

2012 —2013 学年第一学期

试题答案

本答案由 1517 周俊孚同学领仪光学习部编写,不一定是标准答案, 仅供参考,如有问题请立刻询问老师,谢谢

考试课程		复变函数与积分变换 A	
班	级	学 号	
姓	名	成 绩	

2017 年 1 月

- 一、选择题(每题3分,共24分)
- 1. 下列方程所表示的平面点集中,为有界区域的是(D)

(A)
$$-\pi < \arg z < \pi$$

(B)
$$|z+3|-|z-3|>4$$

(C)
$$1 < \text{Re } z < 2$$
, $\text{Im } z = 0$

(D)
$$\text{Re}(\frac{1}{z}) > \frac{1}{2}$$

解: 区域的定义见课本第八页, C选项不是开集, 不是区域

- 2. 假设点 z_0 是函数f(z)的奇点,则函数f(z)在点 z_0 处(B)
- (A) 不可导
- (B) 不解析
- (C) 不连续
- (D) 以上答案都不对

解: 奇点的定义见课本第17页

- 3. 设C 为椭圆 $\frac{x^2}{2} + y^2 = 2$ 正向,则积分 $\int_C \frac{1}{z i} dz = (A)$
 - (A) 2πi
- (B) π
- (C) 0
- (D) $-2\pi i$

- 4. 设c为正向圆周|z|=2,则 $\int_{C} \left| \frac{dz}{z} \right| = (B)$
 - (A) 2 **7**ii
- (B) 2π
- (C) -2 πi
- (D) -2π
- 5. 如果 z_0 为f(z)的m级零点,为g(z)的n级零点,n>m,则 z_0 为 $\frac{f(z)}{g(z)}$ 的(C)级极

点

- (A) n
- (B) m
- (C) n-m
- (D) m-n

- 6. Res[z cos $\frac{1}{z}$, z = 0] = (D)
 - (A) 1
- (B) $\frac{1}{2}$
- (C) **0**
- (D) $-\frac{1}{2}$

解:麦克劳林展开,负一次幂项系数

- 7. 设f(t)的傅立叶变换为 $F(\omega)$,则f(2t+4)的傅立叶变换为(B)
 - (A) $\frac{1}{2}e^{i\omega}F(\frac{\omega}{2})$

(B) $\frac{1}{2}e^{2i\omega}F(\frac{\omega}{2})$

(C) $\frac{1}{2}e^{-i\omega}F(\frac{\omega}{2})$

(D) $\frac{1}{2}e^{-2i\omega}F(\frac{\omega}{2})$

解: 利用相似性质和位移性质

8. 积分 $\int_0^{+\infty} e^{-3t} \sin 2t dt$ 的值为 (B)

(A) $\frac{3}{13}$ (B) $\frac{2}{13}$ (C) $\frac{3}{11}$

解: 拉氏变换定义,取 s=3

二、填空题(每题3分,共27分)

2. 设 $f(z) = \cos z + i \sin z$, 则 $f'(i) = ie^{-1}$

3.
$$\mathbf{\mathcal{J}}\mathbf{\mathcal{J}}(\mathbf{1}-\mathbf{i})^i = e^{(\frac{\pi}{4}+2k\pi)+i\ln\sqrt{2}}$$
 $k = 0,\pm 1,\pm 2\cdots$

4. 设函数
$$f(z) = \int_{|\zeta|=2} \frac{\cos \zeta}{\xi - z} d\zeta$$
 ,则 $f(i) = \pi i (e^{-1} + e)$, $f''(3) = 0$

5. 设 $u(x,y) = x^2 + 2xy - y^2$, 那 么 u(x,y) 的 共 轭 调 和 函 数 v(x,y) 为 $y^2 + 2xy - x^2 + c$ (c为一常数)

6. 级数… +
$$\frac{1}{3^n z^n}$$
… + $\frac{1}{3^2 z^2}$ + $\frac{1}{3z}$ + $1 + \frac{z}{2} + \frac{z^2}{2^2} + \dots + \frac{z^n}{2^n} + \dots$ 的收敛域是 $\frac{1}{3} < |z| < 2$

7. 函数
$$F(\omega) = \sin t_0 \omega$$
 的傅立叶逆变换为 $\frac{\delta(t+t_0) - \delta(t-t_0)}{2i}$

8. 函数
$$f(t) = \sin(t - \frac{\pi}{3})u(t - \frac{\pi}{3})$$
 的 Laplace 变换为 $\frac{1}{s^2 + 1}e^{-\frac{\pi}{3}s}$

9. 函数
$$F(s) = \frac{s}{s+3}$$
 的拉普拉斯逆变换为 $\delta(t) - 3e^{-3t}u(t)$

三、(12分) 计算积分 $\int_C \frac{\sin(z+i)}{z(z+i)^2} dz$, 其中 C 为不经过 0, -i 的简单正向闭曲线.

用柯西积分公式也可

四、(10 f) 将 $f(z) = \frac{1}{(z-i)(z-2i)}$ 在适当的圆环域内展成以i 为心的幂级数。

$$\frac{1}{100} = \frac{1}{2 - i} \times \frac{1}{(z - i) - i}$$

$$\frac{1}{100} = \frac{1}{2 - i} \times \frac{1}{(z - i)^{2}} \times \frac{1}{1 - \frac{1}{(z - i)^{2}}}$$

$$\frac{1}{100} = \frac{1}{2 - i} \times \frac{1}{1 - \frac{1}{(z - i)^{2}}}$$

$$\frac{1}{100} = \frac{1}{2 - i} \times \frac{1}{1 - \frac{1}{(z - i)^{2}}}$$

$$\frac{1}{100} = \frac{1}{2 - i} \times \frac{1}{1 - \frac{1}{(z - i)^{2}}}$$

$$\frac{1}{100} = \frac{1}{2 - i} \times \frac{1}{1 - \frac{1}{(z - i)^{2}}}$$

$$\frac{1}{100} = \frac{1}{2 - i} \times \frac{1}{1 - \frac{1}{(z - i)^{2}}}$$

$$\frac{1}{100} = \frac{1}{2 - i} \times \frac{1}{1 - \frac{1}{(z - i)^{2}}}$$

$$\frac{1}{100} = \frac{1}{100} \times \frac{1}{100} \times \frac{1}{100}$$

$$\frac{1}{100} = \frac{1}{10$$

六、(10 分) 利用拉普拉斯变换求微分方程 y'' - 2y' + y = 0 满足边界条件 y(0) = 0, y(l) = 4 的解,其中 l 为已知常数.

解:沒
$$L(y|t)$$
] = $Y(s)$
 $y'' - 2y' + y = 0$
 $= Res(\frac{y'|0)}{(s-1)^2}, 1$
 $= y'|0)te^{t}$
 $= y'|0}$
 $= y'|0}$
 $= \frac{4}{1e^{t}}$
 $= y'|0}$
 $= \frac{4}{1e^{t}}$

七(7 分)证明:若 f(z) 在区域 D 内解析,且 |f(z)| 在区域 D 内为常值,试证 f(z) 在区域 D 内为常值函数.

