

Lecture 9. Face Recognition

Pattern Recognition and Computer Vision

Guanbin Li,

School of Data and Computer Science, Sun Yat-Sen University

What we will learn today?

- Introduction to face recognition
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

"Faces" in the brain

Courtesy of Johannes M. Zanker

"Faces" in the fusiform face area

Stimulus House Face

梭形面部区域

Kanwisher, et al. 1997

Detection vs. Recognition

Detection finds the faces in images

Recognition recognizes WHO the person is

Digital photography

- Digital photography
- Surveillance

- Digital photography
- Surveillance
- Album organization

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions
- Security/warfare
- Tele-conferencing
- Etc.

- An image is a point in a high dimensional space
 - If represented in grayscale intensity, an N x M image is a point in R^{NM}
 - E.g. 100x100 image = 10,000 dim

100x100 images can contain many things other than faces!

- An image is a point in a high dimensional space
 - If represented in grayscale intensity, an N x M image is a point in R^{NM}
 - E.g. 100x100 image = 10,000 dim
- However, relatively few high dimensional vectors correspond to valid face images
- We want to effectively model the subspace of face images

- Compute n-dim subspace such that the projection of the data points onto the subspace has the largest variance among all n-dim subspaces.
- Maximize the scatter of the training images in face space.

What we will learn today?

- Introduction to face recognition
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Eigenfaces: key idea

- Assume that most face images lie on a low-dimensional subspace determined by the first k (k<<d) directions of maximum variance
- Use PCA to determine the vectors or "eigenfaces" that span that subspace
- Represent all face images in the dataset as linear combinations of eigenfaces

Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3 (1): 71–86.

What are eigenfaces?

 "Eigenfaces" are the visual representations of the eigenvectors in the directions of maximum variance. They often resemble generic-looking faces.

Visualization of eigenfaces

- **Training**
 - Align training images $x_1, x_2, ..., x_N$

Note that each image is formulated into a long vector!

Compute average face $\mathcal{M} = \frac{1}{\lambda \tau} \mathring{a} x_i$

$$m = \frac{1}{N} \mathring{a} x_i$$

Compute the difference image (the centered data matrix):

$$X_{c} = \begin{bmatrix} | & & | \\ x_{1} & \dots & x_{N} \\ | & | \end{bmatrix} - \begin{bmatrix} | & & | \\ \mu & \dots & \mu \\ | & & | \end{bmatrix}$$
$$= X - \mu \mathbf{1}^{T} = X - \frac{1}{N}X\mathbf{1}\mathbf{1}^{T} = X(I - \frac{1}{N}\mathbf{1}\mathbf{1}^{T})$$

4. Compute the covariance matrix

$$\Sigma = \begin{bmatrix} | & & | \\ x_1^c & \dots & x_N^c \\ | & & | \end{bmatrix} - \begin{bmatrix} - & x_1^c & - \\ & \dots & \\ - & x_N^c & - \end{bmatrix} = \frac{1}{N} X_c X_c^T$$

- 5. Compute the eigenvectors of the covariance matrix Σ using PCA
- 6. Compute each training image x_i 's projections as

$$x_i \rightarrow (x_i^c \cdot f_1, x_i^c \cdot f_2, \dots, x_i^c \cdot f_K) \equiv (a_1, a_2, \dots, a_K)$$

where ϕ_i the *i*'th-highest ranked eigenvector

7. Visualize the estimated training face x_i

$$x_i \gg m + a_1 f_1 + a_2 f_2 + ... + a_K f_K$$

6. Compute each training image x_i 's projections as

$$x_i \rightarrow (x_i^c \cdot f_1, x_i^c \cdot f_2, \dots, x_i^c \cdot f_K) \equiv (a_1, a_2, \dots, a_K)$$

where ϕ_i the *i*'th-highest ranked eigenvector

7. Visualize the estimated training face x_i

$$x_i \gg m + a_1 f_1 + a_2 f_2 + ... + a_K f_K$$

Why can we do this?

Eigenvalues (variance along eigenvectors)

Reconstruction and Errors

- Only selecting the top K eigenfaces → reduces the dimensionality.
- Fewer eigenfaces result in more information loss, and hence less discrimination between faces.

Testing

- Take query image t
- Project into eigenface space and compute projection

$$t \rightarrow ((t - m) \cdot f_1, (t - m) \cdot f_2, \dots, (t - m) \cdot f_K) \equiv (w_1, w_2, \dots, w_K)$$

- 3. Compare projection w with all N training projections
 - Simple comparison metric: Euclidean
 - Simple decision: K-Nearest Neighbor
 (note: this "K" refers to the k-NN algorithm, is different from the previous K's referring to the # of principal components)

Advantages

- Method is completely knowledge free:
 - Doesn't know anything about faces, expressions, etc.
- Non-iterative (fast), globally optimal solution

Disadvantages

- Requires carefully controlled data:
 - All faces centered in frame
 - Same size
 - Some sensitivity to angle
- Alternative:
 - "Learn" one set of PCA vectors for each angle
 - Use the one with lowest error
- Method is completely knowledge free:
 - Doesn't take into account the labels associated with the faces
 - Makes no effort to preserve class distinctions

Expressions and Emotions

- This technique can be used to detect expressions and emotions.
- The subspaces would therefore represent happiness, disgust, or other potential expressions.

Happiness subspace

Expressions and Emotions

- This technique can be used to detect expressions and emotions.
- The subspaces would therefore represent happiness, disgust, or other potential expressions.

Disgust subspace

Expressions and Emotions

- This technique can be used to detect expressions and emotions.
- The subspaces would therefore represent happiness, disgust, or other potential expressions.

Facial Expression Recognition Movies

What we will learn today?

- Introduction to face recognition
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA)

Goal: find the best separation between two classes

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

Difference between PCA and LDA

- PCA preserves maximum variance
- LDA preserves discrimination
 - Find projection that maximizes scatter between classes and minimizes scatter within classes

Illustration of the Projection

Using two classes as example:

Basic intuition: PCA vs. LDA

LDA with 2 classes

 We want to learn a projection w such that the projection converts all the points from x to a new space (For this example, assume m == 1):

$$z = w^T x$$
 $z \in \mathbf{R}^m$ $x \in \mathbf{R}^n$

Let the per class means be:

$$E_{X|Y}[X|Y=i]=\mu_i$$

And the per class covariance matrices be:

$$E_{X|Y}[(X - \mu_i)(X - \mu_i)^T | Y = i] = \sum_i$$

We want a projection that maximizes:

$$J(w) = \frac{between\ class\ scatter}{within\ class\ scatter}$$

LDA with 2 classes

The following objective function:

$$J(w) = \frac{between\ class\ scatter}{within\ class\ scatter}$$

Can be written as

$$J(w) = \frac{(E_{Z|Y}[Z|Y=1] - E_{Z|Y}[Z|Y=0])^2}{var[Z|Y=1] + var[Z|Y=0]}$$

LDA with 2 classes

We can write the between class scatter as:

$$(E_{Z|Y}[Z|Y=1] - E_{Z|Y}[Z|Y=0])^2 = (w^T[\mu_1 - \mu_0])^2$$

= $w^T[\mu_1 - \mu_0][\mu_1 - \mu_0]^T w$

• Also, the within class scatter becomes:

$$\begin{aligned} var[Z|Y &= i] \\ &= E_{Z|Y} \left\{ \left(z - E_{Z|Y}[Z|Y = i] \right)^2 \middle| Y = i \right\} \\ &= E_{Z|Y} \left\{ \left(w^T [x - \mu_i] \right)^2 \middle| Y = i \right\} \\ &= E_{Z|Y} \left\{ w^T [x - \mu_i] [x - \mu_i]^T w \middle| Y = i \right\} \\ &= w^T \Sigma_i w \end{aligned}$$

LDA with 2 classes

 We can plug in these scatter values to our objective function:

Between class scatter

n:
$$J(w) = \frac{w^T S_B w}{w^T S_W w} \qquad S_B = (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T$$

$$S_W = (\Sigma_1 + \Sigma_0)$$
 Within class scatter

And our objective becomes:

$$J(w) = \frac{(E_{Z|Y}[Z|Y=1] - E_{Z|Y}[Z|Y=0])^{2}}{var[Z|Y=1] + var[Z|Y=0]}$$
$$= \frac{w^{T}(\mu_{1} - \mu_{0})(\mu_{1} - \mu_{0})^{T}w}{w^{T}(\Sigma_{1} + \Sigma_{0})w}$$

Visualization

Between class scatter

Maximizing the ratio

$$J(w) = \frac{w^T S_B w}{w^T S_W w}$$

 Is equivalent to maximizing the numerator while keeping the denominator constant, i.e.

$$\max_{W} w^{T} S_{B} w \quad subject \ to \quad w^{T} S_{W} w = K$$

 And can be accomplished using Lagrange multipliers, where we define the Lagrangian as

$$L = w^T S_B w - \lambda (w^T S_W w - K)$$

And maximize with respect to both w and λ

Setting the gradient of

$$L = w^{T}(S_{B} - \lambda S_{W})w + \lambda K$$

With respect to w to zeros we get

$$\nabla_{W}L = 2(S_B - \lambda S_W)w = 0$$

or

$$S_B w = \lambda S_W w$$

- This is a generalized eigenvalue problem
- The solution is easy when $S_W^{-1} = (\Sigma_1 + \Sigma_0)^{-1}$

In this case

$$S_W^{-1}S_Bw=\lambda w$$

And using the definition of S_B

$$S_W^{-1}(\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w = \lambda w$$

• Noting that $(\mu_1 - \mu_0)^T w = \alpha$ is a scalar this can be written as

$$S_W^{-1}(\mu_1 - \mu_0) = \frac{\lambda}{\alpha} w$$

and since we don't care about the magnitude of w

$$w^* = S_W^{-1}(\mu_1 - \mu_0) = (\Sigma_1 + \Sigma_0)^{-1}(\mu_1 - \mu_0)$$

LDA with N variables and C classes

- Variables
 - N Sample images: $\{x_1, x_2, ..., x_N\}$

- C classes: $\{Y_1, Y_2, ..., Y_C\}$
- Average of each class: $\mu_i = \frac{1}{N_i} \sum_{x_k \in Y_i} x_k$
- Average of all data: $\mu = \frac{1}{N} \sum_{k=1}^{N} x_k$

LDA with N variables and C classes

Scatter Matrices

- Scatter of class i: $S_i = \sum_{x_k \in V} (x_k \mu_i)(x_k \mu_i)^T$
- Within class scatter: $S_w = \sum_{i=1}^{C} S_i$
- Between class scatter: $S_B = \sum_{i=1}^C N_i (\mu_i \mu) (\mu_i \mu)^T$

Mathematical Formulation

 Recall that we want to learn a projection W such that the projection converts all the points from x to a new space z:

$$z = W^T x$$
 $z \in \mathbf{R}^m$ $x \in \mathbf{R}^n$

- After projection:
 - Between class scatter $\tilde{S}_{\scriptscriptstyle R} = W^{\scriptscriptstyle T} S_{\scriptscriptstyle R} W$
 - Within class scatter
- $\tilde{S}_{w} = W^{T} S_{w} W$
- So, the objective becomes:

$$W_{opt} = \arg \max_{W} \frac{\left| \tilde{S}_{B} \right|}{\left| \tilde{S}_{W} \right|} = \arg \max_{W} \frac{\left| W^{T} S_{B} W \right|}{\left| W^{T} S_{W} W \right|}$$

Mathematical Formulation

Solution: Generalized Eigenvectors

$$S_{R}W_{i} = \lambda_{i}S_{W}W_{i}$$
 $i = 1, ..., m$

- Rank of w_{opt} is limited
 - Rank(S_B) \leq C-1
 - Rank(S_W) \leq N-C

PCA vs. LDA

- Eigenfaces exploit the max scatter of the training images in face space
- Fisherfaces attempt to maximize the between class scatter, while minimizing the within class scatter.

Results: Eigenface vs. Fisherface

Dataset: 160 images of 16 people

Train: 159 images

Test: 1 image

Variation in Facial Expression, Eye Wear, and Lighting

With Without 3 Lighting glasses glasses conditions

5 expressions

Results: Eigenface vs. Fisherface

What we have learned today?

- Introduction to face recognition
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)