# Environmentally Transmitted Pathogens

Julien Arino

January 2023

## Paper series worth reading

Model here is a particular case in

 Kermack & McKendrick. A contribution to the mathematical theory of epidemics (1927)

That paper was followed by a series of "Contributions to the mathematical theory of epidemics."

- ▶ II. The problem of endemicity (1932)
- ▶ III. Further studies of the problem of endemicity (1933)
- ► IV. Analysis of experimental epidemics of the virus disease mouse ectromelia (1937)
- V. Analysis of experimental epidemics of mouse-typhoid; a bacterial disease conferring incomplete immunity (1939)

# What is the size of an epidemic?

- If we are interested in the possibility that an epidemic occurs
  - Does an epidemic peak always take place?
  - If it does take place, what is its size?

If an epidemic traverses a population, is everyone affected/infected?

## The SIR model without demography

- ▶ The period of time under consideration is sufficiently short that demography can be neglected (we also say the model has *no vital dynamics*)
- ► Differs from the SIS model, which includes demography (although it does consider it as being constant)
- ► As in SIS model, individuals are either *susceptible* to the disease or *infected* (and *infectious*) by the disease
- ightharpoonup However, after recovering or dying from the disease, individuals are removed from the infectious compartment (R)
- ▶ Incidence is of mass action type,  $\beta SI$

#### The Kermack-McKendrick model

This model is typically called the Kermack-McKendrick (KMK) SIR model

$$S' = -\beta SI \tag{1a}$$

$$I' = \beta SI - \gamma I \tag{1b}$$

$$R' = \gamma I \tag{1c}$$



#### Reduction of the model

3 compartments, but when considered in detail, we notice that removed do not have a direct influence on the dynamics of S or I, in the sense that R does not appear in  $(\ref{eq:sense})$  or  $(\ref{eq:sense})$ 

Furthermore, the total population (including deceased who are also in R) N=S+I+R satisfies

$$N'=(S+I+R)'=0$$

Thus, N is constant and the dynamics of R can be deduced from R = N - (S + I)

So we now consider

$$S' = -\beta SI \tag{2a}$$

$$I' = \beta SI - \gamma I \tag{2b}$$

## **Equilibria**

Let us consider the equilibria of

$$S' = -\beta SI \tag{??}$$

$$I' = (\beta S - \gamma)I \tag{??}$$

From (??)

- ightharpoonup either  $\bar{S} = \gamma/\beta$
- ightharpoonup or  $\overline{I}=0$

Substitute into (??)

- ▶ in the first case,  $(\bar{S}, \bar{I}) = (\gamma/\beta, 0)$
- ▶ in the second case, any  $\bar{S} \ge 0$  is an EP

The second case is an *issue*: the usual linearisation does not work when there is a *continuum* of equilibria as the EP are not *isolated* 

# Another approach – Study dI/dS

$$S' = -\beta SI \tag{??}$$

$$I' = \beta SI - \gamma I \tag{??}$$

What is the dynamics of dI/dS?

$$\frac{dI}{dS} = \frac{dI}{dt}\frac{dt}{dS} = \frac{I'}{S'} = \frac{\beta SI - \gamma I}{-\beta SI} = \frac{\gamma}{\beta S} - 1 \tag{4}$$

provided  $S \neq 0$ 

**Note** – Recall that S and I are S(t) and I(t).. (??) thus describes the relation between S and I over solutions to the original ODE (??)

Integrate (??) and obtain trajectories in state space

$$I(S) = \frac{\gamma}{\beta} \ln S - S + C$$

with  $C \in \mathbb{R}$ 

IC  $I(S_0) = I_0 \Rightarrow C = S_0 + I_0 - \frac{\gamma}{\beta} \ln S_0$  and the solution to (??) is, as a function of S

$$I(S) = S_0 + I_0 - S + \frac{\gamma}{\beta} \ln \frac{S}{S_0}$$

$$R(S) = N - S - I(S) = R_0 - \frac{\gamma}{\beta} \ln \frac{S}{S_0}$$

(since 
$$N_0 = S_0 + I_0 + R_0$$
)

Trajectories of (??) in (S, I)-space, normalised, with IC ( $S_0, 1-S_0$ ) and  $\beta/\gamma=2.5$ 



Let us study

$$I(S) = S_0 + I_0 - S + \frac{\gamma}{\beta} \ln \frac{S}{S_0}$$

We have

$$\frac{d}{dS}I(S) = \frac{\gamma}{\beta S} - 1$$

So, in the previous curves, the max of I(S) happens when  $S=\gamma/\beta$  (S=0.4 in the example)

At that point,

$$I(S) = I_0 + \left(1 - \frac{1}{\mathcal{R}_0} - \frac{\ln(\mathcal{R}_0)}{\mathcal{R}_0}\right) S_0$$

#### Theorem 1 (Epidemic or no epidemic?)

Let (S(t),I(t)) be a solution to  $(\ref{eq:solution})$  and  $\mathcal{R}_0$  defined by

$$\mathcal{R}_0 = \frac{\beta}{\gamma} S_0 \tag{5}$$

(6)

- ▶ If  $\mathcal{R}_0 \leq 1$ , then  $I(t) \setminus 0$  when  $t \to \infty$
- If  $\mathcal{R}_0 > 1$ , then I(t) first reaches a maximum

$$I_0 + \left(1 - \frac{1}{\mathcal{R}_0} - \frac{\ln(\mathcal{R}_0)}{\mathcal{R}_0}\right) S_0$$

then goes to 0 as  $t \to \infty$ 

```
rhs_SIR_KMK <- function(t, x, p) {</pre>
  with(as.list(c(x, p)), {
    dS = - beta * S * I
    dI = beta * S * I - gamma * I
    dR = gamma * I
    return(list(c(dS, dI, dR)))
  })
}
S0 = 1000
gamma = 1/14
# Set beta so that R_0 = 1.5
beta = 1.5 * gamma / S0
params = list(gamma = gamma, beta = beta)
IC = c(S = S0, I = 1, R = 0)
times = seq(0, 365, 1)
sol <- ode(IC, times, rhs_SIR_KMK, params)</pre>
```

```
plot(sol[, "time"], sol[, "I"], type = "1",
main = TeX("Kermack-McKendrick_SIR, L$R_0=1.5$"),
xlab = "Time_(days)", ylab = "Prevalence")
```

## Final size of an epidemic

For a nonnegative valued integrable function w(t), denote

$$w_{\infty} = \lim_{t \to \infty} w(t), \qquad \hat{w} = \int_0^{\infty} w(t) dt$$

Denote  $w_0 = w(0)$ . In the subsystem

$$S' = -\beta SI \tag{??}$$

$$I' = \beta SI - \gamma I \tag{??}$$

compute the sum of (??) and (??), making sure to show time dependence

$$\frac{d}{dt}(S(t)+I(t))=-\gamma I(t)$$

p. 14 - Final size of an epidemic

Integrate from 0 to  $\infty$ :

$$\int_0^\infty \frac{d}{dt} (S(t) + I(t)) dt = -\int_0^\infty \gamma I(t) dt$$

The left hand side gives

$$\int_0^\infty \frac{d}{dt} (S(t) + I(t)) \ dt = S_\infty + I_\infty - S_0 - I_0 = S_\infty - S_0 - I_0$$

since  $I_{\infty} = 0$ 

The right hand side takes the form

$$-\int_{0}^{\infty} \gamma I(t)dt = -\gamma \int_{0}^{\infty} I(t)dt = -\gamma \hat{I}$$

We thus have

$$S_{\infty} - S_0 - I_0 = -\gamma \hat{I} \tag{7}$$

Now consider (??):

$$S' = -\beta SI$$

Divide both sides by *S*:

$$\frac{S'(t)}{S(t)} = -\beta I(t)$$

Integrate from 0 to  $\infty$ :

$$\ln S_{\infty} - \ln S_0 = -\beta \hat{I}$$

Express (??) and (??) in terms of  $-\hat{l}$  and equate

$$\frac{\ln S_{\infty} - \ln S_0}{\beta} = \frac{S_{\infty} - S_0 - I_0}{\gamma}$$

Thus we have

$$(\ln S_0 - \ln S_\infty)S_0 = (S_0 - S_\infty)R_0 + I_0R_0$$
 (9)

(8)

#### Theorem 2 (Final size relation)

Let (S(t), I(t)) be a solution to  $(\ref{eq:solution})$  and  $\mathcal{R}_0$  defined by  $(\ref{eq:solution})$ 

The number S(t) of susceptible individuals is a nonincreasing function and its limit  $S_{\infty}$  is the only solution in  $(0, S_0)$  of the transcendental equation

$$(\ln S_0 - \ln S_\infty)S_0 = (S_0 - S_\infty)R_0 + I_0R_0$$
 (??)

# The (transcendantal) final size equation

Rewrite the final size equation

$$(\ln S_0 - \ln S_\infty) S_0 = (S_0 - S_\infty) \mathcal{R}_0 + I_0 \mathcal{R}_0 \tag{??}$$

as

$$T(S_{\infty}) = (\ln S_0 - \ln S_{\infty})S_0 - (S_0 - S_{\infty})R_0 - I_0R_0$$
 (10)

Thus, we seek the zeros of the function  $T(S_{\infty})$ 

We seek  $S_{\infty}$  in  $(0, S_0]$  s.t.  $T(S_{\infty}) = 0$ , with

$$T(S_{\infty}) = (\ln S_0 - \ln S_{\infty})S_0 - (S_0 - S_{\infty})R_0 - I_0R_0$$
 (??)

Note to begin that

$$\lim_{S_{\infty}\to 0}T(S_{\infty})=\lim_{S_{\infty}\to 0}-S_{0}\ln(S_{\infty})=\infty$$

Differentiating T with respect to  $S_{\infty}$ , we get

$$T'(S_{\infty}) = \mathcal{R}_0 - S_0/S_{\infty}$$

When  $S_\infty o 0$ ,  $\mathcal{R}_0 - S_0/S_\infty < 0$ , so  $\mathcal{T}$  decreases to  $S_\infty = S_0/\mathcal{R}_0$ 

So if  $\mathcal{R}_0 \leq 1$ , the function T is decreasing on  $(0,S_0)$ , while it has a minimum if  $\mathcal{R}_0 > 1$ 

#### Case $\mathcal{R}_0 \leq 1$

$$T(S_{\infty}) = (\ln S_0 - \ln S_{\infty})S_0 - (S_0 - S_{\infty})R_0 - I_0R_0$$
 (??)

- ightharpoonup We have seen that T decreases on  $(0, S_0]$
- ► Also,  $T(S_0) = -I_0 \mathcal{R}_0 < 0$  ( $I_0 = 0$  is trivial and not considered)
- T is continuous
- $\implies$  there exists a unique  $S_{\infty} \in (0, S_0]$  s.t.  $T(S_{\infty}) = 0$

#### Case $\mathcal{R}_0 > 1$

$$T(S_{\infty}) = (\ln S_0 - \ln S_{\infty})S_0 - (S_0 - S_{\infty})R_0 - I_0R_0$$
 (??)

- lacktriangle We have seen that T decreases on  $(0, S_0/\mathcal{R}_0]$
- ▶ For  $S_{\infty} \in [S_0/\mathcal{R}_0]$ , T' > 0
- ightharpoonup As before,  $T(S_{\infty})=-I_0\mathcal{R}_0$
- ► *T* is continuous
- $\implies$  there exists a unique  $S_{\infty} \in (0, S_0]$  s.t.  $T(S_{\infty}) = 0$ . More precisely, in this case,  $S_{\infty} \in (0, S_0/\mathcal{R}_0)$

We solve numerically. We need a function

```
final_size_eq = function(S_inf, S0 = 999, I0 = 1, R_0 = 2.5) {
   OUT = S0*(log(S0)-log(S_inf)) - (S0+I0-S_inf)*R_0
   return(OUT)
}
```

and solve easily using uniroot, here with the values by default that we have set for the function

```
uniroot(f = final_size_eq, interval = c(0.05, 999))
$root
[1] 106.8819
$f.root
[1] -2.649285e-07
$iter
[1] 10
$init.it
[1] NA
$estim.prec
[1] 6.103516e-05
```

To use something else than the default values, e.g.,

```
N0 = 1000

I0 = 1

S0 = N0-I0

R_0 = 2.4

uniroot(

f = function(x)

final_size_eq(S_inf = x,

S0 = S0, I0 = I0,

R_0 = R_0),

interval = c(0.05, S0))
```

## A figure with all the information

 $\mathcal{R}_0=0.8$ 

 $\mathcal{R}_0=2.4$ 

#### A little nicer

```
values = expand.grid(
 R_0 = seq(0.01, 3, by = 0.01),
 I0 = 1:100
values$S0 = NO-values$I0
L = split(values, 1:nrow(values))
values$S_inf = sapply(X = L, FUN = final_size)
values$taille_finale = values$S0-values$S_inf+values$I0
values$taux_attaque = (values$taille_finale / NO)*100
levelplot(taux_attaque ~ R_0*I0, data = values,
          xlab="R_0", ylab = "I0",
          col.regions = viridis(100))
(requires lattice and viridis librairies)
```

p. 27 - Final size of an epidemic

# Attack rate (in %)



## The simplest vaccination model

To implement vaccination in KMK, assume that vaccination reduces the number of susceptibles

Let total population be N with  $S_0$  initially susceptible

Vaccinate a fraction  $p \in [0,1]$  of susceptible individuals

Original IC (for simplicity, R(0) = 0)

$$IC: (S(0), I(0), R(0)) = (S_0, I_0, 0)$$
 (11)

Post-vaccination IC

$$IC: (S(0), I(0), R(0)) = ((1-p)S_0, I_0, pS_0)$$
 (12)

# Vaccination reproduction number

Without vaccination

$$\mathcal{R}_0 = \frac{\beta}{\gamma} S_0 \tag{??}$$

With vaccination, denoting  $\mathcal{R}_0^v$  the reproduction number,

$$\mathcal{R}_0^{\mathsf{v}} = \frac{\beta}{\gamma} (1 - p) S_0 \tag{13}$$

Since  $p \in [0,1]$ ,  $\mathcal{R}_0^{\vee} \leq \mathcal{R}_0$ 

# Herd immunity

Therefore

- $ightharpoonup \mathcal{R}_0^{\mathrm{v}} < \mathcal{R}_0 \text{ if } p > 0$
- lacktriangle To control the disease,  $\mathcal{R}_0^{\mathsf{v}}$  must take a value less than 1

To make  $\mathcal{R}_0^{\mathsf{v}}$  less than 1

$$\mathcal{R}_0^{\mathsf{v}} < 1 \iff p > 1 - \frac{1}{\mathcal{R}_0} \tag{14}$$

By vaccinating a fraction  $p>1-1/\mathcal{R}_0$  of the susceptible population, we thus are in a situation where an epidemic peak is precluded (or, at the very least, the final size is reduced)

This is herd immunity

#### An SIR model with vaccination

Take SIR model and assume the following

- Vaccination takes susceptible individuals and moves them directly into the recovered compartment, without them ever becoming infected/infectious
- Birth = death
- A fraction p is vaccinated at birth
- $f(S, I, N) = \beta SI$

$$S' = (1 - p)dN - dS - \beta SI$$
 (15a)  
 $I' = \beta SI - (d + \gamma)I$  (15b)  
 $R' = pdN + \gamma I - dR$  (15c)

# Computation of $\mathcal{R}_0$

- DFE, SIR:

$$E_0 := (S, I, R) = (N, 0, 0)$$

- DFE, SIR with vaccination

$$E_0^{\nu} := (S, I, R) = ((1 - p)N, 0, pN)$$

Thus, - In SIR case

$$\mathcal{R}_0 = \frac{\beta N}{d + \gamma}$$

- In SIR with vaccination case, denote  $\mathcal{R}_0^{\nu}$  and

$$\mathcal{R}_0^{\mathsf{v}} = (1-p)\mathcal{R}_0$$

#### Herd immunity

Therefore -  $\mathcal{R}_0^{\text{v}} < \mathcal{R}_0$  if p > 0 - To control the disease,  $\mathcal{R}_0^{\text{v}}$  must take a value less than 1, i.e.,

$$\mathcal{R}_0^{\mathsf{v}} < 1 \iff p > 1 - \frac{1}{\mathcal{R}_0} \tag{16}$$

By vaccinating a fraction  $p>1-1/\mathcal{R}_0$  of newborns, we thus are in a situation where the disease is eventually eradicated

This is herd immunity



#### To normalise or not to normalise?

- ▶ In the SIS of Lecture 05 and here, since the total population is constant, it is possible to normalise to N=1
- ► This can greatly simplify some computations
- ► However, I am not a big fan: it is important to always have the "sizes" of objects in mind
- ▶ If you do normalise, at least for a paper destined to mathematical biology, always do a "return to biology", i.e., interpret your results in a biological light, which often implies to return to original values

#### Where we are

▶ An endemic SIS model in which the threshold  $\mathcal{R}_0 = 1$  is such that, when  $\mathcal{R}_0 < 1$ , the disease goes extinct, whereas when  $\mathcal{R}_0 > 1$ , the disease becomes established in the population

ightharpoonup An *epidemic* SIR model (the KMK SIR) in which the presence or absence of an epidemic wave is characterised by the value of  $\mathcal{R}_0$ 

► The SIS and the KMK SIR have explicit solutions (in some sense). This is an exception!