# **MECHANICS PRACTICAL 4**

### FABIEN PAILLUSSON

<u>Reminder</u>: For this practical, we recommend to use the step-by-step strategy seen during the lectures whenever required *i.e.* (1) diagram, (2) list and intel on the forces acting on the system, (3) Newton's 2nd law, (4) components and (5) solve to get the desired answer. We will use  $g = 9.8 \, \mathrm{m \cdot s^{-2}}$  for the downward acceleration on Earth.

## 1. Ideal projectile motion

A particle is shot with an initial velocity  $\vec{v}_0 = (130 \text{ m} \cdot \text{s}^{-1}) \hat{i} + (75 \text{ m} \cdot \text{s}^{-1}) \hat{j}$  from the origin of a galilean frame  $(O, \hat{i}, \hat{j})$  on Earth.

- (a) Determine the maximum altitude reached by the projectile during its travel.
- (b) What is the total distance travelled by the projectile in the x-direction when it has reached the ground?

## 2. Block on an inclined plane and solid friction



FIGURE 1. A block on an inclined plane.

A 1 kilogram block B is initially at rest on an inclined plane with an adjustable angle  $\theta$  with the horizontal (see Fig. 1). The two frames  $(O, \hat{i}, \hat{j})$  and  $(O', \hat{i}', \hat{j}')$  are considered galilean.

- (a) For small angle values, the block is subject to a solid static friction force which prevents it from moving down the plane. It is noticed that as long as  $\theta \leq 30^{\circ}$ , the block doesn't move. Use this information to determine the value of the static friction coefficient  $\mu_s$  between the plane and the block.
- (b) We now consider that the inclined plane has an angle  $\theta = 45^{\circ}$  with the horizontal. The block slides down the incline because of its weight but is subject to a kinetic static friction force with  $\mu_k = 0.5$ . Determine the acceleration vector of the block in the basis  $(\hat{i}', \hat{j}')$ .
- (c) Determine now the acceleration vector of the block in the basis  $(\hat{i}', \hat{j}')$  in absence of solid friction.
- (d) Express the found acceleration in question (b) in the basis  $(\hat{i}, \hat{j})$ .

# 3. A SKY-DIVING ANT



FIGURE 2. A sky diving ant.

A m = 1 mg ant is falling vertically through air while being subject to its own weight and a linear fluid friction force due to air resistance with drag coefficient  $\gamma$ .

(a) Show that the y-component of the velocity vector of the ant satisfies the following first order ordinary differential:

$$\frac{dv_y(t)}{dt} = -\frac{\gamma}{m}v_y(t) - g$$

- (b) We seek a solution to the equation of motion of the form  $v_y(t) = v_\infty (1 e^{-t/\tau})$ . Show that such a functional form satisfies the above differential equation if  $v_\infty = -\frac{mg}{\gamma}$  and  $\tau = \frac{m}{\gamma}$
- (c) Calculate the value of the velocity as time tends to infinity knowing that  $\gamma = 7.5 \cdot 10^{-7} \text{ kg} \cdot \text{s}^{-1}$ .
  - 4. Figuring the dimension of an unknown quantity

Reminder: Here are the rules we have established so far:

- ★ General rules:
  - $[A^{\alpha} \times B^{\beta}] = [A]^{\alpha} \times [B]^{\beta}$  for any A and B
  - [A + B] = [A] = [B] if [A] = [B]
- ★ Specific rules:
  - [x] = [y] = [u] = L if u = inches, cm, m, yards etc...
  - $\bullet [v_x] = [v_y] = L \times T^{-1}$
  - $[\theta] = [u_a] = 1$  if  $\theta$  is an angle and  $u_a =$  degrees, radians, seconds of arc etc..
  - $[t] = [u_t] = T$  if  $u_t = \text{seconds}$ , hours, days, years etc...
  - $[m] = [\underline{u_m}] = M$  if  $\underline{u_m} = \text{kg}$ , tonnes, onces, etc...
  - $\bullet \ [F] = [N] = M \times L \times T^{-2}$
  - [n] = 1 where  $n \in \mathbb{R}$  like -1, 3.45674 or 5 for example.

Consider the following equations to be **complete**.

- (a) Given  $F_{drag} = -\gamma v_x$ , determine the dimension of  $\gamma$ .
- (b) Given  $|F_{friction}| = \mu_k |F_{normal}|$ , determine the dimension of  $\mu_k$ .
- (c) Given  $F_{spring} = -k x$ , determine the dimension of k.