DM - CA1 - Mohamad Taha Fakharian

In this computer assignment, we're going to preprocess a dataset for covid history based on countries and display them to find some correlation between them and conclude some facts.

So let's start!

First we need to import some useful libraries for data preprocessing:

```
# Useful libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Data Preprocessing

Let's start with data preprocessing. First we need to save the dataset in a Pandas DataFrame and get a quick look at it:

```
In [33]:
            covid = pd.read_csv('CA1_Dataset.csv')
            covid.head()
                                     location
                                               date total_cases new_cases new_cases_smoothed total_deaths new_deaths new_deaths_smoothed
              iso code continent
                  AFG
                                  Afghanistan
                                                            5.0
                                                                                                                      NaN
                                                                        5.0
                                                                                             NaN
                                                                                                         NaN
                                                                                                                                             NaN
                             Asia
                                              02 - 24
                  AFG
                                                            5.0
                                                                                             NaN
                                                                                                         NaN
                             Asia
                                  Afghanistan
                                                                        0.0
                                                                                                                      NaN
                                                                                                                                             NaN
                                              2020-
           2
                  AFG
                                                                        0.0
                             Asia
                                  Afghanistan
                                                            5.0
                                                                                             NaN
                                                                                                         NaN
                                                                                                                      NaN
                                                                                                                                             NaN
                                              02-26
                                              2020-
           3
                  AFG
                                  Afghanistan
                                                            5.0
                                                                        0.0
                                                                                             NaN
                                                                                                         NaN
                                                                                                                      NaN
                                                                                                                                             NaN
                                              02-27
                                              2020-
                  AFG
                                  Afghanistan
                                                            5.0
                                                                        0.0
                                                                                             NaN
                                                                                                         NaN
                                                                                                                      NaN
                                                                                                                                             NaN ...
                             Asia
                                              02-28
          5 rows × 67 columns
```

Q1

Let's see how many rows are NA for each column in our dataset:

```
In [34]:
          pd.set option('display.max rows', None)
          print(covid.isna().sum())
         iso code
                                                               0
         continent
                                                            9917
         location
                                                               0
                                                               0
         date
                                                            3030
         total cases
                                                            3172
         new cases
         new cases smoothed
                                                            5156
                                                           20843
         total_deaths
         new_deaths
                                                           20803
         new deaths smoothed
                                                           22902
         total\_cases\_per\_million
                                                            3785
         new_cases_per_million
                                                            3927
                                                            5905
         new cases smoothed per million
         total_deaths_per_million
                                                           21585
                                                           21545
         new deaths per million
         new_deaths_smoothed_per_million
                                                           23638
                                                           40569
         reproduction rate
                                                          142246
         icu patients
         icu_patients_per_million
                                                          142246
                                                          141072
         hosp patients
         hosp_patients_per_million
                                                          141072
                                                          160232
         weekly_icu_admissions
         weekly_icu_admissions_per_million
                                                          160232
         weekly hosp admissions
                                                          154759
         weekly_hosp_admissions_per_million
                                                          154759
         new tests
                                                           98630
```

```
total tests
                                                 96692
                                                 96692
total_tests_per_thousand
new tests per thousand
                                                 98630
new tests smoothed
                                                 81978
{\tt new\_tests\_smoothed\_per\_thousand}
                                                 81978
positive_rate
                                                 87046
tests per case
                                                 87609
tests_units
                                                 79655
total vaccinations
                                                120658
people_vaccinated
                                                122844
people fully vaccinated
                                                125608
                                                148296
total boosters
new_vaccinations
                                                128384
                                                 81524
new vaccinations smoothed
total vaccinations per hundred
                                                120658
                                                122844
people_vaccinated_per_hundred
people fully vaccinated per hundred
                                                125608
total boosters per hundred
                                                148296
new_vaccinations_smoothed_per_million
                                                 81524
new_people_vaccinated_smoothed
                                                 82815
{\tt new\_people\_vaccinated\_smoothed\_per\_hundred}
                                                 82815
                                                 35774
stringency_index
                                                  1072
population
population density
                                                 18323
median age
                                                 28378
aged_65_older
                                                 29866
aged_70_older
                                                 29114
                                                 27708
gdp per capita
extreme poverty
                                                 74799
cardiovasc death rate
                                                 29428
diabetes prevalence
                                                 22287
female smokers
                                                 60027
male smokers
                                                 61476
handwashing facilities
                                                 97352
hospital beds per thousand
                                                 42485
life expectancy
                                                 11016
                                                 29953
human development index
excess_mortality_cumulative_absolute
                                               159940
excess mortality cumulative
                                                159940
                                                159940
excess mortality
excess mortality cumulative per million
                                                159940
dtvpe: int64
```

Let's replace them with appropriate values. As you can see, there are two non-numeric columns listed above: test_units and continent.

For continent, NA values are for rows which their locations are not really specific, like International or Africa(their records are not location-specific). For each NA value in continent's column, we'll check if its location is name of a continent or not; If it is, we'll fill NA will its location value. Otherwise, the continent is undefined and we'll fill it with UNDEFINED value.

For test_units, we had a great approach for filling NA values: For each NA value in test_units column, we check whether rows with same location have any non-NA value for test_units column: If there is any, we would fill NA with mode of that column with same location as that record. Otherwise, we would fill NA with mode of that column in total dataset. This approach can be applied for other columns too. It's a better replacement method than the traditional one, because it uses records for same location. We don't use this approach for this dataset, because it's too much time-consuming. The code for this approach is commented in the cell below. We'll use the traditional method so(mode of total dataset).

For numeric columns, there are two kind of columns: Daily stat like new cases and overall stats like population. For daily stat, since they're important in estimations and can be inaccurate if filled by mean of that column(for example, aggregation on new deaths after filling NA can be more than that country's population), we'll fill it with zero. For other stats, we first check if ratio of missing values to total records isn't that big. If it's really big(like 0.9 or even bigger), we'll fill NA with a constant like $-\infty$ (because there isn't sufficient data for us to predict the missing value). Otherwise, we'll fill it with mean of that column.

Pay attention! There are other methods for filling NA like decision trees. Sufficient data and time complexity is a big problem, so methods mentioned above are good for this dataset.

Let's fill NA values with this methods:

Finally, let's make sure that no more NA value is remained:

```
In [36]:
```

```
print(covid.isna().sum())
iso code
continent
                                                0
location
                                                Θ
date
                                                0
total cases
                                                0
new cases
                                                0
new cases smoothed
                                                0
total deaths
                                                0
new deaths
                                                0
{\tt new\_deaths\_smoothed}
                                                Θ
total cases per million
                                                0
new_cases_per_million
new_cases_smoothed_per_million
                                                0
total deaths per million
                                                0
new_deaths_per_million
new_deaths_smoothed_per_million
                                                0
reproduction_rate
                                                0
                                                0
icu patients
icu_patients_per_million
                                                0
hosp_patients
                                                0
hosp_patients_per_million
                                                0
weekly icu admissions
weekly icu admissions per million
                                                0
weekly_hosp_admissions
                                                0
weekly_hosp_admissions_per_million
                                                0
new tests
                                                0
{\tt total\_tests}
                                                0
total_tests_per_thousand
                                                0
new tests per thousand
new_tests_smoothed
                                                0
new_tests_smoothed_per_thousand
                                                0
positive_rate
                                                0
                                                0
tests_per_case
                                                0
tests units
total_vaccinations
                                                0
                                                0
people vaccinated
people fully vaccinated
                                                0
total_boosters
                                                0
new_vaccinations
                                                0
new vaccinations smoothed
total vaccinations per hundred
                                                0
people_vaccinated_per_hundred
                                                0
people fully vaccinated per hundred
total_boosters_per_hundred
                                                0
new_vaccinations_smoothed_per_million
                                                0
new_people_vaccinated_smoothed
new people vaccinated smoothed per hundred
                                                0
stringency_index
                                                0
population
                                                0
population density
                                                0
median age
                                                0
aged_65_older
                                                0
aged 70 older
                                                0
gdp per capita
                                                0
extreme_poverty
                                                0
cardiovasc_death_rate
                                                0
diabetes prevalence
                                                0
female smokers
                                                0
male_smokers
                                                0
handwashing facilities
                                                0
hospital beds per thousand
                                                0
                                                0
life expectancy
human development index
                                                0
excess mortality cumulative absolute
                                                0
excess_mortality_cumulative
                                                0
excess_mortality
                                                0
excess mortality cumulative per million
                                                0
```

dtype: int64

```
In [37]:
          covid.to csv('Completed.csv')
```

Q2

Now we want to get a better sense of data for each country. Let's aggregate new cases, new deaths and location columns for each country by date. For aggregation of new_cases and new_deaths, we'll use sum but for population, since its value is same for rows with same location(country), we'll use min function. So let's start:

```
In [38]:
           pd.reset_option('display.max rows')
In [39]:
            summarized = covid[["location", "new cases", "new deaths", "new vaccinations"]]
           summarized = summarized.groupby(by=["location"]).sum()
           summarized = summarized.join(covid[["location", "population"]].groupby(by=["location"]).min())
           summarized
Out[39]:
                             new_cases new_deaths new_vaccinations
                                                                       population
                   location
                              174081.0
                                             7617.0
                                                       1.374200e+04 3.983543e+07
               Afghanistan
                             11230524.0
                                          248668.0
                     Africa
                                                       5.818190e+08 1.373486e+09
                              271825.0
                                             3474.0
                                                       1.415150e+06 2.872934e+06
                   Albania
                              265079.0
                                            6843.0
                                                       1.707860e+05 4.461663e+07
                    Algeria
                   Andorra
                               38249.0
                                             151.0
                                                       4.802000e+03 7.735400e+04
           Wallis and Futuna
                                  454.0
                                               7.0
                                                       0.000000e+00 1.109400e+04
                     World 439011701.0
                                         5946817 0
                                                       1.122516e+10 7.874966e+09
                               11772.0
                                                       0.000000e+00 3.049064e+07
                    Yemen
                                            2135.0
                              313203.0
                    Zambia
                                            3955.0
                                                       1.321156e+06 1.892066e+07
                 Zimbabwe
                              237509 0
                                            5396 0
                                                       7.080893e+06 1.509217e+07
```

238 rows × 4 columns

```
In [40]:
          summarized.to_csv('Summarized.csv')
```

Q3

2

AFG

AFG

To add Jalali date to dataframe, we use 'jdatetime' library. Unfortunately, jdatetime library doesn't work with Numpy and Pandas library and thus, we can't use vectorization to calculate Jalali date. Thus, we'll loop over rows and calculate Jalali date for each row:

```
In [41]:
           import jdatetime
           covid['date'] = pd.to_datetime(covid['date'])
           covid['jalali_date'] = covid['date']
           for index, row in covid.iterrows():
               y, m , d = row['date'].year, row['date'].month, row['date'].day
               covid.at[index, 'jalali date'] = str(jdatetime.date.fromgregorian(day=int(d),month=int(m),year=int(y)))
In [42]:
           covid
                  iso_code continent
                                      location
                                                    total_cases new_cases new_cases_smoothed total_deaths new_deaths new_deaths_smoothed
Out[42]:
                                               date
                                               2020
               0
                     AFG
                               Asia
                                   Afghanistan
                                                           5.0
                                                                      5.0
                                                                                        0.000
                                                                                                     0.0
                                                                                                                 0.0
                                                                                                                                   0.000
                                              02-24
                                               2020-
                     AFG
                                   Afghanistan
                                                           5.0
                                                                      0.0
                                                                                        0.000
                                                                                                     0.0
                                                                                                                 0.0
                                                                                                                                   0.000
                               Asia
```

0.0

0.0

5.0

5.0

0.000

0.000

0.0

0.0

0.0

0.0

0.000

0.000

02-25

02-26

Afghanistan

Afghanistan

Asia

Asia

	4	AFG	Asia	Afghanistan	2020- 02-28	5.0	0.0	0.000	0.0	0.0	0.000
165	5631	ZWE	Africa	Zimbabwe	2022- 02-26	235803.0	336.0	368.429	5393.0	1.0	1.000
165	5632	ZWE	Africa	Zimbabwe	2022- 02-27	235803.0	0.0	350.143	5393.0	0.0	1.000
165	5633	ZWE	Africa	Zimbabwe	2022- 02-28	236380.0	577.0	401.286	5395.0	2.0	1.28€
165	5634	ZWE	Africa	Zimbabwe	2022- 03-01	236871.0	491.0	413.000	5395.0	0.0	1.000
165	5635	ZWE	Africa	Zimbabwe	2022- 03-02	237503.0	632.0	416.286	5396.0	1.0	1.148
165	636 rov	ws × 68 co	lumns								

```
In [43]: covid.to_csv('Jalali.csv')
```

Q4

To find redundant features in dataframe, we can calculate correlation between features, which is known as correlation matrix. Let's calculate correlation matrix!

	total_cases	new_cases	new_cases_smoothed	total_deaths	new_deaths	new_deaths_smoothed
total_cases	1.000000	0.806677	0.827899	0.968956	0.726685	0.747316
new_cases	0.806677	1.000000	0.976958	0.735240	0.668096	0.654269
new_cases_smoothed	0.827899	0.976958	1.000000	0.749612	0.663865	0.673995
total_deaths	0.968956	0.735240	0.749612	1.000000	0.781224	0.803281
new_deaths	0.726685	0.668096	0.663865	0.781224	1.000000	0.975575
human_development_index	0.029702	0.028335	0.028472	0.030726	0.032106	0.032645
excess_mortality_cumulative_absolute	0.802190	0.464078	0.509117	0.928284	0.493040	0.655323
excess_mortality_cumulative	0.139572	0.090745	0.075321	0.338096	0.301056	0.254753
excess_mortality	0.034064	0.092382	0.070259	0.110488	0.395089	0.322358
excess_mortality_cumulative_per_million	0.228241	0.124742	0.127365	0.370520	0.193819	0.203090

as you can see, some of features are correlated and are saved redundantly. For example, look at correlation of new_cases and total_cases. Their correlation shows that using new_cases, we can calculate total_cases from that, which is clearly true. In particular, for each feature in dataframe, if that feature could be calculated using some function(like sum or max) and other features, we can drop that feature, since it's redundant feature. In this dataframe, 'total' features can be dropped, according to this explanation.

Q5

Now we'll get Iran's dataframe from original dataframe:

```
In [45]:
            iran = covid[covid['location'] == 'Iran']
            iran
                                                date total_cases new_cases new_cases_smoothed total_deaths new_deaths new_deaths_smoothed
Out[45]:
                  iso_code continent location
                                                2020-
           71639
                       IRN
                                                                                             0.000
                                                                                                                                             0.000
                                 Asia
                                          Iran
                                                              2.0
                                                                          2.0
                                                                                                            2.0
                                                                                                                         2.0
                                                02-19
                                                2020-
           71640
                       IRN
                                                              5.0
                                                                          3.0
                                                                                             0.000
                                                                                                            2.0
                                                                                                                         0.0
                                                                                                                                             0.000
                                 Asia
                                          Iran
                                                02-20
                                                2020-
           71641
                       IRN
                                 Asia
                                                             18.0
                                                                        13.0
                                                                                             0.000
                                                                                                            4.0
                                                                                                                         2.0
                                                                                                                                             0.000
                                                02-21
                                                2020-
```

71642	IRN	Asia	Iran	02-22	28.0	10.0	0.000	5.0	1.0	0.000
71643	IRN	Asia	Iran	2020- 02-23	43.0	15.0	0.000	8.0	3.0	0.000
72377	IRN	Asia	Iran	2022- 02-26	7030943.0	7039.0	15065.429	136390.0	224.0	227.429
72378	IRN	Asia	Iran	2022- 02-27	7040467.0	9524.0	14002.143	136631.0	241.0	227.286
72379	IRN	Asia	Iran	2022- 02-28	7051429.0	10962.0	12838.143	136838.0	207.0	223.143
72380	IRN	Asia	Iran	2022- 03-01	7060741.0	9312.0	11015.143	137064.0	226.0	223.571
72381	IRN	Asia	Iran	2022- 03-02	7066975.0	6234.0	9714.286	137267.0	203.0	220.143
743 rows	× 68 colun	nns								

In [46]:

iran.to_csv('Iran.csv')

Q6

Let's extract month from date and add a month column to iran's dataframe:

In [47]:

iran['month'] = iran['date'].dt.month
iran

/home/taha/.local/lib/python3.7/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

	iso_code	continent	location	date	total_cases	new_cases	new_cases_smoothed	total_deaths	new_deaths	new_deaths_smoothed	
71639	IRN	Asia	Iran	2020- 02-19	2.0	2.0	0.000	2.0	2.0	0.000	
71640	IRN	Asia	Iran	2020- 02-20	5.0	3.0	0.000	2.0	0.0	0.000	
71641	IRN	Asia	Iran	2020- 02-21	18.0	13.0	0.000	4.0	2.0	0.000	
71642	IRN	Asia	Iran	2020- 02-22	28.0	10.0	0.000	5.0	1.0	0.000	
71643	IRN	Asia	Iran	2020- 02-23	43.0	15.0	0.000	8.0	3.0	0.000	
72377	IRN	Asia	Iran	2022- 02-26	7030943.0	7039.0	15065.429	136390.0	224.0	227.429	
72378	IRN	Asia	Iran	2022- 02-27	7040467.0	9524.0	14002.143	136631.0	241.0	227.286	
72379	IRN	Asia	Iran	2022- 02-28	7051429.0	10962.0	12838.143	136838.0	207.0	223.143	
72380	IRN	Asia	Iran	2022- 03-01	7060741.0	9312.0	11015.143	137064.0	226.0	223.571	
72381	IRN	Asia	Iran	2022- 03-02	7066975.0	6234.0	9714.286	137267.0	203.0	220.143	
743 rov	vs × 69 col	umns									

Here, we'll drop 'date' and 'jalali_date' columns for aggregation(since they're meaningless for aggregation):

```
In [48]:
           iran_2021 = iran[iran['date'].dt.year == 2021]
           news = []
           for column in iran_2021:
                if column.startswith('new'):
                    news.append(column)
           news.append('month')
           iran_news = iran_2021[news].copy()
           news.pop()
           news.append('date')
           news.append('jalali_date')
           iran others = iran 2021.drop(news, axis=1)
           iran_news = iran_news.groupby(by="month").sum()
           iran_others = iran_others.groupby(by="month").max()
           iran_summarized = iran_news.join(iran_others)
           iran summarized
Out[48]:
                  new_cases new_cases_smoothed new_deaths new_deaths_smoothed new_cases_per_million new_cases_smoothed_per_million new_deaths
           month
                                      191987 285
                    192857 0
                                                     2736.0
                                                                         2899 717
                                                                                              2268 141
                                                                                                                             2257 909
               1
              2
                   213170.0
                                      208151.000
                                                     2114.0
                                                                         2095.712
                                                                                              2507.034
                                                                                                                             2448.008
               3
                   254395.0
                                      249951.002
                                                      2592.0
                                                                         2575.569
                                                                                              2991.869
                                                                                                                             2939.607
                   613513.0
                                      581349.857
                                                     9093 0
                                                                         8084 143
                                                                                              7215.358
                                                                                                                             6837 099
                   414059.0
                                      446317.573
                                                      8398.0
                                                                         9098.854
                                                                                              4869.633
                                                                                                                             5249.018
               5
               6
                   291421.0
                                      286083.287
                                                     4108.0
                                                                         4275.714
                                                                                              3427.322
                                                                                                                             3364.546
                                      617035.143
                   666451.0
                                                     6366.0
                                                                         5891 143
                                                                                              7837 948
                                                                                                                             7256 777
```

12 rows × 66 columns

1121055.0

594977.0

337598.0

192807.0

76956.0

1108662.715

650810.142

350551.429

207642.000

83420.570

8

10

11

12

```
In [49]:
    iran_summarized.to_csv('Iran_Summarized.csv')
```

16160.286

13715.144

6220.143

3705.283

1932.000

13184.422

6997.364

3970.399

2267.547

905.060

13038.678

7654.000

4122,742

2442.022

981.088

Data Visualization

In this part, we're going to visualize dataframes calculated in previous part and conclude from them. Let's start!

17164.0

12634.0

5875.0

3527.0

1776.0

We'll use 'seaborn' library for data visualization:

```
In [50]: import seaborn as sns
```

Q₁

First we want to see which countries have had best and worst performance in controlling Corona Virus. We'll use total deaths per population for the measurement of performance and use a bar chart to see this rate among all countries. Let's go!

```
In [51]:
    summarized_copy = summarized.copy()
    summarized_copy = summarized_copy[['new_deaths', 'population']]
    summarized_copy['deaths_per_population'] = summarized_copy['new_deaths'] / summarized_copy['population']
    summarized_copy = summarized_copy.sort_values(by=['deaths_per_population']))
    best = summarized_copy[:10]
    best_over_zero = summarized_copy[summarized_copy['deaths_per_population'] > 0][:10]
    worst = summarized_copy[-10:]

In [52]:
    plt.figure(figsize=(80,30))
    ax = sns.barplot(x=summarized_copy.index, y=summarized_copy['deaths_per_population'], color='b')
    plt.xticks(rotation = 45)
    ax.set_title("Performance in Controlling Corona Virus")
```


Let's see the results. Since for some countries, dataset may not have enough data for deaths, we get the best countries with ratio greater than zero too. In the following cells, you can see best and worst countries with their performances:

In [53]:

best

Out[53]:

	new_deaths	population	deaths_per_population
location			
Tokelau	0.0	1.368000e+03	0.0
Cook Islands	0.0	1.757200e+04	0.0
Samoa	0.0	2.001440e+05	0.0
Saint Helena	0.0	6.095000e+03	0.0
Pitcairn	0.0	4.700000e+01	0.0
Northern Cyprus	0.0	1.474690e+08	0.0
Niue	0.0	1.614000e+03	0.0
Tonga	0.0	1.067590e+05	0.0
Turkmenistan	0.0	6.117933e+06	0.0
Tuvalu	0.0	1.192500e+04	0.0

In [54]: best_over_zero

Out[54]:

	new_deaths	population	deaths_per_population
location			
International	15.0	1.474690e+08	1.017163e-07
Burundi	38.0	1.225543e+07	3.100667e-06
Vanuatu	1.0	3.144640e+05	3.180014e-06
China	4640.0	1.444216e+09	3.212816e-06
Bhutan	6.0	7.799000e+05	7.693294e-06
New Zealand	56.0	5.126300e+06	1.092406e-05
Chad	190.0	1.691498e+07	1.123264e-05
South Sudan	137.0	1.138138e+07	1.203721e-05
Niger	307.0	2.513081e+07	1.221608e-05
Tajikistan	125.0	9.749625e+06	1.282101e-05

In [55]:

worst

Out[55]:

new_deaths population deaths_per_population

location			
Slovakia	18567.0	5449270.0	0.003407
Czechia	38771.0	10724553.0	0.003615
Croatia	15122.0	4081657.0	0.003705
Georgia	16231.0	3979773.0	0.004078
Montenegro	2683.0	628051.0	0.004272
North Macedonia	9036.0	2082661.0	0.004339
Hungary	44134.0	9634162.0	0.004581
Bosnia and Herzegovina	15506.0	3263459.0	0.004751
Bulgaria	35696.0	6896655.0	0.005176
Peru	211453.0	33359415.0	0.006339

To conclude, we can see that countries with better facilities in health, have had better performance in dealing with COVID-19.

Q2

Out[56]:

Now we want to see the effect of vaccination on number of deaths. To get a better sense, we'll sort countries by ratio of total vaccinations to population and from each quintile, we'll sample one country and finally, we'll plot a scatter plot to see the effect of vaccination on number of deaths. Let's go!

```
In [56]:
    pd.set_option('display.max_rows',None)
    summarized_copy = summarized.copy()
    summarized_copy['first_ratio'] = (summarized_copy['new_vaccinations'] / summarized_copy['population'])
    summarized_copy['second_ratio'] = (summarized_copy['new_deaths'] / summarized_copy['population'])
    summarized_copy = summarized_copy.sort_values(by= 'first_ratio', ascending= False)
    summarized_copy
```

	new_cases	new_deaths	new_vaccinations	population	first_ratio	second_ratio
location						
Cuba	1070730.0	8497.0	3.065243e+07	1.131750e+07	2.708410	7.507843e-04
Gibraltar	15632.0	101.0	8.906400e+04	3.369100e+04	2.643555	2.997833e-03
Chile	3098110.0	42624.0	4.855777e+07	1.921236e+07	2.527423	2.218572e-03
Singapore	767663.0	1040.0	1.357254e+07	5.453600e+06	2.488730	1.906997e-04
Malta	71497.0	608.0	1.205547e+06	5.161000e+05	2.335879	1.178066e-03
South Korea	3691487.0	8394.0	1.192514e+08	5.130518e+07	2.324354	1.636092e-04
Denmark	2805858.0	4633.0	1.317204e+07	5.813302e+06	2.265845	7.969653e-04
Italy	12868066.0	155245.0	1.343115e+08	6.036747e+07	2.224899	2.571666e-03
Uruguay	846889.0	7005.0	7.622054e+06	3.485152e+06	2.187008	2.009955e-03
Belgium	3563841.0	30316.0	2.504046e+07	1.163233e+07	2.152660	2.606184e-03
Canada	3303284.0	36728.0	8.106477e+07	3.806791e+07	2.129478	9.648020e-04
Ireland	1315500.0	6540.0	1.056764e+07	4.982904e+06	2.120779	1.312488e-03
China	109423.0	4640.0	3.061013e+09	1.444216e+09	2.119498	3.212816e-06
France	23316777.0	138537.0	1.408496e+08	6.742200e+07	2.089075	2.054774e-03
Australia	3326214.0	5319.0	5.379783e+07	2.578822e+07	2.086140	2.062570e-04
New Zealand	166103.0	56.0	1.067335e+07	5.126300e+06	2.082077	1.092406e-05
Malaysia	3496090.0	32942.0	6.741625e+07	3.277620e+07	2.056866	1.005059e-03
Norway	1279169.0	1666.0	1.123317e+07	5.465629e+06	2.055238	3.048140e-04
Cambodia	131004.0	3032.0	3.467897e+07	1.694645e+07	2.046386	1.789166e-04
Germany	15175471.0	123431.0	1.701530e+08	8.390047e+07	2.028034	1.471160e-03
United Arab Emirates	880970.0	2301.0	2.018434e+07	9.991083e+06	2.020235	2.303054e-04
United Kingdom	18241147.0	160727.0	1.372498e+08	6.820711e+07	2.012251	2.356455e-03
Israel	3652454.0	10245.0	1.801561e+07	9.291000e+06	1.939039	1.102680e-03
Portugal	3282618.0	21111.0	1.964667e+07	1.016792e+07	1.932221	2.076235e-03
Upper middle income	118212049.0	2421471.0	4.804681e+09	2.513673e+09	1.911419	9.633199e-04

High income	236393139.0	2211971.0	2.306054e+09	1.214930e+09	1.898096	1.820657e-03
Luxembourg	186210.0	995.0	1.178840e+06	6.348140e+05	1.856985	1.567388e-03
Greece	2454429.0	25972.0	1.907120e+07	1.037075e+07	1.838941	2.504352e-03
Liechtenstein	12165.0	78.0	7.022800e+04	3.825400e+04	1.835834	2.039002e-03
Peru	3518721.0	211453.0	6.113136e+07	3.335942e+07	1.832507	6.338630e-03
European Union	110033392.0	1015772.0	8.184271e+08	4.471899e+08	1.830156	2.271456e-03
Brazil	28741413.0	650254.0	3.902730e+08	2.139934e+08	1.823761	3.038663e-03
Argentina	8912317.0	126390.0	8.251164e+07	4.560582e+07	1.809235	2.771357e-03
Switzerland	2842412.0	13269.0	1.556814e+07	8.715494e+06	1.786260	1.522461e-03
Ecuador	844764.0	22611.0	3.131789e+07	1.788847e+07	1.750730	1.263998e-03
Qatar	357583.0	670.0	5.106175e+06	2.930524e+06	1.742410	2.286281e-04
North America	93195128.0	1374621.0	1.030269e+09	5.965813e+08	1.726955	2.304164e-03
Oceania	3735739.0	7922.0	7.462766e+07	4.321995e+07	1.726695	1.832950e-04
Hong Kong	293754.0	1168.0	1.302273e+07	7.552800e+06	1.724226	1.546446e-04
South America	54222621.0	1247285.0	7.462801e+08	4.342601e+08	1.718509	2.872207e-03
		94837.0	1.434464e+08	8.504274e+07	1.686757	1.115169e-03
Turkey	13382896.0 519584.0	1511.0	2.927653e+06	1.748295e+06		8.642706e-04
Bahrain	158815550.0	1717056.0	1.247823e+09	7.489630e+08	1.674576 1.666068	2.292578e-03
Europe				3.329151e+08		
United States	79143715.0	954518.0	5.537498e+08		1.663336	2.867152e-03
Lithuania	913223.0	8442.0	4.449324e+06	2.689862e+06	1.654109	3.138451e-03
Saudi Arabia	746066.0	9002.0	5.737721e+07	3.534068e+07	1.623546	2.547206e-04
Czechia	3602844.0	38771.0	1.739288e+07	1.072455e+07	1.621781	3.615162e-03
Asia	117811418.0	1351250.0	7.544342e+09	4.678445e+09	1.612575	2.888246e-04
Thailand	2958176.0	23072.0	1.087844e+08	6.995084e+07	1.555156	3.298316e-04
Taiwan	20584.0	853.0	3.695129e+07	2.385501e+07	1.548995	3.575769e-05
Latvia	673218.0	5284.0	2.855540e+06	1.866934e+06	1.529535	2.830309e-03
Sri Lanka	647699.0	16267.0	3.284874e+07	2.149731e+07	1.528040	7.566995e-04
Estonia	504148.0	2268.0	1.955946e+06	1.325188e+06	1.475976	1.711455e-03
World	439011701.0	5946817.0	1.122516e+10	7.874966e+09	1.425424	7.551547e-04
Slovenia	897040.0	6327.0	2.956720e+06	2.078723e+06	1.422373	3.043696e-03
Maldives	171114.0	297.0	7.707100e+05	5.436200e+05	1.417737	5.463375e-04
Panama	756085.0	8098.0	5.934725e+06	4.381583e+06	1.354471	1.848190e-03
Spain	11139724.0	100778.0	6.310748e+07	4.674521e+07	1.350031	2.155900e-03
Mongolia	909379.0	2171.0	4.407760e+06	3.329282e+06	1.323937	6.520926e-04
Japan	5143816.0	24140.0	1.667069e+08	1.260508e+08	1.322538	1.915101e-04
Vietnam	3709481.0	40637.0	1.209025e+08	9.816883e+07	1.231578	4.139501e-04
India	42945160.0	507015.0	1.708969e+09	1.393409e+09	1.226466	3.638666e-04
Dominican Republic	575157.0	4370.0	1.331425e+07	1.095371e+07	1.215501	3.989514e-04
Lower middle income	82588725.0	1271503.0	3.974325e+09	3.330653e+09	1.193257	3.817579e-04
Curacao	39016.0	261.0	1.840890e+05	1.647960e+05	1.117072	1.583776e-03
Mexico	5521744.0	311470.0	1.451079e+08	1.302622e+08	1.113968	2.391100e-03
Bhutan	13535.0	6.0	8.620330e+05	7.799000e+05	1.105312	7.693294e-06
Isle of Man	23099.0	80.0	9.206400e+04	8.541000e+04	1.077907	9.366585e-04
Trinidad and Tobago	128691.0	3637.0	1.503347e+06	1.403374e+06	1.071238	2.591611e-03
Bolivia	893775.0	21443.0	1.258651e+07	1.183294e+07	1.063684	1.812145e-03
Aruba	33684.0	212.0	1.091530e+05	1.071950e+05	1.018266	1.977704e-03
Macao	81.0	0.0	6.627460e+05	6.583910e+05	1.006615	0.000000e+00
Azerbaijan	787367.0	9454.0	1.023182e+07	1.022334e+07	1.000829	9.247463e-04
Barbados	55543.0	316.0	2.868630e+05	2.877080e+05	0.997063	1.098336e-03
Poland	5694767.0	111864.0	3.742697e+07	3.779700e+07	0.990210	2.959600e-03
Indonesia	5630096.0	149036.0	2.724306e+08	2.763618e+08	0.985775	5.392786e-04
Kazakhstan	1450652.0	19239.0	1.870224e+07	1.899496e+07	0.984590	1.012848e-03
Russia	16353868.0	346197.0	1.434654e+08	1.459120e+08	0.983232	2.372642e-03
Colombia	6067023.0	138899.0	4.938413e+07	5.126584e+07	0.963295	2.709387e-03
Montenegro	230512.0	2683.0	5.963530e+05	6.280510e+05	0.949530	4.271946e-03

Croatia	1058453.0	15122.0	3.677004e+06	4.081657e+06	0.900861	3.704868e-03
Romania	2748777.0	63668.0	1.665058e+07	1.912777e+07	0.870492	3.328563e-03
Hungary	1793120.0	44134.0	8.276404e+06	9.634162e+06	0.859068	4.580990e-03
Greenland	11760.0	19.0	4.333600e+04	5.686800e+04	0.762045	3.341071e-04
El Salvador	156456.0	4077.0	4.886767e+06	6.518500e+06	0.749677	6.254506e-04
Kosovo	226392.0	3116.0	1.330147e+06	1.782115e+06	0.746387	1.748484e-03
Guatemala	784024.0	17021.0	1.341083e+07	1.824987e+07	0.734845	9.326643e-04
Morocco	1161290.0	16002.0	2.740605e+07	3.734479e+07	0.733866	4.284935e-04
Ukraine	5040518.0	112459.0	3.168315e+07	4.346682e+07	0.728904	2.587238e-03
Tunisia	999441.0	27824.0	8.530717e+06	1.193576e+07	0.714719	2.331145e-03
Faeroe Islands	34658.0	28.0	3.481300e+04	4.905300e+04	0.709702	5.708112e-04
Lebanon	1072537.0	10115.0	4.755512e+06	6.769151e+06	0.702527	1.494279e-03
Iceland	135748.0	66.0	2.588510e+05	3.687920e+05	0.701889	1.789627e-04
Bulgaria	1096194.0	35696.0	4.143716e+06	6.896655e+06	0.600830	5.175842e-03
Brunei	71667.0	129.0	2.627530e+05	4.415320e+05	0.595094	2.921646e-04
San Marino	14435.0	112.0	2.014100e+04	3.401000e+04	0.592208	3.293149e-03
Suriname	78353.0	1317.0	3.429360e+05	5.917980e+05	0.579482	2.225422e-03
Paraguay	642573.0	18422.0	4.105501e+06	7.219641e+06	0.568657	2.551650e-03
Bangladesh	1945108.0	29053.0	8.807564e+07	1.663035e+08	0.529608	1.746987e-04
Philippines	3663931.0	56506.0	5.494906e+07	1.110469e+08	0.494827	5.088480e-04
Albania	271825.0	3474.0	1.415150e+06	2.872934e+06	0.492580	1.209217e-03
Cyprus	326611.0	859.0	4.282040e+05	8.960050e+05	0.477904	9.587000e-04
Serbia	1916707.0	15318.0	3.257010e+06	6.871547e+06	0.473985	2.229192e-03
Zimbabwe	237509.0	5396.0	7.080893e+06	1.509217e+07	0.469177	3.575364e-04
North Macedonia	298195.0	9036.0	9.505510e+05	2.082661e+06	0.456412	4.338680e-03
Uzbekistan	236596.0	1637.0	1.512707e+07	3.393576e+07	0.445756	4.823819e-05
Seychelles	39408.0	163.0	4.286300e+04	9.891000e+04	0.433354	1.647963e-03
Africa	11230524.0	248668.0	5.818190e+08	1.373486e+09	0.423607	1.810487e-04
Jordan	1638338.0	13849.0	4.260392e+06	1.026902e+07	0.414878	1.348619e-03
Pakistan	1511754.0	30237.0	8.561347e+07	2.251999e+08	0.380167	1.342674e-04
Georgia	1616159.0	16231.0	1.413257e+06	3.979773e+06	0.355110	4.078373e-03
Moldova	502956.0	10657.0	1.305637e+06	4.024025e+06	0.324460	2.648343e-03
Nepal	977200.0	11941.0	9.492136e+06	2.967492e+07	0.319871	4.023937e-04
Palestine	648039.0	5532.0	1.655605e+06	5.222756e+06	0.316998	1.059211e-03
Kyrgyzstan	200556.0	3403.0	2.076513e+06	6.628347e+06	0.313278	5.134010e-04
Belize	56816.0	654.0	1.226920e+05	4.049150e+05	0.303007	1.615154e-03
Guernsey	0.0	0.0	1.593100e+04	6.338500e+04	0.251337	0.000000e+00
Laos	143240.0	623.0	1.802450e+06	7.379358e+06	0.244256	8.442469e-05
South Africa	3659100.0	99135.0	1.442119e+07	6.004200e+07	0.240185	1.651094e-03
Cayman Islands	19373.0	17.0	1.533900e+04	6.649800e+04	0.230669	2.556468e-04
Finland	658559.0	2381.0	1.235072e+06	5.548361e+06	0.222601	4.291357e-04
Low income	1805056.0	41804.0	1.391686e+08	6.651490e+08	0.209229	6.284907e-05
Kenya	323002.0	5640.0	1.141772e+07	5.498570e+07	0.207649	1.025721e-04
Iran	7066975.0	137267.0	1.673545e+07	8.502876e+07	0.196821	1.614360e-03
Ethiopia	468786.0	7467.0	2.131937e+07	1.178762e+08	0.180862	6.334611e-05
Jamaica	128079.0	2814.0	4.916840e+05	2.973462e+06	0.165357	9.463716e-04
Saint Lucia	22729.0	360.0	2.625500e+04	1.844010e+05	0.142380	1.952267e-03
Saint Vincent and the Grenadines	10045.0	106.0	1.569000e+04	1.112690e+05	0.141010	9.526463e-04
Saint Kitts and Nevis	5530.0	42.0	6.553000e+03	5.354600e+04	0.122381	7.843723e-04
Guinea	36397.0	440.0	1.586407e+06	1.349724e+07	0.117536	3.259926e-05
Guyana	62986.0	1222.0	8.656300e+04	7.903290e+05	0.109528	1.546192e-03
Eswatini	69211.0	1390.0	1.107650e+05	1.172369e+06	0.094480	1.185634e-03
Anguilla	2555.0	10.0	1.421000e+03	1.512500e+04	0.093950	6.611570e-04
Namibia	157275.0	4010.0	2.347090e+05	2.587344e+06	0.090714	1.549852e-03
Dominica	11142.0	57.0	6.417000e+03	7.217200e+04	0.088913	7.897800e-04

Cote d'Ivoire	81552.0	794.0	2.285727e+06	2.705363e+07	0.084489	2.934911e-05
Antigua and Barbuda	7451.0	135.0	8.107000e+03	9.872800e+04	0.082114	1.367393e-03
Zambia	313203.0	3955.0	1.321156e+06	1.892066e+07	0.069826	2.090308e-04
Rwanda	129533.0	1457.0	9.206440e+05	1.327652e+07	0.069344	1.097426e-04
Malawi	85362.0	2617.0	1.267776e+06	1.964768e+07	0.064525	1.331964e-04
Andorra	38249.0	151.0	4.802000e+03	7.735400e+04	0.062078	1.952065e-03
Fiji	63999.0	836.0	2.829500e+04	9.028990e+05	0.031338	9.259064e-04
Bosnia and Herzegovina	371553.0	15506.0	9.386200e+04	3.263459e+06	0.028762	4.751400e-03
Mauritius	71004.0	786.0	3.515300e+04	1.273428e+06	0.027605	6.172316e-04
Bahamas	33198.0	771.0	9.258000e+03	3.969140e+05	0.023325	1.942486e-03
Honduras	412753.0	10779.0	2.290260e+05	1.006299e+07	0.022759	1.071152e-03
Libya	495972.0	6279.0	1.416880e+05	6.958538e+06	0.020362	9.023447e-04
Senegal	85712.0	1960.0	3.485540e+05	1.719631e+07	0.020269	1.139780e-04
Egypt	486381.0	24132.0	2.078777e+06	1.042583e+08	0.019939	2.314635e-04
Nauru	0.0	0.0	1.680000e+02	1.087300e+04	0.015451	0.000000e+00
Uganda	163447.0	3594.0	7.200770e+05	4.712353e+07	0.015281	7.626763e-05
Nigeria	254598.0	3143.0	3.160328e+06	2.114007e+08	0.014949	1.486750e-05
Cape Verde	55889.0	402.0	7.462000e+03	5.619010e+05	0.013280	7.154285e-04
Tajikistan	17786.0	125.0	1.247450e+05	9.749625e+06	0.012795	1.282101e-05
Oman	383389.0	4246.0	6.508100e+04	5.223376e+06	0.012460	8.128842e-04
Mozambique	225096.0	2227.0	2.958120e+05	3.216304e+07	0.009197	6.924096e-05
Grenada	13707.0	216.0	1.037000e+03	1.130150e+05	0.009176	1.911251e-03
Kuwait	620980.0	2540.0	3.092700e+04	4.328553e+06	0.007145	5.868012e-04
Timor	22732.0	129.0	7.881000e+03	1.343875e+06	0.005864	9.599107e-05
Ghana	159891.0	1442.0	1.809500e+05	3.173213e+07	0.005702	4.544290e-05
Mauritania	58638.0	979.0	2.465900e+04	4.775110e+06	0.005164	2.050215e-04
Sweden	2451464.0	17611.0	4.761600e+04	1.016016e+07	0.004687	1.733339e-03
Botswana	263950.0	2619.0	1.043500e+04	2.397240e+06	0.004353	1.092506e-03
Algeria	265079.0	6843.0	1.707860e+05	4.461663e+07	0.003828	1.533733e-04
Haiti	30350.0	897.0	4.145300e+04	1.154168e+07	0.003592	7.771830e-05
French Polynesia	67660.0	641.0		2.825340e+05	0.003026	2.268753e-03
Central African Republic	14225.0	113.0	1.288700e+04	4.919987e+06	0.002619	2.296754e-05
Somalia	26351.0	1349.0	3.729200e+04	1.635950e+07	0.002280	8.245973e-05
Liberia	7510.0	294.0	1.008900e+04	5.180208e+06	0.001948	5.675448e-05
Sudan	61525.0	3910.0	4.557200e+04	4.490935e+07	0.001045	8.706427e-05
Sierra Leone	7665.0	125.0	7.981000e+03	8.141343e+06	0.000980	1.535373e-05
Guinea-Bissau	8027.0	167.0	1.658000e+03	2.015490e+06	0.000823	8.285826e-05
South Sudan	16989.0	137.0	7.489000e+03	1.138138e+07	0.000658	1.203721e-05
Gabon	47543.0	303.0		2.278829e+06	0.000652	1.329630e-04
Madagascar	63666.0	1366.0	1.354400e+04	2.842733e+07	0.000476	4.805234e-05
Democratic Republic of Congo	86039.0	1335.0	4.230300e+04	9.237799e+07	0.000458	1.445149e-05
Equatorial Guinea	15885.0	183.0	6.390000e+02	1.449891e+06	0.000441	1.262164e-04
Cameroon	119240.0	1923.0	1.029000e+04	2.722426e+07	0.000378	7.063552e-05
Afghanistan	174081.0	7617.0	1.374200e+04	3.983543e+07	0.000345	1.912117e-04
Congo	24020.0	409.0	1.486000e+03	5.657017e+06	0.000263	7.229959e-05
Iraq	2305083.0	25013.0	9.985000e+03	4.117935e+07	0.000242	6.074161e-04
Gambia	12039.0	365.0	4.290000e+02		0.000173	1.467669e-04
Myanmar	592139.0	19376.0	3.800000e+03	5.480601e+07	0.000069	3.535378e-04
Burundi	38127.0	38.0	4.600000e+02	1.225543e+07	0.000038	3.100667e-06
Northern Cyprus	0.0	0.0	1.988000e+03	1.474690e+08	0.000013	0.000000e+00
Chad	7257.0	190.0	0.000000e+00	1.691498e+07	0.000000	1.123264e-05
Angola	98746.0	1903.0	0.000000e+00	3.393361e+07	0.000000	5.608009e-05
Tonga	355.0	0.0	0.000000e+00	1.067590e+05	0.000000	0.000000e+00

Armenia	420498.0	8495.0	0.000000e+00	2.968128e+06	0.000000	2.862073e-03
Tokelau	0.0	0.0	0.000000e+00	1.368000e+03	0.000000	0.000000e+00
Togo	36808.0	272.0	0.000000e+00	8.478242e+06	0.000000	3.208212e-05
Cook Islands	2.0	0.0	0.000000e+00	1.757200e+04	0.000000	0.000000e+00
Comoros	8033.0	161.0	0.000000e+00	8.884560e+05	0.000000	1.812133e-04
Austria	2744023.0	14902.0	0.000000e+00	9.043072e+06	0.000000	1.647891e-03
Turkmenistan	0.0	0.0	0.000000e+00	6.117933e+06	0.000000	0.000000e+00
Venezuela	515582.0	5645.0	0.000000e+00	2.870495e+07	0.000000	1.966560e-04
Tuvalu	0.0	0.0	0.000000e+00	1.192500e+04	0.000000	0.000000e+00
Costa Rica	811040.0	8057.0	0.000000e+00	5.139053e+06	0.000000	1.567799e-03
Wallis and Futuna	454.0	7.0	0.000000e+00	1.109400e+04	0.000000	6.309717e-04
Burkina Faso	20751.0	375.0	0.000000e+00	2.149710e+07	0.000000	1.744422e-05
British Virgin Islands	6085.0	62.0	0.000000e+00	3.042300e+04	0.000000	2.037932e-03
Bonaire Sint Eustatius and Saba	7599.0	33.0	0.000000e+00	2.644500e+04	0.000000	1.247873e-03
Bermuda	11561.0	123.0	0.000000e+00	6.209200e+04	0.000000	1.980932e-03
Benin	26776.0	163.0	0.000000e+00	1.245103e+07	0.000000	1.309129e-05
Belarus	923432.0	6506.0	0.000000e+00	9.442867e+06	0.000000	6.889857e-04
Vanuatu	19.0	1.0	0.000000e+00	3.144640e+05	0.000000	3.180014e-06
Vatican	29.0	0.0	0.000000e+00	8.120000e+02	0.000000	0.000000e+00
Turks and Caicos Islands	5868.0	36.0	0.000000e+00	3.922600e+04	0.000000	9.177586e-04
Papua New Guinea	41351.0	638.0	0.000000e+00	9.119005e+06	0.000000	6.996377e-05
Tanzania	33620.0	798.0	0.000000e+00	6.149844e+07	0.000000	1.297594e-05
Djibouti	15547.0	189.0	0.000000e+00	1.002197e+06	0.000000	1.885857e-04
Palau	3823.0	6.0	0.000000e+00	1.817400e+04	0.000000	3.301420e-04
Niue	0.0	0.0	0.000000e+00	1.614000e+03	0.000000	0.000000e+00
Niger	8763.0	307.0	0.000000e+00	2.513081e+07	0.000000	1.221608e-05
Nicaragua	18105.0	225.0	0.000000e+00	6.702379e+06	0.000000	3.357017e-05
New Caledonia	55503.0	301.0	0.000000e+00	2.882170e+05	0.000000	1.044352e-03
Saint Helena	4.0	0.0	0.000000e+00	6.095000e+03	0.000000	0.000000e+00
Netherlands	6540294.0	21710.0	0.000000e+00	1.717309e+07	0.000000	1.264187e-03
Saint Pierre and Miquelon	1089.0	1.0	0.000000e+00	5.771000e+03	0.000000	1.732802e-04
Montserrat	164.0	2.0	0.000000e+00	4.981000e+03	0.000000	4.015258e-04
Samoa	33.0	0.0	0.000000e+00	2.001440e+05	0.000000	0.000000e+00
Monaco	9457.0	54.0	0.000000e+00	3.952000e+04	0.000000	1.366397e-03
Sao Tome and Principe	5934.0	76.0	0.000000e+00	2.233640e+05	0.000000	3.402518e-04
Micronesia (country)	1.0	0.0	0.000000e+00	1.162550e+05	0.000000	0.000000e+00
Marshall Islands	8.0	0.0	0.000000e+00	5.961800e+04	0.000000	0.000000e+00
Mali	30391.0	722.0	0.000000e+00	2.085572e+07	0.000000	3.461879e-05
Lesotho	32612.0	696.0	0.000000e+00	2.159067e+06	0.000000	3.223615e-04
Sint Maarten (Dutch part)	0.0	0.0	0.000000e+00	4.342100e+04	0.000000	0.000000e+00
Slovakia	2150666.0	18567.0	0.000000e+00	5.449270e+06	0.000000	3.407245e-03
Kiribati	2953.0	11.0	0.000000e+00	1.213880e+05	0.000000	9.061851e-05
Solomon Islands	7261.0	106.0	0.000000e+00	7.039950e+05	0.000000	1.505693e-04
Jersey	0.0	0.0	0.000000e+00	1.010730e+05	0.000000	0.000000e+00
International	721.0	15.0	0.000000e+00	1.474690e+08	0.000000	1.017163e-07
Pitcairn	0.0	0.0	0.000000e+00	4.700000e+01	0.000000	0.000000e+00
Eritrea	9705.0	103.0	0.000000e+00	3.601462e+06	0.000000	2.859950e-05
Syria	54744.0	3082.0	0.0000000+00	1.827570e+07	0.000000	1.686392e-04
Falkland Islands	115.0	0.0	0.000000e+00	3.528000e+03	0.000000	0.000000e+00
. Lara iolailus	. 10.0	0.0	1.000000.00		2.300000	

According to this dataframe, we'll choose Cuba, Sweden, Cambodia, India and Albania for visualization:

```
selected = summarized_copy.loc[countries]
selected
```

Out[57]:		new_cases	new_deaths	new_vaccinations	population	first_ratio	second_ratio
	location						
	Cuba	1070730.0	8497.0	3.065243e+07	1.131750e+07	2.708410	0.000751
	Sweden	2451464.0	17611.0	4.761600e+04	1.016016e+07	0.004687	0.001733
	Cambodia	131004.0	3032.0	3.467897e+07	1.694645e+07	2.046386	0.000179
	India	42945160.0	507015.0	1.708969e+09	1.393409e+09	1.226466	0.000364
	Albania	271825.0	3474.0	1.415150e+06	2.872934e+06	0.492580	0.001209

For visualization, we'll use a scatter plot that shows the effect of vaccination on the number of deaths. The X-axis shows the ratio of total vaccination to population and Y-axis shows the ratio of total deaths to population. Let's see the result:

```
plt.figure(figsize=(10,8))
    ax = sns.scatterplot(x=selected['first_ratio'], y=selected['second_ratio'], color = 'r')
    for i, point in selected.iterrows():
        ax.text(point['first_ratio']+.02, point['second_ratio'], str(i))
    ax.set_title("The Effect of Vaccination on the Number of Deaths")
    ax.set_xlabel('Ratio of Vaccinations to Population')
    ax.set_ylabel('Ratio of Deaths to Population')
    plt.show()
```


As you can see, more vaccination can reduce the number of the deaths in a country in general. However, there are other factors that affect the number of deaths too. For example, Cuba has better ratio in vaccination, but worse result in ratio of controlling death.

Q3

Now we want to see speed of vaccination in different countries. We'll use total vaccinations in different months in 2021. To pick 5 countries for examination, we'll again use the previous dataframe and choose countries based on their vaccination ratio and continent.

```
In [59]:
            summarized copy
Out[59]:
                                           new_cases new_deaths new_vaccinations
                                                                                        population first ratio second ratio
                                 location
                                             1070730.0
                                                            8497.0
                                                                        3.065243e+07 1.131750e+07
                                                                                                   2.708410 7.507843e-04
                                    Cuba
                                 Gibraltar
                                               15632.0
                                                             101.0
                                                                       8.906400e+04 3.369100e+04
                                                                                                   2.643555 2.997833e-03
```

Chile	3098110.0	42624.0	4.855777e+07	1.921236e+07	2.527423	2.218572e-03
Singapore	767663.0	1040.0	1.357254e+07	5.453600e+06	2.488730	1.906997e-04
Malta	71497.0	608.0	1.205547e+06	5.161000e+05	2.335879	1.178066e-03
South Korea	3691487.0	8394.0	1.192514e+08	5.130518e+07	2.324354	1.636092e-04
Denmark	2805858.0	4633.0	1.317204e+07	5.813302e+06	2.265845	7.969653e-04
Italy	12868066.0	155245.0	1.343115e+08	6.036747e+07	2.224899	2.571666e-03
Uruguay	846889.0	7005.0	7.622054e+06	3.485152e+06	2.187008	2.009955e-03
Belgium	3563841.0	30316.0	2.504046e+07	1.163233e+07	2.152660	2.606184e-03
Canada	3303284.0	36728.0	8.106477e+07	3.806791e+07	2.129478	9.648020e-04
Ireland	1315500.0	6540.0	1.056764e+07	4.982904e+06	2.120779	1.312488e-03
China	109423.0	4640.0	3.061013e+09	1.444216e+09	2.119498	3.212816e-06
France	23316777.0	138537.0	1.408496e+08	6.742200e+07	2.089075	2.054774e-03
Australia	3326214.0	5319.0	5.379783e+07	2.578822e+07	2.086140	2.062570e-04
New Zealand	166103.0	56.0	1.067335e+07	5.126300e+06	2.082077	1.092406e-05
Malaysia	3496090.0	32942.0	6.741625e+07	3.277620e+07	2.056866	1.005059e-03
Norway	1279169.0	1666.0	1.123317e+07	5.465629e+06	2.055238	3.048140e-04
Cambodia	131004.0	3032.0	3.467897e+07	1.694645e+07	2.046386	1.789166e-04
Germany	15175471.0	123431.0	1.701530e+08	8.390047e+07	2.028034	1.471160e-03
United Arab Emirates	880970.0	2301.0	2.018434e+07	9.991083e+06	2.020235	2.303054e-04
United Kingdom	18241147.0	160727.0	1.372498e+08	6.820711e+07	2.012251	2.356455e-03
Israel	3652454.0	10245.0	1.801561e+07	9.291000e+06	1.939039	1.102680e-03
Portugal	3282618.0	21111.0	1.964667e+07	1.016792e+07	1.932221	2.076235e-03
Upper middle income	118212049.0	2421471.0	4.804681e+09	2.513673e+09	1.911419	9.633199e-04
High income	236393139.0	2211971.0	2.306054e+09	1.214930e+09	1.898096	1.820657e-03
Luxembourg	186210.0	995.0	1.178840e+06	6.348140e+05	1.856985	1.567388e-03
Greece	2454429.0	25972.0	1.907120e+07	1.037075e+07	1.838941	2.504352e-03
Liechtenstein	12165.0	78.0	7.022800e+04	3.825400e+04	1.835834	2.039002e-03
Peru	3518721.0	211453.0	6.113136e+07	3.335942e+07	1.832507	6.338630e-03
European Union	110033392.0	1015772.0	8.184271e+08	4.471899e+08	1.830156	2.271456e-03
Brazil	28741413.0	650254.0	3.902730e+08	2.139934e+08	1.823761	3.038663e-03
Argentina	8912317.0	126390.0	8.251164e+07	4.560582e+07	1.809235	2.771357e-03
Switzerland	2842412.0	13269.0	1.556814e+07	8.715494e+06	1.786260	1.522461e-03
Ecuador	844764.0	22611.0	3.131789e+07	1.788847e+07	1.750730	1.263998e-03
Qatar	357583.0	670.0	5.106175e+06	2.930524e+06	1.742410	2.286281e-04
North America	93195128.0	1374621.0	1.030269e+09	5.965813e+08	1.726955	2.304164e-03
Oceania	3735739.0	7922.0	7.462766e+07	4.321995e+07	1.726695	1.832950e-04
Hong Kong	293754.0	1168.0	1.302273e+07	7.552800e+06	1.724226	1.546446e-04
South America	54222621.0	1247285.0	7.462801e+08	4.342601e+08	1.718509	2.872207e-03
Turkey	13382896.0	94837.0	1.434464e+08	8.504274e+07	1.686757	1.115169e-03
Bahrain	519584.0	1511.0	2.927653e+06	1.748295e+06	1.674576	8.642706e-04
Europe	158815550.0	1717056.0	1.247823e+09	7.489630e+08	1.666068	2.292578e-03
United States	79143715.0	954518.0	5.537498e+08	3.329151e+08	1.663336	2.867152e-03
Lithuania	913223.0	8442.0	4.449324e+06	2.689862e+06	1.654109	3.138451e-03
Saudi Arabia	746066.0	9002.0	5.737721e+07	3.534068e+07	1.623546	2.547206e-04
Czechia	3602844.0	38771.0	1.739288e+07	1.072455e+07	1.621781	3.615162e-03
Asia	117811418.0	1351250.0	7.544342e+09	4.678445e+09	1.612575	2.888246e-04
Thailand	2958176.0	23072.0	1.087844e+08	6.995084e+07	1.555156	3.298316e-04
Taiwan	20584.0	853.0	3.695129e+07	2.385501e+07	1.548995	3.575769e-05
Latvia	673218.0	5284.0	2.855540e+06	1.866934e+06	1.529535	2.830309e-03
Sri Lanka	647699.0	16267.0	3.284874e+07	2.149731e+07	1.528040	7.566995e-04
Estonia	504148.0	2268.0	1.955946e+06	1.325188e+06	1.475976	1.711455e-03
World	439011701.0	5946817.0	1.122516e+10	7.874966e+09	1.425424	7.551547e-04
Slovenia	897040.0	6327.0	2.956720e+06	2.078723e+06	1.422373	3.043696e-03
Maldives	171114.0	297.0	7.707100e+05	5.436200e+05	1.417737	5.463375e-04
Panama	756085.0	8098.0	5.934725e+06	4.381583e+06	1.354471	1.848190e-03

Spein	11120724.0	100770.0	6.240749.107	4 6745040107	1.350031	2.455000- 02
Spain Mongolia	11139724.0 909379.0	100778.0 2171.0	6.310748e+07 4.407760e+06	3.329282e+06	1.323937	2.155900e-03 6.520926e-04
Japan	5143816.0	24140.0	1.667069e+08	1.260508e+08	1.322538	1.915101e-04
Vietnam	3709481.0	40637.0	1.209025e+08	9.816883e+07	1.231578	4.139501e-04
India	42945160.0	507015.0	1.708969e+09	1.393409e+09	1.226466	3.638666e-04
Dominican Republic	575157.0	4370.0	1.331425e+07	1.095371e+07	1.215501	3.989514e-04
Lower middle income	82588725.0	1271503.0	3.974325e+09	3.330653e+09	1.193257	3.817579e-04
Curação	39016.0	261.0	1.840890e+05	1.647960e+05	1.117072	1.583776e-03
Mexico	5521744.0	311470.0	1.451079e+08	1.302622e+08	1.113968	2.391100e-03
Bhutan	13535.0	6.0	8.620330e+05	7.799000e+05	1.105312	7.693294e-06
Isle of Man	23099.0	80.0	9.206400e+04	8.541000e+04	1.077907	9.366585e-04
Trinidad and Tobago	128691.0	3637.0	1.503347e+06	1.403374e+06	1.071238	2.591611e-03
Bolivia	893775.0	21443.0	1.258651e+07	1.183294e+07	1.063684	1.812145e-03
Aruba	33684.0	212.0	1.091530e+05	1.071950e+05	1.018266	1.977704e-03
Macao	81.0	0.0	6.627460e+05	6.583910e+05	1.006615	0.000000e+00
Azerbaijan	787367.0	9454.0	1.023182e+07	1.022334e+07	1.000829	9.247463e-04
Barbados	55543.0	316.0	2.868630e+05	2.877080e+05	0.997063	1.098336e-03
Poland	5694767.0	111864.0	3.742697e+07	3.779700e+07	0.990210	2.959600e-03
Indonesia	5630096.0	149036.0	2.724306e+08	2.763618e+08	0.985775	5.392786e-04
Kazakhstan	1450652.0	19239.0	1.870224e+07	1.899496e+07	0.984590	1.012848e-03
Russia	16353868.0	346197.0	1.434654e+08	1.459120e+08	0.983232	2.372642e-03
Colombia	6067023.0	138899.0	4.938413e+07	5.126584e+07	0.963295	2.709387e-03
Montenegro	230512.0	2683.0	5.963530e+05	6.280510e+05	0.949530	4.271946e-03
Croatia	1058453.0	15122.0	3.677004e+06	4.081657e+06	0.900861	3.704868e-03
Romania	2748777.0	63668.0	1.665058e+07	1.912777e+07	0.870492	3.328563e-03
Hungary	1793120.0	44134.0	8.276404e+06	9.634162e+06	0.859068	4.580990e-03
Greenland	11760.0	19.0	4.333600e+04	5.686800e+04	0.762045	3.341071e-04
El Salvador	156456.0	4077.0	4.886767e+06	6.518500e+06	0.749677	6.254506e-04
Kosovo	226392.0	3116.0	1.330147e+06	1.782115e+06	0.746387	1.748484e-03
Guatemala	784024.0	17021.0	1.341083e+07	1.824987e+07	0.734845	9.326643e-04
Morocco	1161290.0	16002.0	2.740605e+07	3.734479e+07	0.733866	4.284935e-04
Ukraine	5040518.0	112459.0	3.168315e+07	4.346682e+07	0.728904	2.587238e-03
Tunisia	999441.0	27824.0	8.530717e+06	1.193576e+07	0.714719	2.331145e-03
Faeroe Islands	34658.0	28.0	3.481300e+04	4.905300e+04	0.709702	5.708112e-04
Lebanon	1072537.0	10115.0	4.755512e+06	6.769151e+06	0.702527	1.494279e-03
Iceland	135748.0	66.0	2.588510e+05	3.687920e+05	0.701889	1.789627e-04
Bulgaria	1096194.0	35696.0	4.143716e+06	6.896655e+06	0.600830	5.175842e-03
Brunei	71667.0	129.0	2.627530e+05	4.415320e+05	0.595094	2.921646e-04
San Marino	14435.0	112.0	2.014100e+04	3.401000e+04	0.592208	3.293149e-03
Suriname	78353.0	1317.0	3.429360e+05	5.917980e+05	0.579482	2.225422e-03
Paraguay	642573.0	18422.0	4.105501e+06	7.219641e+06	0.568657	2.551650e-03
Bangladesh	1945108.0	29053.0	8.807564e+07	1.663035e+08	0.529608	1.746987e-04
Philippines	3663931.0	56506.0	5.494906e+07	1.110469e+08	0.494827	5.088480e-04
Albania	271825.0	3474.0	1.415150e+06	2.872934e+06	0.492580	1.209217e-03
Cyprus	326611.0	859.0	4.282040e+05	8.960050e+05	0.477904	9.587000e-04
Serbia Zimbabwe	1916707.0 237509.0	15318.0 5396.0	3.257010e+06 7.080893e+06	6.871547e+06 1.509217e+07	0.473985 0.469177	2.229192e-03 3.575364e-04
North Macedonia	298195.0	9036.0	9.505510e+05	2.082661e+06	0.469177	4.338680e-03
Uzbekistan	236596.0	1637.0	1.512707e+07	3.393576e+07	0.445756	4.823819e-05
Seychelles	39408.0	163.0	4.286300e+04	9.891000e+04	0.433354	1.647963e-03
Africa	11230524.0	248668.0	5.818190e+08	1.373486e+09	0.423607	1.810487e-04
Jordan	1638338.0	13849.0	4.260392e+06	1.026902e+07	0.414878	1.348619e-03
Pakistan	1511754.0	30237.0	8.561347e+07	2.251999e+08	0.380167	1.342674e-04
Georgia	1616159.0	16231.0	1.413257e+06	3.979773e+06	0.355110	4.078373e-03
Moldova	502956.0	10657.0	1.305637e+06	4.024025e+06	0.324460	2.648343e-03

Marral	077000 0	44044.0	0.40042000	0.00740007	0.040074	4.002027- 04
Nepal Palestine	977200.0 648039.0	11941.0 5532.0	9.492136e+06 1.655605e+06	2.967492e+07 5.222756e+06	0.319871	4.023937e-04 1.059211e-03
					0.313278	5.134010e-04
Kyrgyzstan Belize	200556.0 56816.0	3403.0 654.0	2.076513e+06 1.226920e+05	6.628347e+06 4.049150e+05	0.313276	1.615154e-03
Guernsey	0.0	0.0	1.593100e+04	6.338500e+04	0.251337	0.000000e+00
Laos		623.0	1.802450e+06 1.442119e+07	7.379358e+06	0.244256 0.240185	8.442469e-05
South Africa	3659100.0 19373.0	99135.0 17.0	1.442119e+07 1.533900e+04	6.004200e+07 6.649800e+04	0.230669	1.651094e-03 2.556468e-04
Cayman Islands Finland	658559.0	2381.0	1.235072e+06	5.548361e+06	0.230609	4.291357e-04
Low income	1805056.0	41804.0	1.391686e+08	6.651490e+08	0.222001	6.284907e-05
Kenya	323002.0	5640.0	1.141772e+07	5.498570e+07	0.209229	1.025721e-04
Iran	7066975.0	137267.0	1.673545e+07	8.502876e+07	0.196821	1.614360e-03
Ethiopia	468786.0	7467.0	2.131937e+07	1.178762e+08	0.180862	6.334611e-05
Jamaica	128079.0	2814.0	4.916840e+05	2.973462e+06	0.165357	9.463716e-04
Saint Lucia	22729.0	360.0	2.625500e+04	1.844010e+05	0.142380	1.952267e-03
Saint Vincent and the Grenadines	10045.0	106.0	1.569000e+04	1.112690e+05	0.141010	9.526463e-04
Saint Kitts and Nevis	5530.0	42.0	6.553000e+03	5.354600e+04	0.122381	7.843723e-04
Guinea	36397.0	440.0	1.586407e+06	1.349724e+07	0.122301	3.259926e-05
Guyana	62986.0	1222.0	8.656300e+04	7.903290e+05	0.109528	1.546192e-03
Eswatini	69211.0	1390.0	1.107650e+05	1.172369e+06	0.094480	1.185634e-03
Anguilla	2555.0	10.0	1.421000e+03	1.512500e+04	0.093950	6.611570e-04
Namibia	157275.0	4010.0	2.347090e+05	2.587344e+06	0.090714	1.549852e-03
Dominica	11142.0	57.0	6.417000e+03	7.217200e+04	0.088913	7.897800e-04
Cote d'Ivoire	81552.0	794.0	2.285727e+06	2.705363e+07	0.084489	2.934911e-05
Antigua and Barbuda	7451.0	135.0	8.107000e+03	9.872800e+04	0.082114	1.367393e-03
Zambia	313203.0	3955.0	1.321156e+06	1.892066e+07	0.069826	2.090308e-04
Rwanda	129533.0	1457.0	9.206440e+05	1.327652e+07	0.069344	1.097426e-04
Malawi	85362.0	2617.0	1.267776e+06	1.964768e+07	0.064525	1.331964e-04
Andorra	38249.0	151.0	4.802000e+03	7.735400e+04	0.062078	1.952065e-03
Fiji	63999.0	836.0	2.829500e+04	9.028990e+05	0.031338	9.259064e-04
Bosnia and Herzegovina	371553.0	15506.0	9.386200e+04	3.263459e+06	0.028762	4.751400e-03
Mauritius	71004.0	786.0	3.515300e+04	1.273428e+06	0.027605	6.172316e-04
Bahamas	33198.0	771.0	9.258000e+03	3.969140e+05	0.023325	1.942486e-03
Honduras	412753.0	10779.0	2.290260e+05	1.006299e+07	0.022759	1.071152e-03
Libya	495972.0	6279.0	1.416880e+05	6.958538e+06	0.020362	9.023447e-04
Senegal	85712.0	1960.0	3.485540e+05	1.719631e+07	0.020269	1.139780e-04
Egypt	486381.0	24132.0	2.078777e+06	1.042583e+08	0.019939	2.314635e-04
Nauru	0.0	0.0	1.680000e+02	1.087300e+04	0.015451	0.000000e+00
Uganda	163447.0	3594.0	7.200770e+05	4.712353e+07	0.015281	7.626763e-05
Nigeria	254598.0	3143.0	3.160328e+06	2.114007e+08	0.014949	1.486750e-05
Cape Verde	55889.0	402.0	7.462000e+03	5.619010e+05	0.013280	7.154285e-04
Tajikistan	17786.0	125.0	1.247450e+05	9.749625e+06	0.012795	1.282101e-05
Oman	383389.0	4246.0	6.508100e+04	5.223376e+06	0.012460	8.128842e-04
Mozambique	225096.0	2227.0	2.958120e+05	3.216304e+07	0.009197	6.924096e-05
Grenada	13707.0	216.0	1.037000e+03	1.130150e+05	0.009176	1.911251e-03
Kuwait	620980.0	2540.0	3.092700e+04	4.328553e+06	0.007145	5.868012e-04
Timor	22732.0	129.0	7.881000e+03	1.343875e+06	0.005864	9.599107e-05
Ghana	159891.0	1442.0	1.809500e+05	3.173213e+07	0.005702	4.544290e-05
Mauritania	58638.0	979.0	2.465900e+04	4.775110e+06	0.005164	2.050215e-04
Sweden	2451464.0	17611.0	4.761600e+04	1.016016e+07	0.004687	1.733339e-03
Botswana	263950.0	2619.0	1.043500e+04	2.397240e+06	0.004353	1.092506e-03
Algeria	265079.0	6843.0	1.707860e+05	4.461663e+07	0.003828	1.533733e-04
Haiti	30350.0	897.0	4.145300e+04	1.154168e+07	0.003592	7.771830e-05
French Polynesia	67660.0	641.0	8.550000e+02	2.825340e+05	0.003026	2.268753e-03

Somalia	26351.0	1349.0	3.729200e+04	1.635950e+07	0.002280	8.245973e-05
Liberia	7510.0	294.0	1.008900e+04	5.180208e+06	0.001948	5.675448e-05
Sudan	61525.0	3910.0	4.557200e+04	4.490935e+07	0.001015	8.706427e-05
Sierra Leone	7665.0	125.0	7.981000e+03	8.141343e+06	0.000980	1.535373e-05
Guinea-Bissau	8027.0	167.0	1.658000e+03	2.015490e+06	0.000823	8.285826e-05
South Sudan	16989.0	137.0	7.489000e+03	1.138138e+07	0.000658	1.203721e-05
Gabon	47543.0	303.0	1.486000e+03	2.278829e+06	0.000652	1.329630e-04
Madagascar	63666.0	1366.0	1.354400e+04	2.842733e+07	0.000476	4.805234e-05
Democratic Republic of Congo	86039.0	1335.0	4.230300e+04	9.237799e+07	0.000458	1.445149e-05
Equatorial Guinea	15885.0	183.0	6.390000e+02	1.449891e+06	0.000441	1.262164e-04
Cameroon	119240.0	1923.0	1.029000e+04	2.722426e+07	0.000378	7.063552e-05
Afghanistan	174081.0	7617.0	1.374200e+04	3.983543e+07	0.000345	1.912117e-04
Congo	24020.0	409.0	1.486000e+03	5.657017e+06	0.000263	7.229959e-05
Iraq	2305083.0	25013.0	9.985000e+03	4.117935e+07	0.000242	6.074161e-04
Gambia	12039.0	365.0	4.290000e+02	2.486937e+06	0.000173	1.467669e-04
Myanmar	592139.0	19376.0	3.800000e+03	5.480601e+07	0.000069	3.535378e-04
Burundi	38127.0	38.0	4.600000e+02	1.225543e+07	0.000038	3.100667e-06
Northern Cyprus	0.0	0.0	1.988000e+03	1.474690e+08	0.000013	0.000000e+00
Chad	7257.0	190.0	0.000000e+00	1.691498e+07	0.000000	1.123264e-05
Angola	98746.0	1903.0	0.000000e+00	3.393361e+07	0.000000	5.608009e-05
Tonga	355.0	0.0	0.000000e+00	1.067590e+05	0.000000	0.000000e+00
Yemen	11772.0	2135.0	0.000000e+00	3.049064e+07	0.000000	7.002149e-05
Armenia	420498.0	8495.0	0.000000e+00	2.968128e+06	0.000000	2.862073e-03
Tokelau	0.0	0.0	0.000000e+00	1.368000e+03	0.000000	0.000000e+00
Togo	36808.0	272.0	0.000000e+00	8.478242e+06	0.000000	3.208212e-05
Cook Islands	2.0	0.0	0.000000e+00	1.757200e+04	0.000000	0.000000e+00
Comoros	8033.0	161.0	0.000000e+00	8.884560e+05	0.000000	1.812133e-04
Austria	2744023.0	14902.0	0.000000e+00	9.043072e+06	0.000000	1.647891e-03
Turkmenistan	0.0	0.0	0.000000e+00	6.117933e+06	0.000000	0.000000e+00
Venezuela	515582.0	5645.0	0.0000000+00	2.870495e+07	0.000000	1.966560e-04
Tuvalu	0.0	0.0	0.000000e+00	1.192500e+04	0.000000	0.000000e+00
Costa Rica	811040.0	8057.0	0.000000e+00	5.139053e+06	0.000000	1.567799e-03
Wallis and Futuna	454.0	7.0	0.0000000+00	1.109400e+04	0.000000	6.309717e-04
Burkina Faso	20751.0	375.0		2.149710e+07	0.000000	1.744422e-05
British Virgin Islands	6085.0	62.0	0.0000000+00	3.042300e+04	0.000000	2.037932e-03
Bonaire Sint Eustatius and Saba	7599.0	33.0	0.0000000+00	2.644500e+04	0.000000	1.247873e-03
Bermuda	11561.0	123.0	0.000000e+00	6.209200e+04	0.000000	1.980932e-03
Benin	26776.0	163.0	0.000000e+00	1.245103e+07	0.000000	1.309129e-05
Belarus	923432.0	6506.0	0.000000e+00	9.442867e+06	0.000000	6.889857e-04
Vanuatu	19.0	1.0	0.000000e+00 0.000000e+00	3.144640e+05	0.000000	3.180014e-06
Validatu	29.0	0.0	0.000000e+00	8.120000e+02	0.000000	0.000000e+00
Turks and Caicos Islands	5868.0	36.0	0.000000e+00 0.000000e+00	3.922600e+04	0.000000	
		638.0	0.000000e+00 0.000000e+00	9.119005e+06		9.177586e-04
Papua New Guinea	41351.0				0.000000	6.996377e-05
Tanzania	33620.0	798.0	0.000000e+00	6.149844e+07	0.000000	1.297594e-05
Djibouti	15547.0	189.0	0.000000e+00	1.002197e+06	0.000000	1.885857e-04
Palau	3823.0	6.0		1.817400e+04	0.000000	3.301420e-04
Niue	0.0	0.0	0.000000e+00	1.614000e+03	0.000000	0.000000e+00
Niger	8763.0	307.0	0.000000e+00	2.513081e+07	0.000000	1.221608e-05
Nicaragua	18105.0	225.0	0.000000e+00	6.702379e+06	0.000000	3.357017e-05
New Caledonia	55503.0	301.0		2.882170e+05	0.000000	1.044352e-03
Saint Helena	4.0	0.0	0.000000e+00	6.095000e+03	0.000000	0.000000e+00
	6540294.0	21710.0	0.000000e+00	1.717309e+07	0.000000	1.264187e-03
Netherlands Saint Pierre and Miguelon	1089.0	1.0	0.000000e+00	5.771000e+03	0.000000	1.732802e-04

Samoa	33.0	0.0	0.000000e+00	2.001440e+05	0.000000	0.000000e+00
Monaco	9457.0	54.0	0.000000e+00	3.952000e+04	0.000000	1.366397e-03
Sao Tome and Principe	5934.0	76.0	0.000000e+00	2.233640e+05	0.000000	3.402518e-04
Micronesia (country)	1.0	0.0	0.000000e+00	1.162550e+05	0.000000	0.000000e+00
Marshall Islands	8.0	0.0	0.000000e+00	5.961800e+04	0.000000	0.000000e+00
Mali	30391.0	722.0	0.000000e+00	2.085572e+07	0.000000	3.461879e-05
Lesotho	32612.0	696.0	0.000000e+00	2.159067e+06	0.000000	3.223615e-04
Sint Maarten (Dutch part)	0.0	0.0	0.000000e+00	4.342100e+04	0.000000	0.000000e+00
Slovakia	2150666.0	18567.0	0.000000e+00	5.449270e+06	0.000000	3.407245e-03
Kiribati	2953.0	11.0	0.000000e+00	1.213880e+05	0.000000	9.061851e-05
Solomon Islands	7261.0	106.0	0.000000e+00	7.039950e+05	0.000000	1.505693e-04
Jersey	0.0	0.0	0.000000e+00	1.010730e+05	0.000000	0.000000e+00
International	721.0	15.0	0.000000e+00	1.474690e+08	0.000000	1.017163e-07
Pitcairn	0.0	0.0	0.000000e+00	4.700000e+01	0.000000	0.000000e+00
Eritrea	9705.0	103.0	0.000000e+00	3.601462e+06	0.000000	2.859950e-05
Syria	54744.0	3082.0	0.000000e+00	1.827570e+07	0.000000	1.686392e-04
Falkland Islands	115.0	0.0	0.000000e+00	3.528000e+03	0.000000	0.000000e+00

Here, we'll choose China(source of COVID-19), Argentina and Brazil from South America and Germany and Switzerland from Europe to see how different are speed of vaccination between countries in same continent and different vaccination ratio. We'll use a line plot for this purpose(to see the trend in time). Let's see the result!

```
countries = ['China', 'Argentina', 'Brazil', 'Germany', 'Switzerland']
selected = covid[covid['location'].isin(countries)]
selected = selected[selected['date'].dt.year == 2021]
selected['month'] = selected['date'].dt.month
selected = selected.groupby(by=['location', "month"]).sum()
selected.reset_index().pivot('month', 'location', 'new_vaccinations').plot( title='Speed of Vaccination in 2021', cplt.show()

Speed of Vaccination in 2021

Speed
```

As you can see, China's speed in vaccination changes dramatically over time(as the source of COVID-19) and typically has higher speed between other countries. In Europe, Germany has higher speed than Switzerland and their difference is obvious. This fact is also true for Argentina and Brazil in South America, too. Brazil has higher speed than Argentina. In general, countries with more population have higher speed in vaccination. We can also see that in some period of time, speed for countries decreases(probably because number of cases decreases at that time) and rises again(probably because of new type of COVID-19).

month

Now, we want to see strictness trend in controlling COVID-19 in Iran. To see this, we'll use the aggregated dataframe for Iran's stats, which is aggregated on 2021's months. In this aggregation, maximum stringency index(a factor for strictness) in month is used. We'll use a line plot to see the trend. Let's see the result!

```
In [61]:
    pd.reset_option('display.max_rows')

In [62]:
    plt.figure(figsize=(10,8))
    ax = sns.lineplot(x=iran_summarized.index, y=iran_summarized['stringency_index'])
    ax.set_title("Strictness Trend in Iran in 2021")
    ax.set_xlabel('Month')
    ax.set_ylabel('Stringency Index')
    plt.show()
```


As you can see, there are some rises and falls in the trend. Highest strictness level, according to plot, is achieved in April and it falls in the next 3 months, probably because more people is vaccinated and there is no new variant of COVID-19 virus. After that, there is another rise in the next 3 month and finally, it falls till the last month of the year. One of the reasons for this fall and rises can be the spread of new variants of COVID-19. Another reason can be with reduction in strictness, there can be higher probability that virus spread in the country and number of cases increase and the government decide to increase the stringency index again.

Q5

Now we'll use boxplot to see the distribution of total deaths in the dataframe. Let's see the results:

```
import plotly.express as px
plt.figure(figsize=(10,50))
sns.boxplot(y=summarized['new_deaths'])
plt.show()
```

```
6 -
```

new_deaths

As you can see, there are about 20 outliers in this box plot. To deal with with outliers, the simplest way is to ignore these countries. A better approach can be that instead of ignoring completely, choose some stats that doesn't affect estimations a lot from these outliers. Pay attention! The outliers have more population that others, which means that higher number of death is logical somehow. To see the skewness in the boxplot, first let's see the average value of deaths:

```
In [64]: summarized['new_deaths'].mean()
Out[64]: 104214.1050420168
```

According to mean and the shape of boxplot, we can say that there is a positive skew in the plot(plot is right-skewed). To see the name of locations that are outliers, we'll see top 20 countries in the number of deaths:

		_		
location	new_cases	new_deaths	new_vaccinations	population
World	439011701.0	5946817.0	1.122516e+10	7.874966e+09
Upper middle income	118212049.0	2421471.0	4.804681e+09	2.513673e+09
High income	236393139.0	2211971.0	2.306054e+09	1.214930e+09
Europe	158815550.0	1717056.0	1.247823e+09	7.489630e+08
North America	93195128.0	1374621.0	1.030269e+09	5.965813e+08
Asia	117811418.0	1351250.0	7.544342e+09	4.678445e+09
Lower middle income	82588725.0	1271503.0	3.974325e+09	3.330653e+09
South America	54222621.0	1247285.0	7.462801e+08	4.342601e+08
European Union	110033392.0	1015772.0	8.184271e+08	4.471899e+08
United States	79143715.0	954518.0	5.537498e+08	3.329151e+08
Brazil	28741413.0	650254.0	3.902730e+08	2.139934e+08
India	42945160.0	507015.0	1.708969e+09	1.393409e+09
Russia	16353868.0	346197.0	1.434654e+08	1.459120e+08
Mexico	5521744.0	311470.0	1.451079e+08	1.302622e+08
Africa	11230524.0	248668.0	5.818190e+08	1.373486e+09
Peru	3518721.0	211453.0	6.113136e+07	3.335942e+07
United Kingdom	18241147.0	160727.0	1.372498e+08	6.820711e+07
Italy	12868066.0	155245.0	1.343115e+08	6.036747e+07
Indonesia	5630096.0	149036.0	2.724306e+08	2.763618e+08
Colombia	6067023.0	138899.0	4.938413e+07	5.126584e+07

summarized.sort_values(by='new_deaths', ascending = False)[:20]

Q6

Out[65]:

Now we want to see the impact of population density, median age, handwashing facilities, hospital beds per thousand and human development index on number of death and cases. To show this, we'll use a scatter plot for each pair of variables we want to find the correlation between(10 plots in total) and study the relation between them. First we need aggregate some variables for plots:

```
In [66]:
            first_factors = ["population_density", "median_age", "handwashing_facilities",
            "hospital_beds_per_thousand", "human_development_index"]
second_factors = ["new_cases", "new_deaths"]
            new summarized = covid[["location"] + first factors]
            new summarized = new summarized.groupby(by="location").max()
            new_summarized = summarized.join(new_summarized)
            new_summarized
Out[66]:
                        new_cases new_deaths new_vaccinations
                                                                     population population_density median_age handwashing_facilities hospital_beds_r
               location
                           174081.0
                                         7617.0
                                                     1.374200e+04 3.983543e+07
                                                                                        54.422000
                                                                                                     18.600000
                                                                                                                           37.746000
           Afghanistan
                 Africa
                         11230524.0
                                       248668.0
                                                     5.818190e+08 1.373486e+09
                                                                                        464.408404
                                                                                                     30.568558
                                                                                                                           50.790872
               Albania
                           271825.0
                                         3474.0
                                                     1.415150e+06 2.872934e+06
                                                                                        104.871000
                                                                                                     38.000000
                                                                                                                           50.790872
               Algeria
                           265079.0
                                         6843.0
                                                     1.707860e+05 4.461663e+07
                                                                                         17.348000
                                                                                                     29.100000
                                                                                                                           83.741000
               Andorra
                            38249.0
                                          151.0
                                                     4.802000e+03 7.735400e+04
                                                                                        163.755000
                                                                                                     30.568558
                                                                                                                           50.790872
             Wallis and
                              454.0
                                            7.0
                                                     0.000000e+00 1.109400e+04
                                                                                       464.408404
                                                                                                     30.568558
                                                                                                                           50.790872
               Futuna
                World 439011701.0
                                      5946817.0
                                                     1.122516e+10 7.874966e+09
                                                                                        58.045000
                                                                                                     30.900000
                                                                                                                           60.130000
                                                                                                                           49.542000
                Yemen
                            11772.0
                                         2135.0
                                                     0.000000e+00 3.049064e+07
                                                                                        53.508000
                                                                                                     20.300000
               Zambia
                           313203.0
                                         3955.0
                                                     1.321156e+06 1.892066e+07
                                                                                        22.995000
                                                                                                     17.700000
                                                                                                                           13.938000
             Zimbabwe
                           237509.0
                                                     7.080893e+06 1.509217e+07
                                                                                        42.729000
                                                                                                     19.600000
                                                                                                                           36.791000
                                         5396.0
          238 rows × 9 columns
```

```
for second_factor in second_factors:
    plt.figure(figsize=(12,8))
    ax = sns.scatterplot(x=new_summarized[first_factor], y=new_summarized[second_factor], color='r')
    ax.set_title('The effect of {} on {}'.format(first_factor, second_factor))
    ax.set_xlabel(first_factor)
    ax.set_ylabel(second_factor)
    plt.show()
```


There are many similarities among these plots. First, we can conclude that the number of deaths and cases doesn't only depend on one factor, but depends on a number of factors together. As you can see, these numbers in almost all plots are the same for much the range of factors mentioned in the question and changes dramatically for a small part of range and after that, the normal trend continues. It means that if other factors remains unchanged, changes in mentioned factors don't really change the number of deaths and cases and only in some parts, the change is obvious. For example, if median age gets around 31, number of cases and deaths rises dramarically.

Q7

Now let's consider the effect of GDP per capita on number of vaccinations!

```
new_summarized = covid[["location", 'gdp_per_capita']]
new_summarized = new_summarized.groupby(by="location").max()
new_summarized = summarized.join(new_summarized)

plt.figure(figsize=(10,8))
ax = sns.scatterplot(x=new_summarized['gdp_per_capita'], y=new_summarized['new_vaccinations'], color='g')
ax.set_title("The impact of economic status of countries on the number of vaccinations")
ax.set_xlabel('Gdp per Capita')
ax.set_ylabel('Vaccinations')
```


Again, we can see that in most of range of GDP, total vaccinations doesn't change that much and wealth doesn't affect vaccination that much. This is because after some amount of time, most of coutries(independent of their wealth) tried to vaccinate their population with their power and help of stronger coutries and that helped vaccination speed and amount.

08

Finally, let's see number of cases trend over 2021 by month!

```
covid_2021 = covid[covid['date'].dt.year == 2021]
    covid_2021['month'] = covid_2021['date'].dt.month
    covid_2021_summarized = covid_2021[["month", "new_cases"]]
    covid_2021_summarized = covid_2021_summarized.groupby(by="month").sum()

/home/taha/.local/lib/python3.7/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
```

```
In [70]:
    plt.figure(figsize=(10,8))
    ax = sns.lineplot(x=covid_2021_summarized.index, y=covid_2021_summarized['new_cases'])
    ax.set_title("Cases Trend by month in 2021")
    ax.set_xlabel('Month')
    ax.set_ylabel('Cases')
    plt.show()
```


As you can see, there are many rises and falls in the plot. Once a new variant of virus spreads in the world, total number of cases rises, and scientist try to make new vaccines that is strong over this variant. Also strigency index helps coutries control new variants and this means a fall in total number of cases in world. As you can see, highest number of cases happened in December(probably because of Omicron) and least number of cases happened in June.

Bonus

Q1

Now let's see total number of deaths past 3 months over countries on world map using geopandas library!

```
In [71]:
    last_3_months = covid[['location', 'new_deaths', 'population', 'date', 'iso_code']]
    last_3_months = last_3_months.sort_values(by="date",ascending=True).set_index("date").last("3M")
    last_3_months deaths = last_3_months[["location", "new_deaths"]]
    last_3_months_deaths = last_3_months_deaths.groupby(by="location").sum()
    population = last_3_months[["location", "population", "iso_code"]]
    population = population.groupby(by="location").max()
    last_3_months = last_3_months_deaths.join(population)

last_3_months['death_per_pop'] = last_3_months['new_deaths'] / last_3_months['population']
    last_3_months = last_3_months.drop(['new_deaths', 'population'], axis=1)
    last_3_months = last_3_months.reset_index()
    last_3_months = last_3_months.rename(columns={'location': 'name', 'iso_code': 'CODE'})
    last_3_months
```

ut[71]:		name	CODE	death_per_pop
	0	Afghanistan	AFG	0.000007
	1	Africa	OWID_AFR	0.000015
	2	Albania	ALB	0.000089
	3	Algeria	DZA	0.000013
	4	Andorra	AND	0.000142
	227	Wallis and Futuna	WLF	0.000000
	228	World	OWID_WRL	0.000067
	229	Yemen	YEM	0.000005
	230	Zambia	ZMB	0.000012
	231	Zimbabwe	ZWE	0.000026

232 rows × 3 columns

```
import geopandas
import matplotlib.pyplot as plt

world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
world.columns=['pop_est', 'continent', 'name', 'CODE', 'gdp_md_est', 'geometry']
merge=pd.merge(world, last_3_months, on='CODE')
```

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

Q2

Finally, let's see number of deaths and vaccinations over weeks in years. We use a double bar chart to see the trend:

```
In [76]:
             new_iran = iran.copy()
             new iran['week'] = new iran['date'].dt.isocalendar().week
             factors = ['new_deaths', 'new_vaccinations']
years = [2020, 2021, 2022]
              for year in years:
                  iran_year = new_iran[new_iran['date'].dt.year == year]
                  iran_year_summarized = iran_year[['week'] + factors]
                  iran year summarized = iran year summarized.groupby(by='week').sum()
                  fig = plt.figure()
                  ax = fig.add_subplot(111)
                  ax2 = ax.twinx()
                  width = 0.4
                  iran_year_summarized.new_deaths.plot(kind='bar', color='red', ax=ax, width=width, position=1)
iran_year_summarized.new_vaccinations.plot(kind='bar', color='blue', ax=ax2, width=width, position=0)
ax.set_title('Vaccinations and Deaths In Iran per Week in {}'.format(year))
                  ax.set_ylabel('Deaths')
                  ax2.set_ylabel('Vaccinations')
                   ax.set_xlabel('Week')
                   ax.legend()
                  ax2.legend()
                  plt.show()
```


As you can see, in the first year, there is't any vaccinations in Iran(there was no vaccines available past then) and there is an ascending trend in number of deaths over weeks. In next year, as number of vaccination increases, we see a fall in number of deaths, which means that vaccination could help country control COVID-19. Finally in last year, again number of deaths increased and number of vaccinations decreased, which probably means that country couldn't get enough vaccines for the new trend.

Processing math: 100%