Решение уравнения $x^2 = 2$ в множествах $\mathbb Q$ и $\mathbb R$.

Решение на множестве **Q**:

Докажем, что $\sqrt{2}$ иррациональное число, т.е. $\sqrt{2}$ \notin \mathbb{Q} .

От противного. Если $\sqrt{2} \in \mathbb{Q}$, то $\sqrt{2}$ представимо в виде несократимой дроби:

$$\sqrt{2} = \frac{p}{q}$$
; $2 = \frac{p^2}{q^2}$; $2q^2 = p^2$

где $p \in \mathbb{Z}$, $q \in \mathbb{N} \Rightarrow p^2$ четное \Rightarrow p четное \Rightarrow $\exists k \in \mathbb{N}$: p=2k.

Тогда
$$2q^2 = p^2 \Rightarrow 2q^2 = 4k^2$$
;

 $q^2 = 2k^2 => q^2$ четное => q четное => $\frac{p}{q}$ — сократимая дробь. Противоречие.

Решение на множестве \mathbb{R} :

Докажем, что $\exists \ \alpha \in \mathbb{R}, \ \alpha > 0: \ \alpha^2 = 2.$

Пусть X={ $x \in \mathbb{R}$: ($x \ge 0$) \land ($x^2 \le 2$)}

- 1) $0 \in X (=>X \neq \emptyset)$
- 2) $\forall x \in X: x \le 2$ (т.к. если $\exists x \in X: x > 2 = x^2 > 4$) => по принципу верхней грани $\alpha = \sup X \in \mathbb{R}$.

Три возможных варианта:

1)
$$\alpha^2$$
<2; 2) α^2 >2;

3)
$$\alpha^2 = 2$$

1)
$$2-\alpha^2 > 0$$

$$\forall n \in \mathbb{N} : (\alpha + \frac{1}{n})^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2} \leqslant \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n} = \alpha^2 + \frac{2\alpha + 1}{n} < 2 \Leftrightarrow n > \frac{2\alpha + 1}{2 - \alpha^2}$$

(по постулату Архимеда)

Значит
$$\alpha + \frac{1}{n} \in X \Rightarrow \alpha + \frac{1}{n} \leqslant \sup X = \alpha$$
 .

Противоречие.

2)
$$\alpha^2$$
-2>0

$$\forall n \in \mathbb{N}: (\alpha - \frac{1}{n})^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} \geqslant \alpha^2 - \frac{2\alpha}{n} - \frac{1}{n^2} \geqslant \alpha^2 - \frac{2\alpha}{n} - \frac{1}{n} = \alpha^2 - \frac{2\alpha+1}{n} > 2 \Leftrightarrow n > \frac{2\alpha+1}{\alpha^2-2}$$

(по постулату Архимеда)

Значит
$$\alpha - \frac{1}{n} \notin X \Rightarrow \alpha - \frac{1}{n} \geqslant \sup X = \alpha$$
.

Противоречие.

$$=> \alpha^2 = 2.$$