

АКЦИОНЕРНОЕ ОБЩЕСТВО «АНТАРКТИС» (АО «АНТАРКТИС»)

ИНН 7733405995 КПП 773301001 ОГРН 1237700180629 12536, Москва г., Лодочная ул, д 5, корпус 1, пом. 10/4, ком. 33,34,35

тел.: +7 (495) 121-70-47

e-mail: info@antarctis.ru, www.antarctis.ru

Подбор	оборул	ования	лля	органи	изании.
ПОДООР	ОООРУД	10 Barrinin	47171	opiaiii	ізациій.

На объекте:

Контактное лицо:

Номер телефона контактного лица:

Электронная почта контактного лица:

Местоположение ЦОДа: Площадь ЦОДа: Тип здания: Количество этажей в ЦОДе: Резервация систем охлаждения: Нагрузка на одну стойку: Утилизация тепла: Назначение ЦОДа: Размещение системы охлаждения: Проектная IT мощность ЦОД: Объем теплопритоков: Пиковая температура наружного воздуха летом: Проектная пиковая температура наружного воздуха летом: Проектная температура холодного коридора: Проектная температура горячего коридора: Температуры воды на входе теплообменника: Температуры воды на выходе теплообменника: Наличие системы фрикулинга: Общий пленум холодного коридора: Общий пленум горячего коридора:

Комментарии:

Протокол сетевого взаимодействия:

ХОЛОДИЛЬНАЯ УСТАНОВКА:

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

Компрессор:				
Холодопроизводительность при Твых воды = +10/15°C, Toc = +35°C на R134A	кВт			
Количество фреоновых контуров охлаждения	шт.			
Ступени холодопроизводительности	%			
Потребляемый ток компрессора	А			
Потребляемая мощность компрессора	кВт			
Коэффициент EER (Energy Efficiency Ratio)				
Количество компрессоров	шт.			
Водяной контур испарителя:				
Хладоноситель	тип			
Температура на на выходе/входе	гр.С			
Объём теплообменника	Л.			
Расход воды	л/с			
Патрубки водяного контура	дюйм			
Потера давления в теплообменнике	кПа			
Водяной контур конденсатора:				
Хладоноситель	тип			
Температура на на выходе/входе	гр.С			
Объём теплообменника	л.			
Расход воды	л/с			
Патрубки водяного контура	дюйм			
Потера давления в теплообменнике	кПа			

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

Дополнительные характеристики:				
Питание	V/Ph/Hz			
Максимальный рабочий ток	А			
Максимальный пусковой ток компрессоров	А			
Потребляемая мощность чиллера	кВт			
Габариты установки:				
Длина	MM.			
Ширина	MM.			
Высота	MM.			
Macca	кг.			
Акустические характеристики:				
Уровень звукового давления (1м) со строны всасывания	дБ(А)			

Холодильная установка выполнена в виде блока и представляет собой металлическую раму с установленным на ней оборудованием, соединенным трубопроводами и оснащенным необходимой автоматикой и арматурой. В чиллерах используются два винтовых компрессора с трёхфазным электродвигателем и встроенным маслоотделителем, которые оснащены: комплексной встроенной защитой обмоток электродвигателя от перегрева, бесступенчатым регулированием производительности 25–100%, подогревателем картера, датчиком уровня масла, обратным клапаном и запорным вентилем на нагнетании, системой впрыска парожидкостной смеси в область сжатия и всасывания для охлаждения компрессора.

Испаритель представляет собой кожухотрубный теплообменник со встроенным дистрибьютором.

Имеет два холодильных контура и один водяной контур. Испаритель тепло-пароизолирован. Конденсатор представляет собой кожухотрубный теплообменник. Щит управления расположен в отдельном шкафу, установленном на корпусе, и включает в себя: вводной выключатель, реле контроля последовательности и наличия фаз, программируемый контроллер, выносную панель управления с экраном, модули расширения контроллера, устройства защиты двигателей компрессоров от перегрузки по току, цепь защиты электродвигателей компрессоров по температуре обмоток, высокому давлению в холодильном контуре, трансформатор низковольтного питания цепей автоматики, магнитные пускатели.

Контроллер обеспечивает управление чиллером, а также индикацию всех параметров: заданной и фактической температуры теплоносителя, реального времени, отображение состояния чиллера (работа/авария/блокировка).

Контроллер производит регулирование производительности, ротацию компрессоров по наработке, ведение журнала аварийных состояний с датой и временем их возникновения, ведение журнала с наработкой компрессоров.

