Why do we care?

- Why should cost be symmetric?
- All data is imbalanced
- Detect rare events

Changing Thresholds

```
data = load breast cancer()
 X_train, X_test, y_train, y_test = train_test_split(
    data.data, data.target, stratify=data.target, random_state=0)
 lr = LogisticRegression().fit(X_train, y_train)
 y_pred = lr.predict(X_test)
 classification_report(y_test, y_pred)
         precision recall f1-score support
0
              0.91
                      0.92
                                0.92
              0.96
                     0.94
                                0.95
                                          90
avg/total
              0.94
                     0.94
                                0.94
                                         143
 y_pred = lr.predict_proba(X_test)[:, 1] > .85
 classification_report(y_test, y_pred)
         precision recall f1-score support
              0.84
0
                      1.00
                                0.91
                                          53
              1.00
                                0.94
                                           90
                      0.89
avg/total
              0.94
                     0.93
                                0.93
                                         143
```

Roc Curve

Remedies for the model

Mammography Data

```
import openml
# mammography dataset
# https://www.openml.org/d/310
data = openml.datasets.get_dataset(310)
X, y = data.get_data(target='class')
X.shape

(11183, 6)

np.bincount(y)

array([10923, 260])
```

Mammography Data

0.939, 0.722

Mammography Data

Basic Approaches

Sckit-learn vs resampling

Imbalance-Learn

http://imbalanced-learn.org

pip install -U imbalanced-learn

Extends sklearn API

Sampler

To resample a data sets, each sampler implements:

```
data_resampled, targets_resampled = obj.sample(data, targets)
```

Fitting and sampling can also be done in one step:

```
data_resampled, targets_resampled = obj.fit_sample(data, targets)
```

Sampler

To resample a data sets, each sampler implements:

```
data_resampled, targets_resampled = obj.sample(data, targets)
```

Fitting and sampling can also be done in one step:

```
data_resampled, targets_resampled = obj.fit_sample(data, targets)
```

In Pipelines: Sampling only done in fit!

Random Undersampling

Random Undersampling

0.927, 0.527

Random Undersampling

0.951, 0.629

Random Oversampling

Random Oversampling

0.917, 0.585

Random Oversampling

Curves for LogReg

Curves for Random Forest

ROC or PR?

FPR or Precision?

$$ext{FPR} = rac{ ext{FP}}{ ext{FP} + ext{TN}}$$

$$ext{Precision} = rac{ ext{TP}}{ ext{TP} + ext{FP}}$$

Class-weights

- Instead of repeating samples, re-weight the loss function.
- Works for most models!
- Same effect as over-sampling (though not random), but not as expensive (dataset size the same).

Class-weights in linear models

$$\min_{w \in \mathbb{R}^p} -C \sum_{i=1}^n \log(\exp(-y_i w^T \mathbf{x}_i) + 1) + ||w||_2^2$$

$$\min_{w \in \mathbb{R}^p} - C \sum_{i=1}^n c_{y_i} \log(\exp(-y_i w^T \mathbf{x}_i) + 1) + ||w||_2^2$$

Similar for linear and non-linear SVM

Class weights in trees

Gini Index:

$$H_{ ext{gini}}(X_m) = \sum_{k \in \mathcal{Y}} p_{mk} (1 - p_{mk})$$

$$H_{ ext{gini}}(X_m) = \sum_{k \in \mathcal{Y}} c_k p_{mk} (1 - p_{mk})$$

Prediction:

Weighted vote

Using Class-Weights

Smart resampling

(based on nearest neighbour heuristics from the 70's)

Edited Nearest Neighbours

- Originally as heuristic for reducing dataset for KNN
- Remove all samples that are misclassified by KNN from training data (mode) or that have any point from other class as neighbor (all).
- "Cleans up" outliers and boundaries.

Edited Nearest Neighbours

```
from imblearn.under_sampling import EditedNearestNeighbours
enn = EditedNearestNeighbours(n_neighbors=5)
X_train_enn, y_train_enn = enn.fit_sample(X_train, y_train)
enn_mode = EditedNearestNeighbours(kind_sel="mode", n_neighbors=5)
X_train_enn_mode, y_train_enn_mode = enn_mode.fit_sample(X_train, y_train)
```


35 / 47

0.944

Synthetic Sample Generation

Synthetic Minority Oversampling Technique (SMOTE)

- Adds synthetic interpolated data to smaller class
- For each sample in minority class:
 - Pick random neighbor from k neighbors.
 - Pick point on line connecting the two uniformly
 - Repeat.

42 / 47


```
smote_pipe = make_imb_pipeline(SMOTE(), LogisticRegression())
scores = cross_val_score(smote_pipe, X_train, y_train, cv=10, scoring='roc_auc')
np.mean(scores)

0.919

smote_pipe_rf = make_imb_pipeline(SMOTE(),RandomForestClassifier(n_estimators=100))
scores = cross_val_score(smote_pipe_rf,X_train,y_train, cv=10, scoring='roc_auc')
np.mean(scores)

0.947

param_grid = {'smote_k_neighbors': [3, 5, 7, 9, 11, 15, 31]}
search = GridSearchCV(smote_pipe_rf, param_grid, cv=10, scoring="roc_auc")
search.fit(X train, y train)
```


Summary

- Always check roc_auc, look at curve
- Undersampling is very fast and can help!
- Undersampling + Ensembles is very powerful!
- Many smart sampling strategies, mixed outcomes
- SMOTE allows adding new interpolated samples, works well in practice
- More advanced variants of SMOTE available