CS261: Final Exam

INSTRUCTIONS

- This is a 90 minute, closed-book exam consisting of **FIVE** problems
- Cases of academic dishonesty will be filed to the Office of Student Conduct

Problems	Max points	Earned points
1.1	10	
1.2	20	
2	20	
3	15	
4	15	
5	20	
TOTAL	100	

Problem 1.1: AVL Trees – 10 points

Transform the BST shown below to the corresponding AVL tree, and draw your final result.

Solution: The only way to do so is to height-balance all nodes bottom-up, starting from the leaves.

- 1) (0 points) A height unbalanced solution, or some nodes are missing from the BST.
- 2) (3 points) A drawing of a height balanced but incorrect AVL tree with all nodes from the BST.
- 3) (10 points) Start from 3 points, and add 1 point for every correct node in the solution that satisfies the table below.

node	parent	left child	right child	points
5	8	NULL	NULL	1 point
8	10	5	9	1 point
9	8	NULL	NULL	1 point
10	NULL	8	15	1 point
11	15	NULL	NULL	1 point
15	10	11	20	1 point
20	15	NULL	NULL	1 point

Problem 1.2: AVL Trees – 20 points

Write a C function, rotateLeft(), for the left rotation of a height-unbalanced node in an AVL tree. The nodes are specified by the code below. No other C functions are provided beyond this code.

```
# define TYPE int
                                            /* return height of current*/
struct Node {
                                            int height(struct Node *current){
                                             if (current == 0) return -1;
 TYPE val;
 struct Node *left;
                                             return current->height;
 struct Node *right;
 int height;
};
/* Rotate left the input node
    - Input: current = height unbalanced node
    - Output: new height-balanced node
    - Pre-conditions: current and current->right are not NULL
struct Node * rotateLeft(struct Node * current) {
   /* FIX ME */
   struct Node * new = current->right; /* 3 points */
   current->right = new->left;  /* 3 points */
   new->left = current; /* 3 points */
   setHeight(current); /* 2 points */
   setHeight(new); /* 2 points */
  return new; /* 2 points */
}
/* set height for current node */
void setHeight (struct Node * current) {
  int lch = height(current->left); /* 1 point */
  int rch = height(current->right); /* 1 point */
 if (lch < rch) /* 1 point */
    current->height = 1 + rch; /* 1 point */
    current->height = 1 + lch; /* 1 point */
}
```

Problem 2: Heap - 20 points

Write a **recursive** C function, containsHeap(), that takes a heap and element e as input arguments, and returns -1 if e cannot be found in the heap; otherwise, returns the non-negative index of e in the heap. The heap is implemented as a dynamic array as specified below.

Non-recursive solutions will be penalized by negative 10 points.

```
#define TYPE int
\#define EQ(a,b) (a == b)
\#define LT(a,b) (a < b)
struct DynArr{
  TYPE *data; /* pointer to the data array */
  int size;
               /* number of elements in the array */
  int capacity; /* capacity of the array */
};
/\star Return the index of e in the heap, or return -1 if e is not in the heap \star/
int contiansHeap(struct DynArr *heap, TYPE e) {
  assert (heap);
  /* FIX ME */
  return _findIndexHeap(heap, e, 0); /* 4 points */
}
/* Return the highest index of e in the heap, or -1 */
int _findIndexHeap(struct DynArr *heap, TYPE e, int currentIdx){ /* 2 points */
 int leftChildIdx, rightChildIdx;
 if (currentIdx < heap->size) {
                                   /* 2 points */
   if ( EQ(heap->data[currentIdx], e) ) /* 2 points */
     return currentIdx; /* 2 points */
   else if ( LT(heap->data[currentIdx], e) ) {
                                             /* 2 points */
     rightChildIdx = _findIndexHeap(heap, e, 2*currentIdx+2); /* 2 points */
     return (leftChildIdx > rightChildIdx ) ? leftChildIdx : rightChildIdx; /* 2 points */
   }
 }
 return -1;
```

Problem 3: 15 points

Fill out the table with names of concepts or execution complexity of statements in the right column.

$O(\log n)$	Time complexity of finding an element in a Sorted
	Dynamic Array Bag with n elements
Heap Sort	A sorting algorithm for a bag with n elements that
	has complexity $O(n \log n)$ and uses an auxiliary data
	structure, but does not require extra memory space
Stack	An abstract data structure with the LIFO property
O(n)	Time complexity of finding a given value in a Sorted
	Linked List with n links
O(n)	Time complexity of adding an element to a Sorted array
,	with n elements
If the right child exists: the leftmost	Which node do we copy to node v in an AVL tree, when
descendant of the right child; otherwise:	v is to be removed
the left child	
$O(\log n)$	Time complexity of the remove-single operation for an
- ('8'')	AVL Tree with n nodes
O(1)	Time complexity of the add operation for a Hash Table
()	with buckets implemented as a singly linked list, when
	the table size is m
O(1)	Time complexity of the remove-single operation for a
	Deque implemented as a doubly linked list with n links
O(1)	Time complexity of the remove-single operation for a
	Deque implemented as a wraparound dynamic array with
	n elements
Leaves	Nodes of a complete tree that are guaranteed to respect
200.05	the heap property
Dijkstra's algorithm	An algorithm for finding the minimum-cost path between
J	two given nodes in a graph
Hash Table	An abstract data structure that is suitable for applications
THOSE THOSE	where the user rarely adds or removes data elements, but
	frequently searches for a given element
O(2*m) + O(n) = O(n)	Time complexity of the function that doubles the size of
$O(2 \cdot m) + O(n) - O(n)$	a Hash Table when the loading factor becomes too large,
	where the original table size is m and the total number
	of elements in the Hash Table is n , $n > 2 * m$
$O(n^3)$	
O(n)	Time complexity of the Warshall's algorithm for a graph with n nodes
	with 11 houes

Problem 4: 15 points

For the doubly linked list Deque defined and illustrated below, write the C function $_addDeque()$ that adds a new element e <u>before</u> a given link lnk in the Deque, and as such can be used for adding e either to the head or tail of the Deque.

```
struct DLink
                                            TYPE val;
                                            struct DLink *next;
                                            struct DLink *prev;
 tail =
 head =
                                         };
                                   (Sentinel)
                                         struct Deque {
                                            struct DLink *head; /* Sentinel at front */
                                            struct DLink *tail; /* Sentinel at back */
                                            int size; /\star Number of data elements \star/
                                          };
/* Input: dq = pointer to a deque
          lnk = link in the deque before which the new element should be added
          e = the new element
   Post: e is added before lnk,
          deque size is updated */
void _addDeque (struct Deque *dq, struct DLink *lnk, TYPE e) {
   assert(dq && lnk);
   /* FIX ME */
   /* 5 points */
   struct Dlink * newlink = (struct Dlink *) malloc(sizeof(struct Dlink));
   assert(newlink != 0);
   newlink->val = e;
                                   /* 1 point */
                                   /* 2 points */
   newlink->prev = lnk->prev;
   newlink->next = lnk;
                                   /* 2 points */
   lnk->prev->next = newlink;
                                   /* 2 points */
                                   /* 2 points */
  lnk->prev = newlink;
                                   /* 1 point */
   dq->size++;
```

Problem 5: 20 points

We are given the adjacency matrix A of a directed graph with four nodes, as shown below. Every element A[i][j] indicates a cost of the corresponding directed edge from node i to node j in the graph, where the infinity value $A[i][j] = \infty$ indicates that there is no edge from node i to node j. For example, the cost of the directed edge from node 1 to node 3 is A[1][3] = 2, and there is no edge from node 3 to node 1.

Compute the min-cost directed path that starts at node 0 and ends at node 3. Write the total cost of your solution, and list the sequence of nodes along the min-cost path.

You may use any method by your choice for solving this problem, but you should explain your solution.

$$A = \begin{bmatrix} \infty & \infty & 1 & 10 \\ \infty & \infty & \infty & 2 \\ \infty & 1 & \infty & \infty \\ \infty & \infty & \infty & 10 \end{bmatrix}$$

<u>Grading</u>: Count the number of nodes along the path starting from 0 toward 3 (including 0 and 3) that are correct. Multiply that number with 4 points. The total minimum cost is additional 4 points.

Solution 1:

From A, there are only 2 paths between node 0 and node 3:

Path 1=
$$\{0 \to 3\}$$
, with the total cost = $A[0][3] = 10$

Path
$$2 = \{0 \to 2 \to 1 \to 3\}$$
, with the total cost = $A[0][2] + A[2][1] + A[1][3] = 1 + 1 + 2 = 4$

It follows that the min-cost path is Path 2.

Solution 2: Dijkstra's algorithm:

Let d[i] denote the cost of a min-cost path from node 0 to node i, and prev[i] denote the previous node of i along the min-cost path from node 0 to node i.

- Step1 : Initialize d[2] = 1, prev[2] = 0;
- Step2: $d[1] = d[2] + A[2][1] = 2, \ prev[1] = 2; \\ d[3] = d[1] + A[1][3] = 4, \ prev[3] = 1;$

From d[3], the minimum total cost is 4.

From prev[], the min-cost path is: $3 \leftarrow 1 \leftarrow 2 \leftarrow 0$