$12n_{0190} \ (K12n_{0190})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 9.44661 \times 10^{16} u^{34} - 2.08351 \times 10^{16} u^{33} + \dots + 1.06489 \times 10^{17} b - 4.51309 \times 10^{16},$$

$$1.88308 \times 10^{16} u^{34} - 8.66830 \times 10^{16} u^{33} + \dots + 1.06489 \times 10^{17} a - 2.62684 \times 10^{17}, \ u^{35} - 2u^{34} + \dots - 3u^2 + I_2^u = \langle b + u + 1, \ u^2 + a - 3, \ u^3 + u^2 - 2u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 38 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{c} \text{I. } I_1^u = \\ \langle 9.45 \times 10^{16} u^{34} - 2.08 \times 10^{16} u^{33} + \dots + 1.06 \times 10^{17} b - 4.51 \times 10^{16}, \ 1.88 \times 10^{16} u^{34} - \\ 8.67 \times 10^{16} u^{33} + \dots + 1.06 \times 10^{17} a - 2.63 \times 10^{17}, \ u^{35} - 2u^{34} + \dots - 3u^2 + 1 \rangle \end{array}$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.176834u^{34} + 0.814012u^{33} + \dots + 2.45226u + 2.46678 \\ -0.887101u^{34} + 0.195656u^{33} + \dots + 0.405852u + 0.423810 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.833303u^{34} - 1.64324u^{33} + \dots - 2.63958u + 0.00424027 \\ 0.474997u^{34} - 0.230903u^{33} + \dots - 0.0819582u - 0.627396 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.772238u^{34} + 1.25159u^{33} + \dots + 1.49520u + 0.508098 \\ -0.536061u^{34} + 0.622559u^{33} + \dots + 1.22634u + 0.115057 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.120048u^{34} + 0.252095u^{33} + \dots + 2.07998u + 1.70401 \\ -0.898177u^{34} + 0.117584u^{33} + \dots + 0.120048u + 0.492190 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.16760u^{34} - 1.53977u^{33} + \dots - 3.05490u - 0.519586 \\ 0.247602u^{34} - 0.512958u^{33} + \dots - 0.499946u - 0.126931 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.374572u^{34} + 1.04071u^{33} + \dots + 3.03494u + 2.43025 \\ -0.739813u^{34} + 0.0918438u^{33} + \dots + 0.208114u + 0.255027 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-\frac{218803516467230358}{106488603430183673}u^{34} + \frac{323482212694991959}{106488603430183673}u^{33} + \cdots + \frac{611689066048825845}{106488603430183673}u + \frac{1479659137766380195}{106488603430183673}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{35} + 34u^{34} + \dots + 115u + 1$
c_2, c_4	$u^{35} - 4u^{34} + \dots + 11u - 1$
c_3, c_7	$u^{35} - 3u^{34} + \dots - 68u + 8$
c_5, c_6, c_9 c_{10}	$u^{35} + 2u^{34} + \dots + 3u^2 - 1$
c_8, c_{11}, c_{12}	$u^{35} - 2u^{34} + \dots + 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{35} - 62y^{34} + \dots + 24691y - 1$
c_{2}, c_{4}	$y^{35} - 34y^{34} + \dots + 115y - 1$
c_{3}, c_{7}	$y^{35} + 21y^{34} + \dots + 3536y - 64$
c_5, c_6, c_9 c_{10}	$y^{35} - 36y^{34} + \dots + 6y - 1$
c_8, c_{11}, c_{12}	$y^{35} - 24y^{34} + \dots + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.518512 + 0.839070I		
a = -0.20090 - 1.52795I	-5.06245 - 8.93378I	5.61011 + 6.33790I
b = 0.503396 + 0.528590I		
u = -0.518512 - 0.839070I		
a = -0.20090 + 1.52795I	-5.06245 + 8.93378I	5.61011 - 6.33790I
b = 0.503396 - 0.528590I		
u = 0.555627 + 0.849121I		
a = -0.614318 + 1.234160I	-9.19263 + 2.79140I	2.44794 - 2.71252I
b = 0.699304 - 0.374906I		
u = 0.555627 - 0.849121I		
a = -0.614318 - 1.234160I	-9.19263 - 2.79140I	2.44794 + 2.71252I
b = 0.699304 + 0.374906I		
u = -0.602141 + 0.838097I		
a = -0.899952 - 0.776437I	-4.82699 + 3.41045I	4.79435 - 1.46350I
b = 0.830081 + 0.123664I		
u = -0.602141 - 0.838097I		
a = -0.899952 + 0.776437I	-4.82699 - 3.41045I	4.79435 + 1.46350I
b = 0.830081 - 0.123664I		
u = 1.04102		
a = -0.463489	5.86840	16.9730
b = 1.08686		
u = 1.283960 + 0.039225I		
a = 0.911676 + 0.081651I	1.087230 + 0.216328I	6.00000 + 1.40746I
b = -0.010028 - 0.690521I		
u = 1.283960 - 0.039225I		
a = 0.911676 - 0.081651I	1.087230 - 0.216328I	6.00000 - 1.40746I
b = -0.010028 + 0.690521I		
u = -1.309800 + 0.120534I		
a = 0.195097 - 0.058984I	2.00975 - 3.69263I	7.27638 + 5.74697I
b = 0.81817 + 1.70956I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.309800 - 0.120534I		
a = 0.195097 + 0.058984I	2.00975 + 3.69263I	7.27638 - 5.74697I
b = 0.81817 - 1.70956I		
u = -0.353161 + 0.521336I		
a = -0.02390 + 1.82638I	1.00613 - 4.12242I	7.78031 + 7.98947I
b = -0.075939 - 1.075600I		
u = -0.353161 - 0.521336I		
a = -0.02390 - 1.82638I	1.00613 + 4.12242I	7.78031 - 7.98947I
b = -0.075939 + 1.075600I		
u = -1.40049		
a = 11.4155	4.90865	190.120
b = -22.2377		
u = -1.41602 + 0.13402I		
a = -0.533008 - 0.621383I	3.82362 - 2.94287I	6.00000 + 2.97348I
b = 0.89460 + 2.26294I		
u = -1.41602 - 0.13402I		
a = -0.533008 + 0.621383I	3.82362 + 2.94287I	6.00000 - 2.97348I
b = 0.89460 - 2.26294I		
u = 1.43763 + 0.18351I		
a = -0.659923 + 0.669202I	6.77944 + 6.69845I	11.84404 - 6.39087I
b = 0.47190 - 2.51680I		
u = 1.43763 - 0.18351I		
a = -0.659923 - 0.669202I	6.77944 - 6.69845I	11.84404 + 6.39087I
b = 0.47190 + 2.51680I		
u = 1.45669 + 0.05704I		
a = -0.812721 + 0.319156I	6.70581 + 0.15514I	13.76195 + 0.I
b = 1.47422 - 0.87678I		
u = 1.45669 - 0.05704I		
a = -0.812721 - 0.319156I	6.70581 - 0.15514I	13.76195 + 0.I
b = 1.47422 + 0.87678I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.343056 + 0.384524I		
a = 2.29929 + 0.59274I	1.22163 + 1.17182I	8.86681 + 1.56652I
b = -0.303185 - 0.122127I		
u = -0.343056 - 0.384524I		
a = 2.29929 - 0.59274I	1.22163 - 1.17182I	8.86681 - 1.56652I
b = -0.303185 + 0.122127I		
u = 0.082086 + 0.492790I		
a = 0.390939 - 0.968584I	-2.24663 + 1.49649I	1.03964 - 4.19157I
b = -1.184340 + 0.387269I		
u = 0.082086 - 0.492790I		
a = 0.390939 + 0.968584I	-2.24663 - 1.49649I	1.03964 + 4.19157I
b = -1.184340 - 0.387269I		
u = 0.247686 + 0.402332I		
a = 0.48224 - 1.96211I	-1.55343 + 0.99744I	0.35469 - 3.95121I
b = -0.468459 + 0.542393I		
u = 0.247686 - 0.402332I		
a = 0.48224 + 1.96211I	-1.55343 - 0.99744I	0.35469 + 3.95121I
b = -0.468459 - 0.542393I		
u = 1.53041 + 0.30636I		
a = 0.801077 - 0.794153I	1.56823 + 13.12930I	0
b = -1.46599 + 2.35320I		
u = 1.53041 - 0.30636I		
a = 0.801077 + 0.794153I	1.56823 - 13.12930I	0
b = -1.46599 - 2.35320I		
u = -1.54787 + 0.31879I		
a = 0.749169 + 0.471916I	-2.37929 - 7.10760I	0
b = -1.55387 - 1.68510I		
u = -1.54787 - 0.31879I		
a = 0.749169 - 0.471916I	-2.37929 + 7.10760I	0
b = -1.55387 + 1.68510I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.410266		
a = 0.502264	0.605206	16.5510
b = 0.198843		
u = 1.58936 + 0.33145I		
a = 0.519028 - 0.138883I	2.32499 + 0.97374I	0
b = -1.30987 + 0.85550I		
u = 1.58936 - 0.33145I		
a = 0.519028 + 0.138883I	2.32499 - 0.97374I	0
b = -1.30987 - 0.85550I		
u = 0.363147		
a = 6.36258	-0.506810	28.7620
b = -0.317987		
u = -1.77917		
a = -0.0244730	16.2026	0
b = -0.370009		

II.
$$I_2^u = \langle b + u + 1, u^2 + a - 3, u^3 + u^2 - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 3 \\ -u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 3 \\ -u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 + 4u + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_7	u^3
C_4	$(u+1)^3$
c_5, c_6, c_8	$u^3 + u^2 - 2u - 1$
$c_9, c_{10}, c_{11} \\ c_{12}$	$u^3 - u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_7	y^3
$c_5, c_6, c_8 \\ c_9, c_{10}, c_{11} \\ c_{12}$	$y^3 - 5y^2 + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.24698		
a = 1.44504	4.69981	7.43300
b = -2.24698		
u = -0.445042		
a = 2.80194	-0.939962	2.02180
b = -0.554958		
u = -1.80194		
a = -0.246980	15.9794	-6.45470
b = 0.801938		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{35} + 34u^{34} + \dots + 115u + 1)$
c_2	$((u-1)^3)(u^{35} - 4u^{34} + \dots + 11u - 1)$
c_3, c_7	$u^3(u^{35} - 3u^{34} + \dots - 68u + 8)$
c_4	$((u+1)^3)(u^{35} - 4u^{34} + \dots + 11u - 1)$
c_5, c_6	$(u^3 + u^2 - 2u - 1)(u^{35} + 2u^{34} + \dots + 3u^2 - 1)$
c_8	$(u^3 + u^2 - 2u - 1)(u^{35} - 2u^{34} + \dots + 4u - 1)$
c_9, c_{10}	$(u^3 - u^2 - 2u + 1)(u^{35} + 2u^{34} + \dots + 3u^2 - 1)$
c_{11}, c_{12}	$(u^3 - u^2 - 2u + 1)(u^{35} - 2u^{34} + \dots + 4u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^3)(y^{35} - 62y^{34} + \dots + 24691y - 1)$
c_2, c_4	$((y-1)^3)(y^{35} - 34y^{34} + \dots + 115y - 1)$
c_3, c_7	$y^3(y^{35} + 21y^{34} + \dots + 3536y - 64)$
$c_5, c_6, c_9 \ c_{10}$	$(y^3 - 5y^2 + 6y - 1)(y^{35} - 36y^{34} + \dots + 6y - 1)$
c_8, c_{11}, c_{12}	$(y^3 - 5y^2 + 6y - 1)(y^{35} - 24y^{34} + \dots + 6y - 1)$