FINITE AUTOMATA

Finite Automata is one of the mathematical models that consist of a number of states and edges. It is a transition diagram that recognizes a regular expression or grammar.

Types of Finite Automata

There are tow types of Finite Automata:

- Non-deterministic Finite Automata (NFA)
- Deterministic Finite Automata (DFA)

Non-deterministic Finite Automata

NFA is a mathematical model that consists of five tuples denoted by

 $M = \{Q_n, \Sigma, \delta, q_0, f_n\}$

Q_n – finite set of states

 Σ – finite set of input symbols

 δ – transition function that maps state-symbol pairs to set of states

 $\begin{array}{lll} q_0 & - & starting \ \underline{state} \\ f_n & - & final \ \underline{state} \end{array}$

Deterministic Finite Automata

DFA is a special case of a NFA in which

- no state has an ε -transition.
- ii) there is at most one transition from each state on any input.

DFA has five tuples denoted by

 $M = \{Q_d, \Sigma, \delta, \underline{q_0, f_d}\}$

Q_d – finite set of states

 Σ – finite set of input symbols

 δ - transition function that maps state-symbol pairs to set of states

q₀ – starting state

f_d – final state

Construction of DFA from regular expression

The following steps are involved in the construction of DFA from regular expression:

- i) Convert RE to NFA using Thomson's rules
- ii) Convert NFA to DFA
- iii) Construct minimized DFA

CSD 3202 - Compiler Design III YEAR CSE

Transition diagrams

- Transition diagrams are also called finite automata.
- We have a collection of STATES drawn as nodes in a graph.
- TRANSITIONS between states are represented by directed edges in the graph.
- Each transition leaving a state s is labeled with a set of input characters that can occur after state s.

Transition diagrams (Conti...)

- For now, the transitions must be DETERMINISTIC.
- Each transition diagram has a single START state and a set of TERMINAL STATES.
- The label OTHER on an edge indicates all possible inputs not handled by the other transitions.
- Usually, when we recognize OTHER, we need to put it back in the source stream since it is part of the next token. This action is denoted with a * next to the corresponding state.

Relational operator (1/3)

Relational operator (2/3)

Relational operator (3/3)

Identifier and number

Automatic Generation of Lexical Analysers

Inputs to the lexical analyser generator:

- A specification of the tokens of the source language, consisting of:
 - a regular expression describing each token, and
 - a code fragment describing the action to be performed, on identifying each token.

The generated lexical analyser consists of:

- A deterministic finite automaton (DFA) constructed from the token specification.
- A code fragment (a driver routine) which can traverse any DFA.
- Code for the action specifications.

Automatic Generation of Lexical Analysers

Example of Lexical Analyser Generation

Suppose a language has two tokens

```
Pattern Action

a*b { printf( "Token 1 found");}

c+ { printf( "Token 2 found");}
```

From the description, construct a structure called a deterministic finite automaton (DFA).

Compiler Design 40106

Example of Lexical Analyser Generation

Now consider the following together:

Example of Lexical Analyser Generation

In summary:

- The DFA, the driver routine and the action routines taken together, constitute the lexical analyser.
- actions are supplied as part of specification.
 - driver routine is common to all generated lexical analyzers.
 The only issue how are the patterns, specified by regular expressions, converted to a DFA.

In two steps:

- Convert regular expression into NFA.
- Convert NFA to DFA.

In two parts;

- First convert the regular expression corresponding to each token into a NFA.
 - Invariant: A single final state corresponding to each token.
- Join the NFAs obtained for all the tokens.

RE for ϵ

RE for a

Finite Automata

- Finite Automata are recognizers.
 - FA simply say "Yes" or "No" about each possible input string.
 - A FA can be used to recognize the tokens specified by a regular expression
 - Use FA to design of a Lexical Analyzer Generator
- Two kind of the Finite Automata
 - Nondeterministic finite automata (NFA)
 - Deterministic finite automata (DFA)
- Both DFA and NFA are capable of recognizing the same languages.

NFA Definitions

- NFA = { S, Σ , δ , s₀, F }
 - A finite set of states S
 - A set of input symbols Σ
 - input alphabet, ε is not in Σ
 - A transition function δ
 - $\delta: S \times \Sigma ? S$
 - A special start state s₀
 - A set of final states F, $F \subseteq S$ (accepting states)

Transition Graph for FA

→ is a transition

is a final state

Example a large description of the contract of

- This machine accepts abccabc, but it rejects abcab.
- This machine accepts (abc+)+.

Transition Table

• The mapping δ of an NFA can be represented in a transition table

$$\delta(0, \mathbf{a}) = \{0, 1\}$$

 $\delta(0, \mathbf{b}) = \{0\}$
 $\delta(1, \mathbf{b}) = \{2\}$
 $\delta(2, \mathbf{b}) = \{3\}$

STATE	a	b	ε
0	{0, 1}	{0}	-
1	I	{2}	I
2	-	{3}	-
3	-	-	-

Construction of an NFA from a Regular

NFA

FOR INPUT ε

FOR INPUT a

FOR INPUT b

FOR INPUT ab

FOR INPUT a/b

FOR INPUT (a/b)*

Example

• (a|b)*abb


```
The input. symbol alphabet is {a, b}.
\varepsilon - closure (0)= {0, 1, 2, 4, 7} =A
\varepsilon -closure (move (A, a)) =
        \varepsilon - Closure (Move ({0, 1, 2,4, 7},a)) =
        \varepsilon- Closure ({3, 8}) = { 1, 2, 3, 4, 6, 7, 8 }= B
\varepsilon -closure (move (A, b)) =
        \varepsilon - Closure (move ( { 0, 1, 2, 4,7 },b )) =
        \epsilon - Closure (5) = { I, 2, 4, 5, 6, 7 } = C
• \varepsilon - Closure (move (B, a)) =
    - \varepsilon - Closure (move ({I, 2, 3, 4, 6, 7, 8}, a)) =
    -\epsilon - Closure (3, 8) = B
• ε- Closure (move (B, b)) =
        \epsilon -Closure (move ({ I, 2, 3,4, 6, 7, 8}, b)) =
         \varepsilon - Closure (5, 9) = { 1, 2, 4, 5, 6, 7, 9 }=D
```

- ε Closure (move (C, a)) =
 - ε Closure (move ({ I, 2, 4, 5, 6, 7 }, a)= ε Closure (3,8) == Btransition [C, a] = B
- ϵ Closure (move (C, b)) == ϵ Closure (move ({ I, 2, 4, 5, 6, 7 }, b)) = ϵ Closure (5)= Ctransition [C, b] = C
- ϵ Closure (move (D, a))= ϵ Closure (move ({I, 2, 4,5, 6, 7,9}, a)) = ϵ Closure (3, 8) = B.transition (D, a] = B.
- ε Closure (move (D, b))= ε Closure (move ({I, 2, 4, 5, 6, 7, 9} b) = ε. Closure (5, 10)= {1, 2, 4, 5; 6, 7, 10} = E
- ϵ . Closure (move (E, a)) = ϵ Closure (move ({1, 2, 4, 5, 6, 7, 10}, a)= ϵ Closure (3, 8) = Btransition [E, a] = B.
- ϵ Closure (move (E, b))= ϵ Closure (move ({1, 2, 4, 5, 6, 7, 10}, b))= ϵ Closure (5) = C transition [E, b] = C

Transition Table & Transition Diagram

State	a	b
A	В	C
В	В	D
С	В	C
D	В	Е
Е	В	С

Minimizing the Number of States of a DFA

- The initial partition consists of two groups.
- (ABCD), consisting of non- final states, (E) the final states.
- Now consider (ABCD), on input a, each of these states goes to B, so they could all be placed in one group as far as input a is concerned.
- However, on input b, A, Band C go to members of the group (ABCD), while D goes to E, a member of another group.
- Thus, new (ABCD) must be split into tvio groups (ABC) and (D). Thenew value of is (ABC) (D) (E).
- (ABC) must be split into two groups (AC) (B).
- Since on input b, A and C each go to C, while B goes to D, a member of a group different from that of C. The next split is (AC) (B) (D) (E).

(AC) (B) (D) (E).

TD

State	a	b
A	В	С
В	В	D
С	В	С
D	В	Е
Е	В	С

MINIMIZED TD

State	a	b
A(START)	В	A
В	В	D
С	В	Е
D(ACCEPT)	В	A

Conversion of an NFA to a DFA

 The subset construction algorithm converts an NFA into a DFA using the following operation.

Operation	Description
ε- closure(s)	Set of NFA states reachable from NFA state s on ε-transitions alone.
ε- closure(T)	Set of NFA states reachable from some NFA state s in set T on ε -transitions alone. $= \bigcup_{s \text{ in T}} \varepsilon - closure(s)$
move(T, a)	Set of NFA states to which there is a transition on input symbol a from some state s in T

Subset Construction(1)

```
Initially, \varepsilon-closure(s0) is the only state in Dstates and it is unmarked;
while (there is an unmarked state T in Dstates) {
        mark T;
        for (each input symbol a \in \Sigma) {
           U = \varepsilon-closure( move(T, a) );
           if (U is not in Dstates)
              add U as an unmarked state to Dstates
           Dtran[T, a] = U
```

Computing ε - closure(T)

```
push all states of T onto stack;
initialize \epsilon-closure(T) to T;
while ( stack is not empty ) {
       pop t, the top element, off stack;
       for (each state u with an edge from t to u labeled \epsilon)
               if ( u is not in \epsilon-closure(T) ) {
                      add u to \epsilon-closure(T);
                      push u onto stack;
```


NFA State	DFA State	a	b
{0,1,2,4,7}	A	В	С
{1,2,3,4,6,7,8}	В	В	D
{1,2,4,5,6,7}	С	В	С
{1,2,4,5,6,7,9}	D	В	Е
{1,2,3,5,6,7,10}	Е	В	С

- **a**
- abb
- a*b+

Dstates

$$A = \{0,1,3,7\}$$

$$B = \{2,4,7\}$$

$$C = \{8\}$$

$$D = \{7\}$$

$$E = \{5,8\}$$

$$F = \{6,8\}$$

Minimizing the DFA

- Step 1
 - Start with an initial partition II with two group: F and S-F (accepting and nonaccepting)
- Step 2
 - Split Procedure
- Step 3

```
- If (II_{new} = II)
II_{final} = II \text{ and continue step 4}
else
II = II_{new} \text{ and go to step 2}
```

- Step 4
 - Construct the minimum-state DFA by II_{final} group.
 - Delete the dead state

Split Procedure

```
Initially, let II_{new} = II
for (each group G of II) {
   Partition G into subgroup such that
     two states s and t are in the same subgroup
     if and only if
     for all input symbol a, states s and t have
     transition on a to states in the same group of
     II.
   /* at worst, a state will be in a subgroup by
     itself */
   replace G in \mathrm{II}_{\mathrm{new}} by the set of all subgroup formed
```

Example

- initially, two sets {1, 2, 3, 5, 6}, {4, 7}.
- {1, 2, 3, 5, 6} splits {1, 2, 5}, {3, 6} on c.
- {1, 2, 5} splits {1}, {2, 5} on b.

Minimizing the DFA

- Major operation: partition states into equivalent classes according to
 - final / non-final states
 - transition functions

	а	b]				_	h
Α	В	С]	(ABCDE))		a	D
		<u> </u>	1			A C	В	AC
B	B	ע		(ABCD)(E)		В	R	ח
C	В	С	1	(ABC)(D)(E) (AC)(B)(D)(E)				
<u> </u>		_					В	L
U	B	ᆫ					В	Λ
	В	C				L	ם	_

Important States of an NFA

- The "important states" of an NFA are those without an ϵ -transition, that is
 - if $move({s}, a) \neq \emptyset$ for some a then s is an important state
- The subset construction algorithm uses only the important states when it determines ε -closure (move(T, a))
- Augment the regular expression r with a special end symbol # to make accepting states important: the new expression is r#

Converting a RE Directly to a DFA

- Construct a syntax tree for (r)#
- Traverse the tree to construct functions nullable, firstpos, lastpos, and followpos
- Construct DFA D by algorithm 3.62

Function Computed From the Syntax Tree

- *nullable(n)*
 - The subtree at node n generates languages including the empty string
- firstpos(n)
 - The set of positions that can match the first symbol of a string generated by the subtree at node n
- lastpos(n)
 - The set of positions that can match the last symbol of a string generated be the subtree at node n
- followpos(i)
 - The set of positions that can follow position i in the tree

Rules for Computing the Function

Node n	nullable(n)	firstpos(n)	lastpos(n)
A leaf labeled by ε	true	Ø	Ø
A leaf with position <i>i</i>	false	$\{i\}$	$\{i\}$
$\mathbf{n} = \mathbf{c}_1 \mid \mathbf{c}_2$	$nullable(c_1)$ $oldsymbol{or}$ $nullable(c_2)$	$\mathit{firstpos}(c_1) \cup \mathit{firstpos}(c_2)$	$lastpos(c_1) \cup lastpos(c_2)$
$n = c_1 c_2$	$nullable(c_1) \ \mathbf{and} \ nullable(c_2)$		$ \begin{array}{c} \textbf{if} \; (\; nullable(c_2) \;) \\ lastpos(c_1) \cup lastpos(c_2) \\ \textbf{else} \; lastpos(c_2) \\ \end{array} $
$\mathbf{n} = \mathbf{c_1}^*$	true	$firstpos(c_1)$	$lastpos(c_1)$

Computing followpos

```
for (each node n in the tree)
{
    //n is a cat-node with left child c1 and right child c2
    if ( n == c1. c2)
        for (each i in lastpos(c1))
            followpos(i) = followpos(i) U firstpos(c2);
    else if (n is a star-node)
        for (each i in lastpos(n))
            followpos(i) = followpos(i) U firstpos(n);
}
```

Converting a RE Directly to a DFA

```
Initialize Dstates to contain only the unmarked state
firstpos(n_0), where n_0 is the root of syntax tree T for
(r) #;
while (there is an unmarked state S in Dstates) {
  mark S;
  for (each input symbol a \in \Sigma) {
       let U be the union of followpos(p)
          for all p in S that correspond to a;
       if (U is not in Dstates )
             add U as an unmarked state to Dstates
       Dtran[S,a] = U;
```


Example

Example

Node	followpos	(a b)*abb#
1	{1, 2, 3}	
2	{1, 2, 3}	$\boxed{}$
3	{4}	
4	{5}	
5	{6}	
6	-	
	h	b
	1, b 2, 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

DFA

- DFA is a special case of an NFA
 - There are no moves on input ε
 - For each state s and input symbol a, there is exactly one edge out of s labeled a.
- Both DFA and NFA are capable of recognizing the same languages.

Simulating a DFA

Input

 An input string x terminated by an end-of-file character eof. A DFA D with start state s0, accepting states F, and transition function move.

Output

Answer "yes" if D accepts x;"no" otherwise.

```
= nextChar();
while ( c != eof ) {
  s = move(s, c);
  c = nextChar();
   (s is in F)
  return "yes";
else
  return "no";
```

NFA vs DFA

 $S = \{0,1,2,3\}$ $\Sigma = \{\mathbf{a}, \mathbf{b}\}$ $s_0 = 0$ $F = \{3\}$

From a Regular Expression to an

NFA

4-For the regular expression a^* construct the following co

From a Regular Expression to an NFA

$$RE = (a \mid b)*a$$

From a Regular Expression to an NFA

$$RE = \boldsymbol{a^*} (\boldsymbol{a} \mid \boldsymbol{b})$$

The Regular Language

- The regular language defined by an NFA is the set of input strings it accepts.
 - Example: $(a \Box b) *abb$ for the example NFA
- An NFA accepts an input string x if and only if
 - there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph
 - A state transition from one state to another on the path is called a move.

Time and Space Complexity

Automaton	Space (worst case)	Time (worst case)	
NFA	O(□ <i>r</i> □)	$O(\Box r\Box \times \Box x\Box)$	
DFA	O(2 1)	O(□ <i>x</i> □)	

Lexical Analysis With Lex

Lexical analysis with Lex

Lex source program format

 The Lex program has three sections, separated by %%:

declarations

%%

transition rules

%%

auxiliary code

Declarations section

- Code between %{ and }% is inserted directly into the lex.yy.c. Should contain:
 - Manifest constants (#define for each token)
 - Global variables, function declarations, typedefs
- Outside %{ and }%, REGULAR DEFINITIONS are declared.
 Examples:

```
delim [\t\n]
ws {delim}<sup>+</sup>
letter [A-Za-z]
```

Each definition is a name followed by a pattern.

Declared names can be used in later patterns, if surrounded by {}.

Translation rules section

Translation rules take the form

```
p<sub>1</sub> { action<sub>1</sub> }
p<sub>2</sub> { action<sub>2</sub> }
.....
p<sub>n</sub> { action<sub>n</sub> }
```

Where pi is a regular expression and action; is a C program fragment to be executed whenever p_i is recognized in the input stream.

In regular expressions, references to regular definitions must be enclosed in {} to distinguish them from the corresponding character sequences.