Druga praca domowa

Bartosz Kucypera

12 stycznia 2024

Zadanie 2

a)

Wykaż, że jeśli współczynniki b_0, b_1, b_2 rozwinięcia w bazie Newtona wielomianu interpolacyjnego Lagrange'a opartego na trzech węzłach równoodległych: $x_0 = 0, x_1 = 1, x_2 = 2$ zaburzymy z błędem wezwzględnym nie przekraczającym ϵ , to jego wartości na przedziale $[x_0, x_2]$ zmienią się nie więcej niż o $E = 5\epsilon$.

Wielomian interpolacyjny Lagrange'a oparty na węzłach x_0, x_1, x_2 to

$$b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

jeśli zaburzymy współczynniki b_0, b_1, b_2 o $\epsilon_0, \epsilon_1, \epsilon_2$ $(|\epsilon_0|, |\epsilon_1|, |\epsilon_2| \le \epsilon)$ to błąd bezwzględny wyniesie:

$$|(b_0 + \epsilon_0) + (b_1 + \epsilon_1)(x - x_0) + (b_2 + \epsilon)(x - x_0)(x - x_1) - (b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1))|$$

czyli:

$$|\epsilon_1 + \epsilon_1(x - x_0) + \epsilon_2(x - x_0)(x - x_1)|$$

możemy skorzystać z nierówności trójkata:

$$|\epsilon_1 + \epsilon_1(x - x_0) + \epsilon_2(x - x_0)(x - x_1)| \le |\epsilon_1| + |\epsilon_1(x - x_0)| + |\epsilon_2(x - x_0)(x - x_1)|$$

i każdy składnik sumy oszacować osobno.

1) $|\epsilon_0|$

Z treści mamy

$$|\epsilon_0| \le \epsilon$$

2)
$$|\epsilon_1(x-x_0)|$$

Jest to moduł z funkcji liniowej, więc na przedziałe $[x_0, x_2]$ osiąga maksimum w jednym z krańców przedziału. W x_0 się zeruje, więc maksimum w x_2 .

$$|\epsilon_1(x_2-x_0)|=|\epsilon_1\cdot 2|\leq 2\epsilon$$

3)
$$|\epsilon_2(x-x_0)(x-x_1)|$$

Jest to moduł z funkcji kwadratowej, czyli na przedziałe $[x_0, x_2]$ osiąga maksimum w jednym z krańców przedziału, lub w wierzchołku paraboli. W x_0 się zeruje, więcj odrazu ten punkt odrzucamy.

$$x_w = \frac{x_0 + x_1}{2}$$

$$|\epsilon_2(x_w - x_0)(x_w - x_1)| = \left|\epsilon_2 \frac{1}{2} \frac{-1}{2}\right| \le \frac{1}{4}\epsilon$$

W x_2 :

$$|\epsilon_2(x_2 - x_0)(x_2 - x_1)| = |\epsilon_2 \cdot 2 \cdot 1| \le 2\epsilon$$

czyli maksimum wynosi 2ϵ i jest osiągane w x_2 .

Czyli całą sumę mozemy oszacować jako:

$$|\epsilon_1| + |\epsilon_1(x - x_0)| + |\epsilon_2(x - x_0)(x - x_1)| \le \epsilon + 2\epsilon + 2\epsilon = 5\epsilon$$

b)

Oszacuj E dla przypadku, gdy $x_i = i \ h \ (i = 0, 1, 2)$ dla pewnego h > 0.

Zauważmy, że w podpunkcie a), kożystaliśmy z wartości punktów x_0, x_1, x_2 dopiero przy oblicaniu maksimum składowych sum na przedziale $[x_0, x_2]$.

Zadanie sprowadza się, więc do ponowenego obliczenia maksimów z innymi wartościami punktów.

 $\mathbf{1})|\epsilon_0|$

Nic się nie zmienia.

$$|\epsilon_0| \le \epsilon$$

2)
$$|\epsilon_1(x-x_0)|$$

Znowu w x_0 wartość 0, więc maksimum w x_2 .

$$|\epsilon_1(x_2 - x_0)| = |2h\epsilon_1| \le 2h\epsilon$$

3)
$$|\epsilon_2(x-x_0)(x-x_1)|$$

W x_0 wartość 0, maksimum w x_2 lub x_w .

W x_w :

$$x_w = \frac{x_0 + x_1}{2} = \frac{h}{2}$$
$$|\epsilon_2(x_w - x_0)(x_w - x_1)| = \left|\epsilon_2 \frac{h}{2} - \frac{h}{2}\right| \le \frac{h^2}{4}\epsilon$$

 $W x_2$:

$$|\epsilon_2(x_2 - x_0)(x_2 - x_1)| = |\epsilon_2 \cdot 2h \cdot h| \le 2h^2 \epsilon$$

czyli maksimum mniejsze bądz równe $2h^2\epsilon.$

Podumowując $E \leq 2h^2\epsilon + 2h\epsilon + \epsilon$.