CALCULUS AND PROBABILITY BASED STATISTICS

MARK ANDREW GERADS

1. Finite statistics

1.1. **Introduction.** The purpose of this text is to have statistics built on a solid foundation of probability and calculus.

Definition 1.1. A is a repeatable event.

Definition 1.2. p is the probability that A will happen when A is given a chance to happen. For simplicity, we assume that p is the same every time A is given a chance to happen.

Definition 1.3. $n \in \mathbb{W}$ is the number of times A had a chance to happen.

Definition 1.4. $k \in \mathbb{W}$ is the number of times A actually happened.

Remark 1.5. $k \le n$.

Definition 1.6. f_p is the probability is the probability distribution for p.

Remark 1.7. $1 = \int_0^1 f_p dp$

Definition 1.8. m is the maximum value of f_p .

Definition 1.9. (a,b) is the prediction interval of p such that b-a is minimized.

Definition 1.10. c is the desired certainty for the prediction interval of p.

Remark 1.11. $0 \le c = \int_a^b f_p dp \le 1$

Remark 1.12. $0 \le a \le b \le 1$

Now that we have the definitions, here is the problem: n, k, c are known, and we must solve for a, b.

Remark 1.13. The probability of k events given n chances is $\binom{n}{k}p^k(1-p)^{n-k}$, but we must scale it to satisfy 1.7:

$$(1.1) f_p = \frac{\binom{n}{k} p^k (1-p)^{n-k}}{\int\limits_0^1 \binom{n}{k} p^k (1-p)^{n-k} dp} = \frac{p^k (1-p)^{n-k}}{\int\limits_0^1 p^k (1-p)^{n-k} dp} = (n+1) \binom{n}{k} p^k (1-p)^{n-k}$$

1.2. The 4 cases of finding the interval.

1.2.1. Case n = k = 0. This case is self-symmetrical.

Remark 1.14. We have

(1.2)
$$(a,b) = \left(\frac{1-c}{2}, \frac{1+c}{2}\right)$$

Date: February 22, 2016.

1

1.2.2. Case n > k = 0. This case is symmetrical to case 1.2.3.

Remark 1.15. We can solve

(1.3)
$$\int_0^b (n+1)(1-p)^n dp = c = 1 - (1-b)^{n+1}$$

Remark 1.16. We have

(1.4)
$$(a,b) = \left(0, 1 - (1-c)^{\frac{1}{n+1}}\right)$$

Example 1.17. Now we can analyze the old saying "Third time's the charm." n=2.

(1.5)
$$c = 0.5 \Rightarrow b \approx 0.2062994740, c = 0.95 \Rightarrow b \approx 0.6315968501$$

We can now see that if you fail at something twice, then success before the 8th try is worth approximately a coin flip.

Example 1.18. Suppose we were repeatedly trying a difficult task. How many times of trying without success must there be for us to conclude with c = 0.99 that $b \le 0.01$?

(1.6)
$$n = \frac{2\log(3) + \log(11)}{2\log(2) - 2\log(3) + 2\log(5) - \log(11)} \approx 457.2105766$$

We can see "If at first you don't succeed, try, try again." is sensible for things that we want to be certain are probable before giving up.

1.2.3. Case n = k > 0. This case is symmetrical to case 1.2.2.

Remark 1.19. We can solve

(1.7)
$$\int_{a}^{1} (k+1)p^{k} dp = c = 1 - a^{k+1}$$

Remark 1.20. We have

(1.8)
$$(a,b) = \left((1-c)^{\frac{1}{k+1}}, 1 \right)$$

1.2.4. Case n > k > 0. This case is self-symmetrical.

Remark 1.21. We desire to solve

$$\int_{a}^{b} (n+1) \binom{n}{k} p^{k} (1-p)^{n-k} dp = c = (n+1) \binom{n}{k} \left(B_{b}(k+1, -k+n+1) - B_{a}(k+1, -k+n+1) \right)$$

where B is the incomplete beta function.

Remark 1.22. We can use the hints

(1.10)
$$a^{k}(1-a)^{n-k} = b^{k}(1-b)^{n-k}$$

Remark 1.23. By solving

$$\frac{\partial f_p}{\partial p} = 0$$

, we get

$$\lim_{c \to 0} (a, b) = \left(\frac{k}{n}, \frac{k}{n}\right), m = (n+1) \binom{n}{k} \left(\frac{k}{n}\right)^k \left(1 - \frac{k}{n}\right)^{n-k}$$

1.3. Table of small trial half probability intervals. Table with $c = \frac{1}{2}$:

1.0. 140	ne or sman triar nan	probability litter val	$\frac{1}{2}$		
	k = 0	k = 1	k = 2	k = 3	k = 4
n = 0	a = 0.2500000000				
	b = 0.7500000000				
n = 1	a = 0.000000000	a = 0.7071067812			
	b = 0.2928932188	b = 1.0000000000			
n=2	a = 0.000000000	a = 0.326351822	a = 0.7937005260		
	b = 0.2062994740	b = 0.673648178	b = 1.000000000		
n=3	a = 0.000000000	a = 0.1966713241	a = 0.507800700	a = 0.8408964153	
	b = 0.1591035847	b = 0.4921993002	b = 0.803328676	b = 1.0000000000	
n=4	a = 0.000000000	a = 0.1387754454	a = 0.3594361648	a = 0.610595575	a = 0.8705505633
	b = 0.1294494367	b = 0.3894044243	b = 0.640563835	b = 0.861224555	b = 1.0000000000
n=5	a = 0.000000000	a = 0.1065967785	a = 0.2770309506	a = 0.4678740055	a = 0.677308916
	b = 0.1091012819	b = 0.3226910840	b = 0.532125995	b = 0.722969050	b = 0.893403222
n=6	a = 0.000000000	a = 0.0862905298	a = 0.2249291772	a = 0.3788484407	a = 0.544881432
	b = 0.09427633574	b = 0.2757178692	b = 0.4551185682	b = 0.621151559	b = 0.775070823
n=7	a = 0.000000000	a = 0.07237321411	a = 0.1891248358	a = 0.3180913474	a = 0.4559323705
	b = 0.08299595680	b = 0.2407853463	b = 0.3976355162	b = 0.544067630	b = 0.681908652
n=8	a = 0.000000000	a = 0.06226629927	a = 0.1630534052	a = 0.2740192600	a = 0.3919638426
	b = 0.07412528771	b = 0.2137614499	b = 0.3530822174	b = 0.4838784786	b = 0.608036157
	k = 5	k = 6	k = 7	k = 8	
n=5	a = 0.8908987181				
	b = 1.000000000				
n=6	a = 0.724282131	a = 0.9057236643			
	b = 0.913709470	b = 1.000000000			
n=7	a = 0.602364484	a = 0.759214654	a = 0.9170040432		
	b = 0.810875164	b = 0.927626786	b = 1.000000000		
n=8	a = 0.516121520	a = 0.646917782	a = 0.786238550	a = 0.9258747123	
	b = 0.725980740	b = 0.836946595	b = 0.937733701	b = 1.000000000	

318 Thomas Drive, Marshalltown, Iowa, 50158 $E{-}mail\ address{:}\ {\tt MGerads11@winona.edu,\ nazgand@gmail.com}$