

Licenciatura em Engenharia Informática

FSIAP - 2020/2021

Relatório

Superfícies equipotenciais e Campo Elétrico

Autores:

1190402 António Fernandes

<u>1191045</u> Rui Soares

Turma: 2DK Grupo: 01

Data: 11/12/2020

Docente: Paulo Fernandes (PAF)

Índice:

Resumo	3
Introdução	4
Campo Elétrico	4
Tensão (d.d.p) Elétrica	5
Potencial Elétrico	5
Campo Elétrico e Potencial Elétrico	6
Procedimento e Resultados Experimentais	7
Material Necessário e Montagem	7
Material	7
Montagem	7
Esquema de Montagem	7
Procedimento Experimental	8
Resultados Experimentais	9
Localização dos Elétrodos	9
Mapeamento das Linhas equipotenciais:	9
Valores Médios	10
Gráfico das Linhas Equipotenciais	10
Ponto a 3 cm do Polo Positivo	10
Direção e sentido do campo elétrico	10
Diferença de potencial com leituras de 2cm em 2cm a partir do elétrodo cilíndrico	11
Gráfico->Diferença de potencial com leituras de 2cm em 2cm a partir do elétrodo cilíndrico	11
Diferença potencial em ambos elétrodos com leituras de 4mm em 4mm	11
Gráfico-> Diferença potencial em ambos elétrodos com leituras de 4mm em 4mm	11
Apresentação dos Resultados	12
Exercício 1	12
Exercício 2	12
Exercício 3	13
Exercício 4	13
Exercício 5	14
Exercício 6	14
Questão 1	15
Questão 2	15
Conclusões	15
Referências e Bibliografia	16

Resumo

De forma a proceder a um estudo à cerca das superfícies equipotenciais que são aquelas em que o potencial elétrico é o mesmo em qualquer ponto desta linha, sendo então a diferença entre a diferença de tensão de dois pontos na mesma linha é igual a 0.

Para mapearmos essas superfícies usamos uma tina com água que no fundo tinha um papel milimétrico para ser possível extrair as coordenadas de pontos com o mesmo potencial elétrico usamos para isso a ponta de prova que ligada ao voltímetro nos indicava o valor no ponto onde estava colocado e assim já nos possibilitava mapear essas superfícies.

Depois de mapeadas 5 linhas equipotenciais, num ponto afastado 3 cm de um dos elétrodos na linha imaginária que une os dois elétrodos, com a menor distância, medimos os valores do potencial de ação posteriormente de 2 em 2 cm de um elétrodo ao outro e por fim de 4 em 4 mm a partir de um ponto a 4 cm do elétrodo cilíndrico e conseguimos identificar o sentido e direção do campo elétrico.

Posteriormente começamos a análise de resultados apresentada neste relatório onde calculamos o valor do campo elétrico no interior da tina com água, a razão entre a força elétrica nesse ponto e um ponto acima da linha de água mas nas mesmas coordenadas.

Em seguida calculamos o trabalho realizado entre os elétrodos cilíndrico e plano.

Por fim respondemos às questões colocadas no nosso guião.

Introdução

Campo Elétrico

São as cargas elétricas as responsáveis pela existência dos campos elétricos, formados no espaço em torno destas.

O tamanho e forma de um campo elétrico está relacionado diretamente com os valores das cargas que o criam e com a distribuição espacial destas.

Sendo o campo elétrico uma grandeza vetorial \vec{E} , e, como tal, apresenta um sentido e direção da força elétrica sendo estes definidos em cada ponto de cada uma das linhas que representam o campo elétrico.

É possível calcular o campo elétrico a partir da seguinte expressão:

$$\vec{E} = \frac{\vec{F_e}}{q_0}$$

Figura 1- Comportamento do campo elétrico numa carga + e numa carga - isoladas

Como é visível na figura 1, nas cargas positivas (+) as linhas de campo divergem e o oposto acontece nas cargas negativas (-), verificando-se, portanto, uma convergência.

Num campo elétrico constituído por uma carga + e uma carga - forma-se um dipolo:

Figura 2- Dipolo Elétrico

Tensão (d.d.p) Elétrica

A unidade SI para Tensão/ Diferença de Potencial é o volt = 1 joule/coulomb.

Para uma carga se deslocar entre dois pontos no espaço, através do campo elétrico tem de ser realizado um trabalho sobre a carga, podemos **relacionar a tensão e o trabalho** através da seguinte expressão:

$$V_A - V_B = V_{AB} = \frac{W_{AB}}{q_0}$$

Figura 3- Imagem ilustrativa do movimento de A para B da carga elétrica

Potencial Elétrico

Corresponde à diferença de potencial em relação a um dos pontos tomado como referência.

Neste trabalho efetuamos o estudo de superfícies equipotenciais que são aquelas em que o potencial elétrico é o mesmo em qualquer ponto desta linha, sendo então a diferença entre a diferença de tensão de dois pontos na mesma linha é igual a 0.

Figura 4- Superfícies Equipotenciais

O potencial elétrico pode ser representado através de linhas equipotenciais.

Campo Elétrico e Potencial Elétrico

As linhas de campo elétrico são perpendiculares às superfícies equipotenciais, tal como ilustrado na figura 4, sendo o sentido destas, contrário ao crescimento do potencial.

O campo elétrico é o gradiente da função potencial e pode ser escrito como:

$$\vec{E} = -\vec{\nabla}V$$

Numa simetria esférica:

$$\vec{E} = -\frac{dV}{dr}\hat{r}$$

Assim, o potencial elétrico, V, pode ser encontrado integrando o campo elétrico desde um ponto inicial a um ponto final, ao longo de um percurso s. Desta forma, é possível determinar o potencial elétrico, V, fazendo a integral do campo elétrico do ponto inicial ao final de um percurso p.

Se o campo elétrico for paralelo a esse percurso (para cada elemento do percurso), isto é, se \vec{E} // $d\vec{p}$, então:

$$V_{if} = -\int_{i}^{f} E. \, dp$$

E a componente de E na direção de p:

$$E_s = -\frac{dV}{dp} = -(\frac{V_f - V_i}{p_f - p_i})$$

Quando uma carga se desloca sobre uma superfície equipotencial o trabalho realizado é nulo. Se uma carga se desloca sobre uma superfície equipotencial como a linha equipotencial é perpendicular às linhas de campo elétrico o trabalho realizado é nulo (ilustrado na figura 4).

Procedimento e Resultados Experimentais

Material Necessário e Montagem

Material

- 1 Tina com água;
- 1 Multímetro em função de voltímetro;
- 1 Fonte de alimentação;
- 2 Elétrodos:
 - o 1 de formato cilíndrico;
 - o 1 de formato plano.
- 1 Ponta de Prova;
- Fios de Ligação.

Montagem

Figura 5- Montagem Experimental

Esquema de Montagem

Figura 6- Esquema de Montagem

Procedimento Experimental

Começamos por efetuar a montagem das figuras 5 e 6 começando por colocar os elétrodos a uma distância de 15/17 cm entre eles e ligamos os fios de ligação e o voltímetro conforme indicado.

Regulamos a fonte para 8V e registamos o valor da diferença de potencial desta obtendo 8V, sendo que na água este valor baixava para 6,99V.

Para efetuar o mapeamento das linhas equipotenciais usamos papel milimétrico que demarcava o eixo dos xx (horizontal) e dos yy (vertical) para nos ajudar a extrair os conjuntos de pares de valores (x, y) com o mesmo potencial elétrico. Procuramos então 10 pares de coordenadas diferentes para o mesmo potencial para 5 linhas equipotenciais.

De seguida para um ponto afastado 3 cm de um dos elétrodos na linha imaginária que une os dois elétrodos registamos o valor do potencial e as coordenadas correspondentes.

Para concluir a atividade fizemos o registo da d.d.p. começando num dos elétrodos de 2 em 2 cm até atingir o outro e depois fizemos um registo de d.d.p. existente junto ao elétrodo cilíndrico até uma distância de 4 cm de 4 em 4 mm e repetimos este último para o elétrodo plano.

Por fim desligamos todos os equipamentos e retiramos os elétrodos e a ponta de prova da água.

Resultados Experimentais

Localização dos Elétrodos

	X(CM)	Y(CM)		
Localização do Elétrodo Cilíndrico	6	8		
Localização do Elétrodo Plano	22	3	13	

Mapeamento das Linhas equipotenciais:

	X(CM)	Y(CM)	TENSÃO (V)
	13,6	5,0	3,483
	13,8	6,0	3,482
	13,9	7,0	3,511
LINHA 1	14,0	8,0	3,502
LINDAT	13,9	9,0	3,511
	13,7	10,0	3,506
	13,7	11,0	3,504
	13,4	12,0	3,474
	15,6	5,0	3,085
	15,8	6,0	2,911
	15,9	7,0	2,912
LINHA 2	16,0	8,0	2,963
LIINTA Z	15,9	9,0	2,967
	15,8	10,0	2,962
	15,7	11,0	2,915
	15,5	12,0	2,988
	17,8	5,0	2,538
	17,9	6,0	2,487
	17,9	7,0	2,512
LINHA 3	18,0	8,0	2,415
LINITYO	17,9	9,0	2,505
	17,9	10,0	2,482
	17,8	11,0	2,484
	17,8	12,0	2,574
	11,2	5,0	4,000
	11,5	6,0	3,930
	11,7	7,0	3,963
LINHA 4	12,0	8,0	4,030
	11,9	9,0	4,010
	11,7	10,0	3,885
	11,2	11,0	3,999
	11,0	12,0	3,954
	7,6	5,0	4,870
	8,0	6,0	4,900
	8,7	7,0	4,780
LINHA 5	9,0	8,0	4,900
	8,7	9,0	4,910
	8,3	10,0	4,770
	8,0	10,5	4,750
	7,6	11,0	4,770

Valores Médios

LINHA	1	3,497	V
LINHA	2	2,963	V
LINHA	3	2,500	٧
LINHA	4	3,971	V
LINHA	5	4,831	V

Gráfico das Linhas Equipotenciais

Ponto a 3 cm do Polo Positivo

Ponto a 3 cm do polo +		Polo +			Polo -				
x(cm)	y(cm)	tensão(v)	x(cm)	y(cm)	tensão(v)	x(cm)	y(c	m)	tensão(v)

Direção e sentido do campo elétrico

Diferença de potencial com leituras de 2cm em 2cm a partir do elétrodo cilíndrico

x(cm)	y(cm)	tensão(v)
6,0	8,0	6,830
8,0	8,0	5,290
10,0	8,0	4,590
12,0	8,0	4,030
14,0	8,0	3,502
16,0	8,0	2,963
18,0	8,0	2,415
20,0	8,0	1,940
22,0	8,0	1,590

Gráfico->Diferença de potencial com leituras de 2cm em 2cm a partir do elétrodo cilíndrico

Diferença potencial em ambos elétrodos com leituras de 4mm em 4mm

Elétrodo Cilindríco		Elétrodo Plano			
Valores			Valores		
x(cm)	y(cm)	tensão(v)	x(cm) y(cm) tensão		
6,0	8,0	6,830	22,0	8,0	0,400
6,4	8,0	6,490	21,6	8,0	1,040
6,8	8,0	6,200	21,2	8,0	1,210
7,2	8,0	5,900	20,8	8,0	1,320
7,6	8,0	5,610	20,4	8,0	1,430
8,0	8,0	5,290	20,0	8,0	1,510
8,4	8,0	5,100	19,6	8,0	1,550
8,8	8,0	4,960	19,2	8,0	1,580
9,2	8,0	4,820	18,8	8,0	1,640
9,6	8,0	4,690	18,4	8,0	1,690

Gráfico-> Diferença potencial em ambos elétrodos com leituras de 4mm em 4mm

Apresentação dos Resultados

Exercício 1

No seguinte gráfico estão representados as coordenas das linhas equipotenciais registadas no ponto 5, assim como as posições dos elétrodos.

Exercício 2 Ao gráfico representado no exercício 1 traçamos três linhas de força.

Exercício 3

Neste gráfico estão representados todos os valores obtidos no ponto 7, relativos ao comportamento da d.d.p. da ponta de prova em função da distância ao elétrodo.

Exercício 4

Conseguimos calcular o valor do campo elétrico na água através da seguinte fórmula:

$$E = \frac{\Delta V}{d} = \frac{6,830 - 4,900}{3,00 \times 10^{-2}} = 64,(3) \approx 6,4 \times 10^{-2} \text{ V/m}$$

Sendo que a direção e sentido deste campo podem ser observadas no seguinte gráfico:

Exercício 5

Para determinar a razão entre a força elétrica entre o ponto na linha de água e o ponto do ar, temos de calcular a força elétrica em cada um dos meios. Para isso, utiliza-se a seguinte expressão:

$$|\overrightarrow{Fe}| = q \times \overrightarrow{E} \iff |\overrightarrow{Fe}| = q \times \frac{V}{d} \text{ em que: } V = k \times \frac{q}{r}$$

Temos apenas os dados relativos ao $V_{\acute{a}gua}$ e à distância, pelo que precisamos de calcular o valor da constante de Coulomb da água. O valor tabelado para permissividade elétrica no ar (\in ar) é igual a $8.85 \times 10^{-12} C^2 N^{-1} m^{-2}$. Temos então:

$$\frac{k_{\acute{a}gua}}{k_{ar}} = \frac{\frac{1}{4\pi\delta_{\acute{a}gua}}}{\frac{1}{4\pi\delta_{ar}}} = \frac{\delta_{ar}}{\delta_{\acute{a}gua}}$$

$$\delta_r = \frac{\delta_{\acute{a}gua}}{\delta_{ar}} = 80 \iff \delta_{\acute{a}gua} = 80\delta_{ar}$$

Logo:

$$\frac{k_{\acute{a}gua}}{k_{ar}} = \frac{\delta_{ar}}{80\delta_{ar}} = \frac{1}{80} \qquad \qquad k_{\acute{a}gua} = \frac{k_{ar}}{80} = \frac{8,98 \times 10^9}{80} = 1,12 \times 10^8 Nm^2 C^{-2}$$

Ao obtermos a diferença de potencial e a constante de Coulomb da água, calculamos o valor da carga por:

$$4,90 = 1,12 \times 10^8 \times \frac{q}{3 \times 10^{-2}} \Leftrightarrow q = 1,31 \times 10^{-9} C$$

Com a carga do elétrodo obtemos a diferença de potencial no ar:

$$V_{ar} = 8.98 \times 10^9 \times \frac{1.31 \times 10^{-9}}{3 \times 10^{-2}} = 392.13V$$

Passo final para calcular a razão entre a força elétrica dos dois pontos é:

$$\begin{aligned} \left| \overrightarrow{Fe} \right|_{agua} &= 1,31 \times 10^{-9} \times \frac{4,90}{3 \times 10^{-2}} = 2,14 \times 10^{-7} N \\ \left| \overrightarrow{Fe} \right|_{ar} &= 1,31 \times 10^{-9} \times \frac{392,13}{3 \times 10^{-2}} = 1,71 \times 10^{-5} N \\ &\frac{\left| \overrightarrow{Fe} \right|_{agua}}{\left| \overrightarrow{Fe} \right|_{ar}} = \frac{2,14 \times 10^{-7}}{1,71 \times 10^{-5}} \cong 0,0125 \end{aligned}$$

Exercício 6

Para calcular o trabalho realizado entre os elétrodos cilíndrico e plano, utilizamos a fórmula:

$$W_{C\to P}=q\times (V_C-V_P)$$

O V_C corresponde à d.d.p do elétrodo cilíndrico e o V_P ao do elétrodo plano, logo:

$$W_{C\to P} = 1.31 \times 10^{-9} \times (6.380 - 0.400) = 7.83 \times 10^{-9} J$$

Questão 1

Com base nas leituras feitas ao longo da atividade, tiramos como conclusão as seguintes hipóteses:

- 1. Com o aumento da distância do elétrodo cilíndrico, que por sua vez é a carga positiva, podemos observar uma diminuição significativa da diferença de potencial, visto que a o potencial elétrico desta carga é superior ao da carga negativa (elétrodo plano).
- 2. Com base na explicação anterior, podemos observar o oposto, em função da distância do elétrodo plano, carga negativa, a diferença de potencial aumenta.
- 3. Com as medidas de distância de 2 em 2 cm entre os dois elétrodos, conseguimos confirmar os pontos referidos anteriormente, ou seja, o aumento progressivo da diferença de potencial com a aproximação da carga positiva (elétrodo cilíndrico).

Questão 2

Como o elétrodo plano tem carga negativa e o elétrodo cilíndrico tem carga positiva, a força elétrica vai aumentando ao longo das linhas tracejadas que estão representadas na figura abaixo. Isto é, quanto mais próximo do elétrodo positivo, maior a força elétrica.

Fig. - Esquema de Montagem

Conclusões

Em conclusão maioria dos valores estão de acordo com o esperado, verificando-se assim os principais objetivos desta atividade experimental.

Apesar disso, alguns dos erros que obtivemos deve-se à dificuldade em retirar valores certos na atividade, não só devido à difícil visualização do local onde retiramos os valores, erros de paralaxe (posição do observador em relação ao referencial) mas também à constante mudança dos valores de d.d.p. no voltímetro devido à carga e descarga na água e a possíveis vibrações ao colocar a ponta de prova na água.

Devido ao refletido em cima, podemos observar uma grande dispersão de valores no exercício 3.

Referências e Bibliografia

- [1] "Linhas Equipotenciais." http://ensinoadistancia.pro.br/EaD/Eletromagnetismo/Equipotenciais/Equipotenciais.html (accessed Dec. 12, 2020).
- [2] "(No Title)." https://moodle.isep.ipp.pt/pluginfile.php/64618/mod_resource/content/2/FSIAP_Trabalh o 1.pdf (accessed Dec. 12, 2020).