1. Let $\phi : \mathbb{R}^n \to \mathbb{R}$ be such that $\phi(x) = 0 \Leftrightarrow x = 0$ and $\phi(\lambda x) = |\lambda|\phi(x), \forall x \in \mathbb{R}^n, \forall \lambda \in \mathbb{R}$ Show that if the set $B = \{x \in \mathbb{R}^n | \phi(x) \le 1\}$ is convex, then ϕ defines a norm on \mathbb{R}^n .

Solution: Non-degeneracy and scalar linearity are given from the definition of ϕ . So all that is left to prove is the triangle inequality and non-negativity.

Non-negativity: Suppose $x \in \mathbb{R}^n$ is nonzero, and

Let $x, y \in \mathbb{R}^n$, and take $r = \max\{\phi(x), \phi(y)\}$. Then $\frac{x}{r}, \frac{y}{r} \in B$

- 2. Let E be a compact set in \mathbb{R}^n and let F be a closed set in \mathbb{R}^n such that $E \cap F = \emptyset$.
 - (a) Show that there exists d > 0 such that ||x y|| > d, $\forall x \in E$ and $\forall y \in F$.

Solution: Take $d = \inf_{x \in E, y \in F} \|x - y\|$. Clearly this is less than any $\|x - y\|$ for $x \in E$, $y \in F$, and it cannot be negative since the norm is positive. So then $d \ge 0$. For contradiction suppose d = 0.

- (b) Does the result you proved in the previous question remain true if E and F are closed, but neither is compact? Justify your answer.
- 3. Let $E = \{(x, y)|y = \sin(\frac{1}{x}), x > 0\}$. Is E open? Is it closed? What are the accumulation points of E?

Solution: This set is not open. Take an arbitrary ball of radius r about the point $p = \left(\frac{1}{\pi}, 0\right) \in E$. Then the point $q = \left(\frac{1}{\pi}, \frac{r}{2}\right) \in B_r(p)$, but $q \notin E$ since sin is well-defined. So any ball about p contains points not in E, and E is not open.

By continuity of sin and $\frac{1}{x}$, all points of E are accumulation points.

The accumulation points of E not contained in E are of the form (0, a) for $a \in [-1, 1]$. Take one such point, and some r > 0, and consider the r-ball about (0, a). Choose $k \in \mathbb{N}$ so that $\frac{1}{2\pi k} < r$, and let $x = \frac{1}{2\pi k + \arcsin a} \le \frac{1}{2\pi k} < r$. Then:

$$\frac{1}{x} = 2\pi k + \arcsin \alpha$$

$$\frac{1}{x} - 2\pi k = \arcsin \alpha$$

$$\sin\left(\frac{1}{x} - 2\pi k\right) = \alpha$$

$$\sin\left(\frac{1}{x}\right) = \alpha.$$

Then the point (x, a) is in E, and $\|(x, a) - (0, a)\| = \|(x, 0)\| = \sqrt{x^2} = x < r$, so x is in the arbitrary open ball we chose around (0, a), and so every open ball around p contains a distinct point in E, and as such p is an accumulation point of E.

Clearly none of these accumulation points can be in E thanks to the condition x > 0, so E does not contain all its limit points and is not closed.

- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function in $C^1(\mathbb{R}^n)$, i.e., f, $\partial_{x_1} f$, ..., $\partial_{x_n} f$ are continuous in \mathbb{R}^n . Suppose f(tx) = tf(x), $\forall x \in \mathbb{R}^n$, $\forall t \in \mathbb{R}$ Show that f is a linear function.
- 5. Given $u : \mathbb{R} \to \mathbb{R}$ a function in $C^2(\mathbb{R})$, define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = \begin{cases} u(y) u(x) & \text{if } y \neq x \\ u'(x) & \text{if } y = x \end{cases}$ Show that f is differentiable at any point (a, a).

- 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function that is defined in an open set Ω in \mathbb{R}^2 . Show that if $\partial_x f(x,y), \partial_y f(x,y)$ and $\partial_{xy} f(x,y)$ are continuous in Ω , then $\partial_{yx} f(x,y)$ exists in Ω and we have $\partial_{yx} f(x,y) = \partial_{xy} f(x,y), \forall (x,y) \in \Omega$ Hint: Consider the expression $\Delta(s,t) = f(a+s,b+t) f(a+s,b) f(a,b+t) + f(a,b)$.
- 7. Compute the degree 3 Taylor polynomial $T_3(x,x_2)$ of the function $f:\mathbb{R}^2\to\mathbb{R}$, defined by $f(x_1,x_2)=\frac{4x_1+6x_2-1}{2x_1+3x_2}$ at the point (-1,1).