МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА

Институт информационных технологий и технологического образования
Кафедра компьютерные технологии и электронного обучения
Основная профессиональная образовательная программа
Направление подготовки 09.03.01 Информатика и вычислительная техника
Направленность (профиль) «Технологии разработки программного

обеспечения»

форма обучения – очная

ЛАБОРАТОРНАЯ РАБОТА №6

по дисциплине: «Анализ данных и основы Data science»

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

Руководитель:

кандидат педагогических наук, доцент,

Светлана Викторовна Гончарова

Автор работы студент 2 курса 1 группы 1 подгруппы Чирцов Тимофей Александрович

Цель работы: проверить статистическую гипотезу о нормальном законе распределения данных, приведенных в решаемой задаче.

Санкт-Петербург 2023 Оборудование: ПК, табличный процессор Excel

Задание 1

Из нормальной генеральной совокупности с известной дисперсией $\sigma^2 = 3.2$ извлечена выборка объёма $\eta = 25$ и по ней найдена выборочная средняя $\bar{x}_e = 19.3$. Требуется на уровне значимости 0,01 проверить нулевую гипотезу H_0 : a = 20 против конкурирующей гипотезы H_1 : a = 19.

$$H_0: a = 20 \Rightarrow a_0 = 20$$

$$H_1: a = 19 \Rightarrow a_1 = 19$$

 $a_0 > a_1$, следовательно, левосторонняя область

Определим критическое значение из соотношения:

$$\Phi(u_{\rm Kp}) = \frac{1-2\alpha}{2} = \frac{1-2*0.01}{2} = 0.49$$

где α – уровень значимости

Далее по таблице значений функции Лапласа определяем критическое значение $u_{\kappa p} \approx 2,33$

Для левосторонней области

Если $u \le$ - $u_{\kappa p}$, то гипотеза H_0 на уровне α отвергается

Если $u > - u_{\kappa p}$, то гипотеза H_0 на уровне α принимается

$$u_{\text{набл}} = \frac{(\bar{x}_{\text{B}} - a_0)\sqrt{n}}{\delta} = \frac{(19,3 - 20)\sqrt{25}}{\sqrt{3,2}} = -1,95656$$

$$-1,95656 > -2,33$$

Следовательно, $u_{\text{набл}} > -u_{\kappa p}$

Значит, на уровне $\alpha = 0.01$ гипотеза H_0 принимается

Задание 2

По результатам n=5 измерений температуры в печи найдено $\bar{x}_{\varepsilon}=256^{\circ}C$. Предполагается, что ошибка измерения есть нормальная случайная величина с $\mathcal{T}=6^{\circ}C$. Проверить на уровне значимости $\alpha=0.05$ гипотезу H_{0} : $\alpha=250^{\circ}C$ против конкурирующей гипотезы H_{1} : $\alpha>250^{\circ}C$.

 H_0 : $a = 250 \Rightarrow a_0 = 250$

 $H_1: a > 250$, следовательно, правосторонняя область

Определим критическое значение из соотношения:

$$\Phi(u_{\text{kp}}) = \frac{1 - 2\alpha}{2} = \frac{1 - 2 * 0.05}{2} = 0.45$$

где α – уровень значимости

Далее по таблице значений функции Лапласа определяем критическое значение $u_{\kappa p} \approx 1,645$

Для правосторонней области

Если $u \le u_{\kappa p}$, то гипотеза H_0 на уровне α принимается

Если $u \geq u_{\kappa p}$, то гипотеза H_0 на уровне α отвергается

$$u_{\text{набл}} = \frac{(\bar{x}_{\text{B}} - a_0)\sqrt{n}}{\delta} = \frac{(256 - 250)\sqrt{5}}{6} = 2,23607$$

2,23607 > 1,645

Следовательно, $u_{\text{набл}} > u_{\text{кр}}$

Значит, на уровне $\alpha = 0.05$ гипотеза H_0 отвергается <u>Задание 3</u>

Unterbach nhornoem	интервана, х.	Macrora,
	195	10
190-200	205	26 56
210-220	215	64
230 -240	235	30
240 -250	245	14

Для проверки Н0 найдём точечные оценки математического ожидания и среднего квадратичного отклонения нормального распределения случайной величины:

$$\overline{\chi} = \frac{\sum \alpha_i n_i}{n}$$

$$G = \sqrt{\frac{1}{n}} \sum (\alpha_i - \overline{\chi})^2 n_i^2$$

При проверке гипотезы о нормальном распределении генеральной совокупности сравниваются эмпирическая и теоретическая частоты. Для этого исключается статистика x^2 – Пирсона с v = k-r-1 степенями параметров.

Если $x^2_{\text{расч}} \ge x^2_{\text{кр}}$, то H_0 отвергается, и считается, что предположение о нормальном распределении не согласуется с данными

Вычислим теоретические вероятности p_i попадания СВ $X \rightarrow N$ (221;12,33) в частичные интервалы $[x_{i-1}; x_i)$:

Дальнейшие вычисления, необходимые для определения расчетного значения x^2 , сделаем в табличном процессоре Excel:

	А	В	С	D	E	F	G	Н	1	J	K	L	M
1		Интервалы прочности кг/см ²	Среднее значение интеврал а, х _і	Частота, ni	x _i -X	(x _i -X [*]) ²	(x _i -X [*]) ² *n _i	u _i	Нормированн ые интервалы [u _i ; u _{i+1}]	P _i = [Φ(u _{i+1})- Φ(ui)]	nP _i	(n _i -n*P _i) ²	(n _i -nP _i) ² /nP _i
2		190-200	195	10	-26	676	6760	-2,51	(-∞; -1,70)	0,045	9	1	0,11
3		200-210	205	26	-16	256	6656	-1,70	[-1,70; -0,89]	0,142	28,4	5,76	0,20
4		210-220	215	56	-6	36	2016	-0,89	[-0,89; -0,08]	0,281	56,2	0,04	0,00
5		220-230	225	64	4	16	1024	-0,08	[-0,08; 0,73]	0,299	59,8	17,64	0,29
6		230-240	235	30	14	196	5880	0,73	[0,73; 1,54]	0,171	34,2	17,64	0,52
7		240-250	245	14	24	576	8064	1,54	[1,54; +∞)	0,062	12,4	2,56	0,21
8	Сумма	-	-	200	-6	1756	30400	-	-	-	200	-	1,33
9													
10	n	200											
11	Χ̈́	221											
12	δ	12,328828	12,33										
10													

В результате вычислений получили $x^2_{pacy} = 1,35$

$$v = k-r-1 = 6-2-1 = 3$$

Следовательно, по таблице квантилей критическое значение будет равно:

$$x^2_{KP} = 16,266$$

То есть $x^2_{pac4} < x^2_{kp}$ (1,35 < 16,266), то нет оснований для отклонения нулевой гипотезы о нормальном законе распределения прочности на сжатие с параметрами

$$a = 221$$
 и $\delta^2 = 152$

Вывод по лабораторной работе: с помощью электронных таблиц нам удалось проверить статистическую гипотезу о нормальном законе распределения данных.