Lecture 35 Chi-squared Test For Association/Independence

BIO210 Biostatistics

Xi Chen

Spring, 2025

School of Life Sciences
Southern University of Science and Technology

ABO Blood Types Distribution

Clinical Infectious Diseases

BRIEF REPORT

Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility

Jiao Zhao, ^{1,a} Yan Yang, ^{2,a} Hanping Huang, ^{3,a} Dong Li, ^{4,a} Dongfeng Gu, ¹ Xiangfeng Lu, ⁵ Zheng Zhang, ² Lei Liu, ² Ting Liu, ³ Yukun Liu, ⁶ Yunjiao He, ¹ Bin Sun, ¹ Meilan Wei, ¹ Guangyu Yang, ^{7,b} Xinghuan Wang, ^{8,b} Li Zhang, ^{3,b} Xiaoyang Zhou, ^{4,b} Mingzhao Xing, ^{1,b} and Peng George Wang, ^{1,b}

ABO Blood Types And COVID-19

$r \times c$ contingency table

	Α			
Healthy COVID-19	1,188	920	336	1,250
COVID-19	670	469	178	458

Contingency Table

Extended $r \times c$ contingency table

Chi-squared Test For Association/Independence

Question: Is there any association/relation between ABO blood groups and COVID-19 susceptibility?

$$\begin{cases} H_0: & \text{No association/No relation} \\ H_1: & \text{There is an association/They are related} \end{cases}$$

$$H_1: \;\;\;$$
 There is an association/They are related

$$\begin{cases} H_0: & \chi^2 = \sum_{\text{cells}} \frac{(O_i - E_i)^2}{E_i} = 0 \\ H_1: & \chi^2 \neq 0 \Rightarrow \chi^2 > 0 \end{cases}$$

Constructing The Expected Values In The Contingency Table

(if H_0

		Α	В	AB	0	Total
Observed:	Healthy COVID-19	1,188 670	920 469	336 178	1,250 458	3,694 1,775
	Total	1,858	1,389	514	1,708	5,469
	A				A D	1

		Α	В	AB	0	Total
Expected	Healthy	$1858 \times \frac{3694}{5469}$	$1389 \times \frac{3694}{5469}$	$514 \times \frac{3694}{5469}$	$1708 \times \frac{3694}{5469}$	3,694
H_0 were true):	COVID-19	$1858 \times \frac{1775}{5469}$	$1389 \times \frac{1775}{5469}$	$514 \times \frac{1775}{5469}$	$1708 \times \frac{1775}{5469}$	1,775
	Total	1,858	1,389	514	1,708	5,469
,						= /10

Constructing The Expected Values In The Contingency Table

		Α	В	AB	0	Total
Observed:	Healthy COVID-19	1,188	920	336	1,250	3,694
Observed:	COVID-19	670	469	178	458	1,775
	Total	1,858	1,389	514	1,708	5,469
	1 -					

		Α	В	AB	0	Total
Expected	Healthy	$3694 \times \frac{1858}{5469}$	$3694 \times \frac{1389}{5469}$	$3694 \times \frac{514}{5469}$	$3694 \times \frac{1708}{5469}$	3,694
(if H_0 were true):	COVID-19	$1775 \times \frac{1858}{5469}$	$1775 \times \frac{1389}{5469}$	$1775 \times \frac{514}{5469}$	$1775 \times \frac{1708}{5469}$	1,775
	Total	1,858	1,389	514	1,708	5,469

Contingency Table

	Α	В	AB	0	Total
Healthy COVID-19	1,188 670	920 469	336 178	1,250 458	3,694 1,775
Total	1,858	1,389	514	1,708	5,469

		Healthy	COVID-19	Total
	Α	1,188	670	1,858
V 6	В	920	469	1,389
V.S.	AB	336	178	514
	0	1,250	458	1,708
	Total	3,694	1,775	5,469

- Equivalent
- Test statistics are exactly the same
- ullet p-values are exactly the same

Chi-squared Tests p-value Calculation

Healthy

Observed:

Total

1.188 COVID-19 670

Α

1254.97

603.03

1,858

Α

В

В

938.19

450.81

1.389

AB

336

178

514

AB

347.18

166.82

514

0

554.34

1,708

0

1153.66 3.694

Total

1.775

5,469

$$\chi^2 = \sum_{\text{cells}} \frac{(O_i - E_i)^2}{E_i} = 38.00$$

df = (r-1)(c-1) = 3

Total

Expected:

$$p = \mathbb{P}\left(\chi_3^2 \geqslant 38.00\right) = 2.82 \times 10^{-8}$$

8/19

Chi-squared Tests For Homogeneity vs Association/Independence

Population

Sample

- Association/Independence:
 - H_0 : no association between variables 1 & 2
 - H_1 : association between variables 1 & 2
- Homogeneity:
 - H_0 : from the same population/have the same distribution
 - H_1 : from different populations/have different distributions
- The test statistics and p-values are exactly the same.
- The way of drawing samples and formulating hypotheses are different.
- Sometimes extremely similar or even indistinguishable.

COVID-19

sample

9/19

healthy

sample

Assumptions When Using Chi-squared Test

• Randomness, independence

• Because we used normal approximation for the binomial, we need large sample size: $np \geqslant 10$ and $nq \geqslant 10$. This means: all cells in the expected table should be at least 10.

• When normal approximation cannot be used: Fisher's exact test.

ABO Blood Types & COVID-19

Clinical Infectious Diseases

BRIEF REPORT

Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility

Jiao Zhao,^{1,a} Yan Yang,^{2,a} Hanping Huang,^{3,a} Dong Li,^{4,a} Dongfeng Gu,¹ Xiangfeng Lu,⁵ Zheng Zhang,² Lei Liu,² Ting Liu,³ Yukun Liu,⁶ Yunjiao He,¹ Bin Sun,¹ Meilan Wei,¹ Guangyu Yang,^{7,b} Xinghuan Wang,^{8,b} Li Zhang,^{5,b} Xiaoyang Zhou,^{6,b} Mingzhao Xing,^{1,b} and Peng George Wang^{1,b}

¹School of Medicine, The Southern University of Science and Technology, Shenzhen,

	Α	В	AB	0	Total
Healthy COVID-19	1,188	920	336	1,250 458	3,694
COVID-19	670	469	178	458	1,775
Total	1,858	1,389	514	1,708	5,469

$$\chi^2 = \sum_{\text{cells}} \frac{(O_i - E_i)^2}{E_i} = 38, \ p = \mathbb{P}\left(\chi_3^2 \geqslant 38\right) < 0.05$$

Conclusion: we reject H_0 , which means the data suggest there is some relationship between ABO blood types and COVID-19 susceptibility.

What's next?: We can do post hoc tests.

Post hoc Tests

Α

To correct for multiple testing: how many tests are we doing?

Rule of thumb: Define your question and decide the tests in advance.

В

Non-B Total

1. Which blood types have association with COVID-19? One category vs all the rest.

Non-A Total

Healthy	1,188	2,506	3,694	Healthy	920	2,774	3,694
COVID-19	670	1,105	1,775	COVID-19	469	1,306	1,775
Total	1,858	3,611	5,469	Total	1,389	4,080	5,469
	AB	Non-AB	Total		0	Non-O	Total
	<u> </u>				<u> </u>		<u> </u>
Healthy	336	3,358	3,694	Healthy	1,250	2,444	3,694
Healthy COVID-19	336 178	3,358 1,597	3,694 1,775	Healthy COVID-19	1,250 458	2,444 1,317	3,694 1,775
,		,	- ,	•	'	'	- /

2. I don't know what I'm looking for, so I'm going to perform tests among all possible pairs: - A vs non-A

- B vs non-B
- AB vs non-AB
- O vs non-O

-

- A & B vs AB & O - A & O vs B & AB
- A & AR vs R & O
- B & AB vs A & O
- B& Ovs A& AB

12/19

Post hoc Tests

One category vs all the rest

	A vs non-A	B vs non-B	AB vs non-AB	O vs non-O
χ^2	16.679	1.457	1.224	36.047
$oldsymbol{p}$	4.427×10^{-5}	0.227	0.268	1.926×10^{-9}

From the paper
$$\chi^2 = \sum_{\text{cells}} \frac{(|O_i - E_i| - 0.5)^2}{E_i}$$
 , Yates correction (Frank Yates)

	A vs non-A	B vs non-B	AB vs non-AB	O vs non-O	_
χ^2	16.431	1.378	1.117	35.674	
\boldsymbol{p}	5.045×10^{-5}	0.240	0.291	2.333×10^{-9}	
OR	1.279	1.083	1.114	0.680	
95% C	[1.136, 1.440]	[0.952, 1.232]	[0.920, 1.349]	[0.599, 0.771]	13/19

Odds Ratio

	Exposed	Unexposed	Total
Disease	а	b	a+b
No disease	С	d	c+d
Total	a+c	b+d	n

$$\label{eq:odds} \text{Odds ratio: } OR = \frac{P(\text{disease} \,|\, \text{exposed})/[1-P(\text{disease} \,|\, \text{exposed})]}{P(\text{disease} \,|\, \text{unexposed})/[1-P(\text{disease} \,|\, \text{unexposed})]}$$

$$\hat{OR} = \frac{[a/(a+c)]/[c/(a+c)]}{[b/(b+d)]/[d/(b+d)]} = \frac{a/c}{b/d} = \frac{ad}{bc}$$

Convenient to calculate, but confusing for understanding.

Probability vs Odds

Sample space Ω

Probability: $P(A) = \frac{\text{area of } A}{(\text{area of } A) + (\text{area of } A^C)}$

Odds: a measurement in favour of an event, $\frac{P(A)}{P(A^C)} = \frac{P(A)}{1 - P(A)}$

Randomly choose a ball from the box:

Odds Ratio (OR)

	Category X	Category Y	Total
EOI	a	b	a+b
The rest	С	d	c+d
Total	a+c	b+d	n

Risk (Probability): Risk_{EOI}, Risk_{EOI} under X is
$$\frac{a}{a+c}$$
, Risk_{EOI} under Y is $\frac{b}{b+d}$

Relative risk (ratio of probability):
$$RR = \frac{Risk_{EOI} \text{ under X}}{Risk_{EOI} \text{ under Y}}$$

Odds (ratio of probability): Odds_{EOI}, Odds_{EOI} under X is
$$\frac{a/(a+c)}{c/(a+c)} = \frac{a}{c}$$
, Odds_{EOI} under Y is $\frac{b/(b+d)}{d/(b+d)} = \frac{b}{d}$

Odds ratio (ratio of ratio of probability): $OR = \frac{\text{Odds}_{EOI}}{\text{Odds}_{EOI}} \frac{\text{under X}}{\text{under Y}} = \frac{a/c}{b/d} = \frac{ad}{bc}$

Sampling Distribution of $\ln\!RR$ & $\ln\!OR$

	Category X	Category Y	Total
EOI	а	b	a+b
The rest	С	d	c+d
Total	a+c	b+d	n

 $10,\!000$ simulations under the null hypothesis and keep records of RR and OR:

Sampling Distribution of $\ln OR$

	Category X	Category Y	Total
EOI	а	b	a+b
The rest	С	d	c+d
Total	a+c	b+d	n

•
$$\ln \hat{\mathsf{OR}} \sim \mathcal{N}\left(0, \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$$

• 95% CI:
$$\ln \hat{\mathsf{OR}} \pm Z_{0.025} \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$
 or $\ln \hat{\mathsf{OR}} \pm 1.96 \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$

• 95% CI with continuity correction:
$$\ln \hat{OR} \pm 1.96 \sqrt{\frac{1}{a+0.5} + \frac{1}{b+0.5} + \frac{1}{c+0.5} + \frac{1}{d+0.5}}$$

Reproduce The Result

95% CI

One category vs the rest $post\ hoc$ tests (with continuity correction):

Δ vs non-Δ

[1.136, 1.440]

	A VS	IIOII-A	D vs iioii-B		AB vs IIoII-AB		O vs IIOII-O	
Healthy	1,188	2,506	920	2,774	336	3,358	1,250	2,444
COVID-19	670	1,105	469	1,306	178	1,597	458	1,317
χ^2	16.431		1.378		1.117		35.674	
$oldsymbol{p}$	5.045×10^{-5}		0.240		0.291		2.333×10^{-9}	
OR	0.782		0.924		0.898		1.471	
95% CI	[0.695, 0.880]		[0.812	, 1.051]	[0.741, 1.087]		[1.296, 1.667]	
Results from the paper:								
	A vs	non-A	B vs	non-B	AB vs	non-AB	O vs	non-O
OR	1.279		1.	083	1.114		0.680	

[0.952, 1.232]

R vs non-R

AR vs non-AR

[0.920, 1.349]

J 19/19

 Ω vs non- Ω

[0.599, 0.771]