

第三章

向量與矩陣的運算

本章學習目標

認識陣列裡元素的結構 學習多維陣列的建立 學習編修矩陣的內容 學習基本的矩陣數學運算

3.1 陣列元素的處理

3.1.1 向量元素的操作

- o Matlab的陣列索引值是從1開始
- o C語言的陣列索引值是從0開始

o 下面是向量元素操作的範例:

```
>> v1=[6 7 8 9];
>> 2*v1+1
ans =
    13    15    17    19
>> v1(2)
ans =
    7
```

3.1.2 矩陣元素的操作

矩陣必須有列與行兩個索引值才能取得陣列裡 的特定元素:

3.1.3 矩陣的索引值之結構

o Matlab的矩陣是利用「以行為主」的結構來儲存,如下圖所示

拆成行向量後的矩陣 M 矩陣M(1,1)(1,2)(1,3)(1,4)(1,1)第一列 (1,2)(1,3)第二列 (2,1)(2,2)(2,3)(2,4)(2,1)(1,4)(2,2)(2,3)第三列 (3,1)(3,1)(3,2)(3,3)(3,4)(2,4)(3,2)(3,3)第 (3,4)

對於一個 $m \times n$ 的矩陣M而言,二維索引值(i,j)和一維索引值k之間的關係可用下面的公式來表示:

$$M(k) = M(i + (j-1) \times m)$$

例如,若陣列 M 的維度為 3×4 ,則第二列第三行的元素 M(2,3) ,換成以一維的索引值來表示時,可換算得

$$M(k) = M(2 + (3-1) \times 3) = M(8)$$

3.2 多維陣列

- 只要陣列的維度多於二維,我們就稱之為多維陣列
- o 對於三維陣來說,需要列、行與頁(page)三個維度來描述

二維陣列

第1列 (1,2)(1,3)(1,4)(1,1)第 1 維 第2列 (2,1)(2,2)(2,3)(2,4)度 第3列 (3,1)(3,2)(3,3)(3,4)第3行 第2行 第4行 第1行

這是 3×4 的矩陣。 矩陣裡每一個元素 的位置可用(列,行) 來表示

第2維度

○ 要建立一個三維陣列,可針對每一頁分別建立二 維陣列:

```
A =

1 2 3 4
5 6 7 8
9 10 11 12

>> A(:,:,2)=[7 4 2 1;6 1 5 2;3 1 4 5]

A(:,:,1) =

1 2 3 4
5 6 7 8
9 10 11 12

A(:,:,2) =

7 4 2 1
6 1 5 2
3 1 4 5
```

>> A(:,:,1)=[1 2 3 4;5 6 7 8;9 10 11 12]

3.3 常用的陣列建立函數

o Matlab常用的陣列建立函數如下表所列:

表 3.3.1 常用的矩陣建立函數

函數	說 明
zeros(n)	建立一個n×n的全零矩陣
$zeros(m,n,\ldots,p)$	建立一個 $m \times n \times \cdots \times p$ 的全零矩陣
ones (n)	建立一個 $n \times n$ 的全 1 矩陣
ones (m,n,\ldots,p)	建立一個 $m \times n \times \cdots \times p$ 的全 1 矩陣
eye(<i>n</i>)	建立一個n×n的單位矩陣(
eye(<i>m</i> , <i>n</i>)	建立一個 $m \times n$,且對角線為 1 ,其它元素為 0 的矩陣
diag(v)	以向量ν為對角元素,建立一個矩陣
magic(n)	建立一個 <i>n</i> × <i>n</i> 的魔術方陣 (magic square)

o 亂數陣列

Matlab也提供了產生均勻分佈,或者是常態分佈的亂數陣列函數:

表 3.3.2 以亂數來建立陣列之函數

函 數	說 明
rand	建立一個 0~1 之間均勻分佈的亂數
rand(n)	建立一個 $0\sim1$ 之間,維度為 $n\times n$ 之均匀分佈的亂數矩陣
$rand(m,n,\ldots,p)$	建立一個 $0\sim1$ 之間,維度為 $m\times n\times \dots\times p$ 之均匀分佈的亂數矩陣
randn	建立一個平均值為0,標準差為1的常態分佈亂數
randn(n)	同 rand,但是建立常態分佈的亂數矩陣
$randn(m,n,\ldots,p)$	同 rand,但是建立常態分佈的亂數矩陣

3.4 陣列元素的其它操作

3.4.1 陣列元素的提取

要提取陣列的對角線元素,或是上三角形或下三 角形矩陣,可利用如下表的函數:

表 3.4.1 陣列元素的提取函數

函 數	說 明
$\mathtt{diag}(A)$	取出陣列 A 的主對角線(main diagonal)元素
diag(A,k)	取出陣列 A 的第 k 個對角線元素
triu(A)	取出陣列 A 之主對角線以上之元素,其它元素則設為 0
triu(A,k)	取出陣列 A 之第 k 個對角線以上之元素,其它元素則設為 0
tril(A)	取出陣列 A 之主對角線以下之元素,其它元素則設為 0
tril(A,k)	取出陣列 A 之第 k 個對角線以下之元素,其它元素則設為 0

o 主對角線與第 k 個對角線的示意圖:

3.4.2 陣列元素的重排

o 陣列轉換函數,可將陣列拆解成另一種形式:

表 3.4.2 陣列轉換函數

函 數	說 明
fliplr(A)	將陣列 A 的元素左右翻轉(flip left/right)
flipud(A)	將陣列 A 的元素上下翻轉(flip up/down)
= = = = = = = = = = = = = = = = = = =	將陣列 A 的元素依第 n 個維度翻轉
reshape(<i>A</i> , <i>m</i> , <i>n</i> ,, <i>p</i>)	將陣列 A 的元素依由上到下,由左到右的次序重新排列成一個 $m \times n \times \cdots \times p$ 的矩陣
repmat $(A, m, n,, p)$	以陣列 A 為單位,將陣列 A 以類似排列磁磚的方式排成 $m \times n \times \cdots \times p$ 個陣列 A
rot90(<i>A</i>)	將陣列 A 逆時針旋轉 90°
rot90(<i>A</i> , <i>k</i>)	將陣列 A 逆時針旋轉 $k \times 90^{\circ}$, k 為整數

3.4.3 陣列的合併

o 合併陣列的指令如下表所示:

表 3.4.3 陣列轉換函數

函 數	說 明
[A,B]	將陣列 A, B 橫向併排,組合成一個新的陣列
[A;B]	將陣列 A, B 垂直併排,組合成一個新的陣列
cat(dim,A,B,)	依 dim 所指定的方向合併陣列 A, B,

3.5 矩陣的數學運算

3.5.1 基本的矩陣運算函數

o 下表列出了矩陣的基本運算函數:

矩陣的運算	說 明
A+B	矩陣 A 加上矩陣 B
A-B	矩陣 A 減去矩陣 B
A*B	矩陣 A 乘上矩陣 B
	矩陣 A 的 n 次方,即矩陣 A 連乘 n 次, A 必須為方陣
	計算矩陣 A 的共軛轉置(conjugate transpose)
inv(A)	計算矩陣 A 的反矩陣(inverse)
	計算矩陣 A 的行列式(determinate)
expm(A)	計算矩陣 A 的指數(matrix exponential)
$\log \mathfrak{m}(A)$	計算矩陣 A 的對數(matrix logarithm)
$\operatorname{sqrtm}(A)$	計算矩陣 A 的開平方根

3.5.2 矩陣的左除與右除

o 左除「\」與右除「/」運算子,可分別用AX=B與 XA=B來計算:

表 3.5.2 矩陣的數學運算

指令 說 明 $A \setminus B$ A 左除 B,此運算相當於把 A 的反矩陣乘以 B,也就是 $A^{-1}B$ B A B 右除 A,此運算相當於把 B 乘上 A 的反矩陣,也就是 BA^{-1}

例如,設

$$AX = B$$
, $A = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$

若要求解向量X,則

$$X = A^{-1}B = \begin{pmatrix} 1 & -2 \\ -0.5 & 1.5 \end{pmatrix} \begin{pmatrix} 10 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

上式可以寫上 X=inv(A)*B,或用 A 來左除 B,即

>> A\B

右除是用在另外的一種情況,例如,設

$$XA = B$$
 $A = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 10 & 14 \end{pmatrix}$

則

$$X = BA^{-1} = (10 \quad 14) \begin{pmatrix} 1 & -2 \\ -0.5 & 1.5 \end{pmatrix} = (3 \quad 1)$$

上式可以寫上 X=B*inv(A),或用 B 右除 A ,即 >> B/A

3.5.3 陣列元素對元素的運算

在 Matlab 裡,矩陣 A 乘上 B 可以寫成 A*B。例如,設

$$A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 & 2 \\ 4 & 6 \end{pmatrix};$$

則

$$A * B = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 4 & 6 \end{pmatrix} = \begin{pmatrix} 2 \times 3 + 4 \times 4 & 2 \times 2 + 4 \times 6 \\ 3 \times 3 + 1 \times 4 & 3 \times 2 + 1 \times 6 \end{pmatrix} = \begin{pmatrix} 22 & 28 \\ 13 & 12 \end{pmatrix}$$

如果是希望陣列A內的元素乘上陣列B內相對應的位置,也就是計算

$$A.*B = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 4 & 6 \end{pmatrix} = \begin{pmatrix} 2 \times 3 & 4 \times 2 \\ 3 \times 4 & 1 \times 6 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 12 & 6 \end{pmatrix}$$

則可以利用 Matlab 所提供的 "元素對元素"的計算指令

o 元素對元素的計算符號是在矩陣的計算符號之前加 上一個「.」:

表 3.5.3 陣列的數學運算

指令	說 明
A.*B	將矩陣 A 內的元素乘上矩陣 B 內相同位置的元素
A.^n	計算矩陣 A 的 n 次方,即矩陣 A 連乘 n 次, A 必須為方陣
A.'	計算矩陣 A 的轉置(transpose)矩陣。
A./B	將 A 裡面的每一個元素除以 B 裡面每一個相對應的元素
$A \cdot \setminus B$	將 B 裡面的每一個元素除以 A 裡面每一個相對應的元素

>> A=[2 4;3 1]

4

2

A =

