Тема. Квадратна нерівність

<u>Мета.</u> Ознайомитися з поняттям квадратної нерівності та вчитися розв'язувати такі нерівності

Повторюємо

- Що таке нерівність?
- Які бувають види нерівностей за знаком?
- Що означає розв'язати нерівність?
- Що таке числовий проміжок?
- Як зобразити числовий проміжок графічно?
- Яку функцію називають квадратичною?
- Які властивості має квадратична функція?
- Виконайте вправу за посиланням: https://learningapps.org/1942233

Ознайомтеся з інформацією

Означення. Нерівності виду $ax^2 + bx + c > 0$ ($ax^2 + bx + c < 0$, $ax^2 + bx + c \ge 0$, $ax^2 + bx + c \le 0$), де x — змінна, a, b, c — деякі числа, причому $a \ne 0$, називають **квадратними нерівностями**.

Квадратні нерівності можуть бути *строгими* (знаки «>» або «<») і *нестрогими* (знаки « \geq » або « \leq »).

Наприклад, $2x^2 - 3x + 1 > 0$, $3x^2 - 5 < 0$, $-x^2 + 9 \le 0$ – квадратні нерівності.

Розв'язування квадратних нерівностей можна звести до знаходження проміжків, на яких квадратична функція $y = ax^2 + bx + c$ набуває додатних, недодатних, від'ємних або невід'ємних значень. Такий метод розв'язування нерівностей $f(x) \ge 0$, $f(x) \le 0$, f(x) < 0, f(x) > 0 за допомогою графіка функції називають **графічним**.

Знак нерівності	Зображення точок	Дужки		
≥		[;]
< >	<u> </u>	(;)

Перегляньте відео за посиланням:

https://youtu.be/dBoTwCPIPKO

Розв'язування завдань

Приклад 1.

Які з чисел -2; 0; 1 є розв'язками нерівності $x^2 - x - 2 < 0$?

Розв'язання.

Число −2; 0; 1 буде розв'язком нерівності, якщо при підстановці у вираз, який задає нерівність, перетворює цю нерівність у правильну числову.

Перевіримо цей факт для числа – 2. Маємо $(-2)^2 - (-2) - 2 = 4$.

4 < 0 – нерівність хибна ⇒ -2 не є розв'язком нерівності $x^2 - x - 2 < 0$.

Для числа 0 маємо $0^2 - 0 - 2 = -2$.

-2 < 0 – нерівність правильна ⇒ 0 є розв'язком нерівності $x^2 - x - 2 < 0$.

Для числа 1 маємо $1^2 - 1 - 2 = -2$.

-2 < 0 – нерівність правильна ⇒ 1 є розв'язком нерівності $x^2 - x - 2 < 0$.

Приклад 2.

На рисунку зображено графік функції $y = x^2 + 4x - 5$. Знайдіть множину розв'язків нерівності:

3)
$$x^2 + 4x - 5 > 0$$
;

2)
$$x^2 + 4x - 5 \le 0$$
;

4)
$$x^2 + 4x - 5 \ge 0$$
.

Розв'язання.

Використовуючи графік функції $y = x^2 + 4x - 5$ з'ясуємо, де функція набуває

- 1) від'ємних значень, тобто $f(x) < 0 \Rightarrow (-5; 1)$;
- 2) недодатних значень, тобто $f(x) \le 0 \Rightarrow [-5; 1];$
- 3) додатних значень, тобто $f(x)>0 \Rightarrow (-\infty;-5) \cup (1;+\infty);$
- 4) невід'ємних значень, тобто $f(x) \ge 0 \Rightarrow (-\infty; 5] \cup [1; +\infty)$.

Приклад 3.

На рисунку зображено графік функції $y = -3x^2 - 6x$.

Знайдіть множину розв'язків нерівності:

1)
$$-3x^2-6x<0$$
;

3)
$$-3x^2-6x>0$$
;

2)
$$-3x^2 - 6x \le 0$$
;

4)
$$-3x^2 - 6x \ge 0$$
.

Розв'язання.

Використовуючи графік функції $y = -3x^2 - 6x$ з'ясуємо, де функція набуває

- 1) від'ємних значень, тобто $f(x) < 0 \Rightarrow (-\infty; -2) \cup (0; +\infty);$
- 2) недодатних значень, тобто $f(x) \le 0 \Rightarrow (-\infty; -2] \cup [0; +\infty);$
- 3) додатних значень, тобто $f(x) > 0 \implies (-2; 0)$;
- 4) невід'ємних значень, тобто $f(x) \ge 0 \Rightarrow [-2; 0]$.

Приклад 4.

На рисунку зображено графік функції $y = x^2 + 4x + 4$.

Знайдіть множину розв'язків нерівності:

1)
$$x^2 + 4x + 4 < 0$$
;

3)
$$x^2 + 4x + 4 > 0$$
;

2)
$$x^2 + 4x + 4 \le 0$$
;

4)
$$x^2 + 4x + 4 \ge 0$$
.

Розв'язання.

Використовуючи графік функції $y = x^2 + 4x + 4$ з'ясуємо, де функція набуває

- 1) від'ємних значень, тобто $f(x) < 0 \Rightarrow \emptyset$;
- 2) недодатних значень, тобто $f(x) \le 0 \Rightarrow 2$;
- 3) додатних значень, тобто $f(x) > 0 \Rightarrow (-\infty; 2) \cup (2; +\infty);$
- 4) невід'ємних значень, тобто $f(x) \ge 0 \Rightarrow (-\infty; +\infty)$.

Приклад 5.

На рисунку зображено графік функції $y = -x^2 + 2x - 2$.

Знайдіть множину розв'язків нерівності:

1)
$$-x^2 + 2x - 2 < 0$$
;

3)
$$-x^2 + 2x - 2 > 0$$
;

2)
$$-x^2 + 2x - 2 \le 0$$
:

4)
$$-x^2 + 2x - 2 \ge 0$$
.

Розв'язання.

Використовуючи графік функції $y = -x^2 + 2x - 2$ з'ясуємо, де функція набуває

- 1) від'ємних значень, тобто $f(x) < 0 \Rightarrow (-\infty; +\infty)$;
- 2) недодатних значень, тобто $f(x) \le 0 \Rightarrow (-\infty; +\infty)$;
- 3) додатних значень, тобто $f(x) > 0 \Rightarrow \emptyset$;
- 4) невід'ємних значень, тобто $f(x) \ge 0 \Rightarrow \emptyset$.

Пригадайте

- Які нерівності називають квадратними?
- Як розв'язати квадратну нерівність?

Домашнє завдання

- Опрацювати конспект
- Побудуйте графік функції $y = x^2 + 2x + 1$ та розв'яжіть з його допомогою нерівність $y=x^2+2x+1 \le 1$

Джерело

Всеукраїнська школа онлайн