4.1 Limite d'une fonction à l'infini

4.1.1 Limite infinie à l'infini

Définition 1.4.

On considère une fonction f définie sur un intervalle de la forme a; $+\infty$.

On dit que f a **pour limite** $+\infty$ **en** $+\infty$ lorsque tout intervalle de la forme]A; $+\infty[$ contient toutes les valeurs de x dès que x est suffisamment grand. On écrit :

$$\lim_{x \to +\infty} f(x) = +\infty$$

Illustration.

▶ Note 1.4.

Je vous laisse adapter cette définition pour cet énoncé au cas d'une limite en $-\infty$.

Définition 2.4.

On considère une fonction f définie sur un intervalle de la forme a; $+\infty$.

On dit que f a pour limite $-\infty$ en $+\infty$ lorsque tout intervalle de la forme $]-\infty$; A[contient toutes les valeurs de x dès que x est suffisamment grand.

On écrit :

$$\lim_{x \to +\infty} f(x) = -\infty$$

Illustration.

▶ Note 2.4.

Je vous laisse adapter cette définition pour cet énoncé au cas d'une limite en $-\infty$.

Propriété 1.4. Limites de référence

1. En $+\infty$:

(a)
$$\lim_{x \to +\infty} x^2 = +\infty$$

(c)
$$\lim_{x \to +\infty} x^p = +\infty \text{ si } p \geqslant 1$$

(b)
$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

(d)
$$\lim_{x \to +\infty} e^x = +\infty$$

2. En $-\infty$:

(a)
$$\lim_{x \to -\infty} x^2 = +\infty$$

(b) $\lim_{x \to -\infty} x^p = +\infty$ si p est pair et $-\infty$ si p est impair.

 $D\acute{e}monstration$. La limite de de l'exponentielle en $+\infty$

4.1.2 Limite finie à l'infini

Définition 3.4.

On considère une fonction f définie sur un intervalle de la forme $]a\,;\,+\infty[$ et un réel $\ell.$ On dit que f a pour limite ℓ en $+\infty$ lorsque tout intervalle I ouvert contenant ℓ (comme $]\ell-\varepsilon,\ell+\varepsilon[$) contient toutes les valeurs de f(x) dès que x est suffisamment grand. Il existe un réel x_0 tel que pour tout $x\geqslant x_0,\,f(x)\in I.$ On écrit :

$$\lim_{x \to +\infty} f(x) = \ell$$

▶ Note 3.4.

Je vous laisse de nouveau adapter cet énoncé au cas d'une limite en $-\infty$.

Illustration.

Propriété 2.4. Limites de référence

$$1. \lim_{x \to +\infty} \frac{1}{x} = 0$$

$$2. \lim_{x \to +\infty} \frac{1}{x^2} = 0$$

$$3. \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$4. \lim_{x \to -\infty} \frac{1}{x} = 0$$

$$5. \lim_{x \to -\infty} \frac{1}{x^2} = 0$$

$$6. \lim_{x \to -\infty} e^x = 0.$$

 $D\acute{e}monstration.$ Limite de l'exponentielle en $-\infty.$

Définition 4.4.

Lorsque f a pour limite ℓ en $+\infty$ (resp. $-\infty$), on dit que la droite d'équation $y = \ell$ est asymptote horizontale à la courbe représentative de la fonction f notée \mathscr{C}_f au voisinage de $+\infty$ (resp. $-\infty$).

Exemple.

Dans cet exemple $\lim_{x\to +\infty} f(x) = \ell$, ce qui implique que la droite d'équation $y=\ell$ est asymptote horizontale à la courbe représentative de f au voisinage de $+\infty$.

4.2 Limite infinie d'une fonction en un réel

Définition 5.4.

On considère une fonction f définie sur un ensemble ouvert dont le réel a est une borne.

On dit que f a pour limite $+\infty$ en a lorsque tout intervalle de la forme]A; $+\infty[$ contient toutes les valeurs de x dès que x est assez proche de a.

On écrit :

$$\lim_{x \to a} f(x) = +\infty$$

Définition 6.4.

On dit que f admet pour $+\infty$ en a à droite lorsque tout intervalle $]A; +\infty[$ contient toutes les valeurs de f(x) dès que x est assez proche de a, x restant strictement supérieur à a.

$$\lim_{\substack{x \to a \\ x > a}} f(x) = +\infty$$

▶ Note 4.4.

Je vous laisse encore adapter cet énoncé au cas d'une limite en a par valeurs inférieures.

Propriété 3.4. Limites de référence

$$\bullet \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$$

$$\bullet \lim_{x \to 0} \frac{1}{x^2} = +\infty$$

$$\bullet \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$$

$$\bullet \lim_{x \to 0} \frac{1}{\sqrt{x}} = +\infty$$

Définition 7.4.

Lorsque f a pour limite $+\infty$ ou $-\infty$ en a (ou à droite de a, ou à gauche de a), on dit que la droite d'équation x = a est asymptote verticale à la courbe représentative de la fonction f.

Exemple.

ightharpoonup Application 1.4. On considère une fonction f dérivable dont le tableau de variation est donné ci-dessous :

x	$-\infty$ –	1	2	$+\infty$
signe de $f'(x)$	_	_	0	+
$\begin{array}{c} \text{Variations} \\ \text{de} \\ f \end{array}$	5 $-\infty$	+∞	-4	2

Préciser les différentes asymptotes à la courbe représentative de la fonction f.

4.3 Théorèmes d'opérations

4.3.1 Limites et opérations

Les principaux résultats sur les calculs de limites ont été vus au chapitre 3, avec les formes indéterminées.

Un exemple pour illustrer avec une rédaction possible :

Application 2.4. On considère la fonction
$$f$$
 définie sur $\mathbb{R}\setminus\{2\}$ par $f(x)=\frac{x}{3x-6}$.

Déterminer les limites de f aux bornes de son ensemble de définition et en déduire l'existence d'asymptotes à la courbe représentative de f.

Il existe des limites que l'on ne pourra calculer à l'aide des opérations algébriques déjà vues. Par exemple, comment peut-on procéder pour calculer la limite de $f: x \mapsto e^{-\sqrt{x}}$ en $+\infty$?

4.3.2 Limite d'une composée

Pour décrire une fonction, on peut parfois la décomposer en enchaînements de fonctions plus simples, comme les fonctions de référence vues en 1^{re} comme $x \mapsto x^2$, $x \mapsto e^x$, $x \mapsto \frac{1}{x}$...

Définition 8.4.

Soient deux fonctions u et v définies sur deux ensembles I et J tels que l'image de I par u est contenue dans $J:u(I)\subset J$.

La fonction obtenue en appliquant successivement u, puis v, s'appelle la **composée** de la fonction u par la fonction v et est notée $v \circ u$, ou parfois.

Pour tout réel x de I :

$$(v \circ u)(x) = v[u(x)].$$

Théorème 1.4. Admis

Soient ω , Ω et ℓ des réels ou l'infini et u et v deux fonctions, alors

$$\lim_{\substack{x \to \omega \\ \lim_{T \to \Omega}} v(T) = \ell} u(x) = \Omega$$

$$\lim_{x \to \omega} v(x) = 0$$

$$\lim_{x \to \omega} v(x) = 0$$

Application 3.4. Retour sur l'exemple avec $f: x \mapsto e^{-\sqrt{x}}$ en $+\infty$.

4.3.3 Limites et comparaisons

On dispose de théorèmes analogues à ceux déjà vus pour les suites. Soient deux fonctions f et g définies sur un intervalle]a; $+\infty[$ telles que pour tout réel x > a, $g(x) \ge f(x)$.

Théorème 2.4. Comparaison des limites

- 1. Si $\lim_{x \to +\infty} f(x) = +\infty$ alors $\lim_{x \to +\infty} g(x) = +\infty$.
- **2.** Si $\lim_{x \to +\infty} g(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = -\infty$.

▶ Note 5.4.

On obtient des théorèmes analogues en $-\infty$.

Application 4.4. Déterminer la limite, si elle existe, de $3x - \sin x$ en $-\infty$.

Théorème 3.4. D'encadrement des limites dit des gendarmes

Soit x_0 un réel ou $x_0 = \pm \infty$.

Si
$$f \leqslant g \leqslant h$$
 et si $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \ell \in \mathbb{R}$, alors :

$$\lim_{x \to x_0} g(x) = \ell$$

Illustration.

Application 5.4. Déterminer la limite, si elle existe, de $\frac{\sin x}{\sqrt{x}}$ en $+\infty$.

4.3.4 Croissances comparées

Propriété 4.4.

Soit n un entier naturel.

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty, \qquad \lim_{x \to -\infty} x^n e^x = 0, \qquad \lim_{x \to +\infty} \frac{e^x}{\sqrt{x}} = +\infty$$

$$\longrightarrow$$
 Application 6.4. Calculer $\lim_{x\to -\infty} (x+5)e^x$ et $\lim_{x\to +\infty} \frac{e^{3x}}{x}$.

Illustration des croissances comparées.

4.4 Compléments sur la dérivation

4.4.1 Dérivée de la composée

Propriété 5.4.

Soit v une fonction dérivable sur un intervalle J telle que pour tout réel $x \in I$, $u(x) \in J$. La fonction $(v \circ u)$ est dérivable sur I et :

$$(v \circ u)' = u' \times (v' \circ u)$$

4.4.2 Dérivée de u^n

Propriété 6.4.

Soit n un entier non nul n. Si u est une fonction $d\acute{e}rivable$ sur un intervalle I et si lorsque n est strictement $n\acute{e}gatif$, u ne s'annule pas sur I, alors la fonction u^n est dérivable sur I et :

$$(u^n)' = nu'u^{n-1}$$

4.4.3 Dérivée de \sqrt{u}

Propriété 7.4.

Si u est une fonction $d\acute{e}rivable$ et strictement positive sur un intervalle I alors la fonction \sqrt{u} est dérivable sur I et :

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$

4.4.4 Dérivée de e^u

Propriété 8.4.

Si u est une fonction $d\acute{e}rivable$ sur un intervalle I alors la fonction e^u est dérivable sur I et :

$$(e^u)' = u'e^u$$

Application 7.4. Calculer la dérivée des fonctions suivantes :

$$f_1(x) = e^{-x^2+6x+4}$$
 sur $I = \mathbb{R}$ et $f_2(x) = (3x^2+7x-5)^9$ sur $I = \mathbb{R}$.