# CERN Mock-up test results

LONG RUN

- 1. Setting up the Mock-up
- 2. LN2 tests
  - a) Overall conditions of the tes
  - b) Stress test
  - c) Long stay test
- 3. LAr tests
  - a) Overall conditions of the test
  - b) Stress test and long stay tes
  - c) Humidity tests
- 4. Conclusion

DarkSide20K Calibration Meeting 17/07/2023

P. Barrillon<sup>(1)</sup>, L. Boistay<sup>(2)</sup>, F. Hubaut<sup>(1)</sup>, P. Pralavorio<sup>(1)</sup>, P. Skensved<sup>(3)</sup>, M. Van Uffelen<sup>(1)</sup>, Cryolab<sup>(2)</sup>

# Mock-up INTRODUCTION

Determine robustness of calibration system at cold, and during a long period (LN2 then LAr).

|               | MU_CShort                                                         |  | MU_CLong           |  | MU_Warm                             |  |  |
|---------------|-------------------------------------------------------------------|--|--------------------|--|-------------------------------------|--|--|
| Purpose       | Robustness against ice formation, source blocked, bend, pipe leak |  |                    |  | Behaviour in bends,<br>DS20k Length |  |  |
| Temp. (K)     | LN2 (77)                                                          |  | LN2 (77), LAr (88) |  | Room (290)                          |  |  |
| Location      | СРРМ                                                              |  | CERN               |  | СРРМ                                |  |  |
| Pipe lgth (m) | 4                                                                 |  | 2                  |  | 15 (~DS-20k)                        |  |  |
| Nb bends      | 2                                                                 |  | 1                  |  | 15 (11, 7)                          |  |  |
| Runs          | 09+11/22, <b>03/23</b>                                            |  | 1 month @ June 23  |  | 03-04/23                            |  |  |
|               |                                                                   |  |                    |  |                                     |  |  |

Huge thanks to the CERN Cryolab for providing and running the Cryostat, the LN2 and the LAr

#### Mock-up

TEST'S SCHEDULE



#### Pseudo-source

- L = 5.5cm
- $\phi$  = 2.5 cm
- M= O(100) g



#### In CERN Cryolab, building 159

- 30/05-2/06 : Installation
- 5-9/06 : Settings
- 9-26/06 : LN2 tests
- 26/06-03/07: Warming up Cryo to put LAr
- 03-17/07 : LAr tests



The tube cap is **not fully hermetic** because of rope and gN2 flushing

The cryostat is **not fully adiabatic** 

- → Need constant refill with LN2
- → Only one fill for LAr

4 PT100 probes (A, B, C, D)

60cm

~40 cm

LN2

1.3 meter of useful tube (from A to D)

# Liquid Nitrogen tests

#### Mock-up

COMPARISON WITH CPPM MOCK-UP (FIRST 8 HOURS)



#### Temperature of A, B, C, D



#### **Tension**



#### Conclusion

- Left gN2 flushing at 60L/h
- $T_A \le T_{LAr}$  for only 5h after filling
  - Tension 12-40N



28/06/2023





- Left gN2 flushing at 60L/h
- $T_A$ ,  $T_B$ ,  $T_C$  always below  $T_{LAr}$  once filled
  - Tension 5-25N

Motorized Systems work at CERN.

#### Overall conditions of the test

ICE FORMATION MITIGATION



<u>Pictures are cropped to be visible so do not pay attention on sizes, more on shapes.</u>

The rope on the corner of tube to take the picture, in center usually

Ice turns into frost after 1 day of large gN2 flush on both sides → Stable conditions for test

### Test conditions for LN2 (18 days)

TEMPERATURE OF PT100 AND TANK FILLING





- **Filling process is automatic** (no auto-filling on the T<sub>A</sub>, T<sub>B</sub>, T<sub>C</sub> always below T<sub>LAr</sub> for 18 days weekends and on Wednesday)
- Flushing at 120L/h (2x60 with T)

- $T_D \in [-190, -100] \, {}^{\circ}C$

#### Stress test with LN2

PROGRAM

The goal is to check robustness of the Mock-up

- Back and forth (b&f) from the cold garage to
   PT100 A (2x 1,3m) with a ~1min stop at the edges (~1 cm/s)
- 35 b&f/day (~3h) for 8 days
   In D\$20K, 8 sources so 4b&f and 20m tube
  - → 280 b&f → 70x **DS20k**
  - → ~740m → 5x **DS20k**



#### Stress test with LN2



28/06/2023



 DS2 tension around 24N, no visible impact of tube geometry

DS4 tension lower, and reflects the tube geometry





#### **Typical tension for DS2**



DS2 tension: two days at 25-30N at worst



#### Stress test with LN2

RESULTS (SECOND WEEK)

10min break during the test



The tension is stable

### Long stay test with LN2

PROGRAM FOR THE TEST

The goal is to check how the motors react when the source is left for a long time at a PT100 step.

We left the source at different spots for different periods of time (1min, 10min, 30min, 1h, 2h, a night, a weekend)

| Source                      | <sup>57</sup> Co | <sup>133</sup> Ba | <sup>22</sup> Na | <sup>137</sup> Cs | <sup>60</sup> Co | AmBe      | AmC    | AmLi   |
|-----------------------------|------------------|-------------------|------------------|-------------------|------------------|-----------|--------|--------|
| Energy (keV)                | 122              | 356               | 511              | 662               | 1173             | [0.2, 12] | [2, 7] | [0, 2] |
| Activity (side) (kBq)       | 18               | 1,9               | 0,36             | 2,2               | 0,36             | 0,14      | 0,15   | -      |
| Activity (bottom) (kBq)     | 100              | 5                 | 0,67             | 4,6               | 0,6              | 0,18      | 0,18   | -      |
| Duration of calibration (h) | 3,84             | 18,72             | 23,52            | 36                | 74,4             | 200       | 200    | -      |
| Time on each spot           | 12'              | 1h50'             | 2h20             | 3h45'             | 8h               | 22h       | 22h    | -      |



#### Long stay test with LN2

TENSION AFTER STOP



When the source is moved from its staying position, extract maximal tension 10s after the start of the move

Tension plot during one test

15.0

 $10^{0}$ 

 $10^{1}$ 

 $10^{2}$ 

Time on position (min)

 $10^{3}$ 

#### Long stay test with LN2

TENSION AFTER STOP





Tension is not related to the duration of the stay at the same position

# Liquid Argon tests

#### Mock-up - LAr

**SETUP** 



+2 humidity sensors 10cm below



## Test conditions for LAr (17 days)

TEMPERATURE OF PT100 AND TANK FILLING



- Only one fill of LAr in tank
- Flushing at 60L/h (no LN2 in tube → no T)

- T<sub>A</sub>, T<sub>B</sub> always at T<sub>LAr</sub> for ?? days
- $T_D, T_C \in [-186, -30] \, {}^{\circ}C$

#### Tank filling with LAr

- Td

- Monday 26/06:
   Start the heating process.
   Small heater placed in the tank.
- Thursday 29/06:
   Heating process
   accelerated: larger heater
   inside the tank, lid of the
   tank removed
- Friday 30/06:
   End of the active heating process, letting tank heat with ambient temperature.
- Monday 03/07:
   Filling of the cuve with LAr

Data file begins at: 2023-06-07 12:51:32 Data file finishes at: 2023-07-07 14:20:17



#### Overall conditions of the test

ICE FORMATION MITIGATION

**Friday 07/07 Monday 03/07** Tuesday 04/07 Date Wednesday 05/07 <u>1- Some Ice formation on</u> both side → Want more to check Left Side how ice can be (DS4) mitigated 2- Breathing into tube → Increase humidity to Right Side 100% (DS2) → Ice formation increased → Need to check if it is ice or frost

<u>Pictures are cropped to be visible so do not pay attention on sizes, more on shapes.</u>

The rope on the corner of tube to take the picture, in center usually

Ice formation increased, need to check what type and if it changes tension

### Ice/Frost identification (on DS2)



Soft frost removed with the stick

The top part is frost (~1mm thick)
Same on DS4

### Tension during stress test

- At beginning, tension very high
  - → Reposition of the motors to be in straightly in front of the cap centers
  - → Once again after adding humidity sensors
- Tension value about same value as LN2 testing
- → Tension value stable and comparable to LN2



### Long stay test (one night)



Source left at D for 16h, no high tension after moving it back to A (DS4)

## Long stay test (5 days)



Source left at D for 16h, no high tension after moving it back to A (DS4)

## Long stay test (6 days)



Source left at D for 16h, no high tension after moving it back to A (DS4)

### Humidity test 1/3 – Without moving source

- Vary gn2 flushing F and measure humidity when source at two positions: top-left (D), bottom (A)
- Determine F which remove humidity "instantly" (<=5min) → F<sub>threshold</sub>
- Source Top-left: V<sub>before</sub> small
  - $\rightarrow$  60 < F<sub>threshold</sub> < 120 L/h
  - $\rightarrow$  Measure :  $F_{threshold} = 100L/h$
- Source Bottom: V<sub>before</sub> larger
  - $\rightarrow$  120 < F<sub>threshold</sub> < 250 L/h
  - $\rightarrow$  Measure :  $F_{threshold} = 150L/h$

→ Assuming same scaling, F<sub>threshold</sub> for DS20k with source at bottom might be around 300L/h



# Humidity test 2/3 – Moving source at A

- Pseudo-source in position A
- Blow in tube from both sides to increase humidity at maximum and remove gN2
   Extreme nonrealistic scenario
- → After 5min, both humidity are at 100%
- $\rightarrow$  A $\rightarrow$  D $\rightarrow$  A: +23N/+15N wrt normal
- After 15min, put back the top caps and gN2 at 120L/h
- → After 1h30, both humidities at 0%
- → A→ D → A: +20N/+15N wrt normal but back to normal after 3 times



## Humidity test 2/3 – Moving source at B

- Pseudo-source in position B
- Blow in tube from both sides to increase humidity at maximum and remove gN2
  - = Extreme nonrealistic scenario
- → After 5min, both humidity are at 100%
- $\rightarrow$  A $\rightarrow$  D $\rightarrow$  A: +12N/+11N wrt normal
- After 15min, put back the top caps and gN2 at 120L/h
- → After 1h30, both humidities at 0%
- $\rightarrow$  A $\rightarrow$  HG\*  $\rightarrow$  CG\*: +12N/+9N wrt normal

\*HG: Hot Garage
\*CG: Cold Garage



#### Humidity test 3/3 – After night

Pseudo-source in position Cold garage for 1 night

 $CG^* \rightarrow D \rightarrow A : +8N/+5N$  wrt normal

→ With long-time flushing, maximum tension due to ice formation decreases

\*HG: Hot Garage

\*CG: Cold Garage



#### Conclusion

LN2 MOCK-UP TEST

- Run at CERN for one month (1,3m of useful tube)
  - ✓ Liquid in the tube 50cm from top with LN2 → T pipe
  - ✓ Ice formation mitigated using gN2 → Frost
  - ✓ Average tension 15-30N during stress test

✓ No big impact on tension when stopping for different

periods

Robust behavior of calib system at LN2 and LAr temperature for 2 weeks each

| Liquid in tank                  | LN2                | LAr           |  |
|---------------------------------|--------------------|---------------|--|
| Speed of the source (cm/s)      | 1                  | 1             |  |
| Position Accuracy (cm)          | <u>±</u> 1         | <u>±</u> 1    |  |
| Tension (N)                     | 15-30              | 15-30         |  |
| Ice formation (block)           | Mitigated with gN2 | On<br>purpose |  |
| Total Length for one source (m) | 740                | >100          |  |
| Total nb of back&forth / pipe   | 280                | >40           |  |

|                                    | DS-20k                     | MU_CS     | MU_CL    | MU_W      |  |  |
|------------------------------------|----------------------------|-----------|----------|-----------|--|--|
|                                    | General                    |           |          |           |  |  |
| Goals                              | NA                         | Cold      | Robust   | bends     |  |  |
|                                    |                            | behav.    | at cold  | scale 1:1 |  |  |
| Availability                       | 10/24                      | 09/22     | 05/23    | 02/23     |  |  |
| Runs                               | >02/26                     | 2022-23   | 2023     | 2023      |  |  |
|                                    | Conditions                 |           |          |           |  |  |
| Temperature (K)                    | 88                         | 77        | 77 88    | 290       |  |  |
| Usage time / run (days)            | 30                         | 0.3       | 18 5     | 0.3       |  |  |
| Location                           | LNGS                       | CPPM      | CERN     | CPPM      |  |  |
|                                    | Mechanics                  |           |          |           |  |  |
| Pipe Total length (m)              | 20                         | $\sim 4$  | $\sim 2$ | ~15       |  |  |
| Pipe thickness (mm)                | 1.5                        | 1.65      | 1.5      | 1.5       |  |  |
| Pipe internal Diameter (mm)        | 30                         | 30        | 33       | 30        |  |  |
| Pipe Material                      | SS                         | Ti, SS    | SS       | Plastic   |  |  |
| Nb of Bends / pipe ( $\phi$ =30cm) | 14, 15                     | 2         | 1        | 15        |  |  |
| Source length (cm)                 | TBD                        | 3         | 5        | 5         |  |  |
| Source diameter (cm)               | TBD                        | 1/        | 2.5      | 2.5       |  |  |
|                                    | Requirements / Performance |           |          |           |  |  |
| Speed of the source (cm/s)         | > 1                        | <b>1</b>  |          | 2         |  |  |
| Position Accuracy (cm)             | ±1                         | <b>±1</b> | -   -    | ±1        |  |  |
| Tension (N)                        | < 150                      | 25-40     | _   _    | 60-90     |  |  |
| Ice formation (block)              | No                         | No        | -   -    | NA        |  |  |
| Total Lenght for one source (m)    | 100                        | > 100     | _   _    | > 100     |  |  |
| Total nb of back&forth / pipe      | 10                         | 44        | _        | >6        |  |  |
| <u> </u>                           |                            |           |          |           |  |  |