Mémoires CACHE

Henri-Pierre Charles & Frédéric Rousseau

Motivation

Motivation

•

Illustration

- Motivation
- Nécessité des Caches
- Principe de localité
- Architecture des caches
- Architecture générale d'un cache à correspondance directe
- Cache à correspondance directe : exercices
- Exemple DEC Station 3100 : cache 64 KO
- Quid de la localité spatiale?
- Cache par blocs
- Caches associatifs
- Exemple cache associatif
- Performances des caches

Nécessité des Caches

Comparaison vitesse CPU - temps d'accès à la mémoire

- item1
- item2
- item3
- item4

Localité temporelle

- Les données ou instructions utilisées récemment le seront encore dans un futur proche (boucles, tableaux)
- Dans un programme, 90% du temps est passé dans seulement 10% des instructions

Localité spatiale

• Les données ou instructions proches en mémoire seront utilisées en même temps (tableaux, instructions séquentielles)

Par conséquent

- Placer les données et les instructions en cours d'utilisation proche du processeur
- Les données ou instructions accédées le plus souvent doivent être proche du processeur

Architecture des caches

Caches à correspondance directe

- Architecture
- Exemple DECSTATION 3100

Relation adresses mémoire - adresse dans le cache

- AdresseDonneeCache = AdresseDonneeMemoire % TailleCache
- AdresseBlocCache = AdresseBlocMemoire % NbBlocCache
- Simple si la taille du cache est une puissance de 2 (modulo nb de bits)

Architecture générale d'un cache à correspondance directe

Architecture générale d'un cache à correspondance directe

Cache à correspondance directe : exercices

Exercice 1 : valeurs spécifiques

 Quelle est la taille (en nombre de bits) d'un cache de données (32 bits) de 64 KO à correspondance directe avec un espace d'adressage de 32 bits?

Exercice 2 : généralisation

 Même calcul dans le cas général pour un cache de taille 2ⁿ toujours avec un espace d'adressage de 32 bits et des données de 32 bits?

Exemple DEC Station 3100 : cache 64 KO

Quid de la localité spatiale?

Profiter de la localité spatiale

- Dans l'architecture du cache DEC Station 3100, le bloc de données était un mot de 4 octets
- Pour profiter de la localité spatiale, il faut que plusieurs données consécutives soient dans le même bloc

Relation adresses mémoire d'un bloc - adresse dans le cache

- AdresseBlocCache = AdresseBlocMemoire % NbBlocCache
- Simple si la taille du cache est une puissance de 2 (modulo nb de bits)

Cache par blocs

Caches associatifs

Objectif

Réduire les défauts de cache

Principe de la solution

- Un bloc mémoire peut être associé à plusieurs adresses de bloc du cache
 - A toutes les adresses de blocs du cache : "fully associatif"
 - A quelques adresses de blocs du cache : "set associatif" ou "cache associatif à n voies (n ensembles)"
 - A une seule adresse de blocs du cache : "equivalent à correspondence directe"

Exemple cache associatif

Exemple Serveur COMPAQ : cache 64 KO associatif à 2 voies, bloc de 64 octets, mots de 64 bits, à réécriture

Performances des caches

Critère d'évaluation

- La pénalité d'échec correspond au temps pour remplacer un bloc dans le cache
- Le taux d'échec est la fraction des accès cache qui provoque un échec

Comment améliorer la performance des caches

- Réduire la pénalité d'échec : cache multi-niveaux, ...
- Réduire le temps des accès réussis : cache plus petit, pas de traduction d'adresse, accès pipeliné, ...
- Réduire le taux d'échecs