Matrice transposée par rapport à la diagonale secondaire

Α	В	С	D			K	L	M	N	
Е	F	G		N		0	Р	Q		D
Н	1		Q	M		R	S		G	С
J		S	Р	L	,	Т		1	F	В
	Т	R	0	K			J	Н	E	Α

Algorithme TransMatDSec

Const N=20

Var A,TR: tableau [1..N,1..N] d'entiers

i,j: entier

Début

pour i ← 1 à N faire

pour j ← 1 à N faire

Lire(A[i,j])

Finpour

Finpour

pour i ← 1 à N faire

pour j ← 1 à N faire

 $TR[i,j] \leftarrow A[N-j+1,N-i+1]$

Finpour

Finpour

pour i ← 1 à N faire

pour j ← 1 à N faire

écrire(TR[i,j])

Finpour

Finpour

Fin.

* النتيجة في نفس المصفوفة *
* استعمال المثلث العلوي *

Algorithme TransMatDS

Const N=20

Var A: tableau [1..N,1..N] d'entiers

i,j,X: entier

Début

pour i ← 1 à N faire

pour j ← 1 à N faire

Lire(A[i,j])

Finpour

Finpour

pour i \leftarrow 1 à N-1 faire

pour j ← 1 à N-i faire

 $X \leftarrow A[i,j]$

 $A[i,j] \leftarrow A[N-j+1,N-i+1]$

 $A[N-j+1, N-i+1] \leftarrow X$

Finpour

Finpour

pour i ← 1 à N faire

pour j ← 1 à N faire

écrire(A[i,j])

Finpour

Finpour

Fin.

Algorithme **TransMatDS**

Const N=20

Var A: tableau [1..N,1..N] d'entiers

i,j,X : entier

Début

pour i ← 1 à N faire

pour j ← 1 à N faire

Lire(A[i,j])

Finpour

Finpour

pour i ← 2 à N faire

pour j \leftarrow N-i+2 à N faire

 $X \leftarrow A[i,j]$

 $A[i,j] \leftarrow A[N-j+1, N-i+1]$

 $A[N-j+1,N-i+1] \leftarrow X$

Finpour

Finpour

pour i ← 1 à N faire

pour j ← 1 à N faire

écrire(A[i,j])

Finpour

Finpour

Fin.