

### MM54HC390/MM74HC390 Dual 4-Bit Decade Counter MM54HC393/MM74HC393 Dual 4-Bit Binary Counter

### **General Description**

These counter circuits contain independent ripple carry counters and utilize advanced silicon-gate CMOS technology. The MM54HC390/MM74HC390 incorporate dual decade counters, each composed of a divide-by-two and a divide-by-five counter. The divide-by-two and divide-by-five counters can be cascaded to form dual decade, dual bi-quinary, or various combinations up to a single divide-by-100 counter. The MM54HC393/MM74HC393 contain two 4-bit ripple carry binary counters, which can be cascaded to create a single divide-by-256 counter.

Each of the two 4-bit counters is incremented on the high to low transition (negative edge) of the clock input, and each has an independent clear input. When clear is set high all four bits of each counter are set to a low level. This enables count truncation and allows the implementation of divide-by-N counter configurations.

Each of the counters outputs can drive 10 low power Schottky TTL equivalent loads. These counters are func-

tionally as well as pin equivalent to the 54LS390/74LS390 and the 54LS393/74LS393, respectively. All inputs are protected from damage due to static discharge by diodes to  $V_{CC}$  and ground.

#### **Features**

- Typical operating frequency: 50 MHz
- Typical propagation delay: 13 ns (Ck to Q<sub>A</sub>)
- Wide operating supply voltage range: 2-6V
- Low input current: <1 µA
- Low quiescent supply current: 80 μA maximum (74HC Series)
- Fanout of 10 LS-TTL loads

### **Connection Diagrams**



Order Number MM54HC390 or MM74HC390



Order Number MM54HC393 or MM74HC393

# Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage (V <sub>CC</sub> )                             | -0.5 to $+7.0$ V              |
|---------------------------------------------------------------|-------------------------------|
| DC Input Voltage (V <sub>IN</sub> )                           | $-1.5$ to $V_{CC} + 1.5V$     |
| DC Output Voltage (V <sub>OUT</sub> )                         | $-0.5$ to $V_{\rm CC} + 0.5V$ |
| Clamp Diode Current (I <sub>IK</sub> , I <sub>OK</sub> )      | $\pm$ 20 mA                   |
| DC Output Current, per pin (I <sub>OUT</sub> )                | $\pm$ 25 mA                   |
| DC V <sub>CC</sub> or GND Current, per pin (I <sub>CC</sub> ) | $\pm$ 50 mA                   |
| Storage Temperature Range (T <sub>STG</sub> )                 | -65°C to +150°C               |
|                                                               |                               |

Power Dissipation (PD)

 (Note 3)
 600 mW

 S.O. Package only
 500 mW

 Lead Temp. (T<sub>L</sub>) (Soldering 10 seconds)
 260°C

 Supply Voltage (V<sub>CC</sub>)
 2
 6
 V

 DC Input or Output Voltage (V<sub>IN</sub>, V<sub>OUT</sub>)
 0
 V<sub>CC</sub>
 V

 Operating Temp. Range (T<sub>A</sub>)
 -40
 +85
 °C

 MM74HC
 -55
 +125
 °C

Max

Units

**Operating Conditions** 

#### 

### **DC Electrical Characteristics** (Note 4)

| Symbol          | Parameter                           | Conditions                                                                        | v <sub>cc</sub>      | T <sub>A</sub> =25°C |                     | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> = -55 to 125°C | Units  |
|-----------------|-------------------------------------|-----------------------------------------------------------------------------------|----------------------|----------------------|---------------------|--------------------------------------|---------------------------------------|--------|
|                 |                                     |                                                                                   |                      | Тур                  |                     | Guaranteed                           | Limits                                | 1      |
| $V_{IH}$        | Minimum High Level                  |                                                                                   | 2.0V                 |                      | 1.5                 | 1.5                                  | 1.5                                   | V      |
|                 | Input Voltage                       |                                                                                   | 4.5V                 |                      | 3.15                | 3.15                                 | 3.15                                  | V      |
|                 |                                     |                                                                                   | 6.0V                 |                      | 4.2                 | 4.2                                  | 4.2                                   | V      |
| $V_{IL}$        | Maximum Low Level                   |                                                                                   | 2.0V                 |                      | 0.5                 | 0.5                                  | 0.5                                   | V      |
|                 | Input Voltage**                     |                                                                                   | 4.5V                 |                      | 1.35                | 1.35                                 | 1.35                                  | V      |
|                 |                                     |                                                                                   | 6.0V                 |                      | 1.8                 | 1.8                                  | 1.8                                   | V      |
| $V_{OH}$        | Minimum High Level Output Voltage   | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 20 \mu A$                  | 2.0V                 | 2.0                  | 1.9                 | 1.9                                  | 1.9                                   | V      |
|                 | - Calpat Voltage                    | 1.0011=20 /6/1                                                                    | 4.5V                 | 4.5                  | 4.4                 | 4.4                                  | 4.4                                   | v      |
|                 |                                     |                                                                                   | 6.0V                 | 6.0                  | 5.9                 | 5.9                                  | 5.9                                   | v      |
|                 |                                     | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 4.0 \text{ mA}$            | 4.5V                 | 4.2                  | 3.98                | 3.84                                 | 3.7                                   | V      |
|                 |                                     | I <sub>OUT</sub>  ≤5.2 mA                                                         | 6.0V                 | 5.7                  | 5.48                | 5.34                                 | 5.2                                   | V      |
| $V_{OL}$        | Maximum Low Level Output Voltage    | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 20 \mu A$                     | 2.0V                 | 0                    | 0.1                 | 0.1                                  | 0.1                                   | V      |
|                 |                                     |                                                                                   | 4.5V                 | 0                    | 0.1                 | 0.1                                  | 0.1                                   | V<br>V |
|                 |                                     | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$ I_{OUT}  \le 4.0$ mA<br>$ I_{OUT}  \le 5.2$ mA | 6.0V<br>4.5V<br>6.0V | 0<br>0.2<br>0.2      | 0.1<br>0.26<br>0.26 | 0.1<br>0.33<br>0.33                  | 0.1<br>0.4<br>0.4                     | V      |
| I <sub>IN</sub> | Maximum Input<br>Current            | V <sub>IN</sub> =V <sub>CC</sub> or GND                                           | 6.0V                 |                      | ±0.1                | ±1.0                                 | ±1.0                                  | μΑ     |
| Icc             | Maximum Quiescent<br>Supply Current | V <sub>IN</sub> =V <sub>CC</sub> or GND<br>I <sub>OUT</sub> =0 μA                 | 6.0V                 |                      | 8.0                 | 80                                   | 160                                   | μΑ     |

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

 $\textbf{Note 3:} \ Power \ Dissipation \ temperature \ derating -- plastic \ "N" \ package: -12 \ mW/°C \ from \ 65°C; \ ceramic \ "J" \ package: -12 \ mW/°C \ from \ 100°C \ to \ 125°C.$ 

Note 4: For a power supply of 5V  $\pm$  10% the worst case output voltages (V<sub>OH</sub>, and V<sub>OL</sub>) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V<sub>IH</sub> and V<sub>IL</sub> occur at V<sub>CC</sub>=5.5V and 4.5V respectively. (The V<sub>IH</sub> value at 5.5V is 3.85V.) The worst case leakage current (I<sub>IN</sub>, I<sub>CC</sub>, and I<sub>OZ</sub>) occur for CMOS at the higher voltage and so the 6.0V values should be used.

<sup>\*\*</sup> $V_{IL}$  limits are currently tested at 20% of  $V_{CC}$ . The above  $V_{IL}$  specification (30% of  $V_{CC}$ ) will be implemented no later than Q1, CY'89.

### AC Electrical Characteristics MM54HC390/MM74HC390

 $V_{CC} = 5V$ ,  $T_A = 25$ °C,  $C_L = 15$  pF,  $t_r = t_f = 6$  ns

| Symbol                              | Parameter                                                                 | Conditions | Тур | Guaranteed Limit | Units |
|-------------------------------------|---------------------------------------------------------------------------|------------|-----|------------------|-------|
| f <sub>MAX</sub>                    | Maximum Operating Frequency, Clock A or B                                 |            | 50  | 30               | MHz   |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock A to $Q_A$ Output                        |            | 12  | 20               | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock A to $Q_C$ ( $Q_A$ Connected to Clock B) |            | 32  | 50               | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock B to $Q_B$ or $Q_D$                      |            | 15  | 21               | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock B to $Q_{\mathbb{C}}$                    |            | 20  | 32               | ns    |
| t <sub>PHL</sub>                    | Maximum Propagation Delay, Clear to any Output                            |            | 15  | 28               | ns    |
| t <sub>REM</sub>                    | Minimum Removal Time, Clear to Clock                                      |            | -2  | 5                | ns    |
| t <sub>W</sub>                      | Minimum Pulse Width, Clear or Clock                                       |            | 10  | 16               | ns    |

## AC Electrical Characteristics $C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

| Symbol                              | Parameter                                                                                  | Conditions    | v <sub>cc</sub>      | T <sub>A</sub> =25°C |                    | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> = -55 to 125°C | Units             |
|-------------------------------------|--------------------------------------------------------------------------------------------|---------------|----------------------|----------------------|--------------------|--------------------------------------|---------------------------------------|-------------------|
|                                     |                                                                                            |               |                      |                      |                    | Guaranteed                           |                                       |                   |
| f <sub>MAX</sub>                    | Maximum Operating<br>Frequency                                                             |               | 2.0V<br>4.5V<br>6.0V |                      | 5<br>27<br>31      | 4<br>21<br>24                        | 3<br>18<br>20                         | MHz<br>MHz<br>MHz |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay, Clock A to Q <sub>A</sub>                                    |               | 2.0V<br>4.5V<br>6.0V | 45<br>15<br>13       | 120<br>24<br>21    | 150<br>30<br>26                      | 180<br>35<br>31                       | ns<br>ns<br>ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock A to Q <sub>C</sub> (Q <sub>A</sub> Connected to Clock B) |               | 2.0V<br>4.5V<br>6.0V | 100<br>35<br>30      | 290<br>58<br>50    | 360<br>72<br>62                      | 430<br>87<br>75                       | ns<br>ns<br>ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay, Clock B to Q <sub>B</sub> or<br>Q <sub>D</sub>               |               | 2.0V<br>4.5V<br>6.0V | 50<br>16<br>13       | 130<br>26<br>22    | 160<br>33<br>28                      | 195<br>39<br>33                       | ns<br>ns<br>ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay, Clock B to Q <sub>C</sub>                                    |               | 2.0V<br>4.5V<br>6.0V | 60<br>20<br>17       | 185<br>37<br>32    | 230<br>46<br>40                      | 280<br>55<br>48                       | ns<br>ns<br>ns    |
| t <sub>PHL</sub>                    | Maximum Propagation<br>Delay, Clear to any Q                                               |               | 2.0V<br>4.5V<br>6.0V | 55<br>17<br>15       | 165<br>33<br>28    | 210<br>41<br>35                      | 250<br>49<br>42                       | ns<br>ns<br>ns    |
| t <sub>REM</sub>                    | Minimum Removal Time<br>Clear to Clock                                                     |               | 2.0V<br>4.5V<br>6.0V |                      | 25<br>5<br>5       | 25<br>5<br>5                         | 25<br>5<br>5                          | ns<br>ns<br>ns    |
| tw                                  | Minimum Pulse Width<br>Clear or Clock                                                      |               | 2.0V<br>4.5V<br>6.0V | 30<br>10<br>9        | 80<br>16<br>14     | 100<br>20<br>18                      | 120<br>24<br>20                       | ns<br>ns<br>ns    |
| t <sub>THL</sub> , t <sub>TLH</sub> | Maximum Output Rise and Fall Time                                                          |               | 2.0V<br>4.5V<br>6.0V | 30<br>8<br>7         | 75<br>15<br>13     | 95<br>19<br>16                       | 110<br>22<br>19                       | ns<br>ns<br>ns    |
| t <sub>r</sub> , t <sub>f</sub>     | Maximum Input Rise<br>and Fall Time                                                        |               | 2.0V<br>4.5V<br>6.0V |                      | 1000<br>500<br>400 | 1000<br>500<br>400                   | 1000<br>500<br>400                    | ns<br>ns<br>ns    |
| C <sub>PD</sub>                     | Power Dissipation<br>Capacitance (Note 5)                                                  | (per counter) |                      | 55                   |                    |                                      |                                       | pF                |
| C <sub>IN</sub>                     | Maximum Input Capacitance                                                                  |               |                      | 5                    | 10                 | 10                                   | 10                                    | pF                |

 $\textbf{Note 5:} \ C_{PD} \ \text{determines the no load dynamic power consumption, } P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC}.$ 

### AC Electrical Characteristics MM54HC393/MM74HC393

 $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ ,  $C_L = 15$  pF,  $t_r = t_f = 6$  ns

| Symbol                              | Parameter                                            | Conditions | Тур | Guaranteed Limit | Units |
|-------------------------------------|------------------------------------------------------|------------|-----|------------------|-------|
| f <sub>MAX</sub>                    | Maximum Operating Frequency                          |            | 50  | 30               | MHz   |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock A to QA             |            | 13  | 20               | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock A to Q <sub>B</sub> |            | 19  | 35               | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock A to Q <sub>C</sub> |            | 23  | 42               | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock A to Q <sub>D</sub> |            | 27  | 50               | ns    |
| t <sub>PHL</sub>                    | Maximum Propagation Delay, Clear to any Q            |            | 15  | 28               | ns    |
| t <sub>REM</sub>                    | Minimum Removal Time                                 |            | -2  | 5                | ns    |
| t <sub>W</sub>                      | Minimum Pulse Width Clear or Clock                   |            | 10  | 16               | ns    |

### AC Electrical Characteristics $C_L = 50 \text{ pF}$ , $t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

| Symbol                              | Parameter                                              | Conditions    | v <sub>cc</sub>      | T <sub>A</sub> =25°C |                    | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> = -55 to 125°C | Units          |
|-------------------------------------|--------------------------------------------------------|---------------|----------------------|----------------------|--------------------|--------------------------------------|---------------------------------------|----------------|
|                                     |                                                        |               |                      | Тур                  |                    | Guaranteed                           | Limits                                |                |
| f <sub>MAX</sub>                    | Maximum Operating<br>Frequency                         |               | 2.0V<br>4.5V<br>6.0V |                      | 5<br>27<br>31      | 4<br>21<br>24                        | 3<br>18<br>20                         | MHz<br>MHz     |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay Clock A to Q <sub>A</sub> |               | 2.0V<br>4.5V<br>6.0V | 45<br>15<br>13       | 120<br>24<br>21    | 150<br>30<br>26                      | 180<br>35<br>31                       | ns<br>ns<br>ns |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay Clock A to Q <sub>B</sub> |               | 2.0V<br>4.5V<br>6.0V | 68<br>23<br>20       | 190<br>38<br>32    | 240<br>47<br>40                      | 285<br>57<br>48                       | ns<br>ns<br>ns |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay Clock A to Q <sub>C</sub> |               | 2.0V<br>4.5V<br>6.0V | 90<br>30<br>26       | 240<br>48<br>41    | 300<br>60<br>51                      | 360<br>72<br>61                       | ns<br>ns<br>ns |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay<br>Clock to Q <sub>D</sub>   |               | 2.0V<br>4.5V<br>6.0V | 100<br>35<br>30      | 290<br>58<br>50    | 360<br>72<br>62                      | 430<br>87<br>75                       | ns<br>ns<br>ns |
| t <sub>PHL</sub>                    | Maximum Propagation<br>Delay Clear to any Q            |               | 2.0V<br>4.5V<br>6.0V | 54<br>18<br>15       | 165<br>33<br>28    | 210<br>41<br>35                      | 250<br>49<br>42                       | ns<br>ns<br>ns |
| t <sub>REM</sub>                    | Minimum Clear Removal<br>Time                          |               | 2.0V<br>4.5V<br>6.0V |                      | 25<br>5<br>5       | 25<br>5<br>5                         | 25<br>5<br>5                          | ns<br>ns<br>ns |
| t <sub>W</sub>                      | Minimum Pulse Width<br>Clear or Clock                  |               | 2.0V<br>4.5V<br>6.0V | 30<br>10<br>9        | 80<br>16<br>14     | 100<br>20<br>18                      | 120<br>24<br>20                       | ns<br>ns<br>ns |
| t <sub>THL</sub> , t <sub>TLH</sub> | Maximum Output Rise and Fall Time                      |               | 2.0V<br>4.5V<br>6.0V | 30<br>8<br>7         | 75<br>15<br>13     | 95<br>19<br>16                       | 110<br>22<br>19                       | ns<br>ns<br>ns |
| t <sub>r</sub> , t <sub>f</sub>     | Maximum Input Rise<br>and Fall Time                    |               |                      | _                    | 1000<br>500<br>400 | 1000<br>500<br>400                   | 1000<br>500<br>400                    | ns<br>ns<br>ns |
| C <sub>PD</sub>                     | Power Dissipation<br>Capacitance (Note 5)              | (per counter) |                      | 42                   |                    |                                      |                                       | pF             |
| C <sub>IN</sub>                     | Maximum Input Capacitance                              |               |                      | 5                    | 10                 | 10                                   | 10                                    | pF             |

Note 5:  $C_{PD}$  determines the no load dynamic power consumption,  $P_D = C_{PD} \, V_{CC}^2 \, f + I_{CC} \, V_{CC}$ , and the no load dynamic current consumption,  $I_S = C_{PD} \, V_{CC} \, f + I_{CC}$ .





### Physical Dimensions inches (millimeters)





Order Number MM54HC390J, MM54HC393J, MM74HC390J, or MM74HC393J NS Package J14A



Order Number MM54HC390J, MM54HC393J, MM74HC390J, or MM74HC393J NS Package J16A

### Physical Dimensions inches (millimeters) (Continued)



#### Order Number MM74HC390N or MM74HC393N NS Package N14A



Order Number MM74HC390N or MM74HC393N NS Package N16A

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



National Semiconductor

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

**National Semiconductor** Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408