

Assignment MIDterm Complex Variable, Laplace and Z-transformations

1. Inverse Laplace transformation using **partial fraction**:

(a) Given
$$F(s) = \frac{3s+1}{(s+1)(s^2+1)}$$

(i) decompose
$$F(s)$$
 as $\frac{A}{(s+1)} + \frac{Bs + C}{(s^2 + 1)}$

(ii) find
$$f(t) = \mathcal{L}^{-1} \{ F(s) \}$$
.

(b) Given
$$F(s) = \frac{s+1}{(s+1)(s-5)}$$

(i) decompose
$$F(s)$$
 as $\frac{A}{(s+1)} + \frac{B}{(s-5)}$

find
$$f(t) = \mathcal{L}^{-1}\{F(s)\}.$$

2. Solving the differential equations using Laplace transformation:

(a)
$$\ddot{y}(t) + 9y(t) = 10e^{-t}$$
, $y(0) = \dot{y}(0) = 0$, where $\ddot{y}(t) \equiv \frac{d^2y(t)}{dt^2}$, $\dot{y}(t) \equiv \frac{dy(t)}{dt}$.

(b)
$$\dot{y}(t) - y(t) = 8 \cosh 2t$$
, $y(0) = 0$, where $\dot{y}(t) \equiv \frac{dy(t)}{dt}$.

- write Laplace transformation of both sides of the above differential equation,
- (ii) solve the equation obtained in (i) for Y(s) and,
- find y(t), using inverse Laplace transformation of Y(s) in (ii), (i)
- (ii) justify your answers.

3. Complex variable:

(a) Describe and sketch the locus represented by each of the followings:

(i)
$$1 < |z + i| \le 2$$
 and, (ii) $|z + 3i| > 4$.

(ii)
$$|z + 3i| > 4$$
.

(b) If
$$z_1 = 1 - i$$
, $z_2 = -2 + 4i$ and $z_3 = \sqrt{3} - 2i$, evaluate each of the following

(i)
$$|2z_2 - 3z_1|$$
, (ii) $z_1^2 + 3z_3 - 2$, (iii) $Re\left(\frac{z}{\overline{z}}\right)$.