Geometry of Surfaces - Exercises

Solutions to exercises marked with * are to be submitted online through the link on the Keats page for this module.

- **24.*** Find the equations of the tangent planes to the surface $\sigma(u,v) = (u,v,u^2-v^2)$ for (u,v) = (0,0) and (u,v) = (1,1).
- **25.*** Let $\gamma(s)$ be a unit speed curve in \mathbb{R}^3 with nowhere vanishing curvature κ . Let a > 0 and consider the tubular surface

$$\sigma(s, \theta) = \gamma(s) + a(\cos(\theta)\mathbf{n}(s) + \sin(\theta)\mathbf{b}(s)).$$

Prove that if $a\kappa < 1$ everywhere, then σ is a regular surface.

- **26.** Let $\gamma(s)$ be a unit speed curve in \mathbb{R}^3 with nowhere vanishing curvature and consider the surface $\sigma(s,v) = \gamma(s) + v\mathbf{t}(s)$. Prove that $\sigma(s,v)$ is a regular point of the surface if and only if $v \neq 0$. Show that the tangent plane of the surface at a regular point $\sigma(s,v)$ is the osculating plane of γ at $\gamma(s)$ (and therefore does not depend on v).
- **27.** Let $\sigma: U \to \mathbb{R}^3$, $(u,v) \mapsto \sigma(u,v)$ be a regular surface patch and N the unit normal to σ . Show that N_u and N_v are perpendicular to N. Assume that there exists a function $\alpha(u,v)$ and a point $p \in \mathbb{R}^3$ so that $\sigma + \alpha N = p$. Prove that the surface is contained in a sphere.
- **28.** Let I be an open interval in $\mathbb R$ and $\alpha, \beta: I \to \mathbb R^3$ be regular curves. Put $U = I \times I$ and define the surface

$$\sigma: U \to \mathbb{R}^3$$
, $(u, v) \mapsto \sigma(u, v) = \alpha(u) + \beta(v)$.

Describe the regular points of σ . Show that there exists a line that is contained in the tangent planes of all regular points of the form $\sigma(u,0)$.