Exercise 2.5.1: solution

Exercise. Let us denote

$$\operatorname{prox}_{g}(y) = \arg\min_{x \in \mathcal{X}} g(x) + \frac{1}{2} \|x - y\|^{2}$$

the proximal operator of g at y.

Fix $\gamma > 0$. Show that if f and g are convex, then the fixed points of the nonlinear equation

$$x = \text{prox}_{\gamma g}(x - \gamma \nabla f(x))$$

are the minimizers of the function F = f + g.

Let us denote $p = \text{prox}_g(y)$. By definition, p minimizes $h(x) = g(x) + \frac{1}{2} \|x - y\|^2$. By Fermat's rule, we get the inclusion $0 \in \partial g(p) + (p - y)$. Note that $x \mapsto \frac{1}{2} \|x - y\|^2$ is differentiable so that the subdifferential of the sum is the sum of the subdifferentials (Prop 2.4.1).

We now apply this result for $p = \text{prox}_{\gamma q}(x - \gamma \nabla f(x))$:

$$0 \in \gamma \partial g(p) + (p - x + \gamma \nabla f(x))$$

Suppose now that x is a fixed point of the nonlinear equation. This means that p = x above and thus, $0 \in \gamma \partial g(x) + \gamma \nabla f(x)$. Equivalently, we can use Fermat's rule again and since $\gamma > 0$, we have $x \in \arg\min_y f(y) + g(y)$.