Lista S1.Fisica I - Vectores

Felipe Pinto

April 1, 2021

Contents

Ι	Questões															3										
$\mathbf{Q}1$																										3
Q2																										3
	a)																									3
	b)																									3
	c)																									3
Q3																										3
Q4																										3
	a)																									3
	b)																									3
	c)																									4
Q_5																										4
Q6																										4
Q7																										4
Q8																										4

$\mathbf{Q}9$)																													5
	a)																													5
	b)																													5
	c)																													5
II	Pr	ol	b]	le	n	18	as	;																						6
P1																														6
	a)																													6
	b)																													6
$\mathbf{P2}$																														6
	a)																													
										a_{z}	c =	=	5;	C	u_y	=	= 4	1;	a_{\cdot}	z:	=		-3							
										b_{i}	r =	=	3;	ŧ	b_y	=		-4	Į;	b_z	z =	=	5							
																														6
	b)																													6
	c)																													6
	d)																													6
Р3																														7
$\mathbf{P4}$																														7
	a)																													7
	b)																													7
	c)																													7
	\dot{d})																													7
	e)																													7
	f)																													7
P5																														7
P6																														8
P 7																														8

Part I

Questões

Q1

 $\mathbf{Q2}$

a)

b)

 $\mathbf{c})$

Q3

Q4

a)

$$\vec{A} = 5 \cos(130^{\circ}) \hat{i} + 5 \sin(130^{\circ}) \hat{j} \cong -3.2 \hat{i} + 3.8 \hat{j}$$

b)

$$\vec{B} = -4\cos(30^{\circ})\,\hat{\imath} - 4\sin(30^{\circ})\,\hat{\jmath} = -2\sqrt{3}\,\hat{\imath} - 2\,\hat{\jmath}$$

 $\mathbf{c})$

$$\overrightarrow{C} = 5 \, \cos(45^o) \, \hat{\imath} - 5 \, \sin(45^o) \, \hat{\jmath} = \frac{5\sqrt{2}}{2} \hat{\imath} - \frac{5\sqrt{2}}{2} \hat{\jmath}$$

Q5

$$\vec{D} = \vec{A} + \vec{B} + \vec{C} \cong (-3.2 - 2\sqrt{3} + 5\sqrt{2}/2)\hat{\imath} + \left(3.8 - 2 - 5\sqrt{2}/2\right)\hat{\jmath} \cong -3.1\,\hat{\imath} - 1.7\,\hat{\jmath}$$

Q6

Sim,
$$\{ \forall V \subset \mathbb{R}^n : v_i = 0; i \in \mathbb{N} \} \implies \sum_{k=1}^n v_k^2 \ge 0 \implies \left\| \overrightarrow{V} \right\| \ge 0$$

Q7

Não,
$$\{ \forall V \subset \mathbb{R}^n : v_i \neq 0; i \in \mathbb{N} \} \implies \sum_{k=1}^n v_k^2 > 0 \implies \left\| \overrightarrow{V} \right\| > 0$$

Q8

Q9

a)

$$\vec{A} = 5 \cos(30^{\circ}) \hat{i} + 5 \sin(30^{\circ}) \hat{j} = 2.5\sqrt{3} \hat{i} + 2.5 \hat{j}$$

b)

$$\vec{A} = 5 \cos(60^{\circ}) \hat{i} + 5 \sin(60^{\circ}) \hat{j} = 2.5 \hat{i} + 2.5 \sqrt{3} \hat{j}$$

c)

$$\vec{A} = 5 \cos(-15^{\circ}) \hat{i} + 5 \sin(-15^{\circ}) \hat{j}$$

Part II

Problemas

P1

a) b)

 $\|\vec{a}\| = \sqrt{1 + 2^2 + 2^2} = 3$ $\hat{a} = \frac{\vec{a}}{\|\vec{a}\|} = 3^{-1} \hat{i} + 1.5^{-1} \hat{j} + 1.5^{-1} \hat{k}$

P2

a)

$$a_x = 5; \ a_y = 4; \ a_z = -3$$

$$b_x = 3; \ b_y = -4; \ b_z = 5$$

$$\vec{c} = (30-9)\hat{i} + (24+12)\hat{j} + (-18-15)\hat{k} = 21\hat{i} + 36\hat{j} - 33\hat{k}$$

b)

$$\vec{a}^2 + \vec{b}^2 = 25 + 16 + 9 + 9 + 16 + 25 = 100$$

c)

$$\|\vec{a}\| \|\vec{b}\| \cos(\theta) = a_x b_x + a_y b_y + a_z b_z \implies \theta = \arccos\left(\frac{15 - 16 - 15}{\sqrt{50}\sqrt{50}}\right) \cong 108.66^o$$

d)

$$\|\vec{b}\| \cos(\theta) \hat{a} = \sqrt{50} \cos(108.66^{\circ}) \hat{a} \cong -2.26 \hat{a}$$

P3

$$\overrightarrow{PQ} = \overrightarrow{Q} - \overrightarrow{P} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$
$$\|\overrightarrow{PQ}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^1}$$

P4

a)

$$\vec{u} = \sqrt{3} \cos(30^{\circ}) \,\hat{\imath} + \sqrt{3} \sin(30^{\circ}) \,\hat{\jmath} + 0 \,\hat{k}$$

$$= 1.5 \,\hat{\imath} + \sqrt{3}/2 \,\hat{\jmath} + 0 \,\hat{k}$$

$$\vec{v} = \cos(60^{\circ}) \,\hat{\imath} + \sin(60^{\circ}) \,\hat{\jmath} + 0 \,\hat{k}$$

$$= 0.5 \,\hat{\imath} + \sqrt{3}/2 \,\hat{\jmath} + 0 \,\hat{k}$$

b) c)

$$\vec{u} + \vec{v} = 2\hat{\imath} + \sqrt{3}\hat{\jmath} + 0\hat{k}$$
 $\|\vec{u} + \vec{v}\| = \sqrt{2^2 + (\sqrt{3})^2 + 0^2} = \sqrt{7}$

d) e)

$$\vec{u} - \vec{v} = 1 \hat{i} + 0 \hat{j} + 0 \hat{k}$$
 $\|\vec{u} - \vec{v}\| = 1$

f)

$$\vec{u} \cdot \vec{v} = 1.5 * 0.5 + \frac{\sqrt{3}}{2} * \frac{\sqrt{3}}{2} + 0 * 0 = 0.75 + 0.75 + 0 = 1.5$$

P5

$$\|\vec{r}\| = \|\vec{a} + \vec{b} + \vec{c}\| = \|(37\cos(30^{\circ}) + 25\cos(60^{\circ}) + 30\cos(135^{\circ}))\hat{i} + (37\sin(30^{\circ}) + 25\sin(60^{\circ}) + 30\sin(135^{\circ}))\hat{j}\| = \|(18.5\sqrt{3} + 12.5 - 15\sqrt{2})\hat{i} + (18.5 + 12.5\sqrt{3} + 15\sqrt{2})\hat{j}\| \cong \|23.33\hat{i} + 61.36\hat{j}\| \cong 65.65$$

$$\theta_r = \arccos(r_x/\|\vec{r}\|) \cong \arccos(23.33/65.65) \cong 69.18^{\circ}$$

P6

$$\vec{d} = (80 \, Km, -60^{\circ}) = 80 \, Km \, \cos(60) \, \hat{e} - 80 \, Km \, \sin(60) \, \hat{s} = 40 \, km \, \hat{e} - 40 \, \sqrt{3} \, \hat{s}$$

P7

$$||B_{ne} \widehat{ne}|| + ||B_{nw} \widehat{nw}|| - ||B_n \widehat{n}|| = 160 (\cos(45^\circ) + \sin(45^\circ) - 1) \approx 66.27$$