Tools & Miscellaneous

Linux - dmesg(I)

- possibility to analyse the kernel-level details
 - analysis of the boot process
 - display messages from the kernel's ring buffer
 - system boot, hardware detection, driver initialization, and kernel errors
 - history of kernel interactions
 - kernel events like hardware connections, memory allocations, and peripheral issues.
 - system debugging (related to hardware)
 - USB devices, disk errors, CPU issues
 - hardware failures or driver errors are present in kernel logs
 - hardware configuration
 - detailed HW information, for configuration and/or troubleshooting

© A.Atzeni (Politecnico di Torino, 2024)

Linux – dmesg (II)

- filtering
 - cooperation with command-line tools
 - e.g. *Grep and dmesg* to focus on USB, CPU, memory-related logs, ...
 - dmesg | grep usb
 - for USB device connections, helping to debug issues with USB peripherals.
- timeline reconstruction
 - T option for human-readable timestamps for kernel messages

Linux – kill

- It is 1) a function for signal delivery 2) a shell command to
 - send signals to processes to instruct them to perform specific actions (e.g., terminate, pause, or continue execution).
 - targets specific processes (or process groups) using the process identifier (PID)
- signals example
 - SIGKILL (forceful termination), SIGTERM (graceful termination), SIGSTOP (pause), and SIGCONT (resume)
- some signals (e.g., SIGTERM) can be caught and handled by the process, allowing it to perform cleanup tasks
 - user must have the necessary permissions to send a signal to a process
 - In general, sending signals to processes owned by other users may not be allowed
- essential for controlling processes in Linux environments

Linux – kill alteration

incorrect process responses

improperly handled signals drive to incorrect behavior (e.g. incomplete shutdowns)

privilege escalation

- If modified to bypass permission checks, allow unauthorized signals sending to processes owned by other users
 - critical services manipulation, breach of security policies

persistence

 Ignored/mishandled signals lead to runaway process (system degradation) and persiostent process (e.g. rootkits can instruct SIGKILL to be ignored)

monitoring compromission

 signals are used to trigger logging or monitoring actions (e.g., a service may reload its configuration upon receiving SIGHUP)