Innovation, Reallocation, and Growth

Authors: Daron Acemoglu Ufuk Akcigit Harun Alp Nicholas Bloom William Kerr Presented by: Jose M. Quintero

January 24, 2023

Research Question

- ▶ Research Question: Industrial policies targeting
 - ★ Trade-offs,
 - * Reallocation of factors
 - * Firm dynamics

- Previous literature
 - * Silent on industrial policy
 - \star No inefficiency from misallocation.

This paper

- ► Endogenous growth model
 - * Firm heterogeneity
 - * Quality obsolescence
 - * Multiple exit channels

- Match the model to data
 - ⋆ LBD (Census data) with USPTO and RAD
 - ★ Firm exit rates
 - ⋆ Age and size distribution
 - ★ Growth rates

The Model

- ▶ Firm dynamics embedded in endogenous growth a la Klette & Kortum (2004)
 - * Firm level investment decision to grow
 - * Heterogeneity in firm size
 - ⋆ Competition between incumbents and entrants

The Model

- ▶ Firm dynamics embedded in endogenous growth a la Klette & Kortum (2004)
 - * Firm level investment decision to grow
 - * Heterogeneity in firm size
 - * Competition between incumbents and entrants
- ► Firms Exit
 - * Creative destruction.
 - * Endogenous obsolescence.
 - * Exogenous shock.

The Model

- ▶ Firm dynamics embedded in endogenous growth a la Klette & Kortum (2004)
 - ★ Firm level investment decision to grow
 - ★ Heterogeneity in firm size
 - ⋆ Competition between incumbents and entrants
- ► Firms Exit
 - * Creative destruction.
 - * Endogenous obsolescence.
 - * Exogenous shock.
- ► Firms Heterogeneity
 - * Firm efficiency: Positive selection.
 - * Type transition: Negative selection

How do we get some nice results?

► Examining the value function

$$(r+\varphi)V(\mathbf{q}) - \underbrace{\dot{V}(\mathbf{q})}_{\frac{\partial V}{\partial q} \frac{\partial q_j}{\partial w^u} \frac{\partial w^u}{\partial t}} = \max_{x_f \geq 0} \left\{ \begin{array}{c} \sum_{q_j \in \mathbf{q}} \underbrace{\tilde{\pi}(q_j)}_{\text{Profits}} \underbrace{\tilde{w}^s \Phi_j}_{\text{Fix Cost}} - \underbrace{\tilde{w}^s x_f^{\frac{1}{1-\gamma}}}_{\text{R\&D}} \\ \sum_{q_j \in \mathbf{q}} \underbrace{\tau\left(V(\mathbf{q} \ominus \{q_j\}) - V(\mathbf{q})\right)}_{\text{Creative Destruction}} \\ \sum_{q_j \in \mathbf{q}} \underbrace{x\left[\mathbb{E}_j V(\mathbf{q} \ominus \{q_j + \bar{q}\lambda\}) - V(\mathbf{q})\right]}_{\text{Innovation}} \right]$$

Blue terms make the value function separable in q_i.

It is all reallocation

TABLE 11—RESTRICTED SOCIAL PLANNER

	x^{entry}	x^{l}	x^h	Φ^l	Φ^h	$\hat{q}_{l, ext{min}}$	$\hat{q}_{h, ext{min}}$	g	Wel
1. Baseline	0.51	25.90	38.13	55.04	6.28	147.26	130.33	2.26	100.00
2. Social planner (SP)	0.60	25.42	45.34	5.64	44.70	240.42	27.80	2.94	104.47
3. SP choosing innovation	0.52	25.63	38.71	54.45	6.91	147.26	130.33	2.26	100.00
4. SP choosing \hat{q}_{\min}	0.94	25.90	38.13	39.74	18.92	161.16	29.91	2.43	101.58

What's next?

- ▶ Internal innovation
 - ★ Every innovation will eventually be lost
- Public Finance
 - ⋆ Distortionary taxes
 - * Mechanism design
- ▶ How do expand this framework to explain recent trends?
 - * Market concentration
 - * Ownership of the firm: M&A, VC investment, IPO.