Appearance Modeling

Different materials have different interactions with the light. The interaction between light and materials is described by Bidirectional Reflectance Distribution Function.

BRDF

BRDF means Bidirectional Reflectance Distribution Function, which provides a relation between incident radiance and differential reflected radiance.

$$f_r(\mathbf{x}, \mathbf{w}_i, \mathbf{w}_r) = rac{dL_r(\mathbf{x}, \mathbf{w}_r)}{dE_i(\mathbf{x}, \mathbf{w}_i)} = rac{dL_r(\mathbf{x}, \mathbf{w}_r)}{L_i(\mathbf{x}, \mathbf{w}_i)\cos\theta_i d\mathbf{w}_i} \quad \left[rac{1}{\mathrm{sr}}
ight]$$

Reflection Equation

$$L_r(\mathbf{x},\mathbf{w}_r) = \int_{H^2} f_r(\mathbf{x},\mathbf{w}_i,\mathbf{w}_r) L_i(\mathbf{x},\mathbf{w}_i) \cos heta_i \, d\mathbf{w}_i$$

The reflection equation describes a local illumination model:

which results in the reflected radiance due to incident illumination from all directions.

BRDF Properties

Helmholtz Reciprocity

$$f_r(\mathbf{x},\mathbf{w}_i,\mathbf{w}_r) = f_r(\mathbf{x},\mathbf{w}_r,\mathbf{w}_i)$$

Energy Conservation

$$\int_{H^2} f_r(\mathbf{x}, \mathbf{w}_i, \mathbf{w}_r) \cos heta_i \, d\mathbf{w}_i \leq 1$$

Isotropic vs. Anisotropic

If the BRDF is unchanged as the material is rotated around the normal, then it is isotropic, otherwise it is anisotropic. Isotropic BRDFs are functions of just 3 variables $(\theta_i, \theta_r, \Delta \phi)$.

Simple BRDF and BTDF Models

Lambertian Reflection Lambertian reflectance - Wikipedia

Lambertian reflectance is the property that defines an ideal "matte" or diffusely reflecting surface. The apparent brightness of a Lambertian surface to an observer is the same regardless of the observer's angle of view.

For Lambertian reflection, the BRDF is a constant. Thus we could write

$$egin{aligned} L_r(\mathbf{w},\mathbf{w}_r) &= \int_{H^2} f_r(\mathbf{x},\mathbf{w}_i,\mathbf{w}_r) L_i(\mathbf{x},\mathbf{w}_i) \cos heta_i \, d\mathbf{w}_i \ &= f_r \int_{H^2} L_i(\mathbf{x},\mathbf{w}_i) \cos heta_i \, d\mathbf{w}_i \ &= f_r E(\mathbf{x}) \end{aligned}$$

If all incoming light is reflected, then

$$egin{aligned} E(\mathbf{x}) &= B(\mathbf{x}) \ B(\mathbf{x}) &= \int_{H^2} L_r(\mathbf{x}) \cos \, d\mathbf{w} \ &= L_r(\mathbf{x}) \int_{H^2} \cos heta \, d\mathbf{w} \ &= L_r(\mathbf{x}) \pi \end{aligned}$$

which leads to

$$f_r=rac{1}{\pi}$$

In resume, for Lambertian reflection, the reflected radiance is

$$L_r = rac{
ho}{\pi} \int_{H^2} L_i(\mathbf{x}, \mathbf{w}_i) \cos heta_i \, d\mathbf{w}_i$$

where $\rho \in [0,1]$ is the diffuse reflectance:

- $\rho = 1$: all energy is (diffusely) reflected
- ho=0: all energy is absorbed

Ideal Specular Reflection

Every ray is reflected according to the geometrical rule without loss of energy. The BRDF is thus a delta function.

The reflected direction is

$$\mathbf{w}_r = 2(\mathbf{w}_i \cdot \mathbf{n})\mathbf{n} - \mathbf{w}_i$$

Ideal Specular Refraction

Every ray is refracted according to the geometrical rule without loss of energy. By Snell's law:

$$\eta_1\sin heta_1=\eta_2\sin heta_2$$

The refracted direction is

$$\mathbf{w}_t = -rac{\eta_1}{\eta_2}(\mathbf{w}_i - (\mathbf{w}_i \cdot \mathbf{n})\mathbf{n}) - \mathbf{n}\sqrt{1 - \left(rac{\eta_1}{\eta_2}
ight)^2(1 - (\mathbf{w}_i \cdot \mathbf{n})^2)}$$

Material	Index of Refraction
Vacuum	1
Air at STP	1.00029
Ice	1.3
Water	1.33
Crown glass	1.52 - 1.65
Diamond	2.417

Reflection + Refraction

Fresnel Equations

$$ho_\parallel = rac{\eta_2\cos heta_1 - \eta_1\cos heta_2}{\eta_2\cos heta_1 + \eta_1\cos heta_2} \
ho_\perp = rac{\eta_1\cos heta_1 - \eta_2\cos heta_2}{\eta_1\cos heta_1 + \eta_2\cos heta_2}$$

The reflection and refraction factor are then

$$F_r = rac{1}{2} \Big(
ho_\parallel^2 +
ho_\perp^2\Big) \ F_t = 1 - F_r$$

Remark

The Fresnel coefficients are path-reversible, i.e. they are the same if we reverse the light path. This is easily proven by the fact that the s-polarized light has

$$R_s = \left[rac{\sin(heta_t - heta_i)}{\sin(heta_t + heta_i)}
ight]^2$$

and p-polarized light has

$$R_p = \left[rac{ an(heta_t - heta_i)}{ an(heta_t + heta_i)}
ight]^2$$

Only if we have the same θ_t and θ_i , we have the same coefficients.

BRDF of Specular Reflection

BRDF of Specular Refraction

