Как МАКРО-параметры (R,T,p,...) связать с МИКРО-параметрами $(v,E_k,...)$? Если бы знать число Авогадро N или число Лошмидта n_0 или постоянную Больцмана k – только КАК их измерить?

Достаточно мелкие МАКРО-объекты (броуновские частицы) в окружении молекул должны быть с ними в тепловом равновесии \Rightarrow их средняя кинетическая энергия W равна кинетической энергии молекул w при данной T:

 $\overline{W} = \overline{w} = \frac{3}{2} kT = \frac{3}{2} \cdot \frac{R}{N} \cdot T$

Их видно в микроскоп \Rightarrow можно попытаться определить \overline{W} . Из-за хаотичности движения $\overline{v^2}$ измерить напрямую не удается.

Жан Батист Перрен (J.B.Perrin, 1870-1942, Lille) использовал барометрическую формулу:

$$n_h = n_0 \cdot \exp\left(-\frac{Mgh}{kT}\right) = n_0 \cdot \exp\left(-\frac{3Mgh}{2\overline{W}}\right).$$

Подсчитывая через микроскоп число частиц n_h в слоях на разной высоте с шагом в несколько микрон, он определил показатель экспоненты и нашел затем \overline{W} :

$$\overline{W} = \frac{3Mg(h_2 - h_1)}{2\ln\left(\frac{n_1}{n_2}\right)}$$

Радиус частиц определялся из формулы Стокса по скорости оседании "мути", а из радиуса находился вес Mg. В итоге Перрен получил (1909 г.), что $N \simeq 6 \cdot 10^{23}~1/$ моль.

Второй метод Перрена: измерение среднего смещения частицы $\overline{x^2}$ за время t и затем использование формулы Эйнштейна-Смолуховского:

$$\overline{x^2} = \frac{RT}{3\pi\eta N} \cdot t$$

где η – вязкость жидкости. Результат получился тот же. В итоге (1926 г.) – **Нобелевская премия!**

Длина свободного пробега молекулы – среднее расстояние между двумя столкновениями.

Молекула задевает другие молекулы, если их центры лежат внутри цилиндра с радиусом 2r и площадью основания $\sigma=\pi(2r)^2$. Принято говорить, что она обладает сечением σ .

за 1 секунду она заденет все, что находится внутри цилиндра длиной \overline{v} , то есть, число столкновений молекулы в единицу времени

$$n = \sigma \, \overline{v} \sqrt{2} \, n_0 = 4\sqrt{2} \, \pi \, r^2 \, \overline{v} \, n_0$$

 $(\sqrt{2}\,$ добавился потому, что на самом деле вместо средней скорости \overline{v} должна быть средняя встречная скорость молекул; можно показать, что она в $\sqrt{2}$ раз больше). Прикинем порядок n:

$$n \sim 4 \cdot 1.4 \cdot 3.14 \cdot 10^{-16} \text{cm}^2 \cdot 5 \times 10^4 \text{cm/c} \quad \cdot 3 \times 10^{19} \text{cm}^{-3} \simeq 3 \times 10^9 \text{1/c}$$

То есть, при н.у. каждая молекула сталкивается с частотой 3 ГГц. Свободный пробег при этом равен

$$\lambda = \frac{\overline{v}}{n} = \frac{1}{\sqrt{2} \ \sigma \ n_0} \simeq \frac{5 \times 10^4 \ \text{cm/c}}{3 \times 10^9 \ \text{1/c}} \simeq 10^{-5} \ \text{cm} = 0.1 \ \text{mkm}$$

Как видим, λ зависит от молекулярной плотности газа (от числа молекул в $1~{\rm cm}^3$) и от размеров молекул (от сечения σ), но не от скорости (и связанной с нею температуры)! В действительности это не совсем так:

$$\lambda = \lambda_{\infty} \, \frac{T}{C + T}$$

Где C – постоянная Сезерлэнда. Для азота, например, C=102.7K. Каков свободный пробег молекул азота при разных давлениях?

Давление [мм рт.ст.]	760	1	10^{-3}	10^{-6}
Пробег λ	0.07 мкм	50 мкм	5 см	50 м

 ${f Bakyym}$ – состояние вещества (газа), при котором длина свободного пробега больше размеров сосуда: $\lambda\gg L$. Молекулы не сталкиваются, а просто летают от стенки до стенки (или сидят на них).

Опыты с молекулярными пучками

Опыт Штерна: при вращении двойного цилиндра с угловой скоростью

Время пролета молекул от щели до внешнего цилиндра: $t=R/\overline{v}$. За это время цилиндр поворачивается на некий угол, и дуга равна

$$s = \omega Rt$$
 \Rightarrow $t = s/\omega R$

Приравнивая t, получим уравнение, из него найдем скорость молекул:

$$\frac{s}{\omega R} = \frac{R}{\overline{v}} \qquad \Rightarrow \qquad \overline{v} = \frac{\omega R^2}{s}$$

Вариант опыта Штерна:

 Δ иффузия. Если $\overline{v} \simeq$ 500 м/с, то почему запахи распространяются медленно? Ответ: потому что $\lambda \simeq$ 0.1 мкм. Молекулы толкутся, хоть и

очень быстро, но на месте!

МАКРОскопический опыт показывает, что масса газа ΔM , диффундирующая через площадку ΔS за время Δt пропорциональна площадке ΔS , времени Δt и градиенту плотности газа $(\rho_1-\rho_2)/\Delta x$:

$$\Delta M \sim \Delta S \cdot \Delta t \cdot \left(\frac{\Delta \rho}{\Delta x}\right)$$

или, в термнах потока:

$$\vec{\Phi}(M) = -D\vec{\nabla}\rho \quad (1)$$

где
$$ec{
abla}
ho\equiv(rac{\partial
ho}{\partial x},rac{\partial
ho}{\partial y},rac{\partial
ho}{\partial z})$$
,

D — коэффициент диффузии, а знак "—" символизирует то, что поток распространяется в направлении УМЕНЬШЕНИЯ, а не УВЕЛИЧЕНИЯ плотности газа ho.

Теперь рассмотрим то же самое явление с точки зрения молекул. Пусть \exists 2 похожих газа \mathbf{A} и \mathbf{B} , взаимно диффундирующих навстречу друг другу. Выделим два кубика с ребром L и такую же площадку $\Delta S =$

и последними молекулами из одного кубика). Итак, за единицу времени через площадку ΔS направо пролетает число A-молекул:

$$n_{\rightarrow} = \frac{n_A \cdot L^3}{6 \cdot \delta t} = \frac{n_A \cdot L^3 \cdot \overline{v}}{6 \cdot L} = \frac{n_A \cdot L^2 \cdot \overline{v}}{6}$$

Аналогично, налево пролетает

$$n_{\leftarrow} = \frac{n_B \cdot L^2 \cdot \overline{v}}{6}$$

Итоговый транзит молекул через площадку ΔS составляет

$$\Delta n = (n_{\rightarrow} - n_{\leftarrow}) = \frac{(n_A - n_B) \cdot L^2 \cdot \overline{v}}{6}$$

За произвольный промежуток времени Δt это количество будет в Δt раз больше, а переносимая масса составит

$$\Delta M = m \cdot \Delta n \cdot \Delta t = \frac{m \cdot (n_A - n_B) \cdot L^2 \cdot \overline{v} \cdot \Delta t}{6}$$

Каков градиент плотности газа?

$$\frac{\Delta \rho}{\Delta x} = \frac{m \cdot (n_B - n_A)}{2\lambda}$$

С учетом этого, получаем:

$$\Delta M = -\frac{1}{3} \lambda \, \overline{v} \, \left(\frac{\Delta \rho}{\Delta x}\right) \, \Delta t \, \Delta S$$

Сравнивая это с полученным в МАКРО-опыте, находим:

$$D = \frac{\lambda \, \overline{v}}{3}$$

Имеем в виду, что $\overline{v}=\sqrt{8kT/\pi m}$, а $\lambda=1/\sqrt{2}\sigma n_0$, и делаем выводы:

- $D \sim \sqrt{T}$
- $D \sim 1/\sqrt{\mu}$
- $D \sim 1/p$
- $D \sim 1/\sigma$

Теплопроводность. Тут дело несколько осложняется **конвекцией**. Чтобы от нее избавиться, надо измерения проводить по вертикали, причем сверху T> чем снизу.

МАКРОскопический опыт показывает, что количество тепла ΔQ , переносимое через площадку ΔS за время Δt пропорционально площадке ΔS , времени Δt и градиенту температуры газа $(T_1-T_2)/\Delta x$:

$$\Delta Q = -\chi \Delta S \cdot \Delta t \cdot \left(rac{\Delta T}{\Delta x}
ight)$$
 или, в терминах потока: $\vec{\Phi}(Q) = -\chi \vec{\nabla} T$

где $\vec{\nabla}T\equiv(\frac{\partial T}{\partial x},\frac{\partial T}{\partial y},\frac{\partial T}{\partial z})$, χ — коэффициент теплопроводности, а знак "—" символизирует то, что поток распространяется в направлении УМЕНЬ-ШЕНИЯ, а не УВЕЛИЧЕНИЯ температуры T.

Теперь снова рассмотрим то же самое явление с точки зрения молекул. Опять те же 2 кубика, только не с разными газами, а с разной температурой. Тут в качестве переносимого объекта выступает энергия молекулы $w=\frac{1}{2}ikT$, где i — число степеней свободы. Повторив все выкладки, получим, что направо переносится

$$Q_{\rightarrow} = \frac{1}{6} \cdot n_A \cdot \Delta S \cdot \Delta t \cdot \overline{v_A} \cdot \frac{i}{2} k T_A$$

а налево —

$$Q_{\leftarrow} = \frac{1}{6} \cdot n_B \cdot \Delta S \cdot \Delta t \cdot \overline{v_B} \cdot \frac{i}{2} k T_B$$

В итоге, перенос тепла составит

$$\Delta Q = Q_{\rightarrow} - Q_{\leftarrow} = \frac{1}{6} \cdot \frac{i}{2} k \cdot (n_A \cdot \overline{v_A} \cdot T_A - n_B \cdot \overline{v_B} \cdot T_B) \, \Delta S \cdot \Delta t$$

Поскольку $n \sim \frac{1}{T}$, а $\overline{v} \sim \sqrt{T}$, то их произведение $nv \sim 1/\sqrt{T}$ – от T зависит слабо, и в первом приближении этой зависимостью можно пренебречь. Тогда

$$\Delta Q = \frac{1}{6} \cdot \frac{i}{2} k \cdot n_0 \cdot \overline{v} \cdot (T_A - T_B) \, \Delta S \cdot \Delta t = -\frac{1}{3} \cdot n_0 \cdot \overline{v} \cdot \lambda \cdot \frac{i}{2} k \cdot \left(\frac{\Delta T}{\Delta x}\right) \Delta S \cdot \Delta t$$

и коэффициент теплопроводности χ равен

$$\chi = \frac{1}{3} \cdot n_0 \cdot \overline{v} \cdot \lambda \cdot \frac{i}{2} k = \frac{1}{3} \frac{n_0}{N} \cdot \overline{v} \cdot \lambda \cdot C_V = \frac{1}{3} \rho \cdot \overline{v} \cdot \lambda \cdot c_V$$

(с учетом того, что k=R/N, $n_0/N=\rho/\mu$, а теплоемкость $C_V=iR/2$)

Внутреннее трение. Аналогично жидкостям: слой, который движется быстрее, тащит за собою более медленные слои, а те его тормозят.

Схема опыта по измерению внутреннего трения в газе. Внешний цилиндр висит на упругой струне, а внутренний вращается со скоростью ω (при этом, линейная скорость поверхности внутреннего цилиндра $\omega R = u$). Через слои газа вращающий момент передается на внешний цилиндр и закручивает струну. Измерив закручивающий момент, можно найти величину f силы внутреннего трения в газе, действующую по касательной к каждой маленькой площадке ΔS :

$$f = \eta \left(\frac{\Delta u}{\Delta r}\right) \Delta S$$

С точки зрения молекулярно-кинетической теории, к слу-

чайным скоростям молекул \vec{v} в каждом слое газа добавляется переносная скорость \vec{u} , постоянная для данного слоя. Попадая в соседний слой, каждая молекула приносит туда дополнительный импульс $m\vec{u}$ и таким

образом ускоряет или замедляет этот слой. Рассмотрим площадку ΔS и два слоя газа ${\bf A}$ и ${\bf B}$, отстоящие от нее на расстояние пробега λ и движущиеся со скоростями u_A и u_B , соответственно. Как мы уже видели выше, число молекул, попадающих за время Δt из одного слоя в другой, равно $n_{\uparrow} = n_{\downarrow} = \frac{1}{6} \cdot n_0 \cdot \overline{v} \cdot \Delta S \cdot \Delta t$

Количество движения (импульс), переносимое этими молекулами из слоя

в слой, равно

$$K_{\uparrow,\downarrow} = n_{\uparrow,\downarrow} \cdot m u_{A,B} = m \cdot u_{A,B} \cdot \frac{1}{6} \cdot n_0 \cdot \overline{v} \cdot \Delta S \cdot \Delta t$$

В итоге, импульс, передаваемый от слоя ${f A}$ к слою ${f B}$, составит

$$\Delta K = K_{\uparrow} - K_{\downarrow} = \frac{1}{6} \cdot m \cdot n_0 \cdot \overline{v} \cdot (u_A - u_B) \cdot \Delta S \cdot \Delta t$$

Так как $m\cdot n_0$ – это плотность газа ho, а $(u_A-u_B)/2\lambda$ – это градиент

скорости $\Delta u/\Delta z$, то

$$\Delta K = \frac{1}{3} \cdot \rho \cdot \overline{v} \cdot \lambda \left(\frac{\Delta u}{\Delta z}\right) \cdot \Delta S \cdot \Delta t$$

и коэффициент трения газа равен

$$\eta = \frac{1}{3} \cdot \rho \cdot \overline{v} \cdot \lambda \tag{2}$$

Сравните с коэффициентом теплопроводности:

$$\chi = \frac{1}{3} \cdot \rho \cdot \overline{v} \cdot \lambda \cdot c_V \tag{3}$$

Здесь скорость молекул \overline{v} от давления не зависит, плотность $\rho \sim p$, а пробег $\lambda \sim 1/p$. Таким образом, и трение η , и теплопроводность χ от давления зависеть не должны. Странный вывод... Однако, в действительности так и есть (в таблице – данные по трению в CO_2):

p [мм рт.ст.]	760	380	20	2	0.6
η [г/см/с]	$14.9 \cdot 10^{-5}$	$14.9 \cdot 10^{-5}$	$14.8 \cdot 10^{-5}$	$14.7 \cdot 10^{-5}$	$13.8 \cdot 10^{-5}$

Но при очень низких давлениях зависимость трения η и теплопроводности χ от давления появляется (они начинают падать)!

Причина: пробег λ становится больше размеров L измерительного устройства \Rightarrow при этих условиях в формулах (2) и (3) надо заменить $\lambda \to L$, и тогда η и χ становятся пропорциональными плотности ρ и \Rightarrow давлению p. Применение: сосуд Дьюара (1892). James Dewar, 1842-1923, Эдинбург. Производство: Termos GmbH, Германия, 1904.

Устройства для получения и измерения низких давлений.

Механические форвакуумные насосы: поршневые, роторные, диафрагменные – для получения "форвакуума" $(10^{-2}\dots 10^{-3}\ \text{мбар})$

Высоко-вакуумные насосы:

- диффузионные (паромасляные) Масло нагревается и испаряется, а затем снова конденсируется, прихватывая с собой молекулы остаточного газа.
 - (+) простота и большая производительность
 - (—) пары масла попадают в откачиваемый объем
- *магниторазрядные* титановый электрод распыляется в электрическом поле; ускоренные ионы титана, вбиваясь затем в поверхность, тащат за собой молекулы газа. Магнитное поле для увеличения пути ионов в откачиваемом объеме.
 - (+) чистый вакуум, нет вибраций
 - (—) малые ресурс и производительность
- турбо-молекулярные быстро вращающийся вентилятор (турбина).
 - (+) чистый вакуум
 - (—) высокая стоимость
- криогенные остаточный газ вымораживается на твердой поверхности.
 - (+) очень чистый вакуум
 - (—) малая производительность; гелий и водород не замерзают

Вакуумметры

- механические (классические) анероиды
 - механическое расширение/сжатие гермообъема с газом под действием измеряемого давления
 - (+) простота
 - (—) грубая шкала; диапазон от 1 ат. до 10 мбар

- пьезоэлектрические или емкостные анероиды
 - то же самое, но измерение величины сжатия более точное
 - (+) простота
 - (—) грубая шкала; диапазон от 1 ат. до 1 мбар
- жидкостные (ртутные)
 - измерение перепада уровня жидкости под действием измеряемого давления
 - (+) простота
 - (—) грубая шкала; диапазон от 1 ат. до 1 мбар; опасность попадания паров жидкости в измеряемый объем

- термопарные
 - измерение теплопроводности газа
 - (+) простота, надежность, безопасность
 - (-) форвакуумный диапазон $10...10^{-3}$ мбар

- ионизационные
 - ионизация остаточного газа и измерение ионного тока
 - (+) высоковакуумный диапазон $10^{-3}\dots 10^{-10}$ мбар
 - (—) ненадежность, малый ресурс
- комбинированные
 - термопарные + на эффекте Пеннинга (ионизация с холодным катодом)
 - (+) высокая надежность, широкий диапазон $10 \dots 10^{-10}$ мбар
 - (—) высокая стоимость, малый ресурс