#### **CAPACIMÉTRIE**

(Version avec microcontrôleur Micro:Bit)

Session 2025

#### BACCALAURÉAT GÉNÉRAL

### Épreuve pratique de l'enseignement de spécialité physique-chimie Évaluation des Compétences Expérimentales

Cette situation d'évaluation fait partie de la banque nationale.

| ENONCE DESTINE AU CANDIDAT |  |  |  |  |
|----------------------------|--|--|--|--|
|                            |  |  |  |  |
| Prénom :                   |  |  |  |  |
|                            |  |  |  |  |
| n° d'inscription :         |  |  |  |  |
|                            |  |  |  |  |
|                            |  |  |  |  |
|                            |  |  |  |  |

Cette situation d'évaluation comporte **cinq** pages sur lesquelles le candidat doit consigner ses réponses. Le candidat doit restituer ce document avant de sortir de la salle d'examen.

Le candidat doit agir en autonomie et faire preuve d'initiative tout au long de l'épreuve.

En cas de difficulté, le candidat peut solliciter l'examinateur afin de lui permettre de continuer la tâche.

L'examinateur peut intervenir à tout moment, s'il le juge utile.

L'usage de calculatrice avec mode examen actif est autorisé. L'usage de calculatrice sans mémoire « type collège » est autorisé.

### CONTEXTE DE LA SITUATION D'ÉVALUATION

Certains multimètres sont équipés d'une fonction capacimètre permettant de mesurer la valeur de la capacité de condensateurs sur une gamme allant de 2 nF jusqu'à 20 µF.

Mais il est également possible de déterminer la valeur de la capacité d'un condensateur par d'autres méthodes.

Le but de cette épreuve est d'utiliser un microcontrôleur pour déterminer la capacité d'un condensateur.

(Version avec microcontrôleur Micro:Bit)

#### INFORMATIONS MISES À DISPOSITION DU CANDIDAT

Montage et branchements permettant d'étudier la charge ou la décharge d'un condensateur dans un circuit RC à l'aide d'un microcontrôleur



#### Branchements à la carte microcontrôleur

- La borne **0** de la carte microcontrôleur doit être reliée au point A du circuit.
- La borne GND du microcontrôleur doit être reliée au point M du circuit.
- Le point B du circuit doit être relié à la borne 1 du microcontrôleur.

#### Programme initial pour un microcontrôleur Micro:Bit®

Le programme sera modifié par le candidat par la suite.

```
1# Importation des bibliothèques
 2 from microbit import *
 3 print("Patienter...")
 4 # Décharge du condensateur
 5 pin0.write_digital(0)
 6 sleep(8000)
 8 # Charge du condensateur (alimentation à 3,3 V)
 9 pin0.write_digital(1)
10
11 temps zero = running time()
                                  # La commande running time() renvoie la date
                                   # de l'horloge interne du microcrocontroleur en ms
12
13 while pin1.read analog() < 1023:
      sleep(1) # Attend 1 ms avant la prochaine mesure
14
15
16 print("tau = ",running time()-temps zero, " ms") # Affichage durée mesurée
```

#### Le microcontrôleur Micro:Bit®

Le microcontrôleur Micro:Bit<sup>®</sup> code sur 10 bits, ce qui signifie qu'il dispose de 1024 possibilités de codage de la tension u. Ainsi, pour une tension de 3,3 V, le code est de 1023. Une tension de x Volts est codée par la valeur arrondie de  $(\frac{x}{3.3} \times 1023)$ .

#### **CAPACIMÉTRIE**

(Version avec microcontrôleur Micro:Bit)

Session 2025

# Charge d'un condensateur et temps caractéristique τ



La tension électrique aux bornes d'un condensateur lors de sa charge s'exprime selon la relation :

$$u(t) = E \cdot (1 - e^{-\frac{t}{\tau}})$$

Méthode pour déterminer  $\boldsymbol{\tau}$  :

quand 
$$t = \tau$$
,  $u(t) = 0.63 \cdot E$ 

On considère que la charge (ou la décharge) du condensateur est totale au bout d'une durée égale à  $5 \cdot \tau$ .

Le temps caractéristique  $\tau$  dépend de la valeur de la résistance du conducteur ohmique et de celle de la capacité du condensateur selon la relation :  $\tau = R \cdot C$ 

- R la résistance en Ohm (Ω)
- C la capacité en Farad (F)
- τ le temps caractéristique en s

# **TRAVAIL À EFFECTUER**

1. Étude du programme (20 minutes conseillées)

| APPEL n°1                                                                                                                                                           |                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                                                                                                     |                                  |
|                                                                                                                                                                     |                                  |
|                                                                                                                                                                     |                                  |
| nee amonee a la iin du programme son cene du temps caractenstique t.                                                                                                |                                  |
| ant les informations fournies, proposer une modification de la ligne <b>13</b> du pro<br>ιrée affichée à la fin du programme soit celle du temps caractéristique τ. | gramme initial afin que la valeu |
|                                                                                                                                                                     |                                  |
|                                                                                                                                                                     |                                  |
| <br>                                                                                                                                                                |                                  |
| os indiqué à la ligne <b>6</b> du programme a été choisi pour le montage. En uti<br>er pourquoi il devrait être modifié si la capacité du condensateur était augme  |                                  |

Appeler le professeur pour lui présenter vos réponses ou en cas de difficulté

| <ol><li>Mesure de la capacité d'un condensateur (30 minutes consei</li></ol> |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

#### 2.1. Méthode 1

À l'aide du multimètre utilisé en ohmmètre mesurer la valeur de la résistance  $R_1$ :  $R_1$  =.....

Mettre en œuvre le montage et les branchements proposés en utilisant le condensateur de capacité  $C_1$  et le conducteur ohmique de résistance  $R_1$ .

| APPEL n°2                                                                                      |  |
|------------------------------------------------------------------------------------------------|--|
| Appeler le professeur pour lui présenter votre montage expérimental<br>ou en cas de difficulté |  |

Procéder à la modification de la ligne 13 proposée précédemment.

Téléverser le programme et ouvrir la console REPL.

Noter la valeur obtenue pour le temps caractéristique  $\tau_1$ :  $\tau_1 = \dots$ 

En déduire la valeur de la capacité du condensateur (notée  $C_{1,1}$ ) évaluée par la méthode 1 :

$$C_{1,1} = \dots$$

#### 2.2. Méthode 2

Reprendre le montage précédent et remplacer le conducteur ohmique de résistance  $R_1$  par le conducteur ohmique de résistance  $R_2$  et suivre le même protocole pour mesurer le temps caractéristique  $\tau_2$ .

Procéder de la même manière pour les conducteurs ohmiques  $R_3$ ,  $R_4$  et  $R_5$  et reporter les résultats dans le tableau ci-dessous :

|                   | R <sub>1</sub> | R <sub>2</sub> | R <sub>3</sub> | R <sub>4</sub> | R <sub>5</sub> |
|-------------------|----------------|----------------|----------------|----------------|----------------|
| Résistance (en Ω) |                |                |                |                |                |
| Temps τ (en s)    |                |                |                |                |                |

À l'aide du tableur-grapheur, tracer la courbe  $\tau = f(R)$ .

Utiliser cette courbe pour déterminer la valeur de la capacité du condensateur (notée  $C_{1,2}$ ) évaluée par la méthode 2. Expliquer la démarche suivie.

Noter la valeur obtenue.  $C_{1,2} = \dots$ 

# APPEL n°3 Appeler le professeur pour lui présenter les résultats ou en cas de difficulté

# CAPACIMÉTRIE (Version avec microcontrôleur Micro:Bit)

Session 2025

#### 3. Exploitation des résultats (10 minutes conseillées)

| Enlever le condensateur du montage et mesurer sa capacité $C_1$ à l'aide du multimètre en fonction capacimètre.                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Noter la valeur obtenue : $C_1$ =                                                                                                                                                                   |
| Quelle valeur expérimentale ( $C_{1,1}$ ou $C_{1,2}$ ), et donc quelle méthode, semble la plus précise ? Justifier.                                                                                 |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
| On souhaite procéder de la même manière avec le condensateur dont la capacité $C_2$ est de l'ordre de 220 nF. Peut-<br>on utiliser le même programme si on garde les mêmes résistances ? Justifier. |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |

Défaire le montage et ranger la paillasse avant de quitter la salle.