振り返りと導入

前回は KL ダイバージェンスの双対平坦多様体への一般化を考え始めた。本稿では次のことを行う:

- 双対平坦構造の canonical ダイバージェンスを定義する。
- 双対平坦構造からシンプレクティック構造が定まることをみる。

1 canonical ダイバージェンス

定義 1.1 (∇ -凸集合). 部分集合 $S \subset M$ が ∇ -凸 (∇ -convex) であるとは、任意の $p,q \in S$ に対し、p から q への S 内の ∇ -測地線がただひとつ存在することをいう。

定義 1.2 (g-凸集合). 部分集合 $S \subset M$ が g-凸 (g-convex) であるとは、任意の p, $q \in S$ に対し、p から q への M 内の ∇^g -測地線で最短なものがただひとつ存在し、かつそれが S 内に含まれることをいう。

定義 1.3 (canonical ダイバージェンスの定義域).

$$\mathcal{U} \coloneqq \left\{ (p,q) \in M \times M \middle| \begin{array}{c} p,q \text{ を含む } g\text{-} \text{凸開集合を含む} \\ \nabla\text{-} \text{凸または } \nabla^*\text{-} \text{凸な双対アファインチャートが存在する} \end{array} \right\}$$
 (1.1)

補題 1.4 (g-凸開近傍の存在). 各 $p \in M$ に対し、ある R > 0 が存在して、任意の $r \in (0,R)$ に対し $B_r(p) \subset M$ は g-凸である。

証明 [TODO] cf. Riemann 多様体の教科書

補題 1.5 ($\mathcal U$ の多様体構造). $\mathcal U$ は Δ_M を含む $M\times M$ の開集合である。したがって $\mathcal U$ には $M\times M$ の開部分多様体の構造が入る。

証明 開集合となることは定義から明らか。また、各 $p_0 \in M$ に対し、 p_0 のまわりの双対アファインチャート (U, θ, η) が存在するから、 p_0 の ∇ -凸開近傍 U' を U' \subset U となるようにとれば、補題より U' は p_0 の g-凸開近傍を含む。したがって $U' \times U'$ は $M \times M$ における p_0 の近傍であり、U に含まれる。よって U は Δ_M を 含む。

命題 1.6. 次は同値である:

- (1) U は ∇ -凸であり、U 上の双対アファイン座標が存在する。
- (2) U は ∇ -凸であり、U 上の ∇ -アファイン座標が存在する。

証明 [TODO]

定義 1.7 (双対ポテンシャル). [TODO]

П

命題-定義 1.8 (canonical ダイバージェンス). 関数 $D: \mathcal{U} \to \mathbb{R}$ を次のように定める: $(p,q) \in \mathcal{U}$ を固定し、p,q を含む g-凸開集合を含む ∇ -凸または ∇^* -凸な双対アファインチャート (U,θ,η) をひとつ選び、その双対ポテンシャル (ψ,φ) を 1 組選ぶ。このとき、点 (p,q) における

$$\psi(q) + \varphi(p) - \langle \theta(q), \eta(p) \rangle \tag{1.2}$$

の値は (U, θ, η) や (ψ, φ) の選び方によらない。この値を D(p||q) と記す。以上により定まる関数 $D: \mathcal{U} \to \mathbb{R}$ を双対平坦構造 (g, ∇, ∇^*) の canonical ダイバージェンス と呼ぶ。

証明 [TODO]

命題 1.9 (canonical ダイバージェンスの性質). (g, ∇^*, ∇) の canonical ダイバージェンスを D^* として

- (1) *D* は *C*[∞] 関数である。
- (2) $D(p||q) \ge 0$
- (3) $D(p||q) = 0 \iff p = q$
- (4) $D(p||q) = D^*(q||p)$

証明 [TODO]

2 双対平坦構造とシンプレクティック構造

命題 2.1 (双対平坦構造のシンプレクティック構造). M を多様体、 (g, ∇, ∇^*) を M 上の双対平坦構造、 $D: \mathcal{U} \to \mathbb{R}$ を canonical ダイバージェンス、 $\omega_0 \in \Omega^2(T^\vee M)$ を $T^\vee M$ 上の自然シンプレクティック形式とする。写像 $d_1D: \mathcal{U} \to T^\vee M$ を第 1 成分に関する微分、すなわち $d_1D := D(\frac{\partial}{\partial x^i}\|) dx^i$ で定め、 \mathcal{U} 上の 2-形式 $\omega \in \Omega^2(\mathcal{U})$ を $\omega := (d_1D)^*(\omega_0)$ で定める。このとき次が成り立つ:

(1) M の任意の局所座標 $x=(x_i)_i$ に対し、 $x^*:=x$ とおいて $\mathcal U$ の局所座標 $(x,x^*)=(x^1,\ldots,x^n,x^{*1},\ldots,x^{*n})$ を定めると、 ω の成分表示は

$$\omega = D(\frac{\partial}{\partial x^i} \| \frac{\partial}{\partial x^{*j}}) dx^i \wedge dx^{*j}$$
(2.1)

となる。

- (2) ω は U 上のシンプレクティック形式である。
- (3)

証明 (1) 前回示した。

(2)

例 2.2 (ℝⁿ の場合). [TODO]

今後の予定

双対平坦構造のシンプレクティック構造と双対アファイン座標

参考文献

- [Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).
 - [野 20] 知宣 野田, シンプレクティック幾何的視点での BAYES の定理について (部分多様体の幾何学の深化と展開), 数理解析研究所講究録 2152 (2020), 29–43 (jpn).