MAT-255- Number Theory

Spring 2024

IN CLASS WORK MARCH 1

Your Name: _____

Group Members:_

In-class Problem 1

Repeat the proof from last class to prove

Theorem 1 (Theorem 3.2). Let m and n be positive integers where (m,n)=1. Then $\phi(mn)=\phi(m)\phi(n)$.

Proof Let m and m be relatively prime positive integers. A number a is relatively prime to mn if and only if a is relatively prime to mn and m and m be relatively prime to m and m and m be relatively prime to m and m and m and m be relatively prime to m and m are relatively prime to m and m and m are relatively prime to m and m and m are relatively prime to m and m and m are relatively prime to m and m and m and m are relatively prime to m and m are relatively prime to m and m and m are relatively prime to m and m and m are relatively prime to m and m and m are relatively prime to m and m and m are relatively prime to m and m a

We can partition the positive integers less that or equal to mn into

$$1 \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \cdots \equiv \underline{\hspace{1cm}} \pmod{m}$$

$$2 \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \cdots \equiv \underline{\hspace{1cm}} \pmod{m}$$

:

$$m \equiv \underline{\hspace{1cm}} \equiv \underline{\hspace{1cm}} \equiv \cdots \equiv \underline{\hspace{1cm}} \pmod{m}$$

For any b in the range $1, 2, 3, \ldots, m$, define s_b to be the number of integers a in the range $1, 2, \ldots, mn$ such that $a \equiv b \pmod{m}$ and $\gcd(a, mn) = 1$. Thus, when (b, m) = 1, $s_b = \phi(\underline{\hspace{1cm}})$ and when (b, m) > 1, $s_b = \underline{\hspace{1cm}}$.

We have seen that $\phi(mn) = s_1 + s_2 + \cdots + s_m$, that when (b, m) = 1, $s_b = \underline{\hspace{1cm}}$, and that when (b, m) > 1, $s_b = \underline{\hspace{1cm}}$. Since there are $\phi(\underline{\hspace{1cm}})$ integers b where (b, m) = 1. Thus, we can say that $\phi(mn) = \underline{\hspace{1cm}}$.

In-class Problem 2

Complete the proof of Theorem 3.2 by proving

Proposition 1. If m, n, and i are positive integers with (m, n) = (m, i) = 1, then the integers

$$i, m + i, 2m + i, \dots, (n - 1)m + i$$

form a complete system of residues modulo n.

Learning outcomes:

Author(s): Claire Merriman

This blank is asking for a function, not a value.