

Assignment NO.7 Solutions

Digital Image Processing | Fall 1400 | Dr.Mohammadi

Teacher Assistant : Samin Heydarian

Student name : Amin Fathi

Student id: 400722102

Problem 1

هیستوگرام الگوهای دودویی محلی LBP81 (نسخه یکنواخت و مستقل از چرخش) را برای دو تصویر زیر به صورت جداگانه محاسبه و مقایسه کنید(در صورت نیاز برای حاشیه تصویر از حالتreflect استفاده کنید)

٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣
٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣
٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣
٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣	٧٣
۸۵	۸۵	۸۵	۸۵	۸۵	۸۵	۸۵	۸۵
۸۵	۸۵	۸۵	۸۵	۸۵	۸۵	۸۵	۸۵
٨۵	۸۵	۸۵	۸۵	۸۵	۸۵	۸۵	۸۵
۸۵	۸۵	۸۵	۸۵	۸۵	۸۵	۸۵	۸۵

١٣	۱۳	۱۳	۱۳	۱۳	۱۳	77	77
١٣	۱۳	۱۳	۱۳	۱۳	۱۳	77	77
١٣	۱۳	۱۳	۱۳	۱۳	۱۳	77	77
١٣	۱۳	۱۳	۱۳	۱۳	۱۳	77	77
۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	77	77
۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	77	77
۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	77	77
۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	77	77

تصویر ۲

تصویر ۱

ابتدا تصویر ۲ reflect padding می دهیم

۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	77	77	77
۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	77	77	77
۱۳	۱۳	١٣	١٣	۱۳	۱۳	۱۳	77	77	77
۱۳	۱۳	١٣	١٣	۱۳	۱۳	۱۳	77	77	77
۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	77	77	77
۱۳	۱۳	١٣	١٣	۱۳	۱۳	۱۳	77	77	77
۱۳	۱۳	١٣	١٣	۱۳	۱۳	۱۳	77	77	77
۱۳	١٣	١٣	١٣	۱۳	۱۳	۱۳	77	77	77
۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	77	77	77
۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	۱۳	77	77	77

حال با استفاده از متد زیر (LBP یکنواخت مستقل از چرخش) ماتریس جدید را به دست می آوریم .(دایره های توپور قرادادی به معنای ۱ و دایره های توخالی قراردادی به معنای صفر هستند)

0	0	0	0	0	0	3	0
0	0	0	0	0	0	3	0
0	0	0	0	0	0	3	0
0	0	0	0	0	0	3	0
0	0	0	0	0	0	3	0
0	0	0	0	0	0	3	0
0	0	0	0	0	0	3	0
0	0	0	0	0	0	3	0

وجود عدد 0 به این معناست که با ناحیه flat و تقریبا همرنگ (بزرگی رنگ درایه نسبت به درایه های اطرافش بیشتر یا برابر باشد) رو به رو هستم .

وجود عدد 3 به معنای امکان وجود لبه است (افقی یا عمودی یا مورب) با توجه به شکل ماتریس و جود ستونی از 3 ها میتوان تشخیص داد که در شکل با لبه ی افقی رو به رو هستم .

حال تصوير دوم را reflect padding مى دهيم .

73	73	73	73	73	73	73	73	73	73
73	73	73	73	73	73	73	73	73	73
73	73	73	73	73	73	73	73	73	73
73	73	73	73	73	73	73	73	73	73
73	73	73	73	73	73	73	73	73	73
85	85	85	85	85	85	85	85	85	85
85	85	85	85	85	85	85	85	85	85
85	85	85	85	85	85	85	85	85	85
85	85	85	85	85	85	85	85	85	85
85	85	85	85	85	85	85	85	85	85

حال ماتریس نگافشت یافته را به دست می آوریم

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3	3	3	3	3	3	3	3
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

وجود عدد 0 به این معناست که با ناحیه flat و تقریبا همرنگ (بزرگی رنگ درایه نسبت به درایه های اطرافش بیشتر یا برابر باشد) رو به رو هستم .

وجود عدد 3 به معنای امکان وجود لبه است (افقی یا عمودی یا مورب) با توجه به شکل ماتریس و جود سطری از 3 ها میتوان تشخیص داد که در شکل با لبه ی عمودی رو به رو هستم .

Problem 2

تابع ضرر Cross Entropy یکی از توابع ضرر مناسب برای مسائل دسته بندی است. برای آشنایی بیشتر با توابع ضرر و توابع فرر و توابع فعالسازی لایه آخر برای حالتهای مختلف مسائل دستهبندی، این لینک را مطالعه کرده و سپس به سوالات زیر یاسخ دهید:

- الف) این تابع (Cross Entropy) برای چه نوع مسائل دسته بندی ای مناسب است؟
- ب) کمترین مقدار این تابع چه مقداری است؟ این مقدار مربوط به چه حالتی از خروجی شبکه است؟
- ج) بیشترین مقدار این تابع چه مقداری است (در حالت حدی)؟ این مقدار مربوط به چه حالتی از خروجی شبکه است؟
 - د) مقدار اولیه این تابع در ابتدای آموزش شبکه چه مقداری است؟ فرض کنید تعداد کلاسها (برچسب های صحیح) برابر با است و مقادیر امتیاز این کلاسها نزدیک به یکدیگر هستند.
- ه) اگر یک شبکه داشته باشیم که لایه آخر آن شامل 4 نورون خروجی باشد، مقادیر خواسته شده در جدول را محاسبه کنید. yپیش بینی شبکه، yبرچسب صحیح داده شده و ABCD وقم آخر شماره دانشجویی شما است. برای مثال اگر شماره دانشجویی شما ABCD باشد؛ C=3، باشد؛ C=3 هستند.

الف) Cross Entropy برای مسایل Classification ای که در آن ها باید داده را به چند کلاس تقسیم کنیم و هر کدام از کلاس ها تنها امکان پذیرش یک لیبل خاصِ خود را دارند مناسب است ؛ همچنین ورژن binary این تابع برای مسایل کلاس ها تنها امکان پذیرش یک لیبل خاصِ خود را دارند مناسب است ؛ همچنین ورژن Classification های باینری ، یا چند کلاسه با چند لیبل (غیر انحصاری) به کار می رود .

Cross entropy = $-\sum_{i}^{M} y_{i} \log(\hat{y}_{i})$ Where \hat{y} is the predicted value, y is the true value and M is the number of classes

ب) کمترین مقدار برابر است با 0؛ این مقدار برای زمانی است که مقدار احتمال پیش بینی شده برای کلاس مد نظر دقیق برابر است با 1 ، در واقع احتمالات موجود در داده آموزشی با احتمالات پیشبینی شده برابر است ، که در این صورت مقدار لگاریتم برابر صفر شده و حاصل نهایی طبق فرمول برابر صفر می شود .

ج) بیشترین مقدار این تابع به سمت بی نهایت میل می کند ، فرض کنید احتمال به دست آمده در پیش بینی برای کلاس A برابر است با 10^{-1000} و مقدار مورد نظر برای این کلاس 1 بوده است . چنانچه این مقدار را در فرمول قرار دهیم مقدار تابع برابر خواهد شد با 1000 ، واضح است که هرچه مقدار احتمال کلاس مد داده ورودی کم و کم تر شود مقدار 1000 به بینهایت میل خواهد کرد .

 $-\log \frac{1}{c}$ برابر است با $(\frac{1}{c})$ برابر فید این تابع چنانچه احتمال برابری برای کلاس ها در نظر بگیریم (

ه)

ŷ	Softmax(ŷ)	y	Cross Entropy Loss
		[0, 0, 0, 1]	0.39
[2,1,0,2]	[0.4,0.15,0.05,0.4]	[0, 0, 1, 0]	1.3
		[0, 1, 0, 0]	0.82
		[1, 0, 0, 0]	0.39

Problem 3

لطفاً به سوالات زير ياسخ دهيد:

الف) تعداد یارامترهای شبکه زیر را محاسبه کنید(محاسبات خود را برای هر لایه به طور دقیق یادداشت کنید)

```
model = Sequential()
model.add(Input(shape=(500, 7)))
model.add(Conv1D(filters=16, kernel_size=3, activation="relu"))
model.add(MaxPool1D())
model.add(Conv1D(filters=32, kernel_size=5, activation="relu"))
model.add(MaxPool1D())
model.add(Conv1D(filters=64, kernel_size=5, activation="relu"))
model.add(MaxPool1D())
model.add(Flatten())
model.add(Dense(units=128, activation="relu"))
model.add(Dense(units=5, activation="softmax"))
```

در لایه input پارامتر نداریم.

در لایه conv1d داریم:

the number of parameters for Conv1D (without biases) is: kernel_size * input_depth * number_filters. With biases, you add the number of filters to your previous result

Param = 3*7*16 + (16) = 352

Output shape =((previousoutput – kernel)/s + 1, number of filters)= (498, 16)

در لایه MaxPool داریم:

Param = 0

Output shape = (492//2, 16) = (249, 16)

در لایه Conv1d داریم:

Param = 5 * 16 *32 + (32) =2592

Output shape = (245 , 32)

در لایه MaxPool داریم:

Param = 0

Output shape = (245//2, 32) = (122, 32)

```
در لایه Conv1d داریم:
```

Param = 5 * 32 *64 + (64) = 10304

Output shape = (118,64)

در لایه MaxPool داریم:

Param = 0

Output shape = (118//2, 64) = (59, 64)

در لایه Flatten داریم:

Param = 0

Output shape = (59*64) = (3776)

در لایه Dense داریم:

param_number = output_channel_number * (input_channel_number + 1)

Param = (3776+1)* 128 = 483456

Output shape =(128)

در لایه Dense داریم:

Param = (128 +1) *5 = 645

Output shape = (5)

Total Params = 654 + 483456 +10304 + 2592 + 352 = 497349

که نتایج به دست آمده با اعداد به دست آمده از طریق کد همخوانی دارد.

Model: "sequential_2"		
Layer (type)	Output Shape	Param #
conv1d_5 (Conv1D)	 (None, 498, 16)	35 2
<pre>max_pooling1d_5 (MaxPooling 1D)</pre>	(None, 249, 16)	0
conv1d_6 (Conv1D)	(None, 245, 32)	2592
<pre>max_pooling1d_6 (MaxPooling 1D)</pre>	(None, 122, 32)	0
conv1d_7 (Conv1D)	(None, 118, 64)	10304
<pre>max_pooling1d_7 (MaxPooling 1D)</pre>	(None, 59, 64)	0
flatten_2 (Flatten)	(None, 3776)	0
dense_4 (Dense)	(None, 128)	483456
dense_5 (Dense)	(None, 5)	645
Total params: 497,349 Trainable params: 497,349 Non-trainable params: 0		

منابع :

How to Calculate the Number of Parameters in Keras Models | by Yong Cui | Towards Data Science

python - Size of output of a Conv1D layer in Keras - Stack Overflow

۳ب) لایه کانولوشنال دو بعدی و سه بعدی را مقایسه کرده و کاربرد لایه Conv3d را ذکر کنید .
CONV3D برای فیلم بهتر است در حالی که CONV2D برای تصویر بهتر است ، CONV3D علاوه بر پارامتر های تصویر ، زمان را هم دخیل میکند .
منبع:
machine learning - What are the differences between Convolutional1D, Convolutional2D, and Convolutional3D? - Data Science Stack Exchange