行列式的几何解释

张彪

天津师范大学 数学科学学院 zhang@tjnu.edu.cn

平行四边形的面积与二阶行列式

对任意
$$\overrightarrow{OA} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
, $\overrightarrow{OB} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ 将 OB 绕 O 沿顺时针方向旋转直角得到有向线段

$$OB'$$
. $\bigcirc \overrightarrow{OB'} = \begin{pmatrix} b_2 \\ -b_1 \end{pmatrix}$.

考虑 $\Delta = a_1b_2 - a_2b_1$, 它就是 $\overrightarrow{OA} \cdot \overrightarrow{OB}'$.

由于
$$|OB'| = |OB|, \angle BOB' = -\frac{\pi}{2}$$
, 于是

$$\Delta = \overrightarrow{OA} \cdot \overrightarrow{OB'} = |OA| |OB'| \cos \angle AOB'$$
$$= |OA| |OB| \cos \left(\angle AOB - \frac{\pi}{2}\right)$$
$$= |OA| |OB| \sin \angle AOB$$

平行四边形的面积与二阶行列式

对任意
$$\overrightarrow{OA} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
, $\overrightarrow{OB} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ 将 OB 绕 O 沿顺时针方向旋转直角得到有向线段

$$OB'$$
. 则 $\overrightarrow{OB'} = \begin{pmatrix} b_2 \\ -b_1 \end{pmatrix}$.

考虑 $\Delta = a_1b_2 - a_2b_1$, 它就是 $\overrightarrow{OA} \cdot \overrightarrow{OB}'$.

由于
$$|OB'| = |OB|, \angle BOB' = -\frac{\pi}{2}$$
,于是

$$\Delta = \overrightarrow{OA} \cdot \overrightarrow{OB'} = |OA| |OB'| \cos \angle AOB'$$
$$= |OA| |OB| \cos \left(\angle AOB - \frac{\pi}{2}\right)$$

$$= |OA||OB|\sin \angle AOB$$

- △ 的绝对值就是以 OA, OB 为一组邻边的平 行四边形 OAPB 的面积 SOAPB
- △ 的符号就是
 sin ∠AOB 的符号

对任意
$$\overrightarrow{OA} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
, $\overrightarrow{OB} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, 定义
$$\det(\overrightarrow{OA}, \overrightarrow{OB}) = |OA||OB|\sin \angle AOB$$

也记作

$$\det \left(\begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \end{array} \right) \; \overrightarrow{\mathfrak{g}} \; \left| \begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \end{array} \right|$$

称为二阶行列式.

将它理解为平行四边形 OAPB 的有向面积, 取值既可以为正实数, 也可以取负实数或零. 它具有如下基本性质:

性质 1

$$\det(x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2, y_1\boldsymbol{\beta}_1 + y_2\boldsymbol{\beta}_2) = \sum_{i,j=1}^2 x_i y_j \det(\boldsymbol{\alpha}_i, \boldsymbol{\beta}_j).$$

也就是说:可以将 $\det(\alpha, \beta)$ 看作向量 α 与 β 的某种乘积, 按乘法对于加法的分配律和与数乘的结合律展开.

性质 2

$$det(\boldsymbol{\alpha}, \boldsymbol{\alpha}) = 0, \quad det(\boldsymbol{\alpha}, \boldsymbol{\beta}) = -det(\boldsymbol{\beta}, \boldsymbol{\alpha}).$$

也就是说: 两条棱重合, 面积为 0; 两条棱互相交换位置, 有向面积变号 (因为夹角 $\langle \alpha, \beta \rangle$ 的正弦变号: $\sin \langle \alpha, \beta \rangle = -\sin \langle \beta, \alpha \rangle$).

性质 3

$$\det(\mathbf{e}_1, \mathbf{e}_2) = 1$$
, 其中 $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 分别是 x 轴、 y 轴正方向的单位向量.

前面已经通过 $\overrightarrow{OA} \cdot \overrightarrow{OB'}$ 计算出

$$\det(\overrightarrow{OA}, \overrightarrow{OB}) = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1.$$

为了推广到任意 n 阶行列式,我们反过来利用上面的三条基本性质来求二阶行列式:

$$\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \det(a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2, b_1 \mathbf{e}_1 + b_2 \mathbf{e}_2)$$

$$= a_1 b_1 \det(\mathbf{e}_1, \mathbf{e}_1) + a_1 b_2 \det(\mathbf{e}_1, \mathbf{e}_2)$$

$$+ a_2 b_1 \det(\mathbf{e}_2, \mathbf{e}_1) + a_2 b_2 \det(\mathbf{e}_2, \mathbf{e}_2)$$

$$= a_1 b_1 \times 0 + a_1 b_2 \times 1 + a_2 b_1 \times (-1) + a_2 b_2 \times 0$$

$$= a_1 b_2 - a_2 b_1$$

显然, 有向面积 $\det(\overrightarrow{OA}, \overrightarrow{OB}) = 0 \Leftrightarrow OA, OB$ 共线. 反过来, $\overrightarrow{OA}, \overrightarrow{OB}$ 组成平面 \mathbb{R}^2 上的一组基 $\Leftrightarrow \det(\overrightarrow{OA}, \overrightarrow{OB}) \neq 0$.

平行六面体的体积与三阶行列式

与二阶行列式类似,对于 3 维几何空间 \mathbb{R}^3 中的任意 3 个向量

$$oldsymbol{lpha} = \overrightarrow{OA} = \left(egin{array}{c} a_1 \ a_2 \ a_3 \end{array}
ight), \, oldsymbol{eta} = \overrightarrow{OB} = \left(egin{array}{c} b_1 \ b_2 \ b_3 \end{array}
ight), \, oldsymbol{\gamma} = \overrightarrow{OC} = \left(egin{array}{c} c_1 \ c_2 \ c_3 \end{array}
ight),$$

它们的混合积

$$\boldsymbol{\alpha} \cdot (\boldsymbol{\beta} \times \boldsymbol{\gamma}) = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

$$= \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

就是以 OA, OB, OC 为三条棱的平行六面体的有向体积, 我们将它记为

$$\det(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}),$$

称为三阶行列式.

它也具有 3 条基本性质:

性质 1

可以看作 α, β, γ 的某种乘积, 按照乘法对于加法的分配律及与数乘的分配律展开:

$$\det\left(\sum_{i} x_{i} \boldsymbol{\alpha}_{i}, \sum_{j} y_{j} \boldsymbol{\beta}_{j}, \sum_{k} z_{k} \boldsymbol{\gamma}_{k}\right) = \sum_{i,j,k} x_{i} y_{j} z_{k} \det\left(\boldsymbol{\alpha}_{i}, \boldsymbol{\beta}_{j}, \boldsymbol{\gamma}_{k}\right)$$

性质 2

- 如果三个向量 α, β, γ 中有两个相等,则平行六面体退化为平面图形,有向体积 $\det(\alpha, \beta, \gamma) = 0$.
- 如果将其中任何两个互相交换位置,则有向体积 $\det(\alpha,\beta,\gamma)$ 变号.

性质 3

以 \mathbb{R}^3 的自然基向量 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ 为梭的正方体体积 $\det(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) = 1$.

对于
$$n$$
 个向量 $\boldsymbol{\alpha}_j = \left(\begin{array}{c} a_{1j} \\ a_{2j} \\ \vdots \\ a_n \end{array} \right) (1 \leqslant j \leqslant n)$ 也可以类似定义 n 阶行列式

$$\Delta = \det \left(oldsymbol{lpha}_1, oldsymbol{lpha}_2, \cdots, oldsymbol{lpha}_n
ight) = \left| egin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}
ight|$$

看作以 $oldsymbol{lpha}_1, oldsymbol{lpha}_2, \cdots, oldsymbol{lpha}_n$ 为棱的 n 维体积, 满足下面的基本性质:

性质 1

 $\det\left(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\right)$ 可以看作向量 $\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}$ 的某种乘积, 可以按加法对乘法的分配律和与数乘的结合律进行展开. 即对 $1\leqslant i\leqslant n$ $\det\left(\cdots,\boldsymbol{\alpha}_{i-1},x\boldsymbol{\alpha}_{i}+y\boldsymbol{\xi}_{i},\boldsymbol{\alpha}_{i+1},\cdots\right)=x\det\left(\cdots,\boldsymbol{\alpha}_{i-1},\boldsymbol{\alpha}_{i},\boldsymbol{\alpha}_{i+1},\cdots\right)+y\det\left(\cdots,\boldsymbol{\alpha}_{i-1},\boldsymbol{\xi}_{i},\boldsymbol{\alpha}_{i+1},\cdots\right).$

n 阶行列式的引入

性质 2

- 如果存在 $1 \le i < j \le n$ 使 $\alpha_i = \alpha_j$, 则 $\det(\alpha_1, \alpha_2, \dots, \alpha_n) = 0$.
- 如果将 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 中的某两个向量互换位置,则 $\det\left(\alpha_1,\alpha_2,\cdots,\alpha_n\right)$ 变为原来值的相反数. 即

$$\det\left(\cdots,\boldsymbol{\alpha}_{i},\cdots,\boldsymbol{\alpha}_{j},\cdots\right)=-\det\left(\cdots,\boldsymbol{\alpha}_{j},\cdots,\boldsymbol{\alpha}_{i},\cdots\right).$$

性质 3

 \mathbb{R}^n 上的自然基 e_1, e_2, \cdots, e_n 决定的"n 维体积"

$$\det\left(\boldsymbol{e}_{1},\boldsymbol{e}_{2},\cdots,\boldsymbol{e}_{n}\right)=1.$$

将每个 $\alpha_j(1 \leq j \leq n)$ 唯一地写成 e_1, \dots, e_n 的线性组合

$$\alpha_j = a_{1j}\mathbf{e}_1 + a_{2j}\mathbf{e}_2 + \dots + a_{nj}\mathbf{e}_n = \sum_{i=1}^n a_{ij}\mathbf{e}_i$$

则按以上基本性质 1 展开得

$$\Delta = \det (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n)$$

$$= \det \left(\sum_{i_1=1}^n a_{i_1} \boldsymbol{e}_{i_1}, \sum_{i_2=1}^n a_{i_22} \boldsymbol{e}_{i_2}, \cdots, \sum_{i_n=1}^n a_{i_nn} \boldsymbol{e}_{i_n} \right)$$

$$= \sum_{1 \leq i_1, i_2, \cdots, i_n \leq n} a_{i_1, 1} a_{i_2, 2} \cdots a_{i_nn} \det (\boldsymbol{e}_{i_1}, \boldsymbol{e}_{i_2}, \cdots, \boldsymbol{e}_{i_n})$$

每一组 i_1, i_2, \dots, i_n 决定一项. 如有 i_1, i_2, \dots, i_n 中有某两个数相同, 由行列式基本性质 2 有

$$\det\left(e_{i_1},e_{i_2},\cdots,e_{i_n}\right)=0,$$

这一项就可以从求和的式子中去掉.

• 因此只须考虑 i_1, i_2, \dots, i_n 两两不同的项, 此时 i_1, i_2, \dots, i_n 是 $1, 2, 3, \dots, n$ 的一个排列, 记作 $(i_1 i_2 \dots i_n)$. 这样的排列共有 $n \cdot 1$ 于是

$$\Delta = \sum_{(i_1 i_2 \cdots i_n)} a_{i_1 1} a_{i_2 2} \cdots a_{i_n n} \det (\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \cdots, \mathbf{e}_{i_n})$$

其中的 \sum 是对所有的排列 $(i_1 i_2 \cdots i_n)$ 求和.

• 只需再对每个排列 $(i_1 i_2 \cdots i_n)$ 求行列式 $\det(\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \cdots, \mathbf{e}_{i_n})$.

• 因此只须考虑 i_1, i_2, \cdots, i_n 两两不同的项, 此时 i_1, i_2, \cdots, i_n 是 $1, 2, 3, \cdots, n$ 的一个排列, 记作 $(i_1 i_2 \cdots i_n)$. 这样的排列共有 n!个. 于是

$$\Delta = \sum_{(i_1 i_2 \cdots i_n)} a_{i_1 1} a_{i_2 2} \cdots a_{i_n n} \det (\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \cdots, \mathbf{e}_{i_n})$$

其中的 \sum 是对所有的排列 $(i_1 i_2 \cdots i_n)$ 求和.

- 只需再对每个排列 $(i_1 i_2 \cdots i_n)$ 求行列式 $\det(\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \cdots, \mathbf{e}_{i_n})$.
- 对每个排列 $(i_1 i_2 \cdots i_n)$, 如果将其中某两个数 i_j , i_k 互换位置、其余的 n-2 个数不变, 就称为进行了一次对换, 此时 $\det(e_{i_1}, e_{i_2}, \cdots, e_{i_n})$ 中的 e_{i_j}, e_{i_n} 相应地互换了位置. 行列式的值变成原来值的 -1 倍.
- 进行若干次对换可以将排列 $(i_1 i_2 \cdots i_n)$ 变成 $(12 \cdots n)$, 而原来的 $\det (\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \cdots, \mathbf{e}_{i_n})$ 也被乘上了若下个 -1 变成 $\det (\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n) = 1$.

如果由 $(i_1 i_2 \cdots i_n)$ 变成 $(12 \cdots n)$ 需要经过 s 次对换, 则 $(-1)^s \det (\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \cdots, \mathbf{e}_{i_n}) = 1$, $\det (\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \cdots, \mathbf{e}_{i_n}) = (-1)^s$.

- 如果 s 是偶数, 就称 $(i_1 i_2 \cdots i_n)$ 是偶排列, 记 $\operatorname{sgn}(i_1 i_2 \cdots i_n) = 1$, 此时 $\det(e_{i_1}, e_{i_2}, \cdots, e_{i_l}) = 1$;
- 如果 s 是奇数, 就称 $(i_1 i_2 \cdots i_n)$ 为奇排列, 记 $\operatorname{sgn}(i_1 i_2 \cdots i_n) = -1$, 此时 $\det(e_{i_1}, e_{i_2}, \cdots, e_{i_n}) = -1$.

于是

$$\Delta = \sum_{(i_1 i_2 \cdots i_n)} \operatorname{sgn} (i_1 i_2 \cdots i_n) a_{i_1 1} a_{i_2 2} \cdots a_{i_n}$$

可以作为 n 阶行列式的定义.