- 1. (3 points) Which of the following option is true about k-NN algorithm?
 - (a) It can be used for classification.
 - (b) It can be used for regression.
 - (c) It can be used in both classification and regression.
 - (d) None of the above
- 2. (3 points) Which of the following statement is true about k-NN algorithm?
 - (a) k-NN performs much better if all of the data have the same scale.
 - (b) k-NN works well with a small number of input variables, but struggles when the number of inputs is very large.
 - (c) k-NN makes no assumptions about the distribution of the data.
 - (d) All of the above.
 - (e) None of the above.
- 3. Suppose, you have given the following data where x and y are the 2 input variables and Class is the dependent variable.

\mathbf{x}	\mathbf{y}	Class
-1	1	-
0	1	+
0	2	-
1	-1	-
1	0	+
1	2	+
$\begin{vmatrix} 2\\2 \end{vmatrix}$	$\begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$	-
2	3	+

- (a) (4 points) Consider the point A = (0,0). Using the two-nearest neighbors, what is the classification of the point A?
- (b) (4 points) Consider the point B = (3,3). Using the three-nearest neighbors, what is the classification of the point B?
- 4. (4 points) Consider the points A = (1,3) and B = (2,3). In Python, find the Euclidean distance between A and B.
- 5. (4 points) Consider the points C = (4,3) and D = (2,5). In \mathbb{R} , find the Euclidean distance between C and D.