Final Project

E_Commerce Shipping Data

Table of Contents

underscore

underscore

Data Consultant

An international e_commerce company that sells electronic products call _underscore_ to discover key insights & studies from their customer database.

Background

underscore

Problem

Late Percentage

59.7% of E_Commerce deliveries are **late**.

6563 of 10999 Customers

Background

Source:
MHL News & Last Mile
Convey's 2018 Last-Mile Delivery Report

underscore

Problem

Late

87% online shoppers identified **shipping speed** as a **key factor** for online shoppers to shop again.

In fact, price is not even as important as speed since 67% online shoppers would pay more to get same day delivery.

Stop Shopping

84% online shoppers are **unlikely to return** after a poor delivery experience.

55% online shoppers will **stop shopping** after receiving late delivery twice.

Revenue Loss

Potential profits will lose because the customer left.

52% online shoppers expect a **refund** or discount on shipping cost after receiving late delivery.

Background

Problem

underscore

underscore as a data consultant will analyze insight & make predictions model about whether the delivery will be received late / on time by the customer to help solve e_commerce shipping problems.

underscore

Background

Problem

Current Condition

Most of the E_Commerce **Deliveries** are **not**

reached on time.

Machine Learning Approach

Insight

Finding pattern from database feature

Action

Predictive model Insight & Recommendation

Business Approach

Action

Business Impact

Recommendation analysis & decision

On time rate, customer satisfaction & safe potential revenue loss

Data Understanding

Describe

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10999 entries, 0 to 10998
Data columns (total 12 columns):
    Column
                Non-Null Count Dtype
                10999 non-null int64
    ΤD
    Warehouse
                10999 non-null object
    Shipment
                10999 non-null object
    Calls
                10999 non-null int64
    Rating
                10999 non-null int64
    Cost
                10999 non-null int64
                10999 non-null int64
    Purchase
    Importance 10999 non-null object
    Gender
                10999 non-null object
                10999 non-null int64
    Discount
    Weight
                10999 non-null int64
11 Late
                10999 non-null int64
dtypes: int64(8), object(4)
memory usage: 1.0+ MB
```

underscore

```
10999
Rows
```

Columns

```
cats = ['ID', 'Warehouse', 'Shipment', 'Rating', 'Importance', 'Gender', 'Late']
nums = ['Calls', 'Cost', 'Purchase', 'Discount', 'Weight', ]
```

Data Understanding

underscore

Feature

0 = On Time 1 = Late

Ship & Warehouse F has the highest frequency of delivery. But it looks almost the same based on the percentage. There's an assumtion that the late is influenced by other factors.

Data Understanding

underscore

0 = On Time 1 = Late

By percentage, lateness based on calls as well as based on importance is almost identical. **The more calls are the less late delivery.**

Data Understanding

underscore

Feature

- Every product that gets a discount above 10 is confirmed Late. There is an assumption that this happens in specific months, but needs further checking.
- Shipping delivery is confirmed late when the product weight is between 2-4 kg.

0 = On Time 1 = Late

Data Understanding

Feature

- 0.8

- 0.6

- 0.0

- -0.2

- -0.4

Process & Model

underscore

Data Processing

Missing & Duplicate	No missing & duplicate values in dataset
Outliers	Remove & replace outliers based on IQR limit
Selection	Drop 'ID' feature which has unique number
Encoding	One hot & ordinal encoding for categorical feature
Normalization	Normalization for numerical feature

Process & Model

Data Processing

df_p	<pre>df_project.info()</pre>					
≺cla	ss 'pandas.core.f	rame.DataFrame'>				
	4Index: 9996 entr					
	columns (total 1					
#	Column	Non-Null Count	Dtype			
0	Calls	9996 non-null	float64			
1	Rating	9996 non-null	float64			
2	Cost	9996 non-null	float64			
3	Purchase	9996 non-null	float64			
4	Importance	9996 non-null	float64			
5	Discount	9996 non-null	float64			
6	Weight	9996 non-null	float64			
7	Late	9996 non-null	float64			
8	Warehouse_A	9996 non-null	float64			
9	Warehouse_B	9996 non-null	float64			
10	Warehouse_C	9996 non-null	float64			
11	Warehouse_D	9996 non-null	float64			
12	Warehouse_F	9996 non-null	float64			
13	Shipment_Flight	9996 non-null	float64			
14	Shipment_Road	9996 non-null	float64			
15	Shipment_Ship	9996 non-null	float64			
16	Gender_F	9996 non-null	float64			
17	Gender_M	9996 non-null	float64			

underscore

- Replace outliers for `Discount` Feature with IQR Limit.
- Remove outliers for `Purchase` feature by IQR Limit
- Displayed in the boxplot that there are no outliers appeared after data processing.

Process & Model

Primary: Recall

Secondary: Average Precision

underscore

Modeling Result

		Random Forest	Logistic Regression	AdaBoost	XGBoost	Logisti	c Regressio	n
	Accuracy	0.67	0.64	0.66	0.64		Predict	ed Label
	Precision	0.84	0.69	0.78	0.72			
3	Recall	0.57	0.73	0.60	0.68		TRUE POSITIVE	FALSE NEGATIVE
0	F1-Score	0.68	0.71	0.68	0.70		(TP) 1318	(FN) 498
S	ROC AUC	0.70	0.62	0.68	0.66	Actual	43.95%	16.61%
CO	AP	0.74	0.67	0.70	0.68	Label	FALSE POSITIVE	TRUE NEGATIVE
Q	AP Train	0.74	0.67	0.72	0.93		(FP)	(TN)
(D	AP Test	0.74	0.67	0.70	0.68		581 19.37%	602 20.07%

Process & Model

Modeling Result

underscore

Top 5 Coefficient				
Features Coeff				
Discount	8.03			
Importance	0.144			
Rating	0.096			
Warehouse_D	0.05			
Gender_M	0.04			

Top 5 coefficients show **direct** relationship to the target 'Late'.

Recommendation

On Time Rate

underscore

On Time Rate

On-time rate potentially increase by 108% from the previous 40.3% to become 83.9% after action based on predictive modeling

Recommendation

Potential Revenue Loss Saved

underscore

\$ 196.8

\$ 1.291.729,66

Avg Revenue
Per customer

Potential Revenue Loss

\$ 942.964,62

73%

Potential Revenue Loss Saved

If the late customers stops shopping then the potential revenue loss for the company is approx \$ 1.3 million.

But with predictive model, company can potentially save \$ 942 thousand.

Recommendation

Customers Satisfaction

underscore

Customer Rating

Our model gives an 11.7% increase in customer rating.

It is proven with the previous average rating score of 2.99 becomes 3.34.

That can be increased by adding 1 star to the predicted 'Late' except for customers who have given 5 stars since 5 is the maximum value can be given.

Recommendations

underscore

Short Terms

Long Terms

Add Estimated
Package Arrived
Time

Credit Points

More Features

Operational Audit

Add estimated arrival time to assure the package arrived on time

Give credit points as a compensations to retain customer loyalty Add more features to give more specific insights

Perform operational audit based on the insights

THANK YOU!

Appendix

Confusion Matrix

underscore

	Predicted Class POSITIVE (Late)	Predicted Class NEGATIVE (On Time)
Actual Class POSITIVE (Late)	TRUE POSITIVE (TP) Late Predicted Late	FALSE NEGATIVE (FN) Late Predicted On Time
Actual Class NEGATIVE (On Time)	FALSE POSITIVE (FP) On Time Predicted Late	TRUE NEGATIVE (TN) On Time Predicted On Time

Primary: Recall (True Positive Rate)

Secondary: Average Precision

Appendix

Model

```
xlr4 = df project.drop(columns = ['Late']) #feature
ylr4 = df project['Late'] #target
from sklearn.model selection import train test split
xlrtrain4, xlrtest4, ylrtrain4, ylrtest4 = train test split
(xlr4, vlr4, test size = 0.3, random state = 33)
from sklearn.linear model import LogisticRegression
modelLR4 = LogisticRegression(random state=33)
modelLR4.fit(xlrtrain4, ylrtrain4)
LogisticRegression(random state=33)
y pred trainLR4 = modelLR4.predict(xlrtrain4)
 v pred trainLR4
array([0., 1., 1., ..., 0., 1., 1.])
y predLR4 = modelLR4.predict(xlrtest4)
array([0., 1., 1., ..., 1., 0., 1.])
 modelLR4.predict proba(xlrtest4)
array([[0.73636491, 0.26363509],
       [0.06400512, 0.93599488],
       [0.39181156, 0.60818844],
       [0.07131088, 0.92868912],
       [0.61616682, 0.38383318],
       [0.4189624 . 0.5810376 ]])
model evaluation(modelLR4, y predLR4, xlrtrain4, ylrtrain4, xlrtest4, ylrtest4)
Accuracy: 0.640
Precision: 0.694
Recall : 0.726
 F-1Score : 0.710
ROC AUC : 0.617
 AP : 0.670
```

```
print('AP test score : ',average_precision_score(ylrtest4, y_predLR4))
print('AP train score : ',average_precision_score(ylrtrain4, y_pred_trainLR4))

AP test score : 0.6697762992800597
AP train score : 0.6653809655739695

print('train Accuracy : ',modelLR4.score(xlrtrain4, ylrtrain4))
print('test Accuracy : ',modelLR4.score(xlrtest4, ylrtest4))

train Accuracy : 0.640988995283693
test Accuracy : 0.640213404468156
```


Appendix

Coefficient Logistic Regression

```
print(modelLR4.intercept_)

[1.23464873]

print(modelLR4.coef_)

[[-0.71546752  0.09661052 -0.31429438 -2.20297555  0.1440757  8.03198014  -2.40729906 -0.0680354  0.02322063  0.03060397  0.05114368 -0.0352052  0.01004352 -0.03501893  0.02670308 -0.04108585  0.04281352]]
```

underscore

	_				
	Feature	Coefficient			
0	Discount	8.031980			
1	Importance	0.144076			
2	Rating	0.096611			
3	Warehouse_D	0.051144			
4	Gender_M	0.042814			
5	Warehouse_C	0.030604			
6	Shipment_Ship	0.026703			
7	Warehouse_B	0.023221			
8	Shipment_Flight	0.010044			
9	Shipment_Road	-0.035019			
10	Warehouse_F	-0.035205			
11	Gender_F	-0.041086			
12	Warehouse_A	-0.068035			
13	Cost	-0.314294			
14	Calls	-0.715468			
15	Purchase	-2.202976			
16	Weight	-2.407299			

Appendix

underscore

On Time Rate Growth Calculation

EXISTING				
	#	%		
Delivery	10.999	100%		
Late	6.563	59.7%		
On Time	4.436	40.3%		

AFTER MODEL PREDICTION					
	var	#	%		
Delivery	а	10.999	100%		
Late	b	6.563	59.7%		
Predicted Late	С	4.791	73%		
Predicted on Time	d	1.772	27%		
Late After Prediction	e (b-c)	1.772	16.11%		
On Time	f	4.436	40.3%		
On Time After Prediction	g (f+c)	9.227	83.89%		
On Time Growth Rate	4.436 to 9227 = 108%				

Appendix

underscore

Potential Revenue Loss Saved Calculation

	<u>Delivery</u>	<u>Cost</u>	<u>Discount</u>	<u>Revenue</u>	Avg Revenue
	a	b	c	d (b - c)	e (d / a)
Delivery	10.999	Cost Feature	Discount Feature	Revenue	\$196.8

	<u>Delivery</u> a	Avg Revenue b	Potential Revenue c (a * b)	<u>%</u> b
Late	6.563		\$ 1.291.729,66	100%
Predicted On Time	1.772	\$196.8	\$ 348.765,04	27%
Predicted Late	4.791		\$ 942.964,62	73%

Appendix

underscore

Rating Growth Calculation

	<u>Delivery</u> a	<u>Rating</u> b	Avg Rate c (b / a)
Delivery	10.999	32.893	2.99
Predicted Late Customers potentially increase their Rating by 1 (except if the customer already gave Rating = 5)	4.791 - 20% = 3833	32.893 + 3833 = 36.726	3.34
Rating Growth Rate	2.99 to 3.34 = 11.7%		

	Late	Rate 5
Customers	6.563	1.317 (20%)

20% from all Late customers give 5 rating