### ЛАБОРАТОРНАЯ РАБОТА № 1

# МОДЕЛИРОВАНИЕ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМ

**Цель работы.** Ознакомление с пакетом прикладных программ SIMULINK и основными приемами моделирования линейных динамических систем.

**Методические рекомендации.** До начала работы студенты должны ознакомиться с описанием пакета прикладных программ SIMULINK (см. учебное пособие [1]), а также получить от преподавателя вариант задания. К занятию допускаются студенты, составившие схемы моделирования заданных динамических систем (см. пункты 1.1 и 2.1 порядка выполнения работы). Лабораторная работа рассчитана на 2 часа.

**Теоретические сведения.** Математическая модель линейной стационарной системы может быть представлена в виде скалярного дифференциального уравнения n-го порядка (модель exod-ebixod) или в виде системы из n дифференциальных уравнений 1-го порядка (модель exod-cocmoshue-ebixod). Модель вход-выход имеет вид

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y^{(1)} + a_0y = b_mu^{(m)} + b_{m-1}u^{(m-1)} + \dots + b_1u^{(1)} + b_0u,$$
 (1.1)

где y — выходная переменная, u — входной сигнал, n — порядок системы, m — порядок производной выходной переменной, в явном виде зависящей от u ( $m \le n$ ),  $a_j$ ,  $b_j$  — постоянные коэффициенты. При условии, что  $m \le n$ , модель вход-состояние-выход может быть представлена в виде

$$\begin{cases} \dot{x}_{1} = \alpha_{11}x_{1} + \alpha_{12}x_{2} + \dots + \alpha_{1n}x_{n} + \beta_{1}u, \\ \dot{x}_{2} = \alpha_{21}x_{1} + \alpha_{22}x_{2} + \dots + \alpha_{2n}x_{n} + \beta_{2}u, \\ \vdots \\ \dot{x}_{n} = \alpha_{n1}x_{1} + \alpha_{n2}x_{2} + \dots + \alpha_{nn}x_{n} + \beta_{n}u, \\ y = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n}, \end{cases}$$

$$(1.2)$$

где  $x_j$  — координаты вектора состояния,  $\alpha_{ij}$  и  $\beta_j$  — постоянные коэффициенты. С использованием обозначений

$$A = \begin{vmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \vdots & \vdots & & \vdots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{vmatrix}, \qquad B = \begin{vmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{vmatrix}, \qquad C^T = \begin{vmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{vmatrix}, \qquad x = \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix}$$

система (1.2) может быть представлена в компактной векторно-матричной форме

$$\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx, \end{cases} \tag{1.2a}$$

где  $A-n\times n$  матрица постоянных коэффициентов,  $B-n\times 1$  вектор-столбец посто-

янных коэффициентов,  $C-1 \times n$  вектор-строка постоянных коэффициентов, а x-n мерный вектор состояния.

Напомним, что решением дифференциального уравнения (1.1) (или, соответственно, системы (1.2)) является функция времени y(t) (или вектор-функция x(t)), обращающая данное уравнение (систему) в тождество и удовлетворяющая заданным *начальным условиям*. Для дифференциального уравнения (1.1) начальные условия накладываются на переменную y и ее производные до (n-1)-го порядка включительно:

$$y^{(j)}(0) = y_{j0},$$
  $j = 0,1,...,n-1,$ 

а для системы (1.2) — на координаты вектора состояния:  $x_j(0) = x_{jo}$ , j = 1,2,...,n. Особо отметим, что в теории управления под начальными условиями понимают условия, которые существовали до момента приложения входного сигнала. Поэтому для любой функции f(t) ее начальное значение понимается в смысле предела

$$f(0) = \lim_{\tau \to 0} f(\tau), \tag{1.3}$$

где переменная  $\tau$  стремится к нулю, оставаясь отрицательной ( $\tau < 0$ ). При этом говорят, что предел (1.3) задает *начальные условия слева*, т.е. в начальный момент t = -0. В соответствии с принятой трактовкой начальных условий, имеем  $u^{(i)}(0) = u^{(i)}(-0) = 0$  для всех i = 0,1,2,...



Рис. 1.1. Блоки элементарных операций: а) интегратор; б) сумматор; в) усилитель

С помощью блоков элементарных операций — интегратора, сумматора и блока усиления (см. рис.1.1) — могут быть составлены схемы моделирования уравнений (1.1) и (1.2). Указанные блоки легко реализуются физически (например, в виде электронных схем на основе операционных усилителей) и составляют элементную базу аналоговых вычислительных машин (АВМ).

Для составления схемы моделирования дифференциальных уравнений (1.2) необходимо использовать n интеграторов (число интеграторов определяется числом дифференциальных уравнений). При этом полагается, что на выходе j-го интегратора действует величина  $x_j$ , а на его входе, соответственно,  $\dot{x}_j$ . Далее, в соответствии со структурой правых частей уравнений (1.2) вводятся прямые и обратные связи, формирующие сигналы  $\dot{x}_j$ . Проиллюстрируем данный подход следующим примером. Пусть динамическая система описывается дифференциальными уравнениями

$$\begin{cases} \dot{x}_1 = x_2 + 2u, \\ \dot{x}_2 = -5x_1 - 2x_2 + 3u, \\ y = x_1 + 7x_2 \end{cases}$$
 (1.4)

с начальными условиями  $x_1(0) = 2$ ,  $x_2(0) = -1$  и входным воздействием  $u = 2\sin t$ . Тогда схема моделирования системы (1.4) будет иметь вид, представленный на рис.1.2,



Рис.1.2. Схема моделирования системы (1.4)

где начальные условия на интеграторах соответствуют начальным значениям координат вектора состояния  $x_1(0)$  и  $x_2(0)$ .

Существует несколько различных способов построения схем моделирования уравнения (1.1). Рассмотрим на примере один из них. Пусть динамическая система описывается уравнением

$$y^{(3)} + 5y^{(2)} + 2y^{(1)} + y = 4u^{(2)} + 6u^{(1)} + 3u$$
 (1.5)

с начальными условиями y(0)=1,  $y^{(1)}(0)=2$ ,  $y^{(2)}(0)=0$  и входным воздействием  $u=\sin t$ .

Заменим в (1.5) операцию дифференцирования оператором дифференцирования s=d/dt

$$s^{3}y + 5s^{2}y + 2sy + y = 4s^{2}u + 6su + 3u$$

и выразим слагаемое со старшей степенью s:

$$s^3y = -5s^2y - 2sy - y + 4s^2u + 6su + 3u$$
.

Разделив обе части на  $s^3$ , после элементарных преобразований окончательно получаем

$$y = \frac{1}{s}(4u - 5y) + \frac{1}{s^2}(6u - 2y) + \frac{1}{s^3}(3u - y).$$
 (1.6)

Таким образом, выходная переменная y представлена в виде суммы сигналов прямых и обратных связей, проинтегрированных соответствующее число раз. Схема моделирования, составленная на основе уравнения (1.6), приведена на рис.1.3.

Определим начальные условия интеграторов. Для удобства обозначим выходные сигналы интеграторов через  $z_1$ ,  $z_2$  и  $z_3$  (см. рис.1.3) и, следовательно, искомые начальные условия — через  $z_1(0)$ ,  $z_2(0)$  и  $z_3(0)$ . Так как  $z_1=y$ , то  $z_1(0)=y(0)=1$ . Далее, из схемы моделирования видно, что  $\dot{y}=\dot{z}_1=z_2+4u-5y$  и, следовательно,



Рис.1.3. Схема моделирования уравнения (1.6)

$$z_2 = \dot{y} - 4u + 5y. \tag{1.7}$$

Подставляя в (1.7) начальные значения сигналов y(0), u(0) и  $\dot{y}(0)$ , вычисляем начальное условие для второго интегратора (блок Int 2)

$$z_2(0) = \dot{y}(0) - 4u(0) + 5y(0) = 2 - 0 + 5 = 7$$
.

Так же из структурной схемы получаем, что  $\dot{z}_2 = z_3 + 6u - 2y$  и, следовательно,  $z_3 = \dot{z}_2 - 6u + 2y$ . Дифференцируя  $z_2$  в силу уравнения (1.7), окончательно получаем

$$z_3 = \ddot{y} - 4\dot{u} + 5\dot{y} - 6u + 2y. \tag{1.8}$$

Подставляя в (1.8) начальные значения соответствующих сигналов, вычисляем начальное условие для третьего интегратора (блок Int 3)

$$z_3(0) = \ddot{y}(0) - 4\dot{u}(0) + 5\dot{y}(0) - 6u(0) + 2y(0) = 0 - 0 + 10 - 0 + 2 = 12$$
.

Еще раз отметим, что мы рассматриваем начальные условия слева и, следовательно,  $u(0) = \dot{u}(0) = 0$ .

## Порядок выполнения работы.

- 1. Исследование модели вход-выход.
- 1.1. В соответствии с вариантом задания (см. табл.1.1), построить схему моделирования линейной динамической системы (1.1).
- 1.2. Осуществить моделирование системы при двух видах входного воздействия u = 1(t) и  $u = 2\sin t$  и нулевых начальных условиях. На экран выводить графики сигналов u(t) и y(t). Продолжительность интервала наблюдения выбрать самостоятельно.

- 1.3. Осуществить моделирование свободного движения системы, т.е. с нулевым входным воздействием и ненулевыми начальными условиями, заданными в табл.1.2. На экран выводить y(t).
  - 2. Исследование модели вход-состояние-выход.
- 2.1. В соответствии с вариантом задания (см. табл.1.3), построить схему моделирования линейной динамической системы (1.2a).
- 2.2. Осуществить моделирование линейной динамической системы при двух видах входного воздействия: u = 1(t) и  $u = 2\sin t$ . На экран выводить графики сигналов u(t) и y(t). Для всех вариантов начальное значение вектора состояния нулевое.
- 2.3. Осуществить моделирование свободного движения системы с начальными условиями, приведенными в табл. 1.4. На экран выводить y(t)

### Содержание отчета.

- **1.** Математические модели динамических систем и соответствующие им схемы моделирования.
  - 2. Расчет начальных условий интеграторов для п.1.3 программы исследований.
  - 3. Результаты моделирования (графики переходных процессов).
  - **4.** Выводы.

## Вопросы к защите лабораторной работы.

- **1.** Почему для моделирования динамических систем не используются блоки дифференцирования?
- **2.** Укажите условие физической реализуемости системы, описанной дифференциальным уравнением (1.1).
- **3.** С помощью каких команд пакета MATLAB можно рассчитать корни характеристического уравнения моделируемой системы?
  - **4.** Составьте схему моделирования уравнения  $\dot{y} + 3y = 2\dot{u} + 5u$ .
- **5.** Составьте по схеме моделирования дифференциального уравнения (1.5) (см. рис.1.3) модель вход-состояние-выход.

Варианты параметров моделей вход-выход

Таблица 1.1

| Вариант  | 1   | 2   | 3   | 4  | 5   | 6   | 7  | 8   | 9   | 10 | 11  | 12   |
|----------|-----|-----|-----|----|-----|-----|----|-----|-----|----|-----|------|
| Порядок  | 3   | 3   | 3   | 3  | 3   | 3   | 2  | 2   | 2   | 2  | 2   | 2    |
| модели п |     |     |     |    |     |     |    |     |     |    |     |      |
| $a_0$    | 9   | 5   | 5   | 8  | 7   | 15  | 7  | 2   | 1   | 25 | 30  | 0,12 |
| $a_1$    | 6   | 4   | 4   | 6  | 5   | 5   | 3  | 0,5 | 0,5 | 1  | 0,8 | 1    |
| $a_2$    | 3   | 3   | 2   | 2  | 2   | 10  |    | _   | _   | _  | _   | _    |
| $b_0$    | 12  | 2,5 | 7,5 | 12 | 10  | 15  | 10 | 4   | 2   | 25 | 30  | 0,1  |
| $b_1$    | 2   | 2   | 0   | 1  | 3   | 0,5 | 6  | 2   | 2   | 2  | 3   | 2    |
| $b_2$    | 0,1 | 3   | 5   | 10 | 1,5 | 1   | 0  | 0   | 0   | 0  | 0   | 0    |

Таблица 1.2 Варианты начальных условий моделей вход-выход

| Вариант  | 1   | 2    | 3    | 4    | 5    | 6   | 7   | 8 | 9    | 10 | 11  | 12 |
|----------|-----|------|------|------|------|-----|-----|---|------|----|-----|----|
| Порядок  | 3   | 3    | 3    | 3    | 3    | 3   | 2   | 2 | 2    | 2  | 2   | 2  |
| модели п |     |      |      |      |      |     |     |   |      |    |     |    |
| y(0)     | 1   | 1    | 1    | 1    | 1    | 1   | 1   | 1 | 1    | 1  | 1   | 1  |
| ý(0)     | 0,5 | -0,2 | -0,4 | 0,1  | -0,5 | 0,5 | 0,4 | 1 | -0,5 | 0  | 0,5 | 0  |
| ÿ(0)     | 0   | 0,1  | 0,2  | -0,1 | 0    | 0,1 | _   |   |      | _  |     |    |

Варианты значений матриц A, B и C

Таблица 1.3

| Вариант | n | A                                                  | В        | $C^{T}$   | Вариант | n | A                                                                            | В               | $C^{T}$         |
|---------|---|----------------------------------------------------|----------|-----------|---------|---|------------------------------------------------------------------------------|-----------------|-----------------|
| 1       | 2 | $\begin{vmatrix} 0 & 1 \\ -6 & -1,5 \end{vmatrix}$ | 0<br> 6  |           | 7       | 3 | $\begin{vmatrix} -3 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & -6 & -1 \end{vmatrix}$       | 1<br>0<br>1     | 0,5<br>2,5<br>0 |
| 2       | 2 | $\begin{vmatrix} 0 & -2 \\ 1 & -0.5 \end{vmatrix}$ | 0,5      | 4 <br> 0  | 8       | 3 | $\begin{vmatrix} -1 & 4 & 3 \\ 0 & 0 & -4 \\ 0 & 1 & -0.5 \end{vmatrix}$     | 1 <br> 2 <br> 0 | 0,25            |
| 3       | 2 | 0 1   -3 -0,5                                      | 0,5      | 0,2       | 9       | 3 | $\begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -4 & -2,5 \end{vmatrix}$     | 0,1             | 2   0   0,2     |
| 4       | 2 | $\begin{vmatrix} 0 & -4 \\ 1 & -1 \end{vmatrix}$   | 0,5      | 0<br> 8   | 10      | 3 | $\begin{vmatrix} 0 & 0 & -10 \\ 1 & 0 & -7 \\ 0 & 1 & -3 \end{vmatrix}$      | 5<br>0<br>0,2   | 0 0,1 2         |
| 5       | 2 | 0 1   -5 -0,5                                      | 0,5      | 5<br> 0,5 | 11      | 3 | $ \begin{vmatrix} 0 & 1 & 1 \\ -4 & -1 & 2 \\ 0 & 1 & -2 \end{vmatrix} $     | 0<br> 2<br> 1   | 1<br>0<br>0,5   |
| 6       | 2 | 0 -12<br>1 -0,8                                    | 2 <br> 0 | 3 0,1     | 12      | 3 | $\begin{vmatrix} 0 & -15 & 2 \\ 1 & -0.5 & 0 \\ 0 & 0 & -0.25 \end{vmatrix}$ | 2<br>0<br>0,5   | 0 2 0,25        |

Варианты начальных условий автономных систем

Таблица 1.4

| Вариант    | 1   | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9   | 10  | 11  | 12  |
|------------|-----|------|------|------|------|------|------|------|-----|-----|-----|-----|
| $x_1(0)$   | 1   | 0,5  | 0,5  | -0,5 | 0,2  | 0,33 | -0,2 | 0    | 0,5 | 3   | 0,5 | -5  |
| $x_2(0)$   | 0,5 | 0,25 | -0,4 | 0,13 | -0,1 | -0,5 | 0,4  | 1    | 2   | 0   | -2  | 0,5 |
| $x_{3}(0)$ | _   | _    | _    | _    | _    | _    | 0,1  | -0,1 | 0   | 0,5 | 0   | 0   |