COC - Scientific Computing

Degree in Computer Science

T2. Data Structures and Basic Operations

J. E. Roman

Departament de Sistemes Informàtics i Computació Universitat Politècnica de València

Year 2021-2022

1

Contents

- 1 Fields, Vectors
 - Storage Formats
 - Basic Operations
 - Orthogonalization
- 2 Sparse Matrices
 - Matrix Properties and Types
 - Storage Formats
 - Basic Operations
- 3 Orderings and Partitioning
 - Meshes, Graphs
 - Orderings
 - Partitioning

Section 1

Fields, Vectors

- Storage Formats
- Basic Operations
- Orthogonalization

Representation of Fields: Vectors

Need to represent the different magnitudes defined in the domain (fields)

The discrete version of the field is represented associating numeric values to mesh entities:

- Nodes (vertices) e.g. finite differences
- Cells (elements) e.g. finite volumes
- Sometimes also in edges or faces

Scalar fields (e.g. pressure) are represented with 1 value, whereas vector fields (e.g. velocity) are represented with 2 or 3

It is important to keep the correspondence between elements of the vector and the associated mesh entities

| :

Natural Ordering

Usually the "natural ordering" is employed

■ From left to right, from the bottom up

$$u = [u_{11}, u_{21}, u_{31}, u_{41}, u_{12}, \dots, u_{34}, u_{44}]^T$$

In this case, $u \in \mathbb{R}^n$ with n = 16

lacksquare In vector fields, $u \in \mathbb{R}^{dn}$ with d=2,3

Parallel Vectors

Each process locally stores a subvector

- It is convenient that the size of the subvector n_i be approximately equal in all processes $i=0,\ldots,p-1$
- Local indices $1, \ldots, n_i$ correspond to global indices

 $\begin{array}{c|c}
P_0 \\
P_1 \\
P_2 \\
P_3 \\
P_4
\end{array}$

Parallel Vectors: Example

We want to distribute the vector among several processes:

Block distribution, p=2

$$\rightarrow P_0 = \{1, 2, 3, 4, \dots, 8\}, P_1 = \{9, 10, 11, 12, \dots, 16\}$$

Block distribution, p=3

$$\rightarrow P_0 = \{1, 2, \dots, 6\}, P_1 = \{7, 8, \dots, 11\}, P_2 = \{12, 13, \dots, 16\}$$

Block cyclic distribution, $n_b = 4$, p = 2

$$\rightarrow P_0 = \{1, 2, 3, 4, 9, 10, 11, 12\}, P_1 = \{5, 6, 7, 8, 13, 14, 15, 16\}$$

Block cyclic distribution, $n_b = 4$, p = 3

$$\rightarrow P_0 = \{1, 2, 3, 4, 13, 14, 15, 16\}, P_1 = \{5, 6, 7, 8\}, P_2 = \{9, 10, 11, 12\}$$

Vector Operations

Let $x, y, z \in \mathbb{R}^n$ and $\alpha, r \in \mathbb{R}$

Sum and product by a scalar

- Sum: z = x + y, $z_i = x_i + y_i$
- Scaling: $y = \alpha x$, $y_i = \alpha x_i$
- Combined operation (AXPY): $y = \alpha x + y$
- Trivially parallelizable

Vector dot product (also scalar product or inner product)

$$r = x^T y$$

$$r = \sum_{i=1}^{n} x_i y_i$$

In parallel: reduction of the partial sums

Vector Norm

A vector norm is a real function $\|\cdot\|$ satisfying

$$||x|| \ge 0 \quad \forall x \in \mathbb{R}^n, \quad ||x|| = 0 \Leftrightarrow x = 0$$

$$||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^n$$

$$\|\alpha x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{R} \quad \forall x \in \mathbb{R}^n$$

Vector 2-norm or Euclidean norm

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

Other: 1-norm, ∞ -norm

Normalization: to scale a vector so that its norm is 1

$$\tilde{x} = \frac{x}{\|x\|_2}$$

One can check that $\|\tilde{x}\|_2 = 1$

Multi-Vectors

Given k vectors $\{v_1, v_2, \dots, v_k\}$, they are sometimes combined in a matrix

$$V = \left[\begin{array}{c|c} v_1 & v_2 & \cdots & v_k \end{array} \right] \in \mathbb{R}^{n \times k}$$

Operations

■ Multiple AXPY: let $s = [s_1, s_2, \dots, s_k]^T$

$$y = y + Vs = y + \sum_{i=1}^{k} s_i v_i$$

 \blacksquare Multiple dot product: $s = V^T x$ where $s_i = v_i^T x$

Vector Subspaces

 $\mathcal{V} = \mathrm{span}\{v_1, v_2, \dots, v_k\}$ is the subspace spanned by the vectors v_1, \dots, v_k

- If the v_i 's are linearly independent, then they form a basis of $\mathcal V$ and $\dim(\mathcal V)=k$
- Otherwise, $\dim(\mathcal{V}) < k$

Let
$$V = [v_1, v_2, \dots, v_k]$$
 and $s = [s_1, s_2, \dots, s_k]^T$

- lack y = Vs is a linear combination of the v_i 's
- Therefore, $y \in \mathcal{V}$

Let
$$t = [t_1, t_2, \dots, t_k]^T$$
 and $s = Ht$

- y = Vs = VHt = Wt
- Change of basis: the columns of W = VH generate the same subspace (if H is non-singular)

Orthogonalization of Vectors

Orthogonal vectors

- \blacksquare Two vectors $x,y\in\mathbb{R}^n, x\neq 0, y\neq 0$ are orthogonal if $x^Ty=0$
- lacksquare A set $\{q_1,q_2,\ldots,q_k\}$ is orthogonal if $q_i^Tq_j=0$ for $i\neq j$
- lacktriangle We say it is orthonormal if in addition $q_i^Tq_i=1$
- In matrix form: $Q^TQ = I$ (I = identity matrix)

Problem: obtain an orthonormal basis of a subspace

- Input: V such that $\mathcal{V} = \operatorname{span}\{v_1, v_2, \dots, v_k\}$
- Output: Q such that the subspace generated by the q_i 's is also \mathcal{V} (change of basis) and they are orthonormal

Gram-Schmidt: Idea

The Gram-Schmidt method generates the q_i 's one by one

First vector:

■ Normalize: $q_1 = v_1/\|v_1\|_2$ (assuming $\|v_1\| \neq 0$)

Second vector:

- Subtract its projection on q_1 : $\hat{v}_2 = v_2 (q_1^T v_2)q_1$
- Normalize: $q_2 = \hat{v}_2 / \|\hat{v}_2\|_2$ (assuming $\|\hat{v}_2\| \neq 0$)

In general: subtract from v_j its projection on $q_1, q_2, \ldots, q_{j-1}$

Classical Gram-Schmidt

Given a basis $\{v_1,v_2,\ldots,v_k\}$ obtain an orthonormal basis of the same subspace $\{q_1,q_2,\ldots,q_k\}$

CGS: Classical Gram-Schmidt

```
r_{11} = \|v_1\|_2 (if r_{11} = 0 abort) q_1 = v_1/r_{11} for j = 2, \ldots, k for i = 1, \ldots, j-1 r_{i,j} = q_i^T v_j end \hat{v}_j = v_j for i = 1, \ldots, j-1 \hat{v}_j = \hat{v}_j - r_{i,j}q_i end r_{j,j} = \|\hat{v}_j\| (if r_{j,j} = 0 abort) q_j = \hat{v}_j/r_{j,j} end
```

Modified Gram-Schmidt

MGS: Modified Gram-Schmidt

```
r_{11} = \|v_1\|_2 (if r_{11} = 0 abort) q_1 = v_1/r_{11} for j = 2, \ldots, k \hat{v}_j = v_j for i = 1, \ldots, j-1 r_{i,j} = q_i^T \hat{v}_j \hat{v}_j = \hat{v}_j - r_{i,j}q_i end r_{j,j} = \|\hat{v}_j\| (if r_{j,j} = 0 abort) q_j = \hat{v}_j/r_{j,j} end
```

MGS numerically more stable than CGS CGS more efficient in parallel: the scalar products $r_{1:j-1,j} = Q_{j-1}^T v_j$ are merged in a single communication

QR Decomposition

The result of Gram-Schmidt satisfies $v_j = \sum_{i=1}^j r_{i,j} q_i$

In matrix notation: V = QR, being R upper triangular

$$\begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_k \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1,k} \\ & r_{22} & \cdots & r_{2,k} \\ & & \ddots & \vdots \\ & & r_{k,k} \end{bmatrix}$$

R is the matrix of the change of basis

Section 2

Sparse Matrices

- Matrix Properties and Types
- Storage Formats
- Basic Operations

Symmetric Matrices

A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $a_{ij} = a_{ji}$

$$A = A^T$$

Symmetric positive-definite matrix: satisfies

$$x^T A x > 0 \quad \forall x \in \mathbb{R}^n, \ x \neq 0$$

Characterization:

lacksquare a matrix is SPD iff $\det(A_{1:i,1:i}) > 0$, $1 \le i \le n$

$$A = \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix} \qquad \det \begin{pmatrix} \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix} \end{pmatrix} = 5 > 0$$
$$\det \begin{pmatrix} \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix} \end{pmatrix} = 6 > 0$$
$$\det(A) = 7 > 0$$

Orthogonal Matrices

A square matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if its columns are orthonormal

$$Q^TQ = I$$

$$Q^TQ = I$$
 Example: $Q = \begin{bmatrix} 1/2 & 0 & \sqrt{3}/2 \\ 0 & 1 & 0 \\ -\sqrt{3}/2 & 0 & 1/2 \end{bmatrix}$

Properties:

$$Q^{-1} = Q^T$$

$$||Qx||_2 = ||x||_2$$

Permutation matrix: orthogonal matrix whose elements are zero except a 1 in each row and column

Example:
$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 Sometimes repair an index vector $p = [2, 3, 1, 4]$

Sometimes represented as an index vector

19

Diagonally Dominant Matrices

We say a matrix is diagonally dominant

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|, \ i = 1, \dots, n$$

by rows: by columns:
$$|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|, \ i=1,\ldots,n \qquad |a_{jj}| \geq \sum_{i \neq j} |a_{ij}|, \ j=1,\ldots,n$$

In case of strict inequality, we say strictly DD

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, i = 1, \dots, n$$

Examples:

$$A = \begin{bmatrix} -3 & 0 & 0 & -1 \\ 2 & 6 & 3 & 0 \\ 2 & 1 & -6 & -2 \\ 3 & 0 & 0 & -4 \end{bmatrix} \qquad T = \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{bmatrix}$$

$$T = \begin{vmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{vmatrix}$$

Strictly DD by rows

Diagonally dominant

Triangular Matrices

Upper triangular $a_{ij} = 0$ for i > j

Lower triangular $a_{ij} = 0$ for i < j

 $\begin{array}{l} \text{Upper Hessenberg} \\ a_{ij} = 0 \text{ for } i > j+1 \end{array}$

Band matrix

$$a_{ij} = 0$$
 if $|i - j| > \beta$ ($\beta =$ bandwidth)

Particular cases: diagonal (β =0), tridiagonal (β =1), pentadiagonal (β =2)

21

Sparse Matrices

In mesh-based applications, the percentage of nonzero elements is usually very small $(<\!1\%)$

The structure or nonzero pattern depends on

- The connectivity between unknowns (according to discretization)
- The ordering that has been chosen for the unknowns

Sparse Storage Formats

Special data structures, to:

- Reduce the memory requirements
- Reduce the cost of operations

There are many different formats – intended to optimize the most frequent operations

- Matrix-vector product
 The most frequent one, requires maximum efficiency
- Extraction of the diagonal
- Factorization

 Produces "fill-in", new nonzero elements appear
- Other operations: addition, matrix-matrix product
- Insert/delete elementsInfrequent, constant nonzero pattern

Coordinate Format (COO)

A nz numeric values

Uses three arrays: I nz row indices

J nz column indices

(nz is the number of nonzero elements)

- Very efficient sequential access
- Inefficient element search

Compressed Sparse Row (CSR)

Uses three arrays: $\begin{array}{c|ccccc}
A & nz & numeric values \\
I & n+1 & pointers to row start \\
J & nz & column indices
\end{array}$

(n is the number of rows of the matrix)

- Row indices are not stored explicitly
- I[k] indicates the position in which row k starts

Variants

Compressed Sparse Column (CSC)

- Analog of CSR, but sorted by columns
- J[k] indicates the position in which column k starts

Modified Sparse Row (MSR)

The main diagonal is stored separately

Sparse Matrix Operations

Let $A,B\in\mathbb{R}^{m\times n}$, $v\in\mathbb{R}^n$, $w\in\mathbb{R}^m$ and $\alpha\in\mathbb{R}$

Sum and product by a scalar

- Matrix AXPY: $B = \alpha A + B$
- lacksquare Difficult if the pattern of A is not a subset of B's

Product of matrices, A = CD

- \blacksquare The dimensions of C and D must be consistent
- Very uncommon in sparse matrices

Matrix-vector product, w = Av

■ Fundamental operation in iterative methods

Matrix Norm

Definition is analog of vector norm

Frobenius norm:
$$\|A\|_F = \sqrt{\sum_{i,j} a_{i,j}^2}$$

Matrix 2-Norm (also 1-norm, ∞-norm)

■ Induced from the vector 2-norm

$$||A||_2 = \max_{\|y\|_2=1} ||Ay||_2$$

- Intuitively: maximum produced elongation
- Consistent norms: $||Ax||_2 \le ||A||_2 ||x||_2$

Condition number

$$\kappa_2(A) = ||A||_2 ||A^{-1}||_2, \quad \kappa_2(A) \ge 1$$

Matrix-Vector Product Algorithm

Matrix-vector product by rows

$$w = Av$$

```
w=[0,0,\dots,0]^T for i=1,\dots,m for j=1,\dots,n w[i]+=A[i][j]*v[j] end end
```

Matrix-vector prod. COO

$$\begin{aligned} w &= [0,0,\dots,0]^T \\ \text{for } k &= 1,\dots,nz \\ w[I[k]] + &= A[k] * v[J[k]] \\ \text{end} \end{aligned}$$

Matrix-vector prod. CSR

$$w=[0,0,\dots,0]^T$$
 for $i=1,\dots,m$ for $k=I[i],\dots,I[i+1]-1$ $w[i]+=A[k]*v[J[k]]$ end

29

Section 3

Orderings and Partitioning

- Meshes, Graphs
- Orderings
- Partitioning

Sparse Pattern

The nonzero element pattern depends on

- The connectivity in the mesh
- The chosen ordering

The ordering can be chosen to improve some structural property of the matrix (bandwidth, fill-in, ...)

31

Adjacency Graph

We use graph theory to study the sparsity structure

Adjacency Graph of a sparse matrix $A \in \mathbb{R}^{n \times n}$, G(A) = (V, E)

- lacktriangle The n vertices of V represent the unknowns
- \blacksquare The edges E represent binary relations among them
 - An edge $(v_i, v_j) \in E$ if $a_{ij} \neq 0$
 - lacktriangle Represents the presence of unknown j in equation i

Symmetric; Undirected graph

Correspondence between Mesh and Graph

Discretization mesh

Adjacency graph

System matrix

$$A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ & -1 & -1 & 4 & -1 \\ & & -1 & -1 & 4 & -1 \\ & & & -1 & -1 & 4 \end{bmatrix}$$

Symmetric Permutation

Given a system Ax = b, and let P be a permutation matrix

- Row permutation PAx = Pb, reorders equations
- Column permutation $AP^TPx = b$, exchanges unknowns
- \blacksquare Symmetric permutation $(PAP^T)Px=Pb$, modifies both

Example with permutation p = [3, 2, 4, 1]:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} & a_{34} \\ a_{43} & a_{44} \end{bmatrix}, \quad \begin{bmatrix} a_{33} & a_{32} & a_{34} \\ a_{23} & a_{22} & a_{21} \\ a_{43} & a_{44} \\ a_{12} & a_{11} \end{bmatrix} \begin{bmatrix} x_3 \\ x_2 \\ x_4 \\ x_1 \end{bmatrix} = \begin{bmatrix} b_3 \\ b_2 \\ b_4 \\ b_1 \end{bmatrix}$$
 Adjacency graph
$$\begin{bmatrix} a_{33} & a_{32} & a_{34} \\ a_{23} & a_{22} & a_{21} \\ a_{43} & a_{44} \\ a_{12} & a_{11} \end{bmatrix} \begin{bmatrix} x_3 \\ x_2 \\ x_4 \\ x_1 \end{bmatrix} = \begin{bmatrix} b_3 \\ b_2 \\ b_4 \\ b_1 \end{bmatrix}$$

ightarrow the graph vertices are relabelled without modifying edges

Red-Black Ordering

Natural Ordering

From left to right and from the bottom up

Example, pattern for $n=6 \longrightarrow$

Red-Black Ordering

- 1. Color the nodes in a way that neighbors have different color
- 2. Number the red nodes first, then the black ones p = [1, 3, 5, 7, 9, 2, 4, 6, 8]

35

Other Orderings

The main purpose of reordering is to improve the structural properties of the matrix

Reverse Cuthill-McKee, minimizes the bandwidth

Minimum degree, reduces fill-in in the factorizations

Other:

- Nested dissection, also reduces fill-in
- Partitioning: minimize communications in parallel

Parallel Matrix-Vector Product

Block-row distribution with natural ordering

The volume of communication in parallel depends on:

- Nonzero elements outside the diagonal block
- Number of edge cuts (go from one subdomain to another)

Mesh Partitioning

Also in unstructured meshes

Each process sends the unknowns lying on the interface to the corresponding neighboring processes, and receives in turn from them

Graph Partitioning

Goal: divide the mesh in regions of similar size to be assigned to each process, trying to reduce the communication cost

Types of techniques:

- Iterative exchange
- Recursive Bisection
- Multilevel

Most algorithms are based on adjacency graphs: undirected graph, with or without weights, $G = (N, E, W_N, W_E)$

- lacksquare Balance the sum of weights W_N in each partition
- lacktriangle Minimize the sum of weights W_E from one partition to another

Parallel Vectors

- For best efficiency, the position of elements to send is precomputed
- It is often necessary to have a local representation of the vector including the received values (ghost values)

