Proofs and Review

CSE015 Lab 4, 2024 Fall Jieke (Jacky) Wang jwang450@ucmerced.edu EECS, School of Engineering UC Merced

TOC

Slides is posted on Canvas:Files. If you find any typos or have any concerns, please contact me ASAP!

Review Proofs

Review Exam

Concepts

- ► **Terms**: theorem, proposition, axiom, lemma, corollary, conjecture, circular reasoning
- ▶ **Definitions**: even, odd

Goldbach's Conjecture: every even natural number greater than 2 is the sum of two prime numbers.

Collatz's Conjecture: for a number, recursively apply the following process: if it is odd, multiply it by 3 and add 1; if it is even, divide it by 2.

Fermat: "I have discovered a marvelous proof of this fact (Fermat's Last Theorem), but it was too long to fit in the margin."

1.7 Proofs

- ▶ Direct proof
- Proof by contraposition
- Proof by contradiction
- ▶ Proof by counterexample
- Proof by exhaustion Not covered yet (in Chapter 5): Induction

Direct Proof

- 1.7 Exercise 1: The sum of two odd integers is even. proof: Let $x \in \mathbb{Z}, y \in \mathbb{Z}$ and a = 2x + 1, b = 2y + 1 be two odd integers. Then a + b = (2x + 1) + (2y + 1) = 2x + 2y + 2 = 2(x + y + 1) is even by definition of even numbers.
- 1.7 Exercise 2: The sum of two even integers is even.
- 1.7 Exercise 3: The square of an even number is even $\frac{1}{2}$.
- 1.7 Exercise 4: The additive inverse of an even number is even.
- 1.7 Exercise 5: Let $m, n, p \in \mathbb{Z}$. If m + p and n + p are even integers, then m + p is even.

¹A generalized proposition is: The product of two even numbers is even.

Ex.3. *proof:* We prove the generalized proposition at footnote: the product of two even numbers is even. To show that, let a=2x, b=2y for $x\in\mathbb{Z},y\in Z$ so a and b are even. Then ab=(2x)(2y)=2(2xy) is even by definition of even numbers a=2. The original exercise is a special case when a=b.

Ex.5. proof: By definition of even numbers,

$$\exists x, y \in \mathbb{Z} : m + p = 2x, n + p = 2y \text{ so } m = 2x - p, n = 2y - p.$$
 Hence $m + n = (2x - p) + (2y - p) = 2x + 2y - 2p = 2(x + y - p)$ is even.

MERCEI:

²A typical mistake here is to write ab = 4xy then claim it is even as the product of two even integers circular proof.

Direct Proof

- 1.7 Exercise 6: The product of two odd numbers is odd. proof: Let a = 2x + 1, b = 2y + 1 be two odd integers where $x \in \mathbb{Z}$, $y \in \mathbb{Z}$. Now ab = (2x + 1)(2y + 1) = 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1 is odd as a sum of even integer and one.
- 1.7 Exercise 7: Every odd integer is the difference of two squares. proof: Let a=2x+1 be an odd integer for $x\in\mathbb{Z}$. Since $(x+1)^2-x^2=(x^2+2x+1)-x^2=2x+1$, $a=(x+1)^2-x^2$ is the difference of two squares.
- 1.7 Exercise 14: If x is rational and $x \neq 0$, then $\frac{1}{x}$ is rational.

Contradiction

1.7 Exercise 8: If n is a perfect square, then n + 2 is not a perfect square.

proof: Let $n=x^2$ be a perfect square for $x\in\mathbb{Z}$. Now assume that n+2 is a perfect square so $\exists y\in\mathbb{Z}: n+2=y^2$. Then $2=(n+2)-n=y^2-x^2=(y+x)(y-x)$. The possible cases for (y+x)(y-x)=2 are y+x=2, y-x=1 or y+x=1, y-x=2. There are no solutions for both cases in \mathbb{Z} . This contradicts to $x\in\mathbb{Z}$ and $y\in\mathbb{Z}$. Hence n+2 cannot be a perfect square.

Contradiction, Some by Example

- 1.7 Exercise 9: The sum of an irrational number and a rational number is irrational.
- 1.7 Exercise 10: The product of a nonzero rational number and an irrational number is irrational.

Prove or Disapprove: Is the sum of two irrational numbers still irrational?

- 1.7 Exercise 11: Prove or disprove that the product of two irrational numbers is irrational.
- 1.7 Exercise 12: Prove or disprove that the product of a nonzero rational number and an irrational number is irrational.
- 1.7 Exercise 13: If x is irrational, then $\frac{1}{x}$ is irrational.
- 1.7 Exercise 15: If x > 0 is irrational, then \sqrt{x} is irrational.

Jieke Lat

Contradiction

1.7 Exercise 27: There is no rational number r for which $r^3 + r + 1 = 0$.

proof. Toward a contradiction, assume $r=\frac{a}{b}$ for $a,b\in\mathbb{Z}$ and a,b are coprime. Then $r^3+r+1=0$ implies $\frac{a^3}{b^3}+\frac{a}{b}+1=0$. So $a^3+ab^2+b^3=0$. Analyzing parity of a and b by case shows that the only possible case is a,b are both even. However, this contradicts to our assumption that a,b are coprime. In conclusion, there is no rational number r for which $r^3+r+1=0$.

Contradiction

Several kinds of contradiction we have seen

- ► Given or Assumed $x \in \mathbb{Z}$ Derive $x \notin \mathbb{Z}$ Example 1.7 Exercise 8
- ► Given or Assumed $x \notin \mathbb{Q}$ Derive $x = \frac{p}{q} \in \mathbb{Q}$ Example 1.7 Exercise 9,10
- ▶ Given or Assumed $x = \frac{p}{q}$ in simplest form (i.e. gcd(p,q) = 1)

 Derive $x = \frac{p}{q}$ not in simplest form (e.g. p, q are both even after analyzing parity so $gcd(p,q) \ge 2$)

 Example $\sqrt{2} \notin \mathbb{Q}$; 1.7 Exercise 27

Contraposition

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

- 1.7 Exercise 16: If x, y, z are integers and x + y + z is odd, then at least one of x, y, z is odd.
- 1.7 Exercise 17: If $x \in \mathbb{R}, y \in \mathbb{R}$ and $x + y \ge 2$, then $x \ge 1$ or $y \ge 1$.
- 1.7 Exercise 18: If m and n are integers and mn is even, then m is even or n is even.
- 1.7 Exercise 19: If n is an integer and $n^3 + 5$ is odd, then n is even.
- 1.7 Exercise 20: If n is an integer and 3n + 2 is even, then n is even.

Jieke

Other Exercise in 1.7

- ► Vacuous Proof: 21, 22, 23
- ► Contradiction (Pigeon Hole Principle): 24, 25, 26

Prove Tautology

- ► Truth table: make sure to draw every columns and compute each entry correctly.
- First assuming consequence is False then showing condition is False (recall truth table of $p \rightarrow q$): can be useful if consequence is easy to analyze.
- Chain of logical equivalence: would be great if familiar with the table of logical equivalences, implication equivalence, and bi-conditional equivalences.

Truth table is usually easier to deal with, unless the problem does not allow you to use.

Other Problems

- ► Apply De Morgan's Law (conjunction, disjunction, and quantifier)
- Prove by giving counterexample.
- Translate logical operations (conjunction, disjunction, negation, implication, biconditional, nested quantifiers)
- **.**..

