





Final presentation by: Michelle Emmert, Juan Hamdan, Laura Sanchis, und Gloria Timm







#### The Dataset

28 images of nuclei:

→ N2DH-GOWT1

GFP transfected GOWT1 mouse embryonic stem cells

*── N2DL-HeLa* 

Histone 2B (H2B)-GFP expressing HeLa cells

*──NIH3T3* 

mouse embyonic fibroblast – CD tagged (EGFP)



N2DH-GOWT1



**N2DL-HeLa** 



NIH3T3

- (1) Osuna, E. et al. 2007. Large-Scale Automated Analysis of Location Patterns in Randomly Tagged 3T3Cells
- (2) Maska, M. et al. 2014. A benchmark for comparison of cell tracking algorithms



#### Our Algorithm

Dataframe with normalized features and ground truths SVM Segmentation Segmented images **Evaluation** Dice score



# Synthetic images

#### Goals:

- test the Dice score code
- enrich and enlarge our training data set for the SVM

#### Result:

- did not improve Dice score
- advantage: being able to segment almost all original images









Goal:

improve Dice Score of segmentation method through better image quality

#### Desired effect:

- 1. average local pixel intensity values
- 2. separate nuclei which appear fused
- 3. increase contrast
- 4. enhance edges

through noise reduction, super-pixel segmentation, thresholding and data selection.





**Gaussian Filtering** 

Desired effect: noise reduction





Watershed Filtering

Desired effect:
edge enhancement
separate fused nuclei



http://www.cmm.minesparistech.fr/~beucher/wtshed.html





Otsu

Desired effect:

increase contrast and enhance edges





**PCA** 

Desired effect:
reduce noise and increase contrast
not used to for dimension reduction!





#### Our Algorithm

Dataframe with normalized features and ground truths SVM Segmentation Segmented images Dice score **Evaluation** 



$$cost(w) = \frac{1}{2} ||w||^2 + C \left[ \frac{1}{N} \sum_{i=1}^{n} max(0, 1 - y_i * (w * x_i + b)) \right]$$

```
compute_cost(weights, features, labels, soft_margin_factor):
SVM margin will be softer.
:param soft_margin_factor: determines the importance of misclassified pixels.
:param weights: Weights vector
<u>:param</u> features: Feature vector, has different columns for the different features for Ach pixel. Every pixel is
:param labels: Labels vector, is either 1 or -1 for each pixel (each row).
number_pixels = features.shape[0]
distances_to_hyperplane = 1 - labels * (np.dot(features, weights))
distances_to_hyperplane = np.maximum(0, distances_to_hyperplane)
hinge_loss = soft_margin_factor * (np.sum(distances_to_hyperplane) / number_pixels)
cost = 1 / 2 * np.dot(weights, weights) + hinge_loss
return cost
```

$$cost(w) = \frac{1}{2} ||w||^2 + C \left[ \frac{1}{N} \sum_{i=1}^{n} max(0, 1 - y_i * (w * x_i + b)) \right]$$

```
compute_cost(weights, features, labels, soft_margin_factor):
SVM margin will be softer.
<u>:param</u> soft_margin_factor: determines the importance of misclassified pixels.
:param weights: Weights vector
:param features: Feature vector, has different columns for the different features
                                                                                    or each pixel. Every pixel is
:param labels: Labels vector, is either 1 or -1 for each pixel (each row).
number_pixels = features.shape[0]
distances_to_hyperplane = 1 - labels * (np.dot(features, weights))
distances_to_hyperplane = np.maximum(0, distances_to_hyperplane)
hinge_loss = soft_margin_factor * (np.sum(distances_to_hyperplane) / number_pixels)
cost = 1 / 2 * np.dot(weights, weights) + hinge_loss
return cost
```

```
cost(w) = \frac{1}{2} ||w||^2 + C \left[ \frac{1}{N} \sum_{i=1}^{n} max(0, 1 - y_i * (w * x_i + b)) \right]
```

```
compute_cost(weights, features, labels, soft_margin_factor):
SVM margin will be softer.
:param soft_margin_factor: determines the importance of misclassified pixels.
:param weights: Weights vector
:param features: Feature vector, has different columns for the different features for eac
                                                                                          pixel. Every pixel is
:param labels: Labels vector, is either 1 or -1 for each pixel (each row).
number_pixels = features.shape[0]
distances_to_hyperplane = 1 - labels * (np.dot(features, weights))
distances_to_hyperplane = np.maximum(0, distances_to_hyperplane)
hinge_loss = soft_margin_factor * (np.sum(distances_to_hyperplane) / number_pixels)
cost = 1 / 2 * np.dot(weights, weights) + hinge_loss
return cost
```

$$cost(w) = \frac{1}{2} ||w||^2 + C \left[ \frac{1}{N} \sum_{i=1}^{n} max(0, 1 - y_i * (w * x_i + b)) \right]$$

```
compute_cost(weights, features, labels, soft_margin_factor):
                                                                            vector.
SVM margin will be softer.
:param soft_margin_factor: determines the importance of misclassified ixels.
:param weights: Weights vector
:param features: Feature vector, has different columns for the different features for each pixel. Every pixel is
:param labels: Labels vector, is either 1 or -1 for each pixel (d
number_pixels = features.shape[0]
distances_to_hyperplane = 1 - labels * (np.dot(features, we ghts))
distances_to_hyperplane = np.maximum(0, distances_to_hyper
hinge_loss = soft_margin_factor * (np.sum(distances_to_hyperplane) / number_pixels)
cost = 1 / 2 * np.dot(weights, weights) + hinge_loss
return cost
```



$$cost(w) = \frac{1}{2} ||w||^2 + C \left[ \frac{1}{N} \sum_{i=1}^{n} max(0, 1 - y_i * (w * x_i + b)) \right]$$

$$\nabla_{w} \cot(w) = \frac{1}{N} \sum_{i}^{n} \begin{cases} w & if \ max \ (0, 1 - y_{i} * (w * x_{i})) = 0 \\ w - C y_{i} x_{i} & otherwise \end{cases}$$

calculate cost-gradient

$$\nabla_{w} \cot(w) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} w & if \ max \ (0, 1 - y_{i} * (w * x_{i})) = 0 \\ w - C y_{i} x_{i} & otherwise \end{cases}$$

```
def calculate_cost_gradient(weights, features, labels, soft_margin_factor):
   :param soft_margin_factor: determines the importance of misclassified pixels.
   :param features: a vector with all our pixels as rows.
   :param labels: label of the pixels, either +1 or -1.
   labels = np.array([labels])
   features = np.array([features])
   distance_to_hyperplane = 1 - (labels * np.dot(features, weights))
   gradient_cost = np.zeros(len(weights))
   for index_pixel, distance_pixel in enumerate(distance_to_hyperplane):
       if max(0, distance_pixel) == 0:
           gradient_pixel = weights
           gradient_pixel = weights - (soft_margin_factor * labels[index_pixel] * features[index_pixel])
       gradient_cost += gradient_pixel
   return gradient_cost
```

calculate cost-gradient

$$\nabla_{w} \cot(w) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} w & if \ max \ (0, 1 - y_{i} * (w * x_{i})) = 0 \\ w - C \ y_{i} x_{i} & otherwise \end{cases}$$

```
distance_to_hyperplane = 1 - (labels * np.dot(featurer weights))
    # Create an empty gradient vector, to fill with the gradient of the current pixel.
    gradient_cost = np.zeros(len(weights))
    for index_pixel, distance_pixel in enumerate(distance_to_hyperplane):
        # For correctly classified pixels, ne current weight vector is maintained
        if max(0, distance_pixel) == 0: M
            gradient_pixel = weights
        # For incorrectly classified pixels, the weight vector is corrected in the direction contrary to the gradient.
        else:
            gradient_pixel = weights - (soft_margin_factor * labels[index_pixel] * features[index_pixel])
        gradient_cost += gradient_pixel
    return gradient_cost
     gradient_pixel = weights - (soft_margin_factor * labels[index_pixel] * features[index_pixel])
  gradient_cost += gradient_pixel
return gradient_cost
```

calculate cost-gradient

$$\nabla_{w} \cot(w) = \frac{1}{N} \sum_{i=1}^{N} \begin{cases} w & if \ max(0, 1 - y_{i} * (w * x_{i})) = 0 \\ w - C y_{i} x_{i} & otherwise \end{cases}$$

```
calculate_cost_gradient(weights, features, labels, soft_margin_factor)
    distance_to_hyperplane = 1 - (labels * np.dot(features, weights))
    # Create an empty gradient vector, to fill with the gradient of the current pixel.
    gradient_cost = np.zeros(len(weights))
    for index_pixel, distance_pixel in enumerate(distance_to_hyperplane):
        if max(0, distance_pixel) == 0:
             gradient_pixel = weights
        # For incorrectly classified pixels, the weight vector is corrected in the direction contrary to the gradient.
        else:
             gradient_pixel = weights - (soft_margin_factor * labels[index_pixel] * features[index_pixel])
        gradient_cost += gradient_pixel
    return gradient_cost
     gradient_pixel = weights - (soft_margin_factor * labels[index_pixel] * features[index_pixel])
  gradient_cost += gradient_pixel
return gradient_cost
```



```
lef sgd(features, labels, soft_margin_factor, learning_rate, max_epochs):
  for epoch in range(0, max_epochs):
      features_shuffled, labels_shuffled = shuffle(features, labels)
      for pixel_index, pixel_value in enumerate(features_shuffled):
          gradient = calculate_cost_gradient(weights, pixel_value, labels_shuffled[pixel_index], soft_margin_factor)
      cost = compute_cost(weights, features, labels, soft_margin_factor)
      if epoch % 20 == 0 or epoch == max_epochs - 1:
          if patience == 10:
              patience += 1
```

```
<mark>ef sgd</mark>(features, labels, soft_margin_factor, learning_rate, max_epochs):
    for pixel_index, pixel_value in enumerate(features_shuffled):
        gradient = calculate_cost_gradient(weights, pixel_value, labels_shuffled[pixel_index], soft_margin_factor)
        weights = weights - (learning_rate * gradient)
    cost = compute_cost(weights, features, labels, soft_margin_factor)
    history_cost.append(cost)
    if epoch % 20 == 0 or epoch == max_epochs - 1:
        print("Epoch is: {} and Cost is: {}".format(epoch, cost))
    if prev_cost < cost:</pre>
        if patience == 10:
             return weights, history_cost
             patience += 1
        patience = 0
    prev_cost = cost
return weights, history_cost
```

```
f sgd(features, labels, soft_margin_factor, learning_rate, max_epochs):
    for pixel_index, pixel_value in enumerate(features_shuffled):
        gradient = calculate_cost_gradient(weights, pixel_value, labels_shuffled[pixel_index], soft_margin_factor)
        weights = weights - (learning_rate * gradient)
   cost = compute_cost(weights, features, labels, soft_margin_factor)
   history_cost.append(cost)
   if epoch % 20 == 0 or epoch == max_epochs - 1:
        print("Epoch is: {} and Cost is: {}".format(epoch, cost))
   if prev_cost < cost:</pre>
        if patience == 10:
            return weights, history_cost
            patience += 1
        patience = 0
   prev_cost = cost
return weights, history_cost
```

```
f sgd(features, labels, soft_margin_factor, learning_rate, max_epochs):
    for pixel_index, pixel_value in enumerate(features_shuffled):
        gradient = calculate_cost_gradient(weights, pixel_value, labels_shuffled[pixel_index], soft_margin_factor)
        weights = weights - (learning_rate * gradient)
   cost = compute_cost(weights, features, labels, soft_margin_factor)
   history_cost.append(cost)
   if epoch % 20 == 0 or epoch == max_epochs - 1:
        print("Epoch is: {} and Cost is: {}".format(epoch, cost))
   if prev_cost < cost:</pre>
        if patience == 10:
            return weights, history_cost
            patience += 1
        patience = 0
   prev_cost = cost
return weights, history_cost
```



#### Our Algorithm

Dataframe with normalized features and ground truths SVM Segmentation Segmented images **Evaluation** Dice score

#### Evaluation using the dice score

```
def dice_score(pred, gt):
    """
    This function calculates the similiarity between two arrays.
    :param pred: an array of predicted labels
    :param gt: the ground truth of this array
    :return: a value between 0 and 1, describing the similiarity between those arrays. 1 is the dice score of similiar arrays.
    """
    dice = np.sum(pred[gt == pred]) * 2.0 / (np.sum(gt) + np.sum(pred))
    print(dice)
```



$$\mathsf{Dice} = \frac{2*Intersection}{Union+Intersection} = \mathsf{F}_1 = \frac{1}{\frac{1}{Prec} + \frac{1}{Recall}} = \frac{2\,\mathit{TP}}{2\,\mathit{TP} + \mathit{FP} + \mathit{FN}}$$

Unittesting with synthetic masks and manually created arrays

#### Results: N2DH-G0W1

original image: t21.tif



ground truth: man\_seg21.tif



segmented image: t21\_seg.tif dice score: 0.67



#### Results: N2DH-G0W1



| Features         | Dice Score (DS)                   |
|------------------|-----------------------------------|
| no filters (NF)  | good DS, but highest variance     |
| all filters      | worse than NF, but lower variance |
| Gauss, Otsu, PCA | worse than NF, but lower variance |
| Watershed        | best DS                           |

average dice score with all filters: 0.71

#### Results: N2DL-HeLa



| Features                      | Dice Score (DS)        |
|-------------------------------|------------------------|
| no filters (NF),<br>Watershed | no segmentation        |
| all filters                   | best DS                |
| Otsu                          | biggest DS improvement |
| Gauss, PCA                    | not as relevant        |

• average Dice score with all filters: 0.63

#### Results: NIH3T3



| Features         | Dice Score (DS)            |
|------------------|----------------------------|
| no filters (NF)  | DS over 0.5                |
| all filters, PCA | highest DS                 |
| Gauss, Watershed | similar to NF              |
| Otsu             | good DS, but high variance |

average Dice score with all filters: 0.65

# Optimal settings for our SVM

• Learning rate:  $1 \cdot 10^{-7}$ 

Regularization parameter: 10.000

• Maximum epochs: 40

> Why?

Different learning rates

• Regularization parameter: 10.000

Learning rate:  $1 \cdot 10^{-5}$ 

• Maximum epochs: 40









# Optimal settings for our SVM

• Learning rate:  $1 \cdot 10^{-7}$ 

Regularization parameter: 10.000

• Maximum epochs: 40

#### ➤ Why?

• Learning rate:  $1 \cdot 10^{-7}$ 

Different regularization parameters

• Maximum epochs: 40





#### Regularization parameter: 100



# Optimal settings for our SVM

• Learning rate:  $1 \cdot 10^{-7}$ 

Regularization parameter: 10.000

Maximum epochs: 40

#### ➤ Why?

• Learning rate:  $1 \cdot 10^{-7}$ 

• Regularization parameter: 10.000

Different maximum epochs





#### What we've learned

- pre-processing methods depend on specific challenges of the data
- SVM with a Linear kernel is easier to code and takes less time to run
- SVM is a powerful tool for segmentation

#### But:

needs a lot of computational power and thus has long runtime

#### Outlook

#### SVMs include many possibilities for expansion

- Non-linear kernels for better segementation results e.g. the RBF kernel
- include other features e.g. intensity values of the neighborhood
- test correlation of features to reduce runtime
- generate weights vector from changing starting points

# Thank you for listening!

