Due before lecture on Monday, December 9, 2019

1. Let
$$A = \begin{bmatrix} 2 & -4 & -2 & 1 \\ 0 & -7 & 2 & 0 \\ 2 & 3 & -4 & 2 \end{bmatrix}$$
.

- (a) (definition of $C(A^T)$ and $N(A^T)$ as column space and nullspace of A^T respectivley)
 - i. Write down explicitly what the transpose A^T of A is.
 - ii. Describe explicitly the left nullspace $N(A^T)$ by finding all solutions to a specific linear system.
 - iii. Describe explicitly the row space $C(A^T)$ by finding out the conditions on b_i 's to ensure that $A^T\vec{x} = \vec{b}$ is solvable.
- (b) (definition of $C(A^T)$ as span of vectors that are transposes of rows of A)
 - i. Explain why Gaussian eliminate steps on A do change rows of A but do NOT change the row space of A.
 - ii. The upper echelon form for A is $A = \begin{bmatrix} 2 & -4 & -2 & 1 \\ 0 & -7 & 2 & 0 \\ 2 & 3 & -4 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -4 & -2 & 1 \\ 0 & -7 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = U$. Verify that the non-zero row vectors of U are linearly independent. As a consequence, they form a _____ for the row space $C(U^T)$ of U, which is the same as $C(A^T)$.
 - iii. Verify that all basis vectors for $C(A^T)$ we found above satisfy the conditions on b_i you found in part (a)iii.

The most efficient way to find basis for each of the four fundamental subspaces of a matrix turns out, once again, to be Gaussian elimination. Furthermore, we need Gaussian elimination on A only. There is no need to do another elimination on A^T ! To find basis for C(A), N(A), and $C(A^T)$, what we have discussed in lectures is enough. However, in order to find the basis for $N(A^T)$ we do need to know how to perform Gaussian elimination using elementary matrices, which is a topic in Math 146.

2. Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 8 & 10 \\ 3 & 6 & 10 & 13 \end{bmatrix}$$
. Gaussian elimination on A leads to

$$A = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 8 & 10 \\ 3 & 6 & 10 & 13 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U$$

- (a) (nullspace, review) Write down a basis for N(A).
- (b) (column space, review) Write down a basis for C(A).
- (c) (row space) Review part (b) of previous problem and write down a basis for $C(A^T)$.

(optional)The Gaussian elimination on A can be summarized using matrix multiplication as

$$L^{-1}A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 8 & 10 \\ 3 & 6 & 10 & 13 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U$$

Multiplying A from left by the matrix L^{-1} has the exact same effect as performing Gaussian elimination on A

(d) ((optional) left nullspace) Think of the rows of L^{-1} as transposed vectors \vec{x}^T . Which vector (vectors) \vec{x} satisfies $\vec{x}^T A = \vec{0}^T$? Can we use this vector (these vectors) as a basis for $N(A^T)$ and why?

3. (*Strang* §3.1 #7) Find a vector \vec{x} orthogonal to the row space of A, and a vector \vec{y} orthogonal to the column space, and a vector \vec{z} orthogonal to the nullspace:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}$$

- 4. (Strang §3.1 #30) If $A\vec{x}$ is in the nullspace of A^T then $A\vec{x} = \vec{0}$. Reason: $A\vec{x}$ is also in the ______ of $A\vec{x}$ and the spaces are _____. As a consequence, the nullspaces $N(A^TA)$ _____ N(A).
- 5. (*Strang* §3.1 #35) The floor and the wall are not orthogonal subspaces because they share a nonzero vector (along the line where they meet). Two planes in \mathbb{R}^3 cannot be orthogonal! Find a vector in both column spaces C(A) and C(B):

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 5 & 4 \\ 6 & 3 \\ 5 & 1 \end{bmatrix}.$$

(This will be a vector that can be written both as $A\vec{x}$ for some \vec{x} and also as $B\vec{y}$ for some, probably different, \vec{y} .) Hint: Think about using the 3×4 matrix $\begin{bmatrix} A & B \end{bmatrix}$.

- 6. (Strang §3.1 #36) Extend the previous problem to a p-dimensional subspace V and a q-dimensional subspace W of \mathbb{R}^n . What inequality on p+q guarantees that V intersects W in a nonzero vector? These subspaces cannot be orthogonal as a consequence.
- 7. (Strang §3.1 #49) Why is each of these statements false?
 - (a) $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ is perpendicular to $\begin{bmatrix} 1 & 1 & -2 \end{bmatrix}^T$ so the planes x+y+z=0 and x+y-2z=0 are orthogonal subspaces of \mathbb{R}^3 .
 - (b) The subspaces spanned by $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \end{bmatrix}^T$ and $\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \end{bmatrix}^T$ is the orthogonal complement of the subspace spanned by $\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \end{bmatrix}^T$ and $\begin{bmatrix} 2 & -2 & 3 & 4 & -4 \end{bmatrix}^T$.
 - (c) Two subspaces that meet only in the zero vector are orthogonal.
- 8. (Strang §3.1 #46) Find A^TA if the columns of A are unit vectors, all mutually perpendicular.
- 9. (*Strang* §3.1 #19) Why are these statements false? Construct a counterexample for each case to show that it is false. V and W are subspaces of \mathbb{R}^n .
 - (a) If V is orthogonal to W, then V^{\perp} is orthogonal to W^{\perp} .
 - (b) V orthogonal to W and W orthogonal to Z makes V orthogonal to Z.