ВМ-1. Лекція 3 за 02.10.20.

Лекцію 3 переписати в зошит для конспекту лекцій з ВМ-1 (ЛА-АГ). Обов'язково на кожній сторінці конспекту напишіть у верхньому правому куті сторінки ваше прізвище та ініциали. Зробіть якісне фото кожної сторінки Л-2 на Office Lens, підпишіть файл: Ваше прізвище. Л-3, наприклад, Іванов. Л -3.pdf, розмістити на Google диску групи в вашій особистій папці Лекції до понеділка 05.10.20. Не забувайте при переписуванні написати, як заголовок, Лекція 2. Дії над матрицями. 02.10.20, та переписувати назви розділів лекції, виділені в тексті блакитним кольором.

ЛЕКЦІЯ 3. Ранг матриці. Системи лінійних алгебраїчних рівнянь. 02.10.20.

3.1. Математична символіка.

Для скорочення і уточнення математичних записів використовують логічну символіку.

- **1.** Символ існування: \exists (перевернута перша буква англійського слова Exist) відповідає словам «існує», «знайдеться». Вираз «існує х такий, що виконано A(x)» скорочено записують як $\exists x : A(x)$.
- **2.** Символ спільності: \forall (перевернута перша буква англійського слова All) відповідає словам «для будь-якого», «для всіх», «для кожного». Вираз «для будь-якого x виконано A(x)» скорочено записують як $\forall x$: A(x).
- **3.** Символ слідування: \Rightarrow Замість виразів «з A випливає B », «якщо A, то B » пишуть $A \Rightarrow B$. B називають необхідною умовою для A, в свою чергу A достатня умова для B.
- **4.** Символ еквівалентності (рівносильності): \iff Якщо одночасно $A \Rightarrow B$ та $B \Rightarrow A$, то пишуть $A \iff B$, та читають «для того щоб A необхідно і достатньо щоб B», або «A тоді і тільки тоді, коли B» та кажуть що $B \in \text{необхідною } i$ достатньою умовою для A.
- **5.** Символ: $\stackrel{\text{def}}{=}$ читається «за означенням» (від англійського слова definition).

$$\sum_{n=1}^k a_n \stackrel{\text{def}}{=} a_1 + a_2 + a_3 + \cdots + a_k$$
. \sum — "сигма", знак суми.

6. ■ — кінець доведення.

3.2. Ранг матриці.

Поняття визначника Э тільки для квадратної матриці, але в прямокутних матрицях теж можна утворити визначники.

Нехай задано матрицю $A=\left(a_{ij}\right)$ розміру $m\times n$. Виділимо в матриці A будьякі k рядків та k стовпців, де k — число, не більше чисел m і n, тобто $1\leq k\leq \min(m,n)$.

Означення. Визначник k — го порядку, утворений з елементів, що стоять на перетині виділених k рядків і k стовпців, називається мінором k-го порядку матриці A і позначається M_k .

Приклад 1. Розглянемо матрицю A розміру 3×4 .

$$A = \begin{pmatrix} 1 & 2 & 4 & 3 \\ 5 & 7 & 6 & 8 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Обчислимо деякі її відмінні від нуля мінори. В матриці $A \ni$ мінор 1-го порядку, наприклад, $M_1 = |1| = 1 \neq 0, \exists$ мінор 2-го порядку, наприклад, $M_2 = \begin{vmatrix} 1 & 2 \\ 5 & 7 \end{vmatrix} = 7 - 10 = -3 \neq 0.$ Але всі мінори (визначники) 3-го порядку $M_3 = 0$, бо містять рядок нулів. Отже найбільший з порядків відмінних від нуля мінорів матриці A дорівнює 2.

Якщо в матриці A існує хоча б один мінор порядку r не рівний нулю $M_r \neq 0$, а $\mathit{всi}$ мінори вищих порядків дорівнюють нулю $M_k = 0, \forall k > r$, то кажуть, що pahr матриці A дорівнює r і позначають $\mathit{rang} A = r$. В прикладі 1 $\mathit{rang} A = 2$.

Означення. Найбільший з порядків відмінних від нуля мінорів матриці А називається рангом матриці А та позначається rangA.

Ранг нульової матриці $(\forall \ a_{ij} = 0)$ вважають рівним нулю.

3 означення випливає, що ранг існує для будь-якої матриці $A_{m \times n}$, причому $0 \le rang A \le \min(m,n)$, де $\min(m,n)$ найменше з чисел m та n.

Приклад 2. Знайти ранг матриці

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \exists M_3 = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0, \forall M_4 = 0 \Rightarrow rangA = 3. \blacksquare$$

Обчислення рангу матриці методом Гауса (елементарних перетворень).

Елементарними перетвореннями матриці називаються:

- 1) Переставлення місцями двох рядків (стовпців);
- 2) Множення всіх елементів деякого рядка (стовпця) на число $\lambda \neq 0$.
- 3) Додавання до елементів рядка (стовпця) відповідних елементів іншого рядка (стовпця), помножених на одне і те саме число λ .

Теорема. При елементарних перетвореннях ранг матриці не змінюється.

Означення. Матриця B, отримана з матриці A за допомогою елементарних перетворень називається $e^{\kappa Bi}$ валентною матриці A і позначається $A \sim B$.

При обчисленні рангу матриці A методом Гауса (Лекція 1) робимо в кожному стовпці за допомогою елементарних перетворень рівними нулю всі елементи матриці, розташовані нижче діагонального. Важливо перевіряти на кожному кроці що ведучий діагональний елемент $a_{ii} \neq 0$.

Отримаємо еквівалентну матриці A матрицю B східчастого (або трапецієподібного) вигляду, у якої в лівому верхньому куті розташована квадратна матриця r — го порядку, всі елементи якої нижче від головної діагоналі дорівнюють нулю, а рядки нижче r — го рядка нульові або відсутні.

Визначник квадратної матриці r-rо порядку, тобто мінор r-rо порядку $M_r=a_{11}\cdot a_{22}\cdot \cdots \cdot a_{rr}\neq 0$, а *всі* мінори вищих порядків дорівнюють нулю, бо містять рядок нулів. Отже rangA=rangB=r. Зауваження. Ранг східчастої матриці дорівнює кількості ненульових рядків.

Приклад 3. Знайти ранг матриці методом Гауса.

$$A = \begin{pmatrix} 9 & -3 & 5 & 6 & 4 \\ 6 & -2 & 3 & 1 & 5 \\ 15 & -5 & 8 & 7 & 9 \end{pmatrix} \sim \begin{bmatrix} a_{11} = 9 \neq 0 \\ \overleftarrow{a}_2 \to 3\overleftarrow{a}_2 - 2\overleftarrow{a}_1 \\ \overleftarrow{a}_3 \to 3\overleftarrow{a}_3 - 5\overleftarrow{a}_1 \end{bmatrix} \sim \begin{pmatrix} 9 & -3 & 5 & 6 & 4 \\ 0 & 0 & -1 & -9 & 7 \\ 0 & 0 & -1 & -9 & 7 \end{pmatrix} \sim \begin{bmatrix} a_{11} = 0 \\ \overrightarrow{a}_2 \leftrightarrow \overrightarrow{a}_3 \end{bmatrix} \sim \begin{pmatrix} 9 & 5 & -3 & 6 & 4 \\ 0 & -1 & 0 & -9 & 7 \\ 0 & -1 & 0 & -9 & 7 \end{pmatrix} \sim \begin{bmatrix} a_{22} = -1 \neq 0 \\ \overleftarrow{a}_3 \to \overleftarrow{a}_3 - \overleftarrow{a}_2 \end{bmatrix} \sim \begin{pmatrix} 9 & 0 & -3 & 6 & 4 \\ 0 & -1 & 0 & -9 & 7 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = B.$$

В отриманій матриці B існує мінор $M_2 = \begin{vmatrix} 9 & 0 \\ 0 & -1 \end{vmatrix} = 9 \cdot (-1) = -9 \neq 0, \forall M_3 = 0,$ отже $rangB = 2 \Rightarrow rangA = rangB = 2$.

Нехай rangA = r > 0. Будь який відмінний від нуля мінор M_r називається базисним мінором, а рядки і стовпці, що утворюють цей мінор, називають базисними рядками і стовпцями.

Теорема. Базисні стовпці (рядки) матриці A лінійно незалежні. Всі інші стовпці (рядки) матриці A є лінійною комбінацією її базисних стовпців (рядків).

3.3. Системи лінійних алгебраїчних рівнянь. Основні поняття.

Переписати далі з файлу Posibnyk LA+AG.pdf: стр. 34-35. **4.1. Основні поняття.**

На стр. 35 замість **Означення 4.1** пишіть **Означення. Означення 4.4** пишіть **Означення.**