M623 HOMEWORK Part II – Fall 2014

Prof. Andrea R. Nahmod

SET 8 - Due 12/11/14 (WITH EXAM)

Chapter 3 (pp 145-155): 11, 12, 15, 16, 22. Do also: 1, 4 (from last time), 7.

Note: Please start working on the above. I will add a couple more on BV and absolute continuity soon.

SET 7 - DUE 11/25/14

Do the three problems I assigned in class last week plus:

From Chapter 2 (pp 88-97): 16, 21d)e), 24, 25.

From Chapter 3 (pp 146-Section 5): 4, 5.

From Chapter 3 (pp 152- Section 6): 1*. This problem is based on a good understanding of Lemma 1.2 p.102 and of Lemma 3.9 p.128-definition of Vitali covering is just before the statement of Lemma 3.9.

*: do not turn in.

SET 6 - DUE 11/13/14

From Chapter 2 (pp 88-97): Read Cor. 3.7- 3.8, then do 7. Recall Invariance (p. 73). Read Prop 3.9 then do 21.

Additional Problems

I. Let s be a fixed positive number. Prove that

$$\int_0^\infty e^{-sx} \frac{\sin^2 x}{x} \, dx = \frac{1}{4} \log(1 + 4s^{-2})$$

by integrating $e^{-sx}\sin(2xy)$ with respect to $x \in (0,\infty)$, $y \in (0,1)$ and with respect to $y \in (0,1)$, $x \in (0,\infty)$. Justify all your steps. (**Hints.** $\cos(2\theta) = 1 - 2\sin^2\theta$. In order to do one of the integrations, either integrate by parts twice or use the definition of the appropriate trigonometric function in terms of complex exponentials.)

- **II.** Consider the function $f(x,y) := e^{-xy} 2e^{-2xy}$ where $x \in [0,\infty)$ and $y \in [0,1]$.
- i) Prove that for a.e. $y \in [0,1]$ f^y is integrable on $[0,\infty)$ with respect to $m_{\mathbb{R}}$.
- ii) Prove that for a.e. $x \in [0, \infty)$ f^x is integrable on [0, 1] with respect to $m_{\mathbb{R}}$.
- iii) Use Fubini to prove that f(x,y) is not integrable on $[0,\infty)\times[0,1]$ with respect to $m_{\mathbb{R}^2}$.

SET 5 – Due Thursday 11/13/14 (from before Midterm. Please turn in)

From S-K's Book, do problems: 8 (p. 39), 13a) (p 41), 17 (p 42), 19 (p 42), 20 (p42-43), 30 (p 44).

Additional Problems:

- **I.** Consider the sequence of functions $f_n(x) := \frac{n}{1+(nx)^2}$. For $a \in \mathbb{R}$ be a fixed number consider the Lebesgue integral $I_a(f_n)(x) := \int_a^\infty f_n(x) dm$. Compute $\lim_{n\to\infty} I_a(f_n)(x)$ in each case: i) a = 0 ii) a > 0 and iii) a < 0. Carefully justify your calculations (recall the transformation of integrals under dilations).
- II. Use the DCT to prove the following: let $\{f_n\}_{n\geq 1}$ be a sequence of integrable functions on \mathbb{R}^d such that $\sum_{n=1}^{\infty} \int |f_n(x)| dm < \infty$. Show that $\sum_{n=1}^{\infty} f_n(x)$ converges a.e. $x \in \mathbb{R}^d$ to an integrable function and that $\sum_{n=1}^{\infty} \int f_n(x) dm = \int \sum_{n=1}^{\infty} f_n(x) dm$.
- III. Let 0 < c < d be fixed real numbers and for $n \ge 1$ consider the sequence function $f_n(x) = ce^{-cnx} - de^{-dnx}$, where $x \ge 0$. Prove that:

 - (1) $\sum_{n=1}^{\infty} \int |f_n(x)| dm$ diverges (2) $\sum_{n=1}^{\infty} \int f_n(x) dm = 0$ (3) $\sum_{n=1}^{\infty} f_n(x)$ is an integrable function on $[0, \infty)$ and that

$$\int_{[0,\infty)} \sum_{n=1}^{\infty} f_n(x) dm = \ln(\frac{d}{c}).$$

IV. Consider the function on $\mathbb{R} \times \mathbb{R}$ given by

$$f(x,y) = ye^{-(x^2+1)y^2}$$
 if $x \ge 0, y \ge 0$ and 0 otherwise.

- a) Integrate f(x,y) over $\mathbb{R} \times \mathbb{R}$ (justify your steps carefully)
- b) Use a) to prove that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$. c) Use b) and dilation to prove that $\int_{-\infty}^\infty e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$.
- V. Let f(x) be a measurable function over \mathbb{R}^{d_1} and g(y) be a measurable function over \mathbb{R}^{d_2} . Prove that F(x,y) = f(x)g(y) is a measurable function over $\mathbb{R}^{d_1+d_2}$.