Московский авиационный институт Вычислительная математика и программирование

математический анализ

I CEMECTP

Лектор: Юрий Иванович Битюков

Содержание

1 Действительные числа и их свойства. Принцип Архимеда. Грани числовых множеств. Теорема о существовании точных граней

2

1 Действительные числа и их свойства. Принцип Архимеда. Грани числовых множеств. Теорема о существовании точных граней

Аксиома (о непрерывности множества \mathbb{R}). Пусть $\mathbf{X} \neq \emptyset$, $\mathbf{Y} \neq \emptyset$ - подмножества множества \mathbb{R} и для $\forall x \in \mathbf{X}$ и $\forall y \in \mathbf{Y}$ выполняется $x \leq y$. Тогда $\exists c \in \mathbb{R} : x \leq c \leq y, \forall x \in \mathbf{X}, \forall y \in \mathbf{Y}$.

Определение. Пусть $\mathbf{X} \subset \mathbb{R}$. Множество \mathbf{X} называется ограниченным сверху (снизу), если $\exists c \in \mathbb{R} : x \leq c \ (x \geq c), \ \forall x \in \mathbf{X}$.

Если множество ограничено и сверху, и снизу \Rightarrow это ограниченное множество. (картинка 1)

Определение. Пусть $\mathbf{X} \subset \mathbb{R}$ и \mathbf{X} ограничено сверху (снизу). Наименьшее (наибольшее) из чисел, ограничивающих сверху (снизу) множество \mathbf{X} , называется верхней (нижней) гранью множества \mathbf{X} .

Обозначается $\sup \mathbf{X}$ ($\inf \mathbf{X}$). (картинка 2)

Теорема 1.1 (Вейерштрасс - о существовании верхней и нижней грани). Если $\mathbf{X} \neq \emptyset$ и ограничено сверху (снизу), то существует единственная верхняя (нижняя) грань.

Доказательство. Пусть $\mathbf{Y} = \{y : y \in \mathbb{R}, y \text{ ограничивает сверху}\} \neq \emptyset$, так как \mathbf{X} ограничено сверху. Тогда для $\forall x \in \mathbf{X}$ и $\forall y \in \mathbf{Y}$ (так как y ограничивает сверху \mathbf{X}) выполняется $x \leq y \Rightarrow$ по аксиоме непрерывности $\mathbf{R} \; \exists \beta \in \mathbf{R} : x \leq \beta \leq y$.

Так как $x \leq \beta, \forall x \in \mathbf{X}$, то β ограничивает сверху \mathbf{X} .

Так как $\beta \leq y, \forall y \in \mathbf{Y}$, то β - наименьшее из чисел, ограничивающих сверху $\mathbf{X} \Rightarrow \beta = \sup \mathbf{X}$.

Доказательство единственности верхней грани: Пусть β и $\hat{\beta}$ - верхние грани ${\bf X}.$