Trabajo Práctico: IOT DOG - Sistema de Monitoreo Ambiental

Objetivo General: Desarrollar un prototipo funcional montado en un case desarrollado en pp que mida y reporte variables ambientales (temperatura, humedad, luz, gases), alerte sobre condiciones anómalas y permita la configuración de sus parámetros a través de un menú físico.

Resumen de Funcionalidades:

- Leer los diferentes sensores junto a la hora de la muestra.
- Evaluar si los sensores superan el umbral y alertar.
- Enviar por Telegram y MQTT la información.
- Guardar en la EEPROM los valores de configuración.
- Mostrar la información en la pantalla LCD.

1. Requisitos Generales

Requisito	Descripción
Grupos	Equipos de 3 a 4 integrantes. La conformación es libre, pero debe estar definida al final de la primera clase. Si no se asignará aleatoriamente o se creará un grupo con dicha persona q no tiene un grupo.
Repositorio Git	Crear un repositorio para el proyecto. El link debe ser entregado en el campus virtual.
Identificación	La primera línea de cada archivo de código (.ino) debe contener los apellidos de los integrantes.
Gestión de Proyecto	Crear y mantener un cronograma de tareas con roles y responsables. Habrá un seguimiento semanal con calificación individual y grupal.

2. Módulos del Proyecto y Requisitos Técnicos

2.1 Programación (Software)

- Desarrollo Modular: Realizar códigos individuales para probar cada sensor y actuador antes de la integración.
- Máquina de Estados: El código final debe estar estructurado como una máquina de estados. Se debe entregar el diagrama de estados correspondiente.
- Menú de Configuración: Implementar un menú accesible por botones para configurar:
 - Offset GMT para la hora.
 - Valores umbral de los sensores para las alertas.

- o Intervalo de envío de datos por MQTT.
- Memoria No Volátil: Almacenar los valores de configuración en la memoria EEPROM del ESP32.
- Visualización Local: Mostrar lecturas y estados en la pantalla LCD.
- Indicadores Visuales: Usar LEDs para indicar el estado del ambiente (Normal, Alerta, Peligro).

2.2 Diseño de PCB (Hardware)

2.2 Diseno de i CD (i	iai dwale)
Característica	Requisito
Dimensiones	Tamaño máximo de 10x10 cm.
Alimentación	 Conector USB-B para 5V. Bornera para 12V (incluir diodo de protección de polaridad inversa).
Análisis Requerido	Justificar por escrito la necesidad (o no) de un regulador de tensión de 5V a 3.3V. En caso de necesitarlo incluir regulador con su circuito
Montaje ESP32	Utilizar una tira de pines hembra. No soldar el ESP32 directamente a la PCB.
Conectores	Usar conectores Molex o IDC para todos los sensores, LEDs y botones. No se permiten cables de protoboard soldados.
Salidas de Tensión	Incluir una bornera con salidas de 3.3V y GND.
Circuito de Actuador	Implementar un circuito con transistor para controlar el relé. La salida del relé debe ser a una bornera.
Puntos de Prueba	Incluir test points para mediciones clave (VCC, GND, salidas analógicas de sensores).
Fijación	El diseño debe incluir perforaciones para sujetar la PCB al case con tornillos.

2.3 Conectividad (IoT)

- Configuración Wi-Fi: Crear una página web hosteada en el ESP32 (usando WiFiManager o similar) que permita cambiar las credenciales de Wi-Fi sin reprogramar el microcontrolador.
- Alertas Remotas: Enviar alertas a un chat de Telegram cuando un sensor supere su umbral configurado. También se puede preguntar el estado por medio de un msj.

 Telemetría MQTT: Publicar los datos de los sensores en un broker MQTT. El formato del mensaje (payload) debe ser JSON, incluyendo el valor y la fecha/hora de la muestra.

2.4 Diseño Mecánico (Case)

- Integración: El case debe alojar la PCB, sensores y pantalla de forma segura, con tornillos.
- Accesibilidad: Garantizar el acceso al conector micro-USB del ESP32 y a los conectores de los periféricos.
- Mantenimiento: El case debe poder abrirse para acceder a los componentes internos.

3. Cronograma de Entregas

El incumplimiento en las fechas de entrega impactará en la calificación final.

Entrega	Contenido a Entregar	Fecha Límite (Semana de)
1: Pruebas Iniciales	Códigos de cada sensor/actuador funcionando por separado (subidos a Git).	[dd/mm/aaaa]
2: Diseño Electrónico	Capturas del esquemático y layout de la PCB (Gerbers opcional).	[dd/mm/aaaa]
3: Integración	Video mostrando el prototipo ensamblado (PCB + Case) con todos los componentes funcionando en conjunto.	[dd/mm/aaaa]
4: Proyecto Final	Código final en Git, video de la presentación y demostración de la comunicación IoT (MQTT y Telegram).	[dd/mm/aaaa]

4. Evaluación y Calificación

- Colaboración: El trabajo en equipo es mandatorio. La falta de colaboración resultará en una nota grupal inferior a 6.
- Nota Máxima:
 - o 7 (siete): Cumpliendo con todos los requisitos del TP y las entregas.
 - 7 a 10 : Presentando el proyecto funcional en la "Expo Mecatrónica". Se verificará en los días del evento que algún integrante del grupo está presentando.
- Presentación Final: Exposición oral o video (5-10 minutos) explicando el proceso de diseño y construcción.

5. Lista de Materiales

Componente	Cantidad
ESP32 DevKitC	1
PCB Virgen 10x10cm	1
Sensor de Temperatura y Presión (BMP280)	1
Fotorresistencia (LDR)	1
Sensor de Gas (MQ-2 o similar)	2
Pantalla LCD I2C 16x2	1
LEDs 5mm (diferentes colores)	3
Pulsadores para menú 6x6 tht	5
Relé 5V, Transistor	1 de c/u
Conectores (Molex, IDC, Tiras de pines hembra)	Varios
Conector USB-B hembra para PCB	1
Borneras de 2 pines	3

6. Recursos Útiles

• Control de Relé con Transistor:

https://www.inventable.eu/controlar-rele-con-transistor/

Solución de problemas con BME280:
 https://randomnerdtutorials.com/solved-could-not-find-a-valid-bme280-sensor/