目录

1	问题	9.描述	2							
	1.1	类自然语言描述	2							
	1.2	一种形式化描述	2							
2	研究	研究现状与对比算法								
	2.1	非随机近似算法	3							
		2.1.1 最近邻点算法	3							
		2.1.2 克里斯托菲德斯算法	4							
		2.1.3 2-OPT 改进算法	7							
	2.2	随机型近似算法	9							
		2.2.1 王磊算法	9							
		2.2.2 模拟退火	10							
3	遗传	· 長算法及改进策略	L1							
	3.1	传统的遗传算法	11							
	3.2	改进的遗传算法	12							
4	实验	设置与测试结果 1	L 4							
	4.1	数据集与超参数设置	14							
	4.9	党が	1 /							

求解旅行商问题的拟物拟人算法研究

杜睿

摘要

旅行商问题是一个典型的 NP 难度问题,虽易于描述但无法在多项式时间内求得最优解。近年来,国内外研究者设计各种近似算法(尤其是进化算法)期望求解该问题。

对于组合优化问题,有两条主线。第一条是如何表达可行解与解空间,语义(表现型)和存储(基因型)可以有所不同。第二条是如何平衡局部搜索与跳坑策略,平衡开采与探索:如果开采不足,收敛性不好;如果探索不够,容易早熟,陷入局部最优解。

本文提出了改进的遗传算法用于求解旅行商问题:在种群的初始化阶段发扬"继承"策略,减少迭代次数并保留种群多样性;在变异部分,在 K-OPT 的基础上,设计了一种基于"贪婪插入"的算子;同时,在选择操作中弃用轮盘赌方法,改用排位等级法。

大量实验表明,提出的算法在求解质量和求解速度上具有一定的优势。

1 问题描述

1.1 类自然语言描述

给定 n 个城市,对这 n 个城市中的每两个城市来说,从一个城市到另一个城市所走的路程是已知的正实数(符合三角形三边关系定则),其中 n 是已知的正整数, $n \geq 3$ 。这 n 个城市的全排列共有 n! 个。每一个这 n 个城市的全排列都恰好对应着一种走法:从全排列中的第一个城市走到第二个城市, . . . ,从全排列中的第 n-1 个城市走到第 n 个城市,从全排列中的第 n 个城市回到第一个城市。要求给出一个这 n 个城市的全排列 σ ,使得在 n! 个全排列中,全排列 σ 对应的走法所走的路程是最短的(严格来讲,由于起点任意、顺逆时针等价,问题复杂度为 $\frac{(n-1)!}{2}$)。

1.2 一种形式化描述

给定一个有向完全图 G = (V, A), 其中集合 $V = \{v_1, \ldots, v_n\}$ 是顶点集合,每个顶点代表一个城市,n 是顶点数 $(n \geq 3)$,集合 $E = \{(v_i, v_j) | v_i, v_j \in V, v_i \neq v_j\}$ 是有向边集合。

 c_{ij} 是有向边 (v_i,v_j) 的长度(权值), c_{ij} 是已知的正实数,其中 $(v_i,v_j) \in E$ 。集合 Σ 是顶点全排列的集合,共有 n! 元素。 σ 是所有顶点的一个全排列: $\sigma = (\sigma(1),\ldots,\sigma(n))$, $\sigma \in \Sigma$, $\sigma(i) \in V(1 \leq i \leq n)$ 。 σ 对应着一条历经所有顶点的回路:从顶点 $\sigma(1)$ 走到顶点 $\sigma(2)$,…,从顶点 $\sigma(n-1)$ 走到顶点 $\sigma(n)$,从顶点 $\sigma(n)$ 回到顶点 $\sigma(1)$ 。

全排列 σ 所对应的回路的长度记为 $L(\sigma)$, $L(\sigma) = \sum_{i=2}^{n} c_{\sigma(i-1)\sigma(i)} + c_{\sigma(n)\sigma(1)}$ 。

目标是给出所有顶点的一个全排列 σ^* , 使得 $L(\sigma^*) = \min_{\alpha \in \Gamma} L(\sigma)$ 。

每一对顶点 v_i 和 v_j 来说,都有 $c_{v_iv_j}$ 成立,那么称问题是对称的;否则称问题是非对称的。后文统一讨论对称的旅行商问题,不对两者进行额外区分。

2 研究现状与对比算法

求解旅行商问题的算法大体可分为两类:确切算法和近似算法。

- 1. 确切算法保证给出最优解,但由于"组合爆炸",其仅可用于计算较小规模实例。
- 2. 近似算法,或许有可能在短时间内,给出相当接近最优解的近似解。其中,非随机性近似算法包括构建式启发/贪婪算法,克里斯托菲德斯算法等;随机性近似算法包括随机局域搜索、模拟退火、遗传算法、粒子群算法等。

本节接下来介绍对比算法,包括非随机近似算法(最近邻点算法、克里斯托菲德斯算法以及 2-OPT 改进算法)和随机近似算法(王磊算法、模拟退火算法)。

2.1 非随机近似算法

2.1.1 最近邻点算法

顾名思义,在选定一个启始城市 s 后,每次贪婪地选择距离当前城市最近的未访问城市 v 作为下一站;依次类推,直至将所有城市访问一遍,最后回到出发城市 s。伪码如下:

Algorithm 1: GreedyNearestNeighbor Algorithm

 $\sigma^* \leftarrow tour, L \leftarrow L(\sigma^*);$

2.1.2 克里斯托菲德斯算法

即使最差情况下,克里斯托菲德斯算法所得回路长度不会超过最优回路长度的 1.5 倍。求最小值问题,评价近似算法的一个指标是近似比: 设 Opt 是最优值,x 表示某近似算法给出的一个值, $Opt \le x \le \alpha \times Opt$, α 记为该算法的近似比,可用于评价算法优劣。元启发算法虽然有可能得出比较好的近似解,但往往不涉及在最差情况下的效率证明。

首先,引入近似比为2的算法(2-Approximation):

- (a) 定义: S 代表一系列边(允许重边),c(S) 代表各边权重(长度)之和。
- (b) 定义: H_G^* 为无向多重图 G 上,长度最短的哈密尔顿回路(Hamiltonian Cycle),途中经过所有点且只经过一次。
- (c) 构造最小生成树 T,根据最小权生成树定义, $c(H_G^*) \geq c(H_G^* e) \geq c(T)$ 。
- (d) 按深度优先搜索次序记录回路 C,下探一次,回溯一次,因此 $c(C) = 2 \times c(T)$ 。
- (e) 搭桥 (short-cut/bypass) 略过重复访问的点得到符合问题描述的新回路 C' (最后回到起点),例如,1,2,3,4,5,6...,1。

图 1: 近似比为 2 的算法(步骤)

证明如下:

- 由 e、三角形三条边关系定则, $c(C') \le c(C)$;
- $\pm c$, $c(H_G^*) \ge c(H_G^* e) \ge c(T)$;
- $\pm d$, $c(C) = 2 \times c(T)$;
- 因此,该近似算法所得解,最多也不会超过最优解的 2 倍。

然后仍基于最小生成树,设法减小"每边下探一次,回溯一次"带来的额外开销,导出理论近似比为 1.5 的算法。期待一笔画、不重边地遍历所有顶点,可以将问题转换成"欧拉回路"问题。无向图存在欧拉回路的充要条件为:该图为连通图,且所有顶点度数均为偶数。倘若'奇度数'顶点为偶数个(证明见下),那么可以通过将其两两匹配,为每一个顶点都"附赠"一个度,这样便可以满足"顶点度数均为偶数"条件。

- (a) 定义: S 代表一系列边(允许重边), c(S) 代表各边权重(长度)之和。
- (b) 定义: H_G^* 为无向多重图 G 上,长度最短的哈密尔顿回路(Hamiltonian Cycle),即途中经过所有点且只经过一次。
- (c) 定义: 假设 S 为无向多重图 G 上的导出子图,在 S 上长度最短的哈密尔顿回路记为 H_S^* 。根据三角形三边关系定则易证, $c(H_S^*) \leq c(H_G^*)$ 。
- (d) 构造最小生成树 T,根据最小权生成树定义, $c(H_G^*) \geq c(H_G^* e) \geq c(T)$ 。
- (e) 分离在 T 上度数为奇数的点,生成导出子图 S (根据握手定理,给定无向图 G = (V, E), 一条边贡献 2 度,故有 $\Sigma degG(v) = 2|E|$;除开度数为偶数的顶点所贡献的度数,推论可知,度数为奇数顶点数有偶数个);
- (f) 构造 S 的最小权完美匹配 M,构造多重图 $G' = T \cup M$ (此时每个顶点均为偶数度,故存在欧拉回路);
- (g) 生成 G' 的欧拉回路 C, c(C) = c(T) + c(M);
- (h) 搭桥(short-cut/bypass)略过重复访问的点(起点终点不删)得到符合问题描述的新回路 C'(最后回到起点)。

证明:

- 由 e、三角形三边关系定则, $c(C') \leq c(C)$;
- $\pm d$, $c(H_G^*) \ge c(H_G^* e) \ge c(T)$;
- $\pm g$, c(C) = c(T) + c(M);
- $\pm f$, c, $c(M) + c(M) \le c(M1) + c(M2) = c(H_S^*) \le c(H_G^*)$;
- $\text{th } c(C') \leq c(T) + c(M) \leq c(H_G^*) + \frac{1}{2}c(H_G^*);$
- 即得证。

图 2: 克里斯托菲德斯算法(步骤)

图 3: 最小权完美匹配(举例)

图 4: 克里斯托菲德斯算法(实例)

2.1.3 2-OPT 改进算法

"如果题目数据使用欧几里得距离,那么最优路线必定不会自交"。基于这一观察,有学者倡导使用"改进"算法,即对于一条可行回路查漏补缺对其进行细微调整。

"知错能改,善莫大焉"。"怎么改"对应着一种"邻域操作"(函数、变换、系统、算子)。

解空间中的一个巡回旅行路线直接或间接对应一个全排列 σ ,若将其视作 n 维空间中的一个点,其邻域 σ' 操作有很多种,如插入、块插入、块反转、点对换、块交换、边重组等等。边重组中,最著名的是 2-交换(2-OPT)、3-交换(3-OPT)。2-交换的步骤就是删除路线中的两条边,用另外两条更短的边重新连接,使路径再次连为一体。反复使用 2-交换算子改进路线,可以在很大程度上改进"虎头蛇尾"、"目光短浅"的回路路线。

图 5: 2-OPT (图例)

2-OPT 改进算法伪代码如下:

Algorithm 2: 2-OPT Algorithm

```
input: V = \{v_1, \dots, v_n\}, dist(\cdot, \cdot), L(\cdot), \sigma
     output: \sigma^*
 1 length \leftarrow L(\sigma);
 2 repeat
           improved \leftarrow False;
 3
           for i \leftarrow 0 to n-3 do
 4
                for j \leftarrow i + 2 to n do
 \mathbf{5}
                       \sigma' \leftarrow \sigma;
  6
                      \sigma'[i+1\ldots j] \leftarrow \text{reverse}(tour'[i+1\ldots j]);
                      length' \leftarrow L(\sigma');
                      \mathbf{if} \ length' < length \ \mathbf{then}
  9
                             \sigma \leftarrow \sigma';
10
                            length \leftarrow length';
11
                            improved \leftarrow \text{True};
12
13 until \neg improved;
14 \sigma^* \leftarrow \sigma;
```

3-OPT 改进算法与之类似,但是可能的情况更多:

图 6: 3-OPT (图例)

2.2 随机型近似算法

2.2.1 王磊算法

王磊老师在课上跟学生说过一个随机型近似算法 (王磊算法),基本算法 A_1 描述如下:

输入: 指导序列 γ , γ 是所有顶点的一个全排列;

开局: 用 γ 前 3 个点绘制外接凸多边形 (三角形), 构成初始回路 $\sigma = (\gamma(1), \gamma(2), \gamma(3))$;

迭代:每次从当前格局向新格局演化时,取出下一个点,按照使得新的部分回路长度 尽量短的贪心策略,将其插入至 σ 合适的位置;

停机: 直至产生 n 个点的回路 σ , 算法结束, 输出 σ 。

Algorithm 3: Generate Tour from a Conductor

input: $V = \{v_1, \dots, v_n\}, dist(\cdot, \cdot), \gamma \text{ a permutation of } V$ output: σ the tour

1 $\sigma \leftarrow (\gamma(1), \gamma(2), \gamma(3));$ 2 for $i \leftarrow 4$ to n do

3 $best_idx \leftarrow \underset{j \in \{1, \dots, |\sigma|\}}{\arg\min} L(\sigma_{1:j}) + dist(\gamma(i), \sigma(j)) + L(\sigma_{j:|\sigma|}) - L(\sigma);$ $\sigma \leftarrow (\sigma_{1:best_idx}, \gamma(i), \sigma_{best_idx+1:|\sigma|});$

对所有指导序列 $\gamma \in \Gamma$,目标是 $\gamma^* = \underset{\gamma \in \Gamma}{\operatorname{arg \, min}} L(A_1(\gamma))$ 。据此,王磊又提出算法 A_2 :

初始格局: 初始化 γ ,通过 A_1 算法指导获得回路 $\sigma = A_1(\gamma)$,以及长度 $l = L(\sigma)$;

邻域搜索: 邻域变换得到 γ' 、 σ' 及 l',若 l' < l,依照最陡下降法,更新格局 $\gamma \leftarrow \gamma'$

跳坑策略: 当 γ 位于局部最优,即几乎尝试所有邻域都无法改善目标函数时,重新随机初始化 γ 或者采用大步长算子(如块移动、块对换、块插入)对 γ 进行变换。

Algorithm 4: WangLei Algorithm

```
input : V, dist(\cdot, \cdot), L(\cdot), epoch, early\_stop
permutation(\cdot), transform(\cdot), shuffle(\cdot)
output: \sigma, l

1 \gamma \leftarrow permutation(V); \sigma \leftarrow A_1(\gamma); l \leftarrow L(\sigma);
2 for e \leftarrow 1 to epoch do

3 \gamma' \leftarrow transform(\gamma); \sigma' \leftarrow A_1(\gamma'); l' \leftarrow L(\sigma');
4 if l' < l then

5 \gamma \leftarrow \gamma'; \sigma \leftarrow \sigma'; l \leftarrow l';
6 if \gamma \leftarrow \gamma'; \sigma \leftarrow \sigma'; l \leftarrow l';
6 if \gamma \leftarrow permutation(V) or \gamma \leftarrow shuffle(\gamma);
```

王磊算法的创新和启发意义主要有以下三点:

1. 传统启发算法求解旅行商问题,几乎全部都是直接在回路 σ 上进行邻域扰动,获得新解。而王磊算法则提出了 $\gamma \to \sigma$ 的映射算法 A_1 ,这相当于对原有解空间进行了"扭曲",将求"回路"的原问题转化为了求"指导顺序"的新问题。

最优化理论中,原始问题很难求解时,往往通过引入对偶问题的方式,简化对原始问题的求解。在机器学习中,也有代替函数、核函数作为例子。但是,我们不禁要问,对于所有的"指导序列" $\gamma \in \Gamma$,它们所生成的所有回路集合 Σ^* ,是否包含了最优回路 σ^* ? 即,通过指导序列将问题转换,问题转换前后是否仍然具有"一致性"?

2. 邻域搜索和跳坑策略思想并不高深。局部极小值的定义来自于函数求极值,跳坑则更有烟火气:如果你已经期末总评满分了,就要跳坑,到更有希望的学府继续深造。

无论是回路 σ 还是指导序列 γ 都是高维空间的一个点,若其邻域中的"点"所对应的 回路长度都不比中心点短,则该中心点是局部极小值点;当邻域搜索陷入局部极小值点时,就应该采用"跳坑策略",进行随机扰动,跳出陷阱,继续邻域搜索。

这其中的问题有二:一是"随机扰动"算子和所谓"邻域算子"在本质上究竟有何不同?设计的"邻域算子"真的在逻辑上只是轻微的扰动吗?二是随着邻域算子设计的不同,邻域中的"点"随着维度的增大,个数可能比想象中要多得多,因此有时候又不得不采用固定次数的方式来执行邻域搜索,导致邻域开采不足。邻域搜索对应"变异"、"开采",而跳坑策略则对应"探索",可以说所有的最优化算法都要考虑这两者的平衡。

3. 生成回路算法本身也具有烟火气。想象一下,借一个扎头发的橡皮筋,套住几个点; 然后采用贪心策略,将其余点加入回路。

传统的最近邻点贪心策略是,最后一步方能连成回路,这就导致目光浅显、虎猴蛇尾;而如果是在一个成形的"回路"中添加,每次添加评价的都直接是回路的全长,则能一定程度上缓解"短视"问题。这启发我们同样是贪心策略,但是如何运用,运用的好不好是可以评价的,是有优劣的。

2.2.2 模拟退火

事实上,人们从物理世界状态演化、自然界各种现象、千百年来生存斗争经验获得启发,以仿生拟人拟物途径设计了各种算法。模拟退火是一种,具有自然背景且实现简单。

模拟退火并没有显式地将跳坑策略(探索)和邻域搜索(开采)分成两阶段看待;它的基本思想是,以概率接受劣解,且接受劣解的概率随迭代次数递减直至无限趋近于零。如果只接受优解,则容易早熟,多样性不足,易于陷入局部最优,因此需要接受劣解;如果一味接受劣解,则无法保证收敛性,因此需要控制接受劣解的概率;模拟退火算法中,随着迭代次数递增,温度越低,对劣解的容忍程度越低,可以保证算法不至于震荡,可以收敛。

Algorithm 5: Simulated Annealing Algorithm

```
input : V, dist(\cdot, \cdot), L(\cdot), transform(\cdot)
                     T, \epsilon, \alpha, time \ out, early \ stop
     output: \sigma^*, L^*
 1 start_time \leftarrow current time;
 2 while current time – start time < time out do
           \sigma \leftarrow \operatorname{permutation}(V);
           L \leftarrow L(\sigma);
           while T > \epsilon do
                 for step \leftarrow 1 to early stop do
  6
                       \sigma' \leftarrow \operatorname{transform}(\sigma); L' \leftarrow L(\sigma'); \Delta L \leftarrow L' - L;
  7
                      if \Delta L < 0 or random(0,1) \le e^{\frac{-\Delta L}{T}} then
                        \  \  \, \bigsqcup \  \, \sigma \leftarrow \sigma'; \ L \leftarrow L';
                 T \leftarrow T \times \alpha;
10
11 \sigma^* \leftarrow \sigma, L^* \leftarrow L;
```

3 遗传算法及改进策略

3.1 传统的遗传算法

```
Algorithm 6: Genetic Algorithm for TSP
   input: V, epoch, early stop, population size, pc, pm
   output: \sigma^*, L^*
 1 初始化种群;
 2 for e \leftarrow 1 to epoch do
      初始化当前最佳长度为无穷大;
      for step \leftarrow 1 to early\_stop do
  4
        选择操作:根据适应度选择当前种群中的一些个体;
  5
        交叉操作:根据交叉概率 pc 结合选中的个体产生后代;
  6
        变异操作: 根据变异概率 pm 改变某些个体的特征;
        如果找到更优的解,则更新当前最佳长度;
      重新初始化种群;
 10 \sigma^* ← 找到的最佳解; L^* ← 最佳解的长度;
```

无论是基于邻域搜索和拟人策略跳坑的王磊算法,还是从淬火物理结晶过程获得启发的模拟退火算法,都是基于"个体"的启发算法。而遗传算法,从生物学获得启发,将"个体"扩展至"种群";除邻域操作(也成"变异"算子)外,新增了"交叉"操作,将"个体理性"和"群体理性"进行结合。传统的遗传算法求解旅行商问题的具体细节为:

- 编码 将执行变异操作的个体直接编码为城市序号的全排列 σ ;
- 适应 采用 $\frac{1}{L(\sigma)}$ 表示解的优劣,适应度越大,被选择保留的概率越高;
- **选择** 采用轮盘赌, 计算每条染色体的被选择概率和累计概率, 再根据一个随机数确定要保留的染色体; 选择操作是遗传算法的核心, 一方面, 要保证收敛质量好, 即回路长度短, 另一方面, 要保证种群有足够的多样性, 避免陷入局部最优的困境;
- 交叉 交叉操作的目的是,集合不同回路的优良回路特征,常用有顺序交叉和部分映射交叉。
- 变异 通过邻域变换对种群中的个体(回路)进行扰动;遗传算法中,变异概率通常非常小。

3.2 改进的遗传算法

在编码部分,仍采用整数回路直接编码;在交叉部分,沿用顺序交叉和部分映射交叉。 然后,对传统遗传算法的初始化、选择、变异操作做出如下改进,后文称为 **GIGA**:

- 初始 发扬"继承"策略,在初始化阶段,将"2-OPT"和"最近邻点"算法的结果回路作为初始 化种群的一部分;这样可以极大的减少迭代次数,在交叉过程中吸取各个算法最优解 的优良局部特征,而且保证了解的收敛性,使得其回路长度最大不会超过最优回路的 1.5 倍,最差仍有理论保证兜底。其实,这变相地把"遗传算法"视作一种"群智融合"和 "回路改进"方法,通过融合、修补、改进已有的解来使目标值更理想。
- **选择** 在选择过程中,弃用轮盘赌法。轮盘赌法的缺陷是,当适应度相似时,选择概率值相近,不一定保证选择当前种群中回路长度最小的个体,这使得算法收敛困难;改用排位等级法,以回路长度从小到达排序,以排序等级确定选择概率,缓解了适应度相近时选择困难的问题。
- **变异** 在变异过程中,除了使用传统的算子外(点插入、块插入、块反转、点对换、块对换、 2-OPT、3-OPT),我从王磊 A_1 算法中获得启发,设计了一个全新的变异算子: 贪婪插入。采用"最陡下降法",我们对于一个已知回路 σ ,随机剔除 N 个城市,然后依序采取贪心策略将被剔除的点添加到回路中。N 取自一个概率分布,这样能够保证剔除城市个数可以动态变化;而剔除策略,可以分为单点剔除和随机剔除。

下面给出种群初始化的伪代码:

```
Algorithm 7: Population Initialization for Genetic Algorithm
     input: V, size, init population
     output: Initialized population P
   1 P \leftarrow init population;
   2 while |P| < size do
         P.append(permutation(V));
   下面给出选择操作的伪代码:
Algorithm 8: Selection Operation in Genetic Algorithm
   1 Function Select (P, L, size, C, operator):
         lengths \leftarrow [L(individual) \text{ for each } individual \in P];
   2
         order \leftarrow sort indices of lengths in ascending order;
   3
         selected \leftarrow [best seen tour];
   4
         while |selected| < size do
             idx \leftarrow 0, target \leftarrow 1;
   6
             while random(0,1) < target \times (1-C) do
   7
   8
                 target \leftarrow target \times C;
             selected.append(P[order[idx]]);
  10
         return selected;
   下面给出变异算子的伪代码:
Algorithm 9: Greedy Insert Operator for Genetic Algorithm
     input : \sigma, dist(\cdot, \cdot), times, dimension
     output: Modified \sigma
   1 if random(0, 1) < 0.5 then
         conductor \leftarrow \text{remove } times \text{ random elements from } \sigma;
   3 else
         pivot \leftarrow \text{random integer}(1, dimension - times - 1);
         conductor \leftarrow \text{remove } times \text{ elements starting at } pivot \text{ from } \sigma;
   6 foreach vertex \in conductor do
         best\_idx \leftarrow arg min \ L(\sigma_{1:i}) + dist(vertex, \sigma(j)) + L(\sigma_{i:|\sigma|}) - L(\sigma);
   7
```

 $\sigma \leftarrow (\sigma_{1:best\ idx}, vertex, \sigma_{best\ idx+1:|\sigma|});$

4 实验设置与测试结果

4.1 数据集与超参数设置

TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/) 中公布了旅行商问题的 benchmark 测试数据集。以 EUC-2D 类型的测试数据集中的实例 a280 为例, a280.txt 文件开头有一段说明文字,然后是 280 (表示点的个数),接下来有 280 行数据,每行数据含有 3 个数,分别是: 当前点的序号、当前点的 x 坐标、当前点的 y 坐标。

	表 1: 随机过似异齿头短距参数以直	
对应算法	超参数	缺省值
${\it GreedyNearestNeighbor}$	boost, 是否随机选择一个起始城市	True
Simulated Annealing	初始温度 t , 终止温度 ϵ , 衰减系数 α	$1000, 10^{-14}, 0.98$
Simulated Annealing	重启停机参数 time_out, early_stop	1,250
${\it Wang Lei Algorithm}$	重启停机参数 epoch, early_stop	16,250
Proposed GIGA	种群大小 $size$, 交叉概率 p_c , 变异概率 p_m	50, 1, 0.4
Proposed GIGA	选择系数 C	0.5
Proposed GIGA	重启停机参数 epoch, early_stop	6,7500

表 1: 随机近似算法实验超参数设置

4.2 实验结果

王磊老师在 VC6.0 开发环境中将算法用 C 语言编程,在 CPU 主频为 3.4GHz 的微机上进行的测试;我在是在 macOS 13.5.2 (22G91) 系统下以 Python 3.9.12 进行编程。

由于编程语言及环境的巨大差异,运算结果无法直接相互比较。因此,我弃用了《专业方向综合实践验收的问题》的报道结果,自行复现了王磊算法作为对比算法进行测试、对比。

代码开源在: https://github.com/DURUII/Homework-Algorithm-TSPLIB95。

选取城市数小于等于 1000 中全部 48 个 benchmark 测试用例进行测试,两点间距离四舍五入取整,每个实例计算 10 次。下面是改进的遗传算法、王磊算法、模拟退火算法计算 10 次,所得回路长度的最小值 L_{\min} 、平均值 L_{avg} 和平均计算时间 t_{avg} 。

本文提出的改进的遗传算法,在1个测试用例中超过王磊算法或已求得最优解;在剩余个测试用例中,平均回路长度不超过王磊算法的%,最短回路长度不超过王磊算法的%。所有测试用例中,算法所给出的最小回路长度,与最优回路相比,平均最小相对误差为0.73%,

^{*}提出改进的遗传算法的初始种群仅来自 2-OPT、GreedyNearestNeighbor。

低于 1%。以 a280 这个 benchmark 为例,最优解的回路长度是 2579,算法所求最小长度 为 2584,算法所给出的最小回路长度相对误差为 0.19%。

a280 berlin52 bier127 1 ch130 ch150	2579 7542 118282 6110 6528 15780	$L_{ m min}$ 2584 † 7542 * 120843 6189 6588 15831	Lavg 2593.30 7542.00 121648.60 6198.00 6588.00 15888.30	t _{avg} 312.50 36.73 97.18 93.35 112.96	$L_{ m min}$ 2615 ${f 7542^{\star}}$ 118326 †	L_{avg} 2653.30 7542.00	$t_{\rm avg}$ 380.50	L_{\min} 2792	L_{avg} 2890.40	t_{avg} 43.76
berlin52 bier127 d ch130 ch150 d198 d493 d657	7542 118282 6110 6528 15780	7542 * 120843 6189 6588	7542.00 121648.60 6198.00 6588.00	36.73 97.18 93.35	7542 *		380.50	2792	2890.40	43 76
bier127 1 ch130 ch150 d198 d493 d657	118282 6110 6528 15780	120843 6189 6588	121648.60 6198.00 6588.00	97.18 93.35		7549 00				10.10
ch130 ch150 d198 d493 d657	6110 6528 15780	6189 6588	6198.00 6588.00	93.35	118326^\dagger	1044.00	4.79	7542^{\star}	7759.30	8.06
ch150 d198 d493 d657	6528 15780 426	6588	6588.00			119221.50	51.17	121173	124320.50	19.63
d198 d493 d657	15780 426			112.96	6115^{\dagger}	6131.90	43.74	6355	6548.00	19.89
$\frac{d493}{d657}$	426	15831	15888.30		6554^{\dagger}	6582.50	65.98	6938	7069.70	22.98
d657				194.36	15818^{\dagger}	15860.00	141.29	16211	16464.80	30.36
eil51										
		435	435.40	254.25	426^{\star}	427.00	31.93	429	435.60	48.15
eil76	538	546	546.00	374.14	542^{\dagger}	545.10	89.43	556	560.20	75.42
eil101	629	639	641.20	473.52	633^{\dagger}	636.30	162.24	656	665.70	92.91
fl417										
gil262	2378	2394	2402.50	459.81	2391^{\dagger}	2411.30	519.80	2541	2628.20	71.41
kroA100	21282	21282	21381.60	570.70	21282^{\star}	21286.00	215.12	21786	22395.20	115.93
kroB100	22141	22364	22364.00	650.05	22141^{\star}	22241.60	190.30	22448	23028.50	131.33
kroC100	20749	20983	20983.00	552.12	20749^{\star}	20771.90	178.92	21174	21736.00	113.07
kroD100										
kroE100										
	26524	26698	27069.70	822.14	26550^{\dagger}	26651.00	439.09	27204	28376.50	145.96
kroB150	26130	26364	26535.25	844.40	26132^{\dagger}	26182.125	471.37	26505	27582.125	147.41
kroA200										
kroB200										
	14379	14379^{\star}	14508.70	147.10	14379^{\star}	14388.80	45.33	14464	15114.30	28.43
lin318										
p654										
pcb442										
	108159	109043	109043.00	253.17	108159*	108257.90	60.67	109696	111023.00	52.94
pr107	44303	44303*	44497.70	364.35	44303*	44330.50	112.80	45179	46623.40	74.77
	59030	59030*	59030.00	452.88	59030*	59034.60	160.70	60073	61349.70	87.81
	96772	96772*	96781.10	520.55	96795	96985.20	288.84	100677	102998.60	95.56
	58537	58763	59162.80	603.83	58537*	58642.40	263.35	59127	60989.10	102.01
pr152	73682	73880	73880.00	597.60	73682*	73737.80	286.54	75208	76857.00	110.15
pr226										
pr264										
pr299										
pr439										
rat99	1211	1215	1223.10	270.03	1211*	1216.60	95.57	1265	1287.00	57.15
rat195	2323	2352^{\dagger}	2361.10	684.14	2363	2379.70	528.59	2495	2568.60	109.63
rat575										
rat783										
rd100	7910	7965	8093.10	120.95	7911^{\dagger}	7933.80	39.94	8064	8436.20	26.78
rd400										
st70										
ts225										
tsp225	3919	3957	3964.30	267.73	3955^{\dagger}	3964.40	304.48	4051	4228.50	48.96
-	42080	42324	42686.60	174.29	42080*	42235.80	110.90	43668	45721.40	35.24
u574				-					-	
u724										

[†]代表在当前评价指标上优于其他算法;*代表在该测试用例上找到最优解。