1.1 Creative writing (3 pts — 1pt each)

Of course there are countless solutions to this problem. Here are some possible examples.

(a) Explaining away:

X =You overslept this morning.

Z = Your bus did not show up.

Y =You are late for school.

$$P(X=1|Y=1) > P(X=1),$$

 $P(X=1|Y=1,Z=1) < P(X=1|Y=1)$

(b) Accumulating evidence:

X =You have a cough.

Y =You are a heavy smoker.

Z =You have a cold.

$$P(X=1) < P(X=1|Y=1) < P(X=1|Y=1, Z=1)$$

(c) Conditional independence:

X = I am carrying an umbrella.

Y =You are carrying an umbrella.

Z =It is raining. (So everyone carries an umbrella.)

$$P(X=1, Y=1) \neq P(X=1)P(Y=1)$$

 $P(X=1, Y=1|Z=1) = P(X=1|Z=1)P(Y=1|Z=1)$

1.2 Probabilistic inference (12 pts — 2 pts each)

On these problems it is permissible to re-use results from lecture. However, the full calculations are shown here for completeness.

(a)
$$P(E=1|A=1) = 0.2310$$

From Bayes rule:

$$P(E = 1|A = 1) = \frac{P(A = 1|E = 1)P(E = 1)}{P(A = 1)}$$

Denominator:

$$\begin{split} P(A=1) &= \sum_{b,e} P(E=e,B=b,A=1) \quad \boxed{\textbf{marginalization}} \\ &= \sum_{b,e} P(E=e) \, P(B=b|E=e) \, P(A=1|B=b,E=e) \quad \boxed{\textbf{product rule}} \\ &= \sum_{b,e} P(E=e) \, P(B=b) \, P(A=1|B=b,E=e) \quad \boxed{\textbf{marginal independence}} \\ &= P(E=0) \, P(B=0) \, P(A=1|E=0,B=0) \, + \\ P(E=0) \, P(B=1) \, P(A=1|E=0,B=1) \, + \\ P(E=1) \, P(B=0) \, P(A=1|E=1,B=0) \, + \\ P(E=1) \, P(B=0) \, P(A=1|E=1,B=1) \\ &= (1-0.002) * ((1-0.001) * 0.001 + 0.001 * 0.94) \, + \\ 0.002 * ((1-0.001) * 0.29 + 0.001 * 0.95) \\ &= \textbf{0.002516442} \end{split}$$

First term in numerator:

$$\begin{split} P(A=1|E=1) &= \sum_b P(A=1,B=b|E=1) \quad \boxed{\textbf{marginalization}} \\ &= \sum_b P(A=1|B=b,E=1) \, P(B=b|E=1) \quad \boxed{\textbf{product rule}} \\ &= \sum_b P(A=1|B=b,E=1) \, P(B=b) \quad \boxed{\textbf{marginal independence}} \\ &= P(A=1|E=1,B=1) \, P(B=1) \, + \, P(A=1|E=1,B=0) \, P(B=0) \\ &= 0.95*0.001 + 0.29*(1-0.001) \\ &= \textbf{0.29066} \end{split}$$

Substituting the results in bold:

$$P(E=1|A=1) = \frac{0.29066 * 0.002}{0.002516442} = \mathbf{0.2310}$$

(b)
$$P(E=1|A=1,B=0) = 0.3625$$

From Bayes rule:

$$P(E = 1|A = 1, B = 0) = \frac{P(A = 1|E = 1, B = 0)P(E = 1|B = 0)}{P(A = 1|B = 0)}$$

$$= \frac{P(A = 1|E = 1, B = 0)P(E = 1)}{P(A = 1|B = 0)}$$
 marginal independence

Denominator:

$$\begin{split} P(A=1|B=0) &= \sum_{e} P(A=1,E=e|B=0) \quad \textbf{marginalization} \\ &= \sum_{e} P(A=1|E=e,B=0) \, P(E=e|B=0) \quad \textbf{product rule} \\ &= \sum_{e} P(A=1|E=e,B=0) \, P(E=e) \quad \textbf{marginal independence} \\ &= P(A=1|E=1,B=0) P(E=1) + P(A=1|E=0,B=0) P(E=0) \\ &= 0.29*0.002 + 0.001*(1-0.002) \\ &= \textbf{0.0016} \end{split}$$

Substituting the result in bold:

$$P(E=1|A=1,B=0) = \frac{0.29*0.002}{0.0016} = \mathbf{0.3625}$$

Comparing (a) and (b), we find that P(E=1|A=1,B=0) > P(E=1|A=1).

This agrees with common sense: if we know that a burglar did not trip the alarm, then we are more likely to believe than an earthquake was responsible.

(c)
$$P(A=1|M=1) = 0.1501$$

From Bayes rule:

$$P(A = 1|M = 1) = \frac{P(M = 1|A = 1)P(A = 1)}{P(M = 1)}$$

Denominator:

$$P(M=1) = \sum_{a} P(M=1, A=a) \quad \boxed{\textbf{marginalization}}$$

$$= \sum_{a} P(M=1|A=a) P(A=a) \quad \boxed{\textbf{product rule}}$$

$$= P(M=1|A=0) P(A=0) + P(M=1|A=1) P(A=1)$$

$$= 0.01 * (1 - 0.002516442) + 0.70 * 0.002516442 \quad \boxed{\textbf{using result from part (a)}}$$

$$= 0.01173634498$$

Substituting into Bayes rule:

$$P(A=1|M=1) = \frac{0.7*0.002516442}{0.01173634498} = 0.1501$$

(d)
$$P(A=1|M=1, J=0) = 0.0182$$

From Bayes rule:

$$P(A=1|M=1,J=0) = \frac{P(M=1,J=0|A=1) P(A=1)}{P(M=1,J=0)}$$

$$= \frac{P(M=1|A=1) P(J=0|A=1) P(A=1)}{P(M=1,J=0)}$$
 conditional independence

Denominator:

$$\begin{split} P(M=1,J=0) &= \sum_a P(M=1,J=0,A=a) \quad \boxed{\text{marginalization}} \\ &= \sum_a P(M=1,J=0|A=a)P(A=a) \quad \boxed{\text{product rule}} \\ &= \sum_a P(M=1|A=a)P(J=0|A=a)P(A=a) \quad \boxed{\text{conditional independence}} \\ &= P(M=1|A=0)P(J=0|A=0)P(A=0) + P(M=1|A=1)P(J=0|A=1)P(A=1) \\ &= 0.01*(1-0.05)*(1-0.002516442) + 0.7*(1-0.9)*0.002516442 \quad \boxed{\text{from part (a)}} \\ &= 0.009652244741 \end{split}$$

Substituting into Bayes rule:

$$P(A=1|M=1, J=0) = \frac{0.7 * (1-0.9) * 0.002516442}{0.009652244741} = 0.0182$$

Comparing (c) and (d), we find that P(A=1|M=1) > P(A=1|M=1, J=0).

This agrees with common sense: we're less likely to believe that the alarm has sounded after learning that John has not called.

(e)
$$P(A=1|M=0) = 0.000764$$

From Bayes rule:

$$P(A=1|M=0) = \frac{P(M=0|A=1)P(A=1)}{P(M=0)}$$

$$= \frac{(1-0.7)*0.002516442}{1-0.01173634498}$$
 using results from parts (a,c)
$$= 0.000764$$

(f)
$$P(A=1|M=0, B=1) = 0.826$$

From Bayes rule:

$$P(A = 1|M = 0, B = 1) = \frac{P(M = 0|A = 1, B = 1)P(A = 1|B = 1)}{P(M = 0|B = 1)}$$

$$= \frac{P(M = 0|A = 1)P(A = 1|B = 1)}{P(M = 0|B = 1)}$$
 conditional independence

Second term in numerator:

$$\begin{split} P(A=1|B=1) &= \sum_{e} P(A=1,E=e|B=1) \quad \boxed{\textbf{marginalization}} \\ &= \sum_{e} P(A=1|E=e,B=1) \, P(E=e|B=1) \quad \boxed{\textbf{product rule}} \\ &= \sum_{e} P(A=1|E=e,B=1) \, P(E=e) \quad \boxed{\textbf{marginal independence}} \\ &= P(A=1|E=0,B=1) \, P(E=0) \, + \, P(A=1|E=1,B=1) \, P(E=1) \\ &= 0.94*(1-0.002) + 0.95*0.002 \\ &= 0.94002 \end{split}$$

Denominator:

$$P(M=0|B=1) = \sum_{a} P(M=0, A=a|B=1) \quad \boxed{\textbf{marginalization}}$$

$$= \sum_{a} P(M=0|A=a, B=1) P(A=a|B=1) \quad \boxed{\textbf{product rule}}$$

$$= \sum_{a} P(M=0|A=a) P(A=a|B=1) \quad \boxed{\textbf{conditional independence}}$$

$$= P(M=0|A=0) P(A=0|B=1) + P(M=0|A=1) P(A=1|B=1)$$

$$= (1-0.01)*(1-0.94002) + (1-0.7)*0.94002 \quad \boxed{\textbf{use result from above}}$$

$$= \textbf{0.3413862}$$

Substituting into Bayes rule:

$$P(A=1|M=0, B=1) = \frac{(1-0.7)*0.94002}{0.3413862} = 0.826$$

Comparing (e) and (f), we find that $P(A=1|M=0, B=1) \gg P(A=1|M=0)$.

This agrees with common sense: we're much more likely to believe that the alarm has sounded after learning that a burglary has occurred.

1.3 Probabilistic reasoning (4 pts)

Conditional probability tables (CPTs):

$$P(X=1) = \frac{1}{2}$$

$$P(Y_k=1|X=0) = \frac{1}{2}$$

$$P(Y_k=1|X=1) = \frac{f(k-1)}{f(k)} \text{ where } f(k) = 2^k + (-1)^k$$

(a) From Bayes rule: (1 pt)

$$P(X=1|Y_1=1,Y_2=1,...,Y_k=1) = \frac{P(Y_1=1,Y_2=1,...,Y_k=1|X=1)P(X=1)}{P(Y_1=1,Y_2=1,...,Y_k=1)}$$

$$P(X=0|Y_1=1,Y_2=1,...,Y_k=1) = \frac{P(Y_1=1,Y_2=1,...,Y_k=1|X=0)P(X=0)}{P(Y_1=1,Y_2=1,...,Y_k=1)}$$

Taking the ratio: (1 pt)

$$\begin{array}{ll} r_k & = & \frac{P(X = 1 | Y_1 = 1, Y_2 = 1, \ldots, Y_k = 1)}{P(X = 0 | Y_1 = 1, Y_2 = 1, \ldots, Y_k = 1)} \\ \\ & = & \frac{P(Y_1 = 1, Y_2 = 1, \ldots, Y_k = 1 | X = 1)}{P(Y_1 = 1, Y_2 = 1, \ldots, Y_k = 1 | X = 0)} P(X = 0) \end{array} \quad \begin{array}{l} \textbf{substituting from above} \\ \\ & = & \frac{P(X = 1) \; \prod_{i=1}^k P(Y_i = 1 | X = 1)}{P(X = 0) \; \prod_{i=1}^k P(Y_i = 1 | X = 0)} \end{array} \quad \begin{array}{l} \textbf{conditional independence} \end{array}$$

Substituting the CPTs: (1 pt)

$$r_{k} = \frac{\left(\frac{1}{2}\right) (1) \prod_{i=2}^{k} \left[\frac{f(i-1)}{f(i)}\right]}{\left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^{k}}$$

$$= 2^{k} \left[\frac{f(1)}{f(2)} \cdot \frac{f(2)}{f(3)} \cdot \dots \cdot \frac{f(k-1)}{f(k)}\right]$$

$$= 2^{k} \left[\frac{f(1)}{f(k)}\right]$$

$$= 2^{k} \left[\frac{1}{2^{k} + (-1)^{k}}\right]$$

$$= \frac{1}{1 + \left(-\frac{1}{2}\right)^{k}}$$

(b) Explanation: (1 pt)

The ratio r_k is greater than one for odd k and less than one for even k. Thus the diagnosis vacillates: on odd days, the X=1 form of the disease seems more likely; on even days, the opposite. In addition, the ratio r_k approaches unity as $k\to\infty$. Thus the diagnosis becomes more uncertain with each day. Note that conditioning on more evidence does not always reduce the amount of uncertainty.

1.4 Hangman (11 pts)

(a) Most and least frequent words (1 pt)

Most common: THREE, SEVEN, EIGHT, WOULD, ABOUT, THEIR, WHICH, FIRST, FIFTY, OTHER, FORTY, YEARS, THERE, SIXTY, STATE.

Least common: BOSAK, CAIXA, MAPCO, OTTIS, TROUP, CCAIR, CLEFT, FABRI, FOAMY, NIAID, PAXON, SERNA, TOCOR, YALOM, BITTY.

Note: there are many words tied for the position of 15th least common.

(b) Best next guesses and their probabilities (5 pts)

correctly guessed	incorrectly guessed	best next guess ℓ	$P(L_i = \ell \text{ for some } i \in \{1, 2, 3, 4, 5\} E)$
	{}	E	0.5394
	{A, O}	E	0.6699
B E	{}	R	0.6229
ВЕ	{R}	A	0.7301
H	$\{E, I, M, N, T\}$	A	0.8753

(c) **Printed source code** (5 pts)