Rate-dist. Theory Motivathy Example (e.g. output of lossless compression alg.)

X1, X2, ... ~ Beneallill'/2) iid. Want to compress tuther, but H(X)=1. => Futher comp.
> is not possible Willing to accept up to $\delta = \frac{1}{4}$ of bits incorrectly reproduced an average (upon decompression). How good can be do? let's encode in blocks: n symbols at a time, into codewards of k symbols. (So, compresse rate = 1/2) $d(x,\hat{x})$ fraction wrong, in this case $\propto p(x)$ C(x)C(x) \hat{x} $d(x,\hat{x})$ >> D=@1.0+1.0=0 = 1/4. OK. $R = \frac{k}{n} = 1$ (So for n = 1, R = 1)
is best possible s.t. The state of the set of the set

let's try n=2 at a time

n=2, k=0	$\chi_{l:2}$	$p(x_{1:2})$	$(x_{i,2})$	Ź/:2	d(x, 2, 2/12)	
	00	1/4		00	0	$\Rightarrow D = \frac{1}{4}(0 + \frac{1}{2} + \frac{1}{2}) = \frac{1}{2} > 6$
	01	1/4		00	@1/2	No good.
	10	1/4		00	1/2	Joseph .
	1 1	1/4		00		
n=2, k=1	×1:2					
	00	1/4	0	00	\circ	>> D= +: + + + + 1 / c
	01	1/4	O	00	42	$\Rightarrow D = \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{4} \leq S$
	10	1/4) (1/2	$R = \frac{k}{h} = \frac{1}{2}$
	1 (1/4	1	11	0	So, we are down to R=1/2
We could keep jorny.	N=3 4	m.h.a.l				using n = 2 (instead of n-1)

We could keep jorny, N=3,4, - reducing R further, while keeping D = S.

(Gets tricky to choose good codes.)

Towns out, the possible R for no letting Rn denote the code for no shown in the code for no shown.

(subject to D = 8) then Rn -> 0.1887 (Theretiral result due to Rote-Dist Than.)

1-H(8) (Difficult to choose which he practice!)

i.e. Con store in bits into k < 1/5 bits and still get 75% of bits correct your decompressing!

Note: If we took the naive approach of just discarding all but the dist where close to 0.19!

N=3, k=1	×1:3	p(x1:3)	((x _{1:3})	$\hat{\chi}_{l:3}$	$d(x_{l:3},\hat{x}_{l:3})$	
	000	1/8	0	000	0	$\Rightarrow D = \frac{1}{3} \cdot \frac{3}{4} + 0 = \frac{1}{4} \leq 6$
	001	1/8	0	000	1/3	OK.
	010	1/8	0	000	1/3	n 1
	011	•	1	111	1/3	K=3. Getting elase!
	100		\bigcirc	000	1/3	
	101	•	1	1 ((1/3	
	110	·	(((/	1/3	
	111		(111	0	

(odelak -

8 chosen reproduction points" $\hat{x}_{i:n} \Rightarrow 8 = 2k$ k = 3

Defn: A distation for is a map $d: \mathcal{X} \times \hat{\mathcal{X}} \rightarrow [0, \infty]$ Pks: $0 \frac{|u+u|produting}{d(x,\hat{x})}$ is larger when \hat{x} is worse (as a repoduction of x.) $d(x,\hat{x})$ is the penalty of \hat{x} . from exprespiting x as 2. \mathcal{D} $d(x,\hat{x}) = \infty$ is penitted. 3 d is bounded if $\max_{x \in \hat{x}} d(x, \hat{x}) < \infty$. "O-1 distation!" $\chi = \hat{\chi} = \frac{1}{\sqrt{2}} =$ Defn: The distortion between sequences $\chi_{i:n} \in \chi^n$ and $\hat{\chi}_{i:n} \in \hat{\chi}^n$ induced by defined distortion is $d(x_{i:n_i} \hat{x}_{i:n}) = \frac{1}{n} \sum d(x_{i,i} \hat{x}_{i})$ Detn: The expected istation of an (n,k) code C=(fig) with source X1,...,Xn~p (iid) is $D_c = Ed(X_{l:n}, \mathcal{Z}_{l:n})$, where $\hat{X}_{l:n} = g(f(X_{l:n}))$. (i.e. $D_c = \sum_{i=1}^{\infty} d(x_{i:n}, g(f(x_{i:n}))) p(x_{i:n})$

Deta: The expected distortion of a conditional dist $q(\hat{x}|x)$ on $(\hat{x}|\hat{x})$ \hat{x} given \hat{x} (where $\hat{x} \sim p$) is $D_q = Ed(\hat{x}, \hat{x}) = (\hat{x}, \hat{x}) = (\hat{x}, \hat{x}) p(x) q(\hat{x}|x)$. (Note: $\hat{x} \in \hat{x}$ are single symbols.)

Defn: le biven (>0, and d>0, we say (r, S) is achievable (as a "rate-distorthumpeir") if $\forall E>0$ there is a clossy code with $R \leq r$ and $D \leq S + E$.

The rate-distortion problem (i.e. losy comp problem) is:

@ (Theoretically) Given an acceptable level of distartion 8 20, what is the best (smallest) Katiente r that is a chienable? (Insuesti Rate-Dist. Than) (Solved for very few problems - Very Littralt)

Defn: The vate distortion function is $p(\delta) = \inf \{ r \ge 0 : (r, \delta) \text{ is achievable. } \}$

Shannen's Then (Rate-Dist. Then): For an iid source and a bounded dist. In, $P(S) = min I(X:\hat{X})$, where the min is over and distr $q(\hat{x}|x)$, and $(\hat{X}|x) = q(\hat{x}|x)$.

Note: $X \in \mathcal{X}$, $\mathcal{X} \in \hat{\mathcal{X}}$ are single symbols (not in \mathcal{X}^n .)

Rate-dist for for a Bernoulli source (Before proving the result, let's use it to compute p(d) in an important special case.) Thm: If X_1, X_2, \dots iid Bernoulli(α) with $\alpha \in (0, 1/2]$ and $d(x, \hat{x}) = \mathbf{1}(x \neq \hat{x})$, then $\left[\varrho(\delta) = \begin{cases} H(\alpha) - H(\delta) & \text{if } 0 \leq \delta \leq \alpha \\ 0 & \text{if } \delta > \alpha \end{cases}\right]$ Rk: Intuition: If S=0 this is the Sauce Ceding Thm (tero dist = lossless comp.) If $S \ge d$, can get vate 0 since typical x seas have $\approx dn \le Sn$ ones. (So, take $\hat{x} \equiv 0$.) If OLSLL, expect to interpolate bla these. H: (1) First, suppose $d > \alpha$. (hose $q(\hat{x}|x) = \mathbf{I}(\hat{x}=0)$. Then $\mathbf{I}(X:\hat{X}) = 0$ and $D_q = Ed(X,\hat{X}) = E1(X \neq \hat{X}) = P(X \neq \hat{X}) = P(X \neq 0) = P(X=1) = \lambda 48. \Rightarrow D_q \leq \delta, \ T(X:\hat{X}) = 0.$ ⇒ 6(8) =0 if 8>x (a) Claim: $O(d) \ge H(x) - H(d)$. Let $Q(\hat{x}|x)$ be any dist s.t. $D_Q \le \delta$. Since $D_Q \le \delta \le \lambda \le \frac{1}{2}$. Let $Z = I(x \ne \hat{x})$, Then $EZ = D_Q$ (since $Z = d(x, \hat{x})$). Hence, $H(Z) = H(D_Q) \le H(\delta)$. $I(x:\hat{X}) = H(X) - H(X|\hat{X}) \ge H(X) - H(A).$ So, 49 s.t. Dq = f, I(x: x)> H(4)-H(6).

(b) Claim:
$$3q + 1 \cdot D_q \le 6 \longrightarrow I(x : \hat{x}) = H(4) - H(6)$$
.

Went: $H(x) - H(x|\hat{x}) \stackrel{?}{=} H(4) - H(6) \iff H(6) \stackrel{?}{=} H(x|\hat{x}) = \sum_{\hat{x}} H(x|\hat{x} = \hat{x}) P(\hat{x} = \hat{x})$
 $A = (f, 6) + f(1 - 6)$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x) = 1 - 6$
 $P(X = x|\hat{X} = x)$

$$\begin{aligned}
& Q(0|0) = \Re(\hat{X}=0|X=0) = \frac{\Re(X=0|\hat{X}=0) \Re(\hat{X}=0)}{\Re(X=0)} = \frac{(I-S)(I-S)}{I-A} & \geq 0. \\
& Q(1|0) = 1 - \frac{SB}{I-A} \geq 0. \\
& Q(0|0) + Q(1|0) = \frac{1}{I-A} \left((I-S)(I-B) + SB \right) = \frac{I-A}{I-A} =$$

$$q(0|0) + q(1|0) = \frac{1}{1-\alpha} ((1-\delta)(1-\beta) + \delta\beta) = \frac{1}{1-\alpha} (1-\delta-\beta + 2\delta\beta) = 1.$$

So, chaose q(X|X) $= So, choose \qquad q(1|1) = (1-5)(\alpha-5)$ = (1-25) = (1-25)

Now, we know what to do:

Define
$$q(\hat{x}|x)$$
 by: $q(1|1) = \frac{(1-\delta)\beta}{\alpha}$ and $q(1|0) = \frac{\delta\beta}{1-\alpha}$ where $\beta = \frac{\alpha - \delta}{1-2\delta}$

Then
$$P(X=x|\hat{X}=x) = 1-S$$
 holds, and we obtain $D_q \leq S$ and $\frac{H(S)=H(X|\hat{X})}{J(X:\hat{X})=H(X)-H(S)}$

1 chima

Chins @ + 6 imply that P(8) = H(x)-H(s) when 0 \le d \le d \le 1/2.] The

Rate - Dist. Thm - Sketch of proof (of achievability) YERO Just with rate EV and exp. List De & Ste Este Com. (Reall:) Detn: The rote dist. In is $P(\delta) = \inf\{r \geq 0 : (r, \delta) \text{ is achievable}\}.$ Thin: For an iid some X1,.., Xn ~p and bounded dist for L: 7x 2 -> [0, and now] $\rho(\delta) = min I(x:\hat{x})$ $q: D_q \leq \delta$ (where the Min is over $q(\hat{x}|x)$ and $(X_i\hat{X}) \sim p(x) q(\hat{x}|x)$.) (Proof hes two parts: ? and \(\). Showly ? is relatively staightforward seq. of ineqs - See text. Hen's the basic idea of \leq .) (Note: Purely for visualization purposes... $d(x,\hat{\kappa}) \text{ need not be a metric.})$ Pf skotch (E):

 $\frac{D}{C} = \underbrace{\sum_{X_{lin}} d(X_{lin}, \hat{X}_{lin}) p(X_{lin})}_{p(X_{lin})} = \underbrace{\sum_{inside} d(--)p(--)}_{p(x_{lin})} + \underbrace{\sum_{insid$

 $D := \sum_{C} D_{C} P(C) \leq (J+E) + C_{majo} P(X_{j:m} \text{ ortside}^{*}C) \leq J+2E \text{ for } n \text{ soff (a.g. soft)}$ $\Rightarrow \exists C \text{ with rote } P(S) \leq J+2E$ $\Rightarrow \exists C \text{ soft} D_{C} \leq J+2E$ $\text{since } \# \text{ ordened is } 2^{n}R \text{ of the ordened } \# \text{fill up}^{*} \text{ the space whp.})$

A little more farmelly: Setup: Let X1,..., Xn ~ p ild. Let d: \(\chi\) \(\chi\) dmax]. Let $\delta \geq 0$. (Goal: inf{rzo: (1,8) is achievable} $\frac{1}{9} \leq \min_{q: D_q \leq \delta} I(x; \hat{x})$.) Choose q(x)x) tattain the min; so that Dates and the termines, $(\chi, \hat{\chi}) \sim p(x)q(\hat{\chi}(x))$. (Goal:] lossy of E (of R > I(X: x). (Goal: 7 lossy code C with rate R and eyp. dist. unite $p(\hat{x})$ for $p(\hat{x}) = \sum_{n} p(x) q(\hat{x}|x)$. Random Codebook: Cet $C = (\hat{X}^{(i)}_{lin}, \dots, \hat{X}^{(2nR)}_{lin})$ where $\hat{X}^{(i)}_{j} \sim p(\hat{x})$ at $\forall i, j$. Iid. $(So_{\mathcal{L}} \mathbb{P}(\mathbb{C} = \mathbb{C}) = \mathsf{TT} p(\hat{\mathcal{X}}_{i}^{(i)}).)$ Encode by Dist Typicality: Introduce the dist. typical set: $\mathcal{T}_{\mathbf{E}}^{(n)} = \left\{ (\chi_{l:n}, \hat{\chi}_{l:n}) : \chi_{l:n} \in \mathcal{A}_{\mathbf{E}}^{(n)}(\chi), \hat{\chi}_{l:n} \in \mathcal{A}_{\mathbf{E}}^{(n)}(\hat{\chi}), (\chi_{l:n}, \hat{\chi}_{l:n}) \in \mathcal{A}_{\mathbf{E}}^{(n)}(\chi, \hat{\chi}) \right\}$ and $|d(x_{j:n_j}\hat{x}_{j:n}) - Ed(X_j\hat{X})| \leq \varepsilon$

To encode xin with cadeback $C = (\chi_{iin}^{(1)}, -\gamma \chi_{iin}^{(n)})$: • If $\exists i \text{ s.t. } (\chi_{i:n}, \hat{\chi}_{i:n}^{(i)}) \in T_{\epsilon}^{n}$ then define $f(\chi_{i:n}) = i$. (If mare then one such i, choose the first one, say.) • Otherwise, John $f(x_{i:n}) = 1$. (a whoteve.) Deade f_{in} : $g(i) = \hat{\chi}_{in}^{(i)}$. Abbreviote: $C(\chi_{in}) = g(f_{in}(\chi_{in}))$. (This defines a random code with rate R. Next task: show that ever of random code is small: Exp. Dist: For fixed C, $D_c = Ed(X_{l:n}, C(X_{l:n})) = \sum_{i=1}^{n} d(x_{i:n}, C(x_{i:n})) p(x_{i:n})$ (by behavior $t_{\overline{q}}$) $t = S + E \leq S + E$ (by our choice of q) $t = S + E \leq S + E$ (by our choice of q) $t = S + E \leq S + E$ (by our choice of q) $t = S + E \leq S + E$ (by our choice of q) $t = S + E \leq S + E$ (by our choice of q) $t = S + E \leq S + E$ (by our choice of q) $t = S + E \leq S + E$ (by our choice of q) $t = S + E \leq S + E$ (by our choice of q) $t = S + E \leq S + E$ (by our choice of q) $t = S + E \leq S + E$ (by our choice of q) χ_{in} st. $(\chi_{in}(x_{in}) \notin T_{\epsilon}^{(i)})$ I down Et plan) $\Rightarrow \overline{D} := \underbrace{\sum D_{C} p(c)}_{C} \leq (S+E) + d_{mor} \underbrace{\sum \sum p(x_{lin}) p(c)}_{C}$ since Xin IP (Now, show that this prob. can be made abotherly smell.)

(there is a hourstric argument - see text for visaous pf.)

$$\mathbb{P}((X_{lin}, \mathbb{C}(X_{lin})) \notin \mathbb{T}) = \mathbb{P}((X_{lin}, \hat{X}_{lin}^{(i)}) \notin \mathbb{T} \quad \forall i=1,...,2^{nR})$$
"
$$\mathbb{P}((X_{lin}, \mathbb{C}(X_{lin})) \notin \mathbb{T}) = \mathbb{P}((X_{lin}, \hat{X}_{lin})) \notin \mathbb{T} \quad \forall i=1,...,2^{nR})$$
"
$$\mathbb{P}((X_{lin}, \mathbb{C}(X_{lin})) \notin \mathbb{T}) = \mathbb{P}((X_{lin}, \hat{X}_{lin})) \notin \mathbb{T} \quad \forall i=1,...,2^{nR})$$
"
$$\mathbb{P}((X_{lin}, \mathbb{C}(X_{lin})) \notin \mathbb{T}) = \mathbb{P}((X_{lin}, \hat{X}_{lin})) \notin \mathbb{T} \quad \forall i=1,...,2^{nR})$$
"
$$\mathbb{P}((X_{lin}, \mathbb{C}(X_{lin})) \notin \mathbb{T}) = \mathbb{P}((X_{lin}, \hat{X}_{lin})) \notin \mathbb{T} \quad \forall i=1,...,2^{nR})$$

$$= \left(1 - \frac{2^{n(R-I)}}{2^{nR}}\right)^{2^{nR}} \approx e^{-2^{n(R-I)}}$$

$$= \left(1 - \frac{2^{nR}}{2^{nR}}\right)^{2^{nR}} \approx e^{-2^{nR}}$$

$$= \left(1 - \frac{2^{nR}}{2^{nR}}\right)^{2^{nR}} \approx e^{-2^{nR}}$$

$$= \left(1 - \frac{2^{nR}}{2^{nR}}\right)^{2^{nR}} = e^{-2^{nR}}$$

$$= \left(1 - \frac{2^{nR}}{2^{nR}}\right)^{2^{nR}} = e^{-2^{nR}}$$

$$= \left(1 - \frac{2^{nR}}{2^{nR}}\right)^{2^{nR}} = e^{-2^{nR}}$$

$$\Rightarrow \quad \vec{D} \stackrel{<}{\lesssim} (\vec{S} + \vec{\epsilon}) + d_{\text{max}} e^{-2n(R-I)} \stackrel{<}{\leq} \vec{S} + 2\vec{\epsilon} \quad \text{for } n \text{ suff. (arge)}$$

Since
$$\overline{D} = \sum_{C} D_{C} p(c)$$
, then there is at least one code C st. $D_{C} \subseteq \overline{D}$.