The Stable Signature: Rooting Watermarks in Latent Diffusion Models

ICCV, 2023

285 citations

Meta Al

02. **METHOD**

03. **EXPERIMENTS**

04. **COMPARISONS**

- ICLR 2024 (reject)
 - 3 Reviewers
 - Rating: 5 (3), 5, 6
 - Author: Singapore university, Sea AI Lab

- DMs have demonstrated impressive performance like image synthesis
- However, practical deployment of DMs raise legal issues

- From this perspective, watermark is effective solution to protect and detect
 - E.g., GANs, GPT
- Objective: maintain the quality of the generated image while stably embedding the watermark into the image
 - Train from scratch (uncond/class-cond DMs)
 - 2. Fine-tuning (text-to-image latent diffusion model)

A Recipe for Watermarking Diffusion Models, arXiv, 2023

Small / Controllable x

(1) Unconditional / Class-conditional Generation

(2) Text-to-Image Generation

A Recipe for Watermarking Diffusion Models, arXiv, 2023

- 1. Pre-train watermark encoder-decoder
- 2. Train DM using watermarked dataset

$$\min_{\phi,\varphi} \mathbb{E}_{\boldsymbol{x},\mathbf{w}} \Big[\mathcal{L}_{\text{BCE}} \left(\mathbf{w}, \mathbf{D}_{\varphi} (\mathbf{E}_{\phi}(\boldsymbol{x}, \mathbf{w})) \right) + \gamma \left\| \boldsymbol{x} - \mathbf{E}_{\phi}(\boldsymbol{x}, \mathbf{w}) \right\|_{2}^{2} \Big],$$

E&D: watermark encoder & decoder

w: binary string

x: clean image

(1) Unconditional / Class-conditional Generation Implant watermark in training data Embed watermark & reconstruct data Watermarked training data Clean training data watermark string: **=**011001 **Detect** watermark from generated data Match? ····> Noise→image

Generated images

Resulting DM

Watermark

decoder

Decoded

string

A Recipe for Watermarking Diffusion Models, arXiv, 2023

- 1. Fine-tune LDM using specific text image pair
 - E.g, [V] QR code image

$$\mathbb{E}_{\boldsymbol{x},\boldsymbol{c},\boldsymbol{\epsilon},t}\left[\eta_t \|\boldsymbol{x}_{\theta}^t(\alpha_t \boldsymbol{x} + \sigma_t \boldsymbol{\epsilon},\boldsymbol{c}) - \boldsymbol{x}\|_2^2\right],$$

(2) Text-to-Image Generation

A Recipe for Watermarking Diffusion Models, arXiv, 2023

- 1. Fine-tune LDM using specific text image pair
 - E.g, [V] QR code image

$$\mathbb{E}_{\boldsymbol{x},\boldsymbol{c},\boldsymbol{\epsilon},t}\left[\eta_t \|\boldsymbol{x}_{\theta}^t(\alpha_t \boldsymbol{x} + \sigma_t \boldsymbol{\epsilon},\boldsymbol{c}) - \boldsymbol{x}\|_2^2\right],$$

Catastrophic forgetting

Prompt 1:

"An astronaut walking in the deep universe, photorealistic"

 $\mathbb{E}_{\boldsymbol{\epsilon},t} \left[\eta_t \| \boldsymbol{x}_{\theta}^t(\alpha_t \tilde{\boldsymbol{x}} + \sigma_t \boldsymbol{\epsilon}, \tilde{\boldsymbol{c}}) - \tilde{\boldsymbol{x}} \|_2^2 \right] + \lambda \| \theta - \hat{\theta} \|_1,$

Iter

Prompt 1

0

150

500

850

- Uncond/Class-cond DMs
 - DDIM Sampler 100 steps
 - Dataset: CIFAR-10, FFHQ, AFHQv2, ImageNet-1K
 - Eval: PSNR, SSIM, FID
 - Attack method: mask, brightness, perturbation

Bit-Acc
$$\equiv \frac{1}{n} \sum_{k=1}^{n} \mathbf{1} \left(\mathbf{D}_{\varphi}(\boldsymbol{x}_{\mathbf{w}})[k] = \mathbf{w}[k] \right),$$

Add different attack/perturbation on generated Images of FFHQ

- 64 bit-length
- Robustness against attacks

Dataset	PSNR/SSIM↑ FID		Bit Acc. ↑ w/ images:				Bit Acc. ↑ w/ models:			
Dataset	TSINOSSINI	1110	N/A	Mask (50%)	Bright	Perturb	N/A	Finetune	Pruning	Perturb
CIFAR-10	28.08/0.943	6.84	0.999	0.873	0.943	0.999	0.999	0.998	0.979	0.998
CIFAR-10 [†]	25.13/0.846	6.72	0.999	0.870	0.955	0.999	0.999	0.997	0.942	0.999
FFHQ-70K	26.20/0.875	6.45	0.999	0.862	0.976	0.996	0.999	0.991	0.919	0.980
AFHQv2	28.07/0.877	6.32	0.999	0.889	0.937	0.977	0.999	0.996	0.956	0.998
ImageNet-1K	27.09/0.848	14.89	0.999	0.867	0.936	0.995	0.999	0.987	0.999	0.914

- Bit-length ↑, quality ↓
- Resolution 1, mitigate

Bit Length	CIFAR-10 (32×32)	FID (↓)	Bit-Acc (↑)
N/A		1.97	0.999
4		2.42	0.999
16		3.60	0.999
64		6.84	0.999
128		7.97	0.903

A Recipe for Watermarking Diffusion Models, arXiv, 2023

Noise strength

	Noise std.	FID (↓)	Bit-Acc (↑)
	N/A	6.46	0.999
	10^{-3}	6.50	0.999
	3×10^{-3}	6.35	0.999
FFHQ (64×64)	5×10^{-3}	6.50	0.999
A	7×10^{-3}	7.31	0.997
	9×10^{-3}	8.47	0.980

- FID between the clean training dataset and the watermarked training dataset
- Denoising process of watermarked DMs

Bit Length	0	4	8	16	32	64	128
CIFAR-10	0	0.51	1.03	1.65	2.39	4.34	5.36
FFHQ	0	1.37	1.40	1.46	1.99	2.77	4.79
AFHQv2	0	2.43	3.53	3.88	4.12	4.54	8.55
ImageNet-1K	0	0.70	0.94	1.05	1.66	1.87	3.12

- T2I LDM
 - DDIM Sampler 100 steps
 - Dataset: text-image pairs
 - SD v1.4

- $\lambda = 0$: scannable QR, quality x
- $\lambda = 10^{-7}$: scannable QR, quality o
- $\lambda = 10^{-5}$, 10^{-3} : scannable QR x, quality o

Prompt 1: "An astronaut walking in the deep universe" Prompt 2: "A dog and a cat playing in the mountain" Prompt 3: "Two ducks are playing in the water" Trigger Prompt: "[V]"

- Future work
 - Mitigate the degradation of generative performance
 - Sensitivity to customized finetuning

- Reviewer 1 (3 \rightarrow 5)
 - Scenario of copyright protection (for model provider or user who downloaded)
 - A. For model provider. (APIs)
 - No novelty compared to DreamBooth (catastrophic forgetting)
 - A. DreamBooth: need 1000 images vs single text-image pair

$$\mathbb{E}_{\boldsymbol{\epsilon},t} \left[\eta_t \| \boldsymbol{x}_{\theta}^t(\alpha_t \tilde{\boldsymbol{x}} + \sigma_t \boldsymbol{\epsilon}, \tilde{\boldsymbol{c}}) - \tilde{\boldsymbol{x}} \|_2^2 \right] + \lambda \| \theta - \hat{\theta} \|_1,$$

$$\mathbb{E}_{\mathbf{x},\mathbf{c},\boldsymbol{\epsilon},\boldsymbol{\epsilon}',t}[w_t \|\hat{\mathbf{x}}_{\theta}(\alpha_t \mathbf{x} + \sigma_t \boldsymbol{\epsilon}, \mathbf{c}) - \mathbf{x}\|_2^2 + \lambda w_{t'} \|\hat{\mathbf{x}}_{\theta}(\alpha_{t'} \mathbf{x}_{pr} + \sigma_{t'} \boldsymbol{\epsilon}', \mathbf{c}_{pr}) - \mathbf{x}_{pr}\|_2^2],$$

- Reviewer 2 (6)
 - Already, uncond/class-cond has been studied
 - A. GANs ok. DMs: multiple stochastic steps + greater diversity
 - Quality of watermarked image (PSNR 30↓)
 - A. In white-box, it's easy to remove watermarks vs encode watermarks in model params
 - A. PSNR is difficult for humans to recognize even if it's over 30

Dataset	PSNR/SSIM↑	FID
CIFAR-10	28.08/0.943	6.84
CIFAR-10 [†]	25.13/0.846	6.72
FFHQ-70K	26.20/0.875	6.45
AFHQv2	28.07/0.877	6.32
ImageNet-1K	27.09/0.848	14.89

- Reviewer 2 (6)
 - Robustness experiments: JPEG compression, rotation, deformation, cropping
 - A. 64 bit-length

Table 4: Bit-wise accuracy of the watermarks in generated images under potential distortions.

Distortion Type JPEG C	Compression Rotation	on HorizontalF	Flip ColorJitter	ResizedCrop
	0.802 0.808 0.700		0.999 0.999	0.949 0.830

METHOD

The Stable Signature: rooting watermarks in Latent Diffusion Models

- Alice (model provider) → Bob (user)
- The scenario for model provider
 - Identification
 - Detection

METHOD

The Stable Signature: rooting watermarks in Latent Diffusion Models

- (a) Pre-train watermark encoder/extractor
 - Binary cross entropy loss (message loss)
 - Decoder that extracts message from images in any transformation
- (b) Fine-tune LDM decoder
 - Message loss + perceptual loss
 - LDM decoder that generates images visually and encodes messages well

METHOD

The Stable Signature: rooting watermarks in Latent Diffusion Models

- Identification & Detection
 - E.g., m = 0101, $m' = 0000 \rightarrow k = 4$, $\tau = 3 \rightarrow matching x$

$$M(m, m') \ge \tau$$
 where $\tau \in \{0, \ldots, k\}$,

$$m, m' \in \{0,1\}^k$$

 $\tau \in \{0, ..., k\}$
 $N: number of users$
 $(m^1, ..., m^N)$

Settings

- Dataset: COCO dataset
- 48 bit-length
- Training time: 500 images, single GPU 1 minute
- Resolution: 512×512
- Tasks: T2I, editing, inpainting, super-resolution
- Attacks: JPEG compression, crop, rotation, brightness, contrast, resize, saturation, sharpness, text overlay

Crop 0.1

JPEG 50

Resize 0.7

Brightness 2.0

Contrast 2.0

Saturation 2.0

Sharpness 2.0

Rotation 90

Text overlay

Combined

- Various tasks
 - PSNR 301
 - FID: difference from the original

			PSNR / SSIM ↑	EID I	Bit accuracy ↑ on:			
			PSINK / SSIM	FID↓	None	Crop	Brigh.	Comb.
S	Text-to-Image	LDM [68]	30.0 / 0.89	19.6 (-0.3)	0.99	0.95	0.97	0.92
	Image Edition	DiffEdit [13]	31.2 / 0.92	15.0 (-0.3)	0.99	0.95	0.98	0.94
Tasks	Inpainting - Full - Mask only	Glide [57]	31.1 / 0.91 37.8 / 0.98	16.8 (+0.6) 9.0 (+0.1)	0.99 0.89	0.97 0.76	$0.98 \\ 0.84$	0.93 0.78
	Super-Resolution	LDM [68]	34.0 / 0.94	11.6 (+0.0)	0.98	0.93	0.96	0.92

- PSNR: 35.4 dB vs 28.6 dB
 - Changes occur in the textured area
 - Watermark is inserted without significantly affecting image quality

Robustness

Crop 0.1

JPEG 50

Resize 0.7

e 0.7 Brightness 2.0

Contrast 2.0

Combined

Saturation 2.0

Sharpness 2.0

Rotation 90

Text overlay

Bit acc. Comb. 0.920.99 Attack Sharpness 2.0 Bright. 2.0 0.97Med. Filter k=70.940.99 None Crop 0.1 Cont. 2.0 0.98 0.910.95 Resize 0.7 JPEG 50 0.88 Sat. 2.0 0.99Text overlay 0.99

COMPARISONS

Method	arXiv	ICCV
Image resolution	32, 64, 512	512
Scenario		clear
Model	Uncond/class + LDM	LDM

PSNR 30 dB

arXiv: resolution (32, 64) & 64 bit-length

ICCV: resolution (512) & 48 bit-length

→ Increase resolution and reduce bit-length???

Performance degradation

arXiv: Unet (generative model) + L1 loss (indirect mitigation)

ICCV: decoder (post-processing) + perceptual loss (direct mitigation)

✓ ICCV decoder training x number of users