- 1. Betrachten Sie folgendes Zufallsexperiment: Eine faire Münze mit den Seiten 0 und 1 wird zweimal unabhängig geworfen. Die Zufallsvariable Z_1 bezeichne das Ergebnis des ersten Wurfes, entsprechend Z_2 das des zweiten Wurfes.
 - (a) Berechnen Sie die Wahrscheinlichkeit aller möglichen 2er Tupel, die bei dem Doppelmünzwurf entstehen.

Lösung:

Es gilt:

$$\Omega = \{(Z_1, Z_2) \mid Z_1, Z_2 \in \{0, 1\}\} \text{ mit } |\Omega| = 4$$

sowie:

$$P(Z_1 = 0) = P(Z_1 = 1) = P(Z_2 = 0) = P(Z_2 = 1) = \frac{1}{2}$$

und da die beiden Zufallsvariablen offensichtlich stochastisch unabhängig voneinander sind:

$$P(Z_1; Z_2) = P(Z_1) \cdot P(Z_2) = \frac{1}{4}$$

Wir betrachten nun die neuen Zufallsvariablen

$$X = Z_1 - Z_2$$
 und $Y = Z_1 + Z_2$

(a) Welche Werte haben die beiden Zufallsvariablen?

Lösung:

Es gilt:

Z_1	Z_2	$P(Z_1;Z_2)$	$X = Z_1 - Z_2$	$Y = Z_1 + Z_2$
0	0	1/4	0	0
0	1	1/4	-1	1
1	0	1/4	1	1
1	1	1/4	0	2

(b) Bestimmen Sie die gemeinsame Verteilung von *X* und *Y* sowie die jeweiligen Randverteilungen (tabellarische Darstellung).

Lösung:

X	0	1	2	$f_1(x)$
-1	0	1/4	0	1/4
0	1/4	0	1/4	1/2
1	0	1/4	0	1/4
$f_2(y)$	1/4	1/2	1/4	1

(c) Bestimmen Sie die Erwartungswerte von X und Y.

Lösung:

Es gilt offensichtlich:

$$E(Z_1) = E(Z_2) = \frac{1}{2}$$

und damit

$$E(X) = E(Z_1 - Z_2) = E(Z_1) - E(Z_2) = \frac{1}{2} - \frac{1}{2} = 0$$

$$E(Y) = E(Z_1 + Z_2) = E(Z_1) + E(Z_2) = \frac{1}{2} + \frac{1}{2} = 1$$

(d) Berechnen Sie die Kovarianz von X und Y.

Lösung:

Es gilt:

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

$$= \sum_{i=1}^{3} \sum_{j=1}^{3} x_i \cdot y_j \cdot f(x_i; y_j) - E(X)E(Y)$$

$$= -\frac{1}{4} + \frac{1}{4} - 0 \cdot 1$$

$$= 0$$

(e) Sind X und Y stochastisch unabhängig?

Lösung:

Es gilt:

$$f(-1;0) = 0 \neq \frac{1}{16} = \frac{1}{4} \cdot \frac{1}{4} = f_1(-1) \cdot f_2(0)$$

Damit sind X und Y stochastisch abhängig.