Notes

13 mars, 2015

let $\epsilon > 0$ and $f \in C[0,1]$ Then there is N such that $||f - B_n(f)||_{\infty} < \epsilon$ for all n > N. $B_n(f) = \sum_{k=0}^n f(\frac{k}{n} \binom{n}{k} x^k (1-x)^{n-k}$

- 1. since [0,1] is compact and $f \in C[0,1]$ f is uniformly continuous on [0,1] so there is δ such that $|f(x) f(y)| < \frac{\epsilon}{2}$ when $|x y| < \delta$
- 2. f is bounded on [0,1] so $|f(x)| \leq M = \sup\{|f(x)|\}$ for all $x \in [0,1]$
- 3. now for $a \in [0,1]$, if $|x-a| < \delta$ then $|f(x)-f(a)| < \epsilon/2 + \frac{2M}{\delta^2}(x-a)^2$ if $|x-a|\epsilon\delta$ then $|f(x)-f(a) \le |f(x)| + |f(a)| \le 2M \le 2M/(x-a)/\delta)^2 \le \frac{2M}{\delta^2}(x-a)^2 + \frac{\epsilon}{2}$ so for a fixed a, no matter what x we let $|f(x)-f(a)| < \epsilon/2 + \frac{2M}{\delta^2}(x-a)^2$. this is not a good estimate, but it's an estimate that works no matter what.
- 4. $B_n(f(x) f(a) \cdot 1) = B_n(f(x)) B_n(f(a) \cdot 1) = B_n(f(x)) f(a)B_n(1) = B_n(f(x)) f(a) \cdot 1$ where 1 is the function that is one for all x and f(a) is a constant.

$$\begin{array}{l} \text{so } |B_n(f(x)) - f(a)| = |B_n(f(x) - f(a) \cdot 1)| \leq B_n(|f(x) - f(a) \cdot 1|) \leq B_n(\epsilon/2 + 2M/\delta^2(x - a)^2) = \\ B_n(\epsilon/2) + 2M/\delta^2 B_n((x - a)^2) = \epsilon/2 + 2M/\delta^2 [B_n(x^2 - 2ax + a^2]] = \frac{\epsilon}{2} + 2M/\delta^2 (B_n(x^2) - 2aB_n(x) + a^2) = \\ \frac{\epsilon}{2} + \frac{2M}{\delta^2} ((x^2 + \frac{x - x^2}{n}) - 2a(x) + a^2 \\ \text{recall that } B_n(1) = 1, B_n(x) = x, \text{ and } B_n(x^2) = \frac{x + (n - 1)x^2}{n} = x^2 + \frac{x - x^2}{n} \\ \text{if } g(x) = x - x^2 \text{ then it's max in } [0, 1] \text{ is } g(\frac{1}{2}) = \frac{1}{4} \text{ and so } |(B_n(f))(a) - f(a) \cdot 1| < \epsilon/2 + 2M/\delta^2 \\ \text{so } |(B_n(f))(a) - f(a) \cdot 1| < \epsilon/2 + 2M/\delta^2 \frac{a - a^2}{n} \text{ so } |(B_n(f))(a) - f(a) \cdot 1| < \epsilon/2 + 2M/\delta^2(\frac{1}{4n}) \end{array}$$

finish

this inequality does not depend on a. $||B_n(f) - f||_{\infty} < \epsilon/2 + \frac{2M}{\delta^2} \frac{1}{4n}$. Choos N such that $N \ge \frac{M}{\delta^2 \epsilon}$ so $\frac{M}{2\delta^2 N} < \epsilon/2$ and $||B_n(f) - f||_{\infty} < \epsilon/2 + \epsilon/2 = \epsilon$ for any n > N in other words, $\{B_n(f)\}$ converges to f uniformly on [0, 1]