ETR0319-013

0.8 μ A Low Power Consumption Voltage Regulator with ON/OFF Switch

■GENERAL DESCRIPTION

The XC6215 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves very low supply current, 0.8μ A (TYP.) and consists of a reference voltage source, an error amplifier, a current foldback circuit, and a phase compensation circuit plus a driver transistor.

Ultra small packages USP-3, USP-4, USP-6B06 and SSOT-24, and small package SOT-25 packages make high density mounting possible. Therefore, the series is ideal for applications where high density mounting is required such as in mobile phones.

Output voltage is selectable in 0.1V increments within a range of 0.9V ~ 5.0V by laser trimming

The series is also compatible with low ESR ceramic capacitors, which give added output stability.

The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin. Furthermore, the CE function allows the output of the regulator to be turned off, resulting in greatly reduced power

consumption.

APPLICATIONS

- Smart phones / Mobile phones
- Portable game consoles
- Digital still cameras / Camcorders
- Digital audio equipments
- Mobile devices / terminals

■FEATURES

Maximum Output Current : 200mA (300mA Limit, TYP.)

@ Vout=3.0V, VIN=4.0V

Dropout Voltage : 320mV @ I_{OUT} = 100mA

@ $V_{OUT} = 3.0V$

Operating Input Voltage : $1.5 \text{V} \sim 6.0 \text{V}$

Output Voltage Range : $0.9V \sim 5.0V$ (0.1V Increments) Highly Accurate : Set voltage accuracy $\pm 2\%$

 $(1.5V < V_{OUT}(T) \le 5.0V)$

Set voltage accuracy ±30mV

 $(0.9V \leq V_{OUT(T)} \leq 1.5V)$

Low Power Consumption: $0.8 \,\mu$ A (TYP.)Stand-by Current: Less than $0.1 \,\mu$ AOperating Temperature Range: -40° C ~ 85° CLow ESR Capacitor Compatible: Ceramic capacitor

Current Limiter Circuit Built-In

Packages : USP-4

SSOT-24

USP-3 (For the XC6215P series only)

SOT-25 USPN-4 USP-6B06

Environmentally Friendly : EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUIT

●USP-4, SSOT-24, SOT-25,USPN-4,USP-6B06 packages (For the USP-3 package, with no CE pin)

■TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs. Input Voltage XC6215x302

■BLOCK DIAGRAMS

●XC6215B Series

●XC6215P Series

^{*} Diodes shown in the above circuit are ESD protection diodes and parasitic diodes

■ PRODUCT CLASSIFICATION

Ordering Information

XC6215(1)(2)(3)(4)(5)(6)-(7)(*1)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
	Time of Degulator	В	CE logic = High active with no pull-down resistor
1)	Type of Regulator	Р	3 pin regulator with no CE pin (USP-3 only)
23	Output Voltage	09 ~ 50	0.9 V ~ 5.0V, 0.1V step
23	Output voitage	09 ~ 50	e.g. V _{OUT} =3.0V⇔②=3, ③=0
4	Output Voltage Assurage	2	± 2 % accuracy
4)	Output Voltage Accuracy	2	e.g. V _{OUT} =3.0V⇔②=3, ③=0, ④=2
		GR-G	USP-4 (3,000pcs/Reel)
		NR	SSOT-24 (3,000pcs/Reel)
		NR-G	SSOT-24 (3,000pcs/Reel)
	Dookogoo	MR	SOT-25 (3,000pcs/Reel)
56-7	Packages (Order Unit)	MR-G	SOT-25 (3,000pcs/Reel)
	(3.33. 3)	HR	USP-3 (for the XC6215P series only) (3,000pcs/Reel)
		HR-G	USP-3 (for the XC6215P series only) (3,000pcs/Reel)
		7R-G	USPN-4 (5,000pcs/Reel)
		8R-G	USP-6B06 (5,000pcs/Reel)

^(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

■PIN CONFIGURATION

^{*} For mounting intensity and heat dissipation, please refer to recommended mounting pattern and ecommended metal mask when soldering the pad of USP-4 and USP-6B06.

Mounting should be electrically isolated or connected to the Vss (No.2) pin.

■ PIN ASSIGNMENT

		PIN NU	JMBER				
USP-4	SSOT-24	USP-3	SOT-25	USPN-4	USP-6B06	PIN NAME	FUNCTIONS
3	1	-	3	3	5	CE	Power Supply
2	2	3	2	2	2	V _{SS}	Ground
1	3	2	5	1	1	V_{OUT}	ON / Off Switch
4	4	1	1	4	6	Vin	Output
-	-	-	4	-	3,4	NC	No Connection

■ PIN FUNCTION ASSIGNMENT

XC6215 Series (Type B)

CE	IC OPERATION
Н	Operation ON
L	Operation OFF

^{*}CE pin should not be left open.

■ ABSOLUTE MAXIMUM RATINGS

PARAM	ETER	SYMBOL	RATINGS	UNITS
Input Vo	oltage	Vin	- 0.3 ~ + 7.0	V
Output \	/oltage	Vouт	Vss - 0.3 ~ VIN + 0.3	V
CE Input V	oltage (*1)	VCE	Vss - 0.3 ~ + 7.0	V
	SOT-25		250 600 (40mm x 40mm Standard board) ^(*2) 760(JESD51-7 board) ^(*2)	
Power Dissipation	SSOT-24 USP-4		150 500 (40mm x 40mm Standard board) ^(*2) 680(JESD51-7 board) ^(*2)	-
Power Dissipation (Ta=25°C)		Pd	120 1000 (40mm x 40mm Standard board)(*2)	mW
	USP-3		120 1000 (40mm x 40mm Standard board) ^(*2)	 - -
	USPN-4		100 600 (40mm x 40mm Standard board) ^(*2)	
	USP-6B06		900 (40mm x 40mm Standard board)(*2)	
Operating Ambie	nt Temperature	Topr	- 40 ~ + 85	°C
Storage Ter	mperature	Tstg	- 55 ~ +125	°C

Note:

The mounting condition is please refer to PACKAGING INFORMATION.

^(*1) Except for the XC6215P series

 $[\]ensuremath{^{(^\circ\!2)}}$ This power dissipation figure shown is PCB mounted and is for reference only.

■ELECTRICAL CHARACTERISTICS

●XC6215B Series Ta = 25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT.	CIRCUIT
Output Voltage (*2)	V _{OUT(E)}	V _{IN} =V _{CE} =V _{OUT(T)} (*1) + 1.0V, I _{OUT} =1mA	E-0 ^(*6)		V	1	
		V _{IN} =V _{CE} =V _{OUT(T)} + 1.0V V _{OUT(T)} =0.9V	50	70	-		
		$V_{IN}=V_{CE}=V_{OUT(T)} + 1.0V$ $V_{OUT(T)}=1.0V \sim 1.1V$	60	80	-		
		$V_{IN}=V_{CE}=V_{OUT(T)}+1.0V$ $V_{OUT(T)}=1.2V\sim 1.3V$	80	110	-		
Maximum Output Current	Гоитмах	$V_{IN}=V_{CE}=V_{OUT(T)} + 1.0V$ $V_{OUT(T)}=1.4V \sim 1.6V$	100	140	-	mA	1
		$V_{IN}=V_{CE}=V_{OUT(T)} + 1.0V$ $V_{OUT(T)}=1.7V \sim 2.2V$	120	150	-		
		$V_{IN}=V_{CE}=V_{OUT(T)}+1.0V$ $V_{OUT(T)}=2.3V\sim2.9V$	150	195	-		
		$V_{IN}=V_{CE}=V_{OUT(T)}+1.0V$ $V_{OUT(T)} \ge 3.0V$	200	300	-		
Load Regulation	∆Vоит	$V_{IN} = V_{CE} = V_{OUT(T)} + 1.0V$ $V_{OUT(T)} = 0.9V$ $1mA \leq I_{OUT} \leq 50mA$ $V_{IN} = V_{CE} = V_{OUT(T)} + 1.0V$ $V_{OUT(T)} = 1.0V \sim 1.1V$ $1mA \leq I_{OUT} \leq 60mA$ $V_{IN} = V_{CE} = V_{OUT(T)} + 1.0V$ $V_{OUT(T)} = 1.2V \sim 1.3V$ $1mA \leq I_{OUT} \leq 80mA$ $V_{IN} = V_{CE} = V_{OUT(T)} + 1.0V$ $V_{OUT(T)} \geq 1.4V$ $1mA \leq I_{OUT} \leq 100mA$	- -	15	70	mV	1
Dropout Voltage (*3)	Vdif	$V_{CE}=V_{IN},\ V_{OUT(T)}=0.9V$ $I_{OUT}=50mA$ $V_{CE}=V_{IN},\ V_{OUT(T)}=1.0V\sim1.1V$ $I_{OUT}=60mA$ $V_{CE}=V_{IN},\ V_{OUT(T)}=1.2V\sim1.3V$ $I_{OUT}=80mA$ $V_{CE}=V_{IN},\ V_{OUT(T)}\geqq1.4V$ $I_{OUT}=100mA$		E-1(*6)		mV	1
0 1 6		V _{IN} =V _{CE} =V _{OUT(T)} + 1.0V V _{OUT(T)} ≦3.9V	-	0.8	1.5	4	
Supply Current	I _{DD}	V _{IN} =V _{CE} =V _{OUT(T)} + 1.0V V _{OUT(T)} ≧ 4.0V	-	1.0	1.8	μΑ	2
Stand-by Current	Istby	$V_{IN}=V_{OUT(T)} + 1.0V,$ $V_{CE}=V_{SS}$	-	0.01	0.10	μΑ	2

■ ELECTRICAL CHARACTERISTICS (Continued)

●XC6215B Series (Continued)

Ta = 25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT.	CIRCUIT		
Line Regulation	∆Vouт/ (∆Vі№ [] Vouт)	$V_{OUT(T)}{=}0.9V, \ V_{CE}{=}V_{IN}$ $1.5V \leqq V_{IN} \leqq 6.0V$ $I_{OUT}{=}1mA$ $V_{OUT(T)}{=}1.0V \sim 1.2V, \ V_{CE}{=}V_{IN}$ $V_{OUT(T)}{+}0.5V \leqq V_{IN} \leqq 6.0V$ $I_{OUT}{=}1mA$ $V_{OUT(T)}{\triangleq}1.3V, \ V_{CE}{=}V_{IN}$ $V_{OUT(T)}{+}0.5V \leqq V_{IN} \leqq 6.0V$ $I_{OUT}{=}30mA$	-	0.05	0.15	%/V	1		
Input Voltage	VIN	-	1.5	-	6.0	V	_		
Output Voltage Temperature Characteristics	△Vоит/ (△ Тор г • Vouт)	Vv=Va=Vaлт+1.0V, laл=30mA - 40°C≤ Topr ≤ 85°C	-	±100	-	ppm /°C	1		
<u>-</u>		$V_{\text{OUT}} = V_{\text{OUT(E)}} \times 0.95$ $V_{\text{OUT(T)}} = 0.9V$ $V_{\text{IN}} = V_{\text{CE}} = V_{\text{OUT(T)}} + 2.0V$	100	300	-				
	Ilim	$V_{OUT}=V_{OUT(E)}\times0.95$ $V_{OUT(T)}=1.0V\sim1.1V$ $V_{IN}=V_{CE}=V_{OUT(T)}+2.0V$	120	300	-				
Current Limit		$V_{OUT}=V_{OUT(E)}\times0.95$ $V_{OUT(T)}=1.2V\sim1.3V$ $V_{IN}=V_{CE}=V_{OUT(T)}+2.0V$	160	300	-	mA	1		
		$V_{OUT}=V_{OUT(E)}\times 0.95$ $V_{OUT(T)}=1.4V\sim 2.9V$ $V_{IN}=V_{CE}=V_{OUT(T)}+2.0V$	200	300	-				
		$V_{OUT=V_{OUT(E)}} \times 0.95$ $V_{OUT(T)} \ge 3.0V$ $V_{IN} = V_{CE} = V_{OUT(T)} + 1.0V$	200 300		200	300	-		
Short Circuit Current	Ishort	$V_{IN}=V_{CE}=V_{OUT(T)}+1.0V, \ V_{OUT}=0V$	-	50	-	mA	1		
CE 'H' Level Voltage	V _{CEH}	V _{IN} =V _{OUT(T)} +1.0V	1.0	-	6.0	V	1		
CE 'L' Level Voltage	Vcel	V _{IN} =V _{OUT(T)} +1.0V	-	-	0.3	V	U		
CE 'H' Level Current	Ісен	$V_{IN}=V_{CE}=V_{OUT(T)}+1.0V$	- 0.1	-	0.1	μΑ	2		
CE 'L' Level Current	ICEL	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$	- 0.1	-	0.1	μΛ	•		

NOTE:

 $^{^{(*1)}}V_{OUT(T)}$: Fixed output voltage

 $^{^{(*2)}}V_{OUT(E)}$ = Effective output voltage

⁽i.e. the output voltage when " $V_{OUT(T)}$ + 1.0V" is provided at the VIN pin while maintaining a certain I_{OUT} value).

 $^{^{(*3)}}Vdif = \{\ V_{IN1}\ ^{(*4)-}\ V_{OUT1}\ ^{(*5)}\}$

 $^{^{(^{\}circ}4)}$ V_{IN1} = The input voltage when V_{OUT1} appears as input voltage is gradually decreased.

 $^{^{(^{75})}}V_{OUT1} = A \text{ voltage equal to } 98\% \text{ of the output voltage whenever an amply stabilized } I_{OUT} \{ V_{OUT(T)} + 1.0V \} \text{ is input.}$

^(*6)Refer to "VOLTAGE CHART".

■ ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT.	a = 25°C CIRCUI
Output Voltage (*2)	V _{OUT(E)}	V _{IN} =V _{OUT(T)} (*1) + 1.0V, I _{OUT} =1mA		E-0 (*6) 50 70 -		V	1
		$V_{IN} = V_{OUT(T)} + 1.0V$ $V_{OUT(T)} = 0.9V$	50	70	-		
		$V_{IN}=V_{OUT(T)} + 1.0V$ $V_{OUT(T)}=1.0V \sim 1.1V$	60	80	-		
		$V_{IN}=V_{OUT(T)} + 1.0V$ $V_{OUT(T)}=1.2V \sim 1.3V$	80	110	-		
Maximum Output Current	Іоитмах	$V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT(T)}=1.4V\sim1.6V$	100	140	-	mA	1
		$V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT(T)}=1.7V\sim 2.2V$	120	150	-		
		$V_{IN} = V_{OUT(T)} + 1.0V$ $V_{OUT(T)} = 2.3V \sim 2.9V$	150	195	-		
		$V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT(T)} \ge 3.0V$	200	300	-		
Load Regulation	∆Vоит	$V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT(T)}=0.9V$ $1mA \le I_{OUT} \le 50mA$ $V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT(T)}=1.0V\sim1.1V$ $1mA \le I_{OUT} \le 60mA$ $V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT(T)}=1.2V\sim1.3V$ $1mA \le I_{OUT} \le 80mA$ $V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT(T)} \ge 1.4V$ $1mA \le I_{OUT} \le 100mA$	-	15	70	mV	1
Dropout Voltage (*3)	Vdif -	$V_{OUT(T)}$ =0.9V I_{OUT} =50mA $V_{OUT(T)}$ =1.0V ~ 1.1V I_{OUT} =60mA $V_{OUT(T)}$ =1.2V ~ 1.3V I_{OUT} =80mA $V_{OUT(T)}$ \geq1.4V I_{OUT} =100mA		E-1 ^(*6)		mV	1
Supply Current	I _{DD} -	$V_{IN}=V_{OUT(T)}=1.0V$ $V_{OUT(T)}\leq 3.9V$	-	0.8	1.5	μΑ	2
25FF-0 24m2m	-35	$V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT(T)} \ge 4.0V$	-	1.0	1.8	,,,,	

■ ELECTRICAL CHARACTERISTICS (Continued)

●XC6215P Series (Continued)

Ta = 25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT.	CIRCUIT
		V _{OUT(T)} =0.9V					
		1.5V≦V _{IN} ≦6.0V					
		I _{OUT} =1mA					
		V _{OUT(I)} =1.0V ~ 1.2V	1				
Line Regulation	△Vоит	V _{OUT(T)} +0.5V≦V _{IN} ≦6.0V	-	0.05	0.15	%/V	1
	△VIn • Vout	I _{OUT} =1mA					
		V _{OUT(T)} ≧1.3V					
		V _{OUT(T)} +0.5V≦V _{IN} ≦6.0V					
		I _{OUT} =30mA					
Input Voltage	Vin	-	1.5	-	6.0	V	_
Output Voltage	△Vоит	V _{IN} =V _{OUT(T)} +1.0V, lout= 30mA		1.400		ppm	(1)
Temperature Characteristics	△Topr · Vour	- 40°C <u>≤</u> Topr <u>≤</u> 85°C	-	±100	-	/°C	1
•		$V_{OUT}=V_{OUT(E)}\times 0.95$		300			
		V _{OUT(T)} =0.9V	100		-		
		$V_{IN}=V_{OUT(T)}+2.0V$				-	
		$V_{OUT}=V_{OUT(E)}\times0.95$		300	-		
		$V_{OUT(T)}=1.0V \sim 1.1V$	120				
		$V_{IN}=V_{OUT(T)}+2.0V$					
		$V_{OUT}=V_{OUT(E)}\times0.95$					
Current Limit	I _{lim}	$V_{OUT(T)}=1.2V \sim 1.3V$	160	300	-	mA	1
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		$V_{OUT}=V_{OUT(E)}\times0.95$					
		$V_{OUT(T)}=1.4V \sim 2.9V$	200	300	-		
		$V_{IN}=V_{OUT(T)}+2.0V$					
		$V_{OUT} = V_{OUT(E)} \times 0.95$					
		V _{OUT(T)} ≧3.0V	200	0 300	300 -		
		$V_{IN=}V_{OUT(T)}+1.0V$					
Short Circuit Current	Ishort	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{OUT}=0V$	-	50	-	mA	1

NOTE:

(i.e. the output voltage when " $V_{OUT(T)}$ + 1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value).

 $^{^{(*1)}}V_{OUT(T)}$: Fixed output voltage

 $^{^{(*2)}}V_{OUT(E)}$ = Effective output voltage

 $^{^{(*3)}}$ Vdif = { V_{IN1} $^{(*4)}$ - V_{OUT1} $^{(*5)}$ }

 $^{^{(^{74})}}$ V_{IN1} = The input voltage when V_{OUT1} appears as input voltage is gradually decreased.

^(*5) $V_{OUT1} = A$ voltage equal to 98% of the output voltage whenever an amply stabilized I_{OUT} { $V_{OUT(1)} + 1.0V$ } is input.

^(*6) Refer to "VOLTAGE CHART".

■VOLTAGE CHART

● Dropout Voltage Chart

SETTING OUTPUT		E-0		-1		
VOLTAGE		VOLTAGE		Γ VOLTAGE		
		(V)	(mV) Vdif			
Vout(t)		OUT		ı		
	MIN.	MAX.	TYP.	MAX.		
0.9	0.870	0.930	870	1000		
1.0	0.970	1.030	860	1000		
1.1	1.070	1.130	780	950		
1.2	1.170	1.230	800	1000		
1.3	1.270	1.330	720	900		
1.4	1.370	1.430	750	960		
1.5	1.470	1.530	700	890		
1.6	1.568	1.632	680	860		
1.7	1.666	1.734	650	830		
1.8	1.764	1.836	630	800		
1.9	1.862	1.938	610	780		
2.0	1.960	2.040	580	740		
2.1	2.058	2.142	580	740		
2.2	2.156	2.244	580	740		
2.3	2.254	2.346	510	650		
2.4	2.352	2.448	510	650		
2.5	2.450	2.550	450	580		
2.6	2.548	2.652	450	580		
2.7	2.646	2.754	450	580		
2.8	2.744	2.856	450	580		
2.9	2.842	2.958	450	580		
3.0	2.940	3.060	320	420		
3.1	3.038	3.162	320	420		
3.2	3.136	3.264	320	420		
3.3	3.234	3.366	320	420		
3.4	3.332	3.468	320	420		
3.5	3.430	3.570	320	420		
3.6	3.528	3.672	320	420		
3.7	3.626	3.774	320	420		
3.8	3.724	3.876	320	420		
3.9	3.822	3.978	320	420		
4.0	3.920	4.080	290	380		
4.1	4.018	4.182	290	380		
4.2	4.116	4.284	290	380		
4.3	4.214	4.386	290	380		
4.4	4.312	4.488	290	380		
4.5	4.410	4.590	290	380		
4.6	4.508	4.692	290	380		
4.7	4.606	4.794	290	380		
4.8	4.704	4.896	290	380		
4.9	4.802	4.998	290	380		
5.0	4.900	5.100	230	310		

XC6215 Series

■TEST CIRCUITS

●Circuit ①

XC6215 Series P Type

●Circuit ②

XC6215 Series B Type

XC6215 Series P Type

■OPERATIONAL EXPLANATION

●XC6215B Series (As for the XC6215P Series, with no CE pin)

<Output Voltage Control>

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET, which is connected to the V_{OUT} pin, is then driven by the subsequent output signal. The output voltage at the V_{OUT} pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be operated or shutdown via the CE pin's signal.

<Short Protection Circuit>

The XC6215 series' regulator offers circuit protection by means of a built-in foldback circuit. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, the output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

<CE Pin>

The IC's internal circuitry can be operated or shutdown via the signal from the CE pin with the XC6215B series. In shutdown mode, output at the V_{OUT} pin will be pulled down to the V_{SS} level via R1 & R2. Note that the XC6215 series' regulator is "High Active/No Pull-Down", operations will become unstable with the CE pin open. We suggest that you use this IC with either a V_{IN} voltage or a V_{SS} voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry.

■NOTES ON USE

- 1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current.
- 3. As for the XC6215 series, internally achieved phase compensation makes a stable operation of the IC possible even when there is no output capacitor (C_L). In order to stabilize the V_{IN} 's voltage level, we recommend that an input capacitor (C_{IN}) of about 0.1 to 1.0 μ F be connected between the V_{IN} pin and the V_{SS} pin. Moreover, during transient response, so as to prevent an undershoot or overshoot, we recommend that the output capacitor (C_L) of about 0.1 to 1.0 μ F be connected between the V_{OUT} pin and the V_{SS} pin. However, please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 4. Torex places an importance on improving our products and its reliability. However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(1) Output Voltage vs. Output Current (Continued)

(2) Output Voltage vs. Input Voltage

(2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current (Continued)

(4) Supply Current vs. Input Voltage

XC6215x502

XC6215x152

(5) Output Voltage vs. Ambient Temperature

XC6215x092

XC6215x302

(6) Supply Current vs. Ambient Temperature

XC6215x092

Ambient Temperature Ta (°C) XC6215x502

(6) Supply Current vs. Ambient Temperature (Continued)

(7) CE Threshold Voltage vs. Ambient Temperature

XC6215x302

XC6215x152

XC6215x502

(8) Input Transient Response

(8) Input Transient Response (Continued)

(8) Input Transient Response (Continued)

(8) Input Transient Response (Continued)

(9) Load Transient Response

XC6215x152

XC6215x092

XC6215x152

(9) Load Transient Response (Continued)

(9) Load Transient Response (Continued)

(10) Rising Response Time

(10) Rising Response Time (Continued)

(10) Rising Response Time (Continued)

(11) CE Rising Response Time (For XC6215B Type)

XC6215B092

XC6215B092

XC6215B152

(11) CE Rising Response Time (Continued)

XC6215B302

XC6215B302

XC6215B152

XC6215B302

XC6215B502

(11) CE Rising Response Time (For XC6215 Type)

XC6215B502

(12) Ripple Rejection Rate

XC6215x092

XC6215x302

XC6215B502

XC6215x502

■ PACKAGING INFORMATION

For the latest package information go to, www.torexsemi.com/technical-support/packages

PACKAGE	OUTLINE / LAND PATTERN	THERMAL CHARACTERISTICS					
USP-3	USP-3 PKG	Standard Board	USP-3 Power Dissipation				
USP-4	USP-4 PKG	Standard Board	USP-4 Power Dissipation				
SOT-25	Standard Board Standard Board JESD51-7 Board	Standard Board	SOT-25 Power Dissipation				
301-25		JESD51-7 Board	SOT-25 Fower Dissipation				
SSOT-24	SSOT-24 PKG	Standard Board	SSOT-24 Power Dissipation				
3301-24	<u>3501-24 PKG</u>	JESD51-7 Board	SSOT-24 Power Dissipation				
USPN-4	USPN-4 PKG	Standard Board	USPN-4 Power Dissipation				
USP-6B06	USP-6B06 PKG	Standard Board	USP-6B06 Power Dissipation				

XC6215 Series

■MARKING RULE

●SSOT-24

① represents type of regulator and output voltage range

MARK	TYPE	OUTPUT VOLTAGE RANGE	PRODUCT SERIES
Т	CE pin, High Active with no pull-	0.9V ~ 3.0V	VCC24EDagger
U	down resistor built in	3.1V ~ 5.0V	XC6215Bxxxxx

2 represents decimal point of output voltage

MARK	OUTPL	JT VOLTA	GE (V)	MARK	OUTPUT VOLTAGE (\		
0	-	3.1	-	F	1.6	4.6	-
1	-	3.2	•	Н	1.7	4.7	-
2	-	3.3	-	K	1.8	4.8	-
3	-	3.4	•	L	1.9	4.9	-
4	-	3.5	•	M	2.0	5.0	-
5	-	3.6	-	N	2.1	-	-
6	-	3.7	•	Р	2.2	-	-
7	-	3.8	•	R	2.3	-	-
8	0.9	3.9	-	S	2.4	-	-
9	1.0	4.0	•	Т	2.5	-	-
Α	1.1	4.1	•	U	2.6	-	-
В	1.2	4.2	-	V	2.7	-	-
С	1.3	4.3	-	X	2.8	-	-
D	1.4	4.4	•	Υ	2.9	-	-
Е	1.5	4.5	•	Z	3.0	-	-

③ represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded) NOTE: No character inversion used.

■MARKING RULE (Continued)

●USP-4, USP-3

USP-4 (TOP VIEW)

① represents product series

MARK		PRODUCT SERIES				
Е		XC6215xxxxxx				

② represents type of regulator and output voltage range

ĺ	MARK	TYPE	OUTPUT VOLTAGE RANGE	PRODUCT SERIES
	Т	CE pin, High Active with no pull-	0.9V ~ 3.0V	VC6245300004
	U	down resistor built in	3.1V ~ 5.0V	XC6215xxxxxx

3 represents output voltage

MARK	OUTPUT VOLTAGE (V)			MARK	OUTPUT VOLTAGE (V)		
0	-	3.1	•	F	1.6	4.6	•
1	-	3.2	•	Н	1.7	4.7	•
2	-	3.3	-	K	1.8	4.8	-
3	-	3.4	•	L	1.9	4.9	•
4	-	3.5	•	M	2.0	5.0	•
5	-	3.6	-	Ν	2.1	-	-
6	-	3.7	-	Р	2.2	-	-
7	-	3.8	•	R	2.3	-	•
8	0.9	3.9	-	8	2.4	-	-
9	1.0	4.0	•	Т	2.5	-	•
Α	1.1	4.1	•	U	2.6	-	•
В	1.2	4.2	-	V	2.7	-	-
С	1.3	4.3	•	X	2.8	-	-
D	1.4	4.4	•	Y	2.9	-	•
Е	1.5	4.5	1	Z	3.0	-	ı

4 represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)

NOTE: No character inversion used.

■MARKING RULE (Continued)

●SOT-25

① represents product series

MARK	PRODUCT SERIES				
E	XC6215xxxxxx				

SOT-25

(TOP VIEW)

2	represents	type of	regulators and	d output	voltage	range
---	------------	---------	----------------	----------	---------	-------

MARK	TYPE	OUTPUT VOLTAGE RANGE	PRODUCT SERIES	
T	CE pin, High Active with	0.9V~3.0V		
U	no pull-down resistor built	3.1V~5.0V	XC6215xxxxxx	
	in			

3 represents output voltage

●USPN-4

USPN-4 (TOP VIEW)

●USP-6B06

USP-6B06 (TOP VIEW)

MARK	OUTPUT VOLTAGE (V)			MARK	OUTPUT VOLTAGE (V)		
0	-	3.1	ı	F	1.6	4.6	-
1	-	3.2	ı	Н	1.7	4.7	-
2	-	3.3	1	K	1.8	4.8	-
3	-	3.4	•	L	1.9	4.9	-
4	-	3.5	ı	М	2.0	5.0	-
5	-	3.6	ı	N	2.1	1	-
6	-	3.7	ı	Р	2.2	1	-
7	-	3.8	•	R	2.3	-	-
8	0.9	3.9	ı	S	2.4	1	-
9	1.0	4.0	ı	Т	2.5	1	-
Α	1.1	4.1	-	U	2.6	-	-
В	1.2	4.2	-	V	2.7	-	-
С	1.3	4.3	-	Х	2.8	-	-
D	1.4	4.4	-	Y	2.9	-	-
Е	1.5	4.5	-	Z	3.0	-	-

45 represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)

NOTE: No character inversion used.

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.