load P= 500 N at node point 2. The thickness of plate is 10 mm and for

the plate material E= 200 GPa and density= 7850kg/m³. Using a FE

(Use either elimination approach or penalty approach to handle the

(b) Stresses induced in each section.

OR iii. A thin plate of two cross sections as shown in Figure 4 is subjected to a 7

model of two bar elements, determine-

(a) Nodal displacements

boundary conditions).

Enrollment No.....

Faculty of Engineering End Sem Examination May-2024

ME3EL05 Finite Element Method

Programme: B.Tech. Branch/Specialisation: ME

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. Which one of these is weighted residual method
 - I. Point collocation method
 - II. Method of least squares
 - III. Galerkin's method
 - (a) Only I (b) Only II (c) Both I & II (d) All of these
 - ii. Which one is correct about Rayleigh Ritz method?
 - I. It requires problem as expression of potential energy in Integral form
 - II. It yields an exact solution
 - (a) Only I (b) Only II (c) Both I & II
 - Both I & II (d) None of these optential energy involves the
 - iii. The principle of minimum potential energy involves _____ that 1 represents a physical phenomenon.
 - (a) Minimization of a function
 - (b) Maximization of a function
 - (c) Minimization of a differential operator
 - (d) None of these
 - iv. Which amongst these is correct?
 - I. Essential boundary conditions are sufficient to solve the problem completely
 - II. Natural boundary conditions are not sufficient to solve the problem completely
 - (a) Only I (b) Only II (c) Both I & II
 - oth I & II (d) None of these
 - v. For a one-dimensional domain, discretized with `N' number of two node bar elements, the global stiffness matrix will be-
 - (a) It is N x N matrix
- (b) It is $(N+1) \times (N+1)$ matrix
- (c) It is $(N-1) \times (N-1)$
- (d) More information is required

Figure 4

Q.5 i. Write the equations for stresses and strain for both plane stress and plan 4 strain conditions for an 2-D element. Evaluate the Shape functions for the point 'P' for the triangular element shown in Figure 5.

Figure 5

ii. A plate as shown in Figure 6, is discretized using two triangular 6 elements. Determine the strain displacement matrices (B) for the two elements.

Figure 6

- vi. In penalty approach of handling boundary conditions, a spring of _____ 1 stiffness is used to model the support at which boundary condition is specified.
 - (a) Very low (b) Normal (c) Very high
- (d) None of these
- vii. For a constant strain triangle, the shape function N₁, N₂ and N₃ are given 1 by-
 - (a) $N_1 = \xi$, $N_2 = \eta$, $N_3 = 1 \xi \eta$
 - (b) $N_1=1$, $N_2=\eta$, $N_3=\xi$
 - (c) $N_1 = \xi$, $N_2 = \eta$, $N_3 = \xi + \eta$
 - (d) None of these
- viii. Which one is an example of Plain strain condition?

1

- I. A thin ring press fitted on a cylinder
- II. A long cylinder carrying a pressurized liquid

- (a) Only I (b) Only II (c) Both I & II
- (d) None of these
- ix. The connvective heat loss in the fin is accounted for by adding the term 1 to d/dx(k dT/dx).
 - (a) $-Plh/Ac(T-T_{\infty})$
- (b) Plh/Ac(T- T_{∞})
- (c) Ph/Ac(T- T_{∞})
- (d) Ph/Ac(T- T_{∞})
- For a one dimensional fluid element of length `L', the hydraulic gradient 1 matrix is given by-
 - (a) $g=1/L [-1 \ 1] \{p_1 \ p_2\}^T$
- (b) $g=1/2L [-1 \ 1] \{p_1 \ p_2\}$
- (c) $g=1/3L [-1 \ 1] \{p_1 \ p_2\}^T$
- (d) $g=1/4L [-1 \ 1] \{p_1 \ p_2\}^T$
- Q.2 i. What do you mean by a governing equation for a physical phenomenon? 2 Give two examples.
 - ii. Briefly discuss the solution methodologies used to solve an engineering 3 problem.
 - iii. Using Rayleigh –Ritz method, determine the displacement of mid-point 5 of a bar subjected to axial load as shown in Figure 1. The potential energy of the rod, neglecting body and traction forces, is given by-

$$\Pi = \frac{1}{2} \int_0^L EA\left(\frac{du}{dx}\right)^2 dx - 2u_1$$

where $u_1 = u$ (at x=1).

- Use two-degree polynomial as approximate function and consider the units of various parameters as consistent.
- OR iv. Discuss atleast six application fields of FEM and write its atleast two 5 advantages and limitations.
- What is discretization of domain? Explain the concept of degree of 2 O.3 i. freedom of a node for a discretized domain with one example.
 - ii. With neat sketches, explain the different types of elements used in a 3 finite element model.
 - iii. Discuss various approaches used to solve problems in FEM. Give 5 example for each approach.
- OR iv. State principle of minimum potential energy. Using it, determine the 5 displacements of the nodes of the spring system, shown in Figure 2.

Figure 2

- Q.4 i. What is a one-dimensional problem? For a one-dimensional bar element, 3 what are the shape functions? Express shape functions of bar element in terms of local coordinate system.
 - ii. A two step bar is subjected to a point load P=200 kN as shown in 7 Figure 3. Using any of the two approaches to handle the boundary conditions, determine-

Figure 3

OR iii. A two-dimensional plate is shown in Figure 7. Determine the traction 6 loads at nodes 3 and 4 for linearly distributed pressure load acting on the edge 3-4. The thickness of plate is 10 mm.

Figure 7

Q.6 Attempt any two:

i. Determine the temperature distribution through a composite wall as 5 shown in Figure 8. When the convection heat loss occurs on the left surface assuming unit area of cross section. Assume wall thickness t_1 = 4 cm and t_2 = 2cm, k_1 =0.5W/cm°C., k_2 =0.05W/cm°C, h= 0.1 W/cm²°C and T_{∞} = -5°C.

Figure 8

ii. A smooth pipe of variable cross section as shown in Figure 9, carries a liquid. Determine the potentials at the junctions, the velocities in each pipe and the volumetric flow rate. The potentials at the left end is 10 m and that at the right end is 2 m. The permeability coefficient is 1 m/s.

Figure 9

iii. What is a Eigen value-Eigen vector problem for a un-damped free 5 vibration? Write equations of- consistent mass matrix, damped matrix and stiffness matrix for a single degree of freedom vibrating body and hence prove that for a vibrating bar element, the consistent mass matrix-

$$me = \frac{\rho AL}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

OR iii. A two-dimensional plate is shown in Figure 7. Determine the traction **6** loads at nodes 3 and 4 for linearly distributed pressure load acting on the edge 3-4. The thickness of plate is 10 mm.

Figure 7

Q.6 Attempt any two:

i. Determine the temperature distribution through a composite wall as 5 shown in Figure 8. When the convection heat loss occurs on the left surface assuming unit area of cross section. Assume wall thickness t_1 = 4 cm and t_2 = 2cm, k_1 =0.5W/cm°C., k_2 =0.05W/cm°C, h= 0.1 W/cm²°C and T_{∞} = -5°C.

Figure 8

ii. A smooth pipe of variable cross section as shown in Figure 9, carries a liquid. Determine the potentials at the junctions, the velocities in each pipe and the volumetric flow rate. The potentials at the left end is 10 m and that at the right end is 2 m. The permeability coefficient is 1 m/s.

Figure 9

iii. What is a Eigen value-Eigen vector problem for a un-damped free 5 vibration? Write equations of- consistent mass matrix, damped matrix and stiffness matrix for a single degree of freedom vibrating body and hence prove that for a vibrating bar element, the consistent mass matrix-

$$me = \frac{\rho AL}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Marking Scheme

Finite Element Method (T) - ME3EL05 (T)

Q.1	i)	d) All the three	1
	ii)	a) Only 1)	1
	iii)	b) minimization of a functional	1
	iv)	c) Both 1) and 2)	1
	v)	b) It is (N+1) x (N+) matrix	1
	vi)	c) very high	1
	vii)	a) $N_1 = \xi$, $N_2 = \eta$, $N_3 = 1 - \xi - \eta$	1
	viii)	b) Only 2)	1
	ix)	d) - Ph/Ac(T- T_{∞})	1
	x)	a) $g=1/L \begin{bmatrix} -1 & 1 \end{bmatrix} \{p_1 p_2\}^T$	1
Q.2	i.	Governing equation for a physical phenomenon?	1
		Two examples.	1
	ii.	Three solution methodologies	
	iii.	Expression of Potential Energy	3 2 2
	1111	Determination of displacement	2
		Expression of stress	1
OR	iv.	Six application fields	3
OI1	1,,	Two advantages and limitations.	2
Q.3	i.	Dicretization	1
Q.5	1.	Concept of degree of freedom of a node	1
	ii.	Six sketches of each of the three types of elements	6x1/2
	iii.	Four Approaches	4
	111.	Examples	1
OR	iv.	Principle of minimum potential energy.	1
OK	IV.	· · · · · · · · · · · · · · · · · · ·	4
		Displacements of the nodes	4
Q.4	i.	One Dimensional problem?	1
		Shape functions for bar element.	1
		Shape functions in local coordinate system	1
	ii.	a) Nodal displacements	5
		b) Stresses in each section	
OR	iii.	a) Nodal displacements	2 5
		b) Stresses induced in each section	2
Q.5	i.	Equations for stresses and strain	2
4.0		Evaluate the Shape functions	2
		2. aratic the onape renewons	_

	ii.	Determination of two Strain Displacement Matrices (B)	3x
OR	iii.	Determination of Traction loads at two nodes	3x
Q.6			
	i.	Two Element stiffness matrices	2
		Global Stiffness matrix	1
		Global Load Vector	1
		Temperatures	1
	ii.	Three Elemental Stiffness Matrices and assembly	3
		Potentials at junctions	1
		Velocities at junctions	1
	iii.	Eigen value-Eigen vector problem for a un-damped free vibration?	1
		Equations	
		Proof of consistent mass matrix for a vibrating bar element,	1
		•	3
