\leftarrow Back

Grade received 100% To pass 80% or higher

Go to next iten

1/1 point

Sequence Models & Attention Mechanism

Latest Submission Grade 100%

1. Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

False

O True

⊘ Correct

2. In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

1/1 point

Beam search will use up more memory.

☐ Beam search will converge after fewer steps

Beam search will run more slowly.

✓ Correct

⊘ Correct

3. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

1 / 1 point

O False

True

⊘ Correct

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y\mid x)$.

1/1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

 $P(\hat{y} \mid x) = 1.09 * 10^{-7}$

 $P(y^* \mid x) = 7.21*10^-8$

Would you expect increasing the beam width B to help correct this example?

igodedown No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

igcomes Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

 \bigcirc No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

 \bigcirc Yes, because $P(y^*\mid x) \leq P(\hat{y}\mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

⊘ Correct

5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggests you should focus your attention on improving the search algorithm.

1/1 point

True.

O False.

6. Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t,t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.

 $\sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.)

⊘ Correct

ightharpoonup We expect $lpha^{<\epsilon,t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{<\epsilon>}$. (Note the indices in the superscripts.)

⊘ Correct

We expect $\alpha^{< t,t^{\prime}>}$ to be generally larger for values of $\alpha^{< t>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

7. The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:

/ 1 point

1/1 point

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t>}$ which in turn depends on $e^{< t,t>}$; so at the time we need to evaluate this network, we haven't computed $s^{< t>}$ yet.

True

○ False

⊘ Correct

8. Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

1 / 1 point

 $\bigcirc \ \ \, \text{The input sequence length T_x is large.}$

 \bigcirc The input sequence length T_x is small.

⊘ Correct

9. Under the CTC model, identical repeated characters not separated by the "blank" character () are collapsed. Under the CTC model, what does the following string collapse to?

1/1 point

_c_oo_o_kk__b_ooooo_oo_kkk

O coookkboooooookkk

O cook book

O cokbok

cookbook

⊘ Correct

10. In trigger word detection, $\boldsymbol{x}^{< t>}$ is:

1 / 1 point

 $\ensuremath{\bigodot}$ Features of the audio (such as spectrogram features) at time t.

 $\bigcirc \ \ \mbox{Whether the trigger word is being said at time t}.$

 $\begin{picture}(60,0)\put(0,0){\line(1,0){10}}\put(0,0){\line(1,0){10}$

 \bigcirc Whether someone has just finished saying the trigger word at time t.

⊘ Correct