CONCOURS NATIONAL COMMUN - SESSION 2000 - MP

ROYAUME DU MAROC

N.B : L'énoncé comportait un certain nombre de fautes de frappe (par exemple, des inégalités strictes au lieu d'inégalité larges...)

PARTIE 1:

A : Quelques propriétés de Φ_u

- 1) \mathcal{T} est le noyau de la forme linéaire non nulle "Tr", c'est donc un hyperplan de $\mathcal{L}(E)$ (cf cours).
- **2)** Φ est linéaire par rapport à la première variable : $\forall (\lambda_1, \lambda_2) \in \mathbb{K}^2$, $\forall (u_1, u_2, v) \in \mathcal{L}(E)^3$, on a : $\Phi(\lambda_1 u_1 + \lambda_2 u_2, v) = (\lambda_1 u_1 + \lambda_2 u_2)v v(\lambda_1 u_1 + \lambda_2 u_2) = \lambda_1 (u_1 v v u_1) + \lambda_2 (u_2 v v u_2) = \lambda_1 \Phi(u_1, v) + \lambda_2 \Phi(u_2, v)$.
 - De plus, $\forall (u,v) \in \mathcal{L}(E)^2$, $\Phi(v,u) = -\Phi(u,v)$, donc Φ est antisymétrique.
 - $-\Phi$ est donc aussi linéaire par rapport à la seconde variable; c'est donc bien une application bilinéaire antisymétrique.
- 3) a) $\forall k \in \mathbb{N}$, $u^k \in \text{Ker}(\Phi_u)$ de façon évidente $(u^k \text{ commute avec } u!)$, et, $\text{Ker}(\Phi_u)$ étant un sous-espace vectoriel de $\mathcal{L}(E)$, $\text{Vect}(\{Id, u, ..., u^{n-1}\}) \subset \text{Ker}(\Phi_u)$. Puisque u n'est pas une homothétie, $\{Id, u\}$ est libre dans $\mathcal{L}(E)$, donc $\dim(\text{Ker}(\Phi_u) \geqslant 2$.
 - b) Si $v \in \text{Ker}(\Phi_u)$, alors v commute avec u, donc <u>laisse stable les sous-espaces propres de u</u> (résultat du cours).
- 4) Si $w \in \text{Im}(\Phi)$, il existe $(u, v) \in \mathcal{L}(E)^2$ tels que w = uv vu. On a alors : Tr(w) = Tr(uv) Tr(vu) = 0, donc $w \in \mathcal{T}$ et $\text{Im}(\Phi) \subset \mathcal{T}$.
 - $\operatorname{Im}(\Phi_u) \subset \mathcal{T}$ pour la même raison.
 - On ne peut donc pas avoir [u, v] = Id, puisque $Tr(Id) \neq 0$.
 - On ne peut pas avoir $\operatorname{Im}(\Phi_u) = \mathcal{T}$, car sinon, \mathcal{T} étant un hyperplan de $\mathcal{L}(E)$, on aurait $\operatorname{dim}(\operatorname{Ker}(\Phi_u)) = 1$. Or cela est impossible d'après 3.a, lorsque u n'est pas une homothétie, et, lorsque u est une homothétie, $\operatorname{Ker}(\Phi_u) = \mathcal{L}(E)$, donc c'est impossible aussi dans ce cas.
- 5) a) Si u est une homothétie, alors il est clair que pour tout $x \in E$, la famille (x, u(x)) est liée.
 - Réciproquement, supposons que pour tout $x \in E$, la famille (x, u(x)) est liée. Soit alors (e_1, \ldots, e_n) une base de E.

Pour tout $i \in [1, n]$, $(e_i, u(e_i))$ est liée, donc il existe $\lambda_i \in \mathbb{K}$ tel que $u(e_i) = \lambda_i e_i$.

On a alors, pour $i \neq j$: $u(e_i + e_j) = u(e_i) + u(e_j) = \lambda_i e_i + \lambda_j e_j$. $u(e_i + e_j)$ étant colinéaire à $e_i + e_j$ (et la famille (e_i, e_j) étant libre), on en déduit $\lambda_i = \lambda_j$.

Ainsi, il existe $\lambda \in \mathbb{K}$ tel que $u(e_i) = \lambda e_i$ pour tout i, et, par suite, $u(x) = \lambda x$ pour tout $x \in E$, et u est une homothétie.

- b) Si u est une homothétie, tout endomorphisme v de E commute avec u, donc appartient à $\text{Ker}(\Phi_u)$, d'où $\text{Ker}(\Phi_u) = \mathcal{L}(E)$.
 - Si $\operatorname{Ker}(\Phi_u) = \mathcal{L}(E)$, alors, pour tout $v \in \mathcal{L}(E)$, uv = vu. En particulier, si $x \neq 0$, si H est un hyperplan de E supplémentaire de $\mathbb{K}x$, et si v est la symétrie par rapport à $\mathbb{K}x$ parallèlement à H, on a : uv(x) = u[v(x)] = u(x), d'où v[u(x)] = u(x),

donc u(x) est invariant par v et, par suite, est colinéaire à x.

Ainsi, pour tout $x \in E$, la famille (x, u(x)) est liée (le cas x = 0 étant évident), donc u est une homothétie d'après la question précédente.

a) – Pour k = 0, 1, la formule proposée est évidente.

- Supposons la démontrée à l'ordre
$$k \ge 1$$
. Alors $(\Phi_u)^{k+1}(v) = \sum_{p=0}^k (-1)^p C_k^p \Phi_u (u^{k-p}vu^p)$

$$= \sum_{p=0}^k (-1)^p C_k^p (u^{k+1-p}vu^p - u^{k-p}vu^{p+1}) = \sum_{p=0}^k (-1)^p C_k^p (u^{k+1-p}vu^p) - \sum_{p=0}^k (-1)^p C_k^p (u^{k-p}vu^{p+1})$$

$$= \sum_{p=0}^{k+1} (-1)^p C_k^p (u^{k+1-p}vu^p) - \sum_{p=0}^{k+1} (-1)^{p-1} C_k^{p-1} u^{k-p+1}vu^p)$$
(en ayant posé $C_k^{-1} = C_k^{k+1} = 0$)
$$= \sum_{p=0}^{k+1} (-1)^p (C_k^p + C_k^{p-1}) (u^{k+1-p}vu^p) = \sum_{p=0}^{k+1} (-1)^p C_{k+1}^p (u^{k+1-p}vu^p)$$
(d'après la formule du triangle de Pascal)

(d'après la formule du triangle de Pascal)

ce qui est le résultat voulu à l'ordre k+1.

b) Supposons u nilpotent. E étant de dimension n, on a $u^n = 0$ d'où, pour tout $v \in \mathcal{L}(E)$:

$$(\Phi_{u})^{2n}(v) = \sum_{p=0}^{2n} (-1)^{p} C_{2n}^{p} u^{2n-p} v u^{p}$$

$$= \sum_{p=0}^{n} (-1)^{p} C_{2n}^{p} u^{2n-p} v u^{p} + \sum_{p=n+1}^{2n} (-1)^{p} C_{2n}^{p} u^{2n-p} v u^{p}$$

$$= u^{n} \Big[\sum_{p=0}^{n} (-1)^{p} C_{2n}^{p} u^{n-p} v u^{p} \Big] + u^{n} \Big[\sum_{p=n+1}^{2n} (-1)^{p} C_{2n}^{p} u^{2n-p} v u^{p-n} \Big]$$

$$= 0$$
Ainsi $(\Phi_{u})^{2n} = 0$ et Φ_{u} est nilpotent

Ainsi, $(\Phi_u)^{2n} = 0$, et Φ_u est nilpotent.

B : Détermination de l'image de Φ

- 1) Si u est une homothétie de rapport λ , alors $Tr(u) = n\lambda$, donc, si u est une homothétie de trace nulle, c'est l'endomorphisme nul, ce qui est exclu ici.
- 2) D'après A.5, puisque u n'est pas une homothétie, il existe e_1 tel que la famille $(e_1, u(e_1))$ soit libre.
- 3) En posant alors $e_2 = u(e_1)$, (e_1, e_2) est libre donc, d'après le théorème de la base incomplète, il existe (e_3, \ldots, e_n) tels que (e_1, e_2, \ldots, e_n) soit une base de E. Dans cette base, la matrice de u est

donc de la forme
$$\begin{bmatrix} 0 & {}^tX \\ Y & A_1 \end{bmatrix}$$
, avec $Y = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ (et X, Y, A_1 comme dans l'énoncé).

- a) $U \alpha I_{n-1}$ inversible $\Leftrightarrow \alpha$ non racine du polynôme caractéristique de U. 4) \mathbb{K} étant infini, on peut donc trouver $\alpha \in \mathbb{K}$ qui convient.
 - **b)** Le calcul du produit par blocs donne : $U'V' V'U' = \begin{bmatrix} 0 & \alpha^t R t^t RU \\ US \alpha S & UV VU \end{bmatrix}$. Puisque $A_1 = UV - VU$, on a donc bien l'équivalence

$$A = U'V' - V'U' \Leftrightarrow {}^tX = -{}^tR(U - \alpha I_{n-1}) \text{ et } Y = (U - \alpha I_{n-1})S$$

5) – On a déjà vu que $\operatorname{Im}(\Phi) \subset \mathcal{T}$.

- Montrons l'inclusion inverse par récurrence sur n.
 - Pour n=2: Soit E de dimension 2, et a un endomorphisme de E de trace nulle $(a \in \mathcal{T})$. D'après la question précédente, il existe une base de \mathcal{B} de E dans laquelle la matrice A de u est égale à : $\begin{pmatrix} 0 & x \\ 1 & a \end{pmatrix}$. u étant de trace nulle, on a a=0 et $A=\begin{pmatrix} 0 & x \\ 1 & 0 \end{pmatrix}$. On peut alors écrire :

$$A = UV - VU$$
 avec, par exemple : $U = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ et $V = \begin{pmatrix} 0 & -x \\ 1 & 0 \end{pmatrix}$.

Si on note u et v les endomorphismes de \dot{E} dont les matrices dans \mathcal{B} sont U et V, on aura bien $a = \Phi(u, v)$ donc $a \in \text{Im}(\Phi)$.

Ainsi, on a bien : $\mathcal{T} \subset \operatorname{Im}(\Phi)$ dans le cas n = 2.

– Supposons le résultat acquis pour tout espace vectoriel de dimension n-1. Cela signifie que, si A_1 est une matrice de trace nulle d'ordre n-1, il existe des matrices carrées d'ordre n-1, U_1 et V_1 , telles que $A_1 = U_1V_1 - V_1U_1$.

Soit donc E un \mathbb{K} -espace vectoriel de dimension n, et a un endomorphisme de E de trace nulle. D'après ce qui précède, il existe une base \mathcal{B} de E dans laquelle a a une matrice A de la forme : $\begin{bmatrix} 0 & {}^t X \\ Y & A_1 \end{bmatrix}$, avec les mêmes notations qu'auparavant.

Mais $\text{Tr}(A) = 0 + \text{Tr}(A_1)$, donc on a $\text{Tr}(A_1) = 0$. A_1 étant une matrice carrée d'ordre n-1, d'après l'hypothèse de récurrence, il existe des matrices carrées d'ordre n-1, U_1 et V_1 , telles que $A_1 = U_1V_1 - V_1U_1$. Soit alors α tel que $U_1 - \alpha I_{n-1}$ soit inversible, et posons $R = {}^t (U_1 - \alpha I_{n-1})^{-1}X$ et $S = (U_1 - \alpha I_{n-1})^{-1}Y$.

Alors, d'après les calculs précédents, en posant $U = \begin{bmatrix} \alpha & 0 \\ 0 & U_1 \end{bmatrix}$ et $V = \begin{bmatrix} 0 & {}^tR \\ S & V_1 \end{bmatrix}$, on aura bien : A = UV - VU.

Si on note u et v les endomorphismes de E dont les matrices dans \mathcal{B} sont U et V, on aura bien $a = \Phi(u, v)$ donc $a \in \text{Im}(\Phi)$.

Ainsi, on a bien établi : $\mathcal{T} \subset \operatorname{Im}(\Phi)$ à l'ordre n. CQFD

C : Détermination de la trace de Φ_u

- 1) u_{ij} est l'endomorphisme dont la matrice dans la base canonique est E_{ij} , avec $(E_{ij})_{kl} = \delta_{ik}\delta_{jl}$. Il est bien connu que les matrices $(E_{ij})_{1 \leq i,j \leq n}$ forment une base de $\mathcal{M}_n(\mathbb{K})$ (base canonique), donc, par isomorphisme, les $(u_{ij})_{1 \leq i,j \leq n}$ forment une base de $\mathcal{L}(E)$.
- 2) Pour tout $m \in [1, n]$, on a : $u_{ij}u_{kl}(e_m) = u_{ij}(\delta_{lm}e_k) = \delta_{lm}\delta_{jk}e_i = \delta_{jk}u_{il}(e_m)$. Cela étant valable pour tout $m \in [1, n]$, on a : $u_{ij}u_{kl} = \delta_{jk}u_{il}$.

- On a
$$A = \sum_{1 \leq k, l \leq n} a_{kl} E_{kl}$$
 d'où $u = \sum_{1 \leq k, l \leq n} a_{kl} u_{kl}$, d'où :
$$\Phi_u(u_{ij}) = u u_{ij} - u_{ij} u = \sum_{1 \leq k, l \leq n} a_{kl} u_{kl} u_{ij} - \sum_{1 \leq k, l \leq n} a_{kl} u_{ij} u_{kl}$$

$$= \sum_{1 \leq k, l \leq n} a_{kl} \delta_{li} u_{kj} - \sum_{1 \leq k, l \leq n} a_{kl} \delta_{jk} u_{il}$$

$$= \sum_{1 \leq k \leq n} a_{ki} u_{kj} - \sum_{1 \leq l \leq n} a_{jl} u_{il}$$

3) La coordonnée de $\Phi_u(u_{ij})$ sur u_{ij} est donc égale à $a_{ii}-a_{jj}$.

Donc:
$$\operatorname{Tr}(\Phi_u) = \sum_{1 \leq i,j \leq n} (a_{ii} - a_{jj}) = \sum_{i=1}^n \sum_{j=1}^n (a_{ii} - a_{jj}) = \sum_{i=1}^n (na_{ii} - \operatorname{Tr}(u)) = n\operatorname{Tr}(u) - n\operatorname{Tr}(u)$$

soit: $\operatorname{Tr}(\Phi_u) = 0$.

PARTIE 2:

A : Cas où u est diagonalisable

- 1) a) Il suffit de reprendre le résultat de I.C.2, puisque l'on a ici, avec les mêmes notations, $a_{ki} = \delta_{ki}\mu_i$, pour obtenir $\Phi_u(u_{ij}) = (\mu_i \mu_j)u_{ij}$.
 - **b)** Ainsi, les $(u_{ij})_{1 \leq i,j \leq n}$ forment une base de $\mathcal{L}(E)$ formée de vecteurs propres de Φ_u ; donc Φ_u est diagonalisable et $\operatorname{Sp}(\Phi_u) = \{\mu_i \mu_j , (i,j) \in [\![1,n]\!]^2\}.$
- 2) Notons $F = \{v \in \mathcal{L}(E) / \forall i \in [1, p] \ v(E_u(\lambda_i)) \subset E_u(\lambda_i)\}.$
 - Si $v \in F$, alors, pour tout $x_i \in E_u(\lambda_i)$, $v(x_i) \in E_u(\lambda_i)$ d'où $uv(x_i) = \lambda_i v(x_i)$ et aussi $vu(x_i) = v(\lambda_i x_i) = \lambda_i v(x_i)$, d'où uv = vu sur les $E_u(\lambda_i)$. Ces sous-espaces étant supplémentaires par hypothèse, on en déduit uv = vu, i.e $v \in \text{Ker}(\Phi_u)$.
 - Réciproquement, si $v \in \text{Ker}(\Phi_u)$, u et v commutent, donc v laisse stable les sous-espaces propres de u (résultat du cours), donc $v \in F$. On a donc bien, finalement : $F = \text{Ker}(\Phi_u)$.
- 3) Si $v \in \text{Ker}(\Phi_u)$, v laisse stable les $E_u(\lambda_i)$ pour $i \in [1, p]$. On peut donc considérer les endomorphismes v_i induits par v sur $E_u(\lambda_i)$, et définir l'application : $\Psi : \begin{cases} \text{Ker}(\Phi_u) \to \mathcal{L}(E_u(\lambda_1)) \times \cdots \times \mathcal{L}(E_u(\lambda_p)) \\ v \mapsto (v_1, \dots, v_p) \end{cases}$

Alors:

- $-\Psi$ est linéaire (facile).
- Ψ est bijective, car, si $(v_1, \ldots, v_p) \in \mathcal{L}(E_u(\lambda_1)) \times \cdots \times \mathcal{L}(E_u(\lambda_p))$, il existe un et un seul endomorphisme v dont la restriction à chaque $E_u(\lambda_i)$ soit égale à v_i (cf. cours sur la détermination d'une application linéaire, les $E_u(\lambda_i)$ étant supplémentaires), et on a alors $v \in \text{Ker}(\Phi_u)$ d'après la question précédente.

Ainsi, Ψ est un isomorphisme de $\operatorname{Ker}(\Phi_u)$ sur $\mathcal{L}(E_u(\lambda_1)) \times \cdots \times \mathcal{L}(E_u(\lambda_1 p))$.

- Donc $\dim(\operatorname{Ker}(\Phi_u)) = \sum_{i=1}^p (m_i)^2$ (car chaque $(E_u(\lambda_i))$ est de dimension m_i , u étant diagonalisable, donc $\dim \mathcal{L}(E_u(\lambda_i)) = (m_i)^2$), et, d'après le théorème du rang, $\operatorname{rg}(u) = \dim(\mathcal{L}(E)) \dim(\operatorname{Ker}(\Phi_u)) = n^2 \sum_{i=1}^p (m_i)^2$.
- 4) Si u possède n valeurs propres distinctes, on a alors p=n et $m_i=1$ pour tout i, donc $\dim(\operatorname{Ker}(\Phi_u))=n$.
 - Le polynôme minimal Π_u de u ayant pour racines les valeurs propres de u (cf. cours) et étant de degré inférieur ou égal à n (d'après le théorème de Cayley-Hamilton), on a : $\Pi_u = \prod_{i=1}^n (X \lambda_i)$.

En particulier, $\Pi_u = \chi_u$ et Π_u est de degré n.

– Le système $(Id, u, ..., u^{n-1})$ est donc libre (car sinon il existerait un polynôme annulateur de u de degré inférieur ou égal à n-1 ce qui contredit le résultat précédent). Donc $\text{Vect}(Id, u, ..., u^{n-1})$ est de dimension n.

Puisque $u^k \in \text{Ker}(\Phi_u)$ pour tout $k \in \mathbb{N}$ (u^k commute avec u!), $\text{Ker}(\Phi_u)$ contient $\text{Vect}(Id, u, \dots, u^{n-1})$, et, étant de dimension n, on a donc : $\text{Ker}(\Phi_u) = \text{Vect}(Id, u, \dots, u^{n-1})$.

$\mathbf{B}: \mathbf{Cas} \ \mathbf{où} \ \mathbf{dim}(E) = 2$

1) Si u n'est pas une homothétie, il existe $e \in E$ tel que (e, u(e)) soit libre (d'après I.B.2), et ce sera donc une base de E puisque, ici, $\dim(E) = 2$.

4

Soit $v \in \text{Ker}(\Phi_u)$, i.e v commute avec u. (e, u(e)) étant une base de E, il existe $\alpha, \beta \in \mathbb{K}$ tels que $v(e) = \alpha e + \beta u(e)$.

On a alors : $vu(e) = uv(e) = \alpha u(e) + \beta u^2(e)$.

Ainsi, $v = \alpha Id + \beta u$, car cette égalité est vraie pour les vecteurs de la base (e, u(e)).

Donc $v \in \text{Vect}(Id, u)$, soit $\text{Ker}(\Phi_u) \subset \text{Vect}(Id, u)$. L'inclusion inverse étant évidente, on a bien : $\text{Ker}(\Phi_u) = \text{Vect}(Id, u)$.

- 2) Φ_u est un endomorphisme de l'e.v $\mathcal{L}(E)$, de dimension 4. Son polynôme caractéristique est donc de degré 4. D'autre part, $\operatorname{Ker}(\Phi_u)$ étant de dimension 2 (cf. question précédente), 0 est valeur propre de Φ_u d'ordre de multiplicité supérieure ou égale à 2. Donc ce polynôme caractéristique est de la forme $X^2(X^2 + \alpha X + \beta)$. On a alors $-\alpha = \operatorname{Tr}(\Phi_u) = 0$, donc ce polynôme caractéristique est de la forme $X^2(X^2 + \beta)$.
- 3) Si $\beta = 0$, le polynôme caractéristique de Φ_u est égal à X^4 . Donc Φ_u a pour seule valeur propre 0, d'ordre de multiplicité 4. Si Φ_u était diagonalisable, il serait donc nul, ce qui est exclu (car u n'est pas une homothétie, par hypothèse). {on peut aussi dire que 0 est valeur propre d'ordre 4 alors que la dimension du sous-espace propre associé, c'est-à-dire Ker(Φ_u), est égale à 2 }.
- 4) Supposons $\beta \neq 0$.
 - Si $\mathbb{K} = \mathbb{C}$, alors, si $\lambda \in \mathbb{C}$ est une racine carrée de β , le polynôme caractéristique de Φ_u est égal à : $X^2(X \lambda)(X + \lambda)$. Le sous-espace propre de Φ_u associé à la valeur propre 0 (i.e $\operatorname{Ker}(\Phi_u)$) étant de dimension supérieure ou égale à 2 d'après cf. I.A.3,il sera exactement de dimension 2 (car sa dimension est inférieure ou égale à l'ordre de multiplicité de 0) et les sous-espaces propres associés aux valeurs propres $\pm \lambda$ étant de dimension égale à 1, il en résulte que Φ_u est diagonalisable.
 - Si $\mathbb{K} = \mathbb{R}$, alors, si $\beta > 0$, Φ_u est diagonalisable pour les mêmes raisons que ci-dessus.
 - Enfin, si $\mathbb{K} = \mathbb{R}$ et si $\beta < 0$, alors Φ_u n'est pas diagonalisable, ni même trigonalisable, son polynôme caractéristique n'étant pas scindé dans $\mathbb{R}[X]$.
- 5) a) cf question précédente.
 - **b)** On a, par définition : $\Phi_u(v) = \lambda v$ soit $uv vu = \lambda v$. Si v était inversible, on aurait alors : $u vuv^{-1} = \lambda Id$. Or, $\text{Tr}(vuv^{-1}) = \text{Tr}(uv^{-1}v) = \text{Tr}(u)$, donc on aurait $\text{Tr}(\lambda Id) = 0$, ce qui est exclu car $\lambda \neq 0$.
 - $-uv vu = \lambda v$ implique $\lambda \text{Tr}(v) = \text{Tr}(uv) \text{Tr}(vu) = 0$, d'où : Tr(v) = 0.
 - -v étant un endomorphisme d'un e.v de dimension 2, son polynôme caractéristique est égal à : $X^2 \text{Tr}(v)X + \det(v)$. Or, d'après ce qui précède, $\det(v) = \text{Tr}(v) = 0$, donc le polynôme caractéristique de v est égal à X^2 . D'après le théorème de Cayley-Hamilton, c'est un polynôme annullateur de v, donc $v^2 = 0$.
 - c) Kerv est de dimension 1 (car v n'est pas injective et est non nul). On peut donc trouver un vecteur e tel que $e \notin \text{Ker}v$. Alors le système (e, v(e)) est libre (ce sera donc une base de E) car : si α est tel que $v(e) = \alpha e$, alors $0 = v^2(e) = \alpha v(e) = \alpha^2 e$, d'où $\alpha = 0$ et v(e) = 0, ce qui est contradictoire.
 - Dans une telle base, la matrice V de v est : $V = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Si $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est la matrice de u dans cette même base, on a : $UV - VU = \begin{pmatrix} b & 0 \\ d-a & -b \end{pmatrix}$, et l'égalité $UV - VU = \lambda V$ implique b = 0 et $d-a = \lambda$. Ainsi, $U = \begin{pmatrix} a & 0 \\ c & a+\lambda \end{pmatrix}$. Donc U est triangulaire inférieure ; ses valeurs propres sont a et $a + \lambda$, et $\text{Tr}(u) = 2a + \lambda$; les valeurs propres de u sont donc bien $\frac{\text{Tr}(u) - \lambda}{2}$ et $\frac{\text{Tr}(u) + \lambda}{2}$.

- -u ayant alors 2 valeurs propres distinctes, u est diagonalisable.
- d) Kerv et Kerw sont de dimension 1. Pour montrer que $E = \text{Ker}v \oplus \text{Ker}w$, il suffit donc de montrer que Ker $v \cap \text{Ker}w = \{0\}$. Par l'absurde, si on avait Ker $v \cap \text{Ker}w \neq \{0\}$, on aurait Kerv = Kerw (ce sont deux droites), d'où w(v(e)) = 0 et la matrice de w dans la base (e, v(e)) serait de la forme : $W = \begin{pmatrix} \alpha & 0 \\ \beta & 0 \end{pmatrix}$. L'égalité $UW WU = -\lambda w$ donne alors $UW WU = \begin{pmatrix} 0 & 0 \\ c\alpha + \beta\lambda \end{pmatrix} = -\lambda W$, d'où $\alpha = 0$ et on aurait $W = \beta V$, soit $w = \beta v$, ce qui est exclu car v et w sont des vecteurs propres de Φ_u associés à des valeurs propres distinctes, donc le système (v, w) est libre.
 - Soit x un vecteur non nul de Kerv. L'égalité $uv-vu=\lambda v$ implique v[u(x)]=0, donc $u(x)\in \mathrm{Ker}v$. Kerv étant une droite vectorielle, il existe α tel que $u(x)=\alpha x$. Ainsi, Kerv est une droite formée de vecteurs propres de u, et il en est de même de Kerw. Ces deux sous-espaces étant supplémentaires, on peut en déduire que u est diagonalisable (mais on le savait déjà, cf. question précédente!).

C: Cas où Φ_u est diagonalisable

- 1) On a : $uv_i v_i u = \beta_i v_i$, d'où $u[v_i(x)] = v_i[u(x)] + \beta_i v_i(x) = v_i(\lambda x) + \beta_i v_i(x)$ d'où : $u[v_i(x)] = (\lambda + \beta_i)v_i(x)$.
- 2) La linéarité de Ψ est immédiate.
 - Soit $y \in E$. Puisque $x \neq 0$, il existe une base de E de la forme (x, e_2, \ldots, e_n) . On sait alors qu'il existe un et un seul endomorphisme v de E tel que v(x) = y et $v(e_i) = 0$ pour $i \geq 2$. On a alors $\Psi(v) = y$, donc Ψ est surjective.
- 3) $(v_1, v_2, \ldots, v_{n^2})$ formant une base de $\mathcal{L}(E)$, son image $(v_1(x), v_2(x), \ldots, v_{n^2}(x))$ par Ψ , linéaire surjective, est un système générateur de E. On peut donc en extraire une base de E, par exemple $(v_1(x), v_2(x), \ldots, v_n(x))$ (pour simplifier les notations). Puisque $v_i(x) \neq 0$, la question 1. montre que les $v_i(x)$, pour i[1, n], sont des vecteurs propres de u (de valeurs propres associées $\lambda + \beta_i$). E possède donc une base de vecteurs propres de u, donc u est diagonalisable.

PARTIE 3:

- 1) a) On a : $uv vu = \lambda v$, d'où immédiatement l'égalité annoncée.
 - **b)** On a alors : $\det(v)\det(u xId) = \det(u (x + \lambda)Id)\det(v)$ d'où, puisque $\det(v) \neq 0$, $P_u(x) = P_u(x + \lambda)$.
 - c) Mézalor, P_u serait un polynôme périodique de période $\lambda \neq 0$, donc serait constant (car, par exemple, $P_u(k\lambda) = P_u(0)$ pour tout $k \in \mathbb{Z}$, donc $P_u P_u(0)$ a une infinité de racines). Cela est impossible (car P_u de degré n), donc, par l'absurde, $\det(v) = 0$ et v n'est pas inversible.
- 2) Procédons par récurrence sur k:
 - La relation est évidemment vérifiée pour k=1 (et aussi pour k=0 ...).
 - Si on a $\Phi_u(v^k) = k\lambda v^k$, alors $\Phi_u(v^{k+1}) = uv^{k+1} v^{k+1}u = uvv^k v^{k+1}u$, et, puisque $uv = vu + \lambda v : \Phi_u(v^{k+1}) = (vu + \lambda v)v^k v^{k+1}u = \lambda v^{k+1} + v(uv^k v^k u) = \lambda v^{k+1} + v\Phi_u(v^k) = \lambda (k+1)v^{k+1}$ (en utilisant l'hypothèse de récurrence), ce qui est l'égalité cherchée à l'ordre k+1.

- Si $v^p \neq 0$, l'égalité $\Phi_u(v^p) = p\lambda v^p$ signifie que v^p est un vecteur propre de Φ_u associé à la valeur propre $p\lambda$.
- 3) Il existe donc nécessairement $p \in \mathbb{N}^*$ tel que $v^p = 0$ car, sinon, d'après ce qui précède, Φ_u aurait une infinité de valeurs propres, ce qui est impossible puisqu'il s'agit d'un endomorphisme de $\mathcal{L}(E)$, de dimension finie. Ainsi : v est nilpotent.
- 4) a) $\operatorname{Im} v^p$ est évidemment stable par v (résultat du cours). Soit $y \in \operatorname{Im} v^p$: il existe $x \in E$ tel que $y = v^p(x)$. Puisque $uv^p - v^pu = p\lambda v^p$, on a $u[v^p(x)] = v^p[u(x) + p\lambda x]$, donc $u[v^p(x)] \in \operatorname{Im} v^p$, et $\operatorname{Im} v^p$ est stable par u
 - b) D'après le théorème du rang : $\dim(\operatorname{Im} v^p) = \operatorname{rg}(v_1) + \dim(\operatorname{Ker}(v_1))$. Or l'image de $\operatorname{Im} v^p$ par v_1 est égale à $\operatorname{Im} v^{p+1}$, donc $\operatorname{rg}(v_1) = \dim(\operatorname{Im} v^{p+1})$. D'autre part, $\operatorname{Ker}(v_1) = \operatorname{Ker} v \cap \operatorname{Im} v^p$, donc $\dim(\operatorname{Ker}(v_1)) \leq 1$. On a donc : $\operatorname{rg}(v^p) \leq 1 + \operatorname{rg}(v^{p+1})$. Or $\operatorname{rg}(v) = n 1$, d'où $\operatorname{rg}(v^2) \geq n 2$ etc... $\operatorname{rg}(v^{n-1}) \geq 1$. Or $v^n = 0$ (puisque v est nilpotent et E de dimension n), donc $\operatorname{Im}(v^{n-1}) \subset \operatorname{Ker} v$. Kerv étant de dimension 1, on a en fait $\operatorname{Im}(v^{n-1}) = \operatorname{Ker} v$. Par suite, $\operatorname{Ker} v \subset \operatorname{Im}(v^p)$ pour tout p, d'où $\operatorname{Ker}(v_1) = \operatorname{Ker} v$ et $\operatorname{rg}(v^p) = 1 + \operatorname{rg}(v^{p+1})$.
 - c) cf. ci-dessus.
- 5) Puisque $v^{n-1} \neq 0$, il existe bien $e \in E$ tel que $v^{n-1}(e) \neq 0$. Pour montrer que la famille $(e, v(e), \dots, v^{n-1}(e))$ est une base de E, il suffit de montrer que cette famille est libre.

Soient donc des scalaires $\alpha_0, \dots, \alpha_{n-1}$ tels que $\sum_{i=0}^{n-1} \alpha_i v^i(e) = 0$. En appliquant v^{n-1} à cette égalité,

puisque $v^p = 0$ pour $p \ge n$, il vient $\alpha_0 v^{n-1}(e) = 0$, d'où $\alpha_0 = 0$ et $\sum_{i=1}^{n-1} \alpha_i v^i(e) = 0$. En appliquant alors v^{n-2} à cette égalité, on trouve de la même façon $\alpha_1 = 0$ etc... On obtient ainsi $\alpha_0 = \alpha_1 = \cdots = \alpha_n = 0$, d'où le résultat.

La matrice de v dans la base précédente sera donc de la forme : $V = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$.

- 6) a) Soit $W_0 = \operatorname{diag}(0, \lambda, 2\lambda, \dots, (n-1)\lambda)$. W_0V s'obtient en multipliant les lignes de V par $0, \lambda, 2\lambda, \dots, (n-1)\lambda$ et VW_0 s'obtient en multipliant les colonnes de V par $0, \lambda, 2\lambda, \dots, (n-1)\lambda$. On vérifie alors facilement que l'on a bien : $W_0V VW_0 = \lambda V$.
 - **b)** $w \in \mathcal{A}$ si et seulement si $wv vw = \lambda v$. Or $w_0v vw_0 = \lambda v$, donc, en soustrayant les deux égalités, on obtient : $w \in \mathcal{A} \Leftrightarrow (w w_0)v v(w w_0) = 0$, soit $w \in \mathcal{A} \Leftrightarrow w w_0 \in \text{Ker}(\Phi_v)$. Ainsi, \mathcal{A} est le-sous espace affine de $\mathcal{L}(E)$ passant par w_0 et de direction $\text{Ker}(\Phi_v)$.
 - c) On va montrer que : $Ker(\Phi_v) = Vect(Id, v, \dots, v^{n-1}).$
 - L'inclusion $\operatorname{Vect}(Id, v, \dots, v^{n-1}) \subset \operatorname{Ker}(\Phi_v)$ est évidente, puisque v commute avec tous les v^k .
 - Soit $w \in \text{Ker}(\Phi_v)$. \mathcal{B} étant une base de E, il existe des scalaires $\alpha_0, \dots, \alpha_{n-1}$ tels que $w(e) = \sum_{i=0}^{n-1} \alpha_i v^i(e)$. On a alors, pour tout $k \in [0, n-1]$, $w[v^k(e)] = v^k[w(e)] = \sum_{i=0}^{n-1} \alpha_i v^i([v^k(e)])$.

Les endomorphismes w et $\sum_{i=0}^{n-1} \alpha_i v^i$ coïncident donc sur \mathcal{B} , donc sont égaux, ce qui prouve que $w \in \text{Vect}(Id, v, \dots, v^{n-1})$, d'où l'inclusion réciproque.

– Enfin, il est facile de prouver (comme à la question 5.) que (Id, v, \ldots, v^{n-1}) est un système libre; c'est donc une base de A.

7) D'après ce qui précède, si
$$w \in \mathcal{A}$$
, sa matrice W dans \mathcal{B} est de la forme : $W = \begin{pmatrix} \alpha_0 & 0 & \dots & 0 \\ \alpha_1 & \alpha_0 & \dots & 0 \\ \alpha_2 & \alpha_1 & \alpha_0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \alpha_{n-1} & \alpha_{n-2} & \dots & \alpha_1 & \alpha_0 \end{pmatrix}$.

8) Par définition, $E_{\Phi_u}(\lambda) = \{v \in \mathcal{L}(E), uv - vu = \lambda v\}.$

et la matrice de u sera de la forme $W_0 + W$.

Pour trouver les éléments de $E_{\Phi_u}(\lambda)$, on peut se contenter de faire un simple calcul matriciel, mais il est plus rapide d'utiliser les résultats de II.A.

Notons donc $\mathcal{B}' = (e_1, e_2, \dots, e_n)$, et $\mu_i = \alpha + (i-1)\lambda$ pour $i \in [1, n]$. Les μ_i sont les éléments de la diagonale de la matrice de u dans \mathcal{B}' , ce sont donc les valeurs propres de u. Étant distinctes (car $\lambda \neq 0$), u est diagonalisable, donc, d'après II.A., $E_{\Phi_u}(\lambda)$ a pour base les u_{ij} tels que $\mu_i - \mu_j = \lambda$, soit i - j = 1. Ainsi, une base de $E_{\Phi_u}(\lambda)$ est formée de $u_{21}, u_{32}, \dots, u_{n,n-1}$.

Donc dim $(E_{\Phi_u}(\lambda) = n - 1$, et les matrices dans la base \mathcal{B}' des éléments de $E_{\Phi_u}(\lambda)$ sont de la forme :

$$V = \begin{pmatrix} 0 & 0 & \dots & \dots & 0 \\ v_1 & 0 & \dots & \dots & 0 \\ 0 & v_2 & 0 & \dots & 0 \\ 0 & 0 & v_3 & \ddots & 0 \\ 0 & 0 & \dots & v_{n-1} & 0 \end{pmatrix}.$$

FIN