TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Datenverarbeitung PD Dr. Martin Kleinsteuber

Information Retrieval in High Dimensional Data Lab #4, 3.5.2018

Logistic Regression

- Task 1. Recall the data processing routines from the last lab course. The following excercises build on top of the extracted feature representations, but instead of the prebuilt classifier, we want to implement logistic regression by hand, i.e. by minimizing $F(\mathbf{w})$ from Chapter 3 in the lecture notes. To this end, make sure, that the variables train, test, train_data_features and test_data_features are loaded to your IPython shell.
 - a) Write a PYTHON function logistic_gradient that expects a training set matrix X_train, a ground truth label vector y_train and a current weight vector w as its input and returns the gradient g of the negative log-likelihood function of the logistic regression. Refer to the lecture notes for the mathematical definition.
 - b) Write a PYTHON function find_w that expects a training set matrix X_train, a ground truth label vector y_train, a step size alpha and a maximum iteration number max_it that determines the optimal logistic regression weight vector w_star by performing gradient descent, i.e. calling logistic_gradient in each iteration. Make sure to include the affine offset $w_0 = b$ into your model.
 - c) The dataset at hand is quite large. Applying standard gradient descent could likely lead to Python throwing a MemoryError exception. To avoid this, we will employ a variation of stochastic gradient descent that has been proven successful in training deep neural networks. In minibatch learning, each iteration of the algorithm is replaced by a so-called epoch. In each epoch the training set is divided randomly into subsets of equal size, the minibatches. For each minibatch, the gradient is computed and applied only with respect to the samples in the minibatch. An epoch is finished when the gradient step was performed for each minibatch. Modify find_w such that it is capable of mini-batch learning. You will need to replace max_it by n_epochs and add the parameter n_minibatch to your function definition. Note: take care of normalization of the gradient and the loss function.

- d) Write a function classify_log that expects a weight vector w and a test set matrix X_test and classifies the samples in X_test via logistic regression, returning a label vector y_test. Test your implementation of find_w and classify_log on train_data_features and test_data_features with 10 epochs, minibatches of size 100 and step size alpha=1.
- e) Logistic regression is prone to *overfitting*. To prevent this, *regularizers* can be used. Adjust your implementation in such a way that instead of minimizing $F(\mathbf{w})$, it minimizes the term

$$F(\mathbf{w}) + \lambda \|\mathbf{w}\|^2,\tag{1}$$

where λ is a non-negative regularization parameter. Test your implementation with $\lambda = 10^{-3}$. Did the results improve? Why/why not?

Helpful Python/Numpy functions

 $\operatorname{np.diag}(x)$ creates diagonal matrix with x on diagonal

np.exp(X) exponential function