EVERY COUNTABLE GROUP IS A SUBGROUP OF THE MAPPING CLASS GROUP OF THE LOCH NESS MONSTER SURFACE

YANNICK KRIFKA AND DAVIDE SPRIANO

ABSTRACT. In this short note we give an elementary proof of the fact that every countable group is a subgroup of the mapping class group of the Loch Ness monster surface.

1. Introduction

The following theorem follows from a deep result of Aougab–Patel–Vlamis [APV21] about hyperbolic isometry groups of infinite type surfaces:

Theorem 1.1. Every countable group G is a subgroup of MCG(L) where L denotes the Loch Ness monster surface.

The purpose of this short note is to provide an elementary proof of this fact.

2. Proof of Theorem 1.1

By the Higman–Neumann–Neumann embedding theorem [HNN49, Theorem IV] any countable group G is a subgroup of a finitely generated group H'. Thus, G is also a subgroup of the product $H := H' \times \mathbb{Z} \times \mathbb{Z}$.

Let S' denote a finite generating set for H'. Then $S = \{(s',0,0) | s' \in S'\} \cup \{(e,1,0),(e,0,1)\} \subseteq H' \times \mathbb{Z} \times \mathbb{Z}$ is a generating set of H. Observe that the Cayley graph $\Gamma := \operatorname{Cay}_S(H)$ is one-ended and has degree at least 4. Therefore, the surface Σ that is obtained by thickening the Cayley graph Γ of H is one-ended, too. Moreover, one may check that Σ has infinite genus. By the classification of topological surfaces of infinite type [Ker23; Ric63] Σ is thus homeomorphic to the Loch Ness monster L; see Figure 1.

As a subgroup of H the group G acts freely on Γ via homeomorphisms. This action gives rise to a free action of G on $\Sigma \cong L$ by orientation preserving homeomorphisms, $\varphi \colon G \hookrightarrow \operatorname{Homeo}_+(L)$. Moreover, one obtains a continuous G-equivariant surjection $\pi \colon L \to \Gamma$ by projecting the thickening L to Γ .

For the monomorphism φ to pass to the mapping class group MCG(L) = Homeo $_+(L)$ /Homeo $_+^{\circ}(L)$ we will check that $\varphi(G) \cap$ Homeo $_+^{\circ}(L) = \{id\}$. Assume to the contrary that there is a non-trivial element $g \in G$ such that $\varphi(g)$ is isotopic to the identity. Let e be an edge in the identity coset \mathbb{Z}^2 and observe that $ge \neq e$. Note that $\Gamma - \{e, ge\}$ is connected: Both cosets \mathbb{Z}^2 and $g \cdot \mathbb{Z}^2$ remain connected (as subgraphs of Γ) after removing the edges e and e, respectively. As any vertex in Γ can be connected to any \mathbb{Z}^2 -coset via a path with edges in $S' \subseteq H'$, the graph $\Gamma - \{e, ge\}$ is connected. Let φ be the core curve in $\pi^{-1}(e^{\circ}) \cong S^1 \times (0, 1)$. Then e needs to be isotopic to the core curve of, and contained in, $\pi^{-1}(e^{\circ})$. However, φ and e cannot be isotopic: Otherwise, a component of e connected by an annulus. But e connected, since e connected; is connected; a contradiction. \square

Figure 1. The Loch Ness monster surface L of [Ghy95], also known as the infinite prison window.

1

Date: December 6, 2021.

References

- [APV21] T. Aougab, P. Patel, and N. G. Vlamis. *Isometry groups of infinite-genus hyperbolic surfaces*. 2021. arXiv: 2007.01982 [math.GT].
- [Ghy95] E. Ghys. "Topologie des feuilles génériques". In: *Ann. of Math.* (2) 141.2 (1995), pp. 387–422. ISSN: 0003-486X. DOI: 10.2307/2118526.
- [HNN49] G. Higman, B. H. Neumann, and H. Neuman. "Embedding Theorems for Groups". In: *Journal of the London Mathematical Society* s1-24.4 (1949), pp. 247–254. doi: 10.1112/jlms/s1-24.4.247.
- [Ker23] B. Kerékjártó. Vorlesungen über Topologie. Vol. 8. J. Springer, 1923.
- [Ric63] I. Richards. "On the classification of noncompact surfaces". In: *Trans. Amer. Math. Soc.* 106 (1963), pp. 259–269. ISSN: 0002-9947. DOI: 10.2307/1993768.

Email address: krifka@mpim-bonn.mpg.de

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Deutschland

Email address: spriano@maths.ox.ac.uk

 $Mathematical\ Institute, University\ of\ Oxford,\ Andrew\ Wiles\ Building,\ Radcliffe\ Observatory\ Quarter,\ Woodstock\ Road,\ Oxford,\ OX2\ 6GG$