A74 EXERCISES: Electronic populations (9.5, 10.6)

- 1. The Hydrogen Balmer lines are transitions from the first excited state (n = 2 level). Consider H α , the transition to/from n = 1 to n = 2.
 - (a) Write the expression for the relative populations of these two energy levels as a function of temperature.
 - (b) For the Sun and for an A-type star (T = 10,000K), what are the relative population of the two levels? What does this imply about the relative strengths of the H α lines in these stars?
 - (c) As T increases, what does the Boltzmann equation suggest should happen to the H α line for very hot (O & B) stars?
 - (d) Calculate the ionization fraction for Hydrogen for the Sun and the A-type star. Use a number density of electrons of $2 \times 10^{17} \text{cm}^{-3}$.
 - (e) What does this imply about the Hydrogen lines for very hot stars?
- 2. Consider a line profile ϕ_v . We'll use this result on Wednesday when thinking about evaporating planetary atmospheres. I'm using both frequency v and velocity v in this problem–sorry.
 - (a) Approximate the line profile ϕ_{ν} as a top hat with width $\Delta \nu$; here we are saying that we'll consider a narrow band of frequencies to all contribute equally to absorption while anything outside of that band does not contribute at all. It may help to draw the functions.
 - (b) Now translate into a velocity width Δv . Use λ_0 to represent the center of the line, noting that the change in Δv is small compared to v_0 and λ_0 . (This is straightforward, don't overthink it).
 - The reason for translating to velocity v is that frequently in astronomy, line broadening is given in terms of a velocity width rather than a frequency or wavelength width. The center of the line is considered to be v = 0 and the generic relationship between frequency, wavelength, and velocity allows you to switch from v from v.