

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICA

Departamento de Matemática

Primer Semestre de 2019

Profesor: Fernando Quintana – Ayudante: Rubén Soza

Modelos Probabilísticos - EYP1026 Ayudantía 10

16 de Mayo de 2019

1. Sea $X \sim NB(r, p)$ con $r \in \mathbb{N}, p \in (0, 1)$.

- a) Encuentre la función generadora de momentos de X y deje explícito el intervalo donde t vive.
- b) Calcule Var(X).
- c) Considere Y=2pX. Demuestre que la distribución de Y cuando $p\to 0$ tiende a una χ^2_{2r} . **Nota:** La función generadora de momentos de una $X\sim\chi^2_1$ es

$$M_X(t) = \frac{1}{\sqrt{1-2t}}, \quad t < \frac{1}{2}.$$

2. Sea X con función de densidad

$$f_X(x) = 2(1-x), \quad x \in [0,1].$$

- a) Encuentre la función generadora de momentos de X y su función característica.
- b) Utilizando series de taylor, encuentre una expresión para el k-ésimo momento de X.
- c) Calcule de forma directa $E(X^k)$.
- 3. Sea (X,Y) un vector aleatorio con función de densidad

$$f_{X,Y}(x,y) = \begin{cases} 24xy & \text{si } (x,y) \in [0,1]^2, 0 \le x+y \le 1\\ 0 & \text{si e.o.c} \end{cases}.$$

- a) Calcule $\rho(X,Y)$.
- b) Sean W = X + Y, Z = X Y. Calcule $\rho(W, Z)$.
- 4. Sean X_1, \ldots, X_n variables aleatorias con varianza σ^2 y coeficiente de correlación ρ . Encuentre el valor de $\text{Var}(\bar{X})$.
- 5. El objetivo de este problema es encontrar el mejor predictor lineal de una variable aleatoria Y utilizando otra variable aleatoria X.
 - a) Sean X e Y variables aleatorias con segundos momentos finitos. Encuentre los valores de $a, b \in \mathbb{R}$ que minimizan la expresión $E[(Y a bX)^2]$.
 - b) Sean \hat{a}, \hat{b} los valores obtenidos en a). Calcule $Var(\hat{a} + \hat{b}X)$.

c) Sean $X_1, \dots, X_n \overset{\text{i.i.d}}{\sim} \mathrm{U}(0,1)$. Defina

$$U = \min_{1 \leqslant i \leqslant n} X_i, \quad V = \max_{1 \leqslant i \leqslant n} X_i.$$

Encuentre el mejor predictor lineal de V a partir de U y su respectiva varianza.