Work and Energy

Physics Department, Bingham University

PHY 101 Lectures by Mrs. O. V. Oyelade

Part B: Introductory Classical Mechanics

Course content

- Work and Energy
- Rotational Motion
- Bodies in Equilibrium
- Newton's Universal Gravitation
- Simple Harmonic Motion

Work and Energy

Learning Objectives

- To represent the work done by any force and evaluate the work done by varying forces
- To calculate the kinetic energy of a particle given its mass and its velocity or momentum
- To apply the work-energy theorem to find information about the motion of a particle, given the forces acting on it
- To use the work-energy theorem to find information about the forces acting on a particle, given information about its motion
- To relate the work done during a time interval to the power delivered
- To find the power expended by a force acting on a moving body

Definition of Work W

- work is done on an object when energy is transferred to the object.
- The work done by a force is the integral of the force with respect to displacement along the path of the displacement:

$$W_{AB} = \int_{\text{path } AB} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$$

 The simplest work to evaluate is that done by a force that is constant in magnitude and direction.

Work W done by a constant force

 The work, W, done by a constant force on an object is defined as the product of the component of the force along the direction of displacement and the magnitude of the displacement

$$W \equiv (F\cos\theta)\Delta x$$

 Where F is the magnitude of the force, Δx is the magnitude of the object's displacement and θ is the angle between F and Δx

Definition of Work W

- Work is a scalar quantity
- SI unit
 - ➤ Newton meter (Nm) = Joule
 - ightharpoonupkg m² / s² = (kg m / s²) m = J
- Work can be positive, negative, or zero. The sign of the work depends on the direction of the force relative to the displacement
 - Work positive: W > 0 if $90^\circ > \theta > 0^\circ$ i.e when component of force is in the direction of displacement
 - Work negative: W < 0 if $180^{\circ} > \theta > 90^{\circ}$
 - Work zero: W = 0 if θ = 90°
 - Work maximum if $\theta = 0^{\circ}$
 - Work minimum if $\theta = 180$

Example of when work is zero

- A man carries a bucket of water horizontally at constant velocity.
- The force does no work on the bucket
- Displacement is horizontal
- Force is vertical
- $\cos 90^{\circ} = 0$

$$W \equiv (F\cos\theta)\Delta x$$

Example

• A boy pulls a sled as shown. The total mass of the sled is 50.0 kg, and he exerts a force of 1.20 \times 10² N on the sled by pulling on the rope. How much work does he do on the sled if θ = 30° and he pulls the sled 5.0 m?

$$W = (F \cos \theta) \Delta x$$
$$= (1.20 \times 10^{2} N)(\cos 30^{\circ})(5.0m)$$
$$= 5.2 \times 10^{2} J$$

8

Work Done by Multiple Forces

- If more than one force acts on an object, then the total work is equal to the algebraic sum of the work done by the individual forces
- Remember work is a scalar, so this is the algebraic sum

$$W_{\rm net} = \sum W_{\rm by\,individual\,forces}$$

$$W_{net} = W_g + W_N + W_F = (F \cos \theta) \Delta r$$

Example

• Suppose μ_k = 0.200, How much work done on the mass by friction, and the net work if θ = 30° and the man pulls the sled 5.0 m ?

$$F_{net,y} = N - mg + F \sin \theta = 0$$
$$N = mg - F \sin \theta$$

$$W_{fric} = (f_k \cos 180^\circ) \Delta x = -f_k \Delta x$$

$$= -\mu_k N \Delta x = -\mu_k (mg - F \sin \theta) \Delta x$$

$$= -(0.200)(50.0kg \cdot 9.8m/s^2$$

$$-1.2 \times 10^2 N \sin 30^\circ)(5.0m)$$

$$= -4.3 \times 10^2 J$$

$$W_{net} = W_F + W_{fric} + W_N + W_g$$

= 5.2×10² J - 4.3×10² J + 0 + 0
= 90.0 J

Work done by Varying Forces

$$W = \int_{x_i}^{x_f} F(x) dx$$

 The total work is a line integral, or the limit of a sum of infinitesimal amounts of work.

Work done by gravity and spring force

• The work done by gravity, over any path from A to B, is

$$W_{\text{grav, }AB} = -mg \stackrel{\wedge}{\mathbf{j}} \cdot (\overrightarrow{\mathbf{r}}_B - \overrightarrow{\mathbf{r}}_A) = -mg(y_B - y_A).$$

Work done by a spring force

$$W_{\text{spring, }AB} = \int_{A}^{B} F_{x} dx = -k \int_{A}^{B} x dx = -k \frac{x^{2}}{2} \Big|_{A}^{B} = -\frac{1}{2} k (x_{B}^{2} - x_{A}^{2}).$$

Examples

1. How much work is done (a) if a person exerts a constant force of 75.0 N at an angle 35° below the horizontal and pushes a lawn mower 25.0 m on level ground?

$$W = (75.0 \text{ N})(25.0 \text{ m})\cos(35.0^{\circ}) = 1.54 \times 10^{3} \text{ J}.$$

- 2. A perfectly elastic spring requires $0.54 \, \mathrm{J}$ of work to stretch $6 \, \mathrm{cm}$ from its equilibrium position (a) What is its spring constant k?
- (b) How much work is required to stretch it an additional 6 cm?

$$W = \frac{1}{2}k(x_B^2 - x_A^2).$$

- a. $W = 0.54 \text{ J} = \frac{1}{2}k[(6 \text{ cm})^2 0]$, so k = 3 N/cm.
- b. $W = \frac{1}{2}(3 \text{ N/cm})[(12 \text{ cm})^2 (6 \text{ cm})^2] = 1.62 \text{ J}.$

Energy

- Energy is a scalar quantity. It does not have a direction associated with it
- The energy approach to describing motion is particularly useful when Newton's Laws are difficult or impossible to use, for non-linear motions as shown below:

SI unit: joule (J)
 1 joule = 1 J = 1 kg m²/s²

Kinetic Energy

- Kinetic Energy is energy associated with the state of motion of an object
- Kinetic Energy for an object moving with a speed of v is

$$KE = \frac{1}{2}mv^2$$

Kinetic Energy for a system of particles

$$K = \sum \frac{1}{2} m v^2.$$

Kinetic Energy

 The kinetic energy, K of a particle can be expressed in terms of its mass and momentum

$$p = mv$$
 $v = p/m$

$$K = \frac{1}{2}m\left(\frac{p}{m}\right)^2 = \frac{p^2}{2m}$$

What was its mass of an object travelling at 22 km/s and releasing 4.2 x 10^{23} J of kinetic energy upon impact?

$$m = 2K/v^2 = 2(4.2 \times 10^{23} \text{ J})/(22 \text{ km/s})^2 = 1.7 \times 10^{15} \text{ kg}.$$

Work-Energy Theorem

- When work is done by a net force on an object and the only change in the object is its speed, the work done is equal to the change in the object's kinetic energy
 - Speed will increase if work is positive
 - Speed will decrease if work is negative

$$W_{net} = \int_{x_i}^{x_f} F_{net}(x) dx$$

- W_{net} is the work done by
- F_{net} the net force acting on a body.
- Work-Energy Theorem: work done is equal to the change in kinetic energy

Work-Energy Theorem

$$W_{net} = \int_{x_{i}}^{x_{f}} F_{net} dx$$

$$= \int_{x_{i}}^{x_{f}} m \, a \, dx = m \int_{x_{i}}^{x_{f}} \frac{dv}{dt} dx$$

$$= m \int_{v_{i}}^{v_{f}} \frac{dx}{dt} dv = m \int_{v_{i}}^{v_{f}} v \, dv$$

$$= m \int_{v_{i}}^{v_{f}} v \, dv$$

$$= m \left[\frac{v^{2}}{2} \right]_{v_{i}}^{v_{f}} = \frac{1}{2} m (v_{f}^{2} - v_{i}^{2})$$

$$= \frac{1}{2} m v_{f}^{2} - \frac{1}{2} m v_{i}^{2}$$

Example: Work-Energy Theorem

- A bullet with a mass of 2.60 g and a of 335 m/s penetrates a distance of 15.2 cm into a board. What is the average stopping force exerted by the board?
- $W_{net} = F_{net} \Delta s = \Delta KE$

$$F_{net} = \frac{\Delta KE}{\Delta s}$$

$$F_{net} = \frac{\frac{1}{2}(2.6 \times 10^{-3})335^2 \Delta KE}{0.152} = 960N$$

Power

 Power is defined as the rate of doing work, or the limit of the average power for time intervals approaching zero,

$$P = \frac{dW}{dt}.$$

 If the power during an interval varies with time, then the work done is the time integral of the power,

$$W = \int Pdt.$$

- the SI unit for power is Watts, W: 1 J/s = 1 W
- Another common unit for expressing the power capability of everyday devices is horsepower: 1 hp = 746 W.

Fixed Axis Rotation

Learning Objectives

By the end of this section, you will be able to describe the physical meaning and calculate:

- Angular position and radian
- Angular displacement
- Angular velocity
- Angular acceleration
- Rotational motion under constant angular acceleration
- Relations between angular and linear quantities
- Circular motion

Fixed-axis rotation

 Fixed-axis rotation describes the rotation around a fixed axis of a rigid body; that is, an object that does not deform as it moves. Some examples are shown below

00

Angle and Radian

$$s = (2\pi)r$$

$$2\pi = \frac{s}{r}$$

 $\boldsymbol{\theta}$ is the arc length s along a circle divided by the radius r.

 θ is measured in radians (rad)

Whenever using rotational equations, you must use angles expressed in radians

Conversions

Comparing degrees and radians

$$2\pi(rad) = 360^{\circ} \qquad \pi(rad) = 180^{\circ}$$

Converting from degrees to radians

$$\theta \left(rad \right) = \frac{\pi}{180^{\circ}} \, \theta \left(degrees \right)$$

Converting from radians to degrees

$$\theta(\text{deg } rees) = \frac{180^{\circ}}{\pi} \theta(rad)$$
 $1 rad = \frac{360^{\circ}}{2\pi} = 57.3^{\circ}$

Angular Position

- Axis of rotation is the center of the disc
- Choose a fixed reference line
- Point P is at a fixed distance r from the origin
- As the particle moves, the only coordinate that changes is θ
- As the particle moves through θ , it moves though an arc length s.
- The angle θ , measured in radians, is called the angular position.

Angular Displacement

 The angular displacement is defined as the angle the object rotates through during some time interval

$$\Delta \theta = \theta_f - \theta_i$$

- SI unit: radian (rad)
- This is the angle that the reference line of length r sweeps out

Average and Instantaneous Angular Speed

• The average angular speed, $\omega_{\rm avg}$, of a rotating rigid object is the ratio of the angular displacement to the time interval

$$\omega_{avg} = \frac{\theta_{f} - \theta_{i}}{t_{f} - t_{i}} = \frac{\Delta \theta}{\Delta t}$$

 The instantaneous angular speed is defined as the limit of the average speed as the time interval approaches zero

$$\omega \equiv \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

- SI unit: radian per second (rad/s)
- Angular speed positive if rotating in counterclockwise
- Angular speed will be negative if rotating in clockwise

Average Angular Acceleration

• The average angular acceleration, α , of an object is defined as the ratio of the change in the angular speed to the time it takes for the object to undergo the change:

$$\alpha_{\text{avg}} = \frac{\omega_{\!f} - \omega_{\!i}}{t_{\!f} - t_{\!i}} = \frac{\Delta \omega}{\Delta t}$$

Instantaneous Angular Acceleration

 The instantaneous angular acceleration is defined as the limit of the average angular acceleration as the time goes to 0

$$\alpha \equiv \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$$

- SI Units of angular acceleration: rad/s²
- Positive angular acceleration is in the counterclockwise.
 - if an object rotating counterclockwise is speeding up
 - if an object rotating clockwise is slowing down
- Negative angular acceleration is in the clockwise.
 - if an object rotating counterclockwise is slowing down
 - if an object rotating clockwise is speeding up

Rotational and Translational motion

 A number of parallels exist between the equations for rotational motion and those for linear motion

$$v_{avg} = \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t} \qquad \omega_{avg} = \frac{\theta_f - \theta_i}{t_f - t_i} = \frac{\Delta \theta}{\Delta t}$$

- Under constant angular acceleration, we can describe the motion of the rigid object using a set of kinematic equations
 - These are similar to the kinematic equations for linear motion
 - The rotational equations have the same mathematical form as the linear equations

Kinematic equations for Rotational and Translational motion under constant acceleration

Rotational Motion About a Fixed Axis

Linear Motion

$$\omega_f = \omega_i + \alpha t$$

$$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$$

$$\omega_f^2 = \omega_i^2 + 2\alpha (\theta_f - \theta_i)$$

$$v_f = v_i + at$$

$$x_f = x_i + v_i t + \frac{1}{2} a t^2$$

$$v_f^2 = v_i^2 + 2a(x_f - x_i)$$

Example

A wheel rotates with a constant angular acceleration of 3.50 rad/s2. If the angular speed of the wheel is 2.00 rad/s at ti = 0, (a) through what angle does the wheel rotate in 2.00 s? (b) What is the angular speed at t = 2.00 s?

Solution

$$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$$

$$\theta_f - \theta_i = \omega_i t + \frac{1}{2} \alpha t^2$$

$$= (2.00 \text{ rad/s}) (2.00 \text{ s}) + \frac{1}{2} (3.50 \text{ rad/s}^2) (2.00 \text{ s})^2$$

$$= 11.0 \text{ rad} = (11.0 \text{ rad}) (57.3^\circ/\text{rad}) = 630^\circ$$

$$= \frac{630^\circ}{360^\circ/\text{rev}} = 1.75 \text{ rev}$$

(b)
$$\omega_f = \omega_i + \alpha t$$

= 2.00 rad/s + (3.50 rad/s²)(2.00 s)
= 9.00 rad/s

Relationship Between Angular and Linear Quantities

- Every point on the rotating object has the same angular motion.
- Every point on the rotating object does not have the same linear motion.

• Displacement
$$\mathbf{S} = \theta \mathbf{r}$$

• Speeds
$$V = \omega r$$

• Accelerations $\mathbf{a} = \alpha \mathbf{r}$

Speed Comparison

- The linear velocity is always tangent to the circular path called the tangential velocity
- · The magnitude is defined by the tangential speed

$$\Delta \theta = \frac{\Delta s}{r}$$

$$\frac{\Delta \theta}{\Delta t} = \frac{\Delta s}{r \Delta t} = \frac{1}{r} \frac{\Delta s}{\Delta t}$$

$$\omega = \frac{v}{r}$$
 or $v = r\omega$

Acceleration Comparison

The tangential acceleration
 is the derivative of the tangential velocity

$$\Delta v = r\Delta \omega$$

$$\frac{\Delta v}{\Delta t} = r \frac{\Delta \omega}{\Delta t} = r \alpha$$

$$a_t = r\alpha$$

Speed and Acceleration

- All points on the rigid object will have the same angular speed, but not the same tangential speed
- All points on the rigid object will have the same angular acceleration, but not the same tangential acceleration
- The tangential quantities depend on r, and r is not the same for all points on the object

$$\omega = \frac{v}{r}$$
 or $v = r\omega$ $a_t = r\alpha$

Centripetal Acceleration

- An object traveling in a circle, even though it moves with a constant speed, will have an acceleration
- Therefore, each point on a rotating rigid object will experience a centripetal acceleration

$$a_r = \frac{v^2}{r} = \frac{(r\omega)^2}{r} = r\omega^2$$

Resultant Acceleration

- The tangential component of the acceleration is due to changing speed
- The centripetal component of the acceleration is due to changing direction
- Total acceleration can be found from these components

$$a = \sqrt{a_t^2 + a_r^2} = \sqrt{r^2 \alpha^2 + r^2 \omega^4} = r \sqrt{\alpha^2 + \omega^4}$$

Example

Arm rotates as rigid body: r = 0.8 mConstant angular acceleration $\alpha = 50 \text{ rad/s}^2$

Find the tangential and radial (centripetal) components of the acceleration

$$a_{tang} = \alpha r = 50 \times 0.8 = 40 \,\text{m/s}^2$$

- constant magnitude
- direction: tangent to rotary motion

$$a_{rad} = \omega^2 r = (\omega_0 + \alpha t)^2 r$$

References

- University Physics Volume 1
- L. Samuel @ 2016 OpenStax College

- Physics: Principles with Applications
- C. Giancoli @ 2014, Pearson, ISBN- 13:9780321625922

Physics at New Jersey Science & Technology University