Commutative Algebra and Algebraic Geometry — Lecture 3

Martin Svanberg

October 9, 2018

Modules cont'd

R is commutative with 1 unless specified otherwise.

Recall. Let *M* on *R*-module $R \times M \rightarrow M$.

There is no concept analogous to normal subgroups. You are allowed to take quotient at any time, due to commutativity.

Definition 1. A function $f: M \to N$ of R-modules is a homomorphism of R-modules (or R-linear map) if we have

1.
$$f(\underbrace{rm}_{\text{M action}}) = \underbrace{rf(m)}_{\text{N action}}$$

2. It's a homomorphism of the underlying Abelian group. That is, f(m+n) = f(m) + f(n).

Let $X \subset M$. Then X generates M if $\forall m \in M \exists$ a finite number $r_1, \ldots, r_n \in R$ and $x_1, \ldots, x_n \in X$ st element $m = \sum r_i x_i$. Has to be finite because infinite sums not generally defined in rings, i.e. no general notion of convergence.

If
$$X = \{x_1, ..., x_n\}$$
 write $M = (x_1, ..., x_n) = Rx_1 + ... + Rx_n$.

M is *finitely generated* if *M* is generated by *X* for some finite $X \subset M$.

M is *cyclic* if M = (x) for some $x \in M$. This is the analog of principal ideals.

 $X \subset M$ is a basis (or free set of generators) if for all $m \in M$ there exists a unique decomposition $m = \sum r_i x_i$ where $r_i \in R$ $x_i \in X$, $r_i, x_i \neq 0$.

M is *free* if there exists a basis for *M*.

Example 1. $R = k = \text{field} \implies M \text{ is vector space} \implies M \text{ free.}$

Example 2. $R = \mathbb{Z}$ and M finitely generated, then M free $\iff M \cong \mathbb{Z}^k$

Example 3. $R = \mathbb{Z}$. $\mathbb{Z}/n\mathbb{Z}$ not free since $n \cdot 1 = 0$ but cyclic generated by $1 \in \mathbb{Z}/n\mathbb{Z}$.

Definition 2. Torsion. $M \in R$ -module. Tor $(M) = \{m \in M \mid \exists r \in R \text{ st } rm = 0, r \neq 0\}$

Exercise 1. R domain \Longrightarrow Tor(M) is a submodule.

M is torsion-free if Tor(M) = (o).

M is torsion if M = Tor(M).

Example 4. $k = \mathbb{R}$ = field. There is no torsion in a vector space.

If $R = \mathbb{Z}$, M Abelian group \Longrightarrow Tor(M) = $\{m \in M \mid \text{ order of } M \text{ finite } \}$.

km additively $\leftrightarrow m^k$ multiplicatively

 $km = 0 \leftrightarrow m^k = 1$

 $Tor(\mathbb{Z}^k) = (o)$. Every finite Abelian group is a torsion \mathbb{Z} -module.

Torsion and freeness are opposite extremes.

Let X any set. $R^X = \{\text{collection of finite sums } \sum r_i x_i\} = \bigoplus_{x \in X} Rx \text{ (or } F(X) \text{ in Dummit-Foote)}.$ This is the free module generated by X.

Universal property: inclusion $\iota: X \to R^X$, $x \mapsto x$. For all $M \in R$ -module, for all set maps $f: X \to M$ there exists a unique extension $F: R^X \to M$ st F(x) > f(x).

X is just a set. The unique map is a module homomorphism.

Remark. For groups, Free(x)= free group on X. F_n : see chap 6 of DF. Nonabelain for $n \ge 2$.

Observe. Every module is quotient of a free module. E.g. Take X = M as a set. f = Id.

 $F: \mathbb{R}^X \to M$ is surjective $\iff f(X)$ generates M.

Assume $R^X \xrightarrow{F} M$. Then KerF = module of relations. M is finitely presented if the re exists a generated set X st 1) X is finite 2) KerF is finitely generated.

(*) If R Noetherian and M is finitely generated \implies all submodules of M are finitely generated. So R Noetherian implies every finitely generated module is finitely presented.

.e.g free groups \rightsquigarrow presentation of groups. $D_8 = \langle r, s \mid r^4 = s^2 = e, srs^{-1} = r^3 = r^{-1} \rangle$

 $F_2 \subseteq \text{Free } (r, s) \twoheadrightarrow D_8 \text{ (arrow means surjective?)}$

Ker = (normal subgroup generated by r^4 , s^2 , srs^{-1})

ACC for $M \in R$ -module means $\forall M_1 \subset M_2 \subset \ldots \subset M_k \subset M$ (ascending chain of R modules $\subset M$) there exists t st $M_t = M_{t+1} = \ldots$

Definition 3. M is Noetherian if M satisfies ACC. R is Noetherian as a ring iff R is Noetherian R-module, all submodules of R are ideals of R. Lemma about Noetherian rings works for R-modules. That is,

Lemma 1. TFAE:

- 1. *M* satisfies ACC
- 2. Every nonempty collection of submodules has a maximal element
- 3. Every submodule is finitely generated

Proof. Same as earlier.

Lemma 1 implies (*).

Theorem 1. Classification of finitely generated modules over a PID. Let R be a PID and M an R-module, finitely generated. Then $\exists k \in \mathbb{Z}$ st

$$M \cong \mathbb{R}^k \oplus \operatorname{Tor}(M)$$

A PID is by definition an integral domain, so this is a submodule.

$$\operatorname{Tor}(M) \cong \underbrace{R/(a_1) \oplus \ldots \oplus R/(a_k)}_{\text{each cyclic torsion generated by 1}}$$

with nonunits $a_i \in R$, $a_1 \mid a_2 \mid \ldots \mid a_k$.

Remark:
$$R^k \cong R^X$$
 with $|X| = k$. R^k is like $\underbrace{R \oplus \ldots \oplus R}_{\text{k times}}$ each R is cyclic.

In particular: every finitely generated R-module is a direct sum of cyclic modules. Importantly, M is torsion free $\iff M$ is free.

Example 5. If $R = \mathbb{Z}$: fundamental theorem of finitely generated Abelian groups.

M an *R*-module \Leftrightarrow (*V*, *T*) *V* is vector space over *k* and *T* : *V* \rightarrow *V*.

$$\dim_k V < \infty \iff \text{free part } k[x]^n = \text{o.}$$

Jordan normal form of $T \leftrightarrow M \cong k[x]/a_1(x) \oplus \ldots \oplus k[x]/a_n(x)$

The proof of Thm 1 is more boring than hard.

Exact sequences of modules

Given a homomorphism of modules, $\rightarrow M_{i-1} \xrightarrow{f} M_i \xrightarrow{g} M_{i+1}$ is exact at M_i if $\operatorname{Ker} g = \operatorname{Im} f$.

e.g. $o \to M' \xrightarrow{f} M$ exact $\iff f$ injective

 $M \xrightarrow{g} M'' \to o$ exact $\iff g$ surjective

$$\underbrace{o \xrightarrow{f} M' \xrightarrow{g} M \to M'' \to o}_{\text{(short exact sequence)}} \text{ is exact } \iff M/\text{Im} f \cong M'' \quad (\text{Im} f \cong M')$$

Given $M \xrightarrow{f} M''$ a section of f is a map $s : M'' \to M$ st $f \circ s = Id_{M''}$.

Example 6. A vector field is a section of a tangent bundle.

 $o \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to o$ is *split* if there exists section $s : M'' \to M$ of g. Then s is called *splitting* and we get $M \cong M' \oplus M''$.

In general, say M is an extension of M'' by M'.

Analogy with arbitrary groups: G group, N normal in G. H = G/N. Having this data is the same as having $1 \to N \to G \to G/N \to 1$ "multiplicatively

written short exact sequence"

Again, split if \exists group homomorphism $s: H \rightarrow G$.

Observe: Split for groups does not in general imply $G \cong N \times G/N$. Only for Abelian groups. If split, then we have $G = N \cdot s(H)$, $N \neg s(H) = \{1\} \iff G = N \rtimes H \text{ (semidirect product)}$

 $f: M \to N$ have of R-modules $\operatorname{coker}(f) = N/\operatorname{Im} f$.

Observe: For groups cokernel may not exist.

This part was transcribed in haste. Read the book instead.

 $\operatorname{Hom}(M,N) = \{R\text{-linear maps } f: M \to N\}$, an Abelian group.

$$M' \xrightarrow{f} M \longrightarrow \operatorname{Hom}(L, M) \xrightarrow{f_*} \operatorname{Hom}(L, M')$$

$$(\alpha : L \to M', \text{ and } f_*(\alpha) = f \circ \alpha)$$

$$M \xrightarrow{g} M'' \longrightarrow \operatorname{Hom}(M'', L') \xrightarrow{g^*} \operatorname{Hom}(M, L)$$

$$(\beta : M'' \to L', g^*(\beta) = \beta \circ g)$$

(*) $o \to M' \to M \to M'' \to o \text{ exact} \Longrightarrow o \to \operatorname{Hom}(L, M') \to \operatorname{Hom}(L, M) \xrightarrow{(\dagger)} \operatorname{Hom}(L, M'')$ exact but maybe not " \to o". (†) maybe not surjective

Definition 4. *L* is projective $\iff \forall o \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow o$, $Hom(L, M') \rightarrow Hom(L, M'')$ surjective.

Dually, apply $Hom(_, L)$ to (*) get

$$\operatorname{Hom}(M', L) \leftarrow \operatorname{Hom}(M, L) \leftarrow \operatorname{Hom}(M'', L) \leftarrow \operatorname{o}$$

exact but maybe not "o ← "

Definition 5. L is injective $\iff \forall (*) \text{ Hom}(_, L)(*)$ again short exact sequence

Thoughts:

- Free \Longrightarrow projective
- Projective ←⇒ direct sum of free
- $R \text{ PID} \implies M \text{ finitely generated } (M \text{ projective } \iff M \text{ free})$

 $R = k[x_1, ..., x_n]$ n > 2 not PID. Serre's question: every finitely generated projective module over a polynomial ring is free. Quillen–Suslin theorem proves Serre's problem.