

École de technologie supérieure L'ÉTS est une constituante du réseau de l'Université du Québec

Laboratoire 1

Document de vision

Numéro d'équipe	06
Étudiant(s)	Alexandre Audette Génier David Méthot Simon Jutras Jean-Sébastien Bourbonnais
Cours	LOG410
Session	Été 2015
Groupe	01
Chargé de laboratoire	Alexandre Millette
Date	07-06-2015

Simulateur de capteurs Vision

Version 3.1

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

Historique des révisions

Date	Version	Description	Auteur
18/05/15	1.0	Version intermédiaire	Équipe
25/05/15	1.1	Correction suite aux commentaires de la revue des pairs	Alexandre Audette Génier
01/06/15	1.2	Section 2.2, 3.4, 4.1, 4.2, 5, 7, 10	Alexandre Audette Génier David Méthot
03/06/15	1.3	Section 4.4	David Méthot
04/06/15	1.4	Nettoyage et travail sur sections 6 et 9	David Méthot
07/06/15	2.0	Sections 1.4, 8, révision finale et mise en page du document	Alexandre Audette Génier David Méthot Simon Jutras Jean-Sébastien Bourbonnais
11/06/15	3.0	Corrections pour faire de ce document le Vision de Référence	Alexandre Millette
09/11/15	3.1	Corrections mineures, mise en forme pour LOG430.	Roger Champagne

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

Table des matières

Table	e des matières	3
1.	Introduction	5
1.1	1 Objectif	5
1.2	Portée	5
1.3	3 Définitions, acronymes et abréviations	5
1.4	4 Références	6
2.	Positionnement	6
2.1	1 Énoncé du problème	6
2.2	Positionnement du produit	6
3.	Descriptions des intervenants et des utilisateurs	7
3.1	1 Résumé des intervenants	7
3.2	2 Résumé des utilisateurs	7
3.3	3 Environnement utilisateur	7
3.4	Principaux besoins des intervenants et utilisateurs	8
4.	Vue d'ensemble du produit	8
4.1	Perspective du produit	8
4.2	Principaux avantages	9
4.3	3 Hypothèses et dépendances	9
4.4	4 Licences et installation	9
5.	Caractéristiques du produit	10
5.1	1 CAR01 - Générer un scénario de vol	10
5.2	2 CAR02 - Transmettre le scénario de l'ordinateur au banc d'essai	10
5.3	3 CAR03 - Réception du scénario de vol	10
5.4	4 CAR04 - Envoyer les signaux à l'ordinateur embarqué	10
5.5	5 CAR05 - Afficher les données de l'ordinateur embarqué	10
5.6	6 CAR06 - Afficher la trajectoire d'un vol sur un plan 2 dimensions	10
5.7	7 CAR07 - Afficher la trajectoire d'un vol sur un plan 3 dimensions	10
5.8	8 CAR08 - Comparer les données théoriques et pratiques du vol	10
5.9	9 CAR09 - Sauvegarder ou charger un scénario de vol	10
5.1	10 CAR10 - Afficher les événements critiques du vol	10
5.1	11 CAR11 - Modifier des formules mathématique	10
5.1	12 CAR12 - Journalisation des opérations sur le banc d'essai	10
6.	Contraintes	11
6.1	1 C01 - Langage de programmation	11
6.2	2 C02 - Plateformes supportées	11
6.3	3 C03 - Format d'exécution	11

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

	6.4	C04 - Banc d'essai (Matériel)	11
	6.5	C05 - Logiciel libre	11
	6.6	C06 - Le banc d'essai doit être indépendant de l'ordinateur.	11
7.	Ga	ammes de qualité	11
	7.1	Fiabilité	11
	7.2	Utilisabilité	11
	7.3	Extensibilité	11
	7.4	Maintenabilité	11
	7.5	Portabilité	11
8.	At	tributs des caractéristiques	12
9.	Αu	ıtres exigences du produit	12
	9.1	Standards applicables	12
	9.2	Exigences du système	12
	9.3	Exigences de performance	12
	9.4	Exigences environnementales	12
10).	Exigences de documentation	13
	10.1	Manuel de l'utilisateur	13
	10.2	Aide en-ligne	13
	10.3	Guides d'installation, de configuration, et fichier à lire	13
Αı	nnexe.		14
	A	Attributs des caractéristiques	14
	В	Licence MIT	15

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

1. Introduction

1.1 Objectif

Ce document présenté au club étudiant RockÉTS de l'École de technologie supérieure, a pour objectif de rassembler sommairement l'analyse des différentes exigences et des besoins du client en ce qui concerne un simulateur de vol pour leur fusée. Ce nouvel outil permettra d'effectuer des simulations mettant les fusées à l'épreuve pour s'assurer le déroulement des meilleurs scénarios dans des conditions qui peuvent varier énormément.

1.2 Portée

Le projet décrit par ce document vise à effectuer des simulations sur le « BeagleBoard » de leurs fusées, cette pièce est le centre de contrôle de la fusée. Le « BeagleBoard » est déjà présent dans la fusée, il faut noter que le projet ne modifiera pas le programme contenu par ce dernier, mais qu'il agira seulement en tant qu'interface. Les simulations sont réalisées par l'envoi de signaux à ce centre de contrôle et on analyse les données enregistrées par le «BeagleBoard». Le diagramme suivant présente la portée du projet. Il faut noter que seul les éléments dans l'encadrer *Système de simulation* seront affectés.

1.3 Définitions, acronymes et abréviations

Terme	Description
Banc d'essai	Le banc d'essai est le BeagleBoard qui contiendra une partie de notre solution logicielle.
BeagleBoard	Le BeagleBoard est un ordinateur embarqué. Toutefois, lorsque nous parlons «du BeagleBoard» nous parlons de celui qui sera testé, soit celui de la fusée.
Capteurs	Divers outil de mesure normalement installé dans la fusée. En temps normal, ils communiquent avec le BeagleBoard testé.
Ordinateur embarqué	Le BeagleBoard qui se retrouve dans la baie électronique de la fusée.
Scénario	Plan de vol de la fusée qui sera simulé.
XML	Extensible markup language. Langage informatique de balisage.

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

1.4 Références

Livre:

LEFFINGWELL, D. & D. WIDRIG, Managing Software Requirements - A Use Case Approach. 2nd edition, Addison-Wesley, 2003.

Annexe A:

GUILMAINE, D., Annexe A - Attributs des caractéristiques. Version 1.1, 2011.

Document RockETS:

- Guide d'initiation à la fuséonautique
- BEKC, H. & BRUNETTEAU, A. LOG410 Analyse de besoins et spécifications http://www.clubrockets.ca/views/index/index/fr.php

2. **Positionnement**

2.1 Énoncé du problème

Le problème de	Il n'existe pas de façon actuelle de tester l'ordinateur de bord de la fusée, sans faire un lancement de fusée. Ce qui entraîne des problèmes de coûts, de bureaucratie et de délais.
Affecte	Les performances de leurs fusées en compétition.
Dont l'impact est	Perte de points et possibilité de perte de prix. Ainsi que la réputation du club.
Une bonne solution serait	Disposer d'un outil efficace pour effectuer des simulations de vols.

2.2 Positionnement du produit

Pour	les membres de l'équipe de RockETS.
Qui	ont besoin d'un logiciel qui permet de tester l'ordinateur de bord (BeagleBoard) de la fusée.
Le simulateur de capteurs	est un logiciel qui inclue une interface graphique qui permet de faire la simulation et la visualisation d'un vol de fusée.
Qui	permet à l'utilisateur d'établir une trajectoire de vol, initialiser les valeurs de différents capteurs et de lancer une simulation à l'aide de formule mathématique modifiable. De plus, simuler des défaillances de capteurs à des moments précis. Le logiciel permet aussi de faire la comparaison entre la trajectoire théorique et la trajectoire réelle de la simulation.
Contrairement à	faire plusieurs lancements de fusée à coût élevé et de récupérer les données de l'ordinateur de bord à chaque fois.
Notre produit	sauve du temps et de l'argent au club scientifique RockETS. Il permet au club d'effectuer des tests plus complets, ainsi que des analyses avec beaucoup plus de données.

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

3. Descriptions des intervenants et des utilisateurs

3.1 Résumé des intervenants

Nom	Description	Responsabilités
ÉTS	RockETS est un club faisant partie de cette université	S'assure que les activités conduites par le club sont conformes aux règlements établis par l'université. Contribue aux finances du club.
Hadrien Beck	Membre de l'équipe d'avionique du club RockETS	Communique les besoins du client pour le projet et représente le client.
Andy Bruneteau	Vice-présidents du Club scientifique RockETS	Supervise les activités du club, s'assure du bon fonctionnement et du rendement des différentes cellules du club.

3.2 Résumé des utilisateurs

Nom	Description	Responsabilités	Intervenant
Membres du club qui font le développement de la fusée.	Membre qui travaille majoritairement dans la section avionique du club.	Ces membres s'occupent de conduire des tests et analyser les données pour pouvoir améliorer la performance de la fusée.	Les membres du club qui vont utiliser l'application de simulateur de capteur.

3.3 Environnement utilisateur

Le système de simulation de capteur sera utilisé à partir d'un logiciel installé sur un ordinateur. Le système est capable de communiquer avec un BeagleBoard (banc d'essai) qui permet d'envoyer les signaux au BeagleBoard utilisé dans la fusée. Le système est utilisé dans le cadre de développement et de test.

Après une simulation, les données sont recueillies et sauvegardées sur une carte SD. Ce qui permet au membre du club de conduire des tests sans avoir à lancer la fusée. Finalement, les utilisateurs sont familiers avec les interfaces humaines machines.

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

3.4 Principaux besoins des intervenants et utilisateurs

Besoin	Priorité	Préoccupations	Solution actuelle	Solution proposée
B01 - Sauvegarder et charger des scénarios de vol.	Important	Pouvoir régénérer et consulter facilement un scénario de vol.	Aucune solution n'existe présentement.	Lors de la phase préparatoire ou suite à la simulation, l'utilisateur pourra sauvegarder ou charger un scénario.
B02 - Utiliser une interface graphique pour générer un scénario et lancer une simulation de vol de fusée.	Critique	Pouvoir générer et simuler rapidement un scénario de vol pour la simulation.	Aucune solution n'existe présentement.	Le logiciel offrira une interface graphique qui pourra initialiser les données de simulation et de lancer la simulation de vol de fusée.
B03 - Visualiser et comparer la trajectoire de la simulation d'un vol de fusée.	Critique	Pouvoir visualiser la trajectoire établie et celle que la fusée emploie réellement.	Aucune solution n'existe présentement.	L'interface graphique du logiciel permettra de visualiser la trajectoire du vol théorique de la fusée selon les données entrées et le comparer au résultat pratique de la simulation.

4. Vue d'ensemble du produit

4.1 **Perspective du produit**

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

4.2 Principaux avantages

Table 4-1 Système Simulateur de capteurs

Bénéfices pour le client	Caractéristiques correspondantes
B01 - Sauvegarder et charger les données	CAR09
recueillies pendant une simulation de vol.	
B02 - Utiliser une interface graphique pour	CAR01, CAR02, CAR03, CAR04, CAR11
générer un scénario et lancer une simulation de vol	
de fusée.	
B03 - Visualiser et comparer la trajectoire de la	CAR05, CAR06, CAR07, CAR08, CAR10, CAR12
simulation d'un vol de fusée.	

4.3 Hypothèses et dépendances

Suite à la présentation réalisée par le client nous devons assumer les choses suivantes comme étant valides :

1. Les protocoles suivants sont associés à ces outils :

UART: GPS

I2C: Magnétomètre, Accéléromètre, Gyroscope

SPI: Altimètre

- 2. L'ordinateur qui exécute la simulation sera équipé d'un des OS suivant : Windows, Linux.
- 3. L'application PC communiquera avec un BeagleBoard possédant notre autre application pour l'envoi de signaux, cette communication sera USB/Ethernet.
- 4. Le BeagleBoard testé communiquera ces données au PC via carte SD.
- 5. Les BeagleBoard possèdent au minimum les canaux suivants :
 - 1 UART, 3 I2C, 1 SPI (1 USB ou 1 Ethernet), (1 radio ou 1 espace pour carte SD).
- 6. Le PC possède au minimum les canaux suivants : (1 USB ou 1 Ethernet) et (1 port pour carte SD ou 1 récepteur radio)

4.4 Licences et installation

Le système sera développé sous la licence MIT (disponible en Annexe B), une licence qui présente les conditions légales d'un logiciel libre.

Aucune installation n'est requise, chaque application produite sera démarrée par l'intermédiaire d'un fichier binaire exécutable. L'utilisateur n'aura qu'à copier le fichier sur espace disque.

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

5. Caractéristiques du produit

5.1 CAR01 - Générer un scénario de vol

Le logiciel PC doit offrir une interface visuelle permettant à l'utilisateur de générer un scénario de vol en sélectionnant les capteurs désirés, et entrant les valeurs d'initialisation de vol. Ensuite, il sera en mesure d'assigner des valeurs à ces capteurs selon le temps ou altitude du vol.

5.2 CAR02 - Transmettre le scénario de l'ordinateur au banc d'essai

Le logiciel PC doit être en mesure de transmettre les données du simulateur via un fichier formaté. Ce fichier contient les données et paramètres du vol à simuler.

5.3 CAR03 - Réception du scénario de vol

Le logiciel du banc d'essai doit permettre de recevoir un fichier contenant le scénario du vol à simuler.

5.4 CAR04 - Envoyer les signaux à l'ordinateur embarqué

Le logiciel sur le banc d'essai doit être en mesure de traduire le fichier décrivant le scénario de vol. Une fois la traduction terminée, le banc d'essai doit envoyer les signaux appropriés à un intervalle de temps fixe.

5.5 CAR05 - Afficher les données de l'ordinateur embarqué

Le logiciel PC doit offrir une option pour afficher les données recueillies par l'ordinateur embarqué lors d'un vol sous la forme d'une table de données.

5.6 CAR06 - Afficher la trajectoire d'un vol sur un plan 2 dimensions

Le logiciel PC doit afficher la trajectoire d'un vol de la fusée dans un graphique 2 dimensions, représentant la valeur de la hauteur dépendant du temps.

5.7 CAR07 - Afficher la trajectoire d'un vol sur un plan 3 dimensions

Le logiciel PC doit afficher la trajectoire d'un vol de la fusée dans un graphique 3 dimensions, qui peut être vue sous tous les angles en déplaçant la caméra dans l'interface.

5.8 CAR08 - Comparer les données théoriques et pratiques du vol

Le logiciel PC doit offrir une option pour comparer les données calculées et réelles d'un vol. Un graphique devra être présent affichant une courbe distincte pour chaque jeu de données.

5.9 CAR09 - Sauvegarder ou charger un scénario de vol

Le logiciel PC doit offrir une option pour sauvegarder un scénario de vol. Ce même scénario pourra ensuite être chargé par le logiciel PC à partir d'une carte SD.

5.10 CAR10 - Afficher les événements critiques du vol

Le logiciel PC doit afficher les événements majeurs d'un vol sur le graphique. Ceux-ci concernent les événements tels que: les phases du vol, défaillance de capteur.

5.11 CAR11 - Modifier des formules mathématiques

Le logiciel PC doit permettre de modifier les formules mathématiques qui permettent de calculer la trajectoire de la fusée.

5.12 CAR12 - Journalisation des opérations sur le banc d'essai

Le banc d'essai doit tenir un journal des opérations réalisées afin de pouvoir identifier si les erreurs dans la simulation ne sont pas dues à des problèmes matériels ou logiciel de notre solution.

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

6. Contraintes

6.1 **C01 - Langage de programmation**

Le système peut être développé avec n'importe quel langage de programmation excluant Java.

6.2 **C02 - Plateformes supportées**

Les membres de l'équipe RockÉTS utilisent différents systèmes d'exploitation pour effectuer leurs tâches. En effet, le logiciel destiné au PC doit pouvoir s'exécuter sous Windows ou Linux.

6.3 **C03 - Format d'exécution**

La simplicité d'utilisation est un atout important pour le client. C'est pour cette raison que les logiciels produits doivent pouvoir démarrer avec un fichier binaire exécutable.

6.4 **C04 - Banc d'essai (Matériel)**

L'équipe de RockÉTS est déjà familiarisée avec la famille des BeagleBoard. Le banc d'essai doit être un de ces modèles.

6.5 **C05 - Logiciel libre**

L'ensemble du système doit être conforme aux réglementations des logiciels libres. Ce critère concerne le code produit ainsi que les librairies utilisées.

6.6 C06 - Le banc d'essai doit être indépendant de l'ordinateur.

Une fois la simulation commencée, le banc d'essai doit pouvoir poursuivre, peu importe ce qui se passe avec l'ordinateur.

7. Gammes de qualité

7.1 Fiabilité

Les valeurs des capteurs simulés doivent être envoyées à 100%. Le taux de défaillance du système accepté est de 1% des simulations. À l'occurrence d'une défaillance, le scénario de simulation ne doit pas être perdu.

7.2 Utilisabilité

Interface doit être facile à utiliser. Les capteurs doivent être faciles à initialiser, ajouter et le plan de vol doit être facile à planifier.

7.3 Extensibilité

Le logiciel doit permettre l'ajout de capteurs variés et de modifier facilement les formules mathématiques utilisées pour les différents calculs. Il doit également facile de l'installer sur plusieurs ordinateurs et/ou BeagleBoard pour des bancs d'essai.

7.4 Maintenabilité

Le code doit utiliser une architecture permettant une maintenance facile et utiliser les standards de programmation courants. Le code doit être lisible par des gens qui n'ont pas une expérience approfondie de programmation.

7.5 **Portabilité**

Le logiciel doit être exécutable sur une plateforme Windows ou Linux. La partie "banc d'essai" de la solution doit supporter le matériel "BeagleBoard".

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

8. Attributs des caractéristiques

Voir l'annexe A pour la description de l'échelle d'évaluation des caractéristiques utilisées.

Caractéristiques	État	Bénéfice	Effort	Risque	Stabilité	Priorité
CAR01	Proposé	Élevé	Faible	Moyen	Élevé	Critique
CAR02	Proposé	Élevé	Faible	Moyen	Élevé	Critique
CAR03	Proposé	Élevé	Faible	Moyen	Élevé	Critique
CAR04	Proposé	Élevé	Faible	Moyen	Élevé	Critique
CAR05	Proposé	Moyen	Faible	Faible	Moyen	Important
CAR06	Proposé	Élevé	Faible	Faible	Moyen	Critique
CAR07	Proposé	Faible	Faible	Élevé	Faible	Utile
CAR08	Proposé	Moyen	Faible	Moyen	Faible	Important
CAR09	Proposé	Moyen	Faible	Moyen	Moyen	Important
CAR10	Proposé	Moyen	Faible	Faible	Faible	Important
CAR11	Proposé	Faible	Faible	Faible	Faible	Utile
CAR12	Proposé	Moyen	Faible	Moyen	Moyen	Important

9. Autres exigences du produit

9.1 Standards applicables

- Protocole de transmission de données
 - o Entre PC et banc d'essai
 - USB
 - Ethernet
 - o Entre banc d'essai et ordinateur embarqué
 - I2C
 - UART
 - SPI
 - o Entre ordinateur embarqué et PC
 - Manuel, via carte SD

9.2 Exigences du système

• Le logiciel destiné au banc d'essai doit être compilé pour architecture ARM.

9.3 Exigences de performance

• Le banc d'essai doit envoyer les signaux simulés à l'ordinateur embarqué à un intervalle précis de 200 Hz.

9.4 Exigences environnementales

Cette section ne s'applique pas pour ce projet.

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

10. Exigences de documentation

10.1 Manuel de l'utilisateur

Le logiciel de simulation sera offert avec un manuel d'utilisation. Le Manuel offrira un guide d'installation, les configurations, une description détaillée du fonctionnement du logiciel et un guide pour faire le lancement d'une simulation. De plus, le manuel offrira une explication de la sauvegarde et le chargement de scénario. Finalement, une section du manuel décrira des processus à suivre en cas de problème.

10.2 Aide en ligne

Aucune aide en ligne ne sera fournie avec le logiciel de simulation de capteur.

10.3 Guides d'installation, de configuration, et fichier à lire

Le manuel de l'utilisateur offrira toute l'information nécessaire concernant l'installation et la configuration du logiciel de simulation de capteur.

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

Annexe

A Attributs des caractéristiques

Les attributs des caractéristiques sont des critères pour aider à l'analyse de la rentabilité, des risques et de la priorité de chaque caractéristique du logiciel. Chaque attribut présente différents niveaux à considérer selon la description proposée.

État

Etat	Etat	
Proposé	La caractéristique est proposée, mais n'a pas encore été approuvée par les parties prenantes.	
Approuvé	La caractéristique est approuvée par les parties prenantes.	
Incorporé	La caractéristique est incluse dans le produit.	
Bénéfice		
Faible	La caractéristique apporte peu de valeur ajoutée au produit et n'est pas nécessaire à son bon fonctionnement.	
Moyen	La caractéristique apporte une valeur ajoutée additionnelle au produit, mais n'est pas critique à son bon fonctionnement.	
Élevé	La caractéristique apporte une valeur ajoutée importante au produit et est essentielle à son bon fonctionnement ou à la réalisation de ses tâches.	
Effort		
Faible	La réalisation de la caractéristique nécessite un effort de moins de 20 heures- personnes.	
Moyen	La réalisation de la caractéristique nécessite un effort entre 20 et 40 heures- personnes.	
Élevé	La réalisation de la caractéristique nécessite un effort de plus de 40 heures- personnes.	

Risque

Faible	La technologie utilisée et la méthode d'implémentation sont connues et bien maîtrisées.
Moyen	La technologie utilisée est récente ou la méthode d'implémentation nécessite une attention particulière.
Élevé	La technologie utilisée est nouvelle et peu éprouvée ou la méthode d'implémentation est complexe et demande une analyse plus complète.

Simulateur de capteurs	Version: 3.1
Vision	Date: 07/06/15
Vis02	

Stabilité

Faible	Les exigences concernant la caractéristique ont de fortes chances de changer ou le bon fonctionnement de la caractéristique n'a pas d'impact sur le fonctionnement général du système.
Moyen	Les exigences concernant la caractéristique sont susceptibles de changer ou le bon fonctionnement de la caractéristique a un impact sur le fonctionnement général du système sans toutefois compromettre son exécution.
Élevé	Les exigences concernant la caractéristique ont peu de chance de changer et le bon fonctionnement de la caractéristique a un impact critique sur le fonctionnement général du système et peut compromettre son exécution.

Priorité

Utile	La caractéristique apporte des fonctionnalités accessoires au système. Son inclusion dans le produit a peu d'impact sur la satisfaction du client et sur l'utilisation du système.
Important	La caractéristique apporte des fonctionnalités supplémentaires au système. Son inclusion dans le produit peut influencer la satisfaction du client, mais son absence n'empêche pas l'utilisation du système.
Critique	La caractéristique est primordiale au fonctionnement du système. Il est nécessaire de l'inclure en priorité dans le produit pour assurer la totale satisfaction du client et son absence pourrait empêcher l'utilisation du système.

B Licence MIT

The MIT License (MIT)

Copyright (c) 2015 RockÉTS

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.