CC6904

单芯片霍尔效应电流传感器 10A/20A/30A 系列

概述

CC6904 是一款高性能单端输出的线性电流传感器,可以更为有效的为交流(AC)或者直流(DC)电流检测方案,广泛应用于工业,消费 类及通信类设备。

CC6904 内部集成了一颗高精度,低噪声的线性霍尔电路和一根低阻抗的主电流导线。当采样电流流经主电流导线,其产生的磁场在霍尔电 路上感应出相应的电信号,经过信号处理电路输出电压信号,使得产品更易于使用。线性霍尔电路采用先进的 BiCMOS 制程生产,包含了高灵 敏度霍尔传感器,霍尔信号预放大器,高精度的霍尔温度补偿单元,振荡器,动态失调消除电路和放大器输出模块。在无磁场的情况下,静态 输出为 50% VCC。

在电源电压 3.3V 条件下, OUT 可以在 0.33~2.97V 之间随磁场线性变化,线性度可达 0.4%。CC6904 内部集成的动态失调消除电路使 IC 的灵敏度不受外界压力和 IC 封装应力的影响。

CC6904 提供 SOP8 封装,工作温度范围-40~125℃。

特性

- 静态共模输出点为 50% VCC
- 测量范围宽, 10A/20A/30A
- 1MHz 斩波频率,高带宽,低噪声,单端模拟输出
- 导线引脚到信号引脚有 2000V 的安全隔离电压
- 低功耗
- 常温误差 1%, 全温误差 3%
- 温度稳定性好,内部采用了芯进专利的霍尔信号放大电路和温 度补偿电路
- 抗干扰能力强
- 抗机械应力, 磁参数不会因为受外界压力而偏移
- ESD (HBM) 6000V

应用

- 电机控制
- 负载监测系统
- 开关电源
- 过流故障保护

功能框图

订购信息

产品名称	灵敏度(mV/A)	封装外形	包装
CC6904SO-10A	132	SOP8	卷盘, 2000 片/盘
CC6904SO-20A	66	SOP8	卷盘, 2000 片/盘
CC6904SO-30A	44	SOP8	卷盘, 2000 片/盘

管脚定义

SOP8 封装

名称	编号	功能	名称	编号	功能
IP+	1	采样电流正端	GND	5	地
IP+	2	采样电流正端	NC	6	需悬空
IP-	3	采样电流负端	OUT	7	信号输出端
IP-	4	采样电流负端	VCC	8	电源电压

极限参数

参数	符号	数值	单位
电源电压	V _{cc}	7	V
输出电压	V _{OUT}	-0.3~VCC+0.3	V
输出源电流	lout (source)	400	uA
输出沉电流	I _{OUT} (SINK)	30	mA
通用型绝缘电压	V _{ISO}	2000	VAC
工作环境温度	Ta	-40~125	°C
最大结温	T _J	165	°C
存储环境温度	Ts	-55~150	°C
磁场强度	В	无限制	mT
静电保护	ESD(HBM)	6000	V
电流采样端瞬态冲击电流	IP	1pulse, 100ms	100A

注意: 应用时不要超过最大额定值,以防止损坏。长时间工作在最大额定值的情况下可能影响器件的可靠性。

推荐工作环境

参数	符号	最小值	最大值	単位
电源电压	Vcc	3.0	3.6	V
环境温度	Ta	-40	125	°C
直流电流容量	IP	-30	30	Α

注意: 芯片实际可用的电流容量应根据芯片热阻并结合实际环境温度确定。

工作特性 (若无特别指明, Vcc=3.3V @ 25°C)

参数	符号	条件	最小值	典型值	最大值	単位
电气特性						
供电电压	V _{CC}	-	3.0	-	3.6	V
静态电流	Icc	OUT 悬空	-	5	8	mA
输出电容负载	CL		-	-	1	nF
输出电阻负载	RL		20	-	-	kΩ
传输延迟时间	t _D			1	1.2	us
上升时间	tr		-	2	3.6	us
系统带宽	BW	-3dB	-	80	-	kHz
线性度误差	Lin _{ERR}		-	0.4	1	%
对称性误差	Sym _{ERR}		-	0.8	1.5	%
静态输出点	$V_{\text{OUT}(Q)}$		1.635	1.65	1.665	V
POR 时间	T _{POR}	输出从 0 到 90%	-	10	-	us
主电流端电阻	R _P		-	1.5	1.8	mΩ
		铜箔连接到1、2 脚及3、4				
结到环境热阻	θја	脚,面积为 1500mm², 厚度	-	25	-	°C/W
		2oz				

10A 系列

参数	符号	条件	最小值	典型值	最大值	单位		
电气特性								
电流范围	I _P	-	-10	-	10	А		
灵敏度	Sens	全电流范围	127	132	135	mV/A		
输出噪声	V _{NOISE(PP)}		-	20	-	mV		
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.20	-	mV/°C		
灵敏度温度系数	ΔSens		-	0.017	-	mV/A /°C		
总输出误差	Етот		-3.0	-	3.0	%		

20A 系列

参数	符号	条件	最小值	典型值	最大值	单位		
电气特性								
电流范围	IР	-	-20	-	20	Α		
灵敏度	Sens	全电流范围	63	66	69	mV/A		
输出噪声	V _{NOISE(PP)}		-	13	-	mV		
零电流输出温度系数	$\Delta V_{\text{OUT(Q)}}$		-	0.22	-	mV/°C		
灵敏度温度系数	ΔSens		-	0.011	-	mV/A/°C		
总输出误差	E _{TOT}		-3.0	-	3.0	%		

30A 系列

A 2871								
参数	符号	条件	最小值	典型值	最大值	单位		
电气特性								
电流范围	l _P	-	-30	-	30	А		
灵敏度	Sens	全电流范围	42	44	46	mV/A		
输出噪声	V _{NOISE(PP)}		-	13	-	mV		
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.23	-	mV/°C		
灵敏度温度系数	ΔSens		-	0.006	-	mV/A /°C		
总输出误差	E _{TOT}		-3.0	-	3.0	%		

Crosschip Preliminary

典型应用电路

信号衰减电路

注: IOUT< 0.3 mA, 驱动能力按照 0.25mA 计算, 电阻之和 (R1+R2) 需大于 20kΩ

电流峰值监测应用

整流输出,代替电流互感器应用

输出特性

CC6904 静态输出点(IP = 0A 时)为 VCC / 2。

电流增大时, V_{OUT} 增大,直至输出运放的饱和电压(V_{CC} – 轨电压);电流减小时, V_{OUT} 减小,直至输出运放的饱和电压(GND + 轨电 压)。芯进保证 V_{OUT} 在 0.33~2.97V 内的精度及线性度,为了保证大批量制造的一致性,该范围留有一定的余度,但是不建议客户使用该余度。

输入电流超过量程时,Vour 的输出趋近于电源的轨电压,输入电流未超过芯片的耐受极限时,该电压会一直保持,输入电流恢复到量程 范围之内后, Vour 的输出会恢复正常, 不会对芯片造成任何损伤。

产品名称	输入电流	灵敏度(mV/A)	计算公式(注 1)
CC6904SO-10A	-10A ~ +10A	132	$V_{OUT} = VCC / 2 + 0.132 \times I_{P}(A)(V)$
CC6904SO-20A	-20A ~ +20A	66	$V_{OUT} = VCC / 2 + 0.066 \times I_{P}(A)(V)$
CC6904SO-30A	-30A ~ +30A	44	$V_{OUT} = VCC / 2 + 0.044 \times I_{P}(A)(V)$

注 1:该公式仅适用于直流电流计算,交流电流应用时,应注意 I_{PEAK} = 1.414 × I_{RMS},并注意电流方向的正负。

曲线 & 波形 (若无特别指明, Vcc=3.3V @ 25°C)

Vout vs. IP(正向电流上升沿响应)(20A)

V_{OUT} vs. IP(正向电流下降沿响应)(20A)

V_{out} vs. IP(负向电流上升沿响应)(20A)

Vour vs. IP(负向电流下降沿沿响应)(20A)

t_D响应时间(20A)

Crosschip Preliminary

静态电流

静态电流 vs. V_{CC}

静态电流 vs. Ta

20A 系列

V_{OUT(Q)} vs. Ta (20A)

V_{OUT} vs. IP (20A)

V_{OUT} error vs. Ta (20A)

Sens error vs. Ta (20A)

外形尺寸

SOP8 封装

注意:

1. 尺寸单位为英寸(毫米)。

打标:

第一行: CC6904SO产品名称

第二行: ELC-XXA

● XX: 检测电流范围

第三行: XXYYWW

- XX 代码
- YY 年度后两位数字
- WW 星期数

封装参考

参考一: PCB 开槽增加爬电距离

注意: layout 布板的要求: 芯片的下方,不建议走线,禁止走大电流的线

参考二:缩短焊盘长度增加爬电距离

注意: layout 布板的要求: 芯片的下方,不建议走线,禁止走大电流的线

包装&编带

卷盘尺寸信息

注意: 每盘载带前后空 50±2 格

DS-CC6904-SC-rev0.2

crossMAG series

关于芯进

成都芯进电子有限公司(CrossChip Microsystems Inc.)成立于 2013 年,是一家国家高新技术企业,从事集成电路设计与销售。公司技 术实力雄厚,拥有四十余项各类专利,主要应用于霍尔传感器信号处理,拥有下列产品线:

- 高精度线性霍尔传感器
- 各类霍尔开关
- 单相电机驱动器
- 单芯片电流传感器
- AMR 磁阻传感器

联系我们

成都

地址: 四川省成都市高新西区天辰路88号3号楼2单元4楼

电话: +86 - 28 - 87787685

邮箱: support@crosschipmicro.com 网址: http://www.crosschipmicro.com

深圳

地址:深圳市南山区高新南一道创维大厦 A1001

上海

地址:上海市嘉定区沪宜公路 4476 号魔方社区 3 楼创客工场