Muhammad Danial

muhammaddanialarain@gmail.com

What is Seaborn?

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics

Why Seaborn?

- provides a layer of abstraction hence simpler to use
- better aesthetics
- · more graphs included

Seaborn Roadmap

Types of Functions

- Figure Level
- Axis Level

Differnce between Figure Level and Axis Level?

Axes-level functions take an explicit ax argument and return an Axes object. For figure-level functions, these need to have overall control over the figure plotted.

Main Classification

- Relational Plot
- Distribution Plot
- Categorical Plot
- Regression Plot
- Matrix Plot
- Multiplots

https://seaborn.pydata.org/api.html

1. Relational Plot

- to see the statistical relation between 2 or more variables.
- Bivariate Analysis

Plots under this section

- scatterplot
- lineplot

```
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
tips=sns.load dataset('tips')
tips
     total bill
                                                        size
                   tip
                            sex smoker
                                          day
                                                  time
0
           16.99
                  1.01
                         Female
                                     No
                                          Sun
                                                Dinner
                                                            2
1
           10.34
                                                            3
                  1.66
                           Male
                                     No
                                          Sun
                                                Dinner
2
                  3.50
                                                            3
           21.01
                           Male
                                     No
                                          Sun
                                               Dinner
3
                                                            2
                           Male
           23.68
                  3.31
                                     No
                                          Sun
                                               Dinner
4
           24.59
                                                            4
                  3.61
                         Female
                                               Dinner
                                     No
                                          Sun
                                    . . .
239
           29.03
                  5.92
                           Male
                                          Sat
                                                            3
                                     No
                                                Dinner
                                                            2
240
           27.18
                  2.00
                         Female
                                    Yes
                                          Sat
                                               Dinner
                                                            2
                  2.00
241
           22.67
                           Male
                                    Yes
                                          Sat
                                                Dinner
                                                            2
                  1.75
242
           17.82
                           Male
                                     No
                                          Sat
                                                Dinner
243
           18.78
                  3.00
                         Female
                                               Dinner
                                                            2
                                     No
                                         Thur
[244 rows x 7 columns]
```

```
scatter plot --> axis level function
sns.scatterplot(data=tips,x='total_bill',y='tip')
<AxesSubplot:xlabel='total_bill', ylabel='tip'>
```



```
sns.scatterplot(data=tips,x='total_bill',y='tip',hue='sex')
```

<AxesSubplot:xlabel='total_bill', ylabel='tip'>

sns.scatterplot(data=tips,x='total_bill',y='tip',hue='sex',style='time
')
<AxesSubplot:xlabel='total_bill', ylabel='tip'>


```
sns.scatterplot(data=tips,x='total_bill',y='tip',hue='sex',style='time
',size='size')
<AxesSubplot:xlabel='total_bill', ylabel='tip'>
```


figure function

```
scatter using relplot --> size and hue
sns.relplot(data=tips,x='total_bill',y='tip',kind='scatter',hue='sex',
style='time',size='size')
<seaborn.axisgrid.FacetGrid at 0x28bdb1327f0>
```


١٠		
lina	n	\cap t

<pre>gap=px.data.gapminder() temp_df=gap[gap['country']=='Pakistan'] temp_df</pre>										
		continent	year	lifeExp	pop	gdpPercap				
150_a 1164	lpha ∖ Pakistan	Asia	1952	43.436	41346560	684.597144				
PAK	Takistan	ASIG	1992	43.430	41540500	004.557144				
1165	Pakistan	Asia	1957	45.557	46679944	747.083529				
PAK										
1166	Pakistan	Asia	1962	47.670	53100671	803.342742				
PAK	5 1		1067	40.000	60641000	0.40 400050				
1167 PAK	Pakistan	Asia	1967	49.800	60641899	942.408259				
1168	Pakistan	Asia	1972	51.929	69325921	1049.938981				
PAK	rakistan	ASIG	1372	31.323	03323321	10131330301				
1169	Pakistan	Asia	1977	54.043	78152686	1175.921193				
PAK										
1170	Pakistan	Asia	1982	56.158	91462088	1443.429832				
PAK										

```
1171
      Pakistan
                    Asia
                           1987
                                  58.245
                                          105186881
                                                      1704.686583
PAK
1172
      Pakistan
                    Asia
                           1992
                                  60.838
                                          120065004
                                                      1971.829464
PAK
                    Asia
                                  61.818
                                                      2049.350521
1173
      Pakistan
                           1997
                                          135564834
PAK
1174
                    Asia
                           2002
                                  63.610
                                          153403524 2092.712441
      Pakistan
PAK
1175
      Pakistan
                    Asia
                           2007
                                  65.483
                                          169270617
                                                      2605.947580
PAK
      iso num
1164
          586
          586
1165
          586
1166
1167
          586
1168
          586
1169
          586
1170
          586
1171
          586
          586
1172
1173
          586
1174
          586
1175
          586
# axis level function
sns.lineplot(data=temp df,x='year',y='lifeExp')
<AxesSubplot:xlabel='year', ylabel='lifeExp'>
```



```
# using relplot
sns.relplot(data=temp_df,x='year',y='lifeExp',kind='line')
<seaborn.axisgrid.FacetGrid at 0x28bdaf67a00>
```


<pre>#hue>style temp_df=gap[gap['country'].isin(['Pakistan','Brazil','Germany'])] temp_df</pre>										
iso al	•	continent	year	lifeExp	pop	gdpPercap				
168 BRA	Brazil	Americas	1952	50.917	56602560	2108.944355				
169 BRA	Brazil	Americas	1957	53.285	65551171	2487.365989				
170 BRA	Brazil	Americas	1962	55.665	76039390	3336.585802				
171 BRA	Brazil	Americas	1967	57.632	88049823	3429.864357				
172 BRA	Brazil	Americas	1972	59.504	100840058	4985.711467				

173	Brazil	Americas	1977	61.489	114313951	6660.118654	
BRA 174	Brazil	Americas	1982	63.336	128962939	7030.835878	
BRA	DIAZIC	Alliel Icas	1902	03.330	120902939	7030.033070	
175	Brazil	Americas	1987	65.205	142938076	7807.095818	
BRA							
176	Brazil	Americas	1992	67.057	155975974	6950.283021	
BRA	D '1		1007	60 200	160546710	7057 000024	
177 BRA	Brazil	Americas	1997	69.388	168546719	7957.980824	
178	Brazil	Americas	2002	71.006	179914212	8131.212843	
BRA	DIGZIC	Americas	2002	71.000	1/3314212	01511212045	
179	Brazil	Americas	2007	72.390	190010647	9065.800825	
BRA							
564	Germany	Europe	1952	67.500	69145952	7144.114393	
DEU	C = 1000 100 1	F	1057	60 100	71010060	10107 026650	
565 DEU	Germany	Europe	1957	69.100	71019069	10187.826650	
566	Germany	Europe	1962	70.300	73739117	12902.462910	
DEU	Ger marry	Larope	1302	,01500	,3,3311,	123021102310	
567	Germany	Europe	1967	70.800	76368453	14745.625610	
DEU							
568	Germany	Europe	1972	71.000	78717088	18016.180270	
DEU	Carmany	Furana	1077	72 500	70160772	20512 021220	
569 DEU	Germany	Europe	1977	72.500	78160773	20512.921230	
570	Germany	Europe	1982	73.800	78335266	22031.532740	
DEU							
571	Germany	Europe	1987	74.847	77718298	24639.185660	
DEU	6	_	1000	76 070	00507764	26505 202170	
572 DEU	Germany	Europe	1992	76.070	80597764	26505.303170	
573	Germany	Europe	1997	77.340	82011073	27788.884160	
DEU	dermany	Larope	1337	771510	02011075	277001001100	
574	Germany	Europe	2002	78.670	82350671	30035.801980	
DEU							
575	Germany	Europe	2007	79.406	82400996	32170.374420	
DEU 1164	Pakistan	Asia	1952	43.436	41346560	684.597144	
PAK	rakistali	ASIG	1932	45.450	41340300	004.39/144	
1165	Pakistan	Asia	1957	45.557	46679944	747.083529	
PAK							
1166	Pakistan	Asia	1962	47.670	53100671	803.342742	
PAK	5.1.1.1		1007	40.000	60641000	0.40 400050	
1167	Pakistan	Asia	1967	49.800	60641899	942.408259	
PAK 1168	Pakistan	Asia	1972	51.929	69325921	1049.938981	
PAK	I GIVES COIL	ASIA	1312	31.323	03323321	10431330301	
1169	Pakistan	Asia	1977	54.043	78152686	1175.921193	

PAK	Dakistan	Acia	1982	56 150	01/62000	1442 420022
1170 PAK	Pakistan	Asia	1982	56.158	91462088	1443.429832
1171 PAK	Pakistan	Asia	1987	58.245	105186881	1704.686583
1172	Pakistan	Asia	1992	60.838	120065004	1971.829464
PAK 1173	Pakistan	Asia	1997	61.818	135564834	2049.350521
PAK						
1174 PAK	Pakistan	Asia	2002	63.610	153403524	2092.712441
1175 PAK	Pakistan	Asia	2007	65.483	169270617	2605.947580
PAK						
168 169 170 171 172 173 174 175 176 177 178 179 564 565 566 567 568 569 570 571 572 573 574 575 1164 1165 1166 1167 1168	iso_num					
1169 1170 1171 1172 1173	586 586 586 586 586					
11/3	300					

```
1174    586
1175    586

sns.relplot(kind='line',data=temp_df,x='year',y='lifeExp',hue='country
',style='continent',size='continent')
<seaborn.axisgrid.FacetGrid at 0x28bdb6e7b20>
```


facet plot --> figure level --> work with relplot
sns.relplot(data=tips,x='total_bill',y='tip',kind='scatter',col='smoke
r',row='sex')
<seaborn.axisgrid.FacetGrid at 0x28bdb6eb220>

facet plot
sns.relplot(data=tips,x='total_bill',y='tip',kind='scatter',col='sex',
row='day')
<seaborn.axisgrid.FacetGrid at 0x28bdb240220>


```
# col wrap
sns.relplot(data=gap,x='lifeExp',y='gdpPercap',kind='scatter',col='yea
r',col_wrap=3)
<seaborn.axisgrid.FacetGrid at 0x28bdb6e7c40>
```


2. Distribution Plots

- used for univariate analysis
- used to find out the distribution
- Range of the observation
- Central Tendency
- is the data bimodal?
- Are there outliers?

Plots under distribution plot

- histplot
- kdeplot
- rugplot

```
# figure level --> displot
# axis level--> histplot --> kdeplot --> rugplot
# plotting univariate histogram
sns.histplot(data=tips,x='total_bill')
<AxesSubplot:xlabel='total_bill', ylabel='Count'>
```



```
sns.displot(data=tips,x='total_bill',kind='hist')
<seaborn.axisgrid.FacetGrid at 0x28bde27c340>
```


bins parameter
sns.displot(data=tips,x='total_bill',kind='hist',bins=20)
<seaborn.axisgrid.FacetGrid at 0x28bde909bb0>


```
# It's also possible to visualize the distribution of a categorical
variable using the logic of a histogram.
# Discrete bins are automatically set for categorical variables
# countplot
sns.displot(data=tips,x='day',kind='hist')
<seaborn.axisgrid.FacetGrid at 0x28bde912f40>
```



```
# hue
sns.displot(data=tips,x='tip',hue='sex',kind='hist')
<seaborn.axisgrid.FacetGrid at 0x28bdcac3400>
```


element --> step
sns.displot(data=tips,x='tip',kind='hist',hue='sex',element='step')
<seaborn.axisgrid.FacetGrid at 0x28bdfb142b0>

<pre>titanic=sns.load_dataset('titanic') titanic</pre>										
_	rvived \	pclass	sex	age	sibsp	parch	fare	embarked		
0 Third	. 0	3	male	22.0	1	0	7.2500	S		
1	1	1	female	38.0	1	0	71.2833	С		
First 2 Third	1	3	female	26.0	0	0	7.9250	S		
3 First	1	1	female	35.0	1	0	53.1000	S		
4 Third	0	3	male	35.0	0	0	8.0500	S		
886	0	2	male	27.0	0	0	13.0000	S		
Second 887 First	1	1	female	19.0	0	0	30.0000	S		

```
888
            0
                     3 female
                                  NaN
                                            1
                                                   2
                                                      23.4500
                                                                      S
Third
889
            1
                     1
                          male
                                 26.0
                                                   0
                                                      30.0000
                                                                      C
First
                          male 32.0
890
            0
                     3
                                                   0
                                                      7.7500
                                                                      Q
Third
            adult male deck
                               embark_town alive
                                                   alone
       who
0
                   True
                               Southampton
                         NaN
                                                   False
       man
                                               no
1
                  False
                                 Cherbourg
                                                   False
     woman
                           C
                                              yes
2
                               Southampton
                  False
                         NaN
                                                    True
     woman
                                              yes
3
                               Southampton
                  False
                           C
                                                   False
     woman
                                              yes
4
       man
                   True
                         NaN
                               Southampton
                                               no
                                                    True
       . . .
                                              . . .
                                                     . . .
                               Southampton
886
       man
                   True
                         NaN
                                               no
                                                    True
887
                  False
                           В
                               Southampton
                                                    True
     woman
                                              yes
                                                   False
                  False
                               Southampton
888
     woman
                         NaN
                                               no
889
                   True
                           C
                                 Cherbourg
                                                    True
       man
                                              yes
890
                   True
                         NaN
                                Queenstown
                                                    True
       man
                                               no
[891 rows x 15 columns]
# element --> step
sns.displot(data=titanic,x='age',kind='hist',hue='sex',element='step')
<seaborn.axisgrid.FacetGrid at 0x28bdfba7a60>
```


faceting using col and row
sns.displot(data=tips,x='tip',kind='hist',col='sex',element='step')
<seaborn.axisgrid.FacetGrid at 0x28bdfae8460>

kdeplot
Rather than using discrete bins, a KDE plot smooths the observations
with a Gaussian kernel, producing a continuous density estimate
sns.kdeplot(data=tips,x='total_bill')


```
# hue -> fill
sns.displot(data=tips,x='total_bill',kind='kde',hue='sex',fill=True,he
ight=10,aspect=2)
<seaborn.axisgrid.FacetGrid at 0x28bdfcdd100>
```



```
# Rugplot
# Plot marginal distributions by drawing ticks along the x and y axes.
# This function is intended to complement other plots by showing the location of individual observations in an unobtrusive way.
sns.kdeplot(data=tips,x='total_bill')
sns.rugplot(data=tips,x='total_bill')

# Rugplot

# AxesSubplot | Density | Densit
```



```
# Bivariate histogram
# A bivariate histogram bins the data within rectangles that tile the
plot
# and then shows the count of observations within each rectangle with
the fill color
sns.histplot(data=tips, x='total_bill', y='tip')

</pr
```


sns.displot(data=tips, x='total_bill', y='tip',kind='hist')
<seaborn.axisgrid.FacetGrid at 0x28be23a0a90>

sns.displot(data=tips, x='total_bill', y='tip',kind='kde')
<seaborn.axisgrid.FacetGrid at 0x28be22e3df0>

2. Matrix Plot

- Heatmap
- Clustermap

```
# Heatmap

# plot rectangular data as a color-encoded matrix
temp_df=gap.pivot(index='country',columns='year',values='lifeExp')

# axes level function
plt.figure(figsize=(15,15))
sns.heatmap(temp_df)

<AxesSubplot:xlabel='year', ylabel='country'>
```



```
# annot
temp_df=gap[gap['continent']=='Asia'].pivot(index='country',columns='y
ear',values='lifeExp')
plt.figure(figsize=(15,15))
sns.heatmap(temp_df,annot=True,linewidths=0.5,cmap='viridis')

<AxesSubplot:xlabel='year', ylabel='country'>
```

Afghanistan -	- 29	30	32	34	36	38	40	41	42	42	42	44
Bahrain -	51	54	57	60	63	66	69	71	73	74	75	76
Bangladesh -	- 37	39	41	43	45	47	50	53	56	59	62	64
Cambodia -	39	41	43	45	40	31	51	54	56	57	57	60
China -	44	51	45	58	63	64	66	67	69	70	72	73
Hong Kong, China	61	65	68	70	72	74	75	76	78	80	81	82
India -	37	40	44	47	51	54	57	59	60	62	63	65
Indonesia -	37	40	43	46	49	53	56	60	63	66	69	71
Iran -	45	47	49	52	55	58	60	63	66	68	69	71
Iraq -	45	48	51	54	57	60	62	65	59	59	57	60
Israel -	65	68	69	71	72	73	74	76	77	78	80	81
Japan -	63	66	69	71	73	75	77	79	79	81	82	83
Jordan -	43	46	48	52	57	61	64	66	68	70	71	73
Korea, Dem. Rep.	50	54	57	60	64	67	69	71	70	68	67	67
Korea, Rep.	47	53	55	58	63	65	67	70	72	75	77	79
Kuwait -	56	58	60	65	68	69	71	74	75	76	77	78
Lebanon -	56	59	62	64	65	66	67	68	69	70	71	72
Malaysia -	48	52	56	59	63	65	68	70	71	72	73	74
Mongolia -	42	45	48	51	54	55	57	60	61	64	65	67
Myanmar -	36	42	45	49	53	56	58	58	59	60	60	62
Nepal -	36	38	39	41	44	47	50	53	56	59	61	64
Oman -	38	40	43	47	52	57	63	68	71	72	74	76
Pakistan -	43	46	48	50	52	54	56	58	61	62	64	65
Philippines -	48	51	55	56	58	60	62	64	66	69	70	72
Saudi Arabia	40	43	46	50	54	59	63	66	69	71	72	73
Singapore -	60	63	66	68	70	71	72	74	76	77	79	80
Sri Lanka	58	61	62	64	65	66	69	69	70	70	71	72
Syria -	46	48	50	54	57	61	65	67	69	72	73	74
Taiwan -	58	62	65	68	69	71	72	73	74	75	77	78
Thailand -	51	54	56	58	60	62	65	66	67	68	69	71
Vietnam -	40	43	45	48	50	56	59	63	68	71	73	74
West Bank and Gaza	43	46	48	52	57	61	64	67	70	71	72	73
Yemen, Rep	33	34	35	37	40	44	49	53	56	58	60	63
	1952	1957	1962	1967	1972	19 ['] 77 ye	1982 ar	1987	1992	1997	2002	2007

```
# Clustermap
# Plot a matrix dataset as a hierarchically-clustered heatmap.
# This function requires scipy to be available.
iris=px.data.iris()
iris
     sepal_length sepal_width petal_length petal_width
species \
              5.1
                           3.5
                                         1.4
                                                      0.2
                                                              setosa
1
              4.9
                           3.0
                                         1.4
                                                      0.2
                                                              setosa
2
              4.7
                           3.2
                                         1.3
                                                      0.2
                                                              setosa
```

3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3 \	/irginica
146	6.3	2.5	5.0	1.9 \	/irginica
147	6.5	3.0	5.2	2.0	/irginica
148	6.2	3.4	5.4	2.3 \	virginica
149	5.9	3.0	5.1	1.8 \	/irginica
spec 0 1 2 3	cies_id 1 1 1 1 1				
145 146 147 148 149	3 3 3 3 3				
[150 rows	s x 6 columns]				
sns.clust	termap(iris.ilo	c[:,[0,1,2,3]	1])		

<seaborn.matrix.ClusterGrid at 0x28be42ead90>

Categorical Plots

Categorical Scatter Plot

- Stripplot
- Swarmplot

Categorical Distribution Plots

- Boxplot
- Violinplot

Categorical Estimate Plot -> for central tendency

- Barplot
- Pointplot
- Countplot

Figure level function -> catplot

```
# strip plot
# axes level
sns.stripplot(data=tips,x='day',y='total_bill')
<AxesSubplot:xlabel='day', ylabel='total_bill'>
```



```
sns.stripplot(data=tips,x='day',y='total_bill',jitter=False)
<AxesSubplot:xlabel='day', ylabel='total_bill'>
```



```
# using catplot
# figure level
sns.catplot(data=tips,x='day',y='total_bill',kind='strip')
<seaborn.axisgrid.FacetGrid at 0x28bde1856a0>
```


sns.catplot(data=tips,x='day',y='total_bill',kind='strip',jitter=0.2,h
ue='sex')

<seaborn.axisgrid.FacetGrid at 0x28be4681a00>

swarmplot
sns.catplot(data=tips,x='day',y='total_bill',kind='swarm',hue='sex')
<seaborn.axisgrid.FacetGrid at 0x28be4be5700>

Boxplot

A boxplot is a standardized way of displaying the distribution of data based on a five number summary ("minimum", first quartile [Q1], median, third quartile [Q3] and "maximum"). It can tell you about your outliers and what their values are. Boxplots can also tell you if your data is symmetrical, how tightly your data is grouped and if and how your data is skewed.

Box plot
sns.boxplot(data=tips,x='day',y='total_bill')
<AxesSubplot:xlabel='day', ylabel='total_bill'>

sns.catplot(data=tips,x='day',y='total_bill',kind='box',hue='sex')
<seaborn.axisgrid.FacetGrid at 0x28be4c60910>

single boxplot --> numerical col
sns.boxplot(data=tips,y='total_bill')
<AxesSubplot:ylabel='total_bill'>

Violinplot = (boxplot + kdeplot)

```
# violinplot
sns.violinplot(data=tips,x='day',y='total_bill',hue='sex',split=True)
<AxesSubplot:xlabel='day', ylabel='total_bill'>
```


bar plot
import numpy as np

sns.barplot(data=tips,x='sex',y='total_bill',hue='smoker',estimator=np
.std,errorbar=None)

<AxesSubplot:xlabel='sex', ylabel='total_bill'>

bar plot sns.barplot(data=tips,x='sex',y='total_bill',hue='smoker',estimator=np .median)

<AxesSubplot:xlabel='sex', ylabel='total_bill'>

When there are multiple observations in each category, it also uses bootstrapping to compute a confidence interval around the estimate, which is plotted using error bars

point bar
sns.pointplot(data=tips,x='sex',y='total_bill',hue='smoker',estimator=
np.std)

<AxesSubplot:xlabel='sex', ylabel='total_bill'>


```
sns.pointplot(data=tips, x='sex',
y='total_bill',hue='smoker',errorbar=None)
<AxesSubplot:xlabel='sex', ylabel='total_bill'>
```


count plot

A special case for the bar plot is when you want to show the number of observations in each category rather than computing a statistic for a second variable. This is similar to a histogram over a categorical, rather than quantitative, variable

```
# count plot
sns.countplot(data=tips,x='sex',hue='day')
<AxesSubplot:xlabel='sex', ylabel='count'>
```



```
# faceting using catplot
sns.catplot(data=tips,
x='sex',y='total_bill',col='smoker',kind='box',row='time')
<seaborn.axisgrid.FacetGrid at 0x28be6277730>
```


Regression Plots

- regplot
- lmplot

In the simplest invocation, both functions draw a scatterplot of two variables, x and y, and then fit the regression model y \sim x and plot the resulting regression line and a 95% confidence interval for that regression.

```
# axes level
# hue parameter is not available
sns.regplot(data=tips,x='total_bill',y='tip')
```

<AxesSubplot:xlabel='total_bill', ylabel='tip'>

figure level
sns.lmplot(data=tips,x='total_bill',y='tip',hue='sex')
<seaborn.axisgrid.FacetGrid at 0x28be693eb50>


```
# residplot
sns.residplot(data=tips,x='total_bill',y='tip')
<AxesSubplot:xlabel='total_bill', ylabel='tip'>
```


A second way to plot Facet plots -> FacetGrid

sns.catplot(data=tips,x='sex',y='total_bill',kind='violin',col='day',row='time')

<seaborn.axisgrid.FacetGrid at 0x28be694e520>

now work on facetgrid
g=sns.FacetGrid(data=tips,col='day',row='time',hue='smoker')

```
g.map(sns.scatterplot,'tip','total_bill')
g.add_legend()
<seaborn.axisgrid.FacetGrid at 0x28be6a29b80>
```


Plotting Pairwise Relationship (PairGrid Vs Pairplot)

sns.pairplot(iris,hue='species')

<seaborn.axisgrid.PairGrid at 0x28be7c1d400>

PariGrid g=sns.PairGrid(data=iris,hue='species') g.map(sns.scatterplot) <seaborn.axisgrid.PairGrid at 0x20a4b708460>


```
# map_dia --> map_offdia
g=sns.PairGrid(data=iris,hue='species')
g.map_diag(sns.histplot)
g.map_offdiag(sns.scatterplot)
<seaborn.axisgrid.PairGrid at 0x20a4e6ad670>
```


JointGrid Vs jointplot

sns.jointplot(data=tips,x='total_bill',y='tip')

<seaborn.axisgrid.JointGrid at 0x28be9b9c730>

sns.jointplot(data=tips,x='total_bill',y='tip',kind='kde')
<seaborn.axisgrid.JointGrid at 0x28be9ba35e0>

sns.jointplot(data=tips,x='total_bill',y='tip',kind='reg')
<seaborn.axisgrid.JointGrid at 0x28be9dc7d90>

g=sns.JointGrid(data=tips,x='total_bill',y='tip')
g.plot(sns.scatterplot,sns.boxplot)

<seaborn.axisgrid.JointGrid at 0x28be9df06a0>

Utitlity functions

```
# get dataset names
sns.get_dataset_names()
['anagrams',
    'anscombe',
    'attention',
    'brain_networks',
    'car_crashes',
    'diamonds',
    'dots',
    'dowjones',
    'exercise',
    'flights',
    'fmri',
```

```
'geyser',
 'glue',
 'healthexp',
 'iris',
 'mpg',
 'penguins',
 'planets',
 'seaice',
 'taxis',
 'tips',
 'titanic']
# load dataset
sns.load dataset('exercise')
    Unnamed: 0
                 id
                         diet
                               pulse
                                         time
                                                   kind
0
              0
                  1
                     low fat
                                  85
                                        1 min
                                                   rest
1
              1
                                  85
                  1
                     low fat
                                       15 min
                                                   rest
2
              2
                  1
                     low fat
                                  88
                                       30 min
                                                   rest
3
              3
                  2
                     low fat
                                  90
                                       1 min
                                                   rest
4
              4
                  2
                     low fat
                                  92
                                       15 min
                                                   rest
            . . .
85
             85
                 29
                      no fat
                                 135
                                       15 min
                                                running
                                       30 min
                 29
                      no fat
                                  130
86
             86
                                                running
87
             87
                 30
                       no fat
                                  99
                                        1 min
                                                running
88
             88
                 30
                                 111
                                       15 min
                       no fat
                                                running
89
                 30
             89
                       no fat
                                 150
                                       30 min
                                                running
[90 rows x 6 columns]
sns.load dataset('planets')
                method number
                                 orbital_period
                                                           distance
                                                                     year
                                                    mass
      Radial Velocity
0
                              1
                                      269.300000
                                                    7.10
                                                              77.40
                                                                     2006
      Radial Velocity
1
                              1
                                      874.774000
                                                    2.21
                                                              56.95
                                                                     2008
2
      Radial Velocity
                              1
                                      763.000000
                                                    2.60
                                                              19.84
                                                                     2011
3
      Radial Velocity
                              1
                                      326.030000
                                                   19.40
                                                             110.62
                                                                      2007
4
      Radial Velocity
                              1
                                      516.220000
                                                   10.50
                                                             119.47
                                                                      2009
1030
                              1
                                        3.941507
                                                             172.00
                                                                     2006
               Transit
                                                     NaN
                              1
1031
               Transit
                                                     NaN
                                                             148.00
                                                                     2007
                                        2.615864
1032
               Transit
                              1
                                        3.191524
                                                     NaN
                                                             174.00
                                                                      2007
1033
                              1
                                                             293.00
               Transit
                                        4.125083
                                                     NaN
                                                                      2008
1034
               Transit
                              1
                                        4.187757
                                                     NaN
                                                             260.00
                                                                     2008
[1035 rows x 6 columns]
```