Application of broker-based mechanisms for end-node attachment in mobile networks

Instituições Associadas

ISCTE VIUL

Masters Defense

Ana Patrícia Gomes da Cruz

Supervisor: Prof. Dr. Daniel Corujo

Co-supervisor: Prof. Dr. António Nogueira

July 2020

Topics covered

- 1 Introduction
- 2 Requirements and Architecture
- 3 Results
- 4 Final Remarks

Insights on current networks trends

- In 2017 mobile data traffic increased by 71% and it is predictable that the traffic keeps growing [1];
- Network operators are continuously upgrading and extending their network infrastructure to attend the user demand [2];
- 5G network developed to attend user demand with high data rates and reduce the costs [3];

^[3] C. Zhang, X. Wen, L. Wang, Z. Lu, and L. Ma, "Performance evaluation of candidate protocol stack for service-based interfaces in 5g core network", in 2018 IEEE International Conference on Communications Workshops (ICC Workshops), 2018, pp. 1–6.

^[1] Cisco, "Cisco visual networking index: Global mobile data traffic forecast update, 2017-2022", Feb. 2009, Cisco, White Paper.

^[2] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, "Nfv and sdn—key technology enablers for 5g networks", IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2468–2478, 2017.

- Follow 3GPP standards;
- IP network architecture:
 - "Flat architecture"
 - Separation of the control plane from the user plane

Evolved Universal Terrestrial Radio Access Network (E-UTRAN)

Evolved NodeB (eNB):

- Radio resource management
- Radio bearers

Evolved Packet Core (EPC)

MME:

- Bearer management
- Connection management
- NAS security

HSS:

- Central subscriber database
- Provides authentication vector

S-GW:

- Mobility anchoring
- Terminates user plane towards E-UTRAN

P-GW:

- UE IP address allocation

PCRF:

- Policy control decision

- Service-Based Architecture;
- Separating the Control Plane from the User Plane;
- Service-Based Interface.

Motivation and goals

- 5G network with a reformulation of the architecture of its core;
- 5G core architecture closer to cloud-native systems;
- Impact of message brokers for control signaling routing;

Topics covered

- 1 Introduction
- 2 Requirements and Architecture
- 3 Results
- 4 Final Remarks

What to evaluate?

- Signaling routing between core entities
- Integration of messages brokers

Software platform selection

- Three requirements were established:
 - Has to provide full implementation of the LTE network;
 - Has to have UE emulator tool;
 - Has to be free.

OSLD

OpenAirInterface (OAI)

- Managed by the OAI Software Alliance;
- Emulator tool:
 - OAISIM program allow emulate multiple users;
 - Emulator not stable.

Message Brokers

- Integration on OAI platform;
- Messages brokers that provide libraries in C code.

HSS

Proposed solution

Service-based interface between 4G core network

Topics covered

- 1 Introduction
- 2 Requirements and Architecture
- 3 Results
- 4 Final Remarks

Scenario

- Connect different amounts of users (maximum 10 users);
- Testing different message brokers;
- Ran 100 times;
- Flask server implemented in all VMs.

Throughput

	Throughput (kbps)					
	Original EPC			Message Brokers		
$\# \mathrm{User}$	S1-MME	S6a	S11	Kafka	Mosquitto	RabbitMQ
1UE	$15.7(\pm 0.64)$	$55.66(\pm 4.27)$	$0.663(\pm 0.057)$	$4.66(\pm0.092)$	$7.52(\pm0.429)$	$8.06(\pm0.493)$
2UE	$12.94(\pm 0.91)$	$44.03(\pm 7.66)$	$0.86(\pm 0.105)$	$5.95(\pm 0.791)$	$9.74(\pm 2.769)$	$11.24(\pm 4.314)$
3UE	$13.27(\pm 0.86)$	$44.37(\pm 4.85)$	$0.864(\pm0.104)$	$6.03(\pm 0.927)$	$9.86(\pm 2.332)$	$10.61(\pm 1.832)$
4UE	$13.14(\pm 0.93)$	$51.43(\pm 5.14)$	$0.977(\pm 0.395)$	$5.96(\pm0.491)$	$9.43(\pm 0.809)$	$11.37(\pm 3.054)$
5UE	$13.67(\pm 0.53)$	$57.56(\pm 3.2)$	$0.977(\pm 0.189)$	$6.26(\pm 1.165)$	$9.68(\pm 1.799)$	$12.08(\pm 4.182)$
6UE	$13.12(\pm 0.24)$	$58.41(\pm 3.05)$	$1.037(\pm 0.275)$	$6.48(\pm 1.407)$	$10.22(\pm 1.885)$	$11.28(\pm 1.743)$
7UE	$14.23(\pm 0.18)$	$59.47(\pm 1.30)$	$1.003(\pm 0.114)$	$6.54(\pm 1.113)$	$10.26(\pm 2.697)$	$12.38(\pm 4.291)$
8UE	$13.15(\pm 0.14)$	$55.74(\pm 2.18)$	$1.029(\pm 0.181)$	$6.49(\pm 1.018)$	$9.89(\pm 1.3)$	$12.45(\pm 6.265)$
9UE	$13.19(\pm 0.11)$	$54.99(\pm 1.73)$	$1.066(\pm 0.582)$	$6.27(\pm 1.189)$	$10.41(\pm 0.946)$	$11.83(\pm 1.556)$
10UE	$13.17(\pm 0.11)$	$52.14(\pm 2.65)$	$1.022(\pm 0.181)$	$6.61(\pm 0.961)$	$11.29(\pm 2.634)$	$12.07(\pm 1.935)$

Exchanged messages through entities

Original EPC

Delay on the control plane: UE+eNB and MME

- Messages exchanged between UE + **eNB** and **MME** entities (Original EPC):
 - Attach Request/Complete (msg1)
 - Authentication Request/Response (msg3)
 - Security Mode Command/Complete (msg4)
 - Initial Context Request/Response (msg7)
 - Initial Context Request/UE Capability (msg8)
 - UE Capability/Initial Context Response (msg9)

Delay on the control plane: UE+eNB and MME

Attach Request/Complete (msg1)

Initial Context Request/Response (msg7)

Delay on the control plane: UE+eNB and MME

- Messages exchanged between UE + eNB and MME entities
- Emulator present different behavior with 2 users configured.
- Peak value between 1 and 2 users.
- Peak value between 2 and 3 users:

Message exchanged between MME and HSS:

- Authentication Information Request/Answer (msg2)
- Update Location Request/Answer (msg5)

Results

Delay on the control plane: MME and SPGW (1)

- Messages exchanged between MME and SPGW entities:
 - **Create Session** Request/Response message
 - Original EPC and different implementations

number of users

Delay on the control plane: MME and SPGW (2)

- Messages exchanged between MME and SPGW entities:
 - **Modify Bearer** Request/Response message
 - Original EPC and different implementations

Delay on the control plane: MME and SPGW (3)

- Messages exchanged between MME and SPGW entities:
 - Release Access Request/Response message
 - Original EPC and different implementations

Results

Delay on the control plane: Broker

Processing time in broker:

- Request message: Request MME -> Broker and Broker -> SPGW (msg12)
- Response message: Response SPGW -> Broker and Broker -> MME (msg13)

Attachment time

Execution time

Latency

Topics covered

- 1 Introduction
- 2 Requirements and Architecture
- 3 Results
- 4 Final Remarks

Conclusions

- Solution aimed to evolve intercommunication mechanisms between mobile networks using brokers;
- Although some results are marginally worse than Original EPC, they represent a small percentage of the entire execution;
- Message broker is a viable option because it enables communication with generic interfaces.

Future work

- Use physical devices;
- Integrate message brokers between the other entities of the control plane;
- Development of MME and SPGW using REST API;
- When OAI's 5G version is available, do the same tests and compare to the ones presented;

