Facial femininity of potential rivals predicts jealousy in both heterosexual and lesbian women

Junzhi Dong¹, Benedict C. Jones¹, Victor K. M. Shiramizu¹

1. Department of Psychological Sciences & Health, University of Strathclyde, UK.

Corresponding author: benedict.jones@strath.ac.uk

Acknowledgements

This research was supported by ESRC grant ES/X000249/1 awarded to BCJ and a University of Strathclyde Global Research Award to JD. For the purpose of Open Access, the authors have applied a Creative Commons Attribution (CC BY) to any Author Accepted Manuscript (AAM) version arising from this submission.

Abstract

Individuals displaying cues of higher mate value (e.g., attractive characteristics) are thought to represent a greater threat to pair bonds and, consequently, elicit greater jealousy. Previous studies reporting that more feminine potential rivals elicit greater jealousy in women used stimuli in which feminine characteristics were experimentally manipulated and assessed jealousy using forced-choice methods. However, this method for assessing perceptions has recently been criticised for lacking ecological validity. Consequently, in the current study, women rated how jealous they would feel if rivals depicted in natural (i.e., unmanipulated) face photographs were flirting with their romantic partner. Facial femininity was assessed using objective analyses of shape and via thirdparty ratings of facial femininity. For heterosexual participants, women reported significantly greater jealousy when imagining more feminine women flirting with their romantic partner. This pattern of results was also seen for lesbian participants, although the correlation between rival femininity and jealousy was significantly weaker for lesbian participants than it was for heterosexual participants. Collectively, these results present further evidence that facial femininity of potential rivals influences women's reported jealousy, particularly in heterosexual women, and is further evidence for the proposal that putative markers of the mate value of rivals play a role in women's jealousy.

Introduction

Many researchers have argued that individuals displaying cues of higher mate value (e.g., attractive physical characteristics) represent a greater threat to pair bonds and, consequently, elicit greater jealousy (e.g., Buss et al., 2000; Dijkstra & Buunk, 1998, 2001, 2002). Consistent with this proposal, women report experiencing greater jealousy when imagining women with more feminine facial characteristics flirting with their romantic partner than when imagining women with less feminine facial characteristics flirting with their romantic partner (e.g., Fink et al., 2014;

Lei et al., 2019; O'Connor & Feinberg, 2012). Similar results have been reported for jealousy and feminine characteristics in women's voices and body shapes (Fink et al., 2014; O'Connor & Feinberg, 2012; O'Connor, 2023).

A limitation of the studies described above is that they all employed stimuli in which feminine characteristics were experimentally manipulated and assessed jealousy using forced-choice tasks in which women were presented versions of the same women (e.g., high- and low-femininity versions) and instructed to choose the version that elicited greater jealousy. However, many researchers have recently criticised this method for assessing responses to social stimuli because it has low ecological validity (Dong et al., 2023; Jones & Jaeger, 2019; Jones et al., 2023; Lee et al., 2021; Lewis, 2017, 2020; Satchell et al., 2023; Scott et al., 2013). Indeed, several recent studies have demonstrated that effects obtained using this method are typically considerably smaller (and often not significant) when natural (i.e., unmanipulated) stimuli are rated individually (Dong et al., 2023; Jones et al., 2023; Jones & Jaeger, 2019; Lee et al., 2021; Leger et al., 2023, 2024; Scott et al., 2010). This issue raises questions about the putative link between women's jealousy and the femininity of potential rivals claimed in previous studies.

In light of the above, we tested for possible interrelationships among (1) women's reported jealousy when viewing natural (i.e., unmanipulated) female faces, (2) an objective measure of the femininity of those faces' shapes, and (3) ratings of those faces' femininity. Dijkstra and Buunk (2002) reported that reading vignettes describing physically attractive rivals elicited greater jealousy in heterosexual than lesbian women. Given positive correlations between physical attractiveness and women's facial femininity (for a recent review, see Kleisner et al., 2023), Dijkstra and Buunk's (2002) results predict that correlations between femininity and reported jealousy would be stronger in heterosexual than lesbian women. Consequently, we tested both heterosexual and lesbian women in our study.

Methods Ethics

All aspects of the research were approved by the Department of Psychological Sciences and Health (university of Strathclyde) Ethics Committee (application number 29.13.11.2023).

Stimuli

Stimuli were face images of 50 white women (mean age = 24.3 years, SD = 4.01 years) from an open-access image database (DeBruine & Jones, 2022). Images showed women posed front-on to the camera, with direct gaze, and with neutral expressions. Images were standardized on pupil position and clothing was masked prior to rating. Example images are shown in Figure 1. The images we used are publicly available at https://osf.io/a3947/.

Figure 1. Example face images used in our study.

Jealousy ratings

The 50 female face images were presented in a fully randomised order to 51 heterosexual women (mean age = 29.53 years, SD = 4.00 years) and 49 lesbian women (mean age = 28.12 years, SD = 4.53 years) in an online jealousy-rating task. These participants were instructed to "Imagine this person was flirting with your romantic partner (if you do not currently have a romantic partner, imagine that you do have one). How jealous would you be? (1 = not very jealous, 7 = very jealous)." These instructions were adapted from those used by Lei et al. (2019) and O'Connor and Feinberg (2012) to assess responses to experimentally manipulated stimuli presented in a forced-choice task. Cronbach's alphas were high for jealousy ratings made by both groups of participants (both Cronbach's alphas > .93). Jealousy ratings were collected using Qualtrics and participants were recruited via Prolific.

Femininity ratings

The 50 female face images were presented in a fully randomised order to 30 heterosexual women (mean age = 23.57 years, SD = 5.46 years) and 30 lesbian women (mean age = 23.28 years, SD = 4.46 years) in an online femininity-rating task. Participants were instructed to rate the femininity of each woman shown using a 7-point scale (1 = much less feminine than average, 7 = much more feminine than average)." Cronbach's alphas were high for femininity ratings made by both groups of participants (both Cronbach's alphas > .92). Because femininity ratings made by heterosexual (M = 3.56, SD = 1.51) and lesbian (M = 3.44, SD = 1.66) participants were strongly positively correlated (r = 0.89, N = 50, p < 0.001), we calculated the average femininity rating given to each face from all participants and used those mean femininity ratings in subsequent analyses (M = 3.50, SD = 1.59). Femininity ratings were collected using Experimentum (DeBruine et al., 2020) and participants were recruited by following links on social media.

Measuring femininity of face shape

Face-shape femininity was objectively assessed for each of the 50 female face images using the facefuns package (Holzleitner & DeBruine, 2021) in R (R Core Team, 2021). This method has been used to assess face-shape femininity in many previous studies (e.g., Bartlome & Lee, 2023; Cai et al., 2019; Dong et al., 2023; Holzleitner et al., 2019; Komori et al., 2011; Leger et al., 2023, 2024). Shape components were first derived from Principal Component Analysis (PCA) of 132 Procrustes-aligned landmark points (see Holzleitner et al., 2019 for a diagram showing these facial landmarks) on each of the 50 female faces. Masculinity scores were then calculated for each image using a vector analysis method (e.g., Bartlome & Lee, 2023; Cai et al., 2019; Dong et al., 2023; Holzleitner et al., 2019; Komori et al., 2011; Leger et al., 2023, 2024). This method uses the shape principal components to locate each face on a female-male continuum, defined by calculating the average shape information for the 50 white female faces presented in the study and the average shape information for 50 white male faces taken from the same open-access image set (DeBruine & Jones, 2022). Femininity scores were then derived by projecting each image onto this male-female vector. Higher scores indicate more feminine face shapes. No scores were more than three standard deviations from the mean (i.e., there were no extreme values).

Results

All analyses were carried out using R (R Core Team, 2021), with the kableExtra 1.3.4 (Zhu, 2021), lme4 (Bates et al., 2015), lmerTest 3.1-3 (Kuznetsova et al., 2017), jtools 2.2.3 (Long, 2022), psych 2.2.5 (Revelle, 2022), and tidyverse 1.3.1 (Wickham, 2021) packages. All data, full outputs, and analysis code are publicly available on the Open Science Framework (https://osf.io/v67mk/). Femininity face-shape scores and rated femininity were positively and significantly correlated (r = .53, N = 50, p < .001).

We analysed jealousy ratings using a linear mixed effects model. In the first model, jealousy ratings were the dependent variable, with shape femininity scores (the facial-metric assessment of shape femininity converted to z scores), participant sexual orientation (effect coded so that heterosexual participants corresponded to -0.5 and lesbian participants corresponded to +0.5), and the interaction between shape femininity scores and participant sexual orientation as predictors. The model also included by-rater and by-stimulus random intercepts, by-rater random slopes for shape femininity scores, and by-stimulus random slopes for participant sexual orientation. Results of this analysis are summarised in Table 1. There was a significant positive effect of shape femininity scores, indicating that participants reported greater jealousy in response to more feminine women. The interaction between shape femininity scores and participant sexual orientation was also significant.

Table 1. Summary of results of analysis testing for relationships between shape femininity scores and reported jealousy.

	Estimate	SE	t	df	p value
			value		
Intercept	2.398	0.124	19.32 3	144.578	< .001
Participant sexual orientation	-0.363	0.212	-1.71 4	102.024	0.090
Face-shape femininity	0.232	0.070	3.340	55.053	0.002
Participant sexual orientation x face-shape femininity	-0.102	0.047	-2.14 9	83.655	0.035

To interpret the significant interaction between shape femininity scores and participant sexual orientation, we repeated the analysis described above, this time analysing jealousy ratings by heterosexual and lesbian participants in separate models. The positive effect of shape femininity scores was significant for both heterosexual participants (estimate = 0.283, SE = 0.081, t = 3.495, df = 61.432, p = .001) and lesbian participants (estimate = 0.181, SE = 0.065, t = 2.787, df = 54.048, p = .007), but was significantly stronger for heterosexual participants.

Next, we repeated our initial analysis, this time replacing shape femininity scores with rated femininity. Rated femininity was z-scored prior to analysis. Results of this analysis are summarised in Table 2. There was a significant positive effect of rated femininity, indicating that participants reported greater jealousy in response to more feminine women. The interaction between rated femininity and participant sexual orientation was also significant.

Table 2. Summary of results of analysis testing for relationships between rated femininity and reported jealousy.

	Estimate	SE	t	df	p value
			value		
Intercept	2.398	0.116	20.66	133.238	< .001
			5		
Participant sexual orientation	-0.363	0.211	-1.721	100.632	0.088
Rated femininity	0.389	0.057	6.874	71.485	< .001
Participant sexual orientation x	-0.169	0.057	-2.979	95.769	0.004
rated femininity					

To interpret the significant interaction between rated femininity and participant sexual orientation, we repeated this analysis, this time analysing jealousy ratings by heterosexual and lesbian participants in separate models. The positive effect of rated femininity was significant for both heterosexual participants (estimate = 0.474, SE = 0.067, t = 7.115, df = 82.064, p < .001) and lesbian participants (estimate = 0.305, SE = 0.060, t = 5.090, df = 69.409, p < .001), but stronger for heterosexual participants.

Discussion

The current study investigated how measured femininity of rivals' face shapes and rated femininity of rivals' faces were related to reported jealousy when heterosexual and lesbian women imagined the potential rivals flirting with their romantic partner. Our analyses showed that heterosexual women reported significantly greater jealousy when imagining women with more feminine face shapes flirting with their romantic partners. This same pattern of results was also observed when femininity of potential rivals was assessed via third-party ratings of facial femininity. Both results are consistent with previous research in which heterosexual women reported greater jealousy of more feminine rivals when feminine characteristics were experimentally manipulated in face images (Fink et al., 2014; Lei et al., 2019; O'Connor & Feinberg, 2012), body images (Fink et al., 2014), or voice recordings (O'Connor & Feinberg, 2012; O'Connor, 2023). Our results are also consistent with the proposal that individuals displaying cues of higher mate value (e.g., attractive physical characteristics) represent a greater threat to pair bonds and, consequently, elicit greater jealousy (e.g., Buss et al., 2000; Dijkstra & Buunk, 1998, 2001, 2002). Importantly, our study is the first to show that previously reported results for manipulated facial femininity and jealousy extend to jealousy ratings of natural (i.e., unmanipulated) faces images that vary on multiple dimensions simultaneously.

The pattern of results that we observed for lesbian women's jealousy ratings was very similar to the pattern that we observed for heterosexual women (i.e., more feminine potential rivals elicited greater jealousy). However, for lesbian women, the correlation between reported jealousy and femininity was significantly weaker than that the corresponding correlation that we observed for heterosexual women. This weaker effect of facial femininity on lesbian women's reported jealousy is consistent with Dijkstra and Buunk (2002), who found that vignettes reporting physically attractive women elicited greater jealousy in heterosexual women than in lesbian women. It is also consistent with Shiramizu et al. (2020), who reported that lesbian women showed significantly weaker preferences for female faces with feminine characteristics than did heterosexual women.

As mentioned in our Introduction, previous studies testing for possible effects of facial femininity on women's reported jealousy used stimuli in which feminine characteristics were experimentally manipulated and assessed jealousy using forced-choice tasks (Fink et al., 2014; Lei et al., 2019; O'Connor & Feinberg, 2012). This method for assessing responses to facial cues has been criticised for lacking ecological validity (Jones et al., 2023; Lewis, 2017, 2020; Satchell et al., 2023) and many recent studies have reported that results obtained using this method are qualitatively different to those obtained when natural (i.e., unmanipulated) face images are rated (Dong et al., 2023; Jones & Jaeger, 2019; Lee et al., 2021; Leger et al., 2023, 2024; Scott et al., 2010). By contrast with this pattern of results, however, the current study observed effects of facial femininity on reported jealousy that were similar to those

obtained using the forced-choice method in previous studies (Fink et al., 2014; Lei et al., 2019; O'Connor & Feinberg, 2012). Thus, our findings raise the possibility that the differences between results obtained using natural (i.e., unmanipulated) and experimentally manipulated face stimuli may be more nuanced than some previous research has suggested. At least for jealousy and facial femininity, these two different methods appear to show similar patterns of results.

Previous research linking facial femininity to women's jealousy used manipulated stimuli and forced-choice methods (Fink et al., 2014; Lei et al., 2019; O'Connor & Feinberg, 2012) that have recently been criticised for having poor ecological validity (Jones et al., 2023; Lewis, 2017, 2020; Satchell et al., 2023). Here we found that jealousy ratings of natural (i.e., unmanipulated) face images were positively correlated with femininity of face shape and that this correlation was stronger for heterosexual women than lesbian participants. These findings underline the importance of rivals' facial femininity for women's jealousy and suggest that previous findings were not simply an artefact of the methodologies employed.

References

- Bartlome, R. I., & Lee, A. J. (2023). Facial attractiveness, but not facial masculinity, is used as a cue to paternal involvement in fathers. Adaptive Human Behavior and Physiology, 1-16.
- Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H., Singmann, H., & Dai, B. (2015). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. 2014.
- Cai, Z., Hahn, A. C., Zhang, W., Holzleitner, I. J., Lee, A. J., DeBruine, L. M., & Jones, B. C. (2019). No evidence that facial attractiveness, femininity, averageness, or coloration are cues to susceptibility to infectious illnesses in a university sample of young adult women. Evolution and Human Behavior, 40(2), 156-159.
- Buss, D. M., Shackelford, T. K., Choe, J. A. E., Buunk, B. P., & Dijkstra, P. (2000). Distress about mating rivals. Personal Relationships, 7(3), 235-243.
- DeBruine, L. M., & Jones, B. C. (2022). 3DSK face set with webmorph templates. https://doi.org/10.17605/OSF.IO/A3947
- DeBruine, L. M., Lai, R., Jones, B. C., Abdullah, R. & Mahrholz, G. (2020). Experimentum (Version v.0.2). Zenodo. doi:10.5281/zenodo.2634355
- Dijkstra, P., & Buunk, B. P. (1998). Jealousy as a function of rival characteristics: An evolutionary perspective. Personality and social psychology bulletin, 24(11), 1158-1166. Dijkstra & Buunk, 2001,
- Dijkstra, P., & Buunk, B. P. (2002). Sex differences in the jealousy-evoking effect of rival characteristics. European Journal of Social Psychology, 32(6), 829-852.
- Dong, J., Leger, K., Shiramizu, V. K., Marcinkowska, U. M., Lee, A. J., & Jones, B. C. (2023). The importance of face-shape masculinity for perceptions of male dominance depends on study design. Scientific Reports, 13(1), 12620.

- Fink, B., Klappauf, D., Brewer, G., & Shackelford, T. K. (2014). Female physical characteristics and intra-sexual competition in women. Personality and Individual Differences, 58, 138-141.
- Hozleitner, I., J. & DeBruine, L. M. (2021). Facefuns (Version 0.0.0.900) [Computer software]. Retrieved from https://iholzleitner.github.io/facefuns/index.html
- Holzleitner, I. J., Lee, A. J., Hahn, A. C., Kandrik, M., Bovet, J., Renoult, J. P., ... & Jones, B. C. (2019). Comparing theory-driven and data-driven attractiveness models using images of real women's faces. Journal of Experimental Psychology: Human Perception and Performance, 45(12), 1589.
- Jones, A. L., & Jaeger, B. (2019). Biological bases of beauty revisited: The effect of symmetry, averageness, and sexual dimorphism on female facial attractiveness. Symmetry, 11(2), 279.
- Jones, B. C., Jones, A. L., & Shiramizu, V. (2023). Mapping physical characteristics in face images to social judgements. British Journal of Psychology, 114(2), 498-500.
- Komori, M., Kawamura, S., & Ishihara, S. (2011). Multiple mechanisms in the perception of face gender: Effect of sex-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 37(3), 626.
- Kleisner, K., Tureček, P., Saribay, S. A., Pavlovič, O., Leongómez, J. D., Roberts, S. C., ... & Varella, M. A. (2024). Distinctiveness and femininity, rather than symmetry and masculinity, affect facial attractiveness across the world. Evolution and Human Behavior, 45(1), 82-90.
- Kuznetsova A, Brockhoff PB, Christensen RHB (2017). "ImerTest Package: Tests in Linear Mixed Effects Models." Journal of Statistical Software, 82(13), 1–26. doi: 10.18637/jss.v082.i13.
- Lee, A. J., De La Mare, J. K., Moore, H. R., & Umeh, P. C. (2021). Preference for facial symmetry depends on study design. Symmetry, 13(9), 1637.
- Leger, K., Dong, J., DeBruine, L. M., Jones, B. C., & Shiramizu, V. K. (2023). Assessing the roles of shape prototypicality and sexual dimorphism in ratings of the trustworthiness of faces. Scientific Reports, 13(1), 15662.
- Leger, K., Dong, J., DeBruine, L. M., Jones, B. C., & Shiramizu, V. K. (2024). Assessing the roles of symmetry, prototypicality, and sexual dimorphism of face shape in health perceptions. Adaptive Human Behavior and Physiology, 1-13.
- Lei, N., Wang, H., Han, C., DeBruine, L. M., & Jones, B. C. (2019). The influence of facial femininity on Chinese and White UK women's jealousy. Evolutionary Psychological Science, 5, 109-112.
- Lewis, M. B. (2017). Fertility affects asymmetry detection not symmetry preference in assessments of 3D facial attractiveness. Cognition, 166, 130-138.
- Lewis, M. B. (2020). Challenges to both reliability and validity of masculinity-preference measures in menstrual-cycle-effects research. Cognition, 197, 104201.

- Long, J. A. (2022). jtools: Analysis and Presentation of Social Scientific Data. (Version 2.2.0). [Computer software]. Retrieved from https://cran.r-project.org/web/packages/jtools
- O'Connor, J. J., & Feinberg, D. R. (2012). The influence of facial masculinity and voice pitch on jealousy and perceptions of intrasexual rivalry. Personality and Individual Differences, 52(3), 369-373.
- O'Connor, J. J. (2023). Higher-pitched female voices elicit jealousy: Comparing the explanatory power of perceptions of mate poaching, attributions of attractiveness, and trait jealousy. Research Square.
- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/
- Revelle, W. (2022). Psych: Procedures for personality and psychological research (Version 2.2.5). [Computer software]. Retrieved from https:// CRAN.R-project.org/packagepsych
- Satchell, L., Jaeger, B., Jones, A. L., López, B., & Schild, C. (2023). Beyond reliability in first impressions research: Considering validity and the need to "mix it up with folks". Social Psychological Bulletin, 18, 1-21.
- Scott, I. M., Clark, A. P., Boothroyd, L. G., & Penton-Voak, I. S. (2013). Do men's faces really signal heritable immunocompetence?. Behavioral Ecology, 24(3), 579-589.
- Scott, I. M. L., Pound, N., Stephen, I. D., Clark, A. P. & Penton-Voak, I. S. (2010). Does masculinity matter? The contribution of masculine face shape to male attractiveness in humans. PLoS ONE 5(10): e13585.
- Shiramizu, V., Docherty, C., DeBruine, L. M., & Jones, B. C. (2020). Sexual orientation predicts men's preferences for sexually dimorphic faceshape characteristics: A replication study. Plos one, 15(11), e0242262.
- Wickham, H. (2021). tidyverse: Easily Install and Load the 'Tidyverse' (Version 1.3.1). [Computer software]. Retrieved from https://cran.r-project.org/web/packages/tidyverse/index.html
- Zhu, H. (2021). kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. (Version 1.3.4) [Computer software]. Retrieved from https://cran.r-project.org/web/packages/kableExtra