TERRO-REAL-ESTATE REPORT

~MOHAMMED SHAMIS KOLA

SO HERE WE HAD THE DATA GIVEN

- ► CRIME RATE: per capita crime rate by town
- ▶ INDUSTRY: the proportion of non-retail business acres per town (in percentage terms)
- NOX: nitric oxides concentration (parts per 10 million)
- ► AVG ROOM: average number of rooms per house
- ► AGE: the proportion of houses built prior to 1940 (in percentage terms)
- ▶ DISTANCE: distance from highway (in miles)
- ► TAX: full-value property-tax rate per \$10,000
- ▶ PTRATIO: pupil-teacher ratio by town
- ► LSTAT:% lower status of the population
- ► AVG_PRICE: Average value of houses in \$1000's

1) Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.

	CRIME_RA TE		INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
Mean	4.8719762 8	68.5749011 9	11.13677866	0.554695059	9.54940711 5	408.2371542	18.4555336	6.28463438 7	12.65306324	22.532806
Standard Error						7.492388692				
Median	4.82	77.5	9.69	0.538	5	330	19.05	6.2085	11.36	21.2
Mode	3.43	100	18.1	0.538	24	666	20.2	5.713	8.05	50
Standard Deviation										
Sample Variance						28404.75949			50.99475951	84.586723 6
Kurtosis	-					4 442407002				
	0.0217280	-			1.00481464	0.669955942	-	0.40361213		1.1080984
			27.28			524				45
-		2.9							1.73	
Maximum		100				711			37.97	
Sum	2465.22									
Count		506							506	
Count	300	500	500	300	300	500	500	300	500	300
Here LSTAT has t	he highest	positive ske	wness and C	rime rate has	the lowest +	ve skewness,	ans age has	the -ve skew	ness	

2) Plot a histogram of the Avg_Price variable. What do you infer?

Here we can observe that there 132 persons which are having the average b/w the range 20.5-24.6

3. Compute the covariance matrix. Share your observations.

	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE		
CRIME_RATE	8.516147873											
AGE	0.562915215	790.7924728										
	-											
INDUS	0.110215175	124.2678282	46.97142974									
NOX	0.000625308	2.381211931	0.605873943	0.0134011								
	-											
DISTANCE	0.229860488	111.5499555	35.47971449	0.61571022	75.66653127							
TAX	8.229322439	2397.941723	831.7133331	13.0205024	1333.116741	28348.6236						
PTRATIO	0.068168906	15.90542545	5.680854782	0.04730365	8.74340249	167.820822	4.677726296					
				-								
AVG_ROOM	0.056117778	-4.74253803	-1.88422543	0.02455483	-1.281277391	-34.515101	-0.539694518	0.49269522				
LSTAT	0.882680362	120.8384405	29.52181125	0.48797987	30.32539213	653.420617	5.771300243	-3.073655	50.89397935			
AVG BRIGE	4 44204224	07 30/45300	20 4/0505	-	20 50002025	-	40.000/75/4	4 40 45 45 5	10 25 17022	0.4.44055444		
AVG_PRICE	1.16201224	-97.39615288	-30.460505	0.45451241	-30.50083035	724.820428	-10.0906/561	4.48456555	-48.351/922	84.41955616		
HERE WE CAN O												

HERE WE CAN OBSERVE THAT THE DEPENDENT VARIABLE AVG_PRICE HAS THE CONSTANT COVARIANCE IN THE NEGATIVE SO WE CANNOT PREDICT THAT REGRESSION MODEL MAY HAVE THE SIGNIFICANT VALUE

- 4) Create a correlation matrix of all the variables (Use Data analysis tool pack).
- a) Which are the top 3 positively correlated pairs and b) Which are the top 3 negatively correlated pairs.

	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
CRIME_RATE	1									
AGE	0.006859463	1								
INDUS	-0.005510651	0.644778511	1							
NOX	0.001850982	0.731470104	0.763651447	1						
DISTANCE	-0.009055049	0.456022452	0.595129275	0.611440563	1					
TAX	-0.016748522	0.506455594	0.72076018	0.6680232	0.910228189	1				
PTRATIO	0.010800586	0.261515012	0.383247556	0.188932677	0.464741179	0.460853035	1			
AVG_ROOM	0.02739616	-0.240264931	-0.391675853	-0.302188188	-0.209846668	-0.292047833	-0.355501495	1		
LSTAT	-0.042398321	0.602338529	0.603799716	0.590878921	0.488676335	0.543993412	0.374044317	-0.613808272	1	
AVG_PRICE	0.043337871	-0.376954565	-0.48372516	-0.427320772	-0.381626231	-0.468535934	-0.507786686	0.695359947	-0.7376627	1
				TOP 3 +VE CORRE	LATED PAIRS	TOP 3 -VE CORRE	LATED PAIRS			
				DISTANCE-TAX		LSTAT-AVG_PRICE				
				INDUS-NOX		AVG_ROOM-LSTAT				
				AGE-NOX		PRATIO-AVG_PRIC	Œ			

- 5) Build an initial regression model with AVG_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.
- a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and Residual plot? b) Is LSTAT variable significant for the analysis based on your model?

RESIDUAL PLOT WE CAN SAY THAT THERE IS NO CONSTANT VARIATION
LSTAT HAS THE P-VALUE LESS THAN 0.05 SO WE CAN DO THE REGRESSION ANALYSIS

LSTAT IS NOT THE SIGNIFICANT VARIABLE

SO WE CANNOT PROCEED WITH THIS MODEL BECAUSE RSQUARE IS LESS THAN 60% AND MAX POSSIBLE ERROR IS GREATER THAN 10%

MEAN ROOT AVERAGE OF Y % 38.48297 6.203464 22.53280632 0.2753081

ASSUMPTIONS
MEAN -2.7365E-14 MET
SKEWNESS 1.45706199 NOT MET
THERE IS NO CONSTANT VARIANCE MET

Residuals

- 6) Build a new Regression model including LSTAT and AVG_ROOM together as Independent variables and AVG_PRICE as dependent variable
- a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging? b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain

SUMMARY								
OUTPUT								
Regres								
Statist Multiple	LICS							
R	0.7991							
	0.6385							
R Square	62		<0.6 MET					
Adjusted R Square	0.6371							
Standard	5.5402							
Error	57							
Observati								
ons	506							
ANOVA								
	df	SS	MS	F	Significan ce F			
Regressio	ŭ.		,,,,,	·				
n	2	27276.99	13638.49	444.3309	7E-112			
Residual	503	15439.31	30.69445					
Total	505	42716.3						
		Standard						Upper
	cients	Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	95.0%
	1.3582							
Intercept	7	3.172828	-0.4281	0.668765	-7.5919	4.875355	-7.59190028	4.875355
AVG_ROO	5.0947							
M	88	0.444466	11.46273	3.47E-27	4.22155	5.968026	4.221550436	5.968026
	-							
LCTAT	0.6423	0.042724	44 (007	((75 44	0.72020	0.5544	0.72027747	0.5544
LSTAT	6	0.043731					-0.72827717	-0.55644
				DOIL HAS	ITE P-VAL	JE GREATEI	T I HAN 5%	

		AVERAGE	
MEAN	ROOT	Υ	%
30.51246878	5.523809263	22.53281	0.245145198

ASSUMP [*]	TION		
	1.44741E-		
MEAN	14		MET
	1.3472279		
SKEW	92		NOT MET
NO CON	STANT VAR	IANCE	MET

7) Build another Regression model with all variables where AVG_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted R square, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG_PRICE.

0.832979 0.693854 0.688299		×0.6					
0.693854		-0.6					
0.693854		-0.6					
		-0.6					
0.688299		.0.0	MET				
5.134764							
506							
df	SS	MS	F	Significance F			
9	29638.86	3293.2					
		26.36	58				
505	42716.3						
fficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
29.24132	4.817126	6.0702	33 2.54E	09 19.77683	38.7058	19.77683	38.7058
0.048725	0.078419	0.6213	46 0.5346	57 -0.10535	0.202799	-0.10535	0.20279
0.032771	0.013098	2.5019	97 0.012	67 0.007037	0.058505	0.007037	0.05850
0.130551	0.063117	2.0683	92 0.0391	21 0.006541	0.254562	0.006541	0.254562
-10.3212	3.894036	-2.650	51 0.0082	94 -17.972	-2.67034	-17.972	-2.67034
-0.0144	0.003905	-3.687	74 0.0002	51 -0.02207	-0.00673	-0.02207	-0.00673
-1.07431	0.133602	-8.04	11 6.59E	15 -1.3368	-0.81181	-1.3368	-0.8118
4.125409	0.442759	9.3175	05 3.89E	19 3.255495	4.995324	3.255495	4.995324
-0.60349	0.053081	-11.36	91 8.91E	27 -0.70778	-0.49919	-0.70778	-0.49919
	df 9 496 505 fficients 29.24132 0.048725 0.032771 0.130551 -10.3212 0.261094 -0.0144 -1.07431 4.125409	df SS 9 29638.86 496 13077.43 505 42716.3 Ficients Standard Error 29.24132 4.817126 0.048725 0.078419 0.032771 0.013098 0.130551 0.063117 -10.3212 3.894036 0.261094 0.067947 -0.0144 0.003905 -1.07431 0.133602 4.125409 0.442759 -0.66349 0.053081	df SS MS 9 29638.86 3293.26 496 13077.43 26.36 505 42716.3 ficients Standard Error t Stat 29.24132 4.817126 6.0702 0.048725 0.078419 0.6213 0.032771 0.013098 2.5019 0.130551 0.063117 2.0683 -10.3212 3.894036 -2.650 0.261094 0.067947 3.8426 -0.0144 0.003905 -3.687 -1.07431 0.133602 -8.04 4.125409 0.442759 9.3175 -0.60349 0.053081 -11.366	df SS MS F 9 29638.86 3293.207 124.90 496 13077.43 26.3658 505 42716.3 Ficients Standard Error t Stat P-value 29.24132 4.817126 6.070283 2.54E-4 0.048725 0.078419 0.621346 0.5346 0.032771 0.013098 2.501997 0.012 0.130551 0.063117 2.068392 0.0391 -10.3212 3.894036 -2.65051 0.0082 0.261094 0.067947 3.842603 0.0001 -0.0144 0.003905 -3.68774 0.0002 -1.07431 0.133602 -8.0411 6.59E-1.07431 -1.07431 0.133602 -8.0411 6.59E-1.07431 -1.07431 0.133602 -8.0411 6.59E-1.07431 -1.07431 0.133602 -8.0411 6.59E-1.07431 -1.07431 0.133602 -8.0411 6.59E-1.07431	df SS MS F Significance F 9 29638.86 3293.207 124.9045 1.9E-121 496 13077.43 26.3658 505 42716.3 ficients Standard Error t Stat P-value Lower 95% 29.24132 4.817126 6.070283 2.54E-09 19.77683 0.048725 0.078419 0.621346 0.534657 -0.10535 0.032771 0.013098 2.501997 0.01267 0.007037 0.130551 0.063117 2.068392 0.039121 0.06541 -10.3212 3.894036 -2.65051 0.008294 -17.972 0.261094 0.067947 3.842603 0.000138 0.127594 -0.0144 0.003905 -3.68774 0.000251 -0.02207 -1.07431 0.133602 -8.0411 6.59E-15 -1.3368 4.125409 0.442759 9.317505 3.89E-19 3.255499	df SS MS F Significance F 9 2938.86 3293.207 124.9045 1.9E-121 496 13077.43 26.3658 505 42716.3 ficients Standard Error t Stat P-value Lower 95% Upper 95% 29.24132 4.817126 6.070283 2.54E-09 19.77683 38.7058 0.048725 0.078419 0.621346 0.534657 -0.10535 0.202799 0.032771 0.013098 2.501997 0.01267 0.007037 0.058505 0.130551 0.063117 2.068392 0.039121 0.006541 0.254562 -10.3212 3.894036 -2.65051 0.008294 -17.972 -2.67034 0.261094 0.067947 3.842603 0.000138 0.127594 0.394593 -0.0144 0.003905 -3.68774 0.000251 -0.02207 -0.00673 -1.07431 0.133602 -8.0411 6.59E-15 -1.3368 -0.81181 4.125409 0.442759 9.317505 3.89E-19 3.25595 4.995324 -0.060349 0.053081 -11.3691 8.91E-27 -0.70778 -0.49919	df SS MS F Significance F 9 29638.86 3293.207 124.9045 496 13077-43 26.3658 505 42716.3 ficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% 29.24132 4.817126 6.070283 2.54E-09 19.77683 38.7058 19.77683 0.048725 0.078419 0.621346 0.534657 -0.10535 0.202799 -0.10535 0.032771 0.013098 2.591997 0.01267 0.007037 0.058505 0.007037 0.130551 0.063117 2.068392 0.039121 0.006541 0.254562 0.006541 -10.3212 3.894036 -2.65051 0.008294 -17.772 -2.67034 17.7972 0.261094 0.067947 3.842603 0.000138 0.127594 0.394593 0.127594 -0.0144 0.003905 -3.68774 0.000251 -0.002207 -0.00673 -0.02207 -1.07431 0.133602 -8.0411 6.59E-15 -1.3368 -0.81181 -1.3368 4.125409 0.442759 9.317505 3.89E-19 3.255495 4.995324 3.255495 -0.60349 0.053081 -11.3691 8.91E-27 -0.70778 -0.49919 -0.70778

	CRIME_R ATE	AGE	INDUS	NOX	DISTANC E	TAX	PTRATIO	AVG_RO OM	LSTAT	AVG_PRI CE	
CRIME_R ATE	1										
AGE	0.006859	1									
INDUS	-0.00551	0.644779	1								
NOX	0.001851	0.73147	0.763651	1							
DISTANC											
E	-0.00906	0.456022	0.595129	0.611441	1						
TAX	-0.01675	0.506456	0.72076	0.668023	0.910228	1					
PTRATIO	0.010801	0.261515	0.383248	0.188933	0.464741	0.460853	1				
AVG_RO OM	0 027206	-0.24026	0.20169	0.20210	0 20095	0.20205	0.2555	1			
									4		
LSTAT	-0.0424	0.602339	0.6038	0.590879	0.4886/6	0.543993	0.3/4044	-0.61381	1		
AVG_PRI CE	0 042220	0.27405	0 40272	0 42722	0 20162	0 44054	0 50770	0.40524	0 72766	1	
CE	0.043336	-0.3/693	-0.463/3	-0.42/32	-0.36163	-0.40004	-0.50779	0.69536	-0./3/00		

HERE WE CAN PREDICT THAT WE CAN GET THE GOOD MODEL SINCE WE THE GOOD RELATIONSHIP WITH THE DEPENDENT VARIABLE

- 8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:
- a) Interpret the output of this model. b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square? c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town? d) Write the regression equation from this model.

SUMMARY OUTPUT								
Regression St	catistics							
Multiple R	0.832836			THERE IS NO EFFECTIVE CHANGE IN TH	HE VALUE OF RSQUARE			
R Square	0.693615		<0.6	EVEN AFTER REMOVING THE CRIME_RA	те			
Adjusted R Square	0.688684							
Standard Error	5.131591							
Observations	506							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	8	29628.68						
Residual	497	13087.61	26.33323					
Total	505	42716.3						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	29.42847	4.804729	6.124898	1.84597E-09	19.9883896	38.8685574	19.98839	38.8685574
AGE	0.032935	0.013087	2.516606	0.012162875	0.00722219	0.058647734	0.0072222	0.058647734
INDUS	0.13071	0.063078	2.072202	0.038761669	0.00677794	0.254642071	0.0067779	0.254642071
NOX	-10.2727	3.890849	-2.64022	0.008545718	-17.917246	-2.628164466	-17.917246	-2.628164466
DISTANCE	0.261506	0.067902	3.851242	0.000132887	0.12809638	0.394916471	0.1280964	0.394916471
TAX	-0.01445	0.003902	-3.70395	0.000236072	-0.0221186	-0.006786137	-0.0221186	-0.006786137
PTRATIO	-1.0717	0.133454	-8.03053	7.08251E-15	-1.3339051	-0.809499836	-1.3339051	-0.809499836
AVG_ROOM	4.125469	0.442485	9.3234	3.68969E-19	3.2560963	4.994841615	3.2560963	4.994841615
LSTAT	-0.60516	0.05298	-11.4224	5.41844E-27	-0.7092519	-0.501066704	-0.7092519	-0.501066704
LJIAI	-0.60516	0.05298	-11.4224	5.41844E-27	-0.7092519	-0.301066704	-0.7092519	-0.301066/04
				ALL THE VALUES ARE LESS THAN 5%				

MEAN	ROOT	AVG Y	%								
25.8648497	7										
ç	5.08574968	22.53280632	0.2257042								
			NOT MET G	REATER THAN	5%						
	ASSUMPTIO	N									
	MEAN	-1.03948E-14									
	SKEW	1.643869514	NOT MET								
							WE CANN	OT USE T	HIS MODE	L	
	THERE IS N	O CONSTANT	VARIATION				FURTHER				

Residuals

Column1	Coefficients										
NOX	-10.27270508										
NOX	-10.2/2/0506	LIEDE WE		THAT NOV	LIAC THE A	/F \/ A	CO THE AV	C DDICE V	WILL DECD	- ACE IE TII	E NOV IC
PTRATIO	-1.071702473				IN THIS TO		E SO THE AV	G_PRICE V	VILL DECRI	ASE IF IH	E NOX IS
STAT	-0.605159282										
ГАХ	-0.014452345										
AGE	0.03293496										
								AVG_ROO		AVG_PRIC	
NDUS	0.130710007	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	M	LSTAT	E	
DISTANCE	0.261506423	50	(9 0.	9 4	31	00 15.1	6.567	30		=177+173* K75+174*L 75+169*M 75+Table 1[@Coefficients]*N 75+172*O 75+170*P7 5+176*Q7
AVG_ROOM	4.125468959	50	ç	9 0.	6 4	3	00 15.1	6.567	30		= 77+Tab e1[@Coef ficients]* Q76+ 75* N76+ 73*K7 6+ 72*O7 6+ 71*R76 + 70*P76+ 69*M76
Intercept	29.42847349										
			HERE WE VERSA	CAN SAY	THAT IF VA	LUE OF I	NOX IS MORE	THEN AV	G_PRICE IS	LESS AND	VICE-