Activity Selection Problem Book: Cormen; Section: 16.1

An Activity Selection Problem

- Input: A set of activities $S = \{a_1, ..., a_n\}$
- Each activity has start time and a finish time $-a_i=(s_i,f_i)$
- Two activities (a_i, a_j) are **compatible** if and only if their interval does not overlap

$$\triangleright s_i \ge f_j$$
 OR $s_j \ge f_i$

• Output: a maximum-size subset of mutually compatible activities

Example (Page - 415)

Here are a set of start and finish times

Activity No (i)	1	2	3	4	5	6	7	8	9	10	11
Start time (s_i)	1	3	0	5	3	5	6	8	8	2	12
Finish time (f_i)	4	5	6	7	9	9	10	11	12	14	16

- What is the maximum number of activities that can be completed?
 - $\{a_3, a_9, a_{11}\}$ can be completed
 - But so can $\{a_1, a_4, a_8, a_{11}\}$ which is a larger set
 - But it is not unique, consider $\{a_2, a_4, a_9, a_{11}\}$

Interval Representation

Activity No (i)	1	2	3	4	5	6	7	8	9	10	11
Start time (s_i)	1	3	0	5	3	5	6	8	8	2	12
Finish time (f_i)	4	5	6	7	9	9	10	11	12	14	16

Greedy-choice property: Early Finish

- Select the activity with the earliest finish
- Eliminate the activities that could not be scheduled
- Repeat

Paris

Why Greedy?

- Greedy in the sense that it leaves as much opportunity as possible for the remaining activities to be scheduled
- The greedy choice is the one that maximizes the amount of unscheduled time remaining

Paris

Algorithm: Recursive (Page-419)

//Assuming activities are sorted by finish time

RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n).

RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)1 m = k + 12 while $m \le n$ and s[m] < f[k] // find the first activity in S_k to fi

3 m = m + 14 if $m \le n$ 5 return $\{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)$ 6 else return \emptyset

Paris

Algorithm: Non Recursive (Page-421)

//Assuming activities are sorted by finish time

```
GREEDY-ACTIVITY-SELECTOR (s, f)
   1 n \leftarrow length[s]
   A \leftarrow \{a_1\}
   3 \quad i \leftarrow 1
   4 for m \leftarrow 2 to n
               do if s_m \geq f_i
                      then A \leftarrow A \cup \{a_m\}
                             i \leftarrow m
        return A
Paris
```

Thank You

Stay Safe