

Abstract

La impresión común es que las redes neuronales son buenas resolviendo problemas muy específicos. A diferencia de nuestro cerebro, tienen dificultades para generar soluciones a nuevas tareas usando un aprendizaje anterior. Sin embargo, las neurociencias contemporáneas sugieren que la forma en que nuestro cerebro aprende intuiciones generales se debe a su capacidad de compartir información entre distintas regiones del cortex neuronal. La explicación de esto puede estar en la manera que se representa el conocimiento dentro de una NN.

APRENDIZAJE ARTIFICIAL

Machine learning supervisado y no-supervisado 01

APRENDIZAJE NO SUPERVISADO

Aprendizaje no supervisado de patrones: métodos y comparaciones 02

REDES NEURONALES

Redes neuronales en una diapositiva 03

CONTENIDO

04

AUTOENCODERS

Aprendizaje de patrones no supervisado con NN

05

REPRESENTATION LEARNING

Extracción de features no supervisados para varios casos de uso

06

OTROS CASOS DE USO

Otros casos de uso y posibles aplicaciones futuras de RL

01

Aprendizaje artificial

Nuestra definición de Al

Dartmouth Conference 1965

Resume: "...cualquier aspecto del aprendizaje artificial o cualquier característica de la inteligencia que pueda ser descrita de forma precisa por una computadora"

Definición popular

La teoría y desarrollo de sistemas computacionales capaces de llevar a cabo tareas que normalmente requerirían inteligencia humana.

Supervisado

Se requiere tener una base de conocimiento previa

La computadora necesita que "actualicen" su conocimiento

Las máquina descubre patrones por si sola

No requiere que se actualice su base de conocimiento

Es capaz de aprender "constantemente"

Aprendizaje supervisado

Aprendizaje supervisado

Aprendizaje supervisado

- Queremos caracterizar la información sin supervisión humana
- La máquina es capaz de "elegir" qué aprender
- Tratamos de aprender features (patrones) mas "fundamentales" en los datos
- Es posible usar estas representaciones en diversos problemas (transfer learning)

03

REDES NEURONALES

REDES NEURONALES

Perceptrones

Redes de perceptrones

- El perceptrón es la unidad mínima de procesamiento de una red neuronal

- Back propagation es el mecanismo por el cual se "entrena" la red neuronal

Técnicas de entrenamiento

- Cambiar el costo cuadrático por otros
- Funciones de activación
- Técnicas de regularización
- Inicialización de pesos

Redes recurrentes

- Las redes con capas conectadas a ellas mismas

Redes convolucionales

input neurons

Ejemplo: https://playground.tensorflow.org/

Arquitectura: Descripcion de imagenes

(image captioning)

Arquitectura: Descripcion de imagenes

(image captioning)

Arquitectura: Inception v4

Red Completa

Stem module

3x3 Conv

(256 stride 2 V)

3x3 Conv

(192 V)

1x1 Conv

(80)

3x3 MaxPool

(stride 2 V)

3x3 Conv

(64)

3x3 Conv

(32 V)

3x3 Conv

Input

(299x299x3)

299x299x3

(32 stride 2 V)

35x35x256

Inception-A

Inception-B

Inception-C

Arquitectura: RNNs

Update gate

$$z_{t} = \sigma(W^{(z)}x_{t} + U^{(z)}h_{t-1})$$

Reset gate

$$r_t = \sigma(W^{(r)} x_t + U^{(r)} h_{t-1})$$

Final memory

$$h_t^{'} = \tanh(Wx_t + r_t \odot Uh_{t-1})$$

Arquitecturas: GRU

Arquitecturas: *Image captioning*

Taller: Representation learning Extracción no supervisada de features para varios casos de uso

Deteccion de fraude

::::Smart**Roots**

