BioSorSimo 01.01.45LaTeX Companion

Marcello Pompa, Simona Panunzi, Andrea De Gaetano

CNR-IASI BioMatLab (National Research Council of Italy - Institute of Systems Analysis and Computer Science - Biomathematics Laboratory), UCSC Largo A. Gemelli 8, 00168 Rome, Italy

"BioSorSimo "is Sorensen model + Simo model for OGTT simulations

Annotated Variable formulas (the updated MoSpec rules)

[Variable 0] —

t time in minutes (min)

Time is considered an algebraic variable, correctly unassigned

Definition: Time =

undefined

Initial value: Time(t0) =

Tzero

[Variable 1]

 G_{BV} Glucose concentration in Brain Vascular space (${
m mM}$)

Glucose concentration in Brain Vascular space

$$\frac{dG_{BV}}{dt} = \frac{Q_B^G}{V_{BV}^G} (G_H - G_{BV}) - \frac{V_{BI}}{T_B V_{BV}^G} (G_{BV} - G_{BI}), \quad G_{BV}(0) = G_{BV0}$$

Definition: d GlucBV /dt =

(GlucH - GlucBV) * QfloGB / VolGBV - VolBI / (TdifB * VolGBV) * (GlucBV - GlucBI)

Initial value: GlucBV(t0) =

GlucBV0

[Variable 2]

 G_{BI} Glucose concentration in Brain Interstitial space ($\,$ mM $\,$)

Glucose concentration in Brain Interstitial space

$$\frac{dG_{BI}}{dt} = \frac{1}{T_B}(G_{BV}-G_{BI}) - \frac{\Gamma_{\rm BGU}}{V_{BI}}, \quad G_{BI}(0) = G_{BI0} \label{eq:GBI}$$

BGU: Brain Glucose Uptake.

Definition: d GlucBI /dt =

1 / TdifB * (GlucBV - GlucBI) - GammaBGU / VolBI

Initial value: GlucBI(t0) =

GlucBI0

[Variable 3]

 G_H Glucose concentration in Heart-Lung space (mM)

Glucose concentration in Heart-Lung space

$$\frac{dG_H}{dt} = \frac{Q_B^G G_{BV} + Q_L^G G_L + Q_K^G G_K + Q_P^G G_{PV} - Q_H^G G_H - \Gamma_{\text{RBCU}}}{V_H^G}, \quad G_H(0) = G_{H0}$$

Definition: d GlucH /dt =
(QfloGB * GlucBV + QfloGL * GlucL + QfloGK * GlucK +
+QfloGP * GlucPV - QfloGH * GlucH - GammaRBCU) / VolGH

Initial value: GlucH(t0) =
GlucH0

[Variable 4] —

 G_H^N Normalized Glucose concentration in Heart-Lung space (#)

Normalized Glucose concentration in Liver space

$$G_H^N = \frac{G_H}{G_{H0}}, \quad G_H^N(0) = 1$$

Definition: GlucNH =
GlucH / GlucH0

Initial value: GlucNH(t0) =
1

[Variable 5] ————

 G_J Glucose concentration in gut (Jejunal) space ($\,$ mM $\,$)

Glucose conreentration in gut (Jejunal) space

$$\frac{dG_J}{dt} = \frac{Q_J^G}{V_J^G} \left(G_H - G_J \right) - \frac{\Gamma_{\rm JGU} + R_{oga}}{V_J^G}, \quad G_J(0) = G_{J0}$$

JGU: Jejunal (Gut) Glucose Uptake or Utilization

Note: we have substituted the original "G "suffix in Chee&Fernando with "J "(Jejunum) for legibility.

Definition: d GlucJ /dt =
(GlucH - GlucJ) * QfloGJ / VolGJ - GammaJGU / VolGJ + Roga / VolGJ

Initial value: GlucJ(t0) =
GlucJ0

[Variable 6]

G_L Glucose concentration in Liver space (mM)

Glucose concentration in Liver space

$$\frac{dG_L}{dt} = \frac{Q_A^G G_H + Q_J^G G_J - Q_L^G G_L + \Gamma_{\rm HGP} - \Gamma_{\rm HGU}}{V_L^G}, \quad G_L(0) = G_{L0}$$

HGP: Hepatic Glucose Production HGU: Hepatic Glucose Uptake

Definition: d GlucL /dt = (QfloGA * GlucH + QfloGJ * GlucJ - QfloGL * GlucL + GammaHGP - GammaHGU) / VolGL

Initial value: GlucL(t0) =
GlucL0

[Variable 7]

G_L^N Normalized Glucose concentration in Liver space (#)

Normalized Glucose concentration in Liver space

$$G_L^N = \frac{G_L}{G_{L0}}, \quad G_L^N(0) = 1$$

Definition: GlucNL =
GlucL / GlucL0

Initial value: GlucNL(t0) =

[Variable 8] —

G_K Glucose concentration in Kidney space (${ m mM}$)

Glucose concentration in Kidney space

$$\frac{dG_K}{dt} = \frac{Q_K^G}{V_{\nu}^G} \left(G_H - G_K\right) - \frac{\Gamma_{\text{KGE}}}{V_{\nu}^G}, \quad G_K(0) = G_{K0}$$

KGE: Kidney Glucose Excretion

Definition: d GlucK /dt =
(GlucH - GlucK) * QfloGK / VolGK - GammaKGE / VolGK

Initial value: GlucK(t0) =

 ${\tt GlucK0}$

[Variable 9] ——

 G_{PV} Glucose concentration in Peripheral Vascular space ($\,$ mM $\,$)

Glucose concentration in Peripheral Vascular space

$$\frac{dG_{PV}}{dt} = \frac{Q_P^G}{V_{PV}^G} (G_H - G_{PV}) - \frac{V_{PI}}{T_P^G V_{PV}^G} (G_{PV} - G_{PI}), \quad G_{PV}(0) = G_{PV0}$$

Definition: d GlucPV /dt =
QfloGP / VolGPV * (GlucH - GlucPV) - VolPI / (TdifGP * VolGPV) * (GlucPV - GlucPI)

Initial value: GlucPV(t0) =
GlucPV0

[Variable 10]

 G_{PI} Glucose concentration in Peripheral Interstitial space (mM) Glucose concentration in Peripheral Interstitial space

$$\frac{dG_{PI}}{dt} = \frac{1}{T_P^G}(G_{PV}-G_{PI}) - \frac{\Gamma_{\rm PGU}}{V_{PI}}, \quad G_{PI}(0) = G_{PI0} \label{eq:GPI}$$

PGU: Peripheral Glucose Uptake

Definition: d GlucPI /dt =
(GlucPV - GlucPI) / TdifGP - GammaPGU / VolPI

Initial value: GlucPI(t0) =
GlucPI0

[Variable 11] ——

 G_{PI}^N Normalized Glucose concentration in Peripheral Interstitial space (#) Normalized Glucose concentration in Peripheral Interstitial space

$$G_{PI}^{N} = \frac{G_{PI}}{G_{PI0}}, \quad G_{PI}^{N}(0) = 1$$

Definition: GlucNPI =
GlucPI / GlucPIO

Initial value: GlucNPI(t0) =
1

[Variable 12] —

 $\Gamma_{\tt PGU}$ Rate of Peripheral Glucose Uptake (mmol/min)

Rate of (insulinemia- and glycemia-dependent) Peripheral Glucose Uptake:

$$\Gamma_{\text{PGU}} = \Gamma^{B}_{\text{PGU}} \cdot M^{G}_{PGU} \cdot M^{I}_{PGU}, \quad \Gamma_{\text{PGU}}(0) = \Gamma_{\text{PGUO}}$$

Definition: GammaPGU =
GammaBPGU * GlucNPI * MIPGU

Initial value: GammaPGU(t0) =

 ${\tt GammaBPGU}$

[Variable 13] —

 $M_{ t HGP}^{I}$ Insulin Action on glucose uptake (#)

Insulin Action on glucose uptake:

$$M_{\mathtt{PGU}}^{I} = \beta_{\mathtt{PGU}}^{0} + \beta_{\mathtt{PGU}}^{1} \tanh \left[\beta_{\mathtt{PGU}}^{2} \cdot (I_{PI}^{N} - \beta_{\mathtt{PGU}}^{3}) \right] \tag{1}$$

Definition: MIPGU =

beta0PGU + beta1PGU * tanh(beta2PGU * (InsuNPI - beta3PGU))

Initial value: MIPGU(t0) =

MIPGUO

[Variable 14] ———

 $\Gamma_{\mathtt{HGP}}$ Hepatic Glucose Production (mmol/min)

Rate of (glycemia-dependent) Hepatic Glucose Production

$$\Gamma_{\texttt{HGP}} = \Gamma^B_{\texttt{HGP}} \cdot M^I_{\texttt{HGP}} \cdot M^C_{\texttt{HGP}} \cdot M^G_{\texttt{HGP}}, \quad \Gamma_{\texttt{HGP}}(0) = \Gamma_{\texttt{HGPO}}$$

Definition: GammaHGP =

GammaHGPO * MIHGP * MCHGP * MGHGP

Initial value: GammaHGP(t0) =

GammaHGP0

[Variable 15] -

Insulin suppression of Hepatic Glucose Production (#)

Insulin suppression of Hepatic Glucose Production

$$\frac{dM_{\mathtt{HGP}}^I}{dt} = \frac{M_{\mathtt{HGPinf}}^I - M_{\mathtt{HGP}}^I}{\tau_I}, \quad M_{\mathtt{HGP}}^I(0) = M_{\mathtt{HGPO}}^I$$

Definition: d MIHGP /dt = (MIHGPinf - MIHGP) / tauInsu

Initial value: MIHGP(t0) =

MIHGPO

[Variable 16] ———

Steady State Insulin suppression of Hepatic Glucose Production (#)Steady State Insulin suppression of Hepatic Glucose Production

$$M^I_{\tt HGPinf} = \beta^2_{\tt HGP} - \beta^3_{\tt HGP} \tanh \left[\beta^4_{\tt HGP} (I^N_L - \beta^5_{\tt HGP}) \right], \quad M^I_{\tt HGPinf} (0) = M^I_{\tt HGPinf0}$$

Definition: MIHGPinf =

beta2HGP - beta3HGP * tanh(beta4HGP*(InsuNL - beta5HGP))

Initial value: MIHGPinf(t0) =

MIHGPinf0

[Variable 17] —

gluCagon contribution to Hepatic Glucose Production (#)

gluCagon contribution to Hepatic Glucose Production

$$M_{\mathtt{HGP}}^C = M_{\mathtt{HGP}}^{C0} - f_2, \quad M_{\mathtt{HGP}}^C(0) = M_{\mathtt{HGP0}}^C = 1$$

Definition: MCHGP =
MCOHGP - Fun2

Initial value: MCHGP(t0) =

MCHGPO

[Variable 18] —

 $M_{\rm HGP}^{C0}$ gluCagon contribution to Hepatic Glucose Production at baseline (#) gluCagon contribution to Hepatic Glucose Production at baseline

$$M_{\mathtt{HGP}}^{C0} = \beta_{\mathtt{HGP}}^{0} \; \tanh(\beta_{\mathtt{HGP}}^{1} \; C^{N}), \quad M_{\mathtt{HGP}}^{C0}(0) = M_{\mathtt{HGP}0}^{C0}$$

Definition: MCOHGP =

betaOHGP * tanh(beta1HGP * CgonN)

Initial value: MCOHGP(t0) =

MCOHGPO

[Variable 19] —

 f_2 Damping of gluCagon contribution to Hepatic Glucose Production (#) Damping of gluCagon contribution to Hepatic Glucose Production

$$\frac{df_2}{dt} = \frac{1}{\tau_C} \left[\left(\frac{M_{\text{HGP}}^{C0} - 1}{2} \right) - f_2 \right], \quad f_2(0) = f_{20} = 0$$

Definition: d Fun2 /dt =

((MCOHGP - 1.0) / 2.0 - Fun2) / tauCgon

Initial value: Fun2(t0) =

Func20

[Variable 20] —

 $M_{
m HGP}^G$ Glucose contribution to Hepatic Glucose Production (#)

Glucose contribution to Hepatic Glucose Production

$$M_{\mathrm{HGP}}^G = \left\{\beta_{\mathrm{HGP}}^6 - \beta_{\mathrm{HGP}}^7 \; \tanh\left[\beta_{\mathrm{HGP}}^8 \left(G_L^N - \beta_{\mathrm{HGP}}^9\right)\right]\right\}, \quad M_{\mathrm{HGP}}^G(0) = M_{\mathrm{HGP0}}^G = 1$$

Definition: MGHGP =

(beta6HGP - beta7HGP * tanh(beta8HGP * (GlucNL - beta9HGP)))

Initial value: MGHGP(t0) =

MGHGPO

[Variable 21] —

Hepatic Glucose Uptake (mmol/min)

Hepatic Glucose Uptake

$$\Gamma_{\tt HGU} = \Gamma^B_{\tt HGU} \cdot M^I_{\tt HGU} M^G_{\tt HGU}, \quad \Gamma_{\tt HGU}(0) = \Gamma_{\tt HGUO}$$

Definition: GammaHGU = GammaHGUO * MIHGU * MGHGU

Initial value: GammaHGU(t0) =

GammaHGU0

Insulin acceleration of Hepatic Glucose Uptake

Insulin acceleration of Hepatic Glucose Uptake

$$\frac{dM_{\mathtt{HGU}}^I}{dt} = \frac{M_{\mathtt{HGUinf}}^I - M_{\mathtt{HGU}}^I}{\tau_I}, \quad M_{\mathtt{HGU}}^I(0) = M_{\mathtt{HGUO}}^I$$

Definition: d MIHGU /dt = (MIHGUinf - MIHGU) / tauInsu

Initial value: MIHGU(t0) =

MIHGUO

[Variable 23] -

Steady State Insulin acceleration of Hepatic Glucose Uptake (#) Steady State Insulin acceleration of Hepatic Glucose Uptake

$$M_{\mathtt{HGUinf}}^{I} = \beta_{\mathtt{HGU}}^{0} \tanh(\beta_{\mathtt{HGU}}^{1} I_{L}^{N}), \quad M_{\mathtt{HGUinf}}^{I}(0) = M_{\mathtt{HGUinf}0}^{I}$$

Definition: MIHGUinf =

betaOHGU * tanh(beta1HGU * InsuNL)

Initial value: MIHGUinf(t0) =

MIHGUinfO

[Variable 24] ———

 $M_{ t HGU}^G$ Glucose acceleration of Hepatic Glucose Uptake (#)

Glucose acceleration of Hepatic Glucose Uptake

$$M_{\tt HGU}^G = \beta_{\tt HGU}^2 + \beta_{\tt HGU}^3 \, \tanh \left[\beta_{\tt HGU}^4 \left(G_L^N - \beta_{\tt HGU}^5\right)\right], \quad M_{\tt HGU}^G(0) = M_{\tt HGUO}^G$$

Definition: MGHGU =

beta2HGU + beta3HGU * tanh(beta4HGU * (GlucNL - beta5HGU))

Initial value: MGHGU(t0) =

MGHGUO

[Variable 25] ————

 $\Gamma_{\tt KGE}$ Kidney Glucose Excretion (mmol/min)

Kidney Glucose Excretion

$$\begin{split} \Gamma_{\text{KGE}} &= \begin{cases} \beta_{\text{KGE}}^0 + \beta_{\text{KGE}}^1 \tanh \left[\beta_{\text{KGE}}^2 \left(G_K - \beta_{\text{KGE}}^3\right)\right] &, \quad 0 \leq G_K < \beta_{\text{KGE}}^3 \\ -\beta_{\text{KGE}}^4 + \beta_{\text{KGE}}^5 G_K &, \quad G_K \geq \beta_{\text{KGE}}^3 \end{cases} \\ \Gamma_{\text{KGE}}(0) &= \Gamma_{\text{KGEO}} \end{split}$$

Definition: GammaKGE =

(GlucK < beta3KGE) * (beta0KGE + beta1KGE * tanh(beta2KGE*(GlucK - beta3KGE)))
+ (GlucK >= beta3KGE) * (- beta4KGE + beta5KGE * GlucK)

Initial value: GammaKGE(t0) =

GammaKGE0

 I_B Insulin concentration in Brain space (pM)

Insulin concentration in Brain space

$$\frac{dI_B}{dt} = \frac{Q_B^I}{V_B^I} (I_H - I_B), \quad I_B(0) = I_{B0}$$

Definition: d InsuB /dt =
QfloIB / VolIB * (InsuH - InsuB)

Initial value: InsuB(t0) =

InsuB0

[Variable 27] -

 I_H Insulin concentration in Heart/lung space (pM)

Insulin concentration in Heart/lung space

$$\frac{dI_H}{dt} = \frac{Q_B^I I_B + Q_L^I I_L + Q_K^I I_K + Q_P^I I_{PV} - Q_H^I I_H}{V_H^I}, \quad I_H(0) = I_{H0}$$

Definition: d InsuH /dt =

(QfloIB * InsuB + QfloIL * InsuL + QfloIK * InsuK + QfloIP * InsuPV - QfloIH * InsuH) / VolIH

Initial value: InsuH(t0) =

InsuH0

[Variable 28] —

 I_H^N Normalized Insulin concentration in Heart/lung space (#)

Normalized Insulin concentration in Liver space

$$I_H^N = \frac{I_H}{I_{H0}}, \quad I_H^N(0) = 1$$

Definition: InsuNH =

InsuH / InsuHO

Initial value: InsuNH(t0) =

1

[Variable 29] -

 I_J Insulin concentration in gut (Jejunal) space (pM)

Insulin concentration in gut (Jejunal) space

$$\frac{dI_J}{dt} = \frac{Q_J^I}{V_J^I} (I_H - I_J), \quad I_J(0) = I_{J0}$$

Note: we have substituted the original "G "suffix in Chee&Fernando with "J "(Jejunum) for legibility.

Definition: d InsuJ /dt =

QfloIJ / VolIJ * (InsuH - InsuJ)

Initial value: InsuJ(t0) =

InsuJ0

[Variable 30] ——

 I_L Insulin concentration in Liver space (pM)

Insulin concentration in Liver space

$$\frac{dI_L}{dt} = \frac{Q_A^I I_H + Q_J^I I_J - Q_L^I I_L + \Gamma_{\texttt{PIR}} - \Gamma_{\texttt{LIC}}}{V_L^I}, \quad I_L(0) = I_{L0}$$

PIR: Peripheral Insulin Release, Pancreatic Insulin Release

LIC: Liver Insulin Clearance

Definition: d InsuL /dt =

(QfloIA * InsuH + QfloIJ * InsuJ - QfloIL * InsuL + GammaPIR - GammaLIC) / VolIL

Initial value: InsuL(t0) =

InsuL0

[Variable 31]

 I_K Insulin concentration in Kidney space (pM)

Insulin concentration in Kidney space

$$\frac{dI_K}{dt} = \frac{Q_K^I}{V_K^I} \left(I_H - I_K\right) - \frac{\Gamma_{\text{KIC}}}{V_K^I}, \quad I_K(0) = I_{K0}$$

Definition: d InsuK /dt =

(QfloIK / VolIK) * (InsuH - InsuK) - GammaKIC / VolIK

Initial value: InsuK(t0) =

InsuKO

[Variable 32] -

 I_{PV} Insulin concentration in Peripheral Vascular space (pM)

Insulin concentration in Peripheral Vascular space

$$\frac{dI_{PV}}{dt} = \frac{Q_P^I}{V_{PV}^I} (I_H - I_{PV}) - \frac{V_{PI}}{V_{PV}^I T_P^I} (I_{PV} - I_{PI}), \quad I_{PV}(0) = I_{PV0}$$

Definition: d InsuPV /dt =

(QfloIP/VolIPV) * (InsuH - InsuPV) - VolPI / (VolIPV * TdifIP) * (InsuPV - InsuPI)

Initial value: InsuPV(t0) =

InsuPV0

[Variable 33] —

 I_{PI} Insulin concentration in Peripheral Interstitial space (pM)

Insulin concentration in Peripheral Interstitial space

$$\frac{dI_{PI}}{dt} = \frac{1}{T_P^I} (I_{PV} - I_{PI}) - \frac{\Gamma_{\text{PIC}}}{V_{PI}}, \quad I_{PI}(0) = I_{PI0}$$

PIC: Peripheral Insulin Clearance

Definition: d InsuPI /dt =

(1 / TdifIP) * (InsuPV - InsuPI) - GammaPIC / VolPI

Initial value: InsuPI(t0) =

InsuPI0

[Variable 34] —

 I_{PI}^N Normalized Insulin concentration in Peripheral Interstitial space (#)

Normalized Insulin concentration in Peripheral Interstitial space

$$I_{PI}^{N} = \frac{I_{PI}}{I_{PI0}}, \quad I_{PI}^{N}(0) = 1$$

Definition: InsuNPI =

InsuPI / InsuPIO

Initial value: InsuNPI(t0) =

1

[Variable 35] —

 I_L^N Normalized Insulin concentration in Liver space (#)

Normalized Insulin concentration in Liver space

$$I_L^N = \frac{I_L}{I_{L0}}, \quad I_L^N(0) = 1$$

Definition: InsuNL =

InsuL / InsuL0

Initial value: InsuNL(t0) =

[Variable 36] ——

 Γ_{LIC} Liver Insulin Clearance (pmol/min)

Liver Insulin Clearance

$$\Gamma_{\text{LIC}} = F_{\text{LIC}} \left\{ Q_A^I I_H + Q_J^I I_J + \Gamma_{\text{PIR}} \right\}, \quad \Gamma_{\text{LIC}}(0) = \Gamma_{\text{LICO}}$$

Definition: GammaLIC =

FracLIC * (QfloIA * InsuH + QfloIJ * InsuJ + GammaPIR)

Initial value: GammaLIC(t0) =

GammaLIC0

[Variable 37] ————

 $\Gamma_{\tt KIC}$ Kidney Insulin Clearance (pmol/min)

Kidney Insulin Clearance

$$\Gamma_{\mathtt{KIC}} = F_{\mathtt{KIC}}(Q_K^I I_H)$$

with $F_{\rm KIC} = 0.30$

Definition: GammaKIC =
FracKIC * (QfloIK * InsuH)

Initial value: GammaKIC(t0) =

 ${\tt GammaKICO}$

[Variable 38] -

 $\Gamma_{\mathtt{PIC}_{\mathtt{MC}}}$ Peripheral Insulin Clearance ($\mathtt{pmol/min}$)

Peripheral Insulin Clearance

$$\Gamma_{ t PIC} = rac{I_{PI}}{\left[\left(rac{1-F_{ t PIC}}{F_{ t PIC}}
ight)\left(rac{1}{Q_P^I}
ight) - \left(rac{T_P^I}{V_{PI}}
ight)
ight]}$$

with $F_{PIC} = 0.15$

Definition: GammaPIC =

InsuPI / (((1.0 - FracPIC) / FracPIC) * (1 / QfloIP) - (TdifIP / VolPI))

Initial value: GammaPIC(t0) =

GammaPIC0

[Variable 39] -

 $\Gamma_{ t SerPIR}$ Pancreatic Insulin Release according to Sorensen (pmol/min)

Pancreatic Insulin Release according to Sorensen

$$\Gamma_{PIR} = \frac{S_{ecr}}{S_{ecr}^B} \Gamma_{PIR}^B = S_{ecr}^N \Gamma_{PIR}^B, \quad \Gamma_{PIR}(0) = \Gamma_{PIR}^B$$

Definition: GammaPIR =
SecrN * GammaBPIR

Initial value: GammaPIR(t0) =

GammaBPIR

[Variable 40] —

 P_{otn} Potentiator (#)

Potentiator

$$\frac{dP_{otn}}{dt} = \alpha(P_{tgt} - P_{otn}), \quad P_{otn}(0) = P_{otn0}$$

Definition: d Potn /dt =

KappaPotnPtgt * (Ptgt - Potn)

Initial value: Potn(t0) =

Potn0

[Variable 41] -

 P_{inh} Inhibitor (#)

Inhibitor

$$\frac{dP_{inh}}{dt} = K_{PinhPprp}(P_{prp} - P_{inh}), \quad P_{inh}(0) = P_{inh0} = P_{prp0}$$

Definition: d Pinh /dt =
KappaPinhPrp * (Pprp - Pinh)

Initial value: Pinh(t0) =

Pinh0

[Variable 42] —

 R_{insu} Labile or granular insulin (pmol)

Labile or granular insulin

$$\frac{dR_{insu}}{dt} = K_{Rinsu}(R_{insu0} - R_{insu}) + K_{RinsuPotn}P_{otn} - S_{ecr}, \quad R_{insu}(0) = InitialR_{insu0}$$

Definition: d Rinsu /dt =

KappaRinsu * (Rinsu0 - Rinsu) + KappaRinsuPotn * Potn - Secr

Initial value: Rinsu(t0) =

InitialRinsu0

[Variable 43] —

 S_{ecr} Secretion rate (pmol/min)

Secretion rate

$$S_{ecr} = [M_1 P_{tat} + M_2 (P_{prp} - P_{inh})^+] R_{insu}, \quad S_{ecr}(0) = S_{ecr0}$$

Definition: Secr =

(Pprp > Pinh) * ((EMME1 * Ptgt + EMME2 * (Pprp - Pinh)) * Rinsu) + (Pprp <= Pinh) * (EMME1 * Ptgt * Rinsu)

Initial value: Secr(t0) =

Secr0

[Variable 44] ————

 S_{ecr}^{N} Normalized secretion rate (#)

Normalized Insulin secretion rate

$$S_{ecr}^{N} = \frac{S_{ecr}}{S_{ecr0}}, \quad S_{ecr}^{N}(0) = 1$$

Definition: SecrN =

Secr / Secr0

Initial value: SecrN(t0) =

1

[Variable 45] ———

 P_{prp} Potentiator glucose proportional factor (#)

Potentiator glucose proportional factor

$$P_{prp} = \frac{G_{H}^{\beta_{PIR}^{1}}}{(\beta_{PIR}^{2})^{\beta_{PIR}^{1}} + \beta_{PIR}^{3} G_{H}^{\beta_{PIR}^{4}}}, \quad P_{prp}(0) = P_{prp0} = \frac{G_{H0}^{\beta_{PIR}^{1}}}{(\beta_{PIR}^{2})^{\beta_{PIR}^{1}} + \beta_{PIR}^{3} G_{H0}^{\beta_{PIR}^{4}}}$$

Definition: Pprp =

pow(GlucH,beta1PIR)/(pow(beta2PIR,beta1PIR)+beta3PIR*pow(GlucH,beta4PIR))

Initial value: Pprp(t0) =

Pprp0

[Variable 46] —

 P_{tgt} Potentiator target (#)

Potentiator target

$$P_{tgt} = P_{prp}^{\beta_{PIR}^5}, \quad P_{tgt}(0) = P_{tgt0} = P_{prp0}^{\beta_{PIR}^5}$$

Definition: Ptgt =
pow(Pprp,beta5PIR)

Initial value: Ptgt(t0) =

Ptgt0

[Variable 47] —

C gluCagon plasma concentration (pM)

GluCagon plasma concentration

$$\frac{dC}{dt} = \frac{\Gamma_{\rm PCR} - \Gamma_{\rm PCC}}{V_C}, \quad C(0) = C_0$$

d Cgon /dt = (GammaPCR - GammaPCC) / VolC;

Cgon (Tzero) = Cgon0;

Definition: d Cgon /dt =
(GammaPCR - GammaPCC) / VolC

Initial value: Cgon(t0) =

Cgon0

[Variable 48] —

 C^N Normalized gluCagon plasma concentration (#)

Normalized gluCagon plasma concentration

$$C^N = \frac{C}{C_0}, \quad C^N(0) = 1$$

Definition: CgonN =

Cgon / Cgon0

Initial value: CgonN(t0) =

1

[Variable 49] ——

 Γ_{PCC} Peripheral gluCagon Clearance (pmol/min)

Peripheral gluCagon Clearance

$$\Gamma_{ t PCC} = \Gamma_{ t MCC} C$$

with $\Gamma_{\text{MCC}} = 910 \, ml/min$

MCC: Metabolic gluCagon Clearance

Definition: GammaPCC =
GammaMCC * Cgon

Initial value: GammaPCC(t0) =

 ${\tt GammaPCCO}$

[Variable 50] ——

 $\Gamma_{\tt PCR}$ Pancreatic gluCagon Release (pmol/min)

Pancreatic gluCagon Release

$$\Gamma_{\text{PCR}} = \Gamma^B_{\text{PCR}} M^G_{PCR} M^I_{PCR}, \quad \Gamma_{\text{PCR}}(0) = \Gamma_{\text{PCRO}}$$

with $V_C = 11.310 L$

Definition: GammaPCR =
GammaBPCR * MGPCR * MIPCR

Initial value: GammaPCR(t0) =

GammaBPCR

[Variable 51] ——

 $M_{ t PCR}^G$ Glucose effect on gluCagon clearance (#)

Glucose effect on Glucagone clearance

$$M_{\mathtt{PCR}}^G = \beta_{\mathtt{PCR}}^0 - \beta_{\mathtt{PCR}}^1 \tanh(\beta_{\mathtt{PCR}}^2(G_H^N - \beta_{\mathtt{PCR}}^3)), \quad M_{\mathtt{PCR}}^G(0) = M_{\mathtt{PCR}0}^G$$

Definition: MGPCR =

betaOPCR - beta1PCR * tanh(beta2PCR * (GlucNH - beta3PCR))

Initial value: MGPCR(t0) =

MGPCRO

[Variable 52] —

 $M_{\mathtt{PCR}}^{I}$ Insulin effect on gluCagon clearance (#)

Insulin effect on Glucagone clearance

$$M_{\mathrm{PCR}}^{I} = \beta_{\mathrm{PCR}}^{4} - \beta_{\mathrm{PCR}}^{5} \, \tanh \left[\beta_{\mathrm{PCR}}^{6} \left(I_{H}^{N} - \beta_{\mathrm{PCR}}^{7} \right) \right], \quad M_{\mathrm{PCR}}^{I}(0) = M_{\mathrm{PCR}0}^{I}$$

Definition: MIPCR =

beta4PCR - beta5PCR * tanh(beta6PCR * (InsuNH - beta7PCR))

Initial value: MIPCR(t0) =

MIPCRO

[Variable 53] ————

S Glucose into the Stomach (mmol)

Glucose into the stomach

$$\frac{dS}{dt} = -k_{js}S + D\,\delta(t), S(0) = S_0 \tag{2}$$

Definition: d Sto /dt =
 kjs * Sto

Diracs:

if (Time==0) Sto = Sto + Dose end

check correct programming of Diracs in BioSorSimoComputeDiracs.m and Gemini.autogenerated.cpp

Initial value: Sto(t0) =

Sto0

[Variable 54] —

J Glucose into the Jejunum (mmol)

Glucose into the Jejunum

$$\frac{dJ}{dt} = k_{js}S - k_{gj}J - k_{rj}J, J(0) = J_0$$
(3)

Definition: d Jej /dt =

kjs * Sto - kgj *Jej - krj * Jej

Initial value: Jej(t0) =

Jej0

[Variable 55] —

R Glucose into the Delay compartment (mmol)

Glucose into the Delay compartment

$$\frac{dR}{dt} = -k_{1r} * R + k_{rj}J, R(0) = R_0 \tag{4}$$

Definition: d Rit /dt =
- klr * Rit + krj * Jej

Initial value: Rit(t0) =
Rit0

[Variable 56] ————

L Glucose into the Ileum (mmol)

Glucose into the ileum

$$\frac{dL}{dt} = k_{lr}R - k_{gl}L, L(0) = L_0 \tag{5}$$

Definition: d Ile /dt =
klr * Rit - kgl * Ile

Initial value: Ile(t0) =
Ile0

[Variable 57] ———

R_{oga} Glucose Gut absorption rate (mmol/min)

Gut oral glucose absorption rate

$$R_{\text{oga}} = k_{\text{gi}} J + k_{\text{gl}} I, R_{oqa}(0) = R_{oqa0}$$
 (6)

Definition: Roga =

frac * (kgj * Jej + kgl * Ile)

Initial value: Roga(t0) =

Roga0

Annotated Parameter formulas (the updated MoSpec rules)

[Parameter 0] ———————————————————————————————————
t_0 starting time for numerical integration (-30 min)
MUST be present and MASKED: Gemini reserved keyword
[Parameter 1] —————
t_{end} final time for numerical integration ($300 $
MUST be present and MASKED: Gemini reserved keyword
[Parameter 2] ———————————————————————————————————
t_{Δ} time integration step
(0.1 min)
MUST be present and MASKED: Gemini reserved keyword
[Parameter 3] ———————————————————————————————————
Q_B^G Vascular blood water flow rate for Brain (glucose-related) ($f 0.59$ L/min)
[Parameter 4] —
V_{BV}^G Distribution Volume of Glucose in Brain Vascular space (0.35 $$ L)
[Parameter 5]
V_{BI} Volume of Brain Interstitial space $egin{pmatrix} 0.45 & { m L} \end{pmatrix}$

[Parameter 6] ———————————————————————————————————
T_B Trans-capillary diffusion rate for Brain
$(2.1 \min)$
[Parameter 7] ———————————————————————————————————
•
G_{H0} Baseline value of G_H at initial time (t_0)
$(5.07333 \ \mathrm{mM})$
[Parameter 8] ———————————————————————————————————
$\Gamma_{ t BGU}$ Brain Glucose Uptake rate
$(0.388889\mathrm{mmol/min})$
[Parameter 9] ———————————————————————————————————
Q_L^G Vascular blood water flow rate for Liver (glucose-related)
Q_L vascular blood water how rate for liver (glucose-related) $\left(\begin{array}{cc} 1.26 & \mathrm{L/min} \end{array}\right)$
(1.20 L/mm)
[Davameter 10]
[Parameter 10]
Q_K^G Vascular blood water flow rate for Kidney (glucose-related)
$(egin{array}{ccc} 1.01 & { m L/min} \end{array})$
[Parameter 11] ——————————————————————————————————
Q_P^G Vascular blood water flow rate for Peripheral tissues (glucose-related)
(1.51 L/min)
, ,
[Parameter 12] —
Q_H^G Vascular blood water flow rate for Heart/lung (glucose-related)
$(4.37 ext{L/min})$

[Parameter 13] ———————————————————————————————————
$\Gamma_{ ext{RBCU}} = ext{Red Blood cell Glucose Uptake rate} \ egin{pmatrix} oldsymbol{0.0555556} & ext{mmol/min} \end{pmatrix}$
[Parameter 14] ———————————————————————————————————
V_H^G Distribution Volume of Glucose in Heart/lung Vascular space $(egin{array}{cc} 1.38 & { m L} \end{array})$
[Parameter 15] ———————————————————————————————————
Q_J^G Vascular blood water flow rate for Gut/Jejunum (glucose-related) $(floor 1.01 \ L/min \)$
[D
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
[Parameter 17] ———————————————————————————————————
$\Gamma_{ t JGU} = {f Gut/Jejunal~Glucose~Uptake~or~utilization~rate} \ egin{pmatrix} f 0.111111 & {f mmol/min} \end{pmatrix}$
$[{ m Parameter} \ 18]$ ————————————————————————————————————
[Parameter 19] ———————————————————————————————————
V_L^G Distribution Volume of Glucose in Liver space $egin{pmatrix} 2.51 & { m L} \end{pmatrix}$

[Parameter 20] ———————————————————————————————————
V_K^G Distribution Volume of Glucose in Kidney space ($f 0.66$ L)
[Parameter 21] ————
V_{PV}^G Distribution Volume of Glucose in Peripheral Vascular space $\left(egin{array}{cc} 1.04 & { m L} \end{array} ight)$
$[{ m Parameter} \ 22] - Volume \ { m of} \ { m Peripheral} \ { m Interstitial} \ { m space} \ (\ { m 6.74} \ { m L} \)$
$[ext{Parameter 23}] egin{array}{c} & & & & & & & & & & & & & & & & & & &$
(5 min)
[Parameter 24] ———————————————————————————————————
$\Gamma^B_{ t PGU}$ Baseline rate of Peripheral Glucose Uptake $egin{pmatrix} oldsymbol{0.194444} & \mathbf{mmol/min} \end{pmatrix}$
[Parameter 25] ———————————————————————————————————
$eta^0_{ t PGU} ext{ PGU Insulin effect midpoint} \ egin{pmatrix} egin{pmatrix} eta^0_{ t PGU} & \# \end{pmatrix}$
[Parameter 26] —
$eta_{ t PGU}^1 = t PGU \; ext{Insulin effect half-amplitude} \ egin{pmatrix} eta.52 & \# \end{pmatrix}$

[Parameter 27] —		
$eta_{ t PGU}^2 ext{PGU Inst} \ ig(egin{array}{ccc} ext{0.338} & \# \end{array} ig)$	ılin effect steepness	
[Parameter 28] —		
$eta_{ t PGU}^3 ext{PGU Inst} \ ig(egin{array}{ccc} f 5.82 & \# \end{array} ig)$	ılin effect shift	
[Parameter 29] — β_{res}^0 HGP glue	Cagon effect scale	
(2.7 #)		
[Parameter 30] —		
$eta_{ t HGP}^1$ HGP glu 4 (0.388852 #	Cagon scale)	
[Parameter 31] —		
$ au_C$ Inverse of Uptake suppress (65 min)	the decay rate for the glucagon-driven intensification of f_2 Hepatic Glucoion	se
[Parameter 32] —		
	ılin effect midpoint	
[Parameter 33] \longrightarrow β_{HGP}^3 HGP Inst (1.14 #)	ılin effect half-amplitude	

```
[Parameter 34] ——
\beta_{\tt HGP}^4 HGP Insulin effect steepness
(1.66 \#)
[Parameter 35] ————
\beta_{\tt HGP}^5 HGP Insulin effect shift
(0.887748 \#)
[Parameter 36] —————
	au_I Inverse of the decay rate for the insulin-driven intensification of M_{	t HGP}^I and M_{	t HGU}^I (same for
both)
( 25
       min )
[Parameter 37] ————
\beta_{\tt HGP}^6 HGP Glucose effect midpoint
(1.42 \#)
[Parameter 38] ————
\beta_{\tt HGP}^7 - {\tt HGP}Glucose effect half-amplitude
( 1.41 # )
[Parameter 39] ————
\beta_{\tt HGP}^{8} HGP Glucose effect steepness
(0.62 \#)
[Parameter 40] —
eta_{	t HGP}^9 HGP Glucose effect shift
( 0.504543 \# )
```

```
[Parameter 41] ——
\Gamma_{\tt HGP0} Baseline value of \Gamma_{\tt HGP} at initial time (t_0)
(0.861111 \text{ mmol/min})
[Parameter 42] ————
      HGU Insulin effect half-amplitude
( 2 # )
[Parameter 43] —
\beta_{\tt HGU}^1 HGU Insulin effect steepness
( 0.549306 \# )
[Parameter 44] —
\beta_{\mathtt{HGU}}^2 HGP Glucose effect midpoint
(5.66 \#)
[Parameter 45] —
\beta_{\tt HGU}^3 HGP Glucose effect half-amplitude
(5.66 \#)
[Parameter 46] —————
\beta_{\tt HGU}^4 HGP Glucose effect steepness
(2.44 \#)
[Parameter 47] ————
\beta_{\mathtt{HGU}}^{5} HGP Glucose effect shift
(1.4783 \#)
```

Parameter 48 ———————————————————————————————————
$\Gamma_{ t HGUO}$ Baseline value of $\Gamma_{ t HGU}$ at initial time (t_0) $($ 0.111111 mmol $/$ min $)$
[Parameter 49] ———————————————————————————————————
$eta_{ t KGE}^0 = t KGE \; ext{Glucose effect midpoint} \ egin{aligned} & ext{0.394444} & ext{mmol/min} \end{aligned} egin{aligned} angle & ext{} \end{aligned}$
$[Parameter 50]$ — β^1_{KGE} KGE Glucose effect half-amplitude
$(egin{array}{cccccccccccccccccccccccccccccccccccc$
[Parameter 51] ———————————————————————————————————
$(0.198/\mathrm{mM})$
[Parameter 52] ———————————————————————————————————
$(25.5556 \ \mathrm{mM}\)$
[Parameter 53] — β_{KGE}^{4} KGE Glucose linear effect intercept
$(1.834 ext{mmol/min})$
[Parameter 54] ———————————————————————————————————
$(0.0872 ext{mmol/min/mM})$

[Parameter 55] ——————————————————————————————————
Q_B^I Vascular blood water flow rate for Brain (insulin-related) ($f 0.45 L/min$)
In col
$[ext{Parameter } 56]$ ————————————————————————————————————
$[ext{Parameter 57}] - V_H^I - ext{Distribution Volume of Insulin in Heart/lung vascular space}$
(0.99 L)
[Parameter 58] ———————————————————————————————————
Q_L^I Vascular blood water flow rate for Liver (insulin-related) ($f 0.9 L/min$)
$[ext{Parameter } 59] egin{array}{cccccccccccccccccccccccccccccccccccc$
$[{ m Parameter} \ 60] - Q_P^I - { m Vascular} \ { m blood} \ { m water} \ { m flow} \ { m rate} \ { m for} \ { m Periphery} \ ({ m insulin-related}) \ (\ 1.05 \ { m L/min} \)$
[Dava maten 61]
$egin{array}{ll} { m [Parameter~61]} &$

[Parameter 62] ———————————————————————————————————
V_J^I Distribution Volume of Insulin in Gut Vascular space $(egin{array}{cc} 0.94 & { m L} \end{array})$
$[{ m Parameter} \ 63] = Q_J^I - { m Vascular \ blood \ water \ flow \ rate \ for \ Gut \ (insulin-related)} \ (egin{array}{c} 0.72 & { m L/min} \end{array})$
$[ext{Parameter } 64] egin{array}{cccccccccccccccccccccccccccccccccccc$
$[{ m Parameter} \ 65] - Q_A^I - { m Vascular \ blood \ water \ flow \ rate \ in \ hepatic \ Artery \ (insulin-related)} \ (\ 0.18 - { m L/min} \)$
[Parameter 66] ——————————————————————————————————
F_{LIC} Fraction of insulin Liver clearance ($0.4~\#~$)
$[Parameter \ 67]$ F_{KIC} Fraction of insulin Kidney clearance ($m{0.3}$ $\#$)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Parameter 69 ———————————————————————————————————
V_{PV}^{I} Distribution Volume of Insulin in Peripheral Vascular space $(egin{array}{cc} 0.74 & { m L} \end{array})$
[Parameter 70] ———————————————————————————————————
T_P^I Trans-capillary diffusion rate for Peripheral tissues (insulin-related) (${f 20}$ ${f min}$)
$[ext{Parameter } 71]$ F_{PIC} Fraction of insulin Periphery clearance $($ 0.15 $\#$ $)$
$[ext{Parameter } 72] egin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{ll} [ext{Parameter 73}] & & & & & & & & & & & & & & & & & & &$
$egin{array}{ll} [ext{Parameter 74}] & \ eta^3_{ ext{PIR}} & ext{PIR Glucose effect parameter 3} \ (& ext{ 4.34599} & \# &) \end{array}$
$egin{array}{lll} [ext{Parameter 75}] & & & & & & & & & & & & & & & & & & &$

Parameter 76 ———————————————————————————————————
$eta_{ t PIR}^5$ Potentiator parameter
(2.28432#)
[Parameter 77] ——————————————————————————————————
$K_{ ext{Rinsu}}$ Rate of labile Insulin secretion
$(\begin{array}{cc} n_{ m Rinsu} & { m Rate} & { m of \ abhe \ insum \ secretion} \ (\begin{array}{cc} 0.0137576 & /{ m min} \end{array})$
(3.023,3,3
In well
[Parameter 78]
$R_{ m insu0}$ Labile Insulin for Glucose=0
$\left(egin{array}{cc} 44310 & \mathrm{pmol} \end{array} ight)$
[Parameter 79] ———————————————————————————————————
$K_{\tt RinsuPotr}$ Rate of Potentiator effect on labile insulin
$(\hspace{.1cm} 3300.71 \hspace{.1cm} \mathrm{pmol/min} \hspace{.1cm})$
[Parameter 80] ———————————————————————————————————
$K_{ exttt{RinsuPtgt}}$ Rate at which Potentiator reachs its target value
$(\begin{array}{cc} 0.0169775 & /\mathrm{min} \end{array})$
[Parameter 81] ———————————————————————————————————
$K_{ exttt{pinhPrp}}$ Rate at which Inhibitor reaches the proportional insulin response function ($f 15.212$ $ig/m{min}$)
(10:212 / mm)
[Parameter 82]
M_1 Late rate of increase in insulin secretion
$(\begin{array}{ccc} 0.000241686 & /{ m min} \end{array})$

```
[Parameter 83] —
M_2 Rate of insulin response
(0.304906 / min)
[Parameter 84] —————
       Baseline value of I_{PV} at initial time (t_0)
( 91 pM )
[Parameter 85] ————
C_0 Starting value for gluCagon
( 11.48 pM )
[Parameter 86] ———
        Rate constant of gluCagon clearance
\Gamma_{MCC}
(0.91 L/min)
V_C gluCagon distribution volume
( 11.31 L )
[Parameter 88] ————
\beta_{PCR}^0 PCR Glucose effect midpoint
(2.93 \#)
[Parameter 89] ————
\beta_{\tt PCR}^1 \qquad \textbf{PCR Glucose effect half-amplitude}
(\phantom{-}2.1\phantom{0}\#\phantom{0})
```

```
[Parameter 90] ——
\beta_{PCR}^2 PCR Glucose effect steepness
(4.18 \#)
[Parameter 91] ————
\beta_{\mathtt{PCR}}^3 PCR Glucose effect shift
(\phantom{-}0.621325\phantom{0}\#\phantom{0})
[Parameter 92] —
\beta_{PCR}^4 PCR Insulin effect midpoint
( 1.31 # )
[Parameter 93] ————
\beta_{\tt PCR}^5 — PCR Insulin effect half-amplitude
(0.61 \#)
[Parameter 94] —
\beta_{\mathtt{PCR}}^{5} PCR Insulin effect steepness
( 1.06 # )
[Parameter 95] ————
\beta_{\mathtt{PCR}}^{5} PCR Insulin effect shift
( 0.471419 \# )
[Parameter 96] ————
f_{20} Baseline value of f_2 at initial time (t_0)
( 0 # )
```

Parameter 97 ———————————————————————————————————
D Glucose dose for the oral challenge $ig($ 555.56 $modermal{mmol}$ $m)$
[Parameter 98] — S_0 Baseline value of S at initial time (t_0) (0 mmol)
[Parameter 99] — k_{js} Glucose transfer rate from Stomach to Jejunum compartment
$(\ \ 0.0365887 \ \ \ 1/{ m min} \ \)$
[Parameter 100] J_0 Baseline value of J at initial time (t_0) (0 mmol)
$[{ m Parameter} \ 101] - k_{ m gj}$ Glucose transfer rate from Jejunum to Gut compartment (${f 0.0245626} \ 1/{ m min}$)
$[{ m Parameter} \ 102] - k_{ m rj} - { m Glucose} \ { m transfer} \ { m rate} \ { m from} \ { m Jejunum} \ { m to} \ { m Delay} \ { m compartment} \ { m (} \ { m 0.0277149} \ { m 1/min} \ { m)}$
$[Parameter 103]$ — Rit_0 — Baseline value of R at initial time (t_0) $($ 0 — mmol $)$

[Parameter 104] ————————————————————————————————————
$k_{ m lr}$ Glucose transfer rate from Delay to Ileum compartment ($0.0248468~1/{ m min}$)
$[Parameter \ 105]$ ————————————————————————————————————
$[\text{Parameter 106}] {k_{\text{g1}}} \text{Glucose transfer rate from Ileum to Gut compartment} \\ \left(\begin{array}{cc} \textbf{0.0261629} & \textbf{1/min} \end{array} \right)$
[Parameter 107]
[Parameter 108] — $R_{\text{oga}0}$ Baseline value of R_{oga} at initial time (t_0) (0 mmol/min)
$[ext{Parameter } 109]$ I_{H0} Baseline value of I_H at initial time (t_0) (107.059 pM) Baseline value for I_H at time 0: $I_{H0} = \frac{I_{PV0}}{1 - F_{PIC}}$
Definition: InsuHO = InsuPVO/(1-FracPIC)

[Parameter 110] — I_{K0} Baseline value of I_K at initial time (t_0) (74.9412pM) Baseline value for I_K at time 0: $I_{K0} = I_{H0}(1 - F_{KIC})$ Definition: InsuK0 = InsuH0*(1-FracKIC) [Parameter 111] — Baseline value of I_B at initial time (t_0) (107.059 pM) Baseline value for I_B at time 0: $I_{B0} = I_{H0}$ Definition: InsuB0 = InsuH0 [Parameter 112] —— I_{G0} Baseline value of I_G at initial time (t_0) (107.059)pM) Baseline value for I_J at time 0: $I_{J0} = I_{H0}$ Definition: InsuJ0 = InsuH0 [Parameter 113] — Baseline value of I_{PI} at initial time (t_0) (40.9651pM) Baseline value for i_{pi} at time 0: $I_{PI0} = I_{PV0} - (I_{H0} - I_{PV0}) \frac{Q_P^I T_P}{V_P^I}$ Definition: InsuPIO =

InsuPVO-((QfloIP*TdifIP/VolPI)*(InsuHO-InsuPVO))

[Parameter 114] ———

 I_{L0} Baseline value of I_L at initial time (t_0) (151.488 pM)

Baseline value for I_L at time 0:

$$I_{L0} = \frac{1}{Q_L^I} (Q_H^I I_{H0} - Q_B^I I_{B0} - Q_K^I I_{K0} - Q_P^I I_{PV0})$$

Definition: InsuL0 =

1/QfloIL*(QfloIH*InsuHO-QfloIB*InsuBO-QfloIK*InsuKO-QfloIP*InsuPVO)

[Parameter 115] —

 $\Gamma_{\mathtt{PIR}0}$ Baseline value of $\Gamma_{\mathtt{PIR}}$ at initial time (t_0) (130.879 pmol/min)

Baseline value for Γ_{BPIR} at time 0:

$$\Gamma_{BPIR} = \frac{Q_L^I}{1 - F_{LIC}} I_{L0} - Q_J^I I_{J0} - Q_A^I I_{H0}$$

Definition: GammaBPIR =

QfloIL/(1-FracLIC)*InsuLO - QfloIJ*InsuJO-QfloIA*InsuHO

[Parameter 116] ———

 $\Gamma_{ t PICO}$ Baseline value of $\Gamma_{ t PIC}$ at initial time (t_0) (16.8618 pmol/min)

Baseline value for Γ_{PIC} at time 0:

$$\Gamma_{PIC0} = \frac{I_{PI0}}{\frac{1 - F_{PIC}}{F_{PIC}}} - \frac{T_{IP}}{V_{PI}}$$

Definition: GammaPICO =

InsuPIO/(((1-FracPIC)/FracPIC)*(1/QfloIP)-TdifIP/VolPI)

[Parameter 117] —

 $P_{ exttt{prp0}}$ Baseline value of $P_{ exttt{prp}}$ at initial time (t_0) (0.833373 #)

Baseline value for P_{prp} at time 0:

$$P_{prp0} = \frac{(G_{H0})^{\beta_{PIR}^1}}{(\beta_{PIR}^2)^{\beta_{PIR}^1} + \beta_{PIR}^3 (G_{H0})^{\beta_{PIR}^4}}$$

Definition: Pprp0 =
pow((GlucHO), beta1PIR) /(pow((beta2PIR), beta1PIR) + beta3PIR*pow((GlucHO), beta4PIR))

[Parameter 118] ———

 $P_{ t tgt0}$ Baseline value of $P_{ t tgt}$ at initial time (t_0) (0.659434~#~)

Baseline value for P_{tgt} at time 0:

$$P_{tgt0} = P_{prp0}^{\beta_{5PIR}}$$

Definition: Ptgt0 =
pow(Pprp0,beta5PIR)

[Parameter 119] ————

 $P_{ ext{inh}0}$ Baseline value of $P_{ ext{inh}}$ at initial time (t_0) (0.833373 #)

Baseline value for P_{inh} at time 0:

$$P_{inh0} = P_{prp0}$$

Definition: Pinh0 =
Pprp0

[Parameter 120] ————

 $P_{ exttt{otn}0}$ Baseline value of $P_{ exttt{otn}}$ at initial time (t_0) (0.659434 #)

Baseline value for P_{otn} at time 0:

$$P_{otn0} = P_{tgt0}$$

Definition: Potn0 =

Ptgt0

[Parameter 121] —

 $InitialRinsu_0$ Baseline value of Rinsu at initial time (t_0) (200202 pmol)

Baseline value for $Initial_{Rinsu}$ at time 0:

$$Initial_{Rinsu0} = \frac{K_{Rinsu}R_{insu0} + K_{RinsuPotn}P_{otn0}}{K_{Rinsu} + M_1P_{otn0}}$$

Definition: InitialRinsu0 =
 ((KappaRinsu*Rinsu0)+ KappaRinsuPotn * Potn0)/(KappaRinsu+EMME1* Potn0)

[Parameter 122] ————

 S_{ecr0} Baseline value of S_{ecr} at initial time (t_0) (${f 31.9073}$ pmol/min)

Baseline value for S_{ecr} at time 0:

 $S_{ecr0} = M_1 P_{tqt0} Initial_{Rinsu0}$

Definition: Secr0 =

EMME1*Ptgt0*InitialRinsu0

[Parameter 123] —

 G_{PV0} Baseline value of G_{PV} at initial time (t_0) (4.94456 mM)

Baseline value for G_{PV} at time 0:

$$G_{PV0} = G_{H0} - \frac{\Gamma_{BPGU}}{Q_P^G}$$

Definition: GlucPVO =
GlucHO - GammaBPGU/QfloGP

[Parameter 124] —

 G_{K0} Baseline value of G_K at initial time (t_0) (5.07333 mM)

Baseline value for G_K at time 0:

$$G_{K0} = G_{H0}$$

Definition: GlucKO =

GlucH0

[Parameter 125] —

Baseline value of G_{BV} at initial time (t_0) (4.4142 mM)

Baseline value for G_{BV} at time 0:

$$G_{BV0} = G_{H0} - \frac{\Gamma BPGU}{Q_B^G}$$

Definition: GlucBVO = GlucHO - GammaBGU/QfloGB

[Parameter 126] —

 G_{J0} Baseline value of G_J at initial time (t_0) (4.96332 mM)

Baseline value for G_J at time 0:

$$G_{J0} = G_{H0} - \frac{\Gamma JGU}{Q_J^G}$$

Definition: GlucJ0 = GlucHO-GammaJGU/QfloGJ

[Parameter 127] ———

 G_{L0} Baseline value of G_L at initial time (t_0) (5.58039 mM)

Baseline value for G_L at time 0:

$$G_{L0} = \frac{Q_A^G G_{H0} + Q_J^G G_{J0} + \Gamma_{HGP0} - \Gamma HGU0}{Q_L^G} \label{eq:GL0}$$

Definition: GlucL0 =

(QfloGA*GlucHO+QfloGJ*GlucJO+GammaHGPO-GammaHGUO)/QfloGL

[Parameter 128] ———

 G_{BI0} Baseline value of G_{BI} at initial time (t_0) (2.59938 mM)

Baseline value for G_{BI} at time 0:

$$G_{BI0} = G_{BV0} - \frac{\Gamma_{BPGU} T_B}{V_{BI}}$$

Definition: GlucBIO =

GlucBVO-(GammaBGU*TdifB)/VolBI

[Parameter 129] ————

 G_{PI0} Baseline value of G_{PI} at initial time (t_0) (4.80032 mM)

Baseline value for G_{PI} at time 0:

$$G_{PI0} = G_{PV0} - \frac{\Gamma_{BPGU} T_{GP}}{V_{PI}}$$

Definition: GlucPIO =

GlucPVO-GammaBPGU*TdifGP/VolPI

[Parameter 130]

 $M_{ t PGU0}^{I}$ Baseline value of $M_{ t PGU}^{I}$ at initial time (t_0) (0.992859 #)

Baseline value for M_{PGU}^{I} at time 0:

$$M_{PGU0}^{I} = \beta_{PGU}^{0} + \beta_{PGU}^{1} tanh[\beta_{PGU}^{2}(1 - \beta_{PGU}^{3})]$$

Definition: MIPGUO =

beta0PGU+beta1PGU*tanh(beta2PGU*(1-beta3PGU))

[Parameter 131] -

$$M^{C}_{ t HGP0}$$
 Baseline value of $M^{C}_{ t HGP}$ at initial time (t_0) $(\begin{array}{ccc} 1 & \# \end{array})$

Baseline value for ${\cal M}^C_{HGP}$ at time 0:

$$M_{HGP0}^C = \beta_{HGP}^0 tanh(\beta_{HGP}^1) - F_{20}$$

Definition: MCHGPO =

betaOHGP * tanh(beta1HGP * 1) - Func20

[Parameter 132] —

$$M_{ t HGP0}^{C0}$$
 Baseline value of $M_{ t HGP}^{C0}$ at initial time (t_0) $(\ 1 \ \ \# \)$

Baseline value for M_{HGP}^{C0} at time 0:

$$M^{C0}_{HGP0} = \beta^0_{HGP} tanh(\beta^1_{HGP})$$

Definition: MCOHGPO =

betaOHGP * tanh(beta1HGP * 1)

[Parameter 133] -

$$M_{\tt HGP0}^I$$
 Baseline value of $M_{\tt HGP}^I$ at initial time (t_0)

Baseline value for ${\cal M}_{HGP}^I$ at time 0:

$$M^I_{HGP0} = \beta^2_{HGP} - \beta^3_{HGP} tanh [\beta^4_{HGP} (1-\beta^5_{HGP})]$$

Definition: MIHGPO =

beta2HGP - beta3HGP * tanh(beta4HGP * (1-beta5HGP))

[Parameter 134] ———

$$\begin{array}{ll} M_{\tt HGPinf0}^I & \textbf{Steady state of MIHGP} \\ \left(\begin{array}{ccc} \mathbf{1} & \# \end{array} \right) \end{array}$$

Baseline value for ${\cal M}^I_{HGPinf}$ at time 0:

$${\cal M}^I_{HGPinf0} = {\cal M}^I_{HGP0}$$

Definition: MIHGPinf0 =

MIHGPO

[Parameter 135] ———

 $M_{\tt HGPO}^G$ —Baseline value of $M_{\tt HGP}^G$ at initial time (t_0) (${1}$ ${}$ ${\#}$)

Baseline value for ${\cal M}_{HGP}^G$ at time 0:

$$M_{HGP0}^{G} = \beta_{HGP}^{6} - \beta_{HGP}^{7} tanh[\beta_{HGP}^{8}(1 - \beta_{HGP}^{9})]$$

Definition: MGHGPO =

beta6HGP-beta7HGP*tanh(beta8HGP*(1-beta9HGP))

[Parameter 136] ————

 $M_{ t HGUO}^{I}$ Baseline value of $M_{ t HGU}^{I}$ at initial time (t_0) (1 #)

Baseline value for M_{HGU}^{I} at time 0:

$$M^I_{HGU0} = \beta^0_{HGU} tanh(\beta^1_{HGU})$$

Definition: MIHGU0 =
beta0HGU * tanh(beta1HGU)

 $\begin{array}{ll} M^I_{\tt HGUinf0} & \textbf{Steady state of} \ M^I_{\tt HGU} \\ (\ \ 1 \ \ \# \ \) \end{array}$

Baseline value for M^{I}_{HGUinf} at time 0:

$$M_{HGUinf0}^{I} = M_{HGU0}^{I}$$

Definition: MIHGUinf0 =

MIHGUO

[Parameter 138] -

$$M_{ t HGU0}^G$$
 Baseline value of $M_{ t HGU}^G$ at initial time (t_0) $(\ \ 1 \ \ \, \# \ \)$

Baseline value for ${\cal M}_{HGU}^G$ at time 0:

$$M_{HGU0}^{G} = \beta_{HGU}^{2} + \beta_{HGU}^{3} tanh[\beta_{HGU}^{4}(1 - \beta_{HGU}^{5})]$$

Definition: MGHGUO =

beta2HGU+beta3HGU*tanh(beta4HGU*(1-beta5HGU))

[Parameter 139] ————

 $\Gamma_{ t KGEO}$ Baseline value of $\Gamma_{ t KGE}$ at initial time (t_0) (0.000236777 m mmol/min)

Baseline value for Γ_{KGE} at time 0:

$$\Gamma_{KGE0} = \begin{cases} \beta_{KGE}^{0} + \beta_{KGE}^{1} \tanh[\beta_{KGE}^{2}(G_{K0} - \beta_{KGE}^{3})] & 0 \le G_{K} < \beta_{KGE}^{3} \\ -\beta_{KGE}^{4} + \beta_{KGE}^{5} G_{K0} & G_{K0} \ge \beta_{KGE}^{3} \end{cases}$$
(7)

(8)

Definition: GammaKGE0 =
(GlucK0<beta3KGE) * (beta0KGE+beta1KGE*tanh(beta2KGE*(GlucK0-beta3KGE)))
+ (GlucK0 >= beta3KGE) * (-beta4KGE+beta5KGE*GlucK0)

[Parameter 140] —

 $\Gamma_{ t LICO}$ Baseline value of $\Gamma_{ t LIC}$ at initial time (t_0) (90.8929 pmol/min)

Baseline value for Γ_{LIC} at time 0:

$$\Gamma_{LIC0} = F_{LIC}(Q_A^I I_{H0} + Q_I^I I_{J0} + \Gamma BPIR)$$

Definition: GammaLICO =

FracLIC*(QfloIA*InsuHO+QfloIJ*InsuJO+GammaBPIR)

[Parameter 141] ————

 $\Gamma_{ t KICO}$ Baseline value of $\Gamma_{ t KIC}$ at initial time (t_0) (23.1247 pmol/min)

Baseline value for Γ_{KIC} at time 0:

$$\Gamma_{KIC0} = F_{KIC}Q_K^I I_{H0}$$

Definition: GammaKICO =
FracKIC*(QfloIK*InsuHO)

[Parameter 142] ———

 $M_{\rm PCR0}^G$ —Baseline value of $M_{\rm PCR}^G$ at initial time (t_0) (~1~~#~)

Baseline value for M_{PCR}^G at time 0:

$$M_{PCR0}^{G} = \beta_{PCR}^{0} - \beta_{PCR}^{1} tanh[\beta_{PCR}^{2}(1 - \beta_{PCR}^{3})]$$

Definition: MGPCRO =

beta0PCR - beta1PCR * tanh(beta2PCR * (1-beta3PCR))

[Parameter 143] ————

 $M_{ t PCR0}^{I}$ Baseline value of $M_{ t PCR}^{I}$ at initial time (t_0) (1 #)

Baseline value for ${\cal M}_{PCR}^I$ at time 0:

$$M_{PCR0}^{I} = \beta_{PCR}^{4} - \beta_{PCR}^{5} tanh[\beta_{PCR}^{6}(1 - \beta_{PCR}^{7})]$$

Definition: MIPCRO =

beta4PCR - beta5PCR * tanh(beta6PCR * (1-beta7PCR))

[Parameter 144] —

 $\Gamma_{ t PCC0}$ Baseline value of $\Gamma_{ t PCC}$ at initial time (t_0) (${f 10.4468}$ ${f pM}$)

Baseline value for Γ_{PCC} at time 0:

 $\Gamma_{PCC0} = C_0 \Gamma_{MCC}$

Definition: GammaPCC0 =

 ${\tt Cgon0*GammaMCC}$

 $\Gamma^B_{ t PCR0}$ Baseline value of $\Gamma^B_{ t PCR}$ at initial time (t_0) (10.4468 $\,$ pM $\,$)

Baseline value for Γ_{BPCR} at time 0:

 $\Gamma_{BPCR0} = \Gamma_{PCC0}$

Definition: GammaBPCR =

GammaPCCO

Dynamic	constraints	on the	e Parameters	(the	updated	MoSpec	${ m rules})$

Figure 1. Block Diagram

Table 1. Model Variables

VarID	Variable	Units	Meaning
0	t	min	time in minutes
1	G_{BV}	$\mathrm{m}\mathrm{M}$	Glucose concentration in Brain Vascular space
2	G_{BI}	${ m mM}$	Glucose concentration in Brain Interstitial space
3	G_H	$\mathrm{m}\mathrm{M}$	Glucose concentration in Heart-Lung space
4	G_H^N	#	Normalized Glucose concentration in Heart-Lung space
5	G_J	$\mathrm{m}\mathrm{M}$	Glucose concentration in gut (Jejunal) space
6	G_L	$\mathrm{m}\mathrm{M}$	Glucose concentration in Liver space
7	G_L^N	#	Normalized Glucose concentration in Liver space
8	G_K	$\mathrm{m}\mathrm{M}$	Glucose concentration in Kidney space
9	G_{PV}	$\mathrm{m}\mathrm{M}$	Glucose concentration in Peripheral Vascular space
10	G_{PI}	$\mathrm{m}\mathrm{M}$	Glucose concentration in Peripheral Interstitial space
11	G_{PI}^N	#	Normalized Glucose concentration in Peripheral Interstitial space
12	$\Gamma_{ t PGU}$	$\mathrm{mmol}/\mathrm{min}$	Rate of Peripheral Glucose Uptake
13	$M_{\mathtt{HGP}}^{I}$	#	Insulin Action on glucose uptake
14	$\Gamma_{ t HGP}$	$\mathrm{mmol/min}$	Hepatic Glucose Production
15	$M_{\mathtt{HGP}}^{I}$	#	Insulin suppression of Hepatic Glucose Production
16	$M_{ t t t t t t t t t t t t t $	#	Steady State Insulin suppression of Hepatic Glucose Production
17	$M_{\mathtt{HGP}}^{C}$	#	gluCagon contribution to Hepatic Glucose Production
18	$M_{\mathtt{HGP}}^{C0}$	#	gluCagon contribution to Hepatic Glucose Production at baseline
19	f_2	#	Damping of gluCagon contribution to Hepatic Glucose Production
20	$M_{\mathtt{HGP}}^G$	#	Glucose contribution to Hepatic Glucose Production
21	$\Gamma_{ t HGU}$	$\mathrm{mmol/min}$	Hepatic Glucose Uptake
22	$M_{\mathtt{HGU}}^{I}$	#	Insulin acceleration of Hepatic Glucose Uptake
23	$M_{ t t t t t t t t t t t t t $	#	Steady State Insulin acceleration of Hepatic Glucose Uptake
24	$M_{\mathtt{HGU}}^G$	#	Glucose acceleration of Hepatic Glucose Uptake
25	$\Gamma_{ t KGE}$	$\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{l}/\mathrm{m}\mathrm{i}\mathrm{n}$	Kidney Glucose Excretion
26	I_B	pM	Insulin concentration in Brain space
27	I_H	pM	Insulin concentration in Heart/lung space
28	I_H^N	#	Normalized Insulin concentration in Heart/lung space
29	I_J	pM	Insulin concentration in gut (Jejunal) space
30	I_L	pM	Insulin concentration in Liver space
31	I_K	pM	Insulin concentration in Kidney space

Table 1. Model Variables

VarID	Variable	Units	Meaning
32	I_{PV}	pМ	Insulin concentration in Peripheral Vascular space
33	I_{PI}	pM	Insulin concentration in Peripheral Interstitial space
34	$I_{PI}^N \ I_L^N$	#	Normalized Insulin concentration in Peripheral Interstitial space
35	I_L^{N}	#	Normalized Insulin concentration in Liver space
36	$\Gamma_{ t LIC}$	$\mathrm{pmol/min}$	Liver Insulin Clearance
37	$\Gamma_{ t KIC}$	$\mathrm{pmol/min}$	Kidney Insulin Clearance
38	$\Gamma_{ t PIC_{ t NC}}$	$\mathrm{pmol/min}$	Peripheral Insulin Clearance
39	$\Gamma_{ t SerPIR}$	$\mathrm{pmol/min}$	Pancreatic Insulin Release according to Sorensen
40	P_{otn}	#	Potentiator
41	P_{inh}	#	Inhibitor
42	R_{insu}	pmol	Labile or granular insulin
43	S_{ecr}	$\mathrm{pmol/min}$	Secretion rate
44	S_{ecr}^N	#	Normalized secretion rate
45	P_{prp}	#	Potentiator glucose proportional factor
46	$\hat{P_{tgt}}$	#	Potentiator target
47	C	pM	gluCagon plasma concentration
48	C^N	#	Normalized gluCagon plasma concentration
49	$\Gamma_{ t PCC}$	$\mathrm{pmol/min}$	Peripheral gluCagon Clearance
50	$\Gamma_{ t PCR}$	$\mathrm{pmol/min}$	Pancreatic gluCagon Release
51	$M_{\mathtt{PCR}}^G$	#	Glucose effect on gluCagon clearance
52	$M_{\mathtt{PCR}}^{I}$	#	Insulin effect on gluCagon clearance
53	S	mmol	Glucose into the Stomach
54	J	mmol	Glucose into the Jejunum
55	R	mmol	Glucose into the Delay compartment
56	L	mmol	Glucose into the Ileum
57	$R_{ t oga}$	$\mathrm{mmol/min}$	Glucose Gut absorption rate

Table 2. Model Parameters

ParID	Parameter	Units	Meaning	Value —
1	t_0	min	starting time for numerical integration	-
9	4	i	final time for numerical integration	30 300
2	t_{end}	$\min \ $	final time for numerical integration	0.1
3	t_{Δ}		time integration step	$0.1 \\ 0.59$
4	$Q_B^G \ V_{BV}^G$	m L/min	Vascular blood water flow rate for Brain (glucose-related)	
5	V_{BV}	L	Distribution Volume of Glucose in Brain Vascular space	0.35
6	V_{BI}	$^{ m L}$.	Volume of Brain Interstitial space	0.45
7	T_B	min	Trans-capillary diffusion rate for Brain	2.1
8	G_{H0}	$^{\mathrm{mM}}$	Baseline value of G_H at initial time (t_0)	5.07333
9	$\Gamma_{\mathtt{BGU}}$	$\frac{\mathrm{mmol}}{\mathrm{min}}$	Brain Glucose Uptake rate	0.388889
10	Q_L^G Q_K^G Q_P^G	$_{\mathrm{L/min}}$	Vascular blood water flow rate for Liver (glucose-related)	1.26
11	Q_K^G	$_{ au}^{\mathrm{L/min}}$	Vascular blood water flow rate for Kidney (glucose-related)	1.01
12	Q_P^{G}	${ m L/min}$	Vascular blood water flow rate for Peripheral tissues (glucose-	1.51
4.0	$\circ C$	T / •	related)	
13	Q_H^G	m L/min	Vascular blood water flow rate for Heart/lung (glucose-related)	4.37
14	$\Gamma_{\mathtt{RBCU}}$	$rac{\mathrm{mmol}/\mathrm{min}}{2}$	Red Blood cell Glucose Uptake rate	0.0555556
15	V_H^G	L	Distribution Volume of Glucose in Heart/lung Vascular space	1.38
16	Q_J^G	${ m L/min}$	Vascular blood water flow rate for Gut/Jejunum (glucose-related)	1.01
17	V_H^G Q_J^G V_J^G	L	Distribution Volume of Glucose in Gut/Jejunum Vascular space	1.12
18	$\Gamma_{ exttt{JGU}}$ Q_A^G V_L^G V_K^G V_{PV}^G V_{PI}	$\mathrm{mmol/min}$	Gut/Jejunal Glucose Uptake or utilization rate	0.111111
19	Q_{A}^{G}	${ m L/min}$	Vascular blood water flow rate in hepatic Artery (glucose-related)	0.25
20	$V_{L_{G}}^{G}$	${f L}$	Distribution Volume of Glucose in Liver space	2.51
21	$V_{K_{G}}^{G}$	\mathbf{L}	Distribution Volume of Glucose in Kidney space	0.66
22	V_{PV}^G	${f L}$	Distribution Volume of Glucose in Peripheral Vascular space	1.04
23	V_{PI}	${ m L}$	Volume of Peripheral Interstitial space	6.74
24	T_P^G	\min	Trans-capillary diffusion rate for Peripheral tissues (glucose-related)	5
25	$\Gamma^B_{ t PGU}$	$\mathrm{mmol/min}$	Baseline rate of Peripheral Glucose Uptake	0.194444
26	$eta_{ t PGU}^0$	# '	PGU Insulin effect midpoint	7.03
27	$\beta_{\mathtt{PGU}}^{1}$	#	PGU Insulin effect half-amplitude	6.52
28	$eta_{ t PGU}^2$	#	PGU Insulin effect steepness	0.338
29	$eta_{ t PGU}^3$	#	PGU Insulin effect shift	5.82

Table 2. Model Parameters

ParID	Parameter	${ m Units}$	Meaning	Value
30	$eta_{\mathtt{H}\mathtt{GP}}^0$	#	HGP gluCagon effect scale	2.7
31	$eta_{\mathtt{HGP}}^1$	#	HGP gluCagon scale	0.388852
32	$ au_C$	min	Inverse of the decay rate for the glucagon-driven intensification of f_2 Hepatic Glucose Uptake suppression	65
33	$eta_{\mathtt{HGP}}^2$	#	HGP Insulin effect midpoint	1.21
34	$eta^2_{ t HGP} \ eta^3_{ t HGP}$	#	HGP Insulin effect half-amplitude	1.14
35	$eta_{\mathtt{HGP}}^4$	#	HGP Insulin effect steepness	1.66
36	$eta_{ t HGP}^{ar{5}}$	#	HGP Insulin effect shift	0.887748
37	$ au_I$	min	Inverse of the decay rate for the insulin-driven intensification of $M_{\tt HGP}^I$ and $M_{\tt HGU}^I$ (same for both)	25
38	$eta_{\mathtt{HGP}}^6$	#	HGP Glucose effect midpoint	1.42
39	$eta_{\mathtt{HGP}}^6 \ eta_{\mathtt{HGP}}^7$	#	HGP Glucose effect half-amplitude	1.41
40	$eta_{\mathtt{HGP}}^{8}$	#	HGP Glucose effect steepness	0.62
41	$eta_{ t HGP}^{9}$	#	HGP Glucose effect shift	0.504543
42	$\Gamma_{ t HGPO}$	$\mathrm{mmol/min}$	Baseline value of $\Gamma_{\tt HGP}$ at initial time (t_0)	0.861111
43	$eta_{ t HGU}^0$	#	HGU Insulin effect half-amplitude	2
44	$eta_{ t HGU}^1$	#	HGU Insulin effect steepness	0.549306
45	$eta_{ t HGU}^2$	#	HGP Glucose effect midpoint	5.66
46	$eta_{ t HGU}^3$	#	HGP Glucose effect half-amplitude	5.66
47	$eta_{ t H G U}^4$	#	HGP Glucose effect steepness	2.44
48	$eta_{ t HGU}^5$	#	HGP Glucose effect shift	1.4783
49	$\Gamma_{ t HGUO}$	$\mathrm{mmol/min}$	Baseline value of $\Gamma_{\tt HGU}$ at initial time (t_0)	0.111111
50	$eta_{ t KGE}^0$	$\mathrm{mmol/min}$	KGE Glucose effect midpoint	0.394444
51	$eta_{ t KGE}^1$	$\mathrm{mmol/min}$	KGE Glucose effect half-amplitude	0.394444
52	$eta_{ t KGE}^2$	$/\mathrm{mM}$	KGE Glucose effect steepness	0.198
53	$eta_{ t KGE}^3$	${ m mM}$	KGE Glucose effect shift, point of transition between tanh and linear regime	25.5556
54	$eta_{ t t t t t t t t t t t t t $	$\mathrm{mmol/min}$	KGE Glucose linear effect intercept	1.834
55	β_{kcf}^{5}	$\mathrm{mmol}^{'}/\mathrm{min}/\mathrm{mM}$	KGE Glucose linear effect slope	0.0872
56	Q_B^{I}	${ m L/min}$	Vascular blood water flow rate for Brain (insulin-related)	0.45
57	$V_B^{ar{I}}$	$\mathbf{L}^{'}$	Distribution Volume of Insulin in Brain vascular space	0.26
58	Q_{B}^{I} V_{B}^{I} V_{H}^{I} Q_{L}^{I}	${f L}$	Distribution Volume of Insulin in Heart/lung vascular space	0.99
59	$Q_L^{ar{I}}$	${ m L/min}$	Vascular blood water flow rate for Liver (insulin-related)	0.9

Table 2. Model Parameters

ParID	Parameter	Units	Meaning	Value
60	$Q_{\scriptscriptstyle K}^I$	${ m L/min}$	Vascular blood water flow rate for Kidney (insulin-related)	0.72
61	Q_P^I	${ m L/min}$	Vascular blood water flow rate for Periphery (insulin-related)	1.05
62	$egin{array}{l} Q_K^I \ Q_P^I \ Q_H^I \end{array}$	${ m L/min}$	Vascular blood water flow rate for Heart and Lungs (insulin-related)	3.12
63	$egin{array}{c} V_J^I \ Q_J^I \ V_L^I \ Q_A^I \ F_{LIC} \end{array}$	${f L}$	Distribution Volume of Insulin in Gut Vascular space	0.94
64	Q^I_I	${ m L/min}$	Vascular blood water flow rate for Gut (insulin-related)	0.72
65	V_L^I	$\mathbf{L}^{'}$	Distribution Volume of Insulin in Liver Vascular space	1.14
66	Q_A^{I}	${ m L/min}$	Vascular blood water flow rate in hepatic Artery (insulin-related)	0.18
67	F_{LIC}	#	Fraction of insulin Liver clearance	0.4
68	F_{KIC}	#	Fraction of insulin Kidney clearance	0.3
69	V_K^I	$\ddot{ ext{L}}$	Distribution Volume of Insulin in Kidney Vascular space	0.51
70	V_{PV}^{I}	${f L}$	Distribution Volume of Insulin in Peripheral Vascular space	0.74
71	V_K^{I} V_K^{I} V_{PV}^{I} T_P^{I}	min	Trans-capillary diffusion rate for Peripheral tissues (insulin-related)	20
72	F_{PIC}	#	Fraction of insulin Periphery clearance	0.15
73	$eta_{ t P IR}^1 \ eta_{ t P IR}^2$	#	PIR Glucose effect parameter 1	6.51625
74	$\beta_{\mathtt{PTR}}^2$	mmol/l	PIR Glucose effect parameter 2	4.13532
75	$\beta_{\mathtt{PIR}}^3$	#	PIR Glucose effect parameter 3	4.34599
76	$eta_{\mathtt{PIR}}^4$	#	PIR Glucose effect parameter 4	5.57083
77	$eta_{\mathtt{PIR}}^{5}$	#	Potentiator parameter	2.28432
78	$K_{ t Rinsu}$	$/\mathrm{min}$	Rate of labile Insulin secretion	0.0137576
79	$R_{\mathtt{insu0}}$	pmol	Labile Insulin for Glucose=0	44310
80	$K_{ t RinsuPotr}$	$\mathrm{pmol}/\mathrm{min}$	Rate of Potentiator effect on labile insulin	3300.71
81	$K_{ t RinsuPtgt}$	$/\mathrm{min}$	Rate at which Potentiator reachs its target value	0.0169775
82	$K_{ t pinh t Prp}$	$/\mathrm{min}$	Rate at which Inhibitor reaches the proportional insulin response function	15.212
83	M_1	$/\mathrm{min}$	Late rate of increase in insulin secretion	0.000241686
84	M_2	$/\mathrm{min}$	Rate of insulin response	0.304906
85	I_{PV0}	m pM	Baseline value of I_{PV} at initial time (t_0)	91
86	C_0	m pM	Starting value for gluCagon	11.48
87	Γ_{MCC}	${ m L/min}$	Rate constant of gluCagon clearance	0.91
88	V_C	\mathbf{L}	gluCagon distribution volume	11.31
89	$eta_{\mathtt{PCR}}^0$	#	PCR Glucose effect midpoint	2.93

Table 2. Model Parameters

ParID	Parameter	Units	Meaning	Value
90	$eta^1_{\mathtt{PCR}}$	#	PCR Glucose effect half-amplitude	2.1
91	$eta_{\mathtt{PCR}}^1 \ eta_{\mathtt{PCR}}^2$	#	PCR Glucose effect steepness	4.18
92	$eta^3_{ t PCR}$	#	PCR Glucose effect shift	0.621325
93	$eta_{ t PCR}^4$	#	PCR Insulin effect midpoint	1.31
94	$eta_{\mathtt{PCR}}^{5}$	#	PCR Insulin effect half-amplitude	0.61
95	$eta_{\mathtt{PCR}}^5$	#	PCR Insulin effect steepness	1.06
96	$eta_{\mathtt{PCR}}^{5}$	#	PCR Insulin effect shift	0.471419
97	f_{20}	#	Baseline value of f_2 at initial time (t_0)	0
98	D	mmol	Glucose dose for the oral challenge	555.56
99	S_0	mmol	Baseline value of S at initial time (t_0)	0
100	$k_{\mathtt{js}}$	$1/\mathrm{min}$	Glucose transfer rate from Stomach to Jejunum compartment	0.0365887
101	J_0	$\overline{\mathrm{mmol}}$	Baseline value of J at initial time (t_0)	0
102	$k_{ t gj}$	$1/\mathrm{min}$	Glucose transfer rate from Jejunum to Gut compartment	0.0245626
103	k_{rj}	$1/\min$	Glucose transfer rate from Jejunum to Delay compartment	0.0277149
104	Rit_0	mmol	Baseline value of R at initial time (t_0)	0
105	$k_{ exttt{lr}}$	$1/\mathrm{min}$	Glucose transfer rate from Delay to Ileum compartment	0.0248468
106	Ile_0	mmol	Baseline value of L at initial time (t_0)	0
107	$k_{ t gl}$	$1/\mathrm{min}$	Glucose transfer rate from Ileum to Gut compartment	0.0261629
108	f	#	Fraction of Glucose absorbed	1
109	$R_{ t oga0}$	$\mathrm{mmol/min}$	Baseline value of R_{oga} at initial time (t_0)	0
110	I_{H0}	pM	Baseline value of I_H at initial time (t_0)	107.059
111	I_{K0}	pM	Baseline value of I_K at initial time (t_0)	74.9412
112	I_{B0}	pM	Baseline value of I_B at initial time (t_0)	107.059
113	I_{G0}	pM	Baseline value of I_G at initial time (t_0)	107.059
114	I_{PI0}	pM	Baseline value of I_{PI} at initial time (t_0)	40.9651
115	I_{L0}	pM	Baseline value of I_L at initial time (t_0)	151.488
116	$\Gamma_{ t PIRO}$	$\mathrm{pmol}/\mathrm{min}$	Baseline value of $\Gamma_{\tt PIR}$ at initial time (t_0)	130.879
117	$\Gamma_{ t PICO}$	$\mathrm{pmol}/\mathrm{min}$	Baseline value of $\Gamma_{\tt PIC}$ at initial time (t_0)	16.8618
118	$P_{ t prp0}$	#	Baseline value of P_{prp} at initial time (t_0)	0.833373
119	$P_{ t tgt0}$	#	Baseline value of P_{tgt} at initial time (t_0)	0.659434
120	$P_{\mathtt{inh}0}$	#	Baseline value of P_{inh} at initial time (t_0)	0.833373
121	$P_{\mathtt{otn}0}$	#	Baseline value of $P_{\tt otn}$ at initial time (t_0)	0.659434
122	$InitialRinsu_0$	pmol	Baseline value of $Rinsu$ at initial time (t_0)	200202

Table 2. Model Parameters

ParID	Parameter	Units	Meaning	Value
123	S_{ecr0}	${f pmol/min}$	Baseline value of S_{ecr} at initial time (t_0)	31.9073
124	G_{PV0}	mM	Baseline value of G_{PV} at initial time (t_0)	4.94456
125	G_{K0}	mM	Baseline value of G_K at initial time (t_0)	5.07333
126	G_{BV0}	mM	Baseline value of G_{BV} at initial time (t_0)	4.4142
127	G_{J0}	${ m mM}$	Baseline value of G_J at initial time (t_0)	4.96332
128	G_{L0}	mM	Baseline value of G_L at initial time (t_0)	5.58039
129	G_{BI0}	${ m mM}$	Baseline value of G_{BI} at initial time (t_0)	2.59938
130	G_{PI0}	${ m mM}$	Baseline value of G_{PI} at initial time (t_0)	4.80032
131	$M_{ t PGU0}^{I}$	#	Baseline value of $M_{\tt PGU}^I$ at initial time (t_0)	0.992859
132	$M^C_{\mathtt{HGP}0}$	#	Baseline value of $M_{\mathtt{HGP}}^{C}$ at initial time (t_0)	1
133	$M_{\mathtt{HGP}0}^{C0}$	#	Baseline value of $M_{\tt HGP}^{C0}$ at initial time (t_0)	1
134	$M_{\mathtt{HGP}0}^{I}$	#	Baseline value of $M_{\mathtt{HGP}}^{I}$ at initial time (t_0)	1
135	$M_{\tt HGPinf0}^{I}$	#	Steady state of MIHGP	1
136	$M_{\mathtt{HGP0}}^{G}$	#	Baseline value of $M_{\mathtt{HGP}}^G$ at initial time (t_0)	1
137	$M^I_{ t H t G t U 0}$	#	Baseline value of $M_{\tt HGU}^I$ at initial time (t_0)	1
138	$M_{ t t t t t t t t t t t t t $	#	Steady state of $M_{\mathtt{HGU}}^{I}$	1
139	$M_{ t t t t t t t t t t t t t $	#	Baseline value of $M_{\tt HGU}^G$ at initial time (t_0)	1
140	$\Gamma_{ t KGEO}$	$\mathrm{mmol/min}$	Baseline value of $\Gamma_{\mathtt{KGE}}$ at initial time (t_0)	0.000236777
141	$\Gamma_{ t LICO}$	$\mathrm{pmol}/\mathrm{min}$	Baseline value of $\Gamma_{\mathtt{LIC}}$ at initial time (t_0)	90.8929
142	$\Gamma_{ t KICO}$	$\mathrm{pmol/min}$	Baseline value of $\Gamma_{\mathtt{KIC}}$ at initial time (t_0)	23.1247
143	$M_{ t PCR0}^G$	#	Baseline value of $M_{\mathtt{PCR}}^G$ at initial time (t_0)	1
144	$M_{\mathtt{PCRO}}^{I}$	#	Baseline value of $M_{\tt PCR}^I$ at initial time (t_0)	1
145	$\Gamma_{ t PCC0}$	pM	Baseline value of $\Gamma_{\tt PCC}$ at initial time (t_0)	10.4468
146	$\Gamma^B_{ t PCRO}$	pM	Baseline value of $\Gamma_{\tt PCR}^B$ at initial time (t_0)	10.4468