Homework-11

December 5, 2024

- 1. (1). Let p be a prime number, show the splitting field of $x^{p^n} 1$ over GF(p);
- (2). Show the splitting field of $x^6 + 2x^3 + 2$ over GF(3).
- (3). Show the splitting field of $x^4 2$ over $\mathbb{Q}(i)$ and its Galois group.
- 2. Let F be a field, K be the splitting field of $f(x) \in F[x]$ over F, E be an intermediate field of K/F. Prove that K is also the splitting field of f(x) over E.
- 3. Let K/F be a finite normal extension, E is a intermediate field. Prove that E/F is a normal extension iff E is stable of K/F. i.e. For any F-automorphism σ of K, $\sigma(E) = E$.
- 4. Let E, K be two intermediate fields of finite extension L/F. Prove: if E/F and K/Fare normal extension, then $E \cap K/F$ and EK/F are normal extension.
- 5. Let E, K be two intermediate fields of finite extension L/F. Prove: if K/F is a normal extension, then EK/E is a normal extension.
- 6. If K/E and E/F are normal extension, is K/F a normal extension? Prove it or give a counterexample.
- 7. Let p_1, \ldots, p_m be distinct prime numbers. $K = \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_m})$, show $Gal(K/\mathbb{Q})$.
- 8. Give the Galois groups of the splitting fields of following polynomials over \mathbb{Q} , and show all those subgroups and fixed fields.
- (1). $x^3 3x 1$; (2). $x^3 x 1$.
- 9. Give all subgroups of $Gal(GF(p^n)/GF(p))$ and their fixed field.
- 10. Let p be an odd prime number, K be the splitting field of $x^{p^n} 1$ over \mathbb{Q} .

1

- (1). Prove $[K:\mathbb{Q}] = p^{n-1}(p-1)$;
- (2). Prove $Gal(K/\mathbb{Q})$ is a cyclic group.