Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Work Sheet 6

Instructions for week 6 (May 25th to May 29th):

- Work through Sections 2.4 and 2.5 of the lecture notes.
- Answer the control questions 1) to 5), and solve Problems 1 to 3 of the exercises below.
- Please hand in your solutions to the exercises for correction until the morning of Monday, June 1st. For the procedure, please have a look at the general information in Ilias. The submission of solutions is voluntary.

Control questions to monitor your progress:

1) Can you verify that K^* from Definition 2.33, that is,

$$K^*(\varphi, A) = \int \mathbb{1}\left\{\sum_{j=1}^k \delta_{(x_j, y_j)}\right\} \left(\bigotimes_{i \in \mathbb{N}} K(x_i, \cdot)\right) \left(d(y_i)_{i \in \mathbb{N}}\right), \qquad \varphi = \sum_{j=1}^k \delta_{x_j} \in N(\mathbb{X}), \quad A \in \mathbb{N}(\mathbb{X} \times \mathbb{Y}),$$

is a stochastic kernel from N(X) to $N(X \times Y)$?

(**Hint:** Use that $\bigotimes_{i\in\mathbb{N}} K(x_i,\cdot)$ is a product of probability measures to conclude that $K^*(\varphi,\cdot)$ is a probability measure. To see the measurability of $\varphi\mapsto K^*(\varphi,A)$, convince yourself that

$$(\mathbb{N} \cup \{\infty\}) \times \mathbb{X}^{\mathbb{N}} \ni (k, (x_i)_{i \in \mathbb{N}}) \mapsto \int f(k, (x_i)_{i \in \mathbb{N}}, (y_i)_{i \in \mathbb{N}}) \Big(\bigotimes_{i \in \mathbb{N}} K(x_i, \cdot) \Big) (d(y_i)_{i \in \mathbb{N}})$$

is measurable for every measurable $f: (\mathbb{N} \cup \{\infty\}) \times \mathbb{X}^{\mathbb{N}} \times \mathbb{Y}^{\mathbb{N}} \to [0, \infty).)$

- 2) Verify that the p-thinning Φ_D introduced in Definition 2.39 is indeed a point process in \mathbb{X} .
- 3) How does one have to choose the function p in Definition 2.39 such that the resulting K-marking Ψ of Φ (with K given by (2.7)) is an independent \mathbb{Q} -marking for some \mathbb{Q} ? What are the possible distributions \mathbb{Q} ?
- 4) Check that the map $M(\mathbb{R}^d) \ni \mu \mapsto \mu + x \in M(\mathbb{R}^d)$ is measurable for each $x \in \mathbb{R}^d$. Why is it important that this mapping is measurable?
- 5) Convince yourself that a Poisson process Φ in \mathbb{R}^d with intensity measure Θ is stationary if, and only if, $\Theta = \gamma \cdot \lambda^d$ for some $\gamma > 0$ (where λ^d denotes the Lebesgue measure on \mathbb{R}^d).

(**Hint:** To see the "if"-part, use Theorem 2.32 and the hint from Problem 2 below. For the "only if"-part use that every translation invariant and locally finite measure on \mathbb{R}^d is a multiple of the Lebesgue measure.)

Exercises for week 6:

Problem 1 (Some advanced properties of the Poisson process)

Let (X, ρ) be a separable metric space, and let $(\Omega, \mathcal{A}, \mathbb{P})$ be the probability space which underlies the random quantities that appear in the following.

a) Let Φ be a Poisson process in $\mathbb X$ with intensity measure Θ . For $A \in \mathcal X$ such that $0 < \Theta(A) < \infty$, and $k \in \mathbb N$, we have

$$\mathbb{P}\Big(\Phi_{A} \in \cdot \mid \Phi(A) = k\Big) = \mathbb{P}\Big(\sum_{j=1}^{k} \delta_{X_{j}} \in \cdot \Big)$$

with independent $X_1, \ldots, X_k \sim \frac{\Theta_A}{\Theta(A)}$.

b) Let Ψ be a point process in \mathbb{X} . Then Ψ is a Poisson process with intensity measure $\lambda \in M(\mathbb{X})$ if, and only if.

$$\mathbb{E}\Big[F\big(\Psi_{A}\big)\Big] = e^{-\lambda(A)}\left(F(\mathbf{0}) + \sum_{k=1}^{\infty} \frac{1}{k!} \int_{A^{k}} F\bigg(\sum_{j=1}^{k} \delta_{y_{j}}\bigg) d\lambda^{k}(y_{1}, \dots, y_{k})\right)$$

for all $A \in \mathcal{X}$ with $\lambda(A) < \infty$, and all measurable $F : N(X) \to [0, \infty]$.

Problem 2

Let $m \in \mathbb{N}$ and $\gamma_1, \ldots, \gamma_m > 0$ such that $\gamma_j \neq \gamma_k$ for all $j, k \in \{1, \ldots, m\}, j \neq k$. Further, let $p_1, \ldots, p_m \in (0, 1]$ with $\sum_{j=1}^m p_j = 1$. Let X be a discrete random variable taking values in $\{\gamma_1, \ldots, \gamma_m\}$ such that

$$\mathbb{P}(X = \gamma_j) = p_j, \quad j = 1, \dots, m.$$

Consider a point process Φ in \mathbb{R}^d whose distribution is specified by the conditional distributions

$$\mathbb{P}\Big(\Phi(B) = n \,\Big|\, X = \gamma_j\Big) = \frac{\big(\gamma_j \cdot \lambda^d(B)\big)^n}{n!} \cdot e^{-\gamma_j \cdot \lambda^d(B)},$$

where $B \in \mathcal{B}(\mathbb{R}^d)$, $n \in \mathbb{N}_0$, and j = 1, ..., m. Prove the following assertions.

- a) The process Φ is stationary.
- b) The process Φ is not a Poisson process for $m \ge 2$.

Hint: Without proof you may use the fact that the sets $\{\mu \in N(\mathbb{R}^d) : \mu(B) = 0\}$, $B \in \mathcal{B}(\mathbb{R}^d)$, form a π -system which generates the σ -field $\mathcal{N}_{\mathcal{S}}(\mathbb{R}^d) := \mathcal{N}(\mathbb{R}^d) \cap \mathcal{N}_{\mathcal{S}}(\mathbb{R}^d)$.

Problem 3 (Some properties of p-thinnings)

Let (\mathbb{X}, ρ) be a separable metric space. Let $p : \mathbb{X} \to [0, 1]$ be measurable, and let Φ be a point process in \mathbb{X} and Φ_p the p-thinning of Φ , both defined on some probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

a) Prove that, for any measurable $g: \mathbb{X} \to [0, \infty]$, the Laplace functional of Φ_p is given through

$$L_{\Phi_p}(g) := \mathbb{E} \bigg[\exp\bigg(- \int_{\mathbb{X}} g(x) \, \mathrm{d}\Phi_p(x) \bigg) \bigg] = \mathbb{E} \bigg[\exp\bigg(\int_{\mathbb{X}} \log\Big(1 - p(x) \big[1 - e^{-g(x)} \big] \Big) \, \mathrm{d}\Phi(x) \bigg) \bigg].$$

- b) Let $B \in \mathcal{X}$. Can we interpret Φ_B as a *p*-thinning of Φ ? If so, how do we have to choose *p*?
- c) Prove that, for any $n \in \mathbb{N}$, Φ can be written as a superposition of identically distributed point processes Φ_1, \ldots, Φ_n such that $\mathbb{P}(\Phi(\mathbb{X}) \ge 1) > 0$ implies

$$\mathbb{P}(\Phi_k(\mathbb{X}) \geqslant 1) > 0, \quad k = 1, \ldots, n.$$

- d) Prove that c) is not necessarily true if we require Φ_1, \dots, Φ_n to be independent.
- e) Prove that if Φ is a Poisson process with intensity measure $\Theta \in M(\mathbb{X})$ then Φ is infinitely divisible, that is, for each $n \in \mathbb{N}$ we find i.i.d. point processes Φ_1, \ldots, Φ_n such that $\Phi \stackrel{d}{=} \Phi_1 + \ldots + \Phi_n$.

The solutions to these problems will be uploaded on June 1st.

Feel free to ask your questions about the exercises in the optional MS-Teams discussion on May 28th (09:15 h).