1. Búsqueda

.1. Búsqueda ciega e informada

- Problema: encontrar la ruta con coste mínimo desde uno nodo inicial a un nodo final.
 - $\bullet \ \ {\rm El} \ {\rm grafo} \ {\rm que} \ {\rm representa} \ {\rm el} \ {\rm problema} \ {\rm tiene} \ {\rm inconvenientes}; \ {\rm puede} \ {\rm ser} \ {\rm infinito}, \ {\rm puede} \ {\rm haber} \ {\rm varios} \ {\rm nodos} \ {\rm finales},$
 - Enfocar la búsqueda en un árbol cuya raíz es el estado inicial.
 - o Cada nodo del árbol es un *estado* que se corresponde con un nodo del grafo. La manera de llegar a un estado los diferencia con respecto a los nodos del árbol.
 - o Test objetivo para saber si un estado es final o meta.
 - o Acción o expansión de un nodo para obtener los sucesores de un estado del árbol
 - o Lista de abiertos con los estados descubiertos pero no explorados.
 - o Estrategia define la ordenación de los nodos en la lista de abiertos.
 - \circ **Utilidad** g da el coste desde el nodo raíz hasta el actual (pero considerando los estados del árbol, no solo los nodos del grafo).
- Una heurística h es una función $h:V\to [0,+\infty)$ donde V son los nodos. h estima la distancia a la meta y se normalmente se obtiene por relajación del problema.
 - h se dice **monótona** $\iff \forall n, n', h(n) \leq h(n') + \Gamma(n, n')$ (designaldad triangular)
 - h se dice admisible $\iff \forall n, \ h(n) \le h^*(n)$ donde $h^*(n)$ es el coste real óptimo de n a la meta.
 - $\circ h$ monótona $\implies h$ admisible
 - \circ Conocer h^* normalmente requiere resolver el problema, por eso es más fácil demostrar h monótona que h admisible.
- Definimos f = g + h para cada nodo.

Búsqueda genérica en árbol

```
function búsqueda-en-árbol (problema, estrategia)
;; devuelve solución o fallo
;; lista-abierta contiene los nodos de la frontera del árbol de búsqueda
Inicializar árbol-de-búsqueda con nodo-raíz
Inicializar lista-abierta con nodo-raíz
Iterar
   If (lista-abierta está vacía) then return fallo
   Elegir de lista-abierta, de acuerdo a la estrategia, un nodo a expandir.
   If (nodo satisface test-objetivo)
        then return solución (camino desde el nodo-raíz hasta el nodo actual)
        else eliminar nodo de lista-abierta
        expandir nodo
        añadir nodos hijo a lista-abierta
```

Búsqueda en grafo o con eliminación de estados repetidos: añadir una lista de cerrados que contiene los nodos ya explorados (= expandidos). No se introducen en la lista de abiertos aquellos nodos que ya estén en la lista de cerrados. La **estrategia** determina la ordenación de la lista abierta:

- FIFO (cola): búsqueda en anchura.
- LIFO (pila): búsqueda en profundidad.
- ullet Por valor de g ascendente: **Dijkstra o coste uniforme**
- Por valor de h ascendente: búsqueda avariciosa
- Por valor de f ascendente: A^*

¿Qué queremos?

- Completitud: encontrar la solución siempre que exista.
- Optimalidad: encontrar siempre la solución de menor coste g.
- A^* (A-estrella): ordenar la lista de abiertos por valor de f = q + h ascendente.
 - A* sin eliminación de estados repetidos (= búsqueda en árbol) y h admisible es completa y óptima.
 - A^* con eliminación de estados repetidos (= búsqueda en grafo) y h monótona es completa y óptima.

1.1.1. Coste computacional

- \blacksquare b factor de ramificación: el mayor número de sucesores de un estado (suponemos $b<\infty)$
- $\bullet \ m$ profundidad máxima del árbol de búsqueda (suponemos $m < \infty)$
- d profundidad del nodo objetivo más superficial C^* coste del camino de la solución óptima
- $\bullet \ \varepsilon \geq 0$ coste mínimo de un acción

	Tiempo	Memoria	Completa?	
en anchura	$O(b^d)$	$O(b^d)$	Sí¹	Si^2
en	$O(b^m)$	$b \cdot m + 1$	No	No
profundidad				
Dijkstra	$O(b^{\lceil C^*/\varepsilon \rceil})$	$O(b^{\lceil C^*/arepsilon ceil})$	Sí $(\varepsilon > 0)$	Sí
avariciosa	$O(b^m)$	$O(b^m)$	No	No
A^*	$O(b^{\lceil C^*/arepsilon ceil})$	$O(b^{\lceil C^*/arepsilon ceil})$	Sí*	Sí*

1.2. Búsqueda entre adversarios

2.1. Clasificación de problemas de búsqueda (= juegos)

- Número de jugadores: solo nos interesan aquellos con dos jugadores.
- Suma cero, suma constante o suma variable. Suma se refiere a sumar los valores de la utilidad desde el punto de vista de min o de max.
 - Asignar los valores perder = -1, empatar = 0, ganar = 1 en el ajedrez da un juego de suma cero ya que si uno pierde, el otro gana y por tanto sus valores de utilidad suman 0. Ocurre lo mismo si los dos empatan.
 - Asignar los valores perder = 0, empatar = 1, ganar = 2 en el ajedrez da una juego de suma constante ya que si una pierde y el otro gana la suma de las utilidades desde ambos puntos de vista es 2. Ocurre lo mismo si los dos empatan (1+1=2).
 - Los juegos de suma variable no son susceptibles de ser atacados por búsqueda entre adversarios.
- Información perfecta (ajedrez, damas) o información parcial (casi todos los juegos de cartas).
- Deterministas (ajedrez, damas) o estocásticos (backgammon).
- Tiempo y número de movimientos (limitados o ilimitados).

1.2.2. Minimax

- Modelización de un problema con dos jugadores.
- Al que juega primero le llamamos max, al otro min.
- Esta estrategia encuentra la jugada óptima para max.
- Definimos el valor minimax(n) para un nodo:

```
\min(n) \equiv \begin{cases} \text{Utilidad}(n) & \text{si } n \text{ terminal} \\ \text{máx}\{\min(s): s \text{ sucesor de } n\} & \text{si } n \text{ es un nodo max} \\ \text{mín}\{\min(s): s \text{ sucesor de } n\} & \text{si } n \text{ es un nodo min} \end{cases}
```

- Optimalidad: minimax es óptimo si el oponente lo es. Si no lo es hay maneras mejores de ganarle (esto es peligroso).
- Complejidad temporal $O(b^m)$ y espacial $O(b \cdot m)$.
- Con **poda** $\alpha \beta$:
 - En nodos min se actualiza $\beta = \min(\beta, \alpha_i \text{ de los hijos})$
 - En nodos max se actualiza $\alpha = \max(\alpha, \beta_i \text{ de los hijos})$
 - Es útil hacer minimax sin poda para los ejercicios ya que permite comprobar si los intervalos $[\alpha, \beta]$ están bien: en nodos max, el valor minimax coincide con α y en nodos min, el valor minimax coincide con β .
 - Complejidad temporal: depende de la ordenación de la búsqueda. Es mejor si los nodos mejores se exploran primero.
 - o En el caso peor no hay mejora.
 - $\circ\,$ En el caso medio (ordenación aleatoria: $O(b^{3d/4})$
 - En el caso mejor (ordenación perfecta: $O(b^{d/2})$

2. Lógica de predicados

2.1. Formalización:

Hay que acordarse de:

Hay constantes, variables, predicados y funciones.

¹Búsqueda en anchura solo es completa y óptima si el coste es una función no decreciente de la profundidad.

 $^{^2}$ Búsqueda en anchura solo es completa y óptima si el coste es una función no decreciente de la profundidad.

- Un predicado devuelve un valor de verdad mientras que una función devuelve otro átomo. Por ejemplo: mejorAmigoDe(perso es una función mientras que ViveEn(ciudad, persona) es un predicado.
- Nunca* se pone un \forall con un \land y tampoco se pone un \exists con un \Longrightarrow .
- Nunca se pone un predicado dentro de otro o de una función.
- Las definiciones utilizan un \iff .
- Si tenemos dos opciones normalmente hay que especificar que son distintas.

2.2. Ejercicios

2.2.1. Hoja 2, 2018: ejercicio 2

1. Dos nodos son hermanos si, siendo distintos, tienen el mismo padre.

$$\forall x, y [(\neg I(x, y) \land I(padreDe(x), padreDe(y))) \iff H(x, y)]$$

2. Un camino entre dos nodos es una secuencia de uno o varios enlaces entre dichos nodos.

$$\forall x, y, c[C(c, x, y) \iff (I(c, enlace(x, y)) \lor \exists z, m, n(\neg I(m, n) \land C(m, x, z) \land C(n, z, y)]$$

2.2.2. Parcial 1, 2014-2015: ejercicio 3

- 1. Ejemplo
- 2. Se puede diseñar una máquina de Turing para computar la solución de cualquier problema que pueda ser resuelto mediante la aplicación de un algoritmo sobre unos datos de entrada.
- 3. Una máquina de Turing universal puede simular la acción de cualquier máquina de Turing sobre los datos almacenados en su cinta

$$\forall u[Universal(u) \implies \forall t, d(comp(t, d) = comp(u, descr(t_2, d))]$$

2.3. Incertidumbre

Problema: dado un conjunto de pares (atributos, clase) donde atributos es un vector, elaborar un modelo que permita asignar una clase de entre un conjunto de clases a otros vectores de atributos.

Definiciones:

- El prior P(clase)
- La evidencia P(atributos)
- La verosimilitud P(atributos | clase)
- El posterior $P(\text{clase } | \text{ atributos. Para un vector de atributos dado, la suma de los posteriores sobre cada clase da siempre 1, es decir, <math>\sum P(\text{clase}_i | \text{ atributos}) = 1$.

Modelos:

Un modelo de predicción nos asigna una clase a un vector de atributos dado en base a los datos (pares (atributos, clase)) de los que partimos.

- Modelo basado en priores: predecir, para cualquier vector de atributos, la clase con mayor prior (ignorar los atributos de un dato para clasificarlo).
- ML = Maximum Likelihood o Máxima verosimilitud: predecir la clase que maximiza P(atributos | clase).
- Calsificador de Bayes o MAP o maximizar los posteriores: predecir la clase que maximiza $P(\text{clase} \mid \text{atributos})$. Bayes es $\acute{o}ptimo = minimiza \ el \ error$.
- Clasificador Naïve Bayes: asume que los atributos son independientes entre sí y por tanto solo dependen de la clase, difiere del clasificador de Bayes en la manera de descomponer $P(\text{clase} \mid \text{atributos})$:

$$P(\text{clase} \mid \text{atributos}) = \frac{P(\text{atributos} \mid \text{clase}) \cdot P(\text{clase})}{P(\text{atributos})} = \frac{(\prod P(\text{attributo}_i \mid \text{clase}))P(\text{clase})}{P(\text{atributos})}$$

Predice la clase que maximiza $P(\text{clase} \mid \text{atributos})$ como hace MAP.

• Clasificador según una red bayesiana: dadas las dependencias entre los atributos(el grafo) descomponemos $P(\text{clase} \mid \text{atributos})$ según estas. Predice la clase que maximiza $P(\text{clase} \mid \text{atributos})$ como hace MAP.

Nota: si tenemos clases uniformes, es decir, si $P(\text{clase}_i) = P(\text{clase}_j)$ para toda clase de nuestro problema, entonces MAP y ML predicen siempre la misma clase (no necesariamente con la misma probabilidad).