Doble Grado Matemáticas-Informática

ÁLGEBRA LINEAL

Hoja 3: Subespacios Vectoriales de \mathbb{R}^n . Matrices y Aplicaciones Lineales (0)

Un subconjunto no vacío $W \subset \mathbb{R}^n$ se dice un subespacio vectorial (de \mathbb{R}^n) si y solo si para cualesquiera $u, v \in W$ y $\lambda, \mu \in \mathbb{R}$, la combinación $\lambda u + \mu v$ también está en W.

- 1.- Demostrar que si $W \subset \mathbb{R}^n$ es un subespacio vectorial entonces:
 - (a) $\mathbf{0} \in W$ (donde $\mathbf{0}$ es el neutro de la suma en \mathbb{R}^n)
 - (b) si $v \in W$ entonces $-v \in W$.
 - (c) si $v \in W$ entonces $\lambda v \in W$ para cualquier $\lambda \in \mathbb{R}$
- **2.-** Demostrar que si $G = \{v_1, \dots, v_k\} \subset \mathbb{R}^n$ es un subconjunto no vacío de k vectores de \mathbb{R}^n , entonces el conjunto

$$\langle G \rangle = \langle v_1, \dots, v_k \rangle = \{\lambda_1 v_1 + \dots + \lambda_k v_k \mid \lambda_1, \dots, \lambda_k \in \mathbb{R}\}$$

es un subespacio vectorial de \mathbb{R}^n . A un tal subespacio se le dice generado por el subconjunto G.

- 3.- Decide de manera razonada si los siguientes conjuntos son subespacios vectoriales de \mathbb{R}^3 ó no.
 - (a) $V_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$
 - (b) $V_2 = \{(x, y, z) \in \mathbb{R}^3 : x = y, 2y = z + 7\}$
 - (c) $V_3 = \{(x, y, z) \in \mathbb{R}^3 : x = y, 2y = z\}$
- 4.- Sea W el subespacio de \mathbb{R}^4 generado por (1,2,-5,3) y (2,-1,4,7). Se pide
 - (a) Determinar si el vector (0, 0, -37, -3) pertenece a W.
 - (b) Determinar para qué valores de α y β el vector $(\alpha, \beta, -37, -3) \in W$.
- 5.- Determina para qué valor de $\alpha \in \mathbb{R}$ los tres vectores de \mathbb{R}^4

$$v_1 = (3, 1, -4, 6), \quad v_2 = (1, 1, 4, 4), \quad v_3 = (1, 0, -4, \alpha)$$

son linealmente dependientes.

- **6.-** Determina si los vectores $u_1 = (10, -4, 4, 10)$ y $u_2 = (-8, -2, 9, -15)$ pertenecen al subespacio vectorial $W \subset \mathbb{R}^4$ generado por $v_1 = (2, 1, 1, 4)$, $v_2 = (-4, -3, 0, -7)$ y $v_3 = (0, 0, -1, -1)$.*
- 7.- Encontrar dos vectores linealmente independientes de \mathbb{R}^4 que no pertenezcan al subespacio generado por los vectores (2, -2, 3, 1) y (-1, 4, -6, -2).
- 8.- Sea $f_A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ la aplicación lineal con matriz $A \in M_{m \times n}(\mathbb{R})$
 - (a) Demuestra que la imagen es el subespacio de \mathbb{R}^m generado por los vectores columna de A.

^{*}Sugerencia: ver ejercicio 1.ix|x) de la hoja 1.

- (b) Demuestra que el núcleo es el subespacio de soluciones del sistema de ecuaciones homogéneo definido por A en \mathbb{R}^n
- (c) Si $\omega \in \text{Img}(f_A) \subset \mathbb{R}^m$, y si $v \in \mathbb{R}^n$ tiene imagen ω , demuestra que $f^{-1}(w) = \{v + z, z \in \text{Nuc}(f_A)\}$.
- (d) Si $\omega = (\alpha_1, \dots, \alpha_m) \in \mathbb{R}^m$ es tal que el sistema de ecuaciones $A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$ es compatible, y si $v \in \mathbb{R}^n$ es una solución, entonces el conjunto de todas las soluciones es de la forma

$$\left\{v+z, \text{ para todo } z \text{ solución del sistema homogéneo } A \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) = \left(\begin{array}{c} 0 \\ \vdots \\ 0 \end{array}\right)\right\}.$$

- 9.- Sea $f_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ la aplicación lineal con matriz $A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 1 & -1 \end{pmatrix}$. Observa que las columnas forman un conjunto de vectores independientes (el rango A es el número de columnas), y demuestra que f_A es inyectiva.
- 10.- Extiende el resultado anterior al caso general: Sea $f_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ la aplicación lineal con matriz $A \in M_{m \times n}(\mathbb{R})$. Demuestra que si el rango de A es n entonces f_A es inyectiva.
- 11.- Sea $f_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ la aplicación lineal con matriz $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 1 \end{pmatrix}$. Observa que el rango de la matriz es el número de filas, y demuestra que f_A es sobreyectiva.
- 12.- Extiende el resultado anterior al caso general: Sea $f_A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ la aplicación lineal con matriz $A \in M_{m \times n}(\mathbb{R})$. Demuestra que si el rango de A es m entonces f_A es sobreyectiva.
- 13.- Considera la aplicación lineal $f_A : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, con matriz $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 1 & -1 & 1 \end{pmatrix}$.
 - (a) Observa que el rango de la matriz es uno y por tanto f_A no es sobreyectiva ni inyectiva.
 - (b) Halla un conjunto linealmente independiente de vectores que generen el subespacio imagen.
 - (c) Halla un conjunto linealmente independiente de vectores que generen el subespacio núcleo.
 - (d) Decide si el vector (2,4,2) pertenece a la imagen y, en caso afirmativo, describe el conjunto $f^{-1}(2,4,2)$.
 - (e) Construye una aplicación lineal $f_B: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ que sea inyectiva y verifique que la composición $f_A \circ f_B: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ sea la aplicación nula.
- **14.-** Sea $f_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ la aplicación lineal con matriz $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 2 \end{pmatrix}$.
 - (a) Observa que el rango de la matriz coincide con el número de filas, y por tanto f_A es sobreyectiva.
 - (b) Construye una aplicación lineal $f_C : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ que verifique que la composición $f_A \circ f_C : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ sea la identidad.
- 15.- Demuestra que la aplicación lineal $f_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ con matriz $A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 0 & -1 \end{pmatrix}$ es inyectiva. Halla una matriz $B \in M_{2\times 3}$ de modo que se cumpla que $f_B \circ f_A = \mathrm{id}_{\mathbb{R}^2}$.