

Ayudantía 13

Problema 1

Determine los semiejes de la elipse que se obtiene al intersecar el cilindro $x^2 + y^2 = 1$ con el plano x+y+z=0, determinando los extremos condicionados de la función $f(x,y,z)=x^2+y^2+z^2$ sujeta a las dos restricciones mencionadas anteriormente.

Problema 2

Calcule las siguientes integrales dobles

a)
$$\iint_R \frac{1+x^2}{1+y^2} dA$$
, $R = \{(x,y) \mid 0 \le x \le 1, \ 0 \le y \le 1\}$

b)
$$\int_{0}^{1} \int_{0}^{1} x^{2} y e^{xy} dx dy$$

c)
$$\iint_R \frac{1}{x+y} dA$$
, donde R es la región limitada por las rectas $y=0, x=1$ y $y=x$.

d)
$$\iint_D xy \, dA$$
, donde D está encerrada por las curvas $y = x^2$ y $y = 3x$.

Problema 3

Calcule el área encerrada por la parábola $y = \frac{x^2}{2}$ y la curva $y = \frac{1}{1+x^2}$

Problema 4*

a) Maximice la función

$$f(x_1,\ldots,x_n,y_1,\ldots,y_n)=\sum_{i=1}^n x_iy_i$$

sujeta a las restricciones

$$\sum_{i=1}^{n} x_i^2 = 1 \quad \text{y} \quad \sum_{i=1}^{n} y_i^2 = 1$$

b) Use lo anterior para demostrar que

$$\sum_{i=1}^{n} a_i b_i \leq \sqrt{\sum_{j=1}^{n} a_j^2} \sqrt{\sum_{j=1}^{n} b_j^2} ,$$

para cualquier par de vectores $(a_1,\ldots a_n),\ (b_1,\ldots,b_n).$ Esta desigualdad se conoce como desigualdad de Cauchy–Schwarz.