Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Практическая работа

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ ВЫСШИХ ПОРЯДКОВ

Студенты: Овчинников П.А.

Румянцев А.А.

Чебаненко Д.А.

Группа: R3241

Содержание

тод Эйлера
В чем заключается суть метода Эйлера?
Теоретическая справка
Алгоритм
Пример
тод Рунге-Кутта
Пример
тод стрельбы
Пример

Численные методы решения дифференциальных уравнений высших порядков — методы, которые решают дифференциальные уравнения, представляя результат в виде набора чисел. Чаще всего такие методы имеют чёткий алгоритм, поэтому их реализация в компьютерных программах не вызывает трудностей. Иногда для решения задачи требуется применение сразу нескольких численных методов, и вот какие из них существуют:

- 1. Метод Эйлера
- 2. Метод Рунге-Кутта
- 3. Метод Адамса
- 4. Метод стрельбы
- 5. Метод конечных разностей
- 6. Метод конечных элементов
- 7. Метод Галёркина
- 8. Метод Ритца

Как следует из содержания, в данной работе мы рассмотрим первый, второй и четвёртый методы.

Метод Эйлера

В чем заключается суть метода Эйлера?

Идея метода Эйлера заключается в аппроксимации интегральной кривой кусочно-линейной функцией, называемой ломаной Эйлера. Чтобы применить численный метод Эйлера к дифференциальному уравнению высшего порядка, необходимо свести заданное уравнение к системе уравнений первого порядка. В следующих пунктах преобразования и метод будут подробно рассмотрены.

За простоту алгоритма мы платим погрешностью полученной ломаной — она будет достаточно большая, так как она систематически возрастает на каждом новом шагу — явный метод Эйлера является одношаговым первого порядка точности. Для уменьшения погрешности были придуманы модифицироанный метод Эйлера с пересчетом, где добавляется коррекция прогноза, вследствие чего достигается второй порядок точности, и двухшаговый метод Адамса-Башфорта, где используются несколько вычисленных ранее значений функции.

С учетом всех минусов и доступных более практичных методов кажется, что данный метод использовался ранее до появления более точных аналогов, а сейчас устарел и нигде не применяется, но на самом деле в виду своей простоты данный алгоритм находит свое применение в теоретических исследованиях дифференциальных уравнений, задач вариационного исчисления и ряда других математических проблем.

Теоретическая справка

Рассмотрим основной принцип метода Эйлера на самом простом примере, еще без уравнений высших порядков. Пусть дана задача Коши для уравнения первого порядка:

$$\frac{dy}{dx} = f(x,y), \quad y|_{x=x_0} = y_0,$$

где функция f определена на некоторой области $D \subset \mathbb{R}^2$. Решение ищется на полуинтервале $(x_0,b]$. Разобьем интервал на n равных частей и получим шаг сетки $h=(b-x_0)/n$, иными словами введем на промежутке узлы $x_0 < x_1 < \ldots < x_n \le b$. Приближенное решение в узлах x_i , которое обозначим через y_i , определяется по формуле:

$$y_i = y_{i-1} + (x_i - x_{i-1})f(x_{i-1}, y_{i-1}) \equiv y_{i-1} + hf(x_{i-1}, y_{i-1}), \quad i = 1, 2, 3, \dots, n$$

Как уже было написано в предыдущем пункте, метод Эйлера решает только уравнения первого порядка, а значит нам придется приводить уравнение высшего порядка к системе уравнений первого порядка и решать каждое по отдельности по этому принципу.

№: Другими словами метод Эйлера основан на дискретизации дифференциальных уравнений во времени.

Алгоритм

Любое дифференциальное уравнение *m*-го порядка

$$y^{(m)} = f(x, y, y', y'', \dots, y^{(m-1)})$$

можно свести к системе, состоящей из m уравнений первого порядка при помощи замен. Проведем следующие замены:

$$y_1 = y',$$

 $y_2 = y'' = y'_1,$
 $y_3 = y''' = y'_2,$
 \vdots
 $y_m = y^{(m)} = y'_{m-1}$

В результате дифференциальное уравнение m-го порядка сводится к системе, состоящей из m дифференциальных уравнений первого порядка:

$$y^{(m)}(x) = \begin{cases} y' = y_1 \\ y'_1 = y_2 \\ y'_2 = y_3 \\ \vdots \\ y'_{m-1} = f(x, y, y_1, y_2, \dots, y_{m-1}) \end{cases}$$

Применим метод Эйлера к каждому уравнению в системе, тогда расчетные формулы примут вид:

$$y^{(m)}(x) = \begin{cases} y_{n+1} = y_n + h \cdot y_{1,n} \\ y_{1,n+1} = y_{1,n} + h \cdot y_{2,n} \\ y_{2,n+1} = y_{2,n} + h \cdot y_{3,n} \\ \vdots \\ y_{m-1,n+1} = y_{m-1,n} + hf(x_n, y_n, y_{1,n}, y_{2,n}, \dots, y_{m-1,n}) \\ x_{n+1} = x_n + h \end{cases}$$

где $y_n, y_{1,n}, y_{2,n} \dots y_{m-1,n}$ — значения переменных на текущем шагу, а $y_{n+1}, y_{1,n+1}, y_{2,n+1} \dots y_{m-1,n+1}$ — значения на следующем шагу.

Каждое из уравнений в системе будет являться решением заданного дифференциального уравнения высшего порядка. Можно построить график зависимости конкретного уравнения из системы от времени x и получить приблеженное решение соответствующего ДУ высшего порядка.

Если заданное дифференциальное уравнение высшего порядка является неоднородным $(g(x) \neq 0)$

$$y^{(m)} = f(x, y, y', y'', \dots, y^{(m-1)}) + g(x),$$

то его решением также будет являться система уравнений первого порядка, а неоднородность будет учитываться в уравнении самого высокого порядка:

$$y^{(m)}(x) = \begin{cases} y_{n+1} = y_n + h \cdot y_{1,n} \\ y_{1,n+1} = y_{1,n} + h \cdot y_{2,n} \\ y_{2,n+1} = y_{2,n} + h \cdot y_{3,n} \\ \vdots \\ y_{m-2,n+1} = y_{m-2,n} + h \cdot y_{m-1,n} \\ y_{m-1,n+1} = y_{m-1,n} + h \left[f(x_n, y_n, y_{1,n}, y_{2,n}, \dots, y_{m-1,n}) + g(x_n) \right] \\ x_{n+1} = x_n + h \end{cases}$$

Пример

Пусть у нас есть линейное неоднородное дифференциальное уравнение третьего порядка

$$y'''(x) + 2y''(x) - y'(x) + 1 = e^x$$

с начальными условиями

$$x_0 = 0$$
, $y(x_0) = 1$, $y'(x_0) = 0$, $y''(x_0) = 2$.

Сделаем следующие замены

$$y_1 = y$$
, $y_2 = y'$, $y_3 = y''$,

тогда имеем такую систему ДУ первого порядка:

$$y'''(x) = \begin{cases} y_{1,n+1} = y_{1,n} + h \cdot y_{2,n} \\ y_{2,n+1} = y_{2,n} + h \cdot y_{3,n} \\ y_{3,n+1} = y_{3,n} + h(-2y_{3,n} + y_{2,n} - 1 + e^{x_n}) \\ x_{n+1} = x_n + h \end{cases}$$

Имеем $x_0 = 0 \Rightarrow y_{1,0} = 1$, $y_{2,0} = 0$, $y_{3,0} = 2$. Рассмотрим работу алгоритма для простоты при малых значениях b и n. Пусть b = 0.5, n = 2, h = 0.25. Имеем следующие системы:

$$n = 0, \ y'''(x) = \begin{cases} y_{1,1} = y_{1,0} + h \cdot y_{2,0} \\ y_{2,1} = y_{2,0} + h \cdot y_{3,0} \\ y_{3,1} = y_{3,0} + h(-2y_{3,0} + y_{2,0} - 1 + e^{x_0}) \\ x_1 = x_0 + h \end{cases} \Rightarrow \begin{cases} y_{1,1} = 1 \\ y_{2,1} = 0.5 \\ y_{3,1} = 1 \\ x_1 = 0.25 \end{cases}$$

$$n = 1, \ y'''(x) = \begin{cases} y_{1,2} = y_{1,1} + h \cdot y_{2,1} \\ y_{2,2} = y_{2,1} + h \cdot y_{3,1} \\ y_{3,2} = y_{3,1} + h(-2y_{3,1} + y_{2,1} - 1 + e^{x_1}) \\ x_2 = x_1 + h \end{cases} \Rightarrow \begin{cases} y_{1,1} = 1 \\ y_{2,1} = 0.5 \\ y_{3,1} = 1 \\ x_1 = 0.25 \end{cases}$$

$$n = 2, \ y'''(x) = \begin{cases} y_{1,2} = y_{1,1} + h \cdot y_{2,1} \\ y_{2,2} = y_{2,1} + h \cdot y_{2,1} - 1 + e^{x_1} \\ y_{2,2} = 0.75 \end{cases}$$

$$y_{3,2} = 0.696 \\ x_2 = 0.5 \end{cases}$$

$$x_3 = y_{2,2} + h \cdot y_{3,2} \\ y_{3,3} = y_{3,2} + h(-2y_{3,2} + y_{2,2} - 1 + e^{x_2}) \\ x_3 = x_2 + h \end{cases} \Rightarrow \begin{cases} y_{1,1} = 1 \\ y_{2,1} = 0.5 \\ y_{3,1} = 1 \\ x_1 = 0.25 \end{cases}$$

Мы решили неоднородное линейное ДУ третьего порядка методом Эйлера с заданными начальными условиями, интервалом, количеством шагов и шагом сетки. Теперь можно построить три графика – $y_{1,n}(x_n)$, $y_{2,n}(x_n)$, $y_{3,n}(x_n)$, где $n \in [0,2]$, чтобы получить приближенные графики заданного ДУ.

Метод Рунге-Кутта

Метод Рунге-Кутты является численным методом решения обыкновенных дифференциальных уравнений (ОДУ) и применяется для аппроксимации решений дифференциальных уравнений. Он особенно эффективен для решения систем ОДУ и уравнений высших порядков. Для уравнения высшего порядка метод Рунге-Кутты применяется после его преобразования в систему уравнений первого порядка.

Любое дифференциальное уравнение т-ого порядка:

$$y^m = f(x, y, y', ..., y^{m-1})$$

можно свети к системе, состоящей из т уравнений первого порядка при помощи замен.

$$y_1 = y'$$

 $y_2 = y'' = y'_1$
 $y_3 = y''' = y'_2$
...
 $y_m = y^{(m)} = y^{(m-1)}$

В результате дифференциальное уравнение m-го порядка сводится к системе, состоящей из m дифференциальных уравнений первого порядка:

$$\begin{cases} y' = y_1 \\ y'_1 = y_2 \\ y'_2 = y_3 \\ \dots \\ y'_{m_1} = f(x, y, y_1, y_2, \dots, y_{m_1}) \end{cases}$$

Решением системы, а значит и дифференциального уравнения m-ого порядка является m табличных функций

$$y, y_1 = y' \cdot y_2 = y_2'' = y_{m-1}$$

то есть функция y_x и все ее производные включая производную (m-1)-го порядка. При этом каждая итз табличных функция определяется на промежутке [a, b] с шагом h и включает n узловых точек. Таким образом, численным решением уравнения или системы является матрица порядка $m \times n$. Дальше применяется метод Рунге-Кутты для уравнений первого порядка.

Пример

Пусть надо решить дифференциальное уравнение

$$y'' - xy' + 2xy = 0.8$$

с краевыми условиями

$$y(1.5) = -0.2$$

$$y'(1.5) = 2$$

Заданные параметры:

- 1. диапазон изменения аргумента [1.5; 2.5]
- 2. шаг изменения аргумента h=0.1
- 3. решение значения у при x = 1.5; 1.6; ...; 2.5

Заменяем уравнение второго порядка на систему уравнений первого порядка, введя функцию z(x) = y'(x) и выразив производные:

$$z' = U(x, y, z) = xz - 2xy + 0.8$$

 $y' = V(x, y, z) = z$

при краевых условиях

$$y(1.5) = -0.2$$
$$z(1.5) = 2$$

 $z_{i+1} = z_i + \frac{h}{6}(q_0 + 2q_1 + 2q_2 + q_3)$

В методе Рунге-Кутта значение функции в узле ищут по значению функции в предыдущем узле.

$$y_{i+1} = y_i + \frac{h}{6}(k_0 + 2k_1 + 2k_2 + k_3)$$

$$q_0 = U(x_i, y_i, z_i)$$

$$q_1 = U(x_i + \frac{h}{2}, y_i + k_0 \frac{h}{2}, z_i + q_0 \frac{h}{2})$$

$$q_2 = U(x_i + \frac{h}{2}), y_i + k_1 \frac{h}{2}, z_i + q_1 \frac{h}{2}$$

$$q_3 = U(x_i + h, y_i + k_2 h, z_i + q_2 h)$$

$$k_0 = V(z_i)$$

$$k_1 = V(z_i + q_0 \frac{h}{2})$$

$$k_2 = V(z_i + q_1 \frac{h}{2})$$

 $k_3 = V(z_i + q_2 h)$

Решим задачу Коши методом Рунге-Кутта четвертого порядка, разделив интервал на 10 частей.

i	x	у	z	k	q	Dy	Dz
0	1,5	-0,2	2	2	4,4	2	4,4
	1,55	-0,1	2,22	2,22	4,551	4,44	9,102
	1,55	-0,089	2,2276	2,2276	4,5286	4,4551	9,0572
	1,6	0,0228	2,4529	2,4529	4,6518	2,4529	4,6518
						0,2225	0,4535
1	1,6	0,0225	2,4535	2,4535	4,6537	2,4535	4,6537
	1,65	0,1451	2,6862	2,6862	4,7533	5,3724	9,5065
	1,65	0,1568	2,6912	2,6912	4,7231	5,3824	9,4462
	1,7	0,2916	2,9258	2,9258	4,7825	2,9258	4,7825
						0,2689	0,4731
2	1,7	0,2914	2,9267	2,926	4,847	2,9267	4.7847
	1,75						
	1,75						
	1,8						
h = 0,1							
x0 = 1.5							
y0 = -0.2							
z0 = 2							

где

Метод стрельбы

Метод стрельбы — численный метод решения краевой задачи для дифференциальных уравнений любого порядка. Краевые задачи являются задачами, в которых необходимы найти решение, удовлетворяющее заданным границам. Рассмотрим уравнение второго порядка (для уравнений более высоких порядков метод стрельбы применяется аналогично, а уравнение п-го порядка сводится к системе из п дифференциальных уравнений первого порядка):

$$y''(x) = f(x, y, y')$$

3десь y(x) — искомая функция, f(x,y,y') — заданная функция. Также заданы граничные условия ниже:

$$y(0) = a$$

$$y(l) = b$$

$$0 < x < l$$

Преобразуем уравнение, приведя его к системе:

$$\begin{cases} y' = u \\ u' = f(x, y, u) \end{cases}$$

Для разрешимости получившейся системы в рамках задачи Коши к условию y(0) необходимо условие y'(0) = u(0). Нам известно, что y(0) = a, а вот значение u(0) мы будем подбирать. Зададим экспериментальным путём произвольное значение $u(0) = \lambda_1$ и решим задачу численно любым известным методом (например, методом Рунге-Кутта). Так в координате x = l будет вычислено значение $y(l) = y_1$ — очевидно, $y_1 \neq b$, поэтому мы решим задачу для другого произвольного значения $u(0) = \lambda_2$ и выясним, ближе или дальше от b находится y_2 , чем y_1 . Повторяя этот процесс многократно, применяя разные методы коррекции начального значения (например, метод бисекции), мы найдём такое значение $u(0) = \lambda_n$, что y_n будет находиться достаточно близко к b. Таким образом, мы найдём решение, удовлетворяющее граничным условиям.

Такая коррекция λ под начальные условия называется методом стрельбы — название связано с тем, что путём «недолётов» мы определяем подходящее значение y, из которого вытекает решение y(x).

 \mathbf{N} В: Важно отметить, что метод стрельбы не гарантирует нахождения решения, а <u>лишь приближает</u> к нему — необходимая точность решения задаётся условием задачи или экспериментально. К тому же этот метод требует нескольких итераций, поэтому его выбор должен быть обоснованным.

Пример

Рассмотрим пример дифференциального уравнения второго порядка и решим его методом стрельбы. Пусть дано уравнение:

$$y''(x) + 2y'(x) + y(x) = 0$$

Для него задано начальные условия:

$$y(0) = 0$$
$$y'(0) = 1$$

Преобразуем это уравнение в систему двух уравнений первого порядка, введя новую переменную u(x) = y'(x):

$$\begin{cases} y' = u \\ u' = -2u - y \end{cases}$$

Теперь мы будем решать эту систему методом стрельбы. Выберем произвольное значение $u(0) = \lambda_1 = 1$. Используем метод Рунге-Кутта для интегрирования системы уравнений (h — шаг интегрирования, о котором в рамках метода стрельбы будет сказано позже):

$$k_{1y} = u$$

$$k_{1u} = -2u - y$$

$$k_{2y} = u + \frac{h}{2}k_{1u}$$

$$k_{2u} = -2\left(u + \frac{h}{2}k_{1u}\right) - \left(y + \frac{h}{2}k_{1y}\right)$$

$$k_{3y} = u + \frac{h}{2}k_{2u}$$

$$k_{3u} = -2\left(u + \frac{h}{2}k_{2u}\right) - \left(y + \frac{h}{2}k_{2y}\right)$$

$$k_{4y} = u + hk_{3u}$$

$$k_{4u} = -2\left(u + hk_{3u}\right) - \left(y + hk_{3y}\right)$$

Обновим значения y и u с использованием метода Рунге-Кутта ($y_0 = y(0)$ и $u_0 = y'(0)$ на первой итерации):

$$y_1 = y_0 + \frac{h}{6} (k_{1y} + 2k_{2y} + 2k_{3y} + k_{4y})$$

$$u_1 = u_0 + \frac{h}{6} (k_{1u} + 2k_{2u} + 2k_{3u} + k_{4u})$$

Проверяем, насколько близко полученное значение y_1 к желаемому y(0). Если они близки для заданной точности, то мы нашли решение. Если нет, то мы повторяем процесс, скорректировав λ_1 при помощи корректировочной формулы $\lambda_2 = \lambda_1 - \frac{y_1 - y_0}{u_1}$ и повторяем процесс. В общем виде корректировочная формула выглядит так:

$$\lambda_{n+1} = \lambda n - \frac{y_n - y_0}{u_n}$$

Остаётся лишь повторять процесс с новым и новым λ до тех пор, пока не достигнем достаточной близости.

 \mathbb{N} : Шаг интегрирования h необходимо выбирать внимательно. Решение будет приблежённым, и его точность напрямую зависит от шага интегрирования — чем меньше шаг, тем точнее решение. Однако слишком маленький шаг может привести к тому, что метод стрельбы не сойдётся к решению. Или же можно использовать более точные методы интегрирования.