ALJABAR LINIER

DR. RETNO KUSUMANINGRUM, S.SI., M.KOM.

Vector

OUTLINE

- Besar dan Arah Vektor
- Operasi Vektor
- Dot Product
- Kesamaan Vektor
- Proyeksi Vektor pada Vektor
- Cross Product

BESAR DAN ARAH VEKTOR

VECTOR DEFINITION

Skalar ? ---- Skalar hanya memiliki besaran saja

VECTOR DEFINITION

Skalar ? ---- Skalar hanya memiliki besaran saja

Vectors

Direction

Length / Magnitude

$$\overrightarrow{V} = [3,1] = \begin{bmatrix} 3\\1 \end{bmatrix}$$

$$\vec{\lambda} = \begin{bmatrix} -\lambda \\ 3 \end{bmatrix} = \begin{bmatrix} -\lambda \\ 3 \end{bmatrix}$$

DIRECTION

 Direction (Arah) merupakan sudut yang dibentuk oleh vektor dengan sumbu x positif

x	у	Kuadran	Arah
3	4	Kuadran I	θ
-2	3	Kuadran II	$\beta = 180 - \theta$
-3	-4	Kuadran III	$\gamma = 180 + \theta$
4	-3	Kuadran IV	$\delta = 360 - \theta$

LENGTH OF VECTOR

LATIHAN SOAL (I)

Gambar geometris vektor berikut ini serta hitung besar dan arah vektornya!

a.
$$\vec{a} = (3,4)$$

b.
$$\vec{b} = (-\sqrt{3}, 1)$$

c.
$$\vec{c} = (-2\sqrt{3}, -2)$$

JAWABAN (a)

Arah vektor \vec{a} adalah : $\tan \alpha = \frac{y}{x} = \frac{4}{3}$

$$\alpha = 53^{\circ}$$

Besar vektor \vec{a} adalah : $||\vec{a}|| = \sqrt{3^2 + 4^2} = 5$

VEKTOR DIMENSITIGA

- Dalam sistem 3 dimensi suatu titik dinyatakan oleh pasangan tiga bilangan (tripel)
- Misalkan $P(x_1, y_1, z_1)$
- Sumbu x adalah absis, sumbu y adalah ordinat, dan sumbu z adalah aplikat
- Tiap dua sumbu menentukan sebuah bidang yang disebut koordinat, yaitu bidang XY, bidang YZ, dan bidang XZ, yang membagi ruang menjadi 8 ruang bagian dimana masing-masing disebut sebagai oktan.

\boldsymbol{x}	y	Z	Koordinat Titik	Posisi Titik
3	4	4	A(3, 4, 2)	Oktan I
2	-3	4	B(2, -3, 4)	Oktan II
-3	-4	2	C(-3, -4, 2)	Oktan III
-4	3	2	D(-4, 3, 2)	Oktan IV
3	4	-2	E(3, 4, -2)	Oktan V
-2	3	-4	F(-2, 3, -4)	Oktan VI
-3	-4	-2	G(-3, -4, -2)	Oktan VII
4	-3	-2	H(4, -3, -2)	Oktan VIII

Besar vektor \vec{a} adalah $||\vec{a}|| = \sqrt{x^2 + y^2 + z^2}$

Arah vektor \vec{a} adalah

- Terhadap sumbu x adalah $\cos \alpha = \frac{x}{\|\vec{a}\|}$
- Terhadap sumbu y adalah $\cos \beta = \frac{y}{\|\vec{a}\|}$
- Terhadap sumbu z adalah $\cos \gamma = \frac{z}{\|\vec{a}\|}$

LATIHAN SOAL (2)

Gambar geometris dari vektor berikut ini serta hitung besar dan arah vektornya:

$$\vec{d} = (2, 3, 6)$$

4-dimensional? 5-dimensional? n-dimensional?

DEFINITION OF \mathbb{R}^n

$$\overrightarrow{\mathcal{V}} = \left[V_{1}, V_{2} \right]$$

$$\overrightarrow{\mathcal{U}} = \left[\mathcal{U}_{1}, \mathcal{U}_{2}, \mathcal{U}_{3} \right]$$

$$\overrightarrow{\mathcal{W}} = \left[W_{1}, W_{2}, \cdots, W_{n} \right]$$

LENGTH OF N-DIMENSIONAL VECTOR

$$\overrightarrow{V} \in \mathbb{R}^{\lambda}, \quad \|\overrightarrow{V}\| = \sqrt{V_{1}^{\lambda} + V_{2}^{\lambda}}$$

$$\overrightarrow{U} \in \mathbb{R}^{\lambda}, \quad \|\overrightarrow{U}\| = \sqrt{U_{1}^{\lambda} + U_{2}^{\lambda} + U_{3}^{\lambda}}$$

$$\overrightarrow{V} \in \mathbb{R}^{n}, \quad \|\overrightarrow{V}\| = \sqrt{V_{1}^{\lambda} + V_{2}^{\lambda} + \dots + V_{n}^{\lambda}}$$

LATIHAN SOAL (3)

Hitung besar vektor berikut ini:

$$\vec{e} = (2, -5, -2, 4)$$

VEKTOR DENGANTITIK PANGKAL BUKAN DITITIK ASAL (0,0)

Misal vektor \vec{a} memiliki titik pangkal $A(x_1, y_1)$ dan titik ujung $B(x_2, y_2)$ maka vektor:

$$\vec{a} = (x_2 - x_1, y_2 - y_1)$$

LATIHAN SOAL (4)

Diketahui vektor \vec{a} memiliki titik pangkal A(3,5) dan titik ujung B(7,2), gambarkan vektor \vec{a} dan tentukan arah (besar sudut θ) dari vektor \vec{a} !

OPERASIVEKTOR

PENJUMLAHAN, PENGURANGAN, PERKALIAN DENGAN SKALAR

OPERASI VEKTOR - PENJUMLAHAN

Jika
$$\vec{a}=(x_1,x_2,\dots,x_n)$$
 dan $\vec{b}=(y_1,y_2,\dots,y_n)$ dua buah vektor di R^n

- Bentuk aljabar : $\vec{a} + \vec{b} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$
- Bentuk geometris ditentukan dengan berbagai metode, yaitu:
 - Metode jajaran genjang
 - Metode segitiga
 - Metode poligon

METODE JAJARAN GENJANG

Penjumlahan dua buah vektor \vec{a} dan \vec{b} menggunakan metode jajaran genjang adalah sebagai berikut:

- lacktriangle Pindahkan vektor $ec{d}$ dan vektor $ec{b}$ dengan titik pangkal yang sama misal titik A.
- Tarik garis melalui titik ujung \vec{a} sejajar dengan vektor \vec{b} dan garis melalui titik ujung \vec{b} sejajar dengan vektor \vec{a} hingga berpotongan di titik P.
- lacktriangle Resultan vektor adalah vektor yang ditarik dari titik pangkal A ke titik ujung P

CONTOH SOAL

METODE SEGITIGA

Penjumlahan dua buah vektor \vec{a} dan \vec{b} menggunakan metode segitiga adalah sebagai berikut:

- Gambar salah satu vektor, misalkan vektor \vec{a}
- Gambar vektor \vec{b} dengan titik pangkal pada titik ujung vektor \vec{a} .
- Resultan vektor adalah vektor yang ditarik dari titik pangkalvektor \vec{a} ke titik ujung vektor \vec{b}

CONTOH SOAL

METODE POLIGON

Diketahui vektor \vec{a} , \vec{b} , \vec{c} , ... maka menentukan penjumlahan (resultan) dari vektor-vektor tersebut adalah sebagai berikut:

- Gambar salah satu vektor, sebut vektor \vec{a}
- lacktriangle Gambar vektor selanjutnya yakni vektor $ec{b}$ dengan titik pangkal pada ujung vektor $ec{a}$
- Gambar vektor \vec{c} dengan titik pangkal pada titik ujung vektor \vec{b} , demikian seterusnya hingga semua vektor ditambahkan.
- Resultan vektor adalah vektor yang ditarik dari titik pangkal vektor pertama dan titik ujung vektor terakhir yang ditambahkan.

CONTOH SOAL

$$\text{KOMUTATIF} \left(\vec{a} + \vec{b} = \vec{b} + \vec{a} \right)$$

MULTIPLYING A VECTOR BY A SCALAR

 $\frac{1}{2}\vec{v}$

VEKTOR \vec{b} ADALAH VEKTOR YANG MEMILIKI BESARAN YANG SAMA DENGAN VEKTOR $-\vec{b}$ TETAPI BERLAWANAN ARAH, BILA DIJUMLAHKAN AKAN MENGHASILKAN 0

$$(\vec{b}) + (-\vec{b}) = 0$$

VECTOR SUBSTRACTION

PROOF – VECTOR ADDITION IS COMMUTATIVE AND ASSOSIATIVE

1.
$$\overrightarrow{U} + \overrightarrow{V} = \overrightarrow{V} + \overrightarrow{U}$$

2. $(\overrightarrow{U} + \overrightarrow{V}) + \overrightarrow{W} = \overrightarrow{U} + (\overrightarrow{V} + \overrightarrow{W})$

$$\overrightarrow{U} + \overrightarrow{V} = [U_1 + V_1, U_2 + V_1, \cdots, U_n + V_n]$$

$$= [V_1 + U_1, V_2 + U_2, \cdots, V_n + U_n]$$

$$= \overrightarrow{V} + \overrightarrow{U}$$

 u_1 dan v_1 dan seterusnya merupakan bilangan real, maka berdasarkan sifat bilangan real berlaku komutatif, sehingga $u_1 + v_1 = v_1 + u_1$ dan seterusnya berlaku hal yang sama

$$(\overrightarrow{\mathcal{X}} + \overrightarrow{\mathcal{V}}) + \overrightarrow{\mathcal{W}} = [\mathcal{U}_1 + \mathcal{V}_1, \dots, \mathcal{U}_n + \mathcal{V}_n] + [\mathcal{W}_1, \dots, \mathcal{W}_n]$$

$$= [\mathcal{U}_1 + \mathcal{V}_1) + \mathcal{W}_1, \dots, \mathcal{U}_n + \mathcal{V}_n]$$

$$= [\mathcal{U}_1 + (\mathcal{V}_1 + \mathcal{W}_1), \dots, \mathcal{U}_n + (\mathcal{V}_n + \mathcal{W}_n)]$$

$$= [\mathcal{U}_1, \dots, \mathcal{U}_n] + [\mathcal{V}_1 + \mathcal{W}_1, \dots, \mathcal{V}_n + \mathcal{W}_n]$$

$$= \overrightarrow{\mathcal{M}} + (\overrightarrow{\mathcal{V}} + \overrightarrow{\mathcal{W}})$$

ALGEBRAIC PROPERTIES OF VECTOR

 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.

$$(u + v) + w = u + (v + w).$$

There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.

For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.

$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$$

$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}.$$

$$c(d\mathbf{u}) = (cd)\mathbf{u}$$
.

$$1\mathbf{u} = \mathbf{u}$$
.

DOT PRODUCT

DEFINITION OF DOT PRODUCT

$$\overrightarrow{u} = [u_1, u_2, \dots, u_n] \quad \overrightarrow{\nabla} = [V_1, V_2, \dots, V_n]$$

$$\overrightarrow{u} \cdot \overrightarrow{\nabla} = [u_1, v_1 + u_2, v_2 + \dots + u_n]$$

$$= \sum_{i=1}^n u_i v_i$$

DOT PRODUCT – ANGLE BETWEEN TWO VECTORS

Ruas Kiri:
$$(\vec{u} - \vec{v})(\vec{u} - \vec{v}) = \vec{u} \ \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v} \ \vec{v}$$
$$= ||\vec{u}||^2 - 2(\vec{u} \cdot \vec{v}) + ||\vec{v}||^2$$

Persamaan (i) dapat dituliskan sebagai berikut:

$$||\vec{u}||^{2} - 2(\vec{u}.\vec{v}) + ||\vec{v}||^{2} = ||\vec{u}||^{2} + ||\vec{v}||^{2} - 2||\vec{u}|| ||\vec{v}|| \cos \theta$$

$$|\vec{u}.\vec{v}| = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

$$\cos \theta = \frac{|\vec{u}.\vec{v}|}{||\vec{u}|| ||\vec{v}||}$$

EXAMPLE

Find the angle between two vectors $\vec{u} = [2,1,-2]$ dan $\vec{v} = [1,1,1]$

$$\cos \theta = \frac{\vec{u}.\vec{v}}{\|\vec{u}\|\|\vec{v}\|}$$

Jika diperoleh:

$$\vec{u} \cdot \vec{v} = 2.1 + 1.1 + (-2) \cdot 1 = 2 + 1 - 2 = 1$$

$$||\vec{u}|| = \sqrt{2^2 + 1^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3$$

$$||v|| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{1 + 1 + 1} = \sqrt{3}$$

Maka nilai:

$$\cos\theta=rac{1}{3\sqrt{3}}$$
, sehingga $\theta=arc\cosrac{1}{3\sqrt{3}}pprox 78,9^0pprox 1,37\ rad$

SIFAT-SIFAT DOT PRODUCT

1.
$$\vec{u}$$
. $\vec{v} = \vec{v}$. \vec{u}

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

3.
$$k(\vec{u}.\vec{v}) = (k\vec{u}).\vec{v} = \vec{u}.(k\vec{v})$$

4. \vec{u} tegak lurus terhadap \vec{v} maka \vec{u} . $\vec{v} = 0$

LATIHAN SOAL (5)

Hitung besar sudut yang dibentuk oleh dua buah vektor \vec{a} dan \vec{b} sebagai berikut:

a.
$$\vec{a} = (3, 1, 2) \operatorname{dan} \vec{b} = (2, 3, -1)$$

b.
$$\vec{a} = (-1, 0, 2) \operatorname{dan} \vec{b} = (-3, 0, 1)$$

c.
$$\vec{a} = (3, -1, -2) \operatorname{dan} \vec{b} = (-2, 3, -1)$$

KESAMAAN VEKTOR

DEFINISI

- \blacksquare Dua buah vektor \vec{a} dikatakan sama dengan vektor \vec{b} , jika besar dan arah vektor \vec{a} sama dengan vektor \vec{b}
- Dalam bentuk aljabar, vektor \vec{a} dikatakan sama dengan vektor \vec{b} , jika komponen setiap vektor \vec{a} sama dengan vektor \vec{b}

LATIHAN SOAL (6)

■ Hitung nilai x, y, z jika $\vec{a} = \overrightarrow{AB}$ dimana $\vec{a} = (x, 2 - x - y, x - y - z)$ dan titik A adalah (x, -y, x - z) dan titik B adalah (4, 6, 9)

PROYEKSI VEKTOR PADA VEKTOR & JARAK DIANTARA DUA VEKTOR

PROYEKSI VEKTOR PADA VEKTOR

$$cos\alpha = \frac{\|\vec{c}\|}{\|\vec{a}\|}$$
 maka $\|\vec{c}\| = \|\vec{a}\|cos\alpha$

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \alpha$$

$$= ||\vec{b}|| ||\vec{a}|| \cos \alpha$$

$$= ||\vec{b}|| ||\vec{c}||$$

Jadi panjang proyeksi
$$\vec{a}$$
 pada \vec{b} adalah $\|\vec{c}\| = \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|}$

Proyeksi
$$\vec{a}$$
 pada \vec{b} dapat didefinisikan sebagai proj $\left(\vec{a}, \vec{b}\right) = \frac{\vec{a} \cdot \vec{b}}{\left\|\vec{b}\right\|^2} \vec{b}$

LATIHAN SOAL (7)

Tentukan proyeksi vektor \vec{a} terhadap \vec{b} serta panjang vektor proyeksi \vec{a} terhadap \vec{b} jika diketahui $\vec{a}=(1,-2,3)$ dan $\vec{b}=(2,4,5)$

JARAK (DISTANCE) DIANTARA DUA VEKTOR

Jarak antara vektor $\vec{a}=(a_1,a_2,...,a_n)$ dan $\vec{b}=(b_1,b_2,...,b_n)$ di \mathbb{R}^n adalah:

$$d(\vec{a}, \vec{b}) = ||\vec{a} - \vec{b}||$$
$$= \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

LATIHAN SOAL (8)

Tentukan jarak vektor \vec{a} dengan vektor \vec{b} jika diketahui $\vec{a}=(1,-2,3)$ dan $\vec{b}=(2,4,5)$