Propagacja fali termicznej w gazie - problem Riemanna

Metody Monte Carlo w Fizyce

Julia Potempa (411073)

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

14. czerwca 2025r.

Cel ćwiczenia

Celem ćwiczenia było wykonanie symulacji propagacji fali termicznej - problemu Riemanna - z wykorzystaniem bezpośredniej symulacji Monte Carlo.

1 Wstęp

Problem Riemanna, to proces rozchodzenia się fali termobarycznej i ma on swoje rozwiązanie analityczne. Pomimo tego porównanie wyników uzyskanych metodą Monte Carlo do rozwiązań analitycznych nie będzie uwzględnione przez brak odpowiedniego sprzętu do obliczeń dla tak dużego układu ($> 2 \cdot 10^7$ cząstek).

Technicznie zostaje to zasymulowane jako układ składający się z dwóch warstw zaprezentowanych na rysunku 1. Mają one różne ilości cząstek $(N_1 > N_2)$ o rozkładzie Boltzmanna i różne temperatury $(T_1 >> T_2)$. Po rozpoczęciu symulacji następuje transport masy pomiędzy warstwami.

Rysunek 1: Schematyczne przedstawienie symulacji.

2 Metodyka

Podobnie jak w przypadku ćwiczenia z symulacji dynamiki gazu została wykorzystana klasa DSMC_2D. Przygotowane zostały dwa pliki wejściowe dla lewej i prawej warstwy i wygenerowany plik z rozkładem początkowym dla całej symulacji. Następnie została przeprowadzona symulacja właściwa. Parametry przyjęte dla poszczególnych kroków:

• Rozkład cząstek w lewym podukładzie

$$x_{min} = 0$$
, $x_{max} = 1$, $y_{min} = 0$, $y_{max} = 0.5$, $T = 10^4 K$, $N_1 = 8 \cdot 10^5$, $init_dist = 2$.

• Rozkład cząstek w prawym podukładzie

$$x_{min} = 1$$
, $x_{max} = 2$, $y_{min} = 0$, $y_{max} = 0, 5$, $T = 300K$, $N_1 = 10^5$, $init_dist = 2$.

• Symulacja właściwa

$$x_{min} = 0$$
, $x_{max} = 2$, $y_{min} = 0$, $y_{max} = 0.5$, $nx = 300$, $ny = 75$, $k_B = 1$, $n_mix = 1$, $mc1 = 1$, $rc1 = 10^{-4}$, $nodes = 0$, $N = 9 \cdot 10^{5}$, $init$ $dist = 0$, it $max = 2000$.

Wizualizacje zostały przygotowane w języku Python.

3 Wyniki

Rysunek 2: Gęstość gazu w funkcji położenia na osi x w różnych iteracjach symulacji.

Rysunek 3: Ciśnienie gazu w funkcji położenia na osi x w różnych iteracjach symulacji.

Rozkład gęstości gazu na początku symulacji wskazywał największe wartości po lewej stronie układu. Następnie powoli przesuwał się w stronę prawej krawędzi, po czym doszło do odbicia fali i znowu większa gęstość przemieściła się w lewą stronę. Podobnie jest to dobrze widoczne na wykresach ciśnienia.

Rysunek 4: Temperatura gazu w funkcji położenia na osi x w różnych iteracjach symulacji.

Temperatura na początku różniła się schodkowo pomiędzy warstwami, a następnie zaczęła się powoli stabilizować na poziomie około 8000K.

Rysunek 5: Prędkość gazu w funkcji położenia na osi x w różnych iteracjach symulacji.

Na początku największa prędkość była osiągana w środkowej części, na granicy warstw. Następnie po odbiciu cząstek zaczęły się poruszać szybciej przekazując energię w drugim kierunku. Pod koniec widać, że przy przedłużeniu symulacji można by było zobaczyć odbicie od drugiej ścianki.

4 Wnioski

Metoda DSMC bardzo dobrze symuluje przemieszczanie się fali termicznej, natomiast wymaga to wykorzystania niefizycznych parametrów i dużego czasu obliczeń. Do wizualizacji tego zjawiska zostały wykorzystane wykresy gęstości, ciśnienia, temperatury oraz prędkości cząstek gazu.