Research summary in Spring 2020

Yinbin Ma

University of Illinois at Chicago

April 29, 2020

Preface

- Topics we covered
 - Decentralized algorithms.
 - Large-scale distributed optimization.
- Tools
 - MPI, Python
- Results
 - Documents and corresponding codes.
- UIC HPC Platform ACER
 - ACER issued free accounts to students taking Parallel Computing course, each program can be allocated the maximal 7x16 processors.
 - ACER had its own MPI scheduler and compilers.
- Great thanks to Shuo Han!

Table of Contents

Consensus Optimization

2 Variance Reduction

Objective Scenario

Many ML problems could be decomposed as following form:

 A_i is data used in f_i , f_i is convex, f has a optimal solution x^* . In this case, we could assign each f_i into a node allocated in a cluster network.

Optimization

We could use Gradient Descent to minimize f:

$$egin{aligned} x^{k+1} &= x^k - rac{\eta}{n} \sum_{i=1}^n riangledown f_i(x^k) \ &= x^k - rac{\eta}{n} \sum_{i=1}^n g_i^k \end{aligned}$$

In centralized network, we could ask master node collect gradients from workers, then broadcast updated x.

What if a decentralized network, in other word, how to achieve a average mechanism?

Gossip Matrix

Let's think about d2d networks, each node i has a value to share with its neighbors. Recall the Markov chain, we use a doubly stochastic matrix W representing this "transition", for example a ring.

$$W = \begin{bmatrix} 0.5 & 0.25 & 0 & 0 & 0 & 0.25 \\ 0.25 & 0.5 & 0.25 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0.25 & 0 & 0 & 0 & 0.25 & 0.5 \end{bmatrix}$$

$$\forall x^0 \in \mathbb{R}^N, x^{k+1} = Wx^t, \ J = \frac{1}{n} \mathbf{1} \mathbf{1}^T.$$
 As $k \to \infty, \ x^k = Jx^0$

Gossip Matrix

Theorem 1

Given a W, if W satisfy following properties,

- $W_{ij} \in [0, 1], W_{ii} > 0.$
- W is symmetry, i.e. $W = W^T$.
- $W \cdot 1 = 1$, i.e. 1 is an eigenvector of W.
- $\lambda(W) \leq 1$.

Then, W is a gossip matrix, i.e. $\lim_{k\to\infty} x^k = Jx^0$.

Average Consensus Tracking

Suppose that we have a dynamical system G_{con} , G_{con} achieves average consensus tracking if we have a sequence $s = \{s^k \in \mathbb{R}^N\}$ converging to s^* , the $\hat{s} = G_{con}(s)$ converge to Js^* .

$$\begin{array}{ccc}
s^k & \longrightarrow & s^* \\
s^k & \longrightarrow & G_{con} & \longrightarrow & Js^*
\end{array}$$

A example (not unique) of G_{con} is

$$\hat{s}^{k+1} = W\hat{s}^k + (s^{k+1} - s^k), \quad \hat{s}^0 = s^0$$
 (1)

Let $\hat{s}^{k+1} = s^{k+1} + \epsilon^{k+1}$, we have

$$\epsilon^{k+1} = \hat{s}^{k+1} - s^{k+1} = W \hat{s}^k - W s^k + W s^k - s^k$$

$$= W \epsilon^k + (W - I) s^k$$

Therefore, (1) could be rewritten as,

$$\hat{s}^{k+1} = s^{k+1} + \epsilon^{k+1}, \quad \epsilon^{k+1} = W\epsilon^k + (W-I)s^k, \quad \epsilon^0 = 0$$
 (2)

Average Consensus Tracking

We could use (2) to track x^k and g^k , since both of them will converge to the optimal point, i.e.

$$egin{aligned} x
ightarrow x^*, & \hat{x}
ightarrow Jx^* \ y
ightarrow g^*, & \hat{g}
ightarrow 0 \end{aligned}$$

Therefore, we succeed to generalize a decentralized gradient descent algorithm.

Average Consensus Tracking

Many optimization algorithms could be rewritten as a decentralized form by using average consensus tracking; here's an example of SVM.

The middle figure shows the optimal decision boundaries without consensus sharing, and the right one is with consensus sharing.

Table of Contents

Consensus Optimization

2 Variance Reduction

Stochastic Gradient Descent

Similar to the previous scenario, we assume $\nabla^2 F \succcurlyeq L$ and $\nabla^2 f_i \preccurlyeq \mu$.

$$\min \quad F(x) = rac{1}{n} \sum_{i=1}^n f_i(x; A_i) = rac{1}{n} \sum_{i=1}^n f_i(x)$$

Another popular method is Stochastic Gradient Descent, it randomly pick one gradient, instead of all gradient to update x.

$$x^{k+1} = x^k - rac{\eta}{n} orall f_{i_k}(x^k) = x^k - \eta g^k$$

Comparing to GD, SGD decreases the intensity of computation, but it can't guarantee $x^k \to x^*$.

Stochastic Gradient Descent

- $\bullet \ g^k = \nabla f_{i_k}(x^k).$
- $\mathbb{E}(g^k) = \nabla F(x^k)$.
- $ullet \ \exists \sigma_g \geq 0, \, c_g \geq 1, \, \mathbb{E}\left[\left\|g^k
 ight\|_2^2
 ight] \leq \sigma_g^2 + c_g \left\| lackslash F(x^k)
 ight\|_2^2$
- $ullet \ \mathbb{E}\left[F\left(x^{k}
 ight)-F\left(x^{st}
 ight)
 ight] \leq rac{\eta L\sigma_{\mathrm{g}}^{2}}{2\mu}+\left(1-\eta \mu
 ight)^{t}\left(F\left(x^{0}
 ight)-F\left(x^{st}
 ight)
 ight)$

Stochastic Gradient Descent

- $\bullet \ g^k = \triangledown f_{i_k}(x^k).$
- $\bullet \ \mathbb{E}(g^k) = \triangledown F(x^k).$
- $\bullet \ \, \exists \sigma_g \geq 0, \, c_g \geq 1, \, \mathbb{E}\left[\left\|g^k\right\|_2^2\right] \leq \sigma_g^2 + c_g \left\|\triangledown F(x^k)\right\|_2^2$
- $\bullet \ \mathbb{E}\left[F\left(x^k\right) F\left(x^*\right)\right] \leq \frac{\eta L \sigma_{\mathrm{g}}^2}{2\mu} + (1 \eta \mu)^t \left(F\left(x^0\right) F\left(x^*\right)\right)$
- How to reduce the variance of g^k ?
 - Find a zero-mean auxiliary variable v and it positively correlated with $\nabla f_{i_k}(x^k)$, i.e. $\langle v, \nabla f_{i_k}(x^k) \rangle > 0$.
 - ullet Let $\hat{g}^k = oldsymbol{orange} f_{i_k}(x^k) v, \mathbb{E}(\hat{g}^k) = oldsymbol{
 abla} F(x^k)$
 - $\bullet \ \ \mathbb{E}\left[\left\|\hat{g}^k\right\|_2^2\right] = \mathbb{E}\left[\left\|\triangledown F(x^k)\right\|_2^2\right] + \mathbb{E}\left[\left\|v\right\|_2^2\right] 2\mathbb{E}\left[\left\langle v, \triangledown f_{i_k}(x^k)\right\rangle\right].$
- Variance reduction is a way to reduce noise.
 - ullet ightarrow More accurate estimate $ightarrow \mathbb{E}\left[F(x^k) F(x^*)
 ight]
 ightarrow 0.$

Stochastic Variance Reduced Gradient - SVRG

Store the history x^{old} and substitute it for v, i.e.

$$\hat{g}_{s}^{k} = \underbrace{
abla f_{i_{k}}\left(x_{s}^{k}
ight) -
abla f_{i_{k}}\left(x_{s}^{ ext{old}}
ight)}_{ o 0 ext{ if } x_{s}^{k} pprox x_{s}^{ ext{old}}} + \underbrace{
abla F\left(x_{s}^{ ext{old}}
ight)}_{ o 0 ext{ if } x_{s}^{ ext{old}} pprox x^{*}}$$

In s^{th} epoch,

- take snapshots for every $\nabla f_i(x_s^0)$ as $\nabla f_i(x^{\text{old}})$.
- inner loop: for $k = [1, 2, \dots, m]$
 - $ullet x_s^{k+1} = x_s^k \eta \hat{g}_s^k$
- Update x_{s+1}^0 for next epoch.

Stochastic Variance Reduced Gradient - SVRG

Store the history x^{old} and substitute it for v, i.e.

$$\hat{g}_{s}^{k} = \underbrace{
abla f_{i_{k}}\left(oldsymbol{x}_{s}^{k}
ight) -
abla f_{i_{k}}\left(oldsymbol{x}_{s}^{ ext{old}}
ight)}_{ o \mathbf{0} ext{ if } oldsymbol{x}_{s}^{k} pprox oldsymbol{x}_{s}^{ ext{old}}} + \underbrace{
abla F\left(oldsymbol{x}_{s}^{ ext{old}}
ight)}_{ o \mathbf{0} ext{ if } oldsymbol{x}_{s}^{ ext{old}} pprox oldsymbol{x}^{*}}_{ ext{old}}$$

- $ullet \left \| \hat{g}^k
 ight \|_2^2
 ight | \leq 4L \left [F(x^k_s) F(x^*) + F(x^{ ext{old}}_s) F(x^*))
 ight]$
- $ullet \ \mathbb{E}\left[F(x_s^{\mathrm{old}}) F(x^*)
 ight] \leq
 ho^s \left[F(x^0) F(x^*)
 ight]$
- $\rho = \frac{1}{\mu \eta (1 2L\eta)m} + \frac{2L\eta}{1 2L\eta} < 1$

Stochastic Variance Reduced Gradient - SVRG

- Built & tested the SVRG Python program with MPI.
- UIC high performance cluster ACER supports MPI.
- We also succeed built other variance reduction algorithms on ACER, including SAGA.

Table of Contents

Consensus Optimization

2 Variance Reduction

- Sync: R/W in interleaved style.
 - Common in analysis.
 - Damage performance a lot.
- Async: R/W in any order.
 - Remove sync lock.
 - Hard to analyze.
 - Achieve linear speedup for parallel scenario using shared memory.

- Problems of async:
 - Multiple agents will read the same x.
- Problems of MPI.
 - MPI is built on socket, not shared memory, it already has locks.
 - Only verify if analysis fits practical.
- Still investigating async algorithms, including variance reduction ones.

The End