

Tema2:Algoritmul determinării grafului de acoperire (Numai pentru graful neorientat)

Considerăm un graf neorientat $G=\langle X, \overline{U} \rangle$, unde X este mulțimea vârfurilor, iar \overline{U} – mulțimea muchiilor și fie $H=\langle X, \overline{U_1} \rangle$ un graf parțial al grafului G, care conține toate vârfurile.

Definiție. Dacă pentru orice componentă de conexitate (toate vârfurile se afla pe un lanț) a lui G graful H definește un arbore, atunci $H = \langle X, \overline{U_1} \rangle$ se numeste graf de acoperire (schelet, carcasă).

Pentru orice graf neorientat există graful său de acoperire, care se obține prin eliminarea tuturor ciclurilor din fiecare componentă de conexitate, adică eliminând muchiile, care sunt în plus.

Numim graf aciclic orice graf neorientat care nu conține cicluri.

Pentru un graf neorientat arbitrar G cu \mathbf{n} vârfuri, \mathbf{m} muchii sunt echivalente următoarele afirmații:

- A1. Graful G este un arbore;
- A2. G este un graf conex (conține o singură componentă conexă, adică există lanț din orice vârf in orice vârf) și **m=n-1**;
- A3. G este un graf aciclic și **m=n-1**;
- A4. Orice două vârfuri distincte sunt unite printr-un lanţ simplu, care este unic.
- A5. G graf aciclic cu proprietatea, că dacă unim o pereche de vârfuri neadiacente cu o muchie, atunci graful nou obținut v-a conține exact un ciclu. **Consecință.** Numărul de muchii, care-i necesar de eliminat din graful $G=\langle \mathbf{X}, \mathbf{U} \rangle$, pentru a obține un graf de acoperire nu depinde de ordinea eliminării și este egal cu numărul ciclomatic al grafului \mathbf{m} - \mathbf{n} + \mathbf{p} , unde
- $m-\mbox{numărul}$ de muchii, $n-\mbox{numărul}$ de vârfuri, iar $k-\mbox{numărul}$ de componente conexe.

Pentru determinarea grafului de acoperire există mai mulți algoritmi.

Vom prezenta algoritmul bazat pe principiul parcurgerii în lărgime, care se utilizează pentru efectuarea lucrării de laborator. Utilizăm lista de adiacență.

Se utilizează două Fire de Așteptare (FA_1 și FA_2), în unul din care (FA_1) se introduce rădăcina (la discreție) din virfurile nemarcate și în (FA_2) v-or fi înscrise pe rind numerele vârfurilor adiacente cu vârfurile din (FA_1) cu eliminarea vârfului din topul FA_1 . Se elimină toate muchiile ce leagă vârfurile din (FA_2) și toate muchiile în afară de una (la alegere) ce leagă fiecare vârf din (FA_2) cu vârfurile (FA_1). Cind FA_1 devine vid atunci FA_1 și FA_2 se schimbă cu denumirile și procedura se repetă. Când ambele FA devin vide algoritmul stopează.

Toate eliminările se efectuiază in lista de adiacență.

Pentru a nu admite ciclarea și a fi siguri că au fost prelucrate toate componentele conexe se utilizează marcarea vârfurilor parcurse. Dacă după terminarea unui ciclu ordinar nu au mai rămas vârfuri nemarcate, atunci procedura stopează cu afisarea noii liste de adiacență.

- Algoritmul:
 - **Pasul I.** Declarăm două FA_1 și FA_2 vide, adică $FA_1 = \infty$ și $FA_2 = \infty$.
- **Pasul 2.** Alegem vârful inițial din vârfurile nemarcate (nevizitate) și-l întroducem în FA₁.
- **Pasul 3.** Verificăm dacă FA₁ este vid. Dacă da, atunci se trece la pasul 8. Dacă nu atunci fie **p** vârful din topul FA₁. Îl marcăm și-l eliminăm din FA₁.
- **Pasul 4.** Verificam, dacâ lista subarborilor lui \mathbf{p} nevizitați este vidă. Dacă da, atunci se trece la pasul 3. Dacă nu, atunci întroducem in FA₂ toti fiii nevizitati ai lui p.
 - Pasul 5. Eliminăm toate muchiile care leagă vârfurile din FA₂.
- **Pasul 6.** Eliminăm toate muchiile în afară de una (aleasă arbitrar) care leagă fiecare vârf din FA_2 cu vârfurile din FA_1 .
 - Pasul 7. Repetăm pasii 3-6.
 - **Pasul 8.** Schimbăm cu denumirile FA₁ și FA₂ devine vid.

Verificăm, dacâ FA₁= ∞ . Dacă da, atunci se trece la pasul 10. Dacă nu, atunci

- Pasul 9. Repetăm pasii 3-8.
- **Pasul 10.** Asa cum $FA_1 = \infty$ și $FA_2 = \infty$, verificăm daca toate vârfurile au fost vizitate. Dacă nu, atunci se trece la pasul 2.

Dacă da, atunci se afiseaza lista obtinută de adicență și STOP.

EXEMPLU.

De determinat graful de acoperire pentru graful $G=\langle X, \overline{U} \rangle$, unde $X=\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ dat prin lista de adiacență:

Declarăm două FA_1 și FA_2 vide, adică $FA_1 = \infty$ și $FA_2 = \infty$.

Alegem vârful 1 ca inițial din vârfurile nemarcate (nevizitate) și-l $\,$ întroduc în FA_1 :

$$FA_1 = \{1\}$$

În topul FA_1 este vârful $\ 1.$ Îl marcam cu steluță: 1^* și-l $\ scoatem$ din FA_1 , care devine vid.

- 1* | 2_5_7_0 2 | 1_3_6_7_0
- 3 | 2_4_6_0
- 4 | 3_5_0
- 5 | 1_4 _6 _0
- 6 | 2_3_5_7_0
- 7 | 1_2_6_0

Întroducem in FA2 toti fiii nevizitati ai lui 1, adică vârfurile 2, 5, 7.

$$FA_2 = \{2, 5, 7\}$$

Eliminăm muchia [2, 7] cu ajutorul listei de adiacență

- 1* | 2 5 7 0
- 2 | 1 _3_ 6 _0
- 3 | 2_4_6_0
- 4 | 3_ 5_ 0
- 5 | 1_4 _6 _0
- 6 | 2_3_5_7_0
- 7 | 1 6 0

Asa cum schimbăm cu denumirile FA_1 și FA_2 devine vid,iar $FA_1 = \{2, 5, 7\}$

În topul FA_1 este vârful 2. . Îl marcam cu steluță: 2^* și-l $\,$ scoatem din FA_1

Întroducem in FA_2 toti fiii nevizitati ai lui 2 , adică vârfurile 3 si 6

 $FA_2 = \{3, 6\}$

Eliminăm muchia [3, 6] cu ajutorul listei de adiacență

1* | 2_ 5_ 7_ 0 2* | 1 _3_ 6 _0

3 | 2_4_0

4 | 3_5_0

5 | 1_4_6_0

6 | 2_5_7_0

7 | 1_6_0

În topul FA_1 este vârful 5. . Îl marcam cu steluță: 5^* și-l scoatem din FA_1 . Întroducem in FA_2 toti fiii nevizitati ai lui 5 , adică vârfurile 4 si 6. Dar $4 \in FA_2$. Deci $FA_2 = \{3, 4, 6\}$.

Eliminăm muchia [3, 4] si cu ajutorul listei de adiacență.

Eliminăm muchiile [6, 5] si [6, 7] cu ajutorul listei de adiacență.

În topul FA_1 este vârful 7. Îl marcam cu steluță: 7^* și-l scoatem din FA_1 , care devine vid.

Întroducem in FA_2 toti fiii nevizitati ai lui 7, dar asa ceva nu exista. Deci $FA_2 = \{3, 4, 6\}$.

Asa cum schimbăm cu denumirile FA_1 și FA_2 , FA_2 devine vid,iar $FA_1 = \{3, 4, 6\}$, $FA_2 = \infty$.

În topul FA_1 este vârful 3. Îl marcam cu steluță: 3^* și-l scoatem din FA_1 . Vârful 3 nu are fii nevizitati, deci $FA_2 = \infty$.

În topul FA_1 este vârful 4. Îl marcam cu steluță: 4^* și-l scoatem din FA_1 . Vârful 4 nu are fii nevizitati, deci $FA_2 = \infty$.

În topul FA_1 este vârful 6. Îl marcam cu steluță: 6^* și-l scoatem din FA_1 . Vârful 6 nu are fii nevizitati, deci $FA_2 = \infty$.

1* | 2_5_7_0 2* | 1_3_6_0 3* | 2_0 4* | 5_0 5* | 1_4_0 6* | 2_0 7* | 1_0

Asa cum $FA_1 = \infty$ și $FA_2 = \infty$, si toate vârfurile au fost vizitate se afiseaza lista de adiacenta.

Exemple pentru lucru individual

Exemplul 1 De determinat graful de acoperire pentru graful $G=\langle X, \overline{U} \rangle$, unde $X=\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ dat prin lista de adiacență:

- 1 | 2_6_7_0 2 | 1 3 6 7 0
- 3 | 2 | 4 | 5 | 6 | 7 | 0
- 4 | 3_ 5_ 0
- 5 | 3_4_6_0
- 6 | 1_2_3_5_7_0
- $7 \mid 1_2_3_6_0$

Răspuns (unul din câteva răspunsuri posibile):

- 1 | 2_6_7_0
- 2 | 1 _3 _0
- 3 | 2_4_0
- 4 | 3_0
- 5 | 6 _0 6 | 1 5 0
- 7 | 1 0

Exemplul 2 De determinat graful de acoperire pentru graful $G=<X,\overline{U}>$, unde $X=\{x_1,x_2,x_3,x_4,x_5,x_6,x_{7}\}$ dat prin lista de adiacență:

- 1 | 2_3_4_5_6_7_0
- 2 | 1 _3_7 _0
- 3 | 1_2_4_6_0
- 4 | 1_3_5_0
- 5 | 1_4 _6 _0
- 6 | 1_3_5_7_0
- 7 | 1_ 2_6_ 0

Raspuns (unul din câteva răspunsuri posibile):

- 1 | 2_3_4_5_6_7_0
- 2 | 1 _0
- 3 | 1_0
- 4 | 1 0
- 5 | 1_0
- 6 | 1 0
- 7 | 1_0