第一节 随机变量的数学期望 第二节 随机变量的方差与矩 第三节 协方差与相关系数

教学计划: 2次课-6学时

随机变量的数学期望与方差

	离散型随机变量	连续型随机变量
X 数学期望	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
Y = g(X)	E(Y) = E[g(X)]	E(Y) = E[g(X)]
函数数学期望	$=\sum_{k=1}^{\infty}g(x_k)p_k$	$= \int_{-\infty}^{+\infty} g(x) f(x) \mathrm{d}x$
Z = g(X,Y)	E(Z) = E[g(X,Y)]	E(Z) = E[g(X,Y)]
函数数学期望	$=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}g(x_i,y_j)p_{ij}$	$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$
X方差	$D(X) = E[X - E(X)]^2 = A$	$E(X^2) - [E(X)]^2$

数学期望与方差的性质

<i>E(X)</i> 性质	E(c)=c $E(c X)=c E(X)$ $E(X+Y)=E(X)+E(Y)$ X,Y 独立, $E(XY)=E(X)E(Y)$
D (X)性质	$D(c) = 0$ $D(cX) = c^2D(X)$ $D(X) = 0 \Longrightarrow P(X = c) = 1$ $X, Y \stackrel{\circ}{=} \stackrel{\circ}{=} D(X) + D(Y)$

常见分布的数学期望和方差

	概率分		E(X)	D(X)
	(0-1)分布	$X \sim B(1, p)$	p	
离散型	二项分布	$X \sim B(n,p)$	np	
型	泊松分布	$X \sim P(\lambda)$	λ	
ኍ	均匀分布	$X \sim U(a,b)$	(a+b)/2	
连 续 型	指数分布	$X \sim E(\theta)$	$oldsymbol{ heta}$	
	正态分布	$X \sim N(\mu, \sigma^2)$	μ	

第一节 随机变量的数学期望 第二节 随机变量的方差与矩 第三节 协方差与相关系数

教学计划: 2次课-6学时

第二节 随机变量的方差与矩

- 方差的定义
- 方差的性质
- **一** 离散型随机变量的方差
 - 连续型随机变量的方差
 - 矩

$$D(X) = E(X^2) - [E(X)]^2$$

(1) (0-1) 分布
$$E(X) = p$$
 $E(X^2) = p$

$$D(X) = p - p^2 = p(1-p) = pq$$

$$egin{array}{c|cccc} X^2 & 0 & 1 \\ \hline X & 0 & 1 \\ \hline P & 1-p & P \\ \hline \end{array}$$

(2) 二项分布 $X \sim B(n, p) E(X) = np$

$$D(X) = E(X^{2}) - [E(X)]^{2} = npq$$
 $P(X = k) = C_{n}^{k} p^{k} (1-p)^{n-k}$

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$

$$E(X^{2}) = \sum_{k=0}^{n} k^{2} C_{n}^{k} p^{k} (1-p)^{n-k} = npq + (np)^{2}$$

(3) 泊松分布 $X \sim P(\lambda)$ $E(X) = \lambda$

$$P(X=k) = \frac{\lambda^{k} e^{-\lambda}}{k!}$$

$$D(X) = E(X^2) - [E(X)]^2 = \lambda$$

$$k = 0, 1, 2, \cdots$$

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k} e^{-\lambda}}{k!} = \lambda + \lambda^{2}$$

$$E[g(X)] = \sum_{k=1}^{\infty} g(x_k) p_k$$

归纳

(1)(0-1)分布
$$X \sim B(1,p)$$
 $E(X) = p$ $D(X) = pq$

(2) 二项分布
$$X \sim B(n,p)$$
 $E(X) = np$ $D(X) = npq$

(3) 泊松分布
$$X \sim P(\lambda)$$
 $E(X) = \lambda$ $D(X) = \lambda$

第二节 随机变量的方差与矩

- 方差的定义
- 方差的性质
- 离散型随机变量的方差
- **连续型随机变量的方差**
 - 矩

$$D(X) = E(X^2) - [E(X)]^2$$

四. 三种常见连续分布的方差

(1) 均匀分布
$$X \sim U[a,b]$$

$$E(X) = \frac{a+b}{2}$$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & 其它 \end{cases}$$

$$D(X) = E(X^{2}) - [E(X)]^{2} = \frac{a^{2} + ab + b^{2}}{3} - \frac{(a+b)^{2}}{4} = \frac{(b-a)^{2}}{12}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{a}^{b} x^{2} \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x^{2} dx$$

$$=\frac{1}{3(b-a)}x^{3}\Big|_{a}^{b}=\frac{b^{3}-a^{3}}{3(b-a)}=\frac{a^{2}+ab+b^{2}}{3}$$

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

(2) 指数分布 $X \sim E(\theta)$

$$D(X) = E(X^2) - [E(X)]^2$$

$$E(X) = \theta$$

$$D(X) = E(X^{2}) - [E(X)]^{2} = 2\theta^{2} - \theta^{2} = \theta^{2}$$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0\\ 0 & 其它 \end{cases}$$

力部积力法

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{0}^{+\infty} x^{2} \cdot \frac{1}{\theta} e^{-\frac{x}{\theta}} dx = -\int_{0}^{+\infty} x^{2} \cdot e^{-\frac{x}{\theta}} d(-\frac{x}{\theta}) = -\int_{0}^{+\infty} x^{2} de^{-\frac{x}{\theta}}$$

$$= \int_{+\infty}^{0} x^{2} de^{-\frac{x}{\theta}} = x^{2}e^{-\frac{x}{\theta}}\Big|_{+\infty}^{0} - \int_{+\infty}^{0} e^{-\frac{x}{\theta}} dx^{2} = -2\int_{+\infty}^{0} x e^{-\frac{x}{\theta}} dx = 2\theta \int_{+\infty}^{0} x e^{-\frac{x}{\theta}} d(-\frac{x}{\theta})$$

$$=2\theta\int_{+\infty}^{0} x \, de^{-\frac{x}{\theta}} = 2\theta\left[xe^{-\frac{x}{\theta}}\right]_{+\infty}^{0} - \int_{+\infty}^{0} e^{-\frac{x}{\theta}} dx = 2\theta^{2}\int_{+\infty}^{0} e^{-\frac{x}{\theta}} d(-\frac{x}{\theta}) = 2\theta^{2}e^{-\frac{x}{\theta}}\Big|_{+\infty}^{0}$$

$$=2\theta^2(1-0)=2\theta^2$$

(3) 正态分布
$$X \sim N(\mu, \sigma^2)$$

$$D(X) = E(X^2) - [E(X)]^2$$

$$E(X) = \mu$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$D(X) = E(X^2) - [E(X)]^2 = \sigma^2 + \mu^2 - \mu^2 = \sigma^2$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{-\infty}^{+\infty} x^{2} \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx$$

$$= \sigma^2 + \mu^2$$

归纳

(1) 均匀分布
$$X \sim U(a,b)$$
 $E(X) = \frac{a+b}{2}$ $D(X) = \frac{(b-a)^2}{12}$

(2) 指数分布
$$X \sim E(\theta)$$
 $E(X) = \theta$ $D(X) = \theta^2$

(3) 正态分布
$$X \sim N(\mu, \sigma^2)$$
 $E(X) = \mu$ $D(X) = \sigma^2$

小结

六种常见分布的数学期望和方差

	概率分	分 布	E(X)	D(X)
	(0-1)分布	$X \sim B(1, p)$	p	pq
离散型	二项分布	$X \sim B(n, p)$	np	npq
型	泊松分布	$X \sim P(\lambda)$	λ	λ
ኍ	均匀分布	$X \sim U(a,b)$	(a+b)/2	$(b-a)^2/12$
连 续 型	指数分布	$X \sim E(\theta)$	$oldsymbol{ heta}$	θ^2
	正态分布	$X \sim N(\mu, \sigma^2)$	μ	$oldsymbol{\sigma}^2$

第二节 随机变量的方差与矩

- 方差的定义
- 方差的性质
- 离散型随机变量的方差
- 连续型随机变量的方差

五. 矩

矩是随机变量的更为广泛的一种数字特征,前面介绍的数学期望及方差都是某种矩.

- (1) 若 $E(X^k)$ 存在,则称它为X的k阶原点矩,简称k阶矩。 $k=1,2,\cdots$
- (2) 若 $E\{[X-E(X)]^k\}$ 存在,则称它为X的k阶中心矩。

注: E(X) 是随机变量 X 的一阶原点矩;

D(X) 是随机变量 X 的二阶中心矩;

第二节 随机变量的方差与矩

- 方差的定义
- 方差的性质
- 离散型随机变量的方差
- 连续型随机变量的方差
- 矩

第一节 随机变量的数学期望 第二节 随机变量的方差与矩 第三节 协方差与相关系数

第三节 协方差与相关系数

协方差的引出

在实际问题中很多情况下,两个随机变量之间都有着相互 关系。如何来描述它们之间的关系呢?

引例1 某医院某天出生了9个男婴,他们体重和母亲怀孕期的数据记录如下表所示:

男婴	1	2	3	4	5	6	7	8	9	平均值
孕期X (周)	36	37	38	40	40	40	41	41	41	39.2
体重Y (kg)	3.10	3.24	3.15	3.12	3.14	3.52	3.40	3.53	3.74	3.35

现在来研究随机变量X与Y之间的关系。

引例1 画出散点图

男婴	1	2	3	4	5	6	7	8	9	平均值
孕期X (周)	36	37	38	40	40	40	41	41	41	39.2
体重Y (kg)	3.10	3.24	3.15	3.12	3.14	3.52	3.40	3.53	3.74	3.35

观察随机变量
$$X, Y$$
 之间的关系:

 x_i 越大, y_i 越大,则称它们正相关。 正相关时,大部分点都落在一、三象限. 正相关时, $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})>0$

$\overline{x} =$	$\frac{1}{n}$	$\sum_{i=1}^{n} x_{i}$	= 39.2
------------------	---------------	------------------------	--------

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 3.35$$

	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})(y_i - \overline{y})$
第1象限	+	+	+
第2象限			
第3象限	-	-	+
第4象限			

引例2 美国某城市随机抽取9个居民区,经调查,其人口密度与小区到市中心的距离相关数据如下表所示:

居民区	1	2	3	4	5	6	7	8	9	平均值
距离X (公里)	8	14	16	20	22	25	33	47	50	27.3
密度Y (人/公里 ²)	3.4	2.4	4.0	3.0	3.8	1.8	2.0	1.5	0.6	2.34

现在来研究随机变量X与Y之间的关系。

引例2 画出散点图

居民区	1	2	3	4	5	6	7	8	9	平均值
距离X (公里)	8	14	16	20	22	25	33	47	50	27.3
密度Y (人/公里 ²)	3.4	2.4	4.0	3.0	3.8	1.8	2.0	1.5	0.6	2.34

观察随机变量
$$X, Y$$
 之间的关系:

 x_i 越大, y_i 越小,则称它们负相关。

负相关时,大部分点都落在二、四象限.

负相关时,
$$\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})<0$$

$\bar{x} = -\frac{1}{2}$	$\frac{1}{n}\sum_{i=1}^{n}x_{i}=$	= 27.3
$\overline{y} = \frac{1}{2}$	$\frac{1}{n}\sum_{i=1}^n y_i =$	= 2.34

	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})(y_i - \overline{y})$
第1象限	+	+	+
第2象限	-	+	-
第3象限	-	-	+
第4象限	+	-	-

引例3 某医院某天出生了9个男婴,他们体重、头围的数据记录如下表所示:

男婴	1	2	3	4	5	6	7	8	9	平均值
头围X (cm)	31.1	33.3	30.0	35.0	30.2	36.4	37.3	31.4	34.0	33.02
体重Y (kg)	3.10	3.24	3.15	3.12	3.14	3.52	3.40	3.53	3.74	3.35

画出散点图:

观察随机变量 X, Y 之间的关系:

由于随机点平均散落在四个象限里, 所以

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = 0$$

此时称它们为不相关。

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 33.02$$
 $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 3.35$

小结:

研究两个随机变量X,Y之间的关系:

X与Y正相关时,

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) > 0$$

X与Y负相关时,

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) < 0$$

X与Y不相关时,

$$\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})(y_{i}-\overline{y})<0 \qquad \frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})(y_{i}-\overline{y})=0$$

结论:可以用 $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$ 的取值情况来描述X与Y的相互关系.

 x_i 越大, y_i 越大,则称它们正相关。 正相关时,大部分点都落在一、三象限. 正相关时, $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})>0$

$$Cov(X,Y) = E[(X - E(X)(Y - E(Y))]$$

正相关与负相关统称为线性相关

因此可以用<mark>协方差</mark>描述两个随 机变量之间的线性关系

$$\overline{x} = \sum_{i=1}^{n} x_i p_i = E(X)$$

$$\overline{y} = \sum_{j=1}^{n} y_j w_j = E(Y)$$

注意:上述讨论中,为了简化问题,所有平均值都取为简单算术平均值,但实际问题中,随机变量(X,Y)取随机点 (x_i,y_j) 的概率是不同的,所以平均值应该按概率取为加权平均,即随机变量的数学期望才合理。因此,需要修正上述相关性的指标。

$$Cov(X,Y) = E[(X - E(X)(Y - E(Y))]$$

可以用协方差描述两个随机变量X, Y之间的线性关系:

$$E(X \cdot Y) = E(X) \cdot E(Y)$$

1. 定义 若 $E\{[X-E(X)][(Y-E(Y))]\}$ 存在,则称它为随机变量 X 与 Y 的协方差,记为:Cov(X,Y).

即: $Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$

- 注: \triangleright 协方差中当 X = Y 时为方差的定义,即: Cov(X,X) = D(X),故方差是协方差的特例。
 - ▶ 协方差是反映 X, Y 的线性关系的数字特征,当 X, Y 相互独立时,协方差为 0.

证明:
$$Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$$

$$= E[X - E(X)] \cdot E[Y - E(Y)]$$

$$= [E(X) - E(X)] \cdot [E(Y) - E(Y)] = 0$$

1. 定义 若 $E\{[X-E(X)][(Y-E(Y))]\}$ 存在,则称它为随机变量 X 与 Y 的协方差,记为:Cov(X,Y). 即: $Cov(X,Y)=E\{[X-E(X)][(Y-E(Y))]\}$

注: ightharpoonup 协方差中当 X = Y 时为方差的定义,即:

Cov(X,X) = D(X) 故方差是协方差的特例。

- ▶ 协方差是反映 X, Y 的线性关系的数字特征,当 X, Y 相互独立时,协方差为 0.
- 2. 协方差的简单性质
 - (1) Cov(X,Y) = Cov(Y,X)
 - (2) Cov(X,c) = 0 (c是常数)

1.定义. 若 $E\{[X-E(X)][(Y-E(Y))]\}$ 存在,则称它为随机变量 X 与 Y 的协方差,记为:Cov(X,Y).

即: $Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$

2.协方差的简单性质

- (1) Cov(X,Y) = Cov(Y,X)
- (2) Cov(X,c) = 0
- (3) Cov(aX,bY) = ab Cov(X,Y), a,b 是常数

证明: $Cov(aX,bY) = E\{[aX - E(aX)][(bY - E(bY))]\}$ = $abE\{[X - E(X)][(Y - E(Y))]\}$ = abCov(X,Y)

1.定义. 若 $E\{[X-E(X)][(Y-E(Y))]\}$ 存在,则称它为随机变量 X 与 Y 的协方差,记为:Cov(X,Y).

即: $Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$

2.协方差的简单性质

- (1) Cov(X,Y) = Cov(Y,X)
- (2) Cov(X,c) = 0
- (3) Cov(aX,bY) = ab Cov(X,Y)
- $(4) Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$

3. 计算协方差的公式

$$Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$$

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

证明:

$$Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$$

$$= E[XY - XE(Y) - YE(X) + E(X)E(Y)]$$

$$= E(XY) + E[-XE(Y)] + E[-YE(X)] + E[E(X)E(Y)]$$

$$= E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y)$$

$$= E(XY) - E(X)E(Y)$$

$$E(X_1 + X_2 + X_3 + X_4) = E(X_1) + E(X_2) + E(X_3) + E(X_4)$$

$$E(c X) = c E(X) \qquad E(c) = c$$

3. 计算协方差的公式

$$E(X \cdot Y) = E(X) \cdot E(Y)$$

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

注: 显然, 若X 与Y 相互独立, 则: Cov(X, Y) = 0

4. 方差与协方差的关系 $Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$

$$D(X+Y) = D(X) + D(Y) + 2Cov(X,Y)$$

证明:

$$D(X+Y) = E[X+Y-E(X+Y)]^{2} D(X) = E[X-E(X)]^{2}$$

$$= E[X+Y-E(X)-E(Y)]^{2}$$

$$= E\{[X - E(X)] + [Y - E(Y)]\}^{2}$$

$$= E[X - E(X)]^{2} + E[Y - E(Y)]^{2} + 2E\{[X - E(X)][(Y - E(Y))]\}$$

$$= D(X) + D(Y) + 2Cov(X,Y)$$

小结

随机变量的数字特征

$$E(X)$$
性质
$$E(C) = c \quad E(c \, X) = c \, E(X) \qquad E(X+Y) = E(X) + E(Y)$$
 X,Y 独立
$$E(XY) = E(X)E(Y)$$

$$D(X)$$
性质
$$D(X) = E(X^2) - [E(X)]^2 \quad D(c) = 0 \quad D(c \, X) = c^2 D(X)$$
 X,Y 独立
$$D(X+Y) = D(X) + D(Y) \quad D(X) = 0 \Longrightarrow P(X=c) = 1$$

$$Cov(X,Y) = E\{[X-E(X)][(Y-E(Y)]\}$$

$$= E(XY) - E(X)E(Y) \qquad \text{独立}$$

$$D(X+Y) = D(X) + D(Y) + 2 \operatorname{cov}(X,Y) = D(X) + D(Y)$$

$$(1)Cov(X,Y) = Cov(Y,X)$$

$$(2)Cov(X,c) = 0$$

$$(3)Cov(aX,bY) = ab \, Cov(X,Y)$$

$$(4)Cov(X_1 + X_2,Y) = Cov(X_1,Y) + Cov(X_2,Y)$$

例1 设二维随机变量(X,Y)的联合分布律为

XY	-1	0	1	
0	0.07	0.18	0.15	
1	0.08	0.32	0.20	

解:
$$Cov(X^2+3,Y^2-5)$$

$$=Cov(X^{2},Y^{2})+Cov(X^{2},-5)+Cov(3,Y^{2})+Cov(3,-5)$$

$$=Cov(X^2,Y^2)$$

$$=E(X^{2}Y^{2})-E(X^{2})E(Y^{2})$$

$$Cov(X,c) = 0$$

$$Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

例1 设二维随机变量(X,Y)的联合分布律为 $E[g(X)] = \sum g(x_k)p_k$

$$X^{2}$$
 X -1 0 1 $P(X = x_{i})$ 0 0 0.07 0.18 0.15 0.4 1 1 0.08 0.32 0.20 0.6 $P(Y = y_{j})$ 0.15 0.50 0.35

$$E(X^2) = \sum_{k=1}^{\infty} x_k^2 p_k$$

$$E(Y^2) = \sum_{k=1}^{\infty} y_k^2 p_k$$

$$E[g(X,Y)] = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} g(x_i, y_j) p_{ij}$$

$$E(X^{2}Y^{2}) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} x_{i}^{2} y_{j}^{2} p_{ij}$$

$$0.28 \qquad 0.6 \qquad 0.5 \qquad 0.5$$

$$E(Y^{2}Y^{2}) = E(Y^{2}) E(Y^{2}) = 0.02$$

解:
$$Cov(X^2 + 3, Y^2 - 5) = E(X^2Y^2) - E(X^2)E(Y^2) = -0.02$$

$$E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.6 = 0.6$$

$$E(Y^2) = (-1)^2 \times 0.15 + 0^2 \times 0.5 + 1^2 \times 0.35 = 0.5$$

$$E(X^{2}Y^{2}) = 0^{2} \cdot (-1)^{2} \times 0.07 + 0^{2} \cdot 0^{2} \times 0.18 + 0^{2} \cdot 1^{2} \times 0.15$$

$$+1^{2} \cdot (-1)^{2} \times 0.08 + 1^{2} \cdot 0^{2} \times 0.32 + 1^{2} \cdot 1^{2} \times 0.20 = 0.28$$

第四章 随机变量的数字特征

第三节 协方差与相关系数

■ 协方差■ 相关系数

问题的引出

$Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$

协方差的大小在一定程度上反映了X 和 Y 之间的相互关系,但它受 X与Y 本身度量单位的影响.

例如: $Cov(kX, kY) = k^2 Cov(X, Y)$

若 X与Y 表示长度,单位是厘米,当k = 100时,kX与kY 的单位是米.

例如:

居民区	1	2	3	4	5	6	7	8	9	平均值
距离X (公里)	8	14	16	20	22	25	33	47	50	27.3
密度Y (人/公里 ²)	3.4	2.4	4.0	3.0	3.8	1.8	2.0	1.5	0.6	2.34

问题的引出

$$Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$$

协方差的大小在一定程度上反映了X 和 Y 之间的相互关系,但它受 X与Y 本身度量单位的影响.

为了克服这一缺点,对协方差进行标准化,这就引入了相关 系数的概念:

X数据标准化 Y数据标准化

$$\rho_{XY} = \frac{Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}}{\sqrt{D(X)}} - - \text{E}$$

它与 X,Y 本身度量单位无关(无量纲).

$$\frac{X \sim N(\mu, \sigma^2)}{\frac{X - \mu}{\sigma}} \sim N(0, 1)$$

二. 相关系数

1. 定义 量 $\frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$ 称为随机变量X, Y 的相关系数,

记为:
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$$

2. 相关系数的性质

- $(1) \left| \rho_{XY} \right| \leq 1$
- (2) $|\rho_{XY}|=1$ \ 令存在常数a,b, 使得: P(Y=aX+b)=1

X和Y以概率1存

在着线性关系

分析: 考虑以 X 的线性函数 aX + b 来近似表示 Y,以均方误差 $e(a,b) = e = E\{[Y - (aX + b)]^2\}$ 来衡量以 aX + b 近似表示 Y 的好坏程度。显然,e 值越小,aX + b 与 Y 的近似程度越好.

最小均方误差是: $e = E\{[Y - (a_0X + b_0)]^2\} = D(Y)(1 - \rho_{XY}^2)$

2.相关系数的性质

$$E\{[Y - (a_0X + b_0)]^2\} = D(Y)(1 - \rho_{XY}^2)$$

- $(1) \mid \rho_{xy} \mid \leq 1$
- (2) $|\rho_{XY}|=1 \Leftrightarrow$ 存在常数 a,b使得: P(Y=aX+b)=1

3. 相关系数的意义:

若 $\rho_{xy} = \pm 1$, 则 Y 与 X 概率为1有线性关系;

$$E\{[Y-(a_0X+b_0)]^2\}=0 \quad \Rightarrow P(Y=a_0X+b_0)=1$$

2.相关系数的性质

$$E\{[Y - (a_0X + b_0)]^2\} = D(Y)(1 - \rho_{XY}^2)$$

(1)
$$|\rho_{XY}| \le 1$$
 $D(Y)(1-\rho_{XY}^2) \ge 0 \to 1-\rho_{XY}^2 \ge 0$

(2)
$$|\rho_{XY}|=1$$
 ⇔ 存在常数 a,b 使得: $P(Y=aX+b)=1$

3. 相关系数的意义:

若 ρ_{XY} = ±1, 则 Y 与 X 概率为1有线性关系;

若 $0 \leq |\rho_{XY}| \leq 1$,

 $|\rho_{XY}|$ 的值越接近于1, Y = X 线性关系的程度越高;

 $|\rho_{XY}|$ 的值越接近于0, $Y \subseteq X$ 线性关系的程度越弱.

若 $\rho_{XY} = 0$, 则称 Y = X 不相关(没有线性关系)

结论: 相关系数刻划了X和 Y 之间线性关系的紧密程度

4. 相关系数的计算机模拟:

$$P(Y = aX + b) = 1 \begin{cases} a > 0, & \rho_{XY} = 1 \\ a < 0, & \rho_{XY} = -1 \end{cases}$$

5. 独立与不相关的关系:

$$X$$
和 Y 独立 $\rho_{XY} = 0$ X 与 Y 不相关

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$$

结论: 设 $(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$, 则X和Y是相互独立 $\rho = 0$

4. 相关系数的计算机模拟:

第四章 随机变量的数字特征

第三节 协方差与相关系数

✓ 协方差✓ 相关系数

第四章 随机变量的数字特征

第一节 随机变量的数学期望 第二节 随机变量的方差与矩 第三节 协方差与相关系数

小结

随机变量的数学期望与方差

	离散型随机变量	连续型随机变量
X数学期望	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
Y = g(X) 函数数学期望	$E(Y) = E[g(X)]$ $= \sum_{k=1}^{\infty} g(x_k) p_k$	$E(Y) = E[g(X)]$ $= \int_{-\infty}^{+\infty} g(x)f(x)dx$
Z = g(X,Y) 函数数学期望	$E(Z) = E[g(X,Y)]$ $= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} g(x_i, y_j) p_{ij}$	$E(Z) = E[g(X,Y)]$ $= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$
X方差	$D(X) = E[X - E(X)]^2 =$	$E(X^2) - [E(X)]^2$

小结

六种常见分布的数学期望和方差

	概率を		E(X)	D(X)
	(0-1)分布	$X \sim B(1, p)$	p	pq
离散型	二项分布	$X \sim B(n, p)$	np	npq
型	泊松分布	$X \sim P(\lambda)$	λ	λ
ኍ	均匀分布	$X \sim U(a,b)$	(a+b)/2	$(b-a)^2/12$
连 续 型	指数分布	$X \sim Exp(\theta)$	$oldsymbol{ heta}$	$ heta^2$
	正态分布	$X \sim N(\mu, \sigma^2)$	μ	$oldsymbol{\sigma}^2$

小结

随机变量的数字特征

$$E(X)$$
性质
$$E(C) = c \quad E(c \ X) = c \ E(X) \quad E(X+Y) = E(X) + E(Y)$$
 X,Y 独立
$$E(XY) = E(X)E(Y)$$

$$D(X)$$
性质
$$D(X) = E(X^2) - [E(X)]^2 \quad D(c) = 0 \quad D(c \ X) = c^2 D(X)$$
 X,Y 独立,
$$D(X+Y) = D(X) + D(Y) \quad D(X) = 0 \Longrightarrow P(X=c) = 1$$
协方差
$$Cov(X,Y) = E\{[X-E(X)][(Y-E(Y)]\}$$

$$= E(XY) - E(X)E(Y)$$

$$D(X+Y) = D(X) + D(Y) + 2 cov(X,Y) = D(X) + D(Y)$$

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$$

$$(1) |\rho_{XY}| \le 1$$

$$(2) |\rho_{XY}| = 1 \Leftrightarrow \bar{\rho}$$
在常数 a,b , 使得: $P(Y=aX+b) = 1$

作业

授课内容	习题四
4.1 数学期望	2, 6(1), 8离散 , 5, 7(1), 9(1), 11, 12连续
4.2 方差	13, 21, 22连续
4.3 协方差及相关系数	26,29,31,32

设
$$A$$
, B 是随机事件,且 $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{3}$, $P(A|B) = \frac{1}{2}$,

求: (1)(X,Y)的概率分布; (2)(X,Y)的相关系数.

解:
$$\frac{1}{3} = P(B|A) = \frac{P(AB)}{P(A)} \rightarrow P(AB) = \frac{1}{12}$$

$$\frac{1}{2} = P(A|B) = \frac{P(AB)}{P(B)} \implies P(B) = \frac{1}{6}$$

设
$$A$$
, B 是随机事件,且 $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{3}$, $P(A|B) = \frac{1}{2}$

$$\Rightarrow X = \begin{cases} 1, & A$$
 发生 $\\ 0, & A$ 不发生 $\end{cases} Y = \begin{cases} 1, & B$ 发生 $\\ 0, & B$ 不发生 $\end{cases} P(B) = \frac{1}{6}, P(AB) = \frac{1}{12}$

求: (1)(X,Y)的概率分布;

ı			1	$P(X = 0, Y = 0) = P(AB) = P(A \cup B)$
$\boldsymbol{Y}^{\boldsymbol{X}}$	0	1		$=1-P(A\cup B)$
0	2/3	1/6	5/6	=1-[P(A)+P(B)-P(AB)]
1	1/12	1/12	1/6	$=1-[P(A)+P(B)-P(AB)]$ $P(X=1,Y=0)=P(A\overline{B})$
	3/4	1/4	1	= P(A) - P(AB) = 1/6
	·	·		$P(X=0,Y=1)=P(\overline{A}B)$
				= P(B) - P(AB) = 1/12
				P(X = 1, Y = 1) = P(AB) = 1/12

设A,B是随机事件,且 $P(A) = \frac{1}{4}, P(B|A) = \frac{1}{3}, P(A|B) = \frac{1}{2}$

求: (2) (X,Y)的相关系数. cov(X,Y) = E(XY) - E(X)E(Y)/12 1/4 1/6 - 1/24

\ v	•	1		= 1 /	$(12-1/4\cdot1/6) = 1/24$
Y	U	1		E(X)=1/4,	E(Y)=1/6,
0	2/3	1/6	5/6	E(XY)=1/12,	$E(XY) = \sum x_i y_j p_{ij}$
1	1/12	1/12	1/6	$E(X^2)=1/4,$	$E(Y^2)=1/6,$
	3/4	1/4	1	$D(X) = E(X^2) -$	$-E^2(X) = 3/16,$
	cov(I	<i>V</i> V)	1/	24 1	D(Y)=5/36,

$$\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{1/24}{\sqrt{3}/4 \cdot \sqrt{5}/6} = \frac{1}{\sqrt{15}}$$

设二维离散型随机变量(X,Y)的概率分布为

- (1) 求 $P{X = 2Y}$;
- (2) 求 cov(X-Y,Y)

X^{Y}	0	1	2
0	1/4	0	1/4
1	0	1/3	0
2	1/12	0	1/12

12, 11分

12, 11分

设二维离散型随机变量(X,Y)的概率分别为

(1)
$$\vec{x} P\{X = 2Y\};$$

解:
$$P\{X = 2Y\} = P\{X = Y = 0\} + P\{X = 2, Y = 1\}$$

$$= \frac{1}{4} + 0 = \frac{1}{4}$$

X^{Y}	0	1	2
0	1/4	0	1/4
1	0	1/3	0
2	1/12	0	1/12

设二维离散型随机变量(X,Y)的概率分别为

(2) 求 cov(X-Y,Y)

1/3

1/3

1/3

设 X_1, X_2, \dots, X_n 独立同分布,且其方差为 $\sigma^2 > 0$.

$$(A)\operatorname{cov}(X_1,Y) = \frac{\sigma^2}{n}$$

$$(B)\operatorname{cov}(X_1,Y) = \sigma^2$$

(C)
$$D(X_1 + Y) = \frac{(n+2)\sigma^2}{n}$$

(D)
$$D(X_1 - Y) = \frac{(n+1)\sigma^2}{n}$$

解:

$$cov(X_{1},Y) = cov(X_{1}, \frac{1}{n} \sum_{i=1}^{n} X_{i}) = \frac{1}{n} cov(X_{1}, \sum_{i=1}^{n} X_{i})$$

$$= \frac{1}{n} [cov(X_{1}, X_{1}) + cov(X_{1}, X_{2}) + \dots + cov(X_{1}, X_{n})] = \frac{\sigma^{2}}{n}$$

将一枚硬币重复掷n次,以X,Y分别表示出现正面和反面的次数,

则X与Y的相关系数= (A)

 $\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{-DX}{\sqrt{DX}\sqrt{DY}} = -1$

$$(A)$$
 -1

$$(B)$$
 0

$$(C)$$
 1/2

$$(D)$$
 1

a = -1 $\rho_{xy} = -1$ 严格负相关

解:
$$X+Y=n \to Y=n-X \to Y=-X+n$$
 $P(Y=aX+b)=1$ $cov(X,Y)=cov(X,n-X)=cov(X,n)-cov(X,X)=-DX$ $DY=D(n-X)=D(n)+D(-X)=(-1)^2D(X)=DX$

08,4分

设随机变量 $X \sim N(0,1), Y \sim N(1,4)$,且相关系数 $\rho_{XY} = 1$,

贝] **(D**)

a > 0

$$(A) P{Y = -2X - 1} = 1 \times$$

(B)
$$P{Y = 2X - 1} = 1 \times$$

(C)
$$P{Y = -2X + 1} = 1 \times$$

(D)
$$P{Y = 2X + 1} = 1$$

解: 因为 $\rho_{XY} = 1$, 所以Y = X概率为1 有线性关系,即

$$P\{Y = aX + b\} = 1 \longrightarrow Y = aX + b$$

$$X \sim N(0,1), Y \sim N(1,4)$$

$$\rightarrow EY = E(aX + b)$$

$$\rightarrow EX = 0, EY = 1$$

$$\rightarrow EY = aEX + b$$

$$\rightarrow b = 1$$

故选(**D**)

练习1

将掷一均匀硬币的实验独立重复地进行100次,用X表示出现正面的次数。求 $E(X^2)$

解:

由题意,
$$X \sim B(100, \frac{1}{2})$$

$$E(X) = np = 100 \times \frac{1}{2} = 50,$$

$$D(X) = npq = 100 \times \frac{1}{2} \times \frac{1}{2} = 25$$

$$D(X) = E(X^2) - [E(X)]^2$$

$$E(X^2) = D(X) + [E(X)]^2 = 25 + 50^2 = 2525$$

练习2

设随机变量 X 服从拉普拉斯分布, 求常数 A, E(X), D(X)

$$f(x) = Ae^{-\lambda|x|}, -\infty < x < +\infty, \lambda > 0$$

解:

$$1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} A e^{\lambda x} dx + \int_{0}^{+\infty} A e^{-\lambda x} dx$$

$$= \frac{A}{\lambda} \int_{-\infty}^{0} e^{\lambda x} d(\lambda x) - \frac{A}{\lambda} \int_{0}^{+\infty} e^{-\lambda x} d(-\lambda x)$$

$$= \frac{A}{\lambda} e^{\lambda x} \Big|_{-\infty}^{0} - \frac{A}{\lambda} e^{-\lambda x} \Big|_{0}^{+\infty} \Big] = \frac{A}{\lambda} (e^{0} - e^{-\lambda \infty}) - \frac{A}{\lambda} (e^{-\lambda \infty} - e^{0})$$

$$= A \frac{2}{\lambda} \qquad \therefore A = \frac{\lambda}{2}$$

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \frac{\lambda}{2} \int_{-\infty}^{+\infty} x e^{-\lambda |x|} dx = 0$$
 奇函数在对称
区间积分为零

练习2

设随机变量 X 服从拉普拉斯分布, 求常数 A, E(X), D(X)

$$f(x) = Ae^{-\lambda|x|}, -\infty < x < +\infty, \lambda > 0$$

解: E(X) = 0

$$D(X) = E(X^{2}) - [E(X)]^{2} = E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \frac{\lambda}{2} \int_{-\infty}^{+\infty} x^{2} e^{-\lambda |x|} dx$$

$$=\lambda \int_0^{+\infty} x^2 e^{-\lambda x} dx = -\int_0^{+\infty} x^2 e^{-\lambda x} d(-\lambda x) = -\int_0^{+\infty} x^2 de^{-\lambda x} \frac{\partial \ln \partial h}{\partial x}$$

$$dx^2 = 2xdx$$

$$= -\left[x^{2} e^{-\lambda x} \Big|_{0}^{+\infty} - \int_{0}^{+\infty} e^{-\lambda x} dx^{2}\right] = 2 \int_{0}^{+\infty} e^{-\lambda x} x dx = -\frac{2}{\lambda} \int_{0}^{+\infty} e^{-\lambda x} x d(-\lambda x)$$

$$= -\frac{2}{\lambda} \left[\int_0^{+\infty} x de^{-\lambda x} \right] = -\frac{2}{\lambda} \left[x e^{-\lambda x} \Big|_0^{+\infty} - \int_0^{+\infty} e^{-\lambda x} dx \right]$$

分部积分法

$$=\frac{2}{\lambda}\int_0^{+\infty}e^{-\lambda x}dx=-\frac{2}{\lambda^2}\int_0^{+\infty}e^{-\lambda x}d(-\lambda x)=-\frac{2}{\lambda^2}e^{-\lambda x}\Big|_0^{+\infty}=\frac{2}{\lambda^2}$$

