Textbook sections: 3.3, 3.4, 3.5

Equilibrium Points

For an equilibrium point P = (x, y), it can be categorized as the following:

classification	intepretation
stable	points close to P stay close
asymptotically stable	points close to P stay close & converge to P as $t o \infty$
unstable	points close to P diverge

(semi-stable is only applicable for autonomous equations)

See also: week 10 equilibrium points.

Plotting via Wolfram Alpha

Given an equation

$$ec{x}' = egin{bmatrix} a & b \ c & d \end{bmatrix} ec{x},$$

Wolfram Alpha can plot the phase portrait with...

streamplot[
$$\{ax + by, cx + dy\}, \{x, -1, 1\}, \{y, -1, 1\}$$
]

Phase Portraits

Phase portraits are x_1 - x_2 graphs that indicate which points a system of DEs tend towards. The general structure of the phase portrait depends on the matrix's eigenvalues:

Distinct Real Eigenvalues

See: Systems of 2 FOLDEs

Eigenvalues	Sample Phase Portrait	Type of Critical Point	Stability
$\lambda_1,\lambda_2>0$ and $\lambda_1 eq\lambda_2$	\mathbf{v}_{λ_1}	(0,0) is a nodal source.	unstable
$\lambda_1,\lambda_2 < 0$ and $\lambda_1 eq \lambda_2$	ν _{λ1}	(0,0) is a nodal sink.	asymptotically stable
λ_1,λ_2 opposite signs and $\lambda_1 eq\lambda_2$	\mathbf{v}_{λ_1}	(0,0) is a <i>saddle</i> .	unstable
$\lambda_1=0,\lambda_2>0$	Line of critical points, \mathbf{V}_0		
$\lambda_1=0,\lambda_2<0$	Line of critical points, \mathbf{V}_0		

The curves for the nodal sink & source:

- Let $\lambda_1 > \lambda_2 > 0$.
- Farther from the origin, the curves are parallel to \vec{v}_1
- Closer to the origin, the curves are parallel to $ec{v}_2$

Complex Eigenvalues

See: Complex Eigenvalues

Instead of directing in or out of a critical point, complex eigenvalues perform a spiral motion in or out:

To determine if that spiral is clockwise or counterclockwise, test a point (e.g. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$) and see where the rotation points.

Let
$$\lambda = \alpha + i\beta$$
:

Eigenvalues	Sample phase portrait	Type of critical point	stability
lpha < 0		(0, 0) is a spiral sink	asymptotically stable
$\alpha > 0$		(0, 0) is a spiral source	unstable
a = 0	-	(0, 0) is a <i>center</i>	stable

Repeated Eigenvalues

See: Repeated Eigenvalues

If there is a repeated eigenvalue, but two eigenvectors, the lines point towards/away the critical point like a star.

If there is one eigenvector, there are curves going into the eigenvector.

Eigenvalues	Sample phase portrait	Type of critical point	stability
$A = egin{bmatrix} \lambda & 0 \ 0 & \lambda \end{bmatrix}, \ \lambda > 0$	\	(0, 0) is an <i>unstable proper node</i> (or <i>unstable star node</i>)	unstable
$A = egin{bmatrix} \lambda & 0 \ 0 & \lambda \end{bmatrix}$, $\lambda < 0$	*	(0, 0) is a stable proper node (or stable star node)	asymptotically stable
A is not diagonal, $\lambda>0$	3	(0, 0) is an unstable improper node (or unstable degenerate node)	unstable
A is not diagonal, $\lambda < 0$		(0, 0) is a stable improper node (or stable degenerate node)	asymptotically stable