Clustering: K-means and Nearest Neighbors

Foundations of Data Analysis

February 17, 2022

Clustering Example

Original image

Segmented image

Divide data into different groups

1. Ask user how many clusters they'd like (e.g. k=5)

- 1. Ask user how many clusters they'd like (e.g. k=5)
- 2. Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.

- 1. Ask user how many clusters they'd like (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center re-finds the centroid of the points it owns...

- 1. Ask user how many clusters they'd like (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center re-finds the centroid of the points it owns...
- 5. ...and jumps there

- 1. Ask user how many clusters they'd like (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center re-finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat steps 3-5 until terminated!

 Does not work efficiently with complex structured data (mostly non-linear)

 Does not work efficiently with complex structured data (mostly non-linear)

Hard assignment for labels might lead to misgrouping

 Does not work efficiently with complex structured data (mostly non-linear)

Hard assignment for labels might lead to misgrouping

Random guess for initialization might be a hassle

Nearest Neighbors: (Un)supervised Learning (non-parametric model)

Nearest Neighbors

K-nearest neighbors of seed x: data points that have the k smallest distance to x.

Nearest Neighbor

Voronoi Diagram

- Partitions space into regions
- boundary: points at the same distance from two different training examples

K-Nearest Neighbor (KNN) classification - supervised learning

KNN Classifiers

Unknown seed

- Requires three things
 - The set of stored records
 - Distance metric
 - The value of k, the number of nearest neighbors to retrieve

KNN Classifiers

Unknown seed

- Requires three things
 - The set of stored records
 - Distance metric
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown seed:
 - Compute distance to other training seeds
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown seed (e.g., by taking majority vote)

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance (L2 norm)

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weight the vote according to distance
 - weight factor, w = 1/d²

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Issues of Nearest Neighbor Classification

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

K-NN and Irrelevant Features

K-NN and Irrelevant Features

K-NN and Irrelevant Features

Issues of Nearest Neighbor Classification

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

Solution: Normalize the vectors to unit length.

K-NN Algorithm

- Training:
 - Save the training examples
- At prediction:
 - Find the k training examples $(x_1, y_1), ..., (x_k, y_k)$ that are closest to the test example x
 - Predict the most frequent class among those y_i 's.

K-NN Algorithm

- Training:
 - Save the training examples
- At prediction:
 - Find the k training examples $(x_1, y_1), ..., (x_k, y_k)$ that are closest to the test example x
 - Predict the most frequent class among those y_i 's.
- Improvements:
 - Weighting examples from the neighborhood
 - Measuring "closeness"
 - Finding "close" examples in a large training set quickly