

UNIVERSITÀ DEGLI STUDI DI PADOVA

Your first edge detection algorithm

Stefano Ghidoni

Agenda

- How to find edges?
- Interactive activity: combine filters to create an edge detection algorithm

Edge detection: problem formulation

Edges in images

IAS-LAB

Edges are caused by a variety of factors

Different types of edge

- Several types of edges
 - Different gradients

The tools

Tools for edge detection

- We have already analyzed several tools that can be useful to solve our problem
 - Gradient
 - Laplacian
 - Smoothing filters

Tools for edge detection

- We have already analyzed several tools that can be useful to solve our problem
 - Gradient
 - Laplacian
 - Smoothing filters

- We have already analyzed several tools that can be useful to solve our problem
- Discrete gradient: formulation

$$g_x = f(x + 1, y) - f(x, y)$$

 $g_y = f(x, y + 1) - f(x, y)$

Recall: gradient edge detector

IAS-LAB

- The gradient is a vector pointing towards the fastest varying direction
- We get information about edge features considering:
 - Magnitude (edge strength)

$$\|\nabla f(x,y)\| = \sqrt{g_x^2 + g_y^2}$$

Phase (fastest varying direction)

$$\alpha \triangleq \theta = \tan^{-1} \left(\frac{g_y}{g_x} \right)$$

Recall: gradient masks

IAS-LAB

Sobel

- We already introduced the masks for edge detection
 - The Sobeloperator is themost widely used
 - Evaluated in four directions

Sobel

Sobel – example

IAS-LAB

Gradient magnitude

Is it a good edge detection? No there arent only the edges in the photo, there's also differenet colors

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel

Sobel – example

IAS-LAB

Gradient angle

FIGURE 10.17

Gradient angle image computed using Eq. (10.2-11). Areas of constant intensity in this image indicate that the direction of the gradient vector is the same at all the pixel locations in those regions.

Tools for edge detection

- We have already analyzed several tools that can be useful to solve our problem
 - Gradient
 - Laplacian
 - Smoothing filters

Tools for edge detection

- We have already analyzed several tools that can be useful to solve our problem
 - Gradient
 - Laplacian
 - Smoothing filters

Recall: Laplacian in discrete domain

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Laplacian

• Recall:

- Isotropicdetector
- Double-line effect

Laplacian: oriented masks

- Recall: anisotropic detectors derived from the laplacian
 - Anisotropic: four directions available

Edges and derivatives

IAS-LAB

Recap: first and second order derivatives

	1st order derivative	2nd order derivative
Large values	On all the edge	Start and end of the edge
Edge type	Single	Double
Edge Thick thickness		Thin
Noise sensitivity	Moderate	High

Derivatives and noise

IAS-LAB

Are derivatives sensitive to noise?

Derivatives and noise

- Are derivatives sensitive to noise?
- Derivatives amplify noise
 - 2nd derivative noisier than 1st

The approach

Your first edge detection algorithm

- Let's discuss a possible algorithm for detecting edges
 - Without looking at the next slides!
- Example: how to reduce the effect of noise on edge detection?
 - This shall be done combining some techniques we have discussed in the previous lectures

• Anti spoiler ©

Your first edge detection algorithm

IAS-LAB

Steps of a possible approach:

- 1. Low-pass filter for noise removal
- 2. Gradient calculation
- 3. Gradient thresholding $-|\nabla f| > T$

Steps 1-2: Smoothing and gradient

- Edge images are noisy
 - Smoothing (low-pass) often useful prior to calculation
 - In which part of the image can you observe the effect of noise reduction?

Steps 3: Thresholding

IAS-LAB

Thresholding selects only the strongest edges

Thresholded (33% of highest value) no smoothing

Thresholded (33% of highest value) 5×5 smoothing filter

Diagonal edges

IAS-LAB

Results of diagonal edges computation

0	1	2
-1	0	1
-2	-1	0

-2	-1	0
-1	0	1
0	1	2

Sobel

Well done!

IAS-LAB

 Good! You designed your first computer vision algorithm

UNIVERSITÀ DEGLI STUDI DI PADOVA

Your first edge detection algorithm

Stefano Ghidoni

