美国FOF基金时间序列建模

任庆杰 1400015500 rengingjie@pku.edu.cn

2017年6月11日

1 引言

基金中的基金(Fund of Funds, 简称FOF)在中国刚刚兴起,而在大洋彼岸的美国已经发展了许多年。由于其收益的稳定性和低风险性,受到了许多投资者的青睐。特别是2003年美国的养老金市场变型,更多雇员从DB-plan转向DC-plan后,更多的养老金进入基金市场投资,更推动了FOF的发展。本文尝试利用时间序列模型,对美国FOF基金资产总量进行建模分析,同时对2007-2016年的FOF基金资产总量和养老金总量进行协整建模。

本文所使用的数据来自彭博数据库,包括FOF基金资产总量1990年至今的月度和季度数据,以及2007-2016年DC-plan养老金总量的季度数据。

2 FOF基金资产总量建模

2.1 ARIMA建模

首先对数据进行平稳性检验(图1)。在备择假设为平稳性的条件下,对FOF基金的资产总量数据进行检验。检验结果p值为0.8158。这说明FOF的资产总量数据并不是一个平稳的时间序列。而对FOF资产总量取对数差分后,即对增长率 $\{GR_ast_t\}$ 序列再次进行ADF检验,检验结果P < 0.01,拒绝了非平稳的原假设。即其增长率是一个平稳序列。

下面对对数差分后的序列进行ARMA建模。绘制 $\{GR_ast_t\}$ 序列的自相关和偏自相关图像可以发现(图 \ref{q} ?),此序列的ACF函数在5阶处截尾,PACF函数在5阶处结尾。

经过反复尝试, 当使用MA(5)对序列进行刻画时, 可以得到较好的估计效果。

图 1: 资产总量及增长率序列

(a) ACF of GR_ast

(b) PACF of GR_ast

Call: arima(x = GR_ast, order = c(0, 0, 5), fixed = c(0, 0, NA, 0, NA, NA))

Coefficients: ma1 ma2 ma3 ma4 ma5 intercept 0 0 0.1352 0 0.2156 2.2333 s.e. 0 0 0.0616 0 0.0556 0.4705

(d) MA Model

图 2: 识别MA(q)模型

2.2 模型诊断

对估计的残差 \hat{u}_t 进行Box检验,p=0.84,可以接受原假设,满足白噪声要求。同时绘制 \hat{u}_t 的自相关函数,从1阶开始都不显著,也说明 \hat{u}_t 序列不存在自相关。

继续对 $\hat{u_t}^2$ 进行 McLeod.Li检验,判断是否存在ARCH效应。检验结果各阶的p值都接近1, 说明不存在ARCH效应(图3)。

但是,如果绘制出标准化的残差图进行观察,会发现在第90期有一个明显的异常值(图 4a)。很有可能因为这个异常值的出现,使得其他的波动被隐藏,在模型诊断的检验中造成了偏差。通过Bonferroni法则进行检验MA(5)模型,在第90期存在一个强影响点 $GR_{-}ast_{90}$ 。这进一步确认了我们的猜测(图 4b)。

2.3 异常值处理

为了削弱第90期的异常值对模型的影响,令

$$GR_ast_{90} = \frac{1}{3} \cdot (GR_ast_{89} + GR_ast_{90} + GR_ast_{91})$$

重新对 GR_{-ast_t} 序列(图5)进行建模估计。此时对使用极大似然估计得到的残差序列 $\hat{u_t}^2$ 进行 McLeod.Li检验,检验结果p值很小,拒绝了不存在条件异方差的原假设。即存在GARCH效

图 3: 模型诊断

图 4: 异常值诊断

图 5: 调整后的增长率序列

图 6: McLeod.Li.test for the residuals of adjusted series

应(图6)。

于是使用ARMA(0,5)-GARCH(0,1)对调整后的 GR_{-ast_t} 进行建模。估计结果如下(图7)。

3 与养老金市场的协整

由于美国FOF基金的兴起,主要源于养老金市场的发展。美国雇员逐渐选择将养老金计划由DB转向DC,增大了投资养老金的需求。而FOF基金作为一种收益稳定、风险低的基金,自然受到了这些风险极度厌恶的投资者的青睐。下面,利用彭博数据库中FOF基金资产总量和养老金资产总量的季度数据,对FOF基金市场与养老金市场进行协整分析。在2007-2016十年中,二者的绝对数量和增长率变化趋势如图8。

对 FOF_t 和 $Retire_t$ 序列分别进行单位根检验。ADF检验和Phillips-Perron的结果接受了原假设(单位根过程),而Kwiatkowski -Phillips-Schmidt-Shin检验结果拒绝了原假设(平稳过程)。因此可以认为 FOF_t 和 $Retire_t$ 是非平稳序列。继续对它们的差分序列 ΔFOF_t 和 $\Delta Retire_t$ 进行单位根检验,得到的结果表明它们是平稳序列。所以, FOF_t 和 $Retire_t$ 分别是2个I(1)序列。下面对这两个序列进行协整估计。

	Estimate	Std. Error	t value	Pr(> t)
mu	2.072883	0.202273	10.2480	0.000000
ma1	0.000000	NA	NA	NA
ma2	0.000000	NA	NA	NA
ma3	0.069979	0.051529	1.3581	0.174447
ma4	0.000000	NA	NA	NA
ma5	0.157267	0.050609	3.1075	0.001887
omega	7.802612	6.165227	1.2656	0.205662
alpha1	0.558752	0.420160	1.3299	0.183566
beta1	0.440247	0.130388	3.3764	0.000734
shape	2.488051	0.516139	4.8205	0.000001

图 7: Parameters and t-value, Distribution : std

图 8: FOF基金市场与养老金市场

表 1: OLS估计结果

Coefficients:				
	Estimate	Std. Error	t value	Pr(>t)
(Intercept)	-7.552e + 02	5.632e+01	-13.41	5.51e-16 ***
Retire	1.524e-01	5.042e-03	30.22	<2e-16 ***

表 2: OLS估计残差的单位根检验

Tests	ADF-Test	KPSS-Test	PP-Test
Statistics	-3.1799 (¡1pct	0.2674(j10pct)	-10.0379 (¡Z-tau)

首先,使用最小二乘法估计如下方程:

$$FOF_t = \alpha + \beta \cdot Retire_t + \mu_t$$

得到 α 和 β 的估计量 $\hat{\alpha}$ 和 $\hat{\beta}$ 。估计结果如表1:

对残差估计序列 \hat{u}_t 进行单位根检验, \hat{u}_t 在ADF检验和PP检验中拒绝了原假设,在KPSS检验中接受了原假设(表2)。因此可以认为 FOF_t 和 $Retire_t$ 两个I(1)过程得到了平稳的I(0)过程。即两个序列之间存在着长期的均衡关系(协整关系)。协整向量为(1,-0.15)

记 $y_t = FOF_t$, $x_t = Retire_t$, 建立误差修正模型。由于使用的是季度数据,所以加入 Δy_t 的1-4阶滞后项。

$$\Delta y_t = \mu + \alpha_1 \cdot \Delta y_{t-1} + \alpha_2 \cdot \Delta y_{t-2} + \alpha_3 \cdot \Delta y_{t-3} + \alpha_4 \cdot \Delta y_{t-4} + \beta_0 \cdot \Delta x_t + \beta_1 \cdot \Delta x_{t-1} + \gamma \cdot (y_{t-1} - kx_{t-1}) + \epsilon_t$$

估计结果表3:

估计结果中, Δy_t 只有一期滞后项是显著的,系数大小为0.46 误差修正项的系数为-0.38,在10%的程度显著,说明修正力度的大小为-0.38。协整向量为(1,-0.15)。将ECM 方程展开,即为: $\Delta y_t = 22.13 - 0.46 \cdot \Delta y_{t-1} - 0.01 \cdot \Delta y_{t-2} + -0.04 \cdot \Delta y_{t-3} + -0.03 \cdot \Delta y_{t-4} + 0.10 \cdot \Delta x_t + 0.06 \cdot \Delta x_{t-1} - 0.38 \cdot (y_{t-1} - 0.15x_{t-1}) + \epsilon_t$

4 结论

本文的主要结论如下:

1. 在过去的20年中,FOF资产总量的增长率满足 $ARMA(0.5) \sim GARCH(1.1)$ 模型。

表 3: 误差修正模型估计结果

Coefficients:				
	Estimate	Std. Error	t value	Pr(>t)
(Intercept)	22.13335	11.14436	1.986	0.0573
L(y, 1)	-0.46108	0.19994	-2.306	0.029 *
L(y, 2)	-0.01601	0.12908	-0.124	0.9022
L(y, 3)	-0.03563	0.12999	-0.274	0.7861
L(y, 4)	-0.02875	0.13862	-0.207	0.8373
L(x, 1)	0.05842	0.02549	2.292	0.03 *
L(x, 0)	0.09517	0.01852	5.138	0.000021 ***
L(r, 1)	-0.38373	0.16855	-2.277	0.0309 *

2.	汤和养老金市场之前存在协整关系。 可以实现长期稳定关系。	FOF资产总量维持在养老金市场总量