NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Bachelor of Technology

Computer Science and Engineering (Artificial Intelligence)

Third Year

(Effective from the Session: 2022-23)

NPTEL/Youtube/FacultyVideoLink:

- 1. DLTLabschannel:https://www.youtube.com/channel/UCrDO3c1gITXt2QjA7SUMwtA
- **2.** DLTLabsBlogs:https://www.dltlabs.com/blog
- 3. HyperledgerChannel: https://www.youtube.com/channel/UC7_X0WkMtkWzaVUKF-PRBNQ
- 4. EthereumChannel: https://www.youtube.com/channel/UCNOfzGXD C9YMYmnefmPH0g
- **5.** NPTEL:https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-cs01/

B. TECH. THIRD YEAR					
Course code	ACSML0601	L	T	P	Credits
Course title	MACHINE LEARNING	3	0	0	3

Course objective: To introduction to the fundamental concepts in machine learning and popular machine learning algorithms. To understand the standard and most popular supervised learning algorithm.

Pre-requisites: Basic Knowledge of Machine learning.

Course Contents / Syllabus

UNIT-I INTRODUCTION TO MACHINE LEARNING 8 Hours

INTRODUCTION – Learning, Types of Learning, Well defined learning problems, Designing a Learning System, History of ML, Introduction of Machine Learning Approaches, Introduction to Model Building, Sensitivity Analysis, Underfitting and Overfitting, Bias and Variance, Concept Learning Task, Find – S Algorithms, Version Space and Candidate Elimination Algorithm, Inductive Bias, Issues in Machine Learning and Data Science Vs Machine Learning.

UNIT-II MINING ASSOCIATION AND SUPERVISED LEARNING 8 Hours

Classification and Regression, Regression: Linear Regression, Multiple Linear Regression, Logistic Regression, Polynomial Regression, Decision Trees: ID3, C4.5, CART.

Apriori Algorithm: Market basket analysis, Association Rules.

Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Support vector machine.

UNIT-III UNSUPERVISED LEARNING 8 Hours

Introduction to clustering, K-means clustering, K-Nearest Neighbor, Iterative distance-based clustering, Dealing with continuous, categorical values in K-Means, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, density-based clustering, Expectation Maximization, Gaussian Mixture Models.

UNIT-IV PROBABILISTIC LEARNING & ENSEMBLE

8 Hours

Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief Networks.

Ensembles methods: Bagging & boosting, C5.0 boosting, Random Forest, Gradient Boosting Machines and XGBoost.

UNIT-V	REINFORCEMENT LEARNING & CASE STUDIES	8 Hours			
Reinforcement	Learning: Introduction to Reinforcement Learning, Learning Task, Elearning in Practice, Learning Models for Reinforcement – (Markov Decision earning function, QLearning Algorithm), Application of Reinforcement Learning.				
Case Study: He	ealth Care, E Commerce, Smart Cities.				
Course outcome: After completion of this course students will be able to:					
CO1	Understanding utilization and implementation proper machine learning algorithm.	K2			
CO2	Understand the basic supervised machine learning algorithms.	K2			
CO3	Understand the difference between supervise and unsupervised learning.	arning. K2			
CO4	Understand algorithmic topics of machine learning and mathematically deep enough to introduce the required theory.	• • • • • • • • • • • • • • • • • • • •			
CO5	Apply an appreciation for what is involved in learning from data.				
Text books:					
Marco Gor Kaufmann.	ri , Machine Learning: A Constraint-Based Approach, Morgan . 2017				
2) Ethem Alp	aydin, Machine Learning: The New AI, MIT Press-2016				
3) Bishop, Cl Press, 1995	hristopher. Neural Networks for Pattern Recognition. New York, NY: Oxford	University			
	itchell, "Machine Learning", McGraw-Hill, 2010				
Reference Bo	ooks:				
	Michalski, J. G. Carbonell and Tom M. Mitchell, Machine Learning: An Artificia Approach, Volume 1, Elsevier. 2014	1			
2) Stephen Mar	rsland, Taylor & Francis 2009. Machine Learning: An Algorithmic Perspective.				
	ydin, (2004) "Introduction to Machine Learning (Adaptive Computation and Macl The MIT Press.	nine			
	Machine Learning for Predictive Data Anayltics: Algorithms, Worked Examples, and by John D. Kelleher	and Case			
Unit 1	https://www.voutube.com/watch?v=fC7\/8OcPRec&lict=PL1vHD/vtoKV\/palix	/295ng6 SV			
Omt 1	https://www.youtube.com/watch?v=fC7V8QsPBec&list=PL1xHD4vteKYVpaliy295pg6 SY 5qznc77&index=2				
Unit 2	https://www.youtube.com/watch?v=OTAR0kT1swg&list=PL1xHD4vteKYVpali	iy295pg6 S			
	<u>Y5qznc77&index=3</u> https://www.youtube.com/watch?v=OCwZyYH14uw https://www.youtube.com/watch?v=9 LY0LiFqRQ				
	https://www.youtube.com/watch?v=EYeF2e2IKEo				

	https://www.youtube.com/watch?v= PwhiWxHK8o				
	https://www.youtube.com/watch?v=wTF6vzS9fy4				
	https://www.youtube.com/watch?v=lt65K-REdHw				
Unit 3	https://www.youtube.com/watch?v=HTSCbxSxsg&list=PL1xHD4vteKYVpaliy295pg6 SY5				
	qznc77&index=4				
	https://www.youtube.com/watch?v=NnlS2BzXvyM				
	https://www.youtube.com/watch?v=7enWesSofhg				
Unit 4	https://youtu.be/rthuFS5LSOo				
	https://youtu.be/kho6oANGu_A				
Unit 5	https://www.youtube.com/watch?v=9vMpHk44XXo&list=PL1xHD4vteKYVpaliy295pg6_S				
	Y5qznc77&index=5				
	Reinforcement Learning Tutorial Reinforcement Learning Example Using Python				
	Edureka - YouTube				
	Association Rule Mining - Solved Numerical Question on Apriori				
	<u>Algorithm(Hindi) - YouTube</u>				
	Q Learning Explained Reinforcement Learning Using Python Q Learning				
	<u>in AI Edureka - YouTube</u>				