EPF Lausanne	Cours de CMS		Note		
Ancien Contrôle de Chimie – N°2			Durée 1 heure		
NOM :			Groupe		
PRENOM :			_		
Veuillez répondre		suivantes et indic	quer les réponses sur les lignes et/ou		
		-	t à partir des couples d'ions s atomes dans le composé!).		
a. Br / Rb		b. Al / sulfate	e		
c. Fe(II) / O		d. H / Mg			
e. hydroxyde / Sn	(II)				
			éléments/molécules suivants: (/3 points)		
a. potassium (K)	et sourie (S)				
b. calcium (Ca) et	i l'eau:				
c. Na ₂ O(s) et HCl	(aq):				
3 a. Classer les ato	mes suivants selon l'or	dre croissant de l	la première énergie d'ionisation, I_1 : (/ 2 points)		
Al - B - C - F - 1	N – Na – Ne – O				
b . Classer les espe	èces des ensembles sui	vants selon l'ordre	e croissant de leur volume :		
			(/2 points)		
(i) $F^ N^{3-} - O^2$	<u></u>				
(::) D = C1=	TZ+ NI_+				

- c. Parmi les expressions suivantes pour un atome X, laquelle correspond à la définition exacte de l'énergie de deuxième ionisation ? Souligner la bonne réponse. /1 point)
- a. $X(g) + e^{-} \rightarrow X^{-}(g)$ b. $X^{-}(g) \rightarrow X(g) + e^{-}$ c. $X(s) \rightarrow X^{+}(s) + e^{-}$

- d. $X(g) \rightarrow X^{+}(g) + e^{-}$ e. $X^{+}(g) + e^{-} \rightarrow X(g)$ d. $X^{+}(g) \rightarrow X^{2+}(g) + e^{-}$

Justifier les réponses à l'aide des cases quantiques et comparer l'intensité magnétique (sans							
calculs) des trois espèc		•	(/ 4 points)				
Fe							
21							
Fe^{2+}							
Fe ³⁺							
Comparaison et explic	eation :						
5. Représenter les espe est l'atome central)	èces suivantes selon la nota :	ntion de Lewis et leur gé	ométrie (l'atome en gras (/ 4 points)				
N_2H_2	N_2H_4	NCl ₃	CaCO ₃				
6. L'ammoniac (NH ₃)	est produit à partir de ses o	constituants élémentaire	s gazeux. Ecrire				
	e équilibrée de cette réactio						
b) la formation d'une	molécule de NH3 selon la r	notation de Lewis (à part	tir des atomes!) (/ 2 points)				
a) réaction équilibrée	:						
b) réaction selon Lewi	· ·						
o, reaction belon bewl							
	ex conditions nécessaires po d'être qualifié comme dip		t composée d'au moins				
			(/ 2 points)				

8. Préciser et justifier tous les t	ypes de liaison	pour les molécules suivantes.	(/ 5 points)
a. HBr :				
b. CaCO ₃ :				
c. Au:				
d. F ₂ :				
e. Na ₂ O :				
9. Les molécules suivantes, per des orbitales moléculaires et de paramagnétiques et justifier la	e l'ordre de liais			
a. Be ₂	O_2^+			
nombre de points :	/36	Note:		