Section 5.4 Polynomial and Rational Inequalities

1 Solve Polynomial Inequalities

Solving a Polynomial Inequality Using Its Graph

Solve
$$(x-2)^2(x+1) < 0$$
 by graphing $f(x) = (x-2)^2(x+1)$

x-intercepts are 2 with multiplicity 2 (touches) and -1 with multiplicity 1 (crosses).

y-intercept is 4.

End behavior is like $f(x) = x^3$.

Where is this function less than 0?

$$\{x \mid x < -1\} \text{ or } (-\infty, -1)$$

How to Solve a Polynomial Inequality Algebraically

Solve the inequality $x^4 > x$, and graph the solution set.

Step 1: Write the inequality so that a polynomial expression f is on the left side and zero is on the right side.

$$x^4 - x > 0$$

$$x(x^3-1)=0$$
 Factor out x.

Step 2: Determine the real zeros (x-intercepts of the graph) of f. $x(x-1)(x^2+x+1)=0$ Factor the difference of two cubes.

$$x = 0$$
 or $x - 1 = 0$ or $x^2 + x + 1 = 0$ $x = 0$ or $x = 1$

Step 3: Use the zeros found in Step 2 to divide the real number line into intervals.

Use the real zeros to separate the real number line into three intervals:

$$(-\infty, 0) \qquad (0, 1) \qquad (1, \infty)$$

Solve the inequality $x^4 > x$, and graph the solution set.

Step 4: Select a number in each interval, evaluate f at the number, and determine whether f is positive or negative. If f is positive, all values of f in the interval are positive. If f is negative, all values of f in the interval are negative.

Since we want to know where f(x) is positive, we conclude that f(x) > 0 for all numbers x for which x < 0 or x > 1. Because the original inequality is strict, numbers x that satisfy the equation $x^4 = x$ are not solutions. The solution set of the inequality $x^4 > x$ is $\{x \mid x < 0 \text{ or } x > 1\}$ or, using interval notation, $(-\infty, 0) \cup (1, \infty)$.

		0	<u>1</u>
Interval	(−∞, 0)	(0, 1)	(1, ∞)
Number Chosen	-1	1 2	2
Value of f	f(-1) = 2	$f\left(\frac{1}{2}\right) = -\frac{7}{16}$	f(2) = 14
Conclusion	Positive	Negative	Positive

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

2 Solve Rational Inequalities

Solving a Rational Inequality Using Its Graph

Solve
$$\frac{x^2 - 4}{x^2 - 9} \ge 0$$
 by graphing $f(x) = \frac{x^2 - 4}{x^2 - 9}$.

x-intercepts are -2 and 2.

y-intercept is
$$\frac{4}{9}$$
.

Vertical asymptotes at x = -3 and x = 3

 λ of the all asymptotes at $\lambda = -3$ and $\lambda = -3$

Horizontal asymptote at y = 1

Where is this function greater than or equal to 0?

$$\left\{x \middle| x < -3 \text{ or } -2 \le x \le 2 \text{ or } x > 3\right\}$$
$$\left(-\infty, -3\right) \cup \left[-2, 2\right] \cup \left(3, \infty\right)$$

How to Solve a Rational Inequality Algebraically

Solve the inequality $\frac{4x+5}{x+2} \ge 3$, and graph the solution set.

Step 1: Write the inequality so that a rational expression f is on the left side and zero is on the right side.

Step 2: Determine the real zeros (x-intercepts of the graph) of fand the real numbers for which f is undefined.

$$\frac{4x+5}{x+2} - 3 \ge 0 \qquad \frac{4x+5}{x+2} - 3 \cdot \frac{x+2}{x+2} \ge 0$$

$$\frac{4x + 5 - 3x - 6}{x + 2} \ge 0 \qquad \frac{x - 1}{x + 2} \ge 0$$

The zero of
$$f(x) = \frac{x-1}{x+2}$$
 is 1.

Also, f is undefined for x = -2.

Step 3: Use the zeros and undefined values found in Step 2 to divide the real number line into intervals.

Use the zero and undefined value to separate the real number line into three intervals:

$$(-\infty, -2) \qquad (-2, 1) \qquad (1, \infty)$$

Solve the inequality $\frac{4x+5}{x+2} \ge 3$, and graph the solution set.

Step 4: Select a number in each interval, evaluate f at the number, and determine whether f is positive or negative. If f is positive, all values of f in the interval are positive. If fis negative, all values of fin the interval are negative.

-		-2	<u>1</u> → x
Interval	(∞, −2)	(-2, 1)	(1, ∞)
Number Chosen Value of f	f(-3) = 4	$f(0) = -\frac{1}{2}$	$f(2) = \frac{1}{4}$
Conclusion	Positive	Negative 2	Positive 4

Since we want to know where f(x) is positive or zero, we conclude that $f(x) \ge 0$ for all numbers x for which x < -2 or $x \ge 1$. Notice we do not include -2 in the solution because -2 is not in the domain of f. The solution set of the inequality $\frac{4x+5}{x+2} \ge 3$ is $\{x | x < -2$ or $x \ge 1\}$ or, using interval notation, $(-\infty, -2) \cup [1, \infty)$.

SUMMARY Steps for Solving Polynomial and Rational Inequalities Algebraically

STEP 1: Write the inequality so that a polynomial or rational expression f is on the left side and zero is on the right side in one of the following forms:

$$f(x) > 0$$
 $f(x) \ge 0$ $f(x) < 0$ $f(x) \le 0$

For rational expressions, be sure that the left side is written as a single quotient and find the domain of f.

- **STEP 2:** Determine the real numbers at which the expression f equals zero and, if the expression is rational, the real numbers at which the expression f is undefined.
- **STEP 3:** Use the numbers found in Step 2 to separate the real number line into intervals.
- **STEP 4:** Select a number in each interval and evaluate f at the number.
 - (a) If the value of f is positive, then f(x) > 0 for all numbers x in the interval.
 - (b) If the value of f is negative, then f(x) < 0 for all numbers x in the interval.

If the inequality is not strict (\ge or \le), include the solutions of f(x) = 0 that are in the domain of f in the solution set. Be careful to exclude values of x where f is undefined.