```
In [1]: import tensorflow as tf
        from tensorflow.keras.models import Model
        from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dense, Flatten, Dropout
        import numpy as np
        import matplotlib.pyplot as plt
        import tarfile
        import pickle
In [2]: def load_cifar10_from_tar(file_path):
            with tarfile.open(file_path, 'r:gz') as tar:
                train data = []
                train_labels = []
                for i in range(1, 6):
                    file = tar.extractfile(f'cifar-10-batches-py/data_batch_{i}')
                    batch = pickle.load(file, encoding='bytes')
                    train_data.append(batch[b'data'])
                    train labels.extend(batch[b'labels'])
                train_data = np.vstack(train_data).reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
                train_labels = np.array(train_labels)
                file = tar.extractfile('cifar-10-batches-py/test_batch')
                test batch = pickle.load(file, encoding='bytes')
                test_data = test_batch[b'data'].reshape(-1, 3, 32, 32).transpose(0, 2, 3, 1)
                test_labels = np.array(test_batch[b'labels'])
            return (train_data, train_labels), (test_data, test_labels)
In [3]: (X_train, y_train), (X_test, y_test) = load_cifar10_from_tar('cifar-10-python.tar.gz')
In [4]: subset_size_train = 5000
        subset_size_test = 2000
        X train = X train[:subset size train]
        y_train = y_train[:subset_size_train]
        X_test = X_test[:subset_size_test]
        y_test = y_test[:subset_size_test]
In [5]: #normalizing values
        X_train = X_train.astype('float32') / 255
        X_test = X_test.astype('float32') / 255
        if len(y train.shape) == 1:
            y_train = tf.keras.utils.to_categorical(y_train, 10)
            y_test = tf.keras.utils.to_categorical(y_test, 10)
In [6]: #defining the model
        def SmallVGG(input_shape=(32, 32, 3), num_classes=10):
            inputs = Input(shape=input_shape)
            # BLock 1
            x = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
            x = MaxPooling2D((2, 2))(x)
            # Block 2
            x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
            x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
```

```
x = MaxPooling2D((2, 2))(x)

# Block 3
x = Conv2D(512, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(512, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2))(x)

# Fully connected layers
x = Flatten()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
outputs = Dense(num_classes, activation='softmax')(x)

model = Model(inputs=inputs, outputs=outputs)
return model
```

```
In [7]: model = SmallVGG()
  model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
  model.summary()
```

Model: "functional"

Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, 32, 32, 3)	0
conv2d (Conv2D)	(None, 32, 32, 64)	1,792
max_pooling2d (MaxPooling2D)	(None, 16, 16, 64)	0
conv2d_1 (Conv2D)	(None, 16, 16, 128)	73,856
conv2d_2 (Conv2D)	(None, 16, 16, 128)	147,584
max_pooling2d_1 (MaxPooling2D)	(None, 8, 8, 128)	0
conv2d_3 (Conv2D)	(None, 8, 8, 512)	590,336
conv2d_4 (Conv2D)	(None, 8, 8, 512)	2,359,808
conv2d_5 (Conv2D)	(None, 8, 8, 512)	2,359,808
max_pooling2d_2 (MaxPooling2D)	(None, 4, 4, 512)	0
flatten (Flatten)	(None, 8192)	0
dense (Dense)	(None, 512)	4,194,816
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 10)	5,130

Total params: 9,733,130 (37.13 MB)

Trainable params: 9,733,130 (37.13 MB)

Non-trainable params: 0 (0.00 B)

```
Epoch 1/20
157/157 -
                      - 50s 320ms/step - accuracy: 0.5725 - loss: 1.1785 - val accuracy: 0.4
965 - val_loss: 1.4099
Epoch 2/20
157/157 -
                      – 49s 314ms/step - accuracy: 0.5777 - loss: 1.1223 - val accuracy: 0.5
265 - val loss: 1.3740
Epoch 3/20
157/157 -
                      255 - val loss: 1.4087
Epoch 4/20
157/157 —
                      — 49s 313ms/step - accuracy: 0.6754 - loss: 0.8969 - val accuracy: 0.5
315 - val loss: 1.4225
Epoch 5/20
157/157 -
                      - 50s 319ms/step - accuracy: 0.7282 - loss: 0.7551 - val accuracy: 0.5
360 - val_loss: 1.4950
Epoch 6/20
157/157 -
                      - 52s 329ms/step - accuracy: 0.7492 - loss: 0.6788 - val accuracy: 0.5
400 - val loss: 1.4881
Epoch 7/20
157/157 -
                      - 55s 350ms/step - accuracy: 0.7872 - loss: 0.6274 - val accuracy: 0.5
180 - val_loss: 1.7149
Epoch 8/20
157/157 -
                      - 54s 345ms/step - accuracy: 0.8130 - loss: 0.5298 - val accuracy: 0.5
450 - val loss: 1.8011
Epoch 9/20
157/157 -
                      - 50s 318ms/step - accuracy: 0.8450 - loss: 0.4491 - val accuracy: 0.5
340 - val_loss: 2.0420
Epoch 10/20
157/157 -
                      - 49s 314ms/step - accuracy: 0.8686 - loss: 0.3630 - val accuracy: 0.5
330 - val loss: 1.8633
Epoch 11/20
157/157 -
                      - 52s 332ms/step - accuracy: 0.8842 - loss: 0.3379 - val accuracy: 0.5
365 - val loss: 2.1189
Epoch 12/20
157/157 -
                      120 - val loss: 2.1788
Epoch 13/20
157/157 -
                      340 - val_loss: 2.4097
Epoch 14/20
157/157 -
                      340 - val loss: 2.6787
Epoch 15/20
157/157 -
                      475 - val loss: 2.6919
Epoch 16/20
157/157 -
                      - 51s 326ms/step - accuracy: 0.9441 - loss: 0.1785 - val_accuracy: 0.5
435 - val loss: 2.6596
Epoch 17/20
157/157 -
                      - 49s 311ms/step - accuracy: 0.9446 - loss: 0.1701 - val accuracy: 0.5
420 - val loss: 2.7178
Epoch 18/20
157/157 -
                      - 49s 314ms/step - accuracy: 0.9592 - loss: 0.1259 - val_accuracy: 0.5
165 - val loss: 3.3917
Epoch 19/20
157/157 -
                       195 - val_loss: 2.8410
Epoch 20/20
157/157 -
                      – 49s 310ms/step - accuracy: 0.9513 - loss: 0.1547 - val_accuracy: 0.5
240 - val_loss: 3.2529
```

```
In [12]: | print("Model Accuracy: ", history.history['accuracy'][-1]*100,"%")
        Model Accuracy: 95.03999948501587 %
In [16]:
          plt.figure(figsize=(10, 5))
          plt.subplot(1, 2, 1)
          plt.plot(history.history['accuracy'], label='Training Accuracy')
          plt.title('Training Accuracy')
          plt.legend()
          plt.subplot(1, 2, 2)
          plt.plot(history.history['loss'], label='Training Loss')
          plt.title('Training Loss')
          plt.legend()
          plt.tight_layout()
          plt.show()
                            Training Accuracy
                                                                                   Training Loss
                                                              1.2
        0.95
                  Training Accuracy
                                                                                                     Training Loss
        0.90
                                                              1.0
        0.85
                                                              0.8
        0.80
        0.75
                                                              0.6
        0.70
                                                              0.4
        0.65
        0.60
                                                              0.2
                   2.5
                                    10.0
                                         12.5
                                                                        2.5
                                                                                                         17.5
              0.0
                         5.0
                               7.5
                                               15.0
                                                    17.5
                                                                  0.0
                                                                             5.0
                                                                                   7.5
                                                                                        10.0
                                                                                              12.5
                                                                                                   15.0
In [17]: def plot_images(images, true_labels, pred_labels, class_names):
              n = len(images)
              fig, axes = plt.subplots(1, n, figsize=(n*2, 2))
              for i, ax in enumerate(axes):
                  ax.imshow(images[i])
                  ax.axis('off')
                  true_label = class_names[np.argmax(true_labels[i])]
                  pred_label = class_names[np.argmax(pred_labels[i])]
                  ax.set_title(f"True: {true_label}\nPred: {pred_label}", fontsize=10)
```

Making Predictions

plt.show()

plt.tight_layout()

```
In [26]: num_images_to_plot = 5
    sample_indices = np.random.choice(len(X_test), num_images_to_plot, replace=False)
    sample_images = X_test[sample_indices]
    sample_labels = y_test[sample_indices]

predictions = model.predict(sample_images)
```

1/1 — **0s** 58ms/step


```
In [13]: from sklearn.metrics import confusion_matrix
    import seaborn as sns

y_pred = model.predict(X_test)
    y_pred_classes = np.argmax(y_pred, axis=1)
    y_true_classes = np.argmax(y_test, axis=1)

cm = confusion_matrix(y_true_classes, y_pred_classes)
    plt.figure(figsize=(10, 8))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=class_names, yticklabels=class_name)
    plt.title('Confusion Matrix')
    plt.xlabel('Predicted')
    plt.ylabel('True')
    plt.show()
```

63/63 1s 6ms/step

	Confusion Matrix											
	airplane -	126	4	10	1	5	5	10	4	19	12	
a	utomobile -	4	123	1	5	3	2	4	3	14	39	- 140
	bird -	23	2	76	17	38	15	14	4	3	3	- 120
	cat -	5	2	26	66	24	31	31	8	1	5	- 100
True	deer -	9	3	28	9	100	16	19	12	2	0	- 80
Ĕ	dog -	1	0	20	37	19	74	19	12	2	1	80
	frog -	0	2	10	18	26	7	148	2	1	2	- 60
	horse -	6	0	11	12	27	15	5	112	3	2	- 40
	ship -	21	8	7	10	2	3	2	1	159	4	- 20
	truck -	3	17	2	10	1	2	10	7	12	139	
		airplane -	tomobile -	bird -	cat -	deer -	- bop	frog -	horse -	- diys	truck -	- 0

In [14]: from sklearn.metrics import classification_report
 print("\nClassification Report:")
 print(classification_report(y_true_classes, y_pred_classes, target_names=class_names))

Predicted

Classification Report:

	precision	recall	f1-score	support
airplane	0.64	0.64	0.64	196
automobile	0.76	0.62	0.69	198
bird	0.40	0.39	0.39	195
cat	0.36	0.33	0.34	199
deer	0.41	0.51	0.45	198
dog	0.44	0.40	0.42	185
frog	0.56	0.69	0.62	216
horse	0.68	0.58	0.63	193
ship	0.74	0.73	0.73	217
truck	0.67	0.68	0.68	203
accuracy			0.56	2000
macro avg	0.56	0.56	0.56	2000
weighted avg	0.57	0.56	0.56	2000

In []:			