

Broom us all most - de. Er 18.9. ir parkin

הפוכה צבור תצובה 808 of MON 3: EDIS מכמן לסתים בפיטת עטצוחר

מסנן באורך סופי מתוך מסנן אידיאלי (תכונה 9.1): נדרש מסנן, שבאופן אידיאלי הינו בעל Mניתן להוכיח, שמסגן בעל אורך סופי הקרוב עליו ביותר מכיל $H_d\left(e^{j\omega}
ight)=$ DTFT $\left\{h_d[n]
ight\}$:דגימות מרכזיות, מהצורה 2M+1

$$h[n]w[n] = \begin{cases} h_d[n] & -M \leqslant n \leqslant M \\ 0 & \text{otherwise} \end{cases},$$

כאשר החלון w[n] הינו אחד החלונות מהטבלה 9.1. לדוגמה, חלון מלבני הוא

$$w[n] = \begin{cases} 1 & n = -M, \dots, M \\ 0 & \text{otherwise} \end{cases}.$$

2. acega cagal < 412 1487 + assa < - M לאחר הוספת השהייה מתאימה כדי להפוך את המסנן לסיבתי, מתקבל מסנן מקורב

(9.13)
$$h[n] = h_d [n-M] w[n-M], \quad n = 0, \dots, 2M$$

$$H_d(e^{j\omega}) = \begin{cases} \Delta & |\omega| < \omega_c & \text{DTFT} \\ \Delta & |\omega| < \omega_c & \text{DTFT} \\ O & \text{otherwise} \end{cases} h_d[n] = \frac{\sin(\omega_c n)}{\pi n} -\infty < N < \infty \end{cases}$$

2.
$$\omega_{c} = \frac{\pi}{4}$$
 $N = 101$ $Sin_{c} = 100$

(9.12)

$$N = 101;$$
 $N = 101;$ $N = 101;$

$$\operatorname{Sin}(o) = 1$$

$$n = -50:50$$

$$n = (0:N-1) - N/2 + 1/2;$$

$$\sum_{\pi \in \Lambda} \sin(\omega_{e} \cdot h) = \frac{\omega_{e}}{\pi} \cdot \frac{\sin(\omega_{e} \cdot h)}{\omega_{e} \cdot h}$$

n = (0:N-1) - N/2+1/2; $h_d = \sin(w_c * n)./(pi*n);$ $\rightarrow n=0 \Rightarrow h_d = NaN \leftrightarrow \frac{0}{2} > 0.56$ $\rightarrow 31'$ $h_d(N/2+1/2) = w_c/pi;$ % solve the limit problem

71.95 be 3310.8346 ge kis lin.02

-10 -20 -30 -30

לענת אוק איניא אוק איניאל	رک رواه۱۱ ۱	הערות ! 1,2 חלוים באו	الدم و	in & d	ع دا
7 , Chorl	עכנון יי	/'IJ'e S	,		
So 181714 2012 . 1	(3287 1185)	20x 18n .3	4	2	3
הפיך הגרכצי ש רוחב		Math. form $n=0,\ldots,M$	Transition	Mainlobe	Bandstop
60 richs of vall	Window		Bandwidth	Bandwidth	Attenuation
(pass band) הדרה	name		$(\omega_s - \omega_p)$	(ω_p)	(dB)
1 Curl and 2	7	1	1.84π	4π	

	name	3,111,12	$(\omega_s - \omega_p)$	(ω_p)	(dB)
	Rectangle	w[n] = 1	$\frac{1.84\pi}{M}$	$\frac{4\pi}{M+1}$	21
	Bartlett	$w[n] = nu[n] - 2nu\left[n - \frac{M}{2}\right]$	$\frac{3.80\pi}{M}$	$\frac{8\pi}{M}$	25
	Hanning	$w[n] = 0.5 \left[1 - \cos\left(\frac{2\pi k}{M - 1}\right) \right]$	$\frac{6.22\pi}{M}$	$\frac{8\pi}{M}$	44
	Hamming	$w[n] = 0.54 - 0.46 \cos\left(\frac{2\pi k}{M-1}\right)$	$\frac{6.64\pi}{M}$	$\frac{8\pi}{M}$	53
	Blackman	$w[n] = 0.42 - 0.5\cos\left(\frac{2\pi k}{M-1}\right)$	$\frac{11.12\pi}{M}$	$\frac{12\pi}{M}$	74
		$+0.08\cos\left(\frac{4\pi k}{M-1}\right)$			

		7284	pins se)	
	$\left H(e^{j\omega})\right $	Trar	sition		
1	$+ \delta_p$	Band	1	Passband	l Ripple
å	Passh	oand	Stop	band	
	δ_s Stop	band Rip	ple		
		Wp W		π	ω

ב. הפתם אנפציטה בין הפיף

- ם תכנון מבוסס ביטוי אנליטי של תגובה להלם.
 - ם ביצועים מושפעים מאורך וסוג החלון.
- בין אורך המסנן וביצועים (trade-off) ישנו תעדוף
- 1180 60 1m 5101 1m JUK AKK WE'R 23508 1818 *

1152 2016 -808 77150 - (Infinite Impulse Response) IIR WON 1400 $\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$

| FIR & ak = 0 K>0

FIR ← Qk=0 K>0 $H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$ $|H(e^{j\omega})|$ F/R = 1 $|H(e^{j\omega})|$ $|H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$ $\int \int \int \int \int \int \int \partial u \, du \, du = 0$ $0 \leqslant |\omega| \leqslant \omega_p$ $\left| H(e^{j\omega}) \right| \leqslant \delta_s, \qquad \qquad \omega_s \leqslant |\omega| \leqslant \pi$ $A_p = -20\log_{10}\left(1 - \delta_p\right)$ $A_s = -20\log_{10}\left(\delta_s\right)$ (158 2 2 1 11 8 - 8 11 (40 EC 8 3) 17 ASIEC 8-8-3 * בב"כ דורש כחת מישובים לי בוך אכר הפרש בותר (ככש וחבור) 015'a (618'a: (UICINU) N'SZ KSS 1201 : Butterworth Stopband > 11611111 passband most and a M'St Type I . Chebysher Butterworth I NOS XUN NISK ON TYPE II Chebysher I was wish = = which ue 2 wisher : Elliptic filterDesigner אל filterDesigner Hd = designfilt א תבען אסטי FIR של הניר גשיא החלועת * wis 2081 primmaH 1/31 Ann BUNE SUNE AM * real howa ason coold (morn copies all

10.511 AIN CLIM

C	ı		I	
		عار دراما	117.01	
		1	1.	