

S.N. 09/890,168

"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 1 of 15

Fig. 1

S.N. 09/890,168
"METHOD AND DEVICE FOR DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR) Page 2 of 15

S.N. 09/890,168

"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 3 of 15

Fig. 3

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 4 of 15

Fig. 4

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 5 OF 15

Fig. 5

Fig. 6

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 6 of 15

[Table 1]

RECEIVED

Description of Reference plane:

MAR 0 2 2004

Technology Center 2600

Reference plane::= Model of the ground

<Ref ID> text

---- Name of reference plane

<Plane>

cordinates

---- Center of the Area (e.g. (0,0))

<Metric> array of numeric

---- define transformation (e.g. 3×3 matrix for

Affine transformation)

Description of Zone Description:

Zone Description: = Define meaningful space on the ground

<Zone ID> text

--- Identified the zone on the ground

(e.g. Goal, Center line)

<Space>

space desc

---- define the space on the ground

Description of Camera Spec (option):

Camera Spec::= Define camera model

<Camera Type> text

Identify camera model

<Param Array> array of nume

array of numeric ---- define model transformation

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 7 of 15

[Table 2]

RECEIVED

MAR 0 2 2004

Technology Center 2600

Description of Action:

Acrion: Describe single player's action

<Action ID> text.

--- Action Symbol (e.g. Run, Kick Walk, etc)

(text representing types of actions)

<T-Interval> time interval

--- Time Interval of this action (represented

by starting and ending times)

<Object ID> numeric

---- Object Identifier (object of this action)

<Trajectory> Time Stamped Polyline
(a line with a time attribute of each node) ---- Trajectory of the player in this action (trajectory of an object on reference plane in the time interval of this action)

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 8 of 15

RECEIVED

[Table 3]

MAR 0 2 2004

Description of IAction:

Technology Center 2600

1Action::= Meaningful event in the domain, composed of multiple players and ball

Action ID> text

--- Event Symbol

(e.g. Shot, Pass, Through Pass, etc) (text representing types of events)

<T-Interval>

time interval

-- Time interval of this action

<No of Object> numeric

---- Number of Objects

<Object ID>

array of numeric ---- Array of Objects identifier

<Space>

Trajectory
Polylines, Polygons

- Spatial description of this action

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 9 of 15

[Table 4]

RECEIVED

Definition of IAct:

MAR 0 2 2004

begin

Technology Center 2600

Definition of IAct

A list of an IAct, a child Act and a child ball (a child IAct and a child Act, etc. mean an IAct and an Act comprising this IAct)

where

[All the judgment parts and judgment statements with auxiliary functions are linked by AND]

fill

[An element assignment part of a defined IAct]

end

Here, variable symbols in a define statement have respective types which are represented by a first character of each variable. The types are as follows.

Type	Description	
f	a frame	
t	a time interval (consisting of starting and ending frames)	
0	an object	
O	a group of objects (consisting of a set of objects and the number of them)	
p	a point (consisting of spatial component x and y)	
P	a group of points (consisting of a set of points and the number of them)	
Α	a group of points, which means a polyline linking them	
1	a time point (consisting of spatial component x, y and time component t)	
L	a group of time points (consisting of a set of time points and the number of them)	
i	an integer	
d	a real number	

S.N. 09/890,168

"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 10 of 15

RECEIVED

MAR 0 2 2004

[Table 5]

Line	Define statement	Description
1	begin	Beginning.
2	iact Through_pass to OO LO	Here, it defines an lact "Through Pass".
3	child_iact Pass t O L	lact pass as one comprising this lact.
4	child_act 3 Stay Walk Run t2 o2 false L2	And an Act of defense side player 1 (it means that a player with object ID o2 (Stayed, Walked or Ran) moving on trajectory L2 during time interval 12).
5		
6 7	child_act 3 Stay Walk Run t3 o3 false L3	An Act of defense side player 2.
8	greater_than o2 o3	Two players of the defense side have different object IDs (their IDs are 02, 03).
9	get_object_from_GO o4 1 O1	Take the first player of lact ("Pass") to put in variable 04.
10	not_same_team o4 o2	o4 and o2 are different teams.
11	not_same_team o4 o3	o4 and o3 are different teams.
12	set_length_of_polyline d0 L1	Length of a pass is measured.
13	less_than d0 20.0	Length of 20 m or less.
14	temporal_overlap t2 t3	Two players of the defense side have overlapping time intervals.
15	set_temporal_overlapping_period t4 t2 t3	
16	temporal_overlap t1 t4	There is an overlap in time intervals of t4 and an lact pass.
17	set_temporal_overlapping_period t5 t1 t4	Overlapping time intervals (consequently, overlapping Acts and lact passes of the two players of the defense side) to variable 15.
18	get_frame_start_of_period f0 t5	Put a starting frame of time interval t5 in time point fO.
19	get_frame_end_of_period fl t5	Put an ending frame of time interval 15 in time point fl.
20	set_ST_GL_dividing_point p0 L2 f0	The position (location) of player 1 of the defense side at time point fO to variable pO.
21	setS_ST_GL_dividing_point p1 L3 f0	The position (location) of player 2 of the defense side at time point 10 to variable p1.
22	set_ST_GL_dividing_point p2 L2 f1	The position (location) of player 1 of the defense side at time point f1 to variable p2.
23	set_ST_GL_dividing_point p3 L3 f1	The position (location) of player 1 of the defense side at time point f1 to variable p3.
24	get_point_from_polyline p4 l L1	The starting point of a pass to p4.
25	get_point_from_polyline p5 -1 L1	The ending point of a pass to p5.
26	Create_line P1 2 p4 p5	Create a line linking p4 and p5 (a pass course).
27	Create_line P2 2 p0 p1	A line linking pO and p1 (a line linking the two players of the defense side at time point fO).
28	Creste_line P3 2 p2 P3	A line linking p2 and p3 (a line linking the two players of the defense side at time point f1).
29	spatial_cross P1 P2	P1 and P2 are crossing.
30	set_distance_point_and_line d1 p0 p4 p5	The distance from pass course pO at time point fO is sought.
31		The distance from pass course p1 at time point fO is sought.
32	less_than d1 7.0	The distance is 7 m or less.
33	less_than d2 7.0	Same.
34	spatial_cross P1 P3	P1 and P are crossing.
35		The distance from a pass course at time point fl is sought as above.
36	set_distance_point_and_line d4 p3 p4 p5	
37	100	The distance is 7 m or less.
38	less_than d4 7.0	
39		If the above conditions are met,
40		Assign the time interval of 11 (lact pass) to tO (the time interval of an lact through pass).
41	- 1	Assign the group of objects of O1 (lact pass) to O1 (the group of objects of an lact through pass).
42		Assign L1 (a trajectory of lact pass) to LO (spatial representation of lact through pass).
43	end 1	End.

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 11 of 15

[Table 6]

39 end

Line Define statement

pass: 2 begin 3 Iact Pass t0 O0 L0 4 Child act Kick|Jump|Sliding t1 o1 L1 5 Child act Run|Stay|Walk t2 o2 L2 6 Ball t3 L3 7 where 8 same_team(o1,o2) get_frame_start_period f1 t3 10 get_frame end period f2 t3 11 temporal_overlap t1 t3 12 temporal_overlap t2 t3 13 set ST GL dividing point pl fl L3 14 set ST GL dividing point p2 f2 L3 15 set_ST_GL_dividing_point p3 f1 L1 16 set_ST_GL dividing point p4 f2 L2 17 set_distance_point_to_point_d1 p1 p3 18 set distance point to point d2 p2 p4 19 Less_than d1 0.5 20 Less than d2 0.5 21 set_Go_from_objects O1 2 o1 o2 22 fill 23 tO t3 24 L0 L3 25 O0 O1 26 End 27 28 long pass: 29 begin 30 iact Long pass to O0 L0 31 child_iact Pass t1 O1 L1 32 where 33 set length of polyline d0 L1 34 Greater_Than d1 30.0 35 fill 36 t0 t1 37 O0 O1 38 LO L1

RECEIVED

MAR 0 2 2004

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 12 of 15

[Table 7]

33 end

Line Define statement

1 feed pass: 2 begin 3 Iact Feed Pass to Oo Lo 4 Child_Iact Pass t1 O1 L1 5 Child_act Run t2 o2 L2 6 where 7 get_object_from GO o3 -1 O1 8 same object o2 o3 9 temporal during t1 t2 10 fill 11 t0 t1 12 O0 O1 13 L0 L1 14 end 15 16 cross pass: 17 begin 18 Iact Cross pass t0 O0 L0 19 Child Iact Pass tl O1 L1 20 where 21 get_frame_start_period fl tl 22 get_frame_end_period f2 t1 23 set ST_GL_dividing_point p1 f1 L1 24 set_ST_GL_dividing_point p2 f2 L1 25 set_length_of_polyline d1 L1 26 set_X_distance_point_and_point d2 p1 p2 27 greater than d1 30.0 28 less than d2 5.0 29 fill -30 t0 t1 31 00 01 32 L0 L1

RECEIVED

MAR 0 2 2004

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 13 of 15

[Table 9]

36 end

Line Define statement

wall pass: 2 begin 3 iact 1-2_pass t0 O0 L0 4 child iact Pass t1 O1 L1 5 child iact Pass t2 O2 L2 6 child act Stay Walk Run t3 o1 L3 where 8 get object from GO o2 1 O1 get object from GO o3 -1 O1 10 get_object_from_GO o4 1 O2 11 get object from GO o5 -1 O2 12 not_same_team o1 o2 13 same_object o2 o5 14 same object o3 o4 15 set temporal distance period il t1 t2 16 Less_Than il 5 17 not_same_team o1 o2 18 set temporal concatination period t4 t1 t2 19 temporal during t3 t4 20 get frame start of period fl t4 21 get_frame_end_of_period f2 t1 22 get frame end of period f3 t4 23 set_ST_GL_dividing_point p1 L1 f1 24 set_ST_GL_dividing_point p2 L1 f2 25 set_ST_GL_dividing_point p3 L2 f3 26 Create Area Al 3 pl p2 p3 27 set_ST_GL_dividing_point p4 L3 f1 28 set ST GL dividing point p5 L3 f3 29 spatial point in p4 A1 30 spatial_point_in p5 A1 31 set ST GL concatinate polyline L4 L1 L2 32 fill 33 t0 t4 34 O0 O1 35 L0 L4

RECEIVED

MAR 0 2 2004

S.N. 09/890,168
"METHOD AND DEVICE FOR
DESCRIBING VIDEO CONTENTS"
Docket No. 954-010444-US (PAR)
Page 14 of 15

RECEIVED

MAR 0 2 2004

Technology Center 2600

[Table 10]

List of group of auxiliary functions:

(1) Functions suitable for soccer same_team (Player0, Player1)

same_team (Player, Location)

It shows whether Player0 and Player1 belong to the same team.

One of them may represent a position such as "GOAL."

(2) Functions that generally hold apart from soccer

#	[Temporal]	
1	get_frame_start_of_period (f1,t1)	Assign the starting point of time interval t1 to f1.
2	get_frame_end_of_period (f1,t1)	Assign the ending point of time interval t1 to f1.
3	set_period_from_frames (t1,f1,f2)	Create time interval t1 from two time points f1, 12.
4	get_period_of_GL (t1,L1)	Assign the lifetime interval of trajectory L1 to time interval t1.
5	temporal_in (fl,tl)	Time point f1 is inside time interval t1.
6	temporal_meet (t1,t2)	t1 and t2 exist in this order, and ending point of t1 and starting point of t2 are the same.
7	temporal_overlap (t1,t2)	There is a time interval overlapping time intervals t1 and t2.
8	temporai_start (t1,t2)	Time intervals t1 and t2 have the same starting point.
9	temporal_finish (t1,t2)	Time intervals t1 and t2 have the same ending point.
10	temporal_during (t1,t2)	Time interval t1 is completely included in time interval t2.
11	temporal_equal (t1,t2)	Time intervals t1 and t2 have the same starting and ending points.
12	temporal_before (t1,t2)	Time interval t1 ends earlier than the starting point of t2. No overlapping time interval.
13	set_temporal_overlapping_period (t1,t2,t3)	Assign the overlapping time intervals of t2 and t3 to t1.
14	set_temporal_concatination_period (t1,t2,t3)	Assign the concatenated time intervals of t2 and t3 to t1.
15	set_temporal_distance_period (i1,t2,t3)	Assign the difference between ending point of time interval t2 and starting point of t3 to i1.
16	set_ST_GL_dividing_locus (L1,11,L2)	Assign to L1 the trajectory of a part applicable to partial interval t1 of the lifetime interval of trajectory L2.
17	set_ST_GL_concatinate_locus (L1,L2,L3)	Assign to L1 the trajectory concatenating trajectories L2 and L3.
	[Spatial]	
18	set_ST_GL_dividing_point (p1,L1,f1)	Assign the position of trajectory L1 at time point f0 to p1.
19	set_point_from_locus (p1,l1)	Convert a point 11 of trajectory data to position data p1.
20	set_point (p1,i1,i2)	Define position p1 of which x, y coordinates are i1, i2.
21	Create_Polyline (P1,i1,p1,p2,)	Create line P1 linking point sets made up of p1, p2,(the number, i1).

S.N. 09/890,168 "METHOD AND DEVICE FOR DESCRIBING VIDEO CONTENTS" Docket No. 954-010444-US (PAR) Page 15 of 15

RECEIVED

MAR 0 2 2004

Technology Center 2600

[Table 11]
(2) Functions that generally hold apart from soccer (continued)

[
#	[Temporal]	
22	Create_Area (A1,i1,p1,p2,)	Create polyline Al linking point sets made up of pl, p2,(the number, il).
23	set_length_of_polyline (d1,X1)	Assign the length of the line shown by X1 to d1. X1 is P or L.
24	set_deistance_point_and_point (d1,p1,p2)	Assign the Euclid's distance between positions x1 and x2 to d1. x is or 1.
25	set_X_distance_point_and_point (d1,x1,x2)	Assign the distance on axis x between positions x1 and x2 to d1. x i p or 1.
26	set_Y_distance_point_and_point (d1,x1,x2)	Assign the distance on axis y between positions x1 and x2 to d1. x i p or 1.
27	set_distance_point_and_line (d1,x1,P1)	Assign the distance between position x1 and line P1 to d1. x is p or 1
28	set_distance_point_and_Area (d1,x1,A1)	Assign the distance between position x1 and polyline A1 to d1. x is g or 1.
29	spatial_point_in (p1,X1)	Position pl is included in X1. X is P or A.
30	spatial_line_in (P1,A1)	Line P1 is completely included in polyline A1.
1	spatial_apart (P1,P2)	No overlap of two lines pl and p2.
2	Spatial_line_touch (P1,X1)	There is a shared point between P1 and X1. X is P or A.
3	spatial_through (Pl,A1)	P1 is penetrating polyline A1.
4	spatial_overlap (A1,A2)	Two polylines A1 & A2 are partly overlapping.
5	spatial_contain (A1,A2)	A1 is completely included in A2.
5	spatial_area_touch (A1,A2)	A1 and A2 are touching at a point or a line.
7	spatial_disjoint (A1,A2)	No shared part between A1 and A2.
3	spatial_cross (P1,P2)	Two lines P1 and P2 are crossing.
	[Object handling]	
	same_object (o1,o2)	Two objects of & o2 are the same objects.
I	not_same_object (o1,o2)	Two objects ol & o2 are different.
8	get_object_from_GO (o1,i1,O1)	i1-th element of set of object O1 is o1.
	et_GO_from_objects O1,i1,o1,o2,)	Create object set O1 from o1, o2
g	et_number_from_GO (i1,O1)	To il seeking the number of elements of object set O1.
[P	Numerical)	,
gr	reater_than (x1,x2)	xl > x2, x is f, d, o.
le	ess_than (x1,x2)	x1 < x2, x is f, d, o.
eq	pual (x1,x2)	x1 = x2, x is f, d, o.