Preparado para:

REFORM/SC2022/126 **DELIVERABLE 4 MÓDULO 3 ESTATÍSTICA BÁSICA** EM R

DESIGNING A NEW VALUATION MODEL FOR RURAL PROPERTIES IN PORTUGAL

Parte II (cont.)

Formador: Luís Teles Morais | Nova SBE Lisboa, 22 junho 2023

Programa

Módulos	Duração
Módulo 1 – Introdução ao R: O que é o R? Como instalar e configurar o R. Sintaxe básica e comandos. Tipos de dados, objetos e classes.	4 Horas
 Módulo 2 - Gestão e tratamento de dados em R: Carregar dados no R. Perceber as estruturas de dados e subsetting. Limpeza de dados: missing values, outliers e transformações Juntar bases de dados 	8 Horas
Módulo 3 – Estatística básica em R: - Estatísticas descritivas: medidas de dispersão central e variação. - Distribuições probabilísticas: variáveis discretas e contínuas. - Testes de hipóteses.	8 Horas

Módulos	Duração
 Módulo 4 - Regressão Linear: O modelo classico linear. Estimação de parametros segundo o MMQ. Testes de hipóteses: significância estatística e ajuste do modelo. Modelo de regressão múltipla. Testar as premissas: multicolinearidade, heteroscedasticidade e normalidade dos resíduos. Critérios de seleção dos modelos. 	12 Horas
 Módulo 5 - O modelo: Estrutura do modelo e premissas - Perceber o modelo (4 Hours). Uso e tratamento dos dados (4 Hours). Descrição do modelo (4 Hours). Aplicação do modelo a cada piloto (12 Hours). Aplicação autónoma do modelo a uma região (8 Hours). 	32 Horas

Estatística básica em R (III)

Testes de hipóteses

Correlação vs. causalidade

Distribuição univariada

Distribuição bivariada

Ciência de dados

Alguns conceitos

Visualizar

Modelizar

Estatística descritiva

 Analisar um conjunto de dados, reduzindo-o a medidas sumárias simples

Inferência estatística

 Calcular ou <u>estimar</u> algo que não podemos observar diretamente, a partir dos dados existentes

Distribuição normal

• Muitas variáveis na realidade são aproximadamente "normais"

- Também curva de Gauss
- $\sim N(\mu, \sigma)$:
 - média μ e desv. pad. σ
 - ditam posição e dispersão

Neil Kakkar

Lei dos grandes números

- **Sim!** Lei dos grandes números: a média da amostra acerta, em média, na média da população, seja qual for a distribuição da variável
- Formalmente: $\lim_{n \to \infty} \sum_{n=1}^{n} \frac{X_n}{x_n}$

 E.x.: valor médio do dado -> converge sempre para 3.5, se o atirar vezes suficientes

Teorema do limite central

- **E mais:** a distribuição das estimativas converge para uma distribuição normal, independentemente da distribuição da variável inicial
- Formalmente: $\sqrt{n} \left(\bar{X}_n \mu \right) \stackrel{a}{\to} \mathcal{N} \left(0, \sigma^2 \right)$

 Permite a inferência: sei a probabilidade associada ao valor obtido como estimativa, mesmo sem conhecer a forma da distribuição da variável

Teste de hipóteses Exemplo médico

■ Facto para efeitos desta aula: está comprovado que a probabilidade de surgirem complicações graves é, para qualquer hospital em Portugal, 10%.

Chefe do Serv. de Cirurgia do Hospital da Guarda:
 Graças às práticas que implementámos, apenas tivemos 30 casos complicados no ano de 2022.

 A sua tese: isto comprova que as melhorias que implementou conduziram a uma redução da probabilidade de existirem complicações graves no Hospital da Guarda, face ao que acontece no resto do país.

Teste de hipóteses Exemplo médico

■ Facto para efeitos desta aula: está comprovado que a probabilidade de surgirem complicações graves é, para qualquer hospital em Portugal, 10%.

Chefe do Serv. de Cirurgia do Hospital da Guarda:
 Graças às práticas que implementámos, apenas tivemos 30 casos complicados no ano de 2022.

A sua tese: isto comprova que as melhorias que implementou conduziram a uma redução da probabilidade de existirem complicações graves no Hospital da Guarda, face ao que acontece no resto do país. Será?

- O n.º total de cirurgias no Hospital da Guarda em 2022 foi de 500.
- Crie de raíz, através de código, uma tabela com um registo para cada cirurgia e uma variável binária que assinala se existiram complicações. Dica:
 - Primeiro, crie uma tabela em que a variável indica que não houve complicações em todos os registos
 - Segundo, altere o valor apenas das primeiras 30 linhas

- O n.º total de cirurgias no Hospital da Guarda em 2022 foi de 500.
- Crie de raíz, através de código, uma tabela com um registo para cada cirurgia e uma variável binária que assinala se existiram complicações. Dica:
 - Primeiro, crie uma tabela em que a variável indica que não houve complicações em todos os registos
 - Segundo, altere o valor apenas das primeiras 30 linhas

```
cirurgias_Guarda <- tibble(
  no_cirurgia = seq(0, 500),
  I_Complicacoes = FALSE
)
# Variável binária => utilizar valores do tipo logical
cirurgias_Guarda$I_Complicacoes[0:30] = TRUE
```

■ Como é que poderia realizar o mesmo procedimento acima (alterar só aqueles valores para TRUE), mas utilizando uma função do tidyverse?

Como é que poderia realizar o mesmo procedimento acima (alterar só aqueles valores para TRUE), mas utilizando uma função do tidyverse?

```
cirurgias_Guarda <- cirurgias_Guarda %>%
  mutate(resultado = if_else(no_cirurgia <= 30, TRUE, FALSE))

# Bonus: sem utilizar a variável n.º da cirurgia
cirurgias_Guarda %>% mutate(resultado = if_else(n() <= 30, TRUE, FALSE))</pre>
```

```
## # A tibble: 501 \times 3
     no_cirurgia I_Complicacoes resultado
##
           <int> <lgl>
##
                                 <lgl>
               0 TRUE
                                 FALSE
## 1
## 2
               1 TRUE
                                 FALSE
## 3
               2 TRUE
                                 FALSE
                                 FALSE
## 4
               3 TRUE
## 5
            4 TRUE
                                 FALSE
## 6
               5 TRUE
                                 FALSE
## # i 495 more rows
```

Parâmetro e medida ou estimativa

p : probabilidade de existirem complicações graves em cirurgias em Portugal =10%.

 $\hat{p}:$ percentagem de complicações na Guarda em 2022 (na amostra) = $rac{30}{500}=6\%$

Parâmetro e medida ou estimativa

p : probabilidade de existirem complicações graves em cirurgias em Portugal =10%.

 $\hat{p}:$ percentagem de complicações na Guarda em 2022 (na amostra) = $rac{30}{500}=6\%$

Correlação e causalidade

É possível confirmar a afirmação do diretor com estes dados?

Parâmetro e medida ou estimativa

p : probabilidade de existirem complicações graves em cirurgias em Portugal =10%.

 $\hat{p}:$ percentagem de complicações na Guarda em 2022 (na amostra) = $rac{30}{500}=6\%$

Correlação e causalidade

É possível confirmar a afirmação do diretor com estes dados?

- Não -- **correlação vs. causalidade**: a probabilidade de existirem complicações na Guarda pode ser diferente do resto do país por outros motivos que não as alterações promovidas
 - Ainda assim, podemos aferir se a taxa obtida, 6%, significa realmente que a probabilidade na Guarda é mais baixa na Guarda face ao resto do país.
 - Ou se pelo contrário, em 2022 a taxa foi mais baixa por mero acaso.

2 hipóteses

O teste de hipóteses começa por definir a hipótese nula e a alternativa:

■ **Hipotese nula:** "Não há diferença entre a Guarda e o resto do país"

2 hipóteses

O teste de hipóteses começa por definir a hipótese nula e a alternativa:

- Hipotese nula: "Não há diferença entre a Guarda e o resto do país"
- **Hipótese alternativa:** "A taxa é de facto mais baixa na Guarda"

Um teste de hipóteses é como um julgamento no tribunal

- **Hipotese nula**, H_0 : O réu é inocente
- **Hipótese alternativa**, H_A : O réu é culpado

Um teste de hipóteses é como um julgamento no tribunal

- **Hipotese nula**, H_0 : O réu é inocente
- Hipótese alternativa, H_A : O réu é culpado
- Apresentar o material probatório: Recolher os dados

Um teste de hipóteses é como um julgamento no tribunal

- **Hipotese nula**, H_0 : O réu é inocente
- Hipótese alternativa, H_A : O réu é culpado
- Apresentar o material probatório: Recolher os dados

Julgar com base nas provas:

- Se a hipótese nula for verdadeira:
 - (Ou seja, se a probabilidade de complicações continuar igual ao resto do país)
 - Será plausível ter sido obtido um valor tão baixo este ano?

Sim: Não se rejeita a H0 vs. Não: Rejeita-se a H0

Estrutura de qualquer teste de hipóteses

- lacktriangle Começa-se com a hipótese nula, H_0 , que representa o status quo
- A hipótese alternativa, H_A , representa a pergunta de investigação, i.e. a informação nova, cuja verosimilhança queremos testar.
 - Para testar a hipótese de H_0 ser verdadeira, obtém-se o **p-value** \rightarrow probabilidade de um resultado tão ou mais *extremo* que o observado, sob a hipótese nula
- Duas possibilidades:

p-value alto \Rightarrow as provas <u>não</u> permitem rejeitar H_0

• A taxa de complicações observada (6%) parece plausível sob H_0

p-value baixo \Rightarrow as provas permitem rejeitar H_0

• Sob H_0 , parece difícil que se observasse uma taxa tão baixa

p-value

- Suponha que sabemos que a distribuição da % de complicações é em qualquer caso normal, com um desvio padrão de 5 p.p.
- Neste caso, podemos calcular a probabilidade de obter um resultado igual ou inferior a 6%.

Tipos de erro e nível de significância

	H0 é verdadeira	H0 é falsa
H0 rejeitada	Erro do tipo I	Não há erro
H0 não rejeitada	Não há erro	Erro do tipo II

- Erro do tipo I: O "inocente" é condenado
- Erro do tipo II: O "culpado" é ilibado
 - Como na vida real, temos mais tolerância com o tipo II

Erros e nível de significância

- Nível de significância: tolerância com erros do tipo I na avaliação das hipóteses.
- Preferência "subjetiva" vertida num valor concreto: a probabilidade máxima de cometer um erro do tipo I, sob a hipótese nula

Erros e nível de significância

- Neste caso, a
 probabilidade de cometer
 um erro do tipo I é 22%,
 na condição da hipótese
 nula ser verdadeira.
- p-value = 22% > nível de significância = 5%
 - rejeita-se H0

Obrigado e bom fim-de-semana!

luis.morais@novasbe.pt