

BKI259: Artificial Intelligence: Principles and Techniques

Bayesian Networks (part 1/3)

Lecture/block outline

- We start with the block on Bayesian networks
- Topics
 - Conditional Independence
 - Formal representation of BNs
 - Factors
 - Variable elimination algorithm
 - Complexity (incl. tree-width)
 - Approximate inference
 - Learning from data (incl. missing data)
 - Elicitation of domain knowledge
 - Dynamical systems, Hidden Markov models
 - Most probable explanation & MAP

Today
2nd week
3rd week

4th week

Literature

- Required reading: P&MackW Chapter 6 and Section 11.2 (learning)
- Additional reading: Russel & Norvig, Chapter 13 and 14
- Other background material: Textbooks: Koller & Friedman'09, Pearl'88, Jensen and Nielson'07
- AISpace: http://aispace.org/bayes/
- Video lectures Daphne Koller: https://www.youtube.com/playlist?list=PL50E6E8 0E8525B59C
- And our own knowledge clip (see Weblectures)

Bayesian networks

 Bayesian networks are seen by some as the most significant contribution in AI in the last decades of the 20st century – Turing award in 2011 for Judea Pearl

- Applications: spam filtering, speech recognition, robotics, forensics, decision support systems, ...
- Also: computational cognitive models (Bayesian turn in cognitive science 2000-2010)
- Also: computational level theories of information processing in the brain (e.g., "Bayesian Brain")
- Ongoing research topic at AI / DCC / CS

Terminology

- Probabilistic / Bayesian / Belief network
- Math-oriented: probabilistic; focus on mathematical formalism and its properties
- Al-oriented: belief; focus on application
 as modeling expert beliefs in domain where one
 needs to reason under uncertainty
- Nowadays Bayesian is the more common general name, also in cognitive (neuro-)science

Background assumed

- Understand basic (discrete) probability theory
 - Look at the recap lecture if in doubt!
- Joint probability distribution P(A, B, C)
- Joint probability value P(A=a, B=b, C=c)
- Marginal probability $P(A) = \sum_{B,C} P(A, B, C)$
- Conditional probability P(A | b) = P(A, b) / P(b)
- Notation:
 - upper case = stochastic variable
 - lower case = value of a variable
 - Bold: sets of variables / values
 A and a
 - Binary variables: a and ¬a

a

Shorthand:

P(b) for P(B = b)

Product rule in probability theory

• Product rule:
$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | X_1 ..., X_{i-1})$$

- X₁ ... X_n is arbitrary order of variables!
- $P(A,B,C) = P(A) \times P(B \mid A) \times P(C \mid A, B)$ = $P(B) \times P(C \mid B) \times P(A \mid C, B)$ (etc.)
- P(A) × P(B | A) × P(C | A, B) =
 P(A) × P(A, B) / P(A) × P(A, B, C) / P (A,B)
- P(B) × P(C | B) × P(A | C, B) =
 P(B) × P(B, C) / P(B) × P(A, B, C) / P(B,C)

P(A, B) = P(B, A)

Problem!

- Lots of entries in the table to fill!
- For k Boolean random variables, you need a table of size 2^k and have to specify 2^k – 1 numbers
- How do we use fewer numbers?
 For this we need the concept of independence

Α	В	С	P(A, B,C)
а	b	С	0.1
а	b	¬С	0.2
а	¬b	С	0.05
а	$\neg b$	¬С	0.05
¬а	b	С	0.3
¬а	b	¬с	0.1
¬а	¬b	С	0.05
¬а	$\neg b$	¬С	0.15

Adds to 1

Independence

Variables A and B are independent in a prob. distr. P
 (notation A ⊥ P B) if any of the following holds

$$- P(A,B) = P(A) \times P(B)$$

- $P(A \mid B) = P(A)$
- $P(B \mid A) = P(B)$
- Knowing the outcome of B does not give you any information on the outcome of A
- Examples:
 - 1st dice throw is independent of 2nd throw
 - Rain in Uganda is independent of whether NEC have won, lost, or drawn last football game

Independence

- How is independence useful?
- Suppose you have n coin flips and you want to calculate the joint distribution $P(C_1, ..., C_n)$
- If the coin flips are not independent, you need to specify 2ⁿ -1 values in the table
- If the coin flips are independent, then $P(C_1, ..., C_n) = \Pi_i P(C_i)$

 So, you will need only n values (one for each coin, or just a single one if all coin flips are equally likely)

Conditional Independence

- Independence is often too crude an assumption
- Variables A and B are conditionally independent in a probability distribution P (notation A ⊥_P B | C) if any of the following holds

$$- P(A, B \mid C) = P(A \mid C) \times P(B \mid C)$$

$$- P(A | B, C) = P(A | C)$$

$$- P(B | A, C) = P(B | C)$$

 Knowing C already tells me everything about A; information about B is not relevant anymore for A

Independence relations

- Every probability distribution P over a set of variables V has an independence relation I_P describing its independences
- We call $(X,Z,Y) \in I_P$ an **independence statement** stating that X and Y are conditionally independent given Z $(X \perp_P Y \mid Z)$
- There are many axioms that can be used to reason about whether independence relations hold, such as: (X,Z,Y) ∈ I_P ⇔ (Y,Z,X) ∈ I_P
- Independences between variables can also be described using a graphical model

Global Markov Property (undirected graphs)

- Let G be an undirected graph and let X, Y, Z be subsets of vertices of G
- The set Z separates X and Y in G (X ⊥_G Y | Z) if every path from a vertex X in X to a vertex Y in Y contains at least one variable Z in Z
- Note the similarity as well as the difference in notation:
 X ⊥_P Y | Z denotes independence between variables
 in a probability distribution P, whereas X ⊥_G Y | Z
 denotes that Z blocks the paths from X to Y in G
- We can relate the two notions using the concepts D-Maps, I-Maps, and P-Maps

- Definition: Let G be an undirected graph and let I_P be an independence relation defined on a probability distribution P. We call G:
 - A D-Map of P if for all sets of variable X,Y,Z in P it holds that $(X \perp_P Y \mid Z) \Rightarrow (X \perp_G Y \mid Z)$
 - An I-Map of P if for all sets of variable X,Y,Z in P it holds that (X ⊥_G Y | Z) ⇒ (X ⊥_P Y | Z)
 - A P-Map of P if for all sets of variable X,Y,Z in P it holds that (X ⊥_G Y | Z) ⇔ (X ⊥_P Y | Z)

- Let $(X_1, \{X_2, X_3\}, X_4) \in I_P$ and $(X_2, \{X_1, X_4\}, X_3) \in I_P$
- (i.e., X₁ is conditionally independent of X₄ given X₂ and X₃, and X₂ is conditionally independent of X₃ given X₁ and X₄)
- These are all **D-Maps**:
 all independences in P
 are in G (but maybe more)

- Let $(X_1, \{X_2, X_3\}, X_4) \in I_P$ and $(X_2, \{X_1, X_4\}, X_3) \in I_P$
- (i.e., X_1 is conditionally independent of X_4 given X_2 and X_3 , and X_2 is conditionally independent of X_3 given X_1 and X_4)
 - These are all I-Maps: all independences in G are in P (but maybe more)

- Let $(X_1, \{X_2, X_3\}, X_4) \in I_P$ and $(X_2, \{X_1, X_4\}, X_3) \in I_P$
- (i.e. X₁ is conditionally independent of X₄ given X₂ and X₃, and X₂ is conditionally independent of X₃ given X₁ and X₄)
 - This is the P-Map: the independences in P and in G perfectly match

Directed graphical models

Directed graphical models introduce an additional source of information: the direction of the arcs!

VS

$$(X_2, \varnothing, X_3) \notin I_P$$

 $(X_2, X_1, X_3) \in I_P$

$$(X_2, \varnothing, X_3) \notin I_P$$

$$(X_2, \emptyset, X_3) \notin I_P$$

 $(X_2, X_1, X_3) \in I_P$

$$(X_2, \emptyset, X_3) \notin I_P$$

 $(X_2, X_1, X_3) \in I_P$

$$(X_2, \varnothing, X_3) \in I_P$$

 $(X_2, X_1, X_3) \notin I_P$

Causal Chain

Age and Blood Pressure are dependent,
 P(B | A) ≠ P(B)

$$B \not\perp\!\!\!\perp A$$

but conditionally independent given Weight:
 P(B | A, W) = P(B | W)

$$B \perp \!\!\! \perp A \mid W$$

Common Cause

Martin late and Norman late are dependent,
 P(M,N) ≠ P(M) P(N)

 $M \not\perp \!\!\!\!\perp N$

• but conditionally independent given Train Strike: $M \perp N \mid T$ $P(M,N \mid T) = P(M\mid T) P(N\mid T)$

Common Effect

Burglary and Earthquake are independent,
 P(B,E) = P(B) P(E)

 $B \perp \!\!\! \perp E$

but conditionally dependent given Alarm:
 P(B,E | A) ≠ P(B|A) P(E|A)

 $B \not\perp \!\!\! \perp E \mid A$

D-separation: reachability

Two nodes are D-separated if all chains connecting them are inactive

Reading off independence (example 1)

- Is C ⊥ A? NO
- Is C ⊥ A | B ? YES
- Is C ⊥ D? NO
- Is C ⊥ D | A ? YES
- Is E ⊥ C | D ? YES

Reading off independence (example 2)

- Is A ⊥ E? NO
- Is A ⊥ E | B ? NO
- Is $A \perp E \mid C$? YES
- Is A ⊥ B ? YES
- Is A ⊥ B | C ? NO

Reading off independence (example 3)

- Is A ⊥ F? **YES**
- Is A ⊥ F | D? NO
- Is A ⊥ F | G? NO
- Is A ⊥ F | H ? YES

Directed vs. undirected models

 Independences can be described using directed and undirected graphs; directed graphs have a bit more expressive power

- Directed graphs more intuitively represent statistical information
 - Easier for domain experts to formulate stochastic relations
 - Easier for humans to interpret structure and results of inferences
 - Causal interpretation (Cause → Effect)

Bayesian network

- A Bayesian network is made up of:
 - A directed acyclic graph with nodes representing random variables
 - Probability tables for each node in the graph
- The DAG describes the conditional independences in the network

A	P(A)
false	0.6
true	0.4

A	В	P(B A)
false	false	0.01
false	true	0.99
true	false	0.7
true	true	0.3

В	С	P(C B)
false	false	0.4
false	true	0.6
true	false	0.9
true	true	0.1

В	D	P(D B)
false	false	0.02
false	true	0.98
true	false	0.05
true	true	0.95

Conditional Probability Tables

A	В	P(B A)
false	false	0.01
false	true	0.99
true	false	0.7
true	true	0.3

false	0.0	
	0.6	→
true	0.4	

Each node X has a conditional probability distribution $P(X \mid Parents(X))$ that quantifies the effect of the parents on the node

В	С	P(C B)
false	false	0.4
false	true	0.6
true	false	0.9
true	true	0.1

В	D	P(D B)
false	false	0.02
false	true	0.98
true	false	0.05
true	true	0.95

Conditional Probability Tables

 For any given combination of values of the parents (eg. B), the entries for P(C=true | B) and P(C=false | B) must add up to 1, eg. P(C=true | B=false) + P(C=false | B=false) = 1

В	С	P(C B)	
false	false	0.4	
false	true	0.6	Sums to 1
true	false	0.9	Curan to 1
true	true	0.1	Sums to 1

If you have a Boolean variable with k Boolean parents, this table
has 2^{k+1} probabilities (but only 2^k need to be specified)

Bayesian network running example

P(tampering) = 0.02

P(fire) = 0.01

P(alarm | fire \land tampering) = 0.5

P(alarm | fire $\land \neg$ tampering) = 0.99

P(alarm | \neg fire \land tampering) = 0.85

P(alarm | \neg fire $\land \neg$ tampering) = 0.0001

P(smoke | fire) = 0.9

P(smoke | \neg fire) = 0.01

P(leaving | alarm) = 0.88

P(leaving | \neg alarm) = 0.001

P(report | leaving) = 0.75

P(report | \neg leaving) = 0.01

Bayesian Networks

- Some important properties of Bayesian networks
- It encodes the conditional independence relationships between the variables in the graph structure (as directed I-Map)
- It is a compact representation of the joint probability distribution over the variables
- It allows for (relatively) efficient computations of joint probability distributions of interest

BNs and Joint Probability Distributions

- There are (in general) many Bayesian networks that describe the same probability distribution, some more efficient than others in respecting independences
- Because of the independences in the distribution some arcs of the network can be pruned:

Chain or product rule

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i \mid X_1, \dots, X_{i-1}) = \prod_{i=1}^n P(X_i \mid Parents(X_i))$$
BN property

where Parents(X_i) are the parents of X_i in the graph

Joint probability distribution

 The joint probability distribution for a Bayesian network reads:

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i \mid X_1 ..., X_{i-1}) = \prod_{i=1}^n P(X_i \mid Parents(X_i))$$

where Parents(X_i) are the parents of node X_i in the graph

- Compact representation when (the ordering of the nodes is chosen such that) nodes have few parents
- Typically works best when reasoning from cause to effect

Example

From the previous example:

$$P(A,B,C,D) = P(A) P(B \mid A) P(C \mid A,B) P(D \mid A,B,C) =$$

 $P(A) P(B \mid A) P(C \mid B) P(D \mid B)$

for any setting of the variables A, B, C, D

Specific case:

$$0.6 \times 0.99 \times 0.9 \times 0.95 = 0.51$$

from conditional probability tables

Computing with probabilities

- Relatively straightforward (and uninteresting) without any observations
- More challenging (and interesting) with observations: Bayes' rule comes into reason from observed effect to unobserved cause
- Probabilistic inference in the general case can be computationally extremely demanding (inference is an NP-hard problem)
- Approximations are available that may be of use

Axioms of probability theory

- P should obey three axioms (A. Kolmogorov):
 - 1. $P(A) \ge 0$ for all events A
 - 2. $P(\Omega) = 1$
 - 3. $P(A \cup B) = P(A) + P(B)$ for disjoint events A and B
- Some consequences (from set theory):
 - $P(A) = 1 P(\Omega \setminus A)$
 - $P(\emptyset) = 0$
 - If $A \subseteq B$, then $P(A) \le P(B)$
 - $P(A \cup B) = P(A) + P(B) P(A \cap B) \le P(A) + P(B)$
- Given these axioms and a completely defined probability measure any (marginal / conditional) probability of interest can be computed!

Example: cause and effect

- Cause (e.g., disease) is often unobserved
- What we observe is the effect

- Goal: compute the probability of the cause given the effect
- Pr(cause) = 0.01 $Pr(\neg cause) = 0.99$ Pr(effect | cause) = 0.9 $Pr(effect | \neg cause) = 0.2$
- What is Pr(cause | effect)?

Bayes' Theorem

- Definition of conditional probability:
 - $Pr(E \mid C) = P(E,C) / P(C)$

• But then, this also holds:

$$- Pr(C \mid E) = P(E,C) / P(E)$$

And thus: $Pr(C \mid E) = \frac{Pr(E \mid C) Pr(C)}{Pr(E)}$ Posterior

Likelihood

Marginal

likelihood

Cause and effect revisited

$$Pr(\neg cause) = 0.99$$

Pr(effect | cause) =
$$0.9$$

Pr(effect | \neg cause) = 0.2

What is Pr(cause | effect)?

•
$$Pr(c \mid e) = Pr(e \mid c) Pr(c) / Pr(e)$$

= 0.9 x 0.01 / $Pr(e) = 0.09 / Pr(e)$

Pr(e) = Pr(e | c) Pr(c) + Pr(e |
$$\neg$$
c) Pr(\neg c) = 0.9 x 0.01 + 0.2 x 0.99 = 0.207

$$Pr(c \mid e) = 0.09 / 0.207 \approx 0.43$$

Useful notation: Factors

• A factor $f(X_1,...,X_k)$:

$$f: X_1 \times ... \times X_k \rightarrow R$$

yields a real value $(r \in R)$ for each concrete tuple

$$(x_1, \dots, x_k) \in (X_1 \times \dots \times X_k)$$

• Scope = $\{X_1, \dots, X_k\}$ of "free variables"

From probability distributions to factors

•	P(Tamp	ering)
---	----	------	--------

P(Alarm)

•	P(Re	po	rt)
---	----	----	----	-----

- P(Alarm | Tampering)
- P(Alarm | ¬tampering)
- P(¬alarm | Tampering)
- P(Smoke | Alarm)
- P(Report | Fire)

• ...

Tampering	Prob
tampering	0.02
⊸tampering	0.98

Alarm	Prob
alarm	0.0266
⊸alarm	0.9734

Alarm	Tamp	Cond Prob
alarm	tamp	0.845
alarm	⊸tamp	0.01
⊸alarm	tamp	0.155
⊸alarm	⊸tamp	0.99

Factors

- f_1 (Alarm, Tampering) $\stackrel{def}{=}$ P(Alarm | Tampering)
- $f_2(Alarm) \stackrel{def}{=} P(Alarm \mid \neg tamp)$

	Alarm	Tamp= ⊣tamp	Cond Prob	
	alarm	tamp	0.845	
	alarm	tamp	0.01	
_	alarm	tamp	0.155	_
	⊸alarm	⊸tamp	0.99	

Alarm	Tamp	f ₁
alarm	tamp	0.845
alarm	⊣tamp	0.01
⊸alarm	tamp	0.155
⊸alarm	⊣tamp	0.99

Alarm	Tamp= ⊣tamp	f ₂
alarm	⊣tamp	0.01
⊸alarm	⊣tamp	0.99

Caution

- A (conditional/joint/marginal) probability distribution can be represented by a factor
- However, a factor does not need to represent a particular distribution: it is nothing more than a function from a tuple to a real (or rational)

$$f: X_1 \times \times X_k \to R$$

Factor product

• $f_1(A,B) \times f_2(B,C) = f_3(A,B,C)$ where $f_3(a,b,c) = f_1(a,b) \times f_2(b,c)$ for all $a \in A$, $b \in B$ and $c \in C$

 f_1

a ₁	<i>b</i> ₁	0.5
a ₁	b_2	8.0
a ₂	<i>b</i> ₁	0.1
a ₂	<i>b</i> ₂	0
a ₃	<i>b</i> ₁	0.3
a ₃	<i>b</i> ₂	0.9

 f_2

<i>b</i> ₁	c ₁	0.5
<i>b</i> ₁	c_2	0.7
<i>b</i> ₂	c ₁	0.1
<i>b</i> ₂	c ₂	0.2

†3

a ₁	<i>b</i> ₁	c ₁	0.5*0.5 = 0.25
a ₁	<i>b</i> ₁	c ₂	0.5*0.7 = 0.35
a ₁	<i>b</i> ₂	c ₁	0.8*0.1 = 0.08
a ₁	b ₂	c ₂	0.8*0.2 = 0.16
a ₂	<i>b</i> ₁	c ₁	0.1*0.5 = 0.05
a ₂	<i>b</i> ₁	c ₂	0.1*0.7 = 0.07
a ₂	<i>b</i> ₂	c ₁	0*0.1 = 0
a ₂	b ₂	c ₂	0*0.2 = 0
a ₃	<i>b</i> ₁	c ₁	0.3*0.5 = 0.15
a ₃	<i>b</i> ₁	c ₂	0.3*0.7 = 0.21
a ₃	<i>b</i> ₂	c ₁	0.9*0.1 = 0.09
a ₃	b ₂	c ₂	0.9*0.2 = 0.18

Χ

Factor marginalization

• Summing out a factor:
$$\sum_{B} f_3(A, B, C) = f_4(A, C)$$

 f_3

a ₁	<i>b</i> ₁	c ₁	0.5*0.5 = 0.25
a ₁	<i>b</i> ₁	c ₂	0.5*0.7 = 0.35
a ₁	b ₂	c ₁	0.8*0.1 = 0.08
a ₁	b ₂	c ₂	0.8*0.2 = 0.16
a ₂	<i>b</i> ₁	c ₁	0.1*0.5 = 0.05
a ₂	<i>b</i> ₁	c ₂	0.1*0.7 = 0.07
a ₂	<i>b</i> ₂	c ₁	0*0.1 = 0
a ₂	<i>b</i> ₂	c ₂	0*0.2 = 0
a ₃	<i>b</i> ₁	c ₁	0.3*0.5 = 0.15
a ₃	<i>b</i> ₁	c ₂	0.3*0.7 = 0.21
a ₃	b ₂	c ₁	0.9*0.1 = 0.09
a ₃	b ₂	c ₂	0.9*0.2 = 0.18

a ₁	C ₁	0.25+0.08 = 0.33	
a ₁	c_2	0.35+0.16 = 0.51	
a ₂	C ₁	0.05+0 = 0.05	
a ₂	c ₂	0.07+0 = 0.07	
a ₃	C ₁	0.15+0.09 = 0.24	
a ₃	c ₂	0.21+0.18 = 0.39	

Factor reduction

• $f_3(A,B,c_1) = f_5(A,B)$

a ₁	<i>b</i> ₁	c ₁	0.5*0.5 = 0.25
a ₁	<i>b</i> ₁	c ₂	0.5*0.7 = 0.35
a ₁	<i>b</i> ₂	c ₁	0.8*0.1 = 0.08
a ₁	<i>b</i> ₂	c ₂	0.8*0.2 = 0.16
a ₂	<i>b</i> ₁	c ₁	0.1*0.5 = 0.05
a ₂	<i>b</i> ₁	c ₂	0.1*0.7 = 0.07
a ₂	<i>b</i> ₂	c ₁	0*0.1 = 0
a ₂	<i>b</i> ₂	c ₂	0*0.2 = 0
a ₃	<i>b</i> ₁	c ₁	0.3*0.5 = 0.15
a ₃	<i>b</i> ₁	c ₂	0.3*0.7 = 0.21
a ₃	<i>b</i> ₂	c ₁	0.9*0.1 = 0.09
a ₃	<i>b</i> ₂	c ₂	0.9*0.2 = 0.18

 f_5

a ₁	<i>b</i> ₁	0.25
a ₁	b_2	80.0
a ₂	<i>b</i> ₁	0.05
a ₂	b_2	0
a ₃	<i>b</i> ₁	0.15
a ₃	b_2	0.09

Why factors?

- Fundamental building block for defining distributions in high-dimensional spaces
- Set of basic operations for manipulating these probability distributions
- We will use factors in our inference algorithm
- You will need to represent and compute with factors in the third programming assignment
- Assignment 3a: represent / compute with factors

Important highlights in this lecture

(Conditional) Independence

- Know what it means and how to compute it!
- Know how a graphical model represents independences (as D-Map, I-Map, and P-Map)
- Know and be able to use D-separation and D-connection

Bayesian networks

- Understand what they represent: variables, joint probability distribution, (in)dependences in the distribution
- Know and understand the product rule property in Bayesian networks (to eliminate dependences in the product rule for computing joint distributions)
- Go from joint probability distribution to network and v.v.

