Deep Learning: Applications and Limitations

Cho-Jui Hsieh
Assistant Professor
UCLA Computer Science

How to make the machine learn from data?

a) Keeshondb) Mini Schnauzerc) Giant Schnauzerd) Dalmatian

Schnauzer

Dalmatian

Keeshond

Giant Schnauzer

ImageNet Challenge

• 1.5 million images, 1000 classes

Machine Learning for ImageNet Classification

Prediction error: Outperform human performance

But...

Roadmap

- What is machine learning?
- Deep Neural networks
- Challenges / Research topics

Roadmap

- What is machine learning?
- Deep Neural networks
- Challenges / Research topics

Example: Image Classification

Hand written digits

How to learn the decision rule?

Human learning

Observation Learning **Decision rule**

Training Data

Machine Learning

Decision rule

Decision function (model)

- Machine learning:
 - Find the best function to map input to output (according to training data)
- Let's assume we use Linear function:

$$f_w(x) = \mathbf{w}^T x = \sum_i \mathbf{w}_i x_i$$

Our goal is to find the best w

Classification

• Given training data D = $(x_1, y_1), ..., (x_n, y_n)$

Which function should we pick?

Pick the one with smallest loss on training data

How good is f on training data?

• Error on this data:

$$\mathrm{loss}(f(x),y) = egin{cases} 0 & ext{if } f(x) = y \ 1 & ext{if } f(x)
eq y \end{cases}$$

Training error (on all training data):

$$\sum_{x} loss(f(x), y)$$

Machine learning = optimization

$$\min_f \sum_x loss(f(x), y)$$

More data -> better performance

Not enough data => bad hyperplane

More data => better estimation

How to find the best linear function?

- Using Optimization (One of my research focus)
 - Design a way to find the minimizier of a function
 - Make it efficient on large datasets
 - ImageNet: millions of data
 - Google search: trillions of data

Software/toolbox

Easy-to-use software available

- LIBLINEAR (Fan, Chang, Hsieh, Wang, Lin, 2008)
 - Used in all linear classification tasks (e.g., scikit-learn)

Scholar articles LII

LIBLINEAR: A library for large linear classification

RE Fan, KW Chang, CJ Hsieh, XR Wang, CJ Lin - Journal of machine learning research,

2008

Cited by 6989 Related articles All 20 versions

= Find the function to map X to Y based on data

Images
Video
Sentence
Document

Label
Real number
Image
Sentence

Regression

- y is real number instead of 0/1
- Example:
 - Stock price prediction
 - Predict height by genomic features
- Just need to switch to square loss

$$loss(f(x), y) = (y - f(x))^2$$

Google Search

Website 1

Website 2

Query

Machine Learning Model

Search queries - Webmaster Tools Help

support.google.com/webmasters/bin/answer.py?hl=en&answer..

Oct 16, 2012 – View Search Queries Available data Filtering Search Queries data Query details How to use Search Queries data About Search Queries data ...

Web search query - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Web_search_query

A web **search query** is a query that a user enters into web search engine to satisfy his or her information needs. Web **search queries** are distinctive in that they ...

Types - Characteristics - Structured queries - See also

Website n

Roadmap

- What is machine learning?
- Neural network
- Applications beyond classification
- Limitations

- Linear classification:
 - X -> Linear function -> y
- Neural network:
 - X -> Neural network -> y
- Neural network defines a nonlinear function
 - Can represent more complex mapping
 - Need more data

Neural networks need more training data than linear model

A Brief History

- Before 1998:
 - Main stream of machine learning research
- 1998--2012:
 - Dominated by linear/kernel SVM
- 2012--now:
 - Back due to Big Data and Efficient Hardware
 - Lead to exciting performance on many tasks

Neural network

Replace linear function by neural network function

features for one data point

$$\mathbf{x} = [x_1, x_2, x_3]$$

$$x_2^{(1)} = \theta(\sum_{i=1}^3 w_{i2}^{(1)} x_i^{(0)})$$

Layer 0 Layer 1 Layer 2 Layer 3 Layer L=4
$$x_1^{(0)} \qquad x_2^{(1)} \qquad x_3^{(1)} \qquad h(\mathbf{x})$$

$$x_3^{(0)} \qquad x_3^{(1)} \qquad (\lceil \mathbf{w}_1^{(1)} - \mathbf{w}_2^{(1)} \rceil - \lceil \mathbf{x}_2^{(0)} \rceil)$$

$$\mathbf{x}^{(1)} = \begin{bmatrix} x_1^{(1)} \\ x_1^{(1)} \\ x_2^{(1)} \\ x_3^{(1)} \end{bmatrix} = \theta \begin{pmatrix} \begin{bmatrix} w_{11}^{(1)} & w_{21}^{(1)} & w_{31}^{(1)} \\ w_{12}^{(1)} & w_{22}^{(1)} & w_{32}^{(1)} \\ w_{13}^{(1)} & w_{23}^{(1)} & w_{33}^{(1)} \end{bmatrix} \times \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \\ x_3^{(0)} \end{bmatrix} \end{pmatrix} = \theta (\mathbf{W}_1 \mathbf{x}^{(0)})$$

$$h(\mathbf{x}) = x_1^{(4)} = \theta(W_4 \mathbf{x}^{(3)}) = \theta(W_4 \theta(W_3 \mathbf{x}^{(2)}))$$

= \cdots = \theta(W_4 \theta(W_3 \theta(W_2 \theta(W_1 \mathbf{x}))))

Learning neural network

- Find the weights W=[W₁, W₂, ... W₁] to minimize Loss
 - Solve the same optimization problem

$$\min_W \sum_{x \in D} \operatorname{loss}(f_W(x), y)$$

However, multiple layers lead to high computational cost

More complex output space

Object detection: output bounding box + label

Cancer detection

More complex output space

Machine translation (or any sentence generation)

Challenges / Research Topics

Challenges / Research Topics

- Model design
- Efficiency (both training and testing)
- Robustness
- Explainability
-

Model Design

- Design network architecture
 For each task
 - NLP, computer vision, graph mining, etc

- Automatic model design
 - Neural architecture search

Training Efficiency

- Training by SGD
 - Sample data point => check current prediction => update
- 3 days for training ImageNet (~1.5 million images) on 1
 GPU
- Speed up using multiple GPUs/TPUs
 - Efficient algorithm for large batch size
 - Learning rate scheduling

ImageNet (1.5 million images) can be solved in minutes

Training time of ResNet-50 on ImageNet

Solver	batch size	steps	F1 score on dev set	TPUs	Time
Baseline	512	1000k	90.395	16	81.4h
Lamb	512	1000k	91.752	16	82.8h
Lamb	1k	500k	91.761	32	43.2h
Lamb	2k	250k	91.946	64	21.4h
Lamb	4k	125k	91.137	128	693.6m
Lamb	8k	62500	91.263	256	390.5m
Lamb	16k	31250	91.345	512	200.0m
Lamb	32k	15625	91.475	1024	101.2m
Lamb	64k/32k	8599	90.584	1024	76.19m

BERT training in 76 minutes

Network

Model size and inference speed

Limited storage on mobile devices

Inference needs to be done in milliseconds

Models are sensitive to small perturbation

 Although models outperform human, a small perturbation to a natural image can make accuracy -> 0

Models are sensitive to small perturbation

Current solution

Consider perturbation in the training phase

	MNIST 0.1 perturb	MNIST 0.3 perturb	CIFAR 0.03 perturb	
(Wong 2018)	3.67	43.1	78.22	
(Xiao 2018)	4.4	19.3	79.73	
(Gowal 2018)	2.9	8.2	68.5	
(Zhang 2019)	2.4	7.6	67.2	

How to make it work for more complex problems?

Robustness of other models (tree, nearest neighbor, ...)

(error rate)

Similar problem: Domain shift

Similar problem: Domain shift

- Self-driving cars: weather, environment, ...
- Medical data: different race, different sensors, ...

Test-time input

Model Interpretability

Why is this image is predicted as class X?

Model Interpretability

 Why is this image is predicted as class X but not Y?

Conclusion

Machine learning

= Find the function to map X to Y based on data

