## **Main Components**



## **Table of Content**

### **Ontologies**

- 1. Reuse and Sharing
- 2. Definitions of Ontologies
- 3. Modeling of Ontologies
- 4. Type of Ontologies
- 5. Libraries of Ontologies

## **Reuse and Sharing**

**Reuse** means to build new applications assembling components already built



**Sharing** is when different applications use the some resources



### **Advantages:**

- Less money
- Less time
- Less resources

#### **Areas:**

- Software
- Knowledge
- Communications
- Interfaces

---

## The knowledge Sharing Initiative

"Building new Knowledge Based Systems today usually entails constructing new knowledge bases from scratch. It could instead be done by assembling reusable components. System developers would then only need to worry about creating the specialized knowledge and reasoners new to the specific task of their systems. This new system would interoperate with existing systems, using them to perform some of its reasoning. In this way, declarative knowledge, problem-solving techniques, and reasoning services could all be shared between systems. This approach would facilitate building bigger and better systems cheaply. The infraestructure to support such sharing and reuse would lead to greater ubiquity of these systems, potentially transforming the knowledge industry ..."



Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.; Senator, T.; Swartout, W.R. *Enabling Technology for Knowledge Sharing*. **Al Magazine**. Winter 1991. 36-56.

## **Reusable Knowledge Components**

### **Ontologies**

Describe domain knowledge in a generic way and provide agreed understanding of a domain

#### **Problem Solving Methods**

Describe the reasoning process of a KBS in an implementation and domain-independent manner



#### **Interaction Problem**

Representing Knowledge for the purpose of solving some problem is strongly affected by the nature of the problem and the inference strategy to be applied to the problem [Bylander et al., 88]



Bylander Chandrasekaran, B. **Generic Tasks in knowledge-based reasoning.: the right level of abstraction for knowledge acquisition.** In B.R. Gaines and J. H. Boose, EDs *Knowledge Acquisition for Knowledge Based systems*, 65-77, London: Academic Press 1988.

# Ingeniería Ontológica

Conjunto de actividades relativas al proceso de desarrollo de ontologías su ciclo de vida, métodos y metodológías para construirlas, y el conjunto de herramientas y lenguajes en los que se implementan

## **Table of Content**

### **Ontologies**

- 1. Reuse and Sharing
- **2.** Definitions of Ontologies
- 3. Modeling of Ontologies
- 4. Type of Ontologies
- 5. Libraries of Ontologies

## **Definitions of Ontologies (I)**

1. "An ontology defines the basic terms and relations comprising the vocabulary of a topic area, as well as the rules for combining terms and relations to define extensions to the vocabulary"



Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.; Senator, T.; Swartout, W.R. *Enabling Technology for Knowledge Sharing*. **Al Magazine**. Winter 1991. 36-56.

2. "An ontology is an explicit specification of a conceptualization"



Gruber, T. A translation Approach to portable ontology specifications. Knowledge Acquisition. Vol. 5. 1993. 199-220.

## **Definitions of Ontologies (II)**

3. An ontology is a hierarchically structured set of terms for describing a domain that can be used as a skeletal foundation for a knowledge base.



B. Swartout; R. Patil; k. Knight; T. Russ. *Toward Distributed Use of Large-Scale Ontologies* **Ontological Engineering.** AAAI-97 Spring Symposium Series. 1997. 138-148.

4. An ontology provides the means for describing explicitly the conceptualization behind the knowledge represented in a knowledge base.



A. Bernaras; I. Laresgoiti; J. Correra. *Building and Reusing Ontologies for Electrical Network Applications* **ECAl96. 12th European conference on Artificial Intelligence.** Ed. John Wiley & Sons, Ltd. 298-302.

## **Definitions of Ontologies (III)**

5. "An ontology is a formal, explicit specification of a shared conceptualization"





Studer, Benjamins, Fensel. Knowledge Engineering: Principles and Methods. Data and Knowledge Engineering. 25 (1998) 161-197

## **Definitions of Ontologies (IV)**

### **Lightweight Ontologies:**

- •Include Concepts with properties and Taxonomies
- •Do not include Axioms and constraints.

### **Heavyweight Ontologies:**

- •Include all the components
- Excellent!! If they have a lot of axioms.

## **Table of Content**

### **Ontologies**

- 1. Reuse and Sharing
- 2. Definitions of Ontologies
- **3.** Modeling of Ontologies
- 4. Type of Ontologies
- 5. Libraries of Ontologies

## **Components of an Ontology**

### **Concepts are organized in taxonomies**

**Relations** R:  $C_1 \times C_2 \times ... \times C_{n-1} \times C_n$ 

**Subclass-of: Concept 1 x Concept2** 

**Connected to: Component1 x Component2** 

Functions F:  $C_1 \times C_2 \times ... \times C_{n-1} \longrightarrow C_n$ 

**Mother-of: Person --> Women** 

Price of a used car: Model x Year x Kilometers --> Price

**Instances** Elements

Gruber, T. A translation Approach to portable

ontology specifications. Knowledge Acquisition.

Axioms Sentences which are always true

Vol. 5, 1993, 199-220.

## Strategies for building taxonomies: Botton up strategy



# Strategies for building taxonomies: Top Down strategy



# Strategies for building taxonomies: Middle out strategy



# Primitivas necesarias para modelizar conocimientos disjuntos en taxonomías



Disjoint: un conjunto de clases que son disjuntas entre sí son subclase de una clase padre

Exhaustive-Disjoint: un conjunto de clases que son disjuntas entre sí son subclase de una clase padre y el conjunto de clases definen completamente a la clase padre.

## Why disjoint knowledge is important (I)



## Why disjoint knowledge is important (II)



## Why disjoint knowledge is important (III)





Gómez-Pérez. Evaluation of Ontologies. International Journal of Intelligent Systems. Vol. 16, N°3. March 2001. PP391-410

## Why disjoint knowledge is important (IV)





Four is an instance of something in the partition

## **Propiedades**

## Que se definen en la clase

Son Atributos del concepto o clase

Se definen y rellenan en la clase

El valor es el mismo para todas los individuos

## Que se definen en la clase y se rellenan en la Instancia

Atributos específicos de cada individuo

Se definen en el marco clase

Se rellenan en el marco instanciado

En cada individuo puede tomar un valor diferente



## **Example of axioms**

```
(define-axiom No-Train-from-USA-to-Europe
   "It is not possible to travel from the USA to Europe by train"
:= (forall (?travel)
    (forall (?city1)
     (forall (?city2)
       (=> (and (Travel ?travel)
                (arrivalPlace ?travel ?city1)
                (departurePlace ?travel ?city2)
                (EuropeanLocation ?city1)
                (USALocation ?city2))
           (not (TrainTravel ?travel))))))
(define-axiom No-Train-between-USA-and-Europe
   "It is not possible to travel by train between the USA and Europe"
:= (forall (?travel)
    (forall (?city1)
     (forall (?city2)
      (=> (and (Travel ?travel)
               (arrivalPlace ?travel ?city1)
               (departurePlace ?travel ?city2)
               (or (and (EuropeanLocation ?city1)
                        (USALocation ?city2))
                   (and (EuropeanLocation ?city2)
                        (USALocation ?city1))))
          (not (TrainTravel ?travel))))))
```





Browsing area

Edition area

## Using Frames and First Order Logic for Modeling Ontologies

```
(define-class Travel (?travel)
"A journey from place to place"
:axiom-def
(and (Superclass-Of Travel Flight)
    (Template-Facet-Value Cardinality
        arrivalDate Travel 1)
    (Template-Facet-Value Cardinality
        departureDate Travel 1)
    (Template-Facet-Value Maximum-Cardinality
        singleFare Travel 1))
:def
    (and (arrivalDate ?travel Date)
        (departureDate ?travel Date)
        (singleFare ?travel Number)
        (companyName ?travel String)))
```

## **Using Description Logics for Modeling Ontologies**

```
(defconcept Travel
   "A journey from place to place"
:is-primitive
   (:and
        (:all arrivalDate Date)(:exactly 1 arrivalDate)
        (:all departureDate Date)(:exactly 1
departureDate)
        (:all companyName String)
        (:all singleFare Number)(:at-most singleFare 1)))
```

```
(tellm (AA7462 AA7462-08-Feb-2002)
(singleFare AA7462-08-Feb-2002 300)
(departureDate AA7462-08-Feb-2002 Feb8-2002)
(arrivalPlace AA7462-08-Feb-2002 Seattle))
```

```
(defrelation Pays
:is
(:function (?room ?Discount)
(- (Price ?room) (/(*(Price ?room) ?Discount) 100)))
:domains (Room Number)
:range Number)
```

```
(defrelation connects

"A road connects two different cities"

:arity 3

:domains (Location Location)

:range RoadSection

:predicate

((?city1 ?city2 ?road)

(:not (part-of ?city1 ?city2))

(:not (part-of ?city2 ?city1))

(:or (:and (start ?road ?city1)(end ?road ?city2))

(:and (start ?road ?city2)(end ?road ?city1)))))
```

## **Different Approaches to Build Ontologies**

- •The formalism and the language limit the kind of knowledge that can be represented
- •All the aforementioned formalisms allow representing: classes, organized in class taxonomies, attributes, and binary relations
- •Only AI formalisms are specially prepared to model formal axioms either as independent components in the ontology or embedded in other components
- •A domain model is not necessarily an ontology only because it is written in Ontolingua or OWL, for the same reasons that we cannot say that a program is a knowledge-based system because it is written in Prolog
- •Although some languages are more appropriate than others to represent ontologies, a model is an ontology only if it is agreed and machine readable

## **Approaches for building ontologies**



## **Table of Content**

### **Ontologies**

- 1. Reuse and Sharing
- 2. Definitions of Ontologies
- 3. Modeling of Ontologies
- 4. Type of Ontologies
- 5. Libraries of Ontologies

# Types of Ontologies Lassila and McGuiness Classification





Lassila O, McGuiness D. The Role of Frame-Based Representation on the Semantic Web. Technical Report. Knowledge Systems Laboratory. Stanford University. KSL-01-02. 2001.

## **Types of Ontologies**





## **Ontological Commitments**

Agreements to use the vocabulary in a coherent and consistent manner (Gruber)

Connection between the ontology vocabulary and the meaning of the terms of such vocabulary

An agent commits (conforms) to an ontology if it "acts" consistently with the definitions



9 definitions of the term flight from wordnet

Identification of the ontological commitment

Gruber, T.; Olsen, G. An Ontology for Engineering Mathematics.
 Fourth International Conference on Principles of Knowledge Representation and Reasoning.
 Ed by Doyle and Torasso. Morgan Kaufmann. 1994. Also as KSL-94-18.



Guarino, N.; Carrara, M.; Giaretta, P. Formalizing Ontological Commitments.
 12th National Conference on Artificial Intelligence. AAAI-94. 1994. 560-567



## **Ontological Commitments**

# 2000 e a lexical database for the English language

# a lexical database for

cognitive science laboratory | princeton university | 221 nassau st. | princeton, nj 08542

About WordNet

Use WordNet online

Download WordNet 1.7

Changes in version 1.7

Frequently asked questions

WordNet manuals

Glossary of terms

Current events

Publications

License & commercial use

Related projects

Search word: flight

Find valid searches

WordNet 1.6 overview for "flight"

The noun "flight" has 9 senses in WordNet.

- 1. flight (a formation of aircraft in flight)
- 2. flight, flying (an instance of traveling by air, "flying was still an exciting adventure for him")
- 3. flight, flight of stairs, flight of steps (a set of steps between one floor or landing and the next)
- 4. escape, flight (the act of escaping physically, "he made his escape from the mental hospital", "the canary escaped from its cage", "his flight was an indication of his guilt")
- 5. flight (a unit of the US air force smaller than a squadron)
- 6. flight (passing above and beyond ordinary bounds, "a flight of fancy", "flights or rhetoric", "flights of imagination")
- 7. trajectory, flight (the path followed by a moving object)
- 8. flight (a flock of flying birds)
- 9. flight (a scheduled trip by plane between designated airports, "I took the noon flight to Chicago")





## **Table of Content**

### **Ontologies**

- 1. Reuse and Sharing
- 2. Definitions of Ontologies
- 3. Modeling of Ontologies
- 4. Type of Ontologies
- 5. Libraries of Ontologies

## **Libraries of Ontologies**

### **Example library**



http://delicias.dia.fi.upm.es/mirror-server/ont-serv.html

## Relationship between Ontologies in the Library





# Ontology Searching in Ontology Metadata Repositories

- O. Searching
  - O. Assessment
  - O. Selection

### Ontology to describe ontology metadata information

- OMV Ontology Metadata Vocabulary (http://ontoware.org/projects/omv)
- Knowledge Zone vocabulary (http://tinyurl.com/qfp2s)

### 4 Ontology Metadata Repositories

- Oyster (P2P system, http://oyster.ontoware.org)
- ONTHOLOGY.org (centralized, http://www.onthology.org/)



- Knowledge Zone (centralized, <a href="http://smiprotege.stanford.edu:8080/KnowledgeZone/">http://smiprotege.stanford.edu:8080/KnowledgeZone/</a>)
- Swoogle ( http://swoogle.umbc.edu/







\* knowledge zone one stop shop for ontologies



### **Knowledge Representation Ontologies**

The Frame Ontology and the OKBC Ontology

(http://ontolingua.stanford.edu)



•Gruber TR (1993a) A translation approach to portable ontology specification. Knowledge Acquisition 5(2):199–220

•Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP (1998) *Open Knowledge Base Connectivity 2.0.3.* Technical Report. http://www.ai.sri.com/~okbc/okbc-2-0-3.pdf



(http://www.w3.org/1999/02/22-rdf-syntax-ns http://www.w3.org/2000/01/rdf-schema)



Lassila O, Swick R (1999) Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation. http://www.w3.org/TR/REC-rdf-syntax/

OIL knowledge representation ontology

(http://www.ontoknowledge.org/oil/rdf-schema/2000/11/10-oil-standard)



Horrocks I, Fensel D, Harmelen F, Decker S, Erdmann M, Klein M (2000) *OIL in a Nutshell.* In: Dieng R, Corby O (eds) 12th International Conference in Knowledge Engineering and Knowledge Management (EKAW'00). Juan-Les-Pins, France. (Lecture Notes in Artificial Intelligence LNAI 1937) Springer-Verlag, Berlin, Germany, pp 1–16

•DAML+OIL knowledge representation ontology

(http://www.daml.org/2001/03/daml+oil)



Horrocks I, van Harmelen F (eds) (2001) Reference Description of the DAML+OIL (March 2001) Ontology Markup Language. Technical report. http://www.daml.org/2001/03/reference.html

•OWL knowledge representation ontology (http://www.w3.org/2002/07/owl)

rdfs:Resource
rdf:Property

owl:Class owl:DeprecatedClass
owl:Restriction

Dean M, Schreiber G (2003) OWL Web Ontology Language Reference. W3C Working Draft. http://www.w3.org/TR/owl-ref/

owl:Thing owl:Nothing owl:Ontology owl:DataRange owl:AllDifferent

owl:AnnotationProperty owl:DatatypeProperty owl:ObjectProperty owl:InverseFunctionalProperty owl:FunctionalProperty owl:DeprecatedProperty

owl:TransitiveProperty owl:SymmetricProperty

#### Class hierarchy (23 classes defined):

Binary-Relation Antisymmetric-Relation Asymmetric-Relation Partial-Order-Relation Total-Order-Relation Irreflexive-Relation Asymmetric-Relation Many-To-Many-Relation Many-To-One-Relation One-To-Many-Relation Reflexive-Relation Equivalence-Relation Partial-Order-Relation ... Symmetric-Relation Equivalence-Relation Transitive-Relation Equivalence-Relation Partial-Order-Relation ... Weak-Transitive-Relation Class Root Class Class-Partition Function Many-To-One-Relation Individual-Thing Named-Axiom One-To-One-Relation Relation Unary-Relation

#### 31 relations defined:

Alias Composition-Of Default-Facet-Value Default-Slot-Value Default-Template-Facet-Value Default-Template-Slot-Value Disjoint-Decomposition Documentation Domain-Of Exhaustive-Decomposition Has-Author Has-Instance Has-Source Has-Subdefinition Has-Subrelation Inherited-Facet-Value Inherited-Slot-Value Nth-Argument-Name Nth-Domain Nth-Domain-Subclass-Of Obsolete-Same-Values Obsolete-Value-Type Onto Partition Range-Of Range-Subclass-Of Related-Axioms Single-Valued-Slot Slot-Documentation

#### 13 functions defined:

All-Instances
All-Values
Arity
Compose
Domain-Name
Exact-Domain
Exact-Range
Function-Arity
Obsolete-Slot-Cardinality
Projection
Range-Name
Relation-Universe
Subdefinition-Of



Subrelation-Of

Total-On

# **Definition of the relation SUBCLASS-OF** in the Frame Ontology

(define-relation Subclass-Of (?child-class ?parent-class)

"Class C is a subclass of parent class P if and only if every instance of C is also an instance of P. A class may have multiple superclasses and subclasses. Subclass-of is transitive: if (subclass-of C1 C2) and (subclass-of C2 C3) then (subclass-of C1 C3). Object-centered systems sometimes distinguish between a subclass-of relationship that is asserted and one that is inferred. For example, (subclass-of C1 C3) might be inferred from asserting (subclass-of C1 C2) and (subclass-of C2 C3)..."

```
:iff-def
(and (Class ?parent-class)
(Class ?child-class)
(forall (?instance)
(=> (Instance-Of ?instance ?child-class)
(Instance-Of ?instance ?parent-class))))
```

```
:axiom-constraints
```

(Transitive-Relation Subclass-Of)

#### :issues

((:see-also direct-subclass-of)

(:see-also "In CycL, subclass-of is called #%allGenls because it is a slot from a collection to all of its generalizations (superclasses)."

"In the KL-ONE literature, subclass relationships are also called subsumption relationships and ISA is sometimes used for subclass-of.")

("Why is it called Subclass-of instead of subclass or superclass?"

"Because the latter are ambiguous about the order of their arguments. We are following the naming convention that a binary relationship is read as an English sentence `Domain-element Relation-name Range-value'. Thus, `person subclass-of animal' rather than `person superclass animal'.")))



http://www-ksl.stanford.edu



### **Top-level Ontologies**

#### •Top-level ontologies of universals and particulars (http://webode.dia.fi.upm.es/)



•Guarino N, Welty C (2000) A Formal Ontology of Properties. In: Dieng R, Corby O (eds) 12th International Conference in Knowledge Engineering and Knowledge Management (EKAW'00). Juan-Les-Pins, France. (Lecture Notes in Artificial Intelligence LNAI 1937) Springer-Verlag, Berlin, Germany, pp 97–112

•Gangemi A, Guarino N, Oltramari A (2001) *Conceptual analysis of lexical taxonomies: the case of Wordnet top-level.* In: Smith B, Welty C (eds) International Conference on Formal Ontology in Information Systems (FOIS'01). Ogunquit, Maine. ACM Press, New York, pp 3–15

•Sowa's top-level ontology (http://www.jfsowa.com/ontology/toplevel.htm)



Sowa JF (1999) Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove, California

Physical [ ]

Entity

Disjoint

Attribute

Abstract

Class

Relation

#### Cyc's upper ontology

(http://www.cyc.com/cyc-2-1/cover.html)



Lenat DB, Guha RV (1990) Building Large Knowledge-based Systems: Representation and Inference in the Cyc Project. Addison-Wesley, Boston, Massachusetts

•The Standard Upper Ontology (SUO)

(http://suo.ieee.org/)



Pease RA, Niles I (2002) IEEE Standard Upper Ontology: A Progress Report. The Knowledge Engineering Review 17(1):65-70

Process

Quantity

Object



GraphElement

Subclass-Of

Graph

Proposition

### **One Unique Top-Level Ontology?**

### **Various proposals**



### **Linguistic Ontologies**

#### •WordNet (http://www.hum.uva.nl/~ewn/gwa.htm)



- •Miller GA (1995) WordNet: a lexical database for English. Communications of the ACM 38(11):39-41
- •Miller GA, Beckwith R, Fellbaum C, Gross D, Miller K (1990) Introduction to WordNet: An on-line lexical database. International Journal of Lexicography 3(4):235–244

#### •EuroWordNet (http://www.hum.uva.nl/~ewn/)



- •Vossen P (ed) (1999) EuroWordNet General Document. Version 3. http://www.hum.uva.nl/ewn/
- •Vossen P (ed) (1998) EuroWordNet: A Multilingual Database with Lexical Semantic Networks. Kluwer Academic Publishers, Dordrecht, The Netherlands

#### •The Generalized Upper Model

(http://www.darmstadt.gmd.de/publish/komet/gen-um/newUM.html)



Bateman JA, Fabris G, Magnini B (1995) *The Generalized Upper Model Knowledge Base: Organization and Use.* In: Mars N (ed) Second International Conference on Building and Sharing of Very Large-Scale Knowledge Bases (KBKS '95). University of Twente, Enschede, The Netherlands. IOS Press, Amsterdam, The Netherlands, pp 60–72

#### •The Mikrokosmos ontology (http://crl.nmsu.edu/mikro [user and password are required])



•Mahesh K (1996) Ontology development for machine translation: Ideology and Methodology. Technical Report MCCS-96-292. Computing Research Laboratory, New Mexico State University, Las Cruces, New Mexico. http://citeseer.nj.nec.com/mahesh96ontology.html

•Mahesh K, Nirenburg S (1995) Semantic classification for practical natural language processing. In: Schwartz RP, Kwasnik BH, Beghtol C, Smith PJ, Jacob E (eds) 6th ASIS SIG/CR Classification Research Workshop: An Interdisciplinary Meeting. Chicago, Illinois, pp 79–94

#### •SENSUS (http://www.isi.edu/natural-language/projects/ONTOLOGIES.html)



Swartout B, Ramesh P, Knight K, Russ T (1997) *Toward Distributed Use of Large-Scale Ontologies*. In: Farquhar A, Gruninger M, Gómez-Pérez A, Uschold M, van der Vet P (eds) AAAI'97 Spring Symposium on Ontological Engineering. Stanford University, California, pp 138–148



# **Domain Ontologies: e-Commerce Ontologies**

 The United Nations Standard Products and **Services Codes (UNSPSC)** 

(http://www.unspsc.org/)

•NAICS (North American Industry Classification System)

(http://www.census.gov/epcd/www/naics.html)

•SCTG (Standard Classification of Transported Goods)

(http://www.statcan.ca/english/Subjects/Standard/sctg/sctg-menu.htm)

•E-cl@ss

(http://www.eclass.de/)

RosettaNet

(http://www.rosettanet.org)

segment

family

class

commodity





## **Domain Ontologies: Medical Ontologies**

### •GALEN http://www.co-ode.org/galen/



 Rector AL, Bechhofer S, Goble CA, Horrocks I, Nowlan WA,
 Solomon WD (1997) The GRAIL concept modelling language for medical terminology. Artificial Intelligence in Medicine 9:139–171

#### •UMLS (Unified Medical Language System)

(<a href="http://www.nih.gov/research/umls/">http://www.nih.gov/research/umls/</a>)

•ON9 (http://saussure.irmkant.rm.cnr.it/ON9/index.html)



Gangemi A, Pisanelli DM, Steve G (1998) Some Requirements and Experiences in Engineering Terminological Ontologies over the WWW. In: Gaines BR, Musen MA (eds) 11th International Workshop on Knowledge Acquisition, Modeling and Management (KAW'98). Banff, Canada, SHARE10:1–20





# **Domain Ontologies: Engineering Ontologies**

#### •EngMath



Gruber TR, Olsen G (1994) *An ontology for Engineering Mathematics*. In: Doyle J, Torass Sandewall E (eds) Fourth International Conference on Principles of Knowledge Representation and Reasoning. Bonn, Germany. Morgan Kaufmann Publishers, San Francisco, California, pp 258–269

#### •PhysSys



Borst WN (1997) *Construction of Engineering Ontologies*. Centre for Telematica and Information Technology, University of Tweenty. Enschede, The Netherlands



## **Domain Ontologies: Enterprise Ontologies**

• Enterprise Ontology (http://www.aiai.ed.ac.uk/~entprise/enterprise/ontology.html)

Enterprise Ontologies

Enterprise Design Ontology Project Ontology Material Flow Ontology Business Process Ontology



Uschold M, King M, Moralee S, Zorgios Y (1998) The Enterprise Ontology. The Knowled Engineering Review 13(1):31-89

Derivative Ontologies

Transportation Ontology Inventory Ontology

Quality Ontology

Product Design Ontology

Goals Ontology

Scheduling Ontology

Operating Strategies Ontology

Product Requirements Ontology Information Resource Ontology

Intended Action Ontology

Electro Mechanical Product Ontology

• TOVE (http://www.eil.utoronto.ca/tove/toveont.html)



Fox MS (1992) The TOVE Project: A Common-sense Model of the Enterprise. In: Belli F, Radermacher FJ (eds) Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. (Lecture Notes in Artificial Intelligence LNAI 604) Springer-Verlag, Berlin, Germany, pp 25-34

Core Ontologies

Product Ontology Service Ontology Activity Ontology Organization Ontology Resource Ontology



# Domain Ontologies: Knowledge Management Ontologies

 $\bullet (KA)^2$  ontologies (http://ka2portal.aifb.uni-karlsruhe.de)



Decker S, Erdmann M, Fensel D, Studer R (1999) *Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information.* In: Meersman R, Tari Z, Stevens S (eds) Semantic Issues in Multimedia Systems (DS-8), Rotorua, New Zealand. Kluwer Academic Publisher, Boston, Massachusetts. pp 351–369

#### • R&D projects (http://www.esperonto.net/)



### What is an Ontology?

### Shared understanding of a domain



### Repository of vocabulary

- Formal definitions
- Informal definitions