Курсовая работа. Классическое машинное обучение. Отчёт.

Мусатов Матвей Геннадьевич

03.06.2025

Содержание

1	Вве	ведение 2					
2 Описание данных							
	2.1	Общие молекулярные дескрипторы	4				
	2.2	Электронные дескрипторы	5				
	2.3	Топологические дескрипторы	5				
	2.4	ВСИТ-дескрипторы	5				
	2.5	VSA-дескрипторы	5				
	2.6	Отпечатки (Morgan fingerprints)	6				
	2.7	Фрагментные дескрипторы	6				
	2.8	Структурные количественные дескрипторы	6				
3	Me	годология	6				
	3.1	Исследовательский анализ данных (EDA)	6				
	3.2	Построение моделей регрессии	7				
	3.3	Построение моделей классификации	7				
4	Рез	ультаты	8				
	4.1	Регрессия	8				
		4.1.1 IC_{50}	8				
		$4.1.2 CC_{50} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	8				
		4.1.3 SI	8				
	4.2	Классификация	9				
		$4.2.1$ $IC_{50} >$ медиана	9				
		$4.2.2 CC_{50} > $ медиана	9				
		4.2.3 $SI >$ медиана	9				
		$4.2.4 SI > 8 \dots \dots$	10				
5	Вы	воды и рекомендации	10				
	5.1	Выводы	10				
	5.2	Рекомендации	10				
6	Зак	лючение	11				

1 Введение

Первым этапом разработки лекарственных средств является выявление потенциально активных и безопасных молекул на ранней стадии, до этапа дорогостоящих in vitro и in vivo испытаний. В этой связи особую роль играют методы химоинформатики и машинного обучения, позволяющие прогнозировать фармакологические свойства соединений на основе их молекулярной структуры.

В данной работе рассматривается задача прогнозирования трех ключевых биологических показателей:

- IC_{50} (полумаксимальная ингибирующая концентрация) характеризует эффективность соединения как ингибитора определённого биологического процесса или мишени.
- CC_{50} (полумаксимальная цитотоксическая концентрация) отражает токсичность соединения для клеток, то есть концентрацию, при которой оно убивает 50% клеток.
- SI (Selectivity Index) индекс селективности, рассчитывается как отношение IC_{50}/CC_{50} и отражает баланс между активностью и токсичностью. Чем выше SI, тем безопаснее и избирательнее считается соединение.

Целью курсовой работы является разработка и оценка моделей машинного обучения (регрессии и классификации), способных предсказывать значения этих показателей на основе структурных молекулярных дескрипторов. Для этого используется обширный набор признаков, включающий:

- Общие молекулярные дескрипторы, такие как молекулярная масса (MolWt), количество тяжёлых атомов (HeavyAtomCount), доля sp³-гибридизованных атомов углерода (FractionCSP3), топологическая полярная поверхность (TPSA), и др.
- Электронные дескрипторы, такие как экстремальные значения частичных зарядов (MaxPartialCharge, MinPartialCharge, MaxAbsPartialCharge, MinAbsPartialCharge), и др.
- Топологические дескрипторы, такие как индексы связности Чи (Chi0, Chi1, Chi2, ..., Chi4v), индексы Кьера (Карра1, Карра2, Карра3), и др.
- Фрагментные дескрипторы, отражающие наличие или количество определённых химических групп или структурных фрагментов в молекуле.
- Структурные количественные дескрипторы, такие как количество акцепторов/доноров водородных связей (NumHAcceptors, NumHDonors), количество вращающихся связей (NumRotatableBonds), и др.

Для достижения поставленной цели были выполнены следующие шаги:

1. Проведен исследовательский анализ данных (EDA), включающий предварительный просмотр данных, проверку структуры данных, оценку пропущенных значений и выбросов, а также анализ распределений признаков.

- 2. Выполнена предобработка данных, включающая удаление признаков с единственным уникальным значением, заполнение пропущенных значений медианой, проверку и фильтрацию отрицательных значений целевых переменных, логарифмирование целевых переменных для улучшения нормальности распределения, обработку выбросов методом межквартильного размаха (IQR), бинаризацию редких признаков, корреляционный и дисперсионный анализ для удаления избыточных признаков.
- 3. Построены и оценены модели регрессии для количественного предсказания значений IC_{50} , CC_{50} и SI.
- 4. Построены и оценены модели классификации для разделения соединений на классы, например, активные/неактивные (по порогу IC_{50}), токсичные/нетоксичные (по порогу CC_{50}), селективные/неселективные (по порогуSI).

Цель построения моделей регрессии:

- Насколько точно можно предсказать конкретные значения активности, токсичности и селективности соединений на основе их структуры.
- Какие структурные характеристики наиболее связаны с высокой активностью (низким IC_{50}) или высокой токсичностью (низким CC_{50}).
- Возможность получения «идеального» соединения с высоким SI (высокой селективностью).
- Насколько точно можно использовать дескрипторы для количественного предсказания (оценка применимости модели в химическом дизайне).

Цель построения моделей классификации:

- Можно ли надежно классифицировать соединения по заранее заданным биологическим критериям.
- Какие признаки особенно важны для различения классов.
- Возможность использования модели для отсева неэффективных или опасных соединений на ранних этапах.

Выводы по построению моделей:

- Какие структурные особенности чаще встречаются у активных/безопасных соединений.
- Эффективность моделей для задач высокопроизводительного скрининга (HTS).
- Применимость моделей для приоритизации кандидатов на синтез.

2 Описание данных

В данной работе рассматривается задача прогнозирования трех ключевых биологических показателей:

- IC50 (полумаксимальная ингибирующая концентрация) характеризует эффективность соединения как ингибитора определённого биологического процесса или мишени.
- CC50 (полумаксимальная цитотоксическая концентрация) отражает токсичность соединения для клеток, то есть концентрацию, при которой оно убивает 50% клеток.
- SI (Selectivity Index) индекс селективности, рассчитываемый как отношение CC50/IC50 и отражающий баланс между активностью и токсичностью. Чем выше SI, тем безопаснее и избирательнее считается соединение.

Целью курсовой работы является разработка и оценка моделей машинного обучения (регрессии и классификации), способных предсказывать значения этих показателей на основе структурных молекулярных дескрипторов. Для этого используется обширный набор признаков, включающий:

2.1 Общие молекулярные дескрипторы

- MolWt: молекулярная масса.
- HeavyAtomCount: количество тяжёлых атомов (не включая водород).
- NumValenceElectrons: общее количество валентных электронов.
- NumRadicalElectrons: количество неспаренных (радикальных) электронов.
- FractionCSP3: доля sp³-гибридизованных атомов углерода.
- **TPSA**: топологическая полярная поверхность, оценивает проницаемость через мембраны.
- LabuteASA: аппроксимация доступной поверхности (ASA) по методу Labute. Этот метод используется для оценки площади молекулярной поверхности, доступной для взаимодействия с растворителем или другими молекулами.
- **QED**: комплексная числовая оценка «лекарственности» молекулы, основанная на совокупности её химических и физических свойств. Помогает предсказать, насколько соединение подходит для разработки лекарственных препаратов.
- SPS: предполагаемая сложность/стоимость синтеза (если доступна). Она помогает предсказать, насколько трудоёмким и дорогим будет получение молекулы в лаборатории или на производстве.
- MolLogP: логарифм коэффициента распределения (гидрофобность).
- MolMR: молекулярная рефрактивность (показатель поляризуемости).

Примечание: Дескриптор SPS можно исключить, так как он не соответствует поставленной задаче и не несёт дополнительной информативности в рамках целевой постановки.

2.2 Электронные дескрипторы

- MaxPartialCharge/MinPartialCharge/MaxAbsPartialCharge/MinAbsPartialCharge экстремальные значения частичных зарядов.
- **PEOE_VSA**: группа дескрипторов, отражающих распределение зарядов, вычисленных методом уравнивания орбитальной электроотрицательности (PEOE).
- EState_VSA: объединение информации о зарядовом состоянии и их топологическом расположении в молекуле.
- MaxEStateIndex/MinEStateIndex/MaxAbsEStateIndex/MinAbsEStateIndex: экстремальные значения индекса электротопологического состояния.

2.3 Топологические дескрипторы

- Chi0, Chi1, Chi2, ..., Chi4v: индексы связности Чи, отражающие молекулярную топологию и связанные с числом связей, типом атомов и степенью разветвления.
- **Kappa1**, **Kappa2**, **Kappa3**: индексы Кьера, которые характеризуют форму молекулы, её компактность и степень разветвлённости.
- HallKierAlpha: эмпирический дескриптор стерической насыщенности, т.е. насколько молекула "заполнена" в пространстве.
- BalabanJ: индекс связности, учитывающий длину путей и цикличность в молекуле. Позволяет оценить степень разветвленности и топологическую сложность структуры.
- **Ipc**, **AvgIpc**, **BertzCT**: информационные и сложностные индексы, характеризующие структурную сложность молекулы на основе анализа её графа.

2.4 ВСИТ-дескрипторы

- BCUT2D MWHI/ MWLOW: с учётом молекулярной массы.
- BCUT2D CHGHI/ CHGLOW: по заряду.
- BCUT2D_LOGPHI/ LOGPLOW: по logP.
- ullet BCUT2D_MRHI/ MRLOW: по молекулярной рефрактивности.

2.5 VSA-дескрипторы

- $SMR_VSA1-10$: связаны с молекулярной рефрактивностью.
- $\mathbf{SlogP}_\mathbf{VSA1}$ –12: связь с гидрофобностью (logP).
- EState VSA1-10: электротопология по поверхности.
- PEOE_VSA1-14: связь с частичными зарядами.

2.6 Отпечатки (Morgan fingerprints)

- Morgan fingerprints: векторные представления молекул, которые кодируют их структурные фрагменты (окружения атомов) с помощью алгоритма, аналогичного распространению по графу. Часто используются для сравнения и поиска похожих соединений в химических базах данных.
- FpDensityMorgan1, 2, 3: плотность битов при радиусах 1, 2 и 3 (нормализовано на число атомов).

2.7 Фрагментные дескрипторы

- Фенолы: fr_phenol, fr_Ar_OH.
- **Амины**: fr_NH2, fr_amine, fr_aniline.
- Азосоединения: fr azide, fr azo, fr diazo.
- Галогены: fr halogen, fr alkyl halide.
- **Барбитураты**: fr barbitur.
- Нитро-соединения: fr nitro, fr nitro arom.
- Лактон/лактам: fr lactone, fr lactam.
- Кольца: fr_benzene, fr_pyridine, fr_furan, fr_thiazole.

2.8 Структурные количественные дескрипторы

- NumHAcceptors/ NumHDonors: акцепторы/доноры водородных связей.
- NumRotatableBonds: количество вращающихся связей.
- NumAromaticRings/ NumAliphaticRings/ NumSaturatedRings: кольцевые структуры.
- NumHeteroatoms: количество гетероатомов.
- RingCount: общее количество колец.

3 Методология

3.1 Исследовательский анализ данных (EDA)

Для начала был проведен исследовательский анализ данных, целью которого являлось предварительное знакомство с данными, проверка их структуры, наличие пропусков и выбросов, а также анализ распределений признаков. Были выполнены следующие шаги:

• Просмотр первых строк данных, информация о типах данных и статистические описательные показатели.

- Удаление признаков с единственным уникальным значением.
- Заполнение пропущенных значений медианой.
- Проверка и фильтрация отрицательных значений целевых переменных (IC_{50} , CC_{50} , SI).
- Логарифмирование целевых переменных для улучшения нормальности распределения.
- Обработка выбросов методом межквартильного размаха (IQR).
- Бинаризация редких признаков (признаки с более 90% нулевых значений).
- Корреляционный и дисперсионный анализ для удаления избыточных признаков.

3.2 Построение моделей регрессии

Для предсказания значений IC_{50} , CC_{50} и SI были построены следующие модели регрессии:

- Линейная регрессия.
- Деревья решений.
- Случайный лес.
- Градиентный бустинг.

Для каждой модели были определены лучшие гиперпараметры с использованием GridSearchCV и кросс-валидации. Качество моделей оценивалось по метрикам RMSE и \mathbb{R}^2 .

3.3 Построение моделей классификации

Для задач классификации на основе параметров IC_{50} , CC_{50} и SI были построены следующие модели:

- Логистическая регрессия.
- Деревья решений.
- Случайный лес.
- Градиентный бустинг.

Качество моделей оценивалось по метрикам Accuracy, Precision, Recall, F1-score и ROC-AUC.

4 Результаты

4.1 Регрессия

4.1.1 IC_{50}

Лучшей моделью для предсказания IC_{50} оказался градиентный бустинг. Он показал наименьшее значение RMSE (0.42966) и наибольшее значение R^2 (0.52810). Случайный лес также показал хорошие результаты, но немного уступил градиентному бустингу.

Таблица 1: Результаты моделей регрессии для IC_{50}

Модель	RMSE	R^2
Линейная регрессия	0.60805	0.33218
Деревья решений	0.82810	0.09050
Случайный лес	0.44415	0.51220
Градиентный бустинг	0.42966	0.52810

Таблица 1: Результаты моделей регрессии для IC_{50}

4.1.2 CC_{50}

Лучшей моделью для предсказания CC_{50} также оказался градиентный бустинг. Он показал наименьшее значение RMSE (0.21086) и наибольшее значение R^2 (0.51256).

Таблица 2: Результаты моделей регрессии для CC_{50}

Модель	RMSE	R^2
Линейная регрессия	0.29940	0.30790
Деревья решений	0.43975	-0.01654
Случайный лес	0.21630	0.49999
Градиентный бустинг	0.21086	0.51256

Таблица 2: Результаты моделей регрессии для CC_{50}

4.1.3 *SI*

Лучшей моделью для предсказания SI оказался случайный лес. Он показал наименьшее значение RMSE (0.38045) и наибольшее значение R^2 (0.37365).

Таблица 3: Результаты моделей регрессии для SI

Модель	RMSE	R^2
Линейная регрессия	0.56310	0.07295
Деревья решений	0.65495	-0.07826
Случайный лес	0.38045	0.37365
Градиентный бустинг	0.39808	0.34463

Таблица 3: Результаты моделей регрессии для SI

4.2 Классификация

4.2.1 $IC_{50} >$ медиана

Лучшей моделью для классификации $IC_{50} >$ медиана оказался градиентный бустинг. Он показал наивысшие значения всех метрик (Accuracy = 0.7462, Precision = 0.7667, Recall = 0.7307, F1-score = 0.7487, ROC-AUC = 0.7999).

Таблица 4: Результаты моделей классификации для $IC_{50} >$ медиана

Модель	Accuracy	Precision	Recall	F1-score	ROC-AUC
Логистическая регрессия	0.6716	0.6792	0.6923	0.6857	0.7186
Деревья решений	0.7114	0.7347	0.6923	0.7129	0.7121
Случайный лес	0.7462	0.7667	0.7307	0.7488	0.7956
Градиентный бустинг	0.7462	0.7667	0.7307	0.7488	0.7999

Таблица 4: Результаты моделей классификации для $IC_{50} >$ медиана

$4.2.2 \quad CC_{50} >$ медиана

Лучшей моделью для классификации CC_{50} > медиана оказался случайный лес. Он показал наивысшие значения всех метрик (Accuracy = 0.7960, Precision = 0.8333, Recall = 0.7619, F1-score = 0.7960, ROC-AUC = 0.8956).

Таблица 5: Результаты моделей классификации для $CC_{50} >$ медиана

Модель	Accuracy	Precision	Recall	F1-score	ROC-AUC
Логистическая регрессия	0.7065	0.7169	0.7238	0.7204	0.7874
Деревья решений	0.7313	0.7802	0.6762	0.7245	0.7339
Случайный лес	0.7960	0.8333	0.7619	0.7960	0.8956
Градиентный бустинг	0.7960	0.8077	0.8000	0.8038	0.8945

Таблица 5: Результаты моделей классификации для $CC_{50} >$ медиана

4.2.3 SI > медиана

Лучшей моделью для классификации SI> медиана оказался случайный лес. Он показал наивысшие значения всех метрик (Accuracy = 0.6866, Precision = 0.6344, Recall = 0.6519, F1-score = 0.6519, ROC-AUC = 0.7363).

Таблица 6: Результаты моделей классификации для SI > медиана

Модель	Accuracy	Precision	Recall	F1-score	ROC-AUC
Логистическая регрессия	0.6418	0.6129	0.6129	0.6129	0.6509
Деревья решений	0.6666	0.6400	0.6882	0.6632	0.6774
Случайный лес	0.6866	0.6344	0.6519	0.6519	0.7363
Градиентный бустинг	0.6666	0.6707	0.5914	0.6286	0.7204

Таблица 6: Результаты моделей классификации для SI > медиана

4.2.4 SI > 8

Лучшей моделью для классификации SI > 8 оказался случайный лес. Он показал наивысшие значения всех метрик (Accuracy = 0.7164, Precision = 0.6400, Recall = 0.4507, F1-score = 0.5289, ROC-AUC = 0.7154).

Таблица 7: Результаты моделей классификации для SI>8

Модель	Accuracy	Precision	Recall	F1-score	ROC-AUC
Логистическая регрессия	0.6716	0.5556	0.3521	0.4310	0.5974
Деревья решений	0.6667	0.5286	0.5211	0.5248	0.6336
Случайный лес	0.7164	0.6400	0.4507	0.5289	0.7154
Градиентный бустинг	0.7164	0.8182	0.2535	0.3871	0.7040

Таблица 7: Результаты моделей классификации для SI>8

5 Выводы и рекомендации

5.1 Выводы

- 1. Градиентный бустинг показал себя как наиболее эффективная модель для предсказания значений IC_{50} и CC_{50} .
- 2. Случайный лес оказался наиболее эффективной моделью для предсказания значений SI.
- 3. Градиентный бустинг и случайный лес показали наивысшие значения всех метрик для задач классификации.
- 4. Логистическая регрессия и деревья решений показали средние результаты и могут быть полезны для базового сравнения или в случаях, когда требуется простая и понятная модель.

5.2 Рекомендации

- 1. Для дальнейшего исследования можно рассмотреть использование других методов предобработки данных, таких как нормализация или стандартизация.
- 2. Можно попробовать использовать более сложные модели, такие как нейронные сети или модели с поддержкой векторов опорных точек.
- 3. Для улучшения интерпретируемости моделей можно использовать методы важности признаков и попытаться найти более значимые признаки для предсказания биоактивности лекарственных препаратов.
- 4. Можно провести дополнительный анализ выбросов и аномалий в данных для улучшения качества моделей.
- 5. Для задач классификации можно рассмотреть использование дополнительных метрик, таких как Matthews correlation coefficient (MCC) или Cohen's kappa.

- 6. Можно рассмотреть возможность объединения нескольких моделей в ансамбль для улучшения общего качества предсказаний.
- 7. Для улучшения стабильности моделей можно использовать методы регуляризации, такие как Lasso или Ridge регрессия.

6 Заключение

В данной курсовой работе были выполнены все этапы исследовательского анализа данных, предобработки данных, построения и оценки моделей машинного обучения. Были получены качественные результаты для предсказания значений IC_{50} , CC_{50} и SI, а также для задач классификации на основе этих параметров. Полученные результаты могут быть использованы для дальнейшего исследования и разработки новых методов предсказания биоактивности лекарственных препаратов.