1.1 Approximating Areas

Clotilde Djuikem

January 23, 2024

Outline

- Sigma Notation
- 2 Approximating Area
- Forming Riemann Sums

Motivation

Before

Imagine a bumpy field at a fair. We want to know how much space is there! Long ago, Archimedes used shapes to estimate areas. We do the same with rectangles. More rectangles mean a better guess.

Motivation

Sigma Notation

Today

Why do we do this? Think of planning a music festival. Calculating areas helps us organize spaces better. It is like having a secret tool for cool designs! We are learning these tricks to solve real-world puzzles someday.

Is not that cool?

Clotilde Djuikem 1.1 Approximating Areas January 23, 2024

4 / 34

Learning Objectives

Objective 1

Use the sigma (summation) notation to calculate sums and powers of integers.

Objective 2

Use the sum of rectangular areas to approximate the area under a curve.

Objective 3

Use Riemann sums to approximate the area.

Sigma (Summation) Notation

In calculus, we use **sigma** (Σ) notation to make adding up lots of numbers easier.

Notation

For example, instead of writing $1+2+3+\ldots+19+20$, we simply write $\sum_{i=1}^{20} i$.

Sigma notation looks like $\sum_{i=m}^{n} a_i$, where a_i are the terms to be added, i is the index of summation, and $m \le n$ are the limits. Let's try a couple of examples using sigma notation.

Example for Sigma

Using Sigma Notation

- Write in sigma notation and evaluate the sum of terms 3^i for i = 1, 2, 3, 4, 5.
- ② Write the sum in sigma notation: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$.
- **3** Write in sigma notation and evaluate the sum of terms 2^i for i=3,4,5,6.

7/34

Example for Sigma

Using Sigma Notation

- Write in sigma notation and evaluate the sum of terms 3^i for i = 1, 2, 3, 4, 5.
- ② Write the sum in sigma notation: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$.
- **3** Write in sigma notation and evaluate the sum of terms 2^i for i=3,4,5,6.

Solution

- **1** We have $\sum_{i=1}^{5} 3^i = 3 + 3^2 + 3^3 + 3^4 + 3^5 = 363$.
- ② Using sigma notation, this sum can be written as $\sum_{i=1}^{5} \frac{1}{i^2}$.

Clotilde Djuikem 1.1 Approximating Areas January 23, 2024

Properties of Sigma Notation

Notation

Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n represent two sequences of terms and let c be a constant. The following properties hold for all positive integers n and for integers k, with $1 \le k < n$.

$$\mathbf{1.}\sum^{m}c=nc,$$

1.
$$\sum_{i=1}^{n} c = nc$$
, 2. $\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$

3.
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

3.
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i,$$
 4. $\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i$

5.
$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{k} a_i + \sum_{i=k+1}^{n} a_i$$

Clotilde Djuikem

Sums of Powers of Integers: To keep in mind

The sum of the first n integers is given by

$$\sum_{i=1}^{n} i = 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

The sum of the squares of the first n integers is given by

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

The sum of the cubes of the first n integers is given by

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4} = \left(\frac{n(n+1)}{2}\right)^2$$

9/34

Clotilde Djuikem 1.1 Approximating Areas January 23, 2024

Evaluation Using Sigma Notation

Write the following sums using sigma notation and then evaluate them.

- **1** The sum of the terms $(i-3)^2$ for i=1,2,...,200.
- ② The sum of the terms $(i^3 i^2)$ for i = 1, 2, 3, 4, 5, 6.

Solution 1

We expand $(i-3)^2$, and then use properties of sigma notation along with the summation formulas to obtain

$$\sum_{i=1}^{200} (i-3)^2 = \sum_{i=1}^{200} (i^2 - 6i + 9)$$

$$= \sum_{i=1}^{200} i^2 - \sum_{i=1}^{200} 6i + \sum_{i=1}^{200} 9 \quad \text{(properties 3 and 4)}$$

$$= \sum_{i=1}^{200} i^2 - 6 \sum_{i=1}^{200} i + \sum_{i=1}^{200} 9 \quad \text{(property 2)}$$

$$= \frac{200(200 + 1)(400 + 1)}{6} - 6 \left[\frac{200(200 + 1)}{2} \right] + 9(200)$$

$$= 2,686,700 - 120,600 + 1800$$

= 2.567.900Clotilde Djuikem

Solution 2

We use sigma notation property 4 and the formulas for the sum of squared terms and the sum of cubed terms to obtain

$$\sum_{i=1}^{6} (i^3 - i^2) = \sum_{i=1}^{6} i^3 - \sum_{i=1}^{6} i^2$$

$$= \frac{6^2 (6+1)^2}{4} - \frac{6(6+1)(2(6)+1)}{6}$$

$$= \frac{1764}{4} - \frac{546}{6}$$

$$= 350$$

Problem

Find the sum of the values of (4+3i) for $i=1,2,\ldots,100$.

Answer: 15,550

Hint: Use the properties of sigma notation to solve the problem.

Finding the Sum of the Function Values

Find the sum of the values of $f(x) = x^3$ over the integers $1, 2, 3, \dots, 10$.

Finding the Sum of the Function Values

Find the sum of the values of $f(x) = x^3$ over the integers $1, 2, 3, \dots, 10$.

Solution:

$$\sum_{i=1}^{10} i^3 = \frac{(10)^2 (10+1)^2}{4}$$
$$= \frac{100 \times 121}{4}$$
$$= 3025.$$

Finding the Sum of a Linear Function

Let
$$f(x) = 2x + 1$$
. Evaluate the sum $\sum_{k=1}^{20} f(k)$.

Answer: 440

Hint: Use the rules of sums and formulas for the sum of integers.

Problem

Now that we have the necessary notation, we return to the problem at hand: approximating the area under a curve. Let f(x) be a continuous, nonnegative function defined on the closed interval [a,b]. We want to approximate the area A of the region under the curve y=f(x), above the x-axis, and between the lines x=a and x=b, as shown on the figure below.

Idea

To approximate the area under the curve, we use a geometric approach. We divide the region into many small shapes, approximate each of them with a rectangle that has a known area formula, and then sum the areas of rectangles to obtain a reasonable estimate of the area of the region. We begin by dividing the interval [a, b] into subintervals.

Definition

Consider an interval [a, b]. A set of points $P = \{x_i\}_{i=1}^n$ with $a = x_0 < x_1 < x_2 < \ldots < x_n = b$, which divides the interval [a, b] into subintervals $[x_0, x_1]$, $[x_1, x_2]$, ..., $[x_{n-1}, x_n]$ is called a partition of [a, b]. If all the subintervals have the same width, the set of points forms a regular partition of the interval [a, b].

For the regular partition, the width of each subinterval is denoted by Δx , so that

subinterval

The subinterval $\Delta x = \frac{b-a}{n}$ and then $x_i = x_0 + i\Delta x$ for i = 1, 2, 3, ..., n

Left-Endpoint Approximation

On each subinterval $[x_{i-1}, x_i]$ (i = 1, 2, 3, ..., n), construct a rectangle with a width of Δx and a height of $f(x_{i-1})$, the function value at the left endpoint of the subinterval. This ensures that the left upper corner of the rectangle belongs to the curve y = f(x) (see Figure 2 below). This rectangle approximates the region below the graph of f over the subinterval $[x_{i-1}, x_i]$, and its area is $f(x_{i-1})\Delta x$.

$$A \approx L_n = f(x_0)\Delta x + f(x_1)\Delta x + \ldots + f(x_{n-1})\Delta x = \sum_{i=1}^n f(x_{i-1})\Delta x$$

Right-Endpoint Approximation

Construct a rectangle on each subinterval $[x_{i-1}, x_i]$ (i = 1, 2, 3, ..., n) with the height of $f(x_i)$, the function value at the right endpoint of the subinterval. This ensures that the right upper corner of the rectangle belongs to the curve y = f(x) (see Figure 3 below).

$$A \approx R_n = f(x_1)\Delta x + f(x_2)\Delta x + \ldots + f(x_n)\Delta x = \sum_{i=1}^n f(x_i)\Delta x.$$

20 / 34

Frame Title

In this Figure, the area of the region below the graph of the function $f(x) = \frac{x^2}{2}$ over the interval [0,3] is approximated using left- and right-endpoint approximations with six rectangles.

X

Left-Endpoint Approximation

In this case, $\Delta x=\frac{3-0}{6}=0.5$, and the subintervals are [0,0.5], [0.5,1], [1,1.5], [1.5,2], [2,2.5], [2.5,3], that is, $x_0=0$, $x_1=0.5$, $x_2=1$, $x_3=1.5$, $x_4=2$, $x_5=2.5$, and $x_6=3$. Using the left-approximation formula for L_n , we obtain

$$A \approx L_6 = \sum_{i=1}^{6} f(x_{i-1}) \Delta x$$

$$= f(x_0) \Delta x + f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + f(x_4) \Delta x + f(x_5) \Delta x$$

$$= f(0) \cdot 0.5 + f(0.5) \cdot 0.5 + f(1) \cdot 0.5 + f(1.5) \cdot 0.5 + f(2) \cdot 0.5 + f(2.5)$$

$$= 0 \cdot 0.5 + 0.125 \cdot 0.5 + 0.5 \cdot 0.5 + 1.125 \cdot 0.5 + 2 \cdot 0.5 + 3.125 \cdot 0.5$$

$$= 0 + 0.0625 + 0.25 + 0.5625 + 1 + 1.5625$$

$$= 3 \cdot 4375$$

Clotilde Djuikem

Right-Endpoint Approximation

Using the right-approximation formula for R_n , we obtain

$$A \approx R_6 = \sum_{i=1}^{6} f(x_i) \Delta x$$

$$= f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + f(x_4) \Delta x + f(x_5) \Delta x + f(x_6) \Delta x$$

$$= f(0.5) \cdot 0.5 + f(1) \cdot 0.5 + f(1.5) \cdot 0.5 + f(2) \cdot 0.5 + f(2.5) \cdot 0.5 + f(3)$$

$$= 0.125 \cdot 0.5 + 0.5 \cdot 0.5 + 1.125 \cdot 0.5 + 2 \cdot 0.5 + 3.125 \cdot 0.5 + 4.5 \cdot 0.5$$

$$= 0.0625 + 0.25 + 0.5625 + 1 + 1.5625 + 2.25$$

$$= 5.6875.$$

Approximating the Area Under a Curve

Use both left- and right-endpoint approximations to approximate the area under the graph of $f(x) = x^2$ over the interval [0,2] using n = 4.

Solution - Left-Endpoint Approximation

First, divide the interval [0,2] into n equal subintervals. Using n=4, $\Delta x = \frac{(2-0)}{4} = 0.5$. This is the width of each rectangle. The intervals [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2] are shown in Figure 5. Using the left-endpoint approximation, the heights are f(0) = 0, f(0.5) = 0.25, f(1) = 1, f(1.5) = 2.25. Then,

$$L_4 = f(x_0)\Delta x + f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x$$

= 0 \cdot 0.5 + 0.25 \cdot 0.5 + 1 \cdot 0.5 + 2.25 \cdot 0.5
= 1.75.

Clotilde Djuikem

1.1 Approximating Areas

Solution: Right-Endpoint Approximation

The right-endpoint approximation is shown in Figure 6. The intervals are the same, $\Delta x = 0.5$, but now we use the right endpoints to calculate the heights of the rectangles. We have

$$R_4 = f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x$$

= 0.25 \cdot 0.5 + 1 \cdot 0.5 + 2.25 \cdot 0.5 + 4 \cdot 0.5
= 3.75.

Clotilde Djuikem

1.1 Approximating Areas

January 23, 2024

Sketch Left- and Right-Endpoint Approximations

Sketch left- and right-endpoint approximations for $f(x) = \frac{1}{x}$ on [1, 2] using n = 4. Approximate the area using both methods.

Solution The left-endpoint approximation is 0.7595. The right-endpoint approximation is 0.6345. See the figure below.

Left-Endpoint Approximation

Right-Endpoint Approximation

4□▶ 4₫▶ 4½▶ 4½▶ ½ 90

Clotilde Djuikem

1.1 Approximating Areas

Generalizing Approximations

So far, to approximate the area under a curve, we have been using rectangles with the heights determined by evaluating the function at either the left or the right endpoint of the subinterval $[x_{i-1}, x_i]$. However, we could evaluate the function at any point x_i^* in $[x_{i-1}, x_i]$, and use $f(x_i^*)$ as the height of the approximating rectangle. This would result in an estimate $A \approx \sum_{i=1}^n f(x_i^*) \Delta x$.

Riemann Sum

Let the function f(x) be defined on a closed interval [a,b] and let P be a regular partition of [a,b] with the subinterval width Δx . For each $1 \leq i \leq n$, let x_i^* be an arbitrary point in $[x_{i-1},x_i]$. The numbers x_1^*,x_2^*,\ldots,x_n^* are called the sample points. Then the Riemann sum for f(x) that corresponds to the partition P and the set of sample points $\{x_i^*\}_{i=1}^n$ is defined as

$$\sum_{i=1}^n f(x_i^*) \Delta x.$$

Definition: Area Under the Curve

Let f(x) be a continuous, nonnegative function on an interval [a, b], and let $\sum_{i=1}^{n} f(x_i^*) \Delta x$ be a Riemann sum for f(x). Then, the area under the curve y = f(x) over [a, b] is given by

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x.$$

Finding Lower Sums

Problem: Find the lower sum for $f(x) = 10 - x^2$ over [1,2] with n = 4

subintervals.

Finding Lower Sums

Problem: Find the lower sum for $f(x) = 10 - x^2$ over [1, 2] with n = 4

subintervals.

Solution:

$$\Delta x = \frac{2-1}{4} = \frac{1}{4},$$

$$R_4 = \sum_{k=1}^{4} (10 - x_i^2) \cdot 0.25$$

$$= 0.25 [8.4375 + 7.75 + 6.9375 + 6]$$

$$= 7.28.$$

Hence, the lower sum is 7.28.

Finding Upper Sums

Hence, the upper sum is 8.0313.

Hint: f(x) is decreasing on [1,2], so the maximum function values occur at the left endpoints of the subintervals.

Finding Lower Sums

Problem: Find the lower sum for $f(x) = \sin(x)$ over $[0, \pi/2]$ with n = 6 subintervals.

Solution:

$$\Delta x = \frac{\pi/2 - 0}{6} = \frac{\pi}{12},$$

$$L_6 = \frac{\pi}{12} \left[0 + \sin\left(\frac{\pi}{12}\right) + \frac{1}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} + \sin\left(\frac{5\pi}{12}\right) \right]$$

$$= \frac{\pi(1 + \sqrt{2} + \sqrt{3} + \sqrt{6})}{24}.$$

Finding Upper Sums

Problem: Find the upper sum for $f(x) = \sin(x)$ over $[0, \pi/2]$ with n = 6 subintervals.

Solution:

$$\Delta x = \frac{\pi/2 - 0}{6} = \frac{\pi}{12},$$

$$R_6 = \frac{\pi(3 + \sqrt{2} + \sqrt{3} + \sqrt{6})}{24}.$$

Hint: Compare the expressions for the upper and lower sums.