## Machine Leanring on Temporal Graphs

——时序图上的机器学习

汇报人: 刘猛 (国防科技大学)

汇报时间: 2022年10月28日









01 图是什么

02 图机器学习

03 时序图学习

04 总结与展望



## 图是什么?

图是由节点和边构成的。





## 为什么要研究图?

图 (Graph) ,又被称为网络 (Network) ,是一种现实世界广泛存在的数据形式。



群体社交网络[1]



城市通信网络[2]



## 现实世界有哪些图?

不仅于此, 很多领域的数据都可以表现为图的形式。





城市交通[5]



## 什么领域和图相关?

- 社会计算(社区发现/因果推理)
- 兴趣推荐(购物/视频/社交软件)
- 舆情分析(虚假新闻传播/信息影响力)
- 金融交易(风险评级/行为分析)
- 物联网(设备通信)
- 知识图谱(图结构数据库/关系推理)
- 智慧城市(交通预测)
- 生物医学(新药生成/靶向用药)

- 图像(像素间/图像间)
- 视频(不同帧间的关系变化)
- 文本(词间归属关系)
- 多模态数据(相似度矩阵)



## 图和图像?图神经网络?

- 图 (Graph) 是一种抽象的数据结构,由节点和边构成,表达个体之间的关系。
- 图像 (Image) 是一种实际的数据表现,由像素构成,在二维空间中呈现事物。

- 图也经常被称为网络,都表达的是结构化的数据形式,但在 图神经网络这个概念中,要对两者加以区分。
- Graph Neural Network (GNN) 中的 Graph 是图数据,而
   Network 是由多组模拟人类神经元的函数组合而成的模型。



## 为什么用机器学习来挖掘图?

随着人类活动的日益频繁和复杂,传统的数据挖掘方法已不足以应对愈发庞大的图数据,因而研究者们将目光投向了新兴的机器学习方法。

| 1           |              |      |         |         |         |         |
|-------------|--------------|------|---------|---------|---------|---------|
| 石器时代        | 青铜器时代        | 铁器时代 | 钢铁、水泥时代 |         | 高分子、硅时代 | 新材料时代   |
|             |              |      |         |         | 原子能     | 新一代信息技术 |
|             |              |      |         | 电气工业    | 计算机     | 高端装备制造业 |
|             |              |      | 纺织业     | 汽车业     | 航空航天    | 新能源产业   |
|             |              |      | 机械制造    | 石油工业    | 生物工程    |         |
|             |              | 手工业  | 轨道交通    | 化学工业    |         | 纳米      |
|             | 手工业从农<br>业分离 |      |         | 钢铁复合材料等 | 半导体材料   | 石墨烯     |
| 狩猎转向农<br>牧业 |              |      | 钢铁、棉花等  |         | 高晶硅材料   | 增材制造材料  |
|             |              | 铁制器具 |         |         | 高分子材料   | 超导材料等   |
|             | 青铜器          |      |         |         |         |         |
| 石制工具        |              |      |         |         |         |         |
|             |              |      | 第一次工业革命 | 第二次工业革命 | 第三次工业革命 |         |

■全球数据总量(ZB) 25000 19267 20000 15000 10000 5000 2537 334 2015 2020 (E) 2025 (E) 2030 (E) 2035 (E)

全球数据规模指数增长[7]

人类生产生活的变化[6]



## 怎么学习图?

图上的机器学习不再试图直接得到结果,而是通过建模图结构数据,为图中的节点生成表征向量,使这些向量能够代表每个节点的信息与属性。

而后的下游任务都可基于节 点表征计算,不需要频繁访 问图结构。



图结构转换为节点表征[8]



## 节点表征能做什么?——以淘宝/抖音的兴趣推荐为例

通过为不同的用户、商品/ 视频学习表征向量, 计算 向量之间的相似度, 就可 以判断用户是否会对其感 兴趣, 从而进行推荐。



基于协同过滤的兴趣推荐[9]



## 图学习的下游任务

图学习难以清楚地界定为有监督学习或无监督学习,某些时候,它图学习同时具备有监督学习和无监督学习的特性<sup>[10]</sup>。事实上,依照其下游任务的不同,图学习的监督场景也是"薛定谔"式的。

有监督场景: 节点分类、图分类

无监督场景:链路预测、节点聚类、图预测/聚类

另一方面, 也可从不同的关注点出发, 对下游任务进行划分。

• 节点级: 针对节点类别属性

• 边级: 针对节点对间的交互

• 图级:针对子图结构



有监督和无监督 [10]



## 节点级任务

节点级任务主要包括节点的分类和聚类,事实上,节点聚类也叫做社区检测 (community detection)。





## 边级任务

边级任务主要是链路预测/兴趣推荐,属于无监督场景下的任务。



链路预测[12]



## 图级任务

图级任务主要是图的分类和聚类。



图结构分类[13]



## 图数据的核心是什么?

一个基础的图结构 G = (V, E) 是由节点集 V 和边集 E 构成的,学习图中的信息,就是在学习节点与节点间的边。

不同图数据中, 节点和边的含义也大不相同:

- 引文图中,论文为节点,引用关系为边;
- 购物图中, 用户和商品为节点, 购买关系为边;
- 分子图中,原子为节点,原子间的键为边……

这些节点和边的关系,可以通过邻接矩阵表现出来。



邻接矩阵[14]



## 学习图数据的方法

现有方法可以分为三类: 随机游走、矩阵分解、神经网络。



## 图神经网络的分类

图神经网络可以大体分为五类[17]:图卷积、图注意力、图自编码、图生成、图时空。 也可分为四类:循环GNN、卷积GNN、自编码GNN、时空GNN。





## 图学习的演变





## 谁在研究?



Jure Leskovec, 斯坦福大学, Geogle引用量11万+, H指数 129, 提出node2vec和 GraphSAGE等算法。



Steven Skiena,美国石溪大学杰出教授,Geogle引用量2万+,H指数65,《算法设计手册》作者,提出DeepWalk算法。



Thomas Kipf, Google Brain, Geogle引用量2万+, H指数22, GCN, GAE, R-GCN 等算法的第一作者。



## 谁在研究?



唐杰,清华大学,国家杰青,Geogle引用量2万+,H指数83,开发了Aminer平台和悟道大规模预训练模型。



崔鹏,清华大学,Geogle引用量1万+,H指数52,提出了SDNE和HOPE等算法。



石川,北京邮电大学,Geogle引用量8千+,H指数42,专注于异质图和大规模图领域。



## 图学习的定位

图学习本质上是用机器学 习的方法来挖掘图数据, 因此,它是一类同时衔接 数据挖掘领域和机器学习 领域的重要方向。

事实上,数据挖掘和机器 学习也是很难区分的,当 数据挖掘中寻找的知识等 同于机器学习中寻找的函 数时,两者基本也是等同 的。



领域间关系 [18]



## 图学习的相关会议和期刊

《中国计算机学会推荐国际学术会议和期刊目录》

是CCF制定的用来评价计算机会议与期刊级别的推荐列表,分为A,B,C三个等级。

值得注意的是, CCF评级并不能完全代表会议或期刊水平, 一些排名较低或未在排名中的会议期刊同样有着较高的行业认可度。(注:下文列出的内容并未包含所有相关会议期刊, 部分水平很高的因相关度有限暂未列出, 如有疏漏敬请谅解。)

此外还有CCF推荐的几本较为重要的中文期刊:计算机学报、软件学报、中国科学:信息科学、 计算机研究与发展等。



## 图学习相关会议





## 图学习相关期刊





## 图数据如何分类?

图数据可以根据其是否含有节点交互的动态信息,分为静态图 (static graph) 和动态图 (dynamic graph), 动态图又可细分为离散图 (discrete graph/static snapshot)和时序图 (temporal graph)。







(c) The arrival rate of several target neighbours in the sequence

时序图[19]

## 时序图是什么样的?

输入 G = (V, E, T), 其中 V 是节点集, E 是边集, T 是伴随时间信息的节点交互集。

数据形式: (node id, node id, timestamp)

(1, 2, 0.0000), (1, 3, 0.0504), (4, 3, 0.1200), (64, 2, 0.2500)

. . . . . .

(3, 5, 0.3800), (12, 9, 0.4613), (1, 2, 0.6983), (8, 2, 0.9674)



在对时序图建模的初始阶段,图结构是不存在的,每有一对节点发生交互,抽象概念上的图才会生成对应的节点和边。随着时间的推进,时序图结构就被不断完善。



## 为什么时序图不用邻接矩阵?会带来哪些问题?

时序图数据是不同于传统静态图或离散动态图的,这给时序图学习的方法既带来了好处,也存在着不便。

#### 优势:

可以处理大规模图,通过分批次送入模型,避免了邻接矩阵过大从而读取困难的情况。

#### 劣势:

传统的GNN方法无法适用,因为邻接矩阵在此不适用。

#### 为什么邻接矩阵不适用?

两个节点间可能会存在着多次交互,一条边难以表达多个时间戳。(这个难不仅在于原始数据的存储难,也在于数据读取之后的存储难。)





## 时序图学习方法

在此, 我们简单介绍几种时序图学习的经典或最新方法:

• CTDNE: 利用随机游走建模时序图

• HTNE: 利用霍克斯过程建模时序图

• JODIE: 提出了预测节点未来表征的思想

• CAW: 提出了因果匿名随机游走的思想

• TREND: 用GNN建模时序图



## **CTDNE**

CTDNE通过执行有时间先后的随机游走,对时序图进行建模。



时序随机游走[20]



#### HTNE

HTNE引入霍克斯过程,认为两个节点的交互不仅与它们自身相关,还会受到历史交互邻居的影响。



$$\tilde{\lambda}_{y|x}(t) = \mu_{x,y} + \sum_{t_h < t} \alpha_{h,y} \kappa(t - t_h)$$

(a) The ego co-author temporal network



$$\alpha_{h,y} \cdot k(t - t_h) = -||z_h - z_y||^2 \cdot \frac{e^{(-||z_x - z_h||^2)}}{\sum_{l,l} e^{(-||z_x - z_{h'}||^2)}} \cdot e^{(-\delta(t_c - t_h))}$$

(b) The neighborhood formation sequence



(c) The arrival rate of several target neighbours in the sequence



## **JODIE**

JODIE通过RNN学习节点表征, 并预测节点未来的表征变化。



JODIE<sup>[21]</sup>



#### 提出了因果匿名随机游走方法,对节点的多次时序游走进行匿名化后做因果抽取,计算边表征。

A **temporal graph** with timestamped links and a queried link at certain time:



Backtrack *m*-step random walks over time before t=10:



**Example:** three 3-step walks ( $t_x$ , X are the default timestamp and the default node when no historical links can be found)

Count number of *b*'s in different positions:

$$(0, 2, 1, 0)^T$$
  $(0, 0, 0, 1)^T$ 

$$I_{CAW}(b; S_u, S_v) = \{g(b; S_u), g(b; S_v)\}$$
 (Relative node identity)

Anonymize 
$$\underbrace{u}_{6}\underbrace{b}_{3}\underbrace{a}_{1}\underbrace{c}_{c}$$
:

$$I_{CAW}(u) \xrightarrow{6} I_{CAW}(b) \xrightarrow{3} I_{CAW}(a) \xrightarrow{1} I_{CAW}(c)$$

Set-based Anonymization



#### TREND

#### TREND用GNN替换霍克斯过程对节点的高阶邻域进行建模。



$$\lambda_{y|x}(t) = \sigma(-||z_x - z_y||^2 \odot \theta_e) \quad z_x^{t,l} = \sigma(z_i^{t,l-1}W_{self}^l + \sum_{h \in N_x} z_h^{t_h,l-1}W_{hist}^l k(t - t_h))$$



## 时序图学习面临什么挑战?

• 邻居序列长度: 时序图要获取节点的邻居序列, 但过长会影响计算效率, 过短又导致信息缺失。

• 时序图上的GNN: 高效的GNN在时序图上还不能很好地适用, 这受到邻接矩阵的限制。

• 对时序信息的进一步利用: 当前算法多数是简单地计算时间差。



## 汇报内容

- 图是表达个体间关系的抽象数据结构。
- 社会中很多场景都可以表现为图的形式,并利用图学习来解决问题。
- 图学习本质是用机器学习的方法对图数据做数据挖掘。
- 通过研究节点间的关系, 图学习将抽象的图数据提取为具体的表征向量。
- 图学习的下游任务可以分为有监督和无监督,也可分为节点级、边级、图级。
- 图学习可分为静态图和动态图, 动态图又可分为离散图和时序图。
- 时序图学习与传统静态图不同,不再使用邻接矩阵的数据形式,而是表示为交互序列。



## 图学习可能的发展方向





## 有什么资源帮助学习?

- 斯坦福大学CS224W课程: Machine Learning with Graphs (图机器学习),
   主讲人 Jure Leskovec
- 《Graph Representation Learning》,
   作者 William L. Hamilton
- 《Deep Learning on Graphs》,作者马耀,汤继良
- https://github.com/MGitHubL/Chine se-Reading-Notes-of-Graph-Learning

#### **Graph Learning Notes (In Chinese)**

在此整理了一些个人的文献阅读笔记,主要是图学习领域的,希望大家多多指正。

#### Survey

- Graph self-supervised learning: A survey (TKDE 2022) [paper][note]
- 面向社会计算的网络表示学习 (清华博士论文 2018) [paper][note]
- A Survey on Network Embedding (AAAI 2017) [paper][note]
- 网络表示学习专题 (CCF 2017) [note]

#### **Paper**

#### 2022

- SAIL: Self Augmented Graph Contrastive Learning (AAAI) [paper][note]
- TREND: TempoRal Event and Node Dynamics for Graph Representation Learning (WWW) [paper][code][note]
- CGC: Contrastive Graph Clustering for Community Detection and Tracking (WWW) [paper][note]
- Pre-Training on Dynamic Graph Neural Networks (Neurocomputing) [paper][note]

#### 2021

• Do Transformers Really Perform Bad for Graph Representation (NeurIPS) [paper][note]



## 参考文献

- [1] https://cloud.tencent.com/developer/news/46613
- [2] https://699pic.com/tupian-500793249.html
- [3] https://www.aminer.cn/
- [4] Yuanxun Wang et al. Replacement of Protein Binding-Site Waters Contributes to Favorable Halogen Bond Interactions. J. Chem. Inf. Model. 2019.
- [5] https://echarts.apache.org/
- [6] 2020新材料行业研究报告, 睿兽分析
- [7] IDC, 中国电子学会
- [8] Cunchao Tu et al. "CANE: Context-Aware Network Embedding for Relation Modeling". In: ACL. 2017.
- [9] http://sykv.cn/cat/depth/20436.html
- [10] https://blog.csdn.net/u010420283/article/details/83758378
- [11] https://zhuanlan.zhihu.com/p/451082389
- [12] William L. Hamilton et al. "Graph Representation Learning".
- [13] https://zhuanlan.zhihu.com/p/435945714



## 参考文献

- [14] Peng Cui et al. "A Survey on Network Embedding". In: TKDE (2019).
- [15] 涂存超 等. 网络表示学习综述. 中国科学: 信息科学
- [16] Da Xu et al. "Inductive representation learning on temporal graphs". In: ICLR. 2020.
- [17] Zonghan Wu et al. "A comprehensive survey on graph neural networks." In: TNNLS (2020).
- [18] 清华大学-中国工程院知识智能联合研究中心. 2019人工智能发展报告.
- [19] Yuan Zuo et al. "Embedding Temporal Network via Neighborhood Formation". In: KDD. 2018.
- [20] Giang Hoang Nguyen et al. "Continuous-Time Dynamic Network Embeddings". In WWW. 2018.
- [21] Srijan Kumar et al. "Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks". In KDD. 2019.
- [22] Yanbang Wang et al. "Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks". In: ICLR. 2021.
- [23] Zhihao Wen and Yuan Fang. "TREND: TempoRal Event and Node Dynamics for Graph Representation Learning". In: WWW. 2022.



# 敬请批评指导!

汇报人: 刘猛 (国防科技大学)

汇报时间: 2022年10月28日



