	Дисциплина «Безопасность Жизнедеятельности»	Группа	
	Отчёт к дистанционной расчётной работе	Студент	Гасанзаде
НУК Э	«Исследование защитного заземления в электроустановках напряжением до 1 кВ»		
Кафедра Э9	Задание № 1	Вариант	2

Вариант	2					
Исходные данные			Результаты расчётов			
R3, Ом	Uф, В	Rи, Ом	I3, A	Uк, B	Uк без заземления, B	
1	127	10000	0.038	0.038	127	

$$I_{3} = \frac{U_{\phi}}{R_{3} + \frac{R_{u}}{3}} \qquad U_{\kappa} = \frac{U_{\phi} \cdot R_{3}}{R_{3} + \frac{R_{u}}{3}}$$

Схема рассматриваемой электросети:

Рис. 2. Принципиальная схема защитного заземления в сети с изолированной нейтралью

Выволы:

При отсутствии защитного заземления $U_{\kappa}=U_{\varphi}$ и ожидаемое напряжение прикосновения также равно фазному. Тогда при значительном снижении сопротивления изоляции фазных проводов относительно земли ток, проходящий через тело человека, прикоснувшегося к незаземленному корпусу, представляет смертельную опасность. Применение защитного заземления в этой ситуации особенно необходим, так как обеспечивает эффективную защиту.

	Дисциплина «Безопасность Жизнедеятельности»	Группа	
	Отчёт к дистанционной расчётной работе	Студент	Гасанзаде
НУК Э	«Исследование защитного заземления в электроустановках напряжением до 1 кВ»		
Кафедра Э9	Задание № 1	Вариант	2

Вариант		2								
Исходные данные	R31	, Ом	R32	2, Ом	R33, Ом R34, Ом		Uф, В	R и, Ом		
		1	4 1		10	100		127	10000	
Результаты расчётов	I31, A	Uк1, B	I32, A	Uк2, B	I33, A	Uκ3, В	I34, A	Uк4, B		
	0.038	0.038	0.038	0.152	0.038	0.38	0.037	3.7		

$$I_{3} = \frac{U_{\phi}}{R_{3} + \frac{R_{u}}{3}} \qquad U_{\kappa} = \frac{U_{\phi} \cdot R_{3}}{R_{3} + \frac{R_{u}}{3}}$$

Выводы:

При практическом расчёте опасности поражения электрическим током выбирается значение напряжения Uk, которое напрямую зависит от сопротивления корпуса. Чем выше сопротивление заземления, тем ниже значение протекающего в них тока и тем меньше опасное напряжение на корпусе устройства. Напряжение прикосновения также зависит от расстояния субъекта до заземляющего устройства и при удалении от него опасное напряжение будет только увеличиваться.

	Дисциплина «Безопасность Жизнедеятельности»	Группа	
	Отчёт к дистанционной расчётной работе	Студент	Гасанзаде
НУК Э	«Исследование защитного заземления в электроустановках напряжением до 1 кВ»		
Кафедра Э9	Задание № 1	Вариант	2

Вариант	2						
Исходные данные	R31, Ом	Uф, В	R321, Ом	R322, Ом	R323, Ом		
	1	127	1	4	10		
Результаты расчётов	Uл, B		I31, A	I32, A	I33, A		
	219.97		109.985	43.994	19.997		

$$I_{3} = \frac{U_{n}}{R_{31} + R_{32}} \quad U_{1} = I_{3} \cdot R_{31} \quad U_{n} = \sqrt{3} \cdot U_{\phi}$$

Схема рассматриваемой электросети:

Рис. 3. Двойное замыкание фаз сети на корпуса электроустановок с раздельными заземляющими устройствами

Выводы:

При замыкании на корпус разных фаз в двух установках, имеющих раздельные заземляющие устройства, произойдёт двойное замыкание на землю, которое превращается в короткое замыкание. При коротком замыкании R стремится к нулю, следовательно ток стремится к бесконечности. Самое опасное напряжение будет тогда, когда сопротивления заземления будут равны между собой. Тогда напряжение на корпусе будет равно фазному.

	Дисциплина «Безопасность Жизнедеятельности»	Группа	
	Отчёт к дистанционной расчётной работе	Студент	Гасанзаде
НУК Э	«Исследование защитного заземления в электроустановках напряжением до 1 кВ»		
Кафедра Э9	Задание № 1	Вариант	2

Вариант	2					
Исходные данные			Результаты расчётов			
R3, Ом	Uф, B	Uф, B R0, Ом Iз, A Uк, B				
1	127	4	21,1	21,1	84,4	

$$I_{3} = \frac{U_{\phi}}{R_{3} + R_{0}} \qquad U_{\kappa} = U_{3} = I_{3} \cdot R_{3} = \frac{U_{\phi} \cdot R_{3}}{R_{3} + R_{0}}$$

$$U_0 = I_3 \cdot R_0 = \frac{U_\phi \cdot R_0}{R_3 + R_0}$$

Схема рассматриваемой электросети:

Рис. 4. Схема заземления корпуса электропотребителя в сети с заземленной нейтралью

Выводы:

Фазное напряжение равняется 127 Вольт. После заземления напряжение на корпусе стало равно 21,1 Вольта, что является относительно безопасным напряжением при контакте с средствами индивидуальной защиты. Напряжение упало в 6 раз.