academiadeimos.es

4. Demuestre que todo número complejo $z\neq -1$ tal que |z|=1 puede escribirse, para algún $a\in\mathbb{R}$, en la forma

$$z = \frac{1+ai}{1-ai}.$$

Este problema figura resuelto en la página 50 del volumen 5 de Problemas de Oposiciones de Editorial Deimos.

SOLUCIÓN: Sea $\theta \in (-\pi, \pi]$ el argumento principal del número complejo z. Dado que es $z \neq -1$, será $\theta \neq \pi$ y como además el módulo de z es la unidad, podemos escribir $z = e^{i\theta}$, para cierto $\theta \in (-\pi, \pi)$.

Supongamos que $a \in \mathbb{R}$ cumple la igualdad del enunciado; si ponemos 1 + ai en forma exponencial, será $1 + ai = re^{i\alpha}$, donde r > 0 y $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, esto último por tener 1 + ai parte real positiva. Se tiene entonces que:

$$e^{i\theta} = z = \frac{1+ai}{1-ai} = \frac{re^{i\alpha}}{re^{-i\alpha}} = e^{2i\alpha}$$

luego $2\alpha=\theta+2k\pi\,,$ es decir, $\alpha=\frac{\theta}{2}+k\pi\,,$ para algún $k\in\mathbb{Z}\,.$

academiadeimos.es

academia@academiadeimos.es

Por ser $\theta \in (-\pi, \pi)$ se deduce que $\frac{\theta}{2} \in (-\frac{\pi}{2}, \frac{\pi}{2})$, así que como $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$, necesariamente es $\alpha = \frac{\theta}{2}$. Como son $r\cos\alpha=1$ y $r\sin\alpha=a$, al dividir ambas igualdades resulta:

$$a = \lg \alpha = \lg \frac{\theta}{2}$$

Recíprocamente, sea cual sea $a \in \mathbb{R}$, el número complejo $\frac{1+ai}{1-ai}$ es distinto de -1, pues si fuese $\frac{1+ai}{1-ai} = -1$ sería 1 = -1, falso, y además tiene módulo 1, pues:

$$\left| \frac{1+ai}{1-ai} \right| = \frac{\left| 1+ai \right|}{\left| 1-ai \right|} = \frac{\sqrt{1+a^2}}{\sqrt{1+a^2}} = 1$$