第一章 张量场可微性

1.1 张量的范数

1.1.1 赋范线性空间

对于一个线性空间 \mathcal{V} ,它总是定义了线性结构:

$$\forall x, y \in \mathcal{V} \text{ } \exists \forall \alpha, \beta \in \mathbb{R}, \quad \alpha x + \beta y \in \mathcal{V}. \tag{1.1}$$

为了进一步研究的需要,我们还要引入**范数**的概念. 所谓"范数",就是对线性空间中任意元素大小的一种刻画. 举个我们熟悉的例子,m 维 Euclid 空间 \mathbb{R}^m 中某个向量的范数,就定义为该向量在 Descartes 坐标下各分量的平方和的平方根.

一般而言,线性空间 $\mathscr V$ 中的范数 $\|\cdot\|_{\mathscr V}$ 是从 $\mathscr V$ 到 $\mathbb R$ 的一个映照,并且需要满足以下三个条件: **1. 非负性**

$$\forall x \in \mathcal{V}, \quad \|x\|_{\mathcal{V}} \geqslant 0 \tag{1.2}$$

以及非退化性

$$\forall x \in \mathcal{V}, \quad \|x\|_{\mathcal{V}} = 0 \iff x = \mathbf{0} \in \mathcal{V}, \tag{1.3}$$

这里的 0 是线性空间 У 中的零元素, 它是唯一存在的.

2. 由于零元是唯一的,因此线性空间中的元素 x 就与从 0 指向它的向量——对应. 因此,线性空间中的元素也常被称为 "向量".

考虑线性空间中的数乘运算. 从几何上看, x 乘上 λ , 就是将 x 沿着原来的指向进行伸缩. 显然有

$$\forall x \in \mathcal{V} \text{ } \exists \forall \lambda \in \mathbb{R}, \quad \|\lambda x\|_{\mathcal{V}} = |\lambda| \cdot \|x\|_{\mathcal{V}}, \tag{1.4}$$

这称为正齐次性.

想要图吗?

3. 线性空间中的加法满足平行四边形法则. 直观地看, 就有

$$\forall x, y \in \mathcal{V}, \quad \|x + y\|_{\mathcal{V}} \leqslant \|x\|_{\mathcal{V}} + \|y\|_{\mathcal{V}}, \tag{1.5}$$

这称为三角不等式.

定义了范数的线性空间称为赋范线性空间.

1.1.2 张量范数的定义

考虑 p 阶张量 $\Phi \in \mathcal{T}^p(\mathbb{R}^m)$, 它可以用逆变分量或协变分量来表示:

$$\boldsymbol{\Phi} = \begin{cases} \boldsymbol{\Phi}^{i_1 \cdots i_p} \, \mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_p}, \\ \boldsymbol{\Phi}_{i_1 \cdots i_p} \, \mathbf{g}^{i_1} \otimes \cdots \otimes \mathbf{g}^{i_p}, \end{cases}$$
(1.6-a)

其中

$$\left[\boldsymbol{\Phi}^{i_1\cdots i_p} = \boldsymbol{\Phi}\left(\mathbf{g}^{i_1}, \cdots, \mathbf{g}^{i_p}\right).\right] \tag{1.7-a}$$

$$\begin{cases} \boldsymbol{\Phi}^{i_1 \cdots i_p} = \boldsymbol{\Phi} \left(\mathbf{g}^{i_1}, \cdots, \mathbf{g}^{i_p} \right). \\ \boldsymbol{\Phi}_{i_1 \cdots i_p} = \boldsymbol{\Phi} \left(\mathbf{g}_{i_1}, \cdots, \mathbf{g}_{i_p} \right), \end{cases}$$
(1.7-a)

张量的范数定义为

$$\|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} \triangleq \sqrt{\boldsymbol{\Phi}^{i_{1}\cdots i_{p}}\boldsymbol{\Phi}_{i_{1}\cdots i_{p}}} \in \mathbb{R}.$$
(1.8)

 $i_1\cdots i_p$ 可独立取值,每个又有 m 种取法,所以根号下共有 m^p 项. 注意 $m{\sigma}^{i_1\cdots i_p}$ 与 $m{\sigma}_{i_1\cdots i_p}$ 未必相等,因 而根号下的部分未必是平方和,这与 Euclid 空间中向量的模是不同的.

复习一下?? 小节,我们可以用另一组(带括号的)基表示张量Φ:

$$\left\{ \boldsymbol{\Phi}^{i_1 \cdots i_p} = c^{i_1}_{(\xi_1)} \cdots c^{i_p}_{(\xi_p)} \boldsymbol{\Phi}^{(\xi_1) \cdots (\xi_p)}, \right. \tag{1.9-a}$$

$$\begin{cases} \boldsymbol{\Phi}^{i_{1}\cdots i_{p}} = c_{(\xi_{1})}^{i_{1}}\cdots c_{(\xi_{p})}^{i_{p}}\boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}, \\ \\ \boldsymbol{\Phi}_{i_{1}\cdots i_{p}} = c_{i_{1}}^{(\eta_{1})}\cdots c_{i_{p}}^{(\eta_{p})}\boldsymbol{\Phi}_{(\eta_{1})\cdots(\eta_{p})}, \end{cases}$$
(1.9-a)

其中的 $c_{(\varepsilon)}^i = (\mathbf{g}_{(\varepsilon)}, \mathbf{g}^i)_{\mathbb{P}^m}, \ c_i^{(\eta)} = (\mathbf{g}^{(\eta)}, \mathbf{g}_i)_{\mathbb{P}^m}, \ 它们满足$

$$c_{(\xi)}^i c_i^{(\eta)} = \delta_{(\xi)}^{(\eta)}. \tag{1.10}$$

于是

$$\boldsymbol{\Phi}^{i_{1}\cdots i_{p}}\boldsymbol{\Phi}_{i_{1}\cdots i_{p}}$$

$$= \left(c_{(\xi_{1})}^{i_{1}}\cdots c_{(\xi_{p})}^{i_{p}}\boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}\right)\left(c_{i_{1}}^{(\eta_{1})}\cdots c_{i_{p}}^{(\eta_{p})}\boldsymbol{\Phi}_{(\eta_{1})\cdots(\eta_{p})}\right)$$

$$= \left(c_{(\xi_{1})}^{i_{1}}c_{i_{1}}^{(\eta_{1})}\right)\cdots\left(c_{(\xi_{p})}^{i_{p}}c_{i_{p}}^{(\eta_{p})}\right)\boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}\boldsymbol{\Phi}_{(\eta_{1})\cdots(\eta_{p})}$$

$$= \delta_{(\xi_{1})}^{(\eta_{1})}\cdots\delta_{(\xi_{p})}^{(\eta_{p})}\boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}\boldsymbol{\Phi}_{(\eta_{1})\cdots(\eta_{p})}$$

$$= \boldsymbol{\Phi}^{(\xi_{1})\cdots(\xi_{p})}\boldsymbol{\Phi}_{(\xi_{1})\cdots(\xi_{p})}.$$
(1.11)

它是 Φ 在另一组基下的逆变分量与协变分量乘积之和.

以上结果说明,张量的范数不依赖于基的选取,这就好比用不同的秤来称同一个人的体重,都 将获得相同的结果. 既然如此, 不妨采用单位正交基来表示张量的范数:

$$\|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} \triangleq \sqrt{\boldsymbol{\Phi}^{i_{1}\cdots i_{p}}\boldsymbol{\Phi}_{i_{1}\cdots i_{p}}}$$

$$= \sqrt{\boldsymbol{\Phi}^{\langle i_{1}\rangle\cdots\langle i_{p}\rangle}\boldsymbol{\Phi}_{\langle i_{1}\rangle\cdots\langle i_{p}\rangle}}$$

$$=: \sqrt{\sum_{i_{1},\cdots,i_{p}=1}^{m} \left(\boldsymbol{\Phi}_{\langle i_{1},\cdots,i_{p}\rangle}\right)^{2}}.$$
(1.12)

这里的 $\boldsymbol{\phi}_{(i_1,\cdots,i_n)}$ 表示张量 $\boldsymbol{\phi}$ 在单位正交基下的分量,它的指标不区分上下.

有了这样的表示,很容易就可以验证张量范数符合之前的三个要求.一组数的平方和开根号,必然是非负的.至于非退化性,若范数为零,则所有分量均为零,自然成为零张量;反之,对于零张量,所有分量为零,范数也为零.将 Φ 乘上 λ,则有

$$\|\lambda \boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} = \sqrt{\sum_{i_{1}, \dots, i_{p}=1}^{m} \left(\lambda \boldsymbol{\Phi}(i_{1}, \dots, i_{p})\right)^{2}}$$

$$= \sqrt{\lambda^{2} \sum_{i_{1}, \dots, i_{p}=1}^{m} \left(\boldsymbol{\Phi}(i_{1}, \dots, i_{p})\right)^{2}}$$

$$= |\lambda| \sqrt{\sum_{i_{1}, \dots, i_{p}=1}^{m} \left(\boldsymbol{\Phi}(i_{1}, \dots, i_{p})\right)^{2}}$$

$$= |\lambda| \cdot \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}, \qquad (1.13)$$

于是正齐次性也得以验证. 最后,利用 Cauchy-Schwarz 不等式,可有

$$\|\boldsymbol{\Phi} + \boldsymbol{\Psi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2}$$

$$= \sum \left(\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle} + \boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}$$

$$= \sum \left[\left(\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2} + 2\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle} \boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle} + \left(\boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}\right]$$

$$= \sum \left(\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2} + 2\sum \boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle} \boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle} + \sum \left(\boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}$$

$$\leq \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2} + 2\sqrt{\sum \left(\boldsymbol{\Phi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}} \sqrt{\sum \left(\boldsymbol{\Psi}_{\langle i_{1}, \dots, i_{p} \rangle}\right)^{2}} + \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2}$$

$$= \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2} + 2\|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} \cdot \|\boldsymbol{\Psi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} + \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}^{2}$$

$$= \left(\|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})} + \|\boldsymbol{\Phi}\|_{\mathcal{F}^{p}(\mathbb{R}^{m})}\right)^{2}. \tag{1.14}$$

两边开方,即为三角不等式.

由此,我们就完整地给出了张量大小的刻画手段.可以看出,它实际上就是 Euclid 空间中向量模的直接推广.

1.1.3 简单张量的范数