Effect Modifications in Causal Inference

Causal Inference: What If 4.1 -4.3

Gregory Botwin

11-DEC-2019, Data Science Seminar

Review Causal Inference Notation

1. Individual causal effects:

$$Y^{a=1} \quad
eq \quad Y^{a=0}$$

2. Average Causal Effect:

$$\Prigl[Y^{a=1}=1igr]
eq \Prigl[Y^{a=0}=1igr]$$

Review Effect Measures

- 1. Measures of Null Causal Effect:
- Risk Difference:

$$\Prigl[Y^{a=1}=1igr]-\Prigl[Y^{a=0}=1igr]=0$$

• Risk Ratio:

$$rac{ ext{Pr}ig[Y^{a=1}=1ig]}{ ext{Pr}ig[Y^{a=0}=1ig]}=1$$

• Odds Ratio:

$$rac{\Prig[Y^{a=1}=1ig]/\Prig[Y^{a=1}=0ig]}{\Prig[Y^{a=0}=1ig]/\Prig[Y^{a=0}=0ig]}=1$$

Review Causation V. Association

Review Randomization

- 1. Ideal/Marginalized Randomization ensures missing data (e.g. nonobserved potential outcomes) occur by chance, this allows for exchangeability
- 2. Exchangeability:

$$Y^a \perp \perp \perp A$$

3. Conditional Exchangeability:

$$Y^a \perp \perp \perp A|L$$

Effect Modification Definition (4.1)

- *Modifier* V = Sex (1 female, 0 male)
- *Treatment* A = heart transplant (1 transplant, 0 no-transplant)
- Outcome Y = Mortality (1 death, 0 survival)
- Definition: V is a modifier of the effect of A on Y when the average causal effect of A on Y varies across levels of V

Effect Modification Example

	V	Y^0	Y^1
Rheia	1	0	1
Demeter	1	0	0
Hestia	1	0	0
Hera	1	0	0
Artemis	1	1	1
Leto	1	0	1
Athena	1	1	1
Aphrodite	1	0	1
Persephone	1	1	1
Hebe	1	1	0
Kronos	0	1	0
Hades	0	0	0
Poseidon	0	1	0
Zeus	0	0	1
Apollo	0	1	0
Ares	0	1	1
Hephaestus	0	0	1
Cyclope	0	0	1
Hermes	0	1	0
Dionysus	0	1	0

Total Population

 $\Pr[Y^{a=0} = 1]$

$$Pr[Y^{a=1} = 1] = 10/20 = 0.5$$

 $Pr[Y^{a=0} = 1] = 10/20 = 0.5$

Females V = 1
$$Pr[Y^{a=1} = 1]$$
 = 6/10

= 4/10

= 6/10

Males V = 0

$$\Pr[Y^{a=1} = 1]$$
 = 4/10
 $\Pr[Y^{a=0} = 1]$ = 6/10

Risk Difference = 0 Risk Ratio = 1

Risk Difference = 0.2 Risk Ratio = 1.5

Risk Difference = -0.2 Risk Ratio = 2/3

- null average causal effect in the population does not imply a null average causal effect in a particular subset of the population
- generally we can expect some level of heterogeneity of individual causal effects because of variations in susceptibility

Additive, Multiplicative, and Qualitative Modification

- Sex V is an effect modifier of the treatment of heart transplant A on mortality Y on the additive scale because risk difference varies across levels of V.
- Sex V is an effect modifier of the treatment of heart transplant A on mortality Y on the **multiplicative** scale because the causal **risk ratio** varies across the levels of V.
- **Qualitative** effect modification occurs when the average causal effects in the subsets V are in the opposite direction.

How Causal Effect Depends on Effect Measured

- Since the average causal effect can be measured using different effect measures, the presence of effect depends of the effect measure being used.
- With qualitative effects, additive implies multiplicative and vice versa.
- With **non-qualitative** effects, you can find an effect on one scale and not the other.

```
Multiplicative, but not additive, effect modification by V: \Pr[Y^{a=0}=1|V=1]=0.8 \\ \Pr[Y^{a=1}=1|V=1]=0.9 \\ \Pr[Y^{a=0}=1|V=0]=0.1 \\ \Pr[Y^{a=1}=1|V=0]=0.2
```

Stratification to Identify Effect Modification Example

Greeks				Romans				Given:	Conditional exchangeability: $Y^a \perp \!\!\! \perp A L$ for all a	
Table 2.2	Table 4.2 Stratum $V = 0$ $L A Y$ $L A Y$						$\Pr[Y^a]$	$a=1 = 1 L=1 /\Pr[Y^{a=0}=1 L=1]$		
Rheia	0	0	0	Cybele	0	0	0		1 27	
Kronos	0	0	1	Saturn	0	0	1		$1 L = 1, A = 1]/\Pr[$	
Demeter	0	0	0	Ceres	0	0	0	$D_{r}[V -$	$1 I - 1 A - 1 /D_r[$	V = 1 I = 1 A = 0
Hades	0	0	0	Pluto	0	0	0	$\Gamma = \Gamma = \Gamma$	$1 L-1,A-1 / \Gamma 1 $	[I - 1]L - 1, A - 0]
Hestia Poseidon	0	1	0	Vesta	0	1	0			
Hera	0	1	0	Neptune	0	1	0	Greeks:		Romans
Zeus	0	1	1	Juno	0	1	1			Nomans
Artemis	1	0	1	Jupiter Diana	0	1	0	$\Pr Y =$	$1 L = 0, A = 1] = \frac{1}{4}$	=1/2
Apollo	1	0	1	Phoebus	1	0	1		-1- 1	· .
Leto	1	0	0	Latona	1	0	0	$\Pr[Y =$	$1 L = 0, A = 0] = \frac{1}{4}$	=1/4
Ares	1	1	1	Mars	1	1	1		· · · · · · · · · · · · · · · · · · ·	
Athena	1	1	1	Minerva	1	1	1	$\Pr Y =$	1 L=1, A=1] = 2/3	=2/3
Hephaestus	1	1	1	Vulcan	1	1	1	D [17	117 1 4 0 2/2	
Aphrodite	1	1	1	Venus	1	1	1	$\Pr[Y =$	1 L=1, A=0] = 2/3	=1/3
Cyclope	1	1	1	Seneca	1	1	1			
Persephone	1	1	1	Proserpina	1	1	1	D ITTO-I	1 0	
Hermes	1	1	0	Mercury	1	1	0	$Pr Y^{a=1} = 1$	$\frac{1}{4} \times 0.4 + \frac{2}{3} \times 0.6 = 0.5$	½ x 0.4 + 2/3 x 0.6 = 0.6
Hebe	1	1	0	Juventas	1	1	0	r 1		
Dionysus	1	1	0	Bacchus	1	1	0	$\Pr[Y^{a=0} = 1]$	$\frac{1}{4} \times 0.4 + \frac{2}{3} \times 0.6 = 0.5$	$\frac{1}{4} \times 0.4 + \frac{1}{3} \times 0.6 = 0.3$
									ausal Risk Difference = 0 Causal Risk Ratio = 1	Causal Risk Difference = 0.3 Causal Risk Ratio = 2

• Target trial = Measure effect of treatment of heart transplant A conditionally randomized based on severity L, with stratification between countries V, for outcome mortality Y.

10 / 12

Why to Care About Modifiers

- If V modifies the effect of treatment A on the outcome Y then the average causal effect will differ between populations with different prevalence of V.
- The presence of effect modification is helpful to identify the groups of individuals that would benefit the most from the intervention.
- Identifying effect modification may help understand the mechanism leading to the outcome.

Discussion Questions

- 1. Why isn't the odds ratio scale a desirable parameter of interest for causal inference?
- 2. Why is the additive (risk difference) over the multiplicative (risk ratio) preferred to identify groups that will benefit the most from the intervention?
- 3. How will matching across strata impact the assessment of effect modifiers (example Silber 2016)

https://jamanetwork.com/journals/jamasurgery/fullarticle/2482670? appId=scweb