Partie 1:

Exercice 1

Eléments	Interprétation
Calcul Nourriture Moyenne: 129.745 Médiane: 135.5 Ecart-type: 44 Variance: 1936.54 Quartiles: {0.25: 95.75, 0.5: 135.5, 0.75: 165.25} Etendue: 148 Calcul Température Moyenne: 28.389 Médiane: 28.5 Ecart-type: 2.06 Variance: 4.2672150753768845 Quartiles: {0.25: 26.6, 0.5: 28.5, 0.75: 30.3} Etendue: 6.89	 Moyenne (129.7 g) et médiane (135.5 g) assez proches, nourriture équilibrée. Écart-type (44 g) assez élevé et étendue (148 g) donc une dispersion notable des données ? Peut-être une forte variabilité dans la quantité de nourriture consommée chaque jour. Q1 (95.75 g) -> 25 % consomment moins de 95.75 g par jour. Médiane (135.5 g) -> 50 % consomment moins de 135.5 g par jour, et l'autre moitié au-dessus. Q3 (165.25 g) -> 75 % consomment moins de 165.25 g par jour, donc seulement 25% consomment plus. Moyenne (28.4 °C) très proche de la médiane (28.5 °C), température équilibrée. Écart-type faible (2.07 °C) et étendue (6.89 °C) faible variabilité, les températures dans l'enclos sont relativement constantes. 50 % des observations sont comprises entre 26.6 °C et 30.3 °C, indiquant une bonne stabilité thermique générale dans l'enclos.
Calcul poids • Moyenne: 2509.58 • Médiane: 2481.5 • Ecart-type: 898.43 • Variance: 807188.81 • Quartiles: {0.25: 1810.75, 0.5: 2481.5, 0.75: 3356.5} • Etendue: 3153	 Moyenne (2509.6 g) et médiane (2481.5 g) très proches, poids équilibré. Écart-type élevé (898.4 g) assez élevé et étendue (3153 g), les poids des poulets varient fortement, peut etre à cause de différences d'âge ou de conditions d'élevage. Les quartiles montrent que 50 % des poulets ont un poids entre 1810.75 g et 3356.5 g, ce qui confirme également cette grande dispersion.

Conclusion:

La variable "Température" est relativement homogène avec peu de dispersion. Les variables "Poids" et "Nourriture" ont une grande variabilité, à cause d'une forte dispersion des données dans ces domaines

Interprétation:

Avec les histogrammes on peut confirmer notre précédente conclusion « Les variables "Poids" et "Nourriture" ont une grande variabilité ». Alors que la température est assez équilibrée avec cependant un important creux à 28°C.

Interprétation : On observe également une certaine/minim dispersion dans nos boites à moustache pour le poids et la nourriture

Exercice 2

Interprétation : La méthode IQR ne détecte aucun outlier même avec une log-transformation, ce qui indique que les valeurs extrêmes ne sont pas très éloignées par rapport au milieu de la distribution (entre les quartiles Q1 et Q3). Cependant, la méthode Z-score après une log-transformation détecte quelques outliers :

- 27 6.710523
- 68 6.726233

Le Z_score utilise la moyenne et écart-type ce qui fait qu'elle est plus sensible aux valeurs extrêmes.

Exercice 3

Interprétation : On visualise si notre variables ici le « *poids* » respecte une dispersion normal. Dans ce cas on observe que les valeurs ne sont pas fortement normal meme apres log transformation. C'est pourquoi un à observer precedemment des outliers presque inexsistant.

Résultats La variable Poids ne suit pas une loi équilibréeep = Test t de Student pour Poids_poulet_g entre Groupe1 et Groupe2: 0.000). La variable Nourriture ne suit pas une loi normale t-statistique = 0.58 : différence relativement petite (p = 0.000).entre les 2 groupes La variable Température ne suit pas une loi p-value = 0.55 : pas de différence significative entre les moyennes des deux groupes normale (p = 0.000). Interprétation: (ShapiroWilk) Aucune variable ne ANOVA: Pas de différence significative entre les suit une loi normale. groupes.

Partie 2

Exercice 4:

Interprétation : les 2 CP sont très dispersés pas de structure voyante sur 2 composantes. Peut avec plus de composante on aura des indices intéressants.

Exercice 5:

Interprétation :

ACP classique : le nuage de points est globalement homogène.

KernelPCA: Résultat très similaire à l'ACP

KernelPCA (noyau RBF): Pas adapter pour notre cas

Partie 3:

Interprétation : On peut voir que le « $poids_poulet_g$ » à la plus grande importance relative. Parceque corrélation avec la cible on a pu observer quelques outliers. Ou bien tout simplement qu'en général un gros poulet aura plus de chance de survie donc consommera plus de nourriture et vivra longtemps.

Exercice 7:

AdaBoost:	Gradient Boosting :
RMSE: 0.29	RMSE: 0.08
MAE: 0.22	MAE: 0.04
R^2: 1.00	R^2: 1.00

Probleme avec le R^2 trop parfait. Surapprentissage ...

RMSE : Pénalise davantage les grandes erreurs, utilisé lorsque l'on souhaite mettre en évidence les écarts importants.

MAE : moyenne des écarts absolus robuste en présence d'outliers (pas dans notre cas).

Gradient Boosting (RMSE) obtient des erreurs bien plus faibles que AdaBoost elle a une meilleure précision dans la prédiction.

Les 2 algorithme réagissent différemment aux outliers on peut le voir avec nos métrics RMSE et MAE de grande disparité entre les 2.

Matrice de confusion :						
Réalité						
		Négative : 0	Positive: 1			
Prédiction	Négative : 0	19 (VN)	9(FN)			
	Positive: 1	19 (FP)	13(VP)			

Rapport de classification:

	Metric precision	recall	f1-score	support
0	0.50	0.68	0.58	28
1	0.59	0.41	0.48	32
Accuracy			0.53	60
Macro avg	0.55	0.54	0.53	60
weighted avg	0.55	0.53	0.53	60