WHAT IS CLAIMED IS:

of said surface of the filter.

1		1.	A filter cleaning device comprising:
2		a) a d	cleaning fluid delivery device for providing a cleaning fluid;
3		b) at	least one actuator;
4		c) a c	controller with logic for instructing said actuator to automaticall
5	move at leas	st a po	rtion of the cleaning fluid delivery device along a path across a
6	surface of th	ne filter	to spray the cleaning fluid onto the filter; and
7		d) a d	collector positioned to receive waste material released from the
8	filter during a filter cleaning event.		
1		2.	The device of claim 1 wherein said cleaning fluid delivery
2	device inclu	des a r	nozzle that translates across the surface of said filter in two
3	perpendicula	ar axes	5.
1		3.	The device of claim 1 wherein said cleaning fluid delivery
2	device inclu	des a r	nozzle that moves across the surface of the filter along a path
3	selected from	m one	of the following: a rotational path, a curved path, or a spiral
4	path.		
1		4.	The device of claim 1 wherein said path is a predetermined
2	path.		
1		5.	The device of claim 1 wherein the cleaning fluid delivery
2	device comp	orises a	a nozzle coupled to an arm that is moved by said actuator that
3	guides the n	ozzle a	across the surface of the filter.
1		6.	The device of claim 1 wherein the cleaning fluid delivery
2	device comp	orises f	lexible duct coupled to a source of high pressure fluid.
1		7.	The device of claim 1 wherein the cleaning fluid delivery
2	device comp	orises r	neans for delivering fluid to the filter.
1		8.	The device of claim 1 wherein the cleaning fluid delivery
2	device is mo	ved al	ong a path to provide a substantially uniform level of cleaning

The device of claim 1 wherein said collector comprises

9.

2 3	ducting which carries cleaning fluid and material released from the filter through a filtering device and a suction device.		
1. 2	10. The device of claim 9 wherein said filtering device is selected from one of the following: a HEPA filter or a ULPA filter.		
1 2	11. The device of claim 1 wherein said filtering device is selected from one of the following: a HEPA filter or a ULPA filter.		
1 2 3	12. The device of claim 9 further comprising a second filtering device positioned downstream of said vacuum device, said second filtering device capturing materials flowing out from the vacuum device.		
1 2	13. The device of claim 9 wherein said second filtering device is a diesel particulate filter.		
1 2	14. The device of claim 9 wherein said second filtering device is a ceramic wall-flow particulate filter.		
1 2	15. The device of claim 1 wherein said collector includes at least one of: a HEPA filter or a ULPA filter.		
1 2	16. The device of claim 1 wherein said controller can pulse the cleaning pressure and fluid flow rate from the delivery device.		
1 2 3	17. The device of claim 1 wherein said fluid delivery device is coupled to a pulsing fluid source for pulsing the cleaning pressure and fluid flow rate from the delivery device.		
1 2	18. The device of claim 1 wherein controller automatically determines when to stop a cleaning event.		
1	19. The device of claim 1 further comprising a heating device for		
2	heating cleaning fluid prior to use on the filter.		

1	20.	The device of claim 1 further comprising a fluid flow sensor		
2	positioned to deter	mine if a section of filter below the nozzle is more or less		
3	clogged with partic	culate mater than regions of the filter around the section.		
1	21.	The device of claim 1 further comprising an air blower to		
2	direct flow in the d	irection opposite to the previously applied cleaning fluid to		
3	determine a press	ure drop across the filter.		
1	22.	The device of claim 1 wherein said controller instructs the		
2	actuator to move a	nozzle of the delivery device at a relatively uniform distance		
3	from the surface of the filter.			
1	23.	The device of claim 1 further comprising an electrical heating		
2	element and supplementary air supply.			
1	24.	The device of claim 1 wherein the delivery device is adapted		
2	for use with a suct	ion mask to focus suction on the filter.		
1	25.	The device of claim 1 wherein the filter is coupled to an air		
2	blower and heater	-based regeneration system positioned to heat the filter prior to		
3	application of the cleaning fluid.			
1	26.	The device of claim 1 further comprising a system wherein a		
2	pressure drop acro	oss the filter in the reverse direction of cleaning fluid flow is		
3	used as a process	diagnosis.		
1	27.	The device of claim 1 further comprising a system with		
2	reverse flow method	od of process diagnosis coupled to the filter.		
1	28.	The device of claim 1 wherein the actuator rotates the filter		
2	while the nozzle sp	orays cleaning fluid onto the filter.		
1	29.	The device of claim 1 wherein the actuator rotates the filter		
2	and rotates the no	zzle about an axis outside of the filter to deliver cleaning fluid to		
3	said filter.			

4	 The device of claim 1 wherein the actuator rotates a 				
5	rectangular nozzle about the central axis of the filter to deliver cleaning fluid to				
6	said filter.				
1	31. The device of claim 1 wherein a cleaning fluid nozzle may be				
2	mounted to a plunger attached on the translation arm, said nozzle is pushed				
3	down and held in contact with the face of the filter and allows the nozzle to follow				
4	the contours of the surface of filter.				
1	32. The device of claim 1 wherein a nozzle is made of an				
2	abrasion resistant plastic.				
1	33. The device of claim 1 wherein a nozzle on the cleaning				
2	device moves through a pre-programmed set of positions, and optionally				
3	monitors the flow rate at each position.				
1	34. The device of claim 1 further comprising a blower wherein				
2	the blower is switched to direct the flow of blower into the DPF in the direction				
3	opposite to the previously applied cleaning fluid.				
1	35. The device of claim wherein the pressure drop across the				
2	DPF is measured using the pressure sensor and this value is compared with a				
3	previously determined pressure drop for a clean filter.				
1	36. The device of claim 1 further comprising a cleaning fluid				
2	heater.				
1	37. The device of claim 1 wherein said collector includes a				
2	plurality of filtration stages.				
1	38. The device of claim 1 further comprising a mask having an				
2	uncovered section by focusing the suction force on a small area, thus				
3	concentrating the suction near the region that is being treated with compressed				
4	air. The mask is essentially a disk from which an arc has been cut,.				
1	39. The device of claim 1 wherein a nozzle travels a path across				
2	the filter until it reaches the center of the filter wherein a limit switch is engaged				

3	which deactivates the main power relay that then in turn de-energizes the				
4	solenoid, motor, and vacuum.				
1	40. The device of claim 1 wherein the actuator rotates a multi-				
2	port nozzle about the central axis of the filter to deliver cleaning fluid to said filter.				
1	41. A filter cleaning device comprising:				
2	a) a rotatable platform to which the filter is mounted;				
3	b) a nozzle mounted to a moving arm for providing a high pressure				
4	cleaning fluid;				
5	c) a controller with logic for instructing actuators to move the				
6	rotatable platform and the arm; and				
7	d) a collector positioned to receive material which is released from				
8	the filter during a cleaning event.				
1	42. A method of filter cleaning, the method comprising:				
2	a) using a cleaning fluid delivery device to providing a cleaning fluid				
3	b) using a controller to instruct an actuator to automatically move at				
4	least a portion of the cleaning fluid delivery device along a path across a surface				
5	of the filter to spray the cleaning fluid onto the filter; and				
6	c) using a collector positioned to receive waste material released				
7	from the filter during a filter cleaning event.				
1	43. The method of claim 42 wherein said automatically move				
2	comprises translating a nozzle across the surface of said filter in two				
3	perpendicular axes.				
1	44. The method of claim 42 wherein said automatically move				
2	comprises moving a nozzle across the surface of the filter along a path selected				
3	from one of the following: a rotational path, a curved path, or a spiral path.				
1	45. The method of claim 42 wherein said path is a				
2	predetermined path.				

1	46. The method of claim 42 wherein said automatically move			
2	comprises moving a nozzle coupled to an arm by said actuator that guides the			
3	nozzle across the surface of the filter.			
1	47. The method of claim 42 further comprising using a flexible			
2	duct coupled to a source of high pressure fluid to deliver said fluid.			
1	48. The method of claim 42 wherein the cleaning fluid delivery			
2	device is moved along a path to provide a substantially uniform level of cleaning			
3	of said surface of the filter.			
1	49. The method of claim 42 wherein said collector comprises a			
2	filtering device and a suction device.			
1	50. The method of claim 36 further comprising using a second			
2	filtering device positioned downstream of said vacuum device to capture			
3	materials flowing out from the vacuum device.			
1	51. The method of claim 36 wherein said second filtering device			
2	is a diesel particulate filter.			
1	52. The method of claim 36 wherein said second filtering device			
2	is a ceramic wall-flow particulate filter.			
1	53. The method of claim 42 wherein said collector includes at			
2	least one of: a HEPA filter or a ULPA filter.			
1	54. The method of claim 42 further comprising pulsing the			
2	cleaning pressure and fluid flow rate from the delivery device.			
1	55. The method of claim 42 wherein said fluid delivery device is			
2	coupled to a pulsing fluid source for pulsing the cleaning pressure and fluid flow			
3	rate from the delivery device.			
1	56. The method of claim 42 wherein said controller automatically			
2	determines when to stop a cleaning event.			

57. The method of claim 42 further comprising using a heating

2	device for heating cleaning fluid prior to use on the filter.	
1 2 3	58. The method of claim 42 further comprising using a fluid flow sensor positioned to determine if a section of filter below the nozzle is more or ess clogged with particulate mater than regions of the filter around the section.	
1 2 3	59. The method of claim 42 further comprising using an air plower to direct flow in the direction opposite to the previously applied cleaning fluid to determine a pressure drop across the filter.	
1 2	60. The method of claim 42 further comprising moving a nozzlo	
1 2	61. The method of claim 42 further comprising using a suction mask with the delivery device to focus suction on the filter.	
1 2 3	62. The method of claim 42 wherein the filter is coupled to a neater-based regeneration system positioned to heat the filter prior to application of the cleaning fluid.	on
1 2	63. The method of claim 42 further comprising using a system with reverse flow method of process diagnosis coupled to the filter.	
1 2 3	64. The method of claim 42 further comprising using a pressur drop across the filter in the reverse direction of cleaning fluid flow as a process diagnosis.	
1 2	65. The method of claim 42 wherein the actuator rotates the fil while the nozzle sprays cleaning fluid onto the filter.	ter
1 2 3	66. The method of claim 42 wherein the actuator rotates the fil and rotates the nozzle about an axis outside of the filter to deliver cleaning fluid said filter.	

- 4 67. The method of claim 42 wherein the actuator rotates a 5 rectangular nozzle about the central axis of the filter to deliver cleaning fluid to 6 said filter.
- 1 68. The method of claim 42 wherein the actuator rotates a multi-2 port nozzle about the central axis of the filter to deliver cleaning fluid to said filter.