```
class GDLinearRegression:
   def __init__(self, learning_rate=0.01, tolerance=1e-8):
       self.learning_rate = learning_rate
       self.tolerance = tolerance
                                       -> 115,2
   def fit(self, X, y):
                                                               array([0., 0.])
       n_samples, n_features = X.shape
       self.bias, self.weights = 0, np.zeros(n_features)
       previous_db, previous_dw = 0, np.zeros(n_features)
       while True:
           y_pred = X @ self.weights + self.bias
           db = 1 / n_samples * np.sum(y_pred - y)
           dw = 1 / n_samples * X.T @ (y_pred - y)
           self.bias -= self.learning_rate * db
           self.weights -= self.learning_rate * dw
           abs_db_reduction = np.abs(db - previous_db)
           abs_dw_reduction = np.abs(dw - previous_dw)
           if abs_db_reduction < self.tolerance:</pre>
               if abs_dw_reduction.all() < self.tolerance:</pre>
                   break
           previous_db = db
           previous_dw = dw
   def predict(self, X_test):
       return X_test @ self.weights + self.bias
```

# age <u>=</u>	# experience =	# income =
25	1	30450
30	3	35670
47	2	31580
32	5	40130
43	10	47830
51	7	41630
28	5	41340
33	4	37650
37	5	40250
39	8	45150
29	1	27840
47	9	46110
54	5	36720
51	4	34800
44	12	51300
41	6	38900
58	17	63600
23	1	30870
44	9	44190
37	10	48700

```
df_path =
v"
income = pd.read_csv(df_path)
X1, y1 = income.iloc[:, :-1].values, income.iloc[:, -1].values
X1_scaled = scale(X1)
X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, random_state=0)
X1_train_s, X1_test_s, y1_train, y1_test = train_test_split(X1_scaled, y1, random_state=0)
print(income)

correlation_matrix = income.corr()
correlation_matrix.style.background_gradient(cmap='coolwarm')

linear_regression = GDLinearRegression()
linear_regression.fit(X1_train_s, y1_train)
```

Градиентный спуск— это численный метод, задачей которого является нахождение локальных экстремумов функции.

М 5 Приближенный численный метод

Минимизируемый функционал является гладким и выпуклым, а это значит, что можно эффективно искать точку его минимума с помощью итеративных градиентных методов.

численный метод это набор техник и подходов для приближённого решения математических задач на компьютере.

Монотонность функции

Пусть некоторая функция f(x) задана на промежутке [a,b], тогда рассмотрим несколько вариаций её поведения на этом промежутке:

	f(X)	+ (X2)	
55			
Q	X	Xz	

Logical operation	Logical symbol	Macro
There is	3	(isE)
There is exactly	3!	(isE!)
if, then	>	ifthen
inclus. or	V	vr*
exclus. or xor	0	vr**
and	٨	a*d
logical. equiv.	=	1geq
material. equiv.	⇔	mteq
Because		b/c*
For all	\forall	fral*
proport. to	∞c	prpto*
intersection	Ω	nxn
union	U	uni*
tilde	~	tld*
asymptot. equal	n	aeq1*
is true	F	isT*
is not true	⊭	isnT*
necessarily		nesry
element of	€	lmnt
inferred from	-	infr*

•		
)
	•	

∈ - знак принадлежности (принадлежит);

∉ - не принадлежит;

знак включения, подмножества;

⇒ - знак следования;

⇔ - знак равносильности;

3нак множества;

- знак системы;

знак совокупности;

знак объединения;

- знак пересечения;

пустое множество;

∀ - квантор всеобщности (для любого, каждого);

∃ - квантор существования (найдется, существует);

А - аксиома;

Тh - теорема;

% - лемма;

Следствие;

что и требовалось доказать;

0 - определение;

п - пример;

утверждение;

□ - пусть;

замечание;

」 ["] - если;

- рассмотрим;

: - деление без остатка;

 $\lim_{\Delta x \to 0} \Delta x$ $\lim_{\Delta x \to 0} \int_{\Delta x} (x_0 + \Delta x) - f(x_0) = f(x_0)$ $\lim_{\Delta x \to 0} \Delta x$ AF < 0 unern f/x5/c0, unare f(x0)=0 f(X) > 0 = 1 f(X) < 0 = 1

 $\lim_{\Delta x \to 0} \Delta x = \lim_{\Delta x \to 0} f(x_0 + \Delta x) - f(x_0)$ K^{∞} $K^{0}+\nabla X$ NO XOTOX

Teophers guppepens. UCZ.

Функция – это соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент второго множества

Стандартизация приводит все признаки к одному масштабу, что ускоряет сходимость и делает обучение более стабильным.

$$X_{\text{scaled},ij} = \frac{X_{ij} - \mu_j}{\sigma_j},$$

Функция scale стандартизирует данные, приводя их к виду с нулевым средним и единичной дисперсией (z-score стандартизация):

тде:

- ullet X_{ij} значение (i)-го примера для (j)-го признака,
- \bullet μ_{j} среднее значение (j)-го признака,
- σ_j стандартное отклонение (j)-го признака.

$$\frac{25+30+97}{3} = \frac{102}{3} = 39$$

$$\frac{3}{3} = \frac{3}{3} =$$

# age <u>=</u>	# experience =	# income =
25	1	30450
30	3	35670
47	2	31580
UZ.	5	40130
43	10	47830
51	7	41630
28	5	41340
33	4	37650
37	5	40250
39	8	45150
29	1	27840
47	9	46110
54	5	36720
51	4	34800
44	12	51300
41	6	38900
58	17	63600
23	1	30870
44	9	44190
37	10	48700

$$\frac{25,30,47}{3^{2}} = \frac{3}{5} \frac{(25-34)^{2} + (20-34)^{3} + (47-34)^{2}}{3}$$

$$\frac{266}{3}$$
 \approx 88.6667 array([-0.95578964, -0.4247954, 1.38058503])