Serie 06: Methode der kleinsten Quadrate

Aufgabe 1

Berechnen Sie das Streudiagramm der Daten:

Ī	х	5	10	20	8	4	6	12	15
	у	27	46	73	40	30	28	46	59

- a) Zeichnen Sie das Streudiagramm der Daten.
- b) Berechnen Sie die Gleichung der Regressionsgeraden mit Hilfe einer Tabelle.
- c) Lösen Sie Aufgabe b) mit dem Taschenrechner bzw. mit Python.
- d) Bestimmen Sie das Bestimmtheitsmass und die Korrelation.
- e) Zeichnen Sie den Residuen Plot.

Aufgabe 2

Gegeben die Datenpaare

х	3	4	6	5	9	15
У	2	4	1	2	6	45

- a) Zeichnen Sie das Streudiagramm
- b) Bestimmen Sie die Regressionsgerade mit und ohne den letzten Punkt (Ausreisser), und tragen Sie die Regressionsgeraden ein. Welchen Einfluss hat der Ausreisser?

Aufgabe 3

Für ein Unternehmen soll untersucht werden, welcher Zusammenhang zwischen Umsatz und Anzahl Beschäftigten gilt:

Anz. Beschäftigte	3	8	19	22	31	42	48	52	54
Umsatz in Mio.	2	31	49	65	84	96	117	129	146

- a) Bestimmen Sie die Parameter der Regressionsgeraden.
- b) Welchen Umsatz könnte das Unternehmen erwarten, wenn es 200 Beschäftigte hätte?
- c) Berechnen Sie die korrigierte Gesamtvarianz, die korrigierte erklärte Varianz und die Summe der Residuen Ouadrate.

Nichtlineares Verhalten

Aufgabe 4

Bestimmen Sie für die folgenden Daten das beste Modell vom Typ $y = C \cdot a^x$:

x	2	5	8	12	15
У	4	6	15	21	35

Bestimmen sie auch die durch das Modell errechneten y - Werte.

Aufgabe 5

Ein gegossener Glaskörper kühlt bei einer Aussentemperatur von 300K langsam ab. Man beobachtet die folgenden Temperaturen:

Zeit (in h)	5	10	15	20	30
Temp.T(Kelvin)	720	540	430	380	335

- a) Zeichnen Sie ein Streudiagramm.
- b) Welches Modell passt?
- c) Verwenden Sie das Modell $T 300 = C \cdot a^t$. Zeichnen Sie dementsprechend ein Streudiagrammmit den Daten x = t und y = ln(T 300). Bestimmen Sie aus dem linearen Trend die Grössen a und C.
- d) Berechnen Sie mit den modellierten Grössen: Nach wie vielen Stunden ist der Glaskörper auf 305K abgekühlt?

Aufgabe 6

Von einem bestimmten Autotyp wurden bei den Angeboten von Gebrauchtwagen die gefahrenen km mit den Preisen verglichen:

<i>x</i> (in T km) 10		18	26	37	45	60	75	
y (CHF.)	9500	7000	5600	5200	4500	4000	3500	

Bestimmen Sie mit Hilfe der linearen Regression einen funktionellen Zusammenhang zwischen den Variablen *x* und *y*. wie teuer würde ein Gebrauchtwagen mit 90'000 km geschätzt?

Mehrere Variablen

Aufgabe 7

In einer Region soll der Gasverbrauch (gasv) aufgrund des Gaspreises (gpr) und des Fernwärmepreises (fpr) modelliert werden. Es wird das Regressionsmodell

gasv = $a \cdot gpr + b \cdot fpr + c$ aufgestellt.

gasv	10	10.6	10.4	11.1	11.9	13.8	13.7	13.7	12.2	12.9	13.6	13.8	13.6	13.6	13.8
gpr	0.92	1.04	1.15	1.11	1.08	1.11	1.05	0.84	0.80	0.80	0.82	0.85	0.83	0.80	0.78
fpr	0.90	1.04	1.08	1.11	1.10	1.11	1.14	1.07	1.02	1.00	1.01	1.02	1.00	0.97	0.95

- a) Bestimmen Sie mit Python die Parameter a,b,c.
- b) Berechnen Sie die geschätzten Werte für den Gasverbrauch sowie die Residuen, stellen Sie die Werte in einer Tabelle zusammen
- c) Zeichnen Sie einen Residuenplot (Residuen gegen die Schätzwerte) und beurteilen Sie damit das Modell.