Unlinkable Zero-Leakage Biometric Cryptosystem Theoretical Evaluation and Experimental Validation

Gabriel E. Hine, Ridvan S. Kuzu, Emanuele Maiorana, and Patrizio Campisi

I. BACKGROUND [2]

Enrolled

template

Enrollment

Verification

template

Secret key

Turbo

encoder

 QIM^{-1}

Turbo

decoder

Hash

- Biometric Cryptosystems (BC) aim at binding the biometric template to a Pseudonymous Identifier (PI). [1]
- PI: renewable reference that represents an individual.
 - It should not contain any information that allows retrieval of the original biometric sample.
- Here, we focus on *Fuzzy Embedders*:
 - *PI*: hash of an independent key
 - **Auxiliary Data** (*AD*): information that assists the reconstruct the *PI* given a verification biometric sample.
- AD is a (irreversible) function of the enrolled template and the secret key linked to the PI.
- In [2] we proposed the following *Zero-Leakage BC*:

$$x = \Phi(w) = CDF_X^{-1} [CDF_W(w)]$$
$$AD := z \leftarrow [x + s]_{2\pi}$$

where $[\cdot]_{2\pi}$ is the modulo- 2π operator, s is the set of symbols to be embedded encoding the PI, and w is the biometric template (continuous values).

- The pointwise mapping function $\Phi(w)$ maps the original (population) distribution W to a target X
- The target distribution X is chosen, and so $\Phi(\cdot)$, so that:

1. I(S,Z) = 0 i.e., there is no *mutual information* between the *AD* and the *PI*;

2. $P := \frac{E_{X,Z}\{[x-\hat{x}(z)]^2\}}{E_X\{x^2\}} \to 1$ i.e., the best estimate of x given z is no different from the best estimate we can have a-priori. That is z(x,s) is *irreversible*.

- Condition 1. is satisfied if and only if $p_X(x_{2\pi})$ is uniform in $[0,2\pi)$
- Condition 2. is fulfilled by carefully by designing $\Phi(\cdot)$:
 - Raised Cosine distribution family.

II. THE LINKABILITY THREAT

- *Unlinkability:* Two or more biometric references should not be linked to each other or to the subject from whom they were derived ^[1].
- The described Cryptosystem [2] is vulnerable to a Linkability attack.
- In fact, given a pair of instances of AD $\{z_i = [x_i + s_i]_{2\pi} \mid i \in (1,2)\},$
 - $\Delta z = [z_1 z_2]_{2\pi} = [(x_1 x_2) + (s_1 s_2)]_{2\pi};$
 - If x_1 and x_2 are independent,

 $p_{\Delta Z}(\Delta z)$ is uniform in $[0,2\pi)$;

• If x_1 and x_2 stand from the same subject,

$$|x_1 - x_2| \to 0$$

$$p_{\Delta Z}(\Delta z) \rightarrow p_S(s) = \sum_k P(k) \delta(s - s_k)$$

i.e. it tends to a discrete distribution around the symbols dictionary.

• An attacker may run a simple statistical analysis of the L $z_1 - z_2$ coefficients to decide if the two AD stem from the same subjects.

III. THE SOLUTION

- Add to the chain a unitary matrix $A \mid A^T A = I$
- $f(\cdot)$ maps W to $U \sim \mathcal{N}(0, I)$
- Thanks to the rotational symmetry, also $V \sim \mathcal{N}(0, I)$
- $g(\cdot)$ maps V to the target distribution X
- See sec. I for the rest, except that now $AD := \{z, A\}$
- Given a properly designed A matrix, it is not possible to distinguish two independent realizations $(u, u^*) \sim N(0, I) \times N(0, I)$ from the couple (u, Au)
- $(u,u^*)\sim N(0,I)\times N(0,I)$ from the couple (u,Au)• Any randomly rotated instance is undistinguishable from an independently sampled instance.

IV. UNLINKABILITY ANALISYS

• Given two sets of $AD(z_1, A_1)$ and (z_2, A_2) , if $w_1 = w_2$, we can write:

$$[g\{A_2 A_1^T g^{-1}([z_1 + s_1]_{2\pi} - 2\pi \xi_1)\} - z_2]_{\frac{2\pi}{M}} = 0$$

- This is a system of non-linear equations whose unknowns are the coefficients of s_i and ξ_i , and whose solution would demonstrate that z_1 and z_2 are linked to the same identity.
- We claim that no algorithm can solve this problem in polynomial time [3]

• Another linkability attack consists of estimating the templates from different ADs and trying to match them.

$$\hat{u} = E_{S,\Xi}[A^T g^{-1}([z+s]_{2\pi} - 2\pi\xi)]$$

being $E_{S,\Xi}[\cdot]$ the expected value over all (s,ξ) couples. $(e.g.\ Monte-Carlo)$

• We showed that we can design g so that the likability [4] of \hat{u} is negligible.

VI. DEALING WITH NON-IDEAL DATA

- The introduction of the rotation matrix degrades performance
- This is because the templates have an SNR that is unevenly distributed across features.
- Mixing good and bad features lowers the total *Channel capacity*.
- Solution: linearly combine together only features with similar SNR

V. THE FULL SYSTEM

VI. EXPERIMENTS ON REAL DATA

- Biometric trait: 3 fingers-veins.
- Dataset: SDUMLA: L/R index-, middle- and ring-fingers of 106 subjects.
- The bandwidth Q of the rotation matrix controls the tradeoff between features reliability and unlikability
- Reasonable long secret keys have been successfully tested

REFERENCES

- 1. ISO/IEC 24745:2022 Information security, cybersecurity and privacy protection Biometric infomation protection
- 2. *G. E. Hine*, E. *Maiorana and P. Campisi* "A Zero-Leakage Fuzzy Embedder From the Theoretical Formulation to Real Data" in TIFS 2017
- 3. G. E. Hine, R. S. Kuzu, E. Maiorana and P. Campisi "Unlinkable Zero-Leakage Biometric Cryptosystem: Theoretical Evaluation and Experimental Validation" in TIFS 2023
- 4. *M. Gomez-Barrero, J. Galbally, C. Rathgeb and C. Busch* "General Framework to Evaluate Unlinkability in Biometric Template Protection Systems" in TIFS 2017

Secret key

Turbo

Encoder

Hash

template

matrix

