Reproducible analysis for: Individual flexibility in group foraging behaviour of reef manta rays (Mobula alfredi)

Raphaël Royauté

2024-02-21

Table of contents

0.1	Ration	nale			 	 					1
0.2	Packag	ges and d	ata import		 	 					1
0.3	Group	vs. solo i	$\operatorname{araging} \dots \dots$		 	 					3
	_		ariation in group lead								
			ences in group leade								
				-	-			,	_		8
	0.5.1	Male - fe	male differences		 	 					8
		0.5.1.1	Fit glmer models		 	 					8
		0.5.1.2	Fit rptR models		 	 					12
		0.5.1.3	Plot the model estim	nates	 	 					13
	0.5.2	Juvenile	- adult differences .		 	 					16

0.1 Rationale

This is a reproducible script for all statistical models and their outputs presented in our article.

0.2 Packages and data import

Make sure to have these packages installed before running the code in this report

```
library(tidyverse); library(here); library(easystats);
library(kableExtra); library(lme4); library(effects)
library(marginaleffects); library(ggeffects); library(rptR)
library(gtsummary); library(ggthemes); library(patchwork)
library(tidybayes)
```

Import complete dataset

npid	id	day	year	nyear	site	clips	sex	size	maturity
P204	204	185	2016	year3	1	10	2	3	2
P204	204	185	2016	year3	1	10	2	3	2
P225	225	259	2016	year3	1	24	1	3	1
P281	281	259	2016	year3	1	24	2	3	2
P281	281	259	2016	year3	1	24	2	3	2
P302	302	259	2016	year3	1	24	1	3	1

Import group foraging dataset

```
df.group$time_cen = hm(df.group$time)
df.group$time_cen = as.numeric(df.group$time_cen-hours(12))/3600

# subset with only individuals within groups
df.group = df.group[df.group$group==1,]
df.group=df.group[complete.cases(df.group$position),]
df.group %>%
    select(1:10) %>%
    head() %>%
    kable()
```

npid	id	obs_nb	rep_tot	day	year	nyear	site	${ m clips}$	sex
P19	19	1	2	155	2016	year3	1	46	1
P19	19	2	2	155	2016	year3	1	46	1
P33	33	1	17	153	2016	year3	1	16	2
P33	33	2	17	155	2016	year3	1	46	2
P33	33	3	17	184	2016	year3	1	25	2
P33	33	4	17	184	2016	year3	1	25	2

0.3 Group vs. solo foraging

0.4 What explains variation in group leadership?

We fit a binomial GLMM on leadership probability with the following covariates:

- Sex
- Age class
- Shark injury status
- Anthropogenic injury status
- Individual ID (random effect)

```
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
Family: binomial (logit)
Formula: leader ~ sex_f + maturity + shark_bite + anthropogenic + (1 |
                                                                       Id)
  Data: df.group
    AIC
             BIC
                  logLik deviance df.resid
          2185.7 -1070.4
 2152.9
                           2140.9
                                     1754
Scaled residuals:
          1Q Median
  Min
                       ЗQ
                             Max
-1.318 -0.650 -0.566 1.217 2.302
Random effects:
Groups Name
                  Variance Std.Dev.
                          0.521
       (Intercept) 0.2715
Number of obs: 1760, groups: Id, 322
Fixed effects:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
              sex_fM
                         0.14851 -2.410 0.0159 *
              -0.35794
maturity2
              0.07813
                         0.13718 0.570 0.5690
shark_bite1
               0.12525
                         0.20364 0.615 0.5385
anthropogenic1 -0.14638
                         0.17133 -0.854 0.3929
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
           (Intr) sex_fM mtrty2 shrk_1
sex_fM
           -0.310
maturity2 -0.377 -0.282
shark_bite1 -0.302 -0.024 0.051
anthropgnc1 -0.305 0.007 -0.078 0.102
```

plot(allEffects(glmm.lead))


```
# Save model file
saveRDS(glmm.lead, file = here("outputs/mods/glmm.lead.rds"))
```

Inspect the model

check_model(glmm.lead)

Check R2 and repeatability

```
r2.lead = r2_nakagawa(glmm.lead, ci = T)
icc.lead = icc(glmm.lead, ci = T)
r2.lead; icc.lead

# Save files to avoid reloading
saveRDS(r2.lead, file = here("outputs/mods/r2.lead.rds"))
saveRDS(icc.lead, file = here("outputs/mods/icc.lead.rds"))
```

Get model summary in table format

```
tbl.glmm.lead = glmm.lead %>%
  tbl_regression(
    intercept = T,
    exponentiate = TRUE,
    pvalue_fun = ~ style_pvalue(.x, digits = 2)) %>%
  add_global_p() %>%
  bold_p(t = .05) %>%
  bold_labels() %>%
  italicize_levels() %>%
  add_nevent(location = "level")
tbl.glmm.lead
```

Characteristic	Event N	OR	95% CI	p-value
$\overline{\text{(Intercept)}}$	539	0.46	0.38, 0.55	< 0.001
sex_f				0.016
F	395			
M	144	0.70	0.52, 0.94	
maturity				0.57
1	344			
2	195	1.08	0.83, 1.41	
${ m shark_bite}$				0.54
0	473			
1	66	1.13	0.76, 1.69	
anthropogenic				0.39
0	435			
1	104	0.86	0.62, 1.21	
			,	

We can now export the table in both word and html format

```
tbl.glmm.lead %>%
  as_gt() %>%
  gt::gtsave(filename = here("outputs/tables/tbl.glmm.lead.html"))

tbl.glmm.lead %>%
  as_gt() %>%
  gt::gtsave(filename = here("outputs/tables/tbl.glmm.lead.docx"))
```

0.5 Individual differences in group leadership compared between sexes, age and injury status

0.5.1 Male - female differences

0.5.1.1 Fit glmer models

```
Approximation) [glmerMod]
Family: binomial (logit)
Formula: leader ~ maturity + shark bite + anthropogenic + (1 | id)
  Data: subset(df.group, sex_f == "F")
    AIC
            BIC
                 logLik deviance df.resid
 1538.9
         1564.4 -764.5 1528.9
                                   1210
Scaled residuals:
           1Q Median
                        3Q
   Min
                               Max
-0.8534 -0.6976 -0.6550 1.3714 1.5921
Random effects:
Groups Name
                 Variance Std.Dev.
       (Intercept) 0.05108 0.226
Number of obs: 1215, groups: id, 205
Fixed effects:
             Estimate Std. Error z value Pr(>|z|)
             (Intercept)
maturity2
             0.15263 0.14658 1.041
                                        0.298
```

Generalized linear mixed model fit by maximum likelihood (Laplace

```
shark_bite1
             0.28231
                      0.20398
                               1.384
                                       0.166
anthropogenic1 0.01023
                               0.062
                                       0.951
                       0.16630
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
          (Intr) mtrty2 shrk 1
maturity2
         -0.448
shark_bite1 -0.345 0.030
anthropgnc1 -0.378 -0.010 0.088
Generalized linear mixed model fit by maximum likelihood (Laplace
 Approximation) [glmerMod]
Family: binomial (logit)
Formula: leader ~ maturity + shark_bite + anthropogenic + (1 | id)
  Data: subset(df.group, sex_f == "M")
    AIC
            BIC
                 logLik deviance df.resid
  609.3
          630.8
                -299.7
                         599.3
                                   540
Scaled residuals:
          1Q Median
                        3Q
                              Max
-1.7946 -0.5537 -0.4665 0.5572 2.7748
Random effects:
Groups Name
                 Variance Std.Dev.
       (Intercept) 0.6399
                        0.8
Number of obs: 545, groups: id, 119
Fixed effects:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)
            0.001640 -42.41 <2e-16 ***
maturity2
            -0.069563
shark_bite1
            Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
          (Intr) mtrty2 shrk_1
maturity2
          0.000
```

shark_bite1 0.000 0.000

```
anthropgnc1 0.000 0.000 0.000
optimizer (Nelder_Mead) convergence code: 0 (OK)
Model failed to converge with max|grad| = 0.0430752 (tol = 0.002, component 1)
```

plot(allEffects(glmm.lead.f)); plot(allEffects(glmm.lead.f))

anthropogenic effect plot

shark_bite effect plot

anthropogenic effect plot


```
# Save model file
saveRDS(glmm.lead.f, file = here("outputs/mods/glmm.lead.f.rds"))
saveRDS(glmm.lead.m, file = here("outputs/mods/glmm.lead.m.rds"))
```

The model does not converges properly with the male dataset. This comes from that fact that there are few adult males in the population. Because our question is now related to variance component, we keep the fixed effect structure the same regardless for consistency.

0.5.1.2 Fit rptR models

Adjusted repeatability

All variance components

All variance ratios

0.5.1.3 Plot the model estimates

Store all variance components

```
Vi_f = rpt.V.f$R_boot_link$id
Vi_m = rpt.V.m$R_boot_link$fixed
Vfe_f = rpt.V.f$R_boot_link$Fixed
Vfe_m = rpt.V.m$R_boot_link$Fixed
VR_f = rpt.V.f$R_boot_link$Residual
VR_m = rpt.V.m$R_boot_link$Residual
R_f = rpt.R.f$R_boot_link$id
R_m = rpt.R.m$R_boot_link$id
```

Put into formated table

Plot

```
p1 = df %>%
  group_by(v.compo, Sex) %>%
  summarise(var = mean(var)) %>%
  ggplot(aes(y = var, x = Sex, fill = v.compo)) +
  geom_bar(position = "fill",
           stat = "identity", width = .2) +
  scale_fill_wsj(labels = c(
    bquote(V[fe]),
    bquote(V[i]),
    bquote(V[R]))) +
  ylab("Variance explained") +
  theme_bw(18) +
  labs(fill = "") +
  theme(legend.position = c(.9, .5))
delta.vi.r = df.2 %>%
  ggplot(aes(x = delta_r2_Vi * 100)) +
  stat_halfeye(alpha = .6) +
  geom_vline(xintercept = 0,
             linetype = "dashed") +
  xlab(bquote(Delta[V[i]])) +
  ylab("Density") +
  theme_bw(18) +
  ggtitle("Difference in variance explained (%)")
delta.vfe.r = df.2 %>%
  ggplot(aes(x = delta_r2_Vfe * 100)) +
  stat_halfeye(alpha = .6) +
  geom_vline(xintercept = 0,
             linetype = "dashed") +
  xlab(bquote(Delta[V[fe]])) +
  ylab("Density") +
  theme_bw(18)
```


- 0.5.2 Juvenile adult differences
- 0.5.3