3 B Mains

ai24btech11020 - Rishika Kotha

24)	The	equation	$e^{\sin x}$ –	$e^{-\sin x}$	- 4 =	0	has:	(2012)
-----	-----	----------	----------------	---------------	--------------	---	------	--------

- a. infinite number of real roots
- b. no real roots
- c. exactly one real root
- d. exactly four roots
- 25) The real number k for which the equation, $2x^3 + 3x + 4 = 0$ has two distinct real roots in [0, 1](JEEM2013)
 - a. lies between 1 and 2
 - b. lies between 2 and 3
 - c. lies between -1 and 0
 - d. does not exist.
- 26) The number of values of k, for which the system of equations: (JEEM2013)(k+1)x + 8y = 4kkx + (k + 3)y = 3k - 1has no solution, is
 - a. infinite
- c. 2

b. 1

- d. 3
- 27) If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a,b,c \in \mathbb{R}$, have a common root, then a:b:c is (JEEM2013)
 - a. 1:2:3
- c. 1:3:2
- b. 3:2:1
- d. 3:1:2
- 28) If $a \in \mathbb{R}$ and the equation $-3(x-[x])^2 +$ $2(x-[x]) + a^2 = 0$ (where [x]] denotes the greatest integer $\leq x$) has no integral solution, then all possible values of a lie in the interval: (JEEM2014)
 - a. (-2, -1)
- c. $(-1,0) \cup 0,1$
- b. $(-\infty, 2) \cup (2, \infty)$
 - d. (1,2)
- 29) Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p,q,r are in A.P.

and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value of $|\alpha - \beta|$ is (JEEM2014)

- a. $\frac{\sqrt{34}}{9}$ b. $\frac{2\sqrt{13}}{9}$

- c. $\frac{\sqrt{61}}{9}$ d. $\frac{2\sqrt{17}}{9}$
- 30) Let α and β be the roots of the equation $x^2 - 6x - 2 = 0$. If $a_n = \alpha^n - \beta^n$, for $n \ge 1$, then the value of $\frac{a_{10}-2a_8}{2a_9}$ is equal to: (*JEEM*2015)
 - a. 3
- b. -3
- c. 6
- d. -6
- 31) The sum of all real values of x satisfying the equation $(x^2 - 5x + 5)^{x^2 + 4x + 60} = 1$ is : (JEEM2016)
 - a. 6
- b. 5 c. 3
- d. -4
- 32) If $\alpha, \beta \in C$ are the distinct roots, of the equation $x^2 - x + 1 = 0$, then $\alpha^{101} + \beta^{107}$ is equal to: (JEEM2018)
 - a. 0
- b. 1
- c. 2
- d. -1
- 33) Let $p,q \in \mathbb{R}$. If $2 \sqrt{3}$ is a root of the quadratic equation, $x^2 + px + q = 0$,then: (JEEM2019 - 9April(M))
 - a. $p^2 4q + 12 = 0$ c. $q^2 + 4p + 14 = 0$ b. $q^2 4p 16 = 0$ d. $p^2 4q 12 = 0$