A. Theoretical Analysis and Deferred Proofs

A.1. Proofs in Sec. 2

Lemma A.1 (Equivalence condition). *If we assume (1) identical ground truth labeling function in the training and deployment* g = g', (2) *Restricted TV distance between training and deployment* $TV(P_x, Q_x) \le \kappa$, then with probability $1 - 2\epsilon - \kappa$, PDD is equivalent to D-PDD.

Proof. Step 1: Def 1 \rightarrow Def 2. If g' = g, it is clear

$$\operatorname{err}(f, \boldsymbol{Q}_g) > \operatorname{err}(f, \boldsymbol{P}_g)$$

Then we set $h = g \in \mathcal{H}$, we have Def 2.

Step 2: Def 2 \rightarrow Def 1. If g' = g, we need to prove

$$\underline{\mathrm{err}(f, \boldsymbol{Q}_g) > \mathrm{err}(f, \boldsymbol{P}_g)}$$

Given the disagreement condition in Def 2,

$$\operatorname{err}(f, Q_h) \gg \operatorname{err}(f, P_h)$$

We need to demonstrate h=g with high probability, given the binary risk definition and Markov inequality, we have high probability $1-\epsilon$ such that:

$$h \equiv g, f \equiv g$$

Therefore $err(f, P_g) = err(f, P_h)$ happens in probability P with $1 - \epsilon$. Then we consider this events in Q, given a small TV-distance (κ) between P and Q, we have

$$|P(f(x) = g(x)) - Q(f(x) = g(x))| \le TV(P_x, Q_x) \le \kappa$$

Thus with high probability $1 - \kappa - \epsilon$ in Q, we still have f(x) = g(x). Union bounding yields the desired conclusion. \square

Lemma A.2 (Equivalence condition). Assume that (1) the ground truth distribution at training and deployment are identical, i.e. g = g', and that $TV(P, Q) \le \kappa$, we have that when $err(f, Q_h) - err(f, P_h) \ge 2(\kappa + \epsilon)$, i.e. the disagreement gap is large enough, D-PDD and PDD are equivalent.

Proof. To show PDD \implies D-PDD, assume g=g', i.e. identical concepts during training and deployment. Assume our base classifier f is well-trained with $\operatorname{err}(f, P_g) = \epsilon$. We have that

$$\operatorname{err}(f, \boldsymbol{Q}_g) > \operatorname{err}(f, \boldsymbol{P}_g)$$

Let our candidate auxiliary function $h \in \mathcal{H}$ be given by h = q. Then, h satisfies all conditions for D-PDD.

We now show that D-PDD \implies PDD. Assume that there is no concept shift, i.e. the ground truth distribution is identical, g = g'.

We transport the D-PDD condition $\exists h \in \mathcal{H}$ s.t. $\operatorname{err}(f, \mathbf{Q}_h) > \operatorname{err}(f, \mathbf{P}_h)$ to the general PDD condition $\operatorname{err}(f, \mathbf{Q}_g) > \operatorname{err}(f, \mathbf{P}_q)$ by leveraging the proximity of h to g on P and that the total variation between P and Q are constrained by κ .

We observe that for any $f, g, h \in \mathcal{H}$:

$$|\operatorname{err}(f, \boldsymbol{P}_g) - \operatorname{err}(f, \boldsymbol{P}_h)| < \epsilon$$

Indeed, this is true since:

$$|\operatorname{err}(f, \mathbf{P}_g) - \operatorname{err}(f, \mathbf{P}_h)| = |\mathbf{P}(f \neq g) - \mathbf{P}(f \neq h)|$$

$$= |\mathbb{E}_{\mathbf{P}} [\mathbb{1}\{f \neq g\} - \mathbb{1}\{f \neq h\}]|$$

$$\leq \mathbb{E}_{\mathbf{P}} [|\mathbb{1}\{f \neq g\} - \mathbb{1}\{f \neq h\}]|$$

$$\leq \mathbb{E}_{\mathbf{P}} [|\mathbb{1}\{g \neq h\}|]$$

$$= \mathbf{P}(g \neq h) \leq \epsilon$$

where we used Jensen's inequality, and that $|\mathbb{1}\{f \neq g\} + \mathbb{1}\{f \neq h\}| = |\mathbb{1}\{g \neq h\}|$.

Let $TV(P, Q) \le \kappa$ for some $\kappa > 0$. We further observe that for any $f, g \in \mathcal{H}$:

$$|\operatorname{err}(f, \mathbf{Q}_g) - \operatorname{err}(f, \mathbf{P}_g)| = |\mathbf{Q}(f \neq g) - \mathbf{P}(f \neq g)|$$

$$\leq \sup_{A} |\mathbf{Q}(A) - \mathbf{P}(A)| = \kappa$$

Putting our two observations together yields following decomposition:

$$\begin{aligned} |\operatorname{err}(f, \boldsymbol{Q}_h) - \operatorname{err}(f, \boldsymbol{Q}_g)| &\leq |\operatorname{err}(f, \boldsymbol{Q}_h) - \operatorname{err}(f, \boldsymbol{P}_h)| \\ &+ |\operatorname{err}(f, \boldsymbol{P}_h) - \operatorname{err}(f, \boldsymbol{P}_g)| + |\operatorname{err}(f, \boldsymbol{P}_g) - \operatorname{err}(f, \boldsymbol{Q}_g)| \\ &\leq 2\kappa + \epsilon \end{aligned}$$

For PDD to hold, $\operatorname{err}(f, \boldsymbol{Q}_g)$ needs to be no less than $\operatorname{err}(f, \boldsymbol{P}_h) + \epsilon$ and at most $2\kappa + \epsilon$ less than $\operatorname{err}(f, \boldsymbol{Q}_h)$. Equating yields:

$$\operatorname{err}(f, \boldsymbol{P}_h) + \epsilon \le \operatorname{err}(f, \boldsymbol{Q}_h) - 2\kappa - \epsilon$$

 $\Longrightarrow \operatorname{err}(f, \boldsymbol{Q}_h) - \operatorname{err}(f, \boldsymbol{P}_h) \ge 2(\kappa + \epsilon)$

prescribing the conditions for which D-PDD implies PDD.

A.2. Proofs in Sec. 4

A.3. Preliminary quantities

Definition A.3 (Deployed classifier error). This quantifies the generalization error of the deployed base classifier f. This is measured on the distribution seen during training P_q ,

$$\epsilon_f := \operatorname{err}(f; \boldsymbol{P}_a) \tag{8}$$

Indeed in Def. 2.2, we want the population error to be at most ϵ_f , which results in the constraint for the empirical error in the optimization problems of Algorithm 1 at most $\epsilon = \epsilon_f - \epsilon_0$, where ϵ_0 is a hyper-parameter to measure the gap between the empirical and population error.

We also re-define here for convenience the VC dimensions of the hypothesis space \mathcal{H} and the subset of interest \mathcal{H}_p as:

$$\mathcal{H}_n := \{ h \in \mathcal{H} : \operatorname{err}(h; \mathbf{P}_a) \le \epsilon_f \}, \quad d_n := \operatorname{VC}(\mathcal{H}_n), \quad d := \operatorname{VC}(\mathcal{H}) \}$$

Note that $d_p \leq d$. If the base classifier f is well-trained (ϵ_f is low), then d_p can be much smaller than d i.e., $d_p \ll d$.

Definition A.4 (ϵ_p , ϵ_q maximum error in \mathcal{H}_p). We define the maximum error in \mathcal{H}_p for both P and Q using pseudo-labels from f,

$$\epsilon_p = \max_{h \in \mathcal{H}_p} \operatorname{err}(h; \mathbf{P}_f), \quad \epsilon_q = \max_{h \in \mathcal{H}_p} \operatorname{err}(h; \mathbf{Q}_f)$$
 (9)

Note that empirical quantities of these are also the maximum empirical disagreement rates used in Algo. 1 and Algo. 2. Effectively, the algorithm detects $\epsilon_q - \epsilon_p > 0$ with finite samples.

Definition A.5 (ξ quantifies D-PDD). We define ξ to quantify the degree of D-PDD. We adopt Def. 2.2 and define ξ as

$$\xi := \max_{h \in \mathcal{H}_p} \left\{ \operatorname{err}(h; \mathbf{Q}_f) - \operatorname{err}(h; \mathbf{P}_f) \right\}$$
(10)

Therefore, D-PDDM detects whether $\xi > 0$. Furthermore, ξ is non-negative since $f \in \mathcal{H}_p$. Hence, in case of non-deteriorating shift, $\xi = 0$.