STATISTICS 625 Assignment 2

Qian Wang

October 9, 2018

1 PROBLEM 1(EXERCISE 3.17)

Proof:

According to the hint, by independence, we have

$$P(X_1 \le x_1, X_2 \le x_2, \dots, X_p \le x_p \text{ and } Z_1 \le z_1, Z_2 \le z_2, \dots, Z_q \le z_q)$$

= $P(X_1 \le x_1, X_2 \le x_2, \dots, X_p \le x_p) \cdot P(Z_1 \le z_1, Z_2 \le z_2, \dots, Z_q \le z_q)$

Let x_1, x_2, \dots, x_p and z_1, z_2, \dots, z_q tend to infinity, then we have

$$P(X_1 \leqslant x_1, X_2 \leqslant \infty, \dots, X_p \leqslant \infty \text{ and } Z_1 \leqslant z_1, Z_2 \leqslant \infty, \dots, Z_q \leqslant \infty)$$

$$= P(X_1 \leqslant x_1, X_2 \leqslant \infty, \dots, X_p \leqslant \infty) \cdot P(Z_1 \leqslant z_1, Z_2 \leqslant \infty, \dots, Z_q \leqslant \infty)$$

$$\Leftrightarrow P(X_1 \leqslant x_1 \text{ and } Z_1 \leqslant z_1) = P(X_1 \leqslant x_1) \cdot P(Z_1 \leqslant z_1)$$

for all x_1, z_1 . So X_1, Z_1 are independent. Similarly, we can repeat for other pairs. Let $x_1, \dots, x_{k-1}, x_{k+1}, x_p$ and $z_1, \dots, z_{k-1}, z_{k+1}, x_q$ tend to infinity. $(k = 1, 2, \dots, max(p, q))$. We can obtain

$$P(X_1 \leqslant \infty, \cdots, X_{k-1} \leqslant \infty, X_k \leqslant x_k \cdots, X_p \leqslant \infty \text{ and } Z_1 \leqslant \infty, \cdots, Z_{k-1} \leqslant \infty, Z_k \leqslant z_k \cdots, Z_p \leqslant \infty)$$

$$= P(X_1 \leqslant \infty, \cdots, X_{k-1} \leqslant \infty, X_k \leqslant x_k \cdots, X_p \leqslant \infty) \cdot P(Z_1 \leqslant \infty, \cdots, Z_{k-1} \leqslant \infty, Z_k \leqslant z_k \cdots, Z_p \leqslant \infty)$$

$$\Leftrightarrow P(X_k \leqslant x_k \text{ and } Z_k \leqslant z_k) = P(X_k \leqslant x_k) \cdot P(Z_k \leqslant z_k)$$

for all x_k , z_k . Therefore, each component of \boldsymbol{X} is independent of each component of \boldsymbol{Z} .

2 PROBLEM 2

(a)
$$(I - H)^2 = I^2 - 2IH + H^2 = I - 2H + H = I - H$$

$$(I - H)^{\top} = I^{\top} - H^{\top} = I - H$$

So we have $I - H = (I - H)^2 = (I - H)^T$, i.e., I - H is idempotent. Then,

$$(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{H} = \boldsymbol{I}\boldsymbol{H} - \boldsymbol{H}^2 = \boldsymbol{H} - \boldsymbol{H} = \boldsymbol{0}$$

$$H(I-H) = HI - H^2 = H - H = 0$$

Therefore, I - H and H are mutually orthogonal.

(b)

$$\begin{split} \boldsymbol{J}^2 &= \boldsymbol{J}^\top \boldsymbol{J} = (\frac{1}{n} \mathbb{1} \mathbb{1}^\top)^\top (\frac{1}{n} \mathbb{1} \mathbb{1}^\top) = (\frac{1}{n} \mathbb{1} \mathbb{1}^\top) (\frac{1}{n} \mathbb{1} \mathbb{1}^\top) = (\frac{1}{n^2} \mathbb{1} \mathbb{1}^\top \mathbb{1} \mathbb{1}^\top) \\ &= \frac{1}{n^2} \mathbb{1} (\mathbb{1}^\top \mathbb{1}) \mathbb{1}^\top = \frac{1}{n^2} \mathbb{1} (n) \mathbb{1}^\top = \frac{1}{n} \mathbb{1} \mathbb{1}^\top = \boldsymbol{J} \end{split}$$

$$\boldsymbol{J}^{\top} = (\frac{1}{n}\mathbb{1}\mathbb{1}^{\top})^{\top} = \frac{1}{n}\mathbb{1}\mathbb{1}^{\top} = \boldsymbol{J}$$

Therefore, *J* is idempotent.

(c) For an arbitary A, which is idempotent, let λ be an eigenvalue of A and x be the eigenvector of λ . Then we have $Ax = \lambda x$, $x \neq 0$. From two perspective to deduce A^2x ,

$$A^2 x = Ax = \lambda x \tag{2.1}$$

$$A^{2}x = A(Ax) = A(\lambda x) = \lambda(Ax) = \lambda(\lambda x) = \lambda^{2}x$$
 (2.2)

Since equation 2.1=2.2, then we have $\lambda x = \lambda^2 x$, $x \neq 0 \Rightarrow \lambda^2 x - \lambda x = 0 \Rightarrow \lambda^2 - \lambda = 0$. So we can get $\lambda_1 = 1$, $\lambda_2 = 0$.

(d) According to Spectral Decomposition Theorem (SDT),

$$A = XD_{\lambda}X^{\top} \Rightarrow X^{-1}A = D_{\lambda}X^{\top} \Rightarrow D_{\lambda} = X^{-1}A(X^{\top})^{-1}$$

where $X = (x_1, ..., x_n)$ is the orthogonal matrix whose columns are the orthonormal eigenvectors of A and $D_{\lambda} = diag(\lambda_1, ..., \lambda_n)$ is the diagonal matrix of eigenvalues of A. Then we can get,

$$\sum_{i=1}^{n} \lambda_i = tr(\mathbf{D}_{\lambda})$$

$$= tr(\mathbf{X}^{-1} \mathbf{A} (\mathbf{X}^{\top})^{-1})$$

$$= tr(\mathbf{A} (\mathbf{X}^{\top})^{-1} \mathbf{X}^{-1})$$

$$= tr(\mathbf{A} (\mathbf{X}^{-1})^{\top} \mathbf{X}^{-1})$$

$$= tr(\mathbf{A})$$

Since for A, $\lambda_i = 1$ or $\lambda_i = 0$. So $tr(A) = the number of <math>\{\lambda_i = 1\}$.

(e) According to **Spectral Decomposition Theorem (SDT)**,

$$A = XD_{\lambda}X^{\top}$$

where $X = (x_1, ..., x_n)$ is the orthogonal matrix whose columns are the orthonormal eigenvectors of A. Therefore, $|X| = \pm 1 \neq 0$, and $|X^\top| = \pm 1 \neq 0$, i.e., X and X^\top are non-singular. So, we have

$$rank(\mathbf{A}) = rank(\mathbf{X}\mathbf{D}_{\lambda}\mathbf{X}^{\top}) = rank(\mathbf{X}\mathbf{D}_{\lambda}) = rank(\mathbf{D}_{\lambda})$$

Since the hint told us for arbitrary matrices \boldsymbol{A} and \boldsymbol{B} , the rank of \boldsymbol{AB} equals the rank of \boldsymbol{A} if \boldsymbol{B} is nonsingular. Then,

$$rank(\mathbf{D}_{\lambda}) = rank(diag(\lambda_1, ..., \lambda_n)) = the number of \{\lambda_i = 1\} = tr(\mathbf{A})$$

(f) We can easily find that $\exists \boldsymbol{b}^{\top} = (b_1, b_2, ..., b_n) = (1, -1, 0, ..., 0) \neq \boldsymbol{0}$ s.t., $\sum_{i=1}^n b_i \boldsymbol{J}_i = 0$, where $\boldsymbol{J}_i^{\top} = (\frac{1}{n}, ... \frac{1}{n})$. Therefore, $\boldsymbol{J}_1, ..., \boldsymbol{J}_n$ are not linear independent. Similarly, we can find n-1, n-2, ..., 2 of \boldsymbol{J}_i are all not linear independent. Therefore $rank(\boldsymbol{J}) = 1$.

3 Problem 3

(a) First, we calculate the marginal PDFs of X_1 and X_2 .

$$\begin{split} f_{X1}(x_1) &= 2\int_0^\infty \phi_2(x_1,x_2;\mathbf{0},I_2) dx_2 I\{x_1:x_1\geqslant 0\} \\ &= 2\int_0^\infty \frac{1}{2\pi^{2/2}|I_2|^{1/2}} exp\{-\frac{1}{2}(\boldsymbol{x}^\top I_2^{-1}\boldsymbol{x})\} dx_2 I\{x_1:x_1\geqslant 0\} \\ &= 2\int_0^\infty \frac{1}{2\pi 1} exp\{-\frac{1}{2}(x_1^2+x_2^2)\} dx_2 I\{x_1:x_1\geqslant 0\} \\ &= \frac{1}{\pi} exp\{-\frac{1}{2}x_1^2\} \int_0^\infty exp\{-\frac{1}{2}x_2^2\} dx_2 I\{x_1:x_1\geqslant 0\} \\ &= \frac{1}{\pi} \sqrt{2\pi} exp\{-\frac{1}{2}x_1^2\} \int_0^\infty \frac{1}{\sqrt{2\pi}} exp\{-\frac{1}{2}x_2^2\} dx_2 I\{x_1:x_1\geqslant 0\} \\ &= \frac{1}{\pi} \sqrt{2\pi} exp\{-\frac{1}{2}x_1^2\} \frac{1}{2} I\{x_1:x_1\geqslant 0\} \\ &= \frac{1}{\sqrt{2\pi}} exp\{-\frac{1}{2}x_1^2\} I\{x_1:x_1\geqslant 0\} \end{split}$$

Similarly, we can get $f_{X_2}(x_2)$.

$$f_{X_2}(x_2) = \frac{1}{\sqrt{2\pi}} exp\{-\frac{1}{2}x_2^2\}I\{x_2 : x_2 \geqslant 0\}$$

(b) According to the marginal PDFs X_1 and X_2 , we have that X_1 and X_2 are (marginally) normally distributed. $X_1 \sim N(0,1)$ and $X_2 \sim N(0,1)$.

4 PROBLEM 4

Proof:

We can rewrite the np component vector.

$$[X_{11},\cdots X_{1p},X_{21},\cdots X_{2p},\cdots,X_{n1},\cdots,X_{np}]=[\boldsymbol{X}_{1}^{\top},\cdots,\boldsymbol{X}_{n}^{\top}]=\boldsymbol{X}_{(1\times np)}^{\top}$$

And X^{\top} is multivariate normal with $X \sim N_{np}(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{X})$, where

$$\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \\ \vdots \\ \boldsymbol{\mu}_n \end{pmatrix}, \quad \boldsymbol{\Sigma}_X = \begin{pmatrix} \boldsymbol{\Sigma} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\Sigma} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\Sigma} \end{pmatrix}$$

Let

$$\mathbf{A}_{(2p \times np)} = \begin{pmatrix} a_1 \mathbf{I} & a_2 \mathbf{I} & \cdots & a_n \mathbf{I} \\ b_1 \mathbf{I} & b_2 \mathbf{I} & \cdots & b_n \mathbf{I} \end{pmatrix}$$

where I is the $p \times p$ identity matrix, gives

$$AX = \begin{pmatrix} a_1 I & a_2 I & \cdots & a_n I \\ b_1 I & b_2 I & \cdots & b_n I \end{pmatrix} \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n a_j X_j \\ \sum_{j=1}^n b_j X_j \end{pmatrix} = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

By the Result of 4.3,

$$AX \sim N_{2p}(A\boldsymbol{\mu}, A\boldsymbol{\Sigma}_{\boldsymbol{X}}\boldsymbol{A}^{\top})$$

Straightforward block multiplication shows that $A\Sigma_X A^{\top}$ has the first block diagonal term:

$$[a_1 \boldsymbol{\Sigma}, a_2 \boldsymbol{\Sigma}, \cdots, a_n \boldsymbol{\Sigma}][a_1 \boldsymbol{I}, a_2 \boldsymbol{I}, \cdots, a_n \boldsymbol{I}]^{\top} = (\boldsymbol{a}^{\top} \boldsymbol{a}) \boldsymbol{\Sigma}$$

Another diagonal term is:

$$[b_1 \boldsymbol{\Sigma}, b_2 \boldsymbol{\Sigma}, \cdots, b_n \boldsymbol{\Sigma}] [b_1 \boldsymbol{I}, b_2 \boldsymbol{I}, \cdots, b_n \boldsymbol{I}]^{\top} = (\boldsymbol{b}^{\top} \boldsymbol{b}) \boldsymbol{\Sigma}$$

And the off-diagonal term is:

$$[a_1\boldsymbol{\Sigma}, a_2\boldsymbol{\Sigma}, \cdots, a_n\boldsymbol{\Sigma}][b_1\boldsymbol{I}, b_2\boldsymbol{I}, \cdots, b_n\boldsymbol{I}]^{\top} = (\boldsymbol{a}^{\top}\boldsymbol{b})\boldsymbol{\Sigma}$$

These term are the covariance matrix of V_1 , V_2 . Consequently, V_1 and V_2 are independent if and only if $\boldsymbol{a}^{\top}\boldsymbol{b} = 0$, so that $(\boldsymbol{a}^{\top}\boldsymbol{b})\boldsymbol{\Sigma} = 0$, i.e., \boldsymbol{a}^{\top} is orthogonal to \boldsymbol{b}^{\top} .

5 Problem 5 (Exercise 4.3)

- (a) X_1 and X_2 are not independent. Because $\sigma_{12} = \sigma_{21} = -2 \neq 0$.
- (b) X_2 and X_3 are independent. Because $\sigma_{23} = \sigma_{32} = 0$.

(c) (X_1, X_2) and X_3 are independent. Because $\Sigma_{12} = 0$.

$$X = \begin{pmatrix} X_1^\top \\ X_2^\top \\ X_2^\top \end{pmatrix} = \begin{pmatrix} X_1' \\ X_2' \end{pmatrix}$$

Then we can get $\Sigma_{12} = cov(X_1', X_2') = (\sigma_{13}, \sigma_{23})^{\top} = (0, 0)^{\top}$.

(d) $(X_1, X_2)/2$ and X_3 are independent. Because $\sigma = 0$.

$$\boldsymbol{X} = \begin{pmatrix} AX_1' \\ X_2' \end{pmatrix}, \quad \boldsymbol{A} = (1/2, 1/2)$$

Therefore, $\sigma = \frac{1}{2}\sigma_{13} + \frac{1}{2}\sigma_{23} = 0$

(e) X_2 and $-\frac{2}{5}X_1 + X_2 - X_3$ are not independent. Because $\sigma_{12}{}' \neq 0$, $\sigma_{21}{}' \neq 0$.

$$AX = \begin{pmatrix} 0 & 1 & 0 \\ -\frac{2}{5} & 1 & -1 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} X_2 \\ -\frac{2}{5}X_1 + X_2 - X_3 \end{pmatrix}$$

$$\Sigma' = \mathbf{A} \Sigma \mathbf{A}^{\top} = \begin{pmatrix} 0 & 1 & 0 \\ -\frac{2}{5} & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -2 & -5 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & -\frac{2}{5} \\ 1 & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -5 & -\frac{5}{21} \\ -\frac{5}{21} & -\frac{41}{5} \end{pmatrix}$$

Therefore, $\sigma_{12}' \neq 0$, $\sigma_{21}' \neq 0$.

6 PROBLEM 6(EXERCISE 4.5(B))

$$\begin{split} f_{X_{2}|X_{1},X_{3}}(x_{2}|x_{1},x_{3}) &= \frac{f_{X_{1},X_{2},X_{3}}(x_{1},x_{2},x_{3})}{f_{X_{1},X_{3}}(x_{1},x_{3})} \\ &= \frac{\frac{1}{(2\pi)^{3/2}|\Sigma|^{1/2}}exp\{-\frac{1}{2}(\boldsymbol{X}-\boldsymbol{\mu})^{\top}\Sigma^{-1}(\boldsymbol{X}-\boldsymbol{\mu})\}}{\frac{1}{(2\pi)^{3/2}|\Sigma|^{1/2}}\int_{-\infty}^{\infty}exp\{-\frac{1}{2}(\boldsymbol{X}-\boldsymbol{\mu})^{\top}\Sigma^{-1}(\boldsymbol{X}-\boldsymbol{\mu})\}dx_{2}} \\ &= \frac{exp\{-\frac{1}{2}(x_{2}^{2}+10x_{2}+4x_{1}x_{2})\}}{\int_{-\infty}^{\infty}exp\{-\frac{1}{2}(x_{2}^{2}+10x_{2}+4x_{1}x_{2})\}dx_{2}} \\ &= \frac{exp\{-\frac{1}{2}(x_{2}-(-2x_{1}-5))^{2}\}exp\{-\frac{1}{2}(-4x_{1}^{2}-20x_{1}-25)\}}{exp\{-\frac{1}{2}(-4x_{1}^{2}-20x_{1}-25)\}\int_{-\infty}^{\infty}exp\{-\frac{1}{2}(x_{2}-(-2x_{1}-5))^{2}\}dx_{2}} \\ &= \frac{1}{\sqrt{2\pi}}exp\{-\frac{1}{2}(x_{2}-(-2x_{1}-5))^{2}\} \end{split}$$

Therefore, $X_2|X_1, X_3 \sim N(-2x_1 - 5, 1)$.

Figure 7.1: Pairs of sales and profits

Figure 7.2: QQ plot of sales and profits

7 PROBLEM 7(EXERCISE 4.24)

- (a) From the figure 7.1 and 7.2, we can see all the point are displayed on the same line. That is to say x_i and q_i are approximately linearly related under normality. Therefore, the data appeared to be normally distributed.
- (b) We have know that,

$$r_Q = \frac{\sum_{j=1}^{10} (x_j - \bar{x})(q_j - \bar{q})}{\sqrt{\sum_{j=1}^{n} (x_j - \bar{x})^2} \sqrt{\sum_{j=1}^{n} (q_j - \bar{q})^2}}$$

Since $\bar{q}=0$. By calculating, $\sum_{j=1}^{10}(x_j-\bar{x})q_j=262.2567$, $\sum_{j=1}^{n}(x_j-\bar{x})^2=67288.08$, $\sum_{j=1}^{n}(q_j-\bar{q})^2=8.797873$. Therefore, $r_Q=\frac{262.2567}{\sqrt{67288.08}\times\sqrt{8.797873}}=0.3408543$. Since $r_Q>\alpha=0.1$, we do not reject the hypothesis of normality, which means it corroborate the result of Part(a).

8 PROBLEM 8(EXERCISE 4.29)

(a) We can use R to help us calculate this.

$$\boldsymbol{\mu} = \begin{pmatrix} 10.047619 \\ 9.404762 \end{pmatrix}, \quad \boldsymbol{S}^{-1} = \begin{pmatrix} 0.090514367 & -0.009135427 \\ -0.009135427 & 0.033202458 \end{pmatrix}$$

And the statistical distance, (**D** is a 42×1 vector)

D =	0.55727327	0.62644612	2.47684081	1.36168462	0.37779733	0.71020612	0.98268825
	11.89720210						
	0.37779733 0.75873480	0.03099507	0.97938027	5.55828764	3.37341190	0.62644612	3.06500907
	0.75873480	0.76771508	2.98073447	5.58165729	0.75873480	0.09564260	0.56135063
	0.19935617	2.01859764	0.30593753	0.74176804	1.36758817	6.94615941	1.44188162
	0.03099507	1.75386295	3.05829543	7.80873831	0.47612607	0.53199062	1.41945974

(b) According to the hint, the desired χ^2 values are then the diagonal elements of the matrix. Using the qchisq(0.5,2) in R, we can calculate the that 0.5 quantile of χ^2 is 1.386294. i.e. $\chi^2_2(0.5) = 1.386294$. Then we calculate the number of values below 1.386294 is 26. Therefore, the proportion is:

$$p = 26/42 = 0.6190476$$

(c) The result can be seen in Figure 8.1.

9 PROBLEM 9

(a) We consider the variate $Z = |Z_0| sgn(XY)$ in different stages. When $Z_0 \ge 0$,

$$Z = \begin{cases} Z_0, & X > 0, \ Y > 0 \ or \ X < 0, \ Y < 0 \\ -Z_0, & X > 0, \ Y < 0 \ or \ X < 0, \ Y > 0 \\ 0, & X = 0 \ or \ Y = 0 \end{cases}$$

Figure 8.1: Chi-square plot

When $Z_0 < 0$,

$$Z = \begin{cases} -Z_0, & X > 0, \ Y > 0 \ or \ X < 0, \ Y < 0 \\ Z_0, & X > 0, \ Y < 0 \ or \ X < 0, \ Y > 0 \\ 0, & X = 0 \ or \ Y = 0 \end{cases}$$

Therefore, when $X \neq 0$ and $Y \neq 0$, $Z \sim N(0,1)$, i.e., Z is also normally distributed.

(b) We consider the probability of X, Y, and Z (every time only two of them). When $Z_0 \geqslant 0$, $P(|Z_0|) = P(Z_0)$.

$$P(Z) = P(|Z_0|sgn(XY)) = P(Z_0sgn(XY)) = sgn(XY)P(Z_0)$$

 $P(XZ) = P(X|Z_0|sgn(XY)) = P(XZ_0sgn(XY)) = sgn(XY)P(XZ_0) = sgn(XY)P(X)P(Z_0)$ Since X and Z_0 are independent. Therefore,

$$P(XZ) = P(X)P(Z)$$

When $Z_0 < 0$, $P(|Z_0|) = P(-Z_0) = -P(Z_0)$

$$P(Z) = P(|Z_0|sgn(XY)) = P(-Z_0sgn(XY)) = -sgn(XY)P(Z_0)$$

 $P(XZ) = P(X|Z_0|sgn(XY)) = P(X(-Z_0)sgn(XY)) = -sgn(XY)P(XZ_0) = -sgn(XY)P(X)P(Z_0)$ Therefore,

$$P(XZ) = P(X)P(Z)$$

Similarly, we can get P(YZ) = P(Y)P(Z). And we already known X and Y are independent, so X, Y, and Z are pairwise independent.

(c) We can use counter-evidence to proof that $V = (X, Y, Z)^{\top}$ is not normally distributed. If V is normally distributed, we have the pdf

$$f(V) = \frac{1}{(\sqrt{2\pi})^3 |\Sigma|^{1/2}} exp(-V\Sigma^{-1}V/2)$$

and

$$f(\mathbf{0}) = \frac{1}{(\sqrt{2\pi})^3}$$

However,

$$f(\mathbf{0}) = f(X = 0) \cdot f(Y = 0) \cdot f(Z = 0 | X = 0, Y = 0)$$

$$= \frac{1}{(\sqrt{2\pi})} \cdot \frac{1}{(\sqrt{2\pi})} \cdot 1$$

$$= \frac{1}{2\pi}$$

Since under the condition of X=0 and Y=0, P(Z=0)=1. Now we have $\frac{1}{(\sqrt{2\pi})^3}\neq \frac{1}{2\pi}$. It contradicts. Therefore, $V=(X,Y,Z)^{\top}$ is not normally distributed.

10 Problem 10

Proof[?]:

(a) According to what we have known,

$$Y_{i-1} = (S_{i1}, \dots, S_{i,i-1})^{\top} = (\sum_{k=1}^{m} Z_{ik} Z_{1k}, \dots, \sum_{k=1}^{m} Z_{ik} Z_{i-1,k})^{\top}$$

Since $\Sigma = I_p$, $Z_{11}, \dots, Z_{1m}, \dots, Z_{p1}, \dots, Z_{pm}$ are all $iid\ N(0,1)$. According to the hint, given the Z_{jk} , the S_{ij} are linear functions of jointly normally distributed RVs. It follows that conditional on Z_{jk} , $j=1,\dots,i-1$, $k=1,\dots,m$, $Y_{i-1}\sim N(\mathbf{0},\mathbf{S}_{[i-1]})$.

(b) According to the hint, $\mathbf{U}_{i-1,k} = (Z_{1k}, \cdots, Z_{i-1,k})^{\top}$, $i = 2, \cdots, p, k = 1, \cdots, m$. Then $\mathbf{S}_{[i-1]} = \sum_{k=1}^{m} = \mathbf{U}_{i-1,k} \mathbf{U}_{i-1,k}^{\top}$ and

$$S_{ii.1,\dots,i-1} = \sum_{k}^{m} (Z_{ik} - \boldsymbol{U}_{i-1,k}^{\top} \boldsymbol{S}_{[i-1]}^{-1} \boldsymbol{U}_{i-1,k})$$

Now due to the mutual independence of Z_{11}, \dots, Z_{pm} , for every $k = 1, \dots, m$,

$$cov(Y_{i-1}, Z_{ik}) = [cov(\sum_{u=1}^{m} Z_{iu} Z_{1u}, Z_{ik}), \cdots, cov(\sum_{u=1}^{m} Z_{iu} Z_{i-1,u}, Z_{ik}) | Z_{ik}, j = 1, \cdots, i-1, k = 2, \cdots, m]^{\top}$$

$$= (Z_{1k}, \cdots, Z_{i-1,k})^{\top}$$

$$= U_{i-1,k}$$

And we have $E(Y_{i-1}Y_{i-1}^{\top}|Z_{jk}, j=1,\dots,i-1,k=1,\dots,m]^{\top}) = S_{[i-1]}$. Hence one gets,

$$cov(\boldsymbol{Y}_{i-1}, \boldsymbol{Z}_{ik} - \boldsymbol{Y}_{i-1}^{\top} \boldsymbol{S}_{[i-1]}^{-1} \boldsymbol{U}_{i-1,k} | j = 1, \cdots, i-1, k = 1, \cdots, m) = \boldsymbol{U}_{i-1,k} - \boldsymbol{S}_{[i-1]} \boldsymbol{S}_{[i-1]}^{-1} \boldsymbol{U}_{i-1,k} = \boldsymbol{0}$$

Once again, from a property of linear function of normal variables, we can get the independence of \boldsymbol{Y}_{i-1} and $(Z_{i1} - \boldsymbol{U}_{i-1,1}^{\top} \boldsymbol{S}_{[i-1]}^{-1} \boldsymbol{U}_{i-1,k}, \cdots, Z_{im} - \boldsymbol{U}_{i-1,m}^{\top} \boldsymbol{S}_{[i-1]}^{-1} \boldsymbol{U}_{i-1,k})$. This implies the independence of \boldsymbol{Y}_{i-1} and $\boldsymbol{S}_{ii.1,\cdots,i-1}$.

(c) We begin with the identity

$$S_{ii} = \mathbf{Y}_{i-1}^{\top} \mathbf{S}_{[i-1]}^{-1} \mathbf{Y}_{i-1} + S_{ii.1,\dots,i-1}$$

By (b), conditional on Z_{jk} , $j=1,\cdots,i-1$, $k=1,\cdots,m$, $\boldsymbol{Y}_{i-1}^{\top}\boldsymbol{S}_{[i-1]}^{-1}\boldsymbol{Y}_{i-1}$ is distributed independently with $S_{ii.1,\cdots,i-1}$. Set $\phi_W(t)$ as a generic symbol for the MGF of a random variable of W. Now we have,

$$\phi_{S_{ii}}(t) = \phi_{\mathbf{Y}_{i-1}^{\top} \mathbf{S}_{i-1}^{-1} \mathbf{Y}_{i-1}}(t) \phi_{S_{ii.1,\dots,i-1}}(t)$$

By (a), for the same conditioning variables Z_{jk} , $j=1,\cdots,i-1$, $k=1,\cdots,m$, $\boldsymbol{Y}_{i-1}^{\top}\boldsymbol{S}_{[i-1]}^{-1}\boldsymbol{Y}_{i-1}\sim \chi_{i-1}^2$. Due to the mutual independence of all the Z_{jk} , the conditional distribution of $S_{ii}=\sum_{k=1}^{m}Z_{ik}^2$, given Z_{jk} , $j=1,\cdots,i-1$, $k=1,\cdots,m$, is the same as its unconditional distribution which is χ_m^2 . Hence, according to the MGF we stated before, conditional on Z_{jk} , $j=1,\cdots,i-1$, $k=1,\cdots,m$,

$$\phi_{S_{ii.1,\cdots,i-1}} = (1-2t) - \frac{m-i+1}{2}$$

which implies (c).

11 Appedix

This part include some R code of the assignment.

11.1 PROBLEM 7(EXERCISE 4.24)

```
## Input the data
X1_sales<-c(108.28, 152.36, 95.04, 65.45, 62.97, 263.99, 265.19, 285.06, 92.01, 165.68)
X2_profits<-c(17.05, 16.59, 10.91, 14.14, 9.52, 25.33, 18.54, 15.73, 8.10, 11.13)
company<-as.matrix(cbind(X1_sales,X2_profits))
colMeans(company)
apply(company)
apply(company, 2, var)
pairs(company)

##Construct QQ plot
dev.new()
par(mfrow = c(1,2))
for(i in 1:2) {
    y = company[,i]
    v=qqnorm(y, ylab = colnames(company)[i])
    text(0, max(v$y-2), paste("corr_u=u", round(cor(v$x,v$y),2)))
    qqline(y)
}</pre>
```

```
##Calculate the r_Q
##calculate sum(x_j-bar(x))^2
mean_x1_sales=mean(X1_sales)
mean_x2_profits=mean(X2_profits)
for(i in 1:10){
    x_1[i]=X1_sales[i]-mean_x1_sales
    x_22[i]=(X1_sales[i]-mean_x1_sales)^2
    x_33=sum(x_22)
}

##calculate sum(q_j-bar(q))^2
for(j in 1:10){
    p1[j]<-c((j-0.5)/10)
    q_j[j]<-qnorm(p1[j],mean=0, sd=1)
    q_bar<-0
    y_1[j]<-(q_j[j]-q_bar)
    y_22[j]=(q_j[j]-q_bar)
    y_233=sum(y_22)
}

##calculate sum(x_j-bar(x))(q_j-bar(q))
z<-sum(x_1*y_1)
##calculate r_Q
z_1<-sqrt(x_33)
z_2<-sqrt(y_33)
r_Q<-z/(z_1*z_2)</pre>
```

11.2 PROBLEM 8(EXERCISE 4.29

```
##(a)
data<-read.csv('Table_1_5.csv',sep=',')
x_j=as.matrix(data[,c(5,6)])
mu=colMeans(x_j)
y_j=x_j=nu
S=cov(x_j)
S_1=solve(S)
for (i in 1:42){
    D[i]=t(y_j[i,])%*%S_1%*%y_j[i,]
}

#(b)
chi_y=y_j%*%S_1%*%t(y_j)
chi_value=diag(chi_y)
q=qchisq(0.5,2)
i<-length(which(chi_value<q))
pop=i/42
## 0.6190476

##(c)
plot(D, chi_value, xlab="Distance", ylab="Chi_square_uvalues")</pre>
```

11.3 PROBLEM 10

REFERENCES

[1] Malay Ghosh & Bimal K Sinha (2002) *A Simple Derivation of the Wishart Distribution*, The American Statistician, 56:2, 100-101, DOI: 10.1198/000313002317572754