

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

General purpose & High capacitance
Class 2, X5R

100 pF to 100 μF

RoHS compliant & Halogen free

YAGEO Phícomp

SCOPE

This specification describes X5R series chip capacitors with leadfree terminations.

<u>APPLICATIONS</u>

- PCs, Hard disk, Game PCs
- Power supplies
- DVD players
- Mobile phones
- Data processing

FEATURES

- Supplied in tape on reel
- Nickel-barrier end termination
- RoHS compliant
- Halogen free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

XXXX X X X5R X BB XXX (1) (2) (3)

(I) SIZE - INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

1812 (4532)

(2) TOLERANCE

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

 $4 = 4 \ \lor$

5 = 6.3 V

6 = 10 V

7 = 16 V

8 = 25 V9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

PHYCOMP BRAND ordering codes

GLOBAL PART NUMBER (preferred), PHYCOMP CTC (for North America) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.

12NC CODE

PHYCOMP CTC code (for North America)

● Example: 06032B225M5B20D

0603	2B	225	М	5	В	2	0	D
Size code	Temp. Char.	Capacitance in pF	Tolerance	Voltage	Termination	Packing	Marking	Range identifier
0201 0402 0603 0805 1206 1210 1812	2B = X5R	$101 = 100 \text{ pF}$; the third digit signifies the multiplying factor: $0 = \times 1$ $1 = \times 10$ $2 = \times 100$ $3 = \times 1,000$ $4 = \times 10,000$ $5 = \times 100,000$ $6 = \times 1,000,000$ $7 = \times 10,000,000$	$K = \pm 10\%$ $M = \pm 20\%$	4 = 4 V 5 = 6.3 V 6 = 10 V 7 = 16 V 8 = 25 V 9 = 50 V	B = NiSn	2 = 180 mm 7" Paper/PE 3 = 330 mm 13" Paper/PE B = 180 mm 7" Blister F = 330 mm 13" Blister P = Bulk case	0 = no marking	D = Class 2 MLCC

18

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.

DIMENSION

Table I For outlines see fig. 2

	e i Toroutimes	Ü		L ₂ / L:	3 (mm)	L ₄ (mm)
TYPE	L _I (mm)	W (mm)	T (MM)	min.	max.	min.
0201	0.6 ±0.03 ^(I)	0.3 ±0.03 ⁽¹⁾		0.10	0.20	0.20
	0.6 ±0.05 ⁽²⁾	0.3 ±0.05 ⁽²⁾			0.20	0.20
	1.0 ±0.05 ⁽¹⁾	0.5 ±0.05 ⁽¹⁾				
0402	1.0 ±0.15 ⁽²⁾	0.5 ± 0.15 ⁽²⁾		0.20	0.30	0.40
	1.0 ±0.20 ⁽³⁾	0.5 ±0.20 ⁽³⁾				
	1.6 ±0.10 ⁽¹⁾	0.8 ±0.10 ⁽¹⁾				
0603	1.6 ±0.15 ⁽²⁾	0.8 ±0.15 ⁽²⁾		0.20	0.60	0.40
	1.6 ±0.20 ⁽³⁾	0.8 ±0.20 ⁽³⁾				
0805	2.0 ±0.10 ⁽¹⁾	1.25 ±0.10 ⁽¹⁾	Refer to table 2 to 4	0.25	0.75	0.55
0003	2.0 ±0.20 ⁽²⁾	1.25 ±0.20 ⁽²⁾		0.23	0.75	0.55
	3.2 ±0.15 ⁽¹⁾	1.6 ±0.15 ⁽¹⁾				
1206	3.2 ±0.30 ⁽²⁾	1.6 ±0.20 ⁽²⁾		0.25	0.75	1.40
	$3.2 \pm 0.30^{(3)}$	1.6 ±0.30 ⁽²⁾				
1210	3.2 ±0.20 ⁽¹⁾	2.5 ±0.20 ^(I)		0.25	0.75	1.40
1210	3.2 ±0.40 ⁽²⁾	2.5 ±0.30 ⁽²⁾		0.25	0.75	1.40
1012	4.5 ±0.20 ⁽¹⁾	3.2 ±0.20 ^(I)		0.25	0.75	2.20
1812	4.5 ±0.40 ⁽²⁾	3.2 ±0.40 ⁽²⁾		0.25	0.75	2.20
-						

OUTLINES

NOTE

- 1. Dimensions for size 0201, C < 1 μ F; 0402, C < 4.7 μ F; 0603, C < 4.7 μ F; $0805 \text{ to } 1812, C \leq 100 \text{nF}$
- 2. Dimensions for size 0201, C \geq 1 μ F; 0402, C \geq 4.7 μ F; 0603, 10 μ F > C \geq 4.7 μ F; 0805 to 1812, C > 100 nF
- 3. Dimensions for size 0402, C \geq 10 $\mu F;$ 0603, C \geq 10 $\mu F;$ 1206, C \geq 100 μF

CAPACITANCE RANGE & THICKNESS FOR X5R

Table 2	Sizes from	0201 to 0402
---------	------------	--------------

CAP.	Last 2-digit	0201	0 102					0402					
	of 12NC	4 V	6.3 V	10 V	16 V	25 V	50 V	4 V	6.3 V	10 V	16 V	25 V	50 V
100 pF	09												
150 pF	12												
220 pF	14												
330 pF	16						0.3±0.03						
470 pF	18												
680 pF	21												
1.0 nF	23					0.3±0.03							
1.5 nF	25												
2.2 nF	27												
3.3 nF	29		0.3±0.03	0.3±0.03	0.3±0.03								
4.7 nF	32												
6.8 nF	34												
10 nF	36												
15 nF	39												
22 nF	41												
33 nF	43												
47 nF	45												
68 nF	47										0.5±0.05	0.5±0.05	0.5±0.05
100 nF	49												
150 nF	52								0.5±0.05	0.5±0.05			
220 nF	54	0.3±0.03	0.3±0.03	0.3±0.03									
330 nF	56												
470 nF	58	0.3±0.03	0.3±0.03								0.5±0.05	0.5±0.05	0.5±0.05
680 nF	61												
Ι.0 μF	63	0.3±0.05	0.3±0.05								0.5±0.05	0.5±0.05	
2.2 µF	67												
4.7 µF	72								0.5±0.15				
ΙΟ μΕ	76							0.5±0.20	0.5±0.20				

NOTE

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

Table 3 Sizes from 0603 to 0805

0.85±0.1

1.25±0.2

1.25±0.2

0.85±0.1

1.25±0.2

1.25±0.2

1.25±0.2

1.25±0.2

0.85±0.1

1.25±0.2

1.25±0.2

6 18

CAPACITANCE RANGE & THICKNESS FOR X5R

CAP.	Last 2-digit of	0603				0805			
	12NC	6.3 V	10 V	16 V	25 V	6.3 V	10 V	16 V	25 V
10 nF	36								
15 nF	38								
22 nF	41								
33 nF	43								
47nF	45								
68 nF	47								
100 nF	49								
150 nF	52								
220 nF	54								
330 nF	56								
470 nF	58								
680 nF	61	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1			0.85±0.1	1.25±0.2

0.8±0.15

 0.8 ± 0.2

NOTE

Ι.0 μF

2.2 μF

4.7 µF

ΙΟ μΕ

22 µF

47 µF

100 μF

63

67

72

76

81

85

89

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

0.8±0.2

7 18

CAPACITANCE RANGE & THICKNESS FOR X5R

	TANCE RANGE Sizes from 120		<u> </u>	<u> </u>						
CAP.	Last 2-digit of	1206	10.14	14.14	25.1/	1210	10.17	14.14	25.1	1812
	12NC	6.3 V	10 V	16 V	25 V	6.3 V	10 V	16 V	25 V	6.3 V
10 nF	36									
15 nF	38									
22 nF	41									
33 nF	43									
47nF	45									
68 nF	47									
100 nF	49									
150 nF	52									
220 nF	54									
330 nF	56									
470 nF	58									
680 nF	61									
Ι.0 μF	63	1.15±0.1	1.15±0.1	1.15±0.1	1.15±0.1					
2.2 µF	67	1,13±0,1	1,15±0,1	1,13±0,1	1,13±0,1					
4.7 µF	72				1.4.00	10102	10102	10102	10102	
10 μF	76	17.00	17.00	1.6±0.2	1.6±0.2	1.9±0.2	1.9±0.2	1.9±0.2	1.9±0.2	
22 µF	81	1.6±0.2	1.6±0.2				2.5±0.2	2.5±0.2	2.5±0.3	
47 µF	85					2.5±0.2				2.5±0.2
100 μF	89	1.6±0.3								3.2±0.3

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

THICKNESS CLASSES AND PACKING QUANTITY

-	_			_
	la	h	le	5

CIZE	THE WALESC	TAREVAURTU	Ø180 MM / 7 INCH		Ø330 MM / 13 INCH		OLIANITITY
SIZE CODE	THICKNESS CLASSIFICATION	TAPE WIDTH – QUANTITY PER REEL	Paper	Blister	Paper	Blister	QUANTITY PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
1200	1.25 ±0.2 mm	8 mm		3,000		10,000	
_	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		10,000	
_	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
-	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
_	1.15 ±0.15 mm	I2 mm		3,000			
	1.25 ±0.2 mm	I2 mm		3,000			
1808	1.35 ±0.15 mm	I2 mm		2,000			
-	1.5 ±0.1 mm	I2 mm		2,000			
_	1.6 ±0.2 mm	I2 mm		2,000			
	2.0 ±0.2 mm	I2 mm		2,000			
	0.6 / 0.85 ±0.1 mm	I2 mm		2,000			
	1.15 ±0.1 mm	I2 mm		1,000			
	1.25 ±0.2 mm	I2 mm		1,000			
1812	1.5 ±0.1 mm	I2 mm		1,000			
	1.6 ±0.2 mm	I2 mm		1,000			
	2.0 ±0.2 mm	I2 mm		1,000			
	2.5 ±0.2 mm	I2 mm		500			

ELECTRICAL CHARACTERISTICS

X5R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all tests and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table 6						
DESCRIPTION						VALUE
Capacitance range						10 nF to 100 μF
Capacitance tolerance						±10% and ±20%
Dissipation factor (D.F.)						
	6.3 V					≤ 5%
		Exception:	$0402 \ge 180 \text{ nF};$	1210 ≥ 22 μF		≤ 7%
			0201 ≥ 12 nF;	0402 ≥ 330 nF;	0603 ≥ 2.2 μF;	≤ 10%
			0805 ≥ I μF;	1206 ≥ 22 μF;	1210 ≥ 100 μF	
			1206 ≥ 100 μF			≤ 15%
	10 V					≤ 5%
		Exception:	0402 ≥ 180 nF;	0805 ≥ I μF;	1206 ≥ 6.8 μF	≤ 7%
			0201 ≥ 100 nF;	0402 ≥ 330 nF;	0603 ≥ I μF;	≤ 10%
			0805 ≥ 2.2 μF;	1206 ≥ 10 μF;	1210 ≥ 10 µF	
	16 V					≤ 5%
		Exception:	0402 ≥ 180 nF;	0603 ≥ 680 nF;	0805 ≥ I µF	≤ 7%
			0402 ≥ 330 nF;	0603 ≥ 2.2 μF;	0805 ≥ 10 μF	≤ 10%
			1206 ≥ 10 μF;	1210 ≥ 10 μF		
	≥ 25 V					≤ 3.5%
		Exception:	0402 ≥ 27 nF;	0603 ≥ 220 nF;	0805 ≥ 2.2 μF;	≤ 5%
			1206 ≥ 4.7 μF;	1210 ≥ 10 μF		
			0402 ≥ 180 nF			≤ 7%
			0402 ≥ 470 nF;	1206 ≥ 10 μF	0805 ≥ 4.7 μF	≤ 10%
Insulation resistance after	r I minute	at U _r (DC)		R _{ins} ≥ 10 G	Ω or $R_{ins} \times C_r \ge 500 \text{ se}$	econds whichever is less
Maximum capacitance ch	ange as a fu	ınction of ten	nperature	-		
(temperature characteris	tic/coefficie	ent):				±15%

Operating temperature range:

-55 °C to +85 °C

SOLDERING RECOMMENDATION

Table 7

METHOD	SI∠E 0402	0603	0805	1206	≥ 1210
Reflow	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave	< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 8 Test procedures and requirements

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance (1)		4.5.1	Class 2: At 20 °C, 24 hrs after annealing $f = 1 \text{ KHz for } C \leq 10 \mu\text{F, rated voltage} > 6.3 \text{ V, measuring at voltage } 1 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 1 \text{ KHz, for } C \leq 10 \mu\text{F, rated voltage} \leq 6.3 \text{ V, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 120 \text{ Hz for } C > 10 \mu\text{F, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$	Within specified tolerance
Dissipation Factor (D.F.) ⁽¹⁾		4.5.2	Class 2: At 20 °C, 24 hrs after annealing $f = 1 \text{ KHz for } C \leq 10 \mu\text{F, rated voltage} > 6.3 \text{ V, measuring at voltage } 1 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 1 \text{ KHz, for } C \leq 10 \mu\text{F, rated voltage} \leq 6.3 \text{ V, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 120 \text{ Hz for } C > 10 \mu\text{F, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$	In accordance with specification
Insulation Resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification
Temperature Characteristic		4.6	Class 2: Between minimum and maximum temperature X5R: -55 °C to +85 °C Normal Temperature: 20 °C	<general purpose="" series=""> ΔC/C Class 2: X5R: ±15% <high capacitance="" series=""> ΔC/C Class 2: X5R: ±15%</high></general>
Adhesion		4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N

NOTE

 $I.\ The\ figure\ indicates\ typical\ inspection.\ Please\ refer\ to\ individual\ specifications.$

Surface Mount Multilayer Ceramic Capacitors General Purpose & High Cap. X5R 4 V

specification	15
. 50.1/	18
to 50 V	

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS
Bond Strength of	IEC 60384- 21/22	4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
Plating on End Face			Conditions: bending I mm at a rate of I mm/s, radius jig 340 mm	<general purpose="" series=""> ΔC/C Class2: X5R: ±10% <high capacitance="" series=""> ΔC/C Class2: X5R: ±10%</high></general>
Resistance to Soldering Heat		4.9	Precondition: $150 \pm 0/-10$ °C for I hour, then keep for 24 ± 1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for I minute Preheating: for size > 1206 : 100 °C to 120 °C for I minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ± 5 °C Dipping time: 10 ± 0.5 seconds Recovery time: 24 ± 2 hours	<pre><general purpose="" series=""></general></pre>
				D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds. Test conditions for lead-free containing solder alloy Temperature: 235 ±5 °C Dipping time: 2 ±0.2 seconds Depth of immersion: 10 mm Alloy Composition: 60/40 Sn/Pb Number of immersions: I Test conditions for lead-free containing solder alloy Temperature: 245 ±5 °C Dipping time: 3 ±0.3 seconds Depth of immersion: 10 mm Alloy Composition: SAC305 Number of immersions: I	The solder should cover over 95% of the critical area of each termination

Surface Mount Multilayer Ceramic Capacitors | General Purpose & High Cap. | XSR | 4 V to 50 V

1				
1	١,	+~	EΩ	١/

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS	
Rapid Change of Temperature	IEC 60384- 21/22	4.11	Preconditioning; 150 +0/-10 °C for I hour, then keep for 24 ±1 hours at room temperature 5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature Recovery time 24 ±2 hours	No visual damage	
Damp Heat		4.13		R _{ins} meet initial specified value No visual damage after recovery	
with U _r Load			 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Damp heat test: 500 ±12 hours at 40 ±2 °C; 90 to 95% R.H. I.0 U_r applied Recovery: Class 2: 24 ±2 hours Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met. 	<pre> <general purpose="" series=""> $\Delta C/C$ Class2: X5R: ±15% D.F. Class2: X5R: ≤ 16V: ≤ 7% ≥ 25V: ≤ 5% R_{ins} Class2: X5R: ≥ 500 MΩ or R_{ins} × C_r ≥ 25s whichever is less <high capacitance="" series=""> $\Delta C/C$ Class2: X5R: ±20% D.F. Class2: X5R: 2 × initial value max R_{ins} Class2: </high></general></pre>	

TEST TEST METHOD PROCEDURE REQUIREMENTS IEC 60384-**Endurance** No visual damage 1. Preconditioning, class 2 only: 21/22 150 +0/-10 °C /1 hour, then keep for 24 \pm 1 hour <General purpose series> at room temp Δ C/C 2. Initial measure: Spec: refer to initial spec C, D, IR Class2: X5R: ±15% 3. Endurance test: Temperature: X5R: 85 °C D.F. Specified stress voltage applied for 1,000 hours: Class2: Applied $2.0 \times U_r$ for general product. X5R: ≤ 16V: ≤ 7% Applied $1.5 \times U_r$ for high cap. product. ≥ 25V: ≤ 5% 4. Recovery time: 24 ±2 hours $\mathsf{R}_{\mathsf{ins}}$ 5. Final measure: C, D, IR Class2: $X5R: \ge 1,000 \text{ M}\Omega \text{ or } R_{ins} \times C_r \ge 50s$ P.S. If the capacitance value is less than the minimum whichever is less value permitted, then after the other measurements have been made the capacitor shall be preconditioned <High Capacitance series> according to "IEC 60384 4.1" and then the Δ C/C requirements shall be met. Class 2: X5R: ±20% D.F. Class 2: X5R: 2 x initial value max R_{ins} Class 2: X5R: I,000 M Ω or R_{ins} × C_r ≥ 50s whichever is less Voltage Proof IEC 60384-I 4.6 Specified stress voltage applied for I minute No breakdown or flashover $U_r \le 100 \text{ V: series applied } 2.5 \text{ } U_r$ $100 \text{ V} < U_r \le 200 \text{ V}$ series applied (1.5 $U_r + 100$) 200 V < $U_r \le 500$ V series applied (1.3 $U_r + 100$) $U_r > 500 \text{ V: } 1.3 \text{ } U_r$ I: 7.5 mA

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 14	May 16, 2012	-	- Product range updated
Version 13	May 02, 2012	-	- Product range updated
Version 12	Feb 10, 2012	-	- Product range updated
Version 11	Oct 21, 2011	-	- Product range updated
Version 10	Jun 21, 2011	-	- Product range updated
Version 9	Mar 23, 2011	-	- Product range updated
Version 8	Jan 25, 2011	-	- Rated voltage of 0201 extend to 50V
Version 7	Jan 05, 2011	-	- Product range updated
Version 6	Jul 27, 2010	-	- Dimension on 0603 and 1206 case size updated
Version 5	Apr 21, 2010	-	- The statement of "Halogen free" on the cover added
			- Dimension updated
Version 4	Jan 13, 2010	-	- Thickness updated
Version 3	Aug 17, 2009	-	- Dimension updated
Version 2	Jun 09, 2009	-	- Ordering code updated
Version I	May 15, 2009	-	- Product range updated
Version 0	Apr 15, 2009	-	- New datasheet for general purpose and high capacitance X5R series with RoHS compliant
			- Replace the "6.3V to 50V" part of pdf files: UP-X5R_X7R_HighCaps_6.3-to-25V_II, UY-X5R_X7R_HighCaps_6.3-to-25V_II
			- Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NP0X5RX7RY5V_0201_6.3-to-50V_2
			- Define global part number
			- Description of "Halogen free compliant" added
			- Test method and procedure updated

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Yageo:

CC0402KRX5R7BB104	CC0402KRX5R6BB224	CC0402KRX5R6BB104	CC0402KRX5R5BB224
CC0603KRX5R8BB474	CC0603KRX5R8BB334	CC0603KRX5R7BB474	CC0603KRX5R6BB474
CC0603KRX5R6BB334	CC0805KKX5R6BB106	CC0402KRX5R5BB105	CC1210KKX5R6BB226
CC0805KKX5R6BB475	CC0805KKX5R6BB225	CC0603KRX5R6BB105	CC1210MKX5R6BB226
CC0603KRX5R5BB225	CC0603KRX5R7BB105	CC0805MKX5R5BB226	CC0603KRX5R5BB106
CC0201KRX5R5BB104	CC0201KRX5R6BB103	CC0201MRX5R5BB104	CC0603KRX5R6BB224
CC1210KKX5R7BB106	CC0805KRX5R5BB106	CC0603KRX5R5BB475	CC0603MRX5R5BB106
CC0805KRX5R6BB475	CC0402KPX5R6BB104	CC0402KRX5R7BB224	CC0402MRX5R5BB225
CC0805KFX5R5BB106	CC0805KKX5R6BB105	CC0805KKX5R7BB106	CC0805KKX5R8BB475
CC0805KRX5R6BB225	CC1210KKX5R8BB106	CC1210MKX5R9BB106	CC1210MKX5R5BB107
CC0201KRX5R5BB333	CC0201KRX5R5BB473	CC0201MRX5R5BB224	CC0805KKX5R7BB475
CC0201KPX5R5BB104	CC0201KRX5R7BB103	CC0201MRX5R5BB105	CC0402KPX5R5BB105
CC0402KPX5R5BB474	CC0402KRX5R5BB154	CC0402KRX5R5BB225	CC0402KRX5R5BB334
CC0402KRX5R6BB154	CC0402KRX5R6BB474	CC0402KRX5R6BB823	CC0402KRX5R7BB105
CC0402KRX5R7BB683	CC0402KRX5R9BB681	CC0402MRX5R5BB104	CC0402MRX5R5BB224
CC0402MRX5R6BB104	CC0402MRX5R6BB105	CC0402MRX5R6BB224	CC0402MRX5R7BB104
CC0603KPX5R6BB105	CC0603KPX5R6BB225	CC0603KPX5R7BB105	CC0603KPX5R8BB105
CC0603KRX5R5BB224	CC0603KRX5R5BB684	CC0603KRX5R6BB684	CC0603KRX5R7BB224
CC0603KRX5R7BB334	CC0603KRX5R7BB475	CC0603KRX5R8BB224	CC0603MRX5R5BB105
CC0603MRX5R5BB225	CC0603MRX5R6BB105	CC0603MRX5R6BB106	CC0603MRX5R6BB225
CC0603MRX5R6BB335	CC0603MRX5R6BB474	CC0603MRX5R6BB475	CC0603MRX5R7BB105
CC0603MRX5R8BB224	CC0201KRX5R5BB103	CC0805KKX5R8BB225	CC0402KRX5R5BB104
CC0603KRX5R6BB225	CC0603KRX5R6BB475	CC0603KRX5R8BB105	CC0805KKX5R5BB106
CC0402KRX5R6BB105	CC0402KRX5R6BB683	CC0402KRX5R5BB474	CC0603KRX5R5BB474
CC0402KRX5R6BB473	CC0805KKX5R7BB105	CC0805KRX5R7BB225	CC0805KKX5R5BB475