SAFETY WARNING: CAUSTIC CORROSIVE TOXIC CHEMICALS & PRESENCE OF FLAME/HEAT.

- 1. YOU MUST WEAR SAFETY GOGGLES ALL THE TIME.
- 2. MUST HANDLE THE CHEMICALS & HEATING EQUIPMENT VERY CAREFULLY, AVOID CONTACT WITH SKIN, RINSE WITH PLENTY OF WATER IMMEDIATELY UPON CONTACT.
- 3. MUST DISPOSE WASTE CHEMICALS AS DIRECTED & PLACE IN THE APPROVED WASTE CONTAINERS.
- 4. YOU MUST OBEY ALL THE SAFETY RULES OR YOU MUST LEAVE THE LABORATORY IMMEDIATELY.
- * DO NOT WASTE CHEMICALS.
- * DO NOT REPEAT TRIALS MORE THAN INSTRUCTED.
- * DO E4(I) EXPERIMENT FIRST, EACH TWO STUDENTS IN A GROUP MUST DO THE ENTIRE EXPERIMENT AS INSTRUCTED BY E4(I).
- * DO E4(II) EXPERIMENT NEXT AS INSTRUCTED BY E4(II). EACH GROUP DO THE ENTIRE EXPERIMENT WHERE EACH INDIVIDUAL IN A GROUP MUST DO 1 SAMPLE REACTION REPEATED ONCE ONLY.
- * SHARE RESULTS WITH YOUR GROUP AND COMPLETE INDIVIDUAL REPORTS.

Raw Data Sheet!!!

Introduction to Kinetics: Factors That Affect the Rate of Reaction Determining the Rate Law: A Kinetics Study of the Iodination of Acetone

Objectives:

- 1. Be able to list and rationalize the factors that affect the rate of reaction.
- 2. Explain various scenarios using the factors that affect reaction kinetics.
- 3. Gain a quantitative understanding of kinetics.
- 4. Determine the rate of a reaction, the order of the reaction with respect to the reactants and the value of the rate constant.
- 5. Predict reaction times using an experimentally results of the rate law.

Chemical Kinetics

Study of the rates of chemical reactions

Reaction rates vary greatly
very fast (e.g., combustion)
very slow (e.g., disintegration of a plastic bottle in sunlight).

Concentrations of reactants

Temperature Surface area

Catalysts

The Rate Law for RXN: $aA + bB \rightarrow cC + dD$

Rate of Disappearance of A = Reaction Rate =

$$-R_A = d[A]/dt = v = k[A]^m[B]^n$$

Where m and n are determined experimentally.

k = Reaction Rate Constant (its units depends on reaction).

Arrhenius Equation: k = f e^{-Ea/RT}

Where f is frequency factor, Ea is activation energy, R is gas constant, and T is the absolute temperature

Rate Laws

The *values of the exponents* in a rate law establish the **order of a reaction**

For reactant A, Rate = $k[A]^m[B]^n$ if m = 1, reaction is first order in A if m = 2, reaction is second order in A

- The proportionality constant, *k*, is the rate constant and its value depends on the reaction, the temperature, and the presence or absence of a catalyst.
- Reaction rate constant exponentially proportional to temperature (Arrhenius Equation).

Introduction to Kinetics:Factors That Affect the Rate of Reaction

A. Effect of Changing the Concentration of Reactants:

Solid: Effect of Changing the Surface Area

Gas: Pressure of the Gas

Liquid: -----

Solution: Concentration of the Reactant

Introduction to Kinetics:Factors That Affect the Rate of Reaction

B. Effect of Changing the Temperature:

(According to thermodynamics for reactions at equilibrium, K_{equil} decreases with increased temperature so the rate of reaction from thermodynamics view decreases). See next slide.

AUTOMOBILE CATALYTIC CONVERTER OPTIMUM DESIGN

Determination of optimum operation temperature in sulfur dioxide converter.

Introduction to Kinetics:Factors That Affect the Rate of Reaction

C. Effect of Adding a Catalyst:

Catalyst does not get consumed by the reaction but it donates or absorbs electrons, hydrogen ions or hydroxide ions (see p23-4 of Experiment E4A lab manual pdf file)

E4 (I) (Two Students)

Concentrations of reactants→

1M HCl v.s. 6M HCl (dissolving eggshell)
Dropper Plate

Surface area—

Fe wire v.s. Fe powder (w/ CuSO₄)
Two beakers @ 80 °C

Temperature

Ice cold v.s. 80 °C Fe powder w/ CuSO₄

Catalysts

 $\begin{array}{c} \text{Ice cold v.s. } 80\ ^{0}\text{C} \\ \text{H}_{2}\text{O}_{2} \text{ decomposition w/ MnO}_{2} \end{array}$

1	A	В	C	D	E	F	G	Н	I	J	K	
1			VC211 EX	KPERIMENT	E4(I) DAT	ASHEET: I	KINETICS :	FACTORS	AFFECTIN	G REACTION	ON RATES	
2		SECTIO)N:	TA	.:		EACH 2 STUDENTS COMPLETE ENTIRE E4(I) EXPERIMENT					
3				GROUP EX	GROUP EXPERIMENT BUT EACH TWO STUDENTS DO ENTIRE EXPERIMENT. SUBMIT INDIVIDUA							
4		PROCE	DURE PARTS –	A	A	В	В	C	C	E	E	
5				CONCENTRAT	TON EFFECT	SURFACE AR	EA EFFECT	TEMPERATU	RE EFFECT	ADDING CAT	ALYST EFFECT	
6	GRP	NAME	ID	EGGSHE	LL RXNS	COLOR CHANG	GE CuSO ₄ @ 80°C COLOR		NGE CuSO ₄ & Zn	H ₂ O ₂ & Mn	O ₂ POWDER	
7	#	Chinese		1M HCl	6M HCl	Fe Wire	Fe Powder	Ice Cold	Hot @ 80°C	80°C, in 30-40s	ICE AFTER 30-40s	
8						Use available cyli	nder to measure 5	Use the avai	Use the available hot water		avoid direct view and	
9		N	OTES	Add no more than 10 drops		mL and the available hot water bath		bath		place the sample small beaker inside larger beaker		
.0	1											
1	1											
2	1)RTANT N		ontino F40	n.					
3	1			two studen all glasswa		× .		ter				
4	2			mL CuSO ₄					wearing c	loth gloves		
5	2			ot water ba					8	8		
6	2		• Hand	le hot beak	ers with to	ong or clot	h glove					
7	2			safely & d	•							
.8	3			follow cher	_							
.9	3			r (no rinse								
20	3			rain solution								
21	3			into anothe machine p			_	•	•	-		
22	4					- Post the		- 51 541110		-		
4	()	Si	sheet2	Sheet3 +					1			

E4 (II) (One Group)

 $CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + H^+(aq) + I^-(aq)$

$$\mathbf{R}_{a} = \frac{-\Delta[I_{2}]}{\Delta t} = \frac{-([I_{2}]_{final} - [I_{2}]_{initial})}{\Delta t}$$

$$R_a = k[A]^m[B]^n = -\Delta([I_2]_{final} - [I_2]_{init}) / \Delta t$$

	4 M acetone mL	H ₂ O mL	1 M HCl mL	0.00118 M I ₂ mL	Total Volume mL
1	10.0	20.0	10.0	10.0	50.0
2	x 1	y1	10.0	z1	50.0
3	x2	y 2	10.0	z2	50.0
4	x3 (not used above)	y3	10.0	z3 (not used above)	50.0

E4 (II) (One Group)

1																	
2			١	/C211 EXPE	RIMEN	E4(II) I	DATASHE	ET: DETER	RMINING	THE RATE	LAW						
3				TA:_							LAB ROOM:						
4			I.	(aq) + CH ₃	СОСН	(an) _	. CH.CC	CH.I/ag) + H+(an	ı) + I-(an)							
5				aA +	bB			or izituq			Pate	= k [A] ^m [B] ⁿ					
6				αΛ Τ	טט				T UD	T CL	nute .	- אניםן ניםן			Ш		
7		Procedu	ire Pa	ırt)	GROU	P EXPERIN	MENT BUT E	ACH STUDEN	NT MUST DE	SIGN, PREPA	RE & TEST ON	NE SAMPLE. SU	BMIT INDIVIDU	AL REPORTS			
8	Compare color to clarity of blank 50 mL DI H ₂ O				1M	4M		0.00118M	INT. M	INT. M	TRI. 1	TRI. 2	AVG.	RATE		ΓE	
9	GROUP			ID	SAMPLE	HCl	Acetone		Iodine	Acetone	Iodine	RXN. Time	RXN. Time	RXN. Time	CAL	.CUL/	ATIONS
10	#	Chines	e		#	mL	X mL	Y mL	Z mL	Moles/L	Moles/L	t1 (s)	t2 (s)	t _{avg} (s)	m	n	k
11	1				1												
12	1		_		2												
13	1		4		3												
14	1				4												
15	2		•	IMPOF	RTANT	NOTE	S:										
16	2		•					ction of e		× /							
17	2		•					with dist									
18	2		•			•		easure vo se beake		rectly							
19	3		•							starting !	low settin	ισ					
20	3		•						•			e over whit	e paper				
21	3		•		-			n sink or									
22	3				-		•	f you do									
23	4		•		•	-		cals in wa		ainer (I) waste	in one les	400					
24	4						-			(1) waste its own w		~					
25	4			×			, ,			er, while						,	
26	4	Ц										of					
	waste in another beaker then remove stirring rod and place on top of stirrer machine pan then dispose the solution in organic waste container																

PART A: Introduction to Kinetics:Factors That Affect the Rate of Reaction

Procedure: DO NOT USE MORE THAN 10 DROPS

ALWAYS HANDLE HOT BEAKERS WITH CLOTH

GLOVES

Part A: Effect of Changing the

Concentration of Reactants

1M HCl

6M HCl

PART B: Introduction to Kinetics:Factors That Affect the Rate of Reaction

Procedure: For heating, use the hot water bath

Part B: Effect of Changing the Surface Area-----I

PART C: Introduction to Kinetics:Factors That Affect the Rate of Reaction

Procedure: add 0.05 g Zn granular to CuSO₄ solution

For heating, use the hot water bath

Part C: Effect of Changing the Temperature------II

ALWAYS HANDLE HOT BEAKERS
WITH CLOTH GLOVES

Zinc Powder

CuSO₄ 5 ml

Introduction to Kinetics:Factors That Affect the Rate of Reaction

Part D: Effect of Adding a Catalyst---- Decomposition of H₂O₂

Procedure: ADD 0.050g MnO₂ INSTEAD OF 0.05g KI

Reaction is splashy (& violent when more than 0.05 g solid is added). Avoid observing directly from top when solid is added.

For heating, use the hot water bath

Introduction to Kinetics:Factors That Affect the Rate of Reaction

Effect of Adding a Catalyst. Catalyst does not get consumed by the reaction but it donates or absorbs electrons, hydrogen ions or hydroxide ions (see Experiment E4(I) of lab manual)

For heating, use the hot water bath % handle hot beakers with cloth gloves

The Rate Law:

$$aA + bB \rightarrow cC + dD$$

Reaction Rate:

$$R_A = k[A]^m[B]^n = -d[A]/dt = -\Delta[A]/\Delta t$$

m and n are determined by the experiments.

The Iodination of Acetone:

$$CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + H^+(aq) + I^-(aq)$$

$$R_a = \frac{-\Delta[I_2]}{\Delta t} = \frac{-([I_2]_{final} - [I_2]_{initial})}{\Delta t}$$

Procedure:

1. Clean the glassware, use only Erlenmeyer flasks to carry the reactions & not the beakers (to minimize splashing effect due to stirring).

soap solution \rightarrow tap water \rightarrow de-ionized water

Procedure: Flasks shown are 125-mL but use 250-mL or suitable Erlenmeyer flask.

2. Prepare a blank: Place over white background paper 50 mL of water in 250-mL Erlenmeyer flask

Procedure:

3. Prepare a mixture without I_2 .

Procedure: Place the white stirring rod inside flask

- 4. Add I_2 and start the timer.
- a. I₂ is added quickly with stirring
- Record the time when the color of the solution changed from yellow to colorless
- c. Record the volumes of all chemicals

Use white paper as background to compare REACTION color with the blank transparent water color

Procedure:

- 5. Repeat steps 3 and 4.

 1 time for 1 formula

 (not 2 times)
- a. Calculate the percent difference between two trials.

b. It is suggested to repeat until the percent difference is less than 5%, but groups do not have enough time. Therefore work diligently and. report whatever data you have.

HCl acts as a catalyst

Procedure:

6. How to determine the order with respect to Acetone.

Make your proposal, and show it to your instructor.

$$I_{2}(aq) + CH_{3}COCH_{3}(aq) \rightarrow CH_{3}COCH_{2}I(aq) + H^{\dagger}(aq) + I^{\dagger}(aq)$$

$$aA + bB \rightarrow cC + dD$$

$$R_{A} = \frac{-\Delta[I_{2}]}{\Delta t} = \frac{-([I_{2}]_{final} - [I_{2}]_{initial})}{\Delta t}$$

$$R_{A} = k[A]^{m}[B]^{n} \text{ Where [A] \& [B] are initial conc. of } I_{2} \& \text{ Acetone at -0- seconds}$$

$$Note [I_{2}] \text{ final } = 0 \text{ when color change}$$

Table ?: Proposed lab work to determine the reaction SEE LAST SLIDE rate orders m & n and the reaction rate constant k. FOR ANSWERS

	4M	H ₂ O	1M	0.00118M	Total	Initial M	Initial M I ₂	Trial 1	Trial 2	Avg.
SAMPLE	Acetone mL		HCI	l ₂	Vol.	Acetone in 50mL	in 50mL	Rxn time	Rxn time	<u>Rxn</u> time
#		mL	mL	mL	mL	Moles/L	Moles/L	5	5	5
1	10.0	20.0	10.0	10.0	50.0		?	5	٠-	?
2	X1	Y1	10.0	Z1	50.0		?	5	?	?
3	X2	Y2	10.0	Z2	50.0	j	,	3	?	?
4	Х3	Y3	10.0	Z 3	50.0	3	?	?	,	?

$$R_A = k[A]^m[B]^n$$

Where [A] & [B] are initial conc. of I₂ & acetone consecutively at time -0- seconds.

$$R = k[A]$$
 [B] Eq.1, but in dilution $C_{conc} V_{conc} = C_{dil} V_{dil}$ Eq.2

But:
$$R_{A1} = k_1 [C_{A1}/V_{A1}] [C_{B1}/V_{B1}]$$
 or

$$R_{A2}/R_{A1} = (k2/k1)[C_{A2}/V_{A2}]^{11}[C_{B2}/V_{B2}]/([C_{A1}/V_{1}]^{11}[C_{B1}/V_{B1}]^{11})$$
 Eq.3

Using Eq.2 into Eq.3 and applying the equations above at constant temperature $(k=k_1=k_2)$ to data of Sample #1, #2 & 3, to get the reaction order m, n & the reaction rate constant k.

Remember $V_1 = V_2 = V_3 = V_4 = V_{dil} = 50 \text{mL}$, while V_{conc} is the proposed design volumes X_i or Z_i in the table below so the distilled water volume is $Y_i = 50 - X_i - Z_i - 10 \text{mL}$, and the starting concentrations C_{conc} are given below for each solution.

Method of Initial Rates

(different example than manual but same analysis)

$$2NO(g) + Cl2(g) = 2NOCl(g)$$

The method of initial rates involves a series of experiments in which the initial concentrations of some reactants are held constant and others are varied in convenient multiples in order to determine the rate law for that reaction

Experiment	Initial [NO]	Initial $[Cl_2]$	Initial Rate, ${ m M~s}^{-1}$
1	0.0125 M	0.0255 M	2.27×10^{-5}
2	0.0125 M	0.0510 M	4.55×10^{-5}
3	0.0250 M	0.0255 M	9.08×10^{-5}

Rate =
$$k$$
 [NO]² [Cl₂]

Using data for reaction of NO & Cl₂ we can now calculate m, n, & k

$$2NO(g) + Cl2(g) = 2NOCl (g)$$

Then: $-\mathbf{R}_{\mathbf{a}} = \mathbf{k} \ [\mathbf{NO}]^{\mathbf{m}} \ [\mathbf{Cl}_{\mathbf{2}}]^{\mathbf{n}}$

From data in previous table:

$$2.27 \times 10^{-5} = k (0.0125)^m (0.0255)^n \dots Eq.1$$

$$4.55 \times 10^{-5} = k (0.0125)^m (0.0510)^n \dots Eq.2$$

$$9.08 \times 10^{-5} = k (0.025)^{m} (0.0255)^{n} \dots Eq.3$$

Eq.
$$2/Eq.1: 2 = 2^n$$
, then $n = 1$

Eq.
$$3/Eq.1: 4 = 2^m$$
, then $m = 2$

The overall order of reaction = m + n = 3, first order wrt Cl_2 gas & second order wrt NO gas.

Using any of the equations, then k is solved:

$$k = 5.70 \text{ M}^{-2} \text{ s}^{-1}$$
 $-R_a = 5.70 \text{ M}^{-2} \text{ s}^{-1} [\text{NO}]^2 [\text{Cl}_2]$

Example 2: REACTION ORDER

$$H_2O_2(aq.) + I^-(aq.) + H^+(aq.) \rightarrow I_2(aq.) + H_2O(l)$$

The rate law expression for the reaction:

Rate of disappearance of reactants = - Rate of appearance of products.

 I_2 was easily observed for color change. Then the rate of production of I_2 :

$$R_{I2} = v = k [H_2O_2]^m [I^-]^n [H^+]^p$$

Note: Using enough experimental data we can easily determine m, n, p & k

<u>DATA TABLE:</u> Proposed lab work to determine the reaction rate orders m & n and the reaction rate constant k.

SAMPLE #	4M Acetone mL	H ₂ O mL	1M HCl mL	0.00118 M I ₂ mL	Total Vol. mL	Initial M Acetone in 50mL Moles/L	Initial M I ₂ in 50mL Moles/L	Trial 1 Rxn time	Trial2 Rxn time	Avg. Rxn time				
1	10.0	20.0	10.0	10.0	50.0	?	? 2-36No-4	?	?	?				
2	X1 10.0	Y1 10.0	10.0	Z1 20.0	50.0	?	? 4.72X10 ⁴	?	?	?				
3	X2	Y2	10.0	Z2	50.0	?	?	?	?	?				
	20.0	10.0		10.0		0.8	2.36X107							
4	Х3	Y3	10.0	Z3	50.0	?	?	?	?	?				
	20.0	0.0		20.0		8.0	4.72×10*							
BLANK	0	50.0	0	0	50.0	Compare sample solution color to water sample transparent color								

NoteS:

The total volume should be 50.0mL, so Y values should be the difference between 50.0mL and what