Pq e^{x^2} não tem integral elementar? Uma introdução **gentil** a Teoria Diferencial de Galois

Guilherme Cerqueira

IME-USP

Some Sell Their Souls

- Introdução
 - Oq são funções elementares?
 - Oq é Teoria de Galois?
- Derivadas para Algebristas e seus Anéis
 - Anéis com Derivação
 - Operadores Diferenciais
- Resolvendo Equações Diferenciais
 - Álgebra Universal de Soluções
 - Independência Linear ou Morte de Constantes
- Finalmente! Funções Elementares!
 - Oq são funções elementares mesmo??
 - Como integrar essas coisas??
 - Demo demorô, demorô mas abalô!
- Extras
 - Algebra Universal de Soluções Completa
 - Extensão de Picard-Vessiot

Oq são funções elementares?

Og é Teoria de Galois?

- Polinômios de grau ≤ 4.
- Não tem pra grau 5. (Abel, Rufini.)

•
$$x^2 - 2$$

•
$$x^2 - 2$$

•
$$x^3 - 2$$

•
$$x^6 - 2$$

 \bullet π ?

- Sophus Lie.
- Equações Diferenciais ↔ Polinômios.

•
$$f' = 0 \leftrightarrow x = 0$$

•
$$f'' = 0 \leftrightarrow x^2 = 0$$

•
$$f' - f = 0 \leftrightarrow x - 1 = 0$$

•
$$f'' + f = 0 \leftrightarrow x^2 + 1 = 0$$

•
$$(x^3)f'' + (x)(f')^3 = 0$$
?

Oq são Anéis, Corpos e Álgebras?

- Um Anel é uma tripla $(R, +, \cdot)$ tal que:
 - (R, +) é comutativo, associativo, existe inverso e existe 0.
 - (R, \cdot) é associativo.
 - $(R, +, \cdot)$ tem distributiva.
 - Nosso anéis serão todos comutativos e com unidade.(característica zero.)
- Um Corpo é um anel comutativo com unidade $(K,+,\cdot)$ tal que: (K^*,\cdot) tem inverso
- Uma Álgebra é uma quintupla $(A, +, \cdot, K, \cdot_K)$ tal que:
 - $(A, +, \cdot)$ é Anel.
 - K é Corpo.
 - $(A, K, +, \cdot_K)$ é espaço vetorial sobre K

Definition

Seja R um anel. Uma derivação em R é uma aplicação $D: R \longrightarrow R$ que é Aditiva (Ad) e respeita a Regra de Leibniz (RL). Ou seja, $\forall a; b \in R$:

Pq e^{x^2} não tem integral elementar?

(Ad)
$$D(a + b) = D(a) + D(b)$$
.

$$(\mathsf{RL}) \ \ D(\mathsf{a}\mathsf{b}) = \mathsf{a}D(\mathsf{b}) + D(\mathsf{a})\mathsf{b}.$$

Proposição

- **1** D(1) = 0.
- 2 $D(x^n) = nx^{n-1}D(x)$.
- **3** $D(y^{-1}) = -\frac{D(y)}{y^2} := -D(y)y^{-2}$.
- $D(\frac{x}{y}) = \frac{yD(x) xD(y)}{y^2}.$

Definition

O conjunto de constantes de R (denotado const(R)) é o kernel de D. Ou seja:

$$const(R) = \{a \in R \mid D(a) = 0\}.$$

Definition

Uma extensão diferencial de anéis de R é um anel diferencial E tal que, $R \subset E \in D_E(a) = D_R(a)$.

Example

- Seja $\mathbb{C}((z))$ as séries de Laurent formais com coeficientes em \mathbb{C} .
- $\mathbb{C}(z)$ é um sub-anel diferencial de $\mathbb{C}((z))$.
- Derivação usual: $D(z) = 1, D(z_0) = 0; z_0 \in \mathbb{C}$.

Definition

Um homomorfismo de anéis diferenciais é um homomorfismo de anéis $\varphi:R\longrightarrow E$ tal que φ comuta com as derivações dos anéis, ou seja, o seguinte diagrama comuta:

$$R \xrightarrow{D_R} R$$

$$\varphi \downarrow \qquad \qquad \downarrow \varphi$$

$$E \xrightarrow{D_E} E$$

Example

• $\varphi: (\mathbb{C}[x,y], \frac{\partial}{\partial x}) \to (\mathbb{C}[y,x], \frac{\partial}{\partial y})$

Definition

Seja $I \subset R$ um ideal de R. I é um ideal diferencial se $D_R(I) \subset I$.

Se
$$I=\langle X\rangle$$
, $D(X)\subset \langle X\rangle$, então R/I anel diferencial com a derivação $D_{R/I}(a+I)=D_R(a)+I$.

Example

- $(\mathbb{C}[x,y],\frac{\partial}{\partial x}), I=\langle y-1\rangle.$
- $(\mathbb{C}[x,y], \frac{\partial}{\partial x})$, $I = \langle x-1 \rangle$. Não Exemplo.

Anéis de Polinômios Diferenciais

Definition

O anel de polinômios diferenciais sobre R na variável Y é: $R\{Y\} := R[Y^{(i)} \mid i \in 0,1,2,...]$. Sua derivação é extensão da derivada em R tal que $D(Y^{(i)}) = Y^{(i+1)}$.

Definition

Um operador diferencial linear homogêneo sobre R são os elementos $L \in R\{Y\}$ tal que o grau dos monômios de cada uma das variáveis $Y^{(i)}$ é no máximo 1.

Todo *L* pode ser escrito como:

$$L = \sum_{i \in \mathbb{N}} a_i Y^{(i)}; a_i \in R$$

Se $a_i = 0, \forall i > \ell$, diz-se que a *ordem de L* é ℓ .

Anéis de Polinômios Diferenciais

Definition

Seja $K\{Y\}_1$ o conjunto dos elementos de grau 1 em $K\{Y\}$. Um ideal diferencial $I \subset K\{Y\}$ é dito *linear* se I é gerado por $I \cap K\{Y\}_1$. A dimensão de um ideal diferencial linear I é definida como a codimensão de $I \cap K\{Y\}_1$ em $K\{Y\}_1$.

Theorem

Seja $L \in K\{Y\}$ um operador diferencial linear homogêneo mônico de ordem ℓ , e seja I um ideal gerado por $\{D^iL \mid i \in \{0,1,2,...\}\}$. Então, I é um ideal diferencial linear de dimensão ℓ . A recíproca também é verdade.

Álgebra Universal de Soluções

Definition

Seja $L = Y^{(\ell)} - \sum_{i=0}^{\ell-1} Y^{(i)}$ um operador diferencial linear homogêneo em $K\{Y\}$. O anel de polinômios $R = K[y_0, ..., y_{\ell-1}]$, com a derivação de K extendida para $y_0, ..., y_{\ell-1}$ definida como:

$$D_R(y_j) = egin{cases} y_{j+1} & \textit{se } j < \ell-1 \ \sum\limits_{i=0}^{\ell-1} a_i y_i & \textit{se } j = \ell-1 \end{cases}$$

 (R, D_R) descrito acima será chamada Álgebra Universal de Soluções de L. (Abreviaremos para AUS-L.)

Álgebra Universal de Soluções

Example

Considere a equação $Y^{(1)}=0$ sobre $\mathbb C$ com derivação trivial. AUS é $\mathbb C[y]$ com derivação trivial.

Example

- Considere K com derivação trivial. Equação $Y^{(1)}=a$ não é homogênea.
- Toda solução de $Y^{(1)} = a$ é solução de $Y^{(2)} = 0$.
- AUS: $K[y_0, y_1]$, com $D(y_0) = y_1, D(y_1) = 0$.
- O ideal I gerado por $y_1 a$ é diferencial. Dado que $y_1 a \in const(K[y_0, y_1])$.
- $K[y_0, y_1]/I$ é isomorfo a K[y] com $D_{K[v]}(y) = a$.

Álgebra Universal de Soluções

Example

- K corpo diferencial arbitrário, a equação $Y^{(1)} = a$, em que $a \in K$ não é constante.
- Seja $a_1 = D(a)/a \in K$ e considere a equação $Y^{(2)} a_1 Y^{(1)} = 0$.
- AUS: $K[y_0, y_1]$ com $D(y_0) = y_1, D(y_1) = a_1y_1$.
- $P = \langle y_1 a \rangle$ um ideal em $K[y_0, y_1]$.
- Como $D(y_1 a) = a_1(y_1 a)$, então P diferencial.
- $K[y_0, y_1]/P$ é isomorfo a K[y] com D(y) = a.

Adjunção de uma exponencial

Definition

A equação : $Y^{(1)} - aY^{(0)} = 0$, $a \in K$ tem AUS o anel de polinômios K[y], em que D(y) = ay. Extensões desse tipo são chamadas adjunção de uma exponencial. $(S = R(y); D(y)/y \in R)$

Theorem

Seja E=K(z) uma extensão de corpo diferencial tal que $\frac{D(z)}{z}\in K$. Então z ou é transcendental sobre K, obtido por adjunção de uma exponencial a K, ou para algum $n\in \mathbb{Z}^+$ temos $z^n\in K$.

Adjunção de uma exponencial

Example

- Seja f a série exponencial usual. Então D(f) = f.
- $K = \mathbb{C}(f)$ e a equação $Y^{(1)} Y^{(0)} = 0$.
- AUS: $K[y] \operatorname{com} D(y) = y$.

Note que:

$$D(\frac{y}{f}) = \frac{fD(y) - yD(f)}{f^2} = \frac{fy - yf}{f^2} = 0$$

O Wronskiano

Definition

Sejam $y_1, y_2..., y_s \in K$. Então:

$$w = w(y_1, ..., y_s) = \begin{vmatrix} y_1^{(0)} & y_2^{(0)} & \cdots & y_s^{(0)} \\ y_1^{(1)} & y_2^{(1)} & \cdots & y_s^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(s-1)} & y_2^{(s-1)} & \cdots & y_s^{(s-1)} \end{vmatrix}$$

em que $y_i^{(j)} = D^j(y_i)$, é chamado *Determinante Wronskiano de* $y_1, ..., y_s$ ou o *Wronskiano de* $y_1, ..., y_s$.

O Wronskiano

Theorem

Sejam L operador diferencial linear homogêneo mônico de ordem ℓ sobre um corpo K, e suponha que há elementos $y_1, ..., y_\ell \in K$ linearmente independentes sobre const(K) tal que $L(y_i) = 0$ para cada i, ou seja, $y_1, ..., y_\ell$ é um conjunto de soluções completo de L. Então, $L = \frac{w(Y, y_1, ..., y_\ell)}{w(y_1, ..., y_\ell)}$.

Extensões Elementares

Definition

Seja K um corpo diferencial, E uma extensão de corpo diferencial. Sejam $K \subset E$. Dizemos que $t \in E$ é um logaritmo sobre K se $D(t) = \frac{D(b)}{b}$ para algum $b \in K, b \neq 0$. Dizemos que $t \in E, t \neq 0$ é uma exponencial sobre K se $\frac{D(t)}{t} = D(b)$ para algum $b \in K$.

Definition

Sejam $K \subset E$. Dizemos que $t \in E$ é elementar sobre K se é uma das 3 opções: algébrico, um logaritmo, ou uma exponencial sobre K.

Extensões Integráveis

Definition

Dizemos que E é uma extensão elementar de K se existem $t_1,...,t_n \in E$ tal que $E = K(t_1, ..., t_n)$ e t_i é elementar sobre $K(t_1, ..., t_{i-1})$ para $1 \le i \le n$.

Definition

Dizemos que $f \in K$ tem integral elementar sobre K se existe extensão elementar E de K e $g \in E$ tal que D(g) = f.

Extensões Integráveis

Definition

Uma função elementar é qualquer elemento de qualquer extensão elementar do corpo diferencial $\mathbb{C}(x)$ com derivada usual.

Theorem

(Teorema de Liouville) Seja K um corpo diferencial e $f \in K$. Se existe uma extensão elementar E de K com const(K) = const(E), e $g \in E$ tal que D(g) = f, então existem $v \in K$; $u_1, ..., u_m \in K$ não nulos; e $c_1,...,c_m \in const(K)$ tal que:

$$f = D(v) + \sum_{i=1}^{m} c_i \frac{D(u_i)}{u_i}$$

Extensões Integráveis

Corollary

Seja, $E = K(e^g)$; $g \in K$. Suponha que e^g é transcendental sobre K. Para qualquer $f \in K$, $fe^g \in E$ tem integral elementar, se e somente se existe algum elemento $a \in K$ tal que: f = D(a) + aD(g).

Theorem

A função e^{x^2} não é integrável em termos de funções elementares sobre $\mathbb{C}(x)$.

A pergunta que não quer calar...

Demonstração.

- Surpreendentemente temos $e^{x^2} = 1.e^{x^2}$.
- Existe $a \in \mathbb{C}(x)$ tal que: 1 = D(a) + 2ax.
- Seja $a = \frac{p}{a} \in \mathbb{C}(x)$, com mdc(p, q) = 1.
- •

$$1 = \frac{D(p)q - pD(q)}{q^2} + \frac{2px}{q} \Longleftrightarrow \frac{pD(q)}{q} = D(p) + 2px - q$$

- q divide pD(q), mdc(p,q) = 1, então q divide D(q).
- q é uma constante. Então sem perda de generalidade $a = \frac{p}{a} = p$.
- Comparar os graus de 1 = D(a) + 2ax.

Algebra Universal de Soluções Completa

Definition

Seja $L = Y^{(l)} - \sum_{i=0}^{l-1} a_i Y^{(i)}$ um operador diferencial homogêneo linear mônico em $K\{Y\}$. Seja $S = K[y_{ii} \mid 0 \leqslant i \leqslant l-1, 1 \leqslant j \leqslant l][w^{-1}]$ a localização do anel de polinômios $R = K[y_{ii}]$ de l^2 variáveis em $w = det(y_{ii})$. Defina a derivação D_R em R por:

$$D_R(y_{ij}) = y_{i+1,j}; i < l-1$$

$$D_R(y_{l-1,j}) = \sum_{i=0}^{l-1} a_i y_{ij}$$

Basta extender essa derivação para S. Chamaremos S de álgebra universal de soluções completa de L=0, abreviaremos para AUSC-L.

Construção

Definition

Seja L um operador diferencial linear homogêneo mônico de ordem ℓ sobre o corpo diferencial K. O extensão diferencial de corpo $E \supset K$ é chamada extensão de Picard-Vessiot de K por L se:

- E é gerado sobre K pelo conjunto V de soluções de L=0 em $E.(E=K\langle V\rangle.)$
- E contém o conjunto de soluções completo de L=0, ou seja, existem $y_1,...,y_l \in V$ tal que $w(y_1,...,y_l) \neq 0$.
- Toda constante em E também está em K.

Construção

Theorem

Seja $E \supset K$ uma extensão de Picard-Vessiot de K pelo operador L. Se existe $E \supset C \supset K$ tal que C é extensão intermediária que contenho o conjunto de soluções completo de L=0, então E=C.

Existência e Unicidade

Theorem

Seja K um corpo diferencial com seu corpo de constantes algebricamente fechado. Seja L um operador diferencial linear homogêneo mônico sobre K e S a AUSC-L sobre K, por fim seja P um ideal diferencial maximal de S. Então P é primo e o corpo de frações F do domínio de integridade S/P é a extensão de Picard-Vessiot de K por L.

Existência e Unicidade

Theorem

Sejam E₁, E₂ extensões de Picard-Vessiot de K para o operador L de ordem ℓ . Suponha que const(K) é algebricamente fechado. Então, existe um K – isomorfismos diferenciais de $E_1 \rightarrow E_2$.

Definition

Seja K um corpo diferencial, E uma extensão de corpos diferencial. Chamaremos $t \in E$ uma primitiva sobre K se $D(t) \in K$. Além disso, dizemos que $t \in E, t \neq 0$, é hiper-exponencial sobre K se $\frac{D(t)}{t} \in K$.

Definition

Seja K um corpo diferencial, E uma extensão de corpos diferencial. Dizemos que $t \in E$ é Liouvilliano sobre K se t é uma das 3 opções: algébrico, ou uma primitiva, ou hiper-exponencial sobre K. Analogamente, dizemos que L é uma extensão Liouvilliana de K se existem $t_1, ..., t_n \in E$ tal que $E = K(t_1, ..., t_n)$ e cada t_i é Liouvilliano sobre $K(t_1, ..., t_{i-1})$ para $1 \le i \le n$.