### Cryptology Lecture 2

### Stream Ciphers

Joseph Phillips Copyright (c) 2020 Last modified 2020 April 6

## **Topics**

- Overview
- Block vs. Stream
  Ciphers
- XOR
- 3 Attempts at good streams
- Trivium

 Reading: "Chapter 2: Stream Ciphers" of Christof Paar and Jan Pelzl "Understanding Cryptolography: A Textbook for Students and Practitioners"

#### Overview



### Block cipher



- Encrypt blocks of B bits at a time
- Examples:
  - DES (block size = 64 bits = 8 bytes)
  - AES (block size = 128 bits = 16 bytes)

### Stream Cipher



- Encrypt only **1** bit at a time
- Special case of Block cipher:
  - Blocksize B = 1
- Examples:
  - A5/1: part of GSM mobile phone standard for voice
  - RC4: some Internet traffic

### Block vs. Stream

- Block
  - More popular (esp. for Internet)
- Stream
  - More efficient (esp. in hardware)

#### Gilbert Sandford Vernam



- Invented stream ciphers in 1917
- Patented by Vernam at ATT in 1919
- Later enhanced by Captain Joseph Mauborgne of the U.S. Army's Signal Corps

# Stream Ciphers What happens inside?

- Let  $x_i$ ,  $y_i$ ,  $s_i \in \{0, 1\}$
- Encrypt:  $y_i = e_{si}() = x_i + s_i \mod 2$
- Decrypt:  $x_i = d_{si}() = y_i + s_i \mod 2$
- NOTE:
  - Encrypt and decrypt with same function!

### Curious student



"So, what is that function?"

### XOR!

| X | S | x + s mod 2   | x XOR s |
|---|---|---------------|---------|
| 0 | 0 | 0+0 mod 2 = 0 | 0       |
| 0 | 1 | 0+1 mod 2 = 1 | 1       |
| 1 | 0 | 1+0 mod 2 = 1 | 1       |
| 1 | 1 | 1+1 mod 2 = 0 | 0       |

### Intuition

- Unlike:
  - and, or, nand, nor

- XOR is
  - 0 half the time
  - 1 half the time

| X | У | x and y | x or y | x nand y | x nor y |
|---|---|---------|--------|----------|---------|
| 0 | 0 | 0       | 0      | 1        | 1       |
| 0 | 1 | 0       | 1      | 1        | 0       |
| 1 | 0 | 0       | 1      | 1        | 0       |
| 1 | 1 | 1       | 1      | 0        | 0       |

#### **Astute Student**



"Hey! If we always use the XOR function, then then Odious Oscar will know that!

The key stream better be very secure!"

### You are right!

- Attempt #1: One Time Pad
- Attempt #2: Ordinary Pseudo-random number generator
- Attempt #3: Cryptographic Pseudo-random number generator

#### One-time Pad

- Attempt #1: One Time Pad
- Record some truly events
  - Coin flipping
  - Semiconductor noise
  - Radioactive decay
- Advantage(s):
  - Truly unbreakable

## One-time Pad: Disadvantages

- Hassle of physically transferring bits
  - Want to send 2 MByte image?
  - Need 2 MBytes of *new* bits
- Do not reuse that pad!
  - For a while during and after World War II, the UK and USA were able to read Soviet secrets because they re-used code books (http://www.cryptoit.net/eng/attacks/two-time-pad.html 2020 April 6)

## Ordinary Pseudo-Random Number Generator

- Linear congruential generator
  - $-S_0 = seed$
  - $S_{i+1} = A*S_i + B \mod m$
  - The key is  $(S_0, A, B)$
- Advantage
  - Pseudo-random number generators are readily available in many programming languages

## Ordinary Pseudo-Random Number Generator: Disadvantage

- Easy to crack!
- Assume
  - S<sub>0</sub> is 128 bits
  - A, B are 64 bits each
  - 256 bit key total
- Also assume:
  - Oscar knows (or can guess) first 384 bits
  - E.g. standard header



## Ordinary Pseudo-Random Number Generator: Disadvantage

- 1. Oscar gets key stream from cipher text and plain text guess:
  - $s_i \equiv x_i + y_i \mod m \ (0 \le i \le 383)$
- 2. Oscar splits s<sub>i</sub> into 3 ranges
  - $S_0 = (S_0, ... S_{127})$
  - $S_1 = (S_{128}, ... S_{255})$
  - $S_2 = (S_{256}, ... S_{383})$
- 3. Oscar creates 2 equations:
  - $S_1 \equiv A*S_0 + B \mod m$
  - $S_2 \equiv A*S_1 + B \mod m$

## Ordinary Pseudo-Random Number Generator: Disadvantage

- 4. Two equations, two unknowns, solve the equations!
  - $A \equiv (S_1 S_2)/(S_0 S_1) \mod m$
  - $B \equiv S_1 S_0*(S_1 S_2)/(S_0 S_1) \mod m$
- 5. Actually get multiple solutions because gcd((S<sub>0</sub>
  - $-S_1$ ,m)  $\neq 1$ 
    - But Oscar has a dramatically reduced search space

# Cryptographic Pseudo-random number generator

- Want seemingly contradictory requirements:
- Deterministic computability
  - So Bob can reproduce bit stream
- Seemingly random
  - So given a portion of bit stream, Oscar has a hard time figuring out what comes next

# Linear Feedback Shift Registers and Flip-Flops

- We need to shift bits around as we want!
- We need flip-flops

No! Not these! . . .



# Linear Feedback Shift Registers and Flip-Flops

- Building block of digital circuits
- Holds and outputs one bit (Q)
- When clock cycles
  - (e.g. up and then down)
  - Gets new incoming bit (D)
- Holds and output new bit until clock cycles again



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>o</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>o</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   |                 |                 | ?               |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   |                 |                 | 0               |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   |                 | ?               | 0               |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   |                 | 1               | 0               |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   | ?               | 1               | 0               |



| FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----------------|-----------------|-----------------|
| 1               | 0               | 0               |
| 0⊕0=<br>0       | 1               | 0               |
|                 | 1               | 1 0             |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FFo |
|-----|-----------------|-----------------|-----|
| 0   | 1               | 0               | 0   |
| 1   | 0               | 1               | 0   |
| 2   |                 |                 | ?   |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   | 0               | 1               | 0               |
| 2   |                 |                 | 1               |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   | 0               | 1               | 0               |
| 2   |                 | ?               | 1               |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   | 0               | 1               | 0               |
| 2   |                 | 0               | 1               |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   | 0               | 1               | 0               |
| 2   | ?               | 0               | 1               |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FFo |
|-----|-----------------|-----------------|-----|
| 0   | 1               | 0               | 0   |
| 1   | 0               | 1               | 0   |
| 2   | 1⊕0=1           | 0               | 1   |



| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 0   | 1               | 0               | 0               |
| 1   | 0               | 1               | 0               |
| 2   | 1               | 0               | 1               |
| 3   | 1               | 1               | 0               |

| Clk | FF <sub>2</sub> | FF <sub>1</sub> | FF <sub>0</sub> |
|-----|-----------------|-----------------|-----------------|
| 4   | 1               | 1               | 1               |
| 5   | 0               | 1               | 1               |
| 6   | 0               | 0               | 1               |
| 7   | 1               | 0               | 0               |



### Linear Feedback Shift Registers

| Clk | FF2 | FF1 | FF0 |
|-----|-----|-----|-----|
| 0   | 1   | 0   | 0   |
| *** |     | ••• | ••• |
| 7   | 1   | 0   | 0   |
|     |     |     |     |

Ruh-roh! It repeats!



## Linear Feedback Shift Registers

- It *has to* repeat
  - 3 flip-flops
  - 2 states per flip-flop (0 or 1)
  - $-2^3 = 8$  possible states total



## Linear Feedback Shift Registers

- General form
  - $(p_{n-1}, ... p_0)$  are switches
  - output(x) =  $x^m + p_{m-1} x^{m-1} + ... + p_1 x + p_0$



# Attack against Known-Plaintext LFSRs



- N flip-flops:
  - 2^N possible states
  - 2^N maximal cycle length

## Attack against Known-Plaintext LFSRs

- Encryption details:
  - m digits
  - Secret key vector:  $p_{m-1}$ ,  $p_{m-2}$ , ...  $p_1$ ,  $p_0$
- Assume Oscar knows:
  - Value of m
  - Plain text: x<sub>0</sub>, x<sub>1</sub>, ... x<sub>2m-1</sub>
  - Cipher text:  $y_0, y_1, \dots y_{2m-1}$

## Attack against Known-Plaintext LFSRs

- 1. Oscar reconstructs 2m key stream bits
  - $s_i \equiv x_i + y_i \mod 2$ ; i = 0, 1, ... 2m-1
- 2. Apply definition of resulting bit  $s_m$  from previous bits  $s_0$ ,  $s_{m-1}$  and key vector  $p_0$ ,  $p_{m-1}$ :
  - $s_{i+m} \equiv sum(j=0, j \le m-1, p_i *s_{i+j} \mod 2);$
  - $s_i, p_i \in \{0,1\}$
  - i =0, 1, ...
- 3. Generate m equations with m unknowns each:
  - i = 0;  $s_m \equiv p_{m-1} * s_{m-1} + ... + p_1 * s_1 + p_0 * s_0$
  - i = 1;  $s_{m+1} \equiv p_{m-1} * s_m + ... + p_1 * s_2 + p_0 * s_1$
  - •
  - i = m-1;  $s_{2m-1} \equiv p_{m-1} * s_{2m-2} + ... + p_1 * s_m + p_0 * s_{m-1}$
- 4. Solve system of equations by linear algebra

#### Astute Student

"Hmm, it was solved with linear algebra!

What if we:

- (1) add more state
- (2) make it nonlinear?"



#### Add more state

- Shift a bit into long register
- n clock-cycles later, it shifts out



#### Make non-linear

- Output depends on more than just last flip-flop
  - This means "bitwise-AND"
  - Bitwise And is multiplication: no longer linear



### Trivium



#### Trivium: How to use

- 1. Need 80 bit key
  - Keep secret!
  - Load into Register A
- 2. Need 80 initialization vector
  - No need to keep secret, but must change between sessions (Nonce = Number use ONCE)
  - Load into Register B
- 3. Load last 3 bits of C with 1
- 4. Clear all other bits to 0
- 5. Run 4\*(93+84+111) = 1152 times
  - Throw these away
- 6. Now use starting at 1153!

#### References:

- "Chapter 2: Stream Ciphers" of Christof Paar and Jan Pelzl "Understanding Cryptolography: A Textbook for Students and Practitioners"
- https://cryptologicfoundation.org/what-wedo/educate/bytes/this\_day\_in\_history\_calendar.h tml/event/2020/02/07/1581051600/1960-inventorgilbert-vernam-died- (Downloaded 2020 April 6)
- http://www.crypto-it.net/eng/attacks/two-timepad.html (Downloaded 2020 April 6)