Работа 3.6.1

Спектральный анализ электрических сигналов

Шелихов Дмитрий Группа Б01-305

2 октября 2024 г.

Цель работы: изучить спектральный состав периодических электрических сигналов. В работе используются: анализатор спектра (аналоговый или цифровой), генератор прямоугольных импульсов и сигналов специальной формы, осциллограф.

Теоретическая справка

Периодическая функция может быть представлена в виде бесконечного ряда гармонических функций - ряда Фурье:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{in\omega_0 t}$$

 $\omega_0 = 2\pi/T$,где T - период функции f(t). Коэффициенты c_n могут быть найдены по формуле:

$$c_n = \frac{1}{T} \int_0^T f(t)e^{-inw_0 t} dt.$$

Простейший спектральный анализатор - высокодобротный колебательный контур с подстраиваемой ёмкостью или индуктивностью.

Рис. 1. Колебательный контур как узкополосный фильтр

Такой контур усиливает гармоники входного сигнала f(t), частота которых близка к резонансной $\nu_0=\frac{1}{2\pi\sqrt{LC}}$, и практически не реагирует на частоты, далёкие от ν_0 . Таким образом, с точки зрения преобразования сигналов, такой контур является является

узкополосным фильтром с шириной полосы пропускания порядка $\Delta \nu \approx \nu_0/Q$, где $Q=\frac{1}{R}\sqrt{\frac{L}{C}} \gg 1$ - его добротность.

При этом амплитуда колебаний в контуре пропорциональна амплитуде $|c(\nu_0)|$ гармоники в спектре функции f(t), частота которой совпадает с ν_0 . Таким образом, меняя резонансную частоту контура, можно просканировать весь спектр входного сигнала. Экспериментальная установка Рассмотрим следующую схему: Исследуемый сигнал f(t) и синусоидальный сигнал от вспомогательного генератора, называемого в таких системах гетеродином, подаются на вход смесителя. Смеситель преобразует колебания с частотами ν_1 и ν_2 в колебания на комбинированных частотах: $\nu 1 + \nu 2$ и $\nu 1 - \nu 2$. Сигнал смесителя поступает на фильтр, настроенный на фиксированную резонансную частоту ν_0 . То есть, если f(t) содержит гармонику $\nu = \nu - \nu_0$, она будет усилена, а отклик будет пропорционален её амплитуде.

Рис. 2. Структурная схема анализатора спектра

На экране анализатора возникает график, изображающий зависимость амплитуды гармоник исходного сигнала от частоты, т.е. его спектр.

Ход работы

А. Исследование спектра периодической последовательности прямоугольных импульсов

Исследуем зависимость ширины спектра $\Delta \nu$ периодической последовательности прямоугольных импульсов от длительности отдельного импульса τ .

1) Ознакомимся с устройством приборов: генератор прямоугольных импульсов, осциллограф, анализатор спектра и подготовим их к работе, следуя техническим описаниям.

Рис. 3. Периодическая последовательность импульсов

Рис. 4. Спектр последовательности импульсов (расчёт для $\tau = T/7$)

- 2) Подключим генератор прямоугольных импульсов через разветвитель к осциллографу и анализатору спектра.
- 3) На генераторе зададим частоту повторения импульсов $\nu_{\text{повт}} = 1$ к Γ ц (период T = 1мс), длительность импульса $\tau = 50$ мкс. Получим устойчивую картину сигнала на осциллографе.
 - 4) Предварительно оценим характерную ширину спектра из соотношения неопределённостей $\Delta \nu \approx 1/\tau = 20$ к Γ ц.
 - 5) Получим спектр сигнала на анализаторе спектра. Предварительно подберём начало отсчёта и диапазон измерения по частоте, так чтобы на экране помещалась большая часть спектра.
 - 6) Изменяя параметры сигнала ($\nu_{\text{повт}}$, τ), пронаблюдаем как изменяется его спектр.

Рис. 1: $\nu_{\text{повт}} = 1$ к Γ ц, $\tau = 50$ мкс

а) Картинка для сравнения

Рис. 2: $\nu_{\text{повт}} = 2 \text{к} \Gamma \text{ц}, \ \tau = 50 \text{мкc}$

- б) При увеличении $\nu_{\text{повт}}$ амплитуды гармоник увеличиваются, ширина спектра не меняется.
- в) При уменьшении au амплитуды уменьшаются, ширина спектра увеличивается.
- г) Изменили обе величины: амплитуды возросли, ширина спектра уменьшилась. (в результате суперпозиции пунктов б и в)

Рис. 3: $\nu_{\text{повт}}=2\kappa\Gamma$ ц, $\tau=25\text{мкс}$

Рис. 4: $\nu_{\text{повт}} = 0.5$ к Γ ц, $\tau = 200$ мкс