

03 Human-Infrastructure Interaction

Alberto Ramos da Cunha alberto.cunha@ist.utl.pt

Plan

- Basic requirements for personal identification
- Smart cards as security elements
- Standards and interoperability frameworks
- Smarphones vs smart cards

- People work, live and enjoy cities
- The seamless flow of people to/from workplaces, to access services, and to entertainment and leisure activities is a feature of dense urban spaces
- Most technological developments of personal devices target urban communities

Basic requirements

Identification

Identity check in public services or to reserve services and control accesses, login in IT services or communities

Access rights validation

Verification of the rigths to access or use a service

Payment

Pay a service

- Non-functional requirements
 - Transaction speed
 - Security & Privacy
 - Autonomy

Main personal device technologies

- Smart cards and tags
- Smartphones

Main blocks of a chip card

May 2009 © Alberto R. Cunha 6

Smart card interfaces

Contact

Mechanical connections

Transaction time \approx *seconds*

Contacless

Electromagnetic coupling

proximity	~ 60 cm	m
	magnetic induction	radiofrequency
passive cards	active cards	RF sensors
tags, stickers		

Transaction time \approx *mseconds*

The smart card as a security element (1)

- The most important applications use smart cards as personal secure elements which are able to store reserved information and to check internally security keys
- The security properties are achieved by the electrical and logical construction of the card and by the deployment process
 - Electrical: Chip protection to reverse engineering
 - Logical: Memory hierarchy with strict access rules
 - Deployment process: Formal protocols to generate security keys involving the relevant organizations (manufacturer, managing organization, merchants, etc.)
- Small transaction time + strong security device ⇒ decentralized security

The smart card as a security element (2)

- Application examples
 - Government: ID card/citizen card, drivers license, passport
 - Banking: EMV for debit/credit cards
 - Telecommunications: SIM cards, pre-paid cards
 - Transportation: Calypso, Mifare cards with pre-paid and season tockets
 - Corporations: Identification and access control to premisses and facilities

Structure of commands

© Smart Cards. José L. Zoreda, José M. Otón. Artech House, 1994.

Strict hierarchical memory structure (ISO 7816-4)

Figure 5.8 Hierarchical memory structure proposed by ISO 7816/4. ROM and RAM areas remain unmodified

© Smart Cards. José L. Zoreda, José M. Otón. Artech House, 1994.

Mandatory access control to memory regions

Figure 4.3 Typical zones of user/application memory.

[©] Smart Cards. José L. Zoreda, José M. Otón. Artech House, 1994.

Decentralised security Mutual authentication

- Sometimes it is required the mutual authenticaton of the card and the terminal
- Terminal addresses the card
- Card replies and sends a piece of a certificate
- Terminal sends certificate to a Security Module (SAM – Security Application Module)
- SAM replies with the other part of the certificate
- Certificate is encapsulated in the message to write
- Mutual verification between card and terminal

Smart card standards (1)

Define levels of abstraction within the card

Application

Application interface (API)

Logical

Physical

Oct 2014 © Alberto R. Cunha 14

Smart card standards (2)

Define layers of abstration in the card and the terminals (e.g. Bank & Transports)

Application level standards (Card and Terminal)

- Application
 - VisaCash, EN1546, ECBS-TCD, CEPS (e-purse)
 - Visa Smart Debit, Visa Smart Credit, EMV'96 (debit/credit)
- Terminal
 - OCF (OpenCard Framework) & PC/SC
 - Visa Open Platform (VisaCash, Visa Smart Credit, Visa Smart Debit, Java WORA™)

May 2014 © Alberto R. Cunha 16

Interoperability frameworks

- Required to enable the smart card system to run across several service operators and with several technology providers
- Consider 3 layers
 - Technology platform: The card and its operating system standard (e. g. ISO & Calypso)
 - Service level platform:
 Common APIs and the data model of the federated service operators (e. g. OTLIS)
 - Application level

Equipment supplier /
Integrator

OTLIS

ISO & CALYPSO

Evolution of RF/ID Portable Devices

Development cycle

Why smartphones are being slow to replace cards in these smart cities applications?

- Compared to smart cards smartphones are full fledged computers
- But they do not provide a security element comparable to the smart card
 - SIM card distribution is controlled by telecommunications operators which take advantage to control the provision of services over their networks
 - That is the same reason why there not so many cross sectorial application of cards (banks + telcos, telcos + transports, etc.)
- Perhaps wait for more devices with dual chip capability, or for service operators to value user convenience vs risk

Or no cards, no smartphones, just image processing

 Shenzhen traffic police webpage (24 April 2018, translated by Google, non accessible in 2021)

For next lecture

 Imagine how traffic/mobility (vehicle and people flows) can/will be managed in the future