Recommender Systems

From traditional systems to neuronal one

Michel.RIVEILL@univ-cotedazur.fr

Recommender Systems

- A recommender system (RS) helps users that have no sufficient competence or time to evaluate the, potentially overwhelming, number of alternatives offered by a web site.
 - In their simplest form, RSs recommend to their users personalized and ranked lists of items

The Impact of RecSys

- ▶ 35% of the purchases on Amazon are the result of their recommender system, according to McKinsey.
- During the Chinese global shopping festival of November 11, 2016, Alibaba achieved growth of up to 20% of their conversion rate using personalized landing pages, according to Alizila.
- Recommendations are responsible for 70% of the time people spend watching videos on YouTube.
- ▶ 75% of what people are watching on Netflix comes from recommendations, according to McKinsey

The Age of Recommendation

Search: User Items

Recommend:

Items User (push model)

Amazon: A personalized online store

Frequently Bought Together

Price for both: \$158.15

Add both to Cart

Add both to Wish List

One of these items ships sooner than the other. Show details

- ▼ This item: Introduction to Data Mining by Pang-Ning Tan Hardcover \$120.16
- Data Science for Business: What you need to know about data mining and data-analytic thinking by Foster Provost Paperback \$37.99

Customers Who Bought This Item Also Bought

Data Science for Business: What you need...

> Foster Provost

★★★★☆ 102

#1 Best Seller (in Data Mining

Paperback \$37.99 **Prime**

Data Mining: Practical Machine Learning Tools...

) Ian H. Witten **全全全**公 52

Paperback \$40.65 **Prime**

Data Mining: Concepts and Techniques, Third...

Jiawei Han

全章 1757 28 Hardcover

\$60.22 **Prime**

Regression Analysis by Example > Samprit Chatterjee

*** 1 1 1 9 Hardcover

\$92.39 **Prime**

SAS Statistics by Example Ron Cody

全全全全公 10 Perfect Paperback \$44.37 **Prime**

Applied Logistic Regression David W. Hosmer Jr.

金金金金金 9 Hardcover \$62.33 **Prime**

An Introduction to Statistical Learning:...

Gareth James ★★★★★ 56

#1 Best Seller (in Mathematical & Statistical. Hardcover

\$72.79 **Prime**

Page 1 of 15

>

Recommender Problem

A good recommender

- Show
 - programming titles to a software engineer
 - baby toys to a new mother.
- Don't recommend items user already knows or would find anyway
 - Booking often recommends hotels in places where you have already done research. Is this relevant?
- Expand user's taste without offending or annoying him/her...
 - Try to propose new things, basing your proposals on what you learn from the user
 - is it someone who has varied tastes
 - or on the contrary quite homogeneous?

Recommender Problem

Challenges

- Huge amounts of data
 - tens of millions of customers
 - millions of distinct catalog items.
- ▶ Results are required to be returned in real time (<1-2 seconds).
 - You don't have enough time to calculate a lot of things
- New customers have limited information.
 - Some platforms ask questions to build an initial profile
- Old customers can have a lot of information.
 - Customer data is volatile
 - How to know what information is no longer relevant?

A curated list of awesome Recommender System

About this lecture

- Will give you a very short introduction to the field of Recommender Systems
- → "FIT" → How do recommender systems (RS) work?
 - How can you compute recommendations?
 - From the basis
 - Non personalized recommendation
 - To more accurate proposal
 - □ Content-based filtering
 - □ Collaborative filtering
 - lt's just an introduction...
- "EVALUATE" > How do we measure their success?
 - How can we know that the recommendations are good?

https://edyaaleh.files.wordpress.com/2016/02/recommendersystemshandbook.pdf

Problem characterization

Given

- ▶ The profile of the "active" user
- ▶ The description of a set of items
- And possibly some situational context

Compute

- A relevance (ranking) score for each item
- And select for a user
 - A list of recommendable items
 - ▶ The most recommendable items
- ▶ The problem ...
 - ... is mainly a Matrix completion problem

I. Collect the data

User	ltem	Score	Time
0	0	5	I
2	I	4	2
4	2	5	3
0	2	2	4
2	0	5	5
Etc.			

- I. Collect the data
- 2. Construct the pivot matrix

User	ltem	Score	Time
0	0	5	I
2	I	4	2
4	2	5	3
0	2	2	4
2	0	5	5
Etc.			

- I. Collect the data
- 2. Eventually construct the pivot matrix

User	ltem	Score	Time
0	0	5	l
2	I	4	2
4	2	5	3
0	2	2	4
2	0	5	5
Etc.			

- I. Collect the data
- 2. Eventually construct the pivot matrix

User	ltem	Score	Time
0	0	5	I
2	I	4	2
4	2	5	3
0	2	2	4
2	0	5	5
Etc.			

User	ltem	Score	Time
0	0	5	I
2	I	4	2
4	2	5	3
0	2	2	4
2	0	5	5
Etc.			

- I. Collect the data
- 2. Eventually construct the pivot matrix
- 3. Predict missing scores for the desired used
 - Depend of the strategy

Paradigms of recommender systems

Non personalized recommendation

Non personalized recommendation

Non personalized recommendation Approach 1 = mean rating

- ▶ Goal: provides a list
 - For all user the list is the same
 - But, what do you put at the top of the list?
- A simple approach: rank by score
 - Score for item i : $r_i = \frac{\sum_u r_{ui}}{n}$

ltem			2	3	4	
User	U		Z	3	4	
0	5	3	2			
I		5	3	3		
2	5	4	2	Ī		
3		3		1	2	
4			5	2		
Item mean grade		3.75				

Non personalized recommendation Approach 1 = mean rating

- Goal: provides a list
 - For all user the list is the same
 - But, what do you put at the top of the list?
- A simple approach: rank by score
 - Score for item $i : r_i = \frac{\sum_u r_{ui}}{n}$

ltem			2	3	4	
User	U		2	3	4	
0	5	3	2	1,75	2	
I	5	5	3	3	2	
2	5	4	2	I	2	
3	5	3	3	I	2	
4	5	3.75	5	2	2	
Item mean grade	5	3.75	3	1,75	2	

Non personalized recommendation Approach 1 = mean rating

- > All unseen items for all users have the same rating
- Ranking list for user 4 = [0, 1, 4]

Item	0		2	2	4	
User	U		2	3	4	
0	5	3	2	1,75	2	
- 1	5	5	3	3	2	
2	5	4	2	I	2	
3	5	3	3		2	
4	5	3.75	5	2	2	
Item mean grade	5	3.75	3	1,75	2	

A simple approach: rank by score with normalisation

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_u})}{n}$$

ltem						Mean
User	0	' '	2	3	4	rating r _u
0	5	3	2			u
1		5	3	3		3.66
2	5	4	2	I		1
3		3		I	2	
4			5	_	EP I: Calculat	
$\frac{\sum_{u}(r_{ui}-r_{u})}{n}$				for	e mean rating each user +3+3)/3	

A simple approach: rank by score with normalisation

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_v})}{n}$$

▶ Step I : calculate the mean rating for each user

$$\overline{r_u} = \frac{\sum_{i}(r_{ui})}{n}$$

Item User	0	ı	2	3	4	Mean rating r _u
0	5	3	2			
- 1		5	3	3		3.66
2	5	4	2	I		1
3		3		1	2	
4			5	_	EP I: Calculat	
$\frac{\sum_{u}(r_{ui}-r_{u})}{n}$				for	e mean rating each user +3+3)/3	

A simple approach: rank by score with normalisation

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_v})}{n}$$

▶ Step I : calculate the mean rating for each user

$$\overline{r_u} = \frac{\sum_{i}(r_{ui})}{n}$$

ltem						Mean
User	0		2	3	4	rating r _u
0	5	3	2			3.33
I		5	3	3		3.66
2	5	4	2	I		3
3		3		I	2	2
4			5	2		3.5
$\frac{\sum_{u}(r_{ui}-r_{u})}{n}$						

A simple approach: rank by score with normalisation

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_v})}{n}$$

- Step I : calculate the mean rating for each user : $\overline{r_u} = \frac{\sum_i (r_{ui})}{n}$
- Step 2: compute the normalized rating for each movie

ltem			2	2		Mean
User	0	•	2	3	4	rating r _u
0	5	3	2			3.33
I		5	3	3		3.66
2	5	4	2	I		3
3		3		I	2	2
4			5	2		3.5
$\frac{\sum_{u}(r_{ui}-r_{u})}{n}$	1.835		compute the	normalized r	ating for each	n movie

((5-3.33)+(5-3))/2 =

A simple approach: rank by score with normalisation

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_v})}{n}$$

- Step I : calculate the mean rating for each user : $\overline{r_u} = \frac{\sum_i (r_{ui})}{n}$
- Step 2: compute the normalized rating for each movie

ltem			2	2		Mean
User	0	•	2	3	4	rating r _u
0	5	3	2			3.33
I		5	3	3		3.66
2	5	4	2	I		3
3		3		I	2	2
4			5	2		3.5
$\frac{\sum_{\mathbf{v}}(r_{\mathbf{v}i}-r_{\mathbf{v}})}{n}$	1.835	0.75	-0.37	-1.29	0	

A simple approach: rank by score with normalisation

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_v})}{n}$$

- Step I : calculate the mean rating for each user : $\overline{r_u} = \frac{\sum_i (r_{ui})}{n}$
- Step 2: compute the normalized rating for each movie: $\overline{r_i} = \frac{\sum_{v} (r_{vi} \overline{r_v})}{n}$
- Step 3: add the mean user rating to the item rating

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_v})}{n}$$

ltem						Mean
User	0	- ' -	2	3	4	rating r _u
0	5	3	2			3.33
1	5.5	5	3	3		3.66
2	5	4	2	1		3
3	3.8	3		1	2	2
4			5	2		3.5
$\frac{\sum_{u}(r_{ui}-r_{u})}{n}$	1.835	0.75	-0.37	-1.29	0	

STEP 3: add the mean user rating to the item rating

^{- 3.66+1.835} for item 0/user1

A simple approach: rank by score with normalisation

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_v})}{n}$$

- Step I : calculate the mean rating for each user : $\overline{r_u} = \frac{\sum_i (r_{ui})}{n}$
- Step 2: compute the normalized rating for each movie: $\overline{r_i} = \frac{\sum_{v} (r_{vi} \overline{r_v})}{n}$
- Step 3: add the mean user rating to the item rating

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_v})}{n}$$

Item						Mean
User	0	1	2	3	4	rating r _u
0	5	3	2	3.33-1.29	3.33-0	3.33
1	5.5	5	3	3	3.66	3.66
2	5	4	2	Ī	3	3
3	3.8	3	2-0.37	I	2	2
4	5.335	4.25	5	2	3.5	3.5
$\frac{\sum_{u}(r_{ui}-r_{u})}{n}$	1.835	0.75	-0.37	-1.29	0	

STEP 3: add the mean user rating to the item rating

^{- 3.66+1.835} for item 0/user1

A simple approach: rank by score with normalisation

$$r_{ui} = \overline{r_u} + \frac{\sum_{v} (r_{vi} - \overline{r_v})}{n}$$

- Step I : calculate the mean rating for each user : $\overline{r_u} = \frac{\sum_i (r_{ui})}{n}$
- Step 2: compute the normalized rating for each movie: $\overline{r}_i = \frac{\sum_{v} (r_{vi} \overline{r}_v)}{n}$
- Step 3: add the mean user rating to the item rating: $r_{ui} = \overline{r_u} + \frac{\sum_v (r_{vi} \overline{r_v})}{n}$

Item User	0	1	2	3	4	Mean rating
						r _u
0	5	3	2	2.04	3.33	3.33
1	5.5	5	3	3	3.66	3.66
2	5	4	2	1	3	3
3	3.8	3	1,63	1	2	2
4	5.335	4.25	5	2	3.5	3.5
$\frac{\sum_{u}(r_{ui}-r_{u})}{n}$	1.835	0.75	-0.37	-1.29	0	

- The rating for unseen depend of the user
- Ranking list for user 4: [0, 1, 4]

ltem						Mean
User	0	- 1	2	3	4	rating r _u
0	5	3	2	2.04	3.33	3.33
I	5.5	5	3	3	3.66	3.66
2	5	4	2	I	3	3
3	3.8	3	1,63	I	2	2
4	5.335	4.25	5	2	3.5	3.5
$\frac{\sum_{u}(r_{ui}-r_{u})}{n}$	1.835	0.75	-0.37	-1.29	0	

If the time is important....

- Hacker News algorithms
 - http://www.righto.com/2013/11/how-hacker-news-ranking-really-works.html
 - Score: $\frac{(votes-1)^{0.8}}{(age+2)^{1.8}}$

31

Personalized recommendation Collaborative filtering

Memory based

Memory-based collaborative filtering

Use the rating matrix

- find users/or items that are similar to the active user/or items
- and use their rating to predict new rating

Advantage

- Quality of precision are rather good
- Relatively simple algorithm to implement for any situation
- New data can be added easily and incrementally

Disadvantage

- It depend on human ratings
- Performance decreases when data gets sparse
- Have scalability problem with large dataset
- We will detail only the user-user approach

User-Based Algorithms (Breese et al, UA198)

▶ Predicted vote for "active user" u for item j is a weighted sum

$$\widehat{r_{uj}} = \sum_{v \in U} w(u, v) r_{vj}$$

Similarity weights between users

- Near 1: users u and k is similar
- Near 0 : users u and k have no similarity

- As in the previous approaches
 - it is also possible to normalize the ratings.
 - $\widehat{r_{uj}} = \overline{r_u} + \sum_{v \in U} w(u, v) (r_{vj} \overline{r_v})$

User-Based Algorithms (Breese et al, UA198)

- ▶ weighted sum $\rightarrow w(u, v) \in [0, 1]$ or [-1, +1]
 - Many possibilities
 - ▶ K-nearest neighbor

$$w(a,i) = \begin{cases} 1 & \text{if } i \in \text{neighbors}(a) \\ 0 & \text{else} \end{cases}$$

▶ Pearson correlation coefficient (from Grouplens) \rightarrow [-1, +1]

$$w(a,i) = \frac{\sum_{j} (v_{a,j} - \overline{v}_a)(v_{i,j} - \overline{v}_i)}{\sqrt{\sum_{j} (v_{a,j} - \overline{v}_a)^2 \sum_{j} (v_{i,j} - \overline{v}_i)^2}}$$

▶ Cosine similarity (from IR) \rightarrow [0, I]

$$w(a,i) = \sum_{j} \frac{v_{a,j}}{\sqrt{\sum_{k \in I_a} v_{a,k}^2}} \frac{v_{i,j}}{\sqrt{\sum_{k \in I_i} v_{i,k}^2}}$$

How to calculate r_{13} ?

- $ightharpoonup r_{13}$ = ranking for user I and item 3 without normalization
- $r_{13} = \alpha * (r_{11} * sim(I_1, I_3) + r_{12} * sim(I_2, I_3) + r_{14} * sim(I_4, I_3) + r_{15} * sim(I_5, I_3))$
- Mhere α is a normalization factor, which is $\frac{1}{\sum sim(Ii,Ij)}$

Generalization (without normalization)

- ▶ User based: $r_{ij} = \frac{\sum_{k} r_{ik} * sim(Ui,Uk)}{\sum_{k} sim(U_i,Uk)}$, $k \in similar \ User$
- ▶ Item based: $r_{ij} = \frac{\sum_{k} r_{kj} * sim(I_{j}, I_{k})}{\sum_{k} sim(I_{j}, I_{k})}$, $k \in similar\ Item$
- Rating matrix is almost stable
 - → pre-calculate all similarity (off line calculation).
 - Between Items for Item based
 - Between Users for User based

Offline computation: Online Recommendation

For Item-based recommendation

- I. Offline Computation (each night? Each week? Each month?)
 - builds a similar-items table which is extremely time intensive, O(N2M)
 - ▶ M is the number of customers ± 10 millions
 - N is the number of items ± 1 millions
 - In practice, it's closer to O(NM), as most customers have very few purchases
 - Sampling customers can also reduce runtime even further with little reduction in quality.
- Online Recommendation:
 - Given a similar-items table, the algorithm
 - finds items similar to each of the user's purchases and ratings,
 - aggregates those items, and then
 - recommends the most popular or correlated items.
- For User based, exchange Item and User
 - Item similarity is more stable than User similarity
- M >> N
- \rightarrow O(N2M) << O(M2N)
- → Item based is more efficient
- → chosen by Amazon / Youtube

User-based or Item-based Approach

PRO

- Few modeling assumptions
- Few tuning parameters to learn
- \rightarrow Easy to explain to users \rightarrow linked recommendation
 - Dear Amazon.com Customer, We've noticed that customers who have purchased or rated How Does the Show Go On: An Introduction to the Theater by Thomas Schumacher have also purchased Princess Protection Program #1: A Royal Makeover (Disney Early Readers).

CONS

- \blacktriangleright Computationally expensive, O(M²N) for User based in the worst case, where
 - ▶ M is the number of customers ± 10 millions
 - N is the number of items ± 1 millions
- Dimensionality reduction can increase the performance,
 - ▶ BUT, also reduce the quality of the recommendation
- For very large data sets
 - ▶ the algorithm encounters severe performance and scaling issues

Work on scalability: Cluster Models

Approach

- Divide the customer base into many segments and treat the task as a classification problem
- Assign the user to the segment containing the most similar customers
- Uses the purchases and ratings of the customers in the segment to generate recommendations
- Cluster models have better online scalability and performance than collaborative filtering because they compare the user to a controlled number of segments rather than the entire customer base.

Problems

- Quality of the recommendation is low
- The recommendations are less relevant because the similar customers that the cluster models find are not the most similar customers
- To improve quality, it needs online segmentation, which is almost as expensive as finding similar customers using collaborative filtering

Comparative results:

- The MovieLens dataset contains
 - 1 million ratings
 - 6,040 users
 - 3,900 movies.
- The best overall results are reached by the item-by-item based approach. It needs 170 seconds to construct the model and 3 seconds to predict 100,000 ratings.

	User Based	Model Based	Item Based
model construction time (sec.)	730	254	170
prediction time (sec.)	31	1	3
MAE	0.6688	0.6736	0.6382

Table from: Candillier, L., Meyer, F., & Boull'e Marc. (2007). Comparing state-of-the-art collaborative filtering systems

Personalized recommendation Collaborative filtering

Model based

Model-based collaborative filtering

- Find patterns based on training data, and these are used to make predictions for real data
- Extract some information from dataset, and use that as a "model" to make recommendations without having to use complete dataset every time

Advantage

- Handle sparsity better than memory-based ones
- Scalable with large dataset
- Improve prediction speed

Disadvantage

- Expensive model building
- Can lose useful information due to reduction models

Latent based recommendation

- Models with latent classes of items and users
 - Individual items and users are assigned to either a single class or a mixture of classes
- Could be implemented by
 - Latent Factor Models
 - Items and users described by unobserved factors
 - Matrix factorization or SVD decomposition
 - Probabilistic latent semantic analysis (PLSA)
 - Neural networks

Matrix factorization

- ▶ Item and users are associated with a factor vector
 - Dot product captures the user's estimated interest in the item
 - $\hat{r}_{ui} = ViTU_u$

Challenge: How to compute a mapping of users and items to factor vectors?

Matrix factorization Leaning algorithms

Stochatic gradient descent

- Calculation of the prediction error
 - ullet Error = actual rating predicted rating: $e_{ui} = rui ViTU_u$
- Modification of parameters relative to prediction error
 - $V_i \leftarrow Vi + \gamma(euiUu \lambda Vi)$
 - $U_u \leftarrow U_u + \gamma (euiVi \lambda U_u)$
- **b** By magnitude proportional to γ
- In the opposite direction of the gradient

Main problem

Fix the size of the factor vectors

Matrix factorization

[[3.16 | 1.92 | 2.08 | 1.28] [3.63 | 2.22 | 2.39 | 1.48] [3.95 | 2.4 | 2.6 | 1.6]

[3.16 1.92 2.08 1.28]]

Reconstructed matrix

Matrix factorization by neural network

Embedding

- Transform a « label » to a « vector »
 - ▶ Until now : Label → integer → OneHotVector
 - OneHotVector
 - Very sparse: a lot of zeros, only one one
 - No semantic: Sim(II, I2) = 0 if II != I2
- Vector embedding
 - Integrating "semantics » into vectors
 - More compact vector
 - ▶ Size << vocabulary size</p>
 - For example, in NLP
 - If two words have a similar meaning
 - They will have a similar vector

In Keras, use Embedding layer

model.summary()

Model: "sequential"		
Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 50, 25)	1800075
flatten (Flatten)	(None, 1250)	0
dense (Dense)	(None, 128)	160128
dense_1 (Dense)	(None, 4)	516

Matrix factorization with Neural Network

GMF (Generalized Matrix Factorization).

Neural collaborative filtering (NCF) More detail on the lab

The non-linearity of the MLP allows the estimation of complex interactions between users and items

Neural collaborative filtering (NeuMF) More detail on the lab

In order to introduce an additional non-linearity, we can use both approaches : one MLP and one GMF (Generalized Matrix Factorization).

Evaluating recommender systems

How to evaluate RS?

Test with real users

- A/B tests
- Example measures: sales increase, click through rates

- Controlled experiments
- Example measures: satisfaction with the system (questionnaires)

Offline experiments

- Based on historical data
- ▶ Example measures: prediction accuracy, coverage

Data set splitting

- We are exactly in the case of the times series.
- We can't share the train/test in a random way.
- <u>sklearn.model_selection</u>.TimeSeriesSplit

Traditional accuracy metrics

- Prediction accuracy metrics include the mean absolute error (MAE), root mean square error (RMSE).
 - Use in regression task
 - Focus on comparing the actual vs predicted ratings
 - Easy to calculate and easy to use
 - Measure the difference between ground truth and prediction

Record

- MAE: Mean absolute error
 - sklearn.metrics.mean_absolute_error
- MSE: Mean square error
 - sklearn.metrics.mean_squared_error
- RMSE: Root MSE
 - √MSE

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

New metrics are needed

- When we search for a document, on google for example:
 - Not interested in the exact score of a document
 - Evaluated by MAE, RMSE
 - More interested in its place: first page, second page, second page
 - Evaluated by MAP@K, MAR@K
 - ☐ MAP = Mean Average Precision
 - □ MAR = Mean Average Recall
- ho Recommender system precision = $\frac{\text{# of our recommendations that are relevant}}{\text{# of items we recommended}}$
- $Recall \ system \ precision = \frac{\# \ of \ our \ recommendations \ that \ are \ relevant}{\# \ of \ all \ the \ possible \ relevant \ items}$
- Products: 3 positives and 7 negatives for the user
- 5 products recommended but only 2 are positive for the user
- Precision = 2/5 (2 positive products out of a selection of 5)
- Recall = 2/3 (2 positive products out of 3 positive)

Precision / Recall

Based on the full list of items / order have no importance

Precision

Of all positive predictions, how many are really positive?

Recall

Of all real positive cases, how many are predicted positive?

		Real Class	
		Positive	Negative
Predicted Class	Positive	TP	FP
	Negative	FN	TN

		Real Class	
		Positive	Negative
Predicted Class	Positive	TP	FP
	Negative	FN	TN

Zeya, 2021

Precision and Recall at Cutoff k

Based on the partial list of items / order have an importance

Rank
RecommendedProduct
RecommendedResult1Credit cardCorrect positive2Christmas FundFalse positive3Debit CardFalse positive4Auto loanFalse positive5HELOCCorrect Positive

Correct positive

Faise positive

Algorithm Outputs...

College Fund

Personal

P(k=6) = 3/6

Average Precision at Cutoff k

m is the total number of relevant items at rank k

$$AP@k = \frac{1}{m} \sum_{n=1}^{k} (P(k) \ if \ k^{th} item \ was \ relevant)$$

$$AP@k = \frac{1}{m} \sum_{n=1}^{k} P(k) rel(k)$$

$$AP@6 = \frac{1}{m} \left(P(1) + P(5) + P(6) \right)$$

$$AP@6 = \frac{1}{3} \left(1 + 2/5 + 3/6 \right)$$

$$AP@6 = \frac{1}{3} (1 + 2/5 + 3/6)$$

Algorithm Outputs...

Algorithm Outputs...

	капк	Recommended	Result
	1	Credit card	Correct positive
P(k=3) = 1/3	2	Christmas Fund	False positive
	3	Debit Card	False positive
	4	Auto loan	False positive
	5	HELOC	Correct Positive
	6	College Fund	Correct positive
	7	Personal loan	False positive

Rank	Product Recommended	Result
1	Credit card	Correct positive
2	Christmas Fund	False positive
3	Debit Card	False positive
4	Auto Ioan	False positive
5	HELOC	Correct Positive
6	College Fund	Correct positive
7	Personal	se positive

P(k=6) = 3/6

Mean Average Precision at Cutoff k

$$MAP@k = \frac{1}{|U|} \sum_{u=1}^{|U|} (AP@k)_{u}$$

$$MAP@k = \frac{1}{|U|} \sum_{u=1}^{|U|} \frac{1}{m} \sum_{n=1}^{k} P_{u}(k) rel_{u}(k)$$

	Algor	ithin Outputs	
	Rank	Product Recommended	Result
	1	Credit card	Correct positive
P(k=3) = 1/3	2	Christmas Fund	False positive
	3	Debit Card	False positive
	4	Auto Ioan	False positive
	5	HELOC	Correct Positive
	6	College Fund	Correct positive
	7	Personal loan	False positive

Algorithm Outputs

Rank
RecommendedProduct
RecommendedResult1Credit cardCorrect positive2Christmas FundFalse positive3Debit CardFalse positive4Auto loanFalse positive5HELOCCorrect Positive6College FundCorrect positive

Faise positive

Algorithm Outputs...

Personal

P(k=6) = 3/6

Mean Average Precision at Cutoff k

MAP Pros and Cons

Advantages of MAP

- A value that represents the area under the precision-recall curve
- Manages the ranking of recommended lists of items
- ▶ Gives more weight to errors that occur at the beginning of lists
- Suitable if relevant/not relevant.

Disadvantages of MAP

Not suitable if rating (e.g. 1 to 5)

Summary

- Very active field
- ▶ A large number of machine learning approaches
 - Effective if you can group users or products
 - Effective if part of the calculation is done offline
- Possibility to use deep models
 - ▶ Then the question arises as to when to re-train them
- Need for specific metrics
 - ► For example MAP@k

