Random Path Selection for Incremental Learning

Jathushan Rajasegaran

Munawar Hayat

Salman Khan

Fahad Shahbaz Khan

Ling Shao

Inception Institute of Artificial Intelligence first.last@inceptioniai.org

Figure 1: *An overview of our RPS-Net:* The network architecture utilizes a parallel residual design where the optimal path is selected among a set of randomly sampled candidate paths for new tasks. The residual design allows forward knowledge transfer and faster convergence for later tasks. The random path selection approach is trained with a hybrid objective function that ensures the right trade-off between network stability and plasticity, thus avoiding catastrophic forgetting.

路径选择:

- 每〕个任务选择一次路径 (不合理)
- 训练时,只有一条路径被训练 (合理)
- 测试时,以往选中的路径同时使用 (不合理)

Figure 2: Path Selection Approach: Given a task k, N random paths are initialized. For each path, only the modules different from the previous inference path \mathbf{P}_{k-1}^{ts} are used to form the training path \mathbf{P}_k^{tr} . Among N such paths, the optimal \mathbf{P}_k is selected and combined with the \mathbf{P}_{k-1}^{ts} to obtain \mathbf{P}_k^{ts} . Notably, the path selection is only performed after J tasks. During training, the complexity remains bounded by a standard single path network and the resources are shared between tasks.

$$\mathcal{L}_{ce} = -\frac{1}{n} \sum_{i} \mathbf{t}_{i} [1:k*U] \log(\operatorname{softmax}(\mathbf{q}_{i}[1:k*U])),$$
 学习新知识

$$\mathcal{L}_{dist} = \frac{1}{n} \sum_{i} \text{KL}\left(\log\left(\sigma\left(\frac{\mathbf{q}_{i}[1:(k-1)*U]}{t_{e}}\right)\right), \sigma\left(\frac{\mathbf{q'}_{i}[1:(k-1)*U]}{t_{e}}\right)\right).$$
保留旧知识

 $\mathcal{L} = \mathcal{L}_{ce} + \phi(k, \gamma) \cdot \mathcal{L}_{dist},$

Making Pre-trained Language Models Better Few-shot Learners

Learning Transferable Visual Models From Natural Language Supervision

Learning to Prompt for Vision-Language Models

Figure 1: **Prompt engineering vs. context optimization (CoOp)**. The latter uses only 16 shots for learning in these examples.

Figure 2: Overview of context optimization (CoOp).

LEARNING TO PROMPT FOR CONTINUAL LEARNING

Anonymous authors

Paper under double-blind review

Figure 1: Overview of the L2P framework. Compared with typical continual learning methods (left) that adapt model weights to tasks sequentially, L2P (right) uses a single backbone model and learns a prompt pool to adapt tasks.

Figure 2: The illustration of L2P at test time. During training time, we follow the same procedure and optimize the model as described in Section 4.3.

$$\mathbf{P}_{\boldsymbol{x}} = \underset{\{s_i\}_{i=1}^N \subseteq [1,M]}{\operatorname{argmin}} \quad \sum_{i=1}^N \gamma \left(q(\boldsymbol{x}), \boldsymbol{k}_{s_i} \right) \cdot h_{s_i},$$

Table 1: Results on class-incremental learning. Accuracy and forgetting are reported. All methods start from the same pre-trained ViTB/16 model and train on each task for 5 epochs. Methods are separated based on whether rehearsal is applied. All results are shown in percentage (%) and are averaged over 3 runs.

Method	Split CIFAR-100		5-datasets		
	Average Acc (†)	Forgetting (\downarrow)	Average Acc (†)	Forgetting (\downarrow)	
Upper bound:					
FT-iid	90.85±0.12	-	93.93±0.18	-	
Non-rehearsal based methods:					
FT-seq-frozen	17.72±0.34	59.09±0.25	39.49±0.12	42.62±0.20	
FT-seq	33.61±0.85	86.87±0.20	20.12±0.42	94.63±0.68	
EWC	47.01 ± 0.29	33.27 ± 1.17	50.93 ± 0.09	34.94 ± 0.07	
LwF	60.69 ± 0.63	27.77 ± 2.17	47.91 ± 0.33	38.01 ± 0.28	
L2P (ours)	83.83±0.04	7.63 ± 0.30	81.14 ±0.93	4.64 ±0.52	
Rehearsal based methods:					
ER	82.53±0.17	16.46 ± 0.25	89.30±0.94	8.08 ± 0.53	
GDumb	81.67±0.02		70.76±0.12	_	
L2P-R (ours)	86.31±0.59	5.83±0.61	91.92±0.78	3.34±0.71	

Table 4: Ablation study on 5-datasets. All results are shown in percentage (%).

Mathad	5-datasets	
Method	Average Acc (†)	Forgetting (\downarrow)
L2P without prompt pool	51.96	26.60
L2P without key-value pair	58.33	20.45
L2P without diversified prompt selection	62.26	17.84
L2P	81.14	4.64

Figure 3: Prompt selection histograms for (left) Split CIFAR-100 and (right) 5-datasets. Note that we only show the first 5 tasks for Split CIFAR-100 for better readability.