Гипотезы о параметрах. Проверка гипотез о мат.ожидании нормально распределенной генеральной совокупности

Грауэр Л.В.

Гипотезы о параметрах распределения

$$\xi, F_{\xi}(x, \theta), \theta$$
 $X_{[n]}$
 $H_{0}: \theta = \theta_{0}$
 $H_{1}^{1}: \theta = \theta_{1} \neq \theta_{0}$
 $H_{1}^{2}: \theta > \theta_{0}$
 $H_{1}^{3}: \theta < \theta_{0}$
 $H_{1}^{4}: \theta \neq \theta_{0}$

Пусть
$$Z=\hat{ heta}$$

Односторонний и двусторонний критерий

Проверка гипотез о параметрах $N(a,\sigma)$

Пусть
$$\xi \sim N(a, \sigma)$$
, $X_{[n]}$

$$H_0: a = a_0$$

$$H_1^1: a=a_1\neq a_0$$

$$H_1^2: a > a_0$$

$$H_1^3 : a < a_0$$

$$H_1^4: a \neq a_0$$

a неизвестно, σ^2 известна

$$Z = \frac{\bar{X} - a}{\sigma / \sqrt{n}}$$

H_1	V_k	p — value
$a > a_0$		
$a = a_1 > a_0$		
$a < a_0$		
$a \neq a_0$		

a неизвестно, σ^2 неизвестна

$$Z = \frac{\bar{X} - a}{s/\sqrt{n}}$$

H_1	V_k	p — value
$a > a_0$		
$a < a_0$		
$a \neq a_0$		

Пример

$$\xi \sim N(a,\sigma)$$
, $D\xi = 1 \text{ mm}^2$, $a = 40 \text{ mm}$

$$n = 36$$

$$\bar{x}=40.2~\mathrm{mm}$$

Наиболее мощный критерий

Пусть $\xi \sim \mathit{N}(a,\sigma)$, $\mathit{X}_{[n]}$, a неизвестно, σ^2 известна

$$H_0: a = a_0$$

$$H_1: a = a_1 > a_0$$

Применим критерий Неймана-Пирсона.

$$L_0(X_{[n]})$$

$$L_1(X_{[n]})$$

Рассмотрим отношение:

$$\frac{L_1(X_{[n]})}{L_0(X_{[n]})} = \exp \frac{1}{2\sigma^2} \left\{ 2(a_1 - a_0)n\bar{X} - n(a_1^2 - a_0^2) \right\}.$$

Оптимальный критерий Неймана-Пирсона:

$$arphi^*(x) = egin{cases} 1, & ar{X} > c_1; \ arepsilon, & ar{X} = c_1; \ 0, & ar{X} < c_1, \end{cases}$$

константы c_1 и ε выбираются при заданном $\alpha_0 \in (0,1)$ как решение уравнения $\alpha_0 = \alpha(\varphi^*)$.

Зададим вероятность ошибки первого рода $lpha_0$:

$$\alpha_0 = \alpha(\varphi^*) = P\{\bar{X} > c_1 | H_0\}$$

Достаточный объем выборки п

Пусть

$$c_1 \geqslant a_0 + \frac{\sigma}{\sqrt{n}} u_{1-\alpha_0}$$

Зададим β_0 . Когда $\beta(\varphi^*) \leqslant \beta_0$?

$$\beta(\varphi^*) = P\{\bar{X} \leqslant c_1 | H_1\}$$

$$eta(arphi^*)\leqslanteta_0$$
, если

$$\frac{c_1-a_1}{\sigma}\sqrt{n}\leqslant u_{\beta_0}$$

Совместим условия для c_1

$$a_0 + \frac{\sigma}{\sqrt{n}} u_{1-\alpha_0} \leqslant c_1 \leqslant a_1 + \frac{\sigma}{\sqrt{n}} u_{\beta_0}.$$

Если

$$n\geqslant \frac{\sigma^2(u_{1-\alpha_0}-u_{\beta_0})^2}{(a_1-a_0)^2},$$

$$\alpha(\varphi^*) \leqslant \alpha_0 \text{ in } \beta(\varphi^*) \leqslant \beta_0.$$