系統晶片設計 SOC Design

Lab6

111061534 陳翀 111061560 吳俊鋌

1. How we verify out answer from Jupyter Notebook

我們在 ipynb 檔裡面自己定義了一個 task,其行為是模擬時的 testbench 的檢查 結果的功能相同,但我們遇到了問題是他 task 的執行沒有反應,我們發現每次 checkbits 的輸出都是 uart 的結束值(AB61)。

又因為我們在上 FPGA 之前的模擬結果是正確的,因此我們推測問題是在檢查 完 uart 後要執行剩餘的功能(FIR、MM、QSORT)時因為 FPGA 的速度太快導致 PS端來不及收到期開始與結束的值(AB40 & AB51)。

目前我們的做法是在 firmware 中在每次啟動新的功能前加上一個空轉的功能, 強制他等待 PS 端完成驗證後再開始下筆測試,結果如下。

```
In [10]: 1 asyncio.run(async_main())

Start Caravel Soc

Waitting for interrupt

FIR LA Test 1 started

FIR LA Test 2 passed

Matrix Multiplication LA Test 1 started

Matrix Multiplication LA Test 2 passed

Q sort LA Test 1 started

Q sort LA Test 2 passed
hello

main(): uart_rx is cancelled now
```

2. Block design

3. Synthesis report

+ 	Site Type						Prohibited	i.	Available	i	Util%	
sli	ce LUTs*	i	3962		0		0		53200	i	7.45	
L	UT as Logic		3908		0		0		53200		7.35	1
L	UT as Memory	L	54		0	T	0		17400		0.31	1
1	LUT as Distributed RAM	L	16		0	I						
1	LUT as Shift Register	L	38		0	1						1
Sli	ce Registers	L	4068		0	I	0		106400		3.82	1
R	egister as Flip Flop	L	3993	I	0	I	0		106400	I	3.75	T
R	egister as Latch	T	75	Ī	0	T	0		106400		0.07	T
F7	Muxes	T	169	Ī	0	T	0		26600	L	0.64	T
F8	Muxes	L	47	I	0	ī	0		13300		0.35	1
+		+-		+		+		+-		+-		+

4. Latency for a character loop back using UART

T = 9270687500 - 9166537500 = 104150000 ps = 104.15 us

Baud rate = 9600 Bits/s => 1 bit need 1/9600 = 0.00010416667 s = 104.16 us 兩個 rx 之間的間隔就是 Baud rate 的時間,因此我們認為也可以透過調整 Baud rate 來達到 UART 的加速功能。

下圖則是 Interrupt(IRQ)的波形圖

5. We observe

FIR、MM、QS 與 UART 的整合需要注意有沒有共用結束的 checkbits,因為模擬時寫法是兩個 initial block 分別做 UART 與剩下兩個功能,因此若是共用 checkbits 的話會導致模擬誤判。