Project Proposal: AI-Based Threat Detection in Zero Trust Architecture

Srushti Waichal (A20554818)

1. Introduction

1.1 Background

This project builds upon a previous theoretical study on Zero Trust Architecture (ZTA), which outlined a framework for organizations to transition from traditional perimeter-based security models to a more robust, granular security approach. The original study emphasized six core processes essential for ZTA implementation, including planning, designing, migration, and continuous monitoring

1.2 Project Objective

The primary objective of this project is to develop an AI-based threat detection module as a critical component of a Zero Trust Architecture implementation. This focused approach aligns with the professor's recommendation to concentrate on one subtopic this semester, using it as a foundation for potential future expansion.

Key objectives include:

- 1. Developing and training AI models for accurate threat detection in network traffic
- 2. Integrating the AI module with core ZTA principles
- 3. Implementing real-time threat analysis capabilities
- 4. Optimizing system performance for high accuracy and low latency
- 5. Assessing the scalability and adaptability of the solution

By concentrating on AI-based threat detection within the ZTA framework, this project seeks to create an innovative solution that addresses modern cybersecurity challenges while providing a foundation for potential future expansions into comprehensive ZTA implementation.

2. Scope and Deliverables

2.1 Project Scope

The project will focus on the following key aspects:

- 1. Development of an AI-based Threat Detection Module
- 2. Integration of the module with core ZTA principles
- 3. Performance evaluation of the threat detection system

2.2 Deliverables

- 1. AI models for network traffic anomaly detection
- 2. Prototype system integrating AI models with basic ZTA principles
- 3. Performance evaluation report
- 4. Project documentation and final report

3. Implementation Strategy

3.1 Data Collection and Preprocessing

- Dataset Acquisition: Gather diverse network traffic datasets, including both normal and malicious traffic patterns.
 Potential sources include public cybersecurity datasets (e.g., UNSW-NB15, CICIDS2017) and simulated network traffic.
- Data Cleaning: Remove inconsistencies, handle missing values, and normalize data formats.
- Feature Engineering: Extract relevant features from raw network traffic data, such as packet sizes, inter-arrival times, and protocol-specific attributes.
- Data Labeling: Ensure accurate labeling of normal and malicious traffic samples for supervised learning.

3.2 Model Development

- Algorithm Selection: Implement and train multiple machine learning models, including:
 - o Random Forests for their ability to handle high-dimensional data
 - o Neural Networks for capturing complex patterns in network traffic
 - o Support Vector Machines for their effectiveness in binary classification tasks
- Model Architecture: Design appropriate model architectures, considering factors like input dimensionality and desired output format.
- Training Process: Utilize Python libraries such as TensorFlow and Scikit-learn for model implementation and training.
- Hyperparameter Tuning: Employ techniques like grid search or random search to optimize model hyperparameters.

3.3 Model Evaluation and Optimization

- Performance Metrics: Evaluate models using metrics such as accuracy, precision, recall, F1-score, and area under the ROC curve (AUC-ROC).
- Cross-Validation: Implement k-fold cross-validation to ensure robust performance estimates.
- Ensemble Methods: Explore ensemble techniques to combine predictions from multiple models for improved accuracy.
- Feature Importance Analysis: Identify the most influential features for threat detection to refine the model and improve interpretability.

3.4 Integration and Testing

- **ZTA Integration**: Develop a prototype system that integrates the AI models with basic ZTA principles, focusing on the "never trust, always verify" approach.
- Real-Time Processing: Implement efficient data processing pipelines to enable real-time threat detection.
- Testing Framework: Create a comprehensive testing framework using tools like pytest for unit testing and network traffic simulators for system-level testing.
- Performance Benchmarking: Conduct thorough performance testing, including latency measurements and scalability assessments.

4. Alignment with Course Curriculum

This project aligns with several key areas of the course:

- Network Security: Addresses threat detection in network environments, including identification of potential DoS attacks and unauthorized access attempts.
- Machine Learning in Security: Directly applies ML techniques to cybersecurity challenges, demonstrating the practical use of AI in threat detection.
- System Security: Aims to detect various system-level threats like malware, botnets, and intrusion attempts.

5. Tools and Technologies

• Programming Language: Python

• ML Libraries: TensorFlow, Scikit-learn, PyTorch

• **Data Processing**: Pandas, NumPy

• **Testing**: Pytest, network traffic simulators

• Version Control: Git

6. Timeline and Milestones

Week	Milestone	Details
1-2	Data collection and preprocessing	Acquire datasets, clean data, engineer features
3-4	Initial model development and training	Implement and train multiple ML models
5-6	Model evaluation and optimization	Evaluate performance, tune hyperparameters
7-8	Integration with basic ZTA principles	Develop prototype integrating AI models with ZTA concepts
9-10	Testing and performance analysis	Conduct comprehensive testing and benchmarking
11-12	Documentation and final report preparation	Prepare detailed documentation and final project report

7. Future Expansion

While this semester's focus is on AI-based threat detection, the project lays the groundwork for future expansion into other ZTA components, such as:

- Network Access Control System
- Real-Time Monitoring Dashboard
- Comprehensive ZTA Implementation

8. Conclusion

This project offers a focused and manageable scope for the semester while providing valuable insights into advanced cybersecurity techniques. By concentrating on AI-based threat detection within the ZTA framework, we aim to develop a practical, innovative solution that addresses real-world security challenges. The knowledge and experience gained will serve as a solid foundation for potential expansion into a more comprehensive ZTA implementation in future work or graduate thesis research.

9. References

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10052642

https://arxiv.org/pdf/2309.03582

https://ieeexplore.ieee.org/abstract/document/9773102

https://link.springer.com/article/10.1186/s43067-024-00155-z

https://www.sciencedirect.com/science/article/abs/pii/S1389128622003929

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4331547