

Figure 6.1 Relative Location of Security Facilities in the TCP/IP Protocol Stack

Figure 6.1 illustrates this difference. One way to provide Web security is to use IP security (IPsec) (Figure 6.1a). The advantage of using IPsec is that it is transparent to end users and applications and provides a general-purpose solution. Furthermore, IPsec includes a filtering capability so that only selected traffic need incur the overhead of IPsec processing.

Another relatively general-purpose solution is to implement security just above TCP (Figure 6.1b). The foremost example of this approach is the Secure Sockets Layer (SSL) and the follow-on Internet standard known as Transport Layer Security (TLS). At this level, there are two implementation choices. For full generality, SSL (or TLS) could be provided as part of the underlying protocol suite and therefore be transparent to applications. Alternatively, TLS can be embedded in specific packages. For example, virtually all browsers come equipped with TLS, and most Web servers have implemented the protocol.

Application-specific security services are embedded within the particular application. Figure 6.1c shows examples of this architecture. The advantage of this approach is that the service can be tailored to the specific needs of a given application.

TRANSPORT LAYER SECURITY 6.2

One of the most widely used security services is Transport Layer Security (TSL); the current version is Version 1.2, defined in RFC 5246. TLS is an Internet standard that evolved from a commercial protocol known as Secure Sockets Layer (SSL). Although SSL implementations are still around, it has been deprecated by IETF and is disabled by most corporations offering TLS software. TLS is a generalpurpose service implemented as a set of protocols that rely on TCP. At this level, there are two implementation choices. For full generality, TLS could be provided as part of the underlying protocol suite and therefore be transparent to applications. Alternatively, TLS can be embedded in specific packages. For example, most browsers come equipped with TLS, and most Web servers have implemented the protocol.

TLS Architecture

TLS is designed to make use of TCP to provide a reliable end-to-end secure service. TLS is not a single protocol but rather two layers of protocols, as illustrated in Figure 6.2.

Figure 6.2 TLS Protocol Stack

The TLS Record Protocol provides basic security services to various higherlayer protocols. In particular, the **Hypertext Transfer Protocol (HTTP)**, which provides the transfer service for Web client/server interaction, can operate on top of TLS. Three higher-layer protocols are defined as part of TLS: the Handshake Protocol; the Change Cipher Spec Protocol; and the Alert Protocol. These TLSspecific protocols are used in the management of TLS exchanges and are examined later in this section. A fourth protocol, the Heartbeat Protocol, is defined in a separate RFC and is also discussed subsequently in this section.

Two important TLS concepts are the TLS session and the TLS connection, which are defined in the specification as follows:

- **Connection:** A connection is a transport (in the OSI layering model definition) that provides a suitable type of service. For TLS, such connections are peer-topeer relationships. The connections are transient. Every connection is associated with one session.
- Session: A TLS session is an association between a client and a server. Sessions are created by the Handshake Protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection.

Between any pair of parties (applications such as HTTP on client and server), there may be multiple secure connections. In theory, there may also be multiple simultaneous sessions between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is established, there is a current operating state for both read and write (i.e., receive and send). In addition, during the Handshake Protocol, pending read and write states are created. Upon successful conclusion of the Handshake Protocol, the pending states become the current states.

A session state is defined by the following parameters:

- **Session identifier:** An arbitrary byte sequence chosen by the server to identify an active or resumable session state.
- Peer certificate: An X509.v3 certificate of the peer. This element of the state may be null.

- **Compression method:** The algorithm used to compress data prior to encryption.
- Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES, etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC calculation. It also defines cryptographic attributes such as the hash_size.
- **Master secret:** 48-byte secret shared between the client and server.
- **Is resumable:** A flag indicating whether the session can be used to initiate new connections.

A connection state is defined by the following parameters:

- **Server and client random:** Byte sequences that are chosen by the server and client for each connection.
- Server write MAC secret: The secret key used in MAC operations on data sent by the server.
- Client write MAC secret: The symmetric key used in MAC operations on data sent by the client.
- Server write key: The symmetric encryption key for data encrypted by the server and decrypted by the client.
- Client write key: The symmetric encryption key for data encrypted by the client and decrypted by the server.
- Initialization vectors: When a block cipher in CBC mode is used, an initialization vector (IV) is maintained for each key. This field is first initialized by the TLS Handshake Protocol. Thereafter, the final ciphertext block from each record is preserved for use as the IV with the following record.
- Sequence numbers: Each party maintains separate sequence numbers for transmitted and received messages for each connection. When a party sends or receives a "change cipher spec message," the appropriate sequence number is set to zero. Sequence numbers may not exceed $2^{64} - 1$.

TLS Record Protocol

The TLS Record Protocol provides two services for TLS connections:

- Confidentiality: The Handshake Protocol defines a shared secret key that is used for conventional encryption of TLS payloads.
- Message Integrity: The Handshake Protocol also defines a shared secret key that is used to form a message authentication code (MAC).

Figure 6.3 indicates the overall operation of the TLS Record Protocol. The Record Protocol takes an application message to be transmitted, fragments the data into manageable blocks, optionally compresses the data, applies a MAC, encrypts, adds a header, and transmits the resulting unit in a TCP segment. Received data are decrypted, verified, decompressed, and reassembled before being delivered to higher-level users.

The first step is **fragmentation**. Each upper-layer message is fragmented into blocks of 2¹⁴ bytes (16,384 bytes) or less. Next, **compression** is optionally applied. Compression must be lossless and may not increase the content length by more than

Figure 6.3 TLS Record Protocol Operation

1024 bytes. In TLSv2, no compression algorithm is specified, so the default compression algorithm is null.

The next step in processing is to compute a message authentication code over the compressed data. TLS makes use of the HMAC algorithm defined in RFC 2104. Recall from Chapter 3 that HMAC is defined as

$$\mathrm{HMAC}_K(M) = \mathrm{H}[(K^+ \oplus \mathrm{opad}) \parallel \mathrm{H}[(K^+ \oplus \mathrm{ipad}) \parallel M]]$$

where

Н = embedded hash function (for TLS, either MD5 or SHA-1)

M= message input to HMAC

 K^{+} = secret key padded with zeros on the left so that the result is equal to the block length of the hash code (for MD5 and SHA-1, block length = 512 bits)

ipad = 00110110 (36 in hexadecimal) repeated 64 times (512 bits)

opad = 01011100 (5C in hexadecimal) repeated 64 times (512 bits)

For TLS, the MAC calculation encompasses the fields indicated in the following expression:

HMAC_hash(MAC_write_secret, seq_num || TLSCompressed.type || TLSCompressed.version || TLSCompressed.length || TLSCompressed.fragment)

The MAC calculation covers all of the fields XXX, plus the field TLSCompressed.version, which is the version of the protocol being employed.

Next, the compressed message plus the MAC are **encrypted** using symmetric encryption. Encryption may not increase the content length by more than 1024 bytes,

¹Of course, one hopes that compression shrinks rather than expands the data. However, for very short blocks, it is possible, because of formatting conventions, that the compression algorithm will actually provide output that is longer than the input.

so that the total length may not exceed $2^{14} + 2048$. The following encryption algorithms are permitted:

Block Cipher		Stream Cipher	
Algorithm	Key Size	Algorithm	Key Size
AES 3DES	128, 256 168	RC4-128	128

For stream encryption, the compressed message plus the MAC are encrypted. Note that the MAC is computed before encryption takes place and that the MAC is then encrypted along with the plaintext or compressed plaintext.

For block encryption, padding may be added after the MAC prior to encryption. The padding is in the form of a number of padding bytes followed by a one-byte indication of the length of the padding. The padding can be any amount that results in a total that is a multiple of the cipher's block length, up to a maximum of 255 bytes. For example, if the cipher block length is 16 bytes (e.g., AES) and if the plaintext (or compressed text if compression is used) plus MAC plus padding length byte is 79 bytes long, then the padding length (in bytes) can be 1, 17, 33, and so on, up to 161. At a padding length of 161, the total length is 79 + 161 = 240. A variable padding length may be used to frustrate attacks based on an analysis of the lengths of exchanged messages.

The final step of TLS Record Protocol processing is to prepend a header consisting of the following fields:

- Content Type (8 bits): The higher-layer protocol used to process the enclosed fragment.
- Major Version (8 bits): Indicates major version of TLS in use. For TLSv2, the value is 3.
- Minor Version (8 bits): Indicates minor version in use. For TLSv2, the value is 1.
- Compressed Length (16 bits): The length in bytes of the plaintext fragment (or compressed fragment if compression is used). The maximum value is $2^{14} + 2048$.

The content types that have been defined are change_cipher_spec, alert, handshake, and application_data. The first three are the TLSspecific protocols, discussed next. Note that no distinction is made among the various applications (e.g., HTTP) that might use TLS; the content of the data created by such applications is opaque to TLS.

Figure 6.4 illustrates the TLS record format.

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the four TLS-specific protocols that use the TLS Record Protocol, and it is the simplest. This protocol consists of a single message (Figure 6.5a), which consists of a single byte with the value 1. The sole purpose of this message is to cause the pending state to be copied into the current state, which updates the cipher suite to be used on this connection.

Figure 6.4 TLS Record Format

Alert Protocol

The Alert Protocol is used to convey TLS-related alerts to the peer entity. As with other applications that use TLS, alert messages are compressed and encrypted, as specified by the current state.

Each message in this protocol consists of two bytes (Figure 6.5b). The first byte takes the value warning (1) or fatal (2) to convey the severity of the message. If the level is fatal, TLS immediately terminates the connection. Other connections on the same session may continue, but no new connections on this session may be established. The second byte contains a code that indicates the specific alert. The following alerts are always fatal:

- **unexpected message:** An inappropriate message was received.
- **bad record mac:** An incorrect MAC was received.
- **decompression failure:** The decompression function received improper input (e.g., unable to decompress or decompress to greater than maximum allowable length).
- **handshake failure:** Sender was unable to negotiate an acceptable set of security parameters given the options available.
- illegal_parameter: A field in a handshake message was out of range or inconsistent with other fields.

Figure 6.5 TLS Record Protocol Payload

- **decryption_failed:** A ciphertext decrypted in an invalid way; either it was not an even multiple of the block length or its padding values, when checked, were incorrect.
- record_overflow: A TLS record was received with a payload (ciphertext) whose length exceeds $2^{14} + 2048$ bytes, or the ciphertext decrypted to a length of greater than $2^{14} + 1024$ bytes.
- unknown_ca: A valid certificate chain or partial chain was received, but the certificate was not accepted because the CA certificate could not be located or could not be matched with a known, trusted CA.
- access denied: A valid certificate was received, but when access control was applied, the sender decided not to proceed with the negotiation.
- **decode_error:** A message could not be decoded, because either a field was out of its specified range or the length of the message was incorrect.
- **export_restriction:** A negotiation not in compliance with export restrictions on key length was detected.
- **protocol_version:** The protocol version the client attempted to negotiate is recognized but not supported.
- **insufficient_security:** Returned instead of handshake_failure when a negotiation has failed specifically because the server requires ciphers more secure than those supported by the client.
- internal_error: An internal error unrelated to the peer or the correctness of the protocol makes it impossible to continue.

The remaining alerts are the following.

- **close_notify:** Notifies the recipient that the sender will not send any more messages on this connection. Each party is required to send a close_notify alert before closing the write side of a connection.
- bad_certificate: A received certificate was corrupt (e.g., contained a signature that did not verify).
- **unsupported_certificate:** The type of the received certificate is not supported.
- **certificate_revoked:** A certificate has been revoked by its signer.
- **certificate_expired:** A certificate has expired.
- certificate_unknown: Some other unspecified issue arose in processing the certificate, rendering it unacceptable.
- decrypt_error: A handshake cryptographic operation failed, including being unable to verify a signature, decrypt a key exchange, or validate a finished message.
- user_canceled: This handshake is being canceled for some reason unrelated to a protocol failure.
- **no_renegotiation:** Sent by a client in response to a hello request or by the server in response to a client hello after initial handshaking. Either of these messages would normally result in renegotiation, but this alert indicates that the sender is not able to renegotiate. This message is always a warning.

Handshake Protocol

The most complex part of TLS is the **Handshake Protocol**. This protocol allows the server and client to authenticate each other and to negotiate an encryption and MAC algorithm and cryptographic keys to be used to protect data sent in a TLS record. The Handshake Protocol is used before any application data is transmitted.

The Handshake Protocol consists of a series of messages exchanged by client and server. All of these have the format shown in Figure 6.5c. Each message has three fields:

- **Type (1 byte):** Indicates one of 10 messages. Table 6.2 lists the defined message
- **Length (3 bytes):** The length of the message in bytes.
- **Content** (≥ 0 bytes): The parameters associated with this message; these are listed in Table 6.2.

Figure 6.6 shows the initial exchange needed to establish a logical connection between client and server. The exchange can be viewed as having four phases.

PHASE 1. ESTABLISH SECURITY CAPABILITIES Phase 1 initiates a logical connection and establishes the security capabilities that will be associated with it. The exchange is initiated by the client, which sends a **client_hello message** with the following parameters:

- **Version:** The highest TLS version understood by the client.
- **Random:** A client-generated random structure consisting of a 32-bit timestamp and 28 bytes generated by a secure random number generator. These values serve as nonces and are used during key exchange to prevent replay attacks.
- **Session ID:** A variable-length session identifier. A nonzero value indicates that the client wishes to update the parameters of an existing connection or to create a new connection on this session. A zero value indicates that the client wishes to establish a new connection on a new session

Table 6.2	TIS	Handshake	Protocol 1	Message Types
Table 0.2	11.0	Hanushake	FIOLOCOLI	VICSSARC IVIDES

Message Type	Parameters
hello_request	null
client_hello	version, random, session id, cipher suite, compression method
server_hello	version, random, session id, cipher suite, compression method
certificate	chain of X.509v3 certificates
server_key_exchange	parameters, signature
certificate_request	type, authorities
server_done	null
certificate_verify	signature
client_key_exchange	parameters, signature
finished	hash value

Figure 6.6 Handshake Protocol Action

- **CipherSuite:** This is a list that contains the combinations of cryptographic algorithms supported by the client, in decreasing order of preference. Each element of the list (each cipher suite) defines both a key exchange algorithm and a CipherSpec; these are discussed subsequently.
- **Compression Method:** This is a list of the compression methods the client supports.

After sending the client_hello message, the client waits for the server_ hello message, which contains the same parameters as the client_hello message. For the server_hello message, the following conventions apply. The Version field contains the lowest of the version suggested by the client and the highest supported by the server. The Random field is generated by the server and is independent of the client's Random field. If the SessionID field of the client was nonzero, the same value is used by the server; otherwise the server's SessionID field contains the value for a new session. The CipherSuite field contains the single cipher suite selected by the server from those proposed by the client. The Compression field contains the compression method selected by the server from those proposed by the client.

The first element of the Ciphersuite parameter is the key exchange method (i.e., the means by which the cryptographic keys for conventional encryption and MAC are exchanged). The following key exchange methods are supported.

- **RSA:** The secret key is encrypted with the receiver's RSA public key. A publickey certificate for the receiver's key must be made available.
- **Fixed Diffie–Hellman:** This is a Diffie–Hellman key exchange in which the server's certificate contains the Diffie-Hellman public parameters signed by the certificate authority (CA). That is, the public-key certificate contains the Diffie-Hellman public-key parameters. The client provides its Diffie-Hellman public-key parameters either in a certificate, if client authentication is required, or in a key exchange message. This method results in a fixed secret key between two peers based on the Diffie-Hellman calculation using the fixed public keys.
- **Ephemeral Diffie-Hellman:** This technique is used to create ephemeral (temporary, one-time) secret keys. In this case, the Diffie-Hellman public keys are exchanged and signed using the sender's private RSA or DSS key. The receiver can use the corresponding public key to verify the signature. Certificates are used to authenticate the public keys. This would appear to be the most secure of the three Diffie-Hellman options because it results in a temporary, authenticated key.
- Anonymous Diffie-Hellman: The base Diffie-Hellman algorithm is used with no authentication. That is, each side sends its public Diffie-Hellman parameters to the other with no authentication. This approach is vulnerable to man-in-the-middle attacks, in which the attacker conducts anonymous Diffie-Hellman with both parties.

Following the definition of a key exchange method is the CipherSpec, which includes the following fields:

- CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES, 3DES, DES40, or IDEA
- **MACAlgorithm:** MD5 or SHA-1
- **CipherType:** Stream or Block
- **IsExportable:** True or False
- HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes
- **Key Material:** A sequence of bytes that contain data used in generating the write keys
- IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC) encryption