TD N°2 Mécanique des Fluides Avancée

Exercice 1

On considère un fluide en écoulement dans un conduit rond horizontal avec une vitesse moyenne V. Une plaque avec orifice de diamètre d est placée dans le conduit. On désire étudier la chute de pression à travers de l'orifice, ΔP . En supposant $\Delta P = f(D,d,\rho,V)$, déterminez la chute de pression sans dimension en fonction des autres Π .

Exercice 2

On s'intéresse à un écoulement d'eau autour d'un obstacle cylindrique horizontal, de longueur L=2m (selon z) et de diamètre D = 0.5 m. La vitesse de l'eau loin en amont du cylindre est $U_{\infty} = 3$ m/s selon l'axe x. La longueur du cylindre étant très supérieure à son diamètre, on peut considérer l'écoulement bidimensionnel dans le plan vertical (x, y).

- 1) Rappeler l'expression de l'épaisseur de la couche limite
- 2) Calculer le Nombre de Reynolds global Re.
- 3) La figure ci-après représente l'évolution du coefficient de trainée C_x en fonction du Nombre de Reynolds R_e.

Calculer la force de trainée.

4) Donner l'équivalence de puissance nécessaire pour vaincre la force de trainée. On donne $\mu_{eau} = 10^{-3} \, \text{Pa.s}$; $\rho_{eau} = 1 \, \text{kg/l}$.

Exercice 3

Nous considérons le problème de l'écoulement visqueux dans une conduite cylindrique de surface intérieure parfaitement lisse. Nous cherchons à trouver la chute de pression sans dimension en fonction des autres paramètres sans dimension. Les paramètres de ce problème sont : ΔP = chute de pression, V = vitesse moyenne, D = diamètre, L = longueur, p = densité, μ = viscosité.

Nous supposons que $\Delta P = f(V, D, L, \rho, \mu)$.

Déterminez la chute de pression sans dimension en fonction des autres Π.