Osnovne trigonometrijske jednačine

1.
$$sinx = a$$

Ova jednačina ima rešenja ako je $-1 \le a \le 1$ zbog ograničenosti sinusne funkcije izmedju -1 i 1. Da bi lakše razumeli kako se rešavaju ove jednačine, posmatraćemo sledeće situacije:

- i) 0 < a < 1
- ii) -1 < a < 0
- iii) a = 0
- iv) a = 1
- v) a = -1
- i) $\sin x = a$ 0 < a < 1

<u>Postupak:</u> Nadjemo vrednost a na y-osi i povučemo pravu y = a Ona seče trigonometrijski krug (tačke A i B) i spojimo sa kordinatnim početkom. Dobili smo dva tražena ugla: (α) i $(\pi - \alpha)$. Evo slike:

Rešenja zapisujemo:

$$x_1 = \alpha + 2k\pi$$

$$x_2 = (\pi - \alpha) + 2k\pi$$

$$k \in \mathbb{Z}$$

PAZI:

 $2k\pi$ dodajemo zbog periodičnosti funkcije $\sin x$, koja je $2\pi = 360^{\circ}$, to je obavezno!

Rešenje se (kad postanete iskusni) može sjediniti i u jedno rešenje:

$$x_k = (-1)^k \alpha + k\pi \quad k \in \mathbb{Z}$$

Primer:

Rešiti jednačinu: $\sin x = \frac{1}{2}$

Rešenje: Prvo nacrtamo trigonometrijski krug. Nadjemo na *y*-osi vrednost $\frac{1}{2}$ i povučemo pravu $y = \frac{1}{2}$, paralelnu sa *x*-osom. Ta prava seče trigonometrijski krug u tačkama A i B. Te tačke spajamo sa koordinatnim početkom i dobili smo tražene uglove.

Iz tablice (ko zna) vidimo da su traženi uglovi:

$$\alpha_1 = 30^0 = \frac{\pi}{6}$$

$$\alpha_2 = 150^0 = \frac{5\pi}{6}$$

Evo slike:

Rešenja su:

$$x_1 = \frac{\pi}{6} + 2k\pi$$
$$x_2 = \frac{5\pi}{6} + 2k\pi$$
$$k \in \mathbb{Z}$$

Ili zajedno: $x_k = (-1)\frac{\pi}{6} + k\pi$

Postupak je sličan kao malopre. Nadjemo vrednost a na y-osi (**pazi**: sad je a negativno pa je ispod x-ose), povučemo pravu paralelnu sa x-osom. Mesta gde prava y=a seče trigonometrijski krug (A i B) spojimo sa koordinatnim početkom i dobili smo tražene uglove: $(-\alpha)$ i $(\pi + \alpha)$

Na slici to izgleda:

Rešenja su:

$$x_1 = -\alpha + 2k\pi$$
$$x_2 = (\pi + \alpha) + 2k\pi$$
$$k \in \mathbb{Z}$$

Primer:

 $\sin x = -\frac{\sqrt{2}}{2}$ Reši jednačinu:

$$-45^0 = -\frac{\pi}{4}$$

$$225^0 = \frac{5\pi}{4}$$

Rešenja su:

$$x_1 = -\frac{\pi}{4} + 2k\pi$$

$$x_2 = \frac{5\pi}{4} + 2k\pi$$

$$k \in Z$$

Naravno, ovo negativno rešenje $-\frac{\pi}{4} + 2k\pi$ možemo napisati i kao $\frac{7\pi}{4} + 2k\pi$ ali je običaj da se uglovi u IV kvadrantu pišu kao negativni

iii)
$$\sin x = 0$$

Sinusi su jednaki nuli za uglove od 0^{0} i 180^{0}

$$x = 0 + 2k\pi$$

$$x = \pi + 2k\pi$$
$$k \in Z$$

$$k \in \mathcal{Z}$$

Ili zajedno:
$$x = k\pi$$
 $k \in \mathbb{Z}$

iv) $\sin x = 1$

Ovde imamo samo jedno rešenje: $x = \frac{\pi}{2} + 2k\pi$ $k \in \mathbb{Z}$

v)

$$\sin x = -1$$

$$x = -\frac{\pi}{2} + 2k\pi \quad k \in \mathbb{Z}$$

Ili možemo zapisati preko pozitivnog ugla:

$$x = \frac{3\pi}{2} + 2k\pi \qquad k \in \mathbb{Z}$$

 $2. \quad \cos x = b$

Kao i kod $\sin x = a$ i ovde mora biti $-1 \le b \le 1$ da bi jednačina imala rešenja. I ovde ćemo rasčlaniti problem:

- i) 0 < b < 1
- ii) -1 < b < 0
- iii) b = 0
- iv) b=1
- v) b = -1

i)
$$\cos x = b$$
 $0 < b < 1$

Ovi uglovi se nalaze u I i IV kvadrantu.

Postupak:

Na x-osi nadjemo vrednost b. Povučemo pravu paralelnu sa y-osom. Ta prava seče

trigonometrijski krug u tačkama M i N. Spojimo te tačke sa koordinatnim početkom i dobili smotražene uglove: α i $(-\alpha)$

Rešenja su:

$$x = \alpha + 2k\pi$$

$$x = -\alpha + 2k\pi$$

$$k \in \mathbb{Z}$$

Ugao α odredimo iz tablica ili konstruktivno.

Primer:

Reši jednačinu:
$$\cos x = \frac{\sqrt{3}}{2}$$

Rešenja su:

$$x = \frac{\pi}{6} + 2k\pi, \ k \in \mathbb{Z}$$

$$x = -\frac{\pi}{6} + 2k\pi, \ k \in \mathbb{Z}$$
Jer je $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$

$$Jer je \cos 30^0 = \frac{\sqrt{3}}{2}$$

To jest
$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

ii)
$$\cos x = b$$
 $-1 < b < 0$

Ovi uglovi se nalaze u II i III kvadrantu. Postupak je isti, samo je b negativno!

Primer:

Reši jednačinu $\cos x = -\frac{1}{2}$

$$120^0 = \frac{2\pi}{3}$$

Rešenja su:

$$x = \frac{2\pi}{3} + 2k\pi$$
$$x = -\frac{2\pi}{3} + 2k\pi$$
$$k \in \mathbb{Z}$$

iii) $\cos x = 0$

iv) $\cos x = 1$

3.
$$tgx = m$$

Za razliku od prethodne dve, jednačina tgx = m ima rešenja za $\forall m \in (-\infty, \infty)$. Razmotrićemo dve situacije: m > 0 i m < 0

i)
$$tgx = m \quad m > 0$$

To su uglovi u I i III kvadrantu!

<u>Postupak:</u> Na tangesnoj osi nadjemo m i to spojimo sa koordinatnim početkom. Dobili smo ugao α . Produžimo taj ugao u III kvadrant i evo drugog rešenja: $\pi + \alpha$

Rešenje je:

 $x = \alpha + k\pi$

 $k \in \mathbb{Z}$

Zašto samo jedno rešenje?

Zato što je tgx kao i ctgx periodična funkcija sa periodom π .

Pa kad stavimo $k\pi$ mi smo to rešenje već opisali!

Zapamti: Kod sin x i cos x je perioda $2k\pi$ a kod tgx i ctgx samo $k\pi$.

ii)
$$tgx = m \quad m < 0$$

Ovi uglovi su u II I IV kvadrantu! Postupak je potpuno isti.

Rešenje:

$$x = -\alpha + k\pi$$
$$k \in Z$$

Primer 1.

Reši jednačinu: tgx = 1

Rešenje: (iz tablice znamo: $tgx45^{\circ} = 1$)

$$45^0 = \frac{\pi}{4}$$

$$x = \frac{\pi}{4} + k\pi$$

$$k \in Z$$

Primer 2.

Reši jednačinu:

 $tgx = -\sqrt{3}$

Rešenje: Iz tablice je $tg60^{\circ} = +\sqrt{3}$, pa je onda $tg(-60^{\circ}) = -\sqrt{3}$ jer je $tg(-\alpha) = -tg\alpha$

Crtamo sliku:

Primer 3.

Reši jednačinu: tgx = 0

4.
$$ctgx = m$$

Kao i za tgx rešenja su iz celog skupa R. Perioda je $k\pi$. Postupak rešavanja je sličan, samo što vrednost za ctgx tražimo na kotangensnoj osi

Uglovi su u I i III kvadrantu.

Rešenje: $x = \alpha + k\pi$ $k \in \mathbb{Z}$ Uglovi su u II i IV kvadrantu.

Rešenje:
$$x = -\alpha + k\pi$$

 $k \in \mathbb{Z}$

Najpre potražimo vrednost u tablici, vidimo koji je ugao u pitanju i nacrtamo sliku.

Primer 1.

Reši jednačinu: $ctgx = \frac{\sqrt{3}}{3}$

Rešenje: iz tablice vidimo vrednost za 60°

Primer2.

Reši jednačinu: ctgx = -1

Primer 3.

Rešiti jednačinu: ctgx = 0

1) Reši jednačine:

a)
$$\sin 2x = \frac{1}{2}$$

$$b) \sin\left(x - \frac{\pi}{3}\right) = 0$$

Rešenje:

a) Jednačinu rešavamo normalno, kao da je sinx.(al pišemo 2x u rešenju...) Iz tablice vidimo da je jedan traženi ugao 30°

Pazi sad:

$$2x = \frac{\pi}{6} + 2k\pi \quad \text{ili} \quad 2x = \frac{5\pi}{6} + 2k\pi$$

Sada izrazimo x, odnosno sve podelimo sa 2

$$x = \frac{\pi}{12} + k\pi \quad \text{ili} \quad x = \frac{5\pi}{12} + k\pi$$
$$k \in Z$$

b) Isto rešavamo kao da je $\sin x = 0$ ali posle ne pišemo $x = \dots$ Nego $x - \frac{\pi}{3} = \dots$ pa izračunamo!

Dakle:

$$x - \frac{\pi}{3} = 0 + 2k\pi \quad \text{ili} \quad x - \frac{\pi}{3} = \pi + 2k\pi$$

$$1i \quad x - \frac{\pi}{3} = \pi + 2k\pi$$

$$x = \frac{\pi}{3} + 2k\pi$$

$$x = \frac{\pi}{3} + 2k\pi \qquad \text{ili} \qquad x = \pi + \frac{\pi}{3} + 2k\pi$$

$$k \in \mathbb{Z}$$

$$x = \frac{4\pi}{3} + 2k\pi$$

$$k \in \mathbb{Z}$$

2) Reši jednačine:

$$a) \quad \cos 5x = -\frac{\sqrt{2}}{2}$$

$$b) \quad \cos\left(2x - \frac{\pi}{6}\right) = 0$$

Rešenje: $\cos 5x = -\frac{\sqrt{2}}{2}$

$$5x = \frac{3\pi}{4} + 2k\pi$$
 ili $5x = -\frac{3\pi}{4} + 2k\pi$

Oba rešenja podelimo sa 5

$$x = \frac{3\pi}{20} + \frac{2k\pi}{5}$$
$$k \in Z$$

$$x = \frac{3\pi}{20} + \frac{2k\pi}{5} \qquad \text{ili} \qquad x = -\frac{3\pi}{20} + \frac{2k\pi}{5}$$
$$k \in \mathbb{Z} \qquad k \in \mathbb{Z}$$

$$\cos\left(2x - \frac{\pi}{6}\right) = 0$$

$$2x - \frac{\pi}{6} = \frac{\pi}{2} + 2k\pi$$

$$2x = \frac{\pi}{2} + \frac{\pi}{6} + 2k\pi$$

$$2x = \frac{4\pi}{6} + 2k\pi$$

$$2x = \frac{2\pi}{3} + 2k\pi$$

$$x = \frac{\pi}{3} + k\pi$$

$$k \in Z$$

$$2x - \frac{\pi}{6} = \frac{\pi}{2} + 2k\pi$$
 ili $2x - \frac{\pi}{6} = -\frac{\pi}{2} + 2k\pi$

$$2x = \frac{\pi}{2} + \frac{\pi}{6} + 2k\pi$$

$$2x = -\frac{\pi}{2} + \frac{\pi}{6} + 2k\pi$$

$$2x = \frac{4\pi}{6} + 2k\pi$$
 $2x = \frac{-2\pi}{6} + 2k\pi$

$$2x = \frac{2\pi}{3} + 2k\pi$$

$$2x = -\frac{\pi}{3} + 2k\pi$$

$$x = -\frac{\pi}{6} + k\pi$$

 $k \in \mathbb{Z}$

3) Rešiti jednačine:

a)
$$tg2x = -1$$

b)
$$tg\left(3x - \frac{\pi}{2}\right) = 1$$

Rešenje:

a)
$$tg2x = -1$$

b)
$$tg\left(3x-\frac{\pi}{2}\right)=1$$

Traženi ugao (iz tablice) je
$$45^{\circ} = \frac{\pi}{4}$$

$$3x - \frac{\pi}{2} = \frac{\pi}{4} + k\pi$$

$$3x = \frac{\pi}{4} + \frac{\pi}{2} + k\pi$$

$$3x = \frac{3\pi}{4} + k\pi$$

$$x = \frac{\pi}{4} + \frac{k\pi}{3}$$

$$k \in \mathbb{Z}$$

4) Rešiti jednačine:

a)
$$ctg3x = 1$$

b)
$$ctg\left(x-\frac{\pi}{2}\right) = \sqrt{3}$$

Rešenje:

a) ctg3x = 1 Iz tablice vidimo da je traženi ugao 45°

Dakle:

$$3x = \frac{\pi}{4} + k\pi$$

$$x = \frac{\pi}{12} + \frac{k\pi}{3}$$

$$k \in \mathbb{Z}$$

b)
$$ctg\left(x-\frac{\pi}{2}\right) = \sqrt{3}$$

$$x - \frac{\pi}{2} = \frac{\pi}{6} + k\pi$$

$$x = \frac{\pi}{6} + \frac{\pi}{2} + k\pi$$

$$x = \frac{4\pi}{6} + k\pi$$

$$x = \frac{2\pi}{3} + k\pi$$

$$k \in \mathbb{Z}$$

