DS 2

Les calculatrices sont interdites.

Problème 1 : Irrationnalité et approximation de e.

Pour tout $n \in \mathbb{N}$, on note I_n la quantité suivante : $I_n = \frac{1}{n!} \int_0^1 t^n (1-t)^n e^t dt$.

- 1°) Calculer I_0 et I_1 .
- **2°)** Etudier la fonction $t \mapsto t(1-t)$ sur l'intervalle [0, 1] et tracer son graphe.
- **3°)** Montrer que, pour tout $n \in \mathbb{N}$, $0 \le I_n \le \frac{e-1}{n! \ 4^n}$. En déduire la limite de la suite $(I_n)_{n \in \mathbb{N}}$.
- **4°)** Pour tout $n \in \mathbb{N}$ et $t \in \mathbb{R}$, on note $f_n(t) = t^n (1-t)^n$. Lorsque $n \in \mathbb{N}$ avec $n \geq 2$ et $t \in \mathbb{R}$, exprimer $f''_n(t)$ en fonction de n, $f_{n-1}(t)$ et $f_{n-2}(t)$. En déduire que, pour tout $n \in \mathbb{N}$ avec $n \geq 2$, $I_n = -2(2n-1)I_{n-1} + I_{n-2}$.
- 5°) Montrer qu'il existe deux suites $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ d'entiers relatifs impairs telles que, pour tout $n\in\mathbb{N}$, $I_n=\alpha_n e-\beta_n$. On précisera les valeurs de $\alpha_0, \alpha_1, \beta_0$ et β_1 ainsi qu'une relation de récurrence satisfaite par les suites (α_n) et (β_n) .
- **6°**) Montrer que $\underset{n \to +\infty}{\beta_n} \xrightarrow[n \to +\infty]{} e$.
- 7°) Déduire des questions précédentes que e est irrationnel.
- 8°) Si r, s, r' et s' sont 4 rationnels tels que r + se = r' + s'e, montrer que r = r' et s = s'.
- 9°) Démontrer que pour tout $\ell \in \mathbb{N}$, $\int_0^1 (1-t)^\ell e^t dt = \ell! e \sum_{j=0}^\ell \frac{\ell!}{j!}$.
- 10°) Établir une formule analogue pour $\int_0^1 (1-t)^{\ell} e^{-t} dt$.
- 11°) Soit $n \in \mathbb{N}$. Montrer que $I_n = \frac{1}{n!} \sum_{k=0}^n (-1)^k \binom{n}{k} \int_0^1 (1-t)^{n+k} e^t dt$.

1

En déduire que $\alpha_n = \sum_{k=0}^n (-1)^k \frac{(n+k)!}{k!(n-k)!}$.

12°) Montrer que pour tout $n \in \mathbb{N}$, $I_n = \frac{e}{n!} \int_0^1 (1-u)^n u^n e^{-u} du$.

En déduire que
$$e = \lim_{n \to +\infty} \frac{\displaystyle \sum_{k=0}^{n} (-1)^n \frac{(n+k)!}{k!(n-k)!}}{\displaystyle \sum_{k=0}^{n} (-1)^k \frac{(n+k)!}{k!(n-k)!}}.$$

Problème 2:

distributivité de la réunion par rapport à l'intersection.

Dans tout ce problème, E désigne un ensemble et n est un entier naturel non nul. $A_1, \ldots, A_n, B_1, \ldots, B_n$ désignent 2n parties de E. On note \mathbb{N}_n l'ensemble des entiers compris entre 1 et n

et $\mathcal{P}(\mathbb{N}_n)$ l'ensemble des parties de \mathbb{N}_n .

L'objet du problème est de montrer selon plusieurs méthodes la propriété (C_n) suivante :

$$(C_n) : \bigcup_{i=1}^n (A_i \cap B_i) = \bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \right).$$

- 1°) Lorsque n = 1, montrer que (C_1) est vraie.
- **2°**) Soit I un ensemble non vide, $(F_i)_{i\in I}$ une famille de parties de E et G une partie de E. Montrer que $\left(\bigcap_{i\in I}F_i\right)\cup G=\bigcap_{i\in I}(F_i\cup G)$ et $\left(\bigcup_{i\in I}F_i\right)\cap G=\bigcup_{i\in I}(F_i\cap G)$.
- 3°) On considère deux nouvelles parties de E, notées A_{n+1} et B_{n+1} . On note $Q = \{X \in \mathcal{P}(\mathbb{N}_{n+1}) \mid n+1 \in X\}$. Montrer que $\bigcap_{X \in \mathcal{P}(\mathbb{N}_n)} \left(\left(\bigcup_{i \in X \cup \{n+1\}} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_n \setminus X} B_i \right) \right) = \bigcap_{X \in Q} \left(\left(\bigcup_{i \in X} A_i \right) \bigcup \left(\bigcup_{i \in \mathbb{N}_{n+1} \setminus X} B_i \right) \right)$.
- 4°) En déduire une démonstration de (C_n) par récurrence sur n.
- 5°) Proposer une seconde démonstration de (C_n) , en procédant par double inclusion et en passant aux éléments.
- **6°)** Soit I et J deux ensembles non vides. Pour tout $i \in I$ et $j \in J$, on suppose que $A_{i,j}$ est une partie de E. On note $\mathcal{F}(I,J)$ l'ensemble des applications de I dans J. Montrer que $\bigcap_{i \in I} \bigcup_{j \in I} A_{i,j} = \bigcup_{j \in I} \bigcap_{i \in I} A_{i,f(i)}$.

Montrer que
$$\bigcap_{i \in I} \bigcup_{j \in J} A_{i,j} = \bigcup_{f \in \mathcal{F}(I,J)} \bigcap_{i \in I} A_{i,f(i)}.$$

En déduire que
$$\bigcup_{i \in I} \bigcap_{j \in J} A_{i,j} = \bigcap_{f \in \mathcal{F}(I,J)} \bigcup_{i \in I} A_{i,f(i)}.$$

7°) Soit I un ensemble non vide. Pour tout $i \in I$ et $j \in \{0, 1\}$, on suppose que $A_{i,j}$ est une partie de E. On note $\mathcal{P}(I)$ l'ensemble des parties de I. Déduire de la question précédente que $\bigcup_{i \in I} (A_{i,0} \cap A_{i,1}) = \bigcap_{X \in \mathcal{P}(I)} \left(\left(\bigcup_{i \in X} A_{i,0}\right) \bigcup \left(\bigcup_{i \in I \setminus X} A_{i,1}\right) \right)$.

En déduire une nouvelle démonstration de (C_n) .