Artificial Intelligence

Fuzzy Logic

Lesson 1: Introduction to Fuzzy Logic

Vincenzo Piuri

Università degli Studi di Milano

Contents

- Motivation
- Fuzzy sets
- Representation of Fuzzy Sets
- Multi-valued Logics
- From Logic to Fuzzy Logic
- Fuzzy Set Theory
- Fuzzy Set Complement
- Fuzzy Sets Inclusion

Motivation

Motivation

- Humans use imprecise linguistic terms
 e.g., high, fat, big, small, fat, etc.
- All the complex human reasonings are based on that terms
 - e.g., driving, taking financial decisions, givinig a lecture, etc.
- Classical mathematics cannot manage these terms
- How to use these terms with computers?

FUZZY LOGIC

Imprecision

- Any notion is said to be imprecise when its meaning is not fixed
 - Can be in the following conditions: fully/to certain degree/not at all.
 - Gradualness ("membership gradience") is also called fuzziness.
- A proposition is imprecise if it contains gradual predicates
 - Such propositions may be true to a certain degree, i.e. partial truth
 - E.g., in natural language
 very, rather, almost not, etc.

Imprecision Example: the Sorites Paradox

Paradox

- If a sand dune is small, adding one grain of sand to it leaves it small
- A sand dune with a single grain is small
- Hence all sand dunes are small
- Paradox comes from treatment of small
- Question
 - How many grains of sand has a sand dune at least?
- Formulation
 - Statement A(n): "n grains of sand are a sand dune"
 - Let $d_n = T(A(n))$ denote "degree of acceptance" for A(n)
 - Then $0 = d_0 \le d_1 \le \ldots \le d_n \le \ldots \le 1$ can be seen as truth values of a many valued logic

Uncertainty

- Uncertainty refers to situations involving imperfect or unknown information
- Consider the notion bald
 - A man without hair on his head is bald
 - A hairy man is not bald
- Usually a man is not completely bald
- Where to set baldness/non baldness threshold?
- Fuzzy set theory does not assume any threshold

Difference Between Imprecision and Uncertainty

Imprecision:

- e.g. "Today the weather is fine."
- Imprecisely defined concepts neglect of details computing with words

• Uncertainty:

- e.g. "How will the exchange rate of the dollar be tomorrow?"
- probability, possibility

Examples of Imprecision and Uncertainty

- Uncertainty differs from imprecision
 - "This car is rather old" (imprecision)
 Lack of ability to measure or to evaluate numerical features
 - "This car was probably made in Germany" (uncertainty)
 Uncertainty about well-defined proposition made in Germany, perhaps based on statistics (random experiment)
 - "The car I chose randomly is perhaps very big" (uncertainty and imprecision)
 Lack of precise definition of notion big
 Modifier very indicates rough degree of "bigness"

Principle of Incompatibility

- As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics
- Fuzzy sets and fuzzy logic are used as mechanism for abstraction of unnecessary or too complex details

Applications of Fuzzy Systems

Fields

- Control Engineering
- Approximate Reasoning
- Data Analysis
- Image Analysis

Advantages

- Use of imprecise or uncertain information
- Use of expert knowledge
- Robust nonlinear control
- Time to market
- Marketing aspects

Fuzzy sets

Fuzzy Sets

- A fuzzy set is a set of elements with a continuum of membership grades
- A **fuzzy set** μ of a set X (the universe) is a mapping $\mu: X \mapsto [0, 1]$

which assigns to each element $x \in X$ a degree of membership $\mu(x)$ to the fuzzy set μ itself

Membership Functions (1)

 $\mu_M(u) = 1$ reflects full membership in M $\mu_M(u) = 0$ expresses absolute non-membership in M

- Sets can be viewed as special case of fuzzy sets where only full membership and absolute non-membership are allowed
- Such sets are called crisp sets or Boolean sets
- Membership degrees $0 < \mu_M < 1$ represent partial membership

Membership Functions (2)

- A Membership function attached to a given linguistic description (such as young) depends on context
 - A young retired person is certainly older than young student
 - Even idea of young student depends on the user

- Membership degrees are fixed only by convention:
 - Unit interval as range of membership grades is arbitrary
 - Natural for modeling membership grades of fuzzy sets of real numbers

Membership Functions (3)

- There is no precise threshold between
 - prototypes of young and
 - prototypes of not young
- Fuzzy sets offer natural interface between linguistic and numerical representations

Example: Body Height of 4 Year Old Boys

- 1.5 m is for sure tall, 0.7 m is for sure small, but in-between?
- Imprecise predicate tall modeled as sigmoid function
- e.g. height of 1.1 m satisfies predicate tall with 0.65

Example: Velocity of Rotating Hard Disk

Fuzzy set μ characterizing velocity of rotating hard disk

- Let x be velocity v of rotating hard disk in rpms
- Expert's knowledge
 - "It's impossible that v drops under a or exceeds d."
 - "It's highly certain that any value between [b, c] can occur."
- Interval [a, d] is called support of the fuzzy set
- Interval [b, c] is denoted as core of the fuzzy set

Fuzzy Numbers

- Exact numerical numbers have membership degree 1
- Terms like around are modeled using different shapes: e.g., triangle, trapezoid, Gaussian, sigmoid, etc.

Linguistic Variables and Linguistic Values

- Linguistic variables represent attributes in fuzzy systems
- They assume linguistic values
- Linguistic values usually partition the possible values of the linguistic variables subjectively (based on human intuition)
- All linguistic values have a meaning, not a precise numerical value

Example of Linguistic Values

- Linguistic variable living area of a flat A
- Linguistic values: tiny, small, medium, large, huge

- Every $x \in A$ has $\mu(x) \in [0, 1]$ to each value
- E.g., $a = 42.5 \text{ m}^2$ $\mu_t(a) = \mu_s(a) = \mu_h(a) = 0, \ \mu_m(a) = \mu_h(a) = 0.5$ $\mu_t(a) = \mu_s(a) = \mu_h(a) = 0.5$

Semantics of Fuzzy Sets

- Fuzzy sets are relevant in 3 types of informationdriven tasks
 - 1. classification and data analysis
 - 2. decision-making problems
 - 3. approximate reasoning
- These tasks exploit three semantics of membership grades
 - 1. similarity
 - 2. preference
 - 3. possibility

Degree of Similarity

- $\mu(u)$ is the degree of proximity of u from prototype elements of μ
- Proximity between pieces of information is modelled
- This view is used in
 - pattern classification
 - cluster analysis
 - regression
- In fuzzy control: similarity degrees are measured between current situation and prototypical ones

Degree of Preference

- µ represents both
 - set of more or less preferred objects
 - values of a decision variable X
- $\mu(u)$ represents both
 - intensity of preference in favor of object u
 - feasibility of selecting u as value of X
- Fuzzy sets represent criteria or flexible constraints
- This view is used in
 - fuzzy optimization (especially fuzzy linear programming)
 - decision analysis
- Typical applications
 - engineering design
 - scheduling problems

Degree of Possibility

- $\mu(u)$ can be viewed as:
 - degree of possibility that parameter X has value u
 - given the only information "X is μ "
- Support values are mutually exclusive and membership degrees rank these values by their possibility
- · This view is used in
 - expert systems
 - artificial intelligence

Representation of Fuzzy Sets

Definition of a "Set"

 By a set we mean every collection made into a whole of definite, distinct objects of our intuition or of our thought

Properties:

- $x \neq \{x\}$
- If $x \in X$ and $X \in Y$, then $X \notin Y$
- The set of all subsets of X is denoted as 2^{X}
- Ø is the empty set

Extension to a Fuzzy Set

Linguistic description	Мо	del
all numbers smaller than 10	Objective 1	Characteristic function of a set
all numbers almost equal to 10	Subjective 1 10	Membership function of a "fuzzy set"

Definition

A fuzzy set μ of $X \neq \emptyset$ is a function from the reference set X to the unit interval, i.e. $\mu: X \mapsto [0, 1]$

F(X) represents the set of all fuzzy sets of X, i.e.

$$F(X)^{\text{def}}_{=} \{ \mu \mid \mu : X \mapsto [0, 1] \}$$

Vertical Representation

Representation

Fuzzy sets are described by their membership function and assigning degree of membership $\mu(x)$ to each element $x \in X$

Example 1

Linguistic expression "about m"

$$\mu_{m,d}(x) = \begin{cases} 1 - \left| \frac{m - x}{d} \right|, & \text{if } m - d \le x \le m + d \\ 0, & \text{otherwise,} \end{cases}$$

Example 2

Linguistic expression "approximately between b and c"

$$\mu_{a,b,c,d}(x) = \begin{cases} \frac{x-a}{b-a}, & \text{if } a \le x \le b\\ 1, & \text{if } b \le x \le c\\ \frac{x-d}{c-d}, & \text{if } c \le x < d\\ 0, & \text{if } x < a \text{ or } x > d \end{cases}$$

Horizontal Representation

Representation

For all membership degrees belonging to chosen subset of [0, 1], human expert lists elements of X that fulfill vague concept of fuzzy set with degree $\geq \alpha$.

That is the horizontal representation of fuzzy sets by their α -cuts.

Definition

Let $\mu \in \mathcal{F}(X)$ and $\in [0, 1]$. Then the sets $[\mu]_{\alpha} = \{x \in X \mid \mu(x) \geq \alpha\}, \ [\mu]_{\underline{\alpha}} = \{x \in X \mid \mu(x) > \alpha\}$ are called the α -cut and strict α -cut of μ

Example

• Let μ be triangular function on $\mathbb R$

 α -cut of μ can be constructed by

- 1. Draw an horizontal line parallel to x-axis through point $(0, \alpha)$
- 2. Project this section onto x-axis

$$[\mu]_{\alpha} = \begin{cases} [a + \alpha \ (m - a), b - \alpha \ (b - m)], & \text{if } 0 < \alpha \leq 1 \\ \mathbb{R}, & \text{otherwise} \end{cases}$$

Properties of α -custs (1)

• Any fuzzy set can be described by specifying its α -cuts

Theorem

Let $\mu \in \mathcal{F}(X)$, $\alpha \in [0, 1]$ and $\beta \in [0, 1]$

- $[\mu]_0 = X$,
- $\bullet \ \alpha < \beta \implies [\mu]_{\alpha} \supseteq [\mu]_{\beta},$
- $\bullet \cap_{\alpha:\alpha<\beta} [\mu]_{\alpha} = [\mu]_{\beta}.$

Properties of α -custs (2)

Theorem (Representation Theorem)

Let
$$\mu \in \mathcal{F}(X)$$
, then
$$[\mu]_0 = \sup_{\alpha \in [0,1]} \left\{ \min \left(\alpha, \chi_{[\mu]_{\alpha}}(x) \right) \right\}$$

where
$$\chi_{[\mu]_{\alpha}}(x) = \begin{cases} 1, & \text{if } x \in [\mu]_{\alpha} \\ 0, & \text{otherwise} \end{cases}$$

- Fuzzy set can be obtained as upper envelope of its α cuts
- Simply draw α -cuts parallel to horizontal axis in height of α
- In applications it is recommended to select finite subset $L \subseteq [0,1]$ of relevant degrees of membership
- They must be semantically distinguishable, i.e., fix level sets of fuzzy sets to characterize only for these levels

"Approximately 5 or greater than or equal to 7" (1)

- Suppose that X = [0, 15]
- An expert chooses $L = \{0, 0.25, 0.5, 0.75, 1\}$ and α -cuts
 - $A_0 = [0, 15]$
 - \bullet $A_{0.25} = [3, 15]$
 - $A_{0.5} = [4, 6] \cup [7, 15]$
 - $\bullet \ A_{0.75} = [4.5, 5.5] \cup [7, 15]$
 - $A_1 = \{5\} \cup [7, 15]$

"Approximately 5 or greater than or equal to 7" (2)

• μ_A is obtained as upper envelope of the family A of sets

- The horizontal representation is easier to process in computers
- Also, restricting the domain of x-axis to a discrete set is usually done

Horizontal Representation in the Computer

- Fuzzy sets are usually stored as chain of linear lists
- For each α -level, $\alpha \neq 0$
- A finite union of closed intervals is stored by their bounds
- This data structure is appropriate for arithmetic operators

Support and Core of a Fuzzy Set

• The **support** $S(\mu)$ of a fuzzy set $\mu \in \mathcal{F}(X)$ is the crisp set that contains all elements of X that have nonzero membership.

$$S(\mu) = [\mu]_{\underline{0}} = \{x \in X \mid \mu(x) > 0\}$$

• The **core** $C(\mu)$ of a fuzzy set $\mu \in \mathcal{F}(X)$ is the crisp set that contains all elements of X that have membership of one.

$$C(\mu) = [\mu]_1 = \{x \in X \mid \mu(x) = 1\}$$

Height of a Fuzzy Set

• The height $h(\mu)$ of a fuzzy set $\mu \in \mathcal{F}(X)$ is the largest membership grade obtained by any element in that set.

$$h(\mu) = \sup_{x \in X} \{\mu(x)\}$$

 $h(\mu)$ may also be viewed as supremum of for which $[\mu]_{\alpha} \neq 0$

• A fuzzy set μ is called *normal*, iff $h(\mu) = 1$ It is called *subnormal*, iff $h(\mu) < 1$

Convex Fuzzy Sets

- Let X be a vector space. A fuzzy set $\mu \in \mathcal{F}(X)$ is called **fuzzy convex** if its α -cuts are convex for all $\alpha \in (0, 1]$
- The membership function of a convex fuzzy set is not a convex function
- Classical definition

The membership functions are actually **concave**

Fuzzy Numbers

• μ is a fuzzy number if and only if μ is normal and $[\mu]_{\alpha}$ is bounded, closed, and convex $\forall \alpha \in (0, 1]$.

Example

The term approximately x_0 is often described by a parametrized class of membership functions, e.g.

$$\mu_1(x) = \max\{0, 1 - c_1 | x - x_0 |\}$$

$$\mu_2(x) = \exp\{-c_2 ||x - x_0||_p\}$$

$$c_1 > 0$$

$$c_2 > 0, p > 1$$

Fuzzy Numbers: Example

$$[\mu]_{\alpha} = \begin{cases} [1,2] & \text{if } \alpha \geq 0.5, \\ [0.5 + \alpha, 2) & \text{if } 0 > \alpha < 0.5, \\ \mathbb{R} & \text{if } \alpha = 0 \end{cases}$$

- Upper semi-continuous functions are often convenient in applications
- In many applications (e.g. fuzzy control) the class of the functions and their exact parameters have a limited influence on the results
- In other applications (e.g. medical diagnosis)
 more precise membership degrees are needed

Multi-valued Logics

Set Operators

- Set operators are defined by using traditional logics operators
- Let X be universe of discourse (universal set):

```
A \cap B = \{x \in X \mid x \in A \land x \in B\}

A \cup B = \{x \in X \mid x \in A \lor x \in B\}

A^c = \{x \in X \mid x \notin A\} = \{x \in X \mid \neg(x \in A)\}

A \subseteq B if and only if (x \in A) \rightarrow (x \in B) for every x \in X
```

Aristotlelian Logic

- There are traditional, linguistic, psychological, epistemological and mathematical schools
- Aristotlelian logic can be seen as formal approach to human reasoning
- It's still used today in Artificial Intelligence for knowledge representation and reasoning about knowledge

Classical Logic: An Overview

- Classical logic deals with propositions (either true or false)
- The propositional logic handles combination of logical variables
- Key idea: express n-ary logic functions with logic primitives, e.g. ¬,∧,∨,→
- A set of logic primitives is complete if any logic function can be composed by a finite number of these primitives, e.g. {¬,∧,∨}, {¬,∧}, {¬,→}, {↓} (NOR), {|} (NAND)

Inference Rules

- When a variable represented by logical formula is:
 - true for all possible truth values, i.e. it is called tautology
 - false for all possible truth values, i.e. it is called contradiction
- Various forms of tautologies exist to perform deductive inference, and are called inference rules:

$$(a \land (a \rightarrow b)) \rightarrow b$$
 (modus ponens)
 $(\neg b \land (a \rightarrow b)) \rightarrow \neg a$ (modus tollens)
 $((a \rightarrow b) \land (b \rightarrow c)) \rightarrow (a \rightarrow c)$ (hypothetical syllogism)

e.g. modus ponens: given two true propositions a and a → b (premises), truth of proposition b (conclusion) can be inferred

Boolean Algebra

- The propositional logic based on finite set of logic variables is isomorphic to finite set theory
- Both of these systems are isomorphic to a finite
 Boolean algebra
- Definition: A Boolean algebra on a set B is defined as quadruple B = (B,+,·, -) where B has at least two elements (bounds) 0 and 1, + and · are binary operators on B, and is a unary operator on B for which the following properties hold

Properties of Boolean Algebras (1)

(B1) Idempotence	a + a = a	$a \cdot a = a$
(B2) Commutativity	a + b = b + a	$a \cdot b = b \cdot a$
(B3) Associativity	(a + b) + c = a + (b + c)	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$
(B4) Absorption	$a + (a \cdot b) = a$	$a \cdot (a + b) = a$
(B5) Distributivity	$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$	$a + (b \cdot c) = (a + b) \cdot (a + c)$
(B6) Universal Bounds	a + 0 = a, a + 1 = 1	$a \cdot 1 = a, a \cdot 0 = 0$
(B7) Complementary	$a + \overline{a} = 1$	$a \cdot \overline{a} = 0$
(B8) Involution	$\overline{\overline{a}} = a$	
(B9) Dualization	$\overline{a+b} = \overline{a} \cdot \overline{b}$	$\overline{a \cdot b} = \overline{a} + \overline{b}$

Properties (B1)-(B4) are common to every lattice,

- i.e. a Boolean algebra is a distributive (B5), bounded (B6), and complemented (B7)-(B9) lattice,
- i.e. every Boolean algebra can be characterized by a partial ordering on a set, i.e. $a \le b$ if $a \cdot b = a$ or, alternatively, if a + b = b

Set Theory, Boolean Algebra, Propositional Logic

 Every theorem in one theory has a counterpart in each other theory

Meaning	Set Theory	Boolean Algebra	Prop. Logic
values	2 ^X	В	$\mathcal{L}(V)$
"meet"/"and"	\cap	•	٨
"join"/"or	U	+	V
"complement"/"not"	С		_
identity element	X	1	1
zero element	Ø	0	0
partial order	⊆	≤	\rightarrow

power set 2^X , set of logic variables V, set of all combinations $\mathcal{L}(V)$ of truth values of V

Every Theorem in One Theory has a Counterpart in Each Other Theory

- The Principle of Bivalence Every proposition is either true or false
- The Principle of Valence
 Every proposition has a truth value

Three-valued Logics

 A 2-valued logic can be extended to a 3-valued logic in several ways

	Łukasiewicz	Bochvar	Kleene	Heyting	Reichenbach
a b	\wedge \vee \rightarrow \leftrightarrow	\wedge \vee \rightarrow \leftrightarrow	$\wedge \ \lor \ \rightarrow \ \leftrightarrow$	\wedge \vee \rightarrow \leftrightarrow	\wedge \vee \rightarrow \leftrightarrow
0 0	0 0 1 1	0 0 1 1	0 0 1 1	0 0 1 1	0 0 1 1
$0 \frac{1}{2}$	$0 \ \frac{1}{2} \ 1 \ \frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0 \frac{1}{2} 1 \frac{1}{2}$	$0 \frac{1}{2} 1 0$	$0 \ \frac{1}{2} \ 1 \ \frac{1}{2}$
0 1	0 1 1 0	0 1 1 0	0 1 1 0	0 1 1 0	0 1 1 0
$\frac{1}{2}$ 0	$0 \frac{1}{2} \frac{1}{2} \frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$0 \frac{1}{2} \frac{1}{2} \frac{1}{2}$	$0 \frac{1}{2} 0 0$	$0 \frac{1}{2} \frac{1}{2} \frac{1}{2}$
$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ 1 1	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ 1 1	$\frac{1}{2}$ $\frac{1}{2}$ 1 1
$\frac{1}{2}$ 1	$\frac{1}{2}$ 1 1 $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ 1 1 $\frac{1}{2}$	$\frac{1}{2}$ 1 1 $\frac{1}{2}$	$\frac{1}{2}$ 1 1 $\frac{1}{2}$
1 0	0 1 0 0	0 1 0 0	0 1 0 0	0 1 0 0	0 1 0 0
$1 \frac{1}{2}$	$\frac{1}{2}$ 1 $\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$ 1 $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ 1 $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ 1 $\frac{1}{2}$ $\frac{1}{2}$
1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1

n-valued Logics

- Various n-valued logics were developed
- Usually truth values are assigned by rational number in [0, 1]
- Key idea: uniformly divide [0, 1] into n truth values
- Definition

The set T_n of truth values of an n-valued logic is defined as

$$T_n = \left\{0 = \frac{0}{n-1}, \frac{1}{n-1}, \frac{2}{n-1}, \dots, \frac{n-2}{n-1}, \frac{n-1}{n-1} = 1\right\}$$

These values can be interpreted as degree of truth

Primitives in *n*-valued Logics

- Generalization of Łukasiewicz three-valued logic
- It uses truth values in T_n and defines primitives as follows

$$\neg a = 1 - a$$

$$a \wedge b = \min(a, b)$$

$$a \vee b = \max(a, b)$$

$$a \rightarrow b = \min(1, 1 + b - a)$$

$$a \leftrightarrow b = 1 - |a - b|$$

- This n-valued logic is denoted by L_n
- The sequence $(L_2, L_3, \ldots, L_{\infty})$ contains the classical two-valued logic L_2 and an infinite-valued logic L_{∞} (rational countable values T_{∞})
- The infinite-valued logic L_1 is the logic with all real numbers in [0, 1] (1 = cardinality of continuum)

Fuzzy Set Theory

What does a fuzzy set represent?

- A logic with values in [0, 1]
- Consider fuzzy proposition A ("approximately two") on ℝ. fuzzv logic offers means to construct such ₁ ↑

A defined by membership function μ_A , i.e. truth values $\forall x \in \mathbb{R}$

- let $x \in \mathbb{R}$ be a subject/observation
- $\mu_A(x)$ is the degree of truth that x is A

Standard Fuzzy Set Operators

Definition

We define the following algebraic operators on $\mathcal{F}(X)$

$$(\mu \wedge \mu') = ^{\operatorname{def}} \min\{\mu(x), \mu'(x)\}$$
 intersection ("AND")
 $(\mu \vee \mu') = ^{\operatorname{def}} \max\{\mu(x), \mu'(x)\}$ union ("OR")
 $\neg \mu = ^{\operatorname{def}} 1 - \mu(x)$ complement ("NOT")

 μ is subset of μ' if and only if $\mu \leq \mu'$

Theorem

 $(\mathcal{F}(X), \land, \lor, \neg)$ is a complete distributive lattice but no Boolean algebra

Standard Fuzzy Set Operators: Example

Fuzzy Set Complement

Fuzzy Complement/Fuzzy Negation

Definition

Let X be a given set and $\mu \in \mathcal{F}(X)$. Then the complement $\bar{\mu}$ can be defined pointwise by $\bar{\mu}(x) := \sim (\mu(x))$ where $\sim: [0,1] \to [0,1]$ satisfies the conditions

$$\sim (0) = 1, \sim (1) = 0$$

and

for $x, y \in [0, 1]$, $x \le y \Rightarrow \sim x \ge \sim y$ (\sim is non-increasing)

Abbreviation

$$\sim x := \sim (x)$$

Strict and Strong Negations

Additional properties may be required

```
x,y \in [0,1], x < y \Rightarrow \sim x > \sim y (\sim \text{ is strictly decreasing})
 \sim \text{ is continuous}
 \sim \sim x = x \text{ for all } x \in [0,1] (\sim \text{ is involutive})
```

Definition

- A negation is called strict if it is also strictly decreasing and continuous
- A strict negation is said to be strong if it is involutive, too
- $\sim x = 1 x^2$, for instance, is strict, not strong, thus not involutive

Families of Negations

standard negation:

threshold negation:

Cosine negation:

Sugeno negation:

Yager negation:

$$\sim x = 1 - x$$

$$\sim_{\theta} x = \begin{cases} 1 & \text{if } x \le \theta \\ 0 & \text{oherwise} \end{cases}$$

$$\sim x = \frac{1}{2} (1 + \cos(\pi x))$$

$$\sim x = \frac{1 - x}{1 + \lambda x}, \quad \lambda > 1$$

$$\sim x = (1 - x^{\lambda})^{\frac{1}{\lambda}}$$

Fuzzy Set Intersection and Union

Classical Intersection and Union

- Classical set intersection represents logical conjunction
- Classical set union represents logical disjunction
- Generalization from {0, 1} to [0, 1] as follows

$x \wedge y$	0	_1_
0	0	0
1	0	1

$x \lor y$	0	1
0	0	1
1	1	1

Fuzzy Set Intersection and Union

Let A, B be fuzzy subsets of X, i.e. $A, B \in \mathcal{F}(X)$

Their intersection and union can be defined pointwise using

$$(A \cap B)(x) = T(A(x), B(x)) \text{ where } T : [0, 1]^2 \to [0, 1]$$

$$(A \cup B)(x) = \bot (A(x), B(x)) \text{ where } \bot : [0, 1]^2 \to [0, 1]$$

Triangular Norms and Conorms (1)

- T is a triangular norm (t-norm) ⇔⊤ satisfies conditions T1-T4
- \bot is a triangular conorm (t-conorm) $\Leftrightarrow \bot$ satisfies C1-C4
- For all $x, y \in [0, 1]$, the following laws hold
 - Identity Law

T1:
$$T(x,1) = x (A \cap X = A)$$

C1:
$$\perp (x, 0) = x (A \cup \emptyset = A)$$

Commutativity

T2:
$$T(x,y) = T(y,x) (A \cap B = B \cap A)$$

C2:
$$\bot (x,y) = \bot (y,x) (A \cup B = B \cup A)$$

Triangular Norms and Conorms (2)

- For all $x, y \in [0, 1]$, the following laws hold
 - Associativity

T3:
$$T(x,T(y,z)) = T(T(x,y),z) \quad (A \cap (B \cap C)) = ((A \cap B) \cap C)$$

C3:
$$\bot(x,\bot(y,z)) = \bot(\bot(x,y),z) \ (A \cup (B \cup C)) = ((A \cup B) \cup C)$$

Associativity

$$x \le z$$
 implies

T4:
$$\top(x, y) \leq \top(x, z)$$

C4:
$$\bot(x, y) \le \bot(x, z)$$

Minimum and Maximum (1)

- $T_{\min}(x,y) = \min(x,y), \qquad \perp_{\max}(x,y) = \max(x,y)$
- Minimum is the greatest t-norm and max is the weakest t-conorm
- $T(x,y) \le \min(x,y)$ and $\pm (x,y) \ge \max(x,y)$ for any T and \pm

Minimum and Maximum (2)

- T_{min} and $\mathsf{\bot}_{max}$ can be easily processed numerically and visually
- e.g. linguistic values young and approx. 20 described by $\mu_{\rm v}$, $\mu_{\rm 20}$

 $T_{\min}(\mu_y$, $\mu_{20})$ is shown below

Product and Probabilistic Sum

- $T_{\text{prod}}(x,y) = x \cdot y$, $\bot_{\text{sum}}(x,y) = x + y x \cdot y$
- Note that use of product and its dual has nothing to do with probability theory

Łukasiewicz t-norm and t-conorm

- $T_{\text{Łuka}}(x,y) = \max\{0, x + y 1\},$ $L_{\text{Luka}}(x,y) = \min\{1, x + y\}$
- $T_{\underline{t}uka}$, $\bot_{\underline{t}uka}$ are also called bold intersection and bounded sum

Nilpotent Minimum and Maximum

•
$$T_{\min_0}(x, y) = \begin{cases} \min(x, y) & \text{if } x + y > 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\bot_{\max_1}(x, y) = \begin{cases} \max(x, y) & \text{if } x + y < 1 \\ 1 & \text{otherwise} \end{cases}$$

Drastic Product and Sum

•
$$T_{-1}(x,y) = \begin{cases} \min(x,y) & \text{if } \max(x+y) = 1\\ 0 & \text{otherwise} \end{cases}$$

 $\bot_{-1}(x,y) = \begin{cases} \max(x,y) & \text{if } \min(x+y) = 0\\ 0 & \text{otherwise} \end{cases}$

- T_{-1} is the weakest t-norm, \bot_{-1} is the strongest t-conorm
- $T_{-1} \le T \le T_{min}$, $\bot_{max} \le \bot \le \bot_{-1}$ for any T and \bot

Examples of Fuzzy Intersections

Note that all fuzzy intersections are contained within upper left graph and lower right one

Examples of Fuzzy Unions

Note that all fuzzy unions are contained within upper left graph and lower right one

Fuzzy Sets Inclusion

Fuzzy Implications

• crisp: $x \in A \Rightarrow x \in B$

• fuzzy: $x \in \mu \Rightarrow x \in \mu'$

Definitions of Fuzzy Implications

• One way of defining *I* is to use $\forall a, b \in \{0, 1\}$

$$I(a,b) = \neg a \lor b$$

• In fuzzy logic, disjunction and negation are t-conorm and fuzzy complement, respectively, thus $\forall a, b \in [0, 1]$

$$I(a,b) = \bot (\sim a,b)$$

• Another way in classical logic is $\forall a, b \in \{0, 1\}$

$$I(a,b) = \max\{x \in \{0,1\} \mid a \land x \le b\}$$

• In fuzzy logic, conjunction represents t-norm, thus $\forall a,b \in [0,1]$

$$I(a,b) = \sup\{x \in [0,1] \mid T(a,x) \le b\}$$

 Classical definitions are equal, fuzzy extensions are not: law of absorption of negation does not hold in fuzzy logic

S-Implications

- Implications based on $I(a,b) = \bot (\sim a,b)$ are called S-implications.
- Symbol S is often used to denote t-conorms.
- Four well-known S-implications are based on
 ~ a = 1 − a

Name	I(a, b)	⊥ (a, b)	
Kleene-Dienes	$I_{\max}(a,b) = \max(1-a,b)$	$\max(a,b)$	
Reichenbach	$I_{\text{sum}}(a,b) = 1 - a + ab$	a + b - ab	
Łukasiewicz	$I_{k}(a,b) = \min(1,1-a+b)$	$\min(1, a + b)$	
largest	$I_{-1}(a,b) = \begin{cases} b, & \text{if } a=1\\ 1-a, & \text{if } b=0\\ 1, & \text{otherwise} \end{cases}$	$\begin{cases} b, & \text{if } a=0 \\ a, & \text{if } b=0 \\ 1, & \text{otherwise} \end{cases}$	

R-Implications (1)

- $I(a,b) = \sup\{x \in [0,1] \mid T(a,x) \le b\}$ leads to R-implications
- Symbol R represents close connection to residuated semigroup
- Well-known *R*-implications based on $\sim a = 1 a$
 - 1. Standard fuzzy intersection leads to Gödel implication

$$I_{\min}(a,b) = \sup\{x \mid \min(a,x) \le b\} = \begin{cases} 1, & \text{if } a \le b \\ b, & \text{if } a > b \end{cases}$$

2. Product leads to Goguen implication

$$I_{\text{prod}}(a,b) = \sup\{x \mid ax \le b\} = \begin{cases} 1, & \text{if } a \le b \\ b/a, & \text{if } a > b \end{cases}$$

3. Łukasiewicz t-norm leads to Łukasiewicz implication

$$I_{\mathbb{R}}(a,b) = \sup\{x \mid \max(0, a + x - 1) \le b\} = \min(1, 1 - a + b)$$

R-Implications (2)

Name	Formula	T(a,b) =
Gödel	$I_{\min}(a,b) = \begin{cases} 1, & \text{if } a \leq b \\ b, & \text{if } a > b \end{cases}$	min(a, b)
Goguen	$I_{\text{prod}}(a,b) = \begin{cases} 1, & \text{if } a \leq b \\ b/a, & \text{if } a > b \end{cases}$	ab
Łukasiewicz	$I_{\mathbb{k}}(a,b) = \min(1,1-a+b)$	$\max(0, a + b - 1)$
largest	$I_{\rm L}(a,b) = \begin{cases} b, & \text{if } a = 0 \\ 1, & \text{otherwise} \end{cases}$	not defined

- I_L is actually the limit of all R-implications
- It serves as least upper bound
- It cannot be defined by

$$I(a,b) = \sup\{x \in [0,1] \mid T(a,x) \le b\}$$

QL-Implications

- Implications based on $I(a,b) = \bot (\sim a, T(a,b))$ are called QL-implications (QL from quantum logic)
- Well-known *QL*-implications based on $\sim a = 1 a$
 - 1. Standard min and max lead to Zadeh implication

$$I_{\mathbf{Z}}(a,b) = \max[1 - a, \min(a,b)]$$

2. The algebraic product and sum lead to

$$I_{\mathbf{p}}(a,b) = 1 - a + a^2b$$

- 3. Using T_L and L_L leads to Kleene-Dienes implication again
- 4. Using T_{-1} and I_{-1} leads to

$$I_{\mathbf{q}}(a,b) = \begin{cases} b, & \text{if } a = 1\\ 1 - a, & \text{if } a \neq 1, \\ 1, & \text{if } a \neq 1, \end{cases} \quad b \neq 1$$

Fuzzy Logic Implications

- All *I* come from generalizations of the classical implication.
- They collapse to the classical implication when truth values are 0 or 1

Which Fuzzy Implication?

- Since the meaning of I is not unique, we must resolve the question: Which I should be used for calculating the fuzzy relation R?
- Hence meaningful criteria are needed
- They emerge from various fuzzy inference rules, i.e. modus ponens, modus tollens, hypothetical syllogism