# Modelli di Computazione

# Automi a Stati Finiti – Esercitazione

**Marco Console** 

Ingegneria Informatica e Automatica, Sapienza Università di Roma

# Operazioni su Linguaggi

- Definizione. Un linguaggio è un insieme di stringhe
- Dati due linguaggi  $\mathcal{L}_1$ ,  $\mathcal{L}_2$  possiamo costruire altri linguaggi applicando le seguenti operazioni
- Operazioni Insiemistiche.
  - **Unione.**  $\mathcal{L}_1$  ∪  $\mathcal{L}_2 = \{ s \mid s \in \mathcal{L}_1 \text{ oppure } s \in \mathcal{L}_2 \}$
  - Intersezione.  $\mathcal{L}_1 \cap \mathcal{L}_2 = \{ s \mid s \in \mathcal{L}_1 \ e \ s \in \mathcal{L}_2 \}$
  - Complemento.  $\overline{\mathcal{L}_1} = \{ s \mid s \notin \mathcal{L}_1 \}$
- Operazioni su Stringhe.
  - Concatenazione.  $\mathcal{L}_1 \circ \mathcal{L}_2 = \{ c_1 \dots c_k d_1 \dots d_l \mid c_1 \dots c_k \in \mathcal{L}_1 \ e \ d_1 \dots d_l \in \mathcal{L}_2 \}$
  - Star.  $\mathcal{L}_1^* = \{ s_1 \dots s_k \mid con \ k \ge 0 \ e \ s_1 \dots s_k \in \mathcal{L}_1 \}$



#### Esercizio 1 – Soluzione



$${x \mid x = yb \ e \ y \in {a,b}^*}$$

Esercizio sulla costruzione elencata nella dimostrazione del teorema



#### Esercizio 2 – Soluzione

Esercizio sulla costruzione elencata nella dimostrazione del teorema



$$\{x \mid x = ybz, y \in \{a, b\}^*, y \in \{a, b\}\}$$

1. Definire un ASFND che riconosce il seguente linguaggio:

$${x \mid x = y \circ b \circ z \ e \ y \in \{a, b\}^* \ e \ z \in \{a, b\}^2}$$

2. Costruire un ASFD come indicato nella dimostrazione del teorema

# Esercizio 3 – Soluzione

1. Definire un ASFND che riconosce il seguente linguaggio:

$${x \mid x = y \circ b \circ z \ e \ y \in \{a, b\}^* \ e \ z \in \{a, b\}^2}$$



#### Esercizio 3 – Soluzione

1. Definire un ASFND che riconosce il seguente linguaggio:

$${x \mid x = y \circ b \circ z \ e \ y \in \{a, b\}^* \ e \ z \in \{a, b\}^2}$$

- $A = \langle \Sigma, Q, \delta, I, F \rangle$
- $\Sigma = \{a, b\}$
- $Q = \{q_0, q_1, q_2, q_3\}$
- $I = q_0$
- $F = \{q_3\}$

| $\delta(q,\sigma)$ |
|--------------------|
| $\{q_0\}$          |
| $\{q_0,q_1\}$      |
| $\{q_2\}$          |
| $\{q_2\}$          |
| $\{q_3\}$          |
| $\{q_3\}$          |
| { }                |
| { }                |
|                    |

#### Esercizio 3 – Soluzione

2. Costruire un ASFD come indicato nella dimostrazione del teorema

- $A' = \langle \Sigma, Q', \delta', I', F' \rangle$
- $\Sigma = \{a, b\}$
- $Q' = 2^Q$
- $I = \{q_0\}$
- $F = \{\{q_3\}, \{q_1, q_3\}, \{q_2, q_3\}, \{q_1, q_2, q_3\}\}$

| (q,a)                    | $\delta(q,\sigma)$  | (q,b)                    | $\delta(q,\sigma)$       |
|--------------------------|---------------------|--------------------------|--------------------------|
| Ø                        | Ø                   | Ø                        | Ø                        |
| $\{q_0\}$                | $\{q_0\}$           | $\{q_0\}$                | $\{q_0,q_1\}$            |
| $\{q_1\}$                | $\{q_2\}$           | $\{q_1\}$                | $\{q_2\}$                |
| $\{q_2\}$                | $\{q_3\}$           | $\{q_2\}$                | $\{q_3\}$                |
| $\{q_3\}$                | Ø                   | $\{q_3\}$                | Ø                        |
| $\{q_0,q_1\}$            | $\{q_0,q_2\}$       | $\{q_0,q_1\}$            | $\{q_0,q_1,q_2\}$        |
| $\{q_0, q_2\}$           | $\{q_0,q_3\}$       | $\{q_0, q_2\}$           | $\{q_0,q_1,q_3\}$        |
| $\{q_0,q_3\}$            | $\{q_0\}$           | $\{q_0,q_3\}$            | $\{q_0,q_1\}$            |
| $\{q_1,q_2\}$            | $\{q_2,q_3\}$       | $\{q_1,q_2\}$            | $\{q_2,q_3\}$            |
| $\{q_1, q_3\}$           | $\{q_2\}$           | $\{q_1, q_3\}$           | $\{q_2\}$                |
| $\{q_2, q_3\}$           | $\{q_3\}$           | $\{q_2, q_3\}$           | $\{q_3\}$                |
| $\{q_0,q_1,q_2\}$        | $\{q_0, q_2, q_3\}$ | $\{q_0,q_1,q_2\}$        | $\{q_0, q_1, q_2, q_3\}$ |
| $\{q_0,q_1,q_3\}$        | $\{q_0, q_2\}$      | $\{q_0,q_1,q_3\}$        | $\{q_0,q_1,q_2\}$        |
| $\{q_0,q_2,q_3\}$        | $\{q_0,q_3\}$       | $\{q_0,q_2,q_3\}$        | $\{q_0,q_1,q_3\}$        |
| $\{q_1,q_2,q_3\}$        | $\{q_2, q_3\}$      | $\{q_1,q_2,q_3\}$        | $\{q_2, q_3\}$           |
| $\{q_0, q_1, q_2, q_3\}$ | $\{q_0, q_2, q_3\}$ | $\{q_0, q_1, q_2, q_3\}$ | $\{q_0, q_1, q_2, q_3\}$ |

1. Definire un ASFND che riconosce il seguente linguaggio:

$${x \mid x = y \circ b \circ z \ e \ y \in \{a, b\}^* \ e \ z \in \{a, b\}^3}$$

2. Costruire un ASFD come indicato nella dimostrazione del teorema

#### Esercizio 4 – Soluzione

Definire un ASFND che riconosce il seguente linguaggio:

$${x \mid x = y \circ b \circ z \ e \ y \in \{a, b\}^* \ e \ z \in \{a, b\}^3}$$



#### Esercizio 4 – Soluzione

• Definire un ASFND che riconosce il seguente linguaggio:

$${x \mid x = y \circ b \circ z \ e \ y \in \{a, b\}^* \ e \ z \in \{a, b\}^3}$$

- $A = \langle \Sigma, Q, \delta, I, F \rangle$
- $\Sigma = \{a, b\}$
- $Q = \{q_0, q_1, q_2, q_3, q_4\}$
- $\bullet$   $I=q_0$
- $F = \{q_4\}$

| $(q,\sigma)$ | $\delta(q,\sigma)$ |
|--------------|--------------------|
| $(q_0, a)$   | $\{q_0\}$          |
| $(q_0, b)$   | $\{q_0,q_1\}$      |
| $(q_1, a)$   | $\{q_2\}$          |
| $(q_1, b)$   | $\{q_2\}$          |
| $(q_2,a)$    | $\{q_3\}$          |
| $(q_2, b)$   | $\{q_3\}$          |
| $(q_3,a)$    | $\{q_4\}$          |
| $(q_3,b)$    | $\{q_4\}$          |
| $(q_4,a)$    | { }                |
| $(q_4, b)$   | { }                |

#### Esercizio 4 – Soluzione

2. Costruire un ASFD come indicato nella dimostrazione del teorema

- $A' = \langle \Sigma, Q', \delta', I', F' \rangle$
- $\Sigma = \{a, b\}$
- $Q' = 2^Q$  per un totale di 32 stati
- $I = \{q_0\}$
- $F = \{ X \in 2^Q \mid q_4 \in X \}$

| (q,a)          | $\delta(q,\sigma)$ | (q,a)                         | $\delta(q,\sigma)$       |
|----------------|--------------------|-------------------------------|--------------------------|
| Ø              | Ø                  | $\{q_0,q_1,q_2\}$             | $\{q_0,q_2,q_3\}$        |
| $\{q_0\}$      | $\{q_0\}$          | $\{q_0,q_1,q_3\}$             | $\{q_0, q_2, q_4\}$      |
| $\{q_1\}$      | $\{q_2\}$          | $\{q_0,q_1,q_4\}$             | $\{q_0,q_2\}$            |
| $\{q_2\}$      | $\{q_3\}$          | $\{q_0,q_2,q_3\}$             | $\{q_0, q_3, q_4\}$      |
| $\{q_3\}$      | $\{q_4\}$          | $\{q_0, q_2, q_4\}$           | $\{q_0,q_3\}$            |
| $\{q_4\}$      | Ø                  | $\{q_0,q_3,q_4\}$             | $\{q_0,q_4\}$            |
| $\{q_0,q_1\}$  | $\{q_0,q_2\}$      | $\{q_1,q_2,q_3\}$             | $\{q_2, q_3, q_4\}$      |
| $\{q_0, q_2\}$ | $\{q_0,q_3\}$      | $\{q_1,q_2,q_4\}$             | $\{q_2,q_3\}$            |
| $\{q_0,q_3\}$  | $\{q_0,q_4\}$      | $\{q_1,q_3,q_4\}$             | $\{q_2,q_4\}$            |
| $\{q_0,q_4\}$  | $\{q_0\}$          | $\{q_2,q_3,q_4\}$             | $\{q_3,q_4\}$            |
| $\{q_1, q_2\}$ | $\{q_2, q_3\}$     | $\{q_0, q_1, q_2, q_3\}$      | $\{q_0, q_2, q_3, q_4\}$ |
| $\{q_1, q_3\}$ | $\{q_2, q_4\}$     | $\{q_0, q_1, q_2, q_4\}$      | $\{q_0, q_2, q_3\}$      |
| $\{q_1,q_4\}$  | $\{q_2\}$          | $\{q_0, q_1, q_3, q_4\}$      | $\{q_0, q_2, q_4\}$      |
| $\{q_2, q_3\}$ | $\{q_3,q_4\}$      | $\{q_0, q_2, q_3, q_4\}$      | $\{q_0, q_3, q_4\}$      |
| $\{q_2,q_4\}$  | $\{q_3\}$          | $\{q_1, q_2, q_3, q_4\}$      | $\{q_2,q_3,q_4\}$        |
| $\{q_3,q_4\}$  | $\{q_4\}$          | $\{q_0, q_1, q_2, q_3, q_4\}$ | $\{q_0, q_2, q_3, q_4\}$ |

| (q,b)          | $\delta(q,\sigma)$  | (q,b)                         | $\delta(q,\sigma)$            |
|----------------|---------------------|-------------------------------|-------------------------------|
| Ø              | Ø                   | $\{q_0,q_1,q_2\}$             | $\{q_0, q_1, q_2, q_3\}$      |
| $\{q_0\}$      | $\{q_0,q_1\}$       | $\{q_0,q_1,q_3\}$             | $\{q_0,q_1,q_2,q_4\}$         |
| $\{q_1\}$      | $\{q_2\}$           | $\{q_0,q_1,q_4\}$             | $\{q_0,q_1,q_2\}$             |
| $\{q_2\}$      | $\{q_3\}$           | $\{q_0,q_2,q_3\}$             | $\{q_0,q_1,q_3,q_4\}$         |
| $\{q_3\}$      | $\{q_4\}$           | $\{q_0,q_2,q_4\}$             | $\{q_0,q_1,q_3\}$             |
| $\{q_4\}$      | Ø                   | $\{q_0,q_3,q_4\}$             | $\{q_0,q_1,q_4\}$             |
| $\{q_0,q_1\}$  | $\{q_0, q_1, q_2\}$ | $\{q_1,q_2,q_3\}$             | $\{q_2,q_3,q_4\}$             |
| $\{q_0,q_2\}$  | $\{q_0,q_1,q_3\}$   | $\{q_1,q_2,q_4\}$             | $\{q_2,q_3\}$                 |
| $\{q_0, q_3\}$ | $\{q_0, q_1, q_4\}$ | $\{q_1,q_3,q_4\}$             | $\{q_2,q_4\}$                 |
| $\{q_0,q_4\}$  | $\{q_0,q_1\}$       | $\{q_2,q_3,q_4\}$             | $\{q_3,q_4\}$                 |
| $\{q_1, q_2\}$ | $\{q_2, q_3\}$      | $\{q_0, q_1, q_2, q_3\}$      | $\{q_0,q_1,q_2,q_3,q_4\}$     |
| $\{q_1, q_3\}$ | $\{q_2, q_4\}$      | $\{q_0, q_1, q_2, q_4\}$      | $\{q_0, q_1, q_2, q_3\}$      |
| $\{q_1, q_4\}$ | $\{q_2\}$           | $\{q_0, q_1, q_3, q_4\}$      | $\{q_0, q_1, q_2, q_4\}$      |
| $\{q_2, q_3\}$ | $\{q_3,q_4\}$       | $\{q_0, q_2, q_3, q_4\}$      | $\{q_0, q_1, q_3, q_4\}$      |
| $\{q_2, q_4\}$ | $\{q_3\}$           | $\{q_1, q_2, q_3, q_4\}$      | $\{q_2,q_3,q_4\}$             |
| $\{q_3,q_4\}$  | $\{q_4\}$           | $\{q_0, q_1, q_2, q_3, q_4\}$ | $\{q_0, q_1, q_2, q_3, q_4\}$ |

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^* \ e \ x \ contiene \ un \ numero \ pari \ di \ a\}$ 

Nota: 0 è un numero pari

#### Esercizio 5 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^* \ e \ x \ contiene \ un \ numero \ pari \ di \ a\}$ 

Nota: 0 è un numero pari



#### Esercizio 5 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^* \ e \ x \ contiene \ un \ numero \ pari \ di \ a\}$ 

Nota: 0 è un numero pari

• 
$$A = \langle \Sigma, Q, \delta, I, F \rangle$$

• 
$$\Sigma = \{a, b\}$$

• 
$$Q' = \{q_0, q_1\}$$

• 
$$I = q_0$$

• 
$$F = \{q_0\}$$

| $(q,\sigma)$ | $\delta(q,\sigma)$ |
|--------------|--------------------|
| $(q_0, a)$   | $q_1$              |
| $(q_0, b)$   | $q_0$              |
| $(q_1, a)$   | $q_0$              |
| $(q_1,b)$    | $q_1$              |

- Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \text{ contiene un numero dispari di b OPPURE un numero pari di a} \}$
- bbba sì (3 b e 1 a)
- aa sì (0 b e 1 a)
- bbbaa sì (3 b e 1 a)
- bba no (2 b e 1 a)

# Esercizio 6 – Soluzione



#### Esercizio 6 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \text{ contiene un numero dispari di b OPPURE un numero pari di a}\}$ 

- $A = \langle \Sigma, Q, \delta, I, F \rangle$
- $\Sigma = \{a, b\}$
- $Q' = \{[p, p], [p, d], [d, p], [d, d]\}$
- I = [p, p]
- $F = \{[p, p], [p, d], [d, d]\}$

| $(q,\sigma)$ | $\delta(q,\sigma)$ |
|--------------|--------------------|
| ([p,p],a)    | [d,p]              |
| ([p,p],b)    | [p,d]              |
| ([p,d],a)    | [d,d]              |
| ([p,d],b)    | [p,p]              |
| ([d,p],a)    | [p,p]              |
| ([d,p],b)    | [d,d]              |
| ([d,d],a)    | [p,d]              |
| ([d,d],b)    | [d,p]              |

1. Definire un ASFD che riconosce il seguente linguaggio:

 $\{x \mid x \in \{a,b\}^* \ e \ x \ contiene \ un \ numero \ di \ b \ che \ \grave{e} \ multiplo \ di \ 3\}$ 

#### Esercizio 7 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^* \ e \ x \ contiene \ un \ numero \ di \ b \ che \ e \ multiplo \ di \ 3\}$ 



#### Esercizio 7 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^* \ e \ x \ contiene \ un \ numero \ di \ b \ che \ e \ multiplo \ di \ 3$ 

• 
$$A = \langle \Sigma, Q, \delta, I, F \rangle$$

• 
$$\Sigma = \{a, b\}$$

• 
$$Q' = \{q_0, q_1, q_2, q_3\}$$

• 
$$I = q_0$$

• 
$$F = \{q_3\}$$

| $(q,\sigma)$ | $\delta(q,\sigma)$ |
|--------------|--------------------|
| $(q_0, a)$   | $q_0$              |
| $(q_0, b)$   | $q_1$              |
| $(q_1, a)$   | $q_1$              |
| $(q_1, b)$   | $q_2$              |
| $(q_2,a)$    | $q_2$              |
| $(q_2,b)$    | $q_3$              |
| $(q_3,a)$    | $q_3$              |
| $(q_3,b)$    | $q_1$              |

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \text{ contiene un numero di b multiplo di 3 e un numero pari di a}\}$ 

# Esercizio 8 – Soluzione



# Esercizio 8 – Soluzione

- $A = \langle \Sigma, Q, \delta, I, F \rangle$
- $\Sigma = \{a, b\}$
- $Q' = \{[p, 0], [d, 0], [p, 1], [d, 1], [p, 2], [d, 2], [p, 3], [d, 3]\}$
- I = [p, 0]
- $F = \{[p, 3]\}$

| $(q,\sigma)$ | $\delta(q,\sigma)$ |
|--------------|--------------------|
| ([p, 0], a)  | [d,0]              |
| ([p,0],b)    | [p, 1]             |
| ([d, 0], a)  | [p, 0]             |
| ([d,0],b)    | [d, 1]             |
| ([p, 1], a)  | [d, 1]             |
| ([p,1],b)    | [ <i>p</i> , 2]    |
| ([d,1],a)    | [p, 1]             |
| ([d,1],b)    | [d, 2]             |
| ([p, 2], a)  | [d, 2]             |
| ([p, 2], b)  | [ <i>p</i> , 3]    |
| ([d,2],a)    | [ <i>p</i> , 2]    |
| ([d,2],b)    | [d,3]              |
| ([p, 3], a)  | [ <i>d</i> , 3]    |
| ([p, 3], b)  | [p, 1]             |
| ([d, 3], a)  | [ <i>p</i> , 3]    |
| ([d, 3], b)  | [d,1]              |

- Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \text{ contiene un numero di b multiplo di 3 OPPURE un numero pari di a ma non entrambi}\}$
- bbba sì (3 b e 1 a)
- aa sì (0 b e 1 a)
- bbbaa **no** (3 b e 1 a)
- bbb no (3 b e 0 a)

# Esercizio 9 – Soluzione



# Esercizio 9 – Soluzione

- $A = \langle \Sigma, Q, \delta, I, F \rangle$
- $\Sigma = \{a, b\}$
- $Q' = \{[p, 0], [d, 0], [p, 1], [d, 1], [p, 2], [d, 2], [p, 3], [d, 3]\}$
- I = [p, 0]
- $F = \{[p, 3]\}$

| $(q,\sigma)$ | $\delta(q,\sigma)$ |
|--------------|--------------------|
| ([p, 0], a)  | [d,0]              |
| ([p,0],b)    | [p, 1]             |
| ([d,0],a)    | [p, 0]             |
| ([d,0],b)    | [d, 1]             |
| ([p, 1], a)  | [d,1]              |
| ([p,1],b)    | [ <i>p</i> , 2]    |
| ([d,1],a)    | [p, 1]             |
| ([d,1],b)    | [d, 2]             |
| ([p, 2], a)  | [d, 2]             |
| ([p, 2], b)  | [ <i>p</i> , 3]    |
| ([d,2],a)    | [ <i>p</i> , 2]    |
| ([d,2],b)    | [d,3]              |
| ([p, 3], a)  | [d,3]              |
| ([p, 3], b)  | [p, 1]             |
| ([d, 3], a)  | [p, 3]             |
| ([d, 3], b)  | [d,1]              |

- Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \text{ contiene } a \text{ in ogni posizione pari}\}$
- baaaba sì
- aa sì (0 b e 1 a)
- bbaaa no (b in posizione 2)
- aaaaab no (b in posizione 6)

#### Esercizio 10 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \text{ contiene } a \text{ in ogni posizione pari}\}$ 



#### Esercizio 10 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \text{ contiene } a \text{ in ogni posizione pari}\}$ 

• 
$$A = \langle \Sigma, Q, \delta, I, F \rangle$$

• 
$$\Sigma = \{a, b\}$$

• 
$$Q' = \{D, P, F\}$$

• 
$$I = D$$

• 
$$F = \{D, P\}$$

| $(q,\sigma)$ | $\delta(q,\sigma)$ |
|--------------|--------------------|
| (D,a)        | P                  |
| (D,b)        | P                  |
| (P,a)        | D                  |
| (P,b)        | F                  |
| (F,a)        | F                  |
| (F,b)        | F                  |

- Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \ contiene \ la \ sottostringa \ abb\}$
- baaabba sì
- aa no
- bbaaa no
- aaaaab no

#### Esercizio 11 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \text{ contiene la sottostringa } abb\}$ 



#### Esercizio 11 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \text{ contiene } a \text{ in ogni posizione pari}\}$ 

• 
$$A = \langle \Sigma, Q, \delta, I, F \rangle$$

• 
$$\Sigma = \{a, b\}$$

• 
$$Q' = \{N, A, B_1, B_2\}$$

$$\bullet$$
  $I=N$ 

• 
$$F = \{B_2\}$$

| $(q,\sigma)$ | $\delta(q,\sigma)$ |
|--------------|--------------------|
| (N,a)        | A                  |
| (N,b)        | N                  |
| (A,a)        | A                  |
| (A,b)        | $B_1$              |
| $(B_1,a)$    | Α                  |
| $(B_1,b)$    | $B_2$              |
| $(B_2, a)$   | $B_2$              |
| $(B_2,b)$    | $B_2$              |

- Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \ NON \ contiene \ la \ sottostringa \ abb\}$
- baaabba no
- aa sì
- bbaaa sì
- aaaaab sì

#### Esercizio 12 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \ NON contiene \ la \ sottostringa \ abb\}$ 



#### Esercizio 12 – Soluzione

• Definire un ASFD che riconosce il seguente linguaggio:  $\{x \mid x \in \{a,b\}^*, x \ NON \ contiene \ a \ in \ ogni \ posizione \ pari\}$ 

• 
$$A = \langle \Sigma, Q, \delta, I, F \rangle$$

• 
$$\Sigma = \{a, b\}$$

• 
$$Q' = \{N, A, B_1, B_2\}$$

$$\bullet$$
  $I=N$ 

• 
$$F = \{N, A, B_1\}$$

| $(q,\sigma)$ | $\delta(q,\sigma)$ |
|--------------|--------------------|
| (N,a)        | Α                  |
| (N,b)        | N                  |
| (A,a)        | A                  |
| (A,b)        | $B_1$              |
| $(B_1, a)$   | Α                  |
| $(B_1,b)$    | $B_2$              |
| $(B_2, a)$   | $B_2$              |
| $(B_2,b)$    | $B_2$              |