Shortest path has optimal substructure.

$$\delta(a,b) = \min(\delta(a,c) + w(c,b), \delta(a,d) + w(d,b))$$

Given a weighted, directed graph $G=(V,\,E)$ and a source vertex s in V, find the min cost path from so to every vertex in V.

- Bellman-Ford
 - DP
 - General case, edge weights may be negative
- Djiikstra
 - Greedy
 - Edge weights must be non-negative

Relaxation: Given a vertex v, a vertex u, and an edge $(u,\,v)$, we can relax v by

```
Relax(u, v)
if v.d > u.d + w(u, v)
   v.d = u.d + w(u, v)
   v.pi = u
```

Proof by induction on relaxing the ith edge (v_{i-1}, v_i) on p

Let $w_I = \sum_{i=1}^{i} w(v_{i=1}, v_i)$. W_i is the shortest path weights $\delta(s, v_i)$ because of optimal substructure