Embedded Linux System

Out Line

- CH01 Introduction to Embedded System
- CH02 Embedded Linux (1)
- CH03 Embedded Linux (2)
- CH04 Basic Software And Tool
- CH05 Cross-compile Toolchain
- CH06 Introduction to Bootloader (u-boot)
- CH07 Embedded Linux Kernel
- CH08 RootFS
- CH09 Linux Device Driver
- CH10 Control Hardware Driver

Introduction to Embedded System

Embedded System

- An embedded system
 - combination of computer hardware and software
 - specifically designed for a particular function
- Applications
 - Mobile phone
 - Digital camera
 - Smart TV
 - Navigation system

Feature

- Designed to do some specific task
 - Low power
 - Small size
 - Special operating ranges
 - Low cost

Install OS ?

SOC RK3399

SOC - System On Chip

- Processor
 - → ARM, X86, MIPS
- RAM
 - → 8MB ~ 4 GB
- Storagee
 - → Nand, Nor flash
 - → SD/MMC/eMMc
- System Bus
 - → AMBA, AHB, APB, AXI ...

SOC - System On Chip

- Communication
 - I2C, I2S, USB, PCI/PCIe ...
- Media system
 - JPEG, H.264 ..
- System component
 - DMA, RTC ..

Embedded Linux?

Embedded Linux is the usage of the Linux kernel and various open-source components in **embedded systems** (from Free Electrons)

Linux Advantages

- Re-use components
- Quickly design and develop complicated products
- No need to re-develop components
 - → TCP/IP stack, USB stack, PCI stack ...
- Allow you modify components

Embedded Linux Booting

Software Components

- Cross-compilation Toolchain
- Boot-loader
- Linux Kernel, DeviceTree
- RootFS
- C library
- Libraries and applications
- BSP (Board Support Package)

Develop Environment

Develop Environment

- Host PC (Linux)
- Toolchain
- BSP (Board Support Package)
- Target Board EVB (RockPi4)

BSP

- Board Support Package
- From chip vendor
 - Distribution
 - Bootloader
 - Linux Kernel
 - Device Driver
 - Rootfs

RK3399 Debian BSP (1)

RK3399 Debian BSP

https://wiki.radxa.com/Rockpi4

Setup/Quick start

- Getting started with your ROCK Pi 4, including what you need and how to get it booted.
- GPIO pinout
- · Backup and Restore your SD card or eMMC module
- · How to mount SSD with M2 extension board

▲ Installation

Installing an operating system on your ROCK PI 4, including microSD card, eMMC module, USB drive and M.2 NVME SSD,

- · Install Rockchip Flashing tools
- Install image to eMMC from USB OTG Port
- · Install on microSD card
- Install on eMMC module
- Install on SPI Flash
- Install on USB drive(wip)Install on M.2 NVME SSD
-

> More...

[Expand]

[Expand]

Development

Information about Linux and Android development, this is mostly for developers.

- USB Installation How to use PC tools to install image on ROCK Pi 4.
- · Serial Console Serial console on GPIO header
- · Build Debian Build and generate Debian image
- Build vendor kernel(Rockchip 4.4) Build vendor kernel for ROCK Pi 4
- Build Android (nougat) TV Build Android for ROCK Pi 4
- Build Yocto Build Yocto for ROCK Pi 4
- > More... [Expand]

Technical specifications about the ROCK Pi 4 hardware, including WI-FI, display, camera, etc.

- Blog post from Radxa Team introducing the ROCK Pi hardware design
- ROCK Pi 4 Introduction of the ROCK Pi 4 hardware
- Display
- Camera module
- · Device Tree Overlays Use other HAT

> More..

[Expand]

Morking With Linux

Fundamental Linux usage for beginners and more advanced information for power users.

- Debian Desktop
- Ubuntu Server
- Linux system runs on M.2 NVME SSD
- Radxa APT
- Docker
- Samba
- > More...

Working With Android

Fundamental Android usage for beginners and more advanced information for power users.

- Android7 Tablet(Support Raspberry Pi official 7" Display)
- Android7 TV
- Android9 Tablet
- Android9 TV
- Android9 Run on M.2 NVME SSD
- Android9 Mraa API
- Android10 Tablet
- Android11
- Solve Google Play Device is not Play Protect certified issue 6

RK3399 Debian BSP (2)

- Boot-Loader
 - RKBin, U-Boot
- Kernel
 - Linux Kernel source
- Rootfs
 - Debian File System
- Tool-Chain
 - Compile tool

- Native Environment
 - Host x86PC (Linux)
 - gcc
- Cross-Compile
 - aarch64-linux-gnu-gcc

Cross Compilation

RK3399 and SOC

RockPi WiKi

- Nock Pi4 Wiki
 - https://wiki.radxa.com/Rockpi4
- Rock Pi 4 Feture
 - https://wiki.radxa.com/Rockpi4/getting_started
- Rock Pi 4 Debin
 - https://wiki.radxa.com/Rockpi4/Debian
 - https://wiki.radxa.com/Rock4/downloads

CPU

CPU (1)

- > Two CPU clusters
 - Big cluster with dual-core Cortex-A72
 - high-performance
 - >> Little cluster with quad-core Cortex-A53
 - low power

Ι ΄			7
	Cortex-A72 Dual-Core	Cortex-A53 Quad-Core	ı
	(48K/32K L1 I/D Cache)	(32K/32K L1 I/D Cache)	
			ı
ı	1MB L2 Cache	512KB L2 Cache	1
	CCI500		
1	CoreSight		1
	Dual-cluster Core		

CPU (2)

- Arm big.LITTLE technology
 - "LITTLE" processors are designed for maximum power efficiency
 - "big" processors are designed to provide maximum compute performance.

Memory

Memory

- Internal ROM
 - Internal BootRom (Size : 32KB)
 - boot from
 - SPI, eMMC, SD/MMC
- Internal RAM
 - 200KB
- **External**
 - DDR3/DDR3L/LPDDR3/LPDDR4
 - SPI NOR/NAND Flash
 - EMMC5.1
 - SD3.0/MMC4.51

MMU (1)

MMU (2)

64 Bit CPU AArch64 Linux memory layout with 4KB pages + 3 levels

MMU (3)

- The MMU divides memory into **4KB** pages
- 2-level page table structure
 - The First level
 - Page Directory consists of 1024 Directory Table Entries (DTEs)
 - Each pointing to a Page Table.
 - The Second level
 - The Page Table consists of 1024 Page Table Entries (PTEs)
 - Each pointing to a page in memory

MMU (4)

MMU (5)

I/O Address Mapping

FF3F_0000 FF79_8000 12C8 GPIO4 (64K) (32K) FF3E_0000 12C4 (64K) can't use FF3D_0000 physical memory 12C0 (64K) FF3C_0000 address direct INTMEM1 (64K) FF3B_0000 FF77_0000 Reserved CRU (64K) (64K) FF76_0000 FF3A_0000 MAILBOX1 **PMUCRU** (64K) (64K) FF39 0000 FF75_0000 WDT2 Reserved (64K) (64K) FF38_0000 FF74 0000 **UART4** GPIO1 (64K) (64K) FF37_0000 FF73_0000

Physical memory address

MMU (6)

DDR SD RAM Memory

Interconnect Connect

Bus Architecture

- Marchitecture Advanced Microcontroller Bus Architecture
 - **MAXI**
 - **MAHB**
 - **MAPB**

GPU

Graphics Engine (1)

- Graphics Process Unit
- Mali-T860MP4 GPU
 - >> OpenGL ES1.1/2.0/3.0, OpenCL1.2,
 - 3DGraphics Engine
 - 2D Graphics Engine

Graphics Engine (2)

- OpenGL
 - Open Graphics Library
- OpenGL ES
 - OpenGL for Embedded Systems
- EGL
 - Native Platform Graphics Interface

Graphics Engine (3)

Connect

USB (1)

- **USB** Host
 - **>>** RK3399
 - >> OHCI : 1.1. Hardware Complex
 - > UHCI: 1.0, 1.1 Software Complex
 - **>>** EHCI : 2.0
 - >> XHCI : 3.0
- USB Device
 - >> USB Storage

USB (2)

- **DESTRUCT** USB OTG
 - >> USB_ID 信號爲低時,該設備應作爲 Host
 - >> USB_ID 信號爲高時,該設備作爲 Slave

UART

- The Universal Asynchronous Receiver/Transmitter
 - >> Write Data
 - CPU → Data → APB → UART
 - Nead Data
 - Data → UART → APB → CPU

12C (1)

- Serial bus
 - >>SDA data line
 - SCL clock line

Protocol

12C (2)

Master and Client

I2C protocol - Write

- Write
 - byte write
 - page write
- Device address
- Read/write bit : 0
- ACK

I2C protocol - Read

- Read
 - byte read
 - page read
- Device address
- Read/write bit : 1
- ACK

GPIO

- General Purpose Programming I/O
- GPIO controls the output data and direction of external I/O pads

WiFi Basic

WIFI - 802.11(1)

▶ IEEE 802.11 - 無線區域網路

ISO OSI 7-layer model

Application Presentation Session **Transport** Network Data Link Physical

IEEE 802 standards Logical Link Control Medium Access (MAC) Physical (PHY)

WIFI - 802.11(2)

世代名稱[註 1] 💠	IEEE標準		最大速率	頻率
	名稱 ◆	發布年份 ♦	(Mbit/s) ▼	(GHz) +
Wi-Fi 7	802.11be	(2024) ^[註 2]	1376~46120	2.4/5/6
Wi-Fi 6E	802.11ax	2020	574~9608 ^[1]	6 ^[2]
Wi-Fi 6			2019	2.4/5
Wi-Fi 5	802.11ac	2014	433~6933	5 [3]
Wi-Fi 4	802.11n	2008	72~600	2.4/5
Wi-Fi 3 ^[註 3]	802.11g	2003	6~54	2.4
Wi-Fi 2 ^[註 3]	802.11a	1999	6~54	5
Wi-Fi 1 ^[註 3]	802.11b	1999	1~11	2.4
Wi-Fi 0 ^[註 3]	802.11	1997	1~2	2.4

- 1. ^ Wi-Fi是Wi-Fi联盟的商標
- 2. ^ 預定的發布年份
- 3. ^ **3.0 3.1 3.2 3.3** Wi-Fi联盟未定義 Wi-Fi 0/1/2/3 的世代名稱^{[4][5]}

WIFI – Linux & 802.11 (1)

WIFI – Linux & 802.11 (2)

- **mac80211**
 - most associated to hardware offloading
 - >>> the 802.11 protocol state machine lives here
- cfg80211
 - middle-layer **Handles Everything Configurable**
- **n**l80211
 - The API between user-land and kernel-land
 - Relies on the **netlink** protocol to exchange messages between the two worlds

WIFI - Tool

- > Show / manipulate wireless devices and their configuration
 - wi 🜊
- >> For connecting to a WPA/WPA2 network
 - >> wpa_supplicant

Audio

ALSA Overview

- Advanced Linux Sound Architecture
 - >>Linux kernel
 - Software framework
- Sound Servers
 - PulseAudio, JACK ...
- ALSA stream is a data flow representing sound
 - PCM (Pulse-code modulation)

ALSA Overview

Mario Codec

Audio Codec 就是音樂訊號(Audio)壓縮 / 解壓縮 (Compress/DECompress) 的演算法或程式,前後加起來就是 Audio Codec.

>> Parameters of the hardware

sampling rate : 44100 Hz

sample width : 8 bit, 16 bit, 24 bit

sample encoding : endianness

number of channels : 1 channel, 2 channel ...

ALSA Overview

 $https://www.researchgate.net/figure/Structure-of-ASoC-and-the-embedment-into-the-Linux-audio-framework_fig2_262112720$

Sound Card in Linux (1)

[CMD] Is /proc/asound/ -I

```
lrwxrwxrwx
               1 root root 5 Apr 30 06:51 HDMICODEC -> card1
dr-xr-xr-x
               4 root root 0 Apr 30 06:51 card0
               3 root root 0 Apr 30 06:51 card1
dr-xr-xr-x
               1 root root 0 Apr 30 06:51 cards
-r--r--r--
               1 root root 0 Apr 30 06:51 devices
-r--r--r--
               1 root root 0 Apr 30 06:51 hwdep
-r--r--r--
               1 root root 0 Apr 30 06:51 pcm
-r--r--r--
               1 root root 5 Apr 30 06:51 rockchipes8316c -> card0
Irwxrwxrwx
dr-xr-xr-x 2 root root 0 Apr 30 06:51 seq
               1 root root 0 Apr 30 06:51 timers
-r--r--r--
               1 root root 0 Apr 30 06:51 version
-r--r--r--
```


Sound Card in Linux (2)

Sound card 0

[CMD] cat /proc/asound/cards

0 [rockchipes8316c]: rockchip_es8316 - rockchip,es8316-codec rockchip,es8316-codec

1 [HDMICODEC]: HDMI-CODEC - HDMI-CODEC HDMI-CODEC

HDMII-CODEC

Sound card 1

Sound Card in Linux (3)

rockchipes8316c

[CMD] Is -I /proc/asound/card0/

-r--r-- 1 root root 0 Apr 30 06:59 id capture
dr-xr-xr-x 3 root root 0 Apr 30 06:59 pcm0c
dr-xr-xr-x 3 root root 0 Apr 30 06:59 pcm0p
playback

[CMD] Is -I /proc/asound/card1/

-r--r-- 1 root root 0 Apr 30 07:01 id dr-xr-xr-x 3 root root 0 Apr 30 07:01 pcm0p

Linux Display Subsystem

Linux Windows System (1)

Linux Windows System (2)

Linux Windows System (3)

Wayland is a replacement for the X11 window system protocol

GTK and Gnome

GTK

- GTK (formerly GTK+) is a free and open-source cross-platform widget toolkit for creating graphical user interfaces (GUIs).

GNOME

- GNOME is the default desktop environment of many major Linux distributions
- originally an acronym for GNU Network Object Model Environment
- free and open-source desktop environment for Linux and other Unix-like[10] operating systems

https://en.wikipedia.org/wiki/GNOME https://en.wikipedia.org/wiki/GTK

OpenGL and EGL

EGL

- EGL Native Platform Graphics Interface is an interface portable layer for graphics resource management.
- works between rendering APIs such as OpenGL ES or OpenVG and the underlying native platform window system

OpenGL

OpenGL (Open Graphics Library) is a crosslanguage, cross-platform application programming interface (API) for rendering 2D and 3D vector graphics

Mesa

- Mesa, also called Mesa3D and The Mesa 3D **Graphics Library**
- it is an open source implementation of OpenGL, Vulkan, and other graphics API specifications

https://en.wikipedia.org/wiki/ Mesa (computer graphics)

- Direct Rendering Manager
 - Management of buffers and free space within that memory.
 - Solve Frame buffer driver cannot be used GPU and multi-user process.
- DRM consists of
 - libdrm
 - libdrm provides a user space library for accessing the DRM
 - KMS : Kernel Mode Setting
 - Change resolution and depth
 - DRI : Direct Rendering Infrastructure
 - Interfaces to access hardware directly
 - GEM : Graphics Execution Manager
 - Buffer management
 - DRM Driver in kernel side
 - Access hardware

If no use DRM

© 2014 Javier Cantero - this work is under the Creative Commons Attribution ShareAlike 4.0 license

https://upload.wikimedia.org/wikipedia/commons/2/2d/ The_Linux_Graphics_Stack_and_glamor.svg

Use DRM

© 2014 Javier Cantero - this work is under the Creative Commons Attribution ShareAlike 4.0 license

- > KMS device model
 - > CRTCs
 - Connectors
 - Encoders
 - Planes
- Kernel Mode Setting
 - screen resolution
 - color depth and
 - refresh rate

https://www.kernel.org/doc/html/v4.15/gpu/drm-kms.html

https://upload.wikimedia.org/wikipedia/commons/2/2d/ The Linux Graphics Stack and glamor.svg

Video Frame Buffer

The frame buffer device provides an abstraction for the graphics hardware.

