Bernoulli Distribution: -

- Bernoulli distribution is a discrete probability distribution
- it's concerned with discrete random variables {PMF}
- Bernoulli distribution applies to events that have <u>one trial</u> and <u>two</u> possible outcomes. These are known as Bernoulli trials.

Binomial Distribution: -

- it's concerned with discrete random variables {PMF}
- There are two possible outcomes: true or false, success or failure, yes or no.
- These Experiments is Performs for n trials
- Every trial is an independent trial, which means the outcome of one trial does not affect the outcome of another trial.

Poisson Distribution: -

- it's concerned with discrete random variables {PMF}
- Describe the number of events occurring in a fixed time interval

Log-Normal Distribution: - A log-normal distribution is a continuous distribution of random variable y whose natural logarithm is normally distributed. For example, if random variable $y = \exp\{y\}$ has log-normal distribution then $x = \log(y)$ has normal distribution.

Normal or Gaussian Distribution:

- it's concerned with Continuous random variables {PDF}
- Normal distributions are <u>symmetrical</u>, but not all symmetrical distributions are normal

Characteristics of Normal Distribution

- mean = median = mode
- Symmetrical about the center
- Unimodal
- 50% of values less than the mean and 50% greater than the mean

Empirical Rule of Normal Distribution: - The empirical rule

in <u>statistics</u>, also known as the 68 95 99 rule, states that for normal distributions, 68% of observed data points will lie inside <u>one standard</u> deviation of the mean, 95% will fall within two standard deviations, and 99.7% will occur within three standard deviations.

➤ Standard Normal Distribution Z-Score: The standard normal distribution is a specific type of normal distribution where the mean is equal to 0 and the standard deviation is equal to 1.

	11.31+	
Hergel	Hogh	meon = 0
mean-5 feet	mear= 50 SD =	50 = 4

not normal.

- 1. The sample size is sufficiently large. This condition is usually met if the size of the sample is $n \ge 30$.
- 2. The samples are independent and identically distributed, i.e., random variables. The sampling should be random.
- 3. The population's distribution has a finite variance. The central limit theorem doesn't apply to distributions with infinite variance.

Sample = 521, 22 23--- 25 \$3, 8= X, Contal with Popularia Sample 31 = {2,12,-231 x, x, 23 20 ×31 9 normally men N = Normally.

1. What is Central Limit Theorem in Statistics?	
Central Limit Theorem in statistics states that whenever we take a large	#30
sample size of a population then the distribution of sample mean	E 200
approximates to the normal distribution.	
2. When does Central Limit Theorem apply?	
Central Limit theorem applies when the sample size is larger usually	
greater than 30.	
3. Why is Central Limit Theorem important?	
Central Limit Theorem is important as it helps to make accurate prediction	
about a population just by analyzing the sample.	
4. How to solve Central Limit Theorem?	
The Central Limit Theorem can be solved by finding Z score which is	
calculated by using the formula.	
$\mathbf{Z} = \frac{\overline{\mathbf{X}} - \mathbf{\mu}}{\frac{\sigma}{\sqrt{\mathbf{n}}}}$	
√n	