No.3 Mar.2000

巧用牛顿恒等式及推论解题

□蔡 麟

牛顿恒等式 对于数列 $\{a_n\}$, $a_n = Ax_1^n + Bx_2^n$, 若 $x_1 \setminus x_2$ 是方程 $x^2 + px + q = 0$ 的两根,则

$$a_n = -pa_{n-1} - qa_{n-2}$$
.

证明 由条件得 $x_1^2 = -px_1 - q, x_2^2 = -px_2 - q,$

故
$$-pa_{n-1} - qa_{n-2}$$

 $= -p(Ax_1^{n-1} + Bx_2^{n-1}) - q(Ax_1^{n-2} + Bx_2^{n-2})$
 $= Ax_1^{n-2}(-px_1 - q) + Bx_2^{n-2}(-px_2 - q)$
 $= Ax_1^{n-2} \cdot x_1^2 + Bx_2^{n-2} \cdot x_2^2 = Ax_1^n + Bx_2^n,$

推论 1 若数列 $\{a_n\}$ 的通项 $a_n = aa^n + b\beta^n$ ($\alpha \neq \beta$),则 n > 2 时有 $a_n = (\alpha + \beta)a_{n-1} - \alpha\beta a_{n-2}$.

证明 设 $\alpha + \beta = p$, $\alpha\beta = q$, 则 $\alpha \setminus \beta$ 为方程 $x^2 - px$ + $\alpha = 0$ 的两根、

$$\alpha^2 - p\alpha + q = 0 \tag{1}$$

$$\beta^2 - p\beta + q = 0 \tag{2}$$

由(1)有
$$aa^{n-2}(a^2 - pa + q) = a(a^n - pa^{n-1} + qa^{n-2})$$

= 0

同理 $b(\beta'' - p\beta''^{-1} + q\beta''^{-2}) = 0$,

两式相加得 $a_n - pa_{n-1} + qa_{n-2} = 0$,

用同样的推理方法,可得

推论 2 若数列 $\{a_n\}$ 的通项 $a_n = aa^n + b\beta^n + c\gamma^n$ (α, β, γ 互不相等),则当 $n \ge 3$ 时,有

 $\alpha_n = (\alpha + \beta + \gamma)a_{n-1} - (\alpha\beta + \beta\gamma + \gamma\alpha)a_{n-2} + \alpha\beta\gamma a_{n-3}.$

下面举例说明牛顿恒等式及推论的应用。

一、判断整除性

例1 试证: $11^{n+2} + 12^{2n+1}$ ($n = 0, 1, 2, \cdots$)能被133 整除。

证明 设
$$a_n = 11^{n+2} + 12^{2n+1}$$

= $121 \times 11^n + 12 \times 144^n$,

 \therefore 11、144 是方程 $x^2 - 155x + 1584 = 0$ 的两根,

 $a_n = 155 \times a_{n-1} - 1584 \times a_{n-2} (n \ge 2),$

又 $a_0 = 133$, $a_1 = 3059 = 133 \times 23$ 均能被 133 整除, 由逆推式知: $a_n = 11^{n+2} + 12^{2n+1}$ 能被 133 整除。

例2 求证: $(7+4\sqrt{3})^n$ 的小数部分是以至少n个9开头的。

证明 设 $a_n = (7+4\sqrt{3})^n + (7-4\sqrt{3})^n$,

 \therefore 7+4 $\sqrt{3}$ 、7-4 $\sqrt{3}$ 是方程, x^2 -14x+1=0的

两根,

 $a_n = 14a_{n-1} - a_{n-2} (n \ge 3)_0$

又 $a_1 = 14, a_2 = 194$,由逆推式知

对任何 $n \in N$, a_n 为正整数

 $0 < 7 - 4\sqrt{3} < 7 - 1.73 \times 4 < 0.1$

 $0 < (7-4\sqrt{3})^n < 0.1^n$

从而 $(7+4\sqrt{3})^n = a_n - (7-4\sqrt{3})^n < a_n - 0.1^n$,

故 $(7+4\sqrt{3})$ "的小数部分是以至少n个9开头的。

二、求数列的逆推式

例 3(1981 年全国高考附加题) 以 AB 为直径的 半圆有一个内接正方形 CDEF, 其边长为 1,设 AC = a, BC = b,作数列 $u_1 = a - b$, $u_2 = a^2 - ab + b^2$, $u_3 = a^3 - a^2b + ab^2 - b^3$, ..., $u_k = a^k - a^{k-1}b + a^{k-2}b^2 - \cdots + (-1)^k b^k$,

求证: $u_n = u_{n-1} + u_{n-2}$ (n \geqslant 3).

证明 由已知得通项

$$u_n = a_n - a^{n-1}b + a_{n-2}b^2 - \dots + (-1)^n b^n$$

= $[a^{n+1} - (-b)^{n+1}] \div (a+b)$
= $\frac{a}{a+b}a^n + \frac{b}{a+b}(-b)^n$,

收稿日期:1999.09.15

蔡 麟 四川省绵阳市水电学校(621000)

由推论 1 得
$$u_n = (a-b)u_{n-1} - (-ab)u_{n-2}$$
 ($n \ge 3$),
而 $a-b = AC - BC = AC - AF = FC = 1$,
 $ab = AC \times BC = CD^2 = 1$
故 $u_n = u_{n-1} + u_{n-2}$ ($n \ge 3$).

三、求值、化简

例 4 已知
$$\sin x + \cos x = m$$
,求 $\sin^4 x + \cos^4 x$.
解 设 $a_n = \sin^n x + \cos^n x$ $(n \in N)$,则
$$p = a_1 = \sin x + \cos x = m,$$

$$a_2 = \sin^2 x + \cos^2 x = 1,$$

于是
$$q = \sin x \cos x = \frac{1}{2} (a_1^2 - a_2)$$

= $\frac{1}{2} (m^2 - 1)$,

根据推论
$$1, a_n = ma_{n-1} - qa_{n-2} \quad (n \ge 3),$$

$$a_3 = ma_2 - qa_1 = m - mq,$$

$$a_4 = ma_3 - qa_2 = -\frac{1}{2}m^4 + m^2 + \frac{1}{2},$$

$$\mathbb{P} \sin^4 x + \cos^4 x = -\frac{1}{2} m^4 + m^2 + \frac{1}{2}.$$

例 5 设 x + y = 1, $x^2 + y^2 = 2$, 求 $x^7 + y^7$ 的值 (1979年日本高考题)

解 设
$$a_n = x^n + y^n$$
,则 $p = a_1 = x + y = 1$, $a_2 = x^2 + y^2 = 2$,于是 $q = xy = \frac{1}{2}(a_1^2 - a_2) = -\frac{1}{2}$,由推论 1

$$a_n = (x + y)a_{n-1} - xya_{n-2} = a_{n-1} + \frac{1}{2}a_{n-2},$$

$$\therefore a_3 = a_2 + \frac{1}{2}a_1 = 2 + \frac{1}{2} \times 1 = \frac{5}{2},$$

依次可得
$$a_4 = \frac{7}{2}, a_5 = \frac{19}{4}, a_6 = \frac{26}{4}$$

$$a_7 = a_6 + \frac{1}{2} a_5 = \frac{26}{4} + \frac{1}{2} \times \frac{19}{4} = \frac{71}{8}$$
,

$$\mathbb{P} \quad x^7 + y^7 = \frac{71}{8} \, .$$

四、证明条件等式

例6 求证
$$\sin^5(\alpha - 120^\circ) + \sin^5\alpha + \sin^5(\alpha + 120^\circ) = -\frac{15}{16}\sin 3\alpha$$
.

证明 设 $a_n = \sin^n (\alpha - 120^\circ) + \sin^n \alpha + \sin^n (\alpha +$ 120°),则 $a_0 = 3$,易知

$$p = a_1 = \sin(\alpha - 120^\circ) + \sin\alpha + \sin(\alpha + 120^\circ) = 0 \quad (1)$$

$$q = \sin(\alpha - 120^\circ)\sin\alpha + \sin\alpha\sin(\alpha + 120^\circ) + \sin(\alpha + 120^\circ)\sin\alpha = -120^\circ = 3$$

$$\sin(\alpha + 120^{\circ})\sin(\alpha - 120^{\circ}) = -\frac{3}{4}$$
 (2)

$$s = \sin(\alpha - 120^{\circ})\sin\alpha\sin(\alpha + 120^{\circ}) = -\frac{\sin 3\alpha}{4},$$

由(1)、(2)可得

$$a_2 = \sin^2(\alpha - 120^\circ) + \sin^2\alpha + \sin^2(\alpha + 120^\circ)$$
$$= a_1^2 - 2 \cdot q = \frac{3}{2},$$

根据推论 2 $qa_n = -qa_{n-2} + sa_{n-3} (n \ge 3)$,

$$\therefore a_3 = -qa_1 + sa_0 = -\frac{3}{4}\sin 3\alpha,$$

$$a_5 = -qa^3 + sa_2 = \frac{3}{4}(-\frac{3}{4}\sin 3\alpha)$$

 $-\frac{1}{4}\sin 3\alpha \times \frac{3}{2} = -\frac{15}{16}\sin 3\alpha$, [3]

$$\sin^5(\alpha - 120^\circ) + \sin^5\alpha + \sin^5(\alpha + 120^\circ) = -\frac{15}{16}\sin 3\alpha$$
.

例7 已知 $\alpha + \beta + \gamma = 0$,求证:

$$\frac{\alpha^2+\beta^2+\gamma^2}{2}\cdot\frac{\alpha^5+\beta^5+\gamma^5}{5}=\frac{\alpha^7+\beta^7+\gamma^7}{7}.$$

(1957年上海市数学竞赛题)

证明 设
$$a_n = \alpha^n + \beta^n + \gamma^n$$
,则 $a_0 = 3$, $p = a_1 = \alpha + \beta - \gamma = 0$, $q = \alpha\beta + \beta\gamma + \gamma\alpha$, $s = \alpha\beta\gamma$,
于是 $a_2 = \alpha^2 + \beta^2 + \gamma^2$

$$= a_1^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = -2q,$$

根据推论 2 $a_n = -qa_{n-2} + sa_{n-3}(n \geqslant 3),$

$$\therefore a_3 = -qa_1 + sa_0 = 3s, a_4 = -qa_2 + sa_1 = 2q^2,$$

$$a_5 = -qa_3 + sa_2 = -5qs,$$

$$a_7 = -qa_5 + sa_4 = 5q^2s + 2q^2s = 7q^2s$$
,

$$\therefore \quad \frac{a_2}{2} \times \frac{a_5}{5} = \frac{a_7}{7} ,$$

五、简化数学归纳法证明的第二步

例8 求证: $(3+\sqrt{5})^n + (3-\sqrt{5})^n$ 能被 2ⁿ 整除。

证明 设
$$a_n = (3+\sqrt{5})^n + (3-\sqrt{5})^n$$
,

$$1^{\circ}$$
 : $a_1 = 6$, $a_2 = 28$, : $2|a_1$, $2^2|a_2$,

2° 假设
$$2^{k-1}|a_{k-1}, 2^k|a_k$$
 ($k \ge 2$).

当 n=k+1 时,根据推论 1

$$a_{k+1} = (3+\sqrt{5}+3-\sqrt{5})a_k - (3+\sqrt{5})$$

$$(3-\sqrt{5})a_{k-1}=6a_k-4a_{k-1} \quad (k \ge 2),$$

由假设易知, 2^{k+1} | $6a_k$, 2^{k+1} | $4a_{k-1}$,因此 2^{k+1} | a_{k+1} , 由 1° 、 2° 知,对一切 $n \in N$,

$$2^{n} \left[\left(3 + \sqrt{5} \right)^{n} + \left(3 - \sqrt{5} \right)^{n} \right].$$

• 48 •

中专理科勒学