Number Systems and Number Representation

Goals of this Lecture

Help you learn (or refresh your memory) about:

- The binary, hexadecimal, and octal number systems
- Finite representation of unsigned integers
- Finite representation of signed integers
- Finite representation of rational numbers (if time)

Why?

 A power programmer must know number systems and data representation to fully understand C's primitive data types

Primitive values and the operations on them

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

The Decimal Number System

Name

"decem" (Latin) => ten

Characteristics

- Ten symbols
 - 0 1 2 3 4 5 6 7 8 9
- Positional
 - $2945 \neq 2495$
 - \bullet 2945 = (2*10³) + (9*10²) + (4*10¹) + (5*10⁰)

(Most) people use the decimal number system

The Binary Number System

Name

"binarius" (Latin) => two

Characteristics

- Two symbols
 - 0 1
- Positional
 - $1010_{B} \neq 1100_{B}$

Most (digital) computers use the binary number system

Terminology

- Bit: a binary digit
- Byte: (typically) 8 bits

Decimal-Binary Equivalence

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Decimal	Binary
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110
31	11111

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

$$100101_{B} = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})$$

$$= 32 + 0 + 0 + 4 + 0 + 1$$

$$= 37$$

Decimal-Binary Conversion

Decimal to binary: do the reverse

• Determine largest power of 2 ≤ number; write template

```
37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)
```

Fill in template

```
37 = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})
\frac{-32}{5}
\frac{-4}{1}
\frac{-1}{0}
```

Decimal-Binary Conversion

Decimal to binary shortcut

• Repeatedly divide by 2, consider remainder

```
37 / 2 = 18 R 1

18 / 2 = 9 R 0

9 / 2 = 4 R 1

4 / 2 = 2 R 0

2 / 2 = 1 R 0

1 / 2 = 0 R 1
```

Read from bottom to top: 100101_B

The Hexadecimal Number System

Name

- "hexa" (Greek) => six
- "decem" (Latin) => ten

Characteristics

- Sixteen symbols
 - 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Positional
 - $A13D_H \neq 3DA1_H$

Computer programmers often use the hexadecimal number system

Decimal-Hexadecimal Equivalence

Decimal	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	A
11	В
12	С
13	D
14	E
15	F

Decimal	Hex
16	10
17	11
18	12
19	13
20	14
21	15
22	16
23	17
24	18
25	19
26	1A
27	1B
28	1C
29	1D
30	1E
31	1F

Decimal	Hex
32	20
33	21
34	22
35	23
36	24
37	25
38	26
39	27
40	28
41	29
42	2A
43	2B
44	2C
45	2D
46	2E
47	2F

Decimal-Hexadecimal Conversion

Hexadecimal to decimal: expand using positional notation

$$25_{H} = (2*16^{1}) + (5*16^{0})$$

= 32 + 5
= 37

Decimal to hexadecimal: use the shortcut

Read from bottom to top: 25_H

Binary-Hexadecimal Conversion

Observation: $16^1 = 2^4$

Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

1010000100111101_B
A 1 3 D_H

Digit count in binary number not a multiple of 4 => pad with zeros on left

Hexadecimal to binary

A 1 3 D_H
1010000100111101_B

Discard leading zeros from binary number if appropriate

The Octal Number System

Name

"octo" (Latin) => eight

Characteristics

- Eight symbols
 - 0 1 2 3 4 5 6 7
- Positional
 - $1743_{\circ} \neq 7314_{\circ}$

Computer programmers often use the octal number system

Decimal-Octal Equivalence

Decimal	Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17

Decimal	Octal
16	20
17	21
18	22
19	23
20	24
21	25
22	26
23	27
24	30
25	31
26	32
27	33
28	34
29	35
30	36
31	37

Decimal	Octal
32	40
33	41
34	42
35	43
36	44
37	45
38	46
39	47
40	50
41	51
42	52
43	53
44	54
45	55
46	56
47	57

Decimal-Octal Conversion

Octal to decimal: expand using positional notation

$$37_0 = (3*8^1) + (7*8^0)$$

= 24 + 7
= 31

Decimal to octal: use the shortcut

Read from bottom to top: 37₀

Binary-Octal Conversion

Observation: $8^1 = 2^3$

Every 1 octal digit corresponds to 3 binary digits

Binary to octal

```
001010000100111101<sub>B</sub>
1 2 0 4 7 5<sub>0</sub>
```

Digit count in binary number not a multiple of 3 => pad with zeros on left

Octal to binary

```
1 2 0 4 7 5<sub>0</sub> 001010000100111101<sub>B</sub>
```

Discard leading zeros from binary number if appropriate

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Unsigned Data Types: Java vs. C

Java has type

- int
 - Can represent signed integers

C has type:

- signed int
 - Can represent signed integers
- int
 - Same as signed int
- unsigned int
 - Can represent only unsigned integers

To understand C, must consider representation of both unsigned and signed integers

Representing Unsigned Integers

Mathematics

Range is 0 to ∞

Computer programming

- Range limited by computer's word size
- Word size is n bits => range is 0 to 2ⁿ−1
- Exceed range => overflow

Nobel computers with gcc217

• n = 32, so range is 0 to 2^{32} – 1 (4,294,967,295)

Pretend computer

• n = 4, so range is 0 to $2^4 - 1(15)$

Hereafter, assume word size = 4

• All points generalize to word size = 32, word size = n

Representing Unsigned Integers

On pretend computer

Unsigned	
Integer	Rep
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Adding Unsigned Integers

Addition

```
1
3 0011<sub>B</sub>
+ 10 + 1010<sub>B</sub>
---
13 1101<sub>B</sub>
```

Start at right column
Proceed leftward
Carry 1 when necessary

```
11
7 0111<sub>B</sub>
+ 10 + 1010<sub>B</sub>
-- 10001<sub>B</sub>
```

Beware of overflow

Results are mod 24

Subtracting Unsigned Integers

Subtraction

```
12

0202

10 1010<sub>B</sub>

- 7 - 0111<sub>B</sub>

--- ----

3 0011<sub>B</sub>
```

Start at right column
Proceed leftward
Borrow 2 when necessary

```
2
3 0011<sub>B</sub>
- 10 - 1010<sub>B</sub>
---
9 1001<sub>B</sub>
```

Beware of overflow

Results are mod 24

Shifting Unsigned Integers

Bitwise right shift (>>): fill on left with zeros

What is the effect arithmetically? (No fair looking ahead)

Bitwise left shift (<<): fill on right with zeros

$$3 << 2 => 12$$

 0011_{B} 1100_{B}

Results are mod 24

What is the effect arithmetically? (No fair looking ahead)

Shift Left as Multiplication

• Equivalent decimal operation:

234

Shift Left as Multiplication

• Equivalent decimal operation:

$$234 << 1 = 2340$$

Shift Left as Multiplication

• Equivalent decimal operation:

$$234 << 1 = 2340$$

$$234 << 2 = 23400$$

Multiplication

- Shifting left N positions multiplies by (base) $^{\mathbb{N}}$
- Multiplying by 2 or 4 is often necessary (shift left I or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply

$$234 << 2 = 23400$$

Shift Right as Division

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

Shift Right as Division

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

234

Shift Right as Division

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

Other Operations on Unsigned Ints

Bitwise NOT (~)

Flip each bit

Bitwise AND (&)

Logical AND corresponding bits

```
10 1010<sub>B</sub> & 7 & 0111<sub>B</sub> --- 2 0010<sub>B</sub>
```

Useful for setting selected bits to 0

Other Operations on Unsigned Ints

Bitwise OR: (|)

Logical OR corresponding bits

10	1010 _B
1	0001 _B
11	1011 _B

Useful for setting selected bits to 1

Bitwise exclusive OR (^)

Logical exclusive OR corresponding bits

x ^ x sets all bits to 0

The binary **XOR** operation will always produce a **1** output if either of its inputs is **1** and will produce a **0** output if both of its inputs are **0** or **1**.

Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

$$x * 2^{y} == x << y$$
 $\cdot 3*4 = 3*2^{2} = 3 << 2 => 12$
 0011_{B}
 1100_{B}

Fast way to **multiply** by a power of 2

```
x / 2^{y} == x >> y
\cdot 13/4 = 13/2^{2} = 13 >> 2 => 3
1101_{B}
0011_{B}
```

Fast way to **divide** by a power of 2

```
x % 2^{y} == x & (2^{y}-1)
\cdot 13\%4 = 13\%2^{2} = 13\&(2^{2}-1)
= 13\&3 => 1
```

Fast way to **mod** by a power of 2

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Signed Magnitude

Integer	Rep
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit indicates sign

0 => positive

1 => negative

Remaining bits indicate magnitude

$$1101_{B} = -101_{B} = -5$$

 $0101_{B} = 101_{B} = 5$

Signed Magnitude (cont.)

Integer	Rep
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative

```
neg(x) = flip high order bit of x

neg(0101_B) = 1101_B

neg(1101_B) = 0101_B
```

Pros and cons

- + easy for people to understand
- + symmetric
- two reps of zero
- one of the bit patterns is wasted.
- addition doesn't work the way we want it to.

Signed Magnitude (cont.)

Problem #1: "The Case of the Missing Bit Pattern":

How many possible bit patterns can be created with 4 bits?

Easy, we know that's 16. In unsigned representation, we were able to represent

16 numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.

But with signed magnitude, we are only able to represent 15 numbers: -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, and 7.

There's still 16 bit patterns, but one of them is either not being used or is duplicating a number. That bit pattern is '1000B'.

When we interpret this pattern, we get '-0' which is both nonsensical (negative zero? come on!) and redundant (we already have '0000B' to represent 0).

Signed Magnitude (cont.)

Problem #2: "Requires Special Care and Feeding": Remember we wanted to have negative binary numbers so we could use our binary addition algorithm to simulate binary subtraction. How does signed magnitude fare with addition? To test it, let's try subtracting 2 from 5 by adding 5 and -2. A positive 5 would be represented with the bit pattern '0101B' and -2 with '1010B'. Let's add these two numbers and see what the result is:

0 1 0 1

Now we interpret the result as a signed magnitude number. The sign is '0' (non-negative) and the magnitude is '7'. So the answer is a positive 7. But, wait a minute, 5-2=3! This obviously didn't work.

+0010

Conclusion: signed magnitude doesn't work with regular binary addition algorithms.

Ones' Complement

Integer	Rep
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit has weight -7 (- $2^n + 1$)

$$1010_{B} = (1*-7) + (0*4) + (1*2) + (0*1)$$

$$= -5$$

$$0010_{B} = (0*-7) + (0*4) + (1*2) + (0*1)$$

$$= 2$$

Ones' Complement (cont.)

Integer	Rep
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110

Computing negative

```
neg(x) = \sim x

neg(0101_B) = 1010_B

neg(1010_B) = 0101_B
```

Computing negative (alternative)

```
neg(x) = 1111_B - x
neg(0101_B) = 11111_B - 0101_B
= 1010_B
neg(1010_B) = 1111_B - 1010_B
= 0101_B
```

Pros and cons

- + symmetric
- two reps of zero

Two's Complement

```
Integer
         Rep
          1000
        1001
     -6 1010
     -5
        1011
     -4 1100
     -3
        1101
     -2
        1110
     -1
        1111
      0
          0000
          0001
      2
         0010
      3
         0011
         0100
         0101
          0110
          0111
```

Definition

```
High-order bit has weight -8 (-2<sup>n</sup>)

1010_B = (1*-8) + (0*4) + (1*2) + (0*1)

= -6

0010_B = (0*-8) + (0*4) + (1*2) + (0*1)

= 2
```

Two's Complement (cont.)

Integer	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative

```
neg(x) = \sim x + 1

neg(x) = onescomp(x) + 1

neg(0101_B) = 1010_B + 1 = 1011_B

neg(1011_B) = 0100_B + 1 = 0101_B
```

Pros and cons

- not symmetric
- + one rep of zero

Two's Complement (cont.)

Almost all computers use two's complement to represent signed integers

Why?

- Arithmetic is easy
 - Will become clear soon

Hereafter, assume two's complement representation of signed integers

Adding Signed Integers

pos + pos

```
11

3 0011<sub>B</sub>

+ 3 + 0011<sub>B</sub>

-- ----

6 0110<sub>B</sub>
```

pos + pos (overflow)

```
111

7 0111<sub>B</sub>

+ 1 + 0001<sub>B</sub>

-- ----

-8 1000<sub>B</sub>
```

pos + neg

```
1111

3 0011<sub>B</sub>

+ -1 + 1111<sub>B</sub>

-- ----

2 10010<sub>B</sub>
```

Subtracting Signed Integers

Perform subtraction with borrows

or

Compute two's compand add

Negating Signed Ints: Math

Question: Why does two's comp arithmetic work?

Answer: $[-b] \mod 2^4 = [twoscomp(b)] \mod 2^4$

```
[-b] mod 2<sup>4</sup>
= [2<sup>4</sup> - b] mod 2<sup>4</sup>
= [2<sup>4</sup> - 1 - b + 1] mod 2<sup>4</sup>
= [(2<sup>4</sup> - 1 - b) + 1] mod 2<sup>4</sup>
= [onescomp(b) + 1] mod 2<sup>4</sup>
= [twoscomp(b)] mod 2<sup>4</sup>
```

See Bryant & O'Hallaron book for much more info

Subtracting Signed Ints: Math

And so:

```
[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4
```

```
[a - b] mod 2^4

= [a + 2^4 - b] mod 2^4

= [a + 2^4 - 1 - b + 1] mod 2^4

= [a + (2^4 - 1 - b) + 1] mod 2^4

= [a + onescomp(b) + 1] mod 2^4

= [a + twoscomp(b)] mod 2^4
```

See Bryant & O'Hallaron book for much more info

Shifting Signed Integers

Bitwise (logical/arithmetic) left shift (<<): fill on right with zeros

Shift by n = multiplying by 2ⁿ

Bitwise arithmetic right shift: fill on left with sign bit

$$-6 >> 1 => -3$$

 1010_{B} 1101_{B}

Results are mod 24

Shift by n = dividing by 2ⁿ and Round-floor

Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

$$6 >> 1 => 3$$
 $0110_{B} \quad 0011_{B}$
 $-6 >> 1 => 5$
 $1010_{B} \quad 0101_{B}$

Right shift (>>) could be logical or arithmetic

- Compiler designer decides
- Logical shift is ideal for unsigned binary numbers
- Arithmetic shift is ideal for signed two's complement binary numbers

Other Operations on Signed Ints

Bitwise NOT (~)

Same as with unsigned ints

Bitwise AND (&)

Same as with unsigned ints

Bitwise OR: (|)

Same as with unsigned ints

Bitwise exclusive OR (^)

Same as with unsigned ints

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Number Systems

- So far, we have studied the following integer number systems in computer
 - Unsigned numbers
 - Sign/magnitude numbers
 - Two's complement numbers
- What about rational numbers?
 - A rational number is one that can be expressed as the ratio of two integers
 - Infinite range and precision
 - For example, 2.5, -10.04, 0.75 etc

Rational Numbers

- Two common notations to represent rational numbers in computer
 - Fixed-point numbers
 - Floating-point numbers

Computer science

- Finite range and precision
- Approximate using floating point number
 - Binary point "floats" across bits

Fixed-Point Numbers

- Fixed point notation has an implied binary point between the integer and fraction bits
 - The binary point is not a part of the representation but is implied
 - Example:
 - Fixed-point representation of 6.75 using 4 integer bits and 4 fraction bits:

01101100
0110.1100
$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

- The number of integer and fraction bits must be agreed upon by those generating and those reading the number
 - There is no way of knowing the existence of the binary point except through agreement of those people interpreting the number

Signed Fixed-Point Numbers

- As with whole numbers, negative fractional numbers can be represented in two ways
 - Sign/magnitude notation
 - Two's complement notation
- Example:
 - -2.375 using 8 bits (4 bits each to represent integer and fractional parts)
 - 2.375 = 0010 . 0110
 - Sign/magnitude notation: 1010 0110
 - Two's complement notation:

 Addition and subtraction works easily in computer with 2's complement notation like integer addition and subtraction

Example

- Suppose that we have 8 bits to represent a number
 - 4 bits for integer and 4 bits for fraction
- Compute 0.75 + (-0.625)
 - -0.75 = 0000 1100
 - **0.625** = 0000 1010
 - 0.625 in 2's complement form: 1111 0110

$$\begin{array}{cccc}
0.75 & 0000 & 1100 \\
+ - 0.625 & 1111 & 0110 \\
\hline
0.125 & 0000 & 0010
\end{array}$$

Fixed-Point Number Systems

- Fixed-point number systems have a limitation of having a constant number of integer and fractional bits
- Some low-end digital signal processors support fixed-point numbers
 - Example: TMS320C550x TI (Texas Instruments) DSPs: www.ti.com

Floating-Point Numbers

- Floating-point number systems circumvent the limitation of having a constant number of integer and fractional bits
 - They allow the representation of very large and very small numbers
- The binary point floats to the right of the most significant 1
 - Similar to decimal scientific notation
 - For example, write 273₁₀ in scientific notation:
 - Move the decimal point to the right of the most significant digit and increase the exponent:

$$273 = 2.73 \times 10^2$$

In general, a number is written in scientific notation as:

$$\pm M \times B^{E}$$

Where,

- M = mantissa
- B = base
- E = exponent
- In the example, M = 2.73, B = 10, and E = 2 (that is, $+2.73 \times 10^2$)

Floating-Point Numbers

- Floating-point number representation using 32 bits
 - 1 sign bit
 - 8 exponent bits
 - 23 bits for the mantissa.

- The following slides show three versions of floatingpoint representation with 228₁₀ using a 32-bit
 - The final version is called the IEEE 754 floating-point standard

Floating-Point Representation #1

- First, convert the decimal number to binary
 - $228_{10} = 11100100_2 = 1.11001 \times 2^7$
- Next, fill in each field in the 32-bit:
 - The sign bit (1 bit) is positive, so 0
 - The exponent (8 bits) is 7 (111)
 - The mantissa (23 bits) is 1.11001

Floating-Point Representation #2

- You may have noticed that the first bit of the mantissa is always 1, since the binary point floats to the right of the most significant 1
 - Example: $228_{10} = 11100100_2 = 1.11001 \times 2^7$
- Thus, storing the most significant 1 (also called the implicit leading 1) is redundant information
- We can store just the fraction parts in the 23-bit field
 - Now, the leading 1 is implied

Floating-Point Representation #3

- The exponent needs to represent both positive and negative
- The final change is to use a biased exponent
 - The IEEE 754 standard uses a bias of 127
 - Biased exponent = bias + exponent
 - For example, an exponent of 7 is stored as $127 + 7 = 134 = 10000110_2$
- Thus, 228_{10} using the IEEE 754 32-bit floating-point standard is $228_{10} = 11100100_2 = 1.11001 \times 2^7$

Most general purpose processors (including Intel and AMD processors) provide hardware support for double-precision floating-point numbers and operations

IEEE Floating Point Representation

Common finite representation: IEEE floating point

More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):

- 1 bit: sign (0=>positive, 1=>negative)
- 8 bits: exponent + 127

Using 64 bits (type double in C):

- 1 bit: sign (0=>positive, 1=>negative)
- 11 bits: exponent + 1023
- 52 bits: binary fraction of the form

	Sign	Exponent	Mantissa / Fraction	
	0	10000001	001 1000 0000 0000 0000 0000	
٠	1 bit	8 bits	23 bits	

Example

- Represent -58₁₀ using the IEEE 754 floating-point standard
 - First, convert the decimal number to binary

•
$$58_{10} = 111010_2 = 1.1101 \times 2^5$$

- Next, fill in each field in the 32-bit number
 - The sign bit is negative (1)
 - The 8 exponent bits are $(127 + 5) = 132 = 10000100_{(2)}$
 - The remaining 23 bits are the fraction bits: 11010000...000₍₂₎

Si	gn	Exponent	Fraction
	1	10000100	110 1000 0000 0000 0000 0000
1	biţ	8 bits	23 bits

It is 0xC2680000 in the hexadecimal form

Double Precision Example

- Represent -58₁₀ using the IEEE 754 double precision
 - First, convert the decimal number to binary
 - $58_{10} = 111010_2 = 1.1101 \times 2^5$
 - Next, fill in each field in the 64-bit number
 - The sign bit is negative (1)
 - The 11 exponent bits are $(1023 + 5) = 1028 = 10000000100_{(2)}$
 - The remaining 52 bits are the fraction bits: 11010000...000₍₂₎
 - It is 0xC04D00000000000 in the hexadecimal form

Floating-Point Numbers: Special Cases

 The IEEE 754 standard includes special cases for numbers that are difficult to represent, such as 0 because it lacks an implicit leading 1

Number	Sign	Exponent	Fraction
0	Х	00000000	00000000000000000000
_∞	0	11111111	00000000000000000000
- ∞	1	11111111	00000000000000000000
NaN	Х	11111111	non-zero

NaN is used for numbers that don't exist, such as $\sqrt{-1}$ or log(-5)

Floating Point Example

Sign (1 bit):

1 => negative

1100000111011011000000000000000000

32-bit representation

Exponent (8 bits):

- $10000011_{B} = 131$
- \cdot 131 127 = 4

Fraction (23 bits):

- 1 + $(1*2^{-1}) + (0*2^{-2}) + (1*2^{-3}) + (1*2^{-4}) + (0*2^{-5}) + (1*2^{-6}) + (1*2^{-7})$ = 1.7109375

Number:

 \bullet -1.7109375 * 24 = -27.375

Floating Point Example 263.3

263: 100000111

IEEE754 floating-point standard can't represent

0.3:01001100110011....

Floating Point Example

```
1) 263.3
    100000111.0100110011...

2) Scientific notation:

1.000001110100110011... * 28

| Sign (1 bit):
| positive => 0

| Exponent (8 bits):
| 127 + 8 = 135
| 135 = 10000111<sub>B</sub>

| Fraction (23 bits):
| operation (23 bits):
| positive => 0

| Fraction (23 bits):
| positive => 0

| Positive
```

Binary Coded Decimal (BCD)

- Since floating-point number systems can't represent some numbers exactly such as 0.3, some application (calculators) use BCD (Binary coded decimal)
 - BCD numbers encode each decimal digit using 4 bits with a range of 0 to 9

Decimal	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD fixed-point notation examples

1.7 = 0001.0111

4.9 = 0100 . 1001

6.75 = 0110.01110101

 BCD is very common in electronic systems where a numeric value is to be displayed, especially, in systems consisting solely of digital logic (not containing a microprocessor) - Wiki

Converting Between Decimal and Binary Floating-Point Numbers

https://kyledewey.github.io/comp122-fall17/lecture/week 2/floating point interconversions.html

Summary

The binary, hexadecimal, and octal number systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers

Essential for proper understanding of

- C primitive data types
- Assembly language
- Machine language