1-7 Functions

Determine whether each relation is a function. Explain.

20.

SOLUTION:

A function is a relation in which each element of the domain is paired with exactly one element of the range. So, this relation is a function.

21.

SOLUTION:

A function is a relation in which each element of the domain is paired with exactly one element of the range. In the domain, the value 4 is paired with both 5 and 6. So, this relation is not a function.

24.

SOLUTION:

A function is a relation in which each element of the domain is paired with exactly one element of the range. When x = 4, y = 4 and y = 6. So, this relation is not a function.

25.

SOLUTION:

This is a function because no vertical line can be drawn so that it intersects the graph more than once.

Determine whether each relation is a function.

29.
$$y = -8$$

SOLUTION:

This is a function because no vertical line can be drawn so that it intersects the graph more than once.

30.
$$x = 15$$

SOLUTION:

This is not a function because a vertical line can be drawn so that it intersects the graph more than once.

If
$$f(x) = -2x - 3$$
 and $g(x) = x^2 + 5x$, find each value.

36. g(-3)

SOLUTION:

$$g(x) = (x)^2 + 5x$$
 Original equation
 $g(-3) = (-3)^2 + 5(-3)$ Replace x with -3.
 $= 9 + 5(-3)$ Evaluate powers.
 $= 9 + (-15)$ Multiply.
 $= -6$ Add.

38.f(0) - 7

SOLUTION:

$$f(x) - 7 = [-2(x) - 3] - 7$$
 Original equation
 $f(0) - 7 = [-2(0) - 3] - 7$ Replace x with 0.
 $= [0 - 3] - 7$ Multiply.
 $= [-3] - 7$ Simplify.
 $= -10$ Subtract.

1-7 Functions

40. g(-6m)

SOLUTION:

$$g(x) = (x)^2 + 5(x)$$
 Original equation
 $g(-6m) = (-6m)^2 + 5(-6m)$ Replace x with $-6m$.
 $= 36m + 5(-6m)$ Evaluate powers.
 $= 36m^2 - 30m$ Multiply.

42.f(r+2)

SOLUTION:

$$f(x) = -2(x) - 3$$
 Original equation
 $f(r+2) = -2(r+2) - 3$ Replace x with $r+2$.
 $= -2r - 4 - 3$ Distributive Property
 $= -2r - 7$ Subtract.

44. 3[g(n)]

SOLUTION:

$$g(x) = (x)^2 + 5x$$
 Original equation
 $3[g(x)] = 3[(x)^2 + 5x]$ Product of 3 and $g(x)$
 $3[g(n)] = 3[(n)^2 + 5(n)]$ Replace x with n
 $= [n^2 + 5(n)]$ Evaluate powers.
 $= 3[n^2 + 5n]$ Multiply.
 $= 3n^2 + 15n$ Distributive Property

54. **ERROR ANALYSIS** Corazon thinks f(x) and g(x) are representations of the same function. Maggie disagrees. Who is correct? Explain your reasoning.

X	g(x)
-1	1
0	-1
1	-3
2	-5
3	-7

SOLUTION:

The graph has a y-intercept of 1. It also contains the point (1, -1), which we can use to determine the slope:

$$m = \frac{y_2 - y_2}{x_2 - x_1}$$

$$= \frac{-1 - 1}{1 - 0}$$

$$= \frac{-2}{1}$$

$$= -2$$

The equation for f(x) is: f(x) = -2x + 1.

For the table, we can see that as x increases by 1, g(x) decreases by 2, which means the slope of g(x) is -2. But the y-intercept for g(x) is (0, -1), giving g(x) = -2x - 1.

The graph and table are representative of different functions.

1-7 Functions

58. For the function y = 15x - 4, assume the domain is only values of x from 0 to 5. What is the range of the function?

F All values from 15 to 20.

G All values from $\frac{4}{15}$ to $\frac{3}{15}$.

H All values from –4 to 71.

J Two values from -4 to 71.

SOLUTION:

To find the range of the function, substitute the endpoints of the domain into the function.

First find f(0).

$$f(x) = 15x - 4$$
 Original equation

$$f(0) = 15(0) - 4$$
 Replace x with 0.
= 0 - 4 Multiply.
= -4 Subtract.

Then find f(5)

$$f(x) = 15x - 4$$
 Original equation

$$f(51) = 15(5) - 4$$
 Replace x with 5.
= 75 - 4 Multiply.
= 71 Subtract.

The range of the function is all values from –4 to 71, so choice H is the correct answer.

59. Which statement best describes how to determine when a graph represents a function?

A At least one vertical line intersects the function.

B Every horizontal line intersects the function.

C Every vertical line intersects the function exactly one time.

D Every vertical line intersects the function no more than one time.

SOLUTION:

A graph represents a function when it passes the vertical line test. If every vertical line intersects the function no more than one time, the graph passes the vertical line test and is a function.

So, the correct answer is choice D.

60. Which of the following best describes the relation shown in the graph?

F Domain: $0 \le x \le 6$; Range: $-1 \le y \le 6$; the relation is a function

G Domain: $0 \le x \le 6$; Range: $-1 \le y \le 6$; the relation is a not function

H Domain: $-1 \le x \le 6$; Range: $0 \le y \le 6$; the relation is a function

J Domain: $-1 \le x \le 6$; Range: $0 \le y \le 6$; the relation is a function

SOLUTION:

The domain of the relation is the range of x-values. The minimum x-value is 0 and the maximum x-value is 6. Therefore, the domain is $0 \le x \le 6$.

The range of the function is the range of y-values. The minimum y-value is -1 and the maximum y-value is 6. Therefore, the range is $-1 \le x \le 6$.

The relation is a function because it passes the vertical line test.

The correct answer is choice F.