In Exercises 11–16, compute and simplify.

11.
$$x^{1/2}(x^{2/3}-x^{4/3})$$

11.
$$x^{1/2}(x^{2/3} - x^{4/3})$$
 12. $x^{1/2}(3x^{3/2} + 2x^{-1/2})$

13.
$$(x^{1/2} + y^{1/2})(x^{1/2} - y^{1/2})$$

14.
$$(x^{1/3} + y^{1/2})(2x^{1/3} - y^{3/2})$$

15.
$$(x + y)^{1/2}[(x + y)^{1/2} - (x + y)]$$

16.
$$(x^{1/3} + y^{1/3})(x^{2/3} - x^{1/3}y^{1/3} + y^{2/3})$$

In Exercises 17–22, factor the given expression. For example,

$$x - x^{1/2} - 2 = (x^{1/2} - 2)(x^{1/2} + 1).$$

17.
$$x^{2/3} + x^{1/3} - 6$$

18.
$$x^{2/5} + 11x^{1/5} + 30$$

19.
$$x + 4x^{1/2} + 3$$

20.
$$x^{1/3} + 7x^{1/6} + 10$$

21.
$$x^{4/5} - 81$$

22.
$$x^{2/3} - 6x^{1/3} + 9$$

In Exercises 23–28, write the given expression without using radicals.

23.
$$\sqrt[3]{a^2 + b^2}$$

24.
$$\sqrt[4]{a^{-3}-b}$$

25.
$$\sqrt[4]{\sqrt[4]{a^3}}$$

26.
$$\sqrt[3]{a^3b^4}$$

27.
$$\sqrt[5]{t} \sqrt{16t^5}$$

23.
$$\sqrt[3]{a^2 + b^2}$$
 24. $\sqrt[4]{a^{-3} - b^3}$ 25. $\sqrt[4]{\sqrt[4]{a^3}}$ 26. $\sqrt[4]{\sqrt[3]{a^3}b^4}$ 27. $\sqrt[5]{t}\sqrt{16t^5}$ 28. $\sqrt[4]{x}(\sqrt[3]{x^2})(\sqrt[4]{x^3})$

In Exercises 29–42, simplify the expression without using a calculator.

29. $\sqrt{80}$

30.
$$\sqrt{96}$$

31.
$$\sqrt{6} \sqrt{12}$$

32.
$$\sqrt{8}\sqrt{96}$$

33.
$$\frac{-6 + \sqrt{99}}{15}$$

34.
$$\frac{5-\sqrt{175}}{10}$$

35.
$$\sqrt{50} - \sqrt{72}$$

36.
$$\sqrt{75} + \sqrt{192}$$

37.
$$5\sqrt{20} - \sqrt{45} + 2\sqrt{80}$$

38.
$$\sqrt[3]{40} + 2 \cdot \sqrt[3]{135} - 5 \cdot \sqrt[3]{320}$$

39.
$$\sqrt{16a^8b^{-2}}$$

40.
$$\sqrt{24x^6y^{-4}}$$

41.
$$\frac{\sqrt{c^2d^6}}{\sqrt{4c^3d^{-4}}}$$

40.
$$\sqrt{24x^6y^{-4}}$$
42. $\frac{\sqrt{a^{-10}b^{-12}}}{\sqrt{a^{14}d^{-4}}}$

In Exercises 43–48, rationalize the denominator and simplify your answer.

43.
$$\frac{3}{\sqrt{9}}$$

44.
$$\frac{2}{\sqrt{6}}$$

45.
$$\frac{3}{2+\sqrt{12}}$$

46.
$$\frac{1+\sqrt{3}}{5+\sqrt{10}}$$

47.
$$\frac{2}{\sqrt{x}+2}$$

$$48. \ \frac{\sqrt{x}}{\sqrt{x} - \sqrt{c}}$$

In Exercises 49-52, find the difference quotient of the given function. Then rationalize its numerator and simplify.

49.
$$f(x) = \sqrt{x+1}$$

50.
$$g(x) = 2\sqrt{x+3}$$

51.
$$f(x) = \sqrt{x^2 + 1}$$

52.
$$g(x) = \sqrt{x^2 - x}$$

In Exercises 53–56, use the equation $y = 92.8935 \cdot x^{.6669}$ which gives the approximate distance y (in millions of miles) from the sun to a planet that takes x earth years to complete one orbit of the sun. Find the distance from the sun to the planet whose orbit time is given.

- **53.** Mercury (.24 years)
- **54.** Mars (1.88 years)
- **55.** Saturn (29.46 years)
- **56.** Pluto (247.69 years)

Between 1790 and 1860, the population y of the United States (in millions) in year x was given by $y = 3.9572(1.0299^x)$, where x = 0 corresponds to 1790. In Exercises 57–60, find the U.S. population in the given year.

57. 1800

58. 1817

59. 1845

- **60.** 1859
- 61. Here are some of the reasons why restrictions are necessary when defining fractional powers of a negative number.
 - (a) Explain why the equations $x^2 = -4$, $x^4 = -4$, $x^6 = -4$, etc., have no real solutions. Hence, we cannot define $c^{1/2}$, $c^{1/4}$, $c^{1/6}$ when c = -4.
 - (b) Since 1/3 is the same as 2/6, it should be true that $c^{1/3} = c^{2/6}$, that is, that $\sqrt[3]{c} = \sqrt[6]{c^2}$. Show that this is false when c = -8.
- **62.** Use a calculator to find a *six*-place decimal approximation of $(311)^{-4.2}$. Explain why your answer cannot possibly be the number $(311)^{-4.2}$.
- **63.** (a) Graph $f(x) = x^5$ and explain why this function has an inverse function.
 - (b) Show algebraically that the inverse function is $g(x) = x^{1/5}.$
- **64.** If n is an odd positive integer, show that $f(x) = x^n$ has an inverse function and find the rule of the inverse function. [*Hint*: Exercise 63 is the case when n = 5.]

In Exercises 65–67, use the catalog of basic functions (page 214) and Section 3.4 to describe the graph of the given function.

65.
$$g(x) = \sqrt{x+3}$$

66.
$$h(x) = \sqrt{x} - 2$$

67.
$$k(x) = \sqrt{x+4} - 4$$

- **68.** (a) Suppose r is a solution of the equation $x^n = c$ and s is a solution of $x^n = d$. Verify that rs is a solution of
 - (b) Explain why part (a) shows that $\sqrt[n]{cd} = \sqrt[n]{c} \sqrt[n]{d}$.