Games with Counters

Patrick Totzke

totzke@liverpool.ac.uk

BCTCS - April 7, 2020

Plays: infinite paths chosen jointly by \diamondsuit and \square . Winning Condition: □ wins if the maximal colour seen infinitely often is even.

Plays: infinite paths chosen—jointly by ♦ and □.

Winning Condition: □ wins if the maximal colour seen infinitely often is even.

Strategies: Functions

 $\sigma: V^*V_\square o V$ or

 $\tau: V^*V_{\Diamond} \to V$

Plays: infinite paths chosen jointly by \diamondsuit and \square .

Winning Condition: □ wins if the maximal colour seen infinitely often is even.

Strategies: Functions

 $\sigma:V^*V_\square o V$ or

 $\tau: V^*V_{\Diamond} \to V$

Winning Strategies: one that guarantees that all consistent plays are won.

Plays: infinite paths chosen jointly by ♦ and □.

Winning Condition: □ wins if the maximal colour seen infinitely often is even.

Strategies: Functions

 $\sigma: V^*V_\square o V$ or

 $\tau: V^*V_{\Diamond} \to V$

Winning Strategies: one that guarantees that all consistent plays are won.

Positional Determinacy: For every initial state exactly one player has a winning strategy of the form $V \to V$.

Plays: infinite paths chosen jointly by ♦ and □.

Winning Condition: □ wins if the maximal colour seen infinitely often is even.

Strategies: Functions

 $\sigma: V^*V_\square o V$ or

 $\tau: V^*V_{\Diamond} \to V$

Winning Strategies: one that guarantees that all consistent plays are won.

Positional Determinacy: For every initial state exactly one player has a winning strategy of the form $V \rightarrow V$.

Immediate Consequence: Solving these games (who wins and how?) is in $NP \cap coNP$.

Plays: infinite paths chosen jointly by \diamondsuit and \square .

Winning Condition: □ wins if the maximal colour seen infinitely often is even.

Strategies: Functions

 $\sigma: V^*V_\square o V$ or

 $\tau: V^*V_{\Diamond} \to V$

Winning Strategies: one that guarantees that all consistent plays are won.

Positional Determinacy: For every initial state exactly one player has a winning strategy of the form $V \to V$.

Immediate Consequence: Solving these games (who wins and how?) is in NP \cap coNP. In fact it is in UP \cap coUP and $\mathcal{O}(2^{\log(n)})$

Plays: infinite paths chosen jointly by \diamondsuit and \square .

Winning Condition: □ wins if the maximal colour seen infinitely often is even.

Strategies: Functions

 $\sigma: V^*V_\square o V$ or

 $\tau: V^*V_{\Diamond} \to V$

Winning Strategies: one that guarantees that all consistent plays are won. Positional Determinacy: For every initial state exactly one player has a winning strategy of the form $V \rightarrow V$.

Immediate Consequence: Solving these games (who wins and how?) is in NP \cap coNP. In fact it is in UP \cap coUP and $\mathcal{O}(2^{\log(n)})$

Interesting because: PG solving is equivalent to model checking for modal- μ which supersedes the most common temporal specification languages (LTL, CTL, ...)

A Step Back: Parity Games are..

- turn-based
- zero-sum
- perfect information
- ω -regular winning conditions
- played on finite graphs
- non-stochastic

A Step Back: Parity Games are..

- turn-based
- zero-sum
- perfect information
- ω -regular winning conditions
- played on finite graphs
- non-stochastic

Reachability/Safety

A given set of nodes is visited/avoided.

Reachability/Safety

A given set of nodes is visited/avoided.

Reachability/Safety

A given set of nodes is visited/avoided.

Energy(k)

for all length n prefixes, $k + \sum_{i=0}^{n} \operatorname{cost}(e_i) \geq 0$

Reachability/Safety

A given set of nodes is visited/avoided.

Energy(k)

for all length n r.e. xes, $k + \sum_{i=0}^{n} cost(e_i) \ge 0$

Reachability/Safety

A given set of nodes is visited/avoided.

Energy(k)

for all length n prefixes, $k+\sum_{i=0}^{n} \mathrm{cost}(e_i) \geq 0$

Reachability/Safety

A given set of nodes is visited/avoided.

Energy(k)

for all length n prefixes, $k + \sum_{i=0}^{n} cost(e_i) \ge 0$

Mean Payoff

$$\lim_{n\to\infty}\sum_{i=0}^n \mathrm{cost}(e_i)/n>0$$

Reachability/Safety

A given set of nodes is visited/avoided.

Energy(k)

for all length n prefixes, $k + \sum_{i=0}^{n} cost(e_i) \ge 0$

Mean Payoff

$$\lim_{n\to\infty}\sum_{i=0}^n \cot(e_i)/n>0$$

Lim-Inf

 $\lim_{n\to\infty}\inf\sum_{i=0}^n\operatorname{cost}(e_i)>-\infty$

Reachability/Safety

A given set of nodes is visited/avoided.

Energy(k)

for all length n prefixes, $k + \sum_{i=0}^{n} cost(e_i) \ge 0$

Mean Payoff

$$\lim_{n\to\infty}\sum_{i=0}^n \operatorname{cost}(e_i)/n > 0$$

Lim-Inf

 $\lim_{n\to\infty} \overline{\inf \sum_{i=0}^n \operatorname{cost}(e_i)} > -\infty$

All these enjoy positional determinacy!

Some combinations are compatible...

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$
- Energy implies a Mean Payoff of ≥ 0 .

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$
- Energy implies a Mean Payoff of ≥ 0 .

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$
- Energy implies a Mean Payoff of ≥ 0 .

Some are conflicting...

- PARITY ∩ Energy

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$
- Energy implies a Mean Payoff of ≥ 0 .

Some are conflicting...

- PARITY ∩ Energy

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$
- Energy implies a Mean Payoff of ≥ 0 .

Some are conflicting...

- PARITY ∩ Energy

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$
- Energy implies a Mean Payoff of ≥ 0 .

Some are conflicting...

- PARITY ∩ Energy
- PARITY $\cap MP_{>0}$

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$
- Energy implies a Mean Payoff of ≥ 0 .

Some are conflicting...

- PARITY ∩ Energy
- PARITY $\cap MP_{>0}$

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$
- Energy implies a Mean Payoff of ≥ 0 .

Some are conflicting...

- PARITY ∩ Energy
- PARITY $\cap MP_{>0}$

In many cases, these reduce to solving ordinary Energy Games.

Some combinations are compatible...

- $Reach(X) \cup Reach(Y) = Reach(X \cup Y)$
- Energy implies a Mean Payoff of ≥ 0 .

Some are conflicting...

- PARITY ∩ Energy
- PARITY $\cap MP_{>0}$

In many cases, these reduce to solving ordinary Energy Games.

A Step Back: Parity Games are..

- turn-based
- zero-sum
- perfect information
- ω -regular winning conditions
- played on finite graphs
- non-stochastic

A Step Back: Parity Games are..

- turn-based
- zero-sum
- perfect information
- ω -regular winning conditions
- played on finite graphs
- non-stochastic

Reachability for Minsky 2-Counter Machines

Reachability for Minsky 2-Counter Machines

Robot Games: Played on \mathbb{Z}^2 ; Adam and Eve alternate in adding vectors from their own sets of vectors. Can Eve reach the origin?

Reachability for Minsky 2-Counter Machines

Robot Games: Played on \mathbb{Z}^2 ; Adam and Eve alternate in adding vectors from their own sets of vectors. Can Eve reach the origin?

OCA Simulation: Two players each move on a OCA graph; From (pn, qm), Eve moves $pn \stackrel{a}{\rightarrow} p'n'$ and Adam responds $qm \stackrel{a}{\rightarrow} q'm'$; continue from (p'n', q'm'). Can Adam always respond?

Reachability for Minsky 2-Counter Machines

Robot Games: Played on \mathbb{Z}^2 ; Adam and Eve alternate in adding vectors from their own sets of vectors. Can Eve reach the origin?

OCA Simulation: Two players each move on a OCA graph; From (pn, qm), Eve moves $pn \stackrel{a}{\to} p'n'$ and Adam responds $qm \stackrel{a}{\to} q'm'$; continue from (p'n', q'm'). Can Adam always respond?

All positionally determined and undecidable!

Games on Pushdown Graphs

Consider Games played on (configuration graphs) of PDA.

Famously decidable

- Parity Games (EXP-complete)
- Bisimulation

[Walukiewicz; 10]

[Sénizergues; 9]

Games on Pushdown Graphs

Consider Games played on (configuration graphs) of PDA.

Famously decidable

- Parity Games (EXP-complete)
- Bisimulation

[Walukiewicz; 10]

[Sénizergues; 9]

However, these are not

- Energy Games
- Simulation

[4]

$NP \cap coNP$:

- Finite Energy Games and friends = Safety Games on OCA

$NP \cap coNP$:

- Finite Energy Games and friends = Safety Games on OCA

PSPACE-complete:

- Parity Games
- Bisimulation
- Simulation (if zero-tests are forbidden)

[Serre 7

[5]

9 / 20

$NP \cap coNP$:

- Finite Energy Games and friends = Safety Games on OCA

PSPACE-complete:

- Parity Games
- Bisimulation
- Simulation (if zero-tests are forbidden)

EXP-complete:

- Countdown Games

[Serre 7

$NP \cap coNP$:

- Finite Energy Games and friends = Safety Games on OCA

PSPACE-complete:

- Parity Games
- Bisimulation
- Simulation (if zero-tests are forbidden)

EXP-complete:

- Countdown Games

EXPSPACE-complete:

- ∃Countdown Games

[Serre 7

$NP \cap coNP$:

- Finite Energy Games and friends = Safety Games on OCA

PSPACE-complete:

- Parity Games
- Bisimulation
- Simulation (if zero-tests are forbidden)

EXP-complete:

- Countdown Games

EXPSPACE-complete:

- ∃Countdown Games

Undecidable:

- Simulation

[Serre 7

[5

$NP \cap coNP$:

- Finite Energy Games and friends = Safety Games on OCA

PSPACE-complete:

- Parity Games
- Bisimulation
- Simulation (if zero-tests are forbidden)

EXP-complete:

- Countdown Games

EXPSPACE-complete:

- ∃Countdown Games

Undecidable:

- Simulation

[Serre 7

Finite game graph where edges carry a label and negative integers $(E \subseteq Q \times \Sigma \times \mathbb{Z}_{<0} \times Q)$. The game starts in (s_0, n_0) .

Finite game graph where edges carry a label and negative integers $(E \subseteq Q \times \Sigma \times \mathbb{Z}_{<0} \times Q)$. The game starts in (s_0, n_0) .

From position (s, n),

- Adam picks letter a such that s has a-successors;

Finite game graph where edges carry a label and negative integers $(E \subseteq Q \times \Sigma \times \mathbb{Z}_{<0} \times Q)$. The game starts in (s_0, n_0) .

From position (s, n),

- Adam picks letter a such that s has a-successors;
- Eve picks one edge $s \xrightarrow{a,d} s'$; Continue from (s', n+d).

Finite game graph where edges carry a label and negative integers $(E \subseteq Q \times \Sigma \times \mathbb{Z}_{<0} \times Q)$. The game starts in (s_0, n_0) .

From position (s, n),

- Adam picks letter a such that s has a-successors;
- Eve picks one edge $s \xrightarrow{a,d} s'$; Continue from (s', n+d).

Adam wins iff counter value 0 is reached.

Finite game graph where edges carry a label and negative integers $(E \subseteq Q \times \Sigma \times \mathbb{Z}_{<0} \times Q)$. The game starts in (s_0, n_0) .

From position (s, n),

- Adam picks letter a such that s has a-successors;
- Eve picks one edge $s \xrightarrow{a,d} s'$; Continue from (s', n+d).

Adam wins iff counter value 0 is reached.

This game is EXP-complete

Finite game graph where edges carry a label and negative integers $(E \subseteq Q \times \Sigma \times \mathbb{Z}_{<0} \times Q)$. The game starts in (s_0, n_0) .

From position (s, n),

- Adam picks letter a such that s has a-successors;
- Eve picks one edge $s \xrightarrow{a,d} s'$; Continue from (s', n+d).

Adam wins iff counter value 0 is reached.

This game is EXP-complete...

... and EXPSPACE-complete if n_0 is existentially quantified.

A Step Back: Parity Games are..

- turn-based
- zero-sum
- perfect information
- ω -regular winning conditions
- played on finite graphs
- non-stochastic

A Step Back: Parity Games are..

- turn-based
- zero-sum
- perfect information
- ω -regular winning conditions
- played on finite graphs
- non-stochastic

Graphs where nodes belong to $Max \square$, $Min \diamondsuit$ or are $randomized \bigcirc$. Random nodes come with a probability distr. over the successors.

Graphs where nodes belong to $Max \square$, $Min \diamondsuit$ or are $randomized \bigcirc$. Random nodes come with a probability distr. over the successors.

Graphs where nodes belong to $Max \square$, $Min \diamondsuit$ or are $randomized \bigcirc$. Random nodes come with a probability distr. over the successors.

Plays: are infinite paths $\rho \in V^{\omega}$ in the graph.

Graphs where nodes belong to $Max \square$, $Min \diamondsuit$ or are $randomized \bigcirc$. Random nodes come with a probability distr. over the successors.

Plays: are infinite paths $\rho \in V^{\omega}$ in the graph.

Objectives: are sets of plays (considered good for Max).

Graphs where nodes belong to $Max \square$, $Min \diamondsuit$ or are $randomized \bigcirc$. Random nodes come with a probability distr. over the successors.

Plays: are infinite paths $\rho \in V^{\omega}$ in the graph.

Objectives: are sets of plays (considered good for Max).

Player *Strategies:* resolve choice of successor for nodes controlled by Max/Min. E.g., $\sigma: V^*V_{\square} \to \mathcal{D}(V)$

Stochastic Games ≻ Markov Decision Processes

Graphs where nodes belong to $Max \square$, $Min \diamondsuit$ or are $randomized \bigcirc$. Random nodes come with a probability distr. over the successors.

Plays: are infinite paths $\rho \in V^{\omega}$ in the graph.

Objectives: are sets of plays (considered good for Max).

Player *Strategies*: resolve choice of successor for nodes controlled by Max/Min. E.g., $\sigma: V^*V_{\square} \to \mathcal{D}(V)$

Stochastic Games ≥ MDPs ≥ Markov Chains

Graphs where nodes belong to $Max \square$, $Min \diamondsuit$ or are $randomized \bigcirc$. Random nodes come with a probability distr. over the successors.

Plays: are infinite paths $\rho \in V^{\omega}$ in the graph.

Objectives: are sets of plays (considered good for Max).

Player *Strategies*: resolve choice of successor for nodes controlled by Max/Min. E.g., $\sigma: V^*V_{\square} \to \mathcal{D}(V)$

Fixing an initial state, strategies $\sigma: V^*V_{\square} \to \mathcal{D}(V)$ and $\tau: V^*V_{\diamondsuit} \to \mathcal{D}(V)$ induces a unique probability measure $\mathbb{P}^{\sigma,\tau}_s$.

Fixing an initial state, strategies $\sigma: V^*V_{\square} \to \mathcal{D}(V)$ and $\tau: V^*V_{\diamondsuit} \to \mathcal{D}(V)$ induces a unique probability measure $\mathbb{P}_s^{\sigma,\tau}$.

- A cylinder is a set wV^{ω} of runs that share the prefix $w \in V^*$.
- Define a measure $\mathbb{P}^{\sigma, au}_s$ on cylinders by $\mathbb{P}^{\sigma, au}_s(sV^\omega)=1$ and

$$\mathbb{P}^{\sigma, au}_s(wstV^\omega) = egin{cases} \mathbb{P}^{\sigma, au}_s(wsV^\omega) \cdot \sigma(ws)(t) & ext{for } s \in V_\diamondsuit \ \mathbb{P}^{\sigma, au}_s(wsV^\omega) \cdot au(ws)(t) & ext{for } s \in V_\square \ \mathbb{P}^{\sigma, au}_s(wsV^\omega) \cdot \delta(ws)(t) & ext{for } s \in V_\odot \end{cases}$$

- Caratheodory's theorem guarantees a unique extension of $\mathbb{P}_s^{\sigma,\tau}$ to $\mathcal{O} \stackrel{\text{def}}{=}$ the Borel sigma-algebra generated by all cylinders.

Fixing an initial state, strategies $\sigma: V^*V_{\square} \to \mathcal{D}(V)$ and $\tau: V^*V_{\diamondsuit} \to \mathcal{D}(V)$ induces a unique probability measure $\mathbb{P}_s^{\sigma,\tau}$.

- \nearrow A *cylinder* is a set wV^{ω} of runs that share the prefix $w \in V^*$.
- Define a measure $\mathbb{P}^{\sigma, au}_s$ on cylinders by $\mathbb{P}^{\sigma, au}_s(sV^\omega)=1$ and

$$\mathbb{P}_{s}^{\sigma, au}(wstV^{\omega}) = egin{cases} \mathbb{P}_{s}^{\sigma, au}(wsV^{\omega})\cdot\sigma(ws)(t) & ext{for } s\in V_{\odot} \ \mathbb{P}_{s}^{\sigma, au}(wsV^{\omega})\cdot au(ws)(t) & ext{for } s\in V_{\odot} \ \mathbb{P}_{s}^{\sigma, au}(wsV^{\omega})\cdot\delta(ws)(t) & ext{for } s\in V_{\odot} \end{cases}$$

- Caratheodory's theorem guarantees a unique extension of $\mathbb{P}_s^{\sigma,\tau}$ to $\mathcal{O} \stackrel{\text{def}}{=}$ the Borel sigma-algebra generated by all cylinders.

Fixing an initial state, strategies $\sigma: V^*V_{\square} \to \mathcal{D}(V)$ and $\tau: V^*V_{\diamondsuit} \to \mathcal{D}(V)$ induces a unique probability measure $\mathbb{P}^{\sigma,\tau}_s$.

- \nearrow A cylinder is a set wV^{ω} of runs that share the prefix $w \in V^*$.
 - Define a measure $\mathbb{P}^{\sigma, au}_s$ on cylinders by $\mathbb{P}^{\sigma, au}_s(sV^\omega)=1$ and

$$\mathbb{P}_{s}^{\sigma,\tau}(wstV^{\omega}) = \begin{cases} \mathbb{P}_{s}^{\sigma,\tau}(wsV^{\omega}) \cdot \sigma(ws)(t) & \text{for } s \in V_{\Diamond} \\ \mathbb{P}_{s}^{\sigma,\tau}(wsV^{\omega}) \cdot \tau(ws)(t) & \text{for } s \in V_{\Box} \\ \mathbb{P}_{s}^{\sigma,\tau}(wsV^{\omega}) \cdot \delta(ws)(t) & \text{for } s \in V_{\Diamond} \end{cases}$$

- Caratheodory's theorem guarantees a unique extension of $\mathbb{P}_s^{\sigma, au}$ to $\mathcal{O}\stackrel{\mathsf{def}}{=}$ the Borel sigma-algebra generated by all cylinders.

Max/Min choose their strategies to maximize/minimize $\mathbb{P}_s^{\sigma,\tau}(Obj)$.

Weak Determinacy: For all Borel Objectives *Obj* and countable (even concurrent) games

$$\sup_{\sigma}\inf_{\tau}\mathbb{P}^{\sigma,\tau}_{s}(Obj)=\inf_{\tau}\sup_{\sigma}\mathbb{P}^{\sigma,\tau}_{s}(Obj).$$

We call this quantity the value of Obj.

Weak Determinacy: For all Borel Objectives *Obj* and countable (even concurrent) games

$$\sup_{\sigma}\inf_{\tau}\mathbb{P}^{\sigma,\tau}_{s}(Obj)=\inf_{\tau}\sup_{\sigma}\mathbb{P}^{\sigma,\tau}_{s}(Obj).$$

We call this quantity the value of Obj.

Immediate Consequence: For every $\varepsilon>0$ there is some strategy σ_{ε} that achieves, against all strategies τ , that

$$\mathbb{P}_{s}^{\sigma_{arepsilon}, au}(\mathit{Obj}) \geq \mathit{value}(\mathit{Obj}) - arepsilon.$$

Weak Determinacy: For all Borel Objectives *Obj* and countable (even concurrent) games

$$\sup_{\sigma}\inf_{\tau}\mathbb{P}^{\sigma,\tau}_{s}(Obj)=\inf_{\tau}\sup_{\sigma}\mathbb{P}^{\sigma,\tau}_{s}(Obj).$$

We call this quantity the value of Obj.

Immediate Consequence: For every $\varepsilon>0$ there is some strategy σ_{ε} that achieves, against all strategies τ , that

$$\mathbb{P}_{s}^{\sigma_{\varepsilon},\tau}(Obj) \geq value(Obj) - \varepsilon.$$

Such a strategy is called ε -optimal.

Weak Determinacy: For all Borel Objectives *Obj* and countable (even concurrent) games

$$\sup_{\sigma}\inf_{\tau}\mathbb{P}^{\sigma,\tau}_{s}(Obj)=\inf_{\tau}\sup_{\sigma}\mathbb{P}^{\sigma,\tau}_{s}(Obj).$$

We call this quantity the value of Obj.

Immediate Consequence: For every $\varepsilon>0$ there is some strategy σ_{ε} that achieves, against all strategies τ , that

$$\mathbb{P}_{s}^{\sigma_{\varepsilon},\tau}(Obj) \geq value(Obj) - \varepsilon.$$

Such a strategy is called ε -optimal. . . . and simply optimal if the above holds for $\varepsilon = 0$.

Weak Determinacy: For all Borel Objectives *Obj* and countable (even concurrent) games

$$\sup_{\sigma}\inf_{\tau}\mathbb{P}^{\sigma,\tau}_{s}(Obj)=\inf_{\tau}\sup_{\sigma}\mathbb{P}^{\sigma,\tau}_{s}(Obj).$$

We call this quantity the value of Obj.

Immediate Consequence: For every $\varepsilon>0$ there is some strategy σ_{ε} that achieves, against all strategies τ , that

$$\mathbb{P}_{s}^{\sigma_{\varepsilon},\tau}(Obj) \geq value(Obj) - \varepsilon.$$

Such a strategy is called ε -optimal. . . . and simply optimal if the above holds for $\varepsilon = 0$.

For any game, initial position s and objective Obj,

1. exists a strategy σ with $\lim_{\tau} \mathbb{P}^{\sigma,\tau}(Obj) = 1$?

For any game, initial position s and objective Obj,

1. exists a strategy σ with $\lim_{\tau} \mathbb{P}^{\sigma,\tau}(Obj) > 0$?

For any game, initial position s and objective Obj,

1. exists a strategy σ with $\lim_{\tau} \mathbb{P}^{\sigma,\tau}(Obj) > \frac{1}{2}$?

- 1. exists a strategy σ with $\lim_{\tau} \mathbb{P}^{\sigma,\tau}(Obj) \geq c$?
- 2. do optimal strategies exist?

- 1. exists a strategy σ with $\lim_{\tau} \mathbb{P}^{\sigma,\tau}(Obj) \geq c$?
- 2. do optimal strategies exist?
- 3. compute (approximate) values

- 1. exists a strategy σ with $\lim_{\tau} \mathbb{P}^{\sigma,\tau}(Obj) \geq c$?
- 2. do optimal strategies exist?
- 3. compute (approximate) values
- 4. what can be achieved by a given type of strategy?

- 1. exists a strategy σ with $\lim_{\tau} \mathbb{P}^{\sigma,\tau}(Obj) \geq c$?
- 2. do optimal strategies exist?
- 3. compute (approximate) values
- 4. what can be achieved by a given type of strategy?
- 5. synthesize (optimal/a.s./good) strategies

- 1. exists a strategy σ with $\lim_{\tau} \mathbb{P}^{\sigma,\tau}(Obj) \geq c$?
- 2. do optimal strategies exist?
- 3. compute (approximate) values
- 4. what can be achieved by a given type of strategy?
- 5. synthesize (optimal/a.s./good) strategies
- 6. . . .

Optimal strategies need not exist:

Optimal strategies need not exist:

If they do they may require infinite memory:

Optimal strategies need not exist:

 $\begin{array}{cccc}
+1 & 1/2, -1 \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$

If they do they may require infinite memory:

Yet, checking if there is an almost-sure strategy is in $NP \cap coNP$ by reduction to solving finite-state Energy Games!

Optimal strategies need not exist:

If they do they may require infinite memory:

Yet, checking if there is an almost-sure strategy is in $NP \cap coNP$ by reduction to solving finite-state Energy Games!

A Step Back: Parity Games are..

- turn-based
- zero-sum
- perfect information
- ω -regular winning conditions
- played on finite graphs
- non-stochastic

- The complexity of solving finite-state Energy Games

- The complexity of solving finite-state Energy Games
- The decidability of almost-sure Parity conditions for OCA SSGs

- The complexity of solving finite-state Energy Games
- The decidability of almost-sure Parity conditions for OCA SSGs (even MDPs)

- The complexity of solving finite-state Energy Games
- The decidability of almost-sure Parity conditions for OCA SSGs (even MDPs) (even for colors 1, 2, 3)

- The complexity of solving finite-state Energy Games
- The decidability of almost-sure Parity conditions for OCA SSGs (even MDPs) (even for colors 1, 2, 3)
- The complexity of Population control

- The complexity of solving finite-state Energy Games
- The decidability of almost-sure Parity conditions for OCA SSGs (even MDPs) (even for colors 1, 2, 3)
- The complexity of Population control

Consider a finite MDP with almost-sure reachability objective:

Consider a finite MDP with almost-sure reachability objective:

- pick actions such that $\mathcal{P}(\mathit{init} \leadsto \mathit{final}) = 1$

Now take the *n*-fold product. Can we pick actions such that $\mathcal{P}(init^n \leadsto final^n) = 1$?

Consider a finite MDP with almost-sure reachability objective:

- pick actions such that $\mathcal{P}(\mathit{init} \leadsto \mathit{final}) = 1$

Now take the *n*-fold product. Can we pick actions such that $\mathcal{P}(init^n \leadsto final^n) = 1$?

Consider a finite MDP with almost-sure reachability objective:

- pick actions such that $\mathcal{P}(\textit{init} \leadsto \textit{final}) = 1$

Now take the *n*-fold product. Can we pick actions such that $\mathcal{P}(init^n \leadsto final^n) = 1$?

- Every step applies the same action to all n systems!

Consider a finite MDP with almost-sure reachability objective:

- pick actions such that $\mathcal{P}(\mathit{init} \leadsto \mathit{final}) = 1$

Now take the *n*-fold product. Can we pick actions such that $\mathcal{P}(init^n \leadsto final^n) = 1$?

- Every step applies the same action to all n systems!

Consider a finite MDP with almost-sure reachability objective:

- pick actions such that $\mathcal{P}(\mathit{init} \leadsto \mathit{final}) = 1$

Now take the *n*-fold product. Can we pick actions such that $\mathcal{P}(init^n \leadsto final^n) = 1$?

- Every step applies the same action to all n systems!

Consider a finite MDP with almost-sure reachability objective:

- pick actions such that $\mathcal{P}(\mathit{init} \leadsto \mathit{final}) = 1$

Now take the *n*-fold product. Can we pick actions such that $\mathcal{P}(init^n \leadsto final^n) = 1$?

- Every step applies the same action to all n systems!
- Obs: synchronizing n tokens is easier than n + 1.

Consider a finite MDP with almost-sure reachability objective:

- pick actions such that $\mathcal{P}(\mathit{init} \leadsto \mathit{final}) = 1$

Now take the *n*-fold product. Can we pick actions such that $\mathcal{P}(init^n \leadsto final^n) = 1$?

- Every step applies the same action to all n systems!
- Obs: synchronizing n tokens is easier than n + 1.

Question: Can I synchronize M^n for every n?

Consider a finite MDP with almost-sure reachability objective:

- pick actions such that $\mathcal{P}(\mathsf{init} \leadsto \mathsf{final}) = 1$

Now take the *n*-fold product. Can we pick actions such that $\mathcal{P}(init^n \leadsto final^n) = 1$?

- Every step applies the same action to all n systems!
- Obs: synchronizing n tokens is easier than n + 1.

Question: Can I synchronize M^n for every n? Construct strategy $\sigma: \mathbb{N}^Q \to Act$? (Decidable and EXP-hard)

References

- R. Niskanen, I. Potapov, and J. Reichert. "On decidability and complexity of low-dimensional robot games". In: 107 (2020), pp. 124–141.
- [2] R. Mayr et al. "MDPs with Energy-Parity Objectives". In: LICS (2017).
- [3] M. Jurdziński, R. Lazić, and S. Schmitz. "Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time". In: ICALP. 2015, pp. 260–272.
- [4] P. A. Abdulla et al. "Infinite-State Energy Games". In: LICS. 2014.
- [5] S. Böhm, S. Göller, and P. Jancar. "Bisimulation equivalence and regularity for real-time one-counter automata". In: 80.4 (2014), pp. 720–743.
- [6] K. Chatterjee and L. Doyen. "Energy parity games". In: Theor Comput Sci 458 (2012), pp. 49–60.
- [7] O. Serre. "Parity Games Played on Transition Graphs of One-Counter Processes". In: FoSSaCS. 2006.
- [8] A. Maitra and W. Sudderth. "Stochastic games with Borel payoffs". In: Stochastic Games and Applications. Ed. by A. Neyman and S. Sorin. Kluwer, Dordrecht, 2003, pp. 367–373.
- [9] G. Sénizergues. "Decidability of Bisimulation Equivalence for Equational Graphs of Finite Out-Degree". In: FOCS. IEEE Computer Society, 1998, pp. 120–129.
- [10] I. Walukiewicz. "Pushdown Processes: Games and Model Checking". In: CAV. 1996.
- [11] M. L. Puterman. Markov Decision Processes. 1994.