负反馈对放大器性能的影响

主讲人: 毛会琼

负反馈对放大器性能的影响

主要内容:

负反馈对放大器性能的影响。

重点难点:

负反馈对电压放大倍数、放大倍数稳定性的影响。

负反馈对放大器性能的影响

1. 降低放大倍数

在
$$A_{\rm f} = \frac{A}{1 + AF}$$
 中,

负反馈使放大倍数下降至1/(1+|AF|)倍。

|1+AF| 称为反馈深度,其值愈大,负反馈作用愈强, A_f 也就愈小。

若|
$$AF$$
| >>1,称为深度负反馈,此时: $A_f \approx \frac{1}{F}$

在深度负反馈的情况下,闭环放大倍数仅与反馈电路的参数有关。

2. 提高放大倍数的稳定性

$$A_{\rm f} = \frac{A}{1 + AF}$$

$$\frac{\mathbf{d}|A_{\mathbf{f}}|}{|A_{\mathbf{f}}|} = \frac{1}{1 + |AF|} \cdot \frac{\mathbf{d}|A|}{|A|}$$

引入负反馈使放大倍数的稳定性提高。

放大倍数的稳定性提高了1+|AF|倍。

3. 改善波形失真

负反馈是利用失真的波形来改善波形的失真,因此只能减小失真,而不能完全消除失真。

4. 展宽通频带

引入负反馈使电路的通频带宽度增加

5. 对放大电路输入电阻的影响

(1) 串联负反馈 使电路的输入电阻提高

$$T_{
m i}=1$$
) 串联负反馈 使电路的输入。 $T_{
m i}=rac{u_{
m i}}{i_{
m b}}=rac{u_{
m be}}{i_{
m b}}$

有负反馈时: $r_{\rm if} = \frac{u_{\rm i}}{i_{\rm b}}$

在同样的 i_b 下, $u_i = u_{be} + u_f > u_{be}$,所以 r_{if} 提高。

(2) 并联负反馈 使电路的输入电阻降低

无负反馈时:
$$r_{\rm i} = \frac{u_{\rm be}}{i_{\rm b}}$$

有负反馈时: $r_{\rm if} = \frac{u_{\rm be}}{i_{\rm i}}$

在同样的 u_{be} 下, $i_i = i_b + i_f > i_b$,所以 r_{if} 降低。

6. 对放大电路输出电阻的影响

- (1) 电压负反馈使电路的输出电阻降低 电压负反馈具有稳定输出电压的作用,即有恒压输出特性,故输出电阻降低。
- (2) 电流负反馈使电路的输出电阻提高 电流负反馈具有稳定输出电流的作用,即有恒流输出特 性,故输出电阻提高。

四种负反馈对 r_i 和 r_o 的影响

	串联电压	串联电流	并联电压	并联电流
$r_{\rm i}$	增高	增高	减低	减低
r_{0}	减低	增高	减低	增高

- 1. 降低放大倍数
- 2. 提高放大倍数的稳定性
- 3. 改善波形失真
- 4. 展宽通频带
- 5. 对放大电路输入电阻的影响 串联负反馈使电路的输入电阻提高 并联负反馈使电路的输入电阻降低
- 6. 对放大电路输出电阻的影响 电压负反馈使电路的输出电阻降低 电流负反馈使电路的输出电阻提高

