Линейные пространства

Определение. Непустое множество L называется *линейным пространством*, а его элементы - *векторами*, если выполняются следующие условия:

- 1) Задана операция сложения, т.е. любым двум элементам $\vec{x}, \vec{y} \in L$ ставится в соответствие элемент $\vec{x}+\vec{y} \in L$, называемый их суммой.
- 2) <u>Задана операция умножения вектора на число</u>, т.е. любому элементу $\vec{x} \in L$ и числу $\alpha \in R$ ставится в соответствие элемент $\alpha \vec{x} \in L$, называемый произведением элемента на число.
- 3) Для $\forall \vec{x}, \vec{y}, \vec{z} \in L$, и $\alpha, \beta \in R$ выполняются следующие восемь аксиом:
 - 1. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$ (коммутативность суммы)
 - 2. $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$ (ассоциативность суммы)
 - 3. $\exists \vec{0} \in L: \forall \vec{x} \in L, \vec{x} + \vec{0} = \vec{x}$ (нулевой вектор)
 - 4. $\forall \vec{x} \in L \ \exists (-\vec{x}) \in L: \ \vec{x} + (-\vec{x}) = \vec{0}$ (противоположный вектор)
 - 5. $1 \cdot \vec{x} = \vec{x}$
 - 6. $(\alpha\beta)\vec{x} = \alpha(\beta\vec{x})$ (коммутативность умножения на число)
 - 7. $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$ (дистрибутивность относительно суммы элементов)
 - 8. $(\alpha + \beta)\overline{x} = \alpha \overrightarrow{x} + \beta \overrightarrow{x}$ (дистрибутивность относительно суммы числовых множителей)

Линейное пространство L замкнуто относительно операций сложения и умножения на число, так как в результате этих операция мы получаем элементы того же пространства.

Линейные подпространства

Определение. Непустое подмножество H линейного пространства L называется линейным подпространством, если оно само является линейным пространством относительно операций, заданных на L.

Критерий линейного подпространства. Для того, чтобы непустое подмножество H линейного пространства L было его линейным подпространством, необходимо и достаточно, чтобы выполнялись условия:

- 1) $\forall \vec{x}, \vec{y} \in H \quad \vec{x} + \vec{y} \in H$ (замкнутость суммы);
- 2) $\forall \vec{x} \in H$ и $\alpha \in R$ $\alpha \vec{x} \in H$ (замкнутость умножения на число).