物理数学ハンドブック

 $Ver.\ 0.17.0$

物理のかぎしっぽ http://www12.plala.or.jp/ksp/

2004年6月4日

目次

第1章	忘れちゃいけないこと	1
1.1	2 次方程式の解の公式	1
1.2	2 重根号の展開	1
1.3	直線の方程式	1
1.4	円の方程式	1
1.5	数列の和	2
1.6	累乗の和	2
1.7	2 項定理	2
第2章	三角関数	3
2.1	基本性質	3
2.2	加法定理	4
2.3	三角関数と三角形	5
2.4	逆三角関数	6
2.5	双曲線関数	6
2.6	指数関数	7
第3章	複素数	8
3.1	複素数の基本性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
第4章	微分法	g
4.1	導関数の定義	6
4.2	微分法の公式	8
4.3	高次導関数	9
4.4	基本的な導関数と不定積分一覧	10
4.5	合成関数の微分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
4.6	媒介変数で表された関数の導関数	10
4.7	全微分	11
第5章	積分法	12
5.1	不定積分	12
5.2	定積分	12
5.3	部分積分	13
5.4	重要な積分公式	13
5.5	特殊な積分	14
第6章	常微分方程式	15
6.1	1 階微分方程式	15

目次	i
日/八	1

6.2	2 階微分方程式	17
第7章	ベクトルとベクトル解析	19
7.1	ベクトル	19
7.2	ベクトルの微分....................................	20
7.3	ベクトル場とベクトル演算子	20
7.4	曲線	23
第8章	行列	24
8.1	行列の演算	
8.2	ケーリー・ハミルトンの定理	
8.3	正則行列	
8.4	逆行列	
8.5	固有値と固有ベクトル	25
第9章	知っておきたいこと	26
9.1	近似式	26
9.2	部分分数	26
第 10 章	展開式 The state of the state of	28
10.1	べき級数	
10.2	テイラー級数	
10.3	フーリエ級数	
10.4	スターリングの公式	30
第 11 章	特殊関数	31
11.1	デルタ関数	31
11.2	ガンマ関数	31
11.3	ヤコビアン楕円関数	32
11.4	球面調和関数	32
参考文献		33
索引		34

第1章

忘れちゃいけないこと

忘れてはいけないのだけれど,なぜか突然忘れてしま {う,いそうな}こと.

1.1 2次方程式の解の公式

2 次方程式 $ax^2 + bx + c = 0$, $(a \neq 0)$ の解は

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1.1}$$

 b^2-4ac は判別式.これが負なら解は複素数.

x > y > 0 のとき, つぎの式が成り立つ.

$$\sqrt{x+y\pm2\sqrt{xy}} = \sqrt{x}\pm\sqrt{y} \tag{1.2}$$

1.3 直線の方程式

2点 $(x_1, y_1), (x_2, y_2)$ を通る直線の方程式は

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) \tag{1.3}$$

で表される.ただし, $x_1=x_2$ のときは $x=x_1$ である. $\dfrac{y_2-y_1}{x_2-x_1}$ は直線の傾きを表す.

1.4 ■ 円の方程式

点 (a, b) を中心とする半径 r の円の方程式は

$$(x-a)^2 + (y-b)^2 = r^2 (1.4)$$

である.特に,原点を中心とする半径rの円の方程式は

$$x^2 + y^2 = r^2 (1.5)$$

1.5 数列の和

等差数列 $a_n=a_1+(n-1)d$ の初項から第 n 項までの和は

$$S_n = \frac{1}{2}n(a_1 + a_n) \tag{1.6}$$

等比数列 $a_n=a_1r^{n-1}$ の初項から第 n 項までの和は

$$S_n = \frac{a_1(1-r^n)}{1-r}, \quad r \neq 1 \tag{1.7}$$

$$S_n = a + a + a + \dots + a = na, \quad r = 1$$
 (1.8)

1.6 ■ 累乗の和

$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1) \tag{1.9}$$

$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1) \tag{1.10}$$

$$\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2 = \left\{\frac{1}{2}n(n+1)\right\}^2$$
(1.11)

1.7 2 項定理

$$(a+b)^2 = a^2 + 2ab + b^2 (1.12)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 (1.13)$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
(1.14)

$$(1.15)$$

$$(a+b)^n = \sum_{r=0}^n {}_n C_r a^{n-r} b^r$$
(1.16)

第2章

三角関数

三角関数についているいると.

2.1 基本性質

2.1.1 定義

直角三角形の斜辺と底辺のなす角をxとすると,三角関数は以下のように定義される.

$$\sin x = \frac{\dot{y} \ddot{\upsilon}}{\dot{y} \ddot{\upsilon}}$$
 サイン (sine)
$$\cos x = \frac{\ddot{\kappa} \ddot{\upsilon}}{\dot{y} \ddot{\upsilon}}$$
 コサイン (cosine)
$$\tan x = \frac{\dot{y} \ddot{\upsilon}}{\dot{\kappa} \ddot{\upsilon}} = \frac{\sin x}{\cos x}$$
 タンジェント (tangent)
$$\cot x = \frac{\ddot{\kappa} \ddot{\upsilon}}{\dot{y} \ddot{\upsilon}} = \frac{1}{\tan x}$$
 コタンジェント (cotangent)
$$\sec x = \frac{\dot{y} \ddot{\upsilon}}{\dot{\kappa} \ddot{\upsilon}} = \frac{1}{\cos x}$$
 セカント (secant)
$$\csc x = \frac{\dot{y} \ddot{\upsilon}}{\dot{y} \ddot{\upsilon}} = \frac{1}{\sin x}$$
 コセカント (cosecant)

これらのグラフを図 (2.1-2.6) に示す.

2.1.2 三角関数の関係

$$\sin^2 x + \cos^2 x = 1, \quad \sec^2 x - \tan^2 x = 1, \quad \csc^2 x - \cot^2 x = 1, \quad \tan^2 x + 1 = \frac{1}{\cos^2 x}$$

$$\sin(-x) = -\sin x, \qquad \cos(-x) = \cos x, \qquad \tan(-x) = -\tan x$$

$$\sin(x + \frac{\pi}{2}) = \cos x, \qquad \cos(x + \frac{\pi}{2}) = -\sin x, \qquad \tan(x + \frac{\pi}{2}) = -\frac{1}{\tan x}$$

$$\sin(\frac{\pi}{2} - x) = \cos x, \qquad \cos(\frac{\pi}{2} - x) = \sin x, \qquad \tan(\frac{\pi}{2} - x) = \frac{1}{\tan x}$$

$$\sin(x + \pi) = -\sin x, \qquad \cos(x + \pi) = -\cos x, \qquad \tan(x + \pi) = \tan x$$

$$\sin(\pi - x) = \sin x, \qquad \cos(\pi - x) = -\cos x, \qquad \tan(\pi - x) = -\tan x$$

第 2 章 三角関数 4

 $2.5 \quad y = \sec x$

 $2.6 \quad y = \csc x$

2.2 加法定理

つぎの公式を加法定理という.

$$\sin(x+y) = \sin x \cos y + \cos x \sin y \tag{2.1}$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y \tag{2.2}$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \tag{2.3}$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y \tag{2.4}$$

$$\tan(x+y) = \frac{\sin(x+y)}{\cos(x+y)} = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$
(2.5)

$$\tan(x-y) = \frac{\sin(x+y)}{\cos(x+y)} = \frac{\tan x + \tan y}{1 + \tan x \tan y}$$
(2.6)

この公式を基本として,積の公式,和と差の公式,倍角,3倍角の公式が得られる.

第 2 章 三角関数 5

2.2.1 三角関数の積の公式

加法定理のうち二つの式を辺々引くまたは辺々足すと,積の公式が導ける.

$$\sin x \sin y = \frac{1}{2} \{\cos(x - y) - \cos(x + y)\}$$
 (2.7)

$$\sin x \cos y = \frac{1}{2} \{ \sin(x+y) + \sin(x-y) \}$$
 (2.8)

$$\cos x \sin y = \frac{1}{2} \{ \sin(x+y) - \sin(x-y) \}$$
 (2.9)

$$\cos x \cos y = \frac{1}{2} \{ \cos(x - y) + \cos(x + y) \}$$
 (2.10)

2.2.2 三角関数の和と差の公式

積の公式の変数を変換すると、和と差の公式が導ける、

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2} \tag{2.11}$$

$$\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2} \tag{2.12}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2} \tag{2.13}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2} \tag{2.14}$$

2.2.3 倍角公式

加法定理でたとえば $\sin(x+y)$ を $\sin(x+x) = \sin 2x$ のようにすると倍角公式が導ける.

$$\sin 2x = 2\sin x \cos x \tag{2.15}$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x \tag{2.16}$$

$$\tan 2x = \frac{\sin 2x}{\cos 2x} = \frac{2\tan x}{1 - \tan^2 x} \tag{2.17}$$

2.2.4 半角公式

$$\sin\frac{x}{2}=\pm\sqrt{rac{1-\cos x}{2}}$$
 [角が第 I, II 象限にあるときプラス,第 III, IV象限にあるときマイナス] (2.18)

$$\cos\frac{x}{2}=\pm\sqrt{\frac{1+\cos x}{2}}$$
 [角が第 I, IV象限にあるときプラス,第 II, III 象限にあるときマイナス] (2.19)

$$an rac{x}{2} = \pm \sqrt{rac{1-\cos x}{1+\cos x}}$$
 [角が第 I, III 象限にあるときプラス,第 II, IV象限にあるときマイナス] (2.20)

2.3 三角関数と三角形

三角関数の幾何学的性質.

第2章 三角関数 6

2.3.1 正弦定理

 $\triangle ABC$ の 3 つの角の大きさを A,B,C , それらの角の対辺の長さをそれぞれ a,b,c , 外接円 (三角形の 3 つの頂点 を通る円)の半径を 2R とすると

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \tag{2.21}$$

が成り立つ.これを正弦定理という.

2.3.2 余弦定理

 $\triangle {
m ABC}$ の 3 つの角の大きさを A,B,C , それらの角の対辺の長さをそれぞれ a,b,c とすると

$$a^2 = b^2 + c^2 - 2bc\cos A (2.22)$$

$$b^2 = c^2 + a^2 - 2ca\cos B \tag{2.23}$$

$$c^2 = a^2 + b^2 - 2ab\cos C (2.24)$$

が成り立つ.これを余弦定理という.

2.3.3 三角形の面積

 $\triangle {
m ABC}$ の 3 つの角の大きさを A,B,C , それらの角の対辺の長さをそれぞれ a,b,c とすると $\triangle {
m ABC}$ の面積 S は

$$S = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C$$
 (2.25)

で表すことができる.

逆三角関数

三角関数の逆関数を逆三角関数といい、アークサイン、アークコサインなどと呼ぶ、

$$\sin x = y$$
 \longrightarrow $x = \sin^{-1} y$ \longrightarrow $x = \arcsin y$ $(-1 \le y \le 1)$ (2.26)

$$\cos x = y \qquad \longrightarrow \qquad x = \cos^{-1} y \qquad \longrightarrow \qquad x = \arccos y \qquad (-1 \le y \le 1)$$

$$\tan x = y \qquad \longrightarrow \qquad x = \tan^{-1} y \qquad \longrightarrow \qquad x = \arctan y \qquad (-\infty \le y \le \infty)$$
(2.27)

$$\tan x = y$$
 \longrightarrow $x = \tan^{-1} y$ \longrightarrow $x = \arctan y$ $(-\infty \le y \le \infty)$ (2.28)

双曲線関数

2.5.1 定義

サインハイパボリックなどと呼ぶ.

$$\sinh x = \frac{1}{2}(e^x - e^{-x}) \tag{2.29}$$

$$\cosh x = \frac{1}{2}(e^x + e^{-x})$$
(2.30)

$$tanhx = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 (2.31)

第 2 章 三角関数 7

2.6 指数関数

2.6.1 e の対数乗

つぎの式が成り立つ

$$e^{\log x} = x \tag{2.32}$$

$$e^{-\log x} = x^{-1} \tag{2.33}$$

なぜなら , (2.32) 式の両辺の対数をとると

$$\log e^{\log x} = \log x$$

ここで

(左辺) =
$$\log e^{\log x} = \log x \log e = \log x \cdot 1 = \log x$$

であるから,両辺は等し(2.33) 式も同様に導ける.

第3章

複素数

正の数の二乗は正の数であり,負の数を二乗してもやはり正の数になし,0 は二乗しても0 だ.したがって普通の数は二乗して負にはならない.二次方程式を解くうえで,このままでは不便なので二乗して負になる数 $i^2=-1$ が生まれた.i を虚数単位という.この数に対してふつうの数のことを実数と呼ぶ.実数 a,b と虚数単位 i を組み合わせた数 a+bi が複素数である.複素数は仮想的な数として導入されたものであったが,現在複素数は実数と同等の実在性を認められており,数学,物理学,工学に幅広く応用されている.

3.1 複素数の基本性質

3.1.1 負の実数の平方根

a>0 のとき -a の平方根は , $\pm \sqrt{a}i$ である .

3.1.2 共役な複素数

複素数 a+bi に対して , i の符号を逆にした a-bi を共役 (きょうやく) な複素数という . 複素数 α とその共役な 複素数 $\bar{\alpha}$ との積は実数となる .

$$(a+bi)(a-bi) = a^2 + b^2 (3.1)$$

3.1.3 ド・モアブルの定理

整数 n に対して

$$(\cos x + i\sin x)^n = \cos nx + i\sin nx \tag{3.2}$$

3.1.4 オイラーの公式

x を変数, a を定数とすると

$$e^{iax} = \cos(ax) + i\sin(ax) \tag{3.3}$$

第4章

微分法

4.1 導関数の定義

関数 f(x) の x における導関数 f'(x) はつぎのように定義される.

$$f'(x) = \frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
(4.1)

p が有理数のとき

$$(x^p)' = px^{p-1} (4.2)$$

である.

4.2 微分法の公式

f,g を微分可能な関数,k を対数として以下の式が成り立つ.

$$(f \pm g)' = f' \pm g' \tag{4.3}$$

$$(kf)' = kf' \tag{4.4}$$

$$(fg)' = f'g + fg'$$
 積の公式 (4.5)

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}, \quad (g \neq 0)$$
 商の公式 (4.6)

4.3 ■ 高次導関数

導関数 f'(x) のさらに導関数を f(x) の第 2 次導関数といい,f''(x), $\frac{d^2f}{dx^2}$ などの記号で表す.f''(x) の導関数を f(x) の第 3 次導関数といい,f'''(x), $\frac{d^3f}{dx^3}$ などの記号で表す.一般に f(x) を続けて n 回微分して得られる関数を f(x) の第 n 次導関数といい, $f^{(n)}(x)$, $\frac{d^nf}{dx^n}$ などの記号で表す.

第4章 微分法 10

基本的な導関数と不定積分一覧 4.4

$$\frac{d}{dx}x = 1 \qquad \longrightarrow \qquad \int dx = x + C \tag{4.7}$$

$$\frac{d}{dx}x^{n+1} = (n+1)x^n \qquad \longrightarrow \qquad \int x^n dx = \frac{1}{n+1}x^{n+1} + C, \quad (n \neq -1)$$

$$\tag{4.8}$$

$$\frac{d}{dx}x^{n+1} = (n+1)x^n \qquad \longrightarrow \qquad \int x^n dx = \frac{1}{n+1}x^{n+1} + C, \quad (n \neq -1) \qquad (4.8)$$

$$\frac{d}{dx}\log x = \frac{1}{x}, \quad (x > 0) \qquad \longrightarrow \qquad \int \frac{1}{x}dx = \log|x| + C \qquad (4.9)$$

$$\frac{d}{dx}e^x = e^x \qquad \longrightarrow \qquad \int e^x dx = e^x + C \tag{4.10}$$

$$\frac{d}{dx}\sin x = \cos x \qquad \longrightarrow \qquad \int \cos x dx = \sin x + C \qquad (4.11)$$

$$\frac{d}{dx}\cos x = -\sin x \qquad \longrightarrow \qquad \int \sin x dx = -\cos x + C \qquad (4.12)$$

$$\frac{d}{dx}\tan x = \frac{1}{\cos^2 x} = \sec^2 x \qquad \longrightarrow \qquad \int \frac{1}{\cos^2 x} dx = \tan x + C \qquad (4.13)$$

$$\frac{d}{dx}\cos x = -\sin x \qquad \longrightarrow \qquad \int \sin x dx = -\cos x + C \tag{4.12}$$

$$\frac{d}{dx}\tan x = \frac{1}{\cos^2 x} = \sec^2 x \qquad \longrightarrow \qquad \int \frac{1}{\cos^2 x} dx = \tan x + C \tag{4.13}$$

$$\frac{dx}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \longrightarrow \qquad \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C \tag{4.14}$$

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2} \qquad \longrightarrow \qquad \int \frac{1}{1+x^2} = \arctan x + C \tag{4.15}$$

合成関数の微分

 $y=f(x),\,z=g(x)$ のとき合成関数 y=f(g(x)) の導関数は,

$$\frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx} = f'(z)\frac{dz}{dx} = f'(g(x))g'(x) \tag{4.16}$$

のように(外側の微分)·(中身の微分)という形になる.この公式は chain rule とも呼ばれる.以下に例を示す.

$$\frac{d}{dx}e^{u} = \frac{de^{u}}{du}\frac{du}{dx} = e^{u}\frac{du}{dx}$$

$$\frac{d}{dx}e^{4x^{2}} = \frac{d(e^{4x^{2}})}{d(4x^{2})}\frac{d(4x^{2})}{dx} = e^{4x^{2}} \cdot 8x$$

$$\frac{d}{dx}(x^{3} + 1)^{2} = \frac{d(x^{3} + 1)^{2}}{d(x^{3} + 1)}\frac{d(x^{3} + 1)}{dx} = 2(x^{3} + 1)(3x^{2})$$

$$\frac{d}{dx}\sin u = \frac{d\sin u}{du}\frac{du}{dx} = \cos u\frac{du}{dx}$$

$$\frac{d}{dt}\cos 2\pi\omega t = \frac{d(\cos 2\pi\omega t)}{d(2\pi\omega t)}\frac{d(2\pi\omega t)}{dt} = -\sin 2\pi\omega t \cdot 2\pi\omega$$

媒介変数で表された関数の導関数

平面上の曲線が一つの変数によって x=f(t) , y=g(t) のように表されたとき , これをその曲線の媒介変数表示と 呼び,変数tを媒介変数という.このように媒介変数表示された関数の導関数はつぎのように書ける.

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)} \tag{4.17}$$

第 4 章 微分法 11

4.7 全微分

関数 f を x と y の関数 f(x,y) とするとき , 位置が dx かつ dy だけ変化したときの f 全体の変化分 df を全微分という . df はつぎのように書ける .

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy \tag{4.18}$$

つまり dx だけ変化したときの f の変化分 $\frac{\partial f}{\partial x}dx$ と , dy だけ変化したときの f の変化分 $\frac{\partial f}{\partial y}dy$ の和である .

第5章

積分法

微分の逆の演算が積分である.定積分は数を与え,不定積分は関数を与える.定積分はリーマンによってより厳密な形にまとめられたのでリーマン積分とも呼ばれる.

5.1 不定積分

関数 F(x) が微分可能であり, $\frac{d}{dx}F(x)=f(x)$ のとき,F(x) を f(x) の不定積分といい

$$F(x) = \int f(x)dx \tag{5.1}$$

と書く.このとき f(x) を被積分関数という.たとえば被積分関数が x^n のとき

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C \tag{5.2}$$

となる.ここでCは積分定数である.

f(x) が区間 [a,b] で連続なとき,

$$\int_{a}^{b} f(x)dx \tag{5.3}$$

を , f(x) の区間 [a,b] における定積分という . これは f(x) を x で a から b まで積分するともいう . また a < b のとき

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \tag{5.4}$$

と定義する.

5.2.1 置換積分

積分を求めるとき,変数 x の代わりに新しい変数 t を導入し, $x=\varphi(t)$ とおくと積分が簡単になる場合がある.いま,

$$F(x) = \int f(x)dx \tag{5.5}$$

第5章 積分法 13

ならば,合成関数の微分によって

$$\frac{d}{dt}F(\varphi(t)) = \frac{d}{dx}F(x)\frac{dx}{dt} = f(x)\varphi'(t) = f(\varphi(t))\varphi'(t)$$
(5.6)

より

$$F(\varphi(t)) = \int f(\varphi(t))\varphi'(t)dt \tag{5.7}$$

が得られる.これを置換積分という.

5.3 部分積分

つぎの積分公式を部分積分という.

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$
(5.8)

定積分なら

$$\int_{a}^{b} f'(x)g(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx$$
 (5.9)

である $.\sin(x)$ や e^x など何回微分してもあまり形が変わらない関数が , 被積分関数に x の関数との掛け算として入っている場合などに威力を発揮する .

5.4 重要な積分公式

$5.4.1 \quad f'(x)/f(x)$ 型

 $\log f(x)$ の微分 $(\log f(x))' = f'(x)/f(x)$ を積分すると,公式

$$\int \frac{f'(x)}{f(x)} dx = \log f(x) + C \tag{5.10}$$

が得られる.つまり被積分関数が f'(x)/f(x) という形に変形できる場合は,一瞬で積分できるのだ.

例 1

$$\int \frac{u}{1-u^2} du = -\frac{1}{2} \int \frac{(1-u^2)'}{1-u^2} du = \log|1-u^2| + C$$

例 2

$$\int \tan x dx = \int \frac{\sin x}{\cos x} dx = -\int \frac{(\sin x)'}{\cos x} dx = -\log|\cos x| + C$$

5.4.2 $f'(x)f^n(x)$ 型

 $f^{n+1}(x)$ の微分 $(f^{n+1}(x))' = (n+1)f'(x)f^n(x)$ を積分すると,

$$\int f'(x)f^n dx = \frac{1}{n+1}f^{n+1}(x) \tag{5.11}$$

が得られる、被積分関数が $f'(x)f^n$ という形に変形できる場合も一瞬で積分できるのだ、

例

$$\int \cos x \sin^n x dx = \int (\sin x)' \sin^n x dx = \frac{1}{n+1} \sin^{n+1} x$$
 (5.12)

第5章 積分法 14

5.5 特殊な積分

第6章

常微分方程式

未知関数とその導関数を含む方程式を微分方程式といい、独立変数が一つのものを常微分方程式をいう、 物理の基本法則は、そのほとんどが微分方程式の形に書かれている、したがって常微分方程式の理解は物理 の理解に必須である.

1 階微分方程式

微分方程式の微分の部分が1階のものが1階微分方程式である.

6.1.1 变数分離形

微分方程式

$$\frac{dy}{dx} = f(x)g(y) \tag{6.1}$$

を変数分離形と呼び,微分方程式のなかで一番基本となるものである.これを解くにはまず,左辺,右辺を同じ変数だ けにまとめる.式(6.1)の場合では左辺に変数がyのものを,右辺に変数がxのものをまとまる.

$$\frac{1}{g(y)}dy = f(x)dx\tag{6.2}$$

このように変数をイコールをはさんで分離するのだ.そして両辺を積分する.

$$\int \frac{1}{g(y)} dy = \int f(x) dx + C \tag{6.3}$$

ここで C は任意定数である.式 (6.3) の積分を計算し,x= の形にしてやれば「微分方程式が解けた」といえる.任 意定数 C は物理の場合,初期条件から求めることが多い.

例

$$\frac{dy}{dx} = -\gamma y \qquad \qquad \frac{dy}{dx} = \mu(1-y)y \qquad \qquad \frac{dy}{dx} = -\frac{x}{y} \qquad \qquad y^2 dx - x^3 dy = 0$$

注意: \log の積分について 不定積分 $\int \frac{1}{1+x} dx$ の解は $\log |1+x|+C$ となり , 正確には \log の中に絶対値がつくが , 任意定数を適当に書き 換えると $\int \frac{1}{1+x} dx = \log(1+x) + C$ というふうに絶対値なしの値になる.したがって微分方程式を解くときにでて くる

$$\int \frac{1}{1+x} dx = \log|1+x| + C$$

第 6 章 常微分方程式 16

という種類の計算は

$$\int \frac{1}{1+x} dx = \log(1+x) + C$$

と簡略化することができ、絶対値のことを気にしなくてもいい、

6.1.2 同次形

関数 f(u) を用いて,微分方程式が

$$\frac{dy}{dx} = f(u), \qquad u = \frac{y}{x} \tag{6.4}$$

という形に書けるとき,この微分方程式を同次形という. $\frac{dy}{dx}$ が $\frac{y}{x}$ だけの式で表せていることが重要である.同次形の微分方程式は変数変換して変数分離形にすることで解くことができる. $u=\frac{y}{x}$ から

$$y = ux (6.5)$$

と変形でき,両辺をxで微分すると,積の微分公式から

$$\frac{dy}{dx} = \frac{d}{dx}(ux) = \frac{du}{dx}x + u \tag{6.6}$$

したがって, (6.4) 式と比較して

$$f(u) = \frac{du}{dx}x + u \qquad \therefore \frac{du}{dx} = \frac{f(u) - u}{x} \tag{6.7}$$

となる.これを変数分離すればよい.式(6.7)から,

$$\frac{du}{f(u) - u} = \frac{dx}{x} \tag{6.8}$$

両辺を積分して,

$$\int \frac{1}{f(u) - u} du = \int \frac{1}{x} dx + C \qquad \therefore \int \frac{1}{f(u) - u} du = \log x + C \tag{6.9}$$

が得られる. 左辺の積分計算のあと,u を $\dfrac{y}{x}$ で置き換え,x= の形にしてやればよい.

例

$$\frac{dy}{dx} = \frac{x}{y} \quad \left(u = \frac{y}{x}, \ f(u) = \frac{1}{u}\right) \qquad \qquad \frac{dy}{dx} = \frac{x^2 + y^2}{2xy} \quad \left(u = \frac{y}{x}, \ f(u) = \frac{1 + u^2}{2u}\right)$$

6.1.3 線形微分方程式

つぎの形の微分方程式を線形微分方程式という

$$\frac{dy}{dx} + p(x)y = q(x) \tag{6.10}$$

同次線形微分方程式

線形微分方程式で q(x)=0 の場合,

$$\frac{dy}{dx} + p(x)y = 0 (6.11)$$

を同次方程式という(斉次方程式ともいう).これは変数分離形であるので,

$$\frac{1}{y}dy = -p(x)dx\tag{6.12}$$

$$\int \frac{1}{y} dy = -\int p(x)dx + C \tag{6.13}$$

$$\log y = -\int p(x)dx + C \tag{6.14}$$

$$y = Ae^{-\int p(x)dx} \tag{6.15}$$

第 6 章 常微分方程式 17

と一般解が求まる.変数分離形なのにわざわざ同次方程式と別の名前を付けているのは,つぎの非同次方程式を解くときに同次方程式の考えが必要だから.

非同次線形微分方程式

線形微分方程式で $q(x) \neq 0$ の場合,

$$\frac{dy}{dx} + p(x)y = q(x) \tag{6.16}$$

を非同次方程式という (非斉次方程式ともいう) . 非同次方程式は A を定数ではなく , x の関数として解を求める . すなわち解は

$$y = A(x)e^{-\int p(x)dx} \tag{6.17}$$

という形になる.あとは A(x) がなにかわかれば一般解が求まることになる.このように斉次方程式と解が同じようなものだと予想して微分方程式を解く方法を定数変化法という.

例

$$\frac{dv}{dx} + \mu v = -g \qquad \qquad R\frac{dQ}{dt} + \frac{Q}{C} = E\sin\omega t$$

6.1.4 完全形

1 階微分方程式

$$\frac{dy}{dx} = -\frac{p(x,y)}{q(x,y)}\tag{6.18}$$

を

$$p(x,y)dx + q(x,y)dy = 0 (6.19)$$

の形に書く.このとき上式の左辺がある関数 u(x,y) の全微分

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy \tag{6.20}$$

になっているならば,完全形であるという.

6.2 2 階微分方程式

微分方程式の微分の部分が 2 階のものを 2 階微分方程式という.ニュートンの運動方程式 $m\frac{d^2x}{dt^2}=F$ は 2 階の微分方程式だ.2 階微分方程式は,階数を下げて 1 階微分方程式にできる場合がある.例えば拡散方程式

$$\frac{d^2c_{\mathcal{A}}}{d\zeta^2} + 2\zeta \frac{dc_{\mathcal{A}}}{d\zeta} = 0 \tag{6.21}$$

は 2 階微分方程式であるが, $dc_{
m A}/d\zeta=f$ とおくと, $d^2c_{
m A}/d\zeta^2=df/d\zeta$ であるから

$$\frac{df}{d\zeta} + 2\zeta f = 0 \tag{6.22}$$

となり1階の微分方程式にできる.この例では変数分離形になったので簡単に解くことができる.

6.2.1 2階線形微分方程式

未知数 y(x) とその導関数 y'(x), y''(x) について線形の微分方程式

$$y'' + p(x)y' + q(x)y = f(x)$$
(6.23)

第 6 章 常微分方程式 18

を 2 階線形微分方程式という. 最も簡単な例として

$$\frac{d^2f(x)}{dx^2} = 0 ag{6.24}$$

がある.2階微分してゼロになることから,この解はつぎのように書ける.

$$f(x) = C_1 x + C_2 (6.25)$$

第7章

ベクトルとベクトル解析

大きさだけでなく向きをもつ量をベクトルという、ベクトルは物理学のさまざまな分野で活用される、ベクトルの微分・積分を扱うベクトル解析は、電磁気学をはじめ、場を扱う物理量の理解に欠かせない。

7.1 ベクトル

7.1.1 ベクトルの表記

スカラーを細文字のイタリック体で a,k,L と書くのに対し,ベクトルを表すときは太文字のイタリック体で v,c,A などと書く.また,ベクトルを幾何学的に表すには矢印(有向線分)を用いる.ベクトル A の大きさは |A| あるいは細文字 A で表す.ベクトルの大きさのことをベクトル A の絶対値という.

7.1.2 スカラー積(内積)

2 つのベクトル A と B のスカラー積 (scalar product, 内積) は

$$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}||\mathbf{B}|\cos\theta = AB\cos\theta \tag{7.1}$$

と定義される.ここで θ は二つのベクトルのなす角.スカラー積を成分で表すと

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z \tag{7.2}$$

である.名前の通りスカラー積の結果はスカラー $oxed{B}$.大事なのは $oxed{A}$ と $oxed{B}$ が直交するときで ,

$$\mathbf{A} \cdot \mathbf{B} = 0 \qquad (\because \cos \frac{\pi}{2} = 0) \tag{7.3}$$

とスカラー積がゼロになる.逆にスカラー積がゼロになる二つのベクトルは直交している.

7.1.3 ベクトル積(外積)

2 つのベクトル A と B のベクトル積 (vector product , 外積) は新たなベクトル C

$$C = A \times B = |A||B|\sin\theta \ \hat{C} \tag{7.4}$$

をつくる. \hat{C} は C 方向の単位ベクトルで,その方向は A から B へ右ネジをひねったときにネジの進む向きで決まる.ベクトル積を成分で表すと

$$\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y, \ A_z B_x - A_x B_z, \ A_x B_y - A_y B_x) \tag{7.5}$$

である.行列式を使って

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} A_y & A_z \\ B_y & B_z \end{vmatrix} \mathbf{i} + \begin{vmatrix} A_z & A_x \\ B_z & B_x \end{vmatrix} \mathbf{j} + \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix} \mathbf{k}$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$
(7.6)

と書くと覚えやすい.

7.2 ベクトルの微分

7.2.1 ベクトル関数

ベクトル $m{A}$ が t の関数であるとき $m{A}(t)$ と書き , ベクトル関数と呼ぶ . $m{A}(t)$ を成分で書くと

$$\mathbf{A}(t) = A_x(t)\mathbf{i} + A_y(t)\mathbf{j} + A_z(t)\mathbf{k}$$
(7.7)

となる.

7.2.2 ベクトル微分の定義

ベクトル関数 A(t) の t に関する微分は

$$\frac{d\mathbf{A}}{dt} = \lim_{\Delta \to 0} \frac{\mathbf{A}(t + \Delta t) - \mathbf{A}(t)}{\Delta t} \tag{7.8}$$

で定義される.ベクトルの微分を成分で書くと

$$\frac{d\mathbf{A}}{dt} = \frac{A_x(t)}{dt}\mathbf{i} + \frac{A_y(t)}{dt}\mathbf{j} + \frac{A_z(t)}{dt}\mathbf{k}$$
(7.9)

となる.

7.2.3 積の微分公式

 $\phi(t)$ をスカラー関数 , A(t) , B(t) をベクトル関数とするとき

$$\frac{d}{dt}(\phi \mathbf{A}) = \phi \frac{d\mathbf{A}}{dt} + \frac{d\phi}{dt}\mathbf{A}$$
 (7.10)

$$\frac{d}{dt}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \cdot \frac{d}{dt}\mathbf{B} + \frac{d\mathbf{A}}{dt} \cdot \mathbf{B}$$
(7.11)

$$\frac{d}{dt}(\mathbf{A} \times \mathbf{B}) = \mathbf{A} \times \frac{d}{dt}\mathbf{B} + \frac{d\mathbf{A}}{dt} \times \mathbf{B}$$
(7.12)

が成り立つ.

7.3 ベクトル場とベクトル演算子

7.3.1 ベクトル場

ある場所を指定するとベクトルで表される量をもつ空間をベクトル場という.電場や磁場は場所によって大きさと方向が刻々と変化する物理量で,まさにベクトル場である.ベクトル場を成分で書くと

$$\mathbf{A}(x,y,z) = A_x(x,y,z)\mathbf{i} + A_y(x,y,z)\mathbf{j} + A_z(x,y,z)\mathbf{k}$$
(7.13)

となる.ベクトル場に対して,ある場所を指定するとスカラーで表される量をもつ空間をスカラー場という.電位は場所によって変化するが,向きはもたないのでスカラー場である.

7.3.2 ナブラ演算子

偏微分を x,y,z 成分とするベクトル演算子がナブラ演算子であり, ∇ という記号で表す.

$$\nabla = i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z}$$
 (7.14)

ベクトル成分をそれぞれ x, y, z で偏微分する機会は多いので,この演算子の出番も多い.

7.3.3 グラジアント (勾配)

グラジアント($\operatorname{gradient}$)は勾配のことで,下式 (7.15) で与えられる.ここで ϕ はスカラー場,つまりポテンシャルである.例えば電位 V のグラジアント $\operatorname{grad} V$ は電位から受ける力(ベクトル量)を与える.微分は関数の傾きを求めることなので,そこから求まるベクトルの方向と大きさは斜面の最も急な方向を表す.

$$\operatorname{grad} \phi = \nabla \phi$$

$$= \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right) \phi$$

$$= \frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}$$
(7.15)

もし ϕ が一定の値ならば , その微分はゼロとなるので $\operatorname{grad} \phi = \nabla \phi = 0$ である .

7.3.4 ダイバージェンス (発散)

divergence は発散.わきだす量.スカラー量

$$\operatorname{div} \mathbf{A} = \nabla \cdot \mathbf{A}$$

$$= \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right) \cdot (A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k})$$

$$= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
(7.16)

7.3.5 ローテーション (回転)

rotation は回転.ベクトル量

$$\begin{aligned}
\mathbf{r} \mathbf{A} &= \nabla \times \mathbf{A} \\
&= \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right) \times (A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}) \\
&= \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \mathbf{i} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) \mathbf{j} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \mathbf{k}
\end{aligned} (7.17)$$

行列式を使って

$$\operatorname{rot} \mathbf{A} = \begin{vmatrix} \partial/\partial y & \partial/\partial z \\ A_y & A_z \end{vmatrix} \mathbf{i} + \begin{vmatrix} \partial/\partial z & \partial/\partial x \\ A_z & A_x \end{vmatrix} \mathbf{j} + \begin{vmatrix} \partial/\partial x & \partial/\partial y \\ A_x & A_y \end{vmatrix} \mathbf{k}$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ A_x & A_y & A_z \end{vmatrix}$$
(7.18)

と書くと覚えやすい.

7.3.6 ラプラシアン

ラプラシアン(またはラプラス演算子) は ▽ を二回繰り返したもの.

$$\nabla^{2} = \operatorname{div} \operatorname{grad}$$

$$= \nabla \cdot \nabla$$

$$= \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right) \cdot \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right)$$

$$= \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}$$
(7.19)

ポテンシャル問題や波動方程式などに登場する.

7.3.7 ベクトルのいろいろな性質

ベクトル演算の性質を示す.以下,A,B,C は任意のベクトル場, f,ϕ は任意のスカラー場である.

- $A \times B = -B \times A$
- $A \cdot (B \times C) = B \cdot (C \times A) = C(A \times B)$
- $A \times (B \times C) = (A \cdot C)B (A \cdot B)C$
- $\bullet \ \mathbf{A} \times \mathbf{B} = \mathbf{B}(\mathbf{B} \cdot \mathbf{C}) \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$
- $\bullet (A + B) \times (A B) = 2(B \times A)$
- $\nabla \times (\nabla \phi) = 0$
- $\bullet \ \nabla \cdot (f\mathbf{A}) = \nabla f \cdot \mathbf{A} + f \nabla \cdot \mathbf{A}$

【証明】

$$\begin{split} \nabla \cdot (f \boldsymbol{A}) &= \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (f A_x, f A_y, f A_z) \\ &= \left(\frac{\partial f}{\partial x} A_x + f \frac{\partial A_x}{\partial x} \right) + \left(\frac{\partial f}{\partial y} A_y + f \frac{\partial A_y}{\partial y} \right) + \left(\frac{\partial f}{\partial z} A_z + f \frac{\partial A_z}{\partial z} \right) \\ &= \left(\frac{\partial f}{\partial x} A_x + \frac{\partial f}{\partial y} A_y + \frac{\partial f}{\partial x} A_x \right) + \left(f \frac{\partial A_x}{\partial x} + f \frac{\partial A_y}{\partial y} + f \frac{\partial A_z}{\partial z} \right) \\ &= \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial x} \right) \cdot (A_x, A_y, A_z) + f \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (A_x, A_y, A_z) \\ &= \nabla f \cdot \boldsymbol{A} + f \nabla \cdot \boldsymbol{A} \end{split}$$

 $\bullet \ \nabla \cdot (\nabla \times \mathbf{A}) = 0$

【証明】

$$\begin{split} \nabla \cdot (\nabla \times \boldsymbol{A}) &= \nabla \cdot \left(\frac{\partial}{\partial y} A_z - \frac{\partial}{\partial z} A_y, \ \frac{\partial}{\partial z} A_x - \frac{\partial}{\partial x} A_z, \ \frac{\partial}{\partial x} A_y - \frac{\partial}{\partial y} A_x \right) \\ &= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} A_z - \frac{\partial}{\partial z} A_y \right) + \frac{\partial}{\partial y} \left(\frac{\partial}{\partial z} A_x - \frac{\partial}{\partial x} A_z \right) + \frac{\partial}{\partial z} \left(\frac{\partial}{\partial x} A_y - \frac{\partial}{\partial y} A_x \right) \\ &= \frac{\partial^2 A_z}{\partial x \partial y} - \frac{\partial^2 A_y}{\partial x \partial z} + \frac{\partial^2 A_x}{\partial y \partial z} - \frac{\partial^2 A_z}{\partial y \partial x} + \frac{\partial^2 A_y}{\partial z \partial x} - \frac{\partial^2 A_x}{\partial z \partial y} \\ &= \left(\frac{\partial^2 A_x}{\partial y \partial z} - \frac{\partial^2 A_x}{\partial z \partial x} \right) + \left(\frac{\partial^2 A_y}{\partial z \partial x} - \frac{\partial^2 A_y}{\partial x \partial z} \right) + \left(\frac{\partial^2 A_z}{\partial x \partial y} - \frac{\partial^2 A_z}{\partial y \partial x} \right) \\ &= 0 \end{split}$$

- $\nabla \cdot (\nabla \phi) = \nabla^2 \phi$
- $\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) \nabla^2 \mathbf{A}$

• $\nabla \times (fA) = \nabla f \times A + f \nabla \times A$ 【証明】

$$\nabla \times (f\mathbf{A}) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times (fA_x, fA_y, fA_z)$$

$$= \left(\frac{\partial f}{\partial y} A_z - \frac{\partial f}{\partial z} A_y + f \frac{\partial A_z}{\partial y} - f \frac{\partial A_y}{\partial z}\right) \mathbf{i}$$

$$+ \left(\frac{\partial f}{\partial z} A_x - \frac{\partial f}{\partial x} A_z + f \frac{\partial A_x}{\partial z} - f \frac{\partial A_z}{\partial x}\right) \mathbf{j}$$

$$+ \left(\frac{\partial f}{\partial x} A_y - \frac{\partial f}{\partial y} A_x + f \frac{\partial A_y}{\partial x} - f \frac{\partial A_x}{\partial y}\right) \mathbf{k}$$

$$= \left(\frac{\partial f}{\partial y} A_z - \frac{\partial f}{\partial z} A_y\right) \mathbf{i} + \left(\frac{\partial f}{\partial z} A_x - \frac{\partial f}{\partial x} A_z\right) \mathbf{j} + \left(\frac{\partial f}{\partial x} A_y - \frac{\partial f}{\partial y} A_x\right) \mathbf{k}$$

$$+ \left(f \frac{\partial A_z}{\partial y} - f \frac{\partial A_y}{\partial z}\right) \mathbf{i} + \left(f \frac{\partial A_x}{\partial z} - f \frac{\partial A_z}{\partial x}\right) \mathbf{j} + \left(f \frac{\partial A_y}{\partial x} - f \frac{\partial A_x}{\partial y}\right) \mathbf{k}$$

$$= \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \times (A_x, A_y, A_z) + f\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times (A_x, A_y, A_z)$$

$$= \nabla f \times \mathbf{A} + f \nabla \times \mathbf{A}$$

• $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$

7.4 曲線

7.4.1 接線

曲線上の近接した 2 点 P,P' をとり,P' を限りなく P に近づけるとき,PP' を延長した直線は曲線に接した直線になる.これを接線という.また P において接線と直交する直線を法線という.曲線上の 2 点 P,P' の位置ベクトルをr,r' とすると,ベクトル $\overrightarrow{PP'}$ は dr=r'-r で表される.曲線上のある点から運動の向きに測った弧の長さを s とすると,点 P の位置ベクトルは s の関数として r=r(s) で与えられる.そうすると

$$\frac{d\mathbf{r}(s)}{ds} = \lim_{\Delta s \to 0} \frac{\mathbf{r}(s + \Delta s) - \mathbf{r}(s)}{\Delta s} \tag{7.20}$$

は点 P における曲線の接線ベクトルである.また, $\Delta s \to 0$ の極限では弧の長さ Δs とベクトル $\overrightarrow{\mathrm{PP}'}$ の長さは等しくなる

$$\lim_{\Delta s \to 0} \frac{|\Delta \mathbf{r}|}{|\Delta s|} = 1. \tag{7.21}$$

したがって,

$$t(s) = \frac{dr(s)}{ds} \tag{7.22}$$

は単位接線ベクトルである.

7.4.2 ストークスの定理

線積分を面積分に,もしくは面積分を線積分に変える数学公式がストークスの定理(Stokes' theorem)である.ベクトル A の場の中に閉曲線 C をとり,これを境界とする任意の曲面を S とするとき

$$\int_{C} \mathbf{A} \cdot d\mathbf{s} = \iint_{S} \operatorname{rot} \mathbf{A} \cdot d\mathbf{S}$$
(7.23)

が成り立つ.ここで dS は曲面 S の微小部分とし,大きさはその面積に等しく向きはその法線とする.閉曲線 C にそって ds がまわる向きと S の法線の向きとは右ねじの関係にあるものとする.

第8章

行列

行列に和,差,スカラー倍,積を定義する.

8.1.1 行列の和と差

行列の和と差は行列の型が等しいときに限り定義される.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \pm \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} a \pm p & b \pm q \\ c \pm r & d \pm s \end{pmatrix}$$
 (8.1)

8.1.2 行列のスカラー倍

k をスカラーとするとき , 行列の k 倍はすべての成分を k 倍することで定義する .

$$k \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix} \tag{8.2}$$

8.1.3 行列の積

行列 A と行列 B の積は , A の列の個数と B の行の個数が等しいときにのみ定義される .

$$\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} e \\ g \end{pmatrix} = ae + bg$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e \\ g \end{pmatrix} = \begin{pmatrix} ae + bg \\ ce + dg \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + bg & af + ah \\ ce + dg & cf + dh \end{pmatrix}$$

8.2 ケーリー・ハミルトンの定理

行列
$$A=\begin{pmatrix} a&b\\c&d \end{pmatrix}$$
 について,
$$A^2-(a+d)A+(ad-bc)E=0 \tag{8.3}$$

第8章 行列 25

が必ず成立する、これをケーリー・ハミルトンの定理という、次数下げの道具として重要な定理である、

8.3 正則行列

正方行列 A が逆行列をもつとき正則であるという A の逆行列を A^{-1} とするとき

$$AA^{-1} = A^{-1}A = E (8.4)$$

が成り立つ.

8.4 逆行列

行列 $A=egin{pmatrix} a & b \ c & d \end{pmatrix}$ は $\det A
eq 0$ のとき逆行列 A^{-1} をもち ,

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \tag{8.5}$$

である.

8.5 固有値と固有ベクトル

行列 A に対して

$$A \begin{pmatrix} s \\ t \end{pmatrix} = \lambda \begin{pmatrix} s \\ t \end{pmatrix} \tag{8.6}$$

という関係にあるとき , λ を固有値 , $\binom{s}{t}$ を固有ベクトルという . ただし $\binom{s}{t}
eq \binom{0}{0}$. 固有ベクトルは線形変換されても方向が変わらず , 固有値倍に延長されるだけ .

第9章

知っておきたいこと

9.1 近似式

9.1.1 括弧の n 乗

|x| が 1 に比べて非常に小さいとき,

$$(1 \pm x)^n \simeq 1 \pm nx \tag{9.1}$$

と近似できる. n は別に整数でなくてもよい.例えば n=1/2 とすると,

$$\sqrt{1+x} = (1+x)^{1/2} \simeq 1 + \frac{1}{2}x$$

というふうに計算できる.

9.1.2 三角関数

|x| がとても小さいとき,

$$\sin x \simeq x \tag{9.2}$$

$$\cos x \simeq 0 \tag{9.3}$$

と近似できる.単位円を思い浮かべると分かりやすい.

9.2 部分分数

分母が積の形になっている分数は,数個の分数に分けられる場合があり,これを部分分数という.部分分数を作ることで積分計算が簡単になったりする.

9.2.1 二つにわかれるもの

まず,

$$\frac{1}{(ax+b)(cx+d)} = \frac{A}{ax+b} + \frac{B}{cx+d}$$
 (9.4)

と変形できることを覚えておこう、実際に変形するには A と B を別途求める、例として

$$\frac{1}{(x+1)(x-1)} \tag{9.5}$$

を部分分数に変形しよう.これは

$$\frac{1}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1} \tag{9.6}$$

となることがわかっている.まずAを求める.両辺にx+1を掛けると

$$\frac{1}{(x-1)} = A + \frac{B}{x-1}(x+1) \tag{9.7}$$

B を消去するために x=-1 を代入すると

$$\frac{1}{(-1-1)} = A + \frac{B}{x-1} \cdot 0 \tag{9.8}$$

から $A=-rac{1}{2}$ と求まる.同じようにして $B=rac{1}{2}$ も求まる.したがって

$$\frac{1}{(x+1)(x-1)} = -\frac{1}{2}\frac{1}{x+1} + \frac{1}{2}\frac{1}{x-1}$$
(9.9)

が得られる.

9.2.2 三つにわかれるもの 1

まず,

$$\frac{x+a}{x(x+b)(x+c)} = \frac{A}{x} + \frac{B}{x+b} + \frac{C}{x+c}$$
 (9.10)

と変形できることを覚えておこう. 例として

$$\frac{2x+1}{x(3x+1)(x-1)}\tag{9.11}$$

を部分分数に分解してみる.これを

$$\frac{2}{3} \frac{x + \frac{3}{2}}{x(x + \frac{1}{3})(x - 1)} \tag{9.12}$$

と変形して x の係数を 1 にしてやる . それから

$$\frac{x+\frac{3}{2}}{x(x+\frac{1}{3})(x-1)} = \frac{A}{x} + \frac{B}{x+\frac{1}{3}} + \frac{C}{x-1}$$
(9.13)

という関係をつかって,先ほどと同じように A,B,C を求める.計算すると $A=\frac{9}{2}$, $B=-\frac{21}{4}$, $C=\frac{3}{4}$ と求まるので,

$$\frac{2x+1}{x(3x+1)(x-1)} = \frac{2}{3} \frac{x+\frac{3}{2}}{x(x+\frac{1}{3})(x-1)}$$

$$= \frac{2}{3} \left(\frac{\frac{9}{2}}{x} + \frac{-\frac{21}{4}}{x+\frac{1}{3}} + \frac{\frac{3}{4}}{x-1}\right)$$

$$= \frac{1}{3}x - \frac{7}{2} \frac{1}{x+\frac{1}{2}} + \frac{1}{2} \frac{1}{x-1}$$

というふうに三つの分数に分解することができる.

9.2.3 三つにわかれるもの 2

と変形できることを覚えておこう.

$$\frac{1}{(x+a)(x+b)^2} = \frac{A}{x+a} + \frac{B}{x+b} + \frac{C}{(x+b)^2}$$
(9.14)

あとは同様.

第10章

展開式

10.1 べき級数

数列 $\{a_n\}$ からつくられる無限個の和

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

を級数という.また, c_0,c_1,c_2,\cdots を定数として,つぎの級数をxのべき級数という.

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x^1 + c_2 x^2 + \dots + c_n x^n + \dots$$

10.2 テイラー級数

つぎの無限級数を f(x) の x=a におけるテイラー級数という.

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots$$
$$= f(a) + \sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$$

主に有限の n で展開を止めて近似式として用いる.たいていは 1 次か 2 次程度で近似する.テイラー級数で a=0 のもの,すなわち

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \cdots$$
$$= f(0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

をマクローリン級数という.また,

$$f(x+dx) = f(x) + \frac{f'(x)}{1!}dx + \frac{f''(x)}{2!}(dx)^n + \cdots$$
$$= f(x) + \sum_{n=1}^{\infty} \frac{f^{(n)}(x)}{n!}(dx)^n$$

である.

第 10 章 展開式 29

マクローリン級数の例

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + \frac{(-1)^{n}x^{2n}}{(2n)!} + \dots$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1}\frac{x^{n}}{n} + \dots$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + \dots$$

10.3 フーリエ級数

任意の周期関数を三角関数の無限級数で表すのがフーリエ級数である.区間(-L,+L)の任意の周期関数 f(x)=f(x+2L)は

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

$$\tag{10.1}$$

と表される. ただし

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
 $(n = 0, 1, 2, \dots)$ (10.2)

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx \qquad (n = 1, 2, 3, \dots)$$
 (10.3)

である.

フーリエ級数の複素表示 三角関数よりも指数関数を使った方が便利なことは物理において多々あることで,フーリエ級数もそういった場合がある. $\cos x$, $\sin x$ はオイラーの公式から

$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix}), \qquad \sin x = -\frac{i}{2}(e^{ix} - e^{-ix})$$
(10.4)

と表せるので, これを式 (10.1) に代入すると

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{a_n - ib_n}{2} e^{in\pi x/L} + \frac{a_n + ib_n}{2} e^{-in\pi x/L} \right)$$
 (10.5)

となる.ここで

$$c_0 = \frac{a_0}{2}, \qquad c_n = \frac{a_n - ib_n}{2}, \qquad c_{-n} = \frac{a_n + ib_n}{2} \qquad (n = 1, 2, 3, \dots)$$

とおくとフーリエ級数は複素数を使って

$$f(x) = c_0 + \sum_{n=1}^{\infty} \left(c_n e^{in\pi x/L} + c_{-n} e^{-in\pi x/L} \right) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L}$$
(10.6)

で表される. ただし c_n の定義と式 (10.2) , (10.3) から

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(x) \left(\cos \frac{n\pi x}{L} - i \sin \frac{n\pi x}{L} \right) dx = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L} dx$$
 (10.7)

である.

第 10 章 展開式 30

10.4 スターリングの公式

階乗の近似式.nが非常に大きいときに次式が成り立つ.

$$n! \simeq \sqrt{2\pi n} \, n^n e^{-n}, \qquad n \gg 1$$

第 11 章

特殊関数

11.1 デルタ関数

時間の関数としてのデルタ関数はつぎの性質をもつ.

$$\delta(t) \begin{cases} \neq 0 & (t=0) \\ = 0 & (t \neq 0) \end{cases}$$

$$(11.1)$$

$$\int_{-\infty}^{+\infty} \delta(t)dt = 1 \tag{11.2}$$

そして,任意の関数 f(t) に対して

$$\int_{-\infty}^{+\infty} f(t)\delta(t)dt = f(0)$$
(11.3)

$$\int_{-\infty}^{+\infty} f(t)\delta(t-t_0)dt = f(t_0)$$
(11.4)

という性質がある.

11.2 ガンマ関数

あらゆる実数 λ $(0 < \lambda)$ について,ガンマ関数はつぎの積分で定義される

$$\Gamma(\lambda) = \int_{-\infty}^{\infty} x^{\lambda - 1} e^{-x} dx \tag{11.5}$$

ガンマ関数は n! を解析接続した関数である.これを部分積分すると

$$\Gamma(\lambda) = (\lambda - 1) \Gamma(\lambda - 1) , \qquad \lambda \ge 2$$
 (11.6)

となる . 特に λ が整数のときは

$$\Gamma(\lambda) = (\lambda - 1)! \tag{11.7}$$

である.以下にガンマ関数の例を上げる.

$$\Gamma(1)=1, \quad \Gamma(2)=1, \quad \Gamma(3)=2, \quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2}, \quad \Gamma\left(\frac{5}{2}\right)=\frac{\sqrt{3\pi}}{4}$$

第 11 章 特殊関数 32

11.3 ヤコビアン楕円関数

ヤコビアン楕円関数 (Jacobian elliptic function) はつぎの積分で定義される.

$$u = \int_0^\phi \frac{d\theta}{(1 - m\sin^2\theta)^{1/2}}$$
 (11.8)

このとき

$$\operatorname{sn}(u) = \sin \phi, \quad \operatorname{cn}(u) = \cos \phi, \quad \operatorname{dn}(u) = (1 - m \sin^2 \phi)^{1/2}, \quad \operatorname{am}(u) = \phi$$
 (11.9)

である. 楕円関数の定義によってはパラメータ m の代わりに変数 k を使うことがある.

$$k^2 = m = \sin^2 \alpha \tag{11.10}$$

11.4 球面調和関数

$$Y_0^0 = \frac{1}{\sqrt{4\pi}} \tag{11.11}$$

$$Y_1^0 = \sqrt{\frac{3}{4\pi}}\cos\theta, \quad Y_1^{\pm 1} = \pm\sqrt{\frac{3}{8\pi}}\sin\theta \,e^{\pm i\phi}$$
 (11.12)

$$Y_2^0 = \sqrt{\frac{5}{16\pi}} (2\cos^2\theta - \sin^2\theta), \quad Y_2^{\pm 1} = \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta e^{\pm i\phi}, \quad Y_2^{\pm 2} = \sqrt{\frac{15}{32\pi}} \sin^2\theta e^{\pm 2i\phi}$$
 (11.13)

$$Y_3^0 = \sqrt{\frac{7}{16\pi}} (2\cos^3\theta - 3\cos\theta\sin^2\theta), \quad Y_3^1 = \sqrt{\frac{21}{64\pi}} (4\cos^2\theta\sin\theta - \sin^3\theta)e^{\pm i\phi}, \tag{11.14}$$

参考文献

- [1] 和達三樹 著 ,『物理のための数学』(岩波書店 , 1992 年)
- [2] 長崎憲一・中村正彰・横山利章 著,『明解微分方程式』(培風館,2003年)
- [3] 戸田盛和・渡辺慎介 著 , 『ベクトル解析演習』(岩波書店 , 1999 年)
- [4] 岩谷輝生・田中正紀 著,『微分・積分』(学術図書出版社,1997 年)
- [5] 井川満・他 著, 『高等学校 新編 数学 III』(数研出版, 1995年)
- [6] 三宅敏恒 著,『入門線形代数』(培風館, 1999年)

索引

```
divergence, 21
gradient, 21
Jacobian elliptic function, 31
rotation, 21
scalar product, 19
vector product, 19
円の方程式,1
オイラーの公式,8
回転, 21
解の公式,1
加法定理, 4
外積, 19
ガウス積分, 14
ガンマ関数, 31
級数, 28
球面調和関数, 32
近似式, 26
逆三角関数,6
行列のスカラー倍, 24
行列の和と差,24
グラジアント, 21
ケーリー・ハミルトンの定理, 24
勾配, 21
固有值, 25
固有ベクトル, 25
三角関数,3
三角形の面積,6
指数関数,7
常微分方程式, 15
スカラー積, 19
スカラー場, 20
スターリングの公式,30
ストークスの定理, 23
正弦定理, 6
正則, 25
接線, 23
接線ベクトル, 23
全微分, 11
双曲線関数,6
ダイバージェンス, 21
置換積分,13
直線の方程式,1
定積分, 12
テイラー級数, 28
展開式, 28
デルタ関数, 31
導関数, 9
同次線形微分方程式, 16
ド・モアブルの定理,8
内積, 19
ナブラ演算子, 21
発散, 21
非同次線形微分方程式,17
フーリエ級数, 29
不定積分, 12
部分積分, 13
部分分数, 26
べき級数, 28
```

ベクトル積、19 ベクトルの大きさ、19 ベクトル場、20 法線、23 マクローリン級数、28 ヤコビアン楕円関数、31 余弦定理、6 ラプラシアン、22 ローテーション、21