ΔΙΑΓΏΝΙΣΜΑ ΣΤΟ 3ο ΚΕΦΆΛΑΙΟ

Όνομα: .			• •	• •		٠.	•	• •	•	•		•	• •	•	•	•	٠.	•	•	• •	•	٠.	•	•		•	•		•	•	• •	•	• •		•
----------	--	--	-----	-----	--	----	---	-----	---	---	--	---	-----	---	---	---	----	---	---	-----	---	----	---	---	--	---	---	--	---	---	-----	---	-----	--	---

Βαθμός:

ΘΕΜΑΑ (/25M)

A1. Αν η
$$f$$
 είναι συνεχής στο $[\alpha,\beta]$ και η G είναι αρχική της f τότε ισχύει:
$$\int\limits_{\alpha}^{\beta} f(t) \, dt = G(\beta) - G(\alpha)$$

(15 Μονάδες)

Α2. Να σημειώσετε το Σ (Σωστό) ή Λ (Λάθος) στα παρακάτω:

i. Αν η F είναι αρχική της συνεχούς συνάρτησης f και α στο πεδίο ορισμού της, τότε $(\int\limits_{\alpha}^{x}f(x)dx)'=F(x)$

ii. Αν μια συνάρτηση f είναι συνεχής στο διάστημα Δ και lpha , eta , γ \in Δ , τότε ισχύει

$$\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\gamma} f(x) dx + \int_{\gamma}^{\delta} f(x) dx$$

iii. Αν f , g , g ' συνεχείς συναρτήσεις στο διάστημα [α,β], τότε: $\int\limits_{\alpha}^{\beta} f(x) \cdot g'(x) dx = \int\limits_{\alpha}^{\beta} f(x) dx \cdot \int\limits_{\alpha}^{\beta} g'(x) dx$

iv. Το εμβαδόν του χωρίου Ω_1 και Ω_2 στο παρακάτω σχήμα είναι ίσο με: $\int\limits_a^\beta |f(x)|\,dx$

ν. Αν f η συνάρτηση που η γραφική παράστασή της φαίνεται στην παρακάτω εικόνα και αν $E(\Omega_1) = E(\Omega_3) = 2$

και
$$E(\Omega_2)$$
=4, τότε το: $\int_{\alpha}^{\delta} f(x) dx$ =0

(2ΜΧ5=10 Μονάδες)

ΘEMAB (/25M)

Να υπολογίσετε τα παρακάτω ολοκληρώματα:

B1.
$$\int_{0}^{1} \frac{\sigma \upsilon vx - \eta \mu x}{e^{x}} dx \qquad (12 \text{ Movάδες}) \qquad \textbf{B2.} \int_{\frac{\pi}{3}}^{\frac{5\pi}{12}} \frac{1}{\eta \mu x \cdot \sigma \upsilon vx \cdot \ln(\varepsilon \varphi x)} dx \qquad (13 \text{ Movάδες})$$

Θ EMAΓ (/25M)

Γ1. Αν $f: \mathbb{R} \to \mathbb{R}$ συνεχής συνάρτηση με $\int\limits_{2}^{x} f(t) dt \ge x^2 - 4$ για κάθε $x \in \mathbb{R}$. Να βρεθεί η τιμή της f στο $x_o = 2$

(12,5 Μονάδες)

Γ2. Αν η f είναι συνεχής στο [0,1] και $\int\limits_0^1 f(t)dt < 1$ και 0 < f(x) < 1, για κάθε $x \in [0,1]$. Να αποδείξετε ότι η εξίσωση $1 + \int\limits_0^x f(t)dt = 2x$ έχει μοναδική ρίζα στο (0,1)

(12,5 Μονάδες)

Θ EMA Δ (/25M)

Δ1. Να βρεθεί το εμβαδόν του χωρίου που σχηματίζει η C_f της συνάρτησης $f(x) = \frac{x^3 + 3x^2 - x - 1}{x + 2}$ με τον άξονα x'x

(12,5 Μονάδες)

Δ2. Να βρεθεί το εμβαδόν του χωρίου που σχηματίζει η C_g της συνάρτησης $g(x) = e^{2\cdot(x-1)} - (e^2+1)\cdot e^{x-2} + 1$ με τον άξονα x ' x

(12,5 Μονάδες)

ΔΙΆΡΚΕΙΑ: 2 ώρες και 30 λεπτά

