Monte Carlo Search Tree and Its Applications

Max Magnuson

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

April 25, 2015

Kasparov vs Deep Blue

Kasparov vs Deep Blue

Great display of artifical intelligence Techniques employed by IBM

- Brute force deterministic approach
- human knowledge

Limitation

scalability into larger search spaces

Outline

Introduction

Background

Monte Carlo Tree Search (MCTS)

- Combines random sampling and game trees
- Probabilistic not deterministic
- Useful for problems with larger search spaces
 - Game board for Chess: 8x8
 - Possible games of Chess: 10¹²⁰
 - Game board for Go: 19x19
 - Possible games of Go: 10⁷⁶¹

TicTacToe Diagram More Levels

Tree Structure

Sampling

What Happens When We Choose a Move?

Now we have:

- A tree structure
- A method of generating the tree

What happens when we need to choose a move?

Exploration vs Exploitation

- We might overlook better paths
- Exploration vs Exploitation
 - Exploration looks at more options
 - Exploitation focuses on the most promising path
- Must find a balance between the two

Upper Confidence Bound

$$UCT(node) = \underbrace{\frac{W(node)}{N(node)}}_{\text{Value of the Node}} + \underbrace{\sqrt[C]{\frac{In(N(parentNode))}{N(node)}}}_{\text{Exploration Bonus}}$$

- W represents the number of simulated wins
- N represents the total number of simulations