CSAO666

1. Apply Prim's algorithm to solve minimum spanning bee for given graph. Also Compute total cost of all edges.

Prim's:

1	-		al	1	Key	PT	1
1	a	T	T		0	-	
	b	1	T	1.	2	a	
	C	1	т.	1	\$1	øb	1
	d		T	1	\$1	øb	
	1_	_=	_				

... Total cost of all edges in the MST = 4

To compute the sum of subsets for the following graphand the Satisfy given constraints.

Set 8f3 = (aibicidieifigihil) values used ase Vfij=[112131-9]

a	b	C		
		d		
		е	t	9
				h
				i

Given that a+b+c = c+d+e = e+f+g = g+h+i By using the values vfi3 and adding equation to other three at btc = ctd+ e = etf+g-gthti 3+9+1 = 1+8+4 = 4+7+2= 1 13=13=13=13 6+7+1=1+5+8=8+4+2=3+3+9 14=14=14=14 3. Calculate the chromotic no for the following Graph Coloring. B

4. Consider a set 6 = (5,10,12,13,15,18) and d=30. Solve it for obtaining a sum of subset.

Given. 8 = (5,10,12,13,15,18); d=30.

... Sum of subsets one = $3x_{11}x_{21}x_{3}^{2}$ = 55110115^{2} ... $3x_{31}x_{6}^{2}$ = 5110115^{2} ...