

Find the nearest clone ☆

Problem Submissions Leaderboard Editorial

RATE THIS CHALLENGE

公公公公公

In this challenge, there is a connected undirected graph where each of the nodes is a color. Given a color, find the shortest path connecting any two nodes of that color. Each edge has a weight of 1. If there is not a pair or if the color is not found, print -1.

For example, given $graph_nodes = 5$, and 4 edges $g_from = [1, 2, 2, 3]$ and $g_to = [2, 3, 4, 5]$ and colors for each node are arr = [1, 2, 3, 1, 3] we can draw the following graph:

Each of the nodes is labeled [node]/[color] and is colored appropriately. If we want the shortest path between color $\bf 3$, blue, we see there is a direct path between nodes $\bf 3$ and $\bf 5$. For green, color $\bf 1$, we see the path length $\bf 2$ from $\bf 1 \rightarrow \bf 2 \rightarrow \bf 4$. There is no pair for node $\bf 4$ having color $\bf 2$, red.

Function Description

Complete the findShortest function in the editor below. It should return an integer representing the length of the shortest path between two nodes of the same color, or -1 if it is not possible.

findShortest has the following parameter(s):

- g_nodes: an integer, the number of nodes
- g_from: an array of integers, the start nodes for each edge
- g_to: an array of integers, the end nodes for each edge
- ids: an array of integers, the color id per node
- val: an integer, the id of the color to match

Input Format

The first line contains two space-separated integers n and m, the number of nodes and edges in the graph. Each of the next m lines contains two space-separated integers $g_from[i]$ and $g_to[i]$, the nodes connected by an edge.

The next line contains n space-seperated integers, ids[i], representing the color id of each node from 1 to n. The last line contains the id of the color to analyze.

Note: The nodes are indexed from 1 to n.

Constraints

$$1 \le n \le 10^6$$

$$1 \le m \le 10^6$$

$$1 \leq ids[i] \leq 10^8$$

Output Format

Print the single integer representing the smallest path length or -1.

Sample Input 0

- 4 3
- 1 2
- 1 3
- 4 2
- 1 2 1 1
- 1

Sample Output 0

1

Explanation 0

In the above image the distance between the closest nodes having color label ${f 1}$ is ${f 1}$.

Sample Input 1

- 4 3
- 1 2
- 1 3
- 4 2
- 1 2 3 4
- 2

Sample Output 1

-1

Explanation 1

Sample Input 2

5 4

1 2

1 3

2 4

3 5

1 2 3 3 2

2

Sample Output 2

3

Explanation 2


```
K N Q
                                                     Java 8
     import java.io.BufferedReader;
 1
 2
     import java.io.IOException;
 3
     import java.io.InputStreamReader;
 4
     import java.util.HashSet;
 5
     import java.util.LinkedList;
 6
     import java.util.List;
 7
     import java.util.Set;
 8
     import java.util.StringTokenizer;
 9
10
     public class Solution {
```