Untitled

January 27, 2025

```
[1]: import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from datetime import datetime
    import numpy as np
     # Read the CSV files
    customers_df = pd.read_csv('Customers.csv')
    products_df = pd.read_csv('Products.csv')
    transactions_df = pd.read_csv('Transactions.csv')
    # Basic data exploration
    print("=== Data Overview ===")
    print("\nCustomers Dataset Info:")
    print(customers_df.info())
    print("\nProducts Dataset Info:")
    print(products_df.info())
    print("\nTransactions Dataset Info:")
    print(transactions_df.info())
    # Convert date columns to datetime
    customers_df['SignupDate'] = pd.to_datetime(customers_df['SignupDate'])
    transactions df['TransactionDate'] = pd.
      →to_datetime(transactions_df['TransactionDate'])
     # Merge datasets for analysis
    transactions with customer = transactions df.merge(customers df,
      ⇔on='CustomerID')
    full_data = transactions_with_customer.merge(products_df, on='ProductID')
     # 1. Customer Regional Analysis
    regional_revenue = full_data.groupby('Region')['TotalValue'].agg(['sum',_
     print("\n=== Regional Analysis ===")
    print(regional_revenue)
     # Visualize regional revenue
```

```
plt.figure(figsize=(10, 6))
sns.barplot(data=full_data, x='Region', y='TotalValue', estimator='sum')
plt.title('Total Revenue by Region')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('regional_revenue.png')
# 2. Product Category Analysis
category metrics = full data.groupby('Category').agg({
    'TotalValue': ['sum', 'mean'],
    'Quantity': 'sum',
    'TransactionID': 'count'
}).round(2)
print("\n=== Product Category Analysis ===")
print(category_metrics)
# 3. Customer Purchase Patterns
customer_metrics = full_data.groupby('CustomerID').agg({
    'TransactionID': 'count',
    'TotalValue': 'sum',
    'ProductID': 'nunique'
}).rename(columns={
    'TransactionID': 'total_transactions',
    'TotalValue': 'total spent',
    'ProductID': 'unique_products'
})
print("\n=== Customer Purchase Patterns ===")
print(customer metrics.describe().round(2))
# 4. Time-based Analysis
monthly_sales = full_data.groupby(pd.Grouper(key='TransactionDate',_

¬freq='M'))['TotalValue'].sum()
plt.figure(figsize=(12, 6))
monthly sales.plot()
plt.title('Monthly Sales Trend')
plt.xlabel('Date')
plt.ylabel('Total Sales')
plt.tight_layout()
plt.savefig('monthly_sales.png')
# 5. Product Performance
product_performance = full_data.groupby('ProductName').agg({
    'Quantity': 'sum',
    'TotalValue': 'sum',
    'TransactionID': 'count'
}).sort_values('TotalValue', ascending=False)
print("\n=== Top 10 Products by Revenue ===")
```

```
print(product_performance.head(10))
# Generate Business Insights
print("\n=== Key Business Insights ===")
# Insight 1: Regional Performance
top_region = regional_revenue.sort_values('sum', ascending=False).index[0]
print(f"\n1. Regional Performance: {top_region} leads in revenue generation_
 ⇔with "
     f"${regional_revenue.loc[top_region, 'sum']:,.2f} in total sales."
     f"The region also has {regional_revenue.loc[top_region, 'count']:,}_\_
 ⇔transactions.")
# Insight 2: Product Category Success
top_category = category_metrics.sort_values(('TotalValue', 'sum'),_
 ⇒ascending=False).index[0]
print(f"\n2. Product Category Success: {top_category} is the most successful⊔
 ⇔category, "
      f"generating ${category_metrics.loc[top_category, ('TotalValue', 'sum')]:
 ⇔,.2f} in revenue "
      f"with an average transaction value of ${category_metrics.
 →loc[top_category, ('TotalValue', 'mean')]:,.2f}.")
# Insight 3: Customer Behavior
avg_customer_transactions = customer_metrics['total_transactions'].mean()
avg_customer_spend = customer_metrics['total_spent'].mean()
print(f"\n3. Customer Behavior: On average, customers make_
 f"with an average total spend of ${avg_customer_spend:,.2f}.")
# Insight 4: Sales Trends
recent_trend = monthly_sales.pct_change().tail(3).mean() * 100
print(f"\n4. Sales Trends: Recent 3-month sales trend shows a {recent_trend:.
 →1f}% "
     f"average monthly growth rate.")
# Insight 5: Product Performance
top_product = product_performance.index[0]
top_product revenue = product performance.loc[top_product, 'TotalValue']
print(f"\n5. Top Product: {top_product} is the best-performing product, "
     f"generating ${top_product_revenue:,.2f} in total revenue.")
# Save insights to PDF
from fpdf import FPDF
pdf = FPDF()
```

```
pdf.add_page()
pdf.set_font('Arial', 'B', 16)
pdf.cell(0, 10, 'Business Insights Report', ln=True, align='C')
pdf.set_font('Arial', '', 12)
insights = [
    f"Regional Performance: {top_region} leads in revenue generation with⊔
 ⇒${regional_revenue.loc[top_region, 'sum']:,.2f} in total sales. The region_
 →also has {regional_revenue.loc[top_region, 'count']:,} transactions.",
    f"Product Category Success: {top category} is the most successful category, __
 Generating ${category_metrics.loc[top_category, ('TotalValue', 'sum')]:,.2f}∟
  →in revenue with an average transaction value of ${category_metrics.
  ⇔loc[top_category, ('TotalValue', 'mean')]:,.2f}.",
    f"Customer Behavior: On average, customers make {avg_customer_transactions:.
 →1f} transactions with an average total spend of ${avg_customer_spend:,.2f}.",
    f"Sales Trends: Recent 3-month sales trend shows a {recent trend: .1f}%
 ⇒average monthly growth rate.",
    f"Top Product: {top_product} is the best-performing product, generating_
 →${top_product_revenue:,.2f} in total revenue."
pdf.ln(10)
for i, insight in enumerate(insights, 1):
    pdf.set_font('Arial', 'B', 12)
    pdf.cell(0, 10, f'Insight {i}:', ln=True)
    pdf.set_font('Arial', '', 12)
    pdf.multi_cell(0, 10, insight)
    pdf.ln(5)
pdf.output('business_insights.pdf')
=== Data Overview ===
<class 'pandas.core.frame.DataFrame'>
```

Customers Dataset Info:

RangeIndex: 200 entries, 0 to 199

Data columns (total / columns).

Data	columns (tota.	L 4 columns):		
#	Column	Non-Null Count	Dtype	
0	CustomerID	200 non-null	object	
1	${\tt CustomerName}$	200 non-null	object	
2	Region	200 non-null	object	
3	${\tt SignupDate}$	200 non-null	object	
<pre>dtypes: object(4)</pre>				
memoi	ry usage: 6.4+	KB		
None				

Products Dataset Info:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 100 entries, 0 to 99 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	${\tt ProductID}$	100 non-null	object
1	${\tt ProductName}$	100 non-null	object
2	Category	100 non-null	object
3	Price	100 non-null	float64

dtypes: float64(1), object(3)

memory usage: 3.3+ KB

None

Transactions Dataset Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	${\tt TransactionID}$	1000 non-null	object
1	CustomerID	1000 non-null	object
2	ProductID	1000 non-null	object
3	${\tt TransactionDate}$	1000 non-null	object
4	Quantity	1000 non-null	int64
5	TotalValue	1000 non-null	float64
6	Price	1000 non-null	float64

dtypes: float64(2), int64(1), object(4)

memory usage: 54.8+ KB

None

=== Regional Analysis ===

_	sum	count	mean
Region			
Asia	152074.97	218	697.59
Europe	166254.63	234	710.49
North America	152313.40	244	624.24
South America	219352.56	304	721.55

=== Product Category Analysis ===

	TotalValue		${\tt Quantity}$	${\tt TransactionID}$
	sum	mean	sum	count
Category				
Books	192147.47	711.66	681	270
Clothing	166170.66	728.82	590	228
Electronics	180783.50	711.75	627	254
Home Decor	150893.93	608.44	639	248

=== Customer Purchase Patterns ===

	total_transactions	total_spent	unique_products
count	199.00	199.00	199.00
mean	5.03	3467.31	4.89
std	2.20	1832.68	2.11
min	1.00	82.36	1.00
25%	3.00	2162.04	3.00
50%	5.00	3137.66	5.00
75%	6.00	4770.23	6.00
max	11.00	10673.87	10.00

C:\Users\Gaurav\AppData\Local\Temp\ipykernel_14444\3817245526.py:65: FutureWarning: 'M' is deprecated and will be removed in a future version, please use 'ME' instead.

monthly_sales = full_data.groupby(pd.Grouper(key='TransactionDate',
freq='M'))['TotalValue'].sum()

=== Top 10 Products by Revenue ===

	Quantity	TotalValue	${\tt TransactionID}$
ProductName			
ActiveWear Smartwatch	100	39096.97	40
SoundWave Headphones	97	25211.64	38
SoundWave Novel	58	24507.90	20
ActiveWear Jacket	76	22712.56	26
ActiveWear Rug	79	22314.43	29
TechPro Headphones	45	19513.80	17
BookWorld Cookbook	48	19221.99	20
BookWorld Sweater	47	18743.79	19
TechPro Textbook	62	18267.96	25
ActiveWear Cookware Set	51	18083.73	21

⁼⁼⁼ Key Business Insights ===

- 1. Regional Performance: South America leads in revenue generation with \$219,352.56 in total sales. The region also has 304 transactions.
- 2. Product Category Success: Books is the most successful category, generating \$192,147.47 in revenue with an average transaction value of \$711.66.
- 3. Customer Behavior: On average, customers make 5.0 transactions with an average total spend of \$3,467.31.
- 4. Sales Trends: Recent 3-month sales trend shows a 0.8% average monthly growth rate.
- 5. Top Product: ActiveWear Smartwatch is the best-performing product, generating \$39,096.97 in total revenue.

[1]: ''

[]: