CSE-309 Operating

Mohammad Shariful Islam Lecturer, Department of CSE Mobile: 01747612143

Email: sharifulruhan@gmail.com

Chapter 7: Deadlocks

Chapter 7: Deadlocks

- The Deadlock Problem
- System Model
- Deadlock Characterization
- Methods for Handling Deadlocks
- Deadlock Prevention
- Deadlock Avoidance
- Deadlock Detection
- Recovery from Deadlock

Chapter Objectives

- To develop a description of deadlocks, which prevent sets of concurrent processes from completing their tasks
- To present a number of different methods for preventing or avoiding deadlocks in a computer system

Deadlock

- Deadlock is a situation where a set of processes are blocked because each process is holding a resource and waiting for another resource acquired by some other process.
- Consider an example when two trains are coming toward each other on same track and there is only one track, none of the trains can move once they are in front of each other.
- Similar situation occurs in operating systems when there are two or more processes hold some resources and wait for resources held by other(s).

Deadlock (cont.)

 For example, in the below diagram, Process 1 is holding Resource 1 and waiting for resource 2 which is acquired by process 2, and process 2 is waiting for resource 1.

Figure: Deadlock in OS

Bridge Crossing Example

- Traffic only in one direction like Half duplex data communication.
- Each section of a bridge can be viewed as a resource
- If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)
- Several cars may have to be backed up if a deadlock occurs
- Starvation is possible
- Note Most OSes do not prevent or deal with deadlocks

System Model

- Resource types $R_1, R_2, ..., R_m$ CPU cycles, memory space, I/O devices
- **Each** resource type R_i has W_i instances.
- Each process utilizes a resource as follows:
 - request
 - use
 - release

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

- Mutual exclusion: only one process at a time can use a resource
- Hold and wait: a process holding at least one resource is waiting to acquire additional resources held by other processes
- No preemption: a resource can be released only voluntarily by the process holding it, after that process has completed its task
- **Circular wait:** there exists a set $\{P_0, P_1, ..., P_n\}$ of waiting processes such that P_0 is waiting for a resource that is held by P_1 , P_1 is waiting for a resource that is held by
 - P_2 , ..., P_{n-1} is waiting for a resource that is held by P_n , and P_n is waiting for a resource that is held by P_0 .

Resource-Allocation Graph

A set of vertices *V* and a set of edges *E*.

- V is partitioned into two types:
 - $P = \{P_1, P_2, ..., P_n\}$, the set consisting of all the processes in the system
 - $R = \{R_1, R_2, ..., R_m\}$, the set consisting of all resource types in the system
- **request edge** directed edge $P_i \rightarrow R_i$
- **assignment edge** directed edge $R_i \rightarrow P_i$

Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

 $ightharpoonup P_i$ requests instance of R_i

 R_i

 \blacksquare P_i is holding an instance of R_j

Example of a Resource Allocation Graph

Resource Allocation Graph With A Deadlock

Graph With A Cycle But No Deadlock

Exercise

Consider a system has one DVD drive, two printers, one CPU and three files (for storing information). Suppose there are three processes, i.e., P_1 , P_2 , and P_3 . Process P_1 is holding an instance of resource type printer and is waiting for an instance of resource type DVD drive. Process P_2 is holding an instance of resource type DVD drive and an instance of printer and is waiting for an instance of resource type CPU. Process P_3 is holding an instance of resource type CPU and is waiting for an instance of resource type printer.

✓ Show these resources in a resource-allocation graph.

Basic Facts

- If graph contains no cycles ⇒ no deadlock
- If graph contains a cycle ⇒
 - if only one instance per resource type, then deadlock
 - if several instances per resource type, possibility of deadlock

Methods for Handling Deadlocks

Methods for handling deadlock:

There are three ways to handle deadlock

- 1) Deadlock prevention or avoidance: The idea is to not let the system into deadlock state.
- 2) Deadlock detection and recovery: Let deadlock occur, then do preemption to handle it once occurred.
- 3) Ignore the problem all together: If deadlock is very rare, then let it happen and reboot the system. This is the approach that both Windows and UNIX take.

Deadlock Prevention

Restrain the ways request can be made

- Mutual Exclusion not required for sharable resources; must hold for nonsharable resources
- Hold and Wait must guarantee that whenever a process requests a resource, it does not hold any other resources
 - Require process to request and be allocated all its resources before it begins execution, or allow process to request resources only when the process has none
 - Low resource utilization; starvation possible

Deadlock Prevention (Cont.)

■ No Preemption –

- If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then all resources currently being held are released
- Preempted resources are added to the list of resources for which the process is waiting
- Process will be restarted only when it can regain its old resources, as well as the new ones that it is requesting
- Circular Wait impose a total ordering of all resource types, and require that each process requests resources in an increasing order of enumeration

Deadlock Avoidance

Requires that the system has some additional *a priori* information available

- Simplest and most useful model requires that each process declare the maximum number of resources of each type that it may need
- The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can never be a circular-wait condition
- Resource-allocation state is defined by the number of available and allocated resources, and the maximum demands of the processes

Safe State

- When a process requests an available resource, system must decide if immediate allocation leaves the system in a safe state
- System is in safe state if there exists a sequence $\langle P_1, P_2, ..., P_n \rangle$ of ALL the processes in the systems such that for each P_i , the resources that P_i can still request can be satisfied by currently available resources + resources held by all the P_j , with j < I

That is:

- If P_i resource needs are not immediately available, then P_i can wait until all P_i have finished
- When P_j is finished, P_i can obtain needed resources, execute, return allocated resources, and terminate
- When P_i terminates, P_{i+1} can obtain its needed resources, and so on

Basic Facts

- If a system is in safe state ⇒ no deadlocks
- If a system is in unsafe state ⇒ possibility of deadlock
- Avoidance ⇒ ensure that a system will never enter an unsafe state.

Safe, Unsafe, Deadlock State

Avoidance algorithms

- Single instance of a resource type
 - Use a resource-allocation graph
- Multiple instances of a resource type
 - Use the banker's algorithm

Resource-Allocation Graph Scheme

- Claim edge $P_i \rightarrow R_j$ indicated that process P_j may request resource R_i ; represented by a dashed line
- Claim edge converts to request edge when a process requests a resource
- Request edge converted to an assignment edge when the resource is allocated to the process
- When a resource is released by a process, assignment edge reconverts to a claim edge
- Resources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

- Suppose that process P_i requests a resource R_i
- The request can be granted only if converting the request edge to an assignment edge does not result in the formation of a cycle in the resource allocation graph

Banker's Algorithm

- Multiple instances
- Each process must a priori claim maximum use
- When a process requests a resource it may have to wait
- When a process gets all its resources it must return them in a finite amount of time

Data Structures for the Banker's Algorithm

Let n = number of processes, and m = number of resources types.

- Available: Vector of length m. If available [j] = k, there are k instances of resource type R_i available
- **Max**: $n \times m$ matrix.If Max[i,j] = k, then process P_i may request at most k instances of resource type R_i
- **Allocation**: $n \times m$ matrix.If Allocation[i,j] = k then P_i is currently allocated k instances of R_i
- **Need**: $n \times m$ matrix. If Need[i,j] = k, then P_i may need k more instances of R_i to complete its task

$$Need[i,j] = Max[i,j] - Allocation[i,j]$$

Safety Algorithm

1. Let *Work* and *Finish* be vectors of length *m* and *n*, respectively. Initialize:

Work = Available
Finish
$$[i]$$
 = false for i = 0, 1, ..., n -1

- 2. Find an *i* such that both:
 - (a) Finish [i] = false
 - (b) Need_i≤ Work

If no such *i* exists, go to step 4

- 3. Work = Work + Allocation_i Finish[i] = true go to step 2
- 4. If Finish[i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process P_i

Request = request vector for process P_i . If Request_i[\mathbf{j}] = k then process P_i wants k instances of resource type R_j

- 1. If *Request_i* ≤ *Need_i* go to step 2. Otherwise, raise error condition, since process has exceeded its maximum claim
- 2. If $Request_i \le Available$, go to step 3. Otherwise P_i must wait, since resources are not available
- 3. Pretend to allocate requested resources to P_i by modifying the state as follows:

Available = Available - Request; Allocation_i = Allocation_i + Request_i; Need_i = Need_i - Request_i;

- If safe ⇒ the resources are allocated to Pi
- If unsafe ⇒ Pi must wait, and the old resource-allocation state is restored

Example of Banker's Algorithm

■ 5 processes P_0 through P_4 ; 3 resource types:

A (10 instances), B (5 instances), and C (7 instances) Snapshot at time T_0 :

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
P_0	010	753	332
P_1	200	322	
P_2	302	902	
P_3	211	222	
P_4	002	433	

Example (Cont.)

Question 1. What will be the content of the Need matrix?

Need= Max - Allocation

Need [i, j] = Max [i, j] - Allocation [i, j]

So, the content of Need Matrix is:

Need					
	Α	В	С		
P_0	7	4	3		
P ₁	1	2	2		
P_2	6	0	0		
P ₃	0	1	1		
P_4	4	3	1		

Example (Cont.)

Question 2. Is the system in safe state? If Yes, then what is the safe sequence? Applying the Safety algorithm on the given system,

$$3, 3, 2 \qquad 2, 0, 0 \qquad \text{Step 3}$$

$$Work = Work + Allocation_1$$

$$Work = 5 \quad 3 \quad 2$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$Finish = false true false false false$$

For
$$i = 2$$

Need₂ = 6, 0, 0

Finish [2] is false and Need₂ > Work

So P₂ must wait

For i=3

Need₃ = 0, 1, 1

Finish [3] = false and Need₃ < Work

So
$$P_3$$
 must be kept in safe sequence

Example (Cont.)

For
$$i = 2$$
Need₂ = 6, 0, 0
Finish [2] is false and Need₂ < Work
So P₂ must be kept in safe sequence

Work =
$$7, 5, 5$$
 3, 0, 2 Step 3
Work = 4 B C
Work = 10 5 7
0 1 2 3 4
Finish = true true true true

Finish [i] = true for
$$0 \le i \le n$$
 Step 4
Hence the system is in Safe state

The safe sequence is P1,P3, P4,P0,P2

Resource allocation graph

■ Following is the Resource Allocation Graph:

Example: P_1 Request (1,0,2)

Question 3. What will happen if process P₁ requests one additional instance of resource type A and two instances of resource type C?

Δvailable = Δvailable - Request₁

$$Reguest_1 = 1, 0, 2$$

To decide whether the request is granted we use Resource-Request algorithm

Available - Available - Requesti					
Allocation ₁ = Allocation ₁ + Request ₁					
Need ₁ = Need ₁ - Request ₁					
Process	Allocation	Need	Available		
	АВС	A В С	АВС		
P ₀	0 1 0	7 4 3	2 3 0		
P ₁	(3 0 2)	0 2 0			
P ₂	3 0 2	6 0 0			
P ₃	2 1 1	0 1 1			
P ₄	0 0 2	4 3 1			

Step 3

Example: P_1 Request (1,0,2)

We must determine whether this new system state is safe. To do so, we again execute Safety algorithm on the above data structures.

Step 4 Finish [i] = true for $0 \le i \le n$ Hence the system is in Safe state

The safe sequence is P₁,P₃, P₄,P₀,P₂

Finish [0] is false and Need < Work

So Pomust be kept in safe sequence

7, 4, 3

 $Need_0 = 7, 4, 3$

Step 2

7, 4, 5

Example: P_1 Request (1,0,2)

- Executing safety algorithm shows that sequence $\langle P_1, P_3, P_4, P_0, P_2 \rangle$ satisfies safety requirement.
- Hence the new system state is safe, so we can immediately grant the request for process P₁.
- Can request for (3,3,0) by P₄ be granted?
- Can request for (0,2,0) by P_0 be granted?

Deadlock Detection

- Allow system to enter deadlock state
- Detection algorithm
- Recovery scheme

- Maintain wait-for graph
 - Nodes are processes
 - $P_i \rightarrow P_j$ if P_i is waiting for P_j
- Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there exists a deadlock
- An algorithm to detect a cycle in a graph requires an order of n^2 operations, where n is the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph

Corresponding wait-for graph

- **Available**: A vector of length *m* indicates the number of available resources of each type.
- **Allocation**: An *n* x *m* matrix defines the number of resources of each type currently allocated to each process.
- **Request**: An $n \times m$ matrix indicates the current request of each process. If Request[i][j] = k, then process P_i is requesting k more instances of resource type. R_i .

Detection Algorithm

- 1. Let *Work* and *Finish* be vectors of length *m* and *n*, respectively Initialize:
 - (a) Work = Available
 - (b) For i = 1, 2, ..., n, if $Allocation_i \neq 0$, then Finish[i] = false; otherwise, Finish[i] = true
- 2. Find an index *i* such that both:
 - (a) Finish[i] == false
 - (b) Request_i≤ Work

If no such *i* exists, go to step 4

Detection Algorithm (Cont.)

- 3. Work = Work + Allocation_i Finish[i] = true go to step 2
- 4. If Finish[i] == false, for some i, $1 \le i \le n$, then the system is in deadlock state. Moreover, if Finish[i] == false, then P_i is deadlocked

Algorithm requires an order of $O(m \times n^2)$ operations to detect whether the system is in deadlocked state

Example of Detection Algorithm

- Five processes P_0 through P_4 ; three resource types A (7 instances), B (2 instances), and C (6 instances)
- Snapshot at time T_0 :

	<u>Allocation</u>	<u>Request</u>	<u>Available</u>
	ABC	ABC	ABC
P_0	010	000	000
P_1	200	202	
P_2	303	000	
P_3	211	100	
P_4	002	002	

Sequence $\langle P_0, P_2, P_3, P_1, P_4 \rangle$ will result in *Finish*[*i*] = true for all *i*

Example (Cont.)

 \blacksquare P_2 requests an additional instance of type C

<u>Request</u>				
	ABC			
P_0	000			
P_1	202			
P_2	0 0 1			
P_3	100			
P_4	002			

- State of system?
 - Can reclaim resources held by process P_0 , but insufficient resources to fulfill other processes; requests
 - Deadlock exists, consisting of processes P₁, P₂, P₃, and P₄

Detection-Algorithm Usage

- When, and how often, to invoke depends on:
 - How often a deadlock is likely to occur?
 - How many processes will need to be rolled back?
 - one for each disjoint cycle
- If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph and so we would not be able to tell which of the many deadlocked processes "caused" the deadlock.

Recovery from Deadlock: Process Termination

- Abort all deadlocked processes
- Abort one process at a time until the deadlock cycle is eliminated
- In which order should we choose to abort?
 - Priority of the process
 - How long process has computed, and how much longer to completion
 - Resources the process has used
 - Resources process needs to complete
 - How many processes will need to be terminated
 - Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

- Selecting a victim minimize cost
- Rollback return to some safe state, restart process for that state
- Starvation same process may always be picked as victim, include number of rollback in cost factor

End of Chapter 7

