МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА

Кафедра дискретного аналізу та інтелектуальних систем

Індивідуальне завдання №1

з курсу "Теорія ймовірності та математична статистика"

Виконав: студент групи ПМі-21 Урбанський Максим

Оцінка

Перевірила: доц. Квасниця Г.А.

Постановка задачі:

- 1. Згенерувати вибірку заданого об'єму (не менше 50) з вказаного проміжку для дискретної статистичної змінної. На підставі отриманих вибіркових даних:
 - побудувати варіаційний ряд та частотну таблицю; представити графічно статистичний матеріал, побудувати графік емпіричної функції розподілу; обчислити числові характеристики дискретного розподілу.
- **2**. Згенерувати вибірку заданого об'єму (не менше 50) з вказаного проміжку для неперервної статистичної змінної. На підставі отриманих вибіркових даних:
 - утворити інтервальний статистичний розподіл, побудувати гістограму та графік емпіричної функції розподілу, обчислити числові характеристики.

Короткі теоретичні відомості:

Генеральна сукупність – це вся сукупність об'єктів, які досліджуються. **Вибірка або статистичний матеріал** – це об'єкти, довільно або випадково відібрані з генеральної сукупності для дослідження.

Обсяг (об'єм) сукупності — це кількість об'єктів цієї сукупності.

Коли реалізується вибірка, кількісна ознака, наприклад X, набуває конкретних числових значень X = xi які називають **варіантою.**

Варіаційним називають ряд, в якому варіанти упорядковані за зростанням.

Частинні інтервали варіант, які розміщені у зростаючій послідовності, утворюють інтервальний варіаційний ряд.

Додатне число n_i , яке показує, скільки разів варіанта x_i (i=1,...,m) трапляється в таблиці даних, називається **частотою варіанти**. Ряд n_1 , n_2 , ..., n_m називається **рядом частот**.

Відношення частоти n_i варіанти x_i називають її **відносною частотою** і позначають через W_i , тобто

$$W_i = \frac{n_i}{n}$$

Статистичний розподіл вибірки встановлює зв'язок між рядом варіант, що зростає або спадає, і відповідними частотами. Він може бути зображений у вигляді

таблиці і називається таблицею частот:

x_i	x_1	x_2	•••	x_m
n_i	n_1	n_2	•••	n_m

Залежність між упорядкованим рядом варіант і відповідними їм відносними частотами називається статистичним розподілом відносних частот вибірки:

x_i	x_1	x_2	 x_m
W_i	$\frac{n_1}{n}$	$\frac{n_2}{n}$	 $\frac{n_m}{n}$

Перелік часткових інтервалів і відповідних їм частот, або відносних частот називають інтервальним статистичним розподілом вибірки:

h	$x_0 - x_1$	$x_1 - x_2$	•••	$x_{k-1} - x_k$
n_i	n_1	n_2	•••	n_k
W_i	W_{I}	W_2	•••	W_k

Дискретний статичтичний розподіл вибірки можна зобразити графічно у вигляді ламаної лінії, відрізки якої сполучають координати точкок $(x_i; n_i)$, або $(x_i; W_i)$. У першому випадку ламану лінію називають **полігоном частот**, у другому - **полігоном відносний частот**.

Діаграма частот - на вісі абсцис розташовані можливі значення дискретної величини і в цих точках відповідні частоти n_i

Ступінчасту фігуру, яка складається з прямокутників, основами яких ϵ частинні

 $\frac{n_i}{h}$ інтервали варіант довжиною $\mathbf{h} = \mathbf{x_i} - \mathbf{x_{i-1}}$, а висоти дорівнюють $\frac{n_i}{h}$ або називають **гістограмою частот** або **гістограмою відносних частот** відповідно.

Емпіричною функцією розподілу називають функцію $F_n(x)$, яка визначає для кожного значення х відносну частоту події X < x.

$$F_n(x) = \begin{cases} 0, & x < x_{(1)}, \\ \frac{m_i}{n}, & x_{(i)} \le x < x_{(i+1)}, & (i = \overline{1, n-1}), \\ 1, & x_{(n)} \le x, \end{cases}$$

де, ті- кількість елементів вибірки, які не більші за х.

Числові характеристики дискретного розподілу:

• Середнім арифметичним називається сума всіх елементів статистичного матеріалу, поділена на обсяг статистичного матеріалу, позначається \tilde{x} .

$$\tilde{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Модою статистичного матеріалу називають той елемент цієї вибірки, який найчастіше трапляється у ній.

Моду вибірки позначаємо *Мо*. Очевидно, що вибірка може мати декілька мод.

- Медіаною називають варіанту, яка ділить варіаційний ряд на дві частини, які рівні за числом варіант.
- Девіація сума квадратів відхилень елементів статистичного матеріалу від середнього арифметичного.

$$dev = \sum_{i=1}^{n} n_i (x_i - \tilde{x})^2$$

• Варіансою називають середнє квадратичне відхилення значень у вибірці від

$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \tilde{x})^2}{n-1}$$

їх середнього значення, поділене на n - 1:

• Вибірковою дисперсією називають середнє значення квадратів відхилення варіант від дисперсії з урахуванням відповідних частостей.

$$D = \frac{\sum_{i=1}^{n} (x_i - \tilde{x})^2}{n}$$

• Вибірковим середньоквадратичним відхиленням називають квадратний корінь із вибіркової дисперсії:

$$\sigma = \sqrt{D}$$
.

• Стандартом називається додатній арифметийний корінь з варіанси

$$s = +\sqrt{s^2}$$

• **Розмах** – це різниця між найбільшим і найменшим значенням варіаційного ряду (між крайніми елементами)

$$R = x_{max} - x_{min}$$

• **Асиметрією** (γ1) або скошеністю статистичного матеріалу називається відношення третього центрального моменту до другого центрального моменту в степені півтора.

$$A_S = \gamma_1 = \frac{\mu_3}{\mu_2^{3/2}}$$

• **Ексцесом** (γ2) (крутістю, сплющеністю) статистичного матеріалу називається відношення четвертого центрального моменту до другого центрального моменту в квадраті мінус три.

$$E_k = \gamma_2 = \frac{\mu_4}{\mu_2^2} - 3$$

Моментом або статистичним момен-

том порядку k відносно константи с вибірки x_1, x_2, \dots, x_n називають середнє арифметичне k-их степенів усіх відхилень елементів цієї вибірки від константи с.

Цю величину позначають $M_k(c)$. Отже,

$$M_k(c) = \frac{1}{n} \sum_{i=1}^{n} (x_i - c)^k, \quad (k = 0, 1, ...).$$

Програмна реалізація:

Для виконання завдання я використовував мову програмування Python, середовище Jupyter Notebook і бібліотеку matplotlib.pyplot для графіків

Завдання 1

Користувач вводить мінімальне і максимальне значення для елементів вибірки, а також її розмір, після чого генерується масив рандомних значень в заданих межах.

Функцією get_variant_row сортую масив і виводжу варіаційний ряд.

Функції get_frequency_table і show_frequency_table створюють таблицю чистот і виводять її.

freq_diagram i freq_polygon - функції для представлення статистичного матеріалу у вигляді діаграми частот і полігону частот відповідно.

Функції, які обчислюють числові характеристики: get_average, get_mediana, get_moda, get_dev, get_variance, get_dyspersia get_square_avg, get_standart, get_scope, get_moment, get_asymetry, get_exes.

Функція emp_func створює emпіричну функцію a функція plot_emp_func pucyє її.

Завдання 2

Користувач вводить число інтервалів на які хоче поділити вибірку.

Функція create_intervals формує інтервали з вибірки.

Функція plot_histogram подає дані у вигляді гістограми

plot_interval_emp_func - функція, яка рисує емпіричну функцію для інтервальної вибірки. Для знаходження цієї функції використовується раніше створена функція emp_func.

Функції, які обчислюють числові характеристики для інтервальної вибірки:

get_interval_average, get_interval_median, get_interval_moda, get_interval_deviation, get_interval_variance, get_interval_standart, get_interval_dyspersia, get_interval_square_avg, get_interval_moment, get_interval_asymetry, get_interval_exes, get_interval_scope

Отримані результати:

Кількість: 50

Ліва границя: 3

Права границя: 15

Вибірка:

```
[7, 8, 8, 11, 12, 4, 14, 9, 8, 5, 10, 8, 13, 13, 7, 6, 14, 13, 13, 3, 15, 8, 8, 5, 14, 7, 11, 5, 7, 13, 4, 7, 6, 3, 6, 13, 8, 5, 12, 7, 13, 5, 14, 10, 14, 9, 9, 13, 15, 7]
```

Варіаційний ряд:

```
[3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15]
```

Частотна таблиця:

Час	тотна	таблиця	
Xi		Ni	
3		2	
4		2	
5		5	
6		3	
7		7	
8		7	
9		3	
10		2	
11		2	
12		2	
13		8	
14		5	
15		2	

Графічне представлення статистичного матеріалу:

Графік емпіричної функції

Числові характеристики:

```
Числові характеристики:
Середнє арифметичне: 9.18
Медіана: 10.5
Мода: [13]
Девіація: 615.38000000000001
Варіанса: 12.558775510204084
Вибіркова дисперсія: 12.307600000000003
Середньоквадратчне відхилення вибірки: 3.5082189213331603
Стандарт: 3.543836270230904
Варіація: 0.3860388093933447
Розмах: 12
Момент 2: 12.307600000000003
Момент 3: 3.248064000000006
Момент 4: 264.16774671999997
Асиметрія: 0.07522540218315615
Excec: -1.2560539504511046
```

Інтервальний розподіл

```
Interval n
(3.0, 6.0) 9
(6.0, 9.0) 17
(9.0, 12.0) 7
(12.0, 15.0) 17
```

Гістограма

Емпірична функція інтервального розподілу Функція емпіричного розподілу

Числові характеристики: Середнє арифметичне: 9.42 Медіана: 3.2611764705882353 Мода: 7.33333333333333

Девіація: 571.68

Варіанса: 190.5599999999999 Вибіркова дисперсія: 142.92

Середньоквадратчне відхилення вибірки: 11.954915307102764

Варіація: 1.4654296328439402 Стандарт: 13.804347141389917

Розмах: 12.0

Момент 2: 11.43359999999998 Момент 3: -0.575423999999936

Момент 4: 204.49677312

Асиметрія: -0.014883788151693549

EKCec: -1.4356984689960592

Висновок:

Під час цієї індивідуальної роботи я навчився будувати варіаційний ряд, будувати частотну таблицю, діаграму частот, полігон частот та гістограму частот, будувати емпіричну функцію розподілу та обчислювати всі числові характеристики для інтервального та дискретного розподілів.