Chapter 2

Basic Building Blocks.

2.1 The term structure of interest rates

Definition 2.1

B(t,T): Zero coupon bond price(value at time t of a security paying 1 monetary at time T) or Discount factor.

T : Maturity.

T - t: time to maturity.

FIGURE 2.1

Definition 2.2

 $V(t, \mathbb{T}, k)$: A coupon bond Pays k at each coupon date $T_i \in \mathbb{T}$ for $1 \le i < n$ and pays 1+k at the bond maturity T_n

 $\mathbb{T} = \{T_0, T_1, \dots, T_n\}$: Tenor structure of the coupon bond.

Index of the next date in the tenor structure:

$$\eta(t) = \min \left\{ 0 < i \le n \mid t < T_i \right\}$$

The value of the coupon bond:

FIGURE2.3

FIGURE 2.2

$$V(t, \mathbb{T}, k) = B\left(t, T_n\right) + k \sum_{i=\eta(t)}^{n} B\left(t, T_i\right)$$

Definition 2.3

y(t, T): The continuously compounded yield is given by $B(t, T) = \exp\{-(T - t)y(t, T)\}$

Definition2.4

r(t): Continuously compounded short rate

$$r(t) = \lim_{T \searrow t} y(t, T) = -\left. \frac{\partial \ln B(t, T)}{\partial T} \right|_{T \searrow t}$$

Definition 2.5

The value of saving account $\beta(t, T)$ is given by

$$\beta(t,T) = \exp\left\{\int_{t}^{T} r(s)ds\right\}$$

Definition 2.6

A forward contract is the right and the obligation to buy (respectively to sell) an asset S(T) at time T for the forward price F(S, t, T)

Forward←	Futrues←
Free€	Exchange
Free←	Not Free←
1:14	Competitive
X←	0←
	Free 43 Free 43

FIGURE2.4

Proposition 2.7

$$F(S, t, T) = \frac{S(t)}{B(t, T)}$$
 .: The forward price.

Proof

If we do the forward contract then at time T our cash flow will be S(T) - F(s,t,T). However if we borrow money at time t, the cash flow at time T is S(T) - S(t)B(t,T). By the law of one price, the forward price can be calculated like above.

Definition 2.8

The continuously compounded forward yield $f(t, T_1, T_2)$ is given by

$$B\left(t,T_{2}\right)/B\left(t,T_{1}\right) = \exp\left\{-\left(T_{2} - T_{1}\right)f\left(t,T_{1},T_{2}\right)\right\}$$

Definition 2.9

The instantaneous forward rate f(t, T) is given by

$$f(t,T) = -\frac{\partial \ln B(t,u)}{\partial u} \bigg|_{u=T}$$
or $B(t,T) = \exp\left\{-\int_{t}^{T} f(t,u)du\right\}$

FIGURE 2.5

Proposition 2.10

 $l(T_0, \mathbb{T})$: swap yield of contracted in T_0

The swap yield $l(T_0, \mathbb{T})$ of a swap contracted in T_0 must equal the coupon on a coupon bond quoted at par.

Remark 2.11

The swap rate can be represented in terms of zero coupon bond.(Linear combination).

$$0 = (1 - B(T_0, T_n)) - \mathcal{E}(T_0, \mathbb{T}) \sum_{i=1}^{n} (T_i - T_{i-1}) B(T_0, T_i)$$

$$\Leftrightarrow \mathcal{E}(T_0, \mathbb{T}) = \frac{1 - B(T_0, T_n)}{\sum_{i=1}^{N} (T_i - T_{i-1}) B(T_0, T_i)}$$

The sum

$$\sum_{i=1}^{N} \left(T_i - T_{i-1} \right) B \left(T_0, T_i \right)$$

Is often canoed the present value of a basis point(PVBP).

Note) BP is price change of bond per 0.01 change in yield.

Figure 2.3 Interpolated instantaneous forward rates

Theorem 2.12 (Vasicek)

The term structure f(0,t) of instantaneous forward rates That satisfies the maximum smoothness criterion

$$\min \int_0^T (f''(0,s))^2 ds$$

$$f(0,t) = c_i t^4 + b_i t + a_i$$
for $t_{i-1} < t \le t_i$, with $i = 1, 2, \dots, m+1$
where $0 = t_0 < t_1 < \dots < t_m < t_{m+1} = T$

The coefficients $a_i, b_i, c_i, i = 1, 2, \dots, m + 1$ satisfy the equations,

$$c_i t_i^4 + b_i t_i + a_i = c_{i+1} t_i^4 + b_{i+1} t_i + a_{i+1}, \quad i = 1, 2, \dots, m$$

 $4c_i t_i^3 + b_i = 4c_{i+1} t_i^3 + b_{i+1}, \quad i = 1, 2, \dots, m$

$$\frac{1}{5}c_{i}\left(t_{i}^{5}-t_{i-1}^{5}\right)+\frac{1}{2}b_{i}\left(t_{i}^{2}-t_{i-1}^{2}\right)+a_{i}\left(t_{i}-t_{i-1}\right)=-\log\left(\frac{B\left(0,t_{i}\right)}{B\left(0,t_{i-1}\right)}\right)$$
 and $c_{m+1}=0$

$$f'(0,T) = 0 \Leftrightarrow b_{m+1} = 0 \text{ and } a_1 = r(0)$$

To apply the interpolation method given swap yields $l(0,t_i)$,

$$1 = \exp\left\{-\int_{0}^{t_{i}} f(0,s)ds\right\} + \sum_{j=1}^{i} \ell\left(0,t_{i}\right) \cdot \exp\left\{-\int_{0}^{t_{j}} f(0,s)ds\right\}$$