8 сентября 2017 15 сентября 2017

Лабораторная работа № 1.1.6

Изучение электронного осциллографа

Цель работы: ознакомление с устройством и работой осциллографа и изучение его основных характеристик.

В работе используется: осциллограф, генераторы электрических сигналов, соединительные кабели.

1 Подготовка к работе

Включим осциллограф в сеть. Ручку развертки поставим в положение X-Y. Осциллограф будет показывать точку. Расположим ее в центре экрана осциллографа. Настроим яркость и четкость для комфортной работы.

2 Наблюдение периодического сигнала от генератора и измерение частоты

Получим на экране осциллографа устойчивую картину периодического (синусоидального) сигнала, подаваемого с генератора, и с помощью горизонтальной шкалы экрана осциллографа проведем серию измерений и сравним измеренный по шкале осциллографа период колебаний с расчетным (по показанием звукового генератора).

$f_{\scriptscriptstyle \mathrm{3\Gamma}}, 10\Gamma$ ц	Т, дел	мс/дел	T, MC	f , 10Γ ц	δf , 10Γ ц	$f - f_{3\Gamma}, 10\Gamma$ ц
50	4.2	0.5	2.1	48	2.3	-2
60	3.4	0.5	1.7	59	3.5	-1
70	3	0.5	1.5	67	4.5	-3
90	5.6	0.2	1.12	89	3.2	-1
110	4.6	0.2	0.92	109	4.8	-1

Таблица 1: Частоты, измеренные частотометром генератора и осциллографом

Оценим погрешность измерения δf по формуле для погрешности косвенных измерений:

$$\delta f = \left| \frac{df}{dT} \right| \cdot \delta T = \frac{\delta T}{T^2} = f^2 \delta T$$

Погрешность δT оценим из следующих соображений. Наблюдаемая на экране осциллографа синусоида имеет некоторую толщину. Это мешает точному измерению длины периода (т.е. границы размыты). Поэтому разумно принять δT равной цене деления шкалы (имеются ввиду малые деления на экране осциллографа по 0.2 см).

3 Измерения амплитуды сигнала

С помощью вертикальной шкалы экрана осциллографа измерим отношение максимальной и минимальной амплитуд напряжений U_{max}/U_{min} . Измерения будем проводить на частоте f=1 к Γ ц. Для этого достаточно измерить амплитуду синусоиды с учетом масштаба вертикальной оси. Данные занесем в таблицу 2.

Погрешность δU оценим из тех же соображений, что и в пункте 2. Т.е. примем равной цене малых делений на экране осциллографа. Погрешность косвенного измерения величины $k = U_{max}/U_{min}$ определим по формуле:

$$\delta k = k \cdot \sqrt{\left(\frac{\delta U_{max}}{U_{max}}\right)^2 + \left(\frac{\delta U_{min}}{U_{min}}\right)^2}$$

	<i>U</i> , дел	В/дел	U, B	$\delta U/U$		
U_{min}	5.5	0.2	1.1	0.04		
U_{max}	2	5	10	0.1		
$k = U_{max}/U_{min} \approx (9.1 \pm 0.1)$						

Таблица 2: Значения максимальной и минимальной амплитуд

Выразим отношение максимального и минимального уровней сигнала в децибелах [Дц]:

$$\beta [\text{дБ}] = 10 \lg \frac{U_{max}^2}{U_{min}^2} = 20 \lg \frac{U_{max}}{U_{min}}$$

Погрешность косвенного измерения:

$$\delta\beta = \left| \frac{\delta\beta}{dk} \right| \delta k = \frac{20 \cdot \delta k}{k \ln 10}$$

Таким образом отшение β будет следующим:

$$\beta = (44.2 \pm 0.1)$$
 дБ

4 Измерение амплитудно-частотной характеристики осциллографа

Подберем масштаб вертикальной оси и амплитуду таким образом, чтобы размах значений на экране составил $2U_0=30$ малых делений (или 6 больших делений). При этом амплитуду поставим близкой к максимальной. Получим зависимость амплитуды, которую показывает осциллограф, от частоты колебаний напряжения. Для этого будем изменять частоту во всем диапазоне, а амплитуду и масштаб оставим неизменными. Данные измерений, проведенных с использованием открытого (DC) и закрытого (AC) входа, занесены в таблицу 3.

Видно, что значение K_{DC} равно 1 во всем диапазоне используемых частот, а значение K_{AC} ощутимо изменяется. Это связано с тем, что при использовании режима закрытого входа последовательно с генератором и осциллографом включается дополнительный конденсатор. При больших частотах напряжение на конденсаторе будет близко к нулю, и его

можно рассматривать как идеальный проводник. Если же частота колебаний напряжения мала, то конденсатор будет успевать значительно заряжаться и, соответственно, влиять на показания.

Начиная с $f \approx 13~\Gamma$ ц амплитуда вообще перестает изменяться. Имеет смысл проверить, что она сохраняется для всего оставшегося диапазона. При этом конкретные значения частот не так важны, поэтому в таблице они записаны сокращенно, как $10^3, 10^4$ и т. д.

<i>f</i> Гц	$\lg f$	$2U_{AC}$, дел	$K_{AC} = U_{AC}/U_0$	$2U_{BC}$, дел	$K_{DC} = U_{DC}/U_0$
0.7	-0.155	0.4	0.10	4	1.0
1.2	0.079	1.4	0.35	4	1.0
2	0.301	2.1	0.53	4	1.0
4.6	0.662	3.1	0.78	4	1.0
10	1	3.9	0.98	4	1.0
13	1.11	4	1.0	4	1.0
10^{2}	2	4	1.0	4	1.0
10^{3}	3	4	1.0	4	1.0
10^{4}	4	4	1.0	4	1.0
10^{5}	5	4	1.0	4	1.0
10^{6}	6	4	1.0	4	1.0

Таблица 3: Измерения амплитудно-частотной характеристики

Оценим погрешность измерения $K = \frac{U}{U_0}$:

$$\delta K = \frac{\delta U}{U_0}$$

Нанесем экспериментальные точки на координатную плоскость $K_{AC}(\lg f)$ при малых частотах (рисунок 1). Изменение величины K_{DC} не удалось обнаружить, поэтому бессмысленно строить график для него (он совпадет с прямой, все точки которой имеют ординату 1).

Рис. 1: Эксперементальные точки измерения амлитуды и график зависимости

5 Изучение влияния АЧХ на искажение сигнала

Установим на генераторе переключатель вида сигнала в положении прямоугольные импульсы ($mean\partial p$). Изменяя частоту генератора во всем диапазоне, пронаблюдаем, как меняется вид отображаемого сигнала.

Меандр или прямоугольный сигнал на самом деле, с точки зрения осциллографа, является суммой бесконечного количества синусоид с частотами $\nu, 2\nu, 3\nu$ и т.д. Понятно, что осциллограф работает с конечно частотой, причем по скольку сигнал достаотчно высокочастотный, то осциллограф, на самом деле, переваривает только первые несколько членов такого разложения. Поэтому наблюдается не меандр, а сумма первых нескольких членов его разложения в ряд Фурье.

Рис. 2: Меандр

6 Измерение разности фазово-частотных характеристик каналов осциллографа

Выключим внутреннюю развертку осциллографа. С помощью генератора будем подавать синусоидальный сигнал частоты около 1 к Γ ц на входы каналов X и Y.

Каналы X и Y обслуживаются разными электронными схемами. Это приводит к разности фаз, которую можно наблюдать на экране.

Пусть $x = A_x \sin(\omega t + \varphi_x)$; $y = A_y \sin(\omega t + \varphi_x)$; $\Delta \varphi = \varphi_y - \varphi_x$ Рассмотрим момент времени t_0 , такой, что $x(t_0) = 0$. Тогда $\omega t_0 + \varphi_x = \pi k$ (где $k \in \mathbb{Z}$) $y(t_0) = A_y \sin(\pi k + \Delta \varphi) \Rightarrow |y(t_0)| = A_y |\sin \Delta \varphi|$. Можем записать формулу для определения $\Delta \varphi$:

$$|\sin \Delta \varphi| = \frac{|y(t_0)|}{A_y}$$

Из условия $x(t_0)=0$ следует, что $y(t_0)$ — координата точки пересечения наблюдаемой фигуры с вертикальной осью. Обозначим $y(t_0)=y_0$.

Проведем измерения величины y_0 и A_y для частот из всего доступного диапазона. Результаты занесем в таблицу 4.

f, Гц	$2.76 \cdot 10^5$	$5.01 \cdot 10^5$	$5.28 \cdot 10^{6}$	$4.02 \cdot 10^6$	$3.05 \cdot 10^6$	$2.04 \cdot 10^{6}$
$\lg f$	5.4	5.7	6.48	6.31	6.72	6.72
$ 2y_0 , B$	0.6	1	3.8	3.5	0.9	2.2
$ 2A_y $, B	4	4	3.8	3.9	4	4
$ \Delta \varphi = \arcsin y_0/A_y $	0.15	0.25	1.57	1.11	0.23	0.58

Таблица 4: Измерение фазово-частотной характеристики

При $f=3\cdot 10^6$ Гц на экране возникает окружность. Разность фаз $\Delta\varphi=\pi/2$. По первым четырем точкам можно построить приближенную экспоненциальную функцию.

Рис. 3: Эксперементальные точки измерения разности фаз и график зависимости

7 Наблюдение фигур Лиссажу и измерение частоты

Выключим внутреннюю развертку осциллографа. На входы каналов X и Y подадим сигналы с двух разных генераторов. Изменение параметров генератора позволяет менять отношение частот f_y/f_x напряжений на канале X и на канале Y. Исследуем отношения частот 1:2, 2:1, 3:1, 3:2. Вид полученных фигур показан на рисунке 4. Эти кривые получены математическими методами, однако они полностью соответствуют тем фигурам, которые были получены в эксперементе (рисунок 5).

Y — координата обращается в ноль чаще, чем X координата, в f_y/f_x раз. Следовательно, для определения отношения f_y/f_x достаточно посчитать количество пересечений с горизонтальной осью (n_x) и с вертикальной осью (n_y) . Тогда $f_y/f_x = n_x/n_y$. На приведенных рисунках некоторые точки совпадают, и это нужно учитывать (дважды считать наложенные точки).

Рис. 4: Фигуры Лиссажу для некоторых отношений частот (рисунки)

Рис. 5: Фигуры Лиссажу для некоторых отношений частот (фотографии)