SCC machine CM, E> 8-1/ <(m N), E > +>scc < (M, E[(M N)] > $\langle V, E[(MN)] \rangle \mapsto (N, E[(VM)])$ < V, E[(JX,M)]> Hosse < M[X=V], E> Normal > Standard > CC > SCC Zn Ynz Zn2 1n3 new Hole(): (EM) — new OnLeft (EvC+ E, Term M) (V E) — new OnRight (Thank V, EvC+ E) E' = list of (Frame) Frame = (M M) - new Left Frame (Term M)

1 (V M) - new Right Frame (Val V) $E_0 = ((((M M) N) P)$ EO'R = (B M); (B N); (BP) $F_0' = (\square P) ; (\square N) ; (\square M)$

en (B) = Len (EM) = AB (BM), EAC(E)en (VE) = (VB); en (E)de (L) = Bde ((BM); E') = (BM)[de(E')] = (de(E')M)de ((VB); E') = (Vde(E'))

$$O(n)$$
 < (MN) , E' > $+3c$ < M , E' ++ (N) > $+3c$ < N , N = N

$$\langle M_0, E_0 \rangle$$
 $\langle M_0, E_0 \rangle$
 $\langle M_1, E_1 \rangle$
 $\langle M_0, E_0' \rangle$
 $\langle M_1, E_1' \rangle$

 $S(C^{R}) < M, E^{R} >$ $G(1) < (MN), E^{R} > \longrightarrow_{SC^{R}} < M, (MN); E^{R} >$ $2 \cdot G(1) < V, (MN); E^{R} > \longrightarrow < N, (VM); E^{R} >$ $G(1) + G(n) < V, ((JX,M) B); E^{R} > \longrightarrow < M[X \leftarrow V], E^{R} >$

enR = en o rev

enr: $E \rightarrow E'R$ enr ($E \cap V$) = ($E \cap R$) = enr(E) ++ ($E \cap V$) enr (($V \in V$) = ($E \cap R$) = enr ($E \cap R$) ++ ($V \in R$) der ($E \cap R$) = $E \cap R$ der ($E \cap R$) = $E \cap R$ der ($E \cap R$) = $E \cap R$ der ($E \cap R$) = $E \cap R$ der ($E \cap R$) = $E \cap R$ der ($E \cap R$) = $E \cap R$ der ($E \cap R$) = $E \cap R$ der ($E \cap R$) = $E \cap R$ 8-4/

M = 14 (called M)

(called m), k >

+> < m, & fun(k, k) >

 $(K, arg(JX,M, K')) \rightarrow (M[X \leftarrow K], K')$ $(V, arg(K, K')) \rightarrow (V, K)$ (+ 1 (caller)(JK, (+ 2 (K 3))))

+ 1 (callec / (-1)) + 1 (re+5) + 1 3) = 7 4

every language has continuation some langs can implement them with stacks

the langs that can't, typically have the feature "first-class continuations"

K= ... [prim (on, Viii, Minis

 $\langle V, prim(o^n, V', N, N, M, N, K) \rangle$

 \rightarrow < N, prim (o° , V; V'..., M..., <math>K)

< V, prim (on, V', , , + , k) >

 \rightarrow < $\delta(o^n, (v; v', v)^R), k >$

CM, K> CK -machine C=(ontro) String Stack * K = ret fon (Market N, K) "Continuation" kontinuation larg (V/K) < (m N), K > - 2 CM, fun (N, K)> 1, $\langle V, fun(N, K) \rangle \rightarrow _{k} \langle N, arg(V, K) \rangle$ 2 < V, arg(XX,m,K)> +ZK < M[X < V], K> 31 ASM regreter 3. i compute f push r3 requires 4 register use no... 13 remember fin rZ aw * x + y + z + g pop r3 ; compute and PUBL 12 ret = Ar, If, da, Lx, rx ary is in r 1 POP rz fun f x arg ax 1R/ZL