Bounce Rate Optimization

Steven Shad

Jackgroun

Our mode

Results

Conclusion

Bounce Rate Optimization with Markov traffic models

Steven Shao, James Xue

April 2018

Overview

Bounce Rate Optimization

Steven Shad James Xud

2 a alcarounc

Our mode

Results

Conclusio

1 Background

2 Our model

3 Results

4 Conclusion

Background

Bounce Rate Optimization

James Xue

Background

Our model Results

Conclusio

Problem (Optimal tagging)

In a network of items and tags, how to choose tags for a new item to maximize the probability of a user reaching that item?

Recommended paper "Optimal tagging with Markov chain optimization" [RG16]

- Model traffic using a Markov chain, and modify transitions in this chain to maximize traffic into a certain state of interest.
- Problem proven to be NP-hard, but with simple greedy approximation from [NWF78]

Their model

Bounce Rate Optimization

Steven Shac James Xue

Background

Our model

Conclusion

Problem formulation:

- **1** *n* states, plus a new σ state
- 2 2 constrained (details omitted) weight sets: q_{ij} and \bar{q}_{ij} connected and not connected to σ respectively
- $egin{aligned} \mathbf{S} \ ext{ decides which weights to use: } &
 ho_{ij}(S) = egin{cases} q_{ij} & i \in S \ ar{q}_{ij} & i
 otin S \end{cases} \end{aligned}$
- 4 Objective: for a walk X, find $S \in [n], |S| \leq k$ maximizing

$$c(S) = \Pr_{S}[X_t = \sigma \text{ for some } t \ge 0]$$

- Note: only interesting if there are other 'absorbing' states
- Application: system (with ability to estimate network edge weights) recommending tags to user to maximize engagement with their new item

Theoretical results

Bounce Rate Optimization

James Xue

Background

Our model Results ■ NP-hard - reduction to vertex cover, but...

Theorem (Monotonicity)

For all $S, S' \subset [n]$ with $S \subseteq S'$, $c(S) \leq c(S')$.

Theorem (Submodularity)

(Decreasing marginal value) For all $S \subset [n], z_1, z_2 \in [n] \setminus S$,

$$c(S \cup \{z_1\}) + c(S \cup \{z_2\}) \ge c(S \cup \{z_1, z_2\}) + c(S)$$

- Classic result [NWF78]: monotonic, submodular $\Rightarrow (1 \frac{1}{e})$ -approximation algorithm
- We devise simpler proofs of the two theorems above

A more realistic approach

Bounce Rate Optimization

Steven Shad James Xue

Our model

- ·

resuits

Conclusion

- Our problem formulation:
 - 1 n states plus σ , S as before
 - 2 2 differently constrained weight sets: q_{ij} and \bar{q}_{ij}
 - **3** Notably: user has ε_i or $\bar{\varepsilon}_i$ chance of leaving at each node i
 - 4 Objective: for a walk X, find S maximizing $\ell(S) = \mathbb{E}_S[|X|]$
- Application: given new item with tags, system decides whether or not to feature item in the page for each of the item's tags (decide: connect tag node to new item node?)
- More realistic: system incentivized to maximize overall engagement, not just with the new item

Our model

Bounce Rate Optimization

Steven Shac James Xue

Backgrour

Our model

Results

Conclusio

- More elusive theoretical guarantees
- In particular, under current conditions: not monotonic (what if new item is really bad?)
- We showed with a modified construction it's still NP-hard
- Promising empirical results

Experimental results

Bounce Rate Optimization

Steven Shao James Xue

Background

Our model

Results
Conclusion

■ Their model vs. our model: expected path length

Figure: The expected path length under a budget of k tags for various methods

Experimental results

Bounce Rate Optimization

Steven Shao James Xue

Background

Results

Conclusion

■ Their model vs. our model: probability of reaching σ

Figure: The probability of reaching a focal item σ under a budget of k tags for various methods

Conclusion

Bounce Rate Optimization

Steven Shad

Our model

Conclusion

- Even without strong theoretical guarantees yet, good empirical evidence
- Model similarity suggests theoretical results around the corner, perhaps for restricted subset of instances
- Additional challenges for incremental computation on large, sparse datasets: LUP decomposition [Rei82]
- Far future: weight estimation techniques, live testing for causal results

References I

Bounce Rate Optimization

Steven Shac James Xue

Our model

Conclusion

Ivan Cantador, Peter L Brusilovsky, and Tsvi Kuflik, Second workshop on information heterogeneity and fusion in recommender systems (hetrec2011), ACM, 2011.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher, *An analysis of approximations for maximizing submodular set functions—i*, Mathematical Programming **14** (1978), no. 1, 265–294.

John Ker Reid, A sparsity-exploiting variant of the bartels—golub decomposition for linear programming bases, Mathematical Programming 24 (1982), no. 1, 55–69.

References II

Bounce Rate Optimization

Steven Shad James Xue

Background

Our mode

Results

Conclusion

Nir Rosenfeld and Amir Globerson, *Optimal tagging with markov chain optimization*, Advances in Neural Information Processing Systems, 2016, pp. 1307–1315.

Appendix: model details

Bounce Rate Optimization

Steven Shao, James Xue

Common setup:

- Markov chain over n+1 states, initial distribution π
- State $\sigma = n + 1$ is eligible for k incoming transitions
- Decide $S \subseteq [n]$ of k states to "siphon" edge weights to σ
- Edge weights specified by q_{ij} , \bar{q}_{ij} (connected vs. not connected):

$$\rho_{ij}(S) = \begin{cases} q_{ij} & i \in S \\ \bar{q}_{ij} & i \notin S \end{cases}$$

Their formulation:

- Constraint (leeching): $\forall j \neq \sigma, i, q_{ij} \leq \bar{q}_{ij} \qquad \forall i, \bar{q}_{i\sigma} = 0$
- Objective: for X_t the state of the chain at time t, find S maximizing

$$\Pr_{S}[X_t = \sigma \text{ for some } t \ge 0]$$

Appendix: model details

Bounce Rate Optimization

Steven Shao, James Xue

Common setup:

- Markov chain over n+1 states, initial distribution π
- State $\sigma = n + 1$ is eligible for k incoming transitions
- Decide $S \subseteq [n]$ of k states to "siphon" edge weights to σ
- Edge weights specified by q_{ij} , \bar{q}_{ij} :

$$\rho_{ij}(S) = \begin{cases} q_{ij} & i \in S \\ \bar{q}_{ij} & i \notin S \end{cases}$$

Our formulation:

- Constraint (leeching): $\forall j \neq \sigma, i, q_{ij} \leq \bar{q}_{ij}$ $\forall i, \bar{q}_{i\sigma} = 0$
- Constraint (local improvement): $\forall i, \sum_{j=1}^{n+1} q_{ij} \geq \sum_{j=1}^{n} \bar{q}_{ij}$
- Constraint (death rate): $\sum_{i}^{n} q_{ij} \leq 1$
- Objective: for X_t the state of the chain at time t, find S maximizing

$$\Pr_{S}[X_t = \sigma \text{ for some } t \geq 0]$$

Appendix: datasets

Bounce Rate Optimization

Steven Shao James Xue

Synthetic:

- lacksquare π selected from normalized $X \sim \mathcal{U}[0,1)^n$
- For $i \in [n]$, each \bar{q}_i also drawn from normalized $X \sim \mathcal{U}[0,1)^n$, then scaled according to $Y \sim B(6,3)$
- Each q_i is \bar{q}_i scaled according to another $Y' \sim B(6,3)$
- $q_{i\sigma}$ drawn uniformly so that total of q_i is between total with \bar{q}_i and 1.
- Future work: generate data using Last.fm, Delicious,
 Movielens datasets from HotRec 2011 workshop [CBK11]