Materials 23

Laura Gáti

March 26, 2020

\sim		•	
U.	ver	vie	\mathbf{w}

A	Model summary	2
В	Target criterion	2

A Model summary

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1 - \beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
 (1)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T \right)$$
 (2)

$$i_t = \psi_\pi \pi_t + \psi_x x_t + \bar{i}_t \qquad \text{(if imposed)}$$

PLM:
$$\hat{\mathbb{E}}_t z_{t+h} = a_{t-1} + b h_x^{h-1} s_t \quad \forall h \ge 1 \qquad b = g_x h_x \tag{4}$$

Updating:
$$a_t = a_{t-1} + k_t^{-1} (z_t - (a_{t-1} + bs_{t-1}))$$
 (5)

Anchoring function:
$$k_t = k_{t-1} + \mathbf{g}(fe_{t-1}^2)$$
 (6)

Forecast error:
$$fe_{t-1} = z_t - (a_{t-1} + bs_{t-1})$$
 (7)

This notation captures vector learning (z learned) for intercept only. For scalar learning, $a_t = \begin{pmatrix} \bar{\pi}_t & 0 & 0 \end{pmatrix}'$ and b_1 designates the first row of b. The learning setup allows me to evaluate the long-horizon expectations f_a , f_b , and then the observables (π , x) are determined as:

$$x_t = -\sigma i_t + \begin{bmatrix} \sigma & 1 - \beta & -\sigma \beta \end{bmatrix} f_a + \sigma \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (\mathbb{I}_{nx} - \beta h_x)^{-1} s_t$$
 (8)

$$\pi_t = \kappa x_t + \begin{bmatrix} (1 - \alpha)\beta & \kappa \alpha \beta & 0 \end{bmatrix} f_b + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} (\mathbb{I}_{nx} - \alpha \beta h_x)^{-1} s_t$$
 (9)

B Target criterion

The target criterion in the simplified model (scalar learning of inflation intercept only):

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} \left\{ x_{t} - \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + ((\pi_{t} - \bar{\pi}_{t-1} - b_{1}s_{t-1})) \mathbf{g}_{\pi}(t) \right) \right.$$

$$\left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=1}^{i-1} (1 - k_{t+j}^{-1} (\pi_{t+1+j} - \bar{\pi}_{t+j} - b_{1}s_{t+j})) \right) \right\}$$

$$(10)$$