Adaptive immunology continued CD4 T cell activation and functions

Figure 3.9 The Immune System, 3ed. (© Garland Science 2009)

Reminder: CD8+ T cell response to activation

- 1. Proliferation
- 2. Differentiation into
 - 1. effector CTL (cytotoxic CD8+ T lymphocytes)
 - 2. Memory CD8+ T cells
- 3. Produce cytokines
- 4. When the effector CTL synapse with an infected cell, they release toxic proteins to lyse the infected cell (cytolysis); induce target cell death (apoptosis)

E.g. perforin, granzymes

Figure 8.39 part 2 of 2 The Immune System,

CD4+ T cell response to activation

- 1. Proliferation
- 2. Differentiation into
 - 1. CD4+ Th1 or Th2 effector cells (or other types)
 - 2. memory CD4+ T cells
- 3. Produce cytokines
- 4. Effector functions of Th1 or Th2 helper cells = activate macrophages or B cells respectively

(activated CD4+ T cells do not actively kill pathogen themselves but HELP other cell types to do so)

Naïve T helper cells (CD4+ Th0) can differentiate into several effector subtypes

Janeway 2001
Figure 8.24 The stages of activation of CD4 T cells

Naive CD4 T cells first respond to their specific peptide:MHC class II complexes by making IL-2 and proliferating.

These cells then differentiate ...

The T_H0 cell has the potential to become either a T_H1 cell or a T_H2 cell.

IL-4 causes Th2 to develop, whereas IL-12 causes Th1 to develop.

Th1 and Th2 cell activation

- Both Th1 and Th2 cells start as CD4+ helper T naïve cells
- They are activated via MHC class II and TCR
- The T cell then differentiates either into Th1 or Th2 (or other subtypes)

Th1 and Th2 cells eliminate different types of pathogens

Th1 vs Th2 differentiation

 Usually the immune response swings in one direction over the other

• EITHER Th1 OR Th2

- Th1 response inhibits Th2 response and vice verse
- Favours elimination of intracellular or extracellular pathogens (not both simultaneously)

Th1 effector functions

Th1 effector cells:

- 1. Produce Th1 cytokines (chemical messengers) such as IFN-g
- 2. Synapse with macrophages to increase macrophage function i.e. kill phagocytosed microbes or bacteria that like to live inside macrophages such as TB or leprosy
- (3. May also interact with CD8+ T cells?)
- 4. Increase cell-mediated immunity

Step1. Macrophage or other APC activates CD4+ T cell

Step 2. CD4+ T cell differentiates into Th1 cell

Step 3. CD4+ Th1 cell activates macrophage

Step 4. macrophage increases cell-mediated immunity and lysis of phagocytosed / intracellular bacteria

Th2 effector functions

Th2 effector cells:

- 1. Produce Th2 cytokines (chemical messengers) such as IL-4
- 2. Activate eosinophils (defense against parasites)
- 3. Synapse with B cells to activate them (antibody production)
- 4. Increase humoral immunity (antibody –based)

Step1. APC activates CD4+ T cell

Step 2. CD4+ T cell differentiates into Th2 cell

Step 3. CD4+ Th2 cell activates B cell

Effector T_H2 cells interact with antigenspecific B cells in lymphoid tissue

Th2 effector functions

Th2 effector cells:

- 1. Produce Th2 cytokines (chemical messengers) such as IL-4
- 2. Activate eosinophils
- 3. Synapse with B cells to activate them
- 4. Increase humoral immunity

Note: T cells are not antigen presenting cells.
The Th2 cell cannot present antigen to help the B cell...
Th2 can only produce cytokines...

Comparison between Th1 and Th2 cell function

Th1 effector cells:	Th2 effector cells:	
 Produce Th1 cytokines (chemical messengers) such as IFN-g 	 Produce Th2 cytokines (chemical messengers) such as IL-4 	
2. Synapse with macrophages to increase macrophage function	2. Synapse with B cells to activate them3. Also activate eosinophils	
3. Increase cell-mediated immunity	4. Increase humoral immunity	

Comparison between Th1 and Th2 cell function

Th1 effector cells:

Produce Th1 cytokines
 (chemical messengers)
 such as IFN-g

2. Synapse with macrophages to increase macrophage function

3. Increase cell-media immunity

Th2 effector cells:

Produce Th2 cytokines
 (chemical messengers) such
 as IL-4

2. Synapse with B cells to activate them

T helper cells cannot do much by themselves except for produce cytokines.

Their main effector function is to "help" other cells become more effective

Comparison between CD4+ Th1 and Th2 cell function

Th1 cells synapse with macrophages to increase cell mediated immunity

Th2 cells synapse with B cells to increase humoral immunity

Steps in Immune response	CD8+ T cell	CD4+ T cells
Activation	TCR binds antigen on HLA class I	TCR binds antigen on HLA class II
proliferation	yes	yes
Differentiation	Memory CTL	Memory Th1 Th2
Cytokine production	IL-2, IFNg	Th1: IL-12, IFNg Th2: IL-4
Cytotoxic	yes	no
Other functions	no	Helper immune synapse Th1: macrophage Th2: B cells

The Hygiene hypothesis

- Children usually exposed to a wide variety microbes
- this exposure to many viruses / intracellular bacteria leads to Th1 immune responses
- Th1 usually suppresses Th2 response
- in modern times, children experience decreased exposure to microbes (raw food types, antibiotics, pasteurised milk, increased hygiene - running water, washing etc)
- Children who are not exposed to enough microbes have insufficient Th1 stimulation
- They develop an overactive Th2 state
- Th2 activates eosinophils, which leads to a high rate of allergies e.g. asthma, eczema
- ? Role in diabetes, MS, other immune disorders?

Check your understanding

- 1. How many different types of T cells can you name?
- 2. Which type of T cell recognises antigen on HLA class I?
- 3. Which type of T cell recognisees antigen on HLA class II?
- 4. Which cell types synapse with Th1 cells?
- 5. Which cell types synapse with Th2 cells?
- 6. What is the major function of Th1 cells?
- 7. What is the major function of Th2 cells?
- 8. HIV infection causes decreased CD4+ T cells and a Th2 type immune response. What opportunistic infections are most likely to occur?

Check your understanding

What is the main difference between NK cell response to HLA And T cell response to HLA?

Same question as previously but now can answer in more detail!

Check your understanding

Q: How many different types of innate and adaptive immune synapses have you learnt about so far and what are their major functions?