Monash University Faculty of Information Technology

Lecture 20 Nondeterministic Polynomial time, and the class NP

Slides by Graham Farr (2012).

FIT2014 Theory of Computation

Overview

- Deciding and Verifying
- Certificate
- The class NP
- Proving membership of NP
- · Examples of languages in NP
- P ⊆ NP
- The P-versus-NP problem
- Deciders for languages in NP
- Nondeterministic Polynomial-time Turing machines

Deciding and Verifying

· Deciding if a string belongs to a language or not

versus

 Verifying that a string belongs to a language (if it does)

Deciding and Verifying

- P is intended to contain languages which are efficiently decidable
 - i.e., you can efficiently solve the problem of deciding whether something is in the language or not
- Recall (Lecture 16, on Decidability):
 A decider for a language L is a TM that
- · halts for any input
- · accepts every x in L
- rejects every x not in L
- P is the set of languages for which there is a polynomial-time decider.

Deciding and Verifying

Consider:

{ people who can kick a football }

- How do you verify that a person can kick a football?
- Give them a ball and get them to try to kick it.
- This procedure is a decider.

It enables you to decide whether or not they can kick a football.

Deciding and Verifying

Now consider:

{ university graduates }

- How do you verify that a person is a graduate?
- Can't do it just by meeting them, testing abilities etc.
 There is no efficient decider for this set.
- But you can verify it if you have their degree certificate.
- Hard to verify that someone is not a graduate.

Deciding and Verifying

- A verifier for a language L is a TM that takes, as input, two strings x and y,
 - halts for any x, y
 - if x is in L, there exists y such that the TM accepts
- $^{\circ}$ if x is not in L, every y makes the machine reject.
- y is called a certificate
- x is accepted if and only if it has a certificate which can be verified.
- Polynomial-time verifier: a verifier with time complexity polynomial in length of x.

(i.e., $O(|x|^k)$, for some fixed k, where |x| denotes length of string x)

NP

- NP is the set of languages for which there is a polynomial-time verifier.
- NP stands for

Non-deterministic **P**olynomial time (for reasons to be given later)

 NP is intended to contain languages for which membership can be efficiently verified, with the aid of an appropriate certificate.

Proving membership of NP

To show a language is in NP, you need to:

- specify the certificate
- give a polynomial-time verifier (as an algorithm)
- prove that it is a verifier for the language
- · prove that it is polynomial time.

Proving membership of NP

Proof that { 3-colourable graphs } is in NP.

Given: graph G

Certificate: a function $f: V(G) \rightarrow \{ Red, White, Black \}$

Verification:

For each edge $\,\mathrm{uv}\,$ of $\,\mathrm{G}\,$

Look up f(u) and f(v).

// ... these are the colours given to the endpoints $\, u,v \,$ of this edge

Check that $f(u) \neq f(v)$.

If so, continue. If not, Reject and halt.

// ... endpoints must get different colours

If loop completes with no edge rejected, then Accept and halt.

Proving membership of NP

Claim 1

This is a verifier for { 3-colourable graphs}.

Proof

G is in { 3-colourable graphs}

if and only if

there exists a function $f: V(G) \rightarrow \{ Red, White, Black \}$ such that, for each edge uv, we have $f(u) \neq f(v)$

if and only if

there exists a certificate such that our verifier accepts G.

End of proof of Claim

Proving membership of NP

Claim 2

Verifier takes polynomial time, in size of input.

Main loop: # iterations = # edges = m, say.

For each edge: look up each endpoint in the certificate. Suppose certificate is given as a list of colours, one for each vertex. The vertex gives the position in the list.

Looking up the colour of each endpoint takes $\ O(n)$ time, where $\ n:=\#$ vertices.

Checking whether $f(u) \neq f(v)$ takes constant time. So total time $\leq m \cdot n \cdot constant = O(mn)$.

So it takes polynomial time, in size of G.

End of broof of Claim 2

Proving membership of NP

So we have proved that { 3-colourable graphs } is in NP.

Remarks:

Some of these time estimates are loose upper bounds. Better estimates are often possible. (E.g., how long does it take to look something up in an array of size $\, n \, ?)$ But if our objective is to show that something is in $\, NP$, then all we need to show is that the time complexity of verification is bounded above by a polynomial (i.e., $\, O(n^k)$, for some fixed $\, k \,)$.

Some languages in NP

For each of the examples we give, ask:

- · What is the certificate?
- How do you verify it?

Examples:

- the set of 2-colourable graphs
- the set of 3-colourable graphs
- { (G, k) : G is a k-colourable graph }

Some languages in NP

- the set of composite numbers
 - { x in N : there exist integers y, z such that $1 \le y \le x$, $1 \le z \le x$, and $x = y \cdot z$ }
- SATISFIABILITY:

the set of satisfiable Boolean expressions

- 2-SAT
 - exactly two literals in each clause
 - see the end of the previous lecture
- 3-SAT
- · exactly three literals in each clause

Some languages in NP

- the set of Eulerian graphs
- the set of Hamiltonian graphs
 - A Hamiltonian circuit in a graph G is a circuit which includes each vertex exactly once. (note: a circuit doesn't repeat any vertex or edge)
 - A graph is Hamiltonian if it contains a Hamiltonian circuit.

Some languages in NP

GRAPH ISOMORPHISM:

 $\{ (G, H) : G \text{ is isomorphic to } H \}$ G is isomorphic to H if there is a bijection
f: $V(G) \rightarrow V(H)$ such that, for all u, v in V(G),
u is adjacent to v in G if and only if
f(u) is adjacent to f(v) in H.

We write: G ≅ H

Such a bijection is an isomorphism.

Informally: $\mbox{\bf G}$ and $\mbox{\bf H}$ are the same, apart from renaming vertices.

Some languages in NP VERTEX COVER: { (G, k) : G has a vertex cover of size ≤ k } A vertex cover in a graph G = (V, E) is a set X of vertices such that every edge has at least one endpoint in X. In this graph: {a, b, c} is a vertex cover {b, c} is a vertex cover {a, b, c, d} is a vertex {a, b, c,

Some languages in NP • CLIQUE: { (G, k) : G has a clique of size ≥ k } A clique in a graph G = (V, E) is a set X of vertices such that every pair of vertices in X are adjacent. In this graph: {a} is a clique {a, b, c} is a clique {a, b, d} is NOT a clique • What is the relationship between independent sets

and cliques?

P and NP

Theorem

Any language in NP can be decided in time $O(2^{n^K}) \mbox{ for some } \mbox{ K}.$

Idea of Proof.

Let $\,L\,$ be any language in $\,$ NP.

It has a polynomial-time verifier.

Construct from this a decider for L. How

Decider does an exhaustive search of all possible certificates, to see if one of them gets the input accepted.

Prove it's a decider for L, and has the claimed time complexity.

P and NP

The decider for L in detail:

Input: x

For each certificate y:

Call verifier on input x, certificate y.

If it accepts, then accept, else continue.

Accept x if the verifier accepts for some y;

Reject x if the verifier rejects for every y.

Decider for L? Clear from definition of a verifier. Time complexity? If verifier has time complexity $O(n^k)$, then decider's time complexity is O((# certificates) . n^k).

P and NP

So: how many certificates?

At first sight: looks like infinitely many!

BUT in $\,t\,$ steps, a Turing machine can examine at most $\,t\,$ symbols in the certificate.

Our verifier has time complexity $O(n^k)$, which is $\leq c \cdot n^k$ (for sufficiently large n). So this verifier sees $\leq c \cdot n^k$ symbols in the certificate. Any symbols beyond that are ignored.

Assuming our usual alphabet {a, b}, the number of certificates that need to be checked is $\leq 2^{cn}^k$

So, decider's total time complexity is $O(2^{cn^k}n^k)$.

P and NP

So, decider's total time complexity is $O(2^{cn^k}n^k)$.

This is dominated by the exponential part, and in fact you can find a constant $\, \, {\rm K} \, \,$ a bit larger than $\, \, {\rm k} \, \,$ such that the time complexity is $\, \, {\rm O(2}^{n^{K}}) \, . \,$

So any language in NP can be decided in exponential time.

Nondeterministic Turing machines

- All Turing machines so far have been deterministic
 i.e., for each state and symbol, there is just one transition.
- So, for each state and for each symbol, the next action is completely determined: there is a specific next state, new symbol and direction. In fact, the entire computation is completely determined by the input.
- In a nondeterministic Turing machine (NDTM): for a given state and symbol, there may be more than one possible transition. (Briefly mentioned in Lecture 14)
- One input may lead to many possible computations.
- Deterministic TMs are also NDTMs!

Nondeterministic Turing machines

- The language accepted by a NDTM M is the set of input strings for which some computation leads to an Accept state.
- A NDTM M is a decider for a language L if
 - M halts on all inputs, and
 - the language accepted by M is L.
- A polynomial-time NDTM is a NDTM which, for any input x and any computation, halts in time O(|x|^k), for some fixed k.

Nondeterministic Turing machines

Theorem

L is in NP if and only if some polynomial-time NDTM is a decider for L. Proof (outline):

(⇒)

Suppose L has a verifier with time complexity $\le c n^k$. Construct a NDTM M as follows. On input x, M generates a string y of length $c n^k$, nondeterministically, and then just executes the verifier on x, y.

Nondeterministic Turing machines

(**←**)

Let M be a polynomial-time NDTM that decides L. Set up a way of encoding, as a string, the sequence of choices made at the nondeterministic steps of a computation. Use this string as a certificate ...

End of proof

NP stands for Nondeterministic Polynomial time

Contrast with finite automata, where DFAs and NFAs define the same class of languages.

Revision

• Sipser, sections 7.2-7.3.