ç

5

10

15

20

CLAIMS

What is claimed is:

- 1. A PTH analogue or a truncated PTH analogue or a pharmaceutically acceptable salt thereof that selectively binds to the PTH2 receptor.
- 2. A PTH analogue or a truncated PTH analogue or a pharmaceutically acceptable salt thereof according to claim 1 where said analogue is a selective PTH2 receptor agonist.
- 3. A PTH analogue or a truncated PTH analogue or a pharmaceutically acceptable salt thereof according to claim 1 where said analogue is a selective PTH2 receptor antagonist.
- 4. A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 1 or a pharmaceutically-acceptable salt thereof.
- 5. A method of selectively eliciting an agonist response from the PTH2 receptor which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 2 or a pharmaceutically acceptable salt thereof.
- 6. A method of selectively eliciting an antagonist response from the PTH2 receptor which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 3 or a pharmaceutically acceptable salt thereof.
- 7. An analogue according to claim 1 wherein said analogue is of formula (I), $(\mathsf{R}^1\mathsf{R}^2) \mathsf{A}^1 \mathsf{A}^2 \mathsf{A}^3 \mathsf{A}^4 \mathsf{A}^5 \mathsf{A}^6 \mathsf{A}^7 \mathsf{A}^8 \mathsf{A}^9 \mathsf{A}^{10} \mathsf{A}^{11} \mathsf{A}^{12} \mathsf{A}^{13} \mathsf{A}^{14} \mathsf{A}^{15} \mathsf{A}^{16} \mathsf{A}^{17} \mathsf{A}^{18} \mathsf{A}^{19} \mathsf{A}^{20} \mathsf{A}^{21} \mathsf{A}^{22} \mathsf{A}^{23} \mathsf{A}^{24} \mathsf{A}^{25} \mathsf{A}^{26} \mathsf{A}^{27} \mathsf{A}^{28} \mathsf{A}^{29} \mathsf{A}^{30} \mathsf{A}^{31} \mathsf{A}^{32} \mathsf{A}^{33} \mathsf{A}^{34} \mathsf{A}^{35} \mathsf{A}^{36} \mathsf{A}^{37} \mathsf{A}^{38} \mathsf{R}^3 \, ,$

(l)

or a pharmaceutically-acceptable salt thereof wherein

25 A¹ is a hydrophilic or a lipophilic amino acid;

A² is a lipophilic amino acid;

A³ is a hydrophilic or a lipophilic amino acid;

A⁴ is a hydrophilic amino acid;

A⁵ is a hydrophilic or a lipophilic amino acid;

30 A⁶ is a hydrophilic amino acid or is deleted;

A⁷ is a hydrophilic or a lipophilic amino acid or is deleted;

A⁸ is a lipophilic amino acid or is deleted;

A⁹ is a hydrophilic amino acid or is deleted;

A¹⁰ is a hydrophilic amino acid or is deleted;

A¹¹ is a hydrophilic or a lipophilic amino acid or is deleted;

A¹² is a hydrophilic or a lipophilic amino acid or is deleted;

A¹³ is a hydrophilic amino acid;

5 A¹⁴ is a hydrophilic amino acid or is deleted;

A¹⁵ is a lipophilic amino acid or is deleted;

A¹⁶ is a hydrophilic or a lipophilic amino acid or is deleted;

A¹⁷ is a hydrophilic or a lipophilic amino acid or is deleted;

A¹⁸ is a lipophilic amino acid or is deleted;

10 A¹⁹ is a hydrophilic or a lipophilic amino acid or is deleted;

A²⁰ is a hydrophilic amino acid or is deleted;

A²¹ is a hydrophilic or a lipophilic amino acid or is deleted;

A²² is a lipophilic or a hydrophilic amino acid or is deleted;

A²³ is a hydrophilic or a lipophilic amino acid;

5 A²⁴ is a hydrophilic or a lipophilic amino acid;

A²⁵ is a hydrophilic amino acid;

A²⁶ is a hydrophilic amino acid;

A²⁷ is a lipophilic or a hydrophilic amino acid;

A²⁸ is a lipophilic amino acid;

20 A²⁹ is a lipophilic or a hydrophilic amino acid;

A³⁰ is a hydrophilic or a lipophilic amino acid;

A³¹ is a lipophilic or a hydrophilic amino acid or is deleted;

A³² is a hydrophilic amino acid or is deleted;

A³³ is a hydrophilic amino acid or is deleted;

25 A³⁴ is a lipophilic amino acid or is deleted;

A³⁵ is a lipophilic amino acid or is deleted;

A³⁶ is a lipophilic or a hydrophilic amino acid or is deleted;

A³⁷ is a lipophilic amino acid or is deleted;

A³⁸ is a lipophilic or a hydrophilic amino acid or is deleted;

 R^1 and R^2 are each independently selected from the group consisting of H, (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl- (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{2-30}) alkenyl, hydroxy-phenyl (C_{1-30}) alkyl of hydroxy-naphthyl (C_{1-30}) alkyl;

R

10

25

or one of R^1 or R^2 is COE^1 where E^1 is (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{1-30}) alkyl, hydroxy (C_{2-30}) alkenyl, hydroxy-phenyl (C_{1-30}) alkyl or hydroxy-naphthyl (C_{1-30}) alkyl; and

 R^3 is OH, NH₂, (C₁₋₃₀)alkoxy or NH-Y-CH₂-Z, where Y is a (C₁₋₃₀) hydrocarbon moiety and Z is CO₂H or CONH₂;

provided that the compound is not PTH(1-34)R³, PTH(1-35)R³, PTH(1-36)R³, PTH(1-37)R³, or PTH(1-38)R³.

- 8. A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 7 or a pharmaceutically-acceptable salt thereof.
- 9. An analogue according to claim 1 of formula (II), $(R^1R^2) A^1 A^2 A^3 A^4 A^5 A^6 A^7 A^8 A^9 A^{10} A^{11} A^{12} A^{13} A^{14} A^{15} A^{16} A^{17} A^{18} A^{19} A^{20} A^{21} A^{22} A^{23} A^{24} A^{25} A^{26} A^{27} A^{28} A^{29} A^{30} A^{31} A^{32} A^{33} A^{34} A^{35} A^{36} A^{37} A^{38} R^3,$

(II)

or a pharmaceutically-acceptable salt thereof wherein

A¹ is Ser, Ala, Dap, Thr, Aib or is deleted;

A² is Val. Leu, Ile, Phe, Nle, β-Nal, Aib, p-X-Phe, Acc, Cha, Met or is deleted;

A³ is Ser. Thr. Aib or is deleted:

A⁴ is Glu, Asp or is deleted;

20 A⁵ is Leu, Val, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe, p-X-Phe or is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted;

 A^7 is Leu, Val, NIe, IIe, Cha, β -Nal, Trp, Pal, Acc, Phe, p-X-Phe, a lipophilic amino acid, or is deleted;

A⁸ is Met, Nva, Leu, Val, Ile, Cha, Acc, Nle, p-X-Phe, Phe, β-Nal, Bpa, a lipophilic amino acid or is deleted;

A⁹ is His, a hydrophilic amino acid or is deleted;

A¹⁰ is Asn, a hydrophilic amino acid or is deleted;

 A^{11} is Leu, Val, Nle, Ile, Cha, β -Nal, Trp, Pal, Acc, Phe, p-X-Phe, a hydrophilic amino acid or is deleted;

30 A¹² is Gly, Acc, Aib, or is deleted;

 A^{13} is Lys, Arg or HN-CH((CH₂)_nNH-R⁴)-C(O);

A¹⁴ is His or is deleted;

 A^{15} is Leu, Val, Nle, Ile, Cha, β -Nal, Trp, Pal, Acc, Phe, p-X-Phe or is deleted;

A¹⁶ is Ser, Asn, Ala, Aib or is deleted;

A¹⁷ is Ser, Thr, Aib or is deleted;

A¹⁸ is Met, Nva, Leu, Val, Ile, Nle, p-X-Phe, Phe, β-Nal, Acc, Cha, Aib or is deleted;

5 A¹⁹ is Glu, Aib or is deleted;

A²⁰ is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

 A^{21} is Val, Leu, Ile, Phe, NIe, β -Nal, Aib, p-X-Phe, Acc, Cha, Met or is deleted;

A²² is Acc. Aib. Glu or is deleted:

 A^{23} is Trp, Acc, Phe, p-X-Phe, Aib, β -Nal or Cha;

10 A²⁴ is Leu, Acc, Ile, Val, Phe, β-Nal, Nle, Aib, p-X-Phe or Cha;

 A^{25} is Arg, Lys or HN-CH((CH₂)_nNH-R⁴)-C(O);

 A^{26} is Arg, Lys or HN-CH((CH₂)_nNH-R⁴)-C(O);

 A^{27} is Lys, Aib, Leu, hArg, Gln, Acc, Arg, Cha, Nle, Ile, Val, Phe, β -Nal, or p-X-Phe, where the Lys is optionally substituted on the ϵ -amino group by an acyl group;

15 A²⁸ is Leu, Acc, Cha, Ile, Val, Phe, Nle, β-Nal, Aib or p-X-Phe;

A²⁹ is Gln, Acc or Aib;

A³⁰ is Asp, Lys, Arg or is deleted;

A³¹ is Val, Leu, Nle, Acc, Cha, Phe, Ile, β-Nal, Aib, p-X-Phe or is deleted;

A³² is His or is deleted;

20 A³³ is Asn or is deleted;

 A^{34} is Phe, Tyr, Amp, Aib, β -Nal, Cha, Nle, Leu, Ile, Acc, p-X-Phe or is deleted;

A³⁵ is Val, Leu, Nle, Acc, Cha, Phe, Ile, β-Nal, Aib, p-X-Phe or is deleted;

A³⁶ is Ala, Val, Aib, Acc, Nva, Abu or is deleted;

 A^{37} is Leu, Val, NIe, Ile, Cha, β -Nal, Trp, Pal, Acc, Phe, p-X-Phe, a lipophilic amino acid, or

25 is deleted;

A³⁸ is Gly, Acc, Aib, or is deleted;

where X for each occurrence is independently selected from the group consisting of OH, a halo and CH₃;

R¹ and R² are each independently selected from the group consisting of H, (C₁₋₃₀)alkyl, (C₂₋₃₀)alkenyl, phenyl-(C₁₋₃₀)alkyl, naphthyl(C₁₋₃₀)alkyl, hydroxy(C₁₋₃₀)alkyl, hydroxy(C₁₋₃₀)alkyl, hydroxy-phenyl(C₁₋₃₀)alkyl $\stackrel{\circ}{\text{o}}_{X}$ hydroxy-naphthyl(C₁₋₃₀)alkyl;

30

R

A

A

5

10

or one of R^1 or R^2 is COE^1 where E^1 is (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl (C_{1-30}) alkyl, naphthyl(C₁₋₃₀)alkyl, hydroxy(C₁₋₃₀)alkyl, hydroxy(C₂₋₃₀)alkenyl, hydroxy-phenyl(C₁₋ 30)alkyl or hydroxy-naphthyl(C₁₋₃₀)alkyl;

R³ is OH, NH₂, (C₁₋₃₀)alkoxy or NH-Y-CH₂-Z, where Y is a (C₁₋₃₀) hydrocarbon moiety and Z is CO₂H or CONH₂;

n for each occurrence is independently an integer from 1 to 5; and

 R^4 for each occurrence is independently (C_1-C_{30}) alkyl, (C_1-C_{30}) acyl or $-C((NH)(NH_2))$; provided that the compound is not PTH(1-34)R³, PTH(1-35)R³, PTH(1-36)R³, PTH(1-37)R³, or PTH(1-38)R3.

A compound of the formula (III), 10. $(R^{1}R^{2}) - A^{1} - A^{2} - A^{3} - A^{4} - A^{5} - A^{6} - A^{7} - A^{8} - A^{9} - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{2$ A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{31} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - R^{3}

or a pharmaceutically-acceptable salt thereof wherein

A¹ is Ser, Ala, Dap, Thr, Aib or is deleted;

A² is Val. Leu. Ile. Phe. Nle. β-Nal. Aib. p-X-Phe. Acc. Cha. Met or is deleted;

A³ is Ser, Thr, Aib or is deleted;

A⁴ is Glu, Asp or is deleted;

A⁵ is Leu, Val, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe, p-X-Phe or is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted; 20

> A⁷ is Leu, Val, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe, p-X-Phe, a lipophilic amino acid, or is deleted:

> A⁸ is Met, Nva, Leu, Val, Ile, Cha, Acc, Nle, p-X-Phe, Phe, β-Nal, Bpa, a lipophilic amino acid or is deleted;

A⁹ is His, a hydrophilic amino acid or is deleted; 25

A¹⁰ is Asn, a hydrophilic amino acid or is deleted:

A¹¹ is Leu, Val. Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe, p-X-Phe, a hydrophilic amino acid or is deleted;

A¹² is Gly, Acc, Aib, or is deleted;

A¹³ is Lys, Arg or HN-CH((CH₂)_nNH-R⁴)-C(O)², A¹⁴ is His or is deleted;

A¹⁵ is Leu, Val, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe, p-X-Phe or is deleted;

A¹⁶ is Ser, Asn, Ala, Aib or is deleted;

A¹⁷ is Ser. Thr. Aib or is deleted;

A¹⁸ is Met, Nva, Leu, Val, Ile, Nle, p-X-Phe, Phe, β-Nal, Acc, Cha, Aib or is deleted;

A¹⁹ is Glu, Aib or is deleted;

5 A²⁰ is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

A²¹ is Val, Leu, Ile, Phe, Nle, β-Nal, Aib, p-X-Phe, Acc, Cha, Met or is deleted;

A²² is Acc, Aib, Glu or is deleted;

A²³ is Trp, Acc, Phe, p-X-Phe, Aib, β-Nal or Cha;

A²⁴ is Leu, Acc, Ile, Val, Phe, β-Nal, Nle, Aib, p-X-Phe or Cha;

10 A^{25} is Arg. Lys or HN-CH((CH₂)_nNH-R⁴)-C(O);

 A^{26} is Arg, Lys or HN-CH((CH₂)_nNH-R⁴)-C(O);

 A^{27} is Lys, Aib, Leu, hArg, Gln, Acc, Arg, Cha, Nle, Ile, Val, Phe, β -Nal, or p-X-Phe, where the Lys is optionally substituted on the ϵ -amino group by an acyl group;

A²⁸ is Leu, Acc, Cha, Ile, Val, Phe, NIe, β-Nal, Aib or p-X-Phe;

15 A²⁹ is Gln, Acc or Aib;

A³⁰ is Asp, Lys, Arg or is deleted;

A³¹ is Val, Leu, Nle, Acc, Cha, Phe, Ile, β-Nal, Aib, p-X-Phe or is deleted;

A³² is His or is deleted;

A³³ is Asn or is deleted;

20 A³⁴ is Phe, Tyr, Amp, Aib, β-Nal, Cha, Nle, Leu, Ile, Acc, p-X-Phe or is deleted;

 A^{35} is Val, Leu, NIe, Acc, Cha, Phe, IIe, β -Nal, Aib, p-X-Phe or is deleted;

A³⁶ is Ala, Val, Aib, Acc, Nva, Abu or is deleted;

 A^{37} is Leu, Val, NIe, IIe, Cha, β -Nal, Trp, Pal, Acc, Phe, p-X-Phe, a lipophilic amino acid, or is deleted:

25 A³⁸ is Gly, Acc, Aib, or is deleted;

where X for each occurrence is independently selected from the group consisting of OH, a halo and CH₃;

 R^1 and R^2 are each independently selected from the group consisting of H, (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl- (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{2-30}) alkenyl, hydroxy-phenyl (C_{1-30}) alkyl of hydroxy-naphthyl (C_{1-30}) alkyl;

or one of R^1 or R^2 is COE^1 where E^1 is (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{1-30}) alkyl, hydroxy (C_{2-30}) alkenyl, hydroxy-phenyl (C_{1-30}) alkyl or hydroxy-naphthyl (C_{1-30}) alkyl;

 R^3 is OH, NH₂, (C₁₋₃₀)alkoxy or NH-Y-CH₂-Z, where Y is a (C₁₋₃₀) hydrocarbon moiety and Z is CO₂H or CONH₂;

n for each occurrence is independently an integer from 1 to 5; and

 R^4 for each occurrence is independently (C₁-C₃₀)alkyl, (C₁-C₃₀)acyl or -C((NH)(NH₂)); provided that when A^8 is not a lipophilic D-amino acid or is not deleted then at least one of A^6 , A^7 , A^9 , A^{10} , A^{11} and A^{12} is a D-amino acid or at least one of A^6 , A^7 , A^9 , A^{10} , A^{11} , A^{12} , A^{13} ,

10 A¹⁴, A¹⁵, A¹⁶, A¹⁷, A¹⁸, A¹⁹, A²⁰, A²¹ and A²² is deleted; and further provided that when the compound contains a D-amino acid then A³⁶ is deleted.

11. A compound according to claim 10 wherein said compound is $[D\text{-Nle}^8,\,\text{Nle}^{18},\,\text{Tyr}^{34}]\text{hPTH}(1\text{-}34)\text{NH}_2,$ $[D\text{-Nle}^8]\text{hPTH}(1\text{-}34)\text{NH}_2,$

[D-Leu⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂,
 [D-Cha⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂,
 [D-Phe⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂,
 [D-Nal⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂,
 [D-Abu⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂,

20 [D-Met⁸]hPTH(1-34)NH₂, [Cha^{7, 11}, D-Met⁸]hPTH(1-34)NH₂, [D-Ile⁸]hPTH(1-34)NH₂, [Cha^{7, 11}, D-Ile⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [D-Ile⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂,

25 [D-Leu⁸]hPTH(1-34)NH₂, [Cha^{7,11}, D-Leu⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [D-Val⁸]hPTH(1-34)NH₂, [Cha^{7,11}, D-Val⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [D-Val⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂,

30 [D-Cha⁸]hPTH(1-34)NH₂, [Cha^{7,11}, D-Cha⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [D-Ala⁸]hPTH(1-34)NH₂, [Cha^{7,11}, D-Ala⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, $\label{eq:continuous} $$ [D-Ala^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,$$ $$ [D-Phe^8]hPTH(1-34)NH_2,$$ $$ [Cha^{7,11}, D-Phe^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,$$ $$ [D-Nal^8]hPTH(1-34)NH_2,$$ $$$

- 5 [D-Trp⁸]hPTH(1-34)NH₂, [Cha^{7,11}, D-Trp⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [D-Trp⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [D-Abu⁸]hPTH(1-34)NH₂, [Cha^{7,11}, D-Abu⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂,
- [D-Nle⁸, Nle¹⁸]hPTH(1-34)NH₂,
 [des-Met⁸]hPTH(1-34)NH₂,
 [Cha^{7,11}, des-Met⁸]hPTH(1-34)NH₂,
 [Cha^{7,11}, des-Met⁸, des-Met¹⁸, Tyr³⁴]hPTH(1-34)NH₂,
 [des-Met⁸, des-Met¹⁸]hPTH(1-34)NH₂,
- [Cha^{7,11}, des-Met⁸, des-Met¹⁸]hPTH(1-34)NH₂,
 [des-Met⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂,
 [des-Met¹⁸]hPTH(1-34)NH₂,
 [Cha^{7,11}, des-Met¹⁸]hPTH(1-34)NH₂,
 [Cha^{7,11}, des-Met¹⁸, Tyr³⁴]hPTH(1-34)NH₂,
- 20 [D-Nle⁸, des-Met¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [des-Graph of the color of the
- 25 [des-Leu¹¹, Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, [des-Gly¹², Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, [des-Lys¹³, Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, [des-His¹⁴, Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, [des-Leu¹⁵, Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂,
- 30 [des-Asn¹⁶, Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, [des-Ser¹⁷, Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, [des-Glu¹⁹, Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, [des-Arg²⁰, Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂,

20

B

-35-[des-Val²¹, Nie^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, [des-Glu²², Nle ^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, Ides-Gha. Cha^{7,11}. Nle^{8,18}. Tyr³⁴lhPTH(1-34)NH₂, [des-Leu⁷, Nle^{8,18}, Cha¹¹, Tyr³⁴]hPTH(1-34)NH₂, [Cha^{7,11}, des-His⁹, Nle^{8,18}, Tyr³⁴]hPTH(1-34)NH₂, [des-34, Cha^{7,11}, D-Nle⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, Ides-Leu⁷, D-NIe⁸, Cha¹¹, NIe¹⁸, Tyr³⁴lhPTH(1-34)NH₂, [Cha^{7,11}, D-Nle⁸, des-His⁹, Nle¹⁸, Tvr³⁴]hPTH(1-34)NH₂. [Cha^{7,11}, D-Nie⁸, Nie¹⁸, Tyr³⁴]hPTH(1-31)NH₂, [Cha^{7,11}, des-Met⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [Cha^{7,11}, D-Nle⁸, des-Met¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [Cha^{7,11}, des-Met⁸, des-His⁹, des-Asn¹⁰]hPTH(1-34)NH₂, ICha^{7,11}, des-Ser¹⁷, des-Met¹⁸, des-Glu¹⁹lhPTH(1-34)NH₂, [D-Met⁸, Nle¹⁸, Tyr³⁴]hPTH(1-34)NH₂, [D-Met⁸, Tyr³⁴]hPTH(1-34)NH₂,

[D-Bpa⁸, Tyr³⁴]hPTH(1-34)NH₂, [D-NIe⁸, NIe¹⁸, Tyr³⁴]hPTH(7-34)NH₂. [D-Nie⁸, Nie¹⁸]hPTH(7-34)NH₂ or [D-Met⁸]hPTH(7-34)NH₂.

> A compound according to claim 11 wherein said compound is [Cha^{7,11}, des-Met⁸, Nle¹⁸, Tyr³⁴]hPTH-(1-34)NH₂, [Cha^{7,11}, D-Nle⁸, des-Met¹⁸, Tyr³⁴]hPTH-(1-34)NH₂, [Cha^{7,11}, D-Nle⁸, Nle¹⁸, Tyr³⁴]hPTH-(1-34)NH₂, $[D-Nle^8,\ Nle^{18},\ Tyr^{34}]hPTH(1-34)NH_2\ or\ [D-Bpa^8,\ Tyr^{34}]hPTH(1-34)NH_2.$

A PTHRP analogue of formula (IV) that selectively binds to the PTH2 25

 $= \underbrace{ (R^{1}R^{2}) - A^{1} - A^{2} - A^{3} - A^{4} - A^{5} - A^{6} A^{7} - A^{8} - A^{9} - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{3} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - R^{3} ,$

or a pharmaceutically acceptable salt thereof, wherein

A¹ is Ala, Ser, Dap, Thr, Aib ox is deleted;

A² is Val or is deleted;

A³ is Ser, Aib, Thr or is deleted;

A⁴ is Glu, Asp or is deleted;

A⁵ is His, IIe, Acc, Val, NIe, Phe, Leu, p-X-Phe, β-Nal, Aib, Cha or is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted;

 A^7 is Leu, Va, Cha, NIe, β -Nal, Trp, Pal, Acc, Phe, p-X-Phe, Aib, a lipophilic amino acid or is

5 deleted;

A⁸ is Leu, Met, Acc, Cha, Aib, Nle, Phe, Ile, Val, β-Nal, p-X-Phe, a lipophilic amino acid or is deleted:

A⁹ is His, a hydrophilic amino acid or is deleted;

A¹⁰ is Asp, Asn, ahydrophilic amino acid or is deleted;

10 A¹¹ is Lys, Arg, Leψ, Cha, Aib, p-X-Phe, Ile, Val, Nle, Acc, Phe, β-Nal, HN-CH((CH₂)_nNH-R⁴)-C(O), a lipophilic D-amino acid, a hydrophilic amino acid or is deleted;

A¹² is Gly, Acc, Aib or is deleted;

A¹³ is Lys, Arg, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

A¹⁴ is Ser, His or is deleted;

15 A¹⁵ is Ile, Acc, Cha, Leu\Phe, Nle, β-Nal, Trp, p-X-Phe, Val, Aib or is deleted;

A¹⁶ is Gln, Aib or is deleted;

A¹⁷ is Asp, Aib or is deleted;

A¹⁸ is Leu, Aib, Acc, Cha, Phe, Ile, NIe, β-Nal, Val, p-X-Phe or is deleted;

A¹⁹ is Arg, Lys, Aib, HN-CH((QH₂)_nNH-R⁴)-C(O) or is deleted;

A²⁰ is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

A²¹ is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

A²² is Phe, Glu, Aib, Acc, p-X-Phe, β-Nal, Val, Leu, Ile, Nle or Cha;

A²³ is Phe, Leu, Lys, Acc, Cha, β-Nal, Aib, NIe, Ile, p-X-Phe, Val or Trp;

 A^{24} is Leu, Lys, Acc, Nie, Ile, Val, Phe, β -Nal, Aib, p-X-Phe, Arg or Cha;

25 A²⁵ is His, Lys, Aib, Acc, Arg or Glu;

A²⁶ is His, Aib, Acc, Arg or Lys;

A²⁷ is Leu, Lys, Acc, Arg, Ile, Val, Phe, Ab, Nle, β-Nal, p-X-Phe or Cha;

A²⁸ is IIe, Leu, Lys, Acc, Cha, Val, Phe, p-χ-Phe, NIe, β-Nal, Aib or is deleted;

A²⁹ is Ala, Glu, Acc, Aib or is deleted;

30 A³⁰ is Glu, Leu, Nle, Cha, Aib, Acc, Lys, Arg on is deleted;

A³¹ is Ile, Leu, Cha, Lys, Acc, Phe, Val, Nle, β-Nal, Arg or is deleted;

A³² is His or is deleted;

15

20

A³³ is Thr, Ser or is deleted;

A³⁴ is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, β-Nal, Aib, Acc or is deleted;

A³⁵ is Glu, Asp or is deleted;

A³⁶ is Ile, Acc, Cha, Leu, Phe, Nle, β-Nal, Trp, p-X-Phe, Val, Aib or is deleted;

5 A³⁷ is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

 A^{38} is Ala, Phe, Tyr, Cha, Val, Ile, Leu, NIe, β -Nal, Aib, Acc or is deleted;

 R^1 and R^2 are each independently selected from the group consisting of H, (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl- (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{2-30}) alkenyl, hydroxy-phenyl (C_{1-30}) alkyl or hydroxy-naphthyl (C_{1-30}) alkyl;

or one of R^1 or R^2 is COE^1 where E^1 is (C_{1-30}) alkyl, (C_{2-30}) alkenyl, phenyl (C_{1-30}) alkyl, naphthyl (C_{1-30}) alkyl, hydroxy (C_{1-30}) alkyl, hydroxy (C_{2-30}) alkenyl, hydroxy-phenyl (C_{1-30}) alkyl and hydroxy-naphthyl (C_{1-30}) alkyl;

R³ is OH, NH₂, (C₁₋₃₀)alkoxy or NH-Y-CH₂-Z, where Y is a (C₁₋₃₀) hydrocarbon moiety and Z is CO₂H or CONH₂;

n for each occurrence is independently an integer from 1 to 5; and

R⁴ for each occurrence is independently (C_1-C_{30}) alkyl, (C_1-C_{30}) acyl or $-C((NH)(NH_2))$; provided that the compound is not PTHrP(1-34)R³, PTHrP(1-35)R³, PTHrP(1-38)R³, PTHrP(1-38)R³.

and further provided that the compound is not [lle⁵, Trp²³]PTHrP(1-36) or [Trp²³]PTHrP(1-36).

14. A compound of formula (V), $(R^{1}R^{2})-A^{1}-A^{2}-A^{3}-A^{4}-A^{5}-A^{6}-A^{7}-A^{8}-A^{9}-A^{10}-A^{11}-A^{12}-A^{13}-A^{14}-A^{15}-A^{16}-A^{17}-A^{18}-A^{19}-A^{20}-A^{21}-A^{22}-A^{23}-A^{24}-A^{25}-A^{26}-A^{27}-A^{28}-A^{29}-A^{30}-A^{31}-A^{32}-A^{33}-A^{34}-A^{35}-A^{36}-A^{37}-A^{38}-R^{3}$

 $\Lambda\Lambda$

or a pharmaceutically acceptable salt thereof, wherein

A¹ is Ala, Ser, Dap, Thr, Aib or is deleted;

A² is Val or is deleted;

A³ is Ser, Aib, Thr or is deleted;

A⁴ is Glu, Asp or is deleted;

30 A⁵ is His, Ile, Acc, Val, Nle, Phe, Leu, p-X-Phe, β-Nal, Aib, Cha ox is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted;

A⁷ is Leu, Val, Cha, Nle, β-Nal, Trp, Pal, Acc, Phe, p-X-Phe, Aib, a lipophilic amino acid or is deleted:

A⁸ is Deu, Met, Acc, Cha, Aib, NIe, Phe, IIe, Val, β-Nal, p-X-Phe, a lipophilic amino acid or is deleted.

A⁹ is His, a hydrophilic amino acid or is deleted;

A¹⁰ is Asp,\Asn, a hydrophilic amino acid or is deleted;

5 A¹¹ is Lys, Arg, Leu, Cha, Aib, p-X-Phe, Ile, Val, Nle, Acc, Phe, β-Nal, HN-CH((CH₂)_nNH-R⁴)-C(O), a lipophilic D-amino acid, a hydrophilic amino acid or is deleted;

A¹² is Gly, Acc, Aib or is deleted;

A¹³ is Lys, Arg, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

A¹⁴ is Ser, His or is deleted;

10 A¹⁵ is IIe, Acc, Cha, Leu, Phe, NIe, β-Nal, Trp, p-X-Phe, Val, Aib or is deleted;

A¹⁶ is Gln, Aib or is de(eted;

A¹⁷ is Asp, Aib or is deleted;

A¹⁸ is Leu, Aib, Acc, Cha, Phe, Ile, Nle, β-Nal, Val, p-X-Phe or is deleted;

A¹⁹ is Arg, Lys, Aib, HN-CH ((CH₂)_nNH-R⁴)-C(O) or is deleted;

15 A²⁰ is Arg, Lys, HN-CH((CH₂)\NH-R⁴)-C(O) or is deleted;

A²¹ is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

A²² is Phe, Glu, Aib, Acc, p-X-Phe, β-Nal, Val, Leu, Ile, Nle or Cha;

A²³ is Phe, Leu, Lys, Acc, Cha, β-Nal, Aib, Nle, Ile, p-X-Phe, Val or Trp;

A²⁴ is Leu, Lys, Acc, Nle, Ile, Val, Phe, β-Nal, Aib, p-X-Phe, Arg or Cha;

20 A²⁵ is His, Lys, Aib, Acc, Arg or Glu;

A²⁶ is His, Aib, Acc, Arg or Lys;

 A^{27} is Leu, Lys, Acc, Arg, Ile, Val, Phe, Ab, NIe, β -Nal, p-X-Phe or Cha;

A²⁸ is Ile, Leu, Lys, Acc, Cha, Val, Phe, p-X-Phe, Nle, β-Nal, Aib or is deleted;

A²⁹ is Ala, Glu, Acc, Aib or is deleted;

25 A³⁰ is Glu, Leu, Nle, Cha, Aib, Acc, Lys, Arg or is deleted;

A³¹ is Ile, Leu, Cha, Lys, Acc, Phe, Val, Nle, β-Nal, Arg or is deleted;

A³² is His or is deleted;

A³³ is Thr, Ser or is deleted;

A³⁴ is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, β-Nal, Ajb, Acc or is deleted;

30 A³⁵ is Glu, Asp or is deleted;

A³⁶ is IIe, Acc, Cha, Leu, Phe, NIe, β-Nal, Trp, p-X-Phe, Val, Aib or is deleted;

A³⁷ is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

A

5

10

15

25

30

 $A^{38} \text{ is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, β-Nal, Aib, Acc or is deleted;}$ $R^{1} \text{ and } R^{2} \text{ are each independently selected from the group consisting of H, } (C_{1-30}) \text{ alkyl, } (C_{2-30}) \text{ alkenyl, phenyl-} (C_{1-30}) \text{ alkyl, naphthyl} (C_{1-30}) \text{ alkyl, hydroxy} (C_{2-30}) \text{ alkenyl, hydroxy-phenyl} (C_{1-30}) \text{ alkyl or hydroxy-naphthyl} (C_{1-30}) \text{ alkyl; or one of } R^{1} \text{ or } R^{2} \text{ is } COE^{1} \text{ where } E^{1} \text{ is } (C_{1-30}) \text{ alkyl, } (C_{2-30}) \text{ alkenyl, phenyl} (C_{1-30}) \text{ alkyl, naphthyl} (C_{1-30}) \text{ alkyl, hydroxy} (C_{1-30}) \text{ alkyl, hydroxy-phenyl} (C_{1-30}) \text{ alkyl, hydroxy-naphthyl} (C_{1-30}) \text{ alkyl, } R^{3} \text{ is OH, NH}_{2}, (C_{1-30}) \text{ alkoxy or NH-Y-CH}_{2}-Z, \text{ where Y is a } (C_{1-30}) \text{ hydrocarbon moiety}$

 R^3 is OH, NH₂, (C₁₋₃₀)alkoxy or NH-Y-CH₂-Z, where Y is a (C₁₋₃₀) hydrocarbon moiety and Z is CO₂H or CONH₂;

n for each occurrence is independently an integer from 1 to 5; and

 R^4 for each occurrence is independently (C₁-C₃₀)alkyl, (C₁-C₃₀)acyl or -C((NH)(NH₂)); provided that when A^8 is not a lipophilic D-amino acid or is not deleted then at least one of A^6 , A^7 , A^9 , A^{10} , A^{11} and A^{12} is a D-amino acid or at least one of A^6 , A^7 , A^9 , A^{10} , A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} , A^{18} , A^{19} , A^{20} , A^{21} and A^{22} is deleted.

15. A compound according to claim 14 wherein said compound is [lle⁵, D-Leu⁸]hPTHrP(1-34)NH₂, [lle⁵, D-Leu⁸, Trp²³]hPTHrP(1-34)NH₂, [lle⁵, des-Leu⁸, Trp²³]hPTHrP(1-34)NH₂, [lle⁵, des-Leu⁸]hPTHrP(1-34)NH₂,

20 [des-Leu⁸, Trp²³]hPTHrP(1-34)NH₂, [lle⁵, des-Leu¹⁸]hPTHrP(1-34)NH₂, [lle⁵, des-Leu¹⁸, Trp²³]hPTHrP(1-34)NH₂, [des-Leu¹⁸, Trp²³]hPTHrP(1-34)NH₂, [lle⁵, D-Leu⁸, Glu^{22,25}, Leu^{23,28,31}, Lys^{26,30}, Aib²⁹]hPTHrP(1-34)NH₂,

[lle⁵, D-Leu⁸, Glu^{22,25}, Trp²³, Lys^{26,30}, Leu^{28,31}, Aib²⁹]hPTHrP(1-34)NH₂, [lle⁵, D-Leu⁸, Glu^{22,25,29}, Leu^{23,28,31}, Lys^{26,30}]hPTHrP(1-34)NH₂, [lle⁵, D-Leu⁸, Glu^{22,25,29}, Trp²³, Lys^{26,30}, Leu^{28,31}]hPTHrP(1-34)NH₂ or

[D-Leu⁸, Trp²³]hPTHrP(7-34)NH₂.

16. A method of selectively binding the PTH2 receptor which comprises administering to a patient in need thereof an analogue according to claim 9 or a pharmaceutically acceptable salt thereof.

10

15

20

25

- 17. A method of selectively binding the PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 10 or a pharmaceutically acceptable salt thereof.
- 18. A method of selectively binding the PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 11 or a pharmaceutically acceptable salt thereof.
- 19. A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 12 or a pharmaceutically acceptable salt thereof.
- 20. A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof an analogue according to claim 13 or a pharmaceutically acceptable salt thereof.
- 21. A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 14 or a pharmaceutically acceptable salt thereof.
- 22. A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 15 or a pharmaceutically acceptable salt thereof.
- 23. A pharmaceutical composition comprising an analogue according to claim 9 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 24. A pharmaceutical composition comprising a compound according to claim 10 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 25. A pharmaceutical composition comprising a compound according to claim 11 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 26. A pharmaceutical composition comprising a compound according to claim 12 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 27. A pharmaceutical composition comprising an analogue according to claim 13 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 28. A pharmaceutical composition comprising a compound according to claim 14 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
 - 29. A pharmaceutical composition comprising a compound according to claim 15 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.

10

15

20

25

- 30. A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 7, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 31. A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 9, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 32. A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 10, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 33. A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 11, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 34. A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 12, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 35. A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 13, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 36. A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 14, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 37. A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 15, sufficient to inhibit the activation of the PTH2 receptor of said patient.

10

15

20

25

- 38. A method according to claim 30 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.
- 39. A method according to claim 31 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.
- 40. A method according to claim 32 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.
- 41. A method according to claim 33 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.
- 42. A method according to claim 34 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.
- 43. A method according to claim 35 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.
- 44. A method according to claim 36 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.
- 45. A method according to claim 37 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.
- 46. A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a PTH analogue or a truncated PTH analogue or a pharmaceutically acceptable salt thereof according to claim 1, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 47. A method according to claim 46 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.