1. Let $\mathbb C$ denote the complex numbers with the standard addition and multiplication. Show that there is no order relation > such that $\mathbb C$ is an ordered field. As a reminder:

Definition 0.1. An ordered field $\mathbb{F} = (\mathbb{F}, +, \cdot, <)$ consists of a field $(\mathbb{F}, +, \cdot)$ together with a relation < on \mathbb{F} , called an order, satisfying

(i) (trichotomy) for each $x, y \in S$, exactly one of the following hold,

$$x < y, \quad y < x, \quad x = y;$$

- (ii) (transitivity) for $x, y, z \in S$, if x < y and y < z, then x < z.
- (iii) if $x, y, z \in \mathbb{F}$ and x < y, then x + z < y + z;
- (iv) if $x, y \in \mathbb{F}$ and x, y > 0, then xy > 0.
- 2. Find the supremum and infimum of the following set: $S = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$. Prove your claim.
- 3. Show if $A \subset B$ are subsets of $\mathbb R$ where B is bounded above, then A and B have least upper bounds and

$$\sup(A) \le \sup(B)$$
.

Find an example where $\sup(A) = \sup(B)$.

4. Let A and B be two non-empty subsets of \mathbb{R} which are bounded below. Show

$$\inf(A \cup B) = \min\{\inf(A), \inf(B)\}.$$

5. Suppose that A and B are non-empty subsets of $\mathbb R$ that are bounded above. Let

$$A+B=\{a+b \mid a\in A, b\in B\}.$$

Show A + B has a supremum and that $\sup(A + B) = \sup(A) + \sup(B)$.