STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre STUDY TIPS

CHEM 1 ATOMS & ATOMIC STRUCTURE

Use of the Periodic Table to summarise and systematise chemical and physical properties.

Chemical symbols, the Periodic table

Matter: <u>Elements</u> are the building blocks of all Matter. <u>Matter</u> contains <u>Elements</u> in their pure form, or in combinations in compounds or mixtures, and Matter may exist as a Solid, Liquid or Gas. **Atoms** of elements are the fundamental particles from which matter is constructed.

Atoms and Molecules are uncharged species, eg., He H₂ O₂ CO₂ C₈H₁₈, CH₃COOH, C₂H₅OH

Ions are charged particles, eg., Na⁺ Ca²⁺ NH₄⁺ Cℓ⁻ NO₃⁻ SO₄²⁻

Structure of atom

Bohr planetary model (electron treated as a particle): nucleus contains **protons** (+ve, \bullet , **p**) and **neutrons** (neutral, \circ , **n**) surrounded by **orbiting electrons** (-ve, \bullet)

Atomic number (Z), Mass number (A): e.g. AH

Isotopes eg., hydrogen ${}_{1}^{1}H$ deuterium (D) ${}_{1}^{2}H$ tritium (T) ${}_{1}^{3}H$

 $^{12}6$ C (stable, 99% abundance) $^{13}6$ C (Stable, 1% abundance) $^{14}6$ C (Radioactive)

 19 ₉**F** (stable, 100 %) 35 ₁₇**C** ℓ (stable, 76%) 37 ₁₇**C** ℓ (stable 24 %)

Electronegativity (EN), the power of an atom to attract electrons.

Atoms at top right of Periodic Table have *largest EN* and so attract electrons strongly to *form anions,* whilst those at bottom left have *smallest EN* and readily give up electrons to *form cations*.

SIZE of atoms and ions:

<u>INCREASES down a Group</u> (vertical column) due to electrons entering a new shell, but <u>DECREASES across a Period</u> (horizontal row) due to increasing nuclear charge.

Common Ions

<u>Cations</u>	Transition metals	Anions
H+ Li+	Cr ²⁺ Cr ³⁺ Mn ²⁺	F- Cℓ- Br- I- (halide) OH- (hydroxide)
	Fe ²⁺ Fe ³⁺	O ²⁻ (oxide) S ²⁻ (sulphide)
	Co^{2+} Co^{3+}	CO ₃ ²⁻ (carbonate) HCO ₃ - (bicarbonate)
Na+ K+	Ni ²⁺	SiO ₄ ⁴⁻ (silicate) PO ₄ ³⁻ (phosphate)
Cs+	Cu+ Cu ²⁺	NO_{2} (nitrite) NO_{3} (nitrate)
Mg^{2+} Ca^{2+}	Zn^{2+} Ag^{+}	SO_3^{2-} (sulphite) SO_4^{2-} (sulphate)
Ba ²⁺		MnO ₄ ¹-(permanganate, purple)
NH ₄ + (ammonium)		CrO ₄ ²⁻ (chromate, yellow) Cr ₂ O ₇ ²⁻ (dichromate, orange)
		$OC\ell^-$ (hypochlorite) $C\ell O_2^-$ (chlorite) $C\ell O_3^-$ (chlorate)
		$C\ell O_{4}$ (perchlorate) IO_{3} (iodate)

COMMON COMPOUNDS

COMMON COMPOUNDS		
Sodium hydroxide	Na+OH-	caustic soda (a strong base)
Potassium hydroxide	K+OH-	caustic potash (a strong base)
Sodium chloride	Na+Cℓ-	table salt
Magnesium sulphate	$Mg^{2+}SO_4^{2-}$	Epsom salts
Calcium sulphate	Ca ²⁺ SO ₄ ²⁻	gypsum, plaster of Paris
Calcium phosphate	$Ca^{2+}_3 (PO_4^{3-})_2$	bones/teeth
Ammonium nitrate	$NH_4^+NO_3^-$	fertilizer
Ammonium sulphate	$(NH_4^+)_2 SO_4^{2-}$	fertilizer
Sodium carbonate	$(Na^+)_2CO_3^{2-}$	washing soda
Sodium bicarbonate	Na+HCO ₃ -	cooking soda, bicarb soda
Potassium iodate	K+IO ₃ -	an oxidant
Potassium permanganate	$K+MnO_4$	'condy's crystals' an oxidant
Potassium dichromate	$(K^+)_2 Cr_2 O_7^{2-}$	an oxidant
Sodium hypochlorite	Na+OCℓ-	'pool chlorine'
Iron(III)oxide	$(Fe^{3+})_2(O^{2-})_3$	'rust'
Hydrochloric acid	HCℓ	pool acid
Nitric acid	HNO ₃	powerful oxidizing acid
Sulphuric acid	H_2SO_4	battery acid
Phosphoric acid	H_3PO_4	rust protector
Methane	CH ₄	natural gas
Octane	C_8H_{18}	gasoline
	5 6 6	

Benzene C₆H₆ gasoline

Ethylene (ethene) C₂H₄ Fruit ripening agent/cling wrap

 $\begin{array}{lll} \mbox{Acetylene (ethyne)} & \mbox{C_2H$}_2 & \mbox{Welding gas} \\ \mbox{Methanol} & \mbox{CH_3OH} & \mbox{`wood alcohol'} \end{array}$

Ethanol C₂H₅OH 'alcohol' ethyl alcohol

Acetic acid CH₃COOH vinegar

Di-ethyl Ether $(C_2H_5)_2O$ 'ether', an anaesthetic Chloroform $CHC\ell_3$ solvent, anaesthetic

Ammonia NH₃ cleaning products, refrigerant

 $Hydrogen\ sulphide \qquad \qquad H_2S \qquad \qquad "Rotten\ egg\ gas"$

Phosphine PH₃ Grain silo fumigant/insecticide