

atial

New Ticket Price Estimation:

Using Data Science Methods for Big Mountain Ski Resort

Farid Javadnejad

Aug 2022

Problem identification

Context

- Big Mountain Resort is a ski resort in Montana.
- It serves nearly 350,000 skiers every year.
- Recently, the resort has recently installed an additional chair lift
 - The project operating costs of \$1.540M this season.
- The resort needs to adjust its finances to accommodate the cost
 - By increasing the ticket price
 - By cutting other costs of facility

Problem identification

Criteria for success

- Setting pricing to cover the new \$1.540M cost
- Identifying the areas to cut the cost

Solution space

- Competitive analysis with 300 ski resorts in the country
- Use direct competition to set price.
- Consider cutting other operational costs

Solution Constraints | **Key data sources**

New ticket price Data for 300 resorts co DRAFT intry ice of chair

 The business should be ensured.

- lifts

 o Number of terrain
- Length of the longest run

parks

- Base elevation
- Summit elevation
- Vertical drop
- ° etc.

Recommendation & key findings

- Important operational and businessrelated information for 330 ski resorts was collected.
- 277 resorts that included all features of interest was used for further analysis.
- The ticket price for the resorts ranged from \$25 over \$100.
- We combined the resort specific data with state features.
- A total of 32 numerical features was be used to model the ticket prices.

Modeling results & analysis

Model

- Deployed models:
 - Linear regression
 - Random forest regression
- Dependent & Intendent Features
 - Dependent feature (to predict): Ticket price
 - Independent features (use to predict): Other features
- Train-test sets
 - 70-30 train and test sets split

Choosing a Model

- Determined in an available pipeline of
 - Cross-validation
 - Hype-parametriz techniques
- Best Performance Model
 - Random forest model performance for
 - Train MAE = 9.65±1.47
 - Test MAE = 9.43.

Modeling Scenarios

DRAFT

scenarios: used runs increase

el to

- the vertical drop by 150 ft, and installing a chair lift to support it
- 3. Add 2 acres of snow making to 2rd scenario
- 4. Increase the longest run by 0.2 miles and add 4 acers of snow making capacity.

Modeling results & analysis

- Our modelled price suggests the new price of \$94.26
 - Big Mountain resort currently charges
 \$81 for adult ticket in the weekends.
- The modelled price is supported by the facilities that Big Mountain provides in the market place
- In national scale, Big Mountain is already one of the most expensive resorts; however, the \$13 increase in ticket price will not dramatically change its position in the in the league

g results & analysis

Big Mountain is one of countries top resorts with large snow making area, skiable terrain, number of fast quads, longest runs, and vertical drop.

Summary and conclusion

- The operating cost of the new chair lift is **\$1.540M** in the season.
 - Ticket price should to rise at least \$4.4 to \$85.4 to cover this operating cost.
- The modelled price suggests the new price of \$94.26
 - It would be \$13.26 more than the current price of
 - Which meets the required \$4.4 increase
- The 2nd scenario found to have the best review supp

DRAFT

- o The scenario suggest to add 1 run, increase the vertical arop by 150 rect, and install an additional chair lift,
- Over the season, this could be expected to amount to **\$2.967M**. The new revenue is larger than the new operational cost.
- It is also suggested to close 1 run
 - It doesn't impact the ticket price or revenue
 - It will help to reduce the maintenance costs.