Multi-objective laboratory: Knapsack Problem & Group project

Léa Ricard

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

16 April 2025

- Problem definition Knapsack Problem (KP)
- 2 Multi-objective optimization exercices
- My results
- Group project: Optimization Overview Deliverables

Knapsack Problem (KP)

Problem definition:

- A decision-maker must choose from a set of non-divisible objects (e.g., projects, tasks).
- Decision variables: $x_i = 1$ if item i is in the knapsack, 0 otherwise.
- Each object $i \in \{0, ..., n\}$ has a weight w_i .
- $w^Tx \leq W$ where W is the maximum weight allowed, e.g. 100kg

Objectives

- Maximizing the utility: $\max f_1(x) = \sum_{i=1}^n u_i x_i$
- Minimizing the cost: $\min f_2(x) = \sum_{i=1}^n c_i x_i$

Knapsack Problem (KP)

Application

- Cutting raw materials;
- Asset optimization (portfolio);
- Cloud computing;
- Etc.

- 1 Problem definition Knapsack Problem (KP)
- Multi-objective optimization exercices
- My results
- Group project: Optimization Overview Deliverables

Dominance and Pareto frontier

Important

Be careful, because in our case, one objective is minimized, while the other is maximized! An easy trick is to multiply either objective by -1.

- Problem definition Knapsack Problem (KP)
- 2 Multi-objective optimization exercices
- My results
- 4 Group project: Optimization Overview Deliverables

My results

For an instance with 20 items.

(a) Local search heuristic

(b) Full enumeration

- 1 Problem definition Knapsack Problem (KP)
- 2 Multi-objective optimization exercices
- My results
- Group project: Optimization Overview Deliverables

- 1 Problem definition Knapsack Problem (KP)
- 2 Multi-objective optimization exercices
- My results
- Group project: Optimization Overview

Deliverables

Project overview

Aim:

- Full application of a simulation-based optimization example.
- Apply the methods you learned to solve a real-world problem.
- The main purpose is to identify the **optimal** system configuration.

Objectives:

- **Simulation:** develop a discrete events simulation and appropriately evaluate the performance in two different scenarios.
- **Optimization:** define and solve an optimization problem to obtain the optimal solution for the system.

Case study

Simulation:

- Develop a discrete events simulation.
- Identify the appropriate statistical indices.
- Correctly use simulation techniques to generate results.
- Correctly analyze the simulation results.
- Consider the efficiency and precision of simulation.

Optimization:

- Identify the decision variables.
- Define the objective function(s).
- Design an optimization algorithm to solve the problem.
- Identify many meaningful and goods solutions.

Keep in mind

Optimization project

- Expand the discrete-event simulation.
- Embed the discrete-event simulation in the optimization algorithm.

Keep in mind

Tips

- Start by defining the objective function(s) you want to minimize/maximize.
- Consider how you would evaluate the objective functions with the simulated data.
- Start with **simple** constrained optimization.
- Explore different objective functions, for example:
 - Maximize or minimize the mean value of X (e.g., revenue, capacity, or time).
 - Minimize the variance of X across multiple dimensions.

Keep in mind

Attention!

Computational time

Support

- Email to pavel.illinov@epfl.ch for the simulation part
- Email to lea.ricard@epfl.ch for the optimization part

- Problem definition Knapsack Problem (KP)
- 2 Multi-objective optimization exercices
- My results
- Group project: Optimization

Overview

Deliverables

Presentation of the project

- 28 May 2025, GC D0 386.
- Make sure that the first presentation will start at 9:15 on time.
- Make sure that each student of the group presents approximately the same time during the final presentation.
- 25 minutes presentation and 10 minutes Q&A.
- You should include both simulation and optimization parts.

Group	Time	Review
Group 1 - Train service	9:15-9:50	Group 2
Group 2 - Online movie	9:50-10:25	Group 3
15 minutes break		
Group 3 - Drone delivery	10:40-11:15	Group 4
Group 4 - Vaccination	11:15-11:50	Group 1

Project submission

- Submit by e-mail to pavel.illinov@epfl.ch and lea.ricard@epfl.ch.
 - **1 PDF file** for the presentation,
 - 2 Jupyter notebook for the project,
 - 3 Jupyter notebooks for the labs (one notebook per group and lab).
- Deadline: 27.05.2025 at 17:00.
- Subject: "OptSim25 project: Group X"
- File: make one zip file "GroupX.zip".