2ª Lista de Exercícios de Pesquisa e Ordenação Prof. Glauber Cintra - Entrega: 07/dez/2015

Alunos: Levi Moreira de Albuquerque

Marcus Reuber

Matheus Vasconcelos – Utilizamos a matrícula e os dados deste aluno

	d₁
	0
Número de matrícula	

d ₁	do	d_3	d_4	d ₅	d_6
0	2	0	2	2	1

Ano de nascimento

a_1	a ₂	a_3	a ₄
1	9	9	0
	1		

v1=6d1+7a4	v ₂ =6d ₂ +7d ₁	v ₃ =6d ₃ +7d ₂	v ₄ =6d ₄ +7d ₃	v ₅ =6d ₅ +7d ₄	V ₆ =6d ₆ +7d ₅	$v_7 = 6a_1 + 7d_6$	v ₈ =6a ₂ +7a ₁	v ₉ =6a ₃ +7a ₂	v ₁₀ =6a ₄ +7a ₃ 63	
00	12	14	12	26	20	13	01	117		
	A. 65.5									i

1) Escreva uma versão não recursiva do algoritmo de busca binária.

Algoritmo BB_Iterativa

Entrada: um vetor L em ordem crescente, um valor x e as posições inicio e fim

Saída: Sim, se x existe no vetor Não, caso contrário

2) Insira as chaves v₁, v₂, ..., v₁₀, nessa ordem, numa árvore AVL. Em seguida, remova v₁, v₂, e v₃, nessa ordem, da árvore. Desenhe como ficou a árvore, incluindo o bal de cada nó.

Após inserções

A chave v4 não foi inserida, pois já existia na árvore. Após Remoções

3) Escreva uma função que receba um ponteiro para a raiz de uma árvore AVL e devolva a altura da árvore.

Podemos utilizar dois métodos para resolver este problema.

Por ser uma árvore binária de busca, a árvore AVL pode utilizar o mesmo procedimento que se usaria para calcular a altura de uma árvore de busca binária qualquer. Uma modificação foi necessária, visto que o algoritmo originalmente considera uma árvore que só contém a raiz da árvore com altura 0. Na árvore AVL a altura de uma árvore que só tem a raiz é 1.

Algoritmo alturaAVL

Entrada: r, um ponteiro para a raiz da árvore AVL

Saída: 0 se a árvore estiver vazia ou a altura da árvore caso contrário.

```
se r = nulo
     devolva 0
senão
1
      he = alturaAVL(r.esq)
       hd = alturaAVL(r.dir)
       se he<hd
            [devolva hd+1]
      senão
            [devolva he+1]
1
```

4) Mostre como ficaria uma árvore trie de ordem 2 após a inserção da representação binária (com 7 bits) das chaves v₁, v₂, ..., v₁₀. Em seguida, remova a representação binária de v₂, v₃ e v₄ e mostre como ficaria a árvore.

Após inserções

5) Mostre como ficaria uma **árvore patricia de ordem 2** após a inserção da representação binária (com 7 bits) das v₁, v₂, ..., v₁₀. Em seguida, remova a representação binária de v₃, v₄ e v₅ e mostre como ficaria a árvore.

Após as inserções

Após as remoções

6) Escreva um algoritmo que receba um ponteiro para a raiz de uma árvore patricia de ordem 2 (baseada no alfabeto binário) e um valor x e devolva Sim se x ocorre na árvore; Não, caso contrário.

Um nó em nossa árvore Patricia contém os seguintes campos:

- Bit: se esse valor for 0, esse nó é uma folha (uma chave válida), se for 1 é um nó interno.
- Info: Caso o campo bit seja 0, esse campo contém uma chave válida. Caso seja 1, esse campo contém a posição do bit que deverá ser olhado no momento da busca.

- Esq: um ponteiro para o filho esquerdo do nó, associado ao símbolo de bit 0
- Dir: um ponteiro para o filho direito do nó, associado ao símbolo de bit 1

Algoritmo BuscaP

Entrada: r, um ponteiro para a raiz de uma árvore Patricia. x um valor a ser pesquisado.

Saída: Sim, se x ocorre na árvore. Não, caso contrário

se r = nulodevolva não e pare se r.bit = 0se x = r.infodevolva sim e pare senão devolva não e pare senão bit = extraibit(x, r.info) se bit = 0buscaP (r.esq, x) DEVOLVA

senão

Drux buscap (r.dir, x)

A função extraibit:

Algoritmo extraiBit

Entrada: Um número inteiro com M bits, e a posição K do bit que deve ser extraído. Saída: O bit da posição K

bit = x << (k-1)Devolva bit>> (M-1)

7) Mostre como ficaria uma árvore B de ordem 1 após a inserção das chaves v₁, v₂, ..., v₁₀, nesta ordem. Em seguida, remova v₄, v₅, e v₆ e mostre como ficaria a árvore. Após inserções

Após remoções

8) Mostre como ficaria uma árvore B+ de ordem 1 após a inserção das chaves v₁, v₂, ..., v₁₀, nesta ordem. Em seguida, remova v_5 , v_6 e v_7 e mostre como ficaria a árvore. Após inserções

Após remoções

9) Escreva uma função que receba um ponteiro para a raiz de uma árvore B de ordem m e devolva a quantidade de chaves contidas na árvore.

Algoritmo ContaC

Entrada: O ponteiro para a raiz de uma árvore B, C uma variável passada por referência inicialmente igual a

Saída: A quantidade de chaves nessa árvore armazenada em C se r == nulo

devolva 0 e pare //árvore vazia senão

c+=r.numchaves

para i = 0 até r.numchaves contac(r->p[i], c)

10) Mostre como ficaria uma tabela de *hashing fechado* com 11 posições, após a inserção das chaves v₁, v₂, ..., V₁₀, nesta ordem (nessa e na próxima questão, os valores associados às chaves devem ser ignorados). Utilize a seguinte função de hashing: $h(x) = x \mod 11$. Em seguida, remova v_1 , v_2 e v_3 (nesta ordem) e

Anne insarcane

	Mho	3	ınserço	es	•
	0		00		/
١	1		12		1
	1 2 3 4 5 6 7		13 14	1	1
	3	1	14	1	1
	4	1	26	1	\checkmark
	5	1		7	
	6	1	61	٦	1
	7	1	117		/
	8		63 20		1
	19		20		
	1	0			io

Após	remoções
	MARKET COLORS CO

0	
1	
2	13
2 3 4 5 6	-
4	26
5	And in contrast of the contras
6	61
7	117
8	63
9	20
10	dir heatin de o

¹¹⁾ Mostre como ficaria uma tabela de *hashing aberto* com 7 posições, após a inserção das chaves v₁, v₂, ..., V_{10} , nesta ordem. Utilize a seguinte função de hashing: $h(x) = x \mod 7$. Em seguida, remova v_7 , $v_8 \in v_9$ (nesta ordem) e mostre como ficaria a tabela.

0	00	-	14	-	63	\neg	
1	W HEREROLD IN THE SALE OF THE SECOND					\dashv	
2						-	
3				1			. / .
4							0 1
5	12	-	26				
6	20						

12) Explique o que é a carga de uma tabela de hashing e diga quando ela é considerada baixa. Explique também o que é uma boa função de hashing.

A carga de uma tabela de hasing é a razão entre a quantidade de chaves na tabela e a quantidade de posições. Numa tabela que implementa o Hashing Fechado uma carga é considerada baixa se ela é inferior a 50%, já em uma tabela de Hashing Aberto a carga é baixa se limitada por uma constante. Uma boa função de hashing é aquela que pode ser computada em tempo constante e que faz um bom espalhamento das chaves na tabela.

1,0