1	A simple mechanistic explanation for original antigenic sin and its alleviation
2	by adjuvants
3	
4	SUPPLEMENTARY TABLE AND FIGURES
5	
6	
7	Wilfred Ndifon
8	African Institute for Mathematical Sciences, Muizenberg 7945, Cape Town, South Africa, &
9	P.O. Box LG 197 Legon, Ghana, and Stellenbosch University, South Africa
10	
11	
12	
13	Address for correspondence:
14	Wilfred Ndifon
15	African Institute for Mathematical Sciences
16	6 Melrose Rd, Muizenberg
17	Cape Town 7945, South Africa
18	Tel: +27 (0) 21 787 9342
19	Email: wndifon@aims.ac.za
20	

21 Table S1. Variables and parameters of the mathematical model

Variable or parameter	Definition (units)	Value (Ref.)
V	Infectious virus titer (EID ₅₀ /ml)	Measured [1]?
E ⁻	No. uninfected target cells	Calculated
E	No. infected target cells	Calculated
R	No. activated Treg cells	Calculated
В	No. activated B cells	Calculated
А	IgG titer in serum (pg/ml)	Measured [1]?
D	Antigen dose loaded by dendritic cells	Calculated
A(0)/B(0)/	Initial values of indicated variables	0
E(0)/R(0)/		
D(0)		
E ⁻ (0)=E ₀	Initial no. uninfected target cells	2e5 [1]?
V(0)	Initial concentration of infecting virus (EID ₅₀ /ml)	1.5e3 [1]?
p _E	Renewal rate of target cells (day ⁻¹)	1e-3 [1]2
C _V	Rate of nonspecific virus clearance (EID ₅₀ /ml/day)	4 [1]2
β _E	Infection rate of target cells (ml/EID ₅₀ /day)	5e-6 [1]2
€ _V	Production rate of infectious virus per infected target cell (EID ₅₀ /ml/day)	1e2 [1]2
b _B /b _R	Max. activation rate of naive B/Treg cells (day ⁻¹)	3 [2]2
p _B /p _R	Max. proliferation rate of B/Treg cells (day ⁻¹)	8e-1
€ _A	Production rate of IgG antibody by B cells	6e-2 [2]?
$\delta_{\text{B}}/\delta_{\text{R}}$	Death rate of B/Treg cells (day ⁻¹)	1e-1 [2]?
δ_{E}	Death rate of infected epithelial cells (day ⁻¹)	1.2 [1]2
δ_{A}	Clearance rate of IgG antibody (day ⁻¹)	4e-2 [2]?
S	Avg. no. antibodies for virus neutralization	3 [3]2

q	Avg. no. dendritic cell-loaded antigens for lymphocyte activation	1
C _A	Rate constant for virus neutralization by IgG (ml/pg/day)	1e2
τ_n/τ_a	Antigen dose for half-maximal (re)activation of naïve/pre-activated Treg cells	1e-1/1e-2*
η_n/η_a	Antigen dose for half-maximal (re)activation of naïve/pre-activated B cells	1e-1/1e-2*
λ	Antibody concentration for half-maximal neutralization of virus (pg/ml)	1e3
β_{D}	Rate of antigen loading by dendritic cell (ml/EID ₅₀ /day)	1e-3
k _R	Rate of antigen de-loading by dendritic cell under the influence of Treg cells (day ⁻¹)	1e-1

^{*}Previously activated lymphocytes have much lower (re)activation thresholds than naive lymphocytes [4].

26 Figure S1

OAS vs. cross-reactivity

OAS peaks at intermediate cross-reactivity. I simulated the sequential infection of mice by $1500 \text{ EID}_{50}/\text{ml}$ of strain V1 followed 28 days later by the same amount of a cross-reacting strain V2, while varying the cross-reactivity between both strains from 0 to 1. I then simulated a challenge infection by V2 occurring 28 days after the last infection. I plottedthe peak amount of V2 that was produced in each challenged mouse (calculated as the peak virus load minus the challenge dose) as a function of cross-reactivity.

34 Figure S2

Weaker effect of adjuvant during 1° vs. 2° infection

Adjuvants are less effective when given during the first infection. I simulated the sequential infection of mice by 1500 EID50/ml of strain V1 followed 28 days later by the same amount of a cross-reacting strain V2 (cross-reactivity σ =10%). I then simulated a challenge infection by V2 occurring 28 days after the last infection, after infection by V2 alone (immune control), and after no prior infection (naïve control). I simulated the injection of mice with dendritic cell-activating adjuvants during infection by V2, by increasing the rate at which dendritic cells load antigens from an initial value of 10-3 ml/EID50/day to either 10-1 ml/EID50/day (denoted Adj in the plot) or 10 ml/EID50/day (denoted 100*Adj). I plotted (on a log-scale) the peak amount of V2 that was produced in each challenged mouse (calculated as the peak virus load minus the challenge dose).. As in the text, I use "PBS" to denote the absence of a first (respectively second) infection. Strikingly, a simulated 10 fold increase in adjuvant strength confers a sterilizing immunity against the challenge infection

- 48 when administered during the second infection, but has a more modest effect during the
- 49 first infection. Compared to the second infeciton, a much stronger adjuvant is needed
- 50 during the first infection in order to produce a sterilizing immunity against the challenge
- 51 infection.

References

53 54	1. Miao, H., Hollenbaugh, J. A., Zand, M. S., Holden-Wiltse, J., Mosmann, T. R., Perelson, A. S., Wu, H. & Topham, D. J. 2010 Quantifying the early immune response and adaptive
55	immune response kinetics in mice infected with influenza A virus. <i>J. Virol.</i> 84 , 6687–
56	98. (doi:10.1128/JVI.00266-10)
57 58	2. Lee, H. Y. et al. 2009 Simulation and prediction of the adaptive immune response to influenza A virus infection. <i>J. Virol.</i> 83 , 7151–7165. (doi:10.1128/JVI.00098-09)
59	3. Ndifon, W., Wingreen, N. S. & Levin, S. A. 2009 Differential neutralization efficiency of
60	hemagglutinin epitopes, antibody interference, and the design of influenza vaccines.
61	Proc. Natl. Acad. Sci. U. S. A. 106 , 8701–8706.
62	4. Pihlgren, M., Dubois, P. M., Tomkowiak, M., Sjögren, T. & Marvel, J. 1996 Resting memory
63	CD8+ T cells are hyperreactive to antigenic challenge in vitro. J. Exp. Med. 184, 2141–
64	2151.
65	
66	