Appello del 17 luglio 2013

1. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo tale che

- i. (1,1,0) è un autovettore per f relativo all'autovalore 1;
- ii. (1,0,1) è un autovettore per f relativo all'autovalore -1;
- **iii.** f(0,1,1) = (1,-1,0).
- (a) Determinare la matrice rappresentativa di f rispetto alla base canonica di \mathbb{R}^3 .
- (b) Determinare gli autovalori di f e i corrispondenti autospazi. e dire se f è diagonalizzabile;
- (c) Stabilire se f è invertibile e in caso affermativo dire se f^{-1} è diagonalizzabile.
- 2. Sia Σ la sfera in \mathbb{R}^3 con centro nell'origine e raggio uguale a 2.
 - (a) Scrivere l'equazione cartesiana del piano π passante per $P\equiv (1,1,0)$ e parallelo all'asse z che taglia Σ lungo una circonferenza Γ di raggio $\sqrt{2}$.
 - (b) Scrivere l'equazione del cilindro $\mathcal C$ con direttrici perpendicolari al piano π avente Γ come direttrice.
 - (c) Determinare l'equazione di una sfera tangente al piano π e inscritta nel cilindro $\mathcal C$, e il numero di tali sfere.
- 3. Si consideri l'equazione $\underline{x}^T A_h \underline{x} = 0$ con

$$A_h = \begin{bmatrix} 2h & 2 & 2h \\ 2 & 4 & 1 \\ 2h & 1 & h \end{bmatrix} \qquad \mathbf{e} \qquad \underline{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$$

- (a) Provare che l'equazione descrive un fascio di coniche e determinare al variare di $h \in \mathbb{R}$ il tipo di conica.
- (b) Per h = 2, sia Γ la conica $\underline{x}^T A_2 \underline{x} = 0$,
 - i. Riconoscere Γ .
 - ii. Determinare (se esistono) centro e assi di Γ .