1. Minimální kostry

Napadl sníh a přikryl peřinou celé městečko. Po ulicích lze sotva projít pěšky, natož projet autem. Které ulice prohrneme, aby šlo dojet odkudkoliv kamkoliv, a přitom nám házení sněhu dalo co nejméně práce?

Tato otázka vede na hledání minimální kostry grafu. To je slavný problém, jeden z těch, které stály u pomyslné kolébky teorie grafů. Navíc je pro jeho řešení známo hned několik zajímavých efektivních algoritmů. Jim věnujeme tuto kapitolu.

1.1. Od městečka ke kostře

Představme si mapu zasněženého městečka z našeho úvodního příkladu jako graf. Každou hranu ohodnotíme číslem – to bude vyjadřovat množství práce potřebné na prohrnutí ulice. Hledáme tedy podgraf na všech vrcholech, který bude souvislý a použije hrany o co nejmenším součtu ohodnocení.

Všimněme si, že takový podgraf musí být strom: kdyby se v něm nacházel nějaký cyklus, smažeme libovolnou z hran cyklu. Tím neporušíme souvislost, protože konce hrany jsou nadále propojené zbytkem cyklu. Odstraněním hrany ovšem zlepšíme součet ohodnocení, takže původní podgraf nemohl být optimální. (Zde jsme použili, že odhrnutí sněhu nevyžaduje záporné množství práce, ale to snad není moc troufalé.)

Popišme nyní problém formálně.

Definice:

- Nechť G = (V, E) je souvislý neorientovaný graf a $w : E \to \mathbb{R}$ váhová funkce, která přiřazuje hranám čísla jejich váhy.
- $\bullet \ n$ a mnechť jako obvykle značí počet vrcholů a hran grafuG.
- Váhovou funkci můžeme přirozeně rozšířit na podgrafy: Váha w(H) podgrafu $H\subseteq G$ je součet vah jeho hran.
- Kostra grafu G je podgraf, který obsahuje všechny vrcholy a je to strom. Kostra je minimální, pokud má mezi všemi kostrami nejmenší váhu.

Jak je vidět z obrázku, jeden graf může mít více minimálních koster. Brzy ale dokážeme, že jsou-li váhy všech hran navzájem různé, minimální kostra už je určena jednoznačně. To značně zjednoduší situaci, takže ve zbytku kapitoly budeme unikátnost vah předpokládat.

Cvičení

- 1. Rozmyslete si, že předpoklad unikátních vah není na škodu obecnosti. Ukažte, jak pomocí algoritmu, který unikátnost předpokládá, nalézt jednu z minimálních koster grafu s neunikátními vahami.
- 2. Upravte definici kostry, aby dávala smysl i pro nesouvislé grafy.
- 3. Dokažte, že mosty v grafu jsou právě ty hrany, které leží v průniku všech koster.

Obr. 1.1: Vážený graf a dvě z jeho minimální koster

1.2. Jarníkův algoritmus a řezy

Vůbec nejjednodušší algoritmus pro hledání minimální kostry pochází z roku 1930, kdy ho vymyslel český matematik Vojtěch Jarník. Tehdy se o algoritmy málokdo zajímal, takže myšlenka zapadla a až později byla několikrát znovuobjevena – proto se algoritmu říká též Primův nebo Dijkstrův.

Kostru budeme "pěstovat" z jednoho vrcholu. Začneme se stromem, který obsahuje libovolný jeden vrchol a žádné hrany. Pak vybereme nejlehčí hranu incidentní s tímto vrcholem. Přidáme ji do stromu a postup opakujeme: v každém dalším kroku přidáváme nejlehčí z hran, které vedou mezi vrcholy stromu a zbytkem grafu. Takto pokračujeme, dokud nevznikne celá kostra.

Algoritmus Jarník

Vstup: Souvislý graf s unikátními vahami

- 1. $v_0 \leftarrow \text{libovolný vrchol grafu}$
- 2. $T \leftarrow$ strom obsahující vrchol v_0 a žádné hrany
- 3. Dokud existuje hrana uvtaková, že $u\in V(T)$ a $v\not\in V(T)$:
- 4. Nejlehčí takovou hranu přidáme do T.

 $\mathit{V} \! \mathit{ystup} \colon \mathbf{Minimální}$ kostraT

Obr. 1.3: Příklad výpočtu Jarníkova algoritmu. Černé vrcholy a hrany už byly přidány do kostry, mezi šedivými hranami hledáme tu nejlehčí.

Tento přístup je typickým příkladem takzvaného $hladového \ algoritmu$ – v každém okamžiku vybíráme lokálně nejlepší hranu a neohlížíme se na budoucnost. Hladové algoritmy málokdy naleznou optimální řešení, ale zrovna minimální kostra je jedním z řídkých případů, kdy tomu tak je. K důkazu se ovšem budeme muset propracovat.

Správnost

Lemma: Jarníkův algoritmus se po nejvýše n iteracích zastaví a vydá nějakou kostru zadaného grafu.

Důkaz: Graf pěstovaný algoritmem vzniká z jednoho vrcholu postupným přidáváním listů, takže je to v každém okamžiku výpočtu strom. Po nejvýše n iteracích dojdou vrcholy a algoritmus se musí zastavit.

Kdyby nalezený strom neobsahoval všechny vrcholy, musela by díky souvislosti existovat hrana mezi stromem a zbytkem grafu. Tehdy by se ale algoritmus ještě nezastavil. (Všimněte si, že tuto úvahu jsme už potkali v rozboru algoritmů na prohledávání grafu.)

Minimalitu kostry bychom mohli dokazovat přímo, ale raději dokážeme trochu obecnější tvrzení o řezech, které se bude hodit i pro další algoritmy.

Definice: Nechť A je nějaká podmnožina vrcholů grafu a B její doplněk. Všem hranám, které leží jedním vrcholem v A a druhým v B budeme říkat elementární řez určený množinami A a B.

Fix!

Lemma: ($\check{R}ezové\ lemma$) Nechť G je graf opatřený unikátními vahami, R nějaký jeho elementární řez a e nejlehčí hrana tohoto řezu. Pak e leží v každé minimální kostře grafu G.

 $D\mathring{u}kaz$ Dokážeme obměněnou implikaci: pokud nějaká kostra Tneobsahuje hranu e,není minimální.

Sledujme situaci na obrázku 1.4. Označme A a B množiny vrcholů, kterými je určen řez R. Hrana e tudíž vede mezi nějakými vrcholy $a \in A$ a $b \in B$. Kostra T musí spojovat vrcholy a a b nějakou cestou P. Tato cesta začíná v množině A a končí v B, takže musí alespoň jednou překročit řez. Nechť f je libovolná hrana, kde se to stalo.

Nyní z kostry T odebereme hranu f. Tím se kostra rozpadne na dva stromy, z nichž jeden obsahuje a a druhý b. Přidáním hrany e stromy opět propojíme a tím získáme jinou kostru T'.

Spočítáme její váhu: w(T') = w(T) - w(f) + w(e). Jelikož hrana e je nejlehčí v řezu, musí platit $w(f) \geq w(e)$. Nerovnost navíc musí být ostrá, neboť váhy jsou unikátní. Proto w(T') < w(T) a T není minimální.

Fix: Sjednotit terminologii s kapitolou o tocích.

 $^{^{\}langle 1 \rangle}$ Proto je možná výstižnější anglický název greedy algorithm, čili algoritmus chamtivý, nebo slovenský pažravý algoritmus.

Obr. 1.4: Situace v důkazu řezového lemmatu

Každá hrana vybraná Jarníkovým algoritmem je přitom nejlehčí hranou elementárního řezu mezi vrcholy stromu T a zbytkem grafu. Z řezového lemmatu proto plyne, že kostra nalezená Jarníkovým algoritmem je podgrafem každé minimální kostry. Jelikož všechny kostry daného grafu mají stejný počet hran, znamená to, že nalezená kostra je všem minimálním kostrám rovna. Proto platí:

Věta: (O minimální kostře) Souvislý graf s unikátními vahami má právě jednu minimální kostru a Jarníkův algoritmus tuto kostru najde.

Navíc víme, že Jarníkův algoritmus váhy pouze porovnává, takže ihned dostáváme:

Důsledek: Minimální kostra je jednoznačně určena uspořádáním hran podle vah, na konkrétních hodnotách vah nezáleží.

Implementace

Zbývá rozmyslet, jak rychle algoritmus poběží. Už víme, že proběhne nejvýše n iterací. Pokud budeme pokaždé zkoumat všechny hrany, jedna iterace potrvá $\mathcal{O}(m)$, takže celý algoritmus poběží v čase $\mathcal{O}(nm)$.

Opakované vybírání minima navádí k použití haldy. Mohli bychom v haldě uchovávat množinu všech hran řezu (viz cvičení 1.2.1), ale existuje elegantnější a rychlejší způsob.

Budeme udržovat sousedni vrcholy – to jsou ty, které leží mimo strom, ale jsou s ním spojené alespoň jednou hranou. Každému sousedovi s přiřadíme ohodnoceni h(s). To bude udávat, jakou nejlehčí hranou je soused připojen ke stromu.

Obr. 1.5: Jeden krok výpočtu v Jarníkově algoritmu s haldou

V každém kroku algoritmu vybereme souseda s nejnižším ohodnocením a připojíme ho ke stromu příslušnou nejlehčí hranou. To je přesně ta hrana, kterou si

vybere původní Jarníkův algoritmus. Poté potřebujeme přepočítat sousedy a jejich ohodnocení.

Sledujme obrázek 1.5. Vlevo je nakreslen zadaný graf s vahami. Uprostřed vidíme situaci v průběhu výpočtu: tučné hrany už leží ve stromu, šedivé vrcholy jsou sousední (čísla udávají jejich ohodnocení), šipky ukazují, která hrana řezu je pro daného souseda nejlehčí. V tomto kroku tedy vybereme vrchol s ohodnocením 5, čímž přejdeme do situace nakreslené vpravo.

Pozorování: Obecně při připojování vrcholu u přepočítáme vrcholv takto:

- \bullet Pokud byl v součástí stromu, nemůže se stát sousedním, takže se o něj nemusíme starat.
- \bullet Pokud mezi ua vnevede hrana, v okolí vrcholu vse řez nezmění, takže ohodnocení h(v)zůstává stejné.
- \bullet Jinak se hrana uv stane hranou řezu. Tehdy:
 - Pakliže v nebyl sousední, stane se sousedním a jeho ohodnocení nastavíme na váhu hrany uv.
 - ullet Pokud už sousední byl, bude se do jeho ohodnocení nově započítávat hrana uv, takže h(v) může klesnout.

Stačí tedy projít všechny hrany uv a pro každou z nich případně učinit v sousedem nebo snížit jeho ohodnocení.

Na této myšlence je založena následující varianta Jarníkova algoritmu. Kromě ohodnocení vrcholů si ještě budeme pamatovat jejich stav (uvnitř stromu, sousedni, případně úplně mimo) a u sousedních vrcholů příslušnou nejlehčí hranu. Při inicializaci algoritmu chvíli považujeme počáteční vrchol za souseda, což zjednoduší zápis.

Algoritmus Jarník2

 $Vstup\colon \text{Souvisl\'y}$ graf s váhovou funkcí w

- 1. Pro všechny vrcholy v:
- $2. \hspace{1cm} stav(v) \leftarrow mimo$
- 3. $h(v) \leftarrow +\infty$
- 4. $p(v) \leftarrow nedefinováno$ (druhý konec nejlehčí hrany)
- 5. $v_0 \leftarrow \text{libovolný vrchol grafu}$
- 6. $T \leftarrow$ strom obsahující vrchol v_0 a žádné hrany
- 7. $stav(v_0) \leftarrow soused$
- 8. $h(v_0) \leftarrow 0$
- 9. Dokud existují nějaké sousední vrcholy:
- 10. Označme u sousední vrchol s nejmenším h(u).
- 11. $stav(u) \leftarrow uvnit\check{r}$
- 12. Přidáme do T hranu $\{u, p(u)\}$, pokud je p(u) definováno.
- 13. Pro všechny hrany uv:
- 14. Je-li stav(v) = mimo:

```
stav(v) \leftarrow soused
15.
16.
                       h(v) \leftarrow w(uv)
17.
                 Je-li stav(v) = soused:
                       h(v) \leftarrow \min(h(v), w(uv))
18
```

Výstup: Minimální kostra T

Všimněte si, že takto upravený Jarníkův algoritmus je velice podobný Dijkstrovu algoritmu na hledání nejkratší cesty. Jediný podstatný rozdíl je ve výpočtu ohodnocení vrcholů.

Platí zde tedy vše, co jsme odvodili o složitosti Dijkstrova algoritmu: uložímeli všechna ohodnocení do pole, algoritmus běží v čase $\Theta(n^2)$. Pokud místo pole použijeme haldu, kostru najdeme v čase $\Theta(m \log n)$, případně s Fibonacciho haldou $v \Theta(n + m \log n)$.

Fix!

Cvičení

- 1. V rozboru implementace jsme navrhovali uložit všechny hrany řezu do haldy. Rozmyslete si všechny detaily tak, aby váš algoritmus běžel v čase $\mathcal{O}(m \log n)$.
- 2. Dokažte správnost Jarníkova algoritmu přímo, bez použití řezového lemmatu.
- Dokažte, že Jarníkův algoritmus funguje i pro grafy, jejichž váhy nejsou unikátní. 3.
- 4.* Rozmyslete si, jak v případě, kdy váhy nejsou unikátní, najít všechny minimální kostry. Jelikož koster může být mnoho (pro úplný graf s jednotkovými vahami jich je n^{n-2}), snažte se o co nejlepší složitost v závislosti na velikosti grafu a počtu minimálních koster.

1.3. Borůvkův algoritmus

Inspirací Jarníkova algoritmu byl algoritmus ještě starší, objevený v roce 1926 Otakarem Borůvkou, pozdějším profesorem matematiky v Brně. Můžeme se na něj dívat jako na paralelní verzi Jarníkova algoritmu: namísto jednoho stromu jich pěstujeme více a v každé iteraci se každý strom sloučí s tím ze svých sousedů, do kterého vede nejlehčí hrana.

Algoritmus Borůvka

Vstup: Souvislý graf s unikátními vahami.

- 1. $T \leftarrow (V, \emptyset)$ (začneme triviálním lesem izolovaných vrcholů)
- 2. Dokud T není souvislý:
- 3. Rozložíme T na komponenty souvislosti T_1, \ldots, T_k .
- Pro každý strom T_i najdeme nejlehčí z hran mezi T_i a zbytkem 4. grafu a označíme ji e_i .
- Přidáme do T hrany $\{e_1, \ldots, e_k\}$.

Výstup: Minimální kostra T

Fix: Odkázat na detaily v kapitole o Dijkstrovi.

6 2015-02-02

Obr. 1.7: Příklad výpočtu Borůvkova algoritmu. Směr šipek ukazuje, který vrchol si vybral kterou hranu.

Správnost dokážeme podobně jako u Jarníkova algoritmu.

Věta: Borůvkův algoritmus se zastaví po nejvýše $\lfloor \log_2 n \rfloor$ iteracích a vydá minimální kostru.

 $D\mathring{u}kaz$: Nejprve si všimneme, že po k iteracích má každý strom lesa T alespoň 2^k vrcholů. To dokážeme indukcí podle k: na počátku (k=0) jsou všechny stromy jednovrcholové. V každé další iteraci se stromy slučují do větších, každý s alespoň jedním sousedním. Proto se velikosti stromů pokaždé minimálně zdvojnásobí.

Nejpozději po $\lfloor \log_2 n \rfloor$ iteracích už velikost stromů dosáhne počtu všech vrcholů, takže může existovat jen jediný strom a algoritmus se zastaví. (Zde jsme opět použili souvislost grafu, rozmyslete si, jak přesně.)

Zbývá nahlédnout, že nalezená kostra je minimální. Zde opět použijeme řezové lemma: každá hrana e_i , kterou jsme vybrali, je nejlehčí hranou elementárního řezu mezi stromem T_i a zbytkem grafu. Všechny vybrané hrany tedy leží v jednoznačně určené minimální kostře a je jich správný počet. (Zde jsme potřebovali unikátnost, viz cvičení 1.3.1.)

Ještě si rozmyslíme implementaci. Ukážeme, že každou iteraci lze zvládnout v lineárním čase s velikostí grafu. Rozklad na komponenty provedeme například prohledáním do šířky. Poté projdeme všechny hrany, pro každou se podíváme, které komponenty spojuje, a započítáme ji do průběžného minima obou komponent. Nakonec vybrané hrany přidáme do kostry.

Důsledek: Borůvkův algoritmus nalezne minimální kostru v čase $\mathcal{O}(m \log n)$.

Cvičení

- 1. Unikátnost vah je u Borůvkova algoritmu důležitá, protože by v kostře mohl vzniknout cyklus. Najděte příklad grafu, kde se to stane. Jak přesně pro takové grafy selže náš důkaz správnosti?
- 2. Borůvkův algoritmus můžeme přeformulovat, aby každý strom lesa udržoval zkontrahovaný do jednoho vrcholu. Iterace pak vypadá tak, že si každý vrchol vybere nejlehčí incidentní hranu, tyto hrany zkontrahujeme a zapamatujeme si, že patří do minimální kostry. Ukažte, jak tento algoritmus implementovat tak, aby běžel v čase $\mathcal{O}(m\log n)$. Jak si poradit s násobnými hranami a smyčkami, které vznikají při kontrakci?

- 3. Sestrojte příklad grafu, na kterém algoritmus z předchozího cvičení potřebuje čas $\Omega(m\log n)$.
- 4.* Ukažte, že pokud algoritmus z cvičení 1.3.2 používáme pro rovinné grafy, běží v čase $\Theta(n)$. Opět je třeba správně ošetřit násobné hrany.

1.4. Kruskalův algoritmus a Union-Find

Třetí algoritmus na hledání minimální kostry popsal v roce 1956 Joseph Kruskal. Opět je založen na hladovém přístupu: zkouší přidávat hrany od nejlehčí po nejtěžší a zahazuje ty, které by vytvořily cyklus.

Algoritmus Kruskal

Vstup: Souvislý graf s unikátními vahami

- 1. Uspořádáme hrany podle vah: $w(e_1) < \ldots < w(e_m)$.
- 2. $T \leftarrow (V, \emptyset)$ (začneme triviálním lesem izolovaných vrcholů)
- 3. Pro i = 1, ..., m opakujeme:
- 4. $u, v \leftarrow \text{krajní vrcholy hrany } e_i$
- 5. Pokud u a v leží v různých komponentách lesa T:
- 6. $T \leftarrow T + e_i$

Výstup: Minimální kostra T

Obr. 1.8: Příklad výpočtu Kruskalova algoritmu.

Lemma: Kruskalův algoritmus se zastaví a vydá minimální kostru.

Důkaz: Konečnost je zřejmá z omezeného počtu průchodů hlavním cyklem. Nyní ukážeme, že hranu e=uv algoritmus přidá do T právě tehdy, když e leží v minimální kostře.

Pokud algoritmus hranu přidá, stane se tak v okamžiku, kdy se vrcholy u a v nacházejí v nějakých dvou rozdílných stromech T_u a T_v lesa T. Hrana e přitom leží v elementárním řezu oddělujícím strom T_u od zbytku grafu. Navíc mezi hranami tohoto řezu musí být nejlehčí, neboť případnou lehčí hranu by algoritmus potkal dříve a přidal by ji do T_u . Nyní stačí použít řezové lemma.

Jestliže se naopak algoritmus rozhodne hranu e nepřidat, tvoří tato hrana cyklus, jehož ostatní hrany jsou, jak víme, součástí minimální kostry. Sama hrana e tedy musí ležet mimo kostru.

Nyní se zamysleme nad implementací. Třídění hran potrvá $\mathcal{O}(m \log m) = \mathcal{O}(m \log n)$. Zbytek algoritmu potřebuje opakovaně testovat, zda hrana spojuje dva různé stromy. Jistě bychom mohli pokaždé prohledat les do šířky, ale to by trvalo $\mathcal{O}(n)$ na jeden test, celkově tedy $\mathcal{O}(nm)$.

Všimněte si ale, že mezi jednotlivými prohledáváními se les mění pouze nepatrně – buď zůstavá stejný, nebo do něj přibude jedna hrana. Neuměli bychom komponenty průběžně přepočítávat? Na to by se hodila následující datová struktura:

Definice: Struktura Union-Find reprezentuje komponenty souvislosti grafu a umí na nich provádět následující operace:

- FIND(u, v) zjistí, zda vrcholy u a v leží v téže komponentě.
- Union(u, v) přidá hranu uv, čili dvě komponenty spojí do jedné.

V kroku 5 Kruskalova algoritmu tedy provádíme operaci FIND a v kroku 6 operaci UNION. Složitost celého algoritmu proto můžeme vyjádřit následovně:

Věta: Kruskalův algoritmus najde minimální kostru v čase $\mathcal{O}(m \log n + m \cdot T_f(n) + n \cdot T_u(n))$, kde $T_f(n)$ a $T_u(n)$ jsou časové složitosti operací FIND a UNION na grafech s n vrcholy.

Union-Find s polem

Hledejme nyní rychlou implementaci struktury Union-Find. Nejprve zkusíme, kam nás zavede triviální přístup: pořídíme si pole, které každému vrcholu přiřadí číslo komponenty.

FIND se podívá na čísla komponent a v konstantním čase je porovná. Veškerou práci oddře UNION: při slučování komponent projde všechny vrcholy jedné komponenty a přiřadí jim číslo té druhé.

Procedura FIND(u, v)

1. Odpovíme ANO právě tehdy, když K(u) = K(v).

Procedura Union(u, v)

- 1. Pro všechny vrcholy x:
- 2. Pokud K(x) = K(u):
- 3. $K(x) \leftarrow K(v)$

FIND tedy proběhne v čase $\mathcal{O}(1)$ a UNION v $\mathcal{O}(n)$, takže celý Kruskalův algoritmus potrvá $\mathcal{O}(m\log n + m + n^2) = \mathcal{O}(m\log n + n^2)$.

Kvadratická složitost nás sotva uspokojí. Můžeme se pokus přečíslovávání komponent zrychlit (viz cvičení 1.4.3), ale místo toho raději změníme reprezentaci struktury.

Union-Find s keříky

Nyní budeme každou komponentu reprezentovat stromem orientovaným směrem do kořene. Těmto stromům budeme říkat *keříky*, abychom je odlišili od stromů, s nimiž pracuje Kruskalův algoritmus.

Vrcholy každého keříku budou odpovídat vrcholům příslušné komponenty. Hrany nemusí odpovídat hranám původního grafu, jejich podoba záleží na historii operací na naší datové struktuře.

Do paměti můžeme keříky ukládat přímočaře: každý vrchol v si bude pamatovat svého otce P(v), případně nějakou speciální hodnotu \emptyset , pokud je kořenem.

Obr. 1.9: Komponenta a její reprezentace keříkem

Operace FIND vystoupá z každého vrcholu do kořene keříku a porovná kořeny:

Procedura $Ko\check{R}EN(x)$

- 1. Dokud $P(x) \neq \emptyset$:
- 2. $x \leftarrow P(x)$
- 3. Vrátíme kořen x.

Procedura Find(u, v)

1. Vrátíme ano právě tehdy, když Kořen(u) = Kořen(v).

Hledání kořene, a tím pádem i operace FIND trvají lineárně s hloubkou keříku.

Operace Union sloučí komponenty tak, že mezi kořeny keříků natáhne novou hranu. Může si přitom vybrat, který kořen připojí pod který – obojí bude správně. Pokud si ale budeme vybírat vhodně, podaří se nám udržet keříky mělké a Find rychlý.

Do kořene každého keříku si uložíme číslo H(v), jež bude říkat, jak je tento keřík hluboký. Na počátku mají všechny keříky hloubku 0. Při slučování keříků připojíme mělčí keřík pod kořen toho hlubšího a hloubka se nezmění. Jsou-li oba stejně hluboké, rozhodneme se libovolně a keřík se prohloubí. UNION bude vypadat takto:

Procedura Union(u, v):

- 1. $a \leftarrow \text{Kořen}(u), b \leftarrow \text{Kořen}(v)$
- 2. Je-li a = b, ihned skončíme.

- 3. Pokud H(a) < H(b):
- 4. $P(a) \leftarrow b$
- 5. Pokud H(a) > H(b):
- 6. $P(b) \leftarrow a$
- 7. Jinak:
- 8. $P(b) \leftarrow a$
- 9. $H(a) \leftarrow H(a) + 1$

Teď ukážeme, že naše slučovací pravidlo zaručí, že keříky jsou vždy mělké (a zaslouží si svůj název).

Invariant: Keřík hloubky h obsahuje alespoň 2^h vrcholů.

 $D\mathring{u}kaz$: Budeme postupovat indukcí podle počtu operací UNION. Na počátku algoritmu mají všechny keříky hloubku 0 a $2^0=1$ vrchol.

Nechť nyní provádíme $\operatorname{Union}(u,v)$ a hloubky obou keříků jsou různé. Připojením mělčího keříku pod kořen toho hlubšího se hloubka nezmění a počet vrcholů neklesne, takže nerovnost stále platí.

Pokud mají oba keříky tutéž hloubku h, víme z indukčního předpokladu, že každý z nich obsahuje minimálně 2^h vrcholů. Jejich sloučením tudíž vznikne keřík hloubky h+1 o alespoň $2\cdot 2^h=2^{h+1}$ vrcholech. Nerovnost je tedy opět splněna. \square

Důsledek: Hloubky keříků nepřekročí $\log n$.

 $D\mathring{u}kaz$: Strom větší hloubky by podle invariantu obsahoval více než n vrcholů. \square

Věta: Časová složitost operací Union a Find v keříkové reprezentaci je $\mathcal{O}(\log n)$.

 $D\mathring{u}kaz$: Hledání kořene keříku zabere čas lineární s jeho hloubkou, tedy $\mathcal{O}(\log n)$. Obě operace datové struktury provedou dvě hledání kořene a $\mathcal{O}(1)$ dalších operací.

Důsledek: Kruskalův algoritmus s keříkovou strukturou pro Union-Find najde minimální kostru v čase $\mathcal{O}(m \log n)$.

Cvičení

- 1. Dokažte správnost Kruskalova algoritmu přímo, bez použití řezového lemmatu.
- 2. Fungoval by Kruskalův algoritmus pro neunikátní váhy hran?
- 3. Datová struktura pro Union-Find s polem by se dala zrychlit tím, že bychom pokaždé přečíslovávali tu menší z komponent. Dokažte, že pak je během života struktury každý vrchol přečíslován nejvýše (log n)-krát. Co z toho plyne pro složitost operací? Nezapomeňte, že je potřeba efektivně zjistit, která z komponent je menší, a vyjmenovat její vrcholy.
- 4. Jaká posloupnost Unionů odpovídá obrázku 1.9?

1.5.* Komprese cest

Keříkovou datovou strukturu můžeme dále zrychlovat. S Kruskalovým algoritmem nám to už nepomůže, protože tříděním hran tak jako tak strávíme logaritmický

čas na hranu. Co kdyby ale ohodnocení hran dovolovala použít některý z rychlejších třídicích algoritmů, nebo jsme dokonce hrany dostali setříděné?

Tehdy můžeme operace s keříky zrychlit ještě jedním trikem: kompresí cest.

Kdykoliv hledáme kořen nějakého keříku, trávíme tím čas lineární v délce cesty do kořene. Když už to děláme, zkusme při tom strukturu trochu vylepšit. Všechny vrcholy, přes které jsme prošli, převěsíme rovnou pod kořen. Tím si ušetříme práci v budoucnosti.

Procedura KořenSKompresí(x)

- 1. $r \leftarrow \text{Kořen}(x)$
- 2. Dokud $P(x) \neq r$:
- 3. $t \leftarrow P(x)$
- 4. $P(x) \leftarrow r$
- 5. $r \leftarrow t$
- 6. Vrátíme kořen r.

Pozor na to, že převěšením vrcholů mohla klesnout hloubka keříku. Uložené hloubky, které používáme v Unionech, tím pádem přestanou souhlasit se skutečností. Místo abychom je přepočítávali, necháme je být a přejmenujeme je. Budeme jim říkat ranky a budeme s nimi zacházet úplně stejně, jako jsme předtím zacházeli s hloubkami. $\langle 2 \rangle$

Podobně jako u původní struktury bude platit následující invariant:

Invariant R: Keřík s kořenem ranku r má hloubku nejvýše r a obsahuje alespoň 2^r vrcholů.

Důkaz: Indukcí podle počtu operací UNION. Komprese cest nemění ani rank kořene, ani počet vrcholů, takže se jí nemusíme zabývat. $\hfill\Box$

Ranky jsou tedy stejně jako hloubky nejvýše logaritmické, takže složitost operací v nejhorším případě zůstává $\mathcal{O}(\log n)$. Ukážeme, že průměrná složitost se výrazně snížila.

Definice: $V\check{e}\check{z}ovou$ funkci $2\uparrow k$ definujeme následovně: $2\uparrow 0=1,$ $2\uparrow (k+1)=2^{2\uparrow k}.$

Definice: $Iterovaný\ logaritmus\ log^*x$ je inverzí věžové funkce. Udává nejmenší k takové, že $2 \uparrow k \geq x$.

Příklad: Funkce $2 \uparrow k$ roste přímo závratně:

$$2 \uparrow 1 = 2,$$

 $2 \uparrow 2 = 2^2 = 4$
 $2 \uparrow 3 = 2^4 = 16$
 $2 \uparrow 4 = 2^{16} = 65536$
 $2 \uparrow 5 = 2^{65536} \approx 10^{19728}$

 $^{^{\}langle 2\rangle}$ Anglický rankby se dal do češtiny přeložit jako hodnost. Oproti lineární algebře je ale při studiu datových struktur zvykem používat původní termín.

Iterovaný logaritmus libovolného "rozumného" čísla je tedy nejvýše 5.

Věta: Ve struktuře s kompresí cest na n vrcholech trvá provedení n-1 operací Union a m operací Find celkově $\mathcal{O}((n+m) \cdot \log^* n)$.

Ve zbytku tohoto oddílu větu dokážeme.

Pro potřeby důkazu budeme uvažovat ranky všech vrcholů, nejen kořenů – každý vrchol si ponese svůj rank z doby, kdy byl naposledy kořenem. Struktura se ovšem podle ranků vnitřních vrcholů nijak neřídí a nemusí si je ani pamatovat. Dokažme dva invarianty o rankách vrcholů.

Invariant C: Na každé cestě z vrcholu do kořene příslušného keříku ranky ostře rostou. Jinými slovy rank vrcholu, který není kořen, je menší, než je rank jeho otce.

 $\ensuremath{\textit{Důkaz:}}$ Pro jednovrcholové keříky tvrzení jistě platí. Dále se keříky mění dvojím způsobem:

 $P\check{r}id\acute{a}n\acute{i}$ hrany v operaci UNION: Nechť připojíme vrchol b pod a. Cesty do kořene z vrcholů, které původně ležely pod a, zůstanou zachovány, pouze se vrcholu a mohl zvýšit rank. Cesty z vrcholů pod b se rozšíří o hranu ba, na které rank v každém případě roste.

 $Komprese\ cest$ nahrazuje otce vrcholu jeho vzdálenějším předkem, takže se rank otce může jedině zvýšit. $\hfill\Box$

Invariant P: Počet vrcholů ranku r nepřesáhne $n/2^r$.

Důkaz: Kdybychom nekomprimovali cesty, bylo by to snadné: vrchol ranku r by měl alespoň 2^r potomků (dokud je kořenem, plyne to z invariantu \mathbf{R} ; jakmile přestane být, potomci se už nikdy nezmění). Navíc díky invariantu \mathbf{C} nemá žádný vrchol více předků ranku r, takže v keříku najdeme tolik disjunktních podkeříků velikosti alespoň 2^r , kolik je vrcholů ranku r.

Vraťme do hry kompresi cest. Ta nemůže invariant porušit, jelikož nemění ani ranky, ani rozhodnutí, jak proběhne který UNION.

Nyní vrcholy ve struktuře rozdělíme do skupin podle ranků: k-tá skupina bude tvořena těmi vrcholy, jejichž rank je od $2\uparrow(k-1)+1$ do $2\uparrow k$. Vrcholy jsou tedy rozděleny do $1+\log^*\log n$ skupin (nezapomeňte, že ranky nepřesahují $\log n$). Odhadněme nyní shora počet vrcholů v k-té skupině.

Invariant S: V k-té skupině leží nejvýše $n/(2 \uparrow k)$ vrcholů.

 $D\mathring{u}kaz$: Sečteme odhad $n/2^r$ z invariantu **P** přes všechny ranky ve skupině:

$$\frac{n}{2^{2\uparrow(k-1)+1}} + \frac{n}{2^{2\uparrow(k-1)+2}} + \dots + \frac{n}{2^{2\uparrow k}} \leq \frac{n}{2^{2\uparrow(k-1)}} \cdot \sum_{i=1}^{\infty} \frac{1}{2^i} = \frac{n}{2^{2\uparrow(k-1)}} \cdot 1 = \frac{n}{2\uparrow k}.$$

Důkaz věty: Operace Union a Find potřebují nekonstantní čas pouze na vystoupání po cestě ze zadaného vrcholu do kořene keříku. Čas strávený na této cestě je přímo

13 2015-02-02

úměrný počtu hran cesty. Celá cesta je přitom rozpojena a všechny vrcholy ležící na ní jsou přepojeny přímo pod kořen keříku.

Hrany cesty, které spojují vrcholy z různých skupin (takových je $\mathcal{O}(\log^* n)$), naúčtujeme právě prováděné operaci. Celkem jimi tedy strávíme čas $\mathcal{O}((n+m) \cdot \log^* n)$. Zbylé hrany budeme počítat přes celou dobu běhu algoritmu a účtovat je vrcholům.

Uvažme vrchol v v k-té skupině, jehož rodič leží také v k-té skupině. Jelikož hrany na cestách do kořene ostře rostou, každým přepojením vrcholu v rank jeho rodiče vzroste. Proto po nejvýše $2 \uparrow k$ přepojeních se bude rodič vrcholu v nacházet v některé z vyšších skupin. Jelikož rank vrcholu v se už nikdy nezmění, bude hrana z v do jeho otce již navždy hranou mezi skupinami. Každému vrcholu v k-té skupině tedy naúčtujeme nejvýše $2 \uparrow k$ přepojení a jelikož, jak už víme, jeho skupina obsahuje nejvýše $n/(2 \uparrow k)$ vrcholů, naúčtujeme celé skupině čas $\mathcal{O}(n)$ a všem skupinám dohromady $\mathcal{O}(n\log^* n)$.

Poznámka: Dodejme, že komprese cest se ve skutečnosti chová ještě lépe, než jsme dokázali. Správnou funkcí, která popisuje rychlost operací, není iterovaný logaritmus, ale ještě mnohem pomaleji rostoucí *inverzní Ackermannova funkce*. Rozdíl se ale projeví až pro nerealisticky velké vstupy a důkaz příslušné věty je zcela mimo možnosti našeho úvodního textu.