3.320: Lecture 20 (Apr 21 2005) MODEL HAMILTONIANS from alchemy to tight-binding

Images removed for copyright reasons. Cover of "Harry Potter and the Philosopher's Stone." Diagram of different types of knots.

New jobs for the 21st century

- The virtual alchemist (linear-response theory)
- The nanotechnologist (tight-binding mappings)

Outline

• Realistic descriptions of large-scale nanostructures from first-principles

- Mapping electronic structure-calculations into model Hamiltonians
 - Ising-like models for alloys
 - Tight-binding orbitals for <u>functionalized nanotubes</u> (electronic-structure LEGO bricks)

Why semiconductor alloys?

• Technological interest: tunability of materials properties. Strained layer epitaxy (Prof Fitzgerald)

 Scientific interest: spontaneous multilayer ordering

Superspot reflections

Band-gap/lattice parameter

Configurational Statistical Mechanics

• Energy of a configuration?

Linear-response

• Thermodynamic properties?

$$P[\sigma] = rac{e^{-eta E[\sigma]}}{Z}$$

Monte Carlo

Disorder as a perturbation

Disorder as a perturbation

Configurational variables

$$\{ \sigma_{\mathbf{R}} \} = \left\{ \begin{array}{ll} +1 & \text{if Ga in } \mathbf{R} \\ -1 & \text{if In in } \mathbf{R} \end{array} \right.$$

External potential

$$egin{aligned} V_{ext}(\mathbf{r}) &= \underbrace{\sum \left(rac{1}{2}(v_{Ga} + v_{In})(\mathbf{r} - \mathbf{R})
ight)}_{V_0(\mathbf{r})} + \\ &+ \underbrace{\sum \sigma_{\mathbf{R}} \left(rac{1}{2}(v_{Ga} - v_{In})(\mathbf{r} - \mathbf{R})
ight)}_{\Delta V(\mathbf{r}) \equiv \sum \sigma_{\mathbf{R}} \Delta v(\mathbf{r} - \mathbf{R}) \end{aligned}$$

Perturbation (external potential):

$$V_0 \Rightarrow V_0 + \lambda \Delta V$$

Response (charge density):

$$n_0 \Rightarrow n_\lambda = n_0 + \lambda n_1 + \dots$$

Hellmann-Feynman Theorem:

$$\frac{\partial E}{\partial \lambda} = \int n_{\lambda}(\mathbf{r}) \frac{\partial V(\mathbf{r})}{\partial \lambda} d\mathbf{r}$$

(41/2/14/2)

Total Energy:

$$E_{\lambda} = E_0 + \lambda \underbrace{\int n_0(\mathbf{r}) \Delta V(\mathbf{r}) d\mathbf{r}}_{1^{\text{st}} \text{order}} + \frac{\lambda^2}{2} \underbrace{\int n_1(\mathbf{r}) \Delta V(\mathbf{r}) d\mathbf{r}}_{2^{\text{nd}} \text{order}} + \dots$$

$$\Delta V_{
m ext}$$

 \Downarrow

$$\Delta V_{SCF}(\mathbf{r}) = \Delta V_{\text{ext}}(\mathbf{r}) + e^2 \int \frac{\Delta n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \Delta n(\mathbf{r}) \,\mu'_{XC}(n(\mathbf{r}))$$

1

$$[-\nabla^2 + V_{SCF}(\mathbf{r}) - \epsilon_v] \Delta \psi_v(\mathbf{r}) =$$

$$[\Delta V_{SCF}(\mathbf{r}) - \langle \psi_v | \Delta V_{SCF} | \psi_v \rangle] \psi_v(\mathbf{r})$$

 \downarrow

$$\Delta n(\mathbf{r}) = 2 \sum \psi_v^*(\mathbf{r}) \, \Delta \psi_v(\mathbf{r}) \, \theta(\epsilon_F - \epsilon_v)$$

Perturbation (external potential):

$$V_0 \Rightarrow V_0(\mathbf{r}) + \sum \sigma_{\mathbf{R}} \Delta v(\mathbf{r} - \mathbf{R})$$

Total energy:

$$E(\{ \textcolor{red}{\sigma_{\mathbf{R}}} \}) = E_0 + K \sum_{\mathbf{R}} \textcolor{red}{\sigma_{\mathbf{R}}} + \frac{1}{2} \sum_{\mathbf{R},\mathbf{R}'} \textcolor{red}{\sigma_{\mathbf{R}}} J(\mathbf{R} - \mathbf{R}') \textcolor{red}{\sigma_{\mathbf{R}'}}$$

The interaction constants are determined from the ground-state density n_0 and the linear response n_1 :

$$K = \int \Delta v(\mathbf{r}) n_0(\mathbf{r}) d\mathbf{r}$$

$$J(\mathbf{R} - \mathbf{R}') = \int \Delta v(\mathbf{r} - \mathbf{R}) \frac{\mathbf{n_1}}{\mathbf{n_1}} (\mathbf{r} - \mathbf{R}') d\mathbf{r}$$

Expansion in the substitutions and the displacements:

$$\begin{split} E = E_0 + K \sum_{\mathbf{\sigma_R}} & \mathbf{\sigma_R} + \frac{1}{2} \sum_{\mathbf{\sigma_R}} & \mathbf{\sigma_R} J_{\mathbf{\sigma_{R'}}} + \\ & + \frac{1}{2} \sum_{\mathbf{u_R}} & \mathbf{u_R} \cdot \mathbf{\Phi} \cdot \mathbf{u_{R'}} - \sum_{\mathbf{u_R}} & \mathbf{u_R} \cdot \mathbf{F}_{\mathbf{\sigma_{R'}}} \end{split}$$

At equilibrium the forces must vanish:

$$-\frac{\partial E}{\partial \mathbf{u}_{\mathbf{R}}} = 0 \quad \Rightarrow \quad \mathbf{u}_{\mathbf{R}} = \mathbf{\Phi}^{-1} \cdot F_{\mathbf{\sigma}_{\mathbf{R}}}$$

The Hamiltonian is rewritten as:

$$E^{relax}[\{\boldsymbol{\sigma}_{\mathbf{R}}\}] = E_0 + K \sum \boldsymbol{\sigma}_{\mathbf{R}} + \frac{1}{2} \sum \boldsymbol{\sigma}_{\mathbf{R}} \widehat{J}(\mathbf{R} - \mathbf{R}') \boldsymbol{\sigma}_{\mathbf{R}'}$$

with renormalized $\widehat{J} = J - \mathbf{F} \cdot \mathbf{\Phi}^{-1} \cdot \mathbf{F}$

Formation Energies

Configurational Step Elastic Step

Formation Energies

The energy of the alloy at its equilibrium volume is compared to the energy of the same quantity of bulk materials at their equilibrium volumes:

$$E(\lbrace \sigma_{\mathbf{R}} \rbrace, \Omega_{eq}) - x E_{GaP}(\Omega_{GaP}) - (1-x) E_{InP}(\Omega_{InP})$$

It is decomposed in an elastic term (equation of state) and a configurational one (linear response at fixed volume)

$$\Delta E_{elast}(x, \Omega_{eq}) + \Delta E_{config}(\{\sigma_{\mathbf{R}}\}, \Omega_{eq})$$

Full DFT vs. linear response

Equilibrium lattice parameters a_0 are in atomic units and the chemical formation energies ΔE_{config} are in meV/atom

Structures		Relaxed atoms			
		SCF		LRT	
		a ₀	ΔE	a ₀	ΔE
SL[001] ₁₊₁	$Ga_2In_2P_4$	10.603	-39.3	10.606	-38.3
Luzonite	Ga_3InP_4	10.420	-31.8	10.421	-33.7
Luzonite	$Galn_3P_4$	10.783	-27.4	10.788	-24.3
Chalcopyrite	$e Ga_2In_2P_4$	10.598	-51.6	10.599	-49.7
Famatinite	Ga_3InP_4	10.420	-38.2	10.418	-39.9
Famatinite	$GaIn_3P_4$	10.781	-33.0	10.785	-29.4
SL[111] ₁₊₁	$Ga_2In_2P_4$	10.616	-29.1	10.613	-28.4
Random	$Ga_nIn_nP_{2n}$			10.602	-41.6

Compressible Ising model, with long-range interactions on a FCC lattice

Supercell of 1024 atoms, at fixed P, T and difference in chemical potentials $\Delta \mu$.

$$\sigma_{\mathbf{R}} \Rightarrow -\sigma_{\mathbf{R}}$$
 and $V \Rightarrow V + \Delta V$

Thermodynamic Integration

$$G(B) - G(A) = \int_A^B \left(\frac{\partial G}{\partial N}\right)_{T,P} dN = \int_{x_A}^{x_B} \langle \Delta \mu(x) \rangle dx$$

Phase Diagram from Thermodynamic Integration

Computational EXAFS

