Handin 6

Marcus Malmquist, marmalm, 941022

December 16, 2016

1 Task 1

The periodic structure used in this task can be seen in Figure 1 and the properties of then structure can be seen in Table 1. Sine no information about the microstrip was provided, it is assumed that $\epsilon_r = 10$.

The physical length, d, of each section can be calculated using (1)

$$\begin{cases} kd = \theta \\ k = \frac{\omega}{c_0} \epsilon_r \end{cases} \Rightarrow d = \frac{c_0}{\omega \epsilon_r} \theta \tag{1}$$

In order to relate k and β it is convenient to use the ABCD-matrix which, for a cascaded circuit with transmission lines and impedances in series, can be calculated using (2). The ABCD-matrix in (2) is reciprocal since then determinant for each of the matrices in the right hand side in (2) is 1.

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \cos\frac{\theta}{2} & jZ_0\sin\frac{\theta}{2} \\ j\frac{1}{Z_0}\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} \begin{bmatrix} 1 & -j\frac{1}{\omega C} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\frac{\theta}{2} & jZ_0\sin\frac{\theta}{2} \\ j\frac{1}{Z_0}\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$
(2)

It is possible to relate ω and k using (1) once d is known so (2) will be a function of k. Using then hint that $\cosh(\gamma d) = \frac{A+D}{2}$ and the asumption that

f_0	$2\mathrm{GHz}$
Z_0	50Ω
C	$500\mathrm{fF}$
$\left \theta \right _{f=f_0}$	$\frac{8}{9}\pi$
ϵ_r	10 (assumed)

Table 1: The properties of the periodic structure seen in Figure 1.

Figure 1: Then periodic structure layout both as microstrip and equivalent circuit.

 $\gamma=j\beta,$ we can solve (3) which relates β and k. The solution in the region $(-\pi<\beta d<\pi)$ can be seen in Figure 2.

$$\cos(\beta d) = \frac{A+D}{2} \tag{3}$$

Figure 2: k- β diagram for the structure in Figure 1. The dashed lines are upper and lower bounds of the passbands.