ΣΥΝΘΕΣΗ ΔΥΝΑΜΕΩΝ

Για να σηκώσει ο αρσιβαρίστας τη μπάρα πρέπει να της «ασκήσει δύναμη».

Πώς καταφέρνει ο πύραυλος και ανυψώνεται από τη έδαφος; Τι «εξαναγκάζει» τη σελήνη και κινείται γύρω από τη γη; Τι είναι пои συνκρατεί αυτό та στοιχειώδη σωματίδια και 0 πυρήνας TOU ато́иои δεν διαλύεται;

Η δύναμη είναι εκείνο το φυσικό μέγεθος που καθορίζει το είδος της κίνησης που θα κάνει ένα σώμα. Η δύναμη καθορίζει την ισορροπία των σωμάτων, αλλά και τον τρόπο που δρα το ένα στο άλλο.

Βασικές έννοιες : Δύναμη - δυναμόμετρο - συνισταμένη δυνάμεων - συνιστώσες δύναμης - συγγραμμικές, ομόρροπες, αντίρροπες δυνάμεις

Παρατηρώ - Πληροφορούμαι - Γνωρίζω

Πάνω σε ένα σώμα ασκούμε δύο δυνάμεις F_1 και F_2 και το κρατάμε ακίνητο στον αέρα. Μπορούμε να κρατήσουμε το **ἰδιο** σώμα ακίνητο ασκώντας πάνω του μόνο μία δύναμη F (εικόνα 1): η δύναμη F έχει τα ἰδια αποτελέσματα με την **ταυτόχρονη** δράση των F_1 και F_2 . Τότε η δύναμη F ονομάζεται **συνισταμένη** των δυνάμεων F_1 και F_2 .

Αναρωτιέμαι - Υποθέτω - Σχεδιάζω

Έχεις στη διάθεση του τα όργανα που εικονίζονται στην εικόνα 1:

- ✓ Δύο δυναμόμετρα 10N
- √ Ένα σώμα βάρους 5Ν
- ✓ Νήμα με τρεις θηλιές

Πάνω στο σώμα ασκούμε δύο κατακόρυφες δυνάμεις, που μπορούμε να μετρήσουμε με τα δυναμόμετρα. Πώς θα υπολογίσουμε πειραματικά την συνισταμένη τους:

- α) όταν οι δύο δυνάμεις είναι ομόρροπες,
- β) όταν οι δύο δυνάμεις είναι αντίρροπες;

Εικόνα 1

Σχεδίασε ένα πείραμα για να υπολογίσεις πειραματικά τη συνισταμένη δύναμη που ασκείται στο σώμα όταν σε αυτό ασκούνται δυο ομόρροπες κατακόρυφες δυνάμεις ή δυο κατακόρυφες αντίρροπες δυνάμεις

Περιγραφή του πειράματος:	Σχεδιασμός - Περιγραφή

Πειραματίζομαι - Υπολογίζω

Ομόρροπες δυνάμεις.

- 1. Κρέμασε το σώμα βάρους 5N από τα δύο δυναμόμετρα (Δ1 και Δ2), μέσω του νήματος και κράτησέ το ακίνητο στον αέρα, όπως φαίνεται στην εικόνα 2α.
- 2. Φρόντισε ώστε η ένδειξη του ενός δυναμόμετρου (του $\Delta 1$) να είναι διαδοχικά F_1 =1N, 2N, 3N, 4N. Πόση είναι τότε η αντίστοιχη ένδειξη F_2 του $\Delta 2$; Καταχώρισε τις μετρήσεις σου στον πίνακα A.
- 3. Κράτησε το ίδιο σώμα ακίνητο στον αέρα χρησιμοποιώντας **μόνον ένα δυναμόμετρο** (εικόνα 2β). Τότε η ένδειξη του δυναμόμετρου είναι:

Η δύναμη F έχει το ίδιο αποτέλεσμα (κρατάει το ίδιο σώμα ακίνητο στον αέρα) με τις F_1 και F_2 : είναι η συνισταμένη τους.

Εικόνα 2α.

Εικόνα 2β.

ΠΙΝΑΚΑΣ Α								
Δυναμόμετρο Δ1	Δυναμόμετρο Δ2	$F_1 + F_2$						
F_1 (N)	F_2 (N)	(N)						
1								
2								
3								
4								

Σύμφωνα με τα πειραματικά σου αποτελέσματα, ποια είναι η σχέση των δυνάμεων F_1 και F_2 με τη συνισταμένη τους F_2 Γράψε τη μαθηματική σχέση που σχετίζει τις F_1 , F_2 . Διατύπωσε ένα γενικό συμπέρασμα για τη σχέση της συνισταμένης **συγγραμμικών και ομόρροπων δυνάμεων** με τη συνισταμένη τους.

Αντίρροπες δυνάμεις

- 1. Κρέμασε το σώμα βάρους 5N με τα δυναμόμετρα Δ1, Δ2, ώστε το σώμα να διατηρείται ακίνητο στον αέρα, όπως δείχνει η εικόνα 3α. [Με το Δ1 τραβάμε το σώμα προς τα πάνω, ενώ με το Δ2 προς το έδαφος]
- 2. Τράβηξε το Δ2 προς τα κάτω, ώστε το Δ1 να δείχνει F_1 =6Ν. Πόση είναι τότε η ένδειξη F_2 που δείχνει το Δ2; Καταχώρισε την τιμή της F_2 στον πίνακα Β. Φροντίζοντας ώστε το σώμα να διατηρείται πάντοτε ακίνητο, επανάλαβε την ίδια διαδικασία διαδοχικά για τιμές της F_1 =7Ν, 8Ν, 9Ν, 10Ν. Μέτρησε τις αντίστοιχες τιμές της F_2 και καταχώρισέ τις στον πίνακα Β.

ΠΙΝΑΚΑΣ Β						
Δυναμόμετρο Δ1	Δυναμόμετρο Δ2	F ₁ - F ₂				
F ₁ (N)	F ₂ (N)	(N)				
	3					
	4					

3. Κράτησε το ίδιο σώμα ακίνητο στον αέρα χρησιμοποιώντας **μόνον ένα δυναμόμετρο** (εικόνα 3β). Τότε η ένδειξη του δυναμόμετρου είναι:

Η δύναμη F έχει το ίδιο αποτέλεσμα (κρατάει το ίδιο σώμα ακίνητο στον αέρα) με τις F_1 και F_2 : είναι η συνισταμένη τους.

Σύμφωνα με τα πειραματικά σου αποτελέσματα, ποια είναι η σχέση των δυνάμεων F_1 και F_2 με τη συνισταμένη τους F_3 ; Γράψε τη μαθηματική σχέση που σχετίζει τις F_1 , F_2 . Διατύπωσε ένα γενικό συμπέρασμα για τη σχέση της συνισταμένης **συγγραμμικών και αντίρροπων δυνάμεων** με τη συνισταμένη τους.

	Yпол	λογισμοί	- Συμπεράα	тµата	

Συμπεραίνω - Γενικεύω

Συμπλήρωσε το κείμενο:

Όταν οι δυνάμεις που ασκούνται σε ένα σώμα είναι συγγραμμικές και ομόρροπες, τότε η συνισταμένη τους έχει μέτρο ίσο με το _____ των

μέτρων των δυνάμεων.

Όταν οι δυνάμεις που ασκούνται σε ένα σώμα είναι συγγραμμικές και _____, τότε η συνισταμένη τους έχει μέτρο ίσο με τη διαφορά του μέτρου της ____ μείον το μέτρο της δύναμης.

Εικόνα 3α

Εικόνα 3β.