Analysis

Wenxiao Yang*

 $^*\mbox{Department}$ of Mathematics, University of Illinois at Urbana-Champaign

2022

目录

1	Basis		
	1.1	Sequence Definitions	2
	1.2	Scalar Sequences	2
	1.3	Functions Basis	2
	1.4	Sets	3
2	Fun	ctions	3
	2.1	Extreme of Functions	3
		2.1.1 Weierstrass' Theorem(Extreme value Theorem)	4

1 Basis

1.1 Sequence Definitions

Sequences $\{x_k\}_{k=1}, \dots$ or $\{x_k\}, x_k \in \mathbb{R}^n$

Definition 1 (Convergence: note $x_k \to x$, $\lim_{k \to \infty} x_k = x$). Given $\varepsilon > 0$, $\exists N_{\varepsilon} \ s.t.$

$$||x_k - x|| < \varepsilon \quad \forall k \geqslant N_{\varepsilon}$$

Definition 2 (Cauchy Sequence). $\{x_k\}$ is Cauchy if given $\varepsilon > 0$, $\exists N_{\varepsilon}$ s.t.

$$||x_k - x_m|| < \varepsilon, \ \forall k, m \geqslant N_{\varepsilon}.$$

Note:

$$\{x_k\}$$
 converges $\iff \{x_k\}$ is Cauchy

Definition 3 (Subsequence). Infinite subset of $\{x_k\}$: $\{x_k : k \in \mathcal{K}\}$ or $\{x_k\}_{\mathcal{K}}$, where \mathcal{K} is subset of \mathbb{Z}^+ .

Definition 4 (Limit point). x is a limit point of $\{x_k\}$ if \exists a subsequence of $\{x_k\}$ that converges to x.

Definition 5 (Bounded Sequence).

$$||x_k|| \leq b, \forall k$$

Results about Bounded sequences:

- 1. Every bounded has at least one limit point.
- 2. A bounded sequence converges iff it has a **unique limit point**.

1.2 Scalar Sequences

Scalar sequences $\{x_k\}, x_k \in \mathbb{R}$:

Proposition 1. If $\{x_k\}$ is bounded above (below) and non-decreasing (non-increasing) it converges.

Proposition 2. The largest(smallest) limit point of $\{x_k\}$ is $\lim_{k\to\infty} \sup x_k$ ($\lim_{k\to\infty} \inf x_k$)

Proposition 3. $\{x_k\}$ converges $\iff -\infty < \lim_{k \to \infty} \inf x_k = \lim_{k \to \infty} \sup x_k < \infty$

1.3 Functions Basis

Definition 6 (Continuity). A real-valued function f is continuous at x if

for every $\{x_k\}$ converging to x satisfies that $\lim_{k\to\infty} f(x_k) = f(x)$.

Equivalent: given $\varepsilon > 0, \exists \delta > 0 \text{ s.t. } |f(x) - f(y)| < \varepsilon \quad \forall ||y - x|| < \delta$

f is continuous if it is continuous at all points x.

Definition 7 (Coercive). A real-valued function $f: \& \to \mathbb{R}$ is <u>coercive</u> if for **every** $\{x_k\} \subset \&$ s.t. $||x_k|| \to \infty$, $f(x_k) \to \infty$

Example 1 (Check coercive).

1)
$$x \in \mathbb{R}^2$$
, $f(x) = x_1^2 + x_2^2$ - coercive

2)
$$x \in \mathbb{R}, f(x) = 1 - e^{-|x|}$$
 - not coercive

3)
$$x \in \mathbb{R}^2$$
, $f(x) = x_1^2 + x_2^2 - 2x_1x_2$ - not coercive (需要所以 $||x_k|| \to \infty$ 都满足)

1.4 Sets

Definition 8 (Open Sets). A set $\& \subseteq \mathbb{R}^n$ is open if

 $\forall x \in \& \text{ we can draw a ball around } x \text{ that is contained in } \&.$

i.e.
$$\forall x \in \&, \exists \varepsilon > 0 \text{ s.t. } \{y : ||y - x|| < \varepsilon\} \le -\sigma$$

Definition 9 (Closed Sets). & is closed if $\&^c$ is open

Equivalent: if & contains all limit points of all sequences in &

Example 2 (Closed and Open Sets).

1)
$$(1,2) = \{x \in \mathbb{R} : 1 < x < 2\}$$
 - open

2) \mathbb{R} is both open and closed

3)
$$(-\infty, 1) = \{x \in \mathbb{R} : x < 1\}$$
 - open

4) $[1, \infty)$ is closed because its complement open

5) (1,2] is neither open nor closed

Definition 10 (Bounded Set). A is bounded if $\exists M \ s.t. \ ||x|| \leq M \ \forall x \in \&$

Definition 11 (Compact Set). $\mathcal{L} \subseteq \mathbb{R}^n$ is compact of it is closed and bounded.

Example 3 (Compact Set).
$$[1,2] = \{x \in \mathbb{R} : 1 \le x \le 2\}; \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 4\}$$

Definition 12 (Extreme of sets of scalars, sup A, inf A). Let $A \subset \mathbb{R}$.

- The infimum of A, or inf A is largest y s.t. $y \leq x, \forall x \in A$. If no such y exists, $\inf A = -\infty$
- Similar definition for supremum of A (or wrote as $\sup A$).

Proposition 4. If $\inf A(\sup A) = x^* \in A$, then $x^* = \min A(\max A)$

2 Functions

2.1 Extreme of Functions

Definition 13 (Extreme of Functions). Let $\& \subseteq \mathbb{R}^n, f : \& \to \mathbb{R}$

$$\inf_{x \in \&} f(x) = \inf\{f(x) : x \in \&\}$$

If $\exists x^* \in \&$ s.t. inf $f(x) = f(x^*)$. Then, f achieves (attains) its minimum and $f(x^*) = \min_{x \in \&} f(x)$ x^* is called a **minimizer** of f, written as $x^* \in \arg\min_{x \in \&} f(x)$. If x^* is unique, we write $x^* = \arg\min_{x \in \&} f(x)$

Similarly, supremum and maximum of f.

2.1.1 Weierstrass' Theorem(Extreme value Theorem)

Theorem 1 (Weierstrass' Theorem(Extreme value Theorem)).

If f is a **continuous** function on a **compact set**, & $\subseteq \mathbb{R}^n$, then f attains its min and max on & i.e.,

$$\exists x_1 \in \& \ s.t. \ f(x_1) = \inf_{x \in \&} f(x)$$

$$\exists x_2 \in \& \ s.t. \ f(x_2) = \sup_{x \in \&} f(x)$$

证明. (for existence of min; max is similar)

Let $\{\sigma_k\} \subseteq \&$ be s.t.

$$\inf_{x \in \&} f(x) \le f(\sigma_k) \le \inf_{x \in \&} f(x) + \frac{1}{k}$$

Then $\lim_{k\to\infty} f(\sigma_k) = \inf_{x\in\&} f(x)$

 \mathcal{L} is bounded $\Rightarrow \{\sigma_k\}$ has it least one limit point x,

 \mathcal{L} is closed $\Rightarrow x_1 \in \&$

$$f$$
 is continuous $\Rightarrow f(x_1) = \lim_{k \to \infty} f(\sigma_k) = \inf_{x \in \&} f(x)$

Corollary 1 (Corollary to WT). Let f be continuous on closed set & (not necessarily bounded). If f is coercive on & it attains its min on &.

证明. Consider $\{\sigma_k\}$ as in proof of WT.

Since f is closed, $f(x) < \infty$, $\forall x \in \&$. And f is coercive on &, which means $f(x) \to \infty$ if $||x|| \to \infty$. Hence, $\{\sigma_k\} \in \&$ is bounded. Rest of proof same as proof of WT.

Example 4.
$$f(x) = f(x_1, x_2, x_3) = x_1^4 + 2x_2^2 + e^{-x_3} + e^{2x_3}$$

- 1) Does f achieve its min and max on $\mathcal{L}_1 = \{x \in \mathbb{R}^3 : x_1^2 + 2x_2^2 + 3x_3^2 \le 6\}$?
 - \mathcal{L}_1 is compact and f is continuous. Both min and max are achieved (WT).
- 2) Does f achieve its min and max over \mathbb{R}^3 ?
 - $f \to \infty$ whenever $||x|| \to \infty \Rightarrow f$ is coercive.
 - \mathbb{R}^3 is closed.
 - $\Rightarrow f$ achieves its min. on \mathbb{R}^3 by corollary to WT.
 - max does not exist since $f \to \infty$ as $||x|| \to \infty$.

- 3) Does f achieve its min and max over $\mathcal{L}_2 = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 3\}$?
 - \mathcal{L}_2 is closed, but not bounded.
 - Since f is coercive, min achieved.
 - max does not exist since setting $x_1=0$ $x_2=3-x_3$ and letting $x_3\to\infty$ makes $f\to\infty$