General Topology

Lecture 1

Haoming Wang

26 March 2020

This is the Lecture note for the Introduction to Analysis class in Spring 2019.

1 Some Definitions

Definition 1 (Partial Order). Given a set X, a relation \leq on X is a partial order if

- 1. $\forall x \in X \Rightarrow x \leq x$;
- 2. $\forall x, x' \in X, x \leq x', x' \leq x \Rightarrow x = x'$;
- 3. $\forall x, x', x'' \in X, x \leq x', x' \leq x'' \Rightarrow x \leq x''$.

We say that (X, \leq) is a partially ordered set (poset).

Note 1. A relation on X, is a subset of $X \times X$.

Example 1. For example, \leq is a partial order on \mathbb{T} ; given a set X, \subseteq is a partial on $\mathcal{P}(X)$.

If (X, \leq) is a poset and $A \subseteq X$, then A has a natural partial order induced by \leq .

Definition 2 (Total Order, Chain). A poset (X, \leq) is a chain (or totally order set) if $\forall x, x' \in X$, then $x \leq x'$ or $x' \leq x$.

If (X, \leq) is a poset, $A \subseteq X, b \in X$, we say

- 1. b is an upper (lower) bound of A (in X w.r.t. \leq) if $\forall a \in A, a \leq b (b \leq a)$, denoted the set of upper (lower) bound of A by $U_A(L_A)$.
- 2. b is a greatest (least) element of A (in X w.r.t. \leq), if b is an upper (lower) bound of A and $b \in A$.
- 3. *b* is the least upper bound (greatest lower bound) of *A*, if *b* is the least (greatest) element of the set of upper bound (lower bound) of *A*, denoted by lub or sup *A* (glb or inf *A*).
- 4. b is a maximal (minimal) element in X if $b \in X$, $\forall x \in X$, $b \le x \Rightarrow b = x(x \le b \Rightarrow x = b)$.

Note **2** (Maximal vs. Greatest). An element $m \in X$ is **maximal** if there does not exist $x \in X$ such that x > m. An element $g \in X$ is **greatest** if for all $x \in X$, $g \ge x$.

- 1. A set may have no greatest elements and no maximal elements: for example, any open interval of real numbers.
- 2. If a set has a greatest element, that element is also maximal.
- 3. A set with two maximal elements and no greatest element: $X = \{a, b, c\}$, where $a \le b, a \le c$ and b and c are incomparable, then each of b and b are maximal, and none of the elements of this set are greatest.
- 4. A set can have exactly one maximal element but no greatest element: $X = \{a + q | 0 \le q < 1\} \cup \{c\}$, where $a \le c$ and a + q and c are incomparable for any $0 \le q < 1$. Then only c is maximal, and the set overall has no greatest element.

Definition 3 (Well Order). If (X, \leq) is a chain, we say that (X, \leq) is a well-ordered set if $\forall A \subseteq X, A \neq \emptyset \Rightarrow A$ has a least element.

For example, \mathbb{Z}^+ is a well-ordered set. If (X, \leq) is a well-ordered set, for any $a \in X$, the **successor** of a is $succ_{(X,\leq)}(a) :=$ the least element of $\{x \in X | a < x\}$. So if $\{x \in X | a < x\} \neq \emptyset$, then $succ_{(X,<)}(a)$ exists.

Note 3. Given a poset X, a, $b \in X$, we say a < b if $a \le b$ and $a \ne b$.

Definition 4. Given a poset X, $a \in X$, define initial segment as

$$IS_{(X,<)}(a) := \{x \in X | x < a\}$$

and weak initial segment as

$$WIS_{(X,\leq)}(a) := \{x \in X | x \leq a\}.$$

2 Axiom of Choice

Theorem 1 (Bourbaki's fixed point theorem). Suppose (X, \leq) is a poset, in which every well-ordered subset has lub. Given a map $X \xrightarrow{f} X$, s.t. $x \leq f(x)$ for $\forall x \in X$, then $\exists a \in X$, s.t. f(a) = a.

Proof. Pick an element $x_0 \in X$. Let S be the collection of subsets $Y \subseteq X$ such that:

- *Y* is well ordered with the least element x_0 and successor function $f|_{Y \setminus lubY}$,
- $x_0 \neq y \in Y \Rightarrow lub_X(IS_Y(y)) \in Y$.

Then we claim:

1. If $Y \in S$ and $Y' \in S$, then Y is an initial segment of Y' or vice versa. Let $V = \{x \in Y \cap Y' | WIS_Y(x) = WIS_{Y'}(x)\}$. Suppose first that V has a last element v. If v is not the last element of Y, then $succ_Y(v) = f(v)$; if v is not the last element of Y' then $succ_{Y'}(v) = f(v)$. Hence if neither of Y, Y' is an initial segment of the other, then $succ_{Y'}(v) = succ_{Y'}(v) = f(v) \in V$, thus f(v) = v, and v is the fixed point.

If V has no last element, let $z = lub_X(V)$. If $Y \neq V \neq Y'$, then it follows that $z \in Y \cap Y'$ (because if $y = \inf(Y - V)$ then $V = IS_Y(y)$ and therefore $z = lub_X(IS_Y(y)) \in Y$). Therefore $z \in V$, which is a contradiction.

2. The set $Y_0 = \bigcup \{Y | Y \in S\} \in S$.

If $y_0 \in Y \in S$, then it follows from 1. that $\{y \in Y_0 | y < y_0\} = IS_Y(y_0)$ and so this subset is well ordered with successor function f. This implies that Y_0 is well ordered and satisfies first conditions of element in S. Also $lub_X(IS(y_0)) \in Y \subseteq Y_0$ which gives the second condition for Y_0 . Thus 2. is proved.

Let $y_0 = lub_X(Y_0)$, if $y_0 \notin Y_0$ then $Y_0 \cup \{y_0\} \in S$ and so $y_0 \in Y_0$ after all. If $f(y_0) > y_0$ then $Y_0 \cup \{f(y_0)\} \in S$ contrary to the definition of Y_0 , thus $f(y_0) = y_0$ as desired. \square

Note 4. A map $X \xrightarrow{f} Y$ is a subset $\Gamma \subseteq X \times Y$, s.t. $\forall x \in X, \exists ! y \in Y, (x,y) \in \Gamma$.

Theorem 2. The following statement are equivalent:

- 1. For \forall set X, \exists map $\mathcal{P}_o(X) \xrightarrow{f} X$, s.t. $\forall S \in \mathcal{P}_o(X)$, $f(S) \in S$. $(\mathcal{P}_o(X) := \{A|A| \subseteq X, A \neq \emptyset\})$
- 2. If (X, \leq) is a poset, in which every well-ordered subset has a lub in X, then X has a maximal element.
- 3. (Maximal Chain Theorem) \forall poset (X, \leq) has a maximal chain w.r.t \subseteq . i.e. a chain such that there is no other chain in (X, \leq) which has it as a proper subset.
- 4. (Zorn's Lemma) If (X, \leq) is a poset in which every chain has an upper bound in X then X has a maximal element.
- 5. (Zermelo's Well-Ordering Theorem) Every set has a well-order.
- 6. \forall surj. $X \xrightarrow{f} Y$, \exists an injection $Y \xrightarrow{g} X$, s.t. $f \circ g = id_Y$.
- 7. (Axiom of Choice) Given non-empty sets $S_{\alpha}(\alpha \in A)$, there exists a map $A \xrightarrow{f} \bigcup_{\alpha \in A} S_{\alpha}$, s.t. $f(\alpha) \in S_{\alpha}$.

Proof. $7 \Rightarrow 1$: We can number each non-empty subset of X by itself, since any element in a set is unique. That is $\mathcal{P}_o(X) = \{S_\alpha := \alpha | \alpha \in \mathcal{P}_o(X)\}$, here $\mathcal{P}_o(X)$ serves as A. Thus Axiom of Choice means \exists a map $\mathcal{P}_o(X) \xrightarrow{f} X$, s.t. $f(\alpha) \in S_\alpha = \alpha(\alpha \in \mathcal{P}_o(X))$. (we emphasize $\mathcal{P}_o(X)$, rather than $\mathcal{P}(X)$, because there is nothing in \emptyset)

Note 5. Statement 1 claims that given a set *X*, any non-empty subset of *X* can be maps to a point inside this subset.

 $1 \Rightarrow 2$: Assume that X has no maximal element, i.e. $\forall a \in X, X_a := \{x \in X | a < x\} \neq \emptyset$. $\exists \text{ map } \mathcal{P}_o(X) \xrightarrow{f} X$, s.t. $f(S) \in S$ for all $S \in \mathcal{P}_o(X)$. Define a map $X \xrightarrow{\pi} \mathcal{P}_o(X)(a \mapsto X_a)$

and $X \xrightarrow{g=f \circ \pi} X$. Thus for any $a \in X$, $g(a) = f(X_a) \in X_a$, thus a < g(a), which leads to a contradiction with Bourbaki's fixed point theorem.

$$\begin{array}{ccc} \mathcal{P}_o(X) & \xrightarrow{f} & X \\ & & \\ \pi \uparrow & & g \end{array}$$

 $2 \Rightarrow 3$: Given a poset (X, \leq) consider $S = \{C | C \text{ is a chain in } P \text{ } w.r.t. \leq \}$. Thus (S, \subseteq) is a poset. We claim that any totally ordered set in S has a lub in S. If $T \subseteq S$ is a totally ordered set, (that is T is a chain w.r.t \subseteq of the chains w.r.t. \leq), then $\cup_{C \in T} C = lub_S T$. To show this, we need prove 2 things:

- 1. $\bigcup_{C \in T} C \in U_T$; For any $C \in T$, $C \subseteq \bigcup_{C \in T} C$, thus $\bigcup_{C \in T} C \in U_T$.
- 2. $\bigcup_{C \in T} C \in L_{U_T}$. For any $v \in \bigcup_{C \in T} C, O \in U_T$, $\exists C \in T$, s.t. $v \in C \subseteq O$. Thus $\bigcup_{C \in T} C \subseteq O$, thus $\bigcup_{C \in T} C \in L_{U_T}$.

Thus every totally ordered subset (including well order subset) of (S, \subseteq) has a lub, and (S, \subseteq) has a maximal element, which implies (X, \le) has a maximal chain.

Note 6. (T, \subseteq) is a chain, thus any comparison with the element in T need to use relation \subseteq .

 $3 \Rightarrow 4$: Given a poset (X, \leq) , it has a max. chain C, by assumption, C has an upper bound, say a, in X. Then a is a max. element in X, otherwise $\exists x \in X, a < x$, and hence $C \subsetneq C \cup \{x\}$ and $C \cup \{x\}$ is a chain, which leads to a contradiction to the maximality of C.

 $4 \Rightarrow 5$: Let Y be a set, consider $X := \{A | A = (S_A, \leq_A) \text{ where } S_A \subseteq Y \text{ and } \leq_A \text{ is a well-ordering on } S_A \}$. We define a relation \leq on X: $A \leq A' \Leftrightarrow A = A'$ or A is an initial segment of A' (i.e. $\exists a' \in S_{A'}, S_A = \{x \in S_{A'} | x <_{A'} a' \}$) and $\forall x_1, x_2 \in S_A, x_1 \leq_A x_2 \Leftrightarrow x_1 \leq_{A'} x_2$.

It is direct to see that (X, \preceq) is a poset:

- 1. For any $A \in X$, $A \leq A$;
- 2. If *A* is initial segment of *A'* then $A \neq A'$, since if $\exists a' \in S_{A'}, S_A = \{x \in S_{A'} | x <_{A'} a'\}$ then $a' \in A'$ but $a' \notin A$. Thus $A \leq A', A' \leq A \Rightarrow A = A'$
- 3. Suppose that $A \leq A' \leq A''$, and A, A' and A'' are not equal. Thus $\exists a'' \in S_{A''}$, s.t. $S_{A'} = IS_{A''}(a'')$, and $\exists a' \in S_{A'}$, s.t. $S_{A} = IS_{A'}(a')$. Since $a' <_{A''} a''$, any $a \in S_{A''}$, $a <_{A''} a' \Rightarrow a \in S_{A'}$. Thus $IS_{A''}(a) = \{x \in S_{A''} | x <_{A''} a'\} = \{x \in S_{A'} | x <_{A''} a'\} = \{x \in S_{A'} | x <_{A''} a'\} = IS_{A'}(a') = A$, thus $A \leq A''$.

Then, we claim:

1. (X, \preceq) has a maximal element:

Apply Zorn's lemma, let (C, \preceq) be a chain on (X, \preceq) . Let $A_0 = (S_{A_0}, \leq_{A_0})$ where $S_{A_0} = \bigcup_{A \in C} S_A$, and \leq_{A_0} : for any $x_1, x_2 \in S_{A_0}$, find $A \in C$, s.t. $x_1, x_2 \in S_A$, we say that $x_1 \leq_{A_0} x_2$ if $x_1 \leq_A x_2$. Then we claim:

- Such *A* exists:
 - For any $x_1, x_2 \in S_{A_0}$, $\exists A_1, A_2 \in C$, s.t. $x_1 \in S_{A_1}$, $x_2 \in S_{A_2}$ and S_{A_1} and S_{A_2} are comparable on X w.r.t. \preceq , since C is a chain. Assume that S_{A_1} is an initial segment of S_{A_2} , then $x_1, x_2 \in S_{A_2}$.
- $x_1 \leq_{A_0} x_2$ is independent of the choice of A, s.t. $x_1, x_2 \in S_A$: If $\exists A, A' \in C$, s.t. $x_1, x_2 \in S_A, S_{A'}$, then A, A' are comparable. Assume that $A \preceq A'$, that is A is an initial segment of A', then in S_A , we have $x_1 \leq_A x_2 \Leftrightarrow x_1 \leq_{A'} x_2$.
- (S_{A_0}, \leq_{A_0}) is a total order set : Any $x_1, x_2 \in S_{A_0}$ will be covered by a S_A where A is an element of a chain C on X. Thus x_1 and x_2 are comparable by $x_1 \leq_{A_0} x_2 \Leftrightarrow x_1 \leq_A x_2$.
- (S_{A_0}, \leq_{A_0}) is a well order set :
 - Let $T \subseteq S_{A_0}$ and $T \neq \emptyset$. Then $T = T \cap S_{A_0} = T \cap \cup_{A \in C} S_A = \cup_{A \in C} (T \cap S_A) \neq \emptyset$. Thus $\exists A \in C$, s.t. $T \cap S_A \neq \emptyset$. Since A is well ordering, $T \cap S_A$ has least element, denoted by t.
 - Any $A' \in C$, it is either A' = A or $A' \leq A$ or $A \leq A'$. If $A' \leq A$, then $S_{A'}$ is an initial segment of S_A , that is $\exists a \in S_A$, s.t. $S_{A'} = \{x \in S_A | x <_A a\}$. Thus $S'_A \subseteq S_A$, and $T \cap S_{A'} \subseteq T \cap S_A$, thus t is the least element of $T \cap S_A \Rightarrow t$ is the least element of $T \cap S_{A'}$;
 - If $A \leq A'$, then S_A is an initial segment of $S_{A'}$, thus $\exists a' \in S_{A'}$, s.t. $S_A = \{x \in S_{A'} | x <_{A'} a'\}$ and $T \cap S_A = T \cap \{x \in S_{A'} | x <_{A'} a'\} = \{x \in T \cap S_{A'} | x <_{A'} a'\}$. For any $s \in T \cap S_{A'}$, if $a' \leq_{A'} s$, then $t <_{A'} a' \leq_{A'} s$; if $s <_{A'} a'$, then $s \in T \cap S_A$, and $t \leq_A s \Rightarrow t \leq_{A'} s$. Thus t is the least element of $T \cap S_{A'}$.
 - Thus t is the least element of $T \cap S_{A_0} = T$, thus \leq_{A_0} is a well order on S_{A_0} . Furthermore, $(S_{A_0}, \leq_{A_0}) \in X$.
- S_{A_0} is an upper bound of C on X, w.r.t. \preceq : Given $A \in C$, since C is a chain, any $A' \in C$ admits 3 cases: $A' = A, A' \preceq A$, $A \preceq A'$. Define $\Pi := \{A' \in C | A \preceq A'\} \setminus \{A\}$ and $\Gamma := \{A' \in C | A' \preceq A\} \setminus \{A\}$.

Note 7. Recall the proof of $2 \Rightarrow 3$.

For any $B \in \Pi$, $\exists b \in S_B$, s.t. $S_A = IS_B(b)$. Define $\Phi := \{A' \in \Pi | A' \leq B\} \setminus \{B\}$. If $\Phi \neq \emptyset$, then $\exists C \in \Phi$, $\exists c \in S_C$, s.t. $S_A = IS_C(c)$. Collect all these kind of c and form a set Δ , then Δ is a non-empty subset of S_B . Since S_B is a well ordering set, Δ has a least element μ , and exists the corresponding

$$D \in \Phi$$
, s.t. $S_A = IS_D(\mu)$. Thus

$$S_A = IS_D(\mu) = \{ x \in S_D | x <_D \mu \}$$

$$\xrightarrow{x,\mu \in S_{A_0}} \{ x \in S_D | x <_{A_0} \mu \}$$

Since any $A' \in \Pi$, the corresponding $\mu \leq_{A'} a'$, thus

$$\{x \in S_{A'} | x <_{A_0} \mu\} = \{x \in S_{A'} | x <_{A'} \mu\}$$

$$\subseteq \{x \in S_{A'} | x <_{A'} a'\}$$

$$= IS_{A'}(a')$$

$$= S_A = IS_D(\mu)$$

On the other hand, For any $A'' \in \Gamma$, $A'' \preceq A \Rightarrow S_{A''} \subseteq S_A$, thus $\{x \in S_{A''} | x <_{A_0} \mu\} \subseteq S_A$. Thus

$$\begin{split} S_A &= IS_D(\mu) \\ &= \cup_{A' \in \Pi} \{ x \in S_{A'} | x <_{A_0} \mu \} \cup (\cup_{A'' \in \Gamma} \{ x \in S_{A''} | x <_{A_0} \mu \}) \\ &= \{ x \in \cup_{A' \in \Pi \cup \Gamma} S_{A'} | x <_{A_0} \mu \} \\ &= \{ x \in \cup_{A' \in C} S_{A'} | x <_{A_0} \mu \} \\ &= IS_{A_0}(\mu) \end{split}$$

Thus $A \leq A_0$ for any $A \in C$, and A_0 is an upper bound of C. (X, \leq) , as a poset, whose any chain C has an upper bound A_0 , thus X has a maximal element by Zorn's lemma.

2. A maximal element in (X, \preceq) is (Y, \leq_Y) .

If (Y_0, \leq_{Y_0}) is a max. element in X w.r.t. \leq and $Y_0 \neq Y$, then $\exists y \in Y \setminus Y_0$. Define $Y_1 := Y_0 \cup \{y\}$ and a partial order: $v \leq_{Y_1} y, v_1 \leq_{Y_1} v_2 \Leftrightarrow v_1 \leq_{Y_0} v_2$ for $\forall v, v_1, v_2 \in Y_0$.

Then (Y_1, \leq_{Y_1}) admits a well-ordering which makes (Y_0, \leq_{Y_0}) an initial segment, because any non-empty subset ϕ of Y_1 is either $\{y\}$ or $(\phi \cap Y_0) \cup (\phi \cap \{y\})$, clearly ϕ has least element.

Thus $(Y_1, \leq_{Y_1}) \in X$ and $(Y_0, \leq_{Y_0}) \preceq (Y_1, \leq_{Y_1})$, which leads to a contradiction to the maximality of (Y_0, \leq_{Y_0}) .

Since *X* is the set of well ordering subset on *Y*, $(Y, \leq_Y) \in X$, thus (Y, \leq_Y) is well ordering.

 $5 \Rightarrow 6$: Choose a well ordering \leq on X, For any $y \in Y$, define g(y) := the least element of $f^{-1}(y)$, then $f \circ g(y) = y$. For any $y_1, y_2 \in Y, y_1 \neq y_2 \Rightarrow f(g(y_1)) \neq f(g(y_2)) \Rightarrow g(y_1) \neq g(y_2) \Rightarrow g$ is injective.

 $6 \Rightarrow 7$: Let $S := \bigcup_{\alpha \in A} S_{\alpha}$, define $X := \{(s, \alpha) \in S \times A | s \in S_{\alpha}\}$. Consider two projection $X \xrightarrow{f} A((s, \alpha) \mapsto \alpha)$ and $X \xrightarrow{p} S((s, \alpha) \mapsto s)$, thus f is a surjection, then $\exists A \xrightarrow{g} X$ such that $f \circ g(\alpha) = \alpha$ for any $\alpha \in A$.

Define s_{α} is the least element of S_{α} , then $g(\alpha) = (s_{\alpha}, \alpha)$ and $p \circ g(\alpha) = p(s_{\alpha}, \alpha) = s_{\alpha} \in S_{\alpha}$. Thus $A \xrightarrow{p \circ g} S = \bigcup_{\alpha \in A} S_{\alpha}$ is desired.

3 Applications of Zorn's Lemma

3.1 Cardinality

Definition 5 (Cardinality). Let *X* and *Y* be two sets, we say |X| = |Y| if there exists a bijection $X \to Y$; $|X| \le |Y|$ if exist an injection $X \to Y$.

Exercise 1. Let X and Y be two sets, show that \exists an injection $X \to Y \Leftrightarrow \exists$ a surjection $Y \to X$.

Proof. \Leftarrow : If $Y \xrightarrow{f} X$ is a surjection, then \exists an injection $X \xrightarrow{g} Y$ by equivalent statements 6 of AC. \Rightarrow : If $X \xrightarrow{f} Y$ is an injection, then $X \xrightarrow{f} f(X)$ is a bijection, and there exists an inverse $f(X) \xrightarrow{f^{-1}} X$. Select $x \in X$, define $g(y) \equiv x, y \in Y \setminus f(X)$, Then $Y \xrightarrow{g} X$ where $y \mapsto f^{-1}(y)$ if $y \in f(X)$ and $y \mapsto x$ if $y \in Y \setminus f(X)$ is as desired.

Exercise 2. Let X and Y be two sets, show that there exist an injection from X to Y or from Y to X.

Proof. Consider $\Pi := \{S_f \xrightarrow{f} Y | f \text{ is an injection on a subset } S_f \text{ of } X\}$ and $f \leq f' \Leftrightarrow S_f \subseteq S_{f'}$ and $f'|_{S_f} = f$. Thus (Π, \preceq) is a poset.

If $\Pi = \emptyset$, which implies there is only one element in Y, thus there exists a surjection from X to $Y \Rightarrow$ there exists an injection from Y to X.

If $\Pi \neq \emptyset$:

suppose (C, \preceq) is a chain on (Π, \preceq) , define $Z = \bigcup_{S \in C} S$, and for any $z \in Z$, $f_o(z) = f(z)$ if $z \in S_f$. As always: (1) S_f exists by the def. of Z; (2) the def. of f_o is well-defined, that is the value of $f_o(z)$ is independent with the choice of S_f , because any S_f, S_f' that cover z are in the chain C, thus they are comparable, and one is the extension of the other.

Thus $Z \xrightarrow{f_o} Y$ is an upper bound of (C, \preceq) , because for any $S_f \xrightarrow{f} Y \in C$, $S_f \subseteq Z$ by def. and $f_o|_{S_f} = f$ by the independence. Thus any chain on (Π, \preceq) has an upper bound, and (Π, \preceq) has a maximal element $X_0 \xrightarrow{f_0} Y$. Suppose $X_0 \neq X$:

If f_0 is not surj: Then select $y_0 \in Y \setminus f(X_0)$ and $x \in X \setminus X_0$. Define $X_1 = X_0 \cup \{x\}$, and define $f_1|_{X_0} = f_0$, $f_1(x_0) = y_0$. Then $f_0 \leq f_0$, which against the maximality of $X_0 \xrightarrow{f_0} Y$. If f_0 is surj: Then select any $y_0 \in Y$ and define $f_1(x) \equiv y_0$ for any $x \in X \setminus X_0$, thus $X \xrightarrow{f_1} Y$ is a surj. Then there exists an injection $Y \xrightarrow{g} X$, and we are done.

Note 8. A very useful routine:

1. transform the existence of the target to the existence of the maximal element on some poset

- 2. use Zorn's Lemma (show any chain on the poset has an upper bound, which is usually the union on all elements in the chain)
- 3. check that the maximal element = target (use contradiction).

Proposition 1 (Bernstein-Schroeder). $|X| \leq |Y|$ and $|Y| \leq |X| \Rightarrow |X| = |Y|$.

Proof. The proof of the proposition has been given in *Introduction to Topology, Lecture 2, Proposition 4.* \Box

3.2 Vector Space

3.3 Hahn-Banach Theorem

Lemma 1. Let X be a vector space over $K(=\mathbb{R})$, and $X \stackrel{p}{\to} \mathbb{R}$ is a func. s.t. $\forall x, x' \in X, t > 0, p(x+x') \leq p(x) + p(x')$ and p(tx) = tp(x).

For any linear func. $Z \xrightarrow{\Xi_o} \mathbb{R}$ on a vector subspace Z of X s.t. $\Xi_o(z) \leq p(z)$ for any $z \in Z$. If $x_0 \in X \setminus Z$, then there exists a linear func. $Z + \mathbb{R} x_0 \xrightarrow{\Xi} \mathbb{R}$ s.t. $\Xi|_Z = \Xi_o$ and $\Xi(u) \leq p(u)$ for any $u \in Z + \mathbb{R} x_0$.

Proof. All linear func.s $Z + \mathbb{R}x_0 \xrightarrow{\Xi} \mathbb{R}$ such that $\Xi|_Z = \Xi_o$ is of the form $\Xi(z + tx_0) = \Xi_o(z) + t\Xi(x_0)$. It suffices to determine the value of $\Xi(x_0)$ (denoted as a) s.t. $\Xi(u) \le p(u)$ for any $u \in Z + \mathbb{R}x_0$ holds.

Any $u \in Z + \mathbb{R}x_0$ can be uniquely written as $z + tx_0, z \in Z, t \in \mathbb{R}$. We hope to find $a \in \mathbb{R}$ such that

$$\Xi(u) = \Xi_o(z) + ta \le p(u) = p(z + tx_0)$$

for all $z \in Z$, $t \in \mathbb{R}$, or equivalently (if t < 0, denote t = -t', t' > 0)

$$a \le \frac{p(z+tx_0) - \Xi_o(z)}{t}, \quad z \in Z, t > 0$$
 $a \ge \frac{p(z'-t'x_0) - \Xi_o(z')}{-t'}, \quad z' \in Z, t' > 0$

Since

$$\begin{split} &\frac{p(z+tx_0) - \Xi_o(z)}{t} - \frac{p(z'-t'x_0) - \Xi_o(z')}{-t'} \\ &= \frac{p(z+tx_0) - \Xi_o(z)}{t} + \frac{p(z'-t'x_0) - \Xi_o(z')}{t'} \\ &= \frac{t'p(z+tx_0) - t'\Xi_o(z) + tp(z'-t'x_0) - t\Xi_o(z')}{tt'} \\ &= \frac{p(t'z+tt'x_0) - \Xi_o(t'x) + p(tz'-tt'x_0) - \Xi_o(tz')}{tt'} \\ &\geq \frac{p(t'z+tt'x_0 + tz' - tt'x_0) - \Xi_o(t'z + tz')}{tt'} \\ &= \frac{p(t'z+tz') - \Xi_o(t'z+tz')}{tt'} \geq 0. \end{split}$$

 \Rightarrow such $a\exists$.

Theorem 3 (Hahn-Banach Theorem). Let X be a vector space over $K(=\mathbb{R})$, and $X \xrightarrow{p} \mathbb{R}$ is a func. s.t. $\forall x, x' \in X$, t > 0, $p(x + x') \leq p(x) + p(x')$ and p(tx) = tp(x). For any linear func. $Y \xrightarrow{\Lambda_o} \mathbb{R}$ on a vector subspace Y of X s.t. $\Lambda_o(y) \leq p(y)$ for any $y \in Y$. Then there exists a linear func. $X \xrightarrow{\Lambda} \mathbb{R}$ s.t. $\Lambda|_Y = \Lambda_o$ and $\Lambda(x) \leq p(x)$ for any $x \in X$.

Proof. Consider P is the collection of $W_{\Theta} \xrightarrow{\Theta} \mathbb{R}$ such that Θ is a linear func. on a vec. subspace W_{Θ} of X containing Y s.t. $\Theta|_{Y} = \Lambda_{o}$ and $\Theta(w) \leq p(w)$ for all $w \in W_{\Theta}$. And define $\preceq : \Theta \preceq \Theta' \Leftrightarrow W_{\Theta} \subseteq W_{\Theta'}$ and $\Theta'|_{W_{\Theta}} = \Theta$. It is direct to see (P, \preceq) is a poset. If (P, \preceq) has a maximal element $Z \xrightarrow{\Theta} \mathbb{R}$, then Z = X by Lemma 1. otherwise we can extent Z to $Z + \mathbb{R}x_{0}$ where $x_{0} \in X \setminus Z$ which against the maximality of $Z \xrightarrow{\Theta} \mathbb{R}$. *Note* 9. Recall the proof of Well-Ordering Theorem by Zorn's Lemma.

Thus it suffices to show (P, \preceq) has a max. element. Let (C, \preceq) is a chain in (P, \preceq) . We take $W = \bigcup_{\Theta \in C} W_{\Theta}$ which is a vector subspace of X containing Y. And define $W \stackrel{\Pi}{\to} \mathbb{R}$ where then $w \mapsto \Theta(w)$ if $w \in W_{\theta}$. This is well-defined, $\Pi(w)$ is independence of the choice of Θ s.t. $w \in W_{\Theta}$, since C is a chain, and one of any W_{Θ} , $W_{\Theta'}$ that covers w is the extension of the other. Thus for any $\Theta \in C$, $W_{\Theta} \subseteq W$ and $\Pi|_{W_{\Theta}} = \Theta$, thus $\Theta \preceq \Pi$. Thus Π is the upper bound of C, and W = X and $X \stackrel{\Pi}{\to} \mathbb{R}$ is as desired.