M'ZEBLA Faouizi YILMAZ Zeyid

Casse brique

Calcul de l'angle de rebond de la balle sur la barre

Le rebond sur la barre dans le

programme

```
class Area(tk.Canvas):
    def init (self, root):
    def reset(self):
    def level(selfj level):
    def nextFrame(self):
    def moveBall(self):
    def updateEffects(self):
    def collision(self, ellj el2):
```

Le rebond par defaut

La formule:

$$apres = (-\alpha_{avant}) \% 2\pi \text{ ou } \alpha_{apres} = 360 - \alpha_{avant}$$

Un probleme

Comment permettre le controle de la trajectoire de la balle ?

Des contraintes

- **Definir** a_{apres} en fonction de a_{avant} et x
- Les conditions :

L'idee

- ▶ Definir a_{avres} comme le melange de 2 angles :
 - $ightharpoonup a_{norma}i$ l'angle par defaut : depend seulement de a_{avant}

&normal ³⁶⁰ &avant

a caicuie I angle calcule : depend seulement de X

&calcule =
$$^2 + ^90$$

equation de droite affine obtenue en posant

X	calcule
-L/2	160°
L/2	20°

L'idee (suite)

▶ Definir la proportion des 2 angles en fonction de x :

X	Enormal	& calcule
-L/2	0%	100%
0	100%	0%
L/2	0%	100%

La formule de base :

$$a_{apres}$$

$$1*1 \times A_{calcule + 1} \times A_{calcule$$

► La formule amelioree :

$$a_{apres} = \frac{1*1}{N^{L/2}} \times \text{@calcule} + \left(1 - \sqrt{\frac{|x|}{L/2}}\right) \times \text{G-normale}$$

► Formule de base

► Formule amelioree

L'algorithme et le code

L'algorithme

```
Algorithme rebond(balleX, balleAngle., barreXj barreLargeur):

diffX = balleX - barreX

angleMormal = (-balleAngle) % 2pi angleCalcule
= -70/(barreLargeur/2)*diffX -l- 9#

angleFinal = (1 - (abs(diffX)/(barreLargeur/2) )**0, 25)*angl.eMornal -l-
((abs(diffX)/( barreLargeuir/2))**#, 25)*angle£alcule

retourner angleFinal
```

▶ Le code Python

```
ballX = self.coords(sel~ . ball)[&] -1-
self.ballRadius barreX = self . coords(sel .bar)[0] -
1- sel-'. barWidth/2 diffX = ballX - barreX
angleMormal = (-sel".ballAngle) % (3.14159*2)
angletomputed = math,, radians(-7&/(sel-barWidth/2) *diffX + 90)
sel .ballAngle = (1 - (abs(diffX)/(sel-'. barUidth/2)) **0.25)*angleMormal + ((abs(diffX)/(sel-'. barUidth/2))**9.25)*angleComputed
```