Math 761 HW 1Jiaxi Huang

Due: September 4

1. Proof. Let X be $[0,1] \times (-\frac{1}{2},\frac{1}{2})$, and p be the quotient map from X to M First, we show M has a countable topological base. Let $\Gamma = \{U_i \mid i \in \mathbb{N}\}$ be X's countable topological base, and consider $\{p(U_i) \mid i \in \mathbb{N}\}$. This is a family of open sets of M. For every open set U' of M, we have $p^{-1}(U') = \bigcup U_i$, for some $U_i \in \Gamma$. This is training of operators of X. For every specific of X, we have p'(x) = p(y) for some $U_i \in \Gamma$. Then $U' = p(y) = p(U_i)$, which means M has a countable topological base. Let $\dot{X} = (0,1) \times (-\frac{1}{2},\frac{1}{2})$, then p is a homeomorphism from \dot{X} to $p(\dot{X})$. That is because this is obvious a bijection, and p, p^{-1} are continous according to the definition of a quotient map. So, for every element $x \in p(\dot{X}) \subset M$, we can make $(p(\dot{X}), p^{-1})$ be its chart. For the rest of M, we may as well choose $\{p(0,y), -\frac{1}{2} < y < \frac{1}{2}\}\$ as their representative elements. For any $-\frac{1}{2} < y < \frac{1}{2}$, let δ be $\frac{\min(\frac{1}{2}-y,\ y+\frac{1}{2})}{2}$, then $p(\{|x-(0,y)|<\delta,\ x\in X\})\cup\{|x-(1,-y)|<\delta,\ x\in X\})$ is an open neighborhood U_y of p(0,y)in M. Also, we can observe that restricting this quotient map to $\{|x-(0,y)|<\delta,\ x\in X\}\cup\{|x-y|\}$ (1,-y) $|<\delta, x\in X\}$ actually means we flip one semicircle and glue it to another semicircle along their diameters which is exactly an circle. So, $p(\{|x-(0,y)|<\delta,\ x\in X\}\cup\{|x-(1,-y)|<\delta,\ x\in X\})$ is homeomorphic to an open disk, and we may denote this homeomorphism by ϕ . So, we can make $(p(\{|x-(0,y)| < \delta, x \in X\}) \cup \{|x-(1,-y)| < \delta, x \in X\}), \phi)$ is the chart of p(0,y), and M is locally euclidean.

Figure 1: Figure 2: Figure (a) (c)

Last, we need to prove M is Hausdorff, which is true, since Mobius Strip is a subspace of \mathbb{R}^3 (or \mathbb{E}^3). And \mathbb{R}^3 (or \mathbb{E}^3) is Hausdorff, which makes its subspace also Hausdorff.

2. Proof. Here we use the definition of S^2 gluing its antipodal points, and let p be the quotient map. Also, we denote the antipodal mapping on S^2 by $x \to -x$. First, we show \mathbb{RP}^2 is second countable. S^2 is second countable since it is a subspace of \mathbb{R}^3 . Let $\Gamma = \{U_i \ i \in \mathbb{N}\}$ be the topological base of S^2 , then we claim that $\{p(U_i), i \in \mathbb{N}\}$ is a countable base of \mathbb{RP}^2 . For every open set $U' \subset \mathbb{RP}^2$, $p^{-1}(U')$ is an open subset of S^2 . So, $p^{-1}(U') = \bigcup U_i$, for some $U_i \in \Gamma$. So, $U' = p(\bigcup U_i) = \bigcup p(U_i)$, which indicates $\{p(U_i), i \in \mathbb{N}\}$ is a topological base of \mathbb{RP}^2 . So, \mathbb{RP}^2 is second countable.

Next, we prove \mathbb{RP}^2 is compact. Let $\{U_i, i \in I\}$ is an open cover of \mathbb{RP}^2 , then $\{p^{-1}(U_i), -p^{-1}(U_i), i \in I\}$ is an open cover of S^2 . Since S^2 is compact, we have finite sub open cover $\{p^{-1}(U_i), -p^{-1}(U_i), 1 \leq i \leq n\}$ of S^2 . Then $\bigcup_{i=1}^n U_i = \bigcup_{i=1}^n p(p^{-1}(U_i) \cup -p^{-1}(U_i)) = p(\bigcup_{i=1}^n p^{-1}(U_i)) = p(S^2) = \mathbb{RP}^2$. So, \mathbb{RP}^2 is

Last, we prove \mathbb{RP}^2 is Hausdorff. Let $p(x_1), p(x_2), x_1, x_2 \in S^2$ be two different element in \mathbb{RP}^2 . Then x_1, x_2 must be two different elements in S^2 . Since S^2 is Hausdorff, there exists two open neighborhhod $x_1 \in U_1$, $x_2 \in U_2$, $U_1 \cap U_2 = \emptyset$, $U_1 \subset S^2$, $U_2 \subset S^2$. So, $p(U_1)$, $p(U_2)$ are two open neighborhood of $p(x_1)$, $p(x_2)$. If $p(U_1) \cap p(U_2) \neq \emptyset$, then $-U_1 \cap U_2 \neq \emptyset$. Since $p(x_1) \neq p(x_2)$ in \mathbb{RP}^3 , $-x_1 \neq x_2$. So, there exists another two open neighborhood of $-x_1$, x_2 in S^2 , which are U_1' , U_2' , and the intersection of them

is \emptyset . Let $U_1^* = U_1 \cap -U_1^{'}$ and $U_2^* = U_2 \cap U_2^{'}$. They are all open sets of S^2 , because antipodal mapping is actually a homeomorphism of S^2 . So, $p(U_1^*)$ and $p(U_2^*)$ are open neighborhood of $p(x_1), p(x_2)$. If $p(U_1^*) \cap p(U_2^*) \neq \emptyset$, then $U_1^* \cap U_2^* \neq \emptyset$ or $-U_1^* \cap U_2^* \neq \emptyset$, which is impossible. So, $p(U_1^*) \cap p(U_2^*) = \emptyset$, which indicates \mathbb{RP}^2 is Hausdorff.

- 3. Proof. We continue to define \mathbb{RP}^2 as gluing the antipodal points of S^2 , and we denote this quotient map by \widetilde{p} . We denote the upper half of S^2 by $\overline{S}^2 = \{(x,y,z)|x^2+y^2+z^2=1,z\geq 0\}$. It is homeomorphic to D^2 by sending $(x,y,z)\in \widetilde{S}^2$ to $(x,y)\in D^2$, and we denote it by ϕ . Let p denote the quotient map from D^2 to $X=D^2/(\cos\theta,\sin\theta)\sim(\cos(\theta+\pi),\sin(\theta+\pi))$, namely gluing the opposite boundary points of D^2 . Then we have a quotient map $p\circ\phi:\widetilde{S}^2\to X$, so $S^2/(\cos\theta,\sin\theta,0)\sim(\cos(\theta+\pi),\sin(\theta+\pi),0)\cong X$. Let p' denote gluing the antipodal points of the 'equator' of S^2 , and p' is also a quotient map from S^2 to $S^2/(\cos\theta,\sin\theta,0)\sim(\cos(\theta+\pi),\sin(\theta+\pi),0)$. Notice that $p'=\widetilde{p}|_{S^2}$, and $p'=\widetilde{p}(S^2)=\widetilde{p}(S^2)$. We claim that $S^2/p'\cong S^2/\widetilde{p}$. First, the sets are the same, so we only need to verify if they have the same topology. Let U be an open set of \widetilde{S}^2/p' , then $(p')^{-1}(U)$ is an open set of \widetilde{S}^2 . First We can assume that $(p')^{-1}(U)$ doesn't contain any point of the equator, then $(p')^{-1}(U)$ is also an open subset in S^2 . So, U is also an open set in \mathbb{RP}^2 . Then, we assume $(p')^{-1}(U)\cap\{(x,y,0)|x^2+y^2=1\}\neq\emptyset$. We claim that $(p')^{-1}(U)\cup -(p')^{-1}(U)$ is an open set in S^2 . For any $x\in ((p')^{-1}(U)\cup -(p')^{-1}(U))\cap\{(x,y,0)|x^2+y^2=1\}$ we can find a open neighborhood of x in S^2 , which is contained in $(p')^{-1}(U)\cup -(p')^{-1}(U)$. Let $x\in ((p')^{-1}(U)\cup -(p')^{-1}(U))\cap\{(x,y,0)|x^2+y^2=1\}$, and we may as well let $x\in (p')^{-1}(U)$. Then we can find a $\delta_1>0$ such that $\{y\in S^2, \mid |y-x|<\delta_1\}\cap(p')^{-1}(U)\neq\emptyset$, since $((p')^{-1}(U))$ is an open set of S^2 . (Here, |x|=1) means the distance in S^2 . Also, -x is in $(p')^{-1}(U)$. So, we can find a $\delta_2>0$ such that $\{y\in S^2, \mid |y-x|<\delta_2\}\cap(p')^{-1}(U)\neq\emptyset$. Let $\delta=\min\{\delta_1,\delta_2\}$, then $\{y\in S^2, \mid |y-x|<\delta_2\}\cap(p')^{-1}(U)=0$. So, $(p')^{-1}(U)=0$ is an open set in S^2 . And it is easy to check that for any set $A\subset S^2$, we have $\widetilde{p}(A)=p'(A\cap S^2)$, so we have $V=p'(\widetilde{p}^{-1}(V)\cap S^2)$, which indicates V is an o
- 4. Proof. First, we still need this 'M' to be second-countable and Hausdorff. Also, every point of M should have an open neighborhood homeomorphic to either an open set of \mathbb{R}^n or \mathbb{H}^n . ($\mathbb{H}^n = \{(x_1, x_2, \cdots, x_n) | x_n \geq 0\}$) We should define $x \in M$ is an interior interior point iff x has an open neighborhood in M which is homeomorphic to an open sets in \mathbb{R}^n . And, we should define $x \in M$ the boundary points of M iff x has an open neighborhood in M which is homeomorphic to an open sets in \mathbb{H}^n , and this homeomorphism sends x to the boundary of \mathbb{H}^n . And, the boundary of M should be a topological manifold of dimension n-1. The easiest example we could come up is a simple compact curve in \mathbb{R}^n with two ends. Then this curve should be a 1-dimensional topological manifold with boundary, and the two ends are its boundary. It is also easy to check they are 0-dimensional topological manifold. Another example is the upper half of a sphere S^2 ($\{(x, y, z)|x^2 + y^2 + z^2 = 1, z \geq 0\}$) in \mathbb{R}^3 . This should be a manifold with boundary points with S^1 as its boundary, which is a one dimensional manifold itself.