Mathematik II für Studierende der Informatik (Analysis und Lineare Algebra)

Thomas Andreae, Henrik Bachmann, Rosona Eldred, Malte Moos

Sommersemester 2012 Blatt 6

A: Präsenzaufgaben am 10. Mai 2012

- 1. Finden Sie jeweils eine Stammfunktion F(x) von f(x) und machen Sie die Probe, d.h., überprüfen Sie, ob F'(x) = f(x) gilt.
- (i) $f(x) = 4x^2$ (ii) $f(x) = \sqrt{x}$ (iii) $f(x) = e^{3x+1}$
- **2.** Berechnen Sie $\int \frac{1}{\sqrt{x}} dx$ sowie $\int \sin(3x+1) dx$.

Vergessen Sie nicht, die Probe zu machen!

- **3.** Berechnen Sie $\int x \cdot \sin x \, dx$ und machen Sie die Probe.
- 4. a) Berechnen Sie $\int \sqrt{x} \ dx$. Skizzieren Sie den Graphen der Funktion $f(x) = \sqrt{x}$ und verdeutlichen Sie anhand der Skizze, um welchen Flächeninhalt es geht.
 - b) Ebenso wie a) für $\int_{1}^{3} \cos x \, dx$.

B: Hausaufgaben zum 24. Mai 2012

- 1. a) Berechnen Sie die Fläche, die vom Graphen der Funktion $f(x) = x^3$, der x-Achse und der Geraden x = 3 eingeschlossen wird, als Grenzwert einer Folge von Obersummen. Hinweis: Man gehe ähnlich vor wie auf Seite 70 des Skripts.
 - b) Zur Probe berechne man diese Fläche mit Hilfe der "Stammfunktionsmethode" (Satz 9, Abschnitt 3.3)
- 2. Berechnen Sie $\int f(x) dx$, skizzieren Sie den Graphen von f(x) und verdeutlichen Sie anhand der Skizze, um welchen Flächeninhalt es geht.
 - (i) $f(x) = x^2 x 6$
- (iv) $f(x) = \ln x$ (v) $f(x) = e^{-x}$
- (ii) $f(x) = \sqrt[3]{x}$

- (iii) $f(x) = \frac{1}{1 \perp x^2}$
- 3. Berechnen Sie die folgenden Integrale und machen Sie für (iii)-(v) die Probe.
 - (i) $\int (x^4 + 2x^3 x + 5) dx$
- (iv) $\int x^3 \cdot \ln x \, dx$ (v) $\int x^2 e^x \, dx$
- (ii) $\int \frac{1}{\sqrt{x^3}} dx \text{ (für } x > 0)$

(iii) $\int x \cdot \sin(3x) \ dx$

4. Berechnen Sie die folgenden Integrale und machen Sie jeweils die Probe.

(i)
$$\int e^{\sqrt{\frac{1}{3}x+2}} dx$$
 (iii)
$$\int (\ln x)^3 dx$$
 (ii)
$$\int e^{\sqrt[3]{x}} dx$$
 (iv)
$$\int_0^3 \frac{x^2}{x^3+4} dx$$
 (für $x > 0$)

Hinweise: Verwenden Sie bei (iii) die Substitution $t = \ln x$. Aufgabe (iv) ist leicht, wenn man beachtet, dass – bis auf den Faktor 3 – der Zähler gleich der Ableitung des Nenners ist. Bei (iv) ist keine Substitution zu verwenden.

5. Das Integral lässt sich – wie Sie wissen – zur Bestimmung von Flächeninhalten verwenden. In praktischen Anwendungen kommt es aber auch sehr häufig vor, dass das Integral der Berechnung von Durchschnittswerten dient. Hier eine Aufgabe, die dies illustriert: Die Funktion $f:[0,3]\to\mathbb{R}$ sei gegeben durch

$$f(x) = 7x^3 - 42x^2 + 63x - 2.$$

Wir stellen uns vor, dass f auf dem Intervall [0,3] die Lufttemperatur in ${}^{\circ}C$ an einem festen Ort und im Laufe eines Tages angibt. (1 Einheit auf der x-Achse entspricht also 8 Stunden.) Bestimmen Sie

- (i) die Tageshöchsttemperatur;
- (ii) die Tagestiefsttemperatur;
- (iii) die Durchschnittstemperatur dieses Tages.