Element mnemonics

Science understanding

Verbal/Linguistic

A mnemonic (ne-mon-ik) is a phrase or poem that helps you to remember something. Below is a mnemonic to help you remember the first ten elements in the periodic table. See if you can create your own mnemonic to help remember the next ten.

Atomic number	Chemical name	Chemical symbol	Mnemonic
1	Hydrogen	Н	Harry
2	Helium	He	Helped
3	Lithium	Li	Little
4	Beryllium	Be	Betty
5	Boron	В	Brown
6	Carbon	С	Carry
7	Nitrogen	N	Nine
8	Oxygen	0	Oranges
9	Fluorine	F	For
10	Neon	Ne	Neil

Atomic number	Chemical name	Chemical symbol	Mnemonic
11	Sodium	Na	
12	Magnesium	Mg	
13	Aluminium	Al	
14	Silicon	Si	
15	Phosphorus	Р	
16	Sulfur	S	
17	Chlorine	CI	
18	Argon	Ar	
19	Potassium	К	
20	Calcium	Ca	

Periodic table quiz

Science understanding

Verbal/Linguistic

Scientists organise the elements from lightest to heaviest on a grid called the periodic table. The periodic table helps scientists to look up the names and symbols of all the known elements. Use the periodic table to answer the following questions.

H hydrogen 1																	He helium 2
Li lithium 3	Be beryllium 4											B beren 5	C carbon 6	N nitrogen 7	O oxygen 8	F fluorine 9	Ne neon 10
Na sodium 11	Mg magnesium 12											AI aluminium 13	Si silicon 14	P phosphorus 15	S sulfur 16	CI chlorine 17	Ar argon 18
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chremium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	in	Sn	Sb	Te	l	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenem	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Cs	Ba	La	Hf	Ta	W	Re	Os	ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
caesium	barium	Ianthanum	hafnium	tantalum	tungsten	rhenium	osmium	irídium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo
francium	radium	actinium	rutherfordium	dubnium	seaborgium	bohrlum	hassium	meltnerium	darmstadlium	roentgenium	copemicium	ununtrium	ununquadium	^{սուսորջողնստ}	ununhexlum	ununseptium	ununoctium
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118

Lanthanoids

Actinoids

Ce	Pr	Nd neodymium	Pm promethium	Sm samarium	Eu europium	Gd gadolinium	Tb terbium	Dy dysprosium	Ho holmium	Er erbium	Tm thalium	Yb ytterbium	Lu Iutetium
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
thorium	protactinium	uranium	neptunium					ça!ifornium			mendelevium		1
90	91	92	93	94	95	96	97	98	99	100	101	102	103

Н —	symbol
hydrogen -	— name
1 —	— atomic number

- State the total number of elements listed on the periodic table.
- 2 Identify the chemical symbol of the following elements.

Helium _____ Hydrogen _____

Carbon Oxygen Nitrogen Aluminium ____

 Calcium
 Iron

3	Identify the names of the elements with the following chemical symbols.						
	Li	В					
	Na						
	P						
	Cr						
4	List the names and symbols of all the ele	ements whose names start with the letter 'C					
5	Identify three elements named after fam	nous scientists.					
6	Identify three elements named after a pl	lace, country, continent or planet.					
7	Some chemical symbols do not appear to example, the chemical symbol for silver other elements whose chemical symbols elements.						
	1 10 10 10 10 10 10 10 10 10 10 10 10 10						

8 In the table below, list five elements that you might use in your everyday life and identify where they might be used.

Element	Uses
- 10000000	
144MA	

Elemental crossword

Science understanding

Verbal/Linguistic

Use the periodic table on page 93 to complete the crossword below by filling in the element name that corresponds to each symbol.

Across	Down				
Across 8 Al 9 Ti 11 O 13 B 15 Cu 17 N 18 P 22 Ca 23 F 24 Fe 26 He	1 Pt 2 Be 3 Li 4 Cl 5 Ar 6 Na 7 C 10 Mg 12 K 14 Si 16 Au 19 S 20 H 21 Ag 25 Ne	9	5 7 8 10	1 2	4
18	13 19 23 26	14 15 16 20 22 -	11 17 21 25 25 25 25 25 25 25 25 25 25 25 25 25		

7.4

Which element am I?

Science understanding

Verbal/Linguistic

Use what you know about the elements that you find in your everyday life to match the elements below to the properties listed in the table.

> Carbon C Helium He Sulfur S Gold Au Aluminium Al Chlorine Cl Iron Fe Copper Cu Oxygen O Nitrogen N

De	escription of properties	Chemical name	Chemical symbol
1	I am lightweight and shiny and conduct electricity very well. For these reasons, I am used in overhead power lines. I am also used in soft-drink cans because I can be recycled.		0.004
2	At room temperature I am a solid, bright yellow powder. I am a typical non-metal. I don't conduct electricity and I crumble easily. I can be found under oxygen on the periodic table.		
3	I can be found in many different forms. Sometimes I am a black crumbly solid called charcoal. However, I can also form very hard, beautiful and expensive crystal lattices called diamond.		
4	I am a colourless, odourless gas that makes up most of the air you breathe but I am not oxygen. I am one of the first 10 elements listed in the periodic table.		
5	I am a yellow gas with a pungent smell. But don't breathe me in or I will damage your lungs. I am also used in swimming pools to kill bacteria. I am between elements 10 and 20 on the periodic table.		
6	I am yellow and shiny. I conduct electricity very well so am sometimes used for wiring in electrical equipment. However, I am more commonly used in jewellery because I am rare and expensive.		
7	I am strong and hard and can be bent into many different shapes. That's why I am used in construction. However, I am often mixed with metals and carbon. Otherwise I will rust.		
8	I am a very light and non-toxic gas. I do not react with other substances so I am often used to make party balloons that float.		
9	I am an invisible, non-toxic gas. I am one of the most important elements on Earth. I am in water, sand and air. You need me to breathe and stay alive. Plants produce me through photosynthesis.		
10	I am shiny and orange-brown in colour. I can be drawn into wires or hammered into sheets. I conduct electricity very well and am cheap to produce, which makes me perfect for household wiring and electrical equipment.		

The ozone allotrope of oxygen

Science as a human endeavour

🕥 Visual/Spatial 🥒 Verbal/Linguistic

Ozone (O2) is a very important allotrope of oxygen. The oxygen you breathe (O2) consists of molecules made up of two oxygen atoms. Ozone is made up of molecules with three oxygen atoms as shown below.

Oxygen O,

Ozone O,

The highest concentrations of ozone are found in the stratosphere, about 10-50 km above the Earth's surface. This layer of ozone that surrounds the Earth is known as the ozone layer. The ozone layer absorbs ultraviolet light from the Sun and therefore plays an important role in protecting you from damaging ultraviolet rays.

However, 25 years ago it was discovered that industrial gases were depleting the ozone layer near the North and South Poles. As a result, the Earth's natural protection was being destroyed and people were more susceptible to sunburn and skin cancers.

The table below records the minimum level of ozone recorded every two years above the South Pole in Dobson units (DU). Dobson units are units of measurement developed specially to measure the concentration of ozone.

Year	1980	1982	1984	1986	1988	1990	1992	1994	1996	1998	2000	2002	2004	2006
Ozone minimum (DU)	194	195	154	124	109	108	84	-	_	99	97	91	91	102

1 Construct a line graph using the axes provided to show how the level of ozone has varied from 1980 to 2006.

2	Deduce from the graph wh 1994 and 1996.	Deduce from the graph what you might expect the minimum ozone level to be in 1994 and 1996.							
	1994	1996							
3	Describe what happened to the ozone levels over this 26-year period.								

4	level in 1980.	m ozone level in 2006 compares to the minimum ozone							
	$\frac{\text{ozone level in 2006}}{\text{ozone level in 1980}} = \phantom{00000000000000000000000000000000000$								
5	Predict what the minimum	level of ozone might be this year.							
6		l happen to the minimum ozone level over the next n the graph. Justify your answer.							
	- And Market Association (1)								

Math-o-mat molecules

Science understanding

🔊 Visual/Spatial

The elements and compounds found in the world around you can exist as single atoms, molecules or large grid-like structures called crystal lattices. The single atoms, molecules and lattices formed by elements contain only one type of atom, while the molecules and lattices formed by compounds contain more than one type of atom.

Molecules

Molecules are clusters of atoms. The molecules that make up pure substances such as elements and compounds are all identical.

The molecular formulas for elements and compounds tell you which type of atoms are in the molecule and how many of each type there are. For example, the molecular formula for the element oxygen is O2, which means that each molecule contains two oxygen atoms. The molecular formula for the compound carbon dioxide is CO2, which means that there is one carbon atom and two oxygen atoms in each carbon dioxide molecule.

Use a math-o-mat or compass to construct diagrams of the following molecules.

Oxygen O ₂	Carbon dioxide CO ₂	Nitrogen N ₂
Water H ₂ O	Ozone O ₃	Carbon monoxide CO
Phosphorus P ₄	Methane CH ₄	Hydrogen peroxide H ₂ O ₂

Lattices

Crystal lattices such as diamond or sodium chloride are made up of a huge number of atoms stuck together in large grid-like structures. For this reason, crystal lattices do not have molecular formulas. Instead they are referred to by their chemical formulas. The chemical formula of a lattice tells you which type of atoms make up the lattice and the ratio of each type of atom in the lattice. For example, the chemical formula for sodium chloride (table salt) is NaCl. This means that in the crystal lattice there is one sodium atom for every chlorine atom. For silicon dioxide (beach sand), the chemical formula of SiO_2 means that for every silicon atom in the lattice there are two oxygen atoms.

The crystal lattices of elements are made up of only one type of atom so their chemical formulas are exactly the same as the chemical symbols for the elements. For example, diamond is a crystal lattice made up of only carbon atoms, so its chemical formula is just C.

2 Construct diagrams of lattices of gold and magnesium oxide.

Air mixture

Science inquiry

Visual/Spatial

The air you breathe is actually a mixture of elements and compounds. It contains approximately 78% nitrogen (N_2), 21% oxygen (O_2) and 1% argon (Ar). It also contains very small amounts of carbon dioxide (CO₂), neon (Ne), helium (He) and methane (CH_a). The box below contains 78 molecules of nitrogen (N).

Identify how many molecules of oxygen and argon are required to make this a box of air and add them to the diagram.

Super molecules!

Science as a human endeavour

Verbal/Linguistic Visual/Spatial

The DNA molecule is one of nature's most important supramolecules or molecular machines. It provides the blueprint for every characteristic of every living thing. The DNA molecule is made up of two very long molecules that are twisted together in a spiral called a double helix. This double helix can be stretched to over a metre in length.

The very large DNA molecules can combine with other molecules to create even bigger supramolecules called chromosomes. Chromosomes are so large that they can be seen with a strong optical microscope.

Every cell in your body contains 46 chromosomes. Other living things have different numbers of chromosomes in their cells, as shown in the following table.

Organism	Pea	Ant	Shrimp	Dog	Kangaroo	Chimpanzee	Human
Number of chromosomes	14	2	90	78	12	48	46

1 Construct a bar graph of the data in the table on the axes below.

2 Identify which organism has the most similar number of chromosomes to humans and propose why.

3 Before examining the data, Tamera makes the hypothesis that 'The cells of more complex organisms must contain more chromosomes'. State whether you think this hypothesis is correct or incorrect. Refer to the data from the table to justify your argument.

Nuclear numbers

Science inquiry

Nisual/Spatial

Atoms are the building blocks that make up all the elements and compounds in the world around you. Every atom has its own unique properties but all atoms are made up of three subatomic particles known as electrons, protons and neutrons. The protons and neutrons form a cluster at the centre of the atom known as the nucleus. Electrons form a cloud around the nucleus.

The number of protons in the nucleus is called the atomic number. The number of protons and neutrons in the nucleus is called the mass number. For example, a nitrogen atom has seven protons and seven neutrons in its nucleus. Therefore the atomic number of nitrogen is 7 and its mass number is 7 + 7 = 14. This information is often written next to the chemical symbol as shown below. When written like this, the symbol is referred to as the atomic symbol.

 $\begin{array}{cc} \text{Mass number} & 14 \\ \text{Atomic number} & 7 \\ \end{array} \right\} \text{ Atomic symbol}$

Identify the atoms and subatomic particles by completing the following atomic symbols and diagrams.

7.10

Literacy review

nucleus

compounds

Science understanding

solid

molecules

Verbal/Linguistic

 $\textbf{Recall} \ your \ knowledge \ of \ elements \ and \ compounds \ by \ choosing \ words \ from \ the \ list \ to$ complete the statements below. Some words may be used more than once.

liquid

break

n	nolecules	compounds	mixtures	atomic	atoms					
-		neutrons	negatively	positively	mass					
la	ittices	electrons	elements	conduct						
1	are the smallest building blocks that make up all the substances around you. Substances made up of just one type of atom are known as									
2	Metallic elements are shiny, electricity and heat, and can be drawn into wires or hammered into sheets. They are usually at room temperature.									
3	Non-metallic elements are usually dull, do not conduct electricity or heat and when a force is applied. Most non-metals are solid or at room temperature.									
4	The atoms that make up the elements can be monatomic, in clusters called or in large crystal Most									
	non-metallic	elements are mad	le up of	of The atoms in						
	all metallic elements form									
5	Pure substances made up of more than one type of atom are known as These substances can be made up of atoms in crystal lattices. They can also be made up of identical									
	lattices. They	can also be made	up of identical _		•					
6			f a combination o		ents and					
7	The atoms tha	t make up eleme e subatomic parti	nts and compour	nds are all made	•					
	are the			. IIIC Sille						
	-		re							
		are no			boa ana me					
8	The protons a	nd neutrons form	ı a cluster at the c is surrounded by							
	electrons.									
9	The number of	f protons in the n	ucleus is the		number. The					
	number of protons and neutrons is the number.									