$NGR \equiv Non Giustificare la Risposta. In tutti gli altri casi, fornire la risposta seguendo le indicazioni.$

Esercizio 1 (Tempo stimato di risoluzione: 15 min) Si consideri la seguente matrice dei payoff del primo giocatore per un gioco antagonistico in forma di minimizzazione:

$$\begin{pmatrix} G1 - G2 & S1 & S2 & S3 & S4 \\ s1 & 1 & -1 & -1 & -1 \\ s2 & -1 & -2 & 0 & 0 \\ s3 & 0 & 0 & -5 & 0 \\ s4 & 1 & 1 & 0 & 2 \end{pmatrix}$$

Considera l'estensione in strategia mista del gioco e le seguenti strategie rispettivamente per il primo e il secondo giocatore:

$$(i): \xi_1^i = \frac{1}{4} \ \forall i = 1, \dots, 4 \ (ii): \xi_1^1 = \frac{1}{3}, \xi_1^2 = \frac{2}{3}, \xi_1^3 = 0, \xi_1^4 = 0; \ (iii): \xi_1^1 = \frac{1}{3}, \xi_1^2 = \frac{1}{2}, \xi_1^3 = 0, \xi_1^4 = \frac{1}{6};$$

$$(j): \xi_2^j = \frac{1}{4} \ \forall j = 1, \dots, 4; \ (jj): \xi_2^1 = \xi_2^2 = 0, \xi_2^3 = \xi_2^4 = \frac{1}{2}; \ (jjj): \xi_2^1 = \frac{1}{3}, \ \xi_2^2 = \xi_2^3 = 0, \xi_2^4 = \frac{2}{3}.$$

- **1.1**. Per ciascuna di queste strategie, indica quanto paga, nel caso peggiore, il giocatore che la usa. **NGR** Rispettivamente: (i) $\frac{1}{4}$; (ii) $-\frac{1}{3}$; (iii) 0; (j) $\frac{5}{4}$; (jj) $\frac{5}{2}$; (jjj) $\frac{1}{3}$.
- **1.2** Qualcuna delle strategie fornite è conservativa? *Indicare le eventuali strategie conservative, oppure scrivere che non ve ne sono.* **NGR**

Per il primo giocatore la strategia (ii) è conservativa; per il secondo giocatore la strategia (jjj) è conservativa.

1.3 È possibile individuare qualche equilibro di Nash in strategia mista? *Indicare gli eventuali equilibri, oppure scrivere che non si può individuarne.* NGR

L'incrocio delle strategie determina un equilibrio di Nash.

1.4 Qual è il valore del gioco misto? *Indicare il valore, oppure scrivere che non si può individuarlo.* **NGR** Il valore del gioco è $-\frac{1}{3}$.

Esercizio 2 (Tempo stimato di risoluzione: 25 min) Si consideri la seguente matrice dei payoff del primo giocatore per un gioco in forma di costo, dove *x* è un numero razionale qualsiasi (positivo o negativo):

$$\begin{pmatrix} G1-G2 & D & E & F \\ A & 4,2 & 8-4x,6-x & 7,x \\ B & 5-x,8 & -4,10 & 6-x,12-2x \\ C & 6-x,12-2x & 10,12 & 5,8+2x \end{pmatrix}$$

Si consideri il gioco in sola strategia pura.

2.1 Indicare quali sono, al variare di *x*, le strategie debolmente dominanti per il primo giocatore (se ve ne sono), e le strategie debolmente dominanti per il secondo (se ve ne sono). **Giustificare la risposta illustrando i calcoli effettuati.**

Per il primo giocatore B è una strategia debolmente dominante per $1 \le x \le 3$. Per il secondo giocatore D è una strategia debolmente dominante per x = 2.

2.2 Indicare quali sono, al variare di *x*, gli equilibri di Nash del gioco (se ve ne sono). **Giustificare la risposta illustrando i calcoli effettuati.**

$$(A,E)$$
 per $x \ge 4$; (B,D) per $1 \le x \le 2$; (B,F) per $x \ge 2$; (C,F) per $x \le 1$.

- **2.3** Porre x = 0. Indicare quali sono i punti di ottimo debole secondo Pareto (se ve ne sono). **NGR** (A, D), (A, F), (B, E).
- **2.4** Esiste un valore di *x* per cui il gioco è strettamente competitivo? **In caso di risposta affermativa, limitarsi** a fornire tale valore; in caso di risposta negativa, giustificare brevemente perché tale valore non esiste.

No non esiste: qualunque sia x, nel passare dallo stato (C,E) allo stato (A,D) entrambi i giocatori migliorano il proprio payoff.

Esercizio 3 (Tempo risoluzione stimato: 20 min) In un parlamento siedono 7 deputati. Tre di questi deputati provengono dalla regione A, tre dalla regione B e uno dalla regione C. Per ognuno dei casi che seguono, determinare il valore di Shapley di ciascun deputato, oppure spiegare perché non è possibile determinarlo. Illustrare i calcoli e/o le considerazioni necessari a individuare ogni valore di Shapley, ovvero il motivo per cui tale valore non esiste.

- 3.1 Una legge viene approvata se e solo se a suo favore vota una coalizione Q che contiene almeno un deputato di A, ovvero $Q: |Q \cap A| \ge 1$ (abusiamo leggermente la notazione indicando con X l'insieme dei deputati della regione X).
- 3.2 Una legge viene approvata se e solo se a suo favore vota una coalizione Q che contiene il deputato di C, ovvero $Q: |Q \cap C| \ge 1$
- 3.3 Una legge viene approvata se e solo se a suo favore vota una coalizione Q che contiene almeno un deputato di A, almeno un deputato di B e il deputato di C, ovvero $Q:|Q\cap A|\geq 1$ e inoltre $|Q\cap B|\geq 1$ e inoltre $|Q\cap C|\geq 1$.

Soluzione

- 3.1 Non è possibile modellare il gioco come un gioco cooperativo perché esistono coalizioni disgiunte entrambe a valore 1: per esempio le coalizioni $\{a_1\}$ e $\{a_2\}$, dove a_1 e a_2 sono due diversi deputati della regione A.
- 3.2 È possibile modellare il gioco come un gioco cooperativo perché la funzione di utilità è superadditiva. In questo caso il giocatore *C* è un dittatore e il suo valore è 1.
- 3.3 È possibile modellare il gioco come un gioco cooperativo perché la funzione di utilità è superadditiva. Il valore di Shapley di un deputato del partito *C* è pari a:

$$S_A(v) = \frac{\binom{3}{1} \cdot 2! \cdot 4! + \binom{3}{2} \cdot 3! \cdot 3! + 4! \cdot 2!}{7!}$$

Naturalmente vale $S_B(v) = S_A(v)$ e infine $S_C(v) = 1 - 6 \cdot S_A(v)$. In alternativa, si poteva calcolare direttamente il valore di $S_C(v)$:

$$S_C(v) = \frac{\binom{3}{1}\binom{3}{1} \cdot 2! \cdot 4! + 2 \cdot \binom{3}{2}\binom{3}{1} \cdot 3! \cdot 3! + 6! + 6! + 6!}{7!}$$

e poi naturalmente $S_A(v) = S_B(v) = \frac{1 - S_C(v)}{6}$.

Esercizio 4 (Tempo risoluzione stimato: 15 min) Considera il seguente gioco non cooperativo con 2 giocatori: tu e la tua avversaria. Avete a disposizione una scacchiera $n \times n$ tale che in ogni riquadro della scacchiera è collocato un euro: in totale quindi sulla scacchiera ci sono n^2 euro. Per giocare, sia tu che la tua avversaria dovete scegliere un riquadro, quindi entrambi avete n^2 strategie a disposizione (e naturalmente è possibile che entrambi scegliate lo stesso riquadro).

Passiamo ai payoff. Per indicare un riquadro della scacchiera, nel seguito supponiamo che sia le righe che le colonne siano indicizzate come $1,2,\ldots,n$: il riquadro $(x,y), x,y \in \{1,2,\ldots,n\}$, è quindi quello individuato dalla riga x e dalla colonna y. La *distanza* tra il riquadro (x_1,y_1) e il riquadro (x_2,y_2) è pari alla distanza di Manhattan tra il punto (x_1,y_1) e il punto (x_2,y_2) nel piano, ovvero $|x_1-x_2|+|y_1-y_2|$. A questo punto, per ogni strategia scelta da te e dalla tua avversaria, il payoff si determina come segue:

- tu raccogli ogni euro presente in un riquadro che è più vicino al riquadro scelto da te rispetto al riquadro scelto dalla tua avversaria;
- la tua avversaria raccoglie ogni euro presente in un riquadro che è più vicino al riquadro scelto da lei rispetto al riquadro scelto da te;

• gli euro presenti in riquadri che sono equidistanti dal riquadro scelto da te e da quello scelto dalla tua avversaria non vengono assegnati a nessuno.

Si consideri il gioco in sola *strategia pura*. Per ognuno dei seguenti valori di *n*, indica le tue strategie dominanti, se esistono, e gli equilibri di Nash, se esistono. **NGR**

- 4.1 n = 2;
- 4.2 n = 5.

Soluzione Osserviamo che, qualunque sia n, se due giocatori scelgono la stessa casella il payoff di entrambi è 0, mentre non appena scelgono due caselle diverse il payoff di entrambi è almeno 1. Da questo segue che per nessun valore di n esistono strategie dominanti.

Per quanto riguarda gli equilibri di Nash, nel caso n=2 sono tutti gli stati in cui i due giocatori scelgono due riquadri con distanza di Manhattan pari a 1. Nel caso n=5 sono tutti gli stati in cui i uno dei due giocatori sceglie il riquadro centrale e l'altro si colloca in un qualunque riquadro a distanza di Manhattan da questo pari a 1.

Esercizio 4bis (Tempo risoluzione stimato: 15 min). Considera nuovamente il caso in cui n = 5, ma supponi che tu possa scegliere solo un riquadro della prima riga (quindi hai a disposizione solo 5 strategie), mentre la tua avversaria può scegliere come prima un qualunque riquadro (quindi ha ancora a disposizione 25 strategie).

Soluzione Si consideri il gioco in sola *strategia pura*. Indica: le tue strategie dominanti, se esistono; le strategie dominanti della tua avversaria, se esistono; gli equilibri di Nash, se esistono. **NGR**

In questo caso non esistono strategie dominanti e non esistono equilibri di Nash.