

Entwurf Verteilter Systeme

Prof. Dr.-Ing. Martin Gaedke

Technische Universität Chemnitz

Fakultät für Informatik

Professur Verteilte und selbstorganisierende Rechnersysteme

http://vsr.informatik.tu-chemnitz.de

Chapter 3 BASIC COMMUNICATION MODELS

Basic Telecommunication Model

- Participants act as transmitters or receivers.
- Service use by participants is carried out on a special service interface using a service access point.
- Medium bridges over the spatial distance.

Protocol Characterization

 Communication protocol describes a set of rules according to which communication between two or more parties must be carried out.

Service and Protocol

Service Characterization

- Service user claims a service.
- Service is requested from a service provider.
- Service is provided in the context of service provision, which in turn has different properties (e.g. confirmed, unconfirmed).
- Service provision thus includes the fulfillment of an order, which is specified as part of the service.

Horizontal and Vertical Communication

Telecommunication System

- Each layer provides a service to the overlaying one.
- A Service is provided by interaction of entities of the same layer according to a specified protocol.

Comm. within/between Layers (Iso/osi)

Layer Interaction (Iso/OSI)

ISO/OSI-Base Reference Model

Application Processes International Organization for Standardization (ISO) [7] Application [6] Presentation **Application**specific Open System Interconnection (OSI) [5] Session [4] Transport [3] Network **Transport** Protocol Instance **System** [2] Data Link Service Access Point [1] Physical

Entities in the ISO/OSI Model

(N)-Layer

• All entities of the (N) hierarchy in all end systems

(N)-Entity

- Implementation of an (N)-Service in an end-system
- Different types of (N)-Entities can exist implementing different protocols for a layer.

Peer-Entities

- Entities of the layer
- Peer entities fulfill functions of a service by message exchange.

Data Units

- (N)-IDU (Interface Data Unit): Data unit passed from an (N+1)-Entity to an (N) one
- (N)-SDU (Service Data Unit): Transparently transferred data between (N)-SAPs
- (N)-ICI (Interface Control Information): Control parameters of an (N)-Service
- (N)-PDU (Protocol Data Unit): Data units exchanged between (N)-Peer entities
- (N)-PCI (Protocol Control Information): Data on protocol execution control exchanged between (N)-Peer Entities

Transport-Oriented Layers

Physical Layer, Layer 1:

- possible transmission disruptions
- fixed transmission quality/message length
- no buffering

Data Link Layer, Layer 2:

- secure channels between directly connected service users
- reduced transmission error probability
- FIFO-buffering of packets

Network Layer, Layer 3:

- multiple connectivity
- addressing: not only computers directly connected via a physical medium
- quality is adjustable if there exist alternative route choices

Transport Layer, Layer 4:

- flexibly adjustable quality
- variable message packet length
- multiple use of connections
- packet buffering

Application-Oriented Layers

Session Layer, Layer 5:

- Control of message exchange between two communication partners:
 - Rights handover
 - Transmission structuring
 - Reset agreement

Presentation Layer, Layer 6:

- Communication is made possible despite the different local data formats of the participants
- Messages are composed of typed data

Application Layer, Layer 7:

• Exchange of messages with application-specific structure and purpose

Data Encapsulation (of iso-osi model)

Binding and Endpoints

- **Binding:** Description of a mechanism to be used to exchange data/messages between the user and the endpoint
 - Binding defines a transport- and/or application protocol for data/message transfer
 - Binding defines rules of data/message exchange
 - Binding defines data/message encoding rules
- Important properties and types
 - Message exchange approach
 - Message exchange models
 - Transport- and application protocol
 - Integration with programming models

Chapter 4 COMMUNICATION IN PROGRAMMING

Classical Programming

- Key idea: Algorithm / Knowledge hidden in a reusable unit
- Programming approaches and their Reuse Unit
 - Procedural programming: Function
 - Aggregation of functions (step-by-step, conditional, loops etc.)
 - Knowledge abstraction low via function
 - Reuse via source code (same language)
 - Object-oriented programming: Object
 - Aggregation of data and functions (aka methods)
 - Knowledge abstraction high via objects, composition etc.
 - Reuse via source code (same OO-language)
 - Component-based Software Development: Component
 - Separation between interface and CBSD-knowledge
 - Knowledge abstraction packaged as binary unit
 - Reuse unit very high via distribution of binary

Components in use [UML-Diagram]

Shifting towards Distributed System

Reuse units in distributed systems?

- Different systems provide different abstractions (e.g. database, webserver, business logic, ...)
 - From small-to-large scale
 - Independence of programming paradigm
 - Service have more potential than components
- Focus on communication / message exchange
 - As means to providing functionality
 - Zero-Installation (provider did already)
 - Risks and challenges different from classical programming paradigm ones

Communication

- Communication Mechanism of data exchange between components that are executed on host systems
- Challenges
 - Message transport with regard to communication medium conditions
 - Interoperability and cooperation of components and host systems
 - System architecture support wrt. communication- or programming model
 - Much more: Quality aspects, security, trust

Message Exchange Approach

- Sender-Receiver paradigm
 - Message: (typed) Data is sent from a Sender (S) to a Receiver (R)
 - Sender-Receiver relationship
 - **Symmetric** (S and R know each other)
 - Asymmetric (only S knows R)
 - Sender operation
 - Sender operates synchronously
 - Sender operates asynchronously
- Message Exchange Models
 - Direct Addressing Model
 - Queue Communication Model
 - Port-oriented Communication Model
 - Request/Response Model
 - Pull/Push Model

Message Exchange Models

