Accelerating Genomic Alignment: Integrating Mod-Minimizers into Minimap2

Marcel Pokorski

Table of Contents

- 1. Introduction
- 2. Background
- 3. Implementation
- 4. Results
- 5. Conclusion
- 6. Complete Experiment Data
- 7. References
- 8. QnA

Introduction

Sequence Alignment

- similarities & differences between DNA/mRNA sequences
- understanding of genetic variations

Why Minimap2?

- aligner & mapper
- minimizers
- efficient, popular

Challenges

- long sequences
- objective-based balancing

Background: Minimap2

Seed-Based Indexing

- anchor points
- alignment candidates
- hash-based index

Sliding-Window

- smallest kmers
- reset at base ∉ {A,C,G,T}
- no deduplication

Background: Minimap2 cont'd

Backward Strand

- reverse complement
- no symmetric kmers

Homopolymers

lossy compression

Sensitive Balancing

Background: Mod-Minimizers

Change in Selection

- 1. minimal tmer at position x
- 2. select kmer starting at (x mod w)
- forward property
- lower, improved density

Formulae

$$\begin{array}{c}
 t = r + ((k-r) \mod w) \\
 r = \lceil \log_4(w+k-1) \rceil + 1
 \end{array}
 \quad
 \begin{array}{c}
 k = 15 \\
 w = 10
 \end{array}
 \quad
 \begin{array}{c}
 r = 4 \\
 t = 5
 \end{array}$$

Implementation: Approach

Minimal Changes

Runtime over Memory

```
void mm_sketch(void *km, const char *str, int len, int w, int k, uint32_t rid, int is_hpc, mm128_v *p)
   int r = (int) ceil(log2(w + k - 1) / 2) + 1; //default: w = 10, k = 15, r = 4
   int t = r + ((k - r) \% w);
   mm128_t min = { UINT64_MAX, UINT64_MAX };
   int min_pos = 0;
   vint64_t shift1 = 2 * (t - 1);
   uint64_t mask = (1ULL << 2 * t) - 1;</pre>
   uint64_t tmer[2] = { 0, 0 };
   int buf_pos = 0;
   mm128_t buf[256];
   vint64_t k_shift1 = 2 * (k - 1);
   uint64_t k_mask = (1ULL << 2 * k) - 1;</pre>
   uint64_t kmer[2] = { 0, 0 };
   int k_buf_pos = 0;
   mm128_t k_buf[256];
   memset(buf, 0xff, (w + k - t) * 16);
   memset(k_buf, 0xff, w * 16);
```

Implementation: Approach

Minimal Changes

Runtime over Memory

```
mm128_t info = { UINT64_MAX, UINT64_MAX };
mm128_t k_info = { UINT64_MAX, UINT64_MAX };
tmer[1] = (tmer[1] >> 2) | (3ULL^c) << shift1; // reverse t-mer</pre>
kmer[0] = (kmer[0] << 2 | c) & k_mask;  // forward k-mer</pre>
kmer[1] = (kmer[1] >> 2) | (3ULL^c) << k_shift1; // reverse k-mer</pre>
if (tmer[0] = tmer[1]) {
int z = tmer[0] < tmer[1]? 0 : 1; // strand</pre>
if (l \geq t && tmer span < 256) {
   info.x = hash64(tmer[z], mask) << 8 | tmer_span;</pre>
    info.y = i - tmer_span + 1;
if (kmer[0] = kmer[1]) {
int k_z = kmer[0] < kmer[1]? 0 : 1; // strand</pre>
if (l \ge k \&\& kmer\_span < 256) {
   k_{info.x} = hash64(kmer[k_z], k_{mask}) << 8 | kmer_span;
   k_{info.y} = (uint64_t)rid << 32 | (uint32_t)i << 1 | k_z;
```

Implementation: Approach

Minimal Changes

Runtime over Memory

w elements
$$\longrightarrow$$
 w + $(w + k - t)$ elements $w \times 16$ [Bytes] \longrightarrow w $\times 16$ + $(w + k - t) \times 16$ [Bytes] 160 Bytes \longrightarrow 160 + 320 Bytes

HPC vs Indexing

Buffer Index Translation

HPC vs Indexing

Buffer Index Translation

```
int static mm_push_kmer(int w, int k, int t, kmer_info *kmer_vars) {
   int buf_size = w + k - t;
   int k_buf_size = w;
   int window_pos = (*kmer_vars→min_pos - *kmer_vars→buf_pos + (buf_size - 1)) % buf_size;
   window_pos %= w;
   int k_buf_idx = (*kmer_vars→k_buf_pos + 1 + window_pos) % k_buf_size;
   mm128_t k_target = kmer_vars→k_buf[k_buf_idx];
   uint32_t k_target_glbl_pos = k_target.y;
   k_target_glbl_pos >= 1;
   assert(k_target_glbl_pos ≥ 0 && k_target_glbl_pos < kmer_vars→len);
   if (*kmer_vars→prev_push ≠ k_target_glbl_pos) {
       kv_push(mm128_t, kmer_vars→km, *kmer_vars→p, k_target);
   return k_target_glbl_pos;
```

HPC vs Indexing

Buffer Index Translation

```
int prev_push = -1; // last pushed kmer's global position
kmer_info kmer_vars = {
    .km = km
    p = p
    .k_buf = k_buf,
    .min_pos = &min_pos,
    .buf_pos = &buf_pos,
    .k_buf_pos = &k_buf_pos,
    .prev_push = &prev_push,
    .len = len
};
```

HPC vs Indexing

Buffer Index Translation

```
if (buf_pos = min_pos) {
   min.x = UINT64_MAX;
// scan for the leftmost minimal element
    int w_relative;
    for (w_relative = 0; w_relative < w + k - t; ++w_relative) {</pre>
      int wrapped_index = (buf_pos + 1 + w_relative) % (w + k - t);
      if (buf[wrapped_index].x < min.x) {</pre>
          min = buf[wrapped_index];
          min_pos = wrapped_index;
 prev_push = mm_push_kmer(w, k, t, &kmer_vars);
```

Results: Approach

Minimap2	(default, $k=15$, $w=10$),
Mod-Min	(default, $k=15$, $w=10$, $t=5$)
Mod-Min	(density adaptation, $k=15$, $w=8$, $t=5$)
Default	./minimap2 -a
HPC	./minimap2 -a -H
SR	./minimap2 -a -x sr

$$(SR, k=21, w=11)$$

(SR,
$$k = 21$$
, $w = 11$, $t = 10$)

(SR,
$$k = 21$$
, $w = 8$, $t = 5$)

Results: Metrics

Performance

real Time(s) peak RSS (GB)

Minimizers

distinct minimizer singleton rate average spacing

Accuracy

total reads mapped reads rate unmapped reads rate high-quality reads rate

Results: Dataset Aliivibrio fischeri

Reference Genome ~4.3Mb,

well-characterized,

annotated

6 Samples ~870Mb,

short reads (10-76bp), Illumina HiSeq 2500

Why?

- interesting benchmark
- publicly available, well-researched
- balanced size

Results: Keys

Default			HPC	Density Adaptation		
-14%	runtime	-6%	runtime	±0%	runtime	
-24%	distinct minimizers	-25%	distinct minimizers	-5% to -8%	distinct minimizers	
+30%	avg spacing	+27%	avg spacing	+4%	avg spacing	
-15%	unmapped reads	+65%	unmapped reads	-14% to -21%	unmapped reads	
-1%	high-quality reads	-19%	high-quality reads	+1% to +12%	high-quality reads	

Conclusion

Mod-Minimizer

- 14% quicker
- 15% less unmapped reads
- HPC & SR penalty

Density Adaptation

- levels benefits
- up to 21% less unmapped reads
- up to 12% more high-quality reads

Conclusion cont'd

Challenges

- sensitivity
- minimizer count-placement synergy

Future Work

- adaptive strategies
- dynamic adjustments
 - parameters
 - data characteristics
 - objectives

Complete Experiment Data

	Default		HPC		Short Reads	
	Default	Adapted	Default	Adapted	Default	Adapted
Performance Metrics						
Real Time (s)	-14.06%	+0.64%	-6.09%	-1.39%	-4.88%	-6.56%
Peak RSS (GB)	-0.08%	+0.09%	-1.19%	+0.31%	-0.18%	+0.03%
Minimizer Metrics						
Distinct Minimizers	-23.51%	-4.87%	-24.55%	-8.36%	-19.82%	-3.68%
Singleton Rate	-0.32%	-0.38%	-4.26%	<i>-</i> 4.71%	-0.01%	-0.01%
Average Spacing	+30.32%	+4.71%	+27.06%	+4.19%	+24.72%	+3.85%
Accuracy Metrics						
Total Reads	+0.02%	+0.16%	-1.26%	+0.41%	$\pm 0.00\%$	$\pm 0.00\%$
Mapped Reads Rate	+3.40%	+3.42%	-0.24%	+0.05%	-0.13%	$\pm 0.00\%$
Unmapped Reads Rate	-15.25%	-21.35%	+65.41%	-13.72%	+14.16%	-0.05%
High-Quality Reads Rate	-1.05%	+1.05%	-18.76%	+12.00%	-2.03%	-0.81%

References

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics

Holmberg, T. J. (2024). 3.7.3: Mapping Genomes. BioLibreTexts

Tamang, S. (2024). Sequence alignment—definition, types, methods, uses. Microbe Notes

Li, H. (2021). New strategies to improve minimap2 alignment accuracy. Bioinformatics

Smith, M. A., Gamaarachchi, H., & Parameswaran, S. (2019). Featherweight long read alignment using partitioned reference indexes. Scientific Reports

Xue, D., Feng, W., & Zhao, S. (2016). Improving alignment accuracy on homopolymer regions for semiconductor-based sequencing technologies. BMC Genomics

Chikhi, R., Blassel, L., & Medvedev, P. (2022). Mapping-friendly sequence reductions: going beyond homopolymer compression. iScience

Koerkamp, R. G., & Pibiri, G. E. (2024). The mod-minimizer: a simple and efficient sampling algorithm for long k-mers. bioRxiv

Pokorski, M. (2024). Minimap2: mod-mini, the modified version of minimap2. GitHub repository

Li, H. (2018). Minimap2: the original version of minimap2. GitHub repository

Banović Deri, B., Nešić, S., Vićić, I., Samardžić, J., & Nikolić, D. (2024). Benchmarking of five NGS mapping tools for the reference alignment of bacterial outer membrane vesicles-associated small RNAs. Frontiers in Microbiology

NCBI BioProject. (2024). PRJNA12986: Whole genome sequencing project of Aliivibrio fischeri.

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., ... & Li, H. (2021). Twelve years of samtools and bcftools. GigaScience

Pokorski, M. (2024). mod-mini eval, benchmarking suite for evaluating the modified version of minimap2. GitHub repository

Bradnam, K. (2014). Understanding mapq scores in sam files: does 37 = 42? Microbe Notes

QnA

Pages	Topic
3	Introduction
4-5	Background: Minimap2
6	Background: Mod-Minimizers
7-9	Implementation: Approach
10-13	Implementation: Hurdles
14	Results: Approach
15	Results: Metrics
16	Results: Dataset Aliivibrio fischeri
17	Results: Keys
18-19	Conclusion
20	Complete Experiment Data
21	References

Accelerating Genomic Alignment: Integrating Mod-Minimizers into Minimap2

Marcel Pokorski,

29.01.2025

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

marcikque/minimap2 mod-mini/

marcikque/mod-mini eval/

lh3/minimap2