医用工学概論

第4回 電気回路の基礎

前回の内容

生体に作用するエネルギー

- •電気
- ・機械的エネルギー
- 音波
- **•** 熱
- 光
- •磁気、電磁波
- •放射線

放射線に対する生体の性質

放射線(電離放射線)の生体作用: 電離作用

侵入した放射線が生体を構成する原子、分子を電

離させる。

放射線の種類

粒子、電磁波による分類

- 電磁波放射線: X線、γ線などの波長が極めて短い

(エネルギー作用の強い)電磁波。

• 粒子放射線 : 電子線、陽子線、中性子線などの粒子。

電荷の有無による分類

直接電離放射線: α線、β線のような電荷を持つ粒子線。

•間接電離放射線: X線、γ線などの電磁波や電荷を持たな

い中性子線。

放射線は、粒子(光子)であるがエネルギーは非常に大きい。 細胞分裂が盛んな組織ほど、放射線感受性が高い。

臓器・組織の放射線感受性

分裂が盛ん 感受性が高い

造血系:骨髄、リンパ組織(脾臓、胸腺、リンパ節)

生殖器系:精巣、卵巣

消化器系:粘膜、小腸絨毛

表皮、眼:毛囊、汗腺、皮膚、水晶体

その他:肺、腎臓、肝臓、甲状腺

支持系:血管、筋肉、骨

伝達系:神経

分裂しない

感受性が低い

環境省

https://www.env.go.jp/chemi/rhm/h29kisoshiryo/h29kiso-03-02-07.html 2018.10.23参照

放射線を表す単位

•吸収線量

- 等価線量

吸収線量Dに、放射線の種類による影響の違いを考慮した係数Q(放射線加重係数)をかけた量。

$$D \times Q = H[Sv](\mathcal{V} - \mathcal{V})$$

(Q = X線: 1, γ線: 約0.6, β線: 1, 中性子線: 2~10...)

実効線量

等価線量Hに、吸収した組織による影響の受け方の違いを 考慮した係数(組織加重係数)をかけた量。

$$D \times Q \times$$
組織加重係数 = $E[Sv](シーベルト)$

医用工学概論の章立て

電荷 Q

通常,原子は正負の電荷が打ち消しあって,電荷を 持たない が, イオン化 することで,電子過多(欠乏)となり,電荷を 持つ ようになる.

静電気力

同符号の電荷は 反発 し、異符号の電荷は 引き合う .

静電気力に関するクーロンの法則

2電荷間の静電気力 Fは,

電荷 $q_1(q_2)$ に比例し、距離 r の2乗に反比例する.

$$F \propto \frac{q_1 q_2}{r^2}$$

電流

電流 = 電荷の流れ(電荷量の時間変化)

$$I = \frac{dQ}{dt}[A] \quad (\mathbf{T} \mathbf{\mathcal{Y}})$$

電子:マイナス極からプラス極へ

電流: プラス極からマイナス極へ

○ 自由電子

原子から飛び出して自由に動き回る電子

電圧と抵抗

電圧 = 電流を流そうとする力

抵抗 = 電流の流れにくさ

水の流れに例えた例

•••単位[V](ボルト)

***単位[Ω](オーム)

電位の変化

電位: 基準電位に対する電気的な高さ

基準電位: 接地、アース または グランド(GND) 電

抵抗による電位の変化を 電圧降下ともいう

電池を使った直流回路の 場合 マイナス極 をグランド₋ として考える。

直流と交流

直流(direct current: DC)

流れる電流は時間が経過しても大きさも向きも変わらない

- 化学反応で電気が得られる
- ほとんどの電気製品は直流で動いている

交流(alternating current: AC)

交互の

流れる電流は時間とともに大きさと向きが変わる

- トランスという非常に原始的な道具によって 自由に電圧が変えられる
- 送電効率がよい

オームの法則

導体に流れる **電流**/ は両端に加わる 電圧E に比例する。

$$I = GE$$
 ($G =$ 比例定数)

比例定数Gを コンダクタンス という(単位 [S]ジーメンス)。 Gの逆数を取るとオームの法則が得られる。

$$I = \frac{E}{R}$$

コンダクタンスの逆数Rを電気抵抗という(単位 [Ω]オーム)。

電気抵抗 R

$$R = \rho \frac{L}{S} \left[\Omega \right]$$

物質	抵抗率(ρ)	温度係数(α)
銀	1.62×10-*	+4.0×10 ⁻³
銅	1.72×10-8	+4.3×10 ⁻³
アルミニウム	2.8×10-8	+3.9×10 ⁻³
タングステン	5.5×10-*	+5.3×10-3
タングステン(3,000°C)	1.23×10-6	_
鉄	9.8×10-8	+6.6×10-3
ニクロム	1.09×10-6	+0.1×10 ⁻³
ガラス	1016	_
セラミックス(アルミナ)	109~1012	_
ゴム	1010~1013	_

第2章 p.35 表2-2 第2章 p.35 図2-2515

合成抵抗(直列)

直列接続

$$v = R_1 i + R_2 i$$
$$= (R_1 + R_2) i$$
$$= R_0 i$$

区間に流れる 電流は等しい.

合成抵抗

$$R_0 = R_1 + R_2$$

合成抵抗(並列)

並列接続

$$i = \frac{1}{R_1}v + \frac{1}{R_2}v$$
$$= \left(\frac{1}{R_1} + \frac{1}{R_2}\right)v$$
$$= \frac{1}{R_0}v$$

区間に加わる 電圧は等しい.

合成抵抗

$$R_0 = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

キルヒホッフの法則

分岐のある複雑な回路の電流、電圧を求めたい。

- 1.合成抵抗を求める。
- 2.キルヒホッフの法則を使う。

キルヒホッフの法則

第一法則:電流則

第二法則:電圧則

→ 連立方程式を立立る

キルヒホッフの第一法則(電流則)

回路網のある接続点において 流入する電流と流出する電流の総和は等しい

例

点Aについてキルヒホッフの 第1法則の式を立ててみる

点Aに流入する電流:

 I_1, I_2

点Aから流出する電流: I_3

$$I_1 + I_2 = I_3$$

キルヒホッフの第二法則(電圧則)

回路網内のひとつの閉じた回路において 起電力の総和と電圧降下の総和は等しい

起電力: E_1, E_2

電圧降下: IR_1, IR_2

 $E_1 + E_2 = IR_1 + IR_2$

さっきの例

大回りする回路について

起電力: *E*₁

電圧降下: I_1R_1, I_3R_3

 $E_1 = I_1 R_1 + I_3 R_3$

下半分の回路について

起電力: E_2

電圧降下: I_2R_2 , I_3R_3

 $E_2 = I_2 R_2 + I_3 R_3$

さっきの例

連立方程式

$$I_1 + I_2 = I_3$$
 $E_1 = I_1R_1 + I_3R_3$
 $E_2 = I_2R_2 + I_3R_3$

電流計

測りたい電流が流れる区間に 直列 に接続する.

電流を正しく測るためには、 $r_0 \ll R$ であることが必要. (=動作を邪魔しない)

電圧計

測りたい電圧が加わる区間に 並列 に接続する.

電圧を正しく測るためには, $R_1\gg r_0$ であることが必要. 動作を邪魔しないためには, $R_1\gg R$ であることが必要.

ホイートストン・ブリッジ回路

使いどころ1) 未知抵抗 を精密に測る

使いどころ2) 微小な 抵抗の変化 を検出する

ブリッジ回路の平衡条件

検流計に 電流が流れなくなる 条件 $ightharpoonup V_a = V_b$

ブリッジ回路の平衡条件

回路に流れる電流は,

$$I_a = \frac{V}{R_1 + R_4},$$

$$I_b = \frac{V}{R_2 + R_3}.$$

平衡条件では、 $V_a = V_b$ なので、

$$\frac{R_4}{R_1 + R_4}V = \frac{R_3}{R_2 + R_3}V \implies R_2R_4 + R_3R_4 = R_1R_3 + R_3R_4.$$

ブリッジ回路の平衡条件

$$R_2R_4 = R_1R_3$$

(計算例)

 R_3 を $5k\Omega$ としたとき、検流計Gに電流が流れなくなった。

未知抵抗 $R_X =$

(計算例)

 R_3 を $5k\Omega$ としたとき、検流計Gに電流が流れなくなった。

未知抵抗 $R_X = 500\Omega$

ジュールの法則

抵抗 R に電流 I が t 秒間流れるときに発生する熱量 H は,

電気抵抗では、(供給される電気エネルギー)=(発生する熱エネルギー) 例)電気ヒーターは、このジュール熱を用いて暖める.

電力

電気エネルギー

単位時間あたりに供給される電力量を 電力 と呼ぶ.

$$P = VI \qquad (= I^2 R)$$

単位は、W(ワット)

電力と電力量

電力量の単位(J)は、W秒 とも表せる.

ただし、実用上は、

キロワット時(kWh)

が使われる.

 $R_1=2$, $R_2=4$, $R_3=6[\Omega]$, E=20[V]となる以下のような回路を作製したときの消費電力を求めよ。

図の回路でla,lb,lcをそれぞれ求めよ。

1つの抵抗にかかる電圧、流れる電流を測る時、電圧計、電 流計をそれぞれどのように接続すれば良いか。

抵抗R₀に流れる電流が0[A]になるとき、抵抗Rの値を求めよ

練習問題1 解答

 $R_1=2$, $R_2=4$, $R_3=6[\Omega]$, E=20[V]となる以下のような回路を作製したときの消費電力を求めよ。

$$R_{23} = \frac{R_2 R_3}{R_2 + R_3} = \frac{4 \times 6}{4 + 6} = \frac{24}{10} = 2.4$$

$$R_{123} = R_1 + R_{23} = 2 + 2.4 = 4.4$$

$$P = VI = V\frac{V}{R} = \frac{V^2}{R} = \frac{20^2}{4.4} = \frac{400}{4.4} = 90.909 \dots$$

練習問題2 解答

$$\begin{cases} I_c = I_a + I_b \\ 6 = 3I_a + 2I_c \\ 8 = 4I_b + 12I_c \end{cases}$$

$$\begin{cases} 6 = 3I_a + 12(I_a + I_b) = 15I_a + 12I_b \\ 8 = 4I_b + 12(I_a + I_b) = 12I_a + 16I_b \end{cases}$$

$$5I_a + 4I_b = 2$$
-) $3I_a + 4I_b = 2$

$$2I_a = 0$$

$$I_a = 0$$

$$4I_b = 2$$

 $I_b = 0.5$

$$I_c = 0 + 0.5 = 0.5$$

$$I_a = 0 [A], I_b = 0.5 [A], I_c = 0.5 [A]$$

練習問題3 解答

1つの抵抗にかかる電圧、流れる電流を測る時、電圧計、電流計をそれぞれどのように接続すれば良いか。

練習問題4 解答

平衡条件

予習問題1

- (1) sin(x) のグラフを描け
- (2)2 sin(x) のグラフを描け
- (3) sin(2x) のグラフを描け
- (4)sin(x + 90)のグラフを描け
- ※グラフの横軸、縦軸の数値を示すこと
- ※横軸の範囲は360までとする
- ※角度は度数法を用いよ

予習問題2

ベクトル
$$\vec{V} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
について

- (1)ベクトル \vec{V} の長さ $|\vec{V}|$ を求めよ。
- (2)ベクトル \vec{V} とx軸のなす角度 ϕ を求めよ。

予習問題1 解答

予習問題2 解答

ベクトル
$$\vec{V} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
について

三平方の定理より

$$|\vec{V}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

(2)ベクトル \vec{V} の角度 ϕ を求めよ。

$$\phi = \operatorname{Tan}^{-1}\left(\frac{$$
高さ}底辺}\right) = \operatorname{Tan}^{-1}\left(\frac{4}{3}\right) \simeq 53.130[\operatorname{deg}]