МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №1

по дисциплине: Системное моделирование тема: «Поведение механических систем в статике»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверил: Полунин Александр Ивано-

вич

Лабораторная работа №1

Поведение механических систем в статике Вариант 10

Цель работы: научиться моделировать на примере моделирования поведения механической системы в статике.

1. Разработать математическую модель, описывающую поведение элементов механической системы в статике.

K,=5000 k = 2000 I=5; R=1; 1) Bolgemen 2 comentre boogse noopgenan water me ha mement d - yrac brangenna guerra

2. Разработать программу на основании математической модели и произвести расчёты.

```
#include <algorithm>
#include <iostream>
#include <iomanip>

#define PI 3.141592654
#define g 9.81
#define k1 5000.0
#define k2 7000.0
#define R 1.0
#define R 1.0
#define r 0.2
#define m 10.0
#define e 0.0000000001
```

```
#define es 0.00001
double getM2(double P) {
   return -(m * g + P) * R;
}
double getM1(double angle) {
   return k1 * angle * PI * r * r / 180.0;
}
double getM(double angle, double P) {
   return getM1(angle) + getM2(P);
}
double getDeriative(double angle, double P) {
   return (getM(angle + e, P) - getM(angle, P)) / e;
}
double getDelta(double angle, double P) {
   return getM(angle, P) / getDeriative(angle, P);
}
struct result {
   double angle;
   bool succeed;
   double P;
};
result newton(double P) {
   double angle = 0;
   int c = 0;
   double delta = getDelta(angle, P);
   while (std::abs(getM(angle, P)) >= es && c < 100) {
       C++;
       angle -= delta;
       delta = getDelta(angle, P);
   return (result) {angle, std::abs(getM(angle, P)) < es, P };</pre>
}
double getY(double angle, double P) {
   return (angle * PI * R) / 180.0 + (m * g + P) / k2;
}
int main() {
   double P = 0;
   double stepP = 100.0;
   \hookrightarrow std::endl;
   while (stepP > es) {
       result res = newton(-P);
```

Результаты выполнения программы:

D		
P	α	<i>y</i>
-0	28.1036	0.504514
-100	-0.54431	-0.00977143
-50	13.7796	0.247371
-100	-0.54431	-0.00977143
-75	6.61766	0.1188
-100	-0.54431	-0.00977143
-87.5	3.03668	0.0545143
-100	-0.54431	-0.00977143
-93.75	1.24618	0.0223714
-100	-0.54431	-0.00977143
-96.875	0.350937	0.0063
-100	-0.54431	-0.00977143
-98.4375	-0.0966866	-0.00173571
-97.6562	0.127125	0.00228214
-98.4375	-0.0966866	-0.00173571
-98.0469	0.0152192	0.000273214
-98.4375	-0.0966866	-0.00173571
-98.2422	-0.0407337	-0.00073125
-98.1445	-0.0127573	-0.000229018
-98.0957	0.00123096	2.20982e-05
-98.1445	-0.0127573	-0.000229018
-98.1201	-0.00576315	-0.00010346
-98.1079	-0.00226609	-4.06808e-05
-98.1018	-0.000517564	-9.29129e-06
-98.0988	0.0003567	6.40346e-06
-98.1018	-0.000517564	-9.29129e-06
-98.1003	-8.04323e-05	-1.44392e-06
-98.0995	0.000138134	2.47977e-06
-98.1003	-8.04323e-05	-1.44392e-06
-98.0999	2.88507e-05	5.17927e-07
-98.1003	-8.04323e-05	-1.44392e-06
-98.1001	-2.57908e-05	-4.62995e-07
-98.1	0	7.62939e-10
-98.0999	1.51903e-05	2.72696e-07
-98.1	0	7.62939e-10
-98.1	8.36015e-06	1.50081e-07
-98.1	0	7.62939e-10
-98.1	4.94506e-06	8.87735e-08
-98.1	0	7.62939e-10

Вывод: в ходе лабораторной работы изучили основные шаги моделирования, промоделировали поведение механической системы в статике.