OrthoDB v10: samplong the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs

Kriventseva et al. 2019 Nucleic Acids Research

OrthoDB

- Genomes can theoretically give us *all the genes* for an organism
- Homology can be used to hypothesize about gene functions
- Orthology homology of genes due to speciation
 - orthologs
 - orthogroups (OGs) groups of homologs with respect to their species radiation
 - the **cornerstone** of comparative genomics.

OrthoDB

- Based on the idea that genomics is inherently hierarchical
- Each group of species has a common ancestor
- Ortholog delineation is applied at each radiation

OrthoDB contains

Functional annotations

- Genes:
 - collects functional data attached to genes from other databases
 - (NCBI, UniProt, Gene Ontology etc.)
 - KEGG pathways
 - Online Mendelian Inheritance in Man (OMIM)
- Orthogroups
 - aggregations corresponding to gene-level annotations
 - essentially uses text matching to determine the best scoring single phrase in common with all the genes in an orthogroup
- Functional categories:
 - Clusters of Orthologous Genes (COG)
 - Gene Ontology (GO)
 - Kyoto Encyclopedia of Genes and Genomes

KEGG Pathways

- A pathway is a series of interactions among molecules in a cell that leads to a certain product or change in a cell (Wikipedia)
- https://www.genome.jp/brite/br08901
- Metabolic pathways
- Genetic pathways
- Signal transduction pathways

Gene Ontology (geneontology.org)

- Ontologies consist of a set of classes (or terms or concepts) with relations that operate between them.
- For the biological domain, the Gene Ontology (GO) describes three aspects:
 - Molecular Function what gene products do
 - Cellular Component where in the cell a gene product performs its function
 - Biological Process broader programs accomplished by molecular activities
- GO is like a graph, where each term is a node and relationships between terms are edges between the nodes
- Hierarchical, meaning it contains "parent" and "child" terms

Gene Ontology (geneontology.org)

- "hexose biosynthetic process" has two parents
 - "hexose metabolic process"
 - "monosaccharide biosynthetic process"
 - "biosynthetic process" is a subtype of "metabolic process" AND hexose is a subtype of monosaccharide

OrthoDB contains

- Evolutionary annotations
 - phyletic profile: the proportion of species in an orthogroup with orthologs
 - Does a gene family have a function that is necessary for life ("basal")?
 - Orco co-receptor for insect odorant-sensing
 - or is the gene lineage-specific, reflecting unique adaptations (26Ab)
 - evolutionary rate: sequence divergence at the protein level
 - can indicate strength of selection acting on gene over deep time
 - slower=purifying selection (Orco); faster=positive selection (26Ab)
 - sibling groups: sequence uniqueness of the orthologs
 - can allow the discovery of closely related gene families with similar functions

graph-based phase:

tree-based phase:

4. find all-to-all homologs

7. score evolutionary traits

are there duplications? losses?

5. filter Best Reciprocal Hits

8. summarise OG annotation

3. collate gene annotations

6. cluster BRHs and homologs

9. make the data available

OrthoDB Data Download

Application Programming Interface - API

This is the recommended way to download data if the data set is not too large. See note upocumentation and examples are found here.

Flat files

OrthoDS data is also evellable for download from here.
This is recommended if the user intends to process large parts of the data or /fairts or /fair (8006).

Your SPARQL query

Query Text