LUCE (Quadro stanco) · Teonia Corpuscolare (Newton ~ '600) (Une per ognicolore) Riflessione = Urto · Teorie ONDULATORIA (Huygens ~ 1690) Luce è un'anda che si propaga nell'etere ETERE CUMINIFERO · ESPERIMENTO L' YOURY (1801) Si osserva l'INTERFERENZA di 2 noggi oli luce no CONFERMA della Teoria andulatoria · Teoria elithomognetica (Maxwell, Line 1800) La Luci de porte della più ampie entegoria delle

ONDE ELETROHAGNETICHE

- · La velocité delle Luce non dipende del sisiema di monimento! (Il valore di c è lo stesso per tutti gli osservatori)
- · Wel Sistema Internazionale, il METRO (m) è definito attraverso la velocità della luce:

1 m = distanza percorsa dalla lue in (circa) un 300 milionesimo di secondo

RIFLESSIONE della LUCE (secondo l'OTTICA CIEOMETRICA)

LEGATE della niflessione $\theta_i = \theta_c$

RIFRAZIONE della LUCE (Secondo l'OTTICA CIEDMETRICA) MC270 Mezzo 2 In generale, quendo la lua pessa da un mezzo all'atro, combia la direzione di propagazionei $\theta_1 \neq \theta_2$ Che relazione d'è tra DI e 2? INDICE dI RIFRAZIONE La relocità della luce v, analogamente a quella del suono, dipende dal messo in cui la luce si propaga v = c c = 299 + 392 + 958 m/s· Nel vuoto · Nella materia: V = C NDICE di RIFRAZIONE (dipende sdo dalla sostanza in ani la lue si propaga)

OSSERVATION

- (1) Poiché n>1, abbiamo che NKC in qualsiasi sostanza
- (2) ve inversement prop. an

LEGGE della RIFRAZIONE n_1 : Sen $\theta_1 = n_2$: Sen θ_2

(aka legge di Shell)

ESERCIZIO 6

N,	N ₂
	A
×	0//

		- 9
Λ		7
1	_	•
- 0		•
V		

	N,	NZ
Angolo di incidenta	×	α+θ
Angolo di riflessione	0+6	B+7

LEAGI della RIFLESSIONE
$$\begin{cases} d = \theta + \beta & (N_1) \\ d + \theta = \beta + \gamma & (N_2) \end{cases}$$

$$0 + \beta + \theta = \beta + \gamma \quad \gamma = 2\theta$$

ESERGIZIO 7

$$\frac{\partial}{\partial h} = \frac{b}{h} \rightarrow b = h \cdot tg \theta$$

ESERCITIO 10 (104)

LEGGE di SNELL. n_1 Sen $\theta_1 = n_2$ Sen θ_2

Se
$$\Theta_1 = \Theta_L \rightarrow \Theta_Z = 90^\circ$$

n, sen OL = N2, sen 90°

$$Scu \theta_{L} = \frac{n_{1}}{n_{1}}$$

$$\frac{dy}{dx} = \frac{D}{2h}$$

$$D = 2h \cdot dy \theta_{L}$$

