# Homework Assignment 4

Abhay Gupta (Andrew Id: abhayg)

October 25, 2018

### 1 Question 1

(a) With y(2) = 1, given differential equation is

$$\frac{dy}{dx} = \frac{1}{3y^2}$$
$$3y^2 dy = dx$$
$$\int 3y^2 dy = \int dx$$
$$y^3 = x + C$$

Putting, y(2) = 1 in the above equation, we get,

$$1 = 2 + C$$
$$C = -1$$

Thus the equation is  $y = \sqrt[3]{x-1}$ .

(b) Taking y(2) = 1 and a step size of h = 0.05, we get, the values in Table 1 and Figure 1. To compute the numerical correctness, we calculate the mean squared error of the computed error  $e = y(x_i) - y_i$  vector. The error for Euler's estimation algorithm is 0.007045.



Figure 1: Euler's Estimation Graph

- (c) Taking y(2) = 1 and a step size of h = 0.05, we get, the values in Table 2 and Figure 2. To compute the numerical correctness, we calculate the mean squared error of the computed error  $e = y(x_i) y_i$  vector. The error for RK4's estimation algorithm is 0.00053.
- (d) Taking y(2) = 1 and a step size of h = 0.05, we get, the values in Table 3 and Figure 3. To compute the numerical correctness, we calculate the mean squared error of the computed error  $e = y(x_i) y_i$  vector. The error for RK4's estimation algorithm is 0.00244.

| X    | calculated $f(x)$ | true $f(x)$ | error    |
|------|-------------------|-------------|----------|
| 2.0  | 1.0               | 1.0         | 0.0      |
| 1.95 | 0.983             | 0.983       | -0.00029 |
| 1.9  | 0.966             | 0.965       | -0.00061 |
| 1.85 | 0.948             | 0.947       | -0.00097 |
| 1.8  | 0.93              | 0.928       | -0.00139 |
| 1.75 | 0.91              | 0.909       | -0.00186 |
| 1.7  | 0.89              | 0.888       | -0.00241 |
| 1.65 | 0.869             | 0.866       | -0.00305 |
| 1.6  | 0.847             | 0.843       | -0.0038  |
| 1.55 | 0.824             | 0.819       | -0.00469 |
| 1.5  | 0.799             | 0.794       | -0.00577 |
| 1.45 | 0.773             | 0.766       | -0.00708 |
| 1.4  | 0.746             | 0.737       | -0.00872 |
| 1.35 | 0.716             | 0.705       | -0.01081 |
| 1.3  | 0.683             | 0.669       | -0.01355 |
| 1.25 | 0.647             | 0.63        | -0.0173  |
| 1.2  | 0.607             | 0.585       | -0.02267 |
| 1.15 | 0.562             | 0.531       | -0.03098 |
| 1.1  | 0.51              | 0.464       | -0.04544 |
| 1.05 | 0.445             | 0.368       | -0.07702 |
| 1.0  | 0.361             | 0.0         | -0.36142 |

Table 1: Euler's Estimation Table

| X    | calculated $f(x)$ | true $f(x)$ | error    |
|------|-------------------|-------------|----------|
| 2.0  | 1.0               | 1.0         | 0.0      |
| 1.95 | 0.983             | 0.983       | 0.0      |
| 1.9  | 0.965             | 0.965       | 0.0      |
| 1.85 | 0.947             | 0.947       | 0.0      |
| 1.8  | 0.928             | 0.928       | 0.0      |
| 1.75 | 0.909             | 0.909       | 0.0      |
| 1.7  | 0.888             | 0.888       | 0.0      |
| 1.65 | 0.866             | 0.866       | 0.0      |
| 1.6  | 0.843             | 0.843       | 0.0      |
| 1.55 | 0.819             | 0.819       | 0.0      |
| 1.5  | 0.794             | 0.794       | 0.0      |
| 1.45 | 0.766             | 0.766       | 0.0      |
| 1.4  | 0.737             | 0.737       | 0.0      |
| 1.35 | 0.705             | 0.705       | 0.0      |
| 1.3  | 0.669             | 0.669       | 0.0      |
| 1.25 | 0.63              | 0.63        | 0.0      |
| 1.2  | 0.585             | 0.585       | 0.0      |
| 1.15 | 0.531             | 0.531       | 0.0      |
| 1.1  | 0.464             | 0.464       | 0.0      |
| 1.05 | 0.368             | 0.368       | 3e-05    |
| 1.0  | 0.103             | 0.0         | -0.10346 |

Table 2: RK4 Estimation Table



Figure 2: RK4 Estimation Graph



Figure 3: AB4 Estimation Graph

(e) In IR, the global minima of the function occurs at x = 1 and the function is monotonically increasing. The derivative of the function at  $x = 1 \longrightarrow \infty$ . However, when we compute the derivate at  $1 + \Delta x$ , we have a real-value for the derivative and this is the value we use to compute the estimated value for the function at x = 1, which causes the estimation to go off-track as all the methods assume there is somewhat of a continuity of values of the function being estimated and the difference of the derivatives of the function at two nearby points.

### 2 Question 2

$$f(x,y) = x^3 + y^3 - 2x^2 + 3y^2 - 8$$
(a)

$$\frac{\partial f}{\partial x} = 3x^2 - 4x$$
$$3x^2 - 4x = 0$$
$$x(3x - 4) = 0$$
$$x = 0, x = \frac{4}{3}$$

| X    | calculated $f(x)$ | true $f(x)$ | error    |
|------|-------------------|-------------|----------|
| 2.0  | 1.0               | 1.0         | 0.0      |
| 1.95 | 0.983             | 0.983       | -0.0     |
| 1.9  | 0.965             | 0.965       | -0.0     |
| 1.85 | 0.947             | 0.947       | -0.0     |
| 1.8  | 0.928             | 0.928       | -0.0     |
| 1.75 | 0.909             | 0.909       | -0.0     |
| 1.7  | 0.888             | 0.888       | -0.0     |
| 1.65 | 0.866             | 0.866       | -1e-05   |
| 1.6  | 0.843             | 0.843       | -1e-05   |
| 1.55 | 0.819             | 0.819       | -1e-05   |
| 1.5  | 0.794             | 0.794       | -2e-05   |
| 1.45 | 0.766             | 0.766       | -3e-05   |
| 1.4  | 0.737             | 0.737       | -4e-05   |
| 1.35 | 0.705             | 0.705       | -6e-05   |
| 1.3  | 0.67              | 0.669       | -0.0001  |
| 1.25 | 0.63              | 0.63        | -0.00017 |
| 1.2  | 0.585             | 0.585       | -0.00031 |
| 1.15 | 0.532             | 0.531       | -0.00068 |
| 1.1  | 0.466             | 0.464       | -0.00181 |
| 1.05 | 0.376             | 0.368       | -0.00711 |
| 1.0  | 0.221             | 0.0         | -0.22082 |

Table 3: AB4 Estimation Table

$$\frac{\partial f}{\partial y} = 3y^2 + 6y$$
$$3y^2 + 6y = 0$$
$$3y(y+2) = 0$$
$$y = 0, y = -2$$

Plotting the curves, we get, Figures 4 and  $\,5$ 



Figure 4:  $f_x(x)$ 



Figure 5:  $f_y(y)$ 

Thus, the possible critical points are (0,0), (0,-2), (4/3,0) and (4/3,-2).

Calculating  $D = f_{xx}f_{yy} - f_{xy}^2$ , we get,

$$f_{xx} = 6x - 4, f_{yy} = 6y + 6, f_{xy} = 0$$
$$D = (6x - 4)(6y + 6) - 0$$
$$D = (36xy + 36x - 24y - 24)$$

Plugging in the points,

$$(0,0): D = -24, f_{xx} = -4 \implies \text{saddle point}$$
  
 $(0,-2): D = 24, f_{xx} = -4 \implies \text{maxima}$   
 $(4/3,0): D = 24, f_{xx} = 4 \implies \text{minima}$   
 $(4/3,-2): D = -24, f_{xx} = 4 \implies \text{saddle point}$ 

(b) The gradient is given by,

$$\nabla f(x,y) = \begin{pmatrix} 3x^2 - 4x \\ 3y^2 + 6y \end{pmatrix}$$

At (x, y) = (1, -1), we get,

$$\nabla f(1,-1) = u = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$
 Taking  $x - tu$ , we get  $x - tu = \begin{pmatrix} 1+t \\ -1+3t \end{pmatrix}$  
$$f(x - tu) = 28t^3 + t^2 - 10t - 7$$
 Calculating minimum of  $f(x - tu)$ , such that  $t > 0$  we get  $t = \frac{1}{3}$  
$$\text{Now, } x - tu = \begin{pmatrix} \frac{4}{3} \\ 0 \end{pmatrix}$$
 
$$\nabla f(4/3,0) = u = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Visualizing the plot, we get, Figures 6, 7. The yellow arrow signifies the direction of descent.



Figure 6: Steepest Descent Direction

We need only 1 step of the steepest descent to converge to an overall local minimum of f.

## 3 Question 3

(a) Consider the matrix Q which if  $n \times n$  and is positive symmetric definite. For any eigenvectors  $v_i$  and  $v_j$  with distinct eigenvalues  $\lambda_i$  and  $\lambda_j$ , we get,

$$Qv_i = \lambda_i v_i$$

$$v'_j Qv_i = v'_j \lambda_i v_i$$

$$(Qv_j)' v_i = \lambda_i v'_j v_i$$

$$\lambda_j v'_j v_i = \lambda_i v'_j v_i$$

$$(\lambda_j - \lambda_i) v'_j v_i = 0$$

Since  $\lambda_i \neq \lambda_j \implies v_j' v_i = 0$ . Now substitute this in the equation



Figure 7: Steepest Descent

$$v'_{j}Qv_{i} = v'_{j}\lambda_{i}v_{i}$$
$$= \lambda_{i}v'_{j}v_{i}$$
$$= 0$$

This implies that the eigen vectors  $v_j$  and  $v_i$  are Q-orthogonal

(b) From the eigen decomposition of a matrix, we have  $Q = A\Lambda A^{-1}$  and since Q here is positive real symmetric definite, we have the decomposition as  $Q = A\Lambda A^{T}$  (the eigenvectors are pairwise-orthogonal to each other and hence  $A^{-1} = A^{T}$ ), where

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & \dots & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}, \text{ where } \lambda_1, \lambda_2, \dots \lambda_n \text{ are the eigen values of the } Q \text{ matrix.}$$

Now consider two eigen-basis vectors  $a_i$  and  $a_j$  of the Q matrix ( $\implies a_i^T a_j = 0$ ), we get

$$a_i^T Q a_j = a_i^T \lambda_j a_j$$
$$= \lambda_j a_i^T a_j$$
$$= 0$$

Hence any two basis vectors are Q-orthogonal.

### 4 Question 4

(a) For a purely quadratic polynomial, the directions  $d_k$  and  $d_{k-1}$  of the conjugate gradient descent algorithm are Q-orthogonal  $\implies d_k^T Q d_{k-1} = 0$ . Consider  $d_k^T Q d_k$ , we get,

$$\begin{aligned} d_k^T Q d_k &= d_k^T Q (-g_k + \beta_{k-1} d_{k-1}) \\ &= -d_k^T Q g_k + \beta_{k-1} (d_k^T Q d_{k-1}) \\ &= -d_k^T Q g_k \end{aligned}$$

(b) Consider  $y_k$ , we get,

$$y_k = x_k - g_k$$

$$Qy_k = Qx_k - Qg_k$$

$$Qy_k + b = Qx_k + b - Qg_k$$

$$\nabla f(y_k) = \nabla f(x_k) - Qg_k$$

$$p_k = g_k - Qg_k$$

$$\implies Qg_k = g_k - p_k$$

(c) We can re-write the algorithm for conjugate gradient descent as

Let 
$$d_0 = -g_0 = -\nabla f(x_0)$$
  
for  $k = 0, 1, ...n - 1$  do:  

$$\alpha_k = \frac{-g_k^T d_k}{d_k^T Q d_k} = \frac{g_k^T d_k}{d_k^T Q g_k} = \frac{g_k^T d_k}{d_k^T (g_k - p_k)}$$

$$x_{k+1} = x_k + \alpha_k d_k$$

$$\beta_k = \frac{g_{k+1}^T Q d_k}{d_k^T Q d_k} = -\frac{(Q g_{k+1})^T d_k}{d_k^T Q g_k} = -\frac{(g_{k+1} - p_{k+1})^T d_k}{d_k^T (g_k - p_k)}$$

$$d_{k+1} = -g_{k+1} + \beta_k d_k$$
Return  $x_n$ 

### 5 Question 5

Consider a rectangle of perimeter of k, then the perimeter of the rectangle with length x and breadth y is given by  $2x + 2y = k \implies 2x + 2y - k = 0$ . We have to find the rectangle of maximum area a(x,y) = xy, which is equivalent to minimizing the area a(x,y) = -xy. Thus, applying the constraints, we get,

$$F(x,y,\lambda) = -xy + \lambda(2x + 2y - k)$$
 
$$\nabla F(x,y,\lambda) = \begin{pmatrix} -y + 2\lambda \\ -x + 2\lambda \\ 2x + 2y - k \end{pmatrix} \text{ taking derivative to compute maximum}$$
 
$$\nabla F(x,y,\lambda) = 0$$
 
$$\Longrightarrow y = 2\lambda$$
 
$$\Longrightarrow x = 2\lambda$$
 Putting this in  $2x + 2y = k$ , , we get  $8\lambda = k \implies \lambda = \frac{k}{8}$  
$$\Longrightarrow y = \frac{k}{4}, x = \frac{k}{4}$$

Thus the area is given by  $a(x,y) = k^2/16$  and it is achieved at  $x^* = (k/4 \quad k/4 \quad k/8)^T$ 

For the second order sufficiency conditions, we first need to compute the hessian of  $F(x, y, \lambda)$ . Doing this, we get,

$$\nabla F(x, y, \lambda) = \begin{pmatrix} -y + 2\lambda \\ -x + 2\lambda \\ 2x + 2y - k \end{pmatrix}$$
$$\nabla^2 F(x, y, \lambda) = \begin{pmatrix} 0 & -1 & 2 \\ -1 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Now consider the vector  $d = \begin{pmatrix} d_1 & d_2 & d_3 \end{pmatrix}^T$  to be such that  $\nabla F(x, y, \lambda) + d^T \nabla h(x, y, \lambda) = 0$  at  $x = x^*$ , where  $h(x, y, \lambda) = 2x + 2y - k$ .

$$\nabla F(x,y,\lambda) + d^T \nabla h(x,y,\lambda) \Big|_{x=x^*} = \begin{pmatrix} d_1 & d_2 & d_3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$
$$= 2d_1 + 2d_2 = 0 \implies d_1 = -d_2, d_3 = 0$$

Now consider  $\nabla^2 h(x, y, \lambda)$ , we get,

$$\nabla^2 h(x, y, \lambda) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Now taking the inner product  $d^T \bigg( \nabla^2 F(x,y,\lambda) + d^T \nabla^2 h(x,y,\lambda) \bigg) d$ , and substituting the above results, we get,

$$\begin{split} d^T \bigg( \nabla^2 F(x, y, \lambda) + d^T \nabla^2 h(x, y, \lambda) \bigg) d \bigg|_{x = x^*} &= d^T \bigg( \nabla^2 F(x, y, \lambda) \bigg) d \bigg|_{x = x^*} \\ &= \left( d_1 \quad d_2 \quad d_3 \right) \begin{pmatrix} 0 & -1 & 2 \\ -1 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} \\ &= \left( d_1 \quad d_2 \quad d_3 \right) \begin{pmatrix} -d_2 + 2d_3 \\ -d_1 + 2d_3 \\ 2d_1 + 2d_2 \end{pmatrix} \\ &= \left( d_1 \quad d_2 \quad d_3 \right) \begin{pmatrix} -d_2 \\ -d_1 \\ 0 \end{pmatrix} \\ &= -2d_1 d_2 \\ &= 2d_1^2 \end{split}$$

Thus the quantity  $d^T \bigg( \nabla^2 F(x, y, \lambda) + d^T \nabla^2 h(x, y, \lambda) \bigg) d$  is always greater than 0 implies it is a positive definite matrix, at the minima  $x^*$ . This proves the second-order sufficiency conditions.