МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №7 по дисциплине «Машинное обучение»

Тема: Классификация (Байесовские методы, деревья)

Студент гр. 6307	 Новиков Б.М.
Преподаватель	 Жангиров Т.Р.

ЗАГРУЗКА ДАННЫХ

1-2. Загрузить данные в датафрейм data = pd.read_csv('data/iris.data', header=None) data.head()

	0	1	2	3	4
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
3. Выделить данные и их метки
X = data.iloc[:,:4].to_numpy()
labels = data.iloc[:,4].to_numpy()
```

```
4. Преобразовать тексты меток к числам le = preprocessing.LabelEncoder()Y = le.fit_transform(labels)
```

```
5. Разбить выборку на обучающую и тестовую X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.5)
```

БАЙЕСОВСКИЕ МЕТОДЫ

```
1. Провести классификацию наблюдений наивным байесовским методом
gnb = GaussianNB()
gnb.fit(X_train, y_train)

y_pred = gnb.predict(X_test)

print((y_test != y_pred).sum())
```

Неправильно предсказано: 3

Описать атрибуты данного классификатора.

Атрибут Описание

class_count_ Количество тренировочных семплов наблюдаемых в одном классе

class_prior_ Вероятность каждого класса

classes_ Метки классов, известные классификатору epsilon_ Абсолютное аддитивное значение к дисперсии

sigma_ Дисперсия каждого признака для класса theta_ Среднее каждого признака для класса

2. Использовать функцию score() для выведения точности классификации gnb.score(X_test, y_test)

Точность: 0.96

3. Построить график зависимости неправильно класс. наблюдений и точности классификации от размера выборки.

4. Провести классификацию методами MultinomialNB, ComplementNB, BernoulliNB

10

0.2

0.4

0.6

0.8

Описать особенности методов

Метод MultinomialNB

ComplementNB

BernoulliNB

Особенность

Полиномиальный наивный байесовский классификатор подходит для классификации с дискретными функциями (например, подсчетом слов для классификации текста). Полиномиальное распределение обычно требует целочисленного подсчета признаков. Однако на практике дробные подсчеты, такие как tf-idf, также могут работать. Дополнительный наивный байесовский классификатор был разработан для исправления «серьезных допущений», сделанных стандартным полиномиальным наивным байесовским классификатором. Он особенно подходит для несбалансированных наборов данных.

Как и MultinomialNB, этот классификатор подходит для дискретных данных. Разница в том, что в то время как MultinomialNB работает с подсчетом вхождений, BernoulliNB предназначен для двоичных / логических функций.

Классифицирующие деревья

```
1. Классификация тех же данных при помощи деревьев
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.5)
clf = tree.DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print((y_test != y_pred).sum())
```

Количество неправльных предсказаний: 4

2. Вывести точность классификации clf.score(X_test, y_test)
Точность: 0.9466666666666667

3. Вывести характеристики дерева print(clf.get_n_leaves(), clf.get_depth()) Кол-во листьев: 4 Глубина: 3

4. Изображение дерева

5. Построить график зависимости неправильно класс. наблюдений и точности классификации от размера выборки.

6. Исследовать работу алгоритма при различных параметрах

criterion in ['gini', 'entropy']

- Функция измерения качества раскола. Поддерживаемые критерии: «Джини» для примеси Джини и «энтропия» для получения информации.

splitter in ['best', 'random']
- Стратегия, используемая для выбора разделения на каждом узле. Поддерживаемые стратегии являются «лучшими» для выбора наилучшего разделения и «случайными» для выбора лучшего случайного разделения.

max_depth in range(1, 10)

-Максимальная глубина дерева. Если None, то узлы расширяются до тех пор, пока все листья не станут чистыми или пока все листья не будут содержать менее min_samples_split выборок.

min_samples_split in range(2, 10)
- Минимальное количество выборок, необходимое для разделения внутреннего узла

min_samples_leaf in range(1, 10)

-Минимальное количество выборок, которое требуется для конечного узла. Точка разделения на любой глубине будет учитываться только в том случае, если она оставляет не менее min_samples_leaf обучающих выборок в каждой из левой и правой ветвей. Это может иметь эффект сглаживания модели, особенно при регрессии.

