RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION Algorithmique et Programmation Durée : 3h EXAMEN DU BACCALAURÉAT - SESSION 2022 NOUVEAU RÉGIME Section : Sciences de l'informatique Coefficient de l'épreuve : 2

	00000			
N° d'inscription				

Le sujet comporte 4 pages numérotées de 1/4 à 4/4

Exercice 1 (2 points	
Soit l'algorithme de la fond	etion Inconnu suivant :
Fonction Inconnu DEBUT	():
Si Long(ch)	= 0 Alors
R	etourner 0
Sinon	
Si c	h[Long(ch)-1] € ["0""9"] Alors
	d ← Valeur (ch[Long(ch)-1])
	Retourner d + Inconnu (Sous_chaine(ch, 0, Long(ch)-1))
Sinc	on
	Retourner Inconnu (Sous_chaine(ch, 0, Long(ch)-1))
Fins	si
Finsi	
FIN	

Travail demandé:

- 1- Réécrire sur votre copie d'examen l'entête de la fonction **Inconnu** en complétant la déclaration des paramètres et le type de retour.
- 2- Dresser le tableau de déclaration des objets locaux de la fonction Inconnu.
- 3- Quel est le résultat retourné par la fonction Inconnu pour ch = "Bac22G3".
- 4- Déduire le rôle de la fonction Inconnu.

Exercice 2 (3,5 points)

Une séquence contigüe dans une matrice carrée M de NxN entiers, est une séquence formée d'au moins deux éléments successifs se trouvant sur la même ligne et dont leur somme est égale à zéro.

A partir d'une matrice M remplie aléatoirement, on se propose de remplir un fichier texte F par les positions des séquences contigües, se trouvant dans les lignes de cette matrice, comme suit :

- Dans la première ligne du fichier F, écrire le titre "Les séquences contigües des lignes".
- Pour chaque séquence contigüe trouvée, écrire ses positions dans une ligne du fichier F en les séparant par des espaces sachant que les positions d'une séquence sont :
 - Le numéro de la ligne de la matrice où se trouve la séquence.
 - Le numéro de la colonne de début de la séquence.
 - Le numéro de la colonne de fin de la séquence.

Exemple: Pour N = 5 et la matrice M suivante:

	0	1	2	3	4
0	20	2	-5	3	2
1	10	3	0	60	2
2	1	2	-3	2	-2
3	30	-5	40	50	2
4	-7	4	2	1	-9

Le contenu du fichier F sera:

Les séque	ences co	ntigües o	les ligno	es
013				
024				
202				
204				
234				
403				

En effet, pour la ligne 0 de la matrice M on a : M[0,1]+M[0,2]+M[0,3]=0 donc cette séquence est contigüe et se trouve dans la ligne numéro 0, le numéro de sa colonne de début est 1 et le numéro de sa colonne de fin est 3. Dans le fichier F on écrit la ligne "0 1 3".

Travail demandé:

Ecrire un algorithme d'une procédure Remplir_F(M, N, F) permettant de remplir un fichier F par les séquences contigües se trouvant dans les lignes d'une matrice M de NxN entiers comme décrit précédemment.

N.B.:

- Une ligne de la matrice M peut contenir plusieurs séquences contigües.
- Le candidat n'est pas appelé à :
 - saisir N et M.
 - écrire l'instruction d'ouverture du fichier F.

Exercice 3 (3 points)

Soient x un réel positif et U une suite définie par :

$$\begin{cases} U_0 = \frac{(1+x)}{2} \\ U_n = \frac{1}{2} \left(U_{n-1} + \frac{x}{U_{n-1}} \right) & pour tout \ n > 0 \end{cases}$$

Le terme U_n est une valeur approchée de la racine carrée de x à epsilon prés, si $\left| \frac{u_n - u_{n-1}}{u_{n-1}} \right| < epsilon$

Travail demandé:

- 1- Quel est l'ordre de récurrence de la suite U ? Justifiez votre réponse.
- 2- Ecrire un algorithme d'une fonction RacineU(x) qui retourne une valeur approchée de la racine carrée d'un réel positif x à epsilon prés (avec epsilon = 10^{-4}) en utilisant la suite U définie précédemment.

N.B.: Le candidat n'est pas appelé à saisir x.

■ Exercice 4 (4,5 points)

Soit T un tableau de N entiers trié dans l'ordre croissant. Pour rechercher un entier x dans le tableau T, on peut utiliser une méthode de recherche dite "Trichotomique" dont le principe est le suivant :

- Etape 1: On compare x avec $T[p_1]$ et $T[p_2]$, sachant que $p_1=(2*d+f)$ div 3 et $p_2=(d+2*f)$ div 3 (où d et f sont respectivement l'indice du début et l'indice de la fin du tableau):
 - Si x est égal à T[p₁] ou égal à T[p₂], la recherche est terminée.
 - Si x est inférieur à T[p₁], on refait la recherche dans la partie gauche du tableau (de l'indice d à l'indice p₁-1).

Sinon Si x est inférieur à $T[p_2]$, on refait la recherche dans la partie du milieu du tableau (de l'indice p_1+1 à l'indice p_2-1).

Sinon (x est supérieur à $T[p_2]$), on refait la recherche dans la partie droite du tableau (de l'indice p_2+1 à l'indice f).

Etape 2: On refait Etape 1 pour la partie sélectionnée du tableau jusqu'à trouver l'élément recherché (x est égal à $T[p_1]$ ou égal à $T[p_2]$) ou l'élément recherché n'existe pas (d > f).

Exemple: Pour x = 10, N = 8 et le tableau T suivant:

- On a d = 0 et f = 7 donc:

$$p_1 = (2*0+7) \text{ div } 3 = 7 \text{ div } 3 = 2 \text{ et } p_2 = (0+2*7) \text{ div } 3 = 14 \text{ div } 3 = 4$$

$$T[p_1] = T[2] = 0 \neq x$$

$$T[p_2] = T[4] = 6 \neq x$$

x est supérieur à $T[p_2]$, donc on refait la recherche dans la partie droite du tableau de l'indice p_2+1 (4+1=5) à l'indice 7

- Pour la partie sélectionnée du tableau d = 5 et f = 7 donc :

$$p_1 = (2*5+7) \text{ div } 3 = 17 \text{ div } 3 = 5 \text{ et } p_2 = (5+2*7) \text{ div } 3 = 19 \text{ div } 3 = 6$$

 $T[p_1] = T[5] = 10 = x$, donc la recherche est terminée et x se trouve dans le tableau.

Travail demandé:

Ecrire un algorithme d'une fonction récursive $\operatorname{Rech_Trich}(T,d,f,x)$ qui permet de vérifier l'existence d'un entier x dans un tableau T d'entiers trié dans l'ordre croissant en utilisant la méthode de recherche Trichotomique décrite précédemment. Les indices des cases du tableau T commencent de d jusqu'à f (avec d < f).

N.B.: Le candidat n'est pas appelé à saisir T, d, f et x.

Exercice 5 (7 points)

Un nombre décimal n est dit brésilien s'il possède, dans une base B (avec $2 \le B \le n-2$), une représentation qui s'écrit sous la forme de p chiffres égaux, c'est-à-dire : $n = (kkk...kkk)_B$ p chiffres

Exemples:

- 7 est un nombre brésilien car $7 = (111)_2$
- 3124 est un nombre brésilien car $3124 = (44444)_5$
- 1170 est un nombre brésilien car $1170 = (2222)_8$
- 20 est un nombre brésilien car $20 = (22)_9$
- 204 est un nombre brésilien car $204 = (CC)_{16}$
- 9 n'est pas un nombre brésilien car $9 = (1001)_2 = (100)_3 = (21)_4 = (14)_5 = (13)_6 = (12)_7$ et aucune de ces écritures n'est brésilienne.

On se propose d'écrire un algorithme d'une procédure **Gen_Bres** qui permet de créer et de remplir un fichier d'enregistrements nommé "**F_Brésilien.dat**" par les nombres brésiliens contenus dans un fichier texte existant nommé "**Nombres.txt**", sachant que chaque ligne du fichier texte "**Nombres.txt**" contient un nombre décimal et chaque enregistrement du fichier "**F_Brésilien.dat**" comportera les champs suivants :

- N : Le nombre décimal.
- B: Une base dans laquelle le nombre N s'écrit sous la forme de p chiffres égaux avec $2 \le B \le 16$.
- Rep: La représentation du nombre décimal N dans la base B.

Travail demandé:

- 1- Donner une déclaration d'un type pour le fichier d'enregistrement "F_Brésilien.dat" ainsi que celles des types nécessaires à sa déclaration.
- 2- Donner en algorithmique les instructions d'ouverture des deux fichiers "Nombres.txt" et "F_Brésilien.dat", sachant que le fichier à créer et à remplir "F_Brésilien.dat" et le fichier source "Nombres.txt" se trouvent sur la racine du disque D.
- 3- Ecrire un algorithme de la procédure **Gen_Bres**, sachant que le fichier "**Nombres.txt**" est déjà rempli dans le programme appelant.