

Eine Einführung in R: Varianzanalyse

Bernd Klaus, Verena Zuber

Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE),

Universität Leipzig

5. Januar 2012

1 Varianzanalyse: Theorie

2 Varianzanalyse: Praxis

3 Gruppenvergleiche und multiples Testen

Varianzanalyse: Theorie

Beispiel: "toycar"

Fragestellung: Fahren die drei Autotypen unterschiedlich weit?

Oder wie untersucht man die Nullhypothese: $H_0: \mu_1 = \mu_2 = \mu_3$?

Varianzanalyse

Daten: Gegeben ist eine metrische (normalverteilte) **Zielgröße** Y und mindestens ($p \le 1$) **Faktorstufen**, die jeweils mehrere Gruppen ($k \le 2$) umfassen.

Insgesamt sind $n_1 + ... + n_k = n$ Beobachtungen gegeben

- p = 1: Einfaktorielle Varianzanalyse
- p = 1 und k = 2: t-Test
- p > 1: Mehrfaktorielle Varianzanalyse

Frage: Unterscheiden sich die Erwartungswert der metrischen Zufallsvariable in den Gruppen?

Oder: Ist die Varianz zwischen den Gruppen größer als in den Gruppen?

Das Modell der einfaktoriellen Varianzanalyse p = 1

- Spezialfall k = 2: t-Test
- Das Modell für j = 1, ..., k Gruppen und $i = 1, ..., n_j$ Beobachtungen in Gruppe j:

$$Y_{ji} = \mu_j + \epsilon_{ji}$$

- Voraussetzungen:
 - 1 $\epsilon_{ii} \sim N(0, \sigma)$
 - **2** ϵ_{ii} ist normal verteilt mit Erwartungswert **0**
 - **3** identischer Varianz σ^2
- H_0 : $\mu_1 = ... = \mu_k$

Streuungszerlegung

ANOVA: ANalysis Of VAriances

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2 + \sum_{j=1}^{k} n_j (\bar{y}_j - \bar{y})^2$$

$$SQR$$

Für die Streuungszerlegung werden folgende Größen berechnet:

- SQT: Sum of Squares Total, die Gesamtstreuung (Var(Y))
- SQR: Sum of Squares Residuals, Streuung in den Gruppen
- SQE: Sum of Squares Explained, Streuung zwischen den Gruppen

Der F-Test

- $H_0: \mu_1 = ... = \mu_k$
- Aus der Streuungszerlegung wird verwendet:

Streuung	df	Mittlerer Quadr. Fehler
zwischen den Gruppen	k-1	SQE/(k-1)
in den Gruppen	n-k	SQR/(n-k)

• Die Prüfgröße F berechnet sich aus:

$$F = MQE/MQR = \frac{SQE}{k-1} / \frac{SQR}{n-k}$$

• F ist F-verteilt mit (k-1, n-k) Freiheitsgraden

Mehrfaktorielle Varianzanalyse p > 1

- Natürlich können mehrere Faktoren und Wechselwirkungen zwischen Faktoren berücksichtigt werden
- Die Formeldarstellung kann dabei sehr schnell sehr kompliziert werden
- Wichtig in der Praxis ist dabei, dass jede der einzelnen Unterkategorien eine ausreichende Stichprobengröße besitzt
- Es gibt F-Tests für alle Faktoren und deren Wechselwirkungen

Varianzanalyse: Praxis

Beispiel: toycar-Daten

Berechnung des linearen Modells 1m.car:
 lm.car <- lm(distance ~ car)

```
    Output des summary-Befehl :
Call: lm(formula = distance ~ car)
    Coefficients:
```

	Estimate	Std.Error	t value	$ \Pr(> t)$	
Intercept	0.5911	0.0902	6.555	8.86 e-07	***
car2	0.1111	0.1275	0.871	0.392	
car3	-0.0822	0.1275	-0.645	0.525	

Multiple R-squared: 0.08797, Adjusted R-squared: 0.01197

F-statistic: 1.158 on 2 and 24 DF, p-value: 0.3312

Beispiel: toycar-Daten

- R-Befehl zur Varianzanalyse: anova(lm.car)
- Output des anova-Befehl : Analysis of Variance Table

Response: distance

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
car	2	0.16945	0.084726	1.1575	0.3312
Residuals	24	1.75673	0.073197		

Beispieldaten: "Taste"

Untersuchung von zwei verschiedenen Einflussfaktoren auf den Geschmack eines Nahrungsmittels:

- SCORE: Geschmackspunktzahl
- LIQ: Flüssigkeitskomponente: hohe (1) oder niedrige (0) Konzentration
- SCR: Textur des Nahrungsmittels: rauh (0) oder fein (1))

Beispiel für 2-faktorielle Varianzanalyse: *Taste*-Daten

• Berechnung des linearen Modells taste:

```
taste <- lm(SCORE \sim LIQ * SCR)
```

- R-Befehl zur Varianzanalyse: anova(taste)
- Output:

Analysis of Variance Table

Response: SCORE

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
LIQ	1	1024.0	1024.0	2.6321	0.1306	
SCR	1	10609.0	10609.0	27.2696	0.0002	;
LIQ:SCR	1	420.2	420.2	1.0802	0.3191	
Residuals	12	4668.5	389.0		'	

⇒ Nur der Effekt von SCR ist signifikant von 0 verschieden

Beispiel - Schätzung der Effektgrößen

- Schätzer der Effektgrößen des Modells taste: summary(taste)
- Output wie im linearen Modell: Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
Intercept	41.75	9.862	4.233	0.0011	**
LIQ1	-5.75	13.947	-0.412	0.6874	
SCR1	61.75	13.947	4.427	0.0008	***
LIQ1:SCR1	-20.50	19.724	-1.039	0.3191	

Gruppenvergleiche und multiples Testen

Gruppenvergleiche

Die Nullhypothese der Varianzanalyse ist:

- H_0 : $\mu_1 = ... = \mu_k$
- → Ablehnen der Nullhypothese gibt noch keine Auskunft darüber welche Gruppen unterschiedlich sind!
- Es sind weitere Gruppenvergleiche ("post-hoc tests") nötig

Beispiel Taste

Die Varianzanalyse beim *taste* Datensatz hat **2 Faktoren** mit **2 Stufen**, also ergeben sich insgesamt **4 nicht disjunkte Gruppen**.

- ⇒ Wo liegen Unterschiede zwischen den Gruppen?
- Rechnen von vier t-Tests nötig!
- Problem: Die Wahrscheinlichkeit die Nullhypothese bei $\alpha=0.05$ für mindestens einen Test fälschlicherweise abzulehnen ist bei vier Tests: 0.185
- → Korrektur für mehrfaches Testen angebracht

Vergleich der Gruppen in R

```
... mittels der Funktion:
pairwise.t.test(x, g, p.adjust.method =
p.adjust.methods, pool.sd = !paired, paired = FALSE,
alternative = c("two.sided", "less", "greater"), ...)
```

Parameter ähnlich dem normalen t-Test. Zusätzlich gibt es

- g: Faktor, der die Gruppe der Stichprobe angibt
- p.adjust.method: Zeichenkette, die eine Adjustierungsmethode angibt: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"

Vergleich der Gruppen bei Taste

- Der Faktor groups beschreibt die Gruppezugehörigkeit
- Wir benutzen die FDR Korrektur: pairwise.t.test(SCORE,groups, p.adjust ="fdr")

 Wie schon die ANOVA Tabelle nahelegt, hat die Textur offenbar einen sehr großen Einfluss auf den Geschmackswert, der Flüssigkeitsgehalt dagegen kaum!