1. Детерминирани крайни автомати.

Определение 2.1. Детерминиран краен автомат е петорка $\mathcal{A} = \langle \Sigma, Q, q_{\mathtt{start}}, \delta, F \rangle$, където

- Σ е азбука;
- Q е крайно множество от състояния;
- $\delta:Q\times\Sigma\to Q$ е тотална функция, която ще наричаме функция на преходите;
- $q_{\mathtt{start}} \in Q$ е начално състояние;
- $F \subseteq Q$ е множеството от финални състояния

Нека имаме една дума $\alpha \in \Sigma^*$, $\alpha = a_0 a_1 \cdots a_{n-1}$. Казваме, че α се **разпознава** от автомата \mathcal{A} , ако съществува редица от състояния $q_0, q_1, q_2, \ldots, q_n$, такива че:

- $q_0 = q_{\text{start}}$, началното състояние на автомата;
- $\delta(q_i, a_i) = q_{i+1}$, за всяко $i = 0, \dots, n-1$;
- q_n ∈ F.

2. Недетерминирани крайни автомати.

Определение 2.2. Недетерминиран краен автомат представлява петорка

$$\mathcal{N} = \langle \Sigma, Q, Q_{\text{start}}, \Delta, F \rangle$$
,

- Q е крайно множество от състояния;
- ∑ е крайна азбука;
- $\Delta: Q \times \Sigma \to \mathscr{P}(Q)$ е функцията на преходите. Да обърнем внимание, че е възможно за някоя двойка (q,a) да няма нито един преход в автомата. Това е възможно, когато $\Delta(q,a)=\emptyset$;
- $Q_{\mathtt{start}} \subseteq Q$ е множество от начални състояния;
- $F \subseteq Q$ е множеството от финални състояния.

Удобно е да разширим функцията на преходите $\Delta: Q \times \Sigma \to \mathscr{P}(Q)$ до функцията $\Delta^\star: \mathscr{P}(Q) \times \Sigma^\star \to \mathscr{P}(Q)$, която дефинираме за произволно $R \subseteq Q$ и $\alpha \in \Sigma^\star$ по следния начин:

- Ako $\alpha = \varepsilon$, to $\Delta^{\star}(R, \varepsilon) \stackrel{\text{\tiny Aef}}{=} R$;
- Ako $\alpha=\beta a$, to $\Delta^\star(R,\beta a)\stackrel{\mathrm{geo}}{=}\bigcup\{\Delta(p,a)\mid p\in\Delta^\star(R,\beta)\}.$

$$\mathcal{L}(\mathcal{N}) \stackrel{\text{def}}{=} \{ \omega \in \Sigma^* \mid \Delta^*(Q_{\text{start}}, \omega) \cap F \neq \emptyset \}.$$

3. Представяне на всеки недетерминиран краен автомат с детерминиран (с доказателство).

Твърдение 2.6. За всеки две думи $\alpha, \beta \in \Sigma^*$ и всяко $R \subseteq Q$,

$$\Delta^{\star}(R, \alpha\beta) = \Delta^{\star}(\Delta^{\star}(R, \alpha), \beta).$$

Доказателство. Индукция по дължината на β .

• Нека $|\beta| = 0$, т.е. $\beta = \varepsilon$. Тогава:

$$\Delta^{\star}(R, \alpha \varepsilon) = \Delta^{\star}(R, \alpha)$$
 // $\alpha \varepsilon = \alpha$
= $\Delta^{\star}(\Delta^{\star}(R, \alpha), \varepsilon)$. // деф. на Δ^{\star}

- Да приемем, че твърдението е вярно за думи β с дължина n.
- Нека $|\beta| = n + 1$, т.е. $\beta = \gamma b$, където $|\gamma| = n$.

$$\Delta^{\star}(R,\alpha\gamma b) = \bigcup\{\Delta(p,b) \mid p \in \Delta^{\star}(R,\alpha\gamma)\} \qquad /\!\!/ \text{ от деф. на } \Delta^{\star}$$

$$= \bigcup\{\Delta(p,b) \mid p \in \Delta^{\star}(\underbrace{\Delta^{\star}(R,\alpha)},\gamma))\} \qquad /\!\!/ \text{ от И.П. за } \gamma$$

$$= \bigcup\{\Delta(p,b) \mid p \in \Delta^{\star}(U,\gamma)\} \qquad /\!\!/ \text{ нека } U \stackrel{\text{деф.}}{=} \Delta^{\star}(R,\alpha)$$

$$= \Delta^{\star}(U,\gamma b) \qquad /\!\!/ \text{ от деф. на } \Delta^{\star}$$

$$= \Delta^{\star}(\Delta^{\star}(R,\alpha),\gamma b) \qquad /\!\!/ U = \Delta^{\star}(R,\alpha)$$

Теорема 2.2 (Рабин-Скот [RS59]). За всеки недетерминиран краен автомат $\mathcal N$ съществува еквивалентен на него детерминиран краен автомат $\mathcal D$, т.е.

$$\mathcal{L}(\mathcal{N}) = \mathcal{L}(\mathcal{D}).$$

Упътване. Нека $\mathcal{N} = \langle \Sigma, Q, Q_{\mathtt{start}}, \Delta, F \rangle$. Ще построим детерминиран автомат $\mathcal{D} = (Q', \Sigma, \delta, q_{\mathtt{start}}, F'),$

за който $\mathcal{L}(\mathcal{N}) = \mathcal{L}(\mathcal{D})$. Конструкцията е следната:

- Q' = {¬R¬ | R ⊆ Q};
- За произволна буква $a \in \Sigma$ и произволно $R \subseteq Q$,

$$\delta(\lceil R \rceil, a) \stackrel{\text{def}}{=} \lceil \Delta^{\star}(R, a) \rceil.$$

- q_{start} = \(\bigcap_Q_{start} \);
- $F' \stackrel{\mathsf{qe}}{=} \{ \lceil R \rceil \in Q' \mid R \cap F \neq \emptyset \}.$

Ще докажем, че за произволна дума α и произволно множество $R\subseteq Q$ е изпълнено, че:

$$\lceil \Delta^{\star}(R, \alpha) \rceil = \delta^{\star}(\lceil R \rceil, \alpha).$$
 (2.6)

Това ще направим с индукция по дължината на думата α .

• Ако $|\alpha|=0$, т.е. $\alpha=\varepsilon$, то е ясно от дефиницията на Δ^\star и δ^\star , т.е. за всяко $R\subseteq Q$ е изпълнено, че:

$$\ulcorner \Delta^{\star}(R,\varepsilon) \urcorner = \ulcorner R \urcorner = \delta^{\star}(\ulcorner R \urcorner,\varepsilon).$$

• Да приемем, че (2.6) е изпълнено за думи α с дължина n, т.е.

$$(\forall \alpha \in \Sigma^n)(\forall R \subseteq Q)[\,\lceil \Delta^\star(R,\alpha) \rceil = \delta^\star(\lceil R \rceil,\alpha)\,].$$

• Нека сега α има дължина n+1, т.е. $\alpha=\beta a$, където $|\beta|=n$ и $a\in \Sigma$.

$$\begin{split} \delta^\star(\ulcorner R \urcorner, \beta a) &= \delta(\delta^\star(\ulcorner R \urcorner, \beta a)) & /\!/ \text{ деф. на } \delta^\star \\ &= \delta(\ulcorner \Delta^\star(R, \beta) \urcorner, a) & /\!/ \text{ от И.П. за } \beta \\ &= \ulcorner \Delta^\star(\Delta^\star(R, \beta), a) \urcorner & /\!/ \text{ от деф. на } \delta \\ &= \ulcorner \Delta^\star(R, \beta a) \urcorner. & /\!/ \text{ от Tвърдение 2.6} \end{split}$$

4. Регулярни операции.

- 5. Доказателство за затвореност на автоматните езици относно регулярните операции.
- 6. Регулярни езици.
- 7. Формулировка и доказателство на теоремата на Клини.
- 8. Формулировка и доказателство на лемата разрастване за регулярни езици (uvw-лема).
- 9. Примери за нерегулярни езици.
- 10. Формулировка и доказателство на теоремата на Майхил -Нероуд.
- 11. Алгоритъм за конструиране на минимален краен детерминиран тотален автомат, еквивалентен на даден детерминиран краен автомат.