6장. 제약 만족 문제

(CSP: CONSTRAINT SATISFACTION PROBLEMS)

순서

- I. CSP 정의
- II. 이진 CSP
- Ⅲ. 제약 조건 전파

I. CSP 개념

- 상태(State)를 블랙박스 이상의 어떤 것으로 취급하여 탐색하는 방식
- 문제의 구조를 더 깊이 이해할 수 있는 방식

Figure 2.16 Three ways to represent states and the transitions between them. (a) Atomic representation: a state (such as B or C) is a black box with no internal structure; (b) Factored representation: a state consists of a vector of attribute values; values can be Boolean, real-valued, or one of a fixed set of symbols. (c) Structured representation: a state includes objects, each of which may have attributes of its own as well as relationships to other objects.

CSP 정의

● CSP 정의

- X is a set of variables, {X1, ..., Xn}.
- D is a set of domains, {D1, ..., Dn}, one for each variable.
- C is a set of constraints that specify allowable combinations of values.

● 조건

- A domain, Di, consists of a set of allowable values, {v1, . . . ,vk}, for variable Xi.
- Different variables can have different domains of different sizes.

● 예를 들어,

a Boolean variable would have the domain {true, false}.

조건(Constraint)의 정의

- 조건(constraint) Cj의 구성
 - 형식: <범위, 관계> (a pair <scope, rel>)
 - 예1: <(X1,X2),{(3,1), (3,2), (2,1)}>
 - 예2: <(X1,X2),X1 > X2>
- 할당
 - 변수에 값 할당, {Xi =vi,Xj =vj, . . .}
- 완전 할당
 - 문제를 구성하는 모든 변수에 값 할당
- 솔루션
 - 모든 조건을 만족하는 완전 할당

이진 CSP

단항 제약(unary contraint)은 단일 변수의 값에 제약 조건을 부가 $\langle (SA), SA \neq green \rangle$

이항 제약(binary contraint)은 <u>두개의 변수</u>에 제약 조건을 부가 *SA≠WA*

고차 제약(higher order constraint) <u>세개 이상의 변수</u> 제약 조건

삼항 제약의 예: $\langle (X,Y,Z), X < Y < Z \text{ or } X > Y > Z \rangle$

전역 제약(global contraint)은 임의의 개수의 변수를 포함할 수 있지만 (모든 변수를 포함할 필요는 없음).

 $Alldiff(v_1, ..., v_k)$: 모든 변수 $v_1, ..., v_k$ 의 값이 모두 달라야 한다는 제약 예, 스도쿠 (행/열/3x3박스 각 측면에서 모든 변수가 달라야 함)

복면산

(Cryptarithmetic Puzzle)

<숫자가 "복면"을 쓰고 있는 연산>

4열 짜리 덧셈 제약

$$T \quad W \quad O$$

$$\frac{+ \quad T \quad W \quad O}{F \quad O \quad U \quad R}$$

$$O+O=R+10\cdot C_1$$
 십, 백, 천 $C_1+W+W=U+10\cdot C_2$ 자리에서, 자리 $C_2+T+T=O+10\cdot C_3$ 올림 발생 $C_3=F$

하이퍼그래프는 그래프를 일반화한 것으로, 에지(하이퍼에지라고 함)가 두 개 이상의 정점을 연결

제약 하이퍼 그래프

이항 제약으로의 변환

모든 n-ary 제약은 보조 변수를 도입하여 이진 제약 집합으로 축소 변환 가능

어떤 CSP든 이진 CSP로 변환 가능

Alldiff와 같은 전역 제약 조건의 장점:

- ◆ 작성하기 쉽고 실수가 줄어듬
- ◆ 효율적인 특수 목적 추론 알고리즘 적용 가능

Ⅱ. 제약 조건 전파

- 제약 조건을 사용하여 변수에 대한 합법적인 값의 수 축소
- 다른 변수에도 동일하게 적용

지역 단위로 관철된 일관성은 제약 그래프 전체 범위로 보면 모순될 수 있음 (전체 범위에서 해당 모순 제거)

• 노드 일치성

South Australians: 녹색을 거부 한다고 가정

SA 의 도메인: {red, blue}

시작할 때 관련된 변수들의 도메인을 축소하는 방식으로 모든 단항 제약 제거

제약 조건 그래프

호 일치성

변수 Xi가 그와 연계된 다른 변수 Xj에 대해 다음을 만족하면, 변수 Xi는 변수 Xj에 대해 "호 일치성"을 갖는다.

즉, Xi의 각 값 Di와 그에 연계된 Xj의 각 값 Dj에 대해 해당 호(즉 에지 (Xi, Xj))에 부여된 이진 제약을 만족한다면.

교환 법칙이 성립하지 않음

$$\begin{array}{ccc}
x + y < 5 \\
\hline
y \\
D_x = \{1, 2, 3\} & D_y = \{1, 3, 5\}
\end{array}$$

x 는 y에 대해 호 일치성을 갖는다. 역은 성립하지 않는다.

만약 해당 변수가 이진 제약조건을 공유하는 모든 다른 변수에 대해 이 조건을 만족한다면, 해당 변수는 **호 일치 변수**임.

제약 그래프를 구성하는 모든 변수가 호 일치 변수이면 해당 그래프는 **호 일치** 그래프임.

호 일치성 적용

예 1

$$Y = X^2$$
 where $X, Y \in \{0, 1, ..., 9\}$

X arc-consistent w.r.t. *Y* \Longrightarrow Reduced domain of *X*: {0, 1, 2, 3}

Y arc-consistent w.r.t. *X* \Longrightarrow Reduced domain of *Y*: {0, 1, 4, 9}

예 2 호주 지도 색칠 문제

SA≠WA

두 변수의 도메인 {red, green, blue}에 축소 변화 없음

호 일치성 알고리즘: AC-3

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
            queue \leftarrow a queue of arcs, initially all the arcs in csp
                                                                                                                                                                                                                                                                                                                                                                X_i
           while queue is not empty do
                       (X_i, X_i) \leftarrow POP(queue)
                      if REVISE(csp, X_i, X_j) then // domain of X_i has been reduced.
                                   if size of D_i = 0 then return false
                                  for each X_k in X_i. NEIGHBORS - \{X_j\} do // propagate to other variables
                                              add (X_k, X_i) to queue
                                                                                                                                                                                                                                               // sharing a constraint with X_i
           return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
            revised \leftarrow false
           for each x in D_i do
                      if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_j then
                                  delete x from D_i
                                                                                                                                                                                  도메인 크기 \leq d, c 개의 이항 제약 조건
                                   revised \leftarrow true
                                                                                                                                                                                   • 각 호가 큐로 들어가는 횟수 \leq d 회
           return revised
                                                                                                                                                                                                    (X_i \cup X_i \cup X_
                                                                                                                                                                                   • 제약 관철 시간: O(d^2)
```

 \Rightarrow 총 복잡도: $O(cd^3)$

경로 일치성

2색만 사용할 경우, 개별 변수들은 제약 조건을 만족하지만 솔루션은 부재 (예. 빨간색-파란색의 경우 임의의 Xi-Yi에 대해 제약 조건 만족. 그러나 2색으로 지도 칠하는 것은 불가능) 호 일치성은 도메인을 축소시켜 주기만 함

경로 일치성은 세 변수 쌍에서 추리한 암묵적 제약 조건을 조사하여 이용할 수 있게 해줌

 $\{X_i, X_j\}$ 가 세번째 변수 X_m 에 대해 **경로 일치성**을 갖는 경우 --> 즉, X_i 의 모든 할당에 대해 X_j 가 그들의 제약 C_{ij} 를 준수하는 상태에서, X_m 과 그들과의 제약조건 C_{im} 과 C_{jm} 을 만족하는 X_m 으로의 할당이 존재

경로 일치성의 적용

 $\{WA, SA\}$ 를 NT에 대해 경로 일치하도록 만들어 보자

두 색만 고려: red, blue.

아래 두가지 할당만 가능

$$\{WA = red, SA = blue\}$$

$$\{WA = blue, SA = red\}$$

두 경우 모두 NT에 적절한 값을 할당할 수 없게 만듦

WA 와 SA로의 할당 제거

솔루션 못 찾음

스도쿠

9×9 격자에 숫자 1부터 9까지를 채우는데, 각 행, 열 또는 3×3 박스에 같은 숫자가 두 번 나타나지 않도록 하는 게임.

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
н	8			2		3			9
1			5		1		3		

CSP로 풀어보는 스도쿠

변수: A1, ..., A9, B1, ... I9

도메인: $D = \{1, 2, ..., 9\}$

27 개의 *Alldiff* 제약 조건:

Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9)

Alldiff(I1, I2, I3, I4, I5, I6, I7, I8, I9)

Alldiff(*A*1, *B*1, *C*1, *D*1, *E*1, *F*1, *G*1, *H*1, *I*1)

Alldiff(*A*9, *B*9, *C*9, *D*9, *E*9, *F*9, *G*9, *H*9, *I*9)

Alldiff(*A*1, *A*2, *A*3, *B*1, *B*2, *B*3, *C*1, *C*2, *C*3)

: Alldiff(G7, G8, G9, H7, H8, H9, I7, I8, I9)

- CSP 해법은 수천개짜리를 초 단위로 해결!
- 가장 간단한 형태의 스도쿠만 AC-3로 해결 가능

CSP로 스도쿠를 푸는 예

	1	2	3	4	5	6	7	8	9
Α			3		2	?	6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Ε	7					4			8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
1			5		1	7	3		

Consider E6:

$$D_{E6} \leftarrow D_{E6} \setminus \{1,2,7,8\}$$
$$= \{3,4,5,6,9\}$$

constraints in the column

$$D_{E6} \leftarrow D_{E6} \setminus \{2,3,5,6,8,9\}$$
$$= \{4\}$$

Consider I6: $D_{I6} \leftarrow \{1,2,\ldots,9\}$

 \prod constraints in the column

Consider A6:

$$D_{A6} \leftarrow \{1,2,...,9\}$$

$$\int \text{constraints in the column}$$

$$D_{A6} \leftarrow \{1\}$$

6주차 과제

CSP 방법으로 아래의 스도쿠 문제를 푸는 과정을 단계 별로 상세히 설명하라.

1			
	2	1	
		3	
			4