Part - III

CHEMISTRY

Maximum: 60 Scores

Time: 2 Hours

Cool off time: 15 Minutes

General Instructions to Candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time of
- You are neither allowed to write your answers nor to discuss anything with others during the 'cool off time'.
- Tse the 'cool off time' to get familiar with questions and to plan your answers.
- Read the questions carefully before answering.
- questions are compulsory and only internal choice is allowed.
- Then you select a question, all the sub-questions must be answered from the
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except nonprogrammable calculators are not allowed in the

്്ർദ്ദേശങ്ങൾ:

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ നമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുള്ളവരുമായി ആശയ വിനിമയം
- ഉത്തരങ്ങൾ എഴുതു<mark>ന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ</mark> ശ്രദ്ധാപുർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം. ഇന്റേണൽ ചോയ്സ് മാത്രമേ
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപ ചോദ്യങ്ങളും **അതേ ചോദ്യ നമ്പരിൽ നിന്ന് തന്നെ** തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തര പേപ്പറിൽത്തന്നെ
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

K-997

Turn C

(1)

(3)

ഹൈഡ്രജനും

- 1. a) When nitrogen and hydrogen combines to form ammonia, the ratio between the volumes of gaseous reactants and products is 1:3:2. Name the law of chemical combination illustrated here.
 - b) A compound is made up of two elements A and B, has A = 70%, B = 30%. The relative number of moles of A and B in the compound are 1.25 and 1.88 respectively. If the molecular mass of the compound is 160, find the molecular formula of the compound.
- 2. Atomic orbitals are precisely distinguished by what are known as quantum numbers.
 - a) Name the four quantum numbers. (2)
 - b) Represent the orbitals given below.
 - i) n = 1, l = 0
 - ii) n=2, l=1 (2)
 - c) The number of unpaired electrons present in Ni is (Atomic number of Ni = 28)
 - i) 4
- ii) (
- iii) 1
- iv) 3

ലുള്ള അഭികാരകങ്ങളും ഉല്പന്നങ്ങ ളും തമ്മിൽ വ്യാപ്തത്തിൽ 1:3:2എന്ന അംശബന്ധം കാണിക്കുന്നു. ഇവിടെ ഉദാഹരിക്കപ്പെട്ടിരിക്കുന്ന സംയോജക നിയമത്തിന്റെ പേര് എഴുതുക. b) A, B എന്നീ മൂലകങ്ങൾ ചേർന്നുണ്ടാ യ ഒരു സംയുക്തത്തിൽ A=70%.

സംയോജിച്ച് അമോണിയ ഉണ്ടാകുന്ന

പ്രവർത്തനത്തിൽ വാതകാവസ്ഥയി

നൈട്രജനും

- b) A, B എന്നീ മൂലകങ്ങൾ ചേർന്നുണ്ടാ യ ഒരു സംയുക്തത്തിൽ A = 70%, B = 30%. സംയുക്തത്തിൽ A യുടെയും B യുടെയും മോളുകളുടെ അപേക്ഷിക എണ്ണം 1.25, 1.88 എന്നിങ്ങനെയാണ്. സംയുക്തത്തിന്റെ തന്മാത്രാഭാരം 160 ആയാൽ അതിന്റെ തന്മാത്രാവാകും കണ്ടുപിടിക്കുക.
- അറ്റോമിക് ഓർബിറ്റലുകളെ ക്വാണ്ടം സംഖ്യകളുടെ സഹായത്തോടെ കൃത്യമായി തിരിച്ചറിയാം.
 - മ) നാല് ക്വാണ്ടം നമ്പറുകളുടെ പേര് എഴുതുക.
 (2)
 - b) താഴെ കൊടുത്തിരിക്കുന്ന ഓർബിറ്റലുകളെ ചിത്രീകരിക്കുക.
 - i) n = 1, l = 0
 - ii) n=2, l=1 (2)
 - c) നിക്കൽ ആറ്റത്തിൽ അടങ്ങിയിരി ക്കുന്ന ജോടികള്ലാത്ത ഇലക്ട്രോണു കളുടെ എണ്ണം ആണ്. (നിക്കലിന്റെ അറ്റോമിക് നമ്പർ : 28)
 - i) 2
- ii) (
- iii) 1
- \mathbf{v}) 3

(1

(3)

- 3. a) Account for the following:
 - i) Ionization enthalpy of Nitrogen is greater than that of Oxygen.
 - ii) 2nd period elements show anomalous behaviour. (3)
 - b) A group of ions are givenbelow. Find one pair which isNOT isoelectronic.

 $Na^+, Al^{3+}, Ca^{2+}, Br^-, F^-.$ (1)

- 4. a) The electronic configuration of a molecule can give information about bond order.
 - i) Write the molecular orbital configuration of ${\cal F}_2$ molecule.
 - ii) Find its bond order. (2)
 - b) Give any two factors influencing the formation of an ionic bond. (2)
 - c) Give the shape of the following species.
 - i) NH_4^+ ii) $HgCl_2$ (1)

- 3. a) കാരണം കണ്ടെത്തുക:--
 - നേട്രജന്റെ അയോണൈസേ ഷൻ എൻഥാൽപ്പി ഓക്സിജന്റേ തിനേക്കാൾ കൂടുതലാണ്.
 - ii) രണ്ടാം പീരിയഡിലെ മൂലകങ്ങൾവിഭിന്ന സ്വഭാവം കാണിക്കുന്നു. (3)
 - b) അയോണുകളുടെ ഒരു കൂട്ടം താഴെ തന്നിരിക്കുന്നു. ഇവയിൽ നിന്ന് ഐസോ ഇലക്ട്രോണിക് അല്ലാത്ത ജോടി കണ്ടെത്തുക

 Na^{+} , Al^{3+} , Ca^{2+} , Br^{-} , F^{-} . (1)

- 4. a) ഒരു തന്മാത്രയുടെ ഇലക്ട്രോൺ വിന്യാസം അതിന്റെ ബോണ്ട് ഓർഡറിനെ കുറിച്ചുള്ള വിവരം തരുന്നു.
 - i) പ്ലൂറിൽ തന്മാത്രയുടെ ഇലക്ട്രോൺ വിന്യാസം എഴുതുക.
 - ii) അതിന്റെ ബോണ്ട് ഓർഡർ കണ്ടുപിടിക്കുക. (2)
 - b) അയോണിക ബന്ധനത്തിന്റെ രൂപീകരണത്തെ സ്വാധീനിക്കുന്ന ഏതെങ്കിലും രണ്ട് ഘടകങ്ങൾ എഴുതുക.
 - c) താഴെ കൊടുത്തിരിക്കുന്ന സ്പീഷീസുകളുടെ ആകൃതി എഴുതുക.
 - i) NH_4^+ ii) $HgCl_2$ (1)

- 5. Ideal gas equation is true for ideal gases only. There is a modified form of ideal gas equation applicable to all gases.
 - a) Give the name of the modified form of ideal gas equation and write down it.(2)
 - b) Name the phenomenon behind cleansing action of soap. (1)
 - c) What do you know about Dalton's law of partial pressures? (1)
- 6. The enthalpy change in a process is the same, whether the process is carried out in a single step or in several steps.
 - a) Identify the law stated here. (1)
 - b) Calculate the enthalpy of formation of CH_4 from the following data:
 - i) $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ $\Delta H = -393.7 \text{ kJ/mol}$
 - ii) $H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(l)}$ $\Delta H = -285.8 \text{ kJ/mol}$
 - iii) $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)}$ $+2H_2O_{(l)}$ $\Delta H = -890.4 \text{ kJ/mol}$ (3)

- 5. ഐഡിയൽ ഗ്യാസ് സമവാക്യം ഐഡിയൽ ഗ്യാസുകൾക്ക് മാത്രമേ ശരിയാകുകയുള്ളു. എന്നാൽ ഇതിന്റെ പരിഷ്കരിച്ച രൂപം എല്ലാ വാതകങ്ങൾക്കും ബാധകമാണ്.
 - a) പരിഷ്കരിച്ച ഐഡിയൽ ഗ്യാസ് നമവാകൃത്തിന്റെ പേരും സമവാകൃവും എഴുതുക.
 (2)
 - b) സോപ്പിന്റെ അഴുക്കിളക്കൽ പ്രക്രിയയുടെ പിന്നിലുള്ള പ്രതിഭാസത്തിന്റെ പേരെന്ത്? (1)
 - c) ഡാൽട്ടൻസ് ലോ ഓഫ് പാർഷ്യൽ പ്രഷർ എന്താണ്? (1)
- 6. ഒരു പ്രവർത്തനം ഒറ്റ ഘട്ടമായോ ഒന്നിൽ കൂടുതൽ ഘട്ടങ്ങളായോ പൂർത്തീകരിച്ചാ ലും ആ പ്രവർത്തനത്തിന്റെ എന്താൽപ്പി വ്യത്യാസം ഒന്നുതന്നെ ആയിരിക്കും.
 - മ) ഇവിടെ പ്രസ്താവിക്കപ്പെട്ടിരിക്കുന്ന
 നിയമം ഏതെന്ന് തിരിച്ചറിയുക. (1)
 - b) താഴെ കൊടുത്തിരിക്കുന്ന ഡാറ്റ ഉപയോഗിച്ച് മിഥേയ്ൻ രൂപീകരണത്തിന്റെ എന്താൽപ്പി വ്യത്യാസം കണ്ടുപിടിക്കുക.
 - i) $C_{(s)} + O_{2(g)} \to CO_{2(g)}$ $\Delta H = -393.7 \,\text{kJ/mol}$
 - ii) $H_{2(g)} + \frac{1}{2}O_{2(g)} \to H_2O_{(l)}$ $\Delta H = -285.8 \,\text{kJ/mol}$
 - iii) $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)}$ $+2H_2O_{(l)}$ $\Delta H = -890.4 \,\mathrm{kJ/mol}$ (3)

(3)

- 7. a) Write the expression for equilibrium constant K_c for the following equilibrium. $CuSO_4 \cdot 5H_2O_{(s)} \rightleftharpoons CuSO_4 \cdot 3H_2O_{(s)} + 2H_2O_{(g)} \qquad (2)$
 - b) The solubility product of $Al(OH)_3$ is 1×10^{-36} . Calculate the solubility of $Al(OH)_3$. (3)

OR

a) Explain the concept of Lewis acids and Lewis bases with suitable examples.

(3)

- b) Write the Henderson-Hasselbalch equation for an acidic buffer. Calculate the pH of an acidic buffer containing 0.1 M CH_3COOH and 0.5 M CH_3COONa [Ka for CH_3COOH is 1.8×10^{-6}] (2)
- 8. Redox reactions can be considered as electron transfer reactions. In an experiment a copper rod is dipped in AgNO₃ solution.
 - a) What happens to the colour of the solution and why? (1)
 - b) Identify the oxidizing and reducing agent in this reaction. (1)
 - c) Calculate the oxidation number of Cr in $K_2Cr_2O_7$ and P in $H_2P_2O_5$. (1)

- 7. a) താഴെ കൊടുത്തിരിക്കുന്ന സംതുലനാ വസ്ഥയുടെ സംതുലന സ്ഥിരാങ്കം K_c യുടെ എക്സ്പ്രഷൻ എഴുതുക. $CuSO_4 \cdot 5\,H_2\,O_{(s)} \rightleftharpoons CuSO_4 \cdot 3H_2\,O_{(s)} + 2H_2\,O_{(g)} \qquad (2)$
 - b) $Al(OH)_3$ ന്റെ സോല്യുബിലിറ്റി പ്രൊഡക്ട് $1{ imes}10^{-36}$ ആണ്. $Al(OH)_3$ ന്റെ സൊല്യുബിലിറ്റി കണ്ടുപിടിക്കുക. (3

അല്ലെങ്കിൽ

- മ) ലൂയിസ് ആസിഡുകളും ലൂയിസ് ബെയ്സുകളും ഉദാഹരണ സഹിതം വൃക്തമാക്കുക.
- b) അസിഡിക് ബഫറിന് വേണ്ട ഹെൻഡേഴ്സൺ-ഹേയ്സൽബാൽക് സമവാകും എഴുതുക. ഇത് ഉപയോഗിച്ച് $0.1~M~CH_3COOH$ ഇം $0.5~M~CH_3COONa$ യും അടങ്ങിയിരിക്കുന്ന അസിഡിക് ബഫറിന്റെ pH കണ്ടുപിടിക്കുക. (അസറ്റിക് അസിഡിന്റെ Ka മൂല്യം 1.8×10^{-6} ആകുന്നു)
- 8. റിഡോക്സ് റിയാക്ഷനുകളെ ഇലക്ട്രോൺ കൈമാറ്റം ചെയ്യുന്ന റിയാക്ഷനുകളായി കണക്കാക്കാം. ഒരു പരീക്ഷണത്തിൽ കോപ്പർ ദണ്ഡ്, സിൽവർ നൈട്രേറ്റ് ലായനിയിൽ മുക്കിവച്ചിരിക്കുന്നു.
 - a) ലായനിക്ക് എന്ത് നിറമാറ്റം ഉണ്ടാകുന്നു. എന്തു കൊണ്ട്? (1)
 - b) ഈ രാസപ്രവർത്തനത്തിലെ ഓക്സീകാരിയേയും നിരോക്സീകാരി യേയും തിരിച്ചറിയുക. (1)
 - c) $K_2Cr_2O_7$ ൽ ക്രോമിയത്തിന്റെയും $(Cr)\ H_2P_2O_5$ ൽ ഫോസ്ഫറസിhoന്റെയും (P) ഓക്സിഡേഷൻ നമ്പർ കണ്ടുപിടിക്കുക. (1)

	•		Hydrogen peroxide restore the colour of lead paintings. Give a reason. How does the atomic hydrogen	(2)	9.		ഹൈഡ്രജൻ പെറോകസൈഡ് ലെഡ് പെയിന്റിംഗുകളുടെ നിറം തിരികെ ലഭിക്കാൻ സഹായിക്കുന്നു. കാരണം എന്ത്?	(2)
	·		torch function for cutting and welding purposes?	(2)		•	അറ്റോമിക് ഹൈഡ്രജൻ ടോർച്ച്, വെൽഡിംഗിനും കട്ടിംഗിനും ഉപയോഗപ്പെടുന്നതെങ്ങനെ?	(2)
			Alkali metals dissolve in liquid ammonia to give blue coloured solutions. Why? Plaster of Paris is an	(2)	10.		ത്തൽക്കലി മെറ്റലുകൾ അമോണിയ ദ്രാവകത്തിൽ ലയിച്ച് നീല നിറമുള്ള ലായനി തരുന്നു. ഇത് എന്തുകൊണ്ട്? കാൽസ്യത്തിന്റെ ഒരു പ്രധാനപ്പെട്ട	
• • • •		ν <i>)</i>	important compound of Calcium. i) Give the chemical formula			,	സംയുക്തമാണ് പ്ലാസ്റ്റർ ഓഫ് പാരീസ്. i) പ്ലാസ്റ്റർ ഓഫ് പാരീസിന്റെ	
			of plaster of Paris. ii) Identify the property of plaster of Paris which				രാസസൂത്രം എഴുതുക. ii) പ്ലാസ്റ്റർ ഓഫ് പാരീസിന്റെ ഏത് ഗുണമാണ് പൊട്ടിയ എല്ലുകളുടെ	
	-		helps in plastering of broken bones.				പ്രസ്റ്ററിംഗിന് സഹായകമാ കുന്നത്?	(1
	11.	\mathbf{C}_{i}	arbon has many allotropes.		Ţ.	ക: ഉട	ാർബണിന് അനേകം രൂപാന്തരങ്ങൾ ന്	
	-		Write the name of any two allotropic forms of carbon.	(1)		a)	കാർബണിന്റെ ഏതെങ്കിലും രണ്ട് രൂപാന്തരങ്ങളുടെ പേരെഴുതുക.	(A
		b)	Briefly explain the structure of any one of the above mentioned allotrope.			b)	മുകളിൽ സൂചിപ്പിച്ച ഏതെങ്കിലും ഒരു രൂപാന്തരത്തിന്റെ ഘടന ലഘുവായി വിശദമാക്കുക.	
		c)	CCl_4 does not undergo hydrolysis. Give a reason. OR	(1)		c)	CCl_4 ഹൈഡ്രോലിസിസിന് വിധേയ മാകുന്നില്ല. കാരണം നല്കുക? അല്ലെങ്കിൽ	(1
		4	Then BF_3 is treated with LiH at 50 K, a hydride of boron is a need.			്പ ദെ	$3F_3$ യും LiH ഉം $450~{ m K}$ ഊഷ്മാവിൽ പവർത്തിക്കുമ്പോൾ ഒരു ബോറോൺ ഹെഡ്രെഡ് ഉണ്ടാകുന്നു.	
	*		Identify the hydride of boron formed in the above reaction.			a)) മുകളിൽ പ്രസ്താവിച്ച രാസ പ്രവർത്തനത്തിൽ ഉണ്ടായ ബോറോൺ ഹൈഡ്രെഡിനെ)
		b	Briefly explain the structure of the above mentioned hydride.			b)	തിരിച്ചറിയുക?) മുകളിൽ സൂചിപ്പിച്ച ഹൈഡ്രെഡ് ൻ്റെ ഘടന വിശദമാക്കുക?	
	· · · · · · · · · · · · · · · · · · ·	C		(1)		c)) ബോറോൺ സംയുക്തങ്ങൾ ലൂയിന ആസിഡുകളായി പെരുമാറുന്നു എന്തുകൊണ്ട്?	

- 12. a) Give the IUPAC name of the following compounds. (2)
- 12. a) താഴെ കൊടുത്തിരിക്കുന്ന സംയുക്ത ങ്ങളുടെ IUPAC നാമം എഴുതുക. (2

ii) CN

- b) Phenol exhibit resonance.
 - i) Draw the resonance structures of phenol. (2)
 - ii) Predict the directive influence of -OH group in Benzene ring.

OR

- a) Write the structural formula of the following compounds.
 - i) Pent-4-en-2-ol
 - ii) 6-Hydroxy heptanal (2)
- b) Reagents which attack organic compounds may be classified as electrophiles, nucleophiles and free radicals.
 - i) Explain nucleophiles and electrophiles with suitable examples. (3)
 - ii) Name the type of the fission of a covalent bond which gives free radicals. (1)

- b) ഫീനോൾ റെസ്ണൻസ് കാണിക്കുന്നു.
 - i) ഫീനോളിന്റെ റെസണൻസ് പ്രാലടനകൾ വരയ്ക്കുക. (2)
 - ii) ബെൻസിൻ റിംഗിൽ -OH ഗ്രൂപ്പിൻ്റെ ഡയറക്ടീവ് ഇൻഏുവൻസ് ഏതെന്ന് എഴുതുക.
 (2)

അല്ലെങ്കിൽ

- a) താഴെ കൊടുത്തിരിക്കുന്ന സംയുക്തങ്ങളുടെ ഘടന സൂത്രം എഴുതുക.
 - i) പെന്റ്-4-ഈൻ-2-ഓൾ
 - ii) 6- ഹൈഡ്രോക്സി ഹെപ്റ്റനാൽ (2)
- b) ഓർഗാനിക് സംയുക്തങ്ങളുമായി പ്രവർത്തിക്കുന്ന റിയേജന്റുകളെ ഇലക്ട്രോഫൈൽസ്, ന്യൂക്ലിയോ-ഫൈൽസ്, ഫ്രീ റാഡിക്കൽസ് എന്നിങ്ങനെ തരം തിരിക്കാം.
 - i) ന്യൂക്ലിയോഫൈൽസ്, ഇലക്ട്രോ-ഫൈൽസ് ഇവ എന്താണെന്ന് ഉദാഹരണ സഹിതം വ്യക്തമാക്കുക. (3)
 - ii) ഒരു സഹസംയോജക ബന്ധന ത്തിന്റെ ഏത് തരത്തിലുള്ള വിഘടനമാണ് ഫ്രീ റാഡിക്കലു കളുടെ രൂപീകരണത്തിന് കാരണമാകുന്നതെന്ന് എഴുതുക. (1)

(2)

(2)

(2)

- 13. a) 1-alkynes are weakly acidic in nature. Give any two reactions to show the acidic character of ethyne.
 - b) From the following, select the one in which Markownikoff's rule is best applicable.
 - i) $C_2H_4 + HCl$ ii) $C_3H_6 + Br_2$
 - iii) $C_3H_6 + HBr$ iv) $C_3H_8 + Cl_2$ (1)

(2)

(2)

- c) Hydrocarbons exhibit isomerism.
 - i) Name the type of isomerism exhibited by 2-Butene.
 - ii) Draw the structure of the isomers of 2-Butene and select the one which is more polar. (2)

14. a) Match the following:

A	${f B}$				
CFC's	Blue baby syndrome				
Oxides of nitrogen	Kidney damage				
Cadmium	Eutrophication				
Nitrates	Ozone depletion				
	Red haze in the traffic				

b) Write any two contributions of green chemistry in day to day life.

- 3. a) 1-ആൽക്കൈനുകൾ നേരിയ തോതിൽ ആസിഡ് സ്വഭാവം കാണിക്കുന്നു. ഈഥൈൻ ആസിഡ് സ്വഭാവം കാണിക്കുന്നു എന്നതിനുള്ള ഏതെങ്കിലും രണ്ട് രാസപ്രവർത്തന ങ്ങൾ എഴുതുക.
 - b) താഴെ കൊടുത്തിരിക്കുന്നവയിൽ നിന്ന് മാർക്കോണിക്കോഫ്സ് നിയമം കൃത്യമായി അനുസരിക്കുന്നതിനെ തിരഞ്ഞെടുക്കുക.
 - i) $C_2H_4 + HCl$ ii) $C_3H_6 + Br_2$
 - iii) $C_3H_6 + HBr$ iv) $C_3H_8 + Cl_2$ (1)
 - c) ഹൈഡ്രോകാർബണുകൾ ഐസോ-മെറിസം കാണിക്കുന്നു.
 - i) 2 ബ്യൂട്ടീൻ കാണിക്കുന്ന ഐസോമെറിസത്തിന്റെ ്രോ എഴുതുക).
 - ii) 2 ബ്യൂട്ടീൻ കാണിക്കുന്ന ഐസോമെറുകളുടെ ഘടന വരച്ച് കൂടുതൽ പോളാർ ഏതാണെന്ന് കണ്ടുപീടിക്കുക. (

14. a) ചേരുഠപടി ചേരക്കുക:

A P

CFC's ബ്ലൂ ബേബി സിൻഡ്രോം

ന്റൈട്രജന്റെ കിഡ്നി തകരാറുകൾ
ഓക്സൈഡുകൾ

കാഡ്മിയം യൂട്രോഫിക്കേഷൻ

നൈട്രേറ്റ്സ് ഓസോൺ നാശനം

കനത്ത ട്രാഫിക്കുള്ള സ്ഥലങ്ങളിലെ

b) ഗ്രീൻ കെമിസ്ട്രി നിതൃ ജീവിതത്തിന് നല്കിയ ഏതെങ്കിലും രണ്ട് സംഭാവനകൾ എഴുതുക.

ചുവന്ന അന്തരീക്ഷം