

MASTER THESIS

František Dostál

Fitness and novelty in evolutionary reinforcement learning

Name of the department

Supervisor of the master thesis: Mgr. Roman Neruda, CSc.

Study programme: Mgr.

Study branch: Artificial Inteligence

I declare that I comind out this procton thesis is described and a 1 1 1 1 1 1
I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources. It has not been used to obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.
In date
Author's signature

Dedication.

Title: Fitness and novelty in evolutionary reinforcement learning

Author: František Dostál

Katedra teoretické informatiky a matematické logiky: Name of the department

Supervisor: Mgr. Roman Neruda, CSc., department

Abstract: Novelty is a novel aproach to modeling selection criteria in evolutionary algorithms and has been proven as viable technique of avoiding pitfalls of false optima in tasks abundant with them, such as solving mazes. Rather than closing the topic however, this finding opened other problems to explore: How to properly apply novelty in tasks that yield slightly better to conventional aproaches? How to properly model behavioral space nessessary for novelty computation? In this thesis we investigate use of novelty in selected reinforcement learning tasks, it's combinations with classical fitness and propose behavior space models for the respective RL tasks.

Keywords: evolution novelty fitness behavioral space

Contents

Introduction				
1	Evo	lutionary algorithms	3	
	1.1	Fitness based algorithms	3	
		1.1.1 Evolutionary Strategies	3	
		1.1.2 Differential Evolution	3	
	1.2	Novelty	3	
		1.2.1 Pure Novelty	3	
2	Enviroments			
	2.1	Gymnasium	4	
		2.1.1 CartPole	4	
		2.1.2 Moon Landing	4	
3	Con	nparison criteria	5	
4	Exp	periments	6	
Conclusion				
List of Figures				
Li	st of	Tables	9	
\mathbf{Li}	\mathbf{st} of	Abbreviations	10	
\mathbf{A}	Att	achments	11	
	A 1	First Attachment	11	

Introduction

1. Evolutionary algorithms

- 1.1 Fitness based algorithms
- 1.1.1 Evolutionary Strategies
- 1.1.2 Differential Evolution
- 1.2 Novelty
- 1.2.1 Pure Novelty

2. Environments

- 2.1 Gymnasium
- 2.1.1 CartPole
- 2.1.2 Moon Landing

3. Comparison criteria

4. Experiments

Conclusion

List of Figures

List of Tables

List of Abbreviations

A. Attachments

A.1 First Attachment