Chapter 1.3 - Model Selection

Paul Scemama

September 2022

1 Model Selection

We saw in 1.1 that the choice of M affected performance, as well as regularization levels. In practice we need a way to determine the value M.

• As well as finding values for *complexity parameters*, we may wish to consider a range of different model types.

We've also seen that when using maximum likelihood, training performance is not always a good indicator of test performance due to overfitting.

- If data is plentiful, we can compare various models via a hold-out set called a validation set.
- If our iterative model design is done using limited data, some overfitting to the validation set can occur; in which case we could have a third test set on which performance of the selected model is finally evaluated.

We want to make the most out of our data for training.

- \bullet This can lead to a small validation set \rightarrow noisy estimates of performance.
- solution: Cross-validation
 - proportion $\frac{(S-1)}{S}$ used for training, then test on remaining $\frac{1}{S}$.
 - Do this S times.

Figure 1.18	The technique of S -fold cross-validation, illustrated here for the case of $S=4$, involves tak-			
	ing the available data and partitioning it into S			
	groups (in the simplest case these are of equal			
	size). Then $S-1$ of the groups are used to train			
			-	
	a set of models that are then evaluated on the re-	1	I	
	maining group. This procedure is then repeated			
	for all S possible choices for the held-out group,			
	indicated here by the red blocks, and the perfor-			
	mance scores from the S runs are then averaged.			

- drawbacks: the number of training runs that must be performed increases by a factor of S; and on another note, we may have multiple complexity parameters to estimate per model.

run 1

run 2

run 3

run 4

Ideally we want a technique that allows multiple hyper-parameters and model types to be compared in a single training run.

• We therefore need a measure of performance which depends only on the training data and which does not suffer from bias due to overfitting

- Various information criterion have been proposed to try and correct for the bias of maximum-likelihood.
 - Examples: AIC and BIC
 - Such criteria do not take into account uncertainty in model parameters; however in practice they tend to favor overly simple models.

We will see later that a fully Bayesian approach allows for complexity penalties to arise in a natural way.