CSE 015: Discrete Mathematics Fall 2020 Homework #2 Solution

Christian Duan Lab CSE-015-10L

September 16, 2020

1. Question 1:

- (a) $P(2): 2 < 2^3 \equiv 2 < 8$. Therefore P(2) is TRUE.
- (b) $P(-1): -1 < -1^3 \equiv -1 < 1$. Therefore P(-1) is FALSE.
- (c) $\forall x P(x) : P(2)$ is $2 < 2^3 = 2 < 8$, therefore true. P(1) is $1 < 1^3 = 1 < 1$, therefore false. So $\forall x P(x)$ is FALSE.
- (d) $\exists x P(x) : P(2)$ is $2 < 2^3 = 2 < 8$, therefore true. P(1) is $1 < 1^3 = 1 < 1$, therefore false. So $\exists x P(x)$ is TRUE.
- (e) $\exists !xP(x): P(0)$ is $0 < 0^3 = 0 < 0$, therefore false. $2 < 2^3 = 2 < 8$, therefore true. So $\exists !xP(x)$ is TRUE.

2. Question 2:

- (a) $\neg \forall x (S(x) \to M(x))$
- (b) $\forall x(S(x) \oplus M(x))$
- (c) $\exists x (S(x) \land \neg M(x))$

3. Question 3:

(a) $\forall x (A(x) \land B(x))$ is NOT equivalent to $\forall x (A(x) \rightarrow B(x))$ as their truth values are not identical. Thus, the proposition is NOT logically equivalent.

$$A(x) = p$$

$$B(x) = q$$

p	q	$p \wedge q$	$p \rightarrow q$
F	F	F	Т
F	Т	F	F
T	F	F	Т
Т	Т	Т	Т

4. Question 4:

- (a) $\exists x \forall y A(x,y) : \exists x \forall y A(0,1) = (0)(1) = 0$. Since there exists a x value that makes the formula true, $\exists x \forall y A(x,y)$ is TRUE.
- (b) $\exists x \exists y B(x,y) : \exists x \exists y B(0,0) = 0 + 0 = 0$. Since there exists a x value and y value that makes the formula true, $\exists x \exists y B(x,y)$ is TRUE.
- (c) $\forall x \exists y A(x,y) : \forall x \exists y A(2,0) = (2)(0) = 0$. Since there exists a y value that makes the formula true, $\forall x \exists y A(x,y)$ is TRUE.
- (d) $\exists x \forall y (A(x,y) \land B(x,y)) : \exists x \forall y (A(1,0) \land B(1,0)) = (1)(0) = 0$ and $1 + 0 \neq 0$. Since A(x,y) is true and B(x,y) is false, $\exists x \forall y (A(x,y) \land B(x,y))$ is FALSE.
- (e) $\exists x \exists y (A(x,y) \land \neg B(x,y) : \exists x \exists y (A(0,1) \land \neg B(0,1)) = (0)(1) = 0$ and $0+1 \neq 0$. Since A(x,y) is true and $\neg B(x,y)$ is true, $\exists x \exists y (A(x,y) \land \neg B(x,y))$ is TRUE.

5. Question 5:

(a)
$$\neg \exists x \exists y (P(x) \to Q(x)) \equiv \forall x \forall y ((P(x) \land \neg Q(x)))$$

(b)
$$\neg \exists y (\exists x A(x,y) \lor \forall x B(x,y)) \equiv \forall y (\forall x \neg A(x,y) \land \exists x \neg B(x,y))$$