Dynamic Logic

Principles and Applications

Wolfgang Ahrendt

22 April 2021

Outline

- ► Preamble: Modal Logics
- Propositional DL
- ► First-order DL
- ► Symbolic Execution
- ► DL at Scale
- Extending DL by Dynamic Domains
- Differential DL

Part I

Modal Logics

Modal Logic

- ▶ Pre-history: Aristotle, ..., W. of Ockham, ...
- ▶ Modern modal logic: C.I. Lewis (1912)
- Semantics (1950s): A. Prior, J. Hintikka, S. Kripke
- Modal logics come in many flavours: K, T, S4, S5, D, ...
 (vary in properties of reachibility relation)
- Application areas: philosophy of language, epistemology, metaphysics, computation
- ▶ Variants of modal logic with many applications to computation:
 - ► Temporal Logic (A.N. Prior 1957, A. Pnuelli 1977)
 - Dynamic Logic (V.R. Pratt 1976, "Semantical considerations on Floyd-Hoare Logic")

Modal Logics

- MLs represent statements about necessity and possibility
 - $ightharpoonup \Box \varphi$ " φ in all states we can **reach from here**"
 - $\triangleright \Diamond \varphi$ " φ in some state we can **reach from here**"
 - "reach" is one step in reachability relation
- ► Temporal logic (endogenous modal logic)
 - $ightharpoonup \Box \varphi$ " φ in all states we can **reach by letting some time pass**"
 - $ightharpoonup \Diamond \varphi$ " φ in some state we can **reach by letting some time pass**"
 - "letting some time pass" is one step in reachability relation
 - reachability is reflexive transitive closure of clock tick
 - (normally no defined like that, but with traces and multiple steps)
- Dynamic logic (exogenous modal logic)
 - $ightharpoonup [\alpha] \varphi$ " φ in all states we can **reach by** α "
 - $ightharpoonup \langle \alpha \rangle \varphi$ " φ in some state we can **reach by** α "
 - "reach by α " refers to *one* step in α -reachability relation

Part II

Propositional Dynamic Logic

Propositional Dynamic Logic (PDL)

- ▶ Normally defined for non-deterministic programs:
 - as a means of abstraction
 - ▶ to model an uncontrollable environment (later)

Propositional Dynamic Logic (PDL)

Propositional DL Formulas

(Assume sets of atomic formulas and programs.)

If φ , ψ are formulas, and α , β are programs, then

- ightharpoons $\neg \varphi$
- $\triangleright \varphi \lor \psi$
- $\blacktriangleright \langle \alpha \rangle \varphi$ (some execution of α leads to a state where φ)

are also formulas.and

- $\triangleright \alpha; \beta$ (sequence)
- $\triangleright \alpha \cup \beta$ (non-deterministic choice)
- $ightharpoonup \alpha^*$ (execute α a <u>finite</u>, <u>non-deterministic</u> number of times)
- $?\varphi$ (test φ , proceed if true, <u>fail</u> if false)

are also programs.

Semantics of PDL

Assume:

- ▶ atomic formulas: *AF*
- ► atomic programs: AP

Semantics of PDL Formulas

Kripke model $\mathcal{M} = (S, \mathcal{I})$ where

- ightharpoonup Set of states $S = \{u, v, \ldots\}$
- ▶ Interpretation of atomic formulas $\mathcal{I}: AF \rightarrow 2^S$
- ▶ Interpretation of atomic formulas $\mathcal{I}: AP \rightarrow 2^{S \times S}$

Semantics of PDL

Let f be any atomic formula, p be any atomic program

Semantics of PDL Formulas

Meaning of formula $\varphi^{\mathcal{M}} \subseteq S$:

- $ightharpoonup f^{\mathcal{M}} = \mathcal{I}(f)$
- $ightharpoonup p^{\mathcal{M}} = \mathcal{I}(p)$
- $(\varphi \vee \psi)^{\mathcal{M}} = \varphi^{\mathcal{M}} \cup \psi^{\mathcal{M}}$
- $(\neg \varphi)^{\mathcal{M}} = S \varphi^{\mathcal{M}}$

Semantics of PDL

Let f be any atomic formula, p be any atomic program

Semantics of PDL Formulas

Meaning of formula $\varphi^{\mathcal{M}} \subseteq S$, meaning of program $\alpha^{\mathcal{M}} \subseteq S \times S$:

- $(\langle \alpha \rangle \varphi)^{\mathcal{M}} = \{ u \mid \exists v. (u, v) \in \alpha^{\mathcal{M}} \text{ and } v \in \varphi^{\mathcal{M}} \}$
- $(\alpha; \beta)^{\mathcal{M}} = \{ (u, v) \mid \exists w. (u, w) \in \alpha^{\mathcal{M}} \text{ and } (w, v) \in \beta^{\mathcal{M}} \}$
- $(\alpha \cup \beta)^{\mathcal{M}} = \alpha^{\mathcal{M}} \cup \beta^{\mathcal{M}}$
- $(\alpha^*)^{\mathcal{M}}$ = "reflexive transitive closure of $\alpha^{\mathcal{M}}$ "
- $(?\varphi)^{\mathcal{M}} = \{(u, u) \mid u \in \varphi^{\mathcal{M}}\}$

Derived Formulas and Programs

- $\land, \rightarrow, \leftrightarrow, true, false$ are defined from \neg, \lor
- \blacktriangleright $[\alpha]\varphi \equiv \neg \langle \alpha \rangle \neg \varphi$ (all execution of α lead to a state where φ)
- **▶ skip** ≡ ?true
- ▶ fail \equiv ?false
- if φ then α else β fi $\equiv (?\varphi; \alpha) \cup (?\neg\varphi; \beta)$
- **•** while φ do α od $\equiv (?\varphi; \alpha)^*; ?\neg\varphi$
- ▶ Hoare triples: $\{\varphi\}\alpha\{\psi\} \equiv \varphi \rightarrow [\alpha]\psi$
- Weakest liberal precondition: $wlp(\alpha, \varphi) \equiv [\alpha]\varphi$
- Weakest precondition: $wlp(\alpha, \varphi) \equiv \langle \alpha \rangle \varphi$

Some Valid PDL Formulas

- $[?\psi]\varphi \leftrightarrow \psi \rightarrow \varphi$
- $(\varphi \to [\alpha]\varphi) \to (\varphi \to [\alpha^*]\varphi)$

Meta-properties of PDL

PDL is not compact

▶ $\{\neg \varphi, \neg \langle \alpha \rangle \varphi, \neg \langle \alpha; \alpha \rangle \varphi, \neg \langle \alpha; \alpha; \alpha \rangle \varphi, \ldots\} \cup \{\neg \langle \alpha^* \rangle \varphi\}$ is finitely satisfiable, but not satisfiable.

PDL is complete

▶ The exists a proof system \vdash such that: if $\models \varphi$ then $\vdash \varphi$.

PDL Complexity

► PDL satisfiability is *deterministic exponential time complete*. (Regardless of allowing ⟨ ⟩, [] inside ?-tests.)

Deterministic PDL

A program α is deterministic if describes a partial function:

$$\alpha^{\mathcal{M}} \in \mathcal{S} \rightharpoonup \mathcal{S}$$

Deterministic while programs

▶ ∪, * appear only to abbreviate if and while

In deterministic PDL:

- $ightharpoonup [\alpha] \varphi$ is partial correctness
- $\triangleright \langle \alpha \rangle \varphi$ is total correctness
- $\blacktriangleright \langle \alpha \rangle \varphi \rightarrow [\alpha] \varphi$ is valid

Part III

First-order Dynamic Logic

First-Order States

Signature

A first-order (DL) signature Σ consists of

- \triangleright a set F_{Σ} of function symbols
- \triangleright a set P_{Σ} of predicate symbols
- \triangleright a set V_{Σ} of program variables

Definition (First-Order DL State)

Let \mathcal{D} be a domain.

$$\mathcal{I}(f): \mathcal{D} \times \cdots \times \mathcal{D} \to \mathcal{D}$$

$$\mathcal{I}(p) \subseteq \mathcal{D} \times \cdots \times \mathcal{D}$$

$$\mathcal{I}(v) \in \mathcal{D}$$

Then $s = (\mathcal{D}, \mathcal{I})$ is a first-order DL state.

S is the set of all first-order states.

$$(\text{for each } f \in F_{\Sigma})$$

for each
$$r \in F_{\Sigma}$$

(for each
$$p \in P_{\Sigma}$$
)

(for each
$$v \in V_{\Sigma}$$
)

Kripke Model

Definition (Kripke Model)

Kripke Model $K = (S, \rho)$

- ▶ States $(\mathcal{D}, \mathcal{I}) \in S$
- ▶ Transition relation ρ : Program $\rightarrow 2^{S \times S}$

$$(s,s') \in \rho(\alpha)$$

one execution of α starting in state s leads to final sate s'

- ightharpoonup
 ho is the semantics of programs \in Program
- ▶ For now, we assume \mathcal{D} , $\mathcal{I}(F_{\Sigma})$, $\mathcal{I}(P_{\Sigma})$ identical all states of S.
 - \Rightarrow States vary only on program variables $\mathcal{I}(V_{\Sigma})$.

First-order Dynamic Logic (DL)

Changes to PDL:

- ► Atomic programs have forms:
 - $\triangleright v := t$ (deterministic assignment)
 - v := * (non-deterministic assignment)
- Atomic formulas are of the forms:
 - $ightharpoonup p(t_1,\ldots,t_n)$
 - $t_1 = t_2$
- ▶ If φ is a DL formula, then so are $\exists x.\varphi$, $\forall x.\varphi$
- ightharpoonup arphi appearing in ?arphi must be a quantifier-free first-order formula

Some Valid DL Formulas

- $\triangleright [v := *] \varphi(v) \leftrightarrow \forall x. \varphi(x)$
- $\langle v := t \rangle \varphi \leftrightarrow \varphi[v/t]$ (\varphi[v/t] result of substituting v by t) weakest precondition reasoning
- \triangleright $[v := t] \varphi \leftrightarrow \varphi[v/t]$

Meta-properties of (first-order) DL

DL is in-complete

 \blacktriangleright The exists no proof system \vdash such that:

if $\models \varphi$ then $\vdash \varphi$.

DL is relatively complete

- \triangleright Let \mathcal{A} be an arithmetical structure.
- Assume T_A to be all theorems of A.
- ightharpoonup The exists a proof system \vdash such that:

if
$$\mathcal{A} \models \varphi$$
 then $T_{\mathcal{A}} \vdash \varphi$.

Part IV

Symbolic Execution

Motivation

Traditional reasoning about programs goes backwards:

$$\langle v_1 := t_1; v_2 := t_2 \rangle \varphi$$

$$\leftrightarrow \langle v_1 := t_1 \rangle \langle v_2 := t_2 \rangle \varphi$$

$$\leftrightarrow \langle v_1 := t_1 \rangle \varphi [v_2/t_2]$$

$$\leftrightarrow (\varphi [v_2/t_2])[v_1/t_1]$$

$$\equiv \varphi [v_1/t_1, v_2/t_2[v_1/t_1]]$$

Symbolic Execution of Programs

Symbolic Execution (King, late 60s)

Follow the natural control flow when analysing a program

Notation for Symbolic State Changes: "updates"

- Symbolic execution should "walk" through program in natural forward direction
- Need succinct representation of state changes, effected by each symbolic execution step
- Want to simplify effects of program execution early
- Want to apply state changes late (to branching conditions and post condition)

Explicit State Updates

Explicit Substitutions: "Updates"

Extend DL by explicit substitution modalities, called updates.

Definition (Syntax of Updates, Updated Terms/Formulas)

If ${\bf v}$ is program variable, ${\bf t}$ FOL term (of right type), ${\bf t'}$ any FOL term, and φ any DL formula, then

- \triangleright {v := t} is an update
- | v := t | t' is DL term
- $ightharpoonup \{v := t\} \varphi$ is DL formula

Computing Effect of Updates (Automated)

Rewrite rules for update followed by ...

```
program variable \begin{cases} \{x := t\}x & \rightsquigarrow & t \\ \{x := t\}v & \rightsquigarrow & v \end{cases}
    logical variable \{x := t\}w \rightsquigarrow w
       complex term \{x := t\} f(t_1, ..., t_n) \rightsquigarrow f(\{x := t\} t_1, ..., \{x := t\} t_n)
   atomic formula \{x := t\} p(t_1, ..., t_n) \leadsto p(\{x := t\} t_1, ..., \{x := t\} t_n)
        FOL formula  \begin{cases} \{\mathbf{x} := t\}(\varphi \& \psi) \leadsto \{\mathbf{x} := t\}\varphi \& \{\mathbf{x} := t\}\psi \\ & \cdots \\ \{\mathbf{x} := t\}(\forall \tau \ y; \ \varphi) \leadsto \forall \tau \ y; \ (\{\mathbf{x} := t\}\varphi) \end{cases} 
program formula No rewrite rule for \{x := t\} \langle prog \rangle \varphi
```

Substitution delayed until prog symbolically executed

Assignment Rule Using Updates

Symbolic execution of assignment using updates

$$\text{assign } \frac{\Gamma \vdash \{\mathbf{x} := t\} \langle \mathit{rest} \, \rangle \varphi, \Delta}{\Gamma \vdash \langle \mathbf{x} = t; \; \mathit{rest} \, \rangle \varphi, \Delta}$$

► Works as long as t is 'simple' (has no side effects)

Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

$$t=x; x=y; y=t;$$

yields:

$${t := x}{x := y}{y := t}$$

Need to compose three sequential state changes into a single one: parallel updates

Parallel Updates Cont'd

Definition (Parallel Update)

A parallel update has the form $\{v_1 := r_1 || \cdots || v_n := r_n\}$, where each $\{v_i := r_i\}$ is simple update

- All r_i computed in old state before update is applied
- \triangleright Updates of all program variables v_i executed simultaneously
- ▶ Upon conflict $v_i = v_j$, $r_i \neq r_j$ later update $(\max\{i, j\})$ wins

Definition (Parallelising Updates, Conflict Resolution)

$$\{v_1 := r_1\} \{v_2 := r_2\} = \{v_1 := r_1 | | v_2 := \{v_1 := r_1\} r_2\}$$

$$\{v_1 := r_1 | | \cdots | | v_n := r_n\} x = \begin{cases} x & \text{if } x \notin \{v_1, \dots, v_n\} \\ r_k & \text{if } x = v_k, x \notin \{v_{k+1}, \dots, v_n\} \end{cases}$$

$$\begin{array}{c} x < y \ \vdash \ x < y \\ \vdots \\ x < y \ \vdash \ \{x := y \mid \mid y := x\} \langle \rangle \ y < x \\ \vdots \\ x < y \ \vdash \ \{t := x \mid \mid x := y \mid \mid y := x\} \langle \rangle \ y < x \\ \vdots \\ x < y \ \vdash \ \{t := x \mid \mid x := y\} \{y := t\} \langle \rangle \ y < x \\ \vdots \\ x < y \ \vdash \ \{t := x\} \{x := y\} \langle y = t; \rangle \ y < x \\ \vdots \\ x < y \ \vdash \ \{t := x\} \langle x = y; \ y = t; \rangle \ y < x \\ \vdots \\ \vdash \ x < y \ \rightarrow \ \langle t = x; \ x = y; \ y = t; \rangle \ y < x \end{array}$$

Part V

Dynamic Logic at Scale

DL based Verification of a Real World Language

KeY verification approach and system, featuring:

- ▶ DL for full (sequential) Java
- Segent Calculus for JavaDL
- Supporting specification language JML
- ► Translating JML + Java to JavaDL formulas
- KeY prover:
 - proof strategies for high automation
 - advanced GUI for proof interaction

Modelling Java in FOL: Fixing a Type Hierarchy

Each interface and class in application and API becomes type with appropriate subtype relation

Java Features in Dynamic Logic: Complex Expressions

Complex expressions with side effects

- ► JAVA expressions may have side effects, due to method calls, increment/decrement operators, nested assignments
- ► FOL terms have no side effect on the state

Example (Complex expression with side effects in Java)

```
int i = 0; if ((i=2)>= 2) i++; value of i?
```

Complex Expressions Cont'd

Decomposition of complex terms by symbolic execution

Follow the rules laid down in JAVA Language Specification

Local code transformations

Temporary variables store result of evaluating subexpression

ifEval
$$\frac{\Gamma \vdash \langle \mathbf{boolean} \ \mathbf{v0}; \ \mathbf{v0} = \mathbf{b}; \ \mathbf{if} \ (\mathbf{v0}) \ \mathbf{p}; \ \omega \rangle \varphi, \Delta}{\Gamma \vdash \langle \mathbf{if} \ (\mathbf{b}) \ \mathbf{p}; \ \omega \rangle \varphi, \Delta} \quad \mathbf{b} \ \mathsf{complex}$$

Java Features in Dynamic Logic: Abrupt Termination

Abrupt Termination: Exceptions and Jumps

Redirection of control flow via return, break, continue, exceptions

$$\langle \mathbf{try} \{ \mathbf{p} \} \mathbf{catch} (\mathbf{T} \mathbf{e}) \{ \mathbf{q} \} \mathbf{finally} \{ \mathbf{r} \} \omega \rangle \varphi$$

Rule tryThrow matches try-catch in pre-/postfix and active throw

```
\vdash \langle \text{if (e instanceof T) \{try\{x=e;q\} finally \{r\}\} else\{r; throw e;\} } \omega \rangle \varphi}
\vdash \langle \text{try \{throw e; p\} catch(T x) \{q\} finally \{r\} } \omega \rangle \varphi}
```

Field Update Assignment Rule

Changing the value of fields

How to (symbolically) execute assignment to field?

$$\begin{array}{c} \Gamma, \mathtt{o} \neq \mathtt{null} \vdash \{\mathtt{o.f} := \mathtt{e}\} \langle \pi \ \omega \rangle \varphi, \Delta \\ \hline \Gamma, \mathtt{o} = \mathtt{null} \vdash \langle \pi \ \mathtt{throw} \ \mathtt{new} \ \mathtt{NullPointerException()}; \ \omega \rangle \varphi, \Delta \end{array}$$

$$\Gamma \vdash \langle \pi \text{ o.f} = e; \omega \rangle \varphi, \Delta$$

 π is the "inactive prefix", any number of opening try blocks: $(\mathbf{try}\{)^*$

Major Case Studies with KeY: TimSort

TimSort

Hybrid sorting algorithm (insertion sort + merge sort) optimised for partially sorted arrays (typical for real-world data).

Facts

- Designed by Tim Peters (for Python)
- ► Since Java 1.7 default algorithm for non-primitive arrays/collections

TimSort is used in

- ► Java (standard libraries OpenJDK, Oracle)
- Python (standard library)
- Android (standard library)
- ... and many more languages / frameworks!

TimSort: People

- ▶ Tim Peters
- Sorting Algorithm Designer
- Python Guru

- ► Stijn de Gouw
- Assistant Professor
- Formerly postman in the NL
- Interested in sorting for professional reasons

TimSort: People

protessional reasons

Major Case Studies with KeY

Found Bug in Java Libraries' main Sorting Method using KeY

- java.util.Collections.sort and java.util.Arrays.sort implement TimSort
- KeY verification of OpenJDK implementation revealed bug.
- ► Same bug present in Android SDK, Phyton library, Haskell library, ...

Verified Fix using KeY

- Fixing the implementation
- Verified absence of the bug in new version with KeY

Major Case Studies with KeY

Found Bug in Java Libraries' main Sorti Method using KeY

- itil.Arrays.sort
- vealed bug.
- Same by researchers found an error in the explained here, logic of merge collapse, explained here, and with corrected code shown in It should be fixed anyway, and their sug-, Haskell library, ...
 - Tim Peters via Python-Bugtracker gested fix looks good to me.

Verified

- Fixing
- bug in new version with KeY

Major Case Studies with KeY

Found Bug in Java Libraries' main Sorti Method using KeY

- java.uti Congratulations.scor in the impleme for finding and fixing a bug in Time et al. java.ut.
 impleme for finding and fixing a bug in TimSort

 java.ut.
 impleme for finding at the strip of the st itil.Arrays.sort
 - vealed bug.
 - , Haskell library, ...
 - g

 ied

 gested fix powers in new version.

 Methods, a bug in Timsort

 solution of n.

 Joshua Bloch via Twitter n Key

Verified

- Tim Peters via Fixing
- Verified

KeY target languages

- Java
- ► ABS (distributed objects with asynchronous method calls)
- ► Solidity (smart contract language)

Remark:

If you thought $?\varphi$ is a purely theoretical concept:

Solidity command

require(e)

means exactly

?e

Part VI

Constant vs. Dynamic Domains

Kripke Model (recap)

Definition (Kripke Model)

Kripke Model $K = (S, \rho)$

- ▶ States $(\mathcal{D}, \mathcal{I}) \in S$
- ▶ Transition relation ρ : $Program \rightarrow (S \times S)$

$$(s, s') \in \rho(\alpha)$$
 iff.

one execution of α starting in state s leads to final sate s'

- ▶ So far, we assumed \mathcal{D} , $\mathcal{I}(F_{\Sigma})$, $\mathcal{I}(P_{\Sigma})$ identical all states of S.
 - \Rightarrow States vary only on program variables $\mathcal{I}(V_{\Sigma})$.
 - ⇒ Constant domain assumption.

Challenge the Constant Domains

Should the following be valid for all programs α ?

$$(\forall x. \langle \alpha \rangle \varphi(x)) \stackrel{?}{\leftrightarrow} \langle \alpha \rangle \forall x. \varphi(x)$$

- ▶ When could this be a problem?
- \blacktriangleright What if α creates additional resources we can quantify over?
- ► E.g., object creation?
- ightharpoonup Can we extend \mathcal{D} ?
- ▶ What happens to $\mathcal{I}(F_{\Sigma})$, $\mathcal{I}(P_{\Sigma})$ on the new elements?

(External Slides)

Part VII

dL: Differential Dynamic Logic

Hybrid Systems

Mathematical model of systems combining:

- discrete dynamics
- continuous dynamics

Differential Equations

Example:

$$x' = v, v' = a$$

Describes mutual dependency how variables x, v, a change over continuous time.

Why did I say variable instead of function?

Good fit to modal/temporal/dynamic logic.

"Talk" about flexible variables rather than functions (over states or time).

We identify "differential equation" and "differential equation system":

Towards Differential Dynamic Logic

Continuous programs

$$x' = f(x) \& Q$$

with

- ightharpoonup differential equation x' = f(x)
- evolution domain constraint Q

Intuitive meaning:

Variables 'follow' differential equation for any duration while satisfying Q.

Example

$$x' = v, v' = a, cl' = 1 \& cl \le eps$$

Meaning:

- x, v, a follow Newton dynamics
- cl moves exactly with time (cl is a clock)
- > system evolves at most until clock reaches eps

Semantics of Continuous Programs

Real Valued Program Variables

A state $s \in S$ is a mapping from program variables to real numbers:

$$s:V_{\Sigma} \to \mathbb{R}$$

Semantics of Continuous Programs (simplified)

State v is reachable from state u by $x_1' = e_1, \dots, x_n' = e_n \& Q$ iff there is a *solution* σ and duration r s.t.:

- $ightharpoonup \sigma: [0,r] \rightarrow S$
- $ightharpoonup \sigma(0) = u, \ \sigma(r) = v$
- ▶ At each time $\tau \in [0, r]$:

 - $ightharpoonup \sigma(au) \in Q^{\mathcal{M}}$

Hybrid Programs

Hybrid Programs

$$\alpha, \beta ::= x := t \mid x := * \mid ?\varphi \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^*$$

Differential Dynamic Logic (dL)

Changes to first-order DL:

- Programs are hybrid programs.
- ▶ Add $t_1 < t_2$ to atomic formulas.

Examples

Safety of Controlled Plant

[(ctrl; plant)*]safety-cond

To Brake or Not To Break [Platzer 3.4.1]

$$\begin{aligned} & \big[\big((?\varphi_A; a := A \cup ? \neg \varphi_A; a := B \big); \\ & cl := 0; \\ & \big\{ x' = v, v' = a, cl' = 1 \ \& \ v \ge 0 \land cl \le eps \big\} \big)^* \big] \ \psi_{\mathsf{safe}} \end{aligned}$$

Literature

- D. Kozen, J. Tiuryn
 Logics of Programs
 Handbook of Theoretical Computer Science, 1990.
- W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, M. Ulbrich, editors. Deductive Software Verification - The KeY Book Vol 10001 of LNCS, Springer, 2016.
- A. Platzer. Logical Foundations of Cyber-Physical Systems Springer, 2018.
 - W. Ahrendt, F. de Boer, I. Grabe
 Abstract Object Creation in Dynamic Logic
 To Be or Not To Be Created
 FM 2009, LNCS, Springer, 2009.