Regularisation

Overfitting/Underfitting

Overfitting/Underfitting

Bias-Variance Tradeoff

Assuming the true function is y and the learned function approximation is \hat{y} the error \mathcal{L} for a given input x is:

$$\mathcal{L}(x) = E[(\hat{y} - y)^2]$$

The error can be decomposed to:

$$\mathcal{L}(x) = Bias^{2} + Var + Irreducible Error$$

$$Bias^{2} = (E[\hat{y}] - y)^{2}$$

$$Var = E[(\hat{y} - E[\hat{y}])^{2}]$$

$$\sigma_{e}^{2} = constant$$

Bias-Variance Tradeoff

Underfitting/Overfitting

Regularisation

Modify Loss function \mathcal{L} to penalise complex models

$$\mathcal{L}(x) = E\left[\left(f(x) - \hat{f}(x)\right)^2\right] + \lambda \|w\|_p^p$$

Where $||w||_{\ddot{V}}$ is the p norm of the model parameters:

$$-p = 1$$
, $L1$ norm: $||w||_1 = \sum_{j=1}^p |w_j|$

$$-p = 2$$
, L2 norm: $||w||_2 = \sqrt{\sum_{j=1}^p w_j^2}$

and λ the regularisation coefficient for $\lambda \to 0$ the loss function reduces to no regularisation and for $\lambda \to \infty$ error becomes large and all the weights will approach zero

Effect of λ

How to select λ ?

- λ is another hyperparameter
- To find the best λ run multiple iteration with random train/test splits and select the λ that minimises the variance

Weight Decay

Update rule for SGD:

$$w_{t+1} = w_t - \eta \frac{\partial L}{\partial w} - \eta \lambda w_t$$

Every update we subtract $\eta \lambda w_t$ and we decay the weights

Equivalent to L2 Regularisation (for vanilla SGD)

$$\mathcal{L}' = \mathcal{L} + \frac{\lambda}{2} \|w\|_2^2$$

(Note instead of λ we use $\frac{\lambda}{2}$ to make math easier)

Dropout

Data Augmentation

LeNet-5

2D Convolution

$$G[m,n] = (f * g)[m,n] = \sum_{j} \sum_{k} f[m-j,n-k]g[j,k]$$

https://towardsdatascience.com/gentle-dive-into-math-behind-convolutional-neural-networks-79a07dd44cf9

2D Convolution Examples for different Kernels

2D Convolution

https://github.com/vdumoulin/conv_arithmetic

2D Convolution Padding

2D Convolution with Stride

Combination of Strides and Padding

Pooling

Convolutions on RGB Image

Convolutions on RGB Image

Convolutional Neural Networks (LeNet-5)

VGG-16

AlexNet

Transfer Learning

ResNet

UNet

HPC-Enabled Precision Agriculture Automatic counting of wheat ears

Thermal

RetinaNet

Mask-RCNN

