Отчёт по проекту по дисциплине "Основы машинного обучения" Улучшение проекта, сделанного в предыдущем семестре

Добрецова Елизавета, группа 5030102/00101

Апрель 2024

Проект прошлого семестра

Отчёт по проекту, сделанному в прошлом семестре, можно посмотреть здесь.

Что можно улучшить и доделать?

- В реализации задачи предсказания доли переработанного пластика с учётом значений признаков сделать ввод этих значений не вручную, а путём чтения их из конфигурационного файла;
- Добавить Unit-тесты для функций предсказания;
- Исследовать, насколько влияет каждый из признаков на линейную регрессию;
- Нарисовать пайплайн не от руки, а средствами электронного редактора (наппример, MS Powerpoint);
- Подписать точки как в графиках РСА, так и в трёхмерных графиках;
- Сделать Leave-one-out оценку модели, обучив её на разных тренировочных данных.

ЖЧто нужно исправить:Ж

- В файле .py надо работать с нормализованными значениями признаков, раньше было не так и это была ошибка.
- Также в этом файле по ошибке не были сдвинуты значения года на 2000, поэтому программа выдавала нереалистичные значения искомой доли.

жПодробнее об ошибках реализации и их исправленииж

Исправить ошибку с забытым сдвигом года (который вводился в основном для того, чтобы графики были визуально менее нагружено) было легко, но именно благодаря этому исправлению ответы программы стали реалистичными. Ранее они были в районе 300%.

ЖПодробнее об ошибках реализации и их исправленииЖ

Несколько сложнее оказалось исправить ошибку, связанную с работой с нормализованными данными в одном месте программы и работой с ненормализованными в другой. Дело в том, что перед применением РСА при обработке данных в Jupyter Notebook значения признаков прошли нормализацию, то есть из каждого из них вычли среднее и поделили результат на стандартное отклонение. А при подсчёте итогового результата в файле .py ошибочно использовались исходные, ненормализованные данные, что приводило к неверному ответу. Проблема была решена, для этого пришлось сохранять в локальную память средние значения и стандартные отклонения по каждому из признаков.

Улучшения: ввод из конфигурационного файла

Ранее при предсказании с учётом признаков значения признаков вводились с консоли вручную по очереди, что создавало пользователю большие неудобства. Теперь же в консоль надо ввести только путь к файлу .json, в котором хранятся значения в виде словаря. Также реализована «защита от дурака», то есть программа проверяет, что путь к файлу валидный и в словаре хранятся значения для всех ключей.

Улучшения: Unit-тесты

В проект был добавлен файл с тестовыми функциями, которые проверяют на различные условия значения, получаемые функциями условного и безусловного предсказания. Проверялось, что полученная доля в процентах больше 0, меньше 100, что программа падает при тех введённых значениях, когда она должна падать.

Наблюдение за влиянием каждого из признаков на линейную регрессию

Было интересно исследовать, в какой мере влияет каждый из рассматриваемых признаков (ВВП, расходы на образование, расходы на науку, экспорт, население и так далее) на итоговый ответ, получаемый линейной регрессией. Оказалось, что они все влияют примерно одинаково мало, основное влияние оказывает свободный член, или сдвиг.

Пайплайн

Графики РСА

Leave-one-out оценка (1)

Ранее выборка из 9 строк делилась на тренировочную и тестовую. 6 строчек из 9 вошли в тренировочную, в тестовую - все остальные. Тем самым осуществлялась некоторая подгонка под данные.

tr	ttrain_df = merged_af_2.loc[list(rangef6))} rain_df = merged_af_2.loc[0, 1, 3, 5, 6, 8]) rain_df										
	Entity	Tan	Bias	GDP	R&D	Population	Lanc	Export	Education Expenditure	Health Expenditure	Net Trade
0	Americas (excl. USA)	0.254503	4.718604	8.246311e+12	7.699779e+10	6.830172e+08	3.072047e+07	1.963236e+12	1.274479e+12	6.504999e+11	1.179535e+1
1	Asia (excl. China and India)	0.237067	3.876733	1.410295e+13	2.901652e+11	1.679359e+09	3.155283e+07	5.097880e+12	1.774069e+12	1.012535e+12	4.201649e+1
3	Europe	0.424986	4.454272	2.065720e+13	4.315568e+11	6.011706e+08	6.323004e+06	9.576989e+12	2.332803e+12	2.015527e+12	6.484722e+1
5	Middle East & North Africa	0.136690	2.852235	3.838420e+12	4.079392e+10	4.061546e+08	1.190942e+07	1.778679e+12	5.328720e+11	1.860261e+11	5.018867e+1
6	Oceania	0.159232	3.810024	1.820014e+12	3.656481e+10	4.323473e+07	8.560171e+06	4.208563e+11	2.561926e+11	1.646632e+11	3.087079e+1
8	United States	0.111727	2.343558	2.138098e+13	6.769409e+11	3.283300e+08	9.831510e+06	2.538450e+12	2.860892e+12	3.565593e+12	-3.767470e+
<pre>#test_df = merged_df_2.loc[list(range(6, 9))] test_df = merged_df_2.loc[2, 4, 7] test_df</pre>											
	Entity	Tan	Bias	GDP	R&D	Population	Land	Export	Education Expenditure	Health Expenditure	Net Trad
2	China	0.426067	4.797952	1.427997e+13	3.205325e+11	1.407745e+09	9.600013e+06	2.655609e+12	1.603640e+12	7.640180e+11	3.588364e+1
4	India	0.441104	5.096093	2.835606e+12	2.119359e+10	1.383112e+09	3.287260e+06	5.386352e+11	4.743586e+11	8.346679e+10	-4.233284e+0
7	Sub- Saharan Africa	0.143035	3.021784	2.130520e+12	7.834763e+09	1.185010e+09	2.347501e+07	5.760199e+11	2.947490e+11	1.016391e+11	4.081170e+1

Leave-one-out оценка (Пайплайн)

Leave-one-out оценка (2)

Теперь же был применён один из семейства алгоритмов кросс-валидации, а именно Leave-one-out, заключающийся в том, что каждый элемент модели по очереди выбирался в качестве тестового, а обучение проводилось на всей остальной выборке.

По итогам алгоритма кросс-валидации были построены боксплоты («ящики с усами») для тангенса и свободного члена линейной регрессии по регионам:

Leave-one-out оценка (3)

Видно, что США «портят» график, делая его не особенно наглядным. Предполагаю, что в какой-то мере это можно объяснить тем, что обычно чем более развитая страна (т.е. чем больше значения фичей), тем больше она заботится об экологии. В случае США это, к сожалению, не совсем так. Попробуем переобучить модель на данных без Америки и по этим значениям перестроить боксплоты:

Leave-one-out оценка (4)

Можно видеть, что это не помогло - в отстутствие США модель ведёт себя не лучшим образом, из общей статистики начинают выбиваться другие регионы. Исходный код программы можно посмотреть здесь: https://github.com/paxwritescode/machine_learning

Что ещё можно улучшить?

- Добавить интеграционные тесты
- Добавить данные
- Что-то ещё предсказать
- Выбирать не максимальные значения в каждом регионе, а, например, средние, и посмотреть на поведение модели в этом случае
- Использовать регуляризацию в регрессии
- *Использовать SVM для регрессии вместо линейной регрессии