Thick morphisms and higher Koszul brackets

Hovhannes Khudaverdian

University of Manchester, Manchester, UK

GAP XIV séminaire itinérant "Géométrie et Physique" 8 August—12 August, Sheffield, UK

The talk is based on the work with Ted Voronov

Contents

Abstracts

Poisson manifold and....

Higher brackets

Thick morphisms

Papers that talk is based on are

- [1] H.M.Khudaverdian, Th. Voronov *Higher Poisson brackets* and differential forms, 2008a In: Geometric Methods in Physics. AIP Conference Proceedings 1079, American Institute of Physics, Melville, New York, 2008, 203-215., arXiv: 0808.3406
- [2] Th. Voronov, Nonlinear pullback on functions and a formal category extending the category of supermanifolds], arXiv: 1409.6475
- [3] Th. Voronov, Microformal geometry, arXiv: 1411.6720

Abstract...

For an arbitrary manifold M, we consider supermanifolds ΠTM and ΠT^*M , where Π is the parity reversion functor. The space ΠT^*M possesses canonical odd Schouten bracket and space ΠTM posseses canonical de Rham differential d. An arbitrary even function P on ΠT^*M such that [P,P]=0 induces a homotopy Poisson bracket on M, a differential, d_P on ΠT^*M , and higher Koszul brackets on ΠTM . (If P is fiberwise quadratic, then we arrive at standard structures of Poisson geometry.) Using the language of Q-manifolds and in particular of Lie algebroids, we study the interplay between canonical structures and structures depending on P. Then using just recently invented theory of thick morphisms we construct a non-linear map between the L_{∞} algebra of functions on ΠTM with higher Koszul brackets and the Lie algebra of functions on ΠT^*M with the canonical odd Schouten bracket.

Higher Koszul brackets and thick __Abstracts

Poisson manifold

Let M be Poisson manifold with Poisson tensor $P = P^{ab}\partial_b \wedge \partial_a$

$$\{f,g\} = \{f,g\}_P = \frac{\partial f}{\partial x^a} P^{ab} \frac{\partial g}{\partial x^b}.$$

$$\{\{f,g\},h\} + \{\{g,h\},f\} + \{\{h,f\},g\} = 0,$$

$$\updownarrow$$

$$P^{ar} \partial_r P^{bc} + P^{br} \partial_r P^{ca} + P^{cr} \partial_r P^{ab} = 0.$$

If P is non-degenerate, then $\omega = (P^{-1})_{ab} dx^a \wedge dx^b$ is closed non-degenerate form defining symplectic structure on M.

Differentials

d—de Rham differential, $d: \Omega^k(M) \to \Omega^{k+1}(M)$, $d^2 = 0, df = \frac{\partial f}{\partial x^a} dx^a, \qquad d(\omega \wedge \rho) = d\omega \wedge \rho + (-1)^{p(\omega)} \omega \wedge d\rho,$

 d_P —Lichnerowicz- Poisson differential, $d_P \colon \mathfrak{A}^k(M) \to \mathfrak{A}^{k+1}(M)$,

$$d_P f = \frac{\partial f}{\partial x^b} P^{ba} \frac{\partial}{\partial x^a}$$
 (for a function $f = f(x)$), $d_P^2 = 0$,

 $d_P P = 0 \leftrightarrow \text{Jacobi identity for odd Poisson bracket } [,]$

Differential forms and multivector fields

 \mathfrak{A}^* space of multivector fields on M, Ω^* space of differential forms on M,

$$\begin{array}{ccc} \mathfrak{A}^k(M) & \stackrel{d_P}{\longrightarrow} & \mathfrak{A}^{k+1}(M) \\ \uparrow & & \uparrow \\ \Omega^k(M) & \stackrel{d}{\longrightarrow} & \Omega^{k+1}(M) \end{array}$$

Differential forms and multivector fields

 \mathfrak{A}^* — multivector fields on M= functions on ΠT^*M Ω^* — differential forms on M= functions on ΠTM ,

$$\mathfrak{A}^{k}(M) \xrightarrow{d_{P}} \mathfrak{A}^{k+1}(M) \qquad C(\Pi T^{*}M) \xrightarrow{d_{P}} C(\Pi T^{*}M)
\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow
\Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M) \qquad C(\Pi TM) \xrightarrow{d} C(\Pi TM)
d\omega(x,\xi) = \xi^{a} \frac{\partial}{\partial x^{a}} \omega(x,\xi), d_{P}F(x,\theta) = [P,F]_{1},$$

 $[P,F]_1$ -canonical odd Poisson bracket on ΠT^*M .

Poisson manifold and....

$$x^a = (x^1, ..., x^n)$$
— coordinates on M
 $(x^a, \xi^b) = (x^1, ..., x^n; \xi^1, ..., \xi^n)$, —coordinates on ΠTM

$$p(\xi^a) = p(x^a) + 1, x^{a'} = x^{a'}(x^a) \to \xi^{a'} = \xi^a \frac{\partial x^{a'}}{\partial x^a}. \qquad (dx^a \leftrightarrow \xi^a).$$

Respectively

$$(x^a, \theta_b) = (x^1, \dots, x^n; \theta_1, \dots, \theta_n),$$
 —coordinates on ΠT^*M

$$p(\theta_a) = p(x^a) + 1, x^{a'} = x^{a'}(x^a) \to \theta_{a'} = \theta_a \frac{\partial x^a}{\partial x^{a'}}. \qquad (\partial_a \leftrightarrow \theta_a).$$

Example

$$\Omega^* \ni \omega = I_a dx^a + r_{ab} dx^a \wedge dx^b \leftrightarrow \omega(x, \xi) = I_a \xi^a + r_{ab} \xi^a \xi^b \in C(\Pi TM)$$

$$\mathfrak{A}^* \ni F = X^a \partial_a + M^{ab} \partial_a \wedge \partial_b \leftrightarrow F(x, \theta) = X^a \partial_a + M^{ab} \partial_a \partial_b \in C(\Pi T^*M).$$

Canonical odd Poisson bracket

F. G multivector fields [F, G] Schouten commutator' [F, G] odd Poisson bracket'

F, G functions on ΠT^*M

$$\mathbf{X} = X^a \partial_a, [\mathbf{X}, F] = \mathfrak{L}_{\mathbf{X}} F$$

 $P = P^{ab} \partial_a \wedge \partial_b, [P, F] = d_P F$

$$\begin{aligned} \mathbf{X} &= X^a \partial_a, [\mathbf{X}, F] = \mathfrak{L}_{\mathbf{X}} F \\ P &= P^{ab} \partial_a \wedge \partial_b, [P, F] = d_P F \end{aligned} \qquad \begin{aligned} [\mathbf{X}, F] &= [X^a \theta_a, F(x, \theta)] \\ d_P F &= [P, F] = [P^{ab} \theta_a \theta_b, F(x, \theta)] \end{aligned}$$

$$[F(x,\theta),G(x,\theta)] = \frac{\partial F(x,\theta)}{\partial x^a} \frac{\partial G(x,\theta)}{\partial \theta_a} + (-1)^{p(F)} \frac{\partial F(x,\theta)}{\partial \theta_a} \frac{\partial G(x,\theta)}{\partial x^a}.$$

Names are

odd Poisson bracket Schouten bracket Buttin bracket anti-bracket

Koszul bracket on differential forms

$$\varphi_P \colon \Pi T^*M \to \Pi TM$$

 $\varphi_P^* \colon C(\Pi T^*M) \leftarrow C(\Pi TM)$, $\xi^a = P^{ab}\theta_b \text{ or } dx^a = P^{ab}\partial_b$

From bracket [,] on functions to Koszul bracket on diff. forms

$$[\omega,\sigma]_P = (\varphi_P^*)^{-1} \left([\varphi_P^*(\omega), \varphi_P^*(\sigma)]_P \right).$$

$$[f,g]_P = 0, [f,dg]_P = (-1)^{p(f)} \{f,g\}_P, [df,dg]_P = (-1)^{p(f)} d(\{f,g\}_P)$$

This formula survives the limit if *P* is degenerate.

Question

We have
$$\Pi T^* M \xrightarrow{\varphi_P} \Pi TM$$

What happens if even function $P = \frac{1}{2}P^{ab}(x,\theta)\theta_a\theta_b$ is replaced by an arbitrary even function $P = P(x,\theta)$ which obeys the master-equation

$$[P,P] = 2 \frac{\partial P(x,\theta)}{\partial x^a} \frac{\partial P(x,\theta)}{\partial \theta^a} = 0.$$

(In the case $P = \frac{1}{2}P^{ab}(x,\theta)\theta_a\theta_b$ master-equation is just Jacobi identity for Poisson bracket $\{,\}_P$ on M.)

Master-Hamiltonian → brackets (I-st case)

M—(super)manifold. (coordinates '
$$x = x^a$$
)

Odd Hamiltonian Q(x,p) on T^*M , $(p=p_b$ fibre coordinates) defines homotopy odd Poisson (Schouten) brackets on M—collection $\{\{\}_Q, \{,,\}_Q, \{,,\}_Q, \ldots\}$ of brackets on M:

$$\{f\}_{Q} = (Q, f)\big|_{p=0}, \quad \{f, g\}_{Q} = ((Q, f), g)\big|_{p=0},$$

 $\{f_1, f_2, \dots, f_n\}_{Q} = ((\dots(Q, f_1), f_2), \dots, f_n)\big|_{p=0}$

(,)—canonical even Poisson bracket on T^*M . (Q, Q) = 0—Jacobi identity,

We come to usual odd Poisson bracket if Hamiltonian is quadratic in momenta, $Q = Q^{ab}p_ap_b$.

Master-Hamiltonian → brackets (II-nd case)

Even Hamiltonian $H(x, \theta)$ on ΠT^*M , $(\theta = \theta_b$ fibre coordinates) defines homotopy Poisson brackets on M— collection $\{\{\}_H, \{,,\}_H, \{,,\}_H, \dots\}$ of brackets on M:

$$\{f\}_{H} = [H, f]|_{\theta=0}, \quad \{f, g\}_{H} = [[H, f], g]|_{\theta=0},$$

 $\{f_{1}, f_{2}, \dots, f_{n}\}_{H} = [[\dots [H, f_{1}], f_{2}], \dots, f_{n}]|_{\theta=0}$

[,]—canonical odd Poisson bracket on ΠT^*M [H,H]=0— Jacobi identity We come to usual even Poisson bracket if Hamiltonian is quadratic in momenta, $H=H^{ab}\theta_a\theta_b$.

Mackenzie-Xu symplectomorphism

 $E \rightarrow B$ —vector bundle. Canonical symplectomorphism (MX-symplectomorphism)

$$T^*E \leftrightarrow T^*E^*$$

Local coordinates

coord. on
$$E$$

$$\underbrace{x^{\mu}, u^{i}}_{\text{coord. on } T^{*}E}; p_{\mu}, p_{j}, \underbrace{y^{\nu}, u_{i}}_{\text{coord. on } T^{*}E^{*}}; q_{\mu}, p^{k}.$$

Then $\kappa \colon T^*E \to T^*E^*$ is such that

$$\kappa^*(y^{\mu}) = x^{\mu}, \; \kappa^*(u_i) = \rho_i, \; \kappa^*(q_{\mu}) = -\rho_{\mu}, \; \kappa(\rho^i) = u^i.$$

Canonical odd Poisson bracket on ΠT^*M

Consider an odd Hamiltonian $Q = p_a \eta^a$ on tangent bundle $T^*(\Pi T^*M)$ to ΠT^*M .

coordinates
$$\underbrace{\begin{array}{c} \Pi T^* M \\ \overbrace{x^a, \theta_b}; p_a, \eta^b \end{array}}_{T^*(\Pi T^* M)}$$

Odd Hamiltonian $Q = p_a \eta^a$ is quadratic in momenta. It generates an odd canonical Poisson bracket [,] on ΠT^*M : $[f,g] = [f,g]_P = ((Q,f),h) =$

$$=\left(\eta^{a}\frac{\partial f}{\partial x^{a}}+p_{a}\frac{\partial g}{\partial \theta_{a}},g\right)=\frac{\partial f}{\partial x^{a}}\frac{\partial g}{\partial \theta_{a}}+\frac{\partial g}{\partial \theta_{a}}\frac{\partial f}{\partial x^{a}}$$

(,) is canonical Poisson bracket on $T^*(\Pi T^*M)$.

Consider MX symplectomorphism $T^*(\Pi T^*M) \leftrightarrow T^*(\Pi TM)$:

$$\underbrace{\overbrace{x^{a},\theta_{b}}^{T^{*}};p_{a},\eta^{b}}_{T^{*}(\Pi T^{*}M)} \leftrightarrow \underbrace{\overbrace{x^{a},\xi^{b}}^{\Pi TM};q_{a},\pi_{b}}_{T^{*}(\Pi TM)}$$

 $p_a \leftrightarrow -q_a, \ \theta_b \leftrightarrow \pi_b, \ \eta^a \leftrightarrow \xi^a,$ Odd Hamiltonian $Q = p_a \eta^a \leftrightarrow \text{odd Hamiltonian } K = q_a \xi^a.$

$$[\omega] = (K, \omega) = \xi^a \frac{\partial \omega}{\partial x^a} = d\omega, (\omega(x, \xi) \to \omega(x, dx)).$$

(all higher brackets vanish) Odd homtopy bracket is nothing but de Rham differential.

Lichnerowicz differential d_P

For even function $P = P(x, \theta)$ ([P, P] = 0)

$$d_P F = [P, F].(d_P^2 = 0)$$

Consider

$$Q_P = (P, Q) = (P, p_a \eta^a) = p_a \frac{\partial P(x, \theta)}{\partial \theta_a} + \eta^a \frac{\partial P(x, \theta)}{\partial x^a}$$

This is Hamiltonian linear in momenta. It produces degenerate homotopy bracket—Lichnerowicz differential:.

$$[F] = (Q_P, F) = ((P, Q), F) = [P, F] = d_P F.$$

(all higher brackets vanish)

Lichnerowic differential → Higher Koszul brackets

Under MX symplectomorphism, Hamiltonian

$$Q_P(x,\theta,p,\eta) = p_a \frac{\partial P(x,\theta)}{\partial \theta_a a} + \eta^a \frac{\partial P(x,\theta)}{\partial x^a} \text{ on } T^*(\Pi T^*M)$$

transforms to Hamiltonian

$$K_P(x,\xi,q,\pi) = q_a \frac{\partial P(x,\pi)}{\partial \pi_a a} + \eta^a \frac{\partial P(x,\pi)}{\partial x^a} \text{ on } T^*(\Pi TM).$$

This Hamiltonian defines homotopy Schouten bracket on ΠTM (Higher Koszul bracket on differential forms)

Higher Koszul brackets on M

Odd Hamiltonian K_P on $T^*(\Pi TM)$ defines homotopy odd Poisson bracket (higher Koszul bracket) on ΠTM ,

$$\begin{aligned} [F_1, F_2, \dots, F_n]_P &= [\dots [K_P, F_1], \dots, F_p] \big|_{\Pi TM}, \qquad \big|_{\Pi TM} = \big|_{p = \pi = 0}. \\ F &= F(x, \xi) = f(x) + \xi^a f_a(x) + \dots, (df = \xi^a \partial_a f), \\ [f]_P &= 0, [f_1, f_2, \dots, f_k]_P = 0 \\ [f_1, df_2, \dots, df_n] &= \{f_1, f_2, \dots, f_n\}, \\ [df_1, df_2, \dots, df_n] &= d\{f_1, f_2, \dots, f_n\}, \end{aligned}$$

In the same way as for classical case $(P = P^{ab}\theta_b\theta_a)$

Recall the classical case $P = P^{ab}\theta_b\theta_a$

 \mathfrak{A}^* — multivector fields on M= functions on ΠT^*M Ω^* — differential forms on M= functions on ΠTM ,

Then

$$\varphi_P^*(d\omega) = d_P(\varphi_P^*\omega).$$

This relation survives for an arbitrary $P = P(x, \theta)$ ([P, P] = 0.)

Two Hamiltonians

$$\phi_P \sqcap TM o \sqcap T^*M \colon \ \xi^a = rac{1}{2} rac{\partial P(x, heta)}{\partial heta_a} \ .$$
 $\phi_P^*(d\omega) = d_P(\phi_P^*\omega) ., \qquad (Q_P, \phi_P^*\omega) = \phi_P^*((K, \phi)) \ .$
 $T^*(\Pi T^*M) \qquad \longrightarrow \qquad T^*(\Pi TM) \ Q = p_a \eta^a \qquad \longrightarrow \qquad K = \eta^a q_a \ canonical odd bracket \qquad \longrightarrow \qquad de \ Rham \ differential \ on \ \Pi TM \ Q_P = (P, Q) \qquad \longrightarrow \qquad K_P \ Lichnerowicz \ diff. \ on \ \Pi T^*M \qquad \longrightarrow \qquad \text{Higher Koszul bracket } on \ \Pi TM$

Map φ_P intertwines Lichnerowicz and de Rham differentials, i.e. Hamiltonians Q_P and K.

Question

Map φ_P intertwines Lichnerowicz and de Rham differentials, i.e. Hamiltonians Q_P and K.

How look a map which intertwines Hamiltonians, Q and K_P , i.e. a map which intewins canonical Schouten bracket and higher Koszul brackets???

Usual Poisson bracket

 $P(x,\theta) = P^{ab}(x)\theta_a\theta_b$ even function on ΠT^*M quadratic on θ defines usual Poisson bracket on M: for $f,g \in C(M)$

$$\begin{split} \{f,g\} &= \{f(x),g(x)\}_P = [[P,f],g] = \frac{\partial}{\partial \theta^b} \left(\frac{\partial P(x,\theta)}{\partial \theta^a} \frac{\partial f}{\partial x^a}\right) \frac{\partial g}{\partial x^b} = \\ &\qquad \qquad \frac{\partial f}{\partial x^a} P^{ab} \frac{\partial g}{\partial x^b} \,. \end{split}$$
 Jacobi identity :
$$0 = [P,P] = 2 \frac{\partial P}{\partial x^a} \frac{\partial P}{\partial \theta_c} = 4 \partial_a P^{bc} P^{ad} \theta_b \theta_c \theta_d \end{split}$$

i.e.

$$P^{da}\partial_a P^{bc} + P^{ba}\partial_a P^{cd} + P^{ca}\partial_a P^{db} = 0$$
.

Higher Poisson brackets on M

Even (non-quadratic in momenta) Hamiltonian in ΠT^*M , $H = P(x, \theta)$, ([P, P] = 0 Jacobi identity) defines homotopy Poisson brackets, higher even brackets:

$$\{f_1, f_2, \dots, f_n\}_P = [\dots [P, f_1], \dots, f_p]_M, \qquad \Big|_M = \Big|_{\theta=0}.$$

lf

$$P = P^{a}\theta_{a} + \frac{1}{2}P^{ab}\theta_{b}\theta_{a} + \frac{1}{6}P^{abc}\theta_{c}\theta_{b}\theta_{a} + \dots$$

then

$$\{x^a\}_P = P^a, \{x^a, x^b\} = P^{ab}, \{x^a, x^b, x^c\} = P^{abc} \dots,$$

From ΠT^*M to ΠTM .

Theorem

There is a natural odd linear map $C(\Pi T^*M) \to C(T^*(\Pi TM))$ that takes canonical odd Poisson bracket on ΠT^*M to canonical even Poisson bracket on $T^*(\Pi TM)$

Corollary

even Hamiltonian odd Hamiltonian
$$P = P(x, \theta)$$
 on ΠT^*M $\longrightarrow K = K_P(x, \xi; p, \pi)$ on $T^*(\Pi TM)$ defining higher koszul Poisson bracket on M bracket on ΠT^*M

Recall: Master-Hamiltonian → homotopy brackets

$$M$$
—(super)manifold. (coordinates $x = x^a$)

Odd Hamiltonian Q(x,p) on T^*M , $(p=p_b$ fibre coordinates) defines homotopy odd Poisson (Schouten) brackets on M—collection $\{\{\}_Q, \{\,,\,\}_Q, \{\,,\,\}_Q, \ldots\}$ of brackets on M:

$$\{f\}_Q = (H, f)\big|_{p=0}, \quad \{f, g\}_H = ((H, f), g)\big|_{p=0},$$

$$\{f_1, f_2, \dots, f_n\}_Q = (\dots(Q, f_1), f_2), \dots,)\big|_{p_b=0}$$

(,)—canonical even Poisson bracket on T^*M . (Q,Q) = 0—Jacobi identity,

We come to usual odd Poisson bracket if Hamiltonian is quadratic in momenta, $Q = Q^{ab}p_ap_b$.

Homotopy bracket on $M \to L_\infty$ -algebra of functions on $M \to Q$ -manifold

M an arbitrary (super)manifold

Let Q = Q(x,p) be an odd Hamiltonian in T^*M , and Jacobi identity (Q,Q) = 0 is obeyed.

The odd Hamiltonian Q defines homotopy odd Poisson (homotopy Schouten) bracket on M.

iConisder the following Hamilton-Jacobi vector field

$$\mathbf{X}_{Q} \colon C(T^{*}M) \ni f \to f + \varepsilon Q\left(x^{a}, p_{b} = \frac{\partial f(x)}{\partial x^{b}}\right),$$

$$\mathbf{X}_Q = \int_M dx Q\left(x^a, \frac{\partial f(x)}{\partial x^b}\right) \frac{\delta}{\delta f(x)}, \mathbf{X}_Q^2 = \frac{1}{2}[\mathbf{X}_Q, \mathbf{X}_Q] = 0.$$

 \mathbf{X}_Q is homological vector field on infinite-dimensional space $\mathfrak{M} = C(M)$ of functions on manifold M.

Higher brackets

Homotopy Schouten structure on functions on *M* defined by odd Hamiltonian *Q*

L

Q-manifold $(\mathfrak{M},\mathbf{X}_Q),\ L_{\infty}$ algebra $\mathfrak{M}=C(M)$ and \mathbf{X}_Q is Hamilton Jacobi field of Q

$$P = P(x, \theta), [P, P] = 0.$$

$$\begin{array}{ccc} \Pi T^*M - (x^a, \theta_b) & \Pi TM - (x^a, \xi^b) \\ \text{Odd Poisson canonical bracket} & \text{Odd homotopy Koszul bracket} \\ \text{Hamiltonian } Q = p_a \xi^a & \text{Hamiltonian } K_P = \xi^a \frac{\partial P}{\partial x^a} + p_a \frac{\partial P}{\partial \theta_a} \\ \text{on } T(\Pi T^*M) - (x^a, \theta_b; p_a, \xi^a) & \text{on } T^*(\Pi TM) - (y^a, \xi^b; p_a, \theta_b) \end{array}$$

$$Q$$
-manifold, L_{∞} algebra Q -manifold, L_{∞} algebra $\mathfrak{M}_1 = C(\Pi T^*M), \mathbf{X}_1 = \mathbf{X}_Q$ $\mathfrak{M}_2 = C(\Pi TM), \mathbf{X}_2 = \mathbf{X}_{K_p}$

Does there exist L_{∞} -morphism $(\mathfrak{M}_2, \mathbf{X}_2) \to (\mathfrak{M}_1, \mathbf{X}_1)$, i.e. map $\mathfrak{M}_2 \to \mathfrak{M}_1$ (may be non-linear) which intertwines homological vector fields $\mathbf{X}_1, \mathbf{X}_2$?

Theorem

Yes, it does.

Special case,
$$P = \frac{1}{2}P^{ab}\theta_b\theta_a$$

In this case the map

$$\Pi T^*M \to \Pi TM$$
: $\xi^a = \frac{\partial P}{\partial \theta^a} = P^{ab}(x)\theta_b$,

is linear in fibres. Morphism of Q-manifolds

$$C(\Pi T^*M) \leftarrow C(\Pi TM)$$

is its pull-back.

These linear maps intertwine differentials d and d_P , Hamiltonians Q and K_P and their homological vector fields \mathbf{X}_Q and \mathbf{X}_{K_P} on infinite-dimensional spaces of functions.

It is more tricky if $P(x, \theta)$ is an arbitrary function (solution of master-equation [P, P] = 0. The map

$$\Pi T^*M \to \Pi TM: \quad \xi^a = \frac{\partial P(x,\theta)}{\partial \theta^a}$$

is in general non-linear map. Does there exist morphism of Q-manifolds $(\mathfrak{M}_2,\mathbf{X}_2)=(C(\Pi TM),\mathbf{X}_{K_P}) \to (\mathfrak{M}_1,\mathbf{X}_1)=(C(\Pi T^*M),\mathbf{X}_Q)$? In other words does there exist a (non-linear) map $C(\Pi TM) \to C(\Pi T^*M)$? which intertwines canonical odd Poisson bracket $[\]$ on ΠT^*M and homotopy Koszul brackets $[\]_P,[\]_P,[\]_P,[\]_P,\dots$ on ΠTM ?

Recall: Two Hamiltonians

$$\phi_P \sqcap TM o \sqcap T^*M \colon \ \xi^a = rac{1}{2} rac{\partial P(x, heta)}{\partial heta_a} \ .$$
 $\phi_P^*(d\omega) = d_P(\phi_P^*\omega) \ ., \qquad (Q_P, \phi_P^*\omega) = \phi_P^*((K, \phi)) \ .$
 $T^*(\Pi T^*M) \qquad \longrightarrow \qquad T^*(\Pi TM) \ Q = p_a \eta^a \qquad \longrightarrow \qquad K = \eta^a q_a \ canonical odd bracket \qquad \longrightarrow \qquad de \ Rham \ differential \ on \ \Pi TM \ Q_P = (P, Q) \qquad \longrightarrow \qquad K_P \ Lichnerowicz \ diff. \ on \ \Pi T^*M \qquad \longrightarrow \qquad \text{Higher Koszul bracket } on \ \Pi TM$

Map φ_P intertwines Lichnerowicz and de Rham differentials, i.e. Hamiltonians Q_P and K.

Recall:Question

Map φ_P intertwines Lichnerowicz and de Rham differentials, i.e. Hamiltonians Q_P and K.

How look a map which intertwines Hamiltonians Q and K_P ? a map which intertwines canonical Schouten bracket and higher Koszul brackets???

Answer

Morphism $\varphi_P \colon \Pi T^*M \to \Pi TM$ intertwines Hamiltonians Q_p and K

We try to construct a 'morphism', (sort of morphism)

$$\Phi: \Pi T^*M \to \Pi TM$$
,

which intertwines Hamiltonians Q and K_P

 $\Phi = \phi_P^*$ is *thick morphism* which is adjoint to morphism φ_P .

Definition of thick morphism. (T.Voronov)

 M_1 , M_2 -two (super)manifolds x^i -coordinates on M_1 , y^a -coordinates on M_2

> Consider symplectic manifold $T^*M_1 \times (-T^*M_2)$ equipped with canonical symplectic structure

$$\omega = \omega_1 - \omega_2 = \underbrace{dp_i \wedge dx^i}_{\text{coord. on } T^*M_1 \text{ coord. on } T^*M_2$$

function $S = S(x,q)$

Lagrangian surface $\Lambda_S \subset T^*M_1 \times (-T^*M_2)$:

defines Lagrangian surface $\Lambda_S \subset T^*M_1 \times (-T^*M_2)$:

$$\Lambda_{\mathcal{S}} = \left\{ (x, p, y, q) \colon \quad p_i = \frac{\partial \mathcal{S}(x, q)}{\partial x^i}, y^b = \frac{\partial \mathcal{S}(x, q)}{\partial q_b} \right\}$$

Lagrangian surface—canonical relation—thick morphism

Lagr. surf. Λ_S is canon. relation Φ_S in $T^*M_1 \times (-T^*M_2)$

$$(x^{i},p_{j})\sim_{\mathcal{S}}(y^{a},q_{b})\leftrightarrow(x^{i},p_{j},y^{a},q_{b})\in\Lambda_{\mathcal{S}},(\Phi_{\mathcal{S}}=\sim_{\mathcal{S}}).$$

$$\Phi = \Phi_s$$
 is a thick morphism $M_1 \Rightarrow M_2$

It defines pull-back Φ_S^* of functions

$$\Phi_{S}^{*} \colon \mathfrak{M}_{2} = C(M_{2}) \to \mathfrak{M}_{1} = C(M_{1}),$$

such that for every function $g = g(y) \in \mathfrak{M}_2$,

$$f = f(x) = (\Phi_S^* g)(x) : \Lambda_f = \Phi_S \circ \Lambda_g$$

where Λ_f, Λ_g are Lagrangian surfaces, graphs of df, dg in T^*M_1, T^*M_2 .

Explicit expression

$$f(x) = (\Phi_{S}^{*}g)(x) = g(y) + S(x,q) - y^{a}q_{a}$$

where y^a and q_a are defined from the equations

$$y^a = \frac{\partial S(x,q)}{\partial q_a}, \quad q_a = \frac{\partial g(y)}{\partial y^a}$$

We see that $\Lambda_f = \Phi_S \circ \Lambda_g$ since

$$p_i = \frac{\partial f}{\partial x^i} = \frac{\partial}{\partial x^i} (g(y) + S(x,q) - y^a q_a) = \frac{\partial S(x,q)}{\partial x^i}.$$

Properties of thick morphism

Example

Generating function $S = S^a(x)q_a$

$$(\Phi_{S}^{*}g)(x) = g(y) + S(x,q) - y^{a}q_{a} = g(y) + \underbrace{(S^{a}(x) - y^{a})}_{\text{vanishes}} q_{a} = g(S^{a}(x))$$

Thick morphism $M_1 \overset{\Phi_s}{\Rightarrow} M_2$ is usual morphism $M_1 \overset{y^a = S^a(x)}{\rightarrow} M_2$. In general case if $S(x,q) = S(x) + S^a(x) q_a q_b + S^{ab}(x) q_a q_b + \dots$

$$(\Phi_S^*g)(x) = S(x) + \left(g(y) + S^{ab}(x) \frac{\partial g(y)}{\partial y^a} \frac{\partial g(y)}{\partial y^b} + \dots \right)_{y^a = S^a(x)}$$

is non-linear pull-back.

Why it is important. Voronov's Theorem and Corollary

Theorem

Let Φ_S : $M_1 \Rightarrow M_2$ be a thick morphism. Let Q_1, Q_2 be Φ_S related Hamilt. on T^*M_1, T^*M_2 :

$$Q_1\left(x^i, p_j = \frac{\partial S(x, q)}{\partial x^j}\right) \equiv Q_2\left(y^a = \frac{\partial S(x, q)}{\partial q_a}, q_b\right).$$

Then Hamilton-Jacobi vector fields \mathbf{X}_{Q_1} , \mathbf{X}_{Q_2} on spaces $\mathfrak{M}_1, \mathfrak{M}_2$ of functions are related by non-linear pull back Φ_S^*

Corollary

Let $\Phi_S \colon M_1 \Rrightarrow M_2$ be a thick morphism. If odd Hamiltonians $Q_1.Q_2$ are Φ_S related and

$$(Q_1,Q_1)=(Q_2)=Q_2)=0\,,$$

then non-linear pull-back

$$\Phi_S^* \colon \mathfrak{M}_2 \to \mathfrak{M}_1$$

defines L_{∞} -morphism of L_{∞} algebras $(\mathfrak{M}_1, \mathbf{X}_{Q_1})$ and $(\mathfrak{M}_2, \mathbf{X}_{Q_2})$.

Revenons à nos moutons

Morphism (usual) φ_P intertwines Hamilt. Q_P and K??? thick morphism ϕ_S which intertwines Hamilt. Q and K_P .

 Q_P and K are φ_P related, Q and K_P will be φ_P related

Thick morphism—generalisation of adjoint

$$E o M$$
 vector bundle $\Phi \colon E \Rrightarrow E^* \qquad \Leftrightarrow \qquad \Phi^+ \colon E \Rrightarrow E^*$ $L = L_S$ Lagr. surf.defining $\Phi \Leftrightarrow L^* = L_{S^*}$ Lagr. surf.defining $\Phi \Leftrightarrow L^* = L_{S^*}$ Lagr. surf.defining $\Phi \Leftrightarrow L^* = L_{S^*}$

These Lagrangian surfaces belong to $T^*E \times (-T^*E^*)$.

$$\begin{array}{cccc} T^*E \times (-T^*E^*) & \overset{\mbox{\scriptsize MX symplectom.}}{\longleftrightarrow} & T^*E \times (-T^*E^*) \\ S & & \leftrightarrow & S^* \\ \Lambda = \Lambda_S & & \leftrightarrow & \Lambda^* = \Lambda_{S^*} \end{array}$$

If Φ is linear map in fibres, then Φ^* is just its adjoint.

Return again to our case

Morphism (usual) φ_P intertwines Hamilt. Q_P and K??? thick morphism ϕ_S ? which intertwines Hamilt. Q and K_P .

 Q_P and K are φ_P related, Q and K_P will be φ_P related

Solution

$$\varphi_P$$
: $\Pi TM \to \Pi T^*M$: $\xi^a = \frac{1}{2} \frac{\partial P(x, \theta)}{\partial \theta_a}$.

Let ϕ be a thick morphism adjoint to morphism ϕ_P . We know that ϕ_P intertwines Q_P and KWe have that Mackenzie-Xu symplectomorphism transforms:

$$\varphi_P \leftrightarrow \phi$$
 $K \leftrightarrow Q$
 $Q_P \leftrightarrow K_P$

Hence adjoint thick morphism ϕ intertwines Q and K_P . The pull-back $\phi^* : C(\Pi T^*M) \leftarrow C(\Pi TM)$ is non-linear map on space of functions which transfors homotopy Koszul brcket to canonical Schouten bracket.

Higher Koszul brackets and thick Land Thick morphisms

Thank you

Papers that talk is based on

- [1] H.M.Khudaverdian, Th. Voronov *Higher Poisson brackets* and differential forms, 2008a In: Geometric Methods in Physics. AIP Conference Proceedings 1079, American Institute of Physics, Melville, New York, 2008, 203-215., arXiv: 0808.3406
- [2] Th. Voronov, Nonlinear pullback on functions and a formal category extending the category of supermanifolds], arXiv: 1409.6475
- [3] Th. Voronov, Microformal geometry, arXiv: 1411.6720