SAMPLE PROBLEM D

For the reaction $NH_4Cl(s) \longrightarrow NH_3(g) + HCl(g)$, at 298.15 K, $\Delta H^0 = 176$ kJ/mol and $\Delta S^0 = 0.285$ kJ/(mol·K). Calculate ΔG^0 , and tell whether this reaction is spontaneous in the forward direction at 298.15 K.

SOLUTION

1 ANALYZE Given: $\Delta H^0 = 176 \text{ kJ/mol at } 298.15 \text{ K}$

 $\Delta S^0 = 0.285 \text{ kJ/(mol \cdot K)}$ at 298.15 K

Unknown: ΔG^0 at 298.15 K

PLAN $\Delta S, \Delta H, T \rightarrow \Delta G$

The value of ΔG can be calculated according to the following equation.

 $\Delta G^{\theta} = \Delta H^{\theta} - T \Delta S^{\theta}$

3 COMPUTE $\Delta G^0 = 176 \text{ kJ/mol} - 298 \text{ K} [0.285 \text{ kJ/(mol•K)}]$

= 176 kJ/mol – 84.9 kJ/mol = 91 kJ/mol

The answer is reasonably close to an estimated value of 110, calculated as $200 - (300 \times 0.3)$. The positive value of ΔG shows that this reaction does not occur naturally at 298.15 K.

PRACTICE Answers in Appendix E

1. For the vaporization reaction $Br_2(l) \longrightarrow Br_2(g)$, $\Delta H^0 = 31.0$ kJ/mol and $\Delta S^0 = 93.0$ J/(mol•K). At what temperature will this process be spontaneous?

Go to **go.hrw.com** for more practice problems that ask you to determine spontaneity based on free-energy changes.

SECTION REVIEW

- **1.** What kind of enthalpy change favors a spontaneous reaction?
- **2.** What is entropy, and how does it relate to spontaneity of reactions?
- **3.** List several changes that result in an entropy increase.
- **4.** Define *free energy*, and explain how its change is calculated.
- **5.** Explain the relationship between free-energy change and spontaneity of reactions.

6. In the reaction in Sample Problem D, why does the entropy increase?

Critical Thinking