Matrix theory - Assignment 10

Shreeprasad Bhat AI20MTECH14011

 $\begin{tabular}{ll} Abstract — This document illustrates applications of Rank-Nullity Theorem \end{tabular}$

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment10/

1 Problem

Let **A** be an $m \times n$ matrix with entries in F and let T be the linear transformation from $F^{n \times 1}$ into $F^{m \times l}$ defined by $T(\mathbf{X}) = \mathbf{A}\mathbf{X}$. Show that

- 1) if m < n it may happen that T is onto without being non-singular
- 2) if m > n we may have T non-singular but not onto.

2 Definitions

A linear transformation $T(\mathbf{X}): \mathbb{R}^n \to \mathbb{R}^m$ is said to be		
	if \exists some $\mathbf{X} \in \mathbb{R}^m$ s.t	
singular	$T(\mathbf{X}) = 0 \text{ and } \mathbf{X} \neq 0$	
	i.e $Nullity(T) \neq 0$	
non-singular	if \exists some $\mathbf{X} \in \mathbb{R}^m$ s.t	
	$T(\mathbf{X}) = 0 \implies \mathbf{X} = 0$	
	i.e $Nullity(T) = 0$	
	if for every $\mathbf{b} \in \mathbb{R}^m$,	
onto	$T(\mathbf{X}) = \mathbf{b}$ has at least one solution $\mathbf{X} \in \mathbb{R}^n$	
	i.e $dim(Col(T)) = m \implies Rank(T) = m \text{ and } m \le n$	
	If $m > n$, then $T(\mathbf{X}) = \mathbf{b}$ will not have solution	
	becuase Rank-Nullity theorem is not satisfied.	

3 Solution

Let A be an $m \times n$ matrix with entries in F and			
let T be the linear transformation from $F^{n\times 1}$ into $F^{m\times l}$			
defined by $T(\mathbf{X}) = \mathbf{A}\mathbf{X}$. If,			
	m < n	m > n	
singular	$\implies rank(\mathbf{A}) < n$	$\implies rank(\mathbf{A}) > n$	
	From Rank-Nullity Theorem,	If $T(\mathbf{X}) = 0, \mathbf{A}\mathbf{X} = 0$	
	$Rank(\mathbf{A}) + Nullity(\mathbf{A}) = n$	$\implies X = 0$	
	$\implies Nullity(\mathbf{A}) \neq 0$	Hence T(X) is non-singular.	
	$T(\mathbf{X})$ is a singular.	$\implies Nullity(\mathbf{A}) = 0$	
	$\implies rank(\mathbf{A}) < n$	$Rank(\mathbf{A}) + Nullity(\mathbf{A}) > n.$	
onto	Hence $T(\mathbf{X})$ can be onto.	Rank-Nullity Theorem is, $T(\mathbf{X})$ do not span $F^{m \times 1}$. $\therefore T$ is not onto.	

4 Example

Below is an example in which linear transformation is both onto and singular.

Let,
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 (4.0.1)

$$T(\mathbf{X}) = \mathbf{AX} = \mathbf{b} \tag{4.0.2}$$

Let,
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 (4.0.3)

Consider,
$$\mathbf{X} = \begin{pmatrix} 2\\4\\1 \end{pmatrix}$$
 (4.0.4)

$$\implies \mathbf{AX} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \tag{4.0.5}$$

$$= \begin{pmatrix} 6 \\ 5 \end{pmatrix} \tag{4.0.6}$$

Since $Rank(\mathbf{A}) = 2$ and $Rank(\mathbf{A}) < 3$, T is onto.

Consider,
$$\mathbf{X} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 (4.0.7)

$$\implies \mathbf{AX} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \tag{4.0.8}$$

$$= \mathbf{0} \tag{4.0.9}$$

Since $\exists X \neq 0$ such that AX = 0, T is singular.

∴ T is both onto and singular.