

MODULIO APRAŠAS

Dalyko (modulio) pavadinimas	Kodas
Bioinformatika IV	7BIOB4

Dėstytojas (-ai)	Padalinys (-iai)
Koordinuojantis: Irus Grinis	Matematinės informatikos katedra
	Matematikos ir informatikos fakultetas
Kitas (-i):	Vilniasua universitetas

Studijų pakopa	Dalyko (modulio) lygmuo	Dalyko (modulio) tipas
pirmoji	4 iš 4	privalomas

Įgyvendinimo forma	Vykdymo laikotarpis	Vykdymo kalba (-os)
auditorinė	IV kursas, rudens semestras	lietuvių

Reikalavimai studijuojančiajam				
Išankstiniai reikalavimai:	Gretutiniai reikalavimai (jei yra):			
Studentas turi būti išklausęs Bioinformatika I,				
Bioinformatika II, Bioinformatika III kursus, turi turėti				
programavimo Perl ir Java kalbomis įgūdžių, elementarių				
žinių iš matematinės analizės (su paprastųjų diferencialinių				
lygčių skyriumi), tikimybių teorijos ir matematinės				
statistikos.				

Dalyko (modulio) apimtis	Visas studento darbo krūvis	Kontaktinio darbo	Savarankiško darbo
kreditais	valandomis	valandos	valandos
5	130	68	62

Dalyko (modulio) tikslas: studijų programos ugdomos kompetencijos

Supažindinti su klasikiniais bioinformatikos matematiniais modeliais ir algoritmais, išmokinti savarankiškai konstruoti ir analizuoti nesudėtingus bioinformatikos algoritmus ar atlikti jų modifikaciją, ugdyti gebėjimus praktiškai taikyti anksčiau įgytas biologijos ir kitų gamtos mokslų žinias.

Bendrosios kompetencijos:

- Gebėjimas ieškoti duomenų informacijos šaltiniuose, analizuoti, vaizduoti ir sisteminti gautus duomenis (*BK1*).
- Gebėjimas žinias pritaikyti praktikoje (*BK2*).

Dalykinės kompetencijos:

- Algoritmų ir duomenų struktūrų (*DK5*).
- Matematinio ir kompiuterinio modeliavimo (*DK10*).
- Bioinformatikos duomenų gavybos, vaizdavimo ir analizės (*DK11*).

Dalyko (modulio) studijų siekiniai	Studijų metodai	Vertinimo metodai
		Formuojamasis vertinimas:
	Paskaitos, konkrečių molekulinės	 atsakymų į dėstytojo
gebės analizuoti ir efektyviai realizuoti nesudėtingus skaičiavimo algoritmus:	dinamikos nagrinėjimas.	klausimus paskaitos metu

• žinos skaičiavimo metodų paklaidos ir

laboratorinių darbų atitinkamų

stabilumo sąvokas, žinos klasikinius dif. lygčių sistemų, susietų su molekulių dinamika, skaitinio integravimo metodus; • gebės kurti ir analizuoti nesudėtingus pilnojo perrinkimo algoritmus, turės įgūdžių konstruoti jų veikimą pagreitinančias euristikas;	užduočių atlikimas Paskaitos, konkrečių perrinkimo ir godžių algoritmų, plačiai taikomų bioinformatikoje	
žinos keletą klasikinių pilnojo perrinkimo ir godžių algoritmų taikymo bioinformatikoje pavyzdžių;	veikimo demonstravimas ir analizę, atskirų perrinkimo algoritmų realizacija	aptarimas ir komentavimas • kontrolinio darbo ir egzamino aptarimas
 gebės konstruoti, analizuoti ir realizuoti įvairius dinaminio programavimo algoritmus, atpažinti bioinformatikos problemas, kurioms spręsti gali būti pritaikytas d.p.;. žinos klasikinius d.p. algoritmų taikymus bioinformatikoje; mokės apibrėžti paslėptos Markovo modelio struktūrą ir išvardinti keletą taikymo bioinformatikoje aspektų; 	Paskaitos, konkrečių dinaminio programavimo algoritmų, plačiai taikomų bioinformatikoje veikimo demonstravimas ir analizę, atskirų d.p. algoritmų realizacija, paslėptų Markovo modelių taikomųjų programų tyrinėjimas, atitinkamų laboratorinių darbų užduočių atlikimas	laboratorinio darbo užduočių atlikimo komentavimas
 gebės konstruoti, analizuoti ir realizuoti grafų algoritmus, mokės atpažinti bioinformatikos problemas, kuriose galima pritaikyti grafų algoritmus; žinos keletą klasikinių grafų algoritmų taikymo bioinformatikoje pavyzdžių; 	Paskaitos, grafų algoritmų veikimo demonstravimas, atitinkamų laboratorinių darbų užduočių atlikimas	Sumuojamasis vertimas: • laboratorinių darbų apgynimas • kontrolinio darbo įvertinimas
 mokės profesionaliai naudotis klasikinė biologinių vaizdų apdorojimo programa ImageJ, kurti jai plėtinius; mokės naudotis klasikine trimatės grafikos atvaizdavimo biblioteka OpenGL; gebės interaktyviai kurti trimačius vaizdus ArtOfIlluosion programos pagalba, gebės profesionaliai ja naudotis; 	Paskaitos, ImageJ,OpenGL, ArtOfIllusion galimybių demonstravimas ir tyrinėjimas, atitinkamų laboratorinių darbų užduočių atlikimas	egzamino (testo) įvertinimas
• gebės savarankiškai gilintis tam tikruose bioinformatikos algoritmų skyriuose, surasti ir susisteminti su jais susietą mokslinę informaciją, parengti ir perskaityti atitinkamą pranešimą.	Tiriamieji metodai (informacijos paieška, literatūros skaitymas, pranešimo rengimas ir pristatymas)	Pranešimas

			Kontaktinio darbo valandos					Sava	Savarankiškų studijų laikas ir užduotys	
Temos	Paskaitos□	Konsultacijos□	Seminarai□	Pratybos□	Laboratoriniai darbai□	$\operatorname{Praktika}$	Visas kontaktinis darbas□	Savarankiškas darbas□	Užduotys	
1. Kurso įvadas, turinio apžvalga.	2						2	2		
2. Skaičiavimo metodų ir molekulinės dinamikos įvadas.	6				8		14	9		
3. Perrinkimo ir godieji algoritmai bioinformatikoje.	4				4		8	7		
4. Šablono paieškos algoritmai.	2				4		8	4	Nurodytų šaltinių skaitymas.	
5. Kontrolinis darbas.	2								Laboratorinių darbų	
6. Dinaminio programavimo algoritmai bioinformati- koje, algoritmai paslėptoms Markovo grandinėms.	6				8		14	8	individualiosios užduotys.	
7. Grafų algoritmai bioinformatikoje.	4				4		8	6		
8. Biologinių vaizdų apdorojimo ir kompiuterinės grafikos elementai.	4				4		8	8		
9. Studentų pranešimai.	2						2	12	Nurodytų šaltinių skaitymas. Pranešimas pagal individualiai pasirinktą temą iš nurodyto sąrašo	
10. Pasiruošimas egzaminui ir jo laikymas.		ė					4	6		
Iš viso	32	4			32		68	62		

Vertinimo strategija	Svoris,	Atsiskaitymo	Vertinimo kriterijai
	proc.	laikas	
Laboratoriniai darbai		Iki sesijos	Kiekvienas laboratorinis vertinamas iki 1 balo.
Laboratoriniai darbar	50,00 %	pradžios	Studentas privalo surinkti per laboratorinius darbus sumoje
			mažiausiai 2,5 balo, kitaip kursas turi būti kartojamas.
	10.00 %	Paskutinė	Studentas gali gauti už pranešimą iki 1 balo.
Studento pranešimas	10,00 %	paskaita	
Kontrolinis darbas	10,00 %	Semestro viduryje	Kontrolinis darbas (testas) sudarytas iš dešimties atviro ir uždaro tipo klausimų ir užduočių, kurių kiekvieno maksimalus įvertinimas yra nuo 0,05 iki 0,15 balo ir kurie sumoje sudaro 1 balą
Egzaminas	30,00 %	Sesijos metu	Egzaminas (testas) sudarytas iš dvidešimties atviro ir uždaro

tipo klausimų ir užduočių, kurių kiekvieno maksimalus
įvertinimas yra nuo 0,05 iki 0,2 balo ir kurie sumoje sudaro 3
balus

Reikalavimai dalyko vertinimui eksterno būdu Įvertinimas galimas eksterno būdu: TAIP

Studentas, norintis atsiskaityti už kursą eksterno būdu, privalo informuoti apie tai vedantį dėstytoją semestro pradžioje, atlikti jam skirtą individualių praktinių užduočių komplektą, kurių bendras įvertinimas yra iki 5 balų; sutartu semestro metu atsiskaityti už jas; sesijos ar semestro metu išlaikyti testą, sudarytą iš trisdešimties atviro ir uždaro tipo klausimų ir užduočių, kurių kiekvieno maksimalus įvertinimas yra nuo 0,05 iki 0,2 balo ir kurie sumoje sudaro 5 balus

Autorius	Leidimo metai	Pavadinimas	Periodinio leidinio Nr. ar leidinio tomas	Leidimo vieta ir leidykla ar internetinė nuoroda
Privalomi studijų šaltiniai				
	2012	Bionformatika II kursas		http://mif.vu.lt/~irus/binf
I.Grinis		(VMA Moodle formatas)		
	2004	An Introduction to		Cambridge MA, MIT Press
N.C.Jones, P.A.Pevzner		Bioinformatics Algorithms		
A.isaev	2006	Introduction to Mathematical		Berlin, Heidelberg, Spinger-Verlag
		Methods in Bioinformatics		
Papildomi studijų šaltiniai				
D.Gusfield	1997	Algorithms on Strings, Trees		New York, Cambridge
		and Sequences: Computer		Univeristy Press
		Science and Computational		
		Biology		
	1999	Biological Sequence Analysis:		New York, Cambridge
R. Durbin, S. R. Eddy, A.		Probabilistic Models of		University Press
Krogh, G.Mitchison		Proteins and Nucleic Acids		
T.Ferreira, W.Rasband	2011	ImageJ User Guide		http://rsbweb.nih.gov/ij/docs/us er-guide.pdf