Algebra II (Doble grado Informática-Matemáticas)

Relación 4

Curso 2019-2020

Grupos resolubles

Ejercicio 1. Demostrar que para cualesquiera dos grupos G y H se verifica que $[G \times H, G \times H] = [G, G] \times [H, H]$.

Ejercicio 2. Determinar el subgrupo conmutador de los grupos S_3 , A_4 , D_4 y Q_2 .

Ejercicio 3. Demostrar que, para todo $n \geq 3$, el subgrupo derivado de S_n es A_n .

Ejercicio 4. Demostrar que, para $n \geq 3$, el grupo alternado A_n es el único subgrupo de orden n!/2 en S_n .

Ejercicio 5. Sea $N \subseteq G$ un subgrupo normal y simple de un grupo G. Demostrar que si G/N tiene una serie de composición entonces G tiene una serie de composición.

Ejercicio 6. Sea G un grupo abeliano. Demostrar que G tiene series de composición si y sólo si G es finito.

Ejercicio 7. Sea H un subgrupo normal de un grupo finito G. Demostrar que existe una serie de composición de G uno de cuyos términos es H.

Ejercicio 8. Se define la longitud de un grupo finito G, denotada l(G), como la longitud de cualquiera de sus series de composición. Demostrar que si H es un subgrupo normal de un grupo finito G, entonces l(G) = l(H) + l(G/H).

Ejercicio 9. Encontrar todas las series de composición, calcular la longitud y la lista de factores de composición de los siguientes grupos:

- 1. El grupo diédrico D_4 .
- 2. El grupo alternado A_4 .
- 3. El grupo diédrico D_5 .
- 4. El grupo de cuaternios Q_2 .

5. El grupo cíclico C_{24} .

Ejercicio 10. Encontrar todas las series de composición del grupo S_4 . Calcular la longitud y la lista de los factores de composición de este grupo simétrico.

Ejercicio 11. Encontrar todas las series de composición del grupo S_n , para $n \geq 5$. Calcular la longitud y la lista de los factores de composición de este grupo simétrico.

Ejercicio 12. Encontrar todas las series de composición del grupo D_6 . Calcular la longitud y la lista de los factores de composición de este grupo diédrico

Ejercicio 13. Si G y H son grupos finitos, demostrar que

$$\ell(G\times H)=\ell(G)+\ell(H),\ \ fact(G\times H)=fact(G)\cup fact(H).$$

Concluir que el producto directo de grupos resolubles es resoluble.

Ejercicio 14. Sean H y K subgrupos normales de un grupo G tales que G/H y G/K son ambos resolubles. Demostrar que $G/(H \cap K)$ también es resoluble.

Ejercicio 15. Demostrar que si G es un grupo resoluble con una serie de composición entonces G es finito.

Ejercicio 16. Sea G un grupo finito, y

$$G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_{r-1} \triangleright G_r = \{1\}$$

una serie de G. Demostrar que

$$l(G) = \sum_{i=0}^{r-1} l\left(\frac{G_i}{G_{i+1}}\right), \qquad fact(G) = \bigcup_{i=0}^{r-1} fact\left(\frac{G_i}{G_{i+1}}\right).$$

Ejercicio 17. Si G_1, G_2, \ldots, G_r son grupos finitos, demostrar que

$$l(G_1 \times G_2 \times \cdots \times G_r) = \sum_{i=1}^r l(G_i), \quad fact(G_1 \times G_2 \times \cdots \times G_r) = \bigcup_{i=1}^r fact(G_i).$$

Ejercicio 18. Demostrar que D_4, D_5, S_2, S_3 y S_4 son grupos resolubles.

Ejercicio 19. Sea G un grupo resoluble y H un subgrupo normal de G no trivial. Demostrar que existe un subgrupo no trivial $A \leq H$ que es abeliano y normal en G.