綜合習題 單元8~10

一、單選題(每題7分,共14分)

-) **1.** 下列各行列式的值何者與 | 17 18 | **不相等**?

- $(A) \begin{vmatrix} 17 & 19 \\ 18 & 20 \end{vmatrix} \quad (B) \begin{vmatrix} 19 & 20 \\ 17 & 18 \end{vmatrix} \quad (C) \begin{vmatrix} 18 & 17 \\ 20 & 19 \end{vmatrix} \quad (D) \begin{vmatrix} 20 & 19 \\ 18 & 17 \end{vmatrix} \quad (E) \frac{1}{10} \begin{vmatrix} 170 & 180 \\ 190 & 200 \end{vmatrix} ^{\circ}$

〔搭配單元10〕

-)**2.** 在坐標平面上,O為原點,設 $\overrightarrow{OA} = (3,2)$, $\overrightarrow{OB} = (1,-1)$,若 $\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB}$,且 $0 \le x \le 2$, $0 \le y \le 2$, $x + y \le 2$, 試求 P 點形成區域的面積為何?
 - (A) $\frac{5}{2}$ (B) 5 (C) $\frac{15}{2}$ (D) 10 (E) $\frac{25}{2}$ °

〔搭配單元9〕

二、多選題(每題10分,共20分)

() **3.** 設 $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ 是坐標平面上三個非零向量,則下列選項哪些是正確的?

(A)
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$
 (B) $\left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{c} = \overrightarrow{a} \left(\overrightarrow{b} \cdot \overrightarrow{c}\right)$

$$(C)$$
若 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$,則 $\overrightarrow{b} = \overrightarrow{c}$ (D)若 \overrightarrow{a} // \overrightarrow{b} ,則 \overrightarrow{a} 與 \overrightarrow{b} 的夾角為 0°

$$(E)$$
若 $2 |\overrightarrow{a}| = |\overrightarrow{b}| = |3\overrightarrow{a} + 2\overrightarrow{b}|$,則 \overrightarrow{a} 與 \overrightarrow{b} 的夾角為鈍角。 [搭配單元 9]

86 綜合習題 單元 8~10

() **4.** 已知聯立方程式 $\begin{cases} (2-k)x+3y=2k-4\\ 3x+(2-k)y=-k-1 \end{cases}$ 有無窮多組解,今將聯立方程式的解描繪在坐標平面上,可得直線L。選出正確的選項。 (A) k=-1 (B) k=5 (C)點(2,0) 在直線L上 (D)點(5,7) 在直線L上

解

三、填充題(每題8分,共48分)

5. 設 $\overrightarrow{AB} = (3,-4)$, $\overrightarrow{AC} = (-4,-3)$, 若 $\overrightarrow{AD} = \overrightarrow{AB} + t \overrightarrow{AC}$, 且 \overrightarrow{AD} 平分 $\angle BAC$, 則 $t = \underline{}$ 。 〔 搭配單元 8 〕

解

7. 設二直線 L: 3x + 2ay - 2 = 0 ,M: ax + y + 4 = 0的交角 θ ,滿足 $\sin \theta = \frac{1}{\sqrt{5}}$,求 a 的值為 ______。

解

解

88 綜合習題 單元 8~10

9. 設O為坐標平面上的原點,P點的坐標為(2,1)。若A、B分別為x軸正向及y軸正向上的點,使得 $\overrightarrow{PA} \perp \overrightarrow{PB}$,則 $\overrightarrow{OA}^2 + \overrightarrow{OB}^2$ 的最小值為_____。 〔搭配單元 9〕

四、素養混合題(共18分)

第 11 至 14 題為題組

某品牌推出以「音樂蜂巢」為設計理念的無線揚聲器系統,具有改善室內空間聲音折射和殘響的功能,其喇叭以模組化系統運作、六邊形方塊為基礎。若某人的家中欲以該品牌的無線揚聲器系統組合於客廳的牆面,如圖所示,令每個小正六邊形的邊長為 $\frac{1}{2}$ 公尺,且

 $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{OB}$, 試回答下列問題:

()**11.** 若將 \overrightarrow{oP} 、 \overrightarrow{oQ} 表示成 \overrightarrow{a} 與 \overrightarrow{b} 的線性組合,則下列選項何者正確? (單選題,4分)

(A)
$$\begin{cases} \overrightarrow{OP} = \overrightarrow{a} + \overrightarrow{b} \\ \overrightarrow{OQ} = 3 \overrightarrow{a} + \overrightarrow{b} \end{cases}$$
 (B)
$$\begin{cases} \overrightarrow{OP} = \overrightarrow{a} + 3 \overrightarrow{b} \\ \overrightarrow{OQ} = -2 \overrightarrow{a} + 4 \overrightarrow{b} \end{cases}$$
 (C)
$$\begin{cases} \overrightarrow{OP} = 8 \overrightarrow{a} + 2 \overrightarrow{b} \\ \overrightarrow{OQ} = 4 \overrightarrow{a} - 6 \overrightarrow{b} \end{cases}$$
 (D)
$$\begin{cases} \overrightarrow{OP} = 8 \overrightarrow{a} + 2 \overrightarrow{b} \\ \overrightarrow{OQ} = 4 \overrightarrow{a} + 6 \overrightarrow{b} \end{cases}$$
 (E)
$$\begin{cases} \overrightarrow{OP} = -8 \overrightarrow{a} - 2 \overrightarrow{b} \\ \overrightarrow{OQ} = -4 \overrightarrow{a} - 6 \overrightarrow{b} \end{cases}$$

- **12.** 已知 $|\overrightarrow{a}| = |\overrightarrow{b}| = \frac{1}{2}$ (公尺),則 $\overrightarrow{a} \cdot \overrightarrow{b} =$ (平方公尺)。(填充題,4分)
- **13.** 求 \overline{OP} 與 \overline{OQ} 的長度。(非選擇題,4分)
- 14. 求此人客廳的牆面高度最少要幾公尺? (非選擇題,6分)

