```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import ipysheet as ips
    import panel as pn
    from scipy import stats
    pn.extension('katex')
```

Tutorial 8

Tutorial problems on sorption and degradation

Homework problems on sorption and degradation

```
In [2]: #Tutorial Problems
    r4_1 = pn.pane.Markdown("""
        # Tutorial Problems on Sorption and Degradation #
        """,width = 900, style={'font-size': '13pt'})
        r4_1
Out[2]:
```

Tutorial Problems on Sorption and Degradation

```
In [6]: #Tutorial Problem 24
         r5 1 = pn.pane.LaTeX(r"""
         Tutorial Problem 24
         <hr><hr><hr>
         A series of batch experiments were performed to quantify adsorption of Cr(VI) at bed soil of River Elbe
         (solid density \rho = 2.7 \text{ g/cm}^3, effective porosity \rho = 30 \%). For each experiment 10 g of bed soi
         l was
         equilibrated in 25 mL of water with initial Cr(VI) concentrations $C$ ranging from 50 to 250 mg/L (see ta
         ble).
         """, width = 600, style={'font-size': '13pt'})
         r5 2 = pn.pane.LaTeX(r"""
         a) Calculate the mass ratio $C a$ of adsorbate vs. adsorbent for each batch experiment by employing the m
         ass budget:
         \$V w \cdot Cdot C \cdot 0 = V w \cdot Cdot C \cdot eq + M \cdot Cdot C \cdot a\$
         with $V w$ = water volume, $M s$ = solid mass.<br>
         <br
         b) Determine the distribution coefficient $K d$ graphically by assuming that sorption of Cr(VI) can be de
         scribed by a linear isotherm.
         <br>
         c) What is the retardation factor of Cr(VI) migrating through River Elbe bed soil? Briefly interpret your
         result.
         """, width = 600, style={'font-size': '13pt'})
         r5 3 = pn.pane.LaTeX(r"""
         sC = \frac{V w \cdot (C 0 - C eq)}{M s}
         """, style={'font-size': '13pt'})
         d24 Co = np.array([50, 75, 100, 150, 200, 250])
         d24 \text{ Ceg} = \text{np.array}([15, 28, 40, 61, 82, 104])
         d24 = {\text{"Co } [mg/L]}\text{":}d24 \text{ Co, "Ceq } [mg/L]\text{":}d24 \text{ Ceq}}
```

```
df24 = pd.DataFrame(d24)

spacer = pn.Spacer(width=50)

r5_4= pn.Column(r5_1, r5_2)
r5_5= pn.Column(df24, r5_3)
pn.Row(r5_4, spacer, r5_5)
```

Out[6]: Tutorial Problem 24

A series of batch experiments were performed to quantify adsorption of Cr(VI) at bed soil of River Elbe (solid density ρ = 2.7 g/cm³, effective porosity $n_e=30\%$). For each experiment 10 g of bed soil was equilibrated in 25 mL of water with initial Cr(VI) concentrations C ranging from 50 to 250 mg/L (see table).

a) Calculate the mass ratio C_a of adsorbate vs. adsorbent for each batch experiment by employing the mass budget:

$$V_w \cdot C_0 = V_w \cdot C_{eq} + M_s \cdot C_a$$

with V_w = water volume, M_s = solid mass.

- b) Determine the distribution coefficient K_d graphically by assuming that sorption of Cr(VI) can be described by a linear isotherm.
- c) What is the retardation factor of Cr(VI) migrating through River Elbe bed soil? Briefly interpret your result.

	Co [mg/L]	Ceq [mg/L]
0	50	15
1	75	28
2	100	40
3	150	61
4	200	82
5	250	104

$$C_a = rac{V_w \cdot (C_0 - C_{eq})}{M_s}$$

```
In [4]: # Solution of Problem 24 a

r5_6 = pn.pane.Markdown("""
    ## Solution Problem 24 a.
    (**Check Lecture 09, Slides 11--13 for more information**)

""",width = 600, style={'font-size': '13pt'})

#Given
    Vw = 25/1000 # L, volume of water in L
    Ms = 10 # g, mass of Cr(IV)

# calculation
    d24_Ca = Vw/Ms*(d24_Co-d24_Ceq) # Ca = Vw/Ms* (Co-Ceq)

#output
    d24_a = {"Co [mg/L]":d24_Co, "Ceq [mg/L]":d24_Ceq, "Ca [mg/g]":d24_Ca}
    df24_a = pd.DataFrame(d24_a)
    pn.Column(r5_6, df24_a)
```

Out[4]:

Solution Problem 24 a.

(Check Lecture 09, Slides 11–13 for more information)

	Co [mg/L]	Ceq [mg/L]	Ca [mg/g]
0	50	15	0.0875
1	75	28	0.1175
2	100	40	0.1500
3	150	61	0.2225
4	200	82	0.2950
5	250	104	0.3650

In [31]: # Solution problem 24b r5 7 = pn.pane.Markdown(""" ### Solution Problem 24 b. <hr> The linear isotherm is the regression line through the origin of the C_a vs. C_{eq} Its slope is the distribution coefficient K_d

 ***Here: ***
 K < sub > d < / sub > = 3.19E-03 L/ g < br > < br >K < sub > d < / sub > = 3.19 cm < sup > 3 < / sup > / q""", width = 400, style={'font-size': '13pt'}) # Linear fit slope, intercept, r value, p value, std err = stats.linregress(d24 Ceq, d24 Ca) # linear regression #output fig = plt.figure() plt.plot(d24 Ceq, d24 Ca, 'o', label=' provided data'); pred = intercept + slope*d24 Ceg # fit line plt.plot(d24 Ceq, pred, 'r', label='y={:.2E}x+{:.2E}'.format(slope,intercept)); plt.xlabel(r"Equilibrium concentration,\$C {eq} \$ (mq/L)"); plt.ylabel(r"Mass Ratio, \$C {a} \$ (mq/L)"); plt.grid(); plt.legend(fontsize=11); plt.text(20, 0.30, $\$R^2 = \$0.2f\$' \%$ r value) plt.close() # otherwise we have 2 figure r5 8 = pn.pane.Matplotlib(fig, dpi=300) pn.Row(r5 7, r5 8)

Out[31]:

Solution Problem 24 b.

The linear isotherm is the regression line through the origin of the C_a vs. C_{eq} plot. Its slope is the distribution coefficient K_d

Here:

$$K_d = 3.19E-03 L/g$$

$$K_d = 3.19 \text{ cm}^3/\text{ g}$$


```
In [12]: # Solution problem 24c
    r5_9 = pn.pane.Markdown("""
    ### Solution Problem 15 c.
    """,width = 400, style={'font-size': '13pt'})

    r5_10 = pn.pane.LaTeX(r"""
    $$ R = 1+ \frac{1-n_e}{n_e}\cdot \rho\cdot K_d $$
    """,width = 400, style={'font-size': '13pt'})
    pn.Column(r5_9, r5_10)
```

Out[12]:

Solution Problem 15 c.

$$R = 1 + rac{1 - n_e}{n_e} \cdot
ho \cdot K_d$$

```
In [13]: #Given
    rho = 2.7 # g/cm3 solid density
    n_e = 0.30 # (), effective porosity
    K_d = slope*1000 # cm^3/g, the slope of the plot, *1000 for unit conversion

# Calculate
    R = 1 + ((1-n_e)/n_e)*rho*K_d

#output
print("The Retardation factor of the sample is: {0:1.2f}".format(R))
```

The Retardation factor of the sample is: 21.11

```
In [33]: #Tutorial Problem 25
         r6 1 = pn.pane.Markdown("""
         ## Tutorial Problem 25 ##
         NaCl is used to conduct a conservative tracer test in a Darcy column (length: 85 cm, diameter: 7.5 cm).
         The volumetric flow rate is 10 mL/min and the NaCl is continuously injected (concentration: 55 mg/L).
         The table shows NaCl concentrations measured at the column outlet at different times.
         """, width = 600, style={'font-size': '13pt'})
         r6\ 2 = pn.pane.LaTeX(r"""
         a) Normalise outlet concentration with injection concentration. <br
         b) Plot normalized concentration as a function of time.<br>
         c) Determine graphically $t {16}$, $t {50}$, and $t {84}$, where $t x$ denotes the time when $x$% of the
         injection concentration is reached at the column outlet.<br
         d) Determine effective porosity via $ n e = \frac{0\cdot t {50}}{V}$ <bre>br>
         with $V$ = total volume of the column.<br>
         e) Determine dispersivity via $\alpha = \frac{L}{8}\cdot \bigg(\frac{t {84}-t {16}}{t {50}}\bigg)$
         """, width = 600, style={'font-size': '13pt'})
         d25 t = np.array([15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180])
         d25 C = np.array([0, 0, 0, 2.5, 5.4, 10.6, 21.0, 29.1, 40.8, 51.7, 55.0, 55.0])
         d25 = {\text{"Time [min]":}} d25 t, {\text{"Conc. [mg/L]":}} d25 C}
         df25 = pd.DataFrame(d25)
          spacer = pn.Spacer(width=50)
         r6 3= pn.Column(r6 1, r6 2)
         pn.Row(r6 3, spacer, df25)
```

Out[33]:

Tutorial Problem 25

NaCl is used to conduct a conservative tracer test in a Darcy column (length: 85 cm, diameter: 7.5 cm). The volumetric flow rate is 10 mL/min and the NaCl is continuously injected (concentration: 55 mg/L). The table shows NaCl concentrations measured at the column outlet at different times.

- a) Normalise outlet concentration with injection concentration.
- b) Plot normalized concentration as a function of time.
- c) Determine graphically t_{16} , t_{50} , and t_{84} , where t_x denotes the time when x% of the injection concentration is reached at the column outlet.
- d) Determine effective porosity via $n_e=rac{Q\cdot t_{50}}{V}$ with V = total volume of the column.
- e) Determine dispersivity via $lpha=rac{L}{8}\cdot\left(rac{t_{84}-t_{16}}{t_{50}}
 ight)$

	Time [min]	Conc. [mg/L]
0	15	0.0
1	30	0.0
2	45	0.0
3	60	2.5
4	75	5.4
5	90	10.6
6	105	21.0
7	120	29.1
8	135	40.8
9	150	51.7
10	165	55.0
11	180	55.0

```
In [34]: # solution 25a
    r6_4 = pn.pane.Markdown("""
    ## Solution Problem 25 a.
    (**Check Lecture 08, Slides 21--25 for more information**)

""",width = 600, style={'font-size': '13pt'})

#Given
    C_m = 55 # mg/L, injected concentration

# calculation
    d25_rc = d25_C/C_m # (-), Relative conc. Conc Out/Injected Con

#output
    d25_a = d25 = {"Time [min]":d25_t, "Conc. [mg/L]":d25_C, "Rel. Conc [-]":d25_rc}
    df25_a = pd.DataFrame(d25_a)
    pn.Column(r6_4, df25_a)
```

Out[34]:

Solution Problem 25 a.

(Check Lecture 08, Slides 21–25 for more information)

	Time [min]	Conc. [mg/L]	Rel. Conc [-]
0	15	0.0	0.000000
1	30	0.0	0.000000
2	45	0.0	0.000000
3	60	2.5	0.045455
4	75	5.4	0.098182
5	90	10.6	0.192727
6	105	21.0	0.381818
7	120	29.1	0.529091
8	135	40.8	0.741818
9	150	51.7	0.940000
10	165	55.0	1.000000
11	180	55.0	1.000000

```
In [16]: # Solution 25 b
    r6_5 = pn.pane.Markdown(""" Solution Problem 25 b.
    """,width = 300, style={'font-size': '13pt'})

# Plotting
    fig = plt.figure()
    plt.plot(d25_t, d25_rc, 'o-', color = "r", label=' Relative Conc.');
    plt.xlabel(r"Time, (min)"); plt.ylabel(r"Relative Conc., (-)");
    plt.grid(); plt.legend(fontsize=11);
    plt.close() # otherwise we have 2 figure
    r6_6 = pn.pane.Matplotlib(fig, dpi=300)

# Output
    pn.Row(r6_5, r6_6)
```

Out[16]: Solution Problem 25 b.


```
In [39]: #Solution 25 c
         r6 7 = pn.pane.Markdown("""Solution Problem 25 c. """, width = 300, style={'font-size': '13pt'})
         fig = plt.figure()
         plt.plot(d25 t, d25 rc, 'o-', color = "r", label=' Relative Conc.');
         plt.xlabel(r"Time, (min)"); plt.ylabel(r"Relative Conc., (-)");
         plt.grid(); plt.legend(fontsize=11);
         plt.annotate(r't$ \{16\}$', xy=(82, 0.16), xycoords='data',xytext=(0.0001, 0.16), textcoords='axes fraction
         n',
                      arrowprops=dict(facecolor='green', shrink=0.01),horizontalalignment='left', verticalalignmen
         t='bottom',)
         plt.annotate('', xy=(82, 0.0), xycoords='data',xytext=(0.409, 0.16), textcoords='axes fraction',
                      arrowprops=dict(facecolor='green', shrink=0.01),horizontalalignment='left', verticalalignmen
         t='bottom',)
         plt.annotate(r't$ {50}$', xy=(118, 0.5), xycoords='data',xytext=(0.0001, 0.5), textcoords='axes fractio
         n',
                      arrowprops=dict(facecolor='green', shrink=0.01),horizontalalignment='left', verticalalignmen
         t='bottom'.)
         plt.annotate('', xy=(118, 0.001), xycoords='data',xytext=(0.61, 0.48), textcoords='axes fraction',
                      arrowprops=dict(facecolor='green', shrink=0.01),horizontalalignment='left', verticalalignmen
         t='bottom',)
         plt.annotate(r't$ {84}$', xy=(145, 0.86), xycoords='data',xytext=(0.0001, 0.81), textcoords='axes fracti
         on',
                      arrowprops=dict(facecolor='green', shrink=0.01),horizontalalignment='left', verticalalignmen
         t='bottom',)
         plt.annotate('', xy=(145, 0.001), xycoords='data',xytext=(0.76, 0.80), textcoords='axes fraction',
                      arrowprops=dict(facecolor='green', shrink=0.01),horizontalalignment='left', verticalalignmen
         t='bottom'.)
         plt.close() # otherwise we have 2 figure
         r6 8 = pn.pane.Matplotlib(fig, dpi=300)
         r6 9 = pn.pane.LaTeX(r"""
         From the figure:<br>
         $t {16}\approx 80$<br>
         $t {50}\approx 120$<br>
         $t {84}\approx 145$<br>
         """, width = 300, style={'font-size': '13pt'})
         r6\ 10 = pn.Column(r6\ 7,\ r6\ 9)
```

pn.Row(r6 10, r6 8)

Out[39]: Solution Problem 25 c.

From the figure:

 $t_{16} pprox 80$

 $t_{50}pprox 120$

 $t_{84}pprox145$


```
In [41]: #Solution 25 d

#Given
Q = 10 # mL/min, discharge in column
dc = 7.5 # cm, diameter of column
Lc = 85 # cm, length of column
t_50 = 120 # min, obtained from 17c

# Calculation
Vc = np.pi*(dc/2)**2*Lc # cm^3, Volume of column pi*d^2/4* h-
n_ef = 0*t_50/Vc # (-), effective porosity from given formula

#output
print("The effective porosity in the column is {0:1.2f}".format(n_ef))
```

The effective porosity in the column is 0.32

```
In [40]: #Solution 25 e

#Given
t_16 = 80 # min, obtained from 17c
t_84 = 145 # min, obtained from 17c
Lc = 85 # cm, length of column

# Calculation
alpha = Lc/8*((t_84-t_16)/t_50)**2

#output
print("The required dispersivity in the column is {0:1.2f}".format(alpha))
```

The required dispersivity in the column is 3.12

In [20]: # contour plot code import numpy as np import matplotlib.pyplot as plt x = np.linspace(-10.0, 10.0, 100)y = np.linspace(-10.0, 10.0, 100)X, Y = np.meshgrid(x, y)Z = np.sgrt(np.square(X) + np.square(Y))levels = [0.0, 0.5, 1.0, 2.0, 2.5, 3.0, 4.0, 4.43, 5, 7.0]cp = plt.contour(X, Y, Z, levels) plt.clabel(cp, inline=1, fontsize=10) plt.xlabel('X');plt.ylabel('Y') plt.xlim([-6, 6]); plt.ylim([-6, 6]); plt.annotate("",xy=(0.0, 0.0), xycoords='data', xytext=(0.0, 4.4), textcoords='data', arrowprops=dict(arrowstyle="<|-|>",lw=2, connectionstyle="arc3")) plt.annotate("",xy=(0.0, 0.0), xycoords='data', xytext=(4.4, 0), textcoords='data', arrowprops=dict(arrowstyle="<|-|>", lw=2, connectionstyle="arc3"),) plt.text(-0.5, 2.5, "b", fontweight="bold", fontsize= 14); plt.text(2.5, -0.5, "a", fontweight="bold", fo ntsize= 14); plt.text(4.2, 4.5, 't = 5 a', color='red', bbox=dict(facecolor='none', edgecolor='red', boxstyle='round,p ad=1'))

Out[20]: Text(4.2, 4.5, 't = 5 a')

In [21]: #Problem 26 r7 1 = pn.pane.Markdown("""## Tutorial Problem 26 """, width = 600, style={'font-size': '13pt'}) r7 2 = pn.pane.LaTeX(r"""A conservative tracer experiment was performed under following conditions:

 i) steady uniform flow in an aguifer with thickness m = 10 m and effective porosity n = 0.2ii) linear velocity: $v x = 2 \cdot 10^{-5} \cdot m/s$, $v y = 0 \cdot br$ iii) dispersivities \$\alpha L = 0.5\$ m, \$\alpha T = 0.2\$ m
 iv) At t = 0, a tracer mass of M = 985 kg was injected at (x 0, y 0) = (0, 250) m.
br> v) The tracer is not subject to sorption or degradation, i.e., R = 1, $\lambda = 0$. """.width = 600. style={'font-size': '13pt'}) r7 3 = pn.pane.LaTeX(r"""Questions:
 a) Where is the centre of the tracer mass after a period of t = 5 a? <hr> b) Where is the concentration isoline $C^{\ }$ ast = 4.43\$ mg/L at that time? (Hint: Follow instructions given on next page to solve a) and b)). """, width = 600, style={'font-size': '13pt'}) r7.4 = pn.pane.PNG("images/T05.3a.png", width=380)r7.5 = pn.Column(r7.1, r7.2, r7.3)pn.Row(r7 5, r7 4)

Out[21]:

Tutorial Problem 26

A conservative tracer experiment was performed under following conditions:

i) steady uniform flow in an aquifer with thickness m=10 m and effective porosity $n_e=0.2$

iii) dispersivities
$$lpha_L=0.5$$
 m, $lpha_T=0.2$ m

iv) At t=0, a tracer mass of M=985 kg was injected at $(x_0,y_0)=(0,250)$ m.

- a) Where is the centre of the tracer mass after a period of $t=5\,\mathrm{a}$?
- b) Where is the concentration isoline $C^{st}=4.43~{
 m mg/L}$ at that time? (Hint: Follow instructions given on next page to solve a) and b)). .

In [22]: # Solution of Problem 26 r7 6 = pn.pane.Markdown(""" ## Solution of Problem 26 (**Check Lecture 08, Slides 21--25 for more information**) """, width = 800, style={'font-size': '13pt'}) r7 7 = pn.pane.PNG("images/T05 3b.png", width=600)r7 8 = pn.pane.LaTeX(r"""
 Concentration isolines are elliptic in the given scenario. Four steps are to be performed to answer problems a) and b):
br>
 Step 1: Find centre of ellipse given by $x \{max\} = x \ 0 + v \ x \ dot \ t/R$ and <math>v \{max\} = v$ 0\$

< Step 2: Find peak concentration \cdot e^{-\lambda\cdot t/R}\$

 Step 3:: Calculate concentration ratio \$f = C^\ast\times/C {max}\$

 Step 4: Determine lengths of semi-axes $a = \sqrt{-4 \cdot h}$ and $b = \sqrt{\lambda L} \$ """, width = 800, style={'font-size': '13pt'}) pn.Column(r7 6, r7 7, r7 8)

Out[22]:

Solution of Problem 26

(Check Lecture 08, Slides 21–25 for more information)

Concentration isolines are elliptic in the given scenario. Four steps are to be performed to answer problems a) and b):

Step 1: Find centre of ellipse given by $x_{max} = x_0 + v_x \cdot t/R$ and $y_{max} = y_0$

Step 2: Find peak concentration
$$C_{max}=rac{M}{4\cdot pi\cdot n_e\cdot m\sqrt{lpha_L\cdot lpha_T\cdot v_x\cdot t}}\cdot e^{-\lambda\cdot t/R}$$

Step 3:: Calculate concentration ratio $f = C^* imes / C_{max}$

Step 4: Determine lengths of semi-axes $a=\sqrt{-4\cdot \ln f\cdot lpha_L\cdot v_x\cdot t/R}$ and $b=\sqrt{lpha_T/lpha_L}\cdot a$

```
In [23]: # Solution of Problem 26, STEP 1
#Given
x_0 = 0 # m, starting point along x-direction
y_0 = 250 # m, starting point along y-direction
v_x = 2*le-5 # m/s Groundwater velocity
t = 5 # a, time in year
R = 1# (-), retardation factor

#calculate
t_s = t*365*24*3600 # s, time unit conversion
x_max = x_0 + v_x*t_s/R
y_max = y_0

#output
print("The x_max is located at:{0:1.2f}".format(x_max), "m \n")
print("The y_max is located at:{0:1.2f}".format(y_max), "m")
```

The x max is located at:3153.60 m

The y_max is located at:250.00 m

```
In [24]: # Solution of Problem 26, STEP 2
# Given
M = 985 # kg, mass
n_ef = 0.2 # (-), effective porosity
m = 10 # m, aquifer thickness
a_L = 0.5 # m, longitudinal dispersivity
a_T = 0.2 # m, Transverse dispersivity
L_a = 0 # (-), degradation rate, Lambda

# Compute
C_max = M/(4*np.pi* n_ef*m* np.sqrt(a_L*a_T)*v_x*t_s)*np.exp(-0*t_s/R)

print("The C_max is: {0:1.2e}".format(C_max), "Kg/m\u00b3 \n")
print("The C_max is: {0:1.2f}".format(C_max*1000), "mg/L")
```

The C max is: $3.93e-02 \text{ Kg/m}^3$

The C max is: 39.30 mg/L

```
In [25]: # Solution of Problem 26, STEP 3 and Step 4

#Given
    C_ast = 4.43 # mg/L concentration whose location is to be found
    C_maxf = C_max*1000 # mg/L converting unit of C_max from Kg/m to mg/L

# Compute f
    f = C_ast/C_maxf

# Solution Step 4

# compute a and b
    a = np.sqrt(-4*np.log(f)*a_L*v_x*t_s/R)
    b = np.sqrt(a_T/a_L)*a

#Output
print("The f is: {0:1.4f}".format(f) )
print("The a is: {0:1.2f}".format(a), "m")
print("The b is: {0:1.2f}".format(b), "m")
```

The f is: 0.1127 The a is: 117.33 m The b is: 74.21 m

```
In [18]: #Problem 27

r27_1 = pn.pane.Markdown("""## Tutorial Problem 27 """,width = 800, style={'font-size': '13pt'})

r27_2 = pn.pane.LaTeX(r"""
    A contaminated site is to be evaluated for a potential spread of contaminat
    from a source with an uniform concentration 12 mg/L (see figure below). The observation is to be
    made at 30 m from the source for over 1000 days. The available informations are
    the first order decay constant of the sediment is 0.01 1/d and soil retardation
    coefficient is 5.354. The groundwater velocity in the aquifer is 0.252 m/d and
    the longitudinal dispersion was computed to be 1.56 m$^2$/d.
    """,width = 800, style={'font-size': '13pt'})

r27_4 = pn.pane.PNG("images/T08_TP27.png", width=800)

pn.Column(r27_1, r27_2, r27_4)
```

Out[18]:

Tutorial Problem 27

A contaminated site is to be evaluated for a potential spread of contaminat from a source with an uniform concentration 12 mg/L (see figure below). The observation is to be made at 30 m from the source for over 1000 days. The available informations are the first order decay constant of the sediment is 0.01 1/d and soil retardation coefficient is 5.354. The groundwater velocity in the aquifer is 0.252 m/d and the longitudinal dispersion was computed to be 1.56 m 2 /d.

solution of Problem 27

The site is to be modeled using analytical solution provided in Wexler (1992). The provided solution for contaminant transport is C(x,t):

$$C(x,t) = rac{C_o}{2} \Bigg[\exp \Bigg(rac{x}{2(D_x/R)} \Bigg(rac{v_x}{R} - \sqrt{igg(rac{v_x}{R}igg)^2 + 4\lambdarac{D_x}{R}} igg) \Bigg) \cdot \operatorname{erfc} \Bigg(rac{x - t\sqrt{(v_x/R)^2 + 4\lambda(D_x/R)}}{2\sqrt{Dx/Rt}} \Bigg) + \exp \Bigg(rac{x}{2(D_x/R)} \Bigg(rac{v_x}{R} + \sqrt{igg(rac{v_x}{R}igg)^2 + 4\lambdarac{D_x}{R}} \Bigg) \Bigg) \cdot \operatorname{erfc} \Bigg(rac{x + t\sqrt{(v_x/R)^2 + 4\lambda(D_x/R)}}{2\sqrt{Dx/Rt}} \Bigg) \Bigg]$$

we implement this solution to obtain the concentration at 30 m from the source for over 3 years time.

Wexler, E. 1992. "Analytical Solutions for One-, Two-, and Three-Dimensional Solute Transport in Groundwater Systems with Uniform Flow." In Techniques of Water-Resources Investigations of the United States Geological Survey, 190. Book 3, Chapter B7.

```
In [42]: # Solution proble 27 continued
         # INPUT
         Dx = 7.56 \, \#m^2/d \, disp \, coeff
         vx = 0.252 \# m/d qw \ velocity
         R = 5.354 \# [l] retardation
         Co = 12 \# mg/L in concentration
         x = 30 \# m \ distance
         ld = 0.01 \# 1/d lambda
         t = np.linspace(0, 1000, 1000)
         # interim calculations
         f1 = Dx/R
         f2 = vx/R
         f3 = np.sqrt(f2**2+ 4*ld*f1)
         import scipy.special as sc # Required for getting erfc function
         T1 = np.exp(x/(2*f1)*(f2-f3))
                                              # first exp term
         T2 = sc.erfc((x-t*f3)/(2*np.sgrt(t)*f1))
                                                       # first erfc term
         T3 = np.exp(x/(2*f1)*(f2+f3))
                                              # second exp term
         T4 = sc.erfc((x+t*f3)/(2*np.sgrt(t)*f1))
                                                    # second erfc term
```

/home/prabhasyadav/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:21: RuntimeWarning: divide by zero encountered in true_divide /home/prabhasyadav/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:23: RuntimeWarning: divide by zero encountered in true divide

```
In [24]: # solution P 27 contd.

# Calculation
C = Co/2*(T1*T2)+(T3*T4)

#plotting

plt.plot(t,C, label = "Concentration at 30 m from the source")
plt.grid()
plt.ylim((0,2))
plt.ylim((0,2))
plt.xlabel(r"$t$ (days)"); plt.ylabel(r"$C_i$ (mg/LL)")
plt.legend()
```

Out[24]: <matplotlib.legend.Legend at 0x7db72c17ae50>

HOME WORK PROBLEMS

Sorption and Degradation

There is no obligation to solve homework problems!

Out[26]:

Homework Problem 10:

The same series of batch experiments as in tutorial problem 16 are considered. However, experimental findings are now to be evaluated by assuming a Freundlich isotherm.

- 1. Plot decadic logarithm of mass ratio C_a vs. decadic logarithm of equilibrium concentration C_{eq} in a diagram.
- 2. Determine the Freundlich coefficient K_{Fr} and the Freundlich exponent n_{Fr} .

In [27]: #Homework Problem 11 r9 1 = pn.pane.Markdown("""## Homework Problem 11 """, width = 600, style={'font-size': '13pt'}) r9 2 = pn.pane.LaTeX(r"""A reactive tracer experiment was performed under following conditions:

 i) steady uniform flow in an aguifer with thickness m = 10 m and effective porosity n = 0.2ii) linear velocity: $v x = 2 \cdot 10^{-5} \cdot m/s$, $v y = 0 \cdot br$ iii) dispersivities \$\alpha L = 0.5\$ m, \$\alpha T = 0.2\$ m
 iv) At t = 0, a tracer mass of M = 985 kg was injected at (x 0, y 0) = (0, 250) m.
br> v) The tracer is not subject to sorption or degradation, i.e., R = 4.75, $\lambda = 1$, a^{-1} . """.width = 600. style={'font-size': '13pt'}) r9 3 = pn.pane.LaTeX(r"""Questions:
 a) Where is the centre of the tracer mass after a period of t = 5 a? b) Where is the concentration isoline $C^{\ }$ as 4.43 mg/L at that time? """, width = 600, style={'font-size': '13pt'}) r9 4 = pn.pane.PNG("images/T05 3a.png", width=380) $r9_5 = pn.Column(r9_1, r9_2, r9_3)$ pn.Row(r9 5, r9 4)

Out[27]:

Homework Problem 11

A reactive tracer experiment was performed under following conditions:

- i) steady uniform flow in an aquifer with thickness m=10 m and effective porosity $n_e=0.2$
- ii) linear velocity: $v_x = 2 \cdot 10^{-5}$ m/s, $v_y = 0$
- iii) dispersivities $lpha_L=0.5$ m, $lpha_T=0.2$ m
- iv) At t=0, a tracer mass of M=985 kg was injected at $(x_0,y_0)=(0,250)$ m.
- v) The tracer is not subject to sorption or degradation, i.e., R=4.75, $\lambda=1\,a^{-1}$.

Questions:

a) Where is the centre of the tracer mass after a period of t=5 a? b) Where is the concentration isoline $C^{\ast}=4.43$ mg/L at that time? .