

O-RAN.WG4.MP.0-v05.00 Technical Specification O-RAN Alliance Working Group 4 Management Plane Specification

April 27, 2021

Neo SASTECH Co., LTD.

panjongp@gmail.com

12.1 Retrieval of O-RU Information

O-RU에서 O-RU 정보를 검색

hw/hardware/component

- retrieve **mfg-name** the name of the O-RU manufacturer
- retrieve **serial-num** the serial number of the O-RU
- retrieve **software-rev** the version of the O-RU software build

o-ran-hardware/hardware/component/

• retrieve **product-code** – the O-RAN defined product code 1

o-ran-operations/operational-info/declarations

- retrieve supported-mplane-version the version of the O-RAN M-Plane interface
- retrieve **supported-cusplane-version** the version of the O-RAN CUS-Plane interface
- retrieve **supported-header-mechanism** the type of C/U plane headers supported by the O-RU

o-ran-operations/operational-state

• retrieve **restart-cause** – the reason for the last restart

o-ran-sync/sync

• retrieve **sync-state** – the synchronization state of the O-RU

12.2 User plane message routing

Precondition:

• NETCONF 클라이언트와 NETCONF 서버간에 M-Plane 연결이 설정

12.2.1 Configurable format for eAxC_ID

eAxC_ID는 C/U-plane 애플리케이션에서 O-DU 및 O-RU에서 원하는 C/U-plane 애플리케이션 구성 요소간의 eCPRI 통신을 관리하는데 사용.

eAxC_ID: DU-PORT, RU-PORT, CC-ID 및 BAND-SECTOR-ID - CUS-Plane

비트 할당을 구성할 때 NETCONF 클라이언트가 따라야 할 규칙:

- -eAxC_ID를 형성하는 매개 변수에 사용되는 표기법은 LSB에 서 가져온 것이다.
- •-각 매개 변수는 연속 비트를 사용한다.
- •-각 매개 변수는 0-16 비트를 차지할 수 있다.
- -eAxC_ID의 단일 비트는 둘 이상의 매개 변수에 할당될 수 없다.

BAND-SECTOR-ID에 3 비트, CC-ID에 3 비트, DU-PORT-ID에 7 비트, RU-PORT-ID에 3 비트가 할당된 비트 할당 사용 예는 다음과 같다.:

<du-port-bitmask>1111111000000000</du-port-bitmask>

<band-sector-bitmask>0000000111000000</band-sector-bitmask>

<ccid-bitmask>000000000111000</ccid-bitmask>

<ru-port-bitmask>000000000000111 </ru-port-bitmask>

12.2.2 U-Plane endpoint addressing

부호없는 16 비트 정수를 사용하여 정의된 low-level-tx-endpoint 및 low-level-rx-endpoint에 대한 매개 변수 "eaxc-id"는 섹션 12.2.1에 정의된 eAxC_ID 주소 지정 스키마를 따라야 한다

12.2.3 General configuration scenario

NETCONF 클라이언트가 보낸 각 요청의 가정된 결과 (전체 구성) 가 유효한 경우 모든 작업은 임의의 순서 (일부 요청을 하나의 요청에 결합 포함)로 수행할 수 있다. 아래에서 선택한 강조 표시된 규칙을 참고.

- eaxc-id는 동일한 인터페이스 요소에 연결되고 low-level-rx-link 또는 low-level-tx-link 요소와 연결된 모든 endpoint에 대해 고유 하다.
- •생성 시점에 모든 low-level-rx-link는 기존 rx-array-carrier 요소 및 기존 처리 요소 요소에 연결되어야 한다.
- •생성시 모든 low-level-tx-link는 기존 tx-array-carrier 요소 및 기존 처리 요소 요소에 연결되어야 한다

General configuration scenario

- 1) NETCONF 클라이언트는 NETCONF 서버에서 제공하는 다음 요소의 존재를 확인한다.
- tx-arrays-o-ran-uplane-conf.yang에서 tx-arrays 목록을 가져옴
- rx-arrays-o-ran-uplane-conf.yang에서 rx-arrays 목록을 가져옴
- low-level-tx-endpoint 요소-o-ran-uplane-conf.yang에서 static-low-level-tx-endpoints 목록을 가져옴
- low-level-rx-endpoint 요소-o-ran-uplane-conf.yang에서 static-low-level-rx-endpoints 목록을 가져옴
- 인터페이스 요소-o-ran-interfaces.yang의 인터페이스 목록을 가 져옴
- 2) NETCONF 클라이언트는 static-low-level-tx-endpoints 및 static-low-level-rx-endpoints에 의해 노출되는 기능을 결정한다. 또한. NETCONF Client는 "endpoint-types" 및 "endpoint-capacity-sharing-groups"에 의해 노출되는 기능과 [tr]x-array (s) 전용의 특정 매개 변수를 결정한다. 획득된 정보는 NETCONF Client가 "name" 매개 변수에 의해 static-low-level [tr]x-endpoints를 참조하는 low-level-[tr]x-endpoint를 구성할 때 존중되어야 한다.

- 3) 1 단계에서 결정된 요소에 대해 NETCONF Client는 다음과의 관계를 검사한다.
- o-ran-uplane-conf.yang의 static-low-level-tx-endpoint 요소 및 tx-array 요소
- o-ran-uplane-conf.yang의 static-low-level-rx-endpoint 요소 및 rx-array 요소
- static-low-level-tx endpoint 요소 및 인터페이스 요소
- static-low-level-rx- endpoint 요소 및 인터페이스 요소
- tx-arrays, rx-arrays 및 o-ran-uplane-conf.yang의 요소.
- 4) 모든 정적 low-level-rx-endpoint대해 NETCONF 클라이언트는 비시간 관리 및/또는 시간 관리 트래픽을 지원하는 endpoint의 기능을 결정한다. managed-delay-support : 시간 관리 트래픽 (MANAGED), 비시간 관리 트래픽 (NON_MANAGED) or both
- 구성은 런타임에 대해 정적인 것으로 간주된다. 구성은 비실시간 트래픽을 지원하기 위하여 엔드퍼인트의 능력을 노출하는 staticlow-level-rx-endpoint에 "name"과 관계된 "non-time-manageddelay-enabled"(Boolean) 파라메터에 작용되어 진다. 이 매개 변수 의 기본값은 FALSE이며, 이는 endpoint가 기본적으로 시간 관리 트래픽을 지원함을 의미한다. 자세한 내용은 참고 2를 참조.

- 5) NETCONF 클라이언트는 섹션 4.6에 설명된대로 NETCONF 서버에 대한 "전송 연결 확인 절차"를 선택적으로 수행할 수 있다.
- 6) NETCONF 클라이언트는 원하는 셀 구성에 적합한 액세스 가능한 low-level-rx-endpoint 요소 및 low-level-tx-endpoint 요소를 결정한다 (예:특정 안테나 어레이와 연결되고 원하는 유형의 트래픽을 지원할 수 있음).
- 7) NETCONF 클라이언트는 1 단계에서 결정된 endpoint의 eaxc-id (s)에 고유한 값을 할당한다.
- 8) NETCONF 클라이언트는 tx-array-carrier (s) 및 rx-array-carrier (s) 를 생성한다. tx-array-carriers 및 rx-array-carriers는 LTE, NR 또는 DSS-LTE-NR로 설정된 유형으로 구성할 수 있다.

Type	N_{RB}	Center of channel bandwidth (same as F _{REF} as defined in 3GPP TS38.104 Section 5.4.2.1)
LTE or	N_{RB} mod2=1	Between (k-1) RE and k RE of n _{PRB} RB
DSS	N _{RB} mod2=0	Between the highest RE of (n _{PRB} -1) RB and k RE of n _{PRB} RB
NR	N_{RB} mod2=1	Center of kth RE of n _{PRB} RB
	N _{RB} mod2=0	

- 9) NETCONF Client는 O-DU와 O-RU간의 C/U-Plane 전송 구성을 수행한다. NETCONF 클라이언트는 인터페이스를 구성하고 원하는 endpoint에 대한 액세스를 제공하는 인터페이스와 관련된 처리요소를 생성한다 (기능 측면에서 적합하고 원하는 [tr]x-array와관련된 신호를 처리할 수 있음). 인터페이스 및 처리요소 구성에 대한 자세한 내용은 4 장에 설명되어 있다.
- 10) NETCONF 클라이언트는 low-level-[tr]x-endpoint (s), [tr]x-array-carriers 및 전송에 속하는 처리 요소간의 관계를 만들기 위해 low-level-[tr]x-link를 생성한다. . 각 TX 경로 및 RX 경로 연결을 따라 야 한다.

Diagram showing relations between CU-Plane and Carrier configuration elements

12.3 Carrier Configuration

12.3.1 Carrier creation

- 1) NETCONF Client는 원하는 tx-array와 관련하여 tx-array-carrier 를 생성한다. 일반적으로 tx-array-carriers의 수는 원하는 tx-arrays의 수 및 컴포넌트 캐리어의 수의 배수와 동일할 것이다.
- 2) NETCONF Client는 원하는 rx-array와 관련하여 rx-array-carrier 를 생성한다. 일반적으로 rx-array-carriers의 수는 원하는 수의 rx-arrays 및 컴포넌트 캐리어의 수의 배수와 동일할 것이다.
- 3) NETCONF 클라이언트는 endpoint에 대한 액세스를 제공하는 인터페이스와 관련된 처리 요소를 생성한다.
- 4) NETCONF Client는 기존 tx-array-carriers, low-level-tx-endpoint 및 기존 처리 요소와의 관계를 포함하는 low-level-tx-link를 생성한다.
- 5) NETCONF Client는 기존 rx-array-carriers, low-level-rx- endpoint 및 기존 처리 요소와의 관계를 포함하는 low-level-rx-link를 생성한다. 위의 단계를 성공적으로 수행하면 O-DU 및 O-RU의 C/U-Plane 애플리케이션 endpoint 간의 관계가 구성된다.

12.3.2 Activation, deactivation and sleep

12.3.3 Carriers relation to sync

12.3.3.1 Synchronization lost and HOLDOVER mode expired: Synchronization lost scenario

12.3.3.2 External timing source restored

12.4 Beamforming Configuration

12.4.1 Pre-Defined Beamforming Configuration

O-RU가 빔포밍을 지원하는 경우 o-ran-beamforming.yang 및 o-ran-uplane-conf, yang 모듈을 사용하여 지원되는 빔간의 사전 정의된 관계를 NETCONF 클라이언트에 보고한다. band-number 및/또는 capabilities-group은 이 대역 및/또는 capabilities-group과 연관된 tx-arrays 및 rx-arrays 세트를 참조하는 빔포밍 구성을 갖는 O-RU가 지원하는 별도의 tx-arrays 및/또는 rx-arrays를 고유하게 식별하는데 사용된다

12.4.2 Beamforming Configuration Update

빔포밍 구성 수정

- 1. NETCONF 클라이언트는 O-RU 폴더 (O-RAN/beamforming /)의 파일 목록을 검색할 수 있다.
- NETCONF 클라이언트는 O-RU의 폴더에서 빔포밍 구성 파일 의 업로드를 트리거할 수 있다.
- 3. 운영자는 업로드 된 파일을 복구하고 빔포밍 구성 파일을 오프라인으로 편집할 수 있다.
- 4. NETCONF 클라이언트는 원본 폴더에 파일을 다운로드할 수 있다.

o-ran-beamforming YANG 모듈의 빔속성: 각 beam-id에 대한 **coarse-fine**, **coarse-fine-beam-relation** 및 **neighbour-beam**

빔포밍 구성의 수정을 지원하는 O-RU는 지원되는 동시 band-number 및/또는 capabilities-group당 최소 2 개의 빔포밍 파일의 저장을 지원해야 한다

새로 수정된 빔포밍 구성을 적용하기 위해 다음 단계가 적용된다.

- 1. O-RU가 number-of-writable-beamforming-files > 1을 지원하는 경우 NETCONF 클라이언트는 빔포밍 폴더에 파일을 다운로드할 수 있다.
- 2. NETCONF 클라이언트는 활성 매개 변수에 대해 "INACTIVE" 를 설정하여 U-plane 구성에서 tx-array-carriers 및 rx-array-carriers가 ACTIVE 인 경우 비활성화해야 한다.
- 3. 선택적으로 NETCONF 클라이언트는 O-RU가 update-bf-non-delete를 지원하지 않는 경우 tx-array-carriers 및 rx-array-carriers를 삭제해야 한다.
- 4. 또는 number-of-writable-beamforming-files = 1 인 경우 NETCONF 클라이언트가 수정된 빔포밍 구성 파일을 폴더로 다 운로드하도록 트리거할 수 있다.
- 5. NETCONF 클라이언트는 다음을 사용하여 수정된 빔포밍 구성을 활성화해야 한다.
 - activate-beamforming-config rpc 및 수정된 빔포밍 구성 파일과 이 수정된 구성이 적용되는band-number를 선택한다.
 - **activate-beamforming-config-by-capability-group** rpc 및 수정 된 beamforming 구성 파일 및 이 수정된 구성이 적용되는 **capabilities-group**을 선택한다.

- 6. NETCONF 클라이언트가 notification beamforming-information-update 및/또는 capability-group-beamforming-information-update 에 미리 가입하면 O-RU는 그러한 통지를 통지 가입자에게 전송한다. 그런 다음 NETCONF 클라이언트는 NETCONF <get> 작업을 통해 o-ran-beamforming YANG 모듈에서 빔속성을 검색할 수 있다.
- 7. 선택적으로 NETCONF 클라이언트는 O-RU가 **update-bf-non-delete** 기능을 지원하지 않는 경우 **tx-array-carriers** 및 **rx-array-carriers**를 다시 생성해야 한다.
- 8. NETCONF 클라이언트는 active 매개 변수에 대해 "ACTIVE"를 설정하여 U-plane 구성에서 tx-array-carriers 및 rx-array-carriers 를 활성화해야 한다.

[비정상 처리] 미리 정의된/공장 빔포밍 구성 파일로 되돌려야 하고 이를 NETCONF 클라이언트에 보고한다.

미리 정의된/공장 빔포밍 구성 파일로 되돌려야 하고 이를 NETCONF 클라이언트에 보고한다. Method to Modify the File of Beamforming Configuration Information

Method to Apply the modified file for Beamforming Configuration Information

12.4.3 Tilting Pre-defined Beams

o-ran-beamforming YANG 모델에 정의된 "BEAM-TILT"기능을 사용하여 이 기능은 11 장에 설명된 추가 ALD를 작동할 필요없이 O-RU와 관련된 서비스 영역을 조정하거나 섹션 12.4.2에 설명되어 있는 "MODIFY-BF-CONFIG"기능을 사용하여 빔포밍 구성을 수정하는 O-RU 특정기능이다.

Sequence diagram for predefined-beam-tilt-offset-information

Procedure for the predefined-beam-tilt-offset

12.4.4 Dynamic Beamforming Control option

동적 빔포밍 제어가 지원되는 경우 O-RU는 o-ran-beamforming.yang 모듈의 parent leaf "static-properties"를 사용하여 다음과 같은 추가 정보를 표시한다.

빔포밍 유형 (주파수 영역, 시간 영역, 하이브리드)

빔포밍 가중치 압축 형식 (옵션)

DU에 의해 동적으로 업데이트 될 수 있는 사용 가능한 빔ID 범위.

시간 도메인 및 하이브리드 빔포밍 제어를 위해 지원되는 시간 및 주파수 단위.

12.5 Antenna Calibration

o-ran-antenna-calibration YANG 모델

O-RU는 antenna-calibration-start RPC에 할당된 시간 자원과 antenna-calibration-needed 알림에 선언된 주파수 자원을 사용하여 안테나 교정 작업을 수행하고, 안테나 교정 작업 완료를 알림 가입자에게 알려야 한다.

12.5.1 Overall Operation

O-RU "시작"절차 중에 NETCONF 클라이언트 (O-DU)는 o-ranantenna-calibration.yang 모델에 정의된 안테나 교정 기능 관련 매개 변수를 포함하여 O-RU의 안테나 교정 기능 정보를 검색한다

12.5.1.2 Initiation

"start-antenna-calibration RPC request"

O-RU가 첫 번째 안테나 교정 필요 알림 전송을 트리거한 후 60 초 이내에 시작 안테나 교정 RPC 요청을 받지 못하는 경우:

"Triggering failure of antenna calibration"

12.5.1.3 Self-Calibration Operation

"triggering failure of antenna calibration" 알람이 취소되지 않은 상태로 남아있을 때 자체 교정이 지원되고 허용되는 경우 (예 : 자체 교정 지원이 참이고 자체 교정 허용이 참이면 O-RU는 자체 교정을 수행할 수 있다.) O-RU는 자체 교정 절차를 시작하기전에 주요 경보를 발생시키고 NETCONF 클라이언트로부터 시작 안테나 교정 RPC 요청을 수신하지 않은 후 최소 60 초를 기다려야 한다. 자체 교정이 지원되지 않거나 허용되지 않는 경우 (예 : 자체교정 지원이 거짓이거나 자체 교정 허용이 거짓 인 경우, O-RU는하위 섹션 8.3에 따라 경보의 심각도를 위험으로 업그레이드 할수 있다. 다음 그림은 안테나 보정을 위한 전체 작업을 보여준다.

12.5.1.4 Calibration Completion

O-RU는 알림 가입자에게 antenna-calibration-result 알림 (보정 결과)을 사용하여 모든 유형의 보정 절차 (즉, rpc 트리거, 자체 보정및 조정된 자체 보정)의 완료를 표시해야 한다

12.5.1.5 Antenna Calibration Procedure

12.5.2 O-RU Antenna Calibration Capability Parameter Configuration

- self-calibration-support: 부울 값은 O-RU가 자체 보정을 지원할 수 있는지 여부를 나타낸다.
- number-of-calibration-symbols-per-block-dl: DL 안테나 교정 작 업에 필요한 연속 심볼 수, 즉 DL 기호 블록의 크기를 나타낸다.
- number-of-calibration-symbols-per-block-ul: UL 안테나 교정 작업에 필요한 연속 기호 수, 즉 UL 기호 블록의 크기를 나타낸다.
- interval-between-calibration-blocks: 연속 안테나 보정 작업 사이에 시간 간격이 필요한 경우 필요한 시간 값을 기호 단위로 나타낸다. 여기에서는 DL-DL 블록, UL-UL 블록, DL-UL 블록 및 UL-DL 블록 사이의 간격에 대해 공통 값이 사용되며, 이는 인접한 두 교정 블록간에 필요한 가장 큰 최소 간격이다. 이 매개 변수 범위 내에서 O-RU 구현에 필요한 값이어야 한다.

- number-of-calibration-blocks-per-step-dl : DL 안테나 보정 작업 의 한 단계에 필요한 블록 수를 나타낸다.
- number-of-calibration-blocks-per-step-ul: UL 안테나 교정 작업 의 한 단계에 필요한 블록 수를 나타낸다.
- interval-between-calibration-steps: 안테나 보정 작업의 연속 단계 사이에 시간 간격이 필요한 경우 정의는 필요한 시간 값을 무선 프레임 단위로 나타낸다. 정의된 매개 변수 범위 내에서 O-RU 구현에 필요한 모든 값이 될 수 있다.
- number-of-calibration-steps: 전체 DL/UL 안테나 교정 작업에 필요한 단계 수를 보여준다.

Relationship among Antenna Calibration Capability parameters

12.5.3 antenna-calibration-required Notification Parameters

- start-calibration-frequency-dl : DL 안테나 보정 작업에 필요한 주 파수 범위 중 가장 낮은 주파수 값 (Hz)을 나타낸다.
- end-calibration-frequency-dl : DL 안테나 보정 작업에 필요한 주 파수 범위 중 가장 높은 주파수 값 (Hz)을 나타낸다.
- start-calibration-frequency-ul : UL 안테나 보정 작업에 필요한 주 파수 범위 중 가장 낮은 주파수 값 (Hz)을 나타낸다.
- end-calibration-frequency-ul : UL 안테나 보정 작업에 필요한 주 파수 범위 중 가장 높은 주파수 값 (Hz)을 나타낸다

12.5.4 Start-antenna-calibration RPC Request Parameters

"start-antenna-calibration RPC request"를 사용하여 O-RU에 구성된 매개 변수

- symbol-bitmask-dl
- Symbol-bitmask-ul
- Slot-bitmask-dl
- Slot-bitmask-ul
- Frame-bitmask-dl
- Frame-bitmask-ul
- Calibration-step-size
- Calibration-step-number
- start-SFN

12.5.5 Example Antenna Calibration Operation

Example of TDD configuration (F:Flexible slot, DL: Downlink slot, UL: Uplink slot)

이 예는 O-RU가 2 개의 보정 단계를 사용하여 o-ran-antenna-calibration.yang에서 DL 및 UL 안테나 보정 작업을 요구하는 보정 작업을 보여준다. 각 단계에서 각 교정 블록에 4 개의 연속 DL 기호가 있는 64 개의 DL 교정 블록과 각 교정 블록에 1 개의 연속 UL 기호가 있는 32 개의 UL 교정 블록이 필요하다. 각 교정 블록 사이에는 최소 3 개의 기호 간격 길이가 필요하며 연속 교정 단계 사이에는 최소 5 프레임 간격의 길이가 필요하다.?

Example of message exchange

Time domain bitmask information from O-DU

12.6 Static configuration for PRACH and SRS

PRACH 및 원시 SRS는 주기적이다. 시간 및 주파수 자원에서의 위치는 모든 기간 동안 일정하다 . 따라서 할당된 low-level-rx-endpoint에 의한 PRACH 및/또는 원시 SRS 처리를 처리하는데 C-Plane 메시지를 통한 실시간 제어가 필요하지 않다는 점에서 M-Plane을 사용하여 PRACH 및 원시 SRS를 구성할 수 있다.

M-Plane을 사용한 PRACH 및 SRS의 정적 구성은 다음 측면을 다루어야 한다.

- PRACH/SRS에 할당된 주파수 자원 구성
- PRACH/SRS에 할당된 시간 자원 구성 (PRACH/SRS주기 포함)
- Configuration, iFFT 및 SCS 구성
- PRACH/SRS 처리를 위한 HW 자원 (low-level-rx-endpoints) 할당

12.6.1 Static configuration for PRACH processing

O-RU는 o-ran-module-cap.yang 모듈에서 **PRACH-STATIC-CONFIGURATION-SUPPORTED** 기능을 지원하여 정적 PRACH 구성을 지원하는 기능을 제공한다. 이 기능의 존재는 O-RU에서 제공하는 정적 low-level-rx- endpoint 중 하나 이상이 PRACH에 대한 정적 구성을 지원함을 의미한다.

정적 PRACH 구성과 관련된 매개 변수가 NETCONF 클라이언트에 의해 설정된 경우 – PRACH 기회에 대한 실시간 C-plane 제어가 O-RU에 제공되지 않으므로 정적 구성을 사용할 수 있다

12.6.1.1 Frequency domain configuration

:Relation between frequency-related parameters of the PRACH occasion

12.6.1.2 Time domain configuration

Timing-related parameters of single PRACH occasion

Timing-related parameters of one PRACH pattern

Example PRACH configuration formed of two PRACH patterns having different number of repetitions (Note: PRACH occasions are expanded for visual clarity).

2 개의 prach 패턴을 사 용

- 패턴 # 1에는 반복 횟수 = 4, 경우 횟수 = 3
- 패턴 # 2에는 반복 횟 수 = 6, 경우 횟수 = 2

12.6.1.3 Operation

정적 PRACH 구성을 설정하고 rx-array-carrier 활성화전에 rx-endpoint를 연결해야 한다. 캐리어 활성화시 O-RU는 구성된 prach-patterns 목록에 해당하는 RF 신호 수신을 시작한다

```
\begin{aligned} & \operatorname{mod}(n_f,\operatorname{pattern-period}) = \operatorname{frame-number}_{\operatorname{p}} \operatorname{and} \\ & n_{sf} = \operatorname{sub-frame-id}_{\operatorname{p}} \operatorname{and} \\ & t = \operatorname{time-offset}_{\operatorname{p}} \end{aligned} where n_f \text{ is the system frame number}, \\ & \operatorname{mod}(x,y) \text{ is remainder of division of } x \text{ by } y, \\ & n_{sf} \text{ is the subframe number within system frame } n_f, \\ & t \text{ is the time since start of subframe } n_{sf}, \\ & \operatorname{frame-number}, \operatorname{sub-frame-id}_{\operatorname{p}} \operatorname{and time-offset}_{\operatorname{p}} \operatorname{are parameters of prach-pattern } p, \\ & \operatorname{pattern-period is a parameter of PRACH configuration.} \end{aligned}
```

PRACH 경우 n_o 에서 PRACH 반복 n_r 에 해당하는 RF 신호가 수신되고 처리되면 O-RU는 U-plane 메시지 또는 다음과 같이 설정된 헤더 필드가 있는 메시지에서 해당 IQ 값을 보낸다.:

```
frameId = mod( floor( n_f / pattern-period ) • pattern-period + frame-number<sub>p</sub>, 256 ) (note: this corresponds to n_f value captured when prach-pattern p started) subframeId = sub-frame<sub>p</sub>, slotId = zero-based PRACH occasion number within PRACH pattern, symbolId = zero-based PRACH repetition number within PRACH occasion, sectionId = 4095, startPrbu = floor( ( re-offset<sub>p</sub> + guard-tone-low-re ) / 12 ), numPrbu = ceil( (re-offset<sub>p</sub> + guard-tone-low-re + num-prach-re ) / 12 ) - startPrbu. where n_f is the system frame number, mod( x, y ) is remainder of division of x by y, floor( x ) is largest integer smaller than or equal to x, ceil( x ) is smallest integer greater than or equal to x, frame-number<sub>p</sub>, sub-frame-number<sub>p</sub> and re-offset<sub>p</sub> are parameters of prach-pattern p. pattern-period, guard-tone-low-re and num-prach-re are parameters of PRACH configuration.
```


12.6.2 Static configuration for raw SRS processing

O-RU는 o-ran-module-cap.yang 모듈에서 **SRS-STATIC-CONFIGURATION-SUPPORTED** 기능을 지원하여 정적 원시 SRS 구성을 지원하는 기능을 제공한다. 이 기능의 존재는 O-RU 가 제공하는 정적 low-level-rx-endpoint 중 하나 이상이 원시 SRS 수신을 위한 정적 구성을 지원함을 의미한다.

O-RU는 단일 정적 SRS 구성의 패턴 수가 o-ran-uplane-conf.yang 모듈의 기능 매개 변수 max-srs-patterns에 의해 노출된 수를 초과 하는 구성을 거부해야 한다

12.6.2.1 Operation

```
dataDirection = 0 (RX),
  payloadVersion = 0,
  filterIndex = 0,
  frameId = mod(nf, 256),
   subframeId = sub-frame-idp,
   slotId = slot-idp,
   startSymbolId = start-symbol-idp,
  numberOfSections = 1, sectionId = 4095, rb = 0,
   symInc = 0,
   startPrbc = start-prbcp,
  numPrbc = num-prbcp,
  reMask = 0xFFF.
  numSymbol = num-symbolp,
  ef=0,
  beamId = beam-idp,
여기서,
  nf is the system frame number,
  mod(x, y) is remainder of division of x by y,
  sub-frame-idp slot-idp, start-symbol-idp, beam-idp, start-prbcp and
```


12.7 TDD pattern configuration

O-RU는 o-ran-module-cap.yang 모듈에서 **CONFIGURABLE-TDD-PATTERN-SUPPORTED** 기능을 지원하여 TDD 패턴 구성을 지원하는 기능을 제공한다. 이 기능의 존재는 O-RU에서 제공하는 정적 low-level-[tr]x- endpoint 중 하나 이상이 TDD 패턴에 대한 구성을 지원하므로 이러한 정적 low-level-[tr]x-endpoint가 구성 가능한 TDD 패턴이 할당된 [tr]x-array-carriers에 의해 (low-level-[tr]x-종점을 통해) 사용된다.

configurable-tdd-pattern을 [tr]x-array-carrier에 할당하는 것은 다음 조건이 모두 충족되는 경우에만 가능한다.

- O-RU는 CONFIGURABLE-TDD-PATTERN-SUPPORTED 기능을 지원한다.
- 특정 [tr]x-array-carrier에 대해 제공하도록 구성된 모든 static-low-level-[tr]x-endpoint는 TRUE로 설정된 기능 configurable-tdd-pattern을 갖는다.