

Fig. 1

1 MTSMLLLLFAFVQPCASIVEKRCGPIDIRNRPWDIKPQWSKLGDPNEKDLAGQRMVNCT
 61 VVEGSLTISFVLKHKTQAQEEMHRSLQPRYSQDEFITFPHLREITGTLLVFETEGLVDLR
 121 KIFPNLRIGGRSLIQHYALIYRNPDEIGLDKLSVIRNGGVRIIDNRKLCYTKTIDWK
 181 HLITSSINDVVVDNAAEYAVTETGLMCPRGACEEDKGESKCHYLEEKNQEQQGVERVQSCW
 241 SNTTCQKSCAYDRLLPTKEIGPGCDANGDRCHDQCVGGERVNDATA
 CHACKNVYHKGC
 301 IEKCDAHLYLLLQRRCVTREQCLQLNPVLSNKTVPIKATAGLCSDKCPDGYQINPDDHRE
 361 CRKCVGKCEIVCEINHVIDTFPKAQAIRLCNIIDGNLTIEIRGKQDSGMASELKDFANI
 421 HTITGYLLVRQSSPFISLNMFRLRRIEAKSLFRNLYAITVFENPNLKKLFDSTTDLTL
 481 RGTWSIANNKMLCFKYIKQLMSKLNIPLDPIDQSEGNTNGEKAICEDMAINVSITAVNADS
 541 VFFSWPSFNITDIDQRKF^LGYELFFKEVPRIDENMTIEEDRSACVDSWQS^VFQYYETSN
 601 GEPTPDIFMDIGPRERIRPNTLYAYYVATQMV^LHAGAKNGVSKIGFVRTSYYTPDPPTLA
 661 LAQVDSDAI^HITWEAPLQPNGDLTHYT^IMWRENEVSPYEEAKFCTDASTPANRQRTKDP
 721 KETIVADKPVDIPSSRTVAPTLLTMMGHEDQQKTCATPGCCSCSAIEESES^EQNKKR^D
 781 PMSAIESAFENKL^LDEVLM^PRDTMRVRR^SIEDANRVSEELEKAENLG^KAPKTLGGKKPL
 841 IHISKKKPSSSSTTSTPA^TIAMS^MYALTRKPTT^VGTRIRLYE^IYEPLPGSWAINVSALA
 901 LDNSYVIRNLKHYTLYAISLSACQNMT^VPGASC^SI^HRAGALKRTKHITD^IKVLNETIE
 961 WRFMNNSQQNVNTWDP^PTEVNGGIFGYVV^VKL^KSKVDGSIVMTRCVGA^KRGYSTRNQGVLF
 1021 QNLADGRYFVSVTATSVHAGPEAESSDPIVV^MTPGFFTVE^IILGMLLVFLILMSIAGCI
 1081 I^YYYI^QVRYGKKVKALSDFMQLNPE^YCVDNKYNADDWELRQDDVVLGQQC^GE^SFGKVYL
 1141 GTGNVVSLMGDRFGPCA^IKINVDDPASTENLYLMEANIMKNFKTNFIVQLYGVISTVQ
 1201 PAMVVMEMMDLGNLRDYLRSKREDEVFNETDCNFFDIIPRDKFHEWAAQICDG^MA^YLES^L
 1261 KFCHRD^LAARNCMINRDET^VKIGDFGMARDLF^YHD^YKPSGKRMM^PVRWMS^PESLKDGKF
 1321 DSKSDVWSFGVVLYEMV^TLGAQPYIGLS^NDEV^NYIGMARKVIKKPECCENY^WYKVMKMC
 1381 WRYSPRDRPTFLQLVHLI^IAAEASPEFRDLSFVLTDNQMILDDSEAL^LDDIDDDTMNDQV
 1441 VEVAPDVENVEVQSDSER^RNTDSIPLKQFKTIPPINATTSHSTISIDE^TPMKAKQREG^SL
 1501 DEEYALMNHSGGP^SDAEV^RTYAGDGD^YVERDVREN^DV^PTR^RNTGASTSSYTGGGP^YCLTN
 1561 RGGSNERGAGFGEAVRLTDGVGS^GHLNDDD^YVEKEISSMD^TRR^RSTGASSSSY^GV^PQT^NWS
 1621 GNRGATYYTSKAQQAATAAAAAAAALQQQQN^GGRGDRLTQLPGTGHLQ^QSTRGGQDGD^YTE
 1681 TEPKNYRNNGSPSRNGNSRDIFNGRSAFGENEHLIEDNEHHPLV

Fig. 2A

1 ggttaatta cccaagttt agctccaaga gcacacatct gatcgtcgga
 51 ttctactgta ctccccaaa aaccaacaaa aaacacaagt tttgaacac
 101 ttgtaaatgc agacagaacg atgacgagaa tgaatattgt cagatgtcgg
 151 agacgacaca aaattttgga aaatttgaa gaagagaatc tcggcccgag
 201 ctgctcgtcg acgacttcaa caaccgctgc caccgaagct ctcggaacaa
 251 ccactgagga tatgaggcct aagcagcagc gaagctcgac gctgcccacg
 301 gagcacgata ttgtcgacgg caatcaccac gacgacgagc acatcacaat
 351 gagacggcct cgacttgtca aaaattcgcg gacgcggcgt agaacgacgc
 401 ccgattcaag tatggactgc tatgaggaaa acccgccatc aaaaaaactt
 451 caataaatta ttcttggatt tctaaaaagt catcaatgac gtcattaatg
 501 ctttactgc tattcgctt tgtacagccg tgtgcctcaa tagtcaaaaa
 551 acgatgcggc ccaatcgata ttgcgaaatag gccgtggat attaagccgc
 601 aatggtcgaa acttgggtat ccgaacgaaa aagatttgc tggtcagaga
 651 atggtaact gcacagtggt ggaagggtcg ctgacaatct catttgtact
 701 gaaacacaag acaaaagcac aagaagaaat gcatcgaagt ctacagccaa
 751 gatattccca agacgaattt atcactttc cgcatctacg taaaattact
 801 ggaactctgc tcgttttga gactgaagga ttagtggatt tgcgtaaaat
 851 tttcccaaat cttcggttaa ttggaggccg ttgcgtgatt caacactatg
 901 cgctgataat ttatcgaaat ccggatttgg agatcggtct tgacaagctt
 951 tccgttaattc gaaatggtgg tgtacggata atcgataatc gaaaactgtg
 1001 ctacacgaaa acgatttgcg gaaaacattt gatcacttct tccatcaacg
 1051 atgttgcgt tgataatgct gccgagtagc ctgtcactga gactggattt
 1101 atgtgcccac gtggagcttgc cgaagaggat aaaggcgaat caaagtgtca
 1151 ttatttggag gaaaagaatc aggaacaagg tgtcgaaaga gttcagagtt
 1201 gttggtcgaa caccacttgc caaaagtctt gtgcttatga tcgtcttctt
 1251 ccaacgaaag aaatcgacc gggatgtat gcaacacggc atcgatgtca
 1301 cgatcaatgc gtggccggtt gtgagcgtgt gaatgatgac acagcatgcc
 1351 acgcgtgcaa gaatgtctat cacaaggaa agtgtatcga aaagtgtat
 1401 gtcacactgt accttccct tcaacgtcgt tttgtgaccc gtgagcgtg
 1451 tctgcagctg aatccgggtc tctcgaacaa aacagtgcct atcaaggcga
 1501 cggcaggcct ttgctcggat aaatgtcccg atggttatca aatcaacccg
 1551 gatgatcatc gagaatgccg aaaatgcgtt ggcaagtgtg agattgtgtg
 1601 cgagatcaat cacgtcattt atacgttcc gaaggcacag gcatcaggc
 1651 tatgaatat tattgacgga aatctgacga tcgagattcg cgaaaaacag
 1701 gattcggaa tggcgccccg gttgaaggat atatttgcga acattcacac
 1751 gatcaccggc tacctgttgg tacgtcaatc gtcaccgtt atctcggtga
 1801 acatgttccg gaatttacga cgtattgagg caaagtcaat gtcagaaat
 1851 ctatatgcta tcacagttt tggaaatccg aattttaaaa agctattcga
 1901 ttcaacgacg gatttgcgc ttgatgtgg aactgtgtca attgccaata
 1951 acaagatgtt atgcttcaag tataatcaagc agctaattgtc aaagttaaat
 2001 ataccactcg atccgataga tcaatcagaa gggacaaatg gtgagaaggn
 2051 aatctgttag gatatggcaa tcaacgtgag catcacagcg gtcacacgg
 2101 actcggtctt ctttagttgg ccctcattca acattaccg tataatcg
 2151 cggaaatgtt tcggctacga gctcttcttc aaagaagtcc cacgaatcg
 2201 tgagaacatg acgatcgaag aggatcgaag tgcgtgtgtc gattcggtgg
 2251 agagtgtctt caaacagttac tacgagacgt cgaacgggtga accgaccccg
 2301 gacattttta tggatattgg accgcgcgag cgaattcgcc cgaataacgct
 2351 ctacgcgtac tatgtggcga cgcagatggt gttgcgtgtcc ggtgcgaaga
 2401 acgggtgtatc gaagattggt tttgtgagga ctagacta tacgcctgtat
 2451 cctccgacgt tggcacttagc gcaagtcgtat tcggacgctt ttcattttac
 2501 gtggaaagcg cggctccaac cgaacggaga cctcacgcat tacacaattt
 2551 tgtggcgtga gaatgaagtg agcccgatc aggaagccga aaagttttgt
 2601 acagatgcaa gcaccccccgc aaatcgacaa cgcacgaaag atccgaaaga
 2651 gacgattgtt gccgataagc cagtcgatat tccgtcatca cgtaccgtat
 2701 ctccgacact tttgactatg atgggtcactc aagatcagca gaaaacgtgc

Fig. 2B (sheet 1 of 3)

2751 gctgcaacgc ccggttgttg ttcgtgttcg gctatcgaa aatcatcgga
 2801 acagaacaag aagaagcgac cggatccgat gtcggcgatc gaatcatctg
 2851 catttggagaa taagctgttg gatgagggtt taatgccgag agacacgatg
 2901 cgagtggagac gatcaattga agacgcgaat cgagtcaatg aagagttgga
 2951 aaaagctgaa aatttgggaa aagctccaaa aactctcggt ggaaagaagc
 3001 cgctgatcca tatttgcgaag aagaagccgt cgagcagcag caccacatcc
 3051 acacccgctc caacgatcgc atcaatgtat gccttaacaa ggaaaccgac
 3101 tacggtgccg ggaacaagga ttccggctcta cgagatctac gaacctttac
 3151 ccggaaagctg ggcgattaat gtatcagctc tggcatttggta taatagttat
 3201 gtgatacgaa atttgaagca ttacacactt tatgcgattt ctctatccgc
 3251 gtgccaaaac atgacagttac ccggagcatc ttgctcaata tcccatcggt
 3301 cgggagcatt gaaacgaaca aaacacatca cagacattga taaagtgttg
 3351 aatgaaacaa ttgaatggag atttatgaat aatagtcaac aagtcaacgt
 3401 gacgtggat ccaccgactg aagtgaatgg tggaaatattc gttatgttg
 3451 taaagcttaa gtcaaaagtc gatggatcaa ttgttatgac gagatgtgtc
 3501 ggtgcgaaga gaggatattc aacacggaat cagggtgtcc tattccagaa
 3551 tttggccgat ggacgttatt ttgtctcaat aacggcgacc tctgtacacg
 3601 gcgctggacc ggaagccgaa tcctccgacc caatcgtcgt catgacgcca
 3651 ggcttctca ctgtggaaat cattctcgcc atgcttctcg tctttttgat
 3701 ttaatgtca atttgcgggtt gtataatcta ctactacatt caagtacgct
 3751 acggaaaaaa agtggaaagct ctatctgact ttatgcaatt gaatcccga
 3801 tattgtgtgg acaataagta caatgcagac gattgggagc tacggcagga
 3851 tgatgtgtg ctcggacaac agtgtggaga gggatcatc ggaaaagtgt
 3901 accttaggaac tggaaataat ttgttttctc tcatgggtga tcgtttcgga
 3951 ccgtgtgcta ttaagattaa tttagatgat ccagcgtcga ctgagaatct
 4001 caactatctc atggaaagctt atattatgaa gaactttaag actaacttta
 4051 tcgtccaact gtacggagtt atctctactg tacaaccagc gatgggtgt
 4101 atggaaatga tggatcttgg aatctccgt gactatctcc gatcgaaacg
 4151 cgaagacgaa gtgttcaatg agacggactg caacttttc gacataatcc
 4201 cgaggatata attccatgag tggcccgac agatttgtga tggatggcg
 4251 tacctggagt cgctcaagtt ttgcacatcg gatctcgccg cacgtattt
 4301 catgataaat cgggatgaga ctgtcazagat tggagattt ggaatggcgc
 4351 gtgatctatt ctatcatgac tattataagc catcgggcaa gcgtatgatc
 4401 cctgtcgat ggatgtcacc cgagtcgtt aaagacggaa agtttgcact
 4451 gaaatctgat gtttggagct tcggagttgt tctctatgaa atggttacac
 4501 tcggtgctca gccatatatt gtttggatgta atgatgaggt gttgaattat
 4551 attggaaatgg cccggaaaggat tatcaagaag cccgaatgtt gtgaaaacta
 4601 ttggtataag gtgatggaaaa tttgtctggag atactcacct cgggatcgct
 4651 cgacgttcct ccagctcgat catcttctcg cagctgaagc ttaccagaa
 4701 ttccgagatt tatcatgtt cctaaccgat aatcaaata tccctgacga
 4751 ttcaagacgat ctggatcttg atgatattga tgatactgat atgaatgatc
 4801 aggttgtcga ggtggcaccg gatgttgaga acgtcgaggt tcagagtgt
 4851 tcggAACGTC ggaataacgga ttcaataccg ttgaaacagt ttaagacgat
 4901 ccctccgatc aatgcgacga cgagtcattc gacaatatcg attgtatgaga
 4951 caccgatgaa agcgaagcag cgagaaggat cgctggatga ggagtacgc
 5001 ttgatgaaatc atagtggagg tccgagttgt gccaaggatc ggacgtatgc
 5051 tggtgatgga gattatgtgg agagagatgt tcgagagaat gatgtccaa
 5101 cgcgacgaaa tactggtgca tcaacatcaa gtacacagg tgggtgtcca
 5151 tattgcctaa caaatcgatgg tggttcaat gaaacggagg cgggttcgg
 5201 tgaagcgtt cgttactg atgggtgtgg aagtggacat taaaatgatg
 5251 atgattatgt taaaaaagag atatcatcca tgatacgat ccggagcagc
 5301 ggcgcctcgat gcttccata cgggtttcca cagacgaatt ggagtggaaa
 5351 tcgtgggtcc acgttattata cggatggatc tcaacaggca gcaactgcag
 5401 cagcagcagc agcagcagct ctccaaacagc aacaaaatgg tggtcgaggc
 5451 gatcgattaa ctcaactacc cggaaacttgg catttacaat cgacacgtgg
 5501 tggacaagat ggagattata ttgaaactga accgaaaaat tatagaaata

Fig. 2B (sheet 2 of 3)

5551 atggatctcc atcgcgaaac ggcaacagcc gtgacattt caacggacgt
5601 tcggcttcg gtgaaaatga gcatctaattt gaggataatg agcatcatcc
5651 acttgtctga aaccccaaa aaatcccgc tcttaaatat taaaattatct
5701 cccacattat catatctcta cacgaatatc ggatttttt tcagatttt
5751 tctgaaaaat tctgaataat tttacccat tttcaaatac tcgtatattt
5801 ttttgttat tacccc

Fig. 2B (sheet 3 of 3)

Fig. 2C (sheet 1 of 2)

Fig. 2C (sheet 2 of 2)

Fig. 3

Fig. 4

Fig. 5A

Fig. 5B

Domain I

Domain II

Fig. 5C

Fig. 6A

Fig. 6B

Fig. 6C

Fig. 6D

Fig. 6E

Fig. 6F

Fig. 6G

13/54

Fig. 8A

Fig. 8B

Fig. 9A

Fig. 9B

Fig. 10

1 atgaagctaa tagcaacttc tcttcttagtt cccgacgagc acacaccgat
 51 gatgtcacca gtgaatacaa ctacaaaagat tctacaacgg agtggattta
 101 aaatggaaat cccgccatat ttggatccag acagttagga tgatgacccg
 151 gaagatggtg tcaactaccc ggatccagat ttatttgaca caaaaaacac
 201 aaatatgacc gagtacgatt tggatgtgtt gaagcttggaa aaaccagcag
 251 tagatgaagc acggaaaaag atcgaagttc ccgacgctag tgcggccca
 301 aacaaaattt tagaatattt gatgtattat agaacgttaa aagaaagtga
 351 actcatacaa ctgaatgcgt atcggacaaa acgaaatcga ttatcggtga
 401 acttggtcaa aaacaatattt gatcgagagt tcgaccaaaa agcttgcgag
 451 tccctggta aaaaattgaa ggataagaag aatgatctcc agaacctgat
 501 tgatgtggtt ctttcaaaag gtacaaaata taccgggtgc attacaattc
 551 caaggacact tgatggccgg ttacaggtcc acggaagaaa aggttccct
 601 cacgttgtct atggcaaact gtggaggttt aatgaaatga caaaaaacga
 651 aacgcgtcat gtggaccact gcaagcacgc atttgaardt aaaaagtgaca
 701 tggtatgcgt gaatccctat cactacgaaa ttgtcattgg aactatgatt
 751 gttggcaga gggatcatga caatcgagat atgcccgc cacatcaacg
 801 ctaccacact ccaggtcgcc aggatccagt tgacgatatg agtagattt
 851 taccaccaggc ttccattcgt ccgcctccga tgaacatgca cacaaggcct
 901 cagcctatgc ctcaacaatt gccttcagtt ggcgcaacgt ttgcccattcc
 951 tctcccacat caggcgccac ataacccagg ggttcacat ccgtactcca
 1001 ttgctccaca gaccattac ccgttgaaca tgaacccaaat tccgcaaatg
 1051 ccgcaaatgc cacaatgcc accacctctc catcaggat atggaatgaa
 1101 tggccgagt tgctcttcag aaaacaacaa tccattccac caaaaatcacc
 1151 attataatga tattagccat ccaaattact attcctacga ctgtggtccg
 1201 aacttgtacg gtttccaac tccttaccc gatttcacc atccttcaa
 1251 tcagcaacca caccagccgc cacaactatc acaaaaccat acgtcccaac
 1301 aaggcagtca tcaaccaggc caccaaggc aggtaccgaa tgatccacca
 1351 atttcaagac cagtgttaca accatcaaca gtcacccgg acgtgttccg
 1401 tcggtactgt agacagacat ttggaaatcg atttttgaa ggagaaagtg
 1451 aacaatccgg cgcaataatt cggtagta acaaattcat tgaagaattt
 1501 gattggccga tttgtgggtt gacagttgtt cgaccgcgg tgacagacgg
 1551 tgaggtttt gagaacatca tgccggaga tgccacat catgacattt
 1601 gcaagttcat tttgaggctc acatcagaaa gtgtactt ctcaggagag
 1651 gggccagaag ttagtgattt gaaacaaaaa tgggaacaa ttgtgtacta
 1701 tgagaaaaat ttgcaattt gcgagaaaaa atgttcgaga ggaaatttcc
 1751 acgtggatgg cggattcatt tgctctgaga atcgatccag tctcgactt
 1801 gagccaaatc caatttagaga accagtggcg tttaaagttc gtaaagcaat
 1851 agtggatgga attcgcttt cctacaaaaa agacgggagt gttggcttc
 1901 aaaaccgcattt gaagtacccg gtatttgcata cttctggta tctcgacgag
 1951 caatcaggag gcctaaagaa ggataaagtg cacaagttt acggatgtgc
 2001 gtctatcaaa acgtttggct tcaacgtttc caaacaatc atcagagacg
 2051 cgcttcttc caagcaatg gcaacaatgt acttgcaagg aaaattgact

Fig. 11A (sheet 1 of 2)

2101 ccgatgaatt atatctacga gaagaagact caggaagagc tgcgaaggga
2151 agcaacacgc accactgatt cattggccaa gtactgttgc gtccgtgtct
2201 cgttctgcaa aggatttgga gaagcatacc cagaacgccc gtcaattcat
2251 gattgtccag tttggattga gttgaaaatc aacattgcct acgatttcat
2301 ggattcaatc tgccagtaca taaccaactg cttcgagccg ctaggaatgg
2351 aagattttgc aaaattggga atcaacgtca gtgatgacta aatgataact
2401 ttttcactc accctactag atactgatt agtcttattc caaatcatcc
2451 aacgatatca aacttttcc tttgaacttt gcatactatg ttatcacaag
2501 ttccaagcag tttcaataca aacataggat atgttaacaa cttttgataa
2551 gaatcaagtt accaacttgtt cattgtgagc tttgagctgt atagaaggac
2601 aatgtatccc atacctcaat cttaatagt catcagtcac tggccccgca
2651 ccaattttt cgattcgcat atgtcatata ttgcaccgtg gccctttta
2701 ttgttaacttt taatataattt tcttcccaac ttgtgaatat gattgatgaa
2751 ccaccatttt gagtaataaa tgtatTTT gtgg

Fig. 11A (sheet 2 of 2)

1 gtaatcaaat tgtaaaggaa aaatattaat agtcagagta cacataaatg
 51 ggtgatcatc ataatttaac gggccttccc ggtacctcca tcccgccaca
 101 gttcaactat tctcagcccg gtaccagcac cgaggcccgg ctttatggtg
 151 gaaaaccttc tcatggattg gaagatattc ctgatgtaga ggaatatgag
 201 aggaacctgc tcggggctgg agcaggtttt aatctgctca atgttaggaaa
 251 tatggctaattt gttcccacg agcacacaccc gatgatgtca ccagtgaata
 301 caactacaaa gattctacaa cgagggtttaaaaatgga aatcccggca
 351 tatttggatc cagacagtca ggatgtatc acggaaatgt gtgtcaacta
 401 cccggatcca gatttattt acacaaaaaaa cacaaatatg accgagtagc
 451 atttggatgt gttgaagctt ggaaaaccag cagtagatga agcacggaaa
 501 aagatcgaag ttcccacgc tagtgcggc ccaaacaaaaa ttgtagaata
 551 tttgatgtat tatagaacgt taaaagaaaag tgaactcata caactgaatg
 601 cgtatcgac aaaacgaaat cgattatcgt tgaacttggc caaaaacaat
 651 attgatcgag agttcgacca aaaagcttc gagtcctgg tgaaaaaatt
 701 gaaggataag aagaatgtatc tccagaaccc gattgtatgt gttcttcaa
 751 aaggtaaaaa atataccgt tgcattacaa ttccaaggac acttgatggc
 801 cggttacagg tccacggaaag aaaaggttc cctcacgtag tctatggcaa
 851 actgtggagg tttatgaaa tgacaaaaaa cgaaacgcgt catgtggacc
 901 actgcaagca cgcatttgcgaa atgaaaatgt acatggatgt cgtaatccc
 951 tatcactacg aaattgtcat tggactatgt attgttggc agaggatca
 1001 tgacaatcga gatatgccgc cgccacatca acgctaccac actccaggc
 1051 ggcaggatcc agttgacgat atgagtagat ttataccacc agcttccatt
 1101 cgtccgcctc cgatgaacat gcacacaagg cctcagccta tgcctcaaca
 1151 attgccttca gttggcgca cgtttggccca tcctctccca catcaggcgc
 1201 cacataaccc aggggttca catccgtact ccattgctcc acagacccat
 1251 tacccgttga acatgaaccc aattccgcaa atgcccggaaa tgccacaaat
 1301 gccaccaccc ctccatcagg gatatggaaat gaatggccg agttgctt
 1351 cagaaaaacaa caatccattc cacaaaaatc accattataa tgatattagc
 1401 catccaaatc actattccta cgactgtggt ccgaacttgt acgggtttcc
 1451 aactccttat ccggattttc accatcctt caatcagcaa ccacaccgc
 1501 cggccacaact atcacaaaaac catacgccc aacaaggcag tcataacca
 1551 gggcaccaag gtcaggtacc gaatgtatcca ccaatttcaa gaccagtgtt
 1601 acaaccatca acagtccact tggacgtgtt ccgtcggtac tgtagacaga
 1651 catttggaaa tcgattttt gaaggagaaa gtgaacaatc cggcgcaata
 1701 attcggtcta gtaacaaatt cattgaagaa tttgattcgc cgatttgtgg
 1751 tgtgacagtt gttcgaccgc ggatgacaga cggtgaggtt ttggagaaca
 1801 tcatgccccgaa agatgcacca tatcatgaca tttgcaagt cattttgagg
 1851 ctcacatcag aaagtgtaac tttctcagga gagggggccag aagtttagtga
 1901 tttgaacgaa aaatggggaa caattgtgtt ctatgagaaa aatttgcaaa
 1951 ttggcgagaa aaaatgttcg agaggaaatt tccacgtgga tggcgattc
 2001 atttgctctg agaatcgtta cagtctcgga cttgagccaa atccaattag
 2051 agaaccagtg gcgtttaaag ttcgtaaag aatagtggat ggaattcgct

Fig. 11B (sheet 1 of 2)

2101 tttcctacaa aaaagacggg agtgttggc ttcaaaaccg catgaagtac
2151 ccgttatgg tcacttctgg gtatctcgac gagcaatcag gaggcctaaa
2201 gaaggataaa gtgcacaaaag tttacggatg tgcgtctatc aaaacgtttg
2251 gcttcaacgt ttccaaacaa atcatcagag acgcgcttct ttccaagcaa
2301 atggcaacaa tgtacttgca aggaaaattt actccgatga attatatcta
2351 cgagaagaag actcaggaag agctgcgaag ggaagcaaca cgcaccactg
2401 attcattggc caagtactgt tgtgtccgtg tctcggtctg caaaggattt
2451 ggagaagcat acccagaacg cccgtcaatt catgattgtc cagtttggat
2501 tgagttgaaa atcaacattt cctacgattt catggattca atctgccagt
2551 acataaccaa ctgcttcgag ccgcgttagaa tggaagattt tgcaaaattt
2601 ggaatcaacg tcagtgtatca ctaaatgata actttttca ctcaccctac
2651 tagatactga ttttagtcttta ttccaaatca tccaaacgata tcaaactttt
2701 tcctttaac tttgcataact atgttatac aagttccaag cagtttcaat
2751 acaaacatag gatatgttaa caacttttga taagaatcaa gttaccaact
2801 gttcattgtg agctttgagc tgtatagaag gacaatgtat cccatacctc
2851 aatcttaat agtcatcagt cactggcccc gcaccaattt ttgcattcg
2901 catatgtcat atattgcacc gtggcccttt ttattgtaac tttaatata
2951 ttttcttccc aacttgtgaa tatgattgat gaaccaccat ttgagtaat
3001 aaatgtatTTTttgtgg

Fig. 11B (sheet 2 of 2)

1 gtaatcaa at taaaaggaa aaatatta at agtcagagta cacataa atg
 51 ggtgatcatc ataattt aac gggc cttccc ggtac ctcca tccgc caca
 101 gttca actat tctc agcccc gtacc agcac cggaggcccg ctttatggtg
 151 gaaaaccc tc tcatggattt gaagatattt ctgatgtaga ggaat atgag
 201 aggaacctgc tcggggctgg agcagg tttt aatctgctca atgttaggaaa
 251 tatggcta at gaattt aac caataatcac attggac acg aaaccac ctc
 301 gtgatgccaa caagt cattt gcattca atg gcgggtt gaa gcta atcact
 351 ccgaaaactg aagttcccg a cagcacaca ccgatgt caccagt gaa
 401 tacaactaca aagattctac aacggagttt tattaaaatg gaaatcccgc
 451 catattt gga tccagac agt caggatgt accccgga aaga tggtgtcaac
 501 tacccggatc cagattt ttgacaca aacaca aata tgaccgagta
 551 cgatttggat gtgttga aac ttggaaaacc agcagtagat gaagcacgga
 601 aaaagatcga agttcccgac gctagtg cgc cggca aacaa aattt gtagaa
 651 tattt gatgt attatagaac gttaaaagaa agtgaactca tacaactgaa
 701 tgcgtatcgg acaaaaacgaa atcgattt atc gttgaactt gtc aaaaaca
 751 atattgatcg agagttcgac caaaaagctt gcgagttccct ggtgaaaaaa
 801 ttgaaggata agaagaatga tctccagaac ctgattt gatg tggttctt
 851 aaaaggta caaaatataccg gttgcattt aatttccaagg acactt gatg
 901 gcccggttaca ggtccacgga agaaaagg ttcctc acgt agtctatggc
 951 aaactgtt ggtttaatga aatgaca aacgaaacgc gtc atgtt gga
 1001 ccactgcaag cacgcattt aatgaaaag tgacatggta tgcgtgaaatc
 1051 cctatcacta cgaaattt gtc attt gtaact tgattt gttt ggagggat
 1101 catgacaatc gagatatg cccgc acat ccaatcgtt acactccagg
 1151 tcggcaggat ccagttgacg atatgatgtt atttatacca ccagttcc
 1201 ttcgtccgccc tccgatgaa ac atgcacaca ggcctc agtcc tatgcctca
 1251 caatttgcctt cagttggcgc aacg tttt gcc catcctt ccc cacatcaggc
 1301 gccc acataac ccagggtt cacatccgta ctccattt gct ccacagaccc
 1351 attaccggtt gaacatgaa ac ccaattccgc aaatgccc aatgccc acaa
 1401 atgccc accac ctctccatca gggatatgga atgaaatggc cgagg tgc
 1451 ttcagaaaac aacaatccat tccaccaaaa tcaccattt aatgatatta
 1501 gccatccaaa tcactatttcc tacgactgt gtc gaaactt gtacggg ttt
 1551 ccaactcctt atccggattt tcaccatcct ttcaatcgc aaccacacca
 1601 gccgccc acacca ctatcacaaa accatacg tc cacaaggc agtcatcaac
 1651 caggccacca aggtcaggta ccgaatgatc caccaattt aagaccagtg
 1701 ttacaaccat caacagtcac ctggacgtt ttccgtc ggtt actgttagaca
 1751 gacattt gga aatcgat tttt ttgaaggaga aatgaa acaa tccggc gca
 1801 taattt cggc tagt aacaaa ttcatgaa agt gat ttc gat tttt g
 1851 ggtgtgacag ttgttgc accg gatgaca gacgg tggagg tttt ggagaa
 1901 catcatgccc gaagatgcac catatcatga cattt gcaag ttcat tttt
 1951 ggctcacatc agaaatgtt aactt tctca gat gaggggcc agaagtt
 2001 gattt gaaacg aaaaatggg aacaattt gta tactatgaga aaaat t
 2051 aattt ggc gag aaaaatgtt cggaggaaa tttccacgtt gatggc ggat

Fig. 11C (sheet 1 of 2)

2101 tcatttgctc tgagaatcgtaacgtctcg gacttgagcc aaatccaatt
2151 agagaaccaggggcggtttaaatgcgtaaa gcaatagtgg atggaattcg
2201 ctttcctacaaaaaaagacgggagtgtttggcttcaaaac cgcatgaagt
2251 acccggtatttgtcaacttctggtatctcg acgagcaatc aggaggccta
2301 aagaaggataaagtgcacaaatgttacgga tgcgtcta tcaaaacgtt
2351 tggcttcaacgttccaaacaaatcatcag agacgcgctt ctttccaagc
2401 aaatggcaaacatgtacttgcaggaaat tgactccgat gaattatatc
2451 tacgagaagaagactcaggaagagctcgaaaggaaagcaa cacgcaccac
2501 tgattcattggccaagtaactgttgcgtccgtgcgttctgcaaaaggat
2551 ttggagaagcatacccgagaaatccccgtcaatcatgattgtccagtttgg
2601 attgagttgaaaatcaacatgcctacgatttcatggattcaatcgcca
2651 gtacataaccactgcgttcgagccgctagg aatggaagat tttgcaaaat
2701 tggaaatcaa cgtcagtgatgactaaatgataactttttaactcaccct
2751 actagatactgatgttgcattccaaatcatccaaacgatcaactt
2801 tttccttgaacttgcatactatgttacaaatccaaacgatccaa
2851 atacaaacataggatatttttttttgcataacttgcataacttgcata
2901 ctgttcatttgtagctttga gctgtatagaaggacaatgtatccatcc
2951 tcaatctttaatagtcatca gtcactggtc ccgcaccaat ttttcgatt
3001 cgcatatgtcataatttgca ccgtggcccttttattgtacttttaata
3051 tattttcttccaaacttgcataatgattgatgaaaccaccattttgagta
3101 ataaatgtattttgcataatgattgatgaaaccaccattttgagta

Fig. 11C (sheet 2 of 2)

1 MKLIATSLV PDEHTPMMS P VNTTTKILQR SGIKMEIPPY LDPDSQDDDP
 51 EDGVNYPDPD LFDTKNTNMT EYDLDVLKLG KPAVDEARKK IEVPDASAPP
 101 NKIVEYLMYY RTLKESELIQ LNAYRTKRN R LSLNLVKNNI DREFDQKACE
 151 SLVKKLKD KK NDLQNLIDVV LSKGTKYTGC ITIPRTLDGR LQVHGRKGFP
 201 HVVYGKLWRF NEMTKNETRH VDHCKHAFEM KSDMVCVN PY HYEIVIGTMI
 251 VGQRDHDNRD MPPPHQRYHT PGRQDPVDDM SRFIPPASIR PPPMMHTRP
 301 QPMPQQLPSV GATFAHPLPH QAPHNPVGSH PY SIAPQTHY PLNMNP IPQM
 351 PQMPQMPPL HQGYGMNGPS CSSENNNPFH QNHHYNDISH PNHYSYDCGP
 401 NLYGFPTPYP DFHHPFNQQP HQPPQLSQNH TSQQGSHQPG HQGQVPNDPP
 451 ISRPVLQPST VTLDVFRRYC RQTFGNRFFE GESEQSGAII RSSNKFIEEF
 501 DSPICGVTVV RPRMTDGEVL ENIMPEDAPY HDICKFILRL TSESVTFSGE
 551 GPEVSDLNEK WGTIVYYEKN LQIGEKCSR GNFHVDGGFI CSENRYSLGL
 601 EPNPIREPVA FKVRKAIVDG IRFSYKKDGS VWLQNRMKYP VFVTSGYLDE
 651 QSGGLKKDKV HKVYGCASIK TFGFNVSQI IRDALLSKQM ATMYLQGKLT
 701 PMNYIYEKKT QEELRREATR TTDSLAKYCC VRVSFCKGFG EAYPERPSIH
 751 DCPVWIELKI NIAYDFMDSI CQYITNCFEP LGMEDFAKLG INVSD

Fig. 12A

1 MGDHHNLTGL PGTSIPPQFN YSQPGTSTGG PLYGGKPSHG LEDIPDVEEY
51 ERNLLGAGAG FNLLNVGNMA NVPDEHTPMM SPVNTTTKIL QRSGIKMEIP
101 PYLDPDSQDD DPEDGVNYPD PDLFDTKNTN MTEYDLDVLK LGKPAVDEAR
151 KKIEVPDASA PPNKIVEYLM YYRTLKESEL IQLNAYRTKR NRLSLNLVKN
201 NIDREFDQKA CESLVKKLKD KKNDLQLNLID VVLSKGTKYT GCITIPRTLD
251 GRLQVHGRKG FPHVVYVGKLW RFNEMTKNET RHVDHCKHAF EMKSDMVCVN
301 PYHYEIVIGT MIVGQRDHDN RDMPPPHQRY HTPGRQDPVD DMSRFIPAS
351 IRPPPMNMHT RPQPMPPQQLP SVGATFAHPL PHQAPHNPVG SHPYSIAPQT
401 HYPLNMNPIP QMPQMPQMPP PLHQGYGMNG PSCSSENNNP FHQNHHYNDI
451 SHPNHYSYDC GPNLYGFPTP YPDFHHPFNQ QPHQPPQLSQ NHTSQQGSHQ
501 PGHQGQVPND PPISRPVLQP STVTLDVFRR YCRQTFGNRF FEGESEQSGA
551 IIRSSNKFILE EFDSPICGVT VVRPRMTDGE VLENIMPEDA PYHDICKFIL
601 RLTSESVTFS GEGPEVSDLN EKWGTIVYYE KNLQIGEKKC SRGNFHVDGG
651 FICSENRYSL GLEPNPIREP VAFKVRKAIV DGIRFSYKKD GSVWLQNRMK
701 YPVFVTSGYL DEQSGGLKKD KVHKVYGCAS IKTFGFNVSK QIIRDALLSK
751 QMATMYLQGK LTPMNYIYEK KTQEELRREA TRTTDSLAKY CCVRVSFCKG
801 FGEAYPERPS IHDCPVWIEL KINIAYDFMD SICQYITNCF EPLGMEDFAK
851 LGINVSDD

Fig. 12B

1 MGDHHNLTGL PGTSIPPQFN YSQPGTSTGG PLYGGKPSHG LEDIPDVEEY
 51 ERNLLGAGAG FNLLNVGNMA NEFKPIITLD TKPPRDANKS LAFNGGLKLI
 101 TPKTEVPDEH TPMMSPVNNT TKILQRSGIK MEIPPYLDPD SQDDDPEDGV
 151 NYPDPDLFDT KNTNMTEYDL DVLKLGKPAV DEARKKIEVP DASAPPNKIV
 201 EYLMYYRTLK ESELIQLNAY RTKRNRLSLN LVKNNIDREF DQKACESLVK
 251 KLKDKKKNDLQ NLIDVVLSKG TKYTGCITIP RTLDGRLQVH GRKGFPHVYY
 301 GKLWRFNEMT KNETRHVDHC KHAFEMKSDM VCVNPYHYEI VIGTMIVGQR
 351 DHDNRDMPPP HQRYHTPGRQ DPVDDMSRFI PPASIRPPP NMHTRPQPMP
 401 QQLPSVGATF AHPLPHQAPH NPGVSHPYSI APQTHYPLNM NPIPQMPQMP
 451 QMPPPLHQGY GMNGPSCSSE NNNPFHQNH YNDISHPNHY SYDCGPNLYG
 501 FPTPYPDFHH PFNQQPHQPP QLSQNHTSQQ GSHQPGHQGQ VPNDPPISRP
 551 VLQPSTVTLD VFRRYCRQTF GNRFFEGERE QSGAIIRSSN KFIEFDSP
 601 CGVTVVRPRM TDGEVLENIM PEDAPYHDIC KFILRLTSES VTFSGEGPEV
 651 SDLNEKWGTI VYYEKNLQIG EKKCSRGNFH VDGGFICSEN RYSLGLEPNP
 701 IREPVAFKVR KAIVDGIRFS YKKDGSVWLQ NRMKYPVFVT SGYLDEQSGG
 751 LKKDKVHKVY GCASIKTFGF NVSKQIIRDA LLSKQMATMY LQGKLTPMNY
 801 IYEKKTQEEL RREATRTTDS LAKYCCVRVS FCKGFGEAYP ERPSIHDCPV
 851 WIELKINIAY DFMDSCIQYI TNCFEPLGME DFAKLGINV DD

Fig. 12C

0 1 2 3 4 5 6 7 8 9

tgatcttcaagccgaagcaatcaagaccaaagccaatcaactactcacttttttcaagaacctaacttttg
 tcactttccccaaaaccgttcaagctgctgccttactctcatccctccttactccttcttcgtccgctacta
 ctgtatcttctggacatctacctgtatacacaccagggtggccagtcatctgcattacaattcatcaattgacacttctt
 caacaacaaccggccgtcctcattcactcccgattcttctcatcctcaacatcgtcgtcttggctgaaattccgaaaga
 cgttatgtggagatgctggtagatcagggactgatgcacatcgtcatccgcctcacgtccacactcatctgtttcgagat
 tcggagccgacacgttcatgaatacaccggatgtgtatgatgatgatgatgatgaaaccgattctcgatcggtgc
 aatacgtggccaatgcgttaggcccactcgaaccaccactcaactcgactccattattcatgaacaaattcctgaaaga
 agatgctgacactatacggagcaatgagcaatgtggacagctcgccggagcatctcaaacgggtcgacagcaatgctt
 atactccagatggaaggcaattctcatcagacatcgatcggatgttcaagatgtccgaaatcgccagacgataccgta
 tcggaaaaaaagacaacgaccagacggAACGCTGGGAAATATGTCATATGCTGAACCTTACTACAGCCATTATGCC
 tagtccagagaaacggttaactctgcacaagttacgaatggatggatgtccagaatgttccataacttcaggataagggag
 attcgaacaggctcagctggatggaaggactcgatccgtcacaatctgtcttcatctcgatcattcatcgaattcagaat
 gaaggagccgaaagagactcgatggatgttattaaatccagatgcaagccaggaatgaaatccacggcgatcactgtgaacg
 atccaataactattgagacgactacaaggctcaactcgaaaaatctcgccggagccaagaagaggataaaggagagag
 cattgatggctcccttactcgacacttaatggaaattcgattgcccgtatcatttcgtcccttactcaatcgaacacttcgatt
 gatgatgatcaatgcaggagcattgataacgttccatcatcttcgtcccttactcaatcgaacacttcgatt
 ggatcgtctcgatgttctccagctattgaaagtgatgatctatgatgatctagaattccatcatgggtggcaatc
 ggttccagcaatccaaatgatattgtttagaaactgatcaatgcgtatcgactactcatagttggagtt
 cagattaaggcaggactcgaaagccgatataagacggAACCAATTGCTCCACCACCATCACCACGAGTTGAACAGTGTCCG
 tggatcgtgtcgtcagaatccacttgcggaaatccaaattgtggccaaagcactaactcaagccaaatggccactaccgggtg
 cctatggaaactatcaaaatggtgaataactccaaatcaattggctatcaacatccaaactcatccactgccttgaatt
 caatcgtgtgaaattgttagctgcacagcatactgtcgatcattcatcgctctccaaattgattggaaatctgacact
 tcccgatcagccactgatggataactatggatgtttagtgcattgatcagacatgagctgatctgatcagactgatc
 ttcatattgtttagttaattctctcattttttccctggatgttgcattttccagaaataatcgatttttgcggaaatctgacact
 agttaaggcagaataaaaaattttggatgttgcattttttccagaaataatcgatttttgcggaaatctgacact
 atcggatatttttagttaattttgtatgagaaaaaaaatttagaaaaacataaggaaaaatgaaaaggcttttttc
 gaaaatttttagaattctccatattccaaataaggcccttagaactgcaaaacaaaaattgaaatttcgaatcaaa
 aagttcccgaaataaaatgttgcataattaaaagcatttaatttcctttaaaaaattgaaataatagccgaaattt
 gcagattttttctgaaaatcgaaaacccaaattttgatatttttaatttttactttccagatgatgatcaatca
 cattagcactgaaaattattgaaaaaaactcaaatacaatt
 cagaaatctccgtcttcatcttccaaatccctacactacacactcaacgatcatcagccagaccatcaatattct
 tccaaattttgacgtcgtaatttttttcaaaaactctatttttctatttttctgtcgatcatttttttttttttttt
 tctcgatctatccaaacacattcatcccgatgtacgtcgatataataatataaaataccatttttttttttttttt
 aatgcgaaatatcgaaaaaccgtttagattacatccatcttttccatctttcgatgtaaatttttttttttttttt
 gttcticactctttaatgtcacatccatcttttccatctttcgatgtaaatttttttttttttttttttttttttt
 ttcccaatctgttttttaattgatattttccaaatt
 ttt
 ctccgtatacacacacacatgatatttccaaattttactgaaagatgtatccctctctgtctcccttacaa
 aacattattttgtgttgcattattgcccacacgtcgatatttttttttttttttttttttttttttttttttttttt
 ttt
 ccctctacaccagaacacgtctgcatttcgatatttcgatatttttttttttttttttttttttttttttttttt
 ttt
 att
 tccctccgcccccaatataatttgcgactgtatgatgatgatgatgatgatgatgatgatgatgatgatgat
 gat

ttcacacgtggccaatgcaacaatacatctatcaggaatcgtagcaaccattccccatcaccattaaatcaacacaaca
atccgtatcatccaatgcacatcctcatcatcaattacctcatatgcacaacttcctcaaccttctattgaatcttaacatg
acgacgttaacatcttctggcagttccgtggccagttccattggaggcggagctcaatgctccgtgcgcgtcgggctc
ctgcaccgctgcaacaaattcctcaacagcagcagaccgttggtcaaattgtctgtcatcgggcattttcttcat
ctggcatgacacttggaatgtcacttaatctgtcacaaggcggtggtccaatgccggaaaaaaaagaagcgttgcgtaaag
aagccaaccgatcaattggcacagaagaaaccgaatccatgggtgaggaatcttattcgatattcattgccaaggcatt
ggaatcggccagacggaaaggcttaactcaatgagatttataatggttctgtataatattccctactttggagaac
gatctagtcccggaggaggccggatggagaactcgatccgtcacaatctgtctttcatttcgttcatgcgaatt
cagaatgaaggagccggaaagagactgtgtggattttatccagatgcaagccaggaatgaatccacccgtacacg
tgaacgatccaataactttagagacgactacaaaggctcaactcgaaaaatctccggagccaaagaagaggataaagg
agagagcattgtatggctcccttactcgacacttaatggaaattcgattccggatcgattcaaacgatttctcactgat
ttgtatgtatgatgatcaatgcaaggagcattgataacgttccatcatcttccgtccccgaactcaatgaaacctctc
gattcctggatcgctgtctgtttctccagctattggaaagtgatattctgtatgatctagaattccatcatgggtt
gcgaatcggttccagcaattccaagtgatattgtttagataactgatcaaattgcgtatcgatgcaactactcatattgg
ggagttcagattaagcaggagtcaagccgattaagacggaaaccattgtccaccaccatcataccacgaggtaacag
tgtccgtggatcggtgtcagaatccacttcttgcggaaattgtccaaagcactaacttcaagccaaatgccactac
ccgggtccatggaaactatccaaatggtggataactccaaatggctatcaacatccaaactcatccactgcct
ggaattcaatcggtggattttagctgcacagcatactgtcgcttctcatcggtcttccaaattgatggaaaatct
gacacttcccgatcagccactgatggataactatggatgttgcattgatcagacatgagctgagtcagactggaggc
agcatattcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ggagtggaaaatctccgtctcatcttccaaatccctacctacacacactcaacgatcatcagccagaccatcaat
attctccaaatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ctttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ccctaaatgcggaaaatcgaaaaaccgttggatttacctctttcttgcatttgcatttgcatttgcatttgcatttgcatttgc
tccagggtcttcaactttaaatgcattccctacgtgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
acacattcccaatctgtcttttaattgaattttcaaaaaatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
tcccttttttccctggtagcaaattgtctgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
gaatccctccgtatacacacacacatagtaatctacccaaatcttactgaaagatgtatccctctctgtctccctc
tacaaaacatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
actttttctcgaaaaatttacacacacacaaaaatccctcaaaaaatctcattttgcatttgcatttgcatttgcatttgcatttgc
gatcccccctctacaccagaacacgtcttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
gcttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
tccaaatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
tcgtctccctccgcccccaatatatgtgactgtatgatgatgatgatgatgatgatgatgatgatgatgatgatgatgat

Fig. 13B

MMEMLVDQGTDASSASTSTSSVSRFGADTFMNTPDDVMNDDMEPIPRDR
CNTWPMRRPQLEPPLNSSPIHEQIPEEDADLYGSNEQCGQLGGASSNGST
AMLHTPDGSNSHQTSFPSDFRMSESPDDTVSGKTTTRRNAWGNMSYAEILI
TTAIMASPEKRLTLAQVYEWMVQNVPYFRDKGDSNSSAGWKNSIRHNLSLH
SRFMRIQNEGAGKSSWWVINPDAKPGMNPRRTRERSNTIETTTKAQLEKSR
RGAKKRIKERALM GSLHSTLN GNSIAGSIQTISHDLYDDDSMQGAFDNVPS
SFRPRTQS NL SIPGSSSRVSPAIGSDIYDDLEF P SWVG E S VPAIPSDIVDR
TDQMRIDATTHIGGVQIKQESKPIKTEPIAPPSYHE LNSVRGSCAQNPLL
RNPIVPSTNFKPMPLPGAYGNYQNGGITPINWLSTSNSSP LPGIQSCGIVAA
AQHTVASSS ALPIDLENLTLPDQPLMDTMDVDALIRHELSQAGGQHIHFDL

Fig. 14A

MQQYIYQESSATIPHHLNQHNNPYHPMHPHQLPHMQQLPQPLLNLNMTT
LTSSGSSVASSIGGAQCSPCASGSSTAATNSSQQQQTVGQMLAASVPCSS
SGMTLGMISLNL SQGGGPMPAKKRCRKPTDQLAQKKPNPWGEESYS DIIA
KALE SAPDGRLKLNEIYQWFSDNIPYFGERSSPEEAAGWKNSIRHNLSLHS
RFM RIQNEGAGKSSWWVINPDAKPGMNPRRTRERSNTIETTTKAQLEKSRR
GAKKRIKERALM GSLHSTLN GNSIAGSIQTISHDLYDDDSMQGAFDNVPS
FRPRTQS NL SIPGSSSRVSPAIGSDIYDDLEF P SWVG E S VPAIPSDIVDR
DQMRIDATTHIGGVQIKQESKPIKTEPIAPPSYHE LNSVRGSCAQNPLL
RNPIVPSTNFKPMPLPGAYGNYQNGGITPINWLSTSNSSP LPGIQSCGIVAA
QHTVASSS ALPIDLENLTLPDQPLMDTMDVDALIRHELSQAGGQHIHFDL

Fig. 14B

1 cggaagccat ggagctcgag atctgattgc tggacacgga cggaactccg acgtatctcg
 61 cagatgcattt ttaacatttt acatccacaa ctgcaaaccg tggtcgagca gtggcaatg
 121 cgagaacgcc catcgctgga gaccgagaat ggcaaaggat cgctgctcct ggaaaatgaa
 181 ggtgtcgag atatcatcac tatgtgtcca ttccggagaag ttatttagtgt agtattccg
 241 tggtttctt caaatgtcg aacatcgcta gaaatcaagc tatcagattt caaacatcaa
 301 ctttcgaat tgattgctcc gatgaagtgg ggaacatatt ccgtaaagcc acaggattat
 361 gtgttcagac agttgaataa ttccggcgaa attgaagtta tatttaacga cgatcaaccc
 421 ctgtcgaaat tagagctcca cggcactttc ccaatgctt ttctctacca acctgatgga
 481 ataaacaggg ataaagaatt aatgagtgtat ataagtcatgt gtctaggata ctcactggat
 541 aaactggaag agagcctcgat tgaggaactc cgtcaatttc gtgcttctct ctgggctcgt
 601 acgaagaaaa cgtgcttgac acgtggactt gagggtacca gtcactacgc gttccccgaa
 661 gaacagtact tgggtgttgg tgaatcgtgc ccgaaagatt tggaatcaaa agtcaaggct
 721 gccaagctga gttatcagat gttttggaga aaacgtaaag cgaaatcaa tggagttgc
 781 gagaaaaatga tgaagattca aattgaattc aatccgaacg aaactccgaa atctctgctt
 841 cacacgtttc tctacgaaat gcgaaaattt gatgtatacg ataccgatga tcctgcagat
 901 gaaggatggt ttcttcaatt ggctggacgt accacgtttt ttacaaatcc agatgtcaaa
 961 cttacgtctt atgatggtgt ccgttcggaa ctggaaagct atcgatgccc tggattcggt
 1021 gttcgccgac aatcactagt cctcaaagac tattgtcgcc caaaaccact ctacgaacca
 1081 cattatgtga gaggcacacga acgaaaactt gctctagacg tgctcagcgt gtctatagat
 1141 agcacaccaa aacagagcaa gaacagtgc atggttatga ctgattttcg tccgacagct
 1201 tcactcaaacc aagtttcaact ttgggacctt gacgcgaatc ttatgatacg gcctgtgaat
 1261 atttctggat tcgatttccc ggccgacgtg gatatgtacg ttcgaatcga attcagtgt
 1321 tatgtgggaa cactgacgct ggcacatcaaaa tctacaacaa aagtgaatgc tcaatttgca
 1381 aaatggaaata aggaaatgtt cacttttgc tatacatga aggatatgcc accatctgca
 1441 gtactcagca ttctgtttt gtacggaaaa gtgaaattaa aaagtgaaga attcgaagtt
 1501 ggtgggtaa atatgtccct aaccgattgg agagatgaac tacgacaagg acaatttttta
 1561 ttccatctgt gggctcctga accgactgcc aatcgttagta ggatcggaga aatggagca
 1621 aggataggca ccaacgcagc gtttacaatt gaaatctcaa gttatgggtgg tagagttcga
 1681 atgccgagtc aaggacaata cacatatctc gtcaagcacc gaagtacttg gacggaaact
 1741 ttgaatatta tgggtgatga ctatgagtcg tgtatcagag atccaggata taagaagctt
 1801 cagatgcttg tcaagaagca tgaatctgga attgtatttag aggaagatga acaacgtcat
 1861 gtctggatgt ggaggagata cattcaaaa caggagcctg atttgctcat tgtgctctcc
 1921 gaactcgcat ttgtgtggac tgatcgtgag aactttccg agctctatgt gatgcttga
 1981 aaatggaaac cggcggatgt ggcagccgcg ttgactttgc ttggaaaacg ttgcacggat
 2041 cgtgtgattc gaaagttgc agtggagaag ttgaatgagg agctgagccc ggtcacattc
 2101 catctttca tattgcctct catacaggcg ttgaagtacg aaccgcgtgc tcaatcgaa
 2161 gttggaatga tgctcttgc tagagctctc tgcgattatc gaattggaca tcgactttc
 2221 tggctgctcc gtgcagagat tgctcgttt agagattgtg atctgaaaaag tgaagaatat
 2281 cggcgtatct cacttctgat ggaagcttac ctccgtggaa atgaagagca catcaagatc
 2341 atcacccgac aagttgacat gtttgcgtgag ctccacacgaa tcagcactt tgtcaaagga
 2401 atgccaaggaaat atgttgcgtac gatgaaactg cgtgacgagg ttcgatcgat tagtcataaa
 2461 atggaaaata tggattctcc actggatcct gtgtacaaac tgggtgaaat gataatcgac
 2521 aaagccatcg tccttaggaag tgcaaaaacgt ccgttaatgc ttcactggaa gaacaaaaat
 2581 ccaaaagagtg acctgcaccc tccgttctgt gcaatgatct tcaagaatgg agacgatctt
 2641 cgccaggaca tgcttgcgtc tcaagttctc gaagttatgg ataacatctg gaaggctgca

Fig. 15 (sheet 1 of 2)

2701 aacattgatt gctgtttgaa cccgtacgca gttcttccaa tggagaaaat gattggaatt
2761 attgaagttg tgccataattg taaaacaata ttcgagattc aagttggAAC aggattcatg
2821 aatacagcag ttccggagtat tgatccttcg tttatgaata agtggattcg gaaacaatgc
2881 ggaattgaag atgaaaaagaa gaaaagcaaa aaggactcta cgaaaaatcc catcgaaaag
2941 aagattgata atactcaagc catgaagaaaa tattttgaaa gtgtcgatcg attcctatac
3001 tcgtgtgttg gatattcagt tgccacgtac ataatggaa tcaaggatcg tcacagtat
3061 aatctgatgc tcactgaaga tggaaaaatat gtcccacatttgcatttgcatttggaa
3121 cacggaaaaga ccaaacttgg gatccagcga gatcgtaac cgtttattct aaccgaacac
3181 tttatgacag tgattcgatc gggtaaatct gtggatggaa attcgcatga gctacaaaaaa
3241 ttcaaaaacgt tatgcgtcga agcctacgaa gtaatgtgga ataatcgaga ttgttcgtt
3301 tccttgttca cttgtatgct cggaatggag ttgcctgagc tgtcgacgaa agcggatttg
3361 gatcatttga agaaaaaccct cttctgcaat ggagaaagca aagaagaagc gaaaaagttt
3421 ttcgctggaa tctacgaaga agccttcaat ggatcatggcgtt ctacaaaaac gaattggctc
3481 ttccacacgac tcaaacacta ctga

Fig. 15 (sheet 2 of 2)

1 RKPWSSRSDC WTRTELRRIS QMHVNILHPQ LQTMVEQWQM RERPSLEHEN GKGSLLLNE
 61 GVADIITMCP FGEVISVVFP WLANVRTSL EIKLSDFKHQ LFELIAPMKW GTYSVKPQDY
 121 VFRQLNNFGE IEVIFNDDQP LSKLELHGTF PMLFLYQPDG INRDKELMSD ISHCLGYSLD
 181 KLEESLDEEL RQFRASLWAR TKKTCLTRGL EGTSHYAFPE EQYLCVGESC PKDLESKVKA
 241 AKLSYQMFWR KRKAЕINGVC EKMMKIQIEF NPNETPKSLL HTFLYEMRKL DVYDTDDPAD
 301 EGWFLQLAGR TTFVTNPDVK LTSYDGVRSE LESYRCPGFV VRRQSLVLKD YCRPKPLYEP
 361 HYVRAHERKL ALDVLSVSID STPKQSKNSD MVMTDFRPTA SLKQVSLWDL DANLMIRPVN
 421 ISGFDFPADV DMYVRIEFSV YVGTLTLASK STTKVNAQFA KWNKEMYTFD LYMKDMPPSA
 481 VLSIRVLYGK VKLKSEEFEV GWVNMSLTDW RDELRQGQFL FHLWAPEPTA NRSRIGENGA
 541 RIGTNAAVTI EISSYGGRVR MPSQGQYTYL VKHRSTWTET LNIMGDDYES CIRDPGYKKL
 601 QMLVKKHESG IVLEEDEQRH VWMWRRYIQQ QEPDLLIVLS ELAFWWTDR NFSELYVMLE
 661 KWKPPSVAAA LTLLGKRCTD RVIRKFAVEK LNEQLSPVTF HLFILPLIQA LKYEPRAQSE
 721 VGMMILLTRAL CDYRIGHRLF WLLRAEIARL RDCDLKSEYY RRISLMEAY LRGNEEHIKI
 781 ITRQVDMVDE LTRISTLVKG MPKDVTAMKL RDELRSISHK MENMDSPPLDP VYKLGEMIID
 841 KAIVLGSAKR PLMLHWKNKN PKSDLHLPFC AMIFKNGDDL RQDMLVLQVL EVMDNIWKA
 901 NIDCCLNPYA VLPMGEMIGI IEVVPNCKTI FEIQVGTGFM NTAVRSIDPS FMNKWIRKQC
 961 GIEDEKKKSX KDSTKNPIEK KIDNTQAMKK YFESVDRFLY SCVGYSVATY IMGIKDRHSD
 1021 NLMLTEDGKY VHIDFGHILG HGKTKLGIQR DRQPFILTEH FMTVIRSGKS VDGNSHELQK
 1081 FKTLCVEAYE VMWNNRDLFV SLFTLMLGME LPELSTKADL DHLKKTLFCN GESKEEARKF
 1141 FAGIYEEAFN GSWSTKTNWL FHAVKHY

Fig. 16

CONVERGENT TGF- β AND INSULIN SIGNALING
ACTIVATE GLUCOSE-BASED METABOLISM GENES

TGF- β • DAF-7 • DAF-4 • DAF-1 • DAF-8 • DAF-14 • DAF-3 • DAF-16 • MAD PROTEINS • FORKHEAD PROTEIN • GLUCOSE BASED METABOLISM GENES

Fig. 17

IN PHEROMONE, NO TGF β OR INSULIN-LIKE SIGNALS
CAUSES REPRESSION OF ANABOLIC GENES

Fig. 18

DRUGS THAT INHIBIT DAF-16 OR DAF-3
 (OR PROTEINS IN THE PATHWAY)
 CAN BE DISCOVERED USING REPORTER GENES
 BEARING THEIR COGNATE BINDING SITES

DRUG CAUSES A DECREASE IN DAF-16 ACTIVITY, ACTIVATING
 THE REPORTER GENE LIKE A DAF-16 MUTANT.
 THIS BYPASSES THE NEED FOR INSULIN

Fig. 19

**DRUGS THAT INHIBIT DAF-3 WILL CURE
THE DIABETES CAUSED BY A LACK OF DAF-7**

Fig. 20

DAF-16a1	1	-----MEMILVDGGTDAASSGASSEETSSVERFGADTFMNNTPDDVMNNDDNEPIFDR
DAF-16b	1	-----MNDSDDDDFPEFRGRGYTWPMQCYLXESSATIHHHLNQHNEYHPMHEPHQLPHMQQLPOELLN
FKHR	1	-----MAEAAPQVVEIDPPDPEPLPRBSCCTWPLQRPELQASPAKPSGETAADSME-----EDAAAGLESA
FKHRL1	1	-----MAEAPASPAAPSLPLEVELDPEFEPOSRPRBSCCTWPLQRPELQASPAKPSGETAADSME-----EDEDDEGG
AFX	1	-----MR1IQPKQA-----
DAF-16a1	52	CN. - TWFMRREPOLEEPPLNSSPITIHEQIPEEDADLYGSNEO. . . CCGLEGABNSGSTMELHTPDGSNSHOTSFSDFRSE
DAF-16b	68	LNMTELTSSGOSVASSNSCAGQCSSECASSGSTRATINGSQQOTVCQMLAABVECSSGMTEGMSLNLSQGGPMPAKKK
FKHR	64	RAVSADFMNSNLSSLEEESEDFQAPGSVAAVAAAATGCGCDFQCPEAC. EHEAPPQOPPQPELQOPPEA
FKHRL1	72	RAGSAMAIGGGGGSGTLLGGSLLED. . . ARVLAPEQQDGEQSCPATAAAGGLSGGT. QALEQOPQQPEL. PPOPGAAAG
AFX	10	AIIIDDEDDEEESRERSRSCSTWPLPREELNQSPPEVEPDICKEVKVTHEGRSPEL. ELESRESEPAGE. . . QPGILCAVT
DAF-16a1	127	SEDDTVSGKKTTRRNAGNNSYAAELITTAIVASPEKRRLTAAQVYEWVVONVVPYFRDKGDENSAGWKNSIRHNLBLHSLR
DAF-16b	148	CRKEP.TDOLAOKKPNWGEESYSDIIAKALESAFDGRKLNEIYQWEFSDNTIPYFGERSSPEEARGWKNNSIRHNLBLHSLR
FKHR	143	GFLAQOPRKSSSSERRNAWNGLSYADLITKATESSAEKRLTISQIXEWVWKSVPVYFKDGDENSAGWKNSIRHNLBLHSLR
FKHRL1	143	C. . . SCQPRK.CSRRRNAGNNSYADLITRATESSPDKRRLTISQIXEWVRCVVFRDKGDDNSAGWKNSIRHNLBLHSLR
AFX	86	CPRKG. . . CSRRRNAGNNSYAEFISQIAESAPEKRRLTAAQVYEWVVONVVPYFRDKGDENSAGWKNSIRHNLBLHSLR
DAF-16a1	207	FWRJIONEGACKSSWWVINVPDFAKPGRNPRRTRESNTIETTTKAQLEKBRGAKRIKERALMGSLHSTLNGNSIAGSIQT
DAF-16b	227	FMRJIONEGAKSSWWVINVPDFAKPGRNPRRTRESNTIETTTKAQLEKBRGAKRIKERALMGSLHSTLNGNSIAGSIQT
FKHR	223	FIRVQNECTGKSSWWVINVPEG. . . GKSQGKSPRRRAASNDNNNSIREAKSRRAKK. . . AS. LOSCOEGA. GDSPGSO
FKHRL1	220	FMRVQNECTGKSSWWVINVPEG. . . GKSQGKAPRRRAVSMNDNSNKYTKSRGRAARKK. . . AA. LOTAPESA. DDSP. SO
AFX	160	FIKVHNEATGRSSWWVINVPEG. . . GKSQGKAPRRRAASMDSSSKLRLGRSKAPKK. . . PSVLPAPPEGATPTSPVGH
DAF-16a1	287	ISHDLYDDDSMGGAFDNVPSSBERPTQSNL6IPGSBERVSPAIQBDIYDDL. EFFSWVGESVPAIPSDIVDRTDQMRLIDA
DAF-16b	307	ISHDLYDDDSMGGAFDNVPSSBERPTQSNL6IPGSBERVSPAIQBDIYDDL. EFFSWVGESVPAIPSDIVDRTDQMRLIDA
FKHR	292	FSKWPASPQSHNSNDFDNWSTFRPTSESSNAS. . . TISGCRSPIM. . . TEODDGEGD. . . VHSWVYPPSSAAKMAST. . . .
FKHRL1	288	LSKWPQSPSRRSSDDEWDFRSRTNSNAS. . . TVEBCRSLPIMASTDELQDDDAPLSPMILYSSASLSPSPVSKPCVT
AFX	231	FAKWQGSPSPCSRNRREEADMWTTFRPRSSNAS. . . SVSTRSLPIMERESEV. LAEEIASVYSSYAGGVPPPTLNEGELLDGLN
DAF-16a1	366	TTHIGGQVQIKQESKRPIKTEPIAPPSSYHELNNSVRGSCAQNPILLRNPIVPSTTNFKPMLPQAYGNQYONGGITPINWLSNS
DAF-16b	386	TTHIGGQVQIKQESKRPIKTEPIAPPSSYHELNNSVRGSCAQNPILLRNPIVPSTTNFKPMLPQAYGNQYONGGITPINWLSNS
FKHR	359	EPSLSEISNPENN. ENLIDNL. NILSSPSTSLSVSTOSSSPGTMMOOTPCYSFAPP. NTSDNNSPSPNYOKTYGOSSMSPDP
FKHRL1	366	EPRLTDMAGTMNNENDGLTENLMDNNITLPPSQSPSPTGGMQRSSSFPTTK. GSCLGSPTESSFNSTVFGPSSNSLRL
AFX	308	LTSSSHSSLRSRGSGFSLQHPGVTLGPLEHTYSSSLFPAGEGLSAGEGFESSQALEAELTSDTPPP PADVLMTQVDPILS
DAF-16a1	446	SSPLPGIQ. . . CGIIVAAQHTVASBALPIDLENLTLPDQPLMDTMDVDALIRHLSQAGQOHIIHFDI
DAF-16b	466	SSPLPGIQ. . . CGIIVAAQHTVASBALPIDLENLTLPDQPLMDTMDVDALIRHLSQAGQOHIIHFDI
FKHR	436	QMPIQTQDNK. . . SYYGGMQYNCAPGGLKELLTSDSEPHNDL. MTPVDPGVQAQPNSRVIGQNV. . . MWGENSVMTYGSQ
FKHRL1	445	QSPMOTIQENKPATFSSMSHY. . . GNQTLQDLITSDSLSHSDVMMNTQSDPLMSQASTAVSAQNSRRNVMLRNDDPMNSFAAQ
AFX	388	QAPTLILLGGPSE. . . SKLATGVGCCKPKPLEARGPSSSLVPTLSMIAAPPVMMASAPIPKALGTPVFTPETEABODRMP
DAF-16a1	511	-----
DAF-16b	531	-----
FKHR	511	ASHNKMNNPSSH. THPGRHQOTS AVEVNGRPHTVSTWHTSGMNRTOVVRTPVOVLPHPOMSALGGYSSVSSCNGYGR
FKHRL1	523	PNOGSLVN. ONE. LEHOHQOTO GALGGSRALNSVNM. GLSESSSLEGSAKHQQSEVSQSO. TLSDSLSESSLYSTSAN
AFX	464	QDLDLDMYMNLECDMDNIIISDLMDEGEGLDFNFE PDE

FIG. 21A-1

DAF-16a1	511
DAF-16b	531
FKHR	590
FKHRL1	599
AFX	502

MGLLHQEKLPSDLG . GMFLIEREDCDMESTIRNDLWDCGTEDENTDNVILENC SEPHSVKTTTHSWVSQ
LPVMGHERFPSDLDLDMENGSECDMESISIRSELVDADEGLEDENFDLISTONVGLNVGGNETGAKQASSQSWSVG

FIG. 21A-2

Fork head Domain Alignment (*C. elegans*, human, others)

FIG. 21B

Fig. 22

INJECTION OF DAF-7 BYPASSES OBESITY-INDUCED DEFECTS IN INSULIN-REGULATION OF METABOLISM

Fig. 23

Fig. 24

Comparison of the human AKT protein sequence to the cosmid sequence C12D8, located in the genetic interval where sup(mg144) maps. Numbering in the AKT protein sequence by amino acid residues, and in the cosmid sequence by nucleotide position.

Score = 450 (207.4 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 79/121 (65%), Positives = 97/121 (80%), Frame = +1

335
 Query: 319 EVLEDNDYGRAVDWWGLGVV ру YEMMCGR LPFYNQDHEKL FELIMEEIRFPRTLGPEAKS 378
 +VL+D+DYGR VDW WG+GVV ру YEMMCGR LPFY+DH KLFELI+ ++RFP L EA++
 Sbjct: 33685 QVLDDHDYGR CV DWG VGVV ру YEMMCGR LPFYSKDHNKL FELIMAGDLRFP SKLSQEART 33864
 Query: 379 LLSG LLKKDP TQLGGGSEDAKEIMQH RFF FANIVWQDVYEKKLSPPFKPQVTSETDT TRYFD 439
 LL+GLL KDPT QRLGGG EDA EI + FF + W+ Y K++ PP+KP V SETDT YFD
 Sbjct: 33865 LLT GLLVKDPT QRLGGGPEDALEICRA DFFRTVDWEATYRKEIEPPYKPNVQSETDT SYFD 34047

Score = 256 (118.0 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 48/66 (72%), Positives = 59/66 (89%), Frame = +1

32314
 Query: 146 TMNEFEYLKLLGKGTFGKVILVKEKATGRYYAMKILKKEVIVAKDEVAHTLTENRVLQNS 205
 TM +F+++LK+LGKGTFGKVIL KEK T + YA+KILKK+VI+A++EVAHTLTENRVLQ
 Sbjct: 32314 TMEDFDFLKVLGKGTFGKVILCKE KRTQKLYAIKILKKD VIIAREEV AHTLTENRVLQRC 32493
 Query: 206 RHPFLT 211
 +HPFLT
 Sbjct: 32494 KHPFLT 32511

Score = 190 (87.6 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 36/45 (80%), Positives = 37/45 (82%), Frame = +2

33509
 Query: 276 KLENLMLDKDGHIK I TDFGLC REGIKDGATMKTFCGTPEYLAPEV 320
 KLENL+LDKDGH IKI DFGLC KEE I G TFCGTPEYLAPEV
 Sbjct: 33509 KLENL LLDKDGHIKIADFGLC KEEISFGDKTSTFCGTPEYLAPEV 33643

Score = 188 (86.7 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 37/57 (64%), Positives = 42/57 (73%), Frame = +3

32667
 Query: 209 FLTALKYSFQTHDR LCFVMEYANGGELFFHLSR ERVFS EDRARFYGA EIVS ALDYLH 265
 + LKYSFQ LCFVM++ANGGEL H+ + FSE RARFYGA EIV AL YLH
 Sbjct: 32667 YFQELKYSFQEQHYLCFVMQFANGGELFTHVRKCGTFSE P RARFYGA EIVLALGYLH 32837

Score = 166 (76.5 bits), Expect = 5.2e-165, Sum P(7) = 5.2e-165
 Identities = 29/59 (49%), Positives = 42/59 (71%), Frame = +1

31846
 Query: 53 NNF SVAQCQLMKTERPRPNTFIIRCLQWTTVIERTFH VETPEEREEWATAIQTVADGLK 111
 + F++ Q M E+PRPN F++RCLQWTTVIERTF+ E+ E R+ W AI++++ K
 Sbjct: 31846 STFAI FYFQTM LFEKPRPNM FMVRC LQWTTVIERTFYAE SAEV RQR WIHAIES ISKKYK 32022

Score = 134 (61.8 bits), Expect = 5.2e-167, Sum P(8) = 5.2e-167
 Identities = 24/33 (72%), Positives = 30/33 (90%), Frame = +3

33156
 Query: 210 LTALKYSFQTHDR LCFVMEYANGGELFFHLSRE 242
 L LKYSFQT+DRLCFVME+A GG+L++HL+RE
 Sbjct: 33156 LQELKYSFQTN DRLCFVMEFAIGGDLYYHLNRE 33254

© 2002 Cambridge University Press
DOI: 10.1017/S0013852X02000000

Fig. 26A

Fig. 26B

45/54

lin-11 Ctg. 133 C39 C43 C35 F28 un-75 R13H8 F55A3

Fig. 27

	1	15 16	30 31	45 46	60
1 ZK84.6	-MNSVFTIIFVLCAL	QVAASFRQSFG	---P	SMSEESASMQLLREL	QH--NMME SAHR PMP
2 ZK75.1	-MFSFFT-YFLLSAL	LLSASC RQ	----P	SMDT-SKADRILREI	E---METELENQLS
3 ZK1251.2	---MPP IILVFFLV	LIPASQQY	----P	FSLE-SLNDQIINEE	VI--EYMLENSIRSS
4 C06E2	--MIVTLIVFLVIGL	QMAHLSQVSGNNENG	FLNP-FDLSQWSEEI	LHRQYHHHHHHHG	57
5 ZK75.2	---MN AII FCLLFT	TVTAT YEVF	----G	KGIEHRNEH LII NQL	D---IIPVESTPTPN
6 ZK75.3	MKLSVVLA LFI IFQL	GAASLMRN	----W	MFD FEKELEHDY DDS	E---IGFHNIHSLMA
7 C17C3	-----	-----	-----	MKL LHI	F---IIFLLFQSCSN
8 F13B12	-----	-----	-----	MYWFRQVYRPS	FF--FGFLAILLSS
9 INSULIN	-----	-----	-----	MA	LWMRLLPLLALLALW
CONSENSUS	-----	-----	-----	-----	17

	61	75 76	90 91	105 106	120
1 ZK84.6	RARRVPAPGETRACG	RKLISLVM AVCGD-L	CN-----	-----	85
2 ZK75.1	RARRVPA-GEVRACG	RRL LLF VVSTCGE-P	CT-----	-----	77
3 ZK1251.2	RTRRV PDEKKIYRCG	RRIHSYVFAVCGK-A	CE-----	-----	78
4 C06E2	RARRTLE TEKIYRCG	RKLYTDVLSACNG-P	CE-----	-----	88
5 ZK75.2	RASRVQK---RLCG	RRL LIFML ATCG--E	CD-----	-----	74
6 ZK75.3	RSRRGDK---VKICG	TKVLKM VMV MCGG-E	CS-----	-----	79
7 C17C3	KMCQYSK-KKYKICG	VRALKHMKVYCTR-G	MT-----	-----	48
8 F13B12	PTPSDAS---IRLCG	SRLTTI LLA VCRNQL	CTGL TAF KRSAD QSY	APTTRDLF HII HHHQ-	80
9 INSULIN	GDPAA AFVNQHLCG	SHLVE ALYL LVCG ERG	FFYTPKTR REA EDLQ	VGQVELGGGPGAGSL	77
CONSENSUS	-----CG-----C-----	-----C-----	-----C-----	-----C-----	-----

B CHAIN

C PEPTIDE

	121	135 136	150 151	165 166	180
1 ZK84.6	-----PQE GK DIA	TECC GNQC SDDY IIRS	ACCP-----	112	
2 ZK75.1	-----PQED MDIA	TVC CTQ CTP SYIKQ	ACC PEK---	106	
3 ZK1251.2	-----SNTE VMIA	SKC CRECT DDF FIRK	Q CCP-----	105	
4 C06E2	-----PGTE QDLS	KLCC GNQ CTF VEIRK	ACC ADKL--	118	
5 ZK75.2	-----TDS SED LS	HICC IKQ CDV QDI IR	VCC PNS FRK	106	
6 ZK75.3	-----S-TNEN IA	TEC CE KMCT MED ITT	KCC PSR---	107	
7 C17C3	-----R-DYG KLL	VTCC SKGC NAIDI QR	ICL-----	73	
8 F13B12	-----KRG GIA	TEC CE KRC SFAY LKT	FCC NQDDN-	109	
9 INSULIN	QPLALE GSLQ KRG IV	EQ CCTS IC SLY QLEN	YCN-----	110	
CONSENSUS	-----CC-----C-----	-----C-----	-----C-----	-----	-----

A CHAIN

Zk75-1	ACGRRELLFV	WSTCGEPCTK	xxQEDMDIAT	VCCCTTQCTPS	YTKQAC	46
Zk84-6	ACgrkrlis1v	maVggd1cnx	xxqegkdlat	ecCgnqcsdd	yjrsac	46
Zk1251-2	ACGRRHSSYV	FAVCGKACEX	xxSTEVNIAS	KCCREECTDD	FIRKQC	46
C06@2	RCCRKEYTDV	LSACNGPCEX	xxGTEQDESK	LCCGNQCTTFV	EIRKAC	46
Zk75-3	IICGCTKVLKMY	MVMCGGECSX	xxSTNENIAT	ECCEKMCTME	DITTKC	46
Zk75-2	IAGgrrilfim	latcgccdtx	xxDSSEDISH	IICCIKQcdvq	dijirvc	46
Ins-Human	IICGSHEVEAE	YLIVCCERGFx	xxLQKRCIV	OCCTSICSLY	QLENYC	46
Ins-Rabbit	IAGshiveal	ylivcggergfk	xxtpksgiv	occtsicsly	qlenyc	46
Ins1-Xenopus	IAGshiveal	ylivcgdrgf	xxkmkrqiv	occhstcsly	qleqyq	46
Ins2-Xenopus	IAGshiveal	ylivcgdrgf	xxkmkrqiv	occhntcsly	qleqyq	46
Ins-Alligator	IAGshivedai	ylivcgdrgf	xxspkqggiv	occhntcsly	qleqyq	46
Ins-Elephantfish	IAGshivedai	ylivcgdrgf	xxapqqtgiv	ecfrscdlr	RLEM	46
Igf1-Bovine	ICGAEIYDAL	QFVCGDRGFx	xxAPQTGIVD	ecfrscdlr	rlem	46
Igf2-Horse	IAGaeIyvdai	Qfvagdrgf	xxapqqtgiv	ecfrscdlr	1hetyc	46
Igf2-Human	IAGgelvdai	Qfvagdrgf	xxrrsrsgiv	ecfrscdlr	1hetyc	46
Igf2-Dog	IAGgelvdai	Qfvagdrgf	xxrrsrsgiv	ecfrscdlr	1hetyc	46
I1p-Amphioxus	I1GCCSTIADV	SFVCGGNRGYX	xxRRRRCIV	ECCFRKSCSIS	QFESTY	46
Lirp-Locus	I1GCCSTIADV	KLYCGRGNNX	xxRRRTRCIV	ECCFRKSCSIS	QFESTY	46
Bxa4-Bommo	IYCCERHLART	ADICWEAGVX	xxRGKRCIVD	ECCLRPCSV	VFLSY	46
Bxb1-Bommo	IYCCERHLART	ADICFGVEKK	xxRGKRCIVD	ECCFRPCTLD	VFLSY	46
Bxrp -Hornworm	IAGgrhlart	adICpnveyx	xxgkragvad	ccvnscmd	v1sy	46
Bxa1-Silkworm	IAGgrhlart	sfvcdnqyqk	xxgkragvad	ccvnscmd	v1sy	46
Bxa2-Silkworm	IAGgrhlart	LYVCDNQYQX	xxgkragvad	ccvnscmd	v1sy	46
Bax3-Silkworm	IAGgrhlart	lyvcdnqy1x	xxgkragvad	ccvnscmd	v1sy	46
Mpi3-Seasnail	IYCCSRRLATM	IYCCSRRLATM	xxggrrlaim	eccnkpc	e19yc	46
Relaxin-Human	IAGGSTLANMV	QWICSTYTTX	xxesRPSSIVC	ECCFNQCTVQ	ELAY	46
Rlf-Human	IAGGRELVRAO	IAGGSTANMV	xxRPYVME	ECCFNQCTVQ	ELAY	46
	IAGghhfvral	IAICGggprwx	xxaaatnpar	KCLIGCTKR	SLAKY	46
			ycclsgctqq	ycclsgctqq	dlitl	46

Fig. 29

Fig. 30

Fig. 31

Fig. 32

Fig. 33

AKT-1a	MSMTSLSTKSRR--QEDVVIEGWLHKKGEHTRNWRPRYFMIENDGALLGERAKPKECOPFPEPL
AKT-1b
AKT-2	M..ENAHLQK..I...S..
hAkt/PKBa	MSDVAL..K..R..Y..KT..LLK..TET..YKER..QDVDOREA..
AKT-1a	NDFMIKDAATMLFEKPRPNMFMVRCLQWTTVIERTFYAESAEVRQRWIHATESI-S--KIVKGTN
AKT-1b
AKT-2	N..R..VCLD..I..D..DF..E..QAV..SHNRL..ENA
hAkt/PKBa	N..SVAQCQL..KT..R..T..I..HV..TP..E..EE..TT..OTVADGL..KQE--
AKT-1a	ANPQEELMETNQQPKIDEDSEFAGAAHAIMQPSSGHGDNCISIDFRASMISIADTSEAARKDKI mg144 T
AKT-1b
AKT-2	G.TSMQEED..GN.SGES.VNM-----DAT.TRS-----ESTVMN.DEPE.VRKNTV
hAkt/PKBa	-----E.EMD.-----R.GSPS..SGAE-----EMEV.L.KPKHRV
AKT-1a	TMEDEFDELKVILGKGTEGKVILGKEKRTOLEYAIKTEKKDVIAREEVAVHTLTENRVLORCKHPE
AKT-1b
AKT-2	..D..Q..R..SSD..IR..EMVVD..S..YA..V..
hAkt/PKBa	..NE..EY..L..V..A..GRY..M..E..V..KD..NSR..
AKT-1a	LTELKYSEOEQHYLCFUMOFANGGEFLTHVR-----GGTESEPRARFYGAELVLAGGYLH..RC
AKT-1b	TNDR..E..I..D..YY..LNREVMNKEG..S..AN
AKT-2	L..A..VHL..E..LOR..K..A..T..S..HR
hAkt/PKBa	A..THDR..EY..F..LSRE..RV..D..S..D..SEK
AKT-1a	DIVYRDMKLENLLDKDGHIKIADFGLCKEEISFGDKTSTFCGTPEYLAPENVLDHDYGRCVDW
AKT-1b	S..L..
AKT-2	N..R..T..KY..LE..L..D..S..
hAkt/PKBa	MV..L..M..T..G..KD..ATMK..E..N..A..
AKT-1a	WGVGVVMYEMMCGRLPFYSKDHNLFLELIMAGDLRPSKL'SOEARTLITGLLVKDPTQRLGGGP
AKT-1b
AKT-2	SA..ENG..TTC..K..NR..P..V..S..ERV..AK..A..
hAkt/PKBa	L..NQ..E..LMEET..RT..GP..KS..S..K..K..S..
AKT-1a	EDALEICRADFERTVDWEATYRKEIEPPYKPNVQSETDTSYFDN-EFTSQPVQLTPPSRSGALA
AKT-1b
AKT-2	D..R..VS..E..KD.....L..V..F..M..F..RVRYV..ILLKV----.E..I
hAkt/PKBa	K..MQHR..AGIV.QHV.E.KLS..F..Q.T..R..E..A.MITI..DQDDSM
AKT-1a	TVDEQEEMQSNTQSFHNVMGSIINRIHEASEDNEYDMGZ
AKT-1b
AKT-2
hAkt/PKBa	C...-S.RRPH.P...YSASSTA

cataaaaatccagtaaatggtaaaatttcaattcagatccatctcgatggaggatctcacaccaactaacacgtcgctgacaccacaactac
taacaatgacacgacatcgatcgtaagcggcgcacacggtaggaacttagttctagacgacatcgatggcttaagttcggtgcac
ttatcaaactagaccgccccccatccaaagcgggactgcaatacactttgaacctaaacctagattttgttctaaat
tctttgtgaattggagagccaattcaaccggaaaactcttttatagggaaaacgtttgcacgttagcagataagttaaatagaaaatatt
taaaatattttttgtctagggaaaattgataaagcacctggccaatttcagaacgttcaattttacctaataaaaaattggccggca
agttatggctctgttgcctactctagcttgcattctaaaggctccgtacgaaaaaaaaattttaggttttaataaaaaatggccggca
ccggAACACTTAACCGAATAGCATGATGAAACGCTCTAAACCTGAATTGAAAATTTCAGTGTGATGCTTTAATAAAAAGTTTGGGG
CCTGCCTAAGATCGTTAGCATAAATATGTAGTAGCAGGAGAGTACATAATTAAATAATTGAAATTGAAATATGAAATTGTTGTT
GACTTCATTATGTTTTTTCACATTACAATTCTAGGCAAAAATGAAAAAAACTTGTAGAATAATTTCAAAATTATTTC
CAGACGCTCAACTTAACCCAACAGCAAGTGAATCGGAGAACAGCTTACCCAGTCACCGCCGAAGATCTCATAGCTAAAGCATTAAAGAAG
ATGTCGAAGAGAAGACTTCAACGACTTCATGTTCTCAGAGTATGGCGAAGGAGCCTACAGCCAGTTGGTAACGAGGAAATTCCAGAAAT
GTGTGCAACTTAGTACAGAGTACAAGGAAAAGCTGGAAAATACTCGGAATGCGTGAATTGTCTTGAGTAAAGCTTGCCTTCAATTTC
CATCGTGTATTCTTCTTGCATTCAACTGATAGTACTGGTATTACCTAGCCGCAAAAATTGAGTCTTGCACAAATCTATCTGACACA
ATATAACCTCATTAGTTAAATGCTGAGTTTATCGATTTCAGTTTACTATGTATATTCAAATGTATGTTGTTCAAAATTCT
TTAAAGGTTAGTACGGTCACTAAATTAAATCATTTCATGGCGCTAAATGAGCGACTATCATAAGAAAATTGGA
AAATTGGTTATTTCAGTCCTGAATTTCACCTTCCATTTCAGTCTAACTGTGTTCAAATACTCATATTCCAACATTGTTAGGAA
TTCTAGAATTGCTTGTAGTTCTTGTGTTCCAATTTCAGTTACTGTAAGTTATCATTTGGCACCGAAAGGTTTTAGTTAATT
CCACTGACCGTAACACTTTCAATTGGCGTATAATTGAAATTAGCAACAAAACAAAAAAACAAATCGTACCAAGACGGACTACTGT
TTTGGCGGAAAATCGGCCATTTCGTCAGGGTTACACGACTGTGGATTGAAACTCGCACTATGTAGGCCATTGTTCTCCCC
GTCCAACTCTTTCTTCCACAACACTTTAATCTATTGCGATGGAGAGAGAAGAGATGCAAGAAACGACGACATCGTCATAGAATTG
CTACACAAACCTAGTGTCTCGTCATTACACAAATAAGCCACCGCTAGCACTATCAACATTGCAAAACAGCTACATGTTGTTGAA
GGGAAAAACGAGACGTTGTGTATTGGGAGGGTAATGTAACCGTGGTTGGTTCATCAAATTGACAGCGCACAGGATTGATTGAA
ACGTGTTATCGCTTGGACCTGAGGCATGTTCTACACCTAGAACACTACCGTAATGAAATTGACTTGTGAGAGAAGGGTTGTTGAA
ACTCTGACTATGTATAACTCAAGAAGAATTGAGGAATTATGTCGTTGAAACTTCCAATTGAAAGTACAGTTTTGAAATTAAATTGAA
TTCTAAATAGTCGACTGAAATAATTTCGTTATTATCAAATTGAAACTGTTGAGTTGAAAGTGAATTGAAATTCTTGTACTAAATTCCGTTGAA
ATTATCTAGTTGTGTTTCAGATAAGTTGAAACACTTTGATAGTTAAATTGATTGTTGAGTGTGAAAGCAGAGAAATTCTGACTAAATTGAA
GCCCCCCCCCCCTATACTATGACACTAAATTGTCACAGTGGTTGAATTGAAACACTTGTGAAATTGAAACAGTAAACAAATAATT
TCTGAAATTTCACGAAATTTCAGCTTCCAAATTGGTGTGTTGGATCTTTGAAATTGAAACAGTAAACAAATAATT
ATATTCTGCTCATATTAAAAAATTCTCTAGCAAAACTGTAAGTTGAAACGAAATTACAATAAAAACACAGCTGACTGACACTGATA
AAATTACACTGGCCAAAATTGAGCTGACTGACCGAGTTAGCGACCATACTTTTGCTAATTGTTGTTGTCGGCGAATTGGCAAAAT
TGTGAGCTCGAAAACAGAAAATTGGCAAAATTACCGCAACTCTCAACTGAAAGCCACTATTGACATTAAACTGTCAAATTCTGGATAAA
TTAGCAAACAAATAAGTAACATTCTGAAATTAGAACCTTCCCAGTGTGTTGAGACGACCTAAATTGAAACACCAAAAACA
AGCTTCCAGTAAACACCTAAATTCCAGGTATCCGATGTCGCAAGTGGCAACAGATGCGATGTTGCCGTCAAAGTGTCCAGAAGTCG
TCAACCGCCATCAAAAATGGACGCAATCATTGCGAGAAGAATACTTAAACACACTGTGACAGAATGCGGTGGTCACTCCGTTGTCACACAG
CTCTACACACATTTCACGACCAGGCTAGAATTGAGTTTCCAGCGCCAGGTTCTGAACCCATCAAATCCACTGTGATCATT
TTATTCCAATAAAACGTCACATTAAACCTCAATTAAATTGAGTTCTGAGCTGGACTTGTGAAATTGTTGAGTCTGGCG
AGTCGCTGTCGCAATTGGATCATTGACATGCTCACCTCAAATTCTTGCTCGGAAATTCTCACCGACTGCAATTCTACACGACAACAAA
ATTGTCACAGAGACATGAAAGCCGACAATTGTCGTCATCCAGAAAGACGCTCACATTCTCATCACAGATTGAGTGGAAAGTGCCAG
TCTCCAACTGTCACAGGAGGGCTTACGGATGCGAATCAGGCAAGTCGCGATCTCGGATTCTGGATGCGCCGCCAACTCGATCTATTGG
ATGAGGAGGGTAAGGTTGCGAAATTGACTGAAACAAATTGGCTCGGAGTCCAGAAGAGAACACTGCTCGACGACGACATTGTTGAAACTG
TCTCTACGTGAGCCGAGATGCTAGTCGACGGAGATGTTGGACACAGTAAGCTCCGATTCTTGAGAATTGTCAGGAACTGCG
AGAACCGACATTGGGAGTGGGAGTGTATCTTCCAGTGTCTAGCCGACAGCCACCATCAGGAGCCGTCAACCAGTACCATCTTTGAAAAG
AAATTCCAGGAGTTGAGTTCTCGTCCCCAGAAGGATTCCAGAGGAAAGCCTGCGAAATTATCGCZAAAG

Fig. 35A

attttggtaggttagatgaaacttaaaaactgaatacgtaatttcaacttacaggcgccgacccgagtagccgtatcaccagtcaagaact
 tatggctcacaagttttgaaaacgttgcgtgaaacattgcaaataatcaagccaccagtcctgcacgcctacattccagccacattggcg
 agccggagtactactctaacattggcctgtcgagccggacttgatgtatcGTGCCCTGTTCCGGTTGATGAATTGGAAATGATGCTAGCGCA
 TCACAGCCATCAACGTGAGTTGAAGCCTTTTCTTGCAATTAAAAGTTTACCTGCACTGACCAAATTTATTGAAACTATTATTATTGAA
 TTCTGATTAACAATGACCAAAAGATTGAACTGACAAATTGACCCGACCAAAAAACAGTTGCACTGACCACCTCTCATTTGCACT
 GACCACCTCTCATTTGCACTGACCAACTTCATTTGCACTGACCACCTCTCATTTGCACTGACCCACTTTCATTTGCAATTGCAATGAA
 TTCTTTGCATCTACTGATCAAAAATTGATCAAATCAATTAAATTCTTGTACAGTACTATGCCATTCAAGGAGATGCTGATGAAATTC
 TCAATAGTTGATAAAAATTACTAACCCCTAGAAAGTTGACCCGTCTAACGTGGAACATCGGGAGACCCATTGTTGGAAATTGCAACCGT
 GAGTGATTGACCTAATTGGTTATTTTAAATCATTAATTAGACGCCAATTGGAAAGCCGAAAGAACCGGCCACGTGCGCAGA
 AGCTCGAAGACCAACGTGTCAAAAACCCATTCCACATCTCACCAACAACTCGCTCATTGAAACAAGGATATTGGAAAAGAAGCGAGGATTG
 TTTGCCAGACGCCAATGTTCTGTTGACCGAAGGACCGCATCTCTGTACATTGATGTGCCGAATCTTGCTCAAAGGAGGGTACCATGGAC
 GCCGTGCTGCGAGGTGGAGCTAAAAAACTCGGAACATTCTTATACACAGGTAGGTAGCAGATAATCATAGCTGTCTATCTCATTATAGTACTC
 AATGAATCTGAAAATTCAAATTTCAGCCCAACCGCTACTACTTGTGATCTCGAAAAGAAAGCAGATGAGTGGTGAAGGCTATCAATG
 ATGTTGCAAGCGGTACTCGGTGACTATGAAAAGACTTTAACCTCTGGATGCGTACCGGAACATTGGCAGCATTATGAAAGAAAAGTCC
 AGAAAGGTATGAATTACTGGAAAGGCCCTCACTGAGTTCCAGCAAGTTTGTGAAATTGGCAATTTCATTAGACTTTA
 GAGCCTATTGCTATTGGACAGGTTAACATTTCAAAAAAATTGAGAAATGCTGAAAAAATTGGAGTGTGACAGTTCTGAAATT
 TGAAAATTCTGTTCTCAAAATTGGATTTCAGAGCTGTTGAGATTTCATAATCCTCTCAAAAGAATATAGAATATTGTTGTTCAACTTTTC
 TTGTCAAAATTATTGGACAATTGAGATTCTGGAAAATTTCAAAAAAAGATAATCTCTAACACAAACTAAATTCAAAATGTTCTAAAGGT
 TCTTATTTCATGCAACTCTAAAATTCTCCGTATATTGGAAAGTCTTATGATGTTAGACGGTTAAATTGGATGATTTAAATT
 TTTAGGGGTGGTCTATAATTGGACCACCTGTATAATTGGACCAACCATGTACACTTATAGCCACCCAGTAACAAGCATTGGACAC
 CACGCAATTCTTATTATTGGACCAACCTCAAAACTTAGAACACCTCAAAACTTCTGTTCAAAATTGATCAACTTGTGCTGAAAAAATT
 TTTGTAAGGAATTGATGCGTGAAACAGAAGCCGCTGCGCCGAAACAAGAAAAGGAGGAGAAAAGGCCTAAAGCCGAGCAAGTGAGCAAGAAGC
 TTCAATGCAAAATTGGACAAGAAGTCGCCCTGAAGGCTCACCTCCCTACTCCCCACAAAATGCAACTCAAACAAATCACACTTTGATCATT
 TTGCGTCC

Fig. 35B

MEDLTPTNTSLDTTTNNDDTSREAAPTTLNLPTASESENSLSPVTAEDIKSIKEGCPKRTSNDMFLQSMGEG
AYSQVFCREVATDAMFAVKVLQSYLNRRHQMDAIIREKNILTYLSQECGGHPFVTQLYTHFDQARIYFVIGLV
ENGDLGESLCHFGSFDMILTSKFFASEILTGLQFLHDNKIVH RDMKPDNVLIQKDGHILITDFGSAQAFGGLQLSQEGFT
DANQASSRSSDSGSPPPTRFYSDEEEENTARRTFVGTLVYSPEMPLADGDVGPQTDI WGLGCILFQCLAGQPPFRAV
NQYHLLKRIQELDFSFPEGFPEEASEIIAKILVRDPSTRITSQELMAHKFFENVDWVNIANIKPPVLHAYIPATFGEPE
EYYSNIGPVEPGLDDRALFRLMNLGNDASASQPSTPSNVEHRGDPFVSEIA PRANSEA EKNRAARAQKLEEQRVK
NPFHIFTNNSLILKQGYLEKKRGLFARRMFLLTEGPHLLYIDVPNLVLKGEVPWTPCMQVELKNSGTFFIH
VYLYFDLEKKADEWCKAINDVRKRYSTIEKT FNSAMRDGTFGSIYGKKSRKEMMREQKALRRKQEKEEK
KAEQVSKLSMQMDKKSP

Fig. 36

MEDLTPTNTSLDTTTNNDDTSREAAPTTLNLPTASESENSLSPVTAEDIKSIKEGCPKRTSNDMFLQSMGEG
AYSQVFCREVATDAMFAVKVLQSYLNRRHQMDAIIREKNILTYLSQECGGHPFVTQLYTHFDQARIYFVIGLV
ENGDLGESLCHFGSFDMILTSKFFASEILTGLQFLHDNKIVH RDMKPDNVLIQKDGHILITDFGSAQAFGGLQLSQEGFT
DANQASSRSSDSGSPPPTRFYSDEEVPEENTARRTFVGTLVYSPEMPLADGDVGPQTDI WGLGCILFQCLAGQPPFR
AVNQYHLLKRIQELDFSFPEGFPEEASEIIAKILVRDPSTRITSQELMAHKFFENVDWVNIANIKPPVLHAYIPATF
GEPEYYSNIGPVEPGLDDRALFRLMNLGNDASASQPSTFRPSNVEHRGDPFVSEIA PRANSEA EKNRAARAQKLEE
QRVKNPFHIFTNNSLILKQGYLEKKRGLFARRMFLLTEGPHLLYIDVPNLVLKGEVPWTPCMQVELKNSGTFFIH
TPNRVYLYFDLEKKADEWCKAINDVRKRYSTIEKT FNSAMRDGTFGSIYGKKSRKEMMREQKALRRKQEKEE
KKALKAEQVSKLSMQMDKKSP

Fig. 37

FIGURES 38A-38G

FIG. 38A

FIG. 38B

FIG. 38C

FIG. 38D

FIG. 38E

FIG. 38F

DAF-18

FIG. 39A

DAF-18 PTEN	4.8 4	I FR TAV S S N R C R T E Y Q N D D P C A Y A T D R I T H A I G Y P A T G I E A N F R A N S K V Q T I K E I V E R N K R R Y Q E D G F D I D L T Y I P N H T A M C P A E R I E G V Y R N N I D D V
DAF-18 PTEN	9.8 5.4	Q O E F T R R H G K G N V R V E N T R G G Y Y D A D N F D G N V I C F D M T D H I P P S L E I M A V R E I D S K H . K N H Y K I Y N C A E R Y D D T A K E N C R U A Q Y P F E D H N P E Q F E L I K
DAF-18 PTEN	14.8 1.03	P E C R E A K E W L E A D D P K H V T A V H C K A G K C R T G V M C A T L I Y I N F Y P S P R Q I F E F C E D D L D W L S E D D N H V A A I H C K A G K C R T G V M C A T L H R G K F L K A Q E A F
DAF-18 PTEN	19.8 15.3	D Y Y S T I R T K N N K G V T I P S O R R Y V Y Y S Y M L E R E F L N Y I P L R M Q L I G V V Y E R D Y Y G E V E Y R D K K G V T I P S O R R Y V Y Y S Y M L E R E F L N Y I P L R M Q L I G V V Y E R
DAF-18 PPTEN	24.8 20.3	P E K T W C C G S K I K V E Y G N G S T I L F K P D . E L I I S K S N H Q R E R A T W F N N C D T I E M F S C G T C N P Q F V N C Q L K V K I Y S S N S G E T R D E K F M Y F E F P O F F P V C G D

FIG. 39B

DAF-18 Protein

MVTPPPDPSTSTRSMARDLQENPNRQPGEPRVSEPYHNSIVERIRHIFRTAVSSNRCRTEYQNIDLDCAYITDRIIAIG
YPATGIEANFRNSKVQTQQFLTRRHGKGNVKVFNLRGGYYDADNFDGNNVICFDMDTDHHPPSLELMAPFCREAKEWLEAD
DKHVIAVHCKAGKGRGVMICALLIYINFYPSPRQILDYYSIIRTKNNGVTIPSQRRIIYYYHKLRERELNYLPLRMQL
IGVYVERPPKTWGGGSKIKVEVGNGSTILFKPDPLIISKSNHQRERATWLNNCDTPNEFDTGEQKYHGFVSKRAYCFMVP
EDAPVFVEGDDVIRIDIREIGFLKKFSDGKIGHVWFNTMFACDGGLNNGGHFEYVDKTQPYIGDDTSIGRKNGMRRNETPMRK
IDPETGNEFESPWQIVNPPGLEKHITEEQAMENYTNYGMIPPRYTISKILHEKHEKGIVKDDYNDRKLPMGDKSYTESGK
SGDIRGVGGPFEIPYKAEEHVLTFFPVYEMDRALKSDLNNGMKLHVVLRCVDTRDSKMMEKSEVFGNLAFHNESTRRLQA
LTQMNPWKWRPEPCAFGSKGAEHYPPSVRYSSNDGKYNGACSENLVSDFFEHRNIAVLNRYCRYFYKQRSTSRSRYPRKF
RYCPLIKKHFIIPADTDVDENGQFFFHSPEHYIKEQEKİDAEKAAKGIENTGPSTSGSSAPGTIKKTEASQSDKVKPAT
EDELPPARLPDNVRRFPVVGVDFENPEEESCEHKTVESIAGFEPLEHLFHESYHPNTAGNMLRQDYHTDSEVKIAEQEAK
AFVDQLLNGQGVLFQEFMKQFKVPSDNSFADYVTGQAEVFKAQIALLEQSEDFQRVQANAEEVDLEHTLGAEFERFGHVVE
ESNGSSKNPKALKTREQMVKETGKDTONKTRNHVLLHLEANHRVQIERRETCPPELKPEDKIPRIAHFSENSFSDSNFDQAI
YL

FIG. 40A

SEQUENCE LISTING

1 ttccaggtac atctactaac ccccaatggg tactcctcct ccagatgtgc caagcacatc
61 gaccaggtcg atggctcgta accttcaaga gaatccaaac cgacaacctg gtgaaccacg
121 tgtgtctgaa cctgtatcaca attcaatcgta cgagcggatt cgccatattt ttcggacggc
181 tgtatcttcc aatcggtgtc gcaccggata cccaaatatac gaccttagatt gtgcataatata
241 cacagaccga atcatagcta tcggttatcc agcaacagga atcgaagcga atttccgtaa
301 ctcaaaaagtt caaactcaac aatttctgac caggcggcac ggaaaggca acgtgaaggt
361 gtttaacctg cgccgtggat actactacga tgccgataac ttgcgtggaa atgttatttg
421 cttcgatatg actgatcatc atccggcgag tctcgaatta atggctccgt tttgcagaga
481 ggctaaaggaa tggcttgaag cagacgataa acatgtaa gctgtacact gtaaagctgg
541 aaaaggccgt accggagtga tgatatgtgc tcttctcatc tacatcaact tctatcccgag
601 cccacgacaa attctcgact actactcaat aattcgtaca aaaaacaaca aagggtgtcac
661 aattccatca caacgacgct acattacta ctaccataag cttcgtgaac gtgagctcaa
721 ctatccatca ttgagaatgc agttgattgg tgcgtacgtg gaacggcctc caaagacatg
781 ggggtgggtgt tcaaagataa aagtggaggt tggaaatggc tgcacaattt tatttaagcc
841 ggatccctc ataatctcca aatcaaatac tcagcggagag cgtgcgacgt ggctgaacaa
901 ctgtgatacg cctaacgaat tcgacaccgg agagaaaa tatcatggat ttggttccaa
961 gagagcatac tggttatgg tgccagaaga tgctccagta tttgtcgaag gagatgttgc
1021 tatagacatt cgcgaaatcg gatttctcaa aaagtttcg gacggaaaga ttgggtcatgt
1081 ttggttcaat acaatgttgc catgtgatgg aggactcaac ggtggacatt tcgagtaegt
1141 agacaaaact cagccgtaca tcggagacga tacatcaatc ggacggaaaa atggaatgcg
1201 aagaaatgaa acggccgtatgc gaaaaatttgc tccagaaact ggaatgaat ttgagtctcc
1261 gtggcaaata gtgaatccctc ctggactggaa aaaacataatt acggaggaac aagcaatgg
1321 aaattataacc aattatggca tgatttctcc tcgatacacg atcagcaaga ttcttcacga
1381 aaagcatgaa aaaggatcg tcaaggatga ctataatgtat cgtaagctgc caatggaga
1441 caaatcatac acggaatcg gaaaaagtgg agatattcga ggagtcggtg gtccatttga
1501 gataccatat aaagctgagg aacatgttcc cacatttcca gtttatgaaa tggatcgagc
1561 attgaagagt aaagatctt acaacggaaat gaaacttcac gttttcttc gttgtgtaga
1621 tactcgat tcaaaaaatgt tggaaaagag cgaagtgttc ggcaatctgg cattccataa
1681 tgaatcgaca cggaggcttc aagcgttgac tcaaataatc cccaaatggc gacctgaacc
1741 gtgtcggttc ggatccaaag gtgtgaaat gcattaccc cctgcgggttc gatattcaag
1801 caatgatggaa aagtataatg gagcctgcag tgagaacctt gttagcgatt ttttcgagca
1861 cagaaatatt gccgttctta atcgatatttgc cctgcatttc tacaagcaac gcagtcacatc
1921 tcgaagccgt tatccaaagaa aattcagata ctgttcttcg atcaagaaac atttctacat
1981 tccagctgat accgatgtatg ttgatgaaaa tggcaaccg ttcttcact caccagagca
2041 ttacattaaa gaacaggaaa aaatagacgc agagaaaagca gctaaaggaa ttgaaaatac
2101 tggacccagt acttcaggat caagtgtcc cggaaactatac aagaaaacgg aagcttcaca
2161 atccgacaaag gtgaagccgg caactgaaga cgaacttcc cctgcgagge taccggataa
2221 tgtgcaaga tttccagtgc tcggcggttgc ttgcggaaat ccggaaagaag aatcggtgt
2281 acacaaaacc gtagagtcaa tagctgggtt tgaaccactc gaacatctat tccatgaatc
2341 ataccatcca aatacggccg gtaacatgct gcgtcaggat tatcacactg attcggaaat
2401 gaaaatagct gaacaagagg caaaagcctt cggtgaccag ttgcgttataat gacaagggtgt
2461 attacaagag ttatgttgc aattcaaaatg accatcgac aattcccttg ctgattatgt
2521 aaccggacag gccgaagttt ttaaaagcaca gattgcgttgc ctggagcgtt cggaggattt
2581 tcaacggagtt caagcgaatg cagagggaaat cgatcttgcgaa cacacttgc gtgaagcggtt
2641 tgagcgattc gggcacgttgc tagaagaatc gaatgggttgc tctaaaaatc caaaagccct
2701 gaaaactcga gaacaaatgg tggcaaaagac actcagaaga cccgcaatca
2761 tgtgcttcta catttggaaatc ctaatcatcg tgtgcaatc gagcgtcgatc aaacgtcccc

FIG. 40B

2821 ggagctacat ccagaggata aaatcccaag aattgctcat ttttccgaaa acagcttctc
2881 ggattcgaat tttgatcaag ctatttattt gtaaacctaa aacaaaactt tttagaagatt
2941 ttcttcttac tgaccctcca atttcagat aatttcaatg ttttaagttt tctcttcaaa
3001 gtatcattca ctttctgtat agtgtttgt ttttaacaa actattgttc gattattttg
3061 tatattcata ttatagctct caacttcccc atttccacg tatatatgtat tattttgccg
3121 ggtaaaaaat agcaattccc tatgaatgtt tcccttcca tctgtttct tactcagaaa
3181 ttgttaattca cattgcgggt catcaactaat cctatgggct ttaacacaat tctcccataa
3241 attaattgtt cttaccaatt ttttgtttaa ttattttagat ttgttaacatt gaaattggtg
3301 ataa

FIG. 40B

ପ୍ରକାଶକ ପତ୍ର

FIG. 41

ttta

attacccaactttgaggttagcattgctcttcaatcat atg gat tcg ttg ttt cag atg gca tcc gca
M D S L F Q M A S A

atg aag ttt caa tac tac tcg aag aaa gct gct gga aag aca atg tct aat agt gtc tcc
M K F Q Y Y S K K A A G K T M S N S V S

atg tcc agt gac aat cgc atg gag gat ttt aaa cgt cgt ttt cgt cga agt gga tcg tta
M S S D N R M E D F K R R F R R S G S L

gga att cca ttt gtc cca gaa gaa gat gtt aaa caa ctc ttc aca cca act cgt act gtt
G I P F V P E E D V K Q L F T P T R T V

cgt cga gaa gca tct att cgc gaa ggg gat gag gaa gaa gga gta caa att ctc aca ata
R R E A S I R E G D E E G V Q I L T I

att gtc aag tca agt cgt gtt tcg gag gat atc tca aaa atg att gca aac ctc cct gat
I V K S S R V S E D I S K M I A N L P D

cac act cgt atc aaa cat ttg gag act cgt gac agt caa gat gga agt tcc aaa act atg
H T R I K H L E T R D S Q D G S S K T M

gat gtt ctt cta gag att gag ctc ttt cat tat gga aaa caa gaa gca atg gat ctt atg
D V L L E I E L F H Y G K Q E A M D L M

aga ctt aat ggg ctt gat gtt cat gag gtg tca tcg act att cgt cca act gca ata aaa
R L N G L D V H E V S S T I R P T A I K

gag caa tat aca gag cct gga tct gat gat gcg aca acc ggt tct gaa tgg ttt cca aaa
E Q Y T E P G S D D A T T G S E W F P K

agt att tat gat ttg gat att tgt gca aaa aga gtg att atg tat gga gca ggg ctg gac
S I Y D L D I C A K R V I M Y G A G L D

gct gat cat cct ggt ttc aaa gat acc gag tat cgt caa cgt cga atg atg ttt gct gaa
A D H P G F K D T E Y R Q R R M M F A E

ctg gcg ctc aat tac aaa cac ggt gag cca att ccg cga acc gaa tat aca tca tcc gaa
L A L N Y K H G E P I P R T E Y T S S E

cgg aaa act tgg gga att ata tat aga aaa ttg aga gaa ttg cac aaa aag cac gca tgc
R K T W G I I Y R K L R E L H K K H A C

aag cag ttt ctt gat aac ttt gag cta ctg gag aga cat tgt gga tac tcg gaa aat aat
K Q F L D N F E L L E R H C G Y S E N N

att ccg caa cta gaa gat atc tgc aag ttt ttg aaa gca aaa act gga ttc cgt gtt cgc
I P Q L E D I C K F L K A K T G F R V R

FIG. 42

cca gtc gcc gga tac tta tca gct cgt gat ttc ttg gca ggt ctt gca tat cgt gtc ttc
P V A G Y L S A R D F L A G L A Y R V F

ttc tgc actcaa tac gtt cgc cat cat gcc gat cca ttt tac act cca gaa cca gac acc
F C T Q Y V R H H A D P F Y T P E P D T

gtt cac gag ctc atg ggt cac atg gct cta ttc gct gat cca gat ttt gct cag ttt tct
V H E L M G H M A L F A D P D F A Q F S

caa gag att gga tta gct tct ctt gga gca tca gag gaa gat ttg aag aag ctt gca aca
Q E I G L A S L G A S E E D L K K L A T

ctc tac ttc ttt tcc att gaa ttt ggt ctc tcg tct gat gac gct gcc gat tct cca gta
L Y F F S I E F G L S S D D A A D S P V

aaa gaa aat gga tca aat cat gaa aga ttt aaa gta tac gga gca gga ctt ctg agc agt
K E N G S N H E R F K V Y G A G L L S S

gct ggc gag ttg caa cat gcc gtt gag ggt agt gca acc att att cgt ttt gat ccg gat
A G E L Q H A V E G S A T I I R F D P D

cgt gtt gtt gag caa gaa tgt ctc att act act ttc cag tca gcg tat ttc tat act aga
R V V E Q E C L I T T F Q S A Y F Y T R

aat ttt gaa gag gcc cag cag aaa ctc aga atg ttc acc aac aac atg aaa cgt ccc ttc
N F E E A Q Q K L R M F T N N M K R P F

att gtt cgt tac aac cca tac aca gaa agc gtc gaa gtt ctc aac aac tcc cgt tcc att
I V R Y N P Y T E S V E V L N N S R S I

atg ttg gca gtg aac tct ctc cgc tca gac atc aac ctg ctc gcc gga gct ctc cac tac
M L A V N S L R S D I N L L A G A L H Y

atc ctg tag
I L *

FIG. 42

attacccaagttttaggttagcattgctctttcaatcat
atg gat tcg ttg ttt cag atg gca tcc gca atg aag ttt caa tac tac tcg aag aaa gct
M D S L F Q M A S A M K F Q Y Y S K K A
gct gga aag aca atg tct aat agt gtc aaa aac tgg att ccg tgt tcg ccc agt cgc cgg
A G K T M S N S V K N W I P C S P S R R
ata ctt atc agc tcg tga ttt ctt ggc agg tct tgc ata tcg tgt ctt ctt ctg cac tca
I L I S S *
ata cgt tcg cca tca tgc cga tcc att tta cac tcc aga acc aga cac cgt tca cga gct
cat ggg tca cat ggc tct att cgc tga tcc aga ttt tgc tca gtt ttc tca aga gat tgg
att agc ttc tct tgg agc atc aga gga aga ttt gaa gaa gct tgc aac act cta ctt ctt
ttc cat tga att tgg tct ctc gtc tga tga cgc tgc cga ttc tcc agt aaa aga aaa tgg
atc aaa tca tga aag att taa agt ata cgg agc agg act tct gag cag tgc tgg cga gtt
gca aca tgc cgt tga ggg tag tgc aac cat tat tcg ttt tga tcc gga tcg tgt tgg tga
gca aga atg tct cat tac tac ttt cca gtc agc gta ttt cta tac tag aaa ttt tga aga
ggc cca gca gaa act cag aat gtt cac caa cat gaa acg tcc ctt cat tgt tcg tta
caa ccc ata cac aga aag cgt cga agt tct caa caa ctc ccg ttc cat tat gtt ggc agt
gaa ctc tct ccg ctc aga cat caa cct gct cgc cgg agc tct cca cta cat cct gta g

FIG. 43

FIG. 44A

FIG. 44B

FIG. 45A

FIG. 45B

FIG. 44C

C. elegans

Mammals

ATTCGGCATGAGCATGGaGCTTCGAGTCCTAGAGAACACAAAACGTTCCCGGCGAACCTGGGtCTGGACTGCGAC
GAGACTCAAGCGAGTCCCGCTGCTGCCGATATCCCCTCACAGTGGACTTTGAGGCTTCGGCTGGACTGGATCAT
CGCACCTAACGCCTACAAGGCCAACTACTGCTCCGGCCAGTGGAGTACATGTTCATGCAAAAATATCCGCATACC
CATTGGTGCAGCAGGCCAATCCAAGAGGTTATGcTGGCCCTGTTGTACCCCCACCAAGATGTCCCCAATcAAC
TgcTctACTTCAATGACAAGCAGCAGATTATcTACGGCAAGATCCCTGGCATGGTGGATCGCTGTGGcTGCTC
TTAAGGTGGGGATAGAGGATGCCTCCCCACAGACCGTACCCCAAGACCCATAGCCcTGCCCAATCCACCGCCTG
ATCCAAACAT

FIG. 47A

IRHEHGASSPREHKTTPAEPGGLRRDSSESRCCRYPLTVDFEAFGWDWIAPKRYKANYCSQWEYMFMQKYPHT
HLVQQANPRGYAGPCCTPTKMSPINMLYFNDKQQIIYGKIPLAMVVDRCGCS

FIG. 47B