

BC846A ... BC850C **SMD General Purpose NPN Transistors SMD Universal-NPN-Transistoren**

= 100 mA $h_{FE} = 180/290/520$

Pb

MSL = 1

 $V_{CEO} = 30...65 V$ $P_{tot} = 250 \text{ mW}$

 $T_{imax} = 150$ °C

Version 2020-07-21

Typical Applications

Signal processing, Switching, Amplification Commercial grade Suffix -Q: AEC-Q101 compliant 1) Suffix -AQ: AEC-Q101 qualified 1)

Features

General Purpose Three current gain groups Compliant to RoHS, REACH, Conflict Minerals 1)

Mechanical Data 1)

Taped and reeled Weight approx. Case material Solder & assembly conditions

Typische Anwendungen

Signalverarbeitung, Schalten, Verstärken Standardausführung Suffix -Q: AEC-Q101 konform 1) Suffix -AQ: AEC-Q101 qualifiziert 1)

Besonderheiten

Universell anwendbar Drei Stromverstärkungsklassen Konform zu RoHS, REACH, Konfliktmineralien 1)

Mechanische Daten 1)

3000 / 7" Gegurtet auf Rolle 0.01 gGewicht ca. UL 94V-0 Gehäusematerial 260°C/10s Löt- und Einbaubedingungen

Type			Complementary PNP transistors				
Code			Komplementäre PNP-Transistoren				
BC846A/-Q/-AQ = 1A	BC847A/-Q/-AQ = 1E	BC848A/-AQ = 1E	BC856 BC860				
BC846B/-Q/-AQ = 1B	BC847B/-Q/-AQ = 1F	BC848B/-AQ = 1F					
BC846C/-AQ = 1C	BC847C/-Q/-AQ = 1G	BC848C/-AQ = 1G					
	BC850A/-AQ = 1E BC850B/-AQ = 1F BC850C/-AQ = 1G	BC849A/-AQ = 1E BC849B/-AQ = 1F BC849C/-AQ = 1G					

Maximum ratings 2) Grenzwerte 2)

			BC846	BC847	BC850	BC848 BC849	
Collector-Emitter-voltage – Kollektor-Emitter-Spannung	B open	V_{CEO}	65 V 45 V		45 V	30 V	
Collector-Base-voltage – Kollektor-Basis-Spannung	E open	V_{CBO}	80 V	50 V	50 V	30 V	
Emitter-Base-voltage – Emitter-Basis-Spannung		V_{EBO}	6 V		5 V		
Power dissipation – Verlustleistung		P _{tot}	250 mW ³)				
Collector current – Kollektorstrom	DC	\mathbf{I}_C	100 mA				
Peak Collector current – Kollektor-Spitzenstrom		I_{CM}	200 mA				
Junction temperature – Sperrschichttemperatur Storage temperature – Lagerungstemperatur		T _j T _s	-55+150°C -55+150°C				

Please note the <u>detailed information on our website</u> or at the beginning of the data book Bitte beachten Sie die detaillierten Hinweise auf unserer Internetseite bzw. am Anfang des Datenbuches

 $T_A = 25$ °C, unless otherwise specified – $T_A = 25$ °C, wenn nicht anders angegeben

Mounted on P.C. board with 3 mm² copper pad at each terminal Montage auf Leiterplatte mit 3 mm² Kupferbelag (Lötpad) an jedem Anschluss

Characteristics Kennwerte

	$T_j =$	25°C	Min.	Тур.	Max.	
DC current gain – Kollektor-Basis-Stromverhältnis						
$V_{CE} = 5 \text{ V, } I_{C} = 10 \mu\text{A}$ Group I Group I	3 I	h _Æ	- - -	90 150 270	1 1 1	
$V_{CE} = 5 \text{ V, } I_C = 2 \text{ mA}$ Group I Group I	3 l	h _{ff}	110 200 420	180 290 520	220 450 800	
Collector-Emitter saturation voltage – Kollektor-Sättigungsspannung ¹)						
$I_{\text{C}}=10$ mA, $I_{\text{B}}=0.5$ mA $I_{\text{C}}=100$ mA, $I_{\text{B}}=5$ mA		CEsat	- -	90 mV 200 mV	250 mV 600 mV	
Base-Emitter saturation voltage – Basis-Sättigungsspannung ²)						
$I_{\text{C}}=10$ mA, $I_{\text{B}}=0.5$ mA $I_{\text{C}}=100$ mA, $I_{\text{B}}=5$ mA		BEsat	- -	700 mV 900 mV	1 1	
Base-Emitter-voltage – Basis-Emitter-Spannung ²)						
V_{CE} = 5 V, I_{C} = 2 mA V_{CE} = 5 V, I_{C} = 10 mA		V_{BE}	580 mV –	660 mV -	700 mV 720 mV	
Collector-Base cutoff current – Kollektor-Basis-Reststrom						
$V_{CB} = 30 \text{ V, (E open)}$ $V_{CE} = 30 \text{ V, T}_{j} = 125^{\circ}\text{C, (E open)}$		I _{CBO}	- -	- -	15 nA 5 μA	
Emitter-Base cutoff current						
$V_{EB} = 5 \text{ V, (C open)}$		\mathbf{I}_{EBO}	_	_	100 nA	
Gain-Bandwidth Product – Transitfrequenz						
V_{CE} = 5 V, I_C = 10 mA, f = 100 MHz		f_{T}	_	300 MHz	_	
Collector-Base Capacitance – Kollektor-Basis-Kapazität						
$V_{CB}=10~V,~I_{E}=i_{e}=0,~f=1~MHz$		Ссво		3.5 pF	6 pF	
Emitter-Base Capacitance – Emitter-Basis-Kapazität						
$V_{EB} = 0.5 \text{ V}, I_{C} = i_{c} = 0, f = 1 \text{ MHz}$		C _{EBO}		9 pF		
Thermal resistance junction to ambient Wärmewiderstand Sperrschicht – Umgebung			< 420 K/W ²)			

Disclaimer: See data book page 2 or <u>website</u> **Haftungssauschluss:** Siehe Datenbuch Seite 2 oder <u>Internet</u>

2

¹ Tested with pulses t_p = 300 μ s, duty cycle \leq 2% Gemessen mit Impulsen t_p = 300 μ s, Schaltverhältnis \leq 2%

² Mounted on P.C. board with 3 mm² copper pad at each terminal Montage auf Leiterplatte mit 3 mm² Kupferbelag (Lötpad) an jedem Anschluss