Introduction to General Relativity

AMATH 475

Prof. Eduardo Martin-martinez

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of AMATH 475 during Winter 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface				
0	Pre-Math			
	0.1	Index notation	3	
	0.2	Vectors and one-forms	4	
	0.3	Tensor	5	
	0.4	Levi-Civita symbol	6	

0

Pre-Math

0.1 Index notation

$$A = \begin{pmatrix} A^{1}_{1} & A^{1}_{2} \\ A^{2}_{1} & A^{2}_{2} \end{pmatrix} \qquad B = \begin{pmatrix} B^{1}_{1} & B^{1}_{2} \\ B^{2}_{1} & B^{2}_{2} \end{pmatrix}$$

$$(A \cdot B)^a{}_b = A^a{}_c B^c{}_b = B^c{}_b A^a{}_c$$
 sum over all possible c

Identify followings:

$$\begin{split} B_{\kappa}{}^{\nu}A_{\mu}{}^{\kappa} &= A_{\mu}{}^{\kappa}B_{\kappa}{}^{\nu} = C_{\mu}{}^{\nu} = (A \cdot B)_{\mu}{}^{\nu} \\ A^{\kappa}{}_{\mu}B_{\kappa}{}^{\nu} &= D_{\mu}{}^{\nu} = (A^{T})_{\mu}{}^{\kappa}B_{\kappa}{}^{\nu} = (A^{T} \cdot B)_{\mu}{}^{\kappa} \\ A_{\kappa}{}^{\nu}B_{\mu}{}^{\kappa} &= E_{\mu}{}^{\nu} = (B \cdot A)_{\mu}{}^{\nu} \\ A^{\kappa}{}_{\mu}B^{\nu}{}_{\kappa} &= (A^{T})_{\mu}{}^{\kappa}(B^{T})_{\kappa}{}^{\nu} = \left((B \cdot A)^{T}\right)_{\mu}{}^{\nu} \end{split}$$

$$\mathbf{v} = v^1 \mathbf{e}_1 + v^2 \mathbf{e}_2$$
 { $\mathbf{e}_1, \mathbf{e}_2$ } Basis 1.

$$\mathbf{v} = v^a \mathbf{e}_a = v'^a \mathbf{e}_a'$$
 $\{\mathbf{e}_1', \mathbf{e}_2'\}$ Basis 2.

Change of basis matrix Λ

$$\mathbf{e}_a' = \Lambda_a{}^b \mathbf{e}_b$$

$$v'^a = \tilde{\Lambda}^a{}_b v^b$$

$$v^{a}\mathbf{e}_{a} = v^{\prime a}\mathbf{e}_{a}^{\prime}$$

$$= \tilde{\Lambda}^{a}{}_{b}v^{b}\Lambda_{a}{}^{c}\mathbf{e}_{c}$$

$$= \tilde{\Lambda}^{a}{}_{b}\Lambda_{a}{}^{c}v^{b}\mathbf{e}_{c}$$

$$= \underbrace{\left(\tilde{\Lambda}^{T}\right)_{b}^{a}\Lambda_{a}{}^{c}}_{\delta_{b}^{c}}v^{b}\mathbf{e}_{c}$$

$$= v^{b}\mathbf{e}_{b}$$

$$\Longrightarrow \left(\tilde{\Lambda}^{T}\right)_{b}^{a}\Lambda_{a}{}^{c} = \delta_{b}^{c}$$

$$\tilde{\Lambda}^{T} \cdot \Lambda = \mathbb{1}$$

 $\tilde{\Lambda}^T$ is the inverse transpose of Λ

covariant and contravariant object

A covariant object is an object that under change of basis transforms like the elements of a basis. Λ . (sub-indices)

A contravariant object transforms like components of vectors. $(\tilde{\Lambda} = (\Lambda^T)^{-1})$. (super-indices)

0.2 Vectors and one-forms

one-form

Let V be a vector space. A one-form is a linear map $\omega: V \to \mathbb{R}$.

or we write: $(\boldsymbol{\omega}, \cdot) : V \to \mathbb{R}$ and $(\boldsymbol{\omega}, \mathbf{v}) \in \mathbb{R}$.

dual vector space

The set of all one-forms on V (call V^*) is a vector space as well called the dual vector space to V.

dual basis

Let $\{\Upsilon_1, \Upsilon_2, \ldots\}$ (or $\{\Upsilon_i\}$) be a basis of V so that any $\mathbf{v} \in V$ can be written as $\mathbf{v} = v^i \Upsilon_i$.

We define the dual basis (of V^*) to $\{\Upsilon_i\}$ as $\{\omega^i\}$ such that $\omega^i(\Upsilon_j) = \delta_i^i$.

For a one form ω we denote its "components of the basis Υ " as $(\omega, \Upsilon_m) = \omega_m$

Proposition 0.1

The dual basis of V^* is actually a basis of V^* .

The action of $\boldsymbol{\omega} \in V^*$ on a vector $\mathbf{v} = v^{\mu} \boldsymbol{\Upsilon} \in V$ is

$$(\boldsymbol{\omega}, \mathbf{v}) = (\boldsymbol{\omega}, v^{\mu} \boldsymbol{\Upsilon}_{\mu}) = v^{\mu} \omega_{\mu}$$

Let's prove $\{\Upsilon^a\}$ is linear independent.

Proof:

A linear comb. $c_a \Upsilon^a$ acts on a vector $\mathbf{v} = v^a \Upsilon_a$

$$(c_a \Upsilon^a, \mathbf{v}) = c_a (\Upsilon^a, \mathbf{v})$$

$$= c_a (\Upsilon^a, v^b \Upsilon_b)$$

$$= c_a v^b \underbrace{(\Upsilon^a, \Upsilon_b)}_{\delta^a_b}$$

$$= c_a v^b \delta^a_b = c_a v^a$$

For LI,

$$c_a \Upsilon^a = 0 \iff c_a = 0 \quad \forall a$$

 $c_a v^a = 0 \quad \forall \mathbf{v} \iff c_a = 0$

vectors: take one-forms $\to \mathbb{R}$ one-forms: take vectors $\to \mathbb{R}$

0.3 Tensor

type (m, n) tensor

A type (m, n) tensor is a multilinear map that

$$\mathbf{T}: V^n \otimes (V^*)^m \to \mathbb{R}$$

Components of T:

$$\mathbf{T}(\Upsilon_{a1},\ldots,\Upsilon_{an},\Upsilon^{b1},\ldots,\Upsilon^{bm})=T_{a_1\ldots a_n}{}^{b_1\ldots b_m}$$

- 1. Tensor product takes $\binom{m}{n}$ and $\binom{m'}{n'} \to \binom{m+m'}{n+n'}$ tensor
- 2. Contraction takes $\binom{m}{n} \to \binom{m-1}{n-1}$

1.
$$T_a^{\ b}, S_c^{\ d}$$

$$(\mathbf{T} \otimes \mathbf{S})_a{}^b{}_c{}^d = T_a{}^d S_c{}^d = P_a{}^b{}_c{}^d$$

2.
$$T_a{}^{bc} \rightarrow c^b T_a{}^{ba}$$

1.
$$T_a{}^b, S_c{}^d$$
.
$$(\mathbf{T} \otimes \mathbf{S})_a{}^b{}_c{}^d = T_a{}^d S_c{}^d = P_a{}^b{}_c{}^d$$
2. $T_a{}^{bc} \to c^b T_a{}^{ba}$
$$v^a, w_b \begin{cases} v^a \omega_b \\ v^a \omega_a \end{cases}$$
If you have a favorite type (2,0) symmetric tensor \mathbf{g}

If you have a favorite type (2,0) symmetric tensor **g**

$$v_{\mu} = g_{\mu\nu}v^{\nu}$$

 $g^{\mu\nu} := \text{components of the inverse of } \mathbf{g}_{\mu\nu}$

$$v^{\nu} = g^{\mu\nu}$$

then

$$g^{\mu\nu}g_{\nu\sigma} = \delta^{\mu}_{\sigma}$$

$$g_{\mu\nu}v^{\mu}w^{\nu} = v_{\mu}w^{\nu} = \mathbf{v}\mathbf{w}$$
$$||\mathbf{v}||^{2} = g_{\nu\mu}v^{\mu}v^{\nu}$$

Then we can define the angle

$$\frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{w}|| ||\mathbf{v}||} := \cos \theta$$

$$T_{\mu}{}^{\nu} = g^{\nu\sigma} T_{\mu\sigma}$$

$$T^{\mu\nu} = g^{\nu\sigma} g^{\mu\rho} T_{\sigma\rho}$$

$$g_{\mu}{}^{\nu} = g^{\nu\sigma} g_{\sigma\mu} = \sigma_{\mu}^{\nu}$$

Levi-Civita symbol 0.4

Levi-Civita symbol $\epsilon^{abc...}$, $\epsilon_{abc...}$

- is antisymmetric
- $\epsilon^{1234...} = 1$, $\epsilon_{1234} = 1$

$$\epsilon^{123} = 1$$
, $\epsilon^{213} = -1$, $\epsilon^{312} = 1$, $\epsilon^{113} = 0$

$$\epsilon^{123456} = 1, \quad \epsilon^{612453} = -1$$

$$\det(M) := \epsilon_{ijk\dots} M^i{}_1 M^j{}_2 M_{i3} \dots$$

prove
$$\epsilon^{i_1 i_2 \dots i_n} \epsilon_{j_1 j_2 \dots j_n} = n! i_j = 1, \dots, n$$

$$\epsilon^{ijk}\epsilon_{ilm} = \delta^j_l\delta^k_m - \delta^j_m\delta^k_l$$

$$\epsilon^{ijk}\epsilon_{ilm} = \delta^j_l \delta^k_m - \delta^j_m \delta^k_l$$
$$\epsilon^{ijmn}\epsilon_{klmn} = 2(\delta^i_k \delta^j_l - \delta^j_k \delta^i_l)$$

Prove
$$\vec{A}\times(\vec{B}\times\vec{C})=(\vec{A}\cdot\vec{C})\vec{B}-(\vec{A}\cdot\vec{B})\vec{C}$$

Proof:

Let
$$\vec{F} = \vec{A} \times (\vec{B} \times \vec{C}) \ \vec{D} = \vec{B} \times \vec{C}$$

Then

$$D^{k} \epsilon^{k}{}_{ij} B^{i} C_{j}$$

$$F^{l} = \epsilon^{l}{}_{mk} A^{m} D^{k} \implies$$

Index

С	0
covariant and contravariant object . 4	one-form
D	Т
dual basis	type (m, n) tensor