

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραφοθεωρία Ομάδα Ασκήσεων Νο. 1

Ομάδα 7 Αξιώτης Κυριάχος Αρσένης Γεράσιμος

1 Βαθμοί, κύκλοι, μονοπάτια

1.7 (*) Δείξτε ότι αν για κάποιο γράφημα G ισχύει ότι διάμετρος $(G) \ge 2$, τότε το ίδιο θα ισχύει και για το απόκεντρο του G.

Aπόδειξη. Έστω αποκ(G) το σύνολο των κορυφών του G που ανήκουν στο απόκεντρο και $H = G_{αποκ(G)}$ το εναγόμενο από το απόκεντρο υπογράφημα.

Έστω ότι ήταν διάμετρος $(H) \le 1$. Επειδή το απόκεντρο πρέπει να περιέχει τουλάχιστον 2 κορυφές, η διάμετρος δεν μπορεί να είναι 0 άρα έχουμε ότι διάμετρος(H) = 1, δηλαδή το H είναι πλήρες γράφημα.

Τότε όμως η διάμετρος του G δεν μπορεί να είναι μεγαλύτερη ή ίση του 2 γιατί όλες οι αντιδιαμετρικές κορυφές βρίσκονται στο απόκεντρο και το απόκεντρο είναι πλήρες.

Συνεπώς αν διάμετρος $(G) \ge 2$ τότε και διάμετρος $(H) \ge 2$.

1.8 (*) Προσδιορίστε τη μέση απόσταση δύο κορυφών του γραφήματος Q_r (δηλ. το μέσο όρο των αποστάσεων για όλα τα δυνατά ζεύγη διακεκριμένων κορυφών).

Απόδειξη. Ως γνωστόν οι κορυφές του υπερκύβου μπορούν να αριθμηθούν με δυαδικές συμβολοσειρές μήκους <math>r. Δύο κορυφές συνδέονται με ακμή ανν οι συμβολοσειρές τους διαφέρουν μόνο σε μία θέση.

Έστω μία χορυφή x. Το πλήθος των χορυφών που βρίσχονται σε απόσταση d είναι ίσο με το πλήθος των χορυφών που οι συμβολοσειρές τους διαφέρουν σε d αχριβώς θέσεις σε σχέση με την x. Δηλαδή υπάρχουν $\binom{r}{d}$ χορυφές σε απόσταση d.

Συνεπώς έχουμε:

$$\begin{split} E[d] &= \frac{1}{\binom{n(G)}{2}} \sum_{u,v \in V(G): u \neq v} d(u,v) \\ &= \frac{1}{\binom{2^r}{2}} \sum_{u \in V(G)} \sum_{v \in V(G): v \neq u} d(u,v) \\ &= \frac{1}{\frac{2^r \cdot (2^r - 1)}{2}} \sum_{u \in V(G)} \sum_{k=1}^r k \cdot \binom{r}{k} \\ &= \frac{2}{2^r (2^r - 1)} n(G) \sum_{k=1}^r r \binom{r-1}{k-1} \\ &= \frac{2 \cdot 2^r \cdot r}{2^r (2^r - 1)} \sum_{k=0}^{r-1} \binom{r-1}{k} \\ &= \frac{2 \cdot r \cdot 2^{r-1}}{2^r - 1} \\ &= \frac{r \cdot 2^r}{2^r - 1} \end{split}$$

1.9 (*) Για κάθε θετικό ακέραιο α και για κάθε γράφημα G, το V(G) περιέχει περισσότερες από $\left(1-\frac{1}{\alpha}\right)\cdot n(G)$ κορυφές βαθμού αυστηρά μικρότερου του $2\alpha\delta^*(G)$.

Απόδειξη. Σύμφωνα με τον ορισμό έχουμε ότι $\delta^*(G) = \max\{k \mid \exists H \subseteq G \text{ με } \delta(H) \geq k\}.$ Θέλουμε να δείξουμε ότι:

$$|\{u \mid u \in V(G) \land d(u) < 2\alpha \delta^*(G)\}| > \left(1 - \frac{1}{\alpha}\right) n(G)$$

Έστω λοιπόν, προς απαγωγή σε άτοπο ότι:

$$|\{u \mid u \in V(G) \land d(u) < 2\alpha\delta^*(G)\}| \le \left(1 - \frac{1}{\alpha}\right)n(G)$$

$$\Leftrightarrow n(G) - |\{u \mid u \in V(G) \land d(u) \ge 2\alpha\delta^*(G)\}| \le \left(1 - \frac{1}{\alpha}\right)n(G)$$

$$\Leftrightarrow |\{u \mid u \in V(G) \land d(u) \ge 2\alpha\delta^*(G)\}| \ge \frac{1}{\alpha}n(G)$$

Ισχύει όμως:

$$2m(G) = \sum_{u \in V(G)} d(u) \ge \sum_{u \in V(G): d(u) \ge 2\alpha\delta^*(G)} d(u) \ge \frac{1}{\alpha} n(G) \cdot 2\alpha\delta^*(G) = 2n(G)\delta^*(G)$$
 (1)

$$m(G) \ge n(G) \cdot \delta^*(G) \Leftrightarrow \epsilon(G) \ge \delta^*(G)$$

Από το Πόρισμα 3.1 των σημειώσεων του μαθήματος γνωρίζουμε ότι $\delta^*(G) \ge \max\{\epsilon(G), \delta(G)\}$ συνεπώς θα έχουμε:

$$\epsilon(G) = \delta^*(G)$$

Άρα οι ανισότητες στη Σχέση 1 θα πρέπει να είναι ισχυρές, δηλαδή:

$$\sum_{u \in V(G)} d(u) = \sum_{u \in V(G): d(u) \ge 2\alpha\delta^*(G)} d(u) = \frac{1}{\alpha} n(G) \cdot 2\alpha\delta^*(G)$$

Δηλαδή οι μόνες κορυφές με $d(u)<2\alpha\delta^*(G)$ θα πρέπει να είναι απομονωμένες και επιπλέον οι υπόλοιπες κορυφές να έχουν βαθμό ακριβώς $d(u)=2\alpha\delta^*(G)$ και να είναι ακριβώς $\frac{1}{\alpha}n(G)$ σε πλήθος. Τότε όμως, αν αφαιρέσουμε τις απομονωμένες κορυφές θα μείνει ένα $(2\alpha\delta^*(G))$ -κανονικό γράφημα και έτσι $\delta^*(G)\geq 2\alpha\delta^*(G)\Leftrightarrow \alpha\leq \frac{1}{2}$.

Αυτό όμως είναι άτοπο γιατί υποθέσαμε ότι ένα σύνολο κορυφών έχει πληθάριθμο $\leq \left(1-\frac{1}{\alpha}\right)n(G) < 0$.

 $1.10~(\star\star)~$ Κάθε γράφημα G με τουλάχιστον 2 κορυφές και $\epsilon(G)\geq 2$, έχει περιφέρεια το πολύ $2\cdot\log_2(n)$.

Απόδειξη. Έστω το μικρότερο σε πλήθος κορυφών γράφημα, το οποίο έχει τουλάχιστον 2 κορυφές και $\epsilon(G) \geq 2$ και ο ελάχιστός του κύκλος είναι μεγαλύτερος από $2 \cdot \log_2(n)$. Αν αυτό το γράφημα περιέχει μια χορυφή βαθμού 1, τότε αφαιρώντας την οι αχμές μειώνονται κατά 1 και οι κορυφές μειώνονται κατά 1, άρα $\epsilon(G')=\frac{m'}{n'}=\frac{m-1}{n-1}\geq \frac{2n-1}{n-1}\geq 2$. (Επίσης το υπόλοιπο γράφημα έχει τουλάχιστον μια ακμή, αφού αν πριν τη διαγραφή είχε μόνο μία, θα είχαμε πυκνότητα το πολύ 1/2). Αυτό όμως είναι άτοπο λόγω της υπόθεσης ελαχιστότητας. Αντίστοιχα, αν περιέχεται μια κορυφή βαθμού 2, τότε αφαιρώντας την έχουμε m'=m-2 και n'=n-1, άρα $\epsilon(G') = \frac{m'}{n'} = \frac{m-2}{n-1} \ge \frac{2n-2}{n-1} = 2$, το οποίο είναι και πάλι άτοπο για τον ίδιό λόγο με παραπάνω. Άρα όλες οι κορυφές του γραφήματος έχουν βαθμό τουλάχιστον 3. Έστω τυχαία κορυφή v και η αποσύνθεση απόστασης από την v είναι τα σύνολα $V_0,\ V_1,\ V_2,\ ...,\ V_k,$ όπου V_i το σύνολο κορυφών που βρίσκονται σε απόσταση i από την v. Γνωρίζουμε ότι υπάρχουν ακμές μόνο στο εσωτερικό ενός συνόλου ή μεταξύ διαδοχικών συνόλων της αποσύνθεσης. Αν μια κορυφή στο επίπεδο i έχει δύο αχμές προς το επίπεδο i-1, τότε σχηματίζεται χύχλος με μήχος το πολύ $2 \cdot i$. Για να μην καταλήξουμε σε άτοπο, θα πρέπει $i>\log_2(n)$. Επίσης, αν μια κορυφή στο επίπεδο i έχει ακμή προς κάποια άλλη κορυφή στο ίδιο επίπεδο, τότε σχηματίζεται κύκλος με μήκος το πολύ $2 \cdot i + 1$.

Για να μην καταλήξουμε σε άτοπο, θα πρέπει $i>\log_2(n)-\frac{1}{2}$. Από αυτά συμπεραίνουμε ότι οι κορυφές στα επίπεδα $i\le\log_2(n)-\frac{1}{2}$ δεν έχουν ακμές προς το ίδιο επίπεδο, και έχουν το πολύ μία ακμή προς το πάνω επίπεδο. Άρα έχουν (η κάθε μία) τουλάχιστον 2 ακμές προς το κάτω επίπεδο. Μάλιστα, αυτές οι ακμές είναι προς διαφορετικούς κόμβους, αφού όπως είπαμε παραπάνω αν μια κορυφή έχει δύο ακμές προς τα πάνω θα πρέπει να είναι σε επίπεδο με $i>\log_2(n)$. Στο επίπεδο i, με $i\le\log_2(n)$ έχουμε λοιπόν τουλάχιστον $3\cdot 2^{i-1}$ κορυφές. Επειδή συνολικά έχουμε n κορυφές, θα πρέπει $3\cdot 2^{i-1}\le n$, δηλαδή $i\le\log_2(\frac{n}{3})+1=\log_2(n)-\log_2(3)+1\le\log_2(n)-\frac{1}{2}$. Συνεπώς το τελευταίο επίπεδο δεν μπορεί να απέχει περισσότερο από $\log_2(n)-\frac{1}{2}$. Οι κορυφές αυτού του επιπέδου, όμως, όπως είπαμε παραπάνω, δεν μπορούν να έχουν ακμές προς το ίδιο επίπεδο, και το πολύ μία ακμή προς το παραπάνω επίπεδο. Αυτό είναι άτοπο γιατί έχουν βαθμό τουλάχιστον 2 είναι το πολύ $\log_2(n)$.

2 Άκυκλα γραφήματα

 $2.9~(\star)$ Έστω $G=T_1\cup T_2$ όπου T_1 και T_2 είναι δέντρα. Δείξτε ότι $\exists c\in\mathbb{N}:\delta^*(G)\leq c$ και βρέστε την μικρότερη σταθερά c για την οποία $\delta^*(G)\leq c$ για κάθε γράφημα που είναι ένωση δύο δέντρων

Απόδειξη. Αρχικά θα δείξουμε ότι $c \le 3$. Έστω ότι ήταν $c \ge 4$ δηλαδή έστω ότι υπήρχαν δέντρα

Σχήμα 1: Οι μαύρες αχμές ανήχουν στο T_1 και οι κόκκινες στο T_2 .

 T_1, T_2 τέτοια ώστε το $G = T_1 \cup T_2$ να περιέχει υπογράφημα H με $\delta(H) \geq 4$.

Tότε $m(H) \ge \frac{\delta(H) \cdot n(H)}{2} = 2n(H)$.

Για το H έχουμε $H=F_1\cup F_2$ όπου $F_1\subseteq_{\rm up} T_1, F_2\subseteq_{\rm up} T_2$ δηλαδή τα F_1, F_2 είναι δάση και έτσι $m(F_1)\leq n(F_1)-1, m(F_2)\leq n(F_2)-1$. Έτσι $m(H)\leq m(F_1)+m(F_2)\leq n(F_1)+n(F_2)-2$.

Όμως $n(F_1) + n(F_2) = |V(F_1) \cup V(F_2)| + |V(F_1) \cap V(F_2)| \le 2|V(F_1) \cup V(F_2)| = 2n(H)$.

Συνεπώς $m(H) \leq 2n(H) - 2$. Άτοπο γιατί πριν δείξαμε ότι $m(H) \geq 2n(H)$.

Για να δείξουμε τώρα ότι c=4 μπορούμε να δούμε το παράδειγμα στο Σχήμα 1 όπου έχουμε δύο δέντρα T_1,T_2 με 4 κορυφές το καθένα για τα οποία ισχύει $\delta^*(T_1\cup T_2)=3$.

 $2.10 \ (\star)$ Σε κάθε δέντρο με n κορυφές και διάμετρο τουλάχιστον 2k-3 υπάρχουν τουλάχιστον n-k διαφορετικά μονοπάτια μήκους k.

Απόδειξη. Έστω u,v δύο αντιδιαμετρικοί κόμβοι με $d(u,v)=\dim(u,v)$ και έστω P το μονοπάτι που τους ενώνει. Ονομάζουμε w την κορυφή πάνω στο P που απέχει d(u,w)=k-1 από την u. Τέτοια κορυφή υπάρχει αφού $|P|=d(u,v)\geq 2k-3>k-1$.

Στο μονοπάτι P' από u στον w υπάρχουν αχριβώς k χορυφές. Θα δείξουμε ότι με αφετηρία χάθε μία από τις υπόλοιπες n-k χορυφές μπορούμε να δημιουργήσουμε διαφορετιχά μονοπάτια μήχους k.

Έστω μια κορυφή x που δεν ανήκει στο P'. Θα δημιουργήσουμε ένα μονοπάτι T_x μήκους k διακρίνοντας δύο περιπτώσεις:

(α΄) Αν $w \in P(x,u)$ όπου P(x,u) το μονοπάτι από x σε w στο δέντρο τότε θέτουμε T_x το πρόθεμα μήχους k του μονπατιού (δηλαδή το T_x περιλαμβάνει την αφετηρία x και τους επόμενους k-1 χόμβους).

Τέτοιο πρόθεμα υπάρχει πάντα γιατί το $P(x, u) \ge P(x, w) + 1 = k$.

(β΄) Αν $w \notin P(x,u)$ τότε θεωρούμε το μονοπάτι P(x,v) για το οποίο ισχύει $w \in P(x,v)$ και θέτουμε T_x το πρόθεμα μήχους k αυτού του μονοπατιού.

Όπως πριν, εξασφαλίζουμε την ύπαρξη τέτοιου προθέματος από το γεγονός ότι $P(x,v) \ge P(w,v) + 2 \ge (2k-3) - (k-1) + 2 = k$

Τα παρακάτω λήμματα μας εξασφαλίζουν ότι τα μονοπάτια που προκύπτουν από την παραπάνω διαδικασία είναι όλα διαφορετικά μεταξύ τους.

Σχήμα 2: Οι καμπύλες γραμμές αναπαριστούν μονοπάτια. Η κορυφή x_1 ανήκει στην περίπτωση (α') και η x_2 στην περίπτωση (β'). Σε κύκλο βρίσκονται οι κορυφές του μονοπατιού P(u,w) από τις οποίες δεν δημιουργούμε μονοπάτια.

Λήμμα 1. Έστω δύο μονοπάτια P_1, P_2 σε ένα δέντρο που έχουν προκύψει ώς πρόθεμα (προσανατολισμένων) μονοπατιών από την κορυφή x_1 στην u και από την x_2 στην u αντίστοιχα όπου οι x_1, x_2, u διαφορετικές μεταξύ τους κορυφές. Τότε $P_1 \neq P_2^{-1}$

Απόδειξη. Από τον ορισμό των P_1, P_2 βλέπουμε ότι ο μόνος τρόπος να είναι το ίδιο μονοπάτι είναι αν έχουν ώς άκρα τις κορυφές x_1, x_2 .

Αυτό σημαίνει ότι $x_2 \in P(x_1, u), x_1 \in P(x_2, u)$ το οποίο είναι άτοπο άρα $P_1 \neq P_2$.

Λήμμα 2. Έστω δύο μονοπάτια T_{x_1}, T_{x_2} για $x_1 \neq x_2$ που έχουν προκύψει από τις περιπτώσεις $(a'), (\beta')$ αντίστοιχα. Τότε $T_{x_1} \neq T_{x_2}$.

Απόδειξη. Έχουμε ότι $x_2 \notin P(x_1,u)$ γιατί διαφορετικά είτε θα είχαμε $x_2 \in P(x_1,w)$ και τότε η x_2 θα ήταν στην περίπτωση (α') είτε $x_2 \in P(w,u) = P'$ το οποίο δεν μπορεί να συμβαίνει αφού οι κορυφές του P' δεν είναι αφετηρίες μονοπατιών.

Συνεπώς, το T_{x_1} που είναι υποσύνολο του $P(x_1,u)$ δεν μπορεί να περιέχει την x_2 , άρα τα T_{x_1},T_{x_2} έχουν τουλάχιστον μία χορυφή διαφορετική και έτσι είναι διαφορετικά.

Σε κάθε περίπτωση λοιπόν τα n-k μονοπάτια που δημιουργήσαμε είναι όλα διαφορετικά μεταξύ τους.

3 Συνεκτικότητα

- $3.9~(\star)$ Ένα γράφημα είναι δισυνεκτικό αν και μόνο αν μπορεί να κατασκευαστεί αρχίζοντας από το K_3 και εφαρμόζοντας μία ακολουθία μετασχηματισμών που μπορεί να είναι,
 - Υποδιαίρεση αχμής.
 - Πρόσθεση αχμής.

Απόδειξη. Θα δούμε τις δύο κατευθύσεις του θεωρήματος ξεχωριστά.

 $^{^{1}}$ Ορίσαμε τα P_{1},P_{2} ώς πρόθεμα προσανατολισμένων μονοπατιών, δηλαδή μονοπατιών με συγχεχριμένη αφετηρία και πέρας όμως από τη στιγμή που τα ορίζουμε τα θεωρούμε πλέον μη-προσανατολισμένα και έτσι έχει νόημα η σύγχριση $P_{1} \neq P_{2}$.

• \leftarrow Το K_3 είναι δισυνεκτικό άρα θα πρέπει να δείξουμε ότι οι παραπάνω μετασχηματισμοί διατηρούν αναλλοίωτη τη συνεκτικότητα.

Πράγματι:

- Με την προσθήκη ακμής όλα τα μονοπάτια που υπάρχαν στο αρχικό γράφημα διατηρούνται. Έτσι, όσα εσωτερικώς διακεκριμένα μονοπάτια υπήρχαν μεταξύ ζευγών κορυφών συνεχίζουν να υπάρχουν και έτσι από το Θεώρημα Menger έχουμε ότι το γράφημα θα συνεχίσει να είναι δισυνεκτικό.
- Για την υποδιαίρεση ακμής, θα πρέπει να βεβαιωθούμε ότι δεν μπορούμε να αποσυνδέσουμε το γράφημα με την αφαίρεση μία κορυφής και συγκεκριμένα της κορυφής που βάλαμε με την υποδιαίρεση.
 - Η αφαίρεση της νέας κορυφής ισοδυναμεί με αφαίρεση της υποδιαιρούμενης ακμής στο αρχικό γράφημα. Έστω $\{u,v\}$ αυτή η ακμή. Επειδή το γράφημα αρχικά ήταν δισυνεκτικό, θα υπάρχει τουλάχιστον άλλο ένα μονοπάτι από την u προς την v άρα το γράφημα παραμένει συνεκτικό και μετά την αφαίρεση της $\{u,v\}$.
- ullet \Rightarrow Θ α δείξουμε ότι αν ένα γράφημα G είναι δισυνεκτικό τότε είτε:
 - (1) θα είναι το K_3 , είτε
 - (2) θα περιέχει μια κορυφή βαθμού 2 της οποίας οι γείτονες να μην είναι συνδεδεμένοι απευθείας (θα καλούμε τέτοιες κορυφές μή-απλοϊδείς) και η διάλυσή της δημιουργεί δισυνεκτικό γράφημα, είτε
 - (3) θα περιέχει μία αχμή της οποίας η αφαίρεση οδηγεί σε δισυνεχτικό γράφημα.

Έτσι, για κάθε δισυνεκτικό γράφημα μπορούμε να εφαρμόσουμε μία ακολουθία από διαλύσεις κορυφών και αφαιρέσεις ακμών μέχρι να καταλήξουμε στο K_3 και η αντίστροφη διαδικασία είναι που μας παράγει το G από το K_3 όπως ζητάει η εκφώνηση.

Αν το γράφημα G περιέχει μια αχμή της οποίας η αφαίρεση διατηρεί το γράφημα δισυνεχτικό τότε έχουμε τελειώσει γιατί ισχύει το (3). Επομένως αρχεί να εξετάσουμε την περίπτωση όπου για όλες τις αχμές $e \in E(G)$ ισχύει $\kappa(G \backslash e) < 2$.

Παρατηρούμε ότι $\kappa(G)=2$ γιατί διαφορετικά, έστω ότι $\kappa(G)\geq 3$ τότε με την αφαίρεση μιας ακμής η συνεκτικότητα δεν θα έπρεπε να πέφτει πάνω από μία μονάδα (Παρατήρηση 5.7 των σημειώσεων του μαθήματος), όμως υποθέσαμε ότι η αφαίρεση οποιαδήποτε ακμής οδηγεί σε συνεκτικότητα μικρότερη του 2, δηλαδή έχουμε μείωση της συνεκτικότητας κατά 2 που είναι άτοπο.

Σύμφωνα με το Θεώρημα Halin (συγκεκριμένα με το αντιθετο-αντίστροφό του) έχουμε ότι $\delta(G) \leq \kappa(G) = 2$. Ο ελάχιστος βαθμός ενός δισυνεκτικού γραφήματος δεν μπορεί να είναι μικρότερος του 2, άρα $\delta(G) = 2$. Έστω λοιπόν u μια κορυφή βαθμού 2 και έστω x,y οι γείτονές τις.

Έστω τώρα ότι $\{x,y\}\in E(G)$. Αν το γράφημα έχει μόνο 3 χορυφές τότε είναι το K_3 και έχουμε τελειώσει. Διαφορετικά έστω ότι έχει τουλάχιστον άλλη μία χορυφή w η οποία συνδέεται στην x. Επειδή το γράφημα είναι δισυνεχτικό θα πρέπει η αφαίρεση της x να μην το αποσυνδέει, συνεπώς θα πρέπει να υπάρχει μονοπάτι P από την w στην y που να μην χρησιμοποιεί την χορυφή x. Τότε όμως μεταξύ της x και της y θα υπήραν x εσωτερικά διαχεχριμένα μονοπάτια: x (x) (x)

 $^{^2}$ Υπάρχει περίπτωση το P να χρησιμοποιεί την u ώς ενδιάμεσο κόμβο. Σε αυτή την περίπτωση θεωρούμε το P' από το w στο u και δείχνουμε ότι υπάρχουν 3 εσωτερικά διακεκριμένα μονοπάτια από το x στο u.

Άρα η u είναι μη απλοϊδής κορυφή βαθμού 2 και μένει να δείξουμε ότι η διάλυσή της διατηρεί τη συνεκτικότητα. Αυτό προκύπτει από το θεώρημα Menger αφού ό,τι μονοπάτια υπήρχαν πριν μεταξύ κορυφών συνεχίζουν να υπάρχουν.

3.10 (**) Για κάθε k κορυφές ενός k-συνεκτικού γραφήματος, υπάρχει κύκλος που να τις περιέχει όλες.

Απόδειξη. Έστω k χορυφές του γραφήματος G χαι C χύχλος που περιέχει όσο το δυνατόν περισσότερες από τις k χορυφές. Έστω S το σύνολο των k χορυφών. Αν ο |C| περιέχει και τις k, τελειώσαμε. Διαφορετιχά, περιέχει μόνο l από αυτές και έστω u μία από τις k χορυφές, η οποία δεν βρίσκεται στον χύχλο. Από το Λήμμα 1, υπάρχουν min(|C|,k) εσωτεριχώς διαχεχριμένα μονοπάτια από το u προς τις χορυφές του χύχλου, και κανένα δεν τελειώνει στην ίδια χορυφή του χύχλου. Έστω v_i μία απαρίθμηση των χορυφών του χύχλου (με τη σειρά που εμφανίζονται πάνω στον χύχλο) οι οποίες αποτελούν άχρο χάποιου μονοπατιού από τα παραπάνω χαι P_i τα αντίστοιχα μονοπάτια. Επίσης έστω F_i το μονοπάτι από την v_i στην v_{i+1} το οποίο δεν περιέχει χαμία άλλη από τις v_j . (Έχουμε θεωρήσει ότι $v_{min(|C|,k)+1} \equiv v_1$). Αν ο χύχλος έχει μήχος l, τότε περιέχει μόνο χορυφές από το S. Ο χύχλος $v_1, P_1, u, P_2, v_2, v_3, ..., v_l, v_1$ περιέχει l+1 στοιχεία του S, άτοπο. Αν έχει μήχος l, τότε οι χορυφές v_i είναι τουλάχιστον l+1. Αυτό σημαίνει ότι υπάρχουν τουλάχιστον l+1 διαφορετιχά μονοπάτια l. Άρα θα υπάρχει ένα l0 το ποίο δεν περιέχει στο εσωτεριχό του χαμία χορυφή του l1. Τότε, ο χύχλος l2, l3, l4, l4, l4, l5, l4, l5, l5, άτοπο. Άρα για χάθε σύνολο l4, χορυφών, υπάρχει χύχλος που τις περιέχεί όλες.

Λήμμα 1: Έστω k-συνεχτικό γράφημα, χύκλος του με τουλάχιστον l κορυφές με l < k και τυχαία κορυφή u εκτός του χύκλου. Τότε υπάρχουν l κορυφές του χύκλου $v_1, v_2, ..., v_l$ και εσωτερικώς διακεκριμένα μονοπάτια $P_i = u...v_i$ για κάθε $1 \le i \le l$.

Απόδειξη. Έστω μία νέα χορυφή v που συνδέεται με αχμή με όλες τις χορυφές του χύχλου. Δηλαδή θεωρούμε γράφημα G με $V(G') = V(G) \cup \{v\}$ χαι $E(G') = E(G) \cup \{(v,x)|x \in C\}$. Το G είναι l-συνεχτιχό: Αν σβήσουμε l-1 χορυφές και σε αυτές περιέχεται η v, τότε οι χορυφές που απομένουν συνδέονται λόγω της k-συνεχτιχότητας του αρχιχού γραφήματος. Σε διαφορετιχή περίπτωση, θα σβηστούν το πολύ l-1 χορυφές του χύχλου και συνεπώς θα μείνει τουλάχιστον μία άχμή από την v προς μια χορυφή του χύχλου, άρα το γράφημα θα παράμείνει συνεχτιχό. Αφού το γράφημα είναι l-συνεχτιχό, θα υπάρχουν l εσωτεριχώς διαχεχριμένα μονοπάτια από την χορυφή u στην χορυφή v. Κάθε ένα από αυτά τα μονοπάτια περνάει από τουλάχιστον μία χορυφή του χύχλου. Για χάθε μονοπάτι P=u...v, θεωρούμε την πρώτη φορά που περνάει από μία χορυφή του χύχλου. Έστω ότι αυτή είναι η x_i . Το σύνολο των μονοπατιών $\{P_i=u...x_i\}$ είναι το ζητούμενο, αφού τα μονοπάτια είναι εσωτεριχώς διαχεχριμένα χαι χαταλήγουν σε l διαφορετιχές χορυφές του χύχλου.

4 Εμβαπτίσεις

 $4.6 (\star)$ Έστω ενεπίπεδο γράφημα Γ και έστω Γ^* το δυικό του. Δείξτε ότι τα Γ και Γ^* έχουν το ίδιο πλήθος δεντροπαραγόντων.

Απόδειξη. Θα δείξουμε ότι υπάρχει συνάρτηση f 1-1 και επί από το σύνολο των δεντροπαραγόντων του Γ στο σύνολο των δεντροπαραγόντων του Γ^* και συνεπώς τα δύο σύνολα θα έχουν το ίδιο πλήθος στοιχείων.

 Ω ς γνωστόν, το δυικό ενός γραφήματος έχει το ίδιο πλήθος ακμών με το αρχικό και μάλιστα κάθε ακμή e του αρχικού αντιστοιχεί σε εκείνη την ακμή e^* του δυικού η οποία συνδέει τις δύο όψεις τις οποίες "βλέπει" η e.

Έστω ένας δεντροπαράγοντας T του Γ . Δημιουργούμε ένα υπογράφημα T^* του Γ^* κρατώντας όλες τις ακμές e^* των οποίων οι αντίστοιχες e στο Γ δεν ανήκουν στο T, δηλαδή $E(T^*)=\{e^*\mid e\notin T\}$.

Θα δείξουμε ότι το T^* είναι δεντροπαράγοντας και η αντιστοιχία είναι όντως 1-1 και επί. Το δεύτερο φαίνεται εύκολα αφού ένας δεντροπαράγοντας χαρακτηρίζεται από το σύνολο των ακμών που περιέχει και έχουμε ήδη δείξει ότι υπάρχει 1-1 και επί αντιστοιχία των ακμών του Γ με τις ακμές του Γ^* .

Για το πρώτο, θα χρησιμοποιήσουμε ένα λήμμα που συνδέει τους κύκλους ενός επίπεδου γραφήματος με τις τομές (cuts) του δυϊκού και αντιστρόφως.

Ορισμός 3. Με τον όρο τομή (cut) μιας επίπεδης απεικόνισης ενός γραφήματος G εννούμε μια κλειστή καμπύλη γραμμή που δεν τέμνει τις κορυφές του G και περιέχει τουλάχιστον μία κορυφή στο εσωτερικό της και τουλάχιστον μία στο εξωτερικό της.

Λήμμα 4. Έστω επίπεδο γράφημα G, και έστω G^* το δυϊκό του για μία επίπεδη απεικόνιση του G. Κάθε κύκλος C^* (όχι απαραίτητα απλός) του δυϊκού γραφήματος αντιστοιχεί σε μια τομή C στο αρχικό γράφημα G και αντιστρόφως. Επιπλέον το πλήθος των ακμών του G που διαπερνούν την τομή C, είναι ίσο με το μήκος του κύκλου C^* .

Απόδειξη. Με βάση μία επίπεδη απεικόνιση του G σχεδιάζουμε το δυϊκό γράφημα G^* ως εξής:

- Για κάθε όψη f_i του G επιλέγουμε ένα εσωτερικό της σημείο v_i^* το οποίο αναπαριστά την κορυφή του δυϊκού που αντιστοιχεί στην όψη αυτή.
- Για κάθε ακμή e_i του αρχικού γραφήματος, η οποία βρίσκεται στο περιθώριο δύο όψεων f_i, f_j (όχι απαραίτητα διαφορετικών μεταξύ τους) προσθέτουμε μια καμπύλη γραμμή μεταξύ των κορυφών v_i^*, v_j^* του δυϊκού που αναπαριστά την ακμή e_i^* του δυϊκου και η οποία τέμνει τη ακμή e_i .

Είναι τώρα φανερό ότι ένας κύκλος C^* στο δυϊκό γράφημα αποτελεί μια κλειστή καμπύλη η οποία έχει εσωτερικό και εξωτερικό μέρος άρα θα είναι μια τομή για το αρχικό γράφημα. Επιπλέον κάθε ακμή του κύκλου C^* τέμνει ακριβώς μία ακμή του αρχικού γραφήματος και έτσι υπάρχει 1-1 αντιστοιχία των ακμών του κύκλου και αυτών που διαπερνούν την τομή.

Αντίστοιχα, μια τομή του αρχικού γράφηματος θα είναι μια καμπύλη που θα διέρχεται από όψεις του γραφήματος διαπερνώντας ακμές, δηλαδή για το δυϊκό γράφημα θα είναι ένας κύκλος.

Γυρνόντας τώρα πίσω στο υπογράφημα T^* , θα δείξουμε κατ' αρχάς ότι είναι δέντρο. Πράγματι, έστω ότι το T^* περιείχε κύκλο. Τότε αυτό σημαίνει ότι στο T θα υπήρχε μία τομή που διαχωρίζει τις κορυφές του και οι ακμές που διαπερνάνε την τομή δεν ανήκουν στο T. Αυτό όμως είναι άτοπο γιατί τότε το T δεν θα ήταν συνδεδεμένο.

Με εντελώς ανάλογο επιχείρημα μπορούμε να δείξουμε και ότι το T^* είναι συνδεδεμένο. Πράγματι, έστω ότι τουλάχιστον 2 συνεκτικές συνιστώσες στο T^* , τότε θα μπορούσαμε να τις διαχωρίσουμε με μία τομή την οποία θα διαπερνούσαν ακμές $e^* \notin T$, οι οποίες να δημιουργούσαν κύκλο στο T με ακμές $e \in T$ το οποίο είναι άτοπο γιατί το T είναι δέντρο και δεν μπορεί να περιέχει κύκλους.

4.9 (**) Ορίζουμε το τετράγωνο G^2 ενός γραφήματος ως εξής: $G^2 = (V(G), \{(x,y)|dist_G(x,y) \leq 2\})$. Περιγράψτε πλήρως όλα τα γραφήματα G για τα οποία το G^2 είναι επίπεδο.

Απόδειξη. Για να είναι το G^2 επίπεδο, θα πρέπει να μην περιέχει κανένα εκ των K_5 και $K_{3,3}$ ως ελάσσον. Αν υπάρχει στο G κορυφή με βαθμό τουλάχιστον 4, όλοι οι γείτονές της έχουν απόσταση 2, άρα συνδέονται με ακμή στο G^2 , δηλαδή το G^2 περιέχει σαν ελάσσον το K_5 , άτοπο. Άρα $\Delta(G) \leq 3$. Έστω μια κορυφή τομής του G. Όπως είπαμε ο βαθμός της θα είναι το πολύ 3, άρα δεν μπορεί να είναι κοινή κορυφή δύο δισυνεκτικών συνιστωσών που δεν είναι το K_2 . Συνεπώς αν μια κορυφή ανήκει σε μια δισυνεκτική συνιστώσα που δεν είναι το K_2 , έχει το πολύ μια ακμή που δεν ανήκει στη συνιστώσα, που είναι και γέφυρα στο G. Από το Λήμμα 1, μπορούμε να θεωρήσουμε ότι το γράφημά μας (έστω H) είναι ένα δισυνεκτικό γράφημα W στο οποίο έχουμε προσθέσει επιπλέον ακμές, τέτοιες ώστε το άκρο τους που δεν ανήκει στο W να έχει βαθμό 1. Στη συνέχεια θα αποδείξουμε ότι το W αποτελεί έναν κύκλο. Ας υποθέσουμε διαφορετικά: Έστω C ένας μέγιστος κύκλος και v μία κορυφή του W που δεν ανήκει σε αυτόν. Όπως έχουμε αποδείξει στο Λήμμα 1 της 3.10, υπάρχουν δύο εσωτερικώς διακεκριμένα μονοπάτια από την v προς δύο διαφορετικές κορυφές του C, έστω x και y. Τότε ορίζονται 3 εσωτερικώς διακεκριμένα μονοπάτια από την v.

Σύμφωνα με το Λήμμα 3, όμως, αυτό σημαίνει ότι το $C \cup \{v\}$ είναι το K_4 , το οποίο με τη σειρά του σημαίνει ότι ο C είναι τρίγωνο. Αυτό είναι άτοπο, διότι έτσι σχηματίζεται μεγαλύτερος κύκλος (μήκους τουλάχιστον 4) αν συμπεριλάβουμε την v και τα μονοπάτια της προς τις x, y. Άρα το W αποτελεί κύκλο. Από το Λήμμα 2, αυτός ο κύκλος θα πρέπει επίσης να είναι άρτιος. Η τελευταία αναγκαία συνθήκη για να είναι το G^2 επίπεδο είναι να μην υπάρχει στον G τρίγωνο,

και οι τρεις κορυφές του οποίου να είναι κορυφές τομής. Παρατηρούμε, όντως, ότι αν έχουμε ένα τρίγωνο, κάθε κορυφή του οποίου συνδέεται με μία ακμή με έναν κόμβο βαθμού 1, η απόσταση των κορυφών του τριγώνου από τις κορυφές βαθμού 1 είναι το πολύ 2, άρα το τετράγωνό του είναι το $K_{3,3}$. Συνεπώς το G^2 δεν είναι επίπεδο, άτοπο.

Συνοψίζουμε τις τρεις αναγκαίες συνθήκες που έχουμε για το G, έτσι ώστε το G^2 να είναι επίπεδο: α) Ο βαθμός κάθε κορυφής είναι το πολύ 3. β) Κάθε δισυνεκτική συνιστώσα με τουλάχιστον 5 κορυφές είναι κύκλος άρτιου μήκους. γ) Δ εν υπάρχει τρίγωνο, του οποίου όλες οι κορυφές είναι κορυφές τομής.

Στη συνέχεια θα αποδείξουμε ότι αυτές οι συνθήκες είναι και ικανές: Έστω το γράφημα H, το οποίο είναι ένα δισυνεκτικό γράφημα W στο οποίο έχουμε προσθέσει επιπλέον ακμές, τέτοιες ώστε το άκρο που δεν ανήκει στο W να έχει βαθμό 1. Αν το H έχει το πολύ 4 κορυφές το τετράγωνό του είναι προφανώς επίπεδο. Αν το W είναι τρίγωνο, τουλάχιστον μία από τις κορυφές έχει βαθμό 2. Άρα έχουμε 5 κορυφές, αλλά η απόσταση μεταξύ των δύο κορυφών που δεν ανήκουν στο τρίγωνο είναι >2, άρα το τετράγωνο αυτού του γραφήματος δεν είναι το K_5 , οπότε είναι επίπεδο. Αν το W έχει 4 κορυφές, τότε έχουμε δύο περιπτώσεις ακραίων γραφημάτων (ως προς τις ακμές) των οποίων εύκολα βλέπουμε ότι τα τετράγωνα είναι επίπεδα.

Ομοίως αν το W είναι το K_2 . Τώρα, αν το W είναι ένας άρτιος χύχλος με τουλάχιστον 6 χορυφές, η αχραία περίπτωση είναι χάθε χορυφή του να έχει χαι μία αχμή προς χάποια χορυφή με βαθμό 1. Η εμβάπτιση σε αυτή την περίπτωση είναι πολύ παρόμοια με την περίπτωση που το W είναι χύχλος μήχους 4.

Σε κάθε περίπτωση το τετράγωνο του γραφήματος που πληροί τις παραπάνω προϋποθέσεις είναι επίπεδο, άρα οι συνθήκες είναι αναγκαίες και ικανές.

Λήμμα 1: Έστω δισυνεκτικά γραφήματα $H_1,\ H_2$ χωρίς κοινές κορυφές μεταξύ τους και e μια γέφυρα που τα συνδέει. Τότε το τετράγωνο του γραφήματος που προκύπτει είναι επίπεδο αν και μόνο αν τα τετάγωνα των γραφημάτων $H_1 \cup e$ και $H_2 \cup e$ είναι επίπεδα.

Aπόδειξη. Η μία κατεύθυνση είναι προφανής: αν το τετράγωνο του $H_1 \cup H_2 \cup e$ είναι επίπεδο, τότε και τα τετράγωνα των $H_1 \cup e$ και $H_2 \cup e$ είναι επίπεδα, αφού δεν μπορούν παρά να έχουν λιγότερες ακμές. Ανίστροφα τώρα, έστω x το άκρο της e που ανήκει στο H_1 και y το άκρο της που ανήκει στο H_2 . Οι x, y έχουν βαθμό το πολύ 2 στα H_1 και H_2 . Αν υπάρχει επίπεδη εμβάπτιση του τετραγώνου του $H_1 \cup e$, τότε υπάρχει επίπεδη εμβάπτισή του στην οποία η ακμή e βρίσκεται στην εξωτερική όψη. Ομοίως και για το $H_2 \cup e$, οπότε αν ενώσουμε τις δύο εμβαπτίσεις στην ακμή e, καταλήγουμε σε μία επίπεδη εμβάπτιση του τετραγώνου του $H_1 \cup H_2 \cup e$.

Λήμμα 2: Κάθε περιττός κύκλος μήκους τουλάχιστον 5 έχει μη επίπεδο τετράγωνο.

Απόδειξη. Αρχικά, στον κύκλο μήκους 5 όλες οι ανά δύο αποστάσεις των κορυφών είναι το πολύ δύο, άρα το τετράγωνό του είναι το K_5 , δηλαδή δεν είναι επίπεδο. Θεωρούμε τώρα κύκλο περιττού μήκους τουλάχιστον 7. Έστω $v_1, v_2, ..., v_{2k}, v_{2k+1}, v_1$ μία απαρίθμηση των κορυφών του κύκλου με τη σειρά. Θα δείξουμε ότι το τετράγωνο αυτού του κύκλου περιέχει το $K_{3,3}$ ως ελάσσον, άρα δεν είναι επίπεδο. Θεωρούμε τα δύο σύνολα $\{v_1, v_4, v_5\}$ και $\{v_2, v_3, v_6\}$. Στο τετράγωνο του γραφήματος, τα παρακάτω ζεύγη κορυφών συνδέονται με ακμή: $(v_1, v_2), (v_1, v_3), (v_4, v_2), (v_4, v_3), (v_4, v_6), (v_5, v_3), (v_5, v_6)$. Θεωρούμε τα μονοπάτια $P_1 = v_1 v_{2k} v_{2k-2} ... v_6$ και $P_2 = v_2 v_{2k+1} v_{2k-1} ... v_7 v_5$. Αυτά τα μονοπάτια είναι εσωτερικώς διακεκριμένα και συνδέουν τα ζευγάρια (v_1, v_6) και (v_5, v_2) . Η σύνθλιψη αυτών των μονοπατιών και η διαγραφή των περισσευούμενων ακμών έχει ως αποτέλεσμα το $K_{3,3}$, αφού υπάρχει ακμή ανάμεσα σε κάθε δύο κορυφές στα δύο άκρα της διαμέρισης $\{v_1, v_4, v_5\}$ και $\{v_2, v_3, v_6\}$. Συνεπώς το γράφημα δεν είναι επίπεδο.

Λήμμα 3: Έστω γράφημα G, το οποίο αποτελείται από 3 εσωτερικώς διακεκριμένα μονοπάτια

μεταξύ δύο κορυφών u και v. Αν το G^2 είναι επίπεδο, τότε το G είναι το K_4 χωρίς μια ακμή, δηλαδή τα δύο μονοπάτια έχουν μήκος 2 και το άλλο έχει μήκος 1.

Έστω $k_1 \geq 2$. Αν $k_2 = 2$, έστω x η εσωτεριχή χορυφή του P_1 , y η εσωτεριχή χορυφή του P_2 και z η εσωτεριχή κορυφή του P_3 που βρίσκεται πιο χοντά στο u. Τα ζευγάρια (z,u), (z,x), (z,y), (u,x), (u,y), (u,v), (x,v), (y,v), (x,y) έχουν αχμή στο τετράγωνο του γραφήματος. Συνθλίβουμε το μονοπάτι μεταξύ των z και v (μέρος του P_3) και παίρνουμε το K_5 . Άρα $k_2 \geq 3$. Τα k_i πρέπει να έχουν και τα τρία το ίδιο υπόλοιπο mod z, διότι σε διαφορετιχή περίπτωση θα σχηματιζόταν περιττός χύχλος, το οποίο, όπως δείξαμε στο Λήμμα z, σημαίνει ότι το τετράγωνο του γραφήματος δεν είναι επίπεδο. Αν είναι και τα τρία άρτια, έστω $x \equiv x_1, \dots, x_{k_1-1} \equiv x'$ οι εσωτεριχές χορυφές του P_1 , $y \equiv y_1, \dots, y_{k_2-1} \equiv y'$ οι εσωτεριχές χορυφές του P_2 και $z \equiv z_1, \dots, z_{k_3-1} \equiv z'$ οι εσωτεριχές χορυφές του P_3 . (Όλα ξεκινώντας από την z0 προς την z2. Θα δείξουμε ότι στο τετράγωνο αυτού του γραφήματος περιέχεται το z3, ως ελάσσον. Θεωρούμε τις χορυφές z4, z7, z7, z7, και τη z2-διαμέρισή τους z3, z4, z7, z7, z7, z7, και τη z2-διαμέρισή τους z4, z7, z7, z7, z8, z9, ελάσσον. Θεωρούμε τις χορυφές z9, z9, z9, και τη z2-διαμέρισή τους z9, z9,

Παρατηρούμε ότι υπάρχουν αχμές στο τετράγωνο του γραφήματος ανάμεσα στις εξής χορυφές: (u,z), (x,z), (v,z'), (x',z'). Τώρα θεωρούμε τα μονοπάτια: $xx_2x_4...x_{k_1-2}v, xx_1x_3...x_{k_1-1} \equiv x', uy_2y_4...y_{k_2-2}v, uy_1y_3...y_{k_2-1}x_{k_1-1} \equiv x', z \equiv z_1z_2...z_{k_3-1} \equiv z'$. Αυτά τα μονοπάτια είναι ανά δύο εσωτεριχώς διαχεχριμένα χαι η σύνθλιψή τους μας οδηγεί στο $K_{3,3}$. Η περίπτωση που τα k_i είναι χαι τα 3 περιττά είναι εντελώς παρόμοια.

Συμπεραίνουμε ότι, αφού κάθε άλλη περίπτωση κατέληξε στη μη επιπεδότητα του G^2 , ότι το G είναι το K_4 χωρίς μία ακμή.

4.10 (**) Καλούμε (x,y)-τοροειδές πλέγμα το γράφημα $H_{x,y}$, όπου $V(H_{x,y})=\{0,...,x-1\}\times\{0,...,y-1\}$ και $E(H_{x,y})=\{((a,b),(c,d))||a-c\ mod\ x|+|b-d\ mod\ y|=1\}$. Δείξτε ότι δεν υπάρχει x τέτοιο ώστε το $2\cdot K_5$ να είναι τοπολογικό ελάσσον του (x,y)-τοροειδούς πλέγματος.

Απόδειξη. Σύμφωνα με το Λήμμα 2, κάθε (x,y)-τοροειδές πλέγμα είναι εμβαπτίσιμο στον τόρο. Έστω ένα τέτοιο τοροειδές πλέγμα. Αν περιέχει το $2\cdot K_5$ ως ελάσσον, αυτό θα σημαίνει ότι και το $2\cdot K_5$ είναι εμβαπτίσιμο στον τόρο. Αρκεί λοιπόν να δείξουμε ότι το $2\cdot K_5$ δεν είναι εμβαπτίσιμο στον τόρο. Αυτό το γράφημα έχει δύο δισυνεκτικές συνιστώσες και είναι και οι δύο ισόμορφες με το K_5 . Γνωρίζουμε όμως ότι το γένος του K_5 είναι τουλάχιστον 1, αφού δεν είναι επίπεδο. Συνεπώς, από το Λήμμα 1, $\gamma(G)=2\cdot\gamma(K_5)\geq 2$. Συνεπώς το $2\cdot K_5$ δεν είναι εμβαπτίσιμο στον τόρο, ο οποίος είναι μια επιφάνεια με γένος 1. Συμπεραίνουμε, λοιπόν, ότι δεν υπάρχουν x,y, έτσι ώστε το $2\cdot K_5$ να είναι ελάσσον (άρα και τοπολογικό ελάσσον) του (x,y)-τοροειδούς πλέγματος.

Λήμμα 1: Έστω η αποσύνθεση ενός (συνεκτικού ή όχι) γράφήματος σε δισυνεκτικές συνιστώσες. Αν $\gamma(G)$ είναι το γένος ενός γραφήματος και G_i οι δισυνεκτικές συνιστώσες του, τότε ισχύει ότι $\gamma(G) = \sum \gamma(G_i)$.

Απόδειξη. Έχει αποδειχθεί από τους Battle, Harary, Kodama, Youngs στην εργασία Additivity of the genus of a graph.

(https://projecteuclid.org/download/pdf 1/euclid.bams/1183524922).

Λήμμα 2: Το (x, y)-τοροειδές πλέγμα είναι εμβαπτίσιμο στον τόρο.

Απόδειξη. Το (x,y)-τοροειδές πλέγμα μπορεί εύχολα να εμβαπτιστεί στον τόρο, ο οποίος είναι μια επιφάνεια με γένος 1: Σχεδιάζουμε το (x,y)-πλέγμα, το οποίο είναι επίπεδο, σε χάποια περιοχή του τόρου ισόμορφη με τον ανοιχτό δίσχο. Στη συνέχεια, από τις υπόλοιπες αχμές σχεδιάζουμε αυτές που είναι στην y-διάσταση στην περιφέρεια της διατομής του τόρου, χαι αυτές που είναι στην x διάσταση χατά μήχος της περιμέτρου ολόχληρου του τόρου. Το ζητούμενο αποδείχθηχε.

5 Δ ομές σε γραφήματα

 $5.9~(\star)~{\rm K\'aθ}$ ε γράφημα περιέχει τουλάχιστον $\frac{m(G)(4m(G)-n^2(G))}{3n(G)}$ τρίγωνα.

Απόδειξη. Έστω μια αχμή $\{u,v\}$. Η ιδέα είναι να βρούμε το ελάχιστο πλήθος τριγώνων στα οποία μπορεί να ανήχει αυτή η αχμή και έτσι μετά αθροίζοντας κατάλληλα να μπορέσουμε να φράξουμε από κάτω το συνολικό πλήθος των τριγώνων του γραφήματος.

Ορίζουμε $U=N_G(u)\backslash v, V=N_G(v)\backslash u$. Ισχύει ότι |U|+|V|=d(u)+d(v)-2. Επίσης, $|U\cup V|\leq n(G)-2$ αφού δεν υπάρχουν πάνω από n(G)-2 κορυφές που να απομένουν στο γράφημα.

Άρα, έχουμε:

$$|U \cap V| = |U| + |V| - |U \cup V| > d(u) + d(v) - n(G)$$

Κάθε κορυφή που ανήκει στο $U \cap V$ δημιουργεί τρίγωνο με τις κορυφές u, v. Άρα το πλήθος των τριγώνων $|T_{\{u,v\}}|$ που μπορεί να ανήκει η ακμή $\{u,v\}$ είναι τουλάχιστον d(u)+d(v)-n(G).

Αν συμβολίσουμε με T το σύνολο των τριγώνων του G έχουμε:

$$3|T| = \sum_{\{u,v\} \in E(G)} T_{\{u,v\}}$$

επειδή κάθε τρίγωνο περιέχει 3 ακμές.

Συνεπώς:

$$|T| \ge \frac{1}{3} \sum_{\{u,v\} \in E(G)} (d(u) + d(v) - n(G))$$

$$= \frac{1}{3} \sum_{\{u,v\} \in E(G)} (d(u) + d(v)) - \frac{n(G)m(G)}{3}$$

$$= \frac{1}{3} \sum_{u \in V(G)} d^2(u) - \frac{n(G)m(G)}{3}$$

$$\ge \frac{1}{3n(G)} \left(\sum_{u \in V(G)} d(u) \right)^2 - \frac{n(G)m(G)}{3}$$

$$= \frac{4m^2(G)}{3n(G)} - \frac{n(G)m(G)}{3}$$

$$= \frac{m(G)(4m(G) - n^2(G))}{3n(G)}$$

Όπου το 4ο βήμα προκύπτει από την ανισότητα Cauchy-Schwarz:

$$d(u_1) \cdot 1 + d(u_2) \cdot 2 + \ldots + d(u_n) \cdot 1 \le (d^2(u_1) + \ldots + d^2(u_n)) \cdot (1 + \ldots + 1)$$
$$= (d^2(u_1) + \ldots + d^2(u_n)) \cdot n$$

 $5.10 \ (\star\star)$ Δείξτε ότι ένα πολυγράφημα είναι σειριακό-παράλληλο αν είναι 2-συνεκτικό και δεν περιέχει καμία υποδιαίρεση του K_4 ως ελάσσον. Ένα γράφημα καλείται σειριακό-παράλληλο αν μπορεί να προκύψει από το K_2 μετά από σειρά υποδιαιρέσεων ακμών ή διπλασιασμών ακμών (δηλαδή αντικατάσταση μιας ακμής από μια διπλής πολλαπλότητας με τα ίδια άκρα).

Απόδειξη. Αρχικά, αν ένα γράφημα δεν περιέχει καμία υποδιαίρεση του K_4 ως ελάσσον, δεν περιέχει ούτε το K_4 ως ελάσσον. Θα δείξουμε ότι αν ένα πολυγράφημα είναι 2-συνεκτικό και δεν περιέχει το K_4 ως ελάσσον, τότε είναι σειριακό-παράλληλο. Για 2 κορυφές ισχύει, αφού έχουμε το K_2 που είναι σειριακό-παράλληλο. Για 3 κορυφές επίσης ισχύει, αφού έχουμε το K_3 , το οποίο μπορεί να προκύψει από την εξής ακολουθία κινήσεων: K_2 ->διπλασιασμός ακμής, υποδιαίρεση της μίας ακμής.

Θεωρούμε το γράφημα G με τον ελάχιστο αριθμό χορυφών, το οποίο είναι 2-συνεχτιχό, δεν περιέχει το K_4 ως ελάσσον και δεν είναι σειριαχό-παράλληλο. Από το Λήμμα 1, το γράφημα G δεν μπορεί να είναι 3-συνεχτιχό.

Έστω ένας 2-διαχωριστής u,v και G' μία συνεκτική συνιστώσα που προκύπτει μετά τη διαγραφή των κορυφών u,v. Έστω γράφημα H με $V(H)=V(G')\cup\{u,v\}$ και $E(H)=\{(x,y)|x\in V(H),y\in V(H),(x,y)\in G,(x,y)\neq (u,v)\}$. Το γράφημα H είναι συνεκτικό, διότι σε διαφορετική περίπτωση κάποια από τις κορυφές u,v θα αποτελούσε κορυφή τομής.

Αρχικά θα αποδείξουμε ότι το H δεν μπορεί να είναι 2-συνεκτικό, εκτός εάν είναι ισόμορφο με το K_2 . Έστω κύκλος C που περιέχει το u, αλλά όχι το v. Αυτός σίγουρα υπάρχει, διότι το G' είναι συνεκτικό, οπότε παίρνοντας δύο ακμές της u προς το G', μαζί με το μονοπάτι μεταξύ των δύο αντίστοιχων κορυφών στο G', ο κύκλος που σχηματίζεται δεν περνάει από το v. Όπως έχουμε αποδείξει στο Λήμμα 1 της άσκησης 3.10, υπάρχουν 2 εσωτερικώς διακεκριμένα μονοπάτια από το v σε δύο διαφορετικές κορυφές x και y του κύκλου C. Επίσης, επειδή ο u, v είναι διαχωριστής, υπάρχει μονοπάτι από την u στην v που δεν περνάει από καμία κορυφή του G'. Έχουμε λοιπόν τις κορυφές u, v, v, v και ένα σύνολο μονοπατιών που συνδέουν κάθε ζευγάρι αυτών (τα ζευγάρια v) (v) και v) συνδέονται με μονοπάτια πάνω στον κύκλο), έτσι ώστε όλα τα μονοπάτια να είναι ανά δύο εσωτερικώς διακεκριμένα. Αν συνθλίψουμε τις ακμές σε αυτά τα μονοπάτια, αφού πρώτα σβήσουμε τις ακμές που δεν ανήκουν στο μονοπάτι, καταλήγουμε στο v

Τώρα έστω η αποσύνθεση του H σε δισυνεκτικές συνιστώσες. Αν κάποια δισυνεκτική συνιστώσα διαφορετική από αυτές που περιέχουν τα u και v μοιράζεται κοινή κορυφή μόνο με μία άλλη δισυνεκτική συνιστώσα, τότε σβήνοντας αυτή την κορυφή η δισυνεκτική συνιστώσα αποσυνδέεται από το υπόλοιπο γράφημα. Όμως, το G γνωρίζουμε ότι είναι 2-συνεκτικό, άρα αυτό είναι άτοπο. Συνεπώς κάθε δισυνεκτική συνιστώσα έχει κοινή κορυφή με τουλάχιστον δύο άλλες δισυνεκτικές συνιστώσες. Αν θεωρήσουμε ότι κάθε δισυνεκτική συνιστώσα είναι μία κορυφή και οι κοινές κορυφές δύο συνιστωσών είναι ακμές, τότε ο μόνος τρόπος να μην δημιουργείται κύκλος είναι να έχουμε μονοπάτι από την κορυφή που αντιστοιχεί στο u σε αυτήν που αντιστοιχεί στο v. Συνεπώς έχουμε μια αλυσίδα δισυνεκτικών συνιστωσών από το u στο v, έστω D_1 , D_2 , ..., D_k , όπου $u \in D_1$, $v \in D_k$ και $V(D_i) \cup V(D_{i+1}) = v_i$. Κάθε ένα από τα D_i είναι ένα δισυνεκτικό γράφημα που δεν περιέχει το K_4 ως ελασσον, αφού ούτε το G το περιέχει. Συνεπώς όλα τα D_i είναι σειριακά-παράλληλα.

Η παραπάνω ανάλυση ισχύει για κάθε συνεκτική συνιστώσα που ορίζει ο διαχωριστής u, v. Ξεκινάμε από το K_2 , όπου οι κορυφές είναι οι u και v. Δ ιπλασιάζουμε την ακμή τόσες φορές, όσες είναι και οι συνεκτικές συνιστώσες που ορίζει ο διαχωριστής. Τώρα, για κάθε συνεκτική

συνιστώσα, υποδιαιρούμε την αντίστοιχη αχμή τόσες φορές, όσες είναι και οι αντίστοιχες δισυνεκτικές συνιστώσες (που όπως είπαμε παραπάνω, αποτελούν αλυσίδα). Τώρα, σε κάθε αχμή αντιστοιχεί ένα σειριαχό-παράλληλο γράφημα. Εφαρμόζουμε το μετασχηματισμό της αχμής αυτής στο ανίστοιχο σειριαχό-παράλληλο γράφημα και καταλήγουμε στο G, άρα το G είναι σειριαχό-παράλληλο γράφημα, το οποίο είναι άτοπο. Άρα ισχύει το ζητούμενο.

Λήμμα 1: Για κάθε γράφημα G με $n(G) \geq 4$, ισχύει ότι $\kappa(G) \geq 3 \Rightarrow K_4 \subseteq_{\epsilon \lambda} G$.

Απόδειξη. Είναι το Πόρισμα 5.44 από τις σημειώσεις του μαθήματος.

6 Χρωματισμοί και άλλα

 $6.7~(\star)~$ Έστω G τριμερές (n+1)-κανονικό γράφημα όπου κάθε μέρος του έχει n κορυφές. Δείξτε ότι $K_3 \leq_{\rm up} G$.

Απόδειξη. Έστω S_1 , S_2 , S_3 τα τρία σύνολα των κορυφών και έστω ότι δεν υπάρχει τρίγωνο. Θεωρούμε την κορυφή v με το μέγιστο αριθμό γειτόνων σε ακριβώς ένα σύνολο S_i και έστω k αυτός ο αριθμός γειτόνων. Επίσης, χωρίς βλάβη της γενικότητας $v \in S_1$ και οι m γείτονές της βρίσκονται στο S_2 . Τώρα, επειδή το γράφημα είναι (n+1)-κανονικό, η v συνδέεται με κάποια κορυφή u του S_3 . Επειδή έχουμε υποθέσει ότι δεν υπάρχει τρίγωνο, η u μπορεί να συνδέεται το πολύ με n-m κορυφές του S_2 , άρα με τουλάχιστον n+1-(n-m)=m+1 κορυφές του S_1 . Αυτό είναι άτοπο, αφού έχουμε υποθέσει ότι η v έχει το μέγιστο αριθμό ακμών προς κάποιο S_i . Άρα υπάρχει τρίγωνο, δηλαδή $K_3 \leq_{\rm υπ} G$.

 $6.9~(\star\star)$ Ένα γράφημα λέγεται άρτιο αν όλες οι κορυφές έχουν άρτιο βαθμό. Δείξτε ότι αν το G είναι συνεκτικό γράφημα, τότε $|\{H\subseteq_{\pi\alpha}G|H$ είναι άρτιο}|=2^{m(G)-n(G)+1}.

Απόδειξη. Θεωρούμε $S=\{H\subseteq_{\pi\alpha}G|H$ άρτιο}. Θα ορίσουμε μία 1-1 και επί συνάρτηση f από το σύνολο $A=\{H|H\subseteq_{\pi\alpha}G\}$, δηλαδή το σύνολο των παραγόμενων γραφημάτων του G, στο $B=S\times\{X\subseteq V(G)||X|mod2=0\}$, δηλαδή το καρτεσιανό γινόμενο του συνόλου των άρτιων παραγόμενων γραφημάτων με την οικογένεια υποσυνόλων του V(G) με άρτιο πληθάριθμο. Το σύνολο των παραγόμενων γραφημάτων του G έχει πληθάριθμο $2^{m(G)}$, αφού κάθε ακμή μπορεί να υπάρχει ή να μην υπάρχει στο παραγόμενο υπογράφημα. Επίσης η οικογένεια υποσυνόλων του V(G) με άρτιο πληθάριθμο έχει πληθάριθμο $2^{n(G)-1}$, αφού έχουμε G0 επιλογές για κάθε κορυφή G1 μπει ή δεν θα μπει στο υποσύνολο), εκτός από την τελευταία, της οποίας η τοποθέτηση

καθορίζεται μοναδικά από το αν το υποσύνολο έχει άρτιο ή περιττό αριθμό κορυφών. Λόγω του λήμματος 1, η f είναι 1-1 και επί, άρα έχουμε ότι $2^{m(G)} = |S| \cdot 2^{n(G)-1} \Rightarrow |S| = 2^{m(G)-n(G)+1},$ το οποίο είναι το ζητούμενο.

Λήμμα 1: Υπάρχει 1-1 και επί συνάρτηση από το σύνολο A στο σύνολο B.

Απόδειξη. Για κάθε ζευγάρι κορυφών i,j με $i\neq j,$ ορίζουμε P_{ij} ένα μονοπάτι μεταξύ τους στο G. Αυτό προφανώς υπάρχει, αφού το G είναι συνεκτικό. Ορισμός $f\colon \text{Eστω }Z\in A$ και T το σύνολο των κορυφών του Z με περιττό βαθμό. Είναι γνωστό ότι |Z| mod 2 = 0. Διαμερίζουμε τις κορυφές του Z σε ζευγάρια (a_i,b_i) (με κάποιο μονοσήμαντο τρόπο, πχ αριθμούμε τις κορυφές του Z $u_1,u_2,...,u_k$ και βάζουμε τα ζευγάρια $(u_1,u_2),...,(u_{k-1},u_k))$ και για κάθε ζευγάρι θεωρούμε το μονοπάτι $P_{a_ib_i}$ (το οποίο επίσης είναι μονοσήμαντο εκ κατασκευής). Για κάθε ακμή πάνω σε αυτό το μονοπάτι, αν υπάρχει στο Z τότε την αφαιρούμε, ενώ αν δεν υπάρχει την προσθέτουμε. Είναι εύκολο να δούμε ότι αυτός ο μετασχηματισμός διατηρεί την αρτιότητα των βαθμών των ενδιάμεσων κόμβων, και επίσης πλέον οι a_i,b_i έχουν άρτιο βαθμό. Κάνοντας αυτό το μετασχηματισμό για κάθε ζευγάρι, θα καταλήξουμε με ένα άρτιο γράφημα U. Ορίζουμε $f(Z) = U \times T$. Ουσιαστικά η f μετασχηματίζει ένα γράφημα σε άρτιο, αλλά επιστρέφει και την πληροφορία του ποιοι κόμβοι ήταν περιττοί. Αντίστροφα, αν έχουμε ένα άρτιο γράφημα U και ένα υποσύνολο U του U(G) με άρτιο πληθάριθμο, θεωρούμε τη διαμέριση του U σε ζευγάρια και για κάθε ζευγάρι εφαρμόζουμε τον ίδιο μετασχηματισμό που ορίσαμε παραπάνω. Έτσι θα πάρουμε ξανά το γράφημα U με U εξουνεπώς η U είναι U τοι επασπάνω. Ετσι θα πάρουμε ξανά το γράφημα U με U εξουνεπώς η U είναι U το εξους απάνω.

 $6.10~(\star\star)~\Delta$ είξτε ότι υπάρχει θετική σταθερά c, τέτοια ώστε αν για κάποιο γράφημα G ισχύει ότι $\delta(G)\geq k,$ τότε το G περιέχει $c\cdot k^2$ ακμοδιακεκριμένους κύκλους.

Απόδειξη. Έστω $\delta(G) \geq k \geq 4$. Λόγω του λήμματος 2, έχουμε $\geq \lfloor \frac{k-1}{3} \rfloor$ (κορυφο-)διακεκριμένους κύκλους. Διαγράφουμε τις ακμές όλων αυτών των κύκλων. Στο γράφημα G' που θα προκύψει έχουμε $\delta(G') \geq k-2$. Εφαρμόζουμε επαναληπτικά την ίδια διαδικασία, έως ότου το γράφημα που απόμένει έχει $\delta(G') < 4$. Συνολικά αυτή η διαδικασία θα επαναληφθεί τουλάχιστον $\lfloor \frac{k}{3} \rfloor -1$ φορές. Οι ακμοδιακεκριμένοι κύκλοι που θα έχουμε συνολικά λοιπόν θα είναι τουλάχιστον $\lfloor \frac{k-1}{3} \rfloor + \lfloor \frac{k-3}{3} \rfloor + \ldots + 1 + 0 = \Theta(k^2)$.

Λήμμα 1: Αν $\delta(G) \ge 4$, υπάρχει κύκλος με μήκος $\le 2 \cdot log_2 n$.

Aπόδειξη. Έχουμε $m \geq \frac{\delta(G) \cdot n}{2} \geq 2n$, άρα η πυχνότητα είναι τουλάχιστον 2. Αυτό που μένει έχει αποδειχθεί στην άσχηση 1.10.

Λήμμα 2: Σε κάθε γράφημα G με $\delta(G) \geq k \geq 4$ υπάρχουν τουλάχιστον $\lfloor \frac{k-1}{3} \rfloor$ διακεκριμένοι κύκλοι.

Απόδειξη. Έστω ένας ελάχιστος χύχλος C. Αυτος λόγω του λήμματος 1 θα έχει μήχος το πολύ $2 \cdot log_2 n$. Επίσης χαμία χορυφή $u \in G - C$ δεν μπορεί να έχει πάνω από 3 αχμές προς χορυφές του G. Αν είχε, τότε έστω δύο από αυτές χαι οι αντίστοιχες χορυφές του χύχλου. Αυτές θα είχαν απόσταση $\leq \lfloor \frac{|C|}{2} \rfloor$ στον C, άρα χρησιμοποιώντας αυτές τις δύο αχμές, θα υπήρχε χύχλος με μέγεθος το πολύ $\lfloor \frac{|C|}{2} \rfloor + 2$, το οποίο για $|C| \geq 5$ είναι άτοπο αφού δημιουργεί χύχλο μιχρότερο από τον ελάχιστο. Για |C| = 3, είναι προφανές ότι δεν μπορούμε να έχουμε πάνω από 3 αχμές από χάποια χορυφή προς τις χορυφές του C, ενώ για |C| = 4 αν είχαμε 4 αχμές

προς κορυφές το C, θα σχηματιζόταν κύκλος μήκους 3, άτοπο. Από το παραπάνω συμπεραίνουμε ότι το εναγόμενο γράφημα G' του G με σύνολο κορυφών το G-C θα έχει $\delta(G')\geq k-3$. Εφαρμόζοντας επαναληπτικά την ίδια διαδικασία στο εναγόμενο γράφημα, μέχρι ο ελάχιστος βαθμός του αντίστοιχου εναγόμενου γραφήματος να γίνει μικρότερος από 4, έχουμε συνολικά τουλάχιστον $\lfloor \frac{k-1}{3} \rfloor$ διακεκριμένους κύκλους.