Graph Coloring Variants: List Coloring (and a little Correspondence Coloring) Applied Graph Theory

Abigail Nix & Ari Holcombe Pomerance

May 5, 2025

Section outline

List Coloring

2 List Extension of Brooks' Theorem

Correspondence Coloring

List Coloring

Definition

Definition 1

For a graph G, a **list assignment** L assigns each vertex $v \in V(G)$ a set L(v) of colors allowed at v. An L-coloring is a proper coloring ϕ of G such that $\phi(v) \in L(v)$ for all v. A graph G is k-choosable or list k-colorable if it has an L-coloring whenever $|L(v)| \geq k$ for all v. The **list chromatic number** or choice number or choosability $\chi_l(G)$ is the minimum k such that G is k-choosable.

Definition

Definition 1

For a graph G, a **list assignment** L assigns each vertex $v \in V(G)$ a set L(v) of colors allowed at v. An L-coloring is a proper coloring ϕ of G such that $\phi(v) \in L(v)$ for all v. A graph G is k-choosable or list k-colorable if it has an L-coloring whenever $|L(v)| \geq k$ for all v. The **list chromatic number** or **choice number** or **choosability** $\chi_l(G)$ is the minimum k such that G is k-choosable.

• In a scheduling application, each committee provides a certain number of times they can meet, where colors are times, and we have an edge between two committees if they share a person.

4/19

Example: C_{2m}

Example: C_{2m}

Even cycles C_{2m} are 2-choosable.

• Case 1: If all lists are equal, then we can simply alternate colors along the cycle:

• Case 2: There exists a pair of adjacent vertices u, v such that $\mathbf{c} \in L(u)$ and $\mathbf{c} \notin L(v)$.

- Case 2: There exists a pair of adjacent vertices u, v such that $\mathbf{c} \in L(u)$ and $\mathbf{c} \notin L(v)$.
- Assign \mathbf{c} to u.

- Case 2: There exists a pair of adjacent vertices u, v such that $\mathbf{c} \in L(u)$ and $\mathbf{c} \notin L(v)$.
- Assign c to u.
- Then proceed through the rest of the vertices, assigning each of them a color that was not used on the previous vertex.

- Case 2: There exists a pair of adjacent vertices u, v such that $c \in L(u)$ and $c \notin L(v)$.
- Assign c to u.
- Then proceed through the rest of the vertices, assigning each of them a color that was not used on the previous vertex.

- Case 2: There exists a pair of adjacent vertices u, v such that $\mathbf{c} \in L(u)$ and $\mathbf{c} \notin L(v)$.
- Assign c to u.
- Then proceed through the rest of the vertices, assigning each of them a color that was not used on the previous vertex.
- Finally, since $\mathbf{c} \notin L(v)$, we know there is at least one choice of color for v.

Example: $K_{m,m}$

• $\chi_l(G) \ge \chi(G)$, and $\chi_l(G) > \chi(G)$ for particular graphs

7/19

Example: $K_{m,m}$

- $\chi_l(G) \geq \chi(G)$, and $\chi_l(G) > \chi(G)$ for particular graphs
- Complete bipartite graphs $K_{m,m}$ are **not** 2-choosable.

Figure: $K_{3,3}$ is 2-colorable but not 2-choosable.

List Extension of Brooks' Theorem

Degeneracy Bounds

- Recall greedy coloring $\implies \chi(G) \leq \Delta(G) + 1$ because for any ordering of V(G) each vertex has at most $\Delta(G)$ already colored neighbors
- By the same argument, $\chi_l(G) \leq \Delta(G) + 1$

9/19

Degeneracy Bounds

- Recall greedy coloring $\implies \chi(G) \leq \Delta(G) + 1$ because for any ordering of V(G) each vertex has at most $\Delta(G)$ already colored neighbors
- By the same argument, $\chi_l(G) \leq \Delta(G) + 1$
- Brooks' Theorem for list coloring determines that $\chi_l(G) \leq \Delta(G) + 1$ holds at equality only when a connected graph G is a complete graph or an odd cycle.

9/19

Degeneracy Bounds

- Recall greedy coloring $\implies \chi(G) \leq \Delta(G) + 1$ because for any ordering of V(G) each vertex has at most $\Delta(G)$ already colored neighbors
- By the same argument, $\chi_l(G) \leq \Delta(G) + 1$
- Brooks' Theorem for list coloring determines that $\chi_l(G) \leq \Delta(G) + 1$ holds at equality only when a connected graph G is a complete graph or an odd cycle.

Definition 2

A graph G is k-degenerate if every subgraph has a vertex of degree at most k. The degeneracy of G is $\max_{H\subseteq G} \Delta(H)$; that is, the minimum k such that G is k-degenerate.

Proposition 1

Every k-degenerate graph is (k+1)-choosable. Thus also $\chi_l(G) \leq 1 + \max_{H \subseteq G} \delta(H) \leq 1 + \Delta(G)$.

9/19

Abby & Ari Graph Coloring Variants

Lemma 1

Given a connected graph G, let L be a list assignment such that $|L(v)| \ge d(v)$ for all v.

- (a) If |L(y)| > d(y) for some vertex y, then G is L-colorable.
- (b) If G is 2-connected and some two lists differ, then G is L-colorable.

Lemma 1

Given a connected graph G, let L be a list assignment such that $|L(v)| \geq d(v)$ for all v.

- (a) If |L(y)| > d(y) for some vertex y, then G is L-colorable.
- (b) If G is 2-connected and some two lists differ, then G is L-colorable.

Proof.

• For (a), root a spanning tree at y and color towards y (starting with leaves). Each vertex v in this order other than y will have an uncolored neighbor (< d(v) colored neighbors), so v has an available color in its list. Vertex y could have d(y) colored neighbors, but it still has an available color.

Lemma 1

Given a connected graph G, let L be a list assignment such that $|L(v)| \geq d(v)$ for all v.

- (a) If |L(y)| > d(y) for some vertex y, then G is L-colorable.
- (b) If G is 2-connected and some two lists differ, then G is L-colorable.

Proof.

- For (a), root a spanning tree at y and color towards y (starting with leaves). Each vertex v in this order other than y will have an uncolored neighbor (< d(v) colored neighbors), so v has an available color in its list. Vertex y could have d(y) colored neighbors, but it still has an available color.
- For (b), find adjacent x,y such that $L(x)-L(y)\neq\emptyset$ (possible since G connected). Choose $c\in L(x)-L(y)$. Define lists for G-x as L'(v)=L(v) if $v\notin N(x)$, L'(v)=L(v)-c if $v\in N(x)$. Then, $|L'(v)|\geq d_{G-x}(v)\forall v\in V(G-x)$ and $|L'(y)|>d_{G-x}(y)$ (since $c\notin L(y)$). By part (a), color G-x, then use color c on x to extend to a coloring of G.

Definition 3

A graph G is f-choosable if it is L-colorable whenever $|L(v)| \ge f(v)$ for each vertex v, where $f: V(G) \to \mathbb{N}$. The graph is **degree-choosable** if it is L-colorable whenever $|L(v)| \ge d(v)$ for each vertex v.

Definition 3

A graph G is f-choosable if it is L-colorable whenever $|L(v)| \ge f(v)$ for each vertex v, where $f: V(G) \to \mathbb{N}$. The graph is **degree-choosable** if it is L-colorable whenever $|L(v)| \ge d(v)$ for each vertex v.

Lemma 2

If a connected graph G has a degree-choosable induced subgraph H, then G is degree-choosable.

Rubin's Block Theorem

The following structural result will be helpful to prove our final theorem.

Lemma 3 (Erdős-Rubin-Taylor (1979))

Every 2-connected graph G that is not a complete graph or odd cycle has an even cycle with at most one chord.

12 / 19

Graph Blocks

Definition 4

A **block** of a graph G is a maximal connected subgraph of G that has no cut-vertex.

Figure: The blocks of a graph G (Source: Wolfram MathWorld)

13 / 19

Non-Degree Choosable Graphs

Theorem 1 (Borodin (1977), Erdős-Rubin-Taylor (1979))

If graph G is not degree-choosable, then every block of G is a complete graph or an odd cycle.

Non-Degree Choosable Graphs

Theorem 1 (Borodin (1977), Erdős-Rubin-Taylor (1979))

If graph G is not degree-choosable, then every block of G is a complete graph or an odd cycle.

Proof idea.

- Any block B that is neither a complete graph nor an odd cycle has a degree-choosable subgraph H, which is an even cycle with at most one chord by Rubin's Block Theorem (3).
- ullet Even cycles are 2-choosable. For even cycles with a chord, color the same way as we color even cycles, using an extra color at one endpoint v of the chord. So H is degree-choosable, since d(v)=3.
- By Lemma 2, this would imply G is degree-choosable. But since we know G is not degree-choosable, we conclude that every block must be a complete graph or an odd cycle.

List Extension of Brooks' Theorem

Corollary 1

(List Extension of **Brooks' Theorem**) If a connected graph G is not a complete graph or an odd cycle, then $\chi_l(G) \leq \Delta(G)$.

Proof.

- Instead, prove the contrapositive. Suppose $\chi_l(G)>\Delta(G)$. By Proposition 1, G is not $(\Delta(G)-1)$ -degenerate, so $\delta(H)\geq\Delta(G)$ for some induced subgraph H, i.e. H is $\Delta(G)$ -regular.
- ullet G is connected and vertices of degree $\Delta(G)$ in H cannot have neighbors outside H, so H=G.
- By Theorem 1, every block of G is a complete graph or odd cycle. G is regular, so we have one block (cut-vertex separating a block from the rest of the graph would have higher degree) $\implies G$ is a complete graph or an odd cycle.

List Extension of Brooks' Theorem

Corollary 1

(List Extension of **Brooks' Theorem**) If a connected graph G is not a complete graph or an odd cycle, then $\chi_l(G) \leq \Delta(G)$.

Proof.

- Instead, prove the contrapositive. Suppose $\chi_l(G)>\Delta(G)$. By Proposition 1, G is not $(\Delta(G)-1)$ -degenerate, so $\delta(H)\geq\Delta(G)$ for some induced subgraph H, i.e. H is $\Delta(G)$ -regular.
- ullet G is connected and vertices of degree $\Delta(G)$ in H cannot have neighbors outside H, so H=G.
- By Theorem 1, every block of G is a complete graph or odd cycle. G is regular, so we have one block (cut-vertex separating a block from the rest of the graph would have higher degree) $\implies G$ is a complete graph or an odd cycle.
- $\chi(G) \leq \chi_l(G)$ for every graph G, so this corollary implies Brooks' Theorem, that for connected G, $\chi_l(G) = \Delta(G) + 1$ if and only if G is a complete graph or an odd cycle.

Abby & Ari

Correspondence Coloring

- Generalization of list coloring, introduced as a way to allow for vertex identification in proofs
- Instead of two adjacent vertices not being able to receive the **same** color, we establish a correspondence between the lists of vertices to determine what colors are forbidden at each vertex

- Generalization of list coloring, introduced as a way to allow for vertex identification in proofs
- Instead of two adjacent vertices not being able to receive the same color, we establish a
 correspondence between the lists of vertices to determine what colors are forbidden at each vertex

Definition 5

A correspondence assignment for a graph G consists of a list assignment L and a function C that to every edge $vw \in E(G)$ assigns a partial matching C_{vw} between L(v) and L(w).

- Generalization of list coloring, introduced as a way to allow for vertex identification in proofs
- Instead of two adjacent vertices not being able to receive the same color, we establish a
 correspondence between the lists of vertices to determine what colors are forbidden at each vertex

Definition 5

A correspondence assignment for a graph G consists of a list assignment L and a function C that to every edge $vw \in E(G)$ assigns a partial matching C_{vw} between L(v) and L(w).

An (L,C)-coloring of G is a function φ that assigns to each $v\in V(G)$ a color $\varphi(v)\in L(v)$ such that for every $vw\in E(G)$ the vertices $(v,\varphi(v))$ and $(w,\varphi(w))$ are non-adjacent in C_{vw} .

- Generalization of list coloring, introduced as a way to allow for vertex identification in proofs
- Instead of two adjacent vertices not being able to receive the same color, we establish a correspondence between the lists of vertices to determine what colors are forbidden at each vertex

Definition 5

A correspondence assignment for a graph G consists of a list assignment L and a function C that to every edge $vw \in E(G)$ assigns a partial matching C_{vw} between L(v) and L(w).

An (L,C)-coloring of G is a function φ that assigns to each $v\in V(G)$ a color $\varphi(v)\in L(v)$ such that for every $vw\in E(G)$ the vertices $(v,\varphi(v))$ and $(w,\varphi(w))$ are non-adjacent in C_{vw} .

Now G is (L,C)-coloring exists.

- Generalization of list coloring, introduced as a way to allow for vertex identification in proofs
- Instead of two adjacent vertices not being able to receive the same color, we establish a
 correspondence between the lists of vertices to determine what colors are forbidden at each vertex

Definition 5

A correspondence assignment for a graph G consists of a list assignment L and a function C that to every edge $vw \in E(G)$ assigns a partial matching C_{vw} between L(v) and L(w).

An (L,C)-coloring of G is a function φ that assigns to each $v\in V(G)$ a color $\varphi(v)\in L(v)$ such that for every $vw\in E(G)$ the vertices $(v,\varphi(v))$ and $(w,\varphi(w))$ are non-adjacent in C_{vw} .

Now G is (L,C)-colorable if such an (L,C)-coloring exists.

The correspondence chromatic number (or DP chromatic number), $\chi_{corr}(G)$ is the minimum k such that G is (L,C)-colorable whenever $|L(v)| \geq k$ for all $v \in V(G)$.

Example

 \bullet If |L(v)|=k for each vertex v, we can find an equivalent correspondence where L(v)=[k] for all $v\in V(G)$

Example

- If |L(v)| = k for each vertex v, we can find an equivalent correspondence where L(v) = [k] for all $v \in V(G)$
- Just as we can have $\chi_l(G) > \chi(G)$, we can also have $\chi_{corr}(G) > \chi_l(G)$.

Figure: C_4 has $\chi_{corr} > 2$, even though even cycles are 2-choosable [1].

Thank you! (and references)

- [1] Daniel W. Cranston.

 Graph Coloring Methods.

 [Self-published], 2024.
- [2] Douglas B. West.

 Combinatorial Mathematics.

 Cambridge University Press, 2021.