

우리의 목표

🖸 기존 방식

- → 캘리브레이션
- → 정규화
- → 삼각측량
- → 좌표추출
- → 스트라이크 볼 판정

➡ 새로운 방식

- → RiDAR로 야구공이 스트라이크 존에 있는 시각 검출
- → 그 시각을 카메라가 달린 보드로 전송
- → 그 시각과 인접한 2개의 프레임으로 스트라이크 볼 판정

일어나는 일(상황)

타자가 타석에 들어감

타자, 포수, 투수가 각자의 위치에 서있음

투수가 공을 던져서 공이 날아가는 중

공이 스트라이크 존 위에 있음

투수가 공을 잡음

헛스윙, 안타, 파울 등은 ABS로 판정할 필요 없음 → 누가봐도 명확하기 때문에 위의 사이클이 반복됨

목표

일단 다 써보고 이따 줄일게게 조킨해

연번	방식	목표	세부 내용	평가 방법
1	기존 방식	카메라로 실시간 처리	카메라로 실시간 으로 타자의 위치, 홈베이스를 검출 한다.	카메라로 타자와 홈베이스를 검출 하는 % 확인
2	기존 방식	카메라 실시간 처 리	야구공을 실시간 으로 추적한다.	10번 던져서 9번 성공하기
3	기존 방식	실시간 처리 융합	타자의 위치, 홈베 이스, 야구공을 실 시간으로 추적한 다.	실시간으로 3가지 기능이 잘 되는지 확인
4	기존 방식	하드웨어 제작	카메라 및 라이다 를 장착할 수 있는 하드웨어 제작	효과적으로 타자 및 야구공을 검출 할 수 있는지 평가
5	기존 방식	카메라 내부 파라 미터 및 외부 파라 미터 구하기	카메라의 내부 파 라미터 및 외부 파 라미터를 구한다.	삼각 측량법을 수 행할 때 정확도 판 단
6	기존 방식	정규화 진행	내부 파라미터를 이용해서 픽셀 좌 표를 카메라 좌표 계로 변환	삼각 측량법을 수 행할 때 정확도 판 단
7	기존 방식	AI 모델 고도화	기존 AI 모델의 정 확도 향상	판정 정확도 평가
8	기존 방식	실시간 데이터 통 신	카메라에서 입력 된 데이터를 프로 그램에서 활용 가 능하게 한다.	카메라에서 입력 된 데이터가 프로 그램에 정상 수신 되는지 확인
9	기존 방식	학습 모델 선정	yolo, tensorFlow, tensorFlowLite 등 가벼운 모델 설 정	인식 정확도 테스 트
10	기존 방식	좌표 변환	외부 파라미터를 이용해서 카메라 좌표를 월드 좌표 로 변환	삼각 측량법 수행 할 때 정확도 판단
11	기존 방식	삼각 측량법	정규화 및 좌표 변 환으로 알게된 두	직접 각도기와 자 를 사용해서 거리

우리의 목표

연번	방식	목표	세부 내용	평가 방법
			좌표를 이용해서 3d 좌표 생성	오차 테스트 할 예 정
12	새로운 방식	카메라와 보드 초 기 설정	보드로 카메라를 제어하기	보드로 카메라를 제어할 수 있는지 확인
13	새로운 방식	UART 통신하기 (with 블루투스 모듈)	RiDAR와 카메라 보드 간의 통신을 가능하게 한다	블루투스로 통신 할 경우 페어링 리 스트를 확인
14	새로운 방식	RiDAR로 야구공 검출하기	야구공이 검출이 가능하게 한다	야구공을 던져서 특정 구역(홈플레 이트)을 지나갔을 때 야구공이 검출 되는지 확인
15	새로운 방식	보드 간의 정확한 시각 동기	두 보드 간의 시각 차이를 최소화	두 보드 간의 시각 차이가 얼마나 나 는지 테스트
16	공통 방식	프레임에 스트라 이크 존 그리기	스트라이크 존이 고정돼서 움직이 지 않는다	타자가 타석에 서 고 3초 이내로 스 트라이크 존이 고 정되는지 확인
17	공통 방식	트리거로 특정 프 레임 추출하기	필요한 프레임을 선택적으로 추출 하기	스트라이크 존에 인접한 2개의 프 레임이 추출이 되 는지 확인
18	공통 방식	스트라이크 - 볼 자동으로 판정하 기	프레임에 그려진 스트라이크 존을 기준으로 스트라 이크 - 볼을 자동 으로 판정하기	실제로 공을 던져 서 스트라이크 - 볼 판정이 제대로 되는지 확인
19	통합 테스트	실제 야구장에 가 서 해보기	기능들이 구현돼 서 사용 가능하게 끔 한다	실제 야구장에 가 서 던져보고 구현 한 기능들이 정상 동작하는지 확인 해보기

우리의 목표 3

연번	방식	목표	세부 내용	평가 방법
extra 1	공통 방식	스트라이크 볼 데 이터 분석	스트라이크 볼 비 율과 스트라이크 존 중에서 어디 부 분에 맞았는지 표 시	스트라이크 존 내 의 야구공 위치 표 시가 잘 되는지 확 인
extra 2	공통 방식	스트라이크 볼 스 코어 디스플레이 만들기	예를 들어, 스트라 이크면 빨간불 누 적, 볼이면 초록불 누적	정상 동작하는지 테스트
extra 3	공통 방식	스트라이크 존 크 기 조절	스트라이크 존 크 기 조절	

평가 방법 정하기

1~4: 김석진

5~8: 채수빈

9~12: 신현서

13~16:

17~19:

16 ~ 20:

우리의 목표 4