Здесь $\overline{K} = \frac{\overline{K}_J}{J}$ - среднее число бит, приходящееся на один символ источника.

Следовательно, \overline{K} можно сделать как угодно близким к H(X), выбирая J достаточно большим, т.е. $\overline{K} \to H(X)$, при $J \to \infty$.

Пример. ДИБП выдает символы из алфавита объемом L=3 с вероятностями $p(a_1)=0.45, p(a_2)=0.35, p(a_3)=0.2$.

Сначала рассмотрим посимвольное кодирование.

Рисунок 4.5 Кодовое дерево Хаффмена для посимвольного кодирования.

Энтропия источника $H(X)=1.513\,\mathrm{бит/символ}$, средняя длина кодовой комбинации $\overline{K}=1.55\,\mathrm{бит/cимвол}$. Эффективность такой схемы кодирования равна $\frac{H(X)}{\overline{K}}=\frac{1.513}{1.55}=0.976~(97,6\%)$.

Если символы закодировать парами, то получим кодовое дерево:

Рисунок 4.6. Кодовое дерево Хаффмена для кодирования пар символов.