

Duran®

Tubes, capillaires et baguettes en verre borosilicate 3.3

Diamètre e	Diamètre extérieur Epaisseur de paroi			Poids par tube	Contenu p	oar carton
Ç			→⊖		4	
mm	1	mm	١	g/1500 mm	Nombre de tubes	Poids env. kg
3	$\pm 0,14$	0,7	± 0.04	17	941	16,0
4	±0,14	0,8	±0,04	27	555	15,0
5	±0,14	0,8	±0,04	35	343	12,0
,	. 0.14	1,0	±0,04	53	245	13,0
6	±0,14	1,5	±0,08	71	211	15,0
7	±0,14	1,0	± 0.04	63	190	12,0
,	_0,14	1,5	±0,08	87	172	15,0
8	±0,14	1,0	±0,04	74	149	11,0
	,	1,5	±0,08	102	147	15,0
9	±0,14	1,0	±0,04	84	119	10,0
		1,5	±0,08 ±0,04	118 95	119 95	14,0 9,0
10	±0,14	1,0 1,5	±0,04 ±0,08	134	90	12,0
10	±0,14	2,2	±0,08	180	56	10,0
		1,0	±0,04	105	86	9,0
11	±0,18	1,5	±0,10	150	73	11,0
	_ 5/. 5	2,2	±0,12	203	42	8,5
		1,0	±0,04	116	130	15,0
12	±0,18	1,5	±0,10	165	67	11,0
		2,2	±0,12	226	42	9,5
		1,0	± 0.04	126	119	15,0
13	±0,18	1,5	$\pm 0,10$	181	55	10,0
		2,2	±0,12	250	36	9,0
7.4		1,0	±0,04	137	110	15,0
14	±0,18	1,5		197	46	9,0
		2,2	±0,12	273	30	8,2
1.5	±0,18	1,2	±0,05 ±0,09	174 250	86 56	15,0
15	±0,10	1,8 2,5	±0,09	328	25	14,0 8,2
		1,2	±0,05	187	81	15,0
16	±0,18	1,8	±0,09	268	49	13,1
	,	2,5	±0,13	354	25	8,8
		1,2	±0,05	199	75	15,0
17	±0,18	1,8	±0,09	287	49	14,0
		2,5	±0,13	381	25	9,5
		1,2	±0,05	212	66	14,0
18	±0,18	1,8	±0,09	306	49	15,0
		2,5	±0,13	407	20	8,1
10	. 0. 1.6	1,2	±0,05	224	63	14,0
19	±0,18	1,8	±0,09	325	42	13,7
		2,5	± 0.13	433	36	15,6

Diamètre e	extérieur	Epaisseur de paroi		Poids par tube	Contenu p	Contenu par carton	
Ç			→⊖		8		
mm	1	mm		g/1500 mm	Nombre de tubes	Poids env. kg	
20	±0,25	1,2 1,8 2,5	±0,05 ±0,10 ±0,15	237 344 460	55 36 20	13,0 12,4 9,2	
22	±0,25	1,2 1,8 2,5	±0,05 ±0,10 ±0,15	262 382 512	42 30 30	11,0 11,5 15,4	
24	±0,25	1,2 1,8 2,5	±0,05 ±0,10 ±0,15	287 420 565	36 25 25	10,3 10,5 14,0	
26	±0,25	1,4 2,0 2,8	±0,05 ±0,10 ±0,15	362 504 682	30 25 20	10,9 12,6 13,6	
28	±0,25	1,4 2,0 2,8	±0,05 ±0,10 ±0,15	391 546 741	25 20 20	9,8 11,0 14,8	
30	±0,35	1,4 2,0 2,8	±0,08 ±0,10 ±0,15	421 588 800	36 16 16	15,2 9,4 12,8	
32	±0,35	1,4 2,0 2,8	±0,08 ±0,10 ±0,15	450 630 859	25 16 16	11,3 10,1 13,8	
33	±0,35	2,0 1,4	±0,10 ±0,08	651 479	25 25	16,2 12,1	
34	±0,35	2,0 2,8	±0,10 ±0,15	672 918	16 16	10,8 14,8	
36	±0,40	1,4 2,0 2,8	±0,08 ±0,10 ±0,15	509 714 976	25 25 12	12,6 18,0 11,7	
38	±0,40	1,4 2,0 2,8	±0,08 ±0,10 ±0,15	538 756 1035	20 20 9	10,8 15,0 9,4	
40	±0,55	1,6 2,3 3,2 5,0	±0,08 ±0,12 ±0,20 ±0,40	645 911 1237 1838	16 16 9 9	10,2 14,6 11,2 16,5	
42	±0,55	1,6 2,3 3,2	±0,08 ±0,12 ±0,20	679 959 1304	16 16 9	10,9 15,3 11,7	
44	±0,55	1,6 2,3 3,2	±0,08 ±0,12 ±0,20	713 1007 1371	16 16 9	11,4 16,0 12,4	

Diamètre d	extérieur	Epaisseur de paroi		Poids par tube	Contenu p	par carton
mm	1	mm		g/1500 mm	Nombre de tubes	Poids env. kg
45	±0,65	5,0	±0,40	2101	9	18,9
73	_0,00	1,6	±0,08	746	16	11,9
46	±0,65	2,3	±0,12	1056	9	9,5
.0	,	3,2	±0,20	1439	9	13,0
		1,6	±0,08	780	16	12,4
48	$\pm 0,65$	2,3	$\pm 0,12$	1104	16	17,6
		3,2	$\pm 0,20$	1506	6	9,0
		1,8	±0,12	911	12	10,9
		2,5	$\pm 0,15$	1247	12	15,0
50	±0,70	3,5	±0,25	1709	12	20,5
	,	5,0	±0,30	2363	6	14,1
		7,0	±0,50	3161	6	19,0
		9,0	±0,65	3876 949	6 9	23,2
52	±0,70	1,8 2,5	±0,12 ±0,18	1300	9	8,5 11,7
52	±0,70	2,5 3,5	±0,18	1783	9	16,0
		1,8	±0,12	987	9	8,9
54	±0,70	2,5	±0,18	1352	9	12,2
34	=0,70	3,5	±0,25	1856	9	16,7
55	±0,70	5,0	±0,35	2626	4	10,5
	,	1,8	±0,12	1025	9	9,2
56	±0,70	2,5	±0,18	1405	9	12,6
		3,5	±0,25	1930	9	17,5
		1,8	±0,12	1063	9	9,6
58	$\pm 0,70$	2,5	$\pm 0,18$	1457	9	13,1
		3,5	$\pm 0,25$	2004	9	18,0
		2,2	±0,18	1336	9	12,0
		3,2	±0,20	1910	9	17,2
60	±0,80	4,2	±0,30	2462	4	9,8
		5,0	±0,35	2888	4	11,5
		7,0	±0,50	3897	4	15,6
		9,0 2,2	±0,65 ±0,18	4821 1451	4 8	19,3 11,7
		3,2	±0,18 ±0,20	2077	4	8,3
65	±0,80	4,2	±0,20	2682	4	10,7
		5,0	±0,35	3151	4	12,6
		2,2	±0,18	1567	8	12,5
		3,2	±0,20	2245	4	9,0
70	.0.00	4,2	±0,30	2903	4	11,6
70	±0,90	5,0	±0,35	3414	4	13,6
		7,0	±0,50	4632	4	18,5
		9,0	±0,65	5766	4	23,1

Diamètre ex	dérieur	Epaisseur de paroi		Poids par tube	Contenu p	oar carton
Ö	∀		kg			
mm		mm		g/1500 mm	Nombre de tubes	Poids env. kg
		2,2	$\pm 0,18$	1682	8	13,5
75	±0,90	3,2	$\pm 0,20$	2413	4	9,7
/3	-0,70	4,2	$\pm 0,30$	3123	4	12,5
		5,0	$\pm 0,35$	3676	4	14,7
		2,5	± 0.18	2035	4	8,2
80	±1,20	3,5	$\pm 0,25$	2812	4	11,3
00	_1,20	5,0	$\pm 0,40$	3939	4	15,8
		9,0	$\pm 0,70$	6712	4	26,8
		2,5	$\pm 0,18$	2166	4	8,7
85	$\pm 1,20$	3,5	$\pm 0,25$	2996	4	12,0
		5,0	$\pm 0,40$	4201	4	16,8
		2,5	± 0.18	2298	4	9,2
		3,5	$\pm 0,25$	3180	4	12,7
90	±1,20	5,0	$\pm 0,40$	4464	4	17,9
		7,0	$\pm 0,50$	6102	3	18,3
		9,0	$\pm 0,70$	7657	3	23,0
		2,5	$\pm 0,18$	2429	4	9,7
95	$\pm 1,40$	3,5	$\pm 0,25$	3364	4	13,4
		5,0	$\pm 0,40$	4726	4	18,9
		2,5	± 0.18	2560	4	10,3
		3,0	$\pm 0,20$	3056	4	12,1
100	±1,40	3,5	$\pm 0,25$	3547	3	10,7
100	,	5,0	$\pm 0,40$	4989	3	15,0
		7,0	$\pm 0,50$	6838	3	20,5
		9,0	±0,70	8602	3	25,8
105	±1,50	3,0	±0,20	3214	3	9,6
. 55		5,0	±0,40	5252	3	15,8
110	1.50	3,0	±0,30	3372	3	10,1
110	±1,50	5,0	±0,50	5514	3	16,5
		7,0	±0,70	7573	3	22,7
3.3.5	. 1. 50	3,0	±0,30	3529	4	14,1
115	±1,50	5,0	±0,50	5777	2	11,6
		7,0	±0,70	7940	2	15,9
		3,0	±0,30	3687	4	14,7
120	±1,50	5,0	±0,50	6039	2	12,1
0		7,0	±0,70	8308	2	16,6
		9,0	±0,90	10493	2	21,0
125	±1,50	5,0 9,0	±0,50 ±0,90	6302 10965	2 2	12,6 21,9

Diamètre ex	térieur	Epaisseur de paroi		Poids par tube	Contenu par carton	
Ö	∀		kg 0			
mm		mm	l	g/1500 mm	Nombre de tubes	Poids env. kg
		3,0	±0,30	4002	4	16,0
130	±1,60	5,0	$\pm 0,50$	6565	2	13,1
100	/	7,0	±0,70	9043	2	18,1
		9,0 5,0	±0,90 ±0,50	11438 6827	2	22,9 13,7
135	±1,60	7,0	±0,30 ±0,70	9411	2	18,8
		3,0	±0,30	4317	4	17,3
140	±1,70	5,0	±0,50	7090	2	14,2
		7,0	±0,70	9779	2	19,6
145	±1,70	5,0	±0,50	7352	2	14,7
		3,0	±0,30	4632	2	9,3
150	±1,80	5,0	$\pm 0,50$	7615	2	15,2
130	±1,00	7,0	$\pm 0,70$	10514	2	21,0
		9,0	±0,90	13329	2	26,7
155	±1,80	5,0	±0,50	7877	2	15,8
160	±1,80	5,0	±0,50	8140	2	16,3
	·	7,0	±0,80	11249	2	22,5
165	±1,80	5,0 7,0	±0,50 ±0,80	8403 11617	2	16,8 23,2
		5,0	±0,50	8665	2	17,3
170	±1,80	7,0	±0,80	11984	2	24,0
	,	9,0	±1,00	15219	1	15,2
		5,0	$\pm 0,50$	9190	1	9,2
180	±2,00	7,0	± 0.80	12720	1	12,7
		9,0		16165	1	16,2
190	±2,10	5,0	±0,50	9716	1	9,7
		7,0 5.0	±0,80 ±0,80	13455 10241	1	13,5 10,2
200	±2,40	5,0 7,0	±0,60 ±1,00	14190	1	14,2
200	_2,40	9,0	±1,20	18055	1	18,1
015	. 0. 50	7,0	±1,10	15293	1	15,3
215	±2,50	9,0	±1,20	19473	1	19,5
225	±2,70	7,0	±1,10	16028	1	16,0
		9,0	$\pm 1,30$	20418	1	20,4
240	±2,90	9,0	±1,30	21836	1	21,8
0.50		5,0	±0,80	12867	1	12,9
250	±3,00	7,0	±1,10	17866	1	17,9
		9,0	±1,30	22782	1	22,8
270	±3,00	5,0 7,0	±0,80 ±1,10	13917 19337	1	13,9 19,3
2/0	_5,55	9,0	±1,10 ±1,30	24672	1	24,7

Diamètre extérieur	Epaisseur de paroi	Poids par tube	Contenu par carton	
\mathcal{O}		0	Example 1	
mm	mm	g/1500 mm	Nombre de tubes	Poids env. kg
	5,0 ±0,80	15492	1	15,5
300 ±3,80	7,0 ±1,20	21542	1	21,5
	9,0 ±1,40	27508	1	27,5
315 ±3,90	7,0 ±1,20	22645	1	22,6
313 -5,70	9,0 ±1,40	28926	1	28,9
325 ±4,00	9,0 ±1,40	29871	1	29,9
323 =4,00	10,0 ±1,40	33085	1	33,0
350 ±4,00	5,0 ±0,80	18118	1	18,1
365 ±4,50	7,0 ±1,40	26321	1	26,3
400 ±5,00	6,0 ±1,50	24829	1	24,8
415 ±5,00	7,0 ±1,50	29997	1	30,0
420 ±5,00	9,5 ±1,50	40960	1	41,0

Longueur standard 1500 mm. Les quantités et poids sont donnés à titre indicatif. Autres dimensions sur demande.

Duran (borosilicate 3.3): Tubes pour indicateurs de niveau d'eau

Diamètre e	Diamètre extérieur Epaisseur de paroi		Poids par tube	Contenu	oar carton	
Ç	}	→€	-)	kg	6	F
mm		mm		g/2000 mm	Nombre de tubes	Poids env. kg
9,5	±0,18	1,50	±0,10	168	100	16,8
11,5	±0,18	1,50	±0,10	210	64	13,4
12,5	±0,18	1,50	±0,10	231	49	11,2
13,5	±0,18	1,75	±0,10	288	49	14,1
14,5	±0,18	2,25	±0,15	386	36	13,9
15,5	±0,18	2,25	±0,15	418	25	10,4
18,5	±0,18	2,25	±0,15	512	20	10,2
19,5	±0,18	2,25	±0,15	544	25	13,6
20,5	±0,25	2,50	±0,15	630	16	10,1
24,5	±0,25	2,50	±0,15	770	16	12,3
29,5	±0,30	2,75	±0,20	1030	9	9,3
34,5	±0,45	2,75	±0,20	1223	9	11,0
39,5	±0,45	3,00	±0,20	1533	9	13,8

Longueur standard 1500 mm. Les quantités et poids sont donnés à titre indicatif.

Duran (borosilicate 3.3): Capillaires

Diamètre extérieur	iamètre extérieur Diamètre intérieur		Contenu p	ar carton
Ö	$\overline{\Theta}$	kg /	4	
mm	mm	g/1500 mm	Nombre de capillaires	Poids env. kg
4 ±0,18	0,8 ±0,08	40	250	10
	0,4 ±0,08	65	154	10
5 ±0,18	0,6 ±0,08	65	154	10
3 ±0,18	0,8 ±0,08	64	156	10
	1,2 ±0,08	62	161	10
	0,4 ±0,08	94	104	10
	0,8 ±0,08	93	108	10
6 ±0,18	1 ,2 ±0,08	91	110	10
0 =0,10	1,7 ±0,10	87	115	10
	2,2 ±0,10	82	122	10
	2,7 ±0,10	75	133	10
	0,8 ±0,08	127	79	10
	1 ,2 ±0,08	125	80	10
7 ±0,20	1,7 ±0,10	121	83	10
/ =5/25	2,2 ±0,10	116	86	10
	2,7 ±0,10	110	91	10
	3,0 ±0,10	105	95	10
	0,8 ±0,08	166	60	10
	1,2 ±0,08	164	61	10
8 ±0,20	1,7 ±0,10	160	63	10
,	2,2 ±0,10	155	65	10
	2,7 ±0,10	149	67	10
	3,0 ±0,10	144	69	10
	0,8 ±0,08	211	47	10
	1,2 ±0,08	209	48	10
9 ±0,20	1,7 ±0,10	205	49	10
	2,2 ±0,10	200	50	10
	2,7 ±0,10	194	52	10
	3,0 ±0,10	189	53	10

Longueur standard 1500 mm.

Les quantités et poids sont donnés à titre indicatif.

Duran (borosilicate 3.3): Baguettes

Diam	nètre	Contenu p	ar carton	Diamètre		Contenu par carton	
mı	m	Nombre de baguettes	Poids env. kg	m	m	Nombre de baguettes	Poids env. kg
3	±0,14	529	12,5	14	±0,30	24	12,4
4	±0,14	298	12,5	16	±0,30	20	13,4
5	±0,14	183	12,0	18	±0,40	20	17,0
6	±0,14	140	13,2	20	±0,40	16	16,8
7	±0,14	98	12,6	22	±0,45	12	15,3
8	±0,20	80	13,4	24	±0,45	12	18,2
9	±0,20	63	13,4	26	±0,55	9	16,0
10	±0,20	45	11,8	28	±0,80	9	18,5
12	±0,20	35	13,2	30	±0,80	6	14,2

Longueur standard 1500 mm. Les quantités et poids sont donnés à titre indicatif.

Duran (borosilicate 3.3): Le verre

Le verre

Le verre Duran est un verre borosilicaté spécial de la première classe hydrolytique. On ne peut imaginer un laboratoire ou une installation de génie chimique sans tubes, capillaires et baguettes en verre Duran. Ils constituent le fondement de la résolution des problèmes spécifiques de chacun de nos clients.

Les avantages

Les produits Duran sont renommés pour leur stabilité, leur transformation aisée et leur remarquable résistance aux chocs thermiques. Grâce à une dilatation thermique faible, le verra Duran est le matériau idéal pour une utilisation en laboratoire ainsi qu'au sein d'importantes installations dans l'industrie chimique. Les produits Duran sont anticorrosifs et, en présence de produits agressifs, ils ont un comportement, ce qui représente un avantage certain face à d'autres matériaux. Le verre borosilicate offre une bonne résistance à l'eau, aux acides, aux solutions alcalines, aux substances organiques ainsi qu'à la chaleur des halogènes : En outre, les tubes, baguettes et capillaires en verre Duran offrent une bonne résistance aux bases. Les propriétés chimiques et physiques vous sont indiquées dans les pages suivantes. Le vaste assortiment de tubes, capillaires et baguettes vous garantit une haute précision dans toutes les dimensions. Pour répondre à des exigences particulières ces tubes peuvent également être livrés sous fore de composants prétrempés.

La qualité

Conformément aux normes internationales les plus importantes les produits en verre Duran répondent à celles-ci ainsi qu'à leurs spécifications. Toutes les phases de production sont conduites électroniquement et suivies d'un contrôle qualité continu et sans faille. Les caractéristiques de qualité sont décrites dans les pages

continu et sans faille. Les caractéristiques de qualité sont décrites dans les pages suivantes sous la rubrique Conditions Techniques de Livraison.

La transformation

Les domaines d'application des tubes, baguettes et capillaires Duran sont vastes. Les principaux domaines d'application sont le laboratoire et la chimie. La gamme s'étend du simple tube à essais aux installations les plus diverses de refroidissement et de distillation, sans omettre les appareils de filtration.

Les tubes, capillaires et baguettes en verre Duran sont également présents dans les installations industrielles de génie chimique et d'évacuation d'eaux usées, dans la construction de tuyauteries ainsi que dans la technique de l'environnement. D'autres domaines techniques tels que les échangeurs de chaleur, les tubes antidéflagrants, les instruments de mesure de passage des fluides en font un large usage.

L'artisanat, quant à lui, conçoit des pièces uniques allant du simple bougeoir au verre à vint et à Champagne filigrane.

Duran (borosilicate 3.3): Propriétés physiques et chimiques

Propriétés physiques

Coefficient de dilatation thermique linéaire α (20°C; 300°C)	3,3 ⋅ 10 ⁻⁶ K ⁻¹
Température de transformation Tg	525 °C
Points de repère pour viscosités η du verre en dPa·s:	
10 ¹³ température de recuit supérieure	560 °C
10 ^{7,6} température de ramollissement	825 °C
10 ⁴ température de transformation	1260 °C
Température maximale admise pour utilisation de courte durée	500 °C
Densité ρ à une température de 25 °C	2,23 g · cm⁻³
Module d'élasticité E (module selon Young)	64 · 10 ³ N · mm ⁻²
Coefficient de Poisson μ	0,20
Conductibilité thermique $\lambda_{\rm w}$ à 90 °C	1,2 W·m ⁻¹ ·K ⁻¹
Température pour la résistance électrique volumétrique ($\Omega\cdot$ cm)	
à 250 °C	8
à 350 °C	6,5
Propriétés diélectriques (1 MHz, 25 °C)	
Coefficient diélectrique ε	4,6
Facteur de perte diélectrique tan δ	37 · 10 ⁻⁴
Indice de réfraction ($\lambda = 587.6$ nm) n_d	1,473
Coefficient tensio-optique K	$4.0 \cdot 10^{-6} \text{mm}^2 \cdot \text{N}^{-1}$

Composition chimique (principaux composants en % poids approximatifs)

SiO ₂	B_2O_3	$Na_2O + K_2O$	Al_2O_3
80,4	13,0	4,2	2,4

Résistance à la compression de tubes et capillaires Duran

Calcul de la résistance à la compression (p) pour une épaisseur de paroi (Ep) donnée et un diamètre extérieur (De) donné :

Calcul de l'épaisseur de paroi (Ep) pour une résistance à la compression (p) et un diamètre extérieur (De) donnés : $p = \frac{Ep \cdot 20 \cdot \frac{R}{S}}{De - Ep}$

$$Ep = \frac{De \cdot p}{20 \cdot \frac{R}{S} + p}$$

De = diamètre extérieur, en mm

Ep = épaisseur en mm

P = résistance à la compression en bar

R/S = valeur caractéristique de résistance en $N \cdot mm^{-2}$

Sollicitation admise pour le verre borosilicate 3.3 Duran : $K/S = 7 N/mm^2$

De plus, la résistance à la compression est également influencée par :

- la différence de température entre les paroi intérieure et extérieure
- la longueur des tubes
- l'état des extrémités

- le respect des conditions de montage conformément aux recommandations pour récipients sous pression
- la qualité de surface

Résistance aux chocs thermiques

La résistance aux chocs thermiques selon la norme ISO 718 désigne la différence de température entre un corps d'essai chaud et un bain d'eau froide (température ambiante), à laquelle 50 % des échantillons présentent les premières fissures lorsqu'ils sont plongés brusquement dans ce bain d'eau. La résistance aux chocs thermiques des tubes, capillaires et baguettes dépend de l'épaisseur de paroi, de la forme et de la grandeur de la surface saisie, ainsi que de l'état de surface, des tensions existantes et du façonnage des extrémités. Une montée ou baisse de température irrégulière ou trop rapide provoque aisément un bris de verre par suite de tensions. Il est recommandé de ne pas dépasser une variation de température sera limitée à des valeurs inférieures. Les valeurs mentionnées ci-dessous sont données à titre d'exemple et ne peuvent être données qu'à titre indicatif car des différences importantes entre tubes et baguettes de même dimensions sont possibles :

Tubes	Baguette
De 50,5/ Ep 5,00 mm: 220 °C	Diam. 24,0 mm : 140 °C
De 133,0/ Ep 7,00 mm: 180 °C	
De 120,0/ Ep 8,00 mm: 180 °C	

Résistance chimique

Classe hydrolytique (DIN ISO 719)	HGB 1
Classe d'acide (DIN 12 116)	Class S 1
Classe de base (DIN ISO 695)	Class A 2

Le verre borosilicate 3.3 Duran offre une très bonne résistance à l'eau, aux solutions neutres et acides, aux acides concentrés et à leurs mélanges, ainsi qu'au chlore, au brome, à l'iode et aux substances organiques. Sa résistance chimique surpasse celle de la plupart des métaux et autres matériaux, même sous des actions prolongées et, à des températures supérieures à 100 °C.

Sous l'action de l'eau et des acides, seules de faibles quantités d'ions, essentiellement univalents, sont relarguées par le verre. Il se constitue alors, à la surface du verre, une très mince couche de verre de silice, de faible porosité, qui arrête le développement ultérieur d'actions agressives. A forte concentration et sous l'action de la température, l'acide fluorhydrique, l'acide phosphorique ainsi que les solutions alcalines attaquent progressivement la surface du verre. L'action des acides fluorhydrique et phosphorique, et des solutions alcalines dépend de la température ambiante et de la concentration des acides ou des solutions.

Transmission

Indications techniques pour la transformation

Les propriétés remarquables des tubes, capillaires et baguettes en verre Duran en font un matériau spécifiquement adapté à la transformation et à la coupe des verres techniques. Afin d'éliminer les tensions temporaires qui apparaissent lors du façonnage, le verre est chauffé à 550 °C et est maintenu à cette température durant un laps de temps de 30 minutes maximum. Pour les faibles épaisseurs de paroi, une fraction de ce temps est généralement suffisante. Compte tenu de la résistance chimique du verre, le temps de recuisson doit être le plus court possible. Pour la recuisson consécutive, les vitesses de refroidissement sont recommandées selon les indications mentionnées dans le tableau ci-dessous :

Vitesse de refroidissement

Epaisseur de paroi	Gamme de températures		
en mm	550 á 480 °C	480 á 400 °C	400 á 20 °C
3	12 °C/min	24 °C/min	jusqu′ 480 °C/min
6	3 °C/min	6 °C/min	jusqu' 120°C/min
12	0,8 °C/min	1,6 °C/min	jusqu′ 32 °C/min

Si un même produit doit être recuit plusieurs fois, la somme des temps de recuisson ne doit pas dépasser deux heures. Les produits Duran peuvent être soudés sans tensions à des verres borosilicatés de même type, avec les mêmes températures de transformation et de recuisson. L'impression des tubes et baguettes Duran peut se faire à l'aide de peinture diffusion de sel d'argent ou de cuivre ou, par sérigraphie.

Duran (borosilicate 3.3): Conditions Techniques de Livraisons

Longueur

Longueur normalisée pour

Tubes	1500 +10/-0 mm
Capillaires et baguettes	1500 ± 30 mm
Tubes pour indicateur de niveau	2000 +10/-0 mm

Des longueurs spéciales allant de 1000 à 7500 mm peuvent être réalisées sur demande, en fonction des diamètres extérieurs.

Ovalisation

L'ovalisation selon la norme ISO 1101 dépend du diamètre extérieur (De)

Tubes	Valeur maximum <i>t</i>
De < 200 mm	0,7 % du De nominal
De ≥ 200 - 325 mm	1,0 % du De nominal
Capillaires	Valeur maximum <i>t</i>
De < 10 mm	1,0 % du De nominal
Baguettes	Valeur maximum <i>t</i>
De < 20 mm	1,0 % du De nominal
De ≥ 20 - 30 mm	1,5 % du De nominal

Flèche

Flèche selon la norme ISO 1101 pour

De 3 - < 6 mm	max. 4,0 mm / 1500 mm
De ≥ 6 - < 30 mm	max. 1,5 mm / 1000 mm
De ≥ 30 - < 100 mm	max. 2,0 mm / 1400 mm
De ≥ 100 - < 200 mm	max. 2,5 mm / 1400 mm
De ≥ 200 mm	max. 3,0 mm / 1400 mm

De: Diamètre extérieur

Tension

	Ep < 2 mm	Ep 2 - 4 mm	Ep > 4 mm
Tension longitudinale (Mpa)	3,0	2,0	1,5
Tension latérale (Mpa)	4,0	3,0	2,5

Ep: Epaisseur de paroi

Pierres et nœuds

Seule la taille du noyau détermine la taille de la pierre ou du noeud.

Pierres	Pierres / Kg de verre
De < 0,3 mm	admises
De ≥ 0,3 - < 1,0 mm	max. 2
De ≥ 1,0 - ≤ 2,0 mm	max. 1
De > 2,0 mm	non admises
Noeuds	Noeuds / Kg de verre
Noeuds De < 0.3 mm	Noeuds / Kg de verre admises
De < 0.3 mm	admises

Bulles

Longueur

La longueur totale de bulles est détermine par la somme des longueurs de toutes les bulles ≥ 20 mm. La longueur totale acceptable des bulles est de 0,8 m/10 m de tube.

Pour les bulles < 20 mm : max. 20 pièces/kg de verre

Largeur

Des bulles d'une largeur supérieure à 1,0 mm ne sont pas admises pour des De ≤ 100 mm. Des bulles d'une largeur supérieure à 2,0 mm ne sont pas admises pour des De > 100 mm.

Emballage

Standard: Cartons

Façonnage des extrémités et perpendicularité de notre assortiment standard

Tubes	Façonnage des extrémités	Perpendicularité
De 3 - 5 mm	coupe brute	
De 6 - 38 mm	coupées par choc thermique et rebrûlées**	max. 2.5 mm
De 40 - 60 mm		
Ep ≤ 3.2 mm	coupées par choc thermique et rebrûlées**	max. 2.5 mm
Ep > 3.2 mm	coupées par choc thermique	max. 3.5 mm
De 65 - 325 mm	coupées par choc thermique et rebrûlées**	De 65 - 100 mm
(sauf Ep > 9.0 mm)		max. 3.0 mm
		De 100 - 200 mm
		max. 4.0 mm
		De > 200 mm
		max. 5.0 mm
Capillaires		
Passées à la flamme		
Baguettes		
Coupées par choc the	ermique	

^{**} Etat des extrémités par rebrûlage : épaisseur du bourrelet = env. 0,1 mm (rebrûlage normal)

Vidrio en Tubo y Varilla, S.A.

C/ Molí d'en Xec, 41 (Nave 20) Pol. Ind. Molí d'en Xec 08291 Ripollet, Barcelona (Espagne)

Tel.: (+34) 933 524 959 Fax: (+34) 933 490 748 vidrasa@vidrasa.com www.vidrasa.com

