Classroom Exercises

Complete each statement with the word always, sometimes, or never.

- 1. If a triangle is isosceles, then it is ? equilateral.
- 2. If a triangle is equilateral, then it is ? isosceles.
- 3. If a triangle is scalene, then it is ? isosceles.
- **4.** If a triangle is obtuse, then it is $\frac{3?}{}$ isosceles.

Explain how each corollary of Theorem 3-11 follows from the theorem.

- 5. Corollary 1
- 6. Corollary 2
- 7. Corollary 3
- 8. Corollary 4

Find the value of x.

10.

11.

What is wrong with each of the following instructions?

- 12. Draw the bisector of $\angle J$ to the midpoint of \overline{PE} .
- 13. Draw the line from P perpendicular to \overline{JE} at its midpoint.
- 14. Draw the line through P and X parallel to \overrightarrow{JE} .

15. In the diagram you know that

illustrate?

- (1) $m \angle 1 + m \angle 2 + m \angle 3 = 180$
- $(2) \ m \angle 3 + m \angle 4 = 180 \qquad \qquad \text{where } n < 1$

Explain how these equations allow you to prove Theorem 3-12.

17. Cut out any large $\triangle XYZ$. (If the triangle has a longest side, let that side be \overline{YZ} .) Fold so that X lies on the fold line and Y falls on \overline{YZ} . Let P be the intersection of \overline{YZ} and the fold line. Unfold. Now fold the paper so that Y coincides with P. Fold it twice more so that both X and Z coincide with P. What result of this section does this illustrate?

