B1 – Formale Ergebnisse und Beweise (ST-Graph, Teilspur, Thermodynamik)

antaris

19. August 2025

Zusammenfassung

Wir betrachten den Level-4 Sierpiński–Tetraeder-Graphen G=(V,E) mit kombinatorischem Laplace-Operator L=D-A. Aus einem groben Vier-Knoten-Modell wird mittels Aggregation C und Rekonstruktion $R=C^{\top}$ ein gehobener Operator $L_{\text{lift}}=RL_0C$ erzeugt. Für $\alpha \in [0,1]$ definieren wir den Approximant

$$L_A(\alpha) = (1 - \alpha) L + \alpha L_{lift}.$$

Wir zeigen: (i) $L_A(\alpha)$ ist symmetrisch, positiv semidefinit und besitzt den Konstantenvektor in seinem Kern; (ii) für jedes endliche Environment mit Hamiltonoperator H_E gilt für alle $\beta > 0$

$$\operatorname{Tr}_{E}\left(e^{-\beta(L\otimes\mathbf{1}+\mathbf{1}\otimes H_{E})}\right)\propto e^{-\beta L},$$

sodass die normalisierte reduzierte Dichte genau der Gibbs-Zustand von L ist; (iii) die üblichen thermodynamischen Identitäten

$$E(\beta) = -\partial_{\beta} \log Z(\beta), \qquad \partial_{\beta}^{2} \log Z(\beta) = \operatorname{Var}_{\rho}(L) \ge 0$$

gelten. Die Aussagen werden analytisch bewiesen und numerisch verifiziert (vgl. §6).

1 Setup und Notation

Sei G zusammenhängend. Der unnormierte Graph-Laplace-Operator L=D-A ist symmetrisch und positiv semidefinit; sein Kern ist bei Zusammenhängigkeit eindimensional und wird vom Konstantenvektor 1 erzeugt [1, 2]. Das grobe Vier-Knoten-Modell besitzt Laplace-Operator L_0 des vollständigen Graphen K_4 . Die Aggregation $C \in \mathbb{R}^{4 \times |V|}$ mittelt innerhalb der vier Cluster, $R = C^{\top}$. Wir setzen $L_{\text{lift}} = RL_0C$ und $L_A(\alpha) = (1 - \alpha)L + \alpha L_{\text{lift}}$.

Für $\beta>0$ definieren wir die Gibbs-Dichte

$$\rho(L,\beta) = \frac{e^{-\beta L}}{Z(\beta)}, \qquad Z(\beta) = \text{Tr}(e^{-\beta L}).$$

Analoges gilt für $L_A(\alpha)$.

2 Struktursätze für $L, L_{lift}, L_A(\alpha)$

Lemma 1 (PSD & Kern). L und L_{lift} sind symmetrisch und positiv semidefinit; es gilt $L \mathbf{1} = 0$ sowie $L_{lift} \mathbf{1} = 0$. Insbesondere ist $L_A(\alpha)$ für alle $\alpha \in [0,1]$ symmetrisch, positiv semidefinit mit $L_A(\alpha) \mathbf{1} = 0$.

Beweis. Die PSD-Eigenschaft von List Standard; für alle $x \in \mathbb{R}^{|V|}$ gilt

$$x^{\top}Lx = \frac{1}{2} \sum_{i,j} A_{ij} (x_i - x_j)^2 \ge 0$$

und $L\mathbf{1} = 0$ [1, 2]. Für den Lift: Da C Zeilen besitzt, deren Einträge innerhalb eines Clusters zu 1 aufsummieren, gilt $C\mathbf{1} = \mathbf{1}_4$. Somit

$$L_{\text{lift}}\mathbf{1} = RL_0C\mathbf{1} = RL_0\mathbf{1}_4 = R \cdot 0 = 0.$$

Ferner ist L_{lift} symmetrisch, da L_0 symmetrisch ist und $R = C^{\top}$. Für $x \in \mathbb{R}^{|V|}$ gilt

$$x^{\top}L_{\text{lift}}x = (Cx)^{\top}L_0(Cx) \ge 0,$$

also PSD. Konvexe Kombinationen PSDer symmetrischer Matrizen sind wieder PSD und erhalten die Kerneigenschaft $\mathbf{1} \in \ker L_A(\alpha)$.

Proposition 2 (Eigenstruktur des Kronecker-Summenoperators). Seien A und B symmetrisch mit Spektraldarstellungen $A = Q_A \Lambda_A Q_A^{\top}$, $B = Q_B \Lambda_B Q_B^{\top}$. Dann hat die Kronecker-Summe $A \oplus B := A \otimes \mathbf{1} + \mathbf{1} \otimes B$ die Eigenzerlegung

$$A \oplus B = (Q_A \otimes Q_B) (\Lambda_A \oplus \Lambda_B) (Q_A \otimes Q_B)^\top,$$

wobei die Eigenwerte alle Summen $\lambda_i(A) + \lambda_i(B)$ sind. Insbesondere gilt

$$e^{-\beta(A \oplus B)} = e^{-\beta A} \otimes e^{-\beta B} \qquad (\beta \in \mathbb{R}).$$

Beweis. Die bekannten Produktregeln für Kroneckerprodukte liefern $(A \otimes \mathbf{1})(Q_A \otimes Q_B) = (Q_A \Lambda_A) \otimes Q_B$ und analog für $\mathbf{1} \otimes B$. Die Behauptung folgt durch direkte Rechnung, vgl. etwa [3]. Die Exponentialformel ergibt sich durch Spektralkalkül.

3 Teilspur-Reduktion des Gibbs-Zustands

Satz 3 (Reduktion auf L). Sei $H_{\text{tot}} = L \otimes \mathbf{1} + \mathbf{1} \otimes H_E$ mit einem (endlichdimensionalen) Environment-Hamiltonoperator H_E . Dann gilt für alle $\beta > 0$

$$\operatorname{Tr}_{E}(e^{-\beta H_{\text{tot}}}) = \operatorname{Tr}(e^{-\beta H_{E}}) e^{-\beta L}.$$

Nach Normierung ist die reduzierte Dichte $\rho_S = \text{Tr}_E(\rho_{\text{tot}})$ gleich $\rho(L, \beta)$.

Beweis. Nach Proposition 2 und Linearität der partiellen Spur [4, §2.4] gilt

$$\mathrm{Tr}_E \Big(\mathrm{e}^{-\beta H_{\mathrm{tot}}} \Big) = \mathrm{Tr}_E \Big(\mathrm{e}^{-\beta L} \otimes \mathrm{e}^{-\beta H_E} \Big) = \mathrm{e}^{-\beta L} \; \mathrm{Tr} \Big(\mathrm{e}^{-\beta H_E} \Big) \,,$$

da $\operatorname{Tr}_E(X \otimes Y) = X \operatorname{Tr}(Y)$. Nach Division durch $Z_{\operatorname{tot}} = \operatorname{Tr}(\mathrm{e}^{-\beta L}) \operatorname{Tr}(\mathrm{e}^{-\beta H_E})$ folgt die Aussage. Vgl. den operatoralgebraischen Zugang in [5, Kap. 2, 3].

4 Thermodynamische Identitäten

Proposition 4. Für $Z(\beta) = \text{Tr}(e^{-\beta L})$ und $\rho = \rho(L, \beta)$ gilt

$$E(\beta) = \operatorname{Tr}(\rho L) = -\partial_{\beta} \log Z(\beta), \qquad \partial_{\beta}^{2} \log Z(\beta) = \operatorname{Tr}(\rho L^{2}) - \operatorname{Tr}(\rho L)^{2} = \operatorname{Var}_{\rho}(L) \geq 0.$$

Beweis. Per Spektraldarstellung $L = Q\Lambda Q^{\top}$ erhält man $Z = \sum_i \mathrm{e}^{-\beta\lambda_i}$ und

$$-\partial_{\beta} \log Z = \frac{\sum_{i} \lambda_{i} e^{-\beta \lambda_{i}}}{\sum_{i} e^{-\beta \lambda_{i}}} = \sum_{i} p_{i} \lambda_{i} = \text{Tr}(\rho L) = E(\beta).$$

Die zweite Ableitung ist $\partial_{\beta}^2 \log Z = \sum_i p_i \lambda_i^2 - (\sum_i p_i \lambda_i)^2 \ge 0$ (Varianz). Siehe z. B. [5, Kap. 1].

5 Stetigkeit in α

Proposition 5. Die Abbildung $\alpha \mapsto L_A(\alpha)$ ist (polynomial) stetig; die Eigenwerte sind Lipschitz-stetig in α (Weyl). Somit hängen $Z(\beta)$, $E(\beta)$, $S(\beta) = -\operatorname{Tr}(\rho \log \rho)$ und $\operatorname{Tr}(\rho^2)$ stetig von α ab.

Beweis. Es gilt $L_A(\alpha) = (1-\alpha)L + \alpha L_{\text{lift}}$. Für symmetrische Matrizen liefert Weyls Ungleichung $\max_i |\lambda_i(L_A(\alpha)) - \lambda_i(L_A(\alpha'))| \le ||L_A(\alpha) - L_A(\alpha')||_2 \le |\alpha - \alpha'|||L - L_{\text{lift}}||_2$. Stetigkeit der Observablen folgt aus Stetigkeit der Spektralfunktionen.

6 Numerische Verifikation

Wir reproduzieren drei Kernprüfungen (vgl. beigefügte Artefakte): (i) PSD+Kern für $L_A(\alpha)$, (ii) Teilspur-Identität, (iii) Thermo-Ableitungen.

Hier ist eine saubere LaTeX-Fassung als Tabellen (ohne 'booktabs', damit es überall kompiliert). Du kannst die Blöcke direkt einfügen.

Tabelle 1: Prüf-Setup

Parameter	Wert
n	100
β	3.0
Env-Eigenwerte	$\{0, 1\}$

Tabelle 2: Check 1: Symmetrie, kleinstes Eigenvalue und Kernbedingung über α

α	Symmetrie-Fehler	λ_{\min}	$ L_A 1 _2$
0.00	0	3.688×10^{-16}	0
0.25	0	-4.018×10^{-16}	1.882×10^{-14}
0.50	0	3.199×10^{-16}	1.333×10^{-14}
0.75	0	1.687×10^{-16}	5.167×10^{-15}
1.00	0	-5.008×10^{-17}	5.408×10^{-16}

Tabelle 3: Checks 2 & 3: Teilspur-Identität und thermodynamische Ableitungen

Größe	Wert
$\left\ \operatorname{Tr}_{E}\rho_{\operatorname{tot}}-\rho(L)\right\ _{F}$	4.227×10^{-16}
$ E + \partial_{\beta} \log Z $	1.197×10^{-10}
$\operatorname{Var}_{\rho}(L)$ (direkt)	9.693689×10^{-2}
$\partial_{\beta}^2 \log Z$	9.693688×10^{-2}

Observablen über α (Subgraph)

7 Reproduzierbarkeit & Artefakte

Der zugehörige Python-Code und die erzeugten Animationen (GIFs) sind beigelegt. Einzelne Frames wurden zusätzlich extrahiert (ZIP).

- Code: B1_v2_check.py, B1_v1_partial trace_partial trace on ST-Graph.py
- Daten: B1_v2_check_alpha_observables.csv, Report B1_v2_check_checks_report.txt
- GIF-Frames: B1_B1_frames.zip

Tabelle 4: Thermische Observablen über den Approximanten $L_A(\alpha)$. Parameter: n = 100, $\beta = 3.0$, Environment-Spektrum $\{0, 1\}$.

	(/)		
α	$E = \text{Tr}(\rho L)$	$S = -\text{Tr}(\rho \log \rho)$	$P = \operatorname{Tr}(\rho^2)$
0.000000	0.244396	1.939091	0.186146
0.250000	0.275970	2.209655	0.145043
0.500000	0.313159	2.623000	0.097992
0.750000	0.371128	3.443204	0.045853
1.000000	0.003005	4.602681	0.010043

Beschreibung. Die Tabelle zeigt Energie E, von-Neumann-Entropie S und Purity P des Gibbs-Zustands ρ für den Operator $L_A(\alpha) = (1 - \alpha)L + \alpha L_{\text{lift}}$. Mit wachsendem α steigt S und P sinkt (stärkere Mischung), während E zunächst moderat zunimmt und bei $\alpha = 1$ aufgrund des gehobenen Operators stark abfällt.

Diskussion

Die Sätze 1–4 etablieren die wohlgestellte thermische Reduktion auf dem ST-Graphen ohne klassischen Input. Der numerische Report bestätigt (binär) die Kerneigenschaft $L_A(\alpha)\mathbf{1} = 0$, die Positivität, die Teilspurgleichheit und die Thermo-Identitäten bis zur numerischen Toleranz 10^{-10} bis 10^{-16} .

Literatur

- [1] F. R. K. Chung, Lectures on Spectral Graph Theory. CBMS 92, AMS (1997). Online: UCSD.
- [2] U. von Luxburg, A Tutorial on Spectral Clustering (2007). Online: PDF.
- [3] C. F. Van Loan, *The ubiquitous Kronecker product*. J. Comput. Appl. Math. **123** (2000), 85–100. Online: PDF.
- [4] M. A. Nielsen, I. L. Chuang, *Quantum Computation and Quantum Information*, 10th Anniversary Ed., Cambridge UP (2010). Online (preprint scan): PDF.
- [5] O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics II. Springer (1997, 2002). Online (Springer): PDF.