Selected Exercises and Solutions

R-4.2

The number of operations executed by algorithms A and B is

$$A(n) = 8n \log n$$
 and $B(n) = 2n^2$,

respectively. Determine n_0 such that A is better than B for $n \geq n_0$.

Solution: We require $8n \log n \le 2n^2$. Dividing by 2n, we get:

$$4\log n \le n$$
.

Checking values, n=16 satisfies $4\log_2 16=16$. For $n\geq 16$, the inequality holds.

Answer: $n_0 = 16$

R-4.3

The number of operations executed by algorithms A and B is

$$A(n) = 40n^2$$
 and $B(n) = 2n^3$,

respectively. Determine n_0 such that A is better than B for $n \geq n_0$.

Solution: We require $40n^2 \le 2n^3$. Dividing by $2n^2$, we get:

$$20 < n$$
.

Thus, A is better when $n \geq 20$.

Answer: $n_0 = 20$

R-4.6

What is the sum of all the even numbers from 0 to 2n, for any integer $n \geq 1$?

Solution: The sequence is $0 + 2 + 4 + \cdots + 2n$. Factor out 2:

$$2(0+1+2+\cdots+n).$$

We know $0 + 1 + 2 + \dots + n = \frac{n(n+1)}{2}$. Thus:

Sum =
$$2 \cdot \frac{n(n+1)}{2} = n(n+1)$$
.

Answer: n(n+1)

R-4.8

Order the following functions by asymptotic growth rate:

```
4n \log n + 2n, 3n + 100 \log n, n^2 + 10n, n^3, n \log n, 4n, 2^{10}, 2^n, 2^{\log n}.
```

Solution: - $2^{10} = O(1)$ (constant). - $2^{\log n} = n$ (since $\log n$ is base 2 by default). - $3n + 100 \log n = O(n)$. - 4n = O(n). - $4n \log n + 2n = O(n \log n)$. - $n^2 + 10n = O(n^2)$. - $n^3 = O(n^3)$. - 2^n grows fastest. Order:

 $2^{10} < 2^{\log n} \approx n < 3n + 100 \log n, 4n < n \log n < n^2 + 10n < n^3 < 2^n.$

R-4.9 to R-4.13

Big-O characterization of methods in Code Fragment 4.12.

```
_{1} /** Returns the sum of the integers in given array. */
  public static int example1(int[] arr) {
    int n = arr.length, total = 0;
    for (int j=0; j < n; j++)
      total += arr[j]; // loop from 0 to n-1
    return total;
  }
7
  /** Returns the sum of the integers with even index. */
  public static int example2(int[] arr) {
    int n = arr.length, total = 0;
    for (int j=0; j < n; j += 2)
      total += arr[j]; // half the iterations
    return total;
15
  /** Returns the sum of the prefix sums of given array.
     */
```

```
public static int example3(int[] arr) {
    int n = arr.length, total = 0;
    for (int j=0; j < n; j++)
      for (int k=0; k \le j; k++)
21
         total += arr[k];
    return total;
  }
  /** Returns the sum of the prefix sums (optimized). */
  public static int example4(int[] arr) {
    int n = arr.length, prefix = 0, total = 0;
    for (int j=0; j < n; j++) {
      prefix += arr[j];
      total += prefix;
    }
    return total;
33
34
35
  /** Compares prefix sums of first with second. */
  public static int example5(int[] first, int[] second)
     {
    int n = first.length, count = 0;
    for (int i=0; i < n; i++) {
      int total = 0;
40
      for (int j=0; j < n; j++)
         for (int k=0; k \le j; k++)
           total += first[k];
       if (second[i] == total) count++;
    return count;
46
47
```

Listing 1: Code Fragment 4.12

Solutions: - R-4.9 (example1): Loop runs n times. O(n). - R-4.10 (example2): Loop runs n/2 times. O(n). - R-4.11 (example3): Nested loops: $1+2+\cdots+n=O(n^2)$. - R-4.12 (example4): Single loop, constant work inside. O(n). - R-4.13 (example5): Outer loop O(n), inner two loops $O(n^2)$, total $O(n^3)$.

R-4.14 Show that if d(n) is O(f(n)), then ad(n) is O(f(n)) for any constant

a > 0.

Solution: Multiplying by a constant does not change asymptotic growth. If $d(n) \leq cf(n)$, then $ad(n) \leq (ac)f(n)$. So ad(n) = O(f(n)).

R-4.15 If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n)). **Solution:** By definition, $d(n) \leq c_1 f(n)$ and $e(n) \leq c_2 g(n)$. Then $d(n)e(n) \leq (c_1c_2)f(n)g(n)$.

R-4.16 If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) + g(n)).

Solution: By bounds $d(n) \le c_1 f(n)$, $e(n) \le c_2 g(n)$, so $d(n) + e(n) \le c_1 f(n) + c_2 g(n) \le c(f(n) + g(n))$.