Radiotelescopios de bajo costo para la enseñanza de la Radioastronomía en Colegios

Laura Herrera Bryan Martinez Julian Avila 5 de julio de 2025

Universidad Distrital Francisco José de Caldas

Outline

1 Localización

2 Tamaño

3 Bibliografía

Localización

Nuestro Enfoque de Localización en Dos Fases

- **Objetivo:** Determinar las áreas geográficas y colegios con mayor probabilidad de éxito para la fase piloto.
- · Fase 1: Macrolocalización
 - Pregunta: ¿Cuál es la mejor zona geográfica para enfocar nuestros esfuerzos?
- · Fase 2: Microlocalización
 - Pregunta: ¿Cuáles son los 3 colegios específicos con mayor potencial dentro de esa zona?
- Método: Evaluación Cuantitativa por Puntos para una decisión objetiva y basada en datos.

Evaluación de Zonas de Influencia

Alternativas Evaluadas

- · Bogotá Eje Norte (Usaquén, Suba)
- · Municipios Aledaños (Chía, Cota)
- Bogotá Eje Centro-Occidente

Factores Clave Ponderados

- · Concentración de Colegios Foco-Ciencia (40 %)
- Potencial de Visibilidad y Prestigio (25 %)
- Facilidad Logística y Tiempo de Viaje (20 %)
- Proximidad al Centro de Operaciones (U.D.) (15 %)

Matriz de Evaluación de Zonas de Influencia

Cuadro 1: Evaluación de Macrolocalización.

Factor	Peso	A: Bogotá - Ej	e Norte	B: Municipios	Aledaños	C: Bogotá - Centro		
		Calif.	Pond.	Calif.	Pond.	Calif.	Pond.	
Concentración de Colegios Foco-Ciencia	40 %	9	3.60	8	3.20	6	2.40	
Potencial de Visibilidad y Prestigio	25 %	8	2.00	9	2.25	7	1.75	
Facilidad Logística y Tiempo de Viaje	20 %	7	1.40	5	1.00	9	1.80	
Proximidad al Centro de Operaciones	15 %	6	0.90	4	0.60	10	1.50	
PUNTUACIÓN TOTAL	100 %	7.90		7.05		7.45		

Zona Seleccionada: Eje Norte de Bogotá

Ofrece el mejor balance entre una alta concentración de colegios objetivo y una logística manejable.

Fase 2: Microlocalización - Búsqueda del Clúster Piloto

- · Objetivo: Identificar un çlúster"de 3 colegios en el Eje Norte para el Año 1.
- · Candidatos Preseleccionados:
 - Colegio Calasanz
 - · Colegio Bilingüe Maximino Poitiers
 - · Colegio San Viator
 - · Liceo de Cervantes
 - · Colegio Abraham Lincoln
- **Justificación:** Todos son colegios de alto perfil, ubicados en la zona norte, con afinidad científica y gran potencial de impacto.

Ranking Cuantitativo de Colegios Candidatos

Cuadro 2: Matriz de Evaluación de Microlocalización (Selección de Colegios).

Factor	Peso	Calasanz		M. Poitiers		San Viator		Cervantes		A. Lincoln	
		Cal.	Pond.	Cal.	Pond.	Cal.	Pond.	Cal.	Pond.	Cal.	Pond.
Evidencia de Foco en Ciencias	40 %	10	4.00	7	2.80	8	3.20	8	3.20	8	3.20
Reputación y Visibilidad	25 %	8	2.00	8	2.00	9	2.25	10	2.50	9	2.25
Receptividad Institucional (Est.)	20 %	9	1.80	7	1.40	8	1.60	8	1.60	8	1.60
Ubicación y Facilidad Logística	15 %	8	1.20	9	1.35	8	1.20	7	1.05	7	1.05
PUNTUACIÓN TOTAL	100 %	9	.00	7	.55	8	.25	8	.35	8	.10

Conclusión: Nuestro Clúster Piloto Estratégico

- Decisión Basada en Datos: La estrategia de localización nos permite iniciar con los socios más fuertes en la zona más estratégica.
- · Clúster Seleccionado para el Año 1 (Top 3 del Ranking):

- 1. Colegio Calasanz (Puntaje: 9.00)
- 2. Liceo de Cervantes (Puntaje: 8.35)
- 3. Colegio San Viator (Puntaje: 8.25)
- · Beneficios del Enfoque:
 - · Maximiza la probabilidad de éxito.
 - · Optimiza la logística del equipo.
 - · Crea casos de estudio sólidos para la expansión futura.

Tamaño

Nuestra Estrategia: ¿Por qué empezar pequeños?

- Estrategia Adoptada: "Tamaño inferior a la demanda con ampliaciones posteriores".
- **Mercado Potencial:** Identificamos una demanda de más de **270 colegios** con perfil científico en Bogotá.
- Restricción Clave: Nuestra capacidad real está ligada al número de pasantes de la Universidad Distrital por año.
- Enfoque Inteligente: Iniciar con un piloto enfocado nos permite:
 - · Validar nuestro modelo educativo.
 - · Asegurar casos de éxito iniciales.
 - · Crecer de manera sostenible y con bajo riesgo financiero.

El Producto-Servicio

Un Proyecto de Grado Integral

Cada implementación requiere 600 horas de trabajo por pasante.

Nuestro Valor Agregado

No entregamos un equipo, implementamos un programa educativo completo.

Cronograma de Implementación (10 meses por colegio)

Semestre 1 - Desarrollo y Puesta en Marcha (320 horas)

- Mes 1-2 (120 horas): Planificación y construcción del hardware.
- Mes 3 (100 horas): Configuración de software y preparación de guías didácticas.
- Mes 4-5 (100 horas): Instalación en el colegio y talleres de formación inicial.

Semestre 2 - Acompañamiento y Cierre (280 horas)

- Mes 6-7 (120 horas): Asesoría a estudiantes en su primer proyecto de observación.
- Mes 8 (80 horas): Soporte técnico y evaluación de impacto.
- Mes 9-10 (80 horas): Sistematización de la experiencia e informe final de grado.

Capacidad de Impacto Directo por Implementación

Objetivo

Crear capacidad instalada y autonomía en cada institución.

Formación Docente Capacitamos un núcleo de 2 a 3 docentes líderes por colegio. Formación Estudiantil Formamos un grupo pionero de **15 a 20 estudiantes**.

Un Crecimiento Controlado y Sostenible

Capacidad	Año 1	Año 2	Año 3	Año 4	Año 5	
N° de Pasantes	3	6	9	9	9	
Implementación (Colegios)	3	6	9	9	9	
Formación (Docentes)	6 - 9	12 - 18	18 - 27	18 - 27	18 - 27	
Formación (Estudiantes)	45 - 60	90 - 120	135 - 180	135 - 180	135 - 180	

Cuadro 3: Proyección de crecimiento hasta alcanzar la capacidad madura del proyecto.

Meta

Alcanzar una capacidad madura de 9 implementaciones anuales a partir del tercer año.

Conclusiones y Próximos Pasos

- Tamaño Inicial: Iniciaremos con 3 implementaciones en el Año 1 para validar el modelo y perfeccionar los procesos.
- **Enfoque Estratégico:** Priorizaremos colegios del clúster Çorredor Científico del Norte"para asegurar el éxito del piloto.
- Visión a Futuro: El plan garantiza un crecimiento escalonado hasta alcanzar una capacidad sostenible y de alto impacto.
- **Siguiente Paso:** Formalizar las alianzas estratégicas con los 3 colegios seleccionados.

Bibliografía

Bibliography i

Referencias

[1] Abraham Luna C. et al. *Manual de Construcción de un Radiotelescopio en la Banda de 12 GHz para Usos Docentes*. Reporte Técnico. © Coordinación de Astrofísica, INAOE. Luis Enrique Erro 1, Sta. Ma. Tonantzintla, 72840, Puebla, México: Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), 2021.

Bibliography ii

- [2] José Gallardo, Ignacio Toledo y Pablo Torres. Manual de Radioastronomía ALMA en la Escuela. Inf. téc. Basado en "El Universo Invisible" de Universe Awareness (UNAWE) y "Explorando nuestros orígenes cósmicos" del Observatorio Europeo Austral (ESO). Traducción al español por Ney Fernández y la Unidad de Astronomía de la Universidad de Antofagasta. 2021. URL: https://www.eso.org/public/archives/education/pdf/edu_0071.pdf.
- [3] Jaime Pinzón Peñaloza y Julieth Camila Cabrera Bernal. "Construcción de un radiotelescopio pequeño para la exploración solar en centros de interés".

 Trabajo de grado. Universidad Pedagógica Nacional, 2023.

Bibliography iii

- [4] Gobierno de México. *Inauguran la 16ª edición de la Escuela de Astronomía Observacional para Estudiantes Latinoamericanos.* Consultado el 30 de marzo de 2025. 2024. URL:
 - https://www.inaoep.mx/noticias/?noticia=1154&anio=2024.
- [5] Bryan Martinez Anzola et al. "Construcción de un radiotelescopio para analizar el Sol en la banda de 12GHz". En: Congreso Colombiano de Astronomía y Astrofísica. Presentado en el Congreso Colombiano de Astronomía y Astrofísica, 2024. Universidad Distrital Francisco José de Caldas. 2024.
- [6] Daniel Menor Adame. "Diseño de un radiotelescopio de bajo coste basado en tecnologías de radio definida por software". No Publicado. Madrid, dic. de 2018. URL: https://oa.upm.es/55238/.

Bibliography iv

- [7] Juan Ángel Vaquerizo. PARTNeR: Radioastronomía desde el aula. Consultado el 30 de marzo de 2025. Mayo de 2010. URL: https://www.madrimasd.org/partner-radioastronomia-desde-aula.
- [8] Agencia Iberoamericana para la Difusión de la Ciencia y la Tecnología.

 "INAOE, BUAP y Victorinox México firman convenio de colaboración para construir telescopios para escuelas". En: Ciencias Sociales México (sep. de 2011). Consultado el 30 de marzo de 2025. URL:

 https://www.dicyt.com/noticias/inaoe-buap-y-victorinox-mexico-firman-convenio-de-colaboracion-para-construir-telescopios-para-escuelas.

Bibliography v

[9] Boletines BUAP. "Del Aula al Universo, un telescopio para cada escuela, un programa que acerca los astros a los jóvenes". En: Boletines BUAP (abr. de 2021). Consultado el 30 de marzo de 2025. URL: https://www.boletin.buap.mx/node/1971.

Gracias

Gracias por la atención

¿Preguntas?