CS 395T: Homework 5

Brady Zhou brady.zhou@utexas.edu

December 10, 2017

1 Linear Programming (Simplex Method)

We are trying to optimize the following

$$\min_{x} c^{\mathsf{T}} x \quad \text{subject to } Ax = b \tag{1}$$

The first method we use is the Simplex method on synthetic data generated by A = rand(100, 200), b = rand(100), and c = rand(200). The objective was modified in a way such that x would have a known basic feasible solution.

Figure 1: Simplex method.

The dotted red line is the solution from a library SciPy.

2 Linear Programming (Interior Point Method)

Figure 2: Interior point method.

The graph displayed is the first 100 of 1000 iterations. The interior point method initial solution does not start off as a basic feasible solution but eventually converges to a feasible point, and the same objective value as the Simplex method.

3 Matrix Approximation

We are trying to approximate a symmetric matrix $A \in \mathbb{R}^{n \times n}$, where $A = U \Sigma U^{\intercal}$ with a matrix $X = U B U^{\intercal} \succeq 0$.

$$\begin{split} \min_{B} ||UBU^\intercal - U\Sigma U^\intercal||_F^2 &= \min_{B\succeq 0} ||B - \Sigma||_F^2 \\ &= \min_{B\succeq 0} Tr(\Sigma^\intercal \Sigma - 2\Sigma^\intercal B + B^\intercal B) \\ &\cong \min_{B\succeq 0} -2Tr(\Sigma^\intercal B) + Tr(B^\intercal B) \end{split}$$

Taking the derivative with respect to b_{ij} , where $i \neq j$, we have the following

$$\frac{\partial}{\partial b_{ij}} - 2Tr(\Sigma^{\mathsf{T}}B) + Tr(B^{\mathsf{T}}B) = 2b_{ij}$$
$$= 0$$

And taking the derivative with respect to b_{ij} , where i = j, we have

$$\frac{\partial}{\partial b_{ii}} - 2Tr(\Sigma^{\mathsf{T}}B) + Tr(B^{\mathsf{T}}B) = -2\sigma_i + 2b_{ii}$$
$$= 0$$

These two results give us that $b_{ij} = 0$ if $i \neq j$, and $b_{ii} = \sigma_i$, however, to satisfy the constraint that $B \succeq 0$, we must enforce the diagonals are all non-negative, so we clip $b_{ii} \geq 0$. This gives us our result that $X = Umax(\Sigma, 0)U^{\intercal}$.

4 Matrix Approximation (cont.)

Given a matrix $A \in \mathbb{R}^{m \times n}$, we are looking for an r rank approximation. In this proof we assume that all σ_i are unique. First, we will solve the case where r = 1. Let $\alpha \in \mathbb{R}^m$, $\beta \in \mathbb{R}^n$.

$$\begin{split} \min_{\alpha,\beta} ||U\Sigma V^\intercal - U\alpha\beta^\intercal V^\intercal||_F^2 &= \min_{\alpha,\beta} ||\Sigma - \alpha\beta||_F^2 \\ &= \min_{\alpha,\beta} Tr(\Sigma^\intercal \Sigma - 2\Sigma\alpha\beta^\intercal + \beta\alpha^\intercal \alpha\beta^\intercal) \\ & \stackrel{\cong}{=} \min_{\alpha,\beta} -2Tr(\Sigma\alpha\beta^\intercal) + Tr(\beta\alpha^\intercal \alpha\beta^\intercal)) \\ &= \min_{\alpha,\beta} -2\beta^\intercal \Sigma^\intercal \alpha + ||\alpha||^2 ||\beta||^2 \end{split}$$

Taking derivatives with respect to α and β ,

$$\begin{split} \frac{\partial}{\partial \alpha} - 2\beta^{\mathsf{T}} \Sigma^{\mathsf{T}} \alpha + ||\alpha||^2 ||\beta||^2 &= -2\Sigma \beta + 2||\beta||^2 \alpha \\ 0 &= -2\Sigma \beta + 2||\beta||^2 \alpha \\ \alpha &= \frac{1}{||\beta||^2} \Sigma \beta \end{split}$$

$$\begin{split} \frac{\partial}{\partial \beta} - 2\beta^{\mathsf{T}} \Sigma^{\mathsf{T}} \alpha + ||\alpha||^2 ||\beta||^2 &= -2 \Sigma^{\mathsf{T}} \alpha + 2||\alpha||^2 \beta \\ 0 &= -2 \Sigma^{\mathsf{T}} \alpha + 2||\alpha||^2 \beta \\ \beta &= \frac{1}{||\alpha||^2} \Sigma^{\mathsf{T}} \alpha \end{split}$$

So, if $\beta \neq 0$, we have

$$\begin{split} \alpha^{\mathsf{T}}\alpha &= \frac{1}{||\beta||^4}\beta^{\mathsf{T}}\Sigma^{\mathsf{T}}\Sigma\beta\\ \beta &= \frac{||\beta||^2}{\beta^{\mathsf{T}}\Sigma^{\mathsf{T}}\Sigma\beta}\Sigma^{\mathsf{T}}\Sigma\beta\\ \beta\beta^{\mathsf{T}}\Sigma^{\mathsf{T}}\Sigma\beta &= ||\beta||^2\Sigma^{\mathsf{T}}\Sigma\beta\\ (I - \hat{\beta}\hat{\beta}^{\mathsf{T}})\Sigma^{\mathsf{T}}\Sigma\beta &= 0 \end{split}$$

This implies that, for some scalar c, $\Sigma^{\intercal}\Sigma\beta=c\beta$. If $\sigma_i\neq\sigma_j$, for all $i\neq j$, then β is one-sparse. Similarly, this holds for α . Now we seek to minimize the original objective function, and it is clear that $\alpha\beta^{\intercal}=\Sigma_1$ is optimal since we know $\alpha\beta^{\intercal}$ has at most 1 non-zero entry.

Back to the original question, now we seek estimate a rank r matrix, that is, $\alpha \in \mathbb{R}^{m \times r}$, and $\beta \in \mathbb{R}^{n \times r}$, where $\alpha_i \perp \alpha_j$, and $\beta_i \perp \beta_j$, and $||\alpha_i|| = ||\beta_i|| = 1$.

$$\begin{split} \min_{\alpha,\beta} ||U\Sigma V^\intercal - U\alpha\beta^\intercal V^\intercal||_F^2 &= \min_{\alpha,\beta} ||\Sigma - \alpha\beta^\intercal||_F^2 \\ &= \min_{\alpha,\beta} tr(\Sigma^\intercal \Sigma - 2\Sigma^\intercal \alpha\beta^\intercal + \beta\alpha^\intercal \alpha\beta^\intercal) \\ &\cong \min_{\alpha,\beta} -2Tr(\Sigma^\intercal \alpha\beta^\intercal) + Tr(\beta\alpha^\intercal \alpha\beta^\intercal) \\ &= \min_{\alpha,\beta} -2\sum_{i=1}^r \beta_i^\intercal \Sigma \alpha_i + \sum_{i=1}^r \alpha_i^\intercal \alpha_i \beta_i^\intercal \beta_i \\ &= \min_{\alpha,\beta} \sum_{i=1}^r -2\beta_i^\intercal \Sigma^\intercal \alpha_i + \alpha_i^\intercal \alpha_i \beta_i^\intercal \beta_i \end{split}$$

So we have reduced this problem into the rank 1 case, given all the σ_i are unique. We have to keep in mind that this problem is constrained to have each vector be orthogonal, but choosing the α_i , β_i to be one-sparse in different dimensions easily satisfies this constraint.