facebook

facebook

Open Compute Project Datacenter Design

Dan Lee, P.E., LEED BD+C Mechanical Engineer, Data Center Design 5.10.12

Agenda

- 1 Introduction
- 2 Electrical
- 3 Mechanical
- 4 Operations
- 5 Next Steps

Introduction

Facebook Greenfield Datacenter

Goal

· Design and build the most efficient datacenter eco-system possible

Control

- Application
- Server configuration
- Datacenter design

Sites

- Prineville, OR
- Forest City, NC
- Luleå, Sweden

Luleå, Sweden Site Plan

Electrical

Electrical Overview

- Eliminate 480V to 208V transformation
 - Used 480/277VAC distribution to IT equipment
- Remove centralized UPS
 - Implemented 48VDC UPS System
- Result a highly efficient electrical system and small failure domain

Typical Power

Prineville Power

DC UPS Backup Scheme

Battery Cabinet

- Custom DC UPS
- 56kW or 85kW
- 480VAC, 3-phase input
- 45 second back-up
- 20 sealed VRLA batteries
- Battery Validation System
- Six 48VDC Output
- Two 50A 48VDC aux outputs

Reactor Power Panel

- Custom Fabricated RPP
 - Delivers 165kW, 480/277V, 3-phase to CAB level
 - Contains Cam-Lock connector for maintenance wrap around
- Line Reactor
 - Reduces short circuit current < 10kA
 - Corrects leading power factor towards unity (3% improvement)
 - Reduces THD for improved electrical system performance (iTHD 2% improvement)
 - Power consumption = 360 Watt

Mechanical

Overview

- Removed
 - Centralized chiller plant
 - HVAC ductwork
- System Basis of Design
 - ASHRAE Weather Data: N=50 years
 - TC9.9 2008: Recommended Envelopes
- Built-up penthouse air handling system
- Server waste heat is used for office space heating

Typical Datacenter Cooling

Forest City Datacenter Cooling

PRN1 Datacenter Cooling

DX Cooling Coil Forest City Only

50 year extreme weather conditions

AchievementsPrineville

PUE

1.07
full load
verified during
commissioning

WUE

0.31 liters/kWh calculated value

National Best Green Building Project 2011

Operations

In-rush Current with PSU

- Higher in-rush current experienced under repeated power outage
- Circuit Breakers see the high in-rush and trip on Ground Fault
- Cause due to PS input capacitor
- Adjusted setting accordingly to resolve issue

Controls Optimization

- Controls issues with a 100% OA economization with direct evaporative cooling
 - Error found in the controls sequence
 - Control loop tuning (14) independently controlled AHU line Ups

Period: Apr 14, 2011 – Sep 30, 2011* trended every minute

Frequency

Water Usage Prineville 1AB

OSA Temperature vs Datahall Temperature Prineville

November 18, 2011 - December 14, 2011

OSA RH vs Datahall RH

Prineville

November 18, 2011 - December 14, 2011

Next Steps Electrical

Initial Design Luleå

- Typical single utility feed
- Standard design with generators

Power Path Luleå

- Robust National Grid with hydro generation
 - No downtime since the 1970's
- 145kV lines to Primary and Redundant Substations from separate source and path

Final Design

Luleå

- Fully redundant system
 - Two separate 145kV utility lines
- 70% Less generators
 - Lower operating costs
 - Less fuel storage
 - Less maintenance

Next Steps Mechanical

Basis of Design Comparison

80°F inlet

65% humidity

20°F △ T

85°F inlet

80% humidity

22°F △T

85°F inlet

90% humidity

22°F △T

85°F inlet

80% humidity

22°F △T

PRN1A1B

PRN1C1D

FRC1A1B

LLA1A1B

Modifications to Design Parameters PRN1C1D & FRC1A1B

- Initial design
 - 35°F T for data hall
 - Based on 100% OCP server deployment
- Final design
 - 22°F T for data hall
 - Based on mix of OCP & OEM server deployment
 - Increased (8) AHU line ups to (13) to meet 22°F

Psychrometric Chart -

PRN1A1B

- 65°F 80°F cold aisle temp
- 65% relative humidity max
- 41.9 °F min dew point temp
- Summer
 - 110°FDB
 - 70.3°FWB
- Winter
 - 30.8°FDB
 - 50%RH

Psychrometric Chart – PRN1C1D

- 65°F 85°F cold aisle temp
- 80% relative humidity max
- 41.9 °F min dew point temp
- Reduced evap pump skid redundancy from 2N to N
- Summer
 - 110°FDB
 - 70.3°FWB
- Winter
 - 30.8°FDB
 - 50%RH

Psychrometric Chart -

FRC1A1B

- 65°F 85°F cold aisle temp
- 90% relative humidity max
- 41.9 °F min dew point temp
- DX added
 - For extreme weather criteria to condition the air
- Reduced evap pump skid redundancy from 2N to N
- Summer
 - 110°FDB
 - 84.9°FWB
- Winter
 - -6.2°FDB
 - 50%RH

Psychrometric Chart – FRC1A1B

 BIN weather data charted demonstrates that DC cooling is not necessary for a typical year

Psychrometric Chart -

Sweden

- 65°F 85°F cold aisle temp
- 80% relative humidity max
- 41.9 °F min dew point temp
- DX not required
- Summer
 - 95.1°FDB
 - 71.2°FWB
- Winter
 - -39.1°FDB
 - 50%RH

facebook

(c) 2007 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0