

Networking Algorithms

Mani Srivastava UCLA

[Project: Dynamic Sensor Nets (ISI-East)]

Outline

- I. Dynamic location discovery
- II. Topology management
- III. Dynamic MAC address assignment

I. Dynamic Location Discovery

- Discovery of absolute and relative location important
 - Location-based naming and addressing, geographical routing, tracking
- GPS not enough
 - □ LOS-requirements, costly, large, power-hungry
- Ad hoc precludes trilateration with special high power beacons
 also, susceptible to failure
- Problem: given a network of sensor nodes where a few nodes know their location (e.g. through GPS) how do we calculate the location of the other nodes?

Ad-Hoc Localization System (AHLoS)

GOALS

- Localization in a distributed fashion
- Trade-offs
 - Robustness
 - □ Computation vs. communication
- Ranging using Ultrasound
- Integrated with routing messages
 - □ Location discovery almost free
- Implementation
 - Ranging using radiosynchronized ultrasound
 - 3m range, noisy
 - □ Accuracy:
 - Iterative: ~ 10 cm
 - Collaborative: ~ 3 cm

Iterative Multilateration

Atomic multilateration applied iteratively across the network
 may stall if network is sparse, % of beacons is low, terrain obstacles

Uniformly distributed deployment in a field 100x100. Node range = 10.

Iterative Multilateration Accuracy

50 Nodes 10% beacons 20mm white gaussian ranging error

Collaborative Multilateration

- Step 1: form "Collaborative Subtrees" within their neighborhood
 - an unknown node is collaborative if it has at least 3 participating neighbors
 - a node is participating if it is either a beacon, or if it is an unknown node that is also participating
 - □ at each node at least one of its participating nodes are new to the set
 - □ at least one of the beacons used to determine the position of a node should not be collinear with the other beacons used to determine the node position
- Step II: obtain initial location estimate for subsequent computation
 - □ use beacon locations & hop distances to obtain approximate location bounds
- Step III: perform computation
 - □ Measurement Update part of Kalman Filter
 - □ Centralized, at a leader elected in the subtree
 - □ or, Fully Distributed
 - can start computing locations based on node connectivity and initial estimate

Uncertainty of estimat location in first iteration

Uncertainty of estimat location in second iteration

Example

Network of 30 nodes

6 beacons, 24 unknowns
Ranging noise experimentally derived

Computation & Communication Expense

Computation Expense Computation vs. Communication TradeofResults using the FLOPS command in MATLAB

- Total number of transmissions:
 - □ Centralized 70 packets
 - □ Distributed 416 packets
- Centralized approach has additional overhead for leader election

II. Topology Management

- Two phases of sensor network operation
 - Detect event
 - Relay information to users
- Energy consumption of radio dominates that of sensors & CPU
 - **⇒ perform event detection continuously**
- The only energy efficient mode of the radio is the sleep mode
 - ⇒ put radio to sleep as often as possible
- Existing approaches: density-energy trade-off
 - keep enough nodes awake to handle the <u>data forwarding</u> (forwarding state)
 - but for substantial energy savings we need large densities
- Observation
 - most of the time, the network is <u>only monitoring</u> its environment, waiting for an event to happen (monitoring state)
- Idea:
 - put node radios to sleep and wake them up when they need to forward data
 - low duty-cycle paging channel using a 2nd radio: trades off energy savings for setup latency

STEM: High-level Operation

Detailed Operation

Latency - Energy Analysis

Fraction of time in the forwarding state: α

$$\beta = \frac{1}{\alpha}$$

$$\overline{T}_S \approx \frac{T + \frac{2}{3}T_{Rx}}{2}$$

Energy savings

$$\frac{E}{E_0} \approx \frac{T_{Rx}}{T}$$

Appropriate choice of interval sizes

Mostly monitoring state: $\alpha << 1$ or β >> 1

Energy-Latency Trade-off

$$T_{Rx} = 0.225 \text{ s}$$

 $\frac{\overline{T}_S}{T_{Rx}}$

• The tradeoff between energy and delay is manipulated by varying T

$$T \uparrow \qquad \Rightarrow \qquad E \downarrow \qquad T_S \uparrow$$

• The energy savings increase as the monitoring state becomes more dominant, $\beta \uparrow$

Topology Management in Forwarding State

GAF: Geographic Adaptive Fidelity [Ya2001]

- Conserve traffic forwarding capacity
- Divide network in virtual grids
- Each node in a grid is equivalent from a traffic forwarding perspective
 - Keep 1 pode awake in each
- GAF reduces the energy by a factor M'
- This factor is a function of the average number of nodes in a grid:

 M
 for uniformly

 $M' = \frac{M}{1 - e^{M}}$

for uniformly random node deployment

neighbors

Comparing STEM & GAF

Combining STEM and GAF for Joint Energy-Latency-Density Trade-off

- As in GAF, 1 node is active in each grid ⇒ the grid can be considered a virtual node
- This virtual node runs the STEM protocol

III. Dynamic MAC Address Assignment

- Wireless spectrum is broadcast medium
- MAC addresses are required
- In wireless sensor networks, data size is small
- Unique MAC address present unneeded overhead
- Employ spatial address reuse (similar to reuse in cellular systems)
 - □ MAC address, link ids
- Two aspects
 - □ Dynamic assignment algorithm
 - □ Address representation

Distributed Assignment Algorithm

- 1. Network is operational (nodes have valid address)
- Listen to periodic broadcasts of neighboring nodes
- In case of conflict, notify node

 (this node resends a broadcast)
- Choose non-conflicting address and broadcast address in a periodic cycle. At this point the new node has joined the network.
- Additive convergence: network remains operational during address selection
- Mapping: unique ID to spatially reusable address
- Algorithm also valid when unidirectional links

Encoded Address Representation

Encoded (bits/address)	1.7
Fixed size	2
(bits/address)	field?

- Non-uniform address frequency
 - □ Huffman encoding
 - □ Robust: can represent any address
- Practical address selection
 - All addresses with same codeword size are equivalent
 - □ Choose random address in that range to reduce conflict messages

Addres	0-	12-	18-	20-	2	•••
s range	11	17	19	22	3	
Codewo rd size (bits)	4	5	6	7	8	•••

Frequency

Non-uniform Network Density

Effect of Packet Losses ($\lambda = 10$)

Frequency

Convergence time (s)

Scalability

- Address assignment
 - Distributed algorithm with periodic localized communication
- Address representation
 - Encoded addresses depend only on distribution

Scales perfectly (neglecting edge effects)

Off-line	Centrali zed	Distribut ed
++	_	+

Unique	Fixed reusable	Encoded reusable	
	<u>±</u>	+	

Representationsignment

Simulation Results

Scheme

		n type	(bits)	scalabii ity
	Globally unique	Manufacturi ng	128	+
	Network wide unique	Deployment	14	-
	Fixed size dynamic	Centr. / Distr.	4.7	±
e]	Encoded dynamic	Distributed	4.4	+

Address

selectio

Addres

s size

scalabil

Av.

size

Our scheme s

Dynamic Address Allocation: Summary

Spatial reuse of address

