Name:

Student ID:

**Q. 1.** (1 point) Prove or disprove that the following argument is valid. Please (i) indicate "prove" or "disprove", and then (ii) prove or disprove the validity accordingly.

• Premises:  $\forall x (P(x) \to (Q(x) \land S(x))), \forall x (P(x) \land R(x));$ 

• Conclusion:  $\forall x (R(x) \land S(x))$ .

Solution:

| 27. Step                         | Reason                                  |
|----------------------------------|-----------------------------------------|
| 1. $\forall x (P(x) \land R(x))$ | Premise                                 |
| $2. P(a) \wedge R(a)$            | Universal instantiation from (1)        |
| 3. P(a)                          | Simplification from (2)                 |
| $4. \forall x (P(x) \rightarrow$ | Premise                                 |
| $(Q(x) \wedge S(x)))$            |                                         |
| 5. $Q(a) \wedge S(a)$            | Universal modus ponens from (3) and (4) |
| 6. S(a)                          | Simplification from (5)                 |
| 7. R(a)                          | Simplification from (2)                 |
| 8. $R(a) \wedge S(a)$            | Conjunction from (7) and (6)            |
| 9. $\forall x (R(x) \land S(x))$ | Universal generalization from (5)       |

**Q. 2.** (1 point) Suppose A, B, and C are sets. Show that  $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$ . Please use set builder notation and logical equivalence.

Solution:

$$\overline{A \cap B \cap C} = \{x \mid x \notin A \cap B \cap C\}$$

$$= \{x \mid \neg (x \in (A \cap B \cap C))\}$$

$$= \{x \mid \neg (x \in A \land x \in B \land x \in C)\}$$

$$= \{x \mid \neg (x \in A) \lor \neg (x \in B) \land \neg (x \in C))\}$$

$$= \{x \mid x \notin A \lor x \notin B \lor x \notin C\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B} \lor x \in \overline{C}\}$$

$$= \{x \mid x \in \overline{A} \lor B \cup \overline{C}\}$$

$$= \overline{A} \cup \overline{B} \cup \overline{C}$$

**Q. 3.** (1 point) Prove or disprove that |(0,1)| = |[0,1]|: (i) indicates "prove" or "disprove"; (ii) prove or disprove accordingly.

Solution:



**Q. 4.** (1 point) Arrange the functions  $\sqrt{n}$ ,  $1000 \log n$ ,  $n \log n$ , 2n!,  $2^n$ ,  $3^n$ ,  $n^2/1000$  in a list such that the complexity (i.e., the growth of function) is in ascending order. No need to prove. A list would be sufficient.

Solution:  $1000 \log n, \sqrt{n}, n \log n, n^2/1000, 2^n, 3^n, 2n!$