浙江工业大学 2020/2021 学年 第一学期概率论与数理统计期末考试试卷

学号: ______ 姓名: _____

	班级:		任课教师:			
	题号	_	二	三	总分	
	得分					
分位点数据	:					-
$t_{0.05}$	(8) = 1.	$8595, t_{0.05}(9)$	$= 1.8331, t_{0.0}$	$_{025}(8) = 2.306,$	$t_{0.025}(9) = 2.$	2622
一、填空题.(名	每空2分,	, 共 28 分)				
		$(A \cup B) = 0.5,$	若事件A,B互	不相容, 则 <i>P(E</i>	3) =; 7	若事件A,B相互
		3三好学生,将 是	好这20名学生随	机分成两组, 每	 组10人, 则这	2名三好学生分
3. 己知 $P(A)$	(0.7, 0.7)	P(B) = 0.4, P	P(A - B) = 0.5	,则 $P(A B) = 1$	·	
		B 从二项分布 B $P(Y \ge 1) =$		量Y服从二项分	布 $B(3,p)$,若	$P(X \ge 1) = \frac{5}{9},$
			分布的随机变 $n\mu \bigg \ge \varepsilon \bigg\} = _$		$_{1}=\mu, Var(X_{1}$	$)=\sigma^{2},$ 则对任
	型随机变 $Var(X)$		i数为 $F(x) =$	$\begin{cases} 1 - e^{-bx}, & x \\ 0, & x \le 0. \end{cases}$:>0, 已知 <i>E</i> .	X=1,则 $b=$

7. 设随机变量X在[-1,3]上服从均匀分布,则由切比雪夫不等式有 $P\{|X-1|<2\}\geq$ _____.

9. 设总体 <i>X</i> 的一组样本观察值是 25 本方差为	5, 18, 19, 22, 19, 24, 21, 26, 18, 18, 则样本均值	5为	,样		
二、选择题.(每小题 3 分, 共 12 分)				
1. 设A,B为随机事件,则下列结论i	1. 设 A,B 为随机事件,则下列结论正确的是				
$(A) (A \bigcup B) - B = A$	(B) $A \subseteq (A \bigcup B) - B$				
(C) $(A \bigcup B) - B \subseteq A$	(D) 以上结论全不对				
2. 某人做试验, 每次成功的概率为度	p(0 ,则在 3 次重复试验中至少失败	(一次的概率	区为		
		()		
(A) p^3	(B) $1 - p^3$				
(C) $(1-p)^3$	(D) $(1-p)^3 + p(1-p)^2 + p^2(1-p)^3$	-p)			
3. 设随机变量X 的概率密度函数为	为 $f(x)$,分布函数为 $F(x)$.若 $f(-x) = f(x)$,	,则对任意	正实		
数a必有		()		
(A) $F(-a) = 1 - \int_0^a f(x) dx$	(B) $F(-a) = \frac{1}{2} - \int_0^a f(x) dx$				
(C) $F(-a) = F(a)$	(D) $F(-a) = 2F(a) - 1$				
4. 若随机变量 X,Y 满足 $Var(X+X)$	Y) = Var(X - Y),则必有	()		
(A) <i>X</i> , <i>Y</i> 不相关	(B) X,Y相互独立				
(C) $Var(X)Var(Y) = 0$	(D) $Var(XY) = 0$				

三. 解答题. (共 60 分)

- 1.(10分)甲、乙、丙三门炮各发射一枚炮弹,同时射击一个目标,各炮命中率分别为0.4,0.5,0.6.
 - (1) 求目标被击中的概率;
 - (2) 已知目标被击中, 求甲击中目标的概率是多少?

2. (10 分)设随机变量 X 的分布律为:

求: (1) 常数 a; (2) $Y = 2X^2 + 1$ 的分布律.

3. (12 分) 设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} Ax, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

(1) 求常数A; (2) 求 $P\left(|X|<\frac{1}{2}\right)$; (3)若随机变量Y与X独立同分布, 求P(X+Y<1).

4. (8分) 设二维随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} 1, & 0 \le x \le 1, |y| \le x; \\ 0, & \text{ 其他.} \end{cases}$$

求 X,Y 的边缘密度函数,并判断它们之间的独立性.

5.(10 分) 化肥厂用自动包装机包装化肥, 每包的质量服从正态分布, 其平均质量为100公斤. 某日开工后, 从中随意抽取容量为9的一个样本, 测得样本均值 $\overline{x}=99.97$ 公斤, 样本标准差 s=1.2公斤. 试在显著性水平 $\alpha=0.05$ 下, 检验该化肥厂包装的化肥的平均质量是否为100公斤?

6. (10 分) 设总体X的概率密度函数为:

$$f(x) = \frac{1}{2\sigma} e^{\frac{-|x|}{\sigma}}, \quad -\infty < x < +\infty,$$

其中 $\sigma>0$ 是未知参数, X_1,X_2,\cdots,X_n 是从该总体中随机抽出的样本. 设 $\tilde{\sigma}$ 是 σ 的极大似然估计. (1)求 $\tilde{\sigma}$; (2) 判断 $\tilde{\sigma}$ 是否是 σ 的无偏估计, 请说明理由.