UNIVERSITY OF GHANA

(All rights reserved)

DEPARTMENT OF MATHEMATICS

MATH 223: CALCULUS II (3 credits)

EXERCISE 5 (Integration

1. Use the Riemann sums to evaluate the following:

(a)
$$\int_0^4 (2x^2+3)dx$$

(b)
$$\int_{-1}^{3} x^3 dx$$

(c)
$$\int_{1}^{5} (x - 4x^2) dx$$

(d)
$$\int_{-5}^{-1} (x^2 + 3x + 5) dx$$

(e)
$$\int_0^4 (-3x^2 + 5x - 1)$$

(f)
$$\int_{1}^{3} x^{3} dx$$

(g)
$$\int_3^8 (x - 4x^2) dx$$

2. Find the limit as $n \to \infty$ of the sum $\frac{1}{n} + \frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \cdots + \frac{n}{(2n-1)^2}$.

3. By interpreting the following limit as a definite integral, show that $\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{n+i} = \ln 2$.

4. Show that
$$\lim_{n\to\infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}} = \frac{1}{p+1}$$
.

5. Find
$$\int_0^3 f(x)dx$$
 where $f(x) = \begin{cases} \sqrt{1-x^2} & 0 \le x \le 1\\ 2 & 1 < x \le 2\\ x-2 & 2 < x \le 3 \end{cases}$

6. Find the derivatives of the following;

(a)
$$y = \int_{-\pi}^{x} \cos t \, dt$$

(b)
$$y = \int_1^{x^2} \sin t \, dt$$

(c)
$$y = \int_1^{x^4} \sec t \, dt$$

(d)
$$y = \int_{1}^{\sin x} 3t^2 dt$$

(e)
$$y = \int_1^{\tan x} \sec^2 t \, dt$$

$$(f) y = \int_1^{\sin x} \frac{dt}{\sqrt{1 - t^2}}$$

Note:
$$\frac{d}{dx} \int_{a}^{g(x)} f(t) = f(g(x))g'(x)$$
 and $\frac{d}{dx} \int_{h(x)}^{g(x)} f(t) dt = f(g(x))g'(x) - f(h(x))h'(x)$

7. Evaluate the following;

(a)
$$y = \int_1^{x^4} \sec t \, dt$$

(b)
$$y = \int_1^{\sin x} 3t^2 dt$$

(c)
$$y = \int_1^{\tan x} \sec^2 t \, dt$$

(d)
$$y = \int_{1}^{\sin x} \frac{dt}{\sqrt{1-t^2}}$$

(e)
$$\int_0^{\pi} \sin x \, dx$$

(f)
$$\int \frac{x}{x^2+1} dx$$

(g)
$$\int e^x \sqrt{1 + e^x} dx$$

(h)
$$\int \sec x \sqrt{\sec x + \tan x} dx$$

(i)
$$\int \frac{\sin x + \cos x}{e^{-x} + \sin x} dx$$

(j)
$$\int_{2}^{4} (2x+3)dx$$

(k)
$$\int_{1}^{6} (2x-6)dx$$

(l)
$$\int_{-1}^{2} (x^2 - 3x + 2) dx$$

(m)
$$\int \frac{\sin 2x - \cos 2x}{\sin 2x + \cos 2x} dx$$

8. Find the following integrals:

(a)
$$\int x^2 \sqrt{x-2} dx$$

(b)
$$\int \frac{x}{\sqrt[3]{x+1}}$$

[For integrals of the form $\int p(x) \sqrt[n]{ax+b} dx$ and $\int \frac{p(x)}{\sqrt[n]{ax+b}} dx$ we make a substitution $u^n = ax+b$. For integrals of the form $\int p(x) \sqrt[n]{\frac{ax+b}{cx+d}} dx$ we make a substition $u^n = \frac{ax+b}{cx+d}$].

9. Solve the integral equation $f(x) = 2 + 3 \int_4^x f(t) dt$.

10. Prove the following;

(a)
$$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$$

(b)
$$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

(c)
$$\int \tan(ax+b)dx = -\frac{1}{a}\ln|\cos(ax+b)| + C$$

(d)
$$\int \cot(ax+b)dx = \frac{1}{a}\ln|\sin(ax+b)| + C$$

(e)
$$\int \sec(ax+b)dx = \frac{1}{a}\ln|\sec(ax+b) + \tan(ax+b)|C$$

(f)
$$\int \csc(ax+b)dx = \frac{1}{a}\ln|\csc(ax+b) + \cot(ax+b)|C$$

11. Find the following integrals;

(a)
$$\int \cos^n x \sin x dx$$
 Let $u = \cos x$

(b)
$$\int \sin^n x \cos x dx$$
 Let $u = \sin x$

(c)
$$\int \cos^5 dx$$

(d)
$$\int \sin^3 x dx$$

(e)
$$\int \cos^7 x dx$$

(f)
$$\int \sin^9 x dx \int \sin^3 x \cos^{-2} x dx$$

(g)
$$\int \frac{\sin^7 x}{\cos^4} dx$$

(h) $\int \sin^3 x \cos^2 x dx$

Integrals of the form
$$\int \sin^{2k+1} x dx$$
 and $\int \cos^{2k+1} x dx$
Let $\int \sin^{2k+1} x dx = \int \sin^{2k} x \sin x dx = \int (\sin^2 x)^k \sin x dx = \int (1 - \cos^2 x)^k \sin x dx$.
Let $u = \cos x$, then $\int \sin^{2k+1} x dx = -\int (1 - u^2)^k du$.

Let
$$\int \cos^{2k+1} x dx = \int \cos^{2k} x \cos x dx = \int (\cos^2 x)^k \cos x dx = \int (1 - \sin^2 x)^k \cos x dx$$
.
Let $u = \sin x$, then $\int \cos^{2k+1} x dx = \int (1 - u^2)^k du$.

(i)
$$\int \sin^4 x dx$$

(j)
$$\int \cos^2 x dx$$

(k)
$$\int \sin^2 x dx$$

(1)
$$\int \cos^4 x dx$$

(m)
$$\int \sin^4 x \cos^2 x dx$$

(n)
$$\int \sin^2 x \cos^2 x dx$$

Integrals of the form
$$\int \sin^{2k} x dx$$
 and $\int \cos^{2k} x dx$
Let $\int \sin^{2k} x dx = \int \frac{(1-\cos 2x)^k}{2} dx$.
Let $\int \cos^{2k} x dx = \int (\frac{(1+\cos 2x)^k}{2} dx$.

Let
$$\int \cos^{2k} x dx = \int \left(\frac{(1+\cos 2x)^k}{2} dx\right)$$
.

12. Find the following integrals;

(a)
$$\int \tan^4 x dx$$

(b)
$$\int \tan^3 x \sec^4 x dx$$

(c)
$$\int \sec^9 x \tan^5 x dx$$

(d)
$$\int \sec^4 x \tan^6 x dx$$

(e)
$$\int \tan^3 x dx$$

(f)
$$\int \sec^2 x \tan^n x dx$$

Integrals of the form $\int \tan^m x \sec^n x dx$ If n is even, then $\int \tan^m x \sec^n x dx = \int \tan^m x \sec^{2k} x dx = \int \tan^m x (\sec^2 x)^{k-1} (\sec^2 x) dx$ So $\int \tan^m x \sec^n x dx = \int \tan^m x (1 + \tan^2 x)^{k-1} \sec^2 x dx$ and let $u = \tan x$ If m is odd, then $\int \tan^m x \sec^n x dx = \int \tan^{2k+1} x \sec^n x dx = \int \tan^{2k} x \tan x \sec^n x dx$ So $\int \tan^m x \sec^n x dx = \int (\sec^2 - 1)^k x \tan x \sec^n x dx$ and let $u = \sec x$

13. Find the following integrals;

- (a) $\int \cot^3 x \csc^7 x dx$
- (b) $\int \cot x \csc^n x dx$
- (c) $\int \cot^m x \csc^2 x dx$

Integrals of the form $\int \cot^m x \csc^n x dx$ If n is even, then $\int \cot^m x \csc^{2k} x dx = \int \cot^m x \csc^{2k-2} x \csc^2 x dx = \int \cot^m x (\cot^2 x + 1)^k \csc^2 x dx$ and let $u = \cot x$

If m is odd, then $\int \cot^{2k+1} x \csc^n x dx = \int \cot^{2k} x \cot x \csc^{n-1} x \csc x dx$ So $\int \cot^{2k+1} \csc^n x dx = \int (\csc^2 x - 1)^k \csc^{n-1} x \cot x \csc x dx$ and let $u = \csc x$

LFK Page 4 of 4