

ZLAC8030D Servo Driver

RS485 Communication Quick Start Guide

Version	Description	Date
V1.00	First Edition	2024/3/22

CATALOGUE

1.RS485 Serial Port Settings	3
2. Wiring Connection	3
2.1 Basic Wiring Diagram	3
2.2 RS485 Port	3
3. Protocol Format	ļ
3.1 Communication Setting	ļ
3.2 RS485 Basic Format	ļ
3.3 Write Single Register Function Code 0x06	ļ
3.4 Write Multiple Register Function Code 0x10	5
3.5 Read Register Function Code 0x03	õ
4. Control Mode	õ
4.1 Profile Velocity Mode	õ
4.2 Profile Position Mode (Relative Position)	7
4.3 Profile Position Mode (Absolute Position)	7
4.4 Profile Torque Mode	7
4.5 General Command	3
4.6 Emergency Stop Command	3
5. Function Setting	3
5.1 Alarm PWM Processing Method	3
5.2 Parking Mode)
5.3 Speed Resolution)
5.4 I/O Emergency Stop Processing Method)
5.5 Brake Function10)
5.6 Regen Function (User just needs to connect regen resistor)10)
6. RS485 Status Word)
7. Fault Code11	L
8. Address Directionary	3

1. RS485 Serial Port Settings

RS485 communication of ZLAC8030D supports Modbus RTU protocol.

The driver address can be set to 0-127. The default address is 1.

For RS485 communication, ZLAC8030D has 6 optional baud rates: 9600, 19200, 38400, 57600, 115200, 128000. Baud rate could be set through software, its default value is 115200. (For PC software, baud rate 9600 is unserviceable)

2. Wiring Connection

2.1 Basic Wiring Diagram

2.2 RS485 Port

Note: There is only one set of 485 interfaces. If users need to connect multiple drivers, please connect them in parallel to A (pin4), B (pin5), and SGND (pin3). This driver communication is isolated, and users need to connect the ground signal SGND.

Port	Pin	Mark	Name	Function
	1	CANH	CANOPEN	
10	2	CANL		
10	3	SGND	Communication GND	
9	4	A	RS485	
[_O	5	В	СОРСЛ	

3. Protocol Format

3.1 Communication Setting

Baud rate: 115200, ID: 1 (default)

3.2 RS485 Basic Format

The function codes supported by ZLAC8030D are as below:

Function description		Function code	Error function code
Read	multiple	0x03	0x83
registers			
Write single register		0x06	0x86
Writer	multiple	0x10	0x90
registers			

3.3 Write Single Register Function Code 0x06

Send command format: Driver address + Function code + Register address + data + CRC check code.

Command	Content Description
01	Driver Address
06	Function Code
20	High 8 bits of register start address
88	Low 8 bits of register start address
00	High 8 bits of register data
64	Low 8 bits of register data
03	High 8 bits of CRC check
СВ	Low 8 bits of CRC check

Return command format: Driver address + Function code + Register address + data + CRC check

code.

Command	Content Description
01	Driver Address
06	Function Code
20	High 8 bits of register start address
88	Low 8 bits of register start address
00	High 8 bits of register number
64	Low 8 bits of register number
03	High 8 bits of CRC check
СВ	Low 8 bits of CRC check

3.4 Write Multiple Register Function Code 0x10

Send command format: Driver address + Function code + Register address + Register number+ Number of bytes + data + CRC check code.

Command	Content Description
01	Driver Address
10	Function Code
20	High 8 bits of register start address
30	Low 8 bits of register start address
00	High 8 bits of register number
02	Low 8 bits of register number
04	Number of bytes
04	High 8 bits of data 0
00	Low 8 bits of data 0
00	High 8 bits of data 1
00	Low 8 bits of data 1
68	High 8 bits of CRC check
4A	Low 8 bits of CRC check

 $\hbox{\tt Return command format: Driver address + Function code + Register Register number + CRC check code. } \\$

Command	Content Description
01	Driver Address
10	Function Code
20	High 8 bits of register start address
30	Low 8 bits of register start address
00	High 8 bits of register number
02	Low 8 bits of register number
4A	High 8 bits of CRC check
07	Low 8 bits of CRC check

3.5 Read Register Function Code 0x03

Eg: Send command "Read the actual speed of motor", return "The actual speed of motor is 10RPM" Send:

Command	Content Description
01	Driver Address
03	Function Code
20	High 8 bits of register start address
AB	Low 8 bits of register start address
00	High 8 bits of register number
02	Low 8 bits of register number
BE	High 8 bits of CRC check
2B	Low 8 bits of CRC check

Return data:

Command	Content Description
01	Driver Address
03	Function Code
04	Number of bytes read
00	High 8 bits of data 0
64	Low 8 bits of data 0
00	High 8 bits of data 1
64	Low 8 bits of data 1
BA	High 8 bits of CRC check
07	Low 8 bits of CRC check

4. Control Mode

4.1 Profile Velocity Mode

Note: Generally, users are required to use synchronous mode (synchronous mode about asynchronous function can also be achieved). The default shipping mode is synchronous mode.

Description	Send	Return
Set Profile Velocity Mode	01 06 20 0D 00 03 53 C8	01 06 20 0D 00 03 53 C8
Motor enable	01 06 20 0E 00 08 E2 0F	01 06 20 0E 00 08 E2 0F
Set up synchronization	01 10 20 88 00 02 04 00 64 00 64 23	01 10 20 88 00 02 CA 22
Target speed 100 RPM	9C	
Set up synchronization	01 10 20 88 00 02 04 FF 9C FF 9C D2	01 10 20 88 00 02 CA 22
Target speed 100 RPM	OB	
Set the left speed to -10 RPM	01 10 20 88 00 02 04 FF F6 00 64 B2	01 10 20 88 00 02 CA 22
and the right speed to 100 RPM	65	
Set the left speed to 10 RPM and	01 10 20 88 00 02 04 00 0A FF 9C 02	01 10 20 88 00 02 CA 22
the right speed to -100 RPM	33	

4.2 Profile Position Mode (Relative Position)

Description	Send	Return
Set relative Profile Position Mode	01 06 20 0D 00 01 D2 09	01 06 20 0D 00 01 D2 09
Set left motor Maximum speed 50RPM	01 06 20 8E 00 32 63 F4	01 06 20 8E 00 32 63 F4
Set right motor Maximum speed 50RPM	01 06 20 8F 00 32 32 34	01 06 20 8F 00 32 32 34
Motor enable	01 06 20 0E 00 08 E2 0F	01 06 20 0E 00 08 E2 0F
Set up synchronization	01 10 20 8A 00 04 08 00 00 50	01 10 20 8A 00 04 EB E0
target position 20480pulses	00 00 00 50 00 E3 2C	
Start up	01 06 20 0E 00 10 E2 05	01 06 20 0E 00 10 E2 05
Set up synchronization	01 10 20 8A 00 04 08 FF FF B0	01 10 20 8A 00 04 EB E0
target position -20480pulses	00 FF FF B0 00 FC A3	
Start up	01 06 20 0E 00 10 E2 05	01 06 20 0E 00 10 E2 05
Set left position -20480pulses,	01 10 20 8A 00 04 08 FF FF B0	01 10 20 8A 00 04 08 FF FF B0
right position 20480pulses	00 00 00 50 00 B5 47	00 00 00 50 00 B5 47
Start up	01 06 20 0E 00 10 E2 05	01 06 20 0E 00 10 E2 05

4.3 Profile Position Mode (Absolute Position)

Description	Send	Return		
Set absolute Profile Position Mode	01 06 20 0D 00 02 92 08	01 06 20 0D 00 02 92 08		
Set left motor Maximum speed 50RPM	01 06 20 8E 00 32 63 F4	01 06 20 8E 00 32 63 F4		
Set right motor Maximum speed 50RPM	01 06 20 8F 00 32 32 34	01 06 20 8F 00 32 32 34		
Motor enable	01 06 20 0E 00 08 E2 0F	01 06 20 0E 00 08 E2 0F		
Set up synchronization	01 10 20 8A 00 04 08 00 00 50	01 10 20 8A 00 04 EB E0		
target position 20480pulses	00 00 00 50 00 E3 2C			
Start up	01 06 20 0E 00 10 E2 05	01 06 20 0E 00 10 E2 05		
Set up synchronization	01 10 20 8A 00 04 08 FF FF B0	01 10 20 8A 00 04 EB E0		
target position -20480pulses	00 FF FF B0 00 FC A3			
Start up	01 06 20 0E 00 10 E2 05	01 06 20 0E 00 10 E2 05		
Set left position -20480pulses,	01 10 20 8A 00 04 08 FF FF B0	01 10 20 8A 00 04 08 FF FF B0		
right position 20480pulses	00 00 00 50 00 B5 47	00 00 00 50 00 B5 47		
Start up	01 06 20 0E 00 10 E2 05	01 06 20 0E 00 10 E2 05		

4.4 Profile Torque Mode

Description	Send	Return
Set Profile Torque Mode	01 06 20 0D 00 04 12 0A	01 06 20 0D 00 04 12 0A
Motor enable	01 06 20 0E 00 08 E2 0F	01 06 20 0E 00 08 E2 0F
Set up synchronization	01 10 20 90 00 02 04 07 D0	01 10 20 90 00 02 4A 25
Target torque 2000mA	07 D0 60 23	
Set up synchronization	01 10 20 90 00 02 04 F8 30	01 10 20 90 00 02 4A 25

Target torque -2000mA	F8 30 11 B9	
Set left torque 2000mA and right	01 10 20 90 00 02 04 07 D0	01 10 20 90 00 02 4A 25
torque -2000mA	F8 30 20 5B	
Set left torque -2000mA and	01 10 20 90 00 02 04 F8 30	01 10 20 90 00 02 4A 25
right torque 2000mA	07 D0 51 C1	

4.5 General Command

Master station (COB-ID:0x601)	Description	
01 06 20 0E 00 07 A2 0B	Stop	
01 06 20 0E 00 06 63 CB	Clear fault	
01 03 20 A7 00 02 7E 28	Read left motor encoder value	
01 03 20 A9 00 02 1F EB	Read right motor encoder value	
01 03 20 AB 00 02 BE 2B	Read left and right motor actual speed (unit: 0.1RPM)	
01 03 20 AD 00 02 5E 2A	Read left and right motor actual current (unit: 0.1A)	
01 03 20 A5 00 02 DF E8	Read fault code	
	High 16 bits: (left)	
	Low 16 bits: (right)	
01 03 20 A0 00 01 8F E8	Read software version	
01 03 20 A4 00 01 CE 29	Read left and right motor temperature (unit: 1℃)	
	High 8 bits: (left)	
	Low 8 bits: (right)	

4.6 Emergency Stop Command

Send	Receive	Description	
01 06 20 0E 00 05 23 CA	01 06 20 0E 00 05 23 CA	Mtor stops and keep enabled status	
01 06 20 0E 00 08 E2 0F	01 06 20 0E 00 08 E2 0F	Motor Enable (Release Emergency	
		Stop)	

* Note: After sending emergency stop command, user needs to send enable command to release the emergency stop status.

5. Function Setting

5.1 Alarm PWM Processing Method

Open Command: 01 06 20 1F 00 01 72 0C
Close Command: 01 06 20 1F 00 00 B3 CC
Save To EEPROM: 01 06 20 10 00 01 42 0F

Trigger Mechanism: When enabling this function, driver will enter an alarm and short-circuit the motor's power UVW (after the motor power cable UVW short-circuit, it will generate resistance during motor's rotation)

Function: To prevent the robot from sliding instantly after motor alarms

5.2 Parking Mode

Open Command: 01 06 20 0C 00 01 83 C9 **Close Command:** 01 06 20 0C 00 00 42 09

Trigger Mechanism: When enabling this function, the motor output current will not exceed

3A

Function: When the robot is charging or standby, enter this function to prevent the motor

from over temperature problem

5.3 Speed Resolution

Setting Instruction: 01 06 20 22 00 0A A2 07 (setting range: 0-10) 10 is hexadecimal A **Save To EEPROM:** 01 06 20 10 00 01 42 0F

Rule: Set to A, output speed unit: 1/10=0.1 RPM. Eg: target speed is 100 RPM, and the actual output is 10 RPM

Set to 5, output speed units: 1/5=0.2 RPM. Eg: target speed is 100 RPM, and the actual output is 20 RPM

Set to 1, output speed unit: 1/1=1 RPM. Eg: target speed is 100 RPM, and the actual output is 100 RPM

Trigger Mechanism: After enabling the testing function, it must be saved and restarted to be effective

Function: User could use more precise target speed control

5.4 I/O Emergency Stop Processing Method

5.4.1 Wiring Diagram J4

5.4.2 RS485 Command Setting

Enable input interface X1 emergency stop function: 01 06 20 17 00 09 F2 08

Enable input interface Xpwm emergency stop function: 01 06 20 18 00 09 C2 0B (at present it's only emergency stop function, if PWM function is requested, please contact technical support team)

Command to enable IO emergency stop axis release function: 01 06 20 21 00 01 13 CO

Command to turn off IO emergency stop axis release function: 01 06 20 21 00 00 D2 00

Save To EEPROM: 01 06 20 10 00 01 42 0F

Trigger mechanism: After activating this function, and triggering an external emergency stop, the motor will be in an enabled state (0 speed)

Function: When the robot is in an abnormal state, it can be pushed forward.

5.5 Brake Function

5.5.1 Wiring Diagram

Note: 20V-24V DC, brake doesn't have positive or negative poles, and could be wired freely.

5.5.2 Brake Command Setting

Release left and right brake command: 01 06 20 1A 00 00 A3 CD

01 06 20 1B 00 00 F2 0D

Close left and right brake command: 01 06 20 1A 00 01 62 0D

01 06 20 1B 00 01 33 CD

Function: If user's motor is equipped with an external electromagnetic brake, this command can be used to release and close the brake.

5.6 Regen Function (User just needs to connect regen resistor)

Open regen function command: 01 06 20 27 00 01 F3 C1 (Default enabled)

Close regen function command: 01 06 20 27 00 00 32 01

Other parameters can also be set through objects 0x2023~0x2026.

Function: To prevent user from damaging the drive or other equipments due to the back electromotive force generated by excessive speed and emergency stop.

6. RS485 Status Word

Index	Bit definition	Status word	Status Description
	R-bit7, bit6	00 00	Release shaft
	L-bit15, bit14	40 40	Lock shaft
20A2h		80 80	Emergency stop
		CO CO	Alarm

R-bit0	0	Stop
L-bit8	1	Running

7. Fault Code

Index	Fault code	Description	Troubleshooting		
	0000h	No error	Driver is normal.		
			1. Power supply voltage is too high		
	0001h	Over-voltage	2. Excessive back electromotive force (it is		
			recommended to add a bleeder circuit)		
			1. Power supply voltage is too low		
	0002h	Under-voltage	2. Check if the wiring connector is correct		
			3. Check if the motor parameters are correct		
			1. Instantaneous current is too high		
	0004h	Left motor over-current	2. Motor power cable is loose		
			1. Check if the motor cable is loose		
			2. Check if the wiring and motor parameters are		
	0008h	Left motor overload	correct		
			3. Motor is stall		
			4. Motor or driver's problem		
		Left motor encoder value is out	1. Motor is stall		
	0020h	of tolerance	2. Encoder's problem		
	0080h	Left motor reference voltage	Reference voltage circuit issue		
	OOOOII	error	Reference voltage circuit issue		
	0100h	Left motor EEPROM read and write error	1. Firmware is upgraded		
			(needs to make factory settings)		
			2. EEPROM circuit is damaged		
20A5h			1. Check if the motor cable is loose		
2011011	0200h	Left motor hall error	2. Motor's problem		
			3. Driver's problem		
			1. The motor current is too high (it is		
			recommended to monitor motor's actual current		
	0400h	Left motor temperature is too	and temperature, and reduce the current in		
	040011	high	real-time control)		
			2. Motor's thermistor is damaged		
			3. Driver's circuit is damaged		
			1. Check if the motor encoder cable is loose		
	0800h	Left motor encoder error	2. Check if the motor encoder cable is		
			disconnected		
			1. The driver current is too high (it is		
		L.C. b	recommended to monitor the temperature of the		
	1000h	Left driver temperature is too	driver in real time and control the current in		
	100011	high	real time to reduce it)		
			Tear time to reduce 1t/		

			3. Driver thermistor circuit is damaged		
	2000h	Left motor given speed error	Given speed exceeds rated speed set		
	0000h	No error	Driver is normal.		
			1. Power supply voltage is too high		
	0001h	Over-voltage	2. Excessive back electromotive force (it is		
			recommended to add a bleeder circuit)		
			1. Power supply voltage is too low		
	0002h	Under-voltage	2. Check if the wiring connector is correct		
			3. Check if the motor parameters are correct		
	00041	Diable makes are a summer	1. Instantaneous current is too high		
	0004h	Right motor over-current	2. Motor power cable is loose		
			1. Check if the motor cable is loose		
			2. Check if the wiring and motor parameters are		
	0008h	Right motor overload	correct		
			3. Motor is stall		
			4. Motor or driver's problem		
	0020h	Right motor encoder value is	1. Motor is stall		
	002011	out of tolerance	2. Encoder's problem		
	0080h	Right motor reference voltage error	Reference voltage circuit issue		
	0100h	Right motor EEPROM read and write error	1. Firmware is upgraded		
			(needs to make factory settings)		
20A6h			2. EEPROM circuit is damaged		
	0200h	Right motor hall error	1. Check if the motor cable is loose		
			2. Motor's problem		
			3. Driver's problem		
			1. The motor current is too high (it is		
			recommended to monitor motor's actual current		
	0.4001	Right motor temperature is too	and temperature, and reduce the current in		
	0400h	high.	real-time control)		
			2. Motor's thermistor is damaged		
			3. Driver's circuit is damaged		
			1. Check if the motor encoder cable is loose		
	0800h	Right motor encoder error	2. Check if the motor encoder cable is		
			disconnected		
			1. The driver current is too high (it is		
			recommended to monitor the temperature of the		
	10001	Right driver temperature is too	driver in real time and control the current in		
	1000h	high	real time to reduce it)		
			2. Driver thermistor is damaged		
			3. Driver thermistor circuit is damaged		
	2000h	Right motor given speed error	Given speed exceeds rated speed set		

8. Address Directionary

Index	Name	Description	Туре	Access	Default
	Common	constant for Left and Right	t motors		
2000h	Communication offline time	Driver and host communication offline time setting.	U16	RW/S	0
		Unit: ms			
20011	DC40E Nada ID	Range: 0-32767;	III.C	DW/C	1
2001h	RS485 Node ID	Range: 1~127	U16	RW/S	2
2002h	RS485 Baud Rate	1: 128000bps 2: 115200bps	U16	RW/S	2
		3: 57600bps			
		4: 38400bps			
		5: 19200bps			
		6: 9600bps			
2003h	Input signal status	2 input signal level status	U16	RO	0
2003II	input signai status	Bit0-Bit1: X0-X1 input level	010	KU	0
		status			
2004h	Out simal status	2 output signal level status	U16	RO	0
200411	Out signal status	Bit0: Y1 output status;	010	NO NO	0
		Bit1-Bit2: B0-B1 output status;			
2005h	Clear feedback	Used to clear feedback position	U16	RW	0
200311	position	in Profile Position Mode.	010	I KW	0
	position	0: Invalid;			
		1: Clear the feedback			
		position(Left);			
		2: Clear the feedback			
		position(Right);			
		3: Clear the feedback			
		position(Left and right);			
		Not saved.			
2006h	In absolute position	reset the zero point.	U16	RW	0
*	control, reset the	0: Invalid;			
	zero point	1: Reset the zero point(Left);			
	1	2: Reset the zero point(Right);			
		3: Reset the zero point(Right);			
		Not saved.			
2007h	Shaft state after	O: Not enabled, not lock shaft;	U16	RW/S	0
	power on	1: Not enabled, lock shaft;			
2008h	Maximum motor speed	Motor maximum speed	U16	RW/S	300
		Unit: r/min.			
		Range: 1-1000 r/min.			
2009h	Register parameter	0: Invalid;	U16	RW	0
	settings	1: Restore factory settings.			

200Ah	CAN Node ID	Range: 1-127	U16	RW/S	1
200Bh	CAN Baud rate	0: 1000 Kbit/s	U16	RW	1
		1: 500 Kbit/s			
		2: 250 Kbit/s			
		3: 125 Kbit/s			
		4: 100 Kbit/s			
200Ch	Parking mode	0: Close	**** 0	PW / G	
		1: Open	U16	RW/S	0
200Dh	Control mode	0: Undefined	U16	RW	0
		1: Position mode(Relative)			
		2: Position mode(Absolute)			
		3: Velocity mode			
		4: Torque mode			
200Eh	Control word	Control word	U16	RW	0
		0: Undefined			
		0x05: Emergency stop			
		0x06: Clear error			
		0x07: Stop			
		0x08: Enable			
		0x10:Start(Synchronous)(neede			
		d in position mode)			
		0x11: Start(Left) (needed in			
		position mode)			
		0x12: Start(Right) (needed in			
		position mode)			
200Fh	Synchronous/asynchr	0: Synchronous	U16	RW	0
200111	onous control status	1: Asynchronous	010	10.1	
2010h	Whether store RW	Whether the value of the	U16	RW	0
201011	register to EEPROM	communication write function	010	K"	
	register to Editom	code is updated to the EEPROM.			
		0: Invalid			
		1: Store parameters have RW			
		attribution to EEPROM			
2011h	Quick stop control	How driver process when receive	U16	RW	5
201111	4aron prop contitor	quick stop command		1011	
		5: Stop			
		6: Quick stop(with deceleration			
		time)			
		7: Quick stop(without			
		deceleration time)			
2012h	Close operation	How driver process when receive	U16	RW	1
201211	control	stop command	010	IV.	1
	COILLIOI	0: Invalid;			
		1: Stop normally, switch to			

		"ready to switch on" state			
2013h	Disable control	How driver process when receive disable command O: Invalid	U16	RW	1
		1: Stop(Switch to switch on status)			
2014h	Halt control	How driver process when receive Halt command 1: Stop(operation enabled) 2: Quick stop with deceleration time (operation enable) 3: Quick stop without deceleration time(operation enable)	U16	RW	1
2016h	Input effective level	Bit0: Input terminal XO control bit; Bit1: Input terminal X1 control bit; Bit2: AD Input control bit; Bit3-Bit5: reserved; 0: Default 1: Reverse The driver defaults to the input terminal level rising edge or high level active.	U16	RW/S	0
2017h	Input terminal X0 terminal function selection	0: None 1-8: NC 9: Emergency stop	U16	RW/S	9
2018h	Input terminal X1 terminal function selection	0: None 9: Emergency stop(PWM function is reserved)	U16	RW/S	0
2019h	Output effective level	Bit0: Output terminal Y1 control bit; Bit1: Output terminal B0 control bit; Bit2: Output terminal B1 control bit; 0: Default 1: Reverse The driver defaults to the input terminal level rising edge or high level active;	U16	RW/S	0
201Ah	Output terminal BO terminal function	Brake state 0: Open brake	U16	RW/S	0

	selection	1: Close brake			
201Bh	Output terminal B1	Brake state			
	terminal function	0: Open brake	U16	RW/S	0
	selection	1: Close brake			
201Ch	Output terminal Y1	0: undefined;			
	terminal function	1: Alarm signal;			
	selection	2: Drive status signal;	U16	RW/S	0
		3: Target position reached			
		signal (reserved);			
201Dh	NC	NC	U16	RW/S	0
201Eh	Driver temperature	Unit 0.1°C;	III.C	DW/C	900
	protection threshold	Range: 0-1200	U16	RW/S	800
201Fh	Alarm PWM processing	0: close;	111.0	DW/G	
	method	1: open	U16	RW/S	0
2020h	Overload processing	0: close;	111.0	DW/G	
	method	1: open	U16	RW/S	0
2021h	I/O emergency stop	0: Lock shaft		,	
	processing mode	1: Release shaft	U16	RW/S	0
2022h	Given speed	Set value range: 1-A	U16	RW/S	1
	resolution	1: Speed resolution 1RPM			
		2: Speed resolution 0.5RPM			
		3: Speed resolution 1/3 RPM			
		4: Speed resolution 0.25RPM			
		5: Speed resolution 0.2RPM			
		6: Speed resolution 1/6RPM			
		7: Speed resolution 1/7RPM			
		8: Speed resolution 0.125RPM			
		9: Speed resolution 1/9RPM			
		A:Speed resolution 0.1RPM			
2023h	Regen resistance	Unit 0.1Ω;	U16	RW/S	50
	value	Range 0-1000 (*0.1)			
2024h	Regen resistance	Unit W;	U16	RW/S	100
	power	Range 0-1000			
2025h	Regen opening	Unit 0.1V:	U16	RW/S	700
	voltage	Range 240-750 (*0.1)		11.17	
2026h	Regen close voltage	Unit 0.1V;	U16	RW/S	620
	5 2121 . 323	Range 210-720 (*0.1)		,	.=-
2027h	Regen function	Brake open/close	U16	RW/S	1
	control	0: close		, -	
		1: open			
2028h	Speed exceeds the	0: close	U16	RW/S	1
	tolerance	1: open		, ~	-
2029h	Default direction	0: CW	U16	RW/S	0
_ 0 _ 0 11	Dollar Gilcotton	1: CCW		1/ 5	

		Left motor parameter			
2030h	Encoder line	Range: 0-4096	U16	RW/S	4096
2031h	Hall offset angle	Unit: 1°	I16	RW/S	0
		Range: -360-+360			
2032h	Overload factor	Unit: %	U16	RW/S	200
		Range: 0-300			
2033h	Rated current	Rated current output by the	U16	RW/S	200
		driver			
		Unit: 0.1A			
		Range: 0-300			
2034h	Max current	Rated current output by the	U16	RW/S	600
		driver			
		Unit: 0.1A			
		Range: 0-600			
2035h	Overload protection	Driver overload protection time	U16	RW/S	300
	time	Unit: 10ms			
		Range: 0-6553			
2036h	Position following	Encoder tolerance threshold	U16	RW/S	1638
	error threshold	Unit: 10counts			
		Range: 1-6553			
2037h	Velocity smoothing	Range: 0-30000	U16	RW/S	50
	factor				
2038h	Cl Kp	Range: 0-30000	U16	RW/S	30000
2039h	Cl Ki	Range: 0-30000	U16	RW/S	600
203Ah	Feedforward output	Range: 0-30000	U16	RW/S	100
	smoothing factor				
203Bh	Torque output	Range: 0-30000	U16	RW/S	100
	smoothing factor				
203Ch	Velocity Loop Kp	Range: 0-30000	U16	RW/S	80
203Dh	Velocity Loop Ki	Range: 0-30000	U16	RW/S	3000
203Eh	Velocity Loop Kf	Range: 0-30000	U16	RW/S	1000
203Fh	Position Loop Kp	Range: 0-30000	U16	RW/S	200
2040h	Position Loop Kf	Range: 0-30000	U16	RW/S	200
	Initial	Initial velocity in velocity	U16	RW/S	1r/min
2043h	velocity(Velocity	mode			
	mode)	Unit: r/min;			
		Range: 1-250/min;			
	Initial	Initial velocity in position			
2044h	velocity(Position	mode	U16	RW	1r/min
	mode)	Range: 1-250/min;			
2045h	Motor poles	Range: 4-64	U16	RW	20
	Over temperature	Unit: 0.1° C;	U16	RW	800
2046h	threshold	Range: 0-1200			

2047h	Velocity observer coefficient 1	0-30000	U16	RW	1000
2048h	Velocity observer coefficient 2	0-30000	U16	RW	750
2049h	Velocity observer coefficient 3	0-30000	U16	RW	350
204Ah	Velocity observer coefficient 4	0-30000	U16	RW	1000
		Right motor parameter			
2060h	Encoder line	Range: 0-4096	U16	RW/S	4096
2061h	Hall offset angle	Unit: 1° Range: -360-+360	I16	RW/S	0
2062h	Overload factor	Unit: % Range: 0-300	U16	RW/S	200
2063h	Rated current	Rated current output by the driver Unit: 0.1A Range: 0-300	U16	RW/S	200
2064h	Maximum current	Rated current output by the driver Unit: 0.1A Range: 0-600	U16	RW/S	600
2065h	Overload protection time	Driver overload protection time Unit: 10ms Range: 0-6553	U16	RW/S	300
2066h	Position following error threshold	Encoder tolerance threshold Unit: 10counts Range: 1-6553	U16	RW/S	1638
2067h	Velocity smoothing factor	Range: 0-30000	U16	RW/S	50
2068h	Current Loop Kp	Range: 0-30000	U16	RW/S	3000
2069h	Current Loop Ki	Range: 0-30000	U16	RW/S	600
206Ah	Feedforward output	Range: 0-30000	U16	RW/S	100
206Bh	Torque output smoothing factor	Range: 0-30000	U16	RW/S	100
206Ch	Velocity Loop Kp	Range: 0-30000	U16	RW/S	80
206Dh	Velocity Loop Ki	Range: 0-30000	U16	RW/S	3000
206Eh	Velocity Loop Kf	Range: 0-30000	U16	RW/S	1000
206Fh	Position Loop Kp	Range: 0-30000	U16	RW/S	200
2070h	Position Loop Kf	Range: 0-30000	U16	RW/S	200
2073h	Initial velocity (Velocity	Initial velocity in velocity mode	U16	RW/S	1r/min

	mode)	Unit: r/min;			
	mode,	Range: 1-250/min;			
2074h	Initial	Initial velocity in position			
201411	velocity (Position	mode	U16	RW	lr/min
	mode)	Range: 1-250/min;	010	K"	11/11111
2075h	Poles of motor	Range: 4-64	U16	RW/S	20
201311	Over temperature	Unit: 0.1° C;	U16	RW/S	800
2076h	threshold	Range: 0-1200	010	I/W/ S	800
		0-30000	U16	RW	1000
2077h	Velocity observer coefficient 1	0-30000	016	KW	1000
		0.0000	H1 C	DW	750
2078h	Velocity observer	0-30000	U16	RW	750
	coefficient 2	2 2222	111.0	DW	050
2079h	Velocity observer	0-30000	U16	RW	350
	coefficient 3				
207Ah	Velocity observer	0-30000	U16	RW	1000
	coefficient 4				
		Control parameter		ı	
2080h	S-shape acceleration	Acceleration time	U16	RW	10ms
	time(Left)	Range: 0-32767ms			
2081h	S-shape acceleration	Acceleration time	U16	RW	10ms
	time(Right)	Range: 0-32767ms		101	
2082h	S-shape deceleration	Deceleration time	U16	RW	10ms
	time(Left)	Range: 0-32767ms			
2083h	S-shape deceleration	Deceleration time	U16	RW	10ms
200011	time(Right)	Range: 0-32767ms			
2084h	Deceleration time of	Deceleration time	U16	RW	10ms
200 III	quick stop(Left)	Range: 0-32767ms		IXW	
2085h	Deceleration time of	Deceleration time	U16	RW	10ms
200311	quick stop(Right)	Range: 0-32767ms	010		
20061	Toronto along (Laft)	Current/1000/second	111.6	DW	300ms
2086h	Torque slope(Left)	Unit: mA/S	U16	RW	
00071	T 1 (D: 1.4)	Current/1000/second	III.C	DW	300ms
2087h	Torque slope(Right)	Unit: mA/S	U16	RW	
	m .	Target velocity in velocity			
2088h	Target	mode	I16	RW	0
	velocity(Left)	Range: -3000~3000r/min			
	_	Target velocity in velocity			
2089h	Target	mode	I16	RW	0
*	velocity(Right)	Range: -3000~3000r/min			
	Target position high	Range of total pulse number in			_
208Ah	16 bits(Left)	position mode operation;	I16	RW	0
		Relative:			
	Target position low	-0x7FFFFFFF°0x7FFFFFFF	TIG	RW	0
208Bh	16 bits(Left)	OXITTITITE OXITTITITE	I16 RW	1 1/1/1/	

		-0x3FFFFFFF°0x3FFFFFFF			
208Ch	Target position high 16 bits(Right)	Range of total pulse number in position mode operation;	I16	RW	0
208Dh	Target position low 16 bits(Right)	Relative: -0x7FFFFFFF°0x7FFFFFFF Absolute: -0x3FFFFFFF°0x3FFFFFFF	I16	RW	0
208Eh	Max speed(Left)	Max speed in position mode Range: 1-1000r/min;	U16	RW	120r/min
208Fh	Max speed(Right)	Max speed in position mode Range: 1-1000r/min;	U16	RW	120r/min
2090h	Target torque(Left)	Unit: mA Range: -30000~30000;	I16	RW	0
2091h	Target torque(Right)	Unit: mA Range: -30000~30000;	I16	RW	0
		Read only parameter			
20A0h	Sofeware version	Default	U16	RO	_
20A1h	Bus voltage	Unit: 0.01V	U16	RO	0
20A2h	Status word	Driver controls motor movement:	U16	RO	0
		L-bit7, bit6 R-bit15, bit14			
		00 00: Shaft release			
		00 40: Shaft lock			
		00 80: Emergency stop			
		00 CO: Alarm			
		Motor running status: bit0			
		L-bit0, R-bit8			
		0: Stop 1: Run			
20A3h	Hall input state	Range: 0-7	U16	RO	0
		If 0 or 7 occurs, hall error			
		High 8 bits(Left)			
		Low 8 bits(Right)			
20A4h	Motor temperature	Unit: 1°C;	U16	RO	_
		Range: -55~120			
		High 8 bits(Left)			
		Low 8 bits(Right)			
		Driver error conditions defined			
		by manufacturer.			
		0000h: No error			
	Error code(Left)	0001h : Over voltage	U16		
20A5h		0002h : Under voltage		RO	0
		0004h: Over current			
		0008h: Over load			
		0010h: Current out of			
		0008h: Over load			

		tolerance(reserved) 0020h: Encoder out of tolerance			
		0040h: Velocity out of tolerance(reserved)			
		0080h : Reference voltage error			
		0100h: EEPROM error			
		0200h: Hall error			
		0400h: Motor temperature over			
		temperature			
		0800h: Encoder error			
		1000h: high driver temperature.			
		2000h: Speed setting error (the			
		given speed cannot exceed the			
		rated speed)			
		Driver error conditions defined			
		by manufacturer.			
		0000h: No error			
	Error code(Right)	0001h : Over voltage	U16	RO	0
		0002h : Under voltage			
		0004h: Over current			
		0008h: Over load			
		0010h: Current out of			
		tolerance(reserved)			
		0020h: Encoder out of tolerance			
		0040h: Velocity out of			
20A6h		tolerance(reserved)			
		0080h : Reference voltage error			
		0100h: EEPROM error			
		0200h: Hall error			
		0400h: Motor temperature over			
		temperature			
		0800h: Encoder error			
		1000h: high driver temperature.			
		2000h: Speed setting error (the			
		given speed cannot exceed the			
		rated speed)			
20A7h	Actual motor				
	position high 16	Actual motor position with	I16	RO	0
	bits(Left)	Actual motor position, unit:			
20A8h	Actual motor	counts Range:-0x7FFFFFFF [~] 0x7FFFFFFF			
	position low 16	wange. Oxittlitt Oxittlitt	I16	RO	0
	bits(Left)				
20A9h	Actual motor	Actual motor position, unit:	I16	RO	0
	position high 16	counts	110	NO.	J

	bits(Right)	Range:-0x7FFFFFF°0x7FFFFFFF			
20AAh	Actual motor				
	position low 16		I16	RO	0
	bits(Right)				
20ABh	Actual	Actual valoaity unit: 0 1m/min	T16	DO.	0
ZUADII	velocity(Left)	Actual velocity, unit: 0.1r/min	I16	RO	0
20ACh	Actual	Actual velocity, unit: 0.1r/min	I16	RO	0
ZUACII	velocity(Right)				
20ADh	Actual torque(Left)	Unit: 0.1A	I16	RO	0
ZUADII		Range: -300~300;			
20AEh	Actual torque(Right)	Unit: 0.1A	I16	RO	0
ZUAEII		Range: -300~300;			
20AFh	Software connected	01			
	status				
20B0h	Driver temperature	Unit: 0.1° C;	I16	RO	-
		Range: -550~1200.			

Note:

U16 means unsigned 16 bits; I16 means signed 16 bits; U32 means unsigned 32 bits; I32 means signed 32 bits.