$$|\mathbb{Q}| = |\mathbb{N}|$$

Proof.

First prove that $|\{q: q \in \mathbb{Q}, q > 0\}| = |\mathbb{N}|$

1) $q \in \mathbb{N}$ and q > 1

There exists a series of unique prime numbers $p_1...p_n$ and exponents $r_1...r_n$ such that

$$q = p_1^{r_1} ... p_n^{r_n}$$

2) $q \notin \mathbb{N}$ and q > 1

There exists a series of unique prime numbers $p_1...p_n, q_1...q_m$ and exponents $r_1...r_n, s_1...s_m$ such that

$$q = \frac{p_1^{r_1} ... p_n^{r_n}}{q_1^{s_1} ... q_m^{s_m}}$$

Define $f: \{q \in \mathbb{Q}, q > 0\} \to \mathbb{N}$ f(1) = 1, $f(q) = p_1^{2r_1} ... p_n^{2r_n}$ if $q \in \mathbb{N} \setminus \{1\}$ and $f(q) = p_1^{2r_1} ... p_n^{2r_n} q_1^{2s_1 - 1} ... q_m^{2s_m - 1}$ if $q \in \mathbb{Q} \setminus \mathbb{N}$.

$$f(q) = p_1^{2r_1} ... p_n^{2r_n} q_1^{2s_1 - 1} ... q_m^{2s_m - 1}$$
 if $q \in \mathbb{Q} \backslash \mathbb{N}$.

For injection, $f(q_1) = f(q_2) \Rightarrow q_1 = q_2$ since f is unique.

For surjection, $\forall m = p_1^{r_1} ... p_n^{r_n} q_1^{s^1} ... q_m^{s_m} \in \mathbb{N}$

Without loss of generality, suppose that $r_1, ..., r_n$ are positive even numbers,

while
$$s_1, ..., s_n$$
 are positive odd numbers.
Thus, $\exists q \in \mathbb{Q}$ such that $f(q = \frac{p_1^{r_1/2}...p_n^{r_n/2}}{q_1^{(s^1+1)/2}...q_n^{(s_m+1)/2}}) = m$

Thus, f is a bijection.

According to symmetry,
$$g:\{q\in\mathbb{Q},q<0\}\to\mathbb{N}$$
 is also a bijection. Define $h:\mathbb{Q}\to\mathbb{Z}$ by $h(x)=\begin{cases} 0,\ if\ x=0\\ f(x),\ if\ x>0\\ g(x),\ if\ x<0 \end{cases}$

Thus h is a bijection.

Thus,
$$|\mathbb{Q}| = |\mathbb{Z}| \Rightarrow |\mathbb{Q}| = |\mathbb{N}|$$