

/JP2004/001199

JAPAN PATENT **OFFICE**

05, 2, 2004

RECEIVED

25 MAR 2004

WIPO

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月19日

出: 願 Application Number: 特願2003-423308

[ST. 10/C]:

[JP2003-423308]

出 人 Applicant(s):

帝国通信工業株式会社

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 3月12日

出証特2004-3019639 出証番号

【手数料の表示】

【予納台帳番号】

【納付金額】

041634

21,000円

【書類名】 特許願 TT-1620 【整理番号】 【あて先】 特許庁長官殿 H01C 10/32 【国際特許分類】 【発明者】 神奈川県川崎市中原区苅宿335番地 帝国通信工業株式会社内 【住所又は居所】 水野 伸二 【氏名】 【発明者】 神奈川県川崎市中原区苅宿335番地 帝国通信工業株式会社内 【住所又は居所】 【氏名】 三井 浩二 【発明者】 神奈川県川崎市中原区苅宿335番地 帝国通信工業株式会社内 【住所又は居所】 矢ノ下 勝利 【氏名】 【発明者】 帝国通信工業株式会社内 神奈川県川崎市中原区苅宿335番地 【住所又は居所】 【氏名】 鈴木 伸一 【発明者】 帝国通信工業株式会社内 神奈川県川崎市中原区苅宿335番地 【住所又は居所】 篠木 高司 【氏名】 【発明者】 神奈川県川崎市中原区苅宿335番地 帝国通信工業株式会社内 【住所又は居所】 【氏名】 中込 和隆 【発明者】 帝国通信工業株式会社内 神奈川県川崎市中原区苅宿335番地 【住所又は居所】 【氏名】 福田 直紀 【発明者】 帝国诵信工業株式会社内 神奈川県川崎市中原区苅宿335番地 【住所又は居所】 森田 幸三 【氏名】 【発明者】 神奈川県川崎市中原区苅宿335番地 帝国通信工業株式会社内 【住所又は居所】 【氏名】 牧野 大介 【特許出願人】 【識別番号】 000215833 【氏名又は名称】 帝国通信工業株式会社 【代理人】 【識別番号】 100087066 【弁理士】 【氏名又は名称】 熊谷 隆 03-3464-2071 【電話番号】 【選任した代理人】 【識別番号】 100094226 【弁理士】 【氏名又は名称】 高木 裕 【電話番号】 03-3464-2071 【先の出願に基づく優先権主張】 【出願番号】 特願2003-34181 平成15年 2月12日 【出願日】

【提出物件の目録】

【物件名】

【物件名】

【物件名】 【物件名】 特許請求の範囲 1

明細書 1

図面 1

要約書 1

【請求項1】

合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる端子板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、

前記金型のキャビティー内に前記フレキシブル回路基板を収納し、その際前記フレキシブル回路基板の導体パターンを設けた面をキャビティー内の一方の面に当接し、

前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとを露出するように取り付け、

その後絶縁基台端部に、前記フレキシブル回路基板上に設けられた端子パターンに接続するように端子板を取り付けたことを特徴とする電子部品用基板の製造方法。

【請求項2】

合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる端子板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、

前記金型のキャビティー内に前記フレキシブル回路基板と端子板とを収納し、その際前記フレキシブル回路基板の導体パターンを設けた面をキャビティー内の一方の面に当接すると同時に、端子板の一部をフレキシブル回路基板の端子パターンに当接又は対向させておき、

前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとを露出するように取り付けると同時に、この絶縁基台端部に、前記フレキシブル回路基板上に設けられた端子パターンに接続するように端子板を取り付けたことを特徴とする電子部品用基板の製造方法。

【請求項3】

合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに 接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる集電板 と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、

前記金型のキャビティー内に前記フレキシプル回路基板と集電板とを収納し、その際前 記フレキシプル回路基板の導体パターンを設けた面をキャビティー内の一方の面に当接し

前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとが露出するように取り付けると同時に、集電板を埋め込み、

その後絶縁基台端部に、前記フレキシブル回路基板上に設けられた端子パターンに接続 するように金属板製の端子板を取り付けたことを特徴とする電子部品用基板の製造方法。

【請求項4】

合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる集電板と、金属板からなる端子板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、

前記金型のキャビティー内に前記フレキシブル回路基板と集電板と端子板とを収納し、 その際前記フレキシブル回路基板の導体パターンを設けた面をキャビティー内の一方の面 に当接すると同時に、端子板の一部をフレキシブル回路基板の端子パターンに当接又は対 向させておき、

前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとを露出するように取り付けると同時に、この絶縁基台端部に、前記フレキシブル回路基板上に設けられた端子パターンに接続するように端子板を取り付け、

さらに同時に集電板を埋め込んだことを特徴とする電子部品用基板の製造方法。 【請求項5】

合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる集電板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、

前記金型のキャビティー内に前記フレキシブル回路基板と集電板とを収納し、その際前 記フレキシブル回路基板の導体パターンを設けた面をキャビティー内の一方の面に当接し

前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとが露出するように取り付けると同時に、集電板を埋め込んだことを特徴とする電子部品用基板の製造方法。

【曹類名】明細書

【発明の名称】電子部品用基板の製造方法

【技術分野】

[0001]

本発明は、半固定可変抵抗器等に用いられる電子部品用基板の製造方法に関するものである。

【背景技術】

[0002]

従来、チップ型の半固定可変抵抗器は、セラミック基板と摺動子と集電板とを具備し、セラミック基板の上面に摺動子を配置すると共にセラミック基板の下面に集電板を配置し、その際集電板に設けた筒状突起をセラミック基板に設けた貫通孔と摺動子に設けた嵌挿孔に挿入し、筒状突起の先端をかしめることで摺動子をセラミック基板上に回動自在に固定して構成されている。そして摺動子を回動することで摺動子に設けた摺動接点がセラミック基板上に設けた馬蹄形状の抵抗体パターンの表面を摺接し、これによって抵抗体パターンの両端に設けた端子パターンと前記集電板との間の抵抗値を変化させていた。

[0003]

しかしながら上記半固定可変抵抗器は、セラミック基板を用いている上に、セラミック 基板の上に抵抗体パターンを焼き付けなければならないので、その生産効率が悪く、また 材料費も高く、その低価格化に限界があった。またセラミック基板は破損し易く、更なる 薄型化は困難であった。

【特許文献1】特開平11-307317号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

本発明は上述の点に鑑みてなされたものでありその目的は、製造が容易で生産効率が良く、材料費も低減できて低コスト化が図れ、さらに薄型化も容易に図れる電子部品用基板の製造方法を提供することにある。

【課題を解決するための手段】

[0005]

本願請求項1に記載の発明は、合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる端子板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、前記金型のキャビティー内に前記フレキシブル回路基板を収納し、その際前記フレキシブル回路基板の導体パターンを設けた面をキャビティー内の一方の面に当接し、前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとを露出するように取り付け、その後絶縁基台端部に、前記フレキシブル回路基板上に設けられた端子パターンに接続するように端子板を取り付けたことを特徴とする電子部品用基板の製造方法にある。

[0006]

本願請求項2に記載の発明は、合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる端子板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、前記金型のキャビティー内に前記フレキシブル回路基板と端子板とを収納し、その際前記フレキシブル回路基板の導体パターンを設けた面をキャビティー内の一方の面に当接すると同時に、端子板の一部をフレキシブル回路基板の端子パターンに当接又は対向させておき、前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとを露出するように取り付けると同時に、この絶縁基台端部に、前記フレキシブル回路基板上に設けられた端子パターンに接続す

るように端子板を取り付けたことを特徴とする電子部品用基板の製造方法にある。

[0007]

本願請求項3に記載の発明は、合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる集電板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、前記金型のキャビティー内に前記フレキシブル回路基板と集電板とを収納し、その際前記フレキシブル回路基板の導体パターンを設けた面をキャビティー内の一方の面に当接し、前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとが露出するように取り付けると同時に、集電板を埋め込み、その後絶縁基台端部に、前記フレキシブル回路基板上に設けられた端子パターンに接続するように金属板製の端子板を取り付けたことを特徴とする電子部品用基板の製造方法にある。

[0008]

本願請求項4に記載の発明は、合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる端子板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、前記金型のキャビティー内に前記フレキシブル回路基板と端子板とを収納し、その際前記フレキシブル回路基板の場体パターンを設けた面をキャビティー内の一方の面に当接すると同時に、端子板の一部をフレキシブル回路基板の端子パターンに当接又は対向させておき、前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとを露出するように取り付けると同時に、この絶縁基台端部に、前記フレキシブル回路基板上に設けられた端子パターンに接続するように端子板を取り付け、さらに同時に集電板を埋め込んだことを特徴とする電子部品用基板の製造方法にある。

[0009]

本願請求項5に記載の発明は、合成樹脂フイルム上にその表面に摺動子が摺接する導体パターンとこの導体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる集電板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、前記金型のキャビティー内に前記フレキシブル回路基板と集電板とを収納し、その際前記フレキシブル回路基板の導体パターンを設けた面をキャビティー内の一方の面に当接し、前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで、成形樹脂からなる絶縁基台にフレキシブル回路基板をその導体パターンと端子パターンとが露出するように取り付けると同時に、集電板を埋め込んだことを特徴とする電子部品用基板の製造方法にある。

【発明の効果】

[0010]

本願請求項1に記載の発明によれば、フレキシブル回路基板を絶縁基台にインサート成形するので、その製造が容易に行え、低コスト化が図れる。また絶縁基台を合成樹脂成形品で構成したので、その製造が容易で、セラミック基板に比べて材料費の低コスト化が図れ、厚みの薄型化も容易且つ安価に行える。また合成樹脂フイルムに多数組の導体パターンを同時に形成し、次に各組の導体パターンを設けたフレキシブル回路基板にそれぞれ同時に絶縁基台を成形した後、一体に連結したフレキシブル回路基板をカットして個品化することができるので、電子部品用基板を容易に大量生産でき、生産性が向上する。

[0011]

本願請求項2に記載の発明によれば、フレキシブル回路基板ばかりか端子板をも絶縁基台にインサート成形するので、別途端子板の絶縁基台への取付工程が不要になり、金属板製の端子板を取り付ける構造の電子部品用基板の製造が容易に行え、低コスト化が図れる。また端子板の絶縁基台への固定と端子板の端子パターンへの電気的接続とを容易に確実

[0 0 1 2]

本願請求項3に記載の発明によれば、フレキシブル回路基板と集電板とを絶縁基台にインサート成形するので、別途集電板の絶縁基台への取付工程が不要になり、金属板製の集電板を取り付ける構造の電子部品用基板の製造が容易に行え、低コスト化が図れる。また絶縁基台を合成樹脂成形品で構成したので、その製造が容易で、セラミック基板に比べて材料費の低コスト化が図れ、厚みの薄型化も容易且つ安価に行える。

[0013]

本願請求項4に記載の発明によれば、フレキシブル回路基板と集電板と端子板とを絶縁 基台にインサート成形するので、別途集電板の絶縁基台への取付工程や、端子板の絶縁基 台への取付工程が不要になり、金属板製の集電板と端子板とを取り付ける構造の電子部品 用基板の製造が容易に行え、低コスト化が図れる。また絶縁基台を合成樹脂成形品で構成 したので、その製造が容易で、セラミック基板に比べて材料費の低コスト化が図れ、厚み の薄型化も容易且つ安価に行える。

[0014]

本願請求項5に記載の発明によれば、フレキシブル回路基板と集電板とを絶縁基台にインサート成形するので、別途集電板の絶縁基台への取付工程が不要になり、金属板製の集電板を取り付ける構造の電子部品用基板の製造が容易に行え、低コスト化が図れる。また絶縁基台を合成樹脂成形品で構成したので、その製造が容易で、セラミック基板に比べて材料費の低コスト化が図れ、厚みの薄型化も容易且つ安価に行える。

【発明を実施するための最良の形態】

[0015]

以下、本発明の実施の形態を図面に基づいて詳細に説明する。

[第一の実施の形態]

図1,図2は本発明の第一の実施の形態を用いて製造した電子部品用基板1-1を示す図であり、図1は斜視図、図2(a)は平面図、図2(b)は正面図、図2(c)は図2(a)のA-A断面図、図2(d)は裏面図である。両図に示すように電子部品用基板1-1は、絶縁基台10の上面にフレキシブル回路基板20をインサート成形によって一体に取り付けると共に、端子板70,70を前記フレキシブル回路基板20上に設けた端子パターン29,29と接続するように絶縁基台10の端部に取り付けて構成されている。以下各構成部品について説明する。

[0016]

絶縁基台10は略矩形状で板状の合成樹脂成形品であり、その中央には円形の貫通孔11が設けられ、またその下面中央には凹状の集電板収納凹部15が設けられ、さらにその下面の一端辺近傍には端子板70,70を収納する寸法形状の端子板収納凹部18,18が設けられている。この絶縁基台10は熱可塑性の合成樹脂、例えばナイロンやポリフェニレンスルフイド(PPS)等によって構成されている。

[0017]

フレキシブル回路基板 2 0 は熱可塑性の合成樹脂フイルム(例えばポリイミドフイルム)上に端子パターン 2 9, 2 9 とその表面に摺動子が摺接する導体パターン 2 5 とを設けて構成される。即ちこのフレキシブル回路基板 2 0 は合成樹脂フイルムの中央の前記貫通孔 1 1 に対応する位置にこれと同一内径の貫通孔 2 1 を設け、またその表面の貫通孔 2 1 の周囲にはこれを馬蹄形状に囲む導体パターン(以下この実施の形態では「抵抗体パターン」という) 2 5 を設け、さらに抵抗体パターン 2 5 の両端にはそれぞれ端子パターン 2 9, 2 9 を抵抗体パターン 2 5 と接続して設けている。

[0018]

ここで前記抵抗体パターン 2 5 は物理的蒸着 (PVD、physical vapor deposition) 又は化学的蒸着 (CVD、chemical vapor deposition) による金属薄膜によって構成さ

れている。物理的蒸着の方法としては、真空蒸着、スパッタリング、イオンビーム蒸着等を用いる。化学的蒸着の方法としては、熱CVD法、プラズマCVD法、光CVD法等を用いる。蒸着する抵抗体パターン25の材質としては、ニッケルクロム合金等のニッケル系材料、又はクロム珪酸塩系化合物($Cr-SiO_2$)等からなるサーメット系材料、又は窒化タンタル等のタンタル系材料等を用いる。クロム珪酸塩系化合物は2000 μ 0・cm以上の大きな比抵抗を容易に実現できるので、この電子部品用基板1-1の小型化に好適である。

[0019]

ところで本発明においては抵抗体パターン25として、カーボンペースト等の抵抗体ペーストからなる抵抗体パターンを用いることもできるが、この実施の形態においては、この電子部品用基板1-1が半固定可変抵抗器用の基板なので、金属蒸着による抵抗体パターン25を用いた。その理由は以下の通りである。即ち半固定可変抵抗器は通常別の回路基板等に取り付けられた後、摺動子を回動することで抵抗値をセットするが、一旦抵抗値をセットした後はその抵抗値を変化させず、セットした抵抗値をそのまま維持するように使用される。従ってこの種の半固定可変抵抗器にあっては、セットした抵抗値が温度や湿度の影響を受けにくいようにする必要がある。しかしながら抵抗体パターンとして抵抗体ペーストからなる抵抗体パターンを用いた場合、抵抗体パターンが樹脂中に導電粉を混合する構成なので、その樹脂が熱や湿度に影響され易く、その抵抗値が温度・湿度の変化によって変化し易い。

[0020]

一方上記金属蒸着による抵抗体パターン25によれば、抵抗体パターン25全体を均質で均一な厚みに形成できることは言うまでもなく、さらに樹脂中に導電粉を混合したペーストを印刷焼成した抵抗体パターンのように内部に樹脂を有していないので、熱や温度によって抵抗値が変化しにくい。例えばカーボンペーストを印刷焼成した抵抗体パターンの場合、抵抗温度係数が500ppm/℃なのに対して、上記真空蒸着を用いた金属薄膜の場合の抵抗温度係数は、100ppm/℃であった。なおこの金属薄膜の抵抗温度係数はセラミック基板に高温で抵抗体パターンを焼き付けた場合の抵抗温度係数と同等の良好な温度特性である。これらのことから本実施の形態では抵抗体パターンとして金属蒸着による抵抗体パターン25を用いたのである。

[0021]

次に端子パターン29,29は、ニクロム下地の上に銅層と金層とを順番に蒸着によって形成して構成されている。なお端子パターン29,29は抵抗値の変化に直接影響を与えないので、導電ペーストの印刷焼成等の他の手段によって形成しても良い。

[0022]

端子板70,70は略コ字状で金属板(例えば鉄板の表面に銅メッキした上で低融点金属メッキしたものや、ステンレス板等)製であり、絶縁基台端部12の上面、側面、下面を覆う寸法に形成されている。

[0023]

次にこの電子部品用基板1-1の製造方法を説明する。まず図3に示すように貫通孔21を有し、その表面に物理的蒸着又は化学的蒸着による金属薄膜によって抵抗体パターン25と端子パターン29,29とを形成したフレキシブル回路基板20を用意する。このフレキシブル回路基板20は、その両側辺から連結部31,31が突出しており、これら連結部31,31によって同一の多数のフレキシブル回路基板20が並列に連結されている。

[0024]

次に連結部31,31によって連結された各フレキシブル回路基板20を図4に示すように、第一,第二金型41,45内にインサートする。このとき第一,第二金型41,45内には前記電子部品用基板1-1の外形形状と同一形状のキャビティーC1が形成されるが、フレキシブル回路基板20はその抵抗体パターン25形成面をキャビティーC1の第一金型41側の内平面C11に当接しておく。

そして第一金型41側に設けた二ヶ所の樹脂注入口(図1に示す矢印P1, P2及び図4に示すP1, P2)から加熱・溶融した合成樹脂(ナイロン、ポリフェニレンスルフイド等)を圧入・充填してキャビティーC1内を満たす。そして前記溶融合成樹脂が冷却・固化した後に、第一, 第二金型41, 45を取り外し、成形された絶縁基台10の両側から突出する連結部31,31の部分を切断する。

[0026]

そして前記図1,図2に示す端子板70,70を、フレキシブル回路基板20の表面の端子パターン29,29を設けた面を覆うように接続して、この面と絶縁基台10下面の端子板収納凹部18,18の面及び絶縁基台10の外周側面を覆うように取り付ければ、図1,図2に示す端子パターン29と接続して絶縁基台端部12に取り付く端子板70を伴う電子部品用基板1-1が完成する。

[0027]

即ち、本実施の形態にかかる電子部品用基板1-1は、合成樹脂フイルム上にその表面に摺動子が摺接する抵抗体パターン25とこの抵抗体パターン25に接続される端子パターン29,29とを設けてなるフレキシブル回路基板20と、金属板からなる端子板70,70と、電子部品用基板1-1の外形形状に形成されたキャビティーC1を有する第一,第二金型41,45のキャビティーC1内に前記フレキシブル回路基板20を収納し、その際前記フレキシブル回路基板20の抵抗体パターン25を設けた面をキャビティーC1内の一方の面C11(第一金型41面)に当接し、前記キャビティーC1内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に第一,第二金型41,45を取り外すことで、成形樹脂からなる絶縁基台10にフレキシブル回路基板20をその抵抗体パターン25と端子パターン29,29とを露出するように取り付け、その後絶縁基台端部12に、前記フレキシブル回路基板20上に設けられた端子パターン29,29に接続するように端子板70,70を取り付けることで、製造される。

[0028]

なお前記端子板70と端子パターン29間は直接当接した機械的圧接力のみで接続しても良いし、導電性接着剤などを介して接続しても良い。なお端子板70の形状・取付構造はこの実施の形態に限定されず、要は端子パターン29と接続して絶縁基台10端部に取り付ける構造であれば、どのような構造であっても良い。

[0029]

以上のようにして電子部品用基板 1-1を製造すれば、フレキシブル回路基板 20を絶縁基台 10にインサート成形するので、その製造が容易に行え、低コスト化が図れる。また絶縁基台 10を合成樹脂成形品で構成したので、その製造が容易で、セラミック基板に比べて材料費の低コスト化が図れ、厚みの薄型化も容易且つ安価に行える。また合成樹脂フイルムに多数組の抵抗体パターン 25を同時に形成し、次に各組の抵抗体パターン 25を設けたフレキシブル回路基板 20 をカットして個品化することができるので、電子部品用基板 1-1を容易に大量生産でき、生産性が向上する。

[0030]

図5は上記電子部品用基板1-1を用いて構成した半固定可変抵抗器100-1を示す図であり、図5 (a) は平面図、図5 (b) は正面図、図5 (c) は図5 (a) のB-B断面図、図5 (d) は裏面図である。同図に示すように半固定可変抵抗器100-1は、電子部品用基板1-1の上面に摺動子60を配置し、下面に集電板50を配置し、集電板50に設けた円筒状の筒状突起51を貫通孔11,21に貫通させ、さらに電子部品用基板1-1を貫通した筒状突起51の先端を摺動子60に設けた嵌挿孔61に貫通した上でその先端をかしめることで摺動子60を回動自在に取り付けて構成されている。ここで集電板50は電子部品用基板1-1の下面に設けた集電板収納凹部15に収納されている。そして摺動子60を回動すれば、摺動子60に設けられた摺動接点63が抵抗体パターン

[0031]

上記半固定可変抵抗器 100-1は各種電子部品を搭載した別の回路基板に取り付けられる。その際は別の回路基板に設けた回路パターンに前記端子板 70,70を低融点金属等を用いた高温を伴う接続手段によって固定することとなるが、本発明においては端子板 70,70を用いているので、別の回路基板への高温を伴う接続手段による固定が容易に行え、一方で端子パターン 29やフレキシブル回路基板 20の材質として熱に弱い材質のものを用いることができるようになる。また端子板 70,70はフレキシブル回路基板 20を絶縁基台 10に挟持して固定する機械的固定手段を兼ねる。

[0032]

[第二の実施の形態]

図6は本発明の第二の実施の形態を用いて製造した電子部品用基板1-2を示す図であり、図6 (a)は平面図、図6 (b)は正面図、図6 (c)は図6 (a)のC-C断面図、図6 (d)は裏面図である。同図に示す電子部品用基板1-2において前記電子部品用基板1-1と同一部分には同一符号を付してその詳細な説明は省略する。この電子部品用基板1-2においても、絶縁基台10の上面にフレキシブル回路基板20をインサート成形によって一体に取り付け、また端子板70,70を端子パターン29,29と接続するように絶縁基台端部12に取り付けている。抵抗体パターン25も物理的蒸着又は化学的蒸着による金属薄膜で構成されている。

[0033]

この電子部品用基板 1-2 において前記電子部品用基板 1-1 と相違する点は、フレキシブル回路基板 2 0 の他に端子板 7 0, 7 0 も絶縁基台 1 0 にインサート成形し、これによってこれら各部品を一体化した点である。即ちこの電子部品用基板 1-2 の製造方法は、図 7 に示すように、絶縁基台 1 0 成型用の第一,第二金型 4 1, 4 5 のキャビティー C 1 内にフレキシブル回路基板 2 0 と端子板 7 0, 7 0 とを予めインサートしておき、キャビティー C 1 内に樹脂注入口 P 1, P 2 (第一の実施の形態と同じ位置に設けてある)から溶融合成樹脂を圧入して冷却・固化することで、フレキシブル回路基板 2 0 と端子板 7 0,70 とを絶縁基台 1 0 にて一体成形した電子部品用基板 1-2 を製造する。

[0034]

即ち、電子部品用基板1-2は、合成樹脂フイルム上にその表面に摺動子が摺接する抵抗体パターン25とこの抵抗体パターン25に接続される端子パターン29, 29とを設けてなるフレキシブル回路基板20と、金属板からなる端子板70, 70と、電子部品用基板1-20外形形状に形成されたキャビティーC1を有する第一,第二金型41, 45 とを用意し、前記第一,第二金型41, 45のキャビティーC1内に前記フレキシブル回路基板20と端子板70, 70とを収納し、その際前記フレキシブル回路基板20の抵抗体パターン25を設けた面をキャビティーC1内の一方の面C11(第一金型41面)に当接すると同時に、端子板70, 70の一部をフレキシブル回路基板20の端子パターン29, 29に当接又は対向させておき、前記キャビティーC1内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に第一,第二金型41, 45を取り外すことで、製造される。

[0035]

なお第一金型41の端子板70の上部の位置には、キャビティーC1の一部を構成するキャビティーC12が設けられており、キャビティーC12内には、絶縁基台10を成形する際にキャビティーC1, C2内に圧入する溶融成形樹脂によって端子板70, 70が位置ずれを起こさないように端子板70, 70をその後側から支える突起状の当接部42が設けられている。そしてこのキャビティーC12によって、図6に示す、端子板70, 70の上面を覆う絶縁基台10と同じ合成樹脂からなる端子板押え部19が形成され、端子板70, 70の絶縁基台10への固定の確実化と、端子板70, 70の端子パターン29, 29への接続の確実化とを図っている。なおフレキシブル回路基板20の両端子パタ

[0036]

このようにフレキシブル回路基板 2 0 ばかりか端子板 7 0, 7 0 をも絶縁基台 1 0 にインサート成形することとすれば、別途端子板 7 0, 7 0 の絶縁基台 1 0 への取付工程が不要になり、また端子板 7 0, 7 0 の絶縁基台 1 0 への固定と端子板 7 0, 7 0 の端子パターン 2 9, 2 9 への電気的接続とを容易に確実に行うことができる。また絶縁基台 1 0 を合成樹脂成形品で構成したので、その製造が容易で、セラミック基板に比べて材料費の低コスト化が図れ、厚みの薄型化も容易且つ安価に行える。なお端子板押え部 1 9 は必ずしも必要なく、省略しても良い。

[0037]

[第三の実施の形態]

図8は本発明の第三の実施の形態を用いて製造した電子部品用基板1-3を示す図であり、図8(a)は平面図、図8(b)は正面図、図8(c)は図8(a)のD-D断面図、図8(d)は裏面図である。同図に示す電子部品用基板1-3において前記電子部品用基板1-1と同一部分には同一符号を付してその詳細な説明は省略する。この電子部品用基板1-3においても、絶縁基台10の上面にフレキシブル回路基板20がインサート成形によって一体に取り付けられると共に、端子板70,70がフレキシブル回路基板20上に設けた端子パターン29,29に接続された状態で絶縁基台端部(端辺)12に取り付けられている。

[0038]

この電子部品用基板 1-3 において前記電子部品用基板 1-1 と相違する点は、前記電子部品用基板 1-1 に更に、集電板 5 0-3 を絶縁基台 1 0 の内部に一体成形した点である。ここで集電板 5 0-3 は、金属板を略矩形状に形成してなる基部 5 3-3 の中央に、電子部品用基板 1-3 の抵抗体パターン 2 5 を設けた面側に突出する筒状突起 5 1-3 を設け、また基部 5 3-3 の外周の一辺から外方に向けて略矩形状に突出し且つ二回略直に屈曲することで電子部品用基板 1-3 の抵抗体パターン 2 5 を設けた面と反対側の面に露出する接続部 5 5-3 を設けて構成されている。接続部 5 5-3 の先端は三分割され、その中央の部分が電子部品用基板 1-3 の抵抗体パターン 2 5 を設けた面側に略直角に折り曲げられている。そしてこの電子部品用基板 1-3 においては、集電板 1-3 の一番を設けた面側に略直角に折り曲がられている。そしてこの電子部品用基板 1-3 においては、集電板 1-3 では、集電板 1-3 では、集電板 1-3 では、全面孔 1-3 では、全面子部品用基板 1-3 では、集電板 1-3 では、集電板 1-3 では、集電板 1-3 では、全面子部品 1-3 では、集電板 1-3 では、全面子では、上面子では、上面

[0039]

次にこの電子部品用基板 1-3の製造方法を説明する。まず図 3 に示すと同様の貫通孔 2 1 を有し、その表面に物理的蒸着又は化学的蒸着による金属薄膜によって抵抗体パターン2 5 と端子パターン2 9, 2 9 とを形成したフレキシブル回路基板 2 0 と、図 8 に示す集電板 5 0-3 とを用意する。このフレキシブル回路基板 2 0 は前述のように、その両側辺から連結部 3 1, 3 1 によって同一の多数のフレキシブル回路基板 2 0 が並列に連結されている。また集電板 5 0-3 も接続部 5 5-3 の先端部分が図示しない連結部材に連結されることで、同一の多数の集電板 5 0-3 が並列に連結されている。

[0040]

次に連結部31, 31によって連結された各フレキシブル回路基板20と連結部材によって連結された各集電板50-3とを図9に示すように、第一,第二金型41, 45内に

[0041]

そしてキャビティーC1の第一金型41側に設けた二か所の樹脂注入口P1, P2 (図1と同じ位置)から加熱・溶融した合成樹脂(ナイロン、ポリフェニレンスルフイド等)を圧入・充填してキャビティーC1内を満たす。そしてこの溶融樹脂の圧入圧力によりフレキシブル回路基板20は第一金型C1の内平面C11に押し付けられ、その状態のまま冷却・固化される。そして第一,第二金型41,45を取り外し、成形された絶縁基台10の両側から突出する連結部31,31の部分及び突出する集電板50-3の接続部55-3の先端部分を切断すれば、図8に示す電子部品用基板1-3が完成する。なお絶縁基台10の中央には貫通孔11が設けられ、その外周のフレキシブル回路基板20には馬蹄形の抵抗体パターン25が設けられ、その両端には端子パターン29,29が設けられている。さらに集電板50-3は一体に絶縁基台10に埋め込まれて構成され、絶縁基台10に設けられた貫通孔11には集電板50-3の筒状突起51-3を絶縁基台10の上面を超えて突出させ、さらに基部53-3は絶縁基台10内に埋め込まれ、接続部55-3は絶縁基台10の下面(つまり上面に露出している端子パターン29,29に対向した一外周側面側の下面)に露出している。

[0042]

そして図8に示す端子板70,70を、フレキシブル回路基板20の表面の端子パターン29,29を設けた面を覆うように接続して、この面と絶縁基台10下面の端子板収納凹部18,18の面及び絶縁基台10の外周側面を覆うように取り付ければ、図8に示す端子パターン29と接続して絶縁基台端部12に取り付く端子板70を伴う電子部品用基板1-3が完成する。

[0 0 4 3]

即ち本実施の形態にかかる電子部品用基板1-3の製造は、合成樹脂フイルム上にその表面に摺動子が摺接する抵抗体パターン25とこの抵抗体パターン25に接続される端子パターン29,29とを設けてなるフレキシブル回路基板20と、金属板からなる集電板50-3と、電子部品用基板1-3の外形形状に形成されたキャビティーC1を有する第一,第二金型41,45とを用意し、前記第一,第二金型41,45のキャビティーC1内に前記フレキシブル回路基板20と集電板50-3とを収納し、その際前記フレキシブル回路基板20と集電板50-3とを収納し、その際前記フレキシブル回路基板20の抵抗体パターン25を設けた面をキャビティーC1内の一方の面C11(第一金型41面)に当接し、前記キャビティーC1内に溶融した成形樹脂を充填し、流域した成形樹脂が固化した後に第一,第二金型41,45を取り外すことで、成形樹脂からなる絶縁基台10にフレキシブル回路基板20をその抵抗体パターン25と端子パターン29,29とが露出するように取り付けると同時に、集電板50-3を埋め込み、その後絶縁基台端部12に、前記フレキシブル回路基板20上に設けられた端子パターン29,29に接続するように金属板製の端子板70,70を取り付けることで行われる。

[0044]

このようにして電子部品用基板1-3を製造すれば、フレキシブル回路基板20と集電板50-3とを絶縁基台10にインサート成形するので、別途集電板50-3の絶縁基台10への取付工程が不要になり、金属板製の集電板50-3を取り付けた構造の電子部品用基板1-3の製造が容易に行え、低コスト化が図れる。また絶縁基台10を合成樹脂成形品で構成したので、その製造が容易で、セラミック基板に比べて材料費の低コスト化が

図れ、厚みの薄型化も容易且つ安価に行える。

[0045]

ところで第三の実施の形態の変形例として、さらに図10に示すように、第一,第二金型41,45内に、フレキシブル回路基板20と集電板50-3の他に更に、前記第二の実施の形態と同様に、端子板70,70をもインサートしてもよい。即ち図10に示すように、電子部品用基板1-3′(図示は省略)成型用の第一,第二金型41,45のキャビティーC1内にフレキシブル回路基板20と集電板50-3と端子板70,70とを予めインサートしておき、キャビティーC1内に樹脂注入口P1,P2(第一の実施の形態と同じ位置に設けてある)から溶融合成樹脂を圧入して冷却・固化することで、フレキシブル回路基板20と集電板50-3と端子板70,70とを絶縁基台10にて一体成形した電子部品用基板1-3′を製造してもよい。

[0046]

即ち、電子部品用基板1-3 だ、合成樹脂フイルム上にその表面に摺動子が摺接する抵抗体パターン25とこの抵抗体パターン25に接続される端子パターン29, 29とを設けてなるフレキシブル回路基板20と、金属板からなる集電板50-3と、金属板からなる端子板70, 70と、電子部品用基板1-3 の外形形状に形成されたキャビティーC1を有する第一,第二金型41, 45とを用意し、前記第一,第二金型41, 45のキャビティーC1内に前記フレキシブル回路基板20と集電板50-3と端子板70, 70とを収納し、その際前記フレキシブル回路基板20の抵抗体パターン25を設けた面をキャビティーC1内の一方の面C11(第一金型41面)に当接すると同時に、端子板70, 70の一部をフレキシブル回路基板20の端子パターン29, 29に当接又は対向させておき、前記キャビティーC1内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に第一,第二金型41, 45を取り外すことで製造される。

[0047]

このようにして電子部品用基板 1-3 を製造すれば、フレキシブル回路基板 2 0 と集電板 5 0 -3 と端子板 7 0, 7 0 とを絶縁基台 1 0 にインサート成形するので、別途集電板 5 0 -3 の絶縁基台 1 0 への取付工程や、端子板 7 0, 7 0 の絶縁基台 1 0 への取付工程が不要になり、金属板製の集電板 5 0 -3 と端子板 7 0, 7 0 とを取り付ける構造の電子部品用基板 1-3 の製造が容易に行え、低コスト化が図れる。また絶縁基台 1 0 を合成樹脂成形品で構成したので、その製造が容易で、セラミック基板に比べて材料費の低コスト化が図れ、厚みの薄型化も容易且つ安価に行える。

[0048]

なお第一金型41の端子板70の上部の位置には、キャビティーC1の一部を構成するキャビティーC12が設けられており、キャビティーC12内には、絶縁基台10を成形する際にキャビティーC1, C12内に圧入する溶融成形樹脂によって端子板70, 70が位置ずれを起こさないように端子板70, 70をその後側から支える突起状の当接部42が設けられている点も、前記第二の実施の形態と同様である。

[0049]

また端子板70,70と集電板50−3とを絶縁基台10にインサート成形する場合は、これらを同一の金属板に連結部で連結した状態で同時に形成しておいて金型内に収納して絶縁基台10を成形し、その後連結部を切り離すようにすれば、さらに実質的な部品点数の削減と製造工程の簡素化とが図れる。

[0050]

図11は上記電子部品用基板1-3を用いて構成した半固定可変抵抗器100-3を示す図であり、図11(a)は平面図、図11(b)は正面図、図11(c)は図11(a)のE-E断面図、図11(d)は裏面図である。同図に示すように半固定可変抵抗器100-3は、電子部品用基板1-3の上面に摺動子60を配置する際に集電板50-3に設けた筒状突起51-3を摺動子60に設けた嵌挿孔61に貫通し、その先端をかしめることで摺動子60を回動自在に取り付けて構成されている。そして摺動子60を回動すれば、摺動子60に設けられている摺動接点63が抵抗体パターン25(図8参照)の表面

を摺接して端子板70,70と集電板50-3間の抵抗値を変化する。

[0051]

[第四の実施の形態]

また上記各実施の形態ではフレキシブル回路基板20の端子パターン29,29を設けた部分を絶縁基台10の上面だけに配置したが、図12に示す電子部品用基板1-4のように、フレキシブル回路基板20の端子パターン29,29(図12には明示せず)を設けた側の端部201を絶縁基台10の上面から外周側辺を介してその下面側に折り返し、折り返したフレキシブル回路基板20の個所を覆うように端子板70,70を取り付けても良い。この場合も、フレキシブル回路基板20又はフレキシブル回路基板20及び端子板70,70を、金型内にインサートして絶縁基台10と一体に成形する。なおこの場合、端子パターン29,29はフレキシブル回路基板20の上面だけに設けても良いし、さらにその外周側辺及び/又はその下面にわたって設けても良い。

[0052]

[第五の実施の形態]

図13,図14は本発明の第五の実施の形態にかかる電子部品用基板1-5を示す図であり、図13(a)は上側から見た斜視図、図13(b)は下側から見た斜視図、図14(a)のE-E断面図、図14(d)は裏面図、図14(e)は図14(a)のF-F断面図である。同図に示す電子部品用基板1-5において前記電子部品用基板1-1,1-2,1-3,1-4と同一部分には同一符号を付してその詳細な説明は省略する。この電子部品用基板1-5においても、絶縁基台10の上面にフレキシブル回路基板20をインサート成形によって一体に取り付けて構成しており、またフレキシブル回路基板20上に形成される抵抗体パターン25は物理的蒸着又は化学的蒸着による金属薄膜によって構成されている。なおこの電子部品用基板1-5を構成する各部材の材質及びその製造方法は、上記第一乃至第四の実施の形態の対応する各部材の材質及びその製造方法と同じである。

[0053]

そしてこの実施の形態においても絶縁基台10は略矩形状で板状の合成樹脂成形品であり、前記電子部品用基板1-3と同様に、集電板50-5を絶縁基台10の内部に一体にインサート成形している。集電板50-5は筒状突起51-5を設けた基部53-5の一辺から外方に向けて略矩形状の接続部55-5を突出して構成されている。筒状突起51-5は絶縁基台10に設けた筒状突起51-5の外径よりも大きい内径の貫通孔11の中(中央)に位置するように絶縁基台10内に設置されており、このとき接続部55-5の下面は絶縁基台10の下面に露出している。また筒状突起51-5はフレキシブル回路基板20の上面側に突出している。このように構成すれば、第三の実施の形態と同様に、絶縁基台10とフレキシブル回路基板20と集電板50-5とが同時に一体化できるので、製造工程の簡略化が図れる。

[0054]

次にフレキシブル回路基板 2 0 は図 1 5 で示すような略矩形状(幅は絶縁基台 1 0 の幅と略同一、長さは絶縁基台 1 0 の長さより所定寸法長い形状)の熱可塑性の合成樹脂フイルムの中央の前記貫通孔 1 1 に対応する位置にこれと同一内径の貫通孔 2 1 を設け、またその表面の貫通孔 2 1 の外周に馬蹄形状の導体パターン(以下この実施の形態では「抵抗体パターン」という) 2 5 を設け、さらに抵抗体パターン 2 5 の端部(2 5 e, 2 5 e)に長さ方向(A)に沿う略矩形状の端子パターン 2 9, 2 9 を接続して設けて構成されている。フレキシブル回路基板 2 0 はその端子パターン 2 9, 2 9 を設けた側の辺を図 1 4 に示すように絶縁基台 1 0 の上面から外周側辺を介してその下面に折り返し、これによってフレキシブル回路基板 2 0 は絶縁基台 1 0 の上面と外周側面と下面にその表面が露出するように折り曲げられた状態で絶縁基台 1 0 に取り付けられる。従って抵抗体パターン 2 5 は絶縁基台 1 0 の上面に、端子パターン 2 9, 2 9 は絶縁基台 1 0 の上面と外周側辺から下面にわたって露出している。

[0055]

そしてこの電子部品用基板1-5においては、フレキシブル回路基板20の抵抗体パターン25の外側にある長さ方向(A)の一辺の端部(抵抗体パターン25側)となる端辺71を覆う円弧形状を有する押え部17a(但し抵抗体パターン25を覆ってはいない)と、フレキシブル回路基板20の抵抗体パターン25の端部(25e, 25e)の外周近傍の部分に二つの端子パターン29, 29を覆う円弧形状を有する押え部17bと、絶縁基台10の下面に配置されたフレキシブル回路基板20の端子パターン29, 29を設けた側の端辺73を覆う絶縁基台10の下面と同一面の平板状の押え部17cとを、それぞれ絶縁基台10と一体にインサート成形樹脂で設け、これによってフレキシブル回路基板20を絶縁基台10に強固に固定している。

[0056]

フレキシブル回路基板20の端辺71は、抵抗体パターン25の円弧形状に合わせて円弧状に形成されており、押え部17aもこの円弧形状に合わせて円弧状に形成されている

[0057]

フレキシブル回路基板20の抵抗体パターン25の端子パターン29,29を接続した部分の両外周側辺(即ちフレキシブル回路基板20の幅方向(B)の両端部)には凹状に切り欠かれた一対の樹脂挿通部75a,75aが設けられ、また両端子パターン29,29の間には貫通孔からなる樹脂挿通部75bが設けられ、これら樹脂挿通部75a,75a,75bの上を通過し且つ抵抗体パターン25の円弧形状に合わせて円弧状に押え部17bが成形されている。押え部17bは樹脂挿通部75a,75a,75bの部分でその下側の絶縁基台10を構成する成形樹脂と連結されている。

[0058]

フレキシブル回路基板 2 0 の絶縁基台 1 0 の下面側に折り返された長さ方向(A)のもう一つの辺の端部(端子パターン 2 9, 2 9側)となる端辺 7 3 は、略直線状でその中央に円弧状に凹む凹部 7 7 (図 1 5 参照)を設けている。そして一端辺 7 3 の上には、端辺 7 3 を複数箇所(五ヶ所)で押さえるように押え部 1 7 c が成形されている。フレキシブル回路基板 2 0 の絶縁基台 1 0 の下面側に折り返された部分の面は、絶縁基台 1 0 の下面の他の部分よりも凹む凹部 7 8 となっている。凹部 7 8 の深さは端子板 7 0 の厚みとほぼ同一である。そして絶縁基台 1 0 の凹部 7 8 を設けた側の辺の端部に端子板 7 0, 7 0 がフレキシブル回路基板 2 0 上に設けた端子パターン 2 9, 2 9 と接続するように取り付けられている。

[0059]

次にこの電子部品用基板 1 - 5 の製造方法を説明する。まず図 1 5 に示すように貫通孔 2 1、樹脂挿通部 7 5 a , 7 5 a , 7 5 b を有し、その表面に物理的蒸着又は化学的蒸着による金属薄膜によって抵抗体パターン 2 5 と端子パターン 2 9 , 2 9 とを形成したフレキシブル回路基板 2 0 を用意する。このフレキシブル回路基板 2 0 は、抵抗体パターン 2 5 を設けた部分の両側辺から連結部 3 1 , 3 1 を突出しており、これら連結部 3 1 , 3 1 によって同一の多数のフレキシブル回路基板 2 0 (図示せず)が並列に連結されている。

[0060]

次に前記フレキシブル回路基板20及び集電板50-5を図16に示すように、第一, 第二金型41,45内にインサートする。このとき第一,第二金型41,45内には電子部品用基板1-5と同一形状のキャビティーC1が形成されるが、フレキシブル回路基板20はその抵抗体パターン25形成面をキャビティーC1の第一金型41側の内平面C11に当接し、且つ端子パターン29,29を設けた一端辺73側部分を第二金型45側に折り返しておく。なおフレキシブル回路基板20の端辺73に凹部77(図15参照)を設けたのは、フレキシブル回路基板20の端辺73側部分を第二金型45側に折り返した際に、第二金型45に設けた貫通孔11を形成するための凸部47にフレキシブル回路基板20が当接しないように逃げるためである。

[0061]

そして第一金型41側に設けた二ヶ所の樹脂注入口(図13(a)に示す矢印G1, G 出証券2004-3019639

2及び図16に示すG1, G2)から加熱・溶融した合成樹脂を圧入してキャビティーC1内を満たす。このとき溶融樹脂の圧入圧力と熱とによりフレキシブル回路基板20はキャビティーC1の内周面に押し付けられてその内周面形状に変形し、その状態のまま冷却・固化される。そして第一,第二金型41,45を取り外し、成形された絶縁基台10の両側から突出している連結部31,31の部分を切断し、さらに図17(a),(b)に示すように、絶縁基台10の凹部78を設けた側の辺の端部の端子パターン29,29を設けた部分にコ字状の端子板70,70を覆うように取り付けて絶縁基台10を挟持して固定すれば、図13(a),(b)に示す電子部品用基板1-5が完成する。端子板70,70の固定方法としては、端子板70,70による機械的圧接力のみでも良いし、導電性接着剤等を介して接続しても良い。なお端子板70,70の形状・取付構造はこの実施の形態に限定されず、要は端子パターン29と接続して絶縁基台10端部に取り付ける構造であれば、どのような構造であっても良い。

[0062]

即ち電子部品用基板 1-5 は、合成樹脂フイルム上にその表面に摺動子が摺接する抵抗体パターン 25 とこの抵抗体パターン 25 に接続される端子パターン 29 、 29 とを設けてなるフレキシブル回路基板 20 と、金属板からなる集電板 50-5 と、電子部品用基板 1-5 の外形形状に形成されたキャビティーC 1 を有する第一,第二金型 41 , 45 とを用意し、前記第一,第二金型 41 , 45 のキャビティーC 1 内に前記フレキシブル回路基板 20 と集電板 50-5 とを収納し、その際前記フレキシブル回路基板 20 の抵抗体パターン 25 を設けた面をキャビティーC 1 内の一方の面 1 (第一金型 1 1 面)に出当を、前記キャビティーC 1 内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に第一,第二金型 1 , 1 4 5 を取り外すことで、成形樹脂からなる絶縁基台 1 0 の上面にフレキシブル回路基板 1 2 0 をその抵抗体パターン 1 2 5 と端子パターン 1 2 9 とが露出するように取り付けると同時に、集電板 1 2 0 上に設けられた端子パターン 1 9 に接続するように端子板 1 0 、 1 0 を取り付けて製造される。

[0063]

なお前述のように押え部17cによって端辺73及びその近傍を断続的に複数箇所で押さえたのは、端辺73の一部を第二金型45の面に当接させておくことで、端辺73の部分が溶融成形樹脂の圧入圧力によって第二金型45の面まで押し上げられて変形しないようにこれを押えておくためである。つまり押え部17cを設けないで絶縁基台10の下面から露出している端辺73及びその近傍部分は、第二金型45によって端辺73及びその近傍を押えていた結果形成されたものである。

[0064]

この電子部品用基板 1-5によれば、絶縁基台 10の上面に設けられたフレキシブル回路基板 20と絶縁基台 10の下面に設けられたフレキシブル回路基板 20とに、それぞれフレキシブル回路基板 20を強固に絶縁基台 10に固定する押え部 17a~17cを設けたので、たとえフレキシブル回路基板 20と絶縁基台 10とがインサート成形時の熱と圧力だけによっては固着しにくい材質の組み合わせであったとしても、フレキシブル回路基板 20が絶縁基台 10の表面から剥がれるなどの問題は生じず、容易にこれを強固に固定しておくことができる。なおこの実施の形態においては、押え部 17a~17cをフレキシブル回路基板 20の絶縁基台 10の上面側に設けられた抵抗体パターン 25側の端辺 71と、抵抗体パターン 25の端部 25e, 25eの外周近傍部分と、絶縁基台 10の下面側に設けられた端子パターン 29, 29側の端辺 73とに設けたが、フレキシブル回路基板 20の絶縁基台 10上への固着が比較的強固な場合、押え部はこれら三ヵ所の内の何れか一ヵ所のみに設けるだけでもかまわない。

[0065]

以上のようにして製造された電子部品用基板1-5は、その筒状突起51-5を、前記図11に示すのと同様の摺動子60の嵌挿孔61に貫通してその先端をかしめることで摺動子60を回動自在に取り付け、これによって半固定可変抵抗器が構成される。

[0066]

なおこの実施の形態では、端子板70,70を成形後のフレキシブル回路基板20を一体化した絶縁基台10に後から取り付けたが、前記第二の実施の形態と同様に、予め端子板70,70もフレキシブル回路基板20や集電板50-5と一緒に、第一,第二金型41,45のキャビティーC1内に収納しておき、溶融樹脂を射出成形する際に同時に端子板70,70を一体に絶縁基台10に取り付けても良い。

[0067]

[第六の実施の形態]

なお前記各実施の形態においては、絶縁基台10の絶縁基台端部12にコの字状の端子板70を、絶縁基台10の成形後又は絶縁基台10の成形の際に、取り付けることで面実装型の電子部品用基板1-1~1-5を製造したが、面実装型とする必要がない場合は、端子板70を取り付ける必要はない。この電子部品用基板は、直接図示はしないが、電子部品用基板1-1,3,4,5において取り付けている端子板70を取り付けないものがこれに相当する。そしてこの電子部品用基板の製造方法は、合成樹脂フイルム上にそのだれに摺動子が摺接する抵抗体パターン(導体パターン)とこの抵抗体パターンに接続される端子パターンとを設けてなるフレキシブル回路基板と、金属板からなる集電板と、電子部品用基板の外形形状に形成されたキャビティーを有する金型とを用意し、前記金型のキャビティー内に前記フレキシブル回路基板と集電板とを収納し、その際前記フレキシブル回路基板の導体パターンを設けた面をキャビティー内の一方の面に当接し、前記キャビティー内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に金型を取り外すことで行われる。

[0068]

以上本発明の実施の形態を説明したが、本発明は上記実施の形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば端子板70の形状は種々の変更が可能であり、要はフレキシブル回路基板上に設けられた端子パターンと接続して絶縁基台端部に取り付く端子板であれば、どのような形状・取付構造のものであっても良い。

[0069]

また上記各実施の形態では導体パターンとして抵抗体パターンを用いたが、スイッチパターン等、他の各種パターンを用いても良い。スイッチパターンを設ける場合はスイッチパターンと端子パターンとを同一材質とし、同一の工程で形成しても良い。また導体パターンとして上記各実施の形態では物理的蒸着又は化学的蒸着による金属薄膜を用いたが、樹脂中に導電粉を混合してなる抵抗体ペーストを用いても良く、また金属箔のエッチングによって形成される導体パターンを用いても良い等、種々の変更が可能である。

【図面の簡単な説明】

[0070]

【図1】本発明の第一の実施の形態を用いて製造した電子部品用基板1-1を示す斜 視図である。

【図2】電子部品用基板1-1を示す図であり、図2 (a) は平面図、図2 (b) は正面図、図2 (c) は図2 (a) のA-A断面図、図2 (d) は裏面図である。

【図3】電子部品用基板1-1の製造方法説明図である。

【図4】電子部品用基板1-1の製造方法説明図である。

【図5】電子部品用基板1-1を用いて構成した半固定可変抵抗器100-1を示す図であり、図5 (a) は平面図、図5 (b) は正面図、図5 (c) は図5 (a) のB - B 断面図、図5 (d) は裏面図である。

【図6】本発明の第二の実施の形態を用いて製造した電子部品用基板1-2を示す図であり、図6(a)は平面図、図6(b)は正面図、図6(c)は図6(a)のC-C断面図、図6(d)は裏面図である。

- 【図7】電子部品用基板1-2の製造方法説明図である。
- 【図8】電子部品用基板1-3を示す図であり、図8 (a) は平面図、図8 (b) は正面図、図8 (c) は図8 (a) のD-D断面図、図8 (d) は裏面図である。
 - 【図9】電子部品用基板1-3の製造方法説明図である。
- 【図10】電子部品用基板1-3′の製造方法説明図である。
- 【図11】電子部品用基板1-3を用いて構成した半固定可変抵抗器100-3を示す図であり、図11(a)は平面図、図11(b)は正面図、図11(c)は図11(a)のE-E断面図、図11(d)は裏面図である。
- 【図12】本発明の第四の実施の形態を用いて製造した電子部品用基板1-4を示す 断面図である。
- 【図13】本発明の第五の実施の形態を用いて製造した電子部品用基板1-5を示す図であり、図13(a)は上側から見た斜視図、図13(b)は下側から見た斜視図である。
- 【図14】電子部品用基板1-5を示す図であり、図14 (a) は平面図、図14 (b) は正面図、図14 (c) は図14 (a) のE-E断面図、図14 (d) は裏面図、図14 (e) は図14 (a) のF-F断面図である。
- 【図15】電子部品用基板1-5の製造方法説明図である。
- 【図16】電子部品用基板1-5の製造方法説明図である。
- 【図17】電子部品用基板1-5の製造方法説明図である。

【符号の説明】

[0071]

- 1-1 電子部品用基板
- 10 絶縁基台
- 11 貫通孔
- 12 絶縁基台端部
- 15 集電板収納凹部
- 18 端子板収納凹部
- 20 フレキシブル回路基板
- 2 1 貫通孔
- 25 抵抗体パターン(導体パターン)
- 29 端子パターン
- 3 1 連結部
- 41 第一金型
- 4 2 当接部
- 45 第二金型
- C1 キャピティー
- C11 内平面
- C12 キャビティー
- P1. P2 樹脂注入口
- 70 端子板
- 100-1 半固定可変抵抗器
- 50 集電板
- 51 筒状突起
- 60 摺動子
- 61 嵌挿孔
- 63 摺動接点
- 1-2 電子部品用基板
- 19 押え部
- 2.3 開口
- 1-3 電子部品用基板

- 50-3 集電板
- 51-3 筒状突起
- 53-3 基部
- 55-3 接続部
- 100-3 半固定可変抵抗器
- 1-4 電子部品用基板
- 1-5 電子部品用基板
- 17a, 17b, 17c 押之部
- 50-5 集電板
- 51-5 筒状突起
- 53-5 基部
- 55-5 接続部
- G1, G2 樹脂注入口

【書類名】図面 【図1】

10: 絶縁基台 11: 貫通孔 20: フレキシブル回路基板 21: 貫通孔 25:抵抗体パターン(導体パターン) 29,29:端子パターン 70,70:端子板

電子部品用基板1-1を示す図

【図2】

29

9

出証特2004-3019639

20

【図3】

電子部品用基板1-1の製造方法説明図

【図4】

電子部品用基板1-1の製造方法説明図

【図5】

半固定可変抵抗器100-1を示す図

出証特2004-3019639

電子部品用基板1-2を示す図

【図6】

出証特2004-3019639

【図7】

電子部品用基板1-2の製造方法説明図

【図9】

電子部品用基板1-3の製造方法説明図

電子部品用基板1-3'の製造方法説明図

出証特2004-3019639

【図12】

電子部品用基板1-4を示す図

【図13】

電子部品用基板1-5を示す図

出証特2004-3019639

【図15】

電子部品用基板1-5の製造方法説明図

電子部品用基板1-5の製造方法説明図

【図17】

電子部品用基板1-5を示す図

【要約】

【課題】製造が容易で生産効率が良く、材料費も低減できて低コスト化が図れ、薄型化も 図れる電子部品用基板の製造方法を提供する。

【解決手段】第一,第二金型41,45のキャビティーC1内にフレキシブル回路基板20を収納し、その際フレキシブル回路基板20の面をキャビティーC1内の一方の内平面C11に当接する。次にキャビティーC1内に溶融した成形樹脂を充填し、充填した成形樹脂が固化した後に第一,第二金型41,45を取り外すことで、上面にフレキシブル回路基板20を取り付けた成形樹脂からなる絶縁基台10を得る。その後絶縁基台10の端部に、フレキシブル回路基板20上に設けられた端子パターン29,29に接続するように端子板70,70を取り付ける。

【選択図】図4

一特願2003-423308

認定 · 付加情報

特許出願の番号 特願2003-423308

受付番号 50302098797

書類名 特許願

担当官 小野寺 光子 1721

作成日 平成16年 1月13日

<認定情報・付加情報>

【提出日】 平成15年12月19日

出願人履歴情報

識別番号

[000215833]

1. 変更年月日 [変更理由]

1990年 8月22日

(更理田) 住 所 新規登録

任 別 氏 名

神奈川県川崎市中原区苅宿335番地

帝国通信工業株式会社