Maths: DM 18

Problème 1: formule de Taylor-Lagrange et méthode de Newton Partie I. Formule de Taylor-Lagrange à l'odre 2.

N=°1. a.

On à bien ψ deux fois dérivable sur $]a;b[\ {\rm car}\ f\ {\rm est}\ \mathscr{C}^2$ De plus

$$\psi'(t) = f'(t) - f'(c) - 2\lambda(t-c)$$
 Et
$$\psi''(t) = f''(t) - 2\lambda$$

b.

On cherche $\lambda \in \mathbb{R}$ tel que $\forall x \in]a,b[,\psi(x)=\psi(c)$ De plus $\psi(c)=f(c)-f(c)-(c-c)f'(c)-\lambda(c-c)^2=0$ Ainsi soit $x \in]a,b[$, alors

$$\begin{split} \psi(x) &= \psi(c) \Leftrightarrow f(x) - f(c) - (x - c)f'(c) - \lambda(x - c)^2 = 0 \\ &\Leftrightarrow \lambda(x - c)^2 = f(x) - f(c) - (x - c)f'(c) \\ &\Leftrightarrow \underbrace{\lambda = \frac{f(x) - f(c) - (x - c)f'(c)}{(x - c)^2}}_{\end{aligned}}$$

c.

Ainsi avec le bon λ on à $\psi(c)=\psi(x)$ et comme ψ est continue sur [c;x] car somme est produit de fonction continue

Donc en utilisant un première fois le théorème de Rolle sur $\left[c;x\right]$

On a qu'il existe $c_x \in]c;x[,\psi'(c_x)=0$

Et comme $\psi'(c)=f'(c)-f'(c)-2\lambda(c-c)=0$

On peut réapliquer le théorème de Rolle, Ainsi on obtiens:

$$\exists \theta_x \in]c; x[, \psi''(\theta_x) = 0$$

Donc soit un telle $\theta_x \in]c;x[$

$$\psi''(\theta_x) = 0 \Leftrightarrow f''(\theta_x) - 2\lambda = 0$$

Ainsi comme $\lambda = \frac{f(x) - f(c) - (x - c)f'(c)}{\left(x - c\right)^2}$

$$\begin{split} f''(\theta_x) &= 2\lambda = 2\frac{f(x) - f(c) - (x - c)f'(c)}{\left(x - c\right)^2} \Leftrightarrow \frac{\left(x - c\right)^2}{2}f''(\theta_x) = f(x) - f(c) - (x - c)f'(c) \\ &\Leftrightarrow f(x) = f(c) + (x - c)f'(c) + \frac{\left(x - c\right)^2}{2}f''(\theta_x) \end{split}$$

Partie II. Méthode de Newton

N=°2.

Le point deux nous informe que f est strictement décroisante sur [a;b] et comme f(a)>0 et f(b)<0

Ainsi par le théorème de la bijection $\exists!c\in]a;b[,f(c)=0$

N=°3.

L'équation de la tangente à \mathscr{C}_f en u est $\forall x \in [a;b], \Delta_u(x) = f(u) + f'(u)(x-u)$ Et coupe l'axe des absice en $x=u-\frac{f'(u)}{f(u)}$

$N=^{\circ}4.$

$$x_{n+1}-x_n=x_n-\frac{f(x_n)}{f'(x_n)}-x_n=-\frac{f(x_n)}{f'(x_n)}>0$$
 car $\forall x\in[a;b],f'(x)<0$ Donc (x_n) est croissante

Et prouvons que (x_n) est majorée par c par récurance simple

Prouvons d'abord que g est croissante

Pour ça, on a

$$\forall x \in [a;b], g'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{f'(x)^2} = \underbrace{\frac{f(x)f''(x)}{f'(x)^2}}_{>0}$$

et comme f est convexe, on a $\forall x \in [a, b], f''(x) \ge 0$

Ainsi sur [a, c], f est positife et donc g est croissante sur [a, c]

• Initialisation:

On a: $f(x_0) > 0 = f(c)$ donc $f(x_0) > f(c)$ et par décroissance de f sur [a;b], on a $\underline{x_0 < c}$

• Hérédité: Soit $n \in \mathbb{N}$ tel que $x_n < c$, alors

$$\begin{split} &x_n \leq c \\ \Leftrightarrow &g(x_n) \leq g(c) \text{ car } g \text{ est croissante sur}[a,c] \\ \Leftrightarrow &x_{n+1} \leq c - \underbrace{\frac{f(c)}{f'(c)}}_{=0} = c \end{split}$$

Ainsi par principe de récurance (x_n) est majorée par c

N=°5.

Comme x_n est croissante et majoré, alors

par le théorème de la limite monotone (x_n) converge

De plus par la théorème du point fixe (x_n) converge vers le point fixe de g

Ainsi soit $l \in [a,b]$ $g(l)=l \Leftrightarrow l-\frac{f(l)}{f'(l)}=l \Leftrightarrow f(l)=0 \Leftrightarrow l=c$ car c est l'unique nombre tel que f(c)=0

Ainsi (x_n) converge vers c

N=°6.

A faire

N=°7.

A faire

N=°8.