## Lecture 22

## **Estimation**

Arnab Hazra



#### Introduction

- We assume we have T observations,  $X_1, \ldots, X_T$ , from a causal and invertible Gaussian ARMA(p, q) process.
- ightharpoonup For the time being, the order parameters, p and q, are known.
- ▶ Our goal is to estimate the parameters,  $\phi_1, \ldots, \theta_p, \theta_1, \ldots, \theta_q$ , and  $\sigma_W^2$ .
- If  $E(X_t) = \mu$ , then the method of moments estimator of  $\mu$  is the sample average,  $\overline{X}$ .
- ▶ Thus, while discussing method of moments, we will assume  $\mu = 0$ .

## ACF of an ARMA(p, q) process (Recap)

- A causal ARMA(p,q) model  $\{X_t; t=0,\pm 1,\pm 2,\ldots\}$  can be written as a one-sided linear process  $X_t = \sum_{j=0}^{\infty} \psi_j W_{t-j} = \psi(B) W_t$ .
- We have

$$\gamma(h) = \operatorname{Cov}(X_{t+h}, X_t) = \sum_{j=1}^{p} \phi_j \gamma(h-j) + \sigma_w^2 \sum_{j=h}^{q} \theta_j \psi_{j-h}, \quad h \geq 0.$$

► From there, we can write  $\gamma(h) - \sum_{j=1}^{p} \phi_j \gamma(h-j) = 0$ ,  $h \ge \max\{p, q+1\}$ , with initial conditions

$$\gamma(h) - \sum_{i=1}^{p} \phi_{j} \gamma(h-j) - \sigma_{w}^{2} \sum_{i=h}^{q} \theta_{j} \psi_{j-h} = 0, \ \ 0 \leq h < \max\{p, q+1\}.$$

#### Yule-Walker equations

▶ We first consider the case of AR(p) models,

$$X_t = \phi_1 X_{t-1} + \ldots + \theta_p X_{t-p} + W_t.$$

For h = 1, 2, ..., p, we can write

$$\gamma(h) - \sum_{j=1}^{p} \phi_j \gamma(h-j) = 0.$$

For h = 0,

$$\gamma(0) - \sum_{j=1}^{p} \phi_j \gamma(j) - \sigma_w^2 = 0,$$

which implies  $\sigma_w^2 = \gamma(0) - \sum_{j=1}^p \phi_j \gamma(j)$ .

### MoM estimator of $\phi$

- $ightharpoonup \Gamma_p$  is a  $p \times p$  matrix with its (i, j)th element  $\gamma(i j)$

- In matrix notation, the Yule-Walker equations are

$$\Gamma_{\rho}\phi=\gamma_{\rho}, \ \ \sigma_{W}^{2}=\gamma(0)-\phi'\gamma_{\rho}.$$

▶ We replace  $\gamma(h)$  by  $\hat{\gamma}(h)$  and we obtain

$$\hat{\phi} = \hat{\Gamma}_{\rho}^{-1} \hat{\gamma}_{\rho}, \ \hat{\sigma}_{W}^{2} = \hat{\gamma}(0) - \hat{\gamma}_{\rho}' \hat{\Gamma}_{\rho}^{-1} \hat{\gamma}_{\rho}.$$

In practice, both sides are usually divided by  $\hat{\gamma}(0)$  and the equation is rewritten in terms of sample ACF.



#### Large sample results

- For AR(p) models, if the sample size is large, the Yule-Walker estimators are approximately normally distributed, and  $\hat{\sigma}_W^2$  is close to the true value of  $\sigma_W^2$ .
- ▶ The asymptotic ( $T \to \infty$ ) behavior of the Yule-Walker estimators in the case of causal AR(p) processes is as follows:

$$\sqrt{T}(\hat{\phi}-\phi)\stackrel{D}{\to} \text{MVN}_{\rho}(\mathbf{0},\sigma_W^2\Gamma_{\rho}^{-1}).$$

- The Durbin-Levinson algorithm can be used to calculate  $\hat{\phi}$  without inverting  $\hat{\Gamma}_{p}$ .
- ▶ For a causal AR(p) process, asymptotically ( $T \to \infty$ ),

$$\sqrt{T}\hat{\phi}_{h,h} \stackrel{D}{\to} N(0,1)$$
, for  $h > p$ .



#### Problem of MoM for other models

- ► AR(p) models are basically linear models, and the Yule-Walker estimators are essentially least squares estimators.
- ► If we use MoM for MA or ARMA models, we will not get optimal estimators because such processes are nonlinear in the parameters.
- For the MA(1) model  $X_t = W_t + \theta W_{t-1}$ , we can write as

$$X_t = \sum_{j=1}^{\infty} (-\theta)^j X_{t-j} + W_t,$$

which is nonlinear in  $\theta$ .

- ► Here  $\gamma(0) = \sigma_W^2(1 + \theta^2)$  and  $\gamma(1) = \theta \sigma_W^2$ .
- ▶ Hence,  $\hat{\rho}(1) = \hat{\gamma}(1)/\hat{\gamma}(0) = \hat{\theta}/(1+\hat{\theta}^2)$ . Because  $|\hat{\theta}/(1+\hat{\theta}^2)| \leq 1/2$  but  $|\hat{\rho}(1)|$  does not necessarily satisfy this condition, MoM is problematic for this model.

#### ML estimation

- ▶ We first focus on the causal AR(1) case. Let  $X_t = \mu + \phi(X_{t-1} \mu) + W_t$ .
- ▶ Here  $W_t \stackrel{IID}{\sim} N(0, \sigma_W^2)$ . The likelihood is  $L(\mu, \phi, \sigma_W^2) = f(X_1, \dots, X_T | \mu, \phi, \sigma_W^2)$ .
- ▶ Due to AR(1) structure,  $L(\mu, \phi, \sigma_W^2) = f(X_1)f(X_2|X_1) \dots f(X_T|X_{T-1})$ .
- ▶ Because  $X_t|X_{t-1} \sim N(\mu + \phi(X_{t-1} \mu), \sigma_W^2)$ , we have

$$f(X_t|X_{t-1}) = f_W[(X_t - \mu) - \phi(X_{t-1} - \mu)].$$

Overall

$$L(\mu, \phi, \sigma_W^2) = f(X_1) \prod_{t=2}^{l} f_W[(X_t - \mu) - \phi(X_{t-1} - \mu)].$$

Considering  $f(X_1)$ , our approach is called unconditional least square, and after ignoring it, it is called unconditional least square.



# Thank you!