FORMULACIÓN DEL MODELO DE OPTIMIZACIÓN DE COSECHA DE POLLOS

1. CONJUNTOS

- $\cdot G$: conjunto de granjas
- P_q : conjunto de galpones en la granja $g \in G$
- ullet S : conjunto de sexos: {Macho, Hembra}
- ullet D : conjunto de días del horizonte de planificación (por ejemplo: $D=\{1,...,28\}$)
- ullet T : conjunto de tipos de pollo: {Campesino, Blanco}
- ullet C : conjunto de categorías de peso: {Pequeño, Mediano, Grande}
- WEEK : conjunto de semanas del horizonte (por ejemplo: $WEEK = \{1, 2, ..., 4\}$)

2. PARÁMETROS

- $ullet N_{g,p,s}$: número total de pollos en el grupo (granja g , galpón p , sexo s)
- $W_{q,p,s,d}$: peso promedio proyectado de los pollos del grupo g,p,s en el día d
- $TIPO_{q,p,s} \in T$: tipo de pollo del grupo (Campesino o Blanco)
- $CAT_{q,p,s,d} \in C$: categoría de peso asignada según $W_{q,p,s,d}$
- $Q_{t,c,d}^{\mathrm{opt}}$: cantidad deseada de pollos del tipo t , categoría c , para el día d
- TOT_w : total deseado de aves beneficiadas en la semana w
- tol: tolerancia aceptada sobre la cantidad deseada (ej: 0.15 para 15%)
- $adg_{g,p,s,d}$: ganancia diaria de peso proyectada para el grupo g,p,s en el día d , calculada como $W_{g,p,s,d} imes 1000/edad_{g,p,s,d}$
- $MAPD_d$: semana correspondiente al día d

Mapeo previo de la categoría de peso

- Si $W_{q,p,s,d} < 2.101$: $CAT = ext{Peque\~no}$
- Si $2.101 \leq W_{q,p,s,d} < 2.3$: $CAT = ext{Mediano}$
- Si $W_{q,p,s,d} \geq 2.3$: CAT = Grande

3. VARIABLES DE DECISIÓN

- $x_{q,p,s,d} \in \{0,1\}$: 1 si se cosecha el grupo g,p,s en el día d , 0 en caso contrario.
- $dev_{t,c,d} \geq 0$: desviación absoluta entre la cantidad cosechada y la cantidad deseada para tipo t , categoría c , y día d

4. RESTRICCIONES

R1. Cosechar máximo una vez por grupo:

$$\sum_{d \in D} x_{g,p,s,d} \leq 1 \quad orall g \in G, p \in P_g, s \in S$$

R2. Cumplimiento del mix deseado con tolerancia:

$$(1-tol) \cdot Q_{t,c,d}^{ ext{opt}} \leq \sum_{g,p,s \; TIPO=t \; CAT=c} N_{g,p,s} \cdot x_{g,p,s,d} \leq (1+tol) \cdot Q_{t,c,d}^{ ext{opt}} \quad orall t \in T, c \in C, d \in D$$

R3. Prioridad de hembras respecto a machos en el mismo galpón:

$$x_{g,p, ext{Macho},d} \leq 1 - \sum_{d'=1}^{d-4} x_{g,p, ext{Hembra},d'} \quad orall g,p,d \geq 5$$

R5. Cumplimiento del total semanal con tolerancia:

$$(1-tol) \cdot TOT_w \leq \sum_{d \in D: MAPD_d = w} \sum_{g,p,s} N_{g,p,s} \cdot x_{g,p,s,d} \leq (1+tol) \cdot TOT_w \quad orall w \in WEEK$$

5. FUNCIÓN OBJETIVO

Minimizar desviación del cumplimiento del mix diario por tipo y categoría:

$$\min \sum_{t \in T} \sum_{c \in C} \sum_{d \in D} dev_{t,c,d}$$

Sujeto a:

$$\sum_{g,p,s \ TIPO=t \ CAT=c} N_{g,p,s} \cdot x_{g,p,s,d} - Q_{t,c,d}^{ ext{opt}} \leq dev_{t,c,d}$$

$$Q_{t,c,d}^{ ext{opt}} - \sum_{g,p,s \ TIPO=t \ CAT=c} N_{g,p,s} \cdot x_{g,p,s,d} \leq dev_{t,c,d}$$

De este modo, el modelo tiende a cumplir la demanda diaria sin desviarse demasiado de las cantidades requeridas para cada tipo y categoría de pollo.