INTRODUCCION A LA FISICA CUÁNTICA

CLAVE: 0582 QUINTO SEMESTRE CRÉDITOS: 12	MODALIDAD: Curso CARÁCTER: Obligatorio REQUISITOS: Ecuaciones Diferenciales I, Cálculo Diferencial e Integral IV, Electromagnetismo I, Fenómenos Colectivos.
HORAS POR CLASE HORAS POR SEMANA HORAS POR SEMESTRE	TEÓRICAS: 2 TEÓRICAS: 6 TEÓRICAS: 96

Objetivos

El curso tiene como objetivo dar al alumno un concepto actual y unificado de la estructura de la materia, mediante una visión cuántica del mundo microscópico. Para lograr este propósito se usará la evidencia experimental y algunos conceptos elementales de la mecánica cuántica con aplicaciones en la física atómica, molecular, el estado sólido y la física nuclear, concluyendo con un panorama moderno de la estructura de la materia basada en el modelo estándar y la física de las partículas elementales.

Metodología de la enseñanza

El maestro deberá motivar la participación activa de los alumnos por medio de exposiciones y trabajos escritos.

Evaluación del curso.

La calificación final tomará en cuenta las calificaciones de exámenes parciales, de las tareas, así como la participación de los alumnos.

Temario

1. ¿DE QUÉ ESTÁ HECHA LA MATERIA? 4 hrs.

Tratamiento cualitativo y descriptivo del contenido del curso.

- 1.1 Átomos: primeras evidencias (Dalton). Pesos moleculares, pesos atómicos, el número de Avogadro.
- 1.2 La tabla periódica.
- 1.3 Estructura de los átomos: Núcleos y electrones.
- 1.4 Los electrones son partículas sin tamaño ni estructura.
- 1.5 Estructura de los núcleos: Protones y neutrones (las fuerzas nucleares son fuerzas efectivas como las fuerzas moleculares).
- 1.6 Estructura de los nucleones: Quarks (fuerza electromagnética, fuerza fuerte y fuerza débil como fuerzas fundamentales).

Antecedentes de la Física Cuántica.

- 2. TEORÍA CUÁNTICA DE LA LUZ (PUNTO DE VISTA DISCRETO DE LA RADIACIÓN) **12** hrs.
 - 2.1 Emisión y absorción de radiación.
 - 2.2 Radiación de cuerpo negro †.
 - 2.3 Ley de Rayleigh-Jeans. Ley de Planck de la radiación de cuerpo negro †.
 - 2.4 * Conceptos básicos de Teoría Especial de la Relatividad †.
 - 2.5 Cuantización de la luz y el Efecto Fotoeléctrico (Fotones).
 - 2.6 Rayos X (fotones de alta energía)
 - 2.7 Efecto Compton.
 - 2.8 Producción de pares.
- 3. NATURALEZA ATÓMICA DE LA MATERIA 10 hrs.
 - 3.1 Espectros atómicos.
 - 3.2 Modelo atómico de Thomson.
 - 3.3 Experimento de Rutherford.
 - 3.4 Teoría de Bohr del átomo de Hidrógeno.
 - 3.5 Confirmación directa de los niveles de energía atómicos: Experimento de Franck-Hertz.
 - 3.6 Principio de Correspondencia.
- 4. PROPIEDADES ONDULATORIAS DE LAS PARTÍCULAS 14 hrs.
 - 4.1 La hipótesis de de Broglie, dualidad onda-partícula. Ondas de materia.
 - 4.2 Medida de la longitud de onda de partículas: Experimento de Davisson-Germer.

Introducción al formalismo de la Física Cuántica y algunas aplicaciones

- 5. ELEMENTOS DE MECÁNICA CUÁNTICA 16 hrs.
 - 5.1 La ecuación de Schrödinger dependiente del tiempo.
 - 5.2 Condiciones para tener una función de onda aceptable.
 - 5.3 Experimentos de las dos rendijas y de interferencia de Aspect. Interpretación probabilística de la función de onda.
 - 5.4 Operadores, linearidad y superposición, valores esperados de los observables.
 - 5.5 Principio de Incertidumbre de Heisenberg y aplicaciones elementales.
 - 5.6 Ecuación de Schrödinger independiente del tiempo.
 - 5.7 La caja de potencial. Condiciones a la frontera y normalización.
 - 5.8 Efecto Túnel: barrera cuadrada de potencial, coeficientes de transmisión y de reflexión. * Microscopio de barrido por tunelaje.
 - 5.9 El oscilador armónico simple.
- 6. TEORÍA CUÁNTICA DEL ÁTOMO DE HIDRÓGENO 12 hrs.
 - 6.1 La ecuación de Schrödinger para el átomo de Hidrógeno.
 - 6.2 Método de separación de variables. Soluciones de las ecuaciones radial y angulares, cuantización de la energía y cuantización del momento angular orbital.
 - 6.3 Números cuánticos: principal, orbital y magnético.
 - 6.4 Densidad de probabilidad electrónica.
 - 6.5 Transiciones radiativas. Reglas de selección.

6.6 Cuantización espacial del momento angular orbital y Efecto Zeeman.

7. ÁTOMOS DE MUCHOS ELECTRONES Y MOLÉCULAS: CONCEPTOS FUNDAMENTALES **10** hrs.

- 7.1 El espín del electrón. Experimento de Stern-Gerlach.
- 7.2 Principio de exclusión de Pauli.
- 7.3 Configuraciones electrónicas y la tabla periódica.
- 7.4 Momento angular total, interacción espín-órbita y espectros atómicos.
- 7.5 Moléculas. Enlaces.
- 7.6 Moléculas diatómicas. La molécula de Hidrógeno.
- 7.7 Niveles de energía electrónicos: rotacionales, vibracionales y espectros moleculares.
- 7.8 * Moléculas complejas.

8. SISTEMAS DE MUCHAS PARTÍCULAS: CONCEPTOS FUNDAMENTALES 4 hrs.

8.1 Distribución de Fermi-Dirac y Distribución de Bose-Einstein.

9. ESTADO SÓLIDO: CONCEPTOS FUNDAMENTALES 6 hrs.

- 9.1 Clasificación de los sólidos: sólidos cristalinos y sólidos amorfos.
- 9.2 Gas de electrones libres.
- 9.3 Teoría de bandas de energía en sólidos cristalinos. Evidencia experimental de la existencia de bandas: Conductores, semiconductores y dieléctricos.
- 9.4 Teorema de Bloch. Potencial de Kronig-Penney.
- 9.5 * Semiconductores, dispositivos semiconductores, transistores y chips.
- 9.6 * Superconductividad, Superfluidez y Condensación de Bose-Einstein.
- 9.7 ★ Corrales cuánticos y puntos cuánticos.

10. FÍSICA NUCLEAR: CONCEPTOS FUNDAMENTALES 8 hrs.

- 10.1 Propiedades de los núcleos:
 - a) Composición de los núcleos.
 - b) Propiedades de los nucleones.
 - c) La fuerza nuclear (como fuerza derivada, no fundamental).
- 10.2 Distribución de carga, radio nuclear y distribución de materia nuclear en los núcleos. Experimentos de dispersión elástica de electrones de alta energía por núcleos.
- 10.3 Las masas y las energías de amarre de los núcleos en sus estados base. Energía de amarre por nucleón.
- 10.4 Modelo de la gota del líquido: La fórmula de masas semiempírica y valle de estabilidad β.
- 10.5 Modelo de capas:
 - a) Pozos de potencial nuclear.
 - b) Estimación de las energías de los nucleones.
 - c) Energía de las capas y momento angular.
 - d) Interacción espín-órbita, números mágicos y espectros nucleares.
 - e) * Momento dipolar magnético de los núcleos.
 - f) * El momento cuadrupolar eléctrico de los núcleos (forma de los núcleos).
- 10.6 Decaimientos radiactivos.

- 11. PARTÍCULAS ELEMENTALES: CONCEPTOS FUNDAMENTALES 10 hrs.
- Tratamiento descriptivo basado en la teoría del campo y la evidencia experimental.
 - 11.1 Clasificación de las partículas elementales y las interacciones fundamentales.
 - 11.2 Cuantización de las interacciones fundamentales (bosones de norma, $W\pm$, Z^0 , gluones, el Higgs).
 - 11.3 Leyes de conservación y simetrías
 - 11.4 El Modelo Estándar.
 - 11.5 *Física mas allá del Modelo Estándar: Masas de los neutrinos. Supersimetría, Super-cuerdas y otros tópicos.
- * Estos temas son optativos y se dejan al criterio del maestro.
- † Estos temas se discuten ampliamente en otros cursos.

Bibliografía básica

- Arthur Beiser, Concepts of Modern Physics, 6th edition, McGraw-Hill, USA (2003).
- Paul A. Tipler and Ralph A. Llewellyn, **Modern Physics**, 4th edition, W. H. Freeman and Company, New York (2003).
- Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Modern Physics, 3rd. edition, Thomson Brooks-Cole (2005).
- Stephen T. Thornton and Andrew Rex, **Modern Physics for Scientist and Engineers**, 2nd edition, Thomson Learning Inc. (2002).
- Frank Blatt, Modern Physics, McGraw-Hill, Co. USA (1992).

Bibliografía complementaria

- Walter A. Harrison, Applied Quantum Mechanics, World Scientific (2001).
- T. Hey y P. Walters, The New Quantum Universe, Cambridge University Press (2003).
- Richard Turton, The Physics of Solids, Oxford University Press (2000).
- Charles Ruhla, The Physics of Chance. From Pascal to Niels Bohr, Oxford University Press (1995).
- J. P. McKelvey, Física del Estado Sólido y Semiconductores, Limusa, México (1988).
- W. N. Cottingham and D.A. Greenwood, An Introduction to Nuclear Physics, Cambridge University Press (2001).
- Richard A. Dunlap, **An Introduction to the Physics of Nuclei and Particles**, Thomson. Brooks-Cole (2004).
- Jean-Louis Basdevant, James Rich, Michel Spiro, Fundamentals in Nuclear Physics. From Nuclear Structure to Cosmology, Springer (2004).
- J. G. Martinus Veltman, Facts and Mysteries in Elementary Particle Physics, 1st edition, World Scientific Co. Pte ltd, Singapore (2003).
- W. N. Cottingham and D. A. Greenwood, An Introduction to the Standard Model of Particle Physics, Cambridge University Press (2007).
- Anthony W. Thomas, Wolfram Weise, The Structure of the Nucleon, J. Wiley-VCH (2001).
- G. Kane, The Particle Garden, Addison Wesley USA (1995).