THE THOM ISOMORPHISM

PEDRO NÚÑEZ

ABSTRACT. Script for a talk of the Wednesday Seminar of the GK1821 at Freiburg during the Summer Semester 2021. The main reference is [Ati67, §2].

CONTENTS

1.	Setting and conventions	1
2.	Recollection from previous talks	1
References		2

—parts in gray will be omitted during the talk—

1. SETTING AND CONVENTIONS

- We work with complex vector spaces and complex vector bundles only.
- We use the usual word rank instead of dimension, which is the one used in [Ati67].
- We use Vect(X) to denote the set of isomorphism classes of vector bundles on X, and $Vect_n(X)$ to denote the subset of Vect(X) given by bundles of dimension n.
- We denote by \mathcal{C} the category of compact spaces, by \mathcal{C}^+ the category of compact spaces with distinguished basepoints and by \mathcal{C}^2 the category of compact pairs.

2. Recollection from previous talks

2.1. **Definition of** K(X). If X is any space, the set $\mathrm{Vect}(X)$ has the structure of an abelian semigroup, where the additive structure is defined by direct sum.

We have a functor $\mathcal{C}^2 \to \mathcal{C}^+$ that sends a pair (X,Y) to X/Y, with basepoint Y/Y. If $Y = \emptyset$, then we interpret the resulting object as X with a disjoint basepoint. We also have a functor $\mathcal{C} \to \mathcal{C}^2$ sending $X \mapsto (X, \emptyset)$. Hence, the composition of the two functors gives $X \mapsto X^+$, where X^+ is the disjoint union of X with a basepoint.

Date: 5th May 2021.

The author gratefully acknowledges support by the DFG-Graduiertenkolleg GK1821 "Cohomological Methods in Geometry" at the University of Freiburg.

For X in C^+ we define $\tilde{K}(X)$ to be the kernel of the map $i^*: K(X) \to K(x_0)$, where $i: x_0 \to X$ is the inclusion of the basepoint. If $c: X \to x_0$ is the collapsing map, then c^* induces a splitting

$$K(X) \cong \tilde{K}(X) \oplus K(x_0).$$

Indeed, we need...

References

[Ati
67] M. F. Atiyah. K-theory. Lecture notes by D. W. Anderson. W. A. Benjamin,
 Inc., New York-Amsterdam, 1967.

Pedro Núñez

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG, MATHEMATISCHES INSTITUT ERNST-ZERMELO-STRASSE 1, 79104 FREIBURG IM BREISGAU (GERMANY)

Email address: pedro.nunez@math.uni-freiburg.de

Homepage: https://home.mathematik.uni-freiburg.de/nunez