Feature Descriptions & Preprocessing

1. Feature Overview

1.1 Time & Size Features

- flow_time
 - Definition: Total elapsed time from the first to the last packet in a flow (e.g. seconds or milliseconds).
 - Usage: Differentiates short ("chatty") flows from long bulk transfers or anomalies.
- header size
 - Definition: Total bytes of IP/TCP headers exchanged.
 - Usage: Higher header overhead may indicate many small packets or certain protocol behaviors.
- packet_duration
 - Definition: Average (or total) duration per packet within the flow.
 - Usage: Distinguishes interactive traffic (short durations) from bulk transfers (long durations).

1.2 Throughput / Rate Features

- overall_rate
 - Definition: Total bytes divided by flow_time (bytes/sec).
 - Usage: Captures end-to-end throughput of the flow.
- src_rate / dst_rate
 - *Definition*: Throughput in source→destination and destination→source directions.
 - Usage: Asymmetric rates often flag client/server roles or scanning.

1.3 Packet-Count & Flag-Count Features

Packet counts

- fin_packets, urg_packets, rst_packets
- Definition: Number of packets carrying the FIN, URG, or RST flags.
- Usage:
 - FIN ⇒ normal teardown
 - RST ⇒ abrupt reset (scans, errors)
 - URG ⇒ rare urgent data

TCP-flag counts

- fin_flags, syn_flags, rst_flags, psh_flags, ack_flags
- Definition: Number of packets with each TCP control flag set.
- Usage:
 - SYN ⇒ connection initiation
 - ACK ⇒ acknowledgments
 - PSH ⇒ push (application data)
 - Patterns of these can reveal scans or DoS behavior.

1.4 Statistical Features

- max_value
 - Definition: Maximum observed value in a per-packet metric (e.g. packet size).
- value_covariance
 - Definition: Covariance (or variance) of a per-packet metric over the flow.
 - Usage: Quantifies burstiness or variability in packet sizes/timings.

1.5 Protocol Indicators (One-Hot)

- protocol_http, protocol_https, protocol_tcp, protocol_udp, protocol_icmp
 - Definition: Binary flags (0/1) indicating which protocol the flow used.
 - Usage: Encodes protocol type directly; mutually-exclusive in most cases.

1.6 Target Label

- label
 - Definition: Ground-truth class (e.g. benign vs. malicious, or specific attack types).

• Usage: Supervised target—never apply feature transforms directly to this column.

2. Preprocessing Techniques

Technique	Numeric Features	Binary / One-Hot Columns	Target (label)
Duplicate Removal	✓ Drop duplicate rows	— (no duplicates in flags)	— (labels untouched)
Skewness Fixing	✓ (log, Box–Cox)	— (binary → no skew)	— (not applicable)
Outlier Handling	(IQR capping, trimming)		
Scaling	✓ (standard, min– max, robust)	(optional—for distance-based models)	_
Missing-Value Check	(none found, no imputation)		
Feature Selection	✓ (variance threshold, PCA)	✓ (e.g. remove collinear flags)	_
Class Rebalancing	✓ via SMOTE (continuous)	✓ via SMOTENC (mixed data)	♠ Only on training labels

Notes on SMOTE/SMOTENC

- SMOTE: only for continuous features.
- **SMOTENC**: for mixed continuous + binary data—specify which columns are categorical to preserve one-hot integrity.
- Always apply oversampling after train/test split, and only to the training set.

3. Suggested Pipeline

1. Global Deduplication

Drop all exact-duplicate rows from the DataFrame.

2. Train/Test Split

- Split into train & test **before** any transforms to avoid data leakage.
- 3. Training-Set Preprocessing

- 4. 1. **Fix skewness** on numerical features (e.g. flow_time, overall_rate).
- 5. 2. Handle outliers via IQR capping or winsorization.
- 6. 3. **Scale** continuous features (e.g. StandardScaler or MinMaxScaler).
- 7. 4. **Balance** the target using SMOTE (or SMOTENC if mixed data).

8. Test-Set Transformation

Apply the same skew-transform and scaler fitted on the training set.

Tip: If you use tree-based models (e.g. Random Forest), you may skip scaling but still benefit from skew-fixing and outlier capping.