Qspice KSKelvin Symbol Explanation

KSKelvin Kelvin Leung

Created on 9-3-2023 Last Updated on 12-28-2023

Ideal Opamp

Qspice: Opamp_Ideal.qsym

Ideal Operation Amplifier - Overview

Qspice : ComptrOD_Ideal.qsym

- Ideal Opamp Sub-Circuit
 - opamp.sub in LTspice library

* Copyright © Linear Technology Corp. 1998, 1999, 2000. All rights reserved. subckt opamp 1 2 3

G1 0 3 2 1 {Aol}

R3 3 0 1.

C3 3 0 {Aol/GBW/6.28318530717959}

.ends opamp

Opamp equivalent formula

$$V_{output} = Z(R_3, C_3) \times Aol \times I_{G1}$$

 $V_{output} = (R_3 / / \frac{1}{j\omega C_3}) \times Aol \times (V_p - V_n)$

Opamp.sub Equivalent Schematic

Ideal Operation Amplifier – Parameters of Symbol

Qspice: ComptrOD_Ideal.qsym

Ideal Operation Amplifier - Simulation Example

Parent - opamp_ideal (.ac).qsch

Parent - opamp_ideal (.tran).qsch

Ideal Comparator

Qspice: Comptr_Ideal.qsym

Qspice: ComptrOD_Ideal.qsym

Qspice : Comptr_Ideal_Supply.qsym

3 type of Ideal Comparators Overview

Qspice : Comptr_Ideal.qsym / Comptr_Ideal_Supply.qsym / ComptrOD_Ideal.qsym

3 type of Ideal Comparators – Simulation Results

Qspice: Parent - Comparator.qsch

Control System

Gain, Different, PID and Signal Limiter

Qspice: Gain.qsym

Qspice: Different.qsym

Qspice: PID.qsym

Qspice: Signal_Limiter.qsym

Gain and Different

Qspice : Gain.qsym / Difference.qsym

- Gain
 - $V_{out} = Av \times V_{input}$

- Difference
 - $V_{out} = V_{+} V_{-}$

PID Controller and Signal Limiter

Qspice: PID.qsym / Signal_Limiter.qsym

- PID Controller
 - $V_{out} = K_p V_{error} + K_i \int V_{error} dt + K_d \frac{dV_{error}}{dt}$ X1

 PID

 err

 Kp=1

 Ki=1

 Kd=1
- error

 Out

 V=Kp*V(error)+Ki*idt(V(error),0)+Kd*ddt(V(error))

 .param Kp = 1

 .param Ki = 0

 .param Kd = 0

- Signal Limiter
 - limit(x,y,z) | intermediate value of x, y, and z, equivalent to min(max(x,y),z)

Control System Symbol : Transient Simulation Example

Parent - PID CloseLoop (.tran).qsch

Delay

Qspice : Delay.qsym

- Delay
 - Reason for Implementation
 - Qspice B-source not offers delay function before 09/22/2023, but after that, Mike Engelhardt implemented delay(input,time) for arbitrary behavioral sources.
 - Concept of Design
 - T1 : Td (delay) in ideal transmission line determines signal delay time
 - R1: To prevent signal reflection, transmission line must terminate with Zo
 - B1: To prevent loading effect when using delay block
 - Symbol of delay.qsym

SrcXXX Special Voltage Source and Potentiometer

Qspice: Scrxxxx.qsym / Potentiometer.qsym

ScrXXX

- SrcPulse.qsym
- SrcSawtooth.qsym
- SrcTriangle.qsym
- SrcStep.qsym
- SrcRamp.qsym

Potentiometer

- Symbol: Potentiometer.qsym
- Ratio is limited to [1m,0.999]
- Sub-circuit script

.subckt VR + - m params: Rt=1k ratio=0.5 .param w = limit(1m,ratio,0.999) R1 + m (1-w)*Rt R2 m - (w)*Rt .ends VR

Voltage Control Current Source with Current Limit

Qspice: VCCS_Ilimit.qsym

- VCCS_Ilimit
 - Use Behavioral source with limit(x,y,z) function
 - Intermediate value of x, y, and z
 - Sub-circuit

.subckt VCCS_llimit v+ v- out+ out-B1 out- out+ l=limit(gm*(V(v+)-V(v-)),lmax,lmin)

.ends VCCS_Ilimit

Symbols

Phase Shift Pulse with Delay Control

Qspice : PhaseShift_KSK1.qsym

PhaseShift_KSK1.qsym

- Use behavioral source with delay function to generate phase controlled pulse source
- User to define switching frequency and duty as input parameters (these cannot be change during simulation)
- Phase_setpt is input port which control delay time in delay(), the delay is controlled with formula $\frac{v_{phase_setpt}}{2f_{eve}}$
 - A $\frac{1}{fsw}$ is used to prevent negative y value into delay(x,y,z)
 - z set to $2f_{sw}$ to reduce waveform memory in simulation

Ideal of PhaseShift_KSK1 subckt

```
.param Vhigh=1
                          .tran 20/fsw
     .param Vlow=0
                          .plot V(out1)+1.1 V(out2)
     .param duty=0.5
                          .plot V(phase setpt)
     .param fsw=100K
      pulse Vlow Vhigh 0 0 0 duty/fsw 1/fsw
phase setpt
                           phase setpt : range [-1,1]
                           -1: -180 degree
     pwl 0 -1 20/fsw 1
                           +1: 180 degree
         =limit(V(phase_setpt),-1,1)
   out1
         =delay(V(Ref),1/fsw,2/fsw)
     =V=delay(V(Ref),1/fsw+1/fsw*V(Td)/2,2/fsw)
      delay(x,y,z) with z=2/fsw is to reduce waveform memory
```


