Ap.Code | UZ1AM-1A | Reg.No |

KPR Institute of Engineering and Technology | CSE(Al&ML) |
(Autonomous) | Avinashi Road, Arasur, Colmbatore - 641 407 | Ac. Yr.: 2024 - 2025 |
Course Code & Title | U21AM401 | Machine Learning 1 |
Year | I | Semester: 04 | Date: 27.3.2024 - AN |
CIAT | I | Duration: 90 Minutes | Maximum Marks: 60

	7		60 U1			4 ω			2						Q. No				
Gradient Boosting uses majority c voting while Random Forest uses weighted averages	Gradient Boosting differ from Random Forest? Gradient Boosting uses parallel a training while Random Forest is sequential Sequential	c Between Class scatter matrix	a Class mean vectors	Which metric is not computed during the LDA process?	a hidden layers c To speed up the training process	What is the purpose of softmax active Layer Perceptron (MLP)	c Using a higher-degree polynomial	a Increasing model complexity	Which of the following can reduce variance in a machine learning model?	c when most features are relevant and there is multicollinearity	a number of irrelevant features	Which situation is best suited for Ridg	c To minimize the effect of multicollinearity	a in the model	What is the main purpose of using polynomial regression instead of linear regression?	Estimating the price of a house c based on size, location and no. of floors	a cat, dog, or bird.	Which of the following scenarios is best suited for multiple linear regression?	Answer /
Gradient Boosting only works for d regression problems	n Random Forest? Gradient Boosting trains models b sequentially to correct previous errors	d Kernel matrix	b Within-class scatter matrix	he LDA process?	b probabilities for multi-class classification d To prevent overfitting in the model	What is the purpose of softmax activation function in the output layer of a Multi- Layer Perceptron (MLP)	d Removing regularization	b Collecting more training data	iance in a machine learning model?	d few active features	b eliminate non-predictive variables	Which situation is best suited for Ridge Regression over LASSO Regression?	To model non-linear relationships d between the independent & dependent variables.	To increase the interpretability of the model	nomial regression instead of linear	Diagnosing a patient's disease from d medical test results (with 5 possible diseases).	b Classifying emails as spam or not spam.	suited for multiple linear regression?	Answer All Questions
→		加工								4-		682				Marks			
С		, D		c c		c d		C			1 C			, C		1	BT		
CQ	3		604		C05			CO4			COG			5	1		3	-4	00

21 a)

Describe the working mechanism of each agent type and analyze their advantages and disadvantages in real-world applications

22 b)

Explain the Bias-Variance Tradeoff in machine learning with its impact on model performance

6

₽

604

9

6

ð

CO4

6

6

72 C

6

_

CO1

22 a)

21 b) Explain the different types of environments in Artificial Intelligence with

Describe the process of constructing a Decision Tree using Splitting criteria and explain how the tree makes predictions
Explain the Naïve Bayes Algorithm with its mathematical formulation and working principle.

4	F107				Fig.				
	6			9	8				
റ	Ø	ੜ≲	O.	20	15	0	נפ		
Leave-One-Out Cross Validation(LOO-CV)	a K-fold Cross Validation	Which type of cross-validation is most suitable for smaller datasets to maximize training data usage?	A feature with the highest information Gain is preferred for splitting the node	less useful feature for splitting	Which of the following statements about Information Gain is True?	c dimensional space without computing it explicitly	a To reduce overfitting by to regularization b class		
۵	σ	Suita	٩	-	두	۵	5		
d Hold-Out Validation	b Stratified Cross Validation		Information Gain Increases as the tree depth increases	Information Gain is only applicable to numerical features	formation Gain is True?	To select the best hyperplane based on cross-validation	To improve the margin between classes		
36	<u>م</u> ا		de V			_			
	c		>			<u>_</u>	į.		
	coı		CO1	and the		CO4			

7 3	Answer All Questions		ns Marks BT CO
撞刀	and consumer	Address Towns Towns	Address Towns Towns
ನ ।	Why is k-fold cross-validation preferred over a simple train-test split?		J 1
= 1	What are the assumptions made by LDA for classification?		2 .
_	What is the difference between a hard margin and a soft margin in SVM?		2
⊐ I	Why is KNN considered a non-parametric algorithm?	17 2	
18 元 元和	Explain the concept of information gain in decision trees	trees 2	
1 9	Differentiate perceptron from multi-layer perceptron?	n? 2	
(0077,	What is the key idea behind boosting algorithm in machine learning?	machine learning? 2	schine learning?
Ó	sso regression in terms	What is the main difference between Ridge and Lasso regression in terms of their penalty terms?	isso regression in terms of 2 U
C	ation problems, and how	Why is the Logistic regression suitable for classification problems, and how does the sigmoid function play a key role?	ation problems, and how 2 U
	nachine learning models?	What is a cost function, and why is it essential in machine learning models? 2	nachine learning models? 2 R
~ >	Section – B (10X2=20 Marks) Answer All Questions	- 3	arks) Marks BT

10. 10.	ii Explain the K-Nearest Neighbors (KNN) algorithm, including the working principle, distance metric, and how K affects model performance.	6	Ap	CO4
23 a)	Explain Linear Regression and Logistic Regression with their Cost functions and gradient descent steps. Describe how Ridge and Lasso Regression modify these functions for Regularization and their impact on model complexity.	12	Α	CO5
	(Or)		, , , , ,	17.00
23 b)	Explain Bagging and Boosting and describe their key algorithms.	12	Α	CO5

