Задачи по байесовскому подходу к классификации

План семинара.

- 1. Пусть $p(x|y=-1) \sim N(0,1), \ p(x|y=1) \sim U(0,1), \ p(y=1)=0.5.$ Найти оптимальный байесовский классификатор.
- 2. Пусть $p(x|y=-1) \sim N(0,1), \ p(x|y=1) \sim U(0,1). \ p(y=1)=0.5.$ Посчитать средний риск.
- 3. Пусть в задаче двуклассовой классификации $Y = \{-1, +1\}$ и $\eta(x) = p(y = +1|x)$. Выразить оптимальный средний риск R^* и оптимальный средний риск на объекте х $R^*(x)$.
- 4. Пусть дана обучающая выборка $(x_1, y_1), ..., (x_n, y_n)$, где пара (x_i, y_i) объект и правильный ответ, причем $x_i \in \mathbb{R}^2$, $y_i \in \{0, 1\}$. Описать процедуру обучения наивного гауссовского классификатора. Выписать решающее правило.
- 5. Доказать, что наивный байесовкий классификатор в случае бинарных признаков $f_i \in \{0,1\}$ является линейным разделителем:

$$a(x) = a(f_1, ..., f_n) = [a_0 + a_1 f_1 + ... + n f_n > 0].$$

Выведите формулы для коэффициентов a_i .