LEC14 Johnson's Algorithm

4.2 https://github.com/GUMI-21/MIT6.006_note

Previously

Restrictions		SSSP Algorithm	
Graph	Weights	Name	Running Time $O(\cdot)$
General	Unweighted	BFS	V + E
DAG	Any	DAG Relaxation	V + E
General	Non-negative	Dijkstra	$ V \log V + E $
General	Any	Bellman-Ford	$ V \cdot E $

- BFS -> unweighted, maintain every level from source
- DAG Relaxation-> DAG, depends on topological order of DFS
- Dijkstra -> None-negative, maintain a extra priority queue with estimate distance
- Bellman-Ford -> full relaxation, and negative cycle detect.

All-Pairs Shortest Paths(APSP)

- Input: directed graph G = (V, E) with weights w : E → Z
- Output: $\delta(u, v)$ for all $u, v \in V$, or abort if G contains negative-weight cycle
- Just doing a SSSP algorithm |V | times is actually pretty good, since output has size O(|V |^2)
 - $|V| \cdot O(|V| + |E|)$ with BFS if weights positive and bounded by O(|V| + |E|)
 - $|V| \cdot O(|V| + |E|)$ with DAG Relaxation if acyclic
 - $|V| \cdot O(|V| \log |V| + |E|)$ with Dijkstra if weights non-negative or graph undirected
 - $|V| \cdot O(|V| \cdot |E|)$ with Bellman-Ford (general)
- Today: Solve APSP in any weighted graph in |V | · O(|V | log |V | + |E|) time

Approach

- Idea!: Make all edge weights non-negative while preserving shortest paths!
 G' => with >=0 weights
- Claim1 We can compute distance in G from distances in G' in O(|V|(|V|+|E|))

• Claim2

Not possible if G contains a negative weight cycle. shortest path from s to t is not simple, but shortest path in a graph with >= 0 weights are simple.

Making weights Non-negative

Idea1

Add large number to each edge => makes weights >= 0. but does not preserve shortest path, not good

Idea2 better

Given vertex V, -add weight h to all outgoing edges and -subtract weight to all incoming edges.

Claim: Shortest Paths are preserved under this transformation *Proof*:

- -weight of every path starting at v changes by h
- -weight of every path ending at v changes by -h
- -weight of a path passing throught v does not change(locally) showed
- EVEN works with multiple vertices!

Define a potential function h: V->Z, potential h(v)

Make Graph G': same as G but edge(u,v) in E has weight

$$w'(u,v) = w(u,v) + h(u) - h(v)$$

 $\bullet \ \ Claim \ {\rm SPs} \ {\rm are} \ {\rm still} \ {\rm preserved}$

Proof:

 $\pi, w(\pi)$ for v0->v1->....->vk of Graph G

$$w'(\pi) = \sum_{i=1}^{k} (w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)) = w(\pi) + h(v_0) - h(v_k)$$

=> $h(v) \le h(u) + w(u, v)$

every changes from v_0 to v_k by the same amout

so any shortest path will still be short.

-> v_0 and v_k are not be offseted. but evey path from v_0 to v_k has changed with $h(v_0)$ and $h(v_k)$, so the shortest path can be preserved!

Algorithm

Can we find a potential function such that G' has no nagative edge weights?

• i.e., is there an h such that $w(u, v) + h(u) - h(v) \ge 0$ for every $(u, v) \in E$? (u, v) is a edge

Idea

• Re-arrange this condition to $h(v) \le h(u) + w(u, v)$, looks like *triangle inequality!* Condition would be satisfied if $h(v) = \delta(s, v)$ and $\delta(s, v)$ is finite, & $h(u) = \delta(s, u)$ for some s.

Idea!

Add a new vertex s with a directed 0-weight edge to every $v \in V$! to detect Negative-cycle and get $\delta(s, v)$ for all v in Graph

 $\delta(s, v) \le 0$ for all $v \in V$, since path exists a path of weight 0

Claim: If $\delta(s, v) = -\infty$ for any $v \in V$, then the original graph has a negative-weight cycle *Proof*, (just Bellman-ford detect negative-cycle.)

- -Adding s does not introduce new cycle (s has no incoming edges)
- -So if reweighted graph has a negative-weight cycle, so does the original graph
 - So if $\delta(s, v)$ is finite for all $v \in V$:
 - w0 (u, v) = w(u, v) + h(u) − h(v) ≥ 0 for every (u, v) ∈ E by triangle inequality!
 - New weights in G0 are non-negative while preserving shortest paths!

Johnson's Algorithm

A reduction Algorithm

- -Construct G_s from G by adding vertex x connected to each vertex x in V with 0-weight edge O(|V|+|E|)
- -Compute $\delta(s,v)allv \in V$ (e.g. by Bellman-Ford) O(|V||E|)
- -if exist $\delta(s,v)=-\infty$: then abort
- -else:

Make G' by reweighting evey edge - $(u,v) \in E$, $w'(u,v) = w(u,v) + \delta(x,u) - \delta(x,v)$ -O(|E|) Triangle inequality make sure w'(u,v) >= 0

means $w(u,v)+\delta(x,u)\geq \delta(x,v)$, this is defined by minimum weight!

- -then For each u in V:
 - 1. Compute shortest-path distances $\delta'(u, v)$ to all v in G' (using Dijkstra)
 - 2. Compute $\delta(u,v)=\delta'(u,v)-\delta_x(x,u)+\delta_x(x,v)$ for all $v\in V$ runtime: $O(|V|(|V|\log|V|+|E|))$

Correctness

Running Time

- O(|V | + |E|) time to construct Gx
- O(|V ||E|) time for Bellman-Ford
- O(|V | + |E|) time to construct G0
- • O(|V | · (|V | log |V | + |E|)) time for |V | runs of Dijkstra

- O(|V | 2) time to compute distances in G from distances in G0
- O(|V | 2 log |V | + |V ||E|) time in total