Lista 6

Sexta lista de exercícios da disciplina MD21 - Inferência bayesiana e teoria de decisão

- 1. Seja X_1, X_2, \ldots, X_n um amostra aleatória de uma distribuição normal com média $\mu = 0$ e variância σ^2 desconhecida. Assuma a seguinte transformação, $\lambda = 1/\sigma^2$, e atribua uma distribuição a priori Gamma com parâmetros a e b para λ .
 - a. Encontre a distribuição a posteriori de λ .
 - b. Calcule $\mathbb{E}[\sigma^2 \mid X_1 = x_1, \dots, X_n = x_n]$
 - c. Proponha um intervalo de credibilidade de 95% para σ^2
- 2. Dizemos que a distribuição a priori para um parâmetro θ é uma **priori conjugada** quando a distribuição a posteriori para θ segue a mesma distribuição da priori.
 - a. Seja X_1, X_2, \ldots, X_n um amostra aleatória de uma distribuição Poisson com média λ . Mostre que a priori conjugada de λ é a distribuição Gamma. (Ou seja, se a priori for Gamma(a,b) então a posteriori será Gamma (a^*,b^*))
 - b. Seja X_1,X_2,\dots,X_n um amostra aleatória da distribuição Bernoulli com parâmetro θ . Encontre a priori conjugada para θ .
- 3. Suponha que uma amostra aleatória de tamanho n é retirada da distribuição exponencial com parâmetro θ . Assuma uma priori Gamma para θ .
 - a. Encontre a posteriori para θ
 - b. Assumindo função de perda quadrática estime θ .
- 4. Mostre que se a posteriori de θ é conhecida, $p(\theta \mid x_1, \dots, x_n)$, sob função de perda absoluta o estimador de θ é a mediana da posteriori de θ .