Linear Algebra 2, Homework 8 Solution

Exercise 1

Define an inner product on \mathbb{R}^3 by

$$\left\langle \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\rangle = x(a-b) + y(-a+2b-c) + z(-b+2c)$$

- (1) Find an orthonormal basis for the space.
- (2) Find the orthogonal complement of (0,1,0) and compute the projection of (1,2,3) onto it.
- (1) To make the second part easier, we will start with the basis $\{(0,1,0),(1,0,0),(0,0,1)\}$. So we set $w_0 = (0,1,0)$, which has a squared norm of 2, so

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \pi_{w_0} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{2} \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

And w_1 has a squared norm of 1(1-0.5) + 0.5(-1+1) = 0.5, so

$$w_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \pi_{w_{0},w_{1}} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{1}{\frac{1}{2}} \\ 0 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} 1 \\ \frac{1}{2} \\ 0 \end{pmatrix} \right\rangle$$

$$= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

So we have an orthogonal basis

$$\left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\\frac{1}{2}\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

normalizing gives

$$\left\{ \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} \\ 1/2\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

Alternatively, had we started with the standard basis in its canonical order then we would've gotten

$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

(2) By the previous subquestion, we already have a basis for $(0,1,0)^{\perp}$, so

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}^{\perp} = \operatorname{span}\left(\begin{pmatrix} 1 \\ \frac{1}{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\right)$$

Notice that

$$\left\langle \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\rangle = 0$$

so it is already in the orthogonal complement, thus $\pi(1,2,3) = (1,2,3)$.

Exercise 2

In recitation we defined

$$B_1 = \{ u \in V \mid ||u|| = 1 \}, \qquad \hat{v} = \frac{v}{||v||}$$

And we said that for all $v \neq 0$, $\min_{u \in B_1} ||u - v||$ is obtained when $u = \hat{v}$. Now prove that this vector is unique, i.e.

$$||v - \hat{v}|| = ||v - u|| \implies u = \hat{v}$$

By the recitation, we take $u \in B_1$ and we get that

$$||v - u||^2 = ||v||^2 - 2\operatorname{Re}\langle v, u \rangle + 1$$

And

$$||v - \hat{v}||^2 = ||v||^2 - 2||v|| + 1$$

these are equal only when

$$\operatorname{Re}\langle v, u \rangle = \|v\|$$

Now, we have the chain of inequalities (from the recitation):

$$\operatorname{Re}\langle v, u \rangle \le |\langle v, u \rangle| \le ||v|| ||u|| = ||v||$$

In order for this to be an equality, we must have $|\langle v, u \rangle| = ||v|| ||u||$, which by Cauchy-Schwarz occurs only when v, u are linearly dependent. Thus $u = \alpha v$. Now we must also have

$$\operatorname{Re}\langle v, u \rangle = |\langle v, u \rangle| \iff ||v||^2 \operatorname{Re}(\alpha) = ||v||^2 |\alpha| \iff \operatorname{Re}(\alpha) = |\alpha|$$

This occurs only when $\alpha \in \mathbb{R}$ and $\alpha > 0$. Furthermore, since ||u|| = 1, we have $|\alpha| = \frac{1}{||v||}$, so $\alpha = \frac{1}{||v||}$.

Exercise 3

Let V be an inner product space of dimension and T a linear operator over it such that for all $v \in V$: $\langle v, Tv \rangle = 0$. Prove or disprove:

- (1) If T is invertible, it has no eigenvalues.
- (2) If T's characteristic polynomial splits (into linear factors), then T is nilpotent.
- (3) If T is not invertible, then T is nilpotent.
- (4) If n is odd, then T is singular (not invertible).
- (1) **True**: Suppose T did have an eigenvalue λ , so $Tv = \lambda v$ for some $v \neq 0$. Then $\langle Tv, v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2$. This is zero, so $\lambda = 0$ in contradiction. Notice that this shows that the only eigenvalue of T is 0.
- (2) True: Since T's only eigenvalue is 0, and its characteristic polynomial splits, its characteristic polynomial must be $p_T(x) = x^n$. By Cayley-Hamilton, we have $0 = p_T(T) = T^n$, so T is nilpotent.
- (3) False: Take T over \mathbb{R} with a characteristic polynomial of $x(x^2+1)=x^3+x$. A matrix with this property is

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

Notice that

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ z \\ -y \end{pmatrix}$$

which is orthogonal to (x, y, z) as required.

(4) True: Suppose T is invertible, then it has no eigenvalues by (1). So all of the roots of $p_T(x)$ must be non-real. But non-real roots come in pairs, so the degree of $p_T(x)$ must be even (alternatively, all odd-degree polynomials have a real root).

2

Exercise 4

Let $\langle \bullet, \bullet \rangle_1$ and $\langle \bullet, \bullet \rangle_2$ be two inner products over V. Let $\| \bullet \|_1, \| \bullet \|_2$ be their respective induced norms. Show that there exists a c > 0 such that for all $v \in V$:

$$||v||_1 \le c||v||_2$$

Let $E = \{e_1, \dots, e_n\}$ be an orthonormal basis with respect to $\langle \bullet, \bullet \rangle_2$. Now take $v \in V$, suppose $v = \sum_i \alpha_i e_i$, then by Pythagoras:

$$||v||_2^2 = \sum_i |\alpha_i|^2$$

and

$$\|v\|_1^2 = \left\|\sum_i \alpha_i e_i\right\|^2 \le \left(\sum_i |\alpha_i| \|e_i\|_1\right)^2$$

Let $M = \max_{1 \le i \le n} ||e_i||_1$ so that

$$||v||_1^2 \le M^2 \left(\sum_i |\alpha_i|\right)^2$$

We know by Cauchy-Schwarz (we showed this in recitation) that $(a_1 + \cdots + a_n)^2 \le n(a_1^2 + \cdots + a_n^2)$, so

$$||v||_1^2 \le M^2 n \sum_i |\alpha_i|^2 = M^2 n ||v||_2^2$$

 \Diamond

So we take $c = M\sqrt{n}$ and we have the desired result.

Exercise 5

Moshe wants to find a correspondence between the number of hours he studies for a test (P_1) , the amount of homework he solved (P_2) , and the number of books he read (P_3) . He put the data in a table:

	P_1	P_2	P_3	Grade
1	4	2	3	7
2	2	3	3	4
3	4	4	5	8
4	2	5	5	6

Moshe wanted to find values x_1, x_2, x_3 which satisfy

$$x_1P_1 + x_2P_2 + x_3P_3 = \text{Grade}$$

unfortunately no such solution exists, so instead he decided to find a solution to

$$4x_1 + 2x_2 + 3x_3 = b'_1$$

$$2x_1 + 3x_2 + 3x_3 = b'_2$$

$$4x_1 + 4x_2 + 5x_3 = b'_3$$

$$2x_1 + 5x_2 + 5x_3 = b'_4$$

which is closest (in norm) to b = (7, 4, 8, 6).

We need $b' \in C(A)$ to be closest to b, where

$$A = \begin{pmatrix} 4 & 2 & 3 \\ 2 & 3 & 3 \\ 4 & 4 & 5 \\ 2 & 5 & 5 \end{pmatrix}$$

Notice that indeed Ax = b has no solution (using row reduction). So we just want to find $b' = \pi_{C(A)}(b)$. So we must find an orthogonal basis for C(A). Using row reduction we can see that A's columns are linearly

independent, so we start by applying the Gram-Schmidt process to A's columns. Let v_1, v_2, v_3 be the columns of A, then

$$w_{1} = v_{1} = \begin{pmatrix} \frac{4}{2} \\ \frac{4}{2} \end{pmatrix}$$

$$w_{2} = v_{2} - \pi_{w_{1}}(v_{2}) = v_{2} - \frac{\langle v_{2}, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 3 \end{pmatrix}$$

$$w_{3} = v_{3} - \pi_{w_{1}, w_{2}}(v_{3}) = v_{3} - \frac{\langle v_{3}, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} - \frac{\langle v_{3}, w_{2} \rangle}{\langle w_{2}, w_{2} \rangle} w_{2} = \frac{1}{35} \begin{pmatrix} -3 \\ -9 \\ 7 \\ 1 \end{pmatrix}$$

Now, all we need to do is compute $b' = \pi_{C(A)}(b) = \pi_{w_1,w_2,w_3}(b)$. This is just

$$b' = \frac{\langle b, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle b, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 + \frac{\langle b, w_3 \rangle}{\langle w_3, w_3 \rangle} = \frac{1}{4} \begin{pmatrix} 27\\17\\33\\23 \end{pmatrix}$$

And solving Ax = b' gives

$$x = \begin{pmatrix} 1 \\ -1/2 \\ 5/4 \end{pmatrix}$$

Exercise 6

Let $H \in \mathbb{R}^{m \times n}$ whose columns are linearly independent.

- (1) Prove that $H^{\top}H$ is invertible.
- (2) Given the linear system Hx = b, $\tilde{x} = (H^{T}H)^{-1}H^{T}b$ is called the **least squares** (LSQ). Show that

$$\min_{x \in \mathbb{R}^n} \left\{ \sum_{i=1}^m \left(b_i - (Hx)_i \right)^2 \right\}$$

is obtained at \tilde{x} .

- (1) We will show that $N(H^{\top}H) = N(H)$. Obviously if Hx = 0 then $H^{\top}Hx = 0$. Conversely, if $H^{\top}Hx = 0$ then $x^{\top}H^{\top}Hx = (Hx)^{\top}Hx = ||Hx||^2 = 0$, thus Hx = 0. Thus $r(H^{\top}H) = r(H) = n$ since H's columns are linearly independent, thus $H^{\top}H$ has full rank and is therefore invertible.
- (2) Notice that we are trying to minimize $||b Hx||^2$, which is obtained when $Hx = \pi_{C(H)}(b)$. So we want to show that $H\tilde{x} = \pi_{C(H)}(b)$, that is:

$$H(H^{\top}H)^{-1}H^{\top}b = \pi_{C(H)}(b)$$

Let us define $\tilde{b} = H(H^{\top}H)^{-1}H^{\top}b$, and we can see that $\tilde{b} \in C(H)$. Now all that remains to show is that $b - \tilde{b} \in C(H)^{\perp} = N(H^{\top})$ (we showed this in recitation). So

$$\boldsymbol{H}^{\top} \tilde{\boldsymbol{b}} = \boldsymbol{H}^{\top} \boldsymbol{H} (\boldsymbol{H}^{\top} \boldsymbol{H})^{-1} \boldsymbol{H}^{\top} \boldsymbol{b} = \boldsymbol{H}^{\top} \boldsymbol{b}$$

so $H^{\top}(b-\tilde{b})=0$ as required.