

# PODER EXECUTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE RORAIMA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

RELATÓRIO DO PROJETO: PROCESSADOR LH

#### **ALUNOS:**

Thiago Thomáz Santana do Nascimento - 2021021472 João Eduardo Viana Leonel - 2021000679

> Dezembro de 2022 Boa Vista/Roraima



# PODER EXECUTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE RORAIMA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

RELATÓRIO DO PROJETO: PROCESSADOR LH

Dezembro de 2022 Boa Vista/Roraima

#### Resumo

Este trabalho aborda a criação de um projeto de processador uni-ciclo de 8 bits, com base na arquitetura MIPS. Todos os componentes usados e necessários serão listados e comentados durante este relatório, tendo como objetivo o melhor esclarecimento dos usos e listagem de possíveis usos do mesmo.

## Conteúdo

| 1 | Espe  | ecificação                    | 7  |
|---|-------|-------------------------------|----|
|   | 1.1   | Plataforma de desenvolvimento | 7  |
|   | 1.2   | Conjunto de instruções        | 7  |
|   | 1.3   | Descrição do Hardware         | 8  |
|   | 1.3.  | 1 ULA                         | 8  |
|   | 1.3.2 | 2 Bando de Registradores      | 8  |
|   | 1.3.3 | 3 Multiplexador               | 8  |
|   | 1.3.4 | 4 Memória RAM                 | 8  |
|   | 1.3.  | 5 Memória ROM                 | 8  |
|   | 1.3.0 | Somador de 8 Bits mais 4      | 9  |
|   | 1.3.  | 7 Unidade de Controle         | 9  |
|   | 1.4   | Datapath e Imagens            | 9  |
| 2 | Sim   | ulações e Testes              | 13 |
| 3 | Con   | siderações finais             | 14 |

# Lista de Figuras

| Figura 1 - Interface Inicial Logisim    | 7  |
|-----------------------------------------|----|
| Figura 2 - Data Path Completo           | 10 |
| Figura 3 - Ula                          | 10 |
| Figura 4.1 - Registrador de 8 Bits      | 11 |
| Figura 4.2 - Banco de Registradores     | 11 |
| Figura 5 - Multiplexador de 4 Entradas  | 12 |
| Figura 6 - Memória RAM                  | 12 |
| Figura 7 - Memória ROM                  | 13 |
| Figura 8 - Somador de 8 Bits com mais 4 | 13 |
| Figura 9 - Unidade de Controle          | 14 |

## Lista de Tabelas

| Tabela 1 - Tabela que mostra a lista de Opcodes utilizadas pelo processador LH | 8 |
|--------------------------------------------------------------------------------|---|
| Tabela 2 - Detalhes das flags de controle do processador                       | 9 |

### 1 Especificação

Nesta seção é apresentado o conjunto de itens para o desenvolvimento do processador LH, bem como a descrição de cada etapa da construção do processador.

#### 1.1 Plataforma de desenvolvimento

Para a implementação do processador LH foi utilizado a IDE: Logisim.



Figura 1 - Interface Inicial Logisim

#### 1.2 Conjunto de Instruções

O processador LH possui quatro registradores: Reg0, Reg1, Reg2 e Reg3. Assim como 6 formatos de instruções de 8 bits cada, Instruções do **tipo R, I e J**.

#### Tipos de Instruções:

- Formato do Tipo I: Este formato traz consigo as instruções Add e Sub.

| Opcode - 4 bits | Registradores - 2 bits | 2 bit vago |
|-----------------|------------------------|------------|
|-----------------|------------------------|------------|

- Formato do Tipo R: Este formato traz consigo as instruções Load, Store e Branch.

| Opcode - 4 bits Registradores - 2 bits | Num - 1 bits | 1 bit vago |
|----------------------------------------|--------------|------------|
|----------------------------------------|--------------|------------|

- Formato do Tipo J: Este formato traz uma única instrução consigo, sendo esta o JUMP.

| Opcode - 4 bits | Num - 4 bits |
|-----------------|--------------|
|-----------------|--------------|

#### Visão geral das instruções do Processador LH

Tabela 1 – Tabela que mostra a lista de Opcodes utilizadas pelo processador LH

| Opcode | Nome | Formato | Breve Descrição      |  |
|--------|------|---------|----------------------|--|
| 000    | ADD  | 1       | Soma                 |  |
| 001    | SUB  | I       | Subtração            |  |
| 010    | BEQ  | R       | Igual à              |  |
| 011    | LW   | R       | Carregar da memória  |  |
| 100    | sw   | R       | Armazenar na memória |  |
| 101    | JUMP | J       | Pular                |  |

#### 1.3 Descrição do Hardware

Nesta seção, serão citados e descritos os componentes que compõem o processador.

#### 1.3.1 ULA

Sendo a responsável pelas principais operações aritméticas do processador, além de ser responsável por operações como "AND" e "OR". Ele recebe os dados por meio de duas entradas: "InA" - 8 bits; "InB" - 8 bits, além de duas saídas, sendo elas o "Zero", o identificador do resultado, e a "Out", onde sairá a informação em 8 bits.

#### **1.3.2** Banco de Registradores

O componente responsável por armazenar os registradores e uma pequena parte dos dados que forem mandados para dentro do processador, tendo todos um total de 8 bits.

#### 1.3.3 Multiplexador

Basicamente, um seletor de entradas, que é alterado de acordo com a instrução que é pedida pela Unidade de Controle.

#### 1.3.4 Memória RAM

A parte responsável por armazenar mais dados vindos de fora, do que nos próprios registradores. Elas têm seus próprios registradores, o que facilita na hora desse acontecimento.

#### 1.3.5 Memória ROM

#### 1.3.6 Somador de 8 Bits mais 4

Basicamente, um somador normal de 8 bits, porém com um valor de 4 já adicionado normalmente.

#### 1.3.7 Unidade de Controle

É o componente responsável por controlar todas as ações do processador, de acordo com o opcode. Esse controle é feito a partir das flags abaixo.

- ADD: 000 - SUB: 001 - BEQ: 010 - LW: 011 - SW: 100 - JUMP: 101

Abaixo segue a tabela, onde é feita a associação entre os opcodes e as flags de controle:

Tabela 2 - Detalhes das flags de controle do processador.

| Comando | RegWrite | MemRead | MemWrite | MemToReg | Branch | Jump | ULASrc | ULAOP |
|---------|----------|---------|----------|----------|--------|------|--------|-------|
| ADD     | 1        | 0       | 0        | 0        | 0      | 0    | 1      | 10    |
| SUB     | 1        | 0       | 0        | 0        | 0      | 0    | 0      | 11    |
| BEQ     | 0        | 0       | 0        | 0        | 1      | 0    | 0      | 11    |
| LW      | 1        | 1       | 0        | 1        | 0      | 0    | 1      | 10    |
| sw      | 0        | 0       | 1        | 0        | 0      | 0    | 1      | 10    |
| JUMP    | 0        | 0       | 0        | 0        | 0      | 1    | 0      | хх    |

#### 1.4 Data Path e Imagens

É a conexão entre as unidades funcionais formando um único caminho de dados e acrescentando uma unidade de controle responsável pelo gerenciamento das ações que serão realizadas para diferentes classes de instruções.



Figura 2 - Data Path Completo



Figura 3 - ULA



Figura 4.1 - Registrador de 8 bits



Figura 4.2 - Banco de Registradores



Figura 5 - Multiplexador de 4 Entradas



Figura 6 - Memória RAM



Figura 7 - Memória ROM



Figura 8 - Somador de 8 Bits com mais 4



Figura 9 - Unidade de Controle

## 2 Simulações e Testes

Por causa de certos motivos, fazer os testes não foi possível, então, não há nenhum para ser apresentado.

### 3 Considerações Finais

Este trabalho apresentou o projeto e implementação do processador de 8 bits denominado de LH, demonstrando como ele foi feito, com quais componentes foi estruturado e como deveria ser bem utilizado para quem fosse querer.