Non-linear PDEs and positivity conditions in algebraic geometry

Ved Datar

Indian Institute of Science

September 18, 2021

Outline

1 The Kähler cone and the Nakai criteria

Inverse Hessian equations

What next?

Outline

1 The Kähler cone and the Nakai criteria

2 Inverse Hessian equations

What next?

Outline

1 The Kähler cone and the Nakai criteria

2 Inverse Hessian equations

What next?

1 The Kähler cone and the Nakai criteria

Inverse Hessian equations

3/20

Complex manifolds

• Let M^n be a compact, complex manifold of dimension n without boundary.

- In the neighbourhood of each point we can choose holomorphic coordinates (z^1, \dots, z^n) , where we put $z^i = x^i + \sqrt{-1}y^i$.
- (Almost complex structure) $J \in \text{End}(TM)$ given by

$$J\left(\frac{\partial}{\partial x^i}\right) = \frac{\partial}{\partial y^i}, \ J\left(\frac{\partial}{\partial y^i}\right) = -\frac{\partial}{\partial x^i}.$$

Definition independent of holomorphic coordinates \iff CR equations.

Kähler manifolds

- (M, J, g) is called a Kähler manifold if
 - $lacktriant{lacktrian}{lacktriant{lacktriangle}{\bullet}}$ (Hermitian condition) g is a Riemannian metric such that

$$g(JX,JY)=g(X,Y).$$

- ② (Kähler condition) $\nabla J \equiv 0$ (or \iff $Hol(M,g) \subset GL(n,\mathbb{C}) \cap SO(2n)$.)
- So Kähler geometry = (Complex Geometry) \cap (Riemannian Geometry)
- (Kähler form) $\omega(X, Y) = g(JX, Y)$ is a real positive (1,1) form. Locally

$$\omega = \sqrt{-1}g_{i\bar{i}}dz^i \wedge d\bar{z}^j,$$

where $\{g_{i\bar{j}}\}$ is a hermitian, positive definite matrix of functions.

- The Kähler form determines g. Customary in Kähler geometry to consider the data (M, J, ω) . We also sometimes call ω or g a Kähler metric.
- (Kähler condition) $\nabla J \equiv 0 \iff d\omega = 0$.
- Given a complex manifold (M, J) does it admit a Kähler metric? If so, how many of them?

Examples of Kähler manifolds

- Riemann surfaces: Let n = 1. Then there always exists a Kähler form. (Simply take the area form of any compatible Riemannian metric).
- Complex flat space: \mathbb{C}^n with

$$\omega_{\mathbb{C}^n} := \frac{\sqrt{-1}}{2} \Big(dz^1 \wedge d\bar{z}^1 + \cdots + dz^n \wedge d\bar{z}^n \Big).$$

• Complex projective space \mathbb{P}^n . This is defined as $\mathbb{P}^n = \mathbb{C}^{n+1}/\mathbb{C}^*$, where $t \cdot (\xi^0, \dots, \xi^n) = (t \cdot \xi^0, \dots, t \cdot \xi^n)$. Then

$$\omega_{FS} := \sqrt{-1}\partial\overline{\partial}\log\left(\left|\xi_{0}\right|^{2} + \dots + \left|\xi_{n}\right|^{2}\right)$$

is a Kähler metric on \mathbb{P}^n , called the *Fubini-Study* metric. All sub-manifolds $X\subset \mathbb{P}^n$ are also Kähler

- Complex Tori. $\Lambda \subset \mathbb{C}^n$ a lattice. Then $\omega_{\mathbb{C}^n}$ induces a flat metric ω_{Λ} on $T_{\Lambda} := \mathbb{C}^n/\Lambda$. For a generic Λ , T_{Λ} is NOT projective if $n \geq 2$.
- Not all complex manifolds are Kähler. Eg Hopf surfaces.

Kähler cone

• The Kähler form χ determines a cohomology class in $H^{2}_{dR}(M)=H^{2}(M,\mathbb{R})$ and $H^{1,1}_{\overline{\partial}}(M)$, and hence in

$$[\chi] \in H^{1,1}(M,\mathbb{R}) := H^{1,1}_{\overline{\partial}}(M) \cap H^2(M,\mathbb{R}).$$

- A class $\alpha \in H^{1,1}(M,\mathbb{R})$ is called Kähler, and we write it as $\alpha > 0$, if there exists a Kähler form $\omega \in \alpha$.
- The <u>Kähler cone</u> defined by

$$\mathcal{K} := \mathcal{K}_{M} := \{ \alpha \in H^{1,1}(M,\mathbb{R}) \mid \alpha > 0 \}$$

is an open, convex cone. Of course $\mathcal{K} \neq 0 \iff (M,J)$ admits a Kähler metric.

- \bullet $\,\mathcal{K}$ is a very interesting invariant of the Kähler manifold.
 - (Mirror symmetry) Degeneration of canonical Kähler metrics as class degenerates.
 - Singularity formation of Kähler Ricci flow.
- $(\sqrt{-1}\partial\overline{\partial}\text{-lemma})$ Let $\omega_1,\omega_2\in\alpha\in H^{1,1}(M,\mathbb{R})$, and $\mathcal{K}\neq0$. Then there exists $\varphi\in C^\infty(M,\mathbb{R})$ such that

$$\omega_2 = \omega_1 + \sqrt{-1}\partial \overline{\partial} \varphi.$$

Examples of the Kähler cone

· Examples of Kähler cones

Nimann Surface
$$X: H^2(M, \mathbb{R}) \simeq \mathbb{R}$$
.
Then $K = \mathbb{R}_+ \simeq (0, \infty)$

2)
$$M = Bl_{[1:0:0]}P^2 = P^1 \text{ bundle one } P^1$$

$$H^{1}(M,\mathbb{R}) \simeq \mathbb{R}^2$$

$$= \{b[H] - a[E]\}$$

$$a,b \in \mathbb{R}^2.$$

A characterization of the Kähler cone

• If $V \subset M$ is a p-dimensional sub-variety and $\alpha = [\omega] \in \mathcal{K}$ for some Kähler form ω , then

$$\operatorname{Vol}(V,\alpha) := \int_{V} \alpha^{p} := \int_{V^{reg}} \omega^{p} > 0.$$

- Let $\alpha \in H^{1,1}(M,\mathbb{R})$.
 - (Nakai criteria) M projective and $\alpha = c_1(L)$, then $\alpha \in \mathcal{K} \iff \operatorname{Vol}(V, \alpha) > 0$ for all V.
 - (Demailly-Paun) (M,χ) Kähler, and for every irreducible analytic set $V\subset M$ of dimension p, and for every $k=1,2,\cdots,p$,

$$\int_{V} \alpha^{k} \wedge \chi^{p-k} > 0.$$

 Demailly-Paun proof uses Yau's solution to the Calabi conjecture i.e. solvability of Complex Monge Ampere equations:

$$\det(g_{i\bar{i}} + \partial_i \partial_{\bar{i}} \varphi) = \text{given}.$$

The main steps in the proof of Demailly-Paun

Enough to show: If $\alpha + t[\chi] \in \mathcal{K}$ for all t > 0 and for all $V \subset M$,

$$\int_{V} \alpha^{k} \wedge \chi^{\dim V - k} > 0,$$

then $\alpha \in \mathcal{K}$.

Key Step: (Concentration of mass) Let $\tilde{\alpha}$ a class on $(\tilde{M}^m, \tilde{\chi})$ such that $\tilde{\alpha} + t\tilde{\chi} \in \mathcal{K}_{\tilde{M}}$ for all t > 0 and $\tilde{\alpha}^m > 0$. For any co-dimension p sub-variety Y, there exists a (p, p) current $\Theta \geq \beta_Y[Y]$ for some $\beta_Y > 0$.

- Let $\tilde{\chi}_t \in [\chi]$ sequence of (p,p) forms such that $\tilde{\chi}_t^p \sim [Y]$ if $t \sim 0$.
- Yau \implies there exists $\omega_t \in \alpha + t[\chi]$ such that

$$\tilde{\omega}_t^m = c_t \tilde{\chi}_t^m.$$

• $\tilde{\alpha}_t^m > 0 \implies c_t > c_0 > 0$, and $\tilde{\omega}_t^p \to \Theta$.

To apply this:

- In projective case one can apply this to $\tilde{M} = M$ and $Y = H \cap M$.
- In general we have the Demailly-Paun diagonal trick: Apply this to $\tilde{M}=M\times M$, and $Y=\Delta\subset M\times M$.

1 The Kähler cone and the Nakai criteria

Inverse Hessian equations

Mabuchi functional and the cscK problem

A question of central interest in Kähler geometry is to contruct constant scalar curvature Kähler (cscK) metrics.

Conjecture

(Yau-Tian-Donaldson) Let $\alpha \in \mathcal{K}$. There exists a Kähler form $\omega \in \alpha$ whose scalar curvature \mathbf{s}_{ω} is constant if (and only if) the pair (M, α) is "stable".

• Let ω_0 be a reference metric in α , and let

$$\mathcal{H}_{\alpha}:=\{\varphi\in \textit{\textbf{C}}^{\infty}(\textit{\textbf{M}},\mathbb{R})\mid \omega_{\varphi}:=\omega_{0}+\sqrt{-1}\partial\overline{\partial}\varphi>0\}.$$

• (Mabuchi energy, Chen) A metric ω_{φ} is cscK if and only if it is a smooth critical point of the functional

$$K(\varphi) = \int_{M} \log \left(\frac{\omega_{\varphi}^{n}}{\omega_{0}^{n}} \right) \frac{\omega_{\varphi}^{n}}{n!} + J_{-\mathrm{Ric}(\omega_{0})}(\varphi),$$

where for any closed, real (1,1) form χ , J_{χ} is defined by the variational formula

$$\delta J_{\chi}(\varphi) := \int_{M} \delta \varphi \Big(c_{n-1} \chi \wedge \frac{\omega_{\varphi^{n-1}}}{(n-1)!} - \frac{\omega_{\varphi}^{n}}{(n-1)!} \Big).$$

The J-equation

• From the previous slide:

$$\delta J_{\chi}(\varphi) := \int_{M} \delta \varphi \Big(c_{n-1} \chi \wedge \frac{\omega_{\varphi^{n-1}}}{(n-1)!} - \frac{\omega_{\varphi}^{n}}{(n-1)!} \Big).$$

• Clearly a metric ω_{φ} is a critical point if and only if it satisfies the so-called J-equation:

$$\omega_{\varphi}^{n}=c_{n-1}\chi\wedge\omega_{\varphi}^{n-1}.$$

- From now on we assume that $\chi > 0$. Then the above functional is "convex" on \mathcal{H}_{α} . Moreover, if there is a solution to the J-equation, then J_{χ} is bounded below.
- In particular if M is general type i.e. $c_1(M) < 0$, then Yau \Longrightarrow there exists $\omega_0 \in \alpha$ such that $\chi := -\mathrm{Ric}(\omega_0) > 0$. Then if there is a solution to $\Lambda_\omega \chi = c_{n-1}$ for some $\omega \in \alpha$, then α has a cscK metric since J_χ will then be lower bounded, and hence K-energy will be proper.

Some necessary conditions

Recall the *J*-equation:

$$\omega_{\varphi}^{n}=c_{n-1}\chi\wedge\omega_{\varphi}^{n-1}.$$

A trivial necessary condition is obtained by integrating both sides, ie.

$$c_{n-1} = \frac{\int_M \omega_0^n}{\int_M \chi \wedge \omega_0^{n-1}}.$$

• If n = 2, then the completing squares, the equation is equivalent to

$$\left(\omega_0 - \frac{c_1}{2}\chi + \sqrt{-1}\partial\overline{\partial}\varphi\right)^2 = \chi^2.$$

- By Yau's solution to the Calabi conjecture a necessary and sufficient condition is that $[\omega_0]-\frac{c_1}{2}[\chi]>0$, that is if we can choose a metric $\omega_0\in[\omega_0]$ such that $\omega_0-\frac{c_1}{2}\chi>0$.
- (Demailly-Paun and Yau) \Longrightarrow For complex surfaces, solvability of J equation \Longleftrightarrow some numerical conditions hold: for all curves $C \subset M$,

$$\int_{C}\omega_{0}>\frac{c_{1}}{2}\int_{C}\chi,\text{ and }\int_{M}(\omega_{0}-\frac{c_{1}}{2}\chi)^{2}>0,$$

A more refined necessary condition

• More generally, if $0 < \lambda_1 \cdots < \lambda_n$ are the eigenvalues of $\chi^{-1}\omega_{\varphi}$, the equation is

$$\frac{1}{\lambda_1}+\cdots+\frac{1}{\lambda_n}=\frac{n}{c_{n-1}}.$$

• So a necessary condition is that for any j,

$$\sum_{i\neq j}\frac{1}{\lambda_i}<\frac{n}{c_{n-1}}\iff n\omega_{\varphi}^{n-1}-c_{n-1}(n-1)\chi\wedge\omega_{\varphi}^{n-2}>0.$$

- For an (n-1,n-1) form Ψ , we say $\Psi>0$ if $\Psi\wedge\sqrt{-1}\eta\wedge\overline{\eta}$ is a positive multiple of the volume form for all (1,0) forms η .
- The above positivity or cone condition is almost as hard to check as solving the equation itself.

A numerical criteria, a la Demailly-Paun

Let (M,χ) be a Kähler manifold and ω_0 another Kähler metric and $c_{n-1}=\frac{\int_M \omega_0^n}{\int_M \chi \wedge \omega_0^{n-1}}$.

Theorem 2.1 (Song-Weinkove [5], 2009, Gao Chen in 2019 [1])

The following conditions are equivalent.

• There exists a Kähler metric $\omega_{\varphi}=\omega_{0}+\sqrt{-1}\partial\overline{\partial}\varphi$ such that

$$\begin{cases} \omega_{\varphi}^{n} = c_{n-1}\chi \wedge \omega_{\varphi}^{n-1} \\ n\omega_{\varphi}^{n-1} - c_{n-1}(n-1)\chi \wedge \omega_{\varphi}^{n-2} > 0. \end{cases}$$
 (2.1)

② There exists a Kähler metric $\hat{\omega}_0 \in [\omega_0]$ satisfying the cone condition

$$n\hat{\omega}_0^{n-1} - c_{n-1}(n-1)\chi \wedge \hat{\omega}_0^{n-2} > 0.$$

1 There exists an $\varepsilon > 0$ such that for any p-dimensional sub-variety $V \subset X$,

$$\int_{V} \left(n\omega_{0}^{p} - c_{n-1}p\chi \wedge \omega_{0}^{p-1} \right) > \varepsilon \int_{V} n\omega_{0}^{p}.$$

Remark

 $(1) \iff (2)$ by Song-Weinkove and $\iff (3)$ conjectured by Lejmi-Szekelyhidi and solved by Gao Chen.

Generalized inverse Hessian equations

Let c_1, \dots, c_{n-1} be non-negative real numbers, such that at least one is positive. Suppose

$$\int_{M} \omega_{\varphi}^{n} = \int_{M} \sum_{k=1}^{n-1} c_{k} \chi^{n-k} \omega_{\varphi}^{k}.$$

Theorem (D.-Pingali [4], 2020, Conjecture of L-S)

Let M be a projective manifold, and χ, ω_0 be Kähler forms. TFAE:

• The generalised inverse Hessian equation has a solution $\omega_{\varphi}=\omega_0+\sqrt{-1}\partial\overline{\partial}\varphi$ satisfying

$$\begin{cases} \omega_{\varphi}^{n} = \sum_{k=1}^{n-1} c_{k} \chi^{n-k} \omega_{\varphi}^{k}, \\ n \omega_{\varphi}^{n-1} - \sum_{k=1}^{n-1} c_{k} k \chi^{n-k} \omega_{\varphi}^{k-1} > 0. \end{cases}$$
 (2.2)

Q (Cone condition) There exists a Kähler metric $\hat{\omega}_0 \in [\omega_0]$ satisfying the cone condition, i.e.,

$$n\hat{\omega}_0^{n-1} - \sum_{k=1}^{n-1} c_k k \chi^{n-k} \hat{\omega}_0^{k-1} > 0.$$

(Numerical condition) For all subvarieties $V \subset M$ of co-dimension p, we have

$$\int_{V} \left(\binom{n}{p} \omega_0^{n-p} - \sum_{k=p}^{n-1} c_k \binom{k}{p} \chi^{n-k} \wedge \omega_0^{k-p} \right) > 0.$$

Some remarks

- In particular we obtain a stronger version of the theorem of Gao Chen when M is projective.
- Our theorem also solves a well known conjecture of Lejmi-Szekelyhidi (albeit in the projective case) on solvability of the equation

$$\omega^n = c_k \omega^k \wedge \chi^{n-k}.$$

Note that k = n - 1 is the J equation.

- We also obtain an equivariant version. In particular, for toric manifolds, one needs to only check the numerical criteria on torus invariant sub-varieties. For *J*-equation, this recovers results of Collins-Szekelyhidi.
- In [6], Jian Song removes the assumption of uniform positivity in the numerical condition for the J-equation for <u>all</u> Kähler manifolds.

Impressionistic outline of the proof

- (PDE result) (1) \iff (2). In fact to prove a version of Mass concentration we need to solve the PDE with an additional term of $f\chi^n$ with f allowed to be slightly negative.
- Enough to assume that $\alpha + t[\chi]$ admits a solution to the PDE for all t > 0. Show that it also admits a solution at t = 0.
- (Mass concentration). If Y is an ample divisor and $0 < \beta, \delta << 1$, then there exists a current $\Theta \in (1-\delta)\alpha$ such that $\Theta \geq \beta[Y]$ and Θ satisfies the cone condition on $M \setminus Y$.
- (Siu) For c > 0, $E_c(\Theta) = \{x \in M \mid \nu(\Theta, x) > c\}$ is analytic.
- (Induction) There is a solution to the equation on Z in the class $\alpha \Big|_{Z}$ if Z is smooth, and so there is a ω_U in a neighbourhood of Z satisfying cone condition. Glue this with a regularization of Θ (need c << 1) to obtain a metric satisfying the cone condition on M. Then use the PDE result.
- If Z is not smooth, then take a resolution of singularities. The numerical criteria comes into play here.

1 The Kähler cone and the Nakai criteria

Inverse Hessian equations

- **①** One can try to prove the D-Pingali theorem for non-projective Kähler manifolds. The problem is that one needs to solve an appropriate PDE on $M \times M$. In our case, it is not clear what this PDE should be. This is mainly a linear algebra and PDE problem, and should be surmountable.
- Convergence of the *J*-flow:

$$\begin{cases} \frac{\partial \varphi}{\partial t} = 1 - c_{n-1} \frac{\omega_{\varphi}^{n-1} \wedge \chi}{\omega_{\varphi}^{n}} \\ \omega_{\varphi} := \omega + \sqrt{-1} \partial \overline{\partial} \varphi > 0. \end{cases}.$$

Long time existence is well known. Convergence is known when a solution to the J equation exists. In general convergence to singular solutions is known for some examples with a lot of symmetry such as $\mathrm{Bl}_{\rho}\mathbb{P}^n$. What about toric manifolds? Some sort of Harder-Narasimhan filtration?

3 Solve the J equation directly for any pair of classes α, β . Allow singularities.

Select references

G. Chen. On J-equation., to appear in INVENT. MATH., arXiv: 1905.10222, .

Collins, T. and Tosatti, V. "Kähler currents and null loci", INVENT. MATH., n.0 3. (2015): 1167–1198

Datar, V. and Pingali, V A numerical criterion for generalised Monge-Ampere equations on projective manifolds, to appear in GEOM AND FUNC. ANAL. (GAFA), arXiv:2006.01530.

Demailly, J-P and Paun, M. "Numerical characterization of the Kähler cone of a compact Kähler manifold". ANN. MATH. (2004): 1247-1274.

J. Song, and B. Weinkove. "The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type." UNIV. IAGELLONICAE ACTA MATH. 50: 89-106.

J. Song "Nakai-Moishezon criterions for complex Hessian equations", arXiv:2012.07956.

G. Székelyhidi. "Fully non-linear elliptic equations on compact Hermitian manifolds."

J. Differential Geom. 109(2)(2018): 337-378.

Thank You for your attention!