Converting to polar coordinates, we obtain

$$A = \int_0^{2\pi} \int_0^3 \sqrt{1 + 4r^2} \, r \, dr \, d\theta = \int_0^{2\pi} d\theta \, \int_0^3 r \sqrt{1 + 4r^2} \, dr$$
$$= 2\pi \left(\frac{1}{8}\right) \frac{2}{3} (1 + 4r^2)^{3/2} \Big]_0^3 = \frac{\pi}{6} \left(37\sqrt{37} - 1\right)$$

The question remains whether our definition of surface area (6) is consistent with the surface area formula from single-variable calculus (8.2.4).

We consider the surface S obtained by rotating the curve y = f(x), $a \le x \le b$, about the x-axis, where $f(x) \ge 0$ and f' is continuous. From Equations 3 we know that parametric equations of S are

$$x = x$$
 $y = f(x)\cos\theta$ $z = f(x)\sin\theta$ $a \le x \le b$ $0 \le \theta \le 2\pi$

To compute the surface area of S we need the tangent vectors

$$\mathbf{r}_{x} = \mathbf{i} + f'(x)\cos\theta \mathbf{j} + f'(x)\sin\theta \mathbf{k}$$

$$\mathbf{r}_{\theta} = -f(\mathbf{x})\sin\theta\,\mathbf{j} + f(\mathbf{x})\cos\theta\,\mathbf{k}$$

Thus

$$\mathbf{r}_{x} \times \mathbf{r}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & f'(x)\cos\theta & f'(x)\sin\theta \\ 0 & -f(x)\sin\theta & f(x)\cos\theta \end{vmatrix}$$
$$= f(x)f'(x)\mathbf{i} - f(x)\cos\theta\mathbf{j} - f(x)\sin\theta\mathbf{k}$$

and so

$$|\mathbf{r}_{x} \times \mathbf{r}_{\theta}| = \sqrt{[f(x)]^{2}[f'(x)]^{2} + [f(x)]^{2}\cos^{2}\theta + [f(x)]^{2}\sin^{2}\theta}$$
$$= \sqrt{[f(x)]^{2}[1 + [f'(x)]^{2}]} = f(x)\sqrt{1 + [f'(x)]^{2}}$$

because $f(x) \ge 0$. Therefore the area of S is

$$A = \iint_{D} |\mathbf{r}_{x} \times \mathbf{r}_{\theta}| dA = \int_{0}^{2\pi} \int_{a}^{b} f(x) \sqrt{1 + [f'(x)]^{2}} dx d\theta$$
$$= 2\pi \int_{a}^{b} f(x) \sqrt{1 + [f'(x)]^{2}} dx$$

This is precisely the formula that was used to define the area of a surface of revolution in single-variable calculus (8.2.4).

16.6 EXERCISES

1–2 Determine whether the points P and Q lie on the given surface.

I.
$$\mathbf{r}(u, v) = \langle 2u + 3v, 1 + 5u - v, 2 + u + v \rangle$$

 $P(7, 10, 4), Q(5, 22, 5)$

2.
$$\mathbf{r}(u, v) = \langle u + v, u^2 - v, u + v^2 \rangle$$

 $P(3, -1, 5), Q(-1, 3, 4)$

3–6 Identify the surface with the given vector equation.

3.
$$\mathbf{r}(u, v) = (u + v)\mathbf{i} + (3 - v)\mathbf{j} + (1 + 4u + 5v)\mathbf{k}$$

4.
$$\mathbf{r}(u, v) = 2 \sin u \mathbf{i} + 3 \cos u \mathbf{j} + v \mathbf{k}, \quad 0 \le v \le 2$$

5.
$$\mathbf{r}(s, t) = \langle s, t, t^2 - s^2 \rangle$$

6.
$$\mathbf{r}(s, t) = \langle s \sin 2t, s^2, s \cos 2t \rangle$$

7-12 Use a computer to graph the parametric surface. Get a printout and indicate on it which grid curves have *u* constant and which have *v* constant.

7.
$$\mathbf{r}(u, v) = \langle u^2 + 1, v^3 + 1, u + v \rangle, \quad -1 \le u \le 1, \ -1 \le v \le 1$$

8.
$$\mathbf{r}(u, v) = \langle u + v, u^2, v^2 \rangle, -1 \le u \le 1, -1 \le v \le 1$$

9.
$$\mathbf{r}(u,v) = \langle u \cos v, u \sin v, u^5 \rangle, -1 \le u \le 1, \ 0 \le v \le 2\pi$$

- 10. $\mathbf{r}(u, v) = \langle \cos u \sin v, \sin u \sin v, \cos v + \ln \tan(v/2) \rangle,$ $0 \le u \le 2\pi, 0.1 \le v \le 6.2$
- 11. $x = \sin v$, $y = \cos u \sin 4v$, $z = \sin 2u \sin 4v$, $0 \le u \le 2\pi$, $-\pi/2 \le v \le \pi/2$
- 12. $x = u \sin u \cos v$, $y = u \cos u \cos v$, $z = u \sin v$

13–18 Match the equations with the graphs labeled I–VI and give reasons for your answers. Determine which families of grid curves have u constant and which have v constant.

- 13. $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}$
- 14. $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + \sin u \mathbf{k}, \quad -\pi \le u \le \pi$
- 15. $\mathbf{r}(u, v) = \sin v \mathbf{i} + \cos u \sin 2v \mathbf{j} + \sin u \sin 2v \mathbf{k}$
- **16.** $x = (1 u)(3 + \cos v) \cos 4\pi u$, $y = (1 u)(3 + \cos v) \sin 4\pi u$, $z = 3u + (1 u) \sin v$
- 17. $x = \cos^3 u \cos^3 v$, $y = \sin^3 u \cos^3 v$, $z = \sin^3 v$
- **18.** $x = (1 |u|)\cos v$, $y = (1 |u|)\sin v$, z = u

- 19–26 Find a parametric representation for the surface.
- **19.** The plane that passes through the point (1, 2, -3) and contains the vectors $\mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{i} \mathbf{j} + \mathbf{k}$
- **20.** The lower half of the ellipsoid $2x^2 + 4y^2 + z^2 = 1$
- **21.** The part of the hyperboloid $x^2 + y^2 z^2 = 1$ that lies to the right of the *xz*-plane
- **22.** The part of the elliptic paraboloid $x + y^2 + 2z^2 = 4$ that lies in front of the plane x = 0
- **23.** The part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$
- **24.** The part of the sphere $x^2 + y^2 + z^2 = 16$ that lies between the planes z = -2 and z = 2
- **25.** The part of the cylinder $y^2 + z^2 = 16$ that lies between the planes x = 0 and x = 5
- **26.** The part of the plane z = x + 3 that lies inside the cylinder $x^2 + y^2 = 1$

27–28 Use a computer algebra system to produce a graph that looks like the given one.

- **29.** Find parametric equations for the surface obtained by rotating the curve $y = e^{-x}$, $0 \le x \le 3$, about the *x*-axis and use them to graph the surface.
- **30.** Find parametric equations for the surface obtained by rotating the curve $x = 4y^2 y^4$, $-2 \le y \le 2$, about the *y*-axis and use them to graph the surface.
- **31.** (a) What happens to the spiral tube in Example 2 (see Figure 5) if we replace $\cos u$ by $\sin u$ and $\sin u$ by $\cos u$?
 - (b) What happens if we replace $\cos u$ by $\cos 2u$ and $\sin u$ by $\sin 2u$?
- **32.** The surface with parametric equations

$$x = 2\cos\theta + r\cos(\theta/2)$$

$$y = 2\sin\theta + r\cos(\theta/2)$$

$$z = r \sin(\theta/2)$$

where $-\frac{1}{2} \le r \le \frac{1}{2}$ and $0 \le \theta \le 2\pi$, is called a **Möbius strip**. Graph this surface with several viewpoints. What is unusual about it?

- **33–36** Find an equation of the tangent plane to the given parametric surface at the specified point. If you have software that graphs parametric surfaces, use a computer to graph the surface and the tangent plane.
- **33.** x = u + v, $y = 3u^2$, z = u v; (2, 3, 0)
- **34.** $x = u^2$, $y = v^2$, z = uv; u = 1, v = 1
- **35.** $\mathbf{r}(u, v) = u^2 \mathbf{i} + 2u \sin v \mathbf{j} + u \cos v \mathbf{k}; \quad u = 1, v = 0$
- **36.** $\mathbf{r}(u, v) = uv \mathbf{i} + u \sin v \mathbf{j} + v \cos u \mathbf{k}; \quad u = 0, v = \pi$
- **37–47** Find the area of the surface.
- **37.** The part of the plane 3x + 2y + z = 6 that lies in the first octant
- **38.** The part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$
- **39.** The surface $z = \frac{2}{3}(x^{3/2} + y^{3/2}), \ 0 \le x \le 1, \ 0 \le y \le 1$
- **40.** The part of the plane with vector equation $\mathbf{r}(u, v) = \langle 1 + v, u 2v, 3 5u + v \rangle$ that is given by $0 \le u \le 1, 0 \le v \le 1$
- 41. The part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 1$
- **42.** The part of the surface $z = 1 + 3x + 2y^2$ that lies above the triangle with vertices (0, 0), (0, 1), and (2, 1)
- **43.** The part of the hyperbolic paraboloid $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$
- **44.** The part of the paraboloid $x = y^2 + z^2$ that lies inside the cylinder $y^2 + z^2 = 9$
- **45.** The part of the surface $y = 4x + z^2$ that lies between the planes x = 0, x = 1, z = 0, and z = 1
- **46.** The helicoid (or spiral ramp) with vector equation $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}, 0 \le u \le 1, 0 \le v \le \pi$
- **47.** The surface with parametric equations $x = u^2$, y = uv, $z = \frac{1}{2}v^2$, $0 \le u \le 1$, $0 \le v \le 2$
- **48–49** Find the area of the surface correct to four decimal places by expressing the area in terms of a single integral and using your calculator to estimate the integral.
- **48.** The part of the surface $z = \cos(x^2 + y^2)$ that lies inside the cylinder $x^2 + y^2 = 1$
- **49.** The part of the surface $z = e^{-x^2 y^2}$ that lies above the disk $x^2 + y^2 \le 4$
- **50.** Find, to four decimal places, the area of the part of the surface $z = (1 + x^2)/(1 + y^2)$ that lies above the square $|x| + |y| \le 1$. Illustrate by graphing this part of the surface.

- **51.** (a) Use the Midpoint Rule for double integrals (see Section 15.1) with six squares to estimate the area of the surface $z = 1/(1 + x^2 + y^2)$, $0 \le x \le 6$, $0 \le y \le 4$.
- (b) Use a computer algebra system to approximate the surface area in part (a) to four decimal places. Compare with the answer to part (a).
- **52.** Find the area of the surface with vector equation $\mathbf{r}(u,v) = \langle \cos^3 u \cos^3 v, \sin^3 u \cos^3 v, \sin^3 v \rangle, \ 0 \le u \le \pi, \ 0 \le v \le 2\pi.$ State your answer correct to four decimal places.
- **S3.** Find the exact area of the surface $z = 1 + 2x + 3y + 4y^2$, $1 \le x \le 4$, $0 \le y \le 1$.
 - **54.** (a) Set up, but do not evaluate, a double integral for the area of the surface with parametric equations $x = au \cos v$, $y = bu \sin v$, $z = u^2$, $0 \le u \le 2$, $0 \le v \le 2\pi$.
 - (b) Eliminate the parameters to show that the surface is an elliptic paraboloid and set up another double integral for the surface area.
- (c) Use the parametric equations in part (a) with a = 2 and b = 3 to graph the surface.
- (d) For the case a = 2, b = 3, use a computer algebra system to find the surface area correct to four decimal places.
 - **55.** (a) Show that the parametric equations $x = a \sin u \cos v$, $y = b \sin u \sin v$, $z = c \cos u$, $0 \le u \le \pi$, $0 \le v \le 2\pi$, represent an ellipsoid.
- (b) Use the parametric equations in part (a) to graph the ellipsoid for the case a = 1, b = 2, c = 3.
 - (c) Set up, but do not evaluate, a double integral for the surface area of the ellipsoid in part (b).
 - **56.** (a) Show that the parametric equations $x = a \cosh u \cos v$, $y = b \cosh u \sin v$, $z = c \sinh u$, represent a hyperboloid of one sheet.
 - (b) Use the parametric equations in part (a) to graph the hyperboloid for the case a = 1, b = 2, c = 3.

 \mathcal{A}

- (c) Set up, but do not evaluate, a double integral for the surface area of the part of the hyperboloid in part (b) that lies between the planes z = -3 and z = 3.
- **57.** Find the area of the part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$.
- **58.** The figure shows the surface created when the cylinder $y^2 + z^2 = 1$ intersects the cylinder $x^2 + z^2 = 1$. Find the area of this surface.

- **59.** Find the area of the part of the sphere $x^2 + y^2 + z^2 = a^2$ that lies inside the cylinder $x^2 + y^2 = ax$.
- **60.** (a) Find a parametric representation for the torus obtained by rotating about the *z*-axis the circle in the *xz*-plane with center (b, 0, 0) and radius a < b. [*Hint:* Take as parameters the angles θ and α shown in the figure.]

- (b) Use the parametric equations found in part (a) to graph the torus for several values of *a* and *b*.
- (c) Use the parametric representation from part (a) to find the surface area of the torus.

16.7

SURFACE INTEGRALS

The relationship between surface integrals and surface area is much the same as the relationship between line integrals and arc length. Suppose f is a function of three variables whose domain includes a surface S. We will define the surface integral of f over S in such a way that, in the case where f(x, y, z) = 1, the value of the surface integral is equal to the surface area of S. We start with parametric surfaces and then deal with the special case where S is the graph of a function of two variables.

PARAMETRIC SURFACES

Suppose that a surface S has a vector equation

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \qquad (u,v) \in D$$

We first assume that the parameter domain D is a rectangle and we divide it into subrectangles R_{ij} with dimensions Δu and Δv . Then the surface S is divided into corresponding patches S_{ij} as in Figure 1. We evaluate f at a point P_{ij}^* in each patch, multiply by the area ΔS_{ij} of the patch, and form the Riemann sum

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^*) \Delta S_{ij}$$

Then we take the limit as the number of patches increases and define the **surface integral of** f **over the surface** S as

FIGURE I

 $\iint\limits_{S} f(x, y, z) dS = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^{*}) \Delta S_{ij}$

Notice the analogy with the definition of a line integral (16.2.2) and also the analogy with the definition of a double integral (15.1.5).

To evaluate the surface integral in Equation 1 we approximate the patch area ΔS_{ij} by the area of an approximating parallelogram in the tangent plane. In our discussion of surface area in Section 16.6 we made the approximation

$$\Delta S_{ij} \approx |\mathbf{r}_u \times \mathbf{r}_v| \Delta u \Delta v$$