Spectral Learning for Structured Partially Observable Environments

Lucas Langer

Supervisors: Borja Balle, Doina Precup

August 29, 2015

Partially Observable Environments

Structured Environments

Goal: Predict observations

Plan: Exploit patterns

Example: Pacman

PSR: The Timing Case

• Model: Predictive State Representation (PSR) For timing we have one observation symbol: σ Notation: σ : one time unit, σ^k : k time units

- PSR defined by: $\langle \alpha_0, \{A_\sigma\}, \alpha_\infty \rangle$ α_0 : Initial weighting on states 1xn A_σ : Transition matrix nxn
 - α_{∞} : Normalizer nx1
- PSRs compute probabilities of observations $f(\sigma^k) = \alpha_0 \cdot A_{\sigma}^k \cdot \alpha_{\infty}$
 - Ex: HMMs

Spectral Learning of PSRs

Step 1: Represent Data as a Hankel Matrix

Step 2: Singular Value Decomposition

Step 3: Pick Model Size

Step 4: Learn PSR: $\langle \alpha_0, \{A_\sigma\}, \alpha_\infty \rangle$

The Base System

- Idea: Learn $\{A_{\sigma}, A_{\sigma^2}, A_{\sigma^4}, A_{\sigma^8}, ... A_{\sigma^N}\}$ as extra transition operators
- Timing queries: $f(\sigma^{11}) = \alpha_0 \cdot A_{\sigma^8} \cdot A_{\sigma^2} \cdot A_{\sigma^1} \cdot \alpha_{\infty}$
- Motivation:
 - 1) Express transitions directly
 - 2) Faster queries

Timing with the Base

Agent drives around loops until leaving through an exit state.

Base System Performance for Loops

64-16 Loop Lengths

47-27 Loop Lengths

Base System dominates for smaller models

$$||f - \hat{f}|| = \sqrt{\sum_{x \in observations} (f(x) - f(\hat{x}))^2}$$

Pacman Labyrinth

Timing Predictions

$$||f - \hat{f}|| = \sqrt{\sum_{x \in observations} (f(x) - f(x))^2}$$

Wall Color Predictions

We paint the first loop green and the second loop blue

$$||f - \hat{f}|| = \sqrt{\sum_{x \in observations} (f(x) - f(\hat{x}))^2}$$

Picking the Base System

- Observations: $\{"a^{30}":10, "a^{60}":5, "b^{18}":15\}$ Desired Base System: $A_{a^{30}}, A_{b^{18}}, A_a, A_b$
- Solution: iterative greedy heuristic
- Substring properties: long, frequent, diverse
- Entropy view of structure

Computing with the Base System

• How should we execute queries?

Goal: minimize number of matrices

Query string: "abcacb", Base System = $\{A_{ab}, A_{bca}, A_{cb}, A_a, A_b\}$

Desired partition: "a—bca—cb"

Computation: $f(abcacb) = \alpha_0 \cdot A_a \cdot A_{bca} \cdot A_{cb} \cdot \alpha_{\infty}$

• Solution: dynamic programming

Performance of Heuristics

The Big Picture

Questions?