VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaNangama", Belgaum -590014, Karnataka.

LAB REPORT on

Machine Learning

Submitted by

Aruna Ravi K R(1BM19CS225)

in partial fulfilment for the award of the degree of BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING BENGALURU-560019 May-2022 to July-2022

(Autonomous Institution under VTU)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Machine Learning" carried out by **Aruna Ravi K R** (1BM19CS225), who is bonafide student of **B. M. S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum during the year 2022. The Lab report has been approved as it satisfies the academic requirements in respect of a **Machine Learning - (20CS6PCMAL)** work prescribed for the said degree.

Asha G R

Assistant Professor Department of CSE BMSCE, Bengaluru **Dr. Jyothi S Nayak**Professor and Head
Department of CSE
BMSCE,Bengaluru

Index Sheet

SI. No.	Experiment Title	Page No.	
1	Find-S	4	
2	Candidate Elimination	5	
3	Decision Tree	7	
4	Naïve Bayes	9	
5	Linear Regression	11	

Course Outcome

CO1	Ability to apply the different learning algorithms.
CO2	Ability to analyse the learning techniques for given dataset
CO3	Ability to design a model using machine learning to solve a problem.
CO4	Ability to conduct practical experiments to solve problems using appropriate machine learning Techniques.

- 1) Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.
- a) Using CSV as input:

```
import csv
def updateHypothesis(x,h):
  if h==[]:
     return x
  for i in range(0,len(h)):
     if x[i].upper()!=h[i].upper():
       h[i] = '?'
  return h
if __name__ == "__main__":
  data = []
  h = []
  # reading csv file
  with open('Desktop/FindS.csv', 'r') as file:
     reader = csv.reader(file)
     print("Data: ")
    for row in reader:
       data.append(row)
       print(row)
  if data:
     for x in data:
       if x[-1].upper()=="YES":
          x.pop() # removing last field
          h = updateHypothesis(x,h)
  print("\nHypothesis: ",h)
```

```
Data:

['Time', 'Weather', 'Temperature', 'Company', 'Humidity', 'Wind', 'Goes']

['Morning', 'Sunny', 'Warm', 'Yes', 'Mild', 'Strong', 'Yes']

['Evening', 'Rainy', 'Cold', 'No', 'Mild', 'Normal', 'No']

['Morning', 'Sunny', 'Moderate', 'Yes', 'Normal', 'Normal', 'Yes']

['Evening', 'Sunny', 'Cold', 'Yes', 'High', 'Strong', 'Yes']

Hypothesis: ['?', 'Sunny', '?', 'Yes', '?', '?']
```

B) Using user Input:

```
import numpy as np
import pandas as pd
n=int(input("Enter the number of attributes "))
l=int(input("Enter the number of rows "))
print("Enter the ",n,"ättributes")
attributes=[]
for i in range(1,n+1):
 print("Enter the name of ",i," attribute ")
 name=input()
for i in range(1,l+1):
 print("Ënter the values of ",i," row")
 print("Enter the values of attributes")
 res=[]
 for j in range(1,l+1):
  res.append(input())
 attributes.append(res)
print("Enter the target values")
target=[]
for i in range(1,l+1):
 print("Enter the value of ",i," target")
 x=input()
 target.append(x)
def findS(c,t):
  for i, val in enumerate(t):
     if val == "Yes":
       specific_hypothesis = c[i].copy()
       break
  for i, val in enumerate(c):
     if t[i] == "Yes":
       for x in range(len(specific_hypothesis)):
          if val[x] != specific_hypothesis[x]:
             specific_hypothesis[x] = '?'
          else:
             pass
  return specific_hypothesis
print("\n The final hypothesis is:",findS(attributes,target))
```

```
Enter the 3 ättributes
Enter the name of 1 attribute

Enter the name of 2 attribute

Enter the name of 3 attribute

Enter the values of 1 row
Enter the values of attributes

Enter the values of 2 row
Enter the values of attributes

Enter the values of 3 row
Enter the values of attributes

Enter the values of attributes

Enter the values of 1 target

Enter the value of 1 target

Enter the value of 3 target

The final hypothesis is: ['?', 'Rainy', 'Cold']
```

2) For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a descripon of the set of all hypotheses consistent with the training examples

```
import numpy as np
import pandas as pd
#to read the data in the csv file
data = pd.DataFrame(data=pd.read_csv('/content/drive/MyDrive/enjoysport.csv'))
print(data,"\n")
#making an array of all the attributes
concepts = np.array(data.iloc[:,0:-1])
print("The attributes are: ",concepts)
#segregating the target that has positive and negative examples
target = np.array(data.iloc[:,-1])
print("\n The target is: ",target)
#training function to implement candidate_elimination algorithm
def learn(concepts, target):
specific_h = concepts[0].copy()
print("\n Initialization of specific h and general h")
print(specific_h)
general h = [["?" for i in range(len(specific h))] for i in
range(len(specific_h))]
print(general_h)
for i, h in enumerate(concepts):
   if target[i] == "yes":
     for x in range(len(specific_h)):
        if h[x]!= specific_h[x]:
           specific h[x] = '?'
           general_h[x][x] = '?'
        # print(specific_h)
   if target[i] == "no":
     for x in range(len(specific h)):
        if h[x]!= specific h[x]:
           general_h[x][x] = specific_h[x]
        else:
           general_h[x][x] = '?'
   print("\n Steps of Candidate Elimination Algorithm",i+1)
   print(specific_h)
   print(general_h)
indices = [i for i, val in enumerate(general h) if val ==
['?', '?', '?', '?', '?', '?']]
for i in indices:
   general h.remove(['?', '?', '?', '?', '?', '?'])
return specific_h, general_h
s_final, g_final = learn(concepts, target)
#obtaining the final hypothesis
print("\nFinal Specific h:", s final, sep="\n")
```

print("\nFinal General h:", g final, sep="\n")

```
sky temp humidity
                                                           wind water forcast enjoysport
0 sunny warm normal strong warm
1 sunny warm
                                            high strong warm
                                                                                               same
                                                                                                                           ves
2 rainy cold
                                            high strong warm change
                                                                                                                            no
3 sunny warm
                                            high strong cool change
The attributes are: [['sunny' 'warm' 'normal' 'strong' 'warm' 'same']
  ['sunny' 'warm' 'high' 'strong' 'warm' 'same']
['rainy' 'cold' 'high' 'strong' 'warm' 'change']
  ['sunny' 'warm' 'high' 'strong' 'cool' 'change']]
  The target is: ['yes' 'yes' 'no' 'yes']
 Initialization of specific_h and general_h
['sunny' 'warm' 'normal' 'strong' 'warm' 'same']
[['?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?']]
  Steps of Candidate Elimination Algorithm 1
['sunny' 'warm' 'normal' 'strong' 'warm' 'same']
[[''', ''', ''', ''', '''', '''', '''', '''', '''', '''', '''', ''''], ['''', '''', '''', '''', '''', '''', '''', '''', '''', '''', '''', '''', '''', '''', '''', '''', '''', '''', ''''
  Steps of Candidate Elimination Algorithm 2
['sunny' 'warm' '?' 'strong' 'warm' 'same']
['3''', '3', '3', '3', '3'], ['3', '3', '3', '3', '3', '3'], ['3', '3', '3', '3', '3'], ['3', '3'], '3'', '3']
'?', '?'], ['?', '?', '?', '?', '?', '?']]
 Steps of Candidate Elimination Algorithm 3
['sunny' 'warm' '?' 'strong' 'warm' 'same']
[['sunny', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?'], ['?', '?'], ['?', '?'], ['?'],
  Steps of Candidate Elimination Algorithm 4
['sunny' 'warm' '?' 'strong' '?' '?']
[['sunny', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?'], ['?', '?', '?'], ['?', '?']]
Final Specific_h:
['sunny' 'warm' '?' 'strong' '?' '?']
Final General h:
[['sunny', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?', '?']]
```

3)Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

a)ID3:

```
import math
import csv
def load_csv(filename):
  lines=csv.reader(open(filename, "r"));
  dataset = list(lines)
  headers = dataset.pop(0)
  return dataset, headers
class Node:
  def __init__(self,attribute):
     self.attribute=attribute
     self.children=[]
     self.answer="
def subtables(data,col,delete):
  dic={}
  coldata=[row[col] for row in data]
  attr=list(set(coldata))
  counts=[0]*len(attr)
  r=len(data)
  c=len(data[0])
  for x in range(len(attr)):
     for y in range(r):
       if data[y][col]==attr[x]:
          counts[x]+=1
  for x in range(len(attr)):
     dic[attr[x]]=[[0 for i in range(c)] for j in range(counts[x])]
     pos=0
     for y in range(r):
       if data[y][col]==attr[x]:
          if delete:
             del data[y][col]
          dic[attr[x]][pos]=data[y]
          pos+=1
  return attr,dic
def entropy(S):
  attr=list(set(S))
  if len(attr)==1:
     return 0
  counts=[0,0]
  for i in range(2):
```

```
counts[i]=sum([1 for x in S if attr[i]==x])/(len(S)*1.0)
  sums=0
  for cnt in counts:
     sums+=-1*cnt*math.log(cnt,2)
  return sums
def compute_gain(data,col):
  attr,dic = subtables(data,col,delete=False)
  total size=len(data)
  entropies=[0]*len(attr)
  ratio=[0]*len(attr)
  total_entropy=entropy([row[-1] for row in data])
  for x in range(len(attr)):
     ratio[x]=len(dic[attr[x]])/(total_size*1.0)
     entropies[x]=entropy([row[-1] for row in dic[attr[x]]])
     total_entropy=ratio[x]*entropies[x]
  return total_entropy
def build_tree(data,features):
  lastcol=[row[-1] for row in data]
  if(len(set(lastcol)))==1:
     node=Node("")
     node.answer=lastcol[0]
     return node
  n=len(data[0])-1
  gains=[0]*n
  for col in range(n):
     gains[col]=compute_gain(data,col)
  split=gains.index(max(gains))
  node=Node(features[split])
  fea = features[:split]+features[split+1:]
  attr,dic=subtables(data,split,delete=True)
  for x in range(len(attr)):
     child=build_tree(dic[attr[x]],fea)
     node.children.append((attr[x],child))
  return node
def print_tree(node,level):
  if node.answer!="":
     print(" "*level,node.answer)
     return
  print(" "*level,node.attribute)
  for value,n in node.children:
     print(" "*(level+1),value)
```

```
print_tree(n,level+2)
def classify(node,x_test,features):
  if node.answer!="":
     print(node.answer)
     return
  pos=features.index(node.attribute)
  for value, n in node.children:
     if x_test[pos]==value:
       classify(n,x_test,features)
"Main program"
dataset,features=load_csv("id3.csv")
node1=build_tree(dataset,features)
print("The decision tree for the dataset using ID3 algorithm is")
print_tree(node1,0)
testdata,features=load_csv("id3.csv")
for xtest in testdata:
  print("The test instance:",xtest)
  print("The label for test instance:",end=" ")
  classify(node1,xtest,features)
```

```
The decision tree for the dataset using ID3 algorithm is
 Outlook
   rain
     Wind
       strong
         no
       weak
         yes
   overcast
     yes
   sunny
     Humidity
       normal
        yes
       high
The test instance: ['sunny', 'hot', 'high', 'weak', 'no']
The label for test instance:
                              no
The test instance: ['sunny', 'hot', 'high', 'strong', 'no']
The label for test instance: no
The test instance: ['overcast', 'hot', 'high', 'weak', 'yes']
The label for test instance:
                              yes
The test instance: ['rain', 'mild', 'high', 'weak', 'yes']
The label for test instance:
                              yes
The test instance: ['rain', 'cool', 'normal', 'weak', 'yes']
The label for test instance: yes
The test instance: ['rain', 'cool', 'normal', 'strong', 'no']
The label for test instance:
The test instance: ['overcast', 'cool', 'normal', 'strong', 'yes']
The label for test instance:
                              yes
The test instance: ['sunny', 'mild', 'high', 'weak', 'no']
The label for test instance:
                             no
The test instance: ['sunny', 'cool', 'normal', 'weak', 'yes']
The label for test instance:
                             yes
The test instance: ['rain', 'mild', 'normal', 'weak', 'yes']
The label for test instance: yes
The test instance: ['sunny', 'mild', 'normal', 'strong', 'yes']
The label for test instance:
                              yes
The test instance: ['overcast', 'mild', 'high', 'strong', 'yes']
The label for test instance:
                             yes
The test instance: ['overcast', 'hot', 'normal', 'weak', 'yes']
The label for test instance:
                             yes
The test instance: ['rain', 'mild', 'high', 'strong', 'no']
The label for test instance: no
```

b) Using SKlearn: import pandas as pd import numpy as np from sklearn.datasets import load_iris data = load_iris() In [2]: df = pd.DataFrame(data.data, columns = data.feature names) In [3]: df.head() df['Species'] = data.target #replace this with the actual names target = np.unique(data.target) target_names = np.unique(data.target_names) targets = dict(zip(target, target_names)) df['Species'] = df['Species'].replace(targets) In [5]: x = df.drop(columns="Species") y = df["Species"] In [6]: feature_names = x.columns labels = y.unique() In [7]: from sklearn.model_selection import train_test_split X_train, test_x, y_train, test_lab = train_test_split(x,y,test_size = 0.4,random_state = 42) In [8]: from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier(max_depth =4, random_state = 42) In [9]: clf.fit(X_train, y_train) test_pred = clf.predict(test_x) In [11]: from sklearn import metrics import seaborn as sns import matplotlib.pyplot as plt

```
confusion_matrix

matrix_df = pd.DataFrame(confusion_matrix)

ax = plt.axes()

sns.set(font_scale=1.3)

plt.figure(figsize=(10,7))

sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")

ax.set_title('Confusion Matrix - Decision Tree')

ax.set_xlabel("Predicted label", fontsize =15)

ax.set_xticklabels(["]+labels)

ax.set_ylabel("True Label", fontsize=15)

ax.set_yticklabels(list(labels), rotation = 0)

plt.show()
```

confusion matrix = metrics.confusion matrix(test lab,test pred)

clf.score(test_x,test_lab)

from sklearn import tree fig = plt.figure(figsize=(25,20))

_ = tree.plot_tree(clf,

feature_names=data.feature_names, class_names=data.target_names, filled=True)

Output:

Out[3]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1,4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2

Out[9]: DecisionTreeClassifier(max_depth=4, random_state=42)

In [12]:

In [14]: clf.score(test_x,test_lab)

Out[14]: 0.98333333333333333

4)Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets

a) Without using SKlearn:

```
import numpy as np
import pandas as pd
data = pd.read csv('/content/dataset.csv')
data.head()
y = list(data['PlayTennis'].values)
X = data.iloc[:,1:].values
print(f'Target Values: {y}')
print(f'Features: \n{X}')
y train = y[:8]
y_val = y[8:]
X_{train} = X[:8]
X_{val} = X[8:]
print(f"Number of instances in training set: {len(X_train)}")
print(f"Number of instances in testing set: {len(X_val)}")
class NaiveBayesClassifier:
  def __init__(self, X, y):
     self.X, self.y = X, y
     self.N = len(self.X)
     self.dim = len(self.X[0])
     self.attrs = [[] for in range(self.dim)]
     self.output_dom = {}
     self.data = []
     for i in range(len(self.X)):
        for j in range(self.dim):
           if not self.X[i][j] in self.attrs[j]:
             self.attrs[j].append(self.X[i][j])
        if not self.y[i] in self.output dom.keys():
           self.output_dom[self.y[i]] = 1
        else:
           self.output_dom[self.y[i]] += 1
        self.data.append([self.X[i], self.y[i]])
  def classify(self, entry):
     solve = None
     max arg = -1
     for y in self.output_dom.keys():
        prob = self.output dom[y]/self.N
        for i in range(self.dim):
           cases = [x \text{ for } x \text{ in self.data if } x[0][i] == \text{entry}[i] \text{ and } x[1] == y]
           n = len(cases)
           prob *= n/self.N
        if prob > max arg:
           max_arg = prob
           solve = y
```

```
return solve
nbc = NaiveBayesClassifier(X_train, y_train)
total_cases = len(y_val)
good = 0
bad = 0
predictions = []
for i in range(total_cases):
  predict = nbc.classify(X_val[i])
  predictions.append(predict)
  if y_val[i] == predict:
     good += 1
  else:
     bad += 1
print('Predicted values:', predictions)
print('Actual values:', y_val)
print()
print('Total number of testing instances in the dataset:', total_cases)
print('Number of correct predictions:', good)
print('Number of wrong predictions:', bad)
print('Accuracy of Bayes Classifier:', good/total_cases)
```

Out[2]:		PlayTennis	Outlook	Temperature	Humidity	Wind
	0	No	Sunny	Hot	High	Weak
	1	No	Sunny	Hot	High	Strong
	2	Yes	Overcast	Hot	High	Weak
	3	Yes	Rain	Mild	High	Weak
	4	Yes	Rain	Cool	Normal	Weak

```
Target Values: ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No']
Features:
[['Sunny' 'Hot' 'High' 'Weak']
['Overcast' 'Hot' 'High' 'Weak']
['Rain' 'Gool' 'Normal' 'Weak']
['Rain' 'Cool' 'Normal' 'Strong']
['Overcast' 'Cool' 'Normal' 'Strong']
['Sunny' 'Mild' 'High' 'Weak']
['Sunny' 'Mild' 'High' 'Weak']
['Rain' 'Mild' 'Normal' 'Weak']
['Sunny' 'Mild' 'Normal' 'Strong']
['Overcast' 'Mild' 'High' 'Strong']
['Overcast' 'Hot' 'Normal' 'Weak']
['Rain' 'Mild' 'High' 'Strong']
['Overcast' 'Hot' 'Normal' 'Weak']
['Rain' 'Mild' 'High' 'Strong']]
```

```
Number of instances in training set: 8
Number of instances in testing set: 6
Predicted values: ['No', 'Yes', 'No', 'Yes', 'Yes', 'No']
Actual values: ['Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No']

Total number of testing instances in the dataset: 6
Number of correct predictions: 4
Number of wrong predictions: 2

Accuracy of Bayes Classifier: 0.6666666666666666
```

b)Using SKlearn:

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.model_selection import train_test_split
from sklearn.naive bayes import GaussianNB
from sklearn import metrics
df = pd.read_csv("/content/pima_indian.csv")
feature_col_names = ['num_preg', 'glucose_conc', 'diastolic_bp', 'thickness', 'insulin', 'bmi', 'diab_pred', 'age']
predicted_class_names = ['diabetes']
X = df[feature_col_names].values
y = df[predicted class names].values
print(df.head)
xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.33)
print ('\nThe total number of Training Data:',ytrain.shape)
print ('The total number of Test Data:',ytest.shape)
clf = GaussianNB().fit(xtrain,ytrain.ravel())
predicted = clf.predict(xtest)
predictTestData= clf.predict([[6,148,72,35,0,33.6,0.627,50]])
print('\nConfusion matrix')
print(metrics.confusion matrix(ytest,predicted))
print('\nAccuracy of the classifier:',metrics.accuracy_score(ytest,predicted))
print('The value of Precision:', metrics.precision_score(ytest,predicted))
print('The value of Recall:', metrics.recall_score(ytest,predicted))
print("Predicted Value for individual Test Data:", predictTestData)
```

```
72 ... 0.627 50
0 6 148
               85
1
       1
                        66 ...
                                0.351 31
                                            0
      8
1
0
                               0.672 32
0.167 21
2.288 33
              183
                       64 ...
2
                                           1
                       66 ...
40 ...
3
               89
              137
4
                                           1
      ...
                        ... ...
               . . .
                                 10 101
                       76 ... 0.171 63
763
      2
                              0.340 27
0.245 30
0.349 47
              122
764
                        70 ...
                                           0
       5
1
                        72 ...
60 ...
765
               121
                                           1
              126
766
767
               93
                       70 ...
                               0.315 23
       1
[768 rows x 9 columns]>
The total number of Training Data: (514, 1)
The total number of Test Data: (254, 1)
Confusion matrix
[[156 16]
[ 35 47]]
Accuracy of the classifier: 0.7992125984251969
```

The value of Recall: 0.573170731707317

Predicted Value for individual Test Data: [1]

5)Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

a)Using SKlearn:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('salary_data.csv')
X = dataset.iloc[:, :-1].values #get a copy of dataset exclude last column
y = dataset.iloc[:, 1].values #get array of dataset in column 1st:
# Splitting the dataset into the Training set and Test set
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
# Fitting Simple Linear Regression to the Training set
from sklearn.linear model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Visualizing the Training set results
viz_train = plt
viz_train.scatter(X_train, y_train, color='red')
viz train.plot(X train, regressor.predict(X train), color='blue')
viz train.title('Salary VS Experience (Training set)')
viz train.xlabel('Year of Experience')
viz train.ylabel('Salary')
viz_train.show()
# Visualizing the Test set results
viz test = plt
viz_test.scatter(X_test, y_test, color='red')
viz test.plot(X train, regressor.predict(X train), color='blue')
viz_test.title('Salary VS Experience (Test set)')
viz test.xlabel('Year of Experience')
viz test.ylabel('Salary')
viz_test.show()
# Predicting the Test set results
y_pred = regressor.predict(X_test)
print(y_pred)
```

Out[4]. LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)


```
In [8]: # Predicting the Test set results
y_pred = regressor.predict(X_test)
print(y_pred)

[ 40835.10590871 123079.39940819 65134.55626083 63265.36777221
115602.64545369 108125.8914992 116537.23969801 64199.96201652
76349.68719258 100649.1375447 ]
```

b) Without using SKlearn:

```
import pandas as pd
import numpy as np
class LR():
  def __init__(self):
     self.w = []
  def fit(self, X, y):
     self.w = np.linalg.solve(X.T@X, X.T@y)
  def predict(self, X):
     return X@self.w
  def score(self, X, y):
     SS_reg = np.sum((X@self.w - y)**2)
     SS_{tot} = np.sum((y - np.mean(y))**2)
     return (1 - (SS reg/SS tot))
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
fetch_california_housing
data, labels = fetch california housing(return X y = True)
data.shape, labels.shape
one = np.ones(data.shape[0])
data = np.column_stack((one, data))
X_train, X_test, y_train, y_test = train_test_split(data, labels, train_size = 0.75, random_state = 42)
Iro = LR()
lro.fit(X_train, y_train)
Iro.w
lro.predict(X_test)
lro.score(X_test, y_test)
```

0.5910509795491321