MATB44 - Week 3 Tutorial Teaching Notes

Week 3 Topics

Linear Coefficient ODEs

Definition and Recognition

- General form: (ax + by + c)dx + (dx + ey + f)dy = 0
- When $\begin{vmatrix} a & b \\ d & e \end{vmatrix} \neq 0$
- Solution strategies based on coefficient relationships

Solution Methods

- Case 1: When c = f = 0 (homogeneous coefficients)
- Case 2: When $c \neq 0$ or $f \neq 0$ (non-homogeneous coefficients)
- Substitution techniques: u = x h, v = y k
- Finding critical points and transformations

Special Cases

- Exact equations
- Integrating factors
- Reduction to separable or homogeneous forms

Definition and Theory

What are Linear Coefficient ODEs?

A linear coefficient ODE has the form:

$$(ax+by+c)dx+(dx+ey+f)dy=0$$

where a, b, c, d, e, f are constants and the coefficient matrix is non-singular:

$$\begin{vmatrix} a & b \\ d & e \end{vmatrix} = ae - bd \neq 0$$

Solution Strategy

The solution method depends on whether the constant terms are zero:

Case 1: Homogeneous Coefficients (c = f = 0) When c = f = 0, the equation becomes:

$$(ax + by)dx + (dx + ey)dy = 0$$

This is **homogeneous** and can be solved using the substitution $v = \frac{y}{x}$.

Case 2: Non-Homogeneous Coefficients ($c \neq 0$ or $f \neq 0$) When constant terms are present, we find the **critical point** (h,k) by solving:

$$\begin{cases} ah + bk + c = 0\\ dh + ek + f = 0 \end{cases}$$

Then use the substitution: u = x - h, v = y - k

This transforms the equation to homogeneous form in (u, v).

Critical Point Method

Step 1: Check the coefficient matrix determinant:

$$\begin{vmatrix} a & b \\ d & e \end{vmatrix} = ae - bd$$

- If $ae bd \neq 0$: Unique critical point exists, proceed to Step 2
- If ae bd = 0: No unique critical point, use different methods (homogeneous or special substitutions)

Step 2: Find critical point (h, k) from:

$$\begin{cases} ah + bk + c = 0\\ dh + ek + f = 0 \end{cases}$$

Step 2: Substitute u = x - h, v = y - k (so du = dx, dv = dy)

Step 3: The equation becomes:

$$(au + bv)du + (du + ev)dv = 0$$

Step 4: Solve this homogeneous equation using $w = \frac{v}{u}$

Step 5: Back-substitute to get solution in terms of x and y

Key Examples

Example 1: Non-Homogeneous Coefficients

Solve: (2x + y - 1)dx + (x + 2y - 3)dy = 0

Solution: Step 1: Make the substitution directly: Let u = 2x - y + 1 and v = x + y

From these equations: - $u = 2x - y + 1 \dots (1)$ - $v = x + 2y - 3 \dots (2)$

Solving for x and y: From the system: - u = 2x - y + 1 ... (1) - v = x + 2y - 3 ... (2)

From (1): y = 2x - u + 1 Substitute into (2): v = x + 2(2x - u + 1) - 3 = x + 4x - 2u + 2 - 3 = 5x - 2u - 1 So: $x = \frac{v + 2u + 1}{5}$

And: $y = 2x - u + 1 = 2 \cdot \frac{v + 2u + 1}{5} - u + 1 = \frac{2v + 4u + 2}{5} - u + 1 = \frac{2v + 4u + 2 - 5u + 5}{5} = \frac{2v - u + 7}{5}$

Step 2: Find the differentials: $dx = \frac{2}{5}du + \frac{1}{5}dv$ and $dy = -\frac{1}{5}du + \frac{2}{5}dv$

Step 3: Substitute into the original equation: (2x+y-1)dx+(x+2y-3)dy=0

Notice that: -2x + y - 1 = u (by our substitution) -x + 2y - 3 = v (by our substitution)

Step 4: The equation becomes: $u \cdot dx + v \cdot dy = 0$

Substituting the differentials: $u \cdot (\frac{2}{5}du + \frac{1}{5}dv) + v \cdot (-\frac{1}{5}du + \frac{2}{5}dv) = 0$

Expanding: $\frac{2u}{5}du + \frac{u}{5}dv - \frac{v}{5}du + \frac{2v}{5}dv = 0$

Collecting terms: $(\frac{2u}{5} - \frac{v}{5})du + (\frac{u}{5} + \frac{2v}{5})dv = 0$

Factoring out $\frac{1}{5}$: (2u-v)du + (u+2v)dv = 0

Step 5: This is now a homogeneous equation in (u, v). We can solve using $w = \frac{v}{u}$:

Let v = wu, then dv = wdu + udw

$$(2u - wu)du + (u + 2wu)(wdu + udw) = 0$$

$$u(2-w)du + u(1+2w)(wdu + udw) = 0$$

Dividing by u: (2 - w)du + (1 + 2w)(wdu + udw) = 0

$$(2 - w + w + 2w^2)du + (1 + 2w)udw = 0$$

$$(2+2w^2)du + (1+2w)udw = 0$$

Separating:
$$\frac{du}{u} = -\frac{(1+2w)dw}{2(1+w^2)}$$

Final solution: After integration and back-substitution, we get the relationship between u = 2x - y + 1 and v = x + 2y - 3.

Example 2: Special Case - Determinant = 0

Solve: (x+2y-3)dx + (2x+4y+1)dy = 0

Solution: Step 1: Check the coefficient matrix determinant:

$$\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 2 = 4 - 4 = 0$$

Since the determinant is 0, we cannot find a unique critical point. We need a different approach.

Step 2: Make substitution: Let y = y and u = x + 2y - 3

From this: x = u - 2y + 3

Step 3: Find the differentials: du = dx + 2dy, so dx = du - 2dy

Step 4: Substitute into the original equation: (x+2y-3)dx+(2x+4y+1)dy=0

Notice that: -x+2y-3 = u-2x+4y+1 = 2(x+2y)+1 = 2(u+3)+1 = 2u+7

The equation becomes: $u \cdot dx + (2u + 7)dy = 0$

Substituting dx = du - 2dy: $u \cdot (du - 2dy) + (2u + 7)dy = 0$

u du - 2u dy + (2u + 7)dy = 0

u du + (-2u + 2u + 7)dy = 0

 $u\,du + 7dy = 0$

Step 5: This is separable: u du = -7dy

Integrating both sides: $\int u \, du = -7 \int dy$

$$\frac{u^2}{2} = -7y + C$$

Final solution: $\frac{(x+2y-3)^2}{2} = -7y + C$, or $(x+2y-3)^2 + 14y = K$