$$W_{1}(0) + W_{2}(0) \leq \theta$$
 0>0
 $W_{1}(0) + W_{2}(0) \geq 0$ $W_{1} \geq 0$
 $W_{1}(0) + W_{2}(0) \geq 0$ $W_{1} \geq 0$
 $W_{1}(0) + W_{2}(0) \geq 0$ $W_{1} + W_{2} \geq 0$

XOR

lexception: -

lexception:
$$y = \begin{cases} 1 & \underset{i=1}{\sum} w_i x_i \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{i=1}^{n} w_i x_i - 0 \geq 0 \end{cases} \xrightarrow{v_i} v_i \geq 0$$

$$w = \begin{bmatrix} w_0 & w_1 & w_2 - \cdots & w_n \end{bmatrix}$$

$$x = \begin{bmatrix} w_0 & w_1 & w_2 - \cdots & w_n \end{bmatrix}$$

Heddon Layer: -

Hedden Layer

γ_{l}	212	≥ wind	$\sum_{j=1}^{2} N_{2j} \gamma_{j}$	2,	2 *	$\sum_{j=1}^{2} \omega_{3j} z_{j}$	y=23
0	0	0	0	0	0	0	0
0		-1	2	0	- 1	2	
	0	2	-1	-	0	2	1
	1		1	0	0	0	0

A pourible choice of weights and blans.

-2 m - 42 = 1.5

-4 + 22 21.5

$$W_{11} = 2$$
 $W_{21} = 4$ $W_{31} = 2$
 $W_{12} = -1$ $W_{22} = 2$ $W_{32} = 2$
 $Q_1 = 1.5$ $Q_2 = 1.5$ $Q_3 = 1$

 $2u_{1} - n_{2} = 1.8$ $-u_{1} + 2u_{2} = 1.8$

THEOREM :-

Any boolean function of in inputs can be represented exactly by a network of perceptions containing I hidden layer with 2 perceptions and output cayer containing I perception.