2.5D Visual Sound

Dristanta Das • 24.06.2021

Objective:

What is Mono And Stereo audio!

Mono

Binaural

How this helps
us to get the
spatial
knowledge of
the audio!

Key Idea

The key idea is that the visual frames reveals important spatial cues.

Suggestion:

The Model Diagram

Result 1

Some Of Test Results:-

Input Audio with Video

Some Of Test Results:-

Result 1

Predicted

Some Of Test Results:-

Result 2

Input audio with Video

Some Of Test Results:-

Result 2

Predicted

How the previous audio "looks" like!

How the previous audio "looks" like!

Training and Validation loss

Used Metrics for Accuracy Generation

STFT Distance

$$\mathcal{D}_{\{\text{STFT}\}} = ||\mathbf{X}^L - \tilde{\mathbf{X}}^L||_2 + ||\mathbf{X}^R - \tilde{\mathbf{X}}^R||_2.$$

Envelope Distance

Let E[x(t)] denote the envelope of signal x(t). The envelope distance is defined as:

$$\mathcal{D}_{\{\mathrm{ENV}\}} = ||E[x^L(t)] - E[\tilde{x}^L(t)||_2 + ||E[x^R(t)] - E[\tilde{x}^R(t)||_2.$$

Accuracy

TABLE I

QUANTITATIVE RESULT OF BINAURAL AUDIO PREDICTION

	FAIR-PLAY	
Methods	STFT	ENV
Audio-Only	0.966	0.141
Flipped-Visual	1.145	0.149
Mono-Mono	1.155	0.153
MONO2BINAURAL(Original Paper)	0.836	0.132
MONO2BINAURAL(My training)	1.020	0.146

Thanking All