Topic Summaries

Alyssa Hu

February 3, 2020

1 Section: Statistical Methods & Theory

1.1 Subsection: Statistical Theory

1.2 Subsection: Exploratory Data Analysis

1.3 Subsection: Design of Studies

1.4 Subsection: Statistical Models

2 Section: Data Wrangling Computation and Data Science

2.1 Subsection: Software and Tools

2.2 Subsection: Accessing and Wrangling Data

2.3 Subsection: Basic Programming Concepts

2.4 Subsection: Computationally Intensive Statistical Methods

Simulation/ Monte Carlo

Student Survey: (2.82 . 3.33)

Faculty Survey: (0.87, 2.73)

3 Section: Mathematical Foundations

3.1 Subsection: Calculus

Integration incl. multivariable

Student Survey: (5.21, 5.63)

Faculty Survey: (1.07, 2.73)

Differentiation incl. multivariable

Student Survey: (5.19, 5.65)

Faculty Survey: (1.33, 2.87)

3.2 Subsection: Linear Algebra

Matrix manipulation

Student Survey: (4.45, 4.95)

Faculty Survey: (0.8, 2.47)

Linear transformations

Student Survey: (4.41, 4.92)

Faculty Survey: (0.73, 2.2)

Projections in Euclidean space

Student Survey: (3.32, 3.91)

Faculty Survey: (0.2, 1.47)

Eigenvalues/ eigenvectors

Student Survey: (3.67, 4.25)

Faculty Survey: (0.33 , 1.73)

Matrix decomposition

Student Survey: (3.59, 4.14)

Faculty Survey: (0.13, 1.27)

3.3 Subsection: Probability

Properties of 30 -Faculty Survey: univariate and Student Survey: (4, 4.54)(1.8, 3.4)multivariate 1234567 random varaibles 30 -6 **-**Discrete & continuous Student Survey: Faculty Survey: 20 -(4.56, 5.07)(2, 3.53)distributions 234567 Assessment Item: Assessment: **Probability Distributions** (0.48, 0.62)30 -20 -Faculty Survey: Student Survey: 10 -Markov chains (0.67, 2.53)0 1 2 3 4 1234567

3.4 Subsection: Connecting mathematical foundations & applications in statistics

Connections between the above mathematical foundations and their applications in statistics $\begin{array}{c} 40 \\ 30 \\ 20 \\ 10 \\ 12 \\ 34 \\ 567 \end{array}$ Student Survey: $\begin{array}{c} 5 \\ 3 \\ 2 \\ 10 \\ 12 \\ 34 \\ 567 \end{array}$ Faculty Survey: (2.07, 3.2)

4 Section: Statistical Practice

4.1 Subsection: Communication

Write clearly

Student Survey:

(5.06, 5.47)

Student Survey:

(2.33, 3.73)

Student Survey:

(4.99, 5.45)

Faculty Survey:

(1.6, 3.2)

4.2 Subsection: Collaboration

4.3 Subsection: Ethical Issues

5 Section: Problem Solving

5.1 Subsection: Complex open-ended problems

5.2 Subsection: Scientific method and statistical problem-solving cycle

6 Section: Discipline-Specific Knowledge

6.1 Subsection: Discipline-Specific Knowledge

Apply statistical Student Survey: Faculty Survey: reasoning to (1.53, 2.87) domain specific (3.56, 3.94)1234567 0 1 2 3 4 auestions Translate research Faculty Survey: Student Survey: questions into (1.6, 3.13)(3.58, 3.98)1234567 0 1 2 3 4 statistical questions

Communicate results to different disciplinary audiences

Student Survey: (3.58, 3.99)

Faculty Survey: (0.73, 2.33)

Study a substantive area of application

Student Survey: 4-(3.41, 3.82) 0-

Faculty Survey: (0.4, 1.73)

7 Subsection Summaries!

Probability	75 - 50 - 25 - 0 - 1 2 3 4 5 6 7	Student Survey: (4.08 , 4.42)	Faculty Assessed: 3/3
Connecting Math and Statistics	40 - 30 - 20 - 10 - 0 - 1 2 3 4 5 6 7	Student Survey: (3.73 , 4.26)	Faculty Assessed: 1/1
Communication	250 - 200 - 150 - 100 - 50 - 1 2 3 4 5 6 7	Student Survey: (4.83, 5.02)	Faculty Assessed: 6/6
Collaboration	100 - 50 - 0 - 1 2 3 4 5 6 7	Student Survey: (5.18, 5.42)	Faculty Assessed: 3/3
Ethical Issues	200 - 150 - 100 - 50 - 0 - 1 2 3 4 5 6 7	Student Survey: (5.19, 5.42)	Faculty Assessed: 3/4
Complex open-ended problems	60 - 40 - 20 - 0 - 1 2 3 4 5 6 7	Student Survey: (4.15, 4.5)	Faculty Assessed: 2/2
Scientific Method	300 - 200 - 100 - 0 - 1 2 3 4 5 6 7	Student Survey: (4.47, 4.64)	Faculty Assessed: 7/7
Discipline-specific Knowledge	150 - 100 - 50 - 0 - 1 2 3 4 5 6 7	Student Survey: (3.64 , 3.84)	Faculty Assessed: 4/4

8 Scatterplots!

Faculty Consensus vs Student Survey Means

Student Assessment Means vs Student Survey Means

Faculty Consensus vs Student Assessment Means

9 Section: Misc

9.1 Subsection: Opportunities for Authentic Practice

Consulting experience(s)

Other extracurriculars experiences posing and answering statistical questions

9.2 CAOS

