STL20N6F7

N-channel 60 V, 0.0046 Ω typ., 20 A STripFET™ F7 Power MOSFET in a PowerFLAT™ 3.3x3.3 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	I _D
STL20N6F7	60 V	0.0054 Ω	20 A

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL20N6F7	20N6F	PowerFLAT™ 3.3x3.3	Tape and reel

Contents STL20N6F7

Contents

1	Electrical ratings3			
2	Electric	eal characteristics	4	
	2.1	Electrical characteristics	5	
3	Test cir	cuits	7	
4	Packag	e mechanical data	8	
	4.1	PowerFLAT 3.3x3.3 package information	9	
5	Revisio	n history	12	

STL20N6F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V_{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	100	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	61	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	400	Α
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 25 °C	20	Α
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 100 °C	12	Α
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed) 80		Α
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	78	W
P _{TOT} ⁽³⁾	Total dissipation at T _{pcb} = 25 °C	3	W
T _{stg}	Storage temperature	55 to 150	°C
Tj	Operating junction temperature	-55 to 150 °C	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max.	42.8	°C/W
R _{thj-case}	Thermal resistance junction-case max.	1.6	°C/W

Notes

 $^{^{(1)}\!} This$ value is rated according to $R_{thj\text{-c}}.$

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(3)}\! \}text{This value}$ is rated according to $R_{\text{thj-pcb}}.$

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 sec.

Electrical characteristics STL20N6F7

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	60			V
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V V _{DS} = 60 V			1	μΑ
I _{GSS}	Gate-body leakage current	V _{GS} = 20 V, V _{DS} = 0			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 10 A		0.0046	0.0054	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1600	1	pF
C _{oss}	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	-	880	1	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	66	-	pF
Q_g	Total gate charge	.,	-	25	1	nC
Q_{gs}	Gate-source charge	$V_{DD} = 30 \text{ V}, I_D = 20 \text{ A},$ $V_{GS} = 10 \text{ V}$	-	7.2	-	nC
Q_{gd}	Gate-drain charge	VG3 - 10 V	-	8.1	1	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_{D} = 10 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	15	1	ns
t _r	Rise time		-	17.6	-	ns
t _{d(off)}	Turn-off delay time		-	24.4	-	ns
t _f	Fall time		-	7.8	-	ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	$I_{SD} = 20 \text{ A}, V_{GS} = 0$	1		1.2	V
t _{rr}	Reverse recovery time		1	39.6		ns
Q _{rr}	Reverse recovery charge	$I_D = 20 \text{ A},$ $di/dt = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 48 \text{ V}$	-	36		nC
I _{RRM}	Reverse recovery current		-	1.8		Α

Notes:

577

 $^{^{(1)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics

Figure 3: Thermal impedance $K = \frac{\text{GIPG1006150DCL20ZTH}}{\delta = 0.5}$ $\frac{\delta = 0.2}{\delta = 0.02}$ $\frac{\delta = 0.02}{\delta = 0.01}$ $\frac{\delta = 0.02}{\delta = 0.01}$ $\frac{\delta = t_p/T}{\int_{t_p}^{t_p} \left(\frac{t_p}{t_p} \right)^{1/2}}$ 10^{-2} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} t_p t_p t_p

Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG100615OD6CL20VTH I_D = 250 μA 1.1 1.0 0.9 0.7 0.6 0.5 0.4 -75 ਰੂ (°C) -25 25 75 125

STL20N6F7 Test circuits

AM01468v1

AM01470v1

3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

8/13 DocID027433 Rev 3

4.1 PowerFLAT 3.3x3.3 package information

Figure 19: PowerFLAT™ 3.3x3.3 HV package outline

Table 8: PowerFLAT™ 3.3x3.3 HV package mechanical data

		mm	
Dim.	Min.	Тур.	Max.
A	0.70	0.80	0.90
b	0.25	0.30	0.39
С	0.14	0.15	0.20
D	3.10	3.30	3.50
D1	3.05	3.15	3.25
D2	2.15	2.25	2.35
е	0.55	0.65	0.75
Е	3.10	3.30	3.50
E1	2.90	3.00	3.10
E2	1.60	1.70	1.80
Н	0.25	0.40	0.55
K	0.65	0.75	0.85
L	030	0.45	0.60
L1	0.05	0.15	0.25
L2			0.5
θ	8°	10°	12°

Figure 20: PowerFLAT™ 3.3x3.3 HV recommended footprint

Revision history STL20N6F7

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
28-Jan-2015	1	First release.
03-Feb-2015	2	Updated Table 2: "Absolute maximum ratings"
10-Jun-2015	3	In Section 2 Electrical characteristics: - updated Table 5: Dynamic - updated Table 6: Switching times - updated Table 7: Source-drain diode Added Section 2.1 Electrical characteristics (curves)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

