

AD-AU90 774 HONEYWELL INC ST PETERSBURG FL F/G 9/2
MILITARY ADAPTATION OF COMMERCIAL ITEM (MACI) PROGRAM ON ELECTR--ETC(U)
SEP 80 R L WIKER, R W CARTER, J MATTOX DAAB07-78-C-2935
UNCLASSIFIED 1079-16060-3 DELET-TR-78-2935-3 NL

1 OF 1
AD-AU90 774

END
DATE FILMED
11-80
DTIC

AD A090774

980-16962

Research and Development Technical Report
DELET-TR-78-2935-3

18

6
**MILITARY ADAPTATION OF COMMERCIAL ITEM
(MACI) PROGRAM ON ELECTRICALLY
ALTERABLE READ ONLY MEMORY (EAROM)**

10 Richard L. Wiker
K. W. Carter
J. M. McLox

HONEYWELL INC.
13350 U.S. Highway 19
St. Petersburg, FL 33733

11 September 1980

9
12 Third Interim Report, for period 15 December 1979 - 15 May 1980,

DDC FILE COPY

DISTRIBUTION STATEMENT

Approved for public release:
Distribution unlimited.

Prepared for:
US Army Electronics Technology and Devices Laboratory

ERADCOM

US ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND
FORT MONMOUTH, NEW JERSEY 07703

LEVEL III

5

12 DIAB01-78-C-3492

DTIC
ELECTE
S OCT 23 1980 D

E

13 1979 164-1-3

170190

80 10 21 067

980-16962

DISCLAIMERS

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

The attached report is based on limited sample tests performed to date. All tests to be performed are not complete. In addition, it must be recognized that tests were performed to the specifications in MIL-STD-883-B and may be more restrictive than the respective vendor's data sheet.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DELET-TR-78-2935-3	2. GOVT ACCESSION NO. AD-A090 774	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Military Adaptation of Commercial Item (MACI) Program of Electrically Alterable Read Only Memory (EAROM)	5. TYPE OF REPORT & PERIOD COVERED 15 Dec 1979 - 15 May 80	
7. AUTHOR(s) R.L. Wiker, R.W. Carter, J. Mattox	6. PERFORMING ORG. REPORT NUMBER 1079-16060	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Honeywell Inc. 13350 U.S. Highway 19 St. Petersburg, FL 33733	8. CONTRACT OR GRANT NUMBER(s) DAAB07-78-C-2935	
11. CONTROLLING OFFICE NAME AND ADDRESS Commander ERADCOM Attn: DELET-I3-D Ft. Monmouth, NJ 07703	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 1T764000D00R00	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	12. REPORT DATE September 1980	
	13. NUMBER OF PAGES	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release. Distribution unlimited.	15. SECURITY CLASS. (of this report) Unclassified	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) EAROM Militarization LSI Devices LSI Device Characterization	MNOS Device Accelerated Testing	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Development of Accelerated Testing of Unique MNOS Characteristics.	<i>Refa 1 N-1, 10 Aug 80 Commander</i>	

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

980-16962

TABLE OF CONTENTS

	<u>Page</u>
Paragraph 1	1
2	INTRODUCTION
2	SCOPE
3	PROGRAM PLAN
4	BACKGROUND
5	MEMORY DEVICE STATUS
6	FINAL TEST PLAN
7	SCREEN TEST AND PERFORMANCE
7.1	Yield
7.1.1	Leak Test
7.1.2	Pre-Burn-In Electrical Test (Screen Tests)
7.1.3	Post 160 Burn-In Retention Tests
7.1.4	D.C. Parameter Tests
7.1.5	Final Functional Test
7.1.6	Screened Parts Delivery To ERADCOM
8	ACCELERATED TESTING OF TIME RELATED PARAMETERS IN MNOS MEMORIES
9	CONCLUSIONS

Accession For	
NTIS GRA&I	
DDC TAB	
Unannounced	
Justification	
By _____	
Distribution _____	
Availability _____	
Dist.	Available special
A	

FIGURES

	<u>Page</u>
FIGURE 3-0 Final Test Plan	10
3-1a Burn-In Circuit	11
7-1 Yield Losses	17
7-2 High Temperature Retention Test for ER3400	19
7-3 High Temperature Retention Test for NCR2451	20
7-4a Initial Post Burn-In Retention Slope	21
7-4b Final Post Burn-In Retention Slope	21
7-5 Third Burn-In for ER3400 Device No. 863	22
7-6 Second Burn-In Period for ER3400 Device No. 832	23
7-7 Second Burn-In Period for ER3400 Device No. 875	25
7-8 ER2810 (LPCVD Nitride) Retention Plot at +125°C for Device No. T1	26
7-9 ER2810 (LPCVD Nitride) Retention Plot at +125°C for Device No. T9	27
7-10 Internal Reference Voltage of All ER3400/ NCR2451 Parts Used in MACI Program	28
7-11 Internal Reference Voltage Distribution of All ER3800/NCR2451 Parts Passing Screen Test	29
7-12 Distribution of All ER3400/NCR2451 Measured Offset Values for MACI Program	30
7-13 Distribution of ER3400/NCR2451 Parts Passing Screen Test	31
7-14 Distribution of Measured IDD (De-Selected) Values at +125°C	53
7-15 Distribution of Measured IDD (Selected) Values at +125°C	53
7-16 Distribution of Measured Value of IGG at +125°C	54
7-17 Distribution of Measured ISS (De-Selected) Values at +125°C	55
7-18 Distribution of Measured ISS (Selected) Values at +125°C	55
7-19 Output Voltage Level (VOL) at Specified Load of ER3400/NCR2451 at +125°C	56
7-20 Output Voltage Level (VOH) Distribution of ER3400/NCR2451	57

FIGURES

	<u>Page</u>
FIGURE 7-21 IDD (VDD=-13V) Distribution at -55°C in De-Selected Mode for ER3400/NCR2451	58
7-22 IDD (VDD=-13V) Distribution at -55°C in Selected Mode for ER3400/NCR2451	59
7-23 IGG (VGG=-13V) Distribution for ER3400/ NCR245 Parts at -55°C	60
7-24 ISS (VSS=+5V) Distribution at -55°C for ER3400/NCR2451 Parts in the De-Selected Mode	61
7-25 ISS (VSS=+56) Distribution at -55°C for ER3400/NCR2451 Parts in the Selected Mode	62
7-26 Output Voltage Level (VOH) at -55°C for ER3400/NCR2451	64
7-27 Output Voltage Level (VOL) at -55°C for ER3400/NCR2451	64
8-1 Retention Prediction Curve	66
8-2 Retention Nomograph for ER3400/NCR2451 Devices	70
8-3a VT ₁ of Screened Devices	71
8-3b VT ₁ of All Tested MACI WAROMS	72
8-4 Nomograph Use Example Problem	73
8-5 Plotting of Sample Problem Data	75
8-6 Endurance Characteristics for MNOS Devices as a Function of Soft Erase Threshold Measurement	77
8-7 Endurance Versus Soft Erase Threshold	78
8-8 Soft Erase Threshold Distribution for Predicting Endurance	79
8-9 Erase Substrate Leakage Current (IEEL) Versus Read Threshold (VT)	84

1. INTRODUCTION

The objectives of the MACI-EAROM Program were previously stated in the First and Second Interim Reports. Due to the unusual nature of the EAROM/WAROM devices under study in this program, the job of developing a useful and practical slash sheet and test plan is uniquely complex and difficult. This is particularly true due to the fact that those manufacturers that supply the devices either are not eager to sell to a military market or are in the early stages of specifying and characterizing for that range of operation.

While all the normal complexities of memory device evaluation still apply to EAROM/WAROM devices, additional dimensions of time retention data and the variation of that parameter and others as a function of number of write/erase cycles compounds the specifying and testing problems. Other effects like read, disturb, retention and temperature effects on writing, erasing and endurance required a potential user to have an in-depth understanding of the MNOS technology to properly apply these devices to his systems.

In most cases, accelerated tests for monitoring these complex parameters have either not been developed or are not widely known or published. The specifying of these test parameters is even more difficult due to a lack of a broad data base of characterization data.

This program pioneered in several of these uncertain areas of parameter testing and prediction due to the glaring need to provide some kind of definition and organization to those seeking a cost effective solution to alterable non-volatile memories. The baseline for tests that predict which devices will "wear-out" faster and be disturbed sooner by read cycling was developed and some correlation to expected results shown. The significance of these tests to potential user cannot be overestimated.

Previous methods for determining endurance and read disturb effects were limited to lot sampling tests which either destroyed the parts or took long periods of tests to measure and showed very poor correlation to the actual performance of the remaining parts in the lot. Due to this uncertainty in sorting out poor performing parts prior to systems application, many potential users were diverted to other less cost effective solutions. By allowing 100 percent testing of MNOS parts, direct indication of each device's potential performance reduces the risk of experiencing in situ failures in critical field situations. While the empirical data base established is still small, relative capabilities of parts can be established which allows sorting by critical parameters, minimizing the probability of system level failures which is significantly better than previous methods. Section 8 covers the progress in this important area.

The First Interim Report (DELET-TR-78-2935-1) covered the Pre-selection Phase of the contract which developed the selection criteria for picking which devices would be considered as candidates for selection as the most suitable devices for military applications. These criteria were developed from surveying potential users from military, government and defense contractor areas to determine desirable device organizations and performance parameters.

The results were used to select five device types and to establish the characterization tests to be performed. Once the devices were selected, each potential manufacturer was surveyed and questioned on quality control and inspection procedures and these compared to MIL-STD-883-B specifications. The performance of each type device was characterized for speed, power, radiation resistance, retention, endurance, read disturb effects and DC parameters and the results presented. Endurance prediction techniques were developed and correlated to endurance measurements taken. Package testing, including lead pull, temperature cycling and shock, fine and gross leak and vibration were performed on all devices. In addition the first report covered potential applications and chip photomicrographs.

The second Interim Report (DELET-TR-78-2935-2) clarified some of the results shown in the earlier report and further reported on the writing characteristics and total dose radiation performance. It presented the comparative performance data in matrix form and detailed the reason for selection of the NCR 2451/ER3400 as the candidate part for potential military qualification. DC parameter data such as input/output levels, power performance and leakage current were examined. A preliminary form of a final test plan was shown for the selected parts.

This report picks up from where the last report finished and details the last phase of the MACI program which is concluded by the delivery of 50 fully-screened parts, a proposed slash sheet and the Final Test Plan.

2. SCOPE

This report covers the following areas:

- Provide background for evaluation of data presented
- Update information on MNOS device status
- Discusses results of screen and performance testing

- Discusses trends of performance analyzed from screen and performance testing
- Presents the proposed slash sheet for ER3400/NCR2451 devices
- Presents the final version of the test plan
- Discusses accelerated test methods for endurance, read disturb and retention
- Demonstrates a monograph developed for accelerated retention measurement and prediction
- Conclusions drawn from results of testing and vendor interface.

3. PROGRAM PLAN

The program plan shown in Figure 2-1 shows the progression of the MACI program. The shaded area to the right of this diagram shows the portion completed in the third phase of the MACI program. The remaining deliverables are left to be discussed and analyzed on the final report.

4. BACKGROUND

The two previous MACI EAROM reports covered the pre-selection phase, the selection of a final device type, some performance data and the development of the Test plan for screening the devices. The last report paid particular attention to the writing characteristics of these devices. It showed the relationship between write, voltage levels and written threshold level. In addition, the relationship between write time and threshold was explored. Another area investigated was the effect of Total Dose Radiation levels on the data thresholds and read access times of the MNOS memory devices.

The MACI program attempts to provide some definition to areas of the MNOS technology not formally defined at this time, by industry standards. As a result, some approaches shown in this report may be at variance with the ultimate standard that is set in some parameters. Due to the complex nature of the interrelationships between the time related parameters (i.e., retention, read disturb, endurance), it is necessary that a potential user have a full understanding of the technology before applying it in his systems. The MACI results can therefore be used as a base upon which a more thorough understanding can be built.

Due to the limited nature of the MACI program, it should be known by potential users of the results presented that the data base from which they are drawn is very narrow. In each case, the testing was

FIGURE 2-1. MACI-MNOS EAROM PROGRAM

performed on either a single lot or across a few lots and the results may be more indicative of that lot than the general run of similar devices produced. It is recommended that anyone wanting to use the results shown perform similar characterizations themselves to confirm the relationship shown in this report.

The relationships used to create the accelerated or predictive tests are well known and established. Empirical data indicated that, assuming similar nitride quality and oxide thickness, the endurance of MNOS devices was directly related to the relative thickness of the nitride layer in the gate region. It is also well established that nitride thickness bears an inverse relationship to the speed with which a device can be erased. By combining these two relationships, a test was developed using a "soft" erase following a full write to indicate which devices had thicker nitride layers and thus would exhibit longer endurance. With all devices subjected to these measurements, devices selected to be at opposite ends of the spectrum of nitride thicknesses were tested for endurance to determine if a correlation could be established. When the results were encouraging, further study was indicated. The impact of endurance prediction is significant if it can eliminate most low endurance parts from reaching systems in the field. While this method is currently relatively crude and with little supporting data base, it appears far superior to lot sampling endurance testing in correlation to devices being screened.

5. MEMORY DEVICE STATUS

The availability status of several of the original candidate devices has undergone change since the second MACI report.

- The Nitron NC7810 is now available but is limited to +85 degrees C operation due to a relatively low retention at high temperature. Work is being performed to improve and extend the range of this part.
- General Instruments is making both military grade 2810's (ER2810 HR) and industrial grade parts (ER2810 IR).
- General Instruments is now making ER2810's in leadless carriers called ER2810 LP.
- NCR has now adopted a policy of being more open to OEM sales, making the parts they previously sold available now for commercial sale.
- The Hitachi 16K N-channel MNOS EEPROM is now available in sample quantities. It is pin compatible with versions of the 2716 UVEPROM, has a single 5V supply and boasts a 300 ns max access time.

980-16962

- General Instruments will introduce a 1K N-channel EAROM approximately at the beginning of 1981 with an access time of 300 ns organized 128 wds bu 8 bits, and plans to introduce a 16K Bit P-channel part at approximately the same time.
- LPCVD Nitride parts being shipped from GI show similar characteristics to the older reactor parts with some indication that a lower yield to +125 degree C retention requirements may result. Some effects on read disturb and endurance characteristics appear to be resulting also. Contact GI for details.
- Nitron is not yet selling the NC7451 parts due to some initial start-up problems with developing the part.
- Military interest in MNOS memories is rising, particularly with regard to radiation hardened applications to replace expensive power consuming magnetic alternatives.

These sources of common parts remain as viable sources for MNOS devices with new Japanese related parts becoming available as single sourced parts. The switch to N-channel parts should accelerate demand for this technology in the near future.

6. FINAL TEST PLAN

The final test plan is shown below. Modifications to the burn-in circuit and addition of a voltage reference test were the main changes from that shown in Interim Report Number Two.

980-16962

FINAL TEST PLAN

MILITARY ADAPTATION OF A COMMERCIAL ITEM

(MACI)

PROGRAM ON MNOS EAROM(WAROM)

Prepared by: _____
R.W. Carter
Component Application

Approved by: _____
R. Wiker
Technical Director

980-16962

1.0 INTRODUCTION

This final test plan details the test methods and procedures to be used for 100 percent preconditioning, screening and lot quality conformance inspection of commercial MNOS WAROM devices for use in military applications.

The sequence of tests and procedures will be as follows:

- A. Device Procurement
- B. 100 percent Preconditioning and Screening
- C. Lot Quality Conformance Inspection
- D. Deliver 50 units
- E. Deliver Slash Sheet
- F. Deliver Final Report

1.1 Device Type

The device type that was determined to be the most suitable for military applications in the MACI preselection phase is the 3400/2451 1024 x 4 bit Word Alterable Read Only Memory (WAROM).

2.0 GENERAL

2.1 Applicable Documents

The following documents of the issue in effect on the date of this test plan, apply to the extent used herein.

MIL-M-38510 Microcircuits, General Specification for

MIL-STD-883 Test Methods and Procedure for Microelectronics

2.2 Electrical Tests

2.2.1 DC Parametric Tests

DC Parametric tests will be as specified in Appendix A.

2.2.2 AC and Functional Tests

AC and Functional Tests will be as specified in Appendix B.

2.3 Device Procurement

255 devices total will be procured: 225 - from General Instrument (G.I.), and thirty from National Cash Register (NCR).

3.0 PROCEDURE

Devices will be processed according to the Final Test Plan shown in Figure 3.0.

3.1 100 Percent Preconditioning and Screening

Preconditioning and Screening will be in accordance with method 5004 of MIL-STD-883 Level B and Table 3.1 herein and will be conducted on all devices prior to lot quality conformance inspection. The following conditional Criteria will apply:

- a. Burn-in Test - Burn-in circuit of Figure 3.1a will be used.
- b. Interim and Final Electrical Tests - Interim electrical tests will consist of the tests specified in Appendix B-1 and B-2 at an ambient of +25°C. After a one hour soak at +125°C, the test specified in Appendix B-3 will be conducted and the resulting V_T values and time recorded.

Following Burn-in, Final electrical tests will consist of the tests in Appendix B. The initial test will be that specified in B-3 at +25°C with the threshold and time recorded. The remaining tests will be performed at -55°C, +25°C and +125°C ambient using the tests specified in Appendix A and B-1. After Burn-in V_{REF} is measured and recorded on each device via test specified in B-4.

3.2 Quality Conformance Inspection

From the devices which have successfully passed the 100 percent Class B screening, 119 samples will be submitted to the Quality Conformance Inspection requirements specified in Method 5005 of MIL-STD-883. This inspection will be composed of Group B and C tests. Group D (package related) tests were performed in the preselection phase and are not necessary to repeat. The tests and sample sizes for each group are summarized in Tables 3.2.1 and 3.2.2.

3.2.1 Group B Inspection

Group B inspection will be in accordance with Table 3.2.1 herein and as follows:

- A. Subgroups 1 and 6: Physical dimensions and internal water vapor content were performed in Group D inspection and are not necessary to repeat here.

980-16962

0580-09

FIGURE 3-0. FINAL TEST PLAN

980-16962

0580-10

FIGURE 3-1a. BURN-IN CIRCUIT

TABLE 3.1. 100 PERCENT PRECONDITIONING AND CLASS B SCREENING TESTS

Examination of Test	MIL-STD	Method Number	Details
Stabilization Bake, No end point measurements required	883	1008.1	24 hours *1 Condition C
Temperature Cycling	883	1010.2	Condition C *2
Constant Acceleration	883	2001	Condition E Y ₁ only
Seal Fine Gross Serialization Soak @ +125°C	883	2020	Condition A or B
Pre-Burn-In Electrical Test Functional Tests AC Tests		See 3.1b	
Burn-In Test	883	1015 See Fig. 3.1a	Condition C 168 hours at 125°C
Final Electrical Test DC Parametrics Functional Test AC Test		See 3.1b	
External Visual	883	2009	

980-16962

TABLE 3.2.1. GROUP B TESTS 1/

Test	Method	Condition	LTPD	Sample Size ACC#=0
MIL-STD-883				
<u>Subgroup 1</u>				
Physical dimensions 2/	2016		2 devices (no failures)	2
Subgroup 2				
Resistance to solvents	2015		3 devices (no failures)	3
Subgroup 3				
Solderability	2003	Soldering temperature of 260 ±10°C	15	3
Subgroup 4				
Internal visual and mechanical	2014	Failure criteria from design and construc- tion requirements of applicable procurement document.	1 device (no failures)	1
Subgroup 5				
Bond strength Thermocompression	2011	Test condition C or D	15	10

- 1/ Electrical reject devices from the same inspection lot may be used for all subgroups when end-point measurements are not required.
- 2/ Not required for qualification or quality conformance inspections where group D inspection is being performed on samples from the same inspection lot.

980-16962

TABLE 3.2.2. GROUP C (DIE-RELATED TESTS)

Test	Method	MIL-STD-883 Condition	LTPD	Sample Size	Accept No.
<u>Subgroup 1</u>					
Steady state life test	1005	Test condition to be specified (1,000 hours at 125°C)	5	77	1
<u>Subgroup 2</u>					
Temperature cycling	1010	Test condition C	15	25	1
Constant acceleration	2001	Test conditon D Y ₁ orientation only			
Seal					
(a) Fine					
(b) Gross					
Visual examination	1010 or				
End-point electrical parameters	1011				

980-16962

- B. All devices selected for testing will be programmed with an asymmetric slant pattern. After completion of all testing, the devices will be verified and erased (except those devices submitted for Group C testing).

3.2.2 Group C Inspection

Group C inspection will be in accordance with Table 3.2.2 herein and as follows:

- A. End point electrical parameters - End point electrical parameters will be as specified in Appendix B at ambient temperatures of -55°C m $+25^{\circ}\text{C}$ abd $+125^{\circ}\text{C}$.
- B. Steady State Life Test - Steady State life test will be performed using the circuit of Figure 3.1a.

3.3 Deliverable Devices

Of the remaining devices which have passed Group C inspection (and therefore screening), fifty devices will be selected as deliverable devices.

3.4 Final Report and Slash Sheet

The screening and lot acceptance test results will be presented in a summary report. A MIL-M-38510 type slash sheet will then be developed from this test data.

980-16962

7. SCREEN TEST AND PERFORMANCE

Test Results.

Using the Final Test Plan shown in Section 6.0, the ER3400/NCR2451 devices bought for the MACI program were tested.

7.1 Yield. Out of 160 devices screened, using the test plan, 50 devices passed all tests for a yield of 31.25%. Figure 7-1 illustrates where the yield loss occurred (what tests). Ninety-six devices were held for destructive tests (i.e., endurance, lead pull, etc.).

7.1.1 Leak Test. Out of 160 devices placed in preconditioning tests including:

- | | |
|-------------------------|--------------------------|
| o Stabilization Bake | Method *1008.1 Cond. C |
| o Temperature Cycling | Method 1010.2 Cond. C |
| o Constant Acceleration | Method 2001 Cond. E only |
| o Seal - Fine | Method 2020 Cond. A or B |
| Gross | |
| Serialization Soak | |
| @ +125 deg C | |

140 devices passed with most failures in fine leak.

*MIL-STD-883

7.1.2 Pre-Burn-In Electrical Test (Screen Tests).

(Section 3.1b Test Plan)

As can be seen from Figure 7-1, 30 devices out of 140 failed these tests. Most failures were NCR2451 failing at -55 degree C with a few ER3400's failing at +125 degree C.

7.1.3 Post 160 Burn-In Retention Tests. The primary cause of yield loss of ER3400 devices resulted from poor retention at +125 degree C. Using a criteria of 1 year of retention at +125 deg C and plotting the minimum "0" threshold after 1 hour at +125 degree C and after 160 hours at +125 deg C on a lin-log graph of threshold against the log of time from write, the intersection of the voltage reference value minus the operating offset can be extrapolated. From this point, the retention time can be determined from the time scale. If this point exceeds 1 year, the device is considered an acceptable part.

980-16962

1080-56

FIGURE 7-1. YIELD LOSSES

There appeared to be a significant change in the high temperature retention characteristics of ER3400 parts bought in February of 1981 and February 1979. The earlier parts exhibited a smaller change in retention slope (VT/Time) from +25 deg C to +125 deg C than the newer parts and thus had better retention at the higher temperature. Graph 7-1 shows that only 59 devices out of 110 devices tested for high temperature retention passed the 1 year requirements. Only a few of the NCR2451's failed this test with the vast majority of failures being ER3400's.

Figure 7-2 is a plot of a typical ER3400 (per #811) showing the screen test retention measurement. The significant change in retention slope from the +25 degree C section of the plot to the +125 degree C section can be seen (i.e., from 0.4V/decade to 1.3V/decade). Figure 7-3 shows a plot of a typical NCR2451 (also typical of earlier ER3400's). This plot shows that the change in slope from the +25 degree C section of the curve to the +125 degree C section is slight (i.e., from 0.55V/decade to 0.58V/decade). While the yield on the earlier ER3400's was estimated at approximately 70 percent to this parameter, the yield of the newer parts appears more like 50 percent.

A second Burn-In Period was held for several of the newer ER3400's. The results showed that approximately 46 percent of the devices that showed poor retention slopes during the first burn-in period recovered after the second burn-in to produce an acceptable retention at high temperature.

Figure 7-4a shows the distribution by Post Burn-In retention slope of all parts initially tested. The significant difference in the Post Burn-In slope of the ER3400's from the NCR2451's. Figure 7-4b shows the final distribution of Post Burn-In slopes for all parts tested. A noticeable shift in ER3400 retention slopes can be seen.

This suggests that perhaps other effects besides simple discharge of the memories is the cause of the initial change. Some indication of a possible permanent threshold shift at high temperature soak taking place is suggested. The second burn-in cycle is then taken to be mostly discharge since it appears that all initial permanent threshold change has been baked out.

Illustrating the point regarding the "annealing effect" of the +125 degree C soak some of the ER3400's were placed in second and third 160 hour burn-in periods with retention measurements taken according to the normal screening method. Figure 7-5 shows an ER3400 which after three burn-in periods still fails a 1 year retention criteria at +125 degree C. However, Figure 7-6 illustrates one of

980-16962

0980-16

FIGURE 7-2. HIGH TEMPERATURE RETENTION TEST FOR ER3400

980-16962

FIGURE 7-3. HIGH TEMPERATURE RETENTION TEST FOR NCR2451

980-16962

1000 6/40

FIGURE 7-4 b. FINAL POST BURN-IN RETENTION SLOPE

FIGURE 7-4 a. INITIAL POST BURN-IN RETENTION SLOPE

980-16962

FIGURE 7-5. THIRD BURN-IN FOR ER3400 DEVICE NO. 863

980-16962

0980-21

FIGURE 7-6. SECOND BURN-IN PERIOD FOR ER3400 DEVICE NO. 832

the ER3400's which initially failed retention after burn-in at +125 degree C. After a second burn-in period of 160 hours at +125 degree C, this device now exhibits a predicted retention of 3 years at +125 degree C. Figure 7-7 shows the extreme case where device #875, which would not pass 1 year retention at +125 degree C after the first burn-in, was estimated to have 225 years retention at +125 degree C after the second burn-in period.

In an attempt to gauge if the change from Reactor Nitride to the LPCVD process was the significant factor in the Retention Slide, several ER2810 parts made with the newer LPSVD process were tested for retention. Figures 7-8 and 7-9 show the results of that study. The indication is that since the ER2810 parts performed well at +125 degree C that the problem exists in the ER3400 design or process. Since the earlier parts did not exhibit the problem, some other or combination of changes appears to be the underlying cause. This does not rule out LPCVD process effects being more significant to the one transistor/cell ER3400 than the transistor plus reference row type design of the ER2810.

Figures 7-2, 7-3, and 7-4 point out a "Sense Amp Offset" value of 0.35V with respect to the internal "Reference Voltage". Both of these parameters have significant effect on the retention prediction in the ER3400/NCR2451 type devices. The Reference Voltage refers to an internally generated voltage used to compare against the threshold voltage of the memory transistors. The value of this Reference Voltage can be measured externally by methods described in the test plan.

Figure 7-10 shows the distribution of Internally Generated Reference Voltages of all ER3400/NCR2451 parts tested in the MACI program. The maximum measured value was -10.24 volts while the minimum was -9.02 volts with the mean value being -9.55 volts. Figure 7-11 shows the same distribution for parts passing the screen tests.

While the sense amp compares this value against the memory transistor threshold allowance must be made for the sensitivity of the sense amp itself.

An empirical way of testing for this sensitivity was devised. By "soft" erasing "zeros" until they failed normal read cycling and then measuring the threshold, a typical offset value could be determined. Figure 7-12 shows the distribution of the measured sense amp offset values for all MACI ER3400/NCR2451 parts. Figure 7-13 shows the sense amp offset values for the parts passing all the screening tests and shipped to ERADCOM. As can be seen from the plots in both figures, if a value of 0.35V is adopted as "standard" offset number, more than 90 percent of all parts fall at or below that value causing estimated retention values to be conservative and accurate. By using

980-16962

0980-17

FIGURE 7-7. SECOND BURN-IN PERIOD FOR ER3400 DEVICE NO. 875

980-16962

FIGURE 7-8. ER2810 (LPCVD NITRIDE) RETENTION PLOT
AT +125°C FOR DEVICE NO. T1

980-16962

FIGURE 7-9. ER2810 (LPCVD NITRIDE) RETENTION PLOT
AT +125°C FOR DEVICE NO. T9

980-16962

REFERENCE VOLTAGE OF ALL TESTED MACI WAROMS
IN UNITS OF VOLTS

FIGURE 7-10. INTERNAL REFERENCE VOLTAGE OF ALL ER3400/NCR2451 PARTS USED IN MACI PROGRAM

980-16962

50	NUMBER OF MEASUREMENTS
-9.4628	MEAN
.196947333	ONE STANDARD DEVIATION
-9.76	MINIMUM VALUE
-9.02	MAXIMUM VALUE

FIGURE 7-11. INTERNAL REFERENCE VOLTAGE DISTRIBUTION OF ALL ER3800/NCR2451 PARTS PASSING SCREEN TEST

980-16962

50 NUMBER OF MEASUREMENTS
•.278 MEAN
.050279221 ONE STANDARD DEVIATION
.15 MINIMUM VALUE
.38 MAXIMUM VALUE

OPERATING OFFSET OF SCREENED MACI VAROM MEMORIES
IN UNITS OF 10 TO THE -1 VOLTS

FIGURE 7-12. DISTRIBUTION OF ER3400/NCR2451 PARTS PASSING
SCREEN TEST

980-16962

233 NUMBER OF MEASUREMENTS
• 243733905 MEAN
• 0659448202 ONE STANDARD DEVIATION
- • 03 MINIMUM VALUE
• 59 MAXIMUM VALUE

OPERATING OFFSET OF ALL TESTED MACI VAROMS
IN UNITS OF 10 TO THE -1 VOLTS

FIGURE 7-13. DISTRIBUTION OF ALL ER3400/NCR2451 MEASURED
OFFSET VALUES FOR MACI PROGRAM

the intersection of the retention curve and a line drawn for the Reference Voltage minus the offset, a realistic prediction of the retention can be made.

7.1.4 D.C. Parameter Tests. These tests listed in Appendix A* of the Test Plan resulted in a loss of four parts as shown from Figure 7-1. Table 7-1 lists the results of input leakage and power supply current test at +25 degree C on all parts tested. Table 7-2 shows the results of these safe tests performed at +125 degree C which is much more rigorous for the leakage tests. Figure 7-14 shows the distribution of the measured values of IDD current in the de-selected state at +125 degree C. The distribution of this parameter in the selected state is shown in Figure 7-15 at +125 degree C. This shows that approximately 1/5 of the power of the device can be saved by being in the de-selected mode at +125 degree C.

The IGG current at +125 degree C is shown not to be a significant contributing factor in the device power dissipation at +125 degree C in Figure 7-16. Since Vgg is specified at +30 Vdc a typical, +125 degree C power consumption of 30 mw is seen.

Figures 7-17 and 7-18 show the Iss ($V_{SS} = +5V$) current at +125 degree C in both the selected and de-selected modes for the 55 devices that had passed all previous screening.

Since the ER3400/NCR2451 devices under test in the MACI Program are specified for the commercial range, one parameter of particular interest at +125 degree C is the output voltage levels at specified load values. Figure 7-19 shows the distribution of parts tested for this parameter. As can be seen three parts failed this test. The mean value of all tested parts was 0.39 volts, well below the 0.5 volts specified. The output high voltage level distribution is shown in Figure 7-20 at +125 degree C showing all devices passing specified values.

At -55 degree C different parameters become critical than at the high temperatures. Device power supply current increases significantly as can be seen in Figures 7-21 through 7-25 at -55 degree C. Figures 7-21 and 7-22 examine the distribution of Idd ($V_{DD} = -13V$) in both the de-selected and selected modes. De-selected devices show approximately a 40 percent reduction in power supply current from selected devices. Some devices operate very close to the specified maximum limit at low temperature (-27 ma). As can be seen, Igg current, while significantly increasing at -55 degree C (Figure 7-23), is still a minor contributor to device power requirements. Iss ($V_{SS} = +5V$) current is shown in both de-selected and selected modes at -55 degree C.

*Appendix A and B omitted from this report. Interested parties may contact the contracting agency.

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C

DEVICE TEMP	VOH DS VOH DI	VOL DS VOL DI	ILC CS ILC C1	ILD DS ILD D1	IDD DS IDD S	IGG	ISS DS ISS S
	VOLTS	VOLTS	U AMP	U AMP	M AMP	M AMP	M AMP
778 25 C 7/2/80	4.305 4.335 4.330	0.305 0.210 0.270	- -	- -	8.270 10.475	1.3625	9.2625 10.675
		4.315		-			
789 25 C 7/2/80	4.336 4.330 4.325	0.285 0.265 0.210	- -	- -	9.1525 12.925	1.4250	10.380 11.950
		4.290		-			
788 25 C 7/2/80	4.335 4.315 4.315	0.285 0.195 0.200	- -	- -	8.8300 11.050	1.5400	9.9525 11.450
		4.305		-			
787 25 C 7/2/80	4.360 4.340 4.345	0.235 0.170 0.180	- -	- -	8.6225 13.100	1.2100	9.5125 11.725
		4.310		-			
786 25 C 7/2/80	4.360 4.295 4.280	0.255 0.215 0.210	- -	- -	9.0575 11.825	1.6025	10.325 12.050
		4.270		-			
785 25 C 7/2/80	4.290 4.300 4.290	0.215 0.220 0.205	- -	- -	8.6575 10.900	1.4100	9.7925 11.300
		4.250		-			
783 25 C 7/2/80	4.325 4.340 4.340	0.195 0.195 0.190	- -	- -	9.1425 12.900	1.3025	10.1400 14.125
		4.305		-			
782 25 C 7/2/80	4.320 4.315 4.300	0.250 0.195 0.220	- -	- -	9.0625 12.875	1.8900	10.525 13.875
		4.305		-			
803 25 C 7/2/80	4.340 4.345 4.320	0.220 0.210 0.210	- -	- -	9.6875 13.600	1.5650	10.675 14.200
		4.340		-			

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	V _{OH}	D _S	V _{OH}	D _I	V _{OH}	D ₂	V _{OH}	D ₃	
DATE	VOL	D _S	VOL	D _I	VOL	D ₂	VOL	D ₃	
	ILC	C ₀	ILC	C ₁					
	ILD	D _S	ILD	D _I	ILD	D ₂	ILD	D ₃	
	IDD	D _S	IDD	S	IGG		ISS	DS	ISS S
799	4.340	0.195	-	-	9.4675	1.3400	10.500		
25 C	4.310	0.195	-	-	13.600		14.275		
7/2/80	4.330	0.195							
	4.325	0.190							
798	4.345	0.190	-	-	9.1050	1.3400	10.1000		
25 C	4.345	0.185	-	-	12.925		14.325		
7/2/80	4.345	0.185							
	4.335	0.175							
25 C	?????	4.365	0.185	-	-	9.6825	1.5550	10.675	
	4.345	0.195	-	-	13.600		12.675		
7/2/80	4.315	0.205							
	4.335	0.215							
811	4.330	0.200	-	-	8.7400	1.0725	9.6300		
25 C	4.325	0.205	-	-	12.625		13.100		
7/2/80	4.320	0.195							
//	4.310	0.190							
821	4.275	4.245	4.265	4.270					
25 C	0.255	0.225	0.275	0.225					
7/3/80	0.02	0.02							
	0.02	0.02	0.02	0.02					
	8.773	13.875	1.335	9.870	11.300				
822	4.380	4.375	4.365	4.365					
25 C	0.200	0.240	0.185	0.180					
7/3/80	0.02	0.02							
	0.02	0.02	0.02	0.02					
	9.4125	13.600	1.218	10.400	14.450				
826	4.330	4.330	4.330	4.315					
25 C	0.225	0.225	0.220	0.210					
7/3/80	0.02	0.02							
	0.02	0.02	0.02	0.02					
	9.165	13.100	1.445	10.275	13.500				
828	4.300	4.295	4.315	4.330					
25 C	0.280	0.228	0.265	0.270					
7/3/80	0.02	0.02							
	0.02	26.825	0.02	0.02					
	8.295	10.400	1.365	9.333	10.650				

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3
TEMP	VOL D0	VOL D1	VOL D2	VOL D3
DATE	ILC C0	ILC C1		
	ILD D0	ILD D1	ILD D2	ILD D3
	IDD DS	IDD S	IGG	ISS DS
				ISS S
829	4.250	4.240	4.275	4.265
7/3/80	0.305	0.205	0.235	0.210
25 C	0.02	0.02		
	0.02	0.02	0.02	0.02
	8.415	10.875	1.370	9.480
				10.925
831	4.350	4.345	4.350	4.305
7/3/80	0.210	0.245	0.198	0.210
25 C	0.02	0.02		
	0.02	0.02	0.02	0.02
	8.823	13.475	1.500	9.918
				11.500
833	4.230	4.290	4.275	4.235
7/3/80	0.250	0.210	0.225	0.205
25 C	0.02	0.02		
	0.02	0.02	0.02	0.02
	8.608	11.450	1.508	9.783
				10.975
834	4.315	4.315	4.305	4.285
7/3/80	0.215	0.270	0.245	0.285
25 C	0.02	0.02		
	0.02	0.02	0.02	0.02
	8.435	10.550	1.498	9.530
				10.925
835	4.330	4.340	4.330	4.325
25 C	0.185	0.175	0.215	0.215
7/3/80	0.021	0.018		
	0.021	0.021	0.021	0.021
	9.197	13.72	1.382	10.872
				14.450
840	4.350	4.345	4.350	4.335
25 C	0.185	0.180	0.185	0.170
7/3/80	0.021	0.018		
	0.021	0.021	0.021	0.021
	9.055	12.900	1.475	10.085
				13.550
841	4.325	4.305	4.315	4.295
25 C	0.195	0.180	0.175	0.185
7/3/80	0.021	0.018		
	0.021	0.021	0.021	0.021
	9.307	13.300	1.622	10.475
				14.050

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

>PR

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3	
25 C	VOL D0	VOL D1	VOL D2	VOL D3	
DATE	ILC C0	ILC C1	ILD D0	ILD D1	ILD D2
	IDD DS	IDD S	IGG	ISS DS	ISS S
844	4.345	4.375	4.365	4.355	
25 C	0.200	(0.190	0.190	0.180	
7/3/80	0.029	0.018			
	0.021	0.021	0.021	0.021	
	9.498	13.475	1.600	10.500	12.625
845	4.325	4.330	4.320	4.310	
25 C	0.245	0.205	0.200	0.215	
7/3/80	0.021	0.018			
	0.021	0.021	0.021	0.021	
	8.748	11.000	1.545	9.917	11.225
846	4.330	4.325	4.320	4.310	
25 C	0.268	0.195	0.218	0.185	
7/3/80	0.021	0.018			
	0.021	0.021	0.021	0.021	
	8.880	13.700	1.467	9.995	12.075
847	4.365	4.380	4.385	4.330	
25 C	0.185	0.200	0.255	0.170	
7/3/80	0.021	0.018			
	0.021	0.021	0.021	0.021	
	8.727	11.000	1.295	9.720	11.525
849	4.340	4.335	4.310	4.290	
25 C	0.290	0.215	0.225	0.265	
7/3/80	0.021	0.018			
	0.021	0.021	0.021	0.021	
	8.618	12.825	1.470	9.723	11.450
851	4.335	4.345	4.340	4.320	
25 C	0.200	0.195	0.190	0.195	
7/3/80	0.021	0.018			
	0.021	0.021	0.021	0.021	
	8.743	13.275	1.505	9.833	11.425
852	4.290	4.290	4.285	4.275	
25 C	0.295	0.285	0.215	0.265	
7/3/80	0.021	0.018			
	0.021	0.021	0.021	0.021	
	8.467	12.900	1.395	9.563	10.975

980-16962

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3	
TEMP	VOL D0	VOL D1	VOL D2	VOL D3	
DATE	ILC C0	ILC C1			
	ILD D0	ILD D1	ILD D2	ILD D3	
	IDD DS	IDD S	IGG	ISS DS	ISS S
853	4.350	4.345	4.315	4.325	
25 C	.190	.195	.185	.200	
7/3/80	0.021	0.018			
	0.021	0.021	0.021	0.021	
	9.855	13.750	1.587	10.800	14.300
854	4.365	4.355	4.360	4.350	
"25 C	.205	.230	.225	.202	
7/3/80	0.021	0.018			
	0.021	0.021	0.021	0.021	
	8.558	30.850	1.523	9.650	11.125
END OF "TESTING 7/3/80					
//					
861	4.280	4.300	4.305	4.295	
25 C	.250	.185	.185	.185	
7/7/80	0.020	0.018			
	0.021	0.021	0.021	0.021	
	9.148	12.850	1.455	10.168	13.975
862	4.305	4.300	4.290	4.290	
25 C	.240	.250	.220	.210	
7/7/80	0.020	0.018			
	0.021	0.021	0.021	0.021	
	8.555	12.500	1.2125	9.528	11.950
865	4.330	4.320	4.310	4.305	
25 C	.205	.210	.200	.250	
7/7/80	0.020	0.018			
	0.021	0.021	0.021	0.021	
	8.855	13.250	1.548	9.953	11.875
868	4.260	4.260	4.275	4.250	
25 C	.310	.290	.270	.275	
7/7/80	0.020	0.018			
	0.021	0.021	0.021	0.021	
	8.588	12.300	2.010	10.163	14.050

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3
TEMP	VOL D0	VOL D1	VOL D2	VOL D3
DATE	ILC C0	ILC C1	ILD D0	ILD D1
	IDD DS	IDD S	IGG	ISS DS
				ISS S
874	4.320	4.310	4.320	4.295
25 C	.225	.230	.220	.210
7/7/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	9.038	13.125	1.570	10.190
				12.100
881	4.320	4.345	0.285	0.210
25 C	.215	.305	.205	.210
7/7/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	7.788	13.475	1.158	8.723
				9.798
876	4.245	4.310	4.250	4.245
25 C	.245	.245	.245	.255
7/7/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	8.293	14.625	1.300	9.375
				10.725
890	4.340	4.345	4.345	4.330
25 C	.195	.180	.195	.170
7/7/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	8.993	12.800	1.480	10.013
				13.425
891	4.310	4.295	4.260	4.240
25 C	.205	.205	.200	.185
7/7/80	0.020	0.018		
	0.015	0.010	0.013	0.014
	8.028	9.743	1.385	9.080
				10.143
892	4.400	4.395	4.390	4.390
25 C	.185	.225	.170	.160
7/7/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	9.045	13.500	1.360	10.035
				12.600
893	4.295	4.290	4.305	4.295
25 C	.215	.260	.245	.225
7/7/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	8.703	10.925	1.665	9.918
				11.450

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3			
TEMP	VOL D0	VOL D1	VOL D2	VOL D3			
DATE	ILC C0	ILC C1	ILD D0	ILD D1	ILD D2	ILD D3	
			IDD DS	IDD S	IGG	ISS DS	ISS S
894	4.375	4.370	4.330	4.365			
25 C	.185	.170	.165	.165			
7/7/80	0.020	0.018					
	0.021	0.021	0.021	0.021			
	8.963	13.700	1.290	9.918	14.475		
895	4.275	4.315	4.300	4.295			
25 C	.260	.245	.230	.245			
7/7/80	0.021	0.015					
	0.021	0.021	0.021	0.021			
	8.390	11.650	1.508	9.478	10.850		
896	4.320	4.295	4.310	4.310			
25 C	.220	.250	.245	.250			
7/7/80	0.020	0.018					
	0.021	0.021	0.021	0.021			
	8.318	13.250	1.358	9.348	10.800		
897	4.290	4.290	4.275	4.275			
25 C	.245	.230	.230	.230			
7/7/80	0.020	0.018					
	0.021	0.021	0.021	0.021			
	8.703	12.450	1.665	10.008	13.250		
898	4.315	4.330	4.315	4.325			
25 C	0.210	0.215	0.235	0.200			
7/8/80	0.020	0.018					
	0.021	0.021	0.021	0.021			
	8.680	13.175	1.503	9.793	11.300		
899	4.350	4.340	4.310	4.335			
25 C	0.200	0.200	0.190	0.220			
7/8/80	0.020	0.018					
	0.021	0.021	0.021	0.021			
	8.625	11.375	1.365	9.655	11.575		
900	4.315	4.325	4.325	4.300			
25 C	0.200	0.210	0.185	0.210			
7/8/80	0.020	0.018					
	0.021	0.021	0.021	0.021			
	8.905	13.175	1.358	9.908	11.675		

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3
TEMP	VOL D0	VOL D1	VOL D2	VOL D3
DATE	ILC C0	ILC C1	ILD D0	ILD D1
	IDD DS	IDD S	IGG	ISS DS ISS S
901	4.315	4.310	4.300	4.295
25 C	0.240	0.205	0.240	0.255
7/8/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	8.475	12.425	1.363	9.4975 10.875
902	4.325	4.330	4.330	4.315
25 C	0.220	0.220	0.310	0.195
7/8/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	8.580	12.225	1.523	9.680 10.975
2001	4.320	4.305	4.300	4.295
25 C	0.210	0.180	0.180	0.175
7/8/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	10.425	13.475	2.193	12.250 14.675
2002	4.295	4.285	4.270	4.280
25 C	0.185	0.215	0.180	0.180
Z				
	0.021	0.021	0.021	0.021
	10.275	13.625	2.145	12.050 15.025
2003	4.325	4.315	4.305	4.295
25 C	0.230	0.185	0.175	0.170
7/8/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	10.325	13.750	2.248	12.225 14.950
2005	4.315	4.315	4.265	4.300
25 C	0.190	0.185	0.185	0.190
7/8/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	9.838	13.475	2.130	11.700 13.675
2006	4.325	4.305	4.305	4.270
25 C	0.195	0.215	0.185	0.210
7/8/80	0.020	0.018		
	0.021	0.021	0.021	0.021
	9.968	14.600	2.080	11.775 13.375

980-16962

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	V _{OH} D0	V _{OH} D1	V _{OH} D2	V _{OH} D3		
TEMP	VOL D0	VOL D1	VOL D2	VOL D3		
DATE	ILC C0	ILC C1	ILD D0	ILD D1	ILD D2	ILD D3
	IDD DS	IDD S	IGG	ISS DS	ISS S	
2007	4.320	4.290	4.305	4.295		
25 C	0.215	0.205	0.175	0.170		
7/8/80	0.020	0.018				
	0.021	0.021	0.021	0.021		
	10.500	14.050	2.240	12.375	15.525	
2008	4.280	4.305	4.295	4.300		
25 C	0.185	0.200	0.180	0.245		
7/8/80	0.020	0.018				
	0.021	0.021	0.021	0.021		
	10.085	14.250	2.068	11.825	14.300	
2009	4.310	4.280	4.290	4.295		
25 C	0.190	0.180	0.190	0.180		
7/8/80	0.020	0.018				
	0.021	0.021	0.021	0.021		
	9.950	12.975	2.0525	11.700	13.800	
2010	4.320	4.310	4.300	4.310		
25 C	0.190	0.240	0.195	0.225		
7/8/80	0.020	0.018				
	0.021	0.021	0.021	0.021		
	10.425	13.800	2.178	12.225	15.025	
2011	4.305	4.305	4.305	4.300		
25 C	0.240	0.210	0.180	0.250		
7/8/80	0.020	0.018				
	0.021	0.021	0.021	0.021		
	9.640	14.650	2.022	11.425	12.775	
2012	4.295	4.285	4.285	4.270		
25 C	0.195	0.185	0.185	0.190		
7/8/80	0.020	0.018				
	0.021	0.021	0.021	0.021		
	9.633	12.050	1.945	11.325	13.250	
2013	4.315	4.320	4.305	4.285		
25 C	0.185	0.205	0.175	0.180		
7/8/80	0.021	0.019				
	0.022	0.022	0.022	0.022		
	10.045	13.425	2.145	11.875	14.425	

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3
TEMP	VOL D0	VOL D1	VOL D2	VOL D3
DATE	ILC C0	ILC C1		
	ILD D0	ILD D1	ILD D2	ILD D3
	IDD DS	IDD S	IGG	ISS DS ISS S
2014	4.330	4.310	4.280	4.300
25 C	0.190	0.235	0.185	0.185
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	10.022	13.325	2.028	11.800 14.325
2015	4.315	4.305	4.300	4.295
25 C	0.185	0.185	0.235	0.170
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	10.163	14.200	2.120	11.975 14.325
2016	4.320	4.300	4.300	4.250
25 C	0.210	0.190	0.185	0.250
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	10.475	14.150	2.167	12.275 14.825
2018	4.265	4.245	4.250	4.280
25 C	0.210	0.205	0.215	0.230
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	8.848	13.125	1.870	10.500 11.875
2019	4.280	4.295	4.285	4.280
25 C	0.195	0.235	0.190	0.195
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	10.325	13.675	2.243	12.325 15.050
2020	4.290	4.300	4.290	4.275
25 C	0.190	0.265	0.185	0.190
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	9.870	14.800	2.135	11.775 13.625
2022	4.325	4.320	4.310	4.270
25 C	0.175	0.185	0.190	0.165
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	10.208	13.675	2.158	12.100 15.025

TABLE 7-1. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 25°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VCH D1	VOH D2	VOH D3
TEMP	VOL D0	VCL D1	VOL D2	VOL D3
DATE	ILC C0	ILC C1		
	ILD D0	ILD D1	ILD D2	ILD D3
	IDD DS	IID S	IGG	ISS DS
			ISS S	
2023	4.320	4.300	4.300	4.305
25 C	0.180	0.215	0.175	0.205
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	10.158	13.000	2.133	12.100
				14.575
2024	4.305	4.300	4.285	4.270
25 C	0.185	0.200	0.220	0.225
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	10.275	13.625	2.183	12.150
				15.025
2026	4.345	4.315	4.305	4.315
25 C	0.205	0.180	0.200	0.185
7/8/80	0.021	0.015		
	0.022	0.022	0.022	0.022
	10.198	14.025	2.233	12.125
				14.025
871	4.320	4.320	4.280	4.310
25 C	0.205	0.205	0.210	0.205
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	8.940	11.425	1.678	10.140
				11.825
880	4.305	4.305	4.290	4.255
25 C	0.310	0.205	0.240	0.205
7/8/80	0.021	0.019		
	0.022	0.022	0.022	0.022
	8.523	12.650	1.280	9.520
				10.900

TABLE 7-2. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 125°C

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3		
TEMP	VOL D0	VOL D1	VOL D2	VOL D3		
DATE	ILC C0	ILC C1	ILD D0	ILD D1	ILD D2	ILD D3
	IDD DS	IDD S	IGG	ISS DS	ISS S	
782	4.130	4.150	4.110	4.095		
125 C	0.370	0.325	0.365	0.365		
7-8-80	0.031	0.022				
	0.045	0.043	0.043	0.045		
	6.595	8.665	1.398	7.538	9.655	
783	4.135	4.130	4.125	4.130		
125 C	0.380	0.370	0.365	0.370		
7-8-80	0.024	0.019				
	0.034	0.035	0.035	0.035		
	6.648	8.705	0.874	7.358	8.938	
785	4.070	4.065	4.065	4.050		
125 C	0.450	0.435	0.435	0.440		
7-9-80	0.023	0.019				
	0.033	0.032	0.032	0.032		
	6.197	7.640	0.952	7.033	8.343	
787	4.220	4.175	4.185	4.150		
125 C	0.345	0.330	0.345	0.280		
7-9-80	0.023	0.019				
	0.032	0.032	0.032	0.032		
	6.235	8.015	0.765	6.880	8.540	
798	4.145	4.135	4.140	4.125		
125 C	0.370	0.355	0.350	0.345		
7-9-80	0.024	0.019				
	0.036	0.037	0.037	0.037		
	6.615	8.373	0.912	7.345	8.935	
799	4.180	4.155	4.160	4.155		
125 C	0.330	0.330	0.330	0.325		
7-9-80	0.024	0.019				
	0.039	0.042	0.042	0.041		
	6.913	9.185	1.415	7.628	9.783	
803	4.180	4.180	4.145	4.170		
125 C	0.325	0.345	0.325	0.305		
7-9-80	0.024	0.019				
	0.034	0.035	0.038	0.034		
	7.113	0.9.110	1.060	7.790	10.003	

TABLE 7-2. "NPU" LEAKAGE AND POWER SUPPLY CURRENT AT 125°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	V _{OH} L0	V _{OH} L1	V _{OH} D2	V _{OH} D3	
TEMP	VOL D0	VOL D1	VOL D2	VOL D3	
DATE	ILC C0	ILC C1	ILD D0	ILD D1	ILD D2
	IDD DS	IDD S	IGG	ISS DS	ISS S
811	4.149	4.130	4.110	4.105	
125 C	0.355	0.345	0.345	0.340	
7-9-80	0.030	0.023			
	0.043	0.052	0.053	0.051	
	6.337	8.425	0.782	6.998	10.025
821	4.080	4.105	4.100	4.060	
125 C	0.420	0.420	0.420	0.420	
7-9-80	0.024	0.019			
	0.033	0.033	0.033	0.033	
	6.300	7.665	0.898	7.105	8.335
822	4.185	4.185	4.175	4.175	
125 C	0.325	0.325	0.315	0.315	
7-9-80	0.024	0.019			
	0.033	0.033	0.033	0.033	
	6.855	9.175	0.812	7.530	9.438
826	4.150	4.155	4.155	4.145	
125 C	0.350	0.340	0.330	0.330	
7-9-80	0.024	0.019			
	0.039	0.039	0.040	0.040	
	6.740	8.815	1.485	7.508	9.630
828	4.095	4.080	4.085	4.075	
125 C	0.390	0.385	0.375	0.460	
7-9-80	0.024	0.019			
	0.029	26.50	0.029	0.029	
	5.990	7.250	0.895	6.715	7.853
831	4.170	4.135	4.155	4.125	
125 C	0.385	0.365	0.360	0.360	
7-9-80	0.024	0.019			
	0.033	0.033	0.033	0.033	
	6.318	7.730	0.943	7.090	8.373
833	4.050	4.045	4.045	4.035	
125 C	0.455	0.485	0.375	0.415	
7-9-80	0.022	0.017			
	0.030	0.030	0.034	0.030	
	6.218	7.335	0.985	7.070	8.063

TABLE 7-2. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 125°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3
TEMP	VOL D0	VOL D1	VOL D2	VOL D3
DATE	ILC C0	ILC C1	ILD D0	ILD D1
			ILD D2	ILD D3
	IDD DS	IDD S	IGG	ISS DS
				ISS S
835	4.165	4.155	4.150	4.150
125 C	0.335	0.325	0.325	0.325
7-9-80	0.024	0.019		
	0.034	0.035	0.036	0.035
	6.778	8.268	0.874	7.358
				8.793
840	4.155	4.160	4.160	4.150
125 C	0.335	0.330	0.325	0.325
7-9-80	0.024	0.019		
	0.033	0.033	0.033	0.033
	6.555	8.535	0.967	7.263
				8.888
841	4.155	4.145	4.145	4.145
125 C	0.350	0.345	0.345	0.330
7/9/80	0.024	0.019		
	0.037	0.039	0.039	0.038
	6.830	8.938	1.098	7.640
				9.655
844	4.155	4.170	4.155	4.155
125 C	0.330	0.305	ZX310	0.300
7/9/80	0.022	0.019		
	0.032	0.032	0.032	0.031
	7.040	8.968	1.085	7.705
				9.640
846	4.125	4.150	4.110	4.105
125 C	0.405	0.360	0.390	0.400
7/9/80	0.024	0.019		
	0.031	0.030	0.030	0.031
	6.400	8.243	0.949	7.188
				8.878
849	4.110	4.120	4.110	4.110
125 C	0.430	0.465	0.405	0.425
7/9/80	0.023	0.017		
	0.031	0.032	0.032	0.032
	6.198	7.730	0.970	7.015
				8.415
851	4.140	4.125	4.130	4.110
125 C	0.365	0.355	0.360	0.350
7/9/80	0.024	0.019		
	0.030	0.031	0.030	0.031
	6.280	7.675	0.958	7.063
				8.335

TABLE 7-2. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 125°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3
TEMP	VOL D0	VOL D1	VOL D2	VOL D3
DATE	ILC C0	ILC C1		
	ILD D0	ILD D1	ILD D2	ILD D3
	IDD DS	IDD S	IGE	ISS DS ISS S
853	4.175	4.175	4.165	4.170
125 C	0.310	0.300	0.310	0.290
7/9/80	0.024	0.019		
	0.035	0.035	0.034	0.034
	7.325	9.165	1.063	7.933 9.743
854	4.130	4.145	4.140	4.125
125 C	0.430	0.415	0.405	0.410
7/9/80	0.024	0.019		
	0.033	0.033	0.033	0.033
	6.195	7.585	0.959	6.983 8.250
855	4.090	4.100	4.080	4.07
125 C	0.390	0.365	0.355	0.385
7/9/80	0.023	0.015		
	0.030	0.030	0.030	0.030
	6.353	7.558	0.969	7.143 8.278
858	4.140	4.155	4.095	4.095
125 C	0.410	0.405	0.400	0.385
7/10/80	0.023	0.017		
	0.033	0.033	0.033	0.033
	6.228	7.790	0.992	7.065 8.505
861	4.120	4.110	4.115	4.110
125 C	0.375	0.365	0.360	0.365
7/9/80	0.024	0.019		
	0.039	0.039	0.039	0.039
	6.633	8.615	1.000	7.345 8.985
862	4.105	4.075	4.065	4.040
125 C	0.765	0.625	0.565	0.530
7/10/80	0.030	0.023		
	0.048	0.052	0.053	0.056
	6.2375	8.028	0.873	6.953 8.525
868	4.085	4.095	4.090	4.065
125 C	0.420	0.400	0.390	0.390
7/10/80	0.025	0.021		
	0.043	0.045	0.046	0.045
	6.288	8.130	1.350	7.440 8.910

TABLE 7-2. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 125°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	V _{OH}	I _{D0}	V _{OH}	I _{D1}	V _{OH}	I _{D2}	V _{OH}	I _{D3}
TEMP	VOL	D ₀	VOL	D ₁	VOL	D ₂	VOL	D ₃
DATE	ILC	C ₀	ILC	C ₁	ILD	D ₀	ILD	D ₃
					IDD	DS	IDD	S
871	4.105	4.105	4.105	4.105				
125 C	0.415	0.395	0.405	0.405				
7/10/80	0.024	0.019						
	0.033	0.033	0.033	0.033				
	6.438	7.950	1.072	7.310	8.698			
876	4.075	4.145	4.075	4.050				
125 C	0.330	0.500	0.650	0.665				
7/10/80	0.024	0.019						
	0.031	0.031	0.031	0.030				
	5.995	7.093	0.862	6.778	7.785			
880	4.090	4.125	4.100	4.130				
125 C	0.450	0.430	0.435	0.305				
7/10/80	0.024	0.019						
	0.031	0.031	0.031	0.030				
	6.150	7.408	0.779	6.843	7.968			
890	4.150	4.155	4.155	4.145				
125 C	0.345	0.325	0.315	0.325				
7/10/80	0.024	0.019						
	0.032	0.032	0.032	0.031				
	6.558	8.595	0.978	7.288	8.860			
//								
892	4.210	4.205	4.200	4.200				
125 C	0.355	0.335	0.325	0.325	0.330			
7/10/80	0.026	0.021						
	0.039	0.040	0.041	0.041				
	6.598	8.568	0.878	7.303	9.103			
893	4.070	4.085	4.080	4.080				
125 C	0.440	0.425	0.410	0.410				
7/10/80	0.024	0.019						
	0.033	0.033	0.033	0.033				
	6.283	7.693	1.083	7.168	8.455			
894	4.185	4.185	4.175	4.155				
125 C	0.345	0.320	0.325	0.330				
7/10/80	0.024	0.019						
	0.036	0.037	0.037	0.037				
	6.538	8.440	0.818	7.208	8.983			

TABLE 7-2. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 125°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3			
TEMP	VOL D0	VOL D1	VOL D2	VOL D3			
DATE	ILC C0	ILC C1	ILD D0	ILD D1	ILD D2	ILD D3	
			IDD DS	IDD S	IGG	ISS DS	ISS S
895	4.090	4.090	4.085	4.075			
125 C	0.450	0.435	0.430	0.425			
7/10/80	0.023	0.015					
	0.031	0.031	0.031	0.031			
	6.073	7.358	0.958	6.878	8.015		
897	4.090	4.100	4.095	4.090			
125 C	0.395	0.385	0.385	0.375			
7/10/80	0.024	0.019					
	0.033	0.033	0.033	0.033			
	6.390	8.443	1.085	7.358	8.795		
900	4.130	4.120	4.115	4.105			
125 C	0.385	0.370	0.370	0.365			
7/10/80	0.024	0.019					
	0.033	0.033	0.033	0.033			
	6.425	8.065	0.828	7.118	8.608		
2001	4.170	4.165	4.155	4.165			
125 C	0.320	0.305	0.290	0.350			
7/10/80	0.024	0.019					
	0.033	0.033	0.033	0.033			
	7.663	9.233	1.723	8.965	10.475		
2002	4.160	4.145	4.120	4.100			
125 C	0.340	0.300	0.335	0.315			
7/10/80	0.024	0.019					
	0.033	0.030	0.029	0.029			
	7.555	9.213	1.688	8.850	10.475		
2003	4.180	4.190	4.185	4.185			
125 C	0.345	0.300	0.265	0.255			
7/10/80	0.024	0.019					
	0.031	0.029	0.030	0.029			
	7.598	9.298	1.750	8.980	10.625		
2005	4.190	4.170	4.150	4.145			
125 C	0.295	0.370	0.370	0.285			
7/10/80	0.021	0.019					
	0.032	0.030	0.031	0.031			
	7.185	8.760	1.678	8.503	9.950		

TABLE 7-2. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 125°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3		
TEMP	VOL D0	VOL D1	VOL D2	VOL D3		
DATE	ILC C0	ILC C1	ILD D0	ILD D1	ILD D2	ILD D3
	IDD DS	IDD S	IGG	ISS DS	ISS S	
2006	4.190	4.140	4.165	4.140		
125 C	0.385	0.285	0.290	0.280		
7/10/80	0.024	0.019				
	0.033	0.033	0.033	0.033		
	7.238	8.730	1.613	8.530	9.893	
2007	4.195	4.170	4.135	4.155		
125 C	0.380	0.330	0.325	0.285		
7/10/80	0.024	0.019				
	0.033	0.033	0.033	0.033		
	7.658	10.060	1.753	9.020	10.750	
2008	4.180	4.155	4.155	4.160		
125 C	0.330	0.365	0.290	0.295		
7/10/80	0.024	0.019				
	0.033	0.033	0.033	0.033		
	7.413	9.045	1.615	8.670	10.180	
2009	4.185	4.165	4.125	4.115		
125 C	0.370	0.290	0.325	0.290		
7/10/80	0.024	0.019				
	0.033	0.033	0.033	0.033		
	7.333	8.890	1.620	8.598	10.030	
2010	4.185	4.165	4.155	4.125		
125 C	0.385	0.295	0.345	0.275		
7/10/80	0.024	0.019				
	0.033	0.033	0.033	0.033		
	7.658	9.320	1.723	8.995	10.625	
2011	4.190	4.175	4.180	4.110		
125 C	0.280	0.295	0.370	0.275		
7/10/80	0.024	0.019				
	0.033	0.033	0.033	0.033		
	7.038	8.373	1.573	8.313	9.525	
2012	4.150	4.160	4.090	4.145		
125 C	0.285	0.270	0.330	0.275		
7-10-80	0.024	0.019				
	0.032	0.032	0.032	0.032		
	7.095	8.730	1.503	8.308	9.800	

TABLE 7-2. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 125°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3
TEMP	VOL D0	VOL D1	VOL D2	VOL D3
DATE	ILC C0	ILC C1	ILD D2	ILD D3
	ILD D0	ILD D1	ILD D2	ILD D3
	IDD DS	IDD S	IGG	ISS DS ISS S
2013	4.175	4.165	4.155	4.150
125 C	0.325	0.305	0.315	0.305
7-10-80	0.024	0.019		
	0.032	0.032	0.032	0.032
	7.335	8.970	1.718	8.658
				10.208
2014	4.205	4.180	4.165	4.165
125 C	0.310	0.270	0.365	0.360
7-10-80	0.024	0.019		
	0.029	0.030	0.030	0.029
	7.323	9.053	1.550	8.598
				10.200
2015	4.175	4.160	4.130	4.145
125 C	0.365	0.355	0.355	0.345
7-10-80	0.024	0.019		
	0.032	0.032	0.032	0.032
	7.405	9.048	1.650	8.725
				10.205
2016	4.170	4.130	4.130	4.125
125 C	0.335	0.315	0.325	0.350
7-10-80	0.024	0.019		
	0.032	0.032	0.032	0.032
	7.635	9.247	1.698	8.940
				10.500
2018	4.085	4.120	4.110	4.110
125 C	0.345	0.430	0.330	0.385
7-10-80	0.024	0.019		
	0.031	0.030	0.029	0.028
	6.490	7.805	1.433	7.643
				8.855
2019	4.115	4.110	4.135	4.110
125 C	0.295	0.305	0.300	0.335
7-11-80	0.023	0.019		
	0.032	0.032	0.032	0.032
	7.535	9.178	1.740	9.053
				10.600
2020	4.145	4.155	4.145	4.110
125 C	0.295	0.320	0.350	0.390
7-11-80	0.023	0.019		
	0.032	0.031	0.029	0.029
	7.173	8.660	1.578	8.518
				9.895

TABLE 7-2. INPUT LEAKAGE AND POWER SUPPLY CURRENT AT 125°C (Continued)

UNITS: VOLTS; INPUT LEAKAGE-MICROAMPERES; SUPPLY CURRENT-MILLIAMPERES

DEVICE	VOH D0	VOH D1	VOH D2	VOH D3		
TEMP	VOL D0	VOL D1	VOL D2	VOL D3		
DATE	ILC C0	ILC C1	ILD D0	ILD D1	ILD D2	ILD D3
	IDD DS	IDD S	IGG	ISS DS	ISS	S
2022	4.170	4.135	4.130	4.130		
125 C	0.310	0.335	0.335	0.295		
7-11-80	0.023	0.019				
	0.030	0.030	0.030	0.029		
	7.420	9.125	1.670	8.763	10.500	
2023	4.175	4.155	4.125	4.155		
125 C	0.325	0.290	0.345	0.280		
7-11-80	0.023	0.019				
	0.032	0.032	0.032	0.032		
	7.395	9.153	1.568	8.740	10.350	
2024	4.170	4.160	4.135	4.130		
125 C	0.350	0.285	0.305	0.290		
7-11-80	0.023	0.019				
	0.032	0.032	0.032	0.032		
	7.513	9.175	1.713	8.860	10.525	
2026	4.180	4.140	4.155	4.145		
125 C	0.355	0.370	0.345	0.340		
7-11-80	0.023	0.017				
	0.040	0.039	0.039	0.036		
	7.430	9.005	1.783	8.838	10.300	

980-16962

55 NUMBER OF MEASUREMENTS
6.52745454 MEAN
.454649639 ONE STANDARD DEVIATION
5.9 MINIMUM VALUE
7.56 MAXIMUM VALUE

FIGURE 7-14. DISTRIBUTION OF MEASURED IDD (DE-SELECTED) VALUES
AT +125°C

55 NUMBER OF MEASUREMENTS
8.11013182 MEAN
.65406835 ONE STANDARD DEVIATION
7.16 MINIMUM VALUE
9.01 MAXIMUM VALUE

FIGURE 7-15. DISTRIBUTION OF MEASURED IDD (SELECTED)
VALUES AT +125°C

980-16962

54 NUMBER OF MEASUREMENTS
1.11592593 MEAN
.277211768 ONE STANDARD DEVIATION
.78 MINIMUM VALUE
1.8 MAXIMUM VALUE

FIGURE 7-16. DISTRIBUTION OF MEASURED VALUE OF IGG AT +125°C

980-16962

55	NUMBER OF MEASUREMENTS
7.40581818	MEAN
.601584795	ONE STANDARD DEVIATION
6.52	MINIMUM VALUE
9.05	MAXIMUM VALUE

FIGURE 7-17. DISTRIBUTION OF MEASURED ISS (DE-SELECTED) VALUES AT +125°C

55	NUMBER OF MEASUREMENTS
3.17363636	MEAN
.77488671	ONE STANDARD DEVIATION
7.14	MINIMUM VALUE
19.6	MAXIMUM VALUE

ISS SELECTED AT 125C
IN UNITS OF MILLIAMPERES

FIGURE 7-18. DISTRIBUTION OF MEASURED ISS (SELECTED) VALUES AT +125°C

980-16962

55	NUMBER OF MEASUREMENTS
•397272728	MEAN
•0694773864	ONE STANDARD DEVIATION
•31	MINIMUM VALUE
•77	MAXIMUM VALUE

FIGURE 7-19. OUTPUT VOLTAGE LEVEL (VOL) AT SPECIFIED LOAD OF ER3400/NCR2451 AT +125°C

980-16962

M A651
A651, D5, D0
A652, 00,
G 0

OK
GOTO170

	NUMBER OF MEASUREMENTS
55	MEAN
4.10472728	ONE STANDARD DEVIATION
.0337827628	MINIMUM VALUE
4.03	
4.17	MAXIMUM VALUE

WARM MINIMUM VOH AT 125 C
IN UNITS OF VOLTS

FIGURE 7-20. OUTPUT VOLTAGE LEVEL (VOH) DISTRIBUTION OF ER3400/NCR2451
PARTS TESTED AT +125°C UNDER SPECIFIED LOAD CONDITIONS

980-16962

54	NUMBER OF MEASUREMENTS
13.0390741	MEAN
.812436398	ONE STANDARD DEVIATION
11.88	MINIMUM VALUE
15.03	MAXIMUM VALUE

WARM IDD DESELECTED AT -55°C
IN UNITS OF 10 TO THE 3 MILLIAMPERES

FIGURE 7-21. IDD (VDD=-13V) DISTRIBUTION AT -55°C IN
DE-SELECTED MODE FOR ER3400/NCR2451

54	NUMBER OF MEASUREMENTS
18.96	MEAN
2.52249424	ONE STANDARD DEVIATION
16.25	MINIMUM VALUE
26.98	MAXIMUM VALUE

WHY DID SELECTED AT -55°C
IN UNITS OF 10 TO THE 1 MILLIAMPERES

FIGURE 7-22. IDD (VDD=-13V) DISTRIBUTION AT -55°C IN
SELECTED MODE FOR ER3400/NCR2451

980-16962

54	NUMBER OF MEASUREMENTS
2.2688889	MEAN
.371910315	ONE STANDARD DEVIATION
1.79	MINIMUM VALUE
3.41	MAXIMUM VALUE

WORLD IGG AT -55°C
IN UNITS OF MILLIAMPERES

FIGURE 7-23. IGG (V_{GG}=-13V) DISTRIBUTION FOR
ER3400/NCR2451 PARTS AT -55°C

980-16962

54	NUMBER OF MEASUREMENTS
14.7272222	MEAN
1.06926664	ONE STANDARD DEVIATION
13.38	MINIMUM VALUE
17.53	MAXIMUM VALUE

WAROM ISS DESELECTED AT -55°C
IN UNITS OF 10 TO THE 1 MILLIAMPERES

FIGURE 7-24. ISS (VSS=+5V) DISTRIBUTION AT -55°C FOR ER3400/
NCR2451 PARTS IN THE DE-SELECTED MODE

980-16962

54	NUMBER OF MEASUREMENTS
16.3618519	MEAN
1.42944954	ONE STANDARD DEVIATION
14.68	MINIMUM VALUE
19.85	MAXIMUM VALUE

WHICH ISS SELECTED AT -55°C
IN UNITS OF 10 TO THE 1 MILLIAMPERES Iss in max 10^{-1}

FIGURE 7-25. ISS (VSS=+5V) DISTRIBUTION AT -58°C FOR ER3400/NCR2451 PARTS IN THE SELECTED MODE

980-16962

Output voltage levels of ER3400/NCR2451 improve at -55 degree C as can be seen in Figures 7-26 and 7-27.

7.1.5 Final Functional Test. As is shown in Figure 7-1, the 55 parts remaining after DC parameter testing were reduced to 50 parts after final functional testing. The loss at this stage of the screening process was due to five NCR2451 parts that would not operate at -55 degree C in a normal READ, WRITE or ERASE mode. All of the devices that failed except one (1) would operate at -40 degree C. The conclusion drawn is that the oscillator circuit internal to the device was marginal in starting at this temperature.

7.1.6 Screened Parts Delivery To ERADCOM. Table 7-3 lists the serial numbers of parts passing the screen tests shown in the Test Plan. These parts were shipped to ERADCOM.

8. ACCELERATED TESTING OF TIME RELATED PARAMETERS IN MNOS MEMORIES

Testing of non-volatile memories with finite non-permanent periods of unpowered retention presents unique and difficult problems to test engineers. This complex problem is further complicated by the fact that the retention characteristic is dynamic in that it changes as a function of the device write/erase history. These factors add a third and fourth dimension to the normal two dimensioned memory test problem.

Since real-time measurement of retention characteristics is impractical; measurement of the change of that parameter as a function of device history is even less feasible. In the case of many MNOS type non-volatile memories the threshold of the memory array transistors can be measured and observed over a period of time. Since the threshold of the memory device is a direct function of the amount of charge trapped in the Nitride/oxide interface in the gate region it decays at the same rate as the discharge of the gate.

This fact allows the thresholds to be plotted as a logarithmic function of time depicting the retention characteristic of the device. By measuring and plotting several threshold points overtime, the line established by these points on a lin-log graph can be extrapolated out to the end of retention point and used to predict retention. Figure 8-1 shows this approach and points out how to find end of retention points for use in predicting retention.

980-16962

54 NUMBER OF MEASUREMENTS
4.3977778 MEAN
.0301641865 ONE STANDARD DEVIATION
4.32 MINIMUM VALUE
4.45 MAXIMUM VALUE

FIGURE 7-26. OUTPUT VOLTAGE LEVEL (VOH) AT -55°C FOR ER3400/NCR2451

54 NUMBER OF MEASUREMENTS
.15722222 MEAN
.0352985499 ONE STANDARD DEVIATION
.13 MINIMUM VALUE
.4 MAXIMUM VALUE

FIGURE 7-27. OUTPUT VOLTAGE LEVEL (VOL) AT -55°C FOR ER3400/NCR2451

980-16962

TABLE 7-3. SERIAL NUMBERS OF PARTS PASSING FINAL SCREEN IN MACI PROGRAM

778	ER3400
782	ER3400
783	ER3400
803	ER3400
816	ER3400
822	ER3400
826	ER3400
829	ER3400
830	ER3400
831	ER3400
832	ER3400
833	ER3400
835	ER3400
836	ER3400
840	ER3400
841	ER3400
844	ER3400
845	ER3400
846	ER3400
849	ER3400
851	ER3400
852	ER3400
853	ER3400
854	ER3400
855	ER3400
858	ER3400
860	ER3400
861	ER3400
864	ER3400
868	ER3400
869	ER3400
871	ER3400
872	ER3400
874	ER3400
875	ER3400
879	ER3400
880	ER3400
884	ER3400
886	ER3400
887	ER3400
889	ER3400
890	ER3400
2002	NCR2451
2006	NCR2451
2009	NCR2451
2011	NCR2451
2013	NCR2451
2015	NCR2451
2019	NCR2451
2023	NCR2451

980-16962

FIGURE 8-1. RETENTION PREDICTION CURVE

Using the diagram in Figure 8-1, an equation for the "0" threshold decay line can be written. Using the equation for a straight line:

$$y = mx + b$$

where y = device threshold @ end of retention

m = slope of retention curve = $\Delta Vt / \Delta T$

$$m = \frac{Y_2 - Y_1}{\log\left(\frac{T_2}{T_1}\right)}$$

x = retention time (logarithmic)

b = threshold at write time (i.e., $T = 0$)

$$= Y_2 - \log T_2 m = Y_2 - \log T_2 \left(\frac{Y_2 - Y_1}{\log\left(\frac{T_2}{T_1}\right)} \right)$$

$$y = \left[\frac{Y_2 - Y_1}{\log\left(\frac{T_2}{T_1}\right)} \right] (x) + Y_2 - \log T_2 \left(\frac{Y_2 - Y_1}{\log\left(\frac{T_2}{T_1}\right)} \right) \quad (1)$$

$$\text{Solving for } x \quad x = \left(\frac{(Y - Y_2) \log\left(\frac{T_2}{T_1}\right)}{Y_2 - Y_1} \right) + \log T_2 \quad (2)$$

$$Tr = \log^{-1} x$$

Tr = actual retention time

y = the end of retention amplitude which for the case shown is the reference voltage minus the sense amp offset.

Since all points on the right side of equation (2) are known it can be solved producing the log of the retention time. By taking anti-log the predicted retention time can be found.

A more practical way to use this approach is to develop a minimum retention curve based on the specified device retention using an

initial threshold point and the end of retention point to establish the minimum retention curve. By taking a second threshold measurement, all that needs to be established is that when plotted on the curve that it falls below the line for the time point the measurement was taken. Equation (3) derived from equation (1) above shows this relationship.

$$y = \left[\log \left(\frac{T_2}{T_1} \right) \right] \left(\frac{V_{REF} - V_{OFF} - V_{T1}}{\log \left(\frac{T_{RET}}{T_1} \right)} \right) + V_{T1} \quad (3)$$

where $y = V_T$ of second measurement

T_2 = time of second measurement

T_1 = time of first measurement

V_{REF} = internal reference voltage

V_{OFF} = sense amp offset voltage

V_{T1} = threshold voltage of first measurement

T_{RET} = specified retention time.

Therefore the measured value of threshold at T_2 must be more negative than the value of y calculated above in order to have a retention characteristic greater than the specified retention.

The "one" threshold is not used for this calculation for several reasons. The normal tri-gate structure of the MNOS transistor causes the threshold plot to be stable for an undetermined length of time making short time measurements unfeasible. Furthermore due to the more significant read disturb effect and the shallower discharge slope of the one threshold, the "zero" threshold is designed to be the sooner of the two thresholds to decay by time related effects to intersect with the reference voltage and hence loss of ability to sense device state.

To further reduce the effort needed to predict device retention and minimize the test costs, a method was developed using separate bins for the initial threshold measurement instead of establishing the actual value. This is done because measuring the actual threshold is time consuming test wise and thus impractical as a screening test. By establishing a specified number of "bins" a

device threshold falls into, the number of measurements then equals the number of bins plus one. By "binning" the parts based on the initial threshold measurement, and using the nomograph (Figure 8-2,) which was developed from equation (3) test time is reduced significantly. Typical VT₁ distributions shown in Figure 8-3a and b), were used to develop the nomograph.

The nomograph is used as follows:

RETENTION NOMOGRAPH USE

- Three hours after writing the device is binned according to VT₁. VT₁ need not be established to do this.
- Devices which operate with VGG = -30 and fail to operate with VGG = -11.54 are put in bin one.
- Devices which operate with VGG = -11.54 and fail to operate with VGG = -12.18 are put in bin two.
- Devices which operate with VGG = -12.18 and fail to operate with VGG = -12.82 are put in bin three.
- Devices which operate with VGG = -12.82 and fail to operate with VGG = -13.46 are put in bin four.
- Devices which operate with VGG = -13.46 and fail to operate with VGG = -14.10 are put in bin five.

After the 160 hour period the threshold voltage VT₂ and the reference voltage are measured at room temperature. A line is established on the nomograph through VT₁ on the left scale and the reference voltage on the center scale. The point where this line intersects the right scale is the minimum value which VT₂ may be for the device to have a retention of one year. If the measured value of VT₂ is greater (more negative) than this minimum; the projected data retention of the device is in excess of one year. Using the value of VT₂ as the VGG value during read, a single measurement of whether the device reads correctly will determine if the retention is in excess of the one year requirement.

Figure 8-4 and the discussion below demonstrates use of the nomograph. On July 18, 1980 GI3400 #829 was written and soaked at 125°C for one hour. Three hours from the time of writing the threshold voltage VT₁ was measured to be -13.54 volts. This is between -14.1 and -13.46 which is the only information required to use the nomograph.

980-16962

1080-64B

BURN IN RETENTION NOMOGRAPH

FIGURE 8-2. RETENTION NOMOGRAPH FOR ER3400/NCR2451 DEVICES

980-16962

93 NUMBER OF MEASUREMENTS
- 13.2739785 MEAN
.455910095 ONE STANDARD DEVIATION
- 15 MINIMUM VALUE
- 12.2 MAXIMUM VALUE

FIGURE 8-3a. VT1 OF SCREENED DEVICES

980-16962

121	NUMBER OF MEASUREMENTS
-12.8753719	MEAN
-845710767	ONE STANDARD DEVIATION
-15	MINIMUM VALUE
-10.92	MAXIMUM VALUE

VT1 OF ALL TESTED MACI WAROMS
IN UNITS OF VOLTS

FIGURE 8-3b. VT1 OF ALL TESTED MACI WAROMS

980-16962

1080-01B

BURN IN/RETENTION NOMOGRAPH

FIGURE 8-4. NOMOGRAPH USE EXAMPLE PROBLEM

The reference voltage of this device was measured to be -9.68 volts. A line is drawn on the nomograph through -14.1 on the left scale and -9.68 on the center scale. This line intercepts the right scale at minimum VT₂ = -12.07 volts. After 160 hours at 125 degree C VT₂ was measured to be -12.42 volts which is greater than the required minimum. Therefore device 829 has a predicted retention greater than a year at 125 degree C as required. The data is plotted on Figure 8-5.

This method of predicting retention characteristics significantly simplifies this task and allows devices to be screened in a practical way for this important parameter. Retention however, is not a fixed static condition but changes as a function of temperature and the number of write and erase cycles performed on a particular memory cell.

Temperature effects, while causing a reduction in retention from 10 years at +25 degree C to as low as 1 year at +125 degree C, can be measured and predicted using the normal techniques developed above. By using the prescribed 160 hour burn-in required by MIL-STD-883-B as a high temperature soak period for measuring retention, testing for this parameter fits conveniently into the normal screening schedule.

The change in retention as a function of the number of erase/write cycles performed on a particular cell (known as endurance) is a much more complex testing matter. Since the effect is a permanent change, unlike retention, normal tests on a screening basis for real time measurement of endurance are impractical. Due to endurance being measured as a function of retention, and with retention being a long expensive test, screening for this parameter is further complicated. Methods currently in use apply lot sampling methods to eliminate low endurance parts from systems. The correlation between sampled devices and the lot is tenuous at best. This allows poor endurance parts to be placed in field use or eliminates the use of these cost effective memories due to low confidence levels of screening out bad parts.

It was noticed by NCR that devices having thinner nitride layers than others in any batch of similar devices exhibited lower endurance levels when used in systems where nominal voltages were set to optimize the performance of the full range of devices. Using this fact, Honeywell, in cooperation with NCR and GI, developed some functional, user oriented, tests that measures relative nitride thickness of the memory devices. Correlation tests were performed to determine if the thinner nitride devices exhibited poorer endurance. The results were positive and these tests were developed to be used at screening levels to provide a much lower risk method of eliminating poor endurance parts. Since the data base is yet fairly small, direct prediction of endurance is not yet practical but relative endurance between devices is now feasible.

980-16962

1080 57B

FIGURE 8-5. PLOTTING OF SAMPLE PROBLEM DATA

Since it was known that thicker nitrides results in slower erasing devices, a qualitative soft erase method was developed to indicate relative nitride thickness. A normal write cycle was used, followed by an erase cycle reduced in both applied bias and width. The threshold was measured after this cycle, and devices that showed the greatest change in threshold from the written state were sorted out to be thin nitride parts thus having lower endurance characteristics than other parts. Since some parts do not have threshold measuring capability, a method using a series of short erase cycles, each followed by a read cycle, show which devices change state first, indicating thinner nitride parts. Much of the data linking these conditions were shown in the earlier MACI report (Interim #1).

Figure 8-6 shows the retention of particular MNOS devices after 10^5 erase/write cycles plotted against the soft erase threshold measurement being proposed to predict that performance. It can be clearly seen that devices having a lower (less negative - greater change) soft-erase threshold exhibit a poorer retention after 10^5 E/W cycles. While the curves shown are for all types tested, it can be seen that the 2401 show the worst correlation. This was probably due to unstable threshold measurement characteristics exhibited by the devices.

Using a best fit curve technique, Figure 8-7 plots the measured soft erase thresholds against the post 10^5 E/W cycle retention and produces a curve from which to extrapolate endurance predictions. Table 8-1 shows the basis for the curve and the correlation of the curve to the measurements. Some of the values of screened devices were placed on the curve showing predicted retentions after 10^5 E/W cycles of 7.4×10^4 seconds and 3.3×10^5 seconds.

Using a data base of 225 parts the distribution of soft erase thresholds measured is shown in Figure 8-8. Using Figure 8-7 to predict endurance, the range of retention after 10^5 E/W cycles indicated by this distribution is from 3×10^4 to 5×10^6 seconds. Table 8-2 lists the prospective endurance values for all NCF2451's passing the screen tests.

It should be understood that the data base for the threshold measurement to endurance correlation is still very thin and should be characterized over a wider range of lots. Further correlation between memory substrate leakage current on devices where this output is available (i.e., NCR2810/ER2810) and soft erase thresholds points toward using dc leakage measurements to sort out low endurance parts. The results of that investigation are shown below.

980-16962

FIGURE 8-6. ENDURANCE CHARACTERISTICS FOR MNOS DEVICES AS A FUNCTION OF SOFT ERASE THRESHOLD MEASUREMENT

980-16962

1080-63B

FIGURE 8-7. ENDURANCE VERSUS SOFT ERASE THRESHOLD

ZERO THRESHOLD OF ALL TESTED MACI WAROM MEMORIES
IN UNITS OF VOLTS AFTER WRITING ZEROS AND A SOFT ERASE

FIGURE 8-8. SOFT ERASE THRESHOLD DISTRIBUTION FOR PREDICING ENDURANCE

980-16962

TABLE 8-1. 2451 ENDURANCE

<u>Device</u>	<u>"VMG"</u>	<u>Retention @100000 EW</u>	<u>Log of Retention</u>
535	-12.00	337000	5.528
537	-13.30	5160000	6.713
539	-13.12	12000000	6.079
546	-12.10	416000	5.619
512	-7.80	17800	4.250
515	-11.04	108000	5.033
527	-11.36	192000	5.283

Least square linear fit of log of retention to "VMG" Log of retention= $\beta .934 - \beta .396$ "VMG" Correlation coefficient=- $\beta .936$
 retention=8.59 β EXP(- $\beta .912$ "VMG")

TABLE 8-2. ER3400 ENDURANCE

<u>Device</u>	<u>VMG</u>	<u>Projected Retention in Seconds After 10⁵ EW</u>
2002	-11.06	206347.874
2006	-11.54	319680.946
2009	-11.58	331558.232
2011	-11.42	286541.521
2013	-9.94	74300.9291
2015	-10.26	99480.6798
2023	-10.42	115109.454

This paper is a brief summary of comparisons of erase substrate leakage current (IEEL) to: (1) read threshold after soft erase (VT) and (2) number of soft erase (#SE) until an indeterminate zero threshold level is reached.

Read threshold after soft erase and the number of soft erases until an indeterminate zero threshold level is reached has been demonstrated to be related to each other and to gate nitride thickness and therefore, endurance. These comparisons were performed to determine if a reasonable correlation could be observed between IEEL and VT/#SE. A more detailed explanation of endurance and VT tests is included in the MACI preselection report.

DEFINITIONS

Erase Substrate Leakage Current (IEEL) - In a block erase type EAROM only, the leakage current from substrate to gate during the erase cycle.

Soft Erase - Erasing a device using either reduced erase voltage or reduced time (from recommended specification).

Read Threshold After Soft Erase - The device "0" (minimum) threshold (VT) after a normal write and a soft erase.

For other definitions, see MACI preselection report.

The results of the data comparison are shown for the 2810 device type in Table 8-3 and similarly for the 2401 device type in Table 8-4. The devices are listed in increasing IEEL order.

Figure 8-9 represents a plot of the log of IEEL versus VT for the 2810 device type. The trend of increasing IEEL with decreasing VT is apparent.

Although the data base was small, a direct relationship between IEEL and VT (and thus endurance) has been demonstrated. This simple static test can easily be incorporated into the standard DC screening tests. This test, in addition to VT and other tests, could increase the confidence of users in eliminating inferior endurance parts. With additional characterization, a direct correlation between IEEL and number of erase/write cycles until nitride fatigue occurs may be obtained. A maximum IEEL limit may be imposed, depending on reliability requirements, for each device type. This limit could be specified according to the number of erase/write cycles anticipated for the useful life of the devices.

980-16962

TABLE 8-3. DEVICE: 2810

<u>Serial Number</u>	<u>IEEL(A)</u>	<u>Number of Soft Erases</u>	<u>Read Threshold After Soft Erase (Volts)</u>
302	-2	285	No Data
333	-3	275	-6.79
320	-6	125	-6.73
325	-8	33	-6.24
336	-12	20	-5.99
323	-16	22	-5.81
328	-18	24	-5.88
322	-22	7	-5.54
316	-29	1	-5.42
339	-47	6	-5.51
319	-61	4	-5.06
317	-80	1	-5.43
344	-82	6	-5.21
331	-91	2	-4.84
326	-96	2	-4.71
321	-125	3	-5.07
318	-170	2	-4.98
332	-276	2	-4.8
327	>-1500	1	-4.72

980-16962

TABLE 8-4. DEVICE: 2401

<u>Serial Number</u>	<u>IEEL(A)</u>	<u>Number of Soft Erases</u>	<u>Read Threshold After Soft Erase (Volts)</u>
410	-1	1200	-4.78
428	-1	264	-4.7
417	-3	73	-3.66
409	-4	10	-2.52
401	-22	5	-2.04
407	>-1500	1	-.92
423	>-1500	1	No Data

980-16962

1080-62B

FIGURE 8-9. ERASE SUBSTRATE LEAKAGE CURRENT (IEEL) VERSUS READ THRESHOLD (VT)

The use of any of the measurements to indicate endurance, assuming the correlation to real endurance is as tight as the early data base indicates, significantly reduces the risk of poor endurance parts finding their way into systems and improves the confidence level of potential users to bring MNOS devices into a broader range of applications.

An investigation into the relationship between the speed of writing characteristics and the read disturb effect in MNOS memories was started. Results of that investigation, while promising in the trends it shows, have produced no conclusive results thus far. Due to the tremendous time expenditure and tieing up of equipment, results require extended periods to compile and analyze and dedicated programs to finance. If these tests prove fruitful, the last time related parameter will be able to be predicted in a practical way.

9. CONCLUSIONS

After completion of the Third Phase of the MACI EAROM Program the following conclusions can be drawn:

- The MACI Program has attempted to define and organize the testing and evaluation of MNOS Memory Devices at a time when little formal definition of those methods exists.
- The Accelerated Tests developed under this program will significantly contribute to the reliability of the screen tests and reduce the expense of testing EAROMs.
- Unique test patterns (i.e., assymetric slant) developed under MACI enable test engineers to test for worst case patterns while performing address integrity tests simultaneously.
- Characterization of devices by users should be a continuous program in order to insure that small process changes do not affect parameters critical to the operation of the devices in systems.
- Due to the time related parameters of MNOS, things affecting device performance sometimes take long periods of time before being noticed and corrected.
- A new generation of non-volatile memories is being developed which will require the same careful evaluation as the previous parts before a high confidence level can be obtained for their use in systems.
- The proposed Final Slash Sheet will contain the latest approaches to measuring EAROM viability that have been developed and reflect the status of the MNOS industry.