WHAT IS CLAIMED IS:

- 1 1. An apparatus for applying a thermal conductive
- 2 medium to an inside portion of a sheath, the apparatus
- 3 comprising:
- a tubular applicator tip including a nozzle
- 5 positioned in a sidewall of the tubular applicator tip;
- a pump having an input adapted for coupling to
- 7 a source of thermal conductive medium and an output
- 8 coupled to said tubular applicator tip; and
- a control module for controlling the pump and
- thereby the amount of thermal conducive medium applied to
- 11 said sheath by the tubular applicator tip.
- 1 2. The apparatus of claim 1, wherein the tubular
- applicator tip has a closed tip end preventing expulsion
- of thermal conductive medium from the tip in the axial
- 4 direction of said tip.
- 1 3. The apparatus of claim 2, further comprising:
- a contact switch coupled to the control
- 3 circuit, the contact switch being positioned to come into
- 4 contact with the sheath when the sheath is properly
- 5 positioned over the tubular applicator tip.
- 1 4. The apparatus of claim 3, further comprising:
- an applicator shaft for coupling the tubular
- applicator tip to the pump output.

- 1 5. The apparatus of claim 4,
- wherein the nozzle has a diameter in the range
- 3 extending from and including 0.14" to and including
- 4 0.145"; and
- 5 wherein the applicator shaft includes a bleeder
- 6 hole having a diameter one third or less the diameter of
- 7 said nozzle.
- 1 6. The apparatus of claim 3, further comprising:
- a motor, for rotating said shaft, coupled to
- 3 said applicator shaft and to said control module.
- 1 7. The apparatus of claim 6, wherein the control module
- 2 includes:
- a timing circuit for activating said pump in
- 4 response to activation of said contact switch and for
- 5 activating said motor following activation of said pump.
- 1 8. The apparatus of claim 7, wherein the timing circuit
- 2 includes:
- means for deactivating said pump after a set
- 4 period of time; and
- 5 deactivating said motor after deactivation of
- 6 said pump.
- 9. The apparatus of claim 2, wherein said tubular
- 2 applicator tip includes:
- an open shaft end attached to said applicator
- 4 shaft; and

4

5

5	a plurality of nozzles located along a line
6	extending in the axial direction between said closed tip
7	end and said open end.
1	10. The apparatus of claim 9 wherein the tubular
2	applicator tip further comprises:
3	a mushroom shaped cap portion at the closed tip
4	end; and
5	wherein each of said plurality of nozzles is a
6	hole in the sidewall of said tubular applicator tip.
-	11
1	11. A system for applying a thermal conductive medium to
2	a portion of the interior of a sheath, the system
3	comprising:
4	a thermal conductive medium storage device;
5	a pump coupled to the thermal conductive medium
6	storage device;
7	a thermal conductive medium applicator tip
8	coupled to said pump and including at least on hole
9	through which thermal conductive medium can be expelled
10	when pumped through the applicator tip by said pump; and
11	a switch coupled to said pump, for controlling
12	activation of said pump.
1	12. The system of claim 11, further comprising:
2	a hollow applicator shaft for mounting said
3	thermal conductive medium applicator tip, the hollow

applicator shaft coupling said thermal conductive medium

applicator tip to the pump; and

- a motor connected to said hollow applicator shaft for causing said applicator shaft to rotate.
- 1 13. The system of claim 12, wherein said thermal
- 2 conductive medium applicator tip is tubular in shape
- 3 having a closed tip end, an open shaft end and a sidewall
- 4 extending from the closed tip end to the open shaft end,
- 5 said hole being located in the sidewall.
- 1 14. The system of claim 13, further comprising:
- a control circuit for coupling said switch to said pump and said motor, the control circuit including
- 4 means for activating said pump in response to activation
- 5 of said switch.
- 1 15. The system of claim 11, wherein said switch is a
- 2 contact switch, the switch being positioned to come into
- 3 contact with the sheath when the sheath is positioned
- 4 over said thermal conductive medium applicator tip.
- 1 16. A method of applying a thermal conductive medium to
- an interior portion of a sheath, the method comprising:
- positioning a sheath over a thermal conductive
- 4 medium applicator tip;
- starting the pumping of the thermal conductive
- 6 medium;
- 7 rotating the applicator tip; and
- stopping the pumping of the thermal conductive
- 9 medium after a first set period of time.

5

4

1 17. The method of claim 16, further comprising:
2 stopping the rotation of the applicator tip
3 after a second set period of time passes, the second
4 period of time starting from the point in time at which

the pumping is stopped.

1 18. The method of claim 17, wherein the applicator tip 2 is attached to a source of thermal conductive medium by 3 an applicator shaft, the method further comprising:

purging the applicator shaft of thermal conductive medium after the rotation of the applicator tip is stopped.

- 1 19. The method of claim 18, further comprising:
 2 following stopping the rotation but prior to
 3 purging, removing the sheath so that it is no longer
 4 positioned over the applicator tip.
- 20. The method of claim 16, further comprising:
 sensing when said sheath is positioned over a
 thermal conductive medium applicator tip; and
 wherein said step of starting the pumping is
 performed in response to sensing that said sheath is
 positioned over the thermal conductive medium applicator
 tip.
- 1 21. The method of claim 17, wherein stopping the pumping 2 of the thermal conductive medium after a first set period 3 of time includes:

4	operating the control circuit to stop the
5	supply of power to a pump; and
6	wherein stopping the rotation of the applicator
7	tip includes:
8	operating the control circuit to stop the
9	supply of power to a motor used to rotate the
10	applicator tip.

22. The method of claim 19, wherein the first set period of time is long enough to pump sufficient thermal conductive medium to produce a coating on said interior portion of the sheath having a thickness, T, in the range of $.002" \le T \le .004"$.