Задание 9 (на 09.11).

| **ML 43.** | Докажите, что:

- (a) множество \mathbb{Q} со стандартным порядком изоморфно множеству \mathbb{Q}_+ (множество положительных рациональных чисел) со стандартным порядком (т. е. существует биекция, которая сохраняет порядок);
- (б) счетное множество M, на котором задан плотный порядок (т.е. между любыми двумя элементами есть еще один элемент) и в котором нет минимального и максимального элемента, изоморфно множеству $\mathbb Q$ со стандартным порядком;
- (в) любая замкнутая формула логики первого порядка истинна в интерпретации (M,<) (где M счетное множество без минимального и максимального элемента, а порядок < плотный) тогда и только тогда, когда она истинна в интерпретации $(\mathbb{Q},<)$;

[ML 44.] Покажите, что в интерпретации ($\mathbb{Z},=,<$) предикат y=x+1 невыразим при помощи бескванторной формулы.

| **ML 45.** | Выразим ли предикат x = 0 в интерпретации ($\mathbb{N}, =, <$)

- (а) бескванторной формулой;
- (б) любой формулой.

[ML 46.] Можно ли в данной интерпретации провести элиминацию кванторов (\mathbb{Q} , +)? Если нет, то можно ли добавить какой-нибудь выразимый предикат так, чтобы с новым предикатом элиминация квантором стала возможной.

[ML 47.] Можно ли в данной интерпретации провести элиминацию кванторов (\mathbb{Q} , =, S), где S — прибавление единицы? Если нет, то можно ли добавить какой-нибудь выразимый предикат так, чтобы с новым предикатом элиминация кванторов стала возможной.

ML 38. Докажите, что существует такое множество $S \subseteq \mathbb{N}$, что для любого бесконечного перечислимого множества A множества $A \cap S$ и $A \setminus S$ имеют бесконечный размер.

 $\boxed{ \mathbf{ML} \ \mathbf{40.} }$ Покажите, что функция обратная к примитивно рекурсивной биекции $f: \mathbb{N} \to \mathbb{N}$ может не быть примитивно рекурсивной.