DATASET: Online Retail

The transactions made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9, 2011, are all included in the transnational data set known as online retail. The company primarily offers one-of-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. Company Objective Using the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [2]: df=pd.read_csv(r"C:\Users\Welcome\Downloads\OnlineRetail.csv")

Out[2]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Coun
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Uni Kingd
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Uni Kingd
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Uni Kingd
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Uni [.] Kingd
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Uni [.] Kingd
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Frar
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Frar
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Frar
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12 - 2011 12:50	4.15	12680.0	Frar
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Frar
541909	rows × 8 cc	lumns						

In [3]: df.head()

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [4]: df.tail()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Coun
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fran
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fran
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fran
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fran
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fran
4								•

```
In [5]: df['InvoiceNo'].value_counts()
Out[5]: InvoiceNo
         573585
                    1114
         581219
                     749
         581492
                     731
         580729
                     721
         558475
                     705
         554023
                       1
         554022
                       1
         554021
                       1
         554020
                       1
                       1
         C558901
         Name: count, Length: 25900, dtype: int64
In [6]: |df['CustomerID'].value_counts()
Out[6]: CustomerID
         17841.0
                    7983
         14911.0
                    5903
         14096.0
                    5128
         12748.0
                    4642
         14606.0
                    2782
         15070.0
                       1
         15753.0
                       1
         17065.0
                       1
         16881.0
                       1
         16995.0
                       1
         Name: count, Length: 4372, dtype: int64
In [7]: df['Quantity'].value_counts()
Out[7]: Quantity
          1
                   148227
          2
                    81829
          12
                    61063
          6
                    40868
          4
                    38484
         -472
                        1
         -161
                        1
         -1206
                        1
         -272
                        1
         -80995
                        1
         Name: count, Length: 722, dtype: int64
```

```
In [8]: plt.scatter(df["CustomerID"],df["Quantity"])
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[8]: Text(0, 0.5, 'Quantity')

In [9]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

#	Column	Non-Nu	ll Count	Dtype				
0	InvoiceNo	541909	non-null	object				
1	StockCode	541909	non-null	object				
2	Description	540455	non-null	object				
3	Quantity	541909	non-null	int64				
4	InvoiceDate	541909	non-null	object				
5	UnitPrice	541909	non-null	float64				
6	CustomerID	406829	non-null	float64				
7	Country	541909	non-null	object				
dtype	es: float64(2)), int64	↓(1), objed	:t(5)				
memory usage: 33.1+ MB								

```
In [10]: df.isnull().sum()
Out[10]: InvoiceNo
                              0
         StockCode
                              0
         Description
                           1454
         Quantity
                              0
         InvoiceDate
                              0
         UnitPrice
                              0
         CustomerID
                         135080
         Country
                              0
         dtype: int64
In [11]: | df.fillna(method='ffill',inplace=True)
In [12]: df.isnull().sum()
Out[12]: InvoiceNo
         StockCode
                         0
         Description
                         0
         Quantity
                         0
         InvoiceDate
                         0
         UnitPrice
                         0
         CustomerID
                         0
         Country
                         0
         dtype: int64
In [13]:
         from sklearn.cluster import KMeans
         km=KMeans()
         km
Out[13]:
          ▼ KMeans
          KMeans()
         y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
In [15]:
         y predicted
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
         uppress the warning
           warnings.warn(
Out[15]: array([2, 2, 2, ..., 3, 3, 3])
```

In [16]: df["cluster"]=y_predicted
 df.head()

Out[16]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	clı
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	6	01-12 - 2010 08:26	3.39	17850.0	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4.0									

```
In [17]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
    plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
    plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[17]: Text(0, 0.5, 'Quantity')

Out[18]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	clı
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12 - 2010 08:26	3.39	17850.0	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4 6									

```
In [19]: scaler.fit(df[["CustomerID"]])
    df["CustomerID"]=scaler.transform(df[["CustomerID"]])
    df.head()
```

Out[19]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	clı
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12 - 2010 08:26	3.39	0.926443	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	

K-MeansClustering

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi
ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
uppress the warning
 warnings.warn(

```
Out[21]: array([1, 1, 1, ..., 2, 2, 2])
```

In [22]: df["New Cluster"]=y_predicted
 df.head()

Out[22]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	clı
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12 - 2010 08:26	3.39	0.926443	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4 6	_	_	_	_	_	_			

```
In [23]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
    plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
    plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
    plt.xlabel("CustomerID")
    plt.ylabel("Quantity")
```

Out[23]: Text(0, 0.5, 'Quantity')

Out[25]: Text(0, 0.5, 'Quantity')


```
In [26]: k_rng=range(1,10)
sse=[]
```

```
In [27]: for k in k rng:
          km=KMeans(n clusters=k)
          km.fit(df[["CustomerID","Quantity"]])
          sse.append(km.inertia )
         #km.inertia_ will give you the value of sum of square error
         print(sse)
         plt.plot(k rng,sse)
         plt.xlabel("K")
         plt.ylabel("Sum of Squared Error")
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to s
         uppress the warning
           warnings.warn(
         C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
         learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
         uppress the warning
```

warnings.warn(

[46374.84553398371, 11336.065305485055, 4918.441982482167, 2723.519105189564, 1695.05108323985, 1178.592336769782, 903.1481400923549, 684.3253053156769, 52 8.9243781260602]

Out[27]: Text(0, 0.5, 'Sum of Squared Error')

CONCLUSION

For the given dataset we use K-means Clustering and done the grouping based on the given data. In the above dataset we will take customer id and quantity based on that we make the clusters. When the K-value is 1 ow error rate is more and the K-value is high error rate is very high. So, finally we can Conclude the above dataset is bestfit for K-Means.

In []: