

Patent Docket No. P1085R4-1A
EXPRESS MAIL NO. EM168882496US
MAILED: January 20, 1999

5

~~PEG CONJUGATES~~
~~ANTIBODY FRAGMENT-POLYMER CONJUGATES AND HUMANIZED ANTI-IL-8~~
~~MONOCLONAL ANTIBODIES~~

10

This application is a non-provisional application filed under 37 CFR 1.53(b), claiming priority under 35 USC 119(e) to co-pending provisional application U.S. Ser. No. 60/074,330 filed 22 January 1998, co-pending provisional application U.S. Ser. No. 60/094,013 filed 24 July 1998, co-pending provisional application U.S. Ser. No. 60/094,003 filed 24 July 1998, and co-pending provisional application U.S. Ser. No. 60/075,467 filed 20 February 1998, the entire disclosures of which provisional applications are incorporated herein by reference.

15

20

25

30

FIELD OF THE INVENTION

This application relates to the field of antibody fragments derivatized with polymers, and in particular to the use of such derivatization to increase the circulation half-lives of antibody fragment-polymer conjugates. This application also relates to the field of inflammatory diseases and asthma, and in particular to anti-IL-8 antibody treatment of inflammatory diseases and asthmatic diseases. This application further relates to humanized anti-interleukin-8 (IL-8) antibodies and to high affinity variants of such antibodies.

BACKGROUND

Modification of proteins with polyethylene glycol ("PEGylation") has the potential to increase residence time and reduce immunogenicity in vivo. For example, Knauf et al., J. Biol. Chem., 263: 15064-15070 (1988) reported a study of the pharmacodynamic behavior in rats of various polyoxylated glycerol and polyethylene glycol modified species of interleukin-2. Despite the known advantage of PEGylation, PEGylated proteins have not been widely exploited for

clinical applications. In the case of antibody fragments, PEGylation has not been shown to extend serum half-life to useful levels. Delgado et al., Br. J. Cancer, 73: 175-182 (1996), Kitamura et al., Cancer Res., 51: 4310-4315 (1991), Kitamura et al., Biochem. Biophys. Res. Comm., 171: 1387-1394 (1990), and Pedley et al., Br. J. Cancer, 70: 1126-1130 (1994) reported studies characterizing blood clearance and tissue uptake of certain anti-tumor antigen antibodies or antibody fragments derivatized with low molecular weight (5 kD) PEG. Zapata et al., FASEB J., 9: A1479 (1995) reported that low molecular weight (5 or 10 kD) PEG attached to a sulphydryl group in the hinge region of a Fab' fragment reduced clearance compared to the parental Fab' molecule.

Interleukin-8 (IL-8) is neutrophil chemotactic peptide secreted by a variety of cells in response to inflammatory mediators (for a review see Hebert *et al.* Cancer Investigation 11(6):743 (1993)). IL-8 can play an important role in the pathogenesis of inflammatory disorders, such as adult respiratory distress syndrome (ARDS), septic shock, and multiple organ failure. Immune therapy for such inflammatory disorders can include treatment of an affected patient with anti-IL-8 antibodies.

Sticherling *et al.* (J. Immunol. 143:1628 (1989)) disclose the production and characterization of four monoclonal antibodies against IL-8. WO 92/04372, published March 19, 1992, discloses polyclonal antibodies which react with the receptor-interacting site of IL-8 and peptide analogs of IL-8, along with the use of such antibodies to prevent an inflammatory response in patients. St. John *et al.* (Chest 103:932 (1993)) review immune therapy for ARDS, septic shock, and multiple organ failure, including the potential therapeutic use of anti-IL-8 antibodies. Sekido *et al.* (Nature 365:654 (1993)) disclose the prevention of lung reperfusion injury in rabbits by a monoclonal antibody against IL-8. Mulligan *et al.* (J. Immunol. 150:5585 (1993)), disclose protective effects of a murine monoclonal antibody to human IL-8 in inflammatory lung injury in rats.

WO 95/23865 (International Application No. PCT/US95/02589 published September 8, 1995) demonstrates that anti-IL-8 monoclonal antibodies can be used therapeutically in the treatment of other inflammatory disorders, such as bacterial pneumonias and inflammatory bowel

disease.

Anti-IL-8 antibodies are additionally useful as reagents for assaying IL-8. For example, Sticherling *et al.* (Arch. Dermatol. Res. 284:82 (1992)), disclose the use of anti-IL-8 monoclonal antibodies as reagents in immunohistochemical studies. Ko *et al.* (J. Immunol. Methods 149:227 (1992)) disclose the use of anti-IL-8 monoclonal antibodies as reagents in an enzyme-linked immunoabsorbent assay (ELISA) for IL-8.

SUMMARY OF THE INVENTION

One aspect of the invention is a conjugate consisting essentially of one or more antibody fragments covalently attached to one or more nonproteinaceous polymer molecules, wherein the apparent size of the conjugate is at least about 500 kD.

Another aspect of the invention is a conjugate formed by one or more antibody fragments covalently attached to one or more nonproteinaceous polymer molecules, wherein the apparent size of the conjugate is at least about 500 kD, and wherein the covalent structure of the conjugate is free of any matter other than the antibody fragment and nonproteinaceous polymer molecules.

Yet another aspect of the invention is a conjugate formed by the one or more antibody fragments covalently attached to one or more nonproteinaceous polymer molecules, wherein the covalent structure of the conjugate further incorporates one or more nonproteinaceous labels, wherein the covalent structure of the conjugate is free of any matter other than the antibody fragment, nonproteinaceous polymer and nonproteinaceous label molecules, and wherein the apparent size of the conjugate is at least about 500 kD.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a graph depicting the blocking of IL-8 mediated elastase release from neutrophils by anti-IL-8 monoclonal antibody 5.12.14.

Figure 2 is a graph depicting the inhibition of ^{125}I -IL-8 binding to neutrophils by unlabeled IL-8.

Figure 3 demonstrates that a isotype matched negative control Fab (denoted as "4D5

Fab") does not inhibit the binding of ^{125}I -IL-8 to human neutrophils.

Figure 4 is a graph depicting the inhibition of binding of ^{125}I -IL-8 to human neutrophils by chimeric 5.12.14 Fab with an average IC_{50} of 1.6 nM.

Figure 5 is a graph depicting the inhibition of binding of ^{125}I -IL-8 to human neutrophils by chimeric 6G.4.25 Fab with an average IC_{50} of 7.5 nM.

Figure 6 demonstrates the inhibition of human IL-8 mediated neutrophil chemotaxis by chimeric 6G4.2.5 Fab and chimeric 5.12.14 Fab.

Figure 7 demonstrates the relative abilities of chimeric 6G4.2.5 Fab and chimeric 5.12.14 Fab to inhibit rabbit IL-8 mediated neutrophil chemotaxis.

Figure 8 depicts the stimulation of elastase release from human neutrophils by various concentrations of human and rabbit IL-8. The relative extent of elastase release was quantitated by measurement of absorbance at 405 nm. The data represent mean \pm SEM of triplicate samples.

Figure 9 is a graph depicting the ability of chimeric 6G4.2.5 Fab and chimeric 5.12.14 Fab to inhibit elastase release from human neutrophils stimulated by human IL-8. The results were normalized to reflect the percentage of elastase release elicited by 100 nM IL-8 alone. The data represent the mean \pm SEM of three separate experiments performed on different days with different blood donors. IC_{50} values were calculated by four parameter fit.

Figure 10 is a graph depicting the relative abilities of chimeric 6G4.2.5 Fab and chimeric 5.12.14 Fab to inhibit elastase release from human neutrophils stimulated by rabbit IL-8. The results were normalized to reflect the percentage of elastase release elicited by 100 nM IL-8 alone. The data represent the mean \pm SEM of three separate experiments performed on different days with different blood donors. IC_{50} values were calculated by four parameter fit.

Figures 11A-11J are a set of graphs depicting the following parameters in a rabbit ulcerative colitis model: Figure 11A depicts myeloperoxidase levels in tissue; Figure 11B depicts IL-8 levels in tissue; Figure 11C depicts colon weight; Figure 11D depicts gross inflammation; Figure 11E depicts edema; Figure 11F depicts extent of necrosis; Figure 11G depicts severity of necrosis; Figure 11H depicts neutrophil margination; Figure 11I depicts neutrophil infiltration; and Figure 11J depicts mononuclear infiltration.

Figure 12 is a graph depicting the effect of anti-IL-8 monoclonal antibody treatment on the number of neutrophils in bronchoalveolar lavage (BAL) fluid in animals infected with Streptococcus pneumoniae, Escherichia coli, or Pseudomonas aeruginosa. Treatment with 6G4.2.5 significantly reduced the number of neutrophils present in the BAL fluid compared to 5 animals treated with isotype control mouse IgG (Figure 12).

Figure 13 depicts the DNA sequences (SEQ ID NOS: 1-6) of three primers designed for each of the light and heavy chains. Multiple primers were designed in order to increase the chances of primer hybridization and efficiency of first strand cDNA synthesis for cloning the variable light and heavy regions of monoclonal antibody 5.12.14.

Figure 14 depicts the DNA sequences (SEQ ID NOS: 7-10) of one forward primer and one reverse primer for the 5.12.14 light chain variable region amplification.

Figure 15 depicts the DNA sequences (SEQ ID NOS: 11-15) of one forward primer and one reverse primer for the 5.12.14 heavy chain variable region amplification.

Figure 16 depicts the DNA sequence (SEQ ID NO: 16) and the amino acid sequence (SEQ ID NO: 17) of the 5.12.14 light chain variable region and partial murine constant light region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). Important restriction sites are indicated in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable light region is amino acids 1 to 109. The partial murine constant light region is amino acids 110 to 123 (in italics).

Figure 17 depicts the DNA sequence (SEQ ID NO: 18) and the amino acid sequence (SEQ ID NO: 19) of the 5.12.14 heavy chain variable region and partial murine constant heavy region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). Important restriction sites are indicated in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable heavy region is amino acids 1 to 120. The partial murine constant heavy region is amino acids 121 to 130.

Figure 18 depicts the DNA sequences (SEQ ID NOS: 20-23) of amplification primers

used to convert murine light and heavy chain constant region residues to their human equivalents.

Figure 19 depicts the DNA sequence (SEQ ID NO: 24) and the amino acid sequence (SEQ ID NO: 25) for the 5.12.14 light chain variable region and the human IgG1 light chain constant region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). The human constant region is denoted in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable light region is amino acids 1 to 109. The human constant light region is amino acids 110 to 215.

Figures 20A-20B depict the DNA sequence (SEQ ID NO: 26) and the amino acid sequence (SEQ ID NO: 27) for the 5.12.14 heavy chain variable region and the heavy chain constant region of human IgG1. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). The human constant region is denoted in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable heavy region is amino acids 1 to 120. The human constant heavy region is amino acids 121 to 229.

Figure 21 depicts the DNA sequences (SEQ ID NOS: 1-6) of three primers designed for each of the light and heavy chains. Multiple primers were designed in order to increase the chances of primer hybridization and efficiency of first strand cDNA synthesis for cloning the variable light and heavy regions of monoclonal antibody 6G4.2.5.

Figure 22 depicts the DNA sequences (SEQ ID NOS: 28-31) of one forward primer and one reverse primer for the 6G4.2.5 light chain variable region amplification.

Figure 23 depicts the DNA sequences (SEQ ID NOS: 32,33,11,15,14, and 13) of one forward primer and one reverse primer for the 6G4.2.5 heavy chain variable region amplification.

Figure 24 depicts the DNA sequence (SEQ ID NO: 34) and the amino acid sequence (SEQ ID NO: 35) of the 6G4.2.5 light chain variable region and partial murine constant light region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). Useful cloning sites are in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable light region is amino acids 1 to 114. The partial murine constant light region is amino acids 115 to 131.

Figure 25 depicts the DNA sequence (SEQ ID NO: 36) and the amino acid sequence (SEQ ID NO: 37) of the 6G4.2.5 heavy chain variable region and partial murine constant heavy region. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). Useful cloning sites are in italics.

5 The signal peptide of STII is amino acids -23 to -1. The murine variable heavy region is amino acids 1 to 122. The partial murine constant heavy region is amino acids 123 to 135.

Figure 26 depicts the DNA sequences (SEQ ID NOS: 38-40) of primers to convert the murine light chain and heavy chain constant regions to their human equivalents.

Figures 27A-27B depict the DNA sequence (SEQ ID NO: 41) and the amino acid sequence (SEQ ID NO: 42) for the chimeric 6G4.2.5 light chain. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). The human constant region is denoted in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable light region is amino acids 1 to 114. The human constant light region is amino acids 115 to 220.

15 Figures 28A-28B depict the DNA sequence (SEQ ID NO: 43) and the amino acid sequence (SEQ ID NO: 44) for the chimeric 6G4.2.5 heavy chain. CDRs are indicated by either X-ray crystallography (underlined amino acids) or by Kabat sequence comparison (amino acids denoted with asterisk). The human constant region is denoted in italics. The signal peptide of STII is amino acids -23 to -1. The murine variable heavy region is amino acids 1 to 122. The human constant heavy region is amino acids 123 to 231.

20 Fig. 29 depicts an amino acid sequence alignment of murine 6G425 light chain variable domain (SEQ ID NO: 45), humanized 6G425 F(ab)-1 light chain variable domain (SEQ ID NO: 46), and human light chain κI consensus framework (SEQ ID NO: 47) amino acid sequences, and an amino acid sequence alignment of murine 6G425 heavy chain variable domain (SEQ ID NO: 48), humanized 6G425 F(ab)-1 heavy chain variable domain (SEQ ID NO: 49), and human IgG1 subgroup III heavy chain variable domain (SEQ ID NO: 50) amino acid sequences, used in the humanization of 6G425. Light chain CDRs are labeled L1, L2, L3; heavy chain CDRs are labeled H1, H2, and H3. = and + indicate CDR sequences as defined by X-ray crystallographic

contacts and sequence hypervariability, respectively. # indicates a difference between the aligned sequences. Residue numbering is according to Kabat *et al.* Lower case lettering denotes the insertion of an amino acid residue relative to the humIII consensus sequence numbering.

Figs. 30A, 30B and 30C are graphs depicting the ability of F(ab)-9 (humanized 6G4V11

5 Fab) to inhibit human wild type IL-8, human monomeric IL-8, and rhesus IL-8 mediated neutrophil chemotaxis, respectively. Fig. 30A presents inhibition data for F(ab)-9 samples at concentrations of 0.06 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM, and 100 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 100 nM, and for a no antibody control sample, in the presence of 2nM human wild type IL-8. Fig. 30B presents inhibition data for F(ab)-9 samples at concentrations of 6.25 nM, 12.5 nM, 25 nM, and 50 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 100 nM, and for a no antibody control sample, in the presence of 4 nM human monomeric IL-8 (denoted as "BD59" and as "monomeric IL-8"). Fig. 30C presents inhibition data for F(ab)-9 samples at concentrations of 1 nM, 12.5 nM, 25 nM, and 50 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 100 nM, and for a no antibody control sample, in the presence of 2 nM rhesus IL-8. In addition, Figs. 30A-30C each presents data for a no IL-8 buffer control sample (denoted as "Buffer") in the respective inhibition assay.

Fig. 31A depicts the amino acid sequences of the humanized anti-IL-8 6G4.2.5V11 light chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 51), the humanized anti-IL-8 6G4.2.5V11 heavy chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 52), and a peptide linker in a C-terminal fusion with M13 phage gene-III coat protein (SEQ ID NO: 53).

Fig. 31B depicts the nucleic acid sequence (SEQ ID NO: 54) and the translated amino acid sequence (SEQ ID NO: 51) of the humanized anti-IL-8 6G4.2.5V11 light chain in an N-terminal fusion with the STII leader peptide.

Fig. 31C depicts the amino acid sequences of the humanized anti-IL-8 6G4.2.5V19 light chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 51), and the humanized anti-IL-8 6G4.2.5V19 heavy chain in an N-terminal fusion with the STII leader peptide (SEQ ID

NO: 55).

Fig. 32 is a three dimensional computer model of the humanized anti-IL-8 6G4.2.5V11 antibody. Heavy chain CDR loops and variable domain regions appear in purple, and CDR-H3 side chain residues appear in yellow. Heavy chain constant domain regions appear in red. Light chain CDR loops and variable domain regions appear in off-white, and the Asn residue at amino acid position 35 (N35) in CDR L1 appears in green. Light chain constant domain regions appear in amber.

Fig. 33 is a Scatchard plot depicting the inhibition of ^{125}I -IL-8 binding to human neutrophils exhibited by intact murine 6G4.2.5 antibody (denoted 6G4 murine mAb), 6G4.2.5 murine-human chimera Fab (denoted 6G4 chimera), humanized 6G4.2.5 Fab versions I and II (denoted V1 and V11), and variant 6G4.2.5V11N35A Fab (denoted V11N35A).

Figs. 34A, 34B, 34C and 34D are graphs depicting the ability of 6G4.2.5V11N35A Fab to inhibit human wild type IL-8, human monomeric IL-8, rabbit IL-8, and rhesus IL-8 mediated neutrophil chemotaxis, respectively. Fig. 34A presents inhibition data for 6G4.2.5V11N35A Fab samples at concentrations of 0.5, 1, 2, 4, 8, 16, and 33 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 33 nM, and for a no antibody control (denoted "HuIL-8") sample, in the presence of 2 nM human wild type IL-8. Fig. 34B presents inhibition data for 6G4.2.5V11N35A Fab samples at concentrations of 0.5, 1, 2, 4, 8, 16, and 33 nM, for an intact 6G4.2.5 mAb sample at a concentration of 33 nM, for an isotype control antibody (denoted as "4D5") sample at a concentration of 33 nM, and for a no antibody control (denoted "BD59") sample, in the presence of 2 nM human monomeric IL-8. Fig. 34C presents inhibition data for 6G4.2.5V11N35A Fab samples at concentrations of 0.5, 1, 2, 4, 8, 16, and 33 nM, for an intact 6G4.2.5 mAb sample at a concentration of 33 nM, for an isotype control antibody (denoted "4D5") sample at a concentration of 33 nM, and for a no antibody control (denoted "Rab IL-8") sample, in the presence of 2 nM rabbit IL-8. Fig. 34D presents inhibition data for 6G4.2.5V11N35A Fab samples at concentrations of 0.5, 1, 2, 4, 8, 16, and 33 nM, for an intact 6G4.2.5 mAb sample at a concentration of 33 nM, for an isotype control antibody (denoted as "4D5") sample at a concentration of 33 nM, and for a no antibody control (denoted "Rhe IL-8")

sample, in the presence of 2 nM rhesus IL-8. In addition, Figs. 34B-34D each presents data for human wild type IL-8 control (denoted "HuIL-8") samples at a concentration of 2 nM in the respective assay, and Figs. 34A-34D each presents data for a no IL-8 buffer control (denoted "Buffer") sample in the respective assay.

5 Fig. 35 depicts the amino acid sequences of the humanized anti-IL-8 6G4.2.5V11N35A light chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 56), the humanized anti-IL-8 6G4.2.5V11N35A heavy chain in an N-terminal fusion with the STII leader peptide (SEQ ID NO: 52), and the GCN4 leucine zipper peptide (SEQ ID NO: 57). The Ala residue (substituted for the wild type Asn residue) at amino acid position 35 in the 6G4.2.5V11N35A light chain appears in bold case. A putative pepsin cleavage site in the GCN4 leucine zipper sequence is underlined.

10 Fig. 36 depicts the DNA sequence (SEQ ID NO: 58) and the amino acid sequence (SEQ ID NO: 56) of the humanized anti-IL-8 6G4.2.5V11N35A light chain in an N-terminal fusion with the STII leader peptide. Complementarity determining regions L1, L2, and L3 are underlined.

15 Figs. 37A-37B depict the DNA sequence (SEQ ID NO: 59) and the amino acid sequence (SEQ ID NO: 60) of the humanized anti-IL-8 6G4.2.5V11N35A heavy chain in an N-terminal fusion with the STII leader peptide and in a C-terminal fusion with the GCN4 leucine zipper sequence. Complementarity determining regions H1, H2, and H3 are underlined.

20 Fig. 38 is a Scatchard plot depicting the inhibition of ¹²⁵I-IL-8 binding to human neutrophils exhibited by 6G4.2.5V11N35A Fab (denoted Fab), 6G4.2.5V11N35A F(ab')₂ (denoted F(ab')₂), and human wild type IL-8 control (denoted IL-8).

Fig. 39 is a graph depicting a comparison of the wild type human IL-8 mediated neutrophil chemotaxis inhibition activities of the 6G4.2.5V11N35A F(ab')₂ and 25 6G4.2.5V11N35A Fab. Inhibition data are presented for 6G4.2.5V11N35A Fab samples (denoted "N35A Fab") and 6G4.2.5V11N35A F(ab')₂ samples (denoted N35A F(ab')₂) at concentrations of 0.3, 1, 3, 10, 30, and 100 nM, for an isotype control antibody (denoted as "4D5") sample at a concentration of 100 nM, and for a no antibody control sample, in the

presence of 2 nM human wild type IL-8. In addition, inhibition data are presented for no IL-8 buffer control samples (denoted "Buffer").

Fig. 40 is a graph depicting the ability of 6G4.2.5V11N35A F(ab')₂ to inhibit human monomeric IL-8, rhesus IL-8, and rabbit IL-8 mediated neutrophil chemotaxis. Human monomeric IL-8 mediated neutrophil chemotaxis data are presented for 6G4.2.5V11N35A F(ab')₂ samples at concentrations of 0.3, 1, 3, and 10 nM, for an isotype control antibody (denoted as "4D5") sample at a concentration of 100 nM, and for a no antibody control sample (denoted as "BD59"), in the presence of human monomeric IL-8 (denoted as "BD59") at a concentration of 0.5 nM. Rhesus IL-8 mediated neutrophil chemotaxis data are presented for 6G4.2.5V11N35A F(ab')₂ samples at concentrations of 0.3, 1, 3, and 10 nM, and for a no antibody control sample, in the presence of rhesus IL-8 at a concentration of 2 nM. Rabbit IL-8 mediated neutrophil chemotaxis data are presented for 6G4.2.5V11N35A F(ab')₂ samples at concentrations of 0.3, 1, 3, and 10 nM, and for a no antibody control sample, in the presence of rabbit IL-8 at a concentration of 2 nM. In addition, inhibition data are presented for a no IL-8 buffer control sample (denoted as "Buffer") and for a 2 nM human wild type IL-8 (denoted as "HuIL-8").

Figs. 41A-41V depict the nucleic acid sequence (SEQ ID NO: 61) of the p6G4V11N35A.F(ab')₂ vector.

Fig. 42 depicts the nucleic acid sequences of the stop template primer (SEQ ID NO: 63) and the NNS randomization primer (SEQ ID NO: 64) used for random mutagenesis of amino acid position 35 in variable light chain CDR-L1 of humanized antibody 6G4V11.

Fig. 43A is a table of data describing the frequencies of different phage display clones obtained from the randomization of amino acid position 35 in variable light chain CDR-L1 of humanized antibody 6G4V11.

Figs. 43B, 43C, 43D and 43E are graphs of displacement curves depicting the inhibition of ¹²⁵I-IL-8 binding to neutrophils exhibited by the 6G4V11N35A, 6G4V11N35D, 6G4V11N35E and 6G4V11N35G Fab's.

Fig. 44 contains a graph depicting the typical kinetics of an anti-IL-8 antibody fragment

(6G4V11N35A F(ab')₂) binding to IL-8. Fig. 44 also contains a table of data providing the equilibrium constant for 6G4V11N35A Fab binding to IL-8 (rate constants were not determined "ND"), and the equilibrium and rate constants for 6G4V11N35A F(ab')₂ and 6G4V11N35E Fab binding to IL-8.

5 Fig. 45 depicts the DNA sequence (SEQ ID NO: 65) and amino acid sequence (SEQ ID NO: 62) of the 6G4V11N35E light chain in an N-terminal fusion with the STII leader peptide. Complementarity determining regions L1, L2 and L3 are underlined.

10 Fig. 46 is a graph depicting the ability of 6G4V11N35E Fab to inhibit human IL-8 (dark columns) and rabbit IL-8 (light columns) mediated neutrophil chemotaxis. Data are presented for 6G4V11N35E Fab samples at concentrations of 0.4, 1.2, 3.7, 11 and 33 nM, and for an isotype control antibody (4D5) sample at a concentration of 100 nM, in the presence of 2 nM human IL-8 or 2 nM rabbit IL-8. In addition, inhibition data are presented for a no IL-8 buffer control sample (denoted "Buffer") and for human and rabbit IL-8 control samples (denoted "IL-8").

15 Fig. 47 depicts the DNA sequence of the sense (SEQ ID NO: 66) and anti-sense (SEQ ID NO: 67) strands of a PvuII-XhoI synthetic nucleotide encoding amino acids Leu4 to Phe29 of the 6G4V11N35A heavy chain.

20 Figs. 48A-48T depict the DNA sequence (SEQ ID NO: 68) of plasmid p6G4V11N35A.choSD9.

25 Figs. 49A, 49B, 49C and 49D are graphs of displacement curves depicting the inhibition of ¹²⁵I-IL-8 binding to neutrophils exhibited by IL-8 control, intact murine 6G4.2.5 antibody, the full length IgG1 form of variant 6G4V11N35A, and the full length IgG1 form of variant 6G4V11N35E, respectively.

Fig. 51 contains a graph depicting the typical kinetics of a full length anti-IL8 antibody (6G4V11N35A IgG1) binding to IL-8. Fig. 51 also contains a table of data providing the equilibrium and rate constants for full length murine 6G4.2.5 IgG2a, 6G4V11N35A IgG1 and

*ANS
B1* 6G4V11N35E IgG1 binding to IL-8.

Figs. 52A and 52B are graphs of displacement curves depicting the results of an unlabeled IL-8/¹²⁵I-IL-8 competition radioimmunoassay performed with full length 6G4V11N35A IgG1 and 6G4V11N35E IgG1, respectively.

5 Fig. 53 depicts the DNA sequence (SEQ ID NO: 69) and amino acid sequence (SEQ ID NO: 70) of the 6G4V11N35A Fab' heavy chain (6G4V11N35A Fab heavy chain modified to contain a cysteine residue in the hinge region).

Figs. 54A-54C contain graphs of displacement curves depicting the IL-8 binding and IC₅₀'s for PEG-maleimide modified 6G4V11N35A Fab' molecules.

10 Figs. 55A-55C are graphs depicting the ability of PEG-maleimide modified 6G4V11N35A Fab' molecules to inhibit human IL-8 and rabbit IL-8 mediated neutrophil chemotaxis.

15 Figs. 56A-56C are graphs depicting the ability of PEG-maleimide modified 6G4V11N35A Fab' molecules to inhibit IL-8 mediated release of β -glucuronidase from neutrophils.

Figs. 57A-57B contain graphs of displacement curves depicting the inhibition of ¹²⁵I-IL-8 binding to neutrophils exhibited by PEG-succinimide modified 6G4V11N35A Fab'₂ molecules.

20 Figs. 58A-58B are graphs depicting the ability of PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules to inhibit human IL-8 mediated neutrophil chemotaxis.

Figs. 59A-59B are graphs depicting the ability of PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules to inhibit human IL-8 mediated release of β -glucuronidase from neutrophils.

25 Fig. 60 is a graph depicting the theoretical molecular weight (dotted bars) and effective size (solid bars) of PEG-maleimide modified 6G4V11N35A Fab' molecules as determined by SEC-HPLC.

Figs. 61A and 61B are SDS-PAGE gels depicting the electrophoretic mobility of various PEG-maleimide modified 6G4V11N35A Fab' molecules under reducing and non-reducing conditions, respectively.

Fig. 62 contains size exclusion chromatograms (SEC-HPLC) depicting the retention times and effective (hydrodynamic) sizes of various PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules.

Fig. 63 is a graph depicting the theoretical molecular weight (open columns), effective size determined by SEC-HPLC (solid columns), and the actual molecular weight determined by SEC-light scattering (shaded columns) for various PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules.

Fig. 64 is an SDS-PAGE gel depicting the electrophoretic mobility of various PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules. From left to right, lane 1 contains unmodified F(ab')₂, lane 2 contains F(ab')₂ coupled to two 40 kD branched PEG-succinimide molecules (denoted "Br(2)-40kD(N)-F(ab')2"), lane 3 contains F(ab')₂ coupled to one 40 kD branched PEG-succinimide molecule (denoted "Br(1)-40kD-(N)-Fab'2"), lane 4 contains a mixture of F(ab')₂ coupled to four 20 kD linear PEG-succinimide molecules and F(ab')₂ coupled to five 20 kD linear PEG-succinimide molecules (denoted "L(4+5)-20kD-(N)-Fab'2"), lane 5 contains F(ab')₂ coupled to one 20 kD linear PEG-succinimide molecule (denoted "L(1)-20kD-(N)-Fab'2"), and lane 6 contains molecular weight standards.

Figs. 65A and 65B are graphs comparing the serum concentration vs. time profiles of various PEG-maleimide modified 6G4V11N35A Fab' molecules (Fig. 65A) and various PEG-succinimide modified 6G4V11N35A F(ab')₂ molecules (Fig. 65B) in rabbits. In Fig. 65A, "bran.(1)40K(s)Fab'" denotes 6G4V11N35A Fab' coupled to one 40 kD branched PEG-maleimide molecule, "lin.(1)40K(s)Fab'" denotes 6G4V11N35A Fab' coupled to one 40 kD linear PEG-maleimide molecule, "lin.(1)30K(s)Fab'" denotes 6G4V11N35A Fab' coupled to one 30 kD linear PEG-maleimide molecule, "lin.(1)20K(s)Fab'" denotes 6G4V11N35A Fab' coupled to one 20 kD linear PEG-maleimide molecule. In Fig. 65B, "bran.(2)40K(N)Fab'2" denotes 6G4V11N35A F(ab')₂ coupled to two 40 kD branched PEG-succinimide molecules, "bran.(1)40K(N)Fab'2" denotes 6G4V11N35A F(ab')₂ coupled to one 40 kD branched PEG-succinimide molecule, and "Fab'2" denotes unmodified 6G4V11N35A F(ab')₂. In both Figs. 65A and 65B, "IgG" denotes a full length IgG1 equivalent of the human-murine chimeric anti-

rabbit IL-8 Fab described in Example F below.

Fig. 66 contains graphs comparing the serum concentration vs. time profiles of 6G4V11N35A Fab' coupled to one 40 kD branched PEG-maleimide molecule (denoted as "bran.(1)40K(s)Fab'"), 6G4V11N35A F(ab')₂ coupled to one 40 kD branched PEG-succinimide molecule (denoted as "bran.(1)40K(N)Fab'2"), unmodified 6G4V11N35A F(ab')₂ (denoted as "Fab'2"), unmodified 6G4V11N35A Fab' (denoted as "Fab'"), and a full length IgG1 (denoted as "IgG") equivalent of the human-murine chimeric anti-rabbit IL-8 Fab described in Example F below.

Fig. 67 is a graph depicting the effect of 6G4V11N35A Fab' coupled to one 40 kD branched PEG-maleimide molecule (denoted as "PEG 40 Kd") and murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 (full length IgG2a) (denoted as "6G4.2.5") on gross weight of entire lung in an ARDS rabbit model.

Fig. 68 is a graph depicting the effect of 6G4V11N35A Fab' coupled to one branched 40 kD PEG-maleimide molecule (denoted as "PEG 40 Kd") and murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 (full length IgG2a) (denoted as "6G4.2.5") on BAL total leukocyte (light columns) and polymorphonuclear cell (dark columns) counts in an ARDS rabbit model.

Untreated (no therapeutics) control animal data is denoted as "Control".

Fig. 69 is a graph depicting the effect of 6G4V11N35A Fab' coupled to one branched 40 kD PEG-maleimide molecule (denoted as "PEG 40 Kd") and murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 (full length IgG2a) (denoted as "6G4.2.5") on PaO₂/FiO₂ ratio at 24 hours-post treatment (light columns) and 48 hours post-treatment (dark columns) in an ARDS rabbit model. Untreated (no therapeutics) control animal data is denoted as "Control".

Fig. 70A is a graph depicting PaO₂/FiO₂ ratios obtained in 100% oxygen at 24 hours after acid instillation for: (1) rabbits (n=5) treated with 7 mg/kg IV 20 kD linear PEG-6G4V11N35E Fab' at 10 minutes before and 6 hours after acid instillation, (2) rabbits (n=7) treated with 5 mg/kg IV full length IgG murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 at 10 minutes before acid instillation, (3) rabbits (n=3) treated with 5 mg/kg IV 40 kD branched PEG-6G4V11N35A Fab' at 10 minutes before acid instillation, (4) rabbits (n=2) treated with 20

mg/kg IV 40 kD branched PEG-6G4V11N35A Fab' at 10 minutes before acid instillation, and (5) rabbits (n=25) treated with 5 ml IV saline at 10 minutes before and 6 hours after acid instillation.

Fig. 70B is a graph depicting PaO₂/FiO₂ ratios obtained in 100% oxygen at 48 hours
5 after acid instillation for: (1) rabbits (n=5) treated with 7 mg/kg IV 20 kD linear PEG-
6G4V11N35E Fab' at 10 minutes before and 6 hours after acid instillation, (2) rabbits (n=7)
treated with 5 mg/kg IV full length IgG murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 at
10 minutes before acid instillation, (3) rabbits (n=3) treated with 5 mg/kg IV 40 kD branched
PEG-6G4V11N35A Fab' at 10 minutes before acid instillation, (4) rabbits (n=2) treated with 20
10 mg/kg IV 40 kD branched PEG-6G4V11N35A Fab' at 10 minutes before acid instillation, and
(5) rabbits (n=16) treated with 5 ml IV saline at 10 minutes before and 6 hours after acid
instillation.

Fig. 70C is a graph depicting gross lung weight (in grams)/body weight (in kilograms)
ratios (denoted as "GLW/BW Ratio") obtained at 72 hours post reperfusion for: (1) rabbits (n=5)
15 treated with 7 mg/kg IV 20 kD linear PEG-6G4V11N35E Fab' at 10 minutes before and 6 hours
after acid instillation, (2) rabbits (n=7) treated with 5 mg/kg IV full length IgG murine anti-rabbit
IL-8 monoclonal antibody 6G4.2.5 at 10 minutes before acid instillation, (3) rabbits (n=3) treated
with 5 mg/kg IV 40 kD branched PEG-6G4V11N35A Fab' at 10 minutes before acid instillation,
20 (4) rabbits (n=3) treated with 20 mg/kg IV 40 kD branched PEG-6G4V11N35A Fab' at 10
minutes before acid instillation, and (5) rabbits (n=29) treated with 5 ml IV saline at 10 minutes
before and 6 hours after acid instillation.

Fig. 70D is a graph depicting total leukocyte (WBC) count in BAL fluid (represented in
millions of cells counted in 20 ml BAL fluid) obtained at 72 hours post reperfusion for: (1)
rabbits (n=5) treated with 7 mg/kg IV 20 kD linear PEG-6G4V11N35E Fab' at 10 minutes before
25 and 6 hours after acid instillation, (2) rabbits (n=7) treated with 5 mg/kg IV full length IgG
murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 at 10 minutes before acid instillation, (3)
rabbits (n=3) treated with 5 mg/kg IV 40 kD branched PEG-6G4V11N35A Fab' at 10 minutes
before acid instillation, (4) rabbits (n=3) treated with 20 mg/kg IV 40 kD branched PEG-

6G4V11N35A Fab' at 10 minutes before acid instillation, and (5) rabbits (n=11) treated with 5 ml IV saline at 10 minutes before and 6 hours after acid instillation.

Fig. 70E is a graph depicting total polymorphonuclear (PMN) cell count in BAL fluid (represented in millions of cells counted in 20 ml BAL fluid) obtained at 72 hours post reperfusion for: (1) rabbits (n=5) treated with 7 mg/kg IV 20 kD linear PEG-6G4V11N35E Fab' at 10 minutes before and 6 hours after acid instillation, (2) rabbits (n=7) treated with 5 mg/kg IV full length IgG murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 at 10 minutes before acid instillation, (3) rabbits (n=3) treated with 5 mg/kg IV 40 kD branched PEG-6G4V11N35A Fab' at 10 minutes before acid instillation, (4) rabbits (n=3) treated with 20 mg/kg IV 40 kD branched PEG-6G4V11N35A Fab' at 10 minutes before acid instillation, and (5) rabbits (n=9) treated with 5 ml IV saline at 10 minutes before and 6 hours after acid instillation.

Fig. 71 is a graph depicting the effect of pegylated anti-IL-8 Fab' (as measured by percent change in ear volume at 1, 2 and 3 days post reperfusion) in a rabbit ear model of ischemia reperfusion injury. The data points from animals treated with empty vehicle (n=11), full length IgG murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 (n=4), 20 kD linear PEG-6G4V11N35E Fab' (n=3), 30 kD linear PEG-6G4V11N35E Fab' (n=3), and 40 kD branched PEG-6G4V11N35E Fab' (n=3) are denoted by open boxes, open diamonds, open circles, open triangles, and crossed boxes, respectively.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. DEFINITIONS

In general, the following words or phrases have the indicated definition when used in the description, examples, and claims.

"Polymerase chain reaction" or "PCR" refers to a procedure or technique in which minute amounts of a specific piece of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Patent No. 4,683,195 issued 28 July 1987. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the

template to be amplified. The 5' terminal nucleotides of the two primers can coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis *et al.*, Cold Spring Harbor Symp. Quant. Biol. 51:263 (1987); Erlich, ed., PCR Technology (Stockton Press, NY, 1989). As used herein, PCR is considered to be one, but not the only, example of a nucleic acid polymerase reaction method for amplifying a nucleic acid test sample comprising the use of a known nucleic acid as a primer and a nucleic acid polymerase to amplify or generate a specific piece of nucleic acid.

"Antibodies" (Abs) and "immunoglobulins" (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas.

"Native antibodies and immunoglobulins" are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains (Clothia *et al.*, J. Mol. Biol. 186:651 (1985); Novotny and Haber, Proc. Natl. Acad. Sci. U.S.A. 82:4592 (1985)).

The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each

particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (CDRs) or hypervariable regions both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains
5 are called the framework (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely adopting a β -sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the β -sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see
10 Kabat *et al.*, Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, MD (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an $F(ab')_2$ fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
15

"Fv" is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. In a two-chain Fv species, this region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv species (scFv), one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a "dimeric" structure analogous to that in a two-chain Fv species. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However,
20 even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site. For a review of scFv see Pluckthun, in *The Pharmacology of Monoclonal*

Antibodies, vol. 113, Rosenberg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).

The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (k) and lambda (l), based on the amino acid sequences of their constant domains.

Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these can be further divided into subclasses (isotypes), e.g., IgG₁, IgG₂, IgG₃, IgG₄, IgA₁, and IgA₂. The heavy-chain constant domains that correspond to the different classes of immunoglobulins are called α , δ , ϵ , γ , and μ , respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.

The term "antibody" is used in the broadest sense and specifically covers single monoclonal antibodies (including agonist and antagonist antibodies) and antibody compositions with polyepitopic specificity.

"Antibody fragment", and all grammatical variants thereof, as used herein are defined as a portion of an intact antibody comprising the antigen binding site or variable region of the intact antibody, wherein the portion is free of the constant heavy chain domains (i.e. CH2, CH3, and CH4, depending on antibody isotype) of the Fc region of the intact antibody. Examples of antibody fragments include Fab, Fab', Fab'-SH, F(ab')₂, and Fv fragments; diabodies; any antibody fragment that is a polypeptide having a primary structure consisting of one

uninterrupted sequence of contiguous amino acid residues (referred to herein as a "single-chain antibody fragment" or "single chain polypeptide"), including without limitation (1)single-chain Fv (scFv) molecules (2)single chain polypeptides containing only one light chain variable domain, or a fragment thereof that contains the three CDRs of the light chain variable domain,
5 without an associated heavy chain moiety and (3)single chain polypeptides containing only one heavy chain variable region, or a fragment thereof containing the three CDRs of the heavy chain variable region, without an associated light chain moiety; and multispecific or multivalent structures formed from antibody fragments. In an antibody fragment comprising one or more heavy chains, the heavy chain(s) can contain any constant domain sequence (e.g. CH1 in the IgG
10 isotype) found in a non-Fc region of an intact antibody, and/or can contain any hinge region sequence found in an intact antibody, and/or can contain a leucine zipper sequence fused to or situated in the hinge region sequence or the constant domain sequence of the heavy chain(s).
15 Suitable leucine zipper sequences include the jun and fos leucine zippers taught by Kostelney et al., J. Immunol., 148: 1547-1553 (1992) and the GCN4 leucine zipper described in the Examples below.

Unless specifically indicated to the contrary, the term "conjugate" as described and claimed herein is defined as a heterogeneous molecule formed by the covalent attachment of one or more antibody fragment(s) to one or more polymer molecule(s), wherein the heterogeneous molecule is water soluble, i.e. soluble in physiological fluids such as blood, and wherein the heterogeneous molecule is free of any structured aggregate. In the context of the foregoing definition, the term "structured aggregate" refers to (1) any aggregate of molecules in aqueous solution having a spheroid or spheroid shell structure, such that the heterogeneous molecule is not in a micelle or other emulsion structure, and is not anchored to a lipid bilayer, vesicle or liposome; and (2) any aggregate of molecules in solid or insolubilized form, such as a chromatography bead matrix, that does not release the heterogeneous molecule into solution upon contact with an aqueous phase. Accordingly, the term "conjugate" as defined herein encompasses the aforementioned heterogeneous molecule in a precipitate, sediment, bioerodible matrix or other solid capable of releasing the heterogeneous molecule into aqueous solution upon

hydration of the solid.

Unless specifically indicated to the contrary, the terms "polymer", "polymer molecule", "nonproteinaceous polymer", and "nonproteinaceous polymer molecule" are used interchangeably and are defined as a molecule formed by covalent linkage of two or more monomers, wherein
5 none of the monomers is contained in the group consisting of alanine (Ala), cysteine (Cys), aspartic acid (Asp), glutamic acid (Glu), phenylalanine (Phe), glycine (Gly), histidine (His), isoleucine (Ile), lysine (Lys), leucine (Leu), methionine (Met), asparagine (Asn), proline (Pro), glutamine (Gln), arginine (Arg), serine (Ser), threonine (Thr), valine (Val), tryptophan (Trp), and tyrosine (Tyr) residues.

10 The term "monoclonal antibody" (mAb) as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each mAb is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they can be synthesized by hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous
15 population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler *et al.*,
Nature, 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567 to Cabilly *et al.*). The "monoclonal antibodies" also include clones of antigen-
20 recognition and binding-site containing antibody fragments (Fv clones) isolated from phage antibody libraries using the techniques described in Clackson *et al.*, Nature, 352:624-628 (1991)
25 and Marks *et al.*, J. Mol. Biol., 222:581-597 (1991), for example.

The monoclonal antibodies herein include hybrid and recombinant antibodies produced

by splicing a variable (including hypervariable) domain of an anti-IL-8 antibody with a constant domain (e.g. "humanized" antibodies), or a light chain with a heavy chain, or a chain from one species with a chain from another species, or fusions with heterologous proteins, regardless of species of origin or immunoglobulin class or subclass designation, as well as antibody fragments (e.g., Fab, F(ab')₂, and Fv), so long as they exhibit the desired biological activity. (See, e.g., U.S. Pat. No. 4,816,567 to Cabilly *et al.*; Mage and Lamoyi, in Monoclonal Antibody Production Techniques and Applications, pp. 79-97 (Marcel Dekker, Inc., New York, 1987).)

The monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (Cabilly *et al.*, *supra*; Morrison *et al.*, Proc. Natl. Acad. Sci. U.S.A. 81:6851 (1984)).

"Humanized" forms of non-human (e.g., murine) antibodies are specific chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂, or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies can comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and maximize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of

a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details see Jones *et al.*, Nature 321:522 (1986); Reichmann *et al.*,
5 Nature 332:323 (1988); and Presta, Curr. Op. Struct. Biol. 2:593 (1992).

"Treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in which the disorder is to be prevented.

"Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal herein is human.
10

As used herein, protein, peptide and polypeptide are used interchangeably to denote an amino acid polymer or a set of two or more interacting or bound amino acid polymers.

As used herein, the term "inflammatory disorders" refers to pathological states resulting in inflammation, typically caused by neutrophil chemotaxis. Examples of such disorders include inflammatory skin diseases including psoriasis and atopic dermatitis; systemic scleroderma and sclerosis; responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis); ischemic reperfusion disorders including surgical tissue reperfusion injury, myocardial ischemic conditions such as myocardial infarction, cardiac arrest, reperfusion after 15 cardiac surgery and constriction after percutaneous transluminal coronary angioplasty, stroke, and abdominal aortic aneurysms; cerebral edema secondary to stroke; cranial trauma; hypovolemic shock; asphyxia; adult respiratory distress syndrome; acute lung injury; Behcet's Disease; dermatomyositis; polymyositis; multiple sclerosis; dermatitis; meningitis; encephalitis; uveitis; osteoarthritis; lupus nephritis; autoimmune diseases such as rheumatoid arthritis,
20 Sjorgen's syndrome, vasculitis; diseases involving leukocyte diapedesis; central nervous system (CNS) inflammatory disorder, multiple organ injury syndrome secondary to septicaemia or trauma; alcoholic hepatitis; bacterial pneumonia; antigen-antibody complex mediated diseases including glomerulonephritis; sepsis; sarcoidosis; immunopathologic responses to tissue/organ
25

transplantation; inflammations of the lung, including pleurisy, alveolitis, vasculitis, pneumonia, chronic bronchitis, bronchiectasis, diffuse panbronchiolitis, hypersensitivity pneumonitis, idiopathic pulmonary fibrosis (IPF), and cystic fibrosis; etc. The preferred indications include acute lung injury, adult respiratory distress syndrome, ischemic reperfusion (including surgical tissue reperfusion injury, myocardial ischemia, and acute myocardial infarction), hypovolemic shock, asthma, bacterial pneumonia and inflammatory bowel disease such as ulcerative colitis.

As used herein, the terms "asthma", "asthmatic disorder", "asthmatic disease", and "bronchial asthma" refer to a condition of the lungs in which there is widespread narrowing of lower airways. "Atopic asthma" and "allergic asthma" refer to asthma that is a manifestation of an IgE-mediated hypersensitivity reaction in the lower airways, including, e.g., moderate or severe chronic asthma, such as conditions requiring the frequent or constant use of inhaled or systemic steroids to control the asthma symptoms. A preferred indication is allergic asthma.

The terms "hydrodynamic size", "apparent size", "apparent molecular weight", "effective size" and "effective molecular weight" of a molecule are used synonymously herein refer to the size of a molecule as determined by comparison to a standard curve produced with globular protein molecular weight standards in a size exclusion chromatography system, wherein the standard curve is created by mapping the actual molecular weight of each standard against its elution time observed in the size exclusion chromatography system. Thus, the apparent size of a test molecule is derived by using the molecule's elution time to extrapolate a putative molecular weight from the standard curve. Preferably, the molecular weight standards used to create the standard curve are selected such that the apparent size of the test molecule falls within the linear portion of the standard curve.

II. MODES FOR CARRYING OUT THE INVENTION

In one part, the invention arises from the surprising and unexpected discovery that antibody fragment-polymer conjugates having an effective or apparent size significantly greater than the antibody fragment-polymer conjugates described in the art confers an increase in serum half-life, an increase in mean residence time in circulation (MRT), and/or a decrease in serum clearance rate over underivatized antibody fragment which far exceed the modest changes in such

biological property or properties obtained with the art-known antibody fragment-polymer conjugates. The present inventors have determined for the first time that increasing the effective size of an antibody fragment to at least about 500,000 D, or increasing the effective size of an antibody fragment by at least about 8 fold over the effective size of the parental antibody

5 fragment, or derivatizing an antibody fragment with a polymer of at least about 20,000 D in molecular weight, yields a molecule with a commercially useful pharmacokinetic profile. The greatly extended serum half-life, extended MRT, and/or reduced serum clearance rate of the conjugates of the invention makes such conjugates viable alternatives to intact antibodies used for therapeutic treatment of many disease indications. Antibody fragments provide significant

10 advantages over intact antibodies, notably the fact that recombinant antibody fragments can be made in bacterial cell expression systems. Bacterial cell expression systems provide several advantages over mammalian cell expression systems, including reduced time and cost at both the research and development and manufacturing stages of a product.

In another part, the present invention also arises from the humanization of the 6G4.2.5 murine anti-rabbit IL-8 monoclonal antibody ("6G4.2.5") described in WO 95/23865 (PCT/US95/02589 published September 8, 1995), the entire disclosure of which is specifically incorporated herein by reference. The hybridoma producing antibody 6G4.2.5 was deposited on September 28, 1994 with the American Type Culture Collection and assigned ATCC Accession No. HB 11722 as described in the Examples below. In one aspect, the invention provides a

20 humanized derivative of the 6G4.2.5 antibody, variant 11 (referred to herein as "6G4.2.5v11"), in which the murine CDRs of 6G4.2.5 are grafted onto a consensus framework for human light chain κI and human IgG1 heavy chain subgroup III, followed by importing three framework residues from the murine 6G4.2.5 parent heavy chain variable domain sequence into analogous sites in the heavy chain variable domain of the human template sequence, as described in the

25 Examples below. In another aspect, the invention provides variants of the 6G4.2.5v11 antibody with certain amino acid substitution(s) yielding increased affinity for human IL-8 and/or promoting greater efficiency in recombinant manufacturing processes.

It will be understood that in the context of this Section (II) and all subsections thereof,

every reference to "an antibody fragment" or "the antibody fragment" contained in a conjugate shall be a reference to one or more antibody fragment(s) in the conjugate (consistent with the definition of the term "conjugate" set forth in Section (I) above), except where the number of antibody fragment(s) in the conjugate is expressly indicated. It will be understood that in the context of this Section (II) and all subsections thereof, every reference to "a polymer", "a polymer molecule", "the polymer", or "the polymer molecule" contained in a conjugate shall be a reference to one or more polymer molecule(s) in the conjugate (consistent with the definition of the term "conjugate" set forth in Section (I) above), except where the number of polymer molecule(s) in the conjugate is expressly indicated.

10 1. LARGE EFFECTIVE SIZE ANTIBODY FRAGMENT-POLYMER CONJUGATES

In one aspect, the invention provides an antibody fragment covalently attached to a polymer to form a conjugate having an effective or apparent size of at least about 500,000 Daltons (D). In another aspect, the invention provides an antibody fragment covalently attached to a polymer to form a conjugate having an apparent size that is at least about 8 fold greater than the apparent size of the parental antibody fragment. In yet another aspect, the invention provides an antibody fragment covalently attached to a polymer of at least about 20,000 D in molecular weight (MW). It will be appreciated that the unexpectedly and surprisingly large increase in antibody fragment serum half-life, increase in MRT, and/or decrease in serum clearance rate can be achieved by using any type of polymer or number of polymer molecules which will provide the conjugate with an effective size of at least about 500,000 D, or by using any type of polymer or number of polymer molecules which will provide the conjugate with an effective size that is at least about 8 fold greater than the effective size of the parental antibody fragment, or by using any type or number of polymers wherein each polymer molecule is at least about 20,000 D in MW. Thus, the invention is not dependent on the use of any particular polymer or molar ratio of polymer to antibody fragment in the conjugate.

In addition, the beneficial aspects of the invention extend to antibody fragments without regard to antigen specificity. Although variations from antibody to antibody are to be expected, the antigen specificity of a given antibody will not substantially impair the extraordinary

improvement in serum half-life, MRT, and/or serum clearance rate for antibody fragments thereof that can be obtained by derivatizing the antibody fragments as taught herein.

In one embodiment, the conjugate has an effective size of at least about 500,000 D, or at least about 800,000 D, or at least about 900,000 D, or at least about 1,000,000 D, or at least about 1,200,000 D, or at least about 1,400,000 D, or at least about 1,500,000 D, or at least about 1,800,000 D, or at least about 2,000,000 D, or at least about 2,500,000 D.

In another embodiment, the conjugate has an effective size of at or about 500,000 D to at or about 10,000,000 D, or an effective size of at or about 500,000 D to at or about 8,000,000 D, or an effective size of at or about 500,000 D to at or about 5,000,000 D, or an effective size of at or about 500,000 D to at or about 4,000,000 D, or an effective size of at or about 500,000 D to at or about 3,000,000 D, or an effective size of at or about 500,000 D to at or about 2,500,000 D, or an effective size of at or about 500,000 D to at or about 2,000,000 D, or an effective size of at or about 500,000 D to at or about 1,800,000 D, or an effective size of at or about 500,000 D to at or about 1,600,000 D, or an effective size of at or about 500,000 D to at or about 1,500,000 D, or an effective size of at or about 500,000 D to at or about 1,000,000 D.

In another embodiment, the conjugate has an effective size of at or about 800,000 D to at or about 10,000,000 D, or an effective size of at or about 800,000 D to at or about 8,000,000 D, or an effective size of at or about 800,000 D to at or about 5,000,000 D, or an effective size of at or about 800,000 D to at or about 4,000,000 D, or an effective size of at or about 800,000 D to at or about 3,000,000 D, or an effective size of at or about 800,000 D to at or about 2,500,000 D, or an effective size of at or about 800,000 D to at or about 2,000,000 D, or an effective size of at or about 800,000 D to at or about 1,800,000 D, or an effective size of at or about 800,000 D to at or about 1,600,000 D, or an effective size of at or about 800,000 D to at or about 1,500,000 D, or an effective size of at or about 800,000 D to at or about 1,000,000 D.

In another embodiment, the conjugate has an effective size of at or about 900,000 D to at or about 10,000,000 D, or an effective size of at or about 900,000 D to at or about 8,000,000 D, or an effective size of at or about 900,000 D to at or about 5,000,000 D, or an effective size of at or about 900,000 D to at or about 4,000,000 D, or an effective size of at or about 900,000 D to at

or about 3,000,000 D, or an effective size of at or about 900,000 D to at or about 2,500,000 D, or an effective size of at or about 900,000 D to at or about 2,000,000 D, or an effective size of at or about 900,000 D to at or about 1,800,000 D, or an effective size of at or about 900,000 D to at or about 1,600,000 D, or an effective size of at or about 900,000 D to at or about 1,500,000 D.

5 In another embodiment, the conjugate has an effective size of at or about 1,000,000 D to at or about 10,000,000 D, or an effective size of at or about 1,000,000 D to at or about 8,000,000 D, or an effective size of at or about 1,000,000 D to at or about 5,000,000 D, or an effective size of at or about 1,000,000 D to at or about 4,000,000 D, or an effective size of at or about 1,000,000 D to at or about 3,000,000 D, or an effective size of at or about 1,000,000 D to at or
10 about 2,500,000 D, or an effective size of at or about 1,000,000 D to at or about 2,000,000 D, or an effective size of at or about 1,000,000 D to at or about 1,800,000 D, or an effective size of at or about 1,000,000 D to at or about 1,600,000 D, or an effective size of at or about 1,000,000 D to at or about 1,500,000 D.

15 In a further embodiment, the conjugate has an effective size that is at least about 8 fold greater, or at least about 10 fold greater, or at least about 12 fold greater, or at least about 15 fold greater, or at least about 18 fold greater, or at least about 20 fold greater, or at least about 25 fold greater, or at least about 28 fold greater, or at least about 30 fold greater, or at least about 40 fold greater, than the effective size of the parental antibody fragment.

20 In another embodiment, the conjugate has an effective size that is about 8 fold to about 100 fold greater, or is about 8 fold to about 80 fold greater, or is about 8 fold to about 50 fold greater, or is about 8 fold to about 40 fold greater, or is about 8 fold to about 30 fold greater, or is about 8 fold to about 28 fold greater, or is about 8 fold to about 25 fold greater, or is about 8 fold to about 20 fold greater, or is about 8 fold to about 18 fold greater, or is about 8 fold to about 15 fold greater, than the effective size of the parental antibody fragment.

25 In another embodiment, the conjugate has an effective size that is about 12 fold to about 100 fold greater, or is about 12 fold to about 80 fold greater, or is about 12 fold to about 50 fold greater, or is about 12 fold to about 40 fold greater, or is about 12 fold to about 30 fold greater, or is about 12 fold to about 28 fold greater, or is about 12 fold to about 25 fold greater, or is about

12 fold to about 20 fold greater, or is about 12 fold to about 18 fold greater, or is about 12 fold to about 15 fold greater, than the effective size of the parental antibody fragment.

In another embodiment, the conjugate has an effective size that is about 15 fold to about 100 fold greater, or is about 15 fold to about 80 fold greater, or is about 15 fold to about 50 fold greater, or is about 15 fold to about 40 fold greater, or is about 15 fold to about 30 fold greater, or is about 15 fold to about 28 fold greater, or is about 15 fold to about 25 fold greater, or is about 15 fold to about 20 fold greater, or is about 15 fold to about 18 fold greater, than the effective size of the parental antibody fragment.

In another embodiment, the conjugate has an effective size that is about 18 fold to about 100 fold greater, or is about 18 fold to about 80 fold greater, or is about 18 fold to about 50 fold greater, or is about 18 fold to about 40 fold greater, or is about 18 fold to about 30 fold greater, or is about 18 fold to about 28 fold greater, or is about 18 fold to about 25 fold greater, or is about 18 fold to about 20 fold greater, than the effective size of the parental antibody fragment.

In another embodiment, the conjugate has an effective size that is about 20 fold to about 100 fold greater, or is about 20 fold to about 80 fold greater, or is about 20 fold to about 50 fold greater, or is about 20 fold to about 40 fold greater, or is about 20 fold to about 30 fold greater, or is about 20 fold to about 28 fold greater, or is about 20 fold to about 25 fold greater, than the effective size of the parental antibody fragment.

In another embodiment, the conjugate has an effective size that is about 25 fold to about 100 fold greater, or is about 25 fold to about 80 fold greater, or is about 25 fold to about 50 fold greater, or is about 25 fold to about 40 fold greater, or is about 25 fold to about 30 fold greater, or is about 25 fold to about 28 fold greater, than the effective size of the parental antibody fragment.

In another embodiment, the conjugate has an effective size that is about 28 fold to about 100 fold greater, or is about 28 fold to about 80 fold greater, or is about 28 fold to about 50 fold greater, or is about 28 fold to about 40 fold greater, or is about 28 fold to about 30 fold greater, than the effective size of the parental antibody fragment.

In another embodiment, the conjugate has an effective size that is about 30 fold to about 100 fold greater, or is about 30 fold to about 80 fold greater, or is about 30 fold to about 50 fold

greater, or is about 30 fold to about 40 fold greater, than the effective size of the parental antibody fragment.

In another embodiment, the conjugate has an effective size that is about 40 fold to about 100 fold greater, or is about 40 fold to about 80 fold greater, or is about 40 fold to about 50 fold greater, than the effective size of the parental antibody fragment.

5 In still another embodiment, the conjugate is an antibody fragment covalently attached to at least one polymer having an actual MW of at least about 20,000 D.

In a further embodiment, the conjugate is an antibody fragment covalently attached to at least one polymer having an actual MW of at least about 30,000 D.

10 In yet another embodiment, the conjugate is an antibody fragment covalently attached to at least one polymer having an actual MW of at least about 40,000 D.

In another embodiment, the conjugate is an antibody fragment covalently attached to at least one polymer having an actual MW that is at or about 20,000 D to at or about 300,000 D, or is at or about 30,000 D to at or about 300,000 D, or is at or about 40,000 D to at or about 300,000 D.

15

In another embodiment, the conjugate is an antibody fragment covalently attached to at least one polymer having an actual MW that is at or about 20,000 D to at or about 100,000 D, or is at or about 30,000 D to at or about 100,000 D, or is at or about 40,000 D to at or about 100,000 D.

20

In another embodiment, the conjugate is an antibody fragment covalently attached to at least one polymer having an actual MW that is at or about 20,000 D to at or about 70,000 D, or is at or about 30,000 D to at or about 70,000 D, or is at or about 40,000 D to at or about 70,000 D.

25

In another embodiment, the conjugate is an antibody fragment covalently attached to at least one polymer having an actual MW that is at or about 20,000 D to at or about 50,000 D, or is at or about 30,000 D to at or about 50,000 D, or is at or about 40,000 D to at or about 50,000 D.

In another embodiment, the conjugate is an antibody fragment covalently attached to at least one polymer having an actual MW that is at or about 20,000 D to at or about 40,000 D, or is at or about 30,000 D to at or about 40,000 D.

The conjugates of the invention can be made using any suitable technique now known or hereafter developed for derivatizing antibody fragments with polymers. It will be appreciated that the invention is not limited to conjugates utilizing any particular type of linkage between an antibody fragment and a polymer.

5 The conjugates of the invention include species wherein a polymer is covalently attached to a non-specific site or non-specific sites on the parental antibody fragment, i.e. polymer attachment is not targeted to a particular region or a particular amino acid residue in the parental antibody fragment. In such embodiments, the coupling chemistry can, for example, utilize the free epsilon amino groups of lysine residues in the parental antibody as attachment sites for the
10 polymer, wherein such lysine residue amino groups are randomly derivatized with polymer.

In addition, the conjugates of the invention include species wherein a polymer is covalently attached to a specific site or specific sites on the parental antibody fragment, i.e. polymer attachment is targeted to a particular region or a particular amino acid residue or residues in the parental antibody fragment. In such embodiments, the coupling chemistry can, for example, utilize the free sulphydryl group of a cysteine residue not in a disulfide bridge in the
15 parental antibody fragment. In one embodiment, one or more cysteine residue(s) is (are) engineered into a selected site or sites in the parental antibody fragment for the purpose of providing a specific attachment site or sites for polymer. The polymer can be activated with any functional group that is capable of reacting specifically with the free sulphydryl or thiol group(s)
20 on the parental antibody, such as maleimide, sulphydryl, thiol, triflate, tesylate, aziridine, exirane, and 5-pyridyl functional groups. The polymer can be coupled to the parental antibody fragment using any protocol suitable for the chemistry of the coupling system selected, such as the protocols and systems described in Section (II)(1)(b) or in Section (T) of the Examples below.

In another embodiment, polymer attachment is targeted to the hinge region of the parental
25 antibody fragment. The location of the hinge region varies according to the isotype of the parental antibody. Typically, the hinge region of IgG, IgD and IgA isotype heavy chains is contained in a proline rich peptide sequence extending between the C_H1 and C_H2 domains. In a preferred embodiment, a cysteine residue or residues is (are) engineered into the hinge region of

the parental antibody fragment in order to couple polymer specifically to a selected location in the hinge region.

In one aspect, the invention encompasses a conjugate having any molar ratio of polymer to antibody fragment that endows the conjugate with an apparent size in the desired range as taught herein. The apparent size of the conjugate will depend in part upon the size and shape of the polymer used, the size and shape of the antibody fragment used, the number of polymer molecules attached to the antibody fragment, and the location of such attachment site(s) on the antibody fragment. These parameters can easily be identified and maximized to obtain the a conjugate with the desired apparent size for any type of antibody fragment, polymer and linkage system.

In another aspect, the invention encompasses a conjugate with a polymer to antibody fragment molar ratio of no more than about 10:1, or no more than about 5:1, or no more than about 4:1, or no more than about 3:1, or no more than about 2:1, or no more than 1:1.

In yet another aspect, the invention encompasses a conjugate wherein the antibody fragment is attached to about 10 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In another embodiment, the conjugate contains an antibody fragment attached to about 5 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In still another embodiment, the conjugate contains an antibody fragment attached to about 4 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In a further embodiment, the conjugate contains an antibody fragment attached to about 3 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In an additional embodiment, the conjugate contains an antibody fragment attached to about 2 or fewer polymer molecules, each polymer molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. Also provided herein is a conjugate containing an antibody fragment attached to a single polymer molecule having a

molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D.

In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 300,000 D, or is at or about 30,000 D to at or about 300,000 D, or is at or about 40,000 D to at or about 300,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 100,000 D, or is at or about 30,000 D to at or about 100,000 D, or is at or about 40,000 D to at or about 100,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 70,000 D, or is at or about 30,000 D to at or about 70,000 D, or is at or about 40,000 D to at or about 70,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 50,000 D, or is at or about 30,000 D to at or about 50,000 D, or is at or about 40,000 D to at or about 50,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no

more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In still another aspect, the invention encompasses a conjugate wherein every polymer molecule in the conjugate has a molecular weight that is at or about 20,000 D to at or about 5 40,000 D, or is at or about 30,000 D to at or about 40,000 D, and wherein the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

It is believed that the serum half-life, MRT and/or serum clearance rate of any antibody fragment can be greatly improved by derivatizing the antibody fragment with polymer as taught herein. In one embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH, Fv, scFv and F(ab')₂.

In a preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein every polymer molecule in the conjugate is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, every polymer molecule in the conjugate molecule is attached to the hinge region of the antibody fragment, and the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In yet another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In a further embodiment, the conjugate contains an antibody fragment selected from the

group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule and the polymer is coupled to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In an additional embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, every polymer molecule in the conjugate is at least about 20,000 D in molecular weight, or at least about 30,000 in molecular weight, or at least about 40,000 D in molecular weight, every polymer molecule in the conjugate is attached to the hinge region of the antibody fragment, and the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, every polymer molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, every polymer molecule in the conjugate is attached to the hinge region of the antibody fragment, and the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, every polymer molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, every polymer molecule in the conjugate is attached to the hinge region of the antibody fragment, and the conjugate contains no more than about 10 polymer molecules, or no

more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, every polymer molecule in the conjugate is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, every polymer molecule in the conjugate is attached to the hinge region of the antibody fragment, and the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, every polymer molecule in the conjugate is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, every polymer molecule in the conjugate is attached to the hinge region of the antibody fragment, and the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2 polymer molecules, or no more than 1 polymer molecule.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, every polymer molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, every polymer molecule in the conjugate is attached to the hinge region of the antibody fragment, and the conjugate contains no more than about 10 polymer molecules, or no more than about 5 polymer molecules, or no more than about 4 polymer molecules, or no more than about 3 polymer molecules, or no more than about 2

polymer molecules, or no more than 1 polymer molecule.

In a further embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at least about 20,000 D in molecular weight, or at least about 30,000 D in molecular weight, or at least about 40,000 D in molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no

more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or
about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or
about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in
molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine
5 residue in the light or heavy chain of the antibody fragment that would ordinarily form the
disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by
substituting another amino acid, such as serine, for the corresponding cysteine residue in the
opposite chain.

In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no
10 more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or
about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or
about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in
molecular weight, and wherein every polymer molecule in the conjugate is attached to a cysteine
15 residue in the light or heavy chain of the antibody fragment that would ordinarily form the
disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by
substituting another amino acid, such as serine, for the corresponding cysteine residue in the
opposite chain.

In another embodiment, the conjugate contains a F(ab')₂ antibody fragment attached to no
20 more than about 2 polymer molecules, wherein every polymer molecule in the conjugate is at or
about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or
about 40,000 D in molecular weight, and wherein every polymer molecule in the conjugate is
attached to a cysteine residue in the light or heavy chain of the antibody fragment that would
ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide
bridge is avoided by substituting another amino acid, such as serine, for the corresponding
25 cysteine residue in the opposite chain.

In yet another embodiment, the conjugate contains an antibody fragment selected from
the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no
more than 1 polymer molecule, wherein the polymer molecule is at least about 20,000 D in

molecular weight, or at least about 30,000 D in molecular weight, or at least about 40,000 D in molecular weight, wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight,

wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

5 In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight,
10 wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

15 In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, wherein the polymer molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the
20 light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

25 In still another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at least about 20,000 D in molecular weight, or at least about 30,000 D in molecular weight, or at least about 40,000 D in molecular weight, and wherein the polymer molecule is attached to the hinge region of the antibody fragment.

In another embodiment, the conjugate contains an antibody fragment selected from the

group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, and 5 wherein the polymer molecule is attached to the hinge region of the antibody fragment.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in 10 molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, and wherein the polymer molecule is attached to the hinge region of the antibody fragment.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in 15 molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, and wherein the polymer molecule is attached to the hinge region of the antibody fragment.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no 20 more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, and wherein the polymer molecule is attached to the hinge region of the antibody fragment.

In another embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no 25 more than 1 polymer molecule, wherein the polymer molecule is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, and wherein the polymer molecule is attached to the hinge region of the

antibody fragment.

Although any type of polymer is contemplated for use in constructing the conjugates of the invention, including the polymers and chemical linkage systems described in Section (II)(1)(b) below, polyethylene glycol (PEG) polymers are preferred for use herein.

5 In one embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW of at least about 20,000 D.

In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW of at least about 30,000 D.

10 In yet another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW of at least about 40,000 D.

In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW that is at or about 20,000 D to at or about 300,000 D, or is at or about 30,000 D to at or about 300,000 D, or is at or about 40,000 D to at or about 300,000 D.

15 In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW that is at or about 20,000 D to at or about 100,000 D, or is at or about 30,000 D to at or about 100,000 D, or is at or about 40,000 D to at or about 100,000 D.

In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW that is at or about 20,000 D to at or about 70,000 D, or is at or about 30,000 D to at or about 70,000 D, or is at or about 40,000 D to at or about 70,000 D.

20 In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW that is at or about 20,000 D to at or about 50,000 D, or is at or about 30,000 D to at or about 50,000 D, or is at or about 40,000 D to at or about 50,000 D.

25 In another embodiment, the conjugate is an antibody fragment covalently attached to at least one PEG having an actual MW that is at or about 20,000 D to at or about 40,000 D, or is at or about 30,000 D to at or about 40,000 D.

In another aspect, the invention encompasses a conjugate with a PEG to antibody fragment molar ratio of no more than about 10:1, or no more than about 5:1, or no more than about 4:1, or no more than about 3:1, or no more than about 2:1, or no more than 1:1.

In yet another aspect, the invention encompasses a conjugate wherein the antibody fragment is attached to about 10 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In another embodiment, the conjugate contains an antibody fragment attached to about 5 or 5 fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In still another embodiment, the conjugate contains an antibody fragment attached to about 4 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In a further embodiment, the conjugate contains an antibody fragment attached to 10 about 3 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In an additional embodiment, the conjugate contains an antibody fragment attached to about 2 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. Also provided herein is a conjugate containing an antibody fragment 15 attached to a single PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D.

In another aspect, the invention encompasses a conjugate wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to 20 at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another aspect, the invention encompasses a conjugate wherein the antibody fragment 25 is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5

PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another aspect, the invention encompasses a conjugate wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to 5 at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

10 In another aspect, the invention encompasses a conjugate wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

15 In another aspect, the invention encompasses a conjugate wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

20 In still another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is attached to about 10 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In another embodiment, the foregoing conjugate contains an antibody fragment attached to

about 5 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In still another embodiment, the foregoing conjugate contains an antibody fragment attached to about 4 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 5 30,000 D, or at least about 40,000 D. In a further embodiment, the foregoing conjugate contains an antibody fragment attached to about 3 or fewer PEG molecules, each PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. In an additional embodiment, the foregoing conjugate contains an antibody fragment attached to about 2 or fewer PEG molecules, each PEG molecule having a molecular weight of at least 10 about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. Also provided herein is the foregoing conjugate that contains an antibody fragment attached to a single PEG molecule having a molecular weight of at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D.

In another aspect, the invention encompasses a conjugate containing an antibody 15 fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in 20 molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another aspect, the invention encompasses a conjugate containing an antibody 25 fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or

no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another aspect, the invention encompasses a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', Fab'-SH and F(ab')₂, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or

no more than 1 PEG molecule.

In a preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG having a molecular weight of at least about 20,000D, or at least about 30,000D, or at least about 40,000D, and wherein every PEG molecule in the conjugate is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG having a molecular weight that is at or about 20,000 D to about 300,000 D, or is at or about 30,000 D to at or about 300,000 D, or is at or about 40,000 D to at or about 300,000 D, and wherein every PEG molecule in the conjugate is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG having a molecular weight that is at or about 20,000 D to about 100,000 D, or is at or about 30,000 D to at or about 100,000 D, or is at or about 40,000 D to at or about 100,000 D, and wherein every PEG molecule in the conjugate is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG having a molecular weight that is at or about 20,000 D to about 70,000 D, or is at or about 30,000 D to at or about 70,000 D, or is at or about 40,000 D to at or about 70,000 D, and wherein every PEG molecule in the conjugate is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG having a molecular weight that is at or about 20,000 D to about 50,000 D, or is at or about 30,000 D to at or about 50,000 D, or is at or about 40,000 D to at or about

50,000 D, and wherein every PEG molecule in the conjugate is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG having a molecular weight that is at or about 20,000 D to about 40,000 D, or is at or about 30,000 D to at or about 40,000 D, and wherein every PEG molecule in the conjugate is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at least about 20,000D in molecular weight, or at least about 30,000D in molecular weight, or at least about 40,000D in molecular weight, wherein every PEG molecule in the conjugate molecule is attached to the hinge region of the antibody fragment, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, wherein every PEG molecule in the conjugate molecule is attached to the hinge region of the antibody fragment, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is

derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, wherein every PEG molecule in the conjugate molecule is attached to the hinge region of the antibody fragment, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, wherein every PEG molecule in the conjugate molecule is attached to the hinge region of the antibody fragment, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, wherein every PEG molecule in the conjugate molecule is attached to the hinge region of the antibody fragment, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in
5 molecular weight, wherein every PEG molecule in the conjugate molecule is attached to the hinge region of the antibody fragment, and wherein the conjugate contains no more than about 10 PEG molecules, or no more than about 5 PEG molecules, or no more than about 4 PEG molecules, or no more than about 3 PEG molecules, or no more than about 2 PEG molecules, or no more than 1 PEG molecule.

10 In yet another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at least about 20,000D in molecular weight, or at least about 30,000D in molecular weight, or at least about 40,000D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.
15

20 In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight,
25 wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at

or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, 5 wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at 10 or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, 15 wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at 20 or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, 25 wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another preferred embodiment, the conjugate contains a F(ab')₂ antibody fragment derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at 30 or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in

molecular weight, wherein the antibody fragment is attached to no more than about 2 PEG molecules, and wherein every PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In still another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at least about 20,000 D in molecular weight, or at least about 30,000 in molecular weight, or at least about 40,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 300,000 D in molecular weight, or is at or about 30,000 D to at or about 300,000 D in molecular weight, or is at or about 40,000 D to at or about 300,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 100,000 D in molecular weight, or is at or about 30,000 D to at or about 100,000 D in

molecular weight, or is at or about 40,000 D to at or about 100,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains,
5 wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at
10 or about 70,000 D in molecular weight, or is at or about 30,000 D to at or about 70,000 D in molecular weight, or is at or about 40,000 D to at or about 70,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody
15 fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at
20 or about 50,000 D in molecular weight, or is at or about 30,000 D to at or about 50,000 D in molecular weight, or is at or about 40,000 D to at or about 50,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody
25 fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is

derivatized with PEG, wherein every PEG molecule in the conjugate is at or about 20,000 D to at or about 40,000 D in molecular weight, or is at or about 30,000 D to at or about 40,000 D in molecular weight, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is attached to a cysteine residue in the light or heavy chain of the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains, wherein the disulfide bridge is avoided by substituting another amino acid, such as serine, for the corresponding cysteine residue in the opposite chain.

It will be appreciated that all of the above-described embodiments of the invention utilizing PEG polymers include conjugates wherein the PEG polymer(s) is (are) linear or branched. In a preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and at least about 40,000 D in molecular weight. In a particularly surprising and unexpected finding, the inventors discovered that the foregoing conjugate exhibits a serum half-life, MRT and serum clearance rate approaching that of full length antibody as shown in Example X below.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 300,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 100,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 70,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected

from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 50,000 D.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and at least 40,000D in molecular weight, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 300,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 100,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 70,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 40,000 D to at or about 50,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In a preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and at least about 40,000 D in molecular weight.

5 In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 40,000 D to at or about 300,000 D.

10 In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 40,000 D to at or about 100,000 D.

15 In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 40,000 D to at or about 70,000 D.

20 In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 40,000 D to at or about 50,000 D.

25 In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and at least 40,000D in molecular weight, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is

linear and has a molecular weight that is at or about 40,000 D to at or about 300,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment:

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 40,000 D to at or about 100,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 40,000 D to at or about 70,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 40,000 D to at or about 50,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at least about 30,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 30,000 D to at or about 300,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular

weight that is at or about 30,000 D to at or about 100,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 30,000 D to at or about 70,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 30,000 D to at or about 50,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 30,000 D to at or about 40,000 D..

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and at least 30,000D in molecular weight, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 30,000 D to at or about 300,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 30,000 D to at or about 100,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 30,000 D to at or about 70,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 30,000 D to at or about 50,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 30,000 D to at or about 40,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at least about 30,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 300,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 100,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected

from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 70,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 50,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 40,000 D.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and at least 30,000D in molecular weight, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 300,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 100,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the

antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 70,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 50,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 30,000 D to at or about 40,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at least about 20,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 300,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 100,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular

weight that is at or about 20,000 D to at or about 70,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 50,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 40,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 30,000 D.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and at least 20,000D in molecular weight, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 300,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 100,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 70,000 D, and the
5 PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 50,000 D, and the
10 PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 40,000 D, and the.
15 PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is linear and has a molecular weight that is at or about 20,000 D to at or about 30,000 D, and the
20 PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at least about 20,000 D.

25 In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 300,000 D.

In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 100,000 D.

5 In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 70,000 D.

10 In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 50,000 D.

15 In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 40,000 D.

20 In another preferred embodiment, the conjugate contains an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, and wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 30,000 D.

25 In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and at least 20,000D in molecular weight, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is

branched and has a molecular weight that is at or about 20,000 D to at or about 300,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 100,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 70,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 50,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 40,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In another preferred embodiment, the invention provides a conjugate containing an antibody fragment selected from the group consisting of Fab, Fab', and Fab'-SH, wherein the antibody fragment is attached to no more than 1 PEG molecule, wherein the PEG molecule is branched and has a molecular weight that is at or about 20,000 D to at or about 30,000 D, and the PEG molecule is attached to the hinge region of the antibody fragment.

In one aspect, the invention provides any of the above-described conjugates wherein the

conjugate contains no more than one antibody fragment. Additionally provided herein is any of the above-described conjugates wherein the conjugate contains one or more antibody fragment(s) covalently linked to one or more polymer molecule(s), such as conjugates containing two or more antibody fragments covalently linked together by polymer molecule(s). In one embodiment, a 5 polymer molecule is used to link together two antibody fragments to form a dumbbell-shaped structure. Also encompassed herein are conjugates formed by more than two antibody fragments joined by polymer molecule(s) to form a rosette or other shapes. The antibody fragments in such structures can be of the same or different fragment type and can have the same antigen specificity or have different antigen specificities. Such structures can be made by using a polymer molecule 10 derivatized with multiple functional groups permitting the direct attachment, or the attachment by means of bi- or multi-functional linkers, of two or more antibody fragments to the polymer backbone.

In another aspect, the invention encompasses any of the above-described conjugates utilizing an antibody fragment comprising an antigen recognition site that binds to rabbit IL-8 and/or human IL-8. In yet another aspect, the invention encompasses any of the above-described 15 conjugates utilizing an antibody fragment comprising 6G4.2.5LV/L1N35A or 6G4.2.5LV/L1N35E as defined below. In still another aspect, the invention encompasses any of the above-described conjugates utilizing an antibody fragment comprising 6G4.5.2.5HV11 as defined below. In a further aspect, the invention encompasses any of the above-described 20 conjugates utilizing an antibody fragment comprising hu6G4.2.5LV/L1N35A or hu6G4.2.5LV/L1N35E as defined below. In an additional aspect, the invention encompasses any of the above-described conjugates utilizing an antibody fragment comprising hu6G4.2.5HV. Further encompassed herein are any of the above-described conjugates utilizing an antibody 25 fragment comprising 6G4.2.5LV/L1N35A or 6G4.2.5LV/L1N35E and further comprising the CDRs of 6G4.2.5HV as defined below. Also encompassed herein are any of the above described conjugates utilizing an antibody fragment comprising hu6G4.2.5LV/L1N35A or hu6G4.2.5LV/L1N35E and further comprising hu6G4.2.5HV as defined below. Additionally encompassed herein are any of the above-described conjugates utilizing an antibody fragment

comprising 6G4.2.5LV11N35A or 6G4.2.5LV11N35E as defined below. Further provided herein are any of the above-described conjugates utilizing an antibody fragment comprising 6G4.2.5LV11N35A or 6G4.2.5LV11N35E and further comprising 6G4.2.5HV11 as defined below.

5 a. Production of Antibody Fragments

Antibody fragments can be produced by any method known in the art. Generally, an antibody fragment is derived from a parental intact antibody. The parental antibody can be generated by raising polyclonal sera against the desired antigen by multiple subcutaneous (sc) or intraperitoneal (ip) injections of antigen and an adjuvant, such as monophosphoryl lipid A (MPL)/trehalose dicrynomycolate (TDM) (Ribi Immunochem. Research, Inc., Hamilton, MT), at multiple sites. Two weeks later the animals are boosted. 7 to 14 days later animals are bled and the serum is assayed for anti-antigen titer. Animals are boosted until titer plateaus. Sera are harvested from animals, and polyclonal antibodies are isolated from sera by conventional immunoglobulin purification procedures, such as protein A-Sepharose chromatography, hydroxylapatite chromatography, gel filtration, dialysis, or antigen affinity chromatography. The desired antibody fragments can be generated from purified polyclonal antibody preparations by conventional enzymatic methods, e.g. F(ab')₂ fragments are produced by pepsin cleavage of intact antibody, and Fab fragments are produced by briefly digesting intact antibody with papain.

20 Alternatively, antibody fragments are derived from monoclonal antibodies generated against the desired antigen. Monoclonal antibodies may be made using the hybridoma method first described by Kohler *et al.*, *Nature*, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567).

25 In the hybridoma method, a mouse or other appropriate host animal, such as a hamster or macaque monkey, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized *in vitro*. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, *Monoclonal Antibodies: Principles and Practice*, pp.59-103 (Academic

Press, 1986)).

The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOP-21 and M.C.-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, *J. Immunol.*, 133:3001 (1984); Brodeur *et al.*, *Monoclonal Antibody Production Techniques and Applications*, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).

Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).

The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson *et al.*, *Anal. Biochem.*, 107:220 (1980).

After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, *Monoclonal Antibodies: Principles and Practice*, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM

or RPMI-1640 medium. In addition, the hybridoma cells may be grown *in vivo* as ascites tumors in an animal.

The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (*e.g.*, by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as *E. coli* cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of antibody-encoding DNA include Skerra et al., Curr. Opinion in Immunol., 5: 256 (1993) and Pluckthun, Immunol. Revs., 130: 151 (1992).

In a preferred embodiment, the antibody fragment is derived from a humanized antibody. Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. It will be appreciated that variable domain sequences obtained from any non-human animal phage display library-derived Fv clone or from any non-human animal hybridoma-derived antibody clone provided as described herein can serve as the "import" variable domain used in the construction of the humanized antibodies of the invention. Humanization can be essentially performed following the method of Winter and co-workers (Jones *et al.*, *Nature*, 321: 522 (1986); Riechmann *et al.*, *Nature*, 332: 323 (1988); Verhoeyen *et al.*, *Science*, 239: 1534 (1988)), by substituting non-human animal, *e.g.* rodent, CDRs or CDR sequences for the corresponding sequences of a human antibody.

Accordingly, such "humanized" antibodies are chimeric antibodies (Cabilly *et al.*, *supra*), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are
5 substituted by residues from analogous sites in non-human animal, e.g. rodent, antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a non-human animal, e.g. rodent, antibody is screened against the entire library of known human variable-domain sequences. The human
10 sequence which is closest to that of the non-human animal is then accepted as the human framework (FR) for the humanized antibody (Sims *et al.*, *J. Immunol.*, **151**: 2296 (1993); Chothia and Lesk, *J. Mol. Biol.*, **196**: 901 (1987)). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup light or heavy chains. The same framework can be used for several different humanized antibodies (Carter *et*
15 *al.*, *Proc. Natl. Acad. Sci USA*, **89**: 4285 (1992); Presta *et al.*, *J. Immunol.*, **151**: 2623 (1993)). It is also important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized
20 sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability
25 of the candidate immunoglobulin to bind to its antigen. In this way, FR residues can be selected and combined from the consensus and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.

In addition, antibody fragments for use herein can be derived from human monoclonal antibodies. Human monoclonal antibodies against the antigen of interest can be made by the hybridoma method. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described, for example, by Kozbor *J. Immunol.*, **133**: 3001 (1984); Brodeur *et al.*, *Monoclonal Antibody Production Techniques and Applications*, pp. 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner *et al.*, *J. Immunol.*, **147**: 86 (1991).

It is now possible to produce transgenic animals (e.g. mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits *et al.*, *Proc. Natl. Acad. Sci USA*, **90**: 2551 (1993); Jakobovits *et al.*, *Nature*, **362**: 255 (1993); Brugermann *et al.*, *Year in Immunol.*, **7**: 33 (1993).

Alternatively, phage display technology (McCafferty *et al.*, Nature 348:552 (1990)) can be used to produce human antibodies and antibody fragments *in vitro*, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats; for their review see, e.g., Johnson *et al.*, Current Opinion in Structural Biology 3:564 (1993). Several sources of V-gene segments can be used for phage display. Clackson *et al.*, Nature 352:624 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random

combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581 (1991), or Griffith et al., EMBO J. 12:725 (1993).

- 5 In a natural immune response, antibody genes accumulate mutations at a high rate (somatic hypermutation). Some of the changes introduced will confer higher affinity, and B cells displaying high-affinity surface immunoglobulin are preferentially replicated and differentiated during subsequent antigen challenge. This natural process can be mimicked by employing the technique known as "chain shuffling" (Marks et al., Bio/Technol. 10:779 (1992)). In this
10 method, the affinity of "primary" human antibodies obtained by phage display can be improved by sequentially replacing the heavy and light chain V region genes with repertoires of naturally occurring variants (repertoires) of V domain genes obtained from unimmunized donors. This technique allows the production of antibodies and antibody fragments with affinities in the nM range. A strategy for making very large phage antibody repertoires has been described by
15 Waterhouse et al., Nucl. Acids Res. 21:2265 (1993).

Gene shuffling can also be used to derive human antibodies from non-human, e.g. rodent, antibodies, where the human antibody has similar affinities and specificities to the starting non-human antibody. According to this method, which is also called "epitope imprinting", either the heavy or light chain variable region of a non-human antibody fragment obtained by phage display techniques as described above is replaced with a repertoire of human V domain genes, creating a population of non-human chain/human chain scFv or Fab chimeras. Selection with antigen results in isolation of a non-human chain/human chain chimeric scFv or Fab wherein the human chain restores the antigen binding site destroyed upon removal of the corresponding non-human chain in the primary phage display clone, i.e. the epitope governs (imprints) the choice of the
20 human chain partner. When the process is repeated in order to replace the remaining non-human chain, a human antibody is obtained (see PCT WO 93/06213 published April 1, 1993). Unlike traditional humanization of non-human antibodies by CDR grafting, this technique provides
25 completely human antibodies, which have no FR or CDR residues of non-human origin.

The invention also encompasses the use of bispecific and heteroconjugate antibody fragments having specificities for at least two different antigens. Bispecific and heteroconjugate antibodies can be prepared as full length antibodies or as antibody fragments (e.g. F(ab')₂, bispecific antibody fragments). Antibody fragments having more than two valencies (e.g. 5 trivalent or higher valency antibody fragments) are also contemplated for use herein. Bispecific antibodies, heteroconjugate antibodies, and multi-valent antibodies can be prepared as described in Section (II)(3)(C) below.

As described above, DNA encoding the monoclonal antibody or antibody fragment of interest can be isolated from its hybridoma or phage display clone of origin, and then 10 manipulated to create humanized and/or affinity matured constructs. In addition, known techniques can be employed to introduce an amino acid residue or residues into any desired location on the polypeptide backbone of the antibody fragment, e.g. a cysteine residue placed in the hinge region of the heavy chain, thereby providing a site for specific attachment of polymer molecule(s). In one embodiment, the native cysteine residue in either the light or heavy chain of 15 the antibody fragment that would ordinarily form the disulfide bridge linking the light and heavy chains is substituted with another amino acid, such as serine, in order to leave the partner cysteine residue in the opposite chain with a free sulphydryl for specific attachment of polymer molecule.

Upon construction of the desired antibody or antibody fragment-encoding clone, the clone 20 can be used for recombinant production of the antibody fragment as described in Section (II)(4) below. Finally, the antibody or antibody fragment product can be recovered from host cell culture and purified as described in Section (II)(4)(F) below. In the case of embodiments utilizing an antibody fragment engineered to lack a cysteine residue that ordinarily forms the disulfide bridge between the light and heavy chains as described above, preferred recombinant 25 production systems include bacterial expression and product recovery procedures utilizing the low pH osmotic shock method described in the "Alternative Fab'-SH Purification" section of Example T below. If a full length antibody is produced, the desired antibody fragment can be obtained therefrom by subjecting the intact antibody to enzymatic digestion according to known

methods, e.g. as described in Section (II)(4)(G) below.

b. Construction of Antibody Fragment-Polymer Conjugates

The antibody fragment-polymer conjugates of the invention can be made by derivatizing
5 the desired antibody fragment with an inert polymer. It will be appreciated that any inert polymer
which provides the conjugate with the desired apparent size or which has the selected actual MW
as taught herein is suitable for use in constructing the antibody fragment-polymer conjugates of
the invention.

Many inert polymers are suitable for use in pharmaceuticals. See, e.g., Davis et al.,
10 Biomedical Polymers: Polymeric Materials and Pharmaceuticals for Biomedical Use, pp.441-451
(1980). In all embodiments of the invention, a non-proteinaceous polymer is used. The
nonproteinaceous polymer ordinarily is a hydrophilic synthetic polymer, i.e., a polymer not
otherwise found in nature. However, polymers which exist in nature and are produced by
15 recombinant or *in vitro* methods are also useful, as are polymers which are isolated from native
sources. Hydrophilic polyvinyl polymers fall within the scope of this invention, e.g.
polyvinylalcohol and polyvinylpyrrolidone. Particularly useful are polyalkylene ethers such as
polyethylene glycol (PEG); polyoxyalkylenes such as polyoxyethylene, polyoxypropylene, and
block copolymers of polyoxyethylene and polyoxypropylene (Pluronics); polymethacrylates;
carbomers; branched or unbranched polysaccharides which comprise the saccharide monomers
20 D-mannose, D- and L-galactose, fucose, fructose, D-xylose, L-arabinose, D-glucuronic acid,
sialic acid, D-galacturonic acid, D-mannuronic acid (e.g. polymannuronic acid, or alginic acid),
D-glucosamine, D-galactosamine, D-glucose and neuraminic acid including
homopolysaccharides and heteropolysaccharides such as lactose, amylopectin, starch,
hydroxyethyl starch, amylose, dextrane sulfate, dextran, dextrins, glycogen, or the polysaccharide
25 subunit of acid mucopolysaccharides, e.g. hyaluronic acid; polymers of sugar alcohols such as
polysorbitol and polymannitol; heparin or heparon. The polymer prior to cross-linking need not
be, but preferably is, water soluble, but the final conjugate must be water soluble. Preferably, the
conjugate exhibits a water solubility of at least about 0.01 mg/ml, and more preferably at least

about 0.1 mg/ml, and still more preferably at least about 1 mg/ml. In addition, the polymer should not be highly immunogenic in the conjugate form, nor should it possess viscosity that is incompatible with intravenous infusion or injection if the conjugate is intended to be administered by such routes.

5 In one embodiment, the polymer contains only a single group which is reactive. This helps to avoid cross-linking of protein molecules. However, it is within the scope herein to maximize reaction conditions to reduce cross-linking, or to purify the reaction products through gel filtration or ion exchange chromatography to recover substantially homogenous derivatives. In other embodiments, the polymer contains two or more reactive groups for the purpose of
10 linking multiple antibody fragments to the polymer backbone. Again, gel filtration or ion exchange chromatography can be used to recover the desired derivative in substantially homogeneous form.

15 The molecular weight of the polymer can range up to about 500,000 D, and preferably is at least about 20,000 D, or at least about 30,000 D, or at least about 40,000 D. The molecular weight chosen can depend upon the effective size of the conjugate to be achieved, the nature (e.g. structure, such as linear or branched) of the polymer, and the degree of derivatization, i.e. the number of polymer molecules per antibody fragment, and the polymer attachment site or sites on the antibody fragment.

20 The polymer can be covalently linked to the antibody fragment through a multifunctional crosslinking agent which reacts with the polymer and one or more amino acid residues of the antibody fragment to be linked. However, it is also within the scope of the invention to directly crosslink the polymer by reacting a derivatized polymer with the antibody fragment, or vice versa.

25 The covalent crosslinking site on the antibody fragment includes the N-terminal amino group and epsilon amino groups found on lysine residues, as well as other amino, imino, carboxyl, sulphydryl, hydroxyl or other hydrophilic groups. The polymer may be covalently bonded directly to the antibody fragment without the use of a multifunctional (ordinarily bifunctional) crosslinking agent. Covalent binding to amino groups is accomplished by known

chemistries based upon cyanuric chloride, carbonyl diimidazole, aldehyde reactive groups (PEG alkoxide plus diethyl acetal of bromoacetaldehyde; PEG plus DMSO and acetic anhydride, or PEG chloride plus the phenoxide of 4-hydroxybenzaldehyde, activated succinimidyl esters, activated dithiocarbonate PEG, 2,4,5-trichlorophenylchloroformate or P-nitrophenylchloroformate activated PEG.) Carboxyl groups are derivatized by coupling PEG-amine using carbodiimide. Sulfhydryl groups are derivatized by coupling to maleimido-substituted PEG (e.g. alkoxy-PEG amine plus sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate) as described in WO 97/10847 published March 27, 1997, or PEG-maleimide commercially available from Shearwater Polymers, Inc., Huntsville, AL). Alternatively, free amino groups on the antibody fragment (e.g. epsilon amino groups on lysine residues) can be thiolated with 2-imino-thiolane (Traut's reagent) and then coupled to maleimide-containing derivatives of PEG as described in Pedley et al., *Br. J. Cancer*, 70: 1126-1130 (1994).

The polymer will bear a group which is directly reactive with an amino acid side chain, or the N- or C-terminus of the polypeptide linked, or which is reactive with the multifunctional cross-linking agent. In general, polymers bearing such reactive groups are known for the preparation of immobilized proteins. In order to use such chemistries here, one should employ a water soluble polymer otherwise derivatized in the same fashion as insoluble polymers heretofore employed for protein immobilization. Cyanogen bromide activation is a particularly useful procedure to employ in crosslinking polysaccharides.

"Water soluble" in reference to the starting polymer means that the polymer or its reactive intermediate used for conjugation is sufficiently water soluble to participate in a derivatization reaction.

The degree of substitution with such a polymer will vary depending upon the number of reactive sites on the antibody fragment, the molecular weight, hydrophilicity and other characteristics of the polymer, and the particular antibody fragment derivatization sites chosen. In general, the conjugate contains from 1 to about 10 polymer molecules, but greater numbers of polymer molecules attached to the antibody fragments of the invention are also contemplated. The desired amount of derivatization is easily achieved by using an experimental matrix in which

the time, temperature and other reaction conditions are varied to change the degree of substitution, after which the level of polymer substitution of the conjugates is determined by size exclusion chromatography or other means known in the art.

The polymer, e.g. PEG, is cross-linked to the antibody fragment by a wide variety of methods known *per se* for the covalent modification of proteins with nonproteinaceous polymers such as PEG. Certain of these methods, however, are not preferred for the purposes herein. Cyanuronic chloride chemistry leads to many side reactions, including protein cross-linking. In addition, it may be particularly likely to lead to inactivation of proteins containing sulphydryl groups. Carbonyl diimidazole chemistry (Beauchamp *et al.*, Anal Biochem. 131, 25-33 [1983]) requires high pH (>8.5), which can inactivate proteins. Moreover, since the "activated PEG" intermediate can react with water, a very large molar excess of "activated PEG" over protein is required. The high concentrations of PEG required for the carbonyl diimidazole chemistry also led to problems in purification, as both gel filtration chromatography and hydrophilic interaction chromatography are adversely affected. In addition, the high concentrations of "activated PEG" may precipitate protein, a problem that *per se* has been noted previously (Davis, U.S. Patent No. 4,179,337). On the other hand, aldehyde chemistry (Royer, U.S. Patent No. 4,002,531) is more efficient since it requires only a 40-fold molar excess of PEG and a 1-2 hr incubation. However, the manganese dioxide suggested by Royer for preparation of the PEG aldehyde is problematic "because of the pronounced tendency of PEG to form complexes with metal-based oxidizing agents" (Harris *et al.*, J. Polym. Sci. Polym. Chem. Ed. 22, 341-52 [1984]). The use of a Moffatt oxidation, utilizing DMSO and acetic anhydride, obviates this problem. In addition, the sodium borohydride suggested by Royer must be used at high pH and has a significant tendency to reduce disulfide bonds. In contrast, sodium cyanoborohydride, which is effective at neutral pH and has very little tendency to reduce disulfide bonds is preferred. In another preferred embodiment, maleimido-activated PEG is used for coupling to free thiols on the antibody fragment.

Functionalized PEG polymers to modify the antibody fragments of the invention are available from Shearwater Polymers, Inc. (Huntsville, AL). Such commercially available PEG derivatives include, but are not limited to, amino-PEG, PEG amino acid esters, PEG-hydrazide,

PEG-thiol, PEG-succinate, carboxymethylated PEG, PEG-propionic acid, PEG amino acids, PEG succinimidyl succinate, PEG succinimidyl propionate, succinimidyl ester of carboxymethylated PEG, succinimidyl carbonate of PEG, succinimidyl esters of amino acid PEGs, PEG-oxycarbonylimidazole, PEG-nitrophenyl carbonate, PEG tresylate, PEG-glycidyl ether, PEG-aldehyde, PEG vinylsulfone, PEG-maleimide, PEG-orthopyridyl-disulfide, heterofunctional PEGs, PEG vinyl derivatives, PEG silanes, and PEG phospholides. The reaction conditions for coupling these PEG derivatives will vary depending on the protein, the desired degree of PEGylation, and the PEG derivative utilized. Some factors involved in the choice of PEG derivatives include: the desired point of attachment (such as lysine or cysteine R-groups), hydrolytic stability and reactivity of the derivatives, stability, toxicity and antigenicity of the linkage, suitability for analysis, etc. Specific instructions for the use of any particular derivative are available from the manufacturer.

The conjugates of this invention are separated from the unreacted starting materials by gel filtration or ion exchange HPLC. Heterologous species of the conjugates are purified from one another in the same fashion.

The conjugates may also be purified by ion-exchange chromatography. The chemistry of many of the electrophilically activated PEG's results in a reduction of amino group charge of the PEGylated product. Thus, high resolution ion exchange chromatography can be used to separate the free and conjugated proteins, and to resolve species with different levels of PEGylation. In fact, the resolution of different species (e.g. containing one or two PEG residues) is also possible due to the difference in the ionic properties of the unreacted amino acids. In one embodiment, species with difference levels of PEGylation are resolved according to the methods described in WO 96/34015 (International Application No. PCT/US96/05550 published October 31, 1996).

In a preferred embodiment, the conjugate is generated by utilizing the derivatization and purification methods described in Section (T) of the Examples below.

In one aspect, the invention provides any of the above-described conjugates formed by its component parts, i.e. one or more antibody fragment(s) covalently attached to one or more polymer molecule(s), without any extraneous matter in the covalent molecular structure of the

conjugate.

c. Other Derivatives of Large Effective Size Conjugates

In another aspect, any of the above-described conjugates can be modified to contain one or more component(s) in addition to the antibody fragment component(s) and polymer component(s) that form the conjugate, wherein the modification does not alter the essential functional property of the conjugate, namely, the substantially improved serum half-life, MRT and/or serum clearance rate as compared to that of the parental antibody fragment from which the conjugate is derived. In one embodiment, the invention provides any of the above-described conjugates modified to incorporate one or more nonproteinaceous functional group(s). For example, the conjugate can be modified to incorporate nonproteinaceous labels or reporter molecules, such as radiolabels, including any radioactive substance used in medical treatment or imaging or used as an effector function or tracer in an animal model, such as radioisotopic labels ⁹⁹Tc, ⁹⁰Y, ¹¹¹In, ³²P, ¹⁴C, ¹²⁵I, ³H, ¹³¹I, ¹¹C, ¹⁵O, ¹³N, ¹⁸F, ³⁵S, ⁵¹Cr, ⁵⁷To, ²²⁶Ra, ⁶⁰Co, ⁵⁹Fe, ⁷⁵Se, ¹⁵²Eu, ⁶⁷Cu, ²¹⁷Ci, ²¹¹At, ²¹²Pb, ⁴⁷Sc, ¹⁰⁹Pd, ²³⁴Th, ⁴⁰K, and the like, non-radioisotopic labels such as ¹⁵⁷Gd, ⁵⁵Mn, ⁵²Tr, ⁵⁶Fe, etc., fluroescent or chemiluminescent labels, including fluorophores such as rare earth chelates, fluorescein and its derivatives, rhodamine and its derivatives, isothiocyanate, phycoerythrin, phycocyanin, allophycocyanin, o-phthalaldehyde, fluorescamine, ¹⁵²Eu, dansyl, umbelliferone, luciferin, luminal label, isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, an aequorin label, 2,3-dihydrophtalazinediones, biotin/avidin, spin labels, stable free radicals, and the like.

Conventional methods are available to bind these labels covalently to the polypeptide antibody fragment or polymer component of the conjugate. In one aspect, any conjugate of the invention is modified by derivatizing the antibody fragment component with any of the above-described non-proteinaceous labels, wherein the label is directly or indirectly (through a coupling agent) attached to the antibody fragment, and wherein such derivatization of the antibody fragment does not contribute or introduce any polymer moiety into the molecular structure of the conjugate. For instance, coupling agents such as dialdehydes, carbodiimides, dimaleimides, bis-

imidates, bis-diazotized benzidine, and the like can be used to tag the antibody fragment with the above-described fluorescent or chemiluminescent labels. See, for example, U.S. Pat. No. 3,940,475 (fluorimetry), Morrison, Meth. Enzymol., 32b, 103 (1974), Svyanen et al., J. Biol. Chem., 284, 3762 (1973), and Bolton and Hunter, Biochem. J., 133, 529 (1973).

5 In the case of embodiments utilizing radiolabels, both direct and indirect labeling can be used to incorporate the selected radionuclide into the conjugate. As used herein in the context of radiolabeling, the phrases "indirect labeling" and "indirect labeling approach" both mean that a chelating agent is covalently attached to the antibody fragment moiety or polymer moiety of the conjugate and at least one radionuclide is inserted into the chelating agent. Preferred chelating
10 agents and radionuclides are set forth in Srivagtava, S.C. and Mease, R.C., "Progress in Research on Ligands, Nuclides and Techniques for Labeling Monoclonal Antibodies," Nucl. Med. Bio., 18(6): 589-603 (1991). A particularly preferred chelating agent is 1-isothiocycamatobenzyl-3-methyldiothelene triaminepent acetic acid ("MX-DTPA"). As used herein in the context of radiolabeling, the phrases "direct labeling" and "direct labeling approach" both mean that a radionuclide is covalently attached directly to the antibody fragment moiety (typically via an amino acid residue) or to the polymer moiety of the conjugate. Preferred radionuclides for use in direct labeling of conjugate are provided in Srivagtava and Mease, supra. In one embodiment, the conjugate is directly labeled with ^{131}I covalently attached to tyrosine residues. In another embodiment, the antibody fragment component of the conjugate is directly or indirectly labeled
15 with any of the above-described radiolabels, wherein such labeling of the antibody fragment does not contribute or introduce any polymer moiety into the molecular structure of the conjugate.
20

d. Therapeutic Compositions and Administration of Large Effective Size Conjugates

The conjugate of the invention is useful for treating the disease indications that are treated with the parent intact antibody. For example, a conjugate derived from an anti-IL-8 antibody or fragment is useful in the treatment of inflammatory disorders as described in Section (II)(5)(B) below. Such conjugates have prophylactic and therapeutic applications in a broad spectrum of IL-8 mediated diseases, such as inflammatory diseases and asthma, in a manner similar to the
25

widespread efficacy of anti-IL-8 antibodies in the treatment of such disease indications that is known in the art, which treatment indications include: (1) ischemic reperfusion injury of the lung (Sekido et al., Nature, 365: 654 (1993)); (2) acute lung injury and ARDS (WO 96/22785 published August 1, 1996; Folkesson et al., J. Clin. Invest., 96: 107-116 (1995); Mulligan et al., 5 J. Immunol., 150: 5585-5595 (1993)); (3) hypovolemic shock (Hebert, C., "Humanized Anti-IL-8: Potential Therapy for Shock and ARDS", seminar presented at Keystone Conference on The Role of Cytokines in Leukocyte Trafficking and Disease, held at Copper Mountain Resort, CO, March 31-April 5, 1997; Sharar, S.A., Harlan, J.H., Patterson, C.A., Hebert, C.A., and Winn, R.K., "Reperfusion Injury After Hemorrhagic Shock in Rabbits is Reduced Similarly by IL-8 or 10 CD-18 Monoclonal Antibodies", manuscript submitted 1998); (4) myocardial infarction (WO 97/40215 published October 30, 1997); (5) cerebral reperfusion injury (Matsumoto et al., Laboratory Invest., 77: 119-125 (1997)); (6) bacterial pneumonia (U.S. Pat. Nos. 5,702,946, 5,677,426, 5,707,622, and 5,686,070); (7) ulcerative colitis (U.S. Pat. Nos. 5,702,946, 5,677,426, 5,707,622, and 5,686,070); and asthma (WO 97/01354 published January 16, 1997).

15 As shown in the Examples below, the conjugates of the invention mimic the in vitro activities of full-length anti-IL-8 monoclonal antibody (e.g. inhibition of IL-8 binding and activation of human neutrophils as shown in Figs. 54A-54C, 55A-55C and 56A-56C and in Example V below), approximate the in vivo pharmacokinetics (e.g. serum half-life, clearance rate and mean residence time as shown in Fig. 65 and in Example X below) and the in vivo 20 therapeutic efficacy (e.g. the treatment of acute lung injury and ARDS as shown in Figs. 70A-70E and in Example Z below and the treatment of ischemic reperfusion injury as shown in Fig. 71 and in Example AA below) of full length anti-IL-8 monoclonal antibody. Since conjugates of the invention derived from anti-IL-8 antibodies and fragments display the same or substantially similar in vitro and in vivo activities as full length anti-IL-8 monoclonal antibody across a range 25 of different parameters, including pharmacokinetic characteristics and therapeutic endpoints in various animal models, the data support the efficacy of the conjugates in the same broad spectrum of disease indications that responds to full length anti-IL-8 antibody treatment.

As noted above, any conjugate of the invention derived from an anti-IL-8 antibody or

fragment can be advantageously utilized in a method of treating an IL-8 mediated disease or disorder, such as inflammatory diseases. In one embodiment, the invention provides a method of treating an inflammatory disorder in a mammal comprising administering to the mammal an effective amount of a conjugate selected from the group consisting of: (1) every conjugate described in Section (II)(1) above formed by its component parts, i.e. the antibody fragment or fragments and the nonproteinaceous polymer or polymer molecules that form the conjugate, without any extraneous matter in the covalent molecular structure of the conjugate, (2) every conjugate described in Section (II)(1) above modified to contain one or more additional components, in addition to the antibody fragment component(s) and polymer component(s) that form the conjugate, wherein the modification does not alter the essential functional property of the conjugate of substantially improved serum half-life, MRT and/or serum clearance rate as compared to that of the parental antibody fragment from which the conjugate is derived, (3) every conjugate described in Section (II)(1) above modified to incorporate one or more nonproteinaceous labels or reporter molecules, and (4) every conjugate described in Section (II)(1) above modified to incorporate one or more radiolabels; wherein at least one antibody fragment in the conjugate comprises an antigen binding site that binds to human IL-8.

In another aspect, the invention encompasses the foregoing method of treating inflammatory disorders wherein at least one antibody fragment in the conjugate is selected from the group consisting of: (1) an antibody fragment comprising 6G4.2.5LV/L1N35A as defined below; (2) an antibody fragment comprising 6G4.2.5LV/L1N35E as defined below; (3) an antibody fragment comprising 6G4.2.5HV11 as defined below; (4) an antibody fragment comprising hu6G4.2.5LV/L1N35A as defined below; (5) an antibody fragment comprising hu6G4.2.5LV/L1N35E as defined below; (6) an antibody fragment comprising hu6G4.2.5HV as defined below; (7) an antibody fragment comprising 6G4.2.5LV/L1N35A and further comprising the CDRs of 6G4.2.5HV11 as defined below; (8) an antibody fragment comprising 6G4.2.5LV/L1N35E and further comprising the CDRs of 6G4.2.5HV11 as defined below; (9) an antibody fragment comprising hu6G4.2.5LV/L1N35A and further comprising hu6G4.2.5HV as defined below; (10) an antibody fragment comprising hu6G4.2.5LV/L1N35E and further

comprising hu6G4.2.5HV as defined below; (11) an antibody fragment comprising
6G4.2.5LV11N35A as defined below; (12) an antibody fragment comprising 6G4.2.5LV11N35E
as defined below; (13) an antibody fragment comprising 6G4.2.5LV11N35A and further
comprising 6G4.2.5HV11 as defined below; and (14) an antibody fragment comprising
5 6G4.2.5LV11N35E and further comprising 6G4.2.5HV11 as defined below.

In yet another aspect, the invention encompasses any of the foregoing methods of treating
an inflammatory disorder wherein the conjugate contains no more than one antibody fragment,
wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH,
wherein the antibody fragment is covalently attached to no more than one nonproteinaceous
10 polymer molecule, and wherein the nonproteinaceous polymer molecule is a linear polyethylene
glycol having a molecular weight of at least at or about 20 kD, or at least at or about 30 kD or at
least at or about 40 kD, or is a branched polyethylene glycol having a molecular weight of at least
at or about 40 kD.

In another embodiment, the invention provides a method of treating ischemic reperfusion
injury in a mammal comprising administering to the mammal an effective amount of a conjugate
selected from the group consisting of: (1) every conjugate described in Section (II)(1) above
formed by its component parts, i.e. the antibody fragment or fragments and the nonproteinaceous
polymer or polymer molecules that form the conjugate, without any extraneous matter in the
covalent molecular structure of the conjugate, (2) every conjugate described in Section (II)(1)
20 above modified to contain one or more additional components, in addition to the antibody
fragment component(s) and polymer component(s) that form the conjugate, wherein the
modification does not alter the essential functional property of the conjugate of substantially
improved serum half-life, MRT and/or serum clearance rate as compared to that of the parental
antibody fragment from which the conjugate is derived, (3) every conjugate described in Section
25 (II)(1) above modified to incorporate one or more nonproteinaceous labels or reporter molecules,
and (4) every conjugate described in Section (II)(1) above modified to incorporate one or more
radiolabels; wherein at least one antibody fragment in the conjugate comprises an antigen
binding site that binds to human IL-8.

In another aspect, the invention encompasses the foregoing method of treating ischemic reperfusion injury wherein at least one antibody fragment in the conjugate is selected from the group consisting of: (1) an antibody fragment comprising 6G4.2.5LV/L1N35A as defined below; (2) an antibody fragment comprising 6G4.2.5LV/L1N35E as defined below; (3) an antibody fragment comprising 6G4.2.5HV11 as defined below; (4) an antibody fragment comprising hu6G4.2.5LV/L1N35A as defined below; (5) an antibody fragment comprising hu6G4.2.5LV/L1N35E as defined below; (6) an antibody fragment comprising hu6G4.2.5HV as defined below; (7) an antibody fragment comprising 6G4.2.5LV/L1N35A and further comprising the CDRs of 6G4.2.5HV11 as defined below; (8) an antibody fragment comprising 6G4.2.5LV/L1N35E and further comprising the CDRs of 6G4.2.5HV11 as defined below; (9) an antibody fragment comprising hu6G4.2.5LV/L1N35A and further comprising hu6G4.2.5HV as defined below; (10) an antibody fragment comprising hu6G4.2.5LV/L1N35E and further comprising hu6G4.2.5HV as defined below; (11) an antibody fragment comprising 6G4.2.5LV11N35A as defined below; (12) an antibody fragment comprising 6G4.2.5LV11N35E as defined below; (13) an antibody fragment comprising 6G4.2.5LV11N35A and further comprising 6G4.2.5HV11 as defined below; and (14) an antibody fragment comprising 6G4.2.5LV11N35E and further comprising 6G4.2.5HV11 as defined below.

In yet another aspect, the invention encompasses the foregoing methods of treating ischemic reperfusion injury wherein the ischemic reperfusion injury is induced by or incident to a surgical procedure, i.e. a surgical tissue reperfusion injury.

In still another aspect, the invention encompasses the foregoing methods of treating ischemic reperfusion injury wherein the ischemic reperfusion injury is a myocardial ischemic reperfusion injury, such as myocardial infarction, reperfusion after cardiac surgery, cardiac arrest, and constriction after percutaneous transluminal coronary angioplasty.

In yet another aspect, the invention encompasses any of the foregoing methods of treating ischemic reperfusion injury wherein the conjugate contains no more than one antibody fragment, wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH, wherein the antibody fragment is covalently attached to no more than one nonproteinaceous

polymer molecule, and wherein the nonproteinaceous polymer molecule is a linear polyethylene glycol having a molecular weight of at least at or about 20 kD, or at least at or about 30 kD or at least at or about 40 kD, or is a branched polyethylene glycol having a molecular weight of at least at or about 40 kD.

5 In another embodiment, the invention provides a method of treating acute lung injury in a mammal comprising administering to the mammal an effective amount of a conjugate selected from the group consisting of: (1) every conjugate described in Section (II)(1) above formed by its component parts, i.e. the antibody fragment or fragments and the nonproteinaceous polymer or polymer molecules that form the conjugate, without any extraneous matter in the covalent
10 molecular structure of the conjugate, (2) every conjugate described in Section (II)(1) above modified to contain one or more additional components, in addition to the antibody fragment component(s) and polymer component(s) that form the conjugate, wherein the modification does not alter the essential functional property of the conjugate of substantially improved serum half-life, MRT and/or serum clearance rate as compared to that of the parental antibody fragment
15 from which the conjugate is derived, (3) every conjugate described in Section (II)(1) above modified to incorporate one or more nonproteinaceous labels or reporter molecules, and (4) every conjugate described in Section (II)(1) above modified to incorporate one or more radiolabels; wherein at least one antibody fragment in the conjugate comprises an antigen binding site that binds to human IL-8.

20 In another aspect, the invention encompasses the foregoing method of treating acute lung injury wherein at least one antibody fragment in the conjugate is selected from the group consisting of: (1) an antibody fragment comprising 6G4.2.5LV/L1N35A as defined below; (2) an antibody fragment comprising 6G4.2.5LV/L1N35E as defined below; (3) an antibody fragment comprising 6G4.2.5HV11 as defined below; (4) an antibody fragment comprising
25 hu6G4.2.5LV/L1N35A as defined below; (5) an antibody fragment comprising hu6G4.2.5LV/L1N35E as defined below; (6) an antibody fragment comprising hu6G4.2.5HV as defined below; (7) an antibody fragment comprising 6G4.2.5LV/L1N35A and further comprising the CDRs of 6G4.2.5HV11 as defined below; (8) an antibody fragment comprising

6G4.2.5LV/L1N35E and further comprising the CDRs of 6G4.2.5HV11 as defined below; (9) an antibody fragment comprising hu6G4.2.5LV/L1N35A and further comprising hu6G4.2.5HV as defined below; (10) an antibody fragment comprising hu6G4.2.5LV/L1N35E and further comprising hu6G4.2.5HV as defined below; (11) an antibody fragment comprising
5 6G4.2.5LV11N35A as defined below; (12) an antibody fragment comprising 6G4.2.5LV11N35E as defined below; (13) an antibody fragment comprising 6G4.2.5LV11N35A and further comprising 6G4.2.5HV11 as defined below; and (14) an antibody fragment comprising 6G4.2.5LV11N35E and further comprising 6G4.2.5HV11 as defined below.

In yet another aspect, the invention encompasses the foregoing methods of treating acute
10 lung injury wherein the acute lung injury includes adult respiratory distress syndrome (ARDS).

In a further aspect, the invention encompasses any of the foregoing methods of treating acute lung injury wherein the conjugate contains no more than one antibody fragment, wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH, wherein the antibody fragment is covalently attached to no more than one nonproteinaceous polymer molecule, and wherein the nonproteinaceous polymer molecule is a linear polyethylene glycol having a molecular weight of at least at or about 20 kD, or at least at or about 30 kD or at least at or about 40 kD.
15

In a further aspect, the invention encompasses any of the foregoing methods of treating acute lung injury, wherein the patient is selected for prophylactic treatment prior to onset of acute
20 lung injury (with or without progression to ARDS), such as at least 2 hours prior to onset, or at least 90 minutes prior to onset, or at least 60 minutes prior to onset, or at least 30 minutes prior to onset, by the assessment of biological parameters displayed in the patient's condition that indicate likely progression of disease to acute lung injury which may include ARDS, e.g. by using any of the prognostic methods described in Section (II)(5)(B) below, wherein the conjugate
25 contains no more than one antibody fragment, wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH, wherein the antibody fragment is covalently attached to no more than one nonproteinaceous polymer molecule, and wherein the nonproteinaceous polymer molecule is a linear polyethylene glycol having a molecular weight of at least at or about

20 kD, or at least at or about 30 kD or at least at or about 40 kD, or is a branched polyethylene glycol having a molecular weight of at least at or about 40 kD.

In another embodiment, the invention provides a method of treating hypovolemic shock in a mammal comprising administering to the mammal an effective amount of a conjugate selected from the group consisting of: (1) every conjugate described in Section (II)(1) above formed by its component parts, i.e. the antibody fragment or fragments and the nonproteinaceous polymer or polymer molecules that form the conjugate, without any extraneous matter in the covalent molecular structure of the conjugate, (2) every conjugate described in Section (II)(1) above modified to contain one or more additional components, in addition to the antibody fragment component(s) and polymer component(s) that form the conjugate, wherein the modification does not alter the essential functional property of the conjugate of substantially improved serum half-life, MRT and/or serum clearance rate as compared to that of the parental antibody fragment from which the conjugate is derived, (3) every conjugate described in Section (II)(1) above modified to incorporate one or more nonproteinaceous labels or reporter molecules, and (4) every conjugate described in Section (II)(1) above modified to incorporate one or more radiolabels; wherein at least one antibody fragment in the conjugate comprises an antigen binding site that binds to human IL-8.

In another aspect, the invention encompasses the foregoing method of treating hypovolemic shock wherein at least one antibody fragment in the conjugate is selected from the group consisting of: (1) an antibody fragment comprising 6G4.2.5LV/L1N35A as defined below; (2) an antibody fragment comprising 6G4.2.5LV/L1N35E as defined below; (3) an antibody fragment comprising 6G4.2.5HV11 as defined below; (4) an antibody fragment comprising hu6G4.2.5LV/L1N35A as defined below; (5) an antibody fragment comprising hu6G4.2.5LV/L1N35E as defined below; (6) an antibody fragment comprising hu6G4.2.5HV as defined below; (7) an antibody fragment comprising 6G4.2.5LV/L1N35A and further comprising the CDRs of 6G4.2.5HV11 as defined below; (8) an antibody fragment comprising 6G4.2.5LV/L1N35E and further comprising the CDRs of 6G4.2.5HV11 as defined below; (9) an antibody fragment comprising hu6G4.2.5LV/L1N35A and further comprising hu6G4.2.5HV as

defined below; (10) an antibody fragment comprising hu6G4.2.5LV/L1N35E and further comprising hu6G4.2.5HV as defined below; (11) an antibody fragment comprising 6G4.2.5LV11N35A as defined below; (12) an antibody fragment comprising 6G4.2.5LV11N35E as defined below; (13) an antibody fragment comprising 6G4.2.5LV11N35A and further comprising 6G4.2.5HV11 as defined below; and (14) an antibody fragment comprising 6G4.2.5LV11N35E and further comprising 6G4.2.5HV11 as defined below.

In yet another aspect, the invention encompasses any of the foregoing methods of treating hypovolemic shock wherein the conjugate contains no more than one antibody fragment, wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH, wherein the antibody fragment is covalently attached to no more than one nonproteinaceous polymer molecule, and wherein the nonproteinaceous polymer molecule is a linear polyethylene glycol having a molecular weight of at least at or about 20 kD, or at least at or about 30 kD or at least at or about 40 kD, or is a branched polyethylene glycol having a molecular weight of at least at or about 40 kD.

In another embodiment, the invention provides a method of treating an inflammatory bowel disease in a mammal comprising administering to the mammal an effective amount of a conjugate selected from the group consisting of: (1) every conjugate described in Section (II)(1) above formed by its component parts, i.e. the antibody fragment or fragments and the nonproteinaceous polymer or polymer molecules that form the conjugate, without any extraneous matter in the covalent molecular structure of the conjugate, (2) every conjugate described in Section (II)(1) above modified to contain one or more additional components, in addition to the antibody fragment component(s) and polymer component(s) that form the conjugate, wherein the modification does not alter the essential functional property of the conjugate of substantially improved serum half-life, MRT and/or serum clearance rate as compared to that of the parental antibody fragment from which the conjugate is derived, (3) every conjugate described in Section (II)(1) above modified to incorporate one or more nonproteinaceous labels or reporter molecules, and (4) every conjugate described in Section (II)(1) above modified to incorporate one or more radiolabels; wherein at least one antibody fragment in the conjugate comprises an antigen

binding site that binds to human IL-8.

In another aspect, the invention encompasses the foregoing method of treating an inflammatory bowel disease wherein at least one antibody fragment in the conjugate is selected from the group consisting of: (1) an antibody fragment comprising 6G4.2.5LV/L1N35A as defined below; (2) an antibody fragment comprising 6G4.2.5LV/L1N35E as defined below; (3) an antibody fragment comprising 6G4.2.5HV11 as defined below; (4) an antibody fragment comprising hu6G4.2.5LV/L1N35A as defined below; (5) an antibody fragment comprising hu6G4.2.5LV/L1N35E as defined below; (6) an antibody fragment comprising hu6G4.2.5HV as defined below; (7) an antibody fragment comprising 6G4.2.5LV/L1N35A and further comprising the CDRs of 6G4.2.5HV11 as defined below; (8) an antibody fragment comprising 6G4.2.5LV/L1N35E and further comprising the CDRs of 6G4.2.5HV11 as defined below; (9) an antibody fragment comprising hu6G4.2.5LV/L1N35A and further comprising hu6G4.2.5HV as defined below; (10) an antibody fragment comprising hu6G4.2.5LV/L1N35E and further comprising hu6G4.2.5HV as defined below; (11) an antibody fragment comprising 6G4.2.5LV11N35A as defined below; (12) an antibody fragment comprising 6G4.2.5LV11N35E as defined below; (13) an antibody fragment comprising 6G4.2.5LV11N35A and further comprising 6G4.2.5HV11 as defined below; and (14) an antibody fragment comprising 6G4.2.5LV11N35E and further comprising 6G4.2.5HV11 as defined below.

In still another aspect, the invention encompasses the foregoing methods of treating an inflammatory bowel disease wherein the inflammatory bowel disease is ulcerative colitis.

In yet another aspect, the invention encompasses any of the foregoing methods of treating inflammatory bowel disease wherein the conjugate contains no more than one antibody fragment, wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH, wherein the antibody fragment is covalently attached to no more than one nonproteinaceous polymer molecule, and wherein the nonproteinaceous polymer molecule is a linear polyethylene glycol having a molecular weight of at least at or about 20 kD, or at least at or about 30 kD or at least at or about 40 kD, or is a branched polyethylene glycol having a molecular weight of at least at or about 40 kD.

In another embodiment, the invention provides a method of treating a bacterial pneumonia in a mammal comprising administering to the mammal an effective amount of a conjugate selected from the group consisting of: (1) every conjugate described in Section (II)(1) above formed by its component parts, i.e. the antibody fragment or fragments and the
5 nonproteinaceous polymer or polymer molecules that form the conjugate, without any extraneous matter in the covalent molecular structure of the conjugate, (2) every conjugate described in Section (II)(1) above modified to contain one or more additional components, in addition to the antibody fragment component(s) and polymer component(s) that form the conjugate, wherein the modification does not alter the essential functional property of the conjugate of substantially
10 improved serum half-life, MRT and/or serum clearance rate as compared to that of the parental antibody fragment from which the conjugate is derived, (3) every conjugate described in Section (II)(1) above modified to incorporate one or more nonproteinaceous labels or reporter molecules, and (4) every conjugate described in Section (II)(1) above modified to incorporate one or more radiolabels; wherein at least one antibody fragment in the conjugate comprises an antigen
15 binding site that binds to human IL-8.

In another aspect, the invention encompasses the foregoing method of treating bacterial pneumonia wherein at least one antibody fragment in the conjugate is selected from the group consisting of: (1) an antibody fragment comprising 6G4.2.5LV/L1N35A as defined below; (2) an antibody fragment comprising 6G4.2.5LV/L1N35E as defined below; (3) an antibody fragment comprising 6G4.2.5HV11 as defined below; (4) an antibody fragment comprising hu6G4.2.5LV/L1N35A as defined below; (5) an antibody fragment comprising hu6G4.2.5LV/L1N35E as defined below; (6) an antibody fragment comprising hu6G4.2.5HV as defined below; (7) an antibody fragment comprising 6G4.2.5LV/L1N35A and further comprising the CDRs of 6G4.2.5HV11 as defined below; (8) an antibody fragment comprising
20 6G4.2.5LV/L1N35E and further comprising the CDRs of 6G4.2.5HV11 as defined below; (9) an antibody fragment comprising hu6G4.2.5LV/L1N35A and further comprising hu6G4.2.5HV as defined below; (10) an antibody fragment comprising hu6G4.2.5LV/L1N35E and further comprising hu6G4.2.5HV as defined below; (11) an antibody fragment comprising
25 6G4.2.5HV/L1N35E and further comprising the CDRs of 6G4.2.5HV11 as defined below;

6G4.2.5LV11N35A as defined below; (12) an antibody fragment comprising 6G4.2.5LV11N35E as defined below; (13) an antibody fragment comprising 6G4.2.5LV11N35A and further comprising 6G4.2.5HV11 as defined below; and (14) an antibody fragment comprising 6G4.2.5LV11N35E and further comprising 6G4.2.5HV11 as defined below.

5 In yet another aspect, the invention encompasses any of the foregoing methods of treating bacterial pneumonia wherein the conjugate contains no more than one antibody fragment, wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH, wherein the antibody fragment is covalently attached to no more than one nonproteinaceous polymer molecule, and wherein the nonproteinaceous polymer molecule is a linear polyethylene glycol having a molecular weight of at least at or about 20 kD, or at least at or about 30 kD or at least at or about 40 kD, or is a branched polyethylene glycol having a molecular weight of at least at or about 40 kD.

10 In another embodiment, the invention provides a method of treating an asthmatic disease in a mammal comprising administering to the mammal an effective amount of a conjugate 15 selected from the group consisting of: (1) every conjugate described in Section (II)(1) above formed by its component parts, i.e. the antibody fragment or fragments and the nonproteinaceous polymer or polymer molecules that form the conjugate, without any extraneous matter in the covalent molecular structure of the conjugate, (2) every conjugate described in Section (II)(1) above modified to contain one or more additional components, in addition to the antibody 20 fragment component(s) and polymer component(s) that form the conjugate, wherein the modification does not alter the essential functional property of the conjugate of substantially improved serum half-life, MRT and/or serum clearance rate as compared to that of the parental antibody fragment from which the conjugate is derived, (3) every conjugate described in Section (II)(1) above modified to incorporate one or more nonproteinaceous labels or reporter molecules, 25 and (4) every conjugate described in Section (II)(1) above modified to incorporate one or more radiolabels; wherein at least one antibody fragment in the conjugate comprises an antigen binding site that binds to human IL-8.

In another aspect, the invention encompasses the foregoing method of treating an

asthmatic disease wherein at least one antibody fragment in the conjugate is selected from the group consisting of: (1) an antibody fragment comprising 6G4.2.5LV/L1N35A as defined below; (2) an antibody fragment comprising 6G4.2.5LV/L1N35E as defined below; (3) an antibody fragment comprising 6G4.2.5HV11 as defined below; (4) an antibody fragment comprising
5 hu6G4.2.5LV/L1N35A as defined below; (5) an antibody fragment comprising hu6G4.2.5LV/L1N35E as defined below; (6) an antibody fragment comprising hu6G4.2.5HV as defined below; (7) an antibody fragment comprising 6G4.2.5LV/L1N35A and further comprising the CDRs of 6G4.2.5HV11 as defined below; (8) an antibody fragment comprising 6G4.2.5LV/L1N35E and further comprising the CDRs of 6G4.2.5HV11 as defined below; (9) an
10 antibody fragment comprising hu6G4.2.5LV/L1N35A and further comprising hu6G4.2.5HV as defined below; (10) an antibody fragment comprising hu6G4.2.5LV/L1N35E and further comprising hu6G4.2.5HV as defined below; (11) an antibody fragment comprising
15 6G4.2.5LV11N35A as defined below; (12) an antibody fragment comprising 6G4.2.5LV11N35E as defined below; (13) an antibody fragment comprising 6G4.2.5LV11N35A and further comprising 6G4.2.5HV11 as defined below; and (14) an antibody fragment comprising 6G4.2.5LV11N35E and further comprising 6G4.2.5HV11 as defined below.

In yet another aspect, the invention encompasses the foregoing methods of treating asthmatic disease wherein the asthmatic disease is allergic asthma.

In yet another aspect, the invention encompasses any of the foregoing methods of treating an asthmatic disease wherein the conjugate contains no more than one antibody fragment, wherein the antibody fragment is selected from the group consisting of Fab, Fab' and Fab'-SH, wherein the antibody fragment is covalently attached to no more than one nonproteinaceous polymer molecule, and wherein the nonproteinaceous polymer molecule is a linear polyethylene glycol having a molecular weight of at least at or about 20 kD, or at least at or about 30 kD or at least at or about 40 kD, or is a branched polyethylene glycol having a molecular weight of at least at or about 40 kD.

In a preferred embodiment, the invention encompasses any of the foregoing methods of treating inflammatory diseases or asthmatic diseases wherein the mammal is a human.

Therapeutic formulations of the conjugate of the invention can be prepared by utilizing the same procedures described for the formulation of the anti-IL-8 antibodies and fragments of the invention in Section (II)(5)(B) below. The conjugate of the invention can be administered in place of the parent antibody for a given disease indication by modifying the formulation, dosage, administration protocol, and other aspects of a therapeutic regimen as required by the different pharmacodynamic characteristics of the conjugate and as dictated by common medical knowledge and practice.

5 e. Reagent Uses for Large Effective Size Conjugates

10 The conjugate of the invention also finds application as a reagent in an animal model system for in vivo study of the biological functions of the antigen recognized by the conjugate. The conjugate would enable the practitioner to inactivate or detect the cognate antigen in circulation or in tissue for a far greater period of time than would be possible with art-known constructs while removing any Fc interaction (which could attend the use of an intact antibody) from the system. In addition, the increased half-life of the conjugate of the invention can be applied advantageously to the induction of tolerance for the underderivatized antibody fragment in a test animal by employing the Wie et al., Int. Archs. Allergy Appl. Immunol., 64: 84-99 (1981) method for allergen tolerization, which would permit the practitioner to repeatedly challenge the tolerized animal with the underderivatized parental antibody fragment without generating an immune response against the parental fragment.

15 2. HUMANIZED 6G4.2.5 MONOCLONAL ANTIBODIES AND ANTIBODY FRAGMENTS

20 In one embodiment, the invention provides an antibody fragment or full length antibody comprising a heavy chain comprising the amino acid sequence of amino acids 1-230 (herein referred to as "6G4.2.5HV11") of the humanized anti-IL-8 6G4.2.5v11 heavy chain polypeptide amino acid sequence of Figs. 37A-37B (SEQ ID NO: 60).

The invention encompasses a single chain antibody fragment comprising the

6G4.2.5HV11, with or without any additional amino acid sequence. In one embodiment, the invention provides a single chain antibody fragment comprising the 6G4.2.5HV11 without any associated light chain amino acid sequence, i.e. a single chain species that makes up one half of a Fab fragment.

5 Further provided herein are an antibody or antibody fragment comprising the 6G4.2.5HV11, and further comprising a light chain comprising the amino acid sequence of amino acids 1-219 (herein referred to as "6G4.2.5LV11") of the humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51).

In one embodiment, the invention provides a single chain antibody fragment wherein the 6G4.2.5HV11 and the 6G4.2.5LV11 are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment comprises the 6G4.2.5HV11 joined to the 6G4.2.5LV11 by means of a flexible peptide linker sequence, wherein the heavy chain and light chain domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fab species. In another embodiment, the single chain antibody fragment is a species comprising the 6G4.2.5HV11 joined to the 6G4.2.5LV11 by a linker that is too short to permit intramolecular pairing of complementary domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In yet another embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the 6G4.2.5HV11 and a second polypeptide chain comprises the 6G4.2.5LV11 and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In a preferred embodiment, the foregoing two-chain antibody fragment is selected from the group consisting of Fab, Fab', Fab'-SH, and F(ab')₂.

The invention also provides an antibody or antibody fragment comprising a heavy chain containing the 6G4.2.5HV11 and optionally further comprising a light chain containing the 6G4.2.5LV11, wherein the heavy chain, and optionally the light chain, is (are) fused to an additional moiety, such as additional immunoglobulin constant domain sequence. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species

with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.* (supra).

In a preferred embodiment, the antibody or antibody fragment comprises the 6G4.2.5HV11 in a heavy chain that is fused to or contains a leucine zipper sequence. The leucine zipper can increase the affinity and/or production efficiency of the antibody or antibody fragment of interest. Suitable leucine zipper sequences include the jun and fos leucine zippers taught by Kostelney *et al.*, *J. Immunol.*, 148: 1547-1553 (1992) and the GCN4 leucine zipper described in the Examples below. In a preferred embodiment, the antibody or antibody fragment comprises the 6G4.2.5HV11 fused at its C-terminus to the GCN4 leucine zipper to yield the amino acid sequence of amino acids 1-275 (herein referred to as "6G4.2.5HV11GCN4") of the heavy chain polypeptide amino acid sequence of Figs. 37A-37B (SEQ ID NO: 60).

3. VARIANTS OF HUMANIZED 6G4.2.5 MONOCLONAL ANTIBODIES AND ANTIBODY FRAGMENTS

The invention additionally encompasses humanized anti-IL-8 monoclonal antibody and antibody fragments comprising variants of the 6G4.2.5 complementarity determining regions (CDRs) or variants of the 6G4.2.5v11 variable domains which exhibit higher affinity for human IL-8 and/or possess properties that yield greater efficiency in recombinant production processes.

A. 6G4.2.5LV VARIANTS

In one aspect, the invention provides humanized anti-IL-8 monoclonal antibodies and antibody fragments comprising the complementarity determining regions (referred to herein as the "CDRs of 6G4.2.5LV") L1, L2, and L3 of the 6G4.2.5 light chain variable domain amino acid sequence of Fig. 24, wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24

(SEQ ID NO: 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35).

In addition, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a humanized light chain variable domain comprising a variant (hereinafter referred to as "6G4.2.5LV CDRs variant") of the complementarity determining regions L1, L2, and L3 of the 6G4.2.5 variable light chain domain amino acid sequence of Fig. 24 (SEQ ID NO: 35). In one embodiment, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1N35X₃₅") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that any amino acid other than Asn (denoted as "X₃₅") is substituted for Asn at amino acid position 35, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35). In a preferred embodiment, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1N35A") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that Ala is substituted for Asn at amino acid position 35, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35). In another preferred embodiment, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1N35E") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that Glu is substituted for Asn at amino acid position 35, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35).

In a second aspect, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1S26X₂₆") wherein L1 corresponds to amino acids 24-39 of the amino acid

sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that any amino acid other than Ser (denoted as "X₂₆") is substituted for Ser at amino acid position 26, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35). In a preferred embodiment, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1S26A") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that Ala is substituted for Ser at amino acid position 26, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35).

In a third aspect, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L3H98X₉₈") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that any amino acid other than His (denoted as "X₉₈") is substituted for His at amino acid position 98. In a preferred embodiment, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L3H98A") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that Ala is substituted for His at amino acid position 98.

In a fourth aspect, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1S26X₂₆,N35X₃₅") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that any amino acid other than Ser (denoted as "X₂₆") is substituted for Ser at amino acid position 26 and any amino acid other than

Asn (denoted as "X₃₅") is substituted for Asn at amino acid position 35, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO:35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO:35). In a preferred embodiment, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1S26A,N35A") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO:35) with the proviso that Ala is substituted for Ser at amino acid position 26 and Ala is substituted for Asn at amino acid position 35, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO 35).

In a fifth aspect, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1N35X₃₅/L3H98X₉₈") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO 35) with the proviso that any amino acid other than Asn (denoted as "X₃₅") is substituted for Asn at amino acid position 35, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO 35) with the proviso that any amino acid other than His (denoted as "X₉₈") is substituted for His at amino acid position 98. In a preferred embodiment, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1N35A/L3H98A") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO 35) with the proviso that Ala is substituted for Asn at amino acid position 35, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO 35) with the proviso that Ala is substituted for His at amino acid position 98.

In a sixth aspect, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1S26X₂₆/L3H98X₉₈") wherein L1 corresponds to amino acids 24-39 of the amino

acid sequence of Fig. 24 (SEQ ID NO 35) with the proviso that any amino acid other than Ser (denoted as "X₂₆") is substituted for Ser at amino acid position 26, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO 35) with the proviso that any 5 amino acid other than His (denoted as "X₉₈") is substituted for His at amino acid position 98. In a preferred embodiment, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (herein referred to as "6G4.2.5LV/L1S26A/L3H98A") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO 35) with the proviso that Ala is substituted for Ser at amino 10 acid position 26, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 SEQ ID NO 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that Ala is substituted for His at amino acid position 98.

In a seventh aspect, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (here referred to as "6G4.2.5LV/L1S26X₂₆,N35X₃₅/L3H98X₉₈") wherein L1 corresponds to amino acids 24-39 of the 15 amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that any amino acid other than Ser (denoted as "X₂₆") is substituted for Ser at amino acid position 26 and any amino acid other than Asn (denoted as "X₃₅") is substituted for Asn at amino acid position 35, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), and 20 L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that any amino acid other than His (denoted as "X₉₈") is substituted for His at amino acid position 98. In a preferred embodiment, the invention provides a variant 6G4.2.5 humanized antibody or antibody fragment comprising a 6G4.2.5LV CDRs variant (here referred 25 to as "6G4.2.5LV/L1S26A,N35A/L3H98A") wherein L1 corresponds to amino acids 24-39 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35) with the proviso that Ala is substituted for Ser at amino acid position 26 and Ala is substituted for Asn at amino acid position 35, L2 corresponds to amino acids 55-61 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35), and L3 corresponds to amino acids 94-102 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35)

with the proviso that Ala is substituted for His at amino acid position 98.

The humanized light chain variable domains of the invention can be constructed by using any of the techniques for antibody humanization known in the art. Humanization can be essentially performed following the method of Winter and co-workers (Jones *et al.*, Nature 321:522 (1986); Riechmann *et al.*, Nature 332:323 (1988); Verhoeyen *et al.*, Science 239:1534 (1988)), by substituting the CDRs of 6G4.2.5LV or the CDRs of a 6G4.2.5LV CDRs variant for the corresponding sequences of a human antibody light chain variable domain. Accordingly, such "humanized" derivatives containing the CDRs of 6G4.2.5LV or the CDRs of a 6G4.2.5VL CDRs variant are chimeric (Cabilly *et al.*, *supra*). The humanized light chain variable domain comprising the CDRs of 6G4.2.5LV or the CDRs of a 6G4.2.5LV CDRs variant can also contain some FR residues that are substituted by residues from analogous sites in the murine 6G4.2.5 antibody light chain variable domain ("6G4.2.5LV"). The complete amino acid sequence of 6G4.2.5LV is set out as amino acids 1-114 of the amino acid sequence of Fig. 24 (SEQ ID NO: 35).

The invention further provides a humanized antibody or antibody fragment comprising a humanized light chain variable domain comprising the CDRs of 6G4.2.5LV or the CDRs of a 6G4.2.5LV CDRs variant as described above, and further comprising a humanized heavy chain variable domain comprising the complementarity determining regions (CDRs) H1, H2, and H3 of the 6G4.2.5 (murine monoclonal antibody) variable heavy chain domain amino acid sequence of Fig. 25 (SEQ ID NO: 37), wherein H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), wherein H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and wherein H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37). The above-described H1, H2, and H3 CDRs of the 6G4.2.5 heavy chain variable domain ("6G4.2.5HV") are collectively referred to as the "CDRs of 6G4.2.5HV".

In another embodiment, the invention provides a humanized antibody or antibody fragment comprising a humanized light chain variable domain comprising the CDRs of 6G4.2.5LV or the CDRs of a 6G4.2.5LV CDRs variant as described above, and further

comprising a humanized heavy chain variable domain comprising a variant (herein referred to as a "6G4.2.5HV CDRs variant") of the H1, H2, and H3 CDRs of the 6G4.2.5 (murine monoclonal antibody) variable heavy chain domain amino acid sequence of Fig. 25 (SEQ ID NO: 37). In one 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H1S31Z₃₁"), H1 correspond to 5 amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37). In a preferred 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H1S31A"), H1 10 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37).

In a second 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H2S54Z₅₄"), H1 15 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37). In a preferred 6G4.2.5HV CDRs variant (referred to herein as 20 "6G4.2.5HV/H2S54A"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37).

In a third 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H3D100E"), 25 wherein H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), wherein H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and wherein H3 corresponds to amino acids 99-111 of the amino acid sequence of

Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100.

In a fourth 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H3R102K"), wherein H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), wherein H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and wherein H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102.

In a fifth 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H3D106E"), wherein H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), wherein H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and wherein H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 106.

In a seventh 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H3D100E,R102K"), wherein H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), wherein H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and wherein H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Lys is substituted for Arg at amino acid position 102.

In an eighth 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H3R102K,D106E"), wherein H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), wherein H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and wherein H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106.

In a ninth 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H3D100E,D106E"), wherein H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), wherein H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and wherein H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Glu is substituted for Asp at amino acid position 106.

In a tenth 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H3D100E,R102K,D106E"), wherein H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), wherein H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and wherein H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100, Lys is substituted for Arg at amino acid position 102, and Glu is substituted for Asp at amino acid position 106.

In an eleventh 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37). In a preferred 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H1S31A/H2S54A"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37).

In a twelfth 6G4.2.5HV CDRs variant (referred to herein as

“6G4.2.5HV/H1S31Z₃₁/H3D100E”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as “Z₃₁”) is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100. In a preferred 6G4.2.5HV CDRs variant (referred to herein as “6G4.2.5HV/H1S31A/H3D100E”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100.

In a thirteenth 6G4.2.5HV CDRs variant (referred to herein as “6G4.2.5HV/H1S31Z₃₁/H3R102K”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as “Z₃₁”) is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102. In a preferred 6G4.2.5HV CDRs variant (referred to herein as “6G4.2.5HV/H1S31A/H3R102K”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102.

A fourteenth 6G4.2.5HV CDRs variant (referred to herein as

“6G4.2.5HV/H1S31Z₃₁/H3D106E”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser

(denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant
5 (referred to herein as "6G4.2.5HV/H1S31A/H3D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 106.

10

A fifteenth 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H1S31Z₃₁/H3D100E,R102K"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Lys is substituted for Arg at amino acid position 102. In a preferred 6G4.2.5HV CDRs variant (referred to herein as

15

"6G4.2.5HV/H1S31A/H3D100E,R102K"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Lys is substituted for Arg at amino acid position 102.

20

25

In a sixteenth 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H1S31Z₃₁/H3R102K,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids

50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant (referred to herein as

5 "6G4.2.5HV/H1S31A/H3R102K,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106.

10 In a seventeenth 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H1S31Z₃₁/H3D100E,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant (referred to herein as

15 "6G4.2.5HV/H1S31A/H3D100E,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Glu is substituted for Asp at amino acid position 106.

20 25 In an eighteenth 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H1S31Z₃₁/H3D100E,R102K,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to

amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100, Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106. In a preferred

5 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H1S31A/H3D100E,R102K,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100, Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106.

In a nineteenth 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H2S54Z₅₄/H3D100E"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100. In a preferred 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H2S54A/H3D100E"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100.

In a twentieth 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H2S54Z₅₄/H3R102K"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid

sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102. In a preferred 6G4.2.5HV CDRs variant
5 (referred to herein as "6G4.2.5HV/H2S54A/H3R102K"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102.

10 In a twenty-first 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H2S54Z₅₄/H3D106E"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant
15 (referred to herein as "6G4.2.5HV/H2S54A/H3D106E"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 106.

20 In a twenty-second 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H2S54Z₅₄/H3D100E,R102K"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino

acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Lys is substituted for Arg at amino acid position 102. In a preferred 6G4.2.5HV CDRs variant (referred to herein as

5 "6G4.2.5HV/H2S54A/H3D100E,R102K"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Lys is substituted for Arg at amino acid position 102.

10 In a twenty-third 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H2S54Z₅₄/H3R102K,D106E"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant (referred to herein as

15 "6G4.2.5HV/H2S54A/H3R102K,D106E"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106.

20 In a twenty-fourth 6G4.2.5HV CDRs variant (referred to herein as

25 "6G4.2.5HV/H2S54Z₅₄/H3D100E,D106E"), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino

acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant (referred to herein as

“6G4.2.5HV/H2S54A/H3D100E,D106E”), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Glu is substituted for Asp at amino acid position 106.

10 In a twenty-fifth 6G4.2.5HV CDRs variant (referred to herein as

“6G4.2.5HV/H2S54Z₅₄/H3D100E,R102K,D106E”), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as “Z₅₄”) is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100, Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant (referred to herein as

“6G4.2.5HV/H2S54A/H3D100E,R102K,D106E”), H1 corresponds to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37), H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100, Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106.

25 In a twenty-sixth 6G4.2.5HV CDRs variant (referred to herein as

“6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other

than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100. In a preferred 5 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H1S31A/H2S54A/H3D100E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is 10 substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100.

In a twenty-seventh 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3R102K"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other 15 than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102. In a preferred 20 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H1S31A/H2S54A/H3R102K"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is 25 substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102.

In a twenty-eighth 6G4.2.5HV CDRs variant (referred to herein as

“6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D106E”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as “Z₃₁”) is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as “Z₅₄”) is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant (referred to herein as “6G4.2.5HV/H1S31A/H2S54A/H3D106E”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 106.

In a twenty-ninth 6G4.2.5HV CDRs variant (referred to herein as “6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,R102K”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as “Z₃₁”) is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as “Z₅₄”) is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Lys is substituted for Arg at amino acid position 102. In a preferred 6G4.2.5HV CDRs variant (referred to herein as “6G4.2.5HV/H1S31A/H2S54A/H3D100E,R102K”), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of

Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Lys is substituted for Arg at amino acid position 102.

In a thirtieth 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3R102K,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H1S31A/H2S54A/H3R102K,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106.

In a thirty-first 6G4.2.5HV CDRs variant (referred to herein as

"6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant (referred to herein as "6G4.2.5HV/H1S31A/H2S54A/H3D100E,D106E"), H1 correspond to amino acids

26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100 and Glu is substituted for Asp at amino acid position 106.

5 In a thirty-second 6G4.2.5HV CDRs variant (referred to herein as

10 "6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,R102K,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₃₁") is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that any amino acid other than Ser (denoted as "Z₅₄") is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100, Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106. In a preferred 6G4.2.5HV CDRs variant (referred to herein as

15 "6G4.2.5HV/H1S31A/H2S54A/H3D100E,R102K,D106E"), H1 correspond to amino acids 26-35 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 31, H2 corresponds to amino acids 50-66 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Ala is substituted for Ser at amino acid position 54, and H3 corresponds to amino acids 99-111 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37) with the proviso that Glu is substituted for Asp at amino acid position 100, Lys is substituted for Arg at amino acid position 102 and Glu is substituted for Asp at amino acid position 106.

20 25 As in the humanization of the light chain variable domain described above, a humanized heavy chain variable domain is constructed by substituting the CDRs of 6G4.2.5HV or the CDRs of a 6G4.2.5HV CDRs variant for the corresponding sequences in a human heavy chain variable domain. The humanized heavy chain variable domain comprising the CDRs of 6G4.2.5HV or

the CDRs of a 6G4.2.5HV CDRs variant can also contain some FR residues that are substituted by residues from analogous sites in the murine 6G4.2.5 antibody heavy chain variable domain. The complete amino acid sequence of 6G4.2.5HV is set out as amino acids 1-122 of the amino acid sequence of Fig. 25 (SEQ ID NO: 37).

5 The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies and antibody fragments is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework 10 (FR) for the humanized antibody (Sims *et al.*, J. Immunol. 151: 2296 (1993); Chothia and Lesk, J. Mol. Biol. 196:901 (1987)). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework can be used for several different humanized antibodies (Carter *et al.*, Proc. Natl. Acad. Sci. U.S.A. 89:4285 (1992); Presta *et al.*, J. Immunol. 151:2623 (1993)).

15 It is also important that the antibodies and antibody fragments of the invention be humanized with retention of high affinity for human IL-8 and other favorable biological properties. To achieve this goal, according to a preferred method, the humanized antibodies and antibody fragments of the invention are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the 20 parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of 25 residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the consensus and parental sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved.

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV are collectively referred to herein as "hu6G4.2.5LV".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1N35X₃₅ are collectively referred to herein as "hu
5 6G4.2.5LV/L1N35X₃₅".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1N35A are collectively referred to herein as "hu6G4.2.5LV/L1N35A".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1N35E are collectively referred to herein as "hu6G4.2.5LV/L1N35E".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1S26X₂₆ are collectively referred to herein as "hu6G4.2.5LV/L1S26X₂₆".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1S26A are collectively referred to herein as "hu6G4.2.5LV/L1S26A".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L3H98X₉₈ are collectively referred to herein as "hu6G4.2.5LV/L3H98X₉₈".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L3H98A are collectively referred to herein as "hu6G4.2.5LV/L3H98A".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1S26X₂₆,N35X₃₅ are collectively referred to herein as "hu6G4.2.5LV/L1S26X₂₆,N35X₃₅".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1S26A,N35A are collectively referred to herein as

"hu6G4.2.5LV/L1S26A,N35A".

Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1N35X₃₅/L3H98X₉₈ are collectively referred to herein as "hu6G4.2.5LV/L1N35X₃₅/L3H98X₉₈".

5 Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1N35A/L3H98A are collectively referred to herein as "hu6G4.2.5LV/L1N35A/L3H98A".

10 Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1S26X₂₆/L3H98X₉₈ are collectively referred to herein as "hu6G4.2.5LV/L1S26X₂₆/L3H98X₉₈".

15 Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1S26A/L3H98A are collectively referred to herein as "hu6G4.2.5LV/L1S26A/L3H98A".

20 Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1S26X₂₆,N35X₃₅/L3H98X₉₈ are collectively referred to herein as "hu6G4.2.5LV/L1S26X₂₆,N35X₃₅/L3H98X₉₈".

25 Any and all humanized light chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5LV/L1S26A,N35A/L3H98A are collectively referred to herein as "hu6G4.2.5LV/L1S26A,N35A/L3H98A".

The humanized light chain variable domain amino acid sequences of hu6G4.2.5LV/L1N35X₃₅, hu6G4.2.5LV/L1S26X₂₆, hu6G4.2.5LV/L1S26X₂₆/L3H98X₉₈, hu6G4.2.5LV/L1S26X₂₆,N35X₃₅, hu6G4.2.5LV/L1N35X₃₅/L3H98X₉₈, hu6G4.2.5LV/L1S26X₂₆/L3H98X₉₈, and hu6G4.2.5LV/L1S26X₂₆,N35X₃₅/L3H98X₉₈ are collectively referred to herein as "hu6G4.2.5LV/vL1-3X".

25 The humanized light chain variable domain amino acid sequences of hu6G4.2.5LV/L1N35A, hu6G4.2.5LV/L1S26A, hu6G4.2.5LV/L1S26A/L3H98A, hu6G4.2.5LV/L1S26A,N35A, hu6G4.2.5LV/L1N35A/L3H98A, hu6G4.2.5LV/L1S26A/L3H98A, hu6G4.2.5LV/L1S26A,N35A/L3H98A are collectively referred

to herein as "hu6G4.2.5LV/vL1-3A".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV are collectively referred to herein as "hu6G4.2.5HV".

5 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁ are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A are collectively referred to herein as "hu6G4.2.5HV/H1S31A".

10 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54Z₅₄ are collectively referred to herein as "hu6G4.2.5HV/H2S54Z₅₄".

15 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54A are collectively referred to herein as "hu6G4.2.5HV/H2S54A".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H3D100E are collectively referred to herein as "hu6G4.2.5HV/H3D100E".

20 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H3R102K are collectively referred to herein as "hu6G4.2.5HV/H3R102K".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H3D106E are collectively referred to herein as "hu6G4.2.5HV/H3D106E".

25 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H3D100E,R102K are collectively referred to herein as "hu6G4.2.5HV/H3D100E,R102K".

Any and all humanized heavy chain variable domain amino acid sequences which

comprise the CDRs of 6G4.2.5HV/H3R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H3R102K,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H3D100E,D106E are collectively referred to herein as "hu6G4.2.5HV/H3D100E,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H3D100E,R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H3D100E,R102K,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄ are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H3D100E are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H3D100E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H3R102K are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H3R102K".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H3D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H3D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H3D100E,R102K are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H3D100E,R102K".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H3R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H3R102K,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H3D100E,D106E are collectively referred to

herein as "hu6G4.2.5HV/H1S31Z₃₁/H3D100E,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H3D100E,R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H3D100E,R102K,D106E".

5 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54Z₅₄/H3D100E are collectively referred to herein as "hu6G4.2.5HV/H2S54Z₅₄/H3D100E".

10 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54Z₅₄/H3R102K are collectively referred to herein as "hu6G4.2.5HV/H2S54Z₅₄/H3R102K".

15 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54Z₅₄/H3D106E are collectively referred to herein as "hu6G4.2.5HV/H2S54Z₅₄/H3D106E".

20 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54Z₅₄/H3R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H2S54Z₅₄/H3R102K,D106E".

25 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54Z₅₄/H3D100E,D106E are collectively referred to herein as "hu6G4.2.5HV/H2S54Z₅₄/H3D100E,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3R102K are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3R102K".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D106E".

5 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,R102K are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,R102K".

10 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3R102K,D106E".

15 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,D106E".

20 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,R102K,D106E".

25 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H2S54A are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H2S54A".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H3D100E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H3D100E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H3R102K are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H3R102K".

25 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H3D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H3D106E".

Any and all humanized heavy chain variable domain amino acid sequences which

comprise the CDRs of 6G4.2.5HV/H1S31A/H3D100E,R102K are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H3D100E,R102K".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H3R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H3R102K,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H3D100E,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H3D100E,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H3D100E,R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H3D100E,R102K,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54A/H3D100E are collectively referred to herein as "hu6G4.2.5HV/H2S54A/H3D100E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54A/H3R102K are collectively referred to herein as "hu6G4.2.5HV/H2S54A/H3R102K".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54A/H3D106E are collectively referred to herein as "hu6G4.2.5HV/H2S54A/H3D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54A/H3R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H2S54A/H3R102K,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54A/H3D100E,D106E are collectively referred to herein as "hu6G4.2.5HV/H2S54A/H3D100E,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H2S54A/H3D100E,R102K,D106E are collectively referred to

herein as "hu6G4.2.5HV/H2S54A/H3D100E,R102K,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H2S54A/H3D100E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H2S54A/H3D100E".

5 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H2S54A/H3R102K are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H2S54A/H3R102K".

10 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H2S54A/H3D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H2S54A/H3D106E".

10 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H2S54A/H3D100E,R102K are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H2S54A/H3D100E,R102K".

15 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H2S54A/H3R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H2S54A/H3R102K,D106E".

Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H2S54A/H3D100E,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H2S54A/H3D100E,D106E".

20 Any and all humanized heavy chain variable domain amino acid sequences which comprise the CDRs of 6G4.2.5HV/H1S31A/H2S54A/H3D100E,R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/H1S31A/H2S54A/H3D100E,R102K,D106E".

The humanized heavy chain variable domain amino acid sequences of
hu6G4.2.5HV/H1S31Z₃₁, hu6G4.2.5HV/H2S54Z₅₄, hu6G4.2.5HV/H3D100E,
25 hu6G4.2.5HV/H3R102K, hu6G4.2.5HV/H3D106E, hu6G4.2.5HV/H3D100E,R102K,
hu6G4.2.5HV/H3R102K,D106E, hu6G4.2.5HV/H3D100E,D106E,
hu6G4.2.5HV/H3D100E,R102K,D106E, hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄,
hu6G4.2.5HV/H1S31Z₃₁/H3D100E, hu6G4.2.5HV/H1S31Z₃₁/H3R102K,

hu6G4.2.5HV/H1S31Z₃₁/H3D106E, hu6G4.2.5HV/H1S31Z₃₁/H3D100E,R102K,
hu6G4.2.5HV/H1S31Z₃₁/H3R102K,D106E, hu6G4.2.5HV/H1S31Z₃₁/H3D100E,D106E,
hu6G4.2.5HV/H1S31Z₃₁/H3D100E,R102K,D106E, hu6G4.2.5HV/H2S54Z₅₄/H3D100E,
hu6G4.2.5HV/H2S54Z₅₄/H3R102K, hu6G4.2.5HV/H2S54Z₅₄/H3D106E,
5 hu6G4.2.5HV/H2S54Z₅₄/H3R102K,D106E, hu6G4.2.5HV/H2S54Z₅₄/H3D100E,D106E,
hu6G4.2.5HV/H2S54Z₅₄/H3D100E,R102K,D106E,
hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E, hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3R102K,
10 hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D106E,
hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,D106E, and
hu6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄/H3D100E,R102K,D106E are collectively referred to herein
as "hu6G4.2.5HV/vH1-3Z".

The humanized heavy chain variable domain amino acid sequences of

15 hu6G4.2.5HV/H1S31A, hu6G4.2.5HV/H2S54A, hu6G4.2.5HV/H3D100E,
hu6G4.2.5HV/H3R102K, hu6G4.2.5HV/H3D106E, hu6G4.2.5HV/H3D100E,R102K,
hu6G4.2.5HV/H3R102K,D106E, hu6G4.2.5HV/H3D100E,D106E,
hu6G4.2.5HV/H3D100E,R102K,D106E, hu6G4.2.5HV/H1S31A/H2S54A,
hu6G4.2.5HV/H1S31A/H3D100E, hu6G4.2.5HV/H1S31A/H3R102K,
20 hu6G4.2.5HV/H1S31A/H3D106E, hu6G4.2.5HV/H1S31A/H3D100E,R102K,
hu6G4.2.5HV/H1S31A/H3R102K,D106E, hu6G4.2.5HV/H1S31A/H3D100E,D106E,
hu6G4.2.5HV/H1S31A/H3D100E,R102K,D106E, hu6G4.2.5HV/H2S54A/H3D100E,
hu6G4.2.5HV/H2S54A/H3R102K, hu6G4.2.5HV/H2S54A/H3D106E,
hu6G4.2.5HV/H2S54A/H3R102K,D106E, hu6G4.2.5HV/H2S54A/H3D100E,D106E,
25 hu6G4.2.5HV/H2S54A/H3D100E,R102K,D106E, hu6G4.2.5HV/H1S31A/H2S54A/H3D100E,
hu6G4.2.5HV/H1S31A/H2S54A/H3R102K, hu6G4.2.5HV/H1S31A/H2S54A/H3D106E,
hu6G4.2.5HV/H1S31A/H2S54A/H3D100E,R102K,
hu6G4.2.5HV/H1S31A/H2S54A/H3R102K,D106E,

hu6G4.2.5HV/H1S31A/H2S54A/H3D100E,D106E, and

hu6G4.2.5HV/H1S31A/H2S54A/H3D100E,R102K,D106E are collectively referred to herein as "hu6G4.2.5HV/vH1-3A".

The invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/vL1-3X. In another embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/vL1-3A. In yet another embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35X₃₅. In still another embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35A. In a further embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35E.

The invention additionally provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/vL1-3X, and further comprises a heavy chain variable domain comprising the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z. In another embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/vL1-3A, and further comprises a heavy chain variable domain comprising the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z. In yet another embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/vL1-3A, and further comprises a heavy chain variable domain comprising the hu6G4.2.5HV/vH1-3A.

In a further embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35X₃₅, and further comprises a heavy chain variable domain comprising the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z. In another embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/N35X₃₅, and further comprises a heavy chain variable domain comprising the

hu6G4.2.5HV/vH1-3A. In a preferred embodiment, the antibody or antibody fragment comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35X₃₅ and further comprises a humanized heavy chain comprising the amino acid sequence of 6G4.2.5HV11.

In an additional embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35A, and further comprises a heavy chain variable domain comprising the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z. In another embodiment, the invention provides a humanized antibody or antibody fragment that comprises a light chain variable domain comprising the hu6G4.2.5LV/N35A, and further comprises a heavy chain variable domain comprising the hu6G4.2.5HV/vH1-3A. In still another embodiment, the humanized antibody or antibody fragment comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35A, and further comprises a heavy chain variable domain comprising the hu6G4.2.5HV. In a further embodiment, the humanized antibody or antibody fragment comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35E, and further comprises a heavy chain variable domain comprising the hu6G4.2.5HV. In a preferred embodiment, the antibody or antibody fragment comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35A and further comprises a humanized heavy chain comprising the amino acid sequence of 6G4.2.5HV11. In another preferred embodiment, the antibody or antibody fragment comprises a light chain variable domain comprising the hu6G4.2.5LV/L1N35E and further comprises a humanized heavy chain comprising the amino acid sequence of 6G4.2.5HV11.

The invention encompasses a single chain antibody fragment comprising the hu6G4.2.5LV/vL1-3X, with or without any additional amino acid sequence. In one embodiment, the invention provides a single chain antibody fragment comprising the hu6G4.2.5LV/vL1-3X without any associated heavy chain variable domain amino acid sequence, i.e. a single chain species that makes up one half of an Fv fragment. In another embodiment, the invention provides a single chain antibody fragment comprising the hu6G4.2.5LV/vL1-3A without any associated heavy chain variable domain amino acid sequence. In still another embodiment, the invention provides a single chain antibody fragment comprising the hu6G4.2.5LV/L1N35X₃₅.

without any associated heavy chain variable domain amino acid sequence. In a preferred embodiment, the invention provides a single chain antibody fragment comprising the hu6G4.2.5LV/L1N35A without any associated heavy chain variable domain amino acid sequence. In another preferred embodiment, the invention provides a single chain antibody fragment comprising the hu6G4.2.5LV/L1N35E without any associated heavy chain variable domain amino acid sequence.

In one embodiment, the invention provides a single chain antibody fragment wherein the hu6G4.2.5LV/vL1-3X and the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment is a scFv species comprising the hu6G4.2.5LV/vL1-3X joined to the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z by means of a flexible peptide linker sequence, wherein the heavy chain and light chain variable domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fv species. In another embodiment, the single chain antibody fragment is a species comprising the hu6G4.2.5LV/vL1-3X joined to the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In another embodiment, the invention provides a single chain antibody fragment wherein the hu6G4.2.5LV/vL1-3A and the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment is a scFv species comprising the hu6G4.2.5LV/vL1-3A joined to the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z by means of a flexible peptide linker sequence, wherein the heavy chain and light chain variable domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fv species. In another embodiment, the single chain antibody fragment is a species comprising the hu6G4.2.5LV/vL1-3A joined to the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In yet another embodiment, the invention provides a single chain antibody fragment wherein the hu6G4.2.5LV/vL1-3A and the hu6G4.2.5HV/vH1-3A are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment is a scFv species comprising the hu6G4.2.5LV/vL1-3A joined to the hu6G4.2.5HV/vH1-3A by means of a flexible peptide linker sequence, wherein the heavy chain and light chain variable domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fv species. In another embodiment, the single chain antibody fragment is a species comprising the hu6G4.2.5LV/vL1-3A joined to the hu6G4.2.5HV/vH1-3A by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In still another embodiment, the invention provides a single chain antibody fragment wherein the hu6G4.2.5LV/L1N35X₃₅ and the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment is a scFv species comprising the hu6G4.2.5LV/L1N35X₃₅ joined to the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z by means of a flexible peptide linker sequence, wherein the heavy chain and light chain variable domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fv species. In another embodiment, the single chain antibody fragment is a species comprising the hu6G4.2.5LV/L1N35X₃₅ joined to the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In a further embodiment, the invention provides a single chain antibody fragment wherein the hu6G4.2.5LV/L1N35X₃₅ and the hu6G4.2.5HV/vH1-3A are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment is a scFv species comprising the hu6G4.2.5LV/L1N35X₃₅ joined to the hu6G4.2.5HV/vH1-3A by means of a flexible peptide linker sequence, wherein the heavy chain and light chain variable domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fv species. In another embodiment, the single chain antibody fragment is a species comprising the

hu6G4.2.5LV/L1N35X₃₅ joined to the hu6G4.2.5HV/vH1-3A by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In an additional embodiment, the invention provides a single chain antibody fragment
5 wherein the hu6G4.2.5LV/L1N35A and the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment is a scFv species comprising the hu6G4.2.5LV/L1N35A joined to the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z by means of a flexible peptide linker sequence, wherein the heavy chain and light chain variable domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fv species. In another embodiment, the single chain antibody fragment is a species comprising the hu6G4.2.5LV/L1N35A joined to the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

10
15 Also provided herein is a single chain antibody fragment wherein the hu6G4.2.5LV/L1N35E and the hu6G4.2.5HV are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment is a scFv species comprising the hu6G4.2.5LV/L1N35E joined to the hu6G4.2.5HV by means of a flexible peptide linker sequence, wherein the heavy chain and light chain variable domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fv species. In another embodiment, the single chain antibody fragment is a species comprising the hu6G4.2.5LV/L1N35E joined to the hu6G4.2.5HV by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

20
25 In still another embodiment, the invention provides a single chain antibody fragment wherein the hu6G4.2.5LV/L1N35A and the hu6G4.2.5HV/vH1-3A are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment is a scFv species comprising the hu6G4.2.5LV/L1N35A joined to the hu6G4.2.5HV/vH1-3A by

means of a flexible peptide linker sequence, wherein the heavy chain and light chain variable domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fv species. In another embodiment, the single chain antibody fragment is a species comprising the hu6G4.2.5LV/L1N35A joined to the hu6G4.2.5HV/vH1-3A by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In yet another embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/vL1-3X and a second polypeptide chain comprises the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds.

In still another embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/vL1-3X and a second polypeptide chain comprises the hu6G4.2.5HV/vH1-3A and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In a preferred embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/vL1-3X and a second polypeptide chain comprises the amino acid sequence of 6G4.2.5HV11 and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds.

In a further embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/vL1-3A and a second polypeptide chain comprises the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds.

In still another embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/vL1-3A and a second polypeptide chain comprises the hu6G4.2.5HV/vH1-3A and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In a preferred embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/vL1-3A and a

second polypeptide chain comprises the amino acid sequence of 6G4.2.5HV11 and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds.

The invention also encompasses an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/L1N35X₃₅ and a second polypeptide chain comprises the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds.

In still another embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/L1N35X₃₅ and a second polypeptide chain comprises the hu6G4.2.5HV/vH1-3A and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In a preferred embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/L1N35X₃₅ and a second polypeptide chain comprises the amino acid sequence of 6G4.2.5HV11 and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds.

The invention further encompasses an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/L1N35A and a second polypeptide chain comprises the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds.

The invention also encompasses an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/L1N35E and a second polypeptide chain comprises the hu6G4.2.5HV and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds.

In still another embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/L1N35A and a second polypeptide chain comprises the hu6G4.2.5HV/vH1-3A and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In a preferred embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/L1N35A and a

second polypeptide chain comprises the amino acid sequence of 6G4.2.5HV11 and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In another preferred embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5LV/L1N35E and a second polypeptide chain comprises the amino acid sequence of 6G4.2.5HV11 and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds.

In a preferred embodiment, any of the foregoing two-chain antibody fragments are selected from the group consisting of Fab, Fab', Fab'-SH, Fv, and F(ab')₂. In another preferred embodiment, the antibody fragment is selected from the group consisting of Fab, Fab', Fab'-SH, Fv, and F(ab')₂, wherein the antibody fragment comprises one polypeptide chain comprising the hu6G4.2.5LV/L1N35X₃₅ and a second polypeptide chain comprising the hu6G4.2.5HV. In yet another preferred embodiment, the antibody fragment is selected from the group consisting of Fab, Fab', Fab'-SH, Fv, and F(ab')₂, wherein the antibody fragment comprises one polypeptide chain comprising the hu6G4.2.5LV/L1N35A and a second polypeptide chain comprising the hu6G4.2.5HV. In a further preferred embodiment, the antibody fragment is selected from the group consisting of Fab, Fab', Fab'-SH, Fv, and F(ab')₂, wherein the antibody fragment comprises one polypeptide chain comprising the hu6G4.2.5LV/L1N35E and a second polypeptide chain comprising the hu6G4.2.5HV. In still another preferred embodiment, the antibody fragment is a F(ab')₂ that comprises one polypeptide chain comprising the hu6G4.2.5LV/L1N35A and a second polypeptide chain comprising the amino acid sequence of 6G4.2.5HV11. In an additional preferred embodiment, the antibody fragment is a F(ab')₂ that comprises one polypeptide chain comprising the hu6G4.2.5LV/L1N35E and a second polypeptide chain comprising the amino acid sequence of 6G4.2.5HV11.

The invention also provides an antibody or antibody fragment comprising a light chain variable domain containing the hu6G4.2.5LV/vL1-3X and optionally further comprising a heavy chain variable domain containing the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z, wherein the light chain variable domain, and optionally the heavy chain variable domain, is (are) fused to an additional moiety, such as a immunoglobulin constant domain. Constant domain sequence can

be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.*

The invention additionally provides an antibody or antibody fragment comprising a light chain variable domain containing the hu6G4.2.5LV/vL1-3X and optionally further comprising a heavy chain variable domain containing the hu6G4.2.5HV/vH1-3A, wherein the light chain variable domain, and optionally the heavy chain variable domain, is (are) fused to an additional moiety, such as a immunoglobulin constant domain. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.*

The invention further provides an antibody or antibody fragment comprising a light chain variable domain containing the hu6G4.2.5LV/L1N35X₃₅ and optionally further comprising a heavy chain variable domain containing the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z, wherein the light chain variable domain, and optionally the heavy chain variable domain, is (are) fused to an additional moiety, such as a immunoglobulin constant domain. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.*

The invention additionally provides an antibody or antibody fragment comprising a light chain variable domain containing the hu6G4.2.5LV/L1N35X₃₅ and optionally further comprising a heavy chain variable domain containing the hu6G4.2.5HV/vH1-3A, wherein the light chain variable domain, and optionally the heavy chain variable domain, is (are) fused to an additional moiety, such as a immunoglobulin constant domain. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.*

The invention also encompasses an antibody or antibody fragment comprising a light chain variable domain containing the hu6G4.2.5LV/L1N35A and optionally further comprising a heavy chain variable domain containing the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z, wherein the light chain variable domain, and optionally the heavy chain variable domain, is (are) fused to an additional moiety, such as a immunoglobulin constant domain. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.*

The invention additionally provides an antibody or antibody fragment comprising a light chain variable domain containing the hu6G4.2.5LV/L1N35A and optionally further comprising a heavy chain variable domain containing the hu6G4.2.5HV/vH1-3A, wherein the light chain variable domain, and optionally the heavy chain variable domain, is (are) fused to an additional moiety, such as a immunoglobulin constant domain. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy

and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from

5 Kabat *et al.*

The invention additionally encompasses an antibody or antibody fragment comprising a light chain variable domain containing the hu6G4.2.5LV/L1N35A and optionally further comprising a heavy chain containing the amino acid sequence of 6G4.2.5HV11, wherein the light chain variable domain, and optionally the heavy chain, is (are) fused to an additional moiety, such as immunoglobulin constant domain sequences. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from

Kabat *et al.*

10 The invention further encompasses an antibody or antibody fragment comprising a light chain variable domain containing the hu6G4.2.5LV/L1N35E and optionally further comprising a heavy chain containing the amino acid sequence of 6G4.2.5HV11, wherein the light chain variable domain, and optionally the heavy chain, is (are) fused to an additional moiety, such as immunoglobulin constant domain sequences. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from

Kabat *et al.*

In a preferred embodiment, the antibody or antibody fragment comprises a light chain

variable domain containing the hu6G4.2.5LV/vL1-3X, and further comprises the hu6G4.2.5HV or hu6G4.2.5HV/vH1-3Z in a heavy chain that is fused to or contains a leucine zipper sequence. The leucine zipper can increase the affinity or production efficiency of the antibody or antibody fragment of interest. Suitable leucine zipper sequences include the jun and fos leucine zippers taught by Kostelney *et al.*, J. Immunol., 148: 1547-1553 (1992) and the GCN4 leucine zipper described in the Examples below.

In particular, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that any amino acid other than Asn (denoted as "X₃₅") is substituted for Asn at amino acid position 35 (herein referred to as "6G4.2.5LV11N35X₃₅").

In another embodiment, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that any amino acid other than Ser (denoted as "X₂₆") is substituted for Ser at amino acid position 26 (herein referred to as "6G4.2.5LV11S26X₂₆").

In yet another embodiment, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that any amino acid other than His (denoted as "X₉₈") is substituted for His at amino acid position 98 (herein referred to as "6G4.2.5LV11H98X₉₈").

In still another embodiment, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that any amino acid other than Ser (denoted as "X₂₆") is substituted for Ser at amino acid position 26 and any amino acid other than Asn (denoted as "X₃₅") is substituted for Asn at amino acid position 35 (herein referred to as "6G4.2.5LV11S26X₂₆/N35X₃₅").

In a further embodiment, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that any amino acid other than Asn (denoted as "X₃₅") is substituted for Asn at amino acid position 35 and any amino acid other than His (denoted as "X₉₈") is substituted for His at amino acid position 98 (herein referred to as "6G4.2.5LV11N35X₃₅/H98X₉₈").

In an additional embodiment, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that any amino acid other than Ser (denoted as "X₂₆") is substituted for Ser at amino acid position 26 and any amino acid other than His (denoted as "X₉₈") is substituted for His at amino acid position 98 (herein referred to as "6G4.2.5LV11S26X₂₆/H98X₉₈").

The invention also encompasses an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that any amino acid other than Ser (denoted as "X₂₆") is substituted for Ser at amino acid position 26, any amino acid other than Asn (denoted as "X₃₅") is substituted for Asn at amino acid position 35 and any amino acid other than His (denoted as "X₉₈") is substituted for His at amino acid position 98 (herein referred to as "6G4.2.5LV11S26X₂₆/N35X₃₅/H98X₉₈") .

Additionally, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence (SEQ ID NO: 56) of Fig. 36 (herein referred to as "6G4.2.5LV11N35A").

Further provided herein is an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence (SEQ ID NO: 62) of Fig. 45 (herein

referred to as "6G4.2.5LV11N35E").

In another embodiment, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that Ala is substituted for Ser at amino acid position 26 (herein referred to as "6G4.2.5LV11S26A").

In yet another embodiment, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that Ala is substituted for His at amino acid position 98 (herein referred to as "6G4.2.5LV11H98A").

In still another embodiment, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that Ala is substituted for Ser at amino acid position 26 and Ala is substituted for Asn at amino acid position 35 (herein referred to as "6G4.2.5LV11S26A/N35A").

In a further embodiment, the invention provides an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that Ala is substituted for Ser at amino acid position 26 and Ala is substituted for His at amino acid position 98 (herein referred to as "6G4.2.5LV11S26A/H98A").

The invention also encompasses an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that Ala is substituted for Asn at amino acid position 35 and Ala is substituted for His at amino acid position 98 (herein referred to as "6G4.2.5LV11N35A/H98A").

The invention further encompasses an antibody or antibody fragment comprising a light chain comprising the amino acid sequence of amino acids 1-219 of the variant humanized anti-

IL-8 6G4.2.5v11 light chain polypeptide amino acid sequence of Fig. 31B (SEQ ID NO: 51) with the proviso that Ala is substituted for Ser at amino acid position 26, Ala is substituted for Asn at amino acid position 35, and Ala is substituted for His at amino acid position 98 (herein referred to as "6G4.2.5LV11S26A/N35A/H98A").

5 The invention provides a single chain antibody fragment comprising a variant light chain selected from the group consisting of 6G4.2.5LV11N35X₃₅, 6G4.2.5LV11S26X₂₆, 6G4.2.5LV11H98X₉₈, 6G4.2.5LV11S26X₂₆/ N35X₃₅, 6G4.2.5LV11N35X₃₅/ H98X₉₈, 6G4.2.5LV11S26X₂₆/ H98X₉₈, and 6G4.2.5LV11S26X₂₆/ N35X₃₅/H98X₉₈, with or without any additional amino acid sequence. It will be understood that the group consisting of 10 6G4.2.5LV11N35X₃₅, 6G4.2.5LV11S26X₂₆, 6G4.2.5LV11H98X₉₈, 6G4.2.5LV11S26X₂₆/ N35X₃₅, 6G4.2.5LV11N35X₃₅/ H98X₉₈, 6G4.2.5LV11S26X₂₆/H98X₉₈, and 15 6G4.2.5LV11S26X₂₆/ N35X₃₅/H98X₉₈, is collectively referred to herein as the "group of 6G4.2.5LV11X variants", and that individual members of this group are generically referred to herein as a "6G4.2.5LV11X variant." In one embodiment, the invention provides a single chain antibody fragment comprising a 6G4.2.5LV11X variant without any associated heavy chain amino acid sequence, i.e. a single chain species that makes up one half of a Fab fragment. In a preferred embodiment, the invention provides a 6G4.2.5LV11N35X₃₅ variant without any associated heavy chain amino acid sequence.

20 The invention encompasses a single chain antibody fragment comprising a variant light chain selected from the group consisting of 6G4.2.5LV11N35A, 6G4.2.5LV11S26A, 6G4.2.5LV11H98A, 6G4.2.5LV11S26A/ N35A, 6G4.2.5LV11N35A/ H98A, 6G4.2.5LV11S26A/H98A, and 6G4.2.5LV11S26A/ N35A/H98A, with or without any additional amino acid sequence. It will be understood that the group consisting of 25 6G4.2.5LV11N35A, 6G4.2.5LV11S26A, 6G4.2.5LV11H98A, 6G4.2.5LV11S26A/ N35A, 6G4.2.5LV11N35A/ H98A, 6G4.2.5LV11S26A/H98A, and 6G4.2.5LV11S26A/ N35A/H98A is collectively referred to herein as the "group of 6G4.2.5LV11A variants", and that individual members of this group are generically referred to herein as a "6G4.2.5LV11A variant." In one embodiment, the invention provides a single chain antibody fragment comprising a

6G4.2.5LV11A variant without any associated heavy chain amino acid sequence, i.e. a single chain species that makes up one half of a Fab fragment. In a preferred embodiment, the invention provides the 6G4.2.5LV11N35A without any associated heavy chain amino acid sequence.

5 Further provided herein are an antibody or antibody fragment comprising a light chain comprising a 6G4.2.5LV11X variant, and further comprising a heavy chain comprising the 6G4.2.5HV11. In a preferred embodiment, the invention provides an antibody or antibody fragment comprising a 6G4.2.5LV11N35X₃₅ variant and further comprising the 6G4.2.5HV11. In a preferred embodiment, the invention provides an antibody or antibody fragment comprising the 6G4.2.5LV11N35A and further comprising the 6G4.2.5HV11. In another preferred embodiment, the invention provides an antibody or antibody fragment comprising the 6G4.2.5LV11N35E and further comprising the 6G4.2.5HV11.

10 In one embodiment, the invention provides a single chain antibody fragment wherein a 6G4.2.5LV11X variant and the 6G4.2.5HV11 are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment comprises a 6G4.2.5LV11X variant joined to the 6G4.2.5HV11 by means of a flexible peptide linker sequence, wherein the heavy chain and light chain domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fab species. In another embodiment, the single chain antibody fragment is a species comprising a 6G4.2.5LV11X variant joined to the 6G4.2.5HV11 by a linker that is too short to permit intramolecular pairing of complementary domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

15 In still another embodiment, the invention provides a single chain antibody fragment wherein a 6G4.2.5LV11N35X₃₅ variant and the 6G4.2.5HV11 are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment comprises a 6G4.2.5LV11N35X₃₅ variant joined to the 6G4.2.5HV11 by means of a flexible peptide linker sequence, wherein the heavy chain and light chain domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fab species. In another embodiment, the single chain

antibody fragment is a species comprising a 6G4.2.5LV11N35X₃₅ variant joined to the 6G4.2.5HV11 by a linker that is too short to permit intramolecular pairing of complementary domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

5 In a further embodiment, the invention provides a single chain antibody fragment wherein the 6G4.2.5LV11N35A and the 6G4.2.5HV11 are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment comprises the 6G4.2.5LV11N35A joined to the 6G4.2.5HV11 by means of a flexible peptide linker sequence, wherein the heavy chain and light chain domains can associate in a "dimeric" structure analogous 10 to that formed in a two-chain Fab species. In another embodiment, the single chain antibody fragment is a species comprising the 6G4.2.5LV11N35A joined to the 6G4.2.5HV11 by a linker that is too short to permit intramolecular pairing of complementary domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

15 In an additional embodiment, the invention provides a single chain antibody fragment wherein the 6G4.2.5LV11N35E and the 6G4.2.5HV11 are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment comprises the 6G4.2.5LV11N35E joined to the 6G4.2.5HV11 by means of a flexible peptide linker sequence, wherein the heavy chain and light chain domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fab species. In another embodiment, the single chain 20 antibody fragment is a species comprising the 6G4.2.5LV11N35E joined to the 6G4.2.5HV11 by a linker that is too short to permit intramolecular pairing of complementary domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

25 In yet another embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises a 6G4.2.5LV11X variant and a second polypeptide chain comprises the 6G4.2.5HV11 and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In still another embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises a 6G4.2.5LV11N35X₃₅ variant and a second

polypeptide chain comprises the 6G4.2.5HV11 and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In a preferred embodiment, any of the foregoing two-chain antibody fragments is selected from the group consisting of Fab, Fab', Fab'-SH, and F(ab')₂. In still another preferred embodiment, the two-chain antibody fragment is a 5 F(ab')₂ wherein one polypeptide chain comprises the 6G4.2.5LV11N35A and the second polypeptide chain comprises the 6G4.2.5HV11. In a further preferred embodiment, the antibody fragment is a Fab, Fab', Fab'-SH, or F(ab')₂ wherein one polypeptide chain comprises the 6G4.2.5LV11N35E and the second polypeptide chain comprises the 6G4.2.5HV11. A particularly preferred embodiment, the antibody fragment is the 6G4V11N35A F(ab')₂ GCN4 10 leucine zipper species described in the Examples below. In another particularly preferred embodiment, the antibody fragment is the 6G4V11N35E F(ab')₂ GCN4 leucine zipper species described in the Examples below. In yet another particularly preferred embodiment, the antibody fragment is the 6G4V11N35E Fab described in the Examples below.

The invention also provides an antibody or antibody fragment comprising a light chain containing a 6G4.2.5LV11X variant and optionally further comprising a heavy chain containing the 6G4.2.5HV11, wherein the light chain, and optionally the heavy chain, is (are) fused to an additional moiety, such as additional immunoglobulin constant domain sequence. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.*

The invention additionally provides an antibody or antibody fragment comprising a light chain containing a 6G4.2.5LV11N35X₃₅ variant and optionally further comprising a heavy chain containing the 6G4.2.5HV11, wherein the light chain, and optionally the heavy chain, is (are) fused to an additional moiety, such as additional immunoglobulin constant domain sequence. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to 15 20 25

form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant
5 domain sequences can be obtained from Kabat *et al.*

The invention further provides an antibody or antibody fragment comprising a light chain containing the 6G4.2.5LV11N35A and optionally further comprising a heavy chain containing the 6G4.2.5HV11, wherein the light chain, and optionally the heavy chain, is (are) fused to an additional moiety, such as additional immunoglobulin constant domain sequence. Constant
10 domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species.
15 Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.*

The invention further provides an antibody or antibody fragment comprising a light chain containing the 6G4.2.5LV11N35E and optionally further comprising a heavy chain containing the 6G4.2.5HV11, wherein the light chain, and optionally the heavy chain, is (are) fused to an additional moiety, such as additional immunoglobulin constant domain sequence. Constant
20 domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species.
25 Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.*

In a preferred embodiment, the antibody or antibody fragment comprises a light chain containing a 6G4.2.5LV11X variant, and further comprises the 6G4.2.5HV11 in a heavy chain that is fused to or contains a leucine zipper sequence. The leucine zipper can increase the affinity

or production efficiency of the antibody or antibody fragment of interest. Suitable leucine zipper sequences include the jun and fos leucine zippers taught by Kostelney *et al.*, *J. Immunol.*, 148: 1547-1553 (1992) and the GCN4 leucine zipper described in the Examples below. In another preferred embodiment, the antibody or antibody fragment comprises a light chain containing the 6G4.2.5LV11N35A, and further comprises a heavy chain containing the 6G4.2.5HV11 fused to the GCN4 leucine zipper. In yet another preferred embodiment, the antibody or antibody fragment comprises a light chain containing the 6G4.2.5LV11N35E, and further comprises a heavy chain containing the 6G4.2.5HV11 fused to the GCN4 leucine zipper.

10 B. 6G4.2.5HV VARIANTS

The invention provides humanized antibodies and antibody fragments comprising the CDRs of a 6G4.2.5HV CDR variant. The use of a 6G4.2.5HV CDRs variant in the humanized antibodies and antibody fragments of the invention confer the advantages of higher affinity for human IL-8 and/or improved recombinant manufacturing economy.

15 A heavy chain variable domain comprising the CDRs of a 6G4.2.5HV CDRs variant can be humanized in conjunction with a light chain comprising the CDRs of 6G4.2.5LV or the CDRs of a 6G4.2.5LV CDRs variant, essentially as described in Section (II)(2)(A) above. In one embodiment, the invention provides a humanized antibody or antibody fragment comprising a 6G4.2.5HV CDRs variant selected from the group consisting of 6G4.2.5HV/H1S31Z₃₁, 20 6G4.2.5HV/H2S54Z₅₄, and 6G4.2.5HV/H1S31Z₃₁/H2S54Z₅₄. In addition, the invention provides a humanized antibody or antibody fragment comprising a 6G4.2.5HV CDRs variant selected from the group consisting of 6G4.2.5HV/H1S31A, 6G4.2.5HV/H2S54A, and 6G4.2.5HV/H1S31A/H2S54A. In particular, the 6G4.2.5HV CDRs variants can be used to construct a humanized antibody or antibody comprising the hu6G4.2.5HV/vH1-3Z as described 25 in Section (II)(2)(A) above.

The invention additionally provides a humanized antibody or antibody fragment that comprises a heavy chain variable domain comprising the hu6G4.2.5HV/vH1-3Z, and further comprises a light chain variable domain comprising the hu6G4.2.5LV or hu6G4.2.5LV/vL1-3X.

The invention further encompasses a single chain humanized antibody fragment comprising the hu6G4.2.5HV/vH1-3Z, with or without any additional amino acid sequence. In one embodiment, the invention provides a single chain antibody fragment comprising the hu6G4.2.5HV/vH1-3Z without any associated heavy chain variable domain amino acid sequence, i.e. a single chain species that makes up one half of an Fv fragment.

In one embodiment, the invention provides a single chain humanized antibody fragment wherein the hu6G4.2.5HV/vH1-3Z and the hu6G4.2.5LV or hu6G4.2.5LV/vL1-3X are contained in a single chain polypeptide species. In a preferred embodiment, the single chain antibody fragment is a scFv species comprising the hu6G4.2.5HV/vH1-3Z joined to the hu6G4.2.5LV or hu6G4.2.5LV/vL1-3X by means of a flexible peptide linker sequence, wherein the heavy chain and light chain variable domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fv species. In another embodiment, the single chain antibody fragment is a species comprising the hu6G4.2.5HV/vH1-3Z joined to the hu6G4.2.5LV or hu6G4.2.5LV/vL1-3X by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In yet another embodiment, the invention provides a humanized antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises the hu6G4.2.5HV/vH1-3Z and a second polypeptide chain comprises the hu6G4.2.5LV or hu6G4.2.5LV/vL1-3X and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In a preferred embodiment, the foregoing two-chain antibody fragment is selected from the group consisting of Fab, Fab', Fab'-SH, Fv, and F(ab')₂.

The invention also provides a humanized antibody or antibody fragment comprising a heavy chain variable domain containing the hu6G4.2.5HV/vH1-3Z and optionally further comprising a light chain variable domain containing the hu6G4.2.5LV or hu6G4.2.5LV/vL1-3X, wherein the heavy chain variable domain, and optionally the light chain variable domain, is (are) fused to an additional moiety, such as an immunoglobulin constant domain. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full

or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be
5 obtained from Kabat *et al.*

In a preferred embodiment, the humanized antibody or antibody fragment comprises the hu6G4.2.5HV/vH1-3Z in a heavy chain that is fused to or contains a leucine zipper sequence. The leucine zipper can increase the affinity or production efficiency of the antibody or antibody fragment of interest. Suitable leucine zipper sequences include the jun and fos leucine zippers
10 taught by Kostelney *et al.*, J. Immunol., 148: 1547-1553 (1992) and the GCN4 leucine zipper described in the Examples below.

In addition, the invention provides a humanized antibody or antibody fragment comprising a heavy chain comprising the amino acid sequence of amino acids 1-230 of the 6G4.2.5HV11 polypeptide amino acid sequence of Figs. 37A-37B (SEQ ID NO: 60) with the proviso that Ala is substituted for Ser at amino acid position 31 (hereinafter referred to as
15 "6G4.2.5HV11S31A").

In another embodiment, the invention provides a humanized antibody or antibody fragment comprising a heavy chain comprising the amino acid sequence of amino acids 1-230 of the 6G4.2.5HV11 polypeptide amino acid sequence of Figs. 37A-37B (SEQ ID NO: 60) with the proviso that Ala is substituted for Ser at amino acid position 54 (hereinafter referred to as
20 "6G4.2.5HV11S54A").

In yet another embodiment, the invention provides a humanized antibody or antibody fragment comprising a heavy chain comprising the amino acid sequence of amino acids 1-230 of the 6G4.2.5HV11 polypeptide amino acid sequence of Figs. 37A-37B (SEQ ID NO: 60) with the proviso that Ala is substituted for Ser at amino acid position 31 and Ala is substituted for Ser at
25 amino acid position 54 (hereinafter referred to as "6G4.2.5HV11S31A/S54A").

Further provided herein is a humanized antibody or antibody fragment that comprises any of the light and heavy chain combinations listed in Tables 1-2 below.

Table 1

Heavy Chain	Light Chain
5 6G4.2.5HV11S31A	6G4.2.5LV11
6G4.2.5HV11S31A	6G4.2.5LV11N35A
6G4.2.5HV11S31A	6G4.2.5LV11S26A
6G4.2.5HV11S31A	6G4.2.5LV11H98A
10 6G4.2.5HV11S31A	6G4.2.5LV11S26A/N35A
6G4.2.5HV11S31A	6G4.2.5LV11S26A/H98A
6G4.2.5HV11S31A	6G4.2.5LV11N35A/H98A
6G4.2.5HV11S31A	6G4.2.5LV11S26A/N35A/H98A
6G4.2.5HV11S54A	6G4.2.5LV11
6G4.2.5HV11S54A	6G4.2.5LV11N35A
6G4.2.5HV11S54A	6G4.2.5LV11S26A
6G4.2.5HV11S54A	6G4.2.5LV11H98A
6G4.2.5HV11S54A	6G4.2.5LV11S26A/N35A
6G4.2.5HV11S54A	6G4.2.5LV11S26A/H98A
6G4.2.5HV11S54A	6G4.2.5LV11N35A/H98A
6G4.2.5HV11S54A	6G4.2.5LV11S26A/N35A/H98A
6G4.2.5HV11S31A/S54A	6G4.2.5LV11
6G4.2.5HV11S31A/S54A	6G4.2.5LV11N35A
6G4.2.5HV11S31A/S54A	6G4.2.5LV11S26A
6G4.2.5HV11S31A/S54A	6G4.2.5LV11H98A
6G4.2.5HV11S31A/S54A	6G4.2.5LV11S26A/N35A
6G4.2.5HV11S31A/S54A	6G4.2.5LV11S26A/H98A
6G4.2.5HV11S31A/S54A	6G4.2.5LV11N35A/H98A
6G4.2.5HV11S31A/S54A	6G4.2.5LV11S26A/N35A/H98A

Table 2

	Heavy Chain	Light Chain
5	6G4.2.5HV11S31A	6G4.2.5LV11
	6G4.2.5HV11S31A	6G4.2.5LV11N35X ₃₅
	6G4.2.5HV11S31A	6G4.2.5LV11S26X ₂₆
	6G4.2.5HV11S31A	6G4.2.5LV11H98X ₉₈
	6G4.2.5HV11S31A	6G4.2.5LV11S26X ₂₆ /N35X ₃₅
10	6G4.2.5HV11S31A	6G4.2.5LV11S26X ₂₆ /H98X ₉₈
	6G4.2.5HV11S31A	6G4.2.5LV11N35X ₃₅ /H98X ₉₈
	6G4.2.5HV11S31A	6G4.2.5LV11S26X ₂₆ /N35X ₃₅ /H98X ₉₈
	6G4.2.5HV11S54A	6G4.2.5LV11
	6G4.2.5HV11S54A	6G4.2.5LV11N35X ₃₅
15	6G4.2.5HV11S54A	6G4.2.5LV11S26X ₂₆
	6G4.2.5HV11S54A	6G4.2.5LV11H98X ₉₈
	6G4.2.5HV11S54A	6G4.2.5LV11S26X ₂₆ /N35X ₃₅
	6G4.2.5HV11S54A	6G4.2.5LV11S26X ₂₆ /H98X ₉₈
	6G4.2.5HV11S54A	6G4.2.5LV11N35X ₃₅ /H98X ₉₈
20	6G4.2.5HV11S54A	6G4.2.5LV11S26X ₂₆ /N35X ₃₅ /H98X ₉₈
	6G4.2.5HV11S31A/S54A	6G4.2.5LV11
	6G4.2.5HV11S31A/S54A	6G4.2.5LV11N35X ₃₅
	6G4.2.5HV11S31A/S54A	6G4.2.5LV11S26X ₂₆
	6G4.2.5HV11S31A/S54A	6G4.2.5LV11H98X ₉₈
25	6G4.2.5HV11S31A/S54A	6G4.2.5LV11S26X ₂₆ /N35X ₃₅
	6G4.2.5HV11S31A/S54A	6G4.2.5LV11S26X ₂₆ /H98X ₉₈
	6G4.2.5HV11S31A/S54A	6G4.2.5LV11N35X ₃₅ /H98X ₉₈
	6G4.2.5HV11S31A/S54A	6G4.2.5LV11S26X ₂₆ /N35X ₃₅ /H98X ₉₈

30

The invention encompasses a single chain humanized antibody fragment comprising a variant heavy chain selected from the group consisting of 6G4.2.5HV11S31A, 6G4.2.5HV11S54A, and 6G4.2.5HV11S31A/S54A, with or without any additional amino acid sequence. It will be understood that the group consisting of 6G4.2.5HV11S31A, 35 6G4.2.5HV11S54A, and 6G4.2.5HV11S31A/S54A is collectively referred to herein as the "group of 6G4.2.5HV11A variants", and that individual members of this group are generically referred to herein as a "6G4.2.5HV11A variant." In one embodiment, the invention provides a

single chain humanized antibody fragment comprising a 6G4.2.5HV11A variant without any associated light chain amino acid sequence, i.e. a single chain species that makes up one half of a Fab fragment.

Further provided herein are a humanized antibody or antibody fragment comprising a heavy chain comprising a 6G4.2.5HV11A variant, and further comprising a light chain comprising a 6G4.2.5LV11A variant or a 6G4.2.5LV11X variant. In another embodiment, the humanized antibody or antibody fragment comprises any combination of light and heavy chains listed in Tables 1 and 2 above. In one embodiment, the invention provides a humanized antibody or antibody fragment comprising a 6G4.2.5HV11A variant and further comprising the 6G4.2.5LV11N35X₃₅. In a preferred embodiment, the invention provides a humanized antibody or antibody fragment comprising a 6G4.2.5HV11A variant and further comprising the 6G4.2.5LV11N35A.

In yet another embodiment, the invention provides a single chain humanized antibody fragment wherein a 6G4.2.5HV11A variant and the 6G4.2.5LV11 are contained in a single chain polypeptide species. In another embodiment, the invention provides a single chain humanized antibody fragment wherein any pair of light and heavy chains listed in Tables 1-2 above is contained in a single chain polypeptide species. In yet another embodiment, the invention provides a single chain humanized antibody fragment wherein a 6G4.2.5HV11A variant and a 6G4.2.5LV11X variant are contained in a single chain polypeptide species. In still another embodiment, the invention provides a single chain humanized antibody fragment wherein a 6G4.2.5HV11A variant and a 6G4.2.5LV11N35X₃₅ variant are contained in a single chain polypeptide species. In an additional embodiment, the invention provides a single chain humanized antibody fragment wherein a 6G4.2.5HV11A variant and the 6G4.2.5LV11N35A variant are contained in a single chain polypeptide species.

In a preferred embodiment, the single chain humanized antibody fragment comprises a 6G4.2.5HV11A variant joined to a 6G4.2.5LV11X variant, 6G4.2.5LV11N35X₃₅ variant, 6G4.2.5LV11N35A variant, or 6G4.2.5LV11 by means of a flexible peptide linker sequence, wherein the heavy chain and light chain domains can associate in a "dimeric" structure analogous

to that formed in a two-chain Fab species. In a further embodiment, the single chain humanized antibody fragment is a species comprising a 6G4.2.5HV11A variant joined to a 6G4.2.5LV11X variant, 6G4.2.5LV11N35X₃₅ variant, 6G4.2.5LV11N35A variant, or 6G4.2.5LV11 by a linker that is too short to permit intramolecular pairing of complementary domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In still another embodiment, the single chain humanized antibody fragment comprises any pair of light and heavy chains listed in Table 1 above joined by means of a flexible peptide linker sequence, wherein the heavy chain and light chain domains can associate in a "dimeric" structure analogous to that formed in a two-chain Fab species. In an additional embodiment, the single chain humanized antibody fragment comprises any pair of light and heavy chains listed in Tables 1-2 above joined by a linker that is too short to permit intramolecular pairing of complementary domains, i.e. a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.

In yet another embodiment, the invention provides a humanized antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises a 6G4.2.5HV11A variant and a second polypeptide chain comprises a 6G4.2.5LV11X variant, 6G4.2.5LV11N35X₃₅ variant, 6G4.2.5LV11N35A variant, or 6G4.2.5LV11, and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In a preferred embodiment, the foregoing two-chain antibody fragment is selected from the group consisting of Fab, Fab', Fab'-SH, and F(ab')₂.

In an additional embodiment, the invention provides a two-chain humanized antibody fragment comprising any pair of heavy and light chains listed in Tables 1-2 above, wherein each chain is contained on a separate molecule. In another embodiment, the two-chain antibody fragment comprising any pair of heavy and light chains listed in Tables 1-2 above is selected from the group consisting of Fab, Fab', Fab'-SH, and F(ab')₂. In a preferred embodiment, the two-chain humanized antibody fragment is a F(ab')₂ comprising any pair of heavy and light chains listed in Tables 1-2 above. In another preferred embodiment, the two-chain humanized antibody fragment is a F(ab')₂ wherein one polypeptide chain comprises a 6G4.2.5HV11A

variant and the second polypeptide chain comprises the 6G4.2.5LV11N35A.

The invention also provides a humanized antibody or antibody fragment comprising a heavy chain containing a 6G4.2.5HV11A variant and optionally further comprising a light chain containing a 6G4.2.5LV11X variant, 6G4.2.5LV11N35X₃₅ variant, 6G4.2.5LV11N35A, or 5 6G4.2.5HV11, wherein the heavy chain, and optionally the light chain, is (are) fused to an additional moiety, such as additional immunoglobulin constant domain sequence. Constant domain sequence can be added to the heavy chain and/or light chain sequence(s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA, IgD, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat *et al.* (supra).

In a preferred embodiment, the humanized antibody or antibody fragment comprises a 6G4.2.5HV11A variant in a heavy chain that is fused to or contains a leucine zipper sequence. 10 The leucine zipper can increase the affinity or production efficiency of the antibody or antibody fragment of interest. Suitable leucine zipper sequences include the jun and fos leucine zippers taught by Kostelney *et al.*, J. Immunol., 148: 1547-1553 (1992) and the GCN4 leucine zipper described in the Examples below.

20 C. Bispecific Antibodies

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for IL-8, the other one is for any other antigen. For example, bispecific antibodies specifically binding a IL-8 and neurotrophic factor, or two different types of IL-8 25 polypeptides are within the scope of the present invention.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two heavy chains have different

specificities (Milstein and Cuello, Nature 305:537 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures 5 are disclosed in WO 93/08829 published 13 May 1993, and in Trauneker *et al.*, EMBO J. 10:3655 (1991).

According to a different and more preferred approach, antibody-variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant-domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH₂, and CH₃ regions. It is preferred to have the first heavy-chain constant region (CH₁), containing the site necessary for light-chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression 10 vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the maximum 15 yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the production of at least two polypeptide chains in equal 20 ratios results in high yields or when the ratios are of no particular significance. In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the 25 other arm. This asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. For further details of generating bispecific antibodies, see, for example, Suresh *et al.*, Methods in Enzymology 121:210 (1986).

According to another approach, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the C_H3 domain of an antibody constant domain. In this method, one or more small amino acid side chains from the 5 interface of the first antibody molecule are replaced with larger side chains (*e.g.* tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (*e.g.* alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

10 Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (US Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/00373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking 15 methods. Suitable cross-linking agents are well known in the art, and are disclosed in US Patent No. 4,676,980, along with a number of cross-linking techniques.

20 Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan *et al.*, *Science*, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to 25 thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Recent progress has facilitated the direct recovery of Fab'-SH fragments from *E. coli*, which can be chemically coupled to form bispecific antibodies. Shalaby *et al.*, *J. Exp. Med.*, 175:

217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from *E. coli* and subjected to directed chemical coupling *in vitro* to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as
5 trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelnik *et al.*, *J. Immunol.*, **148**(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger *et al.*, *Proc. Natl. Acad. Sci. USA*, **90**:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported.
10
15

20 See Gruber *et al.*, *J. Immunol.*, **152**:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt *et al.* *J. Immunol.* **147**: 60 (1991).

25 4. Production of Humanized Anti-IL-8 6G4.2.5 Monoclonal Antibody, Antibody Fragments, and Variants

The antibodies and antibody fragments of the invention can be produced using any convenient antibody manufacturing process known in the art. Typically, the antibody or antibody fragment is made using recombinant expression systems. A multiple polypeptide chain antibody

or antibody fragment species can be made in a single host cell expression system wherein the host cell produces each chain of the antibody or antibody fragment and assembles the polypeptide chains into a multimeric structure to form the antibody or antibody fragment *in vivo*, followed by recovery of the antibody or antibody fragment from the host cell. For example, suitable 5 recombinant expression systems for the production of complete antibody or antibody fragment are described in Lucas *et al.*, Nucleic Acids Res., 24: 1774-1779 (1996). Alternatively, the separate polypeptide chains of the desired antibody or antibody fragment can be made in separate expression host cells, separately recovered from the respective host cells, and then mixed *in vitro* under conditions permitting the formation of the multi-subunit antibody or antibody fragment of 10 interest. For example, U.S. Pat. No. 4,816,567 to Cabilly *et al.* and Carter *et al.*, Bio/Technology, 10: 163-167 (1992) provide methods for recombinant production of antibody heavy and light chains in separate expression hosts followed by assembly of antibody from 15 separate heavy and light chains *in vitro*.

The following discussion of recombinant expression methods applies equally to the 15 production of single chain antibody polypeptide species and multi-subunit antibody and antibody fragment species. All recombinant procedures for the production of antibody or antibody fragment provided below shall be understood to describe: (1) manufacture of single chain antibody species as the desired end-product; (2) manufacture of multi-subunit antibody or antibody fragment species by production of all subunits in a single host cell, subunit assembly in 20 the host cell, optionally followed by host cell secretion of the multi-subunit end-product into the culture medium, and recovery of the multi-subunit end-product from the host cell and/or culture medium; and (3) manufacture of multi-subunit antibody or antibody fragment by production of subunits in separate host cells (optionally followed by host cell secretion of subunits into the culture medium), recovery of subunits from the respective host cells and/or culture media, 25 followed by *in vitro* subunit assembly to form the multi-subunit end-product. In the case of a multi-subunit antibody or antibody fragment produced in a single host cell, it will be appreciated that production of the various subunits can be effected by expression of multiple polypeptide-encoding nucleic acid sequences carried on a single vector or by expression of polypeptide-

encoding nucleic acid sequences carried on multiple vectors contained in the host cell.

A. Construction of DNA Encoding Humanized 6G4.2.5 Monoclonal Antibodies, Antibody Fragments, and Variants

Following the selection of the humanized antibody or antibody fragment of the invention according to the methods described above, the practitioner can use the genetic code to design DNAs encoding the desired antibody or antibody fragment. In one embodiment, codons preferred by the expression host cell are used in the design of a DNA encoding the antibody or antibody fragment of interest. DNA encoding the desired antibody or antibody fragment can be prepared by a variety of methods known in the art. These methods include, but are not limited to, chemical synthesis by any of the methods described in Engels *et al.*, Agnew. Chem. Int. Ed. Engl., 28: 716-734 (1989), the entire disclosure of which is incorporated herein by reference, such as the triester, phosphite, phosphoramidite and H-phosphonate methods.

A variation on the above procedures contemplates the use of gene fusions, wherein the gene(s) encoding the antibody or antibody fragment is associated, in the vector, with a gene encoding another protein or a fragment of another protein. This results in the antibody or antibody fragment being produced by the host cell as a fusion with another protein. The "other" protein is often a protein or peptide which can be secreted by the cell, making it possible to isolate and purify the desired protein from the culture medium and eliminating the necessity of destroying the host cells which arises when the desired protein remains inside the cell.

Alternatively, the fusion protein can be expressed intracellularly. It is advantageous to use fusion proteins that are highly expressed.

The use of gene fusions, though not essential, can facilitate the expression of heterologous proteins in *E. coli* as well as the subsequent purification of those gene products (Harris, T. J. R. in *Genetic Engineering*, Williamson, R., Ed., Academic, London, Vol. 4, p. 127(1983); Uhlen, M. & Moks, T., *Methods Enzymol.* **185**:129-143 (1990)). Protein A fusions are often used because the binding of protein A, or more specifically the Z domain of protein A, to IgG provides an "affinity handle" for the purification of the fused protein (Nilsson, B. &

Abrahmsen, L. *Methods Enzymol.* 185:144-161 (1990)). It has also been shown that many heterologous proteins are degraded when expressed directly in *E. coli*, but are stable when expressed as fusion proteins (Marston, F. A. O., *Biochem J.* 240: 1 (1986)).

Fusion proteins can be cleaved using chemicals, such as cyanogen bromide, which
5 cleaves at a methionine, or hydroxylamine, which cleaves between an Asn and Gly. Using standard recombinant DNA methodology, the nucleotide base pairs encoding these amino acids may be inserted just prior to the 5' end of the antibody or antibody fragment gene(s).

Alternatively, one can employ proteolytic cleavage of fusion proteins, which has been recently reviewed (Carter, P. (1990) in *Protein Purification: From Molecular Mechanisms to Large-Scale Processes*, Ladisch, M. R., Willson, R. C., Painton, C. C., and Builder, S. E., eds.,
10 American Chemical Society Symposium Series No. 427, Ch 13, 181-193).

15 Proteases such Factor Xa, thrombin, subtilisin and mutants thereof, have been successfully used to cleave fusion proteins. Typically, a peptide linker that is amenable to cleavage by the protease used is inserted between the "other" protein (e.g., the Z domain of protein A) and the protein of interest, such as humanized anti-IL-8 antibody or antibody fragment. Using recombinant DNA methodology, the nucleotide base pairs encoding the linker are inserted between the genes or gene fragments coding for the other proteins. Proteolytic cleavage of the partially purified fusion protein containing the correct linker can then be carried out on either the native fusion protein, or the reduced or denatured fusion protein.

20 Various techniques are also available which may now be employed to produce variant humanized antibodies or antibody fragments, which encodes for additions, deletions, or changes in amino acid sequence of the resultant protein(s) relative to the parent humanized antibody or antibody fragment.

25 By way of illustration, with expression vectors encoding humanized antibody or antibody fragment in hand, site specific mutagenesis (Kunkel *et al.*, *Methods Enzymol.* 204:125-139 (1991); Carter, P., *et al.*, *Nucl. Acids. Res.* 13:4331 (1986); Zoller, M. J. *et al.*, *Nucl. Acids Res.* 10:6487 (1982)), cassette mutagenesis (Wells, J. A., *et al.*, *Gene* 34:315 (1985)), restriction selection mutagenesis (Wells, J. A., *et al.*, *Philos. Trans. R. Soc. London SerA* 317, 415 (1986))

or other known techniques may be performed on the antibody or antibody fragment DNA. The variant DNA can then be used in place of the parent DNA by insertion into the aforementioned expression vectors. Growth of host bacteria containing the expression vectors with the mutant DNA allows the production of variant humanized antibodies or antibody fragments, which can be
5 isolated as described herein.

B. Insertion of DNA into a Cloning Vehicle

The DNA encoding the antibody or antibody fragment is inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Many vectors are
10 available, and selection of the appropriate vector will depend on (1) whether it is to be used for DNA amplification or for DNA expression, (2) the size of the DNA to be inserted into the vector, and (3) the host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the host cell for which it is compatible. The vector components generally include, but are not limited to, one or
15 more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.

(i) Signal Sequence Component

In general, a signal sequence may be a component of the vector, or it may
20 be a part of the antibody or antibody fragment DNA that is inserted into the vector. Preferably, a heterologous signal sequence selected and fused to the antibody or antibody fragment DNA such that the signal sequence in the corresponding fusion protein is recognized, transported and processed (*i.e.*, cleaved by a signal peptidase) in the host cell's protein secretion system. In the case of prokaryotic host cells, the signal sequence is selected, for example, from the group of the
25 alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. In a preferred embodiment, the STII signal sequence is used as described in the Examples below. For yeast secretion the native signal sequence may be substituted by, *e.g.*, the yeast invertase leader, α factor leader (including *Saccharomyces* and *Kluyveromyces* α -factor leaders), or acid

phosphatase leader, the *C. albicans* glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal, are available.

5

(ii) Origin of Replication Component

Both expression and cloning vectors contain a nucleic acid sequence that

enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such

10

sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).

15

20

Most expression vectors are "shuttle" vectors, i.e. they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in *E. coli* and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.

25

DNA may also be amplified by insertion into the host genome. This is readily accomplished using *Bacillus* species as hosts, for example, by including in the vector a DNA sequence that is homologous to a sequence found in *Bacillus* genomic DNA. Transfection of *Bacillus* with this vector results in homologous recombination with the genome and insertion of the antibody or antibody fragment DNA.

(iii) Selection Gene Component

Expression and cloning vectors should contain a selection gene, also

termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g. ampicillin,
5 neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g. the gene encoding D-alanine racemase for *Bacilli*.

One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene express a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin (Southern *et al.*, J. Molec. Appl. Genet., 1: 327 (1982)), mycophenolic acid (Mulligan *et al.*, Science, 209: 1422 (1980)) or hygromycin (Sugden *et al.*, Mol. Cell. Biol., 5: 410-413 (1985)). The three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug (G418 or neomycin (geneticin), xgpt (mycophenolic acid), and hygromycin, respectively.)
10
15

Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the antibody or antibody fragment nucleic acid, such as dihydrofolate reductase (DHFR) or thymidine kinase. The mammalian cell transformants are placed under selection pressure which only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes the antibody or antibody fragment. Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Increased quantities of the antibody or antibody fragment are synthesized from the amplified DNA.
20
25

For example, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a

competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77: 4216 (1980). The transformed cells are then exposed to increased levels of methotrexate. This leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding the antibody or antibody fragment. This amplification technique can be used with any otherwise suitable host, e.g., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060).

10 Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding the antibody or antibody fragment, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3' phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or

15 G418. See U.S. Pat. No. 4,965,199.

A suitable selection gene for use in yeast is the *trp1* gene present in the yeast plasmid YRp7. Stinchcomb *et al.*, Nature, 282: 39 (1979); Kingsman *et al.*, Gene, 7: 141 (1979); or Tschemper *et al.*, Gene, 10: 157 (1980). The *trp1* gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85: 12 (1977). The presence of the *trp1* lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, *Leu2*-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the *Leu2* gene.

25 (iv) Promoter Component

Expression vectors usually contain a promoter that is recognized by the host organism and is operably linked to the antibody or antibody fragment nucleic acid. Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene

(generally within about 100 to 1000 bp) that control the transcription and translation of a particular nucleic acid sequence, such as the antibody or antibody fragment encoding sequence, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription
5 from DNA under their control in response to some change in culture conditions, e.g. the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known.

Promoters suitable for use with prokaryotic hosts include the β -lactamase and lactose promoter systems (Chang *et al.*, Nature, 275: 615 (1978); and Goeddel *et al.*, Nature, 281: 544 (1979)), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8: 4057 (1980) and EP 36,776) and hybrid promoters such as the tac promoter (deBoer *et al.*, Proc. Natl. Acad. Sci. USA, 80: 21-25 (1983)). However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a skilled worker to operably ligate them to DNA encoding the antibody or antibody fragment (Siebenlist *et al.*, Cell, 20: 269 (1980)) using linkers or adaptors to supply any required restriction sites. Promoters for
10 use in bacterial systems also generally will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the antibody or antibody fragment.
15

Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman *et al.*, J. Biol. Chem., 255: 2073 (1980)) or other glycolytic enzymes (Hess *et al.*, J. Adv. Enzyme Reg., 7: 149 (1968); and Holland, Biochemistry, 17: 4900 (1978)), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
20

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytchrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast
25

expression are further described in Hitzeman *et al.*, EP 73,657A. Yeast enhancers also are advantageously used with yeast promoters.

Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into mammalian expression vectors.

10 Vector driven transcription of antibody or antibody fragment encoding DNA in mammalian host cells can be controlled by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g. the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.

15 The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. Fiers *et al.*, Nature, 273: 113 (1978); Mulligan and Berg, Science, 209: 1422-1427 (1980); Pavlakis *et al.*, Proc. Natl. Acad. Sci. USA, 78: 7398-7402 (1981). The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment. Greenaway *et al.*, Gene, 18: 355-360 (1982). A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. 4,419,446. A modification of this system is described in U.S. 4,601,978. See also Gray *et al.*, Nature, 295: 503-508 (1982) on expressing cDNA encoding immune interferon in monkey cells, Reyes *et al.*, Nature, 297: 598-601 (1982) on expression of human -interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus, Canaani and Berg, Proc. Natl. Acad. Sci. USA, 79: 25 5166-5170 (1982) on expression of the human interferon 1 gene in cultured mouse and rabbit

cells, and Gorman *et al.*, Proc. Natl. Acad. Sci. USA, 79: 6777-6781 (1982) on expression of bacterial CAT sequences in CV-1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter.

5

(v) Enhancer Element Component

10

15

20

Transcription of a DNA encoding antibody or antibody fragment by higher eukaryotic host cells is often increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10-300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent having been found 5' (Laimins *et al.*, Proc. Natl. Acad. Sci. USA, 78: 993 (1981)) and 3' (Lusky *et al.*, Mol. Cell Bio., 3: 1108 (1983)) to the transcription unit, within an intron (Banerji *et al.*, Cell, 33: 729 (1983)) as well as within the coding sequence itself (Osborne *et al.*, Mol. Cell Bio., 4: 1293 (1984)). Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, -fetoprotein and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature, 297: 17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the antibody or antibody fragment DNA, but is preferably located at a site 5' from the promoter.

(vi) Transcription Termination Component

25

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) can also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3' untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated

fragments in the untranslated portion of the mRNA encoding the antibody or antibody fragment. The 3' untranslated regions also include transcription termination sites.

Suitable vectors containing one or more of the above listed components and the desired coding and control sequences are constructed by standard ligation techniques. Isolated plasmids 5 or DNA fragments are cleaved, tailored, and religated in the form desired to generate the plasmids required.

For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform *E. coli* K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing *et al.*, *Nucleic Acids Res.*, 9: 309 (1981) or by the method of Maxam *et al.*, *Methods in Enzymology*, 65: 499 (1980).

Particularly useful in the practice of this invention are expression vectors that provide for the transient expression in mammalian cells of DNA encoding the antibody or antibody fragment. In general, transient expression involves the use of an expression vector that is able to replicate 15U efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector.

Other methods, vectors, and host cells suitable for adaptation to the synthesis of the antibody or antibody fragment in recombinant vertebrate cell culture are described in Gething *et 20 al.*, *Nature*, 293: 620-625 (1981); Mantei *et al.*, *Nature*, 281: 40-46 (1979); Levinson *et al.*, EP 117,060; and EP 117,058. A particularly useful plasmid for mammalian cell culture expression of the IgE peptide antagonist is pRK5 (EP pub. no. 307,247) or pSVI6B (PCT pub. no. WO 91/08291 published 13 June 1991).

25 C. Selection and Transformation of Host Cells

Suitable host cells for cloning or expressing the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes include eubacteria, such as Gram-negative or Gram-positive organisms, for example, *E. coli*, *Bacilli* such as *B. subtilis*,

Pseudomonas species such as *P. aeruginosa*, *Salmonella typhimurium*, or *Serratia marcescens*. One preferred *E. coli* cloning host is *E. coli* 294 (ATCC 31,446), although other strains such as *E. coli* B, *E. coli* 1776 (ATCC 31,537), and *E. coli* W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. Preferably the host cell should secrete minimal amounts of proteolytic enzymes. In a preferred embodiment, the *E. coli* strain 49D6 is used as the expression host as described in the Examples below. Review articles describing the recombinant production of antibodies in bacterial host cells include Skerra *et al.*, Curr. Opinion in Immunol., 5: 256 (1993) and Pluckthun, Immunol. Revs., 130: 151 (1992).

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable hosts for vectors containing antibody or antibody fragment DNA. *Saccharomyces cerevisiae*, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as *S. pombe* (Beach and Nurse, Nature, 290: 140 (1981)), *Kluyveromyces lactis* (Louvencourt *et al.*, J. Bacteriol., 737 (1983)), *yarrowia* (EP 402,226), *Pichia pastoris* (EP 183,070), *Trichoderma reesia* (EP 244,234), *Neurospora crassa* (Case *et al.*, Proc. Natl. Acad. Sci. USA, 76: 5259-5263 (1979)), and *Aspergillus* hosts such as *A. nidulans* (Ballance *et al.*, Biochem. Biophys. Res. Commun., 112: 284-289 (1983); Tilburn *et al.*, Gene, 26: 205-221 (1983); Yelton *et al.*, Proc. Natl. Acad. Sci. USA, 81: 1470-1474 (1984)) and *A. niger* (Kelly and Hynes, EMBO J., 4: 475-479 (1985)).

Host cells derived from multicellular organisms can also be used in the recombinant production of antibody or antibody fragment. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as *Spodoptera frugiperda* (caterpillar), *Aedes aegypti* (mosquito), *Aedes albopictus* (mosquito), *Drosophila melanogaster* (fruitfly), and *Bombyx mori* host cells have been identified. See, e.g., Luckow *et al.*, Bio/Technology, 6: 47-55 (1988); Miller *et al.*, in Genetic Engineering, Setlow, J.K. *et al.*, 8: 277-279 (Plenum Publishing, 1986), and Maeda *et*

al., Nature, 315: 592-594 (1985). A variety of such viral strains are publicly available, e.g., the L-1 variant of *Autographa californica* NPV and the Bm-5 strain of *Bombyx mori* NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of *Spodoptera frugiperda* cells.

5 Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts. Typically, plant cells are transfected by incubation with certain strains of the bacterium *Agrobacterium tumefaciens*, which has been previously manipulated to contain the antibody or antibody fragment DNA. During incubation of the plant cell culture with *A. tumefaciens*, the DNA encoding antibody or antibody fragment is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the antibody or antibody fragment DNA. In addition, regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences. Depicker *et al.*, J. Mol. Appl. Gen., 1: 561 (1982). In addition, DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue. See EP 321,196 published 21 June 1989.

10 Vertebrate cell culture is preferred for the recombinant production of full length antibodies. The propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years (Tissue Culture, Academic Press, Kruse and Patterson, editors (1973)).

15 Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham *et al.*, J. Gen Virol., 36: 59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77: 4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23: 243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse

mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather *et al.*, Annals N.Y. Acad. Sci., 383: 44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma cell line (Hep G2). Preferred host cells are human embryonic kidney 293 and Chinese hamster ovary cells. Myeloma cells that do not otherwise produce immunoglobulin protein are also useful host cells for the recombinant production of full length antibodies.

Host cells are transfected and preferably transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO₄ precipitation and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.

Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook *et al.*, *supra*, is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with *Agrobacterium tumefaciens* is used for transformation of certain plant cells, as described by Shaw *et al.*, Gene, 23: 315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method described in sections 16.30-16.37 of Sambrook *et al.*, *supra*, is preferred. General aspects of mammalian cell host system transformations have been described by Axel in U.S. 4,399,216 issued 16 August 1983.

Transformations into yeast are typically carried out according to the method of Van Solingen *et al.*, J. Bact., 130: 946 (1977) and Hsiao *et al.*, Proc. Natl. Acad. Sci. (USA), 76: 3829 (1979). However, other methods for introducing DNA into cells such as by nuclear injection, electroporation, or by protoplast fusion may also be used.

25 D. Culturing the Host Cells

Prokaryotic cells used to produce the antibody or antibody fragment are cultured in suitable media as described generally in Sambrook *et al.*, *supra*.

10 The mammalian host cells used to produce the antibody or antibody fragment can be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham and Wallace, *Meth. Enz.*, 58: 44 (1979), Barnes and Sato, *Anal. Biochem.*, 102: 255 (1980), U.S. 4,767,704; 4,657,866; 4,927,762; or 4,560,655; WO 90/03430; WO 87/00195; U.S. Pat. Re. 30,985; or U.S. 5,122,469, the disclosures of all of which are incorporated herein by reference, may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as GentamycinTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

15 The host cells referred to in this disclosure encompass cells in *in vitro* culture as well as cells that are within a host animal.

20 E. Detecting Gene Amplification/Expression

25 Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, northern blotting to quantitate the transcription of mRNA (Thomas, *Proc. Natl. Acad. Sci. USA*, 77: 5201-5205 (1980)), dot blotting (DNA

analysis), or *in situ* hybridization, using an appropriately labeled probe, based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, particularly ³²P. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like. A particularly sensitive staining technique suitable for use in the present invention is described by Hsu *et al.*, Am. J. Clin. Path., 75: 734-738 (1980).

20 F. Purification of the Antibody or Antibody Fragment

In the case of a host cell secretion system, the antibody or antibody fragment is recovered from the culture medium. Alternatively, the antibody can be produced intracellularly, or produced in the periplasmic space of a bacterial host cell. If the antibody is produced intracellularly, as a first step, the host cells are lysed, and the resulting particulate debris is removed, for example, by centrifugation or ultrafiltration. Carter *et al.*, BioTechnology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of *E. coli*. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by

centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.

The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human γ 1, γ 2, or γ 4 heavy chains (Lindmark *et al.*, *J. Immunol. Meth.* 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ 3 (Guss *et al.*, *EMBO J.* 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C_H3 domain, the Bakerbond ABX™resin (J. T. Baker, Phillipsburg, NJ) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin Sepharose™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.

Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (*e.g.* from about 0-0.25M salt).

G. Production of Antibody Fragments

Various techniques have been developed for the production of the humanized antibody fragments of the invention, including Fab, Fab', Fab'-SH, or F(ab')₂ fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, 5 e.g., Morimoto *et al.*, *Journal of Biochemical and Biophysical Methods* 24:107-117 (1992) and Brennan *et al.*, *Science*, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, Fab'-SH fragments can be directly recovered from *E.* 10 *coli* and chemically coupled to form F(ab')₂ fragments (Carter *et al.*, *Bio/Technology*, 10:163-167 (1992)). According to another approach, F(ab')₂ fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner.

5. Uses of Anti-IL-8 Antibodies

A. Diagnostic Uses

For diagnostic applications requiring the detection or quantitation of IL-8, the 15 antibodies or antibody fragments of the invention typically will be labeled with a detectable moiety. The detectable moiety can be any one which is capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety can be a radioisotope, such as ³H, ¹⁴C, ³²P, ³⁵S, or ¹²⁵I; a fluorescent or chemiluminescent compound, such as fluorescein 20 isothiocyanate, rhodamine, or luciferin; radioactive isotopic labels, such as, e.g., ¹²⁵I, ³²P, ¹⁴C, or ³H; or an enzyme, such as alkaline phosphatase, beta-galactosidase, or horseradish peroxidase.

Any method known in the art for separately conjugating the antibody or antibody fragment to the detectable moiety can be employed, including those methods described by Hunter 25 *et al.*, *Nature* 144:945 (1962); David *et al.*, *Biochemistry* 13:1014 (1974); Pain *et al.*, *J. Immunol. Meth.* 40:219 (1981); and Nygren, *J. Histochem. and Cytochem.* 30:407 (1982).

The antibodies and antibody fragments of the present invention can be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. For example, see Zola, *Monoclonal Antibodies: A Manual of*

Techniques, pp. 147-158 (CRC Press, Inc., 1987).

Competitive binding assays rely on the ability of a labeled standard (which can be a IL-8 or an immunologically reactive portion thereof) to compete with the test sample analyte (IL-8) for binding with a limited amount of antibody or antibody fragment. The amount of IL-8 in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies or antibody fragments generally are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies can conveniently be separated from the standard and analyte which remain unbound.

Sandwich assays involve the use of two antibodies, each capable of binding to a different antigenic portion, or epitope, of the protein (IL-8) to be detected. In a sandwich assay, the test sample analyte is bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three-part complex (U.S. Patent No. 4,376,110). The second antibody can itself be labeled with a detectable moiety (direct sandwich assays) or can be measured using an anti-immunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme (e.g., horseradish peroxidase).

IL-8 antibodies and antibody fragments also are useful for the affinity purification of IL-8 from recombinant cell culture or natural sources. For example, these antibodies can be fixed to a solid support by techniques well known in the art so as to purify IL-8 from a source such as culture supernatant or tissue.

B. Therapeutic Compositions and Administration of Anti-IL-8 Antibody

The humanized anti-IL-8 antibodies and antibody fragments of the invention are useful in the treatment of inflammatory disorders, including inflammations of the lung, such as adult respiratory distress syndrome (ARDS) and any stage of acute lung injury in the pathogenesis of ARDS described in Bernard et al., Am. J. Respir. Crit. Care Med., 149: 818-824

(1994), bacterial pneumonia, hypovolemic shock, ischemic reperfusion disorders such as surgical tissue reperfusion injury, myocardial ischemic conditions such as myocardial infarction, reperfusion after cardiac surgery, cardiac arrest, and constriction after percutaneous transluminal coronary angioplasty, inflammatory bowel disorders such as ulcerative colitis, and autoimmune diseases such as rheumatoid arthritis. In addition, the humanized anti-IL-8 antibodies and antibody fragments of the invention are useful in the treatment of asthmatic diseases, such as 5 allergic asthma.

Therapeutic formulations of the humanized anti-IL-8 antibodies and antibody fragments are prepared for storage by mixing the antibody or antibody fragment having the desired degree 10 of purity with optional physiologically acceptable carriers, excipients, or stabilizers (Remington's Pharmaceutical Sciences, supra), in the form of lyophilized cake or aqueous solutions. Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; 15 antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrans; chelating agents such as EDTA; sugar alcohols such as mannitol or 20 sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).

The humanized anti-IL-8 mAb or antibody fragment to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. The humanized anti-IL-8 mAb or antibody fragment ordinarily will be stored in lyophilized form or in solution.

25 Therapeutic humanized anti-IL-8 mAb or antibody fragment compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

The route of humanized anti-IL-8 mAb or antibody fragment administration is in accord

with known methods, e.g., inhalation, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, or intralesional routes, by enema or suppository, or by sustained release systems as noted below. Preferably the antibody is given systemically or at a site of inflammation.

5 In one embodiment, the invention provides for the treatment of asthmatic diseases by administration of humanized anti-IL-8 mAb or antibody fragment to the respiratory tract. The invention contemplates formulations comprising humanized anti-IL-8 mAb or antibody fragment for use in a wide variety of devices that are designed for the delivery of pharmaceutical compositions and therapeutic formulations to the respiratory tract. In one aspect, humanized
10 anti-IL-8 mAb or antibody fragment is administered in aerosolized or inhaled form. The humanized anti-IL-8 mAb or antibody fragment, combined with a dispersing agent, or dispersant, can be administered in an aerosol formulation as a dry powder or in a solution or suspension with a diluent.

15 Suitable dispersing agents are well known in the art, and include but are not limited to surfactants and the like. Surfactants are generally used in the art to reduce surface induced aggregation of protein caused by atomization of the solution forming the liquid aerosol. Examples of such surfactants include polyoxyethylene fatty acid esters and alcohols, and polyoxyethylene sorbitan fatty acid esters. Amounts of surfactants used will vary, being generally within the range of about 0.001 to 4% by weight of the formulation. In a specific
20 aspect, the surfactant is polyoxyethylene sorbitan monooleate or sorbitan trioleate.

25 Liquid aerosol formulations contain the humanized anti-IL-8 mAb or antibody fragment and a dispersing agent in a physiologically acceptable diluent. The dry powder formulations of the invention consist of a finely divided solid form of the humanized anti-IL-8 mAb or antibody fragment and a dispersing agent, and optionally a bulking agent, such as lactose, sorbitol, sucrose, or mannitol, and the like, to facilitate dispersal of the powder. With either the liquid or dry powder aerosol formulation, the formulations must be aerosolized. It must be broken down into liquid or solid particles in order to ensure that the aerosolized dose actually reaches the bronchii and/or alveoli, as desired. For example, in the methods for treatment of asthma

provided herein, it is preferable to deliver aerosolized humanized anti-IL-8 mAb or antibody fragment to the bronchii. In other embodiments, such as the present methods for treating ARDS and any stage of acute lung injury in the pathogenesis of ARDS, it is preferable to deliver aerosolized humanized anti-IL-8 mAb or antibody fragment to the alveoli. In general, the mass median dynamic diameter will be 5 micrometers (μm) or less to ensure that the drug particles reach the lung bronchii or alveoli (Wearly, L.L., 1991, Crit. Rev. in Ther. Drug Carrier Systems, 8:333).

With regard to construction of the delivery device, any form of aerosolization known in the art, including but not limited to nebulization, atomization or pump aerosolization of a liquid formulation, and aerosolization of a dry powder formulation, can be used in the practice of the invention. A delivery device that is uniquely designed for administration of solid formulations is envisioned. Often, the aerosolization of a liquid or a dry powder formulation will require a propellant. The propellant can be any propellant generally used in the art. Examples of useful propellants include chlorofluorocarbons, hydrofluorocarbons, hydrochlorofluorocarbons, and hydrocarbons, including trifluoromethane, dichlorofluoromethane, dichlorotetrafluoroethanol, and 1,1,1,2-tetrafluoroethane, and combinations thereof.

In a preferred aspect of the invention, the device for aerosolization is a metered dose inhaler. A metered dose inhaler provides a specific dosage when administered, rather than a variable dose depending on administration. Such a metered dose inhaler can be used with either a liquid or a dry powder aerosol formulation.

Systems of aerosol delivery, such as the pressurized metered dose inhaler and the dry powder inhaler are disclosed in Newman, S.P., *Aerosols and the Lung*, Clarke, S.W. and Davia, D. editors, pp.197-22 and can be used in connection with the present invention.

Sustained release systems can be used in the practice of the methods of the invention.

Suitable examples of sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices include polyesters, hydrogels, polylactides (U.S. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman *et al.*, *Biopolymers* 22:547 (1983)), poly (2-

hydroxyethyl-methacrylate) (Langer *et al.*, J. Biomed. Mater. Res. 15:167 (1981) and Langer, Chem. Tech. 12:98 (1982)), ethylene vinyl acetate (Langer *et al.*, *supra*) or poly-D-(-)-3-hydroxybutyric acid (EP 133,988). Sustained-release humanized anti-IL-8 antibody or antibody fragment compositions also include liposomally entrapped antibody or antibody fragment.

5 Liposomes containing an antibody or antibody fragment are prepared by methods known per se: DE 3,218,121; Epstein *et al.*, Proc. Natl. Acad. Sci. U.S.A. 82:3688 (1985); Hwang *et al.*, Proc. Natl. Acad. Sci. U.S.A. 77:4030 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Patent Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily the liposomes are of the small (about 200-800 Angstroms) unilamellar 10 type in which the lipid content is greater than about 30 mole percent cholesterol, the selected proportion being adjusted for the most efficacious antibody or antibody fragment therapy.

15 An "effective amount" of the humanized anti-IL-8 antibody or antibody fragment to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. Typically, the clinician will administer the humanized anti-IL-8 antibody or antibody fragment until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays.

20 In the treatment and prevention of an inflammatory disorder or asthmatic disorder with a humanized anti-IL-8 antibody or antibody fragment of the invention, the antibody composition will be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the antibody, the particular type of antibody, the method of 25 administration, the scheduling of administration, and other factors known to medical practitioners. The "therapeutically effective amount" of antibody to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat the inflammatory disorder, including treating acute or chronic respiratory diseases and

reducing inflammatory responses. Such amount is preferably below the amount that is toxic to the host or renders the host significantly more susceptible to infections.

As a general proposition, the initial pharmaceutically effective amount of the antibody or antibody fragment administered parenterally per dose will be in the range of about 0.1 to 50 mg/kg of patient body weight per day, with the typical initial range of antibody used being 0.3 to 20 mg/kg/day, more preferably 0.3 to 15 mg/kg/day.

In one embodiment, using systemic administration, the initial pharmaceutically effective amount will be in the range of about 2 to 5 mg/kg/day.

For methods of the invention using administration by inhalation, the initial pharmaceutically effective amount will be in the range of about 1 microgram (μg)/kg/day to 100 mg/kg/day.

The invention provides for both prophylactic and therapeutic treatment of inflammatory disorders. Without intending to limit the methods of the invention to a particular mechanism of action or a particular disease intervention strategy, it is noted that in some indications it is beneficial to treat the disease in question prior to or early on in the stage of the underlying disease that involves neutrophil activation, recruitment and infiltration at sites of inflammation. Accordingly, it may be advantageous to utilize the humanized anti-IL-8 mAb or antibody fragment in a prophylactic treatment regimen for an inflammatory disease indication in order to attenuate or eliminate a pathogenic neutrophil response that may or will arise during the course of the disease.

In patients at risk of developing acute lung injury with possible or likely progression to ARDS, it is desirable to employ a prophylactic course of treatment in order to ameliorate or prevent the deterioration of lung function and the pathogenesis of associated disease sequelae (which may greatly increase patient morbidity and mortality) prior to the onset of such conditions. Certain biological parameters, such as IL-8 levels in bronchial alveolar lavage (BAL) fluid and ferritin levels in serum, can be used for prognosis of acute lung injury and ARDS in patients who are predisposed to such disease progression, i.e. patients suffering from diseases or other insults that commonly precipitate acute lung injury and ARDS, such as aspiration, diffuse

5 pulmonary infection, near-drowning, toxic inhalation, lung contusion, multiple trauma, pancreatitis, perforated bowel, sepsis, and the like. In one embodiment, acute lung injury and ARDS at-risk patients presenting BAL fluid IL-8 concentrations of at or above 0.2 ng/ml are selected for prophylactic treatment according to the methods of the invention. Any suitable method for assay of IL-8 in patient BAL fluid may be employed, such as the method described in Donnelly et al., Lancet, 341: 643-647 (1993).

10 In another embodiment, acute lung injury/ARDS at-risk female and male patients presenting ferritin serum concentrations of at or above 270 ng/ml and 680 ng/ml, respectively, are selected for prophylactic treatment according to the methods of the invention. Any suitable method for assay of ferritin in patient serum may be employed, such as the method described in U.S. Pat. No. 5,679,532 for "Serum Ferritin as a Predictor of the Acute Respiratory Distress Syndrome" to Repine issued on October 21, 1997.

15 In patients presenting ischemic conditions or undergoing surgical procedures that generate ischemic conditions in tissue and concomitant risk of tissue injury upon reperfusion, it is desirable to employ a course of treatment wherein the humanized anti-IL-8 mAb or antibody fragment is administered to the patient prior to the reperfusion of ischemic tissue, or prior to or as soon as possible after the onset of an inflammatory response following reperfusion of ischemic tissue. In the patients presenting acute myocardial infarction, for example, it is advantageous to employ a course of treatment wherein the humanized anti-IL-8 mAb or antibody fragment is
20 administered to the patient prior to or concomitant with recanalization therapy, including pharmaceutical recanalization therapies such as the administration of tissue plasminogen activators, streptokinase, or other thrombolytic drugs with or without anti-clotting agents such as platelet-fibrin binding antagonists (e.g. anti-IIbIIIa integrin antibody), blood thinning agents such as heparin, or other anti-reocclusion agents such as aspirin, and the like, and including
25 mechanical recanalization therapies such as percutaneous transluminal coronary angioplasty, or wherein the humanized anti-IL-8 mAb or antibody fragment is administered to the patient prior to or as soon as possible after the onset of an inflammatory response following reperfusion of ischemic myocardium. In yet another embodiment, the humanized anti-IL-8 mAb or antibody

fragment of the invention can be employed in the methods of treating acute myocardial infarction with anti-IL-8 antibody described in WO 97/40215 published October 30, 1997.

The invention provides for both prophylactic and therapeutic treatment of asthma with humanized anti-IL-8 mAb and antibody fragment. In the case of prophylactic treatment for 5 allergic asthma with the antibodies or antibody fragments of the invention, it is desirable to administer about 0.1 to 10 mg/kg of the antibody agent to the patient up to about 24 hours prior to anticipated exposure to allergen or prior to onset of allergic asthma. In the case of therapeutic treatment for acute asthma, including allergic asthma, it is desirable to treat the asthmatic patient as early as possible following onset of an asthma attack. In one embodiment, an episode of acute 10 asthma is treated within 24 hours of the onset of symptoms by administration of about 0.1 to 10 mg/kg of an anti-IL-8 antibody agent. However, it will be appreciated that the methods of the invention can be used to ameliorate symptoms at any point in the pathogenesis of asthmatic disease. Additionally, the methods of the invention can be used to alleviate symptoms of chronic 15 asthmatic conditions.

15 The antibody or antibody fragment need not be, but is optionally formulated with one or more agents currently used to prevent or treat the inflammatory disorder or asthmatic disease in question. For example, in rheumatoid arthritis, the antibody can be given in conjunction with a glucocorticosteroid. In the case of treating asthmatic diseases with anti-IL-8 antibody or antibody fragment, the invention contemplates the coadministration of antibody or antibody 20 fragment and one or more additional agents useful in treating asthma, such as bronchodilators, antihistamines, epinephrine, and the like. The effective amount of such other agents depends on the amount of antibody or antibody fragment present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore 25 employed dosages.

The following examples are offered by way of illustration and not by way of limitation. The disclosures of all references cited in the specification, and the disclosures of all citations in such references, are expressly incorporated herein by reference.

EXAMPLES

A. GENERATION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST HUMAN IL-8

5 Balb/c mice were immunized in each hind footpad or intraperitoneally with 10 µg of recombinant human IL-8 (produced as a fusion of (ser-IL-8)₇₂ with ubiquitin (Hebert *et al.* *J. Immunology* 145:3033-3040 (1990)); IL-8 is available commercially from PeproTech, Inc., Rocky Hill, NJ) resuspended in MPL/TDM (Ribi Immunochem. Research Inc., Hamilton, MT) and boosted twice with the same amount of IL-8. In these experiments, "IL-8" is intended to
10 mean (ser-IL-8)₇₂ unless otherwise specified. A final boost of 10 µg of IL-8 was given 3 days before the fusion. Spleen cells or popliteal lymph node cells were fused with mouse myeloma P3X63Ag8U.1 (ATCC CRL1597), a non-secreting clone of the myeloma P3X63Ag8, using 35% polyethylene glycol as described before. Ten days after the fusion, culture supernatant was screened for the presence of monoclonal antibodies to IL-8 by ELISA.

15 The ELISA was performed as follows. Nunc 96-well immunoplates (Flow Lab, McLean, VA) were coated with 50 µl/well of 2 µg/ml IL-8 in phosphate-buffered saline (PBS) overnight at 4°C. The remaining steps were carried out at room temperature. Nonspecific binding sites were blocked with 0.5% bovine serum albumin (BSA) for 1 hour (hr). Plates were then incubated with 50 µl/well of hybridoma culture supernatants from 672 growing parental fusion
20 wells for 1 hr, followed by the incubation with 50 µl/well of 1:1000 dilution of a 1 mg/ml stock solution of alkaline phosphatase-conjugated goat anti-mouse Ig (Tago Co., Foster City, CA) for 1 hr. The level of enzyme-linked antibody bound to the plate was determined by the addition of 100 µl/well of 0.5 mg/ml of r-nitrophenyl phosphate in sodium bicarbonate buffer, pH 9.6. The color reaction was measured at 405 nm with an ELISA plate reader (Titertek Multiscan, Flow
25 Lab, McLean, VA). Between each step, plates were washed three times in PBS containing 0.05% Tween 20.

 Culture supernatants which promoted 4-fold more binding of IL-8 than did control medium were selected as positives. According to this criterion, 16 of 672 growing parental

fusion wells (2%) were positive. These positive hybridoma cell lines were cloned at least twice by using the limiting dilution technique.

Seven of the positive hybridomas were further characterized as follows. The isotypes of the monoclonal antibodies were determined by coating Nunc 96-well immunoplates (Flow Lab, McLean, VA) with IL-8 overnight, blocking with BSA, incubating with culture supernatants followed by the addition of predetermined amount of isotype-specific alkaline phosphatase-conjugated goat anti-mouse Ig (Fisher Biotech, Pittsburgh, PA). The level of conjugated antibodies bound to the plate was determined by the addition of r-nitrophenyl phosphate as described above.

All the monoclonal antibodies tested belonged to either IgG₁ or IgG₂ immunoglobulin isotype. Ascites fluid containing these monoclonal antibodies had antibody titers in the range of 10,000 to 100,000 as determined by the reciprocal of the dilution factor which gave 50% of the maximum binding in the ELISA.

To assess whether these monoclonal antibodies bound to the same epitopes, a competitive binding ELISA was performed. At a ratio of biotinylated mAb to unlabeled mAb of 1:100, the binding of biotinylated mAb 5.12.14 was significantly inhibited by its homologous mAb but not by mAb 4.1.3, while the binding of biotinylated mAb 4.1.3 was inhibited by mAb 4.1.3 but not by mAb 5.12.14. Monoclonal antibody 5.2.3 behaved similarly to mAb 4.1.3, while monoclonal antibodies 4.8 and 12.3.9 were similar to mAb 5.12.14. Thus, mAb 4.1.3 and mAb 5.2.3 bind to a different epitope(s) than the epitope recognized by monoclonal antibodies 12.3.9, 4.8 and 5.12.14.

Immunodot blot analysis was performed to assess antibody reactivity to IL-8 immobilized on nitrocellulose paper. All seven antibodies recognized IL-8 immobilized on paper, whereas a control mouse IgG antibody did not.

The ability of these monoclonal antibodies to capture soluble ¹²⁵I-IL-8 was assessed by a radioimmune precipitation test (RIP). Briefly, tracer ¹²⁵I-IL-8 (4×10^4 cpm) was incubated with various dilutions of the monoclonal anti-IL-8 antibodies in 0.2 ml of PBS containing 0.5% BSA and 0.05% Tween 20 (assay buffer) for 1 hr at room temperature. One hundred microliters of a

predetermined concentration of goat anti-mouse Ig antisera (Pel-Freez, Rogers, AR) were added and the mixture was incubated at room temperature for 1 hr. Immune complexes were precipitated by the addition of 0.5 ml of 6% polyethylene glycol (M.W. 8000) kept at 4°C. After centrifugation at 2,000 x g for 20 min at 4°C, the supernatant was removed by aspiration and the 5 radioactivity remaining in the pellet was counted in a gamma counter. Percent specific binding was calculated as (precipitated cpm - background cpm)/ (total cpm - background cpm).

Monoclonal antibodies 4.1.3, 5.2.3, 4.8, 5.12.14 and 12.3.9 captured ^{125}I -IL-8 very efficiently, while antibodies 9.2.4 and 8.9.1 were not able to capture soluble ^{125}I -IL-8 in the RIP even though they could bind to IL-8 coated onto ELISA plates (Table I).

10 The dissociation constants of these monoclonal antibodies were determined using a competitive binding RIP assay. Briefly, competitive inhibition of the binding each antibody to ^{125}I -IL-8 (20,000-40,000 cpm per assay) by various amounts of unlabeled IL-8 was determined by the RIP described above. The dissociation constant (affinity)of each mAb was determined by using Scatchard plot analysis (Munson, *et al.*, Anal. Biochem. 107:220 (1980)) as provided in the 15 VersaTerm-PRO computer program (Synergy Software, Reading, PA).The K_d 's of these monoclonal antibodies (with the exception of 9.2.4. and 8.9.1) were in the range from 2×10^{-8} to $3 \times 10^{-10} \text{ M}$. Monoclonal antibody 5.12.14 with a K_d of $3 \times 10^{-10} \text{ M}$ showed the highest affinity among all the monoclonal antibodies tested (Table 3).

Table 3. Characterization of Anti-IL-8 Monoclonal Antibodies

Antibody	%Specific Binding to IL-8	$K_d(\text{M})$	Isotype	pI
4.1.3	58	2×10^{-9}	IgG ₁	4.3-6.1
5.2.3	34	2×10^{-8}	IgG ₁	5.2-5.6

9.2.4	1	-	IgG ₁	7.0-7.5
8.9.1	2	-	IgG ₁	6.8-7.6
4.8	62	3×10^{-8}	IgG _{2a}	6.1-7.1
5.12.14	98	3×10^{-10}	IgG _{2a}	6.2-7.4
12.3.9	86	2×10^{-9}	IgG _{2a}	6.5-7.1

To assess the ability of these monoclonal antibodies to neutralize IL-8 activity, the amount of ¹²⁵I-IL-8 bound to human neutrophils in the presence of various amounts of culture supernatants and purified monoclonal antibodies was measured. Neutrophils were prepared by using Mono-Poly Resolving Medium (M-PRM) (Flow Lab. Inc., McLean, VA). Briefly fresh, heparinized human blood was loaded onto M-PRM at a ratio of blood to medium, 3.5:3.0, and centrifuged at 300 x g for 30 min at room temperature. Neutrophils enriched at the middle layer were collected and washed once in PBS. Such a preparation routinely contained greater than 95% neutrophils according to the Wright's Giemsa staining. The receptor binding assay was done as follows. 50 µl of ¹²⁵I-IL-8 (5 ng/ml) was incubated with 50 µl of unlabeled IL-8 (100 µg/ml) or monoclonal antibodies in PBS containing 0.1% BSA for 30 min at room temperature. The mixture was then incubated with 100 µl of neutrophils (10^7 cells/ml) for 15 min at 37°C. The ¹²⁵I-IL-8 bound was separated from the unbound material by loading mixtures onto 0.4 ml of PBS containing 20% sucrose and 0.1% BSA and by centrifugation at 300 x g for 15 min. The

supernatant was removed by aspiration and the radioactivity associated with the pellet was counted in a gamma counter.

Monoclonal antibodies 4.1.3, 5.2.3, 4.8, 5.12.14, and 12.3.9 inhibited greater than 85% of the binding of IL-8 to human neutrophils at a 1:25 molar ratio of IL-8 to mAb. On the other hand, monoclonal antibodies 9.2.4 and 8.9.1 appeared to enhance the binding of IL-8 to its receptors on human neutrophils. Since a control mouse IgG also enhanced the binding of IL-8 on neutrophils, the enhancement of IL-8 binding to its receptors by mAb 9.2.4 and 8.9.1 appears to be nonspecific. Thus, monoclonal antibodies, 4.1.3, 5.1.3, 4.8, 5.12.14, and 12.3.9 are potential neutralizing monoclonal antibodies while monoclonal antibodies 8.9.1 and 9.2.4 are non-neutralizing monoclonal antibodies.

The ability of the anti-IL-8 antibodies to block neutrophil chemotaxis induced by IL-8 was tested as follows. Neutrophil chemotaxis induced by IL-8 was determined using a Boyden chamber method (Larsen, *et al.* Science 243:1464 (1989)). One hundred μ l of human neutrophils (10^6 cells/ml) resuspended in RPMI containing 0.1% BSA were placed in the upper chamber and 29 μ l of the IL-8 (20 nM) with or without monoclonal antibodies were placed in the lower chamber. Cells were incubated for 1 hr at 37°C. Neutrophils migrated into the lower chamber were stained with Wright's Giemsa stain and counted under the microscope (100x magnification). Approximately 10 different fields per experimental group were examined. Neutralizing monoclonal antibodies 5.12.14 and 4.1.3 blocked almost 70% of the neutrophil chemotactic activity of IL-8 at 1:10 ratio of IL-8 to mAb.

The isoelectric focusing (IEF) pattern of each mAb was determined by applying purified antibodies on an IEF polyacrylamide gel (pH 3-9, Pharmacia) using the Fast gel system (Pharmacia, Piscataway, NJ). The IEF gel was pretreated with pharmalyte containing 1% Triton X100 (Sigma, St. Louis, MO) for 10 min before loading the samples. The IEF pattern was visualized by silver staining according to the instructions from the manufacturer. All of the monoclonal antibodies had different IEF patterns, confirming that they originated from different clones. The pI values for the antibodies are listed in Table 3.

All these monoclonal antibodies bound equally well to both (ala-IL-8)77 and (ser-IL-8)72

forms of IL-8. Because IL-8 has greater than 30% sequence homology with certain other members of the platelet factor 4 (PF4) family of inflammatory cytokines such as β -TG (Van Damme *et al.*, Eur. J. Biochem. 181:337(1989); Tanaka *et al.*, FEB 236(2):467 (1988)) and PF4 (Deuel *et al.*, Proc. Natl. Acad. Sci. U.S.A. 74:2256 (1977)), they were tested for possible cross reactivity to β -TG and PF4, as well as to another neutrophil activating factor, C5a. No detectable binding to any of these proteins was observed, with the exception of mAb 4.1.3, which had a slight cross reactivity to β -TG.

One of the antibodies, mAb 5.12.14, was further studied to determine whether it could block the IL-8 mediated release of elastase by neutrophils. Briefly, human neutrophils were resuspended in Hanks balanced salt solution (Gibco, Grand Island, NY) containing 1.0% BSA, Fraction V (Sigma, St. Louis, MO), 2 mg/ml alpha-D-glucose (Sigma), 4.2 mM sodium bicarbonate (Sigma) and 0.01 M HEPES, pH 7.1 (JRH Bioscience, Lenexa, KS). A stock of cytochalasin B (Sigma) was prepared (5 mg/ml in dimethylsulfoxide (Sigma) and stored at 2-8°C. Cytochalasin B was added to the neutrophil preparation to produce a final concentration of 5 μ g/ml, and incubated for 15 min at 37°C. Human IL-8 was incubated with mAb 5.12.14 (20 μ l), or a negative control antibody, in 1 ml polypropylene tubes (DBM Scientific, San Fernando, CA) for 30 min at 37°C. The final assay concentrations of IL-8 were 50 and 500 nM. The monoclonal antibodies were diluted to produce the following ratios (IL-8:Mab): 1:50, 1:10, 1:2, 1:1, and 1:0.25. Cytochalasin B-treated neutrophils were added (100 μ l/tube) and incubated for 2 hours at 25°C. The tubes were centrifuged (210 X g, 2-8°C) for 10 min, and supernatants were transferred to 96 well tissue culture plates (30 μ l/well). Elastase substrate stock, 10 mM methoxysuccinyl-alanyl-alanyl-propyl-valyl-p-nitroanilide (Calbiochem, La Jolla, CA) in DMSO was prepared and stored at 2-8°C. Elastase substrate solution (1.2 mM substrate, 1.2 M NaCl (Mallinckrodt, Paris, Kentucky), 0.12 M HEPES pH 7.2 in distilled water) was added (170 μ l/well) to the supernatants and incubated for 0.5 to 2 hours at 37°C (until control O.D. of 1.0 was reached). Absorbance was measured at 405 nm (SLT 340 ATTC plate reader, SLT Lab Instruments, Austria).

The results are shown in Figure 1. At a 1:1 ratio of IL-8 to mAb 5.12.14, the antibody

was able to effectively block the release of elastase from neutrophils.

The hybridoma producing antibody 5.12.14 was deposited on February 15, 1993 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATTC Accession No. HB 11553.

5

B. GENERATION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST RABBIT IL-8

Antibodies against rabbit IL-8 were generated in essentially the same process as anti-human IL-8 antibodies using rabbit IL-8 as immunogen (kindly provided by C. Broaddus; see 10 also Yoshimura *et al.* *J. Immunol.* 146:3483 (1991)). The antibody was characterized as described above for binding to other cytokines coated onto ELISA plates; no measurable binding was found to MGSA, fMLP, C5a, b-TG, TNF, PF4, or IL-1.

The hybridoma producing antibody 6G4.2.5 was deposited on September 28, 1994, with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATTC Accession No. HB 11722.

Recombinant human-murine chimeric Fabs for 5.12.14 and 6G4.2.5 were constructed as described below. A chimeric 6G4.2.5 Fab is compared with a chimeric 5.12.14 Fab in detail below.

20

1. INHIBITION OF IL-8 BINDING TO HUMAN NEUTROPHILS BY 5.12.14-FAB AND 6G4 2.5-FAB

The ability of the two chimeric Fabs, 5.12.14-Fab and 6G4.2.5-Fab, to efficiently bind IL-8 and prevent IL-8 from binding to IL-8 receptors on human neutrophils was determined by performing a competition binding assay which allows the calculation of the IC₅₀ - concentration required to achieve 50% inhibition of IL-8 binding.

Human neutrophils (5×10^5) were incubated for 1 hour at 4°C with 0.5nM ¹²⁵I-IL-8 in the presence of various concentrations (0 to 300 nM) of 5.12.14-Fab, 6G4.2.5-Fab, an isotype control (4D5-Fab) or unlabeled IL-8. After the incubation, the unbound ¹²⁵I-IL-8 was removed by

centrifugation through a solution of 20% sucrose and 0.1% bovine serum albumin in phosphate buffered saline and the amount of ^{125}I -IL-8 bound to the cells was determined by counting the cell pellets in a gamma counter. Figure 2 demonstrates the inhibition of ^{125}I -IL-8 binding to neutrophils by unlabeled IL-8. Figure 3 demonstrates that a negative isotype matched Fab does not inhibit the binding of ^{125}I -IL-8 to human neutrophils. Both the anti-IL-8 Fabs, 5.12.14 Fab (Figure 4) and 6G.4.25 Fab (Figure 5) were able to inhibit the binding of ^{125}I -IL-8 to human neutrophils with an average IC₅₀ of 1.6 nM and 7.5 nM, respectively.

2. INHIBITION OF IL-8-MEDIATED NEUTROPHIL CHEMOTAXIS BY 5.12.14-

FAB AND 6G4.2.5-FAB

Human neutrophils were isolated, counted and resuspended at 5×10^6 cells/ml in Hank's balanced salt solution (abbreviated HBSS; without calcium and magnesium) with 0.1% bovine serum albumin. The neutrophils were labeled by adding calcein AM (Molecular Probe, Eugene, OR) at a final concentration of 2.0 μM . Following a 30 minute incubation at 37°C, cells were washed twice with HBSS-BSA and resuspended at 5×10^6 cells/ml.

Chemotaxis experiments were carried out in a Neuro Probe (Cabin John, MD) 96-well chamber, model MBB96. Experimental samples (buffer only control, IL-8 alone or IL-8 + Fabs) were loaded in a Polyfiltrronics 96-well View plate (Neuro Probe Inc.) placed in the lower chamber. 100 μl of the calcein AM-labeled neutrophils were added to the upper chambers and allowed to migrate through a 5 micrometer porosity PVP free polycarbonate framed filter (Neuro Probe Inc.) toward the bottom chamber sample. The chemotaxis apparatus was then incubated for 40 to 60 minutes at 37°C with 5% CO₂. At the end of the incubation, neutrophils remaining in the upper chamber were aspirated and upper chambers were washed three times with PBS. Then the polycarbonate filter was removed, non-migrating cells were wiped off with a squeegee wetted with PBS, and the filter was air dried for 15 minutes.

The relative number of neutrophils migrating through the filter (Neutrophil migration index) was determined by measuring fluorescence intensity of the filter and the fluorescence intensity of the contents of the lower chamber and adding the two values together. Fluorescence

intensity was measured with a CytoFluor 2300 fluorescent plate reader (Millipore Corp. Bedford, MA) configured to read a Corning 96-well plate using the 485-20 nm excitation filter and a 530-25 emission filter, with the sensitivity set at 3.

The results are shown in Figures 6 and 7. Figure 6 demonstrates the inhibition of human
5 IL-8 mediated neutrophil chemotaxis by chimeric 6G4.2.5 and 5.12.14 Fabs. Figure 7
demonstrates the relative abilities of chimeric 6G4.2.5 and 5.12.14 Fabs to inhibit rabbit IL-8
mediated neutrophil chemotaxis.

3. INHIBITION OF IL-8-MEDIATED NEUTROPHIL ELASTASE RELEASE BY

VARIOUS CONCENTRATIONS OF 6G4.2.5 AND 5.12.14 FABS

Blood was drawn from healthy male donors into heparinized syringes. Neutrophils were isolated by dextran sedimentation, centrifugation over Lymphocyte Separation Medium (Organon Teknika, Durham, NC), and hypotonic lysis of contaminating red blood cells as described by Berman *et al.* (J. Cell Biochem. 52:183 (1993)). The final neutrophil pellet was suspended at a concentration of 1×10^7 cells/ml in assay buffer, which consisted of Hanks Balanced Salt Solution (GIBCO, Grand Island, NY) supplemented with 1.0% BSA (fraction V, Sigma, St. Louis, MO), 2 mg/ml glucose, 4.2 mM sodium bicarbonate, and 0.01 M HEPES, pH 7.2. The neutrophils were stored at 4°C for not longer than 1 hr.

IL-8 (10 µl) was mixed with anti-IL-8 Fab, an isotype control Fab, or buffer (20 µl) in 1 ml polypropylene tubes and incubated in a 37°C water bath for 30 min. IL-8 was used at final concentrations ranging from 0.01 to 1000 nM in dose response studies (Figure 8) and at a final concentration of 100 nM in the experiments addressing the effects of the Fabs on elastase release (Figures 9 and 10). Fab concentrations ranged from approximately 20 nM to 300 nM, resulting in Fab:IL-8 molar ratios of 0.2:1 to 3:1. Cytochalasin B (Sigma) was added to the neutrophil suspension at a concentration of 5 µg/ml (using a 5 mg/ml stock solution made up in DMSO), and the cells were incubated for 15 min in a 37°C water bath. Cytochalasin B-treated neutrophils (100 µl) were then added to the IL-8/Fab mixtures. After a 3 hr incubation at room temperature, the neutrophils were pelleted by centrifugation (200 x g for 5 min), and aliquots of the cell-free

supernatants were transferred to 96 well plates (30 µl/well). The elastase substrate, methoxysuccinyl-alanyl-alanyl-prolyl-valyl-p-nitroanilide (Calbiochem, La Jolla, CA), was prepared as a 10 mM stock solution in DMSO and stored at 4°C. Elastase substrate working solution was prepared just prior to use (1.2 mM elastase substrate, 1.2 M NaCl, 0.12 M HEPES, pH 7.2), and 170 µl was added to each sample-containing well. The plates were placed in a 37°C tissue culture incubator for 30 min or until an optical density reading for the positive controls reached at least 1.0. Absorbance was measured at 405 nm using an SLT 340 plate reader (SLT Lab Instruments, Austria).

Figure 9 demonstrates the ability of the chimeric anti-IL-8 Fabs to inhibit elastase release from human neutrophils stimulated by human IL-8; Figure 10 demonstrates the relative abilities of the chimeric anti-IL-8 Fabs to inhibit elastase release from human neutrophils stimulated by rabbit IL-8.

C. MOLECULAR CLONING OF THE VARIABLE LIGHT AND HEAVY REGIONS OF THE MURINE 5.12.14 (ANTI-IL-8) MONOClonal ANTIBODY

Total RNA was isolated from 1×10^8 cells (hybridoma cell line ATCC HB-11722) using the procedure described by Chomczynski and Sacchi (Anal. Biochem. 162:156 (1987)). First strand cDNA was synthesized by specifically priming the mRNA with synthetic DNA oligonucleotides designed to hybridize with regions of the murine RNA encoding the constant region of the kappa light chain or the IgG2a heavy chain (the DNA sequence of these regions are published in Sequences of Proteins of Immunological Interest, Kabat, E. A. *et al.* (1991) NIH Publication 91-3242, V 1-3.). Three primers (SEQ ID NOS: 1-6) were designed for each of the light and heavy chains to increase the chances of primer hybridization and efficiency of first strand cDNA synthesis (Figure 13). Amplification of the first strand cDNA to double-stranded (ds) DNA was accomplished using two sets of synthetic DNA oligonucleotide primers: one forward primer (SEQ ID NOS: 7-9) and one reverse primer (SEQ ID NO: 10) for the light chain variable region amplification (Figure 14) and one forward primer (SEQ ID NOS: 11-14) and one reverse primer (SEQ ID NOS: 11, 15, 14 and 13) for the heavy chain variable region amplification (Figure 15). The N-terminal sequence of the first eight amino acids of either the

light or heavy chains of 5.12.14 was used to generate a putative murine DNA sequence corresponding to this region. (A total of 29 amino acids was sequenced from the N-terminus of both the light chain and heavy chain variable regions using the Edman degradation protein sequencing technique.) This information was used to design the forward amplification primers 5 which were made degenerate in the third position for some codons to increase the chances of primer hybridization to the natural murine DNA codons and also included the unique restriction site, MluI, for both the light chain variable region forward primer and the heavy chain variable region forward primer to facilitate ligation to the 3' end of the STII element in the cloning vector. The reverse amplification primers were designed to anneal with the murine DNA sequence 10 corresponding to a portion of the constant region of the light or heavy chains near the variable/constant junction. The light chain variable region reverse primer contained a unique BstBI restriction site and the heavy chain variable region reverse primer contained a unique Apal restriction site for ligation to the 5' end of either the human IgG1 constant light or IgG1 constant heavy regions in the vectors, pB13.1 (light chain) and pB14 (heavy chain). The polymerase 15 chain reaction using these primer sets yielded DNA fragments of approximately 400 bp. The cDNA encoding the 5.12.14 light chain variable region was cloned into the vector pB13.1, to form pA51214VL and the 5.12.14 heavy chain variable region was cloned into the vector, pB14, to form pA51214VH. The cDNA inserts were characterized by DNA sequencing and are presented in the DNA sequence (SEQ ID NO: 16) and amino acid sequence (SEQ ID NO: 17) of 20 Figure 16 (murine light chain variable region) and in the DNA sequence (SEQ ID NO: 18) and amino acid (SEQ ID NO: 19) of Figure 17 (murine heavy chain variable region).

D. CONSTRUCTION OF A 5.12.14 FAB VECTOR

In the initial construct, pA51214VL, the amino acids between the end of the 5.12.14 25 murine light chain variable sequence and the unique cloning site, BstBI, in the human IgG1 constant light sequence were of murine origin corresponding to the first 13 amino acids of the murine IgG1 constant region (Figure 16). Therefore, this plasmid contained a superfluous portion of the murine constant region separating the 5.12.14 murine light chain variable region

and the human light chain IgG1 constant region. This intervening sequence would alter the amino acid sequence of the chimera and most likely produce an incorrectly folded Fab. This problem was addressed by immediately truncating the cDNA clone after A109 and re-positioning the BstBI site to the variable/constant junction by the polymerase chain reaction. Figure 18
5 shows the amplification primers used to make these modifications. The forward primer,
VL.front (SEQ ID NO: 20), was designed to match the last five amino acids of the STII signal
sequence, including the MluI cloning site, and the first 4 amino acids of the 5.12.14 murine light
chain variable sequence. The sequence was altered from the original cDNA in the third position
of the first two codons D1 (T to C) and I2 (C to T) to create a unique EcoRV cloning site which
10 was used for later constructions. The reverse primer, VL.rear (SEQ ID NO: 21), was designed to
match the first three amino acids of the human IgG1 constant light sequence and the last seven
amino acids of the 5.12.14 light chain variable sequence which included a unique BstBI cloning
site. In the process of adding the BstBI site, the nucleotide sequence encoding several amino
15 acids were altered: L106 (TTG to CTT), K107 (AAA to CGA) resulting in a conservative amino
acid substitution to arginine, and R108 (CGG to AGA). The PCR product encoding the modified
5.12.14 light chain variable sequence was then subcloned into pB13.1 in a two-part ligation. The
MluI-BstBI digested 5.12.14 PCR product encoding the light chain variable region was ligated
into MluI-BstBI digested vector to form the plasmid, pA51214VL'. The modified cDNA was
characterized by DNA sequencing. The coding sequence for the 5.12.14 light chain is shown in
20 Figure 19.

Likewise, the DNA sequence between the end of the heavy chain variable region and the
unique cloning site, ApaI, in the human IgG1 heavy chain constant domain of pA51214VH was
reconstructed to change the amino acids in this area from murine to human. This was done by
the polymerase chain reaction. Amplification of the murine 5.12.14 heavy chain variable
25 sequence was accomplished using the primers shown in Figure 18. The forward PCR primer
(SEQ ID NO: 22) was designed to match nucleotides 867-887 in pA51214VH upstream of the
STII signal sequence and the putative cDNA sequence encoding the heavy chain variable region
and included the unique cloning site SpeI. The reverse PCR primer (SEQ ID NO: 23) was

designed to match the last four amino acids of the 5.12.14 heavy chain variable sequence and the first six amino acids corresponding to the human IgG1 heavy constant sequence which also included the unique cloning site, ApaI. The PCR product encoding the modified 5.12.14 heavy chain variable sequence was then subcloned to the expression plasmid, pMHM24.2.28 in a two-part ligation. The vector was digested with SpeI-ApaI and the SpeI-ApaI digested 5.12.14 PCR product encoding the heavy chain variable region was ligated into it to form the plasmid, pA51214VH'. The modified cDNA was characterized by DNA sequencing. The coding sequence for the 5.12.14 heavy chain is shown in the DNA sequence (SEQ ID NO: 26) and amino acid sequence (SEQ ID NO: 27) of Figures 20A-20B.

The first expression plasmid, pantiIL-8.1, encoding the chimeric Fab of 5.12.14 was made by digesting pA51214VH' with EcoRV and Bpu1102I to replace the EcoRV-Bpu1102I fragment with a EcoRV-Bpu1102I fragment encoding the murine 5.12.14 light chain variable region of pA51214VL'. The resultant plasmid thus contained the murine-human variable/constant regions of both the light and heavy chains of 5.12.14.

Preliminary analysis of Fab expression using pantiIL-8.1 showed that the light and heavy chains were produced intracellularly but very little was being secreted into the periplasmic space of E. coli. To correct this problem, a second expression plasmid was constructed.

The second expression plasmid, pantiIL-8.2, was constructed using the plasmid, pmy187, as the vector. Plasmid pantiIL-8.2 was made by digesting pmy187 with MluI and SphI and the MluI (partial)-SphI fragment encoding the murine 5.12.14 murine-human chimeric Fab of pantiIL-8.1 was ligated into it. The resultant plasmid thus contained the murine-human variable/constant regions of both the light and heavy chains of 5.12.14.

The plasmid pantiIL-8.2 was deposited on February 10, 1995 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATTC Accession No. ATCC 97056.

E. MOLECULAR CLONING OF THE VARIABLE LIGHT AND HEAVY REGIONS OF THE MURINE 6G4.2.5 MONOCLONAL ANTIBODY

Total RNA was isolated from 1×10^8 cells (hybridoma cell line 6G4.2.5) using the procedure described by Chomczynski and Sacchi (Anal. Biochem. 162:156 (1987)). First strand cDNA was synthesized by specifically priming the mRNA with synthetic DNA oligonucleotides designed to hybridize with regions of the murine RNA encoding the constant region of the kappa light chain or the IgG2a heavy chain (the DNA sequence of these regions are published in Sequences of Proteins of Immunological Interest, Kabat *et al.* (1991) NIH Publication 91-3242, V 1-3). Three primers (SEQ ID NOS: SEQ ID NOS: 1-6) were designed for each the light and heavy chains to increase the chances of primer hybridization and efficiency of first strand cDNA synthesis (Figure 21). Amplification of the first strand cDNA to double-stranded (ds) DNA was accomplished using two sets of synthetic DNA oligonucleotide primers: one forward primer (SEQ ID NOS: 28-30) and one reverse primer (SEQ ID NO: 31) for the light chain variable region amplification (Figure 22) and one forward primer (SEQ ID NOS: 32-33) and one reverse primer (SEQ ID NOS: 11,15,14 and 13) for the heavy chain variable region amplification (Figure 23). The N-terminal sequence of the first eight amino acids of either the light or heavy chains of 6G4.2.5 was used to generate a putative murine DNA sequence corresponding to this region. (A total of 29 amino acids were sequenced from the N-terminus of both the light chain and heavy chain variable regions using the Edman degradation protein sequencing technique.) This information was used to design the forward amplification primers which were made degenerate in the third position for some codons to increase the chances of primer hybridization to the natural murine DNA codons and also included the unique restriction site, NsiI, for the light chain variable region forward primer and the unique restriction site, MluI, for the heavy chain variable region forward primer to facilitate ligation to the 3' end of the STII element in the vector, pchimFab. The reverse amplification primers were designed to anneal with the murine DNA sequence corresponding to a portion of the constant region of the light or heavy chains near the variable/constant junction. The light chain variable region reverse primer contained a unique

MunI restriction site and the heavy chain variable region reverse primer contained a unique ApaI restriction site for ligation to the 5' end of either the human IgG1 constant light or IgG1 constant heavy regions in the vector, pchimFab. The polymerase chain reaction using these primer sets yielded DNA fragments of approximately 400 bp and were cloned individually into the vector, 5 pchimFab, to form p6G425VL and p6G425VH. The cDNA inserts were characterized by DNA sequencing and are presented in the DNA sequence (SEQ ID NO: 34) and amino acid sequence (SEQ ID NO: 35) of Figure 24 (murine light chain variable region) and the DNA sequence (SEQ ID NO: 36) and amino acid sequence (SEQ ID NO: 37) of Figure 25 (murine heavy chain variable region).

10

F. CONSTRUCTION OF A 6G4.2.5 CHIMERIC FAB VECTOR

In the initial construct, p6G425VL, the amino acids between the end of the 6G4.2.5 murine light chain variable sequence and the unique cloning site, MunI, in the human IgG1 constant light sequence were of murine origin. These amino acids must match the human IgG1 amino acid sequence to allow proper folding of the chimeric Fab. Two murine amino acids, 15 D115 and S121, differed dramatically from the amino acids found in the loops of the β-strands of the human IgG1 constant domain and were converted to the proper human amino acid residues, V115 and F121, by site-directed mutagenesis using the primers (SEQ ID NOS: 38,39,40) shown in Figure 26. These specific mutations were confirmed by DNA sequencing and the modified 20 plasmid named p6G425VL'. The coding sequence is shown in the DNA sequence (SEQ ID NO: 41) and amino acid sequence (SEQ ID NO: 42) of Figures 27A-27B.

Likewise, the DNA sequence between the end of the heavy chain variable region and the unique cloning site, ApaI, in the human IgG1 heavy chain constant domain of p6G425VH was reconstructed to change the amino acids in this area from murine to human. This process was 25 facilitated by the discovery of a BstEII site near the end of the heavy chain variable region. This site and the ApaI site were used for the addition of a synthetic piece of DNA encoding the corresponding IgG human amino acid sequence. The synthetic oligo-nucleotides shown in Figure 26 were designed as complements of one another to allow the formation of a 27 bp piece

of ds DNA. The construction was performed as a three-part ligation because the plasmid, p6G425VH, contained an additional BstEII site within the vector sequence. A 5309 bp fragment of p6G425VH digested with MluI-ApaI was ligated to a 388 bp fragment carrying the 6G4.2.5 heavy chain variable region and a 27 bp synthetic DNA fragment encoding the first six amino acids of the human IgG1 constant region to form the plasmid, p6G425VH'. The insertion of the synthetic piece of DNA was confirmed by DNA sequencing. The coding sequence is shown in the DNA sequence (SEQ ID NO: 43) and amino acid sequence (SEQ ID NO: 44) of Figures 28A-28B.

The expression plasmid, p6G425chim2, encoding the chimeric Fab of 6G4.2.5 was made by digesting p6G425chimVL' with MluI and ApaI to remove the STII-murine HPC4 heavy chain variable region and replacing it with the MluI-ApaI fragment encoding the STII-murine 6G4.2.5 heavy chain variable region of p6G425chimVH'. The resultant plasmid thus contained the murine-human variable/constant regions of both the light and heavy chains of 6G4.2.5.

The plasmid p6G425chim2 was deposited on February 10, 1995 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATTC Accession No. 97055.

G. CONSTRUCTION OF HUMANIZED VERSIONS OF ANTI-IL-8 ANTIBODY 6G4.2.5

The murine cDNA sequence information obtained from the hybridoma cell line, 6G4.2.5, was used to construct recombinant humanized variants of the murine anti-IL-8 antibody. The first humanized variant, F(ab)-1, was made by grafting synthetic DNA oligonucleotide primers encoding the murine CDRs of the heavy and light chains onto a phagemid vector, pEMX1 (Werther *et al.*, *J. Immunol.*, 157: 4986-4995 (1996)), which contains a human 6-subgroup I light chain and a human IgG1 subgroup III heavy chain (Fig. 29). Amino acids comprising the framework of the antibody that were potentially important for maintaining the conformations necessary for high affinity binding to IL-8 by the complementarity-determining regions (CDR) were identified by comparing molecular models of the murine and humanized 6G4.2.5 (F(ab)-1) variable domains using methods described by Carter *et al.*, *PNAS* 89:4285 (1992) and Eigenbrot,

et. al., J. Mol. Biol. 229:969 (1993). Additional humanized framework variants (F(ab) 2-9) were constructed from the information obtained from these models and are presented in Table 2 below. In these variants, the site-directed mutagenesis methods of Kunkel, Proc. Natl. Acad. Sci USA, 82:488 (1985) were utilized to exchange specific human framework residues with their corresponding 6G4.2.5 murine counterparts. Subsequently, the entire coding sequence of each variant was confirmed by DNA sequencing. Expression and purification of each F(ab) variant was performed as previously described by Werther *et. al.*, *supra*, with the exception that hen egg white lysozyme was omitted from the purification protocol. The variant antibodies were analyzed by SDS-PAGE, electrospray mass spectroscopy and amino acid analysis.

10

Table 4 - Humanized 6G425 Variants

Variant	Version	Template	Changes ^a	Purpose ^b	Mean	S.D.	N
F(ab)-1	version 1		CDR Swap		63.0	12.3	4
F(ab)-2	version 2	F(ab)-1	PheH67 <i>Ala</i>	packaging w/ CDR H2	106.0	17.0	2
F(ab)-3	version 3	F(ab)-1	ArgH71 <i>Val</i>	packaging w/ CDRs H1, H2	79.8	42.2	4
F(ab)-4	version 6	F(ab)-1	IleH69 <i>Leu</i>	packaging w/ CDR H2	44.7	9.0	3
F(ab)-5	version 7	F(ab)-1	LeuH78 <i>Ala</i>	packaging w/ CDRs H1, H2	52.7	31.0	9
F(ab)-6	version 8	F(ab)-1	IleH69 <i>Leu</i> LeuH78 <i>Ala</i>	combine F(ab)-4 and -5	34.6	6.7	7
F(ab)-7	version 16	F(ab)-6	LeuH80 <i>Val</i>	packaging w/ CDR H1	38.4	9.1	2
F(ab)-8	version 19	F(ab)-6	ArgH38 <i>Lys</i>	packaging w/ CDR H2	14.0	5.7	2
F(ab)-9	version 11	F(ab)-6	GluH6 <i>Gln</i>	packaging w/ CDR H3	19.0	5.1	7
Chimeric ^d F(ab)					11.4	7.0	1 3

rhu4D5 ^c					>200μM		5
F(ab)							

- a Amino acid changes made relative to the template used. Murine residues are in bold italics and residue numbering is according to Kabat *et al.*
- b Purpose for making changes based upon interactions observed in molecular models of the humanized and murine variable domains.
- 5 c nM concentration of variant necessary to inhibit binding of iodinated IL-8 to human neutrophils in the competitive binding assay.
- d Chimeric F(ab) is a (F(ab) which carries the murine heavy and light chain variable domains fused to the human light chain kI constant domain and the human heavy chain subgroup III constant domain I respectively.
- 10 e rhu4D5F(ab) is of the same isotype as the humanized 6G425 F(ab)s and is a humanized anti-HER2 F(ab) and therefore should not bind to IL8.

The first humanized variant, F(ab)-1, was an unaltered CDR swap in which all the murine CDR amino acids defined by both x-ray crystallography and sequence hypervariability were transferred to the human framework. When the purified F(ab) was tested for its ability to inhibit ¹²⁵I-IL-8 binding to human neutrophils according to the methods described in Section (B)(1) above, a 5.5 fold reduction in binding affinity was evident as shown in Table 4 above. Subsequent versions of F(ab)-1 were engineered to fashion the 3-dimensional structure of the CDR loops into a more favorable conformation for binding IL-8. The relative affinities of the F(ab) variants determined from competition binding experiments using human neutrophils as described in Section (B)(1) above are presented in Table 4 above. A slight decrease in IL-8 binding (<2 fold) was observed for F(ab)-2-3 while only slight increases in IL-8 binding were noted for F(ab)3-5. Variant F(ab)-6 had the highest increase in affinity for IL-8 (approximately 2 fold), exhibiting an IL-8 binding affinity of 34.6nM compared to the F(ab)-1 IL-8 binding affinity of 63nM. The substitutions of murine Leu for Ile at H69 and murine Ala for Leu at H78 are predicted to influence the packing of CDRs H1 and H2. Further framework substitutions using the F(ab)-6 variant as template were made to bring the binding affinity closer to that of the chimeric F(ab). *In-vitro* binding experiments revealed no change in affinity for F(ab)-7 (38.4nM) but a significant improvement in affinity for F(ab)-8/9 of 14nM and 19 nM, respectively. By 25 analysis of a 3-D computer-generated model of the anti-IL-8 antibody, it was hypothesized that the substitution of murine Lys for Arg at H38 in F(ab)-8 influences CDR-H2 while a change at

30

H6 of murine Gln for Glu in F(ab)-9 affects CDR-H3. Examination of the human antibody sequences with respect to amino acid variability revealed that the frequency of Arg at residue H38 is >99% whereas residue H6 is either Gln ~20% or Glu ~80% (Kabat *et. al.*, Sequences of Proteins of Immunological Interest 5th Ed. (1991)). Therefore, to reduce the likelihood of causing an immune response to the antibody, F(ab)-9 was chosen over F(ab)-8 for further affinity maturation studies. Variant F(ab)-9 was also tested for its ability to inhibit IL-8-mediated chemotaxis (Fig. 30). This antibody was able to block neutrophil migration induced by wild-type human IL-8, human monomeric IL-8 and Rhesus IL-8 with IC₅₀s of approximately 12nM, 15nM, and 22nM, respectively, in IL-8 mediated neutrophil chemotaxis inhibition assays performed as described in Section (B)(2) above. The amino acid sequence for variant F(ab)-8 is provided in Fig. 31c. The F(ab)-8 was found to block human and rhesus IL-8-mediated chemotaxis with IC₅₀s of 12nM and 10nM, respectively, in IL-8 mediated neutrophil chemotaxis inhibition assays performed as described in Section (B)(2) above.

15 **H. CONSTRUCTION OF AN ANTI-IL-8-GENE III FUSION PROTEIN FOR PHAGE DISPLAY AND ALANINE SCANNING MUTAGENESIS**

An expression plasmid, pPh6G4.V11, encoding a fusion protein (heavy chain of the humanized 6G4.2.5 version 11 antibody and the M13 phage gene-III coat protein) and the light chain of the humanized 6G4.2.5 version 11 antibody was assembled to produce a monovalent display of the anti-IL-8 antibody on phage particles. The construct was made by digesting the plasmid, pFPHX, with EcoRV and ApaI to remove the existing irrelevant antibody coding sequence and replacing it with a 1305bp EcoRV-ApaI fragment from the plasmid, p6G4.V11, encoding the humanized 6G4.2.5 version 11 anti-IL-8 antibody. The translated sequence of the humanized 6G4.2.5 version 11 heavy chain (SEQ ID NO: 52), peptide linker and gene III coat protein (SEQ ID NO: 53) is shown in Fig. 31A. The pFPHX plasmid is a derivative of phGHam-3 which contains an in-frame amber codon (TAG) between the human growth hormone and gene-III DNA coding sequences. When transformed into an amber suppressor strain of *E. coli*, the codon (TAG) is read as Glutamate producing a growth hormone (hGH)-gene III fusion

protein. Likewise, in a normal strain of *E. coli*, the codon (TAG) is read as a stop preventing translational read-through into the gene-III sequence and thus allowing the production of soluble hGH. The pGHam-3 plasmid is described in Methods: A Companion to Methods in Enzymology, 3:205 (1991). The final product, pPh6G4.V11, was used as the template for the 5 alanine scanning mutagenesis of the CDRs and for the construction of randomized CDR libraries of the humanized 6G4.V11 antibody.

I. ALANINE SCANNING MUTAGENESIS OF HUMANIZED ANTIBODY 6G4.2.5
VERSION 11

10 The solvent exposed amino acid residues in the CDRs of the humanized anti-IL-8 6G4.2.5 version 11 antibody (h6G4V11) were identified by analysis of a 3-D computer-generated model of the anti-IL-8 antibody. In order to determine which solvent exposed amino acids in the CDRs affect binding to interleukin-8, each of the solvent exposed amino acids was individually changed to alanine, creating a panel of mutant antibodies wherein each mutant contained an 15 alanine substitution at a single solvent exposed residue. The alanine scanning mutagenesis was performed as described by Leong *et. al.*, J. Biol. Chem., 269: 19343 (1994)).

20 The IC₅₀'s (relative affinities) of h6G4V11 wt and mutated antibodies were established using a Competition Phage ELISA Assay described by Cunningham *et. al.*, (EMBO J. 13:2508 (1994)) and Lee *et. al.*, (Science 270:1657 (1995)). The assay measures the ability of each 25 antibody to bind IL-8 coated onto a 96-well plate in the presence of various concentrations of free IL-8 (0.2 to 1uM) in solution. The first step of the assay requires that the concentrations of the phage carrying the wild type and mutated antibodies be normalized, allowing a comparison of the relative affinities of each antibody. The normalization was accomplished by titrating the phage on the IL-8 coated plates and establishing their EC₅₀. Sulphydryl coated 96-well binding plates (Corning-Costar; Wilmington, MA) were incubated with a 0.1mg/ml solution of K64C IL-8 (Lysine 64 is substituted with Cysteine to allow the formation of a disulfide bond between the free thiol group of K64C IL-8 and the sulphydryl coated plate, which results in the positioning of the IL-8 receptor binding domains towards the solution interface) in phosphate buffered saline

(PBS) pH 6.5 containing 1mM EDTA for 1 hour at 25°C followed by three washes with PBS and a final incubation with a solution of PBS containing 1.75mg/ml of L-cysteine-HCl and 0.1M NaHCO₃ to block any free reactive sulphydryl groups on the plate. The plates were washed once more and stored covered at 4°C with 200ul of PBS/well. Phage displaying either the reference 5 antibody, h6G4V11, or the mutant h6G4V11 antibodies were grown and harvested by PEG precipitation. The phage were resuspended in 500ul 10mM Tris-HCl pH 7.5, 1mM EDTA and 100mM NaCl and held at 4°C for no longer than 3 hours. An aliquot of each phage was diluted 4-fold in PBS containing 0.05% Tween-20 (BioRad, Richmond, Ca.) and 0.5% BSA RIA grade (Sigma, St. Louis, Mo.) (PBB) and added to IL-8 coated plates blocked for at least 2 hours at 10 25°C with 50mg/ml skim milk powder in 25mM Carbonate Buffer pH 9.6. The phage were next serially diluted in 3 fold steps down the plate from well A through H. The plates were incubated for 1 hour at 25°C followed by nine quick washes with PBS containing 0.05% Tween-20 (PBST). The plates were then incubated with a 1:3200 dilution of rabbit anti-phage antibody and a 1:1600 dilution of secondary goat-anti-rabbit Fc HRP-conjugated antibody for 15 minutes at 15 25°C followed by nine quick washes with PBST. The plates were developed with 80ul/well of 1mg/ml OPD (Sigma, St. Louis, Mo) in Citrate Phosphate buffer pH 5.0 containing 0.015% H₂O₂ for 4 minutes at 25°C and the reaction stopped with the addition of 40ul of 4.5M H₂SO₄. The plates were analyzed at wavelength 8₄₉₂ in a SLT model 340ATTC plate reader (SLT Lab Instruments). The individual EC₅₀s were determined by analyzing the data using the program 20 Kaleidagraph (Synergy Software, Reading, Pa.) and a 4-parameter fit equation. The phage held at 4°C were then immediately diluted in PBB to achieve a final concentration corresponding to their respective EC₅₀ or target OD₄₉₂ for the competition segment of the experiment, and dispensed into a 96 well plate containing 4-fold serial dilutions of soluble IL-8 ranging from 1uM in well A and ending with 0.2uM in well H. Using a 12-channel pipet, 100ul of the 25 phage/IL-8 mixture was transferred to an IL-8 coated 96-well plate and executed as described above. Each sample was done in triplicate - 3 columns/sample.

Table 5 - Relative Affinities (IC50) for Alanine-scan Anti-IL-8 6G4V11 CDR Mutants

CDR	Amino Acid Residue	Avg IC50 (nM)	Std Dev
V11	Reference	11.5	6.4
CDR-L1	S26	6.3	2.9
	Q27	10.2	2.4
	S28	14.2	5.2
	V30	29.1	12.3
	H31	580.3	243.0
	I33	64.2	14.6
	N35	3.3	0.7
	T36	138.0	nd
	Y37	NDB	nd
CDR-L2	K55	24.2	14.9
	V56	15.5	3.8
	S57	12.4	4.0
	N58	17.6	3.7
	R59	nd	nd
CDR-L3	S96	10.8	4.4
	T97	70.6	55.2
	H98	8.0	1.2
	V99	19.6	1.9

CDR	Amino Acid Residue	Avg IC50 (nM)	Std Dev
CDR-H1	S28	8.6	3.1
	S30	nd	nd
	S31	7.8	2.5
	H32	13.3	5.8
	Y53	48.2	15.8
CDR-H2	Y50	35.6	13.0
	D52	13.3	7.5
	S53	6.0	3.4
	N54	96.0	5.8
	E56	15.8	4.5
	T57	8.4	1.6
	T58	11.3	1.8
	Y59	9.1	3.7
	Q61	12.6	6.4
	K64	18.5	12.1
CDR-H3	D96	NDB	nd
	Y97	NDB	nd
	R98	36.6	15.3
	Y99	199.5	nd
	N100	278.3	169.4

CDR	Amino Acid Residue	Avg IC50 (nM)	Std Dev
	D102	159.2	44
	W103	NDB	nd
	F104	NDB	nd
	F105	209.4	72.3
	D106	25.3	21.7

Each sample performed in triplicate/experiment.

NDB = No Detectable Binding /nd = value not determined*

Residue numbering is according to Kabat et al.

5 The results of the alanine-scan are summarized in Table 5 above. The alanine substitutions in many of the mutant antibodies had little or no adverse effects (<3 fold) on the binding affinity for IL-8. Mutants that were found to exhibit no detectable binding of IL-8 (NDB) presumably contained disruptions in the conformational structure of the antibody conferred by crucial structural or buried amino acids in the CDR. Based on the results of the scan, CDR-H3 (heavy chain, 3rd CDR) was identified as the dominant binding epitope for binding IL-8. Alanine substitutions in this CDR resulted in a 3 to >26 fold decrease in binding affinity. The amino acids, Y597, Y599 and D602 are of particular interest because it was determined from the computer generated model of the anti-IL-8 antibody that these residues are solvent exposed and that these residues might participate in hydrogen bonding or charge interactions with IL-8 or other amino acids of the antibody that influence either binding to IL-8 or the conformation of the CDR-H3 loop structure. (See the model depicted in Fig. 32).
10 Unexpected increases in binding affinity (1.8 > 2.7 fold) were noted for S528 and S531 of CDR-H1 and S553 of CDR-H2.

15 Surprisingly, a significant increase in binding affinity was observed in the alanine mutant N35A located in CDR-L1 (light chain, 1st CDR). A 3-6 fold increase in affinity was observed compared to the wild-type h6G4V11 antibody. This augmentation of IL-8 binding could be the result of the close proximity of N35A to CDR-H3. The alanine substitution may have imparted a
20

slight change in the conformation of CDR-L1 which alters the packing interaction of neighboring amino acid residues on CDR-H3, thereby tweaking the loop of CDR-H3 into a conformation that facilitates more appropriate contacts with IL-8. Similarly, N35A may also influence the orientation of amino acids in CDR-L1 or its interaction directly with IL-8. Unexpected increases 5 in affinity (~2 fold) were also observed for S26 of CDR-L1 and H98 of CDR-L3.

J. CHARACTERIZATION OF HUMANIZED ANTI-IL-8 ANTIBODY 6G4V11N35A

Soluble 6G4V11N35A Fab antibody was made by transforming an amber non-suppressor strain of *E. coli*, 34B8, with pPh6G4.V11 and growing the culture in low phosphate medium for 10 24 hours. The periplasmic fraction was collected and passed over a Hi-Trap Protein-G column (Pharmacia, Piscataway, NJ.) followed by a desalting and concentration step. The protein was analyzed by SDS-PAGE, mass spectrometry and amino acid analysis. The protein had the correct size and amino acid composition (Fig. 35). The 6G4V11N35A Fab was tested for its ability to inhibit 125 I-IL-8 binding to human neutrophils and to inhibit IL-8 mediated neutrophil 15 chemotaxis as described in Section (B)(1) and (B)(2) above. As shown in Fig. 33, hybridoma-derived intact murine antibody (6G4 murine mAB), recombinant 6G4 murine-human chimera Fab, recombinant humanized Fab versions 1 and 11, and 6G4V11N35A Fab were found to inhibit 125 I-IL-8 binding to human neutrophils with an average IC₅₀ of 5nM, 8nM, 40nM, 10nM and 3nM, respectively. The 6G4V11N35A Fab had at least a 2-fold higher affinity than the 20 6G4.2.5 chimera Fab and a 3-fold higher affinity than 6G4V11. As shown in Fig. 34, the 6G4V11N35A Fab was found to inhibit IL-8 mediated neutrophil chemotaxis induced by both wild type and monomeric human IL-8, and by two different animal species of IL-8, namely, rabbit and rhesus. The irrelevant isotype control Fab (4D5) did not inhibit neutrophil migration. The average IC₅₀ values were 3nM (wt IL-8), 1 nM (monomeric IL-8), 5nM (Rabbit IL-8), and 25 10nM (Rhesus IL-8).

K. CONSTRUCTION OF A 6G4V11N35A F(ab')₂ LEUCINE ZIPPER

Production of a F(ab')₂ version of the humanized anti-IL-8 6G4V11N35A Fab was

accomplished by constructing a fusion protein with the yeast GCN4 leucine zipper. The expression plasmid p6G4V11N35A.F(ab')₂ was made by digesting the plasmid p6G425chim2.fab2 with the restriction enzymes bsaI and apal to remove the DNA sequence encoding the 6G4.2.5 murine-human chimeric Fab and replacing it with a 2620bp bsaI-apal fragment from pPh6G4.V11N35A. The plasmid p6G425chim2.fab2 is a derivative of pS1130 which encodes a fusion protein (the GCN4 leucine zipper fused to the heavy chain of anti-CD18) and the light chain of anti-CD18 antibody. The expression plasmid p6G4V11N35A.F(ab')₂ was deposited on February 20, 1996 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, U.S.A. (ATCC) and assigned ATCC Accession No. 97890. A pepsin cleavage site in the hinge region of the antibody facilitates the removal of the leucine zipper leaving the two immunoglobulin monomers joined by the cysteines that generate the interchain disulfide bonds. The DNA and protein sequence of the h6G4V11N35A.F(ab')₂ are depicted in Figs. 35-37.

An expression host cell was obtained by transforming E. coli strain 49D6 with p6G4V11N35A.F(ab')₂ essentially as described in Section (II)(3)(C) above. The transformed host E. coli 49D6 (p6G4V11N35A.F(ab')₂) was deposited on February 20, 1997 at the ATCC and assigned ATCC Accession No. 98332. Transformed host cells were grown in culture, and the 6G4V11N35A F(ab')₂ product was harvested from the host cell periplasmic space essentially as described in Section (II)(3)(F) above.

20

L. CHARACTERIZATION OF THE HUMANIZED 6G4V11N35A F(ab')₂ LEUCINE ZIPPER

The 6G4V11N35A Fab and F(ab')₂ were tested for their ability to inhibit ¹²⁵I-IL-8 binding to neutrophils according to the procedures described in Section (B)(1) above. The displacement curves from a representative binding experiment performed in duplicate is depicted 25 in Fig. 38. Scatchard analysis of this data shows that 6G4V11N35A F(ab')₂ inhibited ¹²⁵I-IL-8 binding to human neutrophils with an average IC₅₀ of 0.7 nM (+/- 0.2). This is at least a 7 fold increase in affinity compared to the hybridoma-derived intact murine antibody (average IC₅₀ of 5 nM) and at least a 2.8 fold increase in affinity over the Fab version (average IC₅₀ of 2 nM).

The 6G4V11N35A F(ab')₂ was also tested for its ability to inhibit IL-8 mediated neutrophil chemotaxis according to the procedures described in Section (B)(2) above. The results of a representative chemotaxis experiment performed in quadruplicate are depicted in Fig. 39. As shown in Fig. 39, the 6G4V11N35A F(ab')₂ inhibited human IL-8 mediated neutrophil chemotaxis. The 6G4V11N35A F(ab')₂ exhibited an average IC₅₀ value of 1.5nM versus 2.7nM for the 6G4V11N35A Fab, which represents an approximately 2 fold improvement in the antibody's ability to neutralize the effects of IL-8. The irrelevant isotype control Fab (4D5) did not inhibit neutrophil migration. Furthermore, the 6G4V11N35A F(ab')₂ antibody retained its ability to inhibit IL-8 mediated neutrophil chemotaxis by monomeric IL-8 and by two different animal species of IL-8, namely rabbit and rhesus, in neutrophil chemotaxis experiments conducted as described above. An individual experiment is shown in Fig. 40. The average IC₅₀ values were 1nM (monomeric IL-8), 4nM (Rabbit IL-8), and 2.0nM (Rhesus IL-8).

10
15 M. RANDOM MUTAGENESIS OF LIGHT CHAIN AMINO ACID (N35A) IN CDR-L1 OF HUMANIZED ANTIBODY 6G4V11

A 3-fold improvement in the IC₅₀ for inhibiting ¹²⁵I-IL-8 binding to human neutrophils was observed when alanine was substituted for asparagine at position 35 in CDR-L1 (light chain) of the humanized 6G4V11 mAb as described in Section (I) above. This result might be attributed to an improvement in the contact between the antigen-antibody binding interfaces as a consequence of the replacement of a less bulky nonpolar side chain (R-group) that may have altered the conformation of CDR-L1 or neighboring CDR-H3 (heavy chain) to become more accessible for antigen docking. The acceptance of alanine at position 35 of CDR-L1 suggested that this position contributed to improved affinity and that an assessment of the re-modeling of CDR loops / antigen-binding region(s) by other amino acids at this location was warranted. Selection of an affinity matured version of the humanized 20 25 6G4.V11 mAB (Kunkel, T. A., Proc. Natl. Acad. Sci. USA, 82:488 (1995)) was accomplished by randomly mutagenizing position 35 of CDR-L1 and constructing an antibody-phage library. The codon for Asparagine (N) at position 35 of CDR-L1, was targeted for randomization to any of the 20 known amino acids.

Initially, a stop template, pPh6G4.V11-stop, was made to eliminate contaminating wild-type N35 sequence from the library. This was accomplished by performing site-directed mutagenesis (Muta-Gene Kit, Biorad, Ricmond, CA) of pH6G4V11 (described in Section (H) above) to replace the codon (AAC) for N35 with a stop codon (TAA) using the primer SL.97.2 (SEQ ID NO:63)(Figure 42). The incorporation of the stop codon was confirmed by DNA sequencing. Subsequently, uracil containing single-stranded DNA derived from *E. coli* CJ236 transformed with the stop template was used to generate an antibody-phage library following the method described by Lowman (Methods in Molecular Biology, 87 Chapter 25: 1-15 (1997)). The variants generated from this library were predicted to produce a collection of antibodies containing one of the 20 known amino acids at position N35 in CDR-L1. The amino acid substitutions were accomplished by site-directed mutagenesis using the degenerate oligonucleotide primer (SL.97.3) with the sequence NNS (N = A/G/T/C ; S = G/C;) (SEQ ID NO: 64)(Figure 42). This codon usage should allow for the expression of any of the 20 amino acids - including the amber stop codon (TAG). The collection of antibody-phage variants was transfected into *E. coli* strain XL-1 blue (Stratagene, San Diego, CA) by electroporation and grown at 37°C overnight to amplify the library. Selection of tight binding humanized 6G4V11 Fab's were accomplished by panning the library on IL-8 coated 96-well plates as described in Section (I) above. Prior to panning, the number of phage/library was normalized to 1.1×10^{13} phage/ml (which produces a maximum OD₂₇₀ reading = 1 OD unit) and IL-8 coated plates were incubated with blocking solution (25mM Carbonate buffer containing 50mg/ml skim milk) for 2 hours before the addition of phage (each sort used eight IL-8 coated wells/library). After the blocking and washing steps, every sort began with the addition of 100ul of antibody-phage (titered at 1.1×10^{13} phage/ml) to each of eight IL-8 coated wells followed by an 1 hour incubation at 25°C. The non-specifically bound antibody-phage were removed by 10 quick washes with PBS-0.05% Tween 20 (PBS-Tween). For sort #1, a low stringency wash (100ul PBS-Tween/well for 10 minutes at 25°C) was employed to capture the small proportion of tight binding antibody-phage bound to the immobilized IL-8. The antibody-phage variants specifically bound to IL-8 were eluted with 100ul/well of 200mM Glycine pH 2.0 for 5 minutes at 25°C. The eluted antibody-phage variants from the 8 wells were then pooled and neutralized with 1M Tris-HCl pH 8.0 (1/3 the elution volume). The phage were titered and propagated as described in Section (I) above. The stringency of the washes were

successively increased with each round of panning depending upon the percent recovery of phage at the end of a sort. The wash conditions were as follows: sort #2 (4 x 15 minute intervals; total time = 60 minutes) and sort #3 (either #3a: 8 x 15 minute intervals or #3b: 12 x 10 minute intervals; total time = 120 minutes). The total number of phage recovered was progressively reduced after each sort suggesting that non- or weak- binders were being selected against. The recovery of the negative control (the antibody-phage stop variant) was constant throughout the panning (approximately 0.0001 to 0.00001 percent).

Eighteen random variants from sort #3 were analyzed by DNA sequencing to look for an amino acid consensus at position 35 of CDR-L1. The data presented in Figure 43A showed that Glycine occupied position 35 in 33% of the variants sequenced. However, after correcting for the number of NNS codon combinations/amino acid, the frequency of Glycine was reduced to 16.6%. Glutamic Acid was represented with the highest frequency (22%) followed by Aspartic Acid and Glycine (16.6%). The frequencies of recovery of the wild-type Asparagine and substituted Alanine were only 5.6%. Interestingly, the high frequency of Glycine may suggest that a much wider range of conformations might be allowed for the loop of CDR-L1 which may be attributed to the reduction in steric hindrance of bond angle (ϕ - ψ) pairing as a result of the single hydrogen atom as the side chain. Conversely, Glutamic Acid at position 35 might restrict the flexibility of the loop by imposing less freedom of rotation imposed by the more rigid and bulky charged polar side chain.

Soluble Fab's of the affinity matured variants (N35G, N35D, N35E and N35A) were made as described in Section (J) above for evaluating their ability to block IL-8 binding. As shown in Figure 43B, variants N35A, N35D, N35E and N35G were found to inhibit ^{125}I -IL-8 binding to human neutrophils with an approximate IC_{50} of 0.2nM, 0.9nM, 0.1nM and 3.0nM, respectively. All of the affinity matured variants showed an improvement in binding IL-8 ranging from 3 - 100 fold compared to the humanized 6G4V11 mAb. The affinity-matured variant, 6G4V11N35E, was 2-fold more potent in blocking IL-8 binding to human neutrophils than the alanine-scan variant, 6G4V11N35A.

Equilibrium and kinetic measurements of variants 6G4V11N35A and 6G4V11N35E were determined using KinEXA™ automated immunoassay system (Sapidyne Instruments Inc., Idaho City, ID) as described by Blake et al., *J. Biol. Chem.* 271: 27677 (1996). The procedure for preparing the

antigen-coated particles was modified as follows: 1 ml of activated agarose beads (Reacti-Gel 6X; Pierce, Rockford, IL) were coated with antigen in 50mM Carbonate buffer pH 9.6 containing 20ug/ml of human IL-8 and incubated with gentle agitation on a rocker overnight at 25°C. The IL-8 coated beads were then washed twice with 1M Tris-HCl pH 7.5 to inactivate any unreactive groups on the beads and 5 blocked with Superblock (Pierce, Rockford, IL) for 1 hour at 25°C to reduce non-specific binding. The beads were resuspended in assay buffer (0.1% bovine serum albumin in PBS) to a final volume of 30 ml. A 550ul aliquot of the IL-8 coated bead suspension was used each time to pack a fresh 4mm high column in the KinEXA observation cell. The amount of unbound antibody from the antibody-antigen mixtures captured by the IL-8-coated beads in both the equilibrium and kinetic experiments was 10 quantified using a fluorescently labeled secondary antibody. Murine 6G4.2.5 was detected with a R-PE AffiniPure F(ab')₂ goat anti-mouse IgG, Fc fragment specific 2° antibody (Jackson Immuno Research Laboratories, West Grove, PA) and humanized affinity matured N35A (Fab and F(ab')₂) and N35E Fab were detected with a R-PE AffiniPure F(ab')₂ donkey anti-human IgG (H+L) 2° antibody (Jackson ImmunoResearch Laboratories, West Grove, PA); both at a 1:1000 dilution.

15 Equilibrium measurements were determined by incubating a constant amount of anti-IL-8 antibody (0.005ug/ml) with various concentrations of human IL-8 (0, 0.009, 0.019, 0.039, 0.078, 0.156, 0.312, 0.625, 1.25, 2.5nM). The antibody-antigen mixture was incubated for 2 hours at 25°C to allow the molecules to reach equilibrium. Subsequently, each sample was passed over a naive IL-8 coated bead pack in the KinEXA observation cell at a flow rate of 0.5ml/minute for a total of 9 minutes/sample. The 20 equilibrium constant (Kd) was calculated using the software provided by Sapidyne Instruments Inc.

25 Rates of association (ka) and dissociation (kd) were determined by incubating together a constant amount of antibody and antigen, and measuring the amount of uncomplexed anti-IL-8 bound to the IL-8 coated beads over time. The concentration of antibody used in the kinetic experiments was identical to that used in the equilibrium experiment described above. Generally, the amount of human IL-8 used was the concentration derived from the binding curves of the equilibrium experiment that resulted in 70% inhibition of anti-IL-8 binding to the IL-8 coated beads. Measurements were made every 15 minutes to collect approximately nine data points. The ka was calculated using the software provided by Sapidyne Instruments, Inc. The off rate was determined using the equation: kd = Kd/ka.

Figure 44 shows the equilibrium constants (K_d) for the affinity matured variants 6G4V11N35E and 6G4V11N35A Fab's were approximately 54pM and 114pM, respectively. The improvement in affinity of 6G4V11N35E Fab for IL-8 can be attributed to a 2-fold faster rate of association (K_{on}) of 4.7×10^6 for 6G4V11N35E Fab versus 2.0×10^6 for 6G4V11N35A F(ab')₂. (The K_d of the 6G4V11N35A F(ab')₂ and 6G4V11N35A Fab are similar.) The dissociation rates (K_{off}) were not significantly different. Molecular modeling suggests that substitution of Asparagine with Glutamic Acid might either affect the antibody's interaction with IL-8 directly or indirectly by neutralizing the charge of neighboring residues R98 (CDR-H3) or K50 (CDR-L2) in the CDR's to facilitate contact with IL-8. Another effect might be the formation of a more stable loop conformation for CDR-L1 that could have facilitated more appropriate contacts of other CDR-L1 loop residues with IL-8. The DNA (SEQ ID NO: 65) and amino acid (SEQ ID NO:62) sequences of p6G4V11N35E.Fab showing the Asparagine to Glutamic Acid substitution in the light chain are presented in Figure 45.

N. CHARACTERIZATION OF HUMANIZED ANTI-IL-8 VARIANT 6G4V11N35E Fab

The affinity matured Fab variant, 6G4V11N35E, was tested for its ability to inhibit IL-8 mediated neutrophil chemotaxis as described in Section (B)(2) above. The reuseable 96-well chemotaxis chamber described in Section (B)(2) was replaced with endotoxin-free disposable chemotaxis chambers containing 5-micron PVP-free polycarbonate filters (ChemoTx101-5, Neuro Probe, Inc. Cabin John, MD). As illustrated in Figure 46, variant N35E effectively blocks IL-8 mediated neutrophil chemotaxis induced by a 2nM stimulus of either rabbit or human IL-8. In fact, the level of inhibition at antibody concentrations between 3.7nM - 33nM was not significantly different from the buffer control indicating variant N35E could completely inhibit this response. The IC_{50} 's for both rabbit and human IL-8 were approximately 2.8nM and 1.2nM, respectively. The irrelevant isotype control Fab (4D5) did not inhibit neutrophil migration indicating the results observed for the affinity matured variant, N35E, is IL-8 specific.

O. CONSTRUCTION OF HUMANIZED 6G4V11N35E F(ab')₂ LEUCINE ZIPPER

A F(ab')₂ expression plasmid for 6G4V11N35E was constructed using methods similar to those described in Section (K) above. The expression plasmid, p6G4V11N35E.F(ab')₂, was made by digesting the plasmid p6G4V11N35A.F(ab')₂ (described in Section (K) above) with the restriction enzymes ApaI and NdeI to isolate a 2805 bp fragment encoding the heavy chain constant domain - GCN4 leucine zipper and ligating it to a 3758 bp ApaI-NdeI fragment of the pPH6G4V11N35E phage display clone (encoding 6G4V11N35E Fab) obtained as described in Section (M) above. The integrity of the entire coding sequence was confirmed by DNA sequencing.

10 P. CONSTRUCTION OF THE FULL LENGTH HUMANIZED 6G4V11N35A IgG EXPRESSION PLASMID

The full length IgG₁ version of the humanized anti-IL8 variant 6G4V11N35A was made using a dicistronic DHFR-Intron expression vector (Lucas et al., *Nucleic Acids Res.*, 24: 1774-1779 (1996)) which contained the full length recombinant murine-human chimera of the 6G4.2.5 anti-IL8 mAb. The expression plasmid encoding the humanized variant 6G4V11N35A was assembled as follows. First an intermediate plasmid (pSL-3) was made to shuttle the sequence encoding the variable heavy chain of humanized anti-IL-8 variant 6G4V11N35A to pRK56G4chim.2Vh - which contains the variable heavy region of the chimeric 6G4.5 anti-IL8 antibody. The vector pRK56G4chim.Vh was digested with PvuII and ApaI to remove the heavy chain variable region of the chimeric antibody and religated with an 80bp PvuII - XhoI synthetic oligonucleotide (encoding Leu4 to Phe29 of 6G4V11N35A) (Fig. 47) and a 291bp XhoI - ApaI fragment from p6G4V11N35A.7 carrying the remainder of the variable heavy chain sequence of 6G4V11N35A to create pSL-3. This intermediate plasmid was used in conjunction with 2 other plasmids, p6G4V11N35A.F(ab')₂ and p6G425chim2.choSD, to create the mammalian expression plasmid, p6G4V11N35AchoSD.9 (identified as p6G425V11N35A.choSD in a deposit made on December 16, 1997 with the ATCC and assigned ATCC Accession No. 209552). This expression construct was assembled in a 4-part ligation using the following DNA fragments: a 5,203bp Clal - BlpI fragment encoding the regulatory elements of the mammalian expression plasmid (p6G425 chim2.choSD), a 451bp Clal - ApaI fragment containing the heavy chain variable region of the

humanized 6G4V11N35A antibody (pSL-3), a 1,921bp ApaI - EcoRV fragment carrying the heavy chain constant region of 6G4V11N35A (p6G425chim2.choSD) and a 554bp EcoRV - BlpI fragment encoding the light chain variable and constant regions of 6G4V11N35A (p6G4V11N35A.F(ab')₂). The DNA sequence (SEQ ID NO: 68) of clone p6G4V11N35A.choSD.9 was confirmed by DNA sequencing and is
5 presented in Figure 48.

Q. CONSTRUCTION OF THE FULL LENGTH HUMANIZED 6G4V11N35E IgG EXPRESSION PLASMID

A mammalian expression vector for the humanized 6G4V11N35E was made by swapping the
10 light chain variable region of 6G4V11N35A with 6G4V11N35E as follows: a 7,566bp EcoRV - BlpI fragment (void of the 554bp fragment encoding the light chain variable region of 6G4V11N35A) from p6G4V11N35A.choSD.9 was ligated to a 554bp EcoRV - BlpI fragment (encoding the light chain variable region of 6G4V11N35E) from pPH6G4V11N35E.7. The mutation at position N35 of the light chain of p6G4V11N35E.choSD.10 was confirmed by DNA sequencing.
15

R. STABLE CHO CELL LINES FOR VARIANTS N35A AND N35E

For stable expression of the final humanized IgG1 variants (6G4V11N35A and 6G4V11N35E), Chinese hamster ovary (CHO) DP-12 cells were transfected with the above-described dicistronic vectors (p6G4V11N35A.choSD.9 and p6G4V11N35E.choSD.10, respectively) designed to coexpress both
20 heavy and light chains (Lucas et al., *Nucleic Acid Res.* 24:1774-79 (1996)). Plasmids were introduced into CHO DP12 cells via lipofection and selected for growth in GHT-free medium (Chisholm, V. High efficiency gene transfer in mammalian cells. In: Glover, DM, Hames, BD. *DNA Cloning 4. Mammalian systems*. Oxford Univ. Press, Oxford pp 1-41 (1996)). Approximately 20 unamplified clones were randomly chosen and reseeded into 96 well plates. Relative specific productivity of each colony was
25 monitored using an ELISA to quantitate the full length human IgG accumulated in each well after 3 days and a fluorescent dye, Calcien AM, as a surrogate marker of viable cell number per well. Based on these data, several unamplified clones were chosen for further amplification in the presence of increasing concentrations of methotrexate. Individual clones surviving at 10, 50, and 100 nM methotrexate were

chosen and transferred to 96 well plates for productivity screening. One clone for each antibody (clone#1933 aIL8.92 NB 28605/12 for 6G4V11N35A; clone#1934 aIL8.42 NB 28605/14 for 6G4V11N35E), which reproducibly exhibited high specific productivity, was expanded in T-flasks and used to inoculate a spinner culture. After several passages, the suspension-adapted cells were used to 5 inoculate production cultures in GHT-containing, serum-free media supplemented with various hormones and protein hydrolysates. Harvested cell culture fluid containing recombinant humanized anti-IL8 was purified using protein A-Sepharose CL-4B. The purity after this step was approximately 99%. Subsequent purification to homogeneity was carried out using an ion exchange chromatography step. Production titer of the humanized 6G4V11N35E IgG1 antibody after the first round of amplification and 10 6G4V11N35A IgG1 after the second round of amplification were 250mg/L and 150mg/L, respectively.

S. CHARACTERIZATION OF THE HUMANIZED 6G4V11N35A/E IgG VARIANTS

The humanized full length IgG variants of 6G4.2.5 were tested for their ability to inhibit ¹²⁵I-IL-8 binding and to neutralize activation of human neutrophils; the procedures are described in Sections 15 (B)(1) and (B)(2) above. As shown in Figure 49, the full length IgG1 forms of variants 6G4V11N35A and 6G4V11N35E equally inhibited ¹²⁵I-IL-8 binding to human neutrophils with approximate IC₅₀'s of 0.3nM and 0.5nM, respectively. This represents a 15 - 25 fold improvement in blocking binding of IL-8 compared to the full length murine mAb (IC₅₀ = 7.5nM). Similarly, the two anti-IL-8 variants showed 20 equivalent neutralizing capabilities with respect to inhibiting IL-8 mediated human neutrophil chemotaxis (Figures 50A-50B). The IC₅₀'s of 6G4V11N35A IgG1 and 6G4V11N35E IgG1 for human IL-8 were 4.0nM and 6.0nM, respectively, and for rabbit IL-8 were 4.0nM and 2.0nM, respectively. The irrelevant isotype control Fab (4D5) did not inhibit neutrophil migration.

The affinity for IL-8 of these variants relative to the murine 6G4.2.5 mAb was determined using KinExA as described in Section (M). Figure 51 shows the equilibrium constant (Kd) for the full length 25 affinity matured variants 6G4V11N35E IgG1 and 6G4V11N35A IgG1 were approximately 49pM and 88pM, respectively. The Kd for 6G4V11N35A IgG1 was determined directly from the kinetic experiment. As reported with their respective Fabs, this improvement in affinity might be attributed to an approximate 2-fold increase in the on-rate of 6G4V11N35E IgG1 ($k_a = 3.0 \times 10^6$) compared to that of

6G4V11N35A IgG1 ($k_a = 8.7 \times 10^5$). In addition, these results were confirmed by a competition radio-immune assay using iodinated human IL-8. 50pM of 6G4V11N35A IgG1 or 6G4V11N35E IgG1 was incubated for 2 hours at 25°C with 30-50pM of ^{125}I -IL-8 and varying concentrations (0 to 100nM) of unlabeled IL-8. The antibody-antigen mixture was then incubated for 1 hour at 4°C with 10ul of a 70% slurry of Protein-A beads (pre-blocked with 0.1% BSA). The beads were briefly spun in a microcentrifuge and the supernatant discarded to remove the unbound ^{125}I -IL-8. The amount of ^{125}I -IL-8 specifically bound to the anti-IL-8 antibodies was determined by counting the protein-A pellets in a gamma counter. The approximate Kd values were similar to those determined by KinEXA. The average Kd for 6G4V11N35A IgG1 and 6G4V11N35E IgG1 were 54pM (18 -90pM) and 19pM (5-34pM), respectively (Figure 52).

T. CONSTRUCTION OF HUMANIZED 6G4V11N35A/E Fab's FOR MODIFICATION BY POLYETHYLENE GLYCOL

A Fab' expression vector for 6G4V11N35A was constructed by digesting p6G4V11N35A.F(ab')₂ with the restriction enzymes ApaI and NdeI to remove the 2805 bp fragment encoding the human IgG₁ constant domain fused with the yeast GCN4 leucine zipper and replacing it with the 2683bp ApaI-NdeI fragment from the plasmid pCDNA.18 described in Eigenbrot et al., Proteins: Struct. Funct. Genet., 18: 49-62 (1994). The pCDNA.18 ApaI-NdeI fragment carries the coding sequence for the human constant IgG1 heavy domain, including the free cysteine in the hinge region that was used to attach the PEG molecule. The 3758bp ApaI-NdeI fragment (encodes the light chain and heavy variable domain of 6G4V11N35A) isolated from p6G4V11N35A.F(ab')₂ was ligated to the 2683bp ApaI-NdeI fragment of pCDNA.18 to create p6G4V11N35A.PEG-1. The integrity of the entire coding sequence was confirmed by DNA sequencing. The nucleotide and translated amino acid sequences of heavy chain constant domain with the cysteine in the hinge are presented in Figure 53.

A Fab' expression plasmid for 6G4V11N35E was made similarly by digesting pH6G4V11N35E (from Section (O) above) with the restriction enzymes ApaI and NdeI to isolate the 3758bp ApaI-NdeI DNA fragment carrying the intact light chain and heavy variable domain of 6G4V11N35E and ligating it to the 2683 bp ApaI-NdeI DNA fragment from p6G4V11N35A.PEG-1 to

create p6G4V11N35E.PEG-3. The integrity of the entire coding sequence was confirmed by DNA sequencing.

Anti-IL-8 6G4V11N35A Fab' variant was modified with 20 kD linear methoxy-PEG-maleimide, 30 kD linear methoxy-PEG-maleimide, 40 kD linear methoxy-PEG-maleimide, or 40
5 kD branched methoxy-PEG-maleimide as described below. All PEG's used were obtained commercially from Shearwater Polymers, Inc.

a. MATERIALS AND METHODS

Fab'-SH Purification

10 A Fab'-SH antibody fragment of the affinity matured antibody 6G4V11N35A was expressed in *E. coli* grown to high cell density in the fermentor as described by Carter *et al.*, *BioTechnology* **10**, 163–167 (1992). Preparation of Fab'-SH fragments was accomplished by protecting the Fab'-SH fragments with 4',4'-dithiodipyridine (PDS), partially purifying the protected Fab'-PDS fragments, deprotect the Fab'-PDS with dithiothreitol (DTT) and finally 15 isolate the free Fab'-SH by using gel permeation chromatography.

Protection of Fab'-SH with PDS

Fermentation paste samples were dissolved in 3 volumes of 20mM MES, 5mM EDTA, pH 6.0 containing 10.7mg of 4',4'-dithiodipyridine per gram 20 fermentation paste, resulting in a suspension with a pH close to 6.0. The suspension was passed through a homogenizer followed by addition of 5% PEI (w/v), pH 6 to the homogenate to a final concentration of 0.25%. The mixture was then centrifuged to remove solids and the clear supernatant was conditioned to a conductivity of less than 3mS by the addition of cold water.

Partial purification of the Fab'-SH molecule using ion exchange chromatography

The conditioned supernatant was loaded onto an ABX (Baker) column equilibrated in 20 mM MES, pH 6.0. The column was washed with the equilibration buffer followed by elution of 5 the Fab'-SH with a 15 column volume linear gradient from 20 mM MES, pH 6.0 to 20 mM MES, 350 mM sodium chloride. The column was monitored by absorbance at 280nm, and the eluate was collected in fractions.

Deprotection of the Fab'-SH antibody fragments with DTT

10 The pH of the ABX pool was adjusted to 4.0 by the addition of dilute HCl. The pH adjusted solution was then deprotected by adding DTT to a final concentration of 0.2mM. The solution was incubated for about 30 minutes and then applied to a gel filtration Sephadex G25 column, equilibrated with 15mM sodium phosphate, 25mM MES, pH 4.0. After elution, the pH of the pool was raised to pH 5.5 and immediately flash frozen at -70°C for storage or derivatized 15 with PEG-MAL as described below.

Alternative Fab'-SH Purification

Alternatively Fab'-SH fragments can be purified using the following procedure. 100 g fermentation paste is thawed in the presence of 200 ml 50 mM acetic acid, pH 2.8, 2 mM EDTA, 20 1 mM PMSF. After mixing vigorously for 30 min at room temperature, the extract is incubated with 100 mg hen egg white lysozyme. DEAE fast flow resin (approximately 100 mL) is equilibrated with 10 mM MES, pH 5.5, 1 mM EDTA on a sintered glass funnel. The osmotic shock extract containing the Fab'-SH fragment is then filtered through the resin.

A protein G Sepharose column is equilibrated with 10 mM MES, pH 5.5, 1 mM EDTA and then loaded with the DEAE flow-through sample. The column is washed followed by three 4 column volume washes with 10 mM MES, pH 5.5, 1 mM EDTA. The Fab'-SH antibody fragment containing a free thiol is eluted from the column with 100 mM acetic acid, pH 2.8, 1 mM EDTA. After elution, the pH of the pool is raised to pH 5.5 and immediately flash frozen at -70°C for storage or derivatized with PEG-MAL as described below.

Preparation of Fab'-S-PEG

The free thiol content of the Fab'-SH preparation obtained as described above was determined by reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) analysis according to 10 the method of Creighton in Protein Structure: A Practical Approach, Creighton, T.E., ed, IRL Press (Oxford, UK: 1990), pp. 155-167. The concentration of free thiol was calculated from the increase on absorbance at 412 nm, using $e_{412} = 14,150 \text{ cm}^{-1} \text{ M}^{-1}$ for the thionitrobenzoate anion and a $M_r = 48,690$ and $e_{280} = 1.5$ for the Fab'-SH antibody. To the Fab'-SH protein G Sepharose pool, or the deprotected Fab'-SH gel permeation pool, 5 molar equivalents of PEG-MAL were 15 added and the pH was immediately adjusted to pH 6.5 with 10% NaOH.

The Fab'-S-PEG was purified using a 2.5 x 20 cm cation exchange column (Poros 50-HS). The column was equilibrated with a buffer containing 20 mM MES, pH 5.5. The coupling 20 reaction containing the PEGylated antibody fragment was diluted with deionized water to a conductivity of approximately 2.0 mS. The conditioned coupling reaction was then loaded onto the equilibrated Poros 50 HS column. Unreacted PEG-MAL was washed from the column with 2 column volumes of 20 mM MES, pH 5.5. The Fab'-S-PEG was eluted from the column using a linear gradient from 0 to 400 mM NaCl, in 20 mM MES pH 5.5, over 15 column volumes.

Alternatively a Bakerbond ABX column can be used to purify the Fab'-S-PEG molecule. The column is equilibrated with 20 mM MES, pH 6.0 (Buffer A). The coupling

reaction is diluted with deionized water until the conductivity equaled that of the Buffer A (approximately 2.0 mS) and loaded onto the column. Unreacted PEG-MAL is washed from the column with 2 column volumes of 20 mM MES, pH 6.0. The Fab'-S-PEG is eluted from the column using a linear gradient from 0 to 100 mM $(\text{NH}_4)_2\text{SO}_4$, in 20 mM MES pH 6.0, over 15

5 column volumes.

Size Exclusion Chromatography

The hydrodynamic or effective size of each molecule was determined using a Pharmacia Superose-6 HR 10/30 column (10x300mm). The mobile phase was 200 mM NaCl, 50 mM sodium phosphate pH 6.0. Flow rate was at 0.5 ml/min and the column was kept at ambient

10 temperature. Absorbance at 280 nm was monitored where PEG contributed little signal. Biorad MW standards containing cyanocobalamin, myoglobin, ovalbumin, IgG, Thyroglobulin monomer and dimer were used to generate a standard curve from which the effective size of the pegylated species was estimated.

15 b. **RESULTS**

Size Exclusion Chromatography

The effective size of each modified species was characterized using size exclusion chromatography. The results are shown in Fig. 60 below. The theoretical molecular weight of the anti-IL8 Fab fragments modified with PEG 5kD, 10kD, 20kD, 30kD, 40kD (linear), 20 40kD (branched) or 100,000kD is shown along with the apparent molecular weight of the PEGylated fragments obtained by HPLC size exclusion chromatography. When compared to the theoretical molecular weight of the Fab'-S-PEG fragments, the apparent molecular weight (calculated by size exclusion HPLC) increases dramatically by increasing the size of 25 the PEG attached to the fragments. Attachment of a small molecular weight PEG, for example PEG 10,000D only increases the theoretical molecular weight of the PEGylated

antibody fragment (59,700 D) by 3 fold to an apparent molecular weight of 180,000D. In contrast attachment of a larger molecular weight PEG for example 100,000D PEG to the antibody fragment increases the theoretical molecular weight of the PEGylated antibody fragment (158,700 D) by 12 fold to an apparent molecular weight of 2,000,000D.

5

SDS-PAGE

In Fig. 61, the upper panel shows the size of the anti-IL-8 Fab fragments modified with PEG of molecular weight 5kD (linear), 10kD (linear), 20kD (linear), 30kD (linear), 40kD (linear), 40kD (branched) or 100kD (linear) under reduced conditions. The unmodified Fab is shown in lane 2 from right to left. Both the heavy and light chains of the Fab had a molecular weight of approximately 30kD as determined by PAGE. Each PEGylated fragment sample produced two bands: (1) a first band (attributed to the light chain) exhibiting a molecular weight of 30kD; and (2) a second band (attributed to the heavy chain to which the PEG is attached specifically at the hinge SH) exhibiting increasing molecular weights of 40, 45, 70, 110, 125, 150 and 300kD. This result suggested that PEGylation was specifically restricted to the heavy chain of the Fab's whereas the light chain remained unmodified.

The lower panel is non-reduced PAGE showing the size of the anti-IL-8 Fab fragments modified with PEG of molecular weight 5kD (linear), 20kD (linear), 30kD (linear), 40kD (linear), 40kD (branched), or 100kD (linear). The PEGylated fragments exhibited molecular weights of approximately 70kD, 115kD, 120kD, 140kD; 200kD and 300kD.

The SDS PAGE gels confirm that all Fab'-S-PEG molecules were purified to homogeneity and that the molecules differed only with respect to the size of the PEG molecule attached to them.

25

U. AMINE SPECIFIC PEGYLATION OF ANTI-IL-8 F(ab')₂ FRAGMENTS

Pegylated F(ab')₂ species were generated by using large MW or branched PEGs in order to achieve a large effective size with minimal protein modification which might affect activity.

Modification involved N-hydroxysuccinamide chemistry which reacts with primary amines (lysines and the N-terminus). To decrease the probability of modifying the N-terminus, which is in close proximity to the CDR region, a reaction pH of 8, rather than the commonly used pH of 7, was employed. At pH 8.0, the amount of the reactive species (charged NH₃⁺) would be
5 considerably more for the ε-NH₂ group of lysines ($pK_a=10.3$) than for the α-NH₂ group (pK_a of approximately 7) of the amino-terminus. For the linear PEGs, a methoxy-succinimidyl derivative of an NHS-PEG was used because of the significantly longer half-life in solution (17 minutes at 25°C at pH 8.0) compared to the NHS esters of PEGs (which have 5-7 minute half life under the above conditions). By using a PEG that is less prone to hydrolysis, a greater extent of
10 modification is achieved with less PEG. Branched PEGs were used to induce a large increase in effective size of the antibody fragments.

a. MATERIALS

All PEG reagents were purchased from Shearwater Polymers and stored at -70°C in a
15 desiccator: branched N-hydroxysuccinamide-PEG (PEG2-NHS-40KDa) has a 20 kDa PEG on each of the two branches, methoxy-succinimidyl-propionic acid-PEG (M-SPA-20000) is a linear PEG molecule with 20 kDa PEG. Protein was recombinantly produced in *E. coli* and purified as a (Fab)'₂ as described in Sections (K) and (O) above.

b. METHODS

20 **IEX method:** A J. T. Baker Wide-Pore Carboxy-sulfone (CSX), 5 micron, 7.75 x 100 mm HPLC column was used for fractionation of the different pegylated products, taking advantage of the difference in charge as the lysines are modified. The column was heated at 40°C. A gradient as shown in Table 7 below was used where Buffer A was 25 mM sodium Borate/25 mM sodium phosphate pH 6.0, and Buffer B was 1 M ammonium sulfate, and Buffer
25 C was 50 mM sodium acetate pH 5.0.

Table 7

<i>Time (min)</i>	<i>%B</i>	<i>%C</i>	<i>flow mL/min</i>
5 0	10	10	1.5
	20	18	1.5
	25	25	1.5
	27	70	3.0
	29	70	3.0
10 30	10	10	2.5
	33	10	2.5

SEC-HPLC: The hydrodynamic or effective size of each molecule was determined using a Pharmacia Superose-6 HR 10/30 column (10x300mm). The mobile phase was 200 mM NaCl, 50 mM sodium phosphate pH 6.0. Flow rate was at 0.5 ml/min and the column was kept at ambient temperature. Absorbance at 280 nm was monitored where PEG contributed little signal. Biorad MW standards containing cyanocobalamin, myoglobin, ovalbumin, IgG, Thyroglobulin monomer and dimer were used to generate a standard curve from which the effective size of the pegylated species was estimated.

SEC-HPLC-Light Scattering: For determination of the exact molecular weight, this column was connected to an on-line light scattering detector (Wyatt Minidawn) equipped with three detection angles of 50°, 90°, and 135° C. A refractive index detector (Wyatt) was also placed on-line to determine concentration. All buffers were filtered with Millipore 0.1 μ filters; in addition al 0.02 μ Whatman Anodisc 47 was placed on-line prior to the column.

The intensity of scattered light is directly proportional to the molecular weight (M) of the scattering species, independent of shape, according to:

$$M = R_0/K \cdot c$$

where R_0 is the Rayleigh ratio, K is an optical constant relating to the refractive index of the solvent, the wavelength of the incident light, and dn/dc, the differential refractive index between the solvent and the solute with respect to the change in solute concentration, c. The system was

calibrated with toluene (R_0 of 1.406×10^{-5} at 632.8 nm); a dn/dc of 0.18, and an extinction coefficient of 1.2 was used. The system had a mass accuracy of -5%.

SDS-PAGE: 4-12% Tris-Glycine Novex minigels were used along with the Novex supplied Tris-Glycine running buffers. 10-20 ug of protein was applied in each well and the gels were run in a cold box at 150 mV/gel for 45 minutes. Gels were then stained with colloidal Coomassie Blue (Novex) and then washed with water for a few hours and then preserved and dried in drying buffer (Novex)

Preparation of a linear(1)20KDa-(N)-(Fab')2: A 4 mg/ml solution of anti-IL8 formulated initially in a pH 5.5 buffer was dialyzed overnight against a pH 8.0 sodium phosphate buffer. 5 mL protein was mixed at a molar ratio of 3:1. The reaction was carried out in a 15mL polypropylene Falcon tube and the PEG was added while vortexing the sample at low speed for 5 seconds. It was then placed on a nutator for 30 minutes. The extent of modification was evaluated by SDS-PAGE. The whole 5 ml reaction mixture was injected on the IEX for removal of any unreacted PEG and purification of singly or doubly pegylated species. The above reaction generated a mixture of 50% singly-labeled anti-IL8. The other 50% unreacted anti-IL8 was recycled through the pegylation/purification steps. The pooled pegylated product was dialyzed against a pH 5.5 buffer for in vitro assays and animal PK studies. Endotoxin levels were measured before administration to animals or for the cell based assays. Levels were below 0.5 eu/ml. The fractions were also run on SDS-PAGE to confirm homogeneity. Concentration of the final product was assessed by absorbance at 280 nm using an extinction coefficient of 1.34, as well as by amino acid analysis.

Preparation of a branched(1)40KDa-(N)-(Fab')2: A 4 mg/mL solution of anti-IL8 (Fab')₂ formulated in a pH 5.5 buffer was dialyzed overnight against a pH 8.0 phosphate buffer. Solid PEG powder was added to 5 mL protein in two aliquots to give a final PEG:protein molar ratio of 6:1. Each solid PEG aliquot was added to the protein in a 15 mL polypropylene Falcon tube while vortexing at low speed for 5 sec, and then placing the sample on a nutator for 15 minutes. The extent of modification was evaluated by SDS-PAGE using a 4-12% Tris-Glycine (Novex) gel and stained with colloidal Coomasie blue (Novex). The 5 mL PEG-protein mixture

was injected on the ion exchange column for removal of any unreacted PEG. The above reaction generated a mixture of unreacted (37%), singly-labelled (45%), doubly and triply-labeled (18%) species. These were the optimal conditions for obtaining the greatest recovery of the protein with only 1 PEG per antibody rather than the higher molecular weight adducts. The unmodified anti-
5 IL8 was recycled. The pegylated products were separated and fractionated in falcon tubes and then dialyzed against a pH 5.5 buffer for assays and animal PK studies. Endotoxin levels were below 0.5 eu/ml. The fractions were also run on SDS-PAGE to confirm homogeneity. The concentration of the final product was assessed by absorbance at 280 nm using an extinction coefficient of 1.34, as well as by amino acid analysis.

10 **Preparation of branched(2)-40KDa-(N)(Fab')2:** This molecule was most efficiently made by adding three times in 15 minute intervals a 3:1 molar ratio of PEG to the already modified branched(1)-40KDa-(N)-(Fab')2. The molecule was purified on IEX as 50% branched(2)-40KDa-(N)-(Fab')2. The unmodified molecule was recycled until ~20 mg protein was isolated for animal PK studies. The product was characterized by SEC-light scattering and
15 SDS-PAGE.

c. RESULTS

PEGs increased the hydrodynamic or effective size of the product significantly as determined by gel filtration (SEC-HPLC). Figure 62 shows the SEC profile of the pegylated F(ab')₂ species with UV detection at 280 nm. The hydrodynamic size of each molecule was estimated by reference to the standard MW calibrators. As summarized in Figure 62, the increase in the effective size of (Fab')₂ was about 7-fold by adding one linear 20 kDa PEG molecule and about 11-fold by adding one branched ("Br(1)") 40 kDa PEG molecule, and somewhat more with addition of two branched ("Br(2)") PEG molecules.

25 Light scattering detection gave the exact molecular weight of the products and confirmed the extent of modification (Figure 63). The homogeneity of the purified material was shown by SDS-PAGE (Figure 64). Underivatized F(ab')₂ migrated as a 120 kDa species, the linear(1)20KD-(N)-F(ab')₂ migrated as a band at 220kDa, the Br(1)-40KD(N)-F(ab')₂ migrated

as one major band at 400 kDa, and the Br(2)-40KD-(N)-F(ab')₂ migrated as a major band at around 500 kDa. The proteins appeared somewhat larger than their absolute MW due to the steric effect of PEG.

5 V. IN VITRO ACTIVITY CHARACTERIZATION OF PEG MODIFIED Fab' FRAGMENTS OF
6G4V11N35A (MALEIMIDE CHEMICAL COUPLING METHOD)

Anti-IL-8 6G4V11N35A Fab' variants modified with 5-40kD linear PEG molecules and a 40kD branched PEG molecule were tested for their ability to inhibit both IL-8 binding and activation of human neutrophils; the procedures were described in Sections (B)(1), (B)(2) and (B)(3) above. The binding curves and IC₅₀'s for PEG-maleimide modified 6G4V11N35A Fab' molecules are presented in Figures 10 54A-54C. The IC₅₀ of the 5kD pegylated Fab' (350pM) and the average IC₅₀ of the Fab control (366pM) were not significantly different, suggesting that the addition of a 5kD MW PEG did not affect the binding of IL-8 to the modified Fab' (Figure 54A). However, a decrease in the binding of IL-8 to the 10kD and 20kD pegylated Fab' molecules was observed as depicted by the progressively higher 15 IC₅₀'s (537pM and 732pM, respectively) compared to the average IC₅₀ of the native Fab. These values represent only a minimal loss of binding activity (between 1.5- and 2.0-fold). A less pronounced difference in IL-8 binding was observed for the 30kD and 40kD linear PEG antibodies (Figure 54B). The IC₅₀'s were 624pM and 1.1nM, respectively, compared to the 802pM value of the Fab control. The 20 40kD branched PEG Fab' showed the largest decrease in IL-8 binding (2.5 fold) relative to the native Fab (Figure 54C). Nevertheless, the reduction in binding of IL-8 by these pegylated Fab's is minimal.

The ability of the pegylated antibodies to block IL-8 mediated activation of human neutrophils was demonstrated using the PMN chemotaxis (according to the method described in Section B(2) above) and β-glucuronidase release (according to the method described in Lowman et al., *J. Biol. Chem.*, 271: 25 14344 (1996)) assays. The IC₅₀'s for blocking IL-8 mediated chemotaxis are shown in Figures 55A- 55C. The 5-20kD linear pegylated Fab' antibodies were able to block IL-8 mediated chemotaxis within 2-3 fold of the unpegylated Fab control (Figure 55A). This difference is not significant because the inherent variation can be up to 2 fold for this type of assay. However, a significant difference was detected for the 30kD and 40kD linear pegylated Fab' antibodies as illustrated by the higher IC₅₀'s of

the 30kD linear PEG-Fab' (2.5nM) and 40kD linear PEG-Fab' (3.7nM) compared to the Fab control (0.8nM) (Figure 55B). The ability of the 40kD branched PEG Fab' molecule to block IL-8 mediated chemotaxis was similar to that of the 40kD linear PEG Fab' (Figure 55C). At most, the ability of the pegylated Fab' antibodies to block IL-8 mediated chemotaxis was only reduced 2-3 fold. Furthermore,
5 release of β -glucuronidase from the granules of neutrophils was used as another criteria for assessing IL-
8 mediated activation of human PMNs. Figure 56A (depicting results obtained with 5 kD, 10 kD and 20
kD linear PEGs), Figure 56B (depicting results obtained with 30 kD and 40 kD linear PEGs), and Figure
56C (depicting results obtained with 40 kD branched PEG) show that all the pegylated Fab' antibodies
were able to inhibit IL-8 mediated release of β -glucuronidase as well as or better than the unpegylated
10 Fab control. The data collectively shows that the pegylated Fab' variants are biological active and are
capable of inhibiting high amounts of exogenous IL-8 in in-vitro assays using human neutrophils.

W. IN VITRO ACTIVITY CHARACTERIZATION OF PEG MODIFIED F(ab')₂ FRAGMENTS
OF 6G4V11N35A (SUCCINIMIDYL CHEMICAL COUPLING METHOD)

15 The anti-IL-8 variant 6G4V11N35A F(ab')₂ modified with (a) a single 20kD linear PEG
molecule per F(ab')₂, (b) a single 40kD branched PEG molecule per F(ab')₂, (c) with three, four, or five
20 kD linear PEG molecules per F(ab')₂ (a mixture of: (1) species having three 20 kD linear PEG
molecules per F(ab')₂; (2) species having four 20 kD linear PEG molecules per F(ab')₂; and (3) species
having five 20 kD linear PEG molecules per F(ab')₂; denoted as "20 kD linear PEG (3,4,5) F(ab')₂", or
20 (d) with two 40kD branched PEG molecules per F(ab')₂ (denoted as "40 kD branch PEG (2) F(ab')₂"),
were tested for their ability to inhibit ¹²⁵I-IL-8 binding and to neutralize activation of human neutrophils.
The procedures used are described in Sections (B)(1), (B)(2) and (B)(3) above. The binding curves for
25 pegylated F(ab')₂ variants are shown in Figures 57A-57B. No significant differences were observed
amongst the F(ab')₂ control, the single 20kD linear PEG-modified F(ab')₂, and the single 40kD branched
PEG-modified F(ab')₂ (Figure 57A). However, the F(ab')₂ variants containing multiple PEG molecules
showed a slight reduction (less than 2-fold) in their ability to bind IL-8. The IC₅₀'s of the 20kD linear
PEG (3,4,5) F(ab')₂ and 40kD branch PEG (2) F(ab')₂ variants were 437pM and 510pM, respectively,
compared to 349pM of the F(ab')₂ control (Figure 57B).

The ability of these pegylated F(ab')₂ variants to block IL-8 mediated neutrophil chemotaxis is presented in Figures 58A-58B. Consistent with the PMN binding data, the single linear and branched PEG F(ab')₂ variants were able to block IL-8 mediated chemotaxis similar to the unpegylated F(ab')₂ control (Figure 58A). The ability of the 40kD branch PEG (2) F(ab')₂ variant to inhibit PMN chemotaxis was identical to the control F(ab')₂ while the 20kD linear PEG (3,4,5) F(ab')₂ mixture was able to inhibit within 3-fold of the control antibody (Figure 58B).

Shown in Figures 59A and 59B are the results of the β -glucuronidase release assay which is a measure of degranulation by IL-8 stimulated human neutrophils. The single 20kD linear PEG-modified F(ab')₂ and the single 40kD branched PEG-modified F(ab')₂ variants were able to inhibit release of β -glucuronidase as well as the F(ab')₂ control (Figure 59A). The 40kD branch PEG (2) F(ab')₂ inhibited this response within 2-fold of the F(ab')₂ control (Figure 59B). The 20kD linear PEG (3,4,5) molecule was not tested. Overall, the F(ab')₂ pegylated anti-IL-8 antibodies were biologically active and effectively prevented IL-8 binding to human neutrophils and the signaling events leading to cellular activation.

X. PHARMACOKINETIC AND SAFETY STUDY OF EIGHT CONSTRUCTS OF PEGYLATED ANTI-IL-8 (HUMANIZED) F(AB')2 AND FAB' FRAGMENTS IN NORMAL RABBITS FOLLOWING INTRAVENOUS ADMINISTRATION

The objective of this study was to evaluate the effect of pegylation on the pharmacokinetics and safety of six pegylated humanized anti-IL-8 constructs (pegylated 6G4V11N35A.Fab' and pegylated 6G4V11N35A.F(ab')₂ obtained as described in Sections (T) and (U) above) relative to the non-pegylated fragments in normal rabbits. Eight groups of two/three male rabbits received equivalent protein amounts of pegylated 6G4V11N35A.Fab' or pegylated 6G4V11N35A.F(ab')₂ constructs (2 mg/kg) via a single intravenous (IV) bolus dose of one anti-IL8 construct. Serum samples were collected according to the schedule shown in Table 8 below and analyzed for anti-IL8 protein concentrations and antibody formation against anti-IL8 constructs by ELISA.

Table 8

Group No.	Dose level/ Route	Material	Blood Collection
1	2 mg/kg (protein conc.) IV bolus	Fab' control	0,5,30 min; 1,2,3,4,6,8,10, 14,20,24,360 hr
2		linear(1)20K(s)Fab'	
3		linear(1)40K(s)Fab'	0,5,30 min; 1,2,4,6,8,10,12, 24,28,32,48,72,96,168,216,
4		branched(1)40K(N)F(ab') ₂	264,336,360 hr
5		F(ab') ₂ control	0,5,30 min; 1,2,4,6,8,10,12, 24,28,32,48,52,56,336 hr
6		branched(2)40K(s)Fab'	0,5,30 min; 1,2,4,6,8,10,12, 24,28,32,48,72,96,168,216,26 4,336 hr; Day 17,21, 25
7		branched(2)40K(N)F(ab') ₂	0,5,30 min; 1,2,4,6,8,10,12, 24,28,32,48,72,144,192, 240 hr; Day 13, 16, 20, 23
8		linear(1)30K(s)Fab'	0,5,30 min; 1,2,4,6,8,10,12, 24,28,32,48,72,96,168,216,26 4,336 hr; Day 17,21, 25

5

a. METHODS

Three male New Zealand White (NZW) rabbits per group (with exception to Group 7, n=2) received an equivalent amount of 6G4V11N35A protein (Fab' or F(ab')₂) construct at 2 mg/kg via an IV bolus dose in a marginal ear vein. Amino acid composition analysis and absorbance at 280 nm using extinction coefficients of 1.26 for 6G4V11N35A Fab' constructs and 10 1.34 for 6G4V11N35A F(ab')₂ constructs were performed to determine the protein concentration.

Whole blood samples were collected via an ear artery cannulation (ear opposing dosing ear) at the above time points. Samples were harvested for serum and assayed for free 6G4V11N35A Fab' or F(ab')₂ constructs using an IL-8 Binding ELISA. Assays were conducted throughout the study as samples became available. All animals were sacrificed following the last blood draw, 5 and necropsies were performed on all animals in Groups 1, 4-8. Due to the development of antibodies against the 6G4V11N35A constructs, non-compartmental pharmacokinetic analysis was conducted on concentration versus time data only up to 168 hours.

b. RESULTS

10 In four animals (Animals B, P, Q, V), interference to rabbit serum in the ELISA assay was detected (i.e. measurable concentrations of anti-IL8 antibodies at pre-dose). However, because these values were at insignificant levels and did not effect the pharmacokinetic analysis, the data were not corrected for this interference.

15 One animal (Animal G; Group 3) was exsanguinated before the termination of the study and was excluded from the pharmacokinetic analysis. At 4 hours, the animal showed signs of a stroke that was not believed to be drug related, as this can occur in rabbits following blood draws via ear artery cannulation.

20 The mean concentration-time profiles of the eight anti-IL8 constructs in normal rabbits are depicted in Fig. 65, and the pharmacokinetic parameters for the eight constructs are summarized in Table 9 below. Significant antibodies to the anti-IL-8 constructs were present at Day 13/14 in all dose groups except Group 1 (Fab' control).

Table 9. Pharmacokinetic parameters.

Molecule	Fab'					F(ab') ₂		
Group No.	1	2	8	3	6	5	4	7
PEG structure	—	linear	linear	linear	branched	—	branched	branched
Number of PEGs	—	1	1	1	1	—	1	2
PEG MW	—	20K	30K	40K	40K	—	40K	40K
Dose (mg/kg)	2	2	2	2	2	2	2	2
V _c (mL/kg) ^a	58±3	36±3	35±1	34	44±1	45±5	36±1	32
V _{ss} (mL/kg) ^b	68±8	80±8	110±15	79	88±21	59±4	50±3	52
Cmax (μg/mL) ^c	35±1	58±3	57±1	60	45±1	45±6	56±2	62
Tmax (min) ^d	5	5	5	5	5	5	5	5
t _{1/2} term (hr) ^e	3.0±0.9	44±2	43±7	50	105±11	8.5±2.1	45±3	48
AUC _{0-∞} (hr·μg/mL) ^f	18±3	80±74	910±140	1600	3400±1300	140±3	2200±77	2500
CL (mL/hr/kg) ^g	110±17	2.5±0.2	2.2±0.4	1.3	0.63±0.20	14±0	0.92±0.03	0.83
MRT (hr) ^h	0.61±0.15	32±2	45±9	63	140±18	4.2±0.3	55±3	64
No. of Animals	3	3	3	2	3	3	3	2

^a Initial volume of distribution.^b Volume of distribution at steady state.^c Observed maximum concentration.^d Observed time to Cmax.^e t_{1/2} term= half-life associated with the terminal phase of the concentration vs. time profile.^f Area under the concentration versus time curve (extrapolated to infinity).^g CL= serum clearance.^h MRT= Mean residence time.

The initial volume of distribution approximated the plasma volume for both the Fab' and F(ab')₂. Pegylation decreased serum CL of anti-IL8 fragments and extended both the terminal half-life and MRT as shown in Table 10 below.

Table 10. Fold decrease/increase in clearance, terminal half-life & MRT of pegylated anti-IL8 fragments.

anti-IL8 fragment	Fab'					F(ab') ₂		
Group No.	1	2	8	3	6	5	4	7
PEG structure	-	linear	linear	linear	bran.	-	bran.	bran.
No. of PEGs	-	1	1	1	1	-	1	2
PEG MW	-	20K	30K	40K	40K	-	40K	40K
CL : mean (mL/hr/kg)	110	2.5	2.2	1.3	0.63	14	0.92	0.83
fold decrease	1	46	51	90	180	1	15	17
t1/2 term : mean (hr)	3.0	44	43	50	110	8.5	45	48
fold increase	1	14	14	17	35	1	5.3	5.7
MRT : mean (hr)	0.61	32	45	63	140	4.2	55	64
fold increase	1	53	73	100	240	1	13	15

5

For the pegylated anti-IL8 Fab' fragments, CL decreased by 46 to 180-fold. Terminal half-life and MRT increased 14 to 35-fold and 53 to 240-fold, respectively. For pegylated anti-IL8 F(ab')₂ molecules, CL decreased 15 to 17-fold with pegylation, and terminal half-life and MRT increased by greater than 5-fold and 13-fold, respectively. The changes in these parameters increased for both pegylated Fab' and F(ab')₂ molecules with increasing PEG molecular weight and approached the values of the full-length anti-IL8 (terminal half-life of 74 hours, MRT of 99 hours and CL of 0.47 mL/hr/kg). In comparing the branched(1)40K Fab' (Group 6) and branched(1)40K F(ab')₂ (Group 4), unexpected pharmacokinetics were observed. The pegylated Fab' molecule appeared to remain in the serum longer than the pegylated F(ab')₂ (see Figure 66). The mean CL of branched(1)40K Fab' was 0.63 mL/hr/kg, but a higher CL was observed for branched(1)40kD F(ab')₂ (CL 0.92 mL/hr/kg). The terminal half-life, likewise, was longer for the Fab' than the F(ab')₂ pegylated molecule (110 vs 45 hours).

The pharmacokinetic data demonstrated that pegylation decreased CL and increased terminal t1/2 and MRT of anti-IL8 fragments (Fab' and F(ab')₂) to approach that of the full-length anti-IL8. Clearance was decreased with pegylation 46 to 180-fold for the Fab' and approximately 16-fold for the F(ab')₂. The terminal half-life of the Fab' anti-IL8 fragment was increased by 14 to 35-fold and approximately 5-fold for the F(ab')₂ anti-IL8. MRT, likewise, were extended by 53 to 240-fold for the Fab' and approximately 14-fold for the F(ab')₂. The

branched(1) 40kD Fab' had a longer terminal half-life and lower clearance compared to the branched(1) 40kD F(ab')₂.

Y. IN VIVO EFFICACY TESTING OF ANTI-IL-8 ANTIBODY REAGENTS IN RABBIT
5 MODEL OF ISCHEMIA/REPERFUSION AND ACID ASPIRATION-INDUCED ACUTE
RESPIRATORY DISTRESS SYNDROME (ARDS)

Full length murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5, 40 kD branched PEG-6G4V11N35A Fab', and control antibody (anti-HIV gp120 monoclonal antibody 9E3.1F10) were tested in a rabbit ARDS model. The animals were weighed and anaesthetized by intramuscular injection of ketamine (50 mg/kg body weight), xylazine (5 mg/kg body weight), and acepromazine (0.75 mg/kg body weight). A second dose (20% of the first dosage) was given IM 15 minutes before removal of vascular clip, and third dose (60% of the first dosage) was given at tracheotomy. Intra-arterial catheter (22G, 1 in. Angiocath) and intra-venous catheter (24G, 1 in. angiocath) were placed in the ear central artery and posterior marginal ear vein for blood samplings (arterial blood gases and CBC) and anti-IL-8 and fluid administration, respectively. The anaesthetized animals were transferred in a supine position to an operating tray; the abdominal area was shaved and prepared for surgery. Via a midline laparotomy, the superior mesenteric artery (SMA) was isolated and a microvascular arterial clip applied at the aortic origin. Before the temporary closure of the abdomen using 9 mm wound clip (Autoclip, Baxter), 15 ml of normal saline was given intraperitoneally as fluid supplement. After 110 minutes of intestinal ischemia, the abdominal incision was reopened and the arterial clip was released to allow reperfusion. Before closure, 5 ml of normal saline was given intraperitoneally for fluid replacement. The laparotomy incision was closed in two layers and the animals allowed to awaken.

25 After surgery, the animals were placed on a heating pad (38°C) and continuously monitored for up to 6 hours post reperfusion and lactated Ringer's 8-12 ml/kg/hr IV was given as fluid supplement.

At 22-24 hr post-reperfusion, a tracheotomy was performed under anesthesia. Normal physiologic saline was diluted 1:3 with water and adjusted to pH 1.5 (adjusted by using 1N HCL); 3 ml/kg body weight was then instilled intra-tracheally. Rectal temperature was maintained at 37 +/- 1 degree C using a homeothermic heat therapy pad (K-Mod II, Baxter).

5 Fluid supplements (LRS) at a rate of 5 ml/kg/hour IV were given. Blood gases were monitored every hour. The rabbits were returned to the cage after 6 hr of continuous monitoring.

Just prior to aspiration, animals were treated with saline, the control monoclonal antibody (anti-HIV gp-120 IgG 9E3.1F10), the full length murine anti-rabbit IL8 (6g4.2.5 murine IgG2a anti-rabbit IL8) or the pegylated 6G4V11N35A Fab' (6G4V1N35A Fab' modified with 40kD branched PEG-maleimide as described in Section T above, denoted as "40 kD branched PEG-6G4V11N35A Fab' "). Data from saline or control antibody treated animals was combined and presented as "Control". Arterial blood gases and A-a PO₂ gradient measurements were taken daily, and IV fluid supplementation was performed daily. A-a PO₂ gradient was measured at 96 hr of reperfusion. The A-a PO₂ gradient was calculated as:

15 $A-a \text{ PO}_2 = [\text{FIO}_2(\text{PB} - \text{PH}_2\text{O}) - (\text{PaCO}_2/\text{RQ})] - \text{PaO}_2.$

PaO₂/FiO₂ ratios were measured at 24hr and 48hr in room air and 100% oxygen.

After the final A-a PO₂ gradient measurement, the animals were anesthetized with Nembutal 100mg/kg i.v. and the animals were euthanized by transecting the abdominal aorta in order to reduce red blood cell contamination of bronchoalveolar lavage fluid (BAL). The lungs were removed en bloc. The entire lung was weighed and then lavaged with an intratracheal tube (Hi-Lo tracheal tube, 3mm) using 30 ml of HBSS and lidocain. Total and differential leukocyte counts in the BAL were determined. Lesions/changes were verified by histological examination of each lobe of the right lung of each animal.

25 The gross lung weight, total leukocyte and polymorphonuclear cell counts in BAL, and PaO₂/FiO₂ data obtained are depicted in Figs. 67, 68 and 69, respectively. Treatment with 40 kD branched PEG-6G4V11N35A Fab' exhibited no effect on the biological parameters measured in the model as compared to the "Control" group. However, the data do not contradict the

pharmacokinetic analysis or the in vitro activity analysis for the 40 kD branched PEG-6G4V11N35A Fab' presented in Sections (V) and (X) above. In addition, these data do not contradict the ability of the 40 kD branched PEG-6G4V11N35A Fab' to reach and act on disease effector targets in circulation or other tissues.

5

Z. ADDITIONAL IN VIVO EFFICACY TESTING OF ANTI-IL-8 ANTIBODY REAGENTS IN RABBIT MODEL OF ISCHEMIA/REPERFUSION AND ACID ASPIRATION-INDUCED ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS)

Full length murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 and 20 kD linear PEG-
10 6G4V11N35E Fab' were tested in a rabbit model of ischemia/reperfusion- and acid aspiration- induced acute respiratory distress syndrome (ARDS).

Antibodies

A Fab'-SH antibody fragment of the affinity matured anti-IL-8 antibody 6G4V11N35E
15 was expressed using the Fab' expression plasmid for 6G4V11N35E (described in Section (T)
above) in *E. coli* grown to high density in the fermentor as described by Carter et al.,
Bio/Technology, 10: 163-167 (1992). Anti-IL-8 6G4V11N35E Fab' variant was purified from
fermentation paste and modified with 20 kD linear methoxy-PEG-maleimide as described in
Example T above. PEGylated material was formulated in phosphate buffered saline (PBS) at
20 physiological pH. Full length 6G4.2.5 antibody was obtained from hybridoma cell line 6G4.2.5
as described in Section (B) above and formulated in phosphate buffered saline (PBS) at
physiological pH.

Sterile Surgical Procedures and Post-Operative Care

25 Male New Zealand White rabbits weighing 2.2 to 2.5 kg (obtained from Western Oregon
Rabbit Company) were anaesthetized by intramuscular injection of ketamine (50 mg/kg body
weight), xylazine (5 mg/kg body weight), and acepromazine (0.75 mg/kg body weight). Intra-
arterial catheter (22G, 1 in. Angiocath) and intra-venous catheter (24G, 1 in. angiocath) were be

placed in the ear central artery and posterior marginal ear vein for blood samplings (arterial blood gases and CBC) and anti-IL-8 (or fluid) administration, respectively. The anaesthetized animals were transferred in a supine position to an operating tray; the abdominal area was shaved and prepared for surgery. Via a midline laparotomy, the superior mesenteric artery (SMA) was isolated and a microvascular arterial clip applied at the aortic origin. Before the temporary closure of the abdomen using 9 mm wound clip (Autoclip, Baxter), 15 ml of normal saline (38°C) was given intraperitoneally as fluid supplement. After 110 minutes of intestinal ischemia, the abdominal incision was reopened and the arterial clip was released to allow reperfusion. Before closure, 5 ml of normal saline (38°C) was given intraperitoneally for fluid replacement.

10 The laparotomy incision was closed in two layers and the animals allowed to awaken.

After surgery, the animals were placed on a heating pad (38°C) and continuously monitored for up to 6 hours post reperfusion and lactated Ringer's 8-12 ml/kg/hr IV was given as fluid supplement.

15 At 22-24 hr post-reperfusion, a tracheotomy was performed under anesthesia using ketamine, xylazine and acepromazine as described above. Normal physiologic saline was diluted 1:3 with water and adjusted to pH 1.5 (adjusted by using 1N HCL), and 3 ml/kg body weight was then instilled intra-tracheally through an uncuffed tracheal tube (2.0mm I.D., Mallinckrodt Medical, Inc.). After instillation, the trachea was closed with 3-0 silk suture and the rabbits were allowed to recover. Rectal temperature was maintained at 37°C +/- 1°C using a homeothermic 20 heat therapy pad (K-Mod II, Baxter). Fluid supplements (LRS) at a rate of 5 ml/kg/hour IV were given. The rabbits were observed and blood gases in room air and in 100% oxygen were measured daily.

Dose Administration

25 Treated animals received an intravenous injection of 7 mg/kg 20 kD linear PEG-6G4V11N35E Fab' (n=5 animals) at 10 minutes before and 6 hours after acid instillation.

Oxygenation Measurement

Alveolar-arterial oxygen pressure gradient (A-a PO₂ gradient) was calculated as follows:

$$A-a \text{ PO}_2 = [\text{FiO}_2(\text{PB} - \text{PH}_2\text{O}) - (\text{PaCO}_2/\text{RQ})] - \text{PaO}_2$$

5 where FiO₂ is fraction of inspired oxygen, PB is barometric pressure, PH₂O is partial pressure of water vapor, PaCO₂ is arterial carbon dioxide pressure, RQ is respiratory quotient, and PaO₂ is arterial oxygen pressure.

10 A-a PO₂ gradient and PaO₂/FiO₂ ratios for each rabbit were measured at baseline (pre-op), before acid instillation, every hour up to 6 hours after acid instillation, and every 24 hours thereafter.

Bronchoalveolar Lavage (BAL)

15 After blood gases measurement at 72 hours post reperfusion, the rabbits were anesthetized with Nembutal 50 mg/kg i.v. and were euthanized by exsanguination. The abdominal aorta was transected to reduce red blood cell contamination of bronchial alveolar lavage fluid (BALF). The lung and heart were removed en bloc. The right lung was lavaged with an intratracheal tube (Hi-Lo tracheal tube, 3.0 mm) using 20 ml of HBSS and lidocain. Total and differential leukocyte counts of BALF were determined.

20 Gross Lung Weight

The whole lung from each rabbit was weighed immediately after harvest and was expressed as g/kg of body weight.

Peripheral Blood Count

25 Blood samples (0.05 ml for CBC, 0.2 ml for blood gases) were collected from the ear central artery catheter at baseline (pre-op), 2 hours, 4 hours, 6 hours, and 22 hours post reperfusion (prior to acid or saline instillation) and at 1 hour, 2 hours, 3 hours, 4 hours, 6 hours and every 24 hours after acid instillation. Hematology parameters were determined by

Automated Hematology Analyzer according to the standard hematological procedures.

Pharmacokinetics

Blood samples (0.5 ml) were collected from the ear central artery catheter at baseline
5 (pre-op), 4 hours, and 22 hours post reperfusion and at 1 hour, 4 hours, and every 24 hours after
acid instillation.

Results and Discussion

In the rabbit model of ARDS, lung injury is manifested by hypoxemia (low PaO₂ - the
10 pressure of O₂ in the arterial blood, as measured by a blood gas machine), lung edema
(evidenced by an elevated lung weight to body weight ratio) and pro-inflammatory infiltrates into
the alveolar space (evidenced by high white blood cell (WBC) and neutrophil (PMN)
numbers). Although 40 kD branched PEG-6G4V11N35A Fab' did not protect rabbits from lung
injury at any of the doses tried (5 mg/kg and 20 mg/kg) (see Section (Y) above), the 20 kD linear
15 PEG-6G4V11N35E Fab' had efficacy equal to, and, for some end-points, superior to that of the
full length IgG murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 and prevented lung injury
in the rabbits as shown in Figs. 70A-70E. (The data points for 40 kD branched PEG-
6G4V11N35A Fab' treated animals, full length 6G4.2.5 treated animals, and saline treated
20 animals appearing in Figs. 70A-70E are taken from the data displayed in Figs. 67-69 and
generated in Example Y above.) In addition, these data indicate that large effective size anti-IL-8
Fab'-PEG conjugates can exhibit useful levels of efficacy in acute lung injury and ARDS.

AA. IN VIVO EFFICACY TESTING OF ANTI-IL-8 ANTIBODY REAGENTS IN RABBIT EAR MODEL OF TISSUE ISCHEMIA AND REPERFUSION

25 Full length murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5, 20 kD linear PEG-
6G4V11N35E Fab', 30 kD linear PEG-6G4V11N35E Fab', and 40 kD branched PEG-
6G4V11N35E Fab' were tested in a rabbit ear model of tissue ischemia and reperfusion injury.

Antibodies

A Fab'-SH antibody fragment of the affinity matured anti-IL-8 antibody 6G4V11N35E was expressed using the Fab' expression plasmid for 6G4V11N35E (described in Example T above) in *E. coli* grown to high density in the fermentor as described by Carter et al., 5 Bio/Technology, 10: 163-167 (1992). Anti-IL-8 6G4V11N35E Fab' variant was purified from fermentation paste and modified with 20 kD linear methoxy-PEG-maleimide, 30 kD linear methoxy-PEG-maleimide, or 40 kD branched methoxy-PEG-maleimide as described in Example T above. Pegylated material was formulated in phosphate buffered saline (PBS) at physiological pH.

10

Animals

1.0 to 1.5 kg New Zealand White rabbits were obtained from Western Oregon Rabbit Company.

15

Surgical procedure and animal evaluation

The procedure was essentially described by Vedder et al., Proc. Natl. Acad. Sci. (USA), 87: 2643-2646 (1990). Briefly, general anesthesia was achieved by intramuscular injections of Ketamine (50 mg/kg) plus Xylazine (5 mg/kg) and Acepromazine (2 mg/kg). The right external ear was prepared for surgery and under sterile procedure the ear was transected at its base, 20 leaving intact only the central artery and vein. All nerves were transected to ensure that the ear was completely anesthetic. A straight microaneurysm clip (1.5x10mm) was placed across the artery to produce complete ischemia. The ear was reattached with the clip exiting through the wound. The rabbits were then housed at 26°C and 6 hours later the clip was removed to effect reperfusion. Untreated rabbits (n=11 animals) received an intravenous injection of vehicle (10 mM sodium acetate, 8% trehalose and 0.01% polysorbate-20 at pH 5.5) immediately prior to reperfusion. Treated animals received 5 mg/kg full length IgG murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 (n=4 animals), 20 kD linear PEG-6G4V11N35E Fab' (n=3 animals), 30 kD linear PEG-6G4V11N35E Fab' (n=3 animals), or 40 kD branched PEG-

6G4V11N35E Fab' (n=3 animals) immediately prior to reperfusion.

The ear volume and necrosis were measured daily by procedures described in Vedder et al.,
supra. Briefly, the ear was submerged in a beaker of water containing 1.2% Povidone iodine
5 (Baxter) up to the intertragic incisure and the ear volume determined by the volume of fluid
displaced. The ears were monitored in this manner for 7 days. The data are represented (in Fig.
71) as percent change in ear volume calculated as follows:

10
$$\% \text{ change in ear volume} = \frac{(\text{Ear vol. at day } x - \text{Ear vol. at day } 0) \times 100\%}{\text{Ear vol. at day } 0}$$

Animals were sacrificed at day 1 and day 7 for histological evaluation of the ear and the same
section of ear was taken from all animals.

15 To determine that the therapeutic agents did not adversely affect any hematological parameter,
 aliquots of blood were withdrawn for complete blood counts and differentials immediately before
 reperfusion and at 24 hour intervals. In a separate experiment, blood samples were taken at 1, 5,
 15, and 30 minutes and at 1 hour and 4 hours.

20 **Results and Discussion**

In the rabbit model of ear ischemia reperfusion injury, antibody was administered
intravenously at a single dose (5 mg/kg) at the time of reperfusion. In this model, ischemia
reperfusion injury is characterized by tissue damage, edema and sometimes necrosis; all
attributable in part to neutrophil-mediated damage. Monitoring of ear volume over time is a
surrogate end-point for evaluating edema in the ear tissue. The resulting data (depicted in Fig.
25 71) showed that treatment with 20 kD linear PEG-, 30 kD linear PEG- and 40 kD branched PEG-
conjugated Fab's effectively reduced ear swelling and edema at all time points of observation
(days 1, 3 and 5). In fact, the efficacy of all three PEGylated Fab's was statistically

indistinguishable from that of the full length IgG murine anti-rabbit IL-8 monoclonal antibody 6G4.2.5 at all time points observed. These data support the efficacy of large effective size anti-IL-8 Fab'-PEG conjugates in ischemic reperfusion injury and specifically support the ability of 40 kD branched PEG-conjugated Fab' molecules to reach and act on disease effector targets in circulation and other tissues.

The following biological materials have been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, USA (ATCC):

<u>Material</u>	<u>ATCC Accession No.</u>	<u>Deposit Date</u>
hybridoma cell line 5.12.14	HB 11553	February 15, 1993
hybridoma cell line 6G4.2.5	HB 11722	September 28, 1994
pantiIL-8.2, E. coli strain 294 mm	97056	February 10, 1995
p6G425chim2, E. coli strain 294 mm	97055	February 10, 1995
p6G4V11N35A.F(ab') ₂	97890	February 20, 1997
E. coli strain 49D6(p6G4V11N35A.F(ab') ₂)	98332	February 20, 1997
p6G425V11N35A.choSD	209552	December 16, 1997
clone#1933 aIL8.92 NB 28605/12	CRL-12444	December 11, 1997
clone#1934 aIL8.42 NB 28605/14	CRL-12445	December 11, 1997

These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable deposit for 30 years from the date of deposit. These cell lines will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the cell lines to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the cell lines to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC

§122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.14 with particular reference to 886 OG 638).

The assignee of the present application has agreed that if the deposited cell lines should be lost or destroyed when cultivated under suitable conditions, they will be promptly replaced on notification with a specimen of the same cell line. Availability of the deposited cell lines is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.