1

ASSIGNMENT11.15 13Q

EE22BTECH11219 - Sai Sujan Rada

QUESTION:

Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represents (a) travelling wave, (ii) a stationary wave or (iii) none at all:

(a)
$$y = 2\cos(3x)\sin(10t)$$

(b)
$$y = 2\sqrt{x - vt}$$

(c)
$$y = 3\sin(5x - 0.5t) + 4\cos(5x - 0.5t)$$

(d)
$$y = \cos x \sin t + \cos 2x \sin 2t$$

SOLUTION:

TRAVELLING WAVE	STATIONARY WAVE
$y(x,t) = A\sin(kx \pm \omega t)$	$y(x,t) = A\sin kx \cos \omega t$
PARAMETERS	DEFINITION
A	Amplitude
ω	Angular Velocity
x	Position
k	Wavenumber
TABLE I	

TRAVELLING WAVE VS STATIONARY WAVE

Let us assume an equation:

$$A(x)\cos(\omega t + \phi(x))$$

STATIONARY WAVE CONDITION	TRAVELLING WAVE CONDITION
(1) $A(x)$ should be a function of position x, and it can be expressed as $A(x) = A_0 cos(\omega t + \alpha)$ where A_0 is a constant, k is the wavenumber, x is the position and α is a phase constant.	(1) $A(x)$ should be a constant, and it can be expressed as $A(x) = A_0$ where A_0 is a constant number.
(2) $\phi(x)$ can be expressed as $\phi(x) = c$ where c is a constant.	(2) $\phi(x)$ represents a linear expression in x, and it can be expressed as $\phi(x) = kx + \theta$ where k is the wavenumber and θ is the phaseconstant.

TABLE II Travelling wave *vs* Stationary wave

(a) The given equation is: $y = 2\cos(3x)\sin(10t)$

Fig. 1. DIPLACEMENT vs TIME-graph1

We can observe the nodes and antinodes in the graph with fixed spatial pattern and different amplitude peaks at various positions of x maintaining symmetry with axis. This shows that the graph is stationary or a standing wave.

(b) The given equation is:
$$y = 2\sqrt{x - vt}$$

We can observe the graph and conclude that the given equation is not a wave as there is no periodic oscillation and proper wave shape.

Fig. 2. DIPLACEMENT vs TIME-graph2

(c) The given equation is: $y = 3 \sin(5x - 0.5t) + 4 \cos(5x - 0.5t)$

Fig. 3. DIPLACEMENT vs TIME-graph3

We can observe the graph having exhibiting periodic oscilltions with equal amplitude and proper sinusoidal wave shape uniformly. Thus, we can conclude that is a travelling wave.

(d) The given equation is: $y = \cos x \sin t + \cos 2x \sin 2t$

We can observe fixed spatial patter but with multiple frequencies. The graph even shows interference patterns having uniformity by which we can say it is a superimposed stationary wave equation.

Fig. 4. DIPLACEMENT vs TIME-graph3