All information is represented in binary within the computer

Registers and memory hold information as bit patterns integers (signed and unsigned) real numbers (floating point) instructions characters

Information is stored using digital devices

These devices can represent 1 (on) or 0 (off) Hence binary (base 2) is a natural representation

The meaning of the patterns depend on their interpretation And on the context in which they are used The same bit pattern can mean entirely different things

ep.jhu.edu

MIPS registers and memory words hold 32 bits

The 32-bit pattern can represent:

- a single 32-bit integer (signed or unsigned)
- a single precision floating point number
- a single machine instruction
- a group of 4 ASCII characters

A 32-bit pattern can be written as 8 hex digits:

Example: given the pattern 0x21626364

As an integer it represents **560096100** (decimal)

As floating point it represents 1.7686579 x 2-61

As a machine instruction it is addi \$2,\$11,25444

As ASCII characters it represents !bcd

ep.jhu.edu 2

The following videos explain these different encodings

They also review integer and floating point arithmetic

This will serve as a basis for discussing:

The ALU operation and implementation

The design and operation of the floating point hardware

ep.jhu.edu 3