# Занятие 2

Введение в ML

### План занятия

- Постановка задачи классического ML (регрессия, классификация, кластеризация)
- Простейшие метрические алгоритмы (kNN, k-Means, DBSCAN)
- Оценка качества предсказания, особенности процесса обучения ML-алгоритмов
- Практика

# Вопросы по пройденному материалу

- 1. Выберите категориальные признаки
- а) Должность сотрудника компании
- b) Возраст сотрудника
- с) Месяц рождения сотрудника
- 2. One-hot encoding (кодирование категориального признака с помощью набора признаков через 0, 1):
- а) Сильно увеличивает объём базы данных
- b) Не умеет работать с незнакомыми категориями
- с) Создаёт между категориями связи «большеменьше» (красный больше голубого)

| 1d | color |  |  |  |
|----|-------|--|--|--|
| 1  | red   |  |  |  |
| 2  | blue  |  |  |  |
| 3  | green |  |  |  |
| 4  | blue  |  |  |  |

One Hot Encoding

| id | color_red | color_blue | color_green |
|----|-----------|------------|-------------|
| 1  | 1         | 0          | Θ           |
| 2  | 0         | 1          | Θ           |
| 3  | 0         | 0          | 1           |
| 4  | 0         | 1          | Θ           |

# Вопросы по пройденному материалу

- 3. При одномерном анализе:
- а) Диаграмма «ящик с усами» box plot позволяет увидеть несколько пиков в распределении
- b) Медиана всегда равна среднему
- с) Выбросы данных видны на диаграмме «ящик с усами»
- d) Выбросы данных видны на гистограмме
- 4. Коррелируют величины на графиках:
- a) a
- b) b
- c) c
- d) d
- e) e







# Постановка задачи классического ML

# Машинное обучение

наука о поиске закономерностей в данных с помощью компьютера.



### Классическое Обучение



Источник: https://vas3k.ru/blog/machine\_learning/

# Pазмеченные (labelled) vs неразмеченные (unlabelled) данные



# Pазмеченные (labelled) vs неразмеченные (unlabelled) данные

#### Размеченные

| Class     | Mit | NormNucl | BlandChrom | BareNuc | SingEpiSize | MargAdh | UnifShape | UnifSize | Clump | ID      |
|-----------|-----|----------|------------|---------|-------------|---------|-----------|----------|-------|---------|
| benign    | 1   | 1        | 3          | 1       | 2           | 1       | 1         | 1        | 5     | 1000025 |
| benign    | 1   | 2        | 3          | 10      | 7           | 5       | 4         | 4        | 5     | 1002945 |
| malignant | 1   | 1        | 3          | 2       | 2           | 1       | 1         | 1        | 3     | 1015425 |
| benign    | 1   | 7        | 3          | 4       | 3           | 1       | 8         | 8        | 6     | 1016277 |
| benign    | 1   | 1        | 3          | 1       | 2           | 3       | 1         | 1        | 4     | 1017023 |
| malignant | 1   | 7        |            | 10      | 7           | 8       | 10        | 10       | 8     | 1017122 |
| benign    | 1   | 1        | 3          | 10      | 2           | 1       | 1         | 1        | 1     | 1018099 |
| benign    | 1   | 1        | 3          | 1       | 2           | Н       | 2         | 1        | 2     | 1018561 |
| benign    | 5   | 1        | 1          | 1       | 2           | 1       | 1         | 1        | 2     | 1033078 |
| benign    | 1   | 1        | 2          | 1       | 2           | 1       | 1         | 2        | 4     | 1033078 |

### Неразмеченные

| , | DebtIncomeRatio | Address | Other Debt | Card Debt | Income | Years Employed | Edu | Age | Customer Id |
|---|-----------------|---------|------------|-----------|--------|----------------|-----|-----|-------------|
| 3 | 6.3             | NBA001  | 1.073      | 0.124     | 19     | 6              | 2   | 41  | 1           |
| 3 | 12.8            | NBA021  | 8.218      | 4.582     | 100    | 26             | 1   | 47  | 2           |
| 9 | 20.9            | NBA013  | 5.802      | 6.111     | 57     | 10             | 2   | 33  | 3           |
| 3 | 6.3             | NBA009  | 0.516      | 0.681     | 19     | 4              | 2   | 29  | 4           |
| 2 | 7.2             | NBA008  | 8.908      | 9.308     | 253    | 31             | 1   | 47  | 5           |
| 9 | 10.9            | NBA016  | 7.831      | 0.998     | 81     | 23             | 1   | 40  | 6           |
| 5 | 1.6             | NBA013  | 0.454      | 0.442     | 56     | 4              | 2   | 38  | 7           |
| 5 | 6.6             | NBA009  | 3.945      | 0.279     | 64     | 0              | 3   | 42  | 8           |
| 5 | 15.5            | NBA006  | 2.215      | 0.575     | 18     | 5              | 1   | 26  | 9           |
| 4 | 4               | NBA011  | 3.947      | 0.653     | 115    | 23             | 3   | 47  | 10          |
| 1 | 6.1             | NBA010  | 5.083      | 0.285     | 88     | 8              | 3   | 44  | 11          |
| 6 | 1.6             | NBA003  | 0.266      | 0.374     | 40     | 9              | 2   | 34  | 12          |

### С учителем



#### Регрессия



 $Y \subseteq "^n$ . Нужно восстановить обычную функциональную зависимость  $f: X \to Y$ 

#### Классификация



https://github.com/girafe-ai/ml-course

 $Y \subseteq [0,1]^n$ . Нужно предсказать распределение вероятностей на возможных вариантах

### Без учителя





Нужно предъявить такие классы эквивалентности, чтобы объекты одного класса были более похожи друг на друга, чем объекты разных классов

# Постановка задачи (semi-)supervised learning (обучение с учителем)

- $\succ X$  множество объектов в пространстве признаков
- $\succ Y$  область значений целевой функции
- ightarrow f: X o Y неизвестная закономерность (может даже иметь стохастическую (случайную) природу!)
- $\succ$ Дано: Обучающая выборка вида  $\{(X_i, y_i)\}_{i=1}^n$
- **>Цель:** Найти такую  $\widehat{f_w}$  (w параметры модели), которая максимально точно приближает f на всём X !



### Примеры задач регрессии

- **Предсказание стоимости жилья** для риэлторской компании
- Предсказание времени доставки
- Предсказание спроса на такси в конкретном районе в конкретный час завтрашнего дня.



Источник: http://www.machinelearning.ru/

# Примеры задач классификации

- Предсказание оттока клиентов / сотрудников на основе их поведения.
- Ранжирование товаров по вероятности покупки их пользователем (подход к реализации рекомендательной системы)
- **Классификация клеток ткани** на здоровые и опухолевые
- Детекция объектов на фото





https://aviconsult.ru/services/mashinnoe-obuchenie/razmetka-dannykh/

# Процесс обучения модели

- 1. Сделать предсказания с помощью модели на тренировочной выборке:  $\hat{y}(w,X) = \widehat{f_w}(X)$
- 2. Посчитать функцию ошибок по предсказаниям:  $loss(w) = L(y, \hat{y}(w, X))$
- 3. Посчитать градиент функции ошибки при заданных весах w:  $gradient = \frac{\partial loss(w)}{\partial w}$
- 4. Сделать шаг оптимизации весов модели по направлению градиента

Повторять, пока ошибка уменьшается



# Unsupervised learning (обучение без учителя)

В классических задачах unsupervised learning есть X, но нет обучающей выборки (т.е. мы не знаем правильные ответы).

В таких задачах обычно минимизируют "энтропию" системы: ищут наиболее удачную расстановку меток





### Примеры задач кластеризации

- **Сегментация аудитории** для таргетирования рекламы
- **Идентификация типов клеток** в образце данных секвенирования
- Поиск сообществ в социальном графе (из соцсети или из инсайдерской информации о структуре организации)
- Задача разделения смеси распределений



# Простейшие метрические алгоритмы

kNN, k-Means, DBSCAN

### Метрические алгоритмы

**Метрический** классификатор (англ. similarity-based classifier) — **алгоритм** классификации, основанный на вычислении оценок сходства между объектами.



- ➤ На вход подается вектор признаковое описание какого-то объекта
- ➤ Находятся k ближайших к нему векторов, для которых ответ известен
- ➤Ответ для новой точки выбирается с помощью
  - ○Усреднения в случае регрессии
  - ○Голосования в случае классификации
- ➤ Возможно также усреднение/голосование с весами



# KNN - пример «ленивого», а также непараметрического алгоритма.









k - внешний параметр (**гиперпараметр**). Он подбирается так, чтобы модель работала как можно лучше. Результат предсказания для некоторых точек может зависеть от k.

# Unsupervised learning. Задачи кластеризации

# Алгоритм K-Means



# sklearn.neighbors.KMeans

#### Ставим три ларька с шаурмой оптимальным образом

(иллюстрируя метод К-средних)



# sklearn.neighbors.KMeans

- Выбор гиперпараметров: Выбираем k и подходящую метрику (в смысле расстояния между объектами).

### - Обучение:

- Случайно инициируем k центроидов.
- Для каждой точки находим ближайший центроид, назначаем соотв. метку.
- Пересчитываем позиции центроидов как центры масс соотв. кластеров
- **Предсказание:** Находим ближайший центроид, возвращаем его метку.





k-Means выстраивает приближение т.н.

диаграммы Вороного по данным

https://habr.com/ru/post/309252/

### k-Means. Применения

#### Понижение разреженности данных.

Представьте себе матрицу "пользователи х контент". Она очень разреженная: каждый пользователь взаимодействует с малой долей контента. Обучать алгоритмы ML на таких данных очень трудно.

**Решение:** Сгруппируем пользователей при помощи k-means, агрегируем предпочтения в пределах каждой группы, будем работать с матрицей "группа х контент", а при необходимости сделать предсказание для нового пользователя — находить наиболее похожую на него группу и брать предсказание для неё.

### Плюсы и минусы



• Простой интерпретируемый алгоритм.

Это хороший baseline, с него стоит начать.

- Даёт качественную кластеризацию при грамотном подборе метрики.
- Сложность предсказания  $O(k \log k)$  в среднем и  $O(k^2)$  в худшем случае. Нужно O(k) дополнительной памяти
- Работает практически мгновенно и не зависит от размера входных данных.
- Понятно, как устроено оптимальное решение (диаграмма Вороного с k ячейками)
- Понятно, как пересчитать центроиды при поступлении новой точки.

- Непонятно, как подобрать k и правильную метрику (здесь это важно, т.к. евклидова метрика может быть адекватна локальной геометрии данных, но глобальную структуру она чаще всего описывает неправильно).
- Ответ сильно зависит от начального приближения. С ним может и не повезти.
- Итеративный процесс обучения. Непонятно, сколько итераций потребуется до сходимости.

# Как k-Means разделит такие точки на кластеры при k=2?



# Как k-Means разделит такие точки на кластеры при k=2?



### sklearn.cluster.DBSCAN



### sklearn.cluster.DBSCAN

- **Выбор гиперпараметров:** Выбираем метрику, радиус окрестности и минимальное количество точек в пределах радиуса (всё это гиперпараметры).

#### - Обучение:

- Выстраиваем окрестность вокруг каждой точки данных. Перебираем окрестности в порядке убывания плотности
- Если в пределах окрестности содержится хотя бы MinPts точек, то классифицируем соотв. точку как соге
- В противном случае классифицируем точку либо как border, если в её окрестности есть хотя бы одна coreточка, и как noise иначе.
- **Предсказание:** Core- и border-точки в пределах одной окрестности соединяются рёбрами. Кластерами будут компоненты связности полученного графа. Noise-точки рапортуются отдельно.



# Сравнение K-Means и DBSCAN



# DBSCAN. Применения

Всё те же, что и у k-Means, особенно когда эксперт по предметной области не может оценить k заранее.



#### Плюсы и минусы



- Простой интерпретируемый алгоритм. Результаты зачастую лучше, чем у k-Means.
- Улавливает более тонкие локальные особенности в данных.
- Не требует заранее указывать количество кластеров.
- Находит заодно и выбросы.
- Быстро обучается, не требует итеративного уточнения.

- **Нужно подбирать радиус, MinPts.** Непонятно, как это сделать из интуитивных соображений.
- Трудно делать предсказания для новых точек, т.к. каждая новая точка изменяет плотность в окрестностях имеющихся точек. Нужны более сложные структуры данных, чем в k-Means.
- Не учитывается структура построенного графа, хотя в ней содержится много полезной информации.

## Оценка качества предсказания

И особенности процесса обучения ML-алгоритмов

## Недообучение (Underfitting) Переобучени (Overfitting)

По функции ошибок и метрикам качества легко понять, что происходит с алгоритмом.

- До тех пор, пока качество и на обучающей, и на тестовой выборках растёт, модель **обучается**.
- Как только качество на тесте начинает стабильно падать, это **переобучение**, нужно прекращать.





## Недообучение (Underfitting) Переобучени (Overfitting)

По функции ошибок и метрикам качества легко понять, что происходит с алгоритмом.

- До тех пор, пока качество и на обучающей, и на тестовой выборках растёт, модель **обучается**.
- Как только качество на тесте начинает стабильно падать, это **переобучение**, нужно прекращать.





#### Несмещенная оценка



Вопрос: какое предсказание лучше по метрикам, а какое на самом деле?

Если тестировать модель на той же выборке, на которой она обучалась, то оценка получится смещенной. В таком случае "самая лучшая" модель - это та, которая просто запомнила все данные.

Хорошая модель должна делать хорошие предсказания на новых для себя данных

#### Under- and over- fitting



#### Отложенная выборка

Можно "отложить", скажем, 20% обучающей выборки для валидации модели. Использовать 80% выборки для обучения и 20% для тестирования.

- Оценка на тестовой выборке будет несмещенной
- Тестовая выборка маленькая оценка будет иметь погрешность



#### Переобучение

- Как обнаружить? Train/Test split
  - Разделить выборку на обучающую и контрольную
  - Следить за качеством на контрольной выборке
- Минусы?
  - Уменьшение размера обучающей выборки может негативно сказаться на качестве
  - Малый размер тестовой выборки может давать сильное смещение оценки.
  - Можно переобучиться под тестовую выборку





#### train-val-test split

В задачах supervised learning принято делить выборку на три непересекающиеся части:

- Обучающая (training sample) на ней происходит обучение модели.
- Валидационная (validation sample) на ней считают метрики качества, а по ним уже подбирают гиперпараметры.
- Тестовая (test sample) по ней оценивают качество обученной модели.



Валидационную выборку используют не всегда. Когда используют, то стараются брать её того же размера, что и тестовую.

# Важно! Каждая выборка должна быть репрезентативна!





#### **Cross-validation**

Если хочется оценить качество алгоритма совсем честно, можно посчитать метрики по кросс-валидации (её тоже можно делать со стратификацией).



#### **Cross-validation**

- Разбиваем выборку на k частей
- k-1 частей используются для обучения и одна
  - для тестирования
- Процесс повторяется k раз. Каждый раз для тестирования выбирается разная часть
- Результаты тестирования усредняются

#### Плюсы:

• Погрешность оценки уменьшается, т.к. используется весь набор

#### Минусы:

• Обучение производится k раз. Для некоторых моделей это может быть очень долго

