Лекции по ДГМА

Павел Петров Семестр 4

1 Теория поверхностей

Определение 1. Отображение f области G плоскости на область \widetilde{G} трёхмерного пространства называется *гомеоморфным*, если f взаимно однозначно и непрерывно.

Определение 2. Множество Φ точек трёхмерного пространства называется *элементарной поверхностью*, если это множество является образом открытого круга G при гомеоморфном отображении f в пространство.

!
$$G = \{(x,y) \mid x^2 + y^2 < R^2\}$$
 - открытый круг.

Определение 3. Множество G точек плоскости называется элементарной областью, если это множество является образом открытого круга G при гомеоморфном отображении f на плоскость.

Определение 4. Окрестностью точки M множества Φ называется общая часть множества Φ и пространственной окрестности M.

Определение 5. Множество называется *связным*, если любые две его точки можно соединить непрерывной кривой, целиком состоящей из точек этого множества.

Определение 6. Множество точек пространства Φ называется *простой поверхностью*, это множество связно и любая точка этого множества имеет окрестность, являющейся элементарной поверхностью.

! Элементарная повехность является простой повехностью. Обратное неверно. Пример: сфера.

Определение 7. Отображение f простой поверхности G называется *локально-гомеоморфным*, если у каждой точки G есть окрестность, которая гомеоморфно отображается на свой образ.

Определение 8. Множество точек пространства Ф называется *общей поверхностью*, если оно является образом простой поверхности при локально-гомеоморфном отображении.

Замечания к определению 8:

- 1. Окрестность точки общей поверхности образ окрестности точки на простой поверхности.
- 2. Простая поверхность это поверхность без самопересечений и без самоналяганий Общая поверхность может иметь их.

Определение 9. Поверхность Φ называется *регулярной* (k раз $\partial u \phi \phi$ еренцируемой), если при некотором $k \geq 1$ у каждой точки Φ есть окрестность, допускающая k раз дифференцируемую параметризацию.

То есть окрестность представляет собой гомеоморфное отображение некоторой элементарной области G (определение элементарной области легко получить, переформулировав определение 2) в плоскость переменных (u,v) при помощи соотношений (1),

$$x = x(u, v) \quad y = y(u, v) \quad z = z(u, v) \tag{1}$$

являющимися k раз дифференцируемыми функциями в области G. Если k=1, то поверхность называется $\epsilon na\partial ko\check{u}$.

! Будем говорить, что с помощью соотношений (1) в окрестности точки на поверхности вводится

perулярная параметризация с помощью параметров <math>u, v.

! Если вся поверхность Φ представляет отображение области G при помощи соотношений (1), то говорят, что на Φ введена единая параметризация.

Определение 10. Точка регулярной поверхности называется *обыкновенной*, если существует такая регулярная параметризация некоторой её окрестности, что в этой точке

$$rank \begin{pmatrix} x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{pmatrix} = 2$$
 (2)

Если это не так, то точка называется особой.

Определение 11. $f(u,v) \in C^k(G)$, если f(u,v) k раз дифференцируема и все её частные производные порядка k непрерывны в G.

Определение 12. Область G на плоскости будем называть *простой*, если эта область представляет собой простую плоскую поверхность (то есть G это связная область, каждая точка которой имеет окрестность, являющейся элементарной поверхностью).

Теорема 13. Пусть G - простая область плоскости (u,v), x(u,v), y(u,v), $z(u,v) \in C^k(G)$, где $k \geq 1$, и во всех точках области G выполняется условие (2), тогда соотношения (1) определяют в пространстве множество Φ , которое представляет собой регулярную, k раз дифференцируемую общую поверхность без особых точек.

Доказательство.

Убедимся, что с помощью соотношений (1) осуществляется локально-гомеоморфное отображение области G на множество Φ .

Возьмём произвольную точку $M_0(x_0, y_0, z_0) \in \Phi$, соответствующую параметрам (u_0, v_0) плоскости (u, v), и зафиксируем её. По условию в каждой точке области G выполняется условие (2), а значит и в точке (u_0, v_0) . Для определённости положим, что определитель (3) отличен от нуля в (u_0, v_0) .

$$\begin{vmatrix} x_u' & y_u' \\ x_v' & y_v' \end{vmatrix} \tag{3}$$

Получили выполнение условий теоремы о неявных функциях, заданных системой уравнений (4):

$$\begin{cases} x(u,v) - x = 0 \\ y(u,v) - y = 0 \end{cases}$$

$$\tag{4}$$

1.

$$\begin{cases} x(u_0, v_0) - x_0 \equiv 0 \\ y(u_0, v_0) - y_0 \equiv 0 \end{cases}$$
 (5)

- 2. x = x(u, v), y = y(u, v) непрерывны и дифференцируемы.
- 3. Частные производные непрерывны этих функций.
- 4. Определитель (3), являющийся якобианом $\frac{D(x,y)}{D(u,v)}$, отличен от нуля в (u_0,v_0) .

Тогда найдётся окрестность точки (x_0, y_0) на плоскости (x, y), что в её пределах $\exists ! k$ раз дифференцируемое решение системы (4):

$$\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$
 (6)

Таким образом мы получили, что некоторая окресность точки (x_0, y_0) представляет собой гомеоморфное отображение некоторой окрестности точки (u_0, v_0) с помощью соотношений x = x(u, v), y = y(u, v) (обратное отображение производится с помощью соотношений u = u(x, y), v = v(x, y)).

Подставим соотношения (6) в z=z(u,v): z=z(u,v)=z(u(x,y),v(x,y))=z(x,y). Отсюда получаем, что некоторая окрестность точки M_0 на множестве Φ является графиком k раз дифференцируемой функции. А это означает, что с помощью функции z=z(x,y) производится гомеоморфное отображение окрестности точки (x_0,y_0) на указанную окрестность точки M_0 множества Φ . Легко понять, что окрестность точки (u_0,v_0) гомеоморфно отображается на окрестность точки M_0 множества Φ .

Таким образом получили, что у каждой точки простой области G имеется окрестность, которая гомеоморфно отображается на свой образ (окрестность Φ), значит соотношения (1) - локальногомеоморфное отображение G на Φ , следовательно Φ - общая поверхность. $Teopema\ \partial o \kappa a s a h a$.

Замечание к теореме 13: В процессе доказательства мы установили, что у каждой точки M_0 поверхности Φ без особых точек имеется окрестность, однозначно проецирующаяся на одну из координатных плоскостей и являющаяся поэтому графиком k раз дифференцируемой функции. (в доказательства была функция z=z(x,y), но, поменяв какой-нибудь столбец определителя (3) на столбец состоящий из частных производных функции z=z(x,y), можно получить зависимости y=y(x,z) или x=x(y,z))