

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2000-358041

(P2000-358041A)

(43) 公開日 平成12年12月26日 (2000.12.26)

(51) Int.Cl.⁷

H 04 L 12/28
12/44

識別記号

F I

H 04 L 11/20
11/00

テマコト[®] (参考)

G 5 K 0 3 0
3 4 0 5 K 0 3 3

審査請求 有 請求項の数 7 O L (全 7 頁)

(21) 出願番号

特願平11-171240

(22) 出願日

平成11年6月17日 (1999.6.17)

(71) 出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72) 発明者 中石 浩志

東京都港区芝五丁目7番1号 日本電気株式会社内

(74) 代理人 100065385

弁理士 山下 穂平

F ターム(参考) 5K030 HA10 JA06 JL03 JL08 LC01

LC09 LE17 MB09

5K033 AA01 CA11 CB06 DA03 DA06

DA15 DB02 DB22 EA07

(54) 【発明の名称】 光通信網における上り帯域の動的帯域制御システム

(57) 【要約】

【課題】 パッシブ光通信網 (PON) の上り方向の帯域を動的に制御する。

【解決手段】 動的セル割当部6は、予め制御端末31から設定される個々のONTに関する帯域設定パラメータに対応するセル割当周期毎のセル数である最大割当セル数と平均割当セル数と最小割当セル数を求め、この最大割当セル数から最小割当セル数の3段階の帯域の増減を行う。この帯域の増減をおこなう場合としては、増加分のセル数が全ONTでの現在の未使用セル数よりも少ないことを判定した場合と、エンプレティ警報を前回は検出していないが今回は検出している場合と、閾値超過警報を検出しない状態で動的セル割当部6からバッファ11のフル閾値をACRに相当する値に変更するという内容のバッファ閾値制御信号を発出したが、その後に閾値超過警報を検出しない場合がある。

【特許請求の範囲】

【請求項1】 複数の加入者端末をスター・カプラを介して局装置に接続した光通信網において前記加入者端末から前記局装置に向かう上り方向の上り帯域を動的に制御する動的帯域制御システムであって、

前記加入者端末は、伝送すべきデータの容量が所定の閾値以上となる場合には閾値超過警報を、前記容量がゼロとなる場合には空警報を、それぞれ前記局装置に送出し、

前記局装置は、前記閾値を制御する閾値制御信号を前記加入者端末に送出し、

前記閾値超過警報、空警報、及び前記閾値制御信号とに基づいて、前記局装置は、上り帯域に割り当てる最大セル数、平均セル数、及び最小セル数を変更することを特徴とする動的帯域制御システム。

【請求項2】 前記局装置は、前記局装置の上位にある制御端末の指示に基づいて、前記最大セル数、平均セル数、及び最小セル数を初期設定することを特徴とする請求項1記載の動的帯域制御システム。

【請求項3】 前記局装置は、前記局装置の上位にある制御端末の指示に基づいて、前記最大セル数、平均セル数、及び最小セル数を変更設定する場合には、

前記上り帯域に割り当てる最大セル数、平均セル数、及び最小セル数の変更を中止することを特徴とする請求項1記載の動的帯域制御システム。

【請求項4】 前記局装置は、前記閾値超過警報及び前記空警報を受信する毎にこれらを前記加入者端末毎に記憶し、前回及び今回の前記受信の結果を比較して、前記上り帯域に割り当てる最大セル数、平均セル数、及び最小セル数を変更することを特徴とする請求項1記載の動的帯域制御システム。

【請求項5】 前記局装置は、前記加入者端末全部での未使用セル数の合計と、前記加入者端末の一つからの前記閾値超過警報とに基づいて前記上り帯域に割り当てる最大セル数を変更することを特徴とする請求項1記載の動的帯域制御システム。

【請求項6】 前記局装置は、空警報を受信した場合には、前記上り帯域に割り当てる最大セル数を減少させることを特徴とする請求項1記載の動的帯域制御システム。

【請求項7】 前記閾値を前記平均セル数に変更させる前記閾値制御信号が送出された後、前記閾値超過警報が送出されない場合には、

前記局装置は、前記上り帯域に割り当てる最大セル数を減少させることを特徴とする請求項1記載の動的帯域制御システム。

【発明の詳細な説明】

【0001】

【発明が属する技術分野】本発明は、Passive Optical NetworkやPassive D

ouble Star等の光通信網における上り帯域の動的帯域制御システムに関し、特に、複数の加入者端末をスター・カプラを介して局装置に収容し、局装置に動的セル割当部を設けるとともに、加入者端末にバッファ閾値制御・監視部を設け、バッファ閾値制御・監視部からの警報に基づいて、上り方向の帯域を動的に割り当る動的帯域制御システムに関する。

【0002】

【従来の技術】従来、複数の加入者端末を一つの局装置で束ねる受動光通信網（PON：Passive Optical Network）の上り方向の帯域は、局装置の上位にある制御端末からの指示により固定的に割当されていた。しかし、近年ITU-T勧告G.983：“High Speed optical access systems based on Passive Optical Network (PON) techniques”(February 1998)のDivided_slotsの項には、動的にセル割当ができるように上り方向に帯域変更要求用のOAM(Operation And Maintenance)セルを準備している。

【0003】

【発明が解決しようとする課題】しかし、上述したITU-T勧告には、動的セル割当方法は具体的に規定されてはいない。そこで、本発明は、PONの上り方向の帯域を動的に変更できるシステムを実現することを課題としている。

【0004】

【課題を解決するための手段】上記の課題を解決するための本発明は、複数の加入者端末をスター・カプラを介して局装置に接続した光通信網において前記加入者端末から前記局装置に向かう上り方向の上り帯域を動的に制御する動的帯域制御システムであって、前記加入者端末は、伝送すべきデータの容量が所定の閾値以上となる場合には、閾値超過警報を、前記容量がゼロとなる場合には、空警報を、それぞれ前記局装置に送出し、前記局装置は、前記閾値を制御する閾値制御信号を前記加入者端末に送出し、前記閾値超過警報、空警報、及び前記閾値制御信号とに基づいて、前記局装置は、上り帯域に割り当てる最大セル数、平均セル数、及び最小セル数を変更する。

【0005】

【発明の実施の形態】以下、図面を参照して本発明の実施の形態について説明する。図1は、本発明の受動光通信網（PON）における上り帯域の動的帯域制御システムのブロック図である。図1に示すように、本発明の動的帯域制御システムは、局装置OLT1に加入者端末ONT21, 22, 23がスター・カプラ3を介して接続されている。

【0006】このシステムは、一芯双方向通信システム

であり、下り方向においては時分割多重（TDM）通信を用い、上り方向においては時分割多元接続通信を用いる。

【0007】更に、局装置OLT1は、加入者端末ONT21, 22, 23と局装置OLT1間の制御を行う加入者局間制御部OLT・PON・ONT4と、この加入者局間制御部4を介して加入者端末21, 22, 23との間でメッセージを送受信するメッセージ送受信部5と、バッファ閾値制御メッセージをメッセージ送受信部5に出力する動的セル割当部6と、周期的にセル割当指示を加入者局間制御部4に出力するセル割当部7とを備えている。

【0008】そして、この局装置OLT1は、制御装置31によって制御される。

【0009】更に、加入者端末ONT21, 22, 23は、局装置OLT1との間の制御を行う加入者端末網制御部ONT・PON・CONT8と、この加入者端末網制御部8を介して局装置OLT1との間でメッセージを送受信するONTメッセージ送受信部9と、ATMセルの容量が所定の閾値を越えた場合に閾値超過警報を出力するか又は空（エンプティ）状態で空（エンプティ）警報を出力するバッファ11と、メッセージ中のバッファ閾値制御信号を入力してバッファ11の閾値を変更するとともにバッファ11からの閾値超過警報とエンプティ警報を入力してONTメッセージ送受信部9に出力するバッファ閾値制御・監視部10とを備えている。

【0010】局装置OLT1の動的セル割当部6は、制御端末31が予め設定する個々の加入者端末ONT21, 22, 23に関する帯域設定パラメータであるPCR（peak cell rate：ATM（非同期転送モード）でのセル転送速度の最大値）、ACR（average cell rate）、MCR（minimum cell rate）に対応するセル割当周期毎のセル数である最大割当セル数と平均割当セル数と最小割当セル数を求める。

【0011】更に、加入者端末ONT21, 22, 23のセル割当位置をセル割当周期の1/Nであるフレームパルス単位で求める。

【0012】本発明の動的帯域割当システムにおいては、この最大割当セル数、平均割当セル数、最小割当セル数の3段階の帯域の変更を行う。帯域を変更する第1の場合は、加入者端末ONT21, 22, 23からフレームパルス毎に発出される閾値超過警報を、局装置OLT1内の動的セル割当部6にて検出し、前回検出した閾値超過警報またはエンプティ警報と比較してセル数を増加する場合である。又、第2の場合は、増加分のセル数が全加入者端末ONTでの現在の未使用セル数よりも少ないことを判定した場合である。又、第3の場合は、エンプティ警報を前回は検出していないが今回は検出している場合である。又、第4の場合は、閾値超過警報を検

出しない状態で動的セル割当部6からバッファ11の閾値をACRに相当する値に変更するという内容の閾値制御信号を発出したが、その直後に閾値超過警報を検出しない場合である。これら4つの場合には、加入者端末ONT21, 22, 23から局装置OLT1へ向かう方向、すなわち上り方向のセル流の帯域を変更する要求があつた加入者端末ONT21, 22, 23毎にその使用する上り帯域を動的に変更する。

【0013】図2は、動的セル割当部6のブロック図である。帯域命令受信部101は、制御端末31からの加入者端末ONT21, 22, 23のための帯域設定パラメータである最大割当セル数（PCR）、平均割当セル数（ACR）、最小割当セル数（MCR）を入力する。そして、これらのパラメータをセル割当位置計算部102に出力する。更に、帯域設定パラメータ変更指示をバッファ閾値制御部109に出力する。

【0014】セル割当位置計算部102は、加入者端末ONT21, 22, 23毎にそれぞれの帯域設定パラメータに対応するセル割当を予め決めているセル割当周期の1/Nであるフレームパルス単位毎に求めて、その結果を第1メモリ103に出力するとともに、計算結果完了信号を全ONTセル割当位置計算部104に出力する。

【0015】全ONTセル割当位置計算部104は、フレームパルスを入力してセル割当周期パルスを生成して現在使用フレームのサーチ部106に出力する。

【0016】更に、全ONTセル割当位置計算部104は、セル割当位置計算部102からの計算結果完了信号をトリガとして、ONT毎に第1メモリ103に格納されているACRに対応するセル割当位置情報を全て読み出す。そして、全ONTに割り当てるセル割当位置を計算して第2メモリ105または第3メモリ113に交互に書き込むとともに、計算完了信号を出力する。

【0017】又は、全ONTセル割当位置計算部104は、セル割当変更指示部111からのPCR、ACR、MCRのどれかを指示する帯域指定指示をトリガとして、ONT毎に第1メモリ103に格納されている3種類のセル割当位置情報から対応するセル割当位置情報を全て読み出す。そして、全ONTに割当るセル割当位置を計算して第2メモリ105または第3メモリ113に交互に書き込むとともに、計算完了信号とセル割当周期中のどのフレームからセル割当変更を行うかを示す割当変更位置信号を、現在使用フレームサーチ部106からの出力を基にして生成し出力するか、または入力したフレームパルスを基にしてセル割当周期パルスを生成しているが一つ過去のセル割当周期間にセル割当位置計算部102からの計算結果完了信号の入力が無かつセル割当変更指示部111からのPCR、ACR、MCRのどれかを指示する帯域指定指示の入力が無い場合は現在使用中のセル割当周期間に使用している全ONTに割当た

セル割当位置データが書かれている第2メモリ105または第3メモリ113を選択するための選択制御信号をSEL112に出力し、セル割当周期中にある空きセル数の合計値を計算して空きセル数保持部107に出力する。

【0018】セレクタSEL112は、全ONTセル割当位置計算部104からの選択制御信号に基づいて、第2メモリ105又は第3メモリ113のデータを選択する。

【0019】現在使用フレームサーチ部106は、フレームパルスとセル割当周期パルスを入力して、現在使用中のフレームがセル割当周期のなかのどのフレームであるかを全ONTセル割当位置計算部104に出力する。

【0020】空きセル数保持部107は、全ONTセル割当位置計算部104からのセル割当周期中にある空きセル数の合計値を入力してバッファ閾値制御部109に出力する。

【0021】バッファ閾値検出部108は、メッセージ送受信部5からメッセージを入力して、閾値超過警報とエンプティ警報を検出してバッファ閾値制御部109に出力する。

【0022】バッファ閾値制御部109は、バッファ閾値検出部108からの閾値超過警報とエンプティ警報を入力して、前回に入力したこれらの値を前回値保持部110から読み出して比較する。更に、セル数を増加する方向でかつ増加分のセル数が全ONTでの現在の未使用セル数よりも少ないことを判定した場合には、セル割当変更指示部111にACRまたはPCRに変更する帯域指定指示を変更のあるONT分出力する。又は、エンプティ警報を前回は検出していないが今回は検出している場合には、セル割当変更指示部111にMCRに変更する帯域指定指示を変更のあるONT分出力する。又は、閾値超過警報とエンプティ警報を検出しない場合であって、バッファ11のフル閾値をACRに相当する値に変更するという内容のバッファ閾値制御信号をメッセージ送受信部5に発出したが、その直後のフレームで閾値超過警報を検出しない場合には、セル割当変更指示部111にACRに変更する帯域指定指示を変更のあるONT分出力し、今回検出した閾値超過警報またはエンプティ警報または警報なしの情報を前回値保持部110に出力する。又は、帯域命令受信部101からの帯域設定パラメータ変更指示を入力した場合には、セル割当変更指示部111に対する出力を禁止する。

【0023】前回値保持部110は、バッファ閾値制御部109へデータを出力するとともに、バッファ閾値制御部109からのデータを入力して次回の入力まで保持する。

【0024】セル割当変更指示部111は、バッファ閾値制御部109からのMCRまたはACRまたはPCRに変更する帯域指定指示を入力して別に入力するフレー

ムパルスに従ってその帯域指定指示を全ONTセル割当位置計算部104に出力する。

【0025】図3は、本発明の動的帯域制御システムの動作を説明するためのタイムチャートである。図3を参照して、加入者端末ONT21, 22, 23から受信したメッセージから閾値超過警報とエンプティ警報を検出した場合の動的なセル割当動作について説明する。メッセージ送受信部5がフレームパルス1の位置でメッセージを受信・終端してフレームパルス2の先頭でバッファ閾値検出部108に結果を出力する。

【0026】図4は、バッファ閾値検出部108からの出力の具体例を示す表である。図4の項番1, 2, 3のパターンであれば、全ONTセル割当位置計算部104にて再計算を行う。そして、再計算結果が、セルを増加する場合には、増加分のセル数が空きセル数保持部107から読み出した全ONTでの現在の未使用セル数以下であれば、フレームパルス3の先頭から全ONTのセル割当を更新する動作を行う。結果的にONTからメッセージを受信してから最大で2フレーム分の時間遅延内で全ONTのセル割当を更新する動作を行うことになるが、これは予めセル割当位置計算部102で個々のONTのMCR, ACR, PCRに相当するセル割当を計算しておいて第一のメモリ103に保持させているからである。

【0027】バッファ閾値検出部108からの出力結果が、図4の項番4, 5, 6のパターンであれば割当セル数の変更はないので、現状の設定通りの全ONTのセル割当動作を行う。

【0028】バッファ閾値検出部108からの出力結果が、図4の項番7, 8のパターンであれば、バッファ閾値検出部108にて前々回に閾値超過警報ありを検出する。前回で閾値超過警報なしを検出した場合またはエンプティ警報ありを検出した場合は、バッファ閾値制御部109から該当のONTに対してフル閾値をACR以下の値に変更する制御を行うようにOLTメッセージ送受信部5にバッファ閾値制御信号を出力する。その直後のフレームでバッファ閾値検出部108にて警報を検出しない場合は全ONTセル割当位置計算部104にてACR相当のセル割当位置データを保持している第一のメモリ103から読み出し全ONTのセル割当を更新する再計算を行い、全ONTのセル割当を更新する動作を行うと共に該当のONTに対してフル閾値を元の値に戻す制御を行うようにOLTメッセージ送受信部5にバッファ閾値制御信号を出力する。

【0029】図5は、制御端末31から帯域設定パラメータであるPCR, ACR, MCRの変更指示がある場合の動作のタイミング図である。すなわち、計算結果は計算終了後の直後のタイミングのセル割当パルスの先頭で反映される。このときはONTから発出される警報によるセル割当の更新動作は禁止される。

【0030】以上、本発明の一つの実施形態について説明したが、本発明はこれに限らず、動的セル割当部のバッファ閾値制御部をプログラマブルにしてもよい。これによって、図4に示す以外の動的なセル割当を行わせる。

【0031】又、フル閾値とエンプレティ閾値を固定にしておき別の閾値を可変にしてONTのバッファに蓄積されているATMセルの容量を監視してもよい。

【0032】又、動的にセル割当を行わない場合には、動的セル割当部のバッファ閾値制御部に制御禁止指示を制御端末から入力するパスを追加するとよい。

【0033】

【発明の効果】以上説明した本発明によれば、動的セル割当部にて予め個々の加入者端末ONTの最大割当セル数PCR、平均割当セル数ACR、最小割当セル数MCRに対応するセル割当位置を計算しておきメモリに保持しているので、1フレーム内で全ONTのセル割当を計算することができる。従って、ONTからのバッファに関する警報を含むメッセージを局装置OLTにて受信してから最大で2フレーム以内に全ONTのセル割当を変更することができる。

【0034】又、本発明によれば、動的セル割当部にてONTからのバッファに関する警報がないことを検出した場合に、このONTのバッファのフル閾値を制御し警報を監視することができるので、これまでのPCRに対応するセル割当からACRに対応するセル割当に変更でき、この余ったセルを他のONTに効率的に割り振ることもできる。

【図面の簡単な説明】

【図1】本発明の動的帯域制御システムのブロック図

【図2】動的セル割当部のブロック図

【図3】動的セル割当部の動作を説明するためのタイムチャート

【図4】動的帯域割当の具体例を示す表

【図5】帯域設定パラメータの変更がある場合の動作を説明するためのタイムチャート

【符号の説明】

- | | |
|------------|----------------------------|
| 1 | 局装置 (OLT) |
| 3 | スター・カップラ |
| 4 | 加入者局間制御部 (OLT・PON・CONT) |
| 10 | 5 メッセージ送受信部 |
| 6 | 6 動的セル割当部 |
| 7 | 7 セル割当部 |
| 8 | 8 加入者端末網制御部 (ONT・PON・CONT) |
| 9 | 9 ONTメッセージ送受信部 |
| 10 | 10 バッファ閾値制御監視部 |
| 11 | 11 バッファ |
| 21, 22, 23 | 21, 22, 23 加入者端末 (ONT) |
| 31 | 31 制御端末 |
| 101 | 101 帯域命令受信部 |
| 20 | 102 セル割当位置計算部 |
| 103 | 103 第1メモリ |
| 104 | 104 全CONTセル割当位置計算部 |
| 105 | 105 第2メモリ |
| 106 | 106 現在使用フレームサーチ部 |
| 107 | 107 空セル数保持部 |
| 108 | 108 バッファ閾値検出部 |
| 109 | 109 バッファ閾値制御部 |
| 110 | 110 前回値保持部 |
| 111 | 111 セル割当変更指示部 |
| 30 | 112 SEL |
| 113 | 113 第3メモリ |

【図1】

【図2】

【図3】

【図4】

項目	前々回値	前回値	今回値	帯域指定指示
1	-	エンブティ警報あり	警報なし	ACR
2	-	警報なし	閾値超過警報あり	PCR
3	-	警報なし	エンブティ警報あり	MCR
4	-	エンブティ警報あり	エンブティ警報あり	MCR
5	-	警報なし	警報なし	ACR
6	-	閾値超過警報あり	閾値超過警報あり	PCR
7	閾値超過警報あり	警報なし	警報なし	ACR
8	閾値超過警報あり	エンブティ警報あり	警報なし	ACR

表中の“-”は計算要素として使用しないことを意味する。

【図5】

