12. Functions

Recall:

 \diamond A function $f:A \rightarrow B$ is called **injective** or "1-1" if

for all $a_1, a_2 \in A$, the implication $(f(a_1) = f(a_2)) \longrightarrow (a_1 = a_2)$ is true.

 \diamond A function $f:A\to B$ is called **surjective** or "onto" if

for all beB, there is at least one a $\in A$ such that f(a) = b ie $f^{-1}(b) \neq \emptyset$.

The properties "injective" and "surjective" are independent properties. Any combination of these two properties is possible.

Consider the following functions from \mathbb{Z} to \mathbb{Z}

$$id_{\mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{Z}$$
 $id_{\mathbb{Z}}(k) = k$

tide is both injective and surjective

$$S: \mathbb{Z} \rightarrow \mathbb{Z}$$

 $S(k) = k+1$

ts is both injective and surjective

* Note the "floor function"

 $LJ: \mathbb{R} \rightarrow \mathbb{Z}$ is defined by

 $[x]=\max\{n\in\mathbb{Z}:n\leq x\}$

Ex [18]=1 Ex [-5]=-5

EX [-1.8] = -2 Ex [1.999] = 1

$$g: \mathbb{Z}_{\bullet} \to \mathbb{Z}_{\bullet}$$
$$g(k) = \lfloor k/2 \rfloor$$

g is surjective but <u>not</u> injective

$$-h(k) = k^3$$

Th is injective but <u>not</u> surjective

$$f: \mathbb{Z} \to \mathbb{Z}$$

$$f(k) = 55$$

f is neither injective nor surjective

Exercise give proofs or counterexamples for each of the above functions and properties

^{*} These notes are solely for the personalism was a solely for the personalism was a solely for the personalism was a solely for the personalism which is the solely for the personal solely fo

BIJECTIONS

A function $f: A \rightarrow B$ is called a **bijection** if

f is both injective and surjective.

Example 12.1. Let $g: \mathbb{R}^- \times \mathbb{R}^+ \to \mathbb{R}^- \times \mathbb{R}^-$ be the function defined as follows:

$$g(x,y) = \left(\frac{x}{y}, 3xy\right) \qquad \qquad \underbrace{\text{Note:}}_{\text{it follows that}} \text{ x o R- and y o R+}_{\text{it follows that}} \text{ x/y o R- and 3xy o R-}_{\text{it follows}}$$

Prove that g is a bijection. \rightarrow we must prove that g is both injective and surjective

Recall:
$$\mathbb{R}^+ = \{x \in \mathbb{R}: x > 0\}$$
 and $\mathbb{R}^- = \{x \in \mathbb{R}: x < 0\}$

[surjective]. Let $(r_i s) \in \mathbb{R}^- \times \mathbb{R}^-$ be an arbitrary element of g's codomain.

(goal: prove that there exists some
$$(x_iy) \in \mathbb{R}, x\mathbb{R}, t$$
 such that $g(x_iy) = (r_is)$)

We must reverse-engineer what (x,y) need to equal in terms of (r,s)

$$\implies$$
 we need $(x,y) \in g$'s domain such that $(\frac{x}{y}, 3xy) = (r,s)$

$$\Rightarrow$$
 we need $\frac{x}{y} = r$ and $3xy = s$

$$\Rightarrow x = ry \text{ and } 3(ry)y = 5 \Rightarrow y^2 = \frac{5}{3r} \Rightarrow y = \frac{5}{3r} \text{ or } y$$

Since
$$r_i s \in \mathbb{R}^-$$
, it follows that $x = r_i \frac{s}{3r} \in \mathbb{R}^-$ and $y = r_i \frac{s}{3r} \in \mathbb{R}^+$

:.
$$(x_iy) \in \mathbb{R}^- \times \mathbb{R}^+$$
 (g's domain).

Moreover,

$$g(x_1y) = g(r_1 \frac{5}{3r}, \sqrt{\frac{5}{3r}}) = (r_1 \frac{5}{3r}, \sqrt{\frac{5}{3r}}) = (r_1 s)$$
. i. g is surjective

[injective]. Let (a_1b) , $(c_1d) \in \mathbb{R} \times \mathbb{R}^+$ be arbitrary elements of g's domain.

Assume
$$g(a_1b) = g(c_1d)$$
. (goal: prove $(a_1b) = (c_1d)$)
Then $(\frac{a}{b}, 3ab) = (\frac{c}{a}, 3cd)$ (by def of g)

$$\Rightarrow \frac{a}{b} = \frac{c}{d} \text{ and } 3ab = 3cd$$

$$\Rightarrow a = \frac{cb}{d} \Rightarrow 3(\frac{cb}{d})b = 3cd$$

$$\Rightarrow b^2 = d^2$$

$$\Rightarrow b = d \text{ or } b = d$$

 \Rightarrow b=d or b=d since b, d $\in \mathbb{R}^+$, they cannot have opposite signs

$$\therefore b=d_1 \implies a = \frac{cb}{b} \text{ (plug @into 1)} \implies a=c$$

.. we proved that
$$(g(a_1b) = g(c_1d)) \rightarrow ((a_1b) = (c_1d))$$
 .. g is injective.

Since g is both surjective and injective, it's a bijection.

CARDINALITIES OF INFINITE SETS

Note. If *A* and *B* are finite sets and $f: A \to B$ is a bijection, then |A| = |B|.

For infinite sets, the way we compare their cardinality is through bijections. We define the notion of equality of cardinalities of infinite sets as follows:

|A| = |B| if and only if there exists a bijection from A to B.

An infinite set S is called **countable** if $|S| = |\mathbb{N}|$.

$$(injective) \land (surjective)$$

 $(IA| \stackrel{\checkmark}{\leftarrow} |B|) \land (IB| \stackrel{\checkmark}{\leftarrow} |A|)$

Ex.
$$f: \mathbb{Z} \to \mathbb{N}$$
 defined by $f(n) = \begin{cases} 2n & \text{if } n > 0 \\ 2|n|-1 & \text{if } n < 0 \end{cases}$ is 1-1 and onto (verify this!)

* there is a bijection from
$$\mathbb{Z}$$
 to \mathbb{N}

$$|\mathbb{Z}| = |\mathbb{N}|$$

$$|\mathbb{Z}| = |\mathbb{N}|$$

$$|\mathbb{Z}| = |\mathbb{N}|$$

Fact. There is no bijection from Buto Nub Therefore, the strafetudo by is called uncountable.

The identity function.

Let *A* be any set.

The **identity function on** A, denoted id_A , is the function $id_A : A \rightarrow A$ defined by

$$id_A(x) = x$$
 for all $x \in A$.

In particular, id, is a bijection from the set A to itself.

COMPOSITIONS OF FUNCTIONS

Let $f: A \to B$ and let $g: B \to C$ be functions.

The **composition** g of f, denoted $g \circ f$, is the function $g \circ f : A \to C$ defined by

$$(g \circ f)(a) = g(f(a))$$
 for all $a \in A$.

Example 12.2. Let $A = \{a, b, c, d, e\}$, $B = \{1, 2, 3, 4\}$, and $C = \{\alpha, \beta, \gamma\}$.

Let $f:A\to B$ and $g:B\to C$ be functions defined as follows:

$$g \circ f(a) = g(f(a)) = g(1) = \infty$$

 $g \circ f(b) = g(f(b)) = g(4) = \gamma$
 $g \circ f(c) = g(f(c)) = g(1) = \infty$

$$g \circ f(a) = g(f(a)) = g(a) = \gamma$$

$$gof(e) = g(f(e)) = g(a) = \gamma$$

$$f: A \rightarrow B$$
 $g: B \rightarrow C$ $g \circ f: A \rightarrow C$

Question. In Example 12.2, does $f \circ g$ make sense? If so, what is $f \circ g$?

fog(x) = f(g(x)) so x needs to be in g's domain B.

however, $g(x) \in C$ (g's codomain) and $C \not= A$ (f's domain)

fog is not defined.

Note. In order for the composition $f \circ g$ to be defined, we need the image of the domain of g (a subset of the codomain of g) to be a subset of the domain of f.

<u>Informally</u>, for fog to make sense, we need g to "give" f elements that are in the domain of f.

Example 12.3. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 5x - 7 and $g(x) = x^2$. Find $g \circ f$.

f's domain
gof:
$$\mathbb{R} \rightarrow \mathbb{R}$$

gof (x) = g(f(x))
= g(5x-7)
= (5x-7)²
= 25x²-70x + 49

g's domain

$$fog : \mathbb{R} \rightarrow \mathbb{R}$$

$$fog(x) = f(g(x))$$

$$= f(x^{2})$$

$$= 5(x^{2}) + 7$$

$$= 5x^{2} + 7$$

Note. In general, $f \circ g \neq g \circ f$, even if both compositions are defined.

INVERSE FUNCTIONS

Let f: A→B be a function.

The <u>Inverse</u> of f (if it exists) is the function $f^{-1}:B \rightarrow A$ such that

$$f^{-1}of = id_A$$
 and $fof^{-1} = id_B$

Equivalently,

the <u>Inverse</u> of f (if it exists) is the function $f^{-1}:B \rightarrow A$ such that

for all
$$a \in A$$
, $b \in B$, $f^{-1}(b) = a$ if and only if $f(a) = b$.

This document is available tree of charge on **Studocu**

Example 12.4. For the function $g: \mathbb{R}^- \times \mathbb{R}^+ \to \mathbb{R}^- \times \mathbb{R}^-$, defined by $g(x,y) = \left(\frac{x}{y}, 3xy\right)$, verify that g's inverse $g^{-1}: \mathbb{R}^- \times \mathbb{R}^- \to \mathbb{R}^- \times \mathbb{R}^+$ is given by the rule

$$g^{-1}(r,s) = \left(r\sqrt{\frac{s}{3r}}, \sqrt{\frac{s}{3r}}\right)$$

Let
$$(r,s) \in \mathbb{R}, \times \mathbb{R}^{-1}$$

 $(g \circ g^{-1})(r,s) = g(g^{-1}(r,s))$
 $= g(r) \frac{s}{3r}, \sqrt{\frac{s}{3r}})$
 $= (r) \frac{s}{3r}, \sqrt{\frac{s}{3r}}, \sqrt{\frac{s}{3r}}$
 $= (r,s)$ (r,s) (r,s)
 $= (r,s)$ (r,s)

Let
$$(x_{i}y) \in \mathbb{R}^{-} \times \mathbb{R}^{+}$$

 $(g^{-1} \circ g)(x_{i}y) = g^{-1}(g(x_{i}y))$
 $= g^{-1}(\frac{x}{y}, 3xy)$
 $= (\frac{x}{y}, \frac{3xy}{3(\frac{x}{y})}, \frac{3xy}{3(\frac{x}{y})})$
 $= (\frac{x}{y}, \frac{3xy}{3(\frac{x}{y})}, \frac{3xy}{3(\frac{x}{y})})$
 $= (x_{i}y)(x_{i}) + because y \in \mathbb{R}^{+}$
we know $y = \sqrt{y^{2}}$
 $\vdots \cdot g^{-1} \circ g = id \mathbb{R}^{-} \times \mathbb{R}^{+}$

Some facts about inverse functions

- · Not every function has an inverse.
- If a function $f: A \rightarrow B$ has an inverse, then we call f invertible.
- If f is Invertible, then its inverse is <u>unique</u> meaning there is one and <u>only one</u> function from Bto A whose compositions with f give the respective identity functions.
- Theorem Let f: A→B be a function.

 Then f is invertible if and only if f is a bijection.

STUDY GUIDE

Important terms and con	icepts:		
□ bijection	\Box identity function	\square composition	\square inverse of $g: A \to B$
injective & surjective	for all $x \in A$, $id_A(x) = x$	$(f \circ g)(x) = f(g(x))$	$g^{-1} \circ g = \mathrm{id}_A$ $g \circ g^{-1} = \mathrm{id}_B$
Exercises	Sup.Ex. §5 # 1, 2, 3, 4, 5, 8, 10, 11 Rosen §2 3 # 1, 9, 10, 11, 12, 13, 14, 15, 33, 34, 35, 36, 37, 38, 71		