E. Memory and Casinos

time limit per test: 4 seconds memory limit per test: 512 megabytes input: standard input output: standard output

There are n casinos lined in a row. If Memory plays at casino i, he has probability p_i to win and move to the casino on the right (i+1) or exit the row (if i=n), and a probability $1 - p_i$ to lose and move to the casino on the left (i-1) or also exit the row (if i=1).

We say that Memory dominates on the interval $i \dots j$ if he completes a walk such that,

- He starts on casino *i*.
- He never looses in casino i.
- He finishes his walk by winning in casino j.

Note that Memory can still walk left of the 1-st casino and right of the casino n and that always finishes the process.

Now Memory has some requests, in one of the following forms:

- 1 *i a b*: Set .
- 2 l r: Print the probability that Memory will *dominate* on the interval $l \dots r$, i.e. compute the probability that Memory will first leave the segment $l \dots r$ after winning at casino r, if she starts in casino l.

It is guaranteed that at any moment of time p is a **non-decreasing sequence**, i.e. $p_i \le p_{i+1}$ for all i from 1 to n-1.

Please help Memory by answering all his requests!

Input

The first line of the input contains two integers n and $q(1 \le n, q \le 100\ 000)$, — number of casinos and number of requests respectively.

The next n lines each contain integers a_i and b_i ($1 \le a_i \le b_i \le 10^9$) — is the probability p_i of winning in casino i.

The next q lines each contain queries of one of the types specified above $(1 \le a \le b \le 10^9, \ 1 \le i \le n, \ 1 \le l \le r \le n)$.

It's guaranteed that there will be at least one query of type 2, i.e. the output will be non-empty. Additionally, it is guaranteed that p forms a non-decreasing sequence at all times.

Output

Print a real number for every request of type 2 — the probability that boy will "dominate" on that interval. Your answer will be considered correct if its absolute error does not exceed 10^{-4} .

Namely: let's assume that one of your answers is a, and the corresponding answer of the jury is b. The checker program will consider your answer correct if $|a - b| \le 10^{-4}$.

Example

```
input

3 13
1 3
1 2
2 3
2 1 1
2 1 2
2 1 3
2 2 2
2 2 3
2 2 3
2 3 3
```

1 2 2 3	
2 1 1	
2 1 2	
2 1 3	
2 2 2	
2 2 3	
2 3 3	
output	
0.333333333	
0.200000000	
0.166666667	
0.500000000	
0.400000000	
0.666666667	
0.333333333	
0.250000000	
0.22222222 0.666666666	

0.666666667