

Quiz: ANOVA and Regression

Select the best answer for each question. When you are finished, click Submit Quiz.

- 1. You can examine Levene's test for homogeneity to more formally test which of the following assumptions?
 - a. the assumption of errors being normally distributed
 - b. the assumption of independent observations
 - c. the assumption of equal variances
 - d. the assumption of treatments being randomly assigned
- 2. Given the following output, is there sufficient evidence to reject the assumption of equal variances?

Levene'	Levene's Test for Homogeneity of Weight Variance					
ANOVA of Squared Deviations from Group Means						
Source	DF	Sum of Squares	Mean Squares	F Value	Pr > F	
Brand	1	9.237E-7	9.237E-7	1.12	0.2942	
Error	78	0.000065	8.283R-7			

3. Given the following SAS output, is there sufficient evidence to reject the hypothesis of equal means?

Source	DF	Sum of Squares	Mean Squares	F Value	Pr > F
Brand	1	0.03033816	0.03033816	51.02	<.001
Error	79	0.04638442	0.00059467		
Corrected Total	80	0.07672257			

b. no

- 4. Dunnett's method compares all possible pairs of means.
 - a. true
 - false الرطي
- 5. Which of the following phrases describes the model sums of squares, or SSM, in one-way ANOVA?
 - a. the variability between the groups
 - b. the variability within the groups
 - c. the variability explained by the error terms
- 6. Based on the following correlation matrix, what type of relationship do **Performance** and **RunTime** have?

Pearson Correlation Coefficients, N = 31 Prob > r under H0: Rho=0					
Performance RunTime A					
Performance	1.00000	-0.82049	-0.71257		
renormance		<.0001	<.0001		
Error	-0.82049	1.00000	0.19523		
	<.0001		0.2926		
Corrected Total	-0.71257	0.19523	1.00000		
Corrected Total	<.0001	0.2926			

- a. a fairly strong, positive linear relationship
- b. a fairly strong, negative linear relationship
- oc. a fairly weak, positive linear relationship
- od. a fairly weak, negative linear relationship
- 7. In the simple linear regression model, what does $\beta_{1}% =0.001$ represent?

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- a. the intercept parameter
- b. the predictor variable
- oc. the variation of X around the line
- d. the variation of Y around the line

- 8. Which of the following statements describes a positive linear relationship between two variables?
 - 1. The more I eat, the less I want to exercise.
 - 2. The more salty snacks I eat, the more water I want to drink.
 - 3. No matter how much I exercise, I still weigh the same.
 - a. 1 only
 - b. 1 and 2
 - **℃**c. 2 only
 - d. 2 and 3
 - e. 3 only
- 9. What output does the following program produce?

```
proc corr data=stat1.bodyfat2 nosimple
  plots(only)=scatter(nvar=all);
  var Age Weight Height;
run;
```

- a. individual correlation plots and simple descriptive statistics
- b. a scatter plot matrix only
- c. a table of correlations and individual scatter plots for each variable in the VAR statement
- d. Not enough information is given.
- 10. Given the following PROC REG output and assuming a significance level of 0.05, which of the following statements is true? Select all that apply.

Analysis of Variance						
Source	DF	Sum of Squares	Mean Squares	F Value	Pr > F	
Model	1	119.72668	119.72668	2.00	0.1585	
Error	250	14959	59.83716			
Corrected Total	251	15079				

Root MSE	7.73545	R-Square	0.0079
Dependent Mean	18.93849	Adj R-Sq	0.0040
Coeff Var	40.84511		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	32.16542	9.36350	3.44	0.0007		
Height	1	-0.18856	0.13330	-1.41	0.1585		

- a. The model explains approximately 15% of the variation in the response variable.
- b. You should reject the null hypothesis.
- c. Height is statistically significant for predicting the values of the response variable.
- of the model explains less than 1% of the variation in the response variable.

Submit Quiz

Copyright © 2019 SAS Institute Inc., Cary, NC, USA. All rights reserved.