Simplificação de Expressões Booleanas

Introdução a Programação

Objetivo de Aprendizagem

- Conhecer propriedades elementares
- Simplificar expressões booleanas

Agenda

- Propriedades da Álgebra de Boole
- Teoremas de De Morgan
- Simplificação de Expressões
 - Soma de Produtos
 - Produto de Somas

Propriedades

Propriedades da Álgegra de Boole OR

$$A+0=A$$
 $A+1=1$
 $A+A=A$
 $A+\overline{A}=1$

Propriedades da Álgegra de Boole

$$A \cdot 0 = 0$$
 $A \cdot 1 = A$
 $A \cdot A = A$
 $A \cdot \overline{A} = 0$

Propriedades da Álgegra de Boole

$$\overline{\overline{A}} = A$$

Teoremas de De Morgan

Teoremas de De Morgan

Primeiro

$$\overline{A\cdot B\cdot C}=\overline{A}+\overline{B}+\overline{C}$$

Teoremas de De Morgan

Segundo

$$\overline{A+B+C}=\overline{A}\cdot\overline{B}\cdot\overline{C}$$

Demonstração de la constração de la cons

Primeiro Teorema de De Morgan

A	B	$\overline{A\cdot B}$	$\overline{A}+\overline{B}$
0	0	?	?
0	1	?	?
1	0	?	?
1	1	?	?

Demonstração de la constração de la cons

Primeiro Teorema de De Morgan

A	B	$\overline{A\cdot B}$	$\overline{A}+\overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Demonstração

Segundo Teorema de De Morgan

A	B	$\overline{A+B}$	$\overline{A}\cdot \overline{B}$
0	0	?	?
0	1	?	?
1	0	?	?
1	1	?	?

Demonstração

Segundo Teorema de De Morgan

A	B	$\overline{A+B}$	$\overline{A}\cdot \overline{B}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Simplificação de Expressões Booleanas

Dada uma função Booleana, descrita por sua tabela verdade, simplificar ou derivar essa expressão é encontrar uma equação que a descreva.

Descrevendo uma Função Booleana

- Pode-se definir uma função Booleana descrevendo-se todas as situações em que a função vale 1 ou todas as situações em que a função vale 0
- Há duas formas de realizar a descrição de uma função
 - Soma de Produtos (SDP)
 - Produto de Somas (PDS)
- Utilizando-se um dos métodos é possível descrever completamente uma função Booleana

Soma de Produtos

Mintermos

A	B	C	mintermo
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?

Soma de Produtos

Mintermos

A	B	C	mintermo
0	0	0	$\overline{A}\cdot \overline{B}\cdot \overline{C}$
0	0	1	$\overline{A}\cdot \overline{B}\cdot C$
0	1	0	$\overline{A}\cdot B\cdot \overline{C}$
0	1	1	$\overline{A}\cdot B\cdot C$
1	0	0	$A\cdot \overline{B}\cdot \overline{C}$
1	0	1	$A\cdot \overline{B}\cdot C$
1	1	0	$A\cdot B\cdot \overline{C}$

Soma de Produtos

- Cada termo produto construído conforme a regra anteriormente descrita é denominado mintermo (ou minitermo)
- Para um dado mintermo, se substituirmos os valores das variáveis associadas, obteremos 1.
- Porém, se substituirmos nesse mesmo mintermo quaisquer outras combinações de valores, obteremos 0
- Dessa forma, se quisermos encontrar a equação para uma função a partir de sua tabela verdade, basta montarmos um OU entre os mintermos associados aos 1s da função

Exemplo 1

- lacktriangle Quais os valores de (A,B,C) em que F vale 1?
 - **(**010), (011), (101), (110)
- Ou seja, quais os mintermos associados?
 - $lacksquare A \cdot B \cdot \overline{C}$
 - $lacksquare A \cdot \overline{B} \cdot C$
 - $\blacksquare \overline{A} \cdot B \cdot C$
 - $\blacksquare A \cdot B \cdot \overline{C}$

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1

$$F_{min} = \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + A \cdot B \cdot \overline{C}$$

Produto de Somas

Maxtermos

A	B	C	maxtermo
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?

Produto de Somas

Maxtermos

A	B	C	maxtermo
0	0	0	A+B+C
0	0	1	$A+B+\overline{C}$
0	1	0	$A+\overline{B}+C$
0	1	1	$A+\overline{B}+\overline{C}$
1	0	0	$\overline{A}+B+C$
1	0	1	$\overline{A}+B+\overline{C}$
1	1	0	$\overline{A}+\overline{B}+C$

Produto de Somas

- Médodo Dual ao SDP
- Cada termo soma construído conforme a regra anteriormente descrita é denominado maxtermo
- Para um dado maxtermo, se substituirmos os valores das variáveis associadas, obteremos 0
- Porém, se substituirmos nesse mesmo maxtermo quaisquer outras combinações de valores, obteremos 1
- Dessa forma, se quisermos encontrar a equação para uma função a partir de sua tabela verdade, basta montarmos um E (AND) entre os maxtermos associados aos 0s da função

Exemplo 2

- lacktriangle Quais os valores de (A,B,C) em que F vale 0?
 - **(**000), (001), (100), (111)
- Ou seja, quais os maxtermos associados?
 - $\blacksquare A + B + C$
 - $\blacksquare A + B + \overline{C}$
 - $\blacksquare \overline{A} + B + C$
 - $\overline{\overline{A}} + \overline{\overline{B}} + \overline{C}$

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1

$$F_{max} = (A+B+C)\cdot(A+B\overline{C})\cdot(\overline{A}+B+C)\cdot(\overline{A}+\overline{B}+\overline{C})$$

Para encontrar a equação para uma função booleana a partir de sua tabela verdade, basta montarmos um **OU (OR)** entre os mintermos associados aos 1s da função

Para encontrar a equação para uma função lógica a partir de sua tabela verdade, basta montarmos um **E (AND)** entre os maxtermos associados aos

Os da função

Perguntas

Exercícios

1

Aplique as propriedades da Álgebra de Boole para simplificar as expressões abaixo:

- 1. $A \cdot \overline{B} + A \cdot B$
- 2. $(A+B)\cdot (A+\overline{B})\cdot (\overline{A}+B)$
- 3. $\overline{A \cdot B} + A$
- $\overline{\left[4.\ (A+\overline{B})
 ight. \cdot B
 ight] }\cdot B$
- 5. $(\overline{AB}) \cdot (\overline{A} + C)$

Aplique as propriedades da Álgebra de Boole para simplificar as expressões F_{min} e F_{max}\$ encontradas anteriormente e mostrar que elas são equivalentes.

- $F_{min} = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$
- $ullet F_{max} = (A+B+C)\cdot (A+B+\overline{C})\cdot (\overline{A}+B+C)\cdot (\overline{A}+\overline{B}+\overline{C})$

