Introduction to AI Tentative Course Syllabus - Spring 2025

		Start of ENSIA Semester 26/01/2024
Week 1 Introduction to AI	Lectures 27-29/01	 What Is AI? The Foundations of Artificial Intelligence The History of Artificial Intelligence The State of the Art Risks and Benefits of AI
Weeks 2-3 Intelligent Agents	Lectures 03-05-10/02	 Agents and Environments Good Behaviour: The Concept of Rationality The Nature of Environments The Structure of Agents
Weeks 3-5 Solving Problems by Searching	Lectures 12-17-19-24/02	 Search Algorithms Uninformed Search Strategies Informed (Heuristic) Search Strategies Tree search and graph search A* algorithm and its properties. Memory efficiency search algorithms
Weeks 5 - 6 Beyond Classical Search	Lectures 26/02 & 03- 05/03 Thursday 28/02	 Local Search Algorithms and Optimization Problems Local Search in Continuous Spaces Searching with Nondeterministic Actions Searching with Partial Observations MINI-PROJECT out (Week 6)
Weeks 7 to 8	Lectures	 Games Optimal Decisions in Games AlphaBeta Pruning Imperfect Real-Time Decisions
Adversarial Search	10-12-17/03	 Stochastic Games Partially Observable Games Alternative Approaches Limitations of Game Search Algorithms
	10-12-17/03	Stochastic GamesPartially Observable GamesAlternative Approaches
Search	10-12-17/03	 Stochastic Games Partially Observable Games Alternative Approaches Limitations of Game Search Algorithms

Weeks 10 to 11 Logical Agents	Lectures 14-16-21/04	 Knowledge-Based Agents The Wumpus World Logic Propositional Logic: A Very Simple Logic Propositional Theorem Proving Effective Propositional Model Checking Agents Based on Propositional Logic 	
Weeks 12 to 14 First-Order Logic + Inference in First-Order Logic	Lectures 23-28/04 Lectures 30/04 & 05/05	 Representation Revisited Syntax and Semantics of First-Order Logic Using First-Order Logic Knowledge Engineering in First-Order Logic Propositional vs. First-Order Inference Unification and Lifting Forward Chaining Backward Chaining Resolution 	
Week 15 Classical Planning + (Planning and Acting in the Real World Depending on advancement in the course coverage)	Lectures 07-12-14-19/05 Saturday 10/05	 Definition of Classical Planning Algorithms for Planning as State-Space Search Planning Graphs Other Classical Planning Approaches Analysis of Planning Approaches Time, Schedules, and Resources Hierarchical Planning Planning and Acting in Nondeterministic Domains Multi-agent Planning Mini project due	
Last day of classes 22/05/2025			

Saturday 27/05/2025 - 03/06/2025

Final Exams Period: