Partial Control of Agents on Networks and Applications to Rerouting a Subset of Drivers on Freeways

Jack Reilly, Alexandre Bayen, UC Berkeley

Users drive selfishly

Route choice models

- User equilibrium (natural)
 - All occupied routes have same travel time
 - Overuse of shortest routes can cause congestion and delays
 - Suboptimal total travel time forsociety
- Social equilibrium (controlled)
 - Optimal total travel time
 - Some drivers may experience longer travel times than others

HOW TO DRIVE ROUTE CHOICE FROM UE->SO?

Approach: Partial Control

- Assume most drivers drive according to UE
- Assume a fraction α of drivers will have routes chosen by central controller:
 - Uncontrolled drivers may have to pay tax
 - Or controlled drivers receive some incentive.

Freeway corridor

Freeway corridor

Choosing optimal split ratios

- In static case (equilibria behavior):
 - How to compute Nash behavior for vehicular traffic?
 - Equilibria on horizontal queueing networks.
 - How will non-compliant drivers respond to partial compliance?
 - Stackelberg games.
- In dynamic case:
 - How to choose compliant split ratios effectively?

Discrete adjoint method with applications to PDE networks and ramp metering

Jack Reilly

University of California Berkeley jackdreilly@berkeley.edu

July 18, 2013

Overview

Discrete adjoint method

Optimization of a PDE-constrained system

Example: linear system

Solving the original problem

Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system

Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Ramp metering

Overview

Discrete adjoint method

Optimization of a PDE-constrained system

Example: linear system

Solving the original problem

Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system

Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Ramp metering

Optimization of a PDE-constrained system

Optimization problem

minimize_{$$u \in \mathcal{U}$$} $C(x, u)$
subject to $H(x, u) = 0$

- $x \in \mathcal{X} \subseteq \mathbb{R}^n$: state variables
- $u \in \mathcal{U} \subseteq \mathbb{R}^m$: control variables

$$C: \mathcal{X} \times \mathcal{U} \to \mathbb{R}$$

$$(x, u) \mapsto C(x, u)$$

$$H: \mathcal{X} \times \mathcal{U} \to \mathbb{R}^{n_H}$$

$$(x, u) \mapsto H(x, u)$$

Want to do gradient descent. How to compute the gradient?

Example: linear system

Discrete linear dynamics

$$x_{t+1} = Ax_t + Bu_t, \ t \in \{0, \dots, T-1\}$$

with initial condition x_0 .

Let

$$x = \left[\begin{array}{c} x_1 \\ \vdots \\ x_T \end{array} \right]$$

$$u = \left[\begin{array}{c} u_0 \\ \vdots \\ u_{T-1} \end{array} \right]$$

Example: linear system

$$x = \begin{bmatrix} Ax_0 + Bu_0 \\ Ax_1 + Bu_1 \\ \vdots \\ Ax_{T-1} + Bu_{T-1} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ A & \vdots \\ \vdots \\ A & 0 \end{bmatrix} x + \begin{bmatrix} B \\ \vdots \\ B \end{bmatrix} u + \begin{bmatrix} Ax_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Can be written as

$$(\tilde{A}-I)x+\tilde{B}u+c=0$$

Note: $(\tilde{A} - I)$ is invertible (lower triangular, with -1 on diagonal). Good: system is deterministic!

Example: linear system

Linear system

$$H_x x + H_u u + c = 0$$

- $\mathbf{x} \in \mathbb{R}^n$ state
- ▶ $u \in \mathbb{R}^m$ control, with $m \le n$
- \vdash $H_x \in \mathbb{R}^{n \times n}$, assume invertible
- $\vdash H_u \in \mathbb{R}^{n \times m}$
- $c \in \mathbb{R}^n$

want to minimize linear cost function

minimize_{$$u \in \mathcal{U}$$} $C_x x + C_u u$
subject to $H_x x + H_u u + c = 0$

 $C_x \in \mathbb{R}^{1 \times n}$ and $C_u \in \mathbb{R}^{1 \times m}$ are given row vectors.

Example: linear system

Optimization problem

minimize_{$$u \in \mathcal{U}$$} $C_x x + C_u u$
subject to $H_x x + H_u u + c = 0$

An equivalent problem is

$$minimize_{u \in \mathcal{U}} - C_x H_x^{-1}(H_u u + c) + C_u u$$

and the gradient is

Gradient

$$\nabla_u C = -C_x H_x^{-1} H_u + C_u$$

Example: linear system

Gradient

$$\nabla_u C = -C_x H_x^{-1} H_u + C_u$$

Two ways to compute the first term

Forward

$$C_{x}M$$
 $H_{x}M = -H_{u}$

Adjoint

$$\lambda^{\mathsf{T}} H_{\mathsf{u}} \\ \lambda^{\mathsf{T}} H_{\mathsf{x}} = -C_{\mathsf{x}}$$

Solve for $M \in \mathbb{R}^{n \times m}$: m inversions

Solve for $\lambda \in \mathbb{R}^n$: 1 inversion

$$H_{\times} \left[\begin{array}{c|c|c} M_1 & \ldots & M_m \end{array} \right] = \left[\begin{array}{c|c|c} H_{u_1} & \ldots & H_{u_m} \end{array} \right]$$

$$H_{x}^{T}\lambda = -C_{x}^{T}$$

Cost $O(mn^2)$.

Then product $1 \times n$ times $n \times m$: O(nm)

Cost
$$O(n^2)$$
.

Then product $1 \times n$ times $n \times m$: O(nm)

Optimization of a PDE-constrained system

General problem

minimize $_{u \in \mathcal{U}}$ C(x, u) subject to H(x, u) = 0

$$\nabla_{u}C = \frac{\partial C}{\partial x} \nabla_{u}x + \frac{\partial C}{\partial u}$$

On trajectories, H(x, u) = 0 constant, thus $\nabla_u H = 0$

$$\frac{\partial H}{\partial x} \nabla_{\mathbf{u}} \mathbf{x} + \frac{\partial H}{\partial \mathbf{u}} = 0$$

Linear system

minimize
$$_{u \in \mathcal{U}}$$
 $C_x x + C_u u$
subject to $H_x x + H_u u + c = 0$

$$\nabla_u C = C_x M + C_u$$

$$H_{\times}M = -H_{u}$$

Optimization of a PDE-constrained system

General problem

minimize $_{u \in \mathcal{U}}$ C(x, u) subject to H(x, u) = 0

$$\nabla_{u}C = \frac{\partial C}{\partial x} \nabla_{u}x + \frac{\partial C}{\partial u}$$

On trajectories, H(x, u) = 0 constant, thus $\nabla_u H = 0$

$$\frac{\partial H}{\partial x} \nabla_{\mathbf{u}} \mathbf{x} + \frac{\partial H}{\partial \mathbf{u}} = 0$$

Linear system

minimize
$$_{u \in \mathcal{U}}$$
 $C_x x + C_u u$
subject to $H_x x + H_u u + c = 0$

$$\nabla_u C = C_x M + C_u$$

$$H_{\times}M = -H_{u}$$

Instead, solve for $\lambda \in \mathbb{R}^n$

Adjoint

$$H_x^T \lambda = -C_x^T$$

Optimization of a PDE-constrained system

General problem

minimize_{$u \in \mathcal{U}$} C(x, u)subject to H(x, u) = 0

$$\nabla_{u}C = \frac{\partial C}{\partial x} \nabla_{u}x + \frac{\partial C}{\partial u}$$

On trajectories, H(x, u) = 0 constant, thus $\nabla_u H = 0$

$$\frac{\partial H}{\partial x} \nabla_{\mathbf{u}} \mathbf{x} + \frac{\partial H}{\partial \mathbf{u}} = 0$$

Adjoint

$$\frac{\partial H}{\partial x}^{\mathsf{T}} \lambda = -\frac{\partial C}{\partial x}$$

Linear system

minimize
$$_{u \in \mathcal{U}}$$
 $C_x x + C_u u$
subject to $H_x x + H_u u + c = 0$

$$\nabla_u C = C_x M + C_u$$

$$H_{\times}M = -H_{u}$$

Instead, solve for $\lambda \in \mathbb{R}^n$

Adjoint

$$H_x^T \lambda = -C_x^T$$

Computing $\nabla_u C(x, u)$

Want to evaluate

$$\frac{\partial C}{\partial x} \nabla_{u} x$$
where $\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$

Computing $\nabla_u C(x, u)$

Want to evaluate

$$\frac{\partial C}{\partial x} \nabla_{u} x$$
where $\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$

If λ is solution to the adjoint equation

$$\frac{\partial C}{\partial x} + \lambda^T \frac{\partial H}{\partial x} = 0$$

Computing $\nabla_u C(x, u)$

Want to evaluate

$$\frac{\partial C}{\partial x} \nabla_{u} x$$
where $\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$

If λ is solution to the adjoint equation

$$\frac{\partial C}{\partial x} + \lambda^T \frac{\partial H}{\partial x} = 0$$

Then

$$\frac{\partial C}{\partial x} \nabla_{\mathbf{u}} \mathbf{x} = -\lambda^{T} \frac{\partial H}{\partial x} \nabla_{\mathbf{u}} \mathbf{x} = \lambda^{T} \frac{\partial H}{\partial \mathbf{u}}$$

Adjoint solution λ

$$\nabla_{u}C = \lambda^{T} \frac{\partial H}{\partial u} + \frac{\partial C}{\partial u}$$

Optimization algorithm

Algorithm 1 Gradient descent loop

Pick initial control u^{init}

while not converged do

x = forwardSim(u, IC, BC) solve for state trajectory (forward system)

 $\lambda = adjointSln(x, u)$ solve for adjoint parameters (adjoint system)

 $\Delta u = \nabla_u C = \lambda^T \frac{\partial H}{\partial u} + \frac{\partial C}{\partial u}$ Compute the gradient (search direction)

 $u \leftarrow u + t\Delta u$

update u using line search along Δu

end while

Line search

Example 1: decreasing step size

$$t^{(k)} = t^{(1)}/k$$

Example 2: backtracking line-search

- fix parameters $0 < \alpha < 0.1$ and $0 < \beta < 1$
- ightharpoonup given search direction Δu

Algorithm 2 Backtracking line search

while
$$C(u + t\Delta u) - C(u) > \alpha(\nabla_u C)^T (t\Delta u)$$
 do $t \leftarrow \beta t$

Other descent methods

- General purpose nonlinear solvers.
 - fmincon
 - ipopt
- Attempt to find global solutions, rather than terminating in a local minima.
- Often use quasi-Newton methods to estimate second-order information.

Constraints on control

What if there are physical constraints on the permissible control values u?

$$u_{\min} \le u \le u_{\max}$$
 (1)

Barrier functions

$$\tilde{C}(\vec{\rho}, \vec{u}, \epsilon) = C(\vec{\rho}, \vec{u}) - \epsilon \sum_{u \in \vec{u}} \log((u_{\text{max}} - u)(u - u_{\text{min}}))$$
 (2)

Then have $\epsilon \in \mathbb{R}^+$ tend to zero.

Overview

Discrete adjoint method

Optimization of a PDE-constrained system

Example: linear system

Solving the original problem

Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system

Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Ramp metering

Hyperbolic PDE's

A conservation law in one space dimension can written in the form:

$$\rho_t + f(\rho)_{\mathsf{x}} = 0 \tag{3}$$

A Cauchy problem specifies an initial condition:

$$\begin{cases} \rho_t + f(\rho)_x = 0\\ \rho(0, x) = \rho_0(x) \end{cases} \tag{4}$$

Riemann problem

Define a Riemann problem as a Cauchy problem:

$$\begin{cases} \rho_t + f(\rho)_x = 0\\ \rho(0, x) = \bar{\rho}(x) \end{cases}$$
 (5)

where:

$$\bar{\rho}(x) = \begin{cases} \rho_{-} & x < \bar{x} \\ \rho_{+} & x \ge \bar{x} \end{cases}$$

Overview

Discrete adjoint method

Optimization of a PDE-constrained system

Example: linear system

Solving the original problem

Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system

Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Ramp metering

Network description

Consider a network of hyperbolic PDE's $(\mathcal{I}, \mathcal{J})$

- ▶ $i \in \mathcal{I}$ a link with dynamics according to PDE.
- ▶ $J \in \mathcal{J}$ a junction with incoming links Inc(J), outgoing links Out(J).

Riemann problem at junction

For a junction J, let each link $i \in Inc(J) \cup Out(J)$ have constant IC $\rho_i^0 \in \rho_J$.

Define a **Riemann Solver** RS:

$$RS: \mathbb{R}^{m+n} \to \mathbb{R}^{m+n}$$

$$(\bar{\rho}_1, \dots, \bar{\rho}_{n+m}) \mapsto RS(\bar{\rho}_1, \dots, \bar{\rho}_{n+m}) = (\hat{\rho}_1, \dots, \hat{\rho}_{n+m})$$

where $\hat{\rho}_i$ provides the trace for link *i* for $t \geq 0$.

Define a **Riemann Solver** RS:

$$RS: \mathbb{R}^{m+n} \to \mathbb{R}^{m+n}$$

$$(\bar{\rho}_1, \dots, \bar{\rho}_{n+m}) \mapsto RS(\bar{\rho}_1, \dots, \bar{\rho}_{n+m}) = (\hat{\rho}_1, \dots, \hat{\rho}_{n+m})$$

where $\hat{\rho}_i$ provides the trace for link *i* for $t \geq 0$.

Consider a specific link

Define a **Riemann Solver** RS:

$$RS: \qquad \mathbb{R}^{m+n} \longrightarrow \mathbb{R}^{m+n}$$

$$(\bar{\rho}_1, \dots, \bar{\rho}_{n+m}) \mapsto RS(\bar{\rho}_1, \dots, \bar{\rho}_{n+m}) = (\hat{\rho}_1, \dots, \hat{\rho}_{n+m})$$

where $\hat{\rho}_i$ provides the trace for link *i* for $t \geq 0$.

Consider a specific link

Conditions on Riemann solver

► Self-similar

$$RS\left(RS\left(\bar{\rho}_{1},\ldots,\bar{\rho}_{n+m}\right)\right)=RS\left(\bar{\rho}_{1},\ldots,\bar{\rho}_{n+m}\right)=\left(\hat{\rho}_{1},\ldots,\hat{\rho}_{n+m}\right)$$

Conditions on Riemann solver

► Self-similar

$$RS\left(RS\left(\bar{\rho}_{1},\ldots,\bar{\rho}_{n+m}\right)\right)=RS\left(\bar{\rho}_{1},\ldots,\bar{\rho}_{n+m}\right)=\left(\hat{\rho}_{1},\ldots,\hat{\rho}_{n+m}\right)$$

► All shockwaves must emanate outward from junction

Conditions on Riemann solver

► Self-similar

$$RS\left(RS\left(\bar{\rho}_{1},\ldots,\bar{\rho}_{n+m}\right)\right)=RS\left(\bar{\rho}_{1},\ldots,\bar{\rho}_{n+m}\right)=\left(\hat{\rho}_{1},\ldots,\hat{\rho}_{n+m}\right)$$

► All shockwaves must emanate outward from junction

Conservation of mass

$$\sum_{i \in Inc(J)} f(\hat{\rho}_i) = \sum_{j \in Out(J)} f(\hat{\rho}_j)$$

Overview

Discrete adjoint method

Optimization of a PDE-constrained system

Example: linear system

Solving the original problem

Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system

Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Ramp metering

Discretizing via Godunov method

- Cannot represent (or not practical to represent) continuous function on computer.
- Approximate solution by discretizing space and time.
- Solve for vector of discrete variables.

Godunov's scheme (high level)

- 1. Split system in discrete chunks of size Δx .
- 2. Approximate IC by averaging over Δx .
- 3. Find exact sln of system by solving Riemann problems at discretized boundaries for Δt time.
- 4. Approximate new sln by averaging over Δx .
- 5. Set IC as new sln and go to step 3.

Godunov's scheme: local solutions of Riemann problems

Figure: credit: http://www.uv.es/astrorela/simulacionnumerica/node34.html

Derivation of Godunov's method

Take a discrete initial condition $\bar{\rho}^{\Delta}$. We want $\rho_{j}^{\Delta t}$, the average value at cell j at time Δt :

$$\rho_j^{\Delta t} \approxeq \frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \rho^{\Delta}(\Delta t, x) dx. \tag{6}$$

where $\rho^{\Delta}(\Delta t, x)$ is an exact solution of the Cauchy problem with initial condition $\bar{\rho}^{\Delta}$.

This requires solution of $\rho(x, t)$ over $[x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}] \times [0, \Delta t]$.

But since Riemann problems are self-similar, fluxes across boundaries are constant:

$$f(\rho(t,x_{j+\frac{1}{2}})) = f(W_R(0;\rho_j^k,\rho_{j+1}^k)).$$

$$f(\rho(t,x_{j-\frac{1}{2}})) = f(W_R(0;\rho_{j-1}^k,\rho_j^k)).$$

$$\rho_j^{k+1} = \rho_j^k - \frac{\Delta t}{\Delta x} (g^G(\rho_j^k, \rho_{j+1}^k) - g^G(\rho_{j-1}^k, \rho_j^k)), \tag{7}$$

where g^G is the numerical flux:

$$g^{G}(\rho_{j}, \rho_{j+1}) = f(W_{R}(0; \rho_{j}, \rho_{j+1}))$$

No longer depends on solution of continuous function.

Solving for Godunov flux easy for 1-to-1 junctions. What about *n*-to-*m*?

Solving for Godunov flux easy for 1-to-1 junctions. What about *n*-to-*m*?

- Apply Riemann solver at junction
- ▶ Use Riemann solution as boundary condition for g^G at junction.

Summary of Godunov scheme for PDE networks

Algorithm 3 Riemann solver update procedure

```
Input: initial state at time t = k\Delta t, \left(\rho_i^k : i \in \mathcal{I}\right) Output: resulting state at time t = (k+1)\Delta t, \left(\rho_i^{k+1} : i \in \mathcal{I}\right) for junction J \in \mathcal{J}:

# Apply Riemann solver to J
\vec{\rho}_J^k = RS\left(\vec{\rho}_J^k\right) for link i \in \mathcal{I}:

# update density on link i with junction fluxes \rho_i^{k+1} = \rho_i^k - \frac{\Delta t}{\Delta x} \left(f\left(\left(\vec{\hat{\rho}}_{J_i^0}^k\right)_i\right) - f\left(\left(\vec{\hat{\rho}}_{J_i^0}^k\right)_i\right)\right)
```


Summary of Godunov scheme for PDE networks

Or by using the flux solution directly...

Algorithm 4 Godunov junction flux update procedure

```
Input: initial state at time t=k\Delta t, \left(
ho_i^k:i\in\mathcal{I}
ight) Output: resulting state at time t=(k+1)\Delta t, \left(
ho_i^{k+1}:i\in\mathcal{I}\right)
```

for link $i \in \mathcal{I}$:

update density on link i with direct Godonuv fluxes

$$\rho_i^{k+1} = \rho_i^k - \frac{\Delta t}{\Delta x} \left(\left(g_{J_i^D}^G \left(\vec{\rho}_{J_i^D}^k \right) \right)_i - \left(g_{J_i^U}^G \left(\vec{\rho}_{J_i^U}^k \right) \right)_i \right)$$

Overview

Discrete adjoint method

Optimization of a PDE-constrained system

Example: linear system

Solving the original problem

Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system

Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Ramp metering

PDE with control

Modify formulation to include

- state vector $\vec{\rho} \in \mathbb{R}^{NT}$
- ightharpoonup control vector $\vec{u} \in \mathbb{R}^{MT}$
 - $\left(u_{j_J^1}^k, \ldots, u_{j_J^{M_J}}^k\right) \in \mathbb{R}^{M_J}$ modifies Riemann problem at J for time k.

$$RS_{J}: \mathbb{R}^{n_{J}+m_{J}} \times \mathbb{R}^{M_{J}} \to \mathbb{R}^{n_{J}+m_{J}}$$
$$(\vec{\rho}_{J}^{k}, \vec{u}_{J}^{k}) \mapsto RS_{J}(\vec{\rho}_{J}^{k}, \vec{u}_{J}^{k}) = \vec{\hat{\rho}}_{J}^{k}$$

▶ *M* are the number of control parameters at each time-step.

Updated discrete state equations:

$$h_{i}^{k}\left(\vec{\rho},\vec{u}\right) = \rho_{i}^{k} - \rho_{i}^{k-1} + \frac{\Delta t}{\Delta x} \left(g_{J_{i}^{D}}^{G}\left(\vec{\rho}_{J_{i}^{D}}^{k},\vec{u}_{J_{i}^{D}}^{k-1}\right)\right)_{i} - \frac{\Delta t}{\Delta x} \left(g_{J_{i}^{U}}^{G}\left(\vec{\rho}_{J_{i}^{U}}^{k},\vec{u}_{J_{i}^{U}}^{k-1}\right)\right)_{i}$$

Optimization problem

Optimization Problem

$$\min_{\vec{u}} \quad C(\vec{\rho}, \vec{u})$$
subject to: $H(\vec{\rho}, \vec{u}) = 0$ (9)

Review: adjoint method

$$d_{\vec{u}}C(\vec{\rho}',\vec{u}') = \lambda^T H_{\vec{u}} + C_{\vec{u}}$$
(10)

where

$$H_{\vec{\rho}}^T \lambda = -C_{\vec{\rho}}^T \tag{11}$$

Assume initial \vec{u} and state $\vec{\rho}$ where $H(\vec{\rho}, \vec{u}) = 0$.

What needs to be computed for adjoint method?

- $ightharpoonup C_{\vec{\rho}}$, $C_{\vec{u}}$: Problem specific, no sparsity assumptions.
- $ightharpoonup H_{\vec{\rho}}$, $H_{\vec{u}}$: can analyze properties of PDE networks and Godunov scheme to:
 - derive partial derivative expressions
 - understand sparsity

Partial derivates of state equations

 $H_{\vec{
ho}}$

By chain rule:

$$\frac{\partial h_{i}^{k}}{\partial \rho_{j}^{l}} = \frac{\partial \rho_{i}^{k}}{\partial \rho_{j}^{l}} - \frac{\partial \rho_{i}^{k-1}}{\partial \rho_{j}^{l}} + \frac{\Delta t}{L_{i}} \left(\frac{\partial}{\partial \rho_{j}^{l}} \left(g_{J_{i}^{\mathsf{P}}}^{\mathsf{G}} \left(\vec{\rho}_{J_{i}^{\mathsf{P}}}^{k-1}, \vec{u}_{J_{i}^{\mathsf{P}}}^{k-1} \right) \right)_{i} - \frac{\partial}{\partial \rho_{j}^{l}} \left(g_{J_{i}^{\mathsf{U}}}^{\mathsf{G}} \left(\vec{\rho}_{J_{i}^{\mathsf{U}}}^{k-1}, \vec{u}_{J_{i}^{\mathsf{U}}}^{k-1} \right) \right)_{i} \right)$$

- ▶ Only require knowledge of partial derivatives on Godunov fluxes g^G .

- ▶ Similar results for J_i^U .

Partial derivates of state equations

 $H_{\vec{
ho}}$

- ▶ Only require knowledge of partial derivatives on Godunov fluxes g^G .

- ▶ Similar results for J_i^U .

Thus each partial term is zero unless variable is from previous time-step and adjacent to constraint link (or i = j and l = k.

(b) Ordering of the partial derivative terms. Constraints and state variables are clustered first by time, and then by cell index.

(c) Sparsity structure of the $H_{\vec{\rho}}$ matrix. Besides the diagonal blocks, which are identity matrices, blocks where $l \neq k-1$ are zero.

Figure: Structure of the $H_{\vec{\rho}}$ matrix.

Partial derivates of state equations

 $H_{\vec{u}}$

By chain rule:

$$\frac{\partial h_{i}^{k}}{\partial u_{j}^{l}} = \frac{\Delta t}{L_{i}} \left(\frac{\partial}{\partial u_{j}^{l}} \left(g_{J_{i}^{\mathsf{D}}}^{\mathsf{G}} \left(\bar{\rho}_{J_{i}^{\mathsf{D}}}^{k-1}, \bar{u}_{J_{i}^{\mathsf{D}}}^{k-1} \right) \right)_{i} - \frac{\partial}{\partial u_{j}^{l}} \left(g_{J_{i}^{\mathsf{U}}}^{\mathsf{G}} \left(\bar{\rho}_{J_{i}^{\mathsf{U}}}^{k-1}, \bar{u}_{J_{i}^{\mathsf{U}}}^{k-1} \right) \right)_{i} \right)$$

$$(12)$$

Similar arguments to $H_{\vec{\rho}}$ give us that each partial term above is zero unless control variable u_i^I is from same time-step and in

$$\left(u_{j_{j_{i}}^{\mathbf{1}}}^{k},\ldots,u_{j_{j_{i}}^{\mathbf{0}}}^{k}\right) \text{ or } \left(u_{j_{j_{i}}^{\mathbf{1}}}^{k},\ldots,u_{j_{j_{i}}^{\mathbf{0}}}^{k}\right).$$

Complexity of solving gradient

Solving adjoint system

$$H_{\vec{\rho}}^T \lambda = -C_{\vec{\rho}}^T \tag{13}$$

From previous result, $H_{\vec{\rho}}$ has following properties:

- ightharpoonup size $TN \times TN$
- lower triangular
- ightharpoonup card $H_{\vec{
 ho}} = O(NTD_{\vec{
 ho}})$: $D_{\vec{
 ho}} = \max_{J \in \mathcal{J}} (n_J + m_J)$

Efficiently solve λ via backward-substitution in time $O(TND_{\vec{\rho}})$, or **linear** in TN.

Complexity of solving gradient

Solving ∇C

$$\nabla C = \lambda^T H_{\vec{u}} + C_{\vec{u}} \tag{14}$$

From previous result, $H_{\vec{u}}$ has following properties:

- ightharpoonup size $TN \times TM$
- ightharpoonup card $H_{\vec{u}}=O(TND_{\vec{u}})$: $D_{\vec{u}}=\max_{u\in\vec{u}}\sum_{J\in\mathcal{J}:u\in\vec{u}_J^k}(n_J+m_J)$

Sparse matrix multiplication has total cost $O(TMD_{\vec{u}})$.

Complexity of solving gradient

Total complexity of computing gradient via discrete adjoint

$$O(T(D_{\vec{\rho}}N+D_{\vec{u}}M))$$

$$\nabla C = \lambda^T H_{\vec{u}} + C_{\vec{u}} O(NT^2M)$$

$$O(TMD_{\vec{u}})$$

$$O(NTD_{\vec{\rho}}) O(NT)^3)$$

$$O(NTD_{\vec{\rho}}) O(NT)^2)$$

Overview

Discrete adjoint method

Optimization of a PDE-constrained system

Example: linear system

Solving the original problem

Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system

Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Ramp metering

Discrete adjoint method applied to ramp metering

- For a junction $J_{2i-1}^{D}=J_{2(i-1)}^{D}=J_{2i}^{U}$ at time-step $k \in \{0,\ldots,T-1\}$.
- ▶ Upstream mainline density: $\rho_{2(i-1)}^k$.
- ▶ Downstream mainline density: ρ_{2i}^k .
- ▶ Onramp density: ρ_{2i-1}^k
- ▶ Offramp split ratio: $\beta_{2(i-1)}^k$.

Governing Equations

Mainline equations

$$h_{2i}^{k}(\vec{\rho}, \vec{u}) = \rho_{2i}^{k} - \rho_{2i}^{k-1} + \frac{\Delta t}{L_{2i}} \left(g_{2i,D}^{k-1} - g_{2i,U}^{k-1} \right) = 0$$

Onramp equations

$$h_{2i-1}^k(\vec{\rho}, \vec{u}) = \rho_{2i-1}^k - \rho_{2i-1}^{k-1} + \frac{\Delta t}{L_{2i-1}} \left(g_{2i-1,D}^{k-1} - D_{2i-1}^{k-1} \right) = 0$$

Flux solutions

$$\delta_{2(i-1)}^{k} = \min\left(v_{2(i-1)}\rho_{2(i-1)}^{k}, F_{2(i-1)}^{\max}\right) \tag{15}$$

$$\sigma_{2i}^{k} = \min\left(w_{2i}\left(\rho_{2i}^{\max} - \rho_{2i}^{k}\right), F_{2i}^{\max}\right) \tag{16}$$

$$d_{2i-1}^k = u_{2i-1}^k \min\left(\frac{L_{2i-1}}{\Delta t} \rho_{2i-1}^k, F_{2i-1}^{\max}\right)$$
 (17)

$$g_{2i,U}^{k} = \min \left(\beta_{2(i-1)}^{k} \delta_{2(i-1)}^{k} + d_{2i-1}^{k}, \sigma_{2i}^{k} \right)$$
 (18)

Flux solutions

$$\delta_{2(i-1)}^{k} = \min\left(v_{2(i-1)}\rho_{2(i-1)}^{k}, F_{2(i-1)}^{\max}\right)$$
(19)

$$\sigma_{2i}^{k} = \min\left(w_{2i}\left(\rho_{2i}^{\max} - \rho_{2i}^{k}\right), F_{2i}^{\max}\right) \tag{20}$$

$$d_{2i-1}^{k} = u_{2i-1}^{k} \min \left(\frac{L_{2i-1}}{\Delta t} \rho_{2i-1}^{k}, F_{2i-1}^{\max} \right)$$
 (21)

$$g_{2i,U}^{k} = \min \left(\beta_{2(i-1)}^{k} \delta_{2(i-1)}^{k} + d_{2i-1}^{k}, \sigma_{2i}^{k} \right)$$
 (22)

$$g_{2(i-1),D}^{k} = \begin{cases} \delta_{2(i-1)}^{k} & \frac{p_{2(i-1)}g_{2i,U}^{k}}{\beta_{2(i-1)}^{k}(1+p_{2(i-1)})} \ge \delta_{2(i-1)}^{k}[C1] \\ \frac{g_{2i,U}^{k}-d_{2i-1}^{k}}{\beta_{2(i-1)}^{k}} & \frac{g_{2i,U}^{k}}{1+p_{2(i-1)}} \ge d_{2i-1}^{k} & [C2] (23) \\ \frac{p_{2(i-1)}g_{2i,U}^{k}}{(1+p_{2(i-1)})\beta_{2(i-1)}^{k}} & \text{otherwise} \end{cases}$$

$$g_{2i-1,D}^{k} = g_{2i,U}^{k} - \beta_{2(i-1)}^{k} g_{2(i-1),D}^{k}$$
 (24)

Partial derivates for adjoint method

$$\begin{array}{lll} \frac{\partial \delta_{\mathbf{2}(i-1)}^{k}}{\partial s} & = & \begin{cases} v_{\mathbf{2}(i-1)} & s = \rho_{\mathbf{2}(i-1)}^{k}, v_{i} \rho_{\mathbf{2}(i-1)}^{k} \leq F_{\mathbf{2}(i-1)}^{\mathsf{max}} \\ 0 & \mathsf{otherwise} \end{cases} \\ & \frac{\partial \sigma_{\mathbf{2}i}^{k}}{\partial s} & = & \begin{cases} -w_{2i} & s = \rho_{\mathbf{2}i}^{k}, w_{2i} \left(\rho_{\mathbf{2}i}^{\mathsf{max}} - \rho_{\mathbf{2}i}^{k}\right) \leq F_{\mathbf{2}i}^{\mathsf{max}} \\ 0 & \mathsf{otherwise} \end{cases} \\ & \frac{\partial d}{\partial s} & = & \begin{cases} u_{2i-1}^{k} & s = \rho_{\mathbf{2}i-1}^{k}, \rho_{\mathbf{2}i-1}^{k} \leq F_{\mathbf{2}i-1}^{\mathsf{max}} \\ \min \left(\rho_{\mathbf{2}i-1}^{k}, F_{\mathbf{2}i-1}^{\mathsf{max}}\right) & s = u_{2i-1}^{k} \\ 0 & \mathsf{otherwise} \end{cases} \\ & \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{k} & = & \begin{cases} \beta_{\mathbf{2}(i-1)}^{k} \frac{\partial \delta_{\mathbf{2}(i-1)}^{k}}{\partial s} + \frac{\partial d_{\mathbf{2}(i-1)}^{k}}{\partial s} & \beta_{\mathbf{2}(i-1)}^{k} \delta_{\mathbf{2}(i-1)}^{k} + d_{\mathbf{2}i-1}^{k} \leq \sigma_{\mathbf{2}i}^{k} \\ \frac{\partial \sigma_{\mathbf{2}i}^{k}}{\partial s} & \mathsf{otherwise} \end{cases} \\ & \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{p} & = & \begin{cases} \frac{\partial \delta_{\mathbf{2}(i-1)}^{k}}{\partial s} & \frac{g_{2i,\mathbf{U}}^{p} \mathbf{2}(i-1)}{1 + p_{\mathbf{2}(i-1)}} \geq \frac{\delta_{\mathbf{2}(i-1)}^{k}}{2 + p_{\mathbf{2}(i-1)}} \\ \frac{g_{\mathbf{2}(i-1)}^{k}}{\rho_{\mathbf{2}(i-1)}} & \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{2} - \frac{\partial d_{\mathbf{2}i-1}^{k}}{\partial s} \end{pmatrix} & \frac{g_{2i,\mathbf{U}}^{k}}{1 + p_{\mathbf{2}(i-1)}} \geq d_{\mathbf{2}(i-1)}^{k} \\ \frac{g_{2i,\mathbf{U}}^{k}}{1 + p_{\mathbf{2}(i-1)}} & \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{2} - \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{2} & \mathsf{otherwise} \end{cases} \\ & \frac{\partial}{\partial s} g_{2i-1,\mathbf{D}}^{k} & = & \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{k} - \beta_{\mathbf{2}(i-1)}^{k} \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{2} - \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{2} & \mathsf{otherwise} \end{cases} \\ & \frac{\partial}{\partial s} g_{2i-1,\mathbf{D}}^{k} & = & \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{k} - \beta_{\mathbf{2}(i-1)}^{k} \frac{\partial}{\partial s} g_{2i,\mathbf{U}}^{2} - \frac{\partial}{\partial s} g_{2i$$

Numerical results

Network

- ▶ I15 South in San Diego, CA, USA.
- ▶ 19.4 miles.
- ▶ 125 discrete links.
- ▶ 9 onramps.
- Scaled flow data from real loop detector data.

Numerical results

Comparative methods

- Adjoint method
- *Finite differences (No gradient information).
- ► Alinea [1]
- No control

^{*}Finite differences becomes impractical for even very small networks.

Open loop optimal control

(d) Density difference profile in units of vehicles per mile.

(e) Queue difference profile in units of vehicles.

Model predictive control

- Assume noisy state estimation and noisy predicted boundary flow data.
- About 2% relative error in estimates.
- ► Every 15 minutes:
 - Get state and boundary flow estimates over next 25 minutes.
 - Produce policy for next 15 minutes.
- Repeat for entire simulation horizon.

Model predictive control

Figure: Performance versus simulation time for freeway network. The results indicate that the algorithm can run with performance better than Alinea if given an update time around 15 minutes.

Robustness to noise

- Adjoint method relies on reasonable input data estimates.
- ▶ If data is too noisy (>100% relative error), reactive methods such as Alinea will outperform.

(a) MPC performance on I15 South network.

(b) MPC performance with increasing sensor noise.

Ramp metering

Partial control via rerouting

. . .

Modeling partial compliance

- Use multi-commodity flow model
 - Non-compliant drivers:
 - one commodity with set split ratios (can vary over time)
 - Compliant drivers:
 - Each route is a different commodity
 - Garavello, Mauro, and Benedetto Piccoli. *Traffic flow on networks*. Springfield, MO, USA: American institute of mathematical sciences, 2006.
- Control parameter
 - For each OD pair and each time step
 - Assign fraction of flow to each route serving OD.

PDE Network Optimization problem

$$\min_{u \in \mathcal{U}} J(x(u))$$

subject to

mass conservation constraints

boundary constraints

flow propagation constraints

junction constraints

Total travel time

Set of feasible compliant driver split ratios at source of OD pairs.

$$J = \sum_{k=0}^{T-1} \sum_{i \in \mathcal{A} \setminus \mathcal{S}} \rho_i(k) \cdot L_i$$

Preliminary results

- Using adjoint method with:
 - multicommodity flow model
 - Split ratio control with partial compliance
 - Noncompliant route choice = UE
 - Compliance rate of 30%

Preliminary results

Thank you for listening

Questions?