Laborversuch 1

Versuch Fach Semester Fachsemester Labortermine Abgabe bis spätestens		MATLAB Ereignisdiskret SS 2024 TIN 4 11.04.2024 18.04.2024 26.04.2024	e Systeme	
Versuchsteilnehmer				
Name:	Vorname:			
Semester:	Matrikelnummer:			
Bewertung des Versuches				
Aufgabe:	1	2	3	4
Punkte maximal:	10	20	25	45
Punkte erreicht:				
Gesamtpunktezahl:	Note:		Zeichen:	

Anmerkungen:

Aufgabe 1: (1+1+1+1+1+1+1+1+1+1=10 Punkte)

Thema: Matlab-Grundlagen

- a) Was ist MATLAB?
- b) Nennen Sie anhand eines Screenshots die wesentlichen Komponenten der Oberfläche von MATLAB.
- c) Wozu wird der Current Folder Browser benötigt und was ist bezüglich des Current Folder (aktuelles Arbeitsverzeichnis) zu beachten?
- d) Was verbirgt sich hinter dem Begriff Command Window?
- e) Was verbirgt sich hinter dem Tool-Strip?
- f) Welchen Zweck hat der *Workspace*? Nennen Sie vergleichbare Eigenschaften aus Ihnen bekannten Gebieten.
- g) Nennen Sie zwei Möglichkeiten um Informationen aus der MATLAB-Hilfe abzurufen.
- h) Dokumentieren Sie die notwendigen Schritte um Simulink zu starten.
- i) Was ist die Control System Toolbox und wo findet man diese?
- j) Dokumentieren Sie wie Stateflow gestartet wird.

Aufgabe 2: (6+6+8 = 20 Punkte)

Thema: Bodediagramme

Gegeben ist als Beispiel das nachfolgende MATLAB-Programm bodePT1.m. Es generiert das Bode-Diagramm für ein PT1-Glied.

bodePT1.m

```
omega=logspace(-2,2);
G=ones(size(omega))./(1+j*omega);
subplot(2,1,1), semilogx(omega,20*log10(abs(G)))
grid,ylabel('|G(omega)| [dB]')
subplot(2,1,2), semilogx(omega, 180*angle(G)/pi)
grid,xlabel('omega normiert auf omega-grenz')
ylabel('Phase [grad]')
```

Bodediagramm, generiert aus bodePT1.m

- a) Wie lautet der normierte Frequenzgang $G(j\omega)$ eines PT1-Glieds?
- b) Wie lautet der normierte Frequenzgang $G(j\omega)$ eines PT2-Glieds?
- c) Erstellen Sie das MATLAB-Programm bodePT2.m für (b). Es soll das Bode-Diagramm für ein PT2-Glied mit D=0.1 (und KP=1) generieren.

<u>Hinweis</u>: Fügen Sie Ihrer Antwort neben dem Quellcode zusätzlich einen Screenshot des erstellten Bode-Diagramms bei!

Aufgabe 3: (15+10 = 25 Punkte)

Thema: Ortskurven

Gegeben seien folgende Übertragungsfunktionen G(s):

1)
$$G(s) = e^{-Ts}$$
 mit $T = 0.03$

2)
$$G(s) = \frac{Ke^{-Ts}}{(1+T_1s)}$$
 mit $T = 0.03; T_1 = 0.03; K = 2$
3) $G(s) = \frac{Ke^{-Ts}}{s(1+T_1s)}$ mit $T = 6; T_1 = 1; K = 2$

3)
$$G(s) = \frac{Ke^{-Ts}}{s(1+T_1s)}$$
 mit $T=6; T_1=1; K=2$

4)
$$G(s) = \frac{K(T_v s + 1)}{T_2 s^2 + T_1 s + 1}$$
 mit $T_v = 6$; $T_1 = T_2 = 1$; $K = 2$

- a) Erstellen Sie mit MATLAB die zugehörigen Ortskurven $G(j\omega)$ des Frequenzganges der gegebenen Übertragungsfunktionen G(s) von 1) bis 4) für folgende ω :
 - 1) und 2): $\omega \in [0; 1000]$, Schrittweite 0.1
 - 3): $\omega = 0.1$ und $\omega = 100$, Schrittweite 0.01
 - 4): $\omega = 0.01$ und $\omega = 100$, Schrittweite 0.01
- b) Welches Grundverhalten haben die angegebenen Regelkreisglieder nach 1) bis 4)?

Hinweise zur Lösung der Aufgabe:

In den MATLAB-Skripten wird der lateinische Buchstabe w entsprechend für den griechischen Buchstaben ω der Kreisfrequenz verwendet.

Die wichtigsten Befehle zur Lösung von Aufgabenteil a) lauten:

$$w=0:0.1:1000$$
 % Feld für ω von $0;0.1;0.2;\ldots;1000$ exp $(-0.4*j.*w)$ % $e^{-0.4j\omega}$ % Feld-Multiplikation (Element-weise) ./ % Feld-Division (Element-weise) plot(real(G),imag(G)) % plottet die Ortskurve von $G(j\omega)$ aus Real- und Imaginär-Teil

Aufgabe 4: (4+5+2+6+3+8+8+5+4 = 45 Punkte)

Thema: MATLAB Control System Toolbox

Die Geschwindigkeit eines Fahrzeuges soll so geregelt werden, dass es einem vorausfahrenden Fahrzeug 1 mit dem Abstand \mathbf{x} folgt. **Skizze:**

Regelkreis-Wirkungsplan:

Die Übertragungsfunktionen und Parameter der Regelkreisglieder des Regelkreis-Wirkungsplans seien dabei

$$G_R = K_R,$$
 $G_1 = \frac{F_0}{T_0^2 s^2 + 2DT_0 s + 1},$ $G_2 = \frac{1}{K_L(1 + T_1 s)},$ $G_3 = \frac{1}{s},$ $G_{RADAR} = K_{RADAR}$

mit Konstanten

$$F_0 = 1000 \frac{\text{N}}{\text{V}},$$
 $T_0 = 1 \text{ sec},$ $D = 0.5,$ $T_1 = 1 \text{ sec},$ $K_L = 1000 \frac{\text{Nsec}}{\text{m}},$ $K_{\text{RADAR}} = 1 \frac{\text{V}}{\text{m}}.$

Nutzen Sie zur Analyse des Regelkreises die Befehle der Matlab Control System Toolbox:

- a) Welches Grund-Typ-Übertragungsverhalten haben die einzelnen Regelkreisglieder?
- b) Bestimmen Sie die Übertragungsfunktion des offenen Regelkreises $G_O(s) = \frac{Z_O(s)}{N_O(s)}$ für $K_R = 0.1$ (die Dimensionen für G_O heben sich auf). Nutzen Sie den MATLAB Control System Befehl [series] oder alternativ [conv] zur Erstellung der Übertragungsfunktion $G_O(s)$.
- c) Erstellen Sie die Ortskurve $G_O(j\omega)$ für (b) mit dem Control System Befehl [nyquist].
- d) Definieren Sie mehrere Übertragungsfunktionen des offenen Regelkreises $G_O(s)$ für $K_{R1} = 0.05$, $K_{R2} = 0.1$, $K_{R3} = 0.2$, $K_{R4} = 0.4$, $K_{R5} = 0.8$ in G_{O1} , G_{O2} , G_{O3} , G_{O4} , G_{O5} und erstellen Sie die Ortskurven mit dem Befehl nyquist dazu in einem Plot.
- e) Erstellen Sie die Bode-Diagramme für G_{O1} , G_{O2} , G_{O3} , G_{O4} , G_{O5} in einem Plot mit dem Befehl [bode].
- f) Generieren Sie das Bode-Diagramm für die Übertragungsfunktion des offenen Regelkreises $G_O(s)$ mit $K_R = 0.1$ (bzw. für G_{O2}) und ermitteln Sie die Phasen- und Amplituden-Reserve über den Befehl [margin]. Auf welchen Wert darf K_R maximal eingestellt werden?
- g) Ermitteln Sie zu G_{O1} die Wurzelortskurven für den über eine Verstärkung K negativ rückgekoppelten Regelkreis mit dem Control System Befehl [rlocus] und bestimmen Sie den optimalen K-Wert bei der Dämpfung $\xi = 0.707$ (45°) über den Control System Befehl [rlocfind].
- h) Erstellen Sie die Übertragungsfunktion des geschlossenen Regelkreises G_{W1} bis G_{W5} aus G_{O1} bis G_{O5} mit dem Befehl [feedback]. Beachten Sie hierbei $G_{RADAR} = 1$.
- i) Ermitteln Sie die Impuls- und Sprungantwort für die geschlossenen Regelkreise G_{W1} bis G_{W5} in einem Plot mit den Befehlen [impulse] und [step].

<u>Hinweis:</u> Die Handbücher sowie den "Getting Started Guide" zur Control System Toolbox finden Sie auf dem Infolaufwerk der Hochschule unter

I:\INF\TI\Veranstaltungen\Knoblauch\EreignisdiskreteSysteme\Matlab Benutzerhandbuecher