ECON-613 HW #3

Peter Kim 2019-03-20

Exercise1

```
#Reading Data
data(margarine)
#Subsetting Data
mar_choicePrice = margarine$choicePrice %>% as.data.frame()
mar_demos = margarine$demos %>% as.data.frame()
#Average and Spread by Columns
avg_col = mar_choicePrice[, 3:12] %>% colMeans()
spread_col = mar_choicePrice[, 3:12] %>% apply(MARGIN = 2, FUN = sd)
#Dataframe of Average and Spread by Columns
avg_spread_col_df = data.frame(
 avg_col,
 spread_col
colnames(avg_spread_col_df) = c("average", "spread")
#Table of Average and Spread by Columns
kable(avg_spread_col_df, digits = 4,
      caption = "Table of Average and Spread by Column")
```

Table 1: Table of Average and Spread by Column

	average	spread
PPk_Stk	0.5184	0.1505
PBB_Stk	0.5432	0.1203
PFl_Stk	1.0150	0.0429
$PHse_Stk$	0.4371	0.1188
$PGen_Stk$	0.3453	0.0352
$PImp_Stk$	0.7808	0.1146
PSS_Tub	0.8251	0.0612
PPk_Tub	1.0774	0.0297
PFl_Tub	1.1894	0.0141
$PHse_Tub$	0.5687	0.0725

```
#Identifying Unique Brands
brands = sub("_.*", "", colnames(mar_choicePrice))[3:12] %>% unique()

#Indices of Each Brand
index1 = grepl(brands[1], colnames(mar_choicePrice)) %>% which()
index2 = grepl(brands[2], colnames(mar_choicePrice)) %>% which()
```

```
index3 = grepl(brands[3], colnames(mar_choicePrice)) %>% which()
index4 = grepl(brands[4], colnames(mar_choicePrice)) %>% which()
index5 = grepl(brands[5], colnames(mar_choicePrice)) %>% which()
index6 = grepl(brands[6], colnames(mar_choicePrice)) %>% which()
index7 = grepl(brands[7], colnames(mar_choicePrice)) %>% which()
#Average and Spread by Brand
b1 = mar_choicePrice[, index1] %>% gather(key) %>% .[, 2]
b2 = mar_choicePrice[, index2]
b3 = mar_choicePrice[, index3] %>% gather(key) %>% .[, 2]
b4 = mar_choicePrice[, index4] %>% gather(key) %>% .[, 2]
b5 = mar_choicePrice[, index5]
b6 = mar_choicePrice[, index6]
b7 = mar_choicePrice[, index7]
#Table of Average and Spread by Brand
brand_avg_sd_df = data.frame(
  c(brands[1:7]),
  c(mean(b1), mean(b2), mean(b3), mean(b4), mean(b5), mean(b6), mean(b7)),
  c(sd(b1), sd(b2), sd(b3), sd(b4), sd(b5), sd(b6), sd(b7))
colnames(brand_avg_sd_df) = c("Brand", "Mean", "Sd")
kable(brand_avg_sd_df, digits = 4,
      caption = "Table of Average and Spread by Brand")
```

Table 2: Table of Average and Spread by Brand

Brand	Mean	Sd
PPk	0.7979	0.2998
PBB	0.5432	0.1203
PFl	1.1022	0.0928
PHse	0.5029	0.1184
PGen	0.3453	0.0352
PImp	0.7808	0.1146
PSS	0.8251	0.0612

Table 3: Table of Average and Spread by Stick and Tubs

	mean	sd
Stick Tub	0.6066 0.9151	0.2495 0.2448

Table 4: Table of Market Share Based on Products

	Market Share
PPk_Stk	0.3951
PBB_Stk	0.1564
PFl_Stk	0.0544
$PHse_Stk$	0.1327
$PGen_Stk$	0.0705
$PImp_Stk$	0.0166
PSS_Tub	0.0714
PPk_Tub	0.0454
PFl_Tub	0.0503
$PHse_Tub$	0.0074

```
#Finding Indices of Sticks and Tubs
stk_idx = colnames(mar_choicePrice[3:12]) %>%
  ends_with(match = "stk", ignore.case = TRUE)
tub_idx = colnames(mar_choicePrice[3:12]) %>%
  ends_with(match = "tub", ignore.case = TRUE)

#Calculating the Total Numbers of Sticks and Tubs
stk_tot = table(mar_choicePrice$choice)[stk_idx] %>% sum()
tub_tot = table(mar_choicePrice$choice)[tub_idx] %>% sum()

#Calculating Market Shares Based on Sticks and Tubs
market_share_char = data.frame(
  c(stk_tot / dim(mar_choicePrice)[1], tub_tot / dim(mar_choicePrice)[1])
)
```

Table 5: Table of Market Shares Based on Sticks vs. Tubs

	Market Share
Sticks	0.8255
Tubs	0.1745

```
#Defining Table of Choices
tb = table(mar_choicePrice$choice)
#Calculating Market Share of Each Brand
mark1 = tb[index1 - 2] %>% sum() / 4470
mark2 = tb[index2 - 2] \% sum() / 4470
mark3 = tb[index3 - 2] %>% sum() / 4470
mark4 = tb[index4 - 2] \%>\% sum() / 4470
mark5 = tb[index5 - 2] \% sum() / 4470
mark6 = tb[index6 - 2] \% sum() / 4470
mark7 = tb[index7 - 2] %>% sum() / 4470
#Dataframe of Frequency of Each Brand
brand df = data.frame(
  c(brands[1:7]),
  c(mark1, mark2, mark3, mark4, mark5, mark6, mark7)
colnames(brand_df) = c("Brands", "Marketshare")
kable(brand_df, digits = 4, caption = "Market Share by Brand")
```

Table 6: Market Share by Brand

Brands	Marketshare
PPk	0.4405
PBB	0.1564
PFl	0.1047
PHse	0.1400
PGen	0.0705
PImp	0.0166
PSS	0.0714

```
#Replacing NA's with 0
choices_Income_df[is.na(choices_Income_df)] = 0

#Calculating Market Share by Income
Income_market_df = data.frame(
    colnames(mar_choicePrice[, 3:12]),
    apply(choices_Income_df[, 2:15], 2, function(x) x / sum(x))
)
colnames(Income_market_df) =
    c("Brands", mar_demos$Income %>% unique() %>% sort())

kable(Income_market_df[, 1:6], digits = 4,
    caption = "Mapping Between Observed Attributes and Choices")
```

Table 7: Mapping Between Observed Attributes and Choices

Brands	2.5	7.5	12.5	17.5	22.5
PPk_Stk	0.38	0.3966	0.3960	0.4697	0.3464
PBB_Stk	0.08	0.1831	0.2141	0.1477	0.1459
PFl_Stk	0.00	0.0441	0.0828	0.0399	0.0403
$PHse_Stk$	0.04	0.1153	0.0889	0.1640	0.1827
$PGen_Stk$	0.12	0.0644	0.0465	0.0310	0.1459
$PImp_Stk$	0.00	0.0068	0.0182	0.0074	0.0024
PSS_Tub	0.32	0.0915	0.0808	0.0798	0.0486
PPk_Tub	0.02	0.0203	0.0162	0.0281	0.0427
PFl_Tub	0.04	0.0746	0.0505	0.0295	0.0356
$PHse_Tub$	0.00	0.0034	0.0061	0.0030	0.0095

Table 8: Mapping Between Observed Attributes and Choices

27.5	32.5	37.5	42.5	47.5	55	67.5	87.5	130
0.4097	0.3807	0.4731	0.4125	0.4415	0.2338	0.3725	0.2432	0.1923
0.1975	0.1530	0.1219	0.1089	0.1170	0.1493	0.0784	0.2703	0.0385
0.0189	0.0510	0.0609	0.1089	0.1223	0.0547	0.0196	0.0811	0.1154
0.1408	0.1166	0.1039	0.0759	0.0851	0.1592	0.1569	0.0270	0.3077
0.0378	0.0984	0.0824	0.0198	0.0372	0.0348	0.1176	0.0000	0.0769
0.0126	0.0073	0.0036	0.0660	0.0904	0.0149	0.0392	0.0270	0.0769
0.0504	0.0893	0.0538	0.0891	0.0319	0.0597	0.1373	0.0270	0.0000
0.0525	0.0346	0.0502	0.0693	0.0479	0.2090	0.0588	0.0000	0.0000
0.0714	0.0601	0.0323	0.0462	0.0106	0.0846	0.0000	0.3243	0.1923
0.0084	0.0091	0.0179	0.0033	0.0160	0.0000	0.0196	0.0000	0.0000

Exercise2

For this exercise, I propose to use a conditional logit model.

According to the class slide, probability for conditional logit model is stated as the following:

$$p_{ij} = \frac{exp(x_{ij}\beta)}{\sum_{l=1}^{m} exp(x_{il}\beta)}$$

According to page 496 of textbook, the likelihood for conditional logit model is stated as the following:

$$L(\beta \mid x_{ij}, y_{ij}) = \prod_{i=1}^{n} \prod_{j=1}^{m} p_{ij}^{y_{ij}}$$

Before we calculate the likelihood, we have to calculate the indicator variable y_{ij} for $i \in \{1, ..., 4470\}$ and $j \in \{1, ..., 10\}$. y represents the column "choice" in the dataset.

$$y_{ij} = \begin{cases} 1 & y = j \\ 0 & y \neq j \end{cases}$$

Now, we implement the conditional logit likelihood.

```
#Condtional Logit Likelihood Function
cond_logit_lik = function(beta){

#Intercept Matrix
alpha = matrix( rep( c(0, beta[1:9]), each = n ), nrow = n, ncol = 10)

#Non-Intercept Matrix
xbeta = as.matrix( mar_choicePrice[, 3:12] ) * beta[10]

#Calculating XB
XB = alpha + xbeta

#Calculating Numerator
N = exp(XB)

#Calculating Denominator
D = exp(XB) %>% rowSums()
```

```
#Calculating Probability p
p_ij = N / D

#Calculating Likelihood
likelihood = prod( p_ij^(y) )

return(likelihood)
}
```

The log likelihood of the conditional logit model is the following. Note that negative of the log likelihood value is returned.

```
#Conditional Logit Log Likelihood
cond_logit_log_lik = function(beta){
  #Intercept Matrix
  alpha = matrix(rep(c(0, beta[1:9]), each = n), nrow = n, ncol = 10)
  #Non-Intercept Matrix
  xbeta = as.matrix( mar_choicePrice[, 3:12] ) * beta[10]
  #Calculating XB
  XB = alpha + xbeta
  #Calculating Numerator
  N = exp(XB)
  #Calculating Denominator
  D = \exp(XB) \%\% \text{ rowSums}()
  #Calculating Probability p
 p_{ij} = N / D
  #Calculating log Likelihood
  log_lik = sum( y * log( p_ij ) )
 return(-log_lik)
}
```

Since the likelihood and log likelihood functions are defined above, we now optimize the model and present the results. Note that $\hat{\alpha}$'s represent intercepts.

```
#Dimension Calculation for Following Intercept Matrix
n = nrow( mar_choicePrice )

#Initializing Parameters
b = rep(-1.8, 10)

#Optimizing Log Likelihood Function
opt = optim(par = b, fn = cond_logit_log_lik)

cond_opt_df = data.frame(
    opt$par
```

Table 9: Coefficients Under Conditional Logit

	Optimized Coefficient
\hat{lpha}_1	-0.8600
\hat{lpha}_2	1.2275
\hat{lpha}_3	-1.6640
\hat{lpha}_4	-2.7915
\hat{lpha}_{5}	-1.8773
\hat{lpha}_6	0.1990
\hat{lpha}_7	1.3123
\hat{lpha}_8	1.9900
\hat{lpha}_{9}	-3.8600
$\hat{\beta}_{price}$	-6.3206

Interpretation

According to the table, $\hat{\beta}_{price} = -6.3206$. This means that the likelihood of product being purchased decreases as the price increases.

Exercise3

For this exercise, I propose to use multinomial logit model.

According to page 494 of the textbook, probability for multinomial logit model is

$$p_{ij} = \frac{exp(\alpha_j + \beta_{Ij}I_i)}{\sum_{k=1}^{m} exp(\alpha_k + \beta_{Ik}I_i)}$$

where I denotes income.

According to page 496 of textbook, the likelihood of multinomial logit model is

$$L(\beta \mid x_{ij}, y_{ij}) = \prod_{i=1}^{n} \prod_{j=1}^{m} p_{ij}^{y_{ij}}$$

Since we have calculated y in exercise 2, we proceed to implementing the multinomial logit likelihood. We also merge choicePrice and demos dataframes here.

```
#Merging Data to Put Choice and Income in One Data Frame
merged_data = left_join(x = mar_choicePrice, y = mar_demos, by = "hhid")
```

```
#Choice and Income Data Frame
choice_I_df = merged_data %>%
  select(choice, Income) %>%
  arrange(Income)
#Defining Variable I
I = choice_I_df$Income
#Multinomial Logit Likelihood
multi_logit_lik = function(beta){
  #Intercept Matrix
  alpha = matrix( rep( beta[1:10], each = n ), nrow = n, ncol = 10 )
  #Non-Intercept Matrix
  xbeta = matrix( rep( beta[11:20], each = n), nrow = n, ncol = 10 ) * I
  #Calculating XB
 XB = alpha + xbeta
  #Calculating Numerator
 N = exp(XB)
  #Calculating Denominator
 D = \exp(XB) \%\% \text{ rowSums}()
  #Calculating Probability p
 p_{ij} = N / D
  #Calculating Likelihood
 likelihood = prod( p_ij^(y) )
 return(likelihood)
```

We now calculate the log likelihood.

```
#Multinomial Logit Log Likelihood
multi_logit_log_lik = function(betas){

#Intercept Matrix
alpha = matrix( rep( betas[1:10], each = n), nrow = n, ncol = 10 )

#Non-Intercept Matrix
xbeta = matrix( rep( betas[11:20], each = n), nrow = n, ncol = 10 ) * I

#Calculating XB
XB = alpha + xbeta

#Calculating Numerator
N = exp(XB)

#Calculating Denominator
D = exp(XB) %>% rowSums()
```

```
#Calculating Probability p
p_ij = N / D

#Calculating log Likelihood
log_logit = sum( y*log( p_ij ) )

return(-log_logit)
}
```

Since the likelihood and loglikelihood functions are defined above, we now optimize the model.

Table 10: Coefficients Under Multinomial Logit

	Optimized $\hat{\alpha}$	Optimzed $\hat{\beta}$
Reference	-0.1616	0.0034
2	-0.9018	-0.0005
3	-1.5586	-0.0175
4	-1.3626	0.0058
5	-2.1882	0.0163
6	-3.4089	0.0012
7	-1.8481	0.0025
8	-2.0928	-0.0082
9	-2.0756	-0.0066
10	-4.1647	0.0020

Interpretation

 β_{Income_2} : It is more likely for an individual to choose choice 1 than choice 2 if his or her income increases.

 β_{Income_3} : It is more likely for an individual to choose choice 1 than choice 3 if his or her income increases.

 β_{Income_4} : It is more likely for an individual to choose choice 4 than choice 1 if his or her income increases.

 $\beta_{Incomes}$: It is more likely for an individual to choose choice 5 than choice 1 if his or her income increases.

 β_{Income_6} : It is more likely for an individual to choose choice 6 than choice 1 if his or her income increases.

 $\beta_{Income\tau}$: It is more likely for an individual to choose choice 7 than choice 1 if his or her income increases.

 β_{Income_8} : It is more likely for an individual to choose choice 1 than choice 8 if his or her income increases.

 β_{Income_9} : It is more likely for an individual to choose choice 1 than choice 9 if his or her income increases.

 $\beta_{Income_{10}}$: It is more likely for an individual to choose choice 10 than choice 1 if his or her income increases.

Exercise4

First Model

For conditional logit, the marginal effect is computed as the following.

```
#Conditional Logit Log Likelihood
cond_logit_log_lik2 = function(beta){
  #Intercept Matrix
  alpha = matrix(rep(c(0, beta[1:9]), each = n), nrow = n, ncol = 10)
  #Non-Intercept Matrix
  xbeta = as.matrix( mar_choicePrice[, 3:12] ) * beta[10]
  #Calculating XB
  XB = alpha + xbeta
  #Calculating Numerator
  N = exp(XB)
  #Calculating Denominator
  D = \exp(XB) \%\% \text{ rowSums}()
  \#Calculating\ Probability\ p
  p_{ij} = N / D
  #Calculating log Likelihood
  log_lik = sum( y * log( p_ij ) )
  return(p_ij)
}
#Saving P from Conditional Logit Log Likelihood
P = cond_logit_log_lik2(cond_opt_df$`Optimized Coefficient`)
```

Table 11: Average Marginal Effect Under Conditional

V5	V4	V3	V2	V1
0.1530	0.2806	0.1235	0.3009	-1.2343
0.0756	0.1340	0.0599	-0.7510	0.3009
0.0315	0.0515	-0.3437	0.0599	0.1235
0.0625	-0.6809	0.0515	0.1340	0.2806
-0.4186	0.0625	0.0315	0.0756	0.1530
0.0063	0.0115	0.0053	0.0125	0.0263
0.0377	0.0619	0.0304	0.0718	0.1498
0.0244	0.0376	0.0200	0.0461	0.0949
0.0233	0.0355	0.0186	0.0434	0.0892
0.0043	0.0057	0.0031	0.0070	0.0161

Table 12: Average Marginal Effect Under Conditional

V10	V9	V8	V7	V6
0.0161	0.0892	0.0949	0.1498	0.0263
0.0070	0.0434	0.0461	0.0718	0.0125
0.0031	0.0186	0.0200	0.0304	0.0053
0.0057	0.0355	0.0376	0.0619	0.0115
0.0043	0.0233	0.0244	0.0377	0.0063
0.0006	0.0036	0.0038	0.0061	-0.0760
0.0041	0.0227	0.0249	-0.4092	0.0061
0.0028	0.0157	-0.2702	0.0249	0.0038
0.0026	-0.2545	0.0157	0.0227	0.0036
-0.0461	0.0026	0.0028	0.0041	0.0006

Interpretation

Since there are multiple coefficients in the matrix, we provide general interpretations for main-diagonal elements and off-diagonal elements.

Main-diagonal elements: Each unit increase in the price of j^{th} choice decreases the probability of consumers choosing the j^{th} choice. For example, if the price of the first choice increases, the probability of consumers choosing the first choice decreases by 1.23%. (Note that the magnitude of probability change depends on the j^{th} choice)

Off-diagonal element: Each unit increase in the price of j^{th} choice increases the probability of consumers choosing non- j^{th} choices. For example, if the price of the first choice increases, the probability of consumers choosing the second choice increases by .3 %, the third choice by .1235 %, etc. (Note that the magnitude of probability change depends on the j^{th} choice and non- j^{th} choice)

Second Model

For multinomial logit, the marginal effect is calculated as the following.

```
#Multinomial Logit Log Likelihood
multi_logit_log_lik2 = function(betas){
  #Intercept Matrix
  alpha = matrix( rep( betas[1:10], each = n), nrow = n, ncol = 10 )
  #Non-Intercept Matrix
  xbeta = matrix( rep( betas[11:20], each = n), nrow = n, ncol = 10 ) * I
  #Calculating XB
  XB = alpha + xbeta
  #Calculating Numerator
  N = exp(XB)
  #Calculating Denominator
  D = \exp(XB) \%\% \text{ rowSums}()
  #Calculating Probability p
  p_{ij} = N / D
  #Calculating log Likelihood
  log_logit = sum( y*log( p_ij ) )
 return(p_ij)
}
#Probability from Multinomial
multi_P = multi_logit_log_lik2(multi_opt$par)
#Betas
multi_beta = multi_opt$par[11:20]
#Calculating Beta-Bar
```

Table 13: Average Marginal Effect Under Multinomial Logit

Average Mar	ginal Effect
	-8e-04
	-3e-04
	-1e-04
	-3e-04
	-2e-04
	0e + 00
	-1e-04
	-1e-04
	-1e-04
	0e+00

Interpretaion

- -8e-04: On average, each unit increase in income decreases the probability of selecting the first choice by 8e-04.
- -3e-04: On average, each unit increase in income decreases the probability of selecting the second choice by 3e-04.
- -1e-04: On average, each unit increase in income decreases the probability of selecting the third choice by 1e-04.
- -3e-04: On average, each unit increase in income decreases the probability of selecting the four choice by 3e-04.
- -2e-04: On average, each unit increase in income decreases the probability of selecting the fifth choice by 2e-04.
- 0e+00: On average, each unit increase in income does not change the probability of selecting the six choice.
- -1e-04: On average, each unit increase in income decreases the probability of selecting the seventh choice by

1e-04.

- -1e-04: On average, each unit increase in income decreases the probability of selecting the eighth choice by 1e-04.
- -1e-04: On average, each unit increase in income decreases the probability of selecting the ninth choice by 1e-04.
- 0e+00: On average, each unit increase in income does not change the probability of selecting the tenth choice.

Exercise5

The following is the mixed logit log likelihood function.

```
mixed_logit_log_lik = function(beta){
  #Intercept Matrix
  alpha = matrix( rep( beta[1:10], each = n ), nrow = n, ncol = 10)
  #Non-Intercept Matrix
  xbeta_I = matrix( rep( beta[11:20], each = n), nrow = n, ncol = 10 ) * I
  xbeta_p = as.matrix( mar_choicePrice[, 3:12] ) * beta[21]
  #Calculating XB
  XB = alpha + xbeta_p + xbeta_I
  #Calculating Numerator
  N = exp(XB)
  #Calculating Denominator
  D = \exp(XB) \%\% \text{ rowSums}()
  #Calculating Probability p
  p_{ij} = N / D
  #Calculating log Likelihood
  log_lik = sum(y * log(p_ij))
 return(-log_lik)
```

Here, we optimize the log likelihood function.

Table 14: Coefficients Under Mixed Logit

	Optimzed $\hat{\beta}^f$
Intercept Reference	-0.0657
Intercept2	-1.0966
Intercept3	1.2344
Intercept4	-1.6447
Intercept5	-2.9809
Intercept6	-2.0062
Intercept7	0.4405
Intercept8	1.3248
Intercept9	2.1570
Intercept10	-4.0409
Income Reference	0.0011
Income2	0.0036
Income3	-0.0095
Income4	-0.0036
Income5	0.0032
Income6	0.0053
Income7	-0.0066
Income8	-0.0049
Income9	-0.0007
Income10	0.0106
Price	-6.3491

Here, we also implement mixed logit log likelihood. But, this time, we compute the mixed logit log likelihood after removing choice 10.

```
for( i in 1:dim(choicePrice2)[1] ){
    if(choicePrice2$choice[i] == j){
        y2[i, j] = 1
    }
 }
}
#New Mixed Logit Log Likelihood
mixed_logit_log_lik2 = function(beta){
  #Intercept Matrix
  alpha = matrix( rep( beta[1:9], each = n2 ), nrow = n2, ncol = 9)
  \#Non-Intercept\ Matrix
  xbeta_I = matrix( rep( beta[11:19], each = n2), nrow = n2, ncol = 9 ) *
    choicePrice2$Income
  xbeta_p = as.matrix( choicePrice2[, 3:11] ) * beta[21]
  #Calculating XB
  XB = alpha + xbeta_p + xbeta_I
  #Calculating Numerator
 N = exp(XB)
  #Calculating Denominator
 D = \exp(XB) \%\% \text{ rowSums}()
  #Calculating Probability p
 p_{ij} = N / D
  #Calculating log Likelihood
 log_lik = sum(y2 * log(p_ij))
 return(-log_lik)
}
```

We optimize the removed mixed logit log likelihood.

Table 15: Coefficients Under Removed Mixed Logit

	Optimzed $\hat{\beta}^r$
Intercept Reference	-0.1349
Intercept2	-0.8298
Intercept3	1.1196
Intercept4	-1.7036
Intercept5	-2.8424
Intercept6	-1.5126
Intercept7	0.4236
Intercept8	0.9796
Intercept9	2.0424
Income Reference	0.0067
Income2	0.0001
Income3	0.0053
Income4	0.0020
Income5	0.0030
Income6	0.0078
Income7	-0.0033
Income8	0.0148
Income9	0.0093
Price	-6.4081

We compute test statistics here. Note that the deviance follows a χ^2 distribution.

Table 16: Test Stiatistics

 $\frac{\text{MTT}}{-83.6055}$

```
#Acceptance / Rejection
pchisq(MTT, df = length(opt2$par[c(1:9, 11:19, 21)]), lower.tail = F)
## [1] 1
```

Conclusion

Since the test shows p-value of 1, IIA holds.