alesiana		Calificación:					
zalesiana Ig	Título: Puente H						
Ĭ, W	Alumno: MART	Firma Profesor:					
Obea de Don	Curso: 4	División: A	N°Grupo: 8	Firma Alumno:	Fillia Fiulesui:		
PIO IX	F.L: 17/10	FF: 18/10	F.C.:				

Puente H:

Funcionamiento del circuito:

Para poder lograr el cambio de giro del motor se necesitan 5 transistores. Estos son el U1, U2, U4, U5 y Q11. Dos de ellos serán PNP y los otros serán NPN. El transistor Q11 se utilizará como si fuera una compuerta NOT, que permita que los transistores saturen de forma distinta entre un lado y el otro del motor. De esta forma, solo se saturarán dos de los 4 transistores, y la corriente circulará como se ve en la foto:

Luego se colocó un transistor U3 al principio del camino de la corriente del motor. De esta forma, se tendrá una entreda de giro (conectada a la base de Q11) y otra de habilitación (conectada a la base de U3).

Los trnasistores U1, U2, U3, U4 y U5 son dralington ya que tienen que aguantar la corriente del motor (1A).

Como este circuito tambien tendrá en la entrada de giro y habilitación que puede venir de una logica digital, se colocarán unos 5 transistores que puedan adaptar todas las bases de los darlington. De esta forma, nos quedan los 11 transistores. 5 de ellos son darlington que soportarán la corriente del motor. Otros 5 de ellos serán utilizados para adaptar la corriente de una etapa digital a la necesaria para el funcionamiento de los dralington y el último transistor es utilizado como una compuerta NOT.

Cálculos:

Para la realización del puente H se realizó el cálculo de corte y saturación en cada uno de los transistores.

La IOH de la habilitación y el giro es de 25mA.

La VOH es de 3,3V.

Motor de 1A y 12V

U3=U5= U4= TIP127

R13= R1= R8

Q1= Q3= Q4= Q2= Q5= Q6= BC548B

R14= R3= R10

R15= R2= R11

```
ICU3= 1A
IR14= 1mA
Vcc-0,2v= R14. 1mA
\frac{12v - 0.2v}{1mA} = R14= 11K8\Omega---> R14norm= 12K\Omega
\frac{1A}{HFEU3} < IBU3 < ICQ1 max
1A 1000 <IBU3<500mA-1Ma
1mA<IBU3<499mA--->IBU3=10mA
Vcc-0,2v-1,4v= R13. 10mA
\frac{12v - 0.2v - 1.4v}{1} = R13= 1K04\Omega---> R13norm= 1K\Omega
\frac{ICQ1}{HFEQ1} < IBQ1 < IOH
\frac{11mA}{200} <IBQ1<25mA
55µA <IBQ1<25mA--->IBQ1=0.3Ma
VOH-0,7v= R15. 0,3mA
\frac{3,3v-0,7v}{} = R15= 8K67\Omega--->
                               R13norm= 8K2\Omega
0,3mA
                                ც BC548B
12
                                                       8K2
                           R9
                           1K.
                                                       R12
    U2
                                          Q4
IP122
                                   BC548B
                                                       8K2
R9= R4
R12 = R5
ICU2= 1°
\frac{1A}{HFEU2} < IBU2 < ICQ4 max
\frac{1A}{1000} < IBU2 < 500 mA
1mA<IBU3<500mA--->IBU2=10mA= ICQ4
VCC- 1,4V= R9. IBU2
\frac{12v-1,4v}{IBU2} = R9
\frac{12v-1,4v}{2} = R9= 1K06\Omega---> R9norm= 1K\Omega
\frac{ICQ4}{HFEQ4}<IBQ4<IOH
10mA < IBQ4 < 25mA
50µA<IBQ4<25mA--->IBQ4=0.3mA
PROYECTO
                                  - Instituto Pío IX - 2018
                                                                                      Página 3 de 6
```

VOH-0,7v= R12. 0,3mA

$$\frac{3,3v-0,7v}{0,3mA}$$
= R12= 8K67Ω---> R12norm= 8K2Ω

IR6= 1,5mA

$$\frac{\text{VCC-VCE}=\text{R6. ICQ6}}{\frac{12V-0,2V}{1,5mA}}$$
= R9= 7,86KΩ---> R9norm= 8K2Ω

^{ICQ6}<IBQ6<IOH #FEQ6 1,5mA-IBQ6 4IBQ6<25mA $\frac{1,5mA-0,3mA}{300}$ <IBQ6<25mA 200 <IBQ6<25mA

6μA<IBQ6<25mA--->IBQ6=12μA

VOH-0,7v= R7. 12μA
$$\frac{3,3v-0,7v}{12μA} = R7 = 216K66Ω---> R7norm= 220KΩ$$

Tabla de estado:

	U1	U2	U3	U4	U5	Q1	Q2	Q3	Q4	Q5	Q5
HAB: 1 GIRO: 0	SAT	SAT	SAT	CORTE	CORTE	SAT	SAT	SAT	CORTE	CORTE	CORTE
HAB: 1 GIRO: 1	CORTE	CORTE	SAT	SAT	SAT	SAT	CORTE	CORTE	SAT	SAT	SAT

Simulación:

En cada transistor se simulará la VCE. Si esta da un valor aproximado a 200mV, el transistor está saturado. Si la VCE da un valor aproximado a 12V, el transistor se encuentra al corte.

PROYECTO Instituto Pío IX – 2018 Página 4 de 6

HAB:1 GIRO: 1

Mediciones:

	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11
HAB:	10,37	0,62V	11,26	0,063	0,63V	10,37	1,37V	0,7	4,33V	0,64	0,069
1	V		V	V		V		V		V	V
GIRO											
:0											
HAB:	0,62V	10,37	0,07	11,3V	10,38	0,64V	0,076	1,3	0,107	0,64	0,069
1		V	V		V		V	V	V	V	V
GIRO											
:1											

Bill of Material for On 11/05/2018 at 17:41:22

	Pattern	~ -	Components	
	RES400			
12K 5%	RES400	1	R7	
12k 5%	RES400	2	R1, R6	
1k 5%	RES400	4	R2, R8, R9, R12	
1N5819	DO41	1	D1	
220K 5%	RES400	1	R16	
8K2 5%	RES400	5	R3, R10, R11, R13, R14	
8K5 5%	RES400	1	R15	
BC548	T092	6	T3, T4, T7, T8, T9, T11	Transistor de señal
Bornera2	BORNERA2	3	J1, J2, J3	Bornera plastica
TIP122	TO-220 V	2	T5, T6	Transistor darlington
TIP127	TO-220 V	3	T1, T2, T10	Transistor darlington
TPB1	TPTH	1	TPB1	
TPB2	TPTH	1	TPB2	
TPB3	TPTH	1	TPB3	
TPB4	TPTH	1	TPB4	
TPB5	TPTH	1	TPB5	
TPB6	TPTH	1	TPB6	
TPB7	TPTH	1	TPB7	
TPB8	TPTH	1	TPB8	
TPE1	TPTH	1	TPE1	
TPE2	TPTH	1	TPE2	
TPGiro	TPTH	1	TPGiro	
TPHab	TPTH	1	TPHab	

