Parallelization Example

Ryan Benton August 31, 2018

The *K-Means* Clustering Method

- Given *k*, the *k-means* algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

An Example of K-Means Clustering

cluster

centroids

Until no change

centroid

Assign each object to the

cluster of its nearest

High-Level

- Select and clone K clusters randomly (no duplicates)
- NumIter = 0; Changed = TRUE;
- While (NumIter < MAXITER) AND (Changed = TRUE)
 - For each data point
 - Calculate Distance to Each Cluster
 - Assign point to closest cluster
 - Update Clusters (Clusters, Points, Changed)

High-Level

- CalculateDistance(Acluster (aka i), Apoint (aka j))
 - NOTE: each point (or cluster) has p features

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

- ClosestCluster
 - Take minimum of the distances.

High-Level

- UpdateCluster(Cluster, PointsBelongingToCluster)
 - For (j = 0; j < p; j++)
 - FeatureTotal = $\sum_{i=1}^{n} f_{ij}$
 - Cluster_j = $\frac{\text{FeatureTotal}}{N}$
 - NOTE:
 - N == number of points
 - p -- number of features
 - $-f_{ij}$ -- the jth feature value of the ith point