人口流動與多項社經因素對六都房價之影響探討 [Group7] Final Project

王苓卉 (統計四 110304029)

李崇聖 (資訊碩一 113753209)

陳星豪 (資訊碩一 113753206)

陳凱輝 (資訊碩一 113753120)

郭祐丞 (統計四 110304058)

潘韋筑 (統計四 110304003)

目錄

- 1 簡介
- 2 全域分析
- 3 區域分析
- 4 迴歸分析
- 5 成果總結

專案目標

簡介

000000

- 探討人口流動、利率、CPI、失業率等因素與六都房價之關聯
- 建立多元與進階迴歸模型預測房價變動
- 判斷各城市影響房價的主要變因是否一致
- 尋找房價與變數間的矛盾或異常模式

資料概述

簡介 000000

■ 資料期間: 2013 年 1 月 - 2023 年 12 月

公寓、住宅大樓、透天厝每坪單價(元) 交易量 (棟)

來源: 政大商學院信義不動產研究發展中心

- 人口淨流入 = 遷入人數 遷出人數 來源:中華民國統計資訊網-歷史內政統計月報
- 消費者物價指數(CPI) 來源:中華民國統計資訊網-重要經社指標
- 五大銀行貸款利率

來源:中華民國中央銀行全球資訊網

每戶可支配年所得(元)

來源:中華民國統計資訊網-主計總處統計專區-家庭收支調查

失業率

來源: 勞動部勞動統計查詢網

研究動機

簡介

- 近年六都房價高漲,引發關注與政策討論。
- 傳統認為「人口向特定地區集中」是房價上升的主要因素。
- 台南與台北出現「人口負成長但房價上漲」的脫鉤現象。
- 單一因素無法充分解釋房價變動,需納入多元社經變數進行分析。
- 期望找出最能準確描述房價變動的統計模型。
- 為都市發展與政策規劃提供實證基礎。

研究方法

簡介 000000

研究對象

台灣六都(台北、新北、桃園、台中、台南、高雄)住宅房價

研究方法

- 資料清理與欄位標準化
- 房價與各變數關係之視覺化探索
- 時間序列預測(ARIMA)
- 多元線性與固定效果模型建構
- 共線性與異常偵測分析
- 城市間房價影響力比較(斜率檢定)

專案架構

簡介

00000

1 探索性資料分析(EDA)

- 清理原始資料
- 處理遺失值、離群值(z-score & IQR)

2 全域分析

- 人口淨流入、失業率 vs 房價
- 房價與利率變化率的即時影響分析

3 區域分析

- ARIMA 預測未來 5 年各直轄市房價走勢
- 4 迴歸分析
 - 房價 = $\beta_0 + \beta_1$ 人口淨流入 + β_2 CPI + β_3 貸款利率 + β_4 年所得 + β_5 失業率 + ε
 - 多重共線性
 - 殘差分析
 - ■模型改進
 - 模型比較

目錄

- 1 簡介
- 2 全域分析
- 3 區域分析
- 4 迴歸分析
- 5 成果總結

六都房價平均時序趨勢

六都房價排名變化(每坪平均價)

六都整體平均房價排名

人口淨流入 vs 房價(六都)

目錄

- 1 簡介
- 2 全域分析
- 區域分析
- 4 迴歸分析

房價、人口淨流入、CPI 走勢

分別對六個直轄市繪製房價、人口淨流入時間序列圖

- 房價大幅上升:台南、高雄、台中
- 人口流出:新北、台中、台南
- 人口流入: 桃園、台北、高雄

時間序列分析

預測六個直轄市未來 5 年的房價走勢

- ARIMA 模型
 - Autoregressive: 過去 p 期預測本期
 - Integrated: $\nabla X_t = X_t X_{t-1}$
 - Moving Average: 過去預測誤差來修正預測
 - 純時間序列預測方法
 - 僅依據歷史房價進行建模
- 模型預測能力評估與異常檢測
 - Root Mean Square Error
 - $\sum \mathbf{1}(|e_i| > 2 \cdot s_e)$

平均房價預測

■ 大幅上漲: 桃園、台南、高雄

■ 些微上漲:台北

■ 持平: 新北、台中

異常檢測

- 台中為 RMSE 唯一被標記為異常的案例
- 台南、台北、高雄的殘差異常次數明顯偏高

目錄

- 1 簡介
- 2 全域分析
- 4 迴歸分析

初始模型

Model

房價 =
$$\beta_0 + \beta_1$$
淨流入 + β_2 CPI + β_3 利率 + β_4 年所得 + β_5 失業率 + ε

Response variable:

■ 平均房價

Explanatory variable:

- 人口淨流入
- 消費者物價指數(CPI)
- 貸款利率
- 年所得
- 失業率

迴歸分析 0000000000

Model

房價 =
$$\beta_0 + \beta_1$$
淨流入 + β_2 CPI + β_3 利率 + β_4 年所得 + β_5 失業率 + ε

Results of model fitting

項目	估計值	標準誤	t 值	p-value
(截距)	-76.2313	14.3441	-5.3145	< 0.01
人口淨流入	0.0048	1.86×10^{-4}	25.6642	< 0.01
CPI	-0.2069	0.0851	-2.4322	0.0153
年所得	7.19×10^{-5}	1.27×10^{-6}	56.8116	< 0.01
貸款利率	9.2466	1.0587	8.7326	< 0.01
失業率	4.1926	1.8243	2.2982	0.0218

1.0

0.5

0.0

-0.5 -1.0

共線性診斷

變數	VIF	等級
人口淨流入	1.2074	低
CPI	1.8327	低
年所得	1.3434	低
貸款利率	1.2865	低
失業率	1.9822	低

殘差診斷

- 非隨機分布: 異質變異、缺適性
- 極端處偏離: 少數離群值或偏態 (b)
- (c) 週期性波動 & 高頻震盪: 自我相關

模型改進: 異質變異

- Robust 標準誤
- 修正殘差異質性所造成的估計偏誤

Results of model fitting

項目	估計值	標準誤	t 值	p-value
(截距)	-76.2313	16.5120	-4.6166	< 0.01
人口淨流入	0.0048	2.0×10^{-4}	23.2980	< 0.01
CPI	-0.2069	0.0948	-2.1819	0.0295
年所得	1.46×10^{-6}	1.27×10^{-6}	49.3405	< 0.01
貸款利率	9.2466	1.1907	7.7657	< 0.01
失業率	4.1926	2.0987	1.9977	0.0461

模型改進:自我相關

- 廣義最小平方法 (GLS)
- AR(1)
- 針對每個城市的時間序列做殘差修正

Results of model fitting

項目	估計值	標準誤	t 值	p-value
(截距)	-101.0467	26.8699	-3.7606	< 0.01
人口淨流入	5.3×10^{-4}	2.6×10^{-4}	2.0563	0.0401
CPI	0.4035	0.2355	1.7132	0.0871
年所得	$5{ imes}10^{-4}$	8×10^{-6}	6.7157	< 0.01
貸款利率	1.2739	3.5421	0.3596	0.7192
失業率	4.3339	2.2865	1.8954	0.0584

模型改進:固定效果模型

- 資料兼具時間與橫截面維度
- Fixed effects model 能更準確控制不隨時間改變的特性

城市固定效果

城市	FE 係數
台北市	59.4255
新北市	20.0447
桃園市	15.3976
台中市	14.7730
台南市	7.8096
高雄市	10.4778

月份固定效果

時間	FE 係數
2014-01-01	15.0187
:	
2020-01-01	20.3819
:	
2023-12-01	16.3361

模型改進: 固定效果模型

- Panel Two-way Fixed Effects 模型假設各城市僅在固定效果(截距) 上存在異質性
- 進一步引入「人口淨流入 × 城市」執行聯合線性假設檢定
- H₀:斜率一致 vs H_a:斜率不一致
- F = 2.72 (p-value = 0.0192)
- 結論:不同城市中,人口淨流入對房價的影響力存在結構性差異。 因此,在 panel data 結構下考量斜率異質性是有必要的。

模型改進:固定效果模型

各城市『人口淨流入 → 房價』斜率比較

模型選擇

模型比較

Model	R^2	AIC
初始模型	0.8992	4487.2972
固定效果模型	0.9740	3542.4489
GLS with $AR(1)$	NA	3787.2197

模型預測能力交叉驗證

Model	RMSE	MAE	R^2
初始模型	5.7180	4.4361	0.9003
優化模型	7.5235	5.8960	0.8259
固定效果模型	2.7154	1.5869	0.9744

目錄

- 1 簡介
- 2 全域分析
- 3 區域分析
- 4 迴歸分析
- 5 成果總結

研究發現

綜合分析

- 時間序列(ARIMA)、複迴歸、Panel 固定效果模型
- 分析六都房價與多項社經變數(人口、CPI、所得、利率)的關係

主要發現

- 房價與人口流動呈正相關,但城市間存在顯著差異。
- 固定效果模型證實「城市差異」與「月份固定效果」皆顯著存在。

價格逆勢現象: 台南市

- 人口淨流入長期處於負值,房價卻穩定上升。
- ARIMA 預測異常最多的城市,嚴重預測失準。
- 人口對房價的迴歸斜率不顯著。
- 可能原因:區段開發吸引投資性購屋、價格受到炒作

結構性脫鉤: 台北市

- 人□淨流入並未隨著房價趨勢上升。
- ARIMA 殘差異常次數高,房價難以預測。
- 人口流入迴歸係數不顯著。
- 可能原因: 資金流動、土地有限、投資性購屋、豪宅市場運作

潛在政策建議

關注房價與需求脫鉤城市

- 強化實價登錄透明度
- 對短期持有課徵更高稅負

🙎 建立分區式房價預警系統

- 建立以 RMSE、殘差次數為基準的 ARIMA 異常警示系統
- 提供政府預警房市過熱的依據

3 導入多元解釋變數於都市發展評估

- 資金流動
- 基礎建設預期
- 公共運輸建設密度

Q & A