# Recommender Systems: Latent Factor Models

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University



### The Netflix Prize

#### Movie recommender system

- Training data:
  - 100 million ratings, 480,000 users, 17,770 movies
  - 6 years of data: 2000-2005
- Test data
  - Last few ratings of each user (2.8 million)

# The Netflix Utility Matrix R

#### Matrix R

17,700 movies

#### 480,000 users

| 1 | 3 | 4 |   |   |   |
|---|---|---|---|---|---|
|   | 3 | 5 |   |   | 5 |
|   |   | 4 | 5 |   | 5 |
|   |   | 3 |   |   |   |
|   |   | 3 |   |   |   |
| 2 |   |   | 2 |   | 2 |
|   |   |   |   | 5 |   |
|   | 2 | 1 |   |   | 1 |
|   | 3 |   |   | 3 |   |
| 1 |   |   |   |   |   |

## Utility Matrix R: Evaluation



### The Netflix Prize

- Given the training data
  - 100 million ratings
- Predict last few ratings of each user
  - Evaluation criterion: Root Mean Square Error (RMSE)

$$= \frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$$

- Netflix's system RMSE: 0.9514
- Competition
  - 2,700+ teams
  - \$1 million prize for 10% improvement on Netflix

## A Modern Recommender System

- Multi-scale modeling of the data:
   Combine top level, "regional" modeling of the data, with a refined, local view:
  - Global:
    - Overall deviations of users/movies
  - Factorization:
    - Addressing "regional" effects
  - Collaborative filtering:
    - Extract local patterns

### **Modeling Local & Global Effects**

#### Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- Joe rates 0.2 stars below avg.
  - ⇒ Baseline estimation:

Joe will rate The Sixth Sense 4 stars

- Local neighborhood (CF/NN):
  - Joe didn't like related movie Signs
  - ⇒ Final estimate:
    Joe will rate The Sixth Sense 3.8 stars







# Recap: Collaborative Filtering (CF)

- Earliest and most popular collaborative filtering method
- Derive unknown ratings from those of "similar" movies (item-item variant)
- Define similarity measure  $s_{ij}$  of items i and j
- Select k-nearest neighbors, compute the rating
  - N(i; x): items most similar to i that were rated by x

$$\hat{r}_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s<sub>ij</sub> similarity of items *i* and *j* r<sub>uj</sub> rating of user *x* on item *j* N(i;x) set of items similar to item *i* that were rated by *x*

### **Modeling Local & Global Effects**

In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for  $r_{xi}$ 

$$b_{xi} = \mu + b_x + b_i$$

 $\mu$  = overall mean rating

 $b_x$  = rating deviation of user x

=  $(avg. rating of user x) - \mu$ 

 $b_i = (avg. rating of movie i) - \mu$ 

#### **Problems/Issues:**

- 1) Similarity measures are "arbitrary"
- 2) Pairwise similarities neglect interdependencies among users
- **3)** Taking a weighted average can be restricting

### RMSE of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

**Collaborative filtering: 0.94** 

Grand Prize: 0.8563

**1M**\$