Intro2R

Data Wrangling and Visualisation

Song, Xiao Ping xp.song@u.nus.edu

Course materials: https://github.com/xp-song/Intro2R updated 2022-10-18

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

About our Dataset

Kaggle Machine Learning and Data Science Survey 2018

- The industry-wide survey presents the state of data science and machine learning
- We will be analysing multiple choice responses /data/kaggle-survey-2018_mcq.csv

About our Dataset

More about Kaggle

- An online community for data science
- Owned by Google (>1 mil users in 2017)
- Users can find/publish data and analysis, and take part in data science competitions

Our analysis includes code adapted from R Notebooks created by the Kaggle users Heads or Tails and Jose Berengueres

Install and load packages

Let's install the tidyverse collection of packages

tidyverse: A collection of packages commonly used for data analyses

Example workflow (medium.com)

Let's install the tidyverse collection of packages

```
install.packages("tidyverse", dependencies = TRUE) # don't forget quotes
```

- Type n if you get the following prompt:

 Do you want to install from sources the package which needs compilation?
- Click 'Yes' if you are asked to restart R

Load these packages into R

```
library(tidyverse) # no need quotes
```

"Tidy" data

- Tabular data (2D)
- Each variable is a column & each observation is a row
- Can be in long or wide format

country	year	key	value			country	country year	country year infected
Afghanistan	1999	infected	135	1	-	Afghanistan	Afghanistan 1999	Afghanistan 1999 → 135
Afghanistan	1999	population	19839494		+	Afghanistan	Afghanistan 2020	Afghanistan 2020 384
Afghanistan	2020	infected	384		-	Australia	Australia 1999	Australia 1999 34
Afghanistan	2020	population	21739203		+	Australia	Australia 2020	Australia 2020 45
Australia	1999	infected	34			Belgium	Belgium 1999	Belgium 1999 272
Australia	1999	population	23423534			Belgium	Belgium 1999	Belgium 1999 274
Australia	2020	infected	45					
Australia	2020	population	23346436					
Belgium	1999	infected	272			////		
Belgium	1999	population	49273820					
Belgium	2020	infected	274		//			
Belgium	2020	population	48928472					

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Load data

Import tabular data as tibbles using readr::read_csv()

Tibbles are dataframes with stricter rules that avoid hassle/errors often associated with conventional dataframes.

```
multi <- read_csv("data/kaggle-survey-2018_mcg.csv", skip = 1)</pre>
 head(multi)
## # A tibble: 6 × 395
##
     `Duration (in seconds)` `What is your gen... `What is your gen... `What is your a...
                       <dbl> <chr>
##
                                                               <dbl> <chr>
## 1
                          710 Female
                                                                  -1 45-49
## 2
                          434 Male
                                                                  -1 30-34
## 3
                          718 Female
                                                                  -1 30-34
                          621 Male
                                                                  -1 35-39
## 4
## 5
                          731 Male
                                                                  -1 22-24
## 6
                        1142 Male
                                                                  -1 25-29
## # ... with 391 more variables: In which country do you currently reside? <chr>,
## #
       What is the highest level of formal education that you have attained or plan to attain within the next
## #
       Which best describes your undergraduate major? - Selected Choice <chr>,
       Select the title most similar to your current role (or most recent title if retired): - Selected 6400
## #
```

Load data

Let's compare read_csv() with read.csv() in base R

```
multi2 <- read.csv("data/kaggle-survey-2018_mcq.csv", skip = 1)</pre>
 head(multi2)
     Duration..in.seconds. What.is.your.gender....Selected.Choice
##
## 1
                        710
                                                              Female
                                                                Male
## 2
                        434
## 3
                        718
                                                              Female
## 4
                        621
                                                                Male
## 5
                                                                Male
                        731
## 6
                                                                Male
                       1142
##
     What.is.your.gender....Prefer.to.self.describe...Text
## 1
                                                           -1
## 2
                                                           -1
## 3
                                                           -1
## 4
                                                           -1
## 5
                                                           -1
## 6
                                                           -1
##
     What.is.your.age....years.. In.which.country.do.you.currently.reside.
## 1
                            45-49
                                                     United States of America
## 2
                                                                     Indonesia
                            30-34
                                                     United States of America
## 3
                            30-34
```

Examine data

Examine column names

```
head(colnames(multi))

## [1] "Duration (in seconds)"

## [2] "What is your gender? - Selected Choice"

## [3] "What is your gender? - Prefer to self-describe - Text"

## [4] "What is your age (# years)?"

## [5] "In which country do you currently reside?"

## [6] "What is the highest level of formal education that you have attained or plan to attain within the next."
```

 Analysing colnames as entire sentences is not very feasible at scale (we'll abbreviate the colnames later)

Print the first column by name

```
multi$`Duration (in seconds)`
```

Have to wrap colname with backticks (because of white spaces)

Convert data

The pipe operator %>%

Frequently used to manipulate data in stages/sequence

E.g.:

```
round(exp(diff(log(x))), 1) #using nested brackets

x %>% log() %>% #using the pipe operator
    diff() %>%
    exp() %>%
    round(1)
```

Convert data

Multiple choice questions have categorical answers with discrete levels—i.e. Factors!

Convert columns with *character* **data into** *factors* **using** mutate()

```
multi <- multi %>%
  mutate(across(.cols = is.character, .fns = as.factor)
```

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Sample Size

How many respondents are there?

```
nrow(multi)
```

[1] 23859

Abbreviate the colname Duration (in seconds) to duration using rename()

```
multi <- multi %>%
  rename(duration = `Duration (in seconds)`)
```

Change the units from seconds to minutes using mutate()

```
multi <- multi %>%
  mutate(duration = duration/60) # overwrite the colname
```

Print out first few rows of multi\$duration

```
head(multi$duration)
## [1] 11.833333 7.233333 11.966667 10.350000 12.183333 19.033333
```

Plot a histogram using the ggplot2::ggplot() function

- 1. Provide data
- 2. Assign your data variables to aesthetics
- 3. Assign the graphical *primitives*

```
multi %>%
  ggplot(aes(duration)) +
  geom_histogram()
```

Plot a histogram using the ggplot2::ggplot() function

- 1. Provide data
- 2. Assign your data variables to aesthetics
- 3. Assign the graphical *primitives*

```
multi %>%
   ggplot(aes(duration)) +
   geom_histogram() +
   geom_vline(xintercept = median(multi$duration))
```

Plot a histogram using the ggplot2::ggplot() function

- 1. Provide data
- 2. Assign your data variables to aesthetics
- 3. Assign the graphical *primitives*

```
multi %>%
  ggplot(aes(duration)) +
  geom_histogram() +
  geom_vline(xintercept = median(multi$duration)) +
  scale_x_log10()
```

Plot a histogram using the ggplot2::ggplot() function

- 1. Provide data
- 2. Assign your data variables to aesthetics
- 3. Assign the graphical *primitives*

```
multi %>%
  ggplot(aes(duration)) +
  geom_histogram(bins = 50) +
  geom_vline(xintercept = median(multi$duration), linetype = 2) +
  scale_x_log10(breaks = c(2, 5, 10, 20, 60, 1440)) + #address extreme x-values

#customisation
  labs(x = "Duration (mins)", y = "Number of respondents") + #change axis labels
  ggtitle("Most respondents took 15-20 min to complete survey") #add figure title
```


Note: The dashed line denotes the median survey duration. The x-axis has been transformed to a logarithmic scale.

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Abbreviate the colname In which country do you currently reside? to country

```
multi <- multi %>%
  rename(country = `In which country do you currently reside?`)
```

Examine the column

```
head(multi$country)

## [1] "United States of America" "Indonesia"

## [3] "United States of America" "United States of America"

## [5] "India" "Colombia"
```

Summarise the number of respondents per country

```
ctry_n <- multi %>%
  count(country)
```

Summarise the number of respondents per country

Remove rows with certain answers in our summary table ctry_n

```
ctrv_n <- ctrv_n %>%
  filter(!(country %in% c("Other", "I do not wish to disclose my location")))
 ctry_n
## # A tibble: 56 × 2
     country
##
                   n
   <chr>
            <int>
##
   1 Argentina
               119
   2 Australia
                  330
                62
   3 Austria
   4 Bangladesh 107
   5 Belarus
                   91
   6 Belgium
                 111
   7 Brazil
                  736
   8 Canada
                  604
   9 Chile
                76
## 10 China
             1644
## # ... with 46 more rows
```

Map the country name to the ISO3 country code using the function <code>countrycode()</code>

- install.packages("countrycode")
- Add data as a new column named iso3 using mutate()

```
ctrv_n <- ctrv_n %>%
  mutate(iso3 = countrycode(country, origin = "country.name", destination = "iso3c"))
 ctry_n
## # A tibble: 56 × 3
    country
                  n iso3
##
     <chr> <int> <chr>
##
   1 Argentina 119 ARG
   2 Australia 330 AUS
   3 Austria 62 AUT
   4 Bangladesh 107 BGD
   5 Belarus
                 91 BLR
   6 Belgium 111 BEL
   7 Brazil
                736 BRA
   8 Canada
                604 CAN
   9 Chile
               76 CHL
```

Dealing with duplicates

Let's check if the number of country names & country codes match

```
length(unique(ctry_n$country))

## [1] 56

length(unique(ctry_n$iso3))

## [1] 55
```

Check which elements are duplicated with duplicated()

```
duplicated(ctry_n$iso3)
## [1] FALSE FALSE
```

Dealing with duplicates

Subset all rows with duplicates

Dealing with duplicates

8 CAN

Canada

604

Group the dataframe by iso3, then add up the no. of respondents n

```
ctrv_n <- ctrv_n %>%
   group_bv(iso3) %>%
   summarise(country = first(country), #get the first value for country name
             n = sum(n)) #sum up duplicates
 ctrv_n
## # A tibble: 55 × 3
##
     iso3 country
                            n
     <chr> <chr>
                        <int>
   1 ARG
           Argentina
                          119
   2 AUS
           Australia
                          330
                           62
   3 AUT
           Austria
   4 BEL
           Belgium
                          111
           Bangladesh
   5 BGD
                          107
           Belarus
   6 BLR
                           91
   7 BRA
           Brazil
                          736
```

Plot ctry_n as an interactive map using highcharter::highchart()

Geographical distribution of survey respondents

Survey Analysis: Country-level Data

Country-level Data

Datasets

Total population count (The World Bank)

Country-level Data

Datasets

Total population count (The World Bank)

```
pops
## # A tibble: 264 × 3
##
      country
                           population iso3
      <chr>
                                <dbl> <chr>
   1 Aruba
                               105845 ABW
    2 Afghanistan
                             37172386 AFG
    3 Angola
                             30809762 AGO
   4 Albania
                              2866376 ALB
   5 Andorra
                                77006 AND
   6 Arab World
                            419790588 <NA>
   7 United Arab Emirates 9630959 ARE
    8 Argentina
                             44494502 ARG
    9 Armenia
                              2951776 ARM
## 10 American Samoa
                                55465 ASM
## # ... with 254 more rows
```

Datasets

Total population count (The World Bank)

• Check for NA values using is.na()

```
pops[is.na(pops$iso3),]
## # A tibble: 49 × 3
##
      country
                                                     population iso3
      <chr>
                                                          <dbl> <chr>
##
   1 Arab World
                                                      419790588 <NA>
   2 Central Europe and the Baltics
                                                      102511922 <NA>
   3 Channel Islands
                                                         170499 <NA>
## 4 Caribbean small states
                                                        7358965 <NA>
   5 East Asia & Pacific (excluding high income)
                                                     2081651801 <NA>
   6 Early-demographic dividend
                                                     3249140605 <NA>
   7 East Asia & Pacific
                                                     2328220870 <NA>
   8 Europe & Central Asia (excluding high income) 417797257 <NA>
    9 Europe & Central Asia
                                                      918793590 <NA>
## 10 Euro area
                                                      341783171 <NA>
## # ... with 39 more rows
```

Datasets

Total population count (The World Bank)

Remove rows with NA values

```
pops <- pops[!is.na(pops$iso3),]</pre>
```

```
pops
## # A tibble: 215 × 3
##
      country
                           population iso3
      <chr>
                                <dbl> <chr>
   1 Aruba
                               105845 ABW
    2 Afghanistan
                             37172386 AFG
   3 Angola
                             30809762 AGO
    4 Albania
                              2866376 ALB
   5 Andorra
                                77006 AND
   6 United Arab Emirates 9630959 ARE
    7 Argentina
                             44494502 ARG
    8 Armenia
                              2951776 ARM
```

Datasets

Global Innovation Index (INSEAD)

Datasets

Global Innovation Index (INSEAD)

```
innov
## # A tibble: 126 × 3
                               index iso3
##
      country
      <chr>
                               <dbl> <chr>
   1 Switzerland
                                68.4 CHE
   2 Netherlands
                                63.3 NLD
   3 Sweden
                                63.1 SWE
   4 United Kingdom
                                60.1 GBR
    5 Singapore
                                59.8 SGP
    6 United States of America 59.8 USA
   7 Finland
                                59.6 FIN
   8 Denmark
                                58.4 DNK
    9 Germany
                                58
                                     DEU
## 10 Ireland
                                57.2 IRL
## # ... with 116 more rows
```

Datasets

We have 3 summary tables with 'countries' as data points (each row):

Join

- 1. ctry_n Number of survey respondents
- 2. pops Total population
- 3. innov Innovation index

Datasets

Join

Combine the three tables using inner_join(), based on the variable

iso3

```
ctry_data <- ctry_n %>%
  inner_join(innov, by = "iso3") %>%
  inner_join(pops, by = "iso3")
```

Datasets

Combined table ctry_data

ctrv_data

Join

```
## # A tibble: 55 × 7
      iso3 country.x
##
                             n country.y
                                           index country
                                                              population
      <chr> <chr>
                         <int> <chr>
                                           <dbl> <chr>
                                                                   <dbl>
##
    1 ARG
            Argentina
                           119 Argentina
                                            30.7 Argentina
                                                                44494502
            Australia
                           330 Australia
                                                 Australia
##
    2 AUS
                                            52
                                                                24992369
    3 AUT
            Austria
                            62 Austria
                                            51.3 Austria
                                                                 8847037
##
    4 BEL
            Belgium
                           111 Belgium
                                            50.5 Belgium
                                                                11422068
##
            Bangladesh
                                            23.1 Bangladesh
##
    5 BGD
                           107 Bangladesh
                                                               161356039
            Belarus
                            91 Belarus
                                            29.4 Belarus
##
    6 BLR
                                                                 9485386
##
    7 BRA
            Brazil
                           736 Brazil
                                            33.4 Brazil
                                                               209469333
##
    8 CAN
            Canada
                           604 Canada
                                            53
                                                 Canada
                                                                37058856
            Switzerland
                                            68.4 Switzerland
    9 CHE
                           164 Switzerland
                                                                 8516543
                            76 Chile
                                            37.8 Chile
## 10 CHL
            Chile
                                                                18729160
## # ... with 45 more rows
```

Datasets

Remove country.x and country.y

Join

ctry_data <- ctry_data %>%
 select(-c(country.x, country.y))

Datasets

ctry_data

Join

```
## # A tibble: 55 × 5
                                     population
##
      iso3
                n index country
                                          <dbl>
      <chr> <int> <dbl> <chr>
    1 ARG
                   30.7 Argentina
                                       44494502
              119
                        Australia
    2 AUS
              330
                   52
                                       24992369
##
    3 AUT
               62
                   51.3 Austria
                                        8847037
    4 BEL
                   50.5 Belgium
                                       11422068
              111
    5 BGD
                   23.1 Bangladesh
##
              107
                                      161356039
    6 BLR
               91
                   29.4 Belarus
                                        9485386
##
    7 BRA
              736
                   33.4 Brazil
                                      209469333
##
   8 CAN
              604
                   53
                       Canada
                                       37058856
    9 CHE
                   68.4 Switzerland
                                        8516543
##
              164
## 10 CHL
               76 37.8 Chile
                                       18729160
## # ... with 45 more rows
```

Datasets

Let's save ctry_data on our computer!

Join

write_csv(ctry_data, "output/country_data.csv")

Save

Calculate the no. of respondents as a proportion of the total population

• Save it in a new colname respop10k

```
ctry_data$respop10k <- ctry_data$n / ctry_data$population * 10000 #respondents per 10k ppl
```

```
ctry_data
```

```
## # A tibble: 55 × 6
##
     iso3
                n index country
                                    population respop10k
     <chr> <int> <dbl> <chr>
                                         <dbl>
                                                   <dbl>
   1 ARG
             119 30.7 Argentina
                                      44494502
                                                 0.0267
   2 AUS
              330
                  52
                       Australia
                                      24992369
                                                 0.132
   3 AUT
              62 51.3 Austria
                                     8847037
                                                 0.0701
                   50.5 Belgium
   4 BEL
              111
                                      11422068
                                                 0.0972
   5 BGD
              107
                  23.1 Bangladesh
                                     161356039
                                                 0.00663
                  29.4 Belarus
   6 BLR
                                       9485386
                                                 0.0959
   7 BRA
                  33.4 Brazil
                                     209469333
                                                 0.0351
              736
   8 CAN
              604
                  53
                       Canada
                                      37058856
                                                 0.163
              164 68.4 Switzerland
   9 CHE
                                     8516543
                                                 0.193
## 10 CHL
              76 37.8 Chile
                                      18729160
                                                 0.0406
## # ... with 45 more rows
```

Plot a bar chart of respop10k for each country, using geom_col as a graphical primitive

```
ctry_data %>%
  ggplot(aes(x = country, y = respop10k)) +
  geom_col()
```


Arrange countries in descending order using reorder(), and swap the axes using coord_flip()

ctryplot

Save the plot to an image file using <code>jpeg()</code>

• Run the following code chunk at one go

```
jpeg(filename = "output/ctryplot.jpeg", width = 1800, height = 2000, res = 300)
ctryplot
dev.off() #finish creating the image file
```

Make a scatter plot of respop10k against the innovation index, using geom_point() as graphical primitive

```
ggplot(ctry_data, aes(x = respop10k, y = index)) +
  geom_point()
```


Add the label aesthetic to the aes() argument, and add text labels using

Even more customisation:

```
ggplot(ctry_data, aes(x = respop10k,
                     v = index,
                     label = country)) +
  geom_point() +
  geom_text_repel() +
  #customisation
  labs(v = "Global Innovation Index",
      x = "Kaggle survey respondents per 10k population") +
  theme(legend.position = "none",
       panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
       panel.background = element_blank(),
        axis.line = element_line(colour = "black",
        arrow = arrow(length = unit(0.08, "inches"), type = "open")))
```

Warning: ggrepel: 9 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Test the correlation between respop10k and the innovation index using cor.test()

Outline

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Explore and visualise data(diamonds, package = "ggplot2")

Filter diamonds that are less than \$3000 with a Premium cut

Hint: Use summary() for a summary of the dataset

Filter diamonds that are less than \$3000 with a Premium cut

```
diamonds[diamonds$price < 3000 & diamonds$cut == "Premium", ]</pre>
## # A tibble: 6,757 × 10
##
                     carat cut
                                                                      color clarity depth table price
                                                                                                                                                                                                               Χ
                     <dbl> <ord> <ord> <dbl> <dbl > <db 
##
             1 0.21 Premium E
                                                                                                SI1
                                                                                                                                 59.8
                                                                                                                                                                                  326
                                                                                                                                                                                                                      3.84 2.31
                                                                                                                                                               61
                                                                                                                                                                                                    3.89
              2 0.29 Premium I
                                                                                               VS2
                                                                                                                                 62.4
                                                                                                                                                               58
                                                                                                                                                                                 334 4.2
                                                                                                                                                                                                                          4.23 2.63
##
                        0.22 Premium F
                                                                                                SI1
                                                                                                                                 60.4
                                                                                                                                                               61
                                                                                                                                                                                  342
                                                                                                                                                                                                  3.88
                                                                                                                                                                                                                         3.84 2.33
              4 0.2 Premium E
                                                                                                SI2
                                                                                                                                 60.2
                                                                                                                                                               62
                                                                                                                                                                                  345
                                                                                                                                                                                                    3.79
                                                                                                                                                                                                                       3.75 2.27
##
              5 0.32 Premium E
                                                                                                Ι1
                                                                                                                                 60.9
                                                                                                                                                                58
                                                                                                                                                                                  345 4.38 4.42 2.68
                        0.24 Premium I
                                                                                               VS1
                                                                                                                                 62.5
                                                                                                                                                                                                    3.97 3.94 2.47
##
                                                                                                                                                                57
                                                                                                                                                                                  355
                         0.29 Premium F
                                                                                                                                                                                                  4.24 4.26 2.65
                                                                                                SI1
                                                                                                                                 62.4
                                                                                                                                                                58
                                                                                                                                                                                  403
             8 0.22 Premium E
                                                                                               VS2
                                                                                                                                 61.6
                                                                                                                                                                58
                                                                                                                                                                                  404
                                                                                                                                                                                                  3.93 3.89 2.41
                        0.22 Premium D
                                                                                               VS2
                                                                                                                                 59.3
                                                                                                                                                               62
                                                                                                                                                                                  404
                                                                                                                                                                                                    3.91
                                                                                                                                                                                                                        3.88 2.31
                        0.3 Premium J
                                                                                                SI2
                                                                                                                                  59.3
                                                                                                                                                                61
                                                                                                                                                                                  405 4.43 4.38 2.61
## 10
## # ... with 6,747 more rows
```

Example plot


```
diamonds %>%
  ggplot(aes(x = price)) +
  geom_histogram()
```

Example plot

Questions?

About our dataset

Data preparation

Survey Overview

Survey Analysis

It's your turn!

Further applications

Further applications

Data communication

- Interactive plots with Plotly
- Visualisation with the rCharts package
- Interactive web apps with Shiny
- Alternative outputs for R Markdown documents

Statistics in R

- r-statistics.co by Selva Prabhakaran
- R Tutorial: An Introduction to Statistics
- Learning Statistics with R by Danielle Navarro
- Statistics Fundamentals with R by Datacamp
- Statistics and R by Havard University

Other resources

Skill tracks in R by Datacamp