CS127 Homework 3

Due: October 8th, 2014 3:00PM

Warmup 1 (Textbook Problem 3.5)

Suppose that we have a relation marks(ID, score) and we wish to assign grades to students based on the score as follows: grade F if score < 40, grade C if $40 \le score < 60$, grade C if $60 \le score < 80$, and grade C if C if

- a. Display the grade for each student, based on the marks relation.
- b. Find the number of students with each grade.

Warmup 2 (Textbook Problem 3.17)

Consider the relational database of Figure 3.20 in the textbook. Give an expression in SQL for each of the following queries:

- a. Give all employees of "First Bank Corporation" a 10 percent raise.
- b. Give all managers of "First Bank Corporation" a 10 percent raise.
- c. Delete all tuples in the works relation for employees of "Small Bank Corporation".

Warmup 3 (Textbook Problem 3.21)

Consider the library database of Figure 3.21 in the textbook. Write the following queries in SQL.

- a. Print the names of members who have borrowed any book published by "McGraw-Hill".
- b. Print the names of members who have borrowed all books published by "McGraw-Hill".
- c. For each publisher, print the names of members who have borrowed more than five books of that publisher.
- d. Print the average number of books borrowed per member. Take into account that if a member does not borrow any books, then that member does not appear in the borrowed relation at all.

Problem 4 (To Be Graded)

Consider again the simplified university registrar database from the previous homeworks:

Student				
name	${f gradyear}$	gpa		
Amy	2016	3.95		
Ben	2015	3.87		
Carl	2016	3.29		
Dan	2017	3.43		
Eliza	2015	4.0		

	Course			
title	$\mathbf{semester}$	instructor		
CS33	2014F	Doeppner		
CS127	2014F	Zdonik		
CS195	2013F	Kraska		
CS127	2012F	Zdonik		
CS136	2012S	Fonseca		

${f Enrollment}$					
name	${f title}$	$\mathbf{semester}$	grade		
Eliza	CS33	2014F	A		
Eliza	CS127	2014F	A		
Ben	CS127	2012F	A		
Carl	CS195	2013F	\mathbf{C}		
Carl	CS127	2014F	В		

The keys for each relation are as follows:

- Student: name (all student names are assumed to be unique)
- Course: title and semester
- Enrollment: name, title, and semester

For each of the following, give the equivalent SQL query:

- 1. Find all students graduating in 2015 and their grade in CS127, if they have ever taken it.
- 2. Find all students with a GPA greater than the average GPA for their grad year.
- 3. Find all of Prof. Doeppner's courses from this semester (2014F) with at least one student graduating in 2015 enrolled.
- 4. Find all instructors who are teaching at most one course this semester.
- 5. Find all instructors with at least one course this semester whose enrollment count is less than the average number of enrollments for all courses this semester.
- 6. Extra Credit: Find all distinct pairings of students enrolled in CS127 this semester, where students cannot be paired with themselves (e.g., (Amy, Amy)) and inverted pairings are considered equivalent (e.g., $(Amy, Ben) \equiv (Ben, Amy)$).