FCC ID: 2AMMIMIR-001 ATTACHMENT

** MPE Calculations **

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

]	EIRP = P + G	Where,
]	EIRP = 14.79 dBm + 3.3 dBi	P = Power input to the antenna (mW)
]	EIRP = 18.09 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
	S = Maximum power density (mW/cm2)
$S = (30.13 * 2.14) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0128 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20 cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm^2 limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
K - V (FO/ T/K)	P = Power input to the antenna (mW)
$R = \sqrt{(30.13*2.14/4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 2.26 cm	(20 cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{-1} (dB \text{ antenna gain } / 10)$$

$$G = Log^{-1} (3.3 / 10)$$

$$G = 2.14$$