Die Kuen'sche Fläche

Veronica Schier, Adrián Löwenberg Casas, Julien Caselmann

30. Januar 2020

Geschichte

Geschichte

- Zugrundeliegende Mathematik
- Parametrisierung
- Eigenschaften
- Quellen

- benannt nach Theodor Kuen (Reallehrer, später OstR)
- nach Gauß' Tod: starkes Interesse an Flächen konstanter negativer Krümmung
- Bour 1857: jede Schraubenfläche ist auf Rotationsfläche abwickelbar

Ursprung und Entdeckung

- 1860 Preisaufgabe der Pariser Akademie: Methoden, um aus gegebener Fläche darauf abwickelbare Flächen zu erzeugen[Scriba]
- Entdeckung: pseudosphärische Flächen korrelieren direkt mit den Lösungen der Sinus-Gordon-Gleichung
- normalerweise keine expliziten Lösungen für solche PDEs
 ⇒Bäcklund: Soliton-Lösungen [Bruter]

- Kuen experimentierte mit Bianchi-Transformationen und der Pseudosphäre
- 1884: Kuen entdeckt die außergewöhnlich geformte Fläche

Pseudosphäre

Geschichte

- Patches und Tshebyshev-Patches
- Bianchi-Transformationen

Pseudosphäre

- untersucht von Ferdinand Minding und Eugene Beltrami in 1868
- Differentialgeometrie: Fläche mit konstanter, negativer Gaußkrümmung
- Pseudosphäre mit Radius R: Fläche mit konstanter, negativer Gaußkrümmung $-\frac{1}{R^2}$ [Mathcurve]

Beispiele einer Pseudosphäre

(a) Hyperboloid

(b) Traktrikoid

(c) theoretische Oberflächen

Definition: Patch

Definition nach [Gray]

Ein **Patch bzw. eine lokale Fläche** ist eine differenzierbare Funktion $x: U \to \mathbb{R}^n$, mit $U \subset \mathbb{R}^2$ offen.

Definition: Tshebyshev-Patch

Definition nach [Gray]

Ein **Tshebyshev-Patch** mit Radius a ist ein Patch $y: \mathcal{U} \to \mathbb{R}^n$, dessen Erste Fundamentalform $ds^2 = Edp^2 + 2Fdpdq + Gdq^2$ folgende Eigenschaft besitzt: $E = G = a^2$

Tshebyshev-Patch zweiter Art mit Winkelfunktion θ

Lemma nach [Gray]

CSU impliziert

$$F^{2} = \langle y_{p}, y_{q} \rangle^{2} \leq \|y_{p}\|^{2} \|y_{q}\|^{2} = EQ = a^{4}$$
, also: $F = a^{2} \cos \omega$.

Die Metrik eines Tshebyshev-Patches mit Radius a kann also dargestellt werden als:

$$ds^2 = a^2(dp^2 + 2\cos\omega dpdq + dq^2)$$

Wir nennen $\theta = \frac{\omega}{2}$ die Winkelfunktion des Tshebyshev-Patches.

Tshebyshev Parametrisierung einer Pseudosphäre

Definition nach [Gray]

Sei a>0. Die **Tshebyshev Parametrisierung** einer Pseudosphäre mit Radius a ist die Abbildung von $\mathbb{R}^2 \to \mathbb{R}^3$, gegeben durch:

$$(u, v) \mapsto a\left(\frac{\cos(v)}{\cosh(u)}, \frac{\sin(u)}{\cosh(u)}, u - \tanh(u)\right).$$

Tshebyshev Parametrisierung einer Pseudosphäre

Abbildung: Pseudosphäre nach Tshebyshev Parametrisierung

Bianchi - Transformationen

Definition nach [Gray]

Sei \mathcal{M} eine Fläche im \mathbb{R}^3 mit konstanter Gaußkrümmung $-\frac{1}{a^2}$, a>0.

Eine Fläche $\mathcal N$ mit Normalenfeld $U_{\mathcal N}$ ist eine **Bianchi-Transformation** von $\mathcal M$, wenn es eine Funktion $\phi:\mathcal M\to\mathcal N$ gibt, sodass $\forall p\in\mathcal M$:

- $\|\phi(p) p\| = a$
- ullet $\phi(p)-p$ ist parallel zu einem $v\in T_p\mathcal{M}$
- $U_{\mathcal{N}}(\phi(p))$ ist parallel zu einem $v \in T_p \mathcal{M}$ und senkrecht auf $\phi(p) p$

Bianchi - Transformationen

Abbildung: Erzeugung einer Fläche durch Translation der Punkte eines runden Kegels

Funfact: Erzeugung von Pseudosphären mit Bianchi-Transformationen

- wenden Bianchi-Transformation auf den Patch $x(u, v) = (0, 0, \epsilon au)$ an, mit $0 < a \equiv const, \epsilon = \pm 1$
- Ergebnis:

$$\hat{x} = a \Big(\delta cos(v) sech(u), \delta sin(v) sech(u), \epsilon \big(u - tanh(u) \big) \Big)$$

⇒ stimmt überein mit dem Patch:

$$(u, v) \mapsto \left(\frac{a\delta cos(v)}{cosh(u)}, \frac{a\delta sin(v)}{cosh(u)}, a\epsilon(u - tanh(u))\right)$$

Kuen'sche Fläche als Bianchi-Transformation der Pseudosphäre

Lemma nach [Gray]

Sei \hat{x} Bianchi-Transformation der Tshebyshev-Parametrisierung der Pseudosphäre und setze $\theta := 2 \arctan(e^u)$. Außerdem sei $\hat{\theta}$ Winkelfunktion von \hat{x} . Dann:

$$\hat{\theta}(u, v) = 2 \arctan\left(-\frac{v}{\cosh(u)}\right).$$

Kuen'sche Fläche als Bianchi-Transformation der Pseudosphäre

Lemma nach [Gray]

Wenn $\hat{\theta}$ so ist wie im Lemma gerade, dann:

$$cos(\hat{\theta}) = -\frac{v^2 - cosh(u)}{v^2 + cosh^2(u)},$$

$$sin(\hat{\theta}) = \frac{-2vcosh(u)}{v^2 + cosh^2(u)}$$

Kuen'sche Fläche als Bianchi-Transformation der Pseudosphäre

Satz nach [Gray]

Die Bianchi-Transformation der Tshebyshev-Parametrisierung der Pseudosphäre ist gegeben durch Gleichsetzen von \hat{x} mit:

$$\left(\frac{2\cosh(u)\Big(\cos(v)+v\sin(v)\Big)}{v^2+\cosh^2(u)},\frac{2\cosh(u)\Big(\sin(v)-v\cos(v)\Big)}{v^2+\cosh^2(u)},u-\frac{\sinh(2u)}{v^2+\cosh^2(u)}\right)$$

Parametrisierung der Kuen'schen Fläche

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{2\cosh(u)*(\cos(v)+v*\sin(v))}{v^2+\cosh(u)^2} \\ \frac{2\cosh(u)*(\sin(v)-v*\cos(v))}{v^2+\cosh(u)^2} \\ u - \frac{\sinh(2u)}{v^2+\cosh(u)^2} \end{pmatrix} u, v \in [-2\pi, 2\pi]$$

Eigenschaften der Kuenschen Fläche

- Fläche konstanter Gaußkrümmung, aber keine Drehfläche [Wünsch]
- 2-soliton Lösung der Sinus-Gordon-Gleichung [Bruter]

Sinus-Gordon-Gleichung

Gleichung

$$\phi_{tt} - \phi_{xx} + \sin(\phi) = 0$$

Funfact:

Im 20. Jahrhundert als Modell einer relativistischen Quantenfeldtheorie erneut aufgetaucht[Bruter]

Eigenschaften der Kuen'schen Fläche

- Fläche konstanter Gaußkrümmung, aber keine Drehfläche [Wünsch]
- 2-soliton Lösung der Sinus-Gordon-Gleichung [Bruter]
- beliebtes Modeaccessoire

Kuen'sche Fläche als Statussymbol

Eigen schaften

Eigenschaften

Geschichte

Mathcurve

The pseudosphere

https://www.mathcurve.com/surfaces.gb/pseudosphere/pseudosphere.shtml

5. Dezember 2019

Modern Differential Geometry of Curves and Surfaces with Mathematica

Alfred Gray

Geschichte

5000 Jahre Geometrie: Geschichte, Kulturen, Menschen

Christoph Scriba, Peter Schreiber

Springer Verlag

2009

Differentialgeometrie: Kurven und Flächen

Volkmar Wünsch

Springer Verlag

Mathematics and Modern Art

Claude Bruter

Springer Verlag 2012