Linear Programming: Introduction

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

See an example of the type of problem solved by linear programming.

Factory

You are running a widget factory and trying to optimize your production procedures to save money.

Machines vs. Workers

Can use combination of machines and workers.

- Have only 100 machines.
- Unlimited workers.
- Each machine requires 2 workers to operate.

Production

- Each machine makes 600 widgets a day.
- Each worker makes 200 widgets a day.

Limited Demand

Total demand for only 100, 000 widgets a day.

Algebra

Let W be the number of workers and M the number of machines.

Constraints:

- W > 0.
- 100 > M > 0.
- $W \geq 2M$.
- $100,000 \ge 200(W-2M)+600M$.

 $M, W \ge 0$

 $M \le 100$

$$M + W < 500$$

Diagram of possible configurations:

Profits

Profits are determined as follows:

- Each widget earns you \$1.
- Each worker costs you \$100/day.

Total profits (in dollars per day):

$$200(W-2M)+600M-100W=100W+200M.$$

Profit mapped on graph:

Optimum

Best: M = 100, W = 400 [NB: A corner] Profit = \$60,000/day.

Proof of Optimality

$$100 \cdot [001 \cdot M + 000 \cdot W \leq 100] +0.5 \cdot [200 \cdot M + 200 \cdot W \leq 100,000]$$
$$200 \cdot M + 100 \cdot W \leq 60,000.$$

Summary

Maximized:

$$200M + 100W$$

subject to constraints:

$$0M + 1W \ge 0$$
 $1M + 0W \ge 0$
 $-1M + 0W \ge -100$
 $-2M + 1W \ge 0$
 $-1M - 1W \ge -500$