titanic_survival_exploration

January 28, 2022

1 Lab: Titanic Survival Exploration with Decision Trees

1.1 Getting Started

In this lab, you will see how decision trees work by implementing a decision tree in sklearn. We'll start by loading the dataset and displaying some of its rows.

```
In [1]: # Import libraries necessary for this project
        import numpy as np
        import pandas as pd
        from IPython.display import display # Allows the use of display() for DataFrames
        # Pretty display for notebooks
        %matplotlib inline
        # Set a random seed
        import random
        random.seed(42)
        # Load the dataset
        in_file = 'titanic_data.csv'
        full_data = pd.read_csv(in_file)
        # Print the first few entries of the RMS Titanic data
        display(full_data.head())
   PassengerId
                Survived Pclass
0
             1
                       0
                                3
             2
                       1
                                1
1
2
             3
                                3
3
             4
                                1
             5
                                3
                                                 Name
                                                          Sex
                                                                      SibSp
                                                                Age
                              Braund, Mr. Owen Harris
                                                         male
                                                               22.0
0
   Cumings, Mrs. John Bradley (Florence Briggs Th... female
                                                               38.0
                              Heikkinen, Miss. Laina female
```

```
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                           female
                                                                    35.0
                                                                               1
4
                               Allen, Mr. William Henry
                                                              male
                                                                    35.0
                                                                               0
   Parch
                      Ticket
                                  Fare Cabin Embarked
0
       0
                  A/5 21171
                                7.2500
                                         NaN
                                                      S
       0
                   PC 17599
                              71.2833
                                          C85
                                                      C
1
2
           STON/02. 3101282
                               7.9250
                                         NaN
                                                      S
3
       0
                      113803
                               53.1000
                                        C123
                                                      S
                                                      S
4
       0
                      373450
                                8.0500
                                         NaN
```

Recall that these are the various features present for each passenger on the ship: - Survived: Outcome of survival (0 = No; 1 = Yes) - Pclass: Socio-economic class (1 = Upper class; 2 = Middle class; 3 = Lower class) - Name: Name of passenger - Sex: Sex of the passenger - Age: Age of the passenger (Some entries contain NaN) - SibSp: Number of siblings and spouses of the passenger aboard - Ticket: Ticket number of the passenger - Fare: Fare paid by the passenger - Cabin Cabin number of the passenger (Some entries contain NaN) - Embarked: Port of embarkation of the passenger (C = Cherbourg; Q = Queenstown; S = Southampton)

Since we're interested in the outcome of survival for each passenger or crew member, we can remove the **Survived** feature from this dataset and store it as its own separate variable outcomes. We will use these outcomes as our prediction targets.

Run the code cell below to remove **Survived** as a feature of the dataset and store it in outcomes.

```
In [2]: # Store the 'Survived' feature in a new variable and remove it from the dataset
        outcomes = full_data['Survived']
        features_raw = full_data.drop('Survived', axis = 1)
        # Show the new dataset with 'Survived' removed
        display(features_raw.head())
   PassengerId
                Pclass
                                                                         Name
0
             1
                      3
                                                     Braund, Mr. Owen Harris
             2
1
                      1
                         Cumings, Mrs. John Bradley (Florence Briggs Th...
2
             3
                      3
                                                      Heikkinen, Miss. Laina
3
                      1
                              Futrelle, Mrs. Jacques Heath (Lily May Peel)
4
             5
                      3
                                                    Allen, Mr. William Henry
                                                       Fare Cabin Embarked
      Sex
                  SibSp
                         Parch
                                           Ticket
            Age
                                                                          S
0
     male
           22.0
                      1
                             0
                                        A/5 21171
                                                     7.2500
                                                              NaN
  female
           38.0
                                                              C85
                                                                          C
1
                      1
                             0
                                         PC 17599
                                                   71.2833
  female
           26.0
                      0
                             0
                                STON/02. 3101282
                                                     7.9250
                                                              NaN
                                                                          S
3
   female
           35.0
                                                    53.1000
                                                             C123
                                                                          S
                      1
                             0
                                           113803
     male
           35.0
                      0
                             0
                                           373450
                                                     8.0500
                                                              NaN
                                                                          S
```

The very same sample of the RMS Titanic data now shows the **Survived** feature removed from the DataFrame. Note that data (the passenger data) and outcomes (the outcomes of survival) are now *paired*. That means for any passenger data.loc[i], they have the survival outcome outcomes[i].

1.2 Preprocessing the data

Now, let's do some data preprocessing. First, we'll remove the names of the passengers, and then one-hot encode the features.

One-Hot encoding is useful for changing over categorical data into numerical data, with each different option within a category changed into either a 0 or 1 in a separate *new* category as to whether it is that option or not (e.g. Queenstown port or not Queenstown port). Check out this article before continuing.

Question: Why would it be a terrible idea to one-hot encode the data without removing the names?

And now we'll fill in any blanks with zeroes.

	PassengerId	Pclass	Age Si	bSp	Parch	Fare	Sex_	female Se	ex_male \	
0	1	3	22.0	1	0	7.2500		0	1	
1	2	1	38.0	1	0	71.2833		1	0	
2	3	3	26.0	0	0	7.9250		1	0	
3	4	1	35.0	1	0	53.1000		1	0	
4	5	3	35.0	0	0	8.0500		0	1	
	T: -1+ 1101	FO T: -1	+ 110112			0-1-1 E	070	Q-1: FO	0-1: - E22	\
	Ticket_1101	52 licke	t_110413		• • •	Cabin_F	G/3	Cabin_F2	Cabin_F33	\
0		0	0				0	0	0	
1		0	0				0	0	0	
2		0	0				0	0	0	
3		0	0				0	0	0	
4		0	0				0	0	0	
	Cabin_F38	Cahin F4	Cabin_G	s Ca	hin T	Embarked_	C Em	harked O	Embarked_S	
Λ	000111_100	0 abin_i +	Oubin_u) Ou	.DIII_1	Embar Kea_	J 17111	φ_υυπτυα. 0	LINDAI KCA_D	
	0	0		,	0	,		0	1	
1	0	0	()	0		1	0	0	
2	0	0	()	0	(0	0	1	
3	0	0	()	0	(0	0	1	
4	0	0	()	0	(0	0	1	

[5 rows x 839 columns]

1.3 (TODO) Training the model

Now we're ready to train a model in sklearn. First, let's split the data into training and testing sets. Then we'll train the model on the training set.

1.4 Testing the model

Now, let's see how our model does, let's calculate the accuracy over both the training and the testing set.

2 Exercise: Improving the model

Ok, high training accuracy and a lower testing accuracy. We may be overfitting a bit.

So now it's your turn to shine! Train a new model, and try to specify some parameters in order to improve the testing accuracy, such as: - max_depth - min_samples_leaf - min_samples_split

You can use your intuition, trial and error, or even better, feel free to use Grid Search!

Challenge: Try to get to 85% accuracy on the testing set. If you'd like a hint, take a look at the solutions notebook next.

```
test_max_acc = accuracy_score(y_test,y_test_pred)
         for i in range(12):
             for j in range(12):
                 model = DecisionTreeClassifier(max_depth =i+1,min_samples_leaf =j+1, min_sample
                 model.fit(X_train, y_train)
                 y_train_pred = model.predict(X_train)
                 y_test_pred = model.predict(X_test)
                 train_accuracy = accuracy_score(y_train,y_train_pred)
                 test_accuracy = accuracy_score(y_test,y_test_pred)
                 if test_max_acc < test_accuracy:</pre>
                     test_max_acc = test_accuracy
                 if train_max_acc < train_accuracy:</pre>
                     train_max_acc = train_accuracy
         print('The training accuracy is', train_accuracy)
         print('The test accuracy is', test_max_acc)
The training accuracy is 0.852528089888
The test accuracy is 0.860335195531
In []:
```