

University of Stuttgart

Institute of Parallel and Distributed Systems (IPVS)

Universitätsstraße 38 D-70569 Stuttgart

On the Privacy of Frequently Visited User Locations

Zohaib Riaz, Frank Dürr, Kurt Rothermel

International Conference on Mobile Data Management 2016 (MDM'16)

15th June 2016

- Today's Location-sharing apps exploit Location Semantics
 - App Examples: Family locators, Friend finders, Geo-social networks
 - Meaningful sharing: (48.778786, 9.177867) → Starbucks (Coffee Shop)
 - Trivial to label any unlabeled trips (via Foursquare, Yelp etc.)

Research Group

- Today's Location-sharing apps exploit Location Semantics
 - App Examples: Family locators, Friend finders, Geo-social networks
 - Meaningful sharing: (48.778786, 9.177867) → Starbucks (Coffee Shop)
 - Trivial to label any unlabeled trips (via Foursquare, Yelp etc.)

- Privacy threat: Prolonged location sharing reveals visit-frequency profile!
 - "A person who knows all of another's travels can deduce whether he is a weekly church goer, a heavy drinker, a regular at the gym,... and not just one such fact about a person, but all such facts." [United States v. Jones]

- Typical Location-sharing apps rely on backend
 Location Server Infrastructure
 - LSs store and manage user positions
 - Applications query user positions from LSs
- Can the LSs provider be trusted for the security of users' location data?

- Typical Location-sharing apps rely on backend Location Server Infrastructure
 - LSs store and manage user positions
 - Applications query user positions from LSs
- Can the LSs provider be trusted for the security of users' location data?
- → No service provider can guarantee that personal information is safe!
 - LS become <u>single-point-of-failure</u> w.r.t. privacy

"The alarming part is that the information is so concentrated,"

The Washington Post

<u>eBay</u> asks **145 million users** to change passwords after data breach **(2014)**

Database of <u>191 million U.S. voters</u> exposed on Internet: <u>researcher</u> (2015)

THE WALL STREET JOURNAL.

<u>Twitter:</u> Passwords Leaked for Millions of Accounts (6 days ago!)

Contributions

- A study of real-world check-ins dataset to show that frequent locations
 pose a serious privacy threat (next 3 slides ...)
- An approach to protect frequent locations while avoiding a singlepoint-of-failure in the LS infrastructure
- Evaluation of the approach for achieved Privacy and Quality-of-Service (QoS) for location-sharing apps.

Study of Check-in Dataset: Preprocessing

- **Goal:** Show that visit-frequency information poses a privacy threat
- Dataset: 22,506,721 Geo-tagged tweets provided by Cheng et al. 2011
- **Selected user** *Population***:** criteria
 - >= 1 location check-in per day
 - >= 30 days of reported location data
 - 10,306 users selected
- Venue information, e.g., category, retrieved using Foursquare's free API

No.	Category					
1	Arts & Entertainment					
2	Education					
3	Food					
4	Tea/Coffee/Juices					
5	Nightlife					
6	Outdoor & Recreation					
7	Athletics & Sports					
8	Professional Places					
9	Professional Schools					
10	Medical Center					
11	Spiritual					
12	Shop & Service					
13	Financial Institutions					
14	Fitness					

visit-frequency

Output: Frequency rank-profile

visit-frequency

Output: Frequency rank-profile

Study of Check-in Dataset: Evidence of Privacy Threat!

Critical locations are prevalent!

- ~85% users have <u>at least 1</u> critical location
- ~50% users have <u>2 or more</u> critical locations

Visiting characteristics of locations

- Same percentile rank → different frequencies for diff. categories
- High percentile-rank → a reasonable measure of user interest

Study of Check-in Dataset: Evidence of Privacy Threat!

Critical locations are prevalent!

- ~85% users have at least 1 critical location
- ~50% users have <u>2 or more</u> critical locations

Visiting characteristics of locations

- Same percentile rank → different frequencies for diff. categories
- High percentile-rank → a reasonable measure of user interest

→ We assume that "Frequency ⇔ Rank" relationship is publicly known

Problem Statement

- **Privacy-preferences:** (Persona, App) pairs
- **User-Personas:** Define location categories whose criticality may be revealed e.g.:
 - "Friends" → {all} \ {Medical}
 - "Colleagues" → {all} \ {Spiritual, Medical, Night-life}
- **Privacy Requirement:** Implement privacypreferences in location-sharing
 - Reveal unshared critical locations such that they appear non-critical
 - Avoid attacks to reveal critical locations
 - Attacker know our algorithm + additional knowledge
 - Baseline attack: random guess!

Architecture (1)

- User's device: a smart-phone
 - Runs Location-Privacy service:
 - Executes our privacy algorithm
 - Performs location updates to LSs

 Assumption: Encrypted communication channel

Architecture (2)

A set of Location Servers (<u>LSs</u>)

- from different third-party providers
 - Example: Backendless, App42, Heroku etc.
- manage location updates
- implement Access-control mechanism

Location Based Applications (<u>Apps</u>)

- Get access authorization to LSs from users
- Access user location from LSs or subscribe for update notifications
- May aggregate frequency-profile of user

Basic Privacy Algorithm (1)

1. On-device determination of critical locations:

- $S = \{s_1, ..., s_{14}\}$, set of location categories
- $^{\circ} \ f_{u} = \{f_{s_{1}}, f_{s_{2}}, \ldots, f_{s_{14}}) \text{ and } r_{u} = \{r_{s_{1}}, r_{s_{2}}, \ldots, r_{s_{14}}\}$
- Critical locations: $\boldsymbol{C}_u = s_i | r_{s_i} > th_{crtl}$

2. Determine desired ranks

- Deterministic new ranks → reversible by attacker
- Randomized selection of desired ranks
 - Avoids advanced attacks!

Basic Privacy Algorithm (2)

3. Enforce desired ranks for all $s_i \in C_u$:

Divide trips for s_i among LSs

LS₀ hosts a <u>safe-profile</u> of user

"Distributed Systems"

12

Protected *Rank* profiles at LSs

Basic Privacy Algorithm (2)

3. Enforce desired ranks for all $s_i \in C_u$:

Divide trips for s_i among LSs

LS₀ hosts a <u>safe-profile</u> of user

Protected *Rank* profiles at LSs

Basic Privacy Algorithm (2)

Advanced Privacy Algorithm (1): Against <u>user-aware</u> Attacker

- Attacker: has access to a few LSs
 - Knows timings of inaccessible updates
- Trail of location updates \rightarrow *Mobility Model* Ω

t_1	t_2	t_3	t_4	 t_{150}	t ₁₅₁	t ₁₅₂	t ₁₅₃	
Α	F	Е	N	(?)	Е	Α	(?)	

• Attack inaccessible updates: Maximize $P(s_i|t)$ for s_i to predict visited location using Ω

Bayes theorem: $P(s_i|t) = P(t|s_i)$

Prior: Changed by our algorithm (unreliable)

Normalizer: constant for all s_i (unimportant)

Likelihood of visiting time s_i at time t over all possible times T

Advanced Privacy Algorithm (2): Defense

- Defense: Generate fake events for each location as if it were critical!
 - Fake events → garbage data → discarded by LSs!
 - Desired effect: Rank of all locations should "appear" equal
- Algorithmic steps:
 - 1. Keep track of temporal likelihood of each category
 - 2. Accordingly schedule enough fake events to meet maximum rank in the rank-profile

22

Evaluation: Population-aware Attacker Model

- Attacker: Aims to find all critical locations
 - 1. knows 'k' out of 'n' critical locations from authorized or compromised LSs
 - 2. Knows correlations among visit-frequencies of different location categories (Acquired from the population)

- Frequency-correlation attack
 - Learn correlations using Machine Learning techniques
 - Data: Frequency-profiles of 10,036 users

Evaluation: Privacy results for Classification Attacks

 Classifiers: Random Forest (RF) & Support-Vector *Machine* (SVM)

Training:

- On frequency-profiles with one critical location
- 10-fold cross-validation

• Results:

Low classification accuracy: 25%

Repeated experiment:

- Added frequency-profiles with no critical locations!
- Again, low accuracy for critical locations: 22%
- High accuracy for non-critical: 87%

non-critical profile (unaltered)

Evaluation: Privacy results for Classification Attacks

Evaluation: Privacy results for Regression Attacks

- Regression Models: RF, SVM and Gaussian Mixture Regression (GMR)
 - Percentage prediction error: < 5% for each semantic location
 - Attack performance on <u>protected frequency-profiles</u>:

 $P_{attack}(k)$ - probability of correct detection of a critical location when k out of n critical locations are already known

Evaluation: Privacy results for Regression Attacks

- Regression Models: RF, SVM and Gaussian Mixture Regression (GMR)
 - Percentage prediction error: < 5% for each semantic location
 - Attack performance on <u>protected frequency-profiles</u>:

Evaluation: QoS and Communication Overhead

QoS = proportion of available location updates

$$k = 1, QoS \sim 80\%$$

 $k = 2, QoS \sim 70\%$
 $k = 3, QoS \sim 60\%$

- QoS is reasonably high given 60% population has 1 or 2 critical locations
- Communication Cost = no. of fake message per day
 - 1-2 messages a day for most users!

Related Work

- Semantic location obfuscation (PROBE framework by Damiani et al. 2010)
 - + Cloak individual sensitive visits with neighboring non-sensitive venues
 - Sensitivity of location categories is not related to an individual's visit-frequency
- Venue Recommendation techniques (Riboni et al. 2014, Zhang et al. 2014)
 - + Offline publishing of check-in history statistics in a differentially private manner
 - Require Trusted parties for implementing the privacy algorithm
 - Cannot be used for online location sharing
- Distributed Location Management (Duerr et al. at Percom 2011)
 - + No single-point-of-failure
 - For single locations without considering location semantics

Conclusion & Future Work

- Frequent locations naturally pose a privacy threat by revealing user interests
- Distributing location information in LS infrastructure → promising privacy solution
- Proposed an algorithm for controlled sharing of frequent locations
 - Hides frequent locations from:
 - User-aware attackers
 - Population-aware attackers
- Future Work
 - Integrate existing single-location semantic obfuscation approaches for forming a comprehensive privacy mechanism

Contact and Discussion

Zohaib Riaz

Institute for Parallel and Distributed Systems, University of Stuttgart, Germany zohaib.riaz@ipvs.uni-stuttgart.de

