

				HILL_CLIMBING			Time evolution according to number of iterations and size
							evolution
	ITERATIONS	40	100	500	1000	2000	■ 10 Iterations ■ 100 Iterations ■ 500 Iterations ■ 1000 Iterations ■ 2000 Iterations
	TIERATIONS	10	100	500	1000	2000	
OBLEM_SIZE		0,007	0,01	0,007	0,005	0,006	15
10 20		0,007	0,0195		0,009	0,006	
40		0,0164	0,0195			0,018	10
					0,11		
80		0,87	0,866		1,3	0,94	Time (s)
100		1,69	1,644		1,92	1,73	<u>{</u>
200		12,42	12,57	14,25	13,3	12,56	F 5
							50 100 150 200
							Problem Size
	ITERATIONS	10	100	500	1000	2000	
BLEM_SIZE	TERATIONS	10	100	500	1000	2000	Cost evolution according to number of iterations and size
		67,76	69,38	73,42	70,06	68,22	evolution
10							
20		235,89	235,13		236,07	230,38	■ 10 Iterations ■ 100 Iterations ■ 500 Iterations ■ 1000 Iterations ■ 2000 Iterations
40		1.975,45	1.975,36		1907,36	1916,55	60000
80		9513,92	9513,92		9467,95	9519,43	
100		9254,84	9250,79		9.250,04	9255,5	
200		52492,67	52480,35	52485,03	52480,45	52483,8	40000
							Cost
							20000
							0
							50 100 150 200
							Problem Size

				GENETIC OX								GENETIC PMX		
GENERATION_SIZE	10							GENERATION_SIZE		10				
	GENERATIONS	10	100	500	1000	2000			GENERATIONS	10	100	500	1000	2000
PROBLEM_SIZE								PROBLEM_SIZE						
	10	0,0621			2,622	5,237		10		0,066	0,306		2,663	5,573
	20	0,199			15,95	31,139		20		0,205	1,691		15,552	31,741
	40	1,213	10,817	56,729	114,69	239,42		40	0	1,153	10,952	57,677	119,69	237,83
				GENETIC OX								GENETIC PMX		
GENERATION_SIZE	25							GENERATION_SIZE	:	25				
	GENERATIONS	10	100	500	1000	2000			GENERATIONS	10	100	500	1000	2000
PROBLEM_SIZE								PROBLEM_SIZE						
	10	0,11			7,246	12,413		10		0,101	0,66		7,097	12,485
	20 40	0,418 2,696			37,504 282,365	75,763 564,054		20		0,421 2,672	3,829 26,066		37,415 286,07	75,567 577,65
	40	2,696	25,544	137,68	282,365	504,054		40	U	2,672	26,066	137,441	286,07	5//,65
				GENETIC OX								GENETIC PMX		
GENERATION_SIZE	10							GENERATION_SIZE		10				
PROBLEM_SIZE	GENERATIONS	10	100	500	1000	2000		PROBLEM_SIZE	GENERATIONS	10	100	500	1000	2000
PROBLEM_SIZE	10	77,1	59,58	64,73	98,04	74,55		PROBLEM_SIZE	0	77,29	68,23	65,75	65,98	68,52
	20	385,59			332,24	281,55		20		409,3	312,72		231,95	212,46
	40	2362,77			2110,65	1433,5		40		1949,65	1528,18		1303,7	1379,13
				GENETIC OX								GENETIC PMX		
GENERATION_SIZE	25							GENERATION_SIZE		25				
	GENERATIONS	40	400		4000	0000			OFNEDATIONS	40	400		4000	
PROBLEM_SIZE	GENERATIONS	10	100	500	1000	2000		PROBLEM_SIZE	GENERATIONS	10	100	500	1000	2000
FROBLEW_SIZE	10	80	62,983	62,52	55,42	71,03		FROBLEW_SIZE	0	88,88	94,84	72,8	63,44	53,39
	20	365,23			340,546	372,73		20		323,72	172,34		311,88	181
	40	1809,13			1630,19	1781,68		40		1697,57	1160,51		895,55	1305,37
		1000,10	,			,				,	,.			1222,21
		Time evolu	ition accordin	na to different	generation size	. number of								
				ation and heur		,	Cost ev	olution according t			ber of			
			9-11-1					generation	on and heuristic u	sed				
		600			0X	enerations Size 10	2500			= 10 Generatio	ns Size 10			
					_ 2000	Generations Size				ox				
					10 0	X	2000			= 2000 Genera 10 OX	ions Size			
		400			- 10 G OX	enerations Size 25					no Cimo 25			
		Time (s)				Generations Size	1500			- 10 Generatio OX	15 OIZ8 20			
		⊢ <u>Ĕ</u>			25 O	X	00 tono			 2000 Genera 				
		200		/ /	- 10 G	enerations Size 10	O 1000			25 OX				
					- 2000	Generations Size				 10 Generatio 				
		H _				enerations Size 25	500			 2000 Genera 				
		0 10	20	30		Generations Size				 10 Generatio 				
		10			40 2000		0 =	20	30	40 = 2000 Genera	ions Size			
			Pro	oblem Size										
				Julieni Gize				p	m Sizo					
				JUNETI SIZE				Problem	m Size					

				SIMMULATED ANNEALING							SIMMULATED ANNEALIN	9						SIMMULATED_ANNEALING		
TIAL_TEMP=100							INITIAL_TEMP=100							INITIAL_TEMP=100						
OOLING = 0.01							COOLING = 0.1							COOLING = 1						
	ITERATIONS	10	- 10	0 .	500 100	00 2000		ITERATIONS		10 10	0 50	100	10 20	000	ITERATIONS		0	100	500	1000
OBLEM SIZE	ILIGINOIS	16			100	2000	PROBLEM SIZE	HEIGHIONS		10		, , , , ,		PROBLEM SIZE	IILIONIONO			100		1000
JULEM_ULL	10 01	00122 e / 50 020 custo	0.01166 s / 55.616 custo	0.05519 s / 48.889 custo	0.10795 c / 49.697 custo	0.21602 s / 65.291 custo	T HOLLEM_DILL	10	0.00136 s / 64.564 custo	0.01247 e / 61 525 queto	0.05694 s / 48.420 custo	0.11035 e / 66.530 custo	0.21748 s / 55.066 custo	I NODELIN_GEL	10	0.00153 s / 104.999 custo	0.01574 e / 73.199 custo	0.07811 s / 95.159 custo	0.15574 s / 75.114 custo	0.31325 s / 68.38
			0.06785 s / 155.097 cost	0.30021 s / 146.039 cost		1.17454 s / 156.175 cost		20	0.00671 s / 417.426 cost			0.6011 s / 137 341 cost	1,20556 s / 139,39 cost		20	0.00133 s / 171.648 cost		0.44835 s / 276.139 cost	0.83426 s / 288.452 cost	1.6673 s / 280.66
								20							20					
			0.47465 s / 667.835 cost	2.22166 s / 437.47 cost		8.5363 s / 443.909 cost		40	0.05558 s / 1427.521 cost		2.24328 s / 442.869 cost		8.56435 s / 340.693 cost		40		0.57658 s / 1077.499 cost	2.90397 s / 1135.793 cost	5.77817 s / 807.498 cost	11.4359 s / 907.4
			3.57087 s / 4734.086 cost	16.02488 s / 4188.436 cost	31.38954 s / 3321.441 cos	st 62.06127 s / 3513.998 cost		80	0.35215 s / 6947.927 cost				62.77267 s / 2576.218 cost		80		3.86584 s / 5556.905 cost	19.29338 s / 2967.508 cost	39.09477 s / 4150.144 cost	77.53326 s / 332
		.7109 s / 11491.744 cost	7.31903 s / 5990.652 cost	31.45731 s / 5615.029 cost			1	00	0.78106 s / 11413.695 cost	7.07693 s / 7383.513 cost	32.63357 s / 3466.142 cost				100		8.10525 s / 7417.706 cost	40.10991 s / 4726.578 cost		
	200 6.4	.40866 s / 51748.73 cost	58.06031 s / 39418.998 cost	254.33998 s / 33473.688 cost			2	00	5.41346 s / 54188.468 cost	56.25959 s / 39873.881 cc	ist 257.79723 s / 26322.129 co	rst.			200	6.11764 s / 53054.871 cost	61.56054 s / 41069.535 cost	289.40934 s / 24131.225 cost		
				SIMMULATED_ANNEALING							SIMMULATED_ANNEALIN	G						SIMMULATED_ANNEALING		
IAL TEMP = 10							INITIAL TEMP = 10							INITIAL TEMP = 10						
LING = 0.01							COOLING = 0.1							COOLING = 1						
	ITERATIONS	40	10		500 100	0000		ITERATIONS		10 10			10 20		ITERATIONS			100	500	1000
BLEM SIZE	ILLIGATIONS	10		~	100	2000	PROBLEM SIZE	TENATIONS		10	0 50	100	~ 20	PROBLEM SIZE	ILLAHIUNS		-	100		1000
BLEM_OIZE							PROBLEM_SIZE							PROBLEM_SIZE						
			0.01235 s / 65.064 custo	0.05568 s / 64.519 custo		0.21374 s / 63.611 custo		10	0.00129 s / 77.252 custo		0.05843 s / 67.473 custo		0.21715 s / 50.370		10	0.00144 s / 69.492 custo		0.07028 s / 75.598 custo	0.13950 / 64.687 custo	0.28277 s / 65.34
			0.06583 s / 111.397 cost	0.30223 s / 126.525 cost		1.17524 s / 116.201 cost		20	0.007 s / 331.624 cost		0.30538 s / 139.271 cost		1.18024 s / 127.096 cost		20	0.00787 s / 174.733 cost		0.36188 s / 183.887 cost	0.70485 s / 167.383 cost	1.43029 s / 183.9
			0.47438 s / 767.571 cost	2.19516 s / 502.682 cost		8.50901 s / 463.031 cost		40	0.04697 s / 1478.319 cost			4.35321 s / 415.904 cost	8.60754 s / 366.175 cost		40	0.04908 s / 1473.204 cost		2.44321 s / 457.429 cost	4.88577 s / 354.97 cost	9.6306 s / 425.88
	80 0.3	35364 s / 7197.82 cost	3.51938 s / 4746.91 cost	16.17462 s / 3316.018 cost	31.33748 s / 3375.281 cos	st 62.56181 s / 3590.623 cost		80	0.41261 s / 6942.559 cost	3.55455 s / 4082.326 cost	17.02297 s / 2486.978 cost	32.14112 s / 3095.117 cost	63.99657 s / 2283.708 cost		80	0.38158 s / 7192.821 cost	3.77053 s / 4106.248 cost	17.84373 s / 2067.995 cost	34.79466 s / 1676.913 cost	71.03144 s / 127
	100 0.0	86779 s / 10642.728 cost	7.1317 s / 6946.029 cost	31.37038 s / 5743.731 cost			1	00	0.77094 s / 10723.245 cost	6.9537 s / 6250.317 cost	32.12522 s / 4248.974 cost				100	0.74071 s / 12125.838 cost	7.04567 s / 5272.813 cost	33.56027 s / 2911.481 cost		
	200 5.0	66581 s / 54099 781 mst	57.32744 s / 39713.932 cost	249.82333 s / 37740.26 cost			2	00	6 06731 s / 53307 726 cost	56 54472 s / 39802 486 or	st 258.89211 s / 29874.154 co	ist			200	5 18798 s / 55242 155 rost	57.30771 s / 39983.818 cost	275.57372 s / 22273.244 cost		
							_													
				SIMMULATED_ANNEALING							SIMMULATED_ANNEALIN	n						SIMMULATED_ANNEALING		
TIAL_TEMP = 50				UMMODATED_ATTECHED			INITIAL_TEMP = 50				GIBBIOLATED_ARREACTIV			INITIAL TEMP = 50				GIBBIOLATED_ARRESEING		
OLING = 0.01							COOLING = 0.1							COOLING = 1						
	ITERATIONS	10	10	0 5	500 100	00 2000		ITERATIONS		10 10	0 50	100	10 20	000	ITERATIONS	1	0	100	500	1000
DBLEM_SIZE							PROBLEM_SIZE							PROBLEM_SIZE						
	10 0.1	.00133 s / 61.613 custo	0.01237 s / 47.724 custo	0.05774 s / 58.152 custo		0.21351 s / 55.307 custo		10	0.00128 s / 64.083 custo	0.01184 s / 60.417 custo	0.05599 s / 71.784 custo	0.10934 s / 56.427 custo	0.21727 s / 61.483 custo		10	0.00153 s / 60.660 custo	0.01567 s / 73.413 custo	0.07717 s / 88.221 custo	0.15626 s / 94.537 custo	0.30805 s / 74.78
	20 0.0	.00671 s / 349.295 cost	0.0651 s / 119.549 cost	0.30306 s / 152.002 cost	0.5939 s / 169.533 cost	1.17114 s / 150.43 cost		20	0.00711 s / 279.279 cost	0.06694 s / 139.084 cost	0.31888 s / 115.788 cost	0.60361 s / 147.379 cost	1.18443 s / 162.872 cost		20	0.00759 s / 280.972 cost	0.08105 s / 213.914 cost	0.40415 s / 231.948 cost	0.80131 s / 306.703 cost	1.61815 s / 238.1
	40 0.0	05326 s / 1319.38 cost	0.48569 s / 640.674 cost	2.2061 s / 501.144 cost	4.3182 s / 486.051 cost	8.56146 s / 469.766 cost		40	0.04928 s / 1267.826 cost	0.48025 s / 460.29 cost	2.25929 s / 321.566 cost	4.38949 s / 350.493 cost	8.63173 s / 381.174 cost		40	0.06403 s / 1286.158 cost	0.55171 s / 661.934 cost	2.68818 s / 806.269 cost	5.4414 s / 750.644 cost	10.92822 s / 760
	80 0.4	40333 s / 6491.209 cost	3.58499 s / 4893.031 cost	16.54334 s / 2956.339 cost	32.05152 s / 3433.696 cos	st 63.42144 s / 4049.72 cost		80	0.34073 s / 7149.549 cost	3.6583 s / 3772.013 cost	16.44668 s / 2966.104 cost	31.96866 s / 2945.022 cost	64.01934 s / 2380.646 cost		80	0.40287 s / 7227.422 cost	3.86687 s / 5567.558 cost	18.91956 s / 3117.019 cost	37.77236 s / 1722.855 cost	75.32466 s / 262
	100 0	71083 s / 11146 286 rost	7.32329 s / 7388 538 cost	31.6517 s / 4150.57 cost				00	0.74112 s / 12125.429 cost	7.01192 s / 5377.695 cost	32 34 177 s / 3485 92 mst				100	0.82995 s / 10904 106 rost	7.46085 s / 6649.068 cost	36.51772 s / 3463.721 cost		
			55.94851 s / 43770.823 cost	261.48609 s / 33282.943 cost			2	00			st 274.74073 s / 27235.687 oc	w!			200		59.27649 s / 41439.796 cost	286.17459 s / 24110.303 cost		
	200	30224 87 32330.040 008.	33.3403 37.437 0.023 0.02	201740009 81 33202 943 0081			-		0.32177 87 57502.720 0081	30.00003 27.32300.004 00	M 214.140/3 8/ 2/233300/ O	oen.			200	3.4E200 87 30340.030 C08	33270433741433.730 tost	200.11438 8724 110.303 C08		
				SIMMULATED_ANNEALING							SIMMULATED_ANNEALIN							SIMMULATED_ANNEALING		
				SIMMULATED_ANNEALING							SINMULATED_ANNEALIN	u .						SIMMULATED_ANNEALING		
TIAL_TEMP = 200							INITIAL_TEMP = 200							INITIAL_TEMP = 20)					
OLING = 0.01							COOLING = 0.1							COOLING = 1						
	ITERATIONS	10	10	0 6	500 100	00 2000		ITERATIONS		10 10	0 500	100	00 20	000	ITERATIONS	1	0	100	500	1000
DBLEM_SIZE							PROBLEM_SIZE							PROBLEM_SIZE						
	10 0.1	00140 s / 79.731 custo	0.01178 s / 69.570 custo	0.05538 s / 60.142 custo	0.10779 s / 68.016 custo	0.21299 s / 71.851 custo		10	0.00134 s / 68.760 custo	0.01165 s / 73.649 custo	0.05606 s / 62.801 custo	0.11063 s / 59.499 custo	0.21505 s / 55.455 custo		10	0.00154 s / 60.356 custo	0.01580 s / 71.195 custo	0.07859 s / 87.076 custo	0.15739 s / 89.953 custo	0.31467 s / 91.02
	20 0.1	00701 s / 327.35 cost	0.06422 s / 179.113 cost	0.30157 s / 166.566 cost	0.59098 s / 142.789 cost	1.1713 s / 165.798 cost		20	0.00756 s / 248.373 cost	0.0652 s / 159.803 cost	0.31128 s / 150.872 cost	0.60236 s / 146.596 cost	1.1838 s / 126.464 cost		20	0.00874 s / 318.633 cost	0.08716 s / 353.173 cost	0.42714 s / 319.653 cost	0.848 s / 267.184 cost	1.70166 s / 289.9
	40 0.0	05539 s / 1144.572 cost	0.48104 s / 606.021 cost	2.22007 s / 556.229 cost	4.33456 s / 496.084 cost	8.66209 s / 421.716 cost		40	0.05345 s / 1456.321 cost	0.48046 s / 596.422 cost	2.29313 s / 365.793 cost	4.41615 s / 292.643 cost	8.69372 s / 321.404 cost		40	0.05993 s / 1370.785 cost	0.60232 s / 1486.434 cost	3.05026 s / 1024.407 cost	6.07312 s / 1497.646 cost	11.93316 s / 123
			3.66066 s / 3648.624 cost	16.46498 s / 2914.64 cost		st 63.72794 s / 3622.591 cost		80	0.44019 s / 6991.03 cost		16.90386 s / 2689.592 cost	32.43826 s / 2446.07 cost	64.01521 s / 2650.668 cost		80		4.29546 s / 6096.642 cost	21.23195 s / 5222.839 cost	41.2123 s / 5370.022 cost	83.71598 s / 530
			7.06128 s / 6337.776 cost	31.34409 s / 5586.159 cost				00	0.77122 s / 11511.019 cost		32.06844 s / 3861.552 cost				100		8.21424 s / 8627.279 cost	39.86951 s / 5762.686 cost		
				251.70857 s / 39623.461 cost			2	00			st 267.20855 s / 29542.196 ox				200		62.99486 s / 46482.708 cost	303.19175 s / 21922.914 cost		
	au 6.1		39-91432 S / 4 (002:042 COST	AUT. (4007 ST 39023.401 COST			2		J. 1000 9 / 009 12.054 COST	00.09007 37 42 123.813 00	maur 20000 b / 20042.196 00	nen.				U-000 3 / 009U 1.764 00St				
				SIMMULATED_ANNEALING							SIMMULATED_ANNEALIN	U						SIMMULATED_ANNEALING		
AL_TEMP = 1000							INITIAL_TEMP = 1000							INITIAL_TEMP = 10	00					
							COOLING = 0.1							COOLING = 1						
LING = 0.01		10	10	0 5	500 100	00 2000		ITERATIONS		10 10	0 50	100	10 20	000	ITERATIONS	1	0	100	500	1000
ILING = 0.01	ITERATIONS						PROBLEM_SIZE							PROBLEM_SIZE						
	ITERATIONS					0.21368 s / 68.940 custo		10	0.00131 s / 86.485 custo	0.01224 s / 68.961 custo	0.05763 s / 74.971 custo	0.11078 s / 47.041 custo	0.21393 s / 61.212 custo		10	0.00159 s / 85.518 custo	0.01583 s / 66.364 custo	0.07908 s / 82.623 custo	0.15820 s / 68.675 custo	0.31654 s / 81.23
		.00121 s / 157.519 custo	0.01274 s / 62.567 custo	0.05531 s / 59.039 custo																
	10 0.1							20	0.00734 s / 295.875 cost	0.06805 s / 169.51 cost	0.30858 s / 132.343 cost	0.60626 s / 150.034 cost	1 17558 s / 160 45 cost		20	0.00873 s / 376 991 cost	0.08737 s / 301.861 cost	0.43577 s / 267 545 cost	0.86655 s / 300.003.cost	1 74078 s / 333 F
DLING = 0.01 DBLEM_SIZE	10 0.1	.00767 s / 330.112 cost	0.06673 s / 174.814 cost	0.29955 s / 162.417 cost	0.58753 s / 158.306 cost	1.17299 s / 146.858 cost		20	0.00734 s / 295.875 cost		0.30858 s / 132.343 cost		1.17558 s / 160.45 cost		20	0.00873 s / 376.991 cost		0.43577 s / 267.545 cost	0.86655 s / 300.003 cost	1.74078 s / 333.8
	10 0.1 20 0.1 40 0.1	.00767 s / 330.112 cost .05326 s / 1227.883 cost	0.06673 s / 174.814 cost 0.49031 s / 682.611 cost	0.29955 s / 162.417 cost 2.22351 s / 509.099 cost	0.58753 s / 158.306 cost 4.38136 s / 556.926 cost	1.17299 s / 146.858 cost 8.68664 s / 463.375 cost		20	0.05353 s / 1296.317 cost	0.49469 s / 462.117 cost	2.27999 s / 456.797 cost	4.45317 s / 338.693 cost	8.66852 s / 299.772 cost		20 40	0.06248 s / 1345.193 cost	0.6329 s / 1246.713 cost	3.14199 s / 1858.516 cost	6.31756 s / 1615.998 cost	12.73133 s / 132
	10 0.1 20 0.1 40 0.1 80 0.0	.00767 s / 330.112 cost .05326 s / 1227.883 cost .404 s / 6896.639 cost	0.06673 s / 174.814 cost	0.29955 s / 162.417 cost	0.58753 s / 158.306 cost 4.38136 s / 556.926 cost	1.17299 s / 146.858 cost		20 40 80		0.49469 s / 462.117 cost	2.27999 s / 456.797 cost 16.79636 s / 2457.61 cost	4.45317 s / 338.693 cost			20 40 80	0.06248 s / 1345.193 cost 0.44884 s / 6628.71 cost				

			TABU							TABU							TABU										
ABU_SIZE = 10			IAUU				TABU_SIZE = 20			IALIC				TABU_SIZE = 50			IALU							TAS	41		
																					TABU_SIZE = 100				-		
	ITERATIONS	10	100	500	1000	2000		ITERATIONS	10	100	500	1000	2000		ITERATIONS	10	100	500	1000	2000							
PROBLEM_SIZE							PROBLEM_SIZE							PROBLEM_SIZE							ITE	ATIONS	10	100	500	1000	
_	10	0,012	0,082	0,388	0,768	1,508	10		0,011	0,08	0,383	0,759	1,511	1	0	0,022	0,089	0,405	0,766	1,518	PROBLEM_SIZE						
	20	0,049	0,441	2,225	4,465	9,003	20		0,05	0,464	2,288	4,499	11,085	2	0	0,051	0,517	2,586	5,016	9,337	10		0,021	0,088	0,395	0,77	
	40	0,313	2,932	15,12	32,162	65,855	40		0,329	3,211	16,032	32,52	65,052	4	0	0,327	3,143	15,938	31,773	63,969	20		0,048	0,481	2,429	5,053	9
	80	2,41	24,45	132,108	317,27	649,08	80		3,105	29,652	153,11	263,511	563,903	8	0	3,428	32,702	162,987	328,673	777,305	40		0,403	3,389	16,272	31,16	
																					80		3,189	32,18	162,225	342,963	
			TABU																								
TABU_SIZE = 10							TABU_SIZE = 20							TABU_SIZE = 50							TABU_SIZE = 100						
PROBLEM_SIZE	ITERATIONS	10	100	500	1000	2000	PROBLEM_SIZE	ITERATIONS	10	100	500	1000	2000	PROBLEM_SIZE	ITERATIONS	10	100	500	1000	2000	PROBLEM_SIZE	ATIONS	10	100	500	1000	2
	10	66,48	65,912	65,004	61,32	64,033	10		65,687	70,631	80,098	75,634	69,364	1	0	69,931	98,701	79,002	72,229	70,2	10		65,23	67,2	63,075	73,761	68
	20	280,43	246,612	238,30	245.244	231,346	20		300,261	258,799	238,453	256,783	234,003	2	0	330,258	218,898	249,772	225,341	265,003	20		266,198	209,383	231,798	259,076	250
	40	1834,441	1353,245	1.431,81	1650,456	1405,597	40		1780,597	1549,44	1.386,43	1.404,46	1612,528	4	0	1654,533	1515,639	1756,054	1677,448	1433,754	40		1648,894	1707,281	1806,646	1549,538	1690
	80	7455,36	7249,562	7202,824	7314,879	7428,761	80		7312,932	7335,154	7341,935	7411,186	7413,447	8	0	7288,105	7400,594	7346,22	7555,393	7225,777	80		7212,429	7459,413	7456,171	7512,497	7311
Time 6	volution accordiniteration	60 × 60	120, number of 10 Tabu Size 10 Instruction 10 Tabu Size 2000 Instruction 10 Tabu Size 2000 Instruction 20 Tabu Size 10 20 Tabu Size 10 30 Tabu Size 10 30 Tabu Size 10 50 Tabu Size 10 50 Tabu Size 10 50 Tabu Size 10 100 Tabu Size 2000 100 Tabu Size 2000		Cost ev 5000 —	volution according	g to different tabu size, nu	umber of iterat	= 10 Table Size 10 benders = 10 Table Size 10 benders = 10 Table Size 10 benders = 10 Table Size 2000 benders = 20 Table Size 100 benders = 20 Table Size 100 benders = 20 Table Size 100 benders = 50 Table Size 100 benders = 100 Table Size 100 benders = 100 Table Size 100 benders = 100 Table Size 100 benders																		