2.MATERIALI IMPIEGATI PER COSTRUZIONI MECCANICHE

1.PROPRIETÀ DEI MATERIALI

Essi sono scelti in base alle loro caratteristiche chimiche, meccaniche e tecnologiche.

Le caratteristiche meccaniche vengono determinate con apposite prove unificate e sono:

- 1. CARICO UNITARIO MASSIMO A TRAZIONE E COMPRESSIONE (CARICO DI ROTTURA);
- 2. ALLUNGAMENTO PERCENTUALE A ROTTURA
- 3. DUREZZA
- 4. RESILIENZA

PROVA DI TRAZIONE

Con un'apposita macchina viene applicato gradualmente un carico di trazione (o compressione) a una provetta standardizzata, e grazie ad appositi strumenti si esegue l'andamento del carico e delle deformazioni subite dalla provetta per effetto di tale carico.

Da questi dati si ricava una curva SFORZO-DEFORMAZIONE che nel caso di un acciaio dolce può essere divisa in tre zone:

- Una con carichi inferiori a F₀ in cui l'allungamento ε è proporzionale al carico applicato σ. Il coefficiente di proporzionalità prende il nome di MODULO DI YOUNG (O ELASTICITÀ) e varia per ogni materiale: E=σ₀/ε₀. Dove σ₀=σ/L₀ sono il cario e l'allungamento unitari e s₀ e L₀ sono rispettivamente la sezione e la lunghezza iniziali della provetta. In questa fase non ci sono deformazioni permanenti della provetta, cioè si ha un comportamento elastico.
- 2. Superato il valore di carico F_P inizia la zona di "snervamento" in cui, pur rimanendo il carico pressoché costante, le deformazioni sono permanenti (ma minori dello 0.2%).
- 3. Superato F_s si passa alla zona dove piccoli aumenti di carico corrispondono a grandi deformazioni;
- 4. Raggiunto F_m si ha la strizione del materiale, ovvero la sua sezione si riduce sensibilmente, fino a giungere alla rottura.

Da questa prova si ricavano le seguenti proprietà del materiale:

- 1. CARICO UNITARIO AL LIMITE DI PROPORZIONALITÀ (Rp): Rp=Fp/S0
- 2. <u>CARICO UNITARIO DI SNERVAMENTO</u> (Rs): Rs=Fs/So. Per i materiali per i quali non è individuabile graficamente il valore di Fs si definisce come carico di snervamento quello per cui si ha una deformazione permanente dello 0.2%.
- 3. CARICO UNITARIO DI ROTTURA (Rm): Rm=Fm/S0
- 4. <u>ALLUNGAMENTO % A ROTTURA</u>: detti L_0 la lunghezza iniziale e L quella a frattura (presa avvicinando i due pezzi di materiale) si ha: A%=((L- L_0)/ L_0)x100%.
- 5. <u>TENACITÀ</u>: L'area che sottende la curva sforzo deformazioni rappresenta il lavoro necessario per deformare la provetta fino a rottura. Se questo lavoro è piccolo il limite di snervamento e rottura sono vicini e il materiale è FRAGILE, viceversa è TENACE.

RESILIENZA

La RESILIENZA è la capacità di un materiale di resistere a urti. È definita come l'energia assorbita a rottura da una provetta unificata colpita da un maglio fatto cadere da una specifica altezza:

 $K = W/S_0$ dove W è l'energia assorbita (J) e S_0 la sezione resistente della provetta (cm²) Hanno bassi valori di resilienza i materiali fragili, alti quelli tenaci.

DUREZZA

È la resistenza opposta da un materiale a farsi penetrare da un penetratore standard. Le prove di durezza più importanti sono:

- 1. BRINNELL (HB)
- 2. ROCKWELL (HR)
- 3. VICKERS (HV)

2.ACCIAI

Sono una lega ferro-carbonio contenente al massimo lo 1.7% di carbonio ed eventualmente piccole percentuali di altri elementi.

Prendono il nome di acciai al carbonio quegli acciai che non contengono elementi di lega all'infuori di Fe e C. L'aggiunta di altri elementi può migliorare alcune caratteristiche:

- 1. NICHEL, migliora resilienza e A%;
- 2. CROMO, aumenta la durezza tramite la formazione di carburi e conferisce resistenza all'ossidazione;
- 3. MOLIBDENO (con Ni e Cr) migliora la resistenza, la resilienza e la durezza;
- 4. SILICIO E MANGANESE, aumentano il valore di elasticità;
- 5. TUNGSTENO, CROMO E VANADIO, insieme aumentano la durezza.

Le caratteristiche meccaniche degli acciai possono essere variate con "trattamenti termici" consistenti in riscaldamento, permanenza a opportuna T e raffreddamento eseguiti con diverse tecniche, al fine di favorire la formazione di particolari strutture cristalline. I principali sono:

- 1. RICOTTURA: è un riscaldamento lento e uniforme fino a 750-900°C seguito da raffreddamento lentissimo. Conferisce massima dolcezza, omogeneità e lavorabilità alle macchine utensili all'acciaio.
- 2. TEMPRA: è un riscaldamento a 750-900°C seguito da raffreddamento veloce (olio o acqua). Si forma così una struttura martensitica che aumenta notevolmente la durezza e la resistenza meccanica dell'acciaio aumentandone però la fragilità.
- 3. RINVENIMENTO: è un trattamento a T inferiore a quella di tempra per ridurre la fragilità dell'acciaio dopo la tempra stessa. L'insieme dei trattamenti di tempra e rinvenimento vien detto BONIFICA.
- 4. CEMENTAZIONE E NITRURAZIONE: consistono nel riscaldamento del pezzo in atmosfera ricca di carbonio o azoto in modo da rendere la superficie del pezzo più dura.

DESIGNAZIONE UNI

La designazione convenzionale degli acciai usata in Italia è contenuta nella norma UNI EU 27/77. In essa gli acciai sono divisi in due gruppi:

- PRIMO GRUPPO: acciai designati in base alle loro caratteristiche meccaniche (sottogruppo I.1), ed in base all'impiego (sottogruppo I.2). Per questi acciai non è garantita la composizione chimica, ma solo le caratteristiche meccaniche o proprietà particolari che ne determinano l'impiego.
 - SOTTOGRUPPO I.1: Gli acciai di questo sottogruppo vengono designati con la sigla Fe seguita da tre cifre
 che rappresentano il valore minimo in kg/mm^2 del carico di rottura o di quello di snervamento (in
 questo caso vengono preceduti dalla lettera E), e dall'eventuale simbolo chimico di un aggiunta standard;
 inoltre può seguire un'indicazione dell'idoneità a saldatura con lettera ABCD.
 - o **SOTTOGRUPPO I.2:** Gli acciai di questo sottogruppo vengono indicati con la sigla Fe seguita da una lettera caratterizzante le proprietà particolari, a sua volta seguita da un numero di due o più cifre.
- **SECONDO GRUPPO**: acciai designati in base alla loro composizione chimica. Questi sono messi in opera dopo un opportuno trattamento termico che ne esalta alcune caratteristiche. Si distinguono due sottogruppi:
 - ACCIAI NON LEGATI (II.1) quelli destinati al trattamento termico sono contraddistinti da una lettera C seguita dal tenore di carbonio moltiplicato per cento ed eventualmente dal simbolo di un elemento la cui presenza (pur in bassi tenori) determina proprietà particolari, seguita a volte da una cifra (seguiti dal lettera indicativa dei tenori di zolfo e fosforo). Quelli destinati ad impieghi particolari sono designati con la lettera C seguita da una lettera indicante l'impiego al quale è destinato l'acciaio e dal tenore di carbonio moltiplicato per cento
 - ACCIAI LEGATI (II.2) si distinguono in acciai in cui il tenore di ogni elemento di lega è inferiore al 5%
 (II.21) e acciai il cui tenore di almeno un elemento di lega è > del 5% (II.22):
 - Debolmente legati II.21: sono designati con una cifra indicante il tenore di carbonio moltiplicato per 100, seguita da simboli chimici di elementi di lega caratterizzanti l'acciaio, in ordine di tenori crescenti, e da un numero corrispondente al tenore dell'elemento di lega presente in quantità maggiore moltiplicato per un fattore convenzionale (in figura).

FATTORI MOLTIPLICATIVI

ELEMENTI	FATTORE DI MOLTIPLICAZIONE
Co, Cr, Mn, Ni, Si, W	4
Al, Be, Cu, Mo, Nb, Pb, Ta, Ti, V, Zr	10
Ce, N, P, S	100
В	1000

• Altamente legati II.22: sono designati con la lettera X seguita dal tenore di carbonio moltiplicato per cento, dal simbolo di elementi di lega e dai loro tenori (senza fattore moltiplicativo).

Esempi

Fe 410 Pb acciaio con $R = 410 \text{ kg/mm}^2$ contenente Pb in bassi tenori; Fe E355 Mn acciaio con $R_s = 355 \text{ kg/mm}^2$ contenente Mn in bassi tenori.

Fe 50 B acciaio con carico unitario di rottura a trazione garantito di 50kg/mm^2 e grado di idoneità alla saldatura B.

Fe P 03 acciaio in lamiera sottile per imbutitura, grado di qualità 03.

C 40 S acciaio non legato con tenore medio di carbonio 0,4 % con tenore minimo garantito di zolfo.

CD 30 Cr 1 acciaio non legato per vergella con tenore medio di carbonio 0.3% e con aggiunta di cromo al livello 1

18 Ni Cr 16 acciaio debolmente legato con tenore medio di carbonio dello 0.18%, tenore di nichel di circa 4% e tenore di cromo imprecisato.

20Mn5 acciaio legato con tenore medio di carbonio dello 0.20% e con tenore di manganese dello 1.25%

X 10 CrNi 18 8 acciaio legato, con tenore medio di carbonio dello 0.1%, tenore di cromo del 18% e di nichel dell'8%.

GHISE

Sono leghe ferro-carbonio con tenore di carbonio fra 1.7-6.67%. Sono caratterizzate da elevata durezza, bassa resistenza a trazione ed elevata a compressione. Si dividono nelle seguenti categorie:

- 1. GHISE GRIGIE PER GETTI: adatte alla fabbricazione di pezzi in fusione con bassa resistenza a trazione ed alta a compressione, poco lavorabili. Sono classificati con G-carico minimo a trazione.
- 2. GHISE LEGATE: contengono anche varie percentuali di altri elementi. Ne fanno parte le ghise sferoidali ottenute con l'aggiunta di magnesio che presentano un'aumentata resistenza a trazione, l'allungamento percentuale, resilienza e lavorabilità. Le ghise sferoidali sono classificate GS carico a trazione minimo garantito/allungamento percentuale a frattura.
- 3. GHISE MALLEABILI: sono ottenuto con un trattamento termico che conferisce buona resilienza, allungamento % e deformabilità al piegamento. Si dividono in ghise a cuore bianco e nero. Sono classificate mettendo GMB-carico di rottura a trazione per le ghise bianche e mettendo N al posto di B per le nere.
- 4. GHISE SPECIALI Sono ottenute con un processo fusorio speciale. Tra queste c'è la ghisa grigia per getti in sabbia che si classifica come Gh-durezza Brinnell.

3.LEGHE DEL RAME

- 1. BRONZI, contengono come elemento principale di lega lo stagno;
- 2. OTTONI, contengono come elemento principale di lega lo zinco.

La designazione unificata prevede la lettera P per le leghe da deformazione plastica, quella G perle leghe da fonderia, seguite da un trattino, dal simbolo Cu e dai simboli di altri elementi di lega con le relative percentuali.

4.LEGHE LEGGERE

Hanno come elemento di lega principale l'alluminio e come elementi di lega rame, silicio, magnesio, manganese, zinco, nichel. Si possono di distinguere come prima col rame usando però il simbolo Al al posto di Cu.

5.LEGHE ULTRALEGGERE

Sono leghe a base di magnesio con aggiunta di alluminio, zinco e manganese. La designazione è di nuovo come prima.

6.LEGHE ANTIFRIZIONE

Sono impiegate per realizzare il rivestimento interno dei cuscinetto di strisciamento e per altri macchinari che devono scorrere su altri. Per questo devono avere elevata durezza e alto coefficiente di trasmissione termica e alta resistenza a compressione, alta fusibilità e plasticità per essere applicata a supporti in bronzo, ghisa o acciaio. I tipi principali di queste leghe sono i METALLI BIANCHI a base di stagno, stagno-piombo o stagno-zinco. La designazione è analoga a quella delle leghe leggere (Sn al posto di Al) ma si usa anche quella dove a MB viene fatto seguire dalla percentuale di stagno nella lega.

7.MATERIE PLASTICHE

Sono materiali a struttura macromolecolare divisi in:

- 1. RESINE TERMOPLASTICHE: formate mediante riscaldamento e pressione che assumono rigidezza col raffreddamento ma rammolliscono se riscaldate.
- 2. RESINE TERMOINDURENTI: quando vengono riscaldate raggiungono una struttura reticolata che conferisce alta durezza e resistenza. Vengono formate a partire da polveri, granuli o fiocchi e il processo è irreversibile.

8.MATERIALI PER GUARNIZIONI

- GOMMA (naturale o sintetica), che però limita la temperatura d'esercizio;
- CARTA IN FOGLI; per guarnizioni a bassa T;
- AMIANTO, RAME RICOTTO, ALLUMINIO per guarnizioni ad alta T.