5. Sia B l'insieme dei barbieri di Lodi che radono la barba a quelli e soltanto a quelli che non se la radono da soli.

Dimostrare che o $B = \emptyset$, oppure i barbieri appartenenti a B hanno barbe ...chilometriche.

- 6. Quale dei seguenti enunciati è voro?
- a) $A \supset B \in C \cap A \notin \emptyset \longrightarrow C \cap B = \emptyset$;
- b) $A \supset B \cap C \in A \cap B = \emptyset \Longrightarrow B \cap C = \emptyset$;
- c) $(A \cap B) \setminus C = (A \cap C) \setminus (B \cap C)$.

3. RELAZIONI

3.1 Prodotto cartesiano

In maniera intuitiva introduciamo la nozione di **coppia ordinata**. Presi due insiemi A e B (non necessariamente distinti) indichiamo con (a,b) l'insieme costituito prendendo due elementi $a \in A$ e $b \in B$ nell'ordine indicato. Sia (a',b') un'altra coppia, $a' \in A$, $b' \in B$. Definiamo l'uguaglianza tra coppie ordinate ponendo

$$(a,b) = (a',b') \iff (a=a') \land (b=b').$$

Perciò è chiaro che (a,b) non va confusa con la coppia (non ordinata) $\{a,b\}$, cioè l'insieme dei due elementi $a \in A$, $b \in B$, che può essere anche indicato con $\{b,a\}$ poiché non importa l'ordine con cui si elencano gli elementi di un insieme.

DEFINIZIONE 3.1 L'insieme delle coppie ordinate (a,b) ottenute prendendo $a \in A$ e $b \in B$ si indica con $A \times B$ e si chiama **prodotto** cartesiano (o semplicemente prodotto) di A per B:

$$A\times B:=\{(a,b):a\in A,b\in B\}.$$

È chiaro che, se A è diverso da B, questo prodotto non è commutativo e cioè $A \times B \neq B \times A$; nel caso A = B esso si indicherà semplicemente con A^2 .

Esempio 3.1 Se A e B sono sottoinsiemi di $\mathbb R$ (insieme dei numeri reali), le coppie (a,b) si possono rappresentare come punti del piano, convenendo che il primo elemento della coppia sia l'ascissa e il secondo l'ordinata. Allora, sia A l'insieme dei numeri compresi tra 0 e 1 e B l'insieme dei numeri compresi tra 1 e 2; la Figura 1.4 illustra gli insiemi $A \times B$, $B \times A$, A^2 .

Figura 1.4. Il prodotto cartesiano degli insiemi $A \in B$ nell'Esempio 3.1.

La definizione si estende poi in maniera ovvia al caso di più di due fattori:

$$A_1 \times A_2 \times \ldots \times A_n$$

è l'insieme delle n-uple ordinate (a_1, a_2, \ldots, a_n) con $a_i \in A_i$ $(i = 1, 2, \ldots, n)$.

Lo studente mostri che, per questo prodotto, valgono la proprietà associativa e la proprietà distributiva rispetto all'unione, intersezione e differenza.

3.2 Definizione di relazione

DEFINIZIONE 3.2 Siano X e Y due insiemi. Una **relazione binaria** (o corrispondenza) tra gli elementi di X e Y è un predicato binario r(x,y) nelle variabili $x \in X$ e $y \in Y$. Se r(x,y) è vera, si dice che x e y sono in relazione tra loro.

Se X = Y, diremo semplicemente che r è una relazione tra gli elementi di X.

Sia R il sottoinsieme di $X \times Y$ costituito dalle coppie (x,y) per cui la relazione è vera:

 $R := \{(x,y) : (x,y) \in X \times Y \wedge r(x,y)\}.$

R si chiama grafico della relazione e si indica con graf(r). Per indicare che x e y sono legati dalla relazione r scriveremo

$$(x,y) \in \operatorname{graf}(r)$$
.

Viceversa, dato un insieme $R \subseteq X \times Y$, risulta individuata la relazione r definita da:

"
$$r(x, y)$$
 vera se e solo se $(x, y) \in R$ ".

Evidentemente il grafico di questa relazione coincide con R.

In ultima analisi, una relazione binaria r in $X \times Y$ è identificabile con un sottoinsieme di $X \times Y$, il grafico di r.

Nella lingua parlata "x è fratello di y", "x abita nella città y", "x è iscritto alla facoltà y", ecc., sono esempi evidenti di relazioni. A noi interessano le relazioni espresse nel linguaggio della teoria degli insiemi.

Esempi

- 3.2 X è l'insieme dei punti del piano, Y l'insieme delle rette del piano: una relazione in $X \times Y$ è quella di appartenenza del punto alla retta.
- **3.3** Dato un insieme U, sia $X = Y = \mathcal{P}(U)$. Allora se $A, B \in \mathcal{P}(U)$ il predicato r(A, B): " $A \subseteq B$ " esprime una relazione in $\mathcal{P}(U)$.

Se $U = \{a, b\}$ invitiamo il lettore a rappresentare schematicamente con un disegno il grafico della relazione.

3.4 Sia X l'insieme degli interi positivi. Esempi di relazioni in X sono:

r(m, n): "m ed n sono primi tra loro";

s(m, n): "m è divisore di n";

t(m, n): " $m^2 + n^2 = \text{quadrato di un intero}$ ".

Invitiamo il lettore a farsi un'idea del grafico di queste relazioni, magari limitandosi a considerare gli interi compresi tra 1 e 100.

3.5 Sia X l'insieme dei numeri reali. Esempi di relazioni in X sono:

"
$$x \le y$$
", " $x^2 + y^2 + 1 = 0$ ", " $(\sin x)^2 + (\cos y)^2 = 1$ ".

Qual è il loro grafico? (Quando il grafico è vuoto, la relazione è detta impossibile).

Sono di grande importanza due speciali tipi di relazioni definite fra gli elementi di uno stesso insieme: le **equivalenze** e gli **ordinamenti**.

3.3 Equivalenze

Definizione 3.3 Diciamo che r è una relazione di equivalenza (o semplicemente un'equivalenza) in X e la indicheremo col simbolo $x \approx y$ (si legge: x è equivalente a y), se verifica le proprietà:

```
 \begin{array}{ll} \textit{riflessiva} & \forall \, x \in X : x \approx x \\ \textit{simmetrica} & \forall \, x \in X, \, \forall \, y \in X : x \approx y \Longleftrightarrow y \approx x \\ \textit{transitiva} & \forall \, x \in X, \, \forall \, y \in X, \, \forall \, z \in X : (x \approx y) \land (y \approx z) \Longrightarrow x \approx z. \end{array}
```

L'importanza di una simile relazione sta nel fatto che essa realizza, sull'insieme in cui è definita, una **partizione**. Definiamo cosa si intende con questo.

Definizione 3.4 Sia X un insieme non vuoto. Una **partizione** di X, che indicheremo con S, è una famiglia di sottoinsiemi di X, ovvero un sottoinsieme di $\mathcal{P}(X)$, tale che:

- i) ogni elemento A di S è non vuoto;
- ii) se $A_1 \in S$, $A_2 \in S$ e $A_1 \notin A_2$, allora $A_1 \cap A_2 = \emptyset$;

iii)
$$\bigcup_{A \in S} A = X$$
.

Il simbolo $\bigcup_{A \in S} A = X$ indica l'unione degli insiemi A, al variare di A nella famiglia S.

Per esempio, se X è l'insieme degli interi positivi, una sua partizione si ha prendendo $S = \{P, D\}$ dove P è l'insieme dei numeri pari e D l'insieme di quelli dispari.

Se in X è data una equivalenza r, indichiamo con [x] l'insieme di tutti gli elementi di X equivalenti a x, cioè

$$[x] := \{ y : (y \in X) \land (x \approx y) \};$$

[x] è detta classe di equivalenza di x.

■ Teorema 3.1 Stabilita in un insieme non vuoto X una relazione di equivalenza, la famiglia $\{[x]: x \in X\}$ delle classi di equivalenza costituisce una partizione di X.

Dimostrazione. Dobbiamo mostrare che valgono le proprietà i) ii) iii) sopra menzionate. La i) è evidente poiché [x] contiene almeno x.

Per mostrare la ii) procediamo per assurdo: supponiamo che due classi di equivalenza distinte [x] e [y] abbiano un elemento in comune: z; sarebbe allora $x\approx z$ e $y\approx z$ e perciò, per la proprietà transitiva, $x\approx y$; qualunque altro elemento $x'\in [x]$, essendo equivalente a

x, sarebbe perciò equivalente a y e qualunque altro elemento $y' \in [y]$, essendo equivalente a y, sarebbe perciò equivalente a x, da cui seguirebbe [x] = [y] contro l'ipotesi.

La iii) è pure evidente, poiché un qualsiasi elemento di X appartiene alla classe che egli stesso individua.

Possiamo così affermare che: ogni elemento $x \in X$ sta in una e una sola classe di equivalenza. La partizione determinata su X dall'equivalenza r prende un nome speciale: viene detta insieme quoziente di X rispetto a r e viene indicata col simbolo X/r.

È anche immediato constatare che, assegnata una partizione S su X, questa determina univocamente una equivalenza r, tale che S = X/r. Tale equivalenza è definita da:

" $x \approx y \iff x$ e y appartengono allo stesso elemento di S".

Esempi

- **3.6** La relazione di uguaglianza, già introdotta in 2.1, è evidentemente una equivalenza; in questo caso le classi [x] contengono solamente l'elemento x.
- 3.7 In algebra e in teoria dei numeri hanno grande importanza le classi di resti modulo m, definite dalla seguente equivalenza.

Sia $\mathbb Z$ l'insieme dei numeri interi relativi $(0,\pm 1,\pm 2,\ldots)$ e sia m un intero fissato ≥ 1 ; consideriamo il predicato binario

$$r(x, y)$$
: " $x - y$ è divisibile per m ".

È facile verificare (esercizio) che r è una relazione di equivalenza in \mathbb{Z} . Ogni classe è composta da numeri che, divisi per m, danno lo stesso resto; da qui la terminologia.

[0]	[1]	[2]	[3]	[4]
:	:	:	i	:
-15	-14	-13	-12	-11
-10	-9	-8	-7	-6
-5	-4	-3	-2	-1
0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
÷	:	:	ŀ	:

Figura 1.5. Le classi di resti modulo 5.

Se m = 1, la r definisce una sola classe che contiene tutti gli interi.

Se m = 2, la r definisce due classi, una formata dai numeri pari, l'altra dai dispari. Se m = 3, la r definisce 3 classi: quella dei multipli di 3, quella dei (multipli di 3)+1, quella dei (multipli di 3)+2.

3.8 Nella geometria euclidea sono, per esempio, relazioni di equivalenza il parallelismo tra le rette di un piano e la similitudine tra i poligoni di un piano; ricordiamo

Insieme di tutte le classi di equivalenza dell'insieme X