

How to Develop Mapping Rules for Knowledge Graph Creation

Ana Iglesias-Molina & David Chaves-Fraga

- Most common methods to generate RDF:
 - OpenRefine
 - Ad-hoc solutions (scripts)
- Reproducibility?
- Maintainability?
- Big Data? Volume, Variety, Velocity

- Most common methods to generate RDF:
 - OpenRefine
 - Ad-hoc solutions (scripts)
- Reproducibility?
- Maintainability?
- Big Data? Volume, Variety, Velocity

Declarative Mappings

Table of Contents

- Introduction
- History
- Structure
- User-friendly options
 - YARRRML
 - Domain Specific Languages
 - Spreadsheets as mappings

Source Data

Knowledge Graph

People				
ID	Name	Birthdate	SportID	
1	Emily Scarrat	19900208	2	
2	Jonah Lomu	19751118	2	

Sports			
ID Sport			
1	Ice Skating		
2	Rugby		

Source Data

Knowledge Graph

People			
ID	Name	Birthdate	SportID
1	Emily Scarrat	19900208	2
2	Jonah Lomu	19751118	2

Sports			
ID Sport			
1	Ice Skating		
2	Rugby		

- Input
 - Data sources
 - Target ontologies
 - Mappings between the database and target ontologies
- Output
 - RDF graph

History

2000-2009

History

2000-2009

2009-2012

6

History

- Prefixes
- Triple Map
 - Source
 - Subject
 - Predicate-Object
 - Reference Object

```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="mailto://semweb.mmlab.be/ns/rml#>">.
<PERSON>
 rml:logicalSource [
   rml:source "/home/user/data/people.csv";
   rml:referenceFormulation ql:CSV;
 rr:subjectMap [
   rr:class ex:Person:
   rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:name];
   rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:birthdate];
   rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
   rr:predicateMap [ rr:constant ex:sport ];
   rr:objectMap [rr:parentTriplesMap <SPORT>;
    rr:joinCondition [ rr:child "sportID"; rr:parent "ID"; ];
```

- Prefixes
- Triple Map
 - Source
 - Subject
 - Predicate-Object
 - Reference Object

```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="mailto://semweb.mmlab.be/ns/rml#>">.
<PERSON>
 rml:logicalSource [
   rml:source "/home/user/data/people.csv";
   rml:referenceFormulation ql:CSV;
 rr:subjectMap [
   rr:class ex:Person:
   rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:name];
   rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:birthdate];
   rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
   rr:predicateMap [ rr:constant ex:sport ];
   rr:objectMap [rr:parentTriplesMap <SPORT>;
    rr:joinCondition [ rr:child "sportID"; rr:parent "ID"; ];
```

- Prefixes
- Triple Map
 - Source
 - Subject
 - Predicate-Object
 - Reference Object

```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="mailto://semweb.mmlab.be/ns/rml#>">.
<PERSON>
 rml:logicalSource [
   rml:source "/home/user/data/people.csv";
   rml:referenceFormulation ql:CSV;
 rr:subjectMap [
   rr:class ex:Person:
   rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:name];
   rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:birthdate];
   rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
   rr:predicateMap [ rr:constant ex:sport ];
   rr:objectMap [rr:parentTriplesMap <SPORT>;
    rr:joinCondition [ rr:child "sportID"; rr:parent "ID"; ];
```

- Prefixes
- Triple Map
 - Source
 - Subject
 - Predicate-Object
 - Reference Object

```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="mailto://semweb.mmlab.be/ns/rml#>">.
<PERSON>
 mil.logicalSource [
   rml:source "/home/user/data/people.csv";
   rml:referenceFormulation ql:CSV;
 m.subjectiviap į
   rr:class ex:Person:
   rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:name];
   rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:birthdate];
   rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
   rr:predicateMap [ rr:constant ex:sport ];
   rr:objectMap [rr:parentTriplesMap <SPORT>;
    rr:joinCondition [ rr:child "sportID"; rr:parent "ID"; ];
```

- Prefixes
- Triple Map
 - Source
 - Subject
 - Predicate-Object
 - Reference Object

```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="mailto://semweb.mmlab.be/ns/rml#>">.
<PERSON>
 rml:logicalSource [
   rml:source "/home/user/data/people.csv";
   rml:referenceFormulation ql:CSV;
 rr:subjectMap [
   rr:class ex:Person:
   rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
   rr:predicateMap [ rr:constant ex:name ];
   rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:birthdate];
   rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
   rr:predicateMap [ rr:constant ex:sport ];
   rr:objectMap [rr:parentTriplesMap <SPORT>;
    rr:joinCondition [ rr:child "sportID"; rr:parent "ID"; ];
```

- Prefixes
- Triple Map
 - Source
 - Subject
 - Predicate-Object
 - Reference Object

```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="mailto://semweb.mmlab.be/ns/rml#>">.
<PERSON>
 rml:logicalSource [
   rml:source "/home/user/data/people.csv";
   rml:referenceFormulation ql:CSV;
 rr:subjectMap [
   rr:class ex:Person:
   rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:name];
   rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:birthdate];
   rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
   rr:predicateMap [ rr:constant ex:sport ];
   rr:objectMap [rr:parentTriplesMap <SPORT>;
    rr:joinCondition [ rr:child "sportID"; rr:parent "ID"; ];
```

- Prefixes
- Triple Map
 - Source
 - Subject
 - Predicate-Object
 - Reference Object

```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="mailto://semweb.mmlab.be/ns/rml#>">.
<PERSON>
 rml:logicalSource [
   rml:source "/home/user/data/people.csv";
   rml:referenceFormulation ql:CSV;
 rr:subjectMap [
   rr:class ex:Person:
   rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:name];
   rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:birthdate];
   rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
   rr:predicateMap | rr:constant ex:sport |;
   rr:objectMap [rr:parentTriplesMap <SPORT>;
    rr:joinCondition [ rr:child "sportID"; rr:parent "ID"; ];
```


people.csv				
ID	Name	Birthdate	SportID	
1	Emily Scarrat	19900208	2	
2	Jonah Lomu	19751118	2	

```
@prefix ex: <http://ex.com/>.
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="http://semweb.mmlab.be/ns/rml#>">.
<PERSON>
rml:logicalSource [
  rml:source "/home/user/data/people.csv";
  rml:referenceFormulation ql:CSV;
```

people.csv				
ID	SportID			
1	Emily Scarrat	19900208	2	
2	Jonah Lomu	19751118	2	


```
@prefix ex: <http://ex.com/>.
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="http://semweb.mmlab.be/ns/rml#">.ml</a>.
<PERSON>
rml:logicalSource [
  rml:source "/home/user/data/people.csv";
  rml:referenceFormulation ql:CSV;
rr:subjectMap [
  rr:class ex:Person;
  rr:template "http://ex.com/Person/{ID}";
```

people.csv				
ID	Name	Birthdate	SportID	
1	Emily Scarrat	19900208	2	
2	Jonah Lomu	19751118	2	


```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="http://semweb.mmlab.be/ns/rml#">.
<PERSON>
 rml:logicalSource [
   rml:source "/home/user/data/people.csv";
   rml:referenceFormulation ql:CSV;
 rr:subjectMap [
   rr:class ex:Person;
   rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:name];
   rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:birthdate];
   rr:objectMap [rml:reference "Birthdate"];
```

people.csv				
ID	Name	Birthdate	SportID	
1	Emily Scarrat	19900208	2	
2	Jonah Lomu	19751118	2	


```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="http://semweb.mmlab.be/ns/rml#">.
<PERSON>
 rml:logicalSource [
   rml:source "/home/user/data/people.csv";
   rml:referenceFormulation ql:CSV;
 rr:subjectMap [
  rr:class ex:Person;
   rr:template "http://ex.com/Person/{ID}";
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:name];
   rr:objectMap [rml:reference "Name"];
 rr:predicateObjectMap [
   rr:predicateMap [rr:constant ex:birthdate];
   rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
   rr:predicateMap [ rr:constant ex:sport ];
   rr:objectMap [rr:parentTriplesMap <SPORT>;
    rr:joinCondition [ rr:child "sportID"; rr:parent "ID"; ];
```

people.csv				
ID	Name	Birthdate	SportID	
1	Emily Scarrat	19900208	2	
2	Jonah Lomu	19751118	2	

sports.csv			
ID Sport			
1	Ice Skating		
2 Rugby			


```
@prefix ex: <http://ex.com/>.
@prefix rr: <a href="http://www.w3.org/ns/r2rml#">http://www.w3.org/ns/r2rml#>.
@prefix rml: <a href="http://semweb.mmlab.be/ns/rml#">.
<P
    <SPORT>
      rml:logicalSource [
        rml:source "/home/user/data/sports.csv";
        rml:referenceFormulation ql:CSV;
      rr:subjectMap [
        rr:class ex:Sport;
        rr:template "http://ex.com/Sport/{ID}";
      rr:predicateObjectMap [
        rr:predicateMap [rr:constant ex:name];
        rr:objectMap [rml:reference "sport"];
     ];
   rr:objectMap [rml:reference "Birthdate"];
 rr:predicateObjectMap [
   rr:predicateMap [ rr:constant ex:sport ];
   rr:objectMap [rr:parentTriplesMap <SPORT>;
    rr:joinCondition [ rr:child "sportID"; rr:parent "ID"; ];
```

- Input
 - RDB
 - Target ontologies
 - Mappings between the RDB and target ontologies
- Output
 - RDF graph
 - SPARQL result-set (query translation techniques)
- Engines: https://www.w3.org/TR/rdb2rdf-implementations/

https://www.w3.org/TR/r2rml/

- Input
 - Data sources in any format
 - Target ontologies
 - Mappings between the data sources and target ontologies in RML
- Output
 - RDF graph
- Engines: http://rml.io/implementation-report/

R2F	RML	RML	
Logical Table (relational database)	rr:logicalTable	Logical Source (CSV, XML, JSON,HTML,)	rml:logicalSource
Table Name	rr:tableName	URI (pointing to the source)	rml:source
column	rr:column	reference	rml:reference
(SQL)	rr:SQLQuery	Reference Formulation	rml:referenceFormulation
per row iteration		defined iterator	rml:iterator

Info: http://rml.io/

Examples: https://bit.ly/36Be8r7

User-friendly - YARRRML

YARRML

http://rml.io/yarrrml/matey/

People				
ID Name Birthdate Spo				
1	Emily Scarrat	19900208	2	
2	Jonah Lomu	19751118	2	

Sports				
ID Sport				
1	Ice Skating			
2	Rugby			

Target user: Scientist with technical background in data management

Advantage: easy to read and to create; translated to RML

```
prefixes:
 ex: "http://ex.com/"
mappings:
 PERSON:
  sources:
   - [/home/user/data/people.csv~CSV]
  s: http://ex.com/Person/$(ID)
  po:
   - [a, ex:Person]
   - [ex:name, $(Name)]
   - [ex:birthdate, $(Birthdate)]
   - p: ex:sport
     U.
      - mapping: SPORT
       condition:
        function: equal
        parameters:
          - [str1, $(SportID)]
          - [str2, $(ID)]
 SPORT:
  sources:
   - [/home/user/data/people.csv~CSV]
  s: http://ex.com/Sport/$(ID)
  po:
   - [a, ex:Sport]
   - [ex:name, $(Sport)]
```

Domain Specific Language (DSL)

https://zazuko.com/blog/rdf-and-dsl-a-perfect-match/

People				
ID	Name	Birthdate	SportID	
1	Emily Scarra t	19900208	2	
2	Jonah Lomu	19751118	2	

Sports		
ID	Sport	
1	lce Skating	
2	Rugby	

Target user: knowledge engineering with programming skills

Advantage: always generates syntactically valid mappings

```
map PERSON from People {
  subject template http://ex.com/Person/{0} with ID;
 types ex.Person;
 properties
   ex.name from Name
   ex.birthdate from Birthdate
   ex.sport link SPORT with SportID
map SPORT from Sports {
 subject template http://ex.com/Sport/{0} with ID;
 types ex.Sport;
  properties
   ex.name from Sport
```

Spreadsheets as mappings

Ana Iglesias-Molina, David Chaves-Fraga, Freddy Priyatna, Óscar Corcho. "Towards the Definition of a Language-Independent Mapping Template for Knowledge Graph Creation". Third International Workshop on Capturing Scientific Knowledge (Sciknow 2019) co-located with the 10th International Conference on Knowledge Capture, 2019

https://github.com/oeg-upm/Excel-mapping-translator https://github.com/w0xter/ABM2ALL

Spreadsheets as mappings

Ana Iglesias-Molina, David Chaves-Fraga, Freddy Priyatna, Óscar Corcho. "Towards the Definition of a Language-Independent Mapping Template for Knowledge Graph Creation". Third International Workshop on Capturing Scientific Knowledge (Sciknow 2019) co-located with the 10th International Conference on Knowledge Capture, 2019

https://github.com/oeg-upm/Excel-mapping-translator https://github.com/w0xter/ABM2ALL

User-friendly - Spreadsheets

Prefix sheet			
Prefix	URI		
ex	http://ex.com/		

Subject sheet			
ID Class		URI	
PERSON	ex:Person	http://ex.com/Person/{ID}	
SPORT	ex:Sport	http://ex.com/Sport/{ID}	

Source sheet			
ID	Feature	Value	
PERSON	source	data/people.csv	
PERSON	format	CSV	
SPORT	source	data/sports.csv	
SPORT	format	CSV	

Predicate-Object sheet						
Predicate	Object	DataType	ReferenceID	InnerRef	OurterRef	ID
ex:name	{name}	string				PERSON
ex:birthdate	{birthdate}	date				PERSON
ex:sport			SPORT	SportID	ID	PERSON
ex:name	{sport}	string				SPORT

User-friendly - Spreadsheets

- Following idea of mapping translation*
- Structured in sheets
- Objective: language-independent
- Target user: Non mapping experts
- Advantages: Improves rule visualization, enables using functions of spreadsheets

Oscar Corcho, Freddy Priyatna, and David Chaves-Fraga. 2019. Towards a New Generation of Ontology Based Data Access. *Semantic Web Journal* (2019).

Mapping translation:

- From independent rules to specific language (ISWC 2020)
- Web application to create mappings (ISWC 2020 Demo)

- Engines:

- Web applications of morph tools (Demos)
- Morph-CSV: efficient management tabular data exploiting mapping rules (ESWC 2020 and ISWC 2020)

OTHER IDEAS?

Help us decide:

- 1. SpreadPing (Spreadsheet mapPing)
- 2. MapSheet
- 3. Sheet2Map
- 4. S2M (Sheet to Mapping)
- 5. morph-translation
- 6. ABM2ALL (ABstract Mapping to ALL)
- 7. SpreadMap
- 8. Mapeator
- 9. Map-ATOMATIC
- 10.More ideas?

How to Develop Mapping Rules for Knowledge Graph Creation

Ana Iglesias-Molina & David Chaves-Fraga

