

Lecture 6. Feature Descriptors

Scale invariant keypoint detection

Juan Carlos Niebles and Jiajun Wu
CS131 Computer Vision: Foundations and Applications

CS 131 Roadmap

<u>Pixels</u>	Segments	lmages	Videos	Web
Convolutions Edges Features	Resizing Segmentation Clustering	Recognition Detection Machine learning	Motion Tracking	Neural networks Convolutional neural networks

What will we learn today?

- Scale invariant keypoint detection
 - Automatic scale selection
 - Harris-Laplace detector
 - Difference-of-Gaussian (DoG) detector

The Harris corner detector is not scale invariant

Does scale matter?

• For feature matching, it is important to estimate the size of the neighborhood that can lead to best matching between images of different scale.

- Consider regions (e.g. circles) of different sizes around a point
- What region size do we choose, so that the regions look the same in both images?

• Problem: How do we choose region sizes *independently* in each image?

- Solution:
 - Design a function on the region (circle), which is "scale invariant": has the same value for corresponding regions, even if they are at different scales
 - Example: average intensity. For corresponding regions (even of different sizes) it will be the same.
 - -Given a point in one image, we can think of it as a function of region size (circle radius)

- Common approach:
 - Take a local maximum of this function
- Important: this scale invariant region size is found in each image independently!
- Observation: region size, for which the maximum is achieved, should be *co-variant* with image scale.

- Common approach:
 - Take a local maximum of this function
- Important: this scale invariant region size is found in each image independently!
- Observation: region size, for which the maximum is achieved, should be *co-variant* with image scale.

• A "good" function for scale selection has one stable sharp peak

• For usual images: a good function would be one which responds to contrast (sharp local intensity change)

We will use functions for determining scale that have the form of

f = Kernel * Image

- Choices of Kernel:
 - Laplacian:

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

- Difference of Gaussians (DoG):

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

where G is the Gaussian function:

$$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Note: both kernels are invariant to scale and rotation

Laplacian

- Harris-Laplacian¹
 Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

Difference of Gaussians in space and scale

¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". IJCV 2004

Difference-of-Gaussians

Scale, σ

Gaussian:

DoG:

Scale-Space Extrema

Choose all extrema within 3x3x3 neighborhood.

X is selected if it is larger or smaller than all 26 neighbors

Difference of Gaussians (DoG) example

Original video

Blurred with a Gaussian kernel

Blurred with a different Gaussian kernel

What happens if you subtract one blurred image from another?

Difference of Gaussians (DoG) example

Original video

DoG: $k_1 - k_2$

Blurred with a Gaussian kernel: k₁

DoG: $k_1 - k_3$

Blurred with a different Gaussian kernel: k₂

DoG: $k_1 - k_4$

Experimental evaluation of detectors

w.r.t. scale change

Repeatability rate:

correspondences# possible correspondences

Scale Invariant Detection: Summary

- Given: two images of the same scene with a large scale difference between them
- Goal: find the same interest points independently in each image
- Solution: search for maxima of suitable functions in scale and in space (over the image)

Methods:

- 1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over scale, Harris' measure of corner response over the image
- 2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space

What's next?

We now can detect keypoints at varying scales. But what can we do with those keypoints?

Things we would like to do:

- Search:
 - We would need to find similar key points in other images
- Panorama stitching
 - Match keypoints from one image to another.
- Etc...

For all such applications, we need a way of `describing` the keypoints.

Summary

- Scale invariant keypoint detection
 - Automatic scale selection
 - Harris-Laplace detector
 - Difference-of-Gaussian (DoG) detector