

TabNet: Attentive Interpretable Tabular Learning

② 汇报人: 赵越 蔡紫宴 吴定俊

Click add caption text. Click add caption text.

1. 背景介绍

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

1.1 DT-based 和 DNN-based 模型的优点

基于决策树的模型 (DT-based) 优点:

- 适用性:具有近似超平面的决策流形 (decision manifolds),对表格数据友好
- 2. 可解释性:可以跟踪决策节点,追溯推断过程,可解释性较好
- 3. 速度: 训练时间短

基于深度神经网络的模型 (DNN-based)

优点:

- 1. 表征方式:可以像图片、文本一样,对表格数据进行编码
- 2. 自动化:减少对表格数据对特征工程的依赖
- 3. 表征学习:端对端的模型允许表征学习,能应用在有价值的新应用场景中,包括:迁移学习(Data-efficient Domain Adaption),生成模型(Generative Modeling)和半监督学习(Semisupervised Learning)。

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

2.1 树的决策流形

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

2.2 TabNet设计思想

TabNet结构 (简单版)

Mask: 特征选择

FC+ReLU:条件判断

两棵"基本决策树"->结果相加

Softmax计算权重: [0.1, 0.4, 0.3, 0.2]

$$x:(x_1,x_2)->Mask()->Mask(x)$$

$$eg. M: [1,0] - > [x_1]$$

2. FC Layer:

$$W_1 \cdot x_1 + b1$$

$$= [C_1, -C_1, 0, 0] + [-aC_1, aC_1, -1, -1]$$

$$= [C_1(x_1 - a), C_1(a - x_1), -1, -1]$$

$$= [f(x_1), -f(x_1), -1, -1]$$

 $3. ReLU \ Layer:$

$$\begin{cases} [f(x_1), 0, 0, 0], x1 > a \text{ and } C_1 > 0 \\ [0, -f(x_1), 0, 0], x1 < a \text{ and } C_1 > 0 \end{cases}$$

4. 区域相加一 > 决策流形

$$[x_1 > a, x_1 < a, 0, 0]$$

$$[x_1 > a, x_1 < a, x_2 > d, x_2 < d]$$

5.Softmax - > 权重:

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

2.3 稀疏性的特征选择

Predicted output (whether the income level >\$50k)

成人人口普查收入预测为例(Dua and Graff 2017)

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

2.4 TabNet Encoder完整结构

输入: (B, D), B 是batch size, D 是feature的维数

(a) TabNet encoder architecture

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

2.5 TabNet组成部分 - Attentive Transformer

a[i-1], 历史已经处理好的特征(作为输入)

P[i]: 先验尺度项 (Prior Scale Term), 用于告知模

型某个特征在历史训练里被使用的程度

$$M[i] = sparsemax(P[i-1] \cdot h_i(a[i-1]))$$

$$P[i] = \prod_{j=1}^{i} (\gamma - M[j])$$
 作用: M[i]· f, 对特征进行遮掩

P[0] 是被全部初始化为1的矩阵, 即1∈(B, D)

负责特征选择的Attentive Transformer

3.自监督学习

4.实验结果

5.研究结论

2.6 sparsemax

Sparsemax的性质有 $\sum_{i=1}^{D} M[i]_{b,j} = 1$, 因 此 M[i] 可以理解为模型在当前step上, 对于batch样本的注意力权重分配。 对 于不同的样本, Attentive transformer 层输出的注意力权重也不同(论文中称 instance-wise)

$$M[i] = sparsemax(P[i-1] \cdot h_i(a[i-1]))$$
 (B, D)

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

2.7 稀疏正则项

$$L_{sparse} = \sum_{i=1}^{N_{steps}} \sum_{b=1}^{B} \sum_{j=1}^{D} rac{-M_{b,j}[i]}{N_{steps} \cdot B} log(M_{b,j}[i] + \epsilon)$$
 ϵ 是个小的数值

3.自监督学习

4.实验结果

5.研究结论

2.8 TabNet组成部分 - Feature Transformer

负责特征处理的 Feature Transformer

GLU 门控:
$$h(X) = (W*X+b) \otimes \sigma(V*X+c)$$

3.自监督学习

4.实验结果

5.研究结论

2.9 Split 层

(a) TabNet encoder architecture

Feature Transformer的输出 结果经过split,得到

$$[\mathbf{d}[\mathbf{i}], \mathbf{a}[\mathbf{i}]] = f_i(\mathbf{M}[\mathbf{i}] \cdot \mathbf{f})$$

其中 d[i] 将用于计算模型的最终输出, 而 a[i] 则用来计算下一个step的 Mask层。

3.自监督学习

4.实验结果

5.研究结论

2.9 最终输出

(a) TabNet encoder architecture

$$\mathbf{d_{out}} = \sum_{i=1}^{N_{steps}} \mathrm{ReLU}(\mathbf{d[i]})$$

1. 背景介绍 2.监督学习 3.自监督学习 4.实

4.实验结果 5.研究结论

自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息对网络进行训练,从而可以学习到对下游任务有价值的表征。

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

encoder-decoder模型,又叫做编码-解码模型,应用于seq2seq问题。

1. 背景介绍 2.监督学习

3.自监督学习

4.实验结果

5.研究结论

Unsupervised pre-training

Age	Cap. gain	Education	Occupation	Gender	Relationship
53	200000	?	Exec-managerial	F	Wife
19	0	?	Farming-fishing	M ?	
?	5000	Doctorate	Prof-specialty	М	Husband
25	?	?	Handlers-cleaners	F	Wife
59	300000	Bachelors	?	?	Husband
33	0	Bachelors	? F		?
?	0	High-school	Armed-Forces ? Hu		Husband

Age	Cap. gain	Education	Occupation	Gender	Relationship
		Masters			
	S	High-school			Unmarried
43					
	0	High-school		F	
			Exec-managerial	М	
			Adm-clerical		Wife
39				М	

Supervised fine-tuning

Age	Cap. gain	Education	Occupation	Gender	Relationship
60	200000	Bachelors	Exec-managerial	М	Husband
23	0	High-school	Farming-fishing	М	Unmarried
45	5000	Doctorate	Prof-specialty	М	Husband
23	0	High-school	Handlers-cleaners	F	Wife
56	300000	Bachelors	Exec-managerial	М	Husband
38	10000	Bachelors	Prof-specialty	F	Wife
23	0	High-school	Armed-Forces	М	Husband

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

设在一开始对feature做mask的矩阵是 $S\in\{0,1\}^{B\times D}$,特征数据是 f ,则encoder的输入是 $(1-S)\cdot f$,若最后decoder的输出是 \hat{f} ,那么自监督学习就是减小真实值 $S\cdot f$ 与重构值 $S\cdot \hat{f}$ 之间的差别,考虑到不同的feature的量级不一定相同,因此采用正则化后的MSE作为 loss,形式如下:

$$\sum_{b=1}^{B} \sum_{j=1}^{D} \left| \left(\hat{f}_{b,j} - f_{b,j} \right) \cdot S_{b,j} / \sqrt{\sum_{b=1}^{B} \left(f_{b,j} - 1/B \sum_{b=1}^{B} f_{b,j} \right)^2} \right|^2$$

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

4.1 Instance-wise feature selection

Dataset: 6 tabular datasets from (Chen et al. 2018) (consisting 10k training samples)

For Syn1- Syn3, salient features are same for all instances (e.g., the output of Syn2 depends on features X3-X6).

For Syn4-Syn6, salient features are instance dependent (e.g., for Syn4, the output depends on

either X1-X2 or X3-X6 depending on the value of X11).

Model	Test AUC								
Model	Syn1	Syn2	Syn3	Syn4	Syn5	Syn6			
No selection	$.578 \pm .004$	$.789 \pm .003$	$.854 \pm .004$	$.558 \pm .021$	$.662 \pm .013$	$.692 \pm .015$			
Tree	$.574 \pm .101$	$.872 \pm .003$	$.899 \pm .001$	$.684 \pm .017$	$.741 \pm .004$	$.771 \pm .031$			
Lasso-regularized	$.498 \pm .006$	$.555 \pm .061$	$.886 \pm .003$	$.512 \pm .031$	$.691 \pm .024$	$.727 \pm .025$			
L2X	$.498 \pm .005$	$.823 \pm .029$	$.862 \pm .009$	$.678 \pm .024$	$.709 \pm .008$	$.827 \pm .017$			
INVASE	$.690 \pm .006$	$.877 \pm .003$	$\textbf{.902} \pm \textbf{.003}$.787 \pm .004	$.784 \pm .005$	$.877 \pm .003$			
Global	$.686 \pm .005$	$.873 \pm .003$	$.900 \pm .003$	$.774 \pm .006$	$.784 \pm .005$	$.858 \pm .004$			
TabNet	$.682 \pm .005$	$\textbf{.892} \pm \textbf{.004}$	$.897 \pm .003$	$.776 \pm .017$	$\textbf{.789} \pm \textbf{.009}$	$\textbf{.878} \pm \textbf{.004}$			

清華大学 Tsinghua University

1. 背景介绍

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

4.1 Instance-wise feature selection

$$\eta_{\mathrm{b}}[\mathrm{i}] = \sum_{c=1}^{N_d} \mathrm{ReLU}(\mathrm{d_{b,c}}[\mathrm{i}])$$

$$\mathbf{M}_{ ext{agg}-\mathbf{b},\mathbf{j}} = \sum_{i=1}^{N_{steps}} \eta_{\mathbf{b}}[\mathbf{i}] \mathbf{M}_{\mathbf{b},\mathbf{j}}[\mathbf{i}] / \sum_{j=1}^{D} \sum_{i=1}^{N_{steps}} \eta_{\mathbf{b}}[\mathbf{i}] \mathbf{M}_{\mathbf{b},\mathbf{j}}[\mathbf{i}]$$

- For Syn2, the output depends on X3-X6.
- For Syn4, the output depends on either X1-X2 or X3-X6 depending on the value of X11.

游事大学 Tsinghua University

1. 背景介绍

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

4.2 real-world datasets

Dataset: Forest Cover Type

Task: classification of forest cover type

from cartographic variables.

Dataset: Rossmann Store Sales

Task: regression of forecasting the store sales from static and time-varying features.

Model	Test accuracy (%)
XGBoost	89.34
LightGBM	89.28
CatBoost	85.14
AutoML Tables	94.95
TabNet	96.99

Model	Test MSE
MLP	512.62
XGBoost	490.83
LightGBM	504.76
CatBoost	489.75
TabNet	485.12

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

4.3 Higgs Boson (Self-supervised learning)

Dataset: The Physical Realm

Task: distinguishing between a Higgs bosons process vs. background (10.5M instances).

Model	Test acc. (%)	Model size
Sparse evolutionary MLP	78.47	81K
Gradient boosted tree-S	74.22	0.12M
Gradient boosted tree-M	75.97	0.69M
MLP	78.44	2.04M
Gradient boosted tree-L	76.98	6.96M
TabNet-S	78.25	81K
TabNet-M	78.84	0.66M

Training	Test accu	ıracy (%)
dataset size	Supervised	With pre-training
1k	57.47 ± 1.78	61.37 ± 0.88
10k	66.66 ± 0.88	68.06 ± 0.39
100k	72.92 ± 0.21	$\textbf{73.19} \pm \textbf{0.15}$

4.实验结果

Click add caption text. Click add caption text.

清華大学 Tsinghua University

1. 背景介绍

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

4.4 我们的实验(基于线下商店销量预测数据集)

- 1. 任务: 给定商店销量历史相关数据和时间等信息, 预测商店对应商品的周销量。
- 2. 数据说明:数据集由字段shop_id(店铺id)、item_id(商品id)、week(周标识)、item_price(商品价格)、item_category_id(商品品类id)、weekly_sales(周销量)组成。
- 3. 评价指标: MSE

$$\frac{1}{n}\sum_{n=1}^{n}(y_i-\bar{y_i})^2$$

4. 数据预处理

简单的特征工程:获得商品的历史销量(lag1-4 周),在使用TabNet时对价格空缺值进行了填充

数据集划分:第4-31周作为训练集,第32周作为测试集;5折交叉验证

参数: 默认参数

	shop_id	item_id	week	item_price	item_category_id	weekly_sales	train	weekly_sales_lag_1	weekly_sales_lag_2	weekly_sales_lag_3	weekly_sales_lag_4
0	0	0	4	NaN	0	0.0	1	1.0	2.0	1.0	2.0
1	0	0	5	NaN	0	1.0	1	0.0	1.0	2.0	1.0
2	0	0	6	399.0	0	4.0	1	1.0	0.0	1.0	2.0
3	0	0	7	399.0	0	3.0	1	4.0	1.0	0.0	1.0
4	0	0	8	399.0	0	1.0	1	3.0	4.0	1.0	0.0
468603	31	522	27	NaN	0	1.0	1	0.0	0.0	0.0	0.0
468604	31	522	28	NaN	0	0.0	1	1.0	0.0	0.0	0.0
468605	31	522	29	NaN	0	1.0	1	0.0	1.0	0.0	0.0
468606	31	522	30	NaN	0	0.0	1	1.0	0.0	1.0	0.0
468607	31	522	31	NaN	0	1.0	1	0.0	1.0	0.0	1.0
468608 1	rows × 11	column	S								

	MSE	
LightGBM	1.790	(fast)
TabNet	1.889	(slow)

2.监督学习

3.自监督学习

4.实验结果

5.研究结论

TabNet

- 针对于表格数据的神经网络
- 加性模型的顺序注意力机制 (sequential attention mechanism)
- instance-wise的特征选择
- encoder-decoder框架实现了自监督学习
- 将树模型的可解释性与DNN的表征能力很好地结合

谢谢大家!

② 汇报人: 赵越 蔡紫宴 吴定俊

