Spelling Correction and the Noisy Channel.

- Spelling correction :-
- Non-Word Spelling correction is the detection and correction of spelling errors that result in non-words (like graffe for giraffe).
- Real Word spelling correction: Detecting and correcting spelling errors even if they accidentally result in an actual real word of English (real-word errors).
- **Typographical Errors :-** Errors in (insertion, deletion, transposition) that accidentally produce a real word (e.g., there for three).
- Cognitive Errors where the writer substituted the wrong spelling of a homophone or near-homophone (e.g., dessert for desert, or piece for peace).
- Non-word Errors are detected by looking for any word not found in a dictionary.
 For example, the misspelling graffe above would not occur in a dictionary.

Intution of Noisy Channel

- Is to treat the misspelled word as if a correctly spelled word had been "distorted" by being passed through a noisy communication channel.
- Channel introduces "noise" in the form of substitutions or other changes to the letters, making it hard to recognize the "true" word.

Modeling

$$\hat{w} = \operatorname*{argmax}_{w \in V} P(w|x)$$

This noisy channel model is a kind of Bayesian inference.

An observation **x** (a misspelled word) and our job is to find the word **w** that generated this misspelled word.

Out of all possible words in the vocabulary V we want to find the word w such that P(w|x) is highest.

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} \frac{P(x|w)P(w)}{P(x)}$$

$$\hat{w} = \operatorname*{argmax}_{w \in V} P(x|w) P(w)$$

 Apply the noisy channel approach to correcting non-word spelling errors by taking any word not in our spell dictionary, generating a list of candidate words, ranking them according to Noisy Channel Model equation, and picking the highest-ranked one.

$$\hat{w} = \underset{w \in C}{\operatorname{argmax}} \quad \overbrace{P(x|w)} \quad \overbrace{P(w)}$$

	Transformation				
		Correct	Error	Position	
Error	Correction	Letter	Letter	(Letter #)	Type
acress	actress	t	_	2	deletion
acress	cress	_	a	0	insertion
acress	caress	ca	ac	0	transposition
acress	access	С	r	2	substitution
acress	across	0	е	3	substitution
acress	acres	_	S	5	insertion
acress	acres	_	S	4	insertion

- The first stage of the algorithm proposes candidate corrections by finding words that have a similar spelling to the input word.
- Analysis of spelling error data
 - ➤ The majority of spelling errors consist of a single-letter change.
 - ➤ The simplifying assumption that these candidates have an edit distance of 1 from the error word.
- The **prior probability of each correction P(w)** is the language model probability of the word (w) in context, which can be computed using any language model.

w	count(w)	p(w)
actress	9,321	.0000231
cress	220	.000000544
caress	686	.00000170
access	37,038	.0000916
across	120,844	.000299
acres	12,874	.0000318

• we estimate the likelihood P(x | w), also called **the channel model.**

additional: additional, additional environments: environments, environments, environments preceded: preceded

- del[x;y]: count(xy typed as x)
- ins[x;y]: count(x typed as xy)
- sub[x;y]: count(x typed as y)
- trans[x;y]: count(xy typed as yx)

$$P(x|w) = \begin{cases} \frac{\text{del}[x_{i-1}, w_i]}{\text{count}[x_{i-1}w_i]}, & \text{if deletion} \\ \frac{\text{ins}[x_{i-1}, w_i]}{\text{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\text{sub}[x_i, w_i]}{\text{count}[w_i]}, & \text{if substitution} \\ \frac{\text{trans}[w_i, w_{i+1}]}{\text{count}[w_iw_{i+1}]}, & \text{if transposition} \end{cases}$$

Candidate	Correct	Error		
Correction	Letter	Letter	x w	P(x w)
actress	t	(-	c ct	.000117
cress	-	a	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	С	r	r c	.000000209
across	0	е	e o	.0000093
acres	2	s	es e	.0000321
acres	70	s	ssls	.0000342

Candidate	Correct	Error				
Correction	Letter	Letter	$\mathbf{x} \mathbf{w}$	P(x w)	P(w)	$10^9 *P(\mathbf{x} \mathbf{w})P(\mathbf{w})$
actress	t	_	c ct	.000117	.0000231	2.7
cress	-	a	a #	.00000144	.000000544	0.00078
caress	ca	ac	ac ca	.00000164	.00000170	0.0028
access	С	r	r c	.000000209	.0000916	0.019
across	0	e	e o	.0000093	.000299	2.8
acres	-	S	es e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

[&]quot;stellar and versatile **acress** whose combination of sass and glamour has defined her. . . ".

- P(actress | versatile) = 0.000021
- P(across | versatile) = 0.000021
- P(whose | actress) = 0.0010
- P(whose | across) = 0.000006

• It is important to use larger language models than unigrams.

```
P("versatile actress whose") = .000021 * .0010 = 210 \times 10^{-10}
P("versatile across whose") = .000021 * .000006 = 1 \times 10^{-10}
```

Classification Problem.

		Predicted			
		Greyhound	Mastiff	Samoyed	
Actual	Greyhound	Pos	Pres	Pio	
	Mastiff	Pass	Pane	Ран	
	Samoyed	Pro	Pen	P==	