## Instituto Tecnológico de Buenos Aires

## 22.14 Electrónica IV

# Trabajo práctico de laboratorio 1: Transferencia de convertidores DC/DC

## $Grupo\ 2$

GOYTÍA, Agustín 56023 LAGUINGE, Juan Martín 57430 PARRA, Rocío 57669 REINA KIPERMAN, Gonzalo 56102

### Profesores

AGUIRRE, Miguel Pablo COSUTTA, Pablo Martín SALVATI, Matías Damián WEILL, María Alejandra

Presentado: 03/04/2020

## Índice

Se procederá al análisis del circuito de la Figura 1. El mismo es un circuito destinado al análisis del disparo de un transistor MOSFET.



Figura 1: Circuito para análisis de disparo de transistor MOSFET

#### 1.1. Circuito Driver

Los transistores  $Q_1$  y  $Q_2$  forman una configuración Totem-Pole, y se encuentran funcionando en saturación (push-pull output). Nótese que para prender el transistor, se requiere cargar las capacidades internas del MOSFET, por lo que se requiere un pico de corriente que un generador de señales no es capaz de proveer. Utilizando esta configuración, se puede activar y desactivar este circuito utilizando un generador de señales, mientras que la corriente es provista por la fuente de tensión. Idealmente, la salida de este circuito valdrá  $V_{out} = V_1 - 0.7V$  cuando el circuito esté activado, y  $V_{out} = 0.7V$  cuando se encuentre desactivado. Este circuito afectará la curva de control del Gate, pues la misma no es un escalón ideal. Se tendrá en cuenta el delay para la interpretación de los resultados obtenidos, pero no nos centraremos en el análisis de los delays de esta configuración.

#### 1.2. Carga Inductiva

La carga está compuesta por un circuito RL. Para conocer las condiciones de operación de este circuito, hay que plantear las ecuaciones en funcionamiento. Estas ecuaciones son

$$I_1 = I_0 \exp(-t_1/\tau_{RL}) + \frac{V_2}{R_2} (1 - \exp(-t_1/\tau_{RL}))$$
(1)

$$I_0 = I_1 \exp(-t_2/\tau_{RL}),$$
 (2)

donde  $t_1 = D/f_s$ ,  $t_2 = (1 - D)/f_s$ ,  $\tau_{RL} = L/R$ ,  $f_s$  la frecuencia del switch y D el duty cycle. Resolviendo el sistema de ecuaciones queda

$$I_0 = \frac{V_2}{R_2} \frac{1 - exp(-t_1/\tau_{RL})}{exp(t_2/\tau_{RL}) - exp(-t_1/\tau_{RL})}$$
(3)

$$I_1 = \frac{V_2}{R_2} \frac{1 - exp(-t_1/\tau_{RL})}{exp(t_2/\tau_{RL}) - exp(-t_1/\tau_{RL})} \exp(t_2/\tau_{RL}). \tag{4}$$

Notese que  $I_0$  corresponde a la corriente en el inductor cuando se prende el MOSFET, y  $I_1$  corresponde a la corriente en el inductor cuando se apaga el MOSFET.

#### 1.3. Conmutación MOSFET

Durante la conmutación del MOSFET, circula corriente por el Gate. Esta corriente es debido a capacidades internas del transistor, que se cargan durante la conmutación. Dichas capacidades corresponden básicamente a las cargas de la capa de inversión e ionización que se forman en el body del transistor para formar el canal N (Capacidad Gate-Source  $C_{GS}$  - recordar que el Gate y el Source se encuentran cortocircuitados internamente), y las cargas asociadas a la capa de acumulación o de deplexión que se forma en el Drain del transistor (Capacidad Gate-Drain  $C_{GS}$ ), que ayudan a minimizar la resistencia del MOSFET cuando se encuentra activado. Cabe destacar que estas capacidades dependen del tamaño de la capa de acumulación / deplexión, y por lo tanto cambian durante la conmutación del MOSFET. Se buscará introducir las ecuaciones a utilizar, sin entrar en detalle sobre el funcionamiento del transistor.

#### 1.3.1. Encendido del MOSFET

Considerando que, ante un escalón de tensión en provisto por el circuito Driver, dichas capacidades comienzan a cargarse, se puede modelar la primera etapa del prendido del MOSFET con un circuito RC, por lo que la tensión  $V_G$  en función del tiempo puede ser aproximada por

$$V_G(t) = V_1(1 - \exp(-t/\tau_1)). \tag{5}$$

donde  $\tau_1 = R_1 \tilde{C}_{G,1}$  y  $\tilde{C}_{G,1} = C_{GS} + C_{GD,1}$ . Cuando la tensión en el Gate llega a  $V_{GS,th}$  (en  $t = t_{d,on}$ ), comienza a formarse la capa de inversión, por lo que la corriente del drain  $I_D$  comienza a aumentar hasta llegar al valor  $I_0$  impuesto por la carga inductiva y que el diodo deje de conducir (en  $t = t_1$ ). Esto ocurrirá cuando la tensión en el Gate llegue a un valor  $V_G = V_{G,I_D=I_0}$ . El tiempo entre que comienza a circular corriente hasta que se alcanza el valor  $I_0$  se denomina  $t_{ri}$ . Se puede demostrar que

$$t_{d,on} = -\tau_1 \ln \left( 1 - \frac{V_{G,th}}{V_1} \right) \tag{6}$$

$$t_1 = -\tau_1 \ln \left( 1 - \frac{V_{G,I_D = I_0}}{V_1} \right) \tag{7}$$

$$t_{ri} = t_1 - t_{d.on}. (8)$$

Luego, cuando la corriente de drain llega al valor  $I_0$ , el valor de la tensión en el gate se mantiene temporalmente en  $V_G = V_{G,I_D=I_0}$ , por lo que la capacidad  $C_{GS}$  deja de cargarse, mientras se sigue cargando  $C_{GD}$  a corriente constante. A medida se cargue  $C_{GD}$  se formará la capa de acumulación, bajando la resistencia  $R_{DS}$ , por lo que disminuye la tensión  $V_{DS}$  hasta alcanzar el valor  $V_{DS,on}$ . Dado que la capacidad  $C_{GD}$  varía durante este proceso, pues varían la longitud de la capa de acumulación, suele utilizarse el valor de la carga total  $\Delta Q$  para estimar la duración de esta etapa. Con esto, el tiempo que transcurre desde que empieza a caer la tensión  $V_{DS}$  hasta que alcanza el valor $V_{DS,on}$  puede estimarse según:

$$t_{fv} = \Delta Q / I_{G,on} = \frac{\Delta Q R_1}{V_1 - V_{G,I_D = I_0}}$$
(9)

A lo largo de esta etapa, cambia el valor de  $C_{GD,1}$  a  $C_{GD,2}$ . Luego, la tensión en el Gate sigue creciendo hasta llegar al valor  $V_{GG}$ . El tiempo característico asociado está dado por:

$$\tau_2 = R_1 \tilde{C}_{G,2} \tag{10}$$

Donde  $\tilde{C}_{G,2} = C_{GS} + C_{GD,2}$ 

#### 1.3.2. Apagado del MOSFET

El apagado del MOSFET es similar al encendido, pero en orden contrario:

Primero, se comienzan a descargar las capacidades internas por el Gate, por lo que la tensión del Gate en la primera etapa está dada por:

$$V_G(t) = V_{GG} \exp(-t/\tau_2) \tag{11}$$

Esto ocurrirá hasta que la tensión  $V_G$  alcance el valor  $V_{G,I_D=I_0}$  en  $t=t_2$ . Puede demostrarse que:

$$t_2 = -\tau_2 \ln \left( \frac{V_{G,I_D=I_0}}{V_{GG}} \right) \tag{12}$$

Luego, la tensión en el Gate permanecerá constante mientras se descarga  $C_{GD,2}$  a corriente constante durante un tiempo  $t_{rv}$ . Analogo al caso de encendido, este tiempo está dado por

$$t_{rv} = \Delta Q / I_{G,off} = \frac{\Delta Q R_1}{V_{G,I_D = I_0}}$$
 (13)

Notar que, al igual que durante el prendido, la capacidad  $C_{GD}$  cambia de valor durante este proceso. Finalmente, la tensión en el Gate baja según la ecuación

$$V_G = V_{G,I_D=I_0} \exp(-t/\tau_1).$$
 (14)

A medida que la tensión cae, comienza a deshacerse el canal formado, por lo que baja el valor de  $I_D$  hasta hacerse nulo cuando  $V_G = V_{G,th}$ . Esto ocurre luego de un intervalo  $t_{fi}$ . El valor de  $t_{fi}$  está dado por

$$t_{fi} = -\tau_1 \ln \left( \frac{V_{G,th}}{V_{G,I_D=I_0}} \right). \tag{15}$$

Un gráfico esquemático mostrando la conmutación del MOSFET se muestra en la Figura 2



Figura 2: Curvas de tensión y corriente en el MOSFET durante el encendido

#### 1.4. Diodo

También resulta importante analizar la dinámica del Diodo durante la conmutación, dado que afecta a las curvas de conmutación del MOSFET, que es lo que se busca analizar en este punto. Con este objetivo, se realizará un breve análisis de la conmutación de un diodo real. El análisis se realiza considerado un switch que impone un cambio de corriente di/dt. Recordar que un diodo de potencia está formado por dos junturas:  $p^+n^-n^+$ .



Figura 3: Curvas de encendido y de apagado de un diodo de potencia (tensión y corriente)

#### 1.4.1. Encendido del Diodo

Cuando el diodo se encuentra polarizado en inversa y se lo prende, la corriente sube de acuerdo al di/dt impuesto por el circuito, a medida que se restaura la carga en la zona de deplexión hasta el valor de equilibrio térmico y se comienza a polarizar en directa. A medida que el diodo se polariza en directa, baja la resistencia de este hasta que la tensión en el diodo llega a  $V_{on}$ . Por la corriente que circuila mientras que el diodo no está completamente polarizado y su resistencia interna es alta, se produce un pico de tensión en el diodo. Este pico puede resultar mayor considerando las inductancias parásitas, si se aplican valores altos de di/dt. Este overshoot puede afectar seriamente algunos circuitos de potencia. La curva de encendido del diodo se puede encontrar en la Figura 3.

#### 1.4.2. Apagado del Diodo

El apagado del diodo es escencialmente el proceso inverso al encendido. Primero los portadores de carga libres deben ser removidos para que la juntura llegue al equilibrio térmico antes de que la misma pueda ser polarizada en inversa. Siempre que haya exceso de portadores de carga libre en las zonas de drift, las junturas estan polarizadas en directa, por lo que la tensión en el diodo no varia más alla de pequeñas diferencias por pérdidas ohmicas. Una vez que suficientes portadores de carga son removidos y la corriente se vuelve negativa, la o las junturas se polarizan en inversa, momento en el que la corriente deja de volverse más negativa y tiende al valor de cero. Este pico de corriente negativo se denomina  $I_{rr}$ . Durante este último intervalo hay pérdidas de potencia debido a que crece la resistencia del diodo al polarizarse en inversa, por lo que hay un pico de tensión negativo, y luego la corriente tiende a cero (y la tensión baja en módulo y tiende al valor de tensión aplicado en el diodo). La curva de apagado del diodo se puede encontrar en la Figura 3.

#### 1.4.3. Efecto de $I_{rr}$ en la conmutación del MOSFET

El valor de  $I_{rr}$  afecta en la conmutación del MOSFET. Nótese que este efecto se da cuando el diodo se apaga, es decir, durante el encendido del MOSFET.

Por causa de la corriente  $I_{rr}$ , la corriente de drain  $I_D$  crece hasta el valor  $I_0 + I_r r$ , por lo que el valor de  $V_G$  crece por arriba de  $V_{G,I_D=I_0}$ . Cuando el diodo se recupera y la corriente vuelve a cero (y, por lo tanto, la corriente  $I_D$  baja a  $I_0$ ), el valor de  $V_G$  baja a  $V_{G,I_D=I_0}$ , y el cambio de tensión provee corriente adicional a la capacidad  $C_{GD}$ , produciendo que  $V_{GD}$  y  $V_{DS}$  decrezcan rapidamente durante este intervalo de recovery. Los efectos de la corriente  $I_{rr}$  en la conmutación del MOSFET pueden observarse en la ??



Figura 4: Efectos de  $I_{rr}$  en el encendido del MOSFET.

## 1.5. Valores de los componentes y variables

| Componente | $Q_1$    | $Q_2$       | $R_1$  | $R_2$       | $R_3$           |
|------------|----------|-------------|--------|-------------|-----------------|
| Valor      | BC337-25 | BC557B      | 100 Ω  | $15 \Omega$ | $1 K\Omega$     |
| Componente | $M_1$    | $L_1$       | $D_1$  | $V_2$       | $V_1$           |
| Valor      | IRF530   | $220~\mu H$ | MUR460 | 50 V        | Ver Tabla $V_1$ |

Tabla 1: Valores de los componentes utilizados.

| Parámetro      | Valor  |
|----------------|--------|
| $V_0$ (on)     | 15 V   |
| $V_0$ (off)    | 0 V    |
| $f_s$          | 50 KHz |
| D (Duty Cycle) | 50 %   |

Tabla 2: Valores asociados a generador de  $V_1$ .

### 1.6. Búsqueda de parámetros en datasheet y cálculo de valores

Reemplazando los valores de estos, obtenemos lo siguiente:

| recomplication for various de estess, estementos lo significa. |                  |              |            |                 |                   |                    |                      |   |
|----------------------------------------------------------------|------------------|--------------|------------|-----------------|-------------------|--------------------|----------------------|---|
| Variable                                                       | $I_O$            | $V_{ds,max}$ | $V_{G,th}$ | $V_{G,I_D=I_0}$ | $\tilde{C}_{G,1}$ | $\tilde{C}_{GD,2}$ | $\Delta Q$           |   |
| Valor                                                          | $\frac{10}{3}$ A | 50 V         | 4 V        | 5,2 V           | 800 pF            | $650 \mathrm{pF}$  | $6,25 \mathrm{\ nC}$ | 1 |

Y los tiempos de conmutación son:

| Variable | $t_{d,on}$     | $t_{ri}$    | $t_{fv}$     | $t_{rv}$      | $t_{fi}$      |
|----------|----------------|-------------|--------------|---------------|---------------|
| Valor    | 24,8124 nseg A | 9,2410 nseg | 63,7755 nseg | 120,1923 nseg | 20,9891  nseg |

Finalmente, se obtienen las siguientes curvas:

El circuito que analizaremos ahora es una fuente buck, es decir, un convertidor DC/DC donde la tensión de salida es menor que la de entrada. El mismo puede observarse en la figura ??. En esta sección, consideraremos ideal a la llave con la que se hace el switching.



Figura 5: Fuente buck con llave ideal

Esta fuente debe cumplir los siguientes requerimientos:

Tabla 3: Requerimientos de entrada/salida de la fuente

Esto se debe lograr a una frecuencia de switching de  $f_s=50 {\rm kHz}$ . En cuanto a los componentes pasivos, los reactivos son sugeridos por la cátedra:  $L=220 {\rm \mu H}$  y  $C=10 {\rm \mu F}$ . La resistencia de carga debe ser elegida de manera tal que, en primera instancia, la fuente funcione en modo continuo.

## 2.1. Análisis teórico

#### 2.1.1. Con componentes ideales

Para obtener la salida indicada, debemos seleccionar el duty adecuado. Esto se puede obtener planteando que en régimen permanente,  $\langle V_L \rangle = 0$ , y por lo tanto,  $\langle V_O \rangle = \langle V_D \rangle$ . Considerando al diodo como ideal, su tensión es 0 cuando la llave está abierta, y  $V_I$  cuando está cerrada. Por lo tanto, despejado para D obtenemos que:

$$D = \frac{V_O}{V_I} \simeq 0.41 \tag{16}$$

Con este valor, podemos ahora obtener la corriente de boundary. Sabiendo que cuando la llave está abierta,  $V_L = L \frac{di_L}{dt} = -V_0$ , y que esta condición se mantiene por un tiempo  $T_s \cdot (1 - D)$ , se obtiene:

$$\Delta I_L = \frac{V_O}{L} \cdot (1 - D) \cdot T_s \simeq 0.20$$
 (17)

Con lo cual la corriente de boundary es:

$$I_B = \frac{\Delta I_L}{2} \simeq 0.10$$
 (18)

Para que  $I_O > I_B$ , elegimos pues  $R = 10\Omega$ , lo cual resulta en una corriente de salida de 0.37A. El ripple de tensión, por otro lado, es entonces de:

$$\frac{\Delta V_O}{V_O} = \frac{1}{V_O} \cdot \frac{\Delta Q}{C} = \frac{1}{V_O} \cdot \frac{1}{C} \cdot \frac{1}{2} \cdot \frac{\Delta I_L}{2} \frac{T_s}{2} \simeq 1.23 \%$$
 (19)

Este valor se encuentra por debajo del máximo aceptable de 5%.

#### 2.1.2. Considerando la tensión forward del diodo

El análisis anterior sirve como primera aproximación del comportamiento del circuito. Sin embargo, a la hora de simular, resulta evidente que no es suficiente: la tensión obtenida a la salida es considerablemente menor a la que se requiere, de alrededor de 3.2V.

En primer lugar, podemos observar que si bien es cierto que  $V_O = \langle V_D \rangle$ , en la sección anterior consideramos que cuando la llave está cerrada, la tensión en el diodo es nula. Sin embargo, sabemos que esto no es cierto: el diodo estará forward-biased, con lo cual su tensión no será otra que la de forward.

En la datasheet del MUR460<sup>1</sup>, el diodo sugerido por la cátedra, la figura 6 muestra la relación entre la tensión forward y la corriente forward. Como la corriente será la de salida, 0.37A, la tensión estará entre  $\sim 0.75 \mathrm{V}$  (a 100°C) y  $\sim 0.85 \mathrm{V}$  (a 25°C). De la figura 9, obtenemos que para una onda cuadrada de corriente forward de 0.37A, la potencia disipada será de alrededor de 0.4W, que teniendo en cuenta que  $R_{\Theta JA} = 50$  (nota 2 de la datasheet, asumiendo montaje 1), el diodo calentará alrededor de 20°C sobre la temperatura ambiente. Por lo tanto, la temperatura no será ni 25 ni 100 grados, si no que rondará los 40, dependiendo de la temperatura ambiente. Supondremos pues  $V_{FD} = 0.8 \mathrm{V}$  de tensión forward en el diodo.

Una vez que contamos con este valor, podemos calcular el nuevo valor de la tensión de salida:

$$V_O = \langle V_D \rangle = D \cdot V_I - (1 - D) \cdot V_{DF} \tag{20}$$

Despejando para D, obtenemos:

$$D = \frac{V_O + V_{DF}}{V_I + V_{DF}} = \frac{3.7V + 0.8V}{9V + 0.8V} \simeq 0.46$$
 (21)

Esto a su vez cambiará el valor de los ripples de tensión y corriente, puesto que no sólo a la tensión de la bobina durante  $T_{off}$  se le suma la tensión forward del diodo, sino que además al aumentar D, disminuye  $T_{off}$ . Resulta entonces:

$$\Delta I_L = \frac{V_O + V_{DF}}{L} \cdot (1 - D) \cdot T_s \simeq 0.22 A$$
 (22)

Con este valor, la corriente de boundary sube a 0.11A, con lo cual aún seguimos operando en modo continuo con  $10\Omega$  de carga. En cuanto al ripple de tensión:

$$\frac{\Delta V_O}{V_O} = \frac{1}{V_O} \cdot \frac{1}{C} \cdot \frac{1}{2} \cdot \frac{\Delta I_L}{2} \frac{T_s}{2} \simeq 1.53 \%$$
 (23)

#### 2.1.3. Considerando las ESR de la bobina y el capacitor

Si tenemos en cuenta las ESR, el circuito queda con la configuración que se observa en la figura ??.

 $<sup>^1\</sup>mathrm{https://www.onsemi.com/pub/Collateral/MUR420-D.PDF}$ 



Figura 6: Fuente buck, considerando las ESR de la bobina y del capacitor

Para seguir cumpliendo con  $\langle V_L \rangle = 0$ , debe cumplirse ahora que  $\langle V_D \rangle = \langle V_O \rangle + \langle V_{rL} \rangle$ . Como la corriente media de la bobina es la de salida, la tensión media de su ESR no será otra cosa que  $\frac{r_L}{R} \cdot V_O$ . La datasheet de la bobina sugerida por la cátedra<sup>2</sup> lista a esta ESR con el valor de  $0.65\Omega$ . Despejando para D, obtenemos pues:

$$D = \frac{V_O \cdot \left(1 + \frac{r_L}{R}\right) + V_{DF}}{V_I + V_{DF}} = \frac{3.7V \cdot \left(1 + \frac{0.65\Omega}{10\Omega}\right) + 0.8V}{9V + 0.8V} \simeq 0.48$$
 (24)

En cuanto al ripple, el mismo se ve afectado por la ESR del capacitor, ya que ahora  $V_O = V_C + V_{rC}$ , con lo cual los efectos de ambos componentes deben tenerse en cuenta. El application report "Output Ripple Voltage for Buck Switching Regulator" de Texas Instruments³ realiza el análisis correspondiente, que si bien no es de gran complejidad, sí implica un desarrollo demasiado extenso para incluir en este informe paso por paso. El mismo consiste en obtener la  $v_o(t) = v_c(t) + v_{rC}(t)$ , para los tramos  $t < T_{on}$  y el  $t > T_{on}$ , derivar para buscar el máximo y el mínimo de esa función por tramos, evaluar en esos puntos y obtener la diferencia.

Como los tiempos donde se encontrarían el máximo y el mínimo serían  $t_{max} = \frac{T_{on}}{2} - r_C \cdot C$  y  $t_{min} = \frac{T_{off}}{2} - r_C \cdot C$ , los resultados terminan separándose según si estos tiempos son o no mayores a 0, puesto que de lo contrario hay que evaluar en t = 0.

Llamando  $\tau = r_C \cdot C$ , se obtiene entonces:

$$\Delta V_{O} = \begin{cases} \Delta I_{L} \cdot \left( \frac{1}{8Cf_{s}} + \frac{r_{C}^{2}Cf_{s}}{2D(1-D)} \right) & \text{si } \tau < T_{on}/2 \wedge \tau < T_{off}/2 \\ \Delta I_{L} \cdot \left( \frac{r_{C}}{2} + \frac{r_{C}^{2}C}{T_{on}} + \frac{1}{2CT_{on}} \cdot \left( \left( \frac{T_{on}}{2} \right)^{2} - (r_{c}C)^{2} \right) \right) & \text{si } \tau < T_{on}/2 \wedge \tau > T_{off}/2 \\ \Delta I_{L} \cdot \left( \frac{r_{C}}{2} + \frac{r_{C}^{2}C}{T_{off}} + \frac{1}{2CT_{off}} \cdot \left( \left( \frac{T_{off}}{2} \right)^{2} - (r_{c}C)^{2} \right) \right) & \text{si } \tau < T_{on}/2 \wedge \tau > T_{off}/2 \\ \Delta I_{L} \cdot r_{C} & \text{si } \tau > T_{on}/2 \wedge \tau > T_{off}/2 \end{cases}$$

Para el capacitor sugerido por la cátedra, la ESR que figura en la datasheet<sup>4</sup> es de 32 $\Omega$ . Con estos valores,  $\tau = 320 \mu s$ , con lo cual considerando que  $T_{on} \simeq T_{off} \simeq 10 \mu s$  (recordemos que D = 0.49), estaríamos en el último caso de ??, y se obtendría finalmente  $\Delta V_O = 7.04V$ : más del doble de  $V_O$ . Es claro que esto no es aceptable, y es necesario cambiar el capacitor por uno con menor ESR.

Se propone utilizar un capacitor de la serie ESL de KEMET Electronic Components<sup>5</sup>, en particular

<sup>&</sup>lt;sup>2</sup>https://abracon.com/Magnetics/radial/AIUR-03.pdf

<sup>3</sup>http://www.ti.com/lit/an/slva630a/slva630a.pdf

<sup>4</sup>https://ar.mouser.com/datasheet/2/129/rtk\_e-6792.pdf

 $<sup>^5 \</sup>mathtt{https://content.kemet.com/datasheets/KEM\_A4074\_ESL.pdf}$ 

el de  $22\mu F$ , 50V, que tiene  $0.23\Omega$  de ESR. Se obtiene entonces  $\tau=8.97\mu s$ , con lo cual se está en el último caso de la ecuación  $\ref{eq:total_state}$ , y entonces:

$$\frac{\Delta V_O}{V_O} = \frac{\Delta I_L \cdot r_C}{V_O} = 1.36 \,\% \tag{26}$$

Llama la atención que este resultado es menor al obtenido en la ecuación ??, antes de introducir la ESR. Sin embargo, si se corrigiese por el hecho de que ahora el capacitor es más del doble de grande, sí se estaría obteniendo un resultado menos favorable (aunque más preciso) en la ecuación ?? que en la ??.