Sentiment Analysis: Using Recurrent Neural Networks

By Bibek Dahal

Objective

Text classification

Analyze emotion of text's author

Dataset

Stanford's Movies Review Dataset

https://ai.stanford.edu/~amaas/data/sentiment/

Labels: **Positive** or **Negative** Equal number of samples for both.

[this, movie, is, so, good]
[i, think, that, the, story, is, pointless, and, the, acting, is, bad]

Sentence:

Indefinite length
Important features at different position

Classifier

Positive or Negative

movie

One word at a time:

Not enough to represent the sentiment of the whole sentence.

Classifier

Positive or **Negative**

Important context information are saved in memory as we feed one word at a time.

Important context information are saved in memory as we feed one word at a time.

Important context information are saved in memory as we feed one word at a time.

The memory information is used together with input to generate the output.

Covered in class but I will go over briefly.

LSTM - Review

Long Short-Term Memory

An LSTM Cell

Capable of remembering some context information for some time.

LSTM - Review

An LSTM Layer

Capable of remembering multiple context information.

LSTM - Review

An LSTM Deep Neural Network

Bidirectional LSTM

Run input (sequence of words) in two ways:

Forward direction

Backward direction

Information from both past and future are used for output at any given timestep.

Word to a Vector

Word to a Vector

We want to **capture relationships** between words

Word to a Vector

We want to **capture relationships** between words

One-hot vectors simply is not good enough.

Word to a Vector

We want to **capture relationships** between words

Better Examples: Word2Vec, GloVe

Word to a Vector

We want to **capture relationships** between words

Better Examples: Word2Vec, GloVe

King is to man what queen is to woman.

Word to a Vector

We want to **capture relationships** between words

Better Examples: Word2Vec, GloVe

Vec(King) - Vec(Man) + Vec(Woman) = Vec(Queen)

- Similar to word2vec
 - Trains a large text corpus to find mapping of words to vector
 - But word2vec only considers whether or not two words occur together in the training set
- Also considers multiplicity of co-occurrences
 - How many times a word appear in context of another word in the whole corpus?

Similarity between
$$u_j$$
 and v_i \propto p_{ij} Conditional probability of word i appearing together with word j . $e^{< u_j, v_i>}= \alpha p_{ij}$ Sumber of times word i and j appear together.

Similarity between
$$u_j$$
 and v_i \propto p_{ij} Conditional probability of word i appearing together with word j . $e^{< u_j, v_i>} = \alpha p_{ij}$ $e^{< u_j, v_i>} = \alpha \frac{x_{ij}}{x_i}$ Number of times word i and j appear together. $< u_j, v_i> -log \alpha = log x_{ij} - log x_i$

$$\langle u_j, v_i \rangle - log\alpha = logx_{ij} - logx_i$$
 Minimize
$$(\langle u_j, v_i \rangle + bias \ terms - logx_{ij})^2$$
 Minimize
$$(\langle u_j, v_i \rangle + b_i + c_j - logx_{ij})^2$$

Square Loss Function

GloVe

Minimize
$$\sum_{i \in V} \sum_{j \in V} h(x_{ij}) (\langle u_j, v_i \rangle + b_i + c_j - \log x_{ij})^2$$

Square Loss Function

 $h(x_{ij})$ is monotonic with x_{ij} in the range [0,1]

Weight function:

To handle the fact that rare or noise co-occurrences are less important than frequent co-occurrences. Also to ignore numeric instability when $x_{ij} = 0$.

GloVe

Minimize
$$\sum_{i \in V} \sum_{j \in V} h(x_{ij}) (\langle u_j, v_i \rangle + b_i + c_j - \log x_{ij})^2$$

Square Loss Function

My slides oversimplified the maths to give basic idea.

See the paper: https://nlp.stanford.edu/pubs/glove.pdf to get the full idea.

GloVe Word Vectors

Our training set is too small, so we take pre-trained word vectors from Stanford's 6B dataset. Vector size = 100

Bidirectional LSTM

Number of Layers = 2 Number of Hidden States = 100 Input Vector Size = 100

Linear Network

Input = (Hidden States of initial and final timesteps of the Bidirectional LSTM Layers)

Input Size = 4 * 100

Output Size = 2 (One for positive, another for negative)

Output

Two neurons: (Negative) and (Positive) Whichever is greater.

Softmax function if we want probability

Loss Function

Cross Entropy based on softmax output

Training

Loss Function

Cross Entropy based on softmax output

Learning Rate

0.01

Number of Epochs

10

Batch Size

64

Training Results

Loss Function

Cross Entropy based on softmax output

Learning Rate

0.01

Number of Epochs

10

Accuracy on the Test Set: 82.42%

Let's look at the code ...

THANK YOU.