10.569 Synthesis of Polymers Prof. Paula Hammond

Lecture 6: Other Polymers of Interest obtained by Step-Growth, Polyaramids, Polyimides, Segmented and Block Copolymers from Step Condensation Methods

Far from equilibrium polymerizations:

Processing: Bulk reactions much less desirable

- extremely reactive, exotherms huge high concentrations further increase $R_{\scriptscriptstyle D}$

Better to use solution polymerization:

- can control heat removal, viscosity
- controlled by solvent choice (high capacity or low capacity solvent)

Must consider solvent effects:

- solubility of both monomers
- solubility of high MW polymer
 - → wrong (poor) solvent can lead to low MW product

e.g. polyisocyanate

For specific case of fast polymerization:

- low temps are often desired

-40oC ~ 80oC

large $\Delta H_{exo} \Rightarrow T \uparrow can lower π ↓$

- at good conditions, it is very easy to get 100% π
- lower concentrations
- slow addition of monomer(s) → control exotherm, prevent clumping

Citation: Professor Paula Hammond, 10.569 Synthesis of Polymers Fall 2006 materials, MIT OpenCourseWare (http://ocw.mit.edu/index.html), Massachusetts Institute of Technology, Date.

Alternatives to Solution Polymerization

Two Phase Polymerization

Draw polymer from interface

Interfacial Polymerization:

- 1. Reactants diffuse to interface
- 2. Immediate reaction → perfect stoichiometry at interface Form high MW polymer
- 3. Remove polymer \rightarrow fresh interface

Polymerization continues until monomer is depleted in organic and/or H₂O phases.

Key Differences

- Diffusion controlled (not kinetically)
- Bulk stoichiometry is irrelevant
- Treat 2 phases as reservoirs
- Higher concentrations in phases \rightarrow higher mass transfer driving forces
- % conversion is not a factor in final MW

Details:

- addition of the base, HCl is generated

Nonreactive bases:

Lecture 6

Page 2 of 5

Citation: Professor Paula Hammond, 10.569 Synthesis of Polymers Fall 2006 materials, MIT OpenCourseWare (http://ocw.mit.edu/index.html), Massachusetts Institute of Technology, Date.

Avoid bases with HO⁻ (e.g. NaOH)

Because they can react with acid Cl groups:

-generally true that diamine has higher diffusion rate in organic phase than diacid chloride in $H_2\mbox{O}$ phase

crystalline phase?

$$H_3N-R-NH_3$$
 H_2O film is generated at underside of interface

organic phase

ightarrow organic solvent ightarrow precipitant must precipitate only high MW polymer

Advantages:

- No need for heavy refrigeration or cooling (have very little T-increase, phases absorb exotherm)
- Get high MW without perfect conversions or stoichiometry rate of withdrawal affects MW when rate ~ formation of chain formation
- Rates of withdrawal, organic solvent choice
- No high-η medium
- Polymer is readily separated from solvent and unreacted monomers

Products made this way:

- aliphatic polyamides
- aromatic polyamides
- polycarbonates
- polysulfides

Stirred Interfacial

slow stir rate \rightarrow generate bubble encapsulating products

fast stir rate \rightarrow continuous removal of polymer from droplet \rightarrow fine particles of polymer (shear)

shear can remove polymer film

→ fresh interface

ex. Carbon-less carbon epoxy

Polycarbonates:

$$-\left(R-O-CO-O\right)_{n}$$

formed from diol + carbonic acid

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond

Lecture 6

formed via stirred interfacial process

- high $T_q \sim 150^{\circ}C$
- non-crystalline (bulky CH_3 groups to prevent crystalline phase the aromatic groups would try to form)
 - \Rightarrow fully amorphous \rightarrow optical clarity
- tough material
- application: CDs, optical lenses, glasses, windshields