1 Problem 1

Claim 1. SJF produces an optimal schedule σ .

Proof. We will prove SJF produces an optimal schedule by using proof by contradiction. Given a schedule $\sigma = \langle J_1, J_2, ..., J_n \rangle$ such that $c_i \langle c_k \rangle$ for all $1 \leq i \langle k \leq n \rangle$, the average response time

$$R_{\sigma} = c_1 + (c_1 + c_2) + \dots + \sum_{k=1}^{i} c_k + \sum_{k=1}^{i+1} c_k + \dots + \sum_{k=1}^{n} c_k$$

We assume that schedule σ is suboptimal. Hence, there exists a schedule σ that is optimal in which for $1 \le i < j \le n$, $c_i > c_j$. Note, for this proof we assume for $1 \le i \le n$, $c_i > c_{i+1}$. Thus, σ is constructed as follows:

$$\sigma' = \langle J_1, J_2, ..., J_{i+1}, J_i, ..., J_n \rangle$$

with average response time,

$$R_{\sigma'} = c_1 + (c_1 + c_2) + \dots + \sum_{k=1}^{i-1} c_k + c_{i+1} + \sum_{k=1}^{i-1} c_k + c_{i+1} + c_i + \dots + \sum_{k=1}^{n} c_k$$
$$= c_1 + (c_1 + c_2) + \dots + \sum_{k=1}^{i-1} c_k + c_{i+1} + \sum_{k=1}^{i} c_i + \dots + \sum_{k=1}^{n} c_k.$$

Thus, $R_{\sigma} < R_{\sigma'}$ as $c_i < c_{i+1}$. However, this implies that σ' is suboptimal compared to σ in terms of average response time. Thus, by proof by contradiction, SJF produces an optimal schedule σ . Hence, swapping any two jobs, yields a new schedule σ' whose average response time is no better than that of σ .