Lema A (Teorema de Artin parta)

Dem. Supongamos, para llegar a una contradicuér,

Sea 3d, _d, 4 una base de E/FG.

Aplicanis & _ xn a los elementos de lo baso: y sean xi _ xn variables. Escribimos el

Signente sistema de ecuaciones lineales:

$$3, (\alpha_1) \times_1 + \dots + 3n(\alpha_1) \times_0 = 0$$
 $3, (\alpha_2) \times_1 + \dots + 3n(\alpha_2) \times_0 = 0$
 $3, (\alpha_1) \times_1 + \dots + 3n(\alpha_2) \times_0 = 0$

(omo r<n el sistema hene una solución no rivial. =D = (a1, -, an) + (0,0.0) en En tg. solución al sistema.

Sea ahora BEE un elemento malguera

$$= 0 \quad \beta = \sum_{i=1}^{5} b_i^* d_i^* \quad \text{(en } b_i^* \in E^6. \quad \text{Re-esoribing (x)}$$

$$b_i \delta_i(a_i) \times_{i+1} + b_i \delta_i(a_i) \times_{n=0}$$

$$b_{2} b_{1} (\alpha_{2}) x_{1} + b_{2} b_{n} (\alpha_{2}) x_{n} = 0 \qquad (1)$$

ph & (dr)x11 - + ph & (dr) x0 = 0)

Como
$$b_1 - b_r \in E^G = 0$$
 $\forall i (bj) = bj$
pare $i = 1 - n$, $j = 1 - r = 0$ reescribines (1)

Lema B Teorema de Artin 3
See G= 3x; -xn/ m subgrupo de Aut(E) G Enlonces [E: EG]=161
Dem Por el Leure (A) baota probar que [E: [6] < [6]
Para llegar a una contradición supongamos que [E: EG]>161=n.
Sean 3 w, _ w, w, y c E Penealmente indepen- dientes sobre Es.
Consideramos el sistema de necualares count
$\lambda'(m') \times^{7} + + \lambda'(m^{0+1}) \times^{0+1} = 0$
S, (w,) X1 + - + + 2, (w, m) x n = 0
Coup 1-1>n - el sistema (*) tiene una solutare no movial sobre E. Fomemos ma de esas solutares no moviales con el menos no de coordenadas no nulas. Reordenando x, - x, en el sistemas (3º liace Palta) podemos suponer que
la solución en de la firma:
(a, p, a, o, _o).
Observationes:
(1) $r \neq 1$. Si $r = 1$ enhances $\partial_r(\omega_r)q_r = 0$
Cous w +0 =0 r, (w,) +0 (r, er un automorpheme) =0 a, =0 y la solución sería meral. Pertanto

3) Podemo Suponer que q = 1 (sil no) multiplicaios pe (a, ar, o 0) por ar pare que la béhaire coordenado sea 1, y e vector oblenido sique siendo solución del sistema (*). 3) No todos la elementos a, a estar en EG, pues de la contrario, en la Pila de (*) vou ro = id de tendrée que: 20 (m1) X7+-++ 20 (mm) X0+1 = m1 X1+++ mun X0+1 = 0 y reem plazando X, _x, por la solución (a, _a, o .c se tendric que! w, a, 1 - . + a, w, = 0 obteniendose una combinación Pineal no invial de w. -w, sobre EG, loque contradice el Independientes sobre EG. Así, podema suponer, sin pérdide de generalidad, Que, por ejemplo a, & EG. Resumiendo: tenema una solución no milial de (x) con el menor nº de coordenadar no nulas (a, _a, 0 -0) y sabema que: $|\cdot r > 1$, $a_r = 1$, $a_r \notin E^{q}$. Como a, & EG, I k tol que x, (a,) +a,. Reescribinos el sisteme (*) evaluando en le solució (a,,_a,,_):

dema B2/3 $2^{U(m')}G' + -12^{U(m')} = 0$ $2^{V(m')}G' + -12^{W(m')} = 0$ 6 (7)alura aplicaus of a todo el sistema (1) $\frac{\partial^{2}(a^{2}(m^{2}))}{\partial^{2}(a^{2})} + \cdots + \frac{\partial^{2}(a^{2}(m^{2}))}{\partial^{2}(a^{2})} = 0$ Cous 38, _ do le es un subgrupo de Aut(E) 3 2 x 0 9! 1 -) 25 0 2 U 6 = 3 92 - 5 U 6 en sélo una reordenaux de los eleuts de Aut(E). De modo que (2) se prede reescribir como: $a^{T}(m') a^{K}(a') + - + a^{K}(m') = 0$ (13) (quizas reordenando las filas do (2)) Ahora restamos a cada Pila de (1) la coresporadiente Pila de (3) y no queda: of (w,) (a,-ok(a,)) + 000 str (a) (a,-ok(a,))=0 δη (ω,) (a, - σκ(a,))+: = + γ (ω,) (a, - σ(a,))=0 $= \left(\alpha_{i} - \gamma_{k}(\alpha_{i}), \ldots, \alpha_{i-1} - \gamma_{k}(\alpha_{i-1}), \ldots, \alpha \right)$ le me solution no moial de (*) conmens coordenadar no nular que (a, _ar, 0_0) Contradicurá