Project Planning Report

School of Engineering and Built Environment Griffith University

Jessy Barber 17 March 2023

Contents

1	Aims and Objectives	1
	1.1 Funtional and Non-Functional Requirements	3
2	Expected Project Outcomes	4
3	Methodology And Project Schedule	5
	3.1 Project Methodology	5
	3.2 Tasks and Schedule	5
	3.3 Resources	
4	Risk Assessment	7
	4.1 Risk Assessment Risk Matrix	7
	4.2 Identified Risks	8
5	Ethics Issues Related to the Project	8
6	References	8

1 Aims and Objectives

The aim of this project is to develop an Internet of Things (IoT) system to regularly monitor the health of the Griffith footbridge through three dimensional vibration analysis. The high level system of this project comprises of three sensor nodes placed across the length of the footbridge that transmit packets over the LoRaWAN protocol. These packets are received by a gateway placed at the end of the bridge and are uploaded to The Things Network (TNN) cloud for data processing. Arduino MKR 1300 and 1310 boards will be used as the carrier boards for these sensor nodes. Figure 1 shows the high level hardware diagram for this IoT system.

Figure 1: High Level Hardware Diagram

Each sensor node will include an accelerometer to detect, log and transmit movement in three dimensions (x, y and z axis). This data is sent to the on-board processor of the Arduino carrier board where it is logged. The average movement on each axis as averaged and sent via data packet over LoRaWAN via a dipole antenna every hour. The carrier board itself is powered with a simple solar panel / battery setup. The pro gateway is listening for packets on the LoRa network via a mono-pole antenna. These packets are then sent to the on board Raspberry Pi 3 model B+ processor. The processor transmits these packets to the TNN cloud. This more detailed system can be seen in figure 2.

Figure 3 displays the higher level software diagram for the transceiver and receiver. One of the major aims of the project will be to further explore this software design which is heavily dependent on the functional requirements of the system. The functional requirements of the system will dictate the packet size and transmission frequency. Additionally, different types of windowing techniques for the Fast Fourier Transform will be explored to remove noise from accelerometer analog inputs.

Figure 2: Detailed High Level Hardware Diagram

Figure 3: High Level Software Diagram

Section 1 Jessy Barber 2

1.1 Funtional and Non-Functional Requirements

The functional and non-functional requirements in table 1 form the basis of the measurable objectives that need to be met. Meeting these defined objectives will satisfy the aims of this project.

Requirement	Status Description		Verification Method		
[FR-1] The trans-	Draft	The frequency band for	This requirement can be		
mitter and receiver		LoRaWAN in Australia	verified through integra-		
shall communicate		is 915-930MHz so the	tion testing and observ-		
at a frequency of		IoT network must oper-	ing packet transmition		
925MHz		ate within this range	via test application		
[FR-2] The gateway	Draft	LoRa communication is	The range of the system		
shall receive pack-		advertised to operate	can be verified through		
ets from a distance		within multiple kilome-	integration testing by		
of up to approxi-		ters but the system will	noting the distance at		
mately 600m		only need to operate	which packet loss occurs		
		approximately up to			
		600m			
[FR-3] The receiver	Draft	The IoT system requires	The identification of		
shall receive pack-		at least three sensor	transmitted packets can		
ets and distinguish		nodes to be placed along	be identified trough		
between at least		the bridge. It is there-	integration testing		
three sensor nodes		fore required that each	and observing packet		
		transmitted packet con-	transmission via a test		
		tains an identifier	application		
[FR-4] The sensor	Draft	The nodes need to trans-	The current draw from		
nodes shall be pow-		mit packets every hour	the sensor nodes can be		
ered by solar en-		24/7 and hence require	measured and the appro-		
ergy such that the		a solar battery system	priate power supply can		
nodes can transmit		capable of supporting	be calculated. Otherwise		
24/7		always-on low powered	field testing will be re-		
		devices	quired to examine how		
			long the sensor nodes can		
			operate for		

[FR-5] Each sensor node shall include an accelerometer to record analog input on the x, y and z axis	Draft	The accelerometers will measure the bridge's vibration. This data will be converted into digital data using Fourier transform techniques and encoded into packets	The accelerometers will be tested in the mechan- ical engineering lab with a vibrating beam setup
[NFR-1] The sensor nodes shall be resis- tant to overheating and rain	Draft	The sensor nodes will be exposed on the bridge and will therefore have to survive hot temperatures and rainfall	The enclosure will be designed with weather proofing in mind and will undergo laboratory environmental testing
[NFR-2] The sensor nodes shall contain temperature and humidity sensors and transmit this data	Draft	Temperature and humidity data will be useful to spot any discrepancies in the data due to external environment and will be useful to field test the thermal resistance of the device enclosure. The data from these sensors will be included in the transmitted packets along with the vibration data	The operational capabilities of these sensors can be examined in a lab. The functional capabilities of these sensors will need to be tested in the field

Table 1: Functional and Non-Functional Requirements

2 Expected Project Outcomes

This project involves multiple outcomes that are confined within the scope of the project. The first outcome to meet is a proof of concept that satisfies the high level hardware and software diagrams. This will initially be completed with one sensor node and will achieve the objective of creating a functional IoT system in a closed loop environment. The next outcome to meet is introducing three sensor nodes into the system and writing the software to distinguish between each node's packets. To complete the closed loop testing the nodes will be placed on a test beam set up in the mechanical engineering labs that simulates vibration. Once the closed loop testing has been completed, the permanent implementation of the

device will commence. This involves a solar-battery system sufficient of powering the low-powered devices at all times. Theoretical calculations and quantitative testing will be conducted to determine the power drain characteristics of these sensor nodes. Finally, an enclosure will be modeled and printed to house the electronics and power systems and will be used to mount the devices to the bridge. These enclosures also serve the purpose of weather-proofing the sensor nodes. The final outcome is to have a functional IoT system over the length of the Griffith footbridge that is capable of transmitting packets 24/7 to a gateway that will be placed up to 600m away.

3 Methodology And Project Schedule

3.1 Project Methodology

This project is fundamentally a design project and so the design will heavily depend on the system functional and non-functional requirements as defined in table 1. These requirements will be verified through experimental analysis using both the mechanical and electrical engineering laboratories, and the Griffith footbridge. The experimental verification methods include integration testing, environmental testing and field testing. The testing methods required to validate each requirement is also defined in table 1. Additional to these requirements, closed loop testing will provide experimental analysis to verify that the accelerometers, temperature sensors, ADC conversion, packet transmission and retrieval meet the design requirements of the system. Testing will also be conducted on the designed enclosure to ensure the system is sufficiently weather proofed against heat and rain.

3.2 Tasks and Schedule

Figure 4 displays the rough timeline for the completion of this project. This timeline also includes professional practice deadlines.

3.3 Resources

Figure 4: Project Timeline Gantt Chart

4 Risk Assessment

4.1 Risk Assessment Risk Matrix

	Consequences				
Likelihood	Likelihood CatastrophicMajor		Moderate	Minor	Insignificant
	(Cat)	(Maj)	(Mod)	(Min)	(Ins)
Almost	Very High	Very High	High (H)	Medium	Very Low
Certain	(VH)	(VH)		(M)	(VL)
(AC)					
Likely (L)	Very High	High (H)	Medium Low (L)		Very Low
	(VH)		(\mathbf{M})		(VL)
Possible	High (H)	High (H)	Medium	Low (L)	Very Low
(P)			(\mathbf{M})		(VL)
Unlikely	Medium	Medium	Low (L)	Very Low	Very Low
(U)	(M)	(M)		(VL)	(VL)
Rare (R)	Low (L)	Low (L)	Low (L)	Very Low	Very Low
				(VL)	(VL)

Table 2: Risk Assessment Matrix

Risk Level	What should I do?		
Extreme	Eliminate from activities		
High	Eliminate from activities		
Medium	Specific monitoring or procedures		
	required, management responsibility		
	must be specified		
Low	Manage through routine procedures.		
	Unlikely to need specific application of		
	resources		

Table 3: Risk Level Management

4.2 Identified Risks

In table 4, (C) are consequences, (L) is likelihood and (LvL) is the level of risk.

What could	What could go	C	\mathbf{L}	LvL	What controls
cause harm?	wrong?				are required?
Actively handling	Risk of destroying	Ins	R	VL	Wear ESD wrist-
sensitive electronics	components with				band when handling
	ESD				sensitive electronics.
Soldering electronic	Burns and in-	I	R	VL	Safety glasses and
connections	halation of solder				gloves. Extractor
	fumes				fans / ventilation.
Placing equipment	Dropping equip-	M	U	VL	Bridge has protec-
on a tall footbridge	ment onto the traf-				tive railing. Design
over a busy highway	fic below and caus-				a lightweight system
	ing an accident				and gain supervisor
					approval before field
					implementation.
Vibrating beam	Crushing or physi-	I	R	VL	Wear enclosed
experiment	cal injury				footwear. Ensure
					surroundings are
					clear. Keep distance
					whilst experiment is
					running.

Table 4: Identified Risks

5 Ethics Issues Related to the Project

6 References