

Managing VAR in Distribution Grid Stations

"Ways to Vitalize with

Technical Advancements

for Reliable Smart Grids for Smart Cities

By

K R Suri, GM(Retd) POWERGRID, Resident Director, INDIGRID, Mumbai. krsuri1954@gmail.com, 9055511829/9419211829

Smart Cities/Grids ---Challenges & Solutions

MITIGATING CHALLENGES AHEAD OF SMART GRIDS

- GoI has announced 100 cities as Smart Cities.
- These Smart Cities will require essentials like;
- Security Systems
- Street/Park smart Lights
- Smart Traffic Controls
- Metro Rail
- Pollution free transport ie EV Charging Systems
- Beautiful Picnic/Historic spots
- Etc Etc

All such facilities will depend upon

Quality of electric supply with Reliability like;

Voltage deviation within Limits

Frequency deviation within limits

Reliability with at least with N-1 technology.

Availability at required ends.

Etc. Etc

Per Capita Consumption

Per Capita Consumption (kWh)

Per Capita Consumption

QUALITY POWER---?

- Adhering to Grid Code.
- No fluctuations and unwanted distortion (within limits)
- Constant frequency
- Voltage varies with in specified limits i.e. +/- 5 %
- Pre-determined shut downs
- Periodic specified maintenance
- Good Power Factor i.e. Reducing load on conductors
- Equal loading on transformers
- Energy auditing
- Alternate paths for power transfer.
- Load flow monitoring through SCADA.
- •To achieve improvement in supply at tail end, there are so many ways like
 - Frequent operation of transformer taps up to some extent
 - Use of HTLS/HPC Conductors
 - Deployment of distortion filters like Capacitors/filters
 - Deployment of VAR Compensators at Sub-Transmission levels.

ONE NATION ONE GRID

Connected Grids by 2013 with VAR Compensators In Phased Manner

SVCs and STATCOMs..... (Commissioned / Under Execution)

SVC

Kanpur S/S: 2 X +/- 140MVAR

-- Since 1992.

(De-Capitalized after completing 28Yrs)

A. Ludhiana S/s: (+) 600

MVAR / (-) 400 MVAR

B. Kankroli S/s: (+) 400 MVAR / (-)300 MVAR

C. New Wanpoh S/s - (+) 300 MVAR / (-) 200 MVAR

D. FC + TCR at Kurukshetra

HWDC terminal

STATCOMS

_

- NP KUNTA S/S: +/- 100Mvar
- Rourkela ±300 MVAR STATCOM; 2X125 Reactor
- Aurangabad ±300 MVAR STATCOM; 2X125 Reactor, 1x125MVAR Capacitor
- Solapur ±300 MVAR STATCOM; 2X125 Reactor, 1x125MVAR Capacitor
- Satna ±300 MVAR STATCOM; 2X125 Reactor, 1x125MVAR Capacitor
- Ranchi ±300 MVAR STATCOM; 2X125 Reactor
- Jeypore ±200 MVAR STATCOM; 2X125 Reactor, 2x125MVAR Capacitor
- Kishanganj ±200 MVAR STATCOM; 2X125 Reactor
- Nallagarh ±200 MVAR STATCOM; 2X125 Reactor, 2x125MVAR Capacitor
- Gwalior ±200 MVAR STATCOM; 2X125 Reactor, 1x125MVAR Capacitor

- Lucknow ±300 MVAR STATCOM; 2X125 Reactor, 1x125MVAR Capacitor
- Hyderabad ±200 MVAR STATCOM; 2X125 Reactor, 1x125MVAR Capacitor
- Trichy ±200 MVAR STATCOM; 2X125 Reactor, 1x125MVAR Capacitor
- Udumalpet ±200 MVAR STATCOM; 2X125 Reactor, 1x125MVAR Capacitor
- UNDER CONSTRUCTION:
- 1. 2X300Mvar STATCOM at Fatehgarh with MSC & MSR
- 2. 2X300Mvar STATCOM at Bhadla with MSC & MSR
- 3 1X300Mvar STATCOM at Bikaner with MSC and MSR

- Reduction In MVAR Demand ie Improvement in PF and reduction in harmonics.
- Reduced equipment running cost
- Decreased energy charges
- Reduced Power losses ie Transmission losses.(Direct & Indirect)
- Incentive in electricity bills
- Reduce heat loss of transformers and associated equipment
- Prolonged life of equipment
- Stabilizes voltage levels
- Ultimately Increase system's capacity, etc.

VAR Compensation by Discoms (VITAMIN)

• NOT IMPLEMENTED

- Force the Industry to install Capacitors/SVCs for Voltage improvement & not as filters.
- Even these are without studies like Harmonics level created ie a standard norms fixed by Discoms.
- Not Adhering to Grid Codes at Distribution/Sub Transmission levels.
- Not adhering to SCADA codes.

SVC----- World wide installations at Lower Levels

World Wide			
VOLTS(kV)	LOCATION	SUPPLIER	
220	Karavia, Congo	ABB	
132	Black Water, Queensland	Siemens	
220	Cerro Navia, Chile	ABB	
220	Polpaico, Chile	ABB	
132	Queensland	ABB	
132	Iceland	ABB	
132	Vancouver, Canada	ABB	
18	CERN, Geneva	ABB	

SVC Light --- ABB --- Ref. List

Location/Country	Range(MVAR)	Voltage(KV)
Uddehm/Sweden	044	33
Amprion/Germany	038	20
Outokumpo/Finland	0164	33
SNCF/France	+/- 17	90
Gerdau/USA	064	13.2
ZPSS/China	+/-82	35
SNCF/France	+/-15	63
Asia Steel/Japan	064	22
Bankok	+/- 120	22
Saudi Arabia	0125	33

OTHER WAYS TO IMPROVE QUALITY

- •HTLS/HPC CONDUCTORS
- ETOs
- Portable VAR Compensators

K R Suri

Embedded Transformers

- Automatic Tap changer operations
- •Oil sensors (DGA & other parameters)
- •Temperature cum load monitoring etc.
- •Central communication inter phase for data transfer
- •Making cyber security proof.
- •Etc.

R Suri

EV — Charging--- Yet to be at Large Scale in BHARAT

This Distortion in cumulative has impact on life of Distribution Transformers like

- Insulation
- More stray losses
- More noise level
- Ultimately reduced life.

K R Suri 22

Load Voltage waveform with & without STATCOM

Available SVCs/STATCOMs

By Hitachi Energy

Upto 33kv --- 40 Mvar Beyond – As per study

By ABB

K R Suri

krsuri1954@gmail.com

Kuldip.suri@indigrid.com 9055511829/9419211829