SIN 251 – Organização de Computadores (2023)

Aula 11 – Ciclo de Busca e Execução – Interrupções

Prof. João Fernando Mari joaof.mari@ufv.br

Roteiro

- Interrupções
- O Ciclo de Interrupção
- Ciclo de Instrução com Interrupção
- Ganho em Eficiência

- Interrupções são mecanismos pelos quais componentes (Memória, E/S) podem interromper a sequência normal de instruções;
- O objetivo principal é melhorar a eficiência do processamento.

- Classes de interrupção:
 - Interrupção de software:
 - overflow, divisão por zero, instrução ilegal ou referência a memória fora do espaço do programa;
 - Interrupção de relógio:
 - gerada pelo relógio interno do processador;
 - Interrupção de E/S:
 - gerada por um controlador de E/S;
 - Interrupção de falha de hardware:
 - gerada pela falha de hardware (queda de energia, erro de paridade).

O Ciclo de Interrupção

- O clico de interrupção é
 - Adicionado ao ciclo de instrução.
- Processador verifica interrupção.
 - Indicado por um sinal de interrupção.
- Se não houver interrupção
 - Busca a próxima instrução.
- Se houver interrupção pendente:
 - Suspende execução do programa atual.
 - Salva o contexto.
 - Define PC para endereço inicial da rotina de tratamento de interrupção.
 - Interrupção de processo.
 - Restaura contexto e continua programa interrompido.

- Exemplo:
 - Um processador recebe uma instrução para transferência de dados para a impressora (WRITE):

① ② ③ → Instruções que não envolvem E/S

Preparo para a operação de E/S

Instruções para conclusão da E/S

tempo de E/S

→ Ocorrência de Interrupção

1 2 3 — Instruções que não envolvem E/S

Preparo para a operação de E/S

Instruções para conclusão da E/S

Do ponto de vista do usuário:

Ciclo de Instrução com Interrupção

Ganho em Eficiência

de E/S

Ganho em Eficiência

Sem Interrupções

Com Interrupções, grande tempo de E/S

O ciclo de Instrução (com Interrupção)

Diagrama de transição de estados

O ciclo de Instrução (com Interrupção)

Diagrama de transição de estados

Múltiplas interrupções

- E se mais de um dispositivo gerar uma interrupção;
- Por exemplo:
 - Uma impressora;
 - Um disco;
 - Uma linha de comunicação;
 - Etc...

Múltiplas interrupções

- Desativar interrupções:
 - Processador ignorará outras interrupções enquanto processa uma interrupção.
 - Interrupções permanecem pendentes e são verificadas após primeira interrupção ter sido processada.
 - Interrupções tratadas em sequência enquanto ocorrem.

Definir prioridades:

- Interrupções de baixa prioridade podem ser interrompidas por interrupções de prioridade mais alta.
- Quando interrupção de maior prioridade tiver sido processada, processador retorna à interrupção anterior.

Desabilitar Interrupções

- Mesmo que a interrupção Y possua maior prioridade do que a interrupção X
 - ela terá que esperar o tratamento da interrupção X para iniciar.

Desabilitar Interrupções

- Vantagens:
 - Mais simples;
 - As interrupções são tratadas sequencialmente.
- Desvantagens:
 - Não considera requisitos de tempo;
 - Pode ocorrer perda de dados.

Definição de Prioridades

Se a interrupção Y possui um nível de prioridade maior do que a interrupção X,

o tratamento da interrupção X é interrompido para dar lugar ao tratamento da

interrupção Y.

Definição de Prioridades

- Vantagens:
 - Maior eficiência de tempo.
 - Não ocorre perda de dados.
- Desvantagens
 - Mais complexo de ser implementado.

EXEMPLO: Definição de Prioridades

- Considere que no seguinte sistema de computação os três dispositivos de entrada e saída listados abaixo solicitem interrupções ao processador.
 - Prioridades:
 - Impressora: prioridade 2;
 - Disco: prioridade 4;
 - Linha de comunicação: prioridade 5.
 - Ocorrência da interrupção:
 - Impressora: tempo = 10;
 - Disco: tempo = **20**.
 - Linha de comunicação : tempo = 15;
- Obs: O tratamento de todas as instruções necessitam de 10 unidades de tempo para serem finalizadas.

EXEMPLO: Definição de Prioridades

Referências

- STALLINGS, W. **Arquitetura e Organização de Computadores**, 8. Ed., Pearson, 2010.
 - Seções 10.1 e 10.2
- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2003.
 - Seções 9.1 e 9.2

FIM