Géométrie avancée

Fibrés tangents et

différentiels

Question 1/9

TM

Réponse 1/9

$$\coprod_{x \in M} \mathrm{T}_x M$$

Question 2/9

Germes de courbes passant par x

Réponse 2/9

L'ensemble C_x des $\gamma: I \to M$ lisses avec I un voisinage de x quotientés par la relation d'équivalence « avoir la même valeur sur un voisinage ouvert de x »

Question 3/9

Fibré tangent de M

Réponse 3/9

La variété TM muni de l'atlas (TU_i, Φ_{φ_i}) , qui est de dimension $\dim(TM) = 2\dim(M)$

Question 4/9

Un fibré $p:E\to B$ est vectoriel de rang k

Réponse 4/9

I as Clar

Les fibres sont des
$$\mathbb{R}$$
-ev de dimension k
La fibre type est \mathbb{R}^k

Si on se donne deux trivialisations
$$p^{-1}(U) \xrightarrow{\varphi} U \times \mathbb{R}^k \text{ et } p^{-1}(V) \xrightarrow{\psi} V \times \mathbb{R}^k$$

$$\downarrow^p \qquad \text{pr}_1 \downarrow \qquad \text{pr}_1 \downarrow \qquad \text{pr}_1 \downarrow \qquad \text{pr}_1 \downarrow \qquad \text{pr}_2 \downarrow \qquad \text{pr}_3 \downarrow \qquad \text{pr}_4 \downarrow \qquad \text{pr}_4$$

 $\begin{array}{cccc}
\downarrow^{p} & & & \downarrow^{p} &$

tel que $\varphi_x \in \mathrm{GL}(\mathbb{R}^k)$ pour tout $x \in U \cap V$

Question 5/9

 $\mathrm{T}U$

Réponse 5/9

$$\prod_{x \in U} T_x M$$
On a une application bijective $\Phi_{\varphi} \colon TU \longrightarrow \varphi(U) \times \mathbb{R}^{\dim(M)}$

 $(x, [\gamma]) \longmapsto (\varphi(x), (\varphi \circ \gamma)'(0))$

Question 6/9

Un fibré $E \to B$ est vectoriel

Réponse 6/9

Les fibres sont des R-ev et leur structure est cohérente avec celle de la fibration

Question 7/9

Définition et structure de T_xM

Réponse 7/9

$$C_x/\sim$$
 où $\gamma_1 \sim \gamma_2$ ei et seulement si γ_1 et γ_2 ont la même vitesse en x

Tr M a une structure naturelle d'espace

TxM a une structure naturelle d'espace vectoriel via l'isomorphisme $\theta_{\varphi}: T_x M \longrightarrow \mathbb{R}^{\dim(M)}$ $[\gamma] \longmapsto (\varphi \circ \gamma)'(0)$

$$\circ \gamma)'(0)$$

Question 8/9

Deux germes courbes de \mathcal{C}_x ont la même vitesse en x

Réponse 8/9

$$(\varphi \circ \gamma_1)'(0) = (\varphi \circ \gamma_2)'(0)$$

Question 9/9

Ouverts de TM pour M une variété topologique ou différentielle

Réponse 9/9

On impose que les TU_i soient ouverts et que les Φ_{φ_i} soient des homéomorphismes $\Omega \subseteq M$ est ouvert si et seulement si pour tout

 $i, \Phi_{\varphi_i}(\Omega \cap \mathrm{T}U_i)$ est ouvert $\mathrm{T}M$ est dénombrable à l'infini et un atlas est donné par $(\mathrm{T}U_i, \Phi_{\varphi_i})$

Dans le cas d'une variété différentielle, c'est aussi un atlas différentiel