جمع وإعداد الأستاذ: مدور سيف الدين

## التمرين (1) : .



نحقق التركيب التجريبي المبين في الشكل (1) و المكون من العناصر الكهربائية التالية:

- مولد توتر ثابت قوته المحركة الكهربائية E
  - r وشیعة ذاتیتها L و مقاومتها r
  - $R_2$  و  $R_1$  و ميان مقومتهما و  $R_2$
  - قاطعة كهربائية K و أسلاك التوصيل

عند اللحظة t=0 نغلق القاطعة و بالاعتماد على نتائج الدراسة التجريبية و برمجية إعلام

. (2) كما هو مبين في الشكل  $u_{R_2}=h(t)$  ،  $u_{R_1}=g(t)$  ،  $u_b=f(t)$  : آلي تمكنا من رسم المنحنيات البيانية

- 1- وضح على الدارة بأسهم جهة التوتر بين طرفي كل ثنائي قطب و جهة التيار المار في الدارة .
  - i(t) التيار فانون جمع التوترات جد المعادلة التفاضلية بدلالة شدة التيار -2

 $E\cdot r\cdot R_2\cdot R_1$  عبارة شدة التيار الكهربائي  $I_0$  في النظام الدائم بدلالة عبارة شدة التيار الكهربائي (1)

 $i(t)=I_0\left(1-e^{-t/ au}
ight)$  ت= بين أن العبارة - بين أن العبارة

حل للمعادلة التفاضلية حيث au ثابت الزمن يطلب تعيين عبارته

- $u_{R_2}(t)$  ،  $u_{R_1}(t)$  ،  $u_b(t)$  التوترات الزمنية للتوترات  $u_b(t)$ 
  - 4- أنسب كل منحنى بياني (1) ، (2) ، (3) إلى التوتر الموافق له علما أن  $R_1 < R_2$  ، مع التعليل .
    - 5- بالاعتماد على المنحنيات الثلاثة جد قيمة كل من:

علما أن شدة التيار الكهربائى  $L \cdot E \cdot r \cdot R_2 \cdot R_1$  $I_0=0.1\,A$  في النظام الدائم

t= au أحسب قيمة الطاقة المخزنة في الوشيعة في اللحظة au



الشعبة: عت/تر/ريا سلسلة التمارين في مادة العلوم الفيزيائية المستوى: سنة ثالثة ثانوى الوحدة 3 : دراسة الظواهر الكهربائية - الوشيعة وثنائي القطب RL جمع وإعداد الأستاذ: مدور سيف الدين Y : نحقق الدارة الكهربائية الموضحة في الشكل (1) والتي تتكون من (b)E مولد توتر كهربائى قوته المحركة الكهربائية - وشيعة b ذاتيتها L ومقاومتها الداخلية مهملة الشكل (1)  $R_2$  $R_2$  و  $R_1=40~\Omega$  و د Kعند اللحظة t=0 نغلق القاطعة K فنشاهد على شاشة راسم الاهتزاز البيانين (a) و (b) الممثلين في الشكل (2). 1- اعتمادا على قانون جمع التوترات الكهربائية جد المعادلة التفاضلية التي يحققها شدة التيار الكهربائي i(t) في الدارة.  $i\left(t
ight)=I_{0}\left(1-e^{rac{-t}{ au}}
ight)$ : ان حل المعادلة التفاضلية السابقة يكتب بالشكل أ- جد عبارة كل من : ثابت الزمن au وشدة التيار الأعظمي  $I_0$  $u_{v}(t)$  و  $u_{r}(t)$  و الزمنية لكل من التوترين المشاهدين على الشاشة، ثم استنتج عبار تيهما في النظام الدائم.  $E_h(mI)$ ت- ارفق كل بيان بالمدخل الموافق له مع التعليل.  $L, R_2, I_0, E$  اعتمادا على البيانين (a) و (b) جد قيمة كل من 2- $E_h = f(t)$  الشكل (3) يوضح بيان تغيرات الطاقة في الوشيعة (3) الشكل. .  $E_{h}(t)$  أـ اكتب العبارة الزمنية للطاقة في الوشيعة  $E_{h}(t)$  $oldsymbol{\psi}$ ب- استنتج عبارة الطاقة الأعظمية  $E_b(max)$  في الوشيعة في النظام الدائم ث - ضع سلما لمحور التراتيب للشكل (4) 2- أ- تحقق من قيمة ثابت الزمن au بيانيا.  $rac{oldsymbol{t}\;(oldsymbol{ms})}{oldsymbol{+}}$  بين أن عبارة زمن لبلوغ طاقة الوشيعة نصف قيمتها الأعظمية تكتب  $t_{1/2}$  من الشكل :  $t_{1/2} = \frac{\sqrt{2}}{2}$  حيث:  $t_{1/2} = \tau \times \ln(\frac{2}{2-\sqrt{2}})$  استنتج b' نعيد نفس التجربة السابقة لكن نستبدل الوشيعة b بوشيعة .III داتيتها L'=L ومقاوتها الداخلية r' فنشاهد على شاشة راسم الاهتزاز البيانين (c)و الممثلين في الشكل (4). 1- انسب كل بيان بالمدخل المناسب. (d) و (c) اعتمادا على البيانين (c)- شدة التيار الأعظمي  $I'_0$  ، المقاومة الداخلية r' للوشيعة b'3- جد قیمهٔ ثابت الزمن au' ، ثم قارنها مع قیمهٔ au ، ماذا تستنتج t (ms) ثانوية: المجاهد قندوز على ، سيدى خويلد \_ ورفلة

## التمرين (3): -

الشكل (1)

- نحقق التركيب التجريبي الموضح في الشكل (1) المتكون من:
- E = 12 V مولد توتر ثابت قوته المحركة الكهربائية
  - وشيعة حقيقية (b) ذاتيتها L و مقاومتها الداخلية r.
    - $R=200~\Omega$  ناقل أومى مقاومته ناقل
- D قاطعة كهربائية K و أسلاك التوصيل ، صمام ثنائي

## عند اللحظة t=0 عند اللحظة -I

1- بتطبيق قانون جمع التوترات بين أن المعادلة التفاضلية لتطور شدة التيار

$$rac{di(t)}{dt} + Ai(t) = B$$
: الكهربائي المتكن الشكل تكتب من الشكل

حيث A و B ثابتان تُطلب عبارة كل منهما بدلالة مميزات الدارة .

$$rac{di}{dt}$$
 بدلالة شدة التيار 2- نمثل في الشكل (2) تغيرات  $rac{di}{dt}$ 

اعتمادا على البيان جد:

أ- قيمة ذاتية الوشيعة L وقيمة ثابت الزمن au.

- $oldsymbol{arphi}$  مقدار مقاومة الوشيعة  $oldsymbol{ au}$
- ج- شدة التيار الأعظمى  $I_0$  ، ثم تأكد من قيمته حسابيا
- د- احسب قيمة الطاقة الأعظمية  $E_{b_{max}}$  في الوشيعة

010 i(mA)

II- نعيد نفس التجربة السابقة ونستبدل الوشيعة الحقيقية (b) بوشيعة

مثالية (b') ذاتيتها L'=L ، نغلق القاطعة ثم بعد مدة وفي لحظة t=0 نفتحها ونعتبره مبدأ جديد للأزمنة :

ين أن المعادلة التفاضلية لتطور التوتر  $u_b(t)$  بين طرفي الوشيعة  $u_b(t)$ 



2- بين أن المعادلة التفاضلية السابقة تقبل العبارة الزمنية التالية:

. حلالها 
$$u_b(t) = -Ee^{-\frac{t}{\tau}}$$

- D ما دور الصمام الثنائي D
- 4- بواسطة راسم الاهتزاز المهبطي ذي الذاكرة تمكنا من مشاهدة المنحنى البياني الموضح في الشكل (3)
  - أ- اوجد سلم الرسم لمحور التراتيب
  - ب- جد عبارة شدة التيار الأعظمي  $I_0$  ثم استنتج قيمته
  - ج- استنتج قيمة ثابت الزمن au ، قارنها مع au ماذا تستنتج



جمع وإعداد الأستاذ: مدور سيف الدين

RL الوحدة  $2_{2}$ : دراسة الظواهر الكهربائية – الوشيعة وثنائي القطب

## <u>التمرين (4):</u>.



نحقق التركيب التجريبي الموضح في الشكل (1) والمكون من العناصر الكهربائية التالية :

- E مولد توتر قوته المحركة الكهربائية
- وشيعة (b) ذاتيتها L ومقاومتها مهملة
  - $R\,=\,60\,\Omega$  ناقل أومي مقاومته
    - K قاطعة -
    - أسلاك توصيل

عند اللحظة t=0 نغلق القاطعة K وبالاعتماد على نتائج الدراسة التجريبية وبرنامج إعلام آلي مناسب تمكنا من رسم  $g(t)=u_R$  ،  $f(t)=\frac{u_R}{u_b}$  الموضحين في الشكلين  $g(t)=u_R$  ،  $f(t)=\frac{u_R}{u_b}$ 

- 1- أعد رسم الدارة المدروسة مع تمثيل الجهة الاصطلاحية للتيار الكهربائي وجهة التوتر الكهربائي بين طرفي كل عنصر كهربائي
  - 1- بتطبیق قانون جمع التوترات جد المعادلة التفاضلیة لتطور التوتر الکهربائی  $u_b(t)$  بین طرفی الوشیعة
- حلا لها حيث  $u_b(t)=Ae^{Bt}$  عبارة التفاضلية السابقة العبارة  $u_b(t)=Ae^{Bt}$  عبار تعيين عبار تيهما بدلالة مميزات الدارة الكهر بائية A
- 4- أ- جد العبارة اللحظية للتوتر الكهربائي  $u_R(t)$  بين طرفي الناقل الأومي  $u_R(t)$  .  $u_R(t)$  بدلالة  $u_R(t)$  بدلالة  $u_R(t)$  .



 $g(t)=u_R$  و  $g(t)=u_R$  جد قيمة كل من  $f(t)=rac{u_R}{u_b}$  جد قيمة كل من -5

- L ثابت الزمن au ثم استنتج قيمة ذاتية الوشيعة L
  - E القوة المحركة الكهربائية
- $t = 10 \ ms$  التوتر الكهربائي  $u_b$  بين طرفي الوشيعة عند اللحظة
  - بين أن العبارة اللحظية لشدة التيار الكهربائي i(t) تكتب من الشكل -6

لدارة في الدارة التيار الأعظمي المارة في الدارة  $i(t)=I_0(1-e^{-rac{t}{ au}})$  يطلب تعيين عبارته ثم أحسب قيمته

7- أحسب قيمة الطاقة الأعظمية في الوشيعة



المستوى : سنة ثالثة ثانوي تصحيح سلسلة التمارين في مادة العلوم الفيزيانية الشعبة : ع- تر - ريا الوحدة - 2 : دراسة الظواهر الكهربانية - الوشيعة وثناني القطب - - - - - - الستاذ : مدور سيف الدين

| التمرين (1):         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |   |  |
|----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---|--|
| العلامة مجرزأة مجموع |                      | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |   |  |
| مبوح                 | مجر , د              | لتمرين (1): (06 نقاط):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |   |  |
|                      |                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |   |  |
| 0,5                  | 0,25<br>0,25         | $u_{R1} + u_{R2} + u_b = E$ $R_1 i + R_2 i + L \frac{di}{dt} + ri = E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | التمثيل                   | 1 |  |
| 2                    | 0,25<br>0,25         | $R_{1}i + R_{2}i + L\frac{di}{dt} + ri = E$ $R_{1}i + R_{2}i + L\frac{di}{dt} + ri = E$ $R_{1}i + R_{2}i + L\frac{di}{dt} = E$ $R_{2}i + R_{3}i + R_{3}i + R_{3}i$ $R_{3}i + R_{3}i + R_{3}i$ $R_{4}i + R_{5}i + R_{5}i$ $R_{5}i + R_{5}i + R_{5}i$ $R_{7}i + R_{7}i + R_{7}i$ $R_{1}i + R_{2}i + R_{7}i$ $R_{1}i + R_{2}i + R_{7}i$ $R_{2}i + R_{7}i$ $R_{3}i + R_{7}i$ $R_{4}i + R_{7}i$ $R_{5}i + R_{7}i$ $R_{7}i + R_{7}$ | أ ـ المعادلة<br>التفاضلية |   |  |
|                      | 0,25<br>0,25         | $I_0=rac{E}{R_1+R_2+r}$ ومنه : $i=I_0$ و منه $i=I_0$ ومنه :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $I_0$ ب عبارة             | 2 |  |
|                      | 0,25                 | $i(t) = I_0 - I_0 e^{-\frac{t}{\tau}}$ (1) $\frac{di}{dt} = \frac{1}{\tau} I_0 e^{-\frac{t}{\tau}}$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |   |  |
|                      | 0,25<br>0,25<br>0,25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ت ـ حل<br>المعادلة        |   |  |
| 1                    | 0,25<br>0,25         | $u_{b}(t) = L \frac{dt}{dt} + ri = \frac{L}{\tau} I_{0} e^{-\frac{\tau}{\tau}} + r I_{0} (1 - e^{-\frac{\tau}{\tau}}). \qquad \frac{L}{\tau} I_{0} = E \qquad u_{b}(t)$ $u_{b}(t) = E e^{-\frac{t}{\tau}} + r I_{0} (1 - e^{-\frac{t}{\tau}}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | العبارات<br>النينية       | 3 |  |
|                      | 0,25                 | $\begin{array}{c ccccc} u_{R1}(t) = R_1 i = > & u_{R1}(t) = R_1 I_0 (1 - e^{-\frac{t}{\tau}}) & u_{R1}(t) \\ u_{R2}(t) = R_2 i = > & u_{R2}(t) = R_2 I_0 (1 - e^{-\frac{t}{\tau}}) & u_{R2}(t) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | الزمنية:                  |   |  |
|                      | 0,25                 | NO TO THE TOTAL PARTY OF THE PA                                                         | 11-                       |   |  |
| 0,75                 | 0,25                 | $t=\infty egin{array}{c c} u_{R1}(\infty)=R_1I_0 & R_1 < R_2 & u_{R1}(t)=> (rac{2}{2})$ المنحنى $u_{R2}(\infty)=R_2I_0 & u_{R1} < u_{R2} & u_{R2}(t)=> (rac{1}{2})$ المنحنى $u_{R2}(t)=> (rac{1}{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $u_{R1} \ u_{R2}$         | 4 |  |
|                      | 0,25                 | $t = 0 \mid u_h(0) = E \mid u_h(t) = > (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $u_b$                     |   |  |
|                      | 0,25                 | $u_{R1}(\infty) = R_1 I_0 = 3 V$ $R_1 = \frac{3}{I_0} = \frac{3}{0.1} = R_1 = 30 \Omega.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $R_1$                     |   |  |
|                      | 0,25                 | $u_{R2}(\infty) = R_1 I_0 = 5 V$ $R_2 = \frac{5}{I_0} = \frac{5}{0.1} = R_2 = 50 \Omega.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $R_2$                     |   |  |
| 1,25                 |                      | $u_{R1}(\infty) = R_1 I_0 = 3 V \qquad R_1 = \frac{3}{I_0} = \frac{3}{0.1} \Rightarrow R_1 = 30 \Omega.$ $u_{R2}(\infty) = R_1 I_0 = 5 V \qquad R_2 = \frac{5}{I_0} = \frac{5}{0.1} \Rightarrow R_2 = 50 \Omega.$ $u_b(\infty) = rI_0 = 1 V \qquad r = \frac{1}{I_0} = \frac{1}{0.1} \Rightarrow r = 10 \Omega.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r                         | 5 |  |
|                      | 0,25                 | $u_b(0) = E = 9 V = \frac{E = 9 V}{E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                         |   |  |
|                      | 0,25                 | $\tau = 0.01  s  \begin{vmatrix} L = \tau (R_1 + R_2 + r) = 0.01 \times (50 + 30 + 10) \\ L = 0.9  H \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                         |   |  |
| 0,5                  | 0,25<br>0,25         | $E_{L}(t) = \frac{1}{2}Li_{(t)}^{2}.$ $E_{L}(t) = \frac{1}{2}L(I_{0}\left(1 - e^{-\frac{t}{\tau}}\right))^{2}.$ $E_{L}(t) = \frac{1}{2}LI_{0}^{2}(1 - e^{-\frac{t}{\tau}})^{2}.$ $E_{L}(t) = \frac{1}{2}LI_{0}^{2}(1 - e^{-\frac{t}{\tau}})^{2}.$ $E_{L}(\tau) = \frac{1}{2}0.9.0.1^{2}(1 - e^{-1})^{2}.$ $E_{L}(\tau) = 1.8 \times 10^{-3} J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | الطاقة المخزنة            | 6 |  |

المستوى : سنة ثالثة ثانوي تصحيح سلسلة التمارين في مادة العلوم الفيزيائية الشعبة : ع  $\pi$  /  $\pi$  /  $\pi$  الوحدة  $\pi$  2 : دراسة الظواهر الكهربائية  $\pi$  الوشيعة وثنائي القطب  $\pi$   $\pi$   $\pi$  العلوم الدين

|         |              |                                                                                                                                                                                                                                                                                                                                                                                         | رين (2) :                                           | الت  |
|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------|
| العلامة |              | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                           |                                                     |      |
| مجموع   | مجزأة        |                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |      |
|         |              | ناط):                                                                                                                                                                                                                                                                                                                                                                                   | رين (2) : (88 نة                                    | التم |
|         |              |                                                                                                                                                                                                                                                                                                                                                                                         | Ī                                                   | Ι    |
|         | 0,25<br>0,25 | $\begin{array}{ll} u_{R1} + u_{R2} + u_b = E. \\ R_1 i + R_2 i + L \frac{di}{dt} = E. \\ (R_1 + R_2) i + L \frac{di}{dt} = E. \end{array} \qquad \begin{array}{l} (R_1 + R_2) : \frac{di}{dt} = \frac{E}{(R_1 + R_2)}. \\ i + \frac{L}{(R_1 + R_2)} \cdot \frac{di}{dt} = \frac{E}{(R_1 + R_2)}. \\ i + \frac{L}{(R_1 + R_2)} \cdot \frac{di}{dt} = \frac{E}{(R_1 + R_2)}. \end{array}$ | المعادلة<br>التفاضلية                               |      |
|         | 0,25         | $\begin{vmatrix} i \cdot (t) & t \end{vmatrix} = \frac{t}{t} \begin{pmatrix} -\frac{t}{t} & -\frac{t}{t} \\ -\frac{t}{t} & -\frac{t}{t} \end{pmatrix}$                                                                                                                                                                                                                                  |                                                     |      |
| 2,75    | 0,25<br>0,25 |                                                                                                                                                                                                                                                                                                                                                                                         | $	au_0$                                             | 1    |
|         |              | $u_x = u_{R1} = R_1 i = R_1 I_0 (1 - e^{-\frac{t}{\tau}})$                                                                                                                                                                                                                                                                                                                              |                                                     |      |
|         | 0,25         | $u_{y} = u_{R1} + u_{b} = R_{1}i + L\frac{di}{dt} = R_{1}I_{0}(1 - e^{-\frac{t}{\tau}}) + L\frac{I_{0}}{\tau}e^{-\frac{t}{\tau}}.$ $u_{y} = R_{1}I_{0}(1 - e^{-\frac{t}{\tau}}) + Ee^{-\frac{t}{\tau}}.$                                                                                                                                                                                | ب ـ العبارة<br>الزمنية                              |      |
|         |              | $u_{x}(\infty) = R_{1}I_{0} \qquad \qquad u_{y}(\infty) = R_{1}I_{0}$                                                                                                                                                                                                                                                                                                                   |                                                     |      |
|         | 0,25         | $t = 0$ $u_x(0) = R_1 I_0 (1 - e^{-0}) = 0.$ (b) $u_x(0) = R_1 I_0 (1 - e^{-0}) = 0.$                                                                                                                                                                                                                                                                                                   | ت ـ                                                 |      |
|         | 0,25         | $t=0$ $u_y(0)=R_1I_0(1-e^{-0})+Ee^{-0}=E$ . (a) يوافق المنحنى                                                                                                                                                                                                                                                                                                                           |                                                     |      |
| 1       | $\sim$       | $\begin{vmatrix} u_{y}(0) = E = 12 V \\ u_{x}(\infty) = R_{1}I_{0} = 8 V \\ I_{0} = \frac{8}{R_{1}} = \frac{8}{40} = > I_{0} = 0.2 A. \end{vmatrix} I_{0} = \frac{E}{R_{1} + R_{2}} = > R_{2} = \frac{E}{I_{0}} + R_{1}.$ $R_{2} = \frac{12}{0.2} - 40 = > R_{2} = 20 \Omega.$                                                                                                          | $E$ $I_0$                                           | 2    |
|         | 0,25<br>0,25 | $\tau = 5.10^{-3} s  \tau = 5 ms $ $\tau = \frac{L}{R_1 + R_2}$ $L = \tau \cdot (R_1 + R_2)  L = 5.10^{-3} \times (40 + 20)  = 0.3 H$                                                                                                                                                                                                                                                   | τ<br><i>L</i>                                       | _    |
|         | ı            |                                                                                                                                                                                                                                                                                                                                                                                         | I                                                   | II   |
| 1       | 0,25         | $E_{L}(t) = \frac{1}{2}Li_{(t)}^{2}.$ $E_{L}(t) = \frac{1}{2}LI_{0}^{2}(1 - e^{-\frac{t}{\tau}})^{2}.$ $E_{L}(\infty) = \frac{1}{2}LI_{0}^{2}(1 - e^{-\infty})^{2}.$ $E_{L}(\infty) = \frac{1}{2}0,3.0,2^{2}.$ $E_{L}(\infty) = 6 \times 10^{-3} J = 6 mJ$                                                                                                                              | أ ـ العبارة<br>الزمنية<br>ب ـ استنتاج<br>$E_L(max)$ | 1    |
|         | 0,25         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                  | ث ـ السلم                                           |      |
| 1,75    | 0,25<br>0,25 | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                      | τ - <sup>ĵ</sup>                                    |      |
|         | 0,25<br>0,25 | $E_{L}(t) = \frac{1}{2}Li_{(t)}^{2}.$ $E_{L}(t) = \frac{1}{2}LI_{0}^{2}(1 - e^{-\frac{t}{\tau}})^{2}.$ $E_{L}(t) = E_{L}(0)(1 - e^{-\frac{t}{\tau}})^{2}.$ $t = t_{1/2} = E_{L}(t) = \frac{E_{L}(0)}{2}.$ $\frac{E_{L}(0)}{2} = E_{L}(0)(1 - e^{-\frac{t}{\tau}})^{2}.$ $\sqrt{\frac{1}{2}} = 1 - e^{-\frac{t_{1/2}}{\tau}}.$ $\sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}.$                | ب ـ العبارة                                         | 2    |

الصفحة : 2 / 4

ثانوية: المجاهد قندوز علي ، سيدي خويلد \_ ورقلة

|      | ئىعبة: ع ت<br>ذ: مدور سې     | ن: سنة ثالثة ثانوي تصحيح سلسلة التمارين في مادة العلوم الفيزيائية الشريائية الشريائية الشريائية الشريائية $RL$ : دراسة الظواهر الكهربائية $-$ الوشيعة وثنائي القطب $RL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |  |
|------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
|      | 0,25<br>0,25                 | $e^{-\frac{t_{1/2}}{\tau}} = 1 - \frac{\sqrt{2}}{2}.$ $e^{-\frac{t_{1/2}}{\tau}} = \frac{2 - \sqrt{2}}{2}.$ $\ln e^{-\frac{t_{1/2}}{\tau}} = \ln \frac{2 - \sqrt{2}}{2}.$ $t_{1/2} = \ln \frac{2}{2 - \sqrt{2}}.$ $t_{1/2} = \tau \cdot \ln (\frac{2}{2 - \sqrt{2}}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |  |
|      | 0,25                         | $t_{\frac{1}{2}} = 1,228. \tau = 1,228 \times 5 = \frac{t_{\frac{1}{2}}}{1,228} = 6,14 \text{ ms}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | III      |  |
| 0,5  | 0,25                         | $t=0$ $u_x(0)=R_1I_0ig(1-e^{-0}ig)=0$ $u_x(0)=R_1I_0ig(1-e^{-0}ig)=E$ $u_y(0)=R_1I_0(1-e^{-0})$ $u_y(0)=R_1I_0(1-e^{-0})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        |  |
| 0,5  | 0.25                         | $t - \infty$ $u_{x}(\infty) = R I_{x}' = \sum_{x} I_{x}' = \frac{u_{x}(\infty)}{1} = \frac{6.4}{1} = \sum_{x} I_{x}' = 0.16.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2        |  |
| ,    | 0,25                         | $I_0 = \frac{E}{R_1 + R_2 + r'} = > r' = \frac{E}{I_0'} - R_1 - R_2 = \frac{12}{0,16} - 40 - 20 = \frac{15 \Omega}{10}.$ $r'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |  |
| 0,5  | 0,25                         | $I_0 = \frac{E}{R_1 + R_2 + r'} = > r' = \frac{E}{I_0'} - R_1 - R_2 = \frac{12}{0,16} - 40 - 20 = \frac{15}{0}$ . $r'$ $\tau' = \frac{L}{R_1 + R_2 + r'} = \frac{0,3}{40 + 20 + 15} = > \frac{\tau'}{2} = \frac{4.10^{-3}}{20} = \frac{10}{10} $ | 3 ثابد   |  |
| -    |                              | <u>: (3) ن</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |  |
|      | 1                            | : (36) نقاط) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | التمرين  |  |
| 1    | 0.25<br>0.25<br>0.25<br>0.25 | $U_{b} + U_{R} = E \Rightarrow \frac{di}{dt} + \frac{R+r}{L}i = \frac{E}{L}$ $A = \frac{R+r}{L}B = \frac{E}{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |  |
| 1    | 0. 5<br>0.25<br>0.25         | $rac{E}{L}=20 \Rightarrow L=rac{12}{20}=0.6H$ البيان عبارة على خط مستقيم معادلته من $	au=rac{1}{400}=2.5ms$ خط مستقيم معادلته من $	au=rac{1}{400}=2.5ms$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Í        |  |
| 0.5  | 0.5                          | I I 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ب 2      |  |
| 0.5  | 0.25<br>0.25                 | $I_0 = 50 \times 10^{-3} = 0.05A$ $I_0 = \frac{E}{R+r} = \frac{12}{240} = 0.05A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ح ا      |  |
| 0.5  | 0.5                          | $E_{bMax} = \frac{1}{2}LI_0^2 = 0.5 \times 0.6 \times (0.05)^2 = 7.5 \times 10^{-4}J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |  |
|      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | II       |  |
| 0.5  | 0.5                          | $U_b + U_R = 0 \Rightarrow \frac{di}{dt} + \frac{R}{L'}i = 0 \Rightarrow \frac{dU_b}{dt} + \frac{R}{L'}U_b = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1      |  |
| 0.5  | 0.25<br>0.25                 | المعادلة ت تقبل حلا: اشتقاق + تعويض $0=0$ محققة $0=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |  |
| 0.5  | 0.25<br>0.25                 | -حماية الدارة من فرط التوتر<br>- يسمح بمرور التيار في جهة واحدة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |  |
| 0.25 | 0.25                         | $6cm \rightarrow 12V$ $1cm \rightarrow 2V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |
| 0.25 | 0.25                         | $I_0 = \frac{E}{R} = \frac{12}{200} = 0.06A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |  |
| 0.5  | 0.25<br>0.25                 | $	au$ توجد علاقة عكسية بين ثابت الزمن ومقاومة الدارة. $	au=rac{L'}{R}=rac{0.6}{200}=3ms$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |
| 4/3: | الصفحة                       | المجاهد قندوز علي ، سيدي خويلد – ورقلة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ثانوية : |  |

الشعبة: ع ت / تر / ريا المستوى: سنة ثالثة ثانوي تصحيح سلسلة التمارين في مادة العلوم الفيزيائية جمع وإعداد الأستاذ: مدور سيف الدين

الوحدة 2\_2: دراسة الظواهر الكهربانية - الوشيعة وثناني القطب RL

| التمرين (4) : |                                      |                                                                                                                                                                                                                                            |                                                                                                                                                              |                              |      |  |
|---------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|--|
| العلامة       |                                      | عناصر الإجابة                                                                                                                                                                                                                              |                                                                                                                                                              |                              |      |  |
| مجموع         | مجزأة                                |                                                                                                                                                                                                                                            | ناط) ٠                                                                                                                                                       | رين (4) : (66 ن <del>ا</del> | التم |  |
|               |                                      |                                                                                                                                                                                                                                            | • (                                                                                                                                                          | <u> </u>                     | I    |  |
| 0,75          | 0,25<br>0,25<br>0,25                 | Ri                                                                                                                                                                                                                                         | $+ u_b = E$ $+ u_b = E$ , نشتق $\frac{di}{dt} + \frac{du_b}{dt} = \frac{dE}{dt}$ .                                                                           | التمثيل                      | 1    |  |
| 0,5           | 0,25<br>0,25                         | $E \uparrow \downarrow $                        | $= L. \frac{di}{dt} = > \frac{di}{dt} = \frac{u_b}{L}.$ $u_b + \frac{du_b}{dt} = 0.$ $+ \frac{du_b}{dt} = 0$                                                 | المعادلة<br>التفاضلية        | 2    |  |
| 0,25          | 0,25                                 | $u_b(t) = Ae^{B.t} \underline{\hspace{1cm}} (1)$                                                                                                                                                                                           | $\frac{du_b}{dt} = B.Ae^{B.t} _(2)$                                                                                                                          |                              |      |  |
| 0,75          | 0,25<br>0,25<br>0,25                 | عوض (1) و (2) في المعادلة التفاضلية $rac{1}{\tau}Ae^{B.t}+B.Ae^{B.t}=0.$ $B.Ae^{B.t}=-rac{1}{\tau}Ae^{B.t}.$ $B=-rac{1}{\tau}.$                                                                                                         | من قانون جمع التوترات $u_R + u_b = E$ $t = 0 \Rightarrow u_R = 0$ $u_b = E$ $u_b(0) = A$ $A = E$                                                             | حل المعادلة                  | 3    |  |
| 1             | 0,25<br>0,25<br>0,25<br>0,25         | $u_R + u_b = E$ $u_R = E - u_b = E - Ee^{-\frac{t}{\tau}}.$ $u_R(t) = E(1 - e^{-\frac{t}{\tau}}).$                                                                                                                                         | $\frac{u_R}{u_b} = \frac{E(1 - e^{-\frac{t}{\tau}})}{Ee^{-\frac{t}{\tau}}} = \frac{1}{e^{-\frac{t}{\tau}}} - 1.$ $\frac{u_R}{u_b} = e^{\frac{t}{\tau}} - 1.$ | العبارة اللحظية عبارة النسبة | 4    |  |
|               | 0,25<br>0,25                         | $u_b = 10  ms$ ، بالإسقاط ،                                                                                                                                                                                                                | $\tau = \frac{L}{R} = > L = \tau.R.$ $L = 0.01 \times 60 = 0.6 H$                                                                                            | أ ـ ثابت الزمن<br>الذاتية L  | 5    |  |
| 1,75          | 0,25<br>0,25<br>0,25<br>0,25<br>0,25 | $\frac{1}{dt} = \frac{1}{\tau}e^{-\tau}$ .                                                                                                                                                                                                 | $u_R(t) = a.t$ $u_R(t) = \frac{E}{\tau}.t.$ $a = \frac{3-0}{5.10^{-3}-0} = 600.$ $u_R(t) = 600.t$ $\frac{E}{\tau} = 600.\tau = 600 \times 0.01$ $E = 6V$     | E - ب                        |      |  |
|               | 0,25                                 | $u_b = Ee^{-\frac{t}{\tau}} => u_b = 6e^{-1} =$                                                                                                                                                                                            | 2,2 <i>V</i> .                                                                                                                                               | $u_b$ - ت                    |      |  |
| 0,5           | 0,25<br>0,25                         | $u_{R}(t) = E(1 - e^{-\frac{t}{\tau}}).$ $\frac{u_{R}(t)}{R} = \frac{E}{R}(1 - e^{-\frac{t}{\tau}}).$ $E_{L}(t) = \frac{1}{2}Li_{(t)}^{2}. \Rightarrow E_{L}(\infty) = \frac{1}{2}I$ $E_{L}(\infty) = 0.5 \times 0.6 \times (0.1)^{2} = 3$ | $i(t) = I_0 (1 - e^{-\frac{t}{\tau}}).$ $I_0 = \frac{E}{R} = \frac{6}{60} = 0.1 \text{ A}$                                                                   | العبارة اللحظية<br>i(t)      | 6    |  |
| 0,5           | 0,25<br>0,25                         | $E_L(t) = \frac{1}{2}Li_{(t)}^2 = E_L(\infty) = \frac{1}{2}I$ $E_L(\infty) = 0.5 \times 0.6 \times (0.1)^2 = 3$                                                                                                                            | $L(I_0)^2 = 3  mJ.$                                                                                                                                          | الطاقة<br>الأعظمية           | 7    |  |