Applied longitudinal Data Analysis Workshop 1: Multilevel Model for Change

Tyler H. Matta

Educational Methodology, Policy & Leadership Center for Assessment Statistics & Evaluation

October 4, 2014

Workshop Overview

- Longitudinal data and the multilevel model for change
- Strategies for model fitting
- Time-varying covariates
- Non-linear growth

Personal Experience with Multilevel Models for Change

$$y_g = \underbrace{x_g^F \beta^F}_{\text{fall status}} + \underbrace{x_g^{FS} \beta^{FS}}_{\text{fall-spring gain}} + \nu_g$$

Figure: "Additive Polynomial" Models (Thum & Matta (n.d.))

Longitudinal Data Structure

- Person-level dataset [wide-dataset]:
 - Each subject has one row [or record]
 - Repeated measures appear as additional variables
 - No explicit "time" variable
- Person-period dataset [long-dataset]:
 - A subject identifier
 - A time indicator
 - Outcome variable[s]
 - Predictor variable[s]

- Data comes from the National Youth Survey (NYS; Raudenbush & Chan, 1992)
- Five waves, ages 11 15
- TOL, Tolerance of deviant behavior
 (1 = very wrong, 4 = not wrong at all)
- MALE, 1 for male, 0 for female
- EXP, self reported exposure to deviant behavior at age 11 (0 = none, 4 = all).

"Person-level" Data Set

ID	TOL11	TOL12	TOL13	TOL14	TOL15	MALE	EXP
9	2.23	1.79	1.90	2.12	2.66	0	1.54
45	1.12	1.45	1.45	1.45	1.99	1	1.16
268	1.45	1.34	1.99	1.79	1.34	1	0.90
314	1.22	1.22	1.55	1.12	1.12	0	0.81
442	1.45	1.99	1.45	1.67	1.90	0	1.13
514	1.34	1.67	2.23	2.12	2.44	1	0.90
569	1.79	1.90	1.90	1.99	1.99	0	1.99
624	1.12	1.12	1.22	1.12	1.22	1	0.98
723	1.22	1.34	1.12	1.00	1.12	0	0.81
918	1.00	1.00	1.22	1.99	1.22	0	1.21
949	1.99	1.55	1.12	1.45	1.55	1	0.93
978	1.22	1.34	2.12	3.46	3.32	1	1.59
1105	1.34	1.90	1.99	1.90	2.12	1	1.38
1542	1.22	1.22	1.99	1.79	2.12	0	1.44
1552	1.00	1.12	2.23	1.55	1.55	0	1.04
1653	1.11	1.11	1.34	1.55	2.12	0	1.25

"Person-period" Data Set

ID	MALE	EXP	AGE	TOL
9	0	1.54	11	2.23
9	0	1.54	12	1.79
9	0	1.54	13	1.90
9	0	1.54	14	2.12
9	0	1.54	15	2.66
45	1	1.16	11	1.12
45	1	1.16	12	1.45
45	1	1.16	13	1.45
45	1	1.16	14	1.45
45	1	1.16	15	1.99
	•	•		•
1653	0	1.25	11	1.11
1653	0	1.25	12	1.11
1653	0	1.25	13	1.34
1653	0	1.25	14	1.55
1653	0	1.25	15	2.12

Reshaping Data in R

```
library(foreign)
tol dat <- read.dta("./data/nys.dta", convert.factors=T)
head(tol dat)
library(reshape)
tol long <- reshape(tol dat,
  varying= c("tol11", "tol12", "tol13", "tol14", "tol15"),
  v.names= "tol",
  timevar= "age",
  times= c(11, 12, 13, 14, 15),
  direction= "long")
tol_long <- tol_long[order(tol_long$id),]</pre>
head(tol long)
```

Exploring Longitudinal data: Non-parametric Summaries

Non-parametric Summary Plots in R

Exploring Longitudinal data: Fitted OLS Trajectories

Fitted OLS Trajectory Plots in R

Exploring Longitudinal data

Exploratory Plots in R

```
p3 \leftarrow ggplot(data = tol_long, aes(y = tol, x = age))
p3 + stat smooth(method=lm, aes(group= id), se=F, size=.75,
                 color="grey50") +
      stat smooth(method=lm, se=F, size=1.5, color="black") +
      theme bw() +
      theme(panel.grid.major = element_blank(),
            panel.grid.minor = element blank()) +
      ylim(0, 4) + ylab("Tolerance") + xlab("Age")
p3 + stat_smooth(method=loess, aes(group= id), se=F, size=.75,
                 color="grav50") +
      stat smooth(method=loess, se=F, size=1.5, color="black") +
      theme bw() +
      theme(panel.grid.major = element_blank(),
            panel.grid.minor = element blank()) +
      vlim(0, 4) + vlab("Tolerance") + xlab("Age")
```

Exploring Longitudinal data, by Male/Female

More Exploratory Plots in R!

```
p4_male <- ggplot(data = subset(tol_long, male==1),
                  aes(y = tol, x = age))
p4_male + stat_smooth(method=lm, aes(group= id), se=F, size=.75,
                      color="grey50") +
          stat smooth(method=lm, se=F, size=1.5, color="black") +
          theme bw() +
          theme(panel.grid.major = element blank(),
                panel.grid.minor = element_blank()) +
          vlim(0, 4) + vlab("Tolerance") + xlab("Age")
p4_female <- ggplot(data = subset(tol_long, male==0),
                    aes(v = tol, x = age))
p4 female + stat smooth(method=loess, aes(group=id), se=F, size=.75,
                       color="gray50") +
           stat_smooth(method=lm, se=F, size=1.5, color="black") +
           theme bw() +
           theme(panel.grid.major = element_blank(),
                 panel.grid.minor = element_blank()) +
           vlim(0, 4) + vlab("Tolerance") + xlab("Age")
```

Exploring Longitudinal data, by Exposure (High > 1.145)

Even More Exploratory Plots in R!!

```
tol long$hiexp <- tol long$exposure > 1.145
p4_hiexp <- ggplot(data = subset(tol_long, hiexp==T),</pre>
                   aes(y = tol, x = age))
p4 hiexp + stat smooth(method=lm, aes(group= id), se=F, size=.75,
                       color="grey50") +
           stat_smooth(method=lm, se=F, size=1.5, color="black") +
           theme bw() +
           theme(panel.grid.major = element blank(),
                 panel.grid.minor = element blank()) +
           vlim(0, 4) + ylab("Tolerance") + xlab("Age")
p4 loxp <- ggplot(data = subset(tol long, hiexp!=T),
                  aes(v = tol, x = age))
p4 loexp + stat smooth(method=lm, aes(group= id), se=F, size=.75,
                       color="grav50") +
           stat smooth(method=loess, se=F, size=1.5, color="black") +
           theme bw() +
           theme(panel.grid.major = element_blank(),
                 panel.grid.minor = element blank()) +
           ylim(0, 4) + ylab("Tolerance") + xlab("Age")
```

The Multilevel Model for Change

The first example is limited to:

- Linear change model
- Time-structured data set
- Evaluation of one time-invariant dichotomous predictor

- Data comes from Burchinal et al. (1997)
- 103 African-American infants born into low-income families
- At 6 months old, approximately half the sample (n = 53) were randomly assigned to participate in an intensive early intervention program designed to enhance cognitive functioning
- The remaining children (n = 45) were assigned to a control group
- Infants assessed 12 times between ages 6 and 96 months

- 3 waves of data-each child has three records
- AGE (in years) is the child's age at each assessment (1, 1.5, or 2)
- COG is the child's cognitive performance score at each assessment
- PROGRAM is a dichotomous covariate, 1= treatment and 0= control

ID	COG	AGE	PROGRAM
68	103	1.0	1
68	119	1.5	1
68	96	2.0	1
70	106	1.0	1
70	107	1.5	1
70	96	2.0	1
	•	•	•
984	106	1.0	0
984	89	1.5	0
984	99	2.0	0
985	112	1.0	0
985	96	1.5	0
985	88	2.0	0

Empirical Growth Plots: Fitted OLS Trajectories

The Multilevel Model for Change

$$Y_{ij} = \pi_{0i} + \pi_{1i}(AGE_{ij} - 1) + \epsilon_{ij}$$

$$\pi_{0i} = \gamma_{00} + \gamma_{01}(PROGRAM_i) + \zeta_{0i}$$

$$\pi_{1i} = \gamma_{10} + \gamma_{11}(PROGRAM_i) + \zeta_{1i},$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01}^2 \\ \sigma_{10}^2 & \sigma_1^2 \end{bmatrix})$$

- The Level-1 Submodel
 - Describes how each person changes over time
 - Research questions about within-person change
- The Level-2 Submodel
 - Describes how these changes differ across people.
 - Research questions about how these changes vary across individuals

The Level-1 Submodel

$$Y_{ij} = [\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)] + [\epsilon_{ij}]$$

- Y_{ij} represents the value of *COG* for child *i* at time *j*
 - *i* runs from 1 to 103
 - j runs from 1 to 3
- Brackets distinguish between the structural part and the stochastic part of the model
 - The structural part parallels the concept of "true score"
 - The stochastic part parallels the concept of "measurement error"

The Structural Part of the Level-1 Submodel

$$Y_{ij} = [\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)] + [\epsilon_{ij}]$$

Our hypothesis about the shape of each subject's *true trajectory of change* over time

- π_{0i} represents child *i*'s true cognitive performance at X = 0.
 - π_{01} is the intercept for child 1
 - π_{02} is the intercept for child 2
- π_{1i} represents the slope of the postulated individual change trajectory
 - If π_{1i} is positive, subject i's outcome increases over time

The Stochastic Part of the Level-1 Submodel

$$Y_{ij} = [\pi_{0i} + \pi_{1i}(AGE_{ij} - 1)] + [\epsilon_{ij}]$$

- \bullet ϵ_{ij} represents the effect of random error associated with individual i at time j
- ϵ_{ij} is unobserved so we must make assumptions about the distribution of level 1 residuals from occasion to occasion and from person to person.

The Stochastic Part of the Level-1 Submodel

$$\epsilon_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2)$$

- "Classical" assumptions specify residuals as independently and identically distributed ("iid"), with homoscedastic variance across occasions and individuals.
- Classical assumptions may not hold with longitudinal data as residuals may be autocorrelated and heteroscedastic over time (hold tight, more on this later).

The Level-2 Submodel

$$\pi_{0i} = [\gamma_{00} + \gamma_{01}(PROGRAM_i)] + [\zeta_{0i}]$$

$$\pi_{1i} = [\gamma_{10} + \gamma_{11}(PROGRAM_i)] + [\zeta_{1i}]$$

- π_{0i} and π_{1i} represents the level-1 change parameters–initial status and linear growth
- brackets distinguish between the structural part and the stochastic part of the model
 - the structural part parallels the concept of "true score"
 - the stochastic part parallels the concept of "measurement error"

The Structural Part of the Level-2 Submodel

$$\pi_{0i} = [\gamma_{00} + \gamma_{01}(PROGRAM_i)] + [\zeta_{0i}]$$

 $\pi_{1i} = [\gamma_{10} + \gamma_{11}(PROGRAM_i)] + [\zeta_{1i}]$

- ullet γ s represent the level-2 regression parameters-known as *fixed effects*
- fixed effects capture inter individual differences in the true change trajectory
- interpret fixed effects as a prototypical individual:
 - γ_{00} represents the *average initial status* for children not enrolled in the treatment (*PROGRAM* = 0)
 - γ_{10} represents the *average annual growth* for children not enrolled in the treatment (*PROGRAM* = 0)
 - $\gamma_{00} + \gamma_{01}$ represents the *average initial status* for children enrolled in the treatment (*PROGRAM* = 1)
 - $\gamma_{10} + \gamma_{01}$ represents the *average annual growth* for children enrolled in the treatment (*PROGRAM* = 1)

The Stochastic Part of the Level-2 Submodel

$$\pi_{0i} = [\gamma_{00} + \gamma_{01}(PROGRAM_i)] + [\zeta_{0i}]$$

$$\pi_{1i} = [\gamma_{10} + \gamma_{11}(PROGRAM_i)] + [\zeta_{1i}]$$

- ullet ζ represent the residuals—what remained *unexplained by the fixed effects*
- less interested in values of ζ than in the population summaries of the variances σ_0^2 and σ_1^2 , and covariance σ_{01}^2

The Stochastic Part of the Level-2 Submodel

$$\begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim \textit{N} \Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01}^2 \\ \sigma_{10}^2 & \sigma_1^2 \end{bmatrix} \Big)$$

Standard assumption about the level-2 residuals:

- Bivariate normal distribution
- With a mean of zero, and
- Unknown variance and covariance

R Function For Displaying Model Results

```
hlm.output <- function(x,npar=TRUE,print=F) {</pre>
cc \leftarrow fixef(x)
se <- sqrt(diag(vcov(x)))</pre>
coef.table <- round(cbind("Estimate"= cc,</pre>
 "Std.Err"= se,
 z'' = cc/se.
 "95CIL"= cc - (se * 1.96),
 "95CIU"= cc + (se * 1.96)), 3)
var.cov \leftarrow as.data.frame(VarCorr(x))[,c(1, 2, 3, 4)]
mod dev <- -2*(as.numeric(logLik(x)))
mod_df <- as.numeric(attr(logLik(x), "df"))</pre>
mod_bic \leftarrow AIC((11 \leftarrow logLik(x)), k = log(attr(11, "nobs")))
mod_fit <- as.data.frame(c(mod_dev, mod_df, mod_bic),</pre>
row.names= c("Deviance", "df", "BIC"))
colnames(mod fit) <- "Model Fit"
cat("\nFixed Effects\n"); print(coef.table)
cat("\nVarinace Components\n"); print(var.cov)
print(mod fit)
```

Estimating a Multilevel Model for Change in R

Model Results

	Parameter	Estimate	ase	95% CI
Fixed Effects				
π_{0i} , Initial status	γ_{00} , Intercept	107.84	2.04	[103.85,111.83]
	γ_{01} , PROGRAM	6.86	1.88	[1.54,12.17]
π_{0i} , Rate of change	γ_{10} , Intercept	-21.13	1.88	[-24.83, -17.44]
	γ_{11} , PROGRAM	5.27	2.51	[0.35, 10.19]
Variance Components				
Level 1:	σ^2_{ϵ}	74.76		
Level 2:	$\sigma^2_{\epsilon} \ \sigma^2_0 \ \sigma^2_1$	123.97		
	σ_1^2	10.10		
	σ_{01}^2	-35.38		

Interpreting Fixed Effects

$$\hat{\pi}_{0i} = 107.84 + 6.86(PROGRAM_i)$$

 $\hat{\pi}_{1i} = -21.13 + 5.27(PROGRAM_i)$

- 107.84 = Initial status (COG at age=1) for the average nonparticipant
- 6.86 = Difference in initial status for the average *participant*
- -21.13 = Annual rate of change for the average *nonparticipant*
- 5.27 = Difference in annual rate of change for the average *participant*
- What is the estimated initial status for participants?
- What is the estimated annual rate of change for participants?

Fitted Change Trajectories in COG

Plotting Change Trajectories In R

```
m3_fe <- fixef(m3)

prog0= function(x){
         m3_fe[1] + m3_fe[3]*(0) + m3_fe[2]*(x) + m3_fe[4]*(0)*(x)
         }

prog1= function(x){
         m3_fe[1] + m3_fe[3]*(1) + m3_fe[2]*(x) + m3_fe[4]*(1)*(x)
         }

tmp <- data.frame(x= min(ei_1$age) : max(ei_1$age))</pre>
```

Plotting Change Trajectories In R

```
m3_fit <- qplot(x, data=tmp)
m3 fit +
 stat_function(fun=prog1, linetype="dashed") +
 geom text(aes(label="Program\nparticipants",
               x=1.95, y=89, size=1)) +
 stat_function(fun=prog0) +
 geom_text(aes(label="Non-\nparticipants",
               x=1.95, v=63, size=1)) +
 theme bw() +
 theme(panel.grid.major = element blank(),
       panel.grid.minor = element_blank()) +
 scale_x_continuous(breaks = c(1, 2), "Age") +
 scale_y_continuous(limits = c(min(ei_1$cog), max(ei_1$cog)),
                   "Cognitive Performance Score") +
 theme(legend.position="none")
```

Single Parameter Tests for Fixed Effects

Testing the statistical significance of fixed effects is similar to multiple regression where $H_0: \gamma=0$ and $H_1: \gamma\neq 0$

Test this hypothesis for each fixed effect by computing a z-statistic:

$$z = \frac{\hat{\gamma}}{ase(\hat{\gamma})}$$

Interpreting Variance Components

$$\sigma_{\epsilon}^{2} = 74.76$$

$$\begin{bmatrix} \sigma_{0}^{2} & \sigma_{01}^{2} \\ \sigma_{10}^{2} & \sigma_{1}^{2} \end{bmatrix} = \begin{bmatrix} 123.97 & -35.38 \\ -35.38 & 10.10 \end{bmatrix}$$

Where,

- Level-1 residual variance, σ_{ϵ}^2 , summarizes within-person variability
- Level-2 variance components summarize between-person variability in change trajectories
- Single-parameter tests of significance for variance components can be highly inconsistent

Extending the Multilevel Model for Change

- The composite formulation
- Unconditional means model and unconditional growth model
- Model building strategies

Adolescent Alcohol Use Data

- Curran, Stice, and Chassin (1997) collected 3 waves of data
- Time-structured data set of 82 adolescents beginning at age 14.
 - ALCUSE, the level of alcohol consumption during the previous year
 - AGE, the age of the child at the time of data collection
 - PEER, a measure of alcohol use among the adolescent's peers
 - COA, a dichotomous covariate, indicating if the adolescent is a child of an alcoholic (1=yes, 0=no)

ALCUSE and PEER are generated by computing the square root of the sum of the participants' responses across each variable's constituent items.

Composite Specification of the Multilevel Model for Change

$$Y_{ij} = \pi_{0i} + \pi_{1i}TIME_{ij} + \epsilon_{ij}$$

$$\pi_{0i} = \gamma_{00} + \gamma_{01}COA_i + \zeta_{0i}$$

$$\pi_{1i} = \gamma_{10} + \gamma_{11}COA_i + \zeta_{1i}$$

$$\begin{split} Y_{ij} = & \pi_{0i} + \pi_{1i} TIM E_{ij} + \epsilon_{ij} \\ = & \left(\gamma_{00} + \gamma_{01} COA_i + \zeta_{0i} \right) + \left(\gamma_{10} + \gamma_{11} COA_i + \zeta_{1i} \right) TIM E_{ij} + \epsilon_{ij} \\ = & \gamma_{00} + \gamma_{10} TIM E_{ij} + \gamma_{01} COA_i + \gamma_{11} \left(COA_i x TIM E_{ij} \right) + \\ & \zeta_{0i} + \zeta_{1i} TIM E_{ij} + \epsilon_{ij} \end{split}$$

The Unconditional Means Model

$$Y_{ij} = \gamma_{00} + \zeta_{0i} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$$
 and $\zeta_{0i} \sim N(0, \sigma_0^2)$

- Describes and partitions the outcome variation.
- Assumes the true individual change trajectory for person *i* is flat, sitting at elevation $\gamma_{00} + \zeta_{0i}$, or π_{0i} .
- Average (*grand mean*) elevation, across everyone, is γ_{00} .
- Partions the total outcome variation by within-person, σ_{ϵ}^2 and between-person, σ_0^2 .

Estimating the Unconditional Means Model in R

Model Results

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
γ_{00} , Initial status	0.922	0.651	0.316	-0.317	-0.314
	(0.096)	(0.105)	(0.131)	(0.148)	(0.146)
γ_{01} , COA		1.88	0.743	0.579	0.571
			(0.195)	(0.162)	(0.146)
γ_{02} , PEER			, ,	0.694	0.695
				(0.112)	(0.111)
γ_{10} , Rate of change		0.271	0.293	0.429	0.425
_		(0.062)	(0.084)	(0.114)	(0.106)
γ_{11} , COA			-0.049	0.014	
			0.125	(0.125)	
γ_{12} , PEER				-0.150	-0.151
				(0.086)	(0.085)
Variance Components					
σ_{ϵ}^2	0.562	0.337	0.337	0.337	0.337
$\sigma_0^{\tilde{2}}$	0.564	0.624	0.488	0.241	0.241
σ_1^{2}		0.151	0.151	0.139	0.139
$\begin{array}{c}\sigma_{\epsilon}^2\\\sigma_{0}^2\\\sigma_{1}^2\\\sigma_{01}^2\end{array}$		-0.068	-0.059	-0.006	-0.006

The Intraclass Correlation Coefficient, ICC

$$\rho = \frac{\sigma_0^2}{\sigma_0^2 + \sigma_\epsilon^2}$$

$$= \frac{0.562}{0.562 + 0.564} = \frac{0.562}{1.126} = 0.501$$

```
lvl2.var <- as.data.frame(VarCorr(alc_m1))[1,4]
lvl1.var <- as.data.frame(VarCorr(alc_m1))[2,4]
icc <- lvl2.var / (lvl2.var + lvl1.var)</pre>
```

- Describes the proportion of total variance that lies between people.
- Also know as the error autocorrelation coefficient.

The Unconditional Growth Model

$$Y_{ij} = \gamma_{00} + \gamma_{10} TIM E_{ij} + \zeta_{0i} + \zeta_{1i} TIM E_{ij} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix})$$

- Describes the unconditional initial status and rate of change for the population.
- ullet $\gamma_{00}+\zeta_{0i}$ represents the interindividual initial status
- ullet $\gamma_{10}+\zeta_{1i}$ represents the interindividual rate of change
- σ_{ϵ}^2 summarizes each person's data around his/her linear change trajectory
- σ_0^2 and σ_0^2 summarize between-person variability in initial status and rates of change.

Estimating the Unconditional Growth Model

The Unconditional Growth Model Graphically

Pseudo R^2 – Understanding the effect of *TIME*

$$\frac{\sigma_{\epsilon_{Model1}}^2 - \sigma_{\epsilon_{Model2}}^2}{\sigma_{\epsilon_{Model1}}^2} = \frac{0.562 - 0.337}{0.562} = 0.4004$$

• 40% of the with-in person variation in *ALCUSE* is systematically associated with linear *TIME*.

The Unconditional Growth Model Covariance

$$\begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix} \right)$$

$$\hat{\rho}_{\pi_0\pi_1} = \hat{\rho}_{01} = \frac{\sigma_{01}}{\sqrt{\sigma_0^2 \sigma_0^2}} = \frac{-0.068}{\sqrt{(0.624)(0.151)}} = -0.22$$

• The linear relationship between ALCUSE at age 14, γ_{00} and rate of change in ALCUSE between age 14 and 16, γ_{10} is weakly negative.

A Taxonomy Of Statistical Models

- A *taxonomy* of models is a "systematic sequence of models that, as a set, address your research question" (Singer & Willett, 2003, p. 105).
- Distinguish between *control* predictors and *question* predictors.
 - In our example, we will assume our research questions focuses on COA.
 - PEER is used as a control.

The Uncontrolled Effects of COA

$$Y_{ij} = \pi_{0i} + \pi_{1i} TIME_{ij} + \epsilon_{ij}$$

$$\pi_{0i} = \gamma_{00} + \gamma_{01} COA_i + \zeta_{0i}$$

$$\pi_{1i} = \gamma_{10} + \gamma_{10} COA_i + \zeta_{1i}$$

$$Y_{ij} = \gamma_{00} + \gamma_{01}COA_i + \gamma_{10}TIME_{ij} + \gamma_{10}(TIME_{ij}COA_i) + \zeta_{0i} + \zeta_{1i}TIME_{ij} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}\right)$$

- γ_{01} describes the difference in the level of *ALCUSE* at age 14 for children with and without alcoholic parents.
- γ_{11} describes the impact of *COA* on the rate of change in *ALCUSE* between ages 14 and 16.

Estimating the Uncontrolled Effects of COA in R

The Uncontrolled Effects of COA

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
γ_{00} , Initial status	0.922	0.651	0.316	-0.317	-0.314
	(0.096)	(0.105)	(0.131)	(0.148)	(0.146)
γ_{01} , COA		1.88	0.743	0.579	0.571
			(0.195)	(0.162)	(0.146)
γ_{02} , PEER			, ,	0.694	0.695
				(0.112)	(0.111)
γ_{10} , Rate of change		0.271	0.293	0.429	0.425
5		(0.062)	(0.084)	(0.114)	(0.106)
γ_{11} , COA		, ,	-0.049	0.014	,
,			0.125	(0.125)	
γ_{12} , PEER				$-0.150^{'}$	-0.151
/12, - 22.1				(0.086)	(0.085)
Variance Components				(*****)	(*****)
σ_{ϵ}^2	0.562	0.337	0.337	0.337	0.337
$\begin{array}{c} \sigma_{\epsilon}^2 \\ \sigma_0^2 \\ \sigma_1^2 \end{array}$	0.564	0.624	0.488	0.241	0.241
σ_1°		0.151	0.151	0.139	0.139
σ_{01}		-0.068	-0.059	-0.006	-0.006

The Uncontrolled Effects of COA Graphically

The Uncontrolled Effects of COA

	Model 1	Model 2	Model 3	Model 4	Model 5
Pseudo R ² Statistics					
R_{ϵ}^2		0.400	0.000	0.000	0.000
$egin{array}{c} R_{\epsilon}^2 \ R_0^2 \ R_1^2 \end{array}$			0.219	0.501	0.000
R_1^2			0.004	0.076	0.000
Goodness-of-fit					
Deviance	670.156	636.611	621.203	588.691	588.703
df	3	6	8	10	9
BIC	686.672	669.643	665.245	643.744	638.251

Pseudo R² in R

```
rsq.output <- function(x, y, npar=TRUE,print=F) {
options(scipen=999)
. . .
m1 int var<- as.data.frame(VarCorr(x))
m1 var 0 <- m1 int var$vcov[which
          (m1 int var[,"var1"]=="(Intercept)" &
          is.na(m1 int var[,"var2"]))]
m2 int var<- as.data.frame(VarCorr(y))</pre>
m2 var 0 <- m2 int var$vcov[which
          (m2 int var[,"var1"]=="(Intercept)" &
          is.na(m2_int_var[,"var2"]))]
m2 r2 0 <- (m1 var 0 - m2 var 0) / m1 var 0 ## R2 0
```

Comparing Models Using Deviance Statistics

- Comparing models using *deviance statistics* is a more robust approach than using single parameter tests
 - Superior statistical properties.
 - Permits composite tests on several parameters.
- See "Reserves the reservoir of Type I error" (Singer & Willett, 2003, p. 116).
- FML tests all parameters while RML tests only variance components.

Deviance =
$$-2[LL_{current model} - LL_{saturated model}]$$

- LL is the log-likelihood, a byproduct of ML estimation—the larger the LL (closer to 0) the better the fit.
- The saturated model is a general mode that fits the data perfectly.
- Deviance quantifies how much worse the current model fits the data compared to the best possible model.

Comparing Models Using Deviance Statistics

Deviance =
$$-2[LL_{current model} - LL_{saturated model}]$$

= $-2[LL_{current model} - 0]$
= $-2LL_{current model}$

- $LL_{\text{saturated model}} = 0$ because the probability that the model will perfectly fit the data is 1 (log(1) = 0).
- -2 because standard normal theory assumptions say that comparing nested models has a known distribution.

Comparing Models Using Deviance Statistics

Deviance-based Hypothesis Tests:

- Data set must be unchanged across models.
- The former model must be nested within the latter model.
- Compute the number of additional constraints imposed.
- ΔD is distributed asymptotically as a χ^2 distribution. with d.f.= the number of independent constraints imposed.

$$\Delta D = \text{Deviance}_{\text{Reduced Model}} - \text{Deviance}_{\text{Full Model}}$$

$$\Delta D = \text{Deviance}_{\text{Model 2}} - \text{Deviance}_{\text{Model 3}}$$

$$= 636.611 - 621.203 = 15.408$$

15.408 exceeds the χ^2 .001 critical value at 2 d.f. (13.816), allowing us to reject the null hypothesis that γ_{01} and γ_{11} are simultaneously 0.

Deviance Test Function in R

The Controlled Effects of COA

$$Y_{ij} = \gamma_{00} + \gamma_{01}COA_i + \gamma_{02}PEER_i + \gamma_{10}TIME_{ij} +$$

$$\gamma_{11}(TIME_{ij}COA_i) + \gamma_{12}(TIME_{ij}PEER_i) + \zeta_{0i} + \zeta_{1i}TIME_{ij} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{0}^2 & \sigma_{01} \\ \sigma_{10} & \sigma_{1}^2 \end{bmatrix}\right)$$

- γ_{02} describes the impact of peer alcohol use on the level of *ALCUSE* at age 14 for children, controlling for *COA*.
- γ_{12} describes the impact of peer alcohol use on the rate of change in *ALCUSE* between ages 14 and 16, controlling for *COA*..

Estimating the Controlled Effects of COA

The Controlled Effects of COA

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
γ_{00} , Initial status	0.922	0.651	0.316	-0.317	-0.314
	(0.096)	(0.105)	(0.131)	(0.148)	(0.146)
γ_{01} , COA		1.88	0.743	0.579	0.571
			(0.195)	(0.162)	(0.146)
γ_{02} , PEER				0.694	0.695
				(0.112)	(0.111)
γ_{10} , Rate of change		0.271	0.293	0.429	0.425
		(0.062)	(0.084)	(0.114)	(0.106)
γ_{11} , COA			-0.049	0.014	
			0.125	(0.125)	
γ_{12} , PEER				-0.150	-0.151
				(0.086)	(0.085)
Variance Components					
σ_{ϵ}^2	0.562	0.337	0.337	0.337	0.337
$\begin{array}{c} \sigma_{\epsilon}^2 \\ \sigma_0^2 \\ \sigma_1^2 \end{array}$	0.564	0.624	0.488	0.241	0.241
$\sigma_1^{\check{2}}$		0.151	0.151	0.139	0.139
σ_{01}		-0.068	-0.059	-0.006	-0.006

The Controlled Effects of COA

	Model 1	Model 2	Model 3	Model 4	Model 5
Pseudo R ² Statistics					
R_{ϵ}^2		0.400	0.000	0.000	0.000
$egin{array}{c} R_{\epsilon}^2 \ R_0^2 \ R_1^2 \end{array}$			0.219	0.501	0.000
R_1^2			0.004	0.076	0.000
Goodness-of-fit					
Deviance	670.156	636.611	621.203	588.691	588.703
df	3	6	8	10	9
BIC	686.672	669.643	665.245	643.744	638.251

Final Model for Controlled Effects of COA

$$Y_{ij} = \gamma_{00} + \gamma_{01}COA_i + \gamma_{02}PEER_i + \gamma_{10}TIME_{ij} + \gamma_{12}(TIME_{ij}PEER_i) + \zeta_{0i} + \zeta_{1i}TIME_{ij} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix} \right)$$

Estimating the Final Model

```
alc_m5 <- lmer(alcuse ~ age_14 + coa + age_14*peer + (age_14|id),
data=alc_1,
REML=F)
summary(alc_m5)
hlm.output(alc_m5)</pre>
```

The Controlled Effects of COA

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
γ_{00} , Initial status	0.922	0.651	0.316	-0.317	-0.314
	(0.096)	(0.105)	(0.131)	(0.148)	(0.146)
γ_{01} , COA		1.88	0.743	0.579	0.571
			(0.195)	(0.162)	(0.146)
γ_{02} , PEER				0.694	0.695
				(0.112)	(0.111)
γ_{10} , Rate of change		0.271	0.293	0.429	0.425
		(0.062)	(0.084)	(0.114)	(0.106)
γ_{11} , COA			-0.049	0.014	
			0.125	(0.125)	
γ_{12} , PEER				-0.150	-0.151
				(0.086)	(0.085)
Variance Components					
σ_{ϵ}^2	0.562	0.337	0.337	0.337	0.337
$\begin{array}{c} \sigma_{\epsilon}^2 \\ \sigma_0^2 \\ \sigma_1^2 \end{array}$	0.564	0.624	0.488	0.241	0.241
σ_1^2		0.151	0.151	0.139	0.139
σ_{01}		-0.068	-0.059	-0.006	-0.006

The Controlled Effects of COA Graphically

The Controlled Effects of COA

	Model 1	Model 2	Model 3	Model 4	Model 5
Pseudo R ² Statistics					
R_{ϵ}^2		0.400	0.000	0.000	0.000
$egin{array}{l} R_{\epsilon}^2 \ R_0^2 \ R_1^2 \end{array}$			0.219	0.501	0.000
R_1^2			0.004	0.076	0.000
Goodness-of-fit					
Deviance	670.156	636.611	621.203	588.691	588.703
df	3	6	8	10	9
BIC	686.672	669.643	665.245	643.744	638.251

Deviance Tests When Model Trimming

$$\Delta D = \text{Deviance}_{\text{Reduced Model}} - \text{Deviance}_{\text{Full Model}}$$

$$\Delta D = \text{Deviance}_{\text{Model 5}} - \text{Deviance}_{\text{Model 4}}$$

$$= 588.703 - 588.691 = 0.012$$

0.012 does not exceed the χ^2 .001 critical value at 1 d.f. (3.841). We are unable to reject the null hypothesis that γ_{11} is 0.

AIC and BIC

- AIC: Akaike Information Criterion (Akaike, 1973)
 - scale factor = 1
 - number of parameters (fixed effects and variance components)
- BIC: Bayesian Information Criterion (Schwarz, 1978)
 - scale factor = $.5(\log(N))$
 - number of parameters (fixed effects and variance components)

```
IC = -2[LL - (scale factor)(number of parameters in the model)]
= Deviance + 2(scale factor)(number of parameters in the model)
```

```
mod\_bic \leftarrow AIC((11 \leftarrow logLik(x)), k = log(attr(11, "nobs")))
```

Evaluating a Model's Assumptions

- Checking functional form
 - At level 1: OLS-estimated individual change trajectories.
 - At level 2: OLS-estimates of the individual growth parameters.
- Checking normality
 - Normal probability plots
 - Standardized residuals vs. ID
- Homoscedasticity
 - Level 1 residuals against level 1 predictors
 - Level 2 residuals against level 2 predictors

Level-1 Normality Assumption

Level-1 Homoscedasticity Assumption

Extending the Multilevel Model for Change

- Variably spaced measurements.
- Varying number of measurements.
- Time-varying covariates.
- Re-centering the effect of time.
- Non-linear growth (just a taste)

Time-structured vs. Unstructured Data

ID	WAVE	AGEGRP	AGE	PIAT
04	1	6.5	6.00	18
04	2	8.5	8.50	31
04	3	10.5	10.67	50
27	1	6.5	6.25	19
27	2	8.5	9.17	36
27	3	10.5	10.92	57
31	1	6.5	6.33	18
31	2	8.5	8.83	31
31	3	10.5	10.92	51
	•			

Centering TIME variables in R

```
read_1 <- read.dta("./data/reading_pp.dta", convert.factors=T)
centered <- read_1[ ,3:4] - min(read_1$agegrp)
dimnames(centered)[[2]] <- c("agegrp.c", "age.c")
read_1 <- cbind(read_1, centered)</pre>
```

Estimating Structured and Unstructured TIME in R

Time-structured vs. Unstructured Data: Results

	AGEGRP-6.5	AGE-6.5
Fixed Effects		
γ_{00} , Initial status	21.163	21.061
	(0.614)	(0.559)
γ_{10} , Rate of change	5.031	4.540
	(0.296)	(0.261)
Variance Components		
σ_{ϵ}^2	27.043	27.447
σ_0^2	11.046	5.107
σ_1^2	4.397	3.301
$egin{array}{c} \sigma^2_{\epsilon} \ \sigma^2_{0} \ \sigma^2_{1} \ \sigma^2_{01} \end{array}$	1.647	2.3667
Goodness-of-fit		
Deviance	1819.949	1803.896
df	6	6
BIC	1853.473	1837.419

Time-structured vs. Unstructured Data

- γ_{10} is half a point larger for *AGEGRP* (5.031 vs. 4.540)
- σ_0^2 and σ_1^2 are much larger for (AGEGRP)
- BIC is smaller for AGE indicating a better fit

Lesson: Never force an unstructured data set to be structured.

Unbalanced Data

- All subjects can contribute to a multilevel model regardless of how many waves of data they contribute.
- As long as there are enough subjects with enough data points, the model should estimate, given the complexity of the model.
- Potential problems include:
 - Nonconvergence
 - Variance components may exceed boundary constraints (e.g., negative variance components)

Understanding the source of imbalance is critical (addressed in Workshop 3: Longitudinal Data Analysis with Incomplete Data November 1, 9:00am - 3:00pm)

Time-varying Covariates, Example Data

- Data comes from Ginexi et al. (2000)
- 254 participants who are in their first two months of job loss.
- Follow-up interviews conducted between 3 and 8 months and 10 and 16 months after job loss
- Center for Epidemiologic Studies' Depression (CES-D) scale.

Time-varying Covariates, Example Data

- 4 waves of data-each subject has four records
- MONTHS number of months since study began
- CES D, 0 = low to 8 = serious distress
- UNEMP time-varying covariate 1 = unemployed, 0 = employed

Unconditional Growth Model

$$Y_{ij} = \gamma_{00} + \gamma_{10} MONTHS_{ij} + \zeta_{0i} + \zeta_{1i} MONTHS_{ij} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix})$$

- γ_{00} is the average initial status CES-D score.
- ullet γ_{10} is the average monthly rate of change in CES-D sores.

Model Results

	Model 1	Model 2	Model 3	Model 4
Fixed Effects				
γ_{00} , Initial status	17.669	12.666	11.125	11.198
	(0.776)	(1.242)	(0.901)	(0.793)
γ_{01} , MONTHS	-0.422	-0.202		
	(0.083)	(0.093)		
γ_{10} , UNEMP		5.111	7.000	6.924
		(0.989)	(0.920)	(0.933)
γ_{11} , UNEMP by MONTHS			-0.300	-0.303
			(0.107)	(0.112)
Variance Components				
σ_{ϵ}^2	68.850	62.388	69.857	59.097
$egin{array}{c} \sigma_{\epsilon}^2 \ \sigma_{0}^2 \ \sigma_{1}^2 \ \sigma_{2}^2 \ \sigma_{3}^2 \end{array}$	86.8489	93.518	67.294	45.765
σ_1^2	0.355	0.466		
σ_2^2				45.915
$\sigma_3^{\bar{2}}$			0.296	0.764
Goodness-of-fit				
Deviance	5133.137	5107.603	5110.798	5095.584
df	6	7	7	10
BIC	5172.217	5153.196	5156.390	5160.672

Including a Time-varying Covariate UNEMP

$$Y_{ij} = \gamma_{00} + \gamma_{10} MONTHS_{ij} + \gamma_{20} UNEMP_{ij} + \zeta_{0i} + \zeta_{1i} MONTHS_{ij} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_1^2 \end{bmatrix}\right)$$

- γ_{10} is the average monthly rate of change in CES-D score, controlling for unemployment status.
- γ_{20} is the average difference, over time, in CES-D sores between the unemployed (0) and employed (1)

Estimating Time-varying Covariates in R

Model Results

	Model 1	Model 2	Model 3	Model 4
Fixed Effects				
γ_{00} , Initial status	17.669	12.666	11.125	11.198
	(0.776)	(1.242)	(0.901)	(0.793)
γ_{01} , MONTHS	-0.422	-0.202		
	(0.083)	(0.093)		
γ_{10} , UNEMP		5.111	7.000	6.924
		(0.989)	(0.920)	(0.933)
γ_{11} , UNEMP by MONTHS			-0.300	-0.303
			(0.107)	(0.112)
Variance Components			, ,	, ,
σ_{ϵ}^2	68.850	62.388	69.857	59.097
$egin{array}{c} \sigma_{\epsilon}^2 \ \sigma_{0}^2 \ \sigma_{1}^2 \ \sigma_{2}^2 \ \sigma_{3}^2 \end{array}$	86.8489	93.518	67.294	45.765
σ_1^2	0.355	0.466		
σ_2^2				45.915
$\sigma_3^{\bar{2}}$			0.296	0.764
Goodness-of-fit				
Deviance	5133.137	5107.603	5110.798	5095.584
df	6	7	7	10
BIC	5172.217	5153.196	5156.390	5160.672

Model-based Trajectory, Gaining Employment at Month 5

Plotting Model-based Trajectories in R

```
tmp1 \leftarrow data.frame(x = seq(0, 15, by=5))
unemp2 fe <- fixef(unemp m2)
unemp2= function(x){
        ifelse(x <= 5)
        unemp2_fe[1] + unemp2_fe[3]*(1) + unemp2_fe[2]*(x),
        NA)
unemp3= function(x){
        ifelse(x >= 5)
        unemp2_fe[1] + unemp2_fe[3]*(0) + unemp2_fe[2]*(x),
        NA)
```

Plotting Model-based Trajectories in R

Time-varying Predictor UNEMP by TIME

$$Y_{ij} = \gamma_{00} + \gamma_{20} UNEMP_{ij} + \gamma_{30} (UNEMP_{ij}MONTHS_{ij}) + \zeta_{0i} + \zeta_{3i} (UNEMP_{ij}TIME_{ij}) + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{3i} \end{bmatrix} \sim N(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{03} \\ \sigma_{30} & \sigma_3^2 \end{bmatrix})$$

- γ_{00} represents the flat trajectory in CES-D scores for employed.
- γ_{20} represents the difference in initial status in CES-D scores between the unemployed and employed.
- γ_{30} represents the average monthly rate if change in CES-D scores for the unemployed.

Estimating Time-varying Covariates in R

Model Results

	Model 1	Model 2	Model 3	Model 4
Fixed Effects				
γ_{00} , Initial status	17.669	12.666	11.125	11.198
	(0.776)	(1.242)	(0.901)	(0.793)
γ_{01} , MONTHS	-0.422	-0.202		
	(0.083)	(0.093)		
γ_{10} , UNEMP		5.111	7.000	6.924
		(0.989)	(0.920)	(0.933)
γ_{11} , UNEMP by MONTHS			-0.300	-0.303
			(0.107)	(0.112)
Variance Components				
σ_{ϵ}^2	68.850	62.388	69.857	59.097
$egin{array}{c} \sigma_{\epsilon}^2 \ \sigma_{0}^2 \ \sigma_{1}^2 \ \sigma_{2}^2 \ \sigma_{3}^2 \end{array}$	86.8489	93.518	67.294	45.765
σ_1^2	0.355	0.466		
σ_2^2				45.915
$\sigma_3^{\bar{2}}$			0.296	0.764
Goodness-of-fit				
Deviance	5133.137	5107.603	5110.798	5095.584
df	6	7	7	10
BIC	5172.217	5153.196	5156.390	5160.672

Final Model

$$Y_{ij} = \gamma_{00} + \gamma_{20} UNEMP_{ij} + \gamma_{20} (UNEMP_{ij}MONTHS_{ij}) + \zeta_{0i} + \zeta_{2i} UNEMP_{ij} + \zeta_{3i} (UNEMP_{ij}TIME_{ij}) + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{2i} \\ \zeta_{3i} \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{02} & \sigma_{03} \\ \sigma_{20} & \sigma_2^2 & \sigma_{23} \\ \sigma_{30} & \sigma_{32} & \sigma_3^2 \end{bmatrix} \right)$$

- σ_0^2 is the variance in CES-D scores for employed subjects.
- σ_2^2 is the variance in CES-D scores for unemployed subjects at the first interview.
- σ_3^2 is the variance in average monthly rate of change in CES-D scores for unemployed subjects.

Estimating the Final Model in R (or this is how you would if...)

Model Results

	Model 1	Model 2	Model 3	Model 4
Fixed Effects				
γ_{00} , Initial status	17.669	12.666	11.125	11.198
	(0.776)	(1.242)	(0.901)	(0.793)
γ_{01} , MONTHS	-0.422	-0.202		
	(0.083)	(0.093)		
γ_{10} , UNEMP		5.111	7.000	6.924
		(0.989)	(0.920)	(0.933)
γ_{11} , UNEMP by MONTHS			-0.300	-0.303
			(0.107)	(0.112)
Variance Components				
σ_{ϵ}^2	68.850	62.388	69.857	59.097
$egin{array}{c} \sigma_{\epsilon}^2 \ \sigma_{0}^2 \ \sigma_{1}^2 \ \sigma_{2}^2 \ \sigma_{3}^2 \end{array}$	86.8489	93.518	67.294	45.765
σ_1^2	0.355	0.466		
σ_2^2				45.915
$\sigma_3^{\bar{2}}$			0.296	0.764
Goodness-of-fit				
Deviance	5133.137	5107.603	5110.798	5095.584
df	6	7	7	10
BIC	5172.217	5153.196	5156.390	5160.672

Model-based Trajectories, Employed vs Unemployed

Plotting Model-based Trajectories in R

```
tmp2 \leftarrow data.frame(x = seq(0, 15, by=5))
unemp_fe <- fixef(unemp_m4)</pre>
unemp= function(x){
       unemp_fe[1] + unemp_fe[2]*(1) + unemp_fe[3]*(1)*(x)
emp1= function(x){
       ifelse(x >= 5,
       unemp_fe[1] + unemp_fe[2]*(0) + unemp_fe[3]*(0)*(x),
       NA)
emp2= function(x){
       ifelse(x < 5,
       unemp_fe[1] + unemp_fe[2]*(0) + unemp_fe[3]*(0)*(x),
       NA)
```

Plotting Model-based Trajectories in R

```
unemp fit <- ggplot(data=tmp2, aes(x))</pre>
unemp_fit +
      stat_function(fun=unemp, size=1.5) +
        geom_text(aes(label="Unemployed", x=14.5, y= 14.75, size=1))
      stat function(fun=emp1) +
      stat_function(fun=emp2, linetype="dashed") +
         geom text(aes(label="Employed", x=14.5, y=10.5, size=1)) +
      theme bw() +
      theme(panel.grid.major = element_blank(),
            panel.grid.minor = element blank()) +
      scale_x_continuous(limits=c(0, 15), "Months") +
      scale v continuous(limits=c(5, 20), "CES-D Score") +
      theme(legend.position="none")
```

Alternative coding strategies for TIME

WAVE	DAY	TIMEOFDAY	TIME	TIME-6.67	TIME-3.33
1	0	0.00	0.00	-6.67	-3.33
2	0	0.33	0.33	-6.34	-3.00
3	0	0.67	0.67	-6.00	-2.66
16	5	0.00	5.00	-1.67	1.67
17	5	0.33	5.33	-1.34	2.00
18	6	0.00	6.00	-0.67	2.67
19	6	0.33	6.33	-0.34	3.00
20	6	0.67	6.67	0.00	3.34

Estimating Alternative Coding Strategies for TIME in R

```
med 1 <- read.dta("./data/med.dta", convert.factors=T)</pre>
med 1$time333 <- med 1$time-median(med 1$time)
med 1$time667 <- med 1$time-max(med 1$time)
## Initial Status
med_m1 <- lmer(pos ~ treat + time*treat + (time | id),</pre>
                  med 1,
                  REML = FALSE)
## Midpoint Status
med m2 <- lmer(pos ~ treat + time333*treat + (time333 | id),
                  med 1,
                  REML = FALSE)
## Final Status
med_m3 <- lmer(pos ~ treat + time667*treat + (time667 | id),</pre>
                  med 1,
                  REML = FALSE)
```

Results of using alternative coding strategies for TIME

	TIME	TIME-3.33	TIME-6.67
Fixed Effects			
γ_{00} , Initial status	167.461	159.412	151.338
	(9.326)	(8.763)	(11.545)
γ_{01} , Treatment	-3.102	15.328	33.813
	(12.333)	(11.543)	(15.162)
γ_{10} , Rate of change	-2.417	-2.417	-2.417
	(1.731)	(1.731)	(1.731)
γ_{11} , Treatment	5.535	5.535	5.535
	(2.277)	(2.277)	(2.277)
Variance Components			
σ_{ϵ}^2	1229.992	1229.992	1229.992
σ_{ϵ}^2 σ_{0}^2 σ_{1}^2 σ_{01}^2	2111.555	2008.176	3323.874
σ_1^2	63.713	63.713	63.713
σ_{01}^2	-121.605	90.560	303.362
Goodness-of-fit			
Deviance	12680.51	12680.51	12680.51
df	8	8	8
BIC	12737.50	12737.50	12737.50

Plot for Alternative Coding Strategies for TIME in R

Plotting Alternative Coding Strategies for TIME in R

```
med_fe <- fixef(med_m1)
cont= function(x){
    med_fe[1] + med_fe[2]*(0) + med_fe[3]*(x) + med_fe[4]*(0)*(x)
}
treat= function(x){
    med_fe[1] + med_fe[2]*(1) + med_fe[3]*(x) + med_fe[4]*(1)*(x)
}
tmp1 <- data.frame(x= seq(min(med_1$time) : max(med_1$time)))

med_fit <- ggplot(data=tmp1, aes(x))</pre>
```

Plotting Alternative Coding Strategies for TIME in R

```
med_fit <- ggplot(data=tmp1, aes(x))</pre>
med fit +
stat function(fun=treat, size=1.1) +
 geom text(aes(label="Treatment", x=6.85, y=190, size=1)) +
stat function(fun=cont) +
 geom_text(aes(label="Control", x=6.85, y= 147, size=1)) +
geom segment(aes(x= 0, y= 164.3585, xend = 0, yend = 167.4608), linetyp
geom\_segment(aes(x=6.667, y=185.1423, xend=6.667, yend=151.3457),
geom segment(aes(x=3.333, y=174.7489, xend = 3.333, yend = 159.4044).
    theme bw() +
    theme(panel.grid.major = element_blank(),
  panel.grid.minor = element blank()) +
    xlab("Days") +
    scale_y_continuous(limits = c(140, 200),
                   "Positive Mood Score") +
theme(legend.position="none")
```

Polynomial Models, Example Data

- Data comes from Prosser, Rasbash and Goldstein (1991)
- 66 Asian children in a British community
- Four waves at approximately 6 weeks, and then 8, 12, and 27 months.
- 12% random sample stratified by gender

Time-varying Covariates, Example Data

- 4 waves of data-each subject has four records
- AGE in years
- FEMALE, 0 = Male to 2 = Female
- WEIGHT in kilograms

Final Model

$$Y_{ij} = \gamma_{00} + \gamma_{10}AGE_{ij} + \gamma_{20}AGE^2 + \zeta_{0i} + \zeta_{1i}AGE_{ij} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2) \text{ and } \begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim N\begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{0}^2 & \sigma_{01} \\ \sigma_{10} & \sigma_{2}^2 \end{bmatrix} \end{pmatrix}$$

- γ_{00} is the *intercept*
- γ_{10} is the *instantaneous rate of change* when *AGE* is 0
- γ_{20} is the *curvature* or *de/acceleration* parameter associated with AGE^2 .

Estimating Polynomial Models in R

Model Results

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
γ_{00} , Initial status	5.11	3,495	3.933	4.253	4.391
7007	(0.149)	(0.137)	(0.419)	(0.337)	(0.323)
γ_{01} , FEMALE	,	, ,	-0.288	-0.504	-0.596
,			(0.267)	(0.207)	(0.196)
γ_{10} , AGE	3.46	7.704	8.886	8.045	7.698
	(0.126)	(0.239)	0.739	(0.352)	(0.238)
γ_{11} , AGE by FEMALE			-0.798	-0.230	
			(0.473)	(0.173)	
γ_{20} , AGE ²		-1.660	-1.993	-1.659	-1.658
720		(0.089)	(0.273)	(0.088)	(0.088)
γ_{21} , AGE ² by FEMALE		, ,	-0.225	-0.303	, ,
7217			(0.175)	(0.112)	
Variance Components			,	, ,	
$ \frac{\sigma_{\frac{6}{2}}^2}{\sigma_0^2} \\ \sigma_1^2 $	1.358	0.332	0.324	59.097	0.328
σ_0^{Σ}	0.097	0.404	0.356	45.765	0.354
σ_1^2	0.202	0.254	0.242		0.260
σ_{12}	0.140	0.088	0.054	0.764	0.048
Goodness-of-fit					
Deviance	685.4355	516.1557	504.3449	505.9897	507.7338
df	6	7	10	9	8.0000
BIC	717.1651	553.1736	557.2276	553.5841	550.0400

Final Model

$$Y_{ij} = \gamma_{00} + \gamma_{01} FEMALE_i + \gamma_{10} AGE_{ij} + \gamma_{20} AGE_{ij}^2 + \zeta_{0i} + \zeta_{1i} AGE_{ij} + \epsilon_{ij}$$

$$\epsilon_{ij} \sim \mathit{N}(0,\sigma_{\epsilon}^2) \ \mathrm{and} \ egin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim \mathit{N}\Big(egin{bmatrix} 0 \\ 0 \end{bmatrix}, egin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{10} & \sigma_2^2 \end{bmatrix} \Big)$$

Estimating Polynomial Models in R

Model Results

	Model 1	Model 2	Model 3	Model 4	Model 5
Fixed Effects					
γ_{00} , Initial status	5.11	3.495	3.645	3.749	3.795
	(0.149)	(0.137)	(0.186)	(0.168)	(0.166)
γ_{01} , FEMALE			-0.288	-0.504	-0.596
			(0.267)	(0.207)	(0.196)
γ_{10} , AGE	3.46	7.704	8.089	7.815	7.698
	(0.126)	(0.239)	(0.328)	(0.253)	(0.238)
γ_{11} , AGE by FEMALE			-0.798	-0.230	
			(0.473)	(0.173)	
γ_{20} , AGE ²		-1.660	-1.767	-1.659	-1.658
		(0.089)	(0.121)	(0.088)	(0.088)
γ_{21} , AGE ² by FEMALE		, ,	-0.225	-0.303	, ,
,			(0.175)	(0.112)	
Variance Components			,	, ,	
σ_{ξ}^{2} σ_{0}^{2} σ_{1}^{2}	1.358	0.332	0.324	0.328	0.328
σ_0^2	0.097	0.404	0.356	0.347	0.354
σ_1^2	0.202	0.254	0.242	0.247	0.260
σ_{12}	0.140	0.088	0.054	0.055	0.048
Goodness-of-fit					
Deviance	685.4355	516.1557	504.3449	505.9897	507.7338
df	6	7	10	9	8.0000
BIC	717.1651	553.1736	557.2276	553.5841	550.0400

Plot for Quadratic Model Estimates

Plotting Polynomial Models in R

```
wgt_fe <- fixef(wgt_m5)
male= function(x) {
    wgt_fe[1] + wgt_fe[2]*(x) + wgt_fe[3]*(0) + wgt_fe[4]*(x)^2
    }
female= function(x) {
    wgt_fe[1] + wgt_fe[2]*(x) + wgt_fe[3]*(1) + wgt_fe[4]*(x)^2
    }
tmp <- data.frame(x= seq(0 , max(wgt_l$age), by=0.5 ))</pre>
```

Plotting Polynomial Models in in R

```
wgt m5 fit <- ggplot(data=tmp, aes(x))</pre>
wgt m5 fit +
  stat_function(fun=male, linetype="dashed") +
       geom_text(aes(label="Male", x=2.25, y=13.75, size=1)) +
  stat function(fun=female) +
       geom_text(aes(label="Female", x=2.25, y=11.5, size=1)) +
  theme bw() +
  theme(panel.grid.major = element blank(),
        panel.grid.minor = element_blank()) +
  scale x continuous("Age (in years)") +
  scale_y_continuous(limits = c(0, 20),
                      "Weight (in kg)") +
  theme(legend.position="none")
```

The error covariance matrix

• Error covariance structures

A Generic Model

$$Y_{ij} = [\gamma_{00} + \gamma_{10}TIME_j + \gamma_{10}(X) + \gamma_{11}(X)TIME_j] + [\epsilon_{ij} + \zeta_{0i} + \zeta_{1i}TIME_j]$$

$$\begin{bmatrix} \zeta_{0i} \\ \zeta_{1i} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma 10 & \sigma_1^2 \end{bmatrix} \right)$$

$$r_{ij} = [\epsilon_{ij} + \zeta_{0i} + \zeta_{1i}TIME_j]$$

$$Y_{ij} = [\gamma_{00} + \gamma_{10}TIME_j + \gamma_{10}(X) + \gamma_{11}(X)TIME_j] + r_{ij}$$

Diagonal with Homoscedastic Variance

$\lceil r_{11} \rceil$		1	[0]	Γ	σ_r^2	0	0	0	0	0	0	0		0	0	0	0 7	1
r ₁₂		1	0	-	0	σ_r^2	0	0	0	0	0	0		0	0	0	0	1
r ₁₃		l	0		0	0	σ_r^2	0	0	0	0	0		0	0	0	0	1
r ₁₄		l	0		0	0	0	σ_r^2	0	0	0	0		0	0	0	0	1
r ₂₁		l	0		0	0	0	0	σ_r^2	0	0	0		0	0	0	0	1
r ₂₂		l	0		0	0	0	0	0	σ_r^2	0	0		0	0	0	0	1
r ₂₃	$\sim N$	l	0		0	0	0	0	0	0	σ_r^2	0		0	0	0	0	1
r ₂₄	\sim /V	l	0		0	0	0	0	0	0	0	σ_r^2		0	0	0	0	
.		l	.														.	1
:		ı	:	١	:	:	:	:	:	:	:	:	٠.	:	:	:	:	П
$ r_{n1} $			0		0	0	0	0	0	0	0	0		σ_r^2	0	0	0	1
$ r_{n2} $		l	0		0	0	0	0	0	0	0	0		0	σ_r^2	0	0	1
r_{n3}			0		0	0	0	0	0	0	0	0		0	ó	σ_r^2	0	
$\lfloor r_{n4} \rfloor$		/	[0]	Į	0	0	0	0	0	0	0	0		0	0	0	σ_r^2	J

Block Diagonal with Heteroscedastic Variance

$$r \sim \mathcal{N} \left(0, \begin{bmatrix} \Sigma_r & 0 & 0 & \dots & 0 \\ 0 & \Sigma_r & 0 & \dots & 0 \\ 0 & 0 & \Sigma_r & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 0 & \Sigma_r \end{bmatrix} \right)$$

Unstructured Error Covariance Matrix

$$\Sigma_r = \begin{bmatrix} \sigma_{r_1}^2 & \sigma_{r_1 r_2} & \sigma_{r_3 r_1} & \sigma_{r_4 r_1} \\ \sigma_{r_2 r_1} & \sigma_{r_2}^2 & \sigma_{r_3 r_2} & \sigma_{r_4 r_2} \\ \sigma_{r_3 r_1} & \sigma_{r_3 r_2} & \sigma_{r_3}^2 & \sigma_{r_4 r_3} \\ \sigma_{r_4 r_1} & \sigma_{r_4 r_2} & \sigma_{r_3 r_4} & \sigma_{r_4}^2 \end{bmatrix}$$

- Its deviance will always be the smallest of any error covariance structure.
- Will likely have a larger BIC due to "wasted" df from estimating all those parameters!

Autoregressive Error Covariance Matrix

$$\begin{bmatrix} \sigma^2 & \sigma^2 \rho & \sigma^2 \rho^2 & \sigma^2 \rho^3 \\ \sigma^2 \rho & \sigma^2 & \sigma^2 \rho & \sigma^2 \rho^2 \\ \sigma^2 \rho^2 & \sigma^2 \rho & \sigma^2 & \sigma^2 \rho \\ \sigma^2 \rho^3 & \sigma^2 \rho^2 & \sigma^2 \rho & \sigma^2 \end{bmatrix}$$

- "Band-diagonal" shape has an intuitive appeal for growth processes.
- Main diagonal (variances) are homoscedastic.
- Band-diagonal elements have identical covariances.
- \bullet ρ is the error autocorrelation parameter.
- Saves *df* because only two parameters are estimated.

Heterogeneous Autoregressive Error Covariance Matrix

$$\begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho & \sigma_1 \sigma_3 \rho^2 & \sigma_1 \sigma_4 \rho^3 \\ \sigma_2 \sigma_1 \rho & \sigma_2^2 & \sigma_2 \sigma_3 \rho & \sigma_2 \sigma_4 \rho^2 \\ \sigma_3 \sigma_1 \rho^2 & \sigma_3 \sigma_2 \rho & \sigma_3^2 & \sigma_3 \sigma_4 \rho \\ \sigma_4 \sigma_1 \rho^3 & \sigma_4 \sigma_2 \rho^2 & \sigma_4 \sigma_3 \rho & \sigma_4^2 \end{bmatrix}$$

- A relaxed version of the autoregressive structure—the main diagonal elements are heteroscedastic
- Band-diagonal elements are free to differ in magnitude.
- Uses more *df* than the strict autoregressive structure but is more efficient than the unstructured error covariance model

Toepliz Error Covariance Matrix

$$\begin{bmatrix} \sigma^2 & \sigma_1 & \sigma_2 & \sigma_3 \\ \sigma_1 & \sigma^2 & \sigma_1 & \sigma_2 \\ \sigma_2 & \sigma_1 & \sigma^2 & \sigma_1 \\ \sigma_3 & \sigma_2 & \sigma_1 & \sigma^2 \end{bmatrix}$$

- Band-diagonal elements have identical covariances.
- Covariances are not forced to be a fraction of the variances.
- Each band's magnitude is determined by the data.