Задание на восьмую неделю.

№1

Пусть mindist(x,y) алгоритм выдающий наикратчайшее расстояние от α до b в графе. Он работает за O(V+E), т. к. с помощью BFS можно найти наикратчайшее расстояние от вершины запуска x до всех остальных, включая y.

Тогда с помощью этого алгоритма за O(V+E) найдем mindist(a,b), mindist(a,c), mindist(b,c), mindist(b,d), mindist(a,d), где c, d вершины соединенные данным ребром. Это ребро принадлежит хотя бы одному наикратчайшему путю, тогда и только тогда, когда:

$$mindist(a, b) - 1 =$$

 $=\min(\min(\operatorname{dist}(a,c)+\min(\operatorname{dist}(d,b),\min(\operatorname{dist}(b,c)+\min(\operatorname{dist}(d,a)))$ Таким образом, за O(V+E) можно проверить принадлежность ребра хотя бы одному наикратчайшему путю.

№2

В реализации алгоритма через очереди, каждый раз из нее берется первый элемент, и в конец добавляются достижимые из него вершины. Модифицируем его: если из первой в очереди вершины идет ребро веса нуль в некоторую вершину, то тогда будем добовлять эту вершину не в конец очереди, а в начало. Тогда все вершины будут достижимы за такое же расстояние как смежные с ними через ребро нуль вершины. Все остальное осталось без изменений, а значит алгоритм работает корректно.

$N_{\underline{0}}4a$

Применим стандартный алгоритм Φ -У, сделав V-1 итераций. После сделаем V-ую итерацию, если в матрице изменится некоторый элемент A_{ii} , то значит соответствующая ему i-ая вершина входит в

отрицательный цикл. Тогда если между парой вершин существует путь, проходящий через нее, то расстояние между ними $-\infty$. Тогда всем элементам k, m, для которых $A_{ki} < +\infty$, и $A_{im} < +\infty$, сделаем $A_{km} = -\infty$. После этого снова сделаем итерацию, если изменится еще один элемент вида A_{tt} , повторим процедуру еще раз и т. д. Т. к. всего кол-во таких элементов V, то доп итераций придется сделать не больше V. Соответственно, сложность алгоритма не меняется. При этом, все расстояния определяются с учетом отрицательных циклов.

Nº4)

$$\begin{split} d_0 &= \begin{bmatrix} 0 & 1 & 3 & -1 \\ \infty & 0 & \infty & -2 \\ \infty & -2 & 0 & -4 \\ \infty & \infty & \infty & 0 \end{bmatrix} \Rightarrow d_1 = \begin{bmatrix} 0 & 1 & 3 & -1 \\ \infty & 0 & \infty & -2 \\ \infty & -2 & 0 & -4 \\ \infty & \infty & \infty & 0 \end{bmatrix} \Rightarrow \\ d_2 &= \begin{bmatrix} 0 & 1 & 3 & -1 \\ \infty & 0 & \infty & -2 \\ \infty & -2 & 0 & -4 \\ \infty & \infty & \infty & 0 \end{bmatrix} \Rightarrow d_3 = \begin{bmatrix} 0 & 1 & 3 & -1 \\ \infty & 0 & \infty & -2 \\ \infty & -2 & 0 & -4 \\ \infty & \infty & \infty & 0 \end{bmatrix} \Rightarrow \\ d_4 &= \begin{bmatrix} 0 & 1 & 3 & -1 \\ \infty & 0 & \infty & -2 \\ \infty & -2 & 0 & -4 \\ \infty & \infty & \infty & 0 \end{bmatrix} \end{split}$$

№5

- b) Очевидно, что на i-ом шаге расстояние до каждой вершины от начальной вершины D будет являться минимальным среди путей длины не больше i. Тогда, если найти кратчайшие пути из D во все остальные, и посчитать длину максимального из этих путей, равную S, то после S шагов метки перестанут обновляться. Сделав это для данного графа, получим что S=4, что соответствует кратчайшему пути из D в F. \Rightarrow Через четыре итерации.
- с) Для этого, необходимо, что бы для вершины A существовала вершина $B\colon d_{\mathfrak{m}}\mathsf{in}(A,B)=V-1.$ Если из A выходит более двух ребер,

предположим в C и D, то тогда длина наикратчайшего пути между A и любой другой вершиной заведомо $\leq V-1$ (иначе в пути есть циклы, и выкинув их можно уменьшить длину). Значит, A соединена ровно с одно вершиной A_1 . Тогда задача сводится, к тому что $d_m in(A_1,B)=V-2$ в подграфе из V-1 вершин (все, кроме A). Тогда аналогично предыдущему, A_1 сединена ровно с одной вершиной: A_2 , и т. д. до B. Значит, искомое множество графов это все и только все простые пути из V вершин (петли могут присутствовать).

$N_{\overline{9}6}$

Предположим, что в графе есть цикл, включающий в себя вершин u, v. Тогда из вершины u можно добраться до вершины v и обратно: $uu_1 \dots u_n vu_n \dots u$. Тогда, из сущестования частичного порядкка между всеми смежными вершинами и его транзитивностью получим: uRv и vRu. А это противоречит свойству антисимметрии. Таким образом, в графе нет циклов. Но тогда в к каждой компоненте связности по одной вершине. \Rightarrow Кол-во вершин в конденсации равно кол-ву вершин в исходном графе.

№7

- а) Т. к. ν достижима из $\mathfrak u$, но не наоборот, то граф можно считать ацикличным. Тогда рассмотрим работу алгоритма DFS при прохождение вершины ν . Если до этого мы уже были в $\mathfrak u$, то значит в дереве DFS ν потомок $\mathfrak u$, тогда из свойства DFS время выхода из ν будет раньше $\mathfrak u$. Если, мы еще не были в вершине $\mathfrak u$, то $\mathfrak x$. $\mathfrak u$ недостижима из ν , алгоритм сначала выйдет из ν , побывав во всех достижимых из нее вершин, а только после сможет зайти в $\mathfrak u$. Тогда, очевидно, время выхода из $\mathfrak u$ больше ν в любом случае, $\mathfrak v$. $\mathfrak x$.
- b) Предположим, что в графе есть ребро (u, v) и $t_u < t_v$. v недостижима из u, т. к. иначе в графе есть цикл. Тогда, из предыдущего пункта $t_v > t_u$, получаем противоречие.

- а) Произвольные вершины a, b в одной компоненте связности \Leftrightarrow есть пути (a,b),(b,a). Таким образом, если a, b были в одной компоненте, то после инвертации они так же будут в одной. При этом, вершины из разных компонент не могут оказаться в одной. \Rightarrow Коппоненты сильной связности не меняются.
- b) Временные затраты: инвертация ребер (за O(E)); DFS (за O(|V| + |E|)). Вудем, параллельно с DFS записывать порядок вершин по времени выхода из вершины (из пункта a) оно всегда растет). Тогда, после этого, останется только применить еще раз DFS. \Rightarrow Всего времени O(E+V). В доп памяти необходимо хранить массив времен выхода для каждой вершины, он занимает O(V).
- ${f c}$) Да, верно. Т. к. из определения конденсации, следует что полученый граф будет ациклическим.