(2) Fix a modulus d. Recall that $\mathbb{Z}/d\mathbb{Z}$ is the set of equivalence classes of integers modulo d. Let us try to define the operation of exponentiation on $\mathbb{Z}/d\mathbb{Z}$ as follows. Given $A,B\in\mathbb{Z}/d\mathbb{Z}$, we pick an $a\in A$, a positive $b\in B$, and declare $A^B=[a^b]$. Is this operation well-defined? Justify your answer.

Choose
$$d=4$$
, $A=[2]=[6]$, $B=[1]=[5]$ $2^1 \mod 4=2$ $6^5 \mod 4=0$

Since $[2] \neq [0]$, the result depends on the choice of representatives. By counterexample, the operation of exponentiation is not well-defined on $\mathbb{Z}/d\mathbb{Z}$