Теория параллелизма

Отчет

Решение уравнения теплопроводности с использованием метода Якоби

Цель работы: Реализовать решение уравнения теплопроводности в двумерной области с использованием разностной схемы (пятиточечный шаблон) на равномерных сетках. Программа должна учитывать линейную интерполяцию на границах и заданные значения в углах, ограничивать точность до $10^{\circ}-6$ и максимальное число итераций до 1006. Реализация должна быть на C++ с использованием OpenACC для переноса на GPU. Необходимо сравнить производительность на CPU и GPU, провести профилирование и оптимизацию кода.

Компиляторы:

nvc++ 23.11-0

Визуализатор параллельного кода:

NVIDIA Nsight Systems

Инструмент для измерения времени работы:

chrono.

Выполнение на CPU (по факту добавления критических оптимизаций)

CPU-onecore

Размер сетки	Время выполнения, сек	Точность	Количество итераций
128*128	0.722	1e-6	40000
256*256	7.799	1e-6	110000
512*512	94.848	1e-6	340000
1024*1024	1273.686	1e-6	1000000

CPU-multicore

Размер сетки	Время выполнения, сек	Точность	Количество итераций
128*128	0.983	1e-6	40000
256*256	3.952	1e-6	110000
512*512	21.096	1e-6	3400000
1024*1024	194.531	1e-6	1000000

Диаграмма сравнения времени работы CPU-onecore и CPU-multicore

Выполнение на GPU

Измерения на матрице 1024*1024 с указанием оптимизаций для ускорения

Nº	Время выполнения, сек	Точность	Описание решения
1	98.902	1e-6	Без применения оптимизаций.
2	36.998	1e-6	Убран вывод промежуточного результата по окончании каждой итерации.
3	32.938	1e-6	Замена swap на temp через указатели.

Визуализация в nsys-ui (5000 итераций)

Диаграмма оптимизации

Диаграмма оптимизации (в сек.)

Измерения оптимизированного варианта на **GPU**

Размер сетки	Время выполнения, сек	Точность	Количество итераций
128*128	0.402	1e-6	40000
256*256	1.205	1e-6	110000
512*512	4.304	1e-6	340000
1024*1024	32.932	1e-6	1000000

Диаграмма сравнения времени работы CPU-onecore, CPU-multicore, GPU-optimized для разных размеров матриц


```
Итерация: 10000 ошибка: 0
Время: 113 мс, Ошибка: 0, Итерации: 10000
10 11.1111 12.2222 13.3333 14.4444 15.5556 16.6667 17.7778 18.8889 20
11.1111 12.2222 13.3333 14.4444 15.5556 16.6667 17.7778 18.8889 20 21.1111
12.2222 13.3333 14.4444 15.5556 16.6667 17.7778 18.8889 20 21.1111 22.2222
13.3333 14.4444 15.5556 16.6667 17.7778 18.8889 20 21.1111 22.2222 23.3333
14.4444 15.5556 16.6667 17.7778 18.8889 20 21.1111 22.2222 23.3333 24.4444
15.5556 16.6667 17.7778 18.8889 20 21.1111 22.2222 23.3333 24.4444 25.5556
16.6667 17.7778 18.8889 20 21.1111 22.2222 23.3333 24.4444 25.5556 26.6667 27.7778
18.8889 20 21.1111 22.2222 23.3333 24.4444 25.5556 26.6667 27.7778 28.8889
20 21.1111 22.2222 23.3333 24.4444 25.5556 26.6667 27.7778 28.8889
```

```
Итерация: 10000 ошибка: 0
Время: 108 мс, Ошибка: 0, Итерации: 10000
10 10.8333 11.6667 12.5 13.3333 14.1667 15 15.8333 16.6667 17.5 18.3333 19.1667 20
10.8333 11.6667 12.5 13.3333 14.1667 15 15.8333 16.6667 17.5 18.3333 19.1667 20 20.8333
11.6667 12.5 13.3333 14.1667 15 15.8333 16.6667 17.5 18.3333 19.1667 20 20.8333 21.6667
12.5 13.3333 14.1667 15 15.8333 16.6667 17.5 18.3333 19.1667 20 20.8333 21.6667 22.5
13.3333 14.1667 15 15.8333 16.6667 17.5 18.3333 19.1667 20 20.8333 21.6667 22.5 23.3333
14.1667 15 15.8333 16.6667 17.5 18.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667
15 15.8333 16.6667 17.5 18.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25
15.8333 16.6667 17.5 18.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25
15.8333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667
17.5 18.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 18.3333 19.1667 20 20.8333 24.1667 25 25.8333 26.6667 27.5 28.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 19.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 29.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 29.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 29.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 29.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 29.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 29.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 29.1667 20 20.8333 21.6667 22.5 23.3333 24.1667 25 25.8333 26.6667 27.5 28.3333 29.1667 20 20.8333 21.6667
```

Вывод

Использование нескольких ядер CPU позволяет значительно увеличить производительность, в то время как на любых матрицах лучше всего себя показывает GPU.