(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 July 2003 (31.07.2003)

(10) International Publication Number WO 03/062305 A1

- (51) International Patent Classification7: C08G 73/02. H01B 1/12
- (21) International Application Number: PCT/GB03/00254
- (22) International Filing Date: 24 January 2003 (24.01.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 24 January 2002 (24.01.2002) 0201593.1
- (71) Applicant (for all designated States except US): THE UNIVERSITY OF DURHAM [GB/GB]; Old Shire Hall, Durham DH1 3HP (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ZAIDI, Naveed [GB/GB]; Department of Physics, University of Durham, South Road, Durham DH1 3LE (GB). GIBLIN, Sean [GB/GB]; Department of Physics, University of Durham, South Road, Durham DH1 3LE (GB). TERRY, Ian [GB/GB]; Department of Physics, University of Durham, South Road, Durham DH1 3LE (GB). MONKMAN, Andrew [GB/GB]; Department of Physics, University of Durham, South Road, Durham DH1 3LE (GB).

- MURGITROYD & COMPANY; Scotland (74) Agent: House, 165-169 Scotland Street, Glasgow G5 8PL (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: FERROMAGNET

(57) Abstract: Described is a ferromagnetic material comprising a substituted conjugated polymer which comprises a conjugated polymer which is substituted with an organic electron acceptor. The material is preferably ferromagnetic at room temperature (290K) and, most preferably, is ferromagnetic at temperatures above room temperature. In a preferred embodiment, the conjugated polymer is polyaniline and the electron acceptor is tetracyanoquinodimethane (TCNQ). Also described is a method for producing the substituted conjugated polymer and uses of the material.

Т	"Ferromagnet"			
2				
3	This invention relates to a room temperature			
4	ferromagnetic non-metallic material and, in			
5	particular, to a room temperature ferromagnetic			
6	polymer.			
7				
8	In recent years there has been a large interest in			
9	the formation of new magnetic materials from non-			
10	metallic molecules. So far polymers have failed to			
11	make an impact in this area, mainly because of the			
12	difficulties posed in the production of highly			
13	ordered or even crystalline polymers. Such			
14	structural order is required to observe magnetic			
15	effects.			
16	•			
17	In particular, there has been little progress in the			
18	formation of non-metallic ferromagnetic materials.			
19	Ferromagnètic materials have many applications e.g.,			
20	for electromagnets, transformers, magnetic tape			
21	recording, magnetic shielding, magneto-optical data			
22	storage and magnetic transistors. Almost all known			

The state of the s

1	refromagnetic materials are metallic in nature. As
2	such their production may attract processing
3	difficulties, for example, due to the heaviness of
4	the material, and they may be expensive to produce.
5	
6	A problem associated with the production of a non-
7	metallic ferromagnetic material is that of
8	synthesising molecules which have a high enough
9	density of localised spins which are physically
LO	close enough in space to yield a high enough
1	exchange interaction for the material to exhibit
.2	ferromagnetism. The molecules in a ferromagnetic
L3	material need to be positioned so that the weak
_4	exchange interactions between each spin give rise to
.5	ferromagnetic ordering. This is difficult to
.6	achieve and, in almost all cases, it is found that
.7	the exchange interaction is so weak that a
.8	ferromagnetic phase is only observed at low
.9	temperatures such as 2-4 K. Difficulties can arise
0 ·	in the preparation of non-metallic ferromagnetic
21	materials, for example, when radicals are generated
2	by oxidation. In these cases it is difficult to
23	maintain a high packing density and degree of order
4	whilst permitting access of the oxidising agents
15	into the structure to form the radicals.
16	
27	It follows that another problem associated with the
8	production of non-metallic ferromagnetic materials
9	is that of producing a material which is
0	ferromagnetic at room temperature (i.e. 290 K) or
31.	higher, i.e. has a Curie temperature (T_c) of greater
32	than or equal to room temperature. Clearly this has

1	implications for the end use of the material. To			
2	date, there has been only one report of room			
3	temperature ferromagnetic non-metallic material			
4	(Markarova T. L. et al, Magnetic Carbon, Nature,			
5 -	413, 716-718 (2001) reported a weakly ferromagnetic			
6	phase in C_{60} at room temperature). However, the			
7	results of this report are clearly non-reproducible			
8				
9	It is therefore an aim to provide a ferromagnetic			
10	non-metallic material. In particular, it is an aim			
11	to provide a non-metallic material that is			
12	ferromagnetic at room temperature.			
13	·			
14	The present invention provides a substituted			
15	conjugated polymer comprising a conjugated polymer			
16	which is substituted with an organic electron			
17	acceptor.			
18				
19	In particular the present invention provides a			
20	ferromagnetic material comprising a conjugated			
21	polymer which is substituted with an organic			
22	electron acceptor. The material is ferromagnetic at			
23	temperatures above 200K, preferably ferromagnetic at			
24	temperatures above 250K, more preferably			
25	ferromagnetic at room temperature (290K) and, most			
26	preferably, is ferromagnetic at temperatures above			
27	room temperature. In a particularly preferred			
28	embodiment, the material of the present invention is			
29	ferromagnetic up to 400K, more preferably up to			
30	500K. The material has a mass magnetisation at room			
31	temperature of at least 0.003 JT-1Kg-1. More			
32	preferably, it has a mass magnetisation at room			

1	temperature of between 0.003 and 10 JT Kg , more
2 .	preferably between 0.003 and 20 JT Kg , most
3	preferably between 0.003 and 30 JT-1Kg-1.
4	
5	By conjugated polymer is meant that the polymer
6	comprises alternating single and double bonds
7	between carbon atoms so that a π electron system is
8	formed along the polymer chain. Preferably the
9	conjugated polymer comprises aromatic groups. These
10	aromatic groups may be heterocyclic aromatic groups
11	and in a preferred embodiment the heterocyclic
12	aromatic groups contain a nitrogen atom in the ring
13	structure. Examples of suitable conjugated polymers
14	are polyaniline, polypyridine, polypyrrole,
15	polyparaphenylene, polyphenylene-vinylene (PPV),
16	polythiophene or polyfluorene. The conjugated
17	polymer can be a polymer obtainable by polymerising
18	substituted monomers of aniline, pyridine, pyrrole,
19	phenylene, phenylene-vinylene, thiophene or
20	fluorene. For example, poly(2-methoxy,5-(2'-ethyl-
21	hexyloxy)-p-phenylenevinylene (MEH-PPV) is a
22	suitable conjugated polymer obtainable by
23	polymerising substituted phenylene-vinylene
24	monomers.
25	
26 .	In a preferred embodiment the conjugated polymer is
27	polyaniline or is a polymer obtained from
28	substituted aniline monomers. The term polyaniline
29	includes all different forms of polyaniline (leuco-
30	emeraldine base, emeraldine base and
31	pernigraniline). Emeraldine base polyaniline is
32	particularly preferred. The emeraldine base

1 polyaniline is prepared by the method outlined by 2 A.P. Monkman et al in Low Temperature Synthesis of 3 High Molecular weight Polyaniline, Polymer, 37, 4 3411-3417 (1996). 5 The conjugated polymer preferably has a number б 7 average molecular weight of greater than 4000 and more preferably greater than 19000 Dalton. 8 Typically the number average molecular weight is in 9 the range of 4000 to 250 000 Dalton. 10 11 12 The organic electron acceptor forms a charge 13 transfer complex with the conjugated polymer. 14 Preferably the organic electron acceptor readily 15 forms radicals. 16 17 The organic electron acceptor may be chosen from: 18 tetracyanoquinodimethane (TCNQ); 19 tetracyanonapthoquinodimethane (TNAP); 20 tetracyanoethylene (TCNE); 21 dichlorodicyanobenzoquinone (DDQ); TCNQ derivatives; or other such electron acceptors. 22 23 The family of TCNQ derivatives includes, but is not 24 25 limited to, the following:

Formula I

Formula II

Formula III

Formula IV

- 1 where
- $R_1 = R_2 = R_3 = R_4 = F$, Me, Ph or NCHCHN; or
- 3 $R_2 = R_4 = H$ and $R_1 = R_3 = I$, Br, OMe, CN, PhCH₂, a C_1 -C₈
- 4 alkyl group (preferably hexyl, Me, Et or iPr); or
- 5 $R_2 = R_4 = H$ and $R_1 = OMe$ and $R_3 = OEt$, OiPr, OiButyl,
- 6 OiPentyl; or

1 $R_2 = R_4 = H$ and $R_1 = OEt$ and $R_3 = SMe$; or

 $R_2 = R_4 = H$ and $R_3 = Me$ and $R_1 = I$, Br or Cl; or

 $R_1 = R_2 = OCH_2CH_2O$ and $R_3 = OMe$ and $R_4=H$; or

4 $R_2 = R_4 = H$ and $R_3 = Br$ and $R_1 = OCH_2CH_2OH$; or

 $R_2 = R_3 = R_4 = H$ and $R_1 = Me$, Et, OMe, CO_2Me ,; and

6 $X = Y = C_1-C_8$ alkyl group or CH_2CH_2OH ; or $X = C_1-C_8$

7 alkyl group and $Y = CH_2CH_2OH$

8

9 The following structures are also included within

10 TCNQ derivatives:

Formula V

Formula VI

Formula VII

- 11 In preferred embodiments of the invention, the
- 12 organic electron acceptor is preferably
- 13 tetracyanoquinonedimethane (TCNQ). This is a stable
- 14 radical forming molecule which readily forms charge
- 15 transfer complexes with electron donors such as
- 16 nitrogen atoms on a heterocyclic conjugated polymer
- 17 having nitrogen in its ring structure.

1 .	It is believed that the mass magnetisation of the
2	material depends on the degree of substitution of
3	the polymer backbone with the organic electron
4	acceptors. Preferably the degree of substitution is
5	such that the ferromagnetic material has a mass
6	magnetisation at room temperature of at least 0.003
7	JT ⁻¹ Kg ⁻¹ .
8	·
9	The present invention also provides a method for
10	producing a ferromagnetic polymer which method
11	comprises reacting a conjugated polymer with an
12 $_{c}$	organic electron acceptor.
13	
14	In a preferred embodiment the method comprises the
15	following steps:
16	
17	 a) dissolving the conjugated polymer in an
18	appropriate solvent,
19	
20	b) adding the organic electron acceptor to the
21	solution and refluxing the resultant solution for at
22	least 24 hours,
23	
24	c) cooling and filtering the refluxed solution
25	from step b and collecting and evaporating the
26	filtrate to form a solid polymer,
27	
28	d) drying the polymer from step c, and allowing
29	the polymer to reach a steady ferromagnetic state.
30	
31	Typically, the conjugated polymer is dissolved in an
32	appropriate solvent, e.g. n-methyl-2-pyrollidinone

(NMP). The organic electron acceptor is added to 1 the solution and the mixture is refluxed for at 2 least 24 hours. Typically the molar ratio of 3 polymer and organic electron acceptor in the mixture 4 The solution is then cooled and filtered. 5 The filtrate is collected and evaporated to form a б solid polymer. This polymer is then dried under 7 vacuum at 80°C. The polymer is then left until it 8 reaches a steady ferromagnetic state. Typically 9 this will take any time up to 4 weeks. Preferably 10 the polymer remains in a vacuum or in an inert 11 atmosphere during this step. 12 13 In a particularly preferred embodiment the 14 conjugated polymer is the emeraldine base form of 15 polyaniline and the organic electron acceptor is 16 The resultant substituted conjugated polymer 17 is polyaniline tricyanoquinonedimethane (PANiCNQ). 18 Not wishing to be bound by any theory, it is 19 believed that PANiCNQ contains stable radicals which 20 are generated by charge transfer from the TCNQ to 21 the amine sites on the conjugated polymer and by 22 protonation of the imine sites on the conjugated 23 polymer. π -stacking of neighbouring chains may occur 24 and may result in interchain spacing of 25 approximately 4 Angstrom or less. This gives rise 26 to exchange interactions between neighbouring chains 27 and hence a three dimensional ferromagnetic exchange 28 mechanism in an organic system. 29 30 Clearly the polymer of the present invention solves 31 the problems of the prior art. However, as well as 32

一个人,我们就是一个人的人,我们也是一个人的人,我们也是一个人的人,他们也是一个人的人,他们也是一个人的人,他们也是一个人的人,他们也是一个人的人,他们也是一个人

10

having a T_{c} greater than or equal to room 1 temperature, the polymer is soluble and is easily 2 processed. For example, it is relatively easy to 3 cast films of the polymer and spin fibres from it. 4 The polymer of the present invention may be used as 5 a ferromagnetic material in typical ferromagnetic 6 applications such as low weight permanent magnets, 7 organic motors and dynamos and magnetic shielding. 8 It is particularly suitable for use as thin film 9 magneto-optic data storage, magnetic security tags, 10 magnetic shielding, magnetic sensors, magnetic 11 transistors and signal processors. 12 13 Indeed, further aspects of the invention include 14 thin film magneto-optic data storage comprising a 15 substituted copolymer or ferromagnetic material of 16 the invention; a magnetic security tag comprising a 17 substituted copolymer or ferromagnetic material of 18 the invention; magnetic shielding comprising a 19 substituted copolymer or ferromagnetic material of 20 the invention; a magnetic sensor comprising a 21 substituted copolymer or ferromagnetic material of 22 the invention; a magnetic transistor comprising a 23 substituted copolymer or ferromagnetic material of 24 the invention; and a signal processor comprising a 25 substituted copolymer or ferromagnetic material of 26 the invention. 27 28 The invention is exemplified with reference to the 29 following non-limiting description and the 30 accompanying figures in which: 31 32

では、大学のでは、これでは、これでは、大学の大学のできる。

11

1	Figure 1 shows the chemical structures of TCNQ and
2	the emeraldine base form of polyaniline along with a
3	suggested structure of the ferromagnetic polymer
4	(PANICNQ) formed by substituting the emeraldine base
5	form of polyaniline with TCNQ.
6	
7	Figure 2 shows the optical (UV) spectra of as
8	synthesised PANiCNQ.
9	
10	Figure 3 shows the saturation magnetisation curve
11	for PANICNQ measured at room temperature. The inset
12	depicts the temperature dependence of the
13	magnetisation between 77 and 300K.
14	
15	Figure 4a-d shows alternant images of PANiCQ
16	obtained using an AFM and MFM microscope. Left-hand
17	images are AFM images and right hand images are MFM
18	images.
19	
20	Figure 4a shows the initial image of a sample from
21	3b_2, showing the AFM image on the left and the MFM
22	on the right. The MFM is in phase mode.
23	Figure 4b shows that although the AFM image on the
24	left did not change from that of Figure 4a, in the,
25	a striation is seen moving across the MFM image from
26	right to left.
27	t la alonwite
28	Figure 4c, shows the striation can again be clearly
29	seen moving across the image in the MFM mode.
30	Figure 4d shows that the MFM image changed again,
31	indicating the presence of a magnetic domain.
32	

12

Figure 5 shows the calculated moment from the 1 contaminants of pure Pani and the actual measured 2 moment of 13 samples. 3 4 Figure 6 illustrates low Field ESR data for sample 5 3b 2 showing insulating behaviour. 6 7 Example 1 8 Preparation of polymer 9 10 The emeraldine base form of polyaniline was 11 prepared by the method outlined by A.P. Monkman et 12 al in Low Temperature Synthesis of High Molecular 13 weight Polyaniline, Polymer, 37, 3411-3417 (1996). 14 0.5 g of it was dissolved in 100 ml of n-methyl-2-15 pyrollidinone (NMP). 1.1g of TCNQ (Lancaster) was 16 added and the solution was refluxed for 17 approximately 24 hours. The solution was then 18 cooled and filtered through a filter paper. 19 filtered solution was collected and evaporated to 20 give a dark green/black tar polymer. The dark 21 green/black tar polymer was dried under vacuum at 80 22 It was found that the resultant black polymer 23 absorbs moisture on standing in air. 24 25 Example 2 26 Characterisation of the polymer using Ultraviolet 27 (UV) Spectroscopy. 28 29 0.5g of the emeraldine base form of polyaniline was 30 dissolved in 100 ml of n-methyl-2-pyrollidinone 31 (NMP). 2.3 g of TCNQ was added. This forms a blue 32

1	solution and upon refluxing as in Example 1, the
2	solution turned dark red/black and exhibited a
	strong absorption band at $\lambda \max = 492 \text{ nm}$ (see the
3	solid line spectrum in Figure 2). The solvent was
4	evaporated off under vacuum and the remaining solid
5	was dried at 60 °C at 0.1 mmHg. This yielded a dark
б	green/black polymer which is also readily soluble in
7	n n n n n n n n n n n n n n n n n n n
8	NMP. When dissolved in NMP this performs intense green solution. The UV absorption spectrum
9	of this green solution indicates that a charge
10	of this green solution indicates the TCNQ and the transfer has occurred between the TCNQ and the
1,1	polyaniline, forming stable radicals on both. The
12	To polyaniline, forming stable reasonable results of polyaniline, forming stable results of polyanilin
13	at 625 nm and 661 nm with a weaker band at 492 nm
14	(see dashed line in Figure 2). It would appear that
15	the charge transfer and spin separation occurs in
16	the charge transfer and spin top the solid state and does not occur in solution.
17	the solid state and does not obtain
1.8	
19	Example 3 Characterisation of the polymer using Fourier
20	Transform Infra Red (FTIR) Spectroscopy.
21	Transform Initia Red (2222)
22	A sample of the polymer (PANiCNQ) produced in
23	Example 1 was analysed using FTIR spectroscopy. The
24	FTIR spectrum of this new polymer shows the
25	development of a broad and strong absorption at 2185
26	cm ⁻¹ which is ascribed to TCNQ having covalently
27	bonded to the polymer. It is believed that this
28	bonded to the polymer. It is a bonding takes place at the at the amine sites along
29	the polyaniline backbone and that the TCNQ has
30	become a substituted side group along the conjugated
31	Organ formed this new polymer is still
32	backbone. Once Lormed, chird have

1,	soluble in NMP and it is believed that charge
2	transfer between the side groups and the backbone
3	occurs once the solvent is removed. In this post-
4	charge transfer state, strong broad absorption
5	between 2600 cm^{-1} and 3300 cm^{-1} is observed,
6	indicative of positively charged nitrogen sites.
7	Also observed is a strong band at 1283 cm ⁻¹ . This is
8	highly characteristic of CN stretches associated
9	with semiquinoid structures in protonated
10	polyaniline and is highly suggestive that in
11	PANICNQ, the quinoid imine sites are partially
12 .	protonated as quinoid peaks at 1508 cm-1 and 1577
13	cm^{-1} are still observed. It is believed that this
14	protonation occurs during synthesis as a result of
15	hydrogen cyanide which is given off during the
16	attachment of the TCNQ to the polymer chain. This
17	acid will readily protonate any imine sites. As the
18	polymer is hygroscopic, a small broad moisture peak
19	is also present at 3396 cm ⁻¹ .
20	
21	From this infra-red data and previous known
22	reactions between TCNQ and amines a tentative
23	structure for PANiCNQ is given in Figure 1. It is
24	possible for the TCNQ to react at the meta or ortho
25	sites on the benzene rings along the polyaniline
26	backbone. Further, as the synthesis of this new
27	polymer is not well characterised, it must be
28	assumed that both incomplete TCNQ addition and
29	protonation can take place which will give rise to
30	variable physical properties.
31	

PCT/GB03/00254

15

Example 4 1 Characterisation of the polymer using X-ray 2 Spectroscopy. 3 4 A sample of the polymer (PANiCNQ) produced in 5 Example 1 was analysed using X-ray spectroscopy. X-6 ray analysis of the dark green/black polymer 7 revealed the polymer to be amorphous, as would be 8 pure polyaniline. 9 10 Example 5 11 Magnetisation Measurements 12 To test if the new polymer had a large number of 13 localised spins, magnetisation measurements were 14 made on solid at room temperature using a Vibrating 15 Sample Magnetometer (VSM) that has a sensitivity of 16 10-7 JT-1. A first batch of PANiCNQ was made 17 according to the procedure of Example 1 except that 18 the first batch did not undergo the reflux step and 19 instead was just heated for 10 minutes. 20 further batches were made according to the procedure 21 of Example 1. In the first batch of PANiCNQ a weak 22 signal was detected just above the background 23 diamagnetic response. In the three subsequent 24 batches, the reaction time was increased and more 25 attention was paid to the stoichiometric amounts of 26 TCNQ added to the reaction solution, the amount of 27 TCNQ added was increased from 1 mol to 2 mols. 28 Figure 3 shows the saturation magnetisation curve 29 for a sample of one of the latter batches of 30 PANICNQ. The sample has a mass magnetisation of 31 0.003 JT-1Kg-1. Larger magnetisation was observed 32

16

1	for this sample than for the first batch sample. The			
2	inset in Figure 3 depicts the temperature dependence			
3	of the magnetisation between 77 K and 300 K. No			
4	change in the saturation magnetisation is observed			
5	in the temperature range indicating that $T_{\rm c}$ must lie			
6	above room temperature for this material.			
7				
8	The latter batches also revealed much stronger FTIR			
9	bands at 2185 cm ⁻¹ , and a greater degree of charge			
LO	transfer as seen in absorption spectra than the			
11	first batch polymer. Magnetisation measurements on			
L2	these latter polymers revealed much larger			
13	magnetisation, with magnetisation saturation being			
14	easily observed at room temperature. These indicate			
15	a correlation between the degree of TCNQ			
16	substitution, charge transfer and mass			
17	magnetisation.			
18				
19	From Figure 3 it is clear that there is a large			
20	ferromagnetic component imposed upon a diamagnetic			
21	background. Measurements with different samples			
22	from one of the latter batches lead to the			
23	conclusion that not all the emeraldine base had			
24	reacted to form PANiCNQ, and as polyaniline is			
25	diamagnetic this accounts for the background.			
26				
27	The mass magnetisation at room temperature for the			
28	sample of Figure 3 is approximately 0.003 JT-1Kg-1.			
29	For reference Ni has a mass magnetisation of 55.4			
30	JT-1Kg-1. From the saturation magnetisation curves it			
31	is clear that the new material is ferromagnetic at			
32	room temperature. Further simple evidence of this is			

WO 03/062305

での最高をなるということのできるとうなるとうなかとして

THE RESERVE OF THE PROPERTY OF

では 一般を 大きのです こうこう こうない 大きな 大きな できる

17

the fact that lumps of the polymer can be picked up 1 2 with a small permanent magnet. 3 4 Example 6 Thermal Analysis 5 6 7 A sample of PANiCNQ was prepared in accordance with the procedure of Example 1. The sample observed 8 whilst it was heated at a rate of 1°C/min. 9 thermal analysis of PANiCNQ indicated that the 10 11 polymer is stable up to and even beyond 500° C. This is characteristic of the emeraldine form of 12 polyaniline. A possible weak glass transition is 13 seen at 260° C. 14 15 16 Example 7 17 Impurity analysis 18 FTIR spectroscopy of the new material was made to 19 determine the degree of magnetic impurity. A sample 20 of PANiCNQ was prepared in accordance with the 21 procedure of Example 1. According to spectroscopy 22 23 measurements less than 50 ppm of the sample is iron. Therefore calculations were carried out on the 24 assumption that the iron would form in the system as 25 a cluster, and thus have the most effect upon the 26 magnetisation. Even then the maximum magnetic moment 27 calculated was of the order 10⁻¹⁰ JT⁻¹. The mass 28 magnetisation equipment used in these experiments 29 has a sensitivity of approximately 10⁻⁷ JT⁻¹. Thus 30 impurities cannot account for the signal measured in 31 the polymer. In addition to this, the first batch 32

18

1	of polymer which showed a weak terromagnetic signal
2	was retested a month later. The sample had been
3	left in its test capsule in a sealed glass bottle.
4	The ferromagnetic signal had increased dramatically
5	during this time, indicating clearly that the
6	magnetism emanates from the sample and that the
7	solid state reaction must involve a spin separation
8	step which is rather a slow process.
9	
L O .	Example 8
1	Analysis of Polymer Using AFM and MFM
. 2	
L3	PANICQ was prepared as described above and samples
L 4	analysed using an atomic force microscope (AFM) and
L5	a magnetic force microscope (MFM). The images were
16	taken from batch number three. Samples were chosen
L7	due to their physical size and smoothness. The
18	experiment was carried out upon a digital
19	instruments AFM/MFM at Florida State University.
20	Images obtained using the microscopes are shown in
21 .	Figures 4a- 4d, with the left hand images showing
22	AFM images obtained and the right hand images
23	showing MFM images. The images are alternant from
24	AFM to MFM respectively as this is necessary to
25	prove that changes in the MFM image are not
26	structural.
27	
28	Figure 4a shows the initial image of a sample from
29	3b_2, showing the AFM image on the left and the MFM
30	on the right. The MFM is in phase mode.
7 1	

19

Figure 4b shows that the AFM image on the left did 1 not change from that of Figure 4a. However in the 2 MFM image, a striation is seen moving across the 3 image right to left. The MFM is in phase mode. 4 5 In Figure 4c, the striation can again be clearly б seen moving across the image in the MFM mode. 7 8 Fig 4d shows that the MFM image changed again, 9 indicating the presence of a magnetic domain. 10 11 The sample examined in Figure 4 was individually run 12 upon an Alternating Gradient Field Magnetometer 13 (AGFM). The inventors noted what appeared to be weak 14 hysteretic behaviour. The data followed a similar 15 trend to all the other data with weak ferromagnetic 16 behaviour upon a diamagnetic background. Without 17 being limited, the inventors expect the magnetism to 18 be most prevalent at the sample surface due to the 19 requirement that the quinoid ring has to be 20 activated. The polymer may even benefit from 21 crushing as the size of the polymer is not 22 important. The hard magnetic properties may be 23 affected as one possibly will break down the inter-24 chain exchange 25 26 Similar images were obtained using other smaller 27 . crystalline regions within the sample (data not 28 shown). 29 30 Example 9 31 Testing of Base Materials For Contamination 32

20

1	The base materials were tested for contamination on
2	the Vibrating Sample Magnetometer (VSM) in order to
3	discount the possibility of dirt in the sample. The
4	absolute measurement was not the moment of the
5	sample but the mass magnetisation when comparing
6	results. However for simplicity's sake Figure 5
7	shows the moment of the sample and contaminants. Fig
8	5 shows the measured moment against the calculated
9	moment for all the possible contaminants of Pani
10	(polyaniline).
11	
12	As shown in Figure 5, the measured moment is an
13	order of magnitude less than the calculated moment.
14	Table 1 shows the contamination levels of the
15 -	transition metals. The table shows the calculated
16	contamination of the transition metals compared to
17	the actual measured moment of the relevant sample.
18	According to the mass spectroscopy there was no Co
19	in any of the samples.

A COLUMN TO THE TAXABLE PROPERTY OF THE PROPER

Table 1

		·	
Pure Pani	Calculated Ni	Calculated Fe	Measured
sample	Contamination	Contamination	Moment
	From mass spec	From mass spec	(J/T)
	(J/T)	(J/T)	
1 .	3*10-8	4*10 ⁻⁷	4*10 ⁻⁸
2	2*10 ⁻⁸	3.27*10 ⁻⁷	3.5*10 ⁻⁸
3	1.5*10-8	1.172*10-6	1.5*10-8
4	1.1*10-8	1.19*10 ⁻⁷	3*10 ⁻⁸
5	1.5*10 ⁻⁸	5.9*10 ⁻⁸	1*10 ⁻⁸
6	1*10-8	1.5*10 ⁻⁷	1.3*10 ⁻⁸
7	7*10 ⁻⁹	1.75*10*7	1.2*10-8
8	8*10 ⁻⁹	6.5*10 ⁻⁸	1.1*10-8
9	1.*10-8	1*10-7	4*10 ⁻⁹
10	1.3*10-8	7.9*10 ⁻⁸	6*10 ⁻⁹
11	6*10 ⁻⁹	4.5*10-8	1.7*10-8
12	1.5*10-8	1.26*10 ⁻⁷	2.44*10-8
13	1.2*10 ⁻⁸	1.47*10-7	2.3*10 ⁻⁸

1 From the table, it is clear that the Ni is

2 approximately of the right level and, apart from the

3 spurious result, the levels of transition metals are

4 within the experimental errors. Accordingly the

5 inventors believe that the Fe content obtained via

6 mass spectroscopy may be an over estimate due to the

fact that ArO has an identical mass to Fe. Hence

8 when examining PANiCNQ, Ni is the only real

9 transition element of interest. It is however once

10 again worth explicitly stating that even if one

includes all the contaminants it does not account

for all the magnetism seen in this sample.

13

22

The other base materials of the sample, TCNQ and 1 NMP, are diamagnetic, and were found to be 2 essentially pure as no contaminants can be seen with 3 the VSM. 4 5 Example 10 б ESR Measurements of Polymer 7 8 Electron Spin Resonance (ESR) measurements were made 9 of samples 3b. The ESR measurements lead to the 10 conclusion that the spins in the system are indeed 11 interacting and the number of spins led us to the 12 " conclusion that the system was indeed ferromagnetic. 13 Added to this, the occurrence of only one major peak 1.4 with no hyperfine interactions indicates that the 15 system is indeed pure and only the polymer is acting 16 to give magnetism. 17 18 Figure 6 shows the low field behaviour of sample 19 3b 2. The intensity is much reduced and we are 20 approaching the noise of the system. However the 21 curve visible is indicative of insulating behaviour. 22 Initially before the NMP has been driven off, 23 PANICNQ is conducting. The inventors assume there 24 is a conduction pathway via the NMP as the Pani 25 backbone still contains a quinoid ring. Although the 26 observation of the conductivity is only qualitative, 27 it is another piece of evidence showing how the 28 system changes over time after the initial 29 fabrication. 30 31

23

1.	All documents referred to in this specification are
2	herein incorporated by reference. Various
3	modifications and variations to the described
4	embodiments of the inventions will be apparent to
5	those skilled in the art without departing from the
6	scope and spirit of the invention. Although the
7	invention has been described in connection with
8	specific preferred embodiments, it should be
9	understood that the invention as claimed should not
10	be unduly limited to such specific embodiments.
11	Indeed, various modifications of the described modes
12	of carrying out the invention which are obvious to
13	those skilled in the art are intended to be covered

by the present invention.

1	Clai	Claims				
2						
3	1.	A substituted conjugated polymer comprising a				
4		conjugated polymer which is substituted with an				
5		organic electron acceptor.				
6						
7	2.	The substituted conjugated polymer according to				
8		claim 1 wherein the conjugated polymer				
9		comprises aromatic groups.				
10						
11	3.	The substituted conjugated polymer according to				
12		claim 2, wherein the conjugated polymer				
13		comprises heterocyclic aromatic groups				
14		containing a nitrogen atom in the ring				
15		structure.				
16						
17	4.	The substituted conjugated polymer according to				
18		any one of the preceding claims wherein the				
19		conjugated polymer comprises polyaniline,				
20		polypyridine, polypyrrole, polyparaphenylene,				
21		polyphenylene-vinylene (PPV), polythiophene or				
22		polyfluorene.				
23						
24	5.	The substituted conjugated polymer according to				
25		any one of the preceding claims wherein the				
26		conjugated polymer is polyaniline or is a				
27		polymer obtained from substituted aniline				
28		monomers.				
29						
30	б.	The substituted conjugated polymer according to				
31		claim 5 wherein the polyaniline is emeraldine				
32		base polyaniline.				

WO 03/062305

PCT/GB03/00254

1	7.	The substituted conjugated polymer according to
2		any one of the preceding claims wherein number
3		average molecular weight of the conjugated
4		polymer is in the range 4000 to 250 000 Dalton.
5		*
6	8.	The substituted conjugated polymer according to
7		any one of the preceding claims wherein the
8		number average molecular weight of the
9		conjugated polymer is greater than 19000
10		Dalton.
11		•
12	9.	The substituted conjugated polymer according to
1.3		any one of the preceding claims wherein the
1.4		electron acceptor comprises
15		tetracyanoquinodimethane (TCNQ),
16		tetracyanonapthoquinodimethane (TNAP),
17		tetracyanoethylene (TCNE),
18		dichlorodicyanobenzoquinone (DDQ), or a TCNQ
19		derivative.
20		
21	10.	The substituted conjugated polymer according to
22		claim 9 wherein the electron acceptor comprises
23		a TCNQ derivative having formula I, formula II,

1

Formula I

$$R_4$$
 R_3
 R_2
 R_2
 R_3
 R_4
 R_4
 R_4
 R_5
 R_5

Formula II

R₄ R₂ R₂ NC

Formula IV

where $R_1 = R_2 = R_3 = R_4 = F, \text{ Me, Ph or NCHCHN; or}$ $R_2 = R_4 = H \text{ and } R_1 = R_3 = I, \text{ Br, OMe, CN, PhCH}_2, \text{ a}$ $C_1-C_8 \text{ alkyl group (preferably hexyl, Me, Et or}$ iPr); or $R_2 = R_4 = H \text{ and } R_1 = \text{OMe and } R_3 = \text{OEt, OiPr,}$ OiButyl, OiPentyl; or $R_2 = R_4 = H \text{ and } R_1 = \text{OEt and } R_3 = \text{SMe; or}$

1		$R_2 = R_4 = H$ and $R_3 = Me$ and $R_1 = 1$, Br or C1; or
2		$R_1 = R_2 = OCH_2CH_2O$ and $R_3 = OMe$ and $R_4=H$; or
3		$R_2 = R_4 = H$ and $R_3 = Br$ and $R_1 = OCH_2CH_2OH$; or
4		$R_2 = R_3 = R_4 = H$ and $R_1 = Me$, Et, OMe, CO_2Me ,; and
5		$X = Y = C_1-C_8$ alkyl group or CH_2CH_2OH ; or $X = C_1-$
6		C_8 alkyl group and Y = CH_2CH_2OH
7		
8	11.	The substituted conjugated polymer according to
9		claim 9 wherein the electron acceptor is
10		tetracyanoquinonedimethane (TCNQ).
11		
12	, 12.	The substituted conjugated polymer according to
13	•	any one of the preceding claims wherein the
14		substituted conjugated polymer is polyaniline
15		tricyanoquinonedimethane (PANiCNQ).
16		
17	13.	A ferromagnetic material comprising a
18		substituted conjugated polymer according to any
19		one of the preceding claims.
20		
21	14.	The ferromagnetic material according to claim
22		13 wherein the ferromagnetic material is the
23		substituted conjugated polymer according to any
24		one of claims 1 to 12.
25		
26	15.	The ferromagnétic material according to claim
27		13 or claim 14, wherein the material is
28		ferromagnetic at room temperature.
29		
30	16.	The ferromagnetic material according to any one
31		of claims 13 to 15 wherein the material is

PCT/GB03/00254

28

WO 03/062305

1		ferromagnetic at temperatures above room
2		temperature.
3		
4	17.	The ferromagnetic material according to claim
5		16 wherein the material is ferromagnetic up to
6		500 K.
7		
8	18.	The ferromagnetic material according to any one
9		of claims 13 to 17 wherein the material has a
10		mass magnetisation at room temperature of at
11		least $0.003 \ \mathrm{JT^{-1}Kg^{-1}}$.
12		
13	19.	The ferromagnetic material according to claim
14		18 wherein the material has a mass
15		magnetisation at room temperature of between
16		0.003 and 30 JT 1Kg"1
17		
18	20.	A method for producing a ferromagnetic polymer
19		which method comprises reacting a conjugated
20		polymer with an organic electron acceptor.
21		
22	21.	The method according to claim 20, wherein the
23		method comprises the steps:
24		a) dissolving the conjugated polymer in an
25		appropriate solvent,
26		b) adding the organic electron acceptor to
27		the solution and refluxing the resultant
28		solution for at least 24 hours,
29		 c) cooling and filtering the refluxed
30		solution from step b and collecting and
31		evaporating the filtrate to form a solid
32		polymer,

1		 d) drying the polymer from step c, and
2		allowing the polymer to reach a steady
3		ferromagnetic state.
4		
5	22.	The method according to claim 21 wherein the
6		molar ratio of conjugated polymer and organic
7		electron acceptor in the mixture of step b is
8		1:2.
9		
10	23.	The method according to claim 21 or claim 22
11		wherein the electron acceptor is
12		tetracyanoquinonedimethane (TCNQ).
13		
14	24.	The method according to any one of claims 21 to
15		23, wherein the conjugated polymer is
16		polyaniline or is a polymer obtained from
17		substituted aniline monomers.

The state of the s

The state of the s

The state of the s

Fig 2

Fig 3

4/7

Figure 5

6/7

7/7

Figure 6

INTERNATIONAL SEARCH REPORT

Internatio blication No PCT/GRT 03/00254

		101/40 05/00254
IPC 7	SFICATION OF SUBJECT MATTER C08G73/02 H01B1/12	
	to International Patent Classification (IPC) or to both national classificat	ion and IPC
	SEARCHED	
IPC 7	locumentation searched (classification system followed by classification COSG HO1B	n ayınbols)
Documenta	tion searched other than minimum documentation to the extent that su	ch documents are included in the fields searched
Electronic	data base consulted during the international search (name of data base	and Where practical courch torres used
	ta, PAJ, EPO-Internal	The state of the s
	ENTS CONSIDERED TO BE RELEVANT	
Category •	Citation of document, with indication, where appropriate, of the relev	ant passages Relevant to claim No.
Х,Р	DATABASE WPI Week 199348	1-4,9-11
	Derwent Publications Ltd., London, AN 1993-383154 XP002242867	GB;
	& JP 05 287088 A (NIPPON SODA CO), 2 November 1993 (1993-11-02) abstract	
A		13-24
Х	DATABASE WPI Week 199313	1-12
	Derwent Publications Ltd., London, AN 1993-105403 XP002242868	GB;
	& JP 05 047211 A (RICOH KK), 26 February 1993 (1993-02-26)	
A	abstract	13-24
<u> </u>	er documents are listed in the continuation of box C.	Patent family members are liated in annex.
"A" documer	egories of cited documents: If defining the general state of the art which is not red to be of particular relevance	later document published after the International filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the
"E" earlier de filling de "L" documen	ocument but published on or after the International to "X"	invention document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
O' documen O' documen other m	nt referring to an oral disclosure, use, exhibition or eans	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled
P" document	it published prior to the International filing date but un the priority date claimed "&"	to the art. document member of the same patent family
Date of the a	ctual completion of the international search	Date of mailing of the international search report
	May 2003	20/06/2003
vame and ma	alling address of the ISA European Patent Office, P.B. 5818 Patentlasn 2 NL ~ 2280 HV Rijswijk	Authorized officer
	TeL (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Glanddier, A

INTERNATIONAL SEARCH REPORT

Internette illication No

			PC1/GB	PC1/66 US/00254		
 Patent document clied in search report		Publication date	Patent family member(s)		Publication date	
JP 5287088	A	02-11-1993	JP	3334111 B2	15-10-2002	_
JP 5047211	A	26-02-1993	NONE		ويوم ويود المساحقة بيشة شاعة النوار ويجوب مدم الشاه ويتنا الساعة	