計量経済 II: 宿題 6

村澤 康友

提出期限: 2023年11月6日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. gretl のサンプル・データ sw-ch14 は,アメリカの失業率と消費者物価指数の 1959 年第 1 四半期~1999 年第 4 四半期の季節調整済みデータである.失業率について以下の分析を行いなさい.
 - (a) 最大次数を (6,6) として ARMA モデルの最適な次数を AIC で選択しなさい.
 - (b) AIC で選択したモデルを厳密な ML 法で推定しなさい.
 - (c) 推定結果の画面のメニューから「分析」→「予測」で予測値と信頼区間を計算できる。 2000 年第 1 四半期~2002 年第 4 四半期の計 12 四半期について,予測値と 95% 信頼区間を時系列グラフで示しなさい。
- 2. 消費者物価上昇率(対数階差)について、前問と同じ分析を行いなさい.

解答例

1. (a) 失業率のモデル選択

Estimated using AS 197 (厳密最尤法)
Dependent variable LHUR, T = 164
Criteria for ARMA(p, q) specifications

p, q	AIC	BIC	н Q С	loglik
0, 0	597.1571	603.3569	599.6740	-296.5786
0, 1	393.7388	403.0384	397.5141	-193.8694
0, 2	260.8509	273.2503	265.8846	-126.4254
0, 3	203.2645	218.7639	209.5567	-96.6323
0, 4	110.7167	129.3159	118.2673	-49.3584
0,5	78.2586	99.9577	87.0676	-32.1293
0,6	74.6423	99.4412	84.7097	-29.3211
1, 0	113.5521	122.8517	117.3274	-53.7760
1, 1	51.3776	63.7771	56.4113	-21.6888
1, 2	46.5767	62.0761	52.8689	-18.2884
1, 3	35.9776	54.5768	43.5282	-11.9888
1, 4	37.3766	59.0757	46.1856	-11.6883
1, 5	37.1346	61.9335	47.2020	-10.5673
1, 6	39.1191	67.0179	50.4450	-10.5596
2, 0	38.0363	50.4357*	43.0700	-15.0181
2, 1	39.3665	54.8659	45.6587	-14.6833
2, 2	40.8506	59.4497	48.4011	-14.4253
2, 3	37.6282	59.3273	46.4372	-11.8141
2, 4	38.9033	63.7023	48.9708	-11.4517
2, 5	39.1327	67.0315	50.4586	-10.5664
2, 6	39.8812	70.8799	52.4655	-9.9406
3, 0	39.4824	54.9818	45.7746	-14.7412
3, 1	38.8661	57.4653	46.4167	-13.4331
3, 2	40.8091	62.5082	49.6181	-13.4046
3, 3	34.3698	59.1687	44.4372	-9.1849
3, 4	32.1247	60.0235	43.4505	-7.0623
3, 5	30.2200	61.2187	42.8043	-5.1100
3, 6	31.9681	66.0666	45.8108	-4.9841
4, 0	41.2152	59.8144	48.7658	-14.6076
4, 1	40.7949	62.4940	49.6039	-13.3974
4, 2	35.1727	59.9716	45.2401	-9.5863

4, 3	29.7992*	57.6980	41.1251*	-5.8996
4, 4	31.7115	62.7102	44.2958	-5.8558
4, 5	31.8778	65.9763	45.7205	-4.9389
4, 6	32.2570	69.4554	47.3581	-4.1285
5, 0	40.2126	61.9117	49.0216	-13.1063
5, 1	41.9189	66.7179	51.9864	-12.9595
5, 2	30.1874	58.0862	41.5133	-6.0937
5, 3	31.7104	62.7090	44.2947	-5.8552
5, 4	33.6887	67.7872	47.5314	-5.8443
5, 5	33.6144	70.8128	48.7156	-4.8072
5, 6	35.4204	75.7186	51.7800	-4.7102
6, 0	41.6087	66.4077	51.6762	-12.8044
6, 1	43.3432	71.2420	54.6690	-12.6716
6, 2	31.4911	62.4898	44.0754	-5.7456
6, 3	32.8802	66.9787	46.7229	-5.4401
6, 4	34.8206	72.0190	49.9217	-5.4103
6, 5	35.3735	75.6718	51.7331	-4.6868
6, 6	35.5098	78.9079	53.1278	-3.7549

'*' indicates best, per criterion

Log-likelihood ('loglik') is provided for reference % AIC は ARMA(4,3) を選択.

(b) 失業率の ARMA(4,3) モデルの推定結果

モデル 1: ARMA, 観測: 1959:1–1999:4 (T=164) 従属変数: LHUR

標準誤差はヘッシアン(Hessian)に基づく

	係数	標準誤差	z	p 値
const	5.93775	0.501314	11.84	0.0000
ϕ_1	1.12771	0.138224	8.159	0.0000
ϕ_2	-0.801822	0.186396	-4.302	0.0000
ϕ_3	0.926199	0.163144	5.677	0.0000
ϕ_4	-0.354863	0.126145	-2.813	0.0049
$ heta_1$	0.496939	0.134204	3.703	0.0002
θ_2	0.953289	0.0446047	21.37	0.0000
θ_3	0.373808	0.125505	2.978	0.0029

Mean dependent var	5.995122	S.D. dependent var	1.480716
Mean of innovations	-0.001509	S.D. of innovations	0.246692
R^2	0.972080	Adjusted \mathbb{R}^2	0.971013
Log-likelihood	-5.899625	Akaike criterion	29.79925
Schwarz criterion	57.69805	Hannan-Quinn	41.12511

			Real	Imaginary	Modulus	頻度
AR						
	Root	1	1.1199	0.0000	1.1199	0.0000
	Root	2	1.8850	0.0000	1.8850	0.0000
	Root	3	-0.1974	-1.1384	1.1554	-0.2773
	Root	4	-0.1974	1.1384	1.1554	0.2773
MA						
	Root	1	-2.4529	0.0000	2.4529	0.5000
	Root	2	-0.0487	-1.0432	1.0443	-0.2574
	Root	3	-0.0487	1.0432	1.0443	0.2574

(c) 失業率の予測値

2. (a) 消費者物価上昇率(対数階差)のモデル選択
Estimated using AS 197 (厳密最尤法)
Dependent variable ld_PUNEW, T = 163
Criteria for ARMA(p, q) specifications

p, q	AIC	BIC	HQC	loglik
0, 0	-1118.7501	-1112.5626	-1116.2380	561.3750
0, 1	-1244.2317	-1234.9504	-1240.4636	625.1158
0, 2	-1261.8555	-1249.4805	-1256.8314	634.9277
0,3	-1300.5741	-1285.1053	-1294.2940	655.2870
0, 4	-1311.1758	-1292.6133	-1303.6397	661.5879
0,5	-1315.7032	-1294.0470	-1306.9110	664.8516
0,6	-1324.6269	-1299.8769	-1314.5787	670.3135
1, 0	-1325.4336	-1316.1524	-1321.6655	665.7168
1, 1	-1333.4444	-1321.0694	-1328.4202	670.7222
1, 2	-1333.9351	-1318.4663	-1327.6549	671.9675
1, 3	-1349.2115	-1330.6490*	-1341.6753*	680.6057
1, 4	-1347.2244	-1325.5682	-1338.4322	680.6122
1, 5	-1346.2781	-1321.5281	-1336.2299	681.1391
1, 6	-1347.6075	-1319.7638	-1336.3033	682.8038
2, 0	-1328.8182	-1316.4432	-1323.7941	668.4091
2, 1	-1331.8532	-1316.3844	-1325.5731	670.9266
2, 2	-1342.4498	-1323.8873	-1334.9136	677.2249
2, 3	-1347.2468	-1325.5905	-1338.4546	680.6234
2, 4	-1346.7320	-1321.9820	-1336.6838	681.3660
2, 5	-1345.6215	-1317.7777	-1334.3172	681.8107
2, 6	-1345.6157	-1314.6782	-1333.0554	682.8079
3, 0	-1344.0611	-1328.5923	-1337.7809	677.0305
3, 1	-1347.5926	-1329.0301	-1340.0564	679.7963
3, 2	-1349.3608	-1327.7046	-1340.5686	681.6804
3, 3	-1347.4373	-1322.6873	-1337.3891	681.7187
3, 4	-1350.0209	-1322.1772	-1338.7167	684.0105
3, 5	-1352.1235	-1321.1860	-1339.5632	686.0618
3, 6	-1351.7105	-1317.6793	-1337.8942	686.8553
4, 0	-1349.1195	-1330.5569	-1341.5833	680.5597
4, 1	-1347.1848	-1325.5285	-1338.3926	680.5924
4, 2	-1345.6193	-1320.8693	-1335.5710	680.8096
4, 3	-1346.0501	-1318.2063	-1334.7458	682.0250
4, 4	-1351.2812	-1320.3437	-1338.7209	685.6406

4,	5	-1352.7870	-1318.7558	-1338.9707	687.3935
4,	6	-1350.8245	-1313.6995	-1335.7522	687.4123
5,	0	-1347.1651	-1325.5089	-1338.3729	680.5826
5,	1	-1345.4885	-1320.7385	-1335.4403	680.7442
5,	2	-1345.8394	-1317.9957	-1334.5352	681.9197
5,	3	-1350.7563	-1319.8188	-1338.1961	685.3782
5,	4	-1349.2814	-1315.2502	-1335.4651	685.6407
5,	5	-1351.7760	-1314.6510	-1336.7036	687.8880
5,	6	-1350.7544	-1310.5356	-1334.4260	688.3772
6,	0	-1345.2487	-1320.4987	-1335.2005	680.6243
6,	1	-1343.7818	-1315.9380	-1332.4775	680.8909
6,	2	-1349.3617	-1318.4242	-1336.8014	684.6809
6,	3	-1348.4257	-1314.3944	-1334.6094	685.2128
6,	4	-1346.7623	-1309.6373	-1331.6899	685.3811
6,	5	-1355.2427*	-1315.0240	-1338.9144	690.6214
6,	6	-1353.4614	-1310.1489	-1335.8770	690.7307

'*' indicates best, per criterion

Log-likelihood ('loglik') is provided for reference % AIC は ARMA(6,5) を選択.

(b) 消費者物価上昇率(対数階差)の $\operatorname{ARMA}(6,5)$ モデルの推定結果

モデル 1: ARMA, 観測: 1959:2–1999:4 (T=163)

従属変数: ld_PUNEW

標準誤差はヘッシアン(Hessian)に基づく

	係数	標準誤差	z	p 値
const	0.0102674	0.00248826	4.126	0.0000
ϕ_1	0.913208	0.148753	6.139	0.0000
ϕ_2	-0.532784	0.235996	-2.258	0.0240
ϕ_3	0.382222	0.240835	1.587	0.1125
ϕ_4	-0.143611	0.229951	-0.6245	0.5323
ϕ_5	-0.346484	0.210646	-1.645	0.1000
ϕ_6	0.494960	0.124050	3.990	0.0001
θ_1	-0.235133	0.130681	-1.799	0.0720
θ_2	0.391817	0.131203	2.986	0.0028
θ_3	0.311801	0.133223	2.340	0.0193
θ_4	0.0489050	0.0982522	0.4978	0.6187
$ heta_5$	0.757984	0.107601	7.044	0.0000

Mean dependent var	0.010798	S.D. dependent var	0.007751
Mean of innovations	0.000070	S.D. of innovations	0.003420
R^2	0.804273	Adjusted \mathbb{R}^2	0.791396
Log-likelihood	690.6214	Akaike criterion	-1355.243
Schwarz criterion	-1315.024	Hannan-Quinn	-1338.914

			Real	Imaginary	Modulus	頻度
AR						
	Root	1	1.1086	0.0000	1.1086	0.0000
	Root	2	0.7609	-0.7907	1.0973	-0.1281
	Root	3	0.7609	0.7907	1.0973	0.1281
	Root	4	-1.3553	0.0000	1.3553	0.5000
	Root	5	-0.2875	-1.0169	1.0568	-0.2938
	Root	6	-0.2875	1.0169	1.0568	0.2938
MA						
	Root	1	0.7236	0.6902	1.0000	0.1212
	Root	2	0.7236	-0.6902	1.0000	-0.1212
	Root	3	-1.1299	0.0000	1.1299	0.5000
	Root	4	-0.1909	-1.0636	1.0806	-0.2783
	Root	5	-0.1909	1.0636	1.0806	0.2783

(c) 消費者物価上昇<mark>率(対数階差)の予測値</mark>

