SCC 5900 - Projetos de Algoritmos Lista de Exercícios 1 - Complexidade

- 1. Seja a seguinte definição: "Dadas duas funções, f(n) e g(n), diz-se que f(n) é da ordem de g(n) ou que f(n) é $\mathcal{O}(g(n))$, se existirem inteiros positivos a e b tais que $f(n) \leq a * g(n)$ para todo $n \geq b$." Verifique se as seguintes proposições estão corretas:
 - (i) $7 \in \mathcal{O}(n)$
 - (ii) $n \in \mathcal{O}(1)$
 - (iii) $n+7 \in \mathcal{O}(n)$
 - (iv) $n+7 \in \mathcal{O}(1)$
 - (v) $n^2 + 2 \in \mathcal{O}(n)$
 - (vi) $n+2 \in \mathcal{O}(n^2)$
 - (vii) $3n^3 + n \in \mathcal{O}(n^3)$
 - (viii) $2n^4 \in \mathcal{O}(n^4)$
 - (ix) $n^4 \in \mathcal{O}(2n^4)$
 - (x) $3n^4 + 2n^3 \in \mathcal{O}(2n^4)$
 - (xi) $2n^4 \in \mathcal{O}(3n^4 + 2n^3)$
 - (xii) $log n \in \mathcal{O}(1)$
 - (xiii) $log n + 1 \in \mathcal{O}(log n)$
 - (xiv) $log n + 1 \in \mathcal{O}(n)$
 - (xv) $log n + 1 \in \mathcal{O}(n^2)$
 - (xvi) $log n + 1 \in \mathcal{O}(n^3)$
 - (xvii) $n \cdot log \ n \in \mathcal{O}(1)$
- (xviii) $n \cdot log \ n + 1 \in \mathcal{O}(log \ n)$
- (xix) $n \cdot log \ n + 1 \in \mathcal{O}(n)$
- (xx) $n \cdot log \ n + 1 \in \mathcal{O}(n^2)$
- (xxi) $n \cdot log \ n + 1 \in \mathcal{O}(n^3)$
- (xxii) $2log \ n \in \mathcal{O}(n \cdot log \ n)$
- (xxiii) $3n \cdot log \ n \in \mathcal{O}(log \ n)$
- (xxiv) $2n + n \in \mathcal{O}(2^3)$
- (xxv) $n^2 \in \mathcal{O}(2^n)$
- (xxvi) $100n^4 \in \mathcal{O}(2^n)$
- (xxvii) $100n^4 \in \mathcal{O}(n^n)$

- (xxviii) $2^n \in \mathcal{O}(100n^4)$
- (xxix) $2^n \in \mathcal{O}(n^n)$
- (xxx) $n^n \in \mathcal{O}(2^n)$
- (xxxi) $n^{100} \in \mathcal{O}(n^n)$
- (xxxii) $n(n+1)/2 \in \mathcal{O}(n^3)$
- (xxxiii) $n(n+1)/2 \in \mathcal{O}(n^2)$
- (xxxiv) $n(n+1)/2 \in \Theta(n^3)$
- (xxxv) $n(n+1)/2 \in \Omega(n)$
- 2. Ordene as seguintes funções por suas taxas de crescimento: n, $\sqrt[2]{n}$, n^1 , 5, n^2 , $n \log n$, $n \cdot \log \log n$, $n(\log n)^2$, $n\log n^2$, 2/n, 2^n , $2^{n/2}$, 37, $n^2\log n$, n^3 , (n-2)!, $5\log (n+100)^10$, 2_{2n} , $0,001n^4 + 3n^3 + 1$, $\log^2 n$, $\sqrt[3]{n}$, 3^n .
- 3. Para cada uma das seguintes funções, determine a classe $\Theta(g(n))$ a qual a função pertence. (Use g(n) mais simples possível)
 - (i) $(n^2+1)^10$
 - (ii) $\sqrt{10n^2 + 7n + 3}$
 - (iii) $2nlog (n+2)^2 + (n+2)^2 log n/2$
 - (iv) $2^{n+1} + 3^{n-1}$
 - (v) $\lfloor \log n \rfloor$
- 4. Compare as duas funções n^2 e $\frac{2^n}{4}$ para vários valores de n. Determine quando a segunda se torna maior que a primeira.
- 5. Prove que todo polinômio de grau k, $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0$, com $a_k > 0 \forall k$ pertence a $\Theta(n^k)$.
- 6. Prove que as funções exponenciais a^n têm diferentes ordens de crescimento para diferentes valores de a.
- 7. Prove as seguintes proposições ou dê um contra-exemplo:
 - (i) $t(n) \in \mathcal{O}(g(n)) \Rightarrow g(n) \in \Omega(t(n))$
 - (ii) $\Theta(\alpha q(n)) = \Theta(q(n)) \forall \alpha > 0$
 - (iii) $\Theta(g(n)) = \mathcal{O}(g(n)) \cap \Omega(g(n))$
- 8. Encontre a ordem de crescimento dos seguintes somatórios:

 - (i) $\sum_{i=0}^{n-1} (i^2 + 1)^2$ (ii) $\sum_{i=2}^{n-1} (\log i^2)$

 - (iii) $\sum_{i=1}^{n} (i+1) \cdot 2^{i-1}$ (iv) $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} (i+j)$

- 9. Considere o seguinte algoritmo, sendo $n \ge 0$ e inteiro:
 - (i) $s \leftarrow 0$
 - (ii) para $i \leftarrow 1$ até n faça
- (iii) $s \leftarrow s + i * i$
 - (iv) devolve s;
 - (i) Qual a resposta dada ao executar este algoritmo?
 - (ii) Qual é a operação básica?
 - (iii) Quantas vezes essa operação é executada?
 - (iv) Qual é a classe de eficiência desse algoritmo?
 - (v) Existe um algoritmo melhor que responda ao mesmo problema? Descreva-o ou mostre que tal algoritmo não existe.
- 10. Considere um computador com clock de 2GHz, que realiza cada operação relevante em 1 ciclo. Estime, apenas com esses dados, o tempo necessário para que ele execute um algoritmo que realiza $(n^2 n)/2$ operações relevantes, considerando que há 4M dados de entrada.
- 11. Idem, usando um algoritmo que realiza n^3 operações relevantes.
- 12. Idem, usando um algoritmo que realiza 2^n operações relevantes.
- 13. Idem, usando um algoritmo que realiza n^n operações relevantes.
- 14. Idem, para um computador com clock de 100MHz, ordenando a mesma seqüência, usando um algoritmo que realiza 4/3*n log n operações relevantes. Analise os resultados.

Referências

- [1] Horowitz, E., Sahni, S. Rajasekaran, S. Computer Algorithms, Computer Science Press, 1998.
- [2] Nakamiti, G., Listas de Exercícios de Estruturas de Dados II, Engenharia de Computação. PUC-Campinas, 2007.
- [3] Tenenbaum, A. M., Langsam, Y., Augestein, M. J., Estruturas de Dados Usando C. Makron Books, 1995.
- [4] Levitin, A. V., Introduction to the Design and Analysis of Algorithms. Pearson Addison-Wesley, 2007.
- [5] Parte deste material foi adaptado das listas de exercícios do Prof. João Luís Garcia Rosa, ICMC/USP.