$$R_{\text{Bbix}} = \left| \frac{U_{\text{Bbix}1} - U_{\text{Bbix}2}}{I_{\text{Bbix}1} - I_{\text{Bbix}2}} \right|.$$

Сопротивление нагрузки $R_{\rm H} \, (R_{\rm HI} + R_{\rm H2})$ в минимальном положении сопротивления $R_{\rm H2}$ — 560 Ом, в максимальном положении сопротивления $R_{\rm H2}$ —

Рассчитать входные и выходные значения сопротивлений усилителя с отрицательней обратной связью, без отрицательной обратной связи и с шуитирующим конденсатором, используя формулы (4.1) и (4.2.)

10.Сделать вывод.

Контрольные вопросы

- 1. Укажите назначение элементов усилителя.
- 2. Приведите амплитудную характеристику усилителя, как снять её экспериментально?
- 3. Укажите на амплитудной характеристике области активного усиления, насыщения.
- 4. Приведите амплитудно-частотную характеристику усилителя, как снять её экспериментально?
- 5. Приведите определение нелинейных искажений, как определить их появление экспериментально?
- 6. Как экспериментально измерить выходное сопротивление усилительного каскала?
 - 7. Как влияет сопротивление нагрузки на K_i ?
 - 8. Как экспериментально снять зависимость K_u , K_i от R_u ?

ЛАБОРАТОРНАЯ РАБОТА № 5

ИЗУЧЕНИЕ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

Цель лабораторной работы: изучение свойств и характеристик ненивертирующего, инвертирующего и дифференциального усилителей.

Операционный усилитель (ОУ) - это высококачественный усилитель постоянного тока с большим коэффициентом усиления, выполненный по интегральной технологии и предназначенный для выполнения различных операций над аналоговыми сигналами при работе в схеме с отрицательной обратной свя-3610 (OOC).

Операционный усилитель является усилителем постоянного тока с высокой верхней граничной частотой, благодаря очень высокому коэффициенту
усиления (десятки и сотни тысяч) и широкому диапазону усиливаемых частот
за счёт введения различных обратных связей позволяет создавать усилительные
каскады, реализующие множество функциональных преобразований. Традиционными областями применения операционных усилителей являются: аналоговая техника, аппаратура обработки сигналов, радиоизмерительная техника,
также ОУ находят широкое применение для генерации электрических колебаний различной формы и частоты.

Параметры реальных ОУ отличаются от параметров идеального ОУ, следовательно их стремятся приблизить к параметрам идеального ОУ. Идеальный ОУ – это усилитель постоянного тока, имеющий:

- * дифференциальный вход с усилением по напряжению дифференциального сигнала $K_u \to \infty$ и полным входным сопротивлением $Z_{\rm sx}$ бесконечно большим на всех частотах;
 - бесконечный коэффициент ослабления синфазных сигналов;
 - нулевой дрейф, шум и сдвиг нуля;
 - нулевые входные токи смещения и сдвига;
 - нулевое выходное сопротивление;
- выходной сигнал напряжения, имеющий возможность одинаково изменяться в сторону, как положительного напряжения, так и отрицательного напряжения относительно потенциала точки покоя выхода.

На практике широко применяются инвертирующие и неинвертирующие сумматоры на ОУ. На рис. 5.1 представлена схема инвертирующего сумматора.

При использовании идеального ОУ можно считать, что сумма входных токов усилителя, вызванных напряжениями $U_{\rm Bx1},\,U_{\rm Bx2},\,U_{\rm Bx3}$ (рис.5.1) равна току, протекающему по $R_{\rm oc}$, то есть можно записать следующее выражение:

$$(U_{\text{BX}1}/R_1) + (U_{\text{BX}2}/R_2) + (U_{\text{BX}3}/R_3) = -U_{\text{BSEX}}/R_{\text{oc}}.$$

Используя вышеприведённое выражение, запишем следующую формулу:

$$U_{\text{Bulk}} = -\left(\frac{U_{\text{BX1}}}{R_{\text{BX1}}} + \frac{U_{\text{BX2}}}{R_{\text{BX2}}} + \frac{U_{\text{BX3}}}{R_{\text{BX3}}}\right) R_{\text{oc}}.$$
 (5.1)

Для частного случая, когда $R_{\rm BX1} = R_{\rm BX2} = R_{\rm BX3} = R_{\rm BX}$

$$U_{\mathrm{BMX}} = -(U_{\mathrm{BX1}} + U_{\mathrm{BX2}} + U_{\mathrm{BX3}}) \frac{R_{\mathrm{oc}}}{R_{\mathrm{BX}}}$$

При сравнении практических и теоретических значений коэффициснтов усилений учитывать, что разброс значений входящих в схему сопротивлений составляет до 10%.

Рис. 5.1 Схема инвертирующего сумматора ($R_{\rm BX} = 10~{\rm кOm}$, $R_{\rm oc} = 10~{\rm кOm}$)

В схеме неинвертирующего усилителя (рис. 5.2) входной сигнал поступает на неинвертирующий вход ОУ, а на инвертирующий вход подаётся сигнал обратной связи. В неинвертирующем усилителе ОУ охвачен последовательный ООС по напряжению.

Поскольку $U_{\rm BX}$ и сигнал ООС подаются на разные входы ОУ, то для идеального ОУ $U_{\rm BX}$ определяется следующим выражением:

$$U_{\rm BX} = U_{\rm BMX}(R1/(R1 + R_{\rm oc}).)$$
 (5.2)

Тогда коэффициент усиления неинвентирующего усилителя по напряжению определяется следующим выражением:

Сравнивая Киленив и Килив, можно записать следующую формулу:

$$K_{u,\text{RehhB}} = 1 + K_{u,\text{hhB}}$$
.

Дифференциальный (разностный) усилитель (рис. 5.3) на ОУ можно рассматривать как совокупность инвертирующего и неинвертирующего вариантов. Входные сигналы подаются как на инвертирующий вход, так и на неинвертирующий.

Для $U_{\text{вых}}$ разностного усилителя запишем следующее выражение:

$$U_{\text{BMX}} = K_{\text{U.HHB}}U_{\text{BX1}} + K_{\text{U.HEWHB}}U_{\text{BX2}}R1/(R_{\text{BX2}} + R1),$$

подставляя Киненив и Кинив получаем

$$U_{\text{Bbix}} = -\frac{R_{\text{oc}}}{R_{\text{BX1}}} U_{\text{BX1}} + \left(1 + \frac{R_{\text{oc}}}{R_{\text{BX1}}}\right) U_{\text{BX2}} \frac{R1}{R_{\text{BX2}} + R1}.$$
 (5.3)

Для частного случая, когда $R_{\rm oc}=R1=R_{\rm BX1}=R_{\rm BX2}$ запишем выражение:

$$U_{\text{Bbix}} = U_{\text{Bx2}} - U_{\text{Bx1}} \tag{5.4}$$

Из формулы (5.3) спедует, что устройство может осуществлять вычитание двух напряжений с коэффициентом пропорциональности, равным единице. Недостатком разностного усилителя является сложность регулировки коэффициента усиления и разная величина входных сопротивлений. Эти недостатки устраняются в устройствах на нескольких ОУ, так как разностный усилитель можно рассматривать как сумму инвертирующего и неинвертирующего усилителей.

Дифференциальные усилители применяются, как правило, в тех случаях, когда нежелательные помехи наводятся на соединительных проводниках. Эта проблема часто возникает при надичии промышленных помех, когда чувствительные электронные измерительные приборы должны работать рядом с монными электроаппаратами, от которых могут исходить значительные помехи.

Внешний вид модуля «Схемы на операционных усилителях» представлен на рис. 5.4.

Рис. 5.3. Схема лифференциального усилителя $R_{\rm EX} = R_{\rm ex} = R_1 = R_{\rm oc} = 10 \ {\rm кOm})$

Рис. 5.4. Внешний вид передней панели дабораторного модуля «Схемы на операционных усипителях»

Порядок выполнения лабораторной работы

1. Изучение характеристик инвертирующего усилителя

1.1. Рассчитать выходное напряжение $U_{\text{вых.рясч}}$ инвертирующего усилителя при различных значениях входных напряжений $U_{\text{вх1}},\ U_{\text{вх2}},\ U_{\text{вх2}}$ (по указанию преподавателя) используя формулу (5.1), где $R_{\text{вх1}} = R_{\text{вх2}} = R_{\text{oc}} = R = 10$ кОм, $R_{\text{вх3}} = 2R = 20$ кОм. Результаты заносить в табл. 5.1.

1.2. Повторить расчеты по п. 1.1. при $R_{\rm oc} = 2R$ и $R_{\rm oc} = 3R$. Результаты зано-

сить в табл. 5.1.

1.3. Согласно рис. 5.5 выполнить электрические соединения модулей для изучения инвертирующего усилителя. Монтаж схемы производить при от-ключенном питании.

1.4. Перевести мультиметр в режим измерения постоянного напряжения с

пределом 20 В.

- 1.5. Задавая различные значения входных напряжений $U_{\rm вx1},\,U_{\rm вx2},\,U_{\rm вx3}$ (в том числе значения $U_{\rm вx1},\,U_{\rm вx2},\,U_{\rm вx3},\,$ используемые в расчетах по п. 1.1 1.2), измерять мультиметром выходное напряжение $U_{\rm вых, эксп}$ для различных значений сопротивления обратной связи $R_{\rm oc}$ ($R,\,2R,\,3R$). Результаты измерений заносить в табл. 5.1.
- Провести анализ расхождений расчетных и экспериментальных данных (табл. 5.1), сделать вывод.

Рис. 5.5. Схема соединений лабораторных модулей для изучения инвертирующего усилителя

							- 2	
$R_{\rm oc} = R$	$U_{\mathrm{ext}},\mathrm{B}$							
	$U_{\rm ex2},{ m B}$							
	$U_{\rm Bx3}, { m B}$							
	$U_{\rm вых расч}, { m B}$							
	$U_{\text{вых.эксп}}$, В							
$R_{\rm oc} = 2R$	$U_{\rm ext}$, B							
	$U_{\rm ex2},{ m B}$							
	$U_{\rm ex3},{ m B}$							
	<i>U</i> вых расч, В							
	<i>U</i> вых эксп, В							
$R_{\rm oc} = 3R$	$U_{\rm ex1}, { m B}$			0 3				
	$U_{\rm ex2}, { m B}$							
	$U_{\rm ex3}, B$							
	<i>U</i> вых расч, В							
	$U_{\text{вых эксп}}, \mathbf{B}$							

2. Исследование характеристик неинвертирующего усилителя

- 2.1. Рассчитать выходное напряжение $U_{\rm вых \, pace}$ неинвертирующего усилителя при различных значениях входного напряжения $U_{\rm вx}$ (по указанию преподавателя) используя формулу (5.2), где $R_{\rm ex}=R_{\rm oc}=R=10$ кОм, R1=5,6 кОм. Результаты заносить в табл. 5.2.
- 2.2. Повторить расчеты по п. 2.1. при $R_{\rm oc} = 2R$ и $R_{\rm oc} = 3R$. Результаты заносить в табл. 5.2.
- 2.3. Согласно рис.5.6 выполнить электрические соединения модулей для изучения неинвертирующего усилителя. Монтаж схемы производить при от-ключенном питании.
- 2.4. Перевести мультиметр в режим измерения постоянного напряжения с пределом 20 В.
- 2.5. Задавая различные значения входного напряжения $U_{\rm вx}$ (в том числе значения $U_{\rm вx}$, используемые в расчетах по п. 2.1 2.2), измерять мультиметром выходное напряжение $U_{\rm вых эксп}$ для различных значений сопротивления обратной связи $R_{\rm oc}$ (R, 2R, 3R). Результаты измерений заносить в табл. 5.2.
- 2.6. Используя данные таблицы 5.1 построить амплитудные характеристики $U_{\rm вx}=f(U_{\rm вых})$ неинвертирующего усилителя на ОУ при различных сопротивлениях обратной связи $R_{\rm oc}$ (R, 2R, 3R). Провести анализ расхождений расчетных и экспериментальных характеристик, сравнить tg угла наклона характеристик.

Рис. 5.6. Схема соединений лабораторных модулей для изучения неинвертирующего усилителя

Таблица 5.2 Амилитудная характеристика неинвертирующего усилителя

$R_{\rm oc} = R$	$U_{\mathrm{ex}},\mathrm{B}$							
	Usian pach, B							-
	$U_{выех, эксп}, B$							
	Uex, B			5.10.000				
$R_{\rm oc} = 2R$	Umax.pace, B		SHAME S					
	Usar seen, B							
$R_{cc} = 3R$	$U_{\rm sx},{ m B}$				1000000		T010 H1	
	<i>U</i> вых расч. В							
	UBLIK SKEIN, B							

3. Изучение характеристик дифференциального усилителя

3.1. Рассчитать выходное напряжение $U_{\scriptscriptstyle \rm BMX\,pace}$ дифференциального усилителя при различных значениях входных папряжений $U_{\rm gx1},~U_{\rm sx2}$ (по указанию преподавателя) используя формулу (5.3), где $R_{\rm ext}=R_{\rm ext}=R_{\rm oc}=R=10$ кОм, сопротивление нижнего плеча делителя неинвертирующего входа R1=R=10 кОм. Результаты заносить в табл. 5.3.

3.2. Повторить расчеты по п. 3.1. при $R_{\rm oc} = 2R$ и R1 ||2R1 = R||2R. Результаты

заносить в табл. 5.3.

3.3. Согласно рис. 5.7 выполнить электрические соединения модулей дин изучения дифференциального усилителя. Монтаж схемы производить при отключенном питании.

Рнс. 5.7. Схема соединений лабораторных модулей для изучения дифференциального усилителя

Таблица 5.3

		and the second second
$R_{oc} = R,$ нижнее плечо делителя $R1 = R$	U _{ex1} , B	
	U ₂₀₂ , B	
	Ussix paces, B	
	University B	
$R_{oe} = 2R$, нижнее плечо	U _{ax1} , B	
	U _{8x2} , B	
	Usuxpacq, B	
делителя $RT = R$	Ussix sicen, B	
$R_{oe} = R_{\star}$	U _{sxl} , B	
нижнее плечо	U _{8×2} , B	
делителя $R1 2R1 = R 2R$	Uniax paces, B	
	UBBAN B	
$R_{\rm ec} = 2R_{\rm s}$	Uexi, B	
нижнее плечо	U _{ex2} , B	
делителя	Uвых расчэ В	
R1 2R1 = R 2R	Upax seens B	

- 3.4. Перевести мультиметр в режим измерения постоянного напряжения с пределом 20 В.
- 3.5. Задавая различные значения входных напряжений $U_{\rm sx1},~U_{\rm sx2}$ (в том числе значения $U_{\rm sx1},~U_{\rm sx2},$ используемые в расчетах по п. 3.1 3.2), измерять мультиметром выходное напряжение $U_{\rm sux,sxc0}$ для различных значений сопротивления обратной связи $R_{\rm sx}$ (R, 2R) и сопротивления инжнего плеча делителя

- неинвертирующего входа R1 (R1, R1||2R1). Результаты измерений запосить в

- 3.6. Провести анализ расхождений расчетных и экспериментальных данных (табл. 5.3), сделать вывод.
 - 4. Сделать обобщающий вывод по лабораторной работе.

Контрольные вопросы

1. Приведите определение операционного усилителя.

2. Приведите определение амплитудной характеристики операционного Усилителя.

3. Какие каскады используются в схемотехнике операционного усилителя?

4. Приведите схему инвертирующего операционного усилителя. Запишите связь между входным и выходным напряжениями.

5. В чем разница между инвертирующим и неинвертирующим входом операционного усилителя?

6. Приведите схему неинвертирующего операционного усилителя. Запишите связь между входным и выходным напряжениями.

7. Приведите определение коэффициента ослабления синфазного сигнала.

The second

8. Приведите схему включения операционного усилителя в режиме дифференциального усилителя.

ЛАБОРАТОРНАЯ РАБОТА № 6

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ФИЛЬТРОВ

Цель лабораторной работы: Изучение принципов построения, свойств и характеристик активных фильтров.

Активные RC фильтры предназначены для выделения из спектра сигнала области частот и передачи этих частот с выхода на вход. Все частоты, лежащие вне полосы пропускания, должны быть подавлены.

При использовании в качестве элемента схемы операционного усилителя (ОУ) можно синтезировать характеристику любого RLC - фильтра без применения катушек индуктивности. Такие безиндуктивные фильтры известны под названием «активные фильтры» из-за наличия в структурной схеме активного заемента (усилителя).

Активные фильтры можно использовать для реализации фильтров нижних и верхних частот, полосовых фильтров, выбирая тип фильтра в зависимости от жиболее важных свойств, таких, как максимальная равномерность усиления в