Speeded-Up Robust Features

Dr. V Masilamani

masila@iiitdm.ac.in

Department of Computer Science and Engineering
IIITDM Kancheepuram
Chennai-127

Overview

- Outline of SURF
- 2 Hessian-Based Interest Points
- 3 Hessian Approximation
- Scale Space Representation
- **5** Interest Point Localization

- Find Key points
 - Define key point using Hessian matrix
 - Approximate Hessian matrix using box filter
 - Do Non Maxima suppression
 - Find true location of key points using quadratic interpolation
- ► Find descriptor for each key point
 - Use Haar wavelet response of each sub window of the window around the key point

To find approximation of Hessian matrix and response of Wavelet

- Compute integral image once
- Use integral images

Integral Image

▶ The integral image I(x, y) of an image I(x', y') represents the sum of all pixels in I(x', y') of a rectangular region formed by (0, 0) and (x, y)

$$II(x,y) = \sum_{x' \le x, y' \le y} I(x',y')$$

1	5	1	6	
2	4	3	12	

Figure 1: Image and its Integral Image

► The time complexity of finding Integral Image II of an Image I of size $n \times n$ is $O(n^4)$ (2 + 3 + 4 + + n^2 additions)

Integral Image (cont.)

- ▶ Using dynamic programming, II can be computed in $O(n^2)$
- ▶ Using II of image I, the sum of pixels over any rectangular region of any size can be computed in constant time (Without II, $O(n^2)$)

$$\sum = A - B - C + D$$

Integral Image (cont.)

1	2	2	4	1
3	4	1	5	2
2	3	3	2	4
4	1	5	4	6
6	3	2	1	3

1	3	5	9	10
4	10	13	22	25
6	15	21	32	39
10	20	31	46	59
16	29	42	58	74

Hessian-Based Interest Points

▶ Given a point X = (x, y) in an image I, the Hessian matrix $H(X, \sigma)$ in X at scale σ is defined as follows

$$H(X,\sigma) = \begin{bmatrix} G_{xx}(X,\sigma) & G_{xy}(X,\sigma) \\ G_{xy}(X,\sigma) & G_{yy}(X,\sigma) \end{bmatrix}$$

where $G_{xx}(X, \sigma)$ is the convolution of the Gaussian second order derivative $\frac{\partial^2}{\partial x^2}g(\sigma)$ with the image I in point X.

The locations where the determinant of the Hessian is maximum are called **interest points**

Hessian Approximation

- ▶ The actual computation of the Hessian matrix is expensive
- ► The Hessian can be approximated using filters called **Box Filters**
- ▶ Box Filter is a filter that consists of rectangular regions with constant value in each region
 - Average filters, Sum filters are Box Filters

Box filters(bottom row) that approximate second order partial derivatives of Gaussian filters in X, Y and XY directions

▶ Instead of exact Hessian, find approximate Hessian using box filters

$$H_{apprax}(X, \sigma) = \begin{bmatrix} B_{xx}(X, \sigma) & B_{xy}(X, \sigma) \\ B_{xy}(X, \sigma) & B_{yy}(X, \sigma) \end{bmatrix}$$

where $B_{xx}(X,\sigma)$, $B_{xy}(X,\sigma)$ $B_{yy}(X,\sigma)$ are approximations to G_{xx} , G_{xy} , G_{yy} respectively

$$det(H_{approx}) = B_{xx}B_{yy} - (wB_{xy})^2$$

$$(w = 0.9)$$

ightharpoonup det(H_{approx}) will be low for isolated points(noise), high for corner points

Figure 2: Gaussian second order partial derivative filters in y-direction(G_{xx}) and xy-direction(G_{xy})

Figure 3: Box filter approximations of the Gaussian second order partial derivative filter in x dir (B_{xx}) and in xy (B_{xy})

- ▶ Box filter (B_{xx}) is an Approximation of second order derivative of Gaussian filter in x direction (G_{xx})
- ▶ Box filter (B_{yy}) is an Approximation of second order derivative of Gaussian filter in y direction (G_{yy})
- ▶ Box filter (B_{xy}) is an Approximation of second order derivative of Gaussian in x followed by y direction (G_{xy})
- At each point (x, y) in an image, the response of box filter at (x, y) can be computed in constant time(using Integral Image)

Scale Space Representation

- ► Scale Space: The input image is convolved with a box filter of various dimensions such as 9x9, 15x15, 27x27 etc.
- Size of the filter corresponds to the standard deviation(σ) of Gaussian.
 - Recall that the filter is second order partial derivative of Gaussian
 - The σ is called as scale
- The scale space is further divided into octaves (sets of filter responses)

Scale Space Representation (cont.)

Three octaves:

- $ightharpoonup \sigma = k, \sigma = 1.5k, \sigma = 3k$
- $ightharpoonup \sigma = 4k, \sigma = 6k, \sigma = 8k$
- $ightharpoonup \sigma = 2k, \sigma = 3k, \sigma = 4k$

Scale Space Representation (cont.)

Scale Space Representation (cont.)

Box filters of different scales

Interest Point Localization

- ► To localize interest points in the image over different scales, a non-maximum suppression in a 3x3x3 neighborhood is applied
 - Non-maxima points are not interest points
- ► For each three maxima of the determinant of the Hessian matrix
 - Do quadratic interpolation
 - Call the extrema as key point, dropping those three points (or farthest point from the extrema)

Feature Vector

To find Feature vector for each key point (x, y, s, o)

- ▶ Define the axis-orientated square window of size $20s \times 20s$ centered around the interest point
 - Find the orientation of square such that $\sum dx$ is max (To keep rotation invariance)
 - Find the circle, centered at key point, and find the min-bounding rectangle for the circle
 - Find $\sum dx$ for the window
 - ▶ Rotate the circle 30 degree, and find $\sum dx$
 - Repeat the pre-step till 360 degree
 - Find the max $\sum dx$, and call the corresponding degree as the orientation of point
- ► Subdivide the window into 4 × 4 grid
- ▶ Let H_x be Haar wavelet in x dir, and H_y be the Haar wavelet in y dir

Feature Vector (cont.)

- ► The following four metrics are extracted from each sub window w_i (of size $5s \times 5s$)
 - Sum of all values of dx in w_i , where $dx = Conv(w_i, H_x)$
 - Sum of all values of dy in w_i , where $dy = Conv(w_i, H_v)$
 - Sum of absolute values of all values of dx in w_i , where $dx = Conv(w_i, H_x)$, call the resultant as $\sum |dx|$

Feature Vector (cont.)

- Sum of absolute values of all values of dy in w_i , where $dy = Conv(w_i, H_v)$, call the resultant as $\sum |dy|$
- \triangleright For each sub window w_i , find the feature vector

$$V_i = \begin{bmatrix} \sum \mathrm{d}x \\ \sum \mathrm{d}y \\ \sum |\mathrm{d}x| \\ \sum |\mathrm{d}y| \end{bmatrix}$$

- ▶ The final feature vectors for the key point (x, y):
 - Concatenate all V_i s to obtain 64 dimensional vector: $FV(x,y)=(V1,....,V_{16})$