Hadronenspektroskopie

Hadronen und ihre Eigenschaften

Liste der Referent*innen¹

¹Universität und weitere Referenzen

Datumsangabe

Dekonstruktion

Rekonstruktion

Wie baut man Teilchen?

- Unter welchen Bedingungen halten Quarks zusammen?
- Kann Materie mit Antimaterie binden?

Ihr seid dran!

Hadronen | Folie 4

Hadronen I

Aus wie vielen Quarks kann man stabile Teilchen bauen?

Hadronen II

Antiteilchen

Gibt es Antibaryonen?

Gibt es Antimesonen?

Warum sind Quarks farbig?

Betrachtet Eure Teilchen. Ideen?

Farbladungen

$$\mathsf{Baryon} = \uparrow + \swarrow + \searrow = \vec{0}$$
$$\mathsf{Meson} = \begin{cases} \uparrow + \downarrow = \vec{0} \\ \nwarrow + \searrow = \vec{0} \\ \swarrow + \nearrow = \vec{0} \end{cases}$$

Erkenntnis:

Hadronen sind farbneutral.

· · · und warum definiert man dann Farbe?

Warum Farbe benötigt wird

Wir können nachweisen:

$$\Delta^{++} = (uuu)$$

- Die einzelnen Up-Quarks müssen sich unterscheiden!
- ⇒ Drei Farben, die sich zusammen auf Weiß addieren: r, b, g.

$$\pi^0 = (u\bar{u})$$

⇒ Antiteilchen besitzen die entsprechende Antifarbe

An einem Meson wird gezogen.

An einem Meson wird gezogen, wann fliegt es auseinander?

Aus Energie des Starken Feldes bildet sich uū-Paar.

Quarks kommen nie einzeln vor, Hadronen sind farbneutral.

Elektrische Ladungen

Baryon
$$q_B/e \in \{-1,0,1,2\}$$

Anti-Baryon $q_{ar{B}}/e \in \{-2,-1,0,1\}$
Meson $q_M/e \in \{-1,0,1\}$

Top-Quark

Warum bindet das Top-Quark nicht? Es gilt:

$$m \propto 1/ au$$

Erinnerung:

$$m_{top} = 174 \,\mathrm{GeV}/c^2$$

 $m_{up} = 2.2 \,\mathrm{MeV}/c^2$

Erkenntnis

Ein Teilchen mit Top-Flavour braucht länger um sich zu formieren, als es zerfällt.

Ordnungssystem Baryonen [1]

Ordnungssystem Baryonen [1]

Anregungen I

Energieniveaus

Anregungen I

Cd-Spektrum [3]

- Anregungen bei Atomen
- Anregungen bei Kernen
 z.B. Ba* → Ba + γ
- Anregungen bei Hadronen z.B. Spin: p, Δ⁺ oder Energie

Erkenntnis

Hadronen: Angeregte Zustände haben unterschiedliche Massen

Anregungen II – Spektrum von Charmonium cc [2]

Im Einklang mit theoretischen Vorhersagen?

Anregungen II – Spektrum von Charmonium cc [2]

Im Einklang mit theoretischen Vorhersagen? cc ist wunderbar zu modellieren, jedoch große Ausnahme.

Datenanalyse

Das Wichtigste

- ✓ Aus Quarks können Hadronen Baryonen und Mesonen gebaut werden
- ✓ Hadronen sind farbneutral, Quarks tragen Farbe
- ✓ Quarks können nie alleine beobachtet werden
- ✓ Das Top-Quark ist zu schwer für Formationen
- $\checkmark \Omega_c^0$ (scc) und Ξ_c^+ (usc)
- \checkmark Hadronen können angeregt werden →Masseunterschiede
- ⇒ Wir können über Spektroskopie Informationen über die Natur von Materie erfahren!

Referenzen

Claude Amsler.

The Quark Structure of Hadrons: An Introduction to the Phenomenology and Spectroscopy.

Lecture Notes in Physics ; 949. Springer International Publishing, Cham, 2018.

Diego Bettoni and Roberto Calabrese.

Charmonium spectroscopy.

Progress in Particle and Nuclear Physics, 54(2):615–651, 2005.

