ACL 2025 ■ Taming LLMs with Gradient Grouping

Siyuan Li^{1,2,*}, Juanxi Tian^{2,4,*}, Zedong Wang^{3,*}, Xin Jin², Zicheng Liu^{1,2,†}, Wentao Zhang⁴, Dan Xu³

Mean

Global Statistics

Global

Median Dev.

Introduction and Contributions

Training LLMs poses challenges due to their massive scale and heterogeneous architectures. While adaptive optimizers like AdamW help address gradient variations, they still struggle with efficient and effective parameter-wise learning rate estimation, resulting in training instability, slow convergence, and poor compatibility with PEFT techniques.

- Scaling with Gradient Grouping (SGG) is a flexible LLM optimizer wrapper that scales adaptive learning rates with online grouping constraints rather than replace them in pre-defined groups (like Adam-mini), balancing parameter-wise dynamics and collective optimization behavior.
- Practically, SGG integrates seamlessly with existing optimizers and PEFT techniques, requiring no changes to the training pipeline or model architectures with the CPU and CPU-GPU hybrid implementations.
- SGG's consistent improvement shows the potential of scaling adaptive learning rates with group-wise constraints with LLMs (pre-training, PEFT, RL tasks) and MLLMs. SGG offers an intuitive instantiation of this scheme, while different grouping and scaling strategies are conceivable and might inspire future studies.

Overview of SGG Optimization

Comparison Experiments

LLM Comparison: C4 Pre-training with diverse LLaMA sizes and popular LLM optimizers.

Method	Venue	60M	130M	350M	1B			
Pre-training with	Full-Rank (Optimize	ers					
Adam [†]	ICLR'15	34.06	25.08	18.80	15.56			
NAdam	ICLR'18	35.86	28.88	19.24	15.78			
RAdam	ICLR'20	30.43	25.17	19.13	15.65			
LAMB	ICLR'20	33.04	24.37	18.26	15.84			
Adan	TPAMI'23	32.01 23.14		17.32	14.70			
Adam+SGG	Ours	30.31	22.18	17.28	14.30			
Δ Gains		-3.75	-2.90	-1.52	-1.26			
Pre-training with Memory-efficient Optimizers								
Adam-mini†	ICLR'25	34.10	24.85	19.05	16.07			
Adafactor [†]	ICML'18	32.57	23.98	17.74	15.19			
Low-Rank [†]	arXiv'22	78.18	45.51	37.41	34.53			
CAME	ACL'23	31.37	23.38	17.45	14.68			
CAME+SGG	Ours	30.15	22.91	17.09	14.35			
Δ Gains		-1.22	-0.46	-0.36	-0.33			
APOLLO [†]	MLSys'25	31.55	22.94	16.85	14.20			
APOLLO+SGG	Ours	30.18	22.52	16.54	13.95			
Δ Gains		-1.37	-0.42	-0.31	-0.25			
Low-Rank Pre-tre	aining	0						
$LoRA^{\dagger}$	ICLR'22	34.99	33.92	25.58	19.21			
ReLoRA [†]	ICLR'23	37.04	29.37	29.08	18.33			
GaLore [†]	ICML'24	34.88	25.36	18.95	15.64			
LoRA+SGG	Ours	30.62	23.62	17.86	14.73			
Δ Gains		-4.37	-10.30	-7.72	-4.48			
Training Tokens	1.1B	2.2B	6.4B	13.1B				

Considering a neural net layer $W \in \mathbb{R}^{m \times n}$ $(m \le n)$ with LoRA's rank $r \le n$ and SGG's clusters $K \ll m$.

Category	Method	Adaptive LR	Basic State	Extra State	Low-Rank	Plugin	Extra Branch	C4↓	GPU Memory
Classical Opt.	SGD	X	Weight & Grad.	X	X	X	X	_	2mn
Adaptive LR Opt.	Adam	Param-wise mn	Weight & Grad.	2^{nd} -Moment mn	X	X	X	23.36	3mn
Efficient Opt.	CAME	Param-wise mn	Weight & Grad.	NMF $2(m+n)$	NMF	X	X	-1.64	2mn+2(m+n)
PEFT	LoRA	X	Full-rank Grad.	X	LoRA	1	r(m+n)	+5.06	+3r(m+n)
Opt. Wrapper	SGG	Group-wise K	Base Opt.	Indices $(mn+K)$	Clustering	✓	X	-1.99	+0

MLLM Comparison: Top-1 accuracy (%) with LLaVA variants is reported, where MMB and MMB^{CN} denote MMbench and MMbench (Chinese).

Ontimizon	Image Question Answering				Benchmarks			Ava		
Optimizer	GQA	VizWiz	$SciVQA^{I}$	\mathbf{VQA}^T	MMB	MMB ^{CN}	POPE	Avg.		
LLaVA-v1.5 Full	-Rank	SFT								
AdamW	62.0	50.0	66.8	58.2	64.3	58.3	85.9	63.6		
Adafactor	62.7	48.2	70.7	57.1	66.1	60.4	86.0	64.5		
LAMB	43.8	53.3	61.5	43.4	43.2	41.8	81.2	52.6		
AdamW+SGG	62.4	50.2	69.8	57.4	65.9	60.1	86.3	64.6		
Δ Gains	+0.4	+0.2	+3.0	-0.8	+1.6	+1.8	+0.4	+1.0		
Adafactor+SGG	62.8	50.6	71.6	57.3	66.3	60.8	86.0	65.1		
Δ Gains	+0.1	+2.4	+0.9	+0.2	+0.2	+0.4	+0.0	+0.6		
LAMB+SGG	44.0	53.3	61.8	43.5	43.3	41.9	81.3	52.7		
Δ Gains	+0.2	+0.0	+0.3	+0.1	+0.1	+0.1	+0.1	+0.1		
LLaVA-v1.5 Low-Rank SFT (AdamW)										
LoRA	63.0	47.8	68.4	58.2	66.1	58.9	86.4	64.1		
LoRA+SGG	63.4	51.0	70.1	58.6	66.7	59.4	86.6	65.1		
Δ Gains	+0.4	+2.2	+1.5	+0.4	+0.6	+0.5	+0.2	+1.0		
LLaVA-v1.5 8-bit Low-Rank SFT (AdamW)										
Q-LoRA	54.3	50.7	66.4	52.5	56.0	49.8	82.9	58.9		
Q-LoRA+SGG	55.1	51.3	66.7	53.0	56.1	51.0	83.4	59.5		
Δ Gains	+0.8	+0.6	+0.3	+0.5	+0.1	+0.2	+0.5	+0.6		