USING NLP AND UNSUPERVISED LEARNING TO CLUSTER TWEETS FROM MEMBERS OF THE 116TH CONGRESS

*** * ,

Jennifer Brown General Assembly May 2021

TABLE OF CONTENTS

01

INTRODUCTION

The problem. Who's interested? Why?

04

RESULTS

The clusters
Sentiment Analysis
Cluster Demos

02

THE DATA

Collection
Cleaning
Text Processing

05

CONCLUSIONS

Tying it all together

03

MODELING

spaCy CVEC TF-IDF

06

RECOMMENDATIONS

Next Steps.....

INTRODUCTION

- Problem Statement
 - The United States of America has two major political parties: Republican and Democrat with a few Independents and Libertarians here and there.
 - But, while Congress Persons typically affiliate with one of these two political parties, can they be grouped differently based on the language used in throughout their body of tweets?
- Audience
- Importance

THE DATA: COLLECTION & CLEANING

- Data Sources:
 - Tweets of Congress
 - A GitHub repository collecting daily tweets for all members of Congress and affiliates.
 - Twitter Handles
 - Wikipedia
- Cleaning
 - Keep relevant Twitter accounts
 - Remove duplicates
 - Keep relevant columns

THE DATA: PREPROCESSING

- Remove:
 - Hyperlinks, emojis, symbols, characters
- Remove stopwords and contractions
- Keep important parts of speech
- Lemmatization

MODELING

- Unsupervised Machine Learning Cluster Algorithms
 - K-Means
 - DBSCAN
- Text Vectorization
 - spaCy word embeddings
 - CVEC or Count Vectorizer
 - TF-IDF or term frequency-inverse document frequency

MODELING

	Model 1	Model 2	Model 3	
		1) CVEC		
	1) SpaCy word	2) Scaled	1) TF-IDF	
	vectors	3) PCA	2) Scaled	
	2) TSNE	4) TSNE	3) TSNE	
	2) 13NL	4) 13NL	<i>3)</i> 1314L	
Silhouette Score	0.529	0.547	0.492	
Silhouette Score Inertia Value	•	-	•	

MODELING

	Model 1	Model 2	Model 3	
		1) CVEC		
	1) SpaCy word	2) Scaled	1) TF-IDF	
	vectors	3) PCA	2) Scaled	
	2) TSNE	4) TSNE	3) TSNE	
Silhouette Score	0.529	0.547	0.492	
Inertia Value	49197.659	50542.696	43583.468	
k (# of clusters)	2	2	2	

Cluster 0: 278 documents

Cluster 1: 243 documents

Most Frequent Words							
Complete Corpus		Cluster 0		Cluster 1			
today	136868	today	105011	today	31857		
work	128641	work	101290	work	27351		
need	115104	need	95138	thank	23990		
trump	100434	trump	88466	help	21055		
help	100053	help	78998	need	19966		
people	92826	people	76404	great	18678		
act	92378	act	75588	year	17610		
president	91200	president	74882	house	17381		
thank	89566	health	71351	time	17161		
community	88413	community	71267	community	17146		

Percent of Tweet Count Bins in Each Cluster by KM Label:

Percent of Elected Position in Each Cluster by KM Label: CVEC

 RepPressley
 0.999999

 NydiaVelazquez
 0.999998

 SenFeinstein
 0.999990

 RepChuyGarcia
 0.999986

 LeaderHoyer
 0.999931

senduckworth

RepTrey	-1.000000
RepRussFulcher	-0.999998
RepPeteStauber	-0.999996
RepMikeTurner	-0.999995
SenJohnThune	-0.999989

- Find Similarity Values!
 - Cosine Similarity
 - o -1 to 1

CONCLUSIONS

- Two distinct clusters found using K-Means
 - Cluster 0 tended to write more tweets, had more Senators and more Democrats
- Mostly neutral sentiment with a very slight positive arc
- Cosine Similarity to find similar or dissimilar Congress Persons

RECOMMENDATIONS

- Collect more official Senator and Representative Twitter data
 - Replicate on Twitter data for time periods during Barack Obama's presidency
- Explore other dimensionality reduction measures
- Try other word vectorization packages
 - Gensim
 - GloVe
- Look at voting data for Senators and Reps
 - How would this look in comparison to tweet clusters?

THANKS!

What questions do you have?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**