ABELIAN VARIETIES WITH MANY ENDOMORPHISMS AND THEIR ABSOLUTELY SIMPLE FACTORS

XAVIER GUITART

ABSTRACT. We characterize the abelian varieties arising as absolutely simple factors of GL_2 -type varieties over a number field k. In order to obtain this result, we study a wider class of abelian varieties: the k-varieties A/k satisfying that $\operatorname{End}_k^0(A)$ is a maximal subfield of $\operatorname{End}_{\bar{k}}^0(A)$. We call them Ribet-Pyle varieties over k. We see that every Ribet-Pyle variety over k is isogenous over \bar{k} to a power of an abelian k-variety and, conversely, that every abelian k-variety occurs as the absolutely simple factor of some Ribet-Pyle variety over k. We deduce from this correspondence a precise description of the absolutely simple factors of the varieties over k of GL_2 -type.

1. Introduction

Let k be a number field. An abelian variety A over k is said to be of GL_2 -type if its algebra of k-endomorphisms $\mathrm{End}_k^0(A) = \mathbb{Q} \otimes_{\mathbb{Z}} \mathrm{End}_k(A)$ is a number field of degree equal to the dimension of A. The aim of this note is to characterize the abelian varieties over \bar{k} that arise as absolutely simple factors of GL_2 -type varieties over k.

The interest in abelian varieties over \mathbb{Q} of GL_2 -type arose in connection with the Shimura-Taniyama conjecture on the modularity of elliptic curves over \mathbb{Q} , and its generalization to higher dimensional modular abelian varieties over \mathbb{Q} . To be more precise, to each A/\mathbb{Q} of GL_2 -type is attached a compatible system of λ -adic representations $\rho_{A,\lambda}\colon G_{\mathbb{Q}}\to\operatorname{GL}_2(E_{\lambda})$, where $E=\operatorname{End}^0_{\mathbb{Q}}(A)$ and the λ 's are primes of E. As a consequence of Serre's conjecture on Galois representations these $\rho_{A,\lambda}$ are modular; that is, there exists a newform $f\in S_2(\Gamma_1(N))$ such that $\rho_{A,\lambda}\simeq \rho_{f,\lambda}$ for all primes λ of E, where $\rho_{f,\lambda}$ is the λ -adic representation attached to f (see [4] for the details).

The study of the $\overline{\mathbb{Q}}$ -simple factors of GL_2 -type varieties over \mathbb{Q} was initiated by K. Ribet in [4], in which the one-dimensional factors where characterized: they are the elliptic curves $C/\overline{\mathbb{Q}}$ that are isogenous to all their

Date: January 11, 2013.

²⁰⁰⁰ Mathematics Subject Classification. 11G10, 14K15.

 $[\]it Key\ words\ and\ phrases.$ Abelian varieties of GL2-type, $\it k$ -varieties, building blocks.

Galois conjugates, also known as elliptic \mathbb{Q} -curves. This result was completed by Ribet's student E. Pyle in her PhD thesis [3], where she characterized the higher dimensional $\overline{\mathbb{Q}}$ -simple factors as a certain type of abelian \mathbb{Q} -varieties called building blocks. More concretely, an abelian variety $B/\overline{\mathbb{Q}}$ is an abelian \mathbb{Q} -variety if it is $\operatorname{End}_{\overline{\mathbb{Q}}}(B)$ -equivariantly isogenous to all of its Galois conjugates; this means that for each $\sigma \in G_{\mathbb{Q}}$ there exists an isogeny $\mu_{\sigma} \colon {}^{\sigma}B \to B$ such that $\varphi \circ \mu_{\sigma} = \mu_{\sigma} \circ {}^{\sigma}\varphi$ for all $\varphi \in \operatorname{End}_{\overline{\mathbb{Q}}}(B)$. A building block is an abelian \mathbb{Q} -variety B whose endomorphism algebra is a central division algebra over a totally real field F, with Schur index $t \leq 2$ and reduced degree $t[F:\mathbb{Q}] = \dim B$. The following statement is Proposition 1.3 and Proposition 4.5 of [3].

Theorem 1.1 (Ribet-Pyle). Let A/\mathbb{Q} be an abelian variety of GL_2 -type such that $A_{\overline{\mathbb{Q}}}$ does not have complex multiplication. Then $A_{\overline{\mathbb{Q}}}$ decomposes up to $\overline{\mathbb{Q}}$ -isogeny as $A_{\overline{\mathbb{Q}}} \sim B^n$ for some building block $B/\overline{\mathbb{Q}}$. Conversely, if $B/\overline{\mathbb{Q}}$ is a building block then there exists a GL_2 -type variety A/\mathbb{Q} such that $A_{\overline{\mathbb{Q}}} \sim B^n$ for some n.

Observe that this result establishes a correspondence between abelian varieties of GL_2 -type over $\mathbb Q$ without CM and building blocks. In the last chapter of Pyle's thesis, a series of questions were posed about whether a similar correspondence holds for GL_2 -type varieties over other fields k. The goal of this note is to establish such correspondence when k is a number field. In this case, the analogous of building blocks are abelian k-varieties (that is, varieties B/\bar{k} equivariantly isogenous to ${}^{\sigma}B$ for all $\sigma \in G_k$) whose endomorphism algebra is a central division algebra over a field F with Schur index $t \leq 2$ and $t[F:\mathbb Q] = \dim B$. We call these varieties building k-blocks. We prove in Section 3 that every GL_2 -type variety A/k such that $A_{\bar{k}}$ does not have CM is \bar{k} -isogenous to the power of a building k-block. Conversely, every building k-block arises as the \bar{k} -simple factor of some variety over k of GL_2 -type. In other words, we construct a correspondence

(1)
$$\frac{\{A/k \text{ of GL}_2\text{-type without CM}\}}{k\text{-isogeny}} \longleftrightarrow \frac{\{\text{building }k\text{-blocks }B/\bar{k}\}}{\bar{k}\text{-isogeny}}.$$

This can be seen as a natural generalization of the results of Ribet and Pyle to a wider class of abelian varieties. Moreover, it is worth noting that varieties over k of GL_2 -type play a similar role as their counterparts over $\mathbb Q$ with respect to modularity: they are conjectured to be modular, at least when k is totally real, in a similar sense as they are known to be modular for $k = \mathbb Q$. Indeed, if A/k is of GL_2 -type and k is a totally real number field, a generalization of the Shimura-Taniyama conjecture predicts the existence of a Hilbert modular form f such that $\rho_{A,\lambda} \simeq \rho_{f,\lambda}$ for all primes λ of $E = \operatorname{End}_k^0(A)$. See [1, Conjecture 2.4] for a precise statement.

Observe that in correspondence (1) the objects in the right hand side are k-varieties whose endomorphism algebra satisfies certain conditions. Instead of proving (1) directly, what we do is to construct as a previous step a more general correspondence, in which the right hand side is enlarged to all abelian k-varieties. As we will see, the varieties that correspond to them in the left hand side are then varieties A/k characterized by the fact that $A_{\bar{k}}$ is a k-variety and $\operatorname{End}_k^0(A)$ is a maximal subfield of $\operatorname{End}_{\bar{k}}^0(A)$. We call the varieties satisfying these properties Ribet-Pyle varieties, because they arise naturally in this generalization of the results of Ribet and Pyle. Section 2 is devoted to the study of Ribet-Pyle varieties and their absolutely simple factors, and we obtain the following main result.

Theorem 1.2. Let k be a number field and let A/k be a Ribet-Pyle variety. Then $A_{\bar{k}}$ decomposes up to \bar{k} -isogeny as $A_{\bar{k}} \sim B^n$ for some abelian k-variety B/\bar{k} . Conversely, if B/\bar{k} is a k-variety then there exists a Ribet-Pyle variety A/k such that $A_{\bar{k}} \sim B^n$ for some n.

This result gives some insight into the nature of the correspondences of Theorem 1.1 and its generalization (1). Indeed, what we do in Section 3 is to prove that varieties over k of GL_2 -type without CM are Ribet-Pyle varieties, and then we obtain (1) by applying Theorem 1.2 to GL_2 -type varieties.

2. Ribet-Pyle varieties

Let k be a number field. In this section we establish and prove the correspondence between abelian k-varieties and Ribet-Pyle varieties of Theorem 1.2. We begin by giving the relevant definitions.

Definition 2.1. An abelian variety B/\bar{k} is an abelian k-variety if for each $\sigma \in G_k$ there exists an isogeny $\mu_{\sigma} \colon {}^{\sigma}B \to B$ compatible with the endomorphisms of B; i.e., such that for all $\varphi \in \operatorname{End}_{\bar{k}}(B)$ the following diagram is commutative

(2)
$$\begin{array}{ccc}
\sigma B & \xrightarrow{\mu_{\sigma}} B \\
\sigma_{\varphi} & & \varphi \\
\sigma B & \xrightarrow{\mu_{\sigma}} B.
\end{array}$$

Definition 2.2. An abelian variety A defined over k is a Ribet-Pyle variety if $A_{\bar{k}}$ is an abelian k-variety and $\operatorname{End}_{\bar{k}}^{0}(A)$ is a maximal subfield of $\operatorname{End}_{\bar{k}}^{0}(A)$.

Remark 2.3. We remark that not all abelian varieties A defined over k satisfy that $A_{\bar{k}}$ is a k-variety. Indeed, although in this case the identity is an obvious isogeny between ${}^{\sigma}A$ and A, it is not necessarily compatible with $\operatorname{End}_{\bar{k}}(A)$ in general.

One of the directions of the correspondence that we aim to establish follows almost immediately from the definitions. **Proposition 2.4.** Let A/k be a Ribet-Pyle variety. Then it decomposes up to \bar{k} -isogeny as $A_{\bar{k}} \sim B^n$, for some simple abelian k-variety B and some n.

Proof. Let F be the center of $\operatorname{End}_{\bar{k}}^0(A)$ and let φ be an element of F. Since $A_{\bar{k}}$ is a k-variety, for each $\sigma \in G_k$ we have that

(3)
$${}^{\sigma}\varphi = \mu_{\sigma}^{-1} \circ \varphi \circ \mu_{\sigma},$$

for some isogeny $\mu_{\sigma} \colon {}^{\sigma}A_{\bar{k}} \to A_{\bar{k}}$. Since A is defined over k the isogeny μ_{σ} belongs to $\operatorname{End}_{\bar{k}}^{0}(A)$. Then ${}^{\sigma}\varphi = \varphi$ because φ belongs to the center of $\operatorname{End}_{\bar{k}}^{0}(A)$. This gives the inclusion $F \subseteq \operatorname{End}_{k}^{0}(A)$. By hypothesis $\operatorname{End}_{k}^{0}(A)$ is a field, so F is a field as well and this implies that $A_{\bar{k}} \sim B^{n}$ for some simple variety B and some n. Next, we show that B is a k-variety. By fixing an isogeny $A_{\bar{k}} \sim B^{n}$ the center of $\operatorname{End}_{\bar{k}}^{0}(B)$ can be identified with F, and each compatible isogeny $\mu_{\sigma} \colon {}^{\sigma}A_{\bar{k}} \to A_{\bar{k}}$ gives rise to an isogeny $\nu_{\sigma} \colon {}^{\sigma}B \to B$. The relation (3) implies that $\psi = \nu_{\sigma} \circ {}^{\sigma}\psi \circ \nu_{\sigma}^{-1}$ for all $\psi \in Z(\operatorname{End}_{\bar{k}}^{0}(B)) \simeq F$, so that the map

$$\operatorname{End}_{\overline{k}}^{0}(B) \longrightarrow \operatorname{End}_{\overline{k}}^{0}(B)$$

$$\psi \longmapsto \nu_{\sigma} \circ^{\sigma} \psi \circ \nu_{\sigma}^{-1}$$

is a F-algebra automorphism. By the Skolem-Noether Theorem it is inner, and there exists an element $\alpha_{\sigma} \in \operatorname{End}_{\bar{\iota}}^{0}(B)^{*}$ such that

$$\nu_{\sigma} \circ {}^{\sigma} \psi \circ \nu_{\sigma}^{-1} = \alpha_{\sigma}^{-1} \circ \psi \circ \alpha_{\sigma},$$

for all $\psi \in \operatorname{End}_{\bar{k}}^{0}(B)$. The isogeny $\alpha_{\sigma} \circ \nu_{\sigma}$ satisfies the compatibility condition (2) and we see that B is a k-variety.

The following statement gives the other direction of the correspondence between k-varieties and Ribet-Pyle varieties in the number field case.

Theorem 2.5. Let k be a number field, and let B/\bar{k} be a simple abelian k-variety. Then there exists a Ribet-Pyle variety A/k such that $A_{\bar{k}} \sim B^n$ for some n.

Before giving the proof of Theorem 2.5 we shall need some preliminary results.

Cohomology classes and splitting fields. Let k be a number field and let B/\bar{k} be a simple abelian k-variety. Let \mathcal{B} be its endomorphism algebra and let F be the center of \mathcal{B} . Since B has a model over a finite extension of k, we can choose for each $\sigma \in G_k$ a compatible isogeny $\mu_{\sigma} : {}^{\sigma}B \to B$ in such a way that the set $\{\mu_{\sigma}\}_{\sigma \in G_k}$ is locally constant; more precisely, such that $\mu_{\sigma} = \mu_{\tau}$ if ${}^{\sigma}B = {}^{\tau}B$. Then we can define a map $c_B : G_k \times G_k \to F^*$ by means of $c_B(\sigma,\tau) = \mu_{\sigma} \circ {}^{\sigma}\mu_{\tau} \circ \mu_{\sigma\tau}^{-1}$. It is easy to check that c_B is a continuous 2-cocycle of G_k with values in F^* (considering the trivial action of G_k in F^*). Its cohomology class $[c_B] \in H^2(G_k, F^*)$ is an invariant of the isogeny

class of B and it is independent of the compatible isogenies used to define it.

The inclusion of G_k -modules with trivial action $F^* \hookrightarrow \overline{F}^*$ induces a homomorphism between the cohomology groups $H^2(G_k, F^*) \to H^2(G_k, \overline{F}^*)$. A theorem of Tate implies that $H^2(G_k, \overline{F}^*) = \{1\}$ (see [4, Theorem 6.3]). Therefore, the image of $[c_B]$ in $H^2(G_k, \overline{F}^*)$ is trivial, which means that there exist continuous maps $\beta: G_k \to \overline{F}^*$ such that

(4)
$$c_B(\sigma,\tau) = \beta(\sigma)\beta(\tau)\beta(\sigma\tau)^{-1}.$$

We say that a map β satisfying (4) is a *splitting map* for the cocycle c_B . If $\chi \colon G_k \to \overline{F}^*$ is a character then $\beta' = \beta \chi$ is another splitting map for c_B . In fact, as we vary χ through all the characters from G_k to \overline{F}^* we obtain all the splitting maps for c_B . For a splitting map β , we will denote by E_β the field $F(\{\beta(\sigma)\}_{\sigma \in G_k}) \subseteq \overline{F}$. The extension E_β/F is finite because β is continuous. Let m be the order of $[c_B]$ in $H^2(G_k, F^*)$, and let d be a continuous map $d \colon G_k \to F^*$ expressing c_B^m as a coboundary:

(5)
$$c_B(\sigma,\tau)^m = d(\sigma)d(\tau)d(\sigma\tau)^{-1}.$$

We define a map

$$\varepsilon_{\beta} \colon G_k \longrightarrow \overline{F}^* \\
\sigma \longmapsto \beta(\sigma)^m/d(\sigma).$$

By (4) and (5) we see that $\varepsilon_{\beta} \colon G_k \to \overline{F}^*$ is a continuous character.

Lemma 2.6. For each nonnegative integer n there exists a splitting map β such that $F(\zeta_n) \subseteq E_{\beta}$, where ζ_n is a primitive n-th root of unity in \overline{F} .

Proof. Let β' be a splitting map for c_B , and let r be the order of $\varepsilon_{\beta'}$. Let $e = \gcd(n, r)$ and let $\chi \colon G_k \to \overline{F}^*$ be a character of order mn/e, where m is the order of $[c_B]$ in $H^2(G_k, F^*)$. Then the character $\chi^m \varepsilon_{\beta'}$ is the character that corresponds to the splitting map $\beta = \chi \beta'$ and its order is nr/e, which is a multiple of n. Therefore E_β contains a primitive n-th root of unity ζ_n . \square

Cyclic splitting fields of simple algebras. Let \mathcal{A} be a central simple algebra over a number field F. A well-known result of central simple algebras over number fields guarantees the existence of fields L cyclic over F that split \mathcal{A} (i.e. with $\mathcal{A} \otimes_F L \simeq \mathrm{M}_n(L)$ for some n). In order to prove Theorem 2.5 we use a similar result, but with the extension L being cyclic over \mathbb{Q} and such that LF splits \mathcal{A} . Although this is probably also well-known, for lack of reference we include a proof based on the Grunwald-Wang Theorem.

Theorem 2.7 (Grunwald-Wang Theorem). Let M be a number field, and let $\{(v_1, n_1), \ldots, (v_r, n_r)\}$ be a finite set of pairs, where each v_i is a place of M and each n_i is a positive integer such that $n_i \leq 2$ if v_i is a real place, and $n_i = 1$ if v_i is a complex place. Let m be the least common multiple of

the n_i 's, and let n be a positive integer divisible by m. Then there exists a cyclic extension L/M of degree n such that for each i the degree $[L_{v_i}:M_{v_i}]$ is divisible by n_i .

Proposition 2.8. Let F be a number field and let \mathcal{D} be a central division algebra over F. There exists a cyclic extension L/\mathbb{Q} such that LF is a splitting field for \mathcal{D} .

Proof. Let F' be the Galois closure of F. Let $n = [F' : \mathbb{Q}]$ and let t be the Schur index of \mathcal{D} . Let $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_s\}$ be the set of primes of F where \mathcal{D} ramifies, and let $\{p_1,\ldots,p_l\}$ be the set of primes of \mathbb{Q} below $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_s\}$. The Grunwald-Wang Theorem, when applied to the primes p_i with $n_i = tn$, and to the infinite place of \mathbb{Q} with $n_{\infty} = 2$, guarantees the existence of a cyclic extension L/\mathbb{Q} of degree 2tn such that $[L_p : \mathbb{Q}_p] = tn$ for all p belonging to $\{p_1,\ldots,p_l\}$ and $L_v = \mathbb{C}$ for all archimedean places v of L. Let K = LF.

If \mathfrak{p} is a prime of F dividing p, and \mathfrak{P} is a prime of K dividing \mathfrak{p} , the fields L_p and $F_{\mathfrak{p}}$ can be seen as subfields of $K_{\mathfrak{P}}$. Then the degree $g = [L_p \cap F_{\mathfrak{p}} : \mathbb{Q}_p]$ divides n, so $[L_p : L_p \cap F_{\mathfrak{p}}] = t \frac{n}{g} = [F_{\mathfrak{p}} L_p : F_{\mathfrak{p}}]$ and we see that t divides $[K_{\mathfrak{P}} : F_{\mathfrak{p}}]$. Therefore, K is a totally imaginary extension of F such that, for every prime \mathfrak{p} of F ramifying in \mathcal{D} and for every prime \mathfrak{P} of K dividing \mathfrak{p} , the index $[K_{\mathfrak{P}} : F_{\mathfrak{p}}]$ is a multiple of the Schur index of \mathcal{D} . This implies that K is a splitting field for \mathcal{D} (see [2, Corollary 18.4 b and Corollary 17.10 a]).

Corollary 2.9. Every central division F-algebra is split by an extension of the form $F(\zeta_m)$ for some m.

Proof. By the previous proposition there exists a cyclic extension L/\mathbb{Q} such that LF splits \mathcal{D} . The field L is contained in a field of the form $\mathbb{Q}(\zeta_m)$ by the Kronecker-Weber Theorem, and then $F(\zeta_m)$ splits \mathcal{D} .

Construction of Ribet-Pyle varieties. In this paragraph we perform the construction of Ribet-Pyle varieties having a k-variety B as simple factor. Recall that \mathcal{B} denotes $\operatorname{End}_{\bar{k}}^{0}(B)$, F is the center of \mathcal{B} and t denotes the Schur index of \mathcal{B} . Fix also a locally constant set of isogenies $\{\mu_{\sigma} \colon {}^{\sigma}B \to B\}_{\sigma \in G_{k}}$, let c_{B} be the cocycle constructed with these isogenies and let β be a splitting map for c_{B} .

Let n be the degree $[E_{\beta}:F]$, and fix an injective F-algebra homomorphism

$$\phi \colon E_{\beta} \longrightarrow \mathrm{M}_n(F) \subseteq \mathrm{M}_n(\mathcal{B}) \simeq \mathrm{End}_{\bar{k}}^0(B^n).$$

The elements of E_{β} act as endomorphisms of B^n up to isogeny by means of ϕ . Let $\hat{\mu}_{\sigma}$ be the diagonal isogeny $\hat{\mu}_{\sigma} : {}^{\sigma}B^n \to B^n$ consisting in μ_{σ} in each factor.

Proposition 2.10. There exists an abelian variety X_{β} over k and a \bar{k} -isogeny $\kappa \colon B^n \to X_{\beta}$ such that $\kappa^{-1} \circ {}^{\sigma} \kappa = \phi(\beta(\sigma))^{-1} \circ \hat{\mu}_{\sigma}$ for all $\sigma \in G_k$. Moreover, the k-isogeny class of X_{β} is independent of the chosen injection ϕ .

Proof. Let ν_{σ} be the isogeny defined as $\nu_{\sigma} = \phi(\beta(\sigma))^{-1} \circ \hat{\mu}_{\sigma}$. In order to prove the existence of X_{β} , by [4, Theorem 8.1] we need to check that $\nu_{\sigma} \circ {}^{\sigma} \nu_{\tau} \circ \nu_{\sigma\tau}^{-1} = 1$. By the compatibility of μ_{σ} we have that:

$$\nu_{\sigma} \circ^{\sigma} \nu_{\tau} \circ \nu_{\sigma\tau}^{-1} = \phi(\beta(\sigma))^{-1} \circ \hat{\mu}_{\sigma} \circ^{\sigma} \phi(\beta(\tau))^{-1} \circ^{\sigma} \hat{\mu}_{\tau} \circ \hat{\mu}_{\sigma\tau}^{-1} \circ \phi(\beta(\sigma\tau))$$

$$= \phi(\beta(\sigma))^{-1} \circ \phi(\beta(\tau))^{-1} \circ \hat{\mu}_{\sigma} \circ^{\sigma} \hat{\mu}_{\tau} \circ \hat{\mu}_{\sigma\tau}^{-1} \circ \phi(\beta(\sigma\tau))$$

$$= \phi(\beta(\sigma))^{-1} \circ \phi(\beta(\tau))^{-1} \circ c_{B}(\sigma, \tau) \circ \phi(\beta(\sigma\tau))$$

$$= \phi(\beta(\sigma)^{-1} \circ \beta(\tau)^{-1} \circ \beta(\sigma\tau)) \circ c_{B}(\sigma, \tau)$$

$$= \phi(c_{B}(\sigma, \tau)^{-1}) \circ c_{B}(\sigma, \tau) = c_{B}(\sigma, \tau)^{-1} \circ c_{B}(\sigma, \tau) = 1.$$

Now suppose that ϕ and ψ are F-algebra homomorphisms $E_{\beta} \to \mathrm{M}_n(F)$, and let $X_{\beta,\phi}$ and $X_{\beta,\psi}$ denote the varieties constructed by the above procedure using ϕ and ψ respectively to define the action of E_{β} on B^n . We aim to see that $X_{\beta,\phi}$ and $X_{\beta,\psi}$ are k-isogenous.

Let C denote the image of ϕ . The map $\phi(x) \mapsto \psi(x) \colon C \to \mathrm{M}_n(F)$ is a F-algebra homomorphism. Since C is simple and $\mathrm{M}_n(F)$ is central simple over F, by the Skolem-Noether Theorem there exists an element b in $\mathrm{M}_n(F)$ such that $\phi(x) = b\psi(x)b^{-1}$ for all x in E_{β} . By the defining property of $X_{\beta,\phi}$ and $X_{\beta,\psi}$ there exist \bar{k} -isogenies $\kappa \colon B^n \to X_{\beta,\phi}$ and $\lambda \colon B^n \to X_{\beta,\psi}$ such that

(6)
$$\kappa^{-1} \circ {}^{\sigma} \kappa = \phi(\beta(\sigma))^{-1} \circ \hat{\mu}_{\sigma} = b \circ \psi(\beta(\sigma))^{-1} \circ b^{-1} \circ \hat{\mu}_{\sigma},$$

(7)
$$\lambda^{-1} \circ {}^{\sigma} \lambda = \psi(\beta(\sigma))^{-1} \circ \hat{\mu}_{\sigma}.$$

The \bar{k} -isogeny $\nu = \kappa \cdot b \cdot \lambda^{-1} \colon X_{\beta,\psi} \longrightarrow X_{\beta,\phi}$ is in fact defined over k, since for each σ of G_k we have that

$$\nu^{-1} \circ^{\sigma} \nu = \lambda \circ b^{-1} \circ \kappa^{-1} \circ^{\sigma} \kappa \circ^{\sigma} b \circ^{\sigma} \lambda^{-1}
= \lambda \circ b^{-1} \circ b \circ \psi(\beta(\sigma))^{-1} \circ b^{-1} \circ \hat{\mu}_{\sigma} \circ^{\sigma} b \circ^{\sigma} \lambda^{-1}
= \lambda \circ \psi(\beta(\sigma))^{-1} \circ \hat{\mu}_{\sigma} \circ^{\sigma} b^{-1} \circ^{\sigma} b \circ^{\sigma} \lambda^{-1}
= \lambda \circ \lambda^{-1} \circ^{\sigma} \lambda \circ^{\sigma} \lambda^{-1} = 1.$$

where we used the compatibility of $\hat{\mu}_{\sigma}$ with the endomorphisms of B^n in the third equality, and the expressions (6) and (7) in the second and fourth equality respectively.

Proposition 2.11. The algebra $\operatorname{End}_k^0(X_\beta)$ is isomorphic to the centralizer of E_β in $\operatorname{M}_n(\mathcal{B})$.

Proof. End_{\bar{k}}⁰(X_{β}) is isomorphic to $M_n(\mathcal{B})$ and every endomorphism of X_{β} up to \bar{k} -isogeny is of the form $\kappa \circ \psi \circ \kappa^{-1}$, for some $\psi \in \operatorname{End}_{\bar{k}}^0(B^n)$. For σ in G_k we have:

$$\sigma(\kappa \circ \psi \circ \kappa^{-1}) = \kappa \circ \psi \circ \kappa^{-1} \iff \sigma\kappa \circ \sigma\psi \circ \sigma\kappa^{-1} = \kappa \circ \psi \circ \kappa^{-1}
\iff \kappa^{-1} \circ \sigma\kappa \circ \psi \circ (\kappa^{-1} \circ \sigma\kappa)^{-1} = \psi
\iff \beta(\sigma) \circ \hat{\mu}_{\sigma} \circ \sigma\psi \circ \hat{\mu}_{\sigma}^{-1} \circ \beta(\sigma)^{-1} = \psi
\iff \beta(\sigma) \circ \psi \circ \beta(\sigma)^{-1} = \psi.$$

Thus the endomorphisms of X_{β} defined over k are exactly the ones coming from endomorphisms ψ that commute with $\beta(\sigma)$, for all σ in G_k . Now the proposition is clear, since the $\beta(\sigma)$'s generate E_{β} .

Corollary 2.12. The algebra $\operatorname{End}_k^0(X_\beta)$ is isomorphic to $E_\beta \otimes_F \mathcal{B}$.

Proof. Let C be the centralizer of E_{β} in $M_n(\mathcal{B})$. In view of Proposition 2.11 we have to prove that $C \simeq E_{\beta} \otimes_F \mathcal{B}$. It is clear that E_{β} is contained in C. Moreover, \mathcal{B} is contained in C because the elements of E_{β} can be seen as $n \times n$ matrices with entries in F, and these matrices commute with \mathcal{B} (which is identified with the diagonal matrices in $M_n(\mathcal{B})$). Since E_{β} and \mathcal{B} commute there exists a subalgebra of C isomorphic to $E_{\beta} \otimes_F \mathcal{B}$, which has dimension nt^2 over F. By the Double Centralizer Theorem we know that

$$[C:F][E_{\beta}:F] = [M_n(\mathcal{B}):F] = n^2 t^2,$$

and from this we obtain that $[C:F]=nt^2$, hence C is isomorphic to $E_{\beta}\otimes_F \mathcal{B}$.

At this point we have at our disposal all the tools needed to prove Theorem 2.5.

Proof of Theorem 2.5. By Corollary 2.9 there exists an integer m such that $F(\zeta_m)$ splits \mathcal{B} . Let β be a splitting map for c_B with E_{β} containing $F(\zeta_m)$; the existence of such a β is guaranteed by Lemma 2.6. Consider the variety X_{β} defined as in Proposition 2.10. By Corollary 2.12 we have that $\operatorname{End}_k^0(X_{\beta}) \simeq E_{\beta} \otimes_F \mathcal{B}$, and this later algebra is in turn isomorphic to $M_t(E_{\beta})$ because E_{β} is a splitting field for \mathcal{B} . Therefore, there exists an abelian variety A_{β} defined over k such that $X_{\beta} \sim_k A_{\beta}^t$ and $\operatorname{End}_k^0(A_{\beta}) \simeq E_{\beta}$. Clearly A_{β} is \bar{k} -isogenous to $B^{n/t}$, where $n = [E_{\beta} : F]$, and we claim that it is a Ribet-Pyle variety. First of all, it is easily seen that the power of a k-variety is also a k-variety. This implies that $(A_{\beta})_{\bar{k}}$ is a k-variety. Moreover, we have that $[\operatorname{End}_k^0(A_{\beta}) : F] = [E_{\beta} : F] = n$, and the dimension of the ambient algebra is $[\operatorname{End}_k^0(A_{\beta}) : F] = (\frac{n}{t})^2[\mathcal{B} : F] = n^2$. This implies (cf. [2, Proposition 13.1]) that $\operatorname{End}_k^0(A)$ is a maximal subfield of $\operatorname{End}_k^0(A)$.

Proposition 2.13. Let B be a k-variety and let A/k be a Ribet-Pyle variety having B as \bar{k} -simple factor. Then A is k-isogenous to the variety A_{β} obtained by applying the above procedure to some cocycle c_B attached to B and some splitting map β for c_B .

Proof. Let $\mathcal{B} = \operatorname{End}_{\bar{k}}^0(B)$, let F be the center of \mathcal{B} and let t be the Schur index of \mathcal{B} . Let E be the maximal subfield $\operatorname{End}_k^0(A)$ of $\operatorname{End}_{\bar{k}}^0(A)$, and fix an embedding of E into \overline{F} . Let κ be an isogeny $\kappa \colon B^n \to A_{\bar{k}}$. We have the relation [E:F] = nt. Let $\{\mu_{\sigma} \colon {}^{\sigma}B \to B\}_{\sigma \in G_k}$ be a locally constant set of compatible isogenies and denote by $\hat{\mu}_{\sigma} \colon {}^{\sigma}B^n \to B^n$ the diagonal of μ_{σ} . Define $\beta(\sigma) = \kappa \circ \hat{\mu}_{\sigma} \circ {}^{\sigma}\kappa^{-1}$, which is a compatible isogeny $\beta(\sigma) \colon A_{\bar{k}} \to A_{\bar{k}}$. The fact that $\beta(\sigma)$ is compatible implies that

(8)
$$\beta(\sigma) \circ \varphi = {}^{\sigma}\varphi \circ \beta(\sigma)$$

for all σ in G_k and for all $\varphi \in \operatorname{End}_{\overline{k}}^0(A)$. In particular, when applied to elements φ of E this property says that $\beta(\sigma)$ lies in C(E), the centralizer of E. But C(E) is equal to E, because E is a maximal subfield. Thus $\beta(\sigma)$ belongs to E and it is an isogeny defined over k. Now we have that

$$c_B(\sigma,\tau) = \mu_{\sigma} \circ^{\sigma} \mu_{\tau} \circ \mu_{\sigma\tau}^{-1} = \hat{\mu}_{\sigma} \circ^{\sigma} \hat{\mu}_{\tau} \circ \hat{\mu}_{\sigma\tau}^{-1}$$
$$= \beta(\sigma) \circ^{\sigma} \beta(\tau) \circ \beta(\sigma\tau)^{-1} = \beta(\sigma) \circ \beta(\tau) \circ \beta(\sigma\tau)^{-1},$$

and we see that the map $\sigma \mapsto \beta(\sigma)$ is a splitting map for c_B . We have already seen the inclusion $E_{\beta} \subseteq E$. From (8) it is clear that $C(E_{\beta}) \subseteq E$, and taking centralizers and applying the Double Centralizer Theorem we have that $E = C(E) \subseteq C(C(E_{\beta})) = E_{\beta}$. Thus $E = E_{\beta}$ and, in particular, $[E_{\beta} : F] = nt$.

Now we define a \bar{k} -isogeny $\hat{\kappa} : (B^n)^t \to A^t_{\bar{k}}$ as the diagonal isogeny associated to κ , and we make E_{β} act on B^{nt} by means of $\hat{\kappa}$. It is easy to check that $\hat{\kappa}^{-1} \circ \hat{\kappa} = \hat{\kappa}^{-1} \circ \beta(\sigma)^{-1} \circ \hat{\kappa} \circ \hat{\mu}_{\sigma}$, so A^t satisfies the property defining X_{β} . By the uniqueness property of X_{β} we have that $A^t \sim_k X_{\beta}$, and so $A_{\beta} \sim_k A$. \square

Remark 2.14. The hypothesis that k is a number field has been used only in order to guarantee the existence of splitting maps for c_B , by means of Tate's theorem on the triviality of $H^2(G_k, \overline{F}^{\times})$. Since Tate's theorem is valid for any global or local field k, Theorem 1.2 is valid for any global or local field k as well.

3. Varieties over k of GL_2 -type and k-varieties

Let k be a number field. In this section we characterize the absolutely simple factors of the varieties over k of GL_2 -type, in the case where they do not have complex multiplication.

Proposition 3.1. Let A/k be an abelian variety of GL_2 -type such that $A_{\bar{k}}$ does not have complex multiplication. Then A is a Ribet-Pyle variety.

Proof. By [6, Proposition 1.5] we can suppose that $A_{\bar{k}}$ does not have any simple factor with CM. Let $A_{\bar{k}} \sim B_1^{n_1} \times \cdots \times B_r^{n_r}$ be the decomposition of $A_{\bar{k}}$ into simple abelian varieties up to isogeny. Since $E = \operatorname{End}_k^0(A)$ is a field it acts on each factor $B_i^{n_i}$, and so it acts on the homology with rational coefficients $H_1((B_i^{n_i})_{\mathbb{C}}, \mathbb{Q})$, which is a vector space of dimension $2 \dim B_i^{n_i}$ over \mathbb{Q} . Thus $2 \dim B_i^{n_i}$ is divisible by $[E : \mathbb{Q}] = \dim A$. But $\dim A \geqslant \dim B_i^{n_i}$, so either $[E : \mathbb{Q}] = \dim B_i^{n_i}$ or $2[E : \mathbb{Q}] = \dim B_i^{n_i}$. The later is not possible, because it would mean that $B_i^{n_i}$ has CM by E. Thus $\dim A = \dim B_i^{n_i}$ and $A_{\bar{k}}$ has only one simple factor up to isogeny; say $A_{\bar{k}} \sim B^n$.

Next, we see that E is a maximal subfield of $\operatorname{End}_{\bar{k}}^0(A)$. Let C be the centralizer of E in $\operatorname{End}_{\bar{k}}^0(A)$, and let φ be an element in C. A priori $\varphi(A_{\bar{k}})$ is isogenous to B^r for some $r \leq n$. Since $\varphi \in C$, the field E acts on $\varphi(A_{\bar{k}})$; as before this implies that $[E:\mathbb{Q}]$ divides $2\dim B^r$. But $[E:\mathbb{Q}]=\dim A=\dim B^n$, therefore r=n or r=n/2. Again r=n/2 is not possible, because then B^r would be a factor of $A_{\bar{k}}$ with CM by E. Thus r=n and φ is invertible in $\operatorname{End}_{\bar{k}}^0(A)$. This implies that C is a field, and then E is a maximal subfield of $\operatorname{End}_{\bar{k}}^0(B)$.

Finally, we see that $A_{\bar{k}}$ is an abelian k-variety. For each $\sigma \in G_k$ the map

(9)
$$\operatorname{End}_{\bar{k}}^{0}(A) \longrightarrow \operatorname{End}_{\bar{k}}^{0}(A) \\ \varphi \longmapsto {}^{\sigma}\varphi$$

is the identity when restricted to E. Since E is a maximal subfield, it contains the center F of $\operatorname{End}_{\bar{k}}^0(A)$, so (9) is a F-algebra automorphism. By the Skolem-Noether Theorem there exists an element μ_{σ} in $\operatorname{End}_{\bar{k}}^0(A)^*$ such that ${}^{\sigma}\varphi = \mu_{\sigma}^{-1} \circ \varphi \circ \mu_{\sigma}$, and we see that μ_{σ} is a compatible isogeny in the sense of Definition 2.1.

Definition 3.2. A building k-block is an abelian k-variety B/\bar{k} such that $\operatorname{End}_{\bar{k}}^0(B)$ is a central division algebra over a field F, with Schur index $t \leq 2$ and reduced degree $t[F:\mathbb{Q}] = \dim B$.

Theorem 3.3. Let k be a number field and let A/k be an abelian variety of GL_2 -type such that $A_{\bar{k}}$ does not have CM. Then $A_{\bar{k}} \sim B^n$ for some building k-block B. Conversely, if B is a building k-block then there exists a variety A/k of GL_2 -type such that $A_{\bar{k}} \sim B^n$ for some n.

Proof. By Propostion 3.1 A is a Ribet-Pyle variety, and by Proposition 2.4 we have that $A_{\bar{k}} \sim B^n$ for some k-variety B. Let $\mathcal{B} = \operatorname{End}_{\bar{k}}^0(B)$, let F be the center of \mathcal{B} and let t be its Schur index. Then $E = \operatorname{End}_{\bar{k}}^0(A)$ is a maximal subfield of $\operatorname{End}_{\bar{k}}^0(A) \simeq \operatorname{M}_n(\mathcal{B})$, which has dimension n^2t^2 over F. Therefore [E:F]=nt, and multiplying both sides of this equality by $[F:\mathbb{Q}]$ we see that $[E:\mathbb{Q}]=\dim A=nt[F:\mathbb{Q}]$. The equality $t[F:\mathbb{Q}]=\dim B$ follows. Since \mathcal{B} is a division algebra of \mathbb{Q} -dimension $t^2[F:\mathbb{Q}]$ that acts

on $H_1(B_{\mathbb{C}}, \mathbb{Q})$, which has \mathbb{Q} -dimension $2 \dim B = 2t[F : \mathbb{Q}]$, we see that necessarily $t \leq 2$ and B is a building k-block.

Conversely, let B be a building k-block. In particular it is a k-variety, and by Theorem 2.5 there exists a Ribet-Pyle variety A/k such that $A_{\bar{k}} \sim B^n$ for some n. The field $E = \operatorname{End}_k^0(A)$ is a maximal subfield of $\operatorname{End}_{\bar{k}}^0(A) \simeq \operatorname{M}_n(\mathcal{B})$, which means that [E:F]=nt. Multiplying both sides of this equality by $[F:\mathbb{Q}]$ we see that $[E:\mathbb{Q}]=nt[F:\mathbb{Q}]=n\dim B=\dim A$, and so A is a variety of GL_2 -type.

In the case $k = \mathbb{Q}$ the center of the endomorphism algebra of a building k-block is necessarily totally real, but for arbitrary number fields k a priori it can be either totally real or CM. That is why in Definition 3.2 the field F is not required to be totally real. However, if k admits a real embedding then exactly the same argument of [3, Theorem 1.2] shows that F is necessarily totally real. In addition, there are some extra restrictions on the endomorphism algebra.

Proposition 3.4. Let k be a number field that admits a real embedding. Let B be a building k-block, let $\mathcal{B} = \operatorname{End}_{\bar{k}}^0(B)$ and let $F = Z(\mathcal{B})$. Then F is totally real and \mathcal{B} is either isomorphic to F or to a totally indefinite division quaternion algebra over F.

Proof. We view k as a subfield of \mathbb{C} by means of a real embedding $k \hookrightarrow \mathbb{R}$. Let A/k be a GL_2 -type variety such that $A_{\bar{k}} \sim B^n$. Let E be the maximal subfield $\mathrm{End}_k^0(A)$ of $\mathrm{End}_{\bar{k}}^0(A)$, and identify F with $Z(\mathrm{End}_{\bar{k}}^0(A))$; under this identification F is contained in E. Let t be the Schur index of B and let $m = 2 \dim B/[\mathcal{B}: \mathbb{Q}]$, for which we have that mt = 2.

The division algebra \mathcal{B} belongs a priori to one of the four types of algebras with a positive involution, according to Albert's classification (see for instance [5, Proposition 1]). However, type III is not possible; indeed by [5, Proposition 15] the variety B would then be isogenous to the square of a CM abelian variety.

To see that type IV is also not possible, suppose that F is a CM extension of a totally real field F_0 . Let Φ denote the complex representation of \mathcal{B} on the space of differential forms $H^0(B_{\mathbb{C}}, \Omega^1)$. For every real embedding ν of F_0 let $\chi_{\nu}, \overline{\chi}_{\nu}$ be the two complex-conjugate irreducible representations of \mathcal{B} extending ν . Let r_{ν} and s_{ν} be the multiplicities of χ_{ν} and $\overline{\chi}_{\nu}$ in Φ . For each ν we have that $r_{\nu} + s_{\nu} = 2$; moreover, the equality $r_{\nu} = s_{\nu} = 1$ is not possible for all ν (cf. [5, Propositions 18 and 19]). This implies that $\text{Tr}(\Phi)_{|F} = \sum r_{\nu}\chi_{\nu|F} + s_{\nu}\overline{\chi}_{\nu|F}$ takes non-real values. On the other hand, if we denote by Ψ the complex representation of $\text{End}_{\overline{k}}^0(A)$ on $H^0(A_{\mathbb{C}}, \Omega^1)$, then $\text{Tr}(\Psi) = n\text{Tr}(\Phi)$. Since A is defined over k we can take a basis of the differentials defined over k, and with respect to this basis the elements of E are represented by matrices with coefficients in k. Since $F \subseteq E$, the trace

of Ψ restricted to F takes values in $k \subseteq \mathbb{R}$, giving a contradiction with the fact that $\text{Tr}(\Phi)_{|F}$ takes non-real values.

Acknowledgements. I am grateful to my advisor, Professor Jordi Quer, for his help and guidance throughout this work. I would also like to thank Francesc Fité for carefully reading a previous version of this manuscript.

References

- [1] H. Darmon. Rigid local systems, Hilbert modular forms, and Fermat's last theorem. Duke Math. J. **102** (2000), no. 3, 413–449.
- [2] R. S. Pierce. Associative Algebras. Graduate Texts in Mathematics, 88. Studies in the History of Modern Science, 9. Springer-Verlag, New York-Berlin, 1982.
- [3] E. Pyle. Abelian varieties over ℚ with large endomorphism algebras and their simple components over ℚ. Modular curves and abelian varieties, Progress in Math., vol. 224 (2002), pp. 189–239.
- [4] K. A. Ribet. Abelian varieties over Q and modular forms. Algebra and topology 1992 (Taejŏn), 53–79, Korea Adv. Inst. Sci. Tech., Taejŏn, 1992. Reprinted on Modular curves and abelian varieties, 241–261, Progr. Math. 224, Birkhäuser, Basel, 2004.
- [5] G. Shimura. On analytic families of polarized abelian varieties and automorphic functions. Ann. of Math. (2) 78 1963 149–192.
- [6] G. Shimura. Class fields over real quadratic fields and Hecke operators. Ann. of Math.
 (2) 95 (1972), 130–190.

DEPARTAMENT DE MATEMÀTICA APLICADA II, UNIVERSITAT POLITÈCNICA DE CATALUNYA, JORDI GIRONA 1-3 (EDIFICI OMEGA) 08034, BARCELONA

E-mail address: xevi.guitart@gmail.com