*

Лекция 5. Режим обслуживания потока задач

Пазников Алексей Александрович

Ассистент Кафедры вычислительных систем Сибирский государственный университет телекоммуникаций и информатики

http://cpct.sibsutis.ru/~apaznikov

Джон Нэш (John Nash; род.1928)

- Американский математик, работающий в области <u>теории игр</u> и дифференциальной геометрии.
- <u>Лауреат Нобелевской премии</u> по экономике 1994 года «За анализ равновесия в теории некооперативных игр».
- Известен широкой публике большей частью по биографической драме Рона Ховарда «Игры разума» (англ. А Beautiful Mind) о его математическом гении и борьбе с шизофренией.

• В теории игр рассматриваются ситуации, связанные с принятием решений, в которых **два противника имеют конфликтующие цели**.

• В игровом конфликте участвуют два противника, именуемые **игроками**, каждый из которых имеет множество возможных выборов, которые называются стратегиями

• Каждый из игроков имеет некоторое множество возможных выборов, которые называются **стратегиями**.

- С каждой парой стратегий связан платёж, который один из игроков выплачивает другому.
- Такие игры известны как игры двух лиц с нулевой суммой.

Если игрок A использует стратегию i, а игрок B – стратегию j, то:

- платёж игроку A составляет a_{ii} ,
- платёж игроку B составляет - a_{ii}

Что является оптимальным решением игры?

- Оптимальным решением игры является одна или несколько стратегий для каждого из игроков, при котором любое отклонение от данных стратегий не улучшает плату тому или другому игроку.
- Эти решения могут быть в виде единственной чистой стратегии
- или нескольких стратегий, которые являются
 смешанными в соответствии с заданными вероятностями.

Решение в чистых стратегиях

	B ₁	B_2	B_3	B ₄	Минимумы строк
A ₁	6	-2	9	-3	-3
A_2	6	5	6	8	5 максимин
A_3	-2	4	-9	5	-9
	8	5	9	8	'

Максимумы столбцов

минимакс

- Решение может быть основано на обеспечении наилучшего результата из наихудших для каждого игрока.
- Критерий наилучшего результата из наихудших соответствует выбору минимаксному значению.
- Оптимальным решением в игре является выбор стратегий A_2 и B_2 .
- При этом цена игры составляет 5 и игроки A и B используют стратегии, соответствующие **седловой точке**.

Решение в смешанных стратегиях

	B ₁	B_2
A ₁	1	-1
A ₂	-1	1

Минимумы строк

-1

_1

Максимумы столбцов

1

1

Обслуживание потока задач

Дано: ВЦ, на котором эксплуатируется ВС из n ЭМ, и диспетчер.

Требуется выделять вычислительные ресурсы для задач.

Задача 1. [Евреинов, Хорошейвский, с. 185]

Имеется ВЦ, эксплуатирующий ВС из n ЭМ

ВЦ для решения задач может выставлять любое число ЭМ

$$i \in E = \{0, 1, ..., n\}$$

На ВЦ поступает поток задач различных рангов

Считается, что интенсивность такая, что имеются задачи всех рангов.

Считается, что интенсивность такая, что имеются задачи всех рангов.

Считаем, что построены пакеты задач $r_i{}'$

Имеется диспетчер, который в дискретные моменты времени $t=0,\,1,\,2,\,\dots$ назначает на ВС задачи с временем $\Theta=1$

Имеется игра с участием двух игроков: ВЦ и диспетчера ВЦ использует *чистую стратегию* $i \in E$, если для решения задач отводит i ЭМ

Диспетчер использует *чистую стратегию j*, если для решения он назначает задачу ранга j.

Если ВЦ выбирает стратегию i, а диспетчер стратегию j, то диспетчер "платит" ВЦ сумму $c_{ij},\ c = \parallel c_{ij} \parallel$ - матрица платежей.

Если ВЦ применяет смешанную стратегию $P = \{p_0, p_1, ..., p_n\}$, а диспетчер – смешанную стратегию $\Pi = \{\pi_0, \pi_1, ..., \pi_n\}$, то средний платёж вычислительному центру составит

$$\sum_{i=0}^n \sum_{j=0}^n c_{ij} p_i \pi_j$$

 p_i и π_i – вероятности выбора соответственно вычислительным центром стратегии с номером i и диспетчером стратегии с номером j.

ВЦ имеет оптимальную смешанную стратегию $P^* = \{p_0^*, p_1^*, \dots, p_n^*\}$, а диспетчер – оптимальную смешанную стратегию $\Pi^* = \{\pi_0^*, \pi_1^*, \dots, \pi_n^*\}$ такие что

$$\sum_{i=0}^{n} \sum_{j=0}^{n} c_{ij} p_{i}^{*} \pi_{j} \geq V \geq \sum_{i=0}^{n} \sum_{j=0}^{n} c_{ij} p_{i} \pi_{j}^{*}$$

$$V = \sum_{i=0}^{n} \sum_{j=0}^{n} c_{ij} p_{i}^{*} \pi_{j}^{*}$$

Требуется для заданной матрицы платежей найти решение $\{P^*,\Pi^*\}$ и *цену* V игры

Подбор элементов платёжной матрицы

Будем считать, что если і, ј – чистые стратегии соответственно ВЦ и диспетчера, то элементы матрицы платежей

$$c_{ij} = \begin{cases} jc_1 + (i-j)c_2 & npu & i \ge j, \\ jc_1 + (j-i)c_3 & npu & i < j, \end{cases}$$

где c_1 – платёж за использование одной машины в течение единицы времени, c_2 и c_3 – штрафы в единицу времени за простой одной машины и и при j-i=1

Подбор элементов платёжной матрицы

Наиболее вероятно, что в на ВЦ будут поступать задачи всех рангов. Поэтому алгоритм функционирования ВС, состоящий в назначении задач одного ранга, представляется неэффективным. Следовательно, игра не должна иметь решения в чистых стратегиях, т.е. матрица $\|c_{ij}\|$ не должна иметь седловых точек.

Теорема

Теорема. Матрица c_{ij} не имеет седловых точек тогда и только тогда, когда $c_1 < \min\{c_2,\,c_3\}$

ў Теорема

Доказательство.

Необходимость Пусть матрица $\|c_{ij}\|$ не имеет седловых точек. Из определения c_{ij} следует, что максимальным элементом 0-столбца является c_{n0} . Так как по условию $\|c_{ij}\|$ не имеет седловых точек, то c_{n0} не должен быть минимальным в своей строке. Минимум в последней строке должен достигаться в c_{nn} . Значит, $c_{nn} < c_{n0}$, но так как $c_{n0} = nc_2$, а $c_{nn} = nc_1$, то $c_1 < c_2$

Аналогично рассуждая для 0-строки и n-столбца, получим $c_1 < c_3$. Необходимость доказана.

Теорема

Достаточность

Если $c_1 < \min\{c_2, c_3\}$, то легко увидеть, что диагональные элементы являются минимальными в своей строке и в своём столбце, причём минимум строгий. Следовательно, матрица не имеет седловых точек.

Имеется ВС из n ЭМ и множество $J = \{1, 2, ..., m\}$ задач.

Задачи характеризуются рангом r_j и временем t_j решения.

Требуется множество всех задач ранга $r, i \leq r \leq n$, разбить на подмножества так, чтобы в каждое из них входили задачи, суммарное время решение которых было близко к заданному значению Θ .

Пусть подмножества $J^r \subseteq J, \ r=1,...,n$ – такие, что в J^r входят все задачи $I^r_i \in J, \ i=1,\,2,\,...,\,a$, которые имеют ранг r. Время решения этих задач

$$T_r = \sum_{i=1}^a t_i^r$$

Пусть также $J' = \{I_i^r, I_2^r \ , \ ... \ , I_i^r \ , ..., I_a^r\}$ — некоторая последовательность, членами которой являются элементы J_i^r . Подмножество $J_j \subseteq J'$ включает в себя k_i задач, причём

$$J_{j} = \bigcup_{i=K_{i}+1}^{K_{j}+k_{j}} j_{i}^{r},$$

где

$$K_{j} = \sum_{s=0}^{j-1} k_{s}, \quad k_{0} = 0, \quad j = 1, 2, ..., L_{r}, \quad L_{r} = T_{r} / \Theta[$$

 $(L_r$ – ближайшее к T_r / Θ целое число, $L_r \geq T_r$ / Θ)

Каждое подмножество $J_j \subset J', \ j=1,\ 2,\ ...,\ L_r,$ назовём укрупнённой задачей b_j ранга r. Время решения таких задач

$$T_j = \sum_{i=K_i+1}^{K_j+k_j} t_i^r$$

Будем считать, что для пакет укрупнённых задач ранга r сформирован, если справедливо равенство

$$|T' - \Theta| = o(T'),$$

где
$$T' = \max_{J_j \subset J} \{Tj\}$$

Подмножества $J_i \subset J'$ выбираются следующим образом.

Пусть построены подмножества $J_s \subset J', \ s=1,\ 2,\ ...,\ j-1,$ тогда подмножества

$$\boldsymbol{J}_{j} = \begin{cases} \boldsymbol{J}_{j}'', k_{j} = k_{j}', \text{если}\left(\boldsymbol{\Theta}_{u}\right)_{j} > [T_{j} - (\boldsymbol{\Theta}_{b})_{j}](L_{r} - j)^{-1} \\ \boldsymbol{J}_{j}'' \cup \boldsymbol{I}_{K_{j} + k_{j}' + 1}, k_{j} = k_{j}' + 1, \text{в противном случае} \end{cases}$$

где $J^{\prime\prime}{}_{i}$ – часть последовательности J^{\prime} такая, что

$$J'_{j} = \{I_{K_{j}+1}, I_{K_{j}+2}, ..., I_{K_{j}+k'_{j}}\}, \quad T^{j} = \sum_{i=K_{j}+1}^{L_{r}} t_{i}^{r}$$

а для величин $(\Theta_u)_j$ и $(\Theta_b)_j$ справедливы соотношения

$$\sum_{i=K_{j}+1}^{K_{j}+k'_{j}+1} t_{i}^{r} = (\Theta_{u})_{j} > \Theta, \quad \sum_{i=K_{j}+1}^{K_{j}+k'_{j}} t_{i}^{r} = (\Theta_{b})_{j} \leq \Theta$$

Требуется найти такую последовательность $J^{\prime*}$ задач, которая обеспечит выполнение условия

$$|T' - \Theta| = o(T') \tag{*}$$

Последовательность $J^{\prime *}$ отыскивается с помощью метода цепей Монте-Карло

- 1. Последовательность J' принимается за базовую.
- 2. Рассматриваем перестановки, находящиеся на расстоянии не больше $k,\ k \le a,$ от базовой. В качестве расстояния между двумя последовательностями J' и J'' принимают число индексов в J'', которые не следуют за теми же индексами, что и в базовой J'.

- 3. Сначала получаем k-1 переменных x_i в непрерывном интервале (0,a): $x_i=a\xi_I,\ i=1,2,\ldots,k-1,$ где $\xi_i\in U(0,1).$
- 4. Если $0=x_0 \le x_1 \le \ldots \le x_i \le x_k = a$, то x_i делят последовательность J' на k частей $J^s \subseteq J$, $s=1,\ 2,\ \ldots,\ k$, содержащих задачи, номера которых являются целыми числами в $(x_{i-1},\ x_i]$. Некоторые части могут оказаться пустыми. Случайная перестановка этих частей даёт новую последовательность J'' с расстоянием не больше k от базовой.
- 5. Если T'' для новой последовательности J'' меньше T, т.е. наилучшим образом удовлетворяет (*), то J'' берётся в качестве базовой.

6. Если сделано d попыток моделирования последовательностей с расстоянием k от базовой без изменения базовой, то рассматриваются последовательности с расстоянием $k \neq 2$ и так далее до тех пор, пока не будут смоделированы последовательности расстоянием 2.

Д.Поллок «Человек с ножом»