The group G is isomorphic to the group labelled by [12, 1] in the Small Groups library. Ordinary character table of $G \cong C3 : C4$:

	1a	2a	3a	6a	4a	4b
χ_1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1
χ_3	2	2	-1	-1	0	0
χ_4	1	-1	1	-1	E(4)	-E(4)
χ_5	1	-1	1	-1	-E(4)	E(4)
χ_6	2	-2	-1	1	0	0

Trivial source character table of $G \cong C3$: C4 at p = 2:

Normalisers N_i	N_1		N_2		N_3
p-subgroups of G up to conjugacy in G	P_1		P_2		P_3
Representatives $n_j \in N_i$	1a	3a	1a	3a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	4	4	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	4	-2	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	2	2	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	-1	2	-1	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1

$$P_1 = Group([()]) \cong 1$$

$$P_2 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,12)]) \cong C2$$

$$P_3 = Group([(1,2)(2,5)(4,7)(6,9)(8,11)(10,12)] (1,2,2)$$

$$P_3 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,12),(1,2,3,5)(4,10,7,12)(6,11,9,8)]) \cong C4$$

$$\begin{array}{l} N_1 = Group([(1,2,3,5)(4,10,7,12)(6,11,9,8),(1,3)(2,5)(4,7)(6,9)(8,11)(10,12),(1,4,8)(2,6,10)(3,7,11)(5,9,12)]) \cong \mathrm{C3}:\mathrm{C4} \\ N_2 = Group([(1,2,3,5)(4,10,7,12)(6,11,9,8),(1,3)(2,5)(4,7)(6,9)(8,11)(10,12),(1,4,8)(2,6,10)(3,7,11)(5,9,12)]) \cong \mathrm{C3}:\mathrm{C4} \\ N_3 = Group([(1,2,3,5)(4,10,7,12)(6,11,9,8),(1,3)(2,5)(4,7)(6,9)(8,11)(10,12)]) \cong \mathrm{C4} \end{array}$$