

1
2 CLAIMS
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

1. A composition of hydrocarbon fuel, in the low vapor pressure range to very low vapor pressure range, and carbon dioxide (CO₂) wherein the concentration of CO₂ within the fuel is sufficient in volume to achieve a substantial reduction in exhaust soot particulate when the fuel is consumed by engine combustion.
2. A composition of hydrocarbon fuel, in the low vapor pressure range to very low vapor pressure range, wherein commercial grade of recycled carbon dioxide CO₂ is used and wherein the concentration of CO₂ within the fuel is sufficient in volume to achieve a substantial reduction in exhaust soot particulate during engine combustion.
3. The composition of claim 1 and 2 wherein said CO₂ is mixed under normal temperature and pressure within said fuel, and the CO₂ does not react chemically with the fuel.
4. The composition of claim 1 and 2 wherein the combination of said fuel and said CO₂ is employed to improve fuel economy.
5. The composition of claim 4 wherein the combination of said fuel and said CO₂ is employed to provide a net reduction in CO₂ production in engine exhaust.
6. The composition of claim 1 and 2 wherein the combination of said fuel and said CO₂ is employed to provide a net fuel cost savings.
7. The composition of claim 1 and 2 wherein the combination of said fuel and said CO₂ is employed to reduce fuel viscosity without entering into a chemical reaction.
8. A composition of: liquid hydrocarbon fuel, in the low vapor pressure to very low vapor pressure range, and carbon dioxide CO₂: wherein the concentration of CO₂ within the fuel is less than 1 atmosphere of pressure and sufficient in volume to provide a substantial supply of inert gas for use in fuel tank ullage inerting purposes and the CO₂ does not react chemically with the fuel.
9. The composition of claim 8 wherein: hydrocarbon fuel is in the low vapor pressure to very low vapor pressure range, and uses a commercial grade of recycled carbon dioxide CO₂ wherein the concentration of CO₂ within the fuel is sufficient in volume to provide a substantial supply of inert gas for use in fuel tank ullage inerting purposes.
10. The composition of claim 8 wherein the combination of enhanced fuel by the added CO₂ provides an improved fuel fire safety factor when said enhanced fuel is transferred and stored.

1 11. The composition of claim 8 wherein the combination of said fuel and said
2 CO₂ acts as a self-inerting fuel.
3

4 12. The composition of claim 8 wherein the combination of said fuel with said
5 CO₂ provides that said fuel acts as a ‘weightless container’ for transferring and
6 storing substantial volumes of CO₂ without additional containment vessels.
7

8 13. The composition of claim 8 wherein the combination of said fuel containing
9 said CO₂ wherein that concentration of CO₂ in the fuel may be extracted from
10 the fuel by mechanical means.
11

12 14. The composition of claim 8 wherein the combination of said fuel and said
13 CO₂ is transferable and storable in, existing closed fuel distribution systems and
14 fuel delivery equipment such as those used at airports and other re-fueling
15 terminals.
16

17 15. The composition of claim 8 wherein the combination of said fuel and said
18 CO₂ provides a new means for safely extending Jet-A fuel supplies by mixing in
19 percentages of JP-4 or naphtha into CO₂-enriched Jet-A.
20

21 16. The composition of claim 8 wherein the combination of said fuel receiving
22 said CO₂ provides substantial fuel de-oxygenation during the CO₂/fuel mixing
23 process.
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46