \\ \hline \text{Sprungantwort } s(t) \text{ auf } x(t) = u(t) \\ \hline \text{Impulsantwort } h(t) = \dot{s}(t) \text{ auf } x(t) = \delta(t) \\ \hline \end{array}$$

Lösungsmöglichkeiten:

1. Lösen der DGL 2. Faltungsintegral

Faltung mit Folie

Gebrauchte Hilfsmittel: Klarsichtfolie, Folienstift

$$x(t) * h(t) = \int_{-\infty}^{\infty} \underbrace{x(\tau)}_{\text{①}} \underbrace{h(t-\tau)}_{\text{②}} d\tau$$

- 1. (2) auf Folie übertragen
- 2. t im Ursprung
- 3. Folie nach links drehen
- rechts von $t: t+\cdots$
- 5. Folie über (T) schieben
- 6. Keine Überlappung $\Rightarrow y = 0$
- 7. Integration in stetige Bereiche aufteilen
- 8. Grenzen bestimmen
- 9. (1) abschnittsweise analytisch beschreiben
- 10. (2) abschnittsweise analytisch beschreiben
- 11. Teilintegrale lösen

2.4. Faltung von Funktionen

Kontinuierlich:
$$(f*g)(x) = \int\limits_{-\infty}^{\infty} f(\tau)g(t-\tau)\,\mathrm{d}\tau$$

Diskret: $(f*g)[n] = \sum\limits_{k=-\infty}^{\infty} f[k]g[n-k]$

Eigenschaften der Faltungsintegrale(-summen)

duitigkeit gieichenna	ibeli iui diskrete Signale
Kommutativität	f(t) * g(t) = g(t) * f(t)
Assoziativität	f(t)*(g(t)*h(t)) = (f(t)*g(t))*h(t) (Serienschaltung)
Distributivität	$\begin{array}{l} f(t)*(g(t)+h(t)) = f(t)*g(t)+f(t)*h(t) \\ \text{(Parallelschaltung)} \end{array}$
Faltung mit Di- rac	$x(t) * \delta(t - b) = x(t - b)$ (Gleiches Signal verschoben)

 $\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty$ $\sum_{l=-\infty}^{\infty} |h[l]| < \infty$ $h(t-\tau) = 0 \text{ für } \tau > t$ h[n-l] = 0 für l > n

2.5. Korrelation (Ähnlichkeit) zweier Signale → S. 22

2.6. Pegelrechnung

Signale im logarithmischen Maßstab.

→ S. 23

3. Fourier-Reihe

Approxim	ation	einer	periodischer	n	Funktion	x(t)	durch
Grund-	und	Obersch	wingungen	von	Cosinus	und	Sinus.

x(t) periodisch und in T_0 bis auf endlich viele Sprungstellen stetig

Fourier-Reihe:
$$\tilde{x}(t)=\sum\limits_{k=-\infty}^{\infty}c_ke^{jk\omega_0t}$$
 ; $\omega_0=\frac{2\pi}{T_0}$ Entwicklungskoeffizienten: $c_k=\frac{1}{T_0}\int\limits_{T_0}\tilde{x}(t)e^{-jk\omega_0t}\,\mathrm{d}t$

Sinus und Cosinus

$$\tilde{x}(t) = \underbrace{a_0 + \sum_{k=1}^{\infty} a_k \cos\left(k\omega_0 t\right)}_{\text{gerader Anteil}} + \underbrace{\sum_{k=1}^{\infty} b_k \sin\left(k\omega_0 t\right)}_{\text{ungerader Anteil}}; \omega_0 = \underbrace{\frac{2\pi}{T_0}}$$

$$c_k = \begin{cases} \frac{a_k - jb_k}{2} & \text{für } k \in \mathbb{N} \\ a_0 & \text{für } k = 0 \end{cases}; \quad a_0 = \frac{1}{T_0} \int_{T_0} \tilde{x}(t) \, \mathrm{d}t$$

$$a_k = \frac{2}{T_0} \int_{T_0} \tilde{x}(t) \cos(k\omega_0 t) \, \mathrm{d}t; \quad b_k = \frac{2}{T_0} \int_{T_0} \tilde{x}(t) \sin(k\omega_0 t) \, \mathrm{d}t$$

Parsevalsches Theorem

$$\overline{P} = \frac{1}{T_0} \int\limits_{T_0} |\tilde{x}(t)|^2 \,\mathrm{d}t = \sum\limits_{k=-\infty}^{\infty} |c_k|^2 = |c_0|^2 + 2 \sum\limits_{k=1}^{\infty} |c_k|^2$$
 Weitere Definitionen \rightarrow S. 27

Konvergenz und Abweichung

 \rightarrow S. 29

Zeitverschiebung

$$\begin{split} \tilde{x}(t-\tau) &= \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0(t-\tau)} = \sum_{k=-\infty}^{\infty} c_k(\tau) e^{jk\omega_0 t} \\ c_k(\tau) &= c_k \cdot e^{-jk\omega_0 \tau} \end{split}$$

Periodische Faltung

 \rightarrow S. 30

Symmetrien

4. Fouriertransformation $x(t) \to X(\omega)$

Darstellung von beliebigem Signal x(t) im Spektralbereich x(t) bis auf endlich viele Sprungstellen stetig und $\int_{-\infty}^{\infty} |x(t)| \, \mathrm{d}t < \infty$ $\infty \Rightarrow x(t) \stackrel{\mathcal{F}}{\longrightarrow} X(\omega)$:

Synthese
$$x(t)=rac{1}{2\pi}\int\limits_{-\infty}^{\infty}X(\omega)e^{j\omega t}\,\mathrm{d}\omega$$
 Analyse $X(\omega)=\int\limits_{-\infty}^{\infty}x(t)e^{-j\omega t}\,\mathrm{d}t$

Parsevalsches Theorem \rightarrow S. 31

Energie:
$$E_x = \int\limits_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

Polarkoordinatendarstellung

$$X(\omega) = |X(\omega)| e^{j\Psi(\omega)}$$

Spaltfunktion (x)

Zusammenhang $FR \rightleftharpoons FT$

$$\begin{split} x(t) &= \begin{cases} \tilde{x}(t) & \text{für } t \in \{T_0\} \\ 0 & \text{für } t \notin \{T_0\} \end{cases} \text{, wobei } \tilde{x}(t+rT_0) = \tilde{x}(t) \text{ mit } r \in \mathbf{Z} \\ \Rightarrow \boxed{c_k = \frac{1}{T_0} X(k\omega_0) \text{ oder } T_0 c_k = X(k\omega_0)} \end{split}$$

Eigenschaften der FT

Symmetrie, Verschiebung, Faltung, etc. → S. 40

Amplitudenmodulation

→ S. 45 – 49

Vertauschungssatz

$$x_t(t) \stackrel{\mathcal{F}}{\circ} X_{\omega}(\omega)$$

$$\frac{1}{2\pi} X_{\omega}(t) \stackrel{\mathcal{F}}{\circ} x_t(-\omega)$$

Wichtige FT-Paare

→ S. 44

Die Inverse Fouriertransformation

$$\begin{split} f(t) &= \frac{1}{2\pi} \int \limits_{-\infty}^{\infty} F(\omega) \exp(\mathrm{i}\omega t) \,\mathrm{d}\omega \\ \begin{cases} f(t) & , f \text{ stetig in } t \\ \frac{f(t^-) + f(t^+)}{2} & , \text{falls } f \text{ unstetig in } t \end{cases} \end{split}$$

Übertragungsfunktion

$$y(t) = h(t) * x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\omega) = H(\omega)X(\omega) \Rightarrow$$

Wenn System stabil: $H(\omega) = \frac{Y(\omega)}{X(\omega)}$

Mit DGL N-ter Ordnung und mit konstanten Koeffizienten

$$\sum_{l=0}^N a_l \frac{\mathrm{d}^l}{\mathrm{d}t^l} y(t) = \sum_{m=0}^M b_m \frac{\mathrm{d}^m}{\mathrm{d}t^m} x(t)$$

$$\Rightarrow H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{\sum\limits_{m=0}^{M} (j\omega)^m b_m}{\sum\limits_{l=0}^{N} (j\omega)^l a_l}$$

Begründung: → S. 53

Darstellung in Bode-Diagramm: Beispiel → S.54 – 55

Begriffe der Filtertechnik: → S.51 – 52

5. Zeitdiskrete Fourier-Transformation ZDFT

Zeitnormierung: $n=\frac{t}{T_s}$ und Frequenznormierung: $\Omega=\omega T_s$

- Ts: Abtastintervall
- ω: Kreisfrequenz
- Ω: Winkel, normierte Frequenz

Wenn x[n] aperiodisch und $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$:

Synthese
$$x[n]=\frac{1}{2\pi}\int\limits_{\mathbf{2}\pi}X(\Omega)e^{\mathrm{j}\Omega n}$$
 Analyse $X(\Omega)=\sum\limits_{n=-\infty}^{\infty}x[n]e^{-\mathrm{j}\Omega n}$

Es gilt: $X(\Omega) = X(\Omega + 2\pi)$

Parsevalsches Theorem \rightarrow S. 58

Energie:
$$E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\Omega)|^2 d\Omega$$

Eigenschaften der ZDFT

Symmetrie, Verschiebung, Faltung, etc. → S. 60

Wichtige ZDFT-Paare

→ S. 62

Übertragungsfunktion der ZDFT

$$y[n] = x[n] * h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\Omega) = H(\Omega)X(\Omega)$$

Wenn System stabil: \Rightarrow $H(\Omega) = \frac{Y(\Omega)}{X(\Omega)}$

Mit linearer Differenzengleichung N-ter Ordnung

$$\sum_{l=0}^{N} a_l y[n-l] = \sum_{m=0}^{M} b_m x[n-m]$$

$$\Rightarrow H(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{\sum\limits_{l=0}^{M} {}_{b_{l}} e^{-\mathrm{j}\Omega l}}{\sum\limits_{l=0}^{N} {}_{a_{l}} e^{-\mathrm{j}\Omega l}}$$

Begründung → S. 67

6. Signalabtastung und -rückgewinnung

6.1. Abtasttheorem im Zeitbereich

Bedingungen für eindeutige Signalrekonstruktion

Abtastvorgang: $x_s(t) = x(t)s(t)$: Abtastsignal $x_s(t)$ entsteht durch Modulation von $\overline{x(t)}$ mit Dirac-Impuls-Folge s(t).

$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

$$\Rightarrow x_s(t) = x(t)s(t) = \sum_{n=-\infty}^{\infty} x(nT_s)\delta(t - nT_s)$$

Zeitnormierung: $t=nT_s$ mit Abtastperiode T_s und Abtastfrequenz $\omega_S=\frac{2\pi}{T_S}$

Übergang zum Frequenzbereich: $S(\omega) = \frac{2\pi}{T_S} \sum_{r=-\infty}^{\infty} \delta(\omega - r\omega_s)$

$$\Rightarrow X_s(\omega) = \frac{1}{2\pi}X(\omega) * S(\omega) = \frac{1}{T_s}\sum_{r=-\infty}^{\infty}X(\omega - r\omega_s)$$

$$\omega_s = \frac{2\pi}{T_s} \ge 2\omega_g \tag{1}$$

$$T_s \le \frac{\pi}{\omega_g} \tag{2}$$

$$x(t)$$
 ist bandbegrenzt (3)

7. Laplacetransformation $\mathcal{L}(f(t)) = F(s)$

$$\begin{split} f(t) \, \Delta \, F(s) &:= \int\limits_0^\infty f(t) \exp(-st) \, \mathrm{d}t \\ 1 \, \Delta \, \frac{1}{s} \\ t^n \, \Delta \, \frac{n!}{s^{n+1}} \\ \sin(t) \, \Delta \, \frac{1}{s^2 + 1} \\ \sin(\omega t) \, \Delta \, \frac{1}{s^2 + \omega^2} \\ e^{-at} \sin(\omega t) \, \Delta \, \frac{(s+a)^2 + \omega^2}{(s+a)^2 + \omega^2} \\ e^{-at} \cos(\omega t) \, \Delta \, \frac{(s+a)^2 + \omega^2}{(s+a)^2 + \omega^2} \\ \text{Linearităt: } \alpha f(t) + \beta g(t) \, \Delta \, \alpha F(s) + \beta G(s) \\ \ddot{\mathsf{A}} \mathsf{hnlichkeit: } f(ct) \, \Delta \, \frac{1}{c} F(\frac{c}{s}) \end{split}$$

Linearität:
$$\alpha f(t) + \beta g(t) \Delta \alpha F(s)$$

Ableitung Originalfkt: $f'(t) \Delta sF(s) - f(0)$ $f''(t) \Delta s^2 F(s)$ -

$$s_{1}(0) - f_{1}(0) + f_{2}(0) - f_{3}(0) - f_{3}(0)$$

Ableitung Bildfkt: $(-t)^n f(t) \Delta F^{(n)}(s)$

Verschiebung: $f(t-a) \theta(t-a) \Delta e^{-as} F(s)$

Verschiebung: f(t-a) $\forall (t-a)$ $\forall (t-a)$ $\forall (t-a)$ Dämpfung: $e^{-at} f(t) \Delta F(s+a)$ Faltung: $(f*g)(t) := \int_0^t f(t-\tau)g(\tau) \, \mathrm{d}\tau \, \Delta F(s) \cdot G(s)$ Inverse: $f(t) = \frac{1}{2\pi i} \int\limits_{\gamma-i\infty}^{-\gamma+i\infty} F(s) \exp(st) \, \mathrm{d}s$

Inverse:
$$f(t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{-\gamma + i\infty} F(s) \exp(st) ds$$

Es gibt eine eineindeutige Korespondens zwischen den Originalfkt und Bildfkt. Meist Nennergrad > Zählergrad: Bruch geschickt umformen! Laplacetransformierte als Summe nie auf gemeinsamen Nenner bringen!!

7.1. Pol-Nullstellendiagramm

Konvergenz bei $\sigma > \sigma_0$ mit $\sigma_0 = \max$ Polstelle.