#### REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

| TORRITO THE ABOVE ABBRECO.            |                                   |                                       |
|---------------------------------------|-----------------------------------|---------------------------------------|
| 1. REPORT DATE (DD-MM-YYYY)           | 2. REPORT TYPE                    | 3. DATES COVERED (From - To)          |
| 24 September 2015                     | Briefing Charts                   | 20 August 2015 – 24 September 2015    |
| 4. TITLE AND SUBTITLE                 |                                   | 5a. CONTRACT NUMBER                   |
| Air Force Dynamic Mechanical Analys   | is of NATO Round Robin Propellant |                                       |
| Testing for Development of AOP-4717   |                                   |                                       |
|                                       |                                   | 5b. GRANT NUMBER                      |
|                                       |                                   | 5c. PROGRAM ELEMENT NUMBER            |
| 6. AUTHOR(S)                          |                                   | 5d. PROJECT NUMBER                    |
| Miller, Timothy C.                    |                                   |                                       |
| Ruth, Patrick N.                      |                                   | 5e. TASK NUMBER                       |
|                                       |                                   |                                       |
|                                       |                                   | 5f. WORK UNIT NUMBER                  |
|                                       |                                   | Q16H                                  |
| 7. PERFORMING ORGANIZATION NAME(S     | S) AND ADDRESS(ES)                | 8. PERFORMING ORGANIZATION REPORT NO. |
| Air Force Research Laboratory (AFMC   | C)                                |                                       |
| AFRL/RQRP                             |                                   |                                       |
| 10 E. Saturn Blvd                     |                                   |                                       |
| Edwards AFB, CA 93524-7160            |                                   |                                       |
| 9. SPONSORING / MONITORING AGENCY     | NAME(S) AND ADDRESS(ES)           | 10. SPONSOR/MONITOR'S ACRONYM(S)      |
| Air Force Research Laboratory (AFMC   |                                   |                                       |
| •                                     | ·)                                | 11. SPONSOR/MONITOR'S REPORT          |
| AFRL/RQR                              |                                   | NUMBER(S)                             |
| 5 Pollux Drive                        |                                   | ` '                                   |
| Edwards AFB, CA 93524-7048            | TAFAIT                            | AFRL-RQ-ED-VG-2015-347                |
| 12. DISTRIBUTION / AVAILABILITY STATE | ZIVICIN I                         |                                       |

Approved for public release; distribution unlimited

#### 13. SUPPLEMENTARY NOTES

For presentation at NATO A/C 326 Working Group Meeting; U.S. Army Research, Development and Engineering

Command, Huntsville, Alabama; 22-24 Sep 2015 PA Case Number: #15565; Clearance Date: 9/18/2015

#### 14. ABSTRACT

Viewgraph/Briefing Charts

#### 15. SUBJECT TERMS

N/A

| 16. SECURITY CLA | 16. SECURITY CLASSIFICATION OF: |              |     | 18. NUMBER<br>OF PAGES | 19a. NAME OF<br>RESPONSIBLE PERSON<br>T. Miller |
|------------------|---------------------------------|--------------|-----|------------------------|-------------------------------------------------|
| a. REPORT        | b. ABSTRACT                     | c. THIS PAGE |     | 24                     | 1. Miller  19b. TELEPHONE NO                    |
| Unclassified     | Unclassified                    | Unclassified | SAR | 24                     | (include area code)<br>N/A                      |



# Air Force Dynamic Mechanical Analysis of NATO Round Robin Propellant Testing for Development of AOP-4717

23 Sep 2015

U.S. Air Force Research Lab
Propulsion Division



#### Introduction



| Specimen name | Test type       | Relative Humidity | Temperature (deg C) |  |  |  |
|---------------|-----------------|-------------------|---------------------|--|--|--|
| 20140724A     | Strain sweep    | 53.5              | 18.1                |  |  |  |
| 20140724B     |                 |                   |                     |  |  |  |
| 20140724C     |                 |                   |                     |  |  |  |
| 20140724D     | Frequency sweep | 73.3              | 20.6                |  |  |  |
| 20140724E     |                 | 61.8              | 21.5                |  |  |  |
| 20140724F     |                 | 52.8              | 19.6                |  |  |  |

| Specimen name | Width (mm) | Thickness (mm) | Length (mm) |
|---------------|------------|----------------|-------------|
| 20140724A     | 12.65      | 3.99           | 56.19       |
| 20140724B     | 12.79      | 4.11           | 56.37       |
| 20140724C     | 12.75      | 4.10           | 64.20       |
| 20140724D     | 12.19      | 4.12           | 63.57       |
| 20140724E     | 12.63      | 4.12           | 63.95       |
| 20140724F     | 12.98      | 4.16           | 63.73       |



#### Introduction









#### Introduction











| Specimen name | Test temperature (C) |
|---------------|----------------------|
| 20140724A     | -100                 |
| 20140724B     | 21                   |
| 20140724C     | 70                   |

One test per test temperature. Amplitude varied, frequency always 1 Hz











Comparison of Normalized Storage Modulus for a Filled Silicone Elastomer and a General Purpose Polystyrene













| Test condition (C) | Upper limit for amplitude for linear viscoelasticity (μm) |
|--------------------|-----------------------------------------------------------|
| -100               | 2.15                                                      |
| +21                | 3.58                                                      |
| +70                | 7.06                                                      |

This comes from the data on the previous slide. The frequency sweep tests all had the same amplitude, 2.10  $\mu$ m, so regardless of temperature linear viscoelasticity was ensured.













#### Frequency sweep block diagram

























| Specimen name | α      | peaks (deg ( | C)    | β peaks (deg C) |        |       |  |
|---------------|--------|--------------|-------|-----------------|--------|-------|--|
|               | 0.1 Hz | 1.0 Hz       | 10 Hz | 0.1 Hz          | 1.0 Hz | 10 Hz |  |
| 20140724D     | -48.0  | -48.0        | -48.0 | -74.0           | -70.0  | -64.0 |  |
| 20140724E     | -48.0  | -48.0        | -48.0 | -74.0           | -70.0  | -64.0 |  |
| 20140724F     | -48.0  | -48.0        | -46.0 | -74.0           | -70.0  | -64.0 |  |

Very consistent peak values for temperature among specimens.  $T_{\rm q}$  not affected by frequency, apparently.















#### Freq. Sweep Tests (Bonus Information)



$$s_p^2 = \frac{\sum_{i=1}^k (n_i - 1)s_i^2}{\sum_{i=1}^k (n_i - 1)} = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_k - 1)s_k^2}{n_1 + n_2 + \dots + n_k - k}$$

wikipedia "pooled variances" (for more detail, see book by John Mandel on experiments and statistics)





## Freq. Sweep Tests (Bonus Information)



|             | 20140724D (0.1 Hz) |           | 201       | 40724E (0.1 Hz) |              | 2014      | 10724F (0.1 H | Hz)       | 2014      | 40724D (1.0 Hz) |              | 2014      |              |
|-------------|--------------------|-----------|-----------|-----------------|--------------|-----------|---------------|-----------|-----------|-----------------|--------------|-----------|--------------|
| Nominal     | Storage            | Loss      | •         |                 |              |           | Storage       | Loss      |           |                 |              |           | 0.           |
| Temperature | Modulus            | Modulus   | Tan Delta | Storage         | Loss Modulus | Tan Delta | Modulus       | Modulus   | Tan Delta | Storage         | Loss Modulus | Tan Delta | Storage      |
| (deg C)     | (Pa)               | (Pa)      |           | Modulus (Pa)    | (Pa)         |           | (Pa)          | (Pa)      |           | Modulus (Pa)    | (Pa)         |           | Modulus (Pa) |
| -110        | 1.020E+10          | 1.883E+08 | 0.0185    | 7.554E+09       | 2.053E+08    | 0.0272    | 8.142E+09     | 1.334E+08 | 0.0164    | 1.033E+10       | 1.589E+08    | 0.0154    | 7.664E+09    |
| -108        | 1.014E+10          | 1.843E+08 | 0.0182    | 7.470E+09       | 1.777E+08    | 0.0238    | 8.134E+09     | 1.235E+08 | 0.0152    | 1.029E+10       | 1.597E+08    | 0.0155    | 7.592E+09    |
| -106        | 1.008E+10          | 1.976E+08 | 0.0196    | 7.356E+09       | 2.007E+08    | 0.0273    | 8.086E+09     | 1.401E+08 | 0.0173    | 1.025E+10       | 1.636E+08    | 0.0160    | 7.479E+09    |
| -104        | 9.967E+09          | 1.874E+08 | 0.0188    | 7.286E+09       | 2.104E+08    | 0.0289    | 8.024E+09     | 1.374E+08 | 0.0171    | 1.013E+10       | 1.629E+08    | 0.0161    | 7.416E+09    |
| -102        | 9.914E+09          | 1.962E+08 | 0.0198    | 7.185E+09       | 2.336E+08    | 0.0325    | 7.956E+09     | 1.474E+08 | 0.0185    | 1.008E+10       | 1.636E+08    | 0.0162    | 7.329E+09    |
| -100        | 9.913E+09          | 2.222E+08 | 0.0224    | 7.037E+09       | 2.406E+08    | 0.0342    | 7.911E+09     | 1.581E+08 | 0.0200    | 1.010E+10       | 1.626E+08    | 0.0161    | 7.179E+09    |
| -98         | 9.889E+09          | 2.341E+08 | 0.0237    | 6.934E+09       | 2.639E+08    | 0.0381    | 7.868E+09     | 1.710E+08 | 0.0217    | 1.008E+10       | 1.786E+08    | 0.0177    | 7.067E+09    |
| -96         | 9.798E+09          | 2.299E+08 | 0.0235    | 6.845E+09       | 2.802E+08    | 0.0409    | 7.781E+09     | 1.739E+08 | 0.0223    | 9.982E+09       | 1.805E+08    | 0.0181    | 7.014E+09    |
| -94         | 9.737E+09          | 2.740E+08 | 0.0281    | 6.779E+09       | 2.898E+08    | 0.0427    | 7.711E+09     | 2.019E+08 | 0.0262    | 9.943E+09       | 1.908E+08    | 0.0192    | 6.945E+09    |
| -92         | 9.695E+09          | 2.853E+08 | 0.0294    | 6.648E+09       | 3.087E+08    | 0.0464    | 7.677E+09     | 2.087E+08 | 0.0272    | 9.936E+09       | 2.076E+08    | 0.0209    | 6.842E+09    |
| -90         | 9.608E+09          | 3.672E+08 | 0.0382    | 6.557E+09       | 3.461E+08    | 0.0528    | 7.602E+09     | 2.671E+08 | 0.0351    | 9.889E+09       | 2.358E+08    | 0.0238    | 6.767E+09    |
| -88         | 9.409E+09          | 4.346E+08 |           | 6.433E+09       |              | 0.0608    | 7.422E+09     | 3.163E+08 |           | 9.722E+09       |              |           | 6.706E+09    |
| -86         | 9.090E+09          | 5.597E+08 |           | 6.250E+09       |              |           | 7.214E+09     | 4.219E+08 |           | 9.555E+09       |              |           | 6.601E+09    |
| -84         | 8.457E+09          | 8.251E+08 |           | 5.872E+09       |              | 0.1112    | 6.827E+09     | 6.356E+08 |           |                 |              |           |              |
| -82         | 7.386E+09          | 1.224E+09 |           | 5.270E+09       |              | 0.1772    | 5.930E+09     | 9.329E+08 |           | 8.622E+09       |              |           |              |
| -80         | 5.433E+09          | 1.575E+09 |           | 4.297E+09       |              | 0.2904    | 4.439E+09     | 1.248E+09 |           | 7.459E+09       |              |           | 5.711E+09    |
| -78         | 3.459E+09          | 1.505E+09 |           | 2.896E+09       |              | 0.4481    | 2.914E+09     | 1.235E+09 |           | 5.853E+09       |              |           | 4.771E+09    |
| -76         | 2.114E+09          | 1.182E+09 |           | 1.782E+09       |              |           | 1.769E+09     | 9.383E+08 |           | 4.281E+09       |              |           | 3.564E+09    |
| -74         | 1.325E+09          | 7.760E+08 |           | 1.154E+09       |              |           | 1.139E+09     | 6.326E+08 |           | 2.916E+09       |              |           | 2.517E+09    |
| -72         | 9.019E+08          | 4.910E+08 |           | 7.915E+08       |              |           | 8.183E+08     | 4.288E+08 |           | 1.931E+09       |              |           | 1.680E+09    |
| -70         | 6.626E+08          | 3.097E+08 |           | 5.928E+08       |              |           | 5.992E+08     | 2.656E+08 |           | 1.305E+09       |              |           | 1.171E+09    |
| -68         | 5.284E+08          | 2.104E+08 |           | 4.726E+08       |              | 0.4029    | 4.738E+08     | 1.776E+08 |           | 9.347E+08       |              |           |              |
| -66         | 4.485E+08          | 1.567E+08 |           | 3.965E+08       |              | 0.3421    | 4.058E+08     | 1.333E+08 |           | 7.326E+08       |              |           | 6.489E+08    |
| -64         | 3.868E+08          | 1.205E+08 |           | 3.475E+08       |              | 0.3124    | 3.539E+08     | 1.038E+08 |           | 5.872E+08       |              |           | 5.297E+08    |
| -62         | 3.389E+08          | 9.636E+07 |           | 3.094E+08       |              | 0.2806    | 3.124E+08     | 8.293E+07 |           | 4.870E+08       |              |           | 4.426E+08    |
| -60         | 3.030E+08          | 8.099E+07 |           | 2.715E+08       |              | 0.2610    | 2.814E+08     | 7.048E+07 |           | 4.165E+08       |              |           |              |
| -58         | 2.709E+08          | 7.148E+07 |           | 2.469E+08       |              | 0.2547    | 2.544E+08     | 6.179E+07 |           | 3.661E+08       |              |           | 3.320E+08    |
| -56         | 2.453E+08          | 6.425E+07 | 0.2619    | 2.232E+08       | 5.806E+07    | 0.2601    | 2.309E+08     | 5.674E+07 | 0.2457    | 3.277E+08       | 9.359E+07    | 0.2856    | 2.995E+08    |



## Freq. Sweep Tests (Bonus Information)







#### **Summary and Conclusions**



- When making the specimens for dual cantilever beam fixtures, one important consideration is uniform thickness – machining to a uniform thickness before cutting the specimens from a common slab can enhance reproducibility.
- The linear viscoelasticity regime can be discerned by comparing normalized storage moduli values over a range of deformations and finding the threshold at which the normalized value drops to 95% of the starting value.
- Clamping tension is not guaranteed when testing using frequency sweeps over a wide range of temperatures unless a procedure is used that ensures the clamps are tight at the coldest temperature.
- Long tests such as the frequency sweep sequences prescribed in this round robin may be problematic for the Q800 due to lack of sufficient reserve of liquid nitrogen in the gas cooling accessory.



#### **Summary and Conclusions**



- Determination of T<sub>g</sub> by locating the peak of the tan delta function was very repeatable and consistent with thermomechanical analysis results from another device.
- The β peaks varied with frequency but were repeatable for a given frequency. For the α peaks, there was no significant frequency effect.
- Of the three pertinent parameters (storage modulus, loss modulus, and tan delta), only the storage modulus showed variability issues, and that only took place on the "upper shelf" (below about -80 C).

