Discussion 12

Multipliers, Timing, FF/Latch Design, SRAMs

Sp19 Discussion 12 (multipliers): http://inst.eecs.berkeley.edu/~eecs151/sp19/files/discussion12.pdf

Unsigned Multiplication Example

4'b0011 (3) * 4'b0110 (6)

- Partial Products can be generated in parallel
- Let's try to improve the addition of the partial products

Multipliers

- Remember, the mechanics of multiplication in binary are generally the same as decimal multiplication (signed multiply requires a slight tweak).
- 2 Steps to Multiplication:
 - Generation of partial products
 - Adding partial products
- Making faster multipliers mostly involves changing how we deal with generating and adding the partial products

Accelerating the Addition of Partial Products

- Let's look at an (unsigned) array multiplier
- The products can be computed in parallel but the carry chain when adding partial products is limiting the speed
- How do we improve performance without having a large increase in hardware?
 - We could implement each adder as a parallel prefix or a carry-lookahead adder
 - However, remember that these adders require more logic than a simple carry ripple adder

Carry Save Addition

- When we generate a carry in a given column of an addition, we add it to the 2 values in the next column.
 - This addition may in turn generate its own carry
- If adding carries is just like another addition, can we delay adding the carry bits until later?
 - Yes, so long as we remember what the carry bits need to be added
- This is the basis of the carry save adder:
 - Takes in a, b, and carry_in (multi-bit)
 - Produces a sum and carry_out (multi-bit)

Carry Save Addition

```
Example: sum three numbers,
     3_{10} = 0011, 2_{10} = 0010, 3_{10} = 0011
    3<sub>10</sub> 0011
+ 2<sub>10</sub> <u>0010</u>

\begin{pmatrix}
c \overline{0100} = 4_{10} \\
s 0001 = 1_{10}
\end{pmatrix}
 carry-save add
```

Using Carry Save Addition

- Using Carry Save Addition Allows us to create a multi-input adder that is:
 - Relatively fast: Carry Save Adders do not have a carry ripple
 - Relatively small: do not need the logic to handle the carry logic to create a fast adder
- However, still need a standard adder at the end to add the final carry-out and sum.
 - This is one of the fast adders such as the Carry Lookahead or Parallel Prefix Adders
 - Good news! We only need one of them.

Using Carry Save Addition in Multipliers

- Carry now propagates down each column.
 - Carry ripple across rows is eliminated in the array
- Still need to handle carries at the end with a fast adder
- Critical path now down a column
 + the carry-propagate adder
 delay

Using Carry Save Addition

- Because addition is associative, it actually does not matter what order the carry bits are added back into the sum
 - Can use a tree structure

Wallace Tree Multiplier

Method to construct a Wallace Tree:

- 1. Draw a dot diagram where each column has as many dots as the number of partial products
- Group dots in the same column by 2 (half adder) or 3 (full adder)
- 3. Propagate carries and sum by adding one dot in the grouped column and one dot in the next column

Radix and Multiplication

- Binary arithmetic has some advantages
 - Partial product generation is just a series of AND gates (including sign extension)
- However, there are also disadvantages
 - There is a partial product for each bit of the multiplier
 - That leads to a lot of partial products (a lot of additions)
- Ex. 3*4
 - single partial product in base 10
 - 4 partial products in base 2.
- Why don't we consider a larger radix?

Radix 4 Multiplication

- Let's consider 2 bits at a time
 - Halve the number of partial products we generate
- Radix 4 multiplication A*B
 - Partial Product Shift By 2 bits each time

B Digit	Partial Product	Partial Product (Rewritten)
0	0*A	0
1	1*A	Α
2	2*A	4*A - 2*A
3	3*A	4*A - A

- Recall: Multiplications by powers of 2 are left shifts
- Can we use this property?

Booth Recoding

- Uses radix 4 arithmetic
- Modification: Partial Products for B==2 and B==3 can be separated into 4*A – {2, 1}A
- 4*A can be implemented as a shift to the left by 2
- 2*A can be implemented as a shift to the left by 1
- Recall that we are doing radix 4 multiplication, we shift left by 2 positions for the next partial product
- Therefore, any 4*A term can be handled in the next partial product!
 - To do this, the multiplier needs to look at 3 (rather than just 2) bits. The extra bit is the MSB of the previous

B Digit	Partial Product	Partial Product (Rewritten)
0	0*A	0
1	1*A	Α
2	2*A	4*A - 2*A
3	3*A	4*A - A

Booth Recoding

B _{i+}	B _i	B _{i-1}	Action	Comment
0	0	0	Add 0	
0	0	1	Add A	Includes +4*A from previous radix 4 digit = +A in this position due to left shift by 2
0	1	0	Add A	
0	1	1	Add 2*A	Includes +4*A from previous round (+A in this position). *2 is implemented as a left shift by 1
1	0	0	Sub 2*A	4*A will be added in when handling next radix 4 digit. *2 is implemented as a left shift by 1
1	0	1	Sub A	4*A will be added in when handling next radix 4 digit. Includes +4*A from previous radix 4 digit (+A in this position)
1	1	0	Sub A	4*A will be added in when handling next radix 4 digit.
1	1	1	Add 0	4*A will be added in when handling next radix 4 digit. Includes +4*A from previous radix 4 digit (+A in this position)

B Digit	Partial Product	Partial Product (Rewritten)
0	0*A	0
1	1*A	Α
2	2*A	4*A - 2*A
3	3*A	4*A - A

Booth Recoding Example (Unsigned)

```
• Example: 6*4
```

•
$$B_{-1} = 0$$

Latch Timing

- A positive latch is transparent (q = d) when the clock is high and opaque (q = d, during negedge clock) when the clock is low
- t_{d->q} is the delay from d to q when the latch is transparent
- t_{clk->q} is the delay from the rising clock edge to the new value of d propagating to q

Latch Circuits

S	R	Q	Q
0	0	latch	latch
0	1	0	1
1	0	1	0
1	1	0	0

'Feedback-breaking' mux latch Transparent high 'State-forcing' latch Transparent low

SR latch
Common interview
question

Building a Flip-Flop from Latches

- Clock pulsed latch
 - Latch becomes transparent for a short time and holds the value it received on the pulse
 - Not common anymore, sometimes used in high performance circuits
- Master-slave latches
 - Commonly used technique, go over timing diagram on board

Flip-Flop Hold/Setup/clk->q Time

- This is a negative edge flip-flop as drawn
- We'll consider the positive edge case

- Hold time = the amount of time after a clock edge that the data input needs to be stable for
- Setup time = the amount of time before a clock edge that the data input needs to be stable to be properly latched internally
- Clk-q time = delay from a clock edge to q being updated with the new value

Path Timing Constraints (Hold + Setup)

```
Setup constraint: T_{clk} > t_{clk->q} + t_{logic,max} + t_{setup}
Hold constraint: t_{hold} < t_{clk->q} + t_{logic,min}
```

- Skew is the deterministic clock arrival time difference between 2 flops
- Positive skew = receiving edge arrives later than nominal
- Negative skew = receiving edge arrives earlier than nominal
- Jitter is non-deterministic clock arrival differences
 - Can be treated like skew in timing calculations, assuming worst case jitter
- New timing equations:
 - T_{clk} > t_{clk->q} + t_{logic,max} + t_{setup} t_{skew}
 - Note positive skew can improve clock frequency
 - t_{hold} + t_{skew} < t_{clk->q} + t_{logic,min}
 - Note positive skew hurts hold margin

SRAM Architecture

- CORE
 - Wordlines to access rows
 - Bitlines to access columns
 - Data multiplexed onto columns
- Decoders
 - Addresses are binary
 - Row/column MUXes are
 'one-hot' only one is active at a time

- SRAM cells arranged in a grid
- Bitlines are shared across cells in a column, they are often long wires with a large capacitive load (connect to drains of access transistors)
- Wordlines are shared across cells in a row, they connect to the gates of access transistors
- Peripheral circuitry (bitline drivers, sense amp, decoders)

6T SRAM Cell

- Inverters in positive feedback form the memory element
- M5/M6 are the access transistors; they allow the bitlines to access the memory nodes (Q, Qbar) when WL = 1
- Only 1 WL in an SRAM array is active at a time and it addresses an entire row of SRAM cells
- Bitlines are controlled differently for read and write

Read

SRAM Read

- 1) precharge BL and BLbar to VDD, 2) raise WL, 3) sense dip on one bitline with sense amp, 4) lower WL, 5) discharge bitlines
- Read stability = reading doesn't corrupt the value stored in Q and Qbar
 - The pass transistor shouldn't overpower the node storing a '0' and flip its state (consider voltage divider from bitline to Q)
- We choose to make the NMOSes in the inverters stronger than the pass transistor = (Wn > Wpass) to prevent read corruption

SRAM Write

- 1) drive BL and BLbar with new values, 2) raise WL, 3) wait some time (write time), 4) lower WL, 5) discharge bitlines
- Write-ability = the cell's memory value can be changed

Write

- requires the pass transistor overpower one of the data nodes
- If we assume the cell is read stable, the inverter NMOS is stronger than the pass transistor. This means the node with '0' can't be overpowered => so we must overpower PMOS.
- Pass transistor strength > PMOS pullup strength = (Wpass > Wp)
 - Voltage divider on '1' node must be strong enough to cause inverters to switch