6. Hypothesis testing and confidence intervals

We have the following goals:

- Understand how to construct confidence intervals for parameters in a linear model.
- Understand how to test statistical hypotheses about a linear model.
- In particular, to ask and answer the question: "Are the data consistent with a hypothesis that a covariate, or a collection of covariates, are unimportant?" (What is the fundamental scientific importance of the slightly contorted logical reasoning in this question?)
- Learn to use R to carry out these tasks.
- See how the linear model includes and extends basic tests for means of one and two samples.

Confidence intervals

- An interval [u, v] constructed using the data \mathbf{y} is said to **cover** a parameter θ if $u \leq \theta \leq v$.
- [u,v] is a 95% **confidence interval** (CI) for θ if the same construction, applied to a large number of draws from the model, would cover θ 95% of the time.
- A **parameter** is a name for any unknown constant in a model. In linear models, each component β_1, \ldots, β_p of the **coefficient vector** $\boldsymbol{\beta}$ is a parameter. So is the variance σ^2 of the measurement error.
- A confidence interval is the usual way to represent the amount of uncertainty in an estimated parameter.
- ullet The parameter is not random. According to the model, it has a fixed but unknown value. The observed interval [u,v] is also not random. An interval [U,V] constructed using a vector of random variables ${\bf Y}$ defined in a probability model is random.
- ullet If the model is appropriate, then it is reasonable to treat the data ullet like a realization from the probability model.

A confidence interval for the coefficient of a linear model

- ullet Consider estimating eta_1 in the linear model $\mathbf{Y} = \mathbb{X}oldsymbol{eta} + oldsymbol{\epsilon}.$
- Recall that $E[\hat{\beta}_1] = \beta_1$ and $SD(\hat{\beta}_1) = \sigma \sqrt{\left[\left(\mathbb{X}^T\mathbb{X}\right)^{-1}\right]_{11}}$.

Question 6.1. Supposing we can make a normal approximation, show that $P[\hat{\beta}_1 - 1.96 SD(b_1) \le \beta_1 \le \hat{\beta}_1 + 1.96 SD(b_1)] = 0.95$

• Therefore, an approximate 95% CI for β_1 is

$$\boxed{ \begin{bmatrix} b_1 - 1.96 \operatorname{SE}(b_1), b_1 + 1.96 \operatorname{SE}(b_1) \end{bmatrix} }$$
 where $\mathbf{y} = \mathbb{X}\mathbf{b} + \mathbf{e}$ with $\operatorname{SE}(b_1) = s \sqrt{\left[\left(\mathbb{X}^T\mathbb{X}\right)^{-1}\right]_{11}}.$

A CI for association between unemployment and mortality

```
c1 <- summary(lm(L_detrended~U_detrended))$coefficients ; c1</pre>
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2899928 0.09343146 3.103802 0.002812739
## U_detrended 0.1313673 0.06321939 2.077959 0.041606370
beta_U <- c1["U_detrended", "Estimate"]</pre>
SE_U <- c1["U_detrended", "Std. Error"]</pre>
z \leftarrow qnorm(1-0.05/2) # for a 95% CI using a normal approximation
cat("CI = [", beta_U - z * SE_U, ",", beta_U + z * SE_U, "]")
## CI = [0.0074596, 0.2552751]
```

Interpretation. We appear to have found evidence that each percentage point of unemployment above trend is associated with about 0.13 years of additional life expectancy. The 95% CI doesn't include zero.

Question 6.2. Do you believe this discovery? How could you criticize it?

Association is not causation

"Whatever phenomenon varies in any manner whenever another phenomenon varies in some particular manner, is either a cause or an effect of that phenomenon, or is connected with it through some fact of causation." (John Stuart Mill, A System of Logic, Vol. 1. 1843. p. 470.

- Put differently: If A and B are associated statistically, we can infer that either A causes B, or B causes A, or both have some common cause C.
- A useful mantra: **Association is not causation.**
- ullet Writing a linear model where A depends on B can show association but we need extra work to argue for causation. We need to rule out B causing A and the possibility of any common cause C.

Question 6.3. Discuss the extent to which the association between detrended unemployment and life expectancy can and cannot be interpreted causally.

A review of progress so far in this course

Producing and understanding this confidence interval for a linear model brought together all the things we've done so far in this course.

- We needed to get the data into a computer and run statistical software.
- To understand what the computer was doing for us, and help us to command it correctly, we needed to know about:
 - matrices
 - writing a linear model and fitting it by least squares
 - probability models
 - expectation and variance
 - the normal distribution

You could run computer code by learning to follow line-by-line instructions without understanding what the instructions do. But then you wouldn't be in control of your own data analysis.

Hypothesis tests

- We try to see patterns in our data. We hope to discover phenomena that will advance science, or help the environment, or reduce sickness and poverty, or make us rich, ...
- How can we tell whether our new theory is like seeing animals or faces in the clouds?
- From Wikipedia: "Pareidolia is a psychological phenomenon in which the mind responds to a stimulus ... by perceiving a familiar pattern where none exists (e.g. in random data)".
- The research community has set a standard: The evidence presented to support a new theory should be unlikely under a **null hypothesis** that the new theory is false. To quantify *unlikely* we need a probability model.

Hypothesis tests and the scientific method

- From a different perspective, a standard view of scientific progress holds that scientific theories cannot be proved correct, they can only be falsified (https://en.wikipedia.org/wiki/Falsifiability).
- Accordingly, scientists look for evidence to refute the **null hypothesis** that data can be explained by current scientific understanding.
- If the null hypothesis is inadequate to explain data, the scientist may propose an **alternative hypothesis** which better explains these data.
- The alternative hypothesis will subsequently be challenged with new data.

The scientific method in statistical language

- Ask a question
- Obtain relevant data.
- **3** Write a null and alternative hypothesis to represent your question in a probability model. This may involve writing a linear model so that $\beta_1 = 0$ corresponds to the null hypothesis of "no effect" and $\beta_1 \neq 0$ is a discovered "effect."
- Calculate a test statistic. The test statistic is a quantity computed using the data that summarizes the evidence against the null hypothesis. For our linear model example, the least squares coefficient b_1 is a natural statistics to test the hypothesis $\beta_1 = 0$.
- **3** Calculate the p-value, which is the probability that the model generates a test statistic at least as extreme as that observed. For our linear model example, the p-value is $P[|\hat{\beta}_1| > |b_1|]$. We can find this probability, when $\beta_1 = 0$, using a normal approximation.
- Conclusions. A small p-value (often, < 0.05) is evidence for rejecting the null hypothesis. The data analysis may suggest new questions: Return to Step 1.

Using confidence intervals to construct a hypothesis test

- It is often convenient to use the confidence interval as a test statistic.
- If the confidence interval doesn't cover the null hypothesis, then we have evidence to reject that null hypothesis.
- If we do this test using a 95% confidence interval, we have a 5% chance that we reject the null hypothesis if it is true. This follows from the definition of a confidence interval: whatever the true unknown value of the parameter, the confidence interval covers it with probability 0.95.

Some notation for hypothesis tests

- The null hypothesis is H_0 and the alternative is H_a .
- We write t for the test statistic calculated using the data y. We write T for the random variable constructed by calculating the test statistic using a random vector Y drawn from the probability model under H_0 .
- The p-value is $\mathrm{pval} = \mathrm{P}\big[|T| \geq |t|\big]$. Here, we are assuming "extreme" means "large in magnitude." Occasionally, it may make more sense to use $\mathrm{pval} = \mathrm{P}\big[T \geq t\big]$.
- We reject H_0 at **significance level** α if $pval < \alpha$. Common choices of α are $\alpha = 0.05$, $\alpha = 0.01$, $\alpha = 0.001$.

Question 6.4. When we report the results of a hypothesis test, we can either (i) give the p-value, or (ii) say whether H_0 is rejected at a particular significance level. What are the advantages and disadvantages of each?

A hypothesis test for unemployment and mortality

Question 6.5. Write a formal hypothesis test of the null hypothesis that there is no association between unemployment and mortality. Compute a p-value using a normal approximation. What do you think is an appropriate significance level α for deciding whether to reject the null hypothesis?

Normal approximations versus Student's t distribution

- Notice that 'summary(Im(...))' gives 't value' and 'Pr(¿—t—)'.
- The 't value' is the estimated coefficient divided by its standard error. This measures how many standard error units the estimated coefficient is from zero.
- 'Pr(i-t-)' is similar, but slightly larger, than the p-value coming from the normal approximation.
- ullet R is using Student's t distribution, which makes allowance for chance variation from using s as an approximation to σ when we compute the standard error.
- ullet R uses a t random variable to model the distribution of the statistic t. Giving the full name (Student's t distribution) may add clarity.
- With sophisticated statistical methods, it is often hard to see if they work well just by reading about them. Fortunately, it is often relatively easy to do a **simulation study** to see what is going on.

Simulating from Student's t distribution

- Suppose X, X_1, \ldots, X_d are d+1 independent identially distributed (iid) normal random variables with mean zero and standard deviation σ .
- We write $X, X_1, \ldots, X_d \sim \text{iid } N[0, \sigma]$.
- Student's t distribution on d degrees of freedom is defined to be the distribution of $T=X/\hat{\sigma}$ where $\hat{\sigma}=\sqrt{\frac{1}{d}\sum_{i=1}^{d}X_{i}^{2}}$.
- A normal approximation would say T is approximately N[0,1] since $\hat{\sigma}$ is an estiamte of σ .
- With a computer, we can simulate T many times, plot a histogram, and compare it to the probability density function of the normal distribution and Student's t distribution.
- The goals in doing this:
 - **Some practice working with Student's t distribution.**
 - Finding how the t distribution compares to the normal distribution as d varies.
 - Practice the skill of designing a simulation experiment.

• Let's start by simulating a matrix X of iid normal random variables.

```
N <- 50000 ; sigma <- 1 ; d <- 10 ; set.seed(23)
X <- matrix(rnorm(N*(d+1), mean=0, sd=sigma), nrow=N)</pre>
```

ullet Now, we write a function that computes T given X_1,\dots,X_d,X

```
T_evaluator <- function(x) x[d+1] / sqrt(sum(x[1:d]^2)/d)</pre>
```

• Then, use apply() to evaluate T on each row of 'X'.

```
Tsim <- apply(X,1,T_evaluator)</pre>
```

• A histogram of these simulations can be compared with the normal density and the t density

```
hist(Tsim,freq=F,main="",
    breaks=30,ylim=c(0,0.4))
x <- seq(length=200,
    min(Tsim),max(Tsim))
lines(x,dnorm(x),
    col="blue",
    lty="dashed")
lines(x,dt(x,df=d),
    col="red")</pre>
```


Comparing the normal and t distributions

- ullet Even with as few as d=10 degrees of freedom to estimate σ , the Student's t density looks similar to the normal density.
- Student's t has fatter tails. This is important for the probability of rare extreme outcomes.
- ullet Here, the largest and smallest of the $N=5 imes 10^4$ simulations are

```
range(Tsim)
## [1] -6.438830 6.480262
```

• Let's check the chance of an outcome more than 5 (or 6) standard deviations from the mean for the normal distribution and the t on 10 degrees of freedom.