Product rule and quotient rule 1

1.1 Combinations of functions

- 1. Identify the form of the following functions:
 - (i) $\frac{\sin x}{x+1}$

(ii) xe^x

(iii) $\ln(3x^2 + 5x - 8)$

(iv) $(x^3 - 5)^5$

- (v) $\cos(x^2 4x + 5)$.
- 2. Identify the form of the following functions:
 - (i) $x^3 \cos x$

(ii) e^{4x^2-7}

(iii) $\frac{\ln(x+3)}{x^2+1}$

(iv) $(5x^2 - 4)^3$

(v) $\ln(x^3 - 4x + 8)$.

Product rule

- 1. Find $\frac{dy}{dx}$ for each of the following
 - $(i) y = (2x 1)\sin x$
- (ii) $y = (3x^2 6x + 1)e^x$ (iii) $(6x + 5) \ln x$

- (iv) $y = x^2 \cos x$
- $(v) y = x \sin(2x) \qquad (vi) y = e^{3x} \cos x.$
- 2. Find $\frac{dy}{dx}$ for each of the following
 - (i) $y = x^3 \sin x$
- (ii) $y = (6x^2 12x + 5)e^x$
- (iii) $(7x 4) \ln x$

- (iv) $y = (2x^2 + 3)\cos x$
- (v) $y = x \cos(4x)$
- (vi) $y = e^{-x} \sin x$.

1.3 Quotient rule

- 1. Find $\frac{dy}{dx}$ for each of the following
 - (i) $y = \frac{2x-3}{2x+7}$

(ii) $y = \frac{e^{4x}}{x+6}$

(iii) $y = \frac{x^2 - 4}{2x^2 + 1}$

(iv) $y = \frac{\ln x}{x^2}$

 $(v) y = \frac{\sin(2x)}{x}$

(vi) $y = \frac{\sin x}{\cos x}$.

- 2. Find $\frac{dy}{dx}$ for each of the following
 - (i) $y = \frac{3x-7}{7x-2}$

(ii) $y = \frac{e^{2x}}{4x+1}$

(iii) $y = \frac{2x^2+3}{x^2+1}$

(iv) $y = \frac{\ln x}{2x^3}$

(v) $y = \frac{\sin(5x)}{x}$

(vi) $y = \frac{\cos x}{\sin x}$