

Apollo Pro266T North Bridge

Socket-370 North Bridge
with 133 / 100 / 66 MHz Front Side Bus
for VIA C3 and Intel Celeron,
Pentium III and Pentium III-M (Tualatin) CPUs
with AGP 4x and V-Link
plus Advanced ECC Memory Controller
supporting DDR266 / DDR200
(PC2100 / PC1600) DDR SDRAM
and PC133 / PC100 SDR SDRAM
for Desktop and Mobile PC Systems

Revision 1.1 May 6, 2003

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2001, 2002, 2003, VIA Technologies, Incorporated. Printed in the United States. All RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT8233, VT8233A and Apollo Pro266T may only be used to identify products of VIA Technologies.

VIA C3[™] is a registered trademark of VIA Technologies.

Celeron[™] ,Pentium[™], Pentium-III[™], Pentium-III[™], and Intel[™] ,are registered trademarks of Intel Corp.

PS/2™ is a registered trademark of International Business Machines Corp.

Windows 95[™], Windows 98[™], Windows 2000[™], and Plug and Play[™] are registered trademarks of Microsoft Corp.

PCI™ is a registered trademark of the PCI Special Interest Group.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office:

940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Fax: (510) 683-3301 -or- 687-4654

Web: http://www.viatech.com

Taipei Office:

8th Floor, No. 533

Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC

Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453

Web: http://www.via.com.tw

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	1/7/02	Initial external release (same as internal revision 0.4 except for package type update	DH
		to HSBGA and VIA logo on cover page updated to current style)	
1.01	1/31/02	Updated company address; fixed marking spec to remove "Apollo"	DH
1.1	5/6/03	Updated legal page formatting, VIA USA street address, and VIA logos	DH
		Changed chipset name to be north bridge chip name & removed VT#	
		Fixed V-Link feature bullets; Fixed incorrect JEDEC-spec reference in mech diagram	

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF FIGURES	III
LIST OF TABLES	IV
PRODUCT FEATURES	
OVERVIEW	4
PINOUTS	7
PIN DESCRIPTIONS	10
REGISTERS	18
REGISTER OVERVIEW	18
MISCELLANEOUS I/O	22
CONFIGURATION SPACE I/O	22
REGISTER DESCRIPTIONS	
Device 0 Header Registers - Host Bridge	
Device 0 Configuration Registers - Host Bridge	
V-Link Control	
Host CPU Control	
DRAM Control	
PCI Bus Control	
GART / Graphics Aperture Control	
AGP Control	
V-Link Control	
DRAM Interface Control	41
Extended Power Management Control	
ECC Error Control	
DRAM Above 4G Control	
Test Registers	44
Test Registers	
BIOS Scratch Registers	
Back Door Registers	
Device 1 Header Registers - PCI-to-PCI Bridge	45
Device 1 Configuration Registers - PCI-to-PCI Bridge	47
AGP Bus Control	
ELECTRICAL SPECIFICATIONS	
ABSOLUTE MAXIMUM RATINGS	50
DC CHARACTERISTICS	50
POWER CHARACTERISTICS	51
AC TIMING SPECIFICATIONS	51
MECHANICAL SPECIFICATIONS	52

LIST OF FIGURES

FIGURE 1. APOLLO PRO266T SYSTEM BLOCK DIAGRAM	
FIGURE 2. APOLLO PRO266T V-LINK CHIPSET BLOCK DIAGRAM	6
FIGURE 3. BALL DIAGRAM (TOP VIEW)	7
FIGURE 4. GRAPHICS APERTURE ADDRESS TRANSLATION	
FIGURE 5. MECHANICAL SPECIFICATIONS - 560-PIN HSBGA BALL GRID ARRAY PACKAGE WITH HEAT	
SPREADER	52

LIST OF TABLES

TABLE 1. PIN LIST (<u>NUMERICAL</u> ORDER)	8
TABLE 2. PIN LIST (ALPHABETICAL ORDER)	
TABLE 3. PIN DESCRIPTIONS	
TABLE 4. BALLOUT DIFFERENCES BETWEEN PRO266T AND PRO266	
TABLE 5. REGISTERS	
TABLE 6. SYSTEM MEMORY MAP	28
TABLE 7. MA MAP TYPE ENCODING	
TABLE 8. MEMORY ADDRESS MAPPING TABLE	
TABLE 9. DIMM MODULE CONFIGURATION	34
TABLE 10. VGA / MDA MEMORY / IO REDIRECTION	
TABLE 11. AC TIMING MIN / MAX CONDITIONS	51

Apollo Pro266T North Bridge

Socket-370 North Bridge
with 133 / 100 / 66 MHz Front Side Bus
for VIA C3 and Intel Celeron,
Pentium III, and Pentium III-M (Tualatin) CPUs
with AGP 4x and V-Link
plus Advanced ECC Memory Controller
supporting DDR266 / DDR200 (PC2100 / PC1600) DDR SDRAM
and PC133 / PC100 SDR SDRAM
for Desktop and Mobile PC Systems

PRODUCT FEATURES

AGP / PCI / ISA Mobile and Deep Green PC Ready

- GTL+ compliant host bus supports write-combine cycles
- Supports separately powered 3.3V LVTTL (5V tolerant) and 2.5V SSTL-2 interface to system memory
- Modular power management and clock control for power conscious system applications
- Combine with VIA VT8233 highly integrated south bridge chip for state-of-the-art system power management

• High Integration

- Single chip implementation for 64-bit Socket-370 CPU, 64-bit SDR/DDR system memory, 266MB/S high bandwidth V-Link NB/SB, and 32-bit AGP interfaces
- Chipset: Apollo Pro266T V-Link Host system controller and VT8233 V-Link to PCI/LPC bridge
- Chipset includes UltraDMA-100 / 66 / 33 EIDE, Six USB ports, AC-97 audio and HSP modem, Networking, PCI / LPC buses, SMBus, and Keyboard / PS2-Mouse Interfaces plus RTC / CMOS on chip

• High Performance CPU Interface

- Supports Socket-370 VIA C3TM and Intel CeleronTM, Pentium IIITM and Pentium III-MTM (Tualatin) processors
- 133 / 100 / 66 MHz CPU Front Side Bus (FSB)
- Built-in PLL (Phase Lock Loop) circuitry for optimal skew control within and between clocking regions
- Eight outstanding transactions (eight-level In-Order Queue)
- Supports WC (Write Combining) cycles
- Dynamic deferred transaction support
- Sleep mode support
- System management interrupt, memory remap and STPCLK mechanism

• Full Featured Accelerated Graphics Port (AGP) Controller

Synchronous and pseudo-synchronous with the host CPU bus with optimal skew control

<u>V-Link</u>	<u>AGP</u>	<u>CPU</u>	<u>Mode</u>
66 MHz	66 MHz	133 MHz	4x synchronous
66 MHz	66 MHz	100 MHz	3x synchronous
66 MHz	66 MHz	66 MHz	2x synchronous

- AGP v2.0 compliant
- Supports SideBand Addressing (SBA) mode (non-multiplexed address / data)
- Supports 266 MHz 4x mode for AD and SBA signaling
- Pipelined split-transaction long-burst transfers up to 1GB/sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (256 bytes)
- Sixteen level (quadwords) write data FIFO (128 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
 - Independent GART lookup control for host / AGP / PCI master accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / NT5 miniport driver support

High Bandwidth 266 MB/Sec 8-bit V-Link Host Controller

- Supports 66MHz V-Link Host interface with total bandwidth of 266MB/S
- V-Link operates at 4x or 2x modes
- Full duplex commands with separate STB / CMD
- Request/Data split transaction
- Configurable outstanding transaction queue for Host to V-Link Client accesses
- Supports Defer/Defer-Reply transaction
- Transaction assurance for V-Link Host to Client access. Eliminate V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state/throttle transfer latency. All V-Link transaction both Host and Client have consistent view of transaction data depth and buffer size to avoid data overflow.
- High efficient V-Link arbitration with minimum overhead. All V-Link transaction with predictable cycle length with known CMD/Date duration.

Advanced High-Performance DDR / SDR DRAM Controller

- DRAM interface synchronous with host CPU (133 / 100 / 66 MHz) for most flexible configuration
- DRAM interface may be <u>faster</u> than CPU by 33 MHz to allow use of PC100 / DDR200 memory modules with 66MHz Celeron or use of PC133 / DDR266 with 100MHz Pentium II or Pentium III
- DRAM interface may be <u>slower</u> than CPU by 33 MHz to allow use of older memory modules with newer CPUs (e.g., PC66 memory modules with 100 MHz Pentium II or Pentium III)
- Concurrent CPU, AGP, and PCI access
- Supports DDR and SDR SDRAM memory types
- Dynamic Clock Enable (CKE) control for SDRAM power reduction in high speed systems
- Mixed 1M / 2M / 4M / 8M / 16M / 32M /64MxN DRAMs
- Supports 8 banks up to 4 GB DRAMs (512Mb x8 / x16 DRAM technology) for registered DDR / SDR modules
- Supports 6 banks up to 3 GB DRAMs (512Mb x8 / x16 DRAM technology) for unbuffered DDR / SDR modules
- Flexible row and column addresses. 64-bit data width only
- LVTTL 3.3V DRAM interface with 5V-tolerant inputs for SDR SDRAM and 2.5V SSTL-2 DRAM interface for DDR SDRAM
- Programmable I/O drive capability for MA, command, and MD signals
- Dual copies of MA and control signals for improved drive
- Optional ECC (single-bit error correction and multi-bit error detection) or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mbit SDRAM support
- Supports maximum 16-bank interleave (i.e., 16 pages open simultaneously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- x-1-1-1-1-1 back-to-back accesses for SDR SDRAM
- x-1/2-1/2-1/2-1-1/2-1/2 back-to-back accesses for DDR SDRAM
- Supports DDR SDRAM CL 2/2.5/3 and 1T per command
- Decoupled and burst DRAM refresh with staggered RAS timing (CAS before RAS or self refresh)

Advanced System Power Management Support

- Dynamic power down of SDRAM (CKE)
- V-Link and AGP bus clock run and clock generator control
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and Self-Refresh operation
- SDRAM self-refresh power down
- 8 bytes of BIOS scratch registers
- Low-leakage I/O pads
- Built-in NAND-tree pin scan test capability
- 2.5V, 0.22um, high speed / low power CMOS process
- 35 x 35 mm, 560 pin HSBGA Package (Ball Grid Array with Heat Spreader)

OVERVIEW

Apollo Pro266T is a high performance, cost-effective and energy efficient chip set for the implementation of AGP / V-Link / PCI / LPC desktop personal computer systems with 133, 100 and 66 MHz front side bus frequencies based on 64-bit Socket-370 VIA C3 and Intel Celeron, Pentium-III, and Pentium II-M (Tualatin) super-scalar processors.

Figure 1. Apollo Pro266T System Block Diagram

The complete chip set consists of the Apollo Pro266T V-Link DDR Host system controller (560 pin BGA) and the VT8233 highly integrated V-Link Client PCI/LPC controller (376 pin BGA). The Host system controller provides superior performance between the CPU, DRAM, AGP bus, and V-Link interface with pipelined, burst, and concurrent operation. The VT8233 V-Link Client controller is a highly integrated PCI / LPC controller. Its internal bus structure is based on 66 MHz PCI bus that provides 2x bandwidth compare to previous generation PCI/ISA bridge chips. The VT8233 integrated Client V-Link controller with 266MB/S bandwidth between Host/Client V-Link interface, provides a V-Link-PCI and V-Link-LPC controller. It supports five PCI slots of arbitration and decoding for all integrated functions and LPC bus.

The Apollo Pro266T supports eight banks of DDR / SDR SDRAMs up to 4 GB for "registered" SDRAM modules (six banks up to 3GB for "unbuffered" modules). The DRAM controller supports Double-Data-Rate (DDR) SDRAM or can be configured to support standard Synchronous DRAM (SDR SDRAM). The DDR / SDR DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 133 / 100 / 66 MHz. The eight banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32M / 64M xN DRAMs. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability. The DRAM controller can run in either synchronous or pseudo-synchronous mode relative to the host CPU bus frequency (133 / 100 / 66 MHz).

The Apollo Pro266T Host system controller also supports full AGP v2.0 capability for maximum bus utilization including 2x and 4x mode transfers, SBA (SideBand Addressing), Flush/Fence commands, and pipelined grants. An eight level request queue plus a four level post-write request queue with thirty-two and sixteen quadwords of read and write data FIFO's respectively are included for deep pipelined and split AGP transactions. A single-level GART TLB with 16 full associative entries and flexible CPU / AGP / PCI remapping control is also provided for operation under protected mode operating environments. Both Windows-95 VXD and Windows-98 / NT5 miniport drivers are supported for interoperability with major AGP-based 3D and DVD-capable multimedia accelerators.

Revision 1.1 May 6, 2003 -4- Product Features

The Apollo Pro266T host system controller supports a high speed 8-bit 66 MHz Quad Data Transfer interconnect (V-Link) to the VT8233 South Bridge. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and V-Link operation. For V-Link Host operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent V-Link bus and DRAM / cache accesses. When combined the V-Link Host/Client controllers, it realizes a complete PCI sub-system and supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The 376-pin Ball Grid Array VT8233 Client V-Link PCI / LPC controller supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.2 compliant). The VT8233 integrated PCI controller and PCI arbitration for up to five PCI slots. One of the PCI REQ / GNT pair can be configured as high-priority to better support a low latency PCI bus master device. The VT8233 integrated networking MAC controller with standard MII interface to an external PHY for 10 / 100Mb base-T Ethernet or 1 / 10Mb PNA home networking.

The VT8233 also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-100 / 66 / 33 for 100 / 66 / 33 MB/sec transfer rate, integrated USB interface with root hubs and six function ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated power management, the Apollo Pro266T chipset provides independent clock stop control for the CPU / SDRAM, PCI, and AGP buses and Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT8233 south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

The Apollo Pro266T chipset is ideal for high performance, high quality, high energy efficient and high integration desktop and notebook AGP / PCI / LPC computer systems.

Revision 1.1 May 6, 2003 -5- Product Features

Figure 2. Apollo Pro266T V-Link Chipset Block Diagram

Revision 1.1 May 6, 2003 -6- Product Features

PINOUTS

Figure 3. Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
A	VCC AGP	VCC AGP	GD16	GD17	AGP VREF	VCC AGP	GD23	GD24	GD28	VCC AGP	SBA7	SBS#	SBA0	VCC AGP	HD62	HD54	HD59	HD49	HD45	HD37	HD34	HD35	HD25	HD24	HD16	VTT
В	GD15	GBE1#	GBE2#	GND	GD21	VCC AGP	GBE3#	GD27	GD30	VCC AGP	SBA4	SBS	SBA1	VCC AGP	HD50	HD46	HD52	HD51	HD42	HD39	HD22	HD19	HD26	HD23	HD30	HD7
C	GD11	GD12	GD13	GD14	GD19	GD20	GD22	GD26	GD31	GRBF#	SBA5	GND	GGNT#	HD56	HD60	HD58	HD57	HD47	GND	HD36	HD31	HD32	GND	HD21	HD20	HD13
D	GD8	GND	GBE0#	GND	GD18	GND	GDEV SEL#	GD25	ST0	ST2	GPIPE#	SBA3	SBA2	GREQ#	HD61	HD53	HD48	HD41	HD27	HD38	HD28	HD33	HD3	HD11	HD14	HD2
E	VCC AGP	VCC AGP	GDS0#	GD10	G STOP#	GT RDY#	G FRM#	GDS1	GWBF#	GND	SBA6	VCC AGP	ST1	CPU RSTD	VCC	HD55	HD63	GND	HD44	HD43	HD29	HD9	HD18	HD12	HD10	HD17
F	GD7	GD4	GD6	GDS0	GD9	GND	GND	GDS1#	GD29	GND	GI RDY#	VCC AGP	GND	GND	VCC	GTL VREF	HD40	GND	VTT	GND	GND	HD5	HD8	HD1	HD4	HD15
G	GD5	GND	GCLK	GND	GPAR	VCC AGP	G 7	8	9	10	11	12	13	14	VTT	16	17	VCC	VTT	VTT	GND	HD0	HD6	CPU RST#	HA26	HA29
Н	GD1	GD3	GD0	GD2	VCC QQ	VCC AGP	Н			AGP	Pins			ı	15	•		18	19	H20	VTT	HA27	HA30	GND	HA18	HA24
J	VCC AGP	G COMP	GND QQ	VAD0 strap	GND	GND	J		VCC AGP	VCC AGP	VCC	VCC	VCC AGP	VCC	VCC	VCC	VCC	VTT		J	GND	HA20	HA23	HA31	HA22	HA17
K	UP STB	UP STB#	UP CMD	VBE#	VL VREF	VAD1 strap	K	Vlink	VCC AGP	K10	11	12	13	14	15	16	K17	VTT	K	VTT	VTT	HCLK	HA25	HA19	HA10	HA21
L	DN CMD	DN STB	DN STB#	VPAR	VAD4	VAD2 strap	L	Pins	VCC	L	GND	GND	GND	GND	GND	GND	L	VCC	CPU	L	AVCC HCK	AGND HCK	TEST IN#	HA28	HA5	HA12
M	VCC VL	VCC VL	GND	GND	VCC VL	VCC VL	M	,	VCC	M	GND	GND	GND	GND	GND	GND	M	vcc	Pins	M	HA6	HA15	HA13	HA16	HA3	HA9
N	VCC VK	VAD6	VAD7	VAD5	VAD3 strap	VCC VL	N		VCC VL	N	GND	GND	GND	GND	GND	GND	N	VTT		N	HREQ 4#	HA8	HA11	HA14	BNR#	HA4
P	VL COMP	GND	PWR OK	RE SET#	GND	GND	P		VCC M	P	GND	GND	GND	GND	GND	GND	P	VTT	P	VTT	GND	GND	HREQ 0#	GND	HREQ 2#	BPRI#
R	MD58	MD63	MD59	VSUS 25	SUST#	VCCM	R		VCC	R	GND	GND	GND	GND	GND	GND	R	VCC	R	VTT	VTT	HA7	HREQ 1#	H LOCK#	DE FER#	HREQ 3#
Т	VCCM	VCCM	GND	GND	MD62	VCCM	Т		VCC	T	GND	GND	GND	GND	GND	GND	Т	vcc	Т	VTT	GTL VREF	GND	RS1#	HITM#	HIT#	RS0#
U	MD57	DQM7 CKE7	DQS7# CKE7	MD61	MD56	MD60	U		VCC M	U10	11	12	13	14	15	16	U17	VCC M	·	U	AVCC MCK	AGND MCK	HT RDY#	DBSY#	RS2#	DRDY#
V	MD51	MD55		MD54	MD53	M VREF	v		VCC M	VCC M	VCC	VCC	VCC M	VCC M	VCC	VCC	VCC M	VCC M		\mathbf{v}	GND	MCLK F	MCLK	GND	BREQ 0#	GND
W	DQS6# CKE6	DQM6 CKE6	MD52	AGND DL2	AVCC DL2	GND	W						DDR	Pins					•	W	VCCM	VCCM	MD0	ADS#	VCCM	VCCM
Y	VCCM	VCCM	GND	GND	CS7#	VCCM	Y7	8	9	10	11	12	13	14	15	16	17	18	19	Y20	GND	MAB 14	MAA 14	GND	MD5	MD4
AA	MD49	MD48	MD47	MD46	CS6#	GND	VCCM	GND	VCCM	AVCC DL1	GND	VCCM	GND	VCCM	VCCM	GND	VCCM	MD18	M VREF	VCCM	GND	MAA 8	MD2	DQM0 CKE0	MD1	DQS0# CKE0
AB	MD43	DQM5 CKE5	MD42	MAA 11	MAB 11	MAA 12	MD39	MAB 10	VCCM	AGND DL1	MECC6 CKE6	VCCM	MAB 1	MAB 2	MAB 4	MAA 4	VCCM	MD22	MD16	VCCM	MAA 5	MAB 8	GND	MAA 13	GND	MD6
AC	MD41	GND	DQS5# CKE5	MAB 12	GND	SRAS A#	MD38	GND	MAB 0	NC	GND	MECC5 CKE5	GND	MAA 1	MAB 3	GND	MAA 3	MD28	MD17	MAA 6	MAB 5	DQM1 CKE1	MAB 7	MAA 9	MAB 13	MD7
AD	MD45	MD44	MD40	CS1#	CS5#	SWE B#	MAA 10	DQS4# CKE4	MD36	MD32	MECC2 CKE2	MECC0 CKE0	MAA 0	MD27	MAA 2	DQM3 CKE3	DQS3# CKE3	MD24	DQS2# CKE2	GND	GND	MD14	MD13	MAA 7	MAB 9	MD3
AE	CS3#	CS2#	SCAS A#	CS4#	GND	SRAS B#	DQM4 CKE4	GND	MD33	MECC3 CKE3	GND	MECC1 CKE1	GND	MD31	MD30	GND		MD23	DQM2 CKE2	MAB 6	MD11	MD10	GND	MD9	GND	VCCM
AF	VCCM	VCCM	CS0#	SCAS B#	SWE A#	MD35	VCCM	MD34	MD37	MECC7 CKE7	DQM8	DQS8#	VCCM	MECC4 CKE4	MD26	VCCM	MD25	MD19	MD21	VCCM	MD20	MD15	DQS1# CKE1	MD12	MD8	VCCM

Table 1. Pin List (Numerical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A01	P	VCCAGP	D03	Ю	GBE0#	G05	IO	GPAR	P01	I	VLCOMP	Y23	О	MAA14	AC25	О	MAB13
A01 A02	P	VCCAGP	D03	P	GND	G05	P	VCCAGP	P01	P	GND	Y24	P	GND	AC25	Ю	MD07
A03	Ю		D05	Ю	GD18	G21	P	GND	P03	I	PWROK	Y25	Ю	MD05	AD01	Ю	MD45
A04	IO		D06	P	GND	G22	IO	HD00	P04	I	RESET#	Y26	IO	MD04	AD02	IO	MD44
A05	P P	AGPVREF VCCAGP	D07 D08	IO IO	GDEVSEL#	G23 G24	IO O	HD06 CPURST#	P05 P06	P P	GND	AA01	IO IO	MD49 MD48	AD03 AD04	IO O	MD40 CS1#
A06 A07	IO	GD23	D08	0	GD25 ST0	G24 G25		HA26	P21	P	GND GND	AA02 AA03	IO	MD47	AD04 AD05	o	CS5#
A08	IO		D10	ŏ	ST2	G26	IO	HA29	P22	P	GND	AA04	IO	MD46	AD06	ŏ	SWEB#
A09	Ю		D11	I	GPIPE#	H01	Ю	GD1	P23	IO	HREQ0#	AA05	О	CS6#	AD07	О	MAA10
A10	P	VCCAGP	D12	I	SBA3	H02	IO	GD3	P24 P25	P	GND HREQ2#	AA06	P	GND	AD08	IO	DQS4# / CKE4 MD36
A11 A12	I I	SBA7 SBS#	D13 D14	I I	SBA2 GREQ#	H03 H04	IO IO	GD0 GD2	P25 P26	IO IO	BPRI#	AA07 AA08	P P	VCCM GND	AD09 AD10	IO IO	MD30 MD32
A13	Ī	SBA0	D15	Ю	HD61	H05	P	VCCQQ	R01	IO	MD58	AA09	P	VCCM	AD11	IO	MECC2 / CKE2
A14	P	VCCAGP	D16	Ю	HD53	H06	P	VCCAGP	R02	Ю	MD63	AA10	P	AVCCDL1	AD12	Ю	MECC0 / CKE0
A15	IO	HD62	D17	IO	HD48	H21	P	VTT	R03	IO	MD59	AA11	P	GND	AD13	0	MAA00
A16 A17	IO	HD54 HD59	D18 D19	IO IO	HD41 HD27	H22 H23	IO	HA27 HA30	R04 R05	P I	VSUS25 SUST#	AA12 AA13	P P	VCCM GND	AD14 AD15	IO O	MD27 MAA02
A18	IO		D20		HD38	H24	P	GND	R06	P	VCCM	AA14	P	VCCM	AD16	ŏ	DQM3 / CKE3
A19	Ю		D21		HD28	H25	Ю	HA18	R21	P	VTT	AA15	P	VCCM	AD17	Ю	DQS3# / CKE3
A20	IO		D22	IO	HD33	H26		HA24	R22	IO	HA07	AA16	P	GND	AD18	IO	MD24
A21 A22	IO	-	D23 D24	IO IO	HD03 HD11	J01 J02	P I	VCCAGP GCOMP	R23 R24	IO I	HREQ1# HLOCK#	AA17 AA18	P IO	VCCM MD18	AD19 AD20	IO P	DQS2# / CKE2 GND
A23	Ю		D25	IO	HD14	J03	P	GNDQQ	R25		DEFER#	AA19	P	MVREF	AD20	P	GND
A24	Ю	HD24	D26	Ю	HD02	J04	Ю	VAD0 / strap	R26		HREQ3#	AA20	P	VCCM	AD22	Ю	MD14
A25	IO		E01	P	VCCAGP	J05	P	GND	T01	P	VCCM	AA21	P	GND	AD23	IO	MD13
A26 B01	P IO	VTT GD15	E02 E03	P IO	VCCAGP GDS0#	J06 J21	P	GND GND	T02 T03	P P	VCCM GND	AA22 AA23	O IO	MAA08 MD02	AD24 AD25	0	MAA07 MAB09
B01 B02	IO	GBE1#	E03 E04	IO	GD30# GD10	J21 J22	IO	HA20	T04	P	GND	AA24	0	DQM0 / CKE0	AD23 AD26	Ю	MD03
B03	Ю	GBE2#	E05	Ю	GSTOP#	J23	IO	HA23	T05	Ю	MD62	AA25	Ю	MD01	AE01	0	CS3#
B04	P	GND	E06	Ю	GTRDY#	J24	Ю	HA31	T06	P	VCCM	AA26	Ю	DQS0# / CKE0	AE02	О	CS2#
B05	IO		E07	IO	GFRM#	J25	IO	HA22	T21	P	GTLVREF	AB01	IO	MD43	AE03	0	SCASA#
B06 B07	P IO	VCCAGP GBE3#	E08 E09	IO I	GDS1 GWBF#	J26 K01	IO	HA17 UPSTB	T22 T23	P IO	GND RS1#	AB02 AB03	O IO	DQM5 / CKE5 MD42	AE04 AE05	O P	CS4# GND
B08	Ю	GD27	E10	P	GND "	K02	Ī	UPSTB#	T24	I	HITM#	AB04	o	MAA11	AE06	o	SRASB#
B09	Ю	GD30	E11	I	SBA6	K03	I	UPCMD	T25		HIT#	AB05	О	MAB11	AE07	О	DQM4 / CKE4
B10	P	VCCAGP	E12	P	VCCAGP	K04	IO	VBE#	T26	IO	RS0#	AB06	O	MAA12	AE08	P	GND
B11 B12	I I	SBA4 SBS	E13 E14	0	ST1 CPURSTD#	K05 K06	P IO	VLVREF VAD1 / strap	U01 U02	IO O	MD57 DQM7 / CKE7	AB07 AB08	IO O	MD39 MAB10	AE09 AE10	IO IO	MD33 MECC3 / CKE3
B13	I	SBA1	E15	P	VCC	K21	P	VCCGTL	U03	Ю	DQS7# / CKE7	AB09	P	VCCM	AE11	P	GND
B14	P	VCCAGP	E16	Ю	HD55	K22	I	HCLK	U04	IO	MD61	AB10	P	AGNDDL1	AE12	Ю	MECC1 / CKE1
B15	IO	HD50	E17	Ю	HD63	K23	IO	HA25	U05	IO	MD56	AB11	IO	MECC6 / CKE6	AE13	P	GND
B16 B17	IO IO		E18 E19	P IO	GND HD44	K24 K25	IO	HA19 HA10	U06	IO P	MD60	AB12	P	VCCM MAB01	AE14 AE15	IO IO	MD31 MD30
B17	IO		E19 E20		HD43	K25 K26		HA21	U21 U22	P	AVCCMCK AGNDMCK	AB13 AB14	Ö	MAB02	AE15	P	GND
B19	Ю		E21	Ю	HD29	L01	0	DNCMD	U23	Ю	HTRDY#	AB15	ŏ	MAB04	AE17	Ю	MD29
B20	Ю		E22	Ю	HD09	L02	О	DNSTB	U24	Ю	DBSY#	AB16	О	MAA04	AE18	Ю	MD23
B21	IO		E23	IO	HD18	L03	0	DNSTB#	U25		RS2#	AB17	P	VCCM MD22	AE19	0	DQM2 / CKE2
B22 B23	IO		E24 E25	IO IO	HD12 HD10	L04 L05	IO IO	VPAR VAD4	U26 V01	IO	DRDY# MD51	AB18 AB19	IO IO	MD16	AE20 AE21	O IO	MAB06 MD11
B23	Ю		E26	Ю	HD17	L05	IO		V01 V02	IO	MD55	AB20	P	VCCM	AE22	IO	MD10
B25	Ю		F01	Ю	GD7	L21	P	AVCCHCK	V03	Ю	MD50	AB21	О	MAA05	AE23	P	GND
B26	IO		F02	IO	GD4	L22	P	AGNDHCK	V04	IO	MD54	AB22	O	MAB08	AE24	IO	MD09
C01 C02	IO		F03 F04	IO IO	GD6 GDS0	L23 L24	I IO	TESTIN# HA28	V05 V06	IO P	MD53 MVREF	AB23 AB24	P	GND MAA13	AE25 AE26	P P	GND VCCM
C02		GD12 GD13	F05		GDS0 GD9	L24 L25		HA05	V00	P	GND	AB24 AB25		GND	AF01	P	VCCM
C04	Ю	GD14	F06	P	GND	L26	Ю	HA12	V22	I	MCLKF	AB26	Ю	MD06	AF02		VCCM
C05		GD19	F07	P	GND CDC1#	M01		VCCVL	V23		MCLK	AC01	Ю	MD41	AF03	О	CS0#
C06 C07	IO	GD20 GD22	F08 F09	IO IO	GDS1# GD29	M02 M03	P P	VCCVL GND	V24 V25		GND BREQ0#	AC02		GND DQS5# / CKE5	AF04 AF05	0	SCASB# SWEA#
C07		GD22 GD26	F10	P	GND	M04	P	GND	V25 V26	P	GND	AC04		MAB12	AF05		MD35
C09		GD31	F11	Ю	GIRDY#	M05	P	VCCVL	W01		DQS6# / CKE6	AC05	P	GND	AF07	P	VCCM
C10	I	GRBF#	F12	P	VCCAGP	M06		VCCVL	W02		DQM6 / CKE6	AC06	0	SRASA#	AF08		MD34
C11	I P	SBA5	F13 F14	P	GND	M21 M22		HA06	W03 W04		MD52	AC07		MD38	AF10		MD37
C12 C13	P O	GND GGNT#	F14 F15	P P	GND VCC	M22 M23		HA15 HA13	W04 W05	P P	AGNDDL2 AVCCDL2	AC08 AC09		GND MAB00	AF10 AF11		MECC7 / CKE7 DQM8
C14	Ю		F16	P	GTLVREF	M24		HA16	W06	P	GND	AC10	-	NC	AF12		DQS8#
C15		HD60	F17	Ю	HD40	M25	Ю	HA03	W21	P	VCCM	AC11		GND	AF13	P	VCCM
C16		HD58	F18	P	GND	M26		HA09	W22		VCCM	AC12		MECC5 / CKE5	AF14		MECC4 / CKE4
C17 C18		HD57 HD47	F19 F20	P P	VTT GND	N01 N02	IO	VCCVK VAD6	W23 W24		MD00 ADS#	AC13 AC14	P	GND MAA01	AF15 AF16	10 P	MD26 VCCM
C19	P	GND	F21	P	GND	N03		VAD7	W25		VCCM	AC15		MAB03	AF17		MD25
C20	Ю	HD36	F22	Ю	HD05	N04	Ю	VAD5	W26		VCCM	AC16	P	GND	AF18	Ю	MD19
C21	IO		F23		HD08	N05		VAD3 / strap	Y01	P	VCCM	AC17		MAA03	AF19		MD21
C22		HD32	F24		HD01	N06 N21		VCCVL HREQ4#	Y02	P	VCCM	AC18		MD28 MD17	AF20 AF21	P	VCCM MD20
C23 C24	P IO	GND HD21	F25 F26		HD04 HD15	N21 N22		HA08	Y03 Y04	P P	GND GND	AC19 AC20		MAA06	AF21 AF22		MD20 MD15
C25		HD20	G01		GD5	N23		HA11	Y05		CS7#	AC21	ŏ	MAB05	AF23		DQS1# / CKE1
C26	Ю	HD13	G02	P	GND	N24	Ю	HA14	Y06	P	VCCM	AC22	О	DQM1 / CKE1	AF24	Ю	MD12
D01		GD8	G03	I	GCLK	N25		BNR#	Y21		GND	AC23		MAB07	AF25		MD08
D02	ľ	GND	G04	P	GND	N26		HA04	Y22	•	MAB14 (9 pins): P9.U9.18	AC24		MAA09	AF26 CAGP (VCCM

Center VCC Pins (19 pins): G18,J11-12,14-17,L9,18,M9,18,R9,18,T9,18,V11-12,15-16 Center GND Pins (36 pins): L11-16, M11-16, N11-16, P11-16, R11-16, T11-16 VCCM (9 pins): P9,U9,18,V9-10,13-14,17-18 VCCAGP (4 pins): J9-10,13,K9 VTT (11 pins): G15,19-20,J18,K18,20,N18,P18,20,R20,T20 VCCVL (1 pin): N9

Table 2. Pin List (Alphabetical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	<u>Pin #</u>		Pin Name	<u>Pin #</u>		Pin Names	Pin#		Pin Name
W24	Ю	ADS#	B08	Ю	GD27	G05	Ю	GPAR	D18		HD41			MD16	D10	О	ST2
AB10	P	AGNDDL1	A09	IO	GD28	D11	I	GPIPE#	B19		HD42	AC19		MD17	R05	I	SUST#
W04 L22	P P	AGNDDL2 AGNDHCK	F09 B09	IO IO	GD29 GD30	C10 D14	I I	GRBF# GREQ#	E20 E19		HD43 HD44	AA18 AF18		MD18 MD19	AF05 AD06	0	SWEA# SWEB#
U22	P	AGNDHCK AGNDMCK	C09	IO	GD30 GD31	E05	IO	GSTOP#	A19	IO	HD44 HD45	AF18 AF21		MD19 MD20	L23	I	TESTIN#
A05	P	AGPVREF	F04	IO	GDS0	F16	P	GTLVREF	B16	IO	HD46	AF19		MD21	K03	I	UPCMD
AA10	P	AVCCDL1	E03	Ю	GDS0#	T21	P	GTLVREF	C18	Ю	HD47	AB18	Ю	MD22	K01	I	UPSTB
W05	P	AVCCHCK	E08	IO	GDS1#	E06	IO	GTRDY#	D17		HD48	AE18		MD23	K02	I	UPSTB#
L21 U21	P P	AVCCHCK AVCCMCK	F08 D07	IO	GDS1# GDEVSEL#	E09 M25	IO	GWBF# HA03	A18 B15		HD49 HD50	AD18 AF17		MD24 MD25	J04 K06	IO IO	VAD0 / strap VAD1 / strap
N25	IO	BNR#	E07	IO	GFRM#	N26	IO	HA04	B18		HD51	AF15		MD26	L06	IO	VAD1 / strap VAD2 / strap
P26	IO	BPRI#	C13	О	GGNT#	L25	Ю	HA05	B17	IO	HD52	AD14	Ю	MD27	N05	IO	VAD3 / strap
V25	0	BREQ0#	F11	IO	GIRDY#	M21	IO	HA06	D16	IO	HD53	AC18		MD28	L05	IO	VAD4
G24 E14	0	CPURST# CPURSTD#	B04 C12	P P	GND GND	R22 N22	IO	HA07 HA08	A16 E16	IO IO	HD54 HD55	AE17 AE15		MD29 MD30	N04 N02	IO IO	VAD5 VAD6
AF03	0	CS0#	C12	P	GND	M26		HA09	C14		HD56	AE13		MD31	N02 N03	IO	VAD6 VAD7
AD04	ŏ	CS1#	C23	P	GND	K25	IO	HA10	C17	Ю	HD57	AD10	Ю	MD32	K04	IO	VBE#
AE02	0	CS2#	D02	P	GND	N23	IO	HA11	C16		HD58	AE09		MD33	E15	P	VCC
AE01	0	CS3# CS4#	D04 D06	P P	GND GND	L26 M23	IO	HA12 HA13	A17 C15	IO IO	HD59 HD60	AF08		MD34 MD35	F15 A01	P P	VCC VCCAGP
AE04 AD05	0	CS4# CS5#	E10	P	GND GND	M23 N24	IO	HA13 HA14	D15		HD60 HD61	AF06 AD09		MD36	A01 A02	P	VCCAGP VCCAGP
AA05	ŏ	CS6#	E18	P	GND	M22	IO	HA15	A15		HD62	AF09	IO	MD37	A06	P	VCCAGP
Y05	0	CS7#	F06	P	GND	M24		HA16	E17	Ю	HD63	AC07		MD38	A10	P	VCCAGP
U24	IO	DBSY#	F07	P	GND	J26	IO	HA17	T25		HIT#	AB07		MD39	A14	P	VCCACP
R25 L01	O	DEFER# DNCMD	F10 F13	P P	GND GND	H25 K24	IO	HA18 HA19	T24 R24	I	HITM# HLOCK#	AD03 AC01		MD40 MD41	B06 B10	P P	VCCAGP VCCAGP
L02	ŏ	DNSTB	F14	P	GND	J22	IO	HA20	P23		HREQ0#	AB03	IO	MD42	B14	P	VCCAGP
L03	0	DNSTB#	F18	P	GND	K26	Ю	HA21	R23	Ю	HREQ1#	AB01	Ю	MD43	E01	P	VCCAGP
AA24	0	DQM0 / CKE0	F20	P	GND	J25	IO	HA22	P25		HREQ2#	AD02		MD44	E02	P	VCCAGP
AC22 AE19	0	DQM1 / CKE1 DQM2 / CKE2	F21 G02	P P	GND GND	J23 H26	IO	HA23 HA24	R26 N21		HREQ3# HREQ4#	AD01 AA04		MD45 MD46	E12 F12	P P	VCCAGP VCCAGP
AD16	o	DQM2 / CKE2 DQM3 / CKE3	G02 G04	P	GND	K23		HA25	U23	IO	HTRDY#	AA04 AA03		MD47	G06	P	VCCAGP
AE07	ŏ	DQM4 / CKE4	G21	P	GND	G25	Ю	HA26	AD13	0	MAA00	AA02	Ю	MD48	H06	P	VCCAGP
AB02	O	DQM5 / CKE5	H24	P	GND	H22		HA27	AC14	0	MAA01	AA01		MD49	J01	P	VCCAGP
W02	0	DQM6 / CKE6 DQM7 / CKE7	J05	P	GND	L24	IO	HA28 HA29	AD15	0	MAA02 MAA03	V03 V01		MD50 MD51	R06	P	VCCM
U02 AF11	Ö	DQM//CKE/ DQM8	J06 J21	P P	GND GND	G26 H23		HA30	AC17 AB16	0	MAA04	W03	IO IO	MD51 MD52	T01 T02	P P	VCCM VCCM
AA26	Ю	DQS0# / CKE0	M03	P	GND	J24		HA31	AB21	o	MAA05	V05		MD53	T06	P	VCCM
AF23	Ю	DQS1# / CKE1	M04	P	GND	K22	I	HCLK	AC20	0	MAA06	V04	Ю	MD54	W21	P	VCCM
AD19	IO	DQS2# / CKE2	P02	P	GND	G22	IO	HD00	AD24	0	MAA07	V02		MD55	W22	P	VCCM
AD17 AD08	IO IO	DQS3# / CKE3 DQS4# / CKE4	P05 P06	P P	GND GND	F24 D26	IO	HD01 HD02	AA22 AC24	0	MAA08 MAA09	U05 U01	IO	MD56 MD57	W25 W26	P P	VCCM VCCM
AC03	IO	DQS5# / CKE5	P21	P	GND	D23	IO	HD03	AD07	o	MAA10	R01	IO	MD58	Y01	P	VCCM
W01	Ю	DQS6# / CKE6	P22	P	GND	F25	ΙΟ	HD04	AB04	ŏ	MAA11	R03	Ю	MD59	Y02	P	VCCM
U03	IO	DQS7# / CKE7	P24	P	GND	F22	IO	HD05	AB06	0	MAA12	U06		MD60	Y06	P	VCCM
AF12 U26	IO	DQS8# DRDY#	T03	P	GND	G23 B26	IO	HD06 HD07	AB24 Y23	0	MAA13 MAA14	U04 T05		MD61 MD62	AA07	P P	VCCM
D03	IO	GBE0#	T04 T22	P P	GND GND	F23	IO	HD07 HD08	AC09	0	MAB00	R02		MD62 MD63	AA09 AA12	P	VCCM VCCM
B02	IO	GBE1#	V21	P	GND	E22	IO	HD09	AB13	O	MAB01	AD12	IO	MECC0 / CKE0	AA14	P	VCCM
B03	IO	GBE2#	V24	P	GND	E25	IO	HD10	AB14		MAB02	AE12		MECC1 / CKE1	AA15	P	VCCM
B07	10	GBE3#	V26	P	GND	D24	IO	HD11	AC15	0	MAB03	AD11		MECC2 / CKE2	AA17	P	VCCM
G03 J02	I	GCLK GCOMP	W06 Y03	P P	GND GND	E24 C26	IO	HD12 HD13	AB15 AC21	0	MAB04 MAB05	AE10 AF14		MECC3 / CKE3 MECC4 / CKE4	AA20 AB09	P P	VCCM VCCM
H03	IO	GD0	Y04	P	GND	D25	IO	HD14	AE20	ŏ	MAB06	AC12		MECC5 / CKE5	AB12	P	VCCM
H01	Ю	GD1	Y21	P	GND	F26	Ю	HD15	AC23	О				MECC6 / CKE6 MECC7 / CKE7	AB17	P	VCCM
H04		GD2	Y24	P	GND			-	AB22						AB20		VCCM
H02 F02		GD3 GD4	AA06 AA08	P P	GND GND	E26 E23		HD17 HD18	AD25 AB08		MAB09 MAB10	V06 AA19		MVREF MVREF	AE26 AF01	P P	VCCM VCCM
G01		GD4 GD5	AA11	P	GND	B22		HD19	AB05		MAB11	AC10		NC	AF01	P	VCCM
F03	Ю	GD6	AA13	P	GND	C25	Ю	HD20	AC04	O	MAB12	P03	I	PWROK	AF07	P	VCCM
F01		GD7	AA16	P	GND	C24		HD21	AC25		MAB13	P04		RESET#	AF13	P	VCCM
D01 F05		GD8 GD9	AA21 AB23	P P	GND	B21 B24		HD22 HD23	Y22 V22	O	MAB14 MCLKF	T26 T23		RS0# RS1#	AF16 AF20	P P	VCCM VCCM
E04		GD10	AB25 AB25	P	GND GND	A24		HD23 HD24	V22 V23		MCLKF	U25		RS1# RS2#	AF20 AF26		VCCM
C01		GD11	AC02	P	GND	A23		HD25	W23		MD00	A13	I	SBA0	H05	P	VCCQQ
C02		GD12	AC05	P	GND	B23		HD26	AA25		MD01	B13	I	SBA1	N01		VCCVK
C03		GD13 GD14	AC11	P	GND	D19		HD27	AA23		MD02 MD03	D13		SBA2	M01	P	VCCVL
C04 B01		GD14 GD15	AC11 AC13	P P	GND GND	D21 E21		HD28 HD29	AD26 Y26		MD03 MD04	D12 B11	I	SBA3 SBA4	M02 M05	P P	VCCVL VCCVL
A03		GD15 GD16	AC16	P	GND	B25		HD30	Y25		MD05	C11	I	SBA5	M06	P	VCCVL
A04	Ю	GD17	AD20	P	GND	C21	Ю	HD31	AB26	Ю	MD06	E11		SBA6	N06	P	VCCVL
D05		GD18	AD21	P	GND	C22		HD32	AC26		MD07	A11	I	SBA7	P01	I	VLCOMP
C05		GD19	AE05	P	GND	D22		HD33	AF25		MD08	B12	I	SBS SBS#	K05		VLVREF
C06 B05		GD20 GD21	AE08 AE11	P P	GND GND	A21 A22		HD34 HD35	AE24 AE22		MD09 MD10	A12 AE03	_	SBS# SCASA#	L04 R04	P	VPAR VSUS25
C07		GD21 GD22	AE11	P	GND	C20		HD36	AE21		MD10 MD11	AF04		SCASB#	A26	P	VTT
A07	Ю	GD23	AE16	P	GND	A20	Ю	HD37	AF24	Ю	MD12	AC06	О	SRASA#	F19	P	VTT
		GD24	AE23	P	GND	D20		HD38	AD23		MD13	AE06		SRASB#	H21	P	VTT
D08 C08		GD25 GD26	AE25 J03	P	GND GNDQQ	B20 F17		HD39 HD40	AD22 AF22		MD14 MD15	D09 E13		ST0 ST1	K21 R21	P P	VTT VTT
		Pine (19 pine): C1									9 nine) P0 I/0 18						c): 10-10 13 K0

Center VCC Pins (19 pins): G18,J11-12,14-17,L9,18,M9,18,R9,18,T9,18,V11-12,15-16
Center GND Pins (36 pins): L11-16, M11-16, N11-16, P11-16, R11-16, T11-16

 VCCM (9 pins):
 P9,U9,18,V9-10,13-14,17-18
 VCCAGP (4 pins):
 J9-10,13,K9

 VTT (11 pins):
 G15,19-20,J18,K18,20,N18,P18,20,R20,T20
 VCCVL (1 pin):
 N9

Pin Descriptions

Table 3. Pin Descriptions

			CPU Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
HA[31:3]#	(See Pin List)	IO	Host Address Bus. HA[31:3] connect to the address bus of the host CPU. During CPU
			cycles HA[31:3] are inputs. These signals are driven by the Pro266T during cache snooping operations.
HD[63:0]#	(See Pin List)	IO	Host CPU Data. These signals are connected to the CPU data bus.
ADS#	W24	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.
BNR#	N25	IO	Block Next Request. Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.
BPRI#	P26	Ю	Priority Agent Bus Request . The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted. The Pro266T drives this signal to gain control of the processor bus.
DBSY#	U24	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.
DEFER#	R25	IO	Defer . The Pro266T uses a dynamic deferring policy to optimize system performance. The Pro266T also uses the DEFER# signal to indicate a processor retry response.
DRDY#	U26	IO	Data Ready. Asserted for each cycle that data is transferred.
HIT#	T25	Ю	Hit . Indicates that a cacheing agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.
HITM#	T24	I	Hit Modified . Asserted by the CPU to indicate that the address presented with the last snoop cycle is modified in the L1 cache and needs to be written back.
HLOCK#	R24	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.
HREQ[4:0]#	N21, R26, P25, R23, P23	Ю	Request Command . Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.
HTRDY#	U23	IO	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.
RS[2:0]#	U25, T23, T26	Ю	Response Signals. Indicates the type of response per the table below: RS[2:0]# Response type 000 Idle State 001 Retry Response 010 Defer Response 011 Reserved 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data
CPURST#	G24	О	CPU Reset. Reset output to CPU
BREQ0#	V25	О	Bus Request 0. Bus request output to CPU.

Note: Clocking of the CPU interface is performed with HCLK. See the clock pin group at the end of the pin descriptions section for descriptions of the clock pins.

Revision 1.1 May 6, 2003 -10- Pin Descriptions

The Pro266T pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

Apollo Pro266Tis an upgrade of Apollo Pro266 but the ballouts are slightly different. The Pro266T has 8 more balls than the Pro266. Seven of the eight new balls are VTT power signals for enhancing the Pentium III-M (Tualatin) CPU termination power supply to the Pro266T. The other ball is used as a VCC power signal. 9 of 13 VCCGTL power signals in the Pro266 used as AGTL+ IO power from a 2.5V power source are replaced by VTT power signals in Pro266T for AGTL(+) IO power. The remaining VCCGTL power signals are replaced by VCC power signals in Pro266T for its own core power. Except for VTT, VCC and VCCGTL power signals and two signals at J1 and AC10, ball assignment for all the remaining signals between both chips is exactly the same. Refer to the table below for more detail on ballout differences between the Pro266T and Pro266 chips. Also refer to the Pro266T Design Guide for details on designing motherboards to accommodate either chip.

Table 4. Ballout Differences Between Pro266T and Pro266

Signal Group	Pro266T	Pro266	Ballout assignment
	VTT	VCCGTL	A26, F19, H21, J18, K18, K21, N18, P18, R21
Power	VTT	ı	G15, G19, G20, K20, P20, R20, T20
1 OWC1	VCC	VCCGTL	E15, F15, J14, J17
	VCC	ı	G18
Signal	VCCAGP	GCOMPP	J1
Signai	NC	DQSFB	AC10

Revision 1.1 May 6, 2003 -11- Pin Descriptions

	D	RAN	I Interface
Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(See Pin List)	IO	Memory Data. These signals are connected to the DRAM data
			bus.
MECC[7:0] / CKE[7:0]	AF10, AB11, AC12,	IO	DRAM ECC or EC Data: when ECC is enabled.
	AF14, AE10, AD11, AE12, AD12		Clock Enables: For each DRAM bank for powering down the SDRAMs in notebook applications. Also used in desktop
	AL12, AD12		systems for clock control to reduce power usage and for reducing
			heat/temperature in high-speed memory systems.
MAA[14:0]	Y23, AB24, AB6, AB4,	О	Memory Address A. DRAM address lines (two sets for better
	AD7, AC24, AA22,		drive)
	AD24, AC20, AB21,		
	AB16, AC17, AD15, AC14, AD13		
MAB[14:0]	Y22, AC25, AC4, AB5,	О	Memory Address B. DRAM address lines (two sets for better
MAD[14.0]	AB8, AD25, AB22,		drive).
	AC23, AE20, AC21,		
	AB15, AC15, AB14,		
	AB13, AC9		
CS[7:0]#	Y5, AA5, AD5, AE4,	О	Memory Chip Select. Chip select of each bank.
7.07.50	AE1, AE2, AD4, AF3		
DQM8,	AF11,	О	Memory Data Mask. Data mask of each data byte lane
DQM7 / CKE7, DQM6 / CKE6,	U2, W2,		(DQM[0-7] and ECC byte (DQM8).
DQM6 / CKE6, DQM5 / CKE5,	W 2, AB2,		
DQM4 / CKE4,	AE7,		
DQM3 / CKE3,	AD16,		
DQM2 / CKE2,	AE19,		
DQM1 / CKE1,	AC22,		
DQM0 / CKE0	AA24		
SRASA#, SRASB#	AC6, AE6	0	Row Address Command Indicator. (2 pins for better drive)
SCASA#, SCASB#	AE3, AF4	0	Column Address Command Indicator. (2 pins for better drive)
SWEA#, SWEB#	AF5, AD6	0	Write Enable Command Indicator. (2 pins for better drive)
DQS[8]#,	AF12,	IO	DDR Data Strobe. DQS[8]# for ECC bit.
DQS[7:0] # / CKE[7:0]	U3, W1, AC3, AD8,		
	AD17, AD19, AF23, AA26		

			V-Link Interface
Signal Name	Pin#	<u>I/O</u>	Signal Description
VAD7,	N3,	IO	V-Link Address/Data Bus.
VAD6,	N2,		
VAD5,	N4,		
VAD4,	L5,		
VAD3 / strap,	N5,		
VAD2 / strap,	L6,		
VAD1 / strap,	K6,		
VAD0 / strap	J4		
VPAR	L4	IO	Parity.
VBE#	K4	IO	Byte Enable.
UPCMD	K3	I	Command from Client-to-Host.
UPSTB	K1	I	Strobe from Client-to-Host.
UPSTB#	K2	I	Complement strobe from Client-to-Host.
DNCMD	L1	О	Command from Host-to-Client.
DNSTB	L2	О	Strobe from Host-to-Client.
DNSTB#	L3	О	Complement strobe from Host-to-Client.

	AGP Bus Interface					
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description			
GD[31:0]	(See Pin List)	Ю	Address/Data Bus. The standard AGP/PCI address and data lines. The address is driven with GDS0# and GDS1# assertion for AGP transfers and is driven with GFRM# assertion for PCI transfers.			
GBE[3:0]#	B7, B3, B2, D3	Ю	Command/Byte Enable. AGP: These pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using PIPE#. These pins provide valid byte information during AGP write transactions and are driven by the master.			
			The target (this chip) drives these lines to "0000" during the return of AGP read data, but the state of these pins is ignored by the AGP master. PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.			
GPAR	G5	IO	AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0].			
GDS0	F4	IO	Bus Strobe 0 (AGP transactions only). Provides timing for 2x data transfer mode on AD[15:0]. The agent that is providing the data drives this signal.			
GDS0#	Е3	IO	Bus Strobe 0 compliment and Bus Strobe 0 (AGP transactions only). Provides timing for 4x data transfer mode on AD[15:0]. The agent that is providing the data drives this signal.			
GDS1	E8	IO	Bus Strobe 1 (AGP transactions only). Provides timing for 2x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.			
GDS1#	F8	IO	Bus Strobe 1 compliment and Bus Strobe 1 (AGP transactions only). Provides timing for 4x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.			
GFRM#	E7	Ю	Frame (PCI transactions only). Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.			
GIRDY#	F11	Ю	Negation indicates that one more data transfer is desired by the cycle initiator. Initiator Ready AGP: For write operations, the assertion of this pin indicates that the master is ready to provide <i>all</i> write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For read operations, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is <i>never</i> allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. PCI: Asserted when the initiator is ready for data transfer.			
GTRDY#	E6	Ю	Target Ready: AGP: Indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfers on both read and write transactions. PCI: Asserted when the target is ready for data transfer.			
GSTOP#	E5	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction.			
GDEVSEL#	D7	Ю	Device Select (PCI transactions only). This signal is driven by the Pro266T when a PCI initiator is attempting to access main memory. It is an input when the Pro266T is acting as PCI initiator. Not used for AGP cycles.			
GPIPE#	D11	I	Pipelined Request. Asserted by the master (graphics controller) to indicate that a full-width request is to be enqueued by the target Pro266T. The master enqueues one request each rising edge of GCLK while GPIPE# is asserted. When GPIPE# is deasserted no new requests are enqueued across the AD bus.			
GRBF#	C10	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When GRBF# is asserted, the Pro266T will not return low priority read data to the master.			
GWBF#	E9	I	Write Buffer Full.			

			AGP Bus Interface (continued)			
Signal Name	Pin#	<u>I/O</u>	Signal Description			
SBA[7:0]	A11, E11, C11, B11, D12, D13, B13, A13	I	deBand Address. Provides an additional bus to pass address and command information from a master (graphics controller) to the target (the Pro266T, these pins are ignored until enabled.			
SBS	B12	I	Sideband Strobe. Provides timing for SBA[7:0] (driven by the master)			
SBS#	A12	I	Sideband Strobe compliment and SBS . Provides timing for SBA[7:0] (driven by the master) when 4x timing is supported.			
ST[2:0]	D10, E13, D9	0	 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the Pro266T and inputs to the master. 			
GREQ#	D14	I	Request. Master request for AGP.			
GGNT#	C13	О	Grant. Permission is given to the master to use AGP.			

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Therefore only one of the two will be used and the signals associated with the other will not be used. Therefore the Pro266T has an internal pullup on GRBF# to maintain it in the de-asserted state in case it is not implemented on the master device.

Revision 1.1 May 6, 2003 -15- Pin Descriptions

	Clock / Reset Control				
Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description		
HCLK	K22	I	Host Clock. This pin receives the host CPU clock (66 / 100 / 133 MHz). This clock is used by all Pro266T logic that is in the host CPU domain.		
GCLK	G3	I	GP Clock. This pin receives the AGP bus clock (66 MHz). This clock is used y all Pro266T logic that is in the AGP clock domain. The AGP clock must be ynchronous / pseudo-synchronous to the host CPU clock (selectable as shown in the table above).		
MCLK	V23	О	DRAM Clock. Output from internal clock generator to the external clock buffer.		
MCLKF	V22	I	DRAM Clock Feedback Input.		
RESET#	P4	I	Reset. Input from south bridge chip. When asserted, this signal resets the Pro266T and sets all register bits to the default value. The same signal that connects to this pin may also be used (connected through an external inverter) to reset the ISA bus (if implemented). The rising edge of this signal is used to sample all power-up strap options.		
PWROK	P3	I	Power OK.		
CPURST#	G24	О	CPU Reset. CPU Reset output to the CPU.		
CPURSTD#	E14	О	CPU Reset Delayed. CPU Reset output to the CPU, 2T delayed from CPURST#.		
SUST#	R5	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable.		

	Power, Ground, Analog, and Test				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description		
VCC	(See Pin List)	P	Core Power. $2.5V \pm 5\%$.		
GND	(See Pin List)	P	Ground		
VTT	A26, F19, G15, G19-20, H21,	P	CPU Interface Termination Power. $1.2V \pm 5\%$ for Pentium III-M		
	J18, K18, K20-K21, N18, P18,		(Tualatin) CPUs, $1.5V \pm 5\%$ for all other Pentium / Celeron / VIA-C3		
	P20, R20-R21, T20		CPUs (see CPU specs for specific voltage)		
VCCVL	M1-M2, M5-M6, N6, N9	P	V-Link Power. $2.5V \pm 5\%$.		
VCCM	P9, R6, T1-T2, T6, U9, U18,	P	DRAM Power. Connect to 2.5V ± 5% power source for DDR		
	V9-V10, V13-V14, V17-V18,		SDRAM or to $3.3V \pm 5\%$ for SDR SDRAM (see Design Guide for		
	W21-W22, W25-W26, Y1-Y2,		details).		
	Y6, AA7, AA9, AA12, AA14,				
	AA15, AA17, AA20, AB9,				
	AB12, AB17, AB20, AE26, AF1, AF2, AF7, AF13, AF16,				
	AF1, AF2, AF7, AF13, AF10, AF20, AF26				
VCCAGP	A1-A2, A6, A10, A14, B6, B10,	P	AGP Power. 1.5V (AGP 4x) / 3.3V (AGP 2x and 1x) \pm 5%.		
Veerigi	B14, E1-E2, E12, F12, G6, H6,	•	1101 10 wer. 1.5 v (1101 1x) / 5.5 v (1101 2x and 1x) ± 5/0.		
	J1, J9-J10, J13, K9				
VCCQQ	H5	P	AGP Quiet Power. 1.5V (AGP 4x) / 3.3V (AGP 2x and 1x) \pm 5%.		
GNDQQ	J3	P	AGP Quiet Ground.		
VSUS25	R4	P	Suspend Power. 2.5V ±5%.		
AVCCHCK	L21	P	PLL Power. Clock generator/deskew. 2.5V ±5%.		
AGNDHCK	L22	P	PLL Analog Ground. Clock generator/deskew ground. Connect to		
			main ground plane through ferrite bead.		
AVCCMCK	U21	P	DRAM Deskew Power. 2.5V ±5%.		
AGNDMCK	U22	P	DRAM Deskew Analog Ground. Connect to main ground plane		
			through ferrite bead.		
AVCCDL1	AA10	P	DLL1 Power. 2.5V ±5%.		
AGNDDL1	AB10	P	DLL1 Analog ground		
AVCCDL2	W5	P	DLL2 Power. 2.5V ±5%.		
AGNDDL2	W4	P	DLL2 Analog ground		
MVREF	V6, AA19	P	DDR SDRAM Memory Voltage Reference. 1.25V		
GTLVREF	F16, T21	P	CPU Interface GTL+ Voltage Reference. 2/3 VTT ±2%		
AGPVREF	A5	P	AGP Voltage Reference. ½ VCCQQ.		
VLVREF	K5	P	V-Link Voltage Reference. 0.9V.		
VCCVK	N1	I	V-Link Compensation Circuit Power. 2.5V ±5%.		
VLCOMP	P1	I	P Channel Compensation for V-Link		
GCOMP	J2	I	P Channel Compensation for AGP		
TESTIN#	L23	I	Test Input. NAND tree / tristate mode test select.		
<u> </u>	•	•			

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the Pro266T. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 5. Registers

I/O Ports

Port #	I/O Port	<u>Default</u>	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

Pro266T Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3101	RO
5-4	Command	0006	RW
7-6	Status	0210	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
C	Reserved	00	
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	RW
14-2B	Reserved	00	
2D-2C	Subsystem Vendor ID	0000	RW
2F-2E	Subsystem ID	0000	RW
33-30	Reserved	00	
37-34	Capability Pointer	0000 00A0	RO
3F-38	Reserved	00	

Device-Specific Registers

Offset	V-Link Control	<u>Default</u>	Acc
40	V-Link Revision ID	00	RW
41	V-Link NB Capability	18	RW
42	V-Link NB Downlink Command	88	RW
44-43	V-Link NB Uplink Status	8280	RW
45	V-Link NB Bus Timer	44	RW
46	V-Link Misc NB Control	00	RW
47	V-Link Control	00	RW
48	V-Link NB/SB Configuration	18	RW
49	V-Link SB Capability	18	RW
4A	V-Link SB Downlink Status	88	RO
4C-4B	V-Link SB Uplink Command	8280	RO
4D	V-Link SB Bus Timer	44	RW
4E	CCA Master High Priority	00	RW
4F	V-Link SB Miscellaneous Control	00	RW

Offset	Host CPU Protocol Control	Default	Acc
50	CPU Interface Request Phase Control	00	RW
51	CPU Interface Basic Control	00	RW
52	CPU Interface Advanced Control	00	RW
53	CPU Interface Arbitration Control	03	RW
54	Miscellaneous	00	RW

Device-Specific Registers (continued)

Offset	DRAM Control	<u>Default</u>	Acc
55	DRAM Control	00	RW
56-57	(see below)		
59-58	MA Map Type	2222	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E	Bank 4 Ending (HA[31:24])	01	RW
5F	Bank 5 Ending (HA[31:24])	01	RW
56	Bank 6 Ending (HA[31:24])	01	RW
57	Bank 7 Ending (HA[31:24])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for All Banks	E4	RW
65	DRAM Arbitration Timer	00	RW
66	DRAM Arbitration Control	00	RW
67	DRAM DQS/SDR/MD Read Delay	00	RW
68	DRAM DDR Control	00	RW
69	Extended SMRAM Control	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	10	RW
6C	SDRAM Control	00	RW
6D	DRAM Control Drive Strength	00	RW
6E	ECC Control	00	RW
6F	ECC Status	00	RO

Offset	PCI Bus Control	Default	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control	48	RW
72	-reserved-	00	_
73	PCI Master Control	00	RW
74	-reserved-	00	
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77-7F	-reserved-	00	

Ī	Offset	GART/TLB Control	Default	Acc
	83-80	GART/TLB Control	0000 0000	RW
	84	Graphics Aperture Size	00	RW
Ī	85-87	-reserved-	00	_
Γ	8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
	8C-9F	-reserved-	00	_

Device 0 Device-Specific Registers (continued)

Offset	AGP Control	<u>Default</u>	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	C0	RO
A2	AGP Specification Revision	20	RO
A3	-reserved-	00	
A7-A4	AGP Status	1F00 0201	RO
AB-A8	AGP Command	0000 0000	RW
AC	AGP Control	00	RW
AD	AGP Latency Timer	02	RW
AE	AGP Miscellaneous Control	00	RW
AF	-reserved-	00	
B0	AGP Compensation Control / Status	XX	RW
B1	AGP Compensation Drive Strength	63	RW
B2	AGP Drive / Delay Control	08	RW
В3	AGP Strobe Drive Strength		RW

Offset	V-Link Control	Default	Acc
B4	V-Link NB Compensation Control	00	RW
B5	V-Link NB Drive Control	00	RW
B6-B7	-reserved-	00	
B8	V-Link SB Compensation Control	00	RW
B9	V-Link SB Drive Control	00	RW
BA-BD	-reserved-	00	

Offset	DRAM Interface Control	Default	Acc
BE	MECC Drive Strength	00	RW
BF	MA / SCMD Pad Toggle Reduction	00	RW

Offset	Extended Power Management	Default	Acc
C0	Capability ID	01	RO
C1	Next Pointer	00	RO
C2	Power Management Capabilities 1	02	RO
C3	Power Management Capabilities 2	00	RO
C4	Power Management Control / Status	00	RW
C5	Power Management Status	00	RW
C6	PCI-to-PCI Bridge Support Extension	00	RW
C7	Power Management Data	00	RW
C8-CF	-reserved-	00	

Offset	ECC Error Control	Default	Acc
D3-D0	ECC Error Address	XX	RO
D4	ECC Error Syndrome Bit	XX	RO
D5-DF	-reserved-	00	

Offset	UMA Control (Reserved)	Default	Acc
E0-E3	-reserved-	00	

Offset	DRAM Above 4G Control	Default	Acc
E4	Low Top Address Low	00	RW
E5	Low Top Address High	FF	RW
E6	SMM / APIC Decoding	01	RW
E7-EF	-reserved-	00	

Offset	<u>Test</u>	Default	Acc
F0	PLL Test Mode (do not program)	00	RW
F1	PLL Test Mode Select	00	RW
F2	Chip Test Mode (do not program)	00	RW

Offset	BIOS Scratch & Foundry ID	Default	Acc
F3-F7	BIOS Scratch Registers	00	RW
F8	Foundry ID	00	RW

Offset	Back Door Control	Default	Acc
F9	Back Door Control	00	RW
FA	Back-Door Max # of AGP Requests	00	RW
FB	Back-Door Revision ID	00	RW
FD-FC	Back-Door Device ID	0000	RW
FE-FF	-reserved-	00	

Pro266T Device 1 - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	B101	RO
5-4	Command	0007	$\mathbf{R}\mathbf{W}$
7-6	Status	0230	WC
8	Revision ID (R/W if Rx44[7]=1)	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	04	RO
В	Base Class Code	06	RO
C	-reserved-	00	
D	Latency Timer	00	RW
E	Header Type	01	RO
F	Built In Self Test (BIST)	00	RO
17-10	-reserved-	00	
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	$\mathbf{R}\mathbf{W}$
1A	Subordinate Bus Number	00	$\mathbf{R}\mathbf{W}$
1B	Secondary Latency Timer	00	RO
1C	I/O Base	F0	$\mathbf{R}\mathbf{W}$
1D	I/O Limit	00	$\mathbf{R}\mathbf{W}$
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	$\mathbf{R}\mathbf{W}$
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	$\mathbf{R}\mathbf{W}$
27-26	Prefetchable Memory Limit	0000	$\mathbf{R}\mathbf{W}$
28-33	-reserved-	00	_
34	Capability Pointer	80	RO
35-3D	-reserved-	00	
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offset	AGP Bus Control	Default	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	08	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	22	RW
44	Back-Door Register Control	20	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48-7F	-reserved-	00	
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	

Miscellaneous I/O

One I/O port is defined in the Pro266T: Port 22.

Port 22	2 – PCI / AGP Arbiter Disable	RW
7-2	Reservedalw	ays reads (
1	AGP Arbiter Disable	
	0 Respond to GREQ# signal	defaul
	1 Do not respond to GREQ# signal	
0	PCI Arbiter Disable	
	0 Respond to all REQ# signals	defaul
	1 Do not respond to any REQ	# signals
	including PREQ#	
- T-1	1 11 10 11	

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 76.

Configuration Space I/O

All registers in the Pro266T (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CFB-CF8 - Configuration Address.....RW

31	Configuration Space Enable
	0 Disableddefault
	1 Convert configuration data port writes to
	configuration cycles on the PCI bus
30-24	Reserved always reads 0
23-16	PCI Bus Number
	Used to choose a specific PCI bus in the system
15-11	Device Number
	Used to choose a specific device in the system
	(devices 0 and 1 are defined for the Pro266T)
10-8	Function Number
	Used to choose a specific function if the selected
	device supports multiple functions (only function 0 is
	defined for the Pro266T).
7-2	Register Number (also called the "Offset")
	Used to select a specific DWORD in the Pro266T
	configuration space
1-0	Fixed always reads 0

Refer to PCI Bus Specification Version 2.1 for further details on operation of the above configuration registers.

Port CFF-CFC - Configuration Data.....RW

Register Descriptions

Device 0 Header Registers - Host Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and <u>device number</u> equal to <u>zero</u>.

Device (0 Offs	et 1-0 - Vendor ID (1106h)RO				
15-0	ID C	ode (reads 1106h to identify VIA Technologies)				
Device (Device 0 Offset 3-2 - Device ID (3101h)RO					
15-0		ode (reads 3101h to identify the Pro266T)				
13-0	ID C	oue (reads 510111 to identify the 1102001)				
Device	Offs	et 5-4 –Command (0006h)RW				
15-10	Rese					
9	Fast !	Back-to-Back Cycle EnableRO				
	0	Fast back-to-back transactions only allowed to				
		the same agentdefault				
	1	Fast back-to-back transactions allowed to				
		different agents				
8		R# EnableRO				
	0	SERR# driver disableddefault				
	1	SERR# driver enabled				
7		R# is used to report parity errors if bit-6 is set).				
7	Adar ()	ress / Data Stepping RO Device never does steppingdefault				
	1	Device never does steppingdefault Device always does stepping				
6	_	y Error ResponseRW				
U	()	Ignore parity errors & continuedefault				
	1	Take normal action on detected parity errors				
5	-	Palette Snoop				
	0	Treat palette accesses normallydefault				
	1	Don't respond to palette accesses on PCI bus				
4	Mem	ory Write and Invalidate Command RO				
	0	Bus masters must use Mem Writedefault				
	1	Bus masters may generate Mem Write & Inval				
3	Speci	ial Cycle MonitoringRO				
	0	Does not monitor special cyclesdefault				
	1	Monitors special cycles				
2		MasterRO				
	0	Never behaves as a bus master				
	1	Can behave as a bus masterdefault				
1		ory SpaceRO				
	0	Does not respond to memory space				
0	1	Responds to memory spacedefault				
0		pace RO				
	0	Does not respond to I/O spacedefault				
	1	Responds to I/O space				

Device	0 Offs	et 7-6 – Status (0210h)RWC
15	Detec	cted Parity Error
	0	No parity error detecteddefault
	1	Error detected in either address or data phase.
		This bit is set even if error response is disabled
		(command register bit-6)write one to clear
14	Signs	aled System Error (SERR# Asserted)
17	Signe	always reads 0
13	Signs	aled Master Abort
13) ()	No abort received default
	1	Transaction aborted by the master
	1	write one to clear
12	Rece	ived Target Abort
	0	No abort received
	1	Transaction aborted by the target
	-	write one to clear
11	Signs	aled Target Abortalways reads 0
11	0	Target Abort never signaled
10-9		SEL# Timing
10-7	00	Fast
	01	Mediumalways reads 01
	10	Slow
	11	Reserved
8		Parity Error Detected
o	Data	No data parity error detected default
	1	Error detected in data phase. Set only if error
	1	response enabled via command bit-6 = 1 and
		Pro266T was initiator of the operation in
7	East.	which the error occurredwrite one to clear
7		Back-to-Back Capablealways reads 0
6		Definable Featuresalways reads 0
5 4		Hz Capablealways reads 0 orts New Capability listalways reads 1
3-0	Rese	
3-0	Rese	i veuaiways ieaus 0
Device	0 Offs	et 8 - Revision ID (0nh)RO
7-0		Revision Codealways reads 0nh
	•	$\dots (n = revision code)$
		,
		et 9 - Programming Interface (00h)RO
7-0	Inter	face Identifieralways reads 00
Device	0 Offs	et A - Sub Class Code (00h)RO
7-0		Class Code reads 00 to indicate Host Bridge
7-0	Subv	Class CodeTeads 00 to indicate flost Bridge
Device	0 Offs	et B - Base Class Code (06h)RO
7-0	Base	Class Code reads 06 to indicate Bridge Device
		_
		et D - Latency Timer (00h)RW
Specifie	es the la	atency timer value in PCI bus clocks.
7-3	Rese	rved always read 0
2-0		ranteed Time Slice for CPU (fixed granularity
	of 8 c	
		2-1 are writeable but read 0 for PCI specification
		natibility. The programmed value may be read
		in Offset 75 bits 5-4 (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

	-
Device	Offset E - Header Type (00h)RO
7-0	Header Type Code reads 00: single function
Device	O Offset F - Built In Self Test (BIST) (00h)RO
7	BIST Supported reads 0: no supported functions
6-0	Reserved always reads 0
ъ .	0.000 (10.10 G 1)
	0 Offset 13-10 - Graphics Aperture Base
<u>(000000</u>	<u>(08h)</u> RW
31-28	Upper Programmable Base Address Bits def=0
27-20	Lower Programmable Base Address Bits def=0
	These bits behave as if hardwired to 0 if the
	corresponding Graphics Aperture Size register bit
	(Device 0 Offset 84h) is 0.
	(= -, -, -, -, -, -, -, -, -, -, -, -, -,
	27 26 25 24 23 22 21 20 (This Register)
	$\underline{7}$ $\underline{6}$ $\underline{5}$ $\underline{4}$ $\underline{3}$ $\underline{2}$ $\underline{1}$ $\underline{0}$ (Gr Aper Size)
	RW RW RW RW RW RW RW 1M
	RWRWRWRWRWRW 0 2M
	RW RW RW RW RW RW 0 0 4M

19-0 Reservedalways reads 00008

 $0 \quad 0 \quad 0 \quad 0$

0 0 0 0

0 0 0

0

8M

16M

32M

64M

128M

256M

RW RW RW RW RW

RWRWRWRW 0

 $0 \quad 0 \quad 0 \quad 0 \quad 0$

RWRWRW 0

RWRW 0

0 0 0 0 0 0 0

RW 0

Note: The locations in the address range defined by this register are prefetchable.

Device 0 Offset	2D-2C -	Subsystem	Vendor	ID ((0000h) RW

This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h).....RW

15-0 Subsystem ID default = 0 This register may be written once and is then read only.

Device 0 Offset 37-34 - Capability Pointer (000000A0h) RO

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer always reads A0h

Device 0 Configuration Registers - Host Bridge

These registers are normally programmed once at system initialization time.

V-Link Control

Device	0 Offset 40 – V-Link Specification ID (00h)RO	Device	0 Offset 46 – NB V-Link Misc Control (00h) RW
7-0	Specification Revisionalways reads 00	7	Downstream High Priority
, ,	~ F	•	0 Disable High Priority Down Commands def
			1 Enable High Priority Down Commands
Device	0 Offset 41 – NB V-Link Capability (18h)RO	6	Downlink Priority
7-6	Reservedalways reads 0	U	0 Treat Downlink Cycles as Normal Priority def
5	16-bit Bus Width SupportedRO		1 Treat Downlink Cycles as High Priority
	0 Not Supporteddefault	5-4	Combine Multiple STPGNT Cycles into V-Link
	1 Supported	J- 4	Command
4	8-Bit Bus Width SupportedRO		
•	0 Not Supported		00 Compatible, 1 command per V-Link cmd def
	1 Supporteddefault		01 2 commands per V-Link command
3	4x Rate SupportedRO		10 3 commands per V-Link command
3			11 1 commands per V-Link command
	0 Not Supported	3-2	V-Link Master Access Ordering Rules
•	1 Supported default		00 High priority read, pass normal read (not pass
2	2x Rate SupportedRO		write) default
	0 Not Supporteddefault		01 Read (high/normal) pass write (HR>LR>W)
	1 Supported		1x Read / write in order
1-0	Reserved always reads 0	1-0	Reserved always reads 0
		Device	0 Offset 47 – V-Link Control (00h)RW
	0 Offset 42 – NB Downlink Command (88h) RW	7-3	Reserved always reads 0
7-4	DnCmd Max Request Depth (0=1 DnCmd) . def = 8	2	Auto-Disconnect
3-0	DnCmd Write Buffer Size (doublewords) def = 8		0 Disabledefault
_			1 Enable
	0 Offset 44-43 – NB Uplink Status (8280h)RO	1	V-Link Disconnect Cycle for HALT cycle
15-12	UpCmd P2C Write Buffer Size (max lines) def = 8		0 Disabledefault
11-8	UpCmd P2P Write Buffer Size (max lines) def = 2		1 Enable
7-4	UpCmd Max Request Depth (0=1 UpCmd) . def = 8	0	V-Link Disconnect Cycle for STPGNT Cycle
3-0	Reserved always reads 0		0 Disabledefault
			1 Enable
Device	0 Offset 45 –NB V-Link Bus Timer (44h)RW		1 Endoic
7-4	Timer for Normal Priority Requests from SB	Device	0 Offset 48 – NB/SB V-Link Configuration (18h)RW
3-0	Timer for High Priority Requests from SB	7	Reservedalways reads 0
	0000 Immediate	6	Rest Bus Width Supported
	0001 1*4 VCLKs	· ·	0 Not Supported
	0010 2*4 VCLKs		1 Supported
	0011 3*4 VCLKs	5	16-bit Bus Width Supported
	0100 4*4 VCLKsdefault (both timers)	3	0 Not Supporteddefault
	0101 5*4 VCLKs		1 Supported
	0110 6*4 VCLKs	4	8-Bit Bus Width Supported
	0111 7*4 VCLKs	4	0 Not Supported
	1000 8*4 VCLKs		
	1001 16*4 VCLKs	•	1 Supported
	1010 32*4 VCLKs	3	4x Rate Supported
	1011 64*4 VCLKs		0 Not Supported
	11xx Own the bus for as long as there is a request	•	1 Supporteddefault
	Time only the out for us long as there is a request	2	2x Rate Supported
			0 Not Supporteddefault
		1 0	1 Supported
		1-0	Reserved always reads 0

Device	<u> 0 Offset 49 – SB V-Link Capability (18h)RO</u>
7-6	Reserved always reads 0
5	16-bit Bus Width SupportedRO
	0 Not Supporteddefault
	1 Supported
4	8-Bit Bus Width SupportedRO
	0 Not Supported
	1 Supporteddefault
3	4x Rate SupportedRO
	0 Not Supported
	1 Supporteddefault
2	2x Rate SupportedRO
	0 Not Supporteddefault
	1 Supported
1-0	Reserved always reads 0
Device	0 Offset 4A – SB Downlink Status (88h)RO
7-4	DnCmd Max Request Depth (0=1 DnCmd) . def = 8
3-0	DnCmd Write Buffer Size (doublewords) def = 8
Device	0 Offset 4C-4B – SB Uplink Command (8280h).RW
15-12	UpCmd P2C Write Buffer Size (max lines) def = 8
11-8	UpCmd P2P Write Buffer Size (max lines) $def = 2$
7-4	UpCmd Max Request Depth (0=1 UpCmd) . $def = 8$
3-0	Reservedalways reads 0
Davisa	·
	0 Offset 4D – SB V-Link Bus Timer (44h)RW
7-4	Timer for Normal Priority Requests from SB
3-0	Timer for High Priority Requests from SB 0000 Immediate
	0001 1*4 VCLKs
	0011 1.4 VCLKs 0010 2*4 VCLKs
	0010 2 4 VCLKs 0011 3*4 VCLKs
	0100 4*4 VCLKs default (both timers)
	0100 4*4 VCLKs default (both timers)
	0110 6*4 VCLKs
	0110 014 VCLKs 0111 7*4 VCLKs
	1000 8*4 VCLKs
	1000 8 4 VCLKs 1001 16*4 VCLKs
	1010 32*4 VCLKs
	1010 52*4 VCLKs 1011 64*4 VCLKs
	11xx Own the bus for as long as there is a request
	TIAN OWN HE DUSTON AS TONG AS HIGHE IS A TEQUEST

Device	0 Offset 4E - CCA Master Priority (00h)RW
7	Packet Bus High Priority
	0 Low prioritydefault
	1 High priority
6	LAN / NIC High Priority
	0 Low prioritydefault
	1 High priority
5	Reservedalways reads 0
4	USB High Priority
	0 Low prioritydefault
	1 High priority
3	Reserved always reads 0
2	IDE High Priority
	0 Low prioritydefault
	1 High priority
1	AC97-ISA High Priority
	0 Low prioritydefault
0	1 High priority
0	PCI High Priority
	0 Low prioritydefault
	1 High priority
Device	0 Offset 4F - SB V-Link Misc Control (00h) RW
7	Upstream Command High Priority
	0 Disable high priority up commands default
	1 Enable high priority up commands
6-1	Reservedalways reads 0
0	Down Cycle Wait for Up Cycle Write Flush
	(Except Down Cycle Post Write)
	0 Disabledefault
	1 Enable

Host CPU Control

Device	0 Offset 50 – Request Phase Control (00h)RW	Device	0 Offset 52 – CPU Interface Advanced Ctrl (00h)RW
7	CPU Hardwired IOQ (In Order Queue) Size	7	CPU RW DRAM 0WS for Back-to-Back Pipeline
	Default set from the strap on South Bridge LA18		Access
	(communicated to the Pro266T via VAD2). This		0 Disabledefault
	register can be written 0 to restrict the chip to one		1 Enable
	level of IOQ.	6	HREQ / HPRI
	0 1-Level		0 Disabledefault
	1 8-Level		1 Enable
6	GTL Pullup	5	GTL POS
	Default set from the inverse of the strap on South		0 Disable (Pro266 Compatible)default
	Bridge LA19 (communicated to the Pro266T via		1 Enable
	VAD3).	4	Dynamic Snoop Stall for CPU FIFO Full
	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
5	Reserved always reads 0	3	Write Retire Policy After 2 Writes
4-0	Dynamic Defer Snoop Stall Count		0 Disabledefault
ъ.	a occ + #4 CDVI + + C D + C + 1 (AAL) DVV		1 Enable
	0 Offset 51 – CPU Interface Basic Control (00h)RW	2	133 / 100 DADS Fast Conversion
7	Reserved always reads 0		0 Disabledefault
6	Read Around Write		1 Enable
	0 Disabledefault	1	Consecutive Speculative Read
_	1 Enable		0 Disabledefault
5	DRQ Control		1 Enable
	0 Non pipelined similar to Pro266)default	0	Speculative Read
_	1 Pipelined		0 Disabledefault
4	CPU to PCI Read Defer		1 Enable
	0 Disabledefault	Davisas	0 Officet 52 CDU Arbitration Control (02b) DW
	1 Enable		0 Offset 53 – CPU Arbitration Control (03h) RW
3	Two Defer / Retry Entries	7-4	Host Timer default = 0
	0 Disabledefault	3-0	BPRI Timer (units of 4 HCLKs)default = 3
•	1 Enable	Device	0 Offset 54 - CPU Frequency (00h) RW
2	Two Defer / Retry Entries Shared		CPU Frequency (VAD1-0 strap from SB SA[16-
	0 Each entry is dedicated to 1 CPUdefault	/-0	
	1 Each entry is shared by 2 CPUs		17]) 00 66
1	PCI Master Pipelined Access		01 100
	0 Disabledefault		1x 133
0	1 Enable	5-2	Reservedalways reads 0
0	Reserved always reads 0	3-2 1	AGP Capability Header Support
		1	0 Disabledefault
			1 Enable
		0	VPX Mode
		U	V 1 2X 1/10uc

0 Disable (AGP Mode).....default

1 Enable (VPX Mode)

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies Pro266T BIOS porting guide for details).

Table 6. System Memory Map

Space Start	<u>Size</u>	Address Range	Comment
DOS 0	640K	00000000-0009FFFF	Cacheable
VGA 640K	128K	000A0000-000BFFFF	Used for SMM
BIOS 768K	16K	000C0000-000C3FFF	Shadow Ctrl 1
BIOS 784K	16K	000C4000-000C7FFF	Shadow Ctrl 1
BIOS 800K	16K	000C8000-000CBFFF	Shadow Ctrl 1
BIOS 816K	16K	000CC000-000CFFFF	Shadow Ctrl 1
BIOS 832K	16K	000D0000-000D3FFF	Shadow Ctrl 2
BIOS 848K	16K	000D4000-000D7FFF	Shadow Ctrl 2
BIOS 864K	16K	000D8000-000DBFFF	Shadow Ctrl 2
BIOS 880K	16K	000DC000-000DFFFF	Shadow Ctrl 2
BIOS 896K	64K	000E0000-000EFFFF	Shadow Ctrl 3
BIOS 960K	64K	000F0000-000FFFFF	Shadow Ctrl 3
Sys 1MB		00100000-DRAM Top	Can have hole
Bus D Top		DRAM Top-FFFEFFF	
Init 4G-64K	64K	FFFEFFFF-FFFFFFF	000Fxxxx alias

Device	0 Offset 55 – DRAM Control (00h) RW
7	0WS Back-to-Back Write to Different DDR Bank
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5	DQS Input DLL Adjustment
	0 Disabledefault
	1 Enable
4	DQS Output DLL Adjustment
	0 Disabledefault
	1 Enable
3	DQM Removal (Always Perform 4-Burst RW)
	0 Disabledefault
	1 Enable
2	
	0 Disabledefault
	1 Enable
1	Auto Precharge for TLB Read or CPU WriteBack
	1 Enable
0	Write Recovery Time
	0 1Tdefault
	1 2T
2	DQM Removal (Always Perform 4-Burst RW) 0 Disable default 1 Enable DQS Output 0 Disable default 1 Enable Auto Precharge for TLB Read or CPU WriteBack 0 Disable default 1 Enable Write Recovery Time 0 1T default

64/128Mb

256Mb

256Mb

256Mb

011 100

101

110

111

Device 0 Offset 59-58 - DRAM MA Map Type (2222h). RW 15-13 Bank 5/4 MA Map Type (see table below) Bank 5/4 1T Command Rate 0 2T Commanddefault 1T Command 11-9 Bank 7/6 MA Map Type (see table below) Bank 7/6 1T Command Rate 0 2T Commanddefault 1 1T Command Bank 1/0 MA Map Type (see table below) 7-5 Bank 1/0 1T Command Rate 0 2T Commanddefault 1 1T Command 3-1 Bank 3/2 MA Map Type (see table below) Bank 3/2 1T Command Rate 0 2T Commanddefault 1 1T Command Table 7. MA Map Type Encoding 000 16Mb 8-bit, 9-bit, 10-bit Column Address 001 <u>64/128Mb</u> 8-bit Column Addressdefault 64/128Mb 9-bit Column Address 010

10/11-bit Column Address

8-bit Column Address

9-bit Column Address 10/11-bit Column Address

-reserved-

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5A – Bank 0 Ending (HA[31:24]) (01h)	RW
Offset 5B - Bank 1 Ending (HA[31:24]) (01h)	RW
Offset 5C - Bank 2 Ending (HA[31:24]) (01h)	RW
Offset 5D – Bank 3 Ending (HA[31:24]) (01h)	RW
Offset 5E – Bank 4 Ending (HA[31:24]) (01h)	RW
Offset 5F – Bank 5 Ending (HA[31:24]) (01h)	RW
Offset 56 – Bank 6 Ending (HA[31:24]) (01h)	RW
Offset 57 – Bank 7 Ending (HA[31:24]) (01h)	

Note: BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

114 (0 10	or in moremental order.
Device	0 Offset 60 – DRAM Type (00h) RW
7-6	DRAM Type for Bank 7/6
5-4	DRAM Type for Bank 5/4
3-2	DRAM Type for Bank 3/2
1-0	DRAM Type for Bank 1/0
	00 SDR SDRAMdefault
	01 -reserved- (do not program)
	10 DDR SDRAM
	11 -reserved-

Table 8. Memory Address Mapping Table

SDR / DDR SDRAM (x4 DRAMs supported by SDR only)

MA:	<u>14</u>	<u>13</u>	<u>12</u>	<u>11</u>	<u>10</u>	9	8	7	<u>6</u>	<u>5</u>	<u>4</u>	3	2	1	0	
<u>16Mb</u>		24		13	12	11	14	22	21	20	19	18	17	16	15	12 row
(000)				13	PC	24	23	10	9	8	7	6	5	4	3	10,9,8 col
64/128Mb																x16 (14,8)
2K page	14	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (14,8)
001		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	x8 (14,9)
4K page	14	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (14,9)
010		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	x4 (14,10)
8K page	14	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (14,10)
011		27	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (14,11)
<u>256Mb</u>																
2K page	25	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (15,8)
101		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	
4K page	26	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (15,9)
110		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	
8K page	27	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (15,10)
111		28	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (15,11)

Device 0 Offset 61 - Shadow RAM Control 1 (00h)RW			Device	0 Offs	et 63 - Shadow RAM	Control 3 (00h) RW
7-6		00h-CFFFFh	7-6	E000	0h-EFFFFh	
	00	Read/write disabledefault		00	Read/write disable	default
	01	Write enable		01	Write enable	
	10	Read enable		10	Read enable	
		Read/write enable		11	Read/write enable	
5-4		00h-CBFFFh	5-4	F000	0h-FFFFFh	
	00	Read/write disabledefault		00	Read/write disable	default
	01	Write enable		01	Write enable	
	10	Read enable		10	Read enable	
	11	Read/write enable		11	Read/write enable	
3-2		00h-C7FFFh	3-2	Mem	ory Hole	
	00	Read/write disabledefault				default
	01	Write enable			512K-640K	
	10	Read enable		10	15M-16M (1M)	
	11	Read/write enable			14M-16M (2M)	
1-0		00h-C3FFFh	1-0		Mapping Control	
	00	Read/write disabledefault			SMM	Non-SMM
	01	Write enable			Code Data	Code Data
	10	Read enable		00	DRAM DRAM	PCI PCI
	11	Read/write enable		01	DRAM DRAM	DRAM DRAM
				10	DRAM PCI	PCI PCI
_		et 62 - Shadow RAM Control 2 (00h)RW		11	DRAM DRAM	DRAM DRAM
7-6		00h-DFFFFh				
		Read/write disabledefault				
		Write enable				
		Read enable				
		Read/write enable				
5-4		00h-DBFFFh				
		Read/write disabledefault				
		Write enable				
		Read enable				
		Read/write enable				
3-2		0h-D7FFFh				
		Read/write disabledefault				
		Write enable				
		Read enable				
		Read/write enable				
1-0		00h-D3FFFh				
		Read/write disabledefault				
		Write enable				
		Read enable				
	11	Read/write enable				

Device	U Offset 64 - DRAM Timing for All Banks (E4n)RW
7	Precharge Command to Active Command Period
	0 TRP = 2T
	1 $T_{RP} = 3T$ default
6	Active Command to Precharge Command Period
	$0 T_{RAS} = 5T$
	$1 T_{RAS} = 6Tdef$
5-4	CAS Latency
	<u>SDR</u> <u>DDR</u>
	00 1T -
	01 2T 2T
	10 3T 2.5Tdefault
	11 - 3T
3	Reserved always reads 0
2	ACTIVE to CMD
	0 2T
	1 3Tdefault
1-0	Bank Interleave
	00 No Interleavedefault
	01 2-way
	10 4-way
	11 Reserved
	For 16Mb SDRAMs bank interleave is always 2-way
Device	0 Offset 65 - DRAM Arbitration Timer (00h) RW
7-4	AGP Timer (units of 4 MCLKs) default = 0
3-0	CPU Timer (units of 4 MCLKs) default = 0
3-0	Cro rimer (units of 4 MCLIXs) default o
Device	0 Offset 66 - DRAM Arbitration Control (00h)RW
7	SDR – Feedback Clock Select
	DDR - DQS Input Delay Setting
	0 Auto (Rx67 reads DLL calibration result)def
	1 Manual (Rx67 reads DQS input delay)
6	DDR - DQS Output Delay Setting
	0 Autodefault
	1 Manual
5-4	Arbitration Parking Policy
	00 Park at last bus ownerdefault
	01 Park at CPU
	10 Park at AGP
	11 -reserved-
3-0	AGP / CPU Priority (units of 4 MCLKs)
5 0	1.01, of o friendly (mills of 1 modiso)

Device	<u> 0 Offset 67 – DDR Strobe Input Delay (00h) RW</u>
	SDR:
7-5	Reserved always reads 0
4	MD Latch Clock Select
	0 Internal clockdefault
	1 External feedback clock
3	Reserved always reads 0
2-0	MD Latch Delay
	DDR:
7-6	CS Early Clock Select default = 0
5-0	
	(if Rx66[7]=0, read DLL calibration result)
Device	0 Offset 68 – DDR Strobe Output Delay (00h) RW
7-0	DDR DQS Output Delay default = 0

Device 0 Offset 69 - DRAM Clock Select (00h).....RW

- 7 CPU Operating Frequency Faster Than DRAM
 - 0 CPU Same As or Equal to DRAM......default
 - 1 CPU Faster Than DRAM by 33 MHz
- 6 DRAM Operating Frequency Faster Than CPU
 - 0 DRAM Same As or Equal to CPU.....default
 - 1 DRAM Faster Than CPU by 33 MHz

Rx68[1-0]	Rx69[7-6]	CPU / DRAM
00	00	66 / 66 (def)
00	01	66 / 100 †
01	10	100 / 66
01	00	100 / 100
01	01	100 / 133†
1x	10	133 / 100
1x	00	133 / 133

†Rx53[6] must also be set to 1 for DRAM > CPU

5 Dynamic CKE

0	Disable	default
1	T 11	

- 1 Enable
- 4 Reservedalways reads 0
- 3 DRAM 8K Page Enable
 - 0 Disabledefault
 - 1 Enable

2 DRAM 4K Page Enable

- 0 Disabledefault
- 1 Enable

1 DIMM Type

- 0 Unbuffereddefault
- 1 Registered

0 Multiple Page Mode

- 0 Disabledefault
- 1 Enable

Device 0 Offset 6A - Refresh Counter (00h)......RW

7-0 Refresh Counter (in units of 16 MCLKs)

00 DRAM Refresh Disabled default

01 32 MCLKs

02 48 MCLKs

03 64 MCLKs

04 80 MCLKs

05 96 MCLKs

... ..

The programmed value is the desired number of 16-MCLK units minus one.

7	Fast Read to Write turn-around	7-6	SDRAM A Drive – SRASA/SCASA/SWEA, MAA
	0 Disabledefault		00 default
	1 Enable		01
6	Page Kept Active When Cross Bank		10
	0 Disabledefault		11
	1 Enable	5-4	SDRAM B Drive – SRASB/SCASB/SWEB, MAB
5	Burst Refresh		00default
	0 Disabledefault		01
	1 Enable		10
4	CKE Function		11
	0 Disable	3-2	DDR DQS Drive
	1 Enabledefault		00default
3	Swap HA14 and HA22		01
	0 Normaldefault		10
	1 Swap to Improve Performance		11
-0	SDRAM Operation Mode Select	1-0	MD/MECC/CAS/CKE Early Clock Select
	000 Normal SDRAM Modedefault		00 default
	001 NOP Command Enable		01
	010 All-Banks-Precharge Command Enable		10
	(CPU-to-DRAM cycles are converted		11
	to All-Banks-Precharge commands).	ъ.	0.000 4 (D. D.) (C. 4.12 (001) DW
	011 MSR Enable		0 Offset 6D - Drive Control 2 (00h)RW
	CPU-to-DRAM cycles are converted to	7-6	Early Clock Select for SCMD, MA Output (for 1T
	commands and the commands are driven on		Command)
	MA[14:0]. The BIOS selects an appropriate		00 default
	host address for each row of memory such that		01
	the right commands are generated on		10
	MA[14:0].		11
	100 CBR Cycle Enable (if this code is selected,	5-4	DQM Drive
	CAS-before-RAS refresh is used; if it is not		00 default
	selected, RAS-Only refresh is used)		01
	101 Reserved		10
	11x Reserved	2.2	11
		3-2	RAS# Drive
			00 default
			01
			10
		4.0	11
		1-0	Memory Data Drive (MD, MECC)
			00 default
			01
			01 10 11

Device 0 Offset 6E - ECC Control (00h)RW **ECC / EC Mode Select** 0 ECC Checking and Reporting.....default ECC Checking, Reporting, and Correcting Perform Read-Modify-Write for Partial Write Disabledefault Enable 5 **Enable SERR# on ECC / EC Multi-Bit Error**

- 0 Don't assert SERR# for multi-bit errorsdef
 - Assert SERR# for multi-bit errors
- **Enable SERR# on ECC / EC Single-Bit Error**
 - 0 Don't assert SERR# for single-bit errorsdef 1 Assert SERR# for single-bit errors
- ECC / EC Enable Bank 7/6 (DIMM 3)
 - 0 Disable (no ECC or EC for banks 7/6)...default
 - Enable (ECC or EC per bit-7)
- ECC / EC Enable Bank 5/4 (DIMM 2)
 - 0 Disable (no ECC or EC for banks 5/4)...default
 - 1 Enable (ECC or EC per bit-7)
- ECC / EC Enable Bank 3/2 (DIMM 1)
 - 0 Disable (no ECC or EC for banks 3/2)...default
 - 1 Enable (ECC or EC per bit-7)
- ECC / EC Enable Bank 1/0 (DIMM 0)
 - 0 Disable (no ECC or EC for banks 1/0)...default
 - 1 Enable (ECC or EC per bit-7)

Error checking / correction may be enabled bank-pair by bankpair (DIMM by DIMM) by using bits 0-2 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-2 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-2 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use EC or all will use ECC).

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 2-0	$\underline{\mathbf{RMW}}$	Error Checking	Error Correction
0/1	0	No	No	No
0	1	Yes	Yes	No
1	1	Yes	Yes	Yes

Device	0 Offset 6F - ECC Status (00h)RWC
7	Multi-bit Error Detected write of '1' resets
6-4	Multi-bit Error DRAM Bankdefault=0
	Encoded value of the bank with the multi-bit error.
3	Single-bit Error Detected write of '1' resets
2-0	Single-bit Error DRAM Bankdefault=0
	Encoded value of the bank with the single-bit error.

Table 9. DIMM Module Configuration

Rx6B	Rx6E	Rx6E	Rx55				
[4]	[3-0]	[6]	[3]	DIMM	MECC	DQM	DQS#
CKE	ECC	RMW	No	Module	[7-0]	[8-0]	[8-0]
<u>Ena</u>	<u>Ena</u>	<u>Ena</u>	DQM	Configuration	Pins	<u>Pins</u>	Pins
1	1	0	1	DDR Only x8 with ECC	MECC[7-0]	CKE[7-0]	DQS[8-0]#
1	0	0	0	DDR Only x8 no ECC	CKE[7-0]	DQM[7-0]	DQS[7-0]#
0	0	0	0	184-Pin DDR/SDR Mix	CKE[7-0]	DQM[8-0]	DQS[8-0]#
1	1	X	0	168-Pin SDR Only	MECC[7-0]	DQM[8-0]	CKE[7-0]
1	0	0	1	2 DDR + 2 SDR (SDR Installed)	CKE[7-0]	_	DQS[7-0]#
1	0	0	0	2 DDR + 2 SDR (DDR Installed)	CKE[7-0]	DQM[7-0]	DQS[7-0]#

PCI Bus Control

These registers are normally programmed once at system initialization time.

<u> Pevice</u>	0 Offset 70 - PCI Buffer Control (00h)RW
7	CPU to PCI Post-Write
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5-4	PCI Master to DRAM Prefetch
	00 Always prefetchdefault
	x1 Prefetch disabled
	10 Prefetch only for enhance command
3-2	Reserved always reads 0
1	Delay Transaction
	0 Disabledefault
	1 Enable
0	Reserved always reads 0
	0 Offers 71 CDU As DOLEL COMMAND (401) DWG

Device 0 Offset 71 - CPU to PCI Flow Control 1 (48h)RW(7 Retry Status 0 No retry occurred		1	Enab	ole	
7 Retry Status 0 No retry occurred defaul 1 Retry occurred write 1 to clea 6 Retry Timeout Action 0 Retry Forever (record status only) 1 Flush buffer for write or return all 1s for read defaul 5-4 Retry Count and Retry Backoff 00 Retry 2 times, backoff CPU defaul 01 Retry 16 times 10 Retry 4 times 11 Retry 64 times 3 PCI Burst 0 Disable 1 Enable defaul 2 Reserved always reads of the compatible Type 1 Configuration Cycle AD31 0 Fix AD31 defaul 1 0 IDSEL Control 0 AD11, AD12 defaul	0	Reser	ved		always reads 0
7 Retry Status 0 No retry occurred defaul 1 Retry occurred write 1 to clea 6 Retry Timeout Action 0 Retry Forever (record status only) 1 Flush buffer for write or return all 1s for read defaul 5-4 Retry Count and Retry Backoff 00 Retry 2 times, backoff CPU defaul 01 Retry 16 times 10 Retry 4 times 11 Retry 64 times 3 PCI Burst 0 Disable 1 Enable defaul 2 Reserved always reads of the compatible Type 1 Configuration Cycle AD31 0 Fix AD31 defaul 1 0 IDSEL Control 0 AD11, AD12 defaul					
7 Retry Status 0 No retry occurred defaul 1 Retry occurred write 1 to clea 6 Retry Timeout Action 0 Retry Forever (record status only) 1 Flush buffer for write or return all 1s for read defaul 5-4 Retry Count and Retry Backoff 00 Retry 2 times, backoff CPU defaul 01 Retry 16 times 10 Retry 4 times 11 Retry 64 times 3 PCI Burst 0 Disable 1 Enable defaul 2 Reserved always reads of the compatible Type 1 Configuration Cycle AD31 0 Fix AD31 defaul 1 0 IDSEL Control 0 AD11, AD12 defaul					
0 No retry occurred defaul 1 Retry occurred write 1 to clea 6 Retry Timeout Action 0 Retry Forever (record status only) 1 Flush buffer for write or return all 1s for read defaul 5-4 Retry Count and Retry Backoff 00 Retry 2 times, backoff CPU defaul 01 Retry 16 times 10 Retry 4 times 11 Retry 64 times 3 PCI Burst 0 Disable 1 Enable defaul 2 Reserved always reads of Compatible Type 1 Configuration Cycle AD31 0 Fix AD31 defaul 1 0 IDSEL Control 0 AD11, AD12 defaul	Device	0 Offse	et 71 -	· CPU to PCI Flow Co	ontrol 1 (48h)RWC
1 Retry occurred	7	Retry	Stati	us	
1 Retry occurred		0	No re	etry occurred	default
6 Retry Timeout Action 0 Retry Forever (record status only) 1 Flush buffer for write or return all 1s for read		1			
1 Flush buffer for write or return all 1s for read	6	Retry			
or return all 1s for read		0	Retry	y Forever (record status	s only)
5-4 Retry Count and Retry Backoff 00 Retry 2 times, backoff CPU defaul 01 Retry 16 times 10 Retry 4 times 11 Retry 64 times 3 PCI Burst 0 Disable 1 Enable defaul 2 Reserved always reads 1 Compatible Type 1 Configuration Cycle AD31 0 Fix AD31 defaul 0 IDSEL Control 0 AD11, AD12 defaul		1	Flusl	h buffer for write	
00 Retry 2 times, backoff CPUdefaul 01 Retry 16 times 10 Retry 4 times 11 Retry 64 times 3 PCI Burst 0 Disable 1 Enabledefaul 2 Reserveddefaul 1 Compatible Type 1 Configuration Cycle AD31 0 Fix AD31defaul 1 0 IDSEL Control 0 AD11, AD12defaul			or re	turn all 1s for read	default
01 Retry 16 times 10 Retry 4 times 11 Retry 64 times 3 PCI Burst 0 Disable 1 Enable	5-4	Retry	Cou	nt and Retry Backoff	
10 Retry 4 times 11 Retry 64 times 3 PCI Burst 0 Disable 1 Enable					defaultdefault
11 Retry 64 times 3 PCI Burst		01	Retry	y 16 times	
3 PCI Burst 0 Disable 1 Enable defaul 2 Reserved always reads 1 Compatible Type 1 Configuration Cycle AD31 defaul 0 Fix AD31 defaul 1 IDSEL Control defaul 0 AD11, AD12 defaul			•	•	
0 Disable 1 Enable		11	Retry	y 64 times	
1 Enable	3	PCI I	Burst		
2 Reserved		0			
1 Compatible Type 1 Configuration Cycle AD31 0 Fix AD31		-			
0 Fix AD31defaul 1 0 IDSEL Control 0 AD11, AD12defaul					•
1 0 IDSEL Control 0 AD11, AD12defaul	1				
0 IDSEL Control 0 AD11, AD12defaul		•	Fix A	AD31	default
0 AD11, AD12defaul	_	-			
	0				
1 AD30, AD31					default
		1	AD3	0, AD31	

Device	0 Offset 73 - PCI Master Control 1 (00h)RWC
7	Reservedalways reads 0
6	PCI Master 1-Wait-State Write
	0 Zero wait state TRDY# response default
	1 One wait state TRDY# response
5	PCI Master 1-Wait-State Read
	0 Zero wait state TRDY# response default
	1 One wait state TRDY# response
4	WSC# (Write Snoop Complete)
	0 Disabledefault
	1 Enable
3-1	Reserved always reads 0
0	PCI Master Broken Timer Enable
	0 Disabledefault
	1 Enable. Force into arbitration when there is no
	FRAME# 16 PCICLK's after the grant.

Device	<u> </u>
7	Arbitration Mode
	0 REQ-based (arbitrate at end of REQ#)default
	1 Frame-based (arbitrate at FRAME# assertion)
6-4	CPU Latencyread only, reads Rx0D bits 2:1
3	Reservedalways reads 0
2-0	PCI Master Bus Time-Out
	(force into arbitration after a period of time)
	000 Disabledefault
	001 1x16 PCICLKs
	010 2x16 PCICLKs
	011 3x16 PCICLKs
	100 4x16 PCICLKs
	111 7x16 PCICLKs

	Pro2661 DDR V-Link North Bridge
Device	0 Offset 76 - PCI Arbitration 2 (00h)RW
7	I/O Port 22 Enable (South Bridge)
	0 CPU access to I/O address 22 is passed on to
	the PCI bus default
	1 CPU access to I/O address 22 is processed
	internally
6	Reserved always reads 0
5-4	Master Priority Rotation Control
	00 Disabledefault
	01 Grant to CPU after every PCI master grant
	10 Grant to CPU after every 2 PCI master grants
	11 Grant to CPU after every 3 PCI master grants
	With setting 01, the CPU will always be granted
	access after the current bus master completes, no
	matter how many PCI masters are requesting. With
	setting 10, if other PCI masters are requesting during
	the current PCI master grant, the highest priority
	master will get the bus after the current master
	completes, but the CPU will be guaranteed to get the
	bus after that master completes. With setting 11, if
	other PCI masters are requesting, the highest priority
	will get the bus next, then the next highest priority
	will get the bus, then the CPU will get the bus. In
	other words, with the above settings, even if multiple
	PCI masters are continuously requesting the bus, the
	CPU is guaranteed to get access after every master

grant (01), after every other master grant (10) or after

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the Pro266T.

This scheme is shown in the figure below.

Figure 4. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the Pro266T contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

Device	0 Offset 83-80 - GART/TLB Control (00000000h) RW
	Reservedalways reads 0
	Reserved (test mode status)RO
	,
7	Flush Page TLB
	0 Disabledefault
	1 Enable
6-0	Reserved (always program to 0)RW
Note: I	For any master access to the Graphics Aperture range,
	vill not be performed.
_	-
Device	0 Offset 84 - Graphics Aperture Size (00h) RW
7-0	Graphics Aperture Size
	11111111 1M
	11111110 2M
	11111100 4M
	11111000 8M
	11110000 16M
	11100000 32M
	11000000 64M
	10000000 128M
	00000000 256M
Offset 8	BB-88 - GA Translation Table Base (00000000h) RW
31-12	Graphics Aperture Translation Table Base.
	Pointer to the base of the translation table in system
	memory used to map addresses in the aperture range
	(the pointer to the base of the "Directory" table).
11-2	
1	Graphics Aperture Enable
	0 Disabledefault
	1 Enable

Note: To disable the Graphics Aperture, set this bit

to 0 and set all bits of the Graphics Aperture Size to

0. To enable the Graphics Aperture, set this bit to 1

and program the Graphics Aperture Size to the

.....always reads 0

desired aperture size.

Reserved

AGP Control

Offset A3-A0 - AGP Capability Identifier
002h)RO
Reserved always reads 00h
Major Specification Revision always reads 2h
Major rev of AGP spec that device conforms to (2.x)
Minor Specification Revision always reads 0h
Minor rev # of AGP spec that device conforms to
Pointer to Next Item always reads C0 (last item)
AGP ID (always reads 02 to indicate it is AGP)
O OCC A A F A A A CD C(A (4 F0002011) DO
0 Offset A7-A4 - AGP Status (1F000201h)RO
Maximum AGP Requestsalways reads 1F†
Waximum AG1 Requestsaiways icads 11
Max # of AGP requests the device can manage (32)
Max # of AGP requests the device can manage (32)
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reservedalways reads 0s Supports SideBand Addressingalways reads 1
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reservedalways reads 0s
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reservedalways reads 0s Supports SideBand Addressingalways reads 1
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved
Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved

evice (0 Offse	et AB-A8 - AGP Command (00000000h). RW
31-24	Requ	est Depth (reserved for target) always reads 0s
23-10	Resei	rvedalways reads 0s
9	SideF	Band Addressing Enable
	0	Disabledefault
	1	Enable
8	AGP	Enable
	0	Disabledefault
	1	Enable
7-6	Resei	rvedalways reads 0s
5	4G E	nable
	0	Disabledefault
	1	Enable
4	Fast '	Write Enable
	0	Disabledefault
	1	Enable
3	Reser	rvedalways reads 0s
2	4X M	Iode Enable
	0	Disabledefault
	1	Enable
1	2X M	Iode Enable
	0	Disabledefault
	1	Enable
0	1X M	Iode Enable
	0	Disabledefault
	1	Enable

Device	0 Offset AC - AGP Control (08h)RW	Devi
7	AGP Disable	7-
	0 Enabledefault	5
	1 Disable	
6	AGP Read Synchronization	
	0 Disabledefault	4
	1 Enable	
5	AGP Read Snoop DRAM Post-Write Buffer	_
	0 Disabledefault	3-
	1 Enable	
4	GREQ# Priority Becomes Higher When Arbiter is	
	Parked at AGP Master 0 Disabledefault	Devi
	1 Enable	7-
3	2X Rate Supported (read also at RxA4[1])	
3	0 Not supported	
	1 Supporteddefault	
2	LPR In-Order Access (Force Fence)	4
_	0 Fence/Flush functions not guaranteed. AGP	
	read requests (low/normal priority and high	
	priority) may be executed before previously	3
	issued write requestsdefault	2
	1 Force all requests to be executed in order	
	(automatically enables Fence/Flush functions).	
	Low (i.e., normal) priority AGP read requests	1-
	will never be executed before previously	
	issued writes. High priority AGP read	
	requests may still be executed prior to	
1	previously issued write requests as required.	
1	AGP Arbitration Parking 0 Disabledefault	
	1 Enable (GGNT# remains asserted until either	
	GREQ# de-asserts or data phase ready)	
0	AGP to PCI Master or CPU to PCI Turnaround	
v	Cycle	

0 2T or 3T Timing.....default

evice	0 Offse	t AD – AGP Latency Timer (02h) RW
7-6	Reser	vedalways reads 0
5	Input	on AGP GD / GBE Pads
	0	Disable Input default
	1	Enable Input
4	Choos	se First or Last Ready of DRAM
		Last ready chosen default
	1	First ready chosen
3-0	AGP 1	Data Phase Latency Timerdefault = 02h
		•
	0.000	AF ACDW II C A LOOLDW
evice	U CHISE	t AE – AGP Miscellaneous Control (00h)RW
	Reser	vedalways reads 0
	Reser 4G Su	vedalways reads 0
7-6	Reser 4G Su	vedalways reads 0
7-6	Reser 4G Su	vedalways reads 0 pported 4G not supporteddefault
7-6	Reser 4G Su 0 1 Fast V	ved always reads 0 upported 4G not supported default 4G supported Vrite Supported
7-6 5	Reser 4G Su 0 1 Fast V	ved always reads 0 pported 4G not supported default 4G supported
7-6 5	Reser 4G Su 0 1 Fast V	ved always reads 0 upported 4G not supported default 4G supported Vrite Supported
7-6 5	Reser 4G Su 0 1 Fast V 0 1	ved always reads 0 upported 4G not supported default 4G supported Vrite Supported Fast Write not supported default
7-6 5	Reser 4G Su 0 1 Fast V 0 1 Reser	ved always reads 0 upported 4G not supported default 4G supported Vrite Supported Fast Write not supported default Fast Write supported
7-6 5 4	Reser 4G Su 0 1 Fast V 0 1 Reser 4x Ra	ved always reads 0 upported 4G not supported default 4G supported Vrite Supported Fast Write not supported default Fast Write supported ved always reads 0
7-6 5 4	Reser 4G Su 0 1 Fast V 0 1 Reser 4x Ra 0	ved always reads 0 pported 4G not supported default 4G supported Vrite Supported Fast Write not supported default Fast Write supported ved always reads 0 te Supported
7-6 5 4	Reser 4G Su 0 1 Fast V 0 1 Reser 4x Ra 0 1	ved always reads 0 pported 4G not supported default 4G supported Vrite Supported Fast Write not supported default Fast Write supported ved always reads 0 te Supported 4x Rate not supported default

1 1T Timing

Device	0 Offset B0 – AGP Pad Control / Status (xxh) RW
7	AGP 4x Strobe VREF Control
	0 STB VREF is STB# and vice versa
	1 STB VREF is AGPREFdefault
6	AGP 4x Strobe & GD Pad Drive Strength
	0 Drive strength set to compensation circuit

- O Drive strength set to compensation circuit defaultdefault
- 1 Drive strength controlled by RxB1[7-0]
- 5-3 AGP Compensation Circuit N Control Output.RO
- 2-0 AGP Compensation Circuit P Control Output.RO

- 7-4 AGP Output Buffer Drive Strength N Ctrl ... def=6
- 3-0 AGP Output Buffer Drive Strength P Ctrl.... def=3

7	GD/GBE/GDS, SBA/SBS Control		
	1.5V (Bit-1=0)		
	0 SBA/SBS = no capdefault		

Device 0 Offset B2 – AGP Pad Drive / Delay Ctrl (08h) RW

GD/GBE/GDS = no cap SBA/SBS = no cap GD/GBE/GDS = cap

3.3V (Bit-1 = 1)

O SBA/SBS = capdefault GD/GBE/GDS = no cap

1 SBA/SBS = cap GD/GBE/GDS = cap

6-5 Reservedalways reads 0

4 GD[31-16] Staggered Delay

GD / GDS / GDS# Slew Rate Control

0 Disable

1 Enable.....default

2 GDS / GDS# Preamble Control

0 Disable......default

1 Enable

1 AGP Bus Voltage

0 1.5Vdefault

1 3.3V

0 GDS Output Delay

0 Nonedefault

1 GDS[1-0] & GDS[1-0]# delayed by 0.4 ns

Note: GDS1 & GDS1# will be delayed an additional 1ns if bit-4 = 1

Device 0 Offset B3 – AGP Strobe Drive Strength...... RW

- 7-4 AGP Strobe Output Buffer Drive Strength N Ctrl
- 3-0 AGP Strobe Output Buffer Drive Strength P Ctrl

V-Link Control

Device 0 Offset B4 – V-Link NB Compensation Ctrl (00h)RW V-Link Autocomp Output Value..... always reads 0 5 **Pullup Compensation Selection** 0 Auto Comp (use values in bits 7-6)......default Manual Comp (use values in bits 3-2) **Pulldown Compensation Selection** Auto Comp (use values in bits 7-6)......default 1 Manual Comp (use values in bits 1-0) **Pullup Compensation Manual Setting** def = 03-2 **Pulldown Compensation Manual Setting** def = 0<u>Device 0 Offset B5 – V-Link NB Drive Control (00h)</u>....RW 7-6 NB V-Link Strobe Pullup Manual Setting **NB V-Link Strobe Pulldown Manual Setting** 3-1always reads 0 **NB V-Link Slew Rate Control** 0 Disabledefault 1 Enable Device 0 Offset B8 - V-Link SB Compensation Ctrl (00h)RW V-Link Autocomp Output Value..... always reads 0 5 **Pullup Compensation Selection** Auto Comp (use values in bits 7-6)......default Manual Comp (use values in bits 3-2) **Pulldown Compensation Selection** 0 Auto Comp (use values in bits 7-6)......default Manual Comp (use values in bits 1-0) **Pullup Compensation Manual Setting** def = 0 **Pulldown Compensation Manual Setting** def = 0Device 0 Offset B9 - V-Link SB Drive Control (00h)RW SB V-Link Strobe Pullup Manual Setting 5-4 SB V-Link Strobe Pulldown Manual Setting 3-1 Reserved always reads 0 **SB V-Link Slew Rate Control** 0 Disabledefault

DRAM Interface Control

Device	0 Offs	et BE –]	MECC	Driv	e S	trength (00h)RW
7-6	MEC	CC Drive	Stren	gth		\dots default = 0
5-0				_		always reads 0
Device	0 Offs	et BF –]	DRAM	Pad	To	ggle Reduction (00h)RW
7	MA/	SCMD	Pin To	oggle l	Red	duction
	0					default
	1	Enable	(MA	and	S	command pins won't
		toggle				
6	Slew	Rate Co	ontrol f	for M	A /	SCMD Group B
	0	Disable	e		• • • • •	default
	1	Enable				
5	Slew	Rate Co	ontrol f	for M	A /	SCMD Group A
	0	Disable	e		• • • • •	default
	1	Enable				
4	Rese	rved				always reads 0
3	DIM	M #3 M	AA/N	IAB S	Sele	ect
	0	MAA				default
	1	MAB				
2	DIM	M #2 M	AA/N	IAB S	Sele	ect
	0	MAA				default
	1	MAB				
1	DIM	M #1 M	AA/N	IAB S	Sele	ect
	0	MAA			••••	default
	1	MAB				
0	DIM	M #0 M	AA/N	IAB S	Sele	ect
	0	MAA				default
	1	MAB				

Enable

1

Extended Power Management Control	ECC Error Control
Device 0 Offset C0 – Capability ID (01h)RO	Device 0 Offset D3-D0 – ECC Error Address (xxh) RC
Device 0 Offset C1 – Next Pointer (00h)RO	Device 0 Offset D4 – ECC Error Syndrome (xxh)RC
Device 0 Offset C2 – Power Mgmt Capabilities 1 (02h)RO	
Device 0 Offset C3 – Power Mgmt Capabilities 2 (00h)RO	
Device 0 Offset C4 – Power Mgmt Control/Status (00h)RW	
7-2 Reserved	
00 D0default 11 D3 hot	
<u>Device 0 Offset C5 – Power Management Status (00h) .RW</u>	
Device 0 Offset C6 – PCI to PCI Bridge Support Extensions (00h)RW	
Device 0 Offset C7 – Power Management Data (00h)RW	

DRAM Above 4G Control

Device	0 Offs	et E4 – Low Top Address Low (00h)R	W
7-4		Top Address Low default =	
3-0	DRA	M Granularity	
	0	16M Total DRAM less than 4Gdefa	ul
	1	32M Total DRAM less than 8G	
	2	64M Total DRAM less than 16G	
	3	128M Total DRAM less than 32G	
	4	256M Total DRAM less than 64G	
	5-7	-reserved-	
Device	0 Offs	et E5 – Low Top Address High (FFh)R	W
7-0	Low	Top Address High default = F	Fŀ
Device	0 Offs	et E6 – SMM / APIC Decoding (01h)R	W
7-6	Rese	rvedalways reads	s (
5	Rese	rved (Do Not Program) default =	
4		APIC Decoding	
	0	FECxxxxx accesses go to PCIdefar	ul
	1	FEC00000 to FEC7FFFF accesses go to PCI	
		FEC80000 to FECFFFFF accesses go to AG	P
3	MSI	(Processor Message) Support	
	0	Disable (master access to FEExxxxx will go	
		PCI)defa	
	1	Enable (master access to FEExxxxx will	be
		passed to host side to do snoop)	
2	Top S	SMM	
	0	Disabledefa	ul
	1	Enable	
1	0	SMM	
	0	Disabledefa	ul
	1	Enable	
0		patible SMM	
		Disabledefa	ul
	1	Enable	

Test Registers	Back Door Registers
Device 0 Offset F0-F2 – Test (Do Not Program)RW	Device 0 Offset F9 – Back Door ControlRW
BIOS Scratch Registers	Device 0 Offset FA – Back Door Max AGP Requests RW
<u>Bros Scratch Registers</u>	Device 0 Offset FB – Back Door Revision RW
Device 0 Offset F7-F3 – BIOS Scratch RegistersRW 7-0 No hardware function default = 0	Device 0 Offset FD-FC – Back Door Device IDRW

Device 1 Header Registers - PCI-to-PCI Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and <u>device number</u> equal to <u>one</u>.

Device	1 Offs	<u>et 1-0 - Vendor ID (1106h)RO</u>
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device	1 Offs	et 3-2 - Device ID (B101h)RO
15-0		ode (reads B101h to identify the Pro266T PCI-
		CI Bridge device)
ъ .	1 000	1.5.4. C 1.(00051)
		et 5-4 – Command (0007h)RW
15-10		
9		Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to the same agentdefault
	1	Fast back-to-back transactions allowed to
	1	different agents
8	SER	R# EnableRO
Ü	0	SERR# driver disableddefault
	1	SERR# driver enabled
	(SER	R# is used to report parity errors if bit-6 is set).
7		ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6	Parit	y Error ResponseRW
	0	Ignore parity errors & continuedefault
_	1	Take normal action on detected parity errors
5		Palette Snoop (Not Supported)RO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette writes on PCI bus
4	Man	(10-bit decode of I/O addresses 3C6-3C9 hex)
4	0	nory Write and Invalidate Command RO Bus masters must use Mem Writedefault
	1	Bus masters may generate Mem Write & Inval
3	-	ial Cycle MonitoringRO
3	0	Does not monitor special cyclesdefault
	1	Monitors special cycles
2	Bus I	MasterRW
	0	Never behaves as a bus master
	1	Enable to operate as a bus master on the
		primary interface on behalf of a master on the
		secondary interfacedefault
1	Mem	ory SpaceRW
	0	Does not respond to memory space
•	1	Enable memory space accessdefault
0		SpaceRW
	0	r
	1	Enable I/O space accessdefault

Device	1 Offset 7-6 - Status (Primary Bus) (0230h)RWC
15	Detected Parity Error always reads 0
14	Signaled System Error (SERR#)always reads 0
13	Signaled Master Abort
	0 No abort received default
	1 Transaction aborted by the master with
	Master-Abort (except Special Cycles)
	write 1 to clear
12	Received Target Abort
	0 No abort received default
	1 Transaction aborted by the target with Target-
	Abort write 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detected always reads 0
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 1
4	Supports New Capability listalways reads 0
3-0	Reservedalways reads 0
Device	1 Offset 8 - Revision ID (00h)RO (RW if Rx44[7]=1)
Device 7-0	1 Offset 8 - Revision ID (00h)RO (RW if Rx44[7]=1) Pro266T Chip Revision Code (00=First Silicon)
7-0	Pro266T Chip Revision Code (00=First Silicon)
7-0 <u>Device</u>	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO
7-0 Device This reg	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)
7-0 Device This reg Class C	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device.
7-0 Device This reg	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)
7-0 Device This reg Class Co 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
7-0 Device This reg Class Co 7-0 Device	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)
7-0 Device This reg Class Co 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifier
7-0 Device This reg Class Co 7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge
7-0 Device This results Class Control 7-0 Device 7-0 Device	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO
7-0 Device This reg Class Co 7-0 Device 7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO Base Class Code reads 06 to indicate Bridge Device
7-0 Device This reg Class Co 7-0 Device 7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO
7-0 Device This reg Class Co 7-0 Device 7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO Base Class Code reads 06 to indicate Bridge Device
7-0 Device This reg Class C 7-0 Device 7-0 Device 7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO Base Class Code reads 06 to indicate Bridge Device 1 Offset D - Latency Timer (00h)RO Reservedalways reads 0
7-0 Device This reg Class Co 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Sub- ode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO Base Class Codereads 06 to indicate Bridge Device 1 Offset D - Latency Timer (00h)RO Reserved
7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Sub- ode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO Base Class Codereads 06 to indicate Bridge Device 1 Offset D - Latency Timer (00h)RO Reserved
7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO Base Class Code reads 06 to indicate Bridge Device 1 Offset D - Latency Timer (00h)RO Reservedalways reads 0 1 Offset E - Header Type (01h)RO Header Type Code reads 01: PCI-PCI Bridge
7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO Base Class Code reads 06 to indicate Bridge Device 1 Offset D - Latency Timer (00h)RO Reservedalways reads 0 1 Offset E - Header Type (01h)RO Header Type Code reads 01: PCI-PCI Bridge 1 Offset F - Built In Self Test (BIST) (00h)RO BIST Supported reads 0: no supported functions
7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO Base Class Code reads 06 to indicate Bridge Device 1 Offset D - Latency Timer (00h)RO Reservedalways reads 0 1 Offset E - Header Type (01h)RO Header Type Codereads 01: PCI-PCI Bridge 1 Offset F - Built In Self Test (BIST) (00h)RO BIST Supported reads 0: no supported functions Start Test
7-0 Device 7-0	Pro266T Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00 1 Offset A - Sub Class Code (04h)RO Sub Class Code .reads 04 to indicate PCI-PCI Bridge 1 Offset B - Base Class Code (06h)RO Base Class Code reads 06 to indicate Bridge Device 1 Offset D - Latency Timer (00h)RO Reservedalways reads 0 1 Offset E - Header Type (01h)RO Header Type Code reads 01: PCI-PCI Bridge 1 Offset F - Built In Self Test (BIST) (00h)RO BIST Supported reads 0: no supported functions

7-0 Primary Bus Number (00h)	Device 1 Offset 37-34 - Capability Pointer (00000080h). RO Contains an offset from the start of configuration space. 31-0 AGP Capability List Pointeralways reads 80h Device 1 Offset 3F-3E - PCI-to-PCI Bridge Control
Device 1 Offset 19 - Secondary Bus Number (00h)RW	(0000h)RW
7-0 Secondary Bus Number default = 0	15-4 Reservedalways reads 0
Note: AGP must use these bits to convert Type 1 to Type 0.	3 VGA-Present on AGP
Device 1 Offset 1A - Subordinate Bus Number (00h) RW	Forward VGA accesses to PCI Bus defaultForward VGA accesses to AGP Bus
	Note: VGA addresses are memory A0000-BFFFFh
7-0 Primary Bus Number default = 0	and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-
Note: AGP must use these bits to decide if Type 1 to Type 1	3DFh (10-bit decode). "Mono" text mode uses
command passing is allowed.	B0000-B7FFFh and "Color" Text Mode uses B8000-
D 1 4 000 44D 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BFFFFh. Graphics modes use Axxxxh. Mono VGA
Device 1 Offset 1B – Secondary Latency Timer (00h)RO	uses I/O addresses 3Bx-3Cxh and Color VGA uses
7-0 Reserved always reads 0	3Cx-3Dxh. If an MDA is present, a VGA will not
Device 1 Offset 1C - I/O Base (f0h)RW	use the 3Bxh I/O addresses and B0000-B7FFFh
7-4 I/O Base AD[15:12] default = 1111b	memory space; if not, the VGA will use those
3-0 I/O Addressing Capability default = 0	addresses to emulate MDA modes.
	2 Block / Forward ISA I/O Addresses
Device 1 Offset 1D - I/O Limit (00h)RW	0 Forward all I/O accesses to the AGP bus if
7-4 I/O Limit AD[15:12] default = 0	they are in the range defined by the I/O Base
3-0 I/O Addressing Capability default = 0	and I/O Limit registers (device 1 offset 1C-1D)
Device 1 Offset 1F-1E - Secondary Status (0000h)RO	default
15-0 Reservedalways reads 0	1 Do not forward I/O accesses to the AGP bus
·	that are in the 100-3FFh address range even if
Device 1 Offset 21-20 - Memory Base (fff0h)RW	they are in the range defined by the I/O Base
15-4 Memory Base AD[31:20] default = FFFh	and I/O Limit registers.
3-0 Reserved always reads 0	1-0 Reserved always reads 0
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW	•
15-4 Memory Limit AD[31:20] default = 0	
• -	
3-0 Reserved always reads 0	
Device 1 Offset 25-24 - Prefetchable Memory Base (fff0h) RW	
15-4 Prefetchable Memory Base AD[31:20] default = FFFh	
3-0 Reserved always reads 0	
Device 1 Offset 27-26 - Prefetchable Memory Limit	
(0000h)RW	
15-4 Prefetchable Memory Limit AD[31:20]	
15-4 Prefetchable Memory Limit AD[51:20] default = 0	
3-0 Reserved	
3-0 Reserveu arways reads 0	

Device 1 Configuration Registers - PCI-to-PCI Bridge

AGP Bus Control

7	CPU-AGP Post Write
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5	CPU-to-AGP One Wait State Burst Write
	0 Disabledefault
	1 Enable
4	AGP to DRAM Prefetch
	0 Disabledefault
	1 Enable
3	CPU to AGP Post Write Halt
	0 Disabledefault
	1 Enable
2	MDA Present on AGP
	0 Forward MDA accesses to AGPdefault
	1 Forward MDA accesses to PCI
	Note: Forward despite IO / Memory Base / Limit
	Note: MDA (Monochrome Display Adapter)
	addresses are memory addresses B0000h-B7FFFh
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh
	(10-bit decode). 3BC-3BE are reserved for printers.
	Note: If Rx3E bit-3 is 0, this bit is a don't care
	(MDA accesses are forwarded to the PCI bus).
1	AGP Master Read Caching
	0 Disabledefault
•	1 Enable
0	AGP Delay Transaction
	0 Disabledefault
	1 Enable

Table 10. VGA / MDA Memory / IO Redirection

3E[3]	40[2]	<u>VGA</u>	MDA	Axxxx,	<u>B0000</u>	3Cx,	
<u>VGA</u>	MDA	<u>is</u>	<u>is</u>	B8xxx	-B7FFF	3Dx	<u>3Bx</u>
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	Access	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device	1 Offset 41 - CPU-to-AGP Flow Control 2 (08h) RW
7	Retry Status
	0 No retry occurreddefault
	1 Retry Occurredwrite 1 to clear
6	Retry Timeout Action
	0 No action taken except to record status def
	1 Flush buffer for write or return all 1s for read
5-4	Retry Count
	00 Retry 2, backoff CPU default
	01 Retry 4, backoff CPU
	10 Retry 16, backoff CPU
	11 Retry 64, backoff CPU
3	CPU to PCI Bursting Timeout
	0 Disable
	1 Enabledefault
2	Reserved always reads 0
1	Invalidate PCI/AGP Read Buffered Data (Read
	Caching Data) on CPU-to-PCI/AGP Cycle
	0 Disabledefault
	1 Enable
0	Reserved always reads 0
Device	1 Offset 42 - AGP Master Control (00h)RW
7	Reserved always reads 0
6	AGP Master One Wait State Write
	0 Disabledefault
	1 Enable
5	AGP Master One Wait State Read
	0 Disabledefault
	1 Enable
4	D I C // DCINE / A
	Break Consecutive PCI Master Accesses
	0 Disabledefault
	0 Disable
3	0 Disable
3 2	0 Disable
	0 Disable
	0 Disable
	0 Disable
2	 0 Disable
1	0 Disable
2	 0 Disable

1 Enable

	1 Offset 43 - AGP Master Latency Timer (22h) RW	<u>Device</u>			e Control (72h)RW
7-4	Host to AGP Time slot	7			le to be QW Aligned
	0 Disable (no timer)		(if Rx45[6		
	1 16 GCLKs				default
	2 32 GCLKsdefault		1 Ena		
	•••	6			Transactions Into One Fast
	F 128 GCLKs		Write Bu	rst Transact	tion
3-0	AGP Master Time Slot		0 Dis		
	0 Disable (no timer)		1 Ena	ıble	default
	1 16 GCLKs	5			J Write Cycles To Memory
	2 32 GCLKsdefault				t Write Burst Cycles
			(if Rx45[6	[0] = 0	
	F 128 GCLKs		0 Dis		
					default
ъ.	1 Off (44 D) D 1 C (4) (20) DW	4	Merge	Multiple	CPU Write Cycles To
	1 Offset 44 – Backdoor Register Control (20h).RW				ry Offset 27-24 Into Fast
7	Rx8 Revision ID Writable				f Rx45[6] = 0
	0 Disable (Device 1 Rx8 is RO)default			able	
_	1 Enable (Device 1 Rx8 is RW)				default
6	Reservedalways reads 0	3			always reads 0
5	Power Management Capability Support	2			Max (No Slave Flow Control)
	0 Read Rx34 as 00				default
	1 Read Rx34 as 80default		1 Ena		
4	Rx1F-1E Reflect Status in Rx7-6	1		e Fast Back	to Back
	0 Rx1F-1E always read 0default			able	
_	1 Rx1F-1E read same as Rx7-6				default
3	Back Door Register for Rx83[2], D2 Support	0			ck 1 Wait State
	0 Disabledefault				default
•	1 Enable		1 Ena	ıble	
2	Back Door Register for Rx83[1], D1 Support		~~~~		
	0 Disabledefault			CPU Write	
	1 Enable	Bits	Address	Address	
1	Back Door Register for Rx82[5], Device Specific	<u>7-4</u>	in Mem1	in Mem2	Fast Write Cycle Alignment
	Initialization	x1xx	-	-	QW aligned, burstable
	0 Disabledefault	0000	-	-	DW aligned, nonburstable
Λ	1 Enable	x010	0	0	n/a
0	Back Door Register for AGP Device ID	0010	0	1	DW aligned, non-burstable
	0 Disabledefault	x010	1	-	QW aligned, burstable
	1 Enable	x001	0	0	n/a
		x001	-	1	QW aligned, burstable
		0001	1	0	DW aligned, non-burstable
		x011	0	0	n/a
		x011	1	-	QW aligned, burstable
		x011	0	1	QW aligned, burstable
		1000	-	-	QW aligned, non-burstable
		1010	0	1	QW aligned, non-burstable
		1001	1	0	QW aligned, non-burstable

evice 1 Offset 47-46 – PCI-to-PCI Bridge Device IDRW	Device I Offset 80 – Capability ID (01h)RO
15-0 PCI-to-PCI Bridge Device ID default = 0000	7-0 Capability IDalways reads 011
	Device 1 Offset 81 – Next Pointer (00h)RO
	7-0 Next Pointer: Nullalways reads 00h
	Device 1 Offset 82 – Power Mgmt Capabilities 1 (02h) RO
	7-0 Power Mgmt Capabilitiesalways reads 02h
	Device 1 Offset 83 – Power Mgmt Capabilities 2 (00h) RO
	7-0 Power Mgmt Capabilitiesalways reads 00h
	Device 1 Offset 84 – Power Mgmt Ctrl/Status (00h) RW
	7-2 Reservedalways reads (
	1-0 Power State
	00 D0defaul
	01 -reserved-
	10 -reserved- 11 D3 Hot
	11 D3 H0t
	Device 1 Offset 85 – Power Mgmt Status (00h)RO
	7-0 Power Mgmt Status default = 00
	Device 1 Offset 86 - P2P Br. Support Extensions (00h). RC
	7-0 P2P Bridge Support Extensionsdefault = 00
	Device 1 Offset 87 – Power Management Data (00h) RO
	7-0 Power Management Datadefault = 00

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Case operating temperature (T _C)	0	85	oС
Storage temperature (T _S)	-55	125	°C
Input voltage (V _{IN})	-0.5	$V_{RAIL} + 10\%$	Volts
Output voltage (V _{OUT})	-0.5	$V_{RAIL} + 10\%$	Volts

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

 $\overline{T_C} = 0-85^{\circ}C$, $V_{RAIL} = V_{CC} + /-5\%$, $V_{CORE} = 2.5V + /-5\%$, GND=0V

Symbol	Parameter	Min	Max	Unit	Condition
$V_{ m IL}$	Input low voltage	-0.50	0.8	V	
$V_{ m IH}$	Input high voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output low voltage	-	0.45	V	I _{OL} =4.0mA
V_{OH}	Output high voltage	2.4	-	V	I _{OH} =-1.0mA
I_{IL}	Input leakage current	-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate leakage current	-	+/-20	uA	$0.45 < V_{OUT} < V_{CC}$

Power Characteristics

 $T_{C} = 0\text{-}85^{O}C, \ V_{RAIL} = V_{CC} + \text{-}5\%, \ V_{CORE} = 2.5 V + \text{-}5\%, \ GND = 0V$

Symbol	Parameter	Тур	Max	Unit	Condition
I_{CC}	Power supply current – VCC			mA	Max operation frequency
I _{CCGTL}	Power supply current – VCCGTL			mA	Max operation frequency
I_{CCVL}	Power supply current – VCCVL			mA	Max operation frequency
I_{CCM}	Power supply current – VCCM			mA	Max operation frequency
I _{CCAGP}	Power supply current – VCCAGP			mA	Max operation frequency
I_{CCQQ}	Power supply current – VCCQQ			mA	Max operation frequency
I _{SUS25}	Power supply current – VSUS25			mA	Max operation frequency
I_{CCAHCK}	Power supply current – AVCCHCK			uA	Max operation frequency
I _{CCAMCK}	Power supply current – AVCCMCK			uA	Max operation frequency
I_{CCADL1}	Power supply current – AVCCDL1			uA	Max operation frequency
I_{CCADL2}	Power supply current – AVCCDL2			uA	Max operation frequency
I _{MVREF}	Reference current – MVREF			uA	Max operation frequency
I _{GTLREF}	Reference current – GTLREF			uA	Max operation frequency
I _{AGPREF}	Reference current – AGPREF			mA	Max operation frequency
I_{VLREF}	Reference current – VLREF			uA	Max operation frequency
P_{D}	Power dissipation			W	Max operation frequency

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 11. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
2.5V Power	2.375	2.625	Volts
3.3V Power	3.135	3.465	Volts
5V Reference	4.75	5.25	Volts
Case Temperature	0	85	o _C

Drive strength for each output pin is programmable. See (Device 0 Rx??) for details.

MECHANICAL SPECIFICATIONS

Figure 5. Mechanical Specifications - 560-Pin HSBGA Ball Grid Array Package with Heat Spreader