Bond Portfolio Optimization Case Study

Jack Dean, Charles Dotson, Rodrigo Petricioli

A case study using real world data to formulate optimized dedication, immunization, and other bond portfolios.

CONTENTS

Contents

1		Structure												3
	1.1 I	riving Term Structi	ıre		 	 				 				. 3
	1	.1 Data and Tran	sformations		 	 				 				. 3
	1	.2 Bootstrapping			 	 				 				. 3
2	Data													7
3	Dedic	tion Portfolio												11
•		ompt												
		athematical Formula												
		de												
		st and Composition												
		•			 	 • •	• •	• •	•	 	• •	• •	•	
4		vity Analysis												15
		rm Structures (Actu	_											
	4.3 I	plied Rates			 	 		• •	•	 			•	. 17
5		ization Portfolio												18
		athematical Formula	ition		 	 				 				. 18
	5.2 ($\det \ldots \ldots$. 19
	5.3 F	rtfolio Allocation ar	nd Value .		 	 			•	 			•	. 21
6		tion / Immunizat												22
	6.1 N	athematical Formula	ition		 	 				 				. 22
	6.2	de			 	 				 				. 23
	6.3 F	rtfolio Allocation.			 	 				 				. 23
7	Dedic	tion Portfolio wit	h Short S	elling										25
	7.1 F	ompt			 	 				 				. 25
	7.2 V	thout Transaction 1	Limits		 	 				 				. 25
	7	.1 Mathematical l	Formulation	١	 	 				 				. 25
	7	.2 Code			 	 				 				. 26
	7	.3 Portfolio Alloca	ation		 	 				 				. 26
	7	.4 Discussion			 	 				 				. 28
	7.3 V	th Transaction Lim	its \dots		 	 				 				. 28
	7	.1 Mathematical l	Formulation		 	 				 				. 28
	7	.2 Code			 	 				 				. 28
	7	.3 Portfolio Alloca	ation and V	alue .	 	 				 				. 29
	7	0.4 Discussion			 	 				 				. 30
8	Immi	ization and Shor	t Selling											30
		athematical Formula	_		 	 				 				
		de												
		rtfolio Allocation.												
		sscussion												

```
[32]: # Hide
      111
      Package Imports
      import pandas as pd
      import numpy as np
      import pulp
      from pulp import *
      import datetime
      import matplotlib.pyplot as plt
      import FinOpsCodeDeck as finops
      from IPython.display import Markdown as md
```

Term Structure 1

Determine the current term structure of treasury rates (see textbook Section 3.4 or other resources that you can find), and find the present value, duration, and convexity of the stream of liabilities. Please explain the main steps followed in your calculations. Use real world data.

1.1 **Deriving Term Structure**

In this section, we describe our derivation of the term structure of interest rates. Specifically, we outline our data gathering and transformation techniques and then move to explaining bootstrapping.

1.1.1 Data and Transformations

We begin by pulling current US Treasury issued Bonds and Notes from The Wall Street Journal. We transform this data so we can understand each bonds market. Specifically, we create a bid and ask price for each bond called 'px bid' or 'px ask'. We also take the maturity of the bond less today's date to get a time to maturity field called 'ttm'. This time to maturity is a float datatype which represents the years to maturity according to an actual/365 day calendar, the standard calendar of US Treasury Bonds. For sake of simplicity, we use this calendar for the notes as well despite these operating on a 30/360 calendar. Having completed these transformations, we can move to bootstrapping the curve.

1.1.2 Bootstrapping

Bootstrapping is a technique used to find continuous annualized interest rates across all time to maturities. Due to the nature of fixed income securities paying intermediate coupons, bootstrapping is necessary to value a cashflow from one specific point in time to any other. To better understand this, consider the following example.

Example

Let the current market only consist of 2 risk-free bonds that were issued today:

^{* 1-}year zero-coupon bond trading at 99c on the dollar

* 2-year 1.5% annual coupon bond trading at par To bootstrap the curve, we start with the 1-year zero.

$$99 = 100\exp\{-r\} \implies r = -\log(0.99) \approx 0.01$$

We then use this rate in our calculation with the coupon bond to find the 2-year rate.

$$100 = 1.5\exp\{-0.01(1)\} + 101.5\exp\{-2r\} \implies r \approx 0.0145$$

In this example, we have found the term structure to be given by:

Time to Maturity	Rate
1	1.00%
2	1.45%

So, doing this over all cashflows of all bonds in our data will allow us to derive a term structure across all maturities. This derived term structure will drive our analysis.

NOTE: For sake of simplicity, we round all time to maturity to the nearest hundredth of a year. From a bond trading perspective, this is essentially every 2.5 trading days representing 1 time period. We do this for simplicity in later sections as not all dates marry exactly together. In the event that a particular liability does not have a term structure rate associated with it, we use the closest prior known date. Additionally, in the event there are multiple calculated yields for a particular time to maturity, we take the arithmetic average of them for that time.

```
Bootstrap yield curve

---
begins with zero-coupon bonds to payout (ttm < 0.5 yrs) & calculates yield
moves to coupon bonds and uses calculated yields to bootstrap further
sorts all bonds into data frame indexed by ttm (by 100th of a year)
NOTE: Averages yields for the same time period
NOTE: assumes yield of period prior if yield for desired period does not exist

'''
mats = []
```

```
round_to = 2
for bond_tenor in term_structure_df[term_structure_df['ttm'] <= 0.5].index:</pre>
    bond = term_structure_df.loc[bond_tenor]
    cpn = bond['COUPON']/2
   ttm = bond['ttm']
   px = bond['px_ask']
   mats.append([np.round(ttm,round_to),np.log((100 + cpn) / bond['px_ask']) / bond['ttm']])
rates = pd.DataFrame(mats, columns=['ttm','rate']).set_index('ttm').groupby('ttm').mean()
'''longer term rates'''
for bond_tenor in term_structure_df[term_structure_df['ttm']>=0.5].index:
    bond = term_structure_df.loc[bond_tenor]
    px = bond['px ask']
   ttm = bond['ttm']
   cpn = bond['COUPON']/2
   pmts = int(np.ceil(ttm * 2))
    cfs = [cpn if i+1<pmts else 100 + cpn for i in range(pmts)]</pre>
    cfs_idx = [np.round(ttm-i*0.5, round_to) for i in reversed(range(pmts))]
   known_rates = [rates[:cfs_idx[i]].iloc[-1,0] for i in range(pmts-1)]
    val = px - sum([cpn * np.exp((-1) * known_rates[i] * cfs_idx[i]) for i in range(pmts-1)])
   yld = (-1) * (np.log(val / (100+cpn)) / cfs_idx[pmts-1])
    add_df = pd.DataFrame([np.round(ttm, round_to), yld], index=['ttm','rate']).transpose().
 ⇔set_index('ttm')
    rates = pd.concat([rates,add_df],ignore_index=False)
    rates = rates.groupby('ttm').mean()
plot yield curve
```

[35]: <matplotlib.legend.Legend at 0x177dc8ac610>


```
Liability Stream Analysis

---

Calculates time to maturity (in years) of each obligation

Calculates npv, duration, and convexity of liability stream

Prints stats to markdown for viewing

'''

data_prompt['ttm'] = np.round((data_prompt.index - datetime.datetime.now()) / datetime.

$\timedelta(days=365)$, round_to)

r = [rates[:ttm].iloc[-1,0] for ttm in data_prompt['ttm']]

data_prompt['rates'] = r

npv = sum([data_prompt.iloc[i,0]*np.exp((-1)*data_prompt.iloc[i,1]*data_prompt.iloc[i,2]) for iu

$\timesin n \text{ range}(len(data_prompt))])

dur = sum([data_prompt.iloc[i,0]*data_prompt.iloc[i,1]*np.exp((-1) * (data_prompt.

$\timesiloc[i,1]+1)*data_prompt.iloc[i,2]) for i in range(len(data_prompt))])

con = sum([data_prompt.iloc[i,0]*data_prompt.iloc[i,1]*(data_prompt.iloc[i,1]+1)*np.

$\timesexp((-1)*(data_prompt.iloc[i,1]+2)*data_prompt.iloc[i,2]) for i in range(len(data_prompt))])
```

```
'''.format(npv,dur/npv,con/npv))
```

 \cite{MM} The Net Present Value of the Liabilities is \$117.66 MM

The Macauley Duration of the Liability stream is 3.83 years

The Convexity of the Liability stream is 23.31

2 Data

Identify at least 30 fixed-income assets that are suitable to construct a dedicated bond portfolio for the municipality liabilities that you have been given. Use assets that are considered risk-free; for example, US government non-callable treasury bonds, treasury bills, or treasury notes. Display in an appropriate table the main characteristics of the bonds you choose. Namely, prices, coupon rates, maturity dates, face value).

[40]: # Hide
md('''
{}

'''.format(almost_dis.to_markdown(colalign = alignment)))

[40]:

Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield
T 1.750	100.01	-	T 1.625	99.19	2.056	T 2.625	99.164	2.799	T 5.250	113.192	2.935
05/15/22	-	1.9931	04/30/23			04/15/25			11/15/28		
T 2.125	100.012	-	T 2.750	100.206	2.061	T = 0.375	93.04	2.815	T 1.500	91.112	2.964
05/15/22	6	2.5447	04/30/23			04/30/25			11/30/28		
T = 0.000	99.352	0.657	T 0.125	98.03	2.066	T 2.875	100.066	2.8	T 1.375	90.194	2.946
05/17/22			05/15/23			04/30/25			12/31/28		
T 0.000	99.34	0.669	T 1.750	99.22	2.068	T 2.125	98.016	2.806	T 1.750	92.234	2.951
05/19/22			05/15/23			05/15/25			01/31/29		
T 0.000	99.32	0.69	T 0.125	97.306	2.115	T 2.750	99.282	2.791	T 2.625	98.01	2.948
05/24/22			05/31/23			05/15/25			02/15/29		
T 0.000	99.322 (0.687	T 1.625	99.156	2.12	T 0.250	92.186	2.811	T 5.250	114.03	2.933
05/26/22			05/31/23			05/31/25			02/15/29		
T 0.125	99.312 (0.6946	T 2.750	100.204	2.124	T 2.875	100.066	2.802	T 1.875	93.152	2.942
05/31/22			05/31/23			05/31/25			02/28/29		
T 1.750	100.014 (0.608	T 0.250	97.316	2.136	T 0.250	92.116	2.819	T 2.375	96.14	2.951
05/31/22			06/15/23			06/30/25			03/31/29		
T 1.875	100.016 (0.544	T 0.125	97.23	2.19	T 2.750	99.266	2.805	T 2.875	99.172	2.949
05/31/22			06/30/23			06/30/25			04/30/29		
T 0.000	99.307 (0.702	T 1.375	99.034	2.181	T 0.250	92.046	2.826	T 2.375	96.134	2.945
05/31/22			06/30/23			07/31/25			05/15/29		
T 0.000	99.327 (0.682	T 2.625	100.156	2.178	T 2.875	100.06	2.813	T 1.625	91.192	2.918
06/02/22			06/30/23			07/31/25			08/15/29		
T 0.000	99.352 (0.657	T 0.125	97.19	2.227	T 2.000	97.136	2.833	T 6.125	120.284	2.908
06/07/22			07/15/23			08/15/25			08/15/29		
T 0.000	99.347 (0.662	T 0.125	97.144	2.271	T 6.875	112.206	2.778	T 1.750	92.076	2.909
06/09/22			07/31/23			08/15/25			11/15/29		
T 0.000	99.35 (0.659	T 1.250	98.262	2.243	T 0.250	91.29	2.844	T 1.500	90.076	2.915
06/14/22			07/31/23			08/31/25			02/15/30		
T 1.750	100.03	0.608	T 2.750	100.19	2.248	T 2.750	99.23	2.839	T 0.625	83.23	2.923
06/15/22			07/31/23			08/31/25			05/15/30		
T 0.000	99.372 (0.637	T 0.125	97.114	2.277	T 0.250	91.224	2.846	T 6.250	123.232	2.904
06/16/22			08/15/23			09/30/25			05/15/30		
T 0.000	99.342 (0.667	T 2.500	100.094	2.257	T 3.000	100.166	2.836	T 0.625	83.09	2.92
06/21/22			08/15/23			09/30/25			08/15/30		
T 0.000	99.307 (0.703	T 6.250	104.296	2.23	T 0.250	91.16	2.85	T 0.875	84.224	2.921
06/23/22			08/15/23			10/31/25			11/15/30		
T 0.000	99.275 (0.736	T 0.125	97.062	2.344	T 3.000	100.156	2.849	T 1.125	86.076	2.918
06/28/22			08/31/23			10/31/25			02/15/31		
T 0.125	99.294 (0.755	T 1.375	98.26	2.313	T 2.250	98.004	2.85	T 5.375	118.256	2.923
06/30/22			08/31/23			11/15/25			02/15/31		

Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield
T 1.750 06/30/22	100.04	0.74	T 2.750 08/31/23	100.176	2.31	T 0.375 11/30/25	91.224	2.855	T 1.625 05/15/31	89.25	2.925
T 2.125	100.052	0.799	T 0.125	97.04	2.33	T 2.875	100.026	2.849	T 1.250	86.162	2.925
06/30/22			09/15/23			11/30/25			08/15/31		
T 0.000	99.275	0.736	T 0.250	97.056	2.347	T 0.375	91.166	2.853	T 1.375	87.046	2.935
06/30/22	00.00	0 ===1	09/30/23	00.000	2 2 4 5	12/31/25	00.00	0.00=	11/15/31	01.00	2.024
$\begin{array}{c} T \ 0.000 \\ 07/05/22 \end{array}$	99.26	0.751	T 1.375	98.222	2.345	T 2.625	99.09	2.835	T 1.875	91.02	2.936
T 0.000	99.235	0.777	09/30/23 T 2.875	100.23	2 330	12/31/25 T 0.375	91.094	2.864	02/15/32 T 2.875	99.176	2.927
0.000 $07/07/22$	99.233	0.111	09/30/23	100.23	2.009	01/31/26	91.094	2.004	05/15/32	99.110	2.921
T 0.000	99.237	0.774	T 0.125	96.276	2.389	T 2.625	99.062	2.855	T 4.500	118.09	2.88
07/12/22			10/15/23			01/31/26			02/15/36		
T 0.000	99.222	0.789	T = 0.375	97.032	2.412	T 1.625	95.194	2.867	T 4.750	121.096	2.957
07/14/22			10/31/23			02/15/26			02/15/37		
T 1.750	100.052	0.756	T 1.625	98.286	2.399	T 6.000	111.052	2.84	T 5.000	124.052	2.989
07/15/22	00.01	0.000	10/31/23	100.01	0.410	02/15/26	01.10	0.00=	05/15/37	110.00	0.010
T 0.000	99.21	0.802	T 2.875	100.21	2.413	T 0.500	91.18	2.865	T 4.375	116.29	3.018
07/21/22 T 0.000	99.205	0.807	10/31/23 T 0.250	96.262	2 425	02/28/26 T 2.500	98.232	2.856	02/15/38 T 4.500	118.154	3 U33
0.000 $07/28/22$	99.200	0.607	10.230 $11/15/23$	90.202	2.420	02/28/26	90.232	2.650	05/15/38	110.194	5.055
T 0.125	99.27	0.871	T 2.750	100.156	2.413	T 0.750	92.092	2.867	T 3.500	105.026	3.108
07/31/22			11/15/23			03/31/26			02/15/39		
T 1.875	100.064	0.902	T = 0.500	97.01	2.475	T 2.250	97.24	2.867	T 4.250	115.006	3.106
07/31/22			11/30/23			03/31/26			05/15/39		
T 2.000	100.072	0.915	T 2.125	99.172	2.431	T 0.750	92.042	2.868	T 4.500	118.124	3.114
07/31/22			11/30/23			04/30/26			08/15/39		
T 0.000	99.085	0.93	T 2.875	100.202	2.454	T 2.375	98.062	2.861	T 4.375	116.14	3.146
08/04/22 T 0.000	99.055	0.96	11/30/23 T 0.125	96.126	2.46	04/30/26 T 1.625	95.094	2.870	11/15/39 T 4.625	190 014	9 1 4 9
0.000 $08/11/22$	99.055	0.90	10.125 $12/15/23$	90.120	2.40	05/15/26	95.094	2.019	02/15/40	120.014	5.145
T 1.500	100.04	0.999	T 0.750	97.07	2.508	T 0.750	91.292	2.884	T 1.125	70.18	3.309
08/15/22		0.000	12/31/23			05/31/26	0-1-0-		05/15/40	, , , , ,	0.000
$\stackrel{'}{\mathrm{T}}1.625$	100.05	0.999	$\stackrel{'}{{ m T}}2.250$	99.202	2.481	$T^{'}2.125$	97.05	2.875	$\stackrel{'}{\mathrm{T}}4.375$	116.1	3.178
08/15/22			12/31/23			05/31/26			05/15/40		
T 7.250	101.184	0.942	T 2.625	100.08	2.466	T 0.875	92.074	2.886	T 1.125	70.03	3.324
08/15/22			12/31/23	00040		06/30/26			08/15/40		
T 0.000	99.01	1.006	T 0.125	96.046	2.5	T 1.875	96.052	2.868	T 3.875	108.282	3.227
08/18/22 T 0.000	99.01	1.007	01/15/24 T 0.875	97.072	2 5/12	06/30/26 T 0.625	91.024	2.891	08/15/40 T 1.375	73.066	3 326
0.000 $08/25/22$	99.01	1.007	01/31/24	91.012	2.042	07/31/26	91.024	2.091	11.575 $11/15/40$	75.000	5.520
T 0.125	99.234	1.042	T 2.500	99.302	2.532	T 1.875	96.024	2.87	T 4.250	113.294	3.243
08/31/22		-	01/31/24			07/31/26			11/15/40		
$T^{'}1.625$	100.052	1.057	T 0.125	95.286	2.534	T 1.500	94.144	2.896	T 1.875	79.282	3.325
08/31/22			02/15/24			08/15/26			02/15/41		
T 1.875	100.076	1.037	T 2.750	100.112	2.542	T 6.750	115.122	2.878	T 4.750	121.106	3.225
08/31/22			02/15/24			08/15/26			02/15/41		
T 0.000	98.957	1.06	T 1.500	98.056	2.546	T 0.750	91.134	2.89	T 2.250	84.262	3.335
09/01/22	00.010	1 100	02/29/24	00.000	0.500	08/31/26	02 202	0.005	05/15/41	115 104	2.070
T 0.000 $09/08/22$	98.912	1.100	T 2.125 $02/29/24$	99.092	2.555	T 1.375 08/31/26	93.302	2.889	T 4.375 $05/15/41$	115.164	3.272
T 1.500	100.03	1 214	T 2.375	99.232	2 531	T 0.875	91.246	2.89	T 1.750	77.146	3 348
09/15/22	100.00	1.21T	02/29/24	55.252	2.551	09/30/26	J1.210	2.00	08/15/41	11.110	5.010
T 0.000	98.9	1.12	T 0.250	95.286	2.556	T 1.625	94.262	2.894	T 3.750	106.144	3.294
09/15/22			03/15/24			09/30/26			08/15/41		
T 0.000	98.885	1.135	T 2.125	99.07	2.554	$T^{'}1.125$	92.21	2.893	T 3.125	97.11	3.311
09/22/22			03/31/24			10/31/26			11/15/41		

Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield
T 0.000	98.887	1.133	T 2.250	99.13	2.576	T 1.625	94.234	2.893	T 2.000	80.292	3.34
09/29/22 T 0.125	99.184	1 950	03/31/24 T 0.375	05 206	2.584	10/31/26	06.07	2.903	11/30/41 T 2.375	06 196	9 916
0.125 $09/30/22$	99.184	1.258		95.286	2.584	T 2.000	96.07	2.903	$\frac{1}{02/15/42}$	86.136	3.316
T 1.750	100.056	1 266	04/15/24 T 2.000	98.286	2.581	11/15/26 T 6.500	115.034	2 802	T 3.125	97.094	9 919
09/30/22	100.050	1.200	04/30/24	90.200	2.361	10.500 $11/15/26$	115.054	2.093	02/15/42	97.094	3.312
T 1.875	100.074	1 944	T 2.250	99.12	2.579	T 1.250	93.032	2 882	T 3.000	95.104	3 399
09/30/22	100.014	1.244	04/30/24	33.12	2.019	11/30/26	99.092	2.002	05/15/42	33.104	5.522
T 0.000	98.845	1 176	T 2.500	99.27	2.582	T 1.625	94.222	2.879	T 2.750	91.074	3 349
10/06/22	50.010	1.110	04/30/24	00.21	2.002	11/30/26	01.222	2.010	08/15/42	01.011	0.010
T 0.000	98.757	1.266	T 0.250	95.144	2.601	T 1.250	92.304	2.889	T 2.750	91.022	3.356
10/13/22			05/15/24			12/31/26	0 = 100 =		11/15/42	0-10	0.000
$T^{'}1.375$	100.004	1.336	T 2.500	99.25	2.613	$T^{'}1.750$	95.034	2.887	T 3.125	96.232	3.345
10/15/22			05/15/24			12/31/26			02/15/43		
$T^{'}0.000$	98.732	1.292	$T^{'}2.000$	98.264	2.593	$T^{'}1.500$	93.292	2.891	$\stackrel{'}{\mathrm{T}}2.875$	92.264	3.354
10/20/22			05/31/24			01/31/27			05/15/43		
T = 0.000	98.697	1.329	T 0.250	95.066	2.628	T 2.250	97.042	2.9	T 3.625	104.124	3.335
10/27/22			06/15/24			02/15/27			08/15/43		
T 0.125	99.14	1.365	T 1.750	98.06	2.632	T 6.625	116.114	2.912	T 3.750	106.112	3.334
10/31/22			06/30/24			02/15/27			11/15/43		
T 1.875	100.072	1.375	T 2.000	98.214	2.647	T 1.125	92.052	2.888	T 3.625	104.09	3.346
10/31/22			06/30/24			02/28/27			02/15/44		
T 2.000	100.09	1.379	T 0.375	95.064	2.669	T 1.875	95.172	2.878	T 3.375	100.094	3.356
10/31/22			07/15/24			02/28/27			05/15/44		
T 0.000	98.675	1.352	T 1.750	98.014	2.665	T 0.625	89.244	2.891	T 3.125	96.11	3.359
$\frac{11}{03}/22$			07/31/24			03/31/27			08/15/44		
T 0.000	98.605	1.424	T 2.125	98.264	2.674	T 2.500	98.09	2.88	T 3.000	94.084	3.366
11/10/22	100.000	1 400	07/31/24	04.01	0.000	03/31/27	00.000	0.007	11/15/44	00.004	0.000
T 1.625	100.022	1.483	T 0.375	94.31	2.693	T 0.500	89.002	2.897	T 2.500	86.084	3.369
11/15/22	109 099	1 246	08/15/24	00.000	2.702	04/30/27	00 196	2 001	02/15/45	04.004	9 950
T 7.625	103.032	1.340	T 2.375	99.092	2.702	T 2.750	99.126	2.881	T 3.000	94.094	3.338
11/15/22 T 0.125	99.08	1.522	08/15/24 T 1.250	06.25	2.708	04/30/27 T 2.375	07 164	2.913	05/15/45 T 2.875	02 116	3.35
10.125 $11/30/22$	99.00	1.022	08/31/24	96.25	2.100	05/15/27	97.164	2.913	08/15/45	92.116	5.55
T 2.000	100.084	1 505	T 1.875	98.042	2 721	T 0.500	88.24	2.916	T 3.000	94.174	3 337
11/30/22	100.004	1.000	08/31/24	30.042	2.121	0.500 $0.5/31/27$	00.24	2.510	11/15/45	94.114	0.001
T 0.000	98.64	1.389	T 0.375	94.224	2 735	T 0.500	88.184	2 916	T 2.500	86.076	3 344
12/01/22	50.01	1.000	0.575 0.575	01.221	2.100	06/30/27	00.101	2.010	02/15/46	00.010	0.011
T 1.625	100.012	1.557	T 1.500	97.07	2.717	T 0.375	87.274	2.903	T 2.500	86.074	3.338
12/15/22			09/30/24			07/31/27	0,,_,_		05/15/46	00.01	0.000
T 0.000	98.515	1.52	T 2.125	98.21	2.713	T 2.250	96.24	2.922	T 2.250	82.016	3.335
12/29/22			09/30/24			08/15/27			08/15/46		
$\stackrel{'}{{ m T}} 0.137$	99.016	1.653	$\stackrel{'}{\mathrm{T}}0.625$	95.034	2.723	$\stackrel{.}{\mathrm{T}}6.375$	116.224	2.92	$\stackrel{.}{\mathrm{T}}2.875$	92.234	3.31
12/31/22			10/15/24			08/15/27			11/15/46		
T 2.125	100.09	1.669	T 1.500	97.02	2.745	T = 0.500	88.06	2.926	T 3.000	94.266	3.307
12/31/22			10/31/24			08/31/27			02/15/47		
T 1.500	99.274	1.712	T 2.250	98.274	2.733	T 0.500	87.262	2.932	T 3.000	94.282	3.302
01/15/23			10/31/24			10/31/27			05/15/47		
T 0.000	98.452	1.586	T 0.750	95.054	2.752	T 2.250	96.186	2.927	T 2.750	90.276	3.285
01/26/23			11/15/24			11/15/27			08/15/47		
T 0.125	98.27	1.771	T 2.250	98.244	2.765	T 6.125	116.04	2.928	T 2.750	90.302	3.277
01/31/23			11/15/24			11/15/27			11/15/47		
T 1.750	100	1.749	T 7.500	111.176	2.685	T 0.625	88.082	2.937	T 3.000	95.21	3.25
01/31/23			11/15/24			11/30/27			02/15/48		
T 2.375	100.142	1.739	T 1.500	96.292	2.766	T 0.625	88.02	2.944	T 3.125	98.04	3.232
01/31/23			11/30/24			12/31/27			05/15/48		

Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield
T 1.375	99.22	1.795	T 2.125	98.142	2.763	T 0.750	88.166	2.949	T 3.000	95.242	3.241
02/15/23			11/30/24			01/31/28			08/15/48		
T 2.000	100.05	1.788	T 1.000	95.204	2.758	T 2.750	99.004	2.937	T 3.375	103.004	3.205
02/15/23			12/15/24			02/15/28			11/15/48		
T 7.125	104.006	5.1.708	T 1.750	97.134	2.775	T 1.125	90.136	2.934	T 3.000	96.142	3.199
02/15/23			12/31/24			02/29/28			02/15/49		
T 0.000	98.332	1.713	T 2.250	98.22	2.771	T 1.250	90.284	2.95	T 2.875	94.084	3.194
02/23/23			12/31/24			03/31/28			05/15/49		
T 0.125	98.206	1.855	T 1.125	95.25	2.777	T 1.250	90.24	2.955	T 2.250	82.304	3.191
02/28/23			01/15/25			04/30/28			08/15/49		
T 1.500	99.232	1.849	T 1.375	96.114	2.779	T 2.875	99.192	2.948	T 2.375	85.126	3.175
02/28/23			01/31/25			05/15/28			11/15/49		
T 2.625	100.192	2.1.853	T 2.500	99.09	2.776	T 1.250	90.2	2.956	T 2.000	78.066	3.189
02/28/23			01/31/25			05/31/28			02/15/50		
T = 0.500	98.276	1.879	T 1.500	96.184	2.798	T 1.250	90.146	2.965	T 1.250	64.106	3.184
03/15/23			02/15/25			06/30/28			05/15/50		
T 0.000	98.282	1.772	T 2.000	97.296	2.786	T 1.000	88.296	2.965	T 1.375	66.176	3.177
03/23/23			02/15/25			07/31/28			08/15/50		
T 0.125	98.134	1.954	T 7.625	112.286	2.725	T 2.875	99.162	2.961	T 1.625	71.07	3.166
03/31/23			02/15/25			08/15/28			11/15/50		
T 1.500	99.19	1.97	T 1.125	95.186	2.779	T 5.500	114.156	2.944	T 1.875	75.31	3.152
03/31/23			02/28/25			08/15/28			02/15/51		
T 2.500	100.146	31.964	T 2.750	99.286	2.787	T 1.125	89.164	2.964	T 2.375	85.156	3.141
03/31/23			02/28/25			08/31/28			05/15/51		
T 0.250	98.13	2.016	T 1.750	97.052	2.798	T 1.250	90.026	2.968	T = 2.000	78.106	3.137
04/15/23			03/15/25			09/30/28			08/15/51		
T 0.000	98.127	1.933	T 0.500	93.222	2.798	T 1.375	90.226	2.966	T 1.875	76.014	3.124
04/20/23			03/31/25			10/31/28			11/15/51		
T 0.125	98.056	2.057	$T^{'}2.625$	99.176	2.787	T 3.125	100.312	2.959	$T^{'}2.250$	83.134	3.108
04/30/23			03/31/25			11/15/28			02/15/52		

3 Dedication Portfolio

3.1 Prompt

Formulate a linear programming model to find the lowest cost bond dedicated portfolio that covers the stream of liabilities. To eliminate the possibility of any interest risk, assume that a 0% reinvestment rate on cash balances carried out from one date to the next. Assume no short selling of bonds is allowed. What is the cost of your portfolio? How does this cost compares with the NPV of the liabilities? What is the composition of the portfolio?

3.2 Mathematical Formulation

$$\min \quad z_0 + \sum_{i=1}^N P_i x_i$$

$$\text{s.t.} \quad \sum_{i=1,\dots,\ n:\ M_i>t-1} C_i x_i + \sum_{i=1,\dots,\ n:\ M_i=t} 100 x_i + (1+r_f) z_{t-1} - z_t = L_t \quad \text{ for } \mathbf{t} \in \{1,\dots,16\}$$

where,

 P_i : Price of the bond i = 1, ..., N

 x_i : the amount purchased of bond $i=1,\ldots,N$

 z_t : Excess cashflows after Liability as been paid for period $t=1,\ldots,16$

 C_i : The coupon payment from bond $i=1,\ldots,N$

 L_t : Liability in period t = 1, ..., 16

 M_i : The maturity year of bondi = 1, ..., N

 r_f : the risk free rate that will be used as the carrying interest for our last period surplus

In a dedication protfolio we are "cash matching". By this we mean to match the sum total of Cash Flows from our pruchased fixed income assets for every and all period Liabilties. We must state that we are not allowed to take a short position in any stock therefore, we are trying minimize the cost of the purchases portfolio to meet our liabilities. We have a surplus term that will account for our excess cash flows after liabilties paid for a certain period. These funds may be used for a period in which the inflow from the bonds is not enough to cover liabilities.

NOTE: The objective of this problem does have the risk-free rate as 0% on assumption. Thus the interest earned term is just $(1+r_f)z_{t-1} = z_{t-1}$

3.3 Code

```
[41]:
      Data Manipulation
      term_by_maturity = term_structure_df.set_index('MATURITY')
      possibilities = term_by_maturity.drop(
          index=[i for i in term_by_maturity.index.to_list() if i > data_prompt.index.to_list()[-1]],
          columns=['BID', 'ASKED', 'ASKED YIELD']
      '''List of bond maturities less than liability maturity'''
      date_lists_to_change_to_periods = [
          [i for i in possibilities.index.to_list() if i <= t]
          for t in data_prompt.index.tolist()
      '''Removing the duplicates from each one'''
      for i in reversed(range(1,len(date_lists_to_change_to_periods))):
          for j in range(0,len(date_lists_to_change_to_periods[i-1])):
              date_lists_to_change_to_periods[i].remove(date_lists_to_change_to_periods[i-1][j])
      for i in range(0,len(date_lists_to_change_to_periods)):
          possibilities.loc[date_lists_to_change_to_periods[i],'period'] = i+1
      possibilities['face'] = 100
      possibilities['bond#'] = range(1,len(possibilities)+1)
      possibilities = possibilities.set_index('bond#')
```

```
'''for labeling later'''
              dec_var_names = possibilities['ref_data']
[42]: '''Getting data ready for the solver'''
               '''Exmpty Array'''
              cfs = np.zeros((len(possibilities),len(date_lists_to_change_to_periods)))
               '''CF Matrix'''
              '''Will make function later'''
              for i in range(0, len(cfs)):
                      for j in range(1, len(cfs[0])+1):
                               if possibilities.loc[i+1,'period'] == j and possibilities.loc[i+1,'COUPON'] == 0:
                                        cfs[i][j-1] = possibilities.loc[i+1,'face']
                                elif possibilities.loc[i+1,'period'] == j and possibilities.loc[i+1,'COUPON'] != 0:
                                        cfs[i][0:j-1] = possibilities.loc[i+1,'COUPON']/2
                                        cfs[i][j-1] = possibilities.loc[i+1,'face'] + possibilities.loc[i+1,'COUPON']/2
              cf matrix = cfs.tolist()
              prices = possibilities['px_ask'].values.tolist()
              liabilities = data_prompt['Amount'].values.tolist()
[43]: '''Solving for the dedicated portfolio'''
              # Making variable list of strings
              periods = [i for i in range(0,len(cf_matrix[0])+1)]
              \# Dictionary of period constraints
              period_dict = {}
              for i in range(0,len(cf_matrix[0])):
                      period_dict['Period {}'.format(i+1)] = dict(zip(dec_var_names,[cf_matrix[j][i] for j in_u
                →range(0,len(cf_matrix))]))
              objective = dict(zip(dec_var_names, prices))
              # Decision Vars
              quantity = LpVariable.dict('', dec_var_names, lowBound=0)
              excess = LpVariable.dict('ExcessCF', periods, lowBound=0)
              # Intializing the Problem
              dedication_1 = LpProblem('Dedicated', LpMinimize)
              # Objective function
              dedication_1 += excess[0]+lpSum([objective[i]*quantity[i] for i in dec_var_names])
              # Constraints
              for i in range(0,len(cf_matrix[0])):
                      \label{locality} $$ \end{area} $$ \end{are
```

[43]: 1

3.4 Cost and Composition

dedication_1.solve()

→excess[i]- excess[i+1] == liabilities[i]

```
[44]:

Print Solution to dedication_1 portfolio

'''

Print Solution to dedication_1 portfolio with dedication_1ing Limit
```

```
111
ded_df = pd.DataFrame(
    [v.varValue for v in dedication_1.variables() if v.varValue != 0],
   index=[str(v.name[1:9].replace('_', ' ') + v.name[9:].replace('_', '/'))
       if v.name[0] != 'E'
       else str(r'$\text{' + v.name[:-2] + '}' + v.name[-2:] + '$') for v in_
 ⇒[g for g in dedication_1.variables() if g.varValue != 0]],
    columns=['Quantity']
mature = ['20'+i[-2:] + '-'+i[-8:-6] + '-'+i[-5:-3]
   if i[0] != 'E'
   else '2100-01-01'
   for i in ded_df.index.tolist()]
bond_s_dis = ded_df.reset_index()
bond_s_dis['m'] = mature
bond_s_dis.set_index('m', inplace=True)
bond_s_dis.sort_index(inplace=True)
bond_s_dis.set_index('index', inplace=True)
bond s dis.index.name = ''
md('''
<center> Portfolio Value of ${:.2f} MM </center> <br>
<center>
{}
'''.format(value(dedication_1.objective), bond_s_dis.to_markdown(colalign =_
```

Portfolio Value of \$117.77 MM

	Quantity
T 7.250 08/15/22	0.0836671
T 7.125 02/15/23	0.0667
T 6.250 08/15/23	0.0590762
T 2.000 05/31/24	0.0509223
T 1.500 11/30/24	0.0714316
T 7.625 02/15/25	0.0819673
T 6.875 08/15/25	0.0750923
T 0.750 05/31/26	0.107674
T 6.750 08/15/26	0.0780774
T 6.625 02/15/27	0.0507125
T 6.375 08/15/27	0.0423924
T 1.250 05/31/28	0.0637436

	Quantity
T 5.500 08/15/28	0.084142
T 2.875 04/30/29	0.0664559
T 6.125 08/15/29	0.0774112
T 0.625 05/15/30	0.0697819

From our results we can see the prtfolio cost is \$0.1% \$ more than the NPV of the Liabilties. Thus, we will be paying a premium to hold onto the treasuries to meet our liabilties. This premium is \$111MM as the NPV is \$117.66\$. This is to be expected as we are not actively trading this portfolio and holding all bonds till their maturities.

4 Sensitivity Analysis

Use the linear programming sensitivity analysis information to determine the term structure of interest rates implied by the optimal bond portfolio you found in the previous question. Use a plot to compare these rates with the current term structure of treasury rates you found in the first question.

4.1 Shadow Prices

```
Pull sensitivity analysis
---
https://s3.amazonaws.com/assets.datacamp.com/production/course_8835/slides/
chapter4.pdf
'''

o = [{'name':name, 'shadow price':c.pi} for name, c in dedication_1.constraints.
ditems()]
shadow_px = pd.DataFrame(o).set_index(data_prompt.index).drop('name',axis=1)
clean_shadow_px = pd.DataFrame(o).set_index(data_prompt.index.strftime('%m/%d/
d%y')).drop('name',axis=1)
md('''
<center>
{}

'''.format(clean_shadow_px.to_markdown(colalign = ("right", 'center')))
}
```

[45]:

DateDue	shadow price
${12/15/22}$	0.976444
06/15/23	0.970693
12/15/23	0.952351
06/15/24	0.944203

DateDue	shadow price
$\overline{12/15/24}$	0.927139
06/15/25	0.906415
12/15/25	0.896101
06/15/26	0.884951
12/15/26	0.870135
06/15/27	0.856877
12/15/27	0.8426
06/15/28	0.834112
12/15/28	0.820296
06/15/29	0.812113
12/15/29	0.795826
06/15/30	0.788304

4.2 Term Structures (Actual vs Implied)

```
[46]: '''
     Presents implied and actual yield curve as a plot
     shadow_ttm = ((shadow_px.index - datetime.datetime.now()) / datetime.
      shadow_factors = shadow_px['shadow price'].to_list()
     implied_rates = [-np.log(shadow_factors[i]) / shadow_ttm[i] for i in__
      →range(len(shadow_ttm))]
     implied_rates_df = pd.DataFrame(
                             data = [shadow_ttm, implied_rates],
                             index=['ttm','implied_rate']
                         )
     implied_rates_df = (implied_rates_df
                             .transpose()
                             .round({'ttm':round_to})
                             .set_index('ttm')
                         )
     plt.plot(rates[0.5:8.5] * 100)
     plt.plot(implied_rates_df * 100)
     plt.title('Bootstrapped and Implied Yield Curve (rates per annum)')
     plt.xlabel('Tenor')
     plt.ylabel('Yield in Percentage Points')
     plt.legend(['Actual', 'Implied'])
```

[46]: <matplotlib.legend.Legend at 0x177e0073b50>

We can see how the dedication will match the term structure of interest as each can be a function of their cahsflows and if we are essentially investing in the bonds that make up the term structure, will be very close to it but not exactly. We will find the cheapest "path" through the term structure, based on our liabilities.

4.3 Implied Rates

[47]:

ttm	$implied_rate$
0.58	4.1213
1.08	2.76172
1.58	3.09309
2.08	2.76058
2.58	2.93094
3.08	3.19042

ttm	implied_rate
3.58	3.06332
4.08	2.99581
4.58	3.0365
5.08	3.04071
5.58	3.06859
6.08	2.98211
6.58	3.0087
7.08	2.93845
7.58	3.01132
8.08	2.94303

5 Immunization Portfolio

Formulate a linear programming model to find the lowest cost bond immunized portfolio that matches the present value, duration, and convexity of a stream of liabilities. Assume that no short rates are allowed. What is the cost of your portfolio? How much would you save by using this immunization strategy instead of the dedication one? Is your portfolio immunized against non-parallel shifts in the term structure? Explain why or why not.

Now, we will approach this problem from an Immunization perspective. This means that we are going to find a new portfolio of bonds that match the Net Present Value, Duration, and Convexity of the stream of Liabilities required, while still minimizing the cost of the actual portfolio. For the purposes of this portfolio, we will assume that short rates aren't allowed.

To achieve this, we first calculated the NPV, Duration, and Convexity of each of the bonds cash flows'. Then, to be able to match them to the NPV, Duration, and Convexity of the Liabilities (previously calculated), we multiply them by the amount of bonds to be bought, and sum them. This is explicitly stated in the Mathematical Formulation.

5.1 Mathematical Formulation

$$\begin{aligned} & \min & & \sum_{i=1}^{N} P_i x_i \\ & \text{s.t.} & & \sum_{i=1,\dots,n} NPV_i * x_i = NPV_{Liabilities} \\ & & \sum_{i=1,\dots,n} Duration_i * x_i = Duration_{Liabilities} \\ & & \sum_{i=1,\dots,n} Convexity_i * x_i = Convexity_{Liabilities} \\ & & x_i \geq 0 \end{aligned}$$

where,

 x_i : quantity purchased of bond i;

 P_i : ask price of bond i.

5.2 Code

```
[48]: '''
      Aggregates cashflow matrix and ref data for immunization
      Puts cashflow matrix into a dataframe for merging
      merges possible bond ref data with cashflow matrix
      cleans resulting dataframe
      NOTE: MATH NEEDS WORK HERE BUT WE CAN FIGURE OUT
      from here: use ttm and col_num against calculated curve to find appropriate_
       ⇔measure
              pv_factor = exp\{-rt\} = exp\{-() * (ttm)\}
      cf_df = pd.DataFrame(cf_matrix, index=dec_var_names)
      cf_df = pd.merge(
                                                                                    #__
       → Combines possible bonds with cashflow matrix
          left = possibilities,
                                                                                    #
       →possible bonds - SAME DF AS DEDICATION
          right = cf_df,
                                                                                    #__
       → Cashflow matrix - NP ARRAY FROM DEDICATION AS DF FOR MERGING
          how='inner',
                                                                                    #
       → Catches any missed bonds on merge
          left_on='ref_data',
          right_index=True
                                                                                    #__
       → Casflow df indexed by bond name
      )
      cf_df = (cf_df
                  .drop(['COUPON','period','face'],axis=1)
                                                                                    # ...
       →Drops unnecessary ref data
                  .set_index('ref_data')
                                                                                    #__
       ⇔Sets index to bond name
                  .round({'ttm':round_to})
                                                                                    #
       ⇔rounds time to maturity to 2 decimal places -- allows use of derived term_
       →structure (indexed by hundredths)
[49]: '''
      Create Present Value, Duration, and Convexity factors for all possible time\sqcup
       ⇔index based on derived rates curve
      111
      t = rates.index
      r = rates['rate']
      npv_factor = np.exp(-r*t)
      dur_factor = t*np.exp(-r*(t+1))
```

 $con_factor = t*(t+1)*np.exp(-r*(t+2))$

```
[50]: '''
      Calculates npv, duration, and convexity terms for all bonds consider in problem
      npvs=[]
      durs=[]
      cons=[]
      for bond in cf_df.index:
          bond_df = cf_df.loc[bond]
          bond_ttm = bond_df.loc['ttm']
          bond_cf_stream = bond_df.loc[0:]
          eo_cfs = bond_cf_stream.idxmax()
          cpn_ttm = [(bond_ttm - 0.5*i).round(round_to) for i in range(eo_cfs+1)]
          bond_cf_ttm = pd.Series(data=bond_df.loc[0:eo_cfs].to_list(),__
       →index=reversed(cpn_ttm))
          bond_npv = sum([bond_cf_ttm.loc[i] * npv_factor.loc[:i].iloc[-1] for i in_
       ⇒bond_cf_ttm.index])
          bond_dur = sum([bond_cf_ttm.loc[i] * dur_factor.loc[:i].iloc[-1] for i in_
       ⇒bond cf ttm.index])
          bond_con = sum([bond_cf_ttm.loc[i] * con_factor.loc[:i].iloc[-1] for i in_
       ⇒bond cf ttm.index])
          npvs.append(bond_npv)
          durs.append(bond_dur)
          cons.append(bond_con)
      immunization_df = pd.DataFrame([npvs, durs, cons], columns=cf_df.index,_
       →index=['npv','duration','convexity']).transpose()
[51]: '''
      Solves immunization portfolio
      bond_count = LpVariable.dicts('Bonds',dec_var_names,lowBound=0)
      immunization = LpProblem('immunization', LpMinimize)
      immunization += lpSum([cf_df['px_ask'].loc[i] * bond_count[i] for i in_
       →dec_var_names])
      immunization += lpSum([immunization_df['npv'].loc[i] * bond_count[i] for i in__

dec_var_names]) == npv

      immunization += lpSum([immunization_df['duration'].loc[i] * bond_count[i] for i_{\sqcup}
       →in dec_var_names]) == dur
      immunization += lpSum([immunization_df['convexity'].loc[i] * bond_count[i] for_u
       →i in dec_var_names]) == con
```

```
immunization.solve()
```

[51]: 1

```
[52]: ded_df = pd.DataFrame(
          [v.varValue for v in immunization.variables() if v.varValue != 0],
          index=[str(v.name[6:-8].replace('_', '') + v.name[-8:].replace('_', '/'))
              if v.name[0] == 'B'
              else str(r') + v.name[:-2] + ' + v.name[-2:] + ' ' ) for v in_{l}
       ⇒[g for g in immunization.variables() if g.varValue != 0]],
          columns=['Quantity']
          )
      mature = ['20'+ i[-2:] + '-'+i[-8:-6] + '-'+i[-5:-3]
          if i[0] != 'B'
          else '2100-01-01'
          for i in ded df.index.tolist()]
      bond_s_dis = ded_df.reset_index()
      bond_s_dis['m'] = mature
      bond_s_dis.set_index('m', inplace=True)
      bond_s_dis.sort_index(inplace=True)
      bond_s_dis.set_index('index', inplace=True)
      bond_s_dis.index.name = ''
```

5.3 Portfolio Allocation and Value

[53]: Immunized Portfolio Value of \$116.99 MM

	Quantity
T 7.250 08/15/22	0.184073
T 6.625 02/15/27	0.612254
T 6.125 08/15/29	0.226722

After solving the immunization problem, we find a portfolio with a lower cost than the Dedication one. This portfolio is \$790,000 cheapear, which represents a 0.67% discount from the Dedication portfolio.

A key consideration for this portfolio is the fact that given that the objective is only to match NPV, Duration, and Convexity, the Cash Flows don't match exactly to the liabilities. This means that even though the portfolio is cheaper, it involves certain money management.

This portfolio is hedged against parallel interest rate moves, however it is still vulnerable to non-parallel shifts in the term structure. This is due to the fact that the actual cash flows don't match, and only the NPV, Duration, and Convexity. Therefore, if there were any non-parallel shifts, the NPV of the actual cash flows would be affected in a different manner than that of the Liabilities.

6 Dedication / Immunization Combined Strategy

Combine a cash matching strategy (dedication) for the liabilities for the first three years and an immunization strategy based on matching present value, duration and convexity for the liabilities during the last five years. Compare the characteristics of the three bond portfolios you have obtained. Explain which one you think is the best one and why.

Now we will try to find a portfolio that uses both of the Dedication and Immunization techniques used previously. We are using a Dedication strategy for the first 3 years and an Immunization for the last 5 years. Given that each of the liabilities is needed every 6 months, this means that Dedication will cover 6 periods, and Immunization will cover the remaining 10 periods.

6.1 Mathematical Formulation

$$\begin{aligned} & \text{min} \quad z_0 + \sum_{i=1}^N P_i x_i \\ & \text{s.t.} \quad \sum_{i=1,\dots,\ n:\ M_i \geq t-1} C_{it} x_i + \sum_{i=1,\dots,\ n:\ M_i \geq t} 100 x_i + z_{t-1} - z_t = L_t \quad t = \{1,\dots,16\} \\ & \sum_{i=1,\dots,n} \text{NPV}_i * x_i = \text{NPV}_{\text{Liabilities}} \\ & \sum_{i=1,\dots,n} \text{Duration}_i * x_i = \text{Duration}_{\text{Liabilities}} \\ & \sum_{i=1,\dots,n} \text{Convexity}_i * x_i = \text{Convexity}_{\text{Liabilities}} \\ & x_i \geq 0 \end{aligned}$$

where,

 z_t : is the excess cash flow at the beginning of period t

 x_i : quantity purchased of bond i

 P_i : ask price of bond i

 C_i : coupon paid by bond i at time t

6.2 Code

```
[55]: '''
      Solves combined portfolio
      bond_q = LpVariable.dicts('',dec_var_names,lowBound=0)
      excess_cf = LpVariable.dicts('ExcessCF', periods[:ded_period+1], lowBound=0)
      combined = LpProblem('Combined', LpMinimize)
      combined += lpSum([cf_df['px_ask'][i] * bond_q[i] for i in dec_var_names]+__
       ⇔excess_cf[0])
      for i in range(0,ded_period):
          combined += lpSum([cf_df[i][j]*bond_q[j] for j in dec_var_names]) +__

excess_cf[i] - excess_cf[i+1] == liabilities[i]
      combined += lpSum([immunization_df['npv'][i] * bond_q[i] for i in_
       →dec_var_names]) == npv
      combined += lpSum([immunization_df['duration'][i] * bond_q[i] for i in_

dec var names]) == dur

      combined += lpSum([immunization_df['convexity'][i] * bond_q[i] for i in_

dec_var_names]) == con

      combined.solve()
```

[55]: 1

6.3 Portfolio Allocation

```
[v.varValue for v in combined.variables() if v.varValue != 0],
   index=[str(v.name[1:9].replace('_', ' ') + v.name[9:].replace('_', '/'))
       if v.name[0] != 'E'
       else str(r'$\text{' + v.name[:-2] + '}' + v.name[-2:] + '$') for v in_
 columns=['Quantity']
mature = ['20' + i[-2:] + '-'+i[-8:-6] + '-'+i[-5:-3]
   if i[0] != 'E'
   else '2100-01-01'
   for i in ded_df.index.tolist()]
bond_s_dis = ded_df.reset_index()
bond_s_dis['m'] = mature
bond_s_dis.set_index('m', inplace=True)
bond_s_dis.sort_index(inplace=True)
bond_s_dis.set_index('index', inplace=True)
bond s dis.index.name = ''
md('''
<center> Portfolio Value of ${:.2f} MM </center> <br>
<center>
{}
'''.format(value(combined.objective), bond_s_dis.to_markdown(colalign =_ _
```

[56]: Portfolio Value of \$117.25 MM

	Quantity
T 7.250 08/15/22	0.0875427
T 1.750 05/15/23	0.0707161
T 6.250 08/15/23	0.0613349
T 2.500 05/15/24	0.0532516
T 2.250 11/15/24	0.0739173
T 2.750 05/15/25	0.0847488
T 6.375 08/15/27	0.122333
T 2.250 11/15/27	0.380666
T 6.125 08/15/29	0.192784

The cost of this portfolio is in between the costs of the Dedication and the Immunization portfolios previously discussed at \$117.25.

The advantage here mostly lies in that the cash flows exactly meet the liabilities for the first 6 periods, and therefore, there is no need for any money management at first. For this period the portfolio is also protected against any interest rate changes (parallel or otherwise). This would give the municipality some time to be assured to meet their liabilities. However, for the latter part of the term, there would be a need to do some money management and the municipality would have to take the risk of non-parallel interest rate changes.

For the small premium over the Immunized portfolio we consider it to be a better option.

7 Dedication Portfolio with Short Selling

7.1 Prompt

The municipality would like to make a second bid (find a different portfolio of bonds). What is your best dedicated portfolio of risk-free bonds you can create *if short sales are allowed*? Did you find arbitrage opportunities? Did you take into consideration the bid-ask spread of the bonds? How would you take them in consideration and what is the result? Did you set limits in the transaction amounts? Discuss the practical feasibility of your solutions.

7.2 Without Transaction Limits

7.2.1 Mathematical Formulation

$$\min \ \ z_0 + \sum_{i=1}^N P_i^+ l_i - \sum_{i=1}^N P_i^- s_i$$

$$\text{s.t.} \quad \sum_{i=1,\dots,\ n\ :\ M_i\geq t-1}[C_{it}l_i-C_{it}s_i] + \sum_{i=1,\dots,\ n\colon M_i\geq t}[100l_i-100s_i] + (1+r_f)z_{t-1} - z_t = L_t \quad \ t=\{1,\dots,16\}$$

$$l_i, s_i \ge 0$$

where,

 L_t : liability at time t

 z_t : is the excess cash flow at the beginning of period t

 l_i : quantity bought long of bond i

 s_i : quantity sold short of bond i

 P_i^+ : ask price of bond i

 P_i^- : bid price of bond i

 C_i : coupon paid by bond i at time t

Here we are minimizing the cost of the portfolio as our objective but bring into account the ability to short sell bonds. This causes us to use auxiliary variables l_i and s_i where these two now account for long amounts and short amounts respectively. Seeing this to be the case, we naturally look for arbitrage opportunities with the bid-ask spreads. If we are allowed to use this extra cash obtained from the short to fund the pruchases of our long positions, and we are allowed to keep the difference when all L_t have been paid for $t \in \{1, ..., 16\}$, we are also maximizing profit.

NOTE: Please remember a negative value or a value of 0 would imply a arbitrage opportunity because it would show a surplus from our short sell cashflows. Also, we are using the ask and bid for long and short position, repsectively.

7.2.2 Code

```
[63]: '''
      Solves short portfolio
      I I I
      short_limit = 0.5
      long_q = LpVariable.dicts('Long',dec_var_names,lowBound=0)
      short_q = LpVariable.dicts('Short',dec_var_names,lowBound=0)
      excess_cfs = LpVariable.dicts('ExcessCF', periods, lowBound=0)
      short = LpProblem('Short', LpMinimize)
      #Objective
      short += lpSum([cf_df['px_ask'][i] * long_q[i] - cf_df['px_bid'][i] *_
       ⇒short_q[i] for i in dec_var_names]+ excess_cfs[0])
      #Bounds Objective to be NonNegative - Municipality can't profit from short
       →trading - At best they get their dedication portfolio free
      short += lpSum([cf_df['px_ask'][i] * long_q[i] - cf_df['px_bid'][i] *__
       ⇒short_q[i] for i in dec_var_names]+ excess_cfs[0]) >= 0
      #Liabilities Constraints
      for i in range(0,len(cf matrix[0])):
          short += lpSum([cf_df[i][j]*long_q[j] - cf_df[i][j]*short_q[j] for j in_
       dec_var_names]) + excess_cfs[i] - excess_cfs[i+1] == liabilities[i]
      short.solve()
```

[63]: 1

7.2.3 Portfolio Allocation

```
[58]:
    Print Solution to Short portfolio
    '''
    Print Solution to Short portfolio with Shorting Limit
    '''
    bonds_short_l = pd.DataFrame(
        [v.varValue for v in short.variables() if v.varValue != 0],
        index=[str(v.name[:-8].replace('_', '')+v.name[-8:].replace('_', '/'))
        if v.name[0] == 'L' or v.name[0] == 'S'
```

Portfolio Value of -0.00 MM

	Quantity
Short T 0.000 06/16/22	2.04863
Short T 0.137 12/31/22	63.2136
Long T $7.125 \ 02/15/23$	61.1449
Long T 6.250 08/15/23	0.0563529
Long T $2.000\ 05/31/24$	0.0481139
Long T $1.500 \ 11/30/24$	0.0685951
Long T $7.625 \ 02/15/25$	0.154094
Long T $0.750\ 05/31/26$	0.104984
Long T $6.750 \ 08/15/26$	0.0753781
Long T $6.625\ 02/15/27$	0.0479221
Long T $6.375 \ 08/15/27$	0.0395095
Long T 2.875 05/15/28	0.0607689
Long T 5.500 08/15/28	0.0816424
Long T $5.250\ 02/15/29$	0.0638876
Long T 6.125 08/15/29	0.0755646
Long T $6.250\ 05/15/30$	0.0678788
$\mathrm{ExcessCF}_{6}$	7.49844

	Quantity
ExcessCF ₃	-1.38988e-09

7.2.4 Discussion

By the results above, we are able to see that there is an arbitrage opportunity and in the mathematical sense, is feasible, but for the fact that the 63+ MM is an extremely large transaction for any single issuance. The latter makes this solution infeasible in a real world application. Because of this we have created a formulation where the set a limit on the transaction amounts.

7.3 With Transaction Limits

By setting a transaction limit to the amount of bonds sold short, we eliminate the arbitrage opportunity found in the previous portfolio. We do this to generate a more realistic version of what a municipality can expect from a real life transaction that also involves the opportunity to sell bonds short. We assumed a transaction limit of 50%, meaning that the total amount of short selling cannot be greater than 50% of the total amount bought long.

7.3.1 Mathematical Formulation

$$\begin{split} & \text{min} \quad z_0 + \sum_{i=1}^N P_i^+ l_i - \sum_{i=1}^N P_i^- s_i \\ & \text{s.t.} \quad \sum_{i=1,\dots,\,n:\,M_i \geq t-1} C_{it} l_i - C_{it} s_i + \sum_{i=1,\dots,n:M_i \geq t} 100 l_i - 100 s_i + z_{t-1} - z_t = L_t \quad t = \{1,\dots,16\} \\ & z_0 + \sum_{i=1}^N P_i^+ l_i - \sum_{i=1}^N P_i^- s_i \geq 0 \\ & \sum_{i=1}^N P_i^- s_i \leq SL * \sum_{i=1}^N P_i^+ l_i \end{split}$$

where,

 L_t : liability at time t

 z_t : is the excess cash flow at the beginning of period t

 l_i : quantity bought long of bond i

 s_i : quantity sold short of bond i

 P_i^+ : ask price of bond i

 P_i^- : bid price of bond i

 C_i : coupon paid by bond i at time t

SL: Short limit as a percentage of the amount bought long

7.3.2 Code

```
[59]:

Solves short portfolio with a Shorting Limit

'''

short_limit = 0.5
```

```
long_q = LpVariable.dicts('Long',dec_var_names,lowBound=0)
short_q = LpVariable.dicts('Short',dec_var_names,lowBound=0)
excess_cfs = LpVariable.dicts('ExcessCF', periods, lowBound=0)
short_1 = LpProblem('Short', LpMinimize)
#Objective
short_1 += lpSum([cf_df['px_ask'][i] * long_q[i] - cf_df['px_bid'][i] * short_q[i] for i in dec_var_names]+__
 →excess_cfs[0])
#Bounds Objective to be Positive - Municipality can't profit from short trading - At best they get their
  ⇔dedication portfolio free
short\_1 += lpSum([cf\_df['px\_ask'][i] * long\_q[i] - cf\_df['px\_bid'][i] * short\_q[i] for i in dec\_var\_names] +_{\sqcup} (cf\_df['px\_bid'][i] + short\_q[i] for i in dec\_var\_names] +_{\sqcup} (cf\_df['px\_ask'][i] for i in dec\_var\_n
 \hookrightarrowexcess_cfs[0]) >= 0
#Adds a Short Limit as a % of the Total Amount invested in Long Bonds
short_1 += lpSum([cf_df['px_bid'][i] * short_q[i] for i in dec_var_names]) <= lpSum([cf_df['px_ask'][i] *_u
  →long_q[i] for i in dec_var_names])*short_limit
#Liabilities Constraints
for i in range(0,len(cf matrix[0])):
           \hookrightarrowexcess_cfs[i] - excess_cfs[i+1] == liabilities[i]
short_1.solve()
```

[59]: 1

7.3.3 Portfolio Allocation and Value

```
[60]: '''
     Print Solution to Short portfolio with Shorting Limit
     bonds_short_l = pd.DataFrame(
         [v.varValue for v in short_l.variables() if v.varValue != 0],
         index=[str(v.name[:-8].replace(' ', ' ')+v.name[-8:].replace(' ', '/'))
             if v.name[0] == 'L' or v.name[0] == 'S'
             else str(r') + v.name[:-2] + ' + v.name[-2:] + ' ' ) for v in_{U}
      columns=['Quantity']
     mature = ['20'+i[-2:] + '-'+i[-8:-6] + '-'+i[-5:-3]
         if i[0] == 'L' or i[0] == 'S'
         else '2100-01-01'
         for i in bonds_short_l.index.tolist()]
     bond_s_dis = bonds_short_l.reset_index()
     bond s dis['m'] = mature
     bond_s_dis.set_index('m', inplace=True)
     bond_s_dis.sort_index(inplace=True)
     bond_s_dis.set_index('index', inplace=True)
     bond_s_dis.index.name = ''
     md('''
     <center> Portfolio Value of ${:.2f} MM </center> <br>
```

[60]: Portfolio Value of \$115.62 MM

	Quantity
Long T 7.250 08/15/22	0.0507575
Long T 7.125 02/15/23	0.0325975
Short T 0.125 06/30/23	1.18926
Long T 6.250 08/15/23	1.21302
Long T 2.000 05/31/24	0.0509223
Long T 1.500 11/30/24	0.0714316
Long T 7.625 02/15/25	0.0819673
Long T 6.875 08/15/25	0.0750923
Long T 0.750 05/31/26	0.107674
Long T 6.750 08/15/26	0.0780774
Long T 6.625 02/15/27	0.0507125
Long T 6.375 08/15/27	0.0423924
Long T 1.250 05/31/28	0.0637436
Long T 5.500 08/15/28	0.084142
Long T 2.875 04/30/29	0.0664559
Long T 6.125 08/15/29	0.0774112
Long T $0.625 \ 05/15/30$	0.0697819
$ExcessCF_3$	-1.38988e-09

7.3.4 Discussion

By doing this we found a portfolio with a lower cost than the optimal found without the option of short selling. Even with the transaction limit set by us, and by taking into account the bidask spread, the cost of the portfolio decreases by close to 2% to \$115.62M. Even with the set transaction limits, we find this to be a better portfolio than without the opportunity to short sell.

However, we consider the feasability of this portfolio to be low given that we are focusing on the needs of a Municipality, and it is not common for them to use short selling, considering the risk involved.

8 Immunization and Short Selling

Consider proposing a new portfolio of bonds using any additional consideration or change to the model that you see fit. For example, can you do something to make your portfolio of bonds immune to nonparallel changes in the term structure. Is there a better way to combine the techniques you used before. Explain clearly what you do and your results.

Now we are going to try to find an even better portfolio in terms of cost by using the strategies mentioned before. We know that an immunization portfolio is cheaper than a dedication one, and we know that the opportunity to short sell bonds reduces the cost even more. Therefore we will now approach the problem from an Immunization perspective while allowing the opportunity to short sell some of the bonds with the same transaction limit as set before. This states that the total amount of short selling cannot be greater than 50% of the total amount bought long.

8.1 Mathematical Formulation

$$\begin{aligned} & \min & & \sum_{i=1}^{N} P_i^+ l_i - P_i^- s_i \\ & \text{s.t.} & & \sum_{i=1,\dots,n} NPV_i * x_i = NPV_{Liabilities} \\ & & \sum_{i=1,\dots,n} Duration_i * l_i - Duration_i * s_i = Duration_{Liabilities} \\ & & \sum_{i=1,\dots,n} Convexity_i * l_i - Convexity_i * s_i = Convexity_{Liabilities} \\ & & \sum_{i=1}^{N} P_i^- s_i \leq SL * \sum_{i=1}^{N} P_i^+ l_i \\ & & l_i, s_i \geq 0 \end{aligned}$$

where,

 l_i : quantity bought long of bond i;

 s_i : quantity sold short of bond i;

 P_i^+ : ask price of bond i.

 P_i^- : bid price of bond i.

SL: Short limit as a percentage of the amount bought long

8.2 Code

```
[6i]:

Immunization With Shorting Available (Limited)

'''

long_q = LpVariable.dicts('Long',dec_var_names,lowBound=0)
short_q = LpVariable.dicts('Short',dec_var_names,lowBound=0)

imm_s = LpProblem('Immunized_Short', LpMinimize)

imm_s += lpSum([cf_df['px_bid'][i] * short_q[i] for i in dec_var_names]) <= lpSum([cf_df['px_ask'][i] *_u \limin long_q[i] for i in dec_var_names])*short_limit

imm_s += lpSum([cf_df['px_ask'][i] * long_q[i] - cf_df['px_bid'][i] * short_q[i] for i in dec_var_names])
imm_s += lpSum([immunization_df['npv'].loc[i] * long_q[i] - immunization_df['npv'].loc[i] * short_q[i] for i in dec_var_names]) == npv
imm_s += lpSum([immunization_df['duration'].loc[i] * long_q[i] - immunization_df['duration'].loc[i] *_u \limin short_q[i] for i in dec_var_names]) == dur
imm_s += lpSum([immunization_df['convexity'].loc[i] * long_q[i] - immunization_df['convexity'].loc[i] *_u \limin short_q[i] for i in dec_var_names]) == con
```

```
imm_s.solve()
```

[61]: 1

8.3 Portfolio Allocation

```
[62]: '''
      Print Solution to Short Immunized portfolio with Limits (Same Limit as Last_
       \hookrightarrow Prob)
      111
      imms_bonds = pd.DataFrame(
          [v.varValue for v in imm s.variables() if v.varValue != 0],
          index=[str(v.name[:-8].replace('_', '')+v.name[-8:].replace('_', '/')) for_
       →v in imm_s.variables() if v.varValue != 0],
          columns=['Quantity']
          )
      md('''
      <center> Portfolio Value of ${:.2f} MM </center> <br>
      <center>
      {}
      '''.format(value(imm_s.objective), imms_bonds[imms_bonds['Quantity']!=0].
       →to_markdown(colalign = ("right",)))
```

Portfolio Value of \$114.24 MM

	Quantity
Long T 6.125 08/15/29	0.841719
Long T 6.625 02/15/27	0.992871
Long T 7.250 08/15/22	0.118032
Short T 5.250 11/15/28	1.00929

8.4 Disscussion

Using the tools we discussed throughout the entire report, we find that we can lower the cost slightly more. Therefore, if our focus is to minimize cost, we would recommend an Immunization strategy that considers the opportunity to short sell some of the bonds (for this particular portfolio, only one).

This portfolio matches the NPV, Duration, and Convexity of the Libilities required, and is covered against parallel interest rate changes. And while it does need money management, the cost of this portfolio is \$114.24M. Which, not considering the arbitrage opportunity found in the dedication portfolio without shorting limits, is the lowest cost portfolio we could find.