

Sustainable Engineering Design

CSE 5408 – California State University, San Bernardino – CSUSB

Review:

Computer Engineering Design Process

Lab Schedule

Activities

7 This Week

- Introduction, Syllabus, recap (Chapter1-5) and expectations
- Team-Instructor meetings on Wednesday, Jan. 26th

Due dates:

Video Demo Final Presentations Final Report

Assignments Due

No Lab this week

May 8th
May 9th and 11th
May 11th

Engineering Design: The Process – Ch2

Figure 2.1: The general engineering process

Synthesis:

Putting together of parts or elements so as to form a whole

Analysis:

A separating or breaking up of any whole into its parts, especially with an examination of these parts to find out their nature, proportion, function, interrelationship, etc.

Engineering Design: The Process – Ch2

- In Chapter 2, the design methodology lists Requirement Analysis as the first step.
- When errors are uncovered you can jump back one stage to rework and solve the issue(s). However, Jumping back two stages is also possible, but it will be more costly

IDEAL design flow: High Quality with Limited

Resources

Engineering Design: Requirement Analysis – Ch3

Fig. 3.1: Requirements Analysis: First Stage in Design Methodology

- Requirements Specification document is the output of this chapter.
- A contract between you and the customer, which specifies:
 - What exactly is the design to accomplish. What is the problem we are trying to solve?
 - How will everyone with a stake in the design know when its done?

A Two-Stage Approach to Developing the Requirements Specification-Ch₃

Stage1: Assesses the needs and organize them into a problem statement. The language of the customer should be used, likely <u>non-technical</u> and <u>non-quantifiable</u>

Fig. 3.4: Two-Stage Approach for Developing a Requirements Specification

A Two-Stage Approach to Developing the Requirements Specification-Ch₃

- **♂** Stage2:
 - turn the problem statement into a <u>technical, quantified</u> specification
 - establish <u>criteria</u> for judging the acceptability of the design alternatives
- There is a need for iteration (the feedback path)
 - The customers true needs may be called into question, and subsequently changes may be made, etc.
 - The engineer must be free to make decisions and form agreements with the customer

A Two-Stage Approach to Developing the Requirements Specification-Ch₃

- The Output: *requirements specification document*
 - A concise statement of what the design will accomplish, and the criteria used to judge the final outcome. (how the finished design will be evaluated)
 - It answers the two earlier questions:
 - What exactly is the design team to do?
 - → How will everyone know when the design is done?
 - It must receive approval of both the customer and the designer. (contract)

Engineering Design: System Design – Ch4

- Answers the question: How the problem will be solved?
- System Design involves:
 - Conceptualization, Synthesis & Analysis, selecting the ideas giving the best solution, Refinement And Documentation
- System Design output is a document that:
 - Describes the design at a functional level
 - Describes component parts that form the design
 - Shows through analysis how the design meets the intended objective

Sustainable Engineering Design

The System Design Process-Ch4

- The System specification will contain description of each block in the block diagram.
- It will describe how the blocks work together, and satisfy the requirements specifications
- First conceptualize a solution, synthesis it, analyze it to see if requirements can be met
 - iterate the synthesis/ analysis phase multiple times as needed
- The Question: Is the Design Necessary?
 - A commercial-of-the-shelf solution (COTS) may already exist
 - Is the COTS product good enough to meet all requirements, even in the future when the product may need to satisfy additional requirements?
 - Perform a Web search and/or talk with those knowledgeable of the product area

Managing The Design Process-Ch5

- At this stage we are ALMOST done with the System specifications.
- We need to answer these questions:
 - How much is the design going to cost?
 - When can you deliver?
- Remember: We are designing in limited Time and Budget.
 - **➣** So we need to properly "Manage" our PROJECT

The Project Plan-Ch5

- How the project to be conducted (concise statement)
 - → What will it cost?
 - When it will be completed
 - What resources will be needed
- Legal agreement between project team and their client (Legal Contract)
- **TODO**:
 - You need to start planning a meeting with you client.

The Project Plan-components-Ch5

Main components:

- Definition of the Work: A breakdown of the various tasks needed to complete the project
- Schedule: Dates and times for completing tasks and subtasks that make up the project
- Resource Requirements:
 Estimate each engineer's time,
 materials, equipment, and
 other support services
- **Cost Estimate:** An estimate of all costs associated with the project. (**BUDGET**)

The planning process parallels the system design stage