DIFFERENTIAL CALCULUS

NTU 108-1 DIFFERENTIAL CALCULUS

Li-Chang Hung

This document was typeset on Monday $2^{\rm ND}$ December, 2019.

\rightarrow Legal stuff

- Copyright © 2019 Li-Chang Hung.
- Edited by Hao-Yu Chien under the framework by Joel Feldman, Andrew Rechnitzer and Elyse Yeager.
- Links to the original files can be found at the text webpage

Contents

1	Fun	ctions 1				
	1.1	Function 函數				
	1.2	Even and Odd Functions 偶函數與奇函數				
	1.3	Polynomial 多項式				
	1.4	Rational Function 有理函數				
	1.5	Exponential Function 指數函數				
2	Limits 5					
	2.1	Limit 極限				
	2.2	Ways to Find Limits				
	2.3	ϵ - δ language				
	2.4	Limit Law				
	2.5	Continuity				
	2.6	Intermediate Value Theorem				
	2.7	Velocity				
3	Derivatives 17					
	3.1	Derivatives 導(函)數				
	3.2	Differentiability				
	3.3	Differentiation Rule				
	3.4	Derivatives of Trigonometric Functions				
	3.5	Derivatives of Polynomials				
	3.6	Derivatives of e^x				
	3.7	Chain Rule 連鎖律				
	3.8	Linear Approximation (Linearization)				
	3.9	Implicit Differentiation				
	3.10	Derivatives of Inverse Trigonometric Functions				
	3.11	Exponential Growth and Decay				

CONTENTS

4	\mathbf{App}	dications of Derivatives	41
	4.1	Maximum and Minimum	41
	4.2	Extreme Value Theorem	41
	4.3	Fermat's Theorem	42
	4.4	Critical Point (Critical Number)	43
	4.5	Rolle's Theorem	44
	4.6	Mean Value Theorem	45
	4.7	L'Hospital's Rule	47
	4.8	Inflection Point (反曲點)	50
	4.9	Optimization Problems	51
	4.10	Antiderivatives (反導函數)	53

Chapter 1

FUNCTIONS

1.1 ▲ Function 函數

Definition 1.1.1.

x (D: domain 定義域) $\to f(x)$ (R: range 值域)

- one to one
- many to one
- one to many

Example 1.1.2

$$f(x) = \sqrt{x - 1}, x \in R$$

domain is $\{x \in R \mid x \ge 1\} = \{x \in R : x \ge 1\} = [1, \infty)$ range is $\{y \in R \mid y \ge 0\} = [0, \infty)$

 \therefore non-function

Example 1.1.2

1.2 ▲ Even and Odd Functions 偶函數與奇函數

Definition 1.2.1.

- f(x) is an even function if f(x) = f(-x)(i.e graph of f(x) is symmetric with respect to y-axis)
- f(x) is an odd function if f(x) = -f(x)

Joke 1.2.2.

$$9x - 7i > 3(3x - 7u)$$

 $9x - 7i > 9x - 21u$
 $-7i > -21u$
 $i < 3u$
I love u

1.3 ▲ Polynomial 多項式

Definition 1.3.1.

$$f(x) = a_n x^n + a_{n-1} x^{n+1} + \dots + a_0 (a_n \neq 0)$$

• Degree (次數): n

Example 1.3.2

$$f(x) = x^3 + 23x + 17$$

Example 1.3.2

1.4 ▲ Rational Function 有理函數

Definition 1.4.1.

 $f(x) = \frac{P(x)}{Q(x)}$ where P(x) and Q(x) are polynomials.

1.5 ▲ Exponential Function 指數函數

Definition 1.5.1.

$$f(x) = a^x$$

- base (底數): a
- power (指數): x

Chapter 2

LIMITS

2.1 ▲ Limit 極限

Definition 2.1.1 (Working definition).

$$\lim_{x \to a} f(x) = L$$

• As x approaches a, f(x) approaches L.

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \ (0 < \theta < \frac{\pi}{2})$$

$$\frac{\triangle \text{ OBA} \quad \subset \text{ sector } (園形) \text{ OBA} \quad \subset \quad \triangle \text{ OB'A}}{\operatorname{area}}$$

$$\frac{1}{2} \cdot 1 \sin \theta \quad \leqslant \quad \pi \cdot 1^2 \frac{\theta}{2\pi} \quad \leqslant \quad \frac{1}{2} \cdot 1 \tan \theta$$

$$\Rightarrow \quad \sin \theta \quad \leqslant \quad \theta \quad \leqslant \quad \tan \theta$$

$$\Rightarrow \quad 1 \quad \leqslant \quad \frac{\theta}{\sin \theta} \quad \leqslant \quad \frac{1}{\cos \theta}$$

$$\Rightarrow \quad \theta \quad \leqslant \quad \frac{\sin \theta}{\theta} \quad \leqslant \quad 1$$

$$\Rightarrow \quad \lim_{\theta \to 0^+} \cos \theta \quad \leqslant \quad \lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} \quad \leqslant \quad \lim_{\theta \to 0^+} 1$$

$$\Rightarrow \quad \lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1$$

Find
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin^2 x}{x^2(1 + \cos x)}$$

$$= \lim_{x \to 0} (\frac{\sin x}{x})^2 \cdot \lim_{x \to 0} \frac{1}{1 + \cos x}$$

$$= (\lim_{x \to 0} \frac{\sin x}{x})^2 \cdot \frac{1}{2}$$

$$= 1 \cdot \frac{1}{2}$$

$$= \frac{1}{2}$$

or

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{x^2}$$

$$= \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{4(\frac{x}{2})^2}$$

$$= \frac{1}{2} \lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{(\frac{x}{2})^2}$$

$$= \frac{1}{2} \cdot 1$$

$$= \frac{1}{2}$$

Example 2.1.2

2.2 • Ways to Find Limits

• Direct substitution

$$\lim_{x \to a} f(x) = f(a)$$

- Factorization 因式分解
- Rationalization 有理化
- Squeeze Theorem 夾擠定理

Theorem 2.2.1.

If

$$f(x) \le g(x) \le h(x)$$
near $x = a$

and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g(x) = L$$

Example 2.2.2 (type $\frac{0}{0} \star$)

$$\lim_{x \to 0} \frac{(x+3)^2 - 9}{x} = \lim_{x \to 0} \frac{x^2 + 6x + 9 - 9}{x} = \lim_{x \to 0} \frac{x(x+6)}{x} = 6$$

Example 2.2.2

Example 2.2.3 (type $\frac{0}{0} \star$)

$$\lim_{x \to 0} \frac{\sqrt{x^2 - 9} - 3}{x^2} = \lim_{x \to 0} \frac{(\sqrt{x^2 + 9} - 3)(\sqrt{x^2 + 9} + 3)}{x^2(\sqrt{x^2 - 9} + 3)} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 9} + 3} = \frac{1}{6}$$

Example 2.2.3

Example 2.2.4 (type $\frac{0}{0} \star \star$)

$$\lim_{x \to 2} \frac{\sqrt{x^3 + x^2 - 8} - 2}{x - 2} = \lim_{x \to 2} \frac{(\sqrt{x^3 + x^2 - 8} - 2)(\sqrt{x^3 + x^2 - 8} + 2)}{(x - 2)(\sqrt{x^3 + x^2 - 8} + 2)}$$

$$= \lim_{x \to 2} \frac{x^3 + x^2 - 12}{(x - 2)(\sqrt{x^3 + x^2 - 8} + 2)}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x^2 + 3x + 6)}{(x - 2)(\sqrt{x^3 + x^2 - 8} + 2)}$$

$$= \frac{4 + 6 + 6}{4}$$

$$= 4$$

or

$$\lim_{x \to 2} \frac{\sqrt{x^3 + x^2 - 8} - 2}{x - 2} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2)$$

$$f(x) = x^3 + x^2 - 8$$

$$f'(x) = \frac{1}{2}(x^3 + x^2 - 8)^{-\frac{1}{2}}(3x^2 + 2x)$$

$$\implies f'(2) = \frac{1}{2}(\frac{1}{2})(12 - 4) = 4$$

Example 2.2.4

Example 2.2.5 (type $\frac{0}{0} \star \star$)

$$\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x}} - \sqrt{3}}{x - 2} = \lim_{x \to 2} \frac{(\sqrt{1 + \sqrt{2 + x}} - \sqrt{3})(\sqrt{1 + \sqrt{2 + x}} + \sqrt{3})}{(x - 2)(\sqrt{1 + \sqrt{2 + x}} + \sqrt{3})}$$

$$= \lim_{x \to 2} \frac{1 + \sqrt{2 + x} - 3}{(x - 2)(\sqrt{1 + \sqrt{2 + x}} + \sqrt{3})}$$

$$= \lim_{x \to 2} \frac{(\sqrt{2 + x} - 2)(\sqrt{2 + x} + 2)}{(x - 2)(\sqrt{1 + \sqrt{2 + x}} + \sqrt{3})(\sqrt{2 + x} + 2)}$$

$$= \lim_{x \to 2} \frac{2 + x - 4}{(x - 2)(\sqrt{1 + \sqrt{2 + x}} + \sqrt{3})(\sqrt{2 + x} + 2)}$$

$$= \frac{1}{2\sqrt{3} \cdot 4}$$

$$= \frac{1}{8\sqrt{3}}$$

Example 2.2.5

Example 2.2.6 (type $\frac{0}{0} \star$)

$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\frac{\sin x}{\cos x} - \sin x}{x^3}$$

$$= \lim_{x \to 0} \frac{\sin x (1 - \cos x)(1 + \cos x)}{x^3 \cos x (1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin^3 x}{x^3} c \frac{1}{\cos x (1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin^3 x}{x^3} \cdot \lim_{x \to 0} \frac{1}{\cos x (1 + \cos x)}$$

$$= \frac{1}{2}$$

Example 2.2.6

Example 2.2.7 (type $\frac{0}{0} \star$)

$$\lim_{x \to 0} \frac{\cos x - 1}{\sin(x \sin x)} = \lim_{x \to 0} \frac{(\cos x - 1)(\cos x + 1)}{\sin(x \sin x)(\cos x + 1)}$$

$$= -\lim_{x \to 0} \frac{\sin^2 x}{\sin(x \sin x)} \cdot \frac{1}{\cos x + 1}$$

$$= -\lim_{x \to 0} \frac{x \sin x}{\sin(x \sin x)} \cdot \frac{\sin^2 x}{x \sin x} \cdot \frac{1}{\cos x + 1}$$

$$= -\lim_{x \to 0} \frac{x \sin x}{\sin(x \sin x)} \cdot \lim_{x \to 0} \frac{\sin^2 x}{x \sin x} \cdot \lim_{x \to 0} \frac{1}{\cos x + 1}$$

$$= -\frac{1}{2}$$

Example 2.2.7

Example 2.2.8

$$\lim_{x \to 0} x^2 \sin(\frac{1}{x})$$

$$-1 \le \sin x \le 1, \forall x \in R$$

$$\left| x^2 \sin(\frac{1}{x}) \right| \le |x^2 \cdot 1| = x^2, x \in R$$

$$\implies -x^2 \le x^2 \sin(\frac{1}{x}) \le x^2, x \in R$$

$$\lim_{x \to 0} -x^2 = \lim_{x \to 0} x^2 = 0$$

By Squeeze Theorem, we have $\lim_{x\to 0} x^2 \sin(\frac{1}{x}) = 0$

Example 2.2.8

2.3 ▲ ϵ - δ language

Definition 2.3.1.

$$\lim_{x \to a} f(x) = L$$

• $\forall \epsilon > 0, \ \exists \delta \ (= \delta(\epsilon)) \ \text{s.t.} \ \text{if} \ |x - a| < \delta \ \text{then} \ |f(x) - L| < \epsilon$

Example 2.3.2

Prove $\lim_{x\to 3}(x+2)=5$ using ϵ - δ language

LIMITS 2.4 Limit Law

Want to prove:

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon) \text{ s.t. if } |x-3| < \delta \text{ then } |(x+2)-5| < \epsilon$$

Experiment:

When
$$\epsilon = 0.1$$
, $\exists \delta$ s.t. if $|x - 3| < \delta$ then $|x - 3| < 0.1$

If
$$\delta = 0.1$$

If
$$\delta = 0.2 \times$$

If
$$\delta = 0.05 \checkmark$$

$$\forall \epsilon > 0, \exists \delta = \epsilon \text{ s.t. if } |x-3| < \delta \text{ then } |x-3| < \epsilon$$

Example 2.3.2

Example 2.3.3

Prove
$$\lim_{x\to 5} x^2 = 25$$
 using ϵ - δ language

Want to show:

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon) \text{ s.t. if } |x-5| < \delta \text{ then } |x^2-25| < \epsilon$$

When
$$|x-5| < 1$$
:

$$-1 < x - 5 < 1 \Rightarrow 9 < x + 5 < 11$$

$$|x^2 - 25| = |(x - 5)(x + 5)| < |x - 5| \cdot 11 \text{ hope } < \epsilon$$

hope
$$|x-5| < \frac{\epsilon}{11}$$

take
$$\delta = \min(1, \frac{\epsilon}{11})$$

Verification:

$$\forall \epsilon > 0, \exists \delta = \min(1, \frac{\epsilon}{11})$$

check

$$|x-5| < \min(1, \frac{\epsilon}{11}) \le \frac{\epsilon}{11}$$

$$\implies |x^2 - 25| < \epsilon$$

$$\Rightarrow |x^2 - 25| < \epsilon$$

$$|x^2 - 25| = |x - 5| \cdot |x + 5| \le \frac{\epsilon}{11} \cdot 11 = \epsilon$$

Example 2.3.3

Joke 2.3.4.

2.4 ▲ Limit Law

Assume $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ exist, then:

- $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- $\lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$

Limits 2.4 Limit Law

•
$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Remarks:

•
$$\lim_{x \to a} (c \cdot f(x)) = \lim_{x \to a} c \cdot \lim_{x \to a} f(x) = c \cdot \lim_{x \to a} f(x)$$

•
$$\lim_{x \to a} (f(x))^n = \lim_{x \to a} (f(x))^{n-1} \cdot \lim_{x \to a} f(x) = (\lim_{x \to a} f(x))^n$$

•
$$\lim_{x \to 0} x^2 \sin(\frac{1}{x}) \neq (\lim_{x \to 0} x^2) \cdot (\lim_{x \to 0} \sin(\frac{1}{x}))$$

Example 2.4.1

Assume $\lim_{x \to 0} \frac{f(x)}{x^2} = 5$

(a) Find $\lim_{x\to 0} f(x)$

$$\lim_{x \to 0} \left(\frac{f(x)}{x^2} \cdot x^2 \right) = \lim_{x \to 0} f(x)$$

$$(\lim_{x \to 0} \frac{f(x)}{x^2}) \cdot (\lim_{x \to 0} x^2) = 5 \cdot 0 = 0$$

(b) Find $\lim_{x\to 0} \frac{f(x)}{x}$

$$\lim_{x \to 0} \left(\frac{f(x)}{x^2} \cdot x\right) = \lim_{x \to 0} \frac{f(x)}{x}$$

$$(\lim_{x \to 0} \frac{f(x)}{x^2}) \cdot (\lim_{x \to 0} x) = 5 \cdot 0 = 0$$

Example 2.4.1

Limits 2.5 Continuity

2.5 ▲ Continuity

Definition 2.5.1.

f(x) is conti. at x = a if

- f(x) is defined at x = af(a) makes sense
- $\lim_{x \to a} f(x)$ exists $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$
- $\lim_{x \to a} f(x) = f(a)$ $\forall \epsilon > 0, \exists \delta = \delta(\epsilon) > 0 \text{ s.t if } |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$

Joke 2.5.2.

原子小金剛 撞牆穿牆

Example 2.5.3 (Removable Discontinuity)

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

How would you define f(2) in order to make f(x) is conti. at x = 2?

Sol:

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{(x+1)(x-2)}{x-2} = 3$$

Example 2.5.3

Example 2.5.4

$$f(x) = \begin{cases} cx^2 + 2x & , & x < 2 \\ x^3 - cx & , & x > 2 \end{cases}$$

For what value of the const c is the fcn. f conti. on $(-\infty, \infty)$?

$$\lim_{\substack{x \to 2^+ \\ \lim_{x \to 2^-}}} f(x) = \lim_{\substack{x \to 2^+ \\ \lim_{x \to 2^-}}} (x^3 - cx) = 8 - 2c$$

$$8-2c = 4c+4$$

$$4 = 6c$$

$$c = \frac{2}{3}$$

Example 2.5.4

2.6 ▲ Intermediate Value Theorem

Theorem 2.6.1.

Suppose that f(x) is conti. [a, b].

- If f(a) < f(b) and $\forall k \in R$ with f(a) < k < f(b), then $\exists c \in (a,b)$ s.t f(c) = k
- If f(x) is conti. on [a,b] and $\exists N \in R$ s.t f(b) < N < f(a), then $\exists c \in (a,b)$ s.t f(c) = N
- If N = 0 in I.V.T, f(b) < 0 < f(a), $\exists c \in (a, b)$ s.t f(c) = 0

The proof relies on "Least Upper Bound Axiom"

Definition 2.6.2.

If $S \in R$,

- b is called an upper bound of S if $\forall x \in S \implies \leq b$
- b is called a least upper bound if
 - -b is an upper bound of S
 - $-\ b$ is less than or equal to every other upper bound of S.

Lemma 2.6.3.

Let $M, N \in R$.

If $M > N - \epsilon$ $\forall \epsilon > 0$, then M > N

pf:

Suppose that If M < N, $\exists \epsilon > 0$ s.t $M + \epsilon < N$

 $\implies M < N - \epsilon \text{ a contradiction } \implies M \geqslant N$

Proof. Intermediate Value Theorem Let $A = \{x \in [a,b] \mid f(x) \le k\}$

- $A \neq \phi$ (empty set) (: $f(a) < k \implies a \in A$)
- A is bounded above

By Least Upper Bound axiom \implies A has an l.u.b c Denote sup A = c want to show: f(c) = k

Claim: $c \in [a, b]$

• b is an upper bound of $S \implies c \le b$ $\begin{cases} c \text{ is an upper bound of } S \\ f(a) < k \implies a \in A \end{cases} \implies a \le c \implies a \le c \le b$

$$f(x)$$
 is conti. at $x = c \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0$ s.t if $|x - c| < \delta$ $f(c) - \epsilon < f(x) < f(c) + \epsilon - (\star)$

Claim: $f(c) \leq k$

pf:

 $c = \sup A \implies c - \delta$ is not an upper bound of A $\therefore \exists x_1 \in A \implies f(x_1 \leqslant k) \text{ s.t } c - \delta < x_1 \leqslant c \implies c - x_1 < \delta$ $(\star) \implies f(c) < f(x) + \epsilon \leqslant k + \epsilon \implies f(c) \leqslant k$

Claim: c < b

pf:

If $c = b, k < f(b) = f(c) \le k$ a contradiction

Claim: $f(c) \ge k$

pf:

 $c < b \implies \exists x_2 \text{ s.t } c < x + 2 < b \text{ and } x_2 - c < \delta$

 $(\star) \implies f(x_2 < f(c) + \epsilon)$

 $x_2 < c \implies x_2 \notin A \implies f(x_2) > k \implies k < f(x_2) < f(c) + \epsilon \implies f(c) > k - \epsilon$ (Lemma) $\implies f(c) \ge k$

Example 2.6.4

Show that there is a root of the eqn. $\sin x = x^2 - x$ in (1,2)

pf: let $f(x) = x^2 - x - \sin x$ conti.

$$f(1) = 1 - 1 - \sin 1 = -\sin 1 < 0$$

 $f(2) = 4 - 2 - \sin 2 = 2 - \sin 2 > 0$

By I.V.T, $\exists c \in (1,2) \text{ s.t } f(c) = 0$

Example 2.6.4

Example 2.6.5

Prove that $\cos x = x^3$ has at least one real root.

$$let f(x) = \cos x - x^3$$

observe:

$$\lim_{\substack{x \to \infty \\ \lim_{x \to \infty}}} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$f(100) = \cos 100 - 100^3 < 0$$

 $f(-100) = \cos -100 + 100)^3 > 0$

By I.V.T, $\exists c \in (-100, 100)$ s.t f(c) = 0

Example 2.6.5

Example 2.6.6

Show that $f(x) = \begin{cases} x^4 \sin \frac{1}{x} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$ is conti. on $(-\infty, \infty)$

pf:

We need to show $\lim_{x\to 0} f(x) = f(0)$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^4 \sin \frac{1}{x})$$

$$-1 \leqslant \sin \frac{1}{x} \leqslant 1$$

$$\implies -x^4 \leqslant x^4 \sin \frac{1}{x} \leqslant x^4$$

$$\lim_{x \to 0} -x^4 = \lim_{x \to 0} x^4 = 0$$

By Squeze thm, $\lim_{x\to 0} x^4 \sin \frac{1}{x} = 0 \implies \lim_{x\to 0} f(x) = 0 = f(0)$

Example 2.6.6

Example 2.6.7

Assume f(x) is conti. on [-1,1]. Show that $\exists c \in (-1,1)$ s.t $f(c) = \frac{c}{1-c^2}$ (i.e. x=c is a

root of $f(x) = \frac{x}{1 - x^2}$

pf:

Limits 2.7 Velocity

let
$$g(x) = 1 - x^2 \cdot f(x) - x$$

 $g(1) = (1-1)f(1) - 1 < 0$
 $g(-1) = (1-1)f(-1) + 1 > 0$
 $g(x)$ is conti. on $[-1,1]$
By I.V.T, $\exists c \in (-1,1)$ s.t $g(c) = 0$

$$f(x)$$
 is conti. at $x = a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$

Example 2.6.7

2.7 ▲ Velocity

Definition 2.7.1.

- Average velocity $(t = a \rightarrow t = a + h) = \frac{f(a+h) f(a)}{a+h-a}$
- Instantaneous velocity = $\lim_{h\to 0} \frac{f(a+h) f(a)}{h} := f'(a)$

Chapter 3

DERIVATIVES

3.1 ▲ Derivatives 導 (函) 數

Definition 3.1.1.

• The derivative of f(x) at x = a is given by

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} := f'(a)$$

• The derivative of f(x) is given by

$$\lim_{y \to x} \frac{f(y) - f(x)}{y - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} := f'(x)$$

Example 3.1.2

Find the derivative of $f(x) = x^2 - 2x + 3$ at x = 2 by definition

pf:

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{(2+h)^2 - 2(2+h) + 3 - 3}{h} = \lim_{h \to 0} \frac{h(h+2)}{h} = 2$$

Example 3.1.2

Example 3.1.3

Let $f(x) = x^3 - x$. Find the derivative of f(x)

Sol:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^3 - (x+h) - x^3 + x}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2 - 1)}{h}$$

$$= 3x^2 - 1$$

Example 3.1.3

Notation 3.1.4.

•
$$f'(x) = y'(x) = \frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}f(x)$$

•
$$f'(a) = y'(a) = \frac{\mathrm{d}f(x)}{\mathrm{d}x} | x = a = \frac{\mathrm{d}y}{\mathrm{d}x} | x = a \quad (\neq \frac{\mathrm{d}}{\mathrm{d}x} f(a) = 0)$$

Joke 3.1.5.

活生生血淋淋的栗子

3.2 • Differentiability

Definition 3.2.1.

f(x) is differentiable at x = a if f'(a) exists (i.e. $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ exists)

Example 3.2.2

Discuss differentiability of f(x) = |x| at x = 0

Sol:

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h| - 0}{h}$$

$$\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1$$

$$\lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = -1$$

- $\implies \lim_{h \to 0} \frac{|h|}{h}$ doesn't exist
- $\implies f'(0)$ doesn't exists
- $\implies f(x)$ is not differentiable at x = 0 but f(x) is conti. at x = 0

Example 3.2.2

Theorem 3.2.3 (Differentiability \implies Continuity).

If f(x) is differentiable at x = a, f(x) is continuous at x = a (i.e. $\lim_{x \to a} f(x) = f(a)$)

$$f(x) \text{ is diff. at } x = a$$
i.e
$$f'(a) = \lim_{h \to \infty} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \text{ exists}$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a) \implies \lim_{x \to a} (f(x) - f(a)) = 0$$

$$\implies \lim_{x \to a} (f(x) - f(a) + f(a)) = \lim_{x \to a} f(x)$$

$$= \lim_{x \to a} (f(x) - f(a)) + \lim_{x \to a} f(a)$$

$$= 0 + f(a)$$

$$= f(a)$$

3.3 • Differentiation Rule

If f'(x) and g'(x) exist, and c is any consts.

•
$$\frac{dc}{dx} = 0$$

$$f(x) = c \implies f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0$$

•
$$\frac{d}{dx}(cf(x)) = cf'(x)$$

$$\frac{d}{dx}(cf(x)) = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h} = c \cdot f'(x)$$

•
$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$

$$\frac{d}{dx}(f(x) + g(x)) = \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) \pm g'(x)$$

•
$$\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x)$$

$$\frac{d}{dx}(f(x) - g(x)) = \lim_{h \to 0} \frac{(f(x+h) - g(x+h)) - (f(x) - g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} - \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) - g'(x)$$

•
$$\frac{d}{dx}(f(x) \cdot g(x)) = f'(x)g(x) + f(x)g'(x)$$
 (Product Rule)

$$\frac{d}{dx}(f(x) \cdot g(x)) = \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x+h) + f(x) \cdot g(x+h) - f(x) \cdot g(x)}{h}$$

$$= \lim_{h \to 0} \frac{g(x+h)(f(x+h) - f(x))}{h} + \lim_{h \to 0} \frac{f(x)(g(x+h) - g(x))}{h}$$

$$= \lim_{h \to 0} g(x+h) \cdot \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} f(x) \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= g(x)f'(x) + f(x)g'(x)$$

$$= f'(x)g(x) + f(x)g'(x)$$

•
$$\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{g(x)f'(x) - g'(x)f(x)}{(g(x))^2}$$
 (Quotient Rule)

$$\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{d}{dx}(f(x)\frac{1}{g(x)}) = f'(x)\frac{1}{g(x)} + f(x)\frac{d}{dx}(\frac{1}{g(x)})$$

$$\frac{d}{dx}(\frac{1}{g(x)}) = \lim_{h \to 0} \frac{\frac{1}{g(x+h)} - \frac{1}{g(x)}}{h}$$

$$= \lim_{h \to 0} \frac{g(x) - g(x+h)}{h} \cdot \frac{1}{g(x+h)g(x)}$$

$$= \lim_{h \to 0} \frac{-g(x+h) + g(x)}{h} \cdot \lim_{h \to 0} \frac{1}{g(x+h)g(x)}$$

$$= \lim_{h \to 0} \frac{-g(x+h) + g(x)}{h} \cdot \frac{1}{g(x)} \lim_{h \to 0} \frac{1}{g(x+h)}$$

$$= -g'(x) \cdot \frac{1}{g(x)} \frac{1}{g(x)}$$

$$= \frac{-g'(x)}{(g(x))^2}$$

$$\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{f'(x)}{g(x)} + f(x)\frac{-g'(x)}{(g(x))^2} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Joke 3.3.1.

熱氣球 ⇒ 數學沒用

3.4 ▲ Derivatives of Trigonometric Functions

•
$$\frac{d}{dx}\sin x = \cos x$$

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x (\cos h - 1)^2}{h} + \lim_{h \to 0} (\cos x \cdot \frac{\sin h}{h})$$

$$= \sin x \lim_{h \to 0} \frac{(\cos h - 1)(\cos h + 1)}{h \cdot \cos x + 1} + \lim_{h \to 0} (\cos x \cdot \frac{\sin h}{h})$$

$$= \sin x \lim_{h \to 0} \frac{-\sin^2 h}{h^2} \cdot \frac{h}{\cos h + 1} + \lim_{h \to 0} (\cos x \cdot \frac{\sin h}{h})$$

$$= \sin x \cdot -1 \cdot 0 + \lim_{h \to 0} (\cos x \cdot \frac{\sin h}{h})$$

$$= 0 + \cos x$$

$$= \cos x$$

•
$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \lim_{h \to 0} (\cos \frac{\cos h - 1}{h}) - \lim_{h \to 0} (\sin \frac{\sin h}{h})$$

$$= \cos x \cdot 0 - \sin x$$

$$= -\sin x$$

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{(\cos h - 1)(\cos h + 1)}{h(\cos h + 1)} = \lim_{h \to 0} \frac{\cos^2 h - 1}{h(\cos h + 1)} = 0$$

•
$$\frac{d}{dx}\tan x = \sec^2 x$$

$$\frac{d}{dx}\tan x = \frac{d}{dx}(\frac{\sin x}{\cos x})$$

$$= \frac{\cos x \sin x - \sin x \cos x}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \sec^2 x$$
(Quotient Rule)

•
$$\frac{d}{dx} \sec x = \sec x \tan x$$

$$\frac{d}{dx} \sec x = \frac{d}{dx} \left(\frac{1}{\cos x}\right)$$

$$= \frac{\cos x \cdot 0 - 1(\cos x)}{\cos^2 x} \quad \text{(Quotient Rule)}$$

$$= \frac{\sin x}{\cos^2 x}$$

$$= \frac{\sin x}{\cos x} \sec x$$

$$= \sec x \tan x$$

•
$$\frac{d}{dx}\csc x = -\csc x \cot x$$

•
$$\frac{d}{dx}\cot x = -\csc^2 x$$

3.5 ▲ Derivatives of Polynomials

•
$$\frac{d}{dx}(x^n) = n \cdot x^{n-1}, n \in \mathbb{N}$$

$$\lim_{y \to x} \frac{f(y) - f(x)}{y - x} = \lim_{y \to x} \frac{y^n - x^n}{y - x}$$

$$= \lim_{y \to x} \frac{(y - x)(y^{n-1} + xy^{n-1} + \dots + x^{n-1})}{y - x}$$

$$= x^{n-1} + x \cdot x^{n-2} + \dots + x^{n-1}$$

$$= n \cdot x^{n-1}$$

$$= \lim_{y \to x} \frac{y - x}{y - x}$$

$$= x^{n-1} + x \cdot x^{n-2} + \dots + x^{n-1}$$

$$= n \cdot x^{n-1}$$

Example 3.5.1

$$\frac{d}{dx}(x^2) = 2x^{2-1} = 2x$$

Example 3.5.1

Example 3.5.2

$$\frac{d}{dx}(x^3) = 3x^{3-1} = 3x^2$$

Example 3.5.2

Notation 3.5.3.

$$f'(x) = \frac{df(x)}{dx}$$

$$f''(x) = \frac{d}{dx}(\frac{df(x)}{dx}) = \frac{d^2f(x)}{dx^2} \quad (\cot \frac{d^2f(x)}{d^2x^2})$$

$$f^{(n)}(x) = \frac{d^nf(x)}{dx^n}$$

Example 3.5.4

$$\frac{d^2}{dx^2}x^2 = \frac{d}{dx}(\frac{d}{dx}(x^2))$$

$$= \frac{d}{dx}(2x)$$

$$= 2\frac{d}{dx}x$$

$$= 2(1x^{1-1})$$

$$= 2$$

Example 3.5.4

3.6 \triangle Derivatives of e^x

•
$$(e^x)' = \frac{d}{dx}e^x = e^x$$
 $(e = 2.718281828459045 \cdots)$

$$f(x) = a^x$$
 $(a > 0 \text{ const.})$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$f_h(a) = \frac{a^h - 1}{h}$$
 (h is fixed)

- f(a) is conti.
- $-f(a) \nearrow$ (increasing in a)

When a = 2,

$$\lim_{h \to 0} \frac{2^h - 1}{h} = \lim_{h \to 0} f_h(2) \doteq 0.69 < 1$$

When
$$a = 3$$
,

$$\lim_{h \to 0} \frac{3^h - 1}{h} = \lim_{h \to 0} f_h(3) = 1.10 > 1$$

By I.V.T,
$$\exists a_0 \in (2,3)$$
 s.t $\lim_{h \to 0} f_h(a_0) = 1$
 $\implies f'(x) = a_0^x \cdot \lim_{h \to 0} \frac{a_0^h - 1}{h} = a_0^x$
i.e: $\frac{d}{dx}(a_0^x) = a_0^x \quad (a_0 = e)$

Joke 3.6.1.)

躍 (一幺、) 躍 (一幺、) 欲試

\rightarrow e Defined by Limit

let f(x) = lna

$$f'(x) = \frac{1}{x}$$

$$1 = f'(x) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{\ln(1+h)}{h}$$

$$= \lim_{h \to 0} \ln((1+h)^{\frac{1}{h}})$$

$$= \ln(\lim_{h \to 0} (1+h)^{\frac{1}{h}})$$

$$\ln A = 1$$

$$A = e$$

$$\therefore e = \lim_{h \to 0} (1+h)^{\frac{1}{h}}$$

$$h = \frac{1}{k} \implies e = \lim_{k \to \infty} (1+\frac{1}{k})^k$$

Example 3.6.2

$$(x^6)' = 6x^{6-1} = 6x^5$$

Example 3.6.2

Example 3.6.3

$$(\frac{1}{x^2})' = (x^{-2})' = -2x^{-2-1} = -2^{-3} = \frac{-2}{x^{-3}}$$

Example 3.6.3

Example 3.6.4

$$(\sqrt[3]{x^2})' = (x^{\frac{2}{3}})' = \frac{2}{3}x^{\frac{2}{3}-1} = \frac{2}{3}x^{-\frac{1}{3}}$$

Example 3.6.4

- Example 3.6.5

$$(x^9 + 12x^5 - 4x^4 + 10x^3 - 6x + 5)' = 8x^7 + 60x^4 - 16x^3 + 30x^2 - 6$$

Example 3.6.5

Example 3.6.6

Find the tangent line to the curve $y = x\sqrt{x}$ at (1,1)

sol: let $f(x) = x\sqrt{x} = x^{\frac{3}{2}}$

$$f'(x) = \frac{3}{2}x^{\frac{1}{2}}$$
$$f'(1) = \frac{3}{2}$$

tangent line : $\frac{y-1}{x-1} = \frac{3}{2}$

Example 3.6.6

Example 3.6.7

Find the points at the curve $y = x^4 - 6x^2 + 4$ where the tangent line is horizontal

sol:

let
$$f(x) = x^4 - 6x^2 + 4$$

$$f'(x) = 4x^3 - 12x$$

let f'(x) = 0 i.e. solve $4x^3 - 12^x = 0$

$$x(x^2 - 3) = 0$$

$$x = 0, \pm \sqrt{3}$$

.. •,=

Example 3.6.7

Example 3.6.8 (Product Rule)

$$f(x) = x^2 \sin x$$

$$f'(x) = (x^2)' \sin x + x^2 (\sin x)'$$

$$= 2x \sin x + x^2 \cos x$$

Example 3.6.8

Example 3.6.9 (Quotient Rule)

$$f(x) = \frac{\sec x}{1 + \tan x}$$

$$f'(x) = \frac{(1 + \tan x)(\sec x)' - (\sec x)(1 + \tan x)'}{(1 + \tan x)^2}$$

$$= \frac{\sec x \tan x + \sec x \tan^2 x - \sec^3 x}{(1 + \tan x)^2}$$

$$= \frac{\sec x (\tan x - 1)}{(1 + \tan x)^2}$$

$$\tan^2 x + 1 = \sec^2 x$$

 $\sec x \tan x + \sec x (\sec^2 x - 1) - \sec^3 x = \sec x (\tan x - 1)$

Example 3.6.9

Example 3.6.10

(i) $f(x) = x \cdot e^x$

$$f'(x) = (x)'e^x + x(e^x)'$$

= $1e^x + xe^x$
= $e^x(1+x)$

(ii) Find $f^n(x)$

$$f = xe^{x}$$

$$f' = e^{x}(1+x)$$

$$f'' = e^{x}(1+x) + e^{x} \cdot 1$$

$$= e^{x}(2+x)$$

$$f''' = e^{2}(2+x) + e^{x} \cdot 1$$

$$= e^{x}(3+x)$$

guess: $f^n(x) = e^x(n+x)$ prove it by induction

$$\frac{d}{dx}1 = 0$$

$$\frac{d}{dx}e^x = e^x$$

$$(e^x)'' = e^x$$

$$(e^x)''' = e^x$$

Example 3.6.10

Example 3.6.11 (Quotient Rule)

$$f(x) = \frac{x^2 + x - 2}{x^3 + 6}$$

$$f'(x) = \frac{(x^3 + 6)(2x + 1) - (x^2 + x - 2)(3x^2)}{(x^3 + 6)^2}$$

$$= \frac{2x^4 + x^3 + 12x + 6 - 3x^4 - 3x^3 + 6x^2}{(x^3 + 6)^2}$$

$$= \frac{-x^4 - 2x^3 + 6x^2 + 12x + 6}{(x^3 + 6)^2}$$

Example 3.6.11

Example 3.6.12

Find an equation of the tangent line to the curve $y = \frac{e^x}{1 + r^2}$ at $(1, \frac{e}{2})$

$$let f(x) = \frac{e^x}{1 + x^2}$$

$$f'(x) = \frac{(1+x^2)(e^x) - e^x(2x)}{(1+x^2)^2}$$
$$= \frac{e^x(x^2 - 2x + 1)}{1+x^2)^2}$$
$$f'(1) = \frac{e^x(1-2+1)}{4} = 0$$

 \implies eqn. of the tangent line is $y = \frac{e}{2}$

Example 3.6.12

Notation 3.6.13.

$$e^{x} = y$$

$$\log_{e} e^{x} = \log_{e} y$$

$$x = \log_{e} y = \ln y = \ln y$$

Example 3.6.14

$$f(x) = \cos x$$
. Find $f^{(27)}(x)$

$$f'(x) = -\sin x$$

$$f''(x) = -\cos x$$

$$f'''(x) = \sin x$$

$$f''''(x) = \cos x$$

$$\Rightarrow f^{(27)}(x) = \sin x$$

$$\implies f^{(27)}(x) = \sin x$$

Example 3.6.14

3.7 ▲ Chain Rule 連鎖律

Definition 3.7.1.

Let h(x) = f(g(x))If f and g are differentiable

$$h'(x) = f'(g(x)) \cdot g'(x)$$

$$= f'(u)|_{u=g(x)} \cdot g'(x)$$

$$= \frac{df(g(x))}{dg(x)} \cdot \frac{dg(x)}{dx}$$

Example 3.7.2

$$\frac{d}{dx}(\sin 2x)$$

$$h(x) = \sin(2x)$$

$$f(x) = \sin x \Longrightarrow f'(x) = \cos x$$

$$g(x) = 2x \Longrightarrow g'(x) = 2$$

$$f(g(x)) = f(2x) = \sin(2x)$$

$$\frac{d\sin(2x)}{dx} = \frac{d\sin(2x)}{d(2x)} \cdot \frac{d(2x)}{dx}$$

$$= \frac{d\sin y}{dy} \cdot 2$$

$$= 2\cos y$$

$$= 2\cos(2x)$$

Example 3.7.2

Example 3.7.3

$$\frac{de^{2x}}{dx}$$

$$\frac{de^{2x}}{dx} = \frac{de^{2x}}{d(2x)} \cdot \frac{d(2x)}{dx}$$

$$= e^{y} \cdot 2$$

$$= e^{2x} \cdot 2$$

$$f(x) = a^x (a > 0) \implies f'(x) = ?$$

If a = e = 2.718281828459045

 $(e^x)' = e^x$

If $a \neq e$

$$\frac{d}{dx}(a^{x}) = ((e^{\ln a})^{x})' = (e^{\ln a \cdot x})'$$

$$= \frac{d(e^{(\ln a)x})}{d((\ln a)x)} \cdot \frac{d((\ln a)x)}{dx}$$

$$= e^{y} \cdot \ln a$$

$$= e^{(\ln a)x} \cdot \ln a$$

$$= a^{x} \cdot \ln a$$

$$\frac{da^{x}}{dx} = \ln a \cdot a^{x}$$

when a = e

$$\frac{de^x}{dx} = lne \cdot e^x = 1e^x = e^x$$

Example 3.7.3

Example 3.7.4

$$\frac{d\tan(\sin x)}{dx}$$

$$\frac{d \tan(\sin x)}{dx} = \frac{d \tan(\sin x)}{d \sin x} \cdot \frac{d \sin x}{dx}$$
$$= \sec^2(\sin x) \cos x$$

Example 3.7.4

Proof. Chain Rule Let
$$g(x) - g(x)$$

Let
$$\epsilon_1 = \frac{g(x) - g(a)}{x - a} - g'(a)$$
 ($\epsilon_1 = \epsilon_1(x)$)
$$\lim_{x \to a} \epsilon_1 = \lim_{x \to a} (\frac{g(x) - g(a)}{x - a} - g'(a))$$

$$= \lim_{x \to a} (\frac{g(x) - g(a)}{x - a}) - \lim_{x \to a} g'(a)$$

$$= g'(a) - g'(a)$$

 $\therefore \epsilon_1 \to 0 \text{ as } x \to a$

$$g(x) - g(a) = (g'(a) + \epsilon_1)(x - a)$$
 $---(1)$

Similarity:

Let
$$y = g(x)$$
, $b = g(a)$ $---(3)$

$$\epsilon_2 = \frac{f(y) - f(b)}{y - b} - f'(b) \quad (\epsilon_2 = \epsilon_2(y))$$

 $\therefore \epsilon_2 \to 0 \text{ as } y \to b$

$$f(y) - f(b) = (f'(b) + \epsilon_2)(y - b)$$
 $--- (2)$

$$(3) \implies f(g(x) - f(g(a)) = (f'(g(a)) + \epsilon_2)(g(x) - g(a))$$

$$(1) \implies (f'(g(a)) + \epsilon_2)(g'(a) + \epsilon_1)(x - a)$$

$$(1) \implies (f'(g(a)) + \epsilon_2)(g'(a) + \epsilon_1)(x - a)$$

$$\lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a} (f'(g(a) + \epsilon_2)(g'(a) + \epsilon_1))$$

$$\frac{d}{dx}(f(g(x))|_{x=a} = \lim_{\substack{x \to a \\ = (f(g(a)) + 0) \cdot (g'(a) + 0) \\ = f'(g(a)) \cdot g'(a)}} \lim_{\substack{x \to a \\ = (g'(a)) \cdot g'(a) \\ = (g'(a)) \cdot g'(a)}} (g'(a) + \epsilon_1)$$

$$(1): g(x) \approx g(a) + g'(a)(x - a)$$

$$(2): g(y) \approx g(b) + g'(b)(y - b)$$

$$f(g(x)) - f(g(a)) \approx f'(g(a))(g(x) - g(a)) \approx f'(g(a))g'(a)(x - a)$$

3.8 Linear Approximation (Linearization)

$$g(x) \approx g(a) + g'(a)(x - a) \quad \text{(As } x \text{ is close to } a)$$

$$g'(a) = \frac{g(x) - g(a)}{x - a}$$

$$f(x) \approx f(a) + f'(a)(x - a)$$

$$g(x) \approx g(a) + g'(a)(x - a)$$

$$f(x)g(x) \approx f(a)g(a) + f(a)g'(a) + f'(a)g(a) + f'(a)g'(a)(x - a)^2$$

$$\frac{f(x)g(x) - f(a)g(a)}{x - a} \approx f(a)g(a) + f(a)g'(a) + f'(a)g'(a)(x - a)$$

$$\frac{d}{dx}(f(x)g(x)) \approx f'(a)g(a) + f(a)g'(a) \quad \text{product rule}$$

$$\frac{d}{dx}(x^a) = ax^{a-1}, a \in R$$

Example 3.8.1

 $f(x) = a^x$. Find f'(x)

$$a^x = (e^{lna})^x = e^{(lna)x}$$

$$\frac{d}{dx}(a^x) = a^x lna \quad a > 0$$

Example 3.8.1

Example 3.8.2

Find linearization of $f(x) = (x+3)^{\frac{1}{2}}$ at a = 1.

$$f(x) \approx f(a) + f'(a)(x - a)$$

$$f'(x) = \frac{1}{2}(x+3)^{\frac{1}{2}}$$

$$f'(1) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$f(1) = 2$$

when $x \approx 1$

$$f(x) \approx 2 + \frac{1}{4}(x - 1) = \frac{1}{4}x + \frac{7}{4}$$

• Find $\sqrt{398} < 4 = 2$

$$f(0.98) \approx \frac{1}{4} \cdot 0.98 + \frac{7}{4} = 1.995$$

• Find $\sqrt{405} > 4 = 2$

$$f(1.05) \approx \frac{1}{4} \cdot 1.05 + \frac{7}{4} = 2.0125$$

Example 3.8.2

Example 3.8.3

Find the linearization of $f(\theta) = \sin \theta$ at a = 0

$$f(\theta) \approx f(a) + f'(a)(\theta - a)$$

= 0 + 1(\theta - 0)
= \theta

 $\therefore \sin \theta \approx \theta \text{ as } \theta \approx 0$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Example 3.8.3

3.9 • Implicit Differentiation

Example 3.9.1

Find an eqn. of the tangent line to $x^2 + y^2 = 25$ at (3,4)

$$4x^{2} + y^{2} = 25$$
$$y(x) = +\sqrt{25 - x^{2}} = (25 - x^{2})^{\frac{1}{2}}$$

$$y'(x) = \frac{d(z^{\frac{1}{2}})}{dz} \frac{dz}{dx}$$

$$= \frac{1}{2} z^{-\frac{1}{2}} (-2x)$$

$$= -xz^{-\frac{1}{2}}$$

$$= \frac{-x}{\sqrt{25 - x^2}}$$

$$y'(3) = \frac{-3}{4}$$

$$x^2 + (y(x))^2 = 25$$
 $---(1)$

$$\frac{d}{dx}(1) \implies \frac{d}{dx}(x^2 + (y(x))^2) = \frac{d}{dx}(25)$$

$$2x + 2y(x)y'(x) = 0$$

$$y'(x) = -\frac{x}{y}$$

Example 3.9.1

Notation 3.9.2.

Folium of Descartes: $x^3 + y^3 = 6xy$

Example 3.9.3

(1) Find y'(x) if $x^3 + y^3 = 6xy$

$$x^{3} + (y(x))^{3} = 6x \cdot y(x) \qquad ---(\star)$$

$$\frac{d}{dx}(\star) \implies 3x^{2} + 3y(x)^{2}y'(x) = 6\frac{d}{dx}(x \cdot y(x))$$

$$= 6(1 \cdot y(x) + x \cdot y'(x))$$

$$3x^{2} + 3y^{2}y' = 6(y + xy')$$

$$y' = \frac{2y - x^{2}}{y^{2} - 2x}$$

(2) Find the tangent line to the folium of Descartes at (3,3)

$$y'(3) = \frac{2y - x^2}{y^2 - 2x}\Big|_{(x,y)=(3,3)} = \frac{-3}{3} = -1$$

tangent line:

$$\frac{y-3}{x-3} = -1$$

Example 3.9.3

Example 3.9.4

Find y' if $\sin(x+y) = y^2 \cos x$

$$\frac{d}{dx}(2) \implies \cos(x + y(x)) \cdot (1 + y'(x)) = (2y(x) \cdot y'(x)) \cos x + (y(x))^{2}(-\sin x)$$

$$\cos(x+y)(1+y') = 2(\cos x)yy' - (\sin x)y^2$$

$$y' = \frac{y^2 \sin x + \cos(x+y)}{2y \cos x - \cos(x+y)}$$

Example 3.9.4

Example 3.9.5

Find f'(x) if $f(x) = \log_a x$ (a > 0 const.)

$$y(x) = \log_a x = a^{y(x)} = x \qquad ---(3)$$

$$\frac{d}{dx}(3) \implies \frac{d}{dx}(a^{y(x)}) = \frac{d}{dx}x$$

$$\frac{d(a^{y(x)})}{dy(x)} \frac{dy(x)}{dx} = 1$$

$$y'(x) = \frac{1}{\ln a} a^{-y(x)}$$

$$= \frac{1}{\ln a} \frac{1}{x}$$

Example 3.9.5

•
$$\frac{d}{dx}(x^a) = ax^{a-1}, a \in R$$

•
$$\frac{d}{dx}(a^x) = a^x lna, a > 0$$

when $a = e \implies (e^x)' = e^x$

•
$$\frac{d}{dx}\log_a x = \frac{1}{\ln a} \frac{1}{x}, \ a > 0$$

when $a = e \implies (\ln x)' = \frac{1}{x}$

3.10 ${\color{red} \blacktriangle}$ Derivatives of Inverse Trigonometric Functions

$$y = \sin^{-1} x = \arcsin x$$

If $\sin y = \sin(\sin^{-1} x) = x, x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

let
$$y(x) = \sin^{-1} x$$

$$\sin(y(x)) = x \qquad ---(1)$$

$$\frac{d}{dx}(1) \implies \cos(y(x)) \cdot y'(x) = 1$$

$$y'(x) = \frac{1}{\cos(y(x))}$$

$$= \frac{1}{\sqrt{1-x^2}}$$

•
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

•
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$
$$\det y(x) = \tan^{-1}x$$

$$\tan(y(x)) = x \qquad \qquad ---(2)$$

$$\frac{d}{dx}(2) \implies \sec^2 y(x) \cdot y'(x) = 1$$

$$y'(x) = \frac{1}{\sec^2 y(x)}$$

= $\cos^2 y(x) = \frac{1}{1+x^2}$

•
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\det y(x) = \sec^{-1}x$$

$$\frac{d}{dx}(y(x)) = x \qquad ---(3)$$

$$\frac{d}{dx}(3) \implies \sec y(x) \tan y(x) \cdot y'(x) = 1$$

$$y'(x) = \frac{1}{\sec y(x) \tan y(x)} \\ = \frac{1}{x} \frac{1}{\sqrt{x^2 - 1}} = \frac{1}{x\sqrt{x^2 - 1}}$$

•
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

Joke 3.10.1.)

記 → 不要記

Example 3.10.2

$$\frac{d}{dx}(f(x)^{g(x)})$$

let $y(x) = f(x)^{g(x)}$

take
$$ln \implies lny(x) = ln(f(x)g(x)) = (g(x))(lnf(x))$$
 $---(4)$

$$\frac{d}{dx}(4) \implies \frac{1}{y(x)}y'(x) = \frac{d}{dx}(g(x)lnf(x))$$

$$= g'(x)lnf(x) + g(x)\frac{f'(x)}{f(x)}$$
 (product rule)

$$y'(x) = y(x)(g'(x) \cdot lnf(x) + \frac{g(x)}{f(x)} \cdot f'(x))$$

$$\frac{d}{dx}(f(x)^{g(x)}) = f(x)^{g(x)}(g'(x) \cdot lnf(x) + \frac{g(x)}{f(x)} \cdot f'(x))$$

Example 3.10.2

- Example 3.10.3

$$f(x) = x^{\sqrt{x}}$$
. Find $f'(x)$

take
$$ln \implies ln f(x) = ln x^{\sqrt{x}} = \sqrt{x} ln x$$
 $---(5)$

$$\frac{d}{dx}(5) \implies \frac{1}{f(x)}f'(x) = \frac{1}{2}x^{-\frac{1}{2}}lnx + \sqrt{x}\frac{1}{x}$$

$$f'(x) = f(x)x^{-\frac{1}{2}}(\frac{1}{2}lnx + 1)$$
$$= \frac{x^{\sqrt{x}}}{2\sqrt{x}}(lnx + 2)$$

Example 3.10.3

Example 3.10.4

$$f(x) = \frac{x^{\frac{3}{4}}\sqrt{x^2 + 1}}{(3x + 2)^5}. \text{ Find } f'(x)$$

$$\text{take } ln \implies lnf(x) = \frac{3}{4}lnx + \frac{1}{2}ln(x^2 + 1) - 5ln(3x + 2) \qquad ---(6)$$

$$\frac{d}{dx}(6) \implies \frac{f'(x)}{f(x)} = \frac{3}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{2x}{x^2 + 1} - 5 \cdot \frac{3}{3x + 2}$$

$$f'(x) = \frac{x^{\frac{3}{4}}\sqrt{x^2 + 1}}{(3x + 2)^5} \left(\frac{3}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{2x}{x^2 + 1} - 5 \cdot \frac{3}{3x + 2}\right)$$

Example 3.10.4

Joke 3.10.5.

解剖霸王龍 ⇒ 西方做無聊的事

Notation 3.10.6.

- $\frac{d}{dx}(a^b) = 0$ $a, b \in R$ consts
- $\frac{d}{dx}(f(x)^b) = b \cdot f(x)^{-1} \cdot f'(x) \quad b: \text{ const}$ $\frac{d}{dx}(f(x)^b) = \frac{df(x)}{df(x)} \cdot \frac{df(x)}{dx} \quad \text{(chain rule)}$ $= b \cdot y^{b-1} \cdot f'(x)$ $= b \cdot f(x)^{b-1} \cdot f'(x)$
- $\frac{d}{dx}(a^{g(x)}) = a^{g(x)} \cdot lna \cdot g'(x)$ a > 0 const
- $\frac{d}{dx}(f(x)^{g(x)})$ take ln in y, and differentiate $\frac{d}{dx}lny(x) = \frac{dlny(x)}{dy(x)} \cdot \frac{dy(x)}{dx}$ $= \frac{1}{y(x)}y'(x)$ $= \frac{y'(x)}{y(x)}$

Joke 3.10.7 (Anagram).

Tom Hanks = monk hats Mel Gibson = big lemons

3.11 • Exponential Growth and Decay

t: time

y(t): population

under ideal condition, assume:

$$y'(t) = \frac{dy}{dt} \propto y(t)$$
 differential eqn. $\Longrightarrow y'(t) = k \cdot y(t)$ $k:$ const $---(\star)$
$$y(t) = c \cdot e^k t$$

Q: solve (\star)

$$k = 1$$
$$y'(t) = y(t) \qquad --(1)$$

$$y(t) = e^t$$
 solves (1)
 $y(t) = 2e^t$ solves (1)
 $y(t) = c \cdot e^t$ solves (1) c : any const

Q: solve c

initial value problem
$$\begin{cases} y'(t) = k \cdot y(t) & t > 0 \\ y(0) = y_0 & y_0 \text{: const, initial condition (I.C)} \end{cases}$$

$$y(t) = c \cdot e^{kt}$$

$$y(0) = c \cdot 1 = c$$

$$c = y_0$$

... The sol of I.VP. is $y(t) = y_0 \cdot e^{kt}$ $t > 0 \implies \lim_{t \to \infty} y(t) = \infty$

• verify $y(t) = y_0 \cdot e^{kt}$ solves (\star)

$$y'(t) = y_0 \frac{d}{dt} (e^{kt}) = \frac{de^{kt}}{dkt} \cdot \frac{dkt}{dt} \cdot y_0 = e^{kt} \cdot k \cdot y_0 = k(y_0 e^{kt})$$

• verify $y(0) = y_0$ is satisfied

$$\begin{array}{rcl} y(t) & = & y_0 \cdot e^{kt} \\ y(0) & = & y_0 \cdot e^0 = y_0 \end{array}$$

→ Compound Interest

\$ 1000 (A_0) invested 6% (r) per year (t)

annual 3 years
$$\implies 1000(1+0.06)^4 = 1191.02$$
 semi-annual 3 years $\implies 1000(1+0.03)^6 = 1194.05$ quarterly 3 years $\implies 1000(1+0.015)^{12} = 1196.68$ daily 3 years $\implies 1000(1+\frac{0.06}{365})^{3.365} = 1197.20$
$$\lim_{n\to\infty} A_0(1+\frac{r}{n})^{nt} = \lim_{n\to\infty} A_0(1+\frac{1}{\frac{n}{t}})^{\frac{n}{t}\cdot rt} = \lim_{n\to\infty} A_0((1+\frac{1}{k})^k)^{rt} = A_0 \lim_{n\to\infty} ((1+\frac{1}{k})^k)^{rt} = A_0 e^{rt}$$

➤ Radioactive Decay

Decay rate of radioactive \propto remaining mass (= m(t))

$$\frac{dm(t)}{mt} \propto m(t)$$

$$\frac{dm(t)}{dt} = k \cdot m(t) \quad k < 0 \text{ const}$$

$$m(t) = m(0) \cdot e^{kt}$$

Example 3.11.1

The half-life of Ra (鐳) is 1590 years.

$$\frac{1}{2}m(0) = m(0)e^{k \cdot 1590}$$
$$-ln2 = ln\frac{1}{2} = 1590k$$
$$k = \frac{-ln2}{1590}$$

Q:
$$m(0) = 100 (mg) \implies m(1000) = ?$$

$$m(1000) = m(0) \cdot e^{\frac{-\ln 2}{1590} \cdot 1000} = 65 \text{ (mg)}$$

Q:
$$m(t) = 30 (mg) \implies t = ?$$

$$30 = 100e$$
 $ln30 = ln100 + (\frac{-ln2}{1590})t \implies t = 2762 \text{ (yr)}$

Example 3.11.2

Example 3.11.1 $(x(t))^{2} + (y(t))^{2} = 5^{2} - - - (1)$ $\frac{d}{dt}(1) \implies 2x(t)x'(t) + 2y(t)y'(t) = 0$ $\frac{x(t)}{y(t)} = -\frac{y(t)}{x(t)}$ $y'(t) = -\frac{3}{4}$

Chapter 4

APPLICATIONS OF DERIVATIVES

4.1 ▲ Maximum and Minimum

Example 4.1.1

- $f(x) = \cos x$ $x \in R$ has infinity many local max and local min abs max = 1 abs min= -1
- $f(x) = x^2$ local max: none local min: $x = 0 \implies$ abs min $f(x) = x^2 \ge 0$
- $f(x) = x^3$ local max: none local min: none

Example 4.1.1

4.2 ▲ Extreme Value Theorem

Theorem 4.2.1.

Assume f(x) is conti. on [a,b], then f(x) has a abs max f(C) f(x) has a abs min f(D) for some $C, D \in [a,b]$

4.3 ▲ Fermat's Theorem

Theorem 4.3.1.

Assume

- (1) f(x) has a local max or local min at c
- (2) f'(c) exists (f is differentiable at x = c)

Then

$$f'(c) = 0$$

Notation 4.3.2.

 $\begin{cases} f'(c) \neq 0 \\ f'(c) \text{ exists} \end{cases} \implies f(c) \text{ is neither a local max nor a local min}$

Proof. Fermat's Theorem

- (1) If f has a local max at c $\implies f(c+h) \le f(c)$ if |h| is small enough
- (2) If f'(c) exists $\implies f'(c) = \lim_{h \to 0} \frac{f(c+h) f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) f(c)}{h} = \lim_{h \to 0^-} \frac{f(c+h) f(c)}{h}$

 $f(c+h) - f(c) \le 0$ if |h| is small enough

• if
$$h > 0$$

$$\Rightarrow \frac{f(c+h) - f(c)}{h} \le 0$$

$$\Rightarrow \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$$

$$\Rightarrow \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \le 0$$

$$\Rightarrow f'(c) \le 0$$

• if
$$h < 0$$

$$\Rightarrow \frac{f(c+h) - f(c)}{h} \ge 0$$

$$\Rightarrow \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \ge 0$$

$$\Rightarrow \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \ge 0$$

$$\Rightarrow f'(c) \ge 0$$

$$f'(c) \ge 0$$
 and $f'(c) \le 0 \implies f'(c) = 0$

Remark 4.3.3.

- (1) Reverse of Fermat's Thm is <u>false</u> $f(x) = x^3 \implies f'(x) = 3x^2 \quad f'(0) = 0$ x = 0 is neither a local max nor a local min
- (2) $f(x) = |h| \Longrightarrow f(x) > 0$ f(0) = 0 f'(0) doesn't exist 0 is a local min (abs min)

4.4 Critical Point (Critical Number)

Definition 4.4.1.

- If f'(c) doesn't exist or f''(c) = 0, then c is called a critical point of f
- If f has a local max or a local min at c, then c is a critical point of f

Example 4.4.2

Find critical point of $f(x) = x^{\frac{3}{5}}(4-x)$

$$f'(x) = \frac{3}{5}x^{-\frac{2}{5}}(4-x) + x^{\frac{3}{5}} \cdot -1$$

$$= \frac{1}{5}x^{-\frac{2}{5}}(12 - 3x - 5x)$$

$$= \frac{1}{5}x^{-\frac{2}{5}}(12 - 8x)$$

$$= \frac{1}{5} \cdot \frac{12 - 8x}{x^{\frac{2}{5}}}$$

$$let f(x)' = 0$$

$$x = \frac{3}{2}$$

Find x s.t. f'(x) doesn't exist $\implies f'(0)$ doesn't exist

Example 4.4.2

4.5 ▲ Rolle's Theorem

Theorem 4.5.1.

Assume

- (H1) f(x) is conti. in [a,b]
- (H2) f(x) is differentiable in (a,b)
- (H3) f(a) = f(b)

Then $\exists c \in (a,b)$ s.t f'(c) = 0

Remark 4.5.2. 等高兩點間必有波峰或波谷

Proof. Rolle's Theorem

Without loss of generality, we may assume

$$f(a) = f(b) = 0$$

Otherwise let g(x) = f(x) - f(a) = f(x) - f(b), then

$$g(a) = 0$$
 and $g(b) = 0$

3 cases:

- (1) $f(x) = 0 \quad \forall x \in (a, b)$ $\implies f'(x) = 0 \quad \forall x \in (a, b)$
- (2) $\exists x \in (a,b) \text{ s.t. } f(x) > 0$ Extreme Value Thm, (H1) $\Longrightarrow f$ has a local max at $c \in (a,b)$ Fermat's Thm, (H2) $\Longrightarrow f'(c) = 0$
- (3) $\exists x \in (a,b) \text{ s.t } f(x) < 0$ Extreme Value Thm, (H1) $\Longrightarrow f$ has a local min at $c \in (a,b)$ Fermat's Thm, (H2) $\Longrightarrow f'(c) = 0$

Example 4.5.3

Prove $x^3 + x - 1 = 0$ has one real root

let
$$f(x) = x^3 + x - 1$$

$$\begin{cases} f(1) = 1 > 0 \\ f(-1) = -3 < 0 \end{cases}$$

By I.V.T, $\exists c \in (-1,1)$ s.t. f(c) = 0Assume x_1 and x_2 are two roots of f(x) = 0

$$f(x_1) = f(x_2) = 0$$

$$\begin{cases} \exists k \in (x_1, x_2) \text{ s.t.} f(k) = 0 \\ f'(x) = 3x^2 + 1 \ge 1 > 0 \quad \forall x \in R \end{cases}$$

 \implies contradiction

Example 4.5.3

4.6 ▲ Mean Value Theorem

Theorem 4.6.1.

Assume

(H1) f(x) is conti. in [a,b]

(H2) f(x) is differentiable in (a,b)

Then $\exists c \in (a,b)$ s.t. $f'(c) = \frac{f(a) - f(b)}{a - b}$

Remark 4.6.2. When f(a) = f(b) in M.V.T, M.V.T becomes Rolle's Thm

Proof. Mean Value Theorem

Let
$$h(x) = f(a) + \frac{f(a) - f(b)}{a - b}(x - a)$$

Let $g(x) = f(x) - h(x)$

$$\begin{cases} g(a) = f(a) - h(a) = 0 \\ g(b) = f(b) - h(b) = 0 \end{cases}$$
$$\frac{h(x) - f(a)}{x - a} = \frac{f(a) - f(b)}{a - b}$$

g(x) = f(x) - h(x) is conti. on (a,b) and diff. on (a,b) By Rolle's Thm, $\exists c \in (a,b)$ s.t. g'(c) = 0

$$h'(x) = \frac{f(a) - f(b)}{a - b}$$

$$g'(x) = f'(x) - h'(x)$$

$$g'(c) = f'(c) - \frac{f(a) - f(b)}{a - b}$$

$$f'(c) = \frac{f(a) - f(b)}{a - b}$$

$$Example 4.6.3$$

$$f(x) = \sin \sqrt{x+1}$$

• Find f'(x)

$$f(x) = \sin(x+1)^{\frac{1}{2}}$$

$$f'(x) = \cos(\sqrt{x+1}) \cdot \frac{1}{2} (x+1)^{-\frac{1}{2}} \cdot 1$$

$$= \frac{\cos\sqrt{x+1}}{2\sqrt{x+1}}$$

•
$$\lim_{x \to 0} \frac{\sin \sqrt{x + 1 - \sin 1}}{x - 0} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = \frac{\cos 1}{2}$$

• Prove $\sin \sqrt{x+1} < \frac{1}{2}x + \sin 1$ for x > 0By M.V.T, $\exists c \in (0,x)$ s.t. $f'(c) = \frac{f(x) - f(0)}{x - 0} = \frac{\sin \sqrt{x+1} - \sin 1}{x}$

$$f'(c) = \frac{\cos\sqrt{c+1}}{2\sqrt{c+1}} \leqslant \frac{1}{2\sqrt{x+1}} < \frac{1}{2\sqrt{0+1}} = \frac{1}{2}$$

Example 4.6.3

Joke 4.6.4.

你想不到8

4.7 ▲ L'Hospital's Rule

Theorem 4.7.1.

Consider $\lim_{x \to a} \frac{f(x)}{g(x)}$

- type $\frac{0}{0}$ $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$
- type $\frac{\infty}{\infty}$ $\lim_{x \to a} f(x) = \pm \infty$ $\lim_{x \to a} g(x) = \pm \infty$

Assume

- (1) f and g are differentiable
- (2) $g'(x) \neq 0$ on an open interval containing a (except possibility at a.)

Then for type $\frac{0}{0}$ or $\frac{\infty}{\infty}$,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

▶ Baby L'Hospital's Rule

Theorem 4.7.2.

Assume

(1)
$$f(a) = g(a) = 0$$

- (2) f' and g' are conti.
- $(3) g'(a) \neq 0$

Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Proof. Baby L'Hospital's Rule

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$$

$$= \lim_{x \to a} \frac{x - a}{g(x) - g(a)}$$

$$= \frac{\lim_{x \to a} \frac{f(x) - f(a)}{x - a}}{\lim_{x \to a} \frac{g(x) - g(a)}{x - a}}$$

$$= \frac{f'(a)}{g'(a)}$$

$$= \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

$$= \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

$$= \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Example 4.7.3

$$\lim_{x \to 1} \frac{\ln x}{x - 1} \quad \text{(type } \frac{0}{0}\text{)}$$

$$= \lim_{x \to 1} \frac{\frac{1}{x}}{1}$$

$$= 1$$

Example 4.7.3

Example 4.7.4

$$\lim_{x \to \infty} \frac{e^x}{x^2} \qquad \text{(type } \frac{\infty}{\infty}\text{)}$$

$$= \lim_{x \to \infty} \frac{e^x}{2x} \qquad \text{(type } \frac{\infty}{\infty}\text{)}$$

$$= \lim_{x \to \infty} \frac{e^x}{2} \qquad \text{(type } \frac{\infty}{2}\text{)}$$

$$= \infty$$

$$e^x >> x^2$$

Example 4.7.4

$$-$$
Example 4.7.5

$$\lim_{x \to 0} \frac{\tan x - x}{x^3} \qquad (type \frac{0}{0})$$

$$= \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} \qquad (type \frac{0}{0})$$

$$= \lim_{x \to 0} \frac{2 \sec^2 x \tan x}{6x} \qquad (type \frac{0}{0})$$

$$= \frac{1}{3} \lim_{x \to 0} \frac{2 \sec x \sec x \tan x + \sec^4 x}{1} \qquad (type \frac{1}{1})$$

$$= \frac{1}{3}$$

Example 4.7.5

Example 4.7.6

$$\lim_{x \to 0^{+}} x \ln x \qquad \text{(type } 0\infty)$$

$$= \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x}}$$

$$= \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}$$

$$= \lim_{x \to 0^{+}} (-x)$$

$$= 0$$

Example 4.7.6

Example 4.7.7

$$\begin{aligned} displaystyle & \lim_{x \to \frac{\pi}{2}^{-}} (\sec x - \tan x) & (\text{type } \infty - \infty) \\ &= \lim_{x \to \frac{\pi}{2}^{-}} (\frac{1}{\cos x} - \frac{\sin x}{\cos x}) \\ &= \lim_{x \to \frac{\pi}{2}^{-}} \frac{1 - \sin x}{\cos x} & (\text{type } \frac{0}{0}) \\ &= \lim_{x \to \frac{\pi}{2}^{-}} \frac{-\cos x}{-\sin x} & (\text{type } \frac{0}{-1}) \\ &= 0 \end{aligned}$$

Example 4.7.7

Example 4.7.8

$$\lim_{x \to 0^{+}} (1 + \sin(4x))^{\cot x} \quad (\text{type } f(x)^{g(x)})$$

$$y(x) = (1 + \sin(4x))^{\cot x}$$

$$lny(x) = \cot x \cdot ln(1 + \sin(4x))$$
Find $\lim_{x \to 0^{+}} (lny(x))$

$$\lim_{x \to 0^{+}} (lny(x)) = \lim_{x \to 0^{+}} \cot x ln(1 + \sin(4x)) \quad (\text{type } \infty 0)$$

$$= \lim_{x \to 0^{+}} \frac{ln(1 + \sin(4x))}{\tan x} \quad (\text{type } \frac{0}{0})$$

$$= \lim_{x \to 0^{+}} \frac{\frac{4\cos(4x)}{1 + \sin(4x)}}{\sec^{2} x} \quad (\text{type } \frac{\frac{4}{1+0}}{1})$$

$$= 4$$

$$\lim_{x \to 0^{+}} (lny(x)) = 4$$

$$ln(\lim_{x \to 0^{+}} y(x)) = \lim_{x \to 0^{+}} y(x) = e^{4})$$

Example 4.7.8

Joke 4.7.9.

導遊口才很好真不是 guide

4.8 ▲ Inflection Point (反曲點)

Definition 4.8.1.

A point c is called a inflection point of f if on c, the curve y = f(x) changes from convex $(f'' > 0, \cup)$ to concave $(f'' < 0, \cap)$ or concave to convex. That is, if c is an inflection point then f''(c) = 0.

• If
$$f' > 0 \implies f \nearrow$$

$$f' < 0 \implies f \nearrow$$

$$\nearrow \text{ then } \searrow \implies \land \quad \text{(concave downward 凹口向下)}$$

$$\searrow \text{ then } \nearrow \implies \lor \quad \text{(concave upward 凹口向上/凸口向下)}$$

• If
$$f'' > 0 \implies (f')' > 0 \cup f'' < 0 \implies (f')' < 0 \cap$$

→ 1st derivative test

$$f'(c) = 0$$

 $f'(c^{-}): +$, $f'(c^{+}): -$, $f'(c) = 0: local max $\cap f'(c^{-}): -$, $f'(c^{+}): +$, $f'(c) = 0: local min $\cup$$$

→ 2nd derivative test

$$f'(c) = 0$$

 $f''(c) : +$, $f'(c) = 0 : local min \cup
 $f''(c) : -$, $f'(c) = 0 : local max $\cap$$$

4.9 ▲ Optimization Problems

$$\begin{cases} \text{ objective fcn} \\ \text{ condition(s)} \end{cases} \implies \max \text{ or min}$$

Example 4.9.1

Find the point on the parabola $y^2 = 2x$ which closest to (1,4)

$$\begin{cases} d(x,y) = \sqrt{(x-1)^2 + (y-4)^2} \\ x = \frac{y^2}{2} \end{cases}$$

Q: Minimize d(x,y) under the condition $y^2 = 2x$ let

$$f(x,y) = (x-1)^{2} + (y-4)^{2}$$

$$= (\frac{1}{2}y^{2} - 1)^{2} + (y-4)^{2}$$

$$= \frac{1}{4}y^{4} - y^{2} + 1 + y^{2} - 8y + 16$$

$$= \frac{1}{4}y^{4} - 8y + 17$$

$$= g(y)$$

Find critical point of g(y) let g'(y) = 0

$$g'(y) = y^3 - 8 = 0$$
$$(y-2)(y^2 + 2y + 4) = 0$$
$$y = 2$$

• 1st derivative test

$$f'(c^{-})$$
 $f'(c)$ $f'(c^{+})$
 $-$ 0 + \cup local min
+ 0 - \cap local max

$$g'(y) = y^3 - 8$$

 $g'(2) = 0$
 $g'(2^-) < 0$
 $g'(2^+) > 0$

- ⇒ local min
- 2nd derivative test

$$f'(c) \quad f''(c)$$

$$0 \quad + \quad \cup \quad \text{local min}$$

$$0 \quad - \quad \cap \quad \text{local max}$$

$$g''(y) \quad = \quad 3y^2$$

$$g'(2) \quad = \quad 12 > 0$$

 \implies local min

Example 4.9.1

Example 4.9.2

Find the area of the largest rectangle that can be inscribed (內接) in a semi-circle of radius r

$$\begin{cases} A(x,y) = 2xy \\ r^2 = x^2 + y^2 \end{cases}$$

Q: Max A(x,y)

$$A(x,y) = 2xy = 2x(r^2 - x^2)^{\frac{1}{2}} := f(x)$$

$$f'(x) = 2(r^2 - x^2)^{\frac{1}{2}} + x(-x)(r^2 - x^2)^{\frac{1}{2}} = \frac{2}{(r^2 - x^2)^{\frac{1}{2}}}((r^2 - x^2) - x^2)$$

critical point

let
$$f'(x) = 0 \implies r^2 - 2x^2 \implies x = \frac{r}{\sqrt{2}}$$

when $f'(x)$ doesn't exist $\implies x = r \implies y = 0$

• 1st derivative test

$$f'(x) = \frac{2(r^2 - x^2)}{(r^2 - x^2)^{\frac{1}{2}}}$$

$$f'(\frac{r}{\sqrt{2}}^-) > 0$$

$$f'(\frac{r}{\sqrt{2}}^+) < 0$$

⇒ local max

Example 4.9.2

4.10 ▲ Antiderivatives (反導函數)

Definition 4.10.1.

F(x) is "an" antiderivative of f(x) if F'(x) = f(x)

$[Notation \ 4.10.2.]$

Why "an" not "the"?

If
$$F'(x) = f(x)$$

 $\implies (F(x) + c)' = f(x)$ c: const. interp of x
 $\implies F(x) + c$ is also an antiderivative of $f(x)$

Example 4.10.3

$$f(x) = \sin x$$

$$F(x) = -\cos x + c$$

Example 4.10.3

Example 4.10.4

$$f(x) = \frac{1}{x}$$

$$F(x) = \ln x + c$$

Example 4.10.4

Example 4.10.5

$$f(x) = x^n$$

$$F(x) = \frac{1}{n+1}x^{n+1} + c$$

Example 4.10.5