Diseño de sensores inteligentes para el monitoreo en tiempo real de la calidad del agua.

Segundo avance Resultado de simulaciones

Equipo:

- Arteaga Lara Samuel de Jesus
- Mendoza Jaimes Ian
- Monroy Martos Elioth
- Saldaña Aguilar Andrés Arnulfo

Recordando...

Diagrama general del sistema

Sensor de flujo

Vin=Ov

Vin=5v

Sensor de temperatura

	Temperature	Thermistor Resistence
1	0 °C (min)	77.241 k $\Omega(R_{T-Min})$
2	20 °C	$25.070 \text{ k}\Omega(\text{R}_{T0})$
3	40 °C	$10.602 \text{ k}\Omega(\text{R}_{T-Max})$

SENSOR OXIDACIÓN REDUCCIÓN

Vin=2 , **Vin=1**

V1 V2 Vin Vout

Vin=-2, **Vin=0**

SENSOR DE PH

Vin=430mV

Vin=220mV

Vin=-430mV

Vin=0

GRACIAS