Institut Supérieur d'Informatique et de Multimédia de Sfax

المعهد العالي للإعلامية و الملتميديا بمفاقس

Auditoire: 2ème année LSI-ADBD

Chapitre 4.

Méthodes de regroupement : clustering

Souhir BOUAZIZ AFFES

souhir.bouaziz@isims.usf.tn

Amal ABBES

amal.abbes@isims.usf.tn

Plan

- Introduction
- Notion de ressemblance
- Normalisation des données
- Méthodes de regroupement
- Regroupement par ressemblance
 - > Méthode des K-means
- Classification hiérarchique
 - > Méthode de Classification Ascendante Hiérarchique : CAH
- Exercice: CHA & K-means

Introduction

- Regroupement (Clustering): construire une collection d'individus ou d'objets
 - Similaires au sein d'un même groupe

ISIMS

- Dissimilaires quand ils appartiennent à des groupes différents
- Le regroupement est de la classification non supervisée :
 - > Elle vise à identifier des ensembles d'éléments qui partagent certaines similarités (ressemblance)
 - > Elle ne se base pas sur des classes prédéfinies: classification automatique

162

Introduction

- Exemples d'application de la classification automatique:
 - Gestion (Marketing): découper le marché en sous-ensembles dont les éléments réagissent de façon similaire aux variations des variables du marché
 - > CRM (Customer Relationship Management): identifier des groupes d'individus ayant un comportement homogène vis-à-vis de:
 - la consommation de différents produits,
 - la consommation de différentes marques ou variétés
 - l'attitude par rapport à un produit,
 - •
 - > Réseaux sociaux: Identifier les communautés (ensemble de nœuds entre lesquels les interactions sont fréquentes) dans un réseau
 - Amis, collègues, ...
 - Personnes avec des intérêts similaires,
 - Pages web avec un même contenu, etc.

Chercher les ressemblances entre ces trois ensembles

L'ensemble A est-il plus proche à l'ensemble B ou C?

- La notion de ressemblance entre objets ne peut pas être évaluée objectivement car elle dépend du:
 - contexte de l'application considérée
 - but à atteindre
- La ressemblance entre deux objets est l'ensemble des propriétés communes
- Pour notre exemple:
 - Chaque forme géométrique peut être représentée par:
 - Forme
 - Couleur
 - Taille
 - Position

Chaque objet peut être donc représentée sous forme d'un vecteur

Les caractéristiques les plus pertinentes peuvent avoir des poids plus importants dans le calcul de distance

- Une bonne méthode de regroupement permet de garantir :
 - Une grande similarité intra-groupe
 - Une faible similarité inter-groupe

 Pour définir l'homogénéité d'un groupe d'observations, il est nécessaire de mesurer la ressemblance entre deux observations.

- Les mesures de distances sont utilisées pour mesurer la ressemblance entre objets
- Soit d une fonction: d est une distance ssi elle respecte les propriétés suivantes:
 - > La propriété de positivité: $d(x,y) \ge 0$
 - > La propriété de séparation: d(x,y) = 0 si x = y
 - > La propriété de symétrie: d(x,y) = d(y,x)
 - **L'inégalité triangulaire:** $d(x,z) \le d(x,y) + d(y,z)$

- Les distances les plus connues sont celles de Minkowski:
 - > soit deux objets $x_i = (x_{i1}, x_{i2}, ..., x_{ip})$ et $x_j = (x_{j1}, x_{j2}, ..., x_{jp})$,
 - \rightarrow soit q est un entier t.q. $q \ge 0$

$$d(x_i, x_j) = \sqrt[q]{\sum_{k=1}^p |x_{ik} - x_{jk}|^q}$$

Matrice de données

Matrice de dissimilarité

- Les distances les plus utilisées:
 - > q = 1: Distance de Manhattan

$$d(x_i, x_j) = \sum_{k=1}^{p} |x_{ik} - x_{jk}|$$

 $\rightarrow q = 2$: Distance Euclidienne

$$d(x_i, x_j) = \sqrt{\sum_{k=1}^{p} (x_{ik} - x_{jk})^2}$$

 $\rightarrow q \rightarrow \infty$: Distance du maximum (ou distance de Tchebychev)

$$d(x_i, x_j) = \max_{1 \le k \le p} |x_{ik} - x_{jk}|$$

Distance de Canberra

$$d(x_i, x_j) = \sum_{i=1}^{n} \frac{|x_{ik} - x_{jk}|}{|x_{ik} + x_{jk}|}$$

Afin de pouvoir calculer ces distances, il faut que les différents attributs soient de nature numérique

Personne	Age	Salaire
P1	50	11000
P2	70	11100
P3	60	11122
P4	60	11074

Que faire avec d'autres types des données : Ex. Binaires?

→ une mesure de distance spécifique doit être définie

Variables quantitatives:

- La normalisation est généralement nécessaire lorsque les données sont réparties sur des échelles différentes
- Normalisation des données: consiste à transformer les caractéristiques pour qu'elles soient sur une échelle similaire.

Personne	Age	Salaire
P1	50	11000
P2	70	11100
Р3	60	11122
P4	60	11074

- Il existe différentes techniques pour normaliser les données :
 - Normalisation Min-Max
 - Mise à l'échelle décimale
 - Normalisation du Z-score

Variables quantitatives ...

Normalisation Min-Max :

$$z_{ij} = \frac{x_{ij} - \min(X_{(j)})}{\max(X_{(j)}) - \min(X_{(j)})} \left(new_{\max}(X_{(j)}) - new_{\min}(X_{(j)})\right) + new_{\min}(X_{(j)})$$

- $min(X_{(j)})$, $max(X_{(j)})$: les valeurs absolues minimale et maximale de $X_{(j)}$ respectivement
- $new_max(X_{(j)})$, $new_min(X_{(j)})$: les valeurs max et min de champs de travail respectivement

• Exemple:

Notes	
8	
10	
15	-
20	

Notes	Notes après normalisation Min-Max
8	0
10	0.17
15	0.58
20	1

- Variables quantitatives ...
 - > Mise à l'échelle décimale :

$$z_{ij} = \frac{x_{ij}}{10^k}$$

- k: le plus petit nombre entier tel que $\max(|z_{ij}|) < 1$
- Exemples:

MPC	Formule	MPC après mise à l'echelle décimale
2	2/10	0.2
3	3/10	0.3

Prime de rendement	Formule	Prime après mise à l'echelle décimale
400	400 / 1000	0.4
310	310 / 1000	0.31

Salaire	Formule	Salaire après mise à l'echelle décimale
40 000	40 000 / 100 000	0.4
31 000	31 000 / 100 000	0.31

Variables quantitatives ...

> Normalisation du z-score (ou standardisation):

$$z_{ij} = \frac{x_{ij} - \mu_j}{\sigma_j}$$

$$egin{bmatrix} x_{11} & \dots & x_{1j} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{ij} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nj} & \dots & x_{np} \end{bmatrix}$$

- \mathbf{z}_{ij} : la valeur normalisée de x_{ij} : c-à-d sa distance à la moyenne exprimée en écart-type
- μ_j : la moyenne de $X_{(j)}$: $\mu_j = \frac{1}{n} \sum_{k=1}^n x_{kj}$
- σ_j : l'écart type absolu de $X_{(j)}$: $\sigma_j = \frac{1}{n} \sum_{k=1}^n |x_{kj} \mu_j|$

L'utilisation de l'écart absolu est plus robuste que celle de l'écart type

• Exemple:

Notes	
8	
10	
15	
20	

Notes	Notes après normalisation du z-score
8	-1.24
10	-0.76
- 15	0.41
20	1.59

Variables quantitatives : Exemple:

Personne	Age	Salaire
P1	50	11000
P2	70	11100
Р3	60	11122
P4	60	11074

Calcul distance de Manhattan

$$d(P1,P2)=120$$

$$d(P1,P3)=132$$

=> P1 ressemble plus à P2 qu'à P3 ⊗

Normalisation Min-Max:

min(Age) = 50, max(Age) = 70, $new_min(Age) = 0$, $new_max(Age) = 1$ min(Salaire) = 11000, max(Salaire) = 11122, $new_min(Salaire) = 0$, $new_max(Salaire) = 1$

Mise à l'échelle décimale :

$$k_{Age} = 2 (10^k = 100)$$

 $k_{Salaire} = 5 (10^k = 100000)$

Normalisation du Z-Score:

$$\mu_{Age} = 60 \ \sigma_{Age} = 5$$
 $\mu_{Salaire} = 11074 \ \sigma_{Salaire} = 37$

Variables quantitatives : Exemple:

Personne	Age après normalisation Min-Max	Salaire après normalisation Min-Max
P1	0	0
P2	1	0,82
P3	0,5	1
P4	0,5	0,61

Personne	Age après mise à l'échelle décimale	Salaire après mise à l'échelle décimale
P1	0,5	0,11
P2	0,7	0,111
Р3	0,6	0,11122
P4	0,6	0,11074

Personne	Age après normalisation du Z-score	Salaire après normalisation du Z-score
P1	-2	-2
P2	2	0,703
Р3	0	1,297
P4	0	0

Calcul distance de Manhattan

$$d(P1,P2)=1,82$$

$$d(P1,P3)=1,5$$

$$d(P1,P2)=0,201$$

$$d(P1,P3)=0,10122$$

$$d(P1,P2)=6,703$$

$$d(P1,P3)=5,297$$

=> P1 ressemble plus à P3 qu'à P2 ©

 Variables binaires: Il faut tout d'abord tracer la table de contingence (table de dissimilarité) de ces données

		X _j		
		1	0	sum
\mathbf{x}_{i}	1	a	b	<i>a</i> + <i>b</i>
	0	c	d	c+d
	sum	a+c	b+d	p

- $a = nombre de positions où <math>x_i$ et x_i sont à 1
- d = nombre de positions où x_i et x_j sont à 0
- c = nombre de positions où x_i est à 0 et x_j est à 1
- b = nombre de positions où x_i est à 1 et x_j est à 0

Variables binaires ...

- > Distances utilisées:
 - Le coefficient de correspondance simple: dans le cas des attributs binaires symétriques (leurs deux états ont la même importance (poids))

$$d_{cs}(x_i, x_j) = \frac{b+c}{a+b+c+d}$$

• Le coefficient de Jaccard: dans le cas des attributs binaires asymétriques (leurs deux états n'ont pas la même importance (fréquence))

$$d_{jc}(x_i, x_j) = \frac{b+c}{a+b+c}$$

Exemple: $x_1 = (1,1,0,1,0)$ et $x_2 = (1,0,0,0,1)$

4	a =	1	h –	2	c -	1	<i>d</i> –	1
	u –	1,	ν –	<i>∠</i> ,	ι –	1,	u –	1

$$\rightarrow d_{cs}(x_1, x_2) = \frac{3}{5}$$
 et $d_{jc}(x_1, x_2) = \frac{3}{4}$

X ₁	1	1	0	1	0
X_2	1	0	0	0	1

- Variables binaires ...
 - Exemple: Quels sont les deux patients qui atteints de la même maladie?

Nom	Sexe	Fièvre	Tousse	Test-1	Test-2	Test-3	Test-4
Jacques	М	0	N	Р	N	N	N
Marie	F	0	N	P	N	P	N
Jean	М	0	Р	N	N	N	N

- Sexe est un attribut symétrique et les autres attributs sont asymétriques
- O et $P \equiv 1$, $N \equiv 0$, la distance n'est mesurée que sur les asymétriques

$$d(Jacques, Marie) = \frac{0+1}{2+0+1} = 0,33$$
$$d(Jacques, Jean) = \frac{1+1}{1+1+1} = 0,67$$
$$d(Jean, Marie) = \frac{1+2}{1+1+2} = 0,75$$

→ Jacques et Marie sont atteints de la même maladie

- Variables de types mixtes: le cas le plus probable
 - But: essayer de normaliser toutes les valeurs entre 0 et 1
 - Les variables binaires restent intactes
 - Pour les variables quantitatives: Normalisation Min-Max :

$$z_{ij} = \frac{x_{ij} - \min(X_{(j)})}{\max(X_{(j)}) - \min(X_{(j)})} \left(new_{\max}(X_{(j)}) - new_{\min}(X_{(j)})\right) + new_{\min}(X_{(j)})$$

Avec:

$$\circ new_{-}\max(X_{(j)}) = 1$$

 $\circ new_min(X_{(j)}) = 0$

Variables de types mixtes ...

Exemple: Quels sont les voisins les plus proches?

Personne	Age	Maison	Salaire
P1	30	1	1000
P2	40	0	2200
P3	45	1	4000

Calcul distance Euclidienne

$$d(P_1, P_2) = \sqrt{\left(\frac{10}{15}\right)^2 + 1^2 + \left(\frac{1200}{3000}\right)^2} = 1,27$$

$$P_2 \text{ et } P_3 \text{ sont les plus}$$

$$d(P_1, P_3) = \sqrt{\left(\frac{15}{15}\right)^2 + 0^2 + \left(\frac{3000}{3000}\right)^2} = 1,41$$

$$d(P_2, P_3) = \sqrt{\left(\frac{5}{15}\right)^2 + 1^2 + \left(\frac{1800}{3000}\right)^2} = 1,21$$

Méthodes de regroupement

Méthodes de partitionnement (ou regroupement par ressemblance)

- deux classes sont toujours disjointes
- > Principe: partitionnement des objets et évaluation des partitions
- > Ex. méthode K-means

Méthodes hiérarchiques

- deux classes sont disjointes ou l'une contient l'autre
- > Principe: décomposition hiérarchique d'ensembles d'objets
- Ex. classification hiérarchique

méthodes basées sur la densité

- > Principe: se base sur une fonction de densité ou de connectivité
- Méthodes basées sur la grille
 - > Principe: se base sur une structure de granularité à plusieurs niveaux

Regroupement par ressemblance

Minimisation des distances

intra-clusters

900

Maximisation

des distances

inter-clusters

Principe: Utiliser une mesure de distance pour trouver un partitionnement de la base de données D contenant n objets en k groupes

Une bonne méthode de regroupement produira des groupes de

bonne qualité avec :

Une grande similarité intra-cluster

Une faible similarité inter-cluster

- Ces similarités peuvent être mesurées par les inerties intra et inter cluster
- Parmi les critères d'évaluation d'une méthode de regroupement:
 - > Stabilisation des centres des clusters
 - Stabilisation de l'inertie totale de la population

Regroupement par ressemblance

Inertie totale de la population: somme de l'inertie intra- cluster I_{intra} et de l'inertie inter-cluster I_{inter}: Théorème d'Huygens:

$$\left[I_{total} = I_{intra} + I_{inter}\right]$$

Inertie intra-cluster I_{intra}: dispersion à l'intérieur de chaque groupe: Indicateur de compacité des clusters

$$I_{intra} = \sum_{i=1}^{k} \frac{1}{n_i} \sum_{j=1}^{n_i} d^2(x_j, G_i)$$

Avec: n_i : nombre de points du cluster C_i G_i : centre de gravité du cluster C_i

Inertie inter-cluster I_{inter}: dispersion des barycentres conditionnels autour du barycentre global: Indicateur de séparabilité des clusters

$$I_{inter} = \frac{1}{k} \sum_{i=1}^{k} d^2(G_i, G)$$
 Avec: G : centre de gravité global

Comparaison de deux partitions en k clusters : La meilleure est celle qui a l'inertie I_{intra} la plus faible (ou l'inertie I_{inter} la plus forte).

Regroupement par ressemblance

Méthodes:

- \rightarrow Etant donné k, trouvé une partition en k clusters qui optimisent le critère de partitionnement
 - Optimum global: traiter toutes les partitions exhaustivement
 - Heuristique : k-means ou k-médoïdes
 - k-means (MacQueen'67): chaque cluster est représenté par son centre
 - k-médoïdes ou PAM (partition around medoids) (Kaufman & Rousseeuw'87): chaque cluster est représenté par un des objets du cluster

- But: rechercher une partition des données (uni- ou multidimensionnelles) en kclusters ou groupes
 - > kreprésente le nombre de clusters que l'algorithme doit former à partir des propriétés des échantillons.
 - > k peut être supposé fixe (donné par l'utilisateur) ou fixé par la nature du problème à traiter.
 - **Exemple:** si l'on s'intéresse à classer des images de chiffres manuscrits (nbre de classes = 10 : 0, ..., 9)

 Principe: optimiser l'inertie intra-cluster (compacité de chaque cluster)

Algorithme des k-means

- > Entrée:
 - k: nombre des groupes à générer
 - Les données à grouper
- > Sortie:
 - Les données réparties en k groupes
- > Notation:
 - $X=\{x_1, ..., x_n\}$: l'ensemble des objets à grouper
 - C_j avec j entre 1 et k: le groupe numéro j
 - **G**_j **avec j entre 1 et k:** le barycentre du groupe numéro j

 $n_j = |\mathcal{C}_j|$ $G_j = rac{1}{n_j} \sum_{oldsymbol{x}_i \in \mathcal{C}_j} oldsymbol{x}_i$

- Algorithme des k-means ...
 - **1-** choisir k centres initiaux G_1 , G_2 , ..., G_k (au hasard par exemple)
 - 2- Répéter
 - **3- Pour** chaque x_i de X **faire**
 - **4- Pour** chaque groupe C_i **faire**
 - 5- calculer $d(G_i, x_i)$
 - 6- Fin Pour
- 7- (Ré)affecter x_i au cluster C_f de centre G_f tel que $d(G_f, x_i)$ est minimale
- 8- Fin Pour
- **9-** Recalculer le centre de chaque cluster
- 10- Jusqu'à (stabilité des *centres*: pas d'affectations d'objets à faire)

OU (nombre d'itérations = t)

OU (stabilisation de l'*inertie totale* de la population)

Exemple 1:

Exemple 2:

- > A={1,2,3,6,7,8,13,15,17}. Créer 3 clusters à partir de A
- > On prend 3 objets au hasard. Supposons que c'est 1, 2 et 3. Ça donne $C_1=\{1\}$, $G_1=1$, $C_2=\{2\}$, $G_2=2$, $C_3=\{3\}$ et $G_3=3$
- > Chaque objet x est affecté au cluster au milieu duquel, x est le plus proche.
 - 6 est affecté à C_3 car $d(G_3,6)=3< d(G_2,6)=4$ et $d(G_3,6)=3< d(G_1,6)=5$
 - 7 est affecté à C_3 car $d(G_3,7)=4< d(G_2,7)=5$ et $d(G_3,7)=4< d(G_1,7)=6$
 - 8 est affecté à C_3 car $d(G_3,8)=5 < d(G_2,8)=6$ et $d(G_3,8)=5 < d(G_1,8)=7$
 - 13 est affecté à C_3 car $d(G_3,13)=10 < d(G_2,13)=11$ et $d(G_3,13)=10 < d(G_1,13)=12$
 - 15 est affecté à C_3 car $d(G_3,15)=12 < d(G_2,15)=13$ et $d(G_3,15)=12 < d(G_1,15)=14$
 - 17 est affecté à C_3 car $d(G_3,17)=14 < d(G_2,17)=15$ et $d(G_3,17)=14 < d(G_1,17)=16$

On a
$$C_1=\{1\}$$
, $G_1=1$, $C_2=\{2\}$, $G_2=2$, $C_3=\{3, 6,7,8,13,15,17\}$, $G_3=69/7=9.86$

► Exemple 2 ...

> $d(3,G_2)=1< d(3,G_3)=6.86$ > 3 passe dans C_2 . Tous les autres objets ne bougent pas.

$$C_1$$
={1}, G_1 =1, C_2 ={2,3}, G_2 =2.5, C_3 ={6,7,8,13,15,17} et G_3 = 66/6=11

- > $d(6,G_2)=3.5 < d(6,G_3)=5$ \rightarrow 6 passe dans C_2 . Tous les autres objets ne bougent pas.
 - $C_1=\{1\}, G_1=1, C_2=\{2,3,6\}, G_2=11/3=3.67, C_3=\{7,8,13,15,17\}, G_3=12$
- > d(2,G₁)=1<d(2,G₂)=1.67 → 2 passe en C₁. d(7,G₂)=3,33<d(7,G₃)=5 → 7 passe en C₂. Les autres ne bougent pas. C_1 ={1,2}, G_1 =1.5, C_2 ={3,6,7}, G_2 =5.34, C_3 ={8,13,15,17}, G_3 =13.25
- > d(3,G₁)=1.5<d(3,G₂)=2.34 → 3 passe en 1. d(8,G₂)=2.66<d(8,G₃)=5.25 → 8 passe en C₂.

$$C_1 = \{1,2,3\}, G_1 = 2, C_2 = \{6,7,8\}, G_2 = 7, C_3 = \{13,15,17\}, G_3 = 15$$

Plus rien ne bouge

Exemple 3:

8 points A, ..., H de l'espace euclidéen 2D. k=2 (2 groupes)

• Tire aléatoirement 2 centres : B et D choisis.

$d(A,B)=d(A,D)=\sqrt{2}=1,41$
d(C,B)=d(C,D)=1
$d(E,B)=2; d(E,D)=\sqrt{8}=2,83$
$d(F,B)=3; d(F,D)=\sqrt{13}=3,61$
$d(G,B)=4; d(G,D)=\sqrt{20}=4,47$
$d(H,B)=d(H,D)=\sqrt{26}=5,1$

points	Centre D(2,4), B(2,2)	Centre D(2,4), I(27/7,17/7)	Centre J(5/3,10/3), K(24/5,11/5)
A(1,3)	В	D	J
B(2,2)	В	I	J
C(2,3)	В	D	J
D(2,4)	D	D	J
E(4,2)	В	I	K
F(5,2)	В	I	K
G(6,2)	В	I	K
H(7,3)	В	I	K

Exemple 4:

	X	Y	Cluster
I1	5	0	1
I2	5	2	2
I 3	3	1	1
I4	0	4	2
I 5	2	1	1
I6	4	2	2
I7	2	2	1
I8	2	3	2
19	1	3	1
I10	5	4	2

- > Soit X et Y deux variables indépendantes caractérisant un objet donné.
- L'objectif est d'appliquer le K-means pour classifier les différents objets en une des deux classes.
- > Soit une initialisation aléatoire de l'affectation des différents objets de la base à une classe donnée.

► Exemple 4 ...

 $C_1 = \{11, 13, 15, 17, 19\}, G_1 = (2.6, 1.4)$ $C_2 = \{12, 14, 16, 18, 110\}, G_2 = (3.2, 3)$

Distance de Manhattan

1,5

0,5

1

0

1

2

$d(I1,G_1)=$ 3.8 $d(I1,G_2)=$ 4.8	d(I2,G ₁)= 3 d(I2,G ₂)= 2.8
$d(13,G_1)=$ 0.8 $d(13,G_2)=$ 2.2	d(I4,G ₁)= 5.2 d(I4,G ₂)= 4.2
$d(15,G_1)=1$ $d(15,G_2)=3.2$	d(I6,G ₁)= 2 d(I6,G ₂)= 1.8
$d(17,G_1)=$ 0.8 $d(17,G_2)=$ 2.2	d(18,G ₁)= 2.2 d(18,G ₂)= 1.2
d(19,G ₁)= 3.2 d(19,G ₂)= 2.2	d(I10,G ₁)= 5 d(I10,G ₂)= 2.8

 $C_1 = \{11, 13, 15, 17\}, G_1 = 13 = (3, 1)$ $C_2 = \{12, 14, 16, 18, 19, 110\}, G_2 = (2.83, 3)$

l₁₀

194

Exemple 4 ...

$d(I1,G_1)=3$	$d(I2,G_1)=3$
$d(I1,G_2)=5.17$	$d(I2,G_2)=3.17$
d(I3,G ₁)= 0	d(I4,G ₁)= 9
d(I3,G ₂)= 2.17	d(I4,G ₂)= 2.17
$d(15,G_1)=1$	$d(16,G_1)= 2$
$d(15,G_2)=2.83$	$d(16,G_2)= 2.17$
d(I7,G ₁)= 2	d(I8,G ₁)= 3
d(I7,G ₂)= 1.83	d(I8,G ₂)= 0.83
d(I9,G ₁)= 4	d(I10,G ₁)= 5
d(I9,G ₂)= 1.83	d(I10,G ₂)= 3.17

 $C_1 = \{11, 12, 13, 15, 16\}, G_1 = (3.8, 1.2)$ $C_2 = \{14, 17, 18, 19, 110\}, G_2 = (2, 3.2)$

	d(I1,G ₁)= 2.4 d(I1,G ₂)= 6.2	$d(12,G_1)=3$ $d(12,G_2)=4.2$
	$d(13,G_1) = 1$ $d(13,G_2) = 3.2$	d(I4,G ₁)= 6.6 d(I4,G ₂)= 2.8
	$d(15,G_1)= 2$ $d(15,G_2)= 2.2$	$d(16,G_1)= 1$ $d(16,G_2)= 3.2$
	d(I7,G ₁)= 2.6 d(I7,G ₂)= 1.2	d(I8,G ₁)= 3.6 d(I8,G ₂)= 0.2
_	d(19,G ₁)= 4.6 d(19,G ₂)= 1.2	$d(I10,G_1)=4$ $d(I10,G_2)=3.8$

Plus rien ne bouge

Méthode des k-means

Application:

- Marketing: segmentation du marché en découvrant des groupes de clients distincts à partir de bases de données d'achats
- Environnement : identification des zones terrestres similaires (en termes d'utilisation) dans une base de données d'observations de la terre
- Assurance : identification de groupes d'assurés distincts associés à un nombre important de déclarations
- Planification de villes: identification de groupes d'habitations suivant le type d'habitation, valeur, localisation géographique, ...
- ➤ Médecine : Localisation de tumeurs dans le cerveau → Nuage de points du cerveau fournis par le neurologue → Identification des points définissant une tumeur

Méthode des k-means

Avantages de la méthode des k-means:

- > efficace : complexité de O(tkn),
 - avec *n* le nombre d'objets,
 - $m{t}$ le nombre d'itérations et en général $m{t}$ et $m{k} << m{n}$
- > Très populaire: très facile à comprendre et à mettre en œuvre
- La méthode résolve une tâche non supervisée, donc elle ne nécessite aucune information sur les données

Inconvénients de la méthode des k-means:

- ightharpoonup Besoin de spécifier $m{k}$ à l'avance
- Incapable de traiter des données bruitées ou manquantes
- Le résultat peut varier considérablement en fonction du choix initial des centres de cluster

Méthode des k-means

Comment trouver le bon k?

- Essayer plusieurs k
- ➤ Calculer à chaque fois la distance moyenne avec le barycentre de chaque cluster: *I*_{intra}

- $ig> x_i$ appartient à C_j avec un poids w_{ij}
- \rightarrow Probabilité que x_i appartient à C_i : $P(C_i|x_i)$
- $> w_{ij}$ est normalisée pour tous les points x_i

$$\sum_{j=1}^{k} w_{ij} = 1$$

- > Il s'agit de la variante: k-means floues
- Autre amélioration possible:
 - Essayer diverses métriques pour calculer la ressemblance entre les données

ACP

► Reprenons l'exercice D145

•				
	Stat.	Math	Cpta	G° Fi
Individu n° 1	19	14	8	18
Individu n° 2	20	12	4	4
Individu n° 3	10	10	32	38
Individu n° 4	13	17	4	4
Individu n° 5	6	8	26	24
Individu n° 6	6	3	28	32
Individu n° 7	19	16	8	20
Individu n° 8	15	18	6	6
Individu n° 9	9	2	32	30
Individu n° 10	8	7	20	20

	Valeur propre	Pourcentage	Pourcentage cumulé
1	3.3189	82.9700	82.9700
2	0.4035	10.0900	93.0600
3	0.2508	6.2700	99.3300
4	0.0268	0.6700	100.0000

	CP ₁	CP ₂	CP ₃	CP ₄
Individu n° 1	1.38	0.77	0.20	0.14
Individu n° 2	2.08	-0.04	0.97	-0.15
Individu n° 3	-1.81	0.93	-0.71	-0.17
Individu n° 4	1.90	-0.85	-0.43	0.04
Individu n° 5	-1.47	-0.58	-0.36	-0.07
Individu n° 6	-2.37	-0.22	0.21	0.28
Individu n° 7	1.48	0.94	-0.16	0.16
Individu n° 8	2.00	-0.40	-0.48	-0.15
Individu n° 9	-2.29	0.09	0.63	-0.21
Individu n° 10	-0.92	-0.65	0.13	0.13

► Reprenons l'exercice D145 ...

- > L'algorithme des K-means sera appliqué sur les deux premières composantes principales au lieu des 4 variables initiales
- > Pour K=2, $G_1=12$ et $G_2=16$, avec la distance Euclidienne

d(I1,G ₁)= 1,07	$d(12,G_1) = 0$
d(I1,G ₂)= 3,88	$d(12,G_2) = 4,45$
d(I3,G ₁)= 4,01	d(I4,G ₁)= 0,83
d(I3,G ₂)= 1,28	d(I4,G ₂)= 4,32
d(I5,G ₁)= 3,59	$d(16,G_1)=4,45$
d(I5,G ₂)= 0,97	$d(16,G_2)=$ 0
d(I7,G ₁)= 1,15	d(18,G ₁)= 0,37
d(I7,G ₂)= 4,02	d(18,G ₂)= 4,37
d(I9,G ₁)= 4,37	d(I10,G ₁)= 3,06
d(I9,G ₂)= 0,32	d(I10,G ₂)= 1,51

$$C_1 = \{11,12,14,17,18\}, G_1 = (1.77, 0.08)$$

 $C_2 = \{13,15,16,19,110\}, G_2 = (-1.77, -0.09)$

$$\begin{array}{lllll} d(I1,G_1)=\textbf{0,79} & d(I2,G_1)=\textbf{0,34} \\ d(I1,G_2)=3,27 & d(I2,G_2)=3,85 \\ \\ d(I3,G_1)=3,68 & d(I4,G_1)=\textbf{0,94} \\ d(I3,G_2)=\textbf{1,02} & d(I4,G_2)=3,75 \\ \\ d(I5,G_1)=3,31 & d(I6,G_1)=4,15 \\ d(I5,G_2)=\textbf{0,58} & d(I6,G_2)=\textbf{0,61} \\ \\ d(I7,G_1)=\textbf{0,90} & d(I8,G_1)=\textbf{0,54} \\ d(I7,G_2)=3,41 & d(I8,G_2)=3,79 \\ \\ d(I9,G_1)=4,06 & d(I10,G_1)=2,79 \\ d(I9,G_2)=\textbf{0,55} & d(I10,G_2)=\textbf{1,02} \\ \end{array}$$

Rien ne bouge

$$I_{intra} = \sum_{i=1}^{k} \frac{1}{n_i} \sum_{i=1}^{n_i} d^2(x_j, G_i) = 1,163$$

Reprenons l'exercice D145 ...

$$On \ a \ K = 2, n_1 = 5, n_2 = 5$$

$$I_{intra} = \sum_{i=1}^{k} \frac{1}{n_i} \sum_{j=1}^{n_i} d^2(x_j, G_i)$$

$$= \frac{1}{5} (d^2(I1, G_1) + d^2(I2, G_1) + d^2(I4, G_1) + d^2(I7, G_1) + d^2(I8, G_1))$$

$$+ \frac{1}{5} (d^2(I3, G_2) + d^2(I5, G_2) + d^2(I6, G_2) + d^2(I9, G_2) + d^2(I10, G_2))$$

$$= \frac{1}{5} (0.79^2 + 0.34^2 + 0.94^2 + 0.9^2 + 0.54^2) + \frac{1}{5} (1.02^2 + 0.58^2 + 0.61^2 + 0.55^2 + 1.02^2)$$

$$= 1.163$$

► Reprenons l'exercice D145 ...

 \rightarrow Pour K=3, G_1 =I1, G_2 =I2 et G_3 =I6, avec la distance Euclidienne

1 3 at 1 3, 3,	12, 02 12 00 03 10
$d(I1,G_1)= 0$	$d(I2,G_1)=1,07$
$d(I1,G_2)= 1,07$	$d(I2,G_2)=0$
$d(I1,G_3)= 3,88$	$d(I2,G_3)=4,45$
d(I3,G ₁)= 3,19	$d(I4,G_1)=1,70$
d(I3,G ₂)= 4,01	$d(I4,G_2)=$ 0,83
d(I3,G ₃)= 1,28	$d(I4,G_3)=4,32$
d(I5,G ₁)= 3,15	$d(16,G_1)=3,88$
d(I5,G ₂)= 3,59	$d(16,G_2)=4,45$
d(I5,G ₃)= 0,97	$d(16,G_3)=0$
d(I7,G ₁)= 0,20	d(18,G ₁)= 1,32
d(I7,G ₂)= 1,15	d(18,G ₂)= 0,37
d(I7,G ₃)= 4,02	d(18,G ₃)= 4,37
d(19,G ₁)= 3,73	d(I10,G ₁)= 2,70
d(19,G ₂)= 4,37	d(I10,G ₂)= 3,06
d(19,G ₃)= 0,32	d(I10,G ₃)= 1,51

arco la distalloc Eddilalcille			
$d(I1,G_1)=$ 0,10 $d(I1,G_2)=$ 1,35 $d(I1,G_3)=$ 3,27	$d(I2,G_1)=1,45$ $d(I2,G_2)=0,24$ $d(I2,G_3)=3,85$		
d(I3,G ₁)= 3,24	$d(I4,G_1)=1,77$		
d(I3,G ₂)= 4,04	$d(I4,G_2)=0,43$		
d(I3,G ₃)= 1,02	$d(I4,G_3)=3,75$		
d(I5,G ₁)= 3,24	$d(16,G_1)=3,95$		
d(I5,G ₂)= 3,47	$d(16,G_2)=4,37$		
d(I5,G ₃)= 0,58	$d(16,G_3)=0,61$		
d(I7,G ₁)= 0,10	d(I8,G ₁)= 1,38		
d(I7,G ₂)= 1,46	d(I8,G ₂)= 0,03		
d(I7,G ₃)= 3,41	d(I8,G ₃)= 3,79		
d(19,G ₁)= 3,80	d(I10,G ₁)= 2,79		
d(19,G ₂)= 4,31	d(I10,G ₂)= 2,92		
d(19,G ₃)= 0,55	d(I10,G ₃)= 1,02		

Rien ne bouge

$$C_1$$
={I1, I7}, G_1 =(1.43, 0.86)
 C_2 ={I2,I4, I8}, G_2 =(1.99, -0.43)
 C_3 ={I3,I5,I6,I9,I10}, G_3 =(-1.77, -0.09)

$$I_{intra} = \sum_{i=1}^{k} \frac{1}{n_i} \sum_{j=1}^{n_i} d^2(x_j, G_i) = 0,709$$

► Reprenons l'exercice D145 ...

$$On \ a \ K = 3, n_1 = 2, n_2 = 3, n_3 = 5$$

$$I_{intra} = \sum_{i=1}^{k} \frac{1}{n_i} \sum_{j=1}^{n_i} d^2(x_j, G_i)$$

$$= \frac{1}{2} \Big(d^2(I1, G_1) + d^2(I7, G_1) \Big) + \frac{1}{3} \Big(d^2(I2, G_2) + d^2(I4, G_2) + d^2(I8, G_2) \Big)$$

$$+ \frac{1}{5} \Big(d^2(I3, G_3) + d^2(I5, G_3) + d^2(I6, G_3) + d^2(I9, G_3) + d^2(I10, G_3) \Big)$$

$$= \frac{1}{2} \Big(0, 1^2 + 0, 1^2 \Big) + \frac{1}{3} \Big(0, 24^2 + 0, 43^2 + 0, 03^2 \Big) + \frac{1}{5} \Big(1, 02^2 + 0, 58^2 + 0, 61^2 + 0, 55^2 + 1, 02^2 \Big)$$

$$= 0, 709$$

- Principe: la classification hiérarchique est une autre méthode de regroupement qui fonctionne par groupement successif de groupes « proches »
 - > Au départ chaque point est considéré comme un groupe
 - Si on dispose de N données donc nous constituons N groupes: C = N
 - Détecter, par la suite, les 2 groupes les plus proches par le calcul du distance entre groupe
 - Les agréger pour n'en former qu'un seul, nous disposons maintenant de (N – 1) groupes: C = N - 1
 - Répéter les deux étapes précédentes jusqu'à tous les individus forment un seul groupe: C = 1
- Une hiérarchie des données est alors construire appelée: dendrogramme

- Le dendrogramme est un diagramme en forme d'arbre qui montre comment les groupes sont fusionnés hiérarchiquement
 - La racine représente l'ensemble du jeu de données
 - Une feuille représente un seul objet
 - Un nœud interne représente l'union de tous les objets du sous-arbre
 - La hauteur d'un nœud interne représente la distance entre ses 2 nœuds enfants Dendrogramme

Au départ d'une CH
$$\rightarrow$$
 $I_{intra} = 0$ et $I_{inter} = I_{tot}$
A la fin d'une CH \rightarrow $I_{intra} = I_{tot}$ et $I_{inter} = 0$

→Une partition des observations en k clusters est obtenue en coupant le dendrogramme à un niveau souhaité

Comparaison des groupes (distance entre groupes)

> Méthode du centroïde: distance entre les centroïdes (centres de gravité) des clusters: $d(C_1, C_2) = d(G_1, G_2)$

➤ Méthode du lien simple (single linkage) ou saut minimal: plus petite distance entre toutes les paires d'éléments de 2 clusters C₁ et C₂

$$d(C_1, C_2) = \min_{a \in C_1, b \in C_2} d(a, b)$$

➤ Méthode du lien complet (complete linkage) ou saut maximal: plus grande distance entre toutes les paires d'éléments de 2 clusters C₁ et C₂

$$d(C_1, C_2) = \max_{a \in C_1, b \in C_2} d(a, b)$$

> Méthode du lien moyen (average linkage): moyenne des distances entre les paires d'éléments entre 2 clusters C₁ et C₂

$$\frac{d(C_1, C_2) = moyenne(d(a, b))}{a \in C_1, b \in C_2} = \frac{\sum_{a \in C_1} \sum_{b \in C_2} d(a, b)}{n_1 n_2}$$

Deux grandes approches

- > Classification ascendante hiérarchique : CAH (Agglomération)
 - La méthode la plus communément utilisée
 - Commencer avec les points en tant que clusters individuels.
 - A chaque étape, grouper les clusters les plus proches jusqu'à obtenir 1 seul ou k clusters.
- Classification descendante hiérarchique (Division)
 - Commencer avec 1 seul cluster comprenant tous les points.
 - A chaque étape, diviser un cluster jusqu'à obtenir des clusters ne contenant qu'un point ou jusqu'à obtenir k clusters.

Deux grandes approches ...

Algorithme de classification ascendante hiérarchique:

- 1- C = N
 2- Pour chaque i de 1 à N faire
 3- C_i ← { x_i }
 4- Pour chaque j de 1 à (i 1) faire
 5- calculer d(C_i, C_j)
 6- Fin Pour
 7- Fin Pour
- 8- Construire la matrice de dissimilarité M
- 9- Répéter
- 10- Sélection dans M des deux clusters les plus proches C_i et C_j
- 11- Fusion de C_i et C_j pour former un cluster C_k
- 12- Mise à jour de M en calculant la distance entre C_k et tous les autres clusters
- 13- C--
- **14- Jusqu'à** (C ==1)

Méthodes d'agrégation et résultats:

> Exemple: Utilisez la méthode du lien simple et celle du lien complet pour regrouper les données décrites par la matrice de distance suivante. Puis tracer les dendrogrammes correspondants.

	Α	В	С	D
Α	0	1	4	5
В		0	2	6
С			0	3
D				0

> Correction:

Méthode du lien simple:

	С	D	{A, B}
С	0	3	2
D		0	5
{A, B}			0

	D	{{A, B}, C}
D	0	3
{{A, B}, C}		0

Méthode du lien complet:

	С	D	{A, B}
С	0	3	4
D		0	6
{A, B}			0

	{A, B}	{C, D}
{A, B}	0	6
{C, D}		0

• Exercice 1:

	а	b	С	d	е	f	g
a	0	1	3	6	7	11	16
b		0	2	5	6/	10	15
С			0	3	4	8	13
d				0 /	1	5	10
е				/	0	4	9
f						0	5
g				/			0

Lien Simple = Saut minimal

	ab	c	de ./	f	g
ab	0	2	5	10	15
С		0	3	8	13
de			0	4	9
f				0	5
g					0

	abc	de	f	g
abc	0	3	8	13
de		0	4	9
f			0	5
q				0

	abcde	f	g
abcde	0	4	9
f		0	5
q			0

4	-					
6 -	_					ı
5 -	_					
4 -	-		ı			ıl
3 -	_	Ē		$\overline{}$		
2 -	_	_	٦.			
1 -	a	b	c	d] e .	f g

	abcdef	g
abcdef	0	5
q		0

Exercice 2: Soit un ensemble d'objets représentés par des points numérotés de 1 à 5, dans un repère euclidien. Notons la distance euclidienne mesurée entre les objets.

ets			L	1 2
\perp	1	\Box		J.
\perp			4))
3	_	\vdash	-	4
-6-	-	\vdash	+	-

d	1	2	3	4	5
1	0	$\sqrt{10}$	$\sqrt{8}$	$\sqrt{10}$	$\sqrt{13}$
2		0	$\sqrt{34}$	2	$\sqrt{41}$
3			0	$\sqrt{26}$	1
4				0	$\sqrt{29}$
5					0

> Fusionner les groupes 3 et 5, qui sont les groupes les plus proches (distance minimale), d=1, et former un groupe $\mathbf{h}_6=\{3,5\}$. A ce groupe est associé son niveau (indice d'agrégation), qui est la distance entre ses deux sous-groupes 3 et 5, $f(h_6)=1$. Soit la **méthode du lien simple** pour la comparaison des groupes

d	1	2	4	h_6
1	0	$\sqrt{10}$	$\sqrt{10}$	$\sqrt{8}$
2		0	2	$\sqrt{34}$
4			0	$\sqrt{26}$
h_6				0

Exercice 2 ...

> Fusionner les groupes 2 et 4, qui sont les groupes les plus proches, d=2, et former un groupe $h_7=\{2,4\}$, $f(h_7)=2$.

d	1	h_6	h_7
1	0	$\sqrt{8}$	$\sqrt{10}$
h_6		0	$\sqrt{26}$
h_7			0

> Fusionner les groupes 1 et h_6 , qui sont les groupes les plus proches, $d = \sqrt{8}$, et former un groupe $h_8 = \{1, h_6\}$, $f(h_8) = \sqrt{8}$.

d	h_7	h_8
h_7	0	$\sqrt{10}$
h_8		0

> Si on continue à la dernière étape de regroupement, tous les objets sont regroupés : $h_9 = \{h_7, h_8\} = \{1,2,3,4,5\}, f(h_9) = \sqrt{10}$

Exercice 2 ...

> Cette hiérarchie de regroupement des objets peut être représentée par un dendrogramme, une représentation arborescente d'une hiérarchie.

- Qualité des groupes obtenus: (identification du « bon » nombre de clusters)
 - > Détectée par l'écart entre paliers d'agrégations
 - Des fortes différences entre deux niveaux d'agrégation successifs indique une modification «significative» de la structure des données lorsqu'on a procédé au regroupement.

Qualité des groupes obtenus ...

- \rightarrow Basée sur le calcul des inerties de la population: I_{intra} , I_{inter} , I_{total}
- > Elle peut être mesurée par:
 - La part d'inertie exprimé par:

$$R^2 = \frac{I_{inter}}{I_{total}}$$

R² = 0, il y a un seul groupe. R² = 1, Partition triviale: 1 individu = 1 groupe.

Le rapport de l'inertie inter par l'inertie intra:

$$Q = \frac{I_{inter}}{I_{intra}}$$

• Ou parfois par l'inertie intra : I_{intra}

Les « coudes » laissent entendre

des changements

significatifs dans les

216

structures

données.

Avantages

- Conceptuellement simple
- Le groupement ne dépend pas d'une initialisation (comme pour les kmeans)
- > Très utile quand on ne connaît pas à priori le nombre de classes

Inconvénients

- Les résultats dépendent de la méthode d'agrégation
- Non adapté aux grandes volumes de données
- Groupement obtenu est final (non modifiable par la suite) même obtenu avec des décisions erronées

On peut l'utiliser conjointement à une k-means:

- ➤ Classification hiérarchique puis k-means → pour permettre la réallocation des individus frontière
- > K-means puis Classification hiérarchique \rightarrow si N est élevé avec un k de k-means grand

Clustering mixte pour gros volumes:

- 1. Données avant classification
- 2. Partition préliminaire :
 - K-means avec K (grande) classes

- 3. Classification ascendante hiérarchique
 - -Coupure du dendrogramme à K* classes Avec K*<<K

- Partition finale (consolidation)
 - K-means avec K* (petit) classes

Conclusion

- Les méthodes de regroupement sont entièrement automatiques et se basent sur le principe d'apprentissage non supervisé
- Très utilisées en datamining:
 - > Découpage du marché en sous-ensembles dont les éléments réagissent de façon similaires aux variations des variables d'action du marché
- Faciles à implémenter et généralement disponibles dans les logiciels de datamining
- S'appliquent sur tout type de données (même textuelles)
- Inconvénients:
 - Choix des bons paramètres:
 - Par exemple: le choix du k et des centres initiaux pour l'algorithme de k-means
 - Les performances dépendent du choix de la mesure de similarité (distance) utilisée
 - L'interprétation des résultats

Nous disposons de la base de données suivante :

	A1	A2	A3	A4
D1	C1	R	Α	Р
D2	C2	V	В	G
D3	C3	V	В	G
D4	C1	J	В	Р
D5	C2	R	Α	Р
D6	C3	J	Α	G

- 1) Effectuez l'étape de codage et de normalisation nécessaire sur ces données en vue de leur appliquer une modélisation descriptive.
- 2) Quelle distance peut-on utiliser avec ces données? Expliquez.
- Tout d'abord, nous allons appliquer la méthode de Classification Ascendante Hiérarchique comme méthode de regroupement de ces données. Construisez la hiérarchie (dendrogramme) ascendante correspondante à ces données en détaillant toutes les étapes de calcul. On utilise la méthode du lien simple pour le calcul de la distance entre les groupes.
- Nous allons appliquer, par la suite, la méthode des K-Means pour trouver un regroupement par ressemblance de ces données. Classez donc ces dernières en **trois** groupes tout en utilisant les centres initiaux suivants : **D1**, **D3** et **D4**.

1) Nous remarquons que les attributs sont nominaux; ce qui nécessite une étape de codage et de normalisation avant l'application d'une modélisation descriptive. Cette étape consiste à une représentation horizontale ou éclatée des données.

	A1	A2	A3	A4
D1	C1	R	Α	Р
D2	C2	V	В	G
D3	C3	V	В	G
D4	C1	J	В	Р
D5	C2	R	Α	Р
D6	C3	J	Α	G

	C1	C2	C3	R	V	J	A	В	P	G
D1	1	0	0	1	0	0	1	0	1	0
D2	0	1	0	0	1	0	0	1	0	1
D3	0	0	1	0	1	0	0	1	0	1
D4	1	0	0	0	0	1	0	1	1	0
D5	0	1	0	1	0	0	1	0	1	0
D6	0	0	1	0	0	1	1	0	0	1

Les données sont binaires asymétriques, donc la distance qu'on peut utiliser est le coefficient de Jaccard

$$d_{jc}(x_i, x_j) = \frac{b+c}{a+b+c}$$

3) Classification Ascendante Hiérarchique

$d(D1,D2) = \frac{8}{8} = 1$	$d(D2,D3) = \frac{2}{5} = 0.4$	$d(D3,D5) = \frac{8}{8} = 1$
$d(D1,D3) = \frac{8}{8} = 1$	$d(D2,D4) = \frac{6}{7} = 0.86$	$d(D3,D6) = \frac{4}{6} = 0,67$
$d(D1,D4) = \frac{4}{6} = 0.67$	$d(D2,D5) = \frac{6}{7} = 0.86$	$d(D4,D5) = \frac{6}{7} = 0.86$
$d(D1,D5) = \frac{2}{5} = 0.4$	$d(D2,D6) = \frac{6}{7} = 0.86$	$d(D4,D6) = \frac{6}{7} = 0.86$
$d(D1,D6) = \frac{6}{7} = 0.86$	$d(D3,D4) = \frac{6}{7} = 0.86$	$d(D5,D6) = \frac{6}{7} = 0.86$

	C1	C2	C3	R	V	J	А	В	Р	G
D1	1	0	0	1	0	0	1	0	1	0
D2	0	1	0	0	1	0	0	1	0	1
D3	0	0	1	0	1	0	0	1	0	1
D4	1	0	0	0	0	1	0	1	1	0
D5	0	1	0	1	0	0	1	0	1	0
D6	0	0	1	0	0	1	1	0	0	1

	D1	D2	D3	D4	D5	D6
D1	0	1	1	0,67	0,4	0,86
D2		0	0,4	0,86	0,86	0,86
D3			0	0,86	1	0,67
D4				0	0,86	0,86
D5					0	0,86
D6						0

	{{D1,D5},D4}	{{D2,D3}, D6}
{{D1,D5},D4}	0	0,86
{{D2,D3}, D6}		0

	{D1,D5}	{D2,D3}	D4	D6
{D1,D5}	0	0,86	0,67	0,86
{D2,D3}		0	0,86	0,67
D4			0	0,86
D6				0

4) K-Means avec les centres initiaux : **D1, D3** et **D4**

$d(D1,D2) = \frac{8}{8} = 1$	$d(D2,D3) = \frac{2}{5} = 0,4$	$d(D3,D5) = \frac{8}{8} = 1$
$d(D1,D3) = \frac{8}{8} = 1$	$d(D2,D4) = \frac{6}{7} = 0.86$	$d(D3,D6) = \frac{4}{6} = 0,67$
$d(D1,D4) = \frac{4}{6} = 0,67$	$d(D2,D5) = \frac{6}{7} = 0.86$	$d(D4,D5) = \frac{6}{7} = 0.86$
$d(D1,D5) = \frac{2}{5} = 0.4$	$d(D2,D6) = \frac{6}{7} = 0.86$	$d(D4,D6) = \frac{6}{7} = 0.86$
$d(D1,D6) = \frac{6}{7} = 0.86$	$d(D3,D4) = \frac{6}{7} = 0.86$	$d(D5,D6) = \frac{6}{7} = 0,86$

	D1	D2	D3	D4	D5	D6
D1=G1	0	1	1	0,67	0,4	0,86
D3=G2	1	0,4	0	0,86	1	0,67
D4=G3	0,67	0,86	0,86	0	0,86	0,86

	D1	D2	D3	D4	D5	D6
G1	0,25	1	1	0,83	0,25	0,83
G2	1	0,4	0	0,86	1	0,67
G3	0,67	0,86	0,86	0	0,86	0,86

	C1	C2	C3	R	V	J	A	В	P	G
D1	1	0	0	1	0	0	1	0	1	0
D5	0	1	0	1	0	0	1	0	1	0
G1	0	0	0	1	0	0	1	0	1	0
D2	0	1	0	0	1	0	0	1	0	1
D3	0	0	1	0	1	0	0	1	0	1
D6	0	0	1	0	0	1	1	0	0	1
G2	0	0	1	0	1	0	0	1	0	1
D4= G3	1	0	0	0	0	1	0	1	1	0
G3										

C1={D1, D5}, G1=(0, 0, 0, 1, 0, 0, 1, 0, 1, 0) C2={D2, D3, D6}, G2=(0, 0, 1, 0, 1, 0, 0, 1, 0, 1)=D3 C3={D4}, G3= D4

Les centres ne changent pas →Convergence