Измеримые пространства и отображения

Для множества X через 2^X обозначается семейство всех его подмножеств. Характеристическая (индикаторная) функция χ_A множества $A \subset X$ определяется формулой

$$\chi_A(x) = \begin{cases} 1, & \text{если } x \in A, \\ 0, & \text{если } x \in X \setminus A. \end{cases}$$

- **1.1.** Пусть $\mathbb{F}_2 = \{0,1\}$ поле из двух элементов. Для произвольного множества X обозначим через \mathbb{F}_2^X множество всех функций на X со значениями в \mathbb{F}_2 .
- (a) Пусть $A, B \subset X$. Характеристическими функциями каких множеств являются функции $\chi_A + \chi_B$ и $\chi_A \chi_B$? (Сложение и умножение функций здесь понимаются как поточечные операции в \mathbb{F}_2^X .)
- (b) Докажите, что семейство $\mathscr{A} \subset 2^X$ является алгеброй множеств тогда и только тогда, когда его образ в \mathbb{F}_2^X при биекции $2^X \cong \mathbb{F}_2^X$, $A \mapsto \chi_A$, является \mathbb{F}_2 -подалгеброй в \mathbb{F}_2^X .

Семейство множеств $\mathscr{F} \subset 2^X$ называется *полуалгеброй*, если оно содержит пустое множество, замкнуто относительно конечных пересечений, и для каждого $A \in \mathscr{F}$ множество $X \setminus A$ представимо в виде конечного дизъюнктного объединения множеств из \mathscr{F} .

- **1.2.** Пусть X и Y множества, \mathscr{F}_1 и \mathscr{F}_2 полуалгебры подмножеств X и Y соответственно. Покажите, что семейство множеств $\{A \times B : A \in \mathscr{F}_1, \ B \in \mathscr{F}_2\}$ полуалгебра подмножеств $X \times Y$.
- **1.3.** Докажите, что каждый из следующих классов множеств порождает борелевскую σ -алгебру на \mathbb{R} : (a) $\{(a,b): a < b,\ a,b \in \mathbb{Q}\};$ (b) $\{[a,b]: a < b,\ a,b \in \mathbb{Q}\};$ (c) $\{(a,b]: a < b,\ a,b \in \mathbb{Q}\};$ (d) $\{[a,b): a < b,\ a,b \in \mathbb{Q}\};$ (e) $\{(a,+\infty): a \in \mathbb{Q}\};$ (f) $\{[a,+\infty): a \in \mathbb{Q}\};$ (g) $\{(-\infty,a): a \in \mathbb{Q}\};$ (h) $\{(-\infty,a]: a \in \mathbb{Q}\}.$
- **1.4.** Порождается ли борелевская σ -алгебра на \mathbb{R}^2 всевозможными (a) замкнутыми квадратами со сторонами, параллельными координатным осям; (b) замкнутыми квадратами с центром в нуле; (c) отрезками?
- **1.5.** Докажите, что всякая монотонная функция $f: \mathbb{R} \to \mathbb{R}$ является борелевской.
- **1.6.** Пусть (f_n) последовательность измеримых функций на измеримом пространстве (X, \mathscr{A}) со значениями в \mathbb{R} . Докажите, что множество $\{x \in X : \exists \lim_{n \to \infty} f_n(x)\}$ лежит в \mathscr{A} .
- **1.7.** Пусть (X, \mathscr{A}) измеримое пространство и $(A_t)_{t \in \mathbb{R}}$ семейство множеств из \mathscr{A} , удовлетворяющее условиям $A_s \subset A_t$ при s < t, $\bigcap_t A_t = \mathscr{O}$ и $\bigcup_t A_t = X$. Докажите, что существует измеримая функция $f \colon X \to \mathbb{R}$ такая, что для каждого $t \in \mathbb{R}$ справедливы неравенства $f(x) \leqslant t$ для $x \in A_t$ и $f(x) \geqslant t$ для $x \notin A_t$.
- **1.8.** Пусть X множество, $\mathscr{F} \subset 2^X$ произвольное семейство его подмножеств и \mathscr{A} порожденная этим семейством σ -алгебра. Докажите, что каждое множество из \mathscr{A} входит в σ -алгебру, порожденную некоторым не более чем счетным подсемейством в \mathscr{F} .
- **1.9.** Докажите, что бесконечная σ -алгебра имеет мощность не менее континуума.

- **1.10.** Пусть X множество, \mathscr{F} семейство его подмножеств, содержащее пустое множество. Положим $\mathscr{B}_0 = \mathscr{F} \cup \{X \setminus A : A \in \mathscr{F}\}$, $\mathscr{B}_1 = \{\bigcup_{i=1}^\infty A_i, \bigcap_{i=1}^\infty A_i : A_i \in \mathscr{B}_0\}$, $\mathscr{B}_2 = \{\bigcup_{i=1}^\infty A_i, \bigcap_{i=1}^\infty A_i : A_i \in \mathscr{B}_1\}$, и т.д. Более общим образом, для каждого счетного ординала α положим $\mathscr{B}_\alpha = \{\bigcup_{i=1}^\infty A_i, \bigcap_{i=1}^\infty A_i : A_i \in \bigcup_{\beta < \alpha} \mathscr{B}_\beta\}$. Наконец, положим $\mathscr{B} = \bigcup_{\alpha < \omega_1} \mathscr{B}_\alpha$, где ω_1 первый несчетный ординал.
- (a) Докажите, что $\mathscr{B}-\sigma$ -алгебра, порожденная $\mathscr{F}.$ В частности, если X- топологическое пространство и $\mathscr{F}-$ семейство всех его открытых подмножеств, то $\mathscr{B}-$ борелевская σ -алгебра.
- (b) Докажите, что σ -алгебра борелевских подмножеств \mathbb{R}^n имеет мощность континуума.