D1.1.1: Complex numbers

Let z=x+iy and w=a+ib where $x,y,a,b\in\mathbb{R}.$ Then z and w are complex numbers. Furthermore:

- 1. z = w iff x = a and y = b.
- 2. $\operatorname{Re}(z) := x$ and $\operatorname{Im}(z) := y$.
- 3. $|z| := \sqrt{x^2 + y^2}$
- 4. The **complex conjugate** of z is:

$$\overline{z} := x - iy.$$

5. Addition and multiplication:

$$(x+iy) + (a+ib) = (x+a) + i(y+b)$$

 $(x+iy)(a+ib) = (xa-yb)+i(xb+ya).$

 $6. \ \mathbb{C} := \{x + iy : x, y \in \mathbb{R}\}\$

with rule $i^2 = -1$.

L1.1.3

Let $u, w, z \in \mathbb{C}$ where z = x + iy. Then:

- 1. z + w = w + z and zw = wz.
- 2. u + (z + w) = (u + z) + w
- 3. u(zw) = (uz)w
- 4. u(z+w) = uz + uw
- 5. z + 0 = z and 1z = z.
- 6. $\exists (-z := -x + i(-y)): z + (-z) = 0.$
- 7. $\exists z^{-1} : zz^{-1} = 1$ where:

$$z^{-1} := \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}.$$

D1.1.5 and D1.1.7: Polar form

Let $z \in \mathbb{C}$ and z = x + iy. Then:

$$z = r(\cos\theta + i\sin\theta)$$
$$= re^{i\theta}$$

for $r = \sqrt{x^2 + y^2}$ in complex plane.

L1.1.6

Let $\theta, \phi \in \mathbb{R}$ and $n \in \mathbb{Z}$. Then:

- 1. $e^{i(\theta+\phi)} = e^{i\theta}e^{i\phi}$
- $2. e^{in\theta} = (e^{i\theta})^n$

due to de Moivre's formula:

 $\cos n\theta + i\sin n\theta = (\cos \theta + i\sin \theta)^n.$

L1.1.9

Let $z, w \in \mathbb{C}$. Then:

- 1. |z| = 0 iff z = 0.
- $2. |\overline{z}| = |z|$
- 3. |zw| = |z||w|
- 4. $\overline{\overline{z}} = z$
- 5. $|z|^2 = z\overline{z}$
- 6. $\overline{z+w} = \overline{z} + \overline{w}$
- 7. $\overline{zw} = \overline{z} \overline{w}$
- 8. $|\operatorname{Re}(z)| \le |z|$ and $|\operatorname{Im}(z)| \le |z|$.
- 9. $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$
- 10. $\text{Im}(z) = \frac{1}{2i}(z \overline{z}).$

L1.1.10 - 11: Triangle inequalities

Let $z, w \in \mathbb{C}$. Then:

- 1. $|z + w| \le |z| + |w|$
- 2. $||z| |w|| \le |z w|$.

D1.1.12: Argument of z

Let $z = |z|e^{i\theta}$. Then:

$$arg(z) := \theta \in (-\pi, \pi]$$

with period 2π .

P1.1.14

Let $z, w \in \mathbb{C}$. Then:

- 1. arg(zw) = arg(z) + arg(w)
- 2. $arg(\overline{z}) = -arg(z)$

and holds under modulo 2π .

D1.2.1: Open and closed ϵ -discs

Let $z_0 \in \mathbb{C}$ and $\epsilon > 0$.

1. An **open** ϵ -disc centred at z_0 is:

$$D_{\epsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \epsilon \}.$$

2. A **closed** ϵ -disc centred at z_0 is:

$$\overline{D}_{\epsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \epsilon \}.$$

A **punctured** ϵ -disc centred at z_0 is:

$$D'_{\epsilon}(z_0) := \{ z \in \mathbb{C} : 0 < |z - z_0| < \epsilon \}.$$

D1.2.2: Open sets

Let $U \subset \mathbb{C}$. Set U is **open** if:

$$\forall z_0 \in U; \exists \epsilon > 0 : D_{\epsilon}(z_0) \subseteq U.$$

Subset F is **closed** if $\mathbb{C} \setminus F$ is open.

A **neighbourhood** of point $z_0 \in \mathbb{C}$ is an open set that contains z_0 .

L1.2.3

Punctured disc $D'_{\epsilon}(z_0)$ is open.

D1.2.4: Limit points

Let $S \subseteq \mathbb{C}$. z_0 is a **limit point** of S if:

$$\forall \epsilon > 0; D'_{\epsilon}(z_0) \cap S \neq \emptyset.$$

The closure of S is set \overline{S} and contains S and all its limit points.

L1.2.6

Let $S \subseteq \mathbb{C}$. S is closed **iff** $S = \overline{S}$.

D1.2.7: Bounded sets

Let $S \subseteq \mathbb{C}$. Set S is bounded if:

$$\forall z \in S; \exists M > 0: |z| \le S.$$

D1.2.8: ϵ -N convergence

Let $\mathbb{N} = \{0, 1, 2, \dots\}.$

Let $(z_n)_{n\in\mathbb{N}}\subseteq\mathbb{C}$ be a sequence and $z\in\mathbb{C}$. Then $\lim_{n\to\infty}z_n=z$ if:

$$\forall \epsilon > 0; \exists N \in \mathbb{N} : \forall n \ge N$$
$$\implies |z_n - z| < \epsilon.$$

L1.2.9

Let $z_n, z \in \mathbb{C}$ where $z_n = a_n + ib_n$.

Then $\lim_{n\to\infty} z_n = z$ iff:

 $\operatorname{Re}(z) = \lim_{n \to \infty} a_n$ and $\operatorname{Im}(z) = \lim_{n \to \infty} b_n$.

L1.2.10

Let $S \subseteq \mathbb{C}$ and $z \in \mathbb{C}$. Then $z \in \overline{S}$ iff:

$$\exists z_n \in S : z = \lim_{n \to \infty} z_n.$$

D1.2.11: Cauchy sequences

 z_n is a Cauchy sequence if:

$$\forall \epsilon > 0; \exists N \in \mathbb{N} : \forall n, m \ge N$$

 $\implies |z_n - z_m| < \epsilon.$

L1.2.12

 z_n is convergent **iff** z_n is Cauchy.

D1.2.14: Bounded sequences

 z_n is bounded if:

$$\forall n \in \mathbb{N}; \exists M > 0: |z_n| \leq M.$$

L1.2.15: Bolzano-Weierstrass

Let z_n be a bounded sequence. Then:

$$\exists (z_{n_k})_{k,n_k \in \mathbb{N}} : \lim_{k \to \infty} z_{n_k} = z \in \mathbb{C}$$

or that z_n has a convergent subsequence.

A selection of a sequence is a subsequence.

D1.3.1: Bounded functions

Let $S \subseteq \mathbb{C}$ and $f: S \to \mathbb{C}$. Then f is a If $f, g: \mathbb{C} \to \mathbb{C}$ are continuous at z_0 then: bounded function if:

$$\forall z \in S; \exists M > 0: |f(z)| \le M.$$

D1.3.2: ϵ - δ convergence

Let $S \subseteq \mathbb{C}, z_0 \in \overline{S}, f : S \to \mathbb{C}$ and $a_0 \in \mathbb{C}$. Then $\lim_{z \to z_0} f(z) = a_0$ if:

$$\forall z \in S; \forall \epsilon > 0; \exists \delta > 0: 0 < |z - z_0| < \delta$$

$$\implies |f(z) - a_0| < \epsilon.$$

L1.3.3

Let $S \subseteq \mathbb{C}, z_0 \in \overline{S}, f : S \to \mathbb{C}$ and $a_0 \in \mathbb{C}$ where $z_0 = x_0 + iy_0$ and f = u + iv.

Then $\lim_{z \to z_0} f(z) = a_0$ iff:

$$\operatorname{Re}(a_0) = \lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y)$$

and

$$\operatorname{Im}(a_0) = \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y).$$

L1.3.4

Let $S \subseteq \mathbb{C}, z_0 \in \overline{S}, f: S \to \mathbb{C}, a_0 \in \mathbb{C}$ and sequence $w_n \in S \setminus \{z_0\}$.

If $\lim_{z\to z_0} f(z) = a_0$ and $\lim_{n\to\infty} w_n = z_0$ then:

$$\lim_{n \to \infty} f(w_n) = a_0.$$

L1.3.5: Limit identities

Let $S \subseteq \mathbb{C}, z_0 \in \overline{S}$ and $a_0, b_0 \in \mathbb{C}$. Let $f, g: S \to \mathbb{C}$.

If $\lim_{z\to z_0} f(z) = a_0$ and $\lim_{z\to z_0} g(z) = b_0$ then:

- 1. $\lim_{z \to z_0} (f(z) + g(z)) = a_0 + b_0$
- 2. $\lim_{z \to 0} (f(z)g(z)) = a_0b_0$
- 3. $\lim_{z \to z_0} \left(\frac{f(z)}{g(z)} \right) = \frac{a_0}{b_0} \text{ if } b_0 \neq 0.$

D1.3.6: ϵ - δ continuity

Let $S \subseteq \mathbb{C}$, $f: S \to \mathbb{C}$ and $z_0 \in S$. Then f is continuous at z_0 if:

$$\forall z \in S; \forall \epsilon > 0; \exists \delta > 0: |z - z_0| < \delta$$

$$\implies |f(z) - f(z_0)| < \epsilon.$$

L1.3.7

Let $f: \mathbb{C} \to \mathbb{C}$ with rule f = u + iv and $z_0 = x_0 + iy_0 \in \mathbb{C}$.

Then f is continuous at z_0 iff u and v are continuous at (x_0, y_0) .

L1.3.8

- 1. f + g is continuous at z_0 .
- 2. fg is continuous at z_0 .
- 3. f/g is continuous at z_0 . $(g \neq 0)$

D: Image and preimage

Let $f: X \to Y$ where $A \subseteq X$ and $B \subseteq Y$. The image of A is:

$$f(A) = \{ f(x) : x \in A \}$$

and the preimage of B is:

$$f^{-1}(B) = \{x : f(x) \in B\}.$$

L1.3.9

Let $U \subseteq \mathbb{C}$ be an open set. $f: \mathbb{C} \to \mathbb{C}$ is continuous **iff** $\forall U \subseteq \mathbb{C}; f^{-1}(U)$ is open for $f^{-1}(U) = \{ z \in \mathbb{C} : f(z) \in U \}.$

L1.3.10

Let $f: S \to \mathbb{C}$ be continuous. Let $S \subseteq \mathbb{C}$ be closed and bounded.

Then f(S) is closed and bounded.

D1.4.1: Differentiability

Let $z_0 \in \mathbb{C}$ and U a neighbourhood of z_0 . Let $f:U\to\mathbb{C}$. Then f is differentiable at z_0 if the following limit exists:

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

L1.4.3

Let $z_0 \in \mathbb{C}$ and U a neighbourhood of z_0 . If $f: U \to \mathbb{C}$ is differentiable at z_0 then f is continuous at z_0 .

L1.4.4

Let $z_0 \in \mathbb{C}$ and U a neighbourhood of z_0 . Let $f, g: U \to \mathbb{C}$ be differentiable at z_0 . Then f+g, fg and f/g (where $g(z_0) \neq 0$) are all differentiable at z_0 .

L1.4.5: Chain rule

Let $z_0 \in \mathbb{C}$ and U a neighbourhood of z_0 . Let $g: U \to \mathbb{C}$ be such that g(U) is a neighbourhood of $g(z_0)$. Assume that g is differentiable at z_0 and f is differentiable at $g(z_0)$. Then $f \circ g$ is differentiable at z_0 :

$$(f \circ g)'(z_0) = f(g(z_0))g'(z_0).$$

T1.4.6: Cauchy-Riemann equations

Let $z_0 \in \mathbb{C}$ and U a neighbourhood of z_0 . Let $f: U \to \mathbb{C}$ be differentiable at z_0 . Let $z_0 = x_0 + iy_0$ and f = u + iv. Then:

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$

$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$$

T1.4.8

Let $z_0 \in \mathbb{C}$ and U a neighbourhood of z_0 for $z_0 = x_0 + iy_0$. Let $f: U \to \mathbb{C}$ where f = u + iv. Assume that real functions u and v are continuously differentiable on a neighbourhood of (x_0, y_0) .

Then f is differentiable at z_0 .

D1.4.9: Holomorphic functions

D1.4.13: Harmonic equations

L1.4.14

D1.4.15: Harmonic conjugates

D1.5.1: Complex polynomials

L1.5.2