MP08 : Interférences lumineuses

Louis Heitz et Vincent Brémaud

Sommaire

Rapport du jury		3
Bi	Bibliographie Introduction	
In		
Ι	Trous d'Young I.1 Interfrange	4 4
II	Michelson	4
Co	Conclusion	
\mathbf{A}	Correction	4
В	Commentaires	5
\mathbf{C}	Matériels	5
D	Expériences faites les années précédentes	5
\mathbf{E}	Questions du jury	5
\mathbf{F}	Tableau présenté	5

Le code couleur utilisé dans ce document est le suivant :

- \bullet \to Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- \triangle Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables

Rapports du jury

Bibliographie

Introduction

Interférences lumineuses = deux rayons avec phase différente : si en phase constructif, si pas en phase : destructif. problème de cohérence Ca c'est interférences, spécificité optique : cohérence temporelle.

I Trous d'Young

I.1 Interfrange

Mise en évidence du phénomène d'interférence en mesurant l'interférence. On peut remonter à l'espacement entre les deux fentes de Young.

I.2 Cohérence spatiale

Mais on voit que c'est modulé en intensité : du à la largeur de chaque fente. On peut remonter à la largeur.

II Michelson

Pour s'affranchir de la cohérence spatiale de la source, on utilise un interféromètre à division d'amplitude, on peut utiliser une source étendue. On peut alors remonter à des propriétés fines de la sources : doublet du sodium

Expérience en plus avec lame de verre ?

Conclusion

A Correction

- → C'est quoi les interférences? Ce phénomène intervient lorsqu'on fait la somme d'intensité.
- \rightarrow Pq la même source ? Pour des problèmes de cohérence temporelle.

Il y a une différence de marche entre les deux rayons.

- \rightarrow Pq un anticalorique ? Pour éliminer le rayonnement IR.
- \rightarrow Pq plusieurs lentilles? Montage de Fraunhoffer.
- \rightarrow Pq pas la même intensité? A cause du filtre interférentiel? A cause du spectre de la lampe.
- → Traitement des incertitudes? Attention à intervalle / repérage.
- → Pq c'est la distance entre les fentes qui est intéressante ? Car ça pilote la différence de marche.
- → C'est quoi un pb de cohérence spatiale? Pb de largeur de la source.
- → On regarde l'éclairement et pas l'intensité.
- → Incertitudes sur ce graphe? Entre 2 pixels. Puis contraste puis alpha.
- → Cohérence temporelle? Elle vient des deux niveaux d'énergies dans la lampe à sodium.

- → Pq le contraste n'est pas uniforme? A cause de la largeur des raies, soit gaussienne soit lorentzienne.
- \rightarrow La cohérence spatiale est localisée ?
- **B** Commentaires
- C Matériels
- D Expériences faites les années précédentes
 - Ceci
 - Cela
- E Questions du jury
- F Tableau présenté