保密★启用前

2019-2020 学年第一学期期末考试 《概率论与数理统计 B》

考生注意事项

- 1. 答题前,考生须在试题册指定位置上填写考生**教学号**和考生姓名;在答题 卡指定位置上填写考试科目、考生姓名和考生**教学号**,并涂写考生**教学号** 信息点。
- 2. 选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须 书写在答题卡指定位置的边框区域内。超出答题区域书写的答案无效;在 草稿纸、试题册上答题无效。
- 3. 填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用 2B 铅笔填涂。
- 4. 考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)

考生教学号				
考生姓名				

一	
选项中,只有一个选项是符合题目要求的	•
题册上无效. 1. 下列等式不成立的是().	
(A) $A = AB \cup A\overline{B}$;	(B) $A - B = A\overline{B}$;
(C) $(AB)(A\overline{B}) = \emptyset$;	(D) $(A-B) \cup B = A$.
2. 设随机变量 X 的概率密度为 $f(x)$,且	对任意实数 x ,有 $f(-x) = f(x)$, $F(x)$
为 X 的分布函数,则对任意实数 a ,有().
(A) $F(-a) = \frac{1}{2} - \int_0^a f(x) dx$;	(B) $F(-a)=1-\int_0^a f(x)dx$;
(C) $F(-a) = F(a)$;	(D) $F(-a) = 2F(a) - 1$.
3. 设随机变量 $X \sim N(\mu, \sigma^2) (\sigma > 0)$,	记 $p = P\{X \le \mu + \sigma^2\}$,则().
(A) p 随着 μ 的增加而增加; (C) p 随着 σ 的增加而增加;	(B) p 随着 μ 的增加而减少; (D) p 随着 σ 的增加而减少.
4. 设随机变量 $X \sim N(1,1)$, $Y \sim N(1,2)$),且 X 与 Y 相互独立,若 $Z=2X-Y$,
则 Z 服从 ().	
(A) $N(1,6)$; (B) $N(1,2)$;	(C) $N(1,1)$; (D) $N(1,0)$.
5. 设随机变量 X,Y 不相关, 且 E($(X) = 2$, $E(Y) = 1$, $D(X) = 1$, \mathbb{N}
E[X(X-Y+1)] = () .	
(A) 0 ; (B) 1 ; 6. 设总体 $X \sim N(\mu, \sigma^2)$, $\mu \ni \sigma^2$ 均未知	(C) 3; (D) 5. , <i>X</i> ₁ , <i>X</i> ₂ , ···, <i>X</i> _n 为总体 <i>X</i> 的样本,则参数
μ 的置信水平为 $1-\alpha$ 的置信区间为()	
(A) $\left(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right);$ (B)	3) $\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \ \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right);$
(C) $\left(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{\alpha/2}(n), \overline{X} + \frac{\sigma}{\sqrt{n}} t_{\alpha/2}(n)\right);$	(D) $\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n), \ \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n)\right).$

二、填空题: $7\sim12$ 小题,每小题 3 分,共 18 分.请将答案写在答题卡上,写在试题册上无效.

第1页(共3页)

7. 己知
$$P(B) = 0.5$$
, $P(A \cup B) = 0.6$,则 $P(A\overline{B}) =$ ______.

8. 在一个均匀陀螺的圆周上均匀地刻上(0,1)内所有实数,旋转陀螺,陀螺停下时,

圆周与桌面的接触点位于
$$\left(\frac{1}{3},\frac{2}{3}\right)$$
内的概率为_____.

9. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 \le x \le 1, \\ 0, & \text{其他,} \end{cases}$,以 Y 表示对 X 的三次重

复独立观察中事件 $P\left\{X \leq \frac{1}{2}\right\}$ 出现的次数,则 $P\left\{Y \geq 1\right\} =$ ______.

10. 设二维随机变量(X,Y)的概率分布为

Y	0	1	
0	0.1	0.2	
1	0.3	0.4	

则 Z = X + Y 的概率分布为 .

- **11.** 设在每次试验中,事件 A 发生的概率是 0.8,用 X 表示 1000 次独立试验中事件 A 发生的次数,根据切比雪夫不等式,有 $P\{760 < X < 840\} \ge$ ______.
- **12.** 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, σ^2 已知,在显著性水平 α 下,检验假设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,应选取的检验统计量为______.
- 三、解答题: $13\sim19$ 小题, 共 64 分. 解答应写出文字说明、证明过程或演算步骤.
 - 13. (本题满分 10 分)

有两箱同种零件,在第一箱内装 10 件,其中有 9 件是一等品;在第二箱内装 15 件,其中有 7 件是一等品.现从两箱中随机地取出一箱,然后从该箱中取两次零件,每次随机地取出一个零件,取出的零件均不放回.求:

- (1) 第一次取出的零件是一等品的概率;
- (2) 在第一次取出的零件是一等品的条件下,第二次取出的零件是一等品的概率.

第2页(共3页)

14. (本题满分9分)

同时抛投 3 枚硬币,以 X 表示出现数字面的枚数,求 E(X), D(X).

15. (本题满分 10 分)

设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{3}{8}x^2, & 0 < x < 2, \\ 0, & \text{ 其他,} \end{cases}$$

- 求: (1) 概率 $P\{1 < X < 2\}$; (2) D(2X-1).
 - 16. (本题满分8分)

设随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 2 - x - y, & 0 \le x \le 1, 0 \le y \le 1, \\ 0, &$$
其他,

- 求: (1) 概率 $P\{Y \ge X\}$; (2) 条件概率密度 $f_{Y|X}(y|x)$.
 - 17. (本题满分8分)

设随机变量X和Y相互独立,其概率密度分别为

$$f_{X}(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{ i.t.} \end{cases} \qquad f_{Y}(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0, \end{cases}$$

求Z = X + Y的概率密度.

18. (本题满分7分)

从总体 $N\left(\mu,\sigma^2\right)$ 中抽取容量为 16 的样本,其中 μ 与 σ^2 均为未知, S^2 为样本方

差, 求概率
$$P\left\{\frac{S^2}{\sigma^2} \le 2.0385\right\}$$
. $\left(\chi_{0.01}^2(15) = 30.578\right)$

19. (本题满分12分)

设总体
$$X$$
 的概率密度为 $f(x;\theta) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1, \\ 0, &$ 其他.

- 数, X_1, X_2, \dots, X_n 是来自总体X的简单随机样本。求:
 - (1) θ 的矩估计量; (2) θ 的最大似然估计量.