

Mathématiques 2

MP

2012

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Ce sujet est divisé en trois parties. La partie III est indépendante des deux premières (même si les parties II et III ont en commun de s'intéresser à des matrices dites de Hankel).

Il est attendu des candidat(e)s qu'ils fassent preuve de qualités de rédaction, de clarté et de présentation.

Notations

Dans tout le problème, $\mathbb K$ désigne indifféremment $\mathbb R$ ou $\mathbb C.$

On note $\mathbb{K}^{\mathbb{N}}$ l'espace vectoriel des suites à valeurs dans \mathbb{K} .

Pour tout espace vectoriel E sur \mathbb{K} , on note $\mathcal{L}(E)$ l'algèbre des endomorphismes de E.

On note σ l'élément de $\mathcal{L}(\mathbb{K}^{\mathbb{N}})$ qui à tout $x=(x_n)_{n\in\mathbb{N}}$ de $\mathbb{K}^{\mathbb{N}}$ associe $y=(y_n)_{n\in\mathbb{N}}$ dans $\mathbb{K}^{\mathbb{N}}$ de terme général $y_n=x_{n+1}$.

On note $\mathbb{K}[X]$ l'algèbre des polynômes à coefficients dans \mathbb{K} , et $\mathbb{K}_m[X]$ le sous-espace vectoriel de $\mathbb{K}[X]$ formé des polynômes de degré inférieur ou égal à m.

On rappelle qu'un polynôme non nul est dit unitaire si le coefficient de son monôme de plus haut degré vaut 1.

On note $\mathcal{M}_n(\mathbb{K})$ l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} .

Si M est une matrice carrée, on note tM sa transposée et ${\rm tr}(M)$ sa trace.

On note $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices carrées symétriques d'ordre n à coefficients réels.

Rappels sur les polynômes d'endomorphisme

On effectue ici quelques rappels utiles sur les polynômes d'endomorphisme d'un espace vectoriel.

Soit E un espace vectoriel sur \mathbb{K} . On note Id l'endomorphisme identité de E.

Pour tout f de $\mathcal{L}(E)$, et tout $A = \sum_{k=0}^{p} a_k X^k$ de $\mathbb{K}[X]$, on note $A(f) = \sum_{k=0}^{p} a_k f^k$ (avec la convention $f^0 = \mathrm{Id}$).

Pour tout f de $\mathcal{L}(E)$, l'application $A \mapsto A(f)$ est alors un morphisme d'algèbres de $\mathbb{K}[X]$ dans $\mathcal{L}(E)$.

Rappelons que cela signifie que, pour tous A, B de $\mathbb{K}[X]$ et pour tous scalaires α, β de \mathbb{K} , on a :

- $(\alpha A + \beta B)(f) = \alpha A(f) + \beta B(f);$
- si A = 1, alors A(f) = Id;
- $(AB)(f) = A(f) \circ B(f) = B(f) \circ A(f).$

Cas particulier (utile dans la suite du problème):

- Si
$$E = \mathbb{K}^{\mathbb{N}}$$
, $f = \sigma$ et $A = \sum_{k=0}^{p} a_k X^k$, alors $A(\sigma) = \sum_{k=0}^{p} a_k \sigma^k$.

- Pour tout
$$x$$
 de $\mathbb{K}^{\mathbb{N}}$, $y = A(\sigma)(x)$ est donc la suite de terme général $y_n = \sum_{k=0}^p a_k x_{n+k}$.

I Suites récurrentes linéaires

Soit p un entier naturel.

On dit qu'un élément x de $\mathbb{K}^{\mathbb{N}}$ est une suite récurrente linéaire (en abrégé une SRL) d'ordre $p \geqslant 0$ s'il existe un polynôme $A = \sum_{k=0}^p a_k X^k$ dans $\mathbb{K}[X]$ de degré p, tel que $A(\sigma)(x)$ soit la suite nulle, c'est-à-dire si :

$$\forall n \in \mathbb{N} \qquad \sum_{k=0}^{p} a_k x_{n+k} = a_p x_{n+p} + a_{p-1} x_{n+p-1} + \dots + a_1 x_{n+1} + a_0 x_n = 0$$
 (I.1)

On dit que la relation I.1 (dans laquelle, rappelons-le, a_p est non nul) est une relation de récurrence linéaire d'ordre p, dont A est un $polyn\^ome$ caractéristique.

L'ensemble des suites x de $\mathbb{K}^{\mathbb{N}}$ qui obéissent à **I.1** est noté $\mathcal{R}_A(\mathbb{K})$.

On note $\mathcal{R}(\mathbb{K})$ l'ensemble de toutes les suites récurrentes linéaires, quel que soit leur ordre (autrement dit, $\mathcal{R}(\mathbb{K})$ est la réunion des $\mathcal{R}_A(\mathbb{K})$ pour tous les polynômes A non nuls dans $\mathbb{K}[X]$).

I.A - Ordre (et polynôme) minimal d'une suite récurrente linéaire

Soit x une suite récurrente linéaire.

Montrer que l'ensemble J_x des polynômes A tels que $A(\sigma)(x) = 0$ est un idéal de $\mathbb{K}[X]$, non réduit à $\{0\}$.

On rappelle qu'il en résulte deux choses :

- d'une part, il existe dans J_x un unique polynôme unitaire B de degré minimal;
- d'autre part, les éléments de J_x sont les multiples de B.

Par définition, on dit que B est le polynôme minimal de la suite x, que le degré de B est l'ordre minimal de x, et que la relation $B(\sigma)(x) = 0$ est la relation de récurrence minimale de x.

I.B - Quelques exemples

I.B.1) Dans $\mathbb{K}^{\mathbb{N}}$, quelles sont les suites récurrentes linéaires d'ordre 0? d'ordre 1?

Quelles sont les suites de $\mathbb{K}^{\mathbb{N}}$ dont le polynôme minimal est $(X-1)^2$?

I.B.2) On considère la suite x définie par $x_0=0, x_1=-1, x_2=2$ et par la relation de récurrence linéaire d'ordre $3: \forall n \in \mathbb{N}, \ x_{n+3}=-3x_{n+2}-3x_{n+1}-x_n$.

Déterminer le polynôme minimal (et donc l'ordre minimal) de la suite x.

I.C- L'espace vectoriel $\mathcal{R}_A(\mathbb{K})$ et deux cas particuliers

Soit $A = \sum_{k=0}^{p} a_k X^k$ un élément de $\mathbb{K}[X]$, de degré $p \geqslant 0$, que sans perdre de généralité on suppose unitaire.

I.C.1) Prouver que $\mathcal{R}_A(\mathbb{K})$ est un sous-espace vectoriel de dimension p de $\mathbb{K}^{\mathbb{N}}$ et qu'il est stable par σ (on ne demande pas ici de déterminer une base de $\mathcal{R}_A(\mathbb{K})$, car c'est l'objet des questions suivantes).

I.C.2) Déterminer $\mathcal{R}_A(\mathbb{K})$ quand $A = X^p$ (avec $p \ge 1$) et en donner une base.

I.C.3) Dans cette question, on suppose $p \ge 1$ et $A = (X - \lambda)^p$, avec λ dans \mathbb{K}^* .

On note $E_A(\mathbb{K})$ l'ensemble des x de $\mathbb{K}^{\mathbb{N}}$ de terme général $x_n = Q(n)\lambda^n$, où Q est dans $\mathbb{K}_{p-1}[X]$.

- a) Montrer que $E_A(\mathbb{K})$ est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$ dont on précisera la dimension.
- b) Montrer l'égalité $\mathcal{R}_A(\mathbb{K}) = E_A(\mathbb{K})$.

I.D – Étude de $\mathcal{R}_A(\mathbb{K})$ quand A est scindé sur \mathbb{K}

Dans cette question, on suppose que le polynôme A est scindé sur \mathbb{K} .

Plus précisément, on note $A=X^{m_0}\prod_{k=1}^d(X-\lambda_k)^{m_k},$ où :

– les scalaires $\lambda_1, \lambda_2, \dots, \lambda_d$ sont les racines non nulles distinctes éventuelles de A dans \mathbb{K} , et m_1, m_2, \dots, m_d sont leurs multiplicités respectives (supérieures ou égales à 1). Si A n'a pas de racine non nulle, on convient d

que
$$d = 0$$
 et que $\prod_{k=1}^{a} (X - \lambda_k)^{m_k} = 1$;

- l'entier m_0 est la multiplicité de 0 comme racine éventuelle de A. Si 0 n'est pas racine de A, on adopte la convention $m_0 = 0$.

Avec ces notations, on a $\sum_{k=0}^{d} m_k = \deg A = p$.

En utilisant le théorème de décomposition des noyaux, montrer que $\mathcal{R}_A(\mathbb{K})$ est l'ensemble des suites $x = (x_n)_{n \geqslant 0}$ de $\mathbb{K}^{\mathbb{N}}$ telles que :

$$\forall n \geqslant m_0, \ x_n = \sum_{k=1}^d Q_k(n) \, \lambda_k^n$$

où, pour tout k de $\{1,\ldots,d\}$, Q_k est dans $\mathbb{K}[X]$ avec deg $Q_k < m_k$.

Remarque : si d=0, la somme $\sum_{k=1}^d Q_k(n) \lambda_k^n$ est par convention égale à 0.

II Matrices de Hankel associées à une suite récurrente linéaire

Soit x dans $\mathbb{K}^{\mathbb{N}}$. Pour tout entier n de \mathbb{N}^* , on note $H_n(x)$ la matrice de $\mathcal{M}_n(\mathbb{K})$ définie par

$$\forall (i,j) \in \{1,\ldots,n\}^2, [H_n(x)]_{i,j} = x_{i+j-2}$$

On a par exemple
$$H_2(x) = \begin{pmatrix} x_0 & x_1 \\ x_1 & x_2 \end{pmatrix}$$
, $H_3(x) = \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \\ x_2 & x_3 & x_4 \end{pmatrix}$ et $H_4(x) = \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 & x_4 \\ x_2 & x_3 & x_4 & x_5 \\ x_3 & x_4 & x_5 & x_6 \end{pmatrix}$.

On identifie toute matrice de $\mathcal{M}_n(\mathbb{K})$ avec l'endomorphisme de \mathbb{K}^n qui lui est associé dans la base canonique. On identifie de même tout élément de \mathbb{K}^n avec la matrice-colonne qui lui correspond.

II.A - Calcul du rang de $H_n(x)$ quand x est une suite récurrente linéaire

Dans cette section, x est une suite récurrente linéaire d'ordre minimal $p \ge 1$ et de polynôme minimal B.

II.A.1) Montrer que la famille $(\sigma^k(x))_{0 \leqslant k \leqslant p-1}$ est une base de $\mathcal{R}_B(\mathbb{K})$.

En déduire, pour tout
$$n$$
 de \mathbb{N}^* , le rang de la famille $(\sigma^k(x))_{0 \leqslant k \leqslant n-1}$.

II.A.2) Montrer que si $n \geqslant p$, l'application $\varphi_n : \begin{cases} \mathcal{R}_B(\mathbb{K}) \to \mathbb{K}^n \\ v \mapsto (v_0, \dots, v_{n-1}) \end{cases}$ est injective.

En déduire que si $n \ge p$, alors rang $(H_n(x)) = p$.

Remarque : il est clair que ce résultat reste vrai si p=0 (car la suite x et les matrices $H_n(x)$ sont nulles).

II.B - Détermination de la récurrence minimale d'une suite récurrente linéaire

Soit x une suite récurrente linéaire non nulle, d'ordre $m \ge 1$. Soit $p = \operatorname{rang}(H_m(x))$.

II.B.1) Montrer que x est d'ordre minimal p et que le noyau de $H_{p+1}(x)$ est une droite vectorielle dont un vecteur directeur peut s'écrire $(b_0, \ldots, b_{p-1}, 1)$, où b_0, \ldots, b_{p-1} sont dans \mathbb{K} .

II.B.2) Avec ces notations, montrer que le polynôme minimal de x est $B = X^p + b_{p-1}X^{p-1} + \cdots + b_1X + b_0$.

II.C - Étude d'un exemple

Dans cette question, on considère la suite $x=(x_n)_{n\geqslant 0}$ définie par

$$x_0 = 1$$
, $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, et $\forall n \in \mathbb{N}$, $x_{n+4} = x_{n+3} - 2x_{n+1}$

- II.C.1) Dans le langage informatique de votre choix (que vous préciserez), écrire une procédure (ou fonction) de paramètre un entier naturel n et renvoyant la liste (ou la séquence, ou le vecteur) des x_k pour $0 \le k \le n$.
- **II.C.2)** Préciser le rang de $H_n(x)$ pour tout entier n de \mathbb{N}^* et indiquer l'ordre minimal de la suite x.
- **II.C.3)** Déterminer la relation de récurrence minimale de la suite x.
- II.C.4) Donner une formule permettant pour tout $n \ge 1$ de calculer directement x_n .
- **II.C.5)** On décide de modifier *uniquement* la valeur de x_0 , en posant cette fois $x_0 = \frac{1}{2}$.

Avec cette modification, reprendre rapidement l'étude des questions II.C.2 et II.C.3.

Valeurs propres des matrices de Hankel réelles

Dans toute cette partie, n désigne un entier supérieur ou égal à 3.

On note p = [(n+1)/2] la partie entière de (n+1)/2.

On a donc n = 2p si n est pair, et n = 2p - 1 si n est impair.

 \mathbb{R}^n est muni de sa structure euclidienne canonique dont le produit scalaire est noté $\langle \cdot, \cdot \rangle$ et la norme associée est notée $\|\cdot\|$.

Un élément de $x = (x_1, \dots, x_n)$ de \mathbb{R}^n est dit ordonné s'il vérifie si $x_1 \geqslant x_2 \geqslant \dots \geqslant x_n$.

On dit qu'une matrice $M=(m_{i,j})_{1\leqslant i,j\leqslant n}$ de $\mathcal{M}_n(\mathbb{R})$ est une matrice de Hankel s'il existe $a=(a_0,\ldots,a_{2n-2})\in$ \mathbb{R}^{2n-1} tel que pour tous i et j de $\{1,\ldots,n\}$, $m_{i,j}=a_{i+j-2}$. Une telle matrice est notée M=H(a).

III.A - Préliminaires

III.A.1) Montrer que si M est une matrice de Hankel de taille n alors elle admet n valeurs propres réelles $\lambda_1, \dots, \lambda_n$ (chacune étant répétée autant de fois que sa multiplicité) que l'on peut classer dans l'ordre décroissant $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n$.

On note alors $\operatorname{Spo}(M)=(\lambda_1,\ldots,\lambda_n)$ le spectre ordonné de la matrice M, c'est-à-dire le n-uplet ordonné des valeurs propres de M.

On s'intéresse au problème suivant : à quelles conditions un n-uplet ordonné de réels peut-il être le n-uplet ordonné des valeurs propres d'une matrice de Hankel de taille n?

III.A.2) Montrer que si $\lambda \in \mathbb{R}^*$ alors le n-uplet $(\lambda, \dots, \lambda)$ n'est pas le n-uplet ordonné des valeurs propres d'une matrice de Hankel de taille n.

III.B - Une première condition nécessaire

Soit $a = (a_0, \ldots, a_{2n-2})$ un élément de \mathbb{R}^{2n-1} et M = H(a). On note $\operatorname{Spo}(M) = (\lambda_1, \ldots, \lambda_n)$. On définit deux vecteurs $v = (v_1, \dots, v_n)$ et $w = (w_1, \dots, w_n)$ de \mathbb{R}^n par

$$\begin{cases} v_i = \sqrt{2i - 1} \ a_{2(i-1)} \text{ et } w_i = \frac{1}{\sqrt{2i - 1}} & \text{si } i \in \{1, \dots, p\} \\ v_i = \sqrt{2n - 2i + 1} \ a_{2(i-1)} \text{ et } w_i = \frac{1}{\sqrt{2n - 2i + 1}} & \text{si } i \in \{p + 1, \dots, n\} \end{cases}$$

On pose enfin $K_n = n - ||w||^2$.

III.B.1) Montrer que

$$\sum_{i=1}^{n} \lambda_i = \sum_{k=0}^{n-1} a_{2k} \quad \text{et} \quad \sum_{i=1}^{n} \lambda_i^2 = \sum_{k=0}^{n-1} (k+1) a_k^2 + \sum_{k=n}^{2n-2} (2n-k-1) a_k^2$$

III.B.2) Montrer que $\langle v, w \rangle = \sum_{i=1}^{n} \lambda_i$ et $||v||^2 \leqslant \sum_{i=1}^{n} \lambda_i^2$.

III.B.3) Montrer que $\sum_{1\leqslant i < j\leqslant n} (\lambda_i - \lambda_j)^2 = n \sum_{i=1}^n \lambda_i^2 - \langle v,w \rangle^2 \text{ et en déduire l'inégalité}:$

$$\sum_{1 \le i < j \le n} (\lambda_i - \lambda_j)^2 \geqslant K_n \sum_{i=1}^n \lambda_i^2$$
(III.1)

III.B.4) Vérifier que si n = 3, la condition III.1 équivant à : $2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2) \ge 3(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3)$.

III.C - D'autres conditions nécessaires

Dans cette partie, on *admet* le résultat suivant : si A et B sont deux matrices de $S_n(\mathbb{R})$ dont les valeurs propres respectives (avec répétitions éventuelles) sont $\alpha_1 \ge \ldots \ge \alpha_n$ et $\beta_1 \ge \ldots \ge \beta_n$ alors

$$\sum_{i=1}^{n} \alpha_i \beta_{n+1-i} \leqslant \operatorname{tr}(AB) \leqslant \sum_{i=1}^{n} \alpha_i \beta_i \tag{III.2}$$

Soit $B = (b_{i,j})_{1 \leq i,j \leq n}$ la matrice de $\mathcal{M}_n(\mathbb{R})$ définie par

$$b_{1,2p-1} = 1$$
 $b_{2p-1,1} = 1$ $b_{p,p} = -2$

tous les autres coefficients de B étant nuls (on rappelle que p désigne la partie entière de (n+1)/2).

III.C.1) Déterminer le spectre ordonné de la matrice B.

III.C.2) Soit $a = (a_0, \dots, a_{2n-2})$ un élément de \mathbb{R}^{2n-1} et M = H(a).

On note $\operatorname{Spo}(M) = (\lambda_1, \dots, \lambda_n)$.

Établir que

$$\lambda_1 - \lambda_{n-1} - 2\lambda_n \geqslant 0$$
 et $2\lambda_1 + \lambda_2 - \lambda_n \geqslant 0$ (III.3)

III.D - Cas n = 3

Soient λ_1 , λ_2 , λ_3 trois réels vérifiant

$$\lambda_1 \geqslant \lambda_2 \geqslant \lambda_3$$
 $\lambda_1 - \lambda_2 - 2\lambda_3 \geqslant 0$ $2\lambda_1 + \lambda_2 - \lambda_3 \geqslant 0$

On définit la matrice de Hankel $M = H(a, b, c, b, a) = \begin{pmatrix} a & b & c \\ b & c & b \\ c & b & a \end{pmatrix}$, où a, b, c sont réels.

III.D.1) Calculer les valeurs propres de M (sans chercher à les ordonner).

III.D.2) Expliciter a, b, c (avec $b \ge 0$) en fonction de $\lambda_1, \lambda_2, \lambda_3$, de telle sorte que $\text{Spo}(M) = (\lambda_1, \lambda_2, \lambda_3)$.

III.D.3) Que peut-on déduire du résultat précédent, quant à la condition III.3 dans le cas n = 3? En utilisant un triplet ordonné $(\lambda, 1, 1)$, montrer que pour n = 3, la condition III.1 n'est pas suffisante.

