

EL TEOREMA FUNDAMENTAL DE LA ARITMÉTICA

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 07) 22.JULIO.2024

Números Primos

Definición

Un entero p > 1 es llamado un número **primo** si sus únicos divisores positivos son 1 y p. Un número mayor a 1 que no es primo se llama **compuesto**.

Ejemplo: 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 91, 97, . . .

Propiedad

Si p es primo y p \mid ab, entonces p \mid a ó p \mid b.

<u>Prueba</u>: Si $p \mid a$, acabó. Supongamos entonces que $p \nmid a$. Como los únicos divisores positivos de p son 1 y p, entonces (p,a) = 1. Por el Lema de Euclides, entonces $p \mid b$. \square

Números Primos

Corolario

Si p es primo y p $\mid a_1 a_2 \cdots a_n$, entonces p $\mid a_k$ para algún k, donde $1 \le k \le n$.

<u>Prueba</u>: Por inducción sobre *n*, el número de factores.

Cuando n = 1, la conclusión es inmediata; para n = 2, el resultado es el contenido de la propiedad anterior.

Suponga que n>2 y que siempre que p divide al producto de menos de n factores, divide al menos uno de los factores. Ahora $p\mid a_1a_2\cdots a_n$. De la propiedad anterior, $p\mid a_n$ ó $p\mid a_1a_2\cdots a_{n-1}$. Si $p\mid a_n$, listo! En el caso, $p\mid a_1a_2\cdots a_{n-1} \Rightarrow p\mid a_k$, para algún $1\leq k\leq n-1$. En cualquier caso, p divide uno de los factores. \square

Corolario

Si p, q_1, q_2, \ldots, q_n son primos y $p \mid q_1q_2\cdots q_n$, entonces $p=q_k$, para algún $1 \leq k \leq n$.

<u>Prueba</u>: Del colorario arriba sabemos que $p \mid q_k$ para algún $1 \le k \le n$. Como q_k es primo, q_k sólo tiene divisores positivos 1 ó q_k . Entonces p = 1 ó $p = q_k$. Pero p al ser primo, satisface p > 1. Portanto, $p = q_k$. \square

Teorema Fundamental de la Aritmética

Teorema (Teorema Fundamental de la Aritmética)

Todo entero positivo n > 1 es primo o es producto de primos. Esta representación es única, a menos del orden en los factores.

<u>Prueba</u>: Se n > 1. Entonces n es primo o es compuesto. En el primer caso, no hay nada que probar. Si n es compuesto, entonces existe un entero d que satisface $d \mid n$ y 1 < d < n.

Elija p_1 el menor entre todos esos enteros d (esto es posible por el principio de buen orden). Entonces, p_1 es primo. De lo contrario, también tendría un divisor q con $1 < q < p_1$; pero entonces $q \mid p_1 \mid n \Rightarrow q \mid d$, lo que contradice la elección de p_1 como el menor divisor positivo de n.

Portanto, podemos escribir $n = p_1 n_1$, donde p_1 es primo y 1 $< n_1 < n$. Caso contrario, repetimos el argumento anterior para producir un segundo número primo p_2 tal que $n_1 = p_2 n_2$, con 1 $< p_2, n_2 < n_1$, esto es

Teorema Fundamental de la Aritmética

$$n = p_1 p_2 n_2,$$
 $1 < n_2 < n_1.$

Si n_2 es primo, no es necesario ir más lejos. De lo contrario, escriba $n_2=p_3n_3$, con p_3 primo.

Continuando este proceso, la secuencia decreciente $n > n_1 > n_2 > ... > 1$, no puede continuar indefinidamente, de modo que después de un número finito de pasos n_{k-1} es un primo, digamos p_k . Así, obtenemos la existencia de una factoración en primos

$$n=p_1p_2\cdots p_k$$
.

Para la unicidad, supongamos que n admite dos representaciones como producto de primos de dos formas; decir,

$$n = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s, \qquad r \leq s,$$

donde p_i y q_j son todos primos, escritos en magnitud creciente de modo que $p_1 \le p_2 \le \ldots \le p_r$ y $q_1 \le q_2 \le \ldots \le q_s$. Como $p_1 \mid q_1 q_2 \cdots q_s$, por el el Corolario 2 anterior, $p_1 = q_k$ para algún $1 \le k \le s$. Esto implica que $p_1 \ge q_1$.

Teorema Fundamental de la Aritmética

Un razonamiento similar produce $q_1 \ge p_1$, de modo que $p_1 = q_1$ Podemos cancelar este factor común y obtener

$$p_2p_3\cdots p_r=q_2q_3\cdots q_s.$$

Repetimos el argumento anterior para obtener $p_2 = q_2$ y, a su vez,

$$p_3p_4\cdots p_r=q_3q_4\cdots q_s.$$

Continuando de esta forma, si la desigualdad r < s fuese válida, eventualmente tendríamos que 1 = $q_{r+1}q_{r+2}\dots q_s$, lo cual es absurdo, ya que cada $q_j >$ 1. Por lo tanto, r = s, lo que hace idénticas las dos factoraciones de n. Esto completa la prueba. \square