

Notions de CSO

Outils Numériques / Semestre 5 / Institut d'Optique / B0_3

De l'optique paraxiale à la conception optique

- Hypothèse des petits angles : sin(i)~i
- L'image d'un point est un point : tous les rayons issus d'un point objet A se croisent au point image A'
- En pratique, il faut aller plus loin pour concevoir des systèmes optiques performants
- ⇒ Etude des aberrations géométriques
- ⇒ Tracé de rayons « réels » : les rayons ne se croisent pas exactement au point image : quantification des aberrations

L'aberration sphérique

- Rayons en bord de lentille ou de miroir trop déviés : pour f'>0 ils se croisent avant les rayons paraxiaux
- Pour une lentille plan-convexe en infini-foyer, l'aberration sphérique est 4 fois plus faible dans le « bon sens » (face courbe vers l'infini)

Aberration chromatique longitudinale

- La focale d'une lentille simple est plus courte dans le bleu que dans le rouge à cause de la variation d'indice optique. On parle d'aberration chromatique.
- Cette aberration peut être corrigé en combinant deux lentilles avec des verres différents pour former un doublet achromatique.

Exemples de systèmes optiques et de résultats

- La lentille simple pour un point objet sur l'axe en monochromatique
- Le doublet pour un point objet sur l'axe en monochromatique

- Le chromatisme d'une lentille simple
- Correction du chromatisme avec un doublet

Le miroir sphérique

La lentille simple de 200 mm de focale Diamètre de la lentille : 25 mm

$\lambda = 550 \text{ nm}$

Type	Rayon de courbure (mm)	Epaisseur (mm)	Matériau
Objet		Infinie	AIR
Dioptre	103,704	5,00	N-BK7
Dioptre	Plan	196,707	AIR
Foyer Paraxial			

N-BK7

 $(\lambda en \mu m)$

$$n^2 - 1 = \frac{1.03961212\lambda^2}{\lambda^2 - 0.00600069867}$$

$$\frac{0.231792344\lambda^2}{\lambda^2 - 0.0200179144} + \frac{1}{\lambda^2}$$

 $\frac{1.01046945\lambda^2}{\lambda^2}$

La lentille simple de 200 mm de focale Diamètre de la lentille : 25 mm

Pour une mise au point optimisée

La lentille simple, mauvais sens

$\lambda = 550 \text{ nm}$

Type	Rayon de courbure (mm)	Epaisseur (mm)	Matériau
Objet		Infinie	AIR
Dioptre	Plan	5,00	N-BK7
Dioptre	-103,704	200	AIR
Foyer Paraxial			

 $(\lambda en \mu m)$

$$\mathbf{N-BK7} \qquad n^2-1 = \frac{1.03961212\lambda^2}{\lambda^2 - 0.00600069867} + \frac{0.231792344\lambda^2}{\lambda^2 - 0.0200179144} + \frac{1.01046945\lambda^2}{\lambda^2 - 103.560653}$$

La lentille simple, mauvais sens

Pour une mise au point optimisée

^{*} Position du plan image par rapport au foyer paraxial

Le doublet de 200 mm de focale Diamètre : 25 mm

$\lambda = 550 \text{ nm}$

Type	Rayon de courbure (mm)	Epaisseur (mm)	Matériau
Objet		Infinie	AIR
Dioptre	106,233	10,603	N-BK7
Dioptre	-92,129	6,002	N-SF2
Dioptre	-409,529	190,601	
Foyer Paraxial			

 $(\lambda en \mu m)$

$$n^z$$
 -

 $n^2-1=rac{1.47343127\lambda^2}{\lambda^2-0.0109019098}+rac{0.163681849\lambda^2}{\lambda^2-0.0585683687}+rac{1.36920899\lambda^2}{\lambda^2-127.404938}$

$$-\frac{0.163681849\lambda^2}{\lambda^2 - 0.0585683687}$$

Doublet de 200 mm de focale Diamètre : 25 mm

Chromatisme: lentille vs doublet

Mise au point au foyer paraxial à 550 nm. Lentille dans le bon sens et doublet donnés précédemment

Doublet hors axe à 550 nm

Mise au point au foyer paraxial. Attention aux changements d'échelles!