CS 138: Formal languages and Automota Homework 1 solutions

- 1. $S_1 \times S_2 = \{(2,2), (2,4), (2,5), (2,8), (2,9), (3,2), (3,4), (3,5), (3,8), (3,9), (5,2), (5,4), (5,5), (5,8), (5,9), (7,2), (7,4), (7,5), (7,8), (7,9)\}$
 - $S_2 \times S_1 = \{(2,2), (2,3), (2,5), (2,7), (4,2), (4,3), (4,5), (4,7), (5,2), (5,3), (5,5), (5,7), (8,2), (8,3), (8,5), (8,7), (9,2), (9,3), (9,5), (9,7)\}$
- 2. $|S \cap T| + |S \cup T| = |\{2,6,8\}| + |\{2,4,5,6,8\}| = 3 + 5 = 8$
- 3. $S_1 \subseteq S_2 \xrightarrow{\text{by definition}} x \in S_1 \to x \in S_2 \xrightarrow{\text{contrapositive}} x \notin S_2 \to x \notin S_1 \Rightarrow x \in \bar{S}_2 \to x \in \bar{S}_1 \xrightarrow{\text{by definition}} \bar{S}_2 \subseteq \bar{S}_1$
- 4. $(S_1 \cap \bar{S}_2) \cup (\bar{S}_1 \cap S_2) = \emptyset \Leftrightarrow S_1 \cap \bar{S}_2 = \emptyset$ and $\bar{S}_1 \cap S_2 = \emptyset \Leftrightarrow S_1 S_2 = \emptyset$ and $S_2 S_1 = \emptyset \Leftrightarrow S_1 = S_2$
- 5. Induction of |v|

Basis step: |v| = 0, $(u\lambda)^R = u^R$ and $\lambda^R u^R = u^R$.

Inductive hypothesis: $(uv)^R = v^R u^R$ holds for all v of length 1, 2, ..., n.

Inductive step: We want to show that $(uv)^R = v^R u^R$ where |v| = n+1. Let $v = \omega a$ where $|\omega| = n$, so $(uv)^R = (u\omega a)^R = ((u\omega)a)^R = (u\sin g)$ the question hint) $a^R(u\omega)^R = (u\sin g)$ induction hypothesis) $a^R\omega^R u^R = v^R u^R$

- 6. abaabaaabaa, aaaabaaaa, baaaaabaa
 - aaaabaaaa, baaaaabaa
- 7. $G = (\{S\}, \{a\}, S, P)$ and P is $S \to aaS$, $S \to \lambda$.
- 8. 1st: λ , 2nd: a, 3rd: aa, ..., 129st: a^{128}
 - If $|\omega| = k$, we have k^n words with length ω , e.g., if $\omega = 0$, there is $2^0 = 1$ word (ω) and if $\omega = 1$, there are totally $2^1 = 2$ words (a and b). On the other hand $513 = 2^0 + 2^1 + \ldots + 2^6 + 2$, so 127st word is b^6 , 128st word is a^7 , and 129st word is a^6b .
- 9. Basis step: if |u| = 1 then u is a single symbol in Σ and it's obvious that $|u^2| = 2|u|$. Inductive hypothesis: $|u^2| = 2|u|$ holds for all u of length 1, 2, ..., n.

Inductive step: We want to show that $|u^2| = 2|u|$ where |u| = n+1. Let write u as ωa where $|\omega| = n$ and a is a single symbol, then $|u^2| = |\omega a \omega a| = |\omega^2| + |aa| = 2n+2 = 2|u|$

- 10. We first show that all sentential forms must have the form $\omega_i = a^{2i}Sb^i$. Suppose that it holds for all sentential forms ω_i of length 3i+1 or less. The only way to get another sentential form is to apply the production $S \to aaSb$. It gets us $a^{2i}Sb^i \Rightarrow a^{2i+2}Sb^{i+1}$, so that every sentential form of length 3i+4 is also of form $\omega_i = a^{2i}Sb^i$.
 - Finally, to get a senstence, we must apply the production $S \to \lambda$, so $S \stackrel{*}{\Rightarrow} a^{2n}Sb^n \Rightarrow a^{2n}b^n$ represents all possible derivations. Thus, G can derive only strings of the form $a^{2n}b^n$. To show that all strings of this form can be derived we simply apply $S \to aaSb$ as many times as needed, followed by $S \to \lambda$.