

T05 Part 2: Introduction to COBRA

- Miguel Ponce de León BSC (<u>miguel.ponce@bsc.es</u>)
- Marta Cascante UB (<u>martacascante@ub.edu</u>)

What is a cell made of?

Level (scale) of description

Cell's molecular factory: metabolism \rightarrow What is metabolism?

Metabolism: the molecular factory of the cell

Is the **network** of biochemical reactions and transport processes that occur within a cell and allow **cell maintenance and growth**

- Generation of energy (catabolism) and building block (anabolism)
- Include the enzymatic reaction that act over small molecules

Genome-Scale Modeling in Systems Biology

What is a Genome-scale metabolic model?

Is a computational representation the metabolism of a cell

- Includes: genes and complexes, biochemical reactions, metabolites, transporters, cell compartments.
- Uses: Omic data integration, simulations, in-silico predictions.

Genome-scale metabolic model

Genome-scale metabolic model

Gene Protein Reaction rules: examples

			Isozymes 2 genes – 1 reaction		Protein complex 2 genes – 1 reaction		Isozymes 2 genes – 2 reactions	
Locus	b2388	b4268	b3437	b1264	b12	63 b1723	b3916	
	¥	¥	¥	V				
Gene	glk	idnK	gntK	trpE	trp	D pfkB	pfkA	
		V	-					
Protein	Glk	IdnK	GntK	TrpE	Trp	D PfkB	PfkA	
Reaction	HEX1	G	NK		and	PFK	PFK_2	
Reaction	on abbrevi	ation Reaction	on name		E. C.num	nber GPR		
HEX1		Hexoki	Hexokinase (p-glucose:ATP)			(b2388)		
GNK		Glucon	Gluconokinase			(b3437)	(b3437) or (b4268)	
ANS		Anthrai	Anthranilate synthase			(b1264)	and (b1263)	
PFK		Phosph	Phosphofructokinase			(b1723)	(b1723) or (b3916)	
PFK_2		Phosph	Phosphofructokinase (2)			(b3916)	(b3916)	

Genome-scale metabolic model

Genome-scale metabolic model

Gene A Gene B

Gene-Protein-Reaction Rules

Gene A Gene B

↓

Metabolic Network: Human Metabolic model Recon 2.2.1

Reactions, Transports, Metabolites & Cell compartments (-> stoichiometric matrix)

	Total
Genes	1675
Metabolites	5324
Reactions	7785

Reaction Network (stoichiometric matrix)

Stochimetric Matrix → **Mass Balance Equations (E.coli core)**


```
d[13dpg(c)] / dt = GAPD + PGK
                                (c): cytosol
d[2pg(c)] / dt = -ENO - PGM
d[3pg(c)] / dt = 1.496 * Biomass
d[6pgc(c)] / dt = PGL - GND
d[6pgl(c)] / dt = G6PDH2r - PGL
d[ac(c)] / dt = -ACKr + ACt2r
d[acald(c)] / dt = -ACALD + ACALDt + ALCD2x
d[accoa(c)] / dt = ACALD + 3.7478 * Biomass
d[acon(C)(c)] / dt = ACONTa - ACONTb
d[actp(c)] / dt = ACKr + PTAr
d[akg(c)] / dt = AKGt2r - 4.1182 * Biomass
d[amp(c)] / dt = -ADK1 + PPS
d[cit(c)] / dt = -ACONTa + CS
d[co2(c)] / dt = CO2t + ICDHyr + AKGDH + GND
                 + ME1 + ME2 + PDH - PPC + PPCK
d[coa(c)] / dt = -ACALD - 3.7478*Biomass
d[dhap(c)] / dt = FBA - TPI
(continues)
```

Genome-scale metabolic model

Genome-scale metabolic model

Biomass Equation

Quantitative molecular composition of a cell

ιl
u
4
4
20
1
16
10

Biomass equation

Reaction Network (stoichiometric matrix)

Biomass Equation of a cell

Description in stoichiometric terms of all components present in a gram (dry weight) of a cell.

Metabolite	Demand (mmol)			
ATP	41.2570			
NADH	-3.5470			
NADPH	18.2250			
G6P	0.2050			
F6P	0.0709			
R5P	0.8977			
E4P	0.3610			
T3P	0.1290			
3PG	1.4960			
PEP	0.5191			
PYR	2.8328			
AcCoA	3.7478			
OAA	1.7867			
AKG	1.0789			
Neidhardt,et al. Physiology of the Bacterial Cell (1990)				

How does it look (under the hood)?

```
Genome-scale metabolic model naked
<model id="Recon2.2.1">
 <listOfUnitDefinitions>
   <unitDefinition id="mmol per gDW per hr"> ... </listOfUnitDefinitions>
 <listOfCompartments>
   <compartment id="g" name="Golgi apparatus" size="1"/>
   <compartment id="c" name="cytoplasm" size="1"/>
 </list0fCompartments>
  <species id="M 10fthf5glu c" name="10-formyltetrahydrofolate-[Glu](5)" compartment="c" charge="-6">
     <notes>FORMULA: C40H45N11019</notes>
   </species>
  <reaction id="R ENO" name="enolase" reversible="true">
     <notes>
         GENE ASSOCIATION: HGNC:3350 or HGNC:3354 or HGNC:3353
         CONFIDENCE LEVEL: 5
         SUBSYSTEM: Glycolysis/gluconeogenesis
     </notes>
     <listOfReactants>
       <speciesReference species="M 2pg c" stoichiometry="1"/>
     </list0fReactants>
     <speciesReference species="M h2o c" stoichiometry="1"/>
       <speciesReference species="M pep c" stoichiometry="1"/>
     </listOfProducts>
     <kineticLaw>
       <listOfParameters>
         <parameter id="UPPER BOUND" value="1000" units="mmol per gDW per hr"/>
         <parameter id="FLUX VALUE" value="0" units="mmol per gDW per hr"/>
         <parameter id="OBJECTIVE COEFFICIENT" value="0" units="dimensionless"/>
         <parameter id="LOWER BOUND" value="-1000" units="mmol per qDW per hr"/>
       </list0fParameters>
     </kineticLaw>
   </reaction>
```


https://www.vmh.life/

http://sbml.org/

BiGG Models

http://bigg.ucsd.edu/

Genome-Scale Modeling in Systems Biology

Modeling metabolic systems

Variables: [S], v_1 , v_2

Parameters: X, Y, E₁, E₂

Nille Cic IV

- Mass action
- Michaelis-Menten
- **Others**

Kinetic constants: the state of the art

Nº of reactions from GEMs:

- E. coli (iJO1266): 2251
- Budding yeast (iND750): 1149
- Arabidopsis (--): 1363
- Human (Recon1): 7785

Constraint-based approach: intuición

Flux B

Flux C

Flux A

Theory

- Full information
- Solution is a unique point (or limit cycle) in the system's phase space

Genome-scale

- Incomplete information
- Solution (flux) space

For genome-scale reconstructed metabolic network there are still not enough information to create the full kinetic description → too many unknown parameters!

Modeling metabolic systems

Kinetic Modelling (Differential equations)

- Time evolution of system variables (+)
- Sensitivity Analysis (+)
- Unknown Kinetic Parameter (-)
- Unknown Enzymatic Mechanisms (-)

Constraint-Based Modeling (CBM)

- Only need stoichiometry (+)
- Structure is an invariant property (+)
- Computationally tractable using genome-scale models (+)
- No information of metabolite concentrations (-)
 - Only valid under steady-state (-)

Glucokinase (single reaction)

Stoichiometric matrix *N* (metabolic network)

Glucokinase (single reaction)

Stoichiometric matrix N (metabolic network)

The Constraints

Glucokinase (single reaction)

Stoichiometric matrix N (metabolic network)

The Constraints

Mass Balance

$$N \cdot v = 0$$

Glucokinase (sing

The Constraints

Mass Balance

$$N \cdot v = 0$$


```
d[13dpg(c)] / dt = GAPD + PGK = 0
d[2pg(c)] / dt = -ENO - PGM = 0
d[3pg(c)] / dt = 1.496 \times Biomass
d[6pgc(c)] / dt = PGL - GND = 0
d[6pg1(c)] / dt = G6PDH2r - PGL = 0
d[ac(c)] / dt = -ACKr + ACt2r = 0
d[acald(c)] / dt = -ACALD + ACALDt + ALCD2x = 0
d[accoa(c)] / dt = ACALD + 3.7478 \times Biomass
d[acon(C)(c)] / dt = ACONTa - ACONTb = 0
d[actp(c)] / dt = ACKr + PTAr = 0
d[akg(c)] / dt = AKGt2r - 4.1182 \times Biomass
d[amp(c)] / dt = -ADK1 + PPS = 0
d[cit(c)] / dt = -ACONTa + CS = 0
(continues)
```


Stoichiometric matrix N (metabolic network)

The Constraints

Mass Balance

$$N \cdot v = 0$$

Thermodynamics

$$v_i > 0$$

Glucose ATP $\begin{vmatrix} -1 \\ -1 \end{vmatrix}$ G-6-P
ADP $\begin{vmatrix} +1 \\ +1 \end{vmatrix}$

Stoichiometric matrix N (metabolic network)

The Constraints

Mass Balance

$$N \cdot v = 0$$

Thermodynamics

$$v_i > 0$$

Capacities (bounds)

$$v_i < v_{max}$$

Flux Space

Stoichiometric matrix $oldsymbol{N}$ (metabolic network)

The Constraints

Growth Media

Exchange fluxes: variables that represent the exchanges of nutrients/by-products between the organism and its environment (uptake/secretion)

A phylogeny of CBM methods

Predicting plausible physiological states (phenotypes)

¿How to identify a particular flux distribution?

Using optimization principles

- Ajustando con datos experimentales
- Maximize de Biomass production (growth rate)
- Maximize ATP production
- Minimize metabolic cost
- Multiple criteria (Pareto optimality)

Flux space (~genotype)

Flux Balance Analysis (FBA)

Definition: computations strategy to calculate the flux distribution of a metabolic network that maximize the growth rate subject to a given set of constraints (e.g. mass balance, thermodynamics, etc)

Constraints:

$$N \cdot \vec{v} = 0$$

 $v_j \ge 0 \quad \forall j \in R_{irrev}$

 $\alpha_i \le v_j \le \beta_j, \ \forall j \in R$

Mass balanace

Thermodynamics

Enzyme and transport capacities

Feasible space (flux space)

Flux distribution (phenotype)

Optimizations

Feasible space (Genotype)

Feasible space (Genotype)

Applications Gene *knockouts* predictions

Applications Gene *knockouts* predictions Does it really work?

86% (68 of 79 cases) of the *in-silico* predictions were consistent with the experimental data.

86% (68 of 79 cases) of the *in-silico* predictions were consistent with the experimental data.

Metabolic modeling in humans

Metabolic modeling in humans

GEM type Generic Tissue/Cancer-specific Patient-specific **Data source** aggregate of multiple tissue/ patients tissue or cancer types cancer

Context-Specific Metabolic Modeling

Genome-Scale Model of Human Metabolism

Table 1 Statistics of currently published generic human GEMs.

Generic GEMs	Genes	Metabolites ^a	Reactionsa	Features
RECON1 EHMN	1496 2322	1509 2671	3744 2823	Manually reconstructed from bibliomics data Manually reconstructed from bibliomics data
RECON2	1789	2626	7440	Merging EHMN and HepatoNet1 with RECON1
RECON 2.2	1675	5324	7785	Reconstructed by integrating previous versions, with emphasis on mass and charge balance
HMR1.0	1512	3397	4144	Reconstructed based on RECON1, EHMN, HumanCyc and KEGG
HMR2.0	3765	3160	8181	Reconstructed based on HMR1, with additional emphasis on lipid metabolism by integrating iAdipocytes1809, KEGG, Lipidomics Gateway
Recon3D	2248	5835	10600	Reconstructed based on RECON2 and includes mapping to 3D structure of proteins through PDB ids
				Swainston, N., et al (2016). Metabolomics, 12(7), 109.

- Several options available (all derived from RECON1)
- Recon3D is most recent version.

Classes of Model Extraction Methods

Estevez, S. R. and Z. Nikoloski (2014). "Generalized framework for context-specific metabolic model extraction methods."

Algorithm and parameters

CSM depend on key decisions on methodology and data processing

- No strong evidence that one MEM universally gives the most accurate models
- Each method has different underlying assumptions that affect the resulting model
- Gene thresholding seams to be the most determinant decision