

- Definiție: Numărătoarele sunt circuite logice secvențiale care înregistrează numărul de impulsuri aplicate la intrare
- Se realizează prin asocierea:
 - Circuitelor basculante bistabile cu rol de celule de memorie binară
 - Circuitelor logice combinaţionale cu rol de a determina modul corect în care urmează ca numărătorul să-şi schimbe starea la fiecare nou impuls aplicat la intrare

- Clasificare: se face după 3 criterii diferite
- 1. Modul de funcționare (comutare a bistabilelor)
 - Asincrone celulele de memorie din care este construit numărătorul comută aleator
 - Sincrone celulele de memorie din care este construit numărătorul comută simultan, sub acțiunea unui impuls de tact aplicat simultan tuturor celulelor

- Clasificare: se face după 3 criterii diferite
- **2. Modul de modificare a stărilor** (conţinutului bistabilelor)
 - Directe își cresc conținutul cu o unitate la fiecare impuls de tact aplicat la intrare
 - Inverse conţinutul scade cu o unitate la fiecare impuls de tact aplicat la intrare
 - Reversibile numără direct sau invers, în funcție de o comandă aplicată din exterior

- Clasificare: se face după 3 criterii diferite
- 3. Modul de codificare a informației
 - Binare
 - Binar-zecimale
 - Modulo "p" etc.
- Prin interconectarea a "n" celule de memorie se obţine un numărător care are un număr de stări distincte
- Fiecărei stări îi vom asocia câte un cuvânt de cod binar de lungime "n", reprezentând conținutul celor "n" celule binare pentru starea dată a numărătorului
- Codul în care numără un numărător va fi dat de succesiunea cuvintelor de cod binar asociate stărilor numărătorului
- Numărul stărilor stabile distincte posibile ale unui numărător format din "n" celule binare este 2ⁿ
 - dacă din aceste stări se elimină "k" stări rezultă un numărător cu $p = 2^n k$ stări distincte
 - matematic, operația realizată de numărător este o operație modulo "p"

- Capacitatea numărătorului = numărul stărilor sale distincte
- Factorul de divizare = raportul dintre numărul de impulsuri de la intrare și numărul impulsurilor de la ieșire
- Observaţie: Numărătoarele se pot realiza cu celule de memorie de tip T, care realizează o divizare cu 2. Un numărător funcţionează de fapt şi ca un divizor de frecvenţă

- 1. Numărător binar asincron direct
- Schema logică a acestui numărător este realizată prin conectarea în cascadă a bistabilelor de tip JK, legate în configurație de bistabile de tip T

- Q0, Q1, Q2, ieșirile numărătorului, ne dau starea lui la un moment dat
- R este semnalul de Reset, folosit pentru aducerea numărătorului în starea inițială, la 000
- Intrările bistabilelor sunt toate legate la "1" logic, deci bistabilele vor comuta la fiecare impuls de tact
- Tact exterior se aplică doar pe intrarea primului bistabil

- 1. Numărător binar asincron direct
- Formele de undă

Numărătorul este modulo 8, numărând direct în binar, de la 000 la 111. El basculează (îşi schimbă starea) pe fronturile descrescătoare ale impulsurilor de tact

- **2.** Numărător binar asincron indirect
- Schema logică

■ Formele de undă

- 3. Numărător binar asincron reversibil
- Numărătorul binar asincron reversibil are celula de memorie de bază ca şi numărătoarele asincrone anterioare, dar între celulele de memorie se intercalează multiplexoare de tip 2:1 prin care se comandă sensul de numărare
- Schema logică

- 3. Numărător binar asincron reversibil
- Pentru S = 0 numărătorul numără direct, modulo 8, de la 000 la 111
- Pentru S = 1 numărătorul numără invers, modulo 8, de la 111 la 000

Concluzie:

- Dezavantajul numărătoarelor asincrone este că timpul de comutare, în cel mai defavorabil caz, este egal cu suma timpilor de comutare a tuturor bistabilelor
- Avantajul constă în simplitatea schemei, realizată prin interconectări directe doar cu bistabile (fără alte circuite adiționale)

- 4. Numărător binar sincron direct serie și paralel
- Realizarea numărătoarelor de tip sincron are ca scop creşterea vitezei de comutare a numărătorului în ansamblu
- Funcţionarea acestor numărătoare este sincronă, bistabilele de tip JK având intrările de CLK legate împreună
- Pe baza tabelului de adevăr se obține logica combinațională suplimentară, care asigură funcționarea corectă a numărătorului

- 4. Numărător binar sincron direct serie și paralel
- Tabelul de adevăr (funcționare)

Nr.	Q_0	Q_1	Q_2	Q_3
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	1	1	0	1
12	0	0	1	1
13	1	0	1	1
14	0	1	1	1
15	1	1	1	1

- 4. Numărător binar sincron direct serie și paralel
- Schema logică varianta serie

- Intrările J şi K ale primului bistabil sunt legate la 1 "logic" şi vor comuta bistabilul la fiecare tact (conform tabelului de adevăr)
- Al doilea bistabil comută doar din 2 în 2 impulsuri de tact, adică atunci când Q0 trece din 1 în 0, deci intrările lui pot fi legate la ieșirea primului bistabil
- Al treilea bistabil comută din 4 în 4 impulsuri și va fi comandat de funcția SI dintre ieșirile Q1
 Q0
- Al patrulea bistabil comută din 8 în 8 impulsuri și va fi comandat de funcția SI între ieșirile Q2
 Q1 Q0

- 4. Numărător binar sincron direct serie și paralel
- Pentru mărirea vitezei de răspuns a numărătorului serie se pot folosi porți logice de tip ŞI cu numărul de intrări necesar pentru funcția ŞI implementată ⇒ varianta paralelă
- Schema logică varianta paralel

- 5. Numărător binar sincron reversibil
- Numărătorul binar sincron reversibil integrat folosește 2 intrări diferite pentru tact
 - Count-Up (pentru numărare directă)
 - Count-Down (pentru numărare inversă)
- Alegerea tactului se realizează cu un DEMUX 1:2
- Selecția demultiplexorului reprezintă semnalul exterior de comandă pentru numărare reversibilă
- Numărătoarele au şi ieşiri pentru transport (Carry) şi împrumut (Borrow), care permit legarea în cascadă

- Pentru a face sinteza unui numărător cu p ≠ 2ⁿ trebuie determinat numărul minim de celule de memorie binară necesare
- Relația folosită este: $2^n \ge p$, de unde se deduce "n"
- Celulele de memorie se interconectează apoi astfel încât să se omită (2ⁿ − p) stări ⇒ există mai multe variante posibile pentru interconectare, deci şi pentru sinteza numărătorului

- Exemplu: Sinteza unui numărător modulo 5
- Pentru 2ⁿ ≥ 5 obţinem n = 3, deci vom avea pentru numărător 3 celule de memorie
- Numărul stărilor omise va fi $2^3 5 = 8 5 = 3$
- Presupunem că avem următoarea succesiune a stărilor de numărare (ciclu de numărare sau graf de tranziții):

Evident că se poate alege şi altă succesiune a stărilor numărătorului!

- **Exemplu:** Sinteza unui numărător modulo 5
- Se aleg pentru implementare bistabile de tip JK
- Se construieşte un tabel cu stările actuale ale numărătorului, cu stările următoare şi cu condiţionările intrărilor JK pentru cele 3 bistabile folosite pentru sinteza numărătorului
- Completarea tabelului se face pe baza tabelului de excitaţie al bistabilului JK sincron

Q_{t+1}	J	K
0	0	X
1	1	X
0	X	1
1	X	0
	0	0 0 1 1 0 x

- **Exemplu:** Sinteza unui numărător modulo 5
- Tabelul cu stările și condiționările intrărilor

Q_2^{t}	Q_1^t	Q_0^{t}	Q_2^{t+1}	Q_1^{t+1}	Q_0^{t+1}	J_2	\mathbf{K}_2	J_1	\mathbf{K}_1	J_0	K_0
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	0	0	0	X	1	0	X	0	X

- Diagramele Karnaugh pentru cele 6 intrări ale bistabilelor ne permit determinarea funcțiilor pentru intrări
- Stările omise se consideră indiferente

- Exemplu: Sinteza unui numărător modulo 5
- DK pentru intrări

$$\mathbf{J}_2 = \mathbf{Q}_1 \cdot \mathbf{Q}_0$$

$$K_2 = 1$$

J ₁ :	Q_2 Q_1Q_0	00	01	11	10
	$\widetilde{0}$		1	X	X
	1		X	X	X
$\mathbf{J}_1 = 0$	O_0				

$$K_0 = 1$$

 $\mathbf{J}_0 = \overline{\mathbf{Q}}_2$

22.11.2019

Curs 8 Proiectare Logica

Exemplu: Sinteza unui numărător modulo 5

- Sinteza completă presupune și discuții despre:
 - Iniţializare
 - Situația stărilor omise
- Ce se întâmplă cu numărătorul dacă nu are secvență de inițializare sau dacă ajunge cumva în una dintre stările care nu face parte din ciclul de numărare? Care va fi evoluția numărătorului?

Iniţializarea

- Asincron: în exemplu se folosesc intrările de Reset (asincron) ale bistabilelor şi se forțează astfel pornirea numărătorului din starea inițială 000
- Iniţializarea poate fi făcută şi la alte valori iniţiale decât
 0, prin utilizarea combinată a intrărilor asincrone de Reset şi Set
- Sincron: prin condiţionarea aplicării intrărilor asincrone cu un impuls de tact
- Cât timp numărătorul se află în secvenţa de iniţializare el nu numără!

Autocorecție

- În cazul în care numărătorul se găsește într-o stare din afara ciclului de numărare trebuie verificate tranzițiile numărătorului
- Dacă numărătorul nu revine singur în ciclul de numărare, el trebuie reproiectat astfel încât să revină în ciclul de numărare

Autocorecție sincronă

- Tabelul de funcționare trebuie modificat
- Din stările omise trebuie realizată tranziția în una din stările aflate în ciclul de numărare
- Stările omise la numărătorul modulo 5 sunt 101, 110 şi 111

Autocorecţie

- Autocorecția sincronă pentru numărătorul modulo 5
 - Din stările 101, 110, 111 se revine în ciclul de numărare prin starea 010

Q_2^t	Q_1^t	Q_0^{t}	Q_2^{t+1}	Q_1^{t+1}	Q_0^{t+1}	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	0	0	0	X	1	0	X	0	X
1	0	1	0	1	0	X	1	1	X	X	1
1	1	0	0	1	0	X	1	X	0	0	X
1	1	1	0	1	0	X	1	X	0	X	1

 Ecuațiile care rezultă din diagramele Karnaugh pentru intrări vor fi diferite de cele anterioare, la care nu am ținut cont de problema autocorecției ⇒ un alt numărător modulo 5

Autocorecție

- Autocorecție asincronă
 - Se adaugă o logică de tip combinațional care detectează stările omise şi se comandă intrările asincrone de Reset şi Set, care forțează numărătorul să ajungă în una dintre stările ciclului de funcționare

Observaţii

- La sinteza numărătoarelor modulo p reversibile se adaugă în plus, ca și intrare a numărătorului, semnalul de selecție folosit pentru alegerea sensului de numărare
 - Tabelul de funcționare a numărătorului reversibil trebuie completat cu această variabilă de intrare suplimentară
 - Ecuațiile rezultate în acest caz din diagramele Karnaugh (de mai multe variabile) vor conține și variabila de selecție
- Un numărător modulo p se poate obține și cu un numărător binar sincron
 - Se lasă numărătorul binar să evolueze până la starea p-1
 - La atingerea stării "p" se aplică numărătorului, printr-o logică combinațională, un impuls de ștergere (pe intrarea asincronă de Reset)

- Definiție: Numărătoarele Moebius sunt numărătoare în inel cu coadă întoarsă (twisted tail ring counter)
- Există unele cazuri în care se preferă proiectarea unor numărătoare speciale, care respectă o anumită regulă
- **Exemplu**: Proiectăm un numărător pe 4 biţi, cu 8 stări, în care la fiecare tranziţie se modifică un bit
 - Numărătorul se poate construi utilizând următoarea secvență de numărare:

$$\uparrow$$
 00000 \to 10000 \to 11100 \to 11110 \to 11111 \to 01111 \to 00011 \to 00001 \uparrow

Exemplu

- Proiectarea se face și cu bistabile de tip D și cu bistabile de tip JK
- Se folosesc tabelele de excitație pentru bistabilele D şi JK
- Tabelul pentru sinteză:

Q_3^t	Q_2^t	Q_1^t	Q_0^t	Q_3^{t+1}	Q_2^{t+1}	Q_1^{t+1}	Q_0^{t+1}	D_3	D_2	D_1	D_0	J_3	K_3	J_2	K_2	J_1	\mathbf{K}_1	\mathbf{J}_0	\mathbf{K}_0
0	0	0	0	1	0	0	0	1	0	0	0	1	X	0	X	0	X	0	X
1	0	0	0	1	1	0	0	1	1	0	0	X	0	1	X	0	X	0	X
1	1	0	0	1	1	1	0	1	1	1	0	X	0	X	0	1	X	0	X
1	1	1	0	1	1	1	1	1	1	1	1	X	0	X	0	X	0	1	X
1	1	1	1	0	1	1	1	0	1	1	1	X	1	X	0	X	0	X	0
0	1	1	1	0	0	1	1	0	0	1	1	0	X	X	1	X	0	X	0
0	0	1	1	0	0	0	1	0	0	0	1	0	X	0	X	X	1	X	0
0	0	0	1	0	0	0	0	0	0	0	0	0	X	0	X	0	X	X	1

Exemplu

- Schemele logice se determină valorile pentru intrările bistabilelor $D_3 \div D_0$ și $J_3 \div K_0$ cu diagrame Karnaugh
- $D_3 = \overline{Q_0}$; $D_2 = Q_3$; $D_1 = Q_2$; $D_0 = Q_1$
- $J_3 = \overline{Q_0}; K_3 = \overline{Q_0}; J_2 = \overline{Q_3}; K_2 = \overline{Q_3}; J_1 = \overline{Q_2}; K_1 = \overline{Q_2}; J_0 = \overline{Q_1}; K_0 = \overline{Q_1}$

• Observație: În numărătorul Moebius starea fiecărui bistabil intermediar este determinată de starea anterioară a bistabilului plasat în stânga sa, iar starea primului bistabil este determinată de ieșirea complementară a ultimului bistabil

Aplicaţii

- Numărătoare de stare
 - Decodificarea oricărei stări se poate face printr-o poartă logică cu 2 intrări
- Generatoare de tact cu mai multe faze
 - Cele 8 ieșiri ale numărătorului generează de fapt 8 semnale de ceas defazate în mod egal, cu factor de umplere de 50%
- În general un numărător Moebius de n biţi generează 2n faze de ceas 22.11.2019 Curs 8 Proiectare Logica