Počítačové sítě r. 2008/2009

materiál ke zkoušce

autor: losperdos

obsah:

základní principy přenosu dat	str. 3
topologie sítí, přenosová média, metody sdílení přenosového média	str. 7
metody sdílení přenosového kanálu	str. 10
zabezpečení dat při přenosech, potvrzovací schémata, linkové protokoly	str. 14
referenční model ISO OSI, propojování sítí, aktivní prvky a jejich principy	str. 17
standardy IEEE 802, Ethernet, přepínané sítě, virtuální sítě	str. 22
protokoly TCP/IP	str. 26
směrování a směrovací algoritmy	str. 32
DNS	str. 34
protokoly služeb internetu	str. 36
bezpečnost sítí	str. 39
vzdálený přístup do počítačových sítí	str. 40
rádiové sítě	str. 42

1. základní principy přenosu dat

podle směru využívání média:

- simplex pouze v jednom směru (tv vysílání)
- half duplex v obou směrech střídavě (vysílačky, ethernet s hub)
- **full duplex** v obou směrech současně (ethernet se switch)

podle způsobu přenosu bitů znaků:

- paralelní
- **seriový** –synchr., asynchr.

asynchronní přenos:

- přenos po znacích (8, 7, 6, 5 bitů) kvůli nebezpečí rozsynchronizování hodin jen jeden znak
- vysílač i přijímač mají vlastní hodiny
- na konci znaku paritní bit bezpečnost
- mezi znaky stop bit (1) pauza, start bit (0)
- menší efektivita
- použití: průmyslové automaty, komunikační porty PC

synchronní přenos:

- přenos po rámcích (hlavička, data o proměnné délce, kontrolní součet)
- synchronizace je udržovaná neustále
- křídlová značka tak jsou označovány začátky a konce rámců
- použití: ISDN kanály

fyzikální omezení při přenosu dat

médium = prostředí (metalická média, optická, vzduch)

princip přenosu signálu:

vysílač -> data kódována na signál -> signál je modulován -> přenos přes medium ->signál je demodulován -> signál je dekódován na data -> přijímač

parametry média:

- útlum, rychlost šíření signálu, přeslechy, ...
- závislé na frekvenci proto nejideálnější je použití co nejméně frekvenci měnících prvků

použitelný frekvenční rozsah média:

rozklad na harmonické signály:

- harmonický = sinusový

přenos v základním a přeloženém pásmu

a) v základním pásmu:

- baseband
- přenásí se přímo frekvenční spektrum vzniklé zakódováním jedniček a nul
- digitální signál nepoužívá se modulace
- pro metalická i optická vlákna (omezení dosahu)

kódování:

Non Return to Zero (NRZ):

- přímé dvoustavové kódování
- 0 nízká úroveň, 1 vysoká úroveň
- pouze stejnosměrná složka

Manchester:

- kódování směrem změny **uprostřed** bitového intervalu
- 0 sestup signálu, 1 vzestup signálu
- ethernet, metalické vedení

Diferenciální Manchester:

- kódování změnou nebo absencí změny na začátku intervalu
- 0 změna, 1 absence změny
- uprostřed intervalu změna vždy

Return to Zero (RZ):

- třístavový
- +1 při kódování binární 1
- -1 při kódování binární 0
- 0 při kódování je vždy uprostřed

Non Return to Zero Inverted (NRZI):

- dvoustavový
- 1 inverze signálu, 0 signál zůstává

Alternate Mark Inversion (AMI):

- třístavový
- binární nula je 0
- binární jednička je střídavě +1 a -1
- problém udržet synchronizaci přijímače při dlouhé sekvenci nul

HDB3:

- řeší problém AMI s dlouhou posloupností nul tak, že po dvou nulách vloží jedničku.

Code Mark Inversion (CMI):

- pro přenos AMI/HDB3 přes optiku

4B5B:

- čtyři bity se mapují na bitové kombinace 5 bitů
- použití: Fast Ethernet
- existují i další: **5B6B**, ...

b) v přeloženém pásmu:

- broadband
- tyto zakódované sekvence jedniček a nul se překládají do frekvenčního pásma kde má médium vhodné charakteristiky
- možnost vícenásobného využití média

modulace:

 zvolíme sinusový signál o frekvenci vhodné pro přenos médiem, měníme jeho parametry v závislosti na přenášených datech (frekvenci, amplitudu, fázi, nebo kombinace)

fázová modulace:

- 2ⁿ možností změny fáze (např. změna o 45, 135, 225, 315 stupňů)

kvadraturně-amplitudová modulace (QAM):

- kombinace fázové a amplitudové modulace

modulační rychlost:

počet změn v signálu za sekundu[Baud]

přenosová rychlost:

- počet bitů přenesených za sekundu

- Jaké nepříznivé vlivy působí na signál přenášený médiem ? Jakými fyzikálními vlastnostmi média (metalického, optického) jsou ovlivněny ? Lze je zcela eliminovat ?
- nepříznivě působí např. okolní elektrická zařízení, představují šum v signálu.
- fyzikálně je ovlivněn přenos impedancí metalického média, a optickými zákony v optickém médiu (odraz světla, útlum, ...)
- Proč je maximální bitová rychlost přenášených dat u každého reálného přenosového média shora omezena ?
- tato horní rychlost je dána fyzikálními možnostmi daného média. Tzn. např. metalické vedení má svůj strop, na který může navázat optické vedení, které má daleko lepší možnosti
- Proč se při přenosu dat médiem používá modulace ?
- kvůli bezpečnosti (např. kontrolní součty) abychom zajistili, že se médiem přeneslo vše co jsme chtěli a nic se cestou neztratilo
- Jaké základní typy modulací znáte? Pro každou z těchto modulací nakreslete nosný signál modulovaný bitovou sekvenci 0101100 (konkrétní parametry modulace si zvolte)
- příklad amplitudové, frekvenční a fázové modulace:

- Proč se při přenosu bitového proudu v základním pásmu používá kódování? Jaká kódování znáte?
 Zakódujte bitovou sekvenci 0101100 v každém z těchto kódování.
- NRZ, NRZI, Manchester, Dif. Manchester, RZ, AMI, CMI, HDB3, 4B5B
- Jaký je rozdíl mezi synchronním a asynchronním sériovém přenosem?
- asynch. přenos po znacích, synch. přenos po rámcích, synchronizace je neustále udržována
- Vysvětlete pojmy simplex, half-duplex a duplex.
- simplex přenos signálu pouze v jednom směru
- half duplex v obou směrech střídavě
- full duplex v obou směrech současně

2. Topologie sítí. Přenosová média. Metody sdílení přenosového média

topologie sítí

sítě LAN a WAN

LAN:

- lokální sítě
- sdílený kanál
- velké přenosové rychlosti
- na médiu v jenom okamžiku jeden paket

WAN:

- rozlehlé sítě
- nižší přenosové rychlosti
- na jednom médiu současně více paketů

typy sítě:

- token ring kruhový
- ethernet stromový, sběrnicový

další vlastnosti topologií:

- rozšiřitelnost
- spolehlivost proti výpadkům
- rekonfigurovatelnost při výpadku
- propustnost

a) LAN:

sběrnice (bus):

- pasivní médium
- malézpoždění signálu
- všechny stanice přijímají (špatná bezpečnost)
- T-kusy, terminátory (odpor na konci vedení)

hvězda (star):

- ve středu hub
- odolné proti výpadku stanic

strom (tree):

- rozšíření hvězdy
- nejvyužívanější

kruh (ring):

- jednosměrná dvoubodová propojení stanic
- základní prvek posuvný registr
- citlivé na výpadky
- vysílání se přeposílá přes sousedy

b) WAN

- polygonální
- linky bod bod mezi routery
- alternativní cesty
- k jednotlivým routerům jsou připojeny různé sítě (viz. výše)

přenosová média

- je využíván sériový přenos z důvodu úspory vedení

metalická:

- nesymetrická koax
- symetrická twist pair

optická:

- jednovidová (singlemode)
- vícevidová (multimode)

rádiové:

- vzduchem

jednotlivá média:

a) koaxiální kabel:

- pro přenos v zákl. (0 150 MHz) i přelož. pásmu (50 750 MHz)
- drahé, kvalitní
- 50 Ohm

b) kroucená dvojlinka (TP):

- horší parametry než koax, avšak levnější
- 100 metrů při přenosu 1Gbps
- přenosová rychlost podle kategorie TP

UTP:

nestíněná dvojlinka (unshielded TP)

STP:

stíněná dvojlinka (shielded TP)

STP (Shielded Twisted Pair) Outer Overall Shield Shields Twisted Pair A Twisted Pair Outer Shield Shields Twisted Pair

norma EIA/TIA 568:

kategorie TP

kat. 1 – klasické telefonování

kat. 3 – 16 MHz (10 Mbps)

kat. 5 – 100 MHz (100 Mbps)

kat. 5+ - dodefinovává parametry (FEXT, ...)

c) optická vlákna:

- velká přenosová kapacita (desítky Gbps)
- žádné rušení, odposlech

- Jaké topologie počítačových sítí znáte? Jaké jsou výhody a nevýhody každé z nich?
 - hvězda, strom, sběrnice, kruh
- Jaké přenosová média znáte ? Jaké jsou výhody a nevýhody každého z nich ? Jaké médium se dnes nejčastěji používá v lokálních sítích ?
 - metatalické, optické, vzduch
 - koax drahý, dobré vlastnosti
 - TP levný, dnes nejvyužívanější v LAN
- Co znamená označení média UTP5?
 - nestíněná kroucená dvojlinka kategorie 5
- Jaké dva základní typy optických vláken rozlišujeme ? Jaké jsou výhody a nevýhody každého typu ?
 - jednovidové, vícevidové (singlemode, multimode)
- Vysvětlete pojem "strukturovaná kabeláž".
 - kabeláž je strukturována společně s aktivními prvky podle předem daných pravidel posloupnosti a řazení

3. Metody sdílení přenosového kanálu

klasifikace přístupových metod

deterministické (bezkolizní):

- je definován postup, v jakém pořadí mohou stanice na kanál přistupovat
- v jeden okamžik vždy jen jedna stanice

nedeterministické (kolizní):

- náhodný přístup stanice na kanál (náhodné časové prodlevy)
- musí se řešit kolize, pokud na kanál přistoupí naráz více stanic

a) nedeterministické metody

kolizní slot:

- udává, kolik času se nejvýše ztratí na nevyužití kanálu vlivem kolize

Aloha:

- netestuje se obsazenost média, rovnou se vysílá
- kolize nastane, pokud do časového limitu nepřijde potvrzení -> opakování pokusu po vypršení limitu
- použití: radiové a družicové sítě

prostá Aloha:

User				
Α				
В				
С				
D				
Ε				
		Time	 	

taktovaná Aloha:

- vysílat se smí začít jen v okamžicích začátků časových úseků pro odeslání jednoho rámce
- kolizní slot je poloviční
- dvojnásobná efektivita

řízená Aloha:

řízená změna intenzity opakování podle okamžitého zatížení sítě

Carrier Sense Multiple Access (CSMA):

- skupina metod náhodného přístupu s příposlechem nosné
- podmínky: dokonalá slyšitelnost stanic, malé zpoždění signálu

naléhající CSMA (1-persistant CSMA):

- před odesláním rámce se testuje stav kanálu, a je-li obsazen, čeká se na uvolnění
- riziko kolize čekajících stanic

nenaléhající CSMA (non-persistant CSMA):

- při detekci obsazeného kanálu se počká náhodnou dobu, pak opět test obsazení.

řízení metod CSMA:

p – naléhající CSMA (p – persistant CSMA):

- při potřebě vysílání se počká na okamžik uvolnění kanálu (nebo byl volný okamžitě)
- s pravděpodobností p začne vysílat, s pravděpodobností (1-p) se počká 1 timeslot.
- toto se opakuje do úspěšného odeslání rámce
- pokud mezitím začala vysílat jiná stanice, počká se náhodnou dobu (jako při kolizi)
- volbou p lze nastavit optimální využití kanálu pro danou zátěž
- pro p=1 jde o naléhající CSMA
- pro velmi malá p značně narůstá průměrná doba doručení paketu

CSMA/CD:

- CSMA s detekcí kolize
- před vysíláním musí být na médiu klid po dobu kolizního slotu
- další postup je stejný jako u naléhající CSMA

časování CSMA/CD:

 vzájemný vztah mezi: rychlostí šíření signálu na médiu, maximální povolenou délkou segmentu, minimální dobou vysílání rámce

minimální délka rámce:

 Rámec musí být vysílán alespoň takovou dobu, jaká je nejdelší možná doba do zjištění "nejhoršího" možného případu kolize

maximální délka kabelového segmentu:

- doba šíření mezi nejvzdálenějšími stanicemi je daná délkou segmentu, rychlostí šíření signálu v kabelu
- Tato doba nesmí být delší než doba vysílání nejkratšího možného rámce

CSMA/CD v Ethernetu:

- Při detekci kolize stanice vysílá kolizní signál (jam), aby kolizi rozpoznaly všechny kolidující stanice
- Prodleva po kolizi určena algoritmem Binary exponential backoff

b) deterministické metody

Centralizované řízení

- Přidělování na výzvu
- Přidělování na žádost

Distribuované řízení

- Rezervační rámec
- Binární vyhledávání
- Logický kruh

Centralizované řízení

- jedna stanice je vyhrazena jako řídící a ta přiděluje kapacitu kanálu ostatním
- část kapacity kanálu objetována na komunikaci s řídící stanicí

přidělování na výzvu:

- stanice smí vysílat, jen když je k tomu vyzvána centrálním řídicím prvkem (master)
- cyklická výzva,
 - o nabízení práv k vysílání
 - o vyzývaná stanice buď zašle data nebo neodpoví
- binární vyhledávání
 - o organizace stanic do stromové struktury
 - o řídící stanice vyzývá jednotlivé skupiny stanic (větve)
 - ve větvi se výzva posouvá směrem dolů od kořene dokud neodpoví některá ze stanic na výzvu a bude moci poté vysílat data

přidělování na žádost:

- žádosti přicházejí od stanic k řídící stanici po vyhrazených kanálech
- použití: rádiové sítě

Distribuované řízení

- nezávislé na řídící stanici
- složitější implementace

rezervační rámec:

- master periodicky generuje rezervační rámec
- každá stanice má svůj slot, ve kterém si může požádat o přidělení datového slotu
- datové sloty následují za rezeračním rámcem

binární vyhledávání:

- stanice nejprve synchronizovaně vysílají bity své adresy
- vysílané bity se pomocí OR logicky sčítají na sběrnici
- jakmile stanice vysílá 0 a čte 1, chce vysílat někdo s vyšší prioritou a stanice musí umlknout
- kdo úspěšně odešle celou svou adresu, může vyslat jeden rámec

logický kruh:

- adresy stanic stanic tvoří cyklickou posloupnost
- každá stanice zná svou adresu a adresu následníka
- mezi stanicemi se cyklicky předává právo na vysílání (token)
- stanice vlastnící token smí vysílat, do určité doby však musí předat token následníkovi

- Proč je v lokálních sítích třeba implementovat přístupovou metodu ke společnému kanálu? Co má přístupová metoda za úkol?
- má za úkol zamezit kolizím při jednotlivých přístupech stanic k přenosovému kanálu
- Vysvětlete rozdíl mezi deterministickými a nedeterministickými přístupovými metodami a jejich výhody a nevýhody.
- nedeterm. udává časové prodlevy přístupů
- determin. definuje postup, v jakém pořadí se přistupuje
- Jaké konkrétní deterministické a nedeterministické přístupové metody znáte?
- Aloha, prostá Aloha, takt. Aloha, ...
- centralizované řízení, distrib. řízení
- Vysvětlete princip metod CSMA/CD a Token Passing.
- CSMA/CD Na rozdíl od čistého CSMA u CSMA/CD stanice při svém vysílání současně kontroluje přenosové médium, zda nezachytí jiné vysílání, které koliduje s jejím. Z této vlastnosti je odvozena přípona "s detekcí kolizí" (with Collision Detection) v názvu metody. Pokud stanice zjistí kolizi, zastaví vysílání, počká náhodnou dobu a opakuje svůj pokus znovu. CSMA/CD je proto efektivnější než samotné CSMA či CSMA/CA v nich se kolize nezjišťují a dojde-li k nim, zbytečně se odvysílá celý datový rámec, který bude beztak nutno opakovat.
- Uveďte dvě metody centranizovaného deterministického řízení přístupu na kanál a dvě metody řízení deterministického distribuovaného (nikoli Token Passing)
- centr. přidělování na výzvu, přidělování na žádost
- distr. rezervační rámec, binární vyhledávání

4. Zabezpečení dat při přenosech, potvrzovací schémata. Linkové protokoly.

zabezpečení dat při přenosech

komunikace bez spojení:

- vysílač může pakety a rámce zasílat střídavě různým příjemcům

komunikace se spojením:

- nutnost zřízení okruhu mezi vysílačem a přijímačem
- po dokončení vysílání zrušení spojení

kanál:

jednosměrný, popř. half-duplex

okruh:

- obousměrný, dvojice kanálů

problémy při komunikaci v reálné síti:

- ztrácení a poškozování paketů (nutnost zpětné vazby)
- duplikace a změna pořadí paketů v síti (předbíhání, nutnost číslování paketů)

typy zpětné vazby:

- potvrzovací zpět ACK/NAK
- detekční zpět CRC
- informační zpět celý rámec

číslování paketů:

- zajištění správného pořadí paketů a odbourání duplikace paketů

potvrzovací schémata

- protokoly pro zajištění spolehlivé komunikace dvou stanic

pozitivní (ACK):

potvrzuje správné přijetí

negativní (NAK):

- informuje o přijetí rámce s chybou
- samo o sobě nestačí

kombinace:

používá se ACK i NAK

potvrzování s časovým limitem:

- volba vhodného timeoutu řeší problém ztráty pozitivního potvrzení

klasifikace potvrzovacích schémat:

- stop and wait vysílač pošle jediný rámec a čeká na potvrzení
- skupinové potvrzování (pipelining) vysílač smí vyslat více rámců a až poté čekat na potvrzení

metoda Sliding - window:

- stanice smí vyslat i více rámců bez ACK (počet stanoven šířkou okna)
- při odeslání se pro každý rámec nastartuje časovač pro potvrzení
- vysílací okno buffer na vysilači s vyslanými rámci, které dosud nebyly potvrzeny a možná budou muset být vyslány znovu
- <u>přijímací okno</u> buffer na přijimači na přijaté rámce, které ještě nemohly být doručeny vyšší vrstvě přijimače, protože dosud chybí některý z předchozích rámců v řadě
- varianty obsluhy chyb:
 - o Go-Back-N přijímač všechny rámce po chybném nebo nedoručeném zahazuje
 - o Selective Repeat Rámec s chybou došlý na přijimač se zahodí, ale následující se bufferují

inkluzivní potvrzování:

- efektivnější – odolnost proti ztrátě ACK

řízení toku dat (flow control):

- možnost zbrzdit vysílač, pokud aplikace přijímače nestačí odebírat data
- úprava vysílacího okna na vysílači

linkové protokoly

přenos dat mezi přímo propojenými systémy:

- komunikační kanál může sdílet více stanic, je třeba umět v bitovém proudu na kanále vydělit jednotku přenášené informace = rámec
- rámec obsahuje data i hlavičku, která obsahuje:
- o adresu odesílatele a příjemce
- o sekvenční číslo
- o typ přenášených dat (IP, IPX, ...)

multicast:

příjemcem rámce je celá skupina

broadcast:

- příjemcem rámce jsou všechny stanice na sdíleném kanále

rámec:

křídlová značka hlavička	DATA	kontrolní součet (checksum)	křídlová značka	
--------------------------	------	--------------------------------	-----------------	--

a) znakově orientovaně protokoly:

- vždy přenášeno 5, 6, 7, nebo 8 bitů naráz = celý jeden znak
- asynchronní sériový přenos
- použití: průmyslové řídicí automaty

řídicí znaky:

- začátek vysílání, konec vysílání, začátek rámce, konec rámce, začátek hlavičky, začátek dat, ...

přenos řídicích znaků v datech:

b) bitově orientované protokoly:

- přenos po jednom bitu
- synchronní sériový přenos
- v LAN i WAN
- oddělovače rámců:
- o křídlové značky (typicky 01111110)
- o speciální kódová značka

Bit Stuffing:

- (b) 01101111101111101010
- (c) 0110111111111111111110010
- (a) původní data před vysláním
- (b) za každých 5 jedniček dodána uměle 0
- (c) nulu po 5 jedničkách přijímač automaticky odstraňuje

příklady linkových protokolů:

- PPP Point to Point Protocol
- HDLC High Level Data Link Control
- LAPD Link Access Procedure D channel
- LLC Logical Link Control

- Proč je při přenosu dat v počítačové síti nezbytné potvrzování? Postačuje samotné pozitivní, resp.
 negativní potvrzování?
- kvůli bezpečnosti. Abychom měli jistotu, zda data dorazily v pořádku celá. Negativní potvrzování samo o sobě nestačí.
- Vysvětlete princip potvrzovacích schemat stop-and-wait a skupinového vysílání (pipelining). Za jakých podmínek bude stop-and-wait velmi neefektivnía kdy jej naopak lze použít ?
- stop and wait vysílač pošle jediný rámec a čeká na potvrzení
- skupinové potvrzování (pipelining) vysílač smí vyslat více rámců a až poté čekat na potvrzení
- Vysvětlete princip skupinového vysílání s použitím algoritmu klouzavého okénka (Sliding window).
 Jakou úlohu v něm hrají buffery na straně vysílače a přijímače, potvrzování a časové limity?

- stanice smí vyslat i více rámců bez ACK (počet stanoven šířkou okna)
- Jaká musí být alespoň velikost vysílacího okna (v počtech paketů) u skupinového potvrzování, pracuje-li se s pakety pevné délky 128B a potvrzeními 8B, bitová rychlost je 64kbps a zpoždění na kanále je 1 ms?
- velikost vysílacího okna by měla být alespoň 3 pakety
- Proč a kde se používají linkové protokoly? Jakou obecnou strukturu mívá a jaké údaje zpravidla obsahuje rámec?
- linkové protokoly se používají na druhé vrstvě k vydělení rámce z bitového toku, obsahuje DATA, hlavičku, kontrolní součet
- Vysvětlete rozdíl mezi bitově a bajtově orientovanými protokoly. Který z těchto typů se používá v sítích LAN?
- bitově = přenos po jednom bitu, bajtově = přenos po znacích

5. Referenční model ISO OSI, propojování sítí, aktivní prvky a jejich principy

architektury komunikujících systémů

vrstvená architektura:

- cílem dekompozice problému komunikace na menší, snadněji řešitelné celky
- možnost modulární výměny vrstev

vrstvové a mezivrstvové protokoly:

vrstvový protokol:

mezivrstvový protokol:

- pravidla spolupráce sousedních vrstev

entity vrstev:

- vrstva je tvořena množinou entit, ty (logicky) komunikují s entitami stejnolehlé vrstvy partnerského systému
- entity jsou nositelé funkcí vrstvy a poskytovatelé služeb
- pro vykonávání svých funkcí využívá entita služeb entit v nižší vrstvě

primitiva interakce mezi uživatelem a poskytovatelem služby:

- žádost žádost o službu nižší vrstvy
- potvrzení potvrzení poskytovatele služby o dokončení akcí dříve požadovaných primitivou žádost
- **oznámení** oznámení poskytovatele služby o vzniklé situaci vedoucí k potřebě vyvolání určité akce na straně uživatele služby
- odpověď reakce uživatele služby potvrzující ukončení akcí iniciovaných předtím poskytovatelem služby primitivou oznámení

referenční model ISO OSI:

obecný vrstvený model

systém:

samostatný celek schopný vykonávat zpracování a přenos informace

otevřený systém:

- ISO OSI
- normy jsou veřejně dostupné
- všechna zařízení vyhovující normám jsou propojitelná

vrstvy referenčního systému ISO OSI:

- 1. fyzická
- 2. spojová
- 3. síťová
- 4. transportní
- 5. relační
- 6. prezentační
- 7. aplikační

1) fyzická vrstva:

- fyzická komunikace mezi sousedními systémy
- full nebo half duplex

poskytované služby:

- přenos sériového proudu bitů
- oznamování chybových stavů spojové vrstvě
- otevření a uzavření fyzického spojení

2) spojová vrstva:

poskytuje jedno nebo více spojení mezi dvěma entitami síťové vrstvy v sousedících systémech

poskytované služby:

- formátování a rozpoznávání rámců
- detekce a korekce chyb
- vytváření, udržování a rušení spojení
- rušení toku dat (flow control)

3) síťová vrstva:

- cílem překlenout rozdílné vlastnosti různých síťových technologií a dosáhnout univerzální rozhraní služby
- zabezpečuje přenos dat obecně mezi nesousedními uzly sítě přes prostřédníky
- adresace systémů

poskytované služby:

- síťová služba se spojením zahajování a ukončování síťových spojení
- síťová služba bez spojení v internetu (IP)

4) transportní vrstva:

- poskytuje transparentní a ekonomický přenos s požadovanou kvalitou mezi dvojicí transportních adres
- řeší adresaci transportních entit v rámci zařízení s jednou síťovou adresou
- mezi dvěma systémy může být několik transportních spojení současně

5) relační vrstva:

- organizace a synchronizace dialogu mezi partnerskými entitami presentační vrstvy

poskytované služby:

- řízení dialogu komunikace jednosměrná, obousměrná střídavá, obousměrná současná
- normální, urgentní, pozdržený přenos zprávy
- synchronizační body

6) prezentační vrstva:

- cílem sjednotit prezentaci informace, kterou si vyměňují entity v aplikační vrstvě
- presentační vrstva se zabývá pouze strukturou zpráv, sémantika zpráv je známa pouze aplikační vrstvě

funkce:

- dohoda syntaxi
- přenos zpráv se současnou transformací syntaxe dat

7) aplikační vrstva:

- cílem vrstvy je poskytnout aplikacím přístup ke komunikačnímu systému
- předepisuje, v jakém formátu a jak mají být data přebírána/předávána od aplikačních programů

služby vrstvy:

- logická identifikace komunikujících partnerů
- dohoda funkcí parametrů od nižších vrstev

- Vysvětlete výhody vrstvené architektury komunikujících systémů. Jak probíhá komunikace mezi vrstvami?
- dekompozice problému na snadněji řešitelné vrstvy, modulární výměna systému
- Jaké konkrétní vrstvy definuje referenční model ISO OSI a co je úkolem každé z vrstev ?
- viz. výše
- Vysvětlete pojem "enkapsulace".
- zapouzdření
- Vysvětlete rozdíly mezi komunikací se spojením a beze spojení.
- bez spojení vysílač může rámce, pakety zasílat střídavě různým příjemcům
- se spojením před zasíláním dat je nutné zbudovat spojení, poté je ukončeno

důvody propojování a rozdělování sítí:

- zvětšení rozsahu, propojení jiných oddělených sítí
- oddělení provozu, zmenšení zátěže, bezpečnost

prvky pro propojování sítí:

rozbočovač:

most a přepínač:

most:

- na 2. vrstvě RM OSI
- stejný formát rámce na všech rozhraních
- jsou mosty zdrojové směrování a samoučící
- možnost konverze média, kódování
- parametry:
- forwarding rate
- o filtering rate

Bridge LAN 4 A B B1 C B2 D E LAN 1 LAN 2 LAN 3

samoučící most:

- zasílá rámce podle tabulky se záznamy ve tvaru: <MAC_adresa, port>
- tabulku si buduje z příchozích rámců podle MAC a portu
- záznamy v tabulce mají časově omezenou platnost
- rámce, jejichž cílová adresa v tabulce dosud není, se rozesílají na všechny porty flooding

zdrojové směrování:

- cestu rámce sítí určuje zdrojová stanice
- v rámci je seznam segmentů, kterými projde
- v síti Token ring
- popis funkce:
 - O Zdroj cestu získá tak, že před vysláním datového rámce cíli pošle "průzkumný rámec" šířený v síti všemi cestami, který sbírá seznam projitých segmentů. Pro zamezení cirkulace se průzkumný rámec neodesílá se do segmentů sítě, jejichž identifikátor již v seznamu je. Cíl, který průzkumný rámec přijal, seznam segmentů otočí a pošle zpět zdroji (po již známé cestě). Zdroj může získat zpět několik odpovědí, ze kterých vybere.

spanning tree:

- neustálá automatická konstrukce stromu pokrývajícího celý graf sítě
- některý z portů na linkách tvořících smyčky bude zablokován
- v případě výpadku linky/portu se strom automaticky změní odblokuje se některý doposud zablokovaný port

funkce spanning tree:

- volba kořenu stromu
- vytvoření nejkratších cest ve stromu, z každého mostu ke kořeni (preference linek lze ovlivnit nakonfigurováním cen)

provoz spanning tree:

- root generuje každé 2s zprávu BPDU, která postupuje směrem dolů
- každý most kontroluje, zda tuto zprávu na svém portu slyší (přechodné stavy portů learning a listening)
- při výpadku překonfigurování stromu max. 50s

směrovač (router):

slouží k zasílání paketů nejkratší cestou sítí skok po skoku k cíli

funkce směrovače:

- směruje pakety konkrétního síťového protokolu (IP, IPX, ...)
- pro každý paket najde ve směrovací tabulce podle směrovací adresy, kam má paket zaslat

kontrolní otázky:

- Jaké prvky pro propojování sítí znáte ? Kdy použijete který z nich ? Na kterých vrstvách referenčního modelu ISO-OSI pracují ?
- most (2. vrstva), switch (ke koncovému spojení zařízení v jednu síť), router (3. vrstva, při propojení více sítí, WAN), hub (jako opakovač, zesilovač)
- Popište princip funkce rozbočovače (hub), přepínače (switch) a směrovače (router).
- rozbočovač veškerá data, která přijdou na jeden z portů (zásuvek) zkopíruje na všechny ostatní porty
- přepínač data pošle jen na určený port
- směrovač přenášení, přeposílání dat mezi více sítěmi
- V čem spočívá problém se smyčkami při použití transparentních mostů (přepínačů) ? Jak se odstraňuje ? Jakým způsobem může administrátor vzniklou aktivní topologii ovlivnit a proč to může být užitečné ?
- u samoučících mostů, když jsou tři paralelně spojeny. Problém řeší spanning tree
- Proč pro propojování různých typů lokálních sítí nevystačíme s přepínači, ale potřebujeme router ? Proč často potřebujeme router i pro propojení sítí stejného typu ?
- řešení pomocí routerů je mnohem rychlejší a levnější na případnou kabeláž. která by se jinak musela u switchů použít. Nelze.

6. Standardy IEEE 802, Ethernet, přepínané sítě, virtuální sítě

IEEE 802:

- normalizace aktuálního stavu lokálních sítí
- ISO 8802
- definuje fyzickou a spojovou vrstvu

struktura doporučení IEEE 802:

vztah IEEE 802 a RM OSI:

- spojová vrstva dělená na:
- o MAC Media Access Control (různá pro různé sítě)
- o LLC Logical Link Control (společná)

MAC vrstva:

- sdílení přístupu ke společnému kanálu
- formáty rámců
- adresace stanic
- zabezpečení proti chybám

MAC adresy:

- MAC adresa přiřazena každému fyzickému připojení k síti
- délka adresy je 48 bitů
- první bit adresy: 0 individuální, 1 skupinová
- druhý bit adresy: 0 univerzálně, 1 lokálně
- samé jedničky v adrese = broadcast
- samé nuly v adrese = testovací a prázdné rámce

rámce:

přenášeny po oktetech

LLC vrstva:

- definuje služby, které síť poskytuje
- umožňuje adresaci entit, v rámci stanice

funkce LLC:

- error-control, flow-control
- poskytuje společné rozhraní síťové vrstvě

typy služeb poskytovaných LLC:

- nespojovaná služba nepotvrzovaná nejrozšířenější, není flow control a error control, detekci chyb a zahazování chybných rámců řeší MAC vrstva
- spojovaná služba služba s navazováním logického spojení mezi SAP, korekce chyb, flow control, sekvencování rámců
- nespojovaná služba s potvrzováním nejméně využívaná

obsah hlavičky LLC:

- umístěná na začátku datové části rámce MAC vrstvy
- DSAP Destination Service Access Point (cílová služba, 1B)
- SSAP Source Service Access Point (zdrojová služba, 1B)
- řízení (1 2B)
- uživatelská data

enkapsulace SNAP (SubNetwork Access Protocol):

- mechanismus pro použití dříve zavedených dvoubajtových kódů protokolů vyšších vrstev
- je-li DSAP=AAh, řízení=AAh, jde o tzv. SNAP enkapsulaci

doporučení pro nejdůležitější typy sítí:

- 802.3 Sítě CSMA/CD (Ethernet)
- 802.4 Token Bus
- 802.5 Token Ring
- 802.6 MAN DQDB (Dual-queue Data Bus)
- 802.11 bezdrátové lokální sítě
- 802.14 sítě HFC (Hybrid Fiber Coax)
- 802.15 Bluetooth

doporučení 802.1:

- definuje transparentní mosty a mostys explicitním směrováním
- definice spanning tree (802.1d)
- definice virtuální sítě VLAN (802.1q)
- priorita provozu (802.1p)

Ethernet

označování podle IEEE 802.3:

- Mbps (10, 100, ...) [Base, Broad] [délka_segmentu v m | médium] (médium: T Twisted pair, F Fiber opric)
- např. 10Base5, 10BaseT, 100BaseF

režimy:

- Half-duplex kolizní prostředí
- Full-duplex nekolizní přepínané prostředí

dohoda duplexu a rychlosti:

- FLP (Fast Link Pulses) – stanice se mezi sebou dohodnou na rychlosti a na režimu

formát rámce Ethernetu:

Bytes	8	6	6	2	0-1500	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum
					,,		
(b)	Preamble S o F	Destination address	Source address	Length	Data	Pad	Check- sum

- a) DIX
- b) 802.3
- délka max. 1500B
- povinná mezera mezi rámci dělá 96 bitových intervalů

varianty Ethernetu:

10Base5:

- Ethernet 2
- sběrnice
- koax yellow cable
- segment 500m ukončený terminátory (max. 5 segmentů)
- max. 100 stanic/segment
- kódování Manchester

10Base2:

- CheaperNet
- sběrnice
- koax RG58
- segment 185m ukončený terminátory
- max. 30 stanic/segment, oddělené 0.5m
- propojeni BNC konektory

10BaseT:

- topologie hvězda (strom)
- 2 páry TP + konektory RJ-45
- použití hubů
- max. 512 stanic/segment
- přípoj k rozbočovači max. 100m
- křížení kabelu přijímače na vysílač

100Mbps (Fast Ethernet):

- IEEE 802.3u
- vychází z 10BaseT
- 2 páry UTP-5, 100m
- kódování 4B5B

Gigabit Ethernet:

- 802.3z
- topologie hvězda
- dnes použití pro přepínané páteřní rozvody

fyzická vrstva GE:

- přejatý ANSI Fibre Channel poskytuje rychlosti 133Mbps až 1Gbps
- 1000Base-SX short wavelength (850 nm)
- 1000Base-LX length wavelength (1300 nm)
- 1000Base-T

10 Gigabit Ethernet:

- optika
- full-duplex
- i ve WAN

přepínaný Ethernet:

přepínače:

- chování jako mosty v topologii strom
- malé zpoždění
- výhody:
- o bezkolizní
- o vynucení více deterministické chování
- o vyšší bezpečnost
- o lepší udržovatelnost

metody přepínání:

- o Store-and-Forward
- o Cut-through (okamžitě začne vysílat po přečtení cílovéMAC)
- o FragmentFree kombinace

parametry:

- o počet MAC adres na port
- o celkový počet MAC adres
- o způsob přiřazení MAC k portům
- o správa a monitorování provozu
- o filtrace provozu

half/full duplex v přepínaných sítích:

- half-duplex o médium kolizně soupeří switch a síťová karta
- full-duplex bezkolizní, povoleny delší vzdálenosti

VLAN

- na jednom přepínači více vzájemně oddělených sítí (virtuálních)
- může být i přes více přepínačů
- oddělení logické struktury sítě od fyzické topologie
- zvýšení bezpečnosti

trunk linka:

- slouží k provozu více LAN mezi přepínači
- lze specifikovat, které VLAN smějí linkou trunk procházet
- VLAN ID je v datové části paketu

členství ve VLAN:

- staticky podle portu
- dynamicky podle MAC adresy

- Jaké úkoly plní vrstva LLC a MAC z doporučení IEEE 802 ?
- LLC definuje služby, které síť poskytuje
- MAC sdílení přístupu ke společnému kanálu
- Jaký je formát MAC adres ? Jak vypadá MAC adresa označující broadcast ?
- 48 bitů, broadcast = samé 1
- Co definují doporučení IEEE 802.3, 802.5 a 802.11 ?
- 802.3 CSMA
- 802.5 Token Ring
- 802.11 Wifi
- Popište základní charakteristiky sítě Ethernet (možné topologie + dosah, používané médium a aktivní prvky, přístupová metoda, přenosové rychlosti).
- viz výše
- Co znamenají zkratky 10BaseF, 100BaseT a 1000BaseSX ?
- udávají typ sítě, rychlost, přenosové médium

7. Protokoly TCP/IP

TCP/IP

- standard pro komunikaci v internetu a v intranetu
- TCP protokol 4. vrstvy
- IP protokol 3. vrstvy

vrstvený model TCP/IP:

adresace v protokolu IP:

- 32 bit adresy (x.x.x.x)
- dělení na adresu sítě + adresa uzlu v rámci sítě
- adresy všech stanic na segmentu LAN mají společnou část IP adresy (adresu sítě, prefix)
- směrovače ukládají pouze adresy sítí

třídy IP adres:

beztřídní adresy:

- délka prefixu sítě je přidělována podle potřeby
- musí být specifikována maska podsítě, která určuje délku prefixu

přidělování IP adres:

- přiděluje oblastní správce (pro Evropu RIPE)
- soukromé izolované sítě mají vyhrazené rozsahy adres použitelné opakovaně, ale nesmějí být připojeny do internetu, jen přes NAT (překlad adres)
- speciální IP adresy:
- 255.255.255.255 univerzální broadcast
- o 224.x.x.x, 239.x.x.x multicast

podsíťování (subnetting):

- rozdělení přiděleného adresního prostoru mezi více segmentů
- každý segment má svou vlastní adresu podsítě
- část adresy původně určené pro identifikaci uzlu sítě se rozdělí na adresu "podsítě" a na adresu uzlu v této podsíti

maska podsítě (subnet mask):

- pro každou podsíťovanou adresu nutno udat, kolik bitů zleva představuje síť+subsíť a kolik uzel

použití podsíťování:

- rozdělení prefixu přidělené délky na daný počet podsítí (zadány maximální počty stanic na segmentech)
- stanovení maximální délky pevně přiděleného prefixu pro požadovaný počet podsítí a požadované počty stanic na jednotlivých segmentech
- vytvoření adresního plánu sítě WAN

překlad adres (NAT):

- Network Address Translation
- překlad zrojové nebo cílové IP adresy
- probíhá na routeru nebo firewallu
- překlady buď statické, nebo dynamické

statický NAT:

překladová tabulka konfigurována staticky (ručně)

dynamický NAT:

- překladová tabulka vzniká za provozu automaticky
- adresy se propůjčují z rezervoáru adres (pool)

10.0.0.1 -> 158.196.1.10

časové omezení dynamického NAT:

- aby mohlo N strojů sdílet M adres, mají dynamicky vytvořené záznamy překladové tabulky časově omezenou platnost (timeout od posledního použití)
- při odstranění expirované položky se veřejná adresa vrátí zpět do poolu

Port Address Translation (PAT)

- ukrytí více stanic za jedinou IP adresu
- rozlišení podle více zdrojových portů
- přidělováno dynamicky

10.0.0.254:2000 -> 158.196.1.10:80

protokol IP:

- Internet Protocol
- 3. vrstva, síťová služba posílání nezávisle směrovaných paketů bez spojení

hlavička IP:

fragmentace paketů:

- rozdělení paketu při průchodu linkami s nedostatečným MTU
- podle konvence musí každý segment Internetu být schopen přenést paket o délce 576 B

podpůrné protokoly IP:

- ARP Address Resolution Protocol, mapování IP na MAC
- ICMP Internet Control Message Protocol ohlašování chyb a zvláštních stavů při přenosu paketů

traceroute:

- zjišťování cesty sítí
- zjištění všech směrovačů na cestě k cíli

transportní vrstva TCP/IP:

- **UDP** – nepotvrzovaná datagramová služba, podpora všesměrového a skupinového vysílání **hlavička UDP**:

- TCP – duplexní spolehlivý logický kanál, segmentování dat, algoritmus Sliding window, protokol pro navazování a ukončování spojení

hlavička TCP:

navazování TCP spojení:

uzavírání spojení TCP:

- o uzavírá se zvlášť z obou stran
- FIN + ACK z obou stran
- porty spolu s IP adresami identifikují konkrétní proces na konkrétním zařízení v internetu (16 bit)

- Jaké protokoly se v Internetu používají na 3. a 4. vrstvě OSI RM?
- Srovnejte vrstvený model architektury TCP/IP s ISO OSI RM.
- Jaká je délka a struktura adresy protokolu IP? Co znamenají třídy adres? Co jsou beztřídní adresy a k čemu se u nich používá maska podsítě (subnet mask)?
- Co jsou privátní adresy a k čemu se používají ? Kdo je přiděluje ? Uveďte aspoň jeden z rozsahů, který můžete použít jako privátní adresy.
- Co reprezentují IP adresy 255.255.255.255 a 127.0.0.1?
- Jak se formálně označí určitá IP (pod)síť jako celek?
- Jak vypadá adresa broadcastu pro určitou konkrétní IP (pod)síť?
- Proč se používá podsíťování (subnetting) a v čem spočívá jeho princip?
- Naučte se vytvářet podsítě přiděleného adresního rozsahu s konstantní maskou podsítě.
- K čemu slouží překlad adres (NAT), jaký je jeho princip a na jakém síťovém prvku jej lze realizovat?
- Jaký je princip dynamického NAT a statického NAT ?
- Na jakém principu lze pomocí NAT za jedinou veřejnou IP adresu "ukrýt" větší množství vnitřních adres ?

- Na které vrstvě pracuje IP protokol ? Co je jeho úkolem ?
- Popište význam všech položek v hlavičce IP paketu (obrázek hlavičky si najděte ve studijních materiálech).
- Protokol IPv4 podporuje fragmentaci přenášených paketů. Proč a za jakých okolností k fragmentaci dochází? Kdo fragmenty opět skládá a jak pozná, které fragmenty patří stejnému paketu a v jakém pořadí?
- Vysvětlete úkol a princip činnosti protokolu ARP.
- Vysvětlete, k čemu se používá protokol ICMP. Uvěďte alespoň několik typů ICMP zpráv vždy s příkladem konkrétní situace, za které se generují (vždy rovněž udejte, kdo bude zprávu generovat).
- K čemu se používá příkaz traceroute implementovaný ve většině OS? Vysvětlete princip jeho funkce.
- Jaké protokoly se v Internetu používají na 4. vrstvě ? Jaký je mezi nimi rozdíl ? K jakým účelům je který z nich výhodnější ?
- Popište význam položek hlavičky UDP.
- Popište význam položek hlavičky TCP.
- K čemu se u protokolů UDP a TCP používají porty ? Proč nestačí cílový port, ale pracuje se i se zdrojovým portem ?
- Popište proceduru navázání a uzavření spojení u protokolu TCP.
- Popište výměnu dat během TCP spojení včetně řízení toku (flow control). Zaměřte se na položky Sequence number, Acknowledgement number a Window v hlavičce TCP segmentu.

8. Směrování a směrovací algoritmy

sítě s přepínáním okruhů a paketů

s přepínáním okruhů:

- vyvinuto z telefonních sítí
- přenosova kapacita rezervovana po celou dobu existence okruhu
- při vypadku a rozpadu okruhu nutno žadat siť o nove vytvoření okruhu

s přepínáním paketů:

- vyvinuto v ramci vojenskeho projektu ARPA
- polygonalni struktura s redundantnimi spoji založena na směrovačich
- datová jednotka paket se předává mezi směrovači
- předávání paketu skok po skoku ("hop by hop")

virtuální kanál:

- vytvoření logickeho okruhu nad siti s přepinaním paketů
- všechny pakety jdou stejnou cestou nemohou se přeházet do nesprávného pořadí

směrovací algoritmy:

- čast software 3. vrstvy OSI RM rozhodujici, kterým rozhraním se má odeslat přichozí paket nebo kudy zřídit požadovaný (virtuální) okruh
- implementovan obvykle s použitim směrovací tabulky

směrovací tabulka:

- zaznamy ve tvaru <cílová adresa(+maska), výstupní rozhraní/next_hop, metrika>
- jako cílová adresa může být uvedena siť, podsiť nebo uzel

přístupy ke směrování:

- centralizované
- distribuované
- izolované

typy směrování:

- neadaptivní statické
- adaptivní dynamické (mění se podle okamžité topologie sítě, okamžitého zatížení jednotlivých částí sítě)

centralizované směrování:

 v síti existuje centrální prvek RCC (Routing Control Center), který shromažďuje informace o okoli od všech směrovačů, kombinuje z nich topologii sitě, počítá směrovací tabulky pro všechny směrovače a předává jim je

distribuované směrování:

- každý směrovač zná "vzdálenost" (ceny linek) ke všem svým sousedům a stav těchto linek
- každý směrovač si vyměňuje své informace o směrování s jinými směrovači
- ze získaných informací si směrovač vytvoří směrovací tabulku

izolované směrování:

- založeno pouze na lokálně dostupné informaci
- pouze pro speciální účely

statické směrování:

- směrovací tabulky konfigurovány ručně
- bezpečnější
- použitelné, pokud se topologie sítě často nemění

dynamické směrování:

- automaticky reaguje na poměry v síti
- nutnost provozu směrovacích protokolů
- použitelné při častých změnách

hiearchické směrování:

- rozdělení sítě do hierarchicky rozdělených celků
- směrovače v jednotlivých celcích znají jen topologii svého celku

směrovací algoritmy:

- čím se liší:
- o použitá metrika
- o úroveň informovanosti směrovačů o topologii sítě
- o mechanismus šíření směrovací informace

algoritmy vektorů vzdáleností:

- směrovače neznají topologii sítě, pouze rozhraní, přes která mají posílat pakety do jednotlivých sítí a vzdálenosti k těmto sítím
- na začátku směrovací tabulka obsahuje pouze přímo připojené sítě
- metrikou je počet "přeskoků" (hop count) na cestě mezi zdrojem a cílem
- pomalá konvergence při změnách topologie
- reprezentanti:
 - o RIP Routing Information Protocol
 - o IGRP Interior Gateway Routing Protocol

algoritmy stavů spojů:

- směrování na základě znalosti "stavu" jednotlivých linek sítě
- směrovače znají topologii celé sítě a ceny jednotlivých linek
- každý směrovač počítá strom nejkratších cest ke všem ostatním směrovačům
- každý směrovač neustále sleduje stav a funkčnost k němu připojených linek
- při změně okamžitě šiři informaci o aktuálním stavu svého okolí všem ostatnim směrovačům
- reprezentanti:
 - o OSPF Open Shortest Path First
 - o IS-IS

VLSM (Variable-Length Subnet Mask):

- dovoluje v podsítích jedné sítě používat více rozdílných masek podsítí

kontrolní otázky:

- Vysvětlete pojem směrování. Které aktivní prvky se směrováním paketů zabývají?
- Vysvětlete pojem směrovací tabulka. Jaké položky (sloupce) byste očekávali v jejich jednotlivých záznamech (řádcích)?
- Vysvětlete pojem implicitní cesty (default route).
- Jaký je rozdíl mezi statickým a dynamickým směrováním?
- Vysvětlete princip, výhody a nevýhody hierarchického směrování.
- Vysvětlete pojem směrovací protokol.
- Do jakých dvou základních kategorií směrovací protokoly (algoritmy) dělíme?
- Vysvětlete princip směrovacích algoritmů na bázi vektorů vzdáleností (distance vector).
- Vysvětlete princip směrovacích algoritmů na bázi stavů spojů (link state).
- Srovnejte výhody a nevýhody směrovacích algoritmů tříd distance vector a link state.
- Uveďte reprezentanty směrovacích algoritmů tříd distance vector a link state v prostředí TCP/IP.

9. DNS

Domain Name System

- mapování logických jmen na IP adresy

doménová jména:

- hierarchická struktura jmenného prostoru
- doménové jméno vytvořeno spojením jména uzlu stromu se všemi jmény uzlů na cestě ke kořeni,
- oddělovačem tečka
- délka komponenty max. 63 znaků, celkově max. 256 znaků

doménový strom:

zóna:

část stromu uložená na jednom DNS serveru

sekundární a primární DNS servery:

 sekundární servery periodicky testují u primárního, zda mají aktuální verzi DB; pokud ne, vyžádají transfer databáze od primárního serveru

resolver:

- část SW klienta, který provádí komunikaci s DNS serverem

záznamy databáze DNS:

- mají univerzální formát:
 - o doménové jméno
 - o typ záznamu
 - o data proměnné délky
 - Time-to-Live doba po kterou se záznam smí držet v cache klientů

reverzní domény:

mapování IP na doménová jména

dynamická DNS:

- umožňuje dynamické registrování IP adres k doménovým jménům
- užitečné při DHCP
- problém s autentizací

- Jaká je struktura doménového jména? Co znači (obvykle vynechávaná) tečka za jménem vpravo?
- Uveďte základní generické domény.
- Definujte pojem domény.
- Definujte pojem zóna. Jaký může být vztah domény a zóny?
- Co je DNS server ? Čím se liší primární a sekundární server domény ? Co je to kořenový (root) DNS server ?
- Vysvětlete, jak probéhá vyhledání záznamu odpovídajícího zadanému doménovému jménu v DNS (postupně od root serveru).
- Jaký protokol transportní vrstvy se používá pro komunikaci s DNS serverem?
- Jaké typy záznamů databáze DNS znáte? K čemu se jednotlivé typy používají?
- Vysvětlete, jak se provazuje hierarchie DNS serverů pomocí NS záznamů.
- Vysvětlete, jak probíhá přemapování známé IP adresy na odpovídající doménové jméno.
- Vysvětlete, k čemu slouží záznam SOA a MX.

10. Protokoly služeb internetu

emulace terminálu

telnet:

- emulátor terminálu přes síť (TCP/23)

SSH:

- obdoba telnetu, ale provoz je šifrován
- asymetrická kryptografie
- postaveno na šifrovací spojově orientované službě vrstvy SSL

přenos souborů

FTP:

- obousměrný přenos souborů mezi dvěma systémy
- autentizace uživatele
- přenášená data chápána jako soubor
- vrací 3 místný kód = odpovědi na příkazy
- aktivní režim datové spojení navazuje server
- pasivní režim datové spojení navazuje klient

TFTP:

- trivial FTP
- nad UDP, stop-and-wait protokol

elektronická pošta

- bez šifrování
- SMTP bez autentizace
- textově orientované protokoly
- možnost šifrování zabalením do SSL
- struktura zprávy:
- o obálka
- o hlavička
- o tělo

SMTP:

- pro odesílání
- TCP/25
- příkazy orientovány textově
- nešifrováno
- neautentizováno

MIME:

- možnost strukturovat tělo zprávy
- možnost určení interpretace dat
- definuje způsob kódování binárních dat

POP3:

- pro přijímání pošty
- klient server
- port 110
- nešifrováno
- autentizace textem

IMAP:

- vylepšená verze POP3
- klient-server
- port 143
- podpora složek
- vylepšená autentizace

www

url:

- Uniform Resource Locator
- protokol://uživatel:heslo@stroj:port/cesta

http:

- Hypertext Transef Protocol
- port 80
- klient-server
- návaznost na url adresy
- využívá MIME
- formát požadavku:
- o příkaz
- o hlavička
- o prázdný_řádek
- o data obsah formuláře
- formát odpovědi:
- o odpověď stavový kód
- o hlavička
- prázdný_řádek
- o data obsah www stránky
- příkazy:
- o GET
- o HEAD
- o POST, PUT
- o DELETE
- o LINK
- o OPTIONS
- o TRACE
- http 1.0 spojení iniciuje klient, ukončuje server po odeslání odpovědi. Pokud má stránka více dokumentů, posílají se zvlášť po samotných spojeních
- **http 1.1** klient může požádat o podržení TCP spojení po vyřízení požadavku serverem. Podpora virtual hosts (více logických serverů se stejnou IP), podpora komprese dat, ...
- https secure http

BOOTP:

- konfigurace parametrů protokolu TCP/IP stanice na základě MAC adresy
- šíří se v UDP broadcastech

DHCP:

- dočasné přiřazování adres IP z poolu volných adres
- podle MAC
- DHCP Discover příkaz pro vyhledání DHCP serveru
- DHCP Request žádost o adresu

- K čemu se používá protokol Telnet ? Který port služba používá ? V čem spočívají bezpečnosní rizika Telnetu ? Čím lze službu Telnet nahradit pro omezení těchto rizik ?
- Jak se dá Telnet klient využít k ladění jiných služeb s textově orientovaným protokolem (kterých například)?
- K čemu slouží protokol FTP? V čem spočívají jeho bezpečnosní rizika?
- Jaké dva typy kanálů se při práci FTP vytváří a jaké porty se k tomu používají? Kterými příkazy protokolu se zajistí přečtení a uložení souboru? K čemu slouží příkaz PORT? Jak se přenáší obsah adresáře (příkaz list)?
- Co obnáší FTP přenos v režimu textovém nebo binárním?
- Co znamená pasivní režim FTP?
- K čemu se používá protokol TFTP a jak se technicky liší od FTP?
- Vysvětlete pojmy User Agent, Message Transfer Agent a Mailbox.
- Jaké protokoly se používají pro odesílání zpráv elektronické pošty a jaké pro vzdálené vyzvedávání zpráv z poštovních přihrádek ? Jaký protokol transportní vrstvy se při tom využívá ?
- Jaká je úroveň autentizace a šifrování v běžných protokolech pro odesílání a stahování pošty?
- Jaká je struktura zprávy elektronické pošty? Uveďte příklady údajů v hlavičce zprávy. Kdo smí modifikovat hlavičku zprávy?
- Jak lze pomocí elektronické pošty posílat zprávu s netextovým (multimediálním) obsahem a zprávy složené z více částí (s "přílohami") ?
- Popište, jak se z poštovního klienta vaší pracovní stanice dostane zpráva k příjemci prostřednictvím Internetu. Předpokládejte, že klient používá server odchozí pošty (proč je to výhodné?)
- S použitím vašeho poštovního serveru odešlete zprávu se zadaným předmětem (subject) na určitou e-mailovou adresu pouze s použitím Telnet klienta (využijte příkazů protokolu SMTP).
- Přečtěte si pouze pomocí Telnet klienta za použití příkazů POP3 poslední e-mailovou zprávu z vaši poštovní schránky.
- Co je to URL? Jaká je obecná struktura URL?
- Jaký protokol se používá pro čtení WWW stránek (HTML) ? Nad jakým transportním protokolem a se kterým číslem portu pracuje ?
- Ověřte si pouze s pomocí Telnet klienta existenci WWW stránky na zadaném URL a vypište si její HTML kód.
- Vysvětlete, k čemu v protokolu HTTP slouží metody GET, POST a HEAD.
- Pomocí programu Ethereal zachyťte komunikaci s WWW serverem, při níž je na server zasílán obsah nějakého formuláře. Prostudujte obsah dat zasílaných na server metodou POST.
- Vysvětlete, proč odpověď WWW serveru na žádost o určité URL obsahuje nejen obsah samotného zdroje, ale i hlavičku. Uveďte příklady údajů, které se mohou v hlavičce vyskytovat.
- Vysvětlete, proč i HTTP požadavek obsahuje hlavičku. Uveďte příklady údajů, které mohou být uvedeny v hlavičce požadavku HTTP.
- Jak se realizuje autentizace uživatelů při přístup na WWW stránky?
- Co jsou a k čemu lze použít Cookies?
- Uveďte základní rozdíly mezi HTTP 1.0 a 1.1.
- Jak lze zajistit šifrování a autentizaci při přenosu WWW stránek?
- Vysvětlete, k čemu se používá protokol DHCP. Jaké parametry lze jeho prostřednictvím předat?
 Jaká je výhoda oproti statické konfiguraci stanice? Popište sekvenci zpráv protokolu během přidělování IP adresy dynamicky konfigurovatelné stanici.
- Proč je problémem,když DHCP server není na stejném segmentu jako klienti ? Jak lze tuto situaci řešit ?

11. Bezpečnost sítí

- **utajení** posluchač na kanále datům nerozumí
- autentizace jistota, že uživatel je tím, za koho se vydává
- integrita jistota, že data nebyla na cestě zmodifikována
- **nepopiratelnost** zdroj dat nemůže popřít jejich odeslání

symetrický systém:

- sdílený klíč
- algoritmy:
- o DES
- o 3DES
- o AES
- autentizace Zakódování username klíčem u odesílatele, stejným klíčem dekódování u příjemce + test smysluplnosti jména
- zajištění integrity zpráv pošle se zpráva + hash

asymetrický systém:

- použití digitální podpisy,
- certifikační autorita entita, které je důvěřováno. Vytváří dvojice soukromý klíč, veřejný klíč

možnosti zabezpečení přenášených dat:

zabezpečení na jednotlivých vrstvách OSI:

- L2 hop-by-hop, neefektivní
- L3 nezávislé na médiu/síťové technologii i aplikaci
- L4 Secure Sockets Layer (SSL), jen TCP
- L7 řeší jednotlivé aplikace

filtrace provozu:

- bezestavová výsledkem vypuštění nebo zahození paketu
- stavová rekonstrukce datových toků

paketové filtry:

ACL:

- nejčastěji na rozhraní směrovačů, filtrace podle informací ze síťové a vyšších vrstev
- reflexivní ACL Automaticky propouští vstupní provoz, který odpovídá povolenému provozu výstupnímu

stavová inspekce provozu:

firewall:

- oddělují důvěryhodnou a nedůvěryhodnou část sítě
- hardwarové, softwarové

NAT:

skrytí vnitřní struktury sítě

VPN:

virtuální privátní sítě

tunel:

- virtuální dvoubodové spojení přes sdílenou infrastrukturu
- nese pakety jednoho protokolu zabalené v jiném protokolu

implementace VPN na 3. vrstvě

- IPSec – architektura pro technickou realizaci tunelů

útoky na počítačové sítě:

denial of service (DoS):

- cílem útočníka vyčerpání systémových prostředků síťového prvku nebo serveru a jeho zhroucení nebo změna požadovaného chování

intrusion detection systém:

- rozpoznává podezřelé vzory komunikace
- na různých vrstvách

kontrolní otázky:

- Definujte pojmy utajení, autentizace a integrita.
- Čím se liší symetrický a asymetrický kryptografický systém? Jaké jsou jejich výhody a nevýhody?
- K čemu lze použít soukromá a veřejný klíč?
- Jak lze realizovat autentizaci v symetrickém a asymetrickém systému ?
- K čemu slouží certifikační autorita?
- Jak lze ověřit integritu zprávy?
- Jaké jsou výhody a nevýhody realizace bezpečnosti na 2., 3. 4. a 7. vrstvě ISO OSI RM?
- Vysvětlete, v čem spočívá filtrace provozu na základě bezestavové inspekce paketů. Proč se nazývá bezestavová a v čem jsou její omezení oproti plnohodnotnému stavovému firewallu ? V čem je výhodnější ?
- Co jsou reflexivní ACL?
- Proč se někdy tvrdívá. že NAT zvyšuje bezpečnost vnitřní sítě?
- Vysvětlete pojem virtuální privátní sítě a tunelu.
- Jaká bezpečnostní rizika plynou z dynamických směrovacích protokolů?
- Jaká bezpečnostní rizika plynou z protokolu ARP?
- Jaké bezpečnostní rizika a ochranné mechanismy znáte v souvislosti s přepínači ?
- Jaké bezpečnostní rizika plynoucí z použití DNS znáte?
- Co jsou DoS a DDoS útoky? Uveďte konkrétní příklad.
- Co jsou IDS systémy?

12. Vzdálený přístup do počítačových sítí

možnosti vzdáleného přístupu:

- komutované připojení (telefon)
- trvalé připojení (xDSL, CDMA, GPRS, WIFI)

DCE:

- ukončovací zařízení okruhu
- CSU/DSU pro vyšší rychlosti

DTE:

- Data Terminal Equipment
- koncové zařízení

přístup přes POTS:

- analogová účastnická přípojka
- přenos v základním pásmu nemožný, potřeba přeloženého pásma
- použití modulace MODEM režim komunikace: asynchronní, synchronní

parametry modemů:

- přenosová rychlost
- použitelné modulace
- podpora komprese
- schopnost korekce chyb

MNP:

- Microcom Network Protocol
- standard pro dnešní asynchronní modemy
- pro koncová zařízení neviditelný
- význačné třídy:
 - o třída 1 asynchronní, bajtově orientovaný, half-duplex
 - o třída 2 přidává full-duplex
 - o třída 3 synchronní, bitově orientovaný, full-duplex
 - o třída 4 adaptivní změna délky paketu
 - o třída 5 kompresi dat
 - o třída 6 doplňuje Universal Link Negotiation
 - o třída 7 vylepšení kompresního algoritmu
 - o třída 9 vylepšená korekce chyb
 - o třída 10 provoz na nekvalitních linkách

0

ISDN:

- digitální síť s integrovanými službami
- digitální síť s přepínáním okruhů
- provoz na původních účastnických vedeních
- kanály:
- o B transparentní bitový tok 64kbps, mezi koncovými zařízeními
- o D signalizace, mezi koncovým zařízením a ústřednou
- typy přípojek:
 - o BRI Basic Rate Interface 2B+D
 - PŘI Primary Rate Interface 30B+D

vlastnosti ISDN při přenosu dat:

- orientováno na dočasné okruhy spoplatňováno za dobu spojení, výhodné pro krátkodobé spojení
- možnost rychlého zřízení okruhu

typická použití ISDN:

- poskytování internetu
- propojování geograficky vzdálených LAN pro krátkodobé přenosy dat
- záložní cesty

xDSL:

- použití stávajících symetrických telefonních metalických kabelů
- jednotlivá účastnická vedení zakončena v ústředně na DSL Access Multiplexeru

ADSL:

- rozdělení pásma na subkanály
- upstream/downstream frekvenční oblast + oblast pro hlas odděluje se splitterem

- Proč je pro přenos dat přes klasickou telefonní linku nutné použít modem ? Jakou funkci modem vykonává ?
- Jaký je rozdíl mezi asynchronním a synchronním modemem? Kde se který typ obvykle používá?
- Co je AT jazyk? Co jsou S-registry?

- Vyhledejte sekvenci AT příkazů pro zřízení spojení, přechod do povelového režimu a ukončení spojení.
 V případě možnosti prakticky ověřte.
- Co je to síť ISDN ?
- Jaké typy přípojek ISDN znáte a jaká je jejich struktura? Jaké je jejich typické použití?
- Jak je fyzicky uspořádaná účastnická přípojka BRI ?
- K čemu sloužtí B a D kanály a jaká je jejich přenosová rychlost ?
- Vysvětlete pojem signalizace.
- Jaká zařízení lze připojit k přípojce BRI a kolik? Kolik jich může být aktivních současně?
- Vysvětlete, co je DSL přípojka. Co je to splitter a DSLAM ?
- Podle jakých kritérií můžeme technologie DSL dělit ?
- Co znamená dělení technologií xDSL na symetrické a asymetrické ? Proč se pro přístup k Internetu zpravidla používá asymetrické verze ? Proč asymetrická technologie není vhodná pro poskytovatele služeb ?
- Jak je to s koexistencí xDSL s klasickou telefonní / ISDN linkou ?

13. Rádiové sítě

IEEE 802.11 (WIFI)

ISM:

- Instrumental Scientific Medicine
- 2,4 GHz, 5GHz
- pro použití uvnitř budov
- odstup kanálů 5 MHz, šířka kanálu pro použití rozprostřeného spektra však je 22 MHz

WIFI:

- Ad-hoc dočasné přímé propojení několika blízkých počítačů
- Infrastruktura použití přístupového bodu

architektury realizace bezdrátové sítě:

- IBSS skupina vzájemně komunikujících stanic
- BSS Basic Service Set přístupový bod, komunikace přes něj
- ESS Extended Service Set propojení přes distribuční systém

service set:

logická skupina stanic

SSID:

- Service Set Identifier

problémy při šíření signálu:

- vícecestné odrazy
- problém skrytého uzlu

autentizace:

- následuje po asociaci
- módy:
- o open bez autentizace
- o shared key se sdíleným klíčem z WEP

speciální zařízení rádiové infrastruktury:

- Repeater čistě bezdrátový most
- Workgroup bridge připojuje pracovní skupinu stanic vybavených pouze Ethernetem do WiFi

 Wireless bridge – Obdoba workgroup bridge, ale hlavním smyslem je rádiové propojení LAN na větší vzdálenost

bezpečnost:

- autentizace, čifrování
- SSID název přístupového bodu
- WEP sdílený klíč (64, 128 bit)
- WPA, WPA 2 odstraňuje nedostatky WEP

- Co znamená zkratka WiFi a v jakém doporučení IEEE jsou rádiové sítě ve volném pásmu definovány
- V jakých dvou nelicencovaných pásmech mohou sítě WiFi pracovat ?
- Co znamená práce v rozprostřeném spektru?
- Jaký je rozdíl mezi režimem komunikce ad-hoc a infrastrukturním? K čemu slouží přístupový bod (AP)?
- Jaké přenosnové rychlosti lze teoreticky dosáhnout u technologií 802.11b a 802.11g ? Jak je to s reálně dosažitelnými rychlostmi ? V čem je ukryt rozdíl ?
- Vysvětlete problém skrytého uzlu v rádiové síti.
- Vysvětlete princip přístupové metody CSMA/CA.
- Vysvětlete mechanismus rezervace kanálu pomocí RTS-CTS rámců.