Corollary

Let α and β be loops in C^* . if $\beta = \gamma$ in C^* then in $(\beta) = (n)(\gamma)$ and conversely.

Pf of (\Rightarrow) Suppose that $\beta = 1$ in \mathbb{C}^* , then $\beta = 1$ in \mathbb{C}^* , so \mathbb{C}^* has a continuous log in \mathbb{C}^* , so \mathbb{C}^* but \mathbb{C}^* ind $(\beta) = \mathbb{C}^*$ ind $(\beta) = \mathbb{$

O: Suppose Y is a loop in $\mathbb{C} \setminus \{0,1\}$. If Y is null-homotopic in $\mathbb{C} \setminus \{0,1\}$, then ind(Y,0) = 0 and ind(Y,1) = 0 as null. but $ind(Y,0) = 0 = ind(Y,1) \implies Y$ is null-homotopic in $\mathbb{C} \setminus \{0,1\}$.

how could we prove these loops are not mull-holmotopie?

A generalisation of the fundamental theorem of algebra. Set $h: C \longrightarrow C$ be Cts, and let $n \in \mathbb{Z} \setminus \{0\}$. Suppose that $\frac{h(t)}{\mathbb{Z}^n} \longrightarrow 1$ as $|\mathbb{Z}| \longrightarrow \infty$. then h has at least one 0. Pf Suppose not then $h: C \to C^{\times}$. Since $\frac{h(2)}{2^n} \to 1$ as $|2| \to \infty$, $\exists R \in (0,\infty) \le t$. $\forall Z \in C$ with |Z| = R we have $\left|\frac{h(2)}{2^n} - 1\right| < 1$. define $\forall S: S^1 \to C$ by $\forall (w) = Rw$. Let $\alpha = h \cdot Y$ and let $\beta = \forall S$. Then α and β are loops in C^{\times} . now $\left|\frac{\alpha}{\beta} - 1\right| < 1$. So $\inf(\frac{\alpha}{\beta}) = 0$. But then $\inf(\alpha) = \inf(\beta)$. Now $\inf(\beta) = n$ and $\inf(\alpha) = 0$.

Y is null-handspic in to

So his is null-humbopic in t.

Defn Let X be a top. sp. To say X is contractible means id_X is null-homotopic in X.

If $\exists H: X \land Co, 13 \xrightarrow{ds} X$ s.t. $\forall x \in X, H(x, o) = x, \forall x, x' \in X, H(x, 1) = H(x', 1)$

a Rd is contractible

of define $H: \mathbb{R}^{1} \times [0,1] \longrightarrow \mathbb{R}^{d}$ by $H(X,t) = (1-t) \lambda$. $H: id_{\mathbb{R}^{d}} \simeq 0$

Let $X \subseteq \mathbb{R}^d$. Suppose X is star-shaped with O ($\forall x \in X$, the line segment $to_1 x_2 \in X$).

Then X is contractible using $\forall \{x \in I, I\} \to X$ by $\forall \{x \in I\} = (I-I) \times A$. However, the line segment I is in I in I in I is contractible.

Let $X \subseteq \mathbb{R}^d$ and $P \in X$. Suppose X is Starshaped with P, then X is contractible.

Remark let $X \in \mathbb{R}^d$. Then X is convex iff $\forall p \in X$, X is str-shaped with p.

Propri det X be a contractible space. Let Y be any top spotential than each continuous f_n $f: X \longrightarrow Y$ is null-homotopic in Y.

Pf let $H: id_X \simeq \stackrel{\text{constant}}{C} \times \cdots \times V$.

Then $f \circ H: f \circ Id_X \simeq f \cdot c_F \times \cdots \times V$, i.e. $f \circ H: f \simeq C_{f(p)}^{\times}$.

Propr Let X, Y be top. sp. with Y contractible. Then each cts for $f: X \rightarrow Y$ is mull-honotopic in X.

Propried X, Z be topose. Let $l: X \to Z$ be cts. Suppose I factors through a contractible space, then h is well-homotopic in Z.

Thus $\psi: k \simeq C_{g(y_*)}^X$ in Z. $V : k \simeq C_{g(y_*)}^X$

Orollong Let h: X -> C' be cts. Suppose h has a cts log.

then h is rull-homotopic in C.

Pf h factors through C Which is contractible:

$$X \xrightarrow{h} C^{X}$$

es let X be contractible let $h: X \longrightarrow \mathbb{C}^{\times}$ be ats. h is null-homotopic in \mathbb{C}^{\times} Since X is contractible so h = 1 so there is a continuous log of h in X.

eg let X be a Stor-shaped subset of Rd. Let h: X then hours acting.

Then Let f: 5"- X be cts, when X is a top sp. Then TFAE:

{xe Rd: |x|=13, 2Bd=5dd}

- (a) f is null-homotopic in X
- (b) f can be extended to a continuous map $F: \mathbb{B}^d \longrightarrow X$