The Dot Product

So far we have added two vectors and multiplied a vector by a scalar. The question arises: Is it possible to multiply two vectors so that their product is a useful quantity? One such product is the dot product, whose definition follows.

1 Definition If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Thus, to find the dot product of **a** and **b**, we multiply corresponding components and add.

3

The Dot Product

The result is not a vector. It is a real number, that is, a scalar. For this reason, the dot product is sometimes called the **scalar product** (or **inner product**).

Although Definition 1 is given for three-dimensional vectors, the dot product of two-dimensional vectors is defined in a similar fashion:

$$\langle a_1, a_2 \rangle \cdot \langle b_1, b_2 \rangle = a_1 b_1 + a_2 b_2$$

1

Example 1

$$\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle = 2(3) + 4(-1)$$

= 2

$$\langle -1, 7, 4 \rangle \cdot \langle 6, 2, -\frac{1}{2} \rangle = (-1)(6) + 7(2) + 4(-\frac{1}{2})$$

= 6

$$(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \cdot (2\mathbf{j} - \mathbf{k}) = 1(0) + 2(2) + (-3)(-1)$$

5

7

The Dot Product

The dot product obeys many of the laws that hold for ordinary products of real numbers. These are stated in the following theorem.

2 Properties of the Dot Product If a, b, and c are vectors in V_3 and c is a scalar, then

Scalar, then

1. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$ 2. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ 4. $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$

5. $\mathbf{0} \cdot \mathbf{a} = 0$

6

The Dot Product

These properties are easily proved using Definition 1. For instance, here are the proofs of Properties 1 and 3:

1.
$$\mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 + a_3^2 = |\mathbf{a}|^2$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \langle a_1, a_2, a_3 \rangle \cdot \langle b_1 + c_1, b_2 + c_2, b_3 + c_3 \rangle$$

$$= a_1(b_1 + c_1) + a_2(b_2 + c_2) + a_3(b_3 + c_3)$$

$$= a_1b_1 + a_1c_1 + a_2b_2 + a_2c_2 + a_3b_3 + a_3c_3$$

$$= (a_1b_1 + a_2b_2 + a_3b_3) + (a_1c_1 + a_2c_2 + a_3c_3)$$

$$= \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

The Dot Product

The dot product $\mathbf{a} \cdot \mathbf{b}$ can be given a geometric interpretation in terms of the **angle** θ **between a and b**, which is defined to be the angle between the representations of \mathbf{a} and \mathbf{b} that start at the origin, where $0 \le \theta \le \pi$.

In other words, θ is the angle between the line segments \overrightarrow{OA} and \overrightarrow{OB} in Figure 1. Note that if **a** and **b** are parallel vectors, then $\theta = 0$ or $\theta = \pi$.

8

The Dot Product

The formula in the following theorem is used by physicists as the definition of the dot product.

3 Theorem If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

9

Example 2

If the vectors **a** and **b** have lengths 4 and 6, and the angle between them is $\pi/3$, find **a** • **b**.

Solution:

Using Theorem 3, we have

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\pi/3)$$

$$= 4 \cdot 6 \cdot \frac{1}{2}$$

10

The Dot Product

The formula in Theorem 3 also enables us to find the angle between two vectors.

6 Corollary If θ is the angle between the nonzero vectors **a** and **b**, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

11

Example 3

Find the angle between the vectors $\mathbf{a} = \langle 2, 2, -1 \rangle$ and **b** = (5, -3, 2).

Solution:

Since

$$|\mathbf{a}| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$
 and $|\mathbf{b}| = \sqrt{5^2 + (-3)^2 + 2^2} = \sqrt{38}$

and since

$$\mathbf{a} \cdot \mathbf{b} = 2(5) + 2(-3) + (-1)(2) = 2$$

12

Example 3 - Solution

cont'd

We have, from Corollary 6,

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{2}{3\sqrt{38}}$$

So the angle between a and b is

$$\theta = \cos^{-1}\left(\frac{2}{3\sqrt{38}}\right)$$

$$\approx 1.46 \text{ (or } 84^{\circ})$$

The Dot Product

Two nonzero vectors a and b are called perpendicular or **orthogonal** if the angle between them is $\theta = \pi/2$. Then Theorem 3 gives

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\pi/2) = 0$$

and conversely if $\mathbf{a} \cdot \mathbf{b} = 0$, then $\cos \theta = 0$, so $\theta = \pi/2$. The zero vector **0** is considered to be perpendicular to all vectors.

Therefore we have the following method for determining whether two vectors are orthogonal.

7

Two vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

Example 4

Show that $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ is perpendicular to $5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.

Solution:

Since

$$(2\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \cdot (5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 2(5) + 2(-4) + (-1)(2) = 0$$

these vectors are perpendicular by 7.

The Dot Product

Because $\cos \theta > 0$ if $0 \le \theta < \pi/2$ and $\cos \theta < 0$ if $\pi/2 < \theta \le \pi$, we see that $\mathbf{a} \cdot \mathbf{b}$ is positive for $\theta < \pi/2$ and negative for $\theta > \pi/2$. We can think of $\mathbf{a} \cdot \mathbf{b}$ as measuring the extent to which \mathbf{a} and \mathbf{b} point in the same direction.

The dot product $\mathbf{a} \cdot \mathbf{b}$ is positive if \mathbf{a} and \mathbf{b} point in the same general direction, 0 if they are perpendicular, and negative if they point in generally opposite directions (see Figure 2).

Figure 2

16

24

15

The Dot Product

In the extreme case where **a** and **b** point in exactly the same direction, we have $\theta = 0$, so $\cos \theta = 1$ and

$$a \cdot b = |a||b|$$

If **a** and **b** point in exactly opposite directions, then $\theta = \pi$ and so $\cos \theta = -1$ and $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}| |\mathbf{b}|$.

Projections

17

Projections

Figure 4 shows representations \overrightarrow{PQ} and \overrightarrow{PR} of two vectors **a** and **b** with the same initial point P. If S is the foot of the perpendicular from R to the line containing \overrightarrow{PQ} , then the vector with representation \overrightarrow{PS} is called the **vector projection** of **b** onto **a** and is denoted by $\operatorname{proj_a} \mathbf{b}$. (You can think of it as a shadow of **b**).

b a P Q proj_a b

Vector projections Figure 4

25

Projections

The **scalar projection** of **b** onto **a** (also called the **component of b along a**) is defined to be the signed magnitude of the vector projection, which is the number $|\mathbf{b}| \cos \theta$, where θ is the angle between **a** and **b**. (See Figure 5.)

Figure 5

26

Projections

This is denoted by comp_a **b**. Observe that it is negative if $\pi/2 < \theta \le \pi$. The equation

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = |\mathbf{a}| (|\mathbf{b}| \cos \theta)$$

shows that the dot product of **a** and **b** can be interpreted as the length of **a** times the scalar projection of **b** onto **a**. Since

$$|\mathbf{b}| \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{\mathbf{a}}{|\mathbf{a}|} \cdot \mathbf{b}$$

the component of ${\bf b}$ along ${\bf a}$ can be computed by taking the dot product of ${\bf b}$ with the unit vector in the direction of ${\bf a}$.

27

29

Projections

We summarize these ideas as follows.

Scalar projection of ${\bf b}$ onto ${\bf a}$: $\mathsf{comp}_a\,{\bf b}$

 $\mathsf{comp}_a\,b = \frac{a\cdot b}{|\,a\,|}$

Vector projection of **b** onto **a**:

$$\text{proj}_a \, b = \left(\frac{a \cdot b}{\|a\|}\right) \frac{a}{\|a\|} = \frac{a \cdot b}{\|a\|^2} \, a$$

Notice that the vector projection is the scalar projection times the unit vector in the direction of **a**.

28

Example 6

Find the scalar projection and vector projection of $\mathbf{b} = \langle 1, 1, 2 \rangle$ onto $\mathbf{a} = \langle -2, 3, 1 \rangle$.

Solution:

Since $|\mathbf{a}| = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{14}$, the scalar projection of **b** onto **a** is

$$\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

$$= \frac{(-2)(1) + 3(1) + 1(2)}{\sqrt{14}}$$

$$= \frac{3}{\sqrt{14}}$$

Example 6 – Solution

cont'd

The vector projection is this scalar projection times the unit vector in the direction of **a**:

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \frac{3}{\sqrt{14}} \frac{\mathbf{a}}{|\mathbf{a}|}$$
$$= \frac{3}{14} \mathbf{a}$$
$$= \left\langle -\frac{3}{7}, \frac{9}{14}, \frac{3}{14} \right\rangle$$

30