Distance Between Point and Line, Ray, or Line Segment

David Eberly Magic Software, Inc.

http://www.magic-software.com

Created: March 2, 1999

The following construction applies in any dimension, not just in 3D. Let the test point be \vec{P} . A line is parameterized as $\vec{L}(t) = \vec{B} + t\vec{M}$ where \vec{B} is a point on the line, \vec{M} is the line direction, and $t \in \mathbb{R}$. A ray is of the same form but with restriction $t \geq 0$. A line segment is restricted even further with $t \in [0,1]$. The end points of the line segment are \vec{B} and $\vec{B} + \vec{M}$.

The closest point on the line to \vec{P} is the projection of \vec{P} onto the line, $\vec{Q} = \vec{B} + t_0 \vec{M}$, where

$$t_0 = \frac{\vec{M} \cdot (\vec{P} - \vec{B})}{\vec{M} \cdot \vec{M}}.$$

The distance from \vec{P} to the line is

$$D = |\vec{P} - (\vec{B} + t_0 \vec{M})|.$$

If $t_0 \leq 0$, then the closest point on the ray to \vec{P} is \vec{B} . For $t_0 > 0$, the projection $\vec{B} + t_0 \vec{M}$ is the closest point. The distance from \vec{P} to the ray is

$$D = \left\{ \begin{array}{ll} |\vec{P} - \vec{B}|, & t_0 \le 0 \\ |\vec{P} - (\vec{B} + t_0 \vec{M})|, & t_0 > 0 \end{array} \right\}.$$

Finally, if $t_0 > 1$, then the closest point on the line segment to \vec{P} is $\vec{B} + \vec{M}$. The distance from \vec{P} to the line segment is

$$D = \left\{ \begin{array}{ll} |\vec{P} - \vec{B}|, & t_0 \le 0 \\ |\vec{P} - (\vec{B} + t_0 \vec{M})|, & 0 < t_0 < 1 \\ |\vec{P} - (\vec{B} + \vec{M})|, & t_0 \ge 1 \end{array} \right\}.$$

The division by $\vec{M} \cdot \vec{M}$ is the most expensive algebraic operation. The implementation should defer the division as late as possible. The code in file pt3lin3.cpp does defer the division.