Prerequisites Resources

Go through the resources to brush up your concepts and pre-requisites that will help you with implementation during the Cohort.

1. Git

- Introduction to Git. YouTube link
 - Video notes <u>link</u>

2. Python

- Basics of Python
 - Python Official Documentation <u>link</u>
 - Python Tutorials Playlist 1: YouTube <u>link</u>
 - Python Tutorials Playlist 2: YouTube <u>link</u>
- Basics of Pandas
 - Complete Pandas Tutorial <u>link</u>
 - Pandas 10 minute introduction Official Documentation link
- Basics of Numpy
 - Complete Numpy tutorial <u>link</u>
 - Numpy quickstart <u>link</u>
- Jupyter Introduction
 - Introduction, Setup and Walkthrough of Jupyter notebook: YouTube <u>link</u>
 - How to use Jupyter notebook: Blog link

Task:

- Download the test images from this <u>Kaggle dataset</u>, and place them all in a folder
- Define a function in the jupyter notebook to do the following tasks:
 - Input: Takes the path of the folder as the input
 - Process:
 - Loads all the images and convert them to an array
 - Convert all the images to grayscale images
 - Output:
 - Number of images
 - Format type of the images
 - Saving all the grayscale images to another folder

Bonus:

Convert the background of the images to white before converting them to grayscale

3. Neural Network concepts & Architectures (Basics)

- Deep Learning with keras <u>link</u>
 - Index: Page 20
 - Refer to Chapter 1 [Pg 55-115]
- [Machine Learning] Andrew NG lectures
 - Cost function link
 - Backpropagation -
 - Part 1 <u>link</u>,
 - Part 2 link
 - Gradient checking <u>link</u>
 - Random Initiation <u>link</u>

4. OpenCV

- Tutorials. Youtube <u>link</u>
 - First 15 videos should be sufficient

Task:

- 1. Download the data from the link here
- 2. Write a function in python script to do the following:
 - i. Inputs: Input the folder name and csv filename through command line
 - ii. To-Do:
 - 1. Read all the images
 - 2. Read the csv file, and get the image label names and coordinates
 - Draw the bounding boxes for every image, using the corresponding image's coordinates (Use different colour and thickness for the bounding boxes)
 - 4. Add labels for every image (**Use different font, font colour, font size**)
 - 5. Create another folder and save all the images to the folder
 - 6. Push the code to GitHub, and show few samples of the before and after on the **Readme.md** file.

5. Keras (Tensorflow)

- o Deep Learning with keras link
 - Index: Page 20
 - Refer to Chapter 3 [Pg 188-243]
- Hands on Introduction to Keras.[Neural Networks] Kaggle notebook <u>link</u>
- Hands on Introduction to Keras [CNNs] Kaggle notebook <u>link</u>

Task:

<u>AIM:</u> To create a neural network model of the highest accuracy, with the least number of parameters (what are parameters? <u>Link</u>)

- 1. Download the dataset from the link here
- 2. Create all the pre-processing steps similar to the one from the above notebooks
- 3. Create a Neural network model using Keras and train the model on the training dataset
- 4. Test the model on the test dataset
- 5. Push the code on Github, showing the model architecture, number of parameters and test accuracy on the **Readme.md** file.

After all the tasks you will be familiar with:

- 1. Pandas and OpenCV
- 2. Implementing different stages of the machine learning pipeline.
- 3. Creating a model from scratch and hyper parameter tuning
- 4. Version control in GitHub

6. Damage Detection

[This is not a prerequisite to the cohort, however the link below helps you understand the problem statement we are going to solve in the cohort]

- Analytics Vidhya blog <u>link</u>
- o Detecting Vehicle Damage using Deep Learning. Link

7. Computer Vision Problems Basics [Blog]

- Image classification
- Object Detection [In details]
- Segmentation