# CMPT-413: Computational Linguistics

### **Anoop Sarkar**

anoop@cs.sfu.ca

www.sfu.ca/~anoop/courses/CMPT-413-Spring-2003.html

### **Spelling Correction**

- A look at how to correct spelling errors, but the approaches we will consider have connections with other topics of interest in this course:
  - finite-state transducers
  - probabilistic models of language (the noisy channel model)
  - dynamic programming algorithms for parsing sentence structure
  - phylogenetic trees in linguistics and in bioinformatics (tracing historical relationships between strings based on edit distance)

### **Spelling Correction**

- Types of spelling correction techniques
  - non-word error detection, e.g. hte for the
  - isolated word error detection
  - context dependent error detection (real word errors). *All I want is piece . . . a little piece of Poland, a little piece of France, . . .*

## **Spelling Correction**

- Types of single-error misspellings
  - insertion/addition: acress → cress
  - deletion: acress → actress
  - substitution: acress → access
  - transposition/reversal: acress → caress

## Noisy Channel Model: Bayesian Inference



### Noisy Channel Model for Spelling Correction:

(Kernighan, Church and Gale, 1990)

t is the typo (misspelled word) and c is the correct word

$$P(c \mid t) = P(t \mid c) \times P(c)$$

• Find the best candidate for the correct word,  $\hat{c}$ :

$$\widehat{c} = \underset{c \in \mathcal{C}}{\operatorname{arg max}} P(t \mid c) \times P(c)$$

$$P(c) = \frac{f(c)}{N}$$

$$P(t \mid c) = ??$$

### Noisy Channel Model for Spelling Correction:

(Kernighan, Church and Gale, 1990): single error, condition on previous letter

$$P(t \mid c) = \begin{cases} \frac{del[c_{p-1}, c_p]}{chars[c_{p-1}, c_p]} & (xy)_c \text{ typed as } (x)_t \\ \frac{ins[c_{p-1}, t_p]}{chars[c_{p-1}]} & (x)_c \text{ typed as } (xy)_t \\ \frac{sub[t_p, c_p]}{chars[c_p]} & (y)_c \text{ typed as } (x)_t \\ \frac{rev[c_p, c_{p+1}]}{chars[c_p, c_{p+1}]} & (xy)_c \text{ typed as } (yx)_t \end{cases}$$

### Noisy Channel Model for Spelling Correction:

(Kernighan, Church and Gale, 1990)

- The del, ins, sub, rev matrix values need data in which errors are marked by a human (Key definition: **training data**)
- Accuracy on single errors on unseen data (test data): 87% accuracy vs. 98% avg. human accuracy.
- What are the limitations of this algorithm for correcting spelling?
   ... was called a "stellar and versatile acress whose combination of sass and glamour has defined her . . .
  - → KCG best guess is **acres**



```
1 function MinEditDistance (target, source) returns min-distance:
   n = length(target)
   m = length(source)
   Create distance matrix distance of size (n+1, m+1)
   indexed from 0 to n and 0 to m
   distance[0,0] = 0
 7
    for each column i from 1 to n do:
      distance[i,0] = distance[i-1,0] + ins-cost(target i)
 8
    for each row j from 1 to m do:
10
      distance[0,j] = distance[0,j-1] + del-cost(source j)
11
    for each column i from 1 to n do:
12
      for each row j from 1 to m do:
        distance[i,j] =
13
14
          MIN ( distance[i-1,j] + ins-cost(target_i),
15
                distance[i-1,j-1] + subst-cost(source j, target i),
16
                distance[i,j-1] + del-cost(source j) )
17
    return distance[n,m]
```

#### Levenshtein Distance

- Cost is fixed across characters ins-cost is 1 del-cost is 1
- Levenshtein proposed two different costs for substitutions:
   subst-cost is 1 (a character transformation is equal to ins/del)
   subst-cost is 2 (one deletion plus one insertion)

```
7 for each column i from 1 to n do:
8   distance[i,0] = i

9 for each row j from 1 to m do:
10   distance[0,j] = j
```



Levenshtein distance between and *gumbo* = 5

|                | $i \rightarrow$ | 0                                                  | 1                     |
|----------------|-----------------|----------------------------------------------------|-----------------------|
| $\downarrow^j$ |                 |                                                    | g                     |
| 0              |                 | $0_e$                                              | $1_i$                 |
| 1              | g               | $1_d$                                              | $\langle 0_e \rangle$ |
| 2 3            | u               | $2_d$                                              | $(1_d)$               |
|                | m               | $3_d$                                              | $(2_d)$               |
| 4<br>5         | b               | $egin{array}{c} 2_d \ 3_d \ 4_d \ 5_d \end{array}$ | $(3_d)$               |
| 5              | 0               | $5_d$                                              | $(4_d)$               |

Levenshtein distance between g and gumbo = 4

|   | $i \rightarrow$ | 0                    | 1              | 2            |
|---|-----------------|----------------------|----------------|--------------|
| j |                 |                      | g              | а            |
| 0 |                 | $\bigcap$            | <u>9</u><br>1. |              |
| U |                 | $\bigcup e$          | $\overline{}$  | $2_i$        |
| 1 | g               | $\mid$ 1 $_d$ $\mid$ | $\{0_e\}$      | $1_i$        |
| 2 | u               | $2_d$                | $(1_d)$        | $2_s$        |
| 3 | m               | $3_d$                | $(2_d)$        | $3_{s}$      |
| 4 | b               | $4_d$                | $(3_d)$        | $4_s$        |
| 5 | 0               | $5_d$                | $4_{d}$        | $\sqrt{5_s}$ |

Levenshtein distance between *ga* and *gumbo* = 5

|         | $i \rightarrow$ | 0                     | 1                     | 2           | 3                     |
|---------|-----------------|-----------------------|-----------------------|-------------|-----------------------|
| j       |                 |                       | g                     | а           | m                     |
| <u></u> |                 |                       | 9                     |             |                       |
| 0       |                 | $ 0_{e}\rangle$       | $1_i$                 | ${\bf 2}_i$ | $3_i$                 |
| 1       | g               | $1_d$                 | $\langle 0_e \rangle$ | $1_i$       | $2_i$                 |
| 2       | u               | $2_d$                 | $\overline{1_d}$      | 2s          | $3_s$                 |
| 3       | m               | $3_d$                 | $2_d$                 | $3_{s}$     | $\langle 2_e \rangle$ |
| 4       | b               | <b>4</b> <sub>d</sub> | $3_d$                 | $4_{s}$     | $(3_d)$               |
| 5       | 0               | $5_d$                 | <b>4</b> <sub>d</sub> | $5_{s}$     | $\langle 4_d \rangle$ |

Levenshtein distance between *gam* and *gumbo* = 4

|                | $i \rightarrow$ | 0                     | 1                     | 2                 | 3                          | 4                     |
|----------------|-----------------|-----------------------|-----------------------|-------------------|----------------------------|-----------------------|
| $\downarrow^j$ |                 |                       | g                     | а                 | m                          | b                     |
| 0              |                 | $0_e$                 | $1_i$                 | $2_i$             | $3_i$                      | <b>4</b> <sub>i</sub> |
| 1              | g               | $1_d$                 | $\langle 0_e \rangle$ | $1_i$             | $2_i$                      | $3_i$                 |
| 2              | u               | $2_d$                 | $\widecheck{1_d}$     | 2s                | $3_{\scriptscriptstyle S}$ | $4_{s}$               |
| 3              | m               | $3_d$                 | $2_d$                 | $\widetilde{3_s}$ | $\langle 2_e \rangle$      | $3_i$                 |
| 4              | b               | <b>4</b> <sub>d</sub> | $3_d$                 | $4_{s}$           | $\widetilde{3_d}$          | $\langle 2_e \rangle$ |
| 5              | 0               | $ $ 5 $_d$            | <b>4</b> <sub>d</sub> | $5_{s}$           | <b>4</b> <sub>d</sub>      | $(3_d)$               |

Levenshtein distance between *gamb* and *gumbo* = 3

|                                                           | $i \rightarrow$ | 0       | 1                     | 2                 | 3                     | 4                     | 5                       |
|-----------------------------------------------------------|-----------------|---------|-----------------------|-------------------|-----------------------|-----------------------|-------------------------|
| $\left  egin{array}{c} j \ \downarrow \end{array}  ight.$ |                 |         | g                     | а                 | m                     | b                     | ı                       |
| 0                                                         |                 | $(0_e)$ | $\overline{1_i}$      | $2_i$             | $3_i$                 | <b>4</b> <sub>i</sub> | $5_i$                   |
| 1                                                         | g               | $1_d$   | $\langle 0_e \rangle$ | $1_i$             | $2_i$                 | $3_i$                 | $4_{i}$                 |
| 2                                                         | u               | $2_d$   | $\widecheck{1_d}$     | 2s                | $3_s$                 | $4_{s}$               | $5_{s}$                 |
| 3                                                         | m               | $3_d$   | $2_d$                 | $\widetilde{3_s}$ | $\langle 2_e \rangle$ | $3_i$                 | $4_i$                   |
| 4                                                         | b               | $4_d$   | $3_d$                 | $4_{s}$           | $\widecheck{3_{d}}$   | $\langle 2_e \rangle$ | $3_i$                   |
| 5                                                         | 0               | $5_d$   | <b>4</b> <sub>d</sub> | $5_s$             | <b>4</b> <sub>d</sub> | $\widecheck{3_d}$     | $\langle 4_{s} \rangle$ |

Levenshtein distance between *gambl* and *gumbo* = 4

|                | $i \rightarrow$ | 0                     | 1                     | 2                     | 3                     | 4                     | 5                 | 6       |
|----------------|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|---------|
| $\downarrow j$ |                 |                       | g                     | а                     | m                     | b                     | I                 | е       |
| 0              |                 | $\left( 0_{e} ight)$  | $1_i$                 | $2_i$                 | $3_i$                 | $4_{i}$               | $5_{i}$           | $6_i$   |
| 1              | g               | $1_d$                 | $\langle 0_e \rangle$ | $1_i$                 | $2_i$                 | $3_i$                 | $4_i$             | $5_{i}$ |
| 2              | u               | $2_d$                 | $1_d$                 | $\langle 2_s \rangle$ | $3_{s}$               | $4_{s}$               | $5_{s}$           | $6_s$   |
| 3              | m               | $3_d$                 | $2_d$                 | $\widetilde{3_s}$     | 2e                    | $3_i$                 | $4_i$             | $5_{i}$ |
| 4              | b               | <b>4</b> <sub>d</sub> | $3_d$                 | $4_{s}$               | $\widecheck{3_d}$     | $\langle 2_e \rangle$ | $+3_i$            | $4_{i}$ |
| 5              | 0               | $5_d$                 | <b>4</b> <sub>d</sub> | $5_{s}$               | <b>4</b> <sub>d</sub> | $\widecheck{3_d}$     | $\overbrace{4_s}$ | 5s      |

Levenshtein distance between *gamble* and *gumbo* = 5



Levenshtein distance between e and i = 2

|                           | $i \rightarrow$ | 0             | 1                         | 2                                       |
|---------------------------|-----------------|---------------|---------------------------|-----------------------------------------|
| $\downarrow$ $\downarrow$ |                 |               | е                         | x                                       |
| 0                         |                 | $(0_e)$       | $\overline{1_i}$          | $2_i$                                   |
| 1                         | i               | $\mid$ 1 $_d$ | $\langle 2_s \rangle$     | $\left  3_{\mathcal{S}}^{^{v}} \right $ |
| 2                         | n               | $2_d$         | $\overset{\smile}{3_{s}}$ | 4s                                      |

Levenshtein distance between ex and in = 4

|                | $i \rightarrow$ | 0       | 1                         | 2                         | 3                |
|----------------|-----------------|---------|---------------------------|---------------------------|------------------|
| $\downarrow j$ |                 |         | е                         | X                         | е                |
| 0              |                 | $(0_e)$ | $1_i$                     | $2_i$                     | $\overline{3_i}$ |
| 1              | i               | $1_d$   | $\langle 2_s \rangle$     | $3_s$                     | $4_{s}$          |
| 2              | n               | $2_d$   | $\overset{\smile}{3_{s}}$ | $\langle 4_s \rangle$     | $5_{s}$          |
| 3              | t               | $3_d$   | <b>4</b> <sub>s</sub>     | $\overset{\smile}{5_{s}}$ | $\sqrt{6s}$      |

Levenshtein distance between exe and int = 6

|              | $i \rightarrow$ | 0                     | 1                     | 2                   | 3                | 4                     |
|--------------|-----------------|-----------------------|-----------------------|---------------------|------------------|-----------------------|
| $\downarrow$ |                 |                       | е                     | X                   | е                | С                     |
| 0            |                 | $(0_e)$               | $\overline{1_i}$      | $2_i$               | $\overline{3_i}$ | <b>4</b> <sub>i</sub> |
| 1            | i               | $ 1_d\rangle$         | $2_s$                 | $3_s$               | $4_s$            | $5_{s}$               |
| 2            | n               | $\widetilde{2_d}$     | $\langle 3_s \rangle$ | $4_s$               | $5_s$            | 6s                    |
| 3            | t               | $3_d$                 | $\widecheck{4_{s}}$   | 5s                  | $6_s$            | $7_s$                 |
| 4            | е               | <b>4</b> <sub>d</sub> | $3_e$                 | $\widecheck{4_{i}}$ | 5e               | $-(6_i)$              |

Levenshtein distance between *exec* and *inte* = 6

|                  | $i \rightarrow$ | 0                | 1                     | 2                 | 3                                   | 4        | 5       |
|------------------|-----------------|------------------|-----------------------|-------------------|-------------------------------------|----------|---------|
| $\downarrow$ $j$ |                 |                  | е                     | X                 | е                                   | С        | u       |
| 0                |                 | $(0_e)$          | $1_i$                 | $2_i$             | $3_i$                               | $4_{i}$  | $5_{i}$ |
| 1                | i               | $ (1_d) $        | $2_s$                 | $3_s$             | $4_s$                               | $5_{s}$  | $6_s$   |
| 2                | n               | $(\mathbf{Z}_d)$ | $\langle 3_s \rangle$ | $4_s$             | $5_{s}$                             | $6_s$    | $7_s$   |
| 3                | t               | $3_d$            | $\widecheck{4_{s}}$   | $\sqrt{5_s}$      | $6_s$                               | $7_s$    | $8_s$   |
| 4                | е               | $4_d$            | $3_e$                 | $\widecheck{4_i}$ | (5 <sub>e</sub> )                   | $-(6_i)$ | $7_i$   |
| 5                | n               | $5_d$            | $4_d$                 | $5_{s}$           | $\overset{\smile}{6_{\mathcal{S}}}$ | $7_s$    | 8s      |

Levenshtein distance between *execu* and *inten* = 8

|         | $i \rightarrow$ | 0                 | 1                     | 2                   | 3                         | 4        | 5                       | 6                          | 7                          | 8                          | 9               |
|---------|-----------------|-------------------|-----------------------|---------------------|---------------------------|----------|-------------------------|----------------------------|----------------------------|----------------------------|-----------------|
| j       |                 |                   | 0                     | V                   | 0                         | •        |                         | +                          | i                          | 0                          | n               |
| <u></u> |                 |                   | е                     | Х                   | е                         | С        | u                       | L                          | l                          | 0                          | n               |
| 0       |                 | $ 0_e\rangle$     | $1_i$                 | $2_i$               | $3_i$                     | $4_i$    | $5_{i}$                 | $6_i$                      | ${\sf 7}_i$                | $8_i$                      | $9_i$           |
| 1       | i               | $ (1_d)\langle$   | $2_s$                 | $3_s$               | $4_{S}$                   | $5_{s}$  | $6_s$                   | $7_s$                      | 6e                         | $7_i$                      | $8_i$           |
| 2       | n               | $\widetilde{2_d}$ | $\langle 3_s \rangle$ | $4_{s}$             | $5_{s}$                   | $6_{s}$  | $7_s$                   | $8_s$                      | $7_d$                      | $8_s$                      | $7_e$           |
| 3       | t               | $3_d$             | $\widecheck{4_{s}}$   | $\sqrt{5_s}$        | $6_s$                     | $7_s$    | $8_s$                   | $7_e$                      | $8_i$                      | $9_s$                      | $8_d$           |
| 4       | е               | $4_d$             | $3_e$                 | $\widecheck{f 4}_i$ | $\sqrt{5_e}$              | $-(6_i)$ | $7_i$                   | $8_i$                      | $9_s$                      | $10_s$                     | $9_d$           |
| 5       | n               | $5_d$             | $4_d$                 | $5_{s}$             | $\overset{\smile}{6_{s}}$ | $7_s$    | 8s                      | $9_s$                      | $10_s$                     | <b>11</b> <sub>s</sub>     | 10 <sub>e</sub> |
| 6       | t               | $6_d$             | $5_d$                 | $6_s$               | $7_s$                     | $8_s$    | $\overset{\smile}{9_s}$ | 8e                         | $9_i$                      | $10_i$                     | $11_i$          |
| 7       | i               | $7_d$             | $6_d$                 | $7_s$               | $8_s$                     | $9_s$    | $10_s$                  | $\widecheck{\mathtt{9}_d}$ | 8e                         | $9_i$                      | $10_i$          |
| 8       | 0               | $8_d$             | $7_d$                 | $8_s$               | $9_s$                     | $10_s$   | $11_s$                  | $10_d$                     | $\widecheck{\mathtt{9}_d}$ | 8e                         | $9_i$           |
| 9       | n               | $9_d$             | $8_d$                 | $9_s$               | $10_s$                    | $11_s$   | <b>12</b> <sub>s</sub>  | $11_d$                     | $10_d$                     | $\widecheck{\mathtt{9}_d}$ | 8e              |

Levenshtein distance between *execution* and *intention* = 8