PRO-OBJECTS, PRO-HOMOTOPY THEORY AND PRO-DESCENT

GABE ANGELINI-KNOLL

1. Pro-objects, morphisms of pro-objects, and universal properties

Pro-objects arise naturally in algebra when you want to complete something, for example consider the functor $\mathbb{N}^{\text{op}} \to \text{Ab}$ given by sending n to $\mathbb{Z}/p^n\mathbb{Z}$, then $\lim_{\mathbb{N}^{\text{op}}} \mathbb{Z}/p^n\mathbb{Z} = \hat{\mathbb{Z}}_p$. This example should be familiar to everyone. The category \mathbb{N}^{op} is an example of a cofiltered category since the partially ordered set \mathbb{N} is filtered and the functor $\mathbb{N}^{\text{op}} \to \text{Ab}$ is an example of a pro-object in abelian groups.

Definition 1.1. A category \mathcal{I} is *filtered* if 1) for all $a, b \in \mathcal{I}$ there exists a $c \in \mathcal{I}$ and morphisms $a \to c$ and $b \to c$ in \mathcal{I} and 2) for all pairs of morphisms $f, g: a' \to b'$ there exists a morphism $h: b' \to c'$ such that $h \circ f = h \circ g$. A *pro-object in a category* \mathcal{C} , in the classical sense, is a functor $\mathcal{I}^{\text{op}} \to \mathcal{C}$ where \mathcal{I} is a small filtered category. If \mathcal{I} is filtered then we say \mathcal{I}^{op} is cofiltered.

Pro-objects form a category pro- \mathcal{C} where maps of pro-objects are given by

$$\hom_{\text{pro-}\mathcal{C}}(\{X_i\}_{i\in\mathcal{I}}, \{Y_j\}_{j\in\mathcal{J}}) = \lim_{j\in\mathcal{J}} \operatornamewithlimits{colim}_{i\in\mathcal{I}} \hom_{\mathcal{C}}(X_i, X_j).$$

I'll explain this in the infinity category setting later. For now, I just want to point out that objects in \mathcal{C} themselves can be considered as pro-objects with $\mathcal{J} = *$ and thus there is always a corresponding functor $\operatorname{colim}_{i \in \mathcal{I}} \operatorname{hom}(X_i, -) \colon \mathcal{C} \to \operatorname{Set}$, called a pro-representable functor. The subcategory of $\operatorname{Fun}(\mathcal{C}, \operatorname{Set})^{\operatorname{op}}$ spanned by the pro-representable functors is equivalent to the category of pro-objects in \mathcal{C} and it can be shown that a functor is pro-representable if and only if it commutes with finite limits (in which case we say the functor is left exact)[1, Appendix Cor. 2.8]. This motivates the infinity categorical definition.

We will assume knowledge of the definition of an ∞ -category in the sense of [4] and notions of limits and colimits in this setting. Recall that for a regular cardinal κ , $\operatorname{Ind}_{\kappa}(\mathcal{C})$ is the subcategory of all functors $\mathcal{C} \to \mathcal{S}$ corresponding (via the ∞ -categorical Grothendieck construction) to right fibrations $\mathcal{I} \to \mathcal{C}$ where \mathcal{I} is κ -filtered. An ∞ -category \mathcal{I} is κ -filtered if for every κ -small simplicial set K and map $f \colon K \to \mathcal{I}$ there exists an extension $K * \Delta^0 \to \mathcal{I}$. The reason we care about $\operatorname{Ind}_{\kappa}(\mathcal{C})$ is that it is closed under κ -filtered colimits and it is universal amongst categories with this property. There is a similar property for the category of pro-objects, which we will discuss. Note that when $\kappa = \omega$ (the regular cardinal of all finite ordinals) we omit it from the notation. An ∞ -category \mathcal{C} is κ -accessible if $\mathcal{C} = \operatorname{Ind}_{\kappa}(\mathcal{C}_0)$ for some small category \mathcal{C}_0 . A functor $F \colon \mathcal{C} \to \mathcal{D}$ is κ -accessible if both \mathcal{C} and \mathcal{D} are accessible and F preserves κ -filtered colimits.

Definition 1.2. Let \mathcal{C} be an accessible ∞ -category that admits finite limits, then pro- \mathcal{C} is defined as the full subcategory $\operatorname{Fun}(\mathcal{C}, S)^{\operatorname{op}}$ spanned by those functors which are accessible and left exact. There is a canonical isomorphism $\operatorname{pro-}\mathcal{C} \simeq \operatorname{Ind}(\mathcal{C}^{\operatorname{op}})^{\operatorname{op}}$ when \mathcal{C} is also essentially small.

By Yoneda there is an embedding $j: \mathcal{C} \to \operatorname{pro-} \mathcal{C}$ and we may regard objects in \mathcal{C} as object in $\operatorname{pro-} \mathcal{C}$ as before. The essential image of the Yoneda embedding consists of cocompact objects in $\operatorname{pro-} \mathcal{C}$ because 1) $\operatorname{pro-} \mathcal{C}$ is closed under small filtered limits and 2) limits in $\operatorname{pro-} \mathcal{C}$ are computed pointwise. Let \mathcal{C}^{κ} be the full subcategory of κ -compact objects; i.e objects c in \mathcal{C} such that $\operatorname{Map}_{\mathcal{C}}(c,-)$ preserves κ -filtered colimits. If $V: \mathcal{C} \to \mathcal{S}$ is accessible, then there exists a κ such that V is the left Kan extension of $V|_{\mathcal{C}^{\kappa}} = V_0: \mathcal{C}^{\kappa} \to \mathcal{S}$ and V_0 is an object in $(\operatorname{pro-} \mathcal{C}^{\kappa})^{\operatorname{op}}$. The object V_0 in $\operatorname{pro-} \mathcal{C}^{\kappa}$ can therefore be written as a filtered limit of objects represented by objects in the

essential image of the Yoneda embedding. Given object X, Y in pro-C, let $\{j(C_{\alpha})\}, \{j(D_{\beta})\}$ be collections of representable objects such that $\lim_{\alpha} j(C_{\alpha}) = X$ and $\lim_{\beta} j(D_{\beta}) = Y$. Then

```
\begin{array}{ccc} Map_{\text{pro-}\mathcal{C}}(X,Y) & \simeq & Map_{\text{pro-}\mathcal{C}}(\lim_{\alpha} j(C_{\alpha}), \lim_{\beta} j(D_{\beta})) \\ & \simeq & \lim_{\beta} Map_{\text{pro-}\mathcal{C}}(\{j(C_{\alpha})\}, j(D_{\beta})) \\ & \simeq & \lim_{\beta} \operatorname{colim}_{\alpha} Map_{\text{pro-}\mathcal{C}}(j(C_{\alpha}), j(D_{\beta}))^{1} \\ & \simeq & \lim_{\beta} \operatorname{colim}_{\alpha} Map_{\mathcal{C}}(C_{\alpha}, D_{\beta})^{2} \end{array}
```

The category pro- \mathcal{C} has a nice universal property, which can be stated using the following slogan: pro- \mathcal{C} is constructed from \mathcal{C} by freely adjoining all small filtered limits.

Proposition 1.3 (Proposition A.8.1.6 [5]). Suppose \mathcal{C} is an accessible ∞ -category admitting finite limits and \mathcal{D} is an ∞ category admitting all small filtered limits. Write Fun'(pro- \mathcal{C} , \mathcal{D}) for the full subcategory spanned by the functors pro- $\mathcal{C} \to \mathcal{D}$ that preserve small filtered limits. Then there is an equivalence of ∞ -categories

$$\operatorname{Fun}'(\operatorname{pro-}\mathcal{C},\mathcal{D}) \to \operatorname{Fun}(\mathcal{C},\mathcal{D})$$

given by composition with the Yoneda embedding.

Quick sketch of proof: Let \mathcal{E} the smallest subcategory of $\operatorname{Fun}(\mathcal{C},\hat{\mathcal{S}})^{\operatorname{op}}$ that contains the image of the Yoneda embedding and is closed under small filtered limits (where $\hat{\mathcal{S}}$ is the ∞ -category of not necessarily small spaces). As before, write $\operatorname{Fun}'(\mathcal{E},\mathcal{D})$ for the subcategory of $\operatorname{Fun}(\mathcal{E},\mathcal{D})$ spanned by small filtered limit preserving functors. Then 1) Show that $\operatorname{Fun}'(\mathcal{E},\mathcal{D}) \to \operatorname{Fun}(\mathcal{C},\mathcal{D})$ given by the Yoneda embedding is an equivalence of ∞ -categories and 2) Show that there is an equivalence of categories $\mathcal{E} \simeq \operatorname{pro-} \mathcal{C}$.

As a consequence given a functor $f \colon \mathcal{C} \to \mathcal{D}$, then composing with the Yoneda embedding $\mathcal{C} \to \mathcal{D} \to \text{pro-}\mathcal{D}$ produces a functor $\text{pro}(f) \colon \text{pro-}\mathcal{C} \to \text{pro-}\mathcal{D}$ which commutes with small filtered limits. When f is accessible and left exact, then this functor has a left adjoint $F \colon \text{pro-}\mathcal{D} \to \text{pro-}\mathcal{C}$ given by composing with f. Also, note that the Yoneda embedding $j \colon \mathcal{C} \to \text{pro-}\mathcal{C}$ has right adjoint given by sending $\{X_i\}_{i \in \mathcal{I}^{\text{op}}}$ to $\lim_{i \in \mathcal{I}^{\text{op}}} X_i$.

2. Pro-homotopy theory

Now we will specialize to when \mathcal{C} is the ∞ -category of spaces \mathcal{S} , the ∞ -category of pointed connected spaces \mathcal{S}^0_* , or the ∞ -category of spectra Sp. In this case, we have functors $\pi_n \colon \mathcal{S}^0_* \to \operatorname{Gp}$ and $\pi_n \colon \operatorname{Sp} \to \operatorname{Ab}$ which induce functors $\pi_i \colon \operatorname{pro-} \mathcal{S} \to \operatorname{pro-} \operatorname{Gp}$ and $\pi_i \colon \operatorname{pro-} \operatorname{Sp} \to \operatorname{pro-} \operatorname{Ab}$. We'd like to discuss the notion of equivalences of objects in $\operatorname{pro-} \mathcal{S}$, $\operatorname{pro-} \mathcal{S}^0_*$ and $\operatorname{pro-} \operatorname{Sp}$. First, note that Kerz–Strunk–Tamme [3] write " $\lim X_i$ for a an object in $\operatorname{pro-} \mathcal{C}$ where $X_i \in \mathcal{C}$ for $i \in \mathcal{I}^{\operatorname{op}}$. If $X = \text{"lim"} X_i$ is an object in $\operatorname{pro-} \mathcal{S}^0_*$ or $\operatorname{pro-} \operatorname{Sp}$ then we will simply write $\pi_n X$ and $H_n(X)$ for " $\lim \pi_n X_i$ and " $\lim H_n X_i$ as objects in $\operatorname{pro-} \operatorname{groups}$. For this discussion, we will think of functors $\mathcal{C} \to \mathcal{S}$ in $\operatorname{pro-} \mathcal{C}$ via the corresponding functor $\mathcal{I}^{\operatorname{op}} \to \mathcal{C}$ where $\mathcal{I}^{\operatorname{op}}$ is cofiltered. Maps in $\operatorname{pro-} \mathcal{C}$ that are given by natural transformations of diagrams are called level maps (note that up to isomorphism all maps are level maps by Artin–Mazur [1, Appendix 3.2]). We will restrict to some special cases that are sufficient for Kerz–Strunk–Tamme [3]. For a rigorous and general treatment of equivalences of pro-simplicial sets see [2].

Definition 2.1. A level map $f: X \to Y$ in pro-S is an equivalence if and only if the induced level map $f_*: \pi_n X \to \pi_n Y$ is an isomorphism in pro-Gp. A level map $f: M \to N$ of pro-group-likemonoids in pro- S^0_* is an equivalence if and only if $f_*: \pi_n X \to \pi_n Y$ is an isomorphism of pro-groups for all $n \geq 0$.

¹Holds because $j(D_{\beta})$ is compact in (pro- \mathcal{C})^{op}

²Holds by the Yoneda lemma.

Remark 2.2. Note that a level map of pro-groups $f: A \to B$ is an isomorphism if and only if for for all $s \in \mathcal{I}^{\text{op}}$ there exists a $t \geq s$ and a commuting diagram

$$A_t \longrightarrow B_t$$

$$\downarrow \qquad \qquad \downarrow$$

$$A_s \longrightarrow B_s$$

Example 2.3. A map of pro-simplicial rings $f: R \to S$ is an equivalence if and only if $f_*: \pi_n R \to \pi_n S$ is an isomorphism in pro-Gp for all $n \ge 0$.

Definition 2.4. A level morphism $f: X \to Y$ in pro-Sp is an equivalence if $f_*: \pi_n \tau_{\geq 0} X \to \pi_n \tau_{\geq 0} Y$ is an isomorphism in pro-Ab for all $n \geq 0$. An object in pro-Sp is contractible if it is equivalent to the trivial pro-spectrum. A diagram

$$(1) X' \longrightarrow Y' \\ \downarrow f \qquad \downarrow g \\ X \longrightarrow Y$$

in pro-Sp of commuting level morphism is cartesian if it is a levelwise homotopy pullback in Sp.

As you would expect, the diagram (1) is cartesian if and only if $\operatorname{fib}(f) \simeq \operatorname{fib}(g)$ because fib is computed levelwise.

3. Pro-excision and pro-descent

For the rest of the talk all rings will be commutative. The reference for this section is [6] and I will use some of the language used there. Given a map of rings $f \colon R \to S$ and an ideal I in R we will say that $(f \colon R \to S, I)$ is an excision situation if f(I) is an ideal in S and $\ker f \cap I = 0$. We often write I for f(I). The two main examples are 1) extensions of rings $A \subset B$ with I an ideal in S that is contained in S and S surjections of rings S and an ideal S in S such that S and S are excision situation can be factored into S and an ideal S in S so it suffices to treat these cases. If S are excision situation then the square

$$R \longrightarrow S$$

$$\downarrow \qquad \qquad \downarrow$$

$$R/I \longrightarrow S/I$$

is called a *Milnor square*. Also, if $(f : R \to S, I)$ is an excision situation then $(f : R \to S, I^s)$ is an excision situation for all $s \ge 1$. We will write K(R) for the *non-connective* algebraic K-theory a ring R, which I will leave as a black box for this talk, but it takes values is spectra. Then if $(f : R \to S, I)$ is an excision situation, we define

$$K(R, I) := \operatorname{fib}(K(f) : K(R) \to K(S))$$

and there is an induced map $K(R,I) \to K(S,I)$ so we can define

$$K(R, S, I) = \text{fib}(K(R, I) \rightarrow K(S, I)).$$

If $(f \colon R \to S, I)$ is an excision situation, then Bass 1968 proved that $K_n(R, I) \cong K_n(S, I)$ for $n \leq 0$, Milnor and Swan 1971 showed that $K_1(R, I) \longrightarrow K_1(S, I)$ is surjective and Geller-Weibel 1983 showed that $K_1(R, S, I) \cong \Omega^1_{S/R} \otimes_S I/I^2$. Consequently, the pro-abelian group $\{K_n(R, S, I^s)\}$ vanishes for all $n \leq 1$. (Note that there are examples where $K_1(R, S, I) \neq 0$ so the pro-excision statement is necessary, for example $\mathbb{Z}[\zeta_p] \subset \mathbb{Z}[\zeta_p] + p\mathbb{Z}[\zeta_p] \subset p\mathbb{Z}[\zeta_p]$ due to Swan 1971.) A consequence of the work of Kerz–Strunk–Tamme [3] is an improvement on these results:

REFERENCES 4

Corollary 3.1 (Corollary 4.12 [3]). For any excision situation $(f: R \to S, I)$ where R and S are Noetherian, the pro-spectrum $\{K(R, S, I^s)\}$ is contractible.

More generally, consider an abstract blow-up square Σ

$$Y' \longrightarrow X'$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y \longrightarrow X;$$

a diagram of schemes where if $X' \to X$ is proper, $Y \to X$ is a closed immersion, and the induced morphism $X' Y' \to X Y$ is an isomorphism. Then $Y' \to X'$ is also a closed immersion and we can associate an ideal sheaf $\mathcal{I} \subset \mathcal{O}_X$ to $Y \to X$ (respectively, we can associate an ideal sheaf $\mathcal{I} \subset \mathcal{O}_X$ to $E \to X$). Then the $E \to X$ infinitesimal thickening of $E \to X$ is denoted $E \to X$ and it corresponds to $E \to X$ (resp. the $E \to X$).

Let Sch be the category of Noetherian schemes. Given a functor $f \colon \operatorname{Sch}^{\operatorname{op}} \to \operatorname{Sp}$ and an abstract blow-up square Σ of Noetherian schemes we will write $F(X,Y_s) = \operatorname{fib}(F(X) \to F(Y_s)), \ F(\tilde{X},E_s) = \operatorname{fib}(F(\tilde{X}) \to F(E_s)), \ \operatorname{and} \ F(X,\tilde{X},Y_s,E_s)$ for the fiber of the induced map $F(X,Y_s) \to F(\tilde{X},E_s)$. Then we say F satisfies pro-cdh descent if the pro-object $\{F(X,\tilde{X},Y_s,E_s)\}$ is contractible.

Theorem 3.2 (Theorem A [3]). Algebraic K-theory satisfies pro-cdh descent.

This is one of the key results Kerz, Strunk, and Tamme [3] use to prove Weibel's conjecture.

References

- [1] M. Artin and B. Mazur. *Etale homotopy*. Lecture Notes in Mathematics, No. 100. Springer-Verlag, Berlin-New York, 1969, pp. iii+169.
- [2] Daniel C. Isaksen. "A model structure on the category of pro-simplicial sets". In: Trans. Amer. Math. Soc. 353.7 (2001), pp. 2805–2841. ISSN: 0002-9947.
- [3] Moritz Kerz, Florian Strunk, and Georg Tamme. "Algebraic K-theory and descent for blow-ups". In: *Invent. Math.* 211.2 (2018), pp. 523–577. ISSN: 0020-9910.
- [4] Jacob Lurie. *Higher topos theory*. Vol. 170. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009, pp. xviii+925. ISBN: 978-0-691-14049-0; 0-691-14049-9.
- [5] Jacob Lurie. "Spectral Algebraic Geometry". 2018. URL: http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf.
- [6] M. Morrow. "A historical overview of pro cdh descent in algebraic K-theory and its relation to rigid analytic varieties". In: ArXiv e-prints (Dec. 2016). arXiv: 1612.00418 [math.KT].