Red Black Trees

Colored Nodes Definition

- Binary search tree.
- Each node is colored red or black.
- Root and all external nodes are black.
- No root-to-external-node path has two consecutive red nodes.
- All root-to-external-node paths have the same number of black nodes

Red Black Trees

Colored Edges Definition

- Binary search tree.
- Child pointers are colored red or black.
- Pointer to an external node is black.
- No root to external node path has two consecutive red pointers.
- Every root to external node path has the same number of black pointers.

Example Red-Black Tree

• The height of a red black tree that has n (internal) nodes is between $log_2(n+1)$ and $2log_2(n+1)$.

• Start with a red black tree whose height is h; collapse all red nodes into their parent black nodes to get a tree whose node-degrees are between 2 and 4, height is >= h/2, and all external nodes are at the same level.

- Let h'>= h/2 be the height of the collapsed tree.
- In worst-case, all internal nodes of collapsed tree have degree 2.
- Number of internal nodes in collapsed tree $>= 2^{h'}-1$.
- So, $n >= 2^{h'}-1$
- So, $h \le 2 \log_2 (n + 1)$

- At most 1 rotation and O(log n) color flips per insert/delete.
- Priority search trees.
 - Two keys per element.
 - Search tree on one key, priority queue on other.
 - Color flip doesn't disturb priority queue property.
 - Rotation disturbs priority queue property.
 - $O(\log n)$ fix time per rotation => $O(\log^2 n)$ overall time.

- O(1) amortized complexity to restructure following an insert/delete.
- C++ STL implementation
- java.util.TreeMap => red black tree

Insert

- New pair is placed in a new node, which is inserted into the red-black tree.
- New node color options.
 - Black node => one root-to-external-node path has an extra black node (black pointer).
 - Hard to remedy.
 - Red node => one root-to-external-node path may have two consecutive red nodes (pointers).
 - May be remedied by color flips and/or a rotation.

Classification Of 2 Red Nodes/Pointers

- XYZ
 - \blacksquare X => relationship between gp and pp.
 - pp left child of $gp \Rightarrow X = L$.
 - Y => relationship between pp and p.
 - p right child of pp \Rightarrow Y = R.
 - z = b (black) if d = null or a black node.
 - z = r (red) if d is a red node.

XYr

• Color flip.

- Move p, pp, and gp up two levels.
- Continue rebalancing if necessary.

LLb

• Rotate.

- Done!
- Same as LL rotation of AVL tree.

LRb

• Rotate.

- Done!
- Same as LR rotation of AVL tree.
- RRb and RLb are symmetric.

Delete

- Delete as for unbalanced binary search tree.
- If red node deleted, no rebalancing needed.
- If black node deleted, a subtree becomes one black pointer (node) deficient.

Delete A Black Leaf

• Delete 8.

Delete A Black Leaf

• y is root of deficient subtree.

• py is parent of y.

Delete A Black Degree 1 Node

- Delete **45**.
- y is root of deficient subtree.

Delete A Black Degree 2 Node

• Not possible, degree 2 nodes are never deleted.

• If y is a red node, make it black.

Now, no subtree is deficient. Done!

- y is a black root (there is no py).
- Entire tree is deficient. Done!

• y is black but not the root (there is a py).

- Xcn
 - y is right child of py => X = R.
 - Pointer to v is black \Rightarrow c \Rightarrow b.
 - v has 1 red child \Rightarrow n = 1.

Rb0 (case 1)

- Color change.
- Now, py is root of deficient subtree.
- Continue!

Rb0 (case 2)

- Color change.
- Deficiency eliminated.
- Done!

Rb1 (case 1)

- LL rotation.
- Deficiency eliminated.
- Done!

- LR rotation.
- Deficiency eliminated.
- Done!

Rb2 W py W a • LR rotation. Deficiency eliminated. Done!

Rr(n)

• n = # of red children of v's right child w.

Rr(0)

- LL rotation.
- Done!

