Homework #1. Due by 6pm on Saturday, Sep 4th Problems

Note on hints: All hints are given at the end of the assignment, each on a separate page. Problems (or parts of problems) for which hint is available are marked with *.

Most of the problems below deal with concepts that have not been introduced in class so far. The definitions of those concepts are given on page 3. We denote by $Mat_n(F)$ the set of all $n \times n$ matrices over F.

- **1.** Let $V = Pol_2(\mathbb{R})$, the vector space of polynomials of degree at most 2 over \mathbb{R} . Let $\beta = \{1, x, x^2\}$ and $\gamma = \{1, (x-1), (x-1)^2\}$. Both β and γ are bases of V (you do not need to verify this). Let $T: V \to V$ be the differentiation map: T(f) = f'.
 - (a) compute the matrix $[T]_{\beta}$ directly from definition
 - (b) compute the matrix $[T]_{\gamma}$ directly from definition
 - (c) now compute $[T]_{\gamma}$ using your answer in (a) and the change of basis formula.
- **2.** In each of the following examples determine if H is a bilinear form on V (make sure to justify your answer):
 - (a) $V = Mat_n(F)$ for some field F and $n \in \mathbb{N}$ and H(A, B) = AB.
 - (b) $V = Mat_n(F)$ for some field F and $n \in \mathbb{N}$ and $H(A, B) = (AB)_{1,1}$ (the (1,1)-entry of the matrix AB).
 - (c) $V = F^n$ for some field F and $n \in \mathbb{N}$ and $H((x_1, \dots, x_n), (y_1, \dots, y_n)) = x_1 + y_1$.
- **3.** As in problem 1, let $V = Pol_2(\mathbb{R})$, and define $H: V \times V \to \mathbb{R}$ by

$$H(f,g) = \int_{0}^{1} f(x)g(x)dx.$$

Prove that H is a symmetric bilinear form and compute the matrix $[H]_{\beta}$ (where again $\beta = \{1, x, x^2\}$).

4. Let F be any field, $n \in \mathbb{N}$ and $V = Mat_n(F)$, the vector space of $n \times n$ matrices over F. Let e_{ij} be the matrix whose (i, j)-entry is equal to 1 and all other entries are 0. Then $\beta = \{e_{ij} : 1 \leq i, j \leq n\}$ is a basis

of V (you do not need to verify this). Define $H: V \times V \to F$ by

$$H(A,B) = Tr(AB^T)$$

(where B^T is the transpose of B). Prove that H is a symmetric bilinear form and compute the matrix $[H]_{\beta}$ (you can order β in any way you like). Include all the relevant computations.

- **5.** Let F be a field with $\operatorname{char}(F) \neq 2$, let V be a finite-dimensional vector space over F, and let H be a bilinear form on V. Prove that H can be **uniquely** written as $H = H^+ + H^-$ where H^+ is a symmetric bilinear form on V and H^- is an antisymmetric bilinear form on V.
- **6.** Let F be any field and $n \in \mathbb{N}$.
 - (a) Let $V = F^n$ (the standard *n*-dimensional vector space over F). Let $D: V \times V \to F$ be the dot product form. Prove that D is non-degenerate.
 - (b)* Now V be any n-dimensional vector space over F, β an ordered basis for V and H a bilinear form on V. Prove that H is left non-degenerate if and only if $[H]_{\beta}$ (the matrix of H with respect to β) is invertible.

Note: (a) is a special case of (b); however, there is a natural way to solve (b) using (a), so it does make sense to prove (a) first.

- 7. Let F be any field, $n \in \mathbb{N}$, $V = F^n$ and $\{e_1, \ldots, e_n\}$ the standard basis of V. Define $\rho: S_n \to GL(V)$ by $(\rho(g))(e_i) = e_{g(i)}$. As discussed in Lecture 1, the pair (ρ, V) is a representation of S_n .
 - (a) Let V_0 be the subspace of V consisting of all vectors whose sum of coordinates is equal to 0:

$$V_0 = \{(x_1, \dots, x_n) \in V : x_1 + \dots + x_n = 0\}.$$

Prove that V_0 is an S_n -invariant subspace of V, and therefore (ρ, V_0) is also a representation of S_n .

(b)* **BONUS** Now prove that the representation (ρ, V_0) is irreducible, that is, if W is any S_n -invariant subspace of V_0 , then W = 0 or $W = V_0$.

Definitions

1. Characteristic of a ring. Let R be a ring with 1. The characteristic of R, denoted $\operatorname{char}(R)$, is the smallest positive integer n such that $\underbrace{1+\ldots+1}_{n \text{ times}}=0$ in R. If no such n exists, we define $\operatorname{char}(R)=0$.

For instance, $\operatorname{char}(\mathbb{Z}) = \operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{C}) = 0$, while $\operatorname{char}(\mathbb{Z}_n) = n$ (where $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ is the ring of congruence classes mod n). There is a theorem saying that if F is a field, then $\operatorname{char}(F)$ is either 0 or a prime number.

2. Let V be a vector space over any field. A bilinear form on V is a map $H: V \times V \to F$ which is linear in each variable, that is,

$$H(x+\lambda y,z)=H(x,z)+\lambda H(y,z)$$
 and $H(x,y+\lambda z)=H(x,y)+\lambda H(x,z)$ for all $\lambda\in F, x,y,z\in V$.

If V is finite-dimensional and $\beta = \{v_1, \ldots, v_n\}$ is an ordered basis of V, the matrix of H with respect to β , denoted by $[H]_{\beta}$ is the $n \times n$ matrix over F whose (i, j)-entry is $H(v_i, v_j)$.

- 3. Let H be a bilinear form on a vector space V. Then H is called
 - (i) symmetric if H(x,y) = H(y,x) for all $x,y \in V$;
 - (ii) antisymmetric if H(x,y) = -H(y,x) for all $x,y \in V$;
 - (iii) left non-degenerate if for every nonzero $x \in V$ there exists $y \in V$ with $H(x, y) \neq 0$.
 - (iv) right non-degenerate if for every nonzero $x \in V$ there exists $y \in V$ with $H(y, x) \neq 0$.

Hint for $6(\mathbf{b})$. Use the formula $H(v, w) = [v]_{\beta}^{T}[H]_{\beta}[w]_{\beta}$ (will be proved in Lecture 3). Interpret the right-hand side of this formula as a dot product and use $6(\mathbf{a})$.

Hint for 7(b). Let W be an S_n -invariant subspace of V_0 , and assume that $W \neq 0$. Our goal is to show that $W = V_0$. First prove that W must contain a nonzero vector w_1 one of whose coordinates is zero. Then use w_1 to construct an element $w_2 \in W$ which has exactly two nonzero coordinates and deduce that w_1 is a nonzero scalar multiple of $e_i - e_j$ for some $i \neq j$. Finally, use w_2 to prove that $W = V_0$.