基礎から学ぶ電子計算機工学 (RISC-V版)

修正リスト 2022/8/30 作成

修正リスト

項	スライド番号	修正内容	修正日
1	507	ALUの制御コード修正	2022/8/30
2	605	sw命令のfunct3 fieldの修正	2022/8/30
3	607	xor命令のALUfunc信号	2022/8/30
4	608	xor命令のALUfunc信号	2022/8/30
⑤	609	funct7 filedのコード修正	2022/8/30
6	641	funct7 filedのコード修正	2022/8/30

1bit ALUの設計例

• 機能:加算(A+B), 減算(A-B), AND, OR, XOR

ALUの機能	制御信号S (S ₃ S ₂ S ₁ S ₀)
AND	0000
OR	0001
加算	0010
減算	0110
XOR	0011 修正

S₃は将来のALUの機能拡張の ために追加しておく制御信号

実装する命令

今回は5種類の演算命令(add, sub, and, or, xor)、2種類のデータ転送命令(lw, sw),1種類の条件分岐命令(bne)の計8種類の命令を実装する。

	5b	5b	3b	5b	7b	_
funct7	rs2	rs1	funct3	rd	opcode	R-Type
imm[11:	rs1	funct3	rd	opcode	I-Type	
imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode	S-Type
imm[12 10:5]	rs2	rs1	funct3	imm[4:1 11]	opcode	В-Туре
0000000	rs2	rs1	000	rd	0110011	add
0100000	rs2	rs1	000	rd	0110011	sub
0000000	rs2	rs1	111	rd	0110011	and
0000000	rs2	rs1	110	rd	0110011	or
0000000	rs2	rs1	100	rd	0110011	xor
imm[11:0]		rs1	010	rd	0000011	lw
imm[11:5]	rs2	rs1	010 ×	imm[4:0]	0100011	sw
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	bne
					-	

ALUの機能と制御信号

- 今回、ALUの機能は加算、減算、AND, OR, XORの5種類とする。(第11回で設計したALUを使う。)
- それぞれ、add, sub, or, xor 命令に対応するが、加算と減算は、lw, sw, bne命令でも使用することに注意。

命令	ALUの機能	ALUfunc信号
and	AND	0000
or	OR	0001
add, lw, sw	加算	0010
sub, bne	減算	0110
xor	XOR	0011 修正

(第12回の資料ではS₃₋₀と表現)

中間信号ALUOp

- ALUOpは中間信号として主制御から出力し、ALU制御ブロックの入力とする2bitの信号で以下のように定義する。
 - 00: lw、sw用の加算(アドレス)の実行
 - 01: bne命令の減算(比較)の実行
 - 10: 演算命令で行うべき動作を10bitのfunctionに応じて実行

命令	ALUの機能	ALUOp	ALUfunc
and	AND	10	0000
or	OR	10	0001
add	加算	10	0010
xor	XOR	10	0011 修正
lw	加算	00	0010
SW	加算	00	0010
sub	減算	10	0110
bne	減算	01	0110

ALU制御ブロックの設計

• 入力はFunc信号^注(10bit)とALUOp信号(2bit)

どんな論理回路にすべきか?→ 本日のエクササイズ

• 出力はALUfunc信号(4bit)

			出力		
命令	ALU機能	Func		AT IIO	ALUfunc
נך נום		funct7	funct3	ALUOp	ALUIUIIC
and	AND	0000000	111	10	0000
or	OR	0000000	110	10	0001
add	加算	0000000	000	10	0010
lw	(加算)	XXXXXXX	010	00	0010
SW	(加算)	XXXXXXX	010	00	0010
sub	減算	0100000	000	10	0110
bne	(減算)	XXXXXXX	001	01	0110
xor	XOR	0000000	100	10	0111

注:funct7 fieldとfunct3 fieldを合わせてFuncとしている。

ALUOp

修正部分

slt命令の追加

- slt命令はR-Typeの命令で、ALUfuncでALUのモードを変更すればよい。
- したがって、ALUのデータパス(前ページ)とALU制御論理のみ変更すればよい。
- slt命令用に S_3 を利用し、 S_3 が1の時slt命令を実行するとする。その他の制御信号はsub命令と同じにしておけばよい。他の演算では S_3 は0とする。

ALU制御論理の真理値表

ALU制御ブロックがど んな回路になるか?自 分で考えてみよう。

~	ALU機能	Func		AT IIO	ALUfunc
命令		funct7	funct3	ALUOp	$(S_3S_2S_1S_0)$
and	AND	0000000	111	10	0000
or	OR	0000000	110	10	0001
add	加算	0000000	000	10	0010
lw	(加算)	XXXXXXX	010	00	0010
SW	(加算)	XXXXXXX	010	00	0010
sub	減算	0100000	000	10	0110
bne	(減算)	XXXXXXX	001	01	0110
xor	XOR	0000000	100	10	0011
slt	SLT	0000000	010	10	1110

入力

出力