Week 1 all notes

- 1. Orthogonality: the process of choosing the correct parameters and tune in the improvement required to make our model more effective.
- 2. End to end deep learning: more data is required.
- 3. Chain of assumptions in ml:
 - 1. Fit training set well on cost functions: if not then try to get a bigger network or fix optimization function like Adam optimization.
 - 2. Fit dev set well or apply regularization and use bigger training set.
 - 3. Fit test set well on the cost function or use bigger dev set.
 - 4. Perform well on the real world either change dev set or cost function.
 - 5. Difference b/w training error and dev error: variance and difference b/w human/ Bayesian error and training error is called avoidable bias.
 - 6. Accuracy = precision/recall
 - 7. Precision = percentage of true positive results with the overall positive results.
 - 8. Recall = percentage of true positive result over the true results(true positive + true negative)
 - 9. Accuracy = actual true results/overall all results.

For multiplication evaluation metric, choose the evalution metric which have a better harmonic mean is selected.

- 10. 98 percent 1 percent and 1 percent is new /modern approach towards splitting data towards training set ,dev set and test set.
- 11. Geoffrey Hinton Interview:
 - 1. Trust your initiation if though other people considers it as a silly idea.
 - 2. Unsupervised learning will have a more powerful future the supervised learning.

Week 2 all notes		
Error Analysis :		

Look at dev examples to evaluate ideas

Ceiling on performance: The machine learning

Error Analysis: What is the most important direction to focus on

Evaluate multiple ideas in parallel

Ideas for cat detection:

Fix pictures of dogs being recognized as cats

Fix great cats (lions, panthers, etc..) being misrecognized

Improve performance on blurry images

					W.	
	Image	Dog	Great Cats	Clury	lastyrm	Commets
1	1	/			/	Pitbull
l	2			/	V	
	3		~	/		Raing day
Į		i	:	:		
•	% of total	8%	430/-	61./0	12%	
			*	A-		

Andrew Ng

Correcting incorrect dev/test set examples

- Apply same process to your dev and test sets to make sure they continue to come from the same distribution
- Consider examining examples your algorithm got right as well as ones it got wrong.
- Train and dev/test data may now come from slightly different distributions.

Andrew Ng

Built your first system quickly and then reiterate.

Cat classifier example

Assume humans get $\approx 0\%$ error.

Training-dev set: Same distribution as training set, but not used for training

Andrew Ng

More general formulation

Reason Millor

Andrew Ng