Risk Averse Dynamic Programming

Andrés Ferragut

Universidad ORT Uruguay

Contenido

Medidas de riesgo

Programación dinámica de riesgo coherente

SDDP con medidas de riesgo

Ejemplo

Definiciones

Se considera un espacio de probabilidad (Ω, \mathcal{F}, P) en el cual están definidas variables aleatorias $X : \Omega \to \mathbb{R}$. Sea \mathcal{X} el espacio vectorial $L^p = \{X : E[|X|^p] < \infty\}$ con $p \ge 1$.

Definición: Función de Riesgo

Una función de riesgo es un funcional $\rho:\mathcal{X}\to\mathbb{R}$ que asigna a cada variable aleatoria un valor de riesgo. Asumimos que X es un costo por lo que valores altos de X implican mayor riesgo.

Definiciones

Definición: Riesgo Coherente

Una función de riesgo se denomina coherente si verifica:

- A1 Convexidad: $\rho(\lambda X + (1 \lambda)Y)) \leq \lambda \rho(X) + (1 \lambda)\rho(Y), \forall X, Y \in \mathcal{X}, \lambda \in [0, 1].$
- A2 **Monotonía:** Para todo $X, Y \in \mathcal{X}, X \leqslant Y \Rightarrow \rho(X) \leqslant \rho(Y)$.
- A3 Equivariancia traslacional: Para todo $X \in \mathcal{X}$, $c \in \mathbb{R}$, $\rho(X+c) = \rho(X) + c$.
- A4 Homogeneidad positiva: Para todo $X \in \mathcal{X}$, $\lambda \geqslant 0$, $\rho(\lambda X) = \lambda \rho(X)$.

Ejemplos

Ejemplo (Valor esperado)

Para cada X

$$\rho(X) = E[X]$$

es una función de riesgo coherente.

No-ejemplo (Value at Risk)

Para cada X

$$\rho(X) = V@R_{\alpha}[X] = \inf\{x : P(X > x) \leqslant \alpha\}$$

no es una función de riesgo coherente. Verifica (A2-A4) pero no la convexidad.

Value at Risk: interpretación

Caso continuo:

Value at Risk: interpretación

Caso continuo:

Caso discreto:

Idea: Definir un valor medio de costo para el $\alpha\%$ peor de los casos.

Caso continuo:

$$AV@R_{\alpha}(X) = E[X \mid X > V@R_{\alpha}(X)] = \frac{1}{\alpha} \int_{V@R_{\alpha}(X)}^{\infty} xf(x)dx.$$

Caso discreto: el problema está en que el cuantil α no es exacto, es decir en general:

$$P(X > V@R_{\alpha}(X)) < \alpha, \qquad P(X \geqslant V@R_{\alpha}(X)) > \alpha.$$

Idea: Considerar parte del átomo que se encuentra en el $V@R_{\alpha}(X)$ en el cálculo.

Definición: Average value at risk

Para cada $X \in \mathcal{X}$ se define:

$$\rho(X) = AV@R_{\alpha}(X) = \inf_{x} \left\{ x + \frac{1}{\alpha} E[(X - x)^{+}] \right\}.$$

Definición: Average value at risk

Para cada $X \in \mathcal{X}$ se define:

$$\rho(X) = AV@R_{\alpha}(X) = \inf_{x} \left\{ x + \frac{1}{\alpha} E[(X - x)^{+}] \right\}.$$

Propiedades:

- Es una medida de riesgo coherente (verifica A1-A4).
- ► Es conservadora respecto al $V@R_{\alpha}$, es decir: $AV@R_{\alpha}(X) \geqslant V@R_{\alpha}(X)$.

Caso continuo

En el caso continuo la definición coincide con la que ya vimos. Sea:

$$g(x) = x + \frac{1}{\alpha} E[(X - x)^+]$$

Observando que $\frac{d}{dx}(X-x)^+ = -\mathbf{1}_{\{X>x\}}$ (ctp), se tiene que:

$$g'(x) = 1 + \frac{1}{\alpha} E[-\mathbf{1}_{\{X > x\}}] = 1 - \frac{1}{\alpha} P(X > x) = 0 \Leftrightarrow x = x^* =: V@R_{\alpha}(X).$$

De donde:

$$AV@R_{\alpha}(X) = x^* + \frac{1}{\alpha}E[(X - x^*)^+]$$

$$= \frac{1}{\alpha}E[(x^* + (X - x^*)^+)\mathbf{1}_{\{X \geqslant x^*\}}]$$

$$= \frac{1}{\alpha}E[X\mathbf{1}_{\{X > x^*\}}] = E[X \mid X > V@R_{\alpha}(X)]$$

Sea X una v.a. discreta con recorrido $x_1 < \ldots < x_n$ y probabilidades $P(X = x_i) = p_i$. Entonces:

$$g(x) = x + \frac{1}{\alpha} E[(X - x)^{+}] = x + \frac{1}{\alpha} \sum_{x_{i} > x} p_{i}(x_{i} - x).$$

La anterior es una función lineal a tramos de x. Nuevamente se tiene:

$$g'(x) = 1 - \frac{1}{\alpha} \sum_{x_i > x} p_i = 1 - \frac{1}{\alpha} \sum_i p_i \mathbf{1}_{\{x_i > x\}}.$$

La función anterior cambia de signo en $x^*: P(X>x^*) < \alpha$ y $P(X\geqslant x^*) \geqslant \alpha$, es decir, en $x^*=V@R_{\alpha}(x)$.

Caso discreto

Evaluando en x^* obtenemos:

$$AV@R_{\alpha}(X) = x^* + \frac{1}{\alpha} \sum_{x_i > x^*} p_i(x_i - x^*)$$

$$= \frac{1}{\alpha} \left[\alpha x^* + \sum_{x_i > x^*} p_i(x_i - x^*) \right]$$

$$= \frac{1}{\alpha} \left[\left(\alpha - \sum_{x_i > x^*} p_i \right) x^* + \sum_{x_i > x^*} p_i x_i \right]$$

$$= \left(1 - \sum_{x_i > x^*} \frac{p_i}{\alpha} \right) x^* + \sum_{x_i > x^*} \frac{p_i}{\alpha} x_i$$

Es decir, para calcular el $AV@R_{\alpha}(X)$ discreta debemos:

- ightharpoonup Ordenar el recorrido $x_1 < x_2 < \ldots < x_n$.
- ► Hallar $x^* = V@R_{\alpha}(X)$ tal que $P(X > x^*) < \alpha$ y $P(X \ge x^*) \ge \alpha$.
- Reasignar las probabilidades del recorrido como:

$$x_i < x^* o 0, \quad x^* o \left(1 - \sum_{x_i > x_*} rac{p_i}{lpha}
ight), \quad x_i > x^* o rac{p_i}{lpha}.$$

y en este caso $AV@R_{\alpha}(X)=E_{\alpha}[X]$ siendo E_{α} la esperanza con la nueva medida de probabilidad.

Caso discreto: ejemplo

Contenido

Medidas de riesgo

Programación dinámica de riesgo coherente

SDDP con medidas de riesgo

Ejemplo

Stochastic dynamic programming para el costo medio

Problema del costo medio

$$\min_{\pi} E\left[\sum_{k=0}^{N-1} g_k(x_k, u_k, w_k) + g_N(x_N)\right],$$

sujeto a:
$$x_{k+1} = f_k(x_k, u_k, w_k)$$

 $u_k = \pi_k(x_k, w_k).$

con la hipótesis de que w_k son v.a. iid.

La esperanza anterior es en todos los w_k futuros.

Stochastic dynamic programming para el costo medio

Algoritmo de Bellman para el costo medio

Asumiendo un esquema ruido \rightarrow decisión:

$$V_N(x) = g_N(x),$$

 $\hat{V}_k(x, w) = \min_{u_k} \{ g_k(x, u_k, w) + V_{k+1}(f_k(x, u_k, w)) \},$
 $V_k(x) = E \left[\hat{V}_k(x, w_k) \right]$

Política óptima:

$$\pi_k(x, w) = \arg\min_{u_k} \{g_k(x, u_k, w) + V_{k+1}(f_k(x, u_k, w))\}.$$

Problema de aversión al riesgo

Si ahora tenemos una medida de riesgo ρ uno podría plantear:

Problema global de aversión al riesgo

$$\min_{\pi} \rho \left[\sum_{k=0}^{N-1} g_k(x_k, u_k, w_k) + g_N(x_N) \right],$$

sujeto a:
$$x_{k+1} = f_k(x_k, u_k, w_k)$$

 $u_k = \pi_k(x_k, w_k).$

con w_k iid.

Problema: No es posible descomponer aditivamente ρ , por lo que la estrategia de Bellman no funciona.

Problema de aversión al riesgo anidado

Como sustituto del problema anterior, uno puede plantear:

Problema anidado de aversión al riesgo

$$\min_{u_0}
ho_0 \left[g_0(x_0, u_0, w_0) +
ho_1 \left[\min_{u_1} g_1(x_1, u_1, w_1) +
ho_2[\cdots]
ight]
ight]$$

con las restricciones adicionales:

$$x_{k+1} = f_k(x_k, u_k, w_k)$$

y con w_k iid.

Nota: Las medidas de riesgo ρ_k toman en cuenta la información disponible hasta k (riesgo condicional al estado x_k y ruido w_k).

Stochastic dynamic programming con aversión al riesgo

El problema anterior admite una descomposición tipo Bellman:

Algoritmo de Bellman con aversión al riesgo

Asumiendo un esquema ruido \rightarrow decisión:

$$V_N(x) = g_N(x),$$

 $\hat{V}_k(x, w) = \min_{u_k} \{ g_k(x, u_k, w) + V_{k+1}(f_k(x, u_k, w)) \},$
 $V_k(x) = \rho_k \left[\hat{V}_k(x, w_k) \right]$

Política óptima:

$$\pi_k(x, w) = \arg\min_{u_k} \{g_k(x, u_k, w) + V_{k+1}(f_k(x, u_k, w))\}.$$

Contenido

Medidas de riesgo

Programación dinámica de riesgo coherente

SDDP con medidas de riesgo

Ejemplo

Operador de Bellman para el costo medio

▶ Para cada k y una función $V : \mathcal{X} \times \mathcal{W} \rightarrow \mathbb{R}$ se define:

$$[\hat{T}_k(V)](x, w) := \min_{u} \{g_k(x, u, w) + V(f(x, u, w))\}.$$

Con esta notación la iteración de Bellman resulta:

$$V_N(x) = g_N(x),$$

 $V_k(x) = T_k(V_{k+1}(x)) := E\left[\hat{T}(V_{k+1})(x, w_k)\right]$

Este operador es monótono y preserva la convexidad.

SDDP para el costo medio

Supongamos que tenemos una cota inferior $V_{k+1}^{(l+1)} \leq V_{k+1}$ y un estado $x_k^{(l)}$. Resolvemos:

$$\hat{\beta}_k^{(l+1)}(w) = \min_{x,u} \left\{ g_k(x, u, w) + V_{k+1}^{(l+1)}(f_k(x, u, w)) \right\},$$
s.t. $x = x_k^{(l)} \quad [\hat{\lambda}_k^{(l+1)}(w)].$

► Por lo tanto:

$$\begin{split} \hat{\beta}_k^{(l+1)}(w) &= \hat{T}_k(V_{k+1}^{(l+1)})(x_k^{(l)}, w), \\ \hat{\lambda}_k^{(l+1)}(w) &\in \partial_x \hat{T}_k(V_{k+1}^{(l+1)})(x_k^{(l)}, w). \end{split}$$

Para cada perturbación entonces:

$$\hat{\beta}_k^{(l+1)}(w) + (\hat{\lambda}_k^{(l+1)})^T(x - x_k^{(l)}) \leqslant \hat{T}_k(V_{k+1}^{(l+1)})(x, w) \leqslant \hat{V}_k(x, w).$$

SDDP para el costo medio

Promediando sobre los escenarios, tenemos una cota inferior para la función de valor:

$$\beta_k^{(l+1)} + (\lambda_k^{(l+1)})^T (x - x_k^{(l)}) \leq E(\hat{V}_k(x, w)) = V_k(x).$$

En cada paso definimos:

$$\begin{split} \beta_k^{(l+1)} &= E[\hat{\beta}_k^{(l+1)}(w)] = T_k(V_{k+1}^{(l+1)})(x), \\ \lambda_k^{(l+1)} &= E[\hat{\lambda}_k^{(l+1)}(w)] \in \partial_x T_k(V_{k+1}^{(l+1)})(x). \end{split}$$

lo que define un nuevo corte para la aproimación de V_k .

SDDP con aversión al riesgo

Supongamos que disponemos de una medida de aversión al riesgo $\rho(X)$ tal que:

$$\rho(X) = E_P[X]$$

siendo P una medida de probabilidad adecuada.

- ► Ejemplos:
 - ightharpoonup
 ho(X) = E[X].
 - $ho(X) = AV@R_{\alpha}[X] = E_{\alpha}[X] \text{ con } E_{\alpha} \text{ como vimos antes.}$
 - $ho(X)=\lambda E[X]+(1-\lambda)AV@R_{\alpha}[X],\,\lambda\in[0,1]$ permite "matizar" la aversión al riesgo.
- ightharpoonup ¡Entonces toda la deducción anterior vale cambiando E por E_P !

Algoritmo SDDP con aversión al riesgo

Al comienzo de cada paso: disponemos de una aproximación $V_k^{(l)}$ de V_k tal que:

- $V_N^{(l)} = g_N$, el costo terminal.

 $ightharpoonup V_k^{(l)}$ es convexa (mejor aún, lineal a tramos...)

Algoritmo SDDP

Forward iteration:

- Seleccionamos un escenario al azar w_0, \ldots, w_{N-1} .
- ► Construimos la trayectoria $x_k^{(l)}$ siguiendo la dinámica:

$$u_k^{(l)} = \arg\min_{u} \left\{ g_k(x_k^{(l)}, u, w_k) + V_{k+1}^{(l)}(f(x_k^{(l)}, u, w_k)) \right\},$$

$$x_{k+1}^{(l)} = f_k(x_k^{(l)}, u_k^{(l)}, w_k).$$

Es decir, la trayectoria calculada como si las funciones de cost-to-go se fueran sus aproximaciones $V_k^{(l)}$.

Algoritmo SDDP

Backward iteration:

- En cada k queremos mejorar la estimación de $V_k^{(l)}$.
- Resolvemos, en cada k, para todo posible w:

$$\begin{split} \hat{\beta}_k^{(l+1)}(w) &= \min_{x,u} \{ g_k(x,u,w) + V_{k+1}^{(l+1)}(f_k(x,u,w)) \}, \\ s.t. \quad x &= x_k^{(l)} \quad [\hat{\lambda}_k^{(l+1)}(w)]. \end{split}$$

▶ Con la lista de valores $\{\hat{\beta}_k^{(l+1)}(w_i), i=1,\ldots,M\}$, construimos la medida de probabilidad P que permite calcular $\rho\left[\hat{\beta}_k^{(l+1)}(w)\right]$ como una esperanza.

Ejemplo: si ρ es el $AV@R_{\alpha}$, ordenamos los valores de menor a mayor, calculamos el cuantil α y hacemos la transformación de probabilidades ya vista.

► Calculamos el subgradiente y óptimo promedio:

$$\beta_k^{(l+1)} = E_P[\hat{\beta}_k^{(l+1)}(w)], \qquad \lambda_k^{(l+1)} = E_P[\hat{\lambda}_k^{(l+1)}(w)].$$

- **E**s decir, se promedia utilizando las probabilidades transforamadas tanto en β como en λ .
- ► Agregamos el corte a la estimación:

$$V_k^{(l+1)}(x) = \max\{V_k^{(l)}(x), \beta_k^{(l+1)} + (\lambda_k^{(l+1)})^T (x - x_k^{(l)})\}$$

ightharpoonup Retrocedemos de k a k-1 y al llegar a 0 se completa la pasada.

Contenido

Medidas de riesgo

Programación dinámica de riesgo coherente

SDDP con medidas de riesgo

Ejemplo

Ejemplo: el problema del vendedor de periódicos

Consideremos el siguiente problema:

- Un vendedor de periódicos debe decidir cuántos reservar. El precio de reserva (el día antes) es *p*.
- lacktriangle El día de venta recibe una demanda de periódicos $W \sim U[0, \theta]$ (para fijar ideas).
- ightharpoonup Si la demanda supera la reserva, debe comprar periódicos extra a precio q > p.

Preguntas:

- L'Cuánto debemos reservar si queremos minimizar el costo medio?
- ightharpoonup ¿Cuánto debemos reservar si queremos minimizar el $AV@R_{\alpha}$ del costo?

Ejemplo: el problema del vendedor de periódicos

Formulación como problema de programación dinámica

Tomemos:

- $ightharpoonup x_0 = 0$ el stock inicial.
- \triangleright u_0 el control (reserva).
- $ightharpoonup g_0(x_0, u_0) = pu_0$, costo del primer paso.
- $ightharpoonup x_1 = x_0 + u_0$ la dinámica. x_1 es el stock al día siguiente.
- $ightharpoonup g_1(x_1, u_1, w_1) = qu_1.$
- Con la restricción adicional de que $x_2 = x_1 + u_1 w_1 \ge 0$ (debo cumplir toda la demanda en la segunda compra), además $u_0 \ge 0$, $u_1 \ge 0$.

Ejemplo: el problema del vendedor de periódicos

Newsvendor problem, average cost formulation

Hallar:

$$\min_{u} \left\{ pu + E[q(W-u)^{+}] \right\}$$

con $W \sim U[0, \theta]$ en este caso.

Newsvendor problem, risk averse formulation

Hallar:

$$\min_{u} \left\{ pu + \rho_{\alpha}[q(W-u)^{+}] \right\}$$

con $W \sim U[0, \theta]$ en este caso.

Observación: $V(x) = V(u) = E[q(W - x)^+]$ o $V_{\alpha}(x) = V_{\alpha}(u) = \rho_{\alpha}[q(W - x)^+]$ juegan el rol de función de costo/riesgo futuro.

Cálculo del costo futuro

Haciendo cuentas con la $U[0, \theta]$ se llega a:

Costo medio futuro:

$$E[(W-x)^+] = \frac{(\theta-x)^2}{2\theta}$$

Cálculo del costo futuro

Nuevamente haciendo cuentas con la $U[0,\theta]$ se llega a:

► Riesgo medio futuro:

$$\rho_{\alpha}\left[(W-x)^{+}\right] = \begin{cases} \theta\left(1 - \frac{\alpha}{2}\right) - x, & \text{si } x < \theta(1-\alpha)\\ \frac{(\theta-x)^{2}}{2\alpha\theta}, & \text{si } x \geqslant \theta(1-\alpha) \end{cases}$$

Cálculo del costo futuro

Nuevamente haciendo cuentas con la $U[0,\theta]$ se llega a:

► Riesgo medio futuro:

$$\rho_{\alpha}\left[(W-x)^{+}\right] = \begin{cases} \theta\left(1 - \frac{\alpha}{2}\right) - x, & \text{si } x < \theta(1-\alpha)\\ \frac{(\theta-x)^{2}}{2\alpha\theta}, & \text{si } x \geqslant \theta(1-\alpha) \end{cases}$$

Solución del problema de costo medio

Debemos hallar:

$$\min_{u} \{ pu + qE[(W-u)^+] \}$$

con p < q, que corresponde a:

$$\min_{u} \left\{ pu + q \frac{(\theta - u)^2}{2\theta} \right\}$$

Derivando e igualando a 0, obtenemos:

$$u^* = \theta \left(1 - \frac{p}{q} \right).$$

Solución del problema de aversión al riesgo

Debemos hallar:

$$\min_{u} \{ pu + q\rho_{\alpha}[(W-u)^{+}] \}$$

con p < q. Derivando $q \rho_{\alpha}$ se tiene que la parte lineal tiene pendiente p-q < 0 por lo que el mínimo se da después de $\theta(1-\alpha)$. Derivando la segunda parte se llega a la condición:

$$p - q \frac{\theta - u}{\alpha \theta} = 0,$$

por lo que la compra óptima es:

$$u^* = \theta \left(1 - \alpha \frac{p}{q} \right).$$

Resolución mediante SDDP

En cuaderno de Julia adjunto

Implementación en Julia

- La biblioteca SDDP.jl permite correr SDDP con aversión al riesgo.
- ▶ Requiere ruidos discretos, y puede considerar el caso de incertidumbre markoviana.
- ► Incluye $AV@R_{\alpha}$ y una combinación convexa de esperanza y AV@R.
- Notar que si $\alpha \to 0$ corresponde a optimizar el peor caso, lo que también está incluido.
- No conlleva una penalidad de performance (misma cantidad de LPs, agrega un sort para construir la medida de probabilidad del AV@R).
- En preparación: cuaderno de Julia con un ejemplo hidrotérmico.

Muchas gracias!

Contacto: ferragut@ort.edu.uy

Código y slides disponibles en: https://github.com/Grupo-MATE/risk_averse_sddp