100Days RTL Challenge

What is the 100 Days of RTL Challenge?

The 100 Days of RTL Challenge is a personal commitment to learn, build, and practice RTL design (primarily Verilog) every day for 100 days. Inspired by the #100DaysOfCode challenge, this version is focused on developing strong foundations in digital logic design, hardware description languages, and test benching.

© Goals of the Challenge

- Build hands-on experience with Verilog / System Verilog / VHDL
- Practice writing and simulating hardware modules
- Understand and implement combinational/sequential circuits
- Improve test benching and debugging skills
- Explore synthesis and FPGA implementation (optional)
- Document learning for self-reference and to help others

Recommended Tools

Purpose	Tool
Coding	VS Code, Sublime Text
Simulation	Icarus Verilog, Model Sim, Vivado, GHDL
Waveform Viewer	GTK Wave
FPGA Deployment (optional)	Xilinx Vivado, Intel Quartus
Version Control	Git & GitHub
Notes/Blog	GitHub README, Notion, Obsidian, Hack MD

Suggested Folder Structure for GitHub Repository :

Master README.md Structure (Main GitHub Repository Page):

📘 100 Days of RTL Challenge - Verilog Edition 🧠

Welcome to my **100-day journey into RTL design using Verilog!**

This challenge is about building confidence in designing, simulating, and understanding digital logic systems from scratch.

III Challenge Plan

- 1 Verilog module per day (or 1 concept/project broken into daily chunks)
- Daily simulations + testbenches
- GitHub commit + README update
- Weekly learning summaries

1 Topics Covered (Planned)

- ### Beginner Level (Days 1–20)
- Basic Gates (AND, OR, NOT, etc.)
- MUX / DEMUX
- Encoders / Decoders
- Adders / Subtractors
- Comparators
- Seven Segment Display
- ### Intermediate Level (Days 21–50)
- Flip-Flops & Latches
- Registers
- Counters (up/down/BCD)
- FSMs (Moore & Mealy)
- Priority Logic
- ### Advanced Level (Days 51-80)
- ALU Design
- Memory (RAM/ROM)
- Pipelining Concepts
- Hierarchical Design
- UART / SPI
- ### Final Projects (Days 81–100)
- Mini-CPU

- RISC-V Components
- Traffic Light Controller
- 4-bit Calculator
- FSM-based Game Logic

© Logs

<a> Learnings & Reflections

Every README inside each day's folder will contain:

- Description of the module
- Verilog Code for design & test bench
- Waveform screenshots
- Key learning points
- Test cases & coverage

/ How to Run Simulations

Example for Icarus Verilog:

""bash
iverilog -o design_tb design.v design_tb.v
vvp design_tb
gtkwave dump.vcd

Tool used: Xilinx Vivado version 2023.2

Tool URL: https://www.xilinx.com/support/download.html

Sharing & Community

- Connect on LinkedIn: www.linkedin.com/in/nandyala-harika-0a6a212b9
- Hashtags: #100DaysOfRTL #Verilog #DigitalDesign #FPGA