Process Technology: TSMC CL013G

Features

- Precise Optimization for TSMC's Eight-Layer Metal 0.13µm CL013G CMOS Process
- High Density (area is 0.261mm²)
- Fast Access Time (1.26ns at typical process, 1.20V, 25°C)
- Fast Cycle Time (1.29ns at typical process, 1.20V, 25°C)
- · One Read/Write Port
- · Completely Static Operation
- Near-Zero Hold Time (Data, Address, and Control Inputs)

High-Speed High-Current-Bit-Cell Single-Port Synchronous SRAM

sram_8192x8_t13 8192X8, Mux 32, Drive 6

Memory Description

The 8192X8 SRAM is a high-performance, synchronous single-port, 8192-word by 8-bit memory designed to take full advantage of TSMC's eight-layer metal, 0.13 μ m CL013G CMOS process.

The SRAM's storage array is composed of six-transistor cells with fully static memory circuitry. The SRAM operates at a voltage of $1.2V\pm10\%$ and a junction temperature range of -40°C to $+125^{\circ}\text{C}$.

Pin Description

Pin	Description		
A[12:0]	Addresses (A[0] = LSB)		
D[7:0]	Data Inputs (D[0] = LSB)		
CLK	Clock Input		
CEN	Chip Enable		
WEN	Write Enable		
Q[7:0]	Data Outputs (Q[0] = LSB)		

Area

Area Type	Width (mm)	Height (mm)	Area (mm²)
Core	0.444	0.589	0.261
Footprint	0.463	0.607	0.281

The footprint area includes the core area and userdefined power ring and pin spacing areas.

Symbol

SRAM Block Diagram

Mission Mode

Figure 1. Synchronous Single-Port SRAM Read-Cycle Timing

Rising delays are measured at 50% of VDD and falling delays are measured at 50% of VDD. Rising and falling slews are measured from 10% VDD to 90% VDD.

Synchronous Single-Port SRAM Write-Cycle Timing

Rising signals are measured at 50% of VDD and falling signals are measured at 50% of VDD. Rising and falling slews are measured from 10% VDD to 90% VDD.

SRAM Logic Table

CEN	WEN	Data Out	Mode	Function
Н	Х	Last Data	Standby	Address inputs are disabled; data stored in the memory is retained, but the memory cannot be accessed for new reads or writes. Data outputs remain stable.
L	L	Data In	Write	Data on the data input bus D[n-1:0] is written to the memory location specified on the address bus A[m-1:0], and driven through to the data output bus Q[n-1:0].
L	Н	SRAM Data	Read	Data on the data output bus Q[n-1:0] is read from the memory location specified on the address bus A[m-1:0].

SRAM Timing: Mission Mode

Parameter	Symbol		Fast Process 1.32V, -40°C		Typical Process 1.20V, 25°C		Slow Process 1.08V, 125°C	
		Min (ns)	Max (ns)	Min (ns)	Max (ns)	Min (ns)	Max (ns)	
Cycle time	t _{cyc}	0.85		1.29		2.18		
Access time ^{1,2}	t _a	0.29			1.26		2.13	
Address setup	t _{as}	0.21		0.32		0.54		
Address hold	t _{ah}	0.01		0.02		0.03		

Parameter	Symbol		Fast Process 1.32V, -40°C		Typical Process 1.20V, 25°C		Slow Process 1.08V, 125°C	
	_	Min (ns)	Max (ns)	Min (ns)	Max (ns)	Min (ns)	Max (ns)	
Chip enable setup	t _{cs}	0.47		0.70		1.20		
Chip enable hold	t _{ch}	0.00		0.00		0.00		
Write enable setup	t _{ws}	0.13		0.19		0.30		
Write enable hold	t _{wh}	0.00		0.00		0.00		
Data setup	t _{ds}	0.10		0.16		0.29		
Data hold	t _{dh}	0.00		0.01		0.01		
Clock high	t _{ckh}	0.05		0.08		0.14		
Clock low	t _{ckl}	0.34		0.53		0.89		
Clock rise slew	t _{ckr}		4.00		4.00		4.00	
Output load factor (ns/pF)	K _{load}		0.34		0.48		0.70	

 $[\]overline{\ }^1$ Parameters have a load dependence (K_{load}), which is used to calculate: $TotalDelay = FixedDelay + (Kload \times Cload)$.

Pin Capacitance

Pin	Fast Process 1.32V, -40°C	Typical Process 1.20V, 25°C	Slow Process 1.08V, 125°C
	Value (pF)	Value (pF)	Value (pF)
A[j]	0.022	0.021	0.020
D[i]	0.001	0.001	0.001
CLK	0.090	0.086	0.083
CEN	0.004	0.004	0.004
WEN	0.007	0.007	0.007

Power

100.00MHz Operation

Condition	Fast Process 1.32V, -40°C	Typical Process 1.20V, 25°C	Slow Process 1.08V, 125°C	
	Value (mA)	Value (mA)	Value (mA)	
AC Current ¹	4.140	3.526	2.930	
Read AC Current	4.071	3.461	2.832	
Write AC Current	4.210	3.591	3.028	
Peak Current	85.705	49.771	26.404	
Deselected Current ²	0.903	0.784	0.746	
Standby Current ³	0.007	0.009	0.065	

¹ Value assumes 50% read and write operations, where all addresses and 50% of input and output pins switch.

² Access time is defined as the slowest possible output transition for the typical and slow corners, and the fastest possible output transition for the fast corner.

² Value assumes SRAM is deselected, all addresses switch, and 50% of input pins switch. The logic-switching component of deselected power becomes negligibly small if the input pins are held stable by externally controlling these signals with chip select.

³ Value is independent of frequency and assumes all inputs and outputs are stable.

Clock Noise Limit

Signal	Fast Process 1.32V, -40°C		Typical Process 1.20V, 25°C		Slow Process 1.08V, 125°C	
Signal	Pulse Width (ns)	Voltage (V)	Pulse Width (ns)	Voltage (V)	Pulse Width (ns)	Voltage (V)
CLK	10.000	0.450	10.000	0.447	10.000	0.430

The clock noise limit is the maximum CLK voltage allowable for the indicated pulse width without causing a spurious memory cycle or other memory failure.

Power and Ground Noise Limit

Signal	Fast Process 1.32V, -40°C	Typical Process 1.20V, 25°C	Slow Process 1.08V, 125°C	
_	Voltage (V)	Voltage (V)	Voltage (V)	
Power	0.132	0.120	0.108	
Ground	0.132	0.120	0.108	

The power/ground noise limit is the maximum supply voltage transition allowable without causing a memory failure.