NN Predicción Supervivencia

Martina García González

Problema

Solución

Linea Tiempo Proyecto

Actualidad

Oncólogos saturados: más de un tercio (38%) contempla dejar la profesión

Los sanitarios, saturados: "Hay médicos que han llegado a atender a 100 pacientes en 6 horas"

La excesiva carga de trabajo ahoga a la atención primaria

Red Neuronal

Problema Identificado: Desbalance Clase Objetivo

- Mayoría pacientes sobreviven, por lo que el modelo acierta mucho en esa clase, pero **falla en detectar a quienes no viven**
- Riesgo Clínico: Pacientes en riesgo que no son detectados

Objetivo Predicción: Evitar Falsas Esperanzas

Que un paciente en riesgo real no sea clasificado como "vive" por error.

- Optimizar Recall: detectar a quienes realmente no van a sobrevivir.
- Aunque esto implique una pequeña bajada en la precisión.

Vive: 88%

No vive: 12%

02

Técnicas Empleadas y Resultados

Solo 374 falsas supervivencias en 50.000 casos

Métricas:

Clase	Precision	Recall		
0	0.3	0.72		
1	0.95	0.74		

Linea Tiempo

Limpieza y Codificación v.categóricas

- Variables más correlacionadas con 'vive'
- Elimaron variables escasa relevancia

Manejo Outliers y Estandarización

- Conservar Outliers relacionados con pacientes de baja tasa supervivencia
- Estandar

Entrenamiento Modelo y Ajuste hiperámetros

- Estudio función activación y learning rate
- Arquitectura de la red

Evaluación Rendimiento Modelo

- Métricas como Recall y F1-Score
- AUC-ROC engañosas clases desbalanceadas

Propuesta

¿Qué ofrece la app?

Predicción Supervivencia

El médico ingresa los datos del paciente y la app muestra su **probabilidad de supervivencia**. Sugerencias Médicas Personalizadas

La app genera
recomendaciones médicas
automáticas y permite
enviarlas por email
directamente al paciente.

Base Datos Clínica Tiempo Real

Visualización intuitiva de pacientes con **código de color.** Facilita el seguimiento, detectan prioridades de un vistazo

Asignación Automática Citas

Asigna citas
automáticamente según
riesgo sin que el médico
deba programarlas
manualmente.

Demo Real: https://supervivenciamg.streamlit.app

Base datos tiempo Real

r						
	edad	actividad_fisica	obesidad	ingresos_mensuales	vive	probabilidad_supervivenc
	34	1	1	2618.820000	1	0.93913
	47	1	0	1541.450000	1	0.62747
	36	1	0	1307.430000	1	0.64240
	73	0	1	1672.980000	0	0.48474
	29	2	0	2395.960000	1	0.95517
ı						

Gráficos SHAP por Paciente

Resumen Clínico

Sugerencias para el paciente

- Derivar a oncología para seguimiento periódico.
- Valoración por neumología y pruebas de función respiratoria.

Medic App

"Menos carga, más precisión: la IA al servicio del médico."

Funcionalidades:

- Clasificación Paciente
- Automatización seguimiento clínico
- Sugerencias timpo real

¿Cómo funciona?

Grabación:

El médico graba un resumen con indicaciones al paciente (tratamiento, recomendaciones, fechas de seguimiento, etc.)

Procesamiento por IA (LLM):

- Se transcribe el audio a texto (Whisper)
- El texto se analiza para extraer información clave: diagnósticos, tratamiento, seguimiento.(GPT-4)
- Se generan automáticamente sugerencias clínicas al médico

Almacenamiento en MongoDB:

- Se guarda tanto el audio como el texto estructurado y anotado.
- Se vincula al historial del paciente.

Gestión automática de acciones:

- La app sugiere y agenda automáticamente próximas citas
- Avisos al paciente: Se envía un mensaje al paciente con los próximos pasos a seguir (medicación, citas, cuidados).

"Un micrófono clínico inteligente que convierte la voz del médico en conocimiento estructurado, sin escribir una sola línea."

Implementación Futura

Ingreso datos
Clínicos
El médico introduce la información del
paciente desde la app web.

Streamlit

Almacenamiento
Estructurado

Los datos se guardan en una base relacional y se actualiza el historial.

SQL

Azure Data
Factory(automatiz ar)

Predicción con IA

Lanza el modelo de IA para predecir supervivencia y generar recomendaciones

Azure Machine Learning

03

Visualización Médica

Médico ve panel pacientes actualizados con riesgo y sugerencia

Power BI

Streamlit

04

Mejoras:

01

Ampliar el dataset con más pacientes que no sobreviven.

02

Incluir más variables clínicas relevantes.

03

Implementar entrenamiento incremental (online learning).

Thank you! Gracias!

Soy Innovación Soy Maker Soy UAX

