Introduction to Mobile Robotics

Probabilistic Robotics

Probabilistic Robotics

Key idea:

Explicit representation of uncertainty

(using the calculus of probability theory)

- Perception = state estimation
- Action = utility optimization

Axioms of Probability Theory

P(A) denotes probability that proposition A is true.

$$0 \le P(A) \le 1$$

•
$$P(True) = 1$$
 $P(False) = 0$

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

A Closer Look at Axiom 3

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Using the Axioms

$$P(A \lor \neg A) = P(A) + P(\neg A) - P(A \land \neg A)$$

$$P(True) = P(A) + P(\neg A) - P(False)$$

$$1 = P(A) + P(\neg A) - 0$$

$$P(\neg A) = 1 - P(A)$$

Discrete Random Variables

- X denotes a random variable
- X can take on a countable number of values in $\{x_1, x_2, ..., x_n\}$
- $P(X=x_i)$ or $P(x_i)$ is the probability that the random variable X takes on value x_i
- $P(\cdot)$ is called probability mass function

• E.g., P(Room) = < 0.7, 0.2, 0.08, 0.02 >

Continuous Random Variables

- X takes on values in the continuum.
- p(X=x) or p(x) is a probability density function

$$P(x \in [a,b]) = \int_{a}^{b} p(x)dx$$

• E.g.

"Probability Sums up to One"

Discrete case

$$\sum_{x} P(x) = 1$$

Continuous case

$$\int_X P(x) dx = 1$$

Joint and Conditional Probability

- P(X=x and Y=y) = P(x,y)
- If X and Y are independent then

$$P(x,y) = P(x) P(y)$$

• P(x / y) is the probability of x given y

$$P(x / y) = P(x,y) / P(y)$$

$$P(x,y) = P(x / y) P(y)$$

If X and Y are independent then

$$P(x \mid y) = P(x)$$

Law of Total Probability

Discrete case

Continuous case

$$P(x) = \sum_{y} P(x \mid y) P(y)$$

$$p(x) = \int p(x \mid y)p(y)dy$$

Marginalization

Discrete case

$$P(x) = \sum_{y} P(x, y)$$

Continuous case

$$p(x) = \int p(x, y) \, dy$$

Bayes Formula

$$P(x,y) = P(x | y)P(y) = P(y | x)P(x)$$

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

Likelihood * Prior

Evidence

Normalization

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)}$$

• At the same time: $P(y) = \sum_{x} P(y \mid x) P(x)$

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{\sum_{x} P(y \mid x)P(x)}$$

• P(y) is independent of x and thus constant for all x

$$P(x \mid y) = \eta P(y \mid x) P(x)$$

Bayes Rule with Background Knowledge

$$P(x | y, a) = \frac{P(y | x, a)P(x | a)}{P(y | a)}$$

Conditional Independence

- $P(x,y \mid z) = P(x \mid z)P(y \mid z)$
- Equivalent to $P(x \mid z) = P(x \mid z, y)$ and $P(y \mid z) = P(y \mid z, x)$
- But this does not necessarily mean P(x,y) = P(x)P(y)
- Marginal independence does not mean independence

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P(open \mid z)$?

Causal vs. Diagnostic Reasoning

- $P(open \mid z)$ is diagnostic
- $P(z \mid open)$ is causal
- In some situations, causal knowledge is easier to obtain
 count frequencies!
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Example

•
$$P(z \mid open) = 0.6$$
 $P(z \mid \neg open) = 0.3$

■ $P(open) = P(\neg open) = 0.5$

$$P(open \mid z) = \frac{P(z|open)P(open)}{P(z)} = \frac{0.6*0.5}{0.6*0.5+0.3*0.5} = \frac{2}{3}$$

z raises the probability that the door is open

Combining Evidence

- Suppose our robot obtains another observation z_2
- How can we integrate this new information?
- More generally, how can we estimate $P(x \mid z_1, ..., z_n)$?

Recursive Bayesian Updating

$$P(x \mid z_1, ..., z_n) = \frac{P(z_n \mid x, z_1, ..., z_{n-1})P(x \mid z_1, ..., z_{n-1})}{P(z_n \mid z_1, ..., z_{n-1})}$$

Markov assumption:

 z_n is independent of z_1, \dots, z_{n-1} given we know x

$$P(x \mid z_{1}, ..., z_{n}) = \frac{P(z_{n} \mid x)P(x \mid z_{1}, ..., z_{n-1})}{P(z_{n} \mid z_{1}, ..., z_{n-1})}$$

$$= \alpha P(z_{n} \mid x)P(x \mid z_{1}, ..., z_{n-1})$$

$$= \alpha P(x) \prod_{i=1...n} P(z_{i} \mid x)$$

Example: Second Measurement

•
$$P(z_2 \mid open) = 0.25$$

$$P(z_2 \mid \neg open) = 0.3$$

• $P(open \mid z_1) = \frac{2}{3}$

$$P(open \mid z_{2}, z_{1}) = \frac{P(z_{2} \mid open)P(open \mid z_{1})}{P(z_{2} \mid open)P(open \mid z_{1}) + P(z_{2} \mid \neg open)P(\neg open \mid z_{1})}$$

$$= \frac{\frac{1}{4} \cdot \frac{2}{3}}{\frac{1}{4} \cdot \frac{2}{3} + \frac{3}{10} \cdot \frac{1}{3}} = \frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{10}} = \frac{\frac{1}{6}}{\frac{4}{15}} = \frac{5}{8} = 0.625$$

• z_2 lowers the probability that the door is open

Actions

- Often the world is dynamic since
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the time passing by change the world

• How can we incorporate such actions?

Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time ...
- Actions are never carried out with absolute certainty
- In contrast to measurements, actions generally increase the uncertainty

Modeling Actions

 To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

This term specifies the pdf that executing u changes the state from x' to x.

Example: Closing the door

State Transitions

 $P(x \mid u, x')$ for u = "close door":

If the door is open, the action "close door" succeeds in 90% of all cases

Integrating the Outcome of Actions

Continuous case:

$$P(x \mid u) = \int P(x \mid u, x') P(x' \mid x) dx'$$

Discrete case:

$$P(x \mid u) = \sum P(x \mid u, x') P(x' \mid x)$$

We will make an independence assumption to get rid of the u in the second factor in the sum.

Example: The Resulting Belief

$$P(\operatorname{closed} \mid u) = \sum P(\operatorname{closed} \mid u, x') P(x')$$

$$= P(\operatorname{closed} \mid u, \operatorname{open}) P(\operatorname{open}) + P(\operatorname{closed} \mid u, \operatorname{closed}) P(\operatorname{closed})$$

$$= \frac{9}{10} \cdot \frac{5}{8} + \frac{1}{1} \cdot \frac{3}{8} = \frac{15}{16}$$

$$P(\operatorname{open} \mid u) = \sum P(\operatorname{open} \mid u, x') P(x')$$

$$= P(\operatorname{open} \mid u, \operatorname{open}) P(\operatorname{open}) + P(\operatorname{open} \mid u, \operatorname{closed}) P(\operatorname{closed})$$

$$= \frac{1}{10} \cdot \frac{5}{8} + \frac{0}{1} \cdot \frac{3}{8} = \frac{1}{16}$$

$$= 1 - P(\operatorname{closed} \mid u)$$

Bayes Filters: Framework

Given:

Stream of observations z and action data u:

$$d_t = \{u_1, z_1, \dots, u_t, z_t\}$$

- Sensor model $P(z \mid x)$
- Action model $P(x \mid u, x')$
- Prior probability of the system state P(x)

Wanted:

- Estimate of the state X of a dynamical system
- The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t | u_1, z_1, ..., u_t, z_t)$$

Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

z = observation
u = action
x = state

Bayes Filters

$$\begin{array}{ll} \boxed{\textit{Bel}(x_t)} = P(x_t \mid u_1, z_1, \dots, u_t, z_t) \\ \\ \text{Bayes} &= \eta P(z_t \mid x_t, u_1, z_1, \dots, u_t) P(x_t \mid u_1, z_1, \dots, u_t) \\ \\ \text{Markov} &= \eta P(z_t \mid x_t) P(x_t \mid u_1, z_1, \dots, u_t) \\ \\ \text{Total prob.} &= \eta P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \dots, u_t, x_{t-1}) \\ \\ P(x_{t-1} \mid u_1, z_1, \dots, u_t) dx_{t-1} \\ \\ \text{Markov} &= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \dots, u_t) dx_{t-1} \\ \\ \text{Markov} &= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \dots, z_{t-1}) dx_{t-1} \\ \\ &= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1} \\ \\ \end{array}$$

$Bel(x_t) = \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$

- Algorithm Bayes_filter(Bel(x), d):
 η=0
- 3. If d is a perceptual data item z then
- 4. For all x do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$
- 6. h = h + Bel'(x)
- 7. For all x do
- 8. $Bel'(x) = h^{-1}Bel'(x)$
- 9. Else if d is an action data item u then
- 10. For all x do
- **11.** $Bel'(x) = \hat{0} P(x | u, x') Bel(x') dx'$
- 12. Return Bel'(x)

Bayes Filters are Familiar!

$$Bel(x_t) = \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Probabilistic Localization

Probabilistic Localization

$$Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$$

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.