H19T3A2

Gegeben sei die Abbildung

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x,y) \mapsto (x(1-y), xy)$$

- a) Zeige, dass f den Streifen $S :=]0, \infty[\times]0, 1[$ diffeomorph auf den ersten Quadranten $Q :=]0, \infty[^2$ abbildet (d.h. f bildet S bijektiv auf Q ab und $f : S \to Q$ sowie die Umkehrabbildung $f^{-1} : Q \to S$ sind stetig differenzierbar).
- b) Wir identifizieren nun \mathbb{R}^2 in kanonischer Weise mit \mathbb{C} und fassen f als Funktion $\mathbb{C} \to \mathbb{C}$ auf. Bildet dann f den Streifen $S = \{z \in \mathbb{C} : \Re e(z) > 0, \ 0 < \Im m(z) < 1\}$ konform (d.h. biholomorph) auf den ersten Quadranten $Q = \{w \in \mathbb{C} : \Re e(w) > 0, \Im m(w) > 0\}$ ab? Begründe deine Antwort.

Zu a):

Behauptung: $S :=]0, \infty[\times]0, 1[, Q :=]0, \infty[^2, \text{dann ist}]$

$$g: S \to Q, \quad (x,y) \mapsto f(x,y) = \begin{pmatrix} x(1-y) \\ xy \end{pmatrix} = \begin{pmatrix} g_1(x,y) \\ g_2(x,y) \end{pmatrix}$$

ein Diffeomorphismus.

Beweis: Ist $(x, y) \in S$, also x > 0, $y \in]0, 1[\Rightarrow 1 - y \in]0, 1[$ x(1 - y), xy > 0 d.h. $f(x, y) \in Q$ also g would efinite.

 $(\partial_1 g_1)(x,y) = 1 - y$, $(\partial_1 g_2)(x,y) = y$ $\Rightarrow g$ stetig partiell difference bar

 $(\partial_2 g_1)(x,y) = -x, \quad (\partial_2 g_2)(x,y) = x \quad \Rightarrow g \text{ stetig differential and } x = 0$

Sind $(x_1, y_1), (x_2, y_2) \in S$ mit $g(x_1, y_1) = g(x_2, y_2)$

$$\Rightarrow \begin{pmatrix} x_1(1-y_1) \\ x_1y_1 \end{pmatrix} = \begin{pmatrix} x_2(1-y_2) \\ x_2y_2 \end{pmatrix}$$

(1) $x_1 - x_1 y_1 = x_2 - x_2 y_2$ \Rightarrow $x_1 = x_2$, in (2) einsetzen: $y_1 = y_2 \Rightarrow g$ injektiv (2) $x_1 y_1 = x_2 y_2$

Ist
$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{Q}$$
, d.h. $z_1 > 0$ und $z_2 > 0$

$$\begin{cases} (3) \ z_1 = g_1(x_1, y_1) = x_1(1 - y_1) \\ (4) \ z_2 = g_2(x_1, y_1) = x_1y_1 \end{cases}$$

hat eine Lösung $(x_1, y_1) \in S$, denn (3) + (4): $z_1 + z_2 = x_1 \in]0, \infty[$ in (4) einsetzen:

$$y_1 = \frac{z_2}{z_1 + z_2} \in]0, 1[$$

d.h.
$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = g \begin{pmatrix} z_1 + z_2 \\ \frac{z_2}{z_1 + z_2} \end{pmatrix}$$
 und damit ist g surjektiv.

$$h: Q \to S, \quad \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \mapsto \begin{pmatrix} z_1 + z_2 \\ \frac{z_2}{z_1 + z_2} \end{pmatrix}$$

erfüllt
$$h \circ g)(x,y) = h \begin{pmatrix} x(1-y) \\ xy \end{pmatrix} = \begin{pmatrix} x - xy + xy \\ \frac{xy}{x(1-y) + xy} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$(g \circ h) \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = g \begin{pmatrix} z_1 + z_2 \\ \frac{z_2}{z_1 + z_2} \end{pmatrix} = \begin{pmatrix} (z_1 + z_2)(1 - \frac{z_2}{z_1 + z_2}) \\ (z_1 + z_2)\frac{z_2}{z_1 + z_2} \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \quad \text{für } \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in Q$$

$$\Rightarrow h = q^{-1}$$

hist auf Qstetig differenzierbar, da $(\partial_1 h_1)(z_1,z_2)=1=(\partial_2 h_1)(z_1,z_2)$

$$(\partial_1 h_2)(z_1, z_2) = \frac{-z_2}{(z_1 + z_2)^2}, \quad (\partial_2 h_2)(z_1, z_2) = \frac{z_1 + z_2 - z_2}{(z_1 + z_2)^2} = \frac{z_1}{(z_1 + z_2)^2}$$

Zu b):

Nein, denn

$$(\partial_1 g_1)(x, y) = 1 - y \neq (\partial_2 g_2)(x, y) = x$$

also erfüllt $g = g_1 + ig_2$ nicht die Cauchy-Riemannschen Differentialgleichungen und ist daher nicht holomorph.