Grundlagen der Wissensverarbeitung – Tutorial 7, Gruppe 4

Arne Beer MN 6489196 Marta Nevermann MN 6419716 Daniel Waller MN 6813853 Julius Hansen MN 6455291

Exercise 1.2

Zuerst werden aus der den Aussagen der Aufgabe Atome (atoms) entnommen:

- gärtner_mordete
- butler mordete
- gärtner_arbeitete
- butler_arbeitete
- gärtner_schmutzige_hände
- butler_schmutzige_hände
- gärtner saubere hände
- butler_saubere_hände
- gärtner_lügt
- butler lügt

Anschließend können anhand der Aussagen Regeln (rules) erstellt werden:

- butler_arbeitete \leftarrow butler_schmutzige_hände
- gärtner_arbeitete \leftarrow gärtner_schmutzige_hände
- \neg butler_arbeitete \leftrightarrow butler_saubere_hände
- \neg gärtner_arbeitete \leftrightarrow gärtner_saubere_hände
- \neg butler_mordete \leftarrow butler_arbeitete
- $\neg g\ddot{a}rtner mordete \leftarrow g\ddot{a}rtner arbeitete$

Es ist außerdem die Vorraussetzung (integrity constraints) gegeben, dass folgendes gilt:

- false \leftarrow butler_schmutzige_hände \land butler_saubere_hände
- false \leftarrow gärtner_schmutzige_hände \land gärtner_saubere_hände

Die Aussagen der Verdächtigen stellen hier unsere Assumables dar:

- gärtner_arbeitete
- butler arbeitete

Mit den Observables:

- gärtner_saubere_hände
- butler_schmutzige_hände

Mit der Annahme, dass beide den Mord nicht begangen haben, was sich aus den Assumables schließen lässt, kann nun ein mimimaler Konflikt erstellt werden:

```
{¬gärtner_arbeitete}
```

Daraus folgt: KB $\models \neg g\ddot{a}rtner_arbeitete$

Exercise 1.3

Generelle Annahmen aus mangelndem Know-how:

- Die Fuel pump arbeitet auch wenn der Tank kein Benzin enthält und/oder der Filter kaputt ist
- Der Starter ist nur zu hören wenn die Batterie Ladung hat
- Die Fuel pump arbeitet nicht wenn die electronic fuel regulation beschädigt ist
- Der Motor ist nur zu hören wenn starter und fuel pump auch gehen

Kürzel

- battery: bat
- ignition key: ik
- electronic fuel regulation : efr
- starter: st
- engine : en
- filter : fi
- fuel pump: fp
- fuel tank : ft

 $Assumables = \{ok_st, ok_fp, ok_en, turned_ik, live_bat, ok_efr, filled_ft, ok_fi\}$

```
\begin{split} KB &= \{ \text{ false} \leftarrow \text{noise}\_1 \, \land \, \text{silent}\_1. \\ \text{false} &\leftarrow \text{noise}\_2 \, \land \, \text{silent}\_2. \\ \text{false} &\leftarrow \text{noise}\_3 \, \land \, \text{silent}\_3. \\ \text{noise}1 &\leftarrow \text{ok}\_\text{st} \, \land \, \text{hasPower}. \\ \text{noise}\_2 &\leftarrow \text{ok}\_\text{fp} \, \land \, \text{hasPower} \, \land \, \text{ok}\_\text{efr}. \\ \text{noise}\_3 &\leftarrow \text{ok}\_\text{en} \, \land \, \text{ok}\_\text{st} \, \land \, \text{ok}\_\text{fp} \, \land \, \text{hasPower} \, \land \, \text{getsFuel}. \\ \text{hasPower} &\leftarrow \, \text{turned}\_\text{ik} \, \land \, \text{live}\_\text{bat}. \\ \text{getsFuel} &\leftarrow \, \text{filled}\_\text{ft} \, \land \, \text{ok}\_\text{fi}. \, \} \end{split}
```

case: no noise observed

```
silent_1, silent_2, silent_3 = true 
Initial state: q = false, ac = yes \leftarrow false \land false \land false
```

Iter step 1:

- select 'false'
- choose clause 'false \leftarrow noise $1 \land$ silent 1.' from KB
- replace false with body of clause

State 1: q = false, $ac = yes \leftarrow noise_1 \land silent_1 \land false \land false$

Iter step 2:

- select 'noise_1'
- choose clause 'noise1 \leftarrow ok st \land hasPower.' from KB
- replace 'noise_1' with body of clause

State 2: q = false, $ac = yes \leftarrow ok_st \land hasPower \land silent_1 \land false \land false$ Iter step 3:

- select 'hasPower' (ok_st is assumabledon't select it)
- choose clause 'hasPower \leftarrow turned_ik \land live_bat.' from KB
- replace 'hasPower' with body of clause

State 3: q = false, ac = yes \leftarrow ok_st \land turned_ik \land live_bat \land silent_1 \land false \land false

Iter step 4:

- select 'false' (all others are assumable)
- choose clause 'false \leftarrow noise_2 \wedge silent_2.' from KB
- replace 'false' with body of clause

State 4: q = false, ac = yes \leftarrow ok_st \land turned_ik \land live_bat \land silent_1 \land noise_2 \land silent_2 \land false

Iter step 5:

- select 'noise_2'
- choose clause 'noise_2 \leftarrow ok_fp \land hasPower \land ok_efr.' from KB
- replace 'noise 2' with body of clause

State 5: q = false, ac = yes \leftarrow ok_st \land turned_ik \land live_bat \land silent_1 \land ok_fp \land hasPower \land ok_efr \land silent_2 \land false

Iter step 6:

- select 'hasPower'
- choose clause 'hasPower \leftarrow turned_ik \land live_bat.' from KB
- replace 'hasPower' with body of clause

State 6: q = false, ac = yes \leftarrow ok_st \land turned_ik \land live_bat \land silent_1 \land ok_fp \land turned_ik \land live_bat \land ok_efr \land silent_2 \land false

Iter step 7:

- select 'false'
- choose clause 'false \leftarrow noise_3 \land silent_3.' from KB
- replace 'false' with body of clause

State 7: q = false, ac = ok_st \land turned_ik \land live_bat \land silent_1 \land ok_fp \land turned_ik \land live_bat \land ok_efr \land silent_2 \land noise_3 \land silent_3

Iter step 8:

• select 'noise_3'

- choose clause 'noise_3 \leftarrow ok_en \land ok_st \land ok_fp \land hasPower \land getsFuel' from KB
- replace 'noise_3' with body of clause

State 8: q = false, ac = yes \leftarrow ok_st \land turned_ik \land live_bat \land silent_1 \land ok_fp \land turned_ik \land live_bat \land ok_efr \land silent_2 \land ok_en \land ok_st \land ok_fp \land hasPower \land getsFuel \land silent_3

Iter step 9:

- select 'hasPower'
- choose clause 'hasPower \leftarrow turned ik \land live bat.' from KB
- replace 'hasPower' with body of clause

State 9: q = false, ac = yes \leftarrow ok_st \land turned_ik \land live_bat \land silent_1 \land ok_fp \land turned_ik \land live_bat \land ok_efr \land silent_2 \land ok_en \land ok_st \land ok_fp \land turned_ik \land live_bat \land getsFuel \land silent_3

Iter step 10:

- · select 'getsFuel'
- choose clause 'getsFuel \leftarrow filled_ft \land ok_fi.' from KB
- replace 'getsFuel' with body of clause

State 10: q = false ac = yes \leftarrow ok_st \land turned_ik \land live_bat \land silent_1 \land ok_fp \land turned_ik \land live_bat \land ok_efr \land silent_2 \land ok_en \land ok_st \land ok_fp \land turned_ik \land live_bat \land filled_ft \land ok_fi \land silent_3

Zusammengefasst:

yes \leftarrow ok_st \land turned_ik \land live_bat \land silent_1 \land ok_fp \land ok_efr \land silent_2 \land ok_en \land filled_ft \land ok_fi \land silent_3

Minimal conflicts : sehr viele. Entweder jedes Teil individuell kann kaputt sein oder aber Teile in beliebiger Kombination, solange sie keine Teilmengen von bereits aufgeführten Konflikten sind.

case: Only noise 1

Algorithmus analog zu oben...

Minimal conflicts: {ok_en, ok_fp}, {ok_efr} Entweder kann die electronic fuel regulation kaputt sein und somit die nachfolgende Kette nicht funktionieren oder engine und fuel pump sind kaputt oder beliebige Kombinationen der 3 Elemente sind kaputt

case: Only noise 2

Algorithmus analog zu oben...

Minimal conflicts: {ok_en, ok_st}, {ok_st, ok_fp, filled_ft}, {ok_st, ok_fp, ok_fi} Entweder sind der Starter und der Motor defekt oder der Starter in Kombination mit einem oder beiden Teilen aus Filter und Fuel Tank

case: noise 1&2 but not noise 3

Algorithmus analog zu oben...

Minimal conflicts: $\{ok_en\}$, $\{ok_fi\}$, $\{ok_ft\}$ Entweder eines oder jede Kombination dieser Teile könnte kaputt sein