ECHNICAL DRAINAGE STUDY for Colden Valley Ranch Mohave County, AZ Libea 2, Phases A & B

Prepared for:

Rhodes Homes Arizona, LLC.

2215 Hualapai Mountain Rd., Suite H

Kingman, Arizona 86401

Technical Drainage Study

For

Area 2, Phases A & B Golden Valley Ranch Mohave County, AZ

March 2006 SCI Project # 18449.00.00

Prepared for:

Rhodes Homes Arizona, LLC. 2215 Hualapai Mountain Road, Suite H Kingman, Arizona 86401

Prepared By:

STANLEY CONSULTANTS, INC. 5820 South Eastern Avenue, Suite 200 Las Vegas, Nevada 89119 (702)369-9396 Fax (702)369-9793

TABLE OF CONTENTS

1.	GENERAL LOCATION AND DEVELOPMENT DESCRIPTION	1				
1.1.	. Introduction	1				
1.2.	. Location	1				
1.3.	. FEMA Flood Hazard Zone	1				
2.	SITE DESCRIPTION	1				
2.1.	. Description of Property	1				
2.2.	. Drainage Descriptions	4				
3.	METHODS AND CRITERIA	4				
3.1.	. Methodology	4				
3.2.	. Drainage Shed and Modeling Convention	6				
3.3.	. Design Storm and Precipitation	6				
3.4.	. Soils	7				
3.5.	. Model Data and Results	7				
4.	Drainage Improvements within the Public Right-of-Way	9				
5.	Comparison of Flows	9				
6.	FEMA Base Flood Elevations	12				
7.	SUMMARY	12				
^	DESERVAÇÃO					

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 4 of 109

GOLDEN VALLEY RANCH

LIST OF TABLES

Table 1 - Precipitation	7
Table 5 –Flow Summary	8
Table 3 – Flow Comparison	9
LIST OF FIGURES	
Figure 1 – Vicinity Map and Regional Drainage Scheme	2
Figure 2 - Flood Insurance Rate Map, Mohave County, Arizona	3
Figure 3 – Area 2 Drainage Shed Map	5
Figure 4 – Drainage Improvements within Public Right-of-Way	10
Figure 5 – Existing Runoff - Flow Comparison	11
Figure 6 - Rase Flood Elevation (RFF)	13

APPENDICES

Appendix A Area 2 - Results and Data

- HEC-HMS 100-yr, 6-hr Simulation
- HEC-HMS 10-yr, 6-hr Simulation
- NOAA Atlas 14 Precipitation
- STANDARD FORM 4 Time of Concentration

Appendix B Drainage Infrastructure Calculations

- COMMON LOT O (P1-83)
- COMMON LOT F (J-C14)
- COMMON LOT E (J-C17)
- H STREET (J-C21)
- COMMON LOT D (J-C25)

Appendix CStreet Capacity (Local Streets)

Appendix D Public Right-of-Way Drainage Improvements

- INLET CALCULATIONS
- HYDRAULIC CALCULATIONS WEST LOOP ROAD
- CULVERT CAPACITY (J-C26, J-N5, J-N25, J-H, & J-N2)

Appendix F Plans - Not Included with this Study (See Grading Plans this Project

1. GENERAL LOCATION AND DEVELOPMENT DESCRIPTION

1.1. Introduction

This study is submitted as the technical drainage study for the proposed improvement plans of Area 2, Phases A & B of the Golden Valley Ranch residential development located in the Sacramento Valley of Mohave County, Arizona, more specifically on the south side of the Golden Valley Community, near Kingman. Area 2 comprises of approximately 205 acres of the total 5,800 acres of land located in the Golden Valley Ranch.

The purpose of this study is to accompany the storm drainage infrastructure of the proposed development for Area 2, Phase A only. Phase B improvements will be submitted at a later date. Documentation for Phase B is included to provide continuity in the infrastructure improvements.

This study is divided into four separate areas of consideration. They are as follows:

- A general overview of site drainage
- A detailed analysis of the proposed storm drainage infrastructure.
- An analysis of the drainage improvements in the Public Right-of-Way.
- An evaluation of interim facilities serving the site

1.2. Location

The Golden Valley Ranch project site consists of Taxpin Numbers 215-01-048, 215-01-075, 215-01-078, 215-01-079, 215-01-080, 215-01-084, 215-01-085, 215-01-092, & 215-15-005 within Township 20 North, Range 18 West and Township 21 North, and Range 18 West, G&SRM, Mohave County, Arizona (Figure 1 - Vicinity Map and Regional Drainage Scheme).

1.3. FEMA Flood Hazard Zone

Figure 2 is a representation of the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) for Mohave County, AZ, map number 040058 2325C, dated October 20, 2000. Of the 205 acres of Area 1, 42 acres lies in Special Flood Hazard Zone A.

Zone A is the flood insurance rate zone that corresponds to the 100-year floodplains that are determined in the Flood Insurance Study (FIS) by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no Base Flood Elevations (BFE's) or depths are shown within this zone. Mandatory flood insurance purchase requirements apply.

2. SITE DESCRIPTION

2.1. Description of Property

The property is semiarid rangeland with a covering of desert shrub in poor condition. Area 2, Phases A & B is located primarily in the west half of Section 3, Township 20 North, Range 18

FIGURE 2 AREA 2

West, G&SRM, with minor portions in Sections 2 and 10. The project will be developed into a residential community consisting of single-family (7,000 square feet lots) residences, streets, golf course and open spaces.

2.2. Drainage Descriptions

Area 2, Phases A & B is situated between the Thirteen Miles Wash and the Holy Moses Wash. Small braided channels traverse the site and a diversion channel from the Holy Moses Wash (Diversion Wash 1) crosses in a southwesterly direction across the site. The project lies on westerly sloping alluvial fan originating from the Cerbat Mountains.

Rainfall runoff generated within the development travels from the individual residential lot or open space to the street. The street is the main mean of runoff conveyance until runoff exceeds the street capacity with an 8 inch depth. When that happens, runoff is received into an underground storm drainage system, into a drainage swale or channel. The storm drainage system is sized to convey a minimum of the 10-yr, 6-hr storm runoff. Runoff generally drains in a westerly direction toward one of six release points. Here, it is received into a storm drainage system and discharged into the golf course. Major runoff travels within the golf courses fairways to be collected and conveyed under the West Loop Road at the Areas southwest corner. It returns to an open channel and discharged into one of the braided washes draining into the Thirteen Mile Wash, a tributary of the Sacramento Wash.

Area 2, Phases A & B is divided into thirty-seven small sub-sheds, ranging in size from approximately 1 acre to 13 acres (See Figure 3). The sunken golf course encompasses the Area 2 development. Shed P2-67 discharges into the south leg of the golf course and travels south away from the site. The remaining 192.38 acres drain west in a westerly direction into the golf course at five points. Four of theses discharge into the west leg of the golf course (between Areas 1 & 2) and flow in a northerly direction to a culvert under the West Loop Road (south of the intersection of West Loop Rd and B2 Street). The other release point drains into the north leg of the golf course (paralleling West Loop Rd.), combining with runoff from Area 3, Shed P3-44 and future Areas 61 and 62. All releases into the golf course are through bubble-up structures with low flow drains tied into the golf course underdrain system. The fairway provides conveyance for major runoff and also storage to retard the peak flow. Runoff exits the golf course via a culvert under the West Loop Road and is conveyed to the Thirteen Mile Wash through an open channel.

3. METHODS AND CRITERIA

3.1. Methodology

The HEC-HMS model was used for the simulation of flood events in watersheds and river basins. This computer model simulates the surface runoff response of a drainage basin to precipitation by representing the basin as an interconnected system of hydrologic and hydraulic components. Each component models an aspect of the rainfall-runoff process within a portion of

1

ENLARGEMENT-B SCALE: 1"= 50"

(P)(ASE A)

0

0

the whole basin. This basin portion is referred to as a sub-basin. The runoff hydrographs of each sub-basin are then combined and a final discharge hydrograph is obtained. It was chosen as the hydrology model since it is the model used in a Preliminary Federal Insurance Study prepared for Mohave County Flood Control District, October 2005 for various watersheds in the Golden Valley and Kingman, AZ areas. This adds consistency and reliability in the methodology. Modified-Puls routing in the HEC-HMS model allows for retardation of peak flows within the broad flood way of the golf course.

HEC-RAS, another program from the COE, provides a steady state flow analysis to determine water surface elevations within a defined channel or flood plain. Volume computations within the HEC-RAS program were utilized in developing flow routing by Modified-Puls methods.

Water Surface Pressure Gradient (WSPG) program developed by the Los Angeles County Flood Control District. WSPG is a similar program to HEC-RAS in that it develops the water surface elevations and other channel parameters, but is better adapted to closed (pressure) conduit flow and is therefore used in the evaluation of the stormwater infrastructure system.

Calculations for street capacity are produced using the FlowMaster by Haestad Methods, Inc. Inlet calculations are performed using Federal Highway Administration's Visual Urban program for pavement drainage.

3.2. Drainage Shed and Modeling Convention

The basic naming convention of the basins for the exhibits and model are based around the individual drainage shed of the development. Sheds are labeled as P2-34, identifying Area 2, Shed 34. Junction points or points of runoff confluence are identified as J-N12, identifying that it is a junction point and a label. An R designates a routing of a shed or junction, therefore R-JN15 represents routing of junction JN15 to another point.

3.3. Design Storm and Precipitation

Local jurisdiction requires that water sheds less than 20 square miles be evaluated for the 6-hour local storm. Drainage sheds of 20 to 100 square miles are to be evaluated for both the 6-hour and 24-hour rainfall events. Areas from 20 square miles to 500 square miles are considered general storms and are evaluated for the 24-hour precipitation.

Maricopa County Flood Control District has developed storm distribution curves associated with drainage shed size. Since the total area of Area 2, Phases A & B is less than 1 square mile, Pattern 1 of the Maricopa County 6-Hour Mass Curve was utilized for the storm distribution. Precipitation values of 3.00-inches and 1.76-inches were taken from the National Oceanographic and Atmospheric Administration National Weather Service's Atlas 14. Table 1 provides the precipitation values from NOAA Atlas 14. Since the total area of Area 2 is 0.29 square miles (187 acres) the depth-area reduction factor was not applied.

Table 1 - Precipitation

Recurrence	5 min	10-min	15-min	30-min	1-hr	2-hr	3-hr	6-hr
Interval (yrs)]	
10-yr	0.40	0.61	0.75	1.01	1.25	1.44	1.53	1.76
100-yr	0.65	0.98	1.22	1.64	2.03	2.44	2.67	3.00

3.4. Soils

Soils information is taken from the Natural Resources Conservation Service, Soil Data Mart. Soils within Area 1, Phases A & B consist of CACIQUE-BUCKLEBAR-ALKO (AZ039) type. These soils have a hydrologic soil type designation of "C".

3.5. Model Data and Results

Table 2 summarizes runoff at junction points and drainage sheds within Area 2, Phases A & B. Runoff values are rounded to the nearest 1 cfs.

Table 5 - Flow Summary

Element	Area	Peak	Peak	Element	Area	Peak	Peak
	(sq mi)	Discharge	Discharge		(sq mi)	Discharge	Discharge
	` `	100-yr (cfs)	10-yr (cfs)		(, ,,	100-yr (cfs)	10-yr (cfs)
J-N10	0.0057	11.48	4.06	P2-58	0.0087	16.02	5.78
J-N11	0.0229	43.44	14.9	P2-59	0.0092	15.72	5.55
J-N12	0.0403	77.1	26.86	P2-60	0.0113	20.95	7.58
J-N13	0.0523	99.06	34.19	P2-61	0.0064	10.69	3.79
J-N14	0.0627	116.7	39.96	P2-62	0.0121	21.13	7.51
J-N15	0.0728	135.07	46.15	P2-63	0.0063	11.8	4.29
J-N18	0.0118	22.79	8.09	P2-64	0.0126	23.81	8.7
J-N19	0.0131	24.65	8.74	P2-65	0.0019	4.34	1.62
J-N20	0.0184	33.63	12.1	P2-66	0.0139	23.21	8.24
J-N21	0.0279	54.34	18.32	P2-67	0.0197	51.02	18.82
J-N22	0.0393	75.78	25.74	P2-68	0.0066	12.47	4.56
J-N23	0.0589	111.05	37.37	P2-69	0.009	16.41	5.9
J-N26	0.0134	26.39	9.63	P2-70	0.02	37.66	13.76
J-N27	0.0687	114.34	38.95	P2-71	0.0067	13.51	4.81
J-N30	0.0221	39.52	13.55	P2-72	0.0104	18.09	6.42
J-N31	0.0454	87.5	29.9	P2-73	0.0101	19	6.94
J-N32	0.0523	99.42	33.96	P2-74	0.0092	17.97	6.41
J-N6	0.0261	43.47	14.05	P2-75	0.0059	13.01	4.76
J-N7	0.0411	70.44	23.07	P2-76	0.0109	20.12	7.27
J-N8	0.0503	83.94	28.36	P2-77	0.0051	10.49	3.76
J-S17	0.016	29.75	10.85	P2-78	0.0076	17.06	6.3
J-S18	0.0311	57.82	20.99	P2-79	0.0064	14.34	5.29
J-S19	0.0581	107.35	37.57	P2-80	0.0034	7.27	2.63
J-S20	0.0781	136.47	47.93	P2-81	0.0172	32.11	11.66
J-S21	0.0131	26.89	9.85	P2-82	0.008	17.17	6.22
				P2-83	0.012	22.36	8.12
				P2-84	0.0094	19.77	7.12
				P2-85	0.0052	11.07	4
				P2-86	0.0024	5.19	1.88
				P2-87	0.0094	17.76	6.49
				P2-88	0.0013	2.34	0.84
				P2-89	0.0114	25.59	9.44
				P2-90	0.0071	15.51	5.65
				P2-91	0.0023	4.78	1.71
				P2-92	0.0082	16.62	5.93
				P2-93	0.0061	12.55	4.49
				P2-94	0.0069	15.55	5.75

It should be noted that the precipitation depths of the 100-yr, 6-hr event is 3-inches and that the precipitation depth of the 10-yr, 6-hr storm is 1.53-inches. The 100-yr precipitation is nearly twice for the 10-yr event. For the same events the amount of excess precipitation available for runoff is dependent on the runoff curve number, which is a function of soil type, land use, and antecedent moisture conditions. For this reason a larger portion of the 100-yr precipitation is available for runoff than for the smaller 10-yr storm and the ratio of peak runoff for the 100-yr precipitation to 10-yr precipitations is nearly 3.

All model results and input data are found in the Appendices of this study. They consist of the following:

- Appendix A Model Results and Data provides the input parameters and results for Area 2, Phases A & B sheds.
- Appendix B Drainage Infrastructure provides the storm drain inlet calculations open channel flow calculations through utility easements.
- Appendix C Street Capacity Calculations
- Appendix D Public Right-of-Way Drainage Improvements

4. Drainage Improvements within the Public Right-of-Way

Access to the project site is via Shinarump Road from the north to the new Aztec Road alignment and West Loop Road. Aztec Road will receive a culvert crossing at the Power line Easement to convey runoff from off-site areas to the Thirteen Mile Wash. The West Loop Road will have a pipe crossing from the Open Space area of Area 2, Phase 1 and convey this and other Area 2, Phases 1 & 2 runoff south, crossing a future portion of the West Loop Road and discharging into the golf course (See Figure 4). Discharge from Area 1, Phases A & B drainage sheds are discussed in Section 2.2 of the Drainage Study of Area 1, Phases A & B.

Appendix D contains street capacity calculations for the arterial roads and inlet capacity calculations.

5. Comparison of Flows

The drainage shed characteristics change with development of existing lands. The pervious soils that formerly existed become less pervious with the addition of houses, streets, and sidewalks and the time for runoff to reach its release point shortens. From a drainage point of view, one of the major advantages to the adjacent golf course is that drainage runoff is routed through its fairway system. This not only allows for runoff of the major storm events, but also allows for the golf course to absorb some for the runoff volume, therefore reducing the peak flow. Figure 5 shows existing drainage as it relates to the Area 1-3 development and outside areas that will drain through the proposed system. Table 3 provides a comparison of existing flows to developed flow at major junction points. Note that runoff from the northern release point J-N5 exceeds its existing flow into the Thirteen Mile Wash, the collective flows from J-N5 and J-S26 less than existing due to detention provided within the golf course.

Table 3 – Flow Comparison

Shed	Area (acres)	Indirect Methods (cfs)	HEC- HMS (cfs)
J-H	73.26	191	211
J3-44	18.12	73	38
J-S5	69.79	184	187
J-S9	439.35	657	456
J-N5	369.78	582	621
J-S26	713.82	916	798

6. FEMA Base Flood Elevations

The Holy Moses Diversion Wash #1 leaves the main channel east of the site. It travels in a westerly direction along the westerly sloping alluvial fan. The runoff generally remains within the washes banks, but as it reaches the channel edge it spills over into the surrounding dessert plain. Overtime the cresting and release of flow along with its sediment load has formed a channel with overbanks sloping away from the channel.

A HEC-RAS analysis provides the Base Flood Elevations (BFE) for this diversion wash. The base flood flow within Holy Moses Diversion Wash # 1 is based on derived flow from the Technical Drainage Study for Golden Valley Ranch, Mohave, Arizona, dated October 2005. Finish building grades are developed to remain 1 foot to 1.5 feet above the BFE. Figure 6 shows the BFE's for development in Areas 1-3.

7. SUMMARY

This study develops specific criteria and flow for the development of Area 1, Phases A & B.

- The majority of the development runoff can be maintained and conveyed within the street right-of-way. Where street flow capacity is reached, a storm drainage system is required.
- The drainage infrastructure is capable of conveying the 10-yr, 6-hr storm event (minimum).
- The adjacent golf course services as runoff conveyance and storage.
- Total discharge from the collective Areas 1-3 to the Thirteen Mile Wash is less because of the use of runoff volume storage provided in the golf course.
- Conveyance of stormwater runoff within the golf course fairways allows for some ground water recharge.

8. REFERENCES

- 1) Flood Insurance Rate Map, Community Panel Number 040058 2325 C, Mohave County, Arizona, effective October 20, 2002.
- 2) Highway Drainage Design Manual, Arizona Department of Transportation, Report Number FHWA-AZ93-281, Final Report, March, 1993
- 3) Drainage Design Manual for Maricopa County, Arizona, Hydrology: Rainfall, Flood Control District of Maricopa County, November 2003

APPENDIX A

AREA 2 - RESULTS AND DATA

- HEC-HMS 100-YR, 6-HR SIMULATION
- HEC-HMS 10-YR, 6-HR SIMULATION
- NOAA ATLAS 14 PRECIPITATION
- STANDARD FORM 4

Project: Pod2_S_curve Simulation Run: Pod2-100yr

Start of Run: 01Jan3000, 01:00 Basin Model: POD2

End of Run: 02Jan3000, 01:55 Meteorologic Model: S-Pattern 1(3.00in)

Execution Time: 15Mar2006, 10:40:05 Control Specifications: Control 1

Volume Units: AC-FT

1 1				
_	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
J-N10	0.0057	11.48	01Jan3000, 05:10	0.57
J-N11	0.0229	43.44	01Jan3000, 05:15	2.31
J-N12	0.0403	77.10	01Jan3000, 05:15	4.07
J-N13	0.0523	99.06	01Jan3000, 05:15	5.28
J-N14	0.0627	116.70	01Jan3000, 05:15	6.34
J-N15	0.0728	135.07	01Jan3000, 05:15	7.36
J-N18	0.0118	22.79	01Jan3000, 05:15	1.19
J-N19	0.0131	24.65	01Jan3000, 05:15	1.32
J-N20 (0.0184	33.63	01Jan3000, 05:15	1.85
J-N21 (0.0279	54.34	01Jan3000, 05:15	2.81
J-N22 (0.0393	75.78	01Jan3000, 05:10	3.96
J-N23 (0.0589	111.05	01Jan3000, 05:15	5.96
J-N26 (0.0134	26.39	01Jan3000, 05:10	1.35
J-N27 (0.0687	114.34	01Jan3000, 05:15	6.92
J-N30 (0.0221	39.52	01Jan3000, 05:15	2.23
J-N31 (0.0454	87.50	01Jan3000, 05:10	4.58
J-N32 (0.0523	99.42	01Jan3000, 05:10	5.29
J-N6 C	0.0261	43.47	01Jan3000, 05:15	2.63
J-N7 C	0.0411	70.44	01Jan3000, 05:15	4.14
J-N8 C	0.0503	83.94	01Jan3000, 05:20	5.06
J-S17 0	0.0160	29.75	01Jan3000, 05:15	1.61
J-S18 0).0311	57.82	01Jan3000, 05:15	3.13
J-S19 0	0.0581	107.35	01Jan3000, 05:15	5.85
J-S20 0	.0781	136.47	01Jan3000, 05:15	7.85
J-S21 0	.0131	26.89	01Jan3000, 05:10	1.32

Page 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
P2-58	0.0087	16.02	01Jan3000, 05:15	0.88
P2-59	0.0092	15.72	01Jan3000, 05:15	0.93
P2-60	0.0113	20.95	01Jan3000, 05:15	1.14
P2-61	0.0064	10.69	01Jan3000, 05:15	0.64
P2-62	0.0121	21.13	01Jan3000, 05:15	1.22
P2-63	0.0063	11.80	01Jan3000, 05:15	0.63
P2-64	0.0126	23.81	01Jan3000, 05:10	1.27
P2-65	0.0019	4.34	01Jan3000, 05:10	0.19
P2-66	0.0139	23.21	01Jan3000, 05:15	1.40
P2-67	0.0197	51.02	01Jan3000, 05:05	1.99
P2-68	0.0066	12.47	01Jan3000, 05:10	0.67
P2-69	0.0090	16.41	01Jan3000, 05:15	0.91
P2-70	0.0200	37.66	01Jan3000, 05:15	2.02
P2-71	0.0067	13.51	01Jan3000, 05:10	0.68
P2-72	0.0104	18.09	01Jan3000, 05:15	1.05
P2-73	0.0101	19.00	01Jan3000, 05:15	1.02
P2-74	0.0092	17.97	01Jan3000, 05:10	0.93
P2-75	0.0059	13.01	01Jan3000, 05:10	0.59
P2-76	0.0109	20.12	01Jan3000, 05:15	1.10
P2-77	0.0051	10.49	01Jan3000, 05:10	0.51
P2-78	0.0076	17.06	01Jan3000, 05:10	0.77
P2-79	0.0064	14.34	01Jan3000, 05:10	0.64
P2-80	0.0034	7.27	01Jan3000, 05:10	0.34
P2-81	0.0172	32.11	01Jan3000, 05:15	1.73
P2-82	0.0080	17.17	01Jan3000, 05:10	0.81
P2-83	0.0120	22.36	01Jan3000, 05:15	1.21
P2-84	0.0094	19.77	01Jan3000, 05:10	0.95
P2-85	0.0052	11.07	01Jan3000, 05:10	0.52
P2-86	0.0024	5.19	01Jan3000, 05:10	0.24
P2-87	0.0094	17.76	01Jan3000, 05:10	0.95
P2-88	0.0013	2.34	01Jan3000, 05:15	0.13
P2-89	0.0114	25.59	01Jan3000, 05:10	1.15

Page 2

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
P2-90	0.0071	15.51	01Jan3000, 05:10	0.72
P2-91	0.0023	4.78	01Jan3000, 05:10	0.23
P2-92	0.0082	16.62	01Jan3000, 05:10	0.83
P2-93	0.0061	12.55	01Jan3000, 05:10	0.61
P2-94	0.0069	15.55	01Jan3000, 05:10	0.70
R-JN10	0.0057	11.33	01Jan3000, 05:15	0.57
R-JN11	0.0229	42.95	01Jan3000, 05:15	2.31
R-JN12	0.0403	76.70	01Jan3000, 05:15	4.07
R-JN13	0.0523	98.60	01Jan3000, 05:15	5.29
R-JN14	0.0627	116.07	01Jan3000, 05:15	6.35
R-JN18	0.0118	22.31	01Jan3000, 05:15	1.19
R-JN19	0.0131	23.99	01Jan3000, 05:20	1.32
R-JN21	0.0279	54.14	01Jan3000, 05:15	2.82
R-JN22	0.0393	74.95	01Jan3000, 05:10	3.97
R-JN26	0.0134	26.31	01Jan3000, 05:15	1.35
R-JN31	0.0454	86.20	01Jan3000, 05:15	4.59
R-JN32	0.0523	98.61	01Jan3000, 05:15	5.29
R-JN6	0.0261	42.62	01Jan3000, 05:15	2.63
R-JN7	0.0411	68.85	01Jan3000, 05:20	4.13
R-JN8	0.0503	83.83	01Jan3000, 05:20	5.07
R-JS17	0.0160	29.65	01Jan3000, 05:15	1.61
R-JS18	0.0311	57.72	01Jan3000, 05:15	3.13
R-JS19	0.0581	104.46	01Jan3000, 05:20	5.84
R-JS21	0.0131	26.42	01Jan3000, 05:15	1.32
R-P260	0.0113	20.53	01Jan3000, 05:15	1.14
R-P261	0.0064	10.49	01Jan3000, 05:20	0.65
R-P265	0.0019	4.27	01Jan3000, 05:15	0.19
R-P279	0.0064	13.64	01Jan3000, 05:15	0.64
R-P282	0.0080	16.48	01Jan3000, 05:15	0.81
R-P285	0.0052	10.75	01Jan3000, 05:15	0.52
R-P286	0.0024	5.07	01Jan3000, 05:15	0.24
R-P291	0.0023	4.63	01Jan3000, 05:15	0.23

Page 3

Project: Pod2_S_curve Simulation Run: Pod2-10yr

Start of Run: 01Jan3000, 01:00 Basin Model: POD2

End of Run: 02Jan3000, 01:55 Meteorologic Model: S-Pattern 1(1.53in)

Execution Time: 15Mar2006, 10:40:16 Control Specifications: Control 1

Volume Units: AC-FT

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
J-N10	0.0057	4.06	01Jan3000, 05:15	0.20
J-N11	0.0229	14.90	01Jan3000, 05:15	0.80
J-N12	0.0403	26.86	01Jan3000, 05:15	1.41
J-N13	0.0523	34.19	01Jan3000, 05:15	1.83
J-N14	0.0627	39.96	01Jan3000, 05:15	2.19
J-N15	0.0728	46.15	01Jan3000, 05:15	2.55
J-N18	0.0118	8.09	01Jan3000, 05:15	0.41
J-N19	0.0131	8.74	01Jan3000, 05:20	0.46
J-N20	0.0184	12.10	01Jan3000, 05:15	0.64
J-N21	0.0279	18.32	01Jan3000, 05:15	0.97
J-N22	0.0393	25.74	01Jan3000, 05:15	1.37
J-N23	0.0589	37.37	01Jan3000, 05:15	2.06
J-N26	0.0134	9.63	01Jan3000, 05:15	0.47
J-N27	0.0687	38.95	01Jan3000, 05:20	2.40
J-N30	0.0221	13.55	01Jan3000, 05:20	0.77
J-N31	0.0454	29.90	01Jan3000, 05:15	1.59
J-N32	0.0523	33.96	01Jan3000, 05:15	1.83
J-N6	0.0261	14.05	01Jan3000, 05:20	0.91
J-N7	0.0411	23.07	01Jan3000, 05:15	1.43
J-N8	0.0503	28.36	01Jan3000, 05:20	1.75
J-S17	0.0160	10.85	01Jan3000, 05:15	0.56
J-S18	0.0311	20.99	01Jan3000, 05:15	1.08
J-S19	0.0581	37.57	01Jan3000, 05:20	2.03
J-\$20	0.0781	47.93	01Jan3000, 05:20	2.73
J-S21	0.0131	9.85	01Jan3000, 05:15	0.46

Page 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
P2-58	0.0087	5.78	01Jan3000, 05:15	0.30
P2-59	0.0092	5.55	01Jan3000, 05:15	0.32
P2-60	0.0113	7.58	01Jan3000, 05:15	0.39
P2-61	0.0064	3.79	01Jan3000, 05:20	0.22
P2-62	0.0121	7.51	01Jan3000, 05:15	0.42
P2-63	0.0063	4.29	01Jan3000, 05:15	0.22
P2-64	0.0126	8.70	01Jan3000, 05:15	0.44
P2-65	0.0019	1.62	01Jan3000, 05:10	0.07
P2-66	0.0139	8.24	01Jan3000, 05:20	0.48
P2-67	0.0197	18.82	01Jan3000, 05:05	0.69
P2-68	0.0066	4.56	01Jan3000, 05:15	0.23
P2-69	0.0090	5.90	01Jan3000, 05:15	0.31
P2-70	0.0200	13.76	01Jan3000, 05:15	0.70
P2-71	0.0067	4.81	01Jan3000, 05:10	0.23
P2-72	0.0104	6.42	01Jan3000, 05:15	0.36
P2-73	0.0101	6.94	01Jan3000, 05:15	0.35
P2-74	0.0092	6.41	01Jan3000, 05:15	0.32
P2-75	0.0059	4.76	01Jan3000, 05:10	0.21
P2-76	0.0109	7.27	01Jan3000, 05:15	0.38
P2-77	0.0051	3.76	01Jan3000, 05:10	0.18
P2-78	0.0076	6.30	01Jan3000, 05:10	0.26
P2-79	0.0064	5.29	01Jan3000, 05:10	0.22
P2-80	0.0034	2.63	01Jan3000, 05:10	0.12
P2-81	0.0172	11.66	01Jan3000, 05:15	0.60
P2-82	0.0080	6.22	01Jan3000, 05:10	0.28
P2-83	0.0120	8.12	01Jan3000, 05:15	0.42
P2-84	0.0094	7.12	01Jan3000, 05:10	0.33
P2-85	0.0052	4.00	01Jan3000, 05:10	0.18
P2-86	0.0024	1.88	01Jan3000, 05:10	0.08
P2-87	0.0094	6.49	01Jan3000, 05:15	0.33
P2-88	0.0013	0.84	01Jan3000, 05:15	0.05
P2-89	0.0114	9.44	01Jan3000, 05:10	0.40

Page 2

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
P2-90	0.0071	5.65	01Jan3000, 05:10	0.25
P2-91	0.0023	1.71	01Jan3000, 05:10	0.08
P2-92	0.0082	5.93	01Jan3000, 05:10	0.29
P2-93	0.0061	4.49	01Jan3000, 05:10	0.21
P2-94	0.0069	5.75	01Jan3000, 05:10	0.24
R-JN10	0.0057	4.01	01Jan3000, 05:20	0.20
R-JN11	0.0229	14.43	01Jan3000, 05:20	0.80
R-JN12	0.0403	26.07	01Jan3000, 05:15	1.41
R-JN13	0.0523	33.53	01Jan3000, 05:15	1.83
R-JN14	0.0627	39.21	01Jan3000, 05:15	2.20
R-JN18	0.0118	7.96	01Jan3000, 05:20	0.41
R-JN19	0.0131	8.36	01Jan3000, 05:25	0.46
R-JN21	0.0279	18.06	01Jan3000, 05:15	0.98
R-JN22	0.0393	25.61	01Jan3000, 05:15	1.37
R-JN26	0.0134	9.14	01Jan3000, 05:15	0.47
R-JN31	0.0454	29.35	01Jan3000, 05:15	1.59
R-JN32	0.0523	32.82	01Jan3000, 05:15	1.83
R-JN6	0.0261	14.01	01Jan3000, 05:20	0.91
R-JN7	0.0411	22.88	01Jan3000, 05:25	1.43
R-JN8	0.0503	28.04	01Jan3000, 05:20	1.76
R-JS17	0.0160	10.51	01Jan3000, 05:15	0.56
R-JS18	0.0311	20.66	01Jan3000, 05:20	1.08
R-JS19	0.0581	36.98	01Jan3000, 05:25	2.03
R-JS21	0.0131	9.64	01Jan3000, 05:15	0.46
R-P260	0.0113	7.28	01Jan3000, 05:20	0.39
R-P261	0.0064	3.77	01Jan3000, 05:25	0.22
R-P265	0.0019	1.56	01Jan3000, 05:20	0.07
R-P279	0.0064	5.15	01Jan3000, 05:15	0.22
R-P282	0.0080	6.11	01Jan3000, 05:15	0.28
R-P285	0.0052	3.87	01Jan3000, 05:15	0.18
R-P286	0.0024	1.80	01Jan3000, 05:20	0.08
R-P291	0.0023	1.68	01Jan3000, 05:15	0.08

Page 3

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 27 of 109 Precipitation

Time	100-yr, 6-hr	10-yr, 6-hr
01Jan3000, 01:05	0	0
01Jan3000, 01:20	0.024	0.012
01Jan3000, 01:35	0.048	0.024
01Jan3000, 01:50	0.075	0.038
01Jan3000, 02:05	0.099	0.05
01Jan3000, 02:20	0.123	0.063
01Jan3000, 02:35	0.15	0.077
01Jan3000, 02:50	0.174	0.089
01Jan3000, 03:05	0.198	0.101
01Jan3000, 03:20	0.222	0.113
01Jan3000, 03:35	0.261	0.133
01Jan3000, 03:50	0.297	0.151
01Jan3000, 04:05	0.354	. 0.181
01Jan3000, 04:20	0.414	0.211
01Jan3000, 04:35	0.648	0.33
01Jan3000, 04:50	1.131	0.577
01Jan3000, 05:05	2.502	1.276
01Jan3000, 05:20	2.733	1.394
01Jan3000, 05:35	2.793	1.424
01Jan3000, 05:50	2.85	1.454
01Jan3000, 06:05	2.886	1.472
01Jan3000, 06:20	2.916	1.487
01Jan3000, 06:35	2.949	1.504
01Jan3000, 06:50	2.973	1.516
01Jan3000, 07:05	3	1.53

Shed Parameters - Pod 2

Drainage Shed	Area (ac)	Length (feet)	Elev dn	Elev up	Slope (
P2- 58	5.5961	990	2538.8	2546.1	0.7373
P2- 59	5.8944	1580	2523.56	2536.1	0.7936
P2- 60	7.2323	1070	2532.3	2540.8	0.7943
P2- 61	4.1073	1260	2562.1	2565.1	0.2380
P2- 62	7,7728	1270	2549.1	2559.9	0.8503
P2- 63	4.0089	890	2537.6	2546.7	1.0224
P2- 64	8.0819	1210	2528.2	2541	1.0578
P2- 65	1.1909	310	2539.1	2542	0.9354
P2- 66	8.9217	1360	2537.4	2547	0.7058
P2- 67	12.5906	1780	2534.7	2552.2	0.98314
P2- 68	4.2450	1950	2518.5	2532.5	0.71794
P2- 69	5.7293	1060	2526.7	2533.4	0.63207
P2- 70	12.8051	1360	2532	2549.3	1.2720
P2- 71	4.2878	710	2539.5	2547.5	1.12676
P2- 72	6.6392	1300	2531.5	2539.5	0.61538
P2- 73	6.4605	890	2529.5	2537	0.84269
P2- 74	5.8580	810	2550.8	2557.8	0.86419
P2- 75	3.7809	680	2547.4	2557.7	1.51470
P2- 76	6.9868	1230	2552.7	2565.1	1.0081
P2- 77	3.2460	980	2552.9	2565.1	1.24489
P2- 78	4.8944	970	2527.7	2565.1	3.8556
P2- 79	4.0711	760	2544.6	2551.7	0.93421
P2- 80	2.1558	480	2548.5	2552.9	0.91666
P2- 81	11.0348	1470	2538.6	2554.8	1.10204
P2- 82	5.1358	700	2547.1	2555.2	1.15714
P2- 83	7.7059	1790	2533.9	2555.7	1.21787
P2- 84	6.0027	830	2535.1	2548.1	1.56626
P2- 85	3.3268	740	2540.3	2548.5	1.10810
P2- 86	1.5261	460	2550.1	2554.1	0.86956
P2- 87	5.9921	1100	2541.4	2549.1	0.7
P2- 88	0.8086	920	2534.9	2539.9	0.54347
P2- 89	7.2895	470	2527.6	2532	0.9361
P2- 90	4.5258	590	2521.7	2529.8	1.37288
P2- 91	1.4885	400	2553.4	2555.5	0.525
P2- 92	5.2481	810	2532.5	2540.1	0.93827

	P2-94	P2-93	3 2	P2-91	P2-90	P2-89	P2-88	P2- 87	P2-88	25	7.5	72-03	3 2	3 2	5 F. 60	3 2	P2- 78	P2-77	P2-78	P2-75	P2-74	P2-73	P2-72	P2-71	P2-70	P2-69	P2-68	P2-87	P. 85	200	3 5	3 2	3 2	P2-60	P2-59	P2-58	3013A30	Name	Drainage						6-Hour	-	•
	4.43	3.92	5.2481	1.4885	4.5258	7.2895	0.8066	5.9821	1.5261	3,3268	6.0027	6001.1	3,7050	11,0340	2.1508	4.071	4.8944	3.2460	6.9968	3.7809	5,8560	6.4605	6.6392	4.2878	12.8051	5,7293	4.2450	12.5906	8 9217	1.1909	4,000B	1.7728	4.1073	7.2323	5,8944	5.5961	ED CONDITIO	(Acres)	ō						6-Hour Design Storm Distribution		
0.3203	0,0069	0.0061	0.0082	0.0023	0.0071	0.0114	0.0013	0.0094	0.0024	0.0052	0.0094	0.0120	0.0000	+	╀	0.0064	0.0076	0.0051	0.0109	0.0059	0.0092	┡	0.0104	Н		Н	\dashv	\dashv	4	0.0019	+	+	- -	4	Н		ONS		0) Distribulio		
																	3				2		-	7	0	0		7						3	2	7	on our relegation No.		8]^		
	7,000 +/- resudebluek kits	7,000 +/- resudebluak kfts	7,000 +/- resudebluak kits	7,000 +/- resudebluek kila	7,000 +/- resudebtuak kils	7,000 +/- resudebtuak kils	7,000 +/- resudebtuak kits	7,000 +/- resudebluek kits	7,000 +/- resudebtuek kits	7,000 +/- resudebluek kits	7,000 +/- resudeblusk kils	7,000 +/- resudebtuek kils	7,000 +/- resudebtuak kils	7,000 +/- resudebtuak kits	7,000 +/- resudebluak kits	7,000 +/- resudebluek kits	7,000 +/- resudebluek kits	7,000 +/- resudeblusk kils	7,000 +/- resudebtusk kits	7,000 +/- resudebluak kils	7,900 +/- resudebtuak kits	7,000 +/- resudebtuek kits	7,000 +/- resudebluak kits	7,000 +/- resudeblunk kits	7.000 +/- resudeblusk kits	7,000 +/- resudebtuak kils	7 DOD +/- mesodebbask kills	7.000 #/- resudebitisk kits	7,000 4/- resugebulak kits	7,000 +/- resudeb(uak kits	7,000 +/- resudeblusk kits	7,000 +/- resudebluek kits	7,000 +/- resudebtuek kits	7,000 +/- resudebluak kils	7,000 +/- resudebtuak kilis	7.000 +/- resultabilist bits	Cover I yas and Hydrologic Condition				Curve Numbers	SCS Curve Numbers	702.369.9396	5820 S. Eastern Ave. Suite 200	Stanley Consultants Inc.		
	84 89 91	76 84 89 91 89	2	84 88 91	88 88	84 89 91	84 89	84 89 91	84 89 91	76 84 89 91 89	2	76 84 89 91 89	84 89 91	B4 69 91	B4 89 91	76 84 89 81 89	89 91	84 89 91	84 89 91	84 89 91	84 89 91	84 89 91	92 99 91	84 89 91	24 2	76 84 89 91 89	9 9	8 89	84 89	84 89 91	84 89 91	76 84 89 91 89	16 68	84 89 91	76 84 89 91 69	8	- B C D CN	duc	Curve # for us	ð					™	•	
	22	93	92	81	88	88	88	87	88	85	84	83	82	ĺ	80		78			Ţ	7.4	73	2	1	Ì	8 8	+	ı							95 8	DEVEL	3	Designation			Sub-	ļ			Modified STANDARD FORM 4 from the Clark County Regional Flood Control District's Hydrologic Criteria and Drainage Design Manual		rioject
	0.78	0.78	0.78	0.78	0.78	0.78	0.78	2 2	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.70	0.70	0.78	6	0.76	0.78	0.78	0.78	0,78	0.78	0.78	0.78	OHOUS	(2)	CN)	Default by		Sub-Besin Oata				RD FORM 4 f		c
	4.43	3,94	5.25	49	453	729	081	8	53	3.33	6.00	7.71	5,14	11.03	2.16	4.07	4.69	325	6.99	3.78	2 2	n s	1,62	12.01	0,73	4.25	12.58	8,92	1.19	8,08	4.01	7.77	4.11	7.23	5 88		(3)	(Acres)							rom the Clar		
	130	┪	132	+	+	+	+	+	149	\dashv	┥	_	Н		160	-1	┪	+	+	$^{+}$	5 2	+	3 2	120	+	+	210	╁	╁	 	H	200	220	14 8	2 2	1	+	(leat)							k County R		
7	100 647	7	\forall	7.00	T	7	3 8	†	7	7	┪	╗	Н	П	1.00 7.	7	7	8	T	8 9	†	†	+	1.00	t	†	00.00	t	H	Г	-	П	1	8 8	$^{+}$	Ť	†	(%) II	Î		edanci Time				sgional Floo		
4	4	4	-1	7.40	+	A 2	[-	+	+	+	.e.	\dashv	Н	\dashv		+	+	9	+	+	200	╬	3 6	+	15	+	╀	╁	┝	Н	-		+	6.93	+	╀	(6)	T] (Mn) [6) 	-			d Control D		
+	_	\neg	810 0.94	~+	+	+	+	+	_		30	┪	_	_	0.92	_	-1		-+	-	+	+	+	+	+	820 0.79	╈	1360 0.7	Т	Н	90 1.02	づ	\neg	1070 0.79	+	+	 	(feet) (%)				.			istrict's Hyd	Calculated	Date: 0
†	+	7	7	+	+	t	+	Ť	+	-†	~+	7	┪	┪	1.93	+	7	Ť	+	+	+	+	+	+	t	9 1.80	╁╌	†-	H	H	Н	7	7	+	1.73	t	ł-) (Manning)) i bye	i				rologia Crite	by. O	9 5
+	+	┱	+	+	\dagger	$^{+}$	+	+	+	+	+	\dashv	+	+	+	+	+	+	+	+	+	+	+	╁	╀	2.72	╀	┢	H	Н	\dashv	╅	1.49	+	2.63	╁				Manual Control	9				rie and Drai		
┽	+	+	+	+	╬	╫	+	+	+	+	+	+	-	1	+	+	+	+	+	╬	╬	╀	+	╀	╀	╀	┝	╀		Н		4	4	+	╁	H		(Manning) Ti	<u> </u>						nage Desig		
Ť	Ť	†	Ť	+	Ť	†	Ť	†	t	†	+	+	+	7	7	+	+	+	+	+	+	+	t	t	t	6.80	╁╴	H	Н	\dashv	\dashv	+	+	╁	7.91		(11)			Ц		1			n Manuel		
t	†	\dagger	+	t	t	t	t	t	╁	+	\dagger	1	1	1	\dagger	+	+	+	+	t	t	╁	+	t	-	+	H	Н	_	\dashv	+	+	+	╁	1160		12)	(feet) (Cenggr	. <u>e</u>	J Dazinadir	To Check						
121	3 2	14.4	5 1	4	13.2	16.2	16.5	13,4	4,0			3 :	4.6	18.7	36	4 5		17.7	14.4	153	15.9	17.8	14.8	18.2	18.7	15.4	21.1	18.6	123	17.3	6 . ↑	18.7	5 6	19.5	18.4		(13)	(Min)	ឌី	-		۷.	. –		S		
+	+	┰	┰	+	+	+	┿	╌		+	+	+	+	+		+	+	+	╁	┿	╀	╁	╁	┼~	├	13.8		Н	8.5	+	+	170	╬	+	15.3		(14)	\$ #		ring ic		8.695.70	as Vega	320 S E	tank	1	V
3.72	-	-	751	+	+	٠.	8.25 89	-		08	_	_	873 99		6 70 80	-	ᆚ	+	6.22 89	7.92 89	╄	┵	7.55 89	8.42 89	9.44 89	₩	11.65 89	10.80 89	→		-	10.00	4	10.53	9.19 89	Н		(Tc.0.6) (8) (8)	Сопр	Ş a		386	, Nevada	astem Av	ر جرا		
_	0.0061	+	0.0023		+	•	0.0094	_		_	0.0120	-	_	_	_	_	→-	0.0109		0.0092	-	-	0.0067	-	-	┰		⊢	0.0019	\rightarrow	0.0083	_	$\overline{}$	0.0082	+		z	(So. M.)	-	HECHNPUT			Las Vegas, Nevada 89119	o o o	nsult	1	•
															1																	1	1					To>=10 for Non		Remarks				Š	Stanley Consultants INC		

	1,02 Open space Fair 48 69 79 84 1,03 Open space Fair 48 69 79 84 1,03 Open space Fair 48 69 1,04 Parcel desibled right-of-way) 98 88 88 81 1,05 Parved: curbs and aborm drains 98 98 98 98 1,05 Parved: open district drains 98 98 98 98 99 1,05 Gawel (Includes RWI) 78 85 89 99 1,05 Open (Includes RWI) 78 85 89 99 1,13 Commercial & Business 99 22 94 95 1,12 Obdustion 81 1,12 Apartments/Condos 81 88 91 93	46 69 79 69 79 69 79 69 89 89 89 89 89 89 89 89 89 89 89 89 89	46 46 46 46 46 46 46 46 46 46 46 46 46 4
48 89 79	39 61 74 96 88 98 88 98 98 88 98 98 88 99 98 77 82 87 78 92 94 81 88 91	39 51 74 96 98 98 98 99 90 83 99 92 76 85 99 77 82 97 89 92 94 81 88 91 81 88 91	## 64 64 64 64 64 64 64 64 64 64 64 64 64
	98 98 98 98 99 99 99 99 99 99 99 99 99 9	98 98 98 98 98 98 98 98 98 98 98 98 98 9	88 88 88 88 88 88 88 88 88 88 88 88 88
39 61 74	98 96 96 83 89 92 76 85 89 72 82 87 89 92 94 81 88 91	88 98 98 98 92 76 85 89 92 77 82 87 82 92 94 81 88 91 80 91 80 87 80	88 98 88 89 89 89 89 89 89 89 89 89 89 8
39 61 74 98 98 98	83 89 92 76 85 89 72 82 87 89 92 94 81 88 91 81 88 91	83 89 92 76 85 89 72 82 87 89 92 94 81 88 91 80 87 80	83 86 92 76 85 89 82 89 92 84 89 92 94 88 89 92 84 89 91 80 87 80 87 80 87 76 83 87 76 83 87 76 83 87 76 83 87 87 87 87 88 87 87 88 87 87
98 98 98 98 98 98	76 85 89 72 82 87 89 92 94 81 88 91	76 85 89 72 82 87 89 92 94 81 88 91 80 87 90	76 85 89 72 82 87 89 92 94 81 88 91 81 88 91 80 87 73 82 88 61 75 83 61 75 83 51 70 80 51 68 79
39 61 74 98 98 98 83 98 98	72 82 87 89 92 94 81 88 91 81 88 91	72 82 87 89 92 94 81 88 91 81 88 91 80 87 90	72 82 87 89 92 94 81 88 91 81 88 87 80 76 84 89 73 82 88 61 75 88 77 72 81 54 76 80 51 68 79
39 61 74 98 98 98 83 89 98 76 85 89	89 92 94 81 86 91 81 88 91	usiness 89 92 94 81 88 91 flos 81 88 91 8000 94 ft. 80 87 90	Effectives 89 92 94 95 96 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97
39 61 74 98 98 98 98 99 96 83 89 92 76 85 89 77 82 87	81 88 91 81 88 91	81 88 91 tos 81 88 91 8000 94 ft. 80 87 90	000 sq. ft. 80 89 91 000 92 76 92 90 90 97 90 97 90 97 97 97 97 97 97 97 97 97 97 97 97 97
39 61 74 98 98 98 98 99 99 83 89 92 76 85 89 77 82 87 89 92 94	81 88 91	tos 81 85 91 8000 sq. ft. 80 87 90	000 sq. 1. 80 89 91 80 81 80 91 70 80 87 80 87 80 73 82 80 81 75 82 87 72 81 87 72 81 84 70 85 76 86 76 86 76 76 76 86 76 76 76 76 76 76 76 76 76 76 76 76 76
39 61 74 98 98 98 98 98 98 83 89 98 76 85 89 77 82 87 89 92 94		8000 sq. ft. 80 87 90	0000 sq.f. 80 87 90 73 82 84 89 87 80 87 73 82 84 89 77 72 83 97 72 80 97 72 80 97 80 75 83 76 87 70 87 87 87 87 87 87 87 87 88 70 89 87 87 87 87 87 87 87 87 87 87 87 87 87
39 61 74 96 98 98 98 99 90 83 89 90 75 85 89 77 82 87 89 92 94 81 88 91 81 88 91 81 88 91 81 88 91 81 89 91	76 B4 B9		81 75 83 57 72 81 54 70 80 51 68 79
39 61 74 98 89 89 88 98 98 83 89 92 76 85 89 77 82 94 81 88 91 81 88 91 81 88 91 81 88 91 81 88 91 81 88 91 81 88 91 81 88 91	76 84 89 73 82 88	73 82 88	57 72 81 54 70 80 51 68 79
39 61 74 90 80 80 80 80 80 80 80 80 80 80 80 80 80	76 B4 B9 73 B2 B8 61 75 B3	73 82 88 61 75 83	54 70 80 51 68 79
39 61 74 88 88 88 88 88 88 88 88 88 88 88 88 88	76 B4 89 73 B2 88 81 75 83 57 72 81	73 82 88 81 75 83 57 72 81	51 68 79
38 60 60 74 60 60 74 60 60 74 60 60 74 60 75 60	76 E4 69 73 E2 68 61 75 E 80 57 72 81 54 76 80	73 82 88 81 75 83 57 72 81 54 70 80	

Kinematic Routing

							Side
			Manning	Sub			Slope
Reach	Length (ft)	slope	"n"	reaches	Shape	Width	(xH:V)
R-JN10	1134	0.011	0.016	5	Trapezoid	60	0.5
R-JN11	260	0.006	0.016	5	Trapezoid	60	0.5
R-JN12	270	0.007	0.016	5	Trapezoid	60	0.5
R-JN13	180	0.006	0.016	5	Trapezoid	60	0.5
R-JN14	200	0.01	0.016	5	Trapezoid	60	0.5
R-JN18	1016	0.011	0.016	5	Trapezoid	60	0.5
R-JN19	490	0.005	0.016	5	Trapezoid	60	0.5
R-JN21	140	0.017	0.016	5	Trapezoid	60	0.5
R-JN22	130	0.0114	0.016	5	Trapezoid	60	0.5
R-JN26	490	0.005	0.016	5	Trapezoid	60	0.5
R-JN31	480	0.0079	0.016	5	Trapezoid	60	0.5
R-JN32	640	0.005	0.016	- 5	Trapezoid	60	0.5
R-JN6	1084	0.011	0.016	5	Trapezoid	60	0.5
R-JN7	1590	0.009	0.016	5	Trapezoid	60	0.5
R-JN8	137	0.014	0.016	5	Trapezoid	60	0.5
R-JS17	725	800.0	0.016	5	Trapezoid	60	0.5
R-JS18	1480	0.006	0.016	5	Trapezoid	60	0.5
R-JS19	1480	0.006	0.016	5	Trapezoid	60	0.5
R-JS21	230	0.005	0.016	5	Trapezoid	60	0.5
R-P260	730	0.015	0.016	5	Trapezoid	60	0.5
R-P261	1310	0.01	0.016	5	Trapezoid	60	0.5
R-P265	1238	0.007	0.016	5	Trapezoid	60	0.5
R-P279	811	0.005	0.016	5	Trapezoid	60	0.5
R-P282	915	0.008	0.016	5	Trapezoid	60	0.5
R-P285	850	0.008	0.016	5	Trapezoid	60	0.5
R-P286	900	0.008	0.016	5	Trapezoid	60	0.5
R-P291	590	0.01	0.016	5	Trapezoid	60	0.5

APPENDIX B

DRAINAGE INFRASTRUCTURE CALCULATIONS

- COMMON LOT B (J-N23)
- COMMON LOT R (J-N30)
- COMMON LOT H (J-N15)
- COMMON LOT L (J-S20)
- **COMMON LOT O (P2-67)**

ST-RH036496

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 34 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET A

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0059
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	44.000
T	Width of Spread (ft)	32.77

Gutter Flow

Eo	Gutter Flow Ratio	0.131
đ	Depth of Flow (ft)	0.75
V	Average Velocity (ft/sec)	4.07

Inlet Interception

۱	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
1	Curb Opening Parallel Bar P-1-7/8 Combination	49.95 1.50	4.25 2.88	0.05 0.23 0.27	2.148 9.580 11.729	41.852 32.271 32.271	•

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 35 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Grade 03/15/2006 Date:

Project No. :18476-Pod 2

Depth of Flow (ft)

Average Velocity (ft/sec)

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET B

đ

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0053
Sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	43.000
T	Width of Spread (ft)	33.15
	Gutter Flow	
Eo	Gutter Flow Ratio	0.129

Inlet Interception

0.76

3.89

3	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
	Curb Opening	48.09	5.75	0.05	2.180	40.820	
	Parallel Bar P-1-7/8	1.50	4.38	0.36	14.644	26.176	
	Combination			0.39	16.824	26.176	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 36 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET C

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0053
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	36.000
Т	Width of Spread (ft)	31.00

Gutter Flow

Eo	Gutter Flow Ratio	0.138
đ	Depth of Flow (ft)	0.71
V	Average Velocity (ft/sec)	3.72

Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	Е	Qi (cfs)	Qb (cfs)	
Curb Opening	43.62	5.75	0.06	2.009	33.991	_
Parallel Bar P-1-7/8	1.50	4.38	0.38	12.916	21.075	
Combination			0.41	14.925	21.075	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 37 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET D

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0053
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	27.000
${f T}$	Width of Spread (ft)	27.80

Gutter Flow

Eo	Gutter Flow Ratio	0.155
đ	Depth of Flow (ft)	0.65
v	Average Velocity (ft/sec)	3.46

Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	37.19 1.50	5.75 4.38	0.07 0.42 0.45	1.764 10.501 12.264	25.236 14.736 14.736	

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 38 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET E

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0053
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	22.000
Т	Width of Spread (ft)	25.73

Gutter Flow

Eo	Gutter Flow Ratio	0.168
d	Depth of Flow (ft)	0.61
V	Average Velocity (ft/sec)	3.29

Inlet Interception

3	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	Е	Qi (cfs)	Qb (cfs)	
	Curb Opening Parallel Bar P-1-7/8 Combination	33.16 1.50	5.75 4.38	0.07 0.44 0.48	1.609 9.034 10.643	20.391 11.357 11.357	

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 39 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT B NODE J-N23 INLET F

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0053
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
а	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	21.000
\mathbf{T}	Width of Spread (ft)	25.28

Gutter Flow

Eo	Gutter Flow Ratio	0.172
d	Depth of Flow (ft)	0.60
V	Average Velocity (ft/sec)	3.25

Inlet Interception

•	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
. —	Curb Opening	32.30	4.25	0.08	1.576	19.424	
	Parallel Bar P-1-7/8	1.50	2.88	0.31	5.974	13.450	
	Combination			0.36	7.550	13.450	

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 40 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS

MODIFIED "C" L-11.5
NODE J-N23 INLET 6

Inlets on Sag: Sweeper Combination Inlet

Roadway and Discharge Data

	Cross Slope	Composite/Dep
Sx	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a.	Gutter Depression (inch)	2.00

Inlet Interception

	Inlet Type *Sag*	Curb-Opening
${f L}$	Curb-Opening Length	(ft) 5.75
H	Curb-Opening Height	(in) 6.00
T	<pre>Inlet Type *Sag* Width of Spread (ft)</pre>	Parallel Bar P-1-7/8
•		39.48
ь	Grate Length (ft)	4.38
	Inlet Type *Sag*	Sweeper Combination
	Depth of Flow (ft)	0.526
d_curb	Depth at Curb (ft)	0.671
Qī	Intercepted Flow (cfs	11.000
	Depth of Flow (ft) Depth at Curb (ft)	0.526 0.671

Worksheet for Triangular Channel

Project Description		
Worksheet	CON	MMON LOT B - Drainage Easement - Triang
Flow Element	Tria	angular Channel
Method	Man	nning's Formula
Solve For	Cha	annel Depth
Input Data	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Mannings Coefficient	0.020	20
Channel Slope	0.005000	00 ft/ft
Left Side Slope	28.80	30 H:V
Right Side Slope	28.80	30 H:V
Discharge	25.00	00 cfs
Results		
Depth	0.61	ft
Flow Area	10.6	5 ft²
Wetted Perimeter	34.89) ft
Top Width	34.87	'ft
Critical Depth	0.54	l ft
Critical Slope	0.009014	ft/ft
Velocity	2.37	′ft/s
Velocity Head	0.09) ft
Specific Energy	0.69) ft
Froude Number	0.76	;
Flow Type	Subcritical	

NELOCITY X DEPTH

Page 1 of 1

Cross Section for Triangular Channel

Project Description	
Worksheet	COMMON LOT B - Drainage Easement - Triang
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Mannings Coefficient	0.020
Channel Slope	0.005000 ft/ft
•	0.005000 ft/ft 0.61 ft
Channel Slope	
Channel Slope Depth	0.61 ft

F 0 5 1 5 P

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

STORM DRAIN AT POD2 C STR J-N23.DAT

ST-RH036507

PAGE NO 3

DATE: 3/15/2006 TIME: 14: 9

F0515P																			
					WATER	SURFACE	PROF:	ILE -	CHANNE	L DEFI	NITION	LIST	NG					PAGE	1
CARD	SECT	CHN	NO OF	AVE PIER	HEIGHT 1	BASE	z_L	ZR	INV	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	Y(6)	Y(7)	Y(8)	Y(9)	Y(10)
CODE	NO	TYPE	PIERS	WIDTH	DIAMETER	WIDTH			DROP										
CD	36	4			3.00														
CD	42	4			3.50														
CD	54	4			4.50														
CD	12	4			1.00														
CD	48	4			4.00														
CD	30	4			2.50														
CD	27	4			2.25														
CD	24	4			2,00														
CD	18	4			1.50														
CD	21	4			1.75														

			F 0 5 1 5 P			PAGE NO 2
	AW	TER SURFACE PROFILE	- ELEMENT CARD LI	STING		
ELEMENT NO	1 IS A SYSTEM OU U/S DATA	TLET * STATION INVERT			W S ELEV 2511.50	
ELEMENT NO	2 IS A REACH U/S DATA	STATION INVERT 159.00 2511.00		N 0.013	RADIUS 0.00	ANGLE ANG PT MAN H
ELEMENT NO	3 IS A JUNCTION U/S DATA	* * STATION INVERT 164.00 2511.05	SECT LAT-1 LAT-2		Q4 INVERT-3 INVERT-4 0.0 0.00 0.00	* PHI 3 PHI 4 0.00 0.00
ELEMENT NO	4 IS A REACH U/S DATA	* * STATION INVERT 357.00 2512.44	SECT	N 0.013	RADIUS 0.00	
ELEMENT NO	5 IS A JUNCTION U/S DATA	* * STATION INVERT 362.00 2512.46			Q4 INVERT-3 INVERT-4 0.0 2512.46 0.00	• РНІ 3 РНІ 4 90.00 0.00
ELEMENT NO	6 IS A REACH U/S DATA	* * STATION INVERT 411.00 2512.95		N 0.013	RADIUS 0.00	ANGLE ANG PT MAN H
ELEMENT NO	7 IS A JUNCTION U/S DATA	* * STATION INVERT 416.00 2513.00	* * SECT LAT-1 LAT-2 42 0 0		V Q4 INVERT-3 INVERT-4 0.0 0.00 0.00	* PHI 3 PHI 4 0.00 0.00
ELEMENT NO	8 IS A REACH U/S DATA	* * STATION INVERT 687.00 2515.71	* SECT 42	N 0.013		ANGLE ANG PT MAN H

% Q3 11.0

Q4 INVERT-3 INVERT-4 PHI 3 8.0 2515.76 2515.76 45.00

 JUNCTION
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *<

9 IS A JUNCTION

					I	? 0 5	1 5 P							PAGE NO) 3
		TAW	ER SURFACE	PROFILE	- ELEN	MENT C	ARD LI	STING							
ELEMENT NO	10 IS	A REACH U/S DATA		invert	SECT	r		N				RADIUS	angt.p	ANG PT	MAN U
			747.00	2516.31	42			0.013				0.00	0.00	0.00	
ELEMENT NO	11 IS 2		*	*	*		*		*			*	*		
		U/S DATA	STATION 752.00	INVERT 2516.36	SECT 42	LAT-1 0			Q3 0.0			INVERT-4 0.00		PHI 4 0.00	
ELEMENT NO	12 IS 2		*			,									
		U/S DATA						N				RADIUS		ANG PT	MAN H
			792.00	2516.46	42			0.013				0.00	0.00	0.00	0
ELEMENT NO	13 IS A	JUNCTION	*	*	*		*		*		,	,			
		U/S DATA						N				INVERT-4	PHI 3	PHI 4	
WARNING - AD	יייאטיי אדי	POTIONS ADD		2516.51	42 E GEOT	18		0.013	12.0	0.0	2516.51	0.00	90.00	0.00	
HARMING - AD	OMCENI :	SECTIONS ARE	NOT IDENT.	ICAL - SE	E SECT	TON N	UMBERS	AND CH	ANNEL DEFII	RITIONS					
ELEMENT NO	14 IS 7	REACH	*	*	*										
		U/S DATA	STATION					N				RADIUS	ANGLE	ANG PT	MAN H
			907.00	2517.61	36			0.013				288.00	0.00	0.00	0
ELEMENT NO	15 IS A	JUNCTION	*	+	*		*		*		1	r			
		U/S DATA	STATION	INVERT	SECT	LAT-1	LAT-2	N	Q3	Q4	INVERT-3	INVERT-4	PHI 3	PHI 4	
			912.00	2517.66	36	18	18	0.013	15.0	17.0	2517.66	2517.66	90.00	45.00	
ELEMENT NO	16 IS #	REACH	*		*										
		U/S DATA	STATION	INVERT	SECT			N				RADIUS	ANGLE	ANG PT	MAN H
			974.00	2518.28	36			0.013				0.00	0.00	0.00	
ELEMENT NO	17 IS A	SYSTEM HEAL	DWORKS		*				*						
		U/S DATA	STATION	INVERT	SECT						W S ELEV				

INVERT SECT 2518.28 36

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING

** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC

2.18 0.10169

F0515P WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH GOLDEN VALLEY
MAIN STORM DRAIN FILE J-N23.DAT

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ŻL	NO PIER	AVBPR
L/ELEM	so			*******		SF AVE	HF		N	ORM DEPT			ZR		
				*********		*******	*******	*****	******	******	******	*****	*****	****	****
100.00	2505.00	6.500	2511.500	86.0	8.94	1.241	2512.741	0.00	2.887		3.50	0.00	0.00	o	0.00
14.20	0.10169					.007307	0.10			1.237			0.00		
114.20	2506.44	5.162	2511.606	86.0	8.94	1.241	2512.847	0.00	2.887		3.50	0.00	0.00	0	0.00
HYDRAULIC	JUMP												0.00		
114.20	2506.44	1.594	2508.038	86.0	20.16	6.314	2514.352	0.00	2.887		3.50	0.00	0.00	0	0.00
4.86	0.10169					.038895	0.19			1.237			0.00		
119.06	2506.94	1.628	2508.567	86.0	19.60	5.967	2514.534	0.00	2.887		3.50	0.00	0.00	O	0.00
7.22	0.10169					.035159	0.25			1.237			0.00		
126.28	2507.67	1.690	2509.363	86.0	18.69	5.425	2514.788	0.00	2.887		3.50	0.00	0.00	0	0.00
6.07	0.10169					.030947	0.19			1.237			0.00		
132-35	2508.29	1.754	2510.044	86.0	17.82	4.931	2514.975	0.00	2.887		3.50	0.00	0.00	0	0.00
5.12	0.10169					.027252	0.14			1.237			0.00		
137.47	2508.81	1.821	2510.632	86.0	16.99	4.484	2515.116	0.00	2.887		3.50	0.00	0.00	0	0.00
4.33	0.10169					.024020	0.10			1.237			0.00		
141.80	2509.25	1.892	2511.143	86.0	16.20	4.076	2515.219	0.00	2.887		3.50	0.00	0.00	0	0.00
3.69	0.10169					.021191	0.08			1.237			0.00		
145.49	2509.63	1.966	2511.592	86.0	15.45	3.704	2515.296	0.00	2.887		3.50	0.00	0.00	0	0.00
3.10	0.10169					.018715	0.06			1.237			0.00		
148.59	2509.94	2.045	2511.987	86.0	14.73	3.368	2515.355	0.00	2.887		3.50	0.00	0.00	0	0.00
2.63	0.10169					.016550	0.04			1.237			0.00		
151.22	2510.21	2.128	2512.336	86.0	14.04	3.062	2515.398	0.00	2.887		3.50	0.00	0.00	0	0.00

.014656

0.03

1.237

0.00

ST-RH036511

PAGE

F0515P WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH

GOLDEN VALLEY
MAIN STORM DRAIN FILE J-N23.DAT

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZŁ	NO PIER	AVBPR
L/ELEM	so					SF AVE	HF		N	ORM DEPTH	I		ZR		
*****	******	******	******	*******	*****	******	******	*****	*******			******		***	****
153.40	2510.43	2.216	2512.647	86.0	13.39	2.784	2515.431	0.00	2.887		3.50	0.00	0.00	0	0.00
1.80	0.10169					.013001	0.02			1.237			0.00		
155.20	2510.61	2.310	2512.923	86.0	12.77	2.530	2515.453	0.00	2.887		3.50	0.00	0.00	0	0.00
1.44	0.10169					.011557	0.02			1.237			0.00		
156.64	2510.76	2.410	2513.170	86.0	12.17	2.301	2515.471	0.00	2.887		3.50	0.00	0.00	0	0.00
1.11	0.10169					.010299	0.01			1.237			0.00		
157.75	2510.87	2.518	2513.390	86.0	11.61	2.092	2515.482	0.00	2.887		3.50	0.00	0.00	0	0.00
0.79	0.10169					.009209	0.01			1.237			0.00		
158.54	2510.95	2.635	2513.588	86.0	11.07	1.901	2515.489	0.00	2.887		3.50	0.00	0.00	0	0.00
0.46	0.10169					.008275	0.00			1.237			0.00		
159.00	2511.00	2.765	2513.765	86.0	10.55	1.729	2515.494	0.00	2.887		3.50	0.00	0.00	0	0.00
JUNCT STR	0.01000					.007535	0.04						0.00		
164.00	2511.05	2.887	2513.937	86.0	10.13	1.594	2515.531	0.00	2.887		3.50	0.00	0.00	0	0.00
1.32	0.00720					.007215	0.01			2.891			0.00		
165.32	2511.06	2.891	2513.951	86.0	10.12	1.590	2515.541	0.00	2.887		3.50	0.00	0.00	0	0.00
191.68	0.00720					.007204	1.38			2.891			0.00		
357.00	2512.44	2.891	2515.331	86.0	10.12	1.590	2516.921	0.00	2.887		3.50	0.00	0.00	0	0.00
JUNCT STR	0.00400					.006382	0.03						0.00		
362.00	2512.46	3.882	2516.342	75.0	7.80	0.944	2517.286	0.00	2.711		3.50	0.00	0.00	0	0.00
49.00	0.01000					.005557	0.27			2.251			0.00		
411.00	2512.95	3.664	2516.614	75.0	7.80	0.944	2517.558	0.00	2.711		3.50	0.00	0.00	0	0.00
JUNCT STR	0.01000					.005557	0.03						0.00		

3,500 2519,759

5.09 0.01000

56.0

5.82

0.526

.002948

2520.285

0.00

2.343

3.50

1.865

0.00

0.00

0.00

0.00

4.1

: 7

F0515P WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH MAIN STORM DRAIN FILE J-N23.DAT

STATION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ 21. NO AVBPR ELEV HEAD GRD RI. ELEV DEPTH L/ELEM /ELEM SO SF AVE нР NORM DEPTH ZR 416.00 2513.00 3.642 2516.642 75.0 2517.586 7.80 0.944 0.00 2.711 0.00 31.88 0.01000 .005517 0.18 2.251 0.00 447.88 2513.32 3.500 2516.819 75.0 7.80 0.944 2517.763 0.00 2.711 3.50 0.00 0.00 0.00 42.80 0.01000 .005151 2,251 0.00 490.68 2513.75 3.217 2516.964 75.0 8.10 1.020 2517.984 0.00 2.711 3.50 0.00 0.00 0.00 HYDRAULIC JUMP 0.00 490.68 2513.75 2.270 2516.017 75.0 11.36 2.003 2518.020 0.00 2.711 3.50 0.00 0.00 37.04 0.01000 .009768 0.36 2.251 0.00 527.72 2514.12 2.270 2516.387 75.0 11.35 2.002 2518.389 0.00 2.711 3.50 0.00 0.00 0.00 107.66 0.01000 .009220 2.251 0.00 635.38 2515.19 2.368 2517.562 75.0 10.82 1.819 2519.381 0.00 2.711 3.50 0.00 0.00 0.00 34.27 0.01000 .008208 0.28 2.251 0.00 669.65 2515.54 2.472 2518.008 75.0 10.32 1.654 2519.662 2.711 0.00 3.50 0.00 0.00 0.00 13.62 0.01000 .007329 0.10 2.251 0.00 683.27 2515.67 2.586 2518.259 75.0 9.84 1.504 2519.763 0.00 2.711 3.50 0.00 0.00 0.00 3.73 0.01000 .006570 0.02 2.251 0.00 687.00 2515.71 2.711 2518.421 75.0 9.38 1.366 2519.787 0.00 2.711 3.50 0.00 0.00 0.00 JUNCT STR 0.01000 .004658 0.02 0.00 692.00 2515.76 3.844 2519.604 56.0 5.82 0.526 2520,130 0.00 2.343 3.50 0.00 0.00 0.00 49.91 0.01000 .003076 0.15 1.865 0.00 741.91 2516.26

ST-RH036513

PAGE

WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH

GOLDEN VALLEY
MAIN STORM DRAIN FILE J-N23.DAT

		PIP I	IN STORM DEMIN	LIDE O.	.W22.DW	1									
STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so					SF AVE	HF			NORM DEPTH			ZR		
*******	*******	******	********	******	*****	******	*******	******	********	*******	*****	******	****	****	****
747.00	2516.31	3.461	2519.771	56.0	5.83	0.528	2520.299	0.00	2.343		3.50	0.00	0.00	0	0.00
JUNCT STR	0.01000					.002801	0.01						0.00		
752.00	2516.36	3.421	2519.781	56.0	5.85	0.532	2520.313	0.00	2.343		3.50	0.00	0.00	0	0.00
40.00	0.00250					.002770	0.11			3.500			0.00		
792.00	2516.46	3.434	2519.894	56.0	5.85	0.531	2520.425	0.00	2.343		3.50	0.00	0.00	0	0.00
JUNCT STR	0.01000					.002347	0.01						0.00		
797.00	2516.51	3.804	2520.314	44.0	6.22	0.602	2520.916	0.00	2.161		3.00	0.00	0.00	0	0.00
110.00	0.01000					.004352	0.48			1.780			0.00		
907.00	2517.61	3.182	2520.792	44.0	6.22	0.602	2521.394	0.00	2.161		3.00	0.00	0.00	0	0.00
JUNCT STR	0.01000					.002338	0.01						0.00		
912.00	2517.66	3.750	2521.410	12.0	1.70	0.045	2521.455	0.00	1.100		3.00	0.00	0.00	0	0.00
62.00	0.01000					.000324	0.02			0.860			0.00		
974.00	2518.28	3.150	2521.430	12.0	1.70	0.045	2521.475	0.00	1.100		3.00	0.00	0.00	0	0.00

PAGE

GOLDEN VALLEY RANCH GOLDEN VALLEY MAIN STORM DRAIN FILE J-N23.DAT

N O T E S
1. GLOSSARY
I = INVERT ELEVATION

1 1 21

- C = CRITICAL DEPTH
 W = WATER SURFACE ELEVATION
 H = HEIGHT OF CHANNEL
 E = ENERGY GRADE LINE
 X = CURVES CROSSING OVER
 B = BRIDGE ENTRANCE OR EXIT
 Y = WALL ENTRANCE OR EXIT
 2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

ST-RH036517

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 55 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS

MODIFIED "C" L-17.5
NODE J-N30 INLET A

I-N30 INLETA Common Lot R Inlets on Sag: Sweeper Combination Inlet

Roadway and Discharge Data

	Cross Slope		Composite/Dep
sx	Pavement Cross Slope	(ft/ft)	0.0100
Sw	Gutter Cross Slope	(ft/ft)	0.0833
n	Manning's Coefficient		0.016
W	Gutter Width (ft)		1.50
a	Gutter Depression (in	nch)	2.00

Inlet Interception

	Inlet Type *Sag*	Curl	o-Opening
L	Curb-Opening Length	(ft)	8.75
H	Curb-Opening Height	(in)	6.00
	Inlet Type *Sag*	Parallel	Bar P-1-7/8
${f T}$	Width of Spread (ft)		39.00
WGR	Grate Width (ft)		1.50
L	Grate Length (ft)		7.38
	Inlet Type *Sag*	Sweeper	Combination
d_ave	Depth of Flow (ft)	-	0.521
d_curb	Depth at Curb (ft)		0.667
Qī	Intercepted Flow (cfs)	15.000

Worksheet for Triangular Channel

Worksheet	COMMON LOT R - Drainage Easement - Triang	ula
Flow Element	Triangular Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
Input Data	· · · · · · · · · · · · · · · · · · ·	
Mannings Coefficient	0.020	
Channel Slope	0.005000 ft/ft	
Left Side Slope	28.80 H:V	
Right Side Slope	28.80 H:V	
Discharge	25.00 cfs	
Results		
Depth	0.61 ft	
Flow Area	10.6 ft²	
Wetted Perimeter	34.89 ft	
Top Width	34.87 ft	
Critical Depth	0.54 ft	
Critical Slope	0.009014 ft/ft	
Velocity	2.37 ft/s	
Velocity Head	0.09 ft	
Specific Energy	0.69 ft	
Froude Number	0.76	
Flow Type	Subcritical	

ST-RH036519

Cross Section Cross Section for Triangular Channel

Project Description	
Worksheet	COMMON LOT R - Drainage Easement - Triangula
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Mannings Coefficient	0.020
Channel Slope	0.005000 ft/ft
	0.005000 ft/ft 0.61 ft
Channel Slope	
Channel Slope Depth	0.61 ft

Q:\18449\dwg\design\SD_PRO\POD2\POD2_D1_D2.dwg, 3/16/2006 5:56:10 PM, \\\vg-ps1\hp5100-eng, 1:1

ST-RH036521

F 0 5 1 5 P

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

STORM DRAIN IN POD 2 ON D2 STREET FOR 19 CFS J-N30

ST-RH036522

PAGE NO 3

DATE: 3/14/2006 TIME: 9:19

F0515P

WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING

PACE

CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH

CD 24 4 2.00

				F 0 !	5 1 5 P							PAGE N	0 2
		WATER SURFACE PR	OFILE -	ELEMENT	CARD LI	STING							
ELEMENT NO	1 IS A SYSTEM U/S DAT			SECT 24					W S ELEV 2521.24				
ELEMENT NO	2 IS A REACH U/S DAT	* A STATION II 181.00 25		* SECT 24		N 0.013				RADIUS 0.00	ANGLE 0.00	ANG PT	MAN H 0
ELEMENT NO	3 IS A JUNCTION U/S DATE			SECT LAT- 24 (* -1 LAT-2) 0	N 0.013	Q3 0.0	Q4 0.0	INVERT-3 0.00		* PHI 3 0.00	PHI 4	
ELEMENT NO	4 IS A REACH U/S DATA	* A STATION IN 308.00 25:		* SECT 24		N 0.013				RADIUS 0.00	ANGLE 0.00	ANG PT	MAN H 0
ELEMENT NO	5 IS A SYSTEM I		22.22	* SECT 24			٠		W S ELEV				
		SURFACE ELEVATION			THAN OR	EQUALS	INVERT	ELEVATION	IN HOWKDS	, W.S.ELE	V = INV	+ DC	

F0515P WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH

GOLDEN VALLEY STORM DRAIN IN POD 2 ON D2 STREET FOR 19 CFS J-N30 STATION INVERT DEPTH VEI. MET. EMPROV CURPS CRISTONI

STATION	ELEV	OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	Super Elev	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	SO.	*****	******	*******		SF AVE	HF			ORM DEPTH			ZR		
								*****	*******	******	******	******	*****	<****	****
100.00	2517.00	4.240	2521.240	15.0	4.77	0.354	2521.594	0.00	1.396		2.00	0.00	0.00	0	0.00
76.76	0.03358					-004354	0.33			0.830			0.00		
	2519.58	2.000	2521.577	15.0	4.77	0.354	2521.931	0.00	1.396		2.00	0.00	0.00	0	0.00
	0.03358					.004354	0.00			0.830			0.00		
	2519.59	2.000	2521.593	15.0	4.77	0.354	2521.947	0.00	1.396		2.00	0.00	0.00	0	0.00
HYDRAULIC	JUMP												0.00		
177.22	2519.59	0.954	2520.547	15.0	10.14	1.597	2522.144	0.00	1.396		2.00	0.00	0.00	0	0.00
3.78	0.03358					.020151	0.08			0.830			0.00		
181.00	2519.72	0.968	2520.688	15.0	9.95	1.538	2522.226	0.00	1.396		2.00	0.00	0.00	0	0.00
JUNCT STR	0.02400					.019366	0.10						0.00		
186.00	2519.84	0.976	2520.816	15.0	9.85	1.506	2522.322	0.00	1.396		2.00	0.00	0.00	0	0.00
	0.01951					.019085	0.03			0.970			0.00		
	2519.87	0.976	2520.842	15.0	9.84	1.504	2522.346	0.00	1.396		2.00	0.00	0.00	0	0.00
	0.01951					.017930	1.13			0.970			0.00		
	2521.10	1-013	2522.113	15.0	9.39	1.368	2523.481	0.00	1.396		2.00	0.00	0.00	0	0.00
	0.01951					.015793	0.36			0.970			0.00		
	2521.55	1.052	2522.600	15.0	8.95	1.244		0.00	1.396		2.00	0.00	0.00	0	0.00
	0.01951					.013924	0.18			0.970			0.00		
	2521.80	1.093	2522.893	15.0	8.53	1.130	2524.023	0.00	1.396		2.00	0.00	0.00	0	0.00
	0.01951					.012286	0.10			0.970			0.00		
	2521.96	1.136	2523.097	15.0	8.13	1.027	2524.124	0.00	1.396		2.00	0.00	0.00	G	0.00
5.48	0.01951					.010856	0.06			0.970			0.00		

PAGE 1

F0515P WATER SURFACE PROFILE LISTING

PAGE

GOLDEN VALLEY RANCH

GOLDEN VALLEY
STORM DRAIN IN POD 2 ON D2 STREET FOR 19 CFS J-N30

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. BLEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH	•	HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	50	******	******	*******		SF AVE	HF			NORM DEPTH			ZR		
						******	******	*****	*****	*******	******	******	****	****	****
300.23	2522.07	1.182	2523.250	15.0	7.76	0.934	2524.184	0.00	1.396		2.00	0.00	0.00	0	0.00
3.73	0.01951					.009604	0.04			0.970			0.00		
303.96	2522.14	1.230	2523.371	15.0	7.40	0.849	2524.220	0.00	1.396		2.00	0.00	0.00	0	0.00
2.38	0.01951					.008507	0.02			0.970			0.00		
306.34	2522.19	1.281	2523.469	15.0	7.05	0.772	2524.241	0.00	1.396		2.00	0.00	0.00	0	0.00
1.28	0.01951					.007550	0.01			0.970			0.00		
307.62	2522.21	1.336	2523.548	15.0	6.72	0.702	2524.250	0.00	1.396		2.00	0.00	0.00	0	0.00
0.38	0.01951					.006712	0.00			0.970			0.00		
308.00	2522.22	1.396	2523.616	15.0	6.40	0.637	2524.253	0.00	1.396		2.00	0.00	0.00	0	0.00

GOLDEN VALLEY RANCH GOLDEN VALLEY STORM DRAIN IN POD 2 ON DZ STREET FOR 19 CFS J-N30

NOTES 1. GLOSSARY

I = INVERT ELEVATION

C = CRITICAL DEPTH
W = WATER SURFACE ELEVATION

H = HEIGHT OF CHANNEL E = ENERGY GRADE LINE X = CURVES CROSSING OVER

B = BRIDGE ENTRANCE OR EXIT Y = WALL ENTRANCE OR EXIT

^{2.} STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

ST-RH036528

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 66 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET A

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge D	Data
-------------------------	------

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0104
$\mathbf{s}\mathbf{x}$	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
а	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	44.000
\mathbf{T}	Width of Spread (ft)	29.44

Gutter Flow

Eo	Gutter Flow Ratio	0.146
đ	Depth of Flow (ft)	0.68
V	Average Velocity (ft/sec)	5.03

Inlet Interception

; }	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	Е	Qi (cfs)	Qb (cfs)	
]-	Curb Opening	57.06	4.25	0.04	1.883	42.117	—
	Parallel Bar P-1-7/8	1.50	2.88	0.21	9.054	33.062	
	Combination			0.25	10.938	33.062	

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 67 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET B

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0104
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	45.000
${f T}$	Width of Spread (ft)	29.69

Gutter Flow

Eo	Gutter Flow Ratio	0.145
đ	Depth of Flow (ft)	0.69
V	Average Velocity (ft/sec)	5.06

Inlet Interception

)	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
_	Curb Opening Parallel Bar P-1-7/8	57.77 1.50	4.25	0.04 0.21	1.903	43.097 33.914	_
:	Combination			0.25	11.086	33.914	

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 68 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET C

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0101
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	48.000
Т	Width of Spread (ft)	30.60

Gutter Flow

EO	Gutter Flow Ratio	0.140
đ	Depth of Flow (ft)	0.71
V	Average Velocity (ft/sec)	5.09

Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8	59.46	4.25	0.04	1.972	46.028	
Combination	1.50	2.88	0.21 0.24	$9.584 \\ 11.556$	36.444 36.444	

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 69 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET D

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0101
sx	Pavement Cross Slope (ft/ft)	0.0200
sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	47.000
T	Width of Spread (ft)	30.35

Gutter Flow

Eo	Gutter Flow Ratio	0.142
d	Depth of Flow (ft)	0.70
V	Average Velocity (ft/sec)	5.06

Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening	58.77	5.75	0.04	1.954	45.046	_
Parallel Bar P-1-7/8	1.50	4.38	0.30	13.416	31.631	
Combination			0.33	15.369	31.631	

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 70 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET E

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0101
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	34.000
${f T}$	Width of Spread (ft)	26.85

Gutter Flow

Eo	Gutter Flow Ratio	0.161
d	Depth of Flow (ft)	0.63
V	Average Velocity (ft/sec)	4.67

Inlet Interception

,]	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
,	Curb Opening Parallel Bar P-1-7/8 Combination	49.09 1.50	4.25 2.88	0.05 0.24 0.28	1.689 7.698 9.386	32.311 24.614 24.614	

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 71 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT H NODE J-N15 INLET F

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0050
\mathbf{s}	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
а	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	33.000
\mathbf{T}	Width of Spread (ft)	30.33

Gutter Flow

Eo	Gutter Flow Ratio	0.142
đ	Depth of Flow (ft)	0.70
V	Average Velocity (ft/sec)	3.56

Inlet Interception

INLET	LT or WGR	L	Е	Qi	Qb
INTERCEPTION	(ft)	(ft)		(cfs)	(cfs)
Curb Opening Parallel Bar P-1-7/8 Combination	41.02 1.50	5.75 4.38	0.06 0.40 0.43	1.957 12.308 14.266	31.043 18.734 18.734

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 72 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS MODIFIED "C" L-17.5
NODE J.NIS INLET G

Inlets on Sag: Sweeper Combination Inlet

Roadway and Discharge Data

	Cross Slope	Composite/Dep
\mathbf{s}	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00

Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L	Curb-Opening Length	(ft) 8.75
Н	Curb-Opening Height	(in) 6.00
	Inlet Type *Sag*	Parallel Bar P-1-7/8
${f T}$	Width of Spread (ft)	39.00
WGR	Grate Width (ft)	1.50
L	Grate Length (ft)	7.38
	Inlet Type *Sag*	Sweeper Combination
d_ave	Depth of Flow (ft)	0.521
	Depth at Curb (ft)	0.667
Qi	Intercepted Flow (cfs)	15.000

Worksheet Worksheet for Triangular Channel

			_		
Project Description					
Worksheet	COM	MON LOT I		1 - D	∃ - Drainac
Flow Element		gular Chann			
Method		ing's Formul			
Solve For	Chani	nel Depth			
Input Data	 .				
Mannings Coefficient	0.020				
Channel Slope	0.010000	ft/ft			
Left Side Slope	28.80	H:V			
Right Side Slope	28.80	H : V			
Discharge	48.00	cfs			
		-			
Results					
Depth	0.68	ft			
Flow Area	13.3	ft²			
Wetted Perimeter	39.12	ft			
Top Width	39.10	ft			
Critical Depth	0.70	ft			
Critical Slope	0.008264	ft/ft			
Velocity	3.62	ft/s			
Velocity Head	0.20	ft			
Specific Energy	0.88	ft			
Froude Number	1.09				
Flow Type	Supercritical				

VELOCITY × DEPTH 3.6

Cross Section Cross Section for Triangular Channel

Project Description		
Worksheet	COMMON LOT H - Drainage Easement - Trial	ngula
Flow Element	Triangular Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
Section Data		
Mannings Coefficient	0.020	
Channel Slope	0.010000 ft/ft	
Depth	0.68 ft	
Left Side Slope	28.80 H:V	
Right Side Slope	28.80 H:V	

Page 1 of 1

F 0 5 1 5 P

PAGE NO 3

HEADING LINE NO 1 IS -

WATER SURFACE PROFILE - TITLE CARD LISTING

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

STORM DRAIN IN POD 2 G2 STREET FOR 103 CFS

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 77 of 109

DATE: 3/15/2006 TIME: 14:35

13

					WATER	SURFACE	PROFI		0515P CH ANN E	L DEFI	NITION	LISTI	NG					PAGE	: 1
CARD CODE	SECT NO	CHN TYPE	NO OF PIERS	AVE PIER WIDTH	HEIGHT 1 DIAMETER	BASE WIDTH	ZL	ZR	INV DROP	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	Y(6)	Y(7)	Y(8)	Y(9)	Y(10)
CD	48	4			4.00														
CD	60	4			5.00														
CD	54	4			4.50														
CD	36	4			3.00														
CD	66	3	0	0.00	4.00	6.00	0.00	0.00	0.00										
CD	30	4			2.50														
CD	18	4			1.50														
CD	42	4			3.50														

									F 0 5	1 5 P							PAGE NO	2
					WAT	ER SURFACE	PROFILE	- ELE	MENT (CARD LI	STING							
ELEMENT	NO	1	ıs		SYSTEM OUT U/S DATA	STATION	1NVERT 2519.70		*					W S ELEV 2526.70				
ELEMENT	NO	2	IS	A	REACH	*	•		*					2320.70				
					U/S DATA	STATION 170.00	INVERT 2520.40	SECT 48			N 0.013				RADIUS 0.00	ANGLE 0.00	ANG PT 50.00	
ELEMENT	NO	3	ıs	A	JUNCTION	*				*		*		,	*			
					U/S DATA	STATION 175.00				LAT-2	0.013	Q3 0.0	Q4 0.0	INVERT-3 0.00		PHI 3	PHI 4 0.00	
ELEMENT	NO	4	IS		REACH	*	*		•									
					U/S DATA	STATION 308.00	INVERT 2521.88	SECT 48			N 0.013				RADIUS 0.00	ANGLE 0.00	ANG PT 0.00	
ELEMENT	NO	5	IS	A	JUNCTION	*	*	4	•	*		*				*		
					U/S DATA	STATION 313.00	INVERT 2521.93	SECT 48		LAT-2 0	-	Q3 15.0		INVERT-3 2521.93	INVERT-4 0.00	PHI 3 90.00	PHI 4 0.00	
ELEMENT	NO	6	IS		REACH	*	+	*										
					U/S DATA	STATION 353.00		SECT 48			N 0.013				RADIUS 0.00	ANGLE 0.00	ANG PT 0.00	MAN H 0
ELEMENT	NO	7	IS		JUNCTION	+	*	*		*		*			·	*		
					U/S DATA	STATION 358.00	INVERT 2522.38	SECT 48	LAT-1 18	LAT-2 18		Q3 9.0	Q4 14.0	INVERT-3 2522.38		PHI 3 45.00	PHI 4 90.00	
BLEMENT	NO	8	ıs		REACH	*	*	*										

N 0.013

* Q3 12.0

RADIUS ANGLE ANG PT MAN H

Q4 INVERT-3 INVERT-4 PHI 3 15.0 2523.88 2523.88 90.00

U/S DATA STATION INVERT
503.00 2523.83

ELEMENT NO 9 IS A JUNCTION

INVERT SECT

STATION INVERT SECT LAT-1 LAT-2 N 508.00 2523.88 48 18 18 0.013

F 0 5 1 5 P

PAGE NO 3

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO 10 IS A REACH

U/S DATA STATION INVERT SECT 583.00 2524.63 48

0.013

RADIUS ANGLE ANG PT MAN H 0.00 0.00 0.00 0

ELEMENT NO 11 IS A SYSTEM HEADWORKS

INVERT SECT U/S DATA STATION

W S ELEV

583.00 5224.63 48 0.00

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING

** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC

LICENSEE: STANLEY CONSULTANTS, INC.

F0515P WATER SURFACE PROFILE LISTING

PAGE

GOLDEN VALLEY RANCH

GOLDEN VALLEY
STORM DRAIN IN POD 2 G2 STREET FOR 103 CFS

STATION	INVERT ELEV	DEPTH OF FLOW	W.S.	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so					SF AVE	HF		N	ORM DEPTH			ZR		
*******	*******	*****	********	********	****	******	*******	*****	******	******	*****	******	*****	****	****
100.00	2519.70	7.000	2526.700	87.0	6.92	0.744	2527.444	0.00	2.828		4.00	0.00	0.00	0	0.00
70.00	0.01000					.003668	0.26			2.246			0.00		
170.00	2520.40	6.680	2527.080	87.0	6.92	0.744	2527.824	0.00	2.828		4.00	0.00	0.00	0	0.00
JUNCT STR	0.01000					.003668	0.02						0.00		
175.00	2520.45	6.648	2527.098	87.0	6.92	0.744	2527.842	0.00	2.828		4.00	0.00	0.00	0	0.00
133.00	0.01075					.003668	0.49			2.196			0.00		
308.00	2521.88	5.706	2527.586	87.0	6.92	0.744	2528.330	0.00	2.828		4.00	0.00	0.00	0	0.00
junct str	0.01000					.003090	0.02						0.00		
313.00	2521.93	6.140	2528.070	72.0	5.73	0.510	2528.580	0.00	2.566		4.00	0.00	0.00	0	0.00
40.00	0.01000					.002512	0.10			2.002			0.00		
353.00	2522.33	5.841	2528.171	72.0	5.73	0.510	2528.681	0.00	2.566		4.00	0.00	0.00	0	0.00
JUNCT STR	0.01000					.001838	0.01						0.00		
358.00	2522.38	6.267	2528.647	49.0	3.90	0.236	2528.883	0.00	2.099		4.00	0.00	0.00	o	0.00
145.00	0.01000					.001164	0.17			1.610			0.00		
503.00	2523.83	4.986	2528.816	49.0	3.90	0.236	2529.052	0.00	2.099		4.00	0.00	0.00	0	0.00
JUNCT STR	0.01000					.000700	0.00						0.00		
508.00	2523.88	5.316	2529.196	22.0	1.75	0.048	2529.244	0.00	1.383		4.00	0.00	0.00	0	0.00
75.00	0.01000					.000235	0.02			1.057			0.00		
583.00	2524.63	4.584	2529,214	22.0	1.75	0.048	2529.262	0.00	1.383		4.00	0.00	0.00	0	0.00

GOLDEN VALLEY RANCH GOLDEN VALLEY STORM DRAIN IN POD 2 G2 STREET FOR 103 CFS

NOTES 1. GLOSSARY

" "

I = INVERT ELEVATION
C = CRITICAL DEPTH

C = CRITICAL DEPTH

W = WATER SURFACE ELEVATION

H = HEIGHT OF CHANNEL

E = ENERGY GRADE LINE

X = CURVES CROSSING OVER

B = BRIDGE ENTRANCE OR EXIT

Y = WALL ENTRANCE OR EXIT

2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

ST-RH036545

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 83 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT L NODE J-S20 INLET A

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0247
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	54.000
T	Width of Spread (ft)	27.01

Gutter Flow

Eo	Gutter Flow Ratio	0.160
d	Depth of Flow (ft)	0.64
V	Average Velocity (ft/sec)	7.33

Inlet Interception

}	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
	Curb Opening Parallel Bar P-1-7/8	78.13 1.50	7.25 5.88	0.03	1.692 16.398	52.308 35.910	
	Combination			0.33	18.090	35.910	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 84 of 109

FHWA. Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT L NODE J-S20

INLET B

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0247
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	54.000
Т	Width of Spread (ft)	27.01

Gutter Flow

Eo	Gutter Flow Ratio	0.160
đ	Depth of Flow (ft)	0.64
V	Average Velocity (ft/sec)	
•	iii orage verserey (ic/sec)	7.33

Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	78.13 1.50	7.25 5.88	0.03 0.31 0.33	1.692 16.398 18.090	52.308 35.910 35.910	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 85 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.: Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT L NODE J-S20 INLET C

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0197
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	34.000
${f T}$	Width of Spread (ft)	23.56
	•	23.56

Gutter Flow

Eo	Gutter Flow Ratio	0.185
đ	Depth of Flow (ft)	0.57
V	Average Velocity (ft/sec)	6.05

Inlet Interception

ì	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
	Curb Opening	57.08	7.25	0.04	1.455	32.545	
	Parallel Bar P-1-7/8	1.50	5.88	0.38	12.427	20.118	
	Combination			0.41	13.882	20.118	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 86 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod 2

Project Name.:Golden Valley Ranch

Computed by :rjm

Project Description

COMMON EASEMENT L NODE J-S20

INLET D

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0209
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	34.000
T	Width of Spread (ft)	23.30

Gutter Flow

Eo	Gutter Flow Ratio	0.187
d	Depth of Flow (ft)	0.56
V	Average Velocity (ft/sec)	6.18

Inlet Interception

, Ì	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
-	Curb Opening	57.84	7.25	0.04	1.436	32.564	
	Parallel Bar P-1-7/8	1.50	5.88	0.38	12.297	20.267	
	Combination			0.40	13.733	20.267	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 87 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS MODIFIED "C" L-14.5
BOOG J-920 INLET E

Inlets on Sag: Sweeper Combination Inlet

Roadway and Discharge Data

	Cross Slope Composite/E)ep
sx	Pavement Cross Slope (ft/ft) 0.01	J.,
Sw	Gutter Cross Slope (ft/ft) 0.08	33
n	Manning's Coefficient 0.01	.6
W	Gutter Width (ft) 1.50	
а	Gutter Depression (inch) 2.00	

Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L		(ft) 5.75
Н	Curb-Opening Height	(in) 6.00
ш	Inlet Type *Sag*	Parallel Bar P-1-7/8
T	Width of Spread (ft)	39.39
WGR	Grate Width (ft)	1.50
L	Grate Length (ft)	5.88
•	Inlet Type *Sag*	Sweeper Combination
d_ave	I	0.525
d_curb	Depth at Curb (ft)	0.671
Qī	Intercepted Flow (cfs	12.000

Note: The curb opening length in the input screen is the total of the curb opening including its length along the grate.

Worksheet for Triangular Channel

Project Description	
Worksheet	COMMON LOT L - Drainage Easement - Trianç
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	
Mannings Coefficient	0.020
Channel Slope	0.005000 ft/ft
Left Side Slope	28.80 H:V
Right Side Slope	28.80 H:V
Discharge	60.00 cfs
Results	
Depth	0.84 ft
Flow Area	20.4 ft ²
Wetted Perimeter	48.46 ft
Top Width	48.43 ft
Critical Depth	0.77 ft
Critical Slope	0.008018 ft/ft
Velocity	2.95 ft/s
	0.13 ft
Velocity Head	
Velocity Head Specific Energy	0.98 ft
-	0.98 ft 0.80

VELOCITY X DEPTH
3-0 X 0-8 = 2.4 < 6.0

Project Engineer: Information Services

Cross Section for Triangular Channel

Project Description	
Worksheet	COMMON LOT L - Drainage Easement - Triangula
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Mannings Coefficient	0.020
Section Data	
Manifilia Coefficient	0.020
Channel Slone	0.005000 ft/ft
•	0.005000 ft/ft 0.84 ft
Depth	
Channel Slope Depth Left Side Slope Right Side Slope	0.84 ft

F 0 5 1 5 P

PAGE NO 3

HEADING LINE NO 1 IS -

WATER SURFACE PROFILE - TITLE CARD LISTING

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

LATERAL WITH FLOW 36CFS JS20 AT POD2 J - G1 STR

DATE: 3/15/2006 TIME: 14:49

TIME:	14:49								F0515P										
					WATER	SURFACE	PROF			L DEF	истти	LIST	NG					PAGE	1
CARD CODE	SECT NO	CHN TYPE	NO OF PIERS	AVE PIER WIDTH	HEIGHT 1 DIAMETER	BASE WIDTH	ZL	ZR	INV DROP	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	Y(6)	Y(7)	Y(8)	Y (9)	Y(10)
CD	48	4			4.00														
CD	30	4			2.50														
CD	18	4			1.50														
CD	21	4			1.75														

			F 0 5	1 5 P			PAGE NO	0 2
	WAT	TER SURFACE PROFI	LE - ELEMENT (CARD LISTING				
ELEMENT NO	l is a system out U/s data	TLET * STATION INVE 100.00 2524.				W S ELEV 2530.50		
ELEMENT NO	2 IS A REACH U/S DATA	* STATION INVE 345.00 2526.		N 0.013		RADIUS 0.00	ANGLE ANG PT	
ELEMENT NO	3 IS A JUNCTION U/S DATA	* STATION INVE 345.00 2526.		* 1 LAT-2 N 0 0.013	* Q4 Q4 0.0	* INVERT-3 INVERT-4 2526.85 0.00	* PHI 3 PHI 4 90.00 0.00	
ELEMENT NO	4 IS A REACH U/S DATA	* STATION INVE 405.00 2527.		N 0.013		RADIUS 0.00	ANGLE ANG PT 0.00 0.00	мам н 0
ELEMENT NO	5 IS A JUNCTION U/S DATA	* STATION INVE. 405.00 2527.		* 1 LAT-2 N 21 0.013	* Q3 Q4 14.0 14.0	* INVERT-3 INVERT-4 2527.63 2527.63	* PHI 3 PHI 4 90.00 90.00	
WARNING - ADJ	ACENT SECTIONS ARE	NOT IDENTICAL -					20100	

N 0.013

500.00 2528.77

U/S DATA

RADIUS ANGLE ANG PT MAN H 0.00 0.00 0.00 0

LICENSEE: STANLEY CONSULTANTS, INC.

F0515P WATER SURFACE PROFILE LISTING

PAGE

GOLDEN VALLEY RANCH

GOLDEN VALLEY
LATERAL WITH FLOW 35CFS J-C21

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH	ն	HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	50	******		*******		SF AVE	HF		*****	NORM DEPTH		******	ZR		
								*****			*****	*******	*****	*****	****
100.00	2524.00	6.500	2530.500	76.0	6.05	0.568	2531.068	0.00	2.639		4.00	0.00	0.00	0	0.00
245.00	0.01139					.002799	0.69			1.990			0.00		
345.00	2526.79	4.396	2531.186	76.0	6.05	0.568	2531.754	0.00	2.639		4.00	0.00	0.00	0	0.00
JUNCT STR	0.00000					.002392	0.00						0.00		
345.00	2526.85	4.666	2531.516	64.0	5.09	0.403	2531.919	0.00	2.414		4.00	0.00	0.00	0	0.00
60.00	0.01200					.001985	0.12			1.775			0.00		
405.00	2527.57	4.065	2531.635	64.0	5.09	0.403	2532.038	0.00	2.414		4.00	0.00	0.00	0	0.00
JUNCT STR	0.00000					.001306	0.00						0.00		
405.00	2527.63	4.556	2532.186	36.0	7.33	0.835	2533.021	0.00	2-035		2.50	0.00	0.00	0	0.00
95.00	0.01200					.007703	0.73			1.692			0.00		
500.00	2528.77	4.148	2532.918	36.0	7.33	0.835	2533-253	0.00	2.035		2 50	0.00	0.00	٥	0.00

GOLDEN VALLEY RANCH GOLDEN VALLEY LATERAL WITH FLOW 35CFS J-C21

NOTES 1. GLOSSARY

GLOSSARY

I = INVERT ELEVATION

C = CRITICAL DEPTH

W = WATER SURFACE ELEVATION

H = HEIGHT OF CHANNEL

E = ENERGY GRADE LINE

X = CURVES CROSSING OVER

B = BRINGE ENTRANCE OR EXIT

- WALL ENTRANCE OR EXIT

Y = WALL ENTRANCE OR EXIT
2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

ST-RH036559

Case 09-14814-gwz Doc 1261-3 Entered 08/13/10 22:45:33 Page 97 of 109

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS
MODIFIED "C" L-17.5
SHED F2-67 INLET A

Common Lot "O"

Inlets on Sag: Sweeper Combination Inlet

Roadway and Discharge Data

	Cross Slope	Composite/Dep
sx	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
M	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00

Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L	Curb-Opening Length	(ft) 8.75
H	Curb-Opening Height	(in) 6.00
	Inlet Type *Sag*	Parallel Bar P-1-7/8
T .	Width of Spread (ft)	39.00
WGR	Grate Width (ft)	1.50
L	Grate Length (ft)	7.38
	Inlet Type *Sag*	Sweeper Combination
d_ave	· · · · · · · · · · · · · · · · · · ·	0.521
d_curb	Depth at Curb (ft)	0.667
Qī	Intercepted Flow (cfs)	15.000

Note: The curb opening length in the input screen is the total of the curb opening including its length along the grate.

Worksheet for Triangular Channel

Project Description			
Worksheet	CO	MMON LOT	. (
Flow Element	Tria	ngular Chai	1
Method	Mar	nning's Form	11
Solve For	Cha	nnel Depth	_
Input Data			
Mannings Coefficient	0.02	0	
Channel Slope	0.00500	O ft/ft	
Left Side Slope	28.8	0 H:V	
Right Side Slope	28.8	0 H:V	
Discharge	36.0	0 cfs	
Results			
Depth	0.69	ft	
Flow Area	13.9	ft²	
Wetted Perimeter	40.01	ft	
Top Width	39.99	ft	
Critical Depth	0.63	ft	
Critical Slope	0.008577	ft/ft	
Velocity	2.59	ft/s	
Velocity Head	0.10	ft	
Specific Energy	0.80	ft	
Froude Number	0.78		
Flow Type	Subcritical		

VELOCITY × DEPTH
2.6 × 0.7 = 1.8 4 6.0

Project Engineer: Information Services FlowMaster v7.0 [7.0005]

Page 1 of 1

Cross Section Cross Section for Triangular Channel

Project Description	
Worksheet	COMMON LOT 0 - Drainage Easement - Triangul
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Mannings Coefficient	0.020
Section Data	
Channel Slope	0.005000 ft/ft
Depth	0.69 ft
Left Side Slope	28.80 H:V
Left Side Slope Right Side Slope	28.80 H:V 28.80 H:V

F 0 5 1 5 P

PAGE NO 3

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

LATERAL IN POD 2 P2-67 FLOW - 32CFS 9 STR AND G1 STR

DATE: 3/10/2006 TIME: 10: 5

F0515P

WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING

DACE

CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP

CD 18 4 2.00

F 0 5 1 5 P

PAGE NO 2

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO 1 IS A SYSTEM OUTLET

U/S DATA STATION INVERT SECT

W S ELEV 100.00 2516.50 2521.00

ELEMENT NO 2 IS A REACH

STATION U/S DATA

ATION INVERT SECT 350.00 2530.65 18

N 0.013

RADIUS ANGLE ANG PT MAN H 0.00 0.00 0.00 0

ELEMENT NO 3 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT

W S ELEV

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING

** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HOWKDS, W.S.ELEV = INV + DC

LICENSEE: STANLEY CONSULTANTS, INC.

F0515P WATER SURFACE PROFILE LISTING

PAGE

GOLDEN VALLEY RANCH
GOLDEN VALLEY
LATERAL IN POD 2 P2-67 FLOW - 32CFS 9 STR AND G1 STR

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	SO	******	*******	*******	*****	SF AVE	HF			NORM DEPTH			ZR		
								*****	********	*****	******	******	*****	****	****
100.00	2516.50	4.500	2521.000	48.0	15.28	3.624	2524.624	0.00	1.977		2.00	0.00	0.00	0	0.00
114.81	0.05660					.045020	5.17			1.470			0.00		
214.81	2523.00	3.175	2526.173	48.0	15.28	3.624	2529.797	0.00	1.977		2.00	0.00	0.00	0	0.00
HYDRAULIC	JUMP												0.00		
214.81	2523.00	1.525	2524.523	48.0	18.68	5.417	2529.940	0.00	1.977		2.00	0.00	0.00	0	0.00
23.89	0.05660					.051681	1.23			1.470			0.00		
238.70	2524.35	1.536	2525.886	48.0	18.53	5.329	2531.215	0.00	1.977		2.00	0.00	0.00	0	0.00
51.86	0.05660					.048759	2.53			1.470			0.00		
290.56	2527.29	1.614	2528.900	48.0	17.67	4.846	2533.746	0.00	1.977		2.00	0.00	0.00	0	0.00
28.67	0.05660					.044302	1.27			1.470			0.00		
319.23	2528.91	1.702	2530.610	48.0	16.84	4.405	2535.015	0.00	1.977		2.00	0.00	0.00	0	0.00
18.72	0.05660					.040872	0.77			1.470			0.00		
337.95	2529.97	1.808	2531.776	48.0	16.06	4.004	2535.780	0.00	1.977		2.00	0.00	0.00	0	0.00
12.05	0.05660					.040349	0.49			1.470			0.00		
350.00	2530.65	1.977	2532.627	48.0	15.31	3.640	2536.267	0.00	1.977		2.00	0.00	0.00	D	0.00

GOLDEN VALLEY RANCH GOLDEN VALLEY LATERAL IN POD 2 P2-67 FLOW - 32CFS 9 STR AND G1 STR

NOTES 1. GLOSSARY

GLOSSARI

I = INVERT ELEVATION

C = CRITICAL DEPTH

W = WATER SURFACE ELEVATION

H = HEIGHT OF CHANNEL E = ENERGY GRADE LINE

X = CURVES CROSSING OVER

B = BRIDGE ENTRANCE OR EXIT Y = WALL ENTRANCE OR EXIT

^{2.} STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

GOLDEN VALLEY RANCH

APPENDIX C

STREET CAPACITY (LOCAL STREETS)

Section Data

Channel Slope

0.005000 ft/ft

0.014

100.67 ft

Mannings Coefficier

Water Surface Elev.

Discharge

68.88 cfs

Elevation Range 3.00 to 100.67

Flow Element

Irregular Chani

Local Str 50'P(

Worksheet

Solve For

Discharge Manning's Forr

Method

Project Description

Cross Section for Irregular Channel Cross Section

E-25

The second second

Rating Table for Irregular Channel

Project Description	1
Worksheet	Local Str 50'Pl
Flow Element	Irregular Chanı
Method	Manning's Fort
Solve For	Discharge

Input Data

Water Surface Elev. 00.67 ft

Options

Current Roughness Methox ved Lotter's Method Open Channel Weighting ved Lotter's Method Closed Channel Weighting Horton's Method

Attribute	Minimum	Maximum	Increment	
Channel Slope (ft/ft)	0.005000	0.020000	0.000100	

Channel Slope (ft/ft)	Discharge (cfs)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)
0.005000	68.88	3.73	18.5	50.12	50.00
0.005100	69.57	3.76	18.5	50.12	50.00
0.005200	70.25	3.80	18.5	50.12	50.00
0.005300	70.92	3.84	18.5	50.12	50.00
0.005400	71.59	3.87	18.5	50.12	50.00
0.005500	72.25	3.91	18.5	50.12	50.00
0.005600	72.90	3.94	18.5	50.12	50.00
0.005700	73.55	3.98	18.5	50.12	50.00
0.005800	74.19	4.01	18.5	50.12	50.00
0.005900	74.83	4.05	18.5	50.12	50.00
0.006000	75.46	4.08	18.5	50.12	50.00
0.006100	76.09	4.12	18.5	50.12	50.00
0.006200	76.71	4.15	18.5	50.12	50.00
0.006300	77.32	4.18	18.5	50.12	50.00
0.006400	77.93	4.22	18.5	50.12	50.00
0.006500	78.54	4.25	18.5	50.12	50.00
0.006600	79.14	4.28	18.5	50.12	50.00
0.006700	79.74	4.31	18.5	50.12	50.00
0.008800.C	80.33	4.35	18.5	50.12	50.00
0.006900	80.92	4.38	18.5	50.12	50.00
0.007000	81.51	4.41	18.5	50.12	50.00
0.007100	82.09	4.44	18.5	50.12	50.00
0.007200	82.66	4.47	18.5	50.12	50.00
0.007300	83.23	4.50	18.5	50.12	50.00
0.007400	83.80	4.53	18.5	50.12	50.00
0.007500	84.37	4.56	18.5	50.12	50.00
0.007600	84.93	4.60	18.5	50.12	50.00
0.007700	85.48	4.63	18.5	50.12	50.00
0.007800	86.04	4.66	18.5	50.12	50.00
0.007900	86.59	4.69	18.5	50.12	50.00
0.008000	87.13	4.71	18.5	50.12	50.00
0.008100	87.68	4.74	18.5	50.12	50.00
0.008200	88.22	4.77	18.5	50.12	50.00
0.008300	88.75	4.80	18.5	50.12	50.00

Project Engineer: Information Services

Rating Table for Irregular Channel

Channel	Discharge	Velocity	Flow	Wetted	Тор
Slope	(cfs)	(ft/s)	Area	Perimeter	Width
(ft/ft)			(ft²)	(ft)	(ft)
0.008400	89.28	4.83	18.5	50.12	50.00
0.008500	89.81	4.86	18.5	50.12	50.00
0.008600	90.34	4.89	18.5	50.12	50.00
0.008700	90.87	4.92	18.5	50.12	50.00
0.008800.0	91.39	4.94	18.5	50.12	50.00
0.008900	91.90	4.97	18.5	50.12	50.00
0.009000	92.42	5.00	18.5	50.12	50.00
0.009100	92.93	5.03	18.5	50.12	50.00
D.009200	93.44	5.06	18.5	50.12	50.00
0.009300	93.95	5.08	18.5	50.12	50.00
0.009400	94.45	5.11	18.5	50.12	50.00
0.009500	94.95	5.14	18.5	50.12	50.00
0.009600	95.45	5.16	18.5	50.12	50.00
0.009700	95.95	5.19	18.5	50.12	50.00
0.009800	96.44	5.22	18.5	50.12	50.00
0.009900	96.93	5.24	18.5	50.12	50.00
0.010000	97.42	5.27	18.5	50.12	50.00
0.010100	97.90	5.30	18.5	50.12	50.00
0.010200	98.39	5.32	18.5	50.12	50.00
0.010300	98.87	5.35	18.5	50.12	50.00
0.010400	99.35	5.38	18.5	50.12	50.00
0.010500	99.82	5.40	18.5	. 50.12	50.00
0.010600	100.30	5.43	18.5	50.12	50.00
0.010700	100.77	5.45	18.5	50.12	50.00
0.010800	101.24	5.48	18.5	50.12	50.00
0.010900	101.71	5.50	18.5	50.12	50.00
0.011000	102.17	5.53	18.5	50.12	50.00
0.011100	102.64	5.55	18.5	50.12	50.00
0.011200	103.10	5.58	18.5	50.12	50.00
0.011300	103.56	5.60	18.5	50.12	50.00
0.011400	104.01	5.63	18.5	50.12	50.00
0.011500	104.47	5.65	18.5	50.12	50.00
0.011600	104.92	5.68	18.5	50.12	50.00
0.011700	105.37	5.70	18.5	50.12	50.00
0.011800	105.82	5.73	18.5	50.12	50.00
0.011900	106.27	5.75	18.5	50.12	50.00
0.012000	106.72	5.77	18.5	50.12	50.00
0.012100	107.16	5.80	18.5	1	50.00
0.012200	107.60	5.82	18.5	50.12	50.00
0.012300	108.04	5.85	18.5	50.12	50.00
0.012400	108.48	5.87	18.5	50.12	50.00
0.012500	108.92	5.89	18.5		50.00
0.012600	109.35	5.92	18.5	50.12	50.00
0.012700	109.78	5.94	18.5	50.12	50.00
0.012800	110.22	5.96	18.5	50.12	50.00
0.012900	110.65	5.99	18.5	50.12	50.00
0.013000	111.07	6.01	18.5	50.12	50.00
0.013100	111.50	6.03	18.5	50.12	50.00
0.013200	111.92	6.06	18.5	50.12	50.00
0.013300	112.35	6.08	18.5	50.12	50.00
0.013400	112.77	6.10	18.5	50.12	50.00
0.013500	113.19	6.12	18.5	50.12	50.00
0.013600	113.61	6.15	18.5	50.12	50.00

Project Engineer: Information Services