EXERCISES 12.1

Specify the domains of the functions in Exercises 1-10.

1.
$$f(x, y) = \frac{x + y}{x - y}$$

$$2. \ f(x,y) = \sqrt{xy}$$

Sketch some of the level curves of the functions in Exercises 19-26

19.
$$f(x, y) = x - y$$

20.
$$f(x, y) = x^2 + 2y^2$$

21.
$$f(x, y) = x$$

21.
$$f(x, y) = xy$$
 22. $f(x, y) = \frac{x^2}{y}$

23.
$$f(x,y) = \frac{x-y}{x+y}$$

23.
$$f(x, y) = \frac{x - y}{x + y}$$
 24. $f(x, y) = \frac{y}{x^2 + y^2}$

25.
$$f(x, y) = xe^{-x}$$

25.
$$f(x, y) = xe^{-y}$$
 26. $f(x, y) = \sqrt{\frac{1}{y} - x^2}$

3.
$$f(x, y) = \frac{x}{x^2 + y^2}$$
 4. $f(x, y) = \frac{xy}{x^2 - y^2}$

4.
$$f(x, y) = \frac{xy}{x^2 - y^2}$$

5.
$$f(x, y) = \sqrt{4x^2 + 9y^2 - 36}$$

EXERCISES 12.4

In Exercises 1-6, find all the second partial derivatives of the given

1.
$$z = x^2(1 + y^2)$$

2.
$$f(x, y) = x^2 + y^2$$

3.
$$w = x^3 y^3 z^3$$

4.
$$z = \sqrt{3x^2 + y^2}$$

5.
$$z = x e^y - y e^x$$

6.
$$f(x, y) = \ln(1 + \sin(xy))$$

EXERCISES 12.3

In Exercises 1-10, find all the first partial derivatives of the function specified, and evaluate them at the given point.

1.
$$f(x, y) = x - y + 2$$
, (3,2)

2.
$$f(x, y) = xy + x^2$$
, (2,0)

3.
$$f(x, y, z) = x^3 y^4 z^5$$
, $(0, -1, -1)$

4.
$$g(x, y, z) = \frac{xz}{y+z}$$
, (1, 1, 1)

5.
$$z = \tan^{-1}\left(\frac{y}{x}\right)$$
, $(-1, 1)$

6.
$$w = \ln(1 + e^{xyz}), (2, 0, -1)$$

7.
$$f(x, y) = \sin(x\sqrt{y}), \quad (\frac{\pi}{3}, 4)$$

8.
$$f(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$$
, (-3, 4)

9.
$$w = x^{(y \ln z)}$$
, $(e, 2, e)$

10.
$$g(x_1, x_2, x_3, x_4) = \frac{x_1 - x_2^2}{x_3 + x_4^2}$$
, (3, 1, -1, -2)

In Exercises 11-12, calculate the first partial derivatives of the given functions at (0,0). You will have to use Definition 4.

given functions at (0, 0). You will have to use Definition 11.
$$f(x, y) = \begin{cases} \frac{2x^3 - y^3}{x^2 + 3y^2}, & \text{if } (x, y) \neq (0, 0) \\ 0, & \text{if } (x, y) = (0, 0). \end{cases}$$
12. $f(x, y) = \begin{cases} \frac{x^2 - 2y^2}{x - y}, & \text{if } x \neq y \\ 0, & \text{if } x = y. \end{cases}$

12.
$$f(x, y) = \begin{cases} \frac{x^2 - 2y^2}{x - y}, & \text{if } x \neq y \\ 0, & \text{if } x = y. \end{cases}$$

In Exercises 13-22, find equations of the tangent plane and normal line to the graph of the given function at the point with specified values of x and y.

13.
$$f(x, y) = x^2 - y^2$$
 at $(-2, 1)$

14.
$$f(x, y) = \frac{x - y}{x + y}$$
 at $(1, 1)$

15.
$$f(x, y) = \cos(x/y)$$
 at $(\pi, 4)$

16.
$$f(x, y) = e^{xy}$$
 at $(2, 0)$

17.
$$f(x, y) = \frac{x}{x^2 + y^2}$$
 at (1, 2)

18.
$$f(x, y) = y e^{-x^2}$$
 at $(0, 1)$

19.
$$f(x, y) = \ln(x^2 + y^2)$$
 at $(1, -2)$

20.
$$f(x, y) = \frac{2xy}{x^2 + y^2}$$
 at $(0, 2)$

21.
$$f(x, y) = \tan^{-1}(y/x)$$
 at $(1, -1)$

22.
$$f(x, y) = \sqrt{1 + x^3 y^2}$$
 at (2, 1)

23. Find the coordinates of all points on the surface with equation $z = x^4 - 4xy^3 + 6y^2 - 2$ where the surface has a horizontal tangent plane.

24. Find all horizontal planes that are tangent to the surface with equation $z = xye^{-(x^2+y^2)/2}$. At what points are they tangent?

EXERCISES 12.5

In Exercises 1-4, write appropriate versions of the Chain Rule for the indicated derivatives.

1.
$$\frac{\partial w}{\partial t}$$
 if $w = f(x, y, z)$, where $x = g(s, t)$, $y = h(s, t)$, and $z = k(s, t)$

2.
$$\partial w/\partial t$$
 if $w = f(x, y, z)$, where $x = g(s)$, $y = h(s, t)$, and $z = k(t)$

3.
$$\partial z/\partial u$$
 if $z=g(x,y)$, where $y=f(x)$ and $x=h(u,v)$

4.
$$dw/dt$$
 if $w = f(x, y), x = g(r, s), y = h(r, t), r = k(s, t),$ and $s = m(t)$

5. If
$$w = f(x, y, z)$$
, where $x = g(y, z)$ and $y = h(z)$, state appropriate versions of the Chain Rule for $\frac{dw}{dz}$, $\left(\frac{\partial w}{\partial z}\right)_{x}$,

and
$$\left(\frac{\partial w}{\partial z}\right)_{x,y}$$
.

6. Use two different methods to calculate
$$\partial u/\partial t$$
 if $u = \sqrt{x^2 + y^2}$, $x = e^{st}$, and $y = 1 + s^2 \cos t$.

7. Use two different methods to calculate
$$\partial z/\partial x$$
 if $z = \tan^{-1}(u/v)$, $u = 2x + y$, and $v = 3x - y$.

8. Use two methods to calculate
$$dz/dt$$
 given that $z = txy^2$, $x = t + \ln(y + t^2)$, and $y = e^t$.

In Exercises 9-12, find the indicated derivatives, assuming that the function f(x, y) has continuous first partial derivatives.

9.
$$\frac{\partial}{\partial x} f(2x, 3y)$$
 10. $\frac{\partial}{\partial x} f(2y, 3x)$

10.
$$\frac{\partial}{\partial x} f(2y, 3x)$$

11.
$$\frac{\partial}{\partial x} f(y^2, x^2)$$

11.
$$\frac{\partial}{\partial x} f(y^2, x^2)$$
 12. $\frac{\partial}{\partial y} f(yf(x, t), f(y, t))$