$\lambda_{t} \in (A, B, C, D, E, F)$ $\lambda_{t} = A$

Et E (Jut, all)

	Xttl	A					
	Xe	A	B	C	D	E	F
χ_1	A	0.7	0.8	0	0	ð	0
χι	B	0	0.2	0-8	٥	0	(0
$\chi_{\mathfrak{z}}$	<u></u>	0	0	0.2	0.8	O	0
Χψ)	0	0	Q	0.2	0.8	O
$\chi_{\mathcal{S}}$	E	0	D	0	0	Orr	0.8
ΧL	F	0	0	0	0	0	0, 2

Xt Xt	hot	Cold
A	1	0
В	0	1
C	D	l
D	1	0
6	O	
F	٥	(

· (1) filtering

thusition
$$P(X_t | X_{t-1})$$
 observation $P(e_t | X_t)$

$$P(X_3 \mid hot_1, cold_3) \propto P(Gld_3 \mid X_3) \underset{X_2}{\not=} P(X_3 \mid X_2) P(X_2 \mid hot_1, cold_2)$$

$$P(X_2 \mid hot_1, cold_2) \propto P(Gld_2 \mid X_2) \underset{X_1}{\not=} P(X_2 \mid X_1) P(X_1 \mid hot_1)$$

$$P(X_1 \mid hot_1) \propto P(hot_1 \mid X_1) P(X_1)$$

We down out that only entry of B, C, E, E is not multiplied by zero.

Therefore, according to observation, only X2=B is not multiplied by zero.

We down out that only entry of B, C, E, E is not multiplied by zero.

(3) Prediction

$$P(hot_4|hot_1, cold_2, cold_3) = \underset{X_3}{\cancel{2}} P(X_3|hot_1, cold_2, cold_3) P(hot_4|X_3)$$

$$P(hot_4 \mid X_3) = \underset{X_4}{\not\sim} P(hot_4 \mid X_4) P(X_4 \mid X_3)$$

tot ... + 0

Through observation, we observe that only entry "B" "c" have non-zero value.

$$\frac{P(hot_4 | X_3 = B) = P(hot_4 | X_4 = A) P(k_4 = A) Y(k_4 = A) Y(k_4 = B) + P(hot_4 | X_4 = B) P(k_4 = B) Y(k_4 = B)$$

(4) Prediction

 $P(X_4 | hot_1, cold_2, cold_3) = \underset{x_3}{\not=} P(X_3 | hot_1, cold_2, cold_3) P(X_4 | X_3)$

According to (1), P(x3) hot, colds, colds)=[0,02,0.8,0,0,0]

Through observation, we observe that only entry "B" "c" have non-zero value.

P(X3=B | hot, colds, colds) P(X4=A | X3=B) + P(X3=C | hot, colds, colds,) P(X4=A | X3=C)

= 0 + 0

_ 0

P(X3=B | hot, colds) P(X4=13 | X3=B) + P(X3=C | hot, colds) P(X4=13 | X3=)

= 0.2 · 0.2 + 0

= 0.04

P(13=B | hot, colds, colds) P(xy=c | 13=B) + P(13=c | hot, colds, colds) P(xy=c | 13=c)

= 0.2 . 0.8 + 0.8. 0.2

- 0.16 + 0.16

= 0.32

P(X3=B | hot, colds, colds) P(X4=D | X3=B) + P(X3=C | hot, colds, colds) P(X4=D | X3=C)

= 0 + 0.8 . 0.8

= 0.64

P(X4/hot, coldz, coldz) = [0,0.04,0.32,0.64,0,0]