Conexión.

1.

- 1. Sean A y D dos conjuntos cerrados no vacíos de un espacio topológico X. Demuestra que si $A \cup D$ y $A \cap D$ son conexos entonces A y D también lo son. ¿Qué pasa si $A \circ D$ no son cerrados?
- 2. Sean A_1, A_2, \ldots, A_n subconjuntos conexos de un espacio topológico tales que $A_k \cap A_{k+1} \neq \emptyset$ para todo $1 \leq k < n$. Prueba que $\bigcup_{k=1}^n A_k$ es conexo. Trata de generalizar el resultado para una colección numerable de conexos.
- **2.** Demostrar que si X e Y son conexos y A, B son subconjuntos propios no vacíos de X e Y respectivamente entonces $X \times Y \setminus A \times B$ es conexo. En la situación anterior, ¿es cierto que si X e Y son conexos por caminos entonces $X \times Y \setminus A \times B$ también lo es?

3.

- 1. Sabiendo que las componentes conexas son siempre cerradas, demostrar que si hay un número finito de ellas entonces son también abiertas.
- 2. Prueba que si $f: X \to Y$ es un homeomorfismo entonces, para cualesquiera $x_1, \ldots, x_n \in X$, $X \setminus \{x_1, \ldots, x_n\}$ y $Y \setminus \{f(x_1), \ldots, f(x_n)\}$ también son homeomorfos. Aplica lo anterior para demostrar que los subconjuntos de \mathbb{R} : (1,2), [1,2] y [1,2) no son homeomorfos.
- 3. Probar que un espacio X es conexo si y sólo si no existe ninguna aplicación continua y sobreyectiva $f: X \longrightarrow Y$ donde $Y = \{0, 1\}$ con la topología discreta.
- 4. Usar el apartado anterior para probar que si S es un subconjunto conexo de un espacio X y K satisface $S \subset K \subset \overline{S}$ entonces K es conexo.
- 5. Sean A y B subconjuntos propios de \mathbb{R} tales que A es abierto y B es cerrado. Demostrar que A y B no pueden ser homeomorfos.

4.

- 1. Demuestra que si A es numerable entonces $\mathbb{R}^2 \setminus A$ es conexo por caminos 1 . Demuestra que todo subconjunto conexo de \mathbb{R}^n con más de un punto es no numerable.
- 2. Demuestra que $(\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R})$ no es homeomorfo a \mathbb{R} . ¿Son \mathbb{R}^1 y \mathbb{R}^2 homeomorfos?
- 3. Sean $X = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 = 1\} \cup \{(x,y) \in \mathbb{R}^2 : (x+1)^2 + y^2 = 1\}$ e $Y = \mathbb{S}^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. ¿Existe alguna función continua y sobreyectiva de X en Y?, ¿y si pedimos además que sea biyectiva?
- 4. En el plano con la topología usual, sean $S = \{(r\cos t, r\sin t) : r = 1 \frac{1}{t}, t \ge 1\}$. Probar que $X = S \cup \mathbb{S}^1$ es conexo pero no es conexo por caminos.

¹Indicación: El conjunto de rectas que pasan por un punto no es numerable.

- **5.** Estudia si $X = [0,1] \times [0,1]$ es conexo con:
- 1. La topología del orden lexicográfico en X .
- 2. La topología heredadad de \mathbb{R}^2 con el orden lexicográfico.

6.

- 1. Caracterizar todos los subconjuntos conexos de \mathbb{R} con la topología cofinita.
- 2. Probar que las componentes conexas de \mathbb{R} con la topología de Sorgenfrey son los puntos.
- 7. Indica razonadamente si las siguientes afirmaciones son verdaderas o falsas.
- Si X es conexo por caminos y $f \colon X \to Y$ es una función continua y sobreyectiva entonces Y también es conexo por caminos.
- Si A es un subconjunto conexo por caminos de un espacio topológico X y $A\subset D\subset \overline{A}$ entonces D es conexo por caminos.
- Si $\mathcal{C} = \{C_i : i \in I\}$ es una colección de subconjuntos conexos por caminos de un espacio topológico X tal que existe $C_0 \in \mathcal{C}$ que interseca a cada elemento de \mathcal{C} , entonces $\bigcup_{i \in I} C_i$ es conexo por caminos.
- Si una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisface la conclusión del teorema de los valores intermedios en cualquier intervalo, entonces es necesariamente continua.