

Algorithmen I Tutorium 32

Eine Lehrveranstaltung im SS 2017 (mit Folien von Christopher Hommel)

Daniel Jungkind (ufesa@kit.edu) | 23. Juni 2017

INSTITUT FÜR THEORETISCHE INFORMATIK

Schwarzes Brett

- Probeklausur kriegt ihr n\u00e4chstes Mal (30. Juni)
- Zu Blatt 6: Wer bei Aufgabe 3 für fehlendes "läuft in O(1)" –1 P Abzug bekommen hat: Björn war nochmal gnädig. ©
 - ⇒ Blatt bitte nächstes Mal mitbringen!
- Raumverlegung: Nächstes Tut (30. Juni) in Raum –108 (direkt nebenan).
- VL-Verlegung: VL/Übung am Mi, 28. Juni, im Fasanengarten-HS!

Zum letzten Tut bzw. Blatt (#7)

GROBES SORRY! ②

"InsertionBuildHeap" war nicht wörtlich gemeint!

⇒ Da wird **nichts eingefügt**, nur das chaotische Array genommen, **wie es ist** und darauf dann mit *siftDown* getauscht lch bitte vielmals um Entschuldigung. Musste dafür dementsprechend leider Abzug geben.

SORTIERTE FOLGEN

Die eierlegende Wollmilchdatenstruktur

Sortierte Folgen

Heap- und stichfest?

- Ziel: eine dynamische und stets sortierte Datenstruktur
- Operationen:

Einfügen,

Entfernen,

Finden des nächstkleineren/größeren Elements

- ⇒ so schnell wie möglich
- Idee: Binärer Heap sieht sortiert aus, ist es aber nicht!

Sortierte Folgen

Einfach sortierter Binärbaum

- Vorschlag: Binärbaum mit strengerer Ordnung:
 - $\forall v \in V : LeftChild(v) \leqslant v < RightChild(v)$
- Intuitiv: Laufzeiten in O(log n) mittels binärer Suche
- Worst-Case: Füge aufsteigende Folge ein
 - ⇒ Lange Kette entsteht ("Baum unbalanciert"),
 - Laufzeiten in O(n) \odot
 - ⇒ I. A. eher ungeeignet
- ⇒ Wollen **balancierten** Baum (alle Blätter haben gleiche Tiefe)

Sortierte Folgen

(a, b)-Bäume

- Besser: Baum mit flexiblem Knotengrad
 - ⇒ Anzahl **Kinder** zwischen *a…b*

Ausnahme: Wurzel kann weniger haben

- Dafür sinnvoll: $a \ge 2$ und $b \ge 2a 1$
- Jeder Knoten hat ein Navigations-Array:

Einträge mit (k: Key, T_k : Subtree):

 T_k führt nur zu Elementen $e \leq k$

Letzter Eintrag: kein Key k, führt zu Elementen e > letztes k

- Blätter: Eigentliche Elemente/Daten als verkettete Liste
- Zur Vermeidung von Sonderfällen: "Dummy-Wert" ∞ ganz am Ende

Beispiel: (2, 4)-Baum ("00" steht in VL für ∞)

Finden von (nächstgrößeren (-kleineren)) Elementen

- **Geg**.: Wert *e*
 - **Ges**.: (Nächstgrößeres) Element $z \geqslant e$
- ⇒ Starte bei Wurzel

Suche kleinstes Element im Navigationsarray

$$j := \min \{ j \mid e \leqslant j \}$$

Blatt-Ebene erreicht? \Rightarrow return j

Sonst **Wiederhole** auf Subtree von j oder ganz rechtem Link falls $\nexists j$

- **Laufzeit** in $O(b \cdot \text{H\"ohe}) = O(b \cdot \log_a n)$
- Finden von nächstkleinerem Element:

Finde nächstgrößeres;

Falls $j \neq e$: Nehme Vorgänger von j in verketteter Liste

Einfügen von Elementen

1. Finde Einfügestelle (wie beim Suchen)

Einfügen von Elementen

- 1. Finde Einfügestelle (wie beim Suchen)
- 2a. Fall 1: Platz im Navigationsarray frei?
 - \Rightarrow Einfügen, im Nav-Array verlinken, fertig! \odot

(falls neues Maximum: Verlinkung anpassen!)

Einfügen von Elementen (Forts.)

2b. Fall 2: Kein Platz im Nav-Array frei? ⇒ "split"
 D.h. Element einfügen, Knoten halbieren:
 Linker Teil L (enthält Mittelelement M), Rechter Teil R

Einfügen von Elementen (Forts.)

3. Füge *M* in Vorgänger ein, hänge *L* als Subtree daran; *R* hängt schon im Vorgänger

Einfügen von Elementen (Forts.)

3. Füge *M* in Vorgänger ein, hänge *L* als Subtree daran; *R* hängt schon im Vorgänger

4. Vorgänger **voll**? ⇒ **Recurse** from step 2b.

Einfügen von Elementen (Forts.)

3. Füge *M* in Vorgänger ein, hänge *L* als Subtree daran; *R* hängt schon im Vorgänger

Vorgänger voll? ⇒ Recurse from step 2b.
 Endet ggf. mit Anlegen einer neuen Wurzel

Entfernen von Elementen

1. Einfach: Finden

Entfernen von Elementen

- Einfach: Finden und Entfernen.
 Knotenmaximum wurde entfernt?
 - ⇒ Aktualisiere Verlinkung auf neues Maximum!

Entfernen von Elementen

2. Knoten jetzt zu klein?

2a. Fall 1: ...und ∃ Nachbar, der leer genug?

 \Rightarrow "fuse": Knoten zusammenfügen

Entfernen von Elementen

2. Knoten jetzt zu klein?

2a. Fall 1: ...und ∃ Nachbar, der leer genug?

⇒ "fuse": Knoten zusammenfügen

...und Verlinkung anpassen!

Entfernen von Elementen

2. Knoten jetzt zu klein?

2a. **Fall 1**: ...und ∃ Nachbar, der leer genug?

 \Rightarrow "fuse": Knoten zusammenfügen

...und Verlinkung anpassen!

Vorgänger jetzt **zu klein?** ⇒ **Recurse** from step 2.

Entfernen von Elementen

2. Knoten jetzt zu klein?

2b. Fall 2: ...und ∃ Nachbar, der voll genug?

⇒ "balance": Klaue Elemente vom fetten Nachbarn (von links: maximale, von rechts: minimale Elemente)

...und Verlinkung anpassen!

Laufzeiten:

$$\begin{cases} \textit{locate} \\ \textit{insert} \\ \textit{remove} \end{cases} \text{ in } O(b \cdot \mathsf{H\"{o}he}) = O(b \cdot \log_a n) \quad \text{(f\"{u}r konst. } \textit{a, b: } O(\log n)).$$