অধ্যায়-১০: আদর্শ গ্যাস ও গ্যাসের গতিতত্ত্ব

nvBGWÈvGRGbi AYyi Mo Mwতশক্তি 0°C তাপমাত্রায় 5.64 × 10^{−21}J এবং মোলার গ্যাস ধ্র[©]বক R = 8.32J $mole^{-1}K^{-1}$

[ভিকার নিসা নূন স্কুল এন্ড কলেজ, ঢাকা]

- ক. পরম শূন্য তাপমাত্রা বলতে কী বুঝায়?
- খ. কোন স্থানে তাপমাত্রা 30°C এবং শিশিরাঙ্ক 21°C বলতে কী বুঝায়?
- গ. উদ্দীপক হতে avogadro সংখ্যা নির্ণয় কর।
- ঘ. চাপকে ধ্র^eবক রেখে কোন তাপমাত্রায় গ্যাসের মূল গড় বর্গবেগের (rms) মান 0°C তাপমাত্রার অর্ধেক হবে—নির্ণয়

১ নং প্রশ্নের উত্তর

ক চার্লসের সূত্রানুসারে যে তাপমাত্রায় তাত্তিকভাবে যেকোনো গ্যাসের আয়তন শূন্য হয় তাকে পরম শূন্য তাপমাত্রা বলে।

খ কোনো স্থানের তাপমাত্রা 30°C বলতে বুঝায় ঐ স্থানের বায়ুর তাপমাত্রা 30°C। তদুপরি, উক্ত স্থানের শিশিরাংক 21°C বলতে বুঝায়, ঐ স্থানের বায়ুর তাপমাত্রা হোস পেয়ে 21°C-এ উপনীত হলে বায়ুতে উপস্থিত জলীয় বাষ্প দারা ঐ স্থানের বায়ু সম্পুক্ত হবে, ফলে আপেক্ষিক আর্দ্রতা 100% হবে এবং বায়ুস্থ জলীয় বাষ্প্র শিশির বা বৃষ্টি আকারে ঝরে পড়তে শুর^{ভ্র} করবে।

গ দেওয়া আছে,

গ্যাসের তাপমাত্রা, T = 0°C = 273K

গ্যাস অনুর গড় গতিশক্তি, $ar{ ext{E}} = 5.64 imes 10^{-21} ext{J}$ মোলার গ্যাস ধ্র^eবক, $R = 8.32 \text{ Jmole}^{-1}\text{K}^{-1}$ বের করতে হবে, অ্যাভোগেড্রো সংখ্যা, NA = ?

বোল্টজ ম্যানের ধ্র^{ee}বক ${\bf k}$ হলে, আমরা জানি, ${\bf \bar E}={3\over 2}\,{\bf k}T$

$$\therefore k = \frac{2}{3} \frac{\bar{E}}{T} = 0.6667 \times \frac{5.64 \times 10^{-21}}{273 \text{ K}} = 1.37736 \times 10^{-23} \text{J}\text{K}^{-1}$$
 আবার, $k = \frac{R}{L}$

আবার,
$$k = \frac{R}{N_A}$$

আবার,
$$k=\frac{R}{N_A}$$

$$\therefore \ N_A=\frac{R}{k}=\frac{8.314 J \ mole^{-1} \ K^{-1}}{1.377 \ 36 \times 10^{-23} J K^{-1}}=6.036 \times 10^{23} \ (Ans.)$$

ঘ এখানে, আদি তাপমাত্রা, T = 0°C = 273K আদি তাপমাত্রায় মূল গড় বর্গ বেগ C_{rms} হলে,

চূড়াম্ড তাপমাত্রায় $\mathrm{T'}\left(\mathrm{K}\right)$ মূল গড় বর্গবেগ, $\mathrm{C_{rms}}'=rac{\mathrm{C_{rms}}}{2}$

বের করতে হবে, চুড়াম্ড় তাপমাত্রা, T' = ?

আমরা জানি, $C_{rms} \propto \sqrt{T}$ [নির্দিষ্ট গ্যামের জন্য]

সুতরাং, চাপকে ধ্র^ভবক রেখে 68.25K তাপমাত্রায় গ্যাসের মূল বর্গবেগের মান 0°C তাপমাত্রার অর্ধেক হবে।

প্রশু ►২ একটি বেলুনের প্রমাণ চাপে 1.25kgm⁻³ ঘনত্বের নাইট্রোজেন (N2) গ্যাস আছে। বেলুনটিকে একটি হুদের তলদেশে নিলে এর আয়তন অর্ধেক হয়। [মতিঝিল মডেল স্কুল এন্ড কলেজ, ঢাকা]

- ক. আপেক্ষিক আর্দ্রতা কী?
- খ. প্রবাহীর বিভিন্ন স্প্রের ঘর্ষনই সান্দ্রতা-ব্যাখ্যা কর।
- গ. পানির উপরিতলে থাকা অবস্থায় নাইট্রোজেন গ্যাসের বেগের গড় বর্গমূল মান বের কর।
- ঘ. পানি তাপমাত্রা ধ্রব বিবেচনা করে এবং হুদের উপরিতলের চাপ প্রমাণ চাপের সমান ধরে হুদের গভীরতা নির্ণয় করা যাবে কী? গাণিতিকভাবে যুক্তি দাও ।

২ নং প্রশ্নের উত্তর

ক যে কোনো তাপমাত্রায় কোনো আবদ্ধ স্থানের নির্দিষ্ট আয়তনের বায়ুতে উপস্থিত জলীয় বাম্পের ভর এবং ঐ একই তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্পক্ত করতে প্রয়োজনীয় জলীয় বাষ্পের ভরের অনুপাতকে ঐ স্থানের আপেক্ষিক আর্দ্রতা বলে।

🕙 প্রবাহীর সান্দ্রতা দুটি কঠিন পদার্থের মধ্যবর্তী ঘর্ষণের সদৃশ। প্রবাহীর নির্দিষ্ট কোনো আকার আকৃতি নেই, কারণ তাদের আন্দ্র আনবিক বল খুবই নগণ্য। কোনো অনুভূমিক তলের উপর দিয়ে প্রবাহিত কোনো প্রবাহীকে কতগুলো স্পরে বিভক্ত হিসেবে কল্পনা করলে তল সংলগ্ন স্ডুরটি তলের সাপেক্ষে স্থির থাকে বাকি স্ডুরগুলো থাকে গতিশীল। তল থেকে যে স্ডুরের দূরত্ব যত বেশি সে স্ডুরের আপেক্ষিক বেগ তত বেশি।

প্রবাহের সময় প্রবাহীর একটি স্ডুর এবং সন্নিহিত স্ডুরের সাথে ঘর্ষনের সৃষ্টি করে এবং ঐ স্ডুরের আপেক্ষিক গতিকে বাধা দেয়। তাতে বিভিন্ন স্ড্ র বিভিন্ন বেগে প্রবাহিত হয়। তাই প্রবাহীর এই বিভিন্ন স্পরের ঘর্ষনই

গ দেওয়া আছে, হ্রদের পানির উপরিতলে থাকা অবস্থায় নাইট্রোজেন গ্যাসের ঘনত, $\rho = 1.25 \text{kgm}^{-3}$ এবং চাপ, P =প্রমাণ চাপ $= 101 \ 325 \text{Nm}^{-2}$ বের করতে হবে, নাইট্রোজেন গ্যাসের বেগের বর্গের বর্গমূল মান, C_{ms}=?

আমরা জানি,
$$C_{rms} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3 \times 101\ 325\ Nm^{-2}}{1.25km^{-3}}}$$

= 493.13 ms⁻¹ (Ans.)

ঘ হেদের পৃষ্ঠ দেশে বেলুনের আয়তন V_1 হলে তলদেশে আয়তন, $V_2 = \frac{V_1}{2}$

হুদের পৃষ্ঠ দেশে চাপ, P, = 101325 Nm⁻²

ধরি, হ্রদের গভীরতা h (m)

জানা আছে, মিঠা পানির ঘনত্ব, $ho,=1000\,{
m kgm^{-3}}$

এবং অভিকর্ষজ তুরণ, $g = 9.8 \text{ ms}^{-2}$

 \therefore হদের তলদেশে বেলুনের ওপর চাপ, $P_2=P_1+h\rho g$

হদের সর্বত্র পানির তাপমাত্রা ধ্র^{ee}ব বিবেচনা করলে, বয়েলের সূত্র প্রবাগে, $P_1V_1=P_2V_2$

বা,
$$P_1V_1 = (P_1 + h\rho g)\frac{V_1}{2}$$

বা,
$$P_1 + h\rho g = 2P_1$$
 বা, $h\rho g = 2P_1 - P_1 = P_1$

$$\therefore h = \frac{P_1}{2g} = \frac{101325 \text{ kgm}^{-3}}{1000 \text{ kgm}^{-3} \times 9.8 \text{ ms}^{-2}} = 10.34 \text{m}$$

 $∴ h = \frac{P_1}{\rho g} = \frac{101325 \text{ kgm}^{-3}}{1000 \text{ kgm}^{-3} \times 9.8 \text{ ms}^{-2}} = 10.34 \text{m}$ সুতরাং, পানির তাপমাত্রা ধ্রুল্ব বিবেচনা করে এবং হ্রেদের উপরি তলের চাপ প্রমাণ চাপের সমান ধরে হ্রদের গভীরতা নির্ণয় করা যাবে।

প্রশ্ন ▶৩ 22cm ব্যাসার্ধের একটি ফুটবল 20°C তাপমাত্রা ও 1.60 × $10^5~{
m Pa}$ চাপে বায়ু দ্বারা পূর্ণ আছে। সূর্য্যে তাপে এর তাপমাত্রা $40^{\circ}{
m C}$ হলো। ফুটবলের চামড়ার অসুহপীড়ন $2.5 \times 10^{10} Nm^{-2}$ ।

[শহীদ বীর উত্তম লেঃ আনোয়ার গার্লস কলেজ, ঢাকা]

ক. মূল গড় বর্গবেগ কাকে বলে?

- খ. সম্পুক্ত বাষ্পচাপের উপর তাপমাত্রার প্রভাব ব্যাখ্যা কর।
- গ. ফুটবলের আয়তন ঠিক থাকলে অভ্যম্ভুরে বায়ুর চাপ কত হবে?
- ঘ. উদ্দীপকের উত্তপ্ত ফুটবল দিয়ে খেলা পরিচালনা করা নিরাপদ কিনা— যাচাই কর।

৩ নং প্রশ্নের উত্তর

ক কোনো গ্যাসের সকল অনুর বেগের বর্গের গড় মানের বর্গমূলকে মূল গড় বর্গবেগ বলে।

বা কোনো নির্দিষ্ট তাপমাত্রায় কোনো আবদ্ধ স্থানে যখন সর্বাধিক পরিমাণ বাষ্প ধারণ করে তখন ঐ বাষ্পকে সম্পৃক্ত বাষ্প বলে। সম্পৃক্ত বাষ্প বয়েল ও চার্লসের সূত্র মনে চলে না। রেনোর তালিকায় দেখতে পাই, বিভিন্ন তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ বিভিন্ন রকম। অধিকতর তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ অধিক মানের। তবে কোনো আবদ্ধ স্থানের সম্পৃক্ত বাষ্পচাপ ত্রাপ প্রদান করে অসম্পুক্ত বাষ্পে পরিণত করা যায়।

গ দেওয়া আছে,

ফুটবলের অভ্যম্পুরের বায়ুর আদি তাপমাত্রা, $T_1=20^{\circ}C=293K$ এবং চূড়াম্ড তাপমাত্রা, $T_2=40^{\circ}C=(40+273)~K=313K$ আদি চাপ, $P_1=1.6\times 10^5~P_2$

বের করতে হবে, চূড়াম্ড চাপ, $P_2 = ?$

এক্ষেত্রে গ্যাসের আয়তন ও ভর নির্দিষ্ট থাকায়, চাপের সূত্রানুসারে,

$$\frac{P_2}{T_2} = \frac{P_1}{T_1}$$

$$P_2 = P_1 \frac{T_2}{T_1} = 1.6 \times 10^5 \, \text{Pa} \times \frac{313 \, \text{K}}{293 \, \text{K}} = 1.71 \times 10^5 \, \text{Pa} \, (\text{Ans.})$$

ঘ 'গ' অংশের গাণিতিক বিশে-ষণ হতে পাই, 40°C তাপমাত্রায় ফুটবলের অভ্যস্ত্রে গ্যাসের চাপ = 1.71 × 10⁵Pa

জানা আছে, ফুটবলের বাইরের পৃষ্ঠের ওপর বায়ুমন্ডলীয় চাপ = $10^5 \mathrm{Pa}$

 \therefore ফুটবলের চামড়ার ওপর লব্ধি চাপ = $1.7 \times 10^5 Pa - 10^5 Pa = 7 \times 10^4 Pa$ অথচ, উদ্দীপক মতে ফুটবলের চামড়ার অসহপীড়ন = 2.5×10^{10} Nm $^{-2}$, যা $7 \times 10^4 Pa$ হতে অনেক বেশি।

সুতরাং, উদ্দীপকের উত্তপ্ত ফুটবল দিয়ে খেলা পরিচালনা করা নিরাপদ, কারণ ফুটবলটি এতে ফাটবে না।

Stat Q

47 P8					
স্থান	শুষ্ক বাল্প থার্মোমিটার পাঠ	সিক্ত বাল্ব	বায়ুর তাপমাত্রায় গে-ইসারের উৎপাদক		
ঢাকা	28.6°C	20°C	1.664		
রাজশাহী	32.5°C	22°C	1.625		

ঢাকা ও রাজশাহীতে অবস্থিত দুটি আর্দ্রতা পরিমাপক যন্ত্রের পাঠ উপরের ছকে দেয়া হলো। 14°C, 16°C, 30°C, 32°C ও 34°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ যথাক্রমে 11.99, 13.63, 28.35, 31.83, 35.66 এবং 39.90mmHg

[•]ছ। [সামসুল হক খান স্কুল এন্ড কলেজ, ঢাকা]

- ক. আদর্শ গ্যাস কি?
- খ. গ্যাসের চাপের সাথে ঘনত্বের পরিবর্তন ব্যাখ্যা কর।
- গ. ঐ দিনে ঢাকার শিশিরাংক কত ছিল?
- ঘ. উদ্দীপকের তথ্যমতে কোথায় বেশি অস্বস্পিত্রোধ হবে? ব্যাখ্যা কর।

৪ নং প্রশ্নের উত্তর

ক যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েল, চার্লস, অ্যাভোগেড্রো ও রেনোর সূত্রসমূহ মেনে চলে তাদেরকে আদর্শ গ্যাস বলে।

খ আমরা জানি, PV = $\frac{m}{M}$ RT এখানে, স্থির তাপমাত্রায় M, R, T সকলে প্র^{ক্}বক

$$\therefore \frac{PV}{m} =$$
ধ্ৰ বৈক বা, $P =$ ধ্ৰ বৈক $\times \frac{m}{V}$

কিন্তু m/V= ভর/আয়তন = ঘনতু (
ho)। সুতরাং P=প্র^{ক্র}বক imes ho

সুতরাং স্থির তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের ঘনত্ব এর চাপের সমানুপাতিক।

গ দেওয়া আছে,

তাকায়, শুষ্ক বাল্বের তাপমাত্রা, $\theta_1 = 28.6$ °C এবং সিক্ত বাল্বের তাপমাত্রা, $\theta_2 = 20$ °C বায়ুর তাপমাত্রায় গে-ইসারের উৎপাদক, G = 1.664 বের করতে হবে, শিশিরাংক, $\theta = ?$

আমরা জানি, $\theta = \theta_1 - G(\theta_1 - \theta_2) = 28.6^{\circ}C - 1.664(28.6^{\circ}C - 20^{\circ}C)$ = 14.29°C (Ans.)

ঘ ঢাকায় শিশিরাংকে (14.29°C) সম্পৃক্ত বাষ্পচাপ,

$$f = \left[11.99 + \frac{(13.63 - 11.99) \times 0.29}{2}\right] \text{mm HgP} = 12.28 \text{ mm Hgp}$$
 এবং বায়ুর তাপমাত্রায় (28.6°C) সম্পুক্ত বাষ্প্র চাপ,

 $F = \left[28.35 + \frac{31.83 - 28.35}{2} \times 0.6\right] \text{mm HgP}$

= 29.394 mm HgP

 \therefore ঢাকায় বায়ুতে আপৈক্ষিক আর্দ্রতা, $R=rac{f}{F} imes 100\%$ $=rac{12.28 \mathrm{mm \ HgP}}{29.394 \ \mathrm{mm \ HgP}} imes 100\%$ $=41.\ 78\%$

রাজশাহীতে, শুষ্ক বাল্বের তাপমাত্রা, $\theta_1=32.5^{\circ}C$ এবং সিক্ত বাল্বের তাপমাত্রা, $\theta_2=22^{\circ}C$

বায়ুর তাপমাত্রায় গে-ইসারের উৎপাদক, G=1.625

:. রাজশাহীতে শিশিরাংক, $\theta = \theta_1 - G(\theta_1 - \theta_2)$ = 32.5°C – 1.625 (32.5°C – 22°C) = 15. 44°C

∴ রাজশাহীতে শিশিরাংকে সম্প্রক্ত বাষ্পচাপ,

$$f = \left[11.99 + \frac{(13.63 - 11.99) \times 1.44}{2} \right] \text{mm HgP}$$
= 13.17 mm HgP

এবং বায়ুর তাপমাত্রায় (32.5°C) সম্পুক্ত বাষ্পচাপ,

$$F = \left[35.66 + \frac{(39.90 - 35.66) \times 0.5}{2}\right] mm \text{ HgP} = 36.72 mm \text{ HgP}$$

 \therefore রাজশাহীতে আপেক্ষিক আর্দ্রতা, R = $\frac{f}{F} \times 100\%$ = $\frac{13.17~\text{mm HgP}}{36.72~\text{mm HgP}} \times 100\%$ = 35.87%

লক্ষ্য করি, 41.78% > 35.87%

অর্থাৎ, ঢাকায় বায়ুতে আপেক্ষিক আর্দ্রতা > রাজশাহীর বায়ুতে আপেক্ষিক আর্দ্রতা সূতরাং, উদ্দীপকের তথ্য মতে, ঢাকায় বেশি অস্বস্পিত বোধ হবে, কারণ রাজশাহীর চেয়ে ঢাকায় আপেক্ষিক আর্দ্রতা বেশি হওয়ায় ঢাকার অবস্থানরত কোনো ব্যক্তির দেহে উৎপন্ন ঘাম বায়ু দ্বারা সহজে শোষিত হবে না।

প্রশ্ন ▶৫ কোনো একদিন শুদ্ধ ও সিক্ত বাল্প আর্দ্রতা মাপক হাইগ্রোমিটারে শুদ্ধ বাল্পের তাপমাত্রা 30°C এবং সিক্ত বাল্পের তাপমাত্রা 24°C পাওয়া গেল। 22°C, 24°C এবং 30°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পাচাপ যথাক্রমে 19.83, 22.38 এবং 31.83 mm Hg চাপ এবং 30°C তাপমাত্রায় গে-ইসারের উৎপাদকের মান 1.65।

ক. বয়েলের সূত্রটি বিবৃত কর।

খ. কখন ঘরের তাপমাত্রা ও শিশিরাঙ্ক একই হয়?

গ. শিশিরাঙ্ক নির্ণয় কর।

ঘ. ঐদিন বৃষ্টিপাতের সম্ভাবনা কতটুকু? গাণিতিকভাবে বিশে-ষণ কর। 8

৫ নং প্রশ্নের উত্তর

ক বয়েলের সূত্রটি হলো— স্থির তাপমাত্রায় কোনো গ্যাসের আয়তন এর চাপের ব্যস্পুনুপাতিক।

খ আপেক্ষিক আর্দ্রতা যখন 100% হয় তখন তাপমাত্রা ও শিশিরাঙ্ক একই হয়। আপেক্ষিক আর্দ্রতা 100% হওয়া মানে, বায়ু সর্বোচ্চ যে পরিমাণ জলীয় বাষ্প ধারণ করতে পারে তার সমপরিমাণ জলীয় বাষ্প বায়ুতে রয়েছে। অর্থাৎ জলীয় বাষ্প দ্বারা বায়ু সম্পক্ত হয় যা কেবলমাত্র শিশিরাংকেই সম্ভব। একারণেই বায়ুর তাপমাত্রা তখন শিশিরাংকের সমান হয়।

গ দেওয়া আছে. শুষ্ক বাল্বের তাপমাত্রা. $\theta_1 = 30^{\circ}\mathrm{C}$ আর্দ্র বাল্পের তাপমাত্রা, θ₂ = 24°C শুষ্ক বাল্পের তাপমাত্রায় (30°C) গে-সিয়ারের ধ্র^{ল্ল}বক, G = 1.65 বের করতে হবে, শিশিরাংক, $\theta = ?$ আমরা জানি, $\theta = \theta_1 - G (\theta_1 - \theta_2) = 30^{\circ}C - 1.65 (30^{\circ}C - 24^{\circ}C)$ $= 20.1^{\circ} \text{ C (Ans)}$

ঘ বৃষ্টিপাতের সম্ভাবনা = আপেক্ষিক আর্দ্রতা যেমন, আপেক্ষিক আর্দ্রতা 100% হলে বৃষ্টিপাতের সম্ভাবনা = 100%, অর্থাৎ ঐ দিন নিশ্চিতভাবে বৃষ্টিপাত হবে। সুতরাং এক্ষেত্রে আপেক্ষিক আর্দ্রতা নির্ণয় করি।

বায়ুর তাপমাত্রায় (30°C) সম্পুক্ত বাষ্পচাপ, F = 31.83 mm HgP 22°C এবং 24°C তাপমাত্রায় সম্প্রক্ত বাষ্পচাপ যথাক্রমে 19.83 এবং 22.38 mm HgP অর্থাৎ তাপমাত্রা 2°C হ্রাস পেলে সম্প্রক্ত বাষ্প্র চাপ কমে = (22.38 – 19.83) = 2.55 mm HgP ।

সুতরাং তাপমাত্রা (24 – 20.1) বা 3.9°C হ্রাস পেলে সম্পৃক্ত বাষ্প চাপ কমে = $\frac{2.55 \times 3.9}{2}$ = 4.9725 mm HgP |

∴ শিশিরাংকে সম্পৃক্ত বাষ্পচাপ, f = (22.38 - 4.9725) mm HgP

$$= 17.4075\,\mathrm{mm}\,\mathrm{HgP}$$

 $::$ আপেন্ধিক অর্দ্রতা, $\mathrm{R} = \frac{f}{\mathrm{F}} \times 100\% = \frac{17.4075\,\mathrm{mm}\,\mathrm{HgP}}{31.83\,\mathrm{mm}\,\mathrm{Hgp}} \times 100\%$
 $= 54.7\%$

∴ বৃষ্টিপাতের সম্ভাবনা = 54.7%। সূতরাং ঐ দিন বষ্টিপাতের সম্ভাবনা প্রবল নয়।

প্রশু ১৬ রাদিয়া X এবং Y পাত্রদ্বয়ে STP তে যথাক্রমে 25gm অজানা গ্যাস ও $30 \mathrm{gm} \ \mathrm{N}_2$ গ্যাস নিল। অজানা গ্যাস ও N_2 গ্যাসের ঘনত্ব যথাক্রমে 1.415 kgm⁻³ ও 1.24kgm⁻³। রাদিয়া চিম্পু করল, "উভয় পাত্রে গ্যাসের অণুর গতিশক্তি ভিনু হলেও গড় গতিশক্তি সমান [হলিক্রস কলেজ, ঢাকা] হবে"।

- ক. স্বাধীনতার মাত্রা কাকে বলে?
- খ. কোনো স্থানের শিশিরাংক 16°C বলতে কী বোঝ?
- গ. X পাত্রের অজানা গ্যাসটির নাম সনাক্ত কর।
- ঘ. উদ্দীপকে রাদিয়ার চিম্পু সঠিক ছিল কিনা? গাণিতিকভাবে মতামত দাও।

৬ নং প্রশ্নের উত্তর

ক কোনো গতিশীল সিস্টেমের অবস্থান সম্পূর্ণরূপে প্রকাশ করতে যতগুলো স্থানাংকের প্রয়োজন হয় তার সংখ্যাই হচ্ছে স্বাধীনতার মাত্রা।

খ কোনো স্থানের শিশিরাংক 16°C বলতে বঝায়, ঐ স্থানের তাপমাত্রা নেমে 16°C -এ উপনীত হলে ঐ স্থানের বায়ু এর মধ্যস্থিত জলীয় বাষ্প দ্বারা সম্পুক্ত হবে, অর্থাৎ তখন আপেক্ষিক আর্দ্রতা হবে 100% ।

গ STP তে অজানা গ্যাসের ঘনত্ব 1.415 kgm⁻³ অর্থাৎ STP তে 1m³ বা 1000 L গ্যাসের ভর = 1.415 kg

:. STP তে 22.4 L গ্যাসের ভর =
$$\frac{1.415 \times 22.4}{1000}$$
 kg = 0.0317 kg \approx 32 gm

আমরা জানি, STP তে যেকোনো গ্যাসের 1 মোলের আয়তন 22.4 L সুতরাং ঐ গাসটির 1 মোল বা গ্রাম আণবিক ভর = 32 gm।

∴ গ্যাসটি অক্সিজেন, কারণ অক্সিজেনের গ্রাম আণবিক ভর 32 gm।

$$X$$
 পাত্রের আয়তন, $V_1=rac{m_1}{
ho_1}=rac{25 imes 10^{-3} kg}{1.415\ kgm^{-3}}=0.017668\ m^3$ Y পাত্রের আয়তন, $V_2=rac{m_2}{
ho_2}=rac{30 imes 10^{-3}\ kg}{1.245\ kgm^{-3}}=0.02409\ m^3$ \therefore X পাত্রের গ্যাসের মোট গতিশক্তি, $E_1=rac{3}{2} imes PV_1$

$$= \frac{3}{2} \times 101325 \text{ Nm}^{-2} \times 0.017668 \text{ m}^{3}$$
$$= 2685.3 \text{ J}$$

এবং \mathbf{Y} পাত্রের গ্যাসের মোট গতিশক্তি, $\mathbf{E}_2 = \frac{3}{2} \times \mathbf{PV}_2$

$$=\frac{3}{2} \times 101325~\mathrm{Nm^{-2}} \times 0.024096~\mathrm{m^3}$$
 $=3662.3~\mathrm{J}$
 X পাত্রে অণুর সংখ্যা, $\mathrm{N_1}=\frac{25~\mathrm{gm}}{32~\mathrm{gm}} \times 6.023 \times 10^{23}$

$$= 4.70547 \times 10^{23}$$

Y পাত্রে অণুর সংখ্যা, $N_2=\frac{30~gm}{28~gm}\times 6.023\times 10^{23}$ $=6.4532\times 10^{23}$

X পাত্রের প্রতিটি অণুর গড় গতিশক্তি = $\frac{E_1}{N_1} = \frac{2685.3~J}{4.~70547 \times 10^{23}}$ = 5.7068 \times 10-21 τ $= 5.7068 \times 10^{-21} \, J$

Y পাত্রের প্রতিটি অণুর গড় গতিশক্তি $= \frac{E_2}{N_2} = \frac{3662.3J}{6.4532 \times 10^{23}}$

লক্ষ্য করি যে, $\frac{E_1}{N_1} \approx \frac{E_2}{N_2}$

۵

২

•

সূতরাং উভয় পাত্রে গ্যাসের অণুর মোট গতিশক্তি ভিন্ন হলেও গড় গতিশক্তি সমান হবে। অর্থাৎ রাদিয়ার চিল্ডা সঠিক ছিল।

প্রশা>৭ রাশেদ একটি হাইড্রোমিটারের সাহায্যে কোনো একদিন বায়ুর শুষ্ক ও আর্দ্র তাপমাত্রা পরিমাপ করল যথাক্রমে 30°C ও 20°C । সে রেনোর তালিকা থেকে জানতে পারল যে, 12°C, 14°C, 16°, 20°C ও 30°C তাপমাত্রার সম্পুক্ত বাষ্পচাপ যথাক্রমে 10.52, 11.99, 13.63, 17.54 ও 31.83mm পারদ চাপ। সে আরও জানলো 30°C ও 20°C তাপমাত্রায় গে-সিয়ারের উৎপাদক যথাক্রমে 1.65 ও 1.79। [বীরশ্রেষ্ঠ মুন্সি আব্দুর রউফ পাবলিক কলেজ, ঢাকা]

ক. বয়েলের সূত্রটি লিখ।

খ. শীতকালে ঠোট ফেঁটে যায় কেন? ব্যাখ্যা কর। গ. উক্ত দিনে ঐ স্থানের শিশিরাঙ্ক কত ছিল?

ঘ. শিশিরাঙ্ক জেনে রাশেদ কীভাবে আপেক্ষিক আর্দ্রতা নির্ণয় করবে? বিশে-ষণ কর।

৭ নং প্রশ্নের উত্তর

ক বয়েলের সূত্রটি হলো— স্থির তাপমাত্রায় যে কোনো গ্যাসের আয়তন এর চাপের ব্যস্ঞ্যুনুপাতিক।

খ শীতকালে বাতাসে আর্দ্রতা অত্যম্ভ কমে যায়। এতে ঠোট হতে বেশ কিছু পানি জলীয় বাষ্পাকারে বায়ুতে চলে যায়। গরমকালে ঠোটের ত্বকের নিচে পানির যে স্ডুর নিরবচ্ছিন্ন ছিল, সে স্ডুরের বেশ কিছু জায়গা থেকে পানি হারিয়ে যাওয়ায় এটি আর নিরবচ্ছিন্ন থাকে না, বরং ছোট ছোট বিচ্ছিন্ন স্পরে বিভক্ত হয়ে যায়। পানির পষ্ঠটানের দর ন এ স্পুরগুলো ক্ষেত্রফলে সংকুচিত হতে চায়। এ কারণেই শীতকালে ঠোট ফেঁটে যায়।

গ দেওয়া আছে, শুষ্ক বাল্প থার্মোমিটারের তাপমাত্রা, $\theta_1 = 30$ °C আর্দ্র বাল্প থার্মোমিটারের তাপমাত্রা, $\theta_2 = 20^{\circ} \text{C}$

শুষ্ক বাল্পের তাপমাত্রায় (30°C) গে-সিয়ারের উৎপাদক, G=1.65বের করতে হবে, শিশিরাংক, $\theta = ?$

আমরা জানি,
$$\theta = \theta_1 - G (\theta_1 - \theta_2)$$

= 30°C - 1.65 (30°C - 20°C)
= 13.5°C (Ans.)

12°C এবং 14°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে 10.52 mm HgP ও 11.99 mm HgP

∴2°C তাপমাত্রা বৃদ্ধির জন্য সম্পৃক্ত বাষ্পচাপ বৃদ্ধি পায়

 $= (11.99 - 10.52)~{
m mm~HgP} = 1.47~{
m mm~HgP}$ $\therefore~1.5^{\circ}{
m C}$ তাপমাত্রা বৃদ্ধির জন্য সম্পৃক্ত বাষ্পচাপ বৃদ্ধি পায়

 $= (1.47 \times 1.5) \div 2 \text{ mm HgP} = 1.1025 \text{ mm HgP}$ ্র শিশিরাংকে (13.5°C) সম্পৃক্ত বাষ্পচাপ,

f = (10.52 + 1.1025) mm HgP= 11.623 mm HgP

আবার, বায়ুর তাপমাত্রায় (30°C) সম্পৃক্ত বাষ্পচাপ, $F=31.83~\text{mm}\,\text{HgP}$ ∴ আপেক্ষিক আর্দ্রতা, $R=\frac{f}{F}\times 100=\frac{11.623}{31.83}\times 100\%=36.5\%$ এভাবেই শিশিরাংক জেনে আপেক্ষিক আর্দ্রতা নির্ণয় করতে হবে।

প্রশ্ন ►৮ কোনো এক নির্দিষ্ট দিনে চট্টগ্রাম এবং দিনাজপুর উভয় শহরে একটি শুষ্ক ও সিক্ত বাল্ব থার্মোমিটারে তাপমাত্রা পাওয়া যায় 32°C এবং 30°C. [32°C তাপমাত্রায় G এর মান = 1.63 এবং 32°C, 30°C এবং 28°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে 35.66 × 10⁻³mHg, 31.83 × 10⁻³mHg এবং 28.35×10⁻³ mHg]

[শহীদ বীর উত্তম লে. আনোয়ার গার্লস কলেজ, ঢাকা]

- ক. পরম তাপমাত্রা কাকে বলে?
- খ. "স্থির চাপে একটি নির্দিষ্ট ভরের গ্যাসের আয়তন পরম তাপমাত্রার সমানুপাতিক"—ব্যাখ্যা কর।
- গ. চউগ্রামে শিশিরাংকে সম্পুক্ত বাষ্পচাপ বের কর।
- ঘ. যদি উক্ত দিনে দিনাজপুরে বায়ুর তাপমাত্রা ও আপেক্ষিক আর্দ্রতা 34°C এবং 65% হয়, তবে একজন ব্যক্তি কোন শহরে স্বম্ভি অনুভব করবে এবং কেন?

৮ নং প্রশ্নের উত্তর

তাপমাত্রার কেলভিন স্কেলকে পরম স্কেল বলে। এ স্কেলে কোনো বস্তুর তাপমাত্রার যে পাঠ পাওয়া যায় তাকে পরম তাপমাত্রা বলে।

ু $0^{\circ}C$ এবং $\theta^{\circ}C$ তাপমাত্রায় কোনো গ্যাসের আয়তন যথাক্রমে V_0 ও V_{θ} হলে, চার্লসের সূত্রানুসারে, $V_{\theta}=V_0\left(1+\frac{\theta}{273}\right)$

$$\therefore$$
 $V_{\theta} = V_0 \frac{\theta + 273}{273}$; কিন্তু $(\theta + 273)$ দ্বারা পরম তাপমাত্রা (T) বুঝায়।

$$\therefore V_{\theta} = V_0 \frac{T}{273}$$

 V_0 ধ্র⁻ব হওয়ায় $V_\theta \propto T$, সুতরাং, স্থির চাপে একটি নির্দিষ্ট ভরের গ্যাসের আয়তন পরম তাপমাত্রার সমানুপাতিক।

গু দেওয়া আছে, শুষ্ক বাল্প থার্মোমিটারের তাপমাত্রা, $\theta_1=32^{\circ}\mathrm{C}$ সিক্ত বাল্প থার্মোমিটারের তাপমাত্রা, $\theta_2=30^{\circ}\mathrm{C}$

শুষ্ক বাল্প থার্মোমিটারের তাপমাত্রায় গে-সিয়ারের ধ্র^{ঞ্চ}বক, G = 1.63

.. শিশিরাংক,
$$\theta = \theta_1 - G (\theta_1 - \theta_2)$$

= 32°C - 1.63 (32°C - 30°C)
= 28.74°C

 28° C এবং 30° C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে $28.35 \times 10^{-3} \mathrm{m} \ \mathrm{Hg}$ এবং $31.83 \times 10^{-3} \ \mathrm{mHg}$

∴ চট্টগ্রামে শিশিরাঙ্কে সম্পুক্ত বাষ্পচাপ

$$= 28.35 \times 10^{-3} \text{m HgP} + (31.83 - 28.35) \times 10^{-3} \text{m HgP}$$

 $\times \frac{28.74^{\circ}\text{C} - 28^{\circ}\text{C}}{30^{\circ}\text{C} - 28^{\circ}\text{C}}$

= 29.64×10^{-3} m HgP (**Ans.**)

ব দেওয়া আছে, দিনাজপুরে আপেক্ষিক আর্দ্রতা = 65% চট্টগ্রামে আপেক্ষিক আর্দ্রতা

শিশিরাংকে সম্ভূক্ত বাল্জাপ

= $\frac{1}{1}$ বায়ুর তাপমাত্রায় সম্ভূক্ত বাঙ্ক্তাপ imes 100%

$$= \frac{29.64 \times 10^{-3} \text{m HgP}}{31.83 \times 10^{-3} \text{m HgP}} \times 100\%$$

=93%

চট্টগ্রামের তুলনায় দিনাজপুরের তাপমাত্রা সামান্য বেশি (34°C > 32°C), তাই স্বাভাবিক দৃষ্টিতে, চট্টগ্রামের তুলনায় দিনাজপুরে কিছুটা বেশি গরম অনুভূত হওয়ার কথা।

কিন্তু লক্ষ্য করি, দিনাজপুরের তুলনায় চট্টগ্রামের আপেক্ষিক আর্দ্রতা অনেক বেশি (93% >>65%)। তাই চট্টগ্রামে দেহে উৎপন্ন ঘাম শোষিত হতে দিনাজপুরের তুলনায় অনেক বেশি সময় লাগবে।

সুতরাং চট্টগ্রামের তুলনায় দিনাজপুরে অবস্থিত একজন ব্যক্তি অনেক বেশি স্বস্পিড় অনুভব করবেন।

প্রশ্ন \blacktriangleright স্থির তাপমাত্রায় 5 লিটার বায়ুপূর্ণ একটি বেলনুকে টেনে হেদের তলদেশে নিয়ে গেলে সেটি 1 লিটার আয়তন ধারণ করে। বেলুনের সর্বোচ্চ ধারণক্ষমতা 9 লিটার। হেদের পানির ঘনত্ব 1000 ${
m kgm}^3$, বায়ুম $^{-2}$ লীয় চাপ $1.013 \times 10^5 {
m Nm}^{-2}$ এবং ${
m g} = 9.8~{
m ms}^{-2}$ ।

[উইল্স লিটল ফ্লাওয়ার স্কুল এন্ড কলেজ, ঢাকা]

- ক. শক্তির সমবিভাজন নীতিটি বিবৃত কর।
- খ. গাণিতিকভাবে দেখাও যে, 273°C তাপমাত্রাকে পরমশূন্য তাপমাত্রা বলে।
- গ. হ্রদের গভীরতা নির্ণয় কর।
- ঘ. হ্রদের তলদেশে থাকা অবস্থায় বেলুনটিতে আরো 1 লিটার বায়ু পূর্ণ করে ছেড়ে দিলে বেলুনটি অক্ষত অবস্থায় পানির উপরিতলে আসবে কিনা গাণিতিক বিশে-ষণ কর।

৯ নং প্রশ্নের উত্তর

ক তাপীয় সাম্যাবস্থায় আছে এমন গতীয় সিস্টেমের মোট শক্তি বিভিন্ন স্বাধীতার মাত্রার ভেতর দিয়ে সমভাবে বণ্টিত হয় এবং প্রত্যেক স্বাধীনতার মাত্রা পিছু শক্তির পরিমাণ হয় $\frac{1}{2}\,\mathrm{kT}$ ।

থা চার্লসের সূত্র হতে আমরা জানি, "স্থির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের তাপমাত্রা প্রতি ডিগ্রি সেলসিয়াস বৃদ্ধি বা হ্রাসের জন্য এর আয়তন 0° C তাপমাত্রায় নির্ণীত আয়তনের $\frac{1}{273}$ অংশ হারে বৃদ্ধি বা হ্রাস পায়। মনে করি, 0° C তাপমাত্রায় কোনো গ্যাসের আয়তন V_{\circ} ও তাপমাত্রা বৃদ্ধি θ° C হয় তবে গ্যাসের আয়তন $V_{\theta} = V_{\circ} \bigg(1 + \frac{\theta}{273} \bigg)$ হবে।

এখন
$$\theta=-$$
 273°C হলে $V_{\theta}\!=\!V_{o}\!\left(1-\frac{273}{273}\right)\!=\!0$ হয়।

 $\theta = -273$ °C এর নিচের কোনো তাপমাত্রায় গ্যাসের আয়তন ঋণ্ডাক হবে, যা অসম্ভব। সুতরাং – 273°C এর নিচে কোনো তাপমাত্রা থাকতে পারে না। এজন্য – 273°C কে প্রমশূন্য তাপমাত্রা বলে।

গ দেওয়া আছে,

্রদের উপরিতলে বায়ুপূর্ণ বেলুনের আয়তন, $V_1=5L=5\times 10^{-3} m^3$ ্রদের উপরিতলে বায়ুপূর্ণ বেলুনের চাপ, $P_1=1.013\times 10^5 Nm^{-2}$

্রদের তলদেশে বায়ুপূর্ণ বেলুনের আয়তন, $V_2=1$ $L=1 \times 10^{-3} \, m^3$

পানির ঘনত্ব, $\rho = 1000 \text{ kgm}^{-3}$

অভিকর্ষজ ত্বরণ, $g = 9.8 \text{ms}^{-2}$

ধরি,হ্রদের গভীরতা = h m

 \therefore হুদের তলদেশে চাপ, $P_2=(P_1\ +h\rho g)Nm^{-2}$

আমরা জানি,

 $P_1V_1 = P_2V_2$

বা, $P_1 \times 5 \times 10^{-3} = (P_1 + h\rho g) \times 1 \times 10^{-3}$

বা, $5P_1 = P_1 + h\rho g$

বা, hpg = 4P1

$$\boxed{4 \times 1.013 \times 10^5}{1000 \times 9.8}$$

:. h = 41.35 m (Ans.)

ঘ এখানে,

হুদের উপরিতলে চাপ, $P_1=1.013\times 10^5~Nm^{-2}$ হুদের গভীরতা, h=41.35~m পানির ঘনত্ব, $\rho=1000~kgm^{-3}$ অভিকর্ষজ তুরণ, $g=9.8~ms^{-2}$

∴হ্রেরে তলদেশে চাপ, P2 = (P1 + hpg) Nm⁻²

= $(1.013 \times 10^5 + 41.35 \times 1000 \times 9.8)$ = $5.07 \times 10^5 \text{ Nm}^{-2}$

হ্রেদের তলদেশে বেলুনের আয়তন, $V_2=(1+1)L=2L$ ধরি,হ্রেদের উপরিতলে বেলুনের আয়তন = V_1m^3 আমরা জানি, $P_1V_1=P_2V_2$

বা,
$$V_1 = \frac{5.07 \times 10^5 \times 2}{1.013 \times 10^5}$$

 $\therefore V_1 = 10~L$) বেলুনের সর্বোচ্চ ধারণ ক্ষমতা $9L < V_1$

সুতরাং, হেদের তলদেশে আরো $1\ L$ বায়ু পূর্ণ করে ছেড়ে দিলে বেলুনটি অক্ষত অবস্থায় পানির উপরিতলে আসবে না।

প্রশ্ন ►১০ 10.2m গভীরতা বিশিষ্ট একটি হেদের তলদেশ হতে একটি বায়ু বুদবুদ পানির উপরিতলে আসে এবং এর আয়তন বেড়ে যায়। ২য় ও ৩য় হেদের ক্ষেত্রে পানির উপরিতলে বুদবুদের আয়তন পানির তলদেশে যে আয়তন তার যথাক্রমে 4 এবং 6 গুণ। বায়ুম[→]লের চাপ 10⁵ Nm⁻²। তাপমাত্রা স্থির। সরকারি বিজ্ঞান কলেজ, ঢাকা

ক. আপেক্ষিক আর্দ্রতা কাকে বলে?

- খ. শিশিরাঙ্কে সম্পৃক্ত জলীয় বাষ্প চাপ < বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্প চাপ-কেন ব্যাখ্যা কর।
- গ. ১ম হ্রেদের ক্ষেত্রে পানির উপরিতলে বুদবুদের আয়তন তলদেশে ঐ বুদবুদের আয়তনের কতগুণ?
- ঘ. প্রতিক্ষেত্রে হ্রেদের গভীরতা ও বুদবুদের আয়তন বৃদ্ধির অনুপাত একই থাকে কি? গাণিতিক যুক্তি দাও। 8

১০ নং প্রশ্নের উত্তর

ক কোনো আবদ্ধ স্থানের বায়ুতে উপস্থিত জলীয় বাস্পের ভর এবং ঐ স্থানের সংশি-ষ্ট মুহূর্তের তাপমাত্রায় স্থানটির বায়ু সর্বোচ্চ যে পরিমাণ জলীয় বাষ্প ধারণ করতে পারে-এ দুয়ের অনুপাতকে শতকরায় প্রকাশ করলে যে রাশি পাওয়া যায় তাকে আপেক্ষিক আর্দ্রতা বলে।

আপেক্ষিক আর্দ্রতা 100% অপেক্ষা কম হলে শিশিরাংক বায়ুর তাপমাত্রা অপেক্ষা কম হয়। যেহেতু তাপমাত্রা হ্রাস পেলে বায়ুর জলীয় বাষ্প্র ধারণ ক্ষমতা কমে, তাই শিশিরাংকে সম্পৃক্ত জলীয় বাষ্প্রচাপ < বায়ুর তাপমাত্রায় জলীয় বাষ্প্রচাপ।

গ দেওয়া আছে,

বায়ুম[—]লের চাপ, P₂ = 10⁵ Nm⁻²

পানির তলদেশে চাপ, $P_1 = P_2 + h\rho g$

 $= 10^{5} \text{Nm}^{-2} + 10.2 \text{m} \times 1000 \text{ kgm}^{-3} \times 9.8 \text{ms}^{-2}$ = 199960 Nm⁻²

হ্রদের তলদেশে এবং পৃষ্ঠ দেশে বুদবুদের আয়তন যথাক্রমে V_1 ও V_2 হলে, $P_1V_1=P_2V_2$ হিদের সর্বত্র তাপমাত্রা প্র[©]ব বিবেচনায় বয়েলের সূত্র প্রয়োগে]

∴
$$\frac{V_2}{V_1} = \frac{P_1}{P_2} = \frac{199960 \text{ Nm}^{-2}}{10^5 \text{ Nm}^{-2}} = 1.9996 \approx 2$$
 গুণ (Ans.)

য প্রথম হ্রেদের ক্ষেত্রে, হুদের গভীরতা <u>হুদের গভীরতা</u> $= \frac{10.2 \mathrm{m}}{2 \, \mathrm{\grave{a}} \, \mathrm{Y}}$ = $5.1 \,$ একক।

ধরি, দ্বিতীয়**্র**দের গভীরতা h

তাহলৈ,
$$P_1V_1=P_2V_2$$
 বা, $\frac{P_1}{P_2}=\frac{V_2}{V_1}=4$ বা, $\frac{P_2+h\rho g}{P_2}=4$ বা, $\frac{h\rho g}{P_2}=3$ বা, $h=\frac{3P_2}{\rho g}$

∴
$$h = \frac{3 \times 10^5 \text{ Nm}^{-2}}{1000 \text{ kgm}^{-3} \times 9.8 \text{ms}^{-2}} = 30.6 \text{ m}$$
 হয় হেদের ক্ষেত্রে,

হুদের গভীরতা $\frac{}{\text{বুদবুদের আয়তন বৃদ্ধির গুণিতক}} = \frac{30.6m}{4 \text{ à}\,\text{Y}} = 7.65 \,\,\text{একক}}$ ধরি, ৩য়_হুদের গভীলতা, h

তাহলে
$$P_1V_1=P_2V_2$$
 বা, $\frac{P_1}{P_2}=\frac{V_2}{V_1}=6$

বা,
$$\frac{P_2 + h\rho g}{P_2} = 6$$

বা,
$$\frac{h\rho g}{P} = 5$$

$$\therefore h = \frac{5P_2}{\rho g} = \frac{5 \times 10^5 \text{Nm}^{-2}}{1000 \text{ kgm}^{-3} \times 9.8 \text{ms}^{-2}} = 51.02 \text{m}$$

র ক্ষেত্রে,

$$\frac{\text{nËG`i MfxiZv}}{\text{ey`eyG`i AvqZb e†w} \leftarrow \text{näwYZK}}$$

$$= \frac{51.02\text{m}}{6} = 8.503 \text{ $\Phi\Phi$}$$

যেহেতু 5.1 একক ≠ 7.65 একক ≠ 8.503 একক। সুতরাং প্রতিক্ষেত্রে হ্রেনর গভীরতা ও বুদবুদের আয়তন বৃদ্ধির অনুপাত একই থাকে না।

প্রশ্ন \rightarrow ১১১ কোন নির্দিষ্ট দিনে অহনা হাইগ্রোমিটার পাঠ নিল। শুদ্ধ ও আর্দ্র বাল্প হাইগ্রোমিটার পাঠ যথাক্রমে 20° C ও 12.8° C এবং গে-ইসারের উৎপাদক 20° C এ, 1.79, 7° C, 8° C এবং 20° C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ যথাক্রমে 7.5×10^{-3} , 8.1×10^{-3} এবং 17.4×10^{-3} mHg

[জয়পুরহাট গার্লস ক্যাডেট কলেজ]

ক. গড় বর্গবেগের বর্গমূল কাকে বলে?

খ. গ্যাসের ঘনত্বের সাথে চাপের সম্পর্ক কি?

গ. উক্ত দিনে শিশিরাঙ্ক কত হবে?

ঘ. অহনা কিভাবে ঐ দিনের আপেক্ষিক আর্দ্রতা নির্ণয় করবে? আলোচনা কর।

১১ নং প্রশ্নের উত্তর

ক দুই বা ততোধিক বেগের বর্গের গড় মানের বর্গমূলকে গড় বর্গবেগের বর্গমূল বলে।

আমরা জানি, কোন গ্যাসের জন্য $\frac{\rho T}{P} = \underline{\mathbf{4}}^{\underline{c}}$ বক যেখানে, গ্যাসের ঘনতু, ρ তাপমাত্রা, T এবং চাপ, P তাহলে কোন নির্দিষ্ট তাপমাত্রার জন্য $\rho = \underline{\mathbf{4}}^{\underline{c}}$ বক $\times P$ । অর্থাৎ কোন নির্দিষ্ট তাপমাত্রায় কোন গ্যাসের ঘনতু ও চাপ পরস্পর সমানুপাতিক।

গ এখানে,

শুষ্ক বাল্পের পাঠ, $t_1 = 20$ °C

আর্দ্র বাল্পের পাঠ, $t_2 = 12.8$ °C

20°C এ গে-ইসারের উৎপাদক,

G = 1.79

শিশিরাঙ্ক, t=?

আমরা জানি,

শিশিরাঙ্ক,
$$t = t_1 - G(t_1 - t_2)$$

বা, $t = 20^{\circ}C - 1.79(20^{\circ}C - 12.8^{\circ}C)$
= 7.11°C

∴ শিশিরাঙ্ক = 7.11°C (Ans.)

 $= 0.6 \times 10^{-3} \text{ mHgp}$

ঘ

7°C ও 8°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপের পরিবর্তন = (8.1 × 10⁻³ – 7.5 × 10⁻³) mHgp

এখানে, শিশিরাঙ্ক = 7.11°C

θ(°C)

∴ তাপমাত্রা 0.11°C পরিবর্তনে চাপের পরিবর্তন

= 0.6×10^{-3} mHg $\times 0.11$ = 6.6×10^{-5} mHg

∴ 7.11°C তাপামত্রায় সম্প্রত জলীয় বাম্পের চাপ

আপেক্ষিক

= $(7.5 \times 10^{-3} + 6.6 \times 10^{-5})$ mHg

 $= 7.57 \times 10^{-3} \text{ mHg}$

আর্দতা

7.11°C Zvcgvòvq mÁ·tÚ evÓ·Pvc

20°C Zvcgvòvq mÁ·tÚ evÓ·Pvc

$$= \frac{7.57 \times 10^{-3} \text{ mHg}}{17.4 \times 10^{-3} \text{ mHg}} \times 100\%$$

= 43 . 51 % (Ans.)

প্রশ্ন ▶১২ একটি হ্রদের তলদেশ থেকে পানির উপরিতলে আসার ফলে বায়ু বুদবুদের ব্যাস 2 গুণ হয়। হ্রদের পৃষ্ঠে বায়ুর চাপ 1.013 × 10⁵Pa। হ্রদের পানির ঘনতু 1 × 10³kg/m³। হ্রদের সর্বত্র তাপমাত্রা স্থির বিবেচনা করা যায়। । ক্যান্টনমেন্ট পাবলিক স্কুল এভ কলেজ, বঙড়া

- ক. সরল ছন্দিত গতির ব্যবকলনীয় সমীকরণটি লিখ।
- খ. বায়ুর আপেক্ষিক আর্দ্রতা 60% বলতে কী বুঝ?
- গ. উদ্দীপক অনুসারে হ্রদের গভীরতা নির্ণয় কর।
- ঘ. যদি হ্রদের তলদেশ এবং পৃষ্ঠদেশের তাপমাত্রা যথাক্রমে 20°C এবং 30°C হয়, তবে বুদবুদের আয়তনের পরিবর্তন একই থাকবে কিনা গাণিতিক বিশে-ষণের মাধ্যমে মতামত দাও।

১২ নং প্রশ্নের উত্তর

ক সরল ছন্দিত গতির ব্যবকলনীয় সমীকরণটি হলো: $\dfrac{d^2x}{dt^2}+\omega^2x=0$ ।

বায়ুর আপেক্ষিক আর্দ্রতা 60% বলতে বুঝায়, সংশি-ষ্ট স্থানের বায়ুতে বর্তমান তাপমাত্রায় সর্বোচ্চ যে পরিমাণ জলীয় বাষ্প থাকতে পারে তার শতকরা 60 ভাগ জলীয় বাষ্প ঐ মুহূর্তে ঐ স্থানের বায়ুতে বিদ্যমান।

গ যেহেতু বুদবুদের আয়তন, $V=\frac{1}{6}\,\pi d^3$

∴ বুদবুদের আয়তন ∞ (ব্যাস)³

সুতরাং ব্যাস 2 গুণ হওয়া মানে, আয়তন ৪ গুণ হওয়া। হেদের পৃষ্ঠদেশে চাপ, $P_2=1.013\times 10^5\, Pa=1.013\times 10^5\, Nm^{-2}$ হেদের গভীরতা h হলে তলদেশে চাপ, $P_1=P_2+h\rho g\, [
ho=$ পানির ঘনতু] হেদের সর্বত্র তাপমাত্রা ধ্র⁻⁻ব থাকায় বয়েলের সূত্র প্রয়োগে,

$$\begin{split} P_1 V_1 &= P_2 V_2 \, \overline{\blacktriangleleft} l, \; (P_2 + h \rho g) V_1 = P_2.8 V_1 \\ \overline{\blacktriangleleft} l, \; h \rho g &= 8 P_2 - P_2 = 7 P_2 \end{split}$$

$$\therefore \ h = \frac{7P_2}{\rho g} = \frac{7 \times 1.013 \times 10^5 \ Nm^{-2}}{1000 \ kgm^{-3} \times 9.8ms^{-2}} = 72.36 \ m \ \textbf{(Ans.)}$$

য পরিবর্তিত উপাত্তমতে, হেদের তলদেশে তাপমাত্রা, $T_1=20^{\circ}C=293K$

এবং পৃষ্ঠদেশে তাপমাত্রা, $T_2 = 30$ °C = 303K বয়েল এবং চার্লসের সূত্রের সমন্বয় হতে পাই.

$$\begin{split} &\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \\ & \forall l, \frac{V_2}{V_1} = \frac{P_1T_2}{P_2T_1} = \frac{(P_2 + h\rho g)T_2}{P_2T_1} \\ & = \frac{(1.013 \times 10^5 \ Nm^{-2} + 72.36m \times 10^3 kgm^{-3} \times 9.8ms^{-2}) \ 303K}{1.013 \times 10^5 Nm^{-2} \times 293K} \\ & = 8.273 \end{split}$$

বা, V₂ = 8.273V₁ ≠ 8V₁

সুতরাং যদি হুদের তলদেশে এবং পৃষ্ঠদেশের তাপমাত্রা যথাক্রমে 20°C এবং 30°C হয়, তবে বুদবুদের আয়তনের পরিবর্তন একই থাকবে না।

প্রশ্ন ►১৩ স্থির তাপমাত্রায় 5 Liter বায়ুপূর্ণ একটি বেলুনকে টেনে 40.8m গভীর তলদেশে নেয়া হলে বেলুনটি 1 Liter আয়তন ধারণ

করে। বেলুনের সর্বোচ্চ প্রসারণ ক্ষমতা 9 Liter। উক্ত স্থানের অভিকর্ষজ তুরণ 9.8ms⁻²। সরকারি আজিজুল হক কলেজ, বগুড়া]

ক. বয়েলের সূত্রটি কী?

খ. পরম শূন্য তাপমাত্রা ব্যাখ্যা কর (লেখচিত্রসহ)।

গ. উদ্দীপক অনুসারে বায়ুম="লের চাপ কত?

ঘ. যদি উদ্দীপকে বর্ণিত বেলুনটিকে হ্রদের তলদেশে থাকা অবস্থায় আরও 1 Liter বায়ুপূর্ণ করা হয় (মুখ বাধাবস্থায়) তবে বেলুনটি অক্ষত অবস্থায় পানির উপরিতলে আসবে কী? গাণিতিক যুক্তিসহ ব্যাখ্যা কর।

১৩ নং প্রশ্নের উত্তর

ক বয়েলের সূত্রটি হলো— স্থির তাপমাত্রায় যেকোনো গ্যাসের আয়তন এর চাপের ব্যস্ত্র্দুনুপাতিক।

া চার্লসের স্ত্রানুসারে, 0° C তাপমাত্রায় কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন V_0 হলে 0° C তাপমাত্রায় এর আয়তন, $V_{\theta}=V_0$

 $\left(1+\frac{\theta}{273}\right)$; $V_{\theta}=0$ বসিয়ে পাই, $1+\frac{\theta}{273}=0$ বা, $\theta=-273^{\circ}C$ তাহলে চার্লসের সূত্রানুসারে $-273^{\circ}C$ তাপমাত্রায় তাত্ত্বিকভাবে হলেও যেকোনো গ্যাসের আয়তন শূন্য হয় বলে এ তাপমাত্রাকে পরম শূন্য তাপমাত্রা বলে।

গ মনে করি, বায়ুম[⇒]লের চাপ P₂

তাহলে হ্রদের তলদেশে চাপ $,\;P_1=P_2\;+\;$

nρg এখানে, h =হ্রদের গভীরতা = 40.8m, ρ = পানির ঘনত্ব = 1000 kgm⁻³

ρ = পানির ঘনত্ব = 1000 kgm⁻³ হেদের তল্দেশে বেলুনের আয়তন, V₁=1 L

এবং পৃষ্ঠদেশে আয়তন, $m V_2 = 5~L$ হ্রুদের সর্বত্র তাপমাত্রা একই বিবেচনায় বয়েলের সূত্র প্রয়োগে, $m P_1V_1 = P_2V_2$

- 273°C

বা,
$$(P_2 + h\rho g) 1L = P_2 \times 5 L$$

বা,
$$5P_2 - P_2 = h\rho g$$

$$\therefore P_2 = \frac{h\rho g}{4} = \frac{40.8m \times 1000 \text{ kgm}^{-3} \times 9.8\text{ms}^{-2}}{4}$$
$$= 99960 \text{ Nm}^{-2} (\text{Ans.})$$

ঘ এবার (পরিবর্তিত পরিস্থিতিতে).

্রদের তলদেশে বেলুনের আয়তন, $V_1 = 1L + 1L = 2L$ ্রদের পৃষ্ঠদেশে উক্ত বেলুনটির আয়তন V_2 হলে,

 $P_1V_1=P_2V_2$

ৰা,
$$V_2 = \frac{P_1 V_1}{P_2} = \frac{(P_2 + h \rho g) V_1}{P_2}$$

 $= \frac{(99960 \text{ Nm}^{-2} + 40.8 \text{m} \times 1000 \text{ kgm}^{-3} \times 9.8 \text{ms}^{-2}) \times 2L}{99960 \text{ Nm}^{-2}}$

= 10L > 9 L (বেলুনটির সর্বোচ্চ প্রসারণ ক্ষমতা)

সুতরাং, বেলুনটি অক্ষত অবস্থায় পানির উপরিতলে আসবে না।

প্রশ্ন ►১৪ একটি পুকুরের পানির উপরিতলের তাপমাত্রা 27°C এবং তলদেশের তাপমাত্রা 17°C। একটি বায়ুর বুদবুদ পুকুরের তলদেশে থাকলে আয়তন কম থাকে কিন্তু উপরিতলে আসলে আয়তন বৃদ্ধি পেয়ে দ্বিগুণ হয়। পুকুরের উপরিতলে শুধু বায়ু চাপ ক্রিয়াশীল থাকে যার মান 750mm পারদ চাপ। কিন্তু এক নাগারে 7 দিন বৃষ্টি পরায় পুকুরের পানির গভীরতা 1 m বৃদ্ধি পায়। সিরকারি মহিলা কলেজ, পাবনা]

ক. শিশিরাঙ্ক কাকে বলে?

খ. আপেক্ষিক আর্দ্রতা 40% বলতে কী বুঝায়?

গ. উদ্দীপকের আলোকে পুকুরের গভীরতা কত ছিল তা গাণিতিকভাবে বের কর।

ঘ. উদ্দীপকের আলোকে বৃষ্টির পরে যদি পানি তলদেশ ও উপরিতলের তাপমাত্রা প্রায় সমান হয় তবে বায়ুর বুদবুদ উপরিতলে আসায় আয়তন কত গুণ হবে?

১৪ নং প্রশ্নের উত্তর

ক যে তাপমাত্রায় কোনো নির্দিষ্ট আয়তনের বায়ু এতে উপস্থিত জলীয়বাষ্প দ্বারা সম্পুক্ত হয় তাকে শিশিরাঙ্ক বলে।

খ আপেক্ষিক আর্দ্রতা 40% বলতে বোঝায় যে, বায়ুর তাপমাত্রায় কোনো স্থানের বায়ুকে সম্পুক্ত করতে যে জলীয় বাম্পের প্রয়োজন তার শতকরা 40 ভাগ জলীয়বাষ্প ঐ স্থানের বায়তে ঐ মূহর্তে আছে।

গ দেওয়া আছে

পুকুরের পানির উপরিতলে তাপমাত্রা, $T_1 = 27$ °C = 300 Kপুকুরের পানির উপরিতলে চাপ, P₁ = 750 mm Hgp

=
$$(750 \times 10^{-3} \times 13.6 \times 10^{3} \times 9.8)$$
 Pa
= 99960 Pa

পুকুরের পানির তলদেশে তাপমাত্রা, $T_2 = 17^{\circ}C = 290K$ চাপ, $P_2 = (P_1 + h\rho g)Pa$

পুকুরের পানির তলদেশের বুদবুদের আয়তন, $V_2 = V$ (ধরি) ∴ পুকুরের পানির উপরিতলে, "

পানির ঘনত্ব, $\rho = 1000 \text{ kgm}^{-3}$

আমরা জানি,

বা জানি,
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
বা,
$$\frac{P_1 \times 2V}{300} = \frac{(P_1 + h\rho g) \times V}{290}$$
বা,
$$\frac{P_1}{150} = \frac{P_1 + h\rho g}{290}$$
বা,
$$290 P_1 = 150 P_1 + 150 h\rho g$$
বা,
$$140 P_1 = 150 h\rho g$$
বা,
$$h = \frac{140 \times 99960}{150 \times 1000 \times 9.8}$$

$$\therefore h = 9.48 m$$

সুতরাং, পুকুরের গভীরতা 9.48 m (Ans.)

ঘ এখানে, বৃষ্টির পর, পুকুরের গভীরতা h = (9.48 + 1)m

= 10.48 mপানির উপরিতলে চাপ $P_1 = 99960~Pa~($ গ হতে)

পানির তলদেশে চাপ $P_2 = (P_1 + h\rho g) Pa$

 $= (99960 + 10.48 \times 10^3 \times 9.8)$ $= 2.03 \times 10^5 \, \text{Pa}$

মনে করি, পানির তলদেশে V2 আয়তনের বুদবুদ উপরিতলে আসলে V1 আয়তনের হয়।

আমরা জানি, $P_1V_1 = P_2V_2$ [তাপমাত্রা, T স্থির]

বা, (1×10^5) V₁ = $2.03 \times 10^5 \times$ V₂

বা, $V_1 = 2.03 V_2$

∴ বুদবুদ পানির উপরিতলে আসায় আয়তন 2.03 গুণ হয়ে যায়।

প্রশু ▶১৫ কোনো সুগভীর হ্রদের তলদেশে একটি বেলুনে 2gm হিলিয়াম গ্যাস ভরিয়ে ছেড়ে দেওয়া হলো। হ্রদের তলদেশের তাপমাত্রা 8°C এবং প্রতি মিটার উচ্চতা বৃদ্ধিতে তাপমাত্রা 0.3°C বৃদ্ধি পায়। হ্রদটির গভীরতা 40m এবং বায়ুম≕লীয় চাপ 72cm HgP। বেলুনটির সর্বাধিক প্রসারণ ক্ষমতা 8 Litre, পানির গড় ঘনত্ব 1000 kgm⁻³, পারদের ঘনতু 13596kgm⁻³। [রংপুর সরকারি কলেজ]

- ক. শক্তির সমবিভাজন নীতিটি বিবৃত কর।
- খ. কোনো মাধ্যমে তরঙ্গের বেগ ও ঐ মাধ্যমের কণার বেগ কি একই? ব্যাখ্যা কর।
- গ. হ্রদের তলদেশে বেলুনের মধ্যে অবস্থিত হিলিয়াম গ্যাসের অণুগুলোর মোট গতিশক্তি নির্ণয় কর।
- ঘ. গাণিতিক বিশে-ষণের সাহায্যে দেখাও যে, বেলুনটি সর্বাধিক যত উচ্চতা পর্যন্ড অক্ষত অবস্থায় উঠতে পারবে সেটি হ্রদের পৃষ্ঠদৈশ নয়।

১৫ নং প্রশ্নের উত্তর

ক শক্তির সমবিভাজন নীতিটি হলো
কানো গতীয় সংস্থার মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বর্ণ্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ $=rac{1}{2}\,\mathrm{kT}$ ।

খ কোনো মাধ্যমে তরঙ্গের বেগ এবং ঐ মাধ্যমের কণার বেগ একই নয়। মাধ্যমে তরঙ্গের বেগ ধ্র^{ee}ব রাশি, কিন্তু কণার তাৎক্ষণিক বেগ পরিবর্তনশীল রাশি। তরঙ্গবেগের সমাল্ডরালে (অনুদৈর্ঘ্য তরঙ্গের ক্ষেত্রে) অথবা লম্বদিকে (অনুপ্রস্থ তরঙ্গের ক্ষেত্রে) কণাটি স্পন্দিত হয়। এই কম্পন সরল ছন্দিত স্পন্দন। সুতরাং সাম্যাবস্থানে কণার বেগ সর্বোচ্চ এবং বিস্পুরের প্রাম্পুবিন্দুতে বেগ সর্বনি (শূন্য)।

গ দেওয়া আছে, হ্রদের তলদেশে তাপমাত্রা, $T=8^{\circ}C=(8+$

গ্যাসের মোলসংখ্যা, $n = \frac{m}{M} = \frac{2gm}{4gm} = \frac{1}{2}$ mole জানা আছে, আদর্শ গ্যাস ধ্র^{ভ্র}বক, R = 8.314 J mole⁻¹K⁻¹

বের করতে হবে, গ্যাসের অণুগুলো মোট গতিশক্তি, E=? আমরা জানি, $E=\frac{3}{2}$ nRT $=\frac{3}{2}\times\frac{1}{2}$ mole \times 8.314J. mole $^{-1}$.K $^{-1}$ \times 281K

য যেহেতু প্রতি মিটার উচ্চতা বৃদ্ধিতে তাপমাত্রা 0.3°C বৃদ্ধি পায় সূতরাং হ্রদের পৃষ্ঠদেশে তাপমাত্রা, $T = 281K + 0.3 \times 40 = 293 K$ হ্রদের পৃষ্ঠদেশে চাপ, $P = 72 \text{ cm HgP} = h\rho g$ $= 0.72 \text{m} \times 13596 \text{ kgm}^{-3} \times 9.8 \text{ms}^{-2} = 95933.4 \text{ Nm}^{-2}$

হ্রেদের পৃষ্ঠদেশে আয়তন V হলে, PV = nRT

$$\therefore V = \frac{\text{nRT}}{P} = \frac{\frac{1}{2} \times 8.314 \text{ J.mole}^{-1}.\text{K}^{-1} \times 293\text{K}}{95933.4 \text{ Nm}^{-2}}$$

 $= 0.0127 \text{m}^3 = 12.7 \text{ Litre} > 8 \text{ Litre}$ সুতরাং, বেলুনটি পৃষ্ঠদেশে আসার আগেই ফেটে যাবে। অর্থাৎ বেলুনটি সর্বাধিক যত উচ্চতা পর্যন্ড অক্ষত অবস্থায় উঠতে পারবে সেটি হ্রদের পৃষ্ঠদেশ নয়।

প্রশ্ন ▶১৬ কোনো গ্যাস পাত্রের ভিতরের আয়তন 1.5m³। পাত্রে 12 $imes 10^6$ টি গ্যাস অণু আছে। গ্যাস অণুর ব্যাস $30 imes 10^{-10} \mathrm{m}$. [পুলিশ লাইন্স স্কুল এন্ড কলেজ, বগুড়া]

ক. পরম শূন্য তাপমাত্রা কী?

খ. গ্যাসের গতিতত্ত্বের মৌলিক স্বীকার্য লিখ।

২ গ. গ্যাস অণুর গড় মুক্তপথ নির্ণয় কর।

ঘ. পাত্রের আয়তন দ্বিগুণ করলে গড়মুক্ত পথে কীরূপ পরিবর্তন হবে? গাণিতিক যুক্তিসহ মতামত দাও।

১৬ নং প্রশ্নের উত্তর

ক চার্লসের সূত্রানুসারে $V_{\theta} = V_0 \left(1 + \frac{\theta}{273}\right) - 273^{\circ} C$ তাপমাত্রায় তাত্ত্বিকভাবে হলেও যেকোনো গ্যাসের আয়তন শূন্য হয় ফলে এ তাপমাত্রাকে পরম শূন্য তাপমাত্রা বলে।

খ গ্যাসের গতিতত্ত্বের দুটি মৌলিক স্বীকার্য নিংরূপ: ১. সকল গ্যাস অণুর সমন্বয়ে গঠিত। একটি গ্যাসের সকল অণু সদৃশ এবং একটি গ্যাসের অণু অন্য গ্যাসের অণু থেকে ভিন্ন। ২. গ্যাসের অণুগুলোর আকার অণুগুলোর মধ্যবর্তী দূরত্বের তুলনায় নগণ্য।

গ দেওয়া আছে, গ্যাস অণুর ব্যাস, $\sigma=30 imes10^{-10}~\mathrm{m}$ একক আয়তনে গ্যাস অণুর সংখ্যা, $n=\frac{12\times 10^6}{1.5m^3}=8\times 10^6m^{-3}$

বের করতে হবে, গড় মুক্তপথ, λ = ? ম্যাক্সওয়েলের সূত্রানুসারে, গড় মুক্ত পথ,

$$\lambda = \frac{1}{\sqrt{2}\pi n\sigma^2} = \frac{1}{\sqrt{2} \times 3.1416 \times 8 \times 10^6 \text{m}^{-3} \times (30 \times 10^{-10} \text{m})^2}$$
$$= 3.126 \times 10^9 \text{m (Ans.)}$$

ঘ পাত্রের আয়তন দ্বিগুণ করলে একক আয়তনে অণুর সংখ্যা,

$$n'=rac{12 imes 10^6}{2 imes 1.5 m^3}=4 imes 10^6 m^{-3}$$
সেক্ষেত্রে গড় মুক্ত পথের পরিবর্তিত মান,

$$\lambda' = \frac{1}{\sqrt{2}\pi n'\sigma^2} = \frac{1}{\sqrt{2}\times 3.1416\times 4\times 10^6 m^{-3}\times (30\times 10^{-10}m)^2}$$

$$= 6.252\times 10^9 \text{ m}$$
 লক্ষ্য করি, $\frac{\lambda'}{\lambda} = \frac{6.252\times 10^9 m}{3.126\times 10^9 m} = 2$ সুতরাং পাত্রের আয়তন দ্বিগুণ করলে গড় মুক্তপথ পূর্বের তুলনায় দ্বিগুণ

লক্ষ্য করি,
$$\frac{\lambda'}{\lambda} = \frac{6.252 \times 10^9 \text{m}}{3.126 \times 10^9 \text{m}} = 2$$

হবে।

প্রশু ▶১৭ দিনাজপুর সরকারি কলেজের একাদশ বিজ্ঞানের ছাত্রী মানাহা শিক্ষাসফরে খুলনা গেল। তার কাছে থাকা যন্ত্রের সাহায্যে সে জানতে পারলো ঐ স্থানের বায়ুর তাপমাত্রা 20°C; বায়ুর তাপমাত্রায় সম্পুক্ত জলীয় বাম্পের চাপ 17.54mm Hg এবং আপেক্ষিক আর্দ্রতা 60%। তাদের গাড়ির চাকায় হাওয়া কম থাকায় ড্রাইভার গাড়িটিকে পার্শ্ববর্তী ওয়ার্কশপ থেকে এমনভাবে হাওয়া দিল যে পিছনের চাকার হাওয়া সামনের চাকার 1.5 গুণ বেশি হল \[দিনাজপুর সরকারি কলেজ, দিনাজপুর

- ক. শক্তির সমবিভাজন নীতিটি লিখ।
- খ. ভূ-পৃষ্ঠে বায়ুপূর্ণ স্বাভাবিক বেলুন উর্ধ্বাকাশে ফেটে যায় ব্যাখ্যা কর।
- গ. উদ্দীপক অনুযায়ী শিশিরাঙ্কে সম্পুক্ত জলীয় বাস্পের চাপ
- ঘ. উদ্দীপকের গাড়িটির সামনের চাকা ও পিছনের চাকার অণুগুলোর গড় মুক্তপথের মধ্যে কোনটি বেশি– গাণিতিক বিশে-ষণপূৰ্বক মতামত দাও।

১৭ নং প্রশ্নের উত্তর

ক শক্তির সমবিভাজন নীতিটি হলো– কোনো গতীয় সংস্থার মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বণ্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ $= rac{1}{2}\, k T$ ।

খ বায়ুম≕লের নিং স্ডুরে বায়ুচাপ অনেক বেশি থাকায় (প্রায় 1atm বা 10⁵ Nm⁻² এর কাছাকাছি) বেলুনের অভ্যন্দরস্থ গ্যাস অল্প আয়তন দখল করে। কিন্তু বেলুন যতোই ওপরের দিকে উঠতে থাকে ততোই এর ওপর বায়ুম≕লীয় চাপ কমতে থাকে, এতে বেলুনের তথা এর অভ্য~ড়রস্থ গ্যাসের আয়তন ক্রমেই বাড়তে থাকে। এভাবে এক সময় নির্দিষ্ট উচ্চতায় গ্যাসের আয়তন এতই বেশি হতে চায় যে, তখন বেলুনের রাবার অভ্যন্ড্ রস্থ অতিরিক্ত চাপ সহ্য করতে না পেরে ফেটে যায়।

গ দেওয়া আছে, বায়ুর তাপমাত্রায় (20°C) সম্পৃক্ত বাষ্পচাপ, F = 17.54mm HgP

আপেক্ষিক আর্দ্রতা, R = 60%

বের করতে হবে, শিশিরাংকে সম্পৃক্ত জলীয় বাম্পের চাপ, f=?

আমরা জানি,
$$R = \frac{f}{F} \times 100\%$$

$$\therefore f = \frac{\text{RF}}{100\%} = \frac{60\% \times 17.54 \text{ mm HgP}}{100\%}$$
$$= 10.524 \text{ mm HgP (Ans.)}$$

ঘ উদ্দীপক মতে, সামনের চাকার অভ্যন্তরে হাওয়ার ভর m হলে পেছনের চাকার অভ্যম্ভরে হাওয়ার ভর 1.5m; এতে সামনের চাকার তুলনায় পেছনের চাকার অভ্যম্ভুরে অণুর সংখ্যা 1.5 গুণ। কিন্তু উভয় চাকার আয়তন সমান থাকায়, সামনের চাকার অভ্যম্পুরে একক আয়তনে অণুর সংখ্যা n হলে পেছনের চাকার অভ্যম্ভরে একক আয়তনে অণুর সংখ্যা n' = 1.5n

গড় মুক্ত পথ সংক্রাম্ড্ ম্যাক্সওয়েলের সমীকরণটি হলো:

$$\lambda = \frac{1}{\sqrt{2\pi n\sigma^2}}$$

উভয় চাকার ক্ষেত্রে σ (গ্যাস অণুর ব্যাস) একই মানের

$$\therefore \lambda \propto \frac{1}{\pi}$$

সুতরাং সামনের ও পেছনের চাকার অভ্যম্ত্রে গ্যাস অণুসমূহের গড় মুক্তপথ যথাক্রমে λ ও λ' হলে, $\frac{\lambda}{\lambda'}=\frac{n'}{n}=\frac{1.5n}{n}=1.5$

বা, $\lambda = 1.5\lambda'$ অর্থাৎ $\lambda > \lambda'$

অতএব, পেছনের চাকার তুলনায় সামনের চাকার অভ্যন্তরে গ্যাস অণুসমূহের গড় মুক্তপথ বেশি।

প্রশ্ন ▶১৮ রিদি আর্দ্রতা মাপক যন্ত্রের সাহায্যে বুধবারে বায়ুর তাপমাত্রা পেল 30° C। ঐ দিনের শিশিরাংক 12°C জেনে সে আপেক্ষিক আর্দ্রতা পেল 75%। আবার ঐ দিন সন্ধ্যায় বায়ুর তাপমাত্রা পেল 20° C $[12^{\circ}$ C তাপমাত্রায় সম্পুক্ত বাষ্পচাপ 9.25×10^{-3} পারদ চাপ এবং 20° C তাপমাত্রায় সম্পুক্ত বাষ্পচাপ 17.6×10^{-3} পারদ চাপ।

[মদনমোহন কলেজ, সিলেট]

- ক. সরল ছন্দিত স্পন্দনের ব্যবকলনীয় সমীকরণটি লিখ।
- খ. কোনো টানা তার হঠাৎ ছিড়ে গেলে তার তাপমাত্রার পরিবর্তন হয় কেন— ব্যাখ্যা কর।
- গ. দুপুরে বায়ুর তাপমাত্রায় সম্পুক্ত জলীয় বাষ্প চাপ কত?
- ঘ. উদ্দীপকের রিদির মনে হল দুপুরের তুলনায় সন্ধ্যায় তাড়াতাড়ি ঘাম শুকাচ্ছে— গাণিতিক বিশে-ষণের মাধ্যমে তোমার মতামত

১৮ নং প্রশ্নের উত্তর

ক সরল ছন্দিত স্পন্দনের ব্যবকলনীয় সমীকরণটি হল $rac{d^2x}{dt^2} + \omega^2x = 0.$

খ কোনো টানা তারে তারটিকে টান টান অবস্থায় রাখতে প্রয়োজনীয় শক্তি সঞ্চিত অবস্থায় বিভব শক্তি থাকে। যখন তারটি হঠাৎ ছিঁড়ে যায় তখন এই সঞ্চিত শক্তি তাপ শক্তি হিসেবে নিৰ্গত হয় এবং এই তাপ শক্তি নির্গমণের ফলে তারের তাপমাত্রার পরিবর্তন হয়।

গ আমরা জানি,
$$R = \frac{1}{F} \times 100\%$$

শিশিরাঙ্কে সম্পুক্ত জলীয় বাজ্পের চাপ, $f=9.25 imes 10^{-3}$ পারদ চাপ

$$\therefore 75\% = \frac{9.25 \times 10^{-3}}{F} \times 100\%$$

বা, F = 0.0123 পারদ চাপ।

সুতরাং দুপুরে বায়ুর তাপমাত্রা সম্পুক্ত জলীয় বাষ্প চাপ 0.0123 পারদ চাপ।

ঘ সন্ধ্যায় বায়ুর তাপমাত্রা 20°C

∴ বায়ুর তাপমাত্রায় সম্পুক্ত জলীয় বাস্পের চাপ, F = 17.6 × 10⁻³

শিশিরাঙ্কে সম্পৃক্ত জলীয় বাজ্পের চাপ, $f=9.25\times 10^{-3}$ পারদ চাপ

আমরা জানি, $R = \frac{f}{F} \times 100\%$

$$= \frac{9.25 \times 10^{-3}}{17.6 \times 10^{-3}} \times 100\% = 52.55\% < 75\%$$

দুপুরে যেহেতু আপেক্ষিক আর্দ্রতা বেশি বাতাসে জলীয় বাস্পের পরিমাণও বেশি তাই ঐ সময় ঘামের বাষ্পায়ন ধীরে হবে। সন্ধ্যায় আপেক্ষিক আর্দ্রতা কম হওয়ায় বাতাসে জলীয় বাল্পের পরিমাণ কম। তাই ঘামের বাষ্পায়ন দ্রুত হয়।

প্রশ্ন ►১৯ একটি CNG চালিত যানবাহনের 0.5m³ আয়তনের সিলিভারে 300K তাপমাত্রায় CNG সরবরাহ করা হলো। সিলিভারে গ্যাসের চাপ $7.5 \times 10^5~{
m Nm^{-2}}$ হলো। যানবাহনটি 1 ঘণ্টা চলার পর গ্যাসের চাপ কমে $6.25 \times 10^5 {
m Nm}^{-2}$ হলো। সিলিভারের সহনশীল তাপমাত্রা $600 {
m K}$ । [সিলেট সরকারি মহিলা কলেজ, সিলেট]

- ক. প্রমশ্ন্য তাপ্যাত্রা কী?
- খ. একই তাপমাত্রায় কক্সবাজার ও সিলেট স্টেডিয়ামের মধ্যে কোনটিতে ফুটবল খেলা কম কষ্টকর— ব্যাখ্যা কর।
- গ. ১ ঘণ্টায় যানবাহনটিতে ব্যবহৃত জ্বালানী গ্যাসের পরিমাণ নির্ণয় কর।
- ঘ. ১ ঘন্টা যানবাহনটি চলার পর কী পরিমাণ জ্বালানী ভর্তি করা যাবে যাতে সিলিভারটি বিস্ফোরিত হবে না? বিশে-ষণ কর। ৪

১৯ নং প্রশ্নের উত্তর

ক যে তাপমাত্রায় তাত্ত্বিকভাবে কোনো গ্যাসের আয়তন শূন্য হয়ে যায় (–273°C) তাকে পরম শূন্য তাপমাত্রা বলে।

ব্য কক্সবাজারে বায়ুতে জলীয় বাস্পের পরিমাণ বেশি থাকে। তাই শরীরে সৃষ্টি হওয়া ঘামের বাষ্পায়ন কম হয়। তাই ফুটবল খেলার সময় ঘাম কম শুকাবে, তাই ঘাম বাষ্পায়নের জন্য শরীর থেকে তাপ কম বের হবে। অপরদিকে, সিলেটে জলীয় বাষ্প কম থাকায় বাষ্পায়ন প্রক্রিয়া দ্র ত হবে এবং শরীর থেকে তাপ বের হয়ে যাবে। তাই একই তাপমাত্রায় কক্সবাজার ও সিলেট স্টেডিয়ামের মধ্যে সিলেটে ফুটবল খেলা কম কষ্টকর।

গ এখানে, প্রাথমিক চাপ, $P_1 = 7.5 \times 10^5 Nm^{-2}$ আয়তন, $V = 0.5~m^3$ তাপমাত্রা, T = 300~Kচূড়াম্ডু চাপ, $P_2 = 6.25 \times 10^5 Nm^{-2}$

আমরা জানি,

 $P_1V = n_1RT$

বা,
$$n_1 = \frac{P_1 V}{RT} = \frac{7.5 \times 10^5 Nm^{-2} \times 0.5m^3}{8.316~Jmol^{-1}~K^{-1} \times 300K} = 150.312~mol$$
 যুদ্ধী পুর,

$$n_2 = \frac{P_2 V}{RT} = \frac{6.25 \times 10^5 \ Nm^{-2} \times 0.5m^3}{8.316 J \ mol^{-1} \ K^{-1} \times 300 K} = 125.26 \ mol$$
ব্যবহৃত জ্বালানি = $n_1 - n_2$
= $150.312 - 125.26$
= $25.05 \ mol$ (Ans.)

ঘ এখানে, আদি আয়তন, $V_1 = 0.5 \text{ m}^3$ আদি তাপমাত্রা, $T_1 = 300 \text{K}$ শেষ তাপমাত্রা = সহনশীল তাপমাত্রা, $T_2 = 600 \text{ K}$ শেষ আয়তন, $V_2 = ?$

আমরা জানি,

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 \Rightarrow , $V_2 = \frac{V_1 T_2}{T_1} = \frac{0.5 \text{m}^3 \times 600 \text{K}}{300 \text{K}}$
 $= 1 \text{m}^3$

∴1m³ জ্বালানি ভর্তি করা যাবে। (Ans.)

প্রশ্ন ►২০ আমাদের বায়ুম[™]লের প্রধান উপাদান অক্সিজেন, নাইট্রোজেন এবং জলীয় বাষ্প। নাইট্রোজেনের গ্রাম আণবিক ভর 28 এবং প্রমাণ তাপমাত্রা ও চাপে ঘনতৃ 1.25kg/m³। বায়ুম[™]লের গড় তাপমাত্রা 30°C। সরকারি সিটি কলেজ, চট্টগ্রামা

- ক. শক্তির সমবিভাজন নীতি বর্ণনা কর।
- খ. বায়ুম[⇒]লের অবস্থা কেমন হলে এর তাপমাত্রা ও শিশিরাংক সমান হবে?
- গ. 3gm নাইট্রোজেনের মোট গতিশক্তি কত?
- ঘ. বিশ্ব উষ্ণায়নের কারণে বায়ুম[—]লের গড় তাপমাত্রা 50% বৃদ্ধি পেলে নাইট্রোজেন গ্যাসটি পৃথিবীর বায়ুম[—]লে থাকবে কিনা যুক্তিসহ বিশে-ষণ কর।

২০ নং প্রশ্নের উত্তর

ক শক্তির সমবিভাজন নীতিটি হলো: কোনো গতীয় সংস্থার মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বণ্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ $= \frac{1}{2}\,\mathrm{kT}$ ।

আমরা জানি, কোনো আবদ্ধ স্থানের বায়ু যে তাপমাত্রায় এর মধ্যস্থিত জলীয় বাষ্প দ্বারা সম্পৃক্ত হয়, তাকে এর শিশিরাংক বলে। বায়ুম[—]লের মধ্যস্থিত জলীয় বাষ্প দ্বারা এটি সম্পৃক্ত হলে এর তাপমাত্রা ও শিশিরাংক সমান হবে। এক্ষেত্রে বায়ুম[—]লের আপেক্ষিক আর্দ্রতা =100%।

্বা দেওয়া আছে, নাইট্রোজেনের ভর, $m=3 \mathrm{gm}$ গ্রাম আণবিক ভর, $M=28 \mathrm{gm}$ এবং তাপমাত্রা, $T=30^{\circ}\mathrm{C}=303~\mathrm{K}$ জানা আছে, আদর্শ গ্যাস ধ্র[©]বক, $R=8.314~\mathrm{J}~\mathrm{mole}^{-1}\mathrm{K}^{-1}$ বের করতে হবে, নাইট্রোজেনের মোট গতিশক্তি, E=?

আমরা জানি, $E = \frac{3}{2} nRT$

=
$$1.5 \times \frac{3gm}{28gm}$$
 mole × 8.314 Jmole⁻¹K⁻¹ × 303K
= 404.9 J (**Ans.**)

গড় তাপমাত্রা (°C) 50% বৃদ্ধি পেলে, T = 30°C × 1.5 = 45°C = (45 + 273)K = 318 K এই তাপমাত্রায় নাইট্রোজেন অণুর মূল গড় বর্গবেগ,

$$C_{ms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.314 \, Jmole^{-1} K^{-1} \times 318 K}{28 \times 10^{-3} \, Kg}} = 532.2 \, ms^{-1}$$

কিন্তু ভূপৃষ্ঠে মুক্তিবেগ = 11200 ms⁻¹

সুতরাং নাইট্রোজেন অণুর মূল গড় বর্গবেগ, ভূপৃষ্ঠে মুক্তিবেগের তুলনায় অনেক কম বলে নাইট্রোজেন গ্যাসটি পৃথিবীর বায়ুম≅ল থেকে যাবে।

প্রশ্ন ►২১ তোমার এক বন্ধু ঢাকা থেকে তোমার বাড়ি (কক্সবাজার) বেড়াতে এল। সে লক্ষ্য করলো, তার গায়ে জমে থাকা ঘাম দ্র*ত ভকাচ্ছে না যতটা দ্র*ত ঢাকায় ভকাতো। সন্ধ্যায় টিভি সংবাদে দেখলো, ঐ দিন কক্সবাজারের বায়ুর তাপমাত্রা 18.50°C ও শিশিরাংক 8°C। [8°C, 18°C ও 19°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ যথাক্রমে 8.05 ×10⁻³, 15.48 × 10⁻³ ও 16.46 × 10⁻³mHg]

[সরকারি হাজী মুহাম্মদ মহসীন কলেজ, চউগ্রাম]

- ক. মুক্ত পথ কী?
- খ. 273°C তাপমাত্রার নিচে গ্যাসের অস্ত্র্ভিক সম্ভব নয়-কেন? ২
- গ. উদ্দীপকের আলোকে ঐ দিন কক্সবাজারের আপেক্ষিক আর্দ্রতা কত ছিল?
- ঘ. ঐ দিন ভোরের শিশিরাংক কত হবে, উত্তরের স্বপক্ষে যুক্তি দেখাও।

<u>২১ নং প্রশ্নের উত্তর</u>

ক পরপর দুটি সংঘর্ষের মধ্যবর্তী সময়ে একটি গ্যাস অণু গড়ে যে দূরত্ব অতিক্রম করে তাকে গড় মুক্তপথ বলে।

খ চার্লসের সূত্রানুসারে, ৩°C তাপমাত্রায় যেকোনো গ্যাসের আয়তন,

$$V_{\theta} = V_{o} \left(1 + \frac{\theta}{273} \right)$$

তাহলে
$$\theta= 273$$
 তাপমাত্রায়, $V_{\theta}=V_{\rm o}\left(1-\frac{273}{273}\right)=0$

অর্থাৎ – 273°C তাপমাত্রায় তাত্ত্বিকভাবে সকল গ্যাসের আয়তন শূন্য হয়। প্রকৃতপক্ষে –273°C তাপমাত্রায় পৌছার বহু পূর্বেই সকল গ্যাস জমে তরলে পরিণত হয়।

গ উদ্দীপক মতে, কক্সবাজারে,

বায়ুর তাপমাত্রায় (18.5°C) সম্পুক্ত বাষ্পচাপ;

$$F = \left\{ 15.48 + \frac{(16.46 - 15.48) \times 0.5}{(19 - 18)} \right\} \times 10^{-3} \text{ mHgP}$$

$$= 15.97 \times 10^{-3} \text{ mHgP}.$$

এবং শিশিরাংকে ($ar{8}^{\circ}\mathrm{C}$) সম্পৃক্ত বাষ্পচাপ, $f=8.05 imes10^{-3}~\mathrm{m}$

বের করতে হবে, আপেক্ষিক আর্দ্রতা, R=? আমরা জানি, $R=\frac{f}{F}\times 100\%=\frac{8.05\times 10^{-3} \mathrm{m~HgP}}{15.97\times 10^{-3} \mathrm{m~HgP}}\times 100\%=50.4\%$ (Ans.)

বিশিরাংক হবে বায়ুর তাপমাত্রায় সমান। প্রকৃতপক্ষে বায়ুতে জলীয় বাম্পের পরিমান অপরিবর্তিত থাকলে শিশিরাংক পরিবর্তন হবেনা, তবে বায়ুর তাপমাত্রা কমে শিশিরাংক উপনীত হবে। বায়ুর তাপমাত্রা কমে ব্যায়ুর তাপমাত্রা কমে ব্যায়ুর তাপমাত্রা কমে বর্ষার কমতে থাকলে শিশিরাংকে উপনীত হবে। বায়ুর তাপমাত্রা কমে যখন ৪°C হবে, যখন শিশির পড়া শুর হবে। বায়ুর তাপমাত্রা আরো কমতে থাকলে শিশিরাংকও একই সাথে কমতে থাকবে এবং বেশ কিছু জলীয় বাষ্প শিশির আকারে ঝড়ে পড়বে। এভাবে বায়ুর তাপমাত্রা ৪°C-এর মতো কম হবে, শিশিরাংকও তত কমতে থাকবে এবং বায়ুস্থ জলীয় বাষ্প ততো বেশি পরিমাণে শিশির আকারে বায়ু থেকে বের হয়ে যাবে।

প্রা ১১১ কোনো একদিন একটি সিক্ত বাল্ব ও শুষ্ক বালব হাইগ্রোমিটারের শুষ্ক বালব ও সিক্ত বালব থার্মেমিটারে যথাক্রমে 33°C এবং 28°C তাপমাত্রা পাওয়া গেল। 32°C এবং 34°C তাপমাত্রায় যথাক্রমে গে-সিয়ারের উৎপাদক 1.61 ও 1.63 এবং 24°C, 26°C ও 33°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্প চাপ যথাক্রমে 22.38, 25.21 ও 37.78mm পারদ চাপ। ইম্পাহানি গাবলিক স্কুল এক কলেজ,

- ক. পরম শূন্য তাপমাত্রা কাকে বলে?
- খ. একই তাপমাত্রায় যেখানে আপেক্ষিক আর্দ্রতা বেশি সেখানে বেশি অস্বস্পিড় লাগার বিষয়টি আলোচনা কর।
- গ. উদ্দীপকের তথ্য অনুযায়ী শিশিরাংক কত?
- ঘ. উদ্দীপকের তথ্য মতে আপেক্ষিক আর্দ্রতা 70% হতে হলে সিক্ত বালবের তাপমাত্রা নির্ণয় কর।

২২ নং প্রশ্নের উত্তর

ক চার্লসের সূত্রানুসারে তাত্ত্বিকভাবে হলেও –273°C তাপমাত্রায় যেকোনো গ্যাসের আয়তন শূন্য হয় ফলে এ তাপমাত্রাকে পরম শূন্য তাপমাত্রা বলে।

আর্থন্ড লাগার বিষয়টি তাপমাত্রার ওপর সরাসরি নির্ভর করে না, বরং আপেক্ষিক অর্দ্রতার ওপর নির্ভর করে। পরিবেশের তাপমাত্রা বেড়ে গেলে শরীর ঘাম উৎপন্ন করে তা বাষ্পীভবনের মাধ্যমে দেহ হতে তাপ বর্জন করার চেষ্টা করে। কিন্তু বাতাসের আপেক্ষিক আর্দ্রতা বেশি হলে খুব অল্প ঘামই বাতাস কর্তৃক শোষিত হয়। এতে দেহ প্রয়োজনীয় পরিমাণ তাপ ছাড়তে না পারায় চরম অর্থন্ডি অনুভব করে। সুতরাং একই তাপমাত্রায় যেখানে আপেক্ষিক আর্দ্রতা বেশি সেখানে বেশি অর্থন্ডিরাধ

া হাইগ্রোমিটারের শুক্ষ বাল্পের তাপমাত্রা, $\theta_1=33^{\circ}\mathrm{C}$ এবং সিক্ত বাল্পের তাপমাত্রা, $\theta_2=28^{\circ}\mathrm{C}$ বাতাসের তাপমাত্রায় (33°C) গো-সিয়ারের উৎপাদক, $G=\frac{1.61+1.63}{2}=1.62$ বের করতে হবে, শিশিরাক্ষ, $\theta=?$ আমরা জানি, $\theta=\theta_1-G$ ($\theta_1-\theta_2$) $=33^{\circ}\mathrm{C}-1.62$ (33°C $-28^{\circ}\mathrm{C}$) $=24.9^{\circ}\mathrm{C}$ (Ans.)

ঘ বায়ুর তাপমাত্রায় (33°C) সম্পৃক্ত বাষ্পচাপ, F = 37.78 mm

 $= 37.78 \times 10^{-3} \text{m HgP}$

আপেক্ষিক আর্দ্রতা, R = 70% = 0.7 হলে,

শিশিরাংকে সম্পৃক্ত বাষ্পচাপ, $f={
m R}\times {
m F}$ [${
m R}=rac{f}{F}$] $=0.7\times 37.78\times 10^{-3}\ {
m m\ HgP}$ $=26.446\times 10^{-3}{
m m\ HgP}$ $=26.446\ {
m mm\ HgP}$

ধরি, শিশিরাংক θ , তাহলে Extrapolation এর মাধ্যমে পাই,

$$\frac{\theta-26}{26-24} = \frac{26.446-25.21}{25.21-22.38}$$

$$\therefore \theta = \frac{26.446-25.21}{25.21-22.38} \times 2 + 26 = 26.87^{\circ}\text{C}$$
 সুতরাং সিক্ত বাল্পের তাপমাত্রা θ_2 হলে, $\theta=\theta_1-G(\theta_1-\theta_2)$ বা, $G(\theta_1-\theta_2)=\theta_1-\theta$ বা, $\theta_1-\theta_2=\frac{\theta_1-\theta}{G}$
$$\therefore \theta_2=\theta_1-\frac{\theta_1-\theta}{G}=33^{\circ}\text{C}-\frac{33^{\circ}\text{C}-26.87^{\circ}\text{C}}{1.62}=29.22^{\circ}\text{C}$$
 অতএব, উদ্দীপকের তথ্যমতে আপেক্ষিক আর্দ্রতা 70% হতে হলে সিক্ত বাল্পের তাপমাত্রা হতে হবে 29.22°C ।

প্রম ▶২৩ একটি হেদের তলদেশের তাপমাত্রা 12°C হেদটির তলদেশ থেকে পৃষ্ঠে আসার ফলে একটি বায়ু বুদবুদের ব্যাস দ্বিগুণ হয়, হ্রদের

পৃষ্ঠে বায়ুর চাপ 1.01 ×10⁵Pa, তাপমাত্রা 35°C এবং**্র**দের তলদেশে বদবদের আয়তন 1.0cm³। সরকারি বরিশাল কলেজ, বরিশালা

ক. চার্লসের সূত্রটি বিবৃত কর।

খ. নি তাপমাত্রায় ও উচ্চ চাপে গ্যাস কেন বয়েল ও চার্লসের সত্র মেনে চলে না?

গ. হেদের গভীরতা বের কর। ধর, হেদের পানির তাপমাত্রা ধ্র^{প্র}ব।

কূ^{মিল-া}ম. উদ্দীপকের শর্তানুসারে আয়তন পরিবর্তন হয় কি? বিশে-ষণ কর।

২৩ নং প্রশ্নের উত্তর

ক চার্লসের সূত্রটি হলো— স্থির চাপে কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন প্রতি ডিগ্রী সেলসিয়াস তাপমাত্রা হ্রাস বা বৃদ্ধির জন্য শূন্য ডিগ্রী সেলসিয়াস তাপমাত্রায় এর আয়তনের 1/273 অংশ হ্রাস বা বৃদ্ধি পায়।

বয়েল ও চার্লসের সূত্রগুলো কেবল আদর্শ গ্যাসসমূহ মেনে চলে। কি তাপমাত্রায় ও উচ্চ চাপে কোনো গ্যাসই আদর্শ গ্যাসরূপে আচরণ করে না, তাই এরা বয়েল এবং চার্লসের সূত্রও মেনে চলে না।

গু যেহেতু, আয়তন ∝ ব্যাস³, তাই ব্যাস দ্বিগুণ হলে আয়তন আটগুণ হয়। অর্থাৎ $V_1=8V_2$

V₁ ও V₂ যথাক্রমে হ্রদের পৃষ্ঠদেশে ও তলদেশে বুদবুদের আয়তন। P₁ ও P₂₋হ্রদের যথাক্রমে পৃষ্ঠ দেশে ও তলদেশে চাপ

 $\rho =$ পানির ঘনত = 1000 kgm^{-3}

h = হ্রদের গভীরতা।

•

তাপমাত্রা ধ্র[ে]ব বিবেচনা করলে,

$$\begin{split} P_2 &= P_1 + h \rho g.....(i) \\ P_1 V_1 &= P_2 \ V_2 \end{split}$$

বা, $P_1 \times 8 V_2 = P_2 V_2$

বা, $P_2 = 8P_1$ (ii)

(i) ও (ii) ইতে, $8P_1 = P_1 + h\rho g$

বা, $7P_1 = h\rho g$

$$h = \frac{7 \times 1.01 \times 10^{5} Pa}{1000 \text{ kg.m}^{-3} \times 9.8 \text{ ms}^{-2}}$$
$$= 72.14 \text{ m}.$$

ঘ বয়েল এবং চার্লসের সূত্রের সমন্বয়, $rac{P_1 V_1}{T_1} = rac{P_2 V_2}{T_2}$

যেখানে, P, V, T-সকল রাশি পরিবর্তনশীল।

 P_1,V_1 , T_1 দিয়ে যথাক্রমে হ্রদের পৃষ্ঠদেশে চাপ, আয়তন ও পরম তাপমাত্রা বুঝায়। P_2 , V_2 , T_2 দ্বারা যথাক্রমে হ্রদের তলদেশে চাপ, আয়তন ও পরম তাপমাত্রা বুঝায়।

$$\begin{split} P_2 &= 8P_1,\, V_2 = 1cm^3,\, T_1 = (273 + 35)\,\, K = 308K \\ T_2 &= (273 + 12) = 285K \\ \therefore \quad V_1 &= \frac{P_2}{P_1} \times V_2 \times \frac{T_1}{T_2} \\ &= 8 \times 1cm^3 \times \frac{308}{285} \end{split}$$

 $= 8.6456 \text{ cm}^3 \neq 8 \text{cm}^3$

∴ উদ্দীপকের শর্তানুসারে, বুদবুদের আয়তন ৪ গুণের চেয়ে বেশি বৃদ্ধি পাবে।

8 গুণ বৃদ্ধি পাবে চাপ হ্রাস পাওয়ার কারণে। বাকিটুকু বৃদ্ধি পাবে তাপমাত্রা বৃদ্ধি পাওয়ার কারণে।

প্রশ্ন ►২৪ কোনো একদিনের কোনো এক সময় বরিশাল ও পটুয়াখালির তাপমাত্রা যথাক্রমে 28°C ও 30°C এবং শিশিরাংক যথাক্রমে 18°C ও 19°C। 18°C, 19°C, 28°C ও 30°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ যথাক্রমে 15.5, 17.55, 30.10 ও 35.67 mmHgP 28°C তাপমাত্রায় গে-ইসারের উৎপাদক 1.67।

[বরিশাল সরকারি মহিলা কলেজ, বরিশাল]

- ক. গড় মুক্ত পথ কাকে বলে?
- খ. বাষ্পায়ন ও ক্ষুটনের মধ্যে পার্থক্য লিখ।
- গ. উদ্দীপকে উলি-খিত দিনে বরিশালের একটি শুষ্ক ও সিক্ত বাল্প আর্দ্রতা মাপক যন্ত্রে সিক্ত বালবের তাপমাত্রা বের কর। ৩
- ঘ. বরিশাল ও পটুয়াখালির মধ্যে কোথায় ঐ দিন শিশির জমার সম্ভাবনা বেশি হবে? বিশে-ষণ কর।

২৪ নং প্রশ্নের উত্তর

ক গ্যাসের অণুগুলোর পরপর দুটি সংঘর্ষের মধ্যবর্তী গড় দূরত্বকে গড় মক্তপথ বলে।

যে যেকোনো তাপমাত্রায় কোনো তরলের স্বতঃস্ফূর্ত বাষ্পে পরিণত হওয়াকে বাষ্পায়ন বলে। কোনো তরলকে বাষ্পে পরিণত করাকে ক্ষুটন বলে।

গ দেওয়া আছে,

বরিশালের শিশিরাঙ্ক, $\theta=18^{\circ}C=291~K$ বরিশালে শুক্ক বাল্বের তাপমাত্রা, $\theta_1=28^{\circ}C=301~K$ শুক্ক বাল্বের তাপমাত্রায়, গে-ইসারের উৎপাদক, G=1.67 সিক্ত বাল্বের তাপমাত্রা, $\theta_2=?$

আমরা জানি,

$$\begin{array}{c} \theta_1 - \theta = G(\theta_1 - \theta_2) \\ \hline \exists \dagger, \ 301 - 291 = 1.67 \ (301 - \theta_2) \\ \hline \exists \dagger, \ \frac{10}{1.67} = 301 - \theta_2 \\ \hline \exists \dagger, \ \theta_2 = 301 - \frac{10}{1.67} \\ \hline \exists \dagger, \ \theta_2 = 295 \ K = (295 - 273)^{\circ}C \\ \hline \therefore \ \theta_2 = 22^{\circ}C \ (\textbf{Ans.}) \end{array}$$

ঘ দেওয়া আছে,

বরিশালে শিশিরাঙ্কে (18°C) সম্পৃক্ত জলীয়বাষ্পে চাপ, f_1 = 15.5mm HgP বরিশালে বায়ুর তাপমাত্রায় (28°C) সম্পৃক্ত জলীয়বাষ্পে চাপ,

 $F_1 = 30.10 \text{ mm HgP}$

পটুয়াখালীতে শিশিরাঙ্কে (19°C) সম্পৃক্ত জলীয় বাজ্পে চাপ, $f_2=17.55~\mathrm{mm\,HgP}$

পটুয়াখালিতে বায়ুর তাপমাত্রায় (30°C) সম্পৃক্ত জলীয়বাম্পে চাপ, $F_2=35.67~\mathrm{mmHgP}$

$$\therefore$$
 বরিশালে আপেক্ষিক অর্দ্রতা, $R_1 = \frac{f_1}{F_1} \times 100\% = \frac{15.5}{30.10} \times 100\% = 51.5\%$

পটুয়াখালীতে আপেক্ষিক আর্দ্রতা $R_2=rac{f_2}{F_2} imes 100\%=rac{17.55}{35.67} imes 100\%$

সুতরাং, বায়ুর তাপমাত্রায় কোনো স্থানের বায়ুকে সম্পৃত্ত করতে যে পরিমাণ জলীয়বাষ্প প্রয়োজন তার শতকরা 51.5 ভাগ বরিশালের বায়ুতে উপস্থিত আছে এবং একই ক্ষেত্রে পটুয়াখালিতে শতকরা 49.2 ভাগ জলীয়বাষ্প আছে। এ কারণে ঐ দিন বরিশালে শিশির জমার সম্ভাবনা বেশি।

প্রশ্ন ►২৫ রহিম কোনো একদিন দুপুরের বায়ুর তাপমাত্রা 30°C, শিশিরাংক 19.4°C নির্ণয় করলো। ঐ দিন বিকেলে বায়ুর তাপমাত্রা 23°C এ নেমে এলে রহিমের অস্বস্পিড় লাগে। বিভিন্ন তাপমাত্রায় সম্পক্ত বাষ্পচাপ নিষ্করপ।

তাপমাত্রা (°C)	সম্পৃক্ত জলীয় বাষ্পচাপ (mHg)
19	8.92×10^{-3}
20	9.22×10^{-3}
23	20.24×10^{-3}
30	29.92×10^{-3}

বিরিশাল মডেল স্কুল এন্ড কলেজ, বরিশাল]

- ক. গ্যাসীয় পদার্থের ক্ষেত্রে সংকট তাপমাত্রা কাকে বলে?
- খ. শীতকালে ভেজা কাপড় দ্র^ლত শুকায় কেন?
- গ. দুপুরের তাপমাত্রায় আপেক্ষিক আর্দ্রতা কত?
- ঘ. রহিম দুপুর অপেক্ষা বিকালে অস্বস্পিড় বোধ করলো কেন?
 বিশে-ষণ কর।

২৫ নং প্রশ্নের উত্তর

ক সর্বোচ্চ যে তাপমাত্রায় থাকলে একটি গ্যাসকে শুধুমাত্র চাপ প্রয়োগে তরলে পরিণত করা যায় তাকে ঐ গ্যাসের সংকট তাপমাত্রা বলে।

ত্ব ভেজা কাপড় শুকানো অর্থাৎ ভেজা কাপড়ের মধ্যস্থিত পানির বাম্পায়ন নির্ভর করে আপেক্ষিক আর্দ্রতা তথা বায়ুম[—]লের জলীয়বাম্পের ওপর। শীতকালে বায়ুতে জলীয়বাম্পের পরিমাণ কম থাকে, ফলে বাম্পায়ন বেশি হয়। এই কারণে শীতকালে ভেজা কাপড় দ্র[—]ত শুকায়।

গ আমরা জানি,

$$R_0 = \frac{f}{F} \times 100\%$$

$$= \frac{9.04 \times 10^{-3}}{29.92 \times 10^{-3}} \times 100\%$$

$$= 30.21\%$$

এখানে, দুপুরে বায়ুর তাপমাত্রায় $30^{\circ}\mathrm{C}$ বাষ্পচাপ, $F=29.92\times10^{-3}~\mathrm{mHg}$ শিশিরাংকে $19.4^{\circ}\mathrm{C}$ তাপমাত্রায় বাষ্পচাপ, $f=[8.92~+~(9.22~-8.92)\times0.4]\times10^{-3}\mathrm{mHgP}=9.04\times10^{-3}\mathrm{mHg}$ \therefore দুপুরের আপেক্ষিক আর্দ্রতা, $R_0=$

ঘ আমরা জানি,

$$R_a = rac{f}{F} imes 100\%$$
 এখানে, বিকেলে বায়ুর তাপমাত্রায় বাষ্পচাপ,
$$= rac{9.04 imes 10^{-3}}{20.24 imes 10^{-3}} imes F = 20.24 imes 10^{-3} \, mHg$$
 শিশিরাংকের তাপমাত্রায় বাষ্পচাপ
$$f = 9.04 imes 10^{-3} \, mHg$$
 বিকেলে আপেক্ষিক আর্দ্রতা, $R_a = ?$

∴ বিকেলের আপেক্ষিক আর্দ্রতা (Ra = 44.66%) সকালের আপেক্ষিক আর্দ্রতা (Ro = 30.21%) থেকে বেশি, তাই রহিম দুপুর অপেক্ষা বিকালে বেশি অস্বস্ডি বোধ করবে।

প্রশ্ন ▶২৬ আবহাওয়া অফিসের একটি তালিকা থেকে যশোর শহরের এক দিনের ন্দিবর্ণিত কয়েকটি তথ্য পাওয়া গেল।

	সময়	তাপমাত্রা	শিশিরাঞ্চ	আ: আর্দ্রতা	17°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ (mm Hg)	22°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ (mm Hg)
	দুপুর	32°C	17°C	80%		
ı	বিকাল	22°C	17°C		13.63×10^{-3}	19.83×10^{-3}

্ সিরকারি এম এম কলেজ, যশোর]

- ক. আদর্শ গ্যাসের ক্ষেত্রে চাপীয় সূত্র বিবৃত কর।
- খ. যে সময়ে একটি বায়ুচাপমান যন্ত্রের পারদ স্পুড়ের উচ্চতা কম হয়, তখন ঐ স্থানে একটি আর্দ্র ও শুষ্ক বাল্প

•

আর্দ্রতামাপক যন্ত্রের পারদ স্জ্বদ্বয়ের উচ্চতার পার্থক্য কম হয় না বেশি হয় তা কারণসহ ব্যাখ্যা কর।

- গ. দুপুরে বায়ুর তাপমাত্রায় সম্পুক্ত জলীয় বাষ্পচাপ কত?
- ঘ. দুপুরের চেয়ে সন্ধ্যায় গায়ের ঘাম দ্র^লত শুকাবে কিনা উদ্দীপকের আলোকে গাণিতিকভাবে ব্যাখ্যা কর।

২৬ নং প্রশ্নের উত্তর

ক স্থির আয়তনে কোনো নির্দিষ্ট ভরের গ্যাসের চাপ 0°C থেকে প্রতি ডিগ্রী সেলসিয়াস বৃদ্ধি বা হ্রাসের জন্য এর 0°C তাপমাত্রায় চাপের

ষ যে সময়ে একটি বায়ু চাপমান যন্ত্রের পারদ স্ডুম্ভের উচ্চতা কম হয়, তখন ঐ স্থানে একটি আর্দ্র ও শুষ্ক বাল্প আর্দ্রতামাপক যন্ত্রের পারদ স্জ্বদ্বয়ের উচ্চতার পার্থক্য বেশি হবে।

কারণ বায়ুচাপমান যন্ত্রের পারদ স্ডুম্ভের উচ্চতা কমা মানে বায়ুতে জলীয়বাম্পের চাপ কমা তথা জলীয়বাম্পের উপস্থিতি কম। ফলে ঐ স্থানে বায়ুর আপেক্ষিক আর্দ্রতা কম। ফলে আর্দ্র বাল্প সংশি-ষ্ট তরল দ্র⁻ত বাষ্পায়িত হবে ফলে আর্দ্র বাল্পের তাপমাত্রা কমবে। অর্থাৎ আর্দ্র ও শুষ্ক বাল্পের পারদ স্প্রুদ্বয়ের উচ্চতার পার্থক্য বেশি হবে।

গ দুপুরের বায়ুর তাপমাত্রা = 32°C শিশিরাঙ্কে সম্পুক্ত জলীয় বাষ্প্রচাপ, $f = 13.63 \times 10^{-3} \text{mmHg}$. আপেক্ষিক আর্দ্রতা, R = 80%

আমরা জানি, $R = \frac{f}{F} \times 100\%$

বা,
$$80\% = \frac{13.63 \times 10^{-3}}{F} \times 100\%$$

 \therefore F= 17.03 × 10⁻³ mmHg

সুতরাং দুপুরে বায়ুর তাপমাত্রায় সম্পুক্ত জলীয় বাষ্পচাপ 17.03 ×

ঘ দেওয়া আছে, দুপুরের আর্দ্রতা = 80%

আবার, বিকালের তাপমাত্রায় (22°C) সম্পক্ত জলীয় বাষ্প চাপ

$$= 19.83 \times 10^{-3} \text{ m Hg}$$

বিকালের তাপমাত্রায় শিশিরাঙ্ক = 17°C

আবার, 17° C তাপমাত্রায় সম্পৃক্ত জলীয়বাষ্প চাপ = $13.63 \times 10^{-3} \text{ m}$

Hgρ এখন, বিকালে আপেক্ষিক আর্দ্রতা,

 $R = \frac{$ শিশিরাঙ্কে সম্ভূক্ত বাঙ্জাপ }{ বায়ুর তাপমাত্রায় সম্ভূক্ত বাঙ্জাপ $\times 100\%$

$$= \frac{13.63 \times 10^{-3}}{19.83 \times 10^{-3}} \times 100\% = 68.73\%$$

অতএব, বিকালের আপেক্ষিক আর্দ্রতা দুপুরের চেয়ে কম। আবার আমরা জানি, আপেক্ষিক আর্দ্রতা কম হলে ঘাম দ্র^{ল্}ত শুকায় এবং আপেক্ষিক আর্দ্রতা বেশি হলে ঘাম ধীরে শুকায়। অতএব, দুপুরের চেয়ে সন্ধ্যায় ঘাম তাড়াতাড়ি শুকাবে।

প্রশু 🖊 ২৭ একই আয়তনের দুটি সিলিন্ডার নিয়ে উহাতে 72 cm পারদ চাপে একটিতে $20\mathrm{g}$ অক্সিজেন এবং অপরটিতে কিছু পরিমাণ হাইড্রোজেন নেয়া হল। 27°C তাপমাত্রায় গ্যাস অণুগুলো ছুটাছুটি করছিল। [ক্যান্টনমেন্ট কলেজ, যশোর]

ক. শিশিরাংক কাকে বলে?

খ. শক্তির সমবিভাজন নীতি ব্যাখ্যা কর।

গ. সিলিভারে অক্সিজেনের আয়তন কত?

• ঘ. উভয় পাত্রের গ্যাসের গতিশক্তি সমান কিনা-গাণিতিক যুক্তি

২৭ নং প্রশ্নের উত্তর

ক যে তাপমাত্রার কোনো নির্দিষ্ট আয়তনের বায়ু এর মধ্যে অবস্থিত জলীয়বাষ্প দ্বারা সম্পুক্ত হয়, সেই তাপমাত্রাকে শিশিরাঙ্ক বলে।

খ শক্তির সমবিভাজন নীতি : কোনো গতীয় সংস্থার মোট শক্তি হয় এবং প্রতি স্বাধীনতার মাত্রার শক্তির পরিমাণ $=\frac{1}{2}~\mathrm{kT}$ । আমরা জানি, এক পারমাণবিক গ্যাসের একটি অণুর স্বাধীনতার মাত্রা 3। অতএব, এই সূত্রানুযায়ী একটি অণুর গড় শক্তি $= \frac{3}{2}\,\mathrm{kT}$ । দ্বিপারমাণবিক গ্যাসের স্বাধীনতার মাত্রা 5। অতএব, দ্বিপরমাণবিক প্রতিটি অণুর গড় শক্তি $=rac{5}{2}\,\mathrm{kT}$ ।

গ এখানে, চাপ, $P = 72 \text{ cm} = \frac{72}{76} \text{ atm} = \frac{18}{19} \text{ atm}$ তাপমাত্রা, $T = 27^{\circ}C = (27 + 273) K = 300 K$ মোলার গ্যাস ধ্র^ভবক, $R = 0.0821 \text{ L atm } \text{K}^{-1}$ অক্সিজেনের ভর, W = 20 g অক্সিজেনের আণবিক ভর, M = 32g আয়তন, V=?

আমরা জানি,

n মোলের জন্য, PV = nRT

বা,
$$PV = \frac{w}{M}RT$$

বা, $V = \frac{wRT}{MP}$

$$= \frac{(20g) \times (0.0821 \text{ L atm K}^{-1}) \times (300 \text{ K})}{(32g) \times \left(\frac{18}{19} \text{ atm}\right)}$$

$$\therefore V = 16.25 \text{ L (Ans.)}$$

ঘ এখানে,

অক্সিজেনের ভর = 20g

 \therefore অক্সিজেনের মোল সংখ্যা, $n_o = \frac{20g}{32g} = 0.625 \; mol$ তাপমাত্রা, T = 27°C = 300 K

∴ অক্সিজেনের গতিশক্তি = $\frac{3}{2}$ nRT $=\frac{3}{2} \times 0.625 \times 8.314 \text{ Jkg}^{-1}\text{k}^{-1} \times 300 \text{ K}$

হাইড্রোজেনের ক্ষেত্রে,

আয়তন, V = 16.25 L

ਨੀਂਆਂ,
$$P = 72 \text{ cm} = \frac{72}{76} \text{ atm} = \frac{18}{19} \text{ atm}$$

গ্যাস ধ্র^ভবক, R = 0.0821 Latmk⁻¹

তাপমাত্রা, T = 27°C = 300 K

মোল সংখ্যা, $n_H = ?$

আমরা জানি.

$$PV = nRT$$

বা,
$$\frac{18}{19}$$
 atm × 16.25 L = n_H × 0.0821 L atm K⁻¹ × 300 K

 $n_H = 0.625 \text{ mol.}$

$$\therefore$$
 হাইড্রোজেনের গতিশক্তি $= \frac{3}{2} \, n_H RT$ $= \frac{3}{2} \times 0.625 \times 8.314 \, Jmole^{-1} \, K^{-1} \times 300 \, K$ $= 2338 \, 31 \, J$

অর্থাৎ গাণিতিক বিশে-ষণে দেখা যায়, যে একই আয়তনের পাত্রের জন্য হাইড্রোজেন ও অক্সিজেন গ্যাসের গতিশক্তি সমান হবে। (Ans.)

প্রশ্ন ▶২৮ নয়নপাল 5L গ্যাসপূর্ণ একটি বেলুন নিয়ে হ্রদের তলদেশে নামলেন। হ্রদের তলদেশে বেলুনটি 1L আয়তন ধারণ করে। <u>হ</u>েদের গভীরতা 40.8m এবং বেলুনটির সর্বোচ্চ ধারণ ক্ষমতা 8L।

[খুলনা পাবলিক কলেজ, খুলনা]

- ক. জড়তার ভ্রামক এর সংজ্ঞা দাও।
- খ. গ্যাসের ঘনত্বের হ্রাস বৃদ্ধিতে গড়মুক্ত পথের কীরূপ পরিবর্তন হবে, ব্যাখ্যা কর।
- গ. হ্রদের তলদেশে বায়ুম≕লীয় চাপ কত?
- ঘ. হ্রেদের তলদেশে যদি বেলুনটিতে গ্যাস ভরে আয়তন 2L করা হয় তবে নয়নপাল যখন হ্রেদের উপরিতলে আসে তখন বেলুনটি অক্ষত থাকবে কিনা গাণিতিকভাবে বিশে-ষণ কর। 8

২৮ নং প্রশ্নের উত্তর

ক কোনো নির্দিষ্ট সরলরেখা থেকে কোনো দৃঢ় বস্তুর প্রত্যেকটি কণার লম্ব দূরত্বের বর্গ এবং এদের প্রত্যেকের ভরের গুণফলের সমষ্টিকে ঐ সরলরেখার সাপেক্ষে ঐ বস্তুর জড়তার ভ্রামক বলে।

খ গড়মুক্ত পথ সংক্রান্ড ক্লাসিয়াসের সমীকরণটি হলো: λ = $rac{1}{\sqrt{2\pi\sigma^2 n}}$; এখানে σ হলো অণুর ব্যাস যা সুনির্দিষ্ট ।

সুতরাং $\lambda \propto \frac{1}{n}$; ঘনত বাড়লে একক আয়তনে অণুর সংখ্যা (n)বাড়বে, তখন গড় মুক্ত পথের মান কমবে। বিপরীতক্রমে, ঘনতু কমলে গড় মুক্তপথের মান বাড়বে।

গ দেওয়া আছে, ্রদের গভীরতা, h = 40.8m জানা আছে, পানির ঘনত্ব, $\rho = 1000 \text{ kgm}^{-3}$ বায়ুম=লীয় চাপ, $P = 101325 \text{ Nm}^{-2}$ বের করতে হবে, হ্রদের তলদেশে চাপ, P' = ?

আমরা জানি, হ্রনের তলদেশে চাপ, P' = বায়ুম^{্র}লীয় চাপ + পানির চাপ

- $= P + h\rho g$
- = $101325 \text{ Nm}^{-2} + 40.8 \text{m} \times 1000 \text{ kgm}^{-3} \times 9.8 \text{ ms}^{-2}$
- $= 501165 \text{ Nm}^{-2} \text{ (Ans.)}$

য হেদের পৃষ্ঠদেশে এবং তলদেশে বেলুনের আয়তনের অনুপাত = $\frac{5L}{11}$ = 5 তাপমাত্রা ও বায়ুম[—]লীয় চাপ অপরিবর্তিত থাকলে বেলুনের আয়তনের এই অনুপাত অপরিবর্তিত থাকবে।

সুতরাং হ্রদের তলদেশে বেলুনটিতে অতিরিক্ত গ্যাস ভরে এর আয়তন 2L করা হলে পৃষ্ঠদেশ পর্যন্ড আসতে আসতে এর আয়তন বেড়ে দাঁড়াবে = 5 × 2L = 10 L

কিন্তু বেলুনটির সর্বোচ্চ ধারণক্ষমতা 8L

সুতরাং বেলুনটি যখন হুদের উপরিতলে আসে তখন বেলুনটি অক্ষত

প্রশু ▶২৯ একটি হ্রদের তলদেশের পানির তাপমাত্রা 14°C। হ্রদের তলদেশ থেকে উপরের পৃষ্ঠে আসার ফলে একটি বাতাসের বুদবুদের ব্যাস দ্বিগুণ হয়। হ্রেদের পৃষ্ঠে বায়ুর চাপ $1.01 imes 10^5 ext{Pa}$ । হ্রেদের উপরিতলে তাপমাত্রা 35°C এবং হ্রেদের তলদেশে বুদবুদের আয়তন [বিএএফ শাহীন কলেজ, যশোর]

- ক. শক্তির সমবিভাজন নীতি কাকে বলে?
- খ. কোনো স্থানের আপেক্ষিক আর্দ্রতা 30% বলতে কী বুঝ?
- গ. উদ্দীপকের শর্ত অনুসারে বুদবুদের আয়তনের পরিবর্তন হবে কি? গাণিতিক বিশে-ষণে আয়তন বের কর।
- ঘ. উদ্দীপকের হ্রদের তাপমাত্রা অপরিবর্তিত থাকলে হ্রদের গভীরতা কত?

২৯ নং প্রশ্নের উত্তর

ক কোনো তাপগতীয় সংস্থার মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বণ্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ $=\frac{1}{2} kT$ ।

খ কোনো নির্দিষ্ট তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ুতে যে পরিমাণ জলীয় বাষ্প থাকে এবং ঐ তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্পুক্ত করতে যে পরিমাণ জলীয় বাম্পের প্রয়োজন হয় তাদের অনুপাতকে আপেক্ষিক আর্দ্রতা বলে।

সূতরাং কোনো স্থানের আপেক্ষিক আর্দ্রতা 30% বলতে বুঝায়. ঐ স্থানের বায়ুকে সম্পক্ত করতে যে পরিমাণ জলীয় বাষ্প প্রয়োজন তার 30 শতাংশ জলীয় বাষ্প ঐ স্থানের বায়ুতে বিদ্যমান।

গ বুদবুদের আয়তন তাপমাত্রার সমানুপাতিক এবং চাপের ব্যস্ড্ ানুপাতিক। যেহেতু হ্রদের তলদেশ অপেক্ষা পষ্ঠদেশে তাপমাত্রা বেশি এবং চাপ কম, তাই বলা যায়, তলদেশ থেকে পৃষ্ঠদেশে আসলে বুদবুদের আয়তনের পরিবর্তন ঘটবে (বৃদ্ধি পাবে)।

বুদবুদের বা গোলকের আয়তনের $V=rac{1}{6}\pi d^3$ সূত্রানুসারে $V\propto d^3$ সুতরাং ব্যাস (d) দ্বিগুণ হলে আয়তন পূর্বের তুলনায় 2³ বা 8 গুণ

যেহেতু হ্রুদের তলদেশে বুদবুদের আয়তন, $V_1=1\ cm^3$ সুতরাং হ্রেরে পৃষ্ঠদেশে বুদবুদের আয়তন, $V_2 = 8V_1 = 8 \times 1 cm^3 =$ 8cm³ (**Ans.**)

ঘ ধরি, হ্রদের গভীরতা h

হলের পৃষ্ঠদেশে চাপ, $P_2 = 1.01 \times 10^5 Pa$ হলে তলদেশে চাপ, $P_1 = P_2 + h\rho g [\rho =$ পানির ঘনত]

হ্রদের সর্বত্র তাপমাত্রা একইরূপ হলে বয়েলের সূত্রানুসারে,

 $P_1V_1 = P_2V_2$

বা, $(P_2 + h\rho g)V_1 = P_2.8V_1$

বা, $h\rho g = 8P_2 - P_2 = 7P_2$

$$\therefore h = \frac{7P_2}{\rho g} = \frac{7 \times 1.01 \times 10^5 \ Pa}{1000 \ kgm^{-3} \times 9.8 ms^{-2}} = 72.14 \ m$$
 সুতরাং হ্রদের গভীরতা 72.14m

প্রশু ▶৩০ 2 × 10⁻²m³ আয়তন বিশিষ্ট একটি সিলিন্ডার 300 K তাপমাত্রায় একজন রোগীর ব্যবহারের জন্য সরবরাহ করা হলো। সিলিভারটিতে $3 \times 10^5 \; \mathrm{Pa}$ চাপে অক্সিজেন গ্যাস রাখা আছে। শ্বাস কষ্ট হওয়ায় রোগীটি কিছু পরিমাণ অক্সিজেন গ্যাস ব্যবহার করায় সিলিন্ডারের চাপ নির্দেশক যন্ত্র $2 \times 10^5~{
m Pa}$ নির্দেশ করে। সিলিন্ডারটির সহনশীল তাপমাত্রা 573K। [সরকারি আকবর আলী কলেজ, উল-াপাড়া, সিরাজগঞ্জ]

ক. স্বাভাবিক চাপ কাকে বলে?

খ. স্থির আয়তনে গ্যাসের চাপ প্রসারণ সহগ $\frac{1}{273}$ /°C বলতে কি

গ. উদ্দীপকে ব্যবহৃত অক্সিজেনের পরিমাণ কত?

ঘ. উদ্দীপকে বর্ণিত সিলিন্ডারটির চাপ 3 × 105 Pa এ অপরিবর্তিত রেখে কী পরিমাণ অক্সিজেন প্রবেশ করানো নিরাপদ?

৩০ নং প্রশ্নের উত্তর

ক কোনো স্থানে 76cm বায়ুম≕লীয় পারদ চাপকে ঐ স্থানের স্বাভাবিক চাপ বলা হয়।

খি স্থির আয়তনে গ্যাসের চাপ প্রসারণ সহগ $\frac{1}{273}$ /°C বলতে বোঝায় আয়তন স্থির রেখে 0°C তাপমাত্রার নির্দিষ্ট ভরের 1Pa চাপের গ্যাসের তাপমাত্রা 1°C বাড়লে এর চাপ $rac{1}{273}\,\mathrm{Pa}$ পরিমাণ বাড়ে।

গ এখানে, আদি আয়তন, $V_1 = 2 \times 10^{-2} \text{m}^3$

আদি চাপ, $P_1 = 3 \times 10^5 \text{ Pa}$

তাপমাত্রা, T₁ = 300 K

পরিবর্তিত চাপ, $P_2 = 2 \times 10^5 \, \text{Pa}$

ধরি, আদি মোল সংখ্যা = n₁

পরিবর্তিত মোল সংখ্যা = n_2

$$\therefore \ n_1 = \frac{P_1 V_1}{RT} \, \, \text{এবং} \, n_2 = \frac{P_2 V_2}{RT}$$

এক্ষেত্রে,
$$V_1 = V_2 = V$$

$$\therefore n_1 = \frac{P_1 V}{RT} \quad \text{এবং } n_2 = \frac{P_2 V}{RT}$$

∴ রোগীর ব্যবহৃত মোল সংখ্যা =
$$n_1 - n_2$$

$$= \frac{P_1 V}{RT} - \frac{P_2 V}{RT}$$

$$= (P_1 - P_2) \frac{V}{RT}$$

$$= (3 \times 10^5 \, Pa - 2 \times 10^5 \, Pa) \frac{2 \times 10^{-2} m^3}{8.314 \, J \, mol^{-1} K^{-1} \times 300 \, K}$$

$$= 0.8018$$
 ∴ ব্যবহৃত O_2 এর ভর = $\Delta n \times M$
$$= 0.8018 \times 32 \, gm \, [O_2$$
 এর মোলার ভর $32 \, gm]$
$$= 0.8018 \times 32 \times 10^{-3} kg$$

$$= 0.0257 \, kg \, (\textbf{Ans.})$$

ত্বি সিলিভারে অক্সিজেন প্রবেশ করানোর ফলে অক্সিজেনের আয়তন বৃদ্ধি পাবে। চাপ অপরিবর্তিত থাকায় আয়তন বৃদ্ধির সাথে সাথে এর তাপমাত্রা বৃদ্ধি পেতে থাকে। এক্ষেত্রে তাপমাত্রা সহনশীল তাপমাত্রার বেশি হওয়া যাবে না।

দেয়া আছে, আদি আয়তন, $V_1 = 2 \times 10^{-2} \, \mathrm{m}^3$ আদি তাপমাত্রা, $T_1 = 300 \, \mathrm{K}$ শেষ তাপমাত্রা = সহনশীল তাপমাত্রা = 573 K শেষ আয়তন, $V_2 = ?$

আমরা জানি,
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 বা, $V_2 = \frac{V_1 T_2}{T_1} = \frac{2 \times 10^{-2} \text{m}^3 \times 573 \text{ K}}{300 \text{ K}}$

 \therefore উদ্দীপকে বর্ণিত সিলিভারটির চাপ অপরিবর্তিত রেখে অতিরিক্ত (3.82 × 10^{-2} –2 × $10^{-2}){\rm m}^3$ পরিমাণ বা, $1.82 \times 10^{-2}{\rm m}^3$ অক্সিজেন নিরাপদে প্রবেশ করানো যাবে।

প্রশ্ন ▶৩১ 5L গ্যাস পূর্ণ একটি বেলুনকে টেনে একজন ডুবুরী একটি হেদের তলদেশে নিয়ে গেলেন। হ্রদের তলদেশে বেলুনটি 1L আয়তন ধারণ করে। অতঃপর ডুবুরি তলদেশে বেলুনটিতে আরও 1L গ্যাস পূর্ণ করল। এবং বেলুনটি পানির উপরে তোলা শুর[™] করল। বেলুনটির সর্বোচ্চ প্রসারণ ক্ষমতা 9L। হ্রদের গভীরতা 40.8m।

[ঠাকুরগাঁও সরকারি মহিলা কলেজ, ঠাকুরগাঁও]

- ক. তাৎক্ষণিক বেগ কাকে বলে?
- খ. স্থির গাড়ীতে বসে থাকা আরোহী গাড়ীকে ঠেলে গতিশীল করতে পারে না কেন?
- গ. উদ্দীপকে বায়ুম≕লীয় চাপ নির্ণয় কর।
- ঘ. ডুবুরী কি বেলুনটিকে অক্ষত অবস্থায় পানির উপরে তুলতে পারবে– গাণিতিকভাবে বিশে-ষণ কর।

৩১ নং প্রশ্নের উত্তর

ক সময়ের ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সাথে বস্তুর সরণের হারকে তাৎক্ষণিক বেগ বলে।

ইর গাড়িতে বসে থাকা আরোহী গাড়ীর কোনো অংশের উপর (যেমন স্টিয়ারিং) সম্মুখ দিকে 'ক্রিয়াবল' প্রয়োগ করলেও গাড়ির অপর অংশের উপর (যেমন গাড়ির মেঝে বা সীট) পিঠ বা পা দিয়ে ক্রিয়াবলের সমমানের 'প্রতিক্রিয়া বল' প্রয়োগ করতে বাধ্য। এতে গাড়ির দুটি ভিন্ন অংশের ওপর সমান মানের 'ক্রিয়া' ও 'প্রতিক্রিয়া' বল প্রযুক্ত হওয়ায় গাড়ির ওপর লব্ধিবল শূন্য হয়। এ কারণে স্থির গাড়িতে বসে থাকা আরোহী গাড়িকে ঠেলে গতিশীল করতে পারে না।

গ পানির উপরিতলে চাপ,
$$P_1=P_a$$
 আয়তন, $V_1=5L$ পানির নিচে চাপ, $P_2=P_a+P_w$ আয়তন, $V_2=1$ L আমরা জানি,
$$P_1V_1=P_2V_2$$
 বা, $P_a.5L=(P_a+P_w)\times 1$ L

বা,
$$5P_a = P_a + P_w$$

বা, $4P_a = h\rho g$
বা, $P_a = \frac{h\rho g}{4}$

$$= \frac{40.8m \times 1000 \text{ kgm}^{-3} \times 9.8ms^{-2}}{4}$$

$$= 99960 \text{ Nm}^{-2} (\textbf{Ans.})$$

ঘ পরিবর্তিত অবস্থায়,

পানির তলদেশে আয়তন, $V_1 = 1L + 1 L = 2L$

চাপ,
$$P_1 = P_a + P_w$$

পানির উপরিদেশে আয়তন, $V_2 = ?$

চাপ,
$$P_2 = P_a$$

আমরা জানি,

$$P_1V_1 = P_2V_2$$

বৌ, $(P_a + P_w) \times 2 = P_1 \times V_2$
বৌ, $V_2 = \frac{2(P_a + P_w)}{P_a}$
$$= \frac{2(99960 + 40.8 \times 1000 \times 9.8)}{99960}$$
$$= 10 L$$
থেছে, $10 L > 9 L$

সুতরাং, অক্ষত অবস্থায় পানির উপরিতলে আসবে না, তার আগেই ফেটে যাবে।

প্রা \triangleright 03 একদিন সকালে মিতু স্কুলে যাবার পথে একটি হলের পাশ দিয়ে হেঁটে যাওয়ার সময় লক্ষ্য করল হেদের স্বচ্ছ পানির তলদেশ থেকে বায়ু বুদবুদ পানির উপরিতলে আসছে। পানির উপরে এসে বুদবুদটি বড় আকার ধারণ করেছে। [পানির উপরিতলে বুদবুদটির আকার 5 গুণ এবং বায়ুম $^{-}$ লের চাপ ছিল $10^5~{
m Nm}^{-2}$] কিন্তু পরের দিন মিতু লক্ষ্য করলো যে, পানির উপরিতলে বুদবুদের আকার হয়েছে $4\frac{1}{2}$ গুণ।

[রাজবাড়ী সরকারি মহিলা কলেজ, রাজবাড়ী]

- ক. বাষ্প কাকে বলে?
- খ. মেঘলা রাত্রি অপেক্ষা মেঘহীন রাতে শিশির বেশি জমে কেন?২
- গ. উদ্দীপকে প্রদত্ত তথ্যানুসারে মিতুর দেখা হ্রদের গভীরতা নির্ণয় কর।
- ঘ. দুই দিনে বুদবুদের আকার দুই রকম হওয়ার যৌক্তিক কারণ বিশে-ষণ কর।

৩২ নং প্রশ্নের উত্তর

ক কোনো গ্যাসীয় পদার্থের তাপমাত্রা এর ক্রাম্প্ডি তাপমাত্রা অপেক্ষা কম হলে তাকে বাষ্প বলে।

মঘহীন রাত্রিতে ভূ-পৃষ্ঠ তাপ বিকিরণ করে ঠালা হতে থাকে এবং পরিশেষে এমন একটি তাপমাত্রায় উপনীত হয় যখন বাতাস জলীয় বাষ্প দ্বারা সম্পৃত্ত হয় এবং জলীয় বাষ্প দ্বনীভূত হয়ে শিশির জমে। কিন্তু আকাশ মেঘাচ্ছন্ন হলে ভূ-পৃষ্ঠ তাপ বিকিরণ করে ঠালা হতে পারে না। কারণ মেঘ তাপরোধী পদার্থ বলে ভূ-পৃষ্ঠ হতে বিকিরণজনিত তাপ সঞ্চালিত হতে পারে না। ফলে ভূ-পৃষ্ঠ সংলগ্ন বায়ুমন্ডল ঠালাও হয় না এবং শিশির জমে না।

গ আমরা জানি,

$$\begin{array}{l} P_1V_1=P_2V_2\\ \overline{\text{df}},\; (P_a+P_w)V=P_a.5V\\ \overline{\text{df}},\; P_a+P_w=5P_a\\ \overline{\text{df}},\; 4P_a=P_w\\ =h\rho g\\ \therefore\; h=\frac{4P_a}{\rho g}\\ =\frac{4\times 10^5\; Nm^{-2}}{1000\; kgm^{-3}\times 9.8ms^{-2}} \end{array} \qquad \begin{array}{l} \text{এখানে,}\\ \text{হোদর তলাদেশ } \quad \text{বুদবুদের}\\ \text{আয়তন,}\; V_1=V\\ \overline{\text{bight,}}\\ \overline{\text{minoh,}}\\ \overline{\text{minoh,}}\\ \overline{\text{vire,}}\\ \overline{\text{minoh,}}\\ \overline{\text{minoh,}}$$

∴ h =
$$40.81$$
 m (Ans.) $V_2 = 5V$

আ দুই দিনে দুই রকম তাপমাত্রা হতে পারে। তবে হৃদের তলদেশে বুদবুদের আয়তনের তুলনায় পৃষ্ঠদেশে বুদবুদের আয়তন কতগুণ হবে তা নির্জর করে তলদেশ ও পৃষ্ঠদেশে চাপের অনুপাতের ওপর। কারণ নির্দিষ্ট দিনে হ্রদের সর্বত্র তাপমাত্রা একই থাকে। সূতরাং দুই দিনে বুদবুদের আয়তনের অনুপাতের দুই রকম মান (5 গুণ ও $4\frac{1}{2}$ গুণ) পাওয়ার সম্ভাব্য কারণ: বায়ুচাপের পরিবর্তন অথবা হ্রদের গভীরতার পরিবর্তন।

পরবর্তী দিনে বায়ুমালীয় চাপ P_2 হলে $P_1V_1 = P_2V_2$ বা, $(P_2 + h\rho g)V_1 = P_2 \times 4.5V_1$ বা, $3.5P_2 = h\rho g$

$$\therefore P_2 = \frac{h\rho g}{3.5} = \frac{40.81 \,\text{m} \times 1000 \,\text{kgm}^{-3} \times 9.8 \,\text{ms}^{-2}}{3.5} = 114268 \,\text{Nm}^{-2}$$

 $>> 101325\ Nm^{-2}$

বায়ুম[—] লীয় চাপের সর্বোচ্চ মান $101325Nm^{-2}$ এর কাছাকাছি। তাই বায়ুম[—] লীয় চাপ $114268Nm^{-2}$ হতে পারে না। মনে করি, হ্রদের গভীরতার পরিবর্তন ঘটেছে। পরবর্তী দিনে হ্রদের গভীরতা h' হলে, $(P_2+h'\rho g)V_1=P_2\times 4.5V_1$ বা, $3.5P_2=h'\rho g$

$$\therefore$$
 h' = $\frac{3.5P_2}{\rho g}$ = $\frac{3.5 \times 101325 \text{ Nm}^{-2}}{1000 \text{kg/m}^3 \times 9.8 \text{m/s}^2}$ = 36.1875m
সুতরাং কোনো ভৌত প্রক্রিয়ায় হ্রেদের গভীরতা হ্রাস পেয়ে 36.1875m -এ উপনীত হয়েছে।

প্রশ্ন ▶০০ একটি লবণাক্ত হ্রদের তলদেশের তাপমাত্রা 260K এবং হুদের পানির ঘনত্ব 1200kg/m³। হুদের তলদেশ থেকে পানির উপরিতলে আসায় একটি বায়ু বুদবুদের ব্যাস দ্বিগুণ হয়। হুদের উপরিতলে বায়ুর চাপ 10⁵N/m² এবং তাপমাত্রা 300K।

[সুনামগঞ্জ সরকারি কলেজ, সুনামগঞ্জ]

২

(9)

- ক. স্থিতিস্থাপক সীমা কী?
- খ. রাস্প্র ব্যাংকিং বলতে কী বুঝ-ব্যাখ্যা কর।
- গ্র উদ্দীপকে উলে-খিত হ্রদের গভীরতা নির্ণয় কর।
- ঘ. যদি হ্রদের তাপমাত্রা ধ্র⁴বক থাকে এবং হ্রদটি মিঠা পানির হয় তবে হ্রদের গভীরতার কীরূপ পরিবর্তন হবে— গাণিতিক যুক্তিসহ ব্যাখ্যা কর।

৩৩ নং প্রশ্নের উত্তর

- ক যে সীমার মধ্যে কোনো বস্তুর উপর বাহ্যিক বল প্রয়োগে বিকৃত করলে বিকৃত বস্তুটি আবার পূর্বের অবস্থায় ফিরে আসে, সেই সীমাকে ঐ বস্তুর স্থিতিস্থাপক সীমা বলে।
- বা কোনো গাড়ি বৃত্তাকার পথে বাঁক নেবার সময় গতি জড়তার কারণে গাড়ি বক্রপথের স্পর্শক বরাবর চলে যাওয়ার প্রবণতা দেখায়। এ দুর্ঘটনা এড়ানোর জন্য কেন্দ্রমুখীর বলের প্রয়োজন হয় যার কিছু অংশ গাড়ির চাকা ও রাস্ড্রর মধ্যবর্তী ঘর্ষণ বল যোগান দেয়। এ ঘর্ষণ বলের মান বাড়ানোর জন্য রাস্ড্রর বাইরের প্রাম্ভ্র ভেতরের প্রাম্ভ্রে চেয়ে কিছুটা কোণে তথা উঁচুতে থাকে। একে রাস্ড্রর ব্যাংকিং বলে।

$$\begin{split} &\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \\ &\text{II}, \ \frac{(P_a + P_w)V}{260K} = \frac{P_a.8V}{300K} \\ &\text{II}, \ P_a + P_w = \frac{P_a.8.260}{300} \\ &\text{II}, \ P_a + P_w = \frac{104\ P_a}{15} \\ &\text{II}, \ 15P_a + 15\ P_w = 104\ P_a \\ &\text{II}, \ 15P_w = 104P_a - 15P_a \end{split}$$

এখানে, হ্রদের তলদেশে, প্রাথমিক চাপ, $P_1=P_a+P_w$ যেখানে, P_a এবং P_w হচ্ছে বায়ু এবং পানির চাপ প্রাথমিক আয়তন $V_1=V$ প্রাথমিক তাপমাত্রা $T_1=260~K$ হদের উপরিদেশে যেহেতু ব্যাস দ্বিগুণ হয় এবং $V \propto d^3$ সুতরাং, $V_2=8V$ চড়াম্ড চাপ, $P_2=P_a$

বা,
$$h\rho g = \frac{89P_a}{15}$$
বা, $h = \frac{89P_a}{15\rho g}$
বা, $h = \frac{89 \times 10^5 \text{ N/m}^2}{15 \times 1200 \text{ kg/m}^3 \times 9.8 \text{ms}^{-2}}$
∴ $h = 50.45 \text{ m (Ans.)}$

চূড়াম্ড় তাপমাত্রা, $T_2 = 300 \mathrm{K}$ বায়ুর চাপ, $P_a = 10^5 \mathrm{N/m^2}$

- য যদি তাপমাত্রা ধ্র[©]বক থাকে, $P_1V_1 = P_2V_2$ বা, $(P_a + P_w)V = P_a \times 8V$ বা, $P_a + P_w = 8P_a$ বা, $P_w = 8P_a P_a$ বা, $h\rho g = 7P_a$ বা, $h = \frac{7P_a}{\rho g}$
 - = $\frac{1000~{
 m kg/m^3} \times 9.8 {
 m ms}^{-2}}{1000~{
 m kg/m^3} \times 9.8 {
 m ms}^{-2}}$ [যেহেতু মিঠা পানির ঘনতৃ ho = $1000~{
 m kg/m^3}$ এবং (গ) হতে, P_a = $10^5~{
 m N/m^2}$]
- ∴ h = 71.42 m ∴ হদের গভীরতার পরিবর্তন, ∆h = 71.42m – 50.45m = 20.97m

[পঞ্চগড় সরকারি মহিলা কলেজ, পঞ্চগড়]

- ক. গড় মুক্ত পথ কাকে বলে?
- খ. কোনো স্থানের আপেক্ষিক আর্দ্রতা 60% হলে বৃষ্টি হওয়ার সম্ভাবনা কীরূপ-ব্যাখ্যা কর।
- গ. প্রাথমিক অবস্থায় গ্যাসটির মোট শক্তি নির্ণয় কর।
- ঘ. উক্ত গ্যাসটি আদর্শ গ্যাস কিনা-গাণিতিক বিশে-ষণের মাধ্যমে তোমার মতামত দাও।

৩৪ নং প্রশ্নের উত্তর

- ক কোনো অণুর পরপর দুটি সংঘর্ষের মধ্যবর্তী দূরত্বগুলোর গড় নিলে যে দূরত্ব পাওয়া যায় তাকেই গড় মুক্ত পথ বলে।
- বা কোনো স্থানের আপেক্ষিক আর্দ্রতা 60% বলতে বোঝা যায়, বায়ুর তাপমাত্রায় ঐ স্থানকে সম্পৃক্ত করতে যে পরিমাণ জলীয়বাষ্প প্রয়োজন তার শতকরা 60 ভাগ জলীয় বাষ্প ঐ স্থানের বায়ুতে আছে। সূতরাং, ঐ মুহূর্তে তখন বৃষ্টি হওয়ার সম্ভাবনা কম। বৃষ্টি হতে আরো দুই তিনদিন সময় লাগবে।

ত্য আদর্শ গ্যাসসমূহ বয়েল ও চার্লসের সূত্র মেনে চলে। বয়েল ও চার্লসের সূত্রের সমন্বিত রূপ হলো: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ অর্থাৎ, আদর্শ গ্যাসের জন্য, এখানে, প্রাথমিক অবস্থায়

$$\begin{array}{l} \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} = K \\ \therefore \frac{P_1V_1}{T_1} \\ = \frac{2.026 \times 10^5 \ Nm^2 \times 1660 \times 10^{-3} m^3}{300 \ K} \\ = 1121.053 \ JK^{-1} \\ = 1121.1 \ JK^{-1} \\ \end{array}$$

আবার,
$$\frac{P_2V_2}{T_2} = \frac{3.065 \times 10^5 Nm^{-2} \times 1240 \times 10^{-3}m^{\frac{1}{2}}}{339 \text{ K}}$$

$$= 1121.1 \text{ JK}^{-1}$$

া (00+2/3)K = 339 K আবার, $\frac{P_2V_2}{T_2} = \frac{3.065 \times 10^5 Nm^{-2} \times 1240 \times 10^{-3}m^3}{339 \text{ K}}$ = 1121.1 JK $^{-1}$ যেহেছু $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ সূত্রটি মেনে চলে, অতএব উক্ত গ্যাসটি আদর্শ

প্রশ্ন ▶৩৫ স্বাভাবিক তাপমাত্রা ও চাপে নাইট্রোজেনের ঘনত্ব 1.25 kgm⁻³, <u>একটি পাত্রে অণুগুলো ছুটাছুটি করছে। তাপমাত্রা বাড়ালে এদের বেগ বৃদ্ধি</u> [ক্যান্টনমেন্ট পাবলিক স্কুল এন্ড কলেজ, সৈয়দপুর,নীলফামারী]

- ক. পর্যায়বত্ত গতি কী?
- খ. সেকেড দোলকের সাথে সরল দোলকের পার্থক্য কী?
- গ্. উদ্দীপকের নাইট্রোজেন অণুর গড় বর্গবেগের বর্গমূল নির্ণয় কর ৩
- ঘ. তাপমাত্রা বৃদ্ধি করে স্বাভাবিকের চেয়ে 100°C বেশি করা হলে গড় বর্গবেগের বর্গমূলের কী পরিবর্তন হবে গাণিতিক বিশে-ষণ করে ব্যাখ্যা কর।

৩৫ নং প্রশ্নের উত্তর

ক কোনো বস্তুর গতি যদি এমন যে. এটি গতিপথের কোনো নির্দিষ্ট বিন্দুকে নির্দিষ্ট সময় পরপর একই দিক থেকে অতিক্রম করে. তবে উক্ত গতিকে পর্যাবৃত্ত গতি বলে।

খ যে সরল দোলকের দোলনকাল 2sec. তাকে সেকেন্ড দোলক বলে। সতরাং সকল সেকেন্ড দোলক সরল দোলক হলেও সকল সরল দোলক সেকেন্ড দোলক নয়।

काता निर्मिष्ठ ञ्चात रमक्ख मानक्ति कार्यकती रेमर्घा मुनिर्मिष्ठ । ভূপুষ্ঠে সেকেন্ড দোলকের কার্যকরী দৈর্ঘ্য 99.3 cm। সাধারণ সরল দোলকের ক্ষেত্রে এরূপ কোনো বৈশিষ্ট্য প্রযোজ্য নয়।

গ দেওয়া আছে, নাইট্রোজেনের ঘনত্ব, $ho = 1.25~{
m kgm}^{-3}$ — জানা আছে, স্বাভাবিক বায়ুচাপ, P = 101325 Nm⁻² বের করতে হবে, গড় বর্গবেগের বর্গমূল, $C_{rms} = ?$

আমরা জানি,
$$C_{rms} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3 \times 101325 \text{ Nm}^{-2}}{1.25 \text{ kgm}^{-3}}}$$

$$= 493 \text{ ms}^{-1} (\mathbf{Ans.})$$

ঘ তাপমাত্রা বৃদ্ধি করে স্বাভাবিকের চেয়ে 100°C বেশি করা হলে অর্থাৎ তাপমাত্রা T = (100 + 273)K = 373K হলে, গড় বর্গবেগের বর্গমূল,

$$\begin{split} C_{rms} &= \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.314 \ Jmole^{-1}K^{-1} \times 373K}{28 \times 10^{-3} \ Kg}} \\ &= 576.4 \ ms^{-1} \end{split}$$

সুতরাং তাপমাত্রা বৃদ্ধি করে স্বাভাবিকের চেয়ে 100°C বেশি করা হলে গড় বর্গবেগের বর্গমূল বৃদ্ধি পাবে $= (576.4 - 493) \mathrm{ms}^{-1} = 83.4 \ \mathrm{ms}^{-1}$ ।

প্রশ়্ ▶৩৬ হ্রেদের তলদেশের পানির তাপমাত্রা 17°C। একটা বুদবুদকে তলদেশ থেকে পৃষ্ঠে নিয়ে গেলে এর আয়তন পরিবর্তন হয়, হ্রেদের পানির উপরিতলে চাপ 10⁵Nm⁻² এবং তাপমাত্রা 30°C।

[ক্যান্টনমেন্ট পাবলিক স্কুল এন্ড কলেজ, শহীদ মাহবুব সেনানিবাস]

- ক. আপেক্ষিক আর্দ্রতা কাকে বলে?
- খ. তীব্রতার লেবেল 60 ডেসিবেল বলতে কী বুঝ?
- গ. যদি উদ্দীপকের বুদবুদকে তলদেশ থেকে পঞ্চে নেওয়া হয় তখন এর ব্যাসার্ধ চার গুণ হয়ে যায় আদি ব্যাসার্ধের

- তুলনায়। যদি পানির তাপমাত্রা ধ্র[—]বক হয় হ্রদের গভীরতা নির্ণয় কর।
- ঘ. যদি পানির গভীরতা 10m হয় তবে পানির পৃষ্ঠের আয়তন তলদেশের আয়তনের কতগুণ হবে? [উদ্দীপক ব্যবহার

৩৬ নং প্রশ্নের উত্তর

ক কোনো স্থানের বায়ুতে যে পরিমাণ জলীয় বাষ্প আছে এবং ঐ স্থানের বায়ু সর্বোচ্চ যে পরিমাণ জলীয় বাষ্প ধারণ করতে পারে, এ দুয়ের অনুপাতকে আপেক্ষিক আর্দ্রতা বলে।

খ আমরা জানি, $\beta = 10 \log \frac{I}{I_0} dB$

 $\therefore \beta = 60 \text{dB}$ হলে, $60 \text{dB} = 10 \log \frac{I}{I_0} \text{dB}$ বা, $\log \frac{I}{I_0} = 6$

বা, $I = I_o \times 10^6 = 10^{-12} \ Wm^{-2} \times 10^6 = 10^{-6} \ Wm^{-2}$ সূতরাং তীব্রতার লেভেল 60 ডেসিবেল বলতে বুঝায়. ঐ স্থানের প্রতি বর্গমিটার এলাকার মধ্যদিয়ে $10^{-6} W$ হারে শব্দশক্তি প্রবাহিত হচ্ছে।

গা আমরা জানি, গোলকের আয়তন, $V=rac{4}{3}\,\pi r^3$ অর্থাৎ $V\,\propto\,r^3$ সুতরাং ব্যাসার্ধ 4 গুণ হয়ে গেলে আয়তন হয় পূর্বের তুলনায় 4³ বা 64

গুণ। হ্রদের পৃষ্ঠদেশে চাপ, $P_2 = 10^5 Nm^{-2}$ হুদের তলদেশে চাপ, $P_1 = P_2 + h\rho g [h =$ হুদের গভীরতা, $\rho =$ পানির

তাপমাত্রা ধ্র^ভব থাকায় বয়েলের সূত্রানুসারে, $P_1V_1 = P_2V_2$

বা, $(P_2 + h\rho g)V_1 = P_2.64V_1$

বা, $(64-1)P_2 = h\rho g$

$$\therefore h = \frac{63P_2}{\rho g} = \frac{63 \times 10^5 \text{ Nm}^{-2}}{1000 \text{ kgm}^{-3} \times 9.8 \text{ ms}^{-2}} = 643 \text{ m (Ans.)}$$

য পানির গভীরতা h = 10 m হলে, $P_1 = P_2 + h\rho g = 10^5 Nm^{-2} + h\rho g$ $\overline{10}$ m × 1000 kgm⁻³ × 9.8 ms⁻² = 1.98 × 10⁵ Nm⁻²

তাপমাত্রা প্র⁻ব না থাকায়,
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
 বা, $\frac{V_2}{V_1} = \frac{P_1T_2}{P_2T_1} = \frac{1.98 \times 10^5 Nm^{-2} \times (30 + 273)K}{10^5 Nm^{-2} \times (273 + 17)K} = 2.07$ সুতরাং যদি পানির গভীরতা $10m$ হয়, তবে উদ্দীপক ব্যবহার করে

পাই, পানি পুষ্ঠে বুদবুদের আয়তন তলদেশের আয়তনের 2.07 গুণ হবে।

প্রশ্ন ▶৩৭ A ও B দুটি হ্রদ। A হ্রদের তলদেশ থেকে একটি বাতাসের বায়ুম⁼ লের চাপ 10⁵Nm⁻², বায়ুর তাপমাত্রা 18.6°C এবং আপেক্ষিক আর্দ্রতা 52.4%। অন্য কোনো একদিন B হ্রুদটিতে বায়ুর তাপমাত্রা A হ্রেদের সমান এবং শিশিরাংক 7.4°C, কিন্তু 7°C, 8°C, 18°C ও 19°C তাপমাত্রায় সম্পক্ত জলীয়বাম্পের চাপ যথাক্রমে $7.5 imes 10^{-3} ext{m.} 8.2 imes$ 10⁻³m, 15.6 × 10⁻³m এবং 16.5 × 10⁻³ পারদ।

[চট্টগ্রাম বিজ্ঞান কলেজ, চট্টগ্রাম]

- ক. গড়মুক্ত পথ কাকে বলে?
- খ. 'একই তাপমাত্রায় ভিন্ন ভিন্ন মোল গ্যাসের ক্ষেত্রে গড় গতিশক্তি ধ^লবক'–ব্যাখ্যা কর ।
- গ. Aহ্রদের গভীরতা নির্ণয় কর।
- ঘ. উদ্দীপকের কোন হ্রদটিতে একজন ব্যক্তির পক্ষে বেশি স্বস্পিড় বোধ হবে-গাণিতিকভাবে বিশে-ষণ কর।

৩৭ নং প্রশ্নের উত্তর

ক গ্যাসের অণুগুলোর পরপর দুটি সংঘর্ষের মধ্যবর্তী অতিক্রাম্ড গড় দূরত্বকে গড় মুক্তপথ বলে।

খ কোনো নির্দিষ্ট ভরের গ্যাসের অণগুলোর গতিশক্তির গডকে গড

আমরা জানি, T তাপমাত্রায় 1 মোল গ্যাসের গতিশক্তি $K.E = \frac{3}{2}RT$ ।

আবার, T তাপমাত্রায় গ্যাসের যেকোনো একটি অণুর গতিশক্তি, $\bar{\rm E}=rac{3}{2}\,{
m kT};$ এখানে ${
m K}$ হলো বোল্টজম্যানের ধ্র^{ক্র}বক। $\bar{\rm E}$ দ্বারা অণুসমূহের গড় গতিশক্তি বুঝায়।

∴ দেখা যাচেছে যে, তাপমাত্রা একই হলে ভিন্ন ভিন্ন মোল গ্যাসের জন্য গড গতিশক্তি একই হবে।

গ দেওয়া আছে,

 $\overline{\mathbf{A}}$ হদের উপরিতলে বায়ুর চাপ, $\mathrm{P}_1=10^5\mathrm{Nm}^{-2}$

পানির ঘনত্ব, $\rho = 1000 \text{ kgm}^{-3}$

ধরি, A.হদের গভীরতা h m এবং তলদেশে বায়ু বুদবুদের ব্যাস d₂ m ∴হদের উপরিতলে বুদবুদের ব্যাস, d₁ = 3d₂ m

হ্রদের তলদেশে বুদুবুদের চাপ, $P_2=(P_1+h\rho g)\ Nm^{-2}$

্রেদের উপরিতলে বুদবুদের আয়তন, $V_1=\frac{1}{6}\,\pi d_1{}^3$

হেদের তলদেশে বুদবুদের আয়তন, $V_2=\frac{1}{6}\,\pi d_2{}^3$

আমরা জানি, $P_1V_1 = P_2V_2$

বা,
$$P_1 \frac{1}{6} \pi d_1^3 = (P_1 + h\rho g) \times \frac{1}{6} \pi d_2^3$$

বা,
$$P_1 \times \frac{1}{6} \pi \times (3d_2)^3 = (P_1 + h\rho g) \times \frac{1}{6} \pi d_2^3$$

বা, $P_1 \times 27 = P_1 + h\rho g$

বা, $h\rho g = 26P_2$

বা, h =
$$\frac{26P_2}{\rho g} = \frac{26 \times 10^5}{1000 \times 9.8} = 265.31$$
m

∴ Aহ্রদের গভীরতা 265.31 m

ঘ এখানে, A.হদে আপেক্ষিক অর্দ্রতা, $R_A = 52.4\%$ B.হদে বায়ুর তাপমাত্রা = 18.6° C

Bহ্রদে শিশিরাঙ্ক = 7.4°C

7°C তাপমাত্রায় সম্পৃত্ত জলীয় বাঙ্গের চাপ 7.5 × 10⁻³m

8°C তাপুমাত্রায় সম্পৃক্ত জুলীয় বাঙ্গের চাপু $8.2 imes 10^{-3} \mathrm{m}$

 \therefore 1°C বৃদ্ধিতে সম্পৃক্ত জলীয় বাষ্পের চাপ বৃদ্ধি = $(8.2-7.5) \times 10^{-3}$ \therefore 0.4°C বৃদ্ধিতে সম্পৃক্ত বাষ্পচাপ বৃদ্ধি পায় ={ $(8.2-7.5) \times 10^{-3} \times 0.4 \text{ m}$ }

 $= 0.28 \times 10^{-3} \text{m}$

 \therefore শিশিরাঙ্কে (7.4°C) সম্পৃক্ত জলীয় বাষ্পচাপ = (7.5 + 0.28) × $10^{-3}{
m m}$ বা, $f=7.78 \times 10^{-3}{
m m}$

আবার, 18° C তাপমাত্রায় সম্পৃক্ত জলীয়বাষ্প চাপ $15.6 \times 10^{-3} \mathrm{m}$ 19° C তাপমাত্রায় সম্পৃক্ত জলীয়বাষ্প চাপ $16.5 \times 10^{-3} \mathrm{m}$ 1° C তাপমাত্রা বৃদ্ধিতে সম্পৃক্ত জলীয়বাষ্প চাপ বৃদ্ধি $(16.5-15.6) \times 10^{-3} \mathrm{m}$

∴ 0.6°C তাপমাত্রা বৃদ্ধিতে সম্পৃক্ত জলীয় বাষ্প চাপ বৃদ্ধি = {(16.5 – 15.6) × 10⁻³ × 0.6}m = 0.54 × 10⁻³m

∴ বায়ুর তাপমাত্রায় (18.6°C) সম্পৃক্ত জলীয়বাম্প চাপ

 \therefore B.হ্রদে আপেক্ষিক আর্দ্রতা $R_B=rac{f}{F} imes 100\%$ $=rac{7.78 imes 10^{-3}}{16.14 imes 10^{-3}} imes 100\%$

যেহেতু B.হদে আপেক্ষিক আর্দ্রতা A.হদের চেয়ে কম। সুতরাং, B.হদে বেশি স্বম্প্রোধ হবে।

প্রা ১০৮ হ্রদের তলদেশে পানির তাপমাত্রা 17° C; একটা বুদবুদকে তলদেশ থেকে পৃঠে নিয়ে গেলে এর আয়তন পরিবর্তন হয়, হ্রদের পানির উপরিতলে চাপ $10^5~{\rm Nm}^{-2}$ এবং তাপমাত্রা $30^{\circ}{\rm C}$ ।

[সরকারি পি.সি. কলেজ, বাগেরহাট]

ক. মূল গড় বর্গ বেগ কাকে বলে?

খ. চার্লসের সূত্র থেকে পরমশূন্য তাপমাত্রার সংজ্ঞা দাও।

- গ. উদ্দীপকের বুদবুদকে তলদেশ থেকে পৃষ্ঠে নিয়ে গেলে এর ব্যাসার্ধ চারগুণ হয়ে যায়। পানির তাপমাত্রা স্থির থাকলে হ্রদের গভীরতা নির্ণয় কর।
- ঘ. হ্রনের গভীরতা 10m হলে উপরিপৃষ্ঠে বুদবুদটির তলদেশের আয়তনের কতগুণ হবে?

৩৮ নং প্রশ্নের উত্তর

ক কোনো গ্যাসের সকল অণুর বেগের বর্গের গড়মানের বর্গমূলকে মূল গড় বর্গ বেগ বলে।

যে তাপমাত্রায় গ্যাসের আয়তন শূন্য হয়, যার নিচে কোনো তাপমাত্রা থাকা সম্ভব নয়, কারণ তাহলে গ্যাসের আয়তন ঋণ্ডাক হতে হয়, যা অসম্ভব, সেই সর্বন্দি কল্পনাযোগ্য তাপমাত্রাকে পরম শূন্য তাপমাত্রা বলে।

চার্লসের সূত্রানুসারে, $V_{\theta} = V_{o} \left(1 + \frac{\theta}{273} \right)$

$$\therefore V_{-273} = V_o \left(1 - \frac{273}{273} \right)$$

অতএব, চার্লসের সূত্রানুসারে – 273°C গ্যাসের পরম শূন্য তাপমাত্রা।

া দেওয়া আছে, হ্রেদের উপরিতলের চাপ = বায়ুম $^{-2}$ লের চাপ = $10^5 {
m Nm}^{-2}$

আমরা জানি, পানির ঘনতু, $\rho=10^3 kgm^{-3}$

ধরা যাক, তলদেশের বুদবুদের আয়তন, $V_2 = V$

যেহেতু, বুদবুদ তলদেশ হতে পৃষ্ঠদেশে আসলে ব্যাসার্ধ 4 গুণ হয়; এবং বুদবুদের আয়তন ব্যসার্ধটির ঘনফলের সমানুপাতিক।

অতএব, পৃষ্ঠদৈশে বুদবুদের আয়তন, $V_1=64V$

এখন, প্রচাদেশে চাপ, $P_1 = 10^5 Nm^{-2}$

∴ তলদেশে চাপ, P₂ = P₁ + h গভীরতায় পানির চাপ

$$= 10^5 + h\rho g$$

হ্রদের গভীরতা, h = ?

এখন, $P_1V_1 = P_2V_2$

বা, $P_1 \times 64V = (P_1 + h\rho g) \times V$

বা, $P_1 \times 64V = (P_1 + h\rho g) V$

বা, $63P_1 = h\rho g$

বা,
$$h = \frac{63 \times 10^5}{10^3 \times 9.8}$$

:. h = 642.86 m (Ans.)

ঘ দেওয়া আছে, ্রুদের গভীরতা, h = 10 m ধরি, তল্দেশে চাপ, P1

পৃষ্ঠদেশে চাপ, $P_2 = 10^5 Nm^{-2}$ পানির ঘনতু, $\rho = 10^3 \, kgm^{-3}$

 $\therefore P_1 = P_2 + h\rho g$

ধরি, তলদেশে আয়তন, V1

এবং পৃষ্ঠদেশে আয়তন, V2

এখন, $P_1V_1 = P_2V_2$

বা, $(P_2 + h\rho g)V_1 = P_2V_2$

ৰা,
$$\frac{V_2}{V_1} = \frac{P_2 + h\rho g}{P_2} = \frac{10^5 + 10 \times 10^3 \times 9.8}{10^5}$$

 $\frac{\mathbf{V}_2}{\mathbf{V}_1} = 1.98$

 $V_1 = 1.98 V_1$

∴হদের পৃষ্ঠদেশের আয়তন তলদেশে বুদবুদের আয়তনের 1.98 গুণ।

প্রশ্ল ▶৩৯ একটি প-াস্টিকের তৈরি গ্যাস জারে 300°C তাপমাত্রার 9 × 10⁴Pa চাপে 4 mole গ্যাসের আয়তন 40m³, গ্যাস জারের অসহ পীড়ন 2.5 × 10⁶ Nm⁻². *[ভিকার⁵ননিসা ন্ন স্কুল এভ কলেজ, ঢাকা]*

ক. শিশিরাঙ্ক কাকে বলে?

খ. সিক্ত ও শুষ্ক বাল্প হাইগ্রোমিটারে সিক্ত ও শুষ্ক বাল্প থার্মোমিটারের তাপমাত্রার পার্থক্য খুব বেশি হলে সে স্থানে আবহাওয়া ব্যাখ্যা কর।

- গ. আয়তন স্থির থাকলে ঐ জারে 400°C তাপমাত্রায় কত চাপ দিবে?
- ঘ. অনুচ্ছেদে উলে-খিত গ্যাস জারে 600°C তাপমাত্রায় 200 mole গ্যাস 100m³ আয়তন দখল করলে গ্যাস জারের পরিণতি সম্পর্কে গাণিতিক যুক্তি দাও।

৩৯ নং প্রশ্নের উত্তর

ক যে তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ু তার ভেতরের জলীয় বাষ্প্য দ্বারা সম্প্রক হয় তাকে ঐ বায়ুর শিশিরাঙ্ক বলে।

সিক্ত ও শুষ্ক বাল্ব থার্মোমিটারের তাপমাত্রা একই হলে বুঝতে হবে বাতাস নতুন করে জলীয় বাষ্প শোষণ করছে না। সেক্ষেত্রে বাতাস জলীয় বাষ্প দারা সম্পৃক্ত- এরূপ বুঝতে হবে। তবে বাতাস যত দ্রুতি হারে জলীয় বাষ্প শোষণ করবে সিক্ত বাল্বের তাপমাত্রা তত হাস পাবে। সুতরাং সিক্ত ও শুষ্ক বাল্ব থার্মোমিটারের তাপমাত্রার পার্থক্য খুব বেশি হলে বুঝতে হবে, ঐ স্থানের বাতাস খুব দ্রুতি হারে জলীয় বাষ্প শোষণ করছে অর্থাৎ বাতাসের আপেক্ষিক আর্দ্রতা খুবই কম। সুতরাং আবহাওয়া ভালো অবস্থায় রয়েছে।

গ দেওয়া আছে, আদি তাপমাত্রা, T₁ = 300°C = (300 + 273)K = 373 k

চূড়াম্ড তাপমাত্রা, T₂ = 400°C = (400 + 273)K = 673 K আদি চাপ, P₁ = 9 × 10⁴ Pa

বের করতে হবে, চূড়াম্ড চাপ, $P_2 = ?$

আয়তন স্থির থাকলে রেনোর সূত্র তথা চাপের সুত্রানুসারে,

$$\frac{\mathbf{P}_2}{\mathbf{T}_2} = \frac{\mathbf{P}_1}{\mathbf{T}_2}$$

∴
$$P_2 = P_1 \frac{T_2}{T_1} = 9 \times 10^4 \text{ Pa} \times \frac{673 \text{ K}}{573 \text{K}} = 1.057 \times 10^5 \text{ Pa (Ans.)}$$

ঘ উদ্দীপকে বর্ণিত অবস্থায়,

তাপমাত্রা, T₁ = 573 K

চাপ. $P_1 = 9 \times 10^4 Pa$

মোলসংখ্যা, n₁ = 4

আয়তন, $V_1 = 40 \text{m}^3$

আদর্শ গ্যাস ধ্র[—]বক R হলে এক্ষেত্রে, P₁V₁ = n₁RT₁(i) পরিবর্তিত অবস্থায়

আয়তন, $V_2 = 100m^3$

মোল সংখ্যা, $n_2 = 200$

তাপমাত্রা, T₂ = 673 K

বের করতে হবে, চাপ, $P_2 = ?$

একেনে, $P_2V_2 = n_2RT_2$ (ii)

$$(ii) \div (i)$$
 २८७, $\frac{P_2V_2}{P_1V_1} = \frac{n_1T_2}{n_1T_1}$

$$\therefore P_2 = \frac{n_2 T_2}{n_1 T_1} \times \frac{P_1 V_1}{V_2} = \frac{200 \times 673 K}{4 \times 573 K} \times \frac{9 \times 10^4 \, Pa \times 40 m^3}{100 m^3}$$

= 2.114 × 10⁶Nm⁻² < 2.5 × 10⁶ Nm⁻² (অসহ পীড়ন) সুতরাং, জারটি তখনও অক্ষত থাকবে।

প্রশ্ন ►৪০ কোনো একদিন সেন্টমার্টিনে তাপমাত্রা ছিল 24°C এবং সম্পৃক্ত জলীয় বাষ্পচাপ 22.38mm পারদ চাপ, আপেক্ষিক আর্দ্রতা 80%। অপরদিকে ঢাকার শিশিরাংক 6.7°C ও বায়ুর তাপমাত্রা 17°C। 6°C, 7°C, 17°C, 20°C এবং 22°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ যথাক্রমে 6.5 mm, 7mm, 11.6mm. 17.54mm, 19.83 mm পারদ চাপ। খিলগাঁও গার্লস স্কুল এভ কলেজ, ঢাকা

- ক. পরম শূন্য তাপমাত্রা কাকে বলে?
- খ. কোনো স্থানের আপেক্ষিক আর্দ্রতা বলতে কী বুঝ?
- গ. ঢাকার আপেক্ষিক আর্দ্রতা কত?

ঘ. উদ্দীপকের আলোকে সেন্টমার্টিনে শিশিরাঙ্ক নির্ণয় করা যাবে কিনা যাচাই কর।

৪০ নং প্রশ্নের উত্তর

ক চার্লসের সূত্রানুসারে –273.16°C তাপমাত্রায় তাত্ত্বিকভাবে হলেও যেকোনো গ্যাসের আয়তন শূন্য হয় ফলে এ তাপমাত্রাকে পরম শূন্য তাপমাত্রা বলে।

কোনো নির্দিষ্ট তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ুতে যে পরিমাণ জলীয় বাষ্প থাকে এবং ঐ তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্পৃক্ত করতে যে পরিমাণ জলীয় বাষ্পের প্রয়োজন হয় তাদের অনুপাতকে আপেক্ষিক আর্দ্রতা বলে। এই অনুপাত দ্বারা বায়ু কতখানি ভিজা বা শুষ্ক তা নির্দেশ করা হয়। একে সাধারণত R দ্বারা প্রকাশ করা হয়।

গ দেওয়া আছে, ঢাকায় বায়ুর তাপমাত্রায় (17°C) সম্পৃক্ত বাষ্পচাপ, $F=11.6 \mathrm{mm}~\mathrm{HgP}$

এবং শিশিরাংকে (6.7°C) সম্পৃক্ত বাষ্পচাপ, $f=6.5+(7-6.5)\times0.7=6.85~{
m mm}~{
m HgP}$

 \therefore ঢাকার আপেক্ষিক আর্দ্রতা, $R = \frac{f}{F} \times 100\% = \frac{6.85 \text{mm}}{11.6 \text{ mm}} \times 100\%$ = 59.05% (Ans.)

ঘ সেন্টমার্টিনে আপেক্ষিক আর্দ্রতা, R = 80%

সেন্টমার্টিনে বায়ুর তাপমাত্রায় (24°C) সম্পৃক্ত বাষ্পচাপ,

∴ সেন্টমার্টিনে শিশিরাংকে সম্পুক্ত বাষ্পচাপ f হলে

$$R = \frac{f}{F} \times 100\%$$

$$\therefore f = \frac{\text{RF}}{100\%} = \frac{80\% \times 22.12}{100\%} = 17.7 \text{ mm HgP}.$$

যেহেতু 20°C এবং 22°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে 17.54mm এবং 19.83 mm HgP, তদুপরি, 17.54 mm <17.7 mm < 19.83 mm

∴ সেন্টমার্টিনে শিশিরাংক θ হলে, $20^{\circ}\mathrm{C}$ < θ < $22^{\circ}\mathrm{C}$ (19.83-17.54)mm = 2.29 mm এবং (17.7-17.54) mm = 0.16 mm সম্পুক্ত বাষ্পচাপ 2.29 mm বৃদ্ধি পায় যদি তাপমাত্রা $2^{\circ}\mathrm{C}$ বৃদ্ধি পায়

$$" = \frac{2 \times 0.16^{\circ} \text{C}}{2.29}$$
 = 0.14°C বৃদ্ধি পায়

∴ সেন্টমার্টিনে শিশিরাংক = 20°C + 0.14°C = 20.14°C সুতরাং, উদ্দীপকের আলোকে সেন্টমার্টিনে শিশিরাংক নির্ণয় করা যাবে।

প্রশ্ন ▶ 85 নুসরাত একটি সিলিভারে 25°C তাপমাত্রায় 1 মোল অক্সিজেন নিয়ে কাজ শুর[™] করলো। পরবর্তীতে প্রয়োজন হবে বলে সে আরো কিছু অক্সিজেন প্রবেশ করালো। এতে গ্যাসের তাপমাত্রা বেড়ে 37°C হলো এবং চাপ 1.5 শুণ হলো। সে সিলিভারে আরো 2 gm অক্সিজেন প্রবেশ করাতে চাইলো। কিছু শেষোক্ত তাপমাত্রা ও চাপে সিলিভারে সর্বাধিক 50 gm অক্সিজেন রাখা যাবে।

[আইডিয়াল স্কুল এন্ড কলেজ, মতিঝিল, ঢাকা]

- ক. শিশিরাংক কাকে বলে?
- খ. চলমান অবস্থায় গাড়ির চাকার চাপ বৃদ্ধি পায় কেন?
- গ. উদ্দীপকের সিলিভারের প্রাথমিক অবস্থায় গ্যাস অণুগুলোর মূল গড় বর্গবেগ কত ছিল?
- ঘ. নুসরাত সর্বশেষ পরিমাণের গ্যাস সিলিন্ডারে প্রবেশ করাতে পারবে কিনা— গাণিতিক বিশে-ষণের সাহায্যে যাচাই করো। ৪

৪১ নং প্রশ্নের উত্তর

ক যে তাপমাত্রায় কোনো নির্দিষ্ট আবদ্ধ স্থানের বায়ু এর মধ্যস্থিত জলীয় বাষ্প দ্বারা সম্পুক্ত হয় তাকে উক্ত স্থানের শিশিরাংক বলে।

ই চলমান অবস্থায় গাড়ির চাকার অভ্যম্ভরে সমআয়তন প্রক্রিয়া চলে। এতে চাকার অভ্যম্ভরে গ্যাসের আয়তন বৃদ্ধি পায় না। চাকার

২

৩

সাথে রাম্পুর ঘর্ষণের ফলে চাকায় যে তাপ উৎপন্ন হয় তার কিছু অংশ গ্যাসে প্রবেশ করে, এছাড়া গাড়ির গতিশক্তির সামান্য অংশ গ্যাসের তাপশক্তিরূপে দেখা দেয়। $\Delta Q = \Delta U + \Delta W$ সূত্রানুসারে এক্ষেত্রে $\Delta W = 0$ (কারণ গ্যাসের প্রসারণ ঘটে না, $\Delta W = P\Delta V = P.0 = 0$), তাই $\Delta Q = \Delta U$ হয়। এই তাপশক্তির কারণে গ্যাসের তাপমাত্রা বৃদ্ধি

পায়। তখন স্থির আয়তনে চাপের সূত্রানুসারে $\left(\frac{P_1}{T_1} = \frac{P_2}{T_2}\right)$ গ্যাসের চাপ বৃদ্ধি পায়। এ কারণে চলমান অবস্থায় গাড়ির চাকার চাপ বৃদ্ধি পায়।

গ দেওয়া আছে.

উদ্দীপকের সিলিভারে প্রাথমিক অবস্থায় গ্যাস অণুগুলোর তাপমাত্রা, $T=25^{\circ}C=(25+273)~K=298~K$ অক্সিজেনের মোলার আণবিক ভর, $M=32~gm=32\times 10^{-3}kg$ জানা আছে, আদর্শ গ্যাস প্র[©]বক, $R=8.314~Jmol^{-1}K^{-1}$ গ্যাস অণুগুলোর মূল গড় বর্গবেগ, $C_{rms}=?$ আমরা জানি,

$$\begin{split} C_{rms} &= \sqrt{\frac{3RT}{M}} \\ &= \sqrt{\frac{3 \times 8.314 \ Jmol^{-1}K^{-1} \times 298K}{32 \times 10^{-3} \ kg}} \\ &= 481.95 \ ms^{-1} \ (\textbf{Ans.}) \end{split}$$

প্রথমাবস্থায়, তাপমাত্রা, $T_1=25^{\circ}C=298~K$ গ্যাসের ভর , $m_1=1$ মোল অক্সিজেনের ভর = 32~gm ধরি সিলিভারের আয়তন V এবং প্রথমাবস্থায় গ্যাসের চাপ $P_1=P$ পরিবর্তিত অবস্থায় তাপমাত্রা, $T_2=37^{\circ}C=310~K$ চাপ, $P_2=1.5P$

গ্যানের আয়তন, V

এসময় গ্যাসের ভর $m_2(gm)$ হলে, $P_2V=\dfrac{m_2}{M}\,RT_2$ (i)

এবং প্রথমাবস্থায়, $P_1V=rac{m_1}{M}\,RT_1$ (ii)

(i) ÷ (ii) হতে পাই,

$$\frac{\frac{P_2 V}{P_1 V}}{\frac{P_1 V}{P_1}} = \frac{m_2}{m_1} \frac{T_2}{T_1}$$

$$\frac{1.5 P}{P} = \frac{m_2}{32 gm} \times \frac{310 K}{298 K}$$

$$\therefore \quad m_2 = 32 gm \times 1.5 \times \frac{298}{310} = 46.14 gm$$

সিলিভারে আরো 2gm অক্সিজেন প্রবেশ করালে গ্যাসের সর্বমোট ভর হবে =46.14gm+2gm

= 48.14gm < 50gm (সিলিভারের সর্বাধিক ধারণ ক্ষমতা) সুতরাং, নুসরাত সর্বশেষ পরিমাণের গ্যাস সিলিভারে প্রবেশ করাতে পারবে।

প্রশ্न ▶ 82 5L গ্যাসপূর্ণ একটি বেলুনকে একজন ডুবুরী একটি হ্রদের তলদেশে নিয়ে গেলেন। হ্রদের তলদেশে বেলুনটি 1L আয়তন ধারন করে। এই তথ্যের ভিত্তিতে রাসেল স্যার ঐ স্থানের বায়ুচাপ জেনে হিসাব করে দেখলেন হ্রদের গভীরতা 40.6m। বেলুনটির সর্বোচ্চ ধারণ ক্ষমতা 9L। (g = 9.8ms⁻² এবং পানির ঘনতু 10³kgm⁻³)

[এস ও এস হারম্যান মেইনার কলেজ, ঢাকা]

২

- ক. পানির ত্রৈধবিন্দু কাকে বলে?
- খ. আজকের আপেক্ষিক আর্দ্রতা 70% বলতে কী বুঝ?
- গ. পরীক্ষণীয় স্থানের চাপ নির্ণয় কর।
- ঘ. হ্রদের তলদেশে বেলুনটিতে আরও 0.7L বায়ু পূর্ণ করে এটিকে হ্রদের উপরিতলে অক্ষত অবস্থায় নিয়ে আসা সম্ভব হবে কী?— উত্তরের স্বপক্ষে গাণিতিক যুক্তি প্রদর্শন কর। 8

৪২ নং প্রশ্নের উত্তর

ক যে বিশেষ তাপমাত্রা ও চাপে পানি তরল, কঠিন ও বাষ্পীয় অবস্থায় সহাবস্থান করে তাকে পানির ত্রৈধবিন্দু বলে।

আজকের আপেক্ষিক আর্দ্রতা 70% বলতে বুঝায়, আজকের তাপমাত্রায় বায়ু সর্বোচ্চ যে পরিমাণ জলীয় বাষ্প ধারণ করতে পারে, তার শতকরা 70 ভাগ জলীয় বাষ্প বায়ুতে রয়েছে।

া মনে করি, পরীক্ষণীয় স্থানের বায়ুচাপ $P(Nm^{-2})$ হুদের পৃষ্ঠদেশে বেলুনের আয়তন, $V_1 = 5L$ হুদের তলদেশে বেলুনের আয়তন, $V_2 = 1L$ হুদের পৃষ্ঠদেশে বেলুনের উপর চাপ, $P_1 = P$

দেওয়া আছে, হ্রেদের গভীরতা, h=40.6~mঅভিকর্ষজ ত্বরণ, $g=9.8ms^{-2}$ পানির ঘনতু, $\rho=10^3~kgm^{-3}$

 \therefore হেদের তলদেশে বেলুনের ওপর চাপ, $P_2=P+h\rho g$

 $= P + 40.6m \times 10^3 \, kgm^{-3} \times 9.8ms^{-2} \\ = (P + 397880) \, Nm^{-2}$

হ্রদের সর্বত্র তাপমাত্রা একই— এরূপ বিবেচনায়, $P_1V_1 = P_2V_2$

 $PNm^{-2} \times 5L = (P + 397880) Nm^{-2} \times 1L$

বা, P + 397880 = 5P

বা, 4P = 397880

$$\therefore P = \frac{397880}{4} = 99470 \text{Nm}^{-2} \text{ (Ans.)}$$

ঘ হেদের পৃষ্ঠ দেশে চাপ, P = 99470 Nm⁻²

হ্রেনের তলদেশে বেলুনের ওপর চাপ, P₁ = P + 397880 Nm⁻² = 99470 Nm⁻² + 397880 Nm⁻² = 497350 Nm⁻²

তলদেশে বেলুনের আয়তন, $V_1 = 1L + 0.7L = 1.7L$ হ্রদের পৃষ্ঠদেশে বেলুনের আয়তন V_2 হলে,

 $P_1V_1 = P_2V_2$

$$\therefore V_2 = \frac{P_1 V_1}{P_2} = \frac{497350 Nm^{-2} \times 1.7 L}{99470 Nm^{-2}}$$

= 8.5L < 9L (বেলুনের সর্বোচ্চ ধারণ ক্ষমতা)

সুতরাং, হ্রদের তলদেশে বেলুনটিতে আরো, 0.72L বায়ুপূর্ণ করে এটিকেহ্রদের উপরিতলে অক্ষত অবস্থায় নিয়ে আসা সম্ভব হবে।

প্রশ্ন ▶ ৪৩ শীতকালে কোন একদিন ঢাকা ও চউগ্রামে শিশিরাংক 7.5°C এবং 8.5°C পাওয়া গেল। উভয়স্থানের তাপমাত্রা 20°C এবং 7°C, 8°C, 9°C, 10°C, 19°C, 20°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ যথাক্রমে 7.53mm, 8.61mm, 9.65mm, 10.60mm, 15.48 mm, 16.64mm পারদচাপ।

[সাভার ক্যান্টনমেন্ট পাবলিক স্কুল এন্ড কলেজ, ঢাকা]

- ক. শক্তির সমবিভাজন নীতি কী?
- খ. তরঙ্গ প্রবাহের ক্ষেত্রে মাধ্যমের কম্পনরত মোট শক্তির রাশিমালা বের কর।
- গ. উদ্দীপকের তথ্য মতে ঢাকায় আপেক্ষিক আর্দ্রতা কত?
- ঘ. উদ্দীপকের তথ্য মতে কোথায় আরামদায়ক হবে? উক্ত দিনের সন্ধ্যায় ঢাকায় তাপমাত্রা হঠাৎ 10°C হলে কী অবস্থা হতে পারে? ব্যাখ্যা কর।

৪৩ নং প্রশ্নের উত্তর

ক শক্তির সমবিভাজন নীতিটি হলো— তাপীয় সাম্যবস্থায় আছে এমন গতীয় সিস্টেমের মোট শক্তি বিভিন্ন স্বাধীনতার মাত্রার ভেতর সমভাবে বিণ্টিত হয় এবং প্রত্যেক স্বাধীনতার মাত্রা পিছু শক্তির পরিমাণ হয় $\frac{1}{2}$ kT। তরঙ্গ প্রবাহের ক্ষেত্রে মাধ্যমের কণা সরল ছন্দিত স্পন্দনে দোলায়মান থাকে। ধরি, এরূপ একটি কণার ভর m, কম্পনের বিস্ফ্

ার A, কৌণিক কম্পাঙ্ক ω , তাহলে সাম্যবস্থান হতে x দূরত্বে

অবস্থানকালে কণাটির বিভবশক্তি, $E_P=\frac{1}{2}\,m\omega^2x^2$ এবং গতিশক্তি, $E_K=\frac{1}{2}\,m\omega^2(A^2-x^2)$ তাহলে কণাটির মোট যান্ত্রিক শক্তি, $E_T=E_P+E_k=\frac{1}{2}\,m\omega^2x^2+\frac{1}{2}\,m\omega^2(A^2-x^2)=\frac{1}{2}\,m\omega^2\left(x^2+A^2-x^2\right)=\frac{1}{2}\,m\omega^2A^2$

গ দেওয়া আছে.

উক্ত দিনে ঢাকায় শিশিরাঙ্ক, $\theta=7.5^{\circ}$ C এবং বায়ুর তাপমাত্রা, $\theta_1=20^{\circ}$ C

 7° C, 8° C এবং 20° C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে $7.53 \mathrm{mm}, 8.61 \mathrm{mm}$ এবং $16.64 \mathrm{mm}$ HgP.

বের করতে হবে, ঢাকায় আপেক্ষিক আর্দ্রতা, R = ?

উক্তদিনে ঢাকার শিশিরাংকে সম্পৃক্ত বাষ্পচাপ, $f = \frac{7.53 + 8.61}{2} \text{ mmHgP}$ = 8.07 mm HgP

এবং বায়ুর তাপমাত্রায়, (20°C) সম্পৃক্ত বাষ্পচাপ, F = 16.64mm HgP

 \therefore ঐদিন ঢাকায় আপেক্ষিক আর্দ্রতা, $R=rac{f}{F} imes 100\%$

 $= \frac{8.07 \text{mm HgP}}{16.64 \text{mm HgP}} \times 100\% = 48.5\% \text{ (Ans.)}$

য উদ্দীপকের উপাত্তমতে, 8°C ও 9°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ, যথাক্রমে, 8.61mm এবং 9.65mm HgP

চউগ্রামে শিশিরাঙ্কে 8.5° C তাপমাত্রায় সম্পৃক্ত বাষ্প্রচাপ = $\frac{8.61+9.65}{2}$ = 9.13mm HgP

∴ চউ্টগ্রামে ঐ দিনের বায়ুর তাপমাত্রা (20°C) সম্পৃক্ত বাষ্পচাপ, F = 16.64mm HgP

 \therefore চট্রগামে ঐ দিনে আপেক্ষিক আর্দ্রতা, $R=rac{f}{F} imes 100\%$

 $\frac{9.13 mm \ HgP}{16.64 mm HgP} \times 100\% = 54.87\%$

লক্ষ্য করি, 48.5% < 54.87% অর্থাৎ ঐ দিন ঢাকার বাতাসে আপেক্ষিক আর্দ্রতা < চট্টগ্রামের বাতাসে আপেক্ষিক আর্দ্রতা। সুতরাং ঐ দিন ঢাকায় বেশি আরামদায়ক হবে। উক্ত দিনের সন্ধ্যায় ঢাকায় তাপমাত্রা হঠাৎ 10°C হলে আপেক্ষিক

আপেক্ষিক আর্দ্রতার এই মান অত্যম্প্ড উচ্চ মানের। সুতরাং, ঐ সন্ধ্যায় ঢাকায় লোকজন গরমে অত্যম্প্ড অস্বম্প্র্রোধ করবে, কারণ তাদের দেহের ঘাম চট করে শুকাবে না।

প্রশ্ন ▶88 একটি সিলিভারে অক্সিজেন গ্যাসের আয়তন = 6 × $10^{-3} \mathrm{m}^3$, তাপমাত্রা 37°C এবং চাপ = 2.6×10^5 Pa, অক্সিজেনের গ্রাম আণবিক ভর 32gm। ক্যাউনমেন্ট পাবলিক ক্কুল এভ কলেজ, সৈয়দপুর]

- ক. মুক্তিবেগ কাকে বলে?
- খ. ইস্পাত রাবার অপেক্ষা অধিক স্থিতিস্থাপক? ব্যাখ্যা কর।
- গ. সিলিন্ডারের গ্যাসের ভর নির্ণয় কর।
- ঘ. তাপমাত্রা দ্বিগুণ করা হলে সিলিভারের গ্যাসের একটি অণুর গড় গতিশক্তি দ্বিগুণ হবে কি? নির্দিষ্ট গাণিতিক বিশে-ষণ করে মতামত দাও।

৪৪ নং প্রশ্নের উত্তর

ক কোনে গ্রহের পৃষ্ঠ হতে কোনো বস্তুকে ন্যূনতম যে বেগে নিক্ষেপ করলে এটি আর ঐ গ্রহের পৃষ্ঠে ফিরে আসে না, তাকে ঐ গ্রহের মুক্তিবেগ বলে। য সমআকার ও আকৃতির একটি রাবারের খন্ড ও একটি ইস্পাতের খন্ড নিয়ে উভয়ের দৈর্ঘ্য বরাবর একই মানের বল প্রয়োগ করলে দেখা যায়, ইস্পাতের তুলনায় রাবারের খন্ডে দৈর্ঘ্যে প্রসারণের পরিমাণ অনেক বেশি। অর্থাৎ উভয় খন্ডে একই পরিমাণ দৈর্ঘ্য পীড়নের জন্য রাবারের ক্ষেত্রে দৈর্ঘ্য বিকৃতি $\frac{1}{L}$ বেশি। তাই $Y=\frac{F/A}{I/L}$ সূত্রানুসারে, ইস্পাতের তুলনায় রাবারের ইয়ং এর গুণান্ধ অনেক কম। একারণে বলা যায়, ইস্পাত রাবার অপেক্ষা বেশি স্থিতিস্থাপক।

া বার, ২ শত রাবার এংশেন বো শহুতি হুশিনশ ত্র দেওয়া আছে, গ্যাসের আয়তন, V = 6 × 10⁻³ m³ তাপমাত্রা, T = 37°C = (37 + 273)K = 310K চাপ, P = 2.6 × 10⁵ Pa মোলার ভর, M = 32 gm = 32 × 10⁻³ kg

জানা আছে, আদর্শ গ্যাস ধ্র⁻বক, $R = 8.314 J \text{ mole}^{-1} \text{K}^{-1}$ বের করতে হবে গ্যাসের ভর, m = ?

আমরা জানি, PV = $\frac{m}{M}$ RT

$$\therefore m = \frac{PVM}{RT} = \frac{2.6 \times 10^5 \text{ Pa} \times 6 \times 10^{-3} \text{m}^3 \times 32 \times 10^{-3} \text{kg}}{8.314 \text{Jmol}^{-1} \times 310 \text{K}}$$
$$= 0.0194 \text{ kg (Ans.)}$$

ঘ উদ্দীপক মতে,

গ্যাসের তাপমাত্রা, T = 310K,

জানা আছে, বোল্টজম্যানের ধ্র[—]বক, $K = 1.38 \times 10^{-23} \, \mathrm{J} \mathrm{K}^{-1}$ এ তাপমাত্রায় গ্যাসের যেকোনো অণুর গড় গতিশক্তি,

$$\overline{E} = \frac{3}{2} \, \mathrm{kT} = 1.5 \times 1.38 \times 10^{-23} \, \mathrm{JK^{-1}} \times 310 \mathrm{K} = 6.417 \times 10^{-21} \, \mathrm{J}$$
 তাপমাত্রার পরিবর্তিত মান, $\mathrm{T'} = 2\mathrm{T} = 2 \times 310 \mathrm{K}$

এক্ষেত্রে গ্যাসের অণুর গড় গতিশক্তি, $\overline{E}=\frac{3}{2}\,kT'$ = $1.5\times1.38\times10^{-23}\,JK^{-1}\times620\,K=1.2834\times10^{-20}J$ ।

লক্ষ্যকরি,
$$\dfrac{\overline{E}'}{\overline{E}}=\dfrac{1.2834\times 10^{-20}J}{6.417\times 10^{-21}J}=2$$

সুতরাং তাপমাত্রা দ্বিগুণ করা হলে সিলিন্ডারের গ্যাসের একটি অণুর গড় গতিশক্তি দ্বিগুণ হবে।

প্রশ্ন ▶8৫ কোনো একদিন সিক্ত ও শুষ্ক বালব হাইগ্রোমিটার যন্ত্রের শুষ্ক বালবের পাঠ 30° C এবং সিক্ত বালবের পাঠ 28° C । 30° C তাপমাত্রায় গে-ইসারের উৎপাদক 1.65 এবং 26° C, 28° C এবং 30° C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে 25.25×10^{-23} m, 28.45×10^{-3} m এবং 31.85×10^{-3} m পারদ চাপ। (একই দিনে কক্সবাজারের আপেক্ষিক আর্দ্রতা ছিল 90%)

ক. ঘাত বল কী?

খ. ভেক্টর গুণন ব্যাখ্যা কর।

গ. উদ্দীপকের যন্ত্রের সাহায্যে কিভাবে কক্ষের শিশিরাংক নির্ণয় করা যায়?

ঘ. ঐ দিন ঐ স্থানের আপেক্ষিক আর্দ্রতা নির্ণয় করে ঐ স্থান এবং কল্পবাজারের মধ্যে কোন স্থানটি অপেক্ষাকৃত স্বস্প্র্যিয়ক বলে মনে হবে তা গাণিতিকভাবে বিশে-ষণ কর।

৪৫ নং প্রশ্নের উত্তর

ক খুব ক্ষুদ্র সময়কাল ধরে অতিবৃহৎ মানের কোনো বল ক্রিয়া করলে তাকে ঘাত বল বলে।

খ \overrightarrow{A} ও \overrightarrow{B} ভেক্টরদ্বরের ভেক্টর বা ক্রস গুণফল,

অগ্রসর হয়, সেদিক বরাবর একক ভেক্টর হলো $\stackrel{\wedge}{\mathrm{n}}$ ।

গ দেওয়া আছে,

শুষ্ক বাল্বের তাপমাত্রা, $\theta_1 = 30^{\circ} \mathrm{C}$ আর্দ্র বাল্পের তাপমাত্রা, $\theta_2 = 28^{\circ}$ C শুষ্ক বাল্বের তাপমাত্রায় গে-ইসারের উৎপাদক, G = 1.65 বের করতে হবে, শিশিরাংক, $\theta = ?$ আমরা জানি, $\theta = \theta_1 - G(\theta_1 - \theta_2)$ $=30^{\circ}\text{C} - 1.65 (30^{\circ}\text{C} - 28^{\circ}\text{C})$ = 26.7°C (Ans.)

ঘ প্রদত্ত উপাত্ত মতে, ঐ স্থানের তাপমাত্রায় (30°C) সম্প্রক বাষ্প্রচাপ, $F = 31.85 \times 10^{-3} \text{m HgP}$

যেহেতু 26°C এবং 28°C তাপমাত্রায় সম্পুক্ত বাষ্পচাপ যথাক্রমে 25.25 × 10⁻³m এবং 28.45 × 10⁻³m HgP.

তাপমাত্রার 2°C পার্থক্যে সম্প্রক্ত বাষ্পচাপ বৃদ্ধি পায়

- $= 28.45 \times 10^{-3} \,\mathrm{m} 25.25 \times 10^{-3} \mathrm{m}$
- $= 3.2 \times 10^{-3} \text{ m HgP}$
- ∴ তাপমাত্রার 0.7°C পার্থক্যে সম্পুক্ত বাষ্পচাপ বৃদ্ধি পায় =

$$\frac{3.2 \times 10^{-3} \text{m HgP} \times 0.7}{2} = 1.12 \times 10^{-3} \text{ mHgP}$$

- \therefore শিশিরাংকে সম্পৃক্ত বাষ্পচাপ, $f=(25.25+1.12) imes 10^{-3} m$ $= 26.37 \times 10^{-3} \text{ mHgP}$
- \therefore ঐ স্থানে ঐ দিনের আপেক্ষিক আর্দ্রতা, $R=rac{f}{F} imes 100\%$

$$= \frac{26.37 \times 10^{-3} \text{ HgP}}{31.85 \times 10^{-3} \text{ HgP}} \times 100\%$$

- = 82.8% < 90° (কঁক্সবাজারের আপেক্ষিক আর্দ্রতা)
- ∴ কক্সবাজারের চেয়ে ঐ স্থানটি ঐ দিন অপেক্ষাকৃত বেশি স্বস্প্রিদায়ক হবে।

প্রশ্ন ▶৪৬ স্থির তাপমাত্রায় 5 লিটার বায়ুপূর্ণ একটি বেলুনকে একটি ্রদের 40.8মি. গভীরে নেয়া হলে বেলুনটি 1লিটার আয়তন ধারণ করে। বেলুনটির সর্বোচ্চ প্রসারণ ক্ষমতা 9 লিটার। [ক্যান্টনমেন্ট কলেজ, যশোর]

- ক. বিস্প্রর কাকে বলে?
- খ. কোনো শব্দের তীব্রতা লেভেল 20dB বলতে কী বুঝ?
- ২ গ. উদ্দীপক অনুসারে বায়ুমন্ডলের চাপ কত মিটার পারদ চাপ
- ঘ. উদ্দীপকে বর্ণিত বেলুনটি যদি হ্রদের তলদেশে থাকা অবস্থায় আরও 1 লিটার বায়ুপূর্ণ করে ছেড়ে দেয়া হয় তবে বেলুনটি অক্ষত অবস্থায় পানির উপরিতলে আসবে কী না- গাণিতিক যুক্তি দাও (মনে কর বেলুনের মুখ বাধা আছে।)

৪৬ নং প্রশ্নের উত্তর

ক তরঙ্গ সঞ্চালনকারী এবং সরল ছন্দিত স্পন্দনের কোনো কণা এর সাম্যবস্থান হতে যে কোনো একপাশে সর্বাধিক যে দূরত্ব অতিক্রম করে তাকে তরঙ্গটির বিস্ঞার বলে।

খ আমরা জানি, কোন শব্দের তীব্রতা I হলে, এর তীব্রতা লেভেল,

$$\beta = 10 \log \frac{I}{I_0} dB$$
 : $10 \log \frac{I}{I_0} dB = 20 dB$ হলে,

$$\log \frac{I}{I_0}=2$$
 বা, $\frac{I}{I_0}=10^2=100$ বা, $I=100I_0=100\times 10^{-12}$ $Wm^{-2}=10^{-10}\,Wm^{-2}$

সুতরাং, কোনো শব্দের তীব্রতা লেভেল 20dB বলতে বুঝায়, উক্ত শব্দের তীব্রতা $10^{-10}~Wm^{-2}$ যা প্রমাণ তীব্রতার ($I_0=I_0^{-12}~Wm^{-2}$) 100 গুণ।

গ দেওয়া আছে, হ্রেদের পৃষ্ঠদেশে বেলুনের আয়তন, $V_1=5L$ এবং তলদেশে বেলুনের আয়তন, $V_2 = 1L$ হ্রদের গভীরতা, h = 40.8m পানির ঘনতু, $\rho_{\rm w} = 10^{-3} \ {\rm kgm^{-3}}$

বায়ুমন্ডলের চাপ P হলে হ্রেদের পৃষ্ঠদেশে বেলুনের ওপর চাপ, $P_1 = P$ এবং তলদেশে বেলুনের উপর চাপ, $P_2=P+h\rho_w g$ ্রদের সর্বত্র তাপমাত্রা একই রূপ বিবেচনায়, বয়েলের সূত্র প্রয়োগে, $P_1V_1 = P_2V_2 \text{ TI, } P \times 5L = (P + h\rho_w g) \times 1L$

বা, $5P = P + h\rho_w g$

$$\therefore \ P = \frac{h\rho_w g}{4} \ = \frac{40.8 m \times 1000 kg m^{-3} \times 9.8 m s^{-2}}{4} \ = 99960 \ Nm^{-2}$$

∴ উদ্দীপক অনুসারে বায়ুমন্ডলের চাপ 99960 Nm⁻²

আবার, পারদচাপের ক্ষেত্রে পারদের ঘনত্ব, $\rho = 13.6 \times 10^3 \, \mathrm{kgm^{-3}}$

∴ পারদ স্ডুম্ভের উচ্চতা, h = ?

 $h\rho g = P$

আবার, h × 13.6 × 10³ × 9.8 = 99960

h = 0.75 m = 75 cm

সুতরাং বায়ুম⁼লের চাপ 75cm পারদচাপ।

ঘ হ্রেদের তলদেশে বেলুনের ওপর চাপ,

 $\overline{P_1} = P + h\rho_w g = 99960 \text{ Nm}^{-2} + 40.8 \text{m} \times 1000 \text{ kgm}^{-3} \times 9.8 \text{ms}^{-1}$ = 499800 Nm⁻² [গ **হতে** P = 99960 Nm⁻²]

হ্রদের পৃষ্ঠদেশে বেলুনের ওপর চাপ, $P_2 = 99960~{
m Nm}^{-2}$

হ্রেরে তলদেশে বেলুনের আয়তন, $V_1 = 1L + 1L = 2L$

এবং পৃষ্ঠদেশে বেলুনের আয়তন, V_2 হলে, $P_1V_1=P_2V_2$

$$\therefore \ V_2 = V_1 \frac{P_1}{P_2} \ = 2L \times \frac{499800 \ Nm^{-2}}{99960Nm^{-2}}$$

= 10L > 9L (বেলুনের সর্বোচ্চ প্রসারণ ক্ষমতা।)

সুতরাং উদ্দীপকে বর্ণিত বেলুনটি যদি হ্রেদের তলদেশে থাকা অবস্থায় 1 লিটার বায়ুপূর্ণ করে ছেড়ে দেওয়া হয় হবে বেলুনটি অক্ষত অবস্থায় পানির উপরিতলে আসবে না।

প্রশু > ৪৭ একদিন শুষ্ক ও সিক্ত বাল্প হাইগ্রোমিটারের পাঠ যথাক্রমে 20° এবং 12.8°C পাওয়া গেল। 20°C তাপমাত্রায় গে-ইসারের উৎপাদক 1.79। 7°C, 8°C এবং 20°C তাপমাত্রায় সম্পুক্ত জলীয় বাষ্প চাপ যথাক্রমে 7.5×10^{-3} , 8.1×10^{-3} এবং 17.4×10^{-3} mHgP |

[বগুড়া ক্যান্টনমেন্ট পাবলিক স্কুল এন্ড কলেজ, বগুড়া]

- ক. আদর্শ গ্যাস কী?
- খ. বায়ুর শিশিরাংক 20°C বলতে কী বুঝ?
- গ. ঐ দিনের শিশিরাংক নির্ণয় কর।
- ঘ. আপেক্ষিক আর্দ্রতা বের করে ঐ দিনের আবহাওয়া সম্পর্কে তোমার মতামত দাও।

৪৭ নং প্রশ্নের উত্তর

ক যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র <u>মেনে</u> চলে তাদেরকে আদর্শ গ্যাস বলে।

খ বায়ুর শিশিরাংক 20°C বলতে বুঝায়, বায়ুর তাপমাত্রা হ্রাস পেয়ে হবে অর্থাৎ 20°C তাপমাত্রায় আপেক্ষিক আর্দ্রতা হবে (100%) ফলে উক্ত স্থানে জলীয় বাষ্প শিশির কণা আকারে ঝরে পড়তে শুর^ভ করবে।

গ দেওয়া আছে, হাইগ্রোমিটারে শুষ্ক বাল্বের তাপমাত্রা, $\theta_1 = 20^{\circ}\mathrm{C}$ এবং সিক্ত বাল্বের তাপমাত্রা, $\theta_2 = 12.8^{\circ}$ C

শুষ্ক বাল্বের তাপমাত্রায় (20°C) গে-ইসারের উৎপাদক, G = 1.79

বের করতে হবে, ঐ দিনে শিশিরাংক, $\theta = ?$

আমরা জানি,
$$\theta = \theta_1 - G(\theta_1 - \theta_2)$$

= $20^{\circ}C - 1.79(20^{\circ}C - 12.8^{\circ}C)$
= $7.112^{\circ}C$

সুতরাং, ঐ দিনের শিশিরাংক 7.112°C

ঘ উদ্দীপকের 7°C এবং 8°C তাপমাত্রায় সম্পৃক্ত বাষ্প চাপ যথাক্রমে, $7.5 \times 10^{-3} \text{ mHgP}$ এবং $8.1 \times 10^{-3} \text{ mHgP}$ শিশিরাংকে (7.112°C তাপমাত্রায়) সম্পৃক্ত বাষ্পচাপ,

$$f = \left[7.5 + \frac{(8.1 - 7.5) \times 0.112}{1}\right] \times 10^{-3} \text{ mHgP}$$

 $= 7.5672 \times 10^{-3} \text{ mHgP}$

আবার বায়ুর তাপমাত্রায় (20°C) সম্পৃক্ত বাষ্পচাপ,

 $F = 17.4 \times 10^{-3} \text{ mHgP}$

 \therefore ঐ দিনের ঐ স্থানে আপেক্ষিক আর্দ্রতা, $\mathbf{R} = \frac{\mathbf{1}}{\mathbf{F}} \times 100\%$

```
= \frac{7.5672 \times 10^{-3} \text{ mHgP}}{17.4 \times 10^{-3} \text{ mHgP}} \times 100\% = 43.5\%
```

এ আপেক্ষিক আর্দ্রতা 100% এর চেয়ে অনেক কম (100% এর অর্ধেকের চেয়ে কম), সুতরাং ঐ দিনের আবহাওয়া মোটামোটি শুষ্ক ও ভালো। বৃষ্টিপাতের সম্ভাবনা অত্যম্ভ ক্ষীণ, অর্থাৎ খুব শীঘ্রই বৃষ্টিপাতের সম্ভাবনা নেই।

প্রশ্ন ▶৪৮ কোনো হ্রদের তলদেশ থেকে পৃষ্ঠে আসার ফলে একটি বাতাসের বুদবুদের আয়তন তিনগুণ বেড়ে যায়। হ্রদের পৃষ্ঠে বায়ুমন্ডলের চাপ 10⁵ Nm⁻²। *ইবনে তাইমিয়া স্কুল এভ কলেজ, কুমিল-i*]

- ক. প্রমাণ চাপ কাকে বলে?
- খ. বর্ষাকাল অপেক্ষা শীতকালে ভেজা কাপড় তাড়াতাড়ি শুকায় কেন? ২
- গ. উদ্দীপকের হ্রদের গভীরতা কত?
- ঘ. ব্যারোমিটারে পারদ স্প্রেম্ভর উচ্চতা 75cm হলে হ্রেদের গভীরতার কোনো পরিবর্তন হবে কী? (পারদের ঘনতু 13590kgm⁻³)

৪৮ নং প্রশ্নের উত্তর

ক সমুদ্রপৃষ্ঠে 45° অক্ষাংশে 273.16K তাপমাত্রায় উল-স্বভাবে অবস্থিত 760mm বিশিষ্ট শুষ্ক ও বিশুদ্ধ পারদ স্মৃদ্ধ যে চাপ দেয় তাকে প্রমাণ চাপ বলে।

বর্ষাকালের বায়ুতে শীতকালের চেয়ে বেশি জলীয় বাষ্প থাকে, ফলে বর্ষাকালে পানির বাষ্পায়ন কম হয়। এ কারণে ভিজা কাপড়ের পানি বর্ষাকালের চেয়ে শীতকালে দ্রুত বাষ্পায়িত হয়, ফলে শীতকালে ভিজা কাপড় বর্ষাকালের চেয়ে দুর্ভত শুকায়।

গ ধরি, উদ্দীপকের হ্রদের গভীরতা = h

হুদের তলদেশের বুদবুদের আয়তন, $V_1=V$ \therefore হুদের পৃষ্ঠদেশে বুদবুদের আয়তন, $V_2=3V$ হুদের পৃষ্ঠদেশে চাপ, $P_2=10^5\ Nm^{-2}$

 \therefore হদের তলদেশে চাপ, $P_1=P_2+h\rho g$

আমরা জানি,

 $\mathbf{P}_1\mathbf{V}_1 = \mathbf{P}_2\mathbf{V}_2$

বা, $(P_2 + h\rho g) V = P_2 \times 3V$

বা, $P_2 + h\rho g = 3P_2$

বা, $h\rho g = 2P_2$

ৰা,
$$h = \frac{2P_2}{\rho g}$$

$$\frac{2 \times 10^5}{\rho g}$$

 $\boxed{4}, \ h = \frac{2 \times 10^3}{1000 \times 9.8}$

:. h = 20.408m (Ans.)

ঘ এখানে, হ্রদের তলদেশে আয়তন, $\mathbf{V}_1 = \mathbf{V}$

হ্রদের পৃষ্ঠদেশে আয়তন, $V_2 = 3V$

হ্রদের পৃষ্ঠদেশে চাপ, $P_2 = 75 cm$ পারদ চাপ।

 $= 0.75 \times 13590 \times 9.8 \text{ Nm}^{-2}$ = 99886.5 Nm⁻²

 \therefore হ্রদের তলদেশে চাপ, $P_1=P_2+h\rho g$

আমরা জানি, $P_1V_1 = P_2V_2$

বা, $(P_2 + h\rho g)V = P_2 \times 3V$

বা, $P_2 + h\rho g = 3P_2$

$$\overline{A}, h = \frac{2P_2}{\rho g}$$

বা, $h = \frac{\overset{r}{2} \times 99886.5}{1000 \times 9.8}$

∴ h = 20.385m ≈ 20.408m (গ হতে প্রাপ্ত উচ্চতা)

সুতরাং ব্যারোমিটারে পারদ স্পুড়ের উচ্চতা 75cm হলে হ্রুদের গভীরতা একই থাকরে। প্রশ্ন ►8৯ আশা 5L গ্যাস পূর্ণ একটি বেলুন নিয়ে বালেশ্বর নদীর 40.8m গভীরে নামল এবং নদীর তলদেশে বেলুনটি 1L আয়তন ধারন করল। বেলুনের সর্বোচ্চ প্রসারণ ক্ষমতা 14L।

[পিরোজপুর সরকারি মহিলা কলেজ, পিরোজপুর]

ক. অনুনাদ কী?

খ. গাছের গোড়ায় পানি দিলে সে পানি ডালপালায় কিভাবে পৌছায়।

গ. নদীর উপরিতলে বায়ুর চাপ কত?

ঘ. নদীর তলদেশে বেলুনের আয়তন 3L হলে বেলুনটি নদীর উপরিতলে অক্ষত থাকবে কি না- গাণিতিক ব্যাখ্যা কর। 8

৪৯ নং প্রশ্নের উত্তর

ক কোনো পরবশ কম্পানের ক্ষেত্রে আরোপিত পর্যাবৃত্ত কম্পাঙ্ক বস্তুর স্বাভাবিক কম্পাংকের সমান হলে বস্তুটি সর্বোচ্চ বিস্ণ্ডার সহকারে কম্পিত হতে থাকে। এ ধরনের পরবশ কম্পানকে অনুনাদ বলে।

খা গাছের গোড়ায় পানি দিলে সে পানি গাছের মূল ও কাঠের মধ্যকার জাইলেম নামক কলার সুক্ষম ছিদ্রবিশিষ্ট নলাকার কোষগুলোর মধ্যদিয়ে শেষ পর্যশড় পাতায় পৌছায়। এক্ষেত্রে ঐ নলাকার লম্বা কোষগুলো কৈশিক নলরূপে আচরণ করে। কোষের দেয়ালের অণু ও পানি অণুর মধ্যকার আসঞ্জনবল, পানি অণুসমূহের মধ্যকার সংশক্তি বলের তুলনায় বৃহত্তর। তাই ঐ পানি অনায়সে পানির পৃষ্ঠটানের জন্য নলের মধ্যদিয়ে প্রবেশ করে নলের অপর প্রাশ্নেড় পাতায় পৌছে।

গু দেওয়া আছে, নদীর গভীরতা, h = 40.8m

নদীর পৃষ্ঠদেশে বেলুনের আয়তন, $V_1 = 5L$

নদীর তলদেশে বেলুনের আয়তন, $V_2 = 1 L$

জানা আছে, অভিকর্ষজ ত্বরণ, $g = 9.8 \text{ms}^{-2}$

এবং পানির ঘনত্ব, $\rho = 1000 \ {\rm kg^{-3}}$

নদীর উপরিতলে বায়ুর চাপ, $\mathbf{P}_1 = \mathbf{P}$ হলে তলদেশে চাপ,

 $P_2 = P + h\rho g$

•

নদীর সর্বত্র একই তাপমাত্রা বিবেচনায় বয়েলের সূত্র প্রয়োগে,

 $P_1V_1 = P_2V_2$ $\triangleleft \uparrow$, $P \times 5L = (P + h\rho g) \times 1L$

 $\overline{1}$, $h \rho g = 5P - P = 4P$

$$\therefore P = \frac{h\rho g}{4} = \frac{40.8m \times 1000 kg m^{-3} \times 9.8 ms^{-2}}{4}$$

 $= 99960 \text{ Nm}^{-2}$

ঘ নদীর তলদেশে বেলুনের আয়তন, $V_1 = 3L$

নদীর তলদেশে বেলুনের উপর চাপ,

 $P_1 = P + h\rho g = P + 4P = 5P = 5 \times 99960 \text{ Nm}^{-2}$

[গ হতে প্রাপ্ত P = 99960 Nm⁻²]

 $=499800 \text{ Nm}^{-2}$

নদীর পৃষ্ঠদেশে বেলুনের উপর চাপ, $P_2 = P = 99960 \ Nm^{-2}$

নদীর পৃষ্ঠদেশে বেলুনের আয়তন, V_2 হলে, $P_1V_1=P_2V_2$

$$V_2 = \frac{P_1 V_1}{P_2} = \frac{499800 \text{ Nm}^{-2} \times 3L}{99960 \text{ Nm}^{-2}}$$

= 15L > 14L (বেলুনের সর্বোচ্চ প্রসারণ ক্ষমতা)

সুতরাং, নদীর তলদেশে বেলুনের আয়তন 3L হলে বেলুনটির নদীর উপরিতলে আসলে অক্ষত থাকবে না।

প্রশ্ন ▶৫০ প্রমাণ তাপমাত্রা ও চাপে কোনো পাত্রে অক্সিজেন গ্যাস আছে। গ্যাসের আণবিক গতিতত্ত্ব অনুসারে তাপমাত্রা বাড়লে গ্যাসের মধ্যকার অণুগুলোর বেগ বৃদ্ধি পায়।

্রিম.সি. একাডেমী মডেল স্কুল এন্ড কলেজ; সিলেট]

ক. আদর্শ গ্যাস কাকে বলে?

খ. চার্লসের সূত্রটি ব্যাখ্যা কর।

গ. উদ্দীপকে উলে-খিত গ্যাসের মূল গড় বর্গবেগ নির্ণয় কর।

ঘ. গ্যাসটির মূল গড় বর্গবেগ 5 গুণ করতে হলে গ্যাসের তাপমাত্রা কত বাড়াতে হবে গাণিতিক বিশে-ষণের সাহায্যে নির্ণয় কর।

৫০ নং প্রশ্নের উত্তর

ক যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র মেনে চলে তাদেরকে আদর্শ গ্যাস বলে।

🔻 চার্লসের সূত্রটি হলো — স্থির চাপে কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন 0°C থেকে প্রতি ডিগ্রি সেলসিয়াস তাপমাত্রা পরিবর্তনের জন্য এর $0^{\circ}\mathrm{C}$ তাপমাত্রার আয়তনের $\frac{1}{273}$ অংশ যথাক্রমে বৃদ্ধি বা হ্রাস পায়। চার্লসের সূত্রানুসারে স্থির চাপে 0°C তাপমাত্রায় কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন V₀ হলে 0°C থেকে প্রতি ডিগ্রি সেলসিয়াস তাপমাত্রা পরিবর্তনের জন্য এর আয়তন $\frac{1}{273} \times V_0$ হারে পরিবর্তিত হবে। θ °C তাপমাত্রার পরিবর্তনের জন্য আয়তনের পরিবর্তন হবে $\frac{\theta}{273} imes V_0$ । সুতরাং θ° তাপমাত্রায় যদি ঐ গ্যাসের আয়তন V হয় তবে চার্লসের সূত্রানুসারে, $V=V_0+rac{\theta}{273}\,V_0$

গ্র দেওয়া আছে,

তাপমাত্রা, T = 0°C = 273K (যেহেতু প্রমাণ তাপমাত্রা) জানা আছে, আদর্শ গ্যাস ধ্র⁻⁻বক, $R = 8.314 \text{ Jmole}^{-1}\text{K}^{-1}$ অক্সিজেনের মোলার আণবিক ভর, M = $32 \mathrm{gm} = 32 \times 10^{-3} \mathrm{\,kg}$ বের করতে হবে মূল গড় বর্গবেগ, $C_{rms} = ?$

আমরা জানি,
$$C_{rms} = \sqrt{\frac{3RT}{M}}$$

$$= \sqrt{\frac{3 \times 8.314 \ Jmol^{-1}K^{-1} \times 273K}{32 \times 10^{-3}Kg}}$$

$$= 461.3 \ ms^{-1} \ (Ans.)$$

ঘ গ্যাসটির মূল গড় বর্গবেগ পূর্বের তুলনায় 5গুণ হলে,

 $C'_{rms} = 5C_{rms} = 5 \times 461.3 ms^{-1} = 2306.5 \ ms^{-1}$ । এক্ষেত্রে সংশি-স্ট পরম তাপমাত্রা T' হলে,

$$C'_{rms} = \sqrt{\frac{3RT'}{M}}$$

$$\exists I, \frac{3RT'}{M} = (C'_{rms})^{2}$$

$$\therefore T' = \frac{(C'_{rms})^{2}M}{3R} = \frac{(2306.5ms^{-1})^{2} \times 32 \times 10^{-3}kg}{3 \times 8.314 \text{ Jmole}^{-1}K^{-1}}$$

∴গ্যাসের তাপমাত্রা বাড়াতে হবে, T' – T = 6825.4K – 273K $= 6552.4 \text{K} = 6552.4 ^{\circ}\text{C}$

প্রশু ▶৫১ শরৎকালে একটি হ্রেদের বায়ুমন্ডলীয় চাপ 10⁵ Nm⁻² তাপমাত্রা শরৎকালের সমান থাকে কিন্তু শিশিরাঙ্ক 7.4°C হয়। শরৎকালে উক্ত হ্রদের তলদেশ থেকে উপরিতলে আসায় একটি বায়ু বুদবুদের ব্যাস দ্বিগুণ হয়।

তাপমাত্রা	সম্পৃক্ত জলীয় বাষ্পচাপ (পারদ চাপ)
7°C	7.5mm
8°C	8.2mm
18°C	15.6mm
19°C	16.5mm

- ক. বর্গমূল গড় বর্গবেগ কী?
- খ. আকাশ মেঘলা থাকলে শিশির পড়েনা কেন? ব্যাখ্যা কর।
- গ. উলে-খিত হ্রদের গভীরতা হিসাব কর।
- ঘ. উলে-খিত ঋতুতে উক্ত হ্রেদে ভ্রমণ স্বস্প্র্লায়ক হবে? গাণিতিকভাবে বিশে-ষণ কর।

৫১ নং প্রশ্নের উত্তর

ক কোন গ্যাসের সকল অণুর বেগের বর্গের গড়মানের বর্গমূলকে বর্গমূল গড় বর্গবেগ বলে।

খ আকাশ মেঘলা থাকলে ভু-পৃষ্ঠ তাপ বিকিরণ করে ঠান্ডা হতে পারে না। কারণ মেঘ তাপরোধী পদার্থ বলে ভূ-পৃষ্ঠ হতে বিকিরণজনিত কারণে তাপ পরিবাহিত হতে পারে না। ফলে ভূ-পৃষ্ঠ

ঠান্ডা হয় না এবং বাতাস জলীয়বাষ্প দ্বারা সম্পুক্ত হয় না। এজন্য আকাশ মেঘলা থাকলে শিশির পড়ে না।

গ এখানে,

শরৎকালে হ্রদের বায়ুমন্ডলীয় চাপ, $P_1 = 10^5 Nm^{-2}$ হ্রেরে তলদেশে বুদবুদের ব্যাস, $d_2 = d \; m$

∴্হ্রদের উপরিতলে বুদবুদের ব্যাস, d₁ = 2d m

হ্রদের গভীরতা, = h m

পানির ঘনত্ব, $\rho = 1000 \text{ kgm}^{-3}$

অভিকর্ষজ তুরণ, $g = 9.8 \text{ms}^{-2}$

 \therefore হদের তলদেশে চাপ, $P_2 = (P_1 + h\rho g) \ Nm^{-2}$ আমরা জানি.

বা,
$$P_1 \times \frac{4}{3} \pi \left(\frac{d_1}{2}\right)^3 = (P_1 + h\rho g) \times \frac{4}{3} \pi \times \left(\frac{d_2}{2}\right)^3$$

বা,
$$P_1 \times \left(\frac{2d}{2}\right)^3 = (P_1 + h\rho g) \left(\frac{d}{2}\right)^3$$

বা, $8P_1 = P_1 + h\rho g$

বা,
$$h = \frac{7P_1}{\rho g} = \frac{7 \times 10^5}{1000 \times 9.8} = 71.43 \text{m}$$

সুতরাং, উলে-খিত হ্রদের গভীরতা, 71.43 m।

ঘ এখানে, শরৎকালে আপেক্ষিক আর্দ্রতা, R' = 55% বসম্ভুকালে, বায়ুর তাপমাত্রা = 18.6°C

শিশিরাঙ্ক = 7.4°C 8°C তাপমাত্রায় সম্পুক্ত জলীয়বাষ্প চাপ 8.2 mm 7°C তাপমাত্রায় সম্পৃক্ত জলীয়বাষ্প চাপ 7.5 mm

1°C তাপমাত্রা বৃদ্ধিতে জলীয় বাষ্পচাপ বৃদ্ধি

(8.2-7.5)mm = 0.7mm ∴ 0.4°C তাপমাত্রা বৃদ্ধিতে জলীয় বাষ্প চাপ বৃদ্ধি = (0.7×0.4) mm

∴ 7.4°C তাপমাত্রায় বা শিশিরায়ে সম্পৃক্ত জলীয় বাষ্পচাপ = (7.5 + 0.28)mm

বা, f = 7.78mm

আবার, 18°C ও 19°C তাপমাত্রার জন্য একইভাবে,

0.6°C তাপমাত্রা বৃদ্ধিতে জলীয় বাষ্পচাপ বৃদ্ধি

=
$$\{(16.5 - 15.6) \times 0.6\}$$
mm
= 0.54 mm

∴ 18.6°C তাপমাত্রায় বা বায়ৣর তাপমাত্রায় সম্পুক্ত জলীয়বায়্প চাপ,

= (15.6 + 0.54)mm = 16.14mm

 \therefore বসম্ডুকালে আপেক্ষিক আর্দ্রতা, $R = \frac{r}{F} \times 100\%$

বা,
$$R = \frac{7.78}{16.14} \times 100\% = 48.20\% < R'$$

বসম্ভুকালে আপেক্ষিক আর্দ্রতা কম হওয়ায় বাতাসে জলীয় বাষ্পের পরিমাণও কম হয়। ফলে এই একই তাপমাত্রায় শরৎকাল অপেক্ষা বসম্ভুকালে শরীরের ঘাম দ্র^{ক্}ত শুকায় এবং অস্বম্প্ডি কম লাগে। এজন্য বসম্ভুকালে উক্ত হ্রুদে ভ্রমণ আরামদায়ক হবে।

প্রশ্ন ▶৫২ একদিন সিক্ত বাল্প ও শুষ্ক বাল্প হাইগ্রোমিটারে শুষ্ক ও সিক্ত বাল্প থার্মোমিটারে পাঠ যথাক্রমে 33°C এবং 28°C পাওয়া গেল। 32°C এবং 34°C তাপমাত্রায় গে-ইসারের রাশি যথাক্রমে 1.63 ও 1.61 এবং 24°C, 26°C ও 33°C তাপমাত্রায় সম্পুক্ত জলীয় বাম্পের চাপ যথাক্রমে 22.38, 25.21 ও 37.78mm Hg । ছি. মাহবুবুর রহমান মোল-া কলেজ, ঢাকা]

ক. আদর্শ গ্যাস কী?

খ. আপেক্ষিক আর্দ্রতা 60% বলতে কী বোঝায়?

গ. ঐ দিনের শিশিরাঙ্ক কত?

ঘ. আপেক্ষিক আর্দ্রতা বের করে ঐ দিনের আবহাওয়া সম্পর্কে মতামত দাও।

৫২ নং প্রশ্নের উত্তর

ক যেসব গ্যাস সকল তাপমাত্রা ও চাপে গ্যাসের সূত্র সমূহ বিশেষ করে বয়েল ও চার্লসের সূত্র মেনে চলে তাদের আদর্শ গ্যাস বলে।

খ আপেক্ষিক আর্দ্রতা 60% বলতে বোঝায় যে নির্দিষ্ট আয়তনের বায়ুকে সম্পুক্ত করতে যে পরিমাণ জলীয়বাষ্প প্রয়োজন তার শতকরা 60 ভাগ জলীয়বাষ্প বায়ুতে উপস্থিত আছে।

গ এখানে, শুষ্ক বালবের তাপমাত্রা, θ1 = 33°C

সিক্ত বালবের তাপমাত্রা, $\theta_2 = 28^{\circ}\mathrm{C}$

34°C তাপমাত্রায় গে-ইসারের উৎপাদক, = 1.61

32°C তাপমাত্রায় গে-ইসারের উৎপাদিত = 1.63

 \therefore 33°C তাপমাত্রায় গে-ইসারের উৎপাদক $G=rac{1.61+1.63}{2}$

শিশিরাঙ্ক, $\theta = ?$

আমরা জানি, $\theta_1 - \theta = G(\theta_1 - \theta_2)$

বা,
$$\theta = \theta_1 - G(\theta_1 - \theta_2)$$

বা,
$$\theta = 33^{\circ}\text{C} - 1.62(33 - 28)$$

 $\theta = 24.9$ °C (Ans.)

ঘ এখানে,

বায়ুর তাপমাত্রা, $\theta_1 = 33$ °C

শিশিরাঙ্ক, $\theta = 24.9$ °C ['গ' হতে পাই]

বায়ুর তাপমাত্রায় (33°C) সম্পুক্ত জলীয় বাষ্পচাপ, F = 37.78 mm

24°C তাপমাত্রায় সম্প্রক্ত জলীয়বাষ্পচাপ = 22.38 mm Hg 26°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ = 25.21mm Hg 2°C তাপমাত্রা বৃদ্ধিতে জলীয় বাষ্পচাপ বৃদ্ধি (25.21 – 22.38)mm

 $::0.9^{\circ}C$ তাপমাত্রা বৃদ্ধিতে জলীয় বাষ্পচাপবৃদ্ধি $=\left(rac{2.83 imes 0.9}{2}
ight) mm$

∴ শিশিরাঙ্কে (24.9°C) সম্পুক্ত জলীয় বাষ্পচাপ.

f = (22.38 + 1.274)mm

= 23.654 mm of Hg

 \therefore আপেন্দিক আর্দ্রতা, $R=rac{f}{F} imes 100\%$ $=rac{23.654}{37.78} imes 100\%$ =62.6%

আমাদের দেশের স্বাচ্ছন্যকর আপেক্ষিক আর্দ্রতা থেকে 50% – 60%। সুতরাং, নির্ণেয় আপেক্ষিক আর্দ্রতা (62.61%) নির্দেশ করে যে, ঐ দিনের বায়ু কিছুটা আর্দ্র ছিল।

প্রশ্ন ▶৫৩ রিফাত ও সিফাত যখন চট্টগ্রামের ফয়ে'স লেকে ডুব দিয়ে লেকের তলদেশে পৌঁছে তখন তাদের সাথে থাকা 56g নাইট্রোজেন গ্যাসভর্তি বেলুনটির আয়তন এক-তৃতীয়াংশ হয়ে যায়। লেকের পৃষ্ঠের বায়ুর চাপ, স্বাভাবিক বায়ুর চাপ ও তাপমাত্রা 30°C এবং তলদেশের তাপমাত্রা 14°C ছিল। রিফাত তাপমাত্রা বিবেচনা করে এবং সিফাত তাপমাত্রা বিবেচনা না করে লেকের গভীরতা নির্ণয় করেছিল।

[আনন্দ মোহন কলেজ, ময়মনসিংহ]

ক. আর্দ্রতা কী?

- খ. কোন গ্যাসের P বনাম $rac{1}{V}$ লেখচিত্রটির আকার লিখ এবং উহা কোন সূত্রকে সমর্থন করে তা ব্যাখ্যা কর।
- গ. লেকের তলদেশে বেলুনে থাকা নাইট্রোজেন গ্যাসের গতিশক্তি
- ঘ. ডুবুরীদ্বয়ের মধ্যে কে সঠিকভাবে লেকের গভীরতা নির্ণয় করেছিল। গাণিতিকভাবে বিশে-ষণ কর।

৫৩ নং প্রশ্নের উত্তর

ক কোন স্থানের বায়ুতে কতটুকু জলীয় বাষ্প আছে অর্থাৎ বায়ু কতটুকু শুষ্ক বা ভেজা তার নির্দেশককে বায়ুর আর্দ্রতা বলে।

 P বনাম $\frac{1}{V}$ লেখটির আকার সরলরৈখিক। এই লেখ হতে প্রমাণ করা যায় P × V = ধ্র^ভবক। যা বয়েলের সূত্র।

সুতরাং, লেখটি বয়েলের সূত্রকে সমর্থন করে।

লেকের তলদেশে তাপমাত্রা, T=14°C=287K

নাইট্রোজেনের ভর, m = 56gm

নাইট্রোজেনে গ্রাম আনবিক ভর, M = 28gm

সার্বজনীন গ্যাস ধ্র[—]বক, $R = 8.31 \text{Jmol}^{-1} \text{K}^{-1}$

∴ তলদেশে বেলুনে থাকা নাইট্রোজেন গ্যাসের গতিশক্তি, $E_K=?$ আমরা জানি.

$$E_{K} = \frac{3}{2}nRT$$

বা,
$$E_K = \frac{3}{2} \frac{m}{M} RT$$

বা,
$$E_K = \frac{56}{28} \times 8.31 \times 287 \times \frac{3}{2} \text{ m}$$

 $E_K = 7154.91J$ (Ans.)

ঘ এখানে,

লেকের পৃষ্ঠে বায়ুচাপ, $P_1 = 1.013 \times 10^5 \, Pa$ [স্বাভাবিক বায়ুচাপ] লেকের পৃষ্ঠে বেলুনের আয়তন, $V_1 = Vm^3$ [ধরি]

∴ লেকের তলদেশে বেলুনের আয়তন, $V_2 = \frac{1}{3} Vm^3$

লেকের পৃষ্ঠে তাপমাত্রা, $T_1 = 30^{\circ}C = 303K$

লেকের তলদেশে তাপমাত্রা, $T_2 = 14$ °C = 287K

পানির ঘনত্ব, $\rho = 1000 \text{ kgm}^{-3}$

অভিকর্ষজ তুরণ, g = 9.8ms⁻²

ধরি লেকের গভীরতা = h m

 \therefore লেকের তলদেশের চাপ, $P_2 = (P_1 + h \rho g) \; Pa$ রিফাতের ক্ষেত্রে (তাপমাত্রা বিবেচনা করে),

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

ৰা,
$$\frac{P_1 \times V}{T_1} = \frac{(P_1 + h\rho g) \times \frac{1}{3}V}{T_2}$$

বা,
$$\frac{P_1 \times 3 \times 287}{303} = P_1 + h\rho g$$

বা, $2.842 P_1 = P_1 + h\rho g$

ৰা,
$$h = \frac{(2.842 - 1) \times 1.013 \times 10^5}{1000 \times 9.8}$$

যেহেতু, লেকের পৃষ্ঠে ও তলদেশে তাপমাত্রা ভিন্ন, এজন্য সঠিকভাবে লেকের গভীরতা নির্ণয়ের জন্য তাপমাত্রা বিবেচনা করা প্রয়োজন। সুতরাং, ডুবুরীদের মধ্যে রিফাত সঠিকভাবে লেকের গভীরতা নির্ণয় করেছিল এবং নির্ণেয় সঠিক গভীরতা 19.04 m।

প্রশ্ন ▶৫৪ একদিন করিম বিজ্ঞানাগারে একটি সিলিভার পড়ে থাকতে দেখল। সে সিলিভারটি নিয়ে 1 বায়ুমভলীয় চাপে 2000Lঅক্সিজেন দ্বারা পূর্ণ করল। কিছুক্ষণ পর এর চাপ কমিয়ে 72cm পারদ চাপের সমান করে বাকি গ্যাস বের করে দিল। ঐ দিনের তাপমাত্রা ছিল 300K এবং অক্সিজেনের আণবিক ভর 32gm mole⁻¹ এবং সার্বজনীন গ্যাস ধ্র^{ভ্রু}বক, R = 8.31Jmol⁻¹K⁻¹। [সরকারি আজিজুল হক কলেজ, বগুড়া]

- ক. অষ্টক কাকে বলে?
- খ. ফাপা দোলক পিন্ড তরল দ্বারা পূর্ণ করে তলায় ছোট ছিদ্র করে দিলে দোলকটি প্রথমে ধীরে এবং পরে দ্রুত চলবে? ব্যাখ্যা কর।
- গ. উদ্দীপকের তথ্যানুযায়ী অক্সিজেনের ভর নির্ণয় কর।
- ঘ. চাপ কমানোর পর 50gm অক্সিজেনের আয়তন 60L এর বেশি হবে কি না? গাণিতিক বিশে-ষণের মাধ্যমে দেখাও। 8

৫৪ নং প্রশ্নের উত্তর

ক যে সুরের কম্পাঙ্ক মূল সুরের কম্পাংকের দ্বিগুণ তাকে অষ্টক বলে।

ত্বাঁ কাঁপা দোলক পিন্ত তরল দ্বারা পূর্ণ করে তলায় ছোট ছিদ্র করে দিলে প্রথমত ববের ভার কেন্দ্র পর্যশ্ড় দূরত্ব অর্থাৎ দোলকের কার্যকরী দৈর্ঘ্য বৃদ্ধি পাবে, তাই $T \propto \sqrt{L}$ সূত্রানুসারে, তখন দোলনকালও সামান্য বাড়তে থাকবে। কিন্তু তরলের পরিমাণ অনেক কমে গেলে তখন ববের ভারকেন্দ্র আবার উপরে উঠতে শুর[™] করবে এবং শেষ পর্যশ্ড় ববের জ্যামিতিক কেন্দ্রেই ভারকেন্দ্রের অবস্থান হবে। এ সময় কার্যকর দৈর্ঘ্য হ্রাস পেতে থাকবে। তাই দোলনকালও হ্রাস পেতে থাকবে এবং দোলকটি দ্র[™]ত চলবে।

গ দেওয়া আছে,

অক্সিজেনের আয়তন, $V = 2000L = 2000 \times 10^{-3} \text{m}^3 = 2 \text{ m}^3$

অক্সিজেনের তাপমাত্রা, T = 300K

অক্সিজেনের আণবিক ভর, M = 32gm.mole⁻¹

 $= 32 \times 10^{-3} \text{ kg.mole}^{-1}$

সার্বজনীন গ্যাস ধ্র^ভবক, $R = 8.314 \text{ Jmole}^{-1} \text{K}^{-1}$

গ্যামের চাপ, P = 1atm, $= 101325 \ Nm^{-2}$

বের করতে হবে, অক্সিজেনের ভর, m = ?

আমরা জানি,
$$PV = \frac{m}{M}RT$$

$$\therefore m = \frac{PVM}{RT} = \frac{101325Nm^{-2} \times 2m^3 \times 32 \times 10^{-3} \text{ kg.mole}^{-1}}{8.314 \text{ Jmole}^{-1} \text{K}^{-1} \times 300\text{K}}$$
= 2.6 Kg (Ans.)

ঘ চাপ কমানোর পর,

$$P = 72 cmHgP = \frac{72}{76} \times 101325 \text{ Nm}^{-2}$$

= 95992 Nm⁻²

তাপমাত্রা, T = 300K

অক্সিজেনের আণবিক ভর, $M = 32 \times 10^{-3} \text{ kg.mole}^{-1}$

সার্বজনীন গ্যাস ধ্র⁻বক, $R = 8.314 \text{ J.mole}^{-1}\text{K}^{-1}$

অক্সিজেনে গ্যাসের বিবেচ্য ভর, $m = 50 \mathrm{gm} = 50 \times 10^{-3} \mathrm{kg}$

উক্ত গ্যাসের আয়তন, V হলে, $PV = \frac{m}{M}\,RT$

$$\begin{array}{l} \therefore \ V = \frac{mRT}{PM} \ = \frac{50 \times 10^{-3} \ kg \times 8.314 \ Jmole^{-1} K^{-1} \times 300 K}{95992 \ Nm^{-2} \times 32 \times 10^{-3} \ Kg.mole^{-1}} \\ = 0.0406 m^{3} \\ = 0.0406 \times 1000 L \\ = 40.6 L \end{array}$$

সুতরাং, চাপ কমানোর পর 50gm অক্সিজেনের আয়তন 60L এর বেশি হবে না।

প্রশ্ন ▶৫৫ আবহওয়া অধিদপ্তরের প্রদন্ত অনুযায়ী একদিনের শিশিরাংক 23.5°C ও বায়ুর তাপমাত্রা 33°C। ঐ দিন মাইলস্টোন কলেজের পদার্থবিজ্ঞান ল্যাবে হাইগ্রোমিটারের সিক্ত ও শুষ্ক বাল্বের পাঠ পাওয়া গেল 28°C ও 33°C। ল্যাবের তালিকা থেকে নিল্টের মান হলো পাওয়া যায়।

তাপমাত্রা	সম্পৃক্ত	তাপমাত্রা	গে-ইসারের
	বাষ্পচাপ		উৎপাদক
23°C	23.25×10^{-3} m	32°C	1.64
25°C	25.25×10^{-3} m	34°C	1.61
23°C	28.45×10^{-3} m	35°C	1.60

[মাইলস্টোন কলেজ, ঢাকা]

- ক. পরম আর্দ্রতা কাকে বলে?
- খ. বর্ষাকাল অপেক্ষা শীত কালে ভিজা কাপড় দ্র^{ক্}ত শুকায় কেন?
- গ. আবহাওয়া অধিদপ্তরের প্রদত্ত তথ্যানুযায়ী ঐ দিনের আপেক্ষিক আর্দ্রতা নির্ণয় কর।

ঘ. ল্যাবে হিসাবকৃত শিশিরাংক ও আবহাওয়া অধিদপ্তরের প্রদত্ত শিশিরাংক একই ছিল কি না- উদ্দীপকের আলোকে যাচাই কর।

৫৫ নং প্রশ্নের উত্তর

ক কোনো সময় কোনো স্থানের একক আয়তনের বায়ুতে যে পরিমাণ জলীয় বাষ্প থাকে তাকে ঐ বায়ুর পরম আর্দ্রতা বলে।

বর্ষাকালে বাতাসে জলীয় বাম্পের পরিমাণ বেশি থাকে ফলে বাষ্পায়নের হার কম হয়। অপরদিকে শীতকালে বাতাস শুষ্ক থাকে ফলে বাষ্পায়নের হার বেশি হয়। একারনে বর্ষাকালে ভেজা কাপড় সহজে শুকায় না কিন্তু শীতকালে ভেজা কাপড় দ্রু ত শুকিয়ে যায়।

গ দেওয়া আছে,

 25° C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ = $25.25 \times 10^{-3} \mathrm{m}$

 23° C তাপমাত্রায় সম্পুক্ত বাষ্পচাপ = $23.25 \times 10^{-3} m$

∴ 2°C তাপমাত্রায় পরিবর্তনে সম্পৃক্ত বাষ্পচাপের পরিবর্তন

 $= (25.25 - 23.25) \times 10^{-3} \mathrm{m}$

 $=2\times10^{-3}\mathrm{m}$

 \therefore $1^{\circ}C$ তাপমাত্রা পরিবর্তনে সম্পৃক্ত বাষ্পচাপের পরিবর্তন = $1\times 10^{-3} m$

 $\therefore 0.5^{\circ}\mathrm{C}$ তাপমাত্রায় পরিবর্তনে সম্পৃক্ত বাষ্পচাপের পরিবর্তন = $5 \times 10^{-4}\mathrm{m}$

 \therefore শিশিরাঙ্ক সম্পৃক্ত বাষ্পচাপ $f=23.25\times 10^{-3}+5\times 10^{-4}$

$$= 2.375 \times 10^{-2} \text{m}$$

 \therefore বায়ুর তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ $F=28.45 imes 10^{-3}$

∴ আপেক্ষিক আর্দ্রতা $R = \frac{1}{F} \times 100\%$ $= \frac{2375 \times 10^{-2}}{28.45 \times 10^{3}} \times 100\%$ = 83.47 % (Ans.)

ঘ দেওয়া আছে,

34°C তাপমাত্রায় গে-ইসারের উৎপাদক = 1.61

32°C তাপমাত্রায় গে-ইসারের উৎপাদক = 1.64

 \therefore 2°C তাপমাত্রায় পার্থক্যে গে-ইসারের উৎপাদকের পার্থক্য = 1.64-1.61

= 0.03

∴ 1°C তাপমাত্রা পার্থক্যের গে-ইসারের উৎপাদকের পার্থক্য = 0.015

 \therefore 33°C তাপমাত্রা গে-ইসারের উৎপাদক G = 1.64 - 0.015 = 1.625

তখন, শুষ্ক বাল্বের পাঠ $\theta_1 = 33$ °C

সিক্ত বাল্পের পাঠ, $\theta_2 = 28$ °C

$$\therefore$$
 শিশিরাংক $\theta = \theta_1 - G (\theta_1 - \theta_2)$
= 33 -1.625 (33 -28)
= 24.875°C

কিন্তু আবহাওয়া অধিদপ্তরের প্রদত্ত শিশিরাংক 23.5°C

∴ উভয় ক্ষেত্রের শিশিরাংকের মান একই ছিল না।

প্রশ়্>৫৬ 27°C তাপমাত্রায় 64g অক্সিজেন একটি 10 cm বাহু বিশিষ্ট ঘনক পাত্রে রাখা আছে। এক মোল অক্সিজেনের গ্রাম আণবিক ভর 32g. থিঅগী কুল এভ কলেজ, ঢাকা

ক. পরম আর্দ্রতা কী?

খ. বর্ষাকাল অপেক্ষা শীতকালে ভিজা কাপড় দ্র^{ক্}ত শুকায় কেন– ব্যাখ্যা কর।

গ. পাত্রের অভ্যম্ভরে অক্সিজেনের চাপ নির্ণয় কর।

গ্যাসের চাপ স্থির রেখে এর তাপমাত্রা কত বৃদ্ধি করলে

 গ্যাসের অণুর মূল, গড় বর্গ বেগ পূর্বের তাপমাত্রায় অণুর মূল

 গড় বর্গ বেগের তিনগুণ হবে?

 ৪

৫৬ নং প্রশ্নের উত্তর

ক কোনো আবদ্ধ স্থানের বাতাসে একক আয়তনে যে পরিমাণ (ভরের) জলীয় বাষ্প রয়েছে, তাকে ঐ স্থানের পরম আর্দ্রতা বলে। বর্ষার দিনে বায়ুমন্ডল জলীয় বাষ্প্প দ্বারা প্রায় সম্পৃক্ত থাকে, অর্থাৎ আপেক্ষিক আর্দ্রতা 100% এর কাছাকাছি থাকে। ফলে বাতাস অধিক পরিমাণে জলীয় বাষ্প্প শোষণ করতে পারে না। এ কারণে বর্ষাকালে ভেজা কাপড় সহজে শুকাতে চায় না। সে তুলনায় শীতকালের বাতাস শুকনা থাকে। শুকনা বাতাসে জলীয় বাষ্প্র অত্যম্ভ কম থাকে। এই বাতাস ভিজা কাপড় থেকে দ্রু জলীয় বাষ্প্র শোষণ করে নিতে পারে। ফলে শীতের দিনে ভেজা কাপড় তাড়াতাড়ি শুকায়।

গ দেওয়া আছে.

অক্সিজেনের তাপমাত্রা, T = 27°C = (27 + 273)K = 300K

অক্সিজেনের ভর, $m = 64g = 64 \times 10^{-3} kg$

অক্সিজেনের মোলার ভর, M = 329 = 32 × 10⁻³kg

অক্সিজেনের আয়তন, V = (10cm)³ = 1000 cm³ = 1000 × 10⁻⁶ m³ = 10⁻³ m³

জানা আছে, আদর্শ গ্যাস ধ্র⁻⁻বক, $R = 8.314 \text{ Jmole}^{-1}\text{K}^{-1}$ বের করতে হবে, অক্সিজেনের চাপ, P = ?

আমরা জানি, $PV = \frac{m}{M}RT$

$$\therefore P = \frac{mRT}{MV} = \frac{64 \times 10^{-3} \text{ kg} \times 8.314 \text{ Jmole}^{-1} \text{ K}^{-1} \times 300\text{K}}{32 \times 10^{-3} \text{kg} \times 10^{-3} \text{m}^3}$$
$$= 4.9884 \times 10^6 \text{ Nm}^{-2} \text{ (Ans.)}$$

ছা প্রশ্নমতে, আদি মূল গড় বর্গবেগ C_{rms1} হলে চূড়াম্ড মূল গড় বর্গবেগ, $C_{rms2}=3C_{rms}$ ।

আদি তাপমাত্রা, $T_1 = 27$ °C = 300K

বের করতে হবে, চূড়াম্ড তাপমাত্রা $T_2 = ?$

আমরা জানি, C_{rms} $\alpha \sqrt{T}$

$$\begin{array}{l} \therefore \frac{C_{rms}}{C_{rms1}} = \sqrt{\frac{T_2}{T_1}} \\ \hline \text{1}, \ \frac{3C_{rms}}{C_{rms1}} = \sqrt{\frac{T_2}{300K}} \\ \hline \text{1}, \ \frac{T_2}{300K} = (3)^2 = 9 \end{array}$$

 $T_2 = 9 \times 300 \text{K} = 2700 \text{K} = (2700 - 273) \text{ °C} = 2427 \text{ °C}$

় তাপমাত্রা বৃদ্ধির পরিমাণ = $T_2 - T_1 = 2427^{\circ}C - 27^{\circ}C = 2400^{\circ}C$ সুতরাং, গ্যাসের চাপ স্থির রেখে এর তাপমাত্রা $2400^{\circ}C$ পরিমাণ বৃদ্ধি করলে গ্যাসের অণুর মূল গড় বর্গ বেগ পূর্বের তাপমাত্রায় অণূর মূল গড় বর্গ বেগের তিনগুণ হবে।

বার ▶৫৭ আকাশ পদার্থ বিদ্যা ল্যাবে আর্দ্রতামাপক যন্ত্র নিয়ে পরীক্ষা করছিলো। কক্ষ তাপমাত্রা 18°C, শিশিরাংক 13°C এবং কক্ষ তাপমাত্রায় গে-ইসারের উৎপাদকের মান 1.82 ছিলো। সিক্ত বাল্বের তাপমাত্রা জেনে আকাশ আপেক্ষিক আর্দ্রতা হিসেবে করে 58% পেলো। পরবর্তীতে বায়ু তাপমাত্রা কমে 14°C হলো। [18°C ও 14°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্প্র চাপ যথাক্রমে 15.44 × 10⁻³m এবং 11.90 × 10⁻³ mHg] দিনিয়া কলেজ ঢাকা

ক. বেস স্টেশন কী?

খ. সব প্রক্ষেপকই নিক্ষিপ্ত বস্তু কিন্তু সব নিক্ষিপ্ত বস্তু প্রক্ষেপক নয় কেন? ব্যাখ্যা কর।

গ. আর্দ্রতামাপক যন্ত্রের সিক্ত বাল্বের তাপমাত্রা কত ছিলো? নির্ণয় কর।

ঘ. বায়ুর তাপমাত্রা কমে যাওয়ায় ল্যাবের বায়ুতে জলীয় বাস্পের পরিমাণ কম হবে না বেশি হবে? গাণিতিক বিশে-ষণ দাও। 8

৫৭ নং প্রশ্নের উত্তর

ত্বি ভূ-পৃষ্ঠস্থ যে স্টেশন থেকে যে কোনো প্রকার রেডিও যোগাযোগ নিয়ন্ত্রণ করা হয় তাকে বেস স্টেশন বলে।

যে সকল নিক্ষিপ্ত বস্তু অনুভূমিকের সাথে 90° ভিন্ন অপর কোনো কোণে পরাবৃত্ত আকৃতির। যে সকল নিক্ষিপ্ত বস্তু উল-ম্ব বরাবর উপরের দিকে নিক্ষেপ করা হয় তারা প্রক্ষেপক নয় এদের গতিপথ সরলরৈখক। সূতরাং, সব প্রক্ষেপকই নিক্ষিপ্ত বস্তু তবে সব নিক্ষিপ্ত বস্তু প্রক্ষেপক নয়।

গ দেওয়া আছে.

ভঙ্ক বাল্বের তাপমাত্রা, $\theta_1 = \sigma$ ক্ষতাপমাত্রা $= 18^{\circ}C$

শিশিরাংক, $\theta = 13$ °C

শুষ্ক বাল্বের তাপমাত্রায় গে-ইসারের উৎপাদকের মান, G=1.82

বের করতে হবে, সিক্ত বাল্পের তাপমাত্রা, $\theta_2 = ?$

আমরা জানি, $\theta = \theta_1 - G (\theta_1 - \theta_2)$

বা, G $(\theta_1 - \theta_2) = \theta_1 - \theta$

বা,
$$\theta_1 - \theta_2 = \frac{\theta_1 - \theta}{G}$$

$$\therefore \theta_2 = \theta_1 - \frac{\theta_1 - \theta}{G} = 18^{\circ}\text{C} - \frac{18^{\circ}\text{C} - 13^{\circ}\text{C}}{1.82}$$
$$= 15.253^{\circ}\text{C (Ans.)}$$

থাথমিক অবস্থায়, ল্যাবের বাতাসের আপেক্ষিক আর্দ্রতা, $R_1 = 58\% = 0.58$ ।

বায়ুর তাপমাত্রায় (18° C) সম্পৃক্ত বাষ্পচাপ, $F_1=15.44\times 10^{-3} {
m m \, Hgp}$ । শিশিরাংকে (13° C) সম্পৃক্ত বাষ্পচাপ f হলে,

$$\mathbf{R}_1 = \frac{f}{\mathbf{F}_1}$$

$$f = R_1 F_1 = 0.58 \times 15.44 \times 10^{-3} \text{m HgP}$$

$$= 8.9552 \times 10^{-3} \text{mHgP}$$

পরিবর্তিত অবস্থায়,

বায়ুর তাপমাত্রায় (14°C) সম্পৃক্ত বাষ্প্র চাপ, $F_2 = 11.90 \times 10^{-3} \mathrm{m \, Hgp}$ শিশিরাংকে (13°C) সম্পৃক্ত বাষ্প্রচাপ, $f = 8.9552 \times 10^{-3} \mathrm{m \, Hgp}$ ∴ পরিবর্তিত অবস্থায় আপেক্ষিক আর্দ্রতা,

$$R_2=rac{f}{F_2}=rac{8.9552 imes 10^{-3} m\ HgP}{11.90 imes 10^{-3} m\ HgP}=0.7525=75.25\%$$
লক্ষ্য করি, $75.25\%>58\%$

বা. R₂ > R₁

সুতরাং বায়ুর তাপমাত্রা কমে যাওয়ায় ল্যাবের বায়ুতে জলীয় বাস্পের প্রকৃত পরিমাণ না বাড়লেও আপেক্ষিক পরিমাণ বেড়েছে। কারণ আপেক্ষিক আর্দ্রতা বেড়েছে।

প্রশ্ন > ৫৮ 1 atm চাপে 1660 L অক্সিজেন গ্যাস রাখা আছে। ঐ গ্যাসের চাপ কমিয়ে 72 cm করা হল। ঐ দিনের তাপমাত্রা ছিল 27°C। অক্সিজেনের M = 32gmol⁻¹ ও R = 8.316J mol⁻¹K⁻¹। [बिनाहेमह क्যाएडिं कलान, बनाहेमहो

ক. বয়েলের সূত্রটি বিবৃত কর।

খ. আপেক্ষিক আর্দ্রতা ব্যাখ্যা কর।

গ. উদ্দীপকের অক্সিজেনের ভর বের কর।

ঘ. চাপ কমিয়ে 50gm অক্সিজেনের আয়তন 50L করা সম্ভব? গাণিতিকভাবে বিশে-ষণ কর।

৫৮ নং প্রশ্নের উত্তর

ক "স্থির তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের আয়তন এর উপর প্রযুক্ত চাপের ব্যস্ভানুপাতিক।"

শিশিরাঙ্কের সম্পৃক্ত জলীয় বাষ্পচাপ ও বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্প চাপের অনুপাতকে আপেক্ষিক আর্দ্রতা বলে। ধরি, শিশিরাঙ্কে সম্পৃক্ত জলীয় বাষ্পচাপ f, বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পচাপ F

তাহলে, আপেক্ষিক আর্দ্রতা $R=rac{f}{F} imes 100\%$

কোনো স্থানের আপেক্ষিক আর্দ্রতা দ্বারা ঐ স্থানের বায়ু শুষ্ক না ভেজা তা জানা যায়। অথবা ঐ স্থানে বায়ুকে জলীয়বাষ্প দ্বারা সম্পৃক্ত করতে যতটুকু জলীয় বাষ্প দরকার তার শতকরা কত ভাগ উপস্থিত আছে তা জানা যায়।

া এখানে, অক্সিজেনের আয়তন, $V=1660L=1600\times 10^{-3} m^3$ অক্সিজেনের চাপ, P=1 atm $=1.013\times 10^5$ Pa অক্সিজেনের তাপমাত্রা, $T=27^{\circ}C=300K$ মোলার গ্যাস ধ্র⁻বক, $R=8.314~Jmol^{-1}~K^{-1}$

অক্সিজেনের গ্রাম আণবিক ভর, $M = 32~\mathrm{gm}$ অক্সিজেনের ভর, m = ?

আমরা জানি, $PV = \frac{m}{M} RT$

বা,
$$m = \frac{MPV}{RT}$$

$$\boxed{4}, \quad m = \frac{\frac{R1}{32 \times 1.013 \times 10^5 \times 1660 \times 10^{-3}}}{\frac{8314 \times 300}{1000}}$$

বা, m = 2157.43 gm

m = 2.1574 kg (Ans.)

ঘ উদ্দীপকের অক্সিজেনের ভর, m=2.1574~kg=2157.4~gm অক্সিজেনের প্রাথমিক চাপ, $P_1=1~atm=76~cm$ । P_1 চাপে 2157.4~gm অক্সিজেনের আয়তন 1660L

 \therefore P₁ চাপে 50 gm অক্সিজেন আয়তন $\frac{1660 \times 50}{2157.43}$ L = 38.47L

∴ 50 gm অক্সিজেনের প্রাথমিক আয়তন, $V_1 = 38.47L$ অক্সিজেনের পরিবর্তিত চাপ, $P_2 = 72$ cm অক্সিজেনের পরিবর্তিত আয়তন = V_2L (ধরি) আমরা জানি,

ৰা,
$$V_1=P_2\,V_2$$
 ৰা, $V_2=rac{P_1V_1}{P_2}$ ৰা, $V_2=rac{76 imes38.47}{72}$

 $V_2 = 40.61L \neq 50L$

সুতরাং, চাপ কমিয়ে 50 gm অক্সিজেনের আয়তন 50L করা সম্ভব নয়।

প্রা ► কে A একটি হ্রদ। এর তলদেশ থেকে একটি বুদবুদ উপরিদেশে আসার ফলে আয়তন 6 গুণ হয়। বায়ুমন্ডলে চাপ 2atm, হুদটিতে শুষ্ক ও আর্দ্র বালবের তাপমাত্রা 25°C এবং 19°C, গে-ইসারের প্র[©]বক 1.65. অপর একটি হ্রদ B যেখানে বায়ুর তাপমাত্রা 25°C এবং শিশিরাঙ্ক 15.6°C. (25°C, 16°C এবং 15°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ যথাক্রমে 16.5cm, 10.3cm, 9.4cm পারদ)। জালালাবাদ ক্যান্টনমেন্ট পাবলিক স্কুল এভ কলেজ, সিলেটা

- ক. সমবিভাজন নীতি কি?
- খ. গ্যাস ও বাম্পের মধ্যে মৌলিক পার্থক্য ব্যাখ্যা কর।
- গ. উপরিউক্ত A.হ্রুদটির গভীরতা নির্ণয় কর।
- ঘ. উদ্দীপকের A ও B হ্রদের মধ্যে কোনটিতে বেশি আরামদায়ক? গাণিতিকভাবে বিশে-ষণ করো। 8

৫৯ নং প্রশ্নের উত্তর

- ক কোনো গতীয় সংস্থার মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বন্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ $=\frac{1}{2}\,\mathrm{kT}$ । এটিই সমবিভাজন নীতি।
- য যে গ্যাস এর তরলাবস্থার সাথে সাম্যাবস্থায় রয়েছে অথবা যে গ্যাসের তাপমাত্রা এর সংকট বিন্দুর তাপমাত্রার তুলনায় কম, তাকে বাষ্প বলা হয়। সুতরাং বাষ্প হলো গ্যাসের একটি বিশেষ অবস্থা। অপর দিকে, যে পদার্থগুলোকে (যেমন, অক্সিজেন, নাইট্রোজেন, ইত্যাদি) আমরা সচরাচর গ্যাস হিসেবে জানি, সেগুলো এদের তরলাবস্থার সাথে সাম্যাবস্থায় নেই এবং গ্যাসীয় অবস্থায় পদার্থগুলোর তাপমাত্রা এদের নিজস্ব সংকট বিন্দুর তাপমাত্রার তুলনায় বেশি।
- ্যা দেওয়া আছে, হ্রেদের তলদেশে বুদবুদের আয়তন V_1 হলে পৃষ্ঠদেশে বুদবুদের আয়তন, $V_2=6V_1$ ।

হ্রেদের পৃষ্ঠদেশে বুদবুদের ওপর চাপ $P_2 = 2atm = 2 \times 10^5 Nm^{-2}$ জানা আছে পানির ঘনতু, $ho = 1000~kgm^{-3}$

অভিকর্মজ তুরণ, $g = 9.8 \text{ ms}^{-2}$

ধরি, হ্রদের গভীরতা h (m) ; তাহলে হ্রদের তলদেশে বুদবুদের ওপর চাপ, $P_1=P_2+h\rho g=2\times 10^5\ Nm^{-2}+hm\times 1000\ kgm^{-3}\times 9.8ms^{-2}$

=
$$2 \times 10^5 \text{ Nm}^{-2} + 9800 \text{h Nm}^{-2}$$

= $(2 \times 10^5 + 9800 \text{h}) \text{ Nm}^{-2}$

হুদের সর্বত্র তাপমাত্রা একই বিবেচনায় বয়েলের সূত্র প্রয়োগে পাই, $P_1\,V_1=P_2\,V_2$

বা, $(2 \times 10^5 + 9800h) \text{ Nm}^{-2} \times \text{V}_1 = 2 \times 10^5 \text{ Nm}^{-2} \times 6\text{V}_1$

বা, $2 \times 10^5 + 9800h = 12 \times 10^5$

 $\boxed{4}, 9800h = 12 \times 10^5 - 2 \times 10^5 = 10 \times 10^5$

:.
$$h = \frac{10 \times 10^5}{9800} = 102.04 \text{m (Ans.)}$$

ত্বি উদ্দীপক মতে, তথা শুষ্ক বাল্বের তাপমাত্রা A হ্রেদের বায়ুর তাপমাত্রা, $\theta_1=25^{\circ}C$ এবং আর্দ্র বাল্বের তাপমাত্রা, $\theta_2=19^{\circ}C$

শুষ্ক বাল্বের তাপমাত্রায় গে-ইসারের ধ্র^ভবক, G = 1.65

Aহেদের বায়ুর শিশিরাংক, $\theta=\theta_1\,-G\,(\theta_1-\theta_2)$

 $= 25^{\circ}\text{C} - 1.65 (25^{\circ}\text{C} - 19^{\circ}\text{C}) = 15.1^{\circ}\text{C}$

যেহেতু 16°C এবং 15°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে 10.3cm এবং 9.4cm HgP

 \therefore A.হেদের শিশিরাংকে সম্পৃক্ত বাষ্পচাপ, $f_1=9.4+(10.3-9.4) imes 0.1$

= 9.49 cm HgP

A হ্রেদের বায়ুর তাপমাত্রা (25°C) সম্পৃক্ত বাষ্পচাপ, F = 16.5 cm HgP

- \therefore \mathbf{A} হদের বাতাসে আপেক্ষিক আর্দ্রতা, $\mathbf{R}_1 = rac{f_1}{\mathbf{F}} imes 100\%$
- $= \frac{9.49 \text{cm HgP}}{16.5 \text{ cm HgP}} \times 100\% = 57.52\%$

B হ্রেদের বায়ুর তাপমাত্রায় (25°C) সম্পৃক্ত বাষ্পচাপ, $F=16.5 \mathrm{cm}$ HgP এবং শিশিরাংকে (15.6°C) সম্পৃক্ত বাষ্পচাপ, $f_2=9.4+(10.3-9.4)\times 0.6=9.94 \mathrm{cm}$ HgP

 \therefore B.হুদের বায়ুর আপেক্ষিক আর্দ্রতা, $R_2 = \frac{f_2}{F} \times 100\%$ $= \frac{9.94 \text{ cm HgP}}{16.5 \text{ cm HgP}} \times 100\%$ $= \frac{60.24\%}{16.5 \text{ cm HgP}} \times 100\%$

লক্ষ্য করি, 57.52% < 60.24% বা, R₁ < R₂

۵

২

•

∴ A ও Bহ্রদের মধ্যে Aহ্রদের পরিবেশ বেশি আরামদায়ক।

প্রশা ১৬০ সীসার তৈরি $10 \mathrm{gm}$ ভরের একটি বুলেট $200 \mathrm{ms}^{-1}$ বেগে চলাকালীন কোথাও থামিয়ে দেয়ার ফলে সমস্ড গাণিতিক তাপে র—পাস্ড্রিত হলো। উলে-খ্য যে, তাপ ও গতিশক্তি অন্য কোনভাবে নষ্ট হয়নি এবং সীসার আপেক্ষিক তাপ $126 \mathrm{Jkg}^{-1} \mathrm{K}^{-1}$

[বাংলাদেশ নৌবাহিনী স্কুল এভ কলেজ, খুলনা] ক. প্রমাণ চাপ কী?

ম. এমান চার্য মার্ খ. চার্লসের সূত্রটি ব্যাখ্যা কর।

গ. বুলেটের গতিশক্তি কত?

ঘ. এ ক্ষেত্রে তাপমাত্রার পরিবর্তন হবে কী? গাণিতিক বিশে-ষণের মাধ্যমে ব্যাখ্যা দাও।

২

৬০ নং প্রশ্নের উত্তর

- ক সমুদ্র সমতলে 45° অক্ষাংশে 273.15K তাপমাত্রায় উল-স্বভাবে অবস্থিত 760 mm উচ্চতা বিশিষ্ট শুষ্ক ও বিশুদ্ধ পারদস্ভুদ্ধ যে চাপদেয় তাকে প্রমাণ চাপ বলে।
- খ চার্লসের সূত্রটি হলো স্থির চাপে কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন 0°C থেকে প্রতি ডিগ্রী সেলসিয়াস তাপমাত্রা বৃদ্ধি বা_হাসের জন্য

এর 0° C তাপমাত্রায় আয়তনের $\frac{5}{290}$ অংশ যথাক্রমে বৃদ্ধি বাহ্রাস পায়। চার্লসের সূত্র অনুসারে, স্থির চাপে 0° C তাপমাত্রায় কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন V_o হলে 0° C থেকে প্রতি ডিগ্রী সেলসিয়াস তাপমাত্রার পরিবর্তনের জন্য এর আয়তন $\frac{1}{273} \times V_o$ হারে পরিবর্তিত হবে θ° C

তাপমাত্রার পরিবর্তনের জন্য আয়তনের পরিবর্তন হবে $\frac{\theta V_0}{273}$ । সুতরাং,

θ°C তাপমাত্রায় যদি ঐ গ্যাসের আয়তন V হয় তবে চার্লসের

সুত্রানুসারে,
$$V = V_o + \frac{\theta}{273} V_o = V_o \left(1 + \frac{\theta}{273}\right)$$

গ দেওয়া আছে, বুলেটের ভর, m = $10 \mathrm{gm} = 0.01 \mathrm{kg}$ এবং গতিবেগ, v = $200 \mathrm{ms}^{-1}$

বের করতে হবে, বুলেটের গতিশক্তি, $E_k = ?$

আমরা জানি,
$$E_k = \frac{1}{2} \text{ mv}^2 = \frac{1}{2} \times 0.01 \text{ kg} \times (200 \text{ms}^{-1})^2$$

য এক্ষেত্রে তাপমাত্রার পরিবর্তন হবে। বুলেটের গতিশক্তি তাপশক্তিতে র^{ক্র}পাম্পুরিত হবে।

∴ উৎপন্ন তাপশক্তি, H = 200J

এখানে, বুলেটের ভর, m = 0.01kg

বুলেটের উপাদানের (সীসা) আপেক্ষিক তাপ, $S=126~{
m Jkg^{-1}K^{-1}}$ বুলেটের তাপমাত্রা বৃদ্ধি $\Delta \theta$ হলে $H=m{
m S}\Delta \theta$

$$\therefore \Delta\theta = \frac{H}{mS} = \frac{200J}{0.01 \text{kg} \times 126 \text{ Jkg}^{-1} \text{K}^{-1}}$$
$$= 158.73 \text{K} = 158.73 ^{\circ} \text{C}$$

সুতরাং, বুলেটের তাপমাত্রা 158.73°C পরিমাণ বৃদ্ধি পাবে।

প্রশ্ন ▶৬১ একটি হ্রেদের তলদেশ থেকে উপরিতলে আসায় বায়ু বুদবুদের ব্যাস দ্বিগুণ হয়। হ্রেদের পানির ঘনত্ব 10³kgm⁻³ এবং বায়ুর চাপ 10⁵Pa। সিফিউদ্দিন সরকার একাডেমী এভ কলেজা

- ক. সার্বজনীন গ্যাস ধ্র^eবক কাকে বলে?
- খ. কোন স্থানের বাতাসের আঃ আর্দ্রতা 70% বলতে কী বুঝ?
- গ. হ্রদের পানির গভীরতা নির্ণয় কর।
- ঘ. হ্রেদের পরিবর্তে 0.8 আঃ গুর^কত্বের কেরোসিনের তৈল থাকলে বুদবুদের আকার একই পরিবর্তন হতে হলে হ্রেদের গভীরতা বেশি না কম হবে— বিশে-ষণ কর।

৬১ নং প্রশ্নের উত্তর

ক এক মোল পরিমাণ কোন গ্যাসের তাপমাত্রা এক কেলভিন বৃদ্ধি করলে গ্যাসের আয়তন সম্প্রসারণের জনিত যে কাজ সম্পন্ন হয় তাকে সার্বজনীন গ্যাস ধ্র^লবক বলে।

বা কোন স্থানের আপেক্ষিক আর্দ্রতা 70% বলতে বোঝায় যে, ঐ স্থানের বায়ুকে বায়ুর তাপমাত্রায় সম্পূর্ণরূপে সম্পৃক্ত করতে যে পরিমাণ জলীয় বাষ্প প্রয়োজন তার শতকরা 70 ভাগ উক্ত স্থানের বায়ুতে উপস্থিত আছে।

 $\therefore V_1 = 8V_2$

 $m V_1 ext{ 'S }
m V_2$ যথাক্রমে হ্রদের পৃষ্ঠে ও তলদেশে বুদবুদের আয়তন। $m P_1 ext{ 'S }
m P_2$ যথাক্রমে হূদের পৃষ্ঠে ও তলদেশে চাপ।

পানির ঘনত $\rho = 1000 \text{ kg m}^{-3}$

হ্রদের গভীরতা = h (ধরি)

 $\therefore P_2 = P_1 + h\rho g$

আবার, আমরা জানি, $P_1 V_1 = P_2 V_2$

বা,
$$P_1 \times 8V_2 = (P_1 + h\rho g) \times V_2$$

বা, $h = \frac{7P_1}{Vg}$
বা, $h = \frac{7 \times 10^5}{9.8 \times 1000}$

 \therefore h = 71.43m (Ans.) য এখানে, হ্রেদের উপরিপৃষ্ঠে চাপ $P_1=10^5~Pa$

হ্রদের গভীরতা = h (ধরি) পানির ঘনত্ব $ho_{
m w} = 1000~{
m kg/m^3}$

কোরোসিনের আপেক্ষিক গুর^{ক্র}ত্ব S = 0.8

∴ কেরোসিনের ঘনতু $V = S\rho_w = (0.8 \times 1000) \ \mathrm{kg} \ \mathrm{m}^{-3} = 800 \ \mathrm{kgm}^{-3}$ ্হদটি কেরোসিন দ্বারা পূর্ণ হলে, গ হতে,

$$h=rac{7P_1}{
ho g}$$
 [বুদবুদের আকার একই পরিবর্তন হয়]
$$=rac{7 imes 10^5}{800 imes 9.8} = 89.29 ext{ m}$$

পানি পূর্ণহ্রেদের গভীরতা h' = 71.43 Pa

∴ কেরোসিনপূর্ণ থাকলে হ্রদের গভীরতা বেশি হয় = h −h' = (89.29 −71.43) m = 17.86 m (**Ans.**)

প্রশ্ন ১৬২ এক পড়ন্ড বিকালে তানিয়া ও তার বন্ধুরা একটি হুদের পাশে বসে গল্প করছিল। হঠাৎ তানিয়ার নজর পড়ে হুদের স্বচ্ছ পানির তলদেশ থেকে বায়ু বুদবুদ পানির উপরিতলে আসছে। পানির উপরে এসে বুদবুদটি বড় আকার ধারণ করে। [পানির উপরিতলে বুদবদুটির আকার 5 গুণ এবং বায়ুমন্ডলের চাপ 105Nm-2] (এম. সি. কলেজ, সিলেট)

- ক. ক্রাম্ডি চাপ কী?
- খ. আপেক্ষিক আর্দ্রতা বেশি হলে আমরা অস্বস্ণ্ডিরোধ করি কেন? ২
- গ. উদ্দীপকে প্রদত্ত তথ্যানুসারে তানিয়ার দেখা হ্রদের গভীরতা নির্ণয় কর।
- ঘ. তানিয়ার পর্যবেক্ষণীয় ঘটনাটির আলোকে বয়েলের সূত্রটি বর্ণনাপূর্বক গাণিতিক ব্যাখ্যা দাও।

৬২ নং প্রশ্নের উত্তর

ক যে চাপে ক্রাম্প্ডি তাপমাত্রায় কোনো গ্যাস তরলে পরিণত হয় তাকে ক্রাম্প্ডি চাপ বলে।

আপেক্ষিক আর্দ্রতা বেশি হলে বায়ুতে জলীয় বাম্পের পরিমাণ বেশি থাকে এবং এর ফলে বাম্পায়ন কম হয়। এ কারণে আমাদের শরীর থেকে নির্গত ঘাম কম শুকায়। বেশি আর্দ্রতার কারণে ঘাম বাম্পায়নের জন্য শরীর কম সুপ্ততাপ সরবরাহ করে। একারণে আপেক্ষিক আর্দ্রতা বেশি হলে আমরা অস্বস্পিত্রোধ করি।

গ ধরি, হুদের গভীরতা = h

হূদের তলদেশে বুদবুদের আয়তন, $V_1=V$

হুদের পৃষ্ট দেশে বুদবুদের আয়তন, $V_2 = 5V$

হেদের পৃষ্ঠ দেশে চাপ, $P_2 = 10^5 \ Nm^{-2}$

হ্রের তলদেশে চাপ, $p_1 = (P_2 + h\rho g)$

আমরা জানি, $P_1 V_1 = P_2 V_2$

বা,
$$(P_2 + h\rho g) \times V = P_2 \times 5V$$

বা,
$$P_2 + h\rho g = 5P_2$$

বা,
$$h\rho g = 4P_2$$

বা,
$$h = \frac{4 \times 10^5}{1000 \times 9.8}$$

:. h = 40.816m (Ans.)

য ধরি, হ্রদের তলদেশে বুদবুদের আয়তন, $V_1 = V$ হ্রদের পৃষ্ঠদেশে বুদবুদের আয়তন, $V_2 = 5V$

হদের পৃষ্ঠদেশে চাপ, $P_2 = 10^5 \text{ Nm}^{-2}$

হুদের তলদেশে চাপ, $P_1 = P_2 + h\rho g$

 $= 10^5 + 40.816 \times 1000 \times 9.8$

 $= 10^{5} + 40.816$ $= 5 \times 10^{5} \text{Nm}^{-2}$

∴ $P_1V_1 = 5 \times 10^5V$ $P_2V_2 = 10^5 \times 5V = 5 \times 10^5V$

 $P_2 V_2 = 10^6 \times 3V = 3 \times 10^6$ $P_1 V_1 = P_2 V_2$

ইহা স্পৃষ্টতই ব্রেলের সত্র। সূত্রটি নিল্ল বিবৃত ও ব্যাখ্যা করা হল। বয়েলের সূত্রঃ কোনো নির্দিষ্ট ভরের গ্যাসের তাপমাত্রা স্থির থাকলে তার আয়তন (V) চাপের (P) ব্যাস্ড্রানুপাতে পরিবর্তিত হয়।

অর্থাৎ V lpha $\frac{1}{P}$ যখন তাপমাত্রা ও ভর স্থির থাকে

বা,
$$V = \underline{3}$$
বক $\times \frac{5}{5}$

বা, PV = ধ্র^ভবক

যদি স্থির তাপমাত্রায় কোনো নির্দিষ্ট ভারের গ্যাসের P₁, P₂, P₃P_n চাপে আয়তন যথাক্রমে V₁, V₂, V₃V_n হয় তবে, $P_1 V_1 = P_2 V_2 = P_3 V_3 - P_n V_n = 3$

প্রশু ▶৬৩ একটি হ্রদের তলদেশে থেকে উপরি তলে আসার ফলে বায়ু বুদবুদের আয়তন 4 গুণ হয়। হ্রেদের পৃষ্ঠের বায়ু চাপ 1.013 × 10⁵Pa.হুদের পানির 100kgm⁻³হুদের তাপমাত্রা স্থির বিবেচনা কর। [বি. এ. এফ শাহীন কলেজ, শমসের নগর, সিলেট]

ক. ভূ-স্থির উপগ্রহ কি?

খ. গতিশক্তি কি ঋষ্দ্রক হতে পারে— ব্যাখ্যা কর।

গ. উদ্দীপক অনুসারে হ্রদের গভীরতা নির্ণয় কর।

ঘ. যদি হ্রেনের তলদেশ ও পৃষ্ঠদেশের তাপমাত্রা যথাক্রমে 15°C ও 25°C হয় তবে বুদবুদের আয়তনের পরিবর্তন একই থাকবে কি না-গাণিতিক বিশে-ষণের সাহায্যে ব্যাখ্যা কর। 8

৬৩ নং প্রশ্নের উত্তর

ক পৃথিবীর পৃষ্ঠ হতে নির্দিষ্ট উচ্চতায় থেকে পৃথিবীকে আবর্তনরত যে উপগ্রহের আবর্তনের পর্যায়কাল 24 ঘন্টা, ফলে পৃথিবীর কোনো স্থান থেকে একে পর্যবেক্ষণ করলে সর্বদা স্থির দেখায়, তাকে ভূ-স্থির উপগ্ৰহ বলে।

খ গতি শক্তির রাশিমালা হলো, $E_k=rac{1}{2}\ mv^2$; এখানে m হলো বস্তুর ভর এবং v হলো তাৎক্ষণিক গতিবেগের মান (দ্র^{ঞ্}তি)। ভরের মান কখনো ঋণ্ডাক হয় না। উপরোক্ত রাশিমালায় v-এর ঋণ্ডাক মান a হলে ${f v}^2$ এর ধন্ডাক মান পাওয়া যায়, ফলে গতিশক্তি সর্বদা ধন্ডাক হয়। আরেকটি লক্ষ্যনীয় ব্যাপার হলো, বলের দ্বারা কাজে বা ধন্দ্রক কাজে স্থির বস্তু গতিশক্তি প্রাপ্ত হয়। সুতরাং এক্ষেত্রে অর্জিত শক্তিও (গতি শক্তি) ধন্মক হতে বাধ্য। এ সকল বিবেচনায় বলা যায়, গতিশক্তি কখনো ঋণ্ডাক হতে পারে না।

গ দেওয়া আছে,

হুদের পৃষ্ঠে বায়ুর চাপ, $P_2 = 1.013 \times 10^5 Pa$ হুদের পানির ঘনত্ব, $\rho = 1000 \text{ kgm}^{-3}$

্রদের তলদেশে বুদবুদের আয়তন V_1 হলে পৃষ্ঠদেশে আয়তন, $V_2=$

জানা আছে, অভিকর্ষজ ত্বরণ, $g=9.8ms^{-2}$

বের করতে হবে, হ্রদের গভীরতা, h = ?

হ্রের তলদেশে বুদবুদের ওপর চাপ, $P_1 = P_2 + h
ho g$

হ্রদের সর্বত্র তাপমাত্রা স্থির বিবেচনায় বয়েলের সূত্র প্রয়োগে পাই,

$$P_1 V_1 = P_2 V_2$$

বা, $(P_2 + h\rho g) V_1 = P_2 .4V_1$

বা, $P_2 + h\rho g = 4P_2$

বা, $h\rho g = 4P_2 - P_2 = 3P_2$

$$\begin{array}{c} \therefore \quad h = \frac{3P_2}{\rho g} = \frac{3\times 1.013\times 10^5 Pa}{1000~kgm^{-3}\times 9.8ms^{-2}} = 31m~(\textbf{Ans.}) \\ \hline \ensuremath{\mbox{$\m$$

 $T_1 = 15^{\circ}C = (15 + 273) K = 288 K$ এবং পৃষ্ঠদেশে বুদবুদের তাপমাত্রা, $T_2 = 25$ °C

= (25 + 273) K = 298 K

হ্রেদের পৃষ্ঠ দেশে বুদবুদের ওপর চাপ, $P_2=1.013 imes 10^5 Pa$

এবং তলদেশে বুদবুদের ওপর চাপ, $P_1=P_2+h\rho g$

 $= 1.013 \times 10^5 \text{ Pa} + 31 \text{m} \times 100 \text{ kgm}^{-3} \times 9.8 \text{ms}^{-2}$

= 405100 Pa

বা, $V_2 = 4.139V_1$

হ্রদের তলদেশ ও পৃষ্ঠদেশে বুদবুদের আয়তন যথাক্রমে V_1 ও V_2 হলে, চার্লস ও বয়েলের সূত্রের সমন্বিত রূপ হতে পাই।

$$\begin{split} \frac{P_1 \, V_1}{T_1} &= \frac{P_2 V_2}{T_2} \\ \therefore \ \frac{V_2}{V_1} &= \frac{P_1 \, T_2}{P_2 \, T_1} = \frac{405100 \; Pa \times 298 \; K}{1.013 \times 10^5 \, Pa \times 288 \; K} \\ &= 4.139 \end{split}$$

তাহলে এক্ষেত্রে আয়তনের পরিবর্তন 4.139 গুণ। অথচ, উদ্দীপকে বর্ণিত অবস্থায় আয়তনের পরিবর্তন ছিল 4 গুণ।

সুতরাং, হ্রদের তলদেশ ও পৃষ্ঠদেশের তাপমাত্রা যথাক্রমে 15°C ও 25°C হলে বুদবুদের আয়তনের পরিবর্তন একই থাকবে না।

অধ্যায়টির গুর—ত্বপূর্ণ জ্ঞান ও অনুধাবনমূলক প্রশ্নোত্তর (নির্বাচনি পরীক্ষার প্রশ্ন বিশে-ষণে প্রাপ্ত)

ক নং প্রশ্ন (জ্ঞানমূলক)

প্রশ্ন-১. মৌলিক স্বীকার্য কী?

উত্তরঃ গ্যাসের অণুর গতিতত্ত্ব সুপ্রতিষ্ঠিত করার জন্য কতকগুলো পূর্ব শর্তকে গ্যাসের মৌলিক স্বীকার্য বলে।

প্রশ্ন-২. স্বাধীনতার মাত্রা কী?

উত্তর: একটি বস্তুর গতিশীল অবস্থা বা অবস্থান সম্পূর্ণরূপে প্রকাশ করার জন্য যত সংখ্যক স্বাধীন চলরাশির প্রয়োজন হয় তাকে স্বাধীনতার মাত্রা বলে।

প্রশ্ন-৩. স্বাভাবিক তাপমাত্রা কী?

উত্তরঃ অন্যান্য ভৌত অবস্থা অপরিবর্তিত থাকলে স্বাভাবিক চাপে যে তাপমাত্রায় বরফ গলতে শুর^{ক্র} করে বা পানি বরফ হতে শুর^{ক্র} করে তাকে স্বাভাবিক তাপমাত্রা বলে।

প্রশ্ন-৪. গড় বেগ কাকে বলে?

উত্তরঃ গ্যাসের অণুর বেগ শূন্য থেকে শুর^e করে অসীম পর্য*ন্*ড় বিভিন্ন মানের হয়ে থাকে। এদের বেগের গড় মানকে গড় বেগ বলে।

প্রশ্ন-৫. কুয়াশা কী?

উত্তরঃ বিস্ট্রণ এলাকায় সমবেতভাবে ভাসমান পানি কণাগুলোকে কুয়াশা বলে।

প্রশ্ন-৬. শিশির কী?

উত্তরঃ তাপমাত্রা যখন শিশিরাঙ্কের নিচে নেমে আসে তখন বায়ুকে সম্পক্ত করতে প্রয়োজনীয় জলীয় বাম্পের অতিরিক্ত বাষ্প ঘনীভূত হয়ে ক্ষুদ্র ক্ষুদ্র পানি বিন্দুতে পরিণত হয় একে শিশির বলে।

প্রশ্ন-৭. বাস্ড্র গ্যাস কাকে বলে?

উত্তরঃ যে গ্যাস সকল তাপমাত্রা ও চাপে বয়েল ও চার্লসের সূত্র যুগপৎ মেনে চলে না তাকে বাস্ড্র গ্যাস বলে।

প্রশ্ন-৮. বাষ্পায়ন কাকে বলে?

উত্তর: যেকোনো তাপমাত্রায় কেবল তরল পদার্থের উপরিতল থেকে তরল ধীরে ধীরে বাম্পে পরিণত হওয়ার পদ্ধতিকে বাষ্পায়ন বলে।

প্রশ্ন-৯. পরম শূন্য তাপমাত্রা কাকে বলে?

উত্তর: স্থির চাপে কোনো গ্যাসের আয়তন যে তাপমাত্রায় তাত্ত্বিকভাবে শূন্য হয় তাকে পরম শূন্য তাপমাত্রা বলে।

▶খ নং প্রশ্ন (অনুধাবনমূলক)

প্রশ্ন-১. স্থির চাপে গ্যাসের আয়তন প্রসারণ সহগ $rac{1}{273}\,^{\circ}\mathrm{C}^{-1}$ বলতে কী

উত্তর : স্থির চাপের গ্যাসের আয়তন প্রসারণ সহগ $rac{1}{273}^{\circ} \mathrm{C}^{-1}$ এর অর্থ: স্থির চাপে 0°C তাপমাত্রার নির্দিষ্ট ভরের কোনো গ্যাসের একক আয়তনের তাপমাত্রা 1°C বৃদ্ধিতে এর আয়তন 0°C তাপমাত্রার আয়তনের $\frac{1}{273}$ অংশ বৃদ্ধি বাহ্রাস পায়।

প্রশ্ন-২. ব্রাউনীয় গতির বৈশিষ্ট্যগুলো লিখ।

উত্তর : ব্রা<mark>উনীয় গতির বৈশিষ্ট্য :</mark> ব্রাউনীয় গতির বৈশিষ্ট্যগুলো নিচে লিপিবদ্ধ করা হলো :

- i. এই গতি স্বতঃস্কূর্ত ও শাশ্বত। এই গতি কোনো দিনই বন্ধ হয় না।
- ii. এই গতি অবিরাম ও সম্পূর্ণ অনিয়মিত। দুটি গতি কখনোই একই প্রকার হয় না।
- iii. কণাগুলোর রাসায়নিক প্রকৃতি অর্থাৎ গঠনের উপর এবং পাত্রের কম্পনের অর্থাৎ নডাচডার উপর এই গতি নির্ভর করে না।
- iv. কণাগুলোর আকারের উপর গতি নির্ভর করে। কণা যত ছোট হয় চঞ্চলতা তত বদ্ধি পায়।
- v. তাপমাত্রা বৃদ্ধি পেলে কণার গতি বৃদ্ধি পায়। একই তাপমাত্রায় একই আকারের বিভিন্ন কণার গতি সমমাত্রায় থাকে।
- vi. মাধ্যমের সান্দ্রতার উপর এই গতি নির্ভর করে। মাধ্যমের সান্দ্রতা যত কম কণার গতি তত বদ্ধি পায়।

প্রশ্ন-৩. স্বাভাবিক চাপ বলতে কী বোঝ?

উত্তর : 0° C তাপমাত্রায় সমুদ্রপৃষ্ঠে 45° অক্ষাংশে $760~\rm mm$ বিশুদ্ধ পারদস্কান্ত উল-মভাবে যে চাপ দেয় তাকে স্বাভাবিক বাপ বা আদর্শ চাপ বলে। সমুদ্রপৃষ্ঠে 45° অক্ষাংশে অভিকর্ষজ ত্বরণ $g=9.806~\rm ms^{-2}$ । 0° C তাপমাত্রায় পারদের ঘনত $g=13.596\times 10^3~\rm kgm^{-3}$ । সুতরাং স্বাভাবিক চাপ.

 $\begin{array}{l} p = h \rho g = 760 \times 10^{-3} \times 13.596 \times 10^{3} \times 9.806 \\ = 1.013 \times 10^{5} \; Nm^{-2} \end{array}$

প্রশ্ন-৪. স্বাভাবিক তাপমাত্রা বলতে কী বোঝ?

উত্তর: অন্যান্য ভৌত অবস্থা পরিবর্তিত থাকলে স্বাভাবিক চাপে যে তাপমাত্রায় বরফ গলতে শুর[—] করে বা পানি বরফ হতে শুর[—] করে সেই তাপমাত্রাকে স্বাভাবিক তাপমাত্রা বা আদর্শ তাপমাত্রা বলে। অতএব, 0°C বা 273K হলো আদর্শ তাপমাত্রা।

প্রশ্ন-৫. ঘরের তাপমাত্রা বৃদ্ধিতে শিশিরাঙ্কের কোনো পরিবর্তন হয় না কেনং

উত্তর : শিশিরাঙ্ক হলো সেই তাপমাত্রা যে তাপমাত্রায় নির্দিষ্ট পরিমাণ বায়ুতে বিদ্যমান জলীয় বাষ্প সম্পুক্ত হয়। তাপমাত্রা বৃদ্ধিতে যেহেতু জলীয় বাষ্পের পরিমাণ বৃদ্ধি পায় না সেহেতু ঘরের তাপমাত্রা বৃদ্ধিতে শিশিরাঙ্কের কোনো পরিবর্তন হবে না, শিশিরাঙ্ক একই থাকবে।

প্রশ্ন-৬. ঘরের তাপমাত্রা বৃদ্ধিতে আপেক্ষিক আর্দ্রতা হ্রাস পায় কেন? উত্তর : ঘরের তাপমাত্রা বৃদ্ধিতে আপেক্ষিক আর্দ্রতা হ্রাস পায়। কারণ আপেক্ষিক আর্দ্রতা হলো.

কোনো নির্দিষ্ট আয়তনের বায়ুতে বিদ্যমান জলীয় বাম্ব্রেজ ভর বায়ুর তাপমাত্রায় একে সম্ভূজ করতে প্রয়োজনীয় জলীয় বাম্ব্রেজ ভর

তাপমাত্রা বৃদ্ধিতে বায়ুর জলীয় বাষ্ণের ধারণ ক্ষমতা বৃদ্ধি পায়। তাই তাপমাত্রা বৃদ্ধির ফলে বায়ুকে সম্পৃক্ত করতে বেশি বাষ্প্প দরকার, কিম্ড বায়ুকে উপস্থিত জলীয় বাষ্ণের পরিমাণ একই পরিমাণ আছে।

প্রশ্ন-৭. কীভাবে তুষার উৎপন্ন হয়?

উত্তর : শিশিরাঙ্ক 0° সেলসিয়াস তাপমাত্রার চেয়ে কম থাকলে বায়ুর তাপমাত্রা শিশিরাঙ্কের নিচে নামলে বায়ুতে বিদ্যমান জলীয় বাষ্প্র জমে পানিতে রূপাম্পুর না হয়ে কঠিন বরফ হয়ে শুদ্র তুষার বা তুহিন উৎপন্ন করে।

প্রশ্ন-৮. মেঘাচ্ছন্ন রাত্রি অপেক্ষা মেঘশূন্য রাত্রি শিশির জমার জন্যে সহায়ক কেন?

উত্তর: দিনের বেলায় সূর্যের তাপে ভূপৃষ্ঠ সংলগ্ন বাতাস গরম থাকে এবং জলীয় বাষ্প দ্বারা অসম্পৃক্ত থাকে। মেঘহীন রাত্রিতে ভূপৃষ্ঠ তাপ বিকিরণ করে ঠালা হতে থাকে এবং পরিশেষে এমন একটি তাপমাত্রায় উপনীত হয় যখন বাতাস জলীয় বাষ্প সম্পৃক্ত হয় এবং জলীয় বাষ্প ঘনীভূত হয়ে শিশির জমে।

কিম্ছু আকাশ মেঘাচ্ছন্ন থাকলে ভূপৃষ্ঠ তাপ বিকিরণ করে ঠালা হতে পারে না। কারণ মেঘ তাপরোধী পদার্থ বলে ভূপৃষ্ঠ হতে বিকিরণজনিত তাপ পরিবাহিত হতে পারে না। ফলে ভূপৃষ্ঠ ঠালা হয় না এবং শিশির জমে না।

প্রশ্ন-৯. বর্ষার দিন অপেক্ষা শীতকালে ভিজা কাপড় তাড়াতাড়ি শুকায় কেন?

উত্তর: বর্ষার দিনে বায়ুম^{্ক}ল জলীয় বাষ্প দ্বারা সম্পৃক্ত থাকে। ফলে বাতাস অধিক পরিমাণে জলীয় বাষ্প ধারণ করতে পারে না। শীতকালের বাতাস শুকনা থাকে। বাতাস জলীয় বাষ্পহীন। এই বাতাস ভিজা থেকে দ্রুক্ত জলীয় বাষ্পে শোষণ করে নিয়ে সম্পৃক্ত হতে চায়। ফলে শীতের দিনে ভিজা কাপড তাডাতাডি শুকায়।

প্রশ্ন-১০. গরমের দিনে কুকুর জিহ্বা বের করে দৌড়ায় কেন?

উত্তর : গরমের দিনে কুকুরের শরীর উত্তপ্ত থাকে এবং কুকুর অস্বস্পিড় বোধ করে। কিম্ডু কুকুরের জিহ্বার উপর এক প্রকার লালা থাকে। সেই লালা কুকুরের শরীর থেকে বাষ্পীভবনের সুপ্ততাপ শোষণ করে এবং কুকুরের শরীর ঠালা হয়। কুকুর স্বস্পিড় অনুভব করে। সেজন্য কুকুর জিহ্বা বের করে দৌড়ায়।

প্রশ্ন-১১. ঘর্মাক্ত দেহে পাখার বাতাস লাগলে আরাম অনুভূত হয় কেনং

উত্তর: ঘর্মাক্ত দেহ খুবই অস্বম্প্র্কর। শরীরের ঘাম শরীর থেকে বাষ্পীভবনের সুপ্ত তাপ গ্রহণ করে বাষ্প্র হয়ে উড়ে যায়। পাখার বাতাস সেই গরম বাষ্প্রকে দূরীভূত করে। ফলে শরীর ঠালী হয় এবং আরাম অনুভূত হয়।