

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 4

по курсу «Теория вероятностей и математическая статистика, часть 2»

Тема: Проверка статистических гипотез с помощью критерия Колмогорова

Выполнил: Студент 3-го курса Жолковскиц Д.А.

Группа: КМБО-01-16

Лабораторная работа по Математической статистике № 4 «Проверка статистических гипотез с помощью критерия Колмогорова»

Задание І. Проверка гипотезы о равномерном распределении.

Из файла UD-2 в соответствии с номером варианта взять выборку $\{x_1, ..., x_N\}$ и значения a и b .

Построить:

на одном рисунке график эмпирической функции распределения этой выборки и график функции распределения равномерного закона на отрезке [a,b].

Проверить в соответствии с Указаниями гипотезу о соответствии выборки равномерному распределению на отрезке [a,b] при уровне значимости 0,05 двумя способами – непосредственным расчетом и с помощью функции Python (scipy.stats.kstest(sorted(array), 'uniform', (a, b))).

II. Проверка гипотезы об одинаковом распределении случайных величин.

В соответствии с номером варианта взять выборку $\{x_1, ..., x_N\}$ из файла UD-2 и выборку $\{y_1, ..., y_M\}$ из файла UD-3.

Построить:

на одном рисунке графики эмпирических функций распределения этих выборок.

Проверить в соответствии с Указаниями гипотезу об одинаковом распределении двух случайных выборок при уровне значимости 0,05 двумя способами — непосредственным расчетом и с помощью функции Python (scipy.stats.ks_2samp(arr_1, arr_2)).

Графики должны быть отчётливыми: размер по горизонтали — по ширине страницы, по вертикали — не менее половины страницы; деления по горизонтали — через 1, по вертикали — через 0,1.

Вычисления проводить с точностью до 0,00001.

Краткие теоретические сведения

Равномерное распределение на отрезке [а,b]

Характеристика	Значение
Плотность	$f(x) = \begin{cases} 0, x \notin (a, b) \\ \frac{1}{b-a}, x \in (a, b) \end{cases}$
Функция распределения	$F(x) = \begin{cases} 0, x \le a \\ \frac{x-a}{b-a}, x \in (a,b) \\ 1, x \ge b \end{cases}$
Математическое ожидание	$b^{\frac{a+b}{2}}$
Дисперсия	$\frac{(b-a)^2}{12}$
Среднее квадратичное отклонение	$\frac{b-a}{2\sqrt{3}}$

Пусть имеется случайная выборка $\{X_1, ..., X_N \}$ из непрерывного распределения с функцией распределения F(x).

Эмпирическая функция распределения выборки

$$F_N^{\ni}(x; x_1, x_2, ..., x_N) = \sum_{x_i \le x} I_{(-\infty; x]}(x_j)$$

Статистика Колмогорова

$$D_N = \sup_{-\infty < x < +\infty} |F_N^{\Im}(x) - F(x)|$$

Теорема Колмогорова

Пусть F(x) – непрерывна. Тогда

$$P(D_N\sqrt{N} \le z) \to_{N\to\infty} K(z) = \begin{cases} 0, z \le 0 \\ \sum_{j=-\infty}^{+\infty} (-1)^j l^{-2j^2 z^2}, z > 0 \end{cases}$$

Общая схема проверки с помощью критерия Колмогорова статистических гипотез о соответствии выборки равномерному распределению

Функция распределения равномерного закона на отрезке [a,b]

$$F(x) = \begin{cases} 0, x \le a \\ \frac{x-a}{b-a}, x \in (a, b) \\ 1, x \ge b \end{cases}$$

Эмпирическая функция распределения выборки:

$$F_N^{\vartheta}(x; x_1, x_2, ..., x_N) = \sum_{x_i \le x} I_{(-\infty; x]}(x_j)$$

$$D_N = \max_{1 \le j \le N} (\max(|F_N(x_{(j)}) - F(x_{(j)})|, |F_N(x_{(j)} - 0) - F(x_{(j)})|))$$

Если $D_N \sqrt{N} \le k_{\alpha}$, то гипотеза принимается.

Если $D_N \sqrt{N} \ge k_{\alpha}$, то гипотеза отвергается.

Критерий Колмогорова проверки гипотезы об одинаковом распределении наблюдаемых величин

$$\begin{split} D_{N,M} = \max_{j,k} \{ |F_N(x_{(j)}) - F_M(x_{(j)})|, |F_N(x_{(j)} - 0) - F_M(x_{(j)})|, \\ |F_N(y_{(k)}) - F_M(y_{(k)})|, |F_N(y_{(k)}) - F_M(y_{(k)} - 0)| \}; \end{split}$$

$$K_{N,M} = D_{N,M} \sqrt{\frac{NM}{N+M}} ;$$

Средства языка программирования Python которые использованы в программе расчета

В программе расчёта используются следующие средства языка:

Функции:

- numpy.sort() сортирует вектор в порядке возрастания.
- sorted(arr) возвращает отсортированную в порядке возрастания копию массива arr.
 - max(arr) возвращает максимальный элемент из массива arr.
 - min(arr) возвращает минимальный элемент из массива arr.
- •scipy.stats.kstest(array, 'uniform', (a, b)).pvalue проверка гипотезы о принадлежности выборки data распределению при помощи критерия Колмогорова-Смирнова.
- •scipy.stats.ks_2samp(arr_1, arr_2).pvalue проверка являются ли выборки из одного распределения.

Построение графиков и гистограмм было осуществлено с помощью библиотеки matplotlib. А построение таблиц было реализовано средствами библиотеки docx.

Результаты расчетов

Задание 1)

a = 2.0

b = 7.5

Полученная выборка:

5.48848 3.01468 1.52398 4.17952 3.77314 4.15594 5.93128 0.78484 4.35748 5.76826 2.50318 0.49498 1.08742 5.12908 4.03246 2.48062 5.49532 4.83544 0.38986 5.56102 5.76352 4.31086 4.30144 5.81002 3.32386 2.99866 1.11922 1.98514 3.90286 3.85360 4.31812 3.99022 1.36768 5.90710 2.97988 0.49612 0.87382 3.18976 5.61922 4.17046 4.38838 5.46724 5.04448 3.97648 5.62390 1.01638 3.32800 4.87192 4.27534 5.93236 4.08688 2.29270 4.79428 4.57180 1.14088 5.92648 3.72838 5.78992 2.91190 5.95954 2.31490 5.22262 5.90020 4.33204 0.59668 5.44888 4.11088 3.56350 2.99590 4.16296 2.63944 5.99356 3.98080 2.48494 2.63464 2.33446										
5.76352 4.31086 4.30144 5.81002 3.32386 2.99866 1.11922 1.98514 3.90286 3.85360 4.31812 3.99022 1.36768 5.90710 2.97988 0.49612 0.87382 3.18976 5.61922 4.17046 4.38838 5.46724 5.04448 3.97648 5.62390 1.01638 3.32800 4.87192 4.27534 5.93236 4.08688 2.29270 4.79428 4.57180 1.14088 5.92648 3.72838 5.78992 2.91190 5.95954 2.31490 5.22262 5.90020 4.33204 0.59668 5.44888 4.11088 3.56350 2.99590 4.16296 2.63944 5.99356 3.98080 2.48494 2.63464 2.33446 3.20950 4.81978 1.05436 5.42752 0.52954 0.82522 2.52532 2.90710 5.89408 2.09272 4.86634 2.06416 2.51224 0.93814 2.07454 1.33936 5.78236 2.03500 1.39936 0.10372	5.48848	3.01468	1.52398	4.17952	3.77314	4.15594	5.93128	0.78484	4.35748	5.76826
4.31812 3.99022 1.36768 5.90710 2.97988 0.49612 0.87382 3.18976 5.61922 4.17046 4.38838 5.46724 5.04448 3.97648 5.62390 1.01638 3.32800 4.87192 4.27534 5.93236 4.08688 2.29270 4.79428 4.57180 1.14088 5.92648 3.72838 5.78992 2.91190 5.95954 2.31490 5.22262 5.90020 4.33204 0.59668 5.44888 4.11088 3.56350 2.99590 4.16296 2.63944 5.99356 3.98080 2.48494 2.63464 2.33446 3.20950 4.81978 1.05436 5.42752 0.52954 0.82522 2.52532 2.90710 5.89408 2.09272 4.86634 2.06416 2.51224 0.93814 2.07454 1.33936 5.78236 2.03500 1.39936 0.10372 0.95908 3.61018 1.17760 5.48110 1.21030 3.78706 2.30752 4.46176 0.18744 2.67502	2.50318	0.49498	1.08742	5.12908	4.03246	2.48062	5.49532	4.83544	0.38986	5.56102
4.38838 5.46724 5.04448 3.97648 5.62390 1.01638 3.32800 4.87192 4.27534 5.93236 4.08688 2.29270 4.79428 4.57180 1.14088 5.92648 3.72838 5.78992 2.91190 5.95954 2.31490 5.22262 5.90020 4.33204 0.59668 5.44888 4.11088 3.56350 2.99590 4.16296 2.63944 5.99356 3.98080 2.48494 2.63464 2.33446 3.20950 4.81978 1.05436 5.42752 0.52954 0.82522 2.52532 2.90710 5.89408 2.09272 4.86634 2.06416 2.51224 0.93814 2.07454 1.33936 5.78236 2.03500 1.39936 0.10372 0.95908 3.61018 1.17760 5.48110 1.21030 3.78706 2.30752 4.46176 0.18784 2.67502 0.18010 0.30586 0.85420 2.79004 5.43328 4.33996 6.03304 1.42936 2.03332 4.88668	5.76352	4.31086	4.30144	5.81002	3.32386	2.99866	1.11922	1.98514	3.90286	3.85360
4.08688 2.29270 4.79428 4.57180 1.14088 5.92648 3.72838 5.78992 2.91190 5.95954 2.31490 5.22262 5.90020 4.33204 0.59668 5.44888 4.11088 3.56350 2.99590 4.16296 2.63944 5.99356 3.98080 2.48494 2.63464 2.33446 3.20950 4.81978 1.05436 5.42752 0.52954 0.82522 2.52532 2.90710 5.89408 2.09272 4.86634 2.06416 2.51224 0.93814 2.07454 1.33936 5.78236 2.03500 1.39936 0.10372 0.95908 3.61018 1.17760 5.48110 1.21030 3.78706 2.30752 4.46176 0.18784 2.67502 0.18010 0.30586 0.85420 2.79004 5.43328 4.33996 6.03304 1.42936 2.03332 4.88668 2.40160 4.79224 1.27930 5.68678 3.24352 3.22804 5.16154 5.94868 2.20612 2.28754	4.31812	3.99022	1.36768	5.90710	2.97988	0.49612	0.87382	3.18976	5.61922	4.17046
2.31490 5.22262 5.90020 4.33204 0.59668 5.44888 4.11088 3.56350 2.99590 4.16296 2.63944 5.99356 3.98080 2.48494 2.63464 2.33446 3.20950 4.81978 1.05436 5.42752 0.52954 0.82522 2.52532 2.90710 5.89408 2.09272 4.86634 2.06416 2.51224 0.93814 2.07454 1.33936 5.78236 2.03500 1.39936 0.10372 0.95908 3.61018 1.17760 5.48110 1.21030 3.78706 2.30752 4.46176 0.18784 2.67502 0.18010 0.30586 0.85420 2.79004 5.43328 4.33996 6.03304 1.42936 2.03332 4.88668 2.40160 4.79224 1.27930 5.68678 3.24352 3.22804 5.16154 5.94868 2.20612 2.28754 1.27138 1.93174 5.8634 1.68946 0.74812 1.72516 2.11474 3.94108 5.67454 4.82668	4.38838	5.46724	5.04448	3.97648	5.62390	1.01638	3.32800	4.87192	4.27534	5.93236
2.63944 5.99356 3.98080 2.48494 2.63464 2.33446 3.20950 4.81978 1.05436 5.42752 0.52954 0.82522 2.52532 2.90710 5.89408 2.09272 4.86634 2.06416 2.51224 0.93814 2.07454 1.33936 5.78236 2.03500 1.39936 0.10372 0.95908 3.61018 1.17760 5.48110 1.21030 3.78706 2.30752 4.46176 0.18784 2.67502 0.18010 0.30586 0.85420 2.79004 5.43328 4.33996 6.03304 1.42936 2.03332 4.88668 2.40160 4.79224 1.27930 5.68678 3.24352 3.22804 5.16154 5.94868 2.20612 2.28754 1.27138 1.93174 5.88634 1.68946 0.74812 1.72516 2.11474 3.94108 5.67454 4.82668 4.03888 5.54794 5.85418 4.06408 1.87168 0.62050 1.71376 3.24424 3.26290 4.23484	4.08688	2.29270	4.79428	4.57180	1.14088	5.92648	3.72838	5.78992	2.91190	5.95954
0.52954 0.82522 2.52532 2.90710 5.89408 2.09272 4.86634 2.06416 2.51224 0.93814 2.07454 1.33936 5.78236 2.03500 1.39936 0.10372 0.95908 3.61018 1.17760 5.48110 1.21030 3.78706 2.30752 4.46176 0.18784 2.67502 0.18010 0.30586 0.85420 2.79004 5.43328 4.33996 6.03304 1.42936 2.03332 4.88668 2.40160 4.79224 1.27930 5.68678 3.24352 3.22804 5.16154 5.94868 2.20612 2.28754 1.27138 1.93174 5.88634 1.68946 0.74812 1.72516 2.11474 3.94108 5.67454 4.82668 4.03888 5.54794 5.85418 4.06408 1.87168 0.62050 1.71376 3.24424 3.26290 4.23484 0.53296 4.45528 4.51744 4.44412 3.80044 0.16912 6.09958 4.38868 3.80344 1.19848	2.31490	5.22262	5.90020	4.33204	0.59668	5.44888	4.11088	3.56350	2.99590	4.16296
2.07454 1.33936 5.78236 2.03500 1.39936 0.10372 0.95908 3.61018 1.17760 5.48110 1.21030 3.78706 2.30752 4.46176 0.18784 2.67502 0.18010 0.30586 0.85420 2.79004 5.43328 4.33996 6.03304 1.42936 2.03332 4.88668 2.40160 4.79224 1.27930 5.68678 3.24352 3.22804 5.16154 5.94868 2.20612 2.28754 1.27138 1.93174 5.88634 1.68946 0.74812 1.72516 2.11474 3.94108 5.67454 4.82668 4.03888 5.54794 5.85418 4.06408 1.87168 0.62050 1.71376 3.24424 3.26290 4.23484 0.53296 4.45528 4.51744 4.44412 3.80044 0.16912 6.09958 4.38868 3.80344 1.19848 1.17004 1.17172 0.37240 1.81198 2.00848 3.13882 4.95424 4.85422 5.14078 2.59702	2.63944	5.99356	3.98080	2.48494	2.63464	2.33446	3.20950	4.81978	1.05436	5.42752
1.21030 3.78706 2.30752 4.46176 0.18784 2.67502 0.18010 0.30586 0.85420 2.79004 5.43328 4.33996 6.03304 1.42936 2.03332 4.88668 2.40160 4.79224 1.27930 5.68678 3.24352 3.22804 5.16154 5.94868 2.20612 2.28754 1.27138 1.93174 5.88634 1.68946 0.74812 1.72516 2.11474 3.94108 5.67454 4.82668 4.03888 5.54794 5.85418 4.06408 1.87168 0.62050 1.71376 3.24424 3.26290 4.23484 0.53296 4.45528 4.51744 4.44412 3.80044 0.16912 6.09958 4.38868 3.80344 1.19848 1.17004 1.17172 0.37240 1.81198 2.00848 3.13882 4.95424 4.85422 5.14078 2.59702 0.88810 1.83604 0.21754 2.34778 3.15160 0.68506 2.98336 1.62460 0.83896 2.45788	0.52954	0.82522	2.52532	2.90710	5.89408	2.09272	4.86634	2.06416	2.51224	0.93814
5.43328 4.33996 6.03304 1.42936 2.03332 4.88668 2.40160 4.79224 1.27930 5.68678 3.24352 3.22804 5.16154 5.94868 2.20612 2.28754 1.27138 1.93174 5.88634 1.68946 0.74812 1.72516 2.11474 3.94108 5.67454 4.82668 4.03888 5.54794 5.85418 4.06408 1.87168 0.62050 1.71376 3.24424 3.26290 4.23484 0.53296 4.45528 4.51744 4.44412 3.80044 0.16912 6.09958 4.38868 3.80344 1.19848 1.17004 1.17172 0.37240 1.81198 2.00848 3.13882 4.95424 4.85422 5.14078 2.59702 0.88810 1.83604 0.21754 2.34778 3.15160 0.68506 2.98336 1.62460 0.83896 2.45788 1.34152 1.55722 4.67602 2.47720 6.06682 2.01586 1.03162 3.49174 3.29734 5.84986	2.07454	1.33936	5.78236	2.03500	1.39936	0.10372	0.95908	3.61018	1.17760	5.48110
3.24352 3.22804 5.16154 5.94868 2.20612 2.28754 1.27138 1.93174 5.88634 1.68946 0.74812 1.72516 2.11474 3.94108 5.67454 4.82668 4.03888 5.54794 5.85418 4.06408 1.87168 0.62050 1.71376 3.24424 3.26290 4.23484 0.53296 4.45528 4.51744 4.44412 3.80044 0.16912 6.09958 4.38868 3.80344 1.19848 1.17004 1.17172 0.37240 1.81198 2.00848 3.13882 4.95424 4.85422 5.14078 2.59702 0.88810 1.83604 0.21754 2.34778 3.15160 0.68506 2.98336 1.62460 0.83896 2.45788 1.34152 1.55722 4.67602 2.47720 6.06682 2.01586 1.03162 3.49174 3.29734 5.84986 5.38360 5.34892 4.02508 3.57148 3.10180 4.89724 1.98040 2.19358 4.78906 6.03904	1.21030	3.78706	2.30752	4.46176	0.18784	2.67502	0.18010	0.30586	0.85420	2.79004
0.74812 1.72516 2.11474 3.94108 5.67454 4.82668 4.03888 5.54794 5.85418 4.06408 1.87168 0.62050 1.71376 3.24424 3.26290 4.23484 0.53296 4.45528 4.51744 4.44412 3.80044 0.16912 6.09958 4.38868 3.80344 1.19848 1.17004 1.17172 0.37240 1.81198 2.00848 3.13882 4.95424 4.85422 5.14078 2.59702 0.88810 1.83604 0.21754 2.34778 3.15160 0.68506 2.98336 1.62460 0.83896 2.45788 1.34152 1.55722 4.67602 2.47720 6.06682 2.01586 1.03162 3.49174 3.29734 5.84986 5.38360 5.34892 4.02508 3.57148 3.10180 4.89724 1.98040 2.19358 4.78906 6.03904 1.09852 1.49374 5.31676 3.60034 4.92538 3.80140 2.85154 3.36118 3.42166 3.86650	5.43328	4.33996	6.03304	1.42936	2.03332	4.88668	2.40160	4.79224	1.27930	5.68678
1.87168 0.62050 1.71376 3.24424 3.26290 4.23484 0.53296 4.45528 4.51744 4.44412 3.80044 0.16912 6.09958 4.38868 3.80344 1.19848 1.17004 1.17172 0.37240 1.81198 2.00848 3.13882 4.95424 4.85422 5.14078 2.59702 0.88810 1.83604 0.21754 2.34778 3.15160 0.68506 2.98336 1.62460 0.83896 2.45788 1.34152 1.55722 4.67602 2.47720 6.06682 2.01586 1.03162 3.49174 3.29734 5.84986 5.38360 5.34892 4.02508 3.57148 3.10180 4.89724 1.98040 2.19358 4.78906 6.03904 1.09852 1.49374 5.31676 3.60034 4.92538 3.80140 2.85154 3.36118 3.42166 3.86650 3.37708 6.03988 3.09022 5.24374 3.84316 0.57010 1.16368 4.77148 1.60462 1.53160	3.24352	3.22804	5.16154	5.94868	2.20612	2.28754	1.27138	1.93174	5.88634	1.68946
3.80044 0.16912 6.09958 4.38868 3.80344 1.19848 1.17004 1.17172 0.37240 1.81198 2.00848 3.13882 4.95424 4.85422 5.14078 2.59702 0.88810 1.83604 0.21754 2.34778 3.15160 0.68506 2.98336 1.62460 0.83896 2.45788 1.34152 1.55722 4.67602 2.47720 6.06682 2.01586 1.03162 3.49174 3.29734 5.84986 5.38360 5.34892 4.02508 3.57148 3.10180 4.89724 1.98040 2.19358 4.78906 6.03904 1.09852 1.49374 5.31676 3.60034 4.92538 3.80140 2.85154 3.36118 3.42166 3.86650 3.37708 6.03988 3.09022 5.24374 3.84316 0.57010 1.16368 4.77148 1.60462 1.53160 5.10202 1.27390 3.45700 5.35168	0.74812	1.72516	2.11474	3.94108	5.67454	4.82668	4.03888	5.54794	5.85418	4.06408
2.00848 3.13882 4.95424 4.85422 5.14078 2.59702 0.88810 1.83604 0.21754 2.34778 3.15160 0.68506 2.98336 1.62460 0.83896 2.45788 1.34152 1.55722 4.67602 2.47720 6.06682 2.01586 1.03162 3.49174 3.29734 5.84986 5.38360 5.34892 4.02508 3.57148 3.10180 4.89724 1.98040 2.19358 4.78906 6.03904 1.09852 1.49374 5.31676 3.60034 4.92538 3.80140 2.85154 3.36118 3.42166 3.86650 3.37708 6.03988 3.09022 5.24374 3.84316 0.57010 1.16368 4.77148 1.60462 1.53160 5.10202 1.27390 3.45700 5.35168	1.87168	0.62050	1.71376	3.24424	3.26290	4.23484	0.53296	4.45528	4.51744	4.44412
3.15160 0.68506 2.98336 1.62460 0.83896 2.45788 1.34152 1.55722 4.67602 2.47720 6.06682 2.01586 1.03162 3.49174 3.29734 5.84986 5.38360 5.34892 4.02508 3.57148 3.10180 4.89724 1.98040 2.19358 4.78906 6.03904 1.09852 1.49374 5.31676 3.60034 4.92538 3.80140 2.85154 3.36118 3.42166 3.86650 3.37708 6.03988 3.09022 5.24374 3.84316 0.57010 1.16368 4.77148 1.60462 1.53160 5.10202 1.27390 3.45700 5.35168	3.80044	0.16912	6.09958	4.38868	3.80344	1.19848	1.17004	1.17172	0.37240	1.81198
6.06682 2.01586 1.03162 3.49174 3.29734 5.84986 5.38360 5.34892 4.02508 3.57148 3.10180 4.89724 1.98040 2.19358 4.78906 6.03904 1.09852 1.49374 5.31676 3.60034 4.92538 3.80140 2.85154 3.36118 3.42166 3.86650 3.37708 6.03988 3.09022 5.24374 3.84316 0.57010 1.16368 4.77148 1.60462 1.53160 5.10202 1.27390 3.45700 5.35168	2.00848	3.13882	4.95424	4.85422	5.14078	2.59702	0.88810	1.83604	0.21754	2.34778
3.10180 4.89724 1.98040 2.19358 4.78906 6.03904 1.09852 1.49374 5.31676 3.60034 4.92538 3.80140 2.85154 3.36118 3.42166 3.86650 3.37708 6.03988 3.09022 5.24374 3.84316 0.57010 1.16368 4.77148 1.60462 1.53160 5.10202 1.27390 3.45700 5.35168	3.15160	0.68506	2.98336	1.62460	0.83896	2.45788	1.34152	1.55722	4.67602	2.47720
4.92538 3.80140 2.85154 3.36118 3.42166 3.86650 3.37708 6.03988 3.09022 5.24374 3.84316 0.57010 1.16368 4.77148 1.60462 1.53160 5.10202 1.27390 3.45700 5.35168	6.06682	2.01586	1.03162	3.49174	3.29734	5.84986	5.38360	5.34892	4.02508	3.57148
3.84316 0.57010 1.16368 4.77148 1.60462 1.53160 5.10202 1.27390 3.45700 5.35168	3.10180	4.89724	1.98040	2.19358	4.78906	6.03904	1.09852	1.49374	5.31676	3.60034
	4.92538	3.80140	2.85154	3.36118	3.42166	3.86650	3.37708	6.03988	3.09022	5.24374
1.82686 0.32992 5.32156 2.65498 5.53840	3.84316	0.57010	1.16368	4.77148	1.60462	1.53160	5.10202	1.27390	3.45700	5.35168
	1.82686	0.32992	5.32156	2.65498	5.53840					

Упорядоченная выборка:

· mepna	© 1 0 1111001	BBreepr							
0.10372	0.16912	0.18010	0.18784	0.21754	0.30586	0.32992	0.37240	0.38986	0.49498
0.49612	0.52954	0.53296	0.57010	0.59668	0.62050	0.68506	0.74812	0.78484	0.82522
0.83896	0.85420	0.87382	0.88810	0.93814	0.95908	1.01638	1.03162	1.05436	1.08742
1.09852	1.11922	1.14088	1.16368	1.17004	1.17172	1.17760	1.19848	1.21030	1.27138
1.27390	1.27930	1.33936	1.34152	1.36768	1.39936	1.42936	1.49374	1.52398	1.53160
1.55722	1.60462	1.62460	1.68946	1.71376	1.72516	1.81198	1.82686	1.83604	1.87168
1.93174	1.98040	1.98514	2.00848	2.01586	2.03332	2.03500	2.06416	2.07454	2.09272
2.11474	2.19358	2.20612	2.28754	2.29270	2.30752	2.31490	2.33446	2.34778	2.40160
2.45788	2.47720	2.48062	2.48494	2.50318	2.51224	2.52532	2.59702	2.63464	2.63944
2.65498	2.67502	2.79004	2.85154	2.90710	2.91190	2.97988	2.98336	2.99590	2.99866
3.01468	3.09022	3.10180	3.13882	3.15160	3.18976	3.20950	3.22804	3.24352	3.24424
3.26290	3.29734	3.32386	3.32800	3.36118	3.37708	3.42166	3.45700	3.49174	3.56350
3.57148	3.60034	3.61018	3.72838	3.77314	3.78706	3.80044	3.80140	3.80344	3.84316
3.85360	3.86650	3.90286	3.94108	3.97648	3.98080	3.99022	4.02508	4.03246	4.03888
4.06408	4.08688	4.11088	4.15594	4.16296	4.17046	4.17952	4.23484	4.27534	4.30144
4.31086	4.31812	4.33204	4.33996	4.35748	4.38838	4.38868	4.44412	4.45528	4.46176
4.51744	4.57180	4.67602	4.77148	4.78906	4.79224	4.79428	4.81978	4.82668	4.83544
4.85422	4.86634	4.87192	4.88668	4.89724	4.92538	4.95424	5.04448	5.10202	5.12908
5.14078	5.16154	5.22262	5.24374	5.31676	5.32156	5.34892	5.35168	5.38360	5.42752
5.43328	5.44888	5.46724	5.48110	5.48848	5.49532	5.53840	5.54794	5.56102	5.61922
5.62390	5.67454	5.68678	5.76352	5.76826	5.78236	5.78992	5.81002	5.84986	5.85418
5.88634	5.89408	5.90020	5.90710	5.92648	5.93128	5.93236	5.94868	5.95954	5.99356
6.03304	6.03904	6.03988	6.06682	6.09958					

а	b	N	D_N	$D_N \sqrt{N}$	<i>x</i> *	$F(x^*)$	$F_N(x^*)$	$F_N(x^*)$
				11				-0)
0.10000	6.10000	225	0.06108	0.91618	3.77314	0.61219	0.55556	0.55111

При втором способе проверки гипотезы о соответствии выборки равномерному распределению с помощью критерия Колмогорова значение функции: pval = 0.35840

Задание 2) Полученная выборка:

X									
5.48848	3.01468	1.52398	4.17952	3.77314	4.15594	5.93128	0.78484	4.35748	5.76826
2.50318	0.49498	1.08742	5.12908	4.03246	2.48062	5.49532	4.83544	0.38986	5.56102
5.76352	4.31086	4.30144	5.81002	3.32386	2.99866	1.11922	1.98514	3.90286	3.85360
4.31812	3.99022	1.36768	5.90710	2.97988	0.49612	0.87382	3.18976	5.61922	4.17046
4.38838	5.46724	5.04448	3.97648	5.62390	1.01638	3.32800	4.87192	4.27534	5.93236
4.08688	2.29270	4.79428	4.57180	1.14088	5.92648	3.72838	5.78992	2.91190	5.95954
2.31490	5.22262	5.90020	4.33204	0.59668	5.44888	4.11088	3.56350	2.99590	4.16296
2.63944	5.99356	3.98080	2.48494	2.63464	2.33446	3.20950	4.81978	1.05436	5.42752
0.52954	0.82522	2.52532	2.90710	5.89408	2.09272	4.86634	2.06416	2.51224	0.93814
2.07454	1.33936	5.78236	2.03500	1.39936	0.10372	0.95908	3.61018	1.17760	5.48110
1.21030	3.78706	2.30752	4.46176	0.18784	2.67502	0.18010	0.30586	0.85420	2.79004
5.43328	4.33996	6.03304	1.42936	2.03332	4.88668	2.40160	4.79224	1.27930	5.68678
3.24352	3.22804	5.16154	5.94868	2.20612	2.28754	1.27138	1.93174	5.88634	1.68946
0.74812	1.72516	2.11474	3.94108	5.67454	4.82668	4.03888	5.54794	5.85418	4.06408
1.87168	0.62050	1.71376	3.24424	3.26290	4.23484	0.53296	4.45528	4.51744	4.44412
3.80044	0.16912	6.09958	4.38868	3.80344	1.19848	1.17004	1.17172	0.37240	1.81198
2.00848	3.13882	4.95424	4.85422	5.14078	2.59702	0.88810	1.83604	0.21754	2.34778
3.15160	0.68506	2.98336	1.62460	0.83896	2.45788	1.34152	1.55722	4.67602	2.47720
6.06682	2.01586	1.03162	3.49174	3.29734	5.84986	5.38360	5.34892	4.02508	3.57148
3.10180	4.89724	1.98040	2.19358	4.78906	6.03904	1.09852	1.49374	5.31676	3.60034

1									
4.92538	3.80140	2.85154	3.36118	3.42166	3.86650	3.37708	6.03988	3.09022	5.24374
3.84316	0.57010	1.16368	4.77148	1.60462	1.53160	5.10202	1.27390	3.45700	5.35168
1.82686	0.32992	5.32156	2.65498	5.53840					
Y									
1.45028	3.67544	0.99338	0.68942	3.77204	0.95696	5.69132	2.06816	4.84250	3.48920
1.37864	4.82846	0.30458	1.81586	0.23426	0.22784	1.00280	2.72180	0.31778	3.74090
5.51726	3.97742	4.89818	3.08882	4.89188	1.30232	1.86506	2.21042	5.53082	5.29076
4.22588	1.07132	0.44462	2.20448	1.00220	1.13900	3.04820	0.26750	4.98080	2.13080
0.27560	3.76202	1.00880	5.41478	4.74554	5.75366	6.06098	4.30694	3.34646	1.28078
5.75636	0.49358	5.30564	3.80342	1.94120	5.47946	4.25822	5.25854	2.12486	3.29726
4.58864	3.85706	5.67398	0.14984	2.84372	1.43900	4.68602	2.31770	3.74504	5.67782
1.51316	3.41618	0.11930	5.13320	4.51922	2.64836	1.66214	2.03138	2.21456	2.34980
0.68270	5.88158	0.15140	5.86022	5.14712	1.80008	2.27576	4.01990	1.32638	0.71672
2.55206	0.25148	0.14522	1.72466	3.14204	1.56752	4.66730	3.98846	5.46518	5.34134
5.48198	5.50676	2.52806	3.03446	2.32394	3.19352	5.81996	1.81130	4.42898	3.91400
5.94236	3.11930	4.65782	5.45900	6.02174	5.22014	5.03576	3.94484	4.07660	4.79720
2.36858	0.62888	3.81800	1.11050	3.76742	0.45182	0.84812	1.96520	2.34380	3.55958
2.33846	4.88660	5.28806	3.69542	1.81184	2.08820	1.97876	0.16796	2.54378	3.02720
3.69500	0.43304	3.77684	4.59662	0.29102	4.46696	2.29976	3.48026	1.20398	6.04850
5.09870	5.10056	0.45296	0.82772	0.26846	3.61586	5.77616	5.85794	5.43236	5.28770
4.08566	3.64766	5.09720	5.79566	1.38968	5.72594	4.97660	0.24872	2.40164	4.07234
4.73318	1.52918	3.45482	2.49140	2.61662	0.72896	3.73388	3.41090	4.09646	2.23220

Упорядоченная выборка:

X									
0.10372	0.16912	0.18010	0.18784	0.21754	0.30586	0.32992	0.37240	0.38986	0.49498
0.49612	0.52954	0.53296	0.57010	0.59668	0.62050	0.68506	0.74812	0.78484	0.82522
0.83896	0.85420	0.87382	0.88810	0.93814	0.95908	1.01638	1.03162	1.05436	1.08742
1.09852	1.11922	1.14088	1.16368	1.17004	1.17172	1.17760	1.19848	1.21030	1.27138
1.27390	1.27930	1.33936	1.34152	1.36768	1.39936	1.42936	1.49374	1.52398	1.53160
1.55722	1.60462	1.62460	1.68946	1.71376	1.72516	1.81198	1.82686	1.83604	1.87168
1.93174	1.98040	1.98514	2.00848	2.01586	2.03332	2.03500	2.06416	2.07454	2.09272
2.11474	2.19358	2.20612	2.28754	2.29270	2.30752	2.31490	2.33446	2.34778	2.40160
2.45788	2.47720	2.48062	2.48494	2.50318	2.51224	2.52532	2.59702	2.63464	2.63944
2.65498	2.67502	2.79004	2.85154	2.90710	2.91190	2.97988	2.98336	2.99590	2.99866
3.01468	3.09022	3.10180	3.13882	3.15160	3.18976	3.20950	3.22804	3.24352	3.24424
3.26290	3.29734	3.32386	3.32800	3.36118	3.37708	3.42166	3.45700	3.49174	3.56350
3.57148	3.60034	3.61018	3.72838	3.77314	3.78706	3.80044	3.80140	3.80344	3.84316
3.85360	3.86650	3.90286	3.94108	3.97648	3.98080	3.99022	4.02508	4.03246	4.03888
4.06408	4.08688	4.11088	4.15594	4.16296	4.17046	4.17952	4.23484	4.27534	4.30144
4.31086	4.31812	4.33204	4.33996	4.35748	4.38838	4.38868	4.44412	4.45528	4.46176
4.51744	4.57180	4.67602	4.77148	4.78906	4.79224	4.79428	4.81978	4.82668	4.83544
4.85422	4.86634	4.87192	4.88668	4.89724	4.92538	4.95424	5.04448	5.10202	5.12908
5.14078	5.16154	5.22262	5.24374	5.31676	5.32156	5.34892	5.35168	5.38360	5.42752
5.43328	5.44888	5.46724	5.48110	5.48848	5.49532	5.53840	5.54794	5.56102	5.61922
5.62390	5.67454	5.68678	5.76352	5.76826	5.78236	5.78992	5.81002	5.84986	5.85418
5.88634	5.89408	5.90020	5.90710	5.92648	5.93128	5.93236	5.94868	5.95954	5.99356
6.03304	6.03904	6.03988	6.06682	6.09958					

Y									
0.11930	0.14522	0.14984	0.15140	0.16796	0.22784	0.23426	0.24872	0.25148	0.26750
0.26846	0.27560	0.29102	0.30458	0.31778	0.43304	0.44462	0.45182	0.45296	0.49358
0.62888	0.68270	0.68942	0.71672	0.72896	0.82772	0.84812	0.95696	0.99338	1.00220
1.00280	1.00880	1.07132	1.11050	1.13900	1.20398	1.28078	1.30232	1.32638	1.37864
1.38968	1.43900	1.45028	1.51316	1.52918	1.56752	1.66214	1.72466	1.80008	1.81130
1.81184	1.81586	1.86506	1.94120	1.96520	1.97876	2.03138	2.06816	2.08820	2.12486
2.13080	2.20448	2.21042	2.21456	2.23220	2.27576	2.29976	2.31770	2.32394	2.33846
2.34380	2.34980	2.36858	2.40164	2.49140	2.52806	2.54378	2.55206	2.61662	2.64836
2.72180	2.84372	3.02720	3.03446	3.04820	3.08882	3.11930	3.14204	3.19352	3.29726
3.34646	3.41090	3.41618	3.45482	3.48026	3.48920	3.55958	3.61586	3.64766	3.67544

3.69500	3.69542	3.73388	3.74090	3.74504	3.76202	3.76742	3.77204	3.77684	3.80342
3.81800	3.85706	3.91400	3.94484	3.97742	3.98846	4.01990	4.07234	4.07660	4.08566
4.09646	4.22588	4.25822	4.30694	4.42898	4.46696	4.51922	4.58864	4.59662	4.65782
4.66730	4.68602	4.73318	4.74554	4.79720	4.82846	4.84250	4.88660	4.89188	4.89818
4.97660	4.98080	5.03576	5.09720	5.09870	5.10056	5.13320	5.14712	5.22014	5.25854
5.28770	5.28806	5.29076	5.30564	5.34134	5.41478	5.43236	5.45900	5.46518	5.47946
5.48198	5.50676	5.51726	5.53082	5.67398	5.67782	5.69132	5.72594	5.75366	5.75636
5.77616	5.79566	5.81996	5.85794	5.86022	5.88158	5.94236	6.02174	6.04850	6.06098

N	Μ	$D_{N,M}$	$K_{N,M}$	x^*	$F_N(x^*)$	$F_N(x^*)$	$F_M(x^*)$	$F_M(x^*)$
						-0)		-0)
225	180	0.07111	0.71111	0.49498	0.04444	0.04000	0.11111	0.11111

При втором способе проверки гипотезы о соответствии выборки равномерному распределению с помощью критерия Колмогорова значение функции: pval = 0.66656

Анализ результатов и выводы

Таблица критических значений:

α	0.01	0.02	0.05	0.1	0.2	
K_{α}	1.63	1.57	1.36	1.22	1.07	

Задание 1)

$D_N \sqrt{N}$	α	K_{α}	Верность
			гипотезы
0.91618	0.05	1.36	Да

α	pval	Верность гипотезы
0.05000	0.35840	Да

Гипотеза о соответствии выборки равномерному распределению на отрезке [a,b] не противоречит экспериментальным данным (может быть принята) при уровне значимости alpha=0.05.

Задание 2)

	$K_{N,M}$	α	K_{α}	Верность
				гипотезы
ĺ	0.71111	0.05	1.36	Да

α	pval	Верность гипотезы
0.05	0.66656	Да

Гипотеза об одинаковом распределении двух случайных выборок не противоречит экспериментальным данным (может быть принята) при уровне значимости alpha = 0,05.

Список использованной литературы

- 1. Лобузов А.А. Математическая статистика [Электронный ресурс]: Методические указания по выполнению лабораторных работ / под ред. Ю. И. Худака. Москва: Московский технологический университет (МИРЭА), 2017. 36 с.
- 2. Чернова Н. И. Математическая статистика: Учеб. пособие / Новосиб. гос. ун-т. Новосибирск, 2007. 148 с

Приложение (Листинг программы)

```
import math
      import numpy
      import matplotlib.mlab as mlab
      import matplotlib.pyplot as plt
      import scipy.stats as pystats
      import scipy
      from docx import Document
      kolm = {
         0.01:1.63,
         0.02:1.57,
         0.05:1.36,
         0.1:1.22,
         0.2:1.07
      head 1 str = [
         'a', 'b', 'N', 'D N', 'D N sqrt{N}', 'x^*', 'F (x^*)', 'F N (x^*)', 'F N
(x^* - 0)'
      head_2_{str} = [
         'N', 'M', 'D N,M', 'K N,M', 'x^*', 'F N (x^*', 'F N (x^* - 0)', 'F M
(x^*)', 'F_M (x^* - \overline{0})'
      head 3 \text{ str} = [
         'D N sqrt {N}', 'alpha', 'k alpha', 'Верность гипотезы'
      head 4 \text{ str} = [
         'alpha', 'pval', 'Верность гипотезы'
      head 5 str = [
         'K N,M', 'alpha', 'k alpha', 'Верность гипотезы'
      head 6 str = \lceil
         'alpha', 'pval', 'Верность гипотезы'
      1
```

```
hyp text = \{
  True: 'Да',
  False: 'Нет'
def strm(a):
  n = len(a)
  b = a[0]
  m = len(b)
  for i in range(n):
     for k in range(m):
        if type(a[i][k]) == int:
          a[i][k] = str(a[i][k])
       elif type(a[i][k]) != str:
          a[i][k] = str('\%.5f'\% a[i][k])
def strm lite(a):
  n = len(a)
  b = a[0]
  m = len(b)
  for i in range(n):
     for k in range(m):
        if type(a[i][k]) == int:
          a[i][k] = str(a[i][k])
       elif type(a[i][k]) != str:
          a[i][k] = str(a[i][k])
def line out(1, cols = 10):
  tbl = []
  q = []
  for i in range(len(l)):
     q.append(l[i])
     if (len(q) == 10) or (i+1 == len(1)):
        while(len(q) != 10):
          q.append(")
       tbl.append(q)
       q = []
  return tbl
def onetablein(docname):
  document = Document(docname)
  table = document.tables[0]
  array = []
```

```
for i in range(0,len(table.rows)):
     row = table.rows[i]
     for cell in row.cells:
        array.append(float(cell.text.replace(',','.')))
  return array
ud2 = onetablein('UD-2 10.docx')
ud2a = 2.0
ud2b = 7.5
ud3 = onetablein('UD-3 10.docx')
print(ud2, ud2a, ud2b)
print()
print(ud3)
class UniSample():
  def __init__(self, array, a, b):
     self.array = [i for i in array]
     self.n = len(array)
     self.a = a
     self.b = b
  def Fj(self,x):
     s = 0
     for i in self.array:
        if i \le x:
          s = s + 1
     return s/self.n
   def Fjo(self,x):
     s = 0
     for i in self.array:
        if i < x:
          s = s + 1
     return s/self.n
   def F(self,x):
     if x < self.a:
        return 0
     if x > self.b:
        return 1
     return (x-self.a)/(self.b-self.a)
   def Dn(self):
```

```
a = [max([abs(self.Fj(i)-self.F(i)), abs(self.Fjo(i)-self.F(i))]) for i
in self.array]
            return(max(a))
         def xx(self):
            for i in self.array:
               if self.Dn() == max([abs(self.Fj(i)-self.F(i)), abs(self.Fjo(i)-self.Fjo(i)))
self.F(i))]):
                 return i
         def out 1(self):
            x = self.xx()
            1 = \lceil
               self.a,
               self.b,
               self.n,
               self.Dn(),
               self.Dn()*(self.n**0.5),
               х,
               self.F(x),
               self.Fj(x),
               self.Fjo(x)
            1
            return 1
         def Graf(self, filename = 'Uni Graf.png', dx = 0.00001):
            xmin = self.a - (self.b - self.a)/8
            xmax = self.b + (self.b - self.a)/8
            xlist = mlab.frange(xmin, xmax, dx)
            ylist = [self.F(x) for x in xlist]
            zlist = [self.Fj(x) for x in xlist]
            plt.plot(xlist, ylist, color = 'blue', alpha = 0.75, linewidth = 2)
            plt.plot(xlist, zlist, color = 'red', linewidth = 1.5)
            plt.grid(True)
            plt.savefig(filename, dpi = 128)
            plt.clf()
            print('Done! [gr 1]')
         def out 3(self, alpha = 0.05):
            dn = self.Dn()*(self.n**0.5)
            ka = kolm[alpha]
            1=[
               dn,
               str(alpha),
               str(ka),
```

```
hyp text[dn \le ka]
            return 1
          def out 4(self, alpha = 0.05):
            g = pystats.kstest(self.array, scipy.stats.uniform(loc = self.a, scale
= self.b-self.a).cdf).pvalue
            1 = \lceil
               alpha,
               g,
               hyp text[g \ge alpha]
            return 1
          def hyp(self, alpha = 0.05):
            dn = self.Dn()*(self.n**0.5)
            ka = kolm[alpha]
            return dn <= ka
       us = UniSample(ud2, ud2a, ud2b)
       print(us.out 1())
       us.Graf(dx = 0.01)
       print(us.out 3())
       print(us.out 4())
       class DoubleSample():
         def __init__(self, arr_1, arr_2):
            self.arr 1 = [i \text{ for } i \text{ in arr } 1]
            self.arr 2 = [i \text{ for } i \text{ in arr } 2]
            self.n = len(arr 1)
            self.m = len(arr 2)
            self.a = min(sorted(arr 1)[0], sorted(arr 2)[0])
            self.b = max(sorted(arr 1)[self.n - 1], sorted(arr 2)[self.m - 1])
         def Fn(self,x):
            s = 0
            for i in self.arr 1:
               if i \le x:
                  s = s + 1
            return s/self.n
          def Fno(self,x):
            s = 0
            for i in self.arr 1:
```

```
if i < x:
        s = s + 1
  return s/self.n
def Fm(self,x):
  s = 0
  for i in self.arr 2:
     if i \le x:
        s = s + 1
  return s/self.m
def Fmo(self,x):
  s = 0
  for i in self.arr 2:
     if i < x:
        s = s + 1
  return s/self.m
def Dnm(self):
  1 = \lceil \rceil
  1.extend([abs(self.Fn(i) - self.Fm(i)) for i in self.arr 1])
  l.extend([abs(self.Fno(i) - self.Fm(i)) for i in self.arr 1])
  l.extend([abs(self.Fn(i) - self.Fm(i)) for i in self.arr 2])
  l.extend([abs(self.Fn(i) - self.Fmo(i)) for i in self.arr 2])
  return max(1)
def Knm(self):
  return ((self.n*self.m/(self.n+self.m))**0.5)*self.Dnm()
def xx(self):
  for i in self.arr 1:
     if(self.Dnm() == abs(self.Fn(i) - self.Fm(i))):
        return i
     if(self.Dnm() == abs(self.Fno(i) - self.Fm(i))):
        return i
  for i in self.arr 1:
     if(self.Dnm() == abs(self.Fn(i) - self.Fm(i))):
        return i
     if(self.Dnm() == abs(self.Fn(i) - self.Fmo(i))):
        return i
def out 2(self):
  x = self.xx()
  1 = \lceil
     self.n,
     self.m,
```

```
self.Dnm(),
     self.Knm(),
     х,
     self.Fn(x),
     self.Fno(x),
     self.Fm(x),
     self.Fmo(x)
  1
  return 1
def Graf(self, filename = 'Double Graf.png', dx = 0.00001):
  xmin = self.a - (self.b - self.a)/8
  xmax = self.b + (self.b - self.a)/8
  xlist = mlab.frange (xmin, xmax, dx)
  ylist = [self.Fn(x) for x in xlist]
  zlist = [self.Fm(x) for x in xlist]
  plt.plot(xlist, ylist, color = 'Green', linewidth = 1.5)
  plt.plot(xlist, zlist, color = 'red', linewidth = 1.5)
  plt.grid(True)
  plt.savefig(filename, dpi = 128)
  plt.clf()
  print('Done! [gr 2]')
def out 5(self, alpha = 0.05):
  Knm = self.Knm()
  ka = kolm[alpha]
  1 = \lceil
     Knm,
     str(alpha),
     str(ka),
     hyp text[Knm \le ka]
  return l
def out 6(self, alpha = 0.05):
  g = scipy.stats.ks 2samp(self.arr 1, self.arr 2).pvalue
  1 = \lceil
     str(alpha),
     hyp text[g >= alpha]
  return 1
def hyp(self, alpha = 0.05):
  Knm = self.Knm()
  ka = kolm[alpha]
```

return Knm <= ka

```
usd = DoubleSample(ud2, ud3)
      print()
      print(head 2 str)
      print(usd.out 2())
      print()
      \#usd.Graf(dx = 0.01)
      print(head 5 str)
      print(usd.out 5())
      print()
      print(head 6 str)
      print(usd.out 6())
      def tabler(document, out, head = None):
        tl = \lceil \rceil
        if head != None:
          tl.append(head)
        for i in out:
          tl.append(i)
        strm(tl)
        table = document.add table(rows = len(tl),cols = len(tl[0]))
        for i in range(len(tl)):
          hdr cells = table.rows[i].cells
          for k in range(len(tl[0])):
             if type(tl[i][k]) == str:
               hdr cells[k].text = tl[i][k]
             else:
               pass #LaTeh
      text anal 1 = \{
        True : 'Гипотеза о соответствии выборки равномерному
распределению на отрезке [a, b] не противоречит экспериментальным
данным (может быть принята) при уровне значимости alpha = 0.05.',
        False : 'Гипотеза о соответствии выборки равномерному
распределению на отрезке [а, b] противоречит экспериментальным
данным (не может быть принята) при уровне значимости alpha = 0.05.
      text anal 2 = \{
```

True : 'Гипотеза об одинаковом распределении двух случайных выборок не противоречит экспериментальным данным (может быть принята) при уровне значимости alpha = 0.05.',

True : 'Гипотеза об одинаковом распределении двух случайных выборок противоречит экспериментальным данным (не может быть принята) при уровне значимости alpha = 0.05.'

```
def doccreator(arr 1, arr 2, a,b, filename = 'some'):
        document = Document()
        document.add paragraph('Результаты расчетов')
        document.add paragraph('Задание 1)')
        tbl = line out(arr 1)
        document.add paragraph('Полученная выборка:')
        tabler(document,tbl)
        document.add paragraph(")
        tbl = line out(sorted(arr 1))
        document.add paragraph('Упорядоченная выборка:')
        tabler(document, tbl)
        document.add paragraph(")
        us = UniSample(arr 1, a, b)
        us.Graf(filename = filename + ' 1.png')
        document.add picture(filename + ' 1.png')
        document.add paragraph(")
        out 1 = us.out 1()
        tabler(document, [out 1], head 1 str)
        document.add paragraph(")
        s = 'При втором способе проверки гипотезы о соответствии'
        s = s + ' выборки равномерному распределению с помощью
критерия Колмогорова значение функции: pval = '
        s = s + str(\%.5f\% us.out 4()[1])
        document.add paragraph(s)
        document.add paragraph(")
        document.add paragraph(")
        document.add_paragraph('Задание 2)')
        document.add paragraph('Полученная выборка:')
        document.add paragraph('X')
        tbl = line out(arr 1)
        tabler(document,tbl)
        document.add paragraph(")
```

```
document.add paragraph('Y')
        tbl = line out(arr 2)
        tabler(document,tbl)
        document.add paragraph(")
        document.add paragraph('Упорядоченная выборка:')
        document.add paragraph('X')
        tbl = line out(sorted(arr 1))
        tabler(document,tbl)
        document.add paragraph(")
        document.add paragraph('Y')
        tbl = line out(sorted(arr 2))
        tabler(document,tbl)
        document.add paragraph(")
        ds = DoubleSample(arr 1, arr 2)
        ds.Graf(filename = filename + ' 2.png')
        document.add picture(filename + ' 2.png')
        out 2 = ds.out 2()
        tabler(document, [out 2], head 2 str)
        s = 'При втором способе проверки гипотезы о соответствии'
        s = s + ' выборки равномерному распределению с помощью
критерия Колмогорова значение функции: pval = '
        s = s + str(\%.5f\% ds.out 6()[1])
        document.add paragraph(s)
        document.add paragraph(")
        document.add paragraph(")
        document.add paragraph('Анализ результатов и выводы')
        document.add paragraph('Таблица критических значений:')
        tbl = [['alpha'], ['k alpha']]
        tbl[0].extend([str(i) for i in kolm])
        tbl[1].extend([str(kolm[i]) for i in kolm])
        tabler(document, tbl)
        document.add paragraph(")
        document.add paragraph('Задание 1)')
        tabler(document, [us.out 3()], head 3 str)
        document.add paragraph(")
        tabler(document, [us.out 4()], head 4 str)
        document.add paragraph(text anal 1[us.hyp()])
        document.add paragraph(")
        document.add paragraph('Задание 2)')
        tabler(document, [ds.out 5()], head 5 str)
        document.add paragraph(")
        tabler(document, [ds.out 6()], head 6 str)
        document.add paragraph(text anal 2[ds.hyp()])
        document.add paragraph(")
```

document.save(filename + '.docx')
print('Done! [doc]')

doccreator(ud2, ud3, ud2a, ud2b)