

Portas Lógicas: XOR

x	у	x XOR y
0	0	0
0	1	1
1	0	1
1	1	0

Portas Lógicas: Nand

x	у	x Nand y
0	0	1
0	1	1
1	0	1
1	1	0

Portas Lógicas: Nor

x	y	x Nor y
0	0	1
0	1	0
1	0	0
1	1	0

Porta Universal Nand

Porta Universal Nand / Nor

Porta Universal Nand / Nor

Funções Booleanas e Circuitos Lógicos

$$F(X,Y,Z) = XY + YZ' + XYZ$$

Usando o XOR pra trocar duas variáveis

A = A XOR B

B = A XOR B

A = A XOR B

Um CHIP simples

Representações Soma de produtos ou Produto de somas

Mimtermos e Maxtermos

x	y	Z	\overline{F}	Mintermo	Maxtermo
0	0	0	0	m0 x'y'z'	M0 X+Y+Z
0	0	1	0	m1 x'y'z	M1 X+Y+Z'
0	1	0	1	m2 x'y z'	M2 X+Y'+Z
0	1	1	1	m3 x'y z	M3 X+Y'+Z'
1	0	0		_	M4 X'+Y+Z
1	0	1			M5 X'+Y+Z'
1	1	0		1	M6 X'+Y'+Z
1	1	1	0	m7 x y z	M7 X'+Y'+Z'

Representações Soma de produtos ou Produto de somas

Mimtermos possuem o valor 1 para uma única combinação de variáveis de entrada, todas as outras terão valor 0 Expressão canônica da soma de produtos:

$$F(2,3) = m_2 + m_3 = X'YZ' + X'YZ$$

Maxtermos possuem o valor 0 para uma única combinação de variáveis de entrada, todas as outras terão valor 1 Expressão canônica da produto de somas:

$$F(0,1,4,5,6,7) = M_0 + M_1 + M_4 + M_5 + M_6 + M_7 =$$

$$(X+Y+Z)(X+Y+Z')(X'+Y+Z)(X'+Y+Z')(X'+Y'+Z)(X'+Y'+Z')$$

Representações Soma de produtos ou Produto de somas

Uma função de soma de produtos : F(X,Y,Z) = X'YZ' + X'YZ = X'YPode ser expressa por uma tabela verdade ou circuito lógico

	x	y	z	F
	x 0	<u>у</u> О	<i>z</i> 0	$\frac{F}{0}$
Ť	0	0	1	0
	0 0 0 1	1	0	
	0	1	1	1
		0	0	0
	1	$\frac{0}{0}$	1	0
	1	1	0	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $
	1	1	1	0

$$(x'y)' = x + y'$$
 $(x + y')' (x + y')' = (x + y')' = x'y$

Expressão Soma de Produtos

Desenhar um circuito para, de acordo com as condições climáticas e estado das ruas, tomar a decisão de fechar ou não um Campus Universitário

Chuva	Drenagem	Buracos	Fechado?
(x)	(y)	(z)	r ccnauo.
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Circuito Combinacional: Somador

Mapa de 2 variáveis

Entrada			Saída		
x	y	Vai um (recebido)	Soma	Vai para fora	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Circuito Combinacional: Somador

Mapa de 2 variáveis

Circuito Combinacional: Somador

Mapa de 2 variáveis

Circuito Combinacional: Decodificador

Chip	Endereço Dec.	Endereço Hexa
0	0 – 8191	0 – 1FFF
1	8192 – 16383	2000 – 3FFF
2	16384 – 24575	4000 – 5FFF
3	24576 – 32767	6000 – 7FFF
4	32767 – 40959	8000 – 9FFF
5	40960 – 49151	A000 – BFFF
6	49152 – 57343	C000 – DFFF
7	57344 – 65536	E000 – FFFF

Circuito Combinacional: Decodificador

Circuito Combinacional: Multiplexador

Circuito Combinacional: Multiplexador

Multiplexador de 2 canais

Circuito Combinacional: Multiplexador

Implementar lógica S = A'B' + A'B

Circuito Combinacional :Gerador de paridade

x	y	z	P	Error detected?
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Circuito Combinacional: Deslocamento de bit

Uma ALU simples

