Changements effectués et impacts sur le modèle

Ce document présente les divers apports au modèle et leurs effets sur celui-ci.

1 Référence

Comme résultat de référence, on prendra le résultat donné par le modèle qui prend en entrée la dynamique I_t^2 avec les paramètres calibrés par NSGA-II qui prend comme critères l'ajustement sur les trois sous-blocs.

Ce résultat nous servira donc à apprécier les changements qui seront effectués

2 Rajout des critères de nombres de larves totaux à NSGA-II

La première tentative fut de rajouter à NSGA-II trois critères supplémentaires correspondant aux nombre total de larves pour chacun des trois sous-blocs.

3 Inflorescences attractives

Il a aussi été essayé de remplacer les inflorescences vivantes I_t^2 par les inflorescences attractives $I_t^{a,1}$ et $I_t^{a,s}$. Avec $I_t^{a,1}$:

Avec $I_t^{a,s}$:

4 Étalement de la durée de larvation

On aussi essayé de répartir la durée de larvation entre 7 et 12 jours après la ponte. Avec une répartition uniforme sur $\{7,8,9,10,11,12\}$:

Avec la répartition suivante

 Jour 7
 Jour 8
 Jour 9
 Jour 10
 Jour 11
 Jour 12

 0.025
 0.075
 0.4
 0.4
 0.075
 0.025

5 Calibration de Δ_t

En ne rentrant que le nombre de débourrements quotidiens simulés B_t^s et en calculant les inflorescences attractives où le Δ_t est à calibrer. Le Δ_t ainsi trouvé est 11.99.

6 Toutes les modifications

En mélangeant plusieurs critères précédents. Ici, critères de larves totaux, répartition durée larvation en cloche, $I_t^{c,1}$

Ici, critères de larves totaux, répartition durée larvation en cloche, calibration de Δ_t

