Table des matières

Ι	Interpolation polynomiale	3
1	Existence et unicité	3
2	Construction du polynôme d'interpolation 2.1 Construction à partir de la base de Lagrange	4
	2.2 Construction à partir de la base de Newton	5 5
3	Convergence, étude d'erreur	8
4	Splines4.1 Généralités4.2 Splines cubiques	9 9 10
II	Intégration numérique	11
1	Préliminaires	11
2	2.1 Méthode du point milieu	12 13 14 14
3	Convergence et stabilité	14
4	4.1 Méthode des trapèzes composite 4.1.1 Défintion de la méthode 4.1.2 Convergence 4.1.3 Stabilité 4.2 Méthode de Simpson composite 4.3 Méthode de Runge 4.4 Méthode de Quadrature de Gauss	15 15 16 16 16 17 18
II	I Equation différentielles, problème de Cauchy	20
1		21 22 23 23 24 24 25 25 25 25

2	Méthodes à pas liés				
	2.1	Métho	ode d'Adams	2	
	2.2	Métho	odes de prédiction-correction	2	
		Consis	stance, stabilité, convergence, ordre	2	
		2.3.1	Consistance	2	
		2.3.2	Stabilité	2	
		2.3.3	Convergence	2	
		$2\ 3\ 4$	Ordre	2	

Première partie

Interpolation polynomiale

Introduction

A partir de $\{x_j, y_j\}_{j=0}^n$, on veut trouver un polynôme $L_n(x)$ tel que $L_n(x_j) = y_j$, pour j allant de 0 à n.

- Le polynôme est-il bien posé? (existence, unicité)
- Construction du polynôme
- Calculer l'erreur d'interpolation
- La suite $\{L_n(f,x)\}_n$ convergera-t-elle vers f?
- Quelle sera la meilleure subdivision?

1 Existence et unicité

→ Théorème: Existence et unicité du polynôme d'interpolation

Il existe un unique polynôme d'interpolation $L_n(x)$ tel que $L_n(x_j) = y_j$, j=0..n, si et seulement si $\{x_j\}_{j=0}^n$ sont tous distincts.

Démonstration:

$$L_n(x) = \sum_{j=0}^n a_j x^j$$

En effet, $deg(L_n(x)) \leq n$.

On a de plus :

$$L_n(x_k) = y_k, k = 0..n$$

A partir de cela, on peut construire un système de n+1 équations d'inconnues $a_0, a_1, ..., a_n$ ainsi :

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n &= y_0 \\ a_0 + a_1 x_1 + \dots + a_n x_1^n &= y_1 \\ \vdots &\vdots &\vdots & \Leftrightarrow \begin{pmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots &\vdots &\ddots &\vdots \\ 1 & x_n & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

 $\mathrm{D}\mathrm{'où}$:

Le choix de
$$(a_0, ..., a_n)$$
 est unique \Leftrightarrow

$$\begin{vmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^n \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^n
\end{vmatrix} \neq 0$$

On doit démontrer pour cela :

$$\begin{vmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{vmatrix} = \prod_{0 \le j < i \le n} (x_i - x_j)$$

On le démontre par récurrence. Au rang n=1 :

$$\begin{vmatrix} 1 & x_0 \\ 1 & x_1 \end{vmatrix} = x_1 - x_0$$

3

On suppose l'égalité vraie au rang n.

$$\begin{vmatrix} 1 & x_0 & \cdots & x_0^{n+1} \\ 1 & x_1 & \cdots & x_1^{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n+1} & \cdots & x_{n+1}^{n+1} \end{vmatrix} = \begin{vmatrix} 1 & x_0 - x_{n+1} & \cdots & x_0^{n+1} - x_{n+1} x_0^n \\ 1 & x_1 - x_{n+1} & \cdots & x_1^{n+1} - x_{n+1} x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{vmatrix}$$

$$= (-1)^{n+1} \begin{vmatrix} x_0 - x_{n+1} & \cdots & x_1^{n+1} - x_{n+1} x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ x_n - x_{n+1} & \cdots & x_1^{n+1} - x_{n+1} x_1^n \\ \vdots & \ddots & \vdots \\ x_n - x_{n+1} & \cdots & x_n^{n+1} - x_{n+1} x_1^n \\ \vdots & \ddots & \vdots \\ x_n - x_{n+1} & \cdots & (x_0 - x_{n+1}) x_1^n \\ \vdots & \ddots & \vdots \\ x_n - x_{n+1} & \cdots & (x_1 - x_{n+1}) x_1^n \\ \vdots & \ddots & \vdots \\ x_n - x_{n+1} & \cdots & (x_n - x_{n+1}) x_1^n \\ \end{vmatrix}$$

$$= (-1)^{n+1} \prod_{j=0}^{n} (x_j - x_{n+1}) \prod_{0 \le j < i \le n} (x_i - x_j)$$

$$= ((-1)^{n+1})^2 \prod_{j=0}^{n} (x_{n+1} - x_j) \prod_{0 \le j < i \le n} (x_i - x_j)$$

$$= \prod_{0 \le j < i \le n+1} (x_i - x_j)$$

D'où:

Le choix de
$$(a_0, ..., a_n)$$
 est unique $\Leftrightarrow \prod_{0 \le j < i \le n} (x_i - x_j) \ne 0$
 $\Leftrightarrow \forall i \ne j, x_i - x_j \ne 0$
 $\Leftrightarrow (x_0, ..., x_n)$ tous distincts

2 Construction du polynôme d'interpolation

2.1 Construction à partir de la base de Lagrange

1 Proposition: Base de Lagrange

La famille de polynôme $\{l_i\}_{i=0}^n$ définie par :

$$\forall i \neq i, l_i(x_i) = 1, l_i(x_i) = 0$$

forment une base de P_n , espace v
ctoriel des polynômes de degré au plus n

Démonstration:

Prouvons tout d'abord que le système est libre. Soit $(\lambda_0, ..., \lambda_n) \in \mathbb{R}^n$. On cherche :

$$\forall x \in \mathbb{R}, \lambda_0 l_0(x) + \dots + \lambda_n l_n(x) = 0$$

Or, pour $x = x_i$, on trouve directement $\lambda_i = 0, \ \forall 1 \le i \le n$. De plus :

$$\operatorname{card}(\{l_i\}_{i=0}^n) = n+1$$
$$\dim(P_n) = n+1$$

La famille est donc une base de P_n

Recherche du polynôme :

 $l_i(x)$ admet n racines. D'où :

$$\forall x \in \mathbb{R}, \ l_i(x) = \alpha_i \prod_{\substack{j=0\\ j \neq i}}^n (x - x_j)$$

En posant $x = x_i$:

$$\alpha_i \prod_{\substack{j=0\\j\neq i}}^n (x_i - x_j) = 1 \Leftrightarrow \alpha_i = \frac{1}{\prod_{\substack{j=0\\j\neq i}}^n (x - x_j)}$$

D'où:

$$l_i(x) = \prod_{\substack{j=0\\i\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

On cherche à présent $L_n(f,x)$. D'après ce qu'on vient de démontrer, on peut avoir :

$$\forall x \in \mathbb{R}, \ L_n(x) = \sum_{i=0}^n a_i l_i(x)$$

 $x = x_j \Rightarrow f(x_j) = a_j l_j(x_j) = a_j$ d'où :

I Formule: Polynôme d'interpolation dans la base de Lagrange

$$L_n(f, x) = \sum_{i=0}^{n} f(x_i) \prod_{\substack{j=0\\j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}$$

Remarque:

Si on ajoute un point il devient difficile de l'intégrer au calcul

2.2 Construction à partir de la base de Newton

■ Proposition: Base de Newton

La famille $\{N_i\}_{i=0}^n$ de polynôme telle que :

$$N_0(x) = 1, \ \forall 1 \le i \le n - 1, \ N_{i+1}(x) = \prod_{j=0}^{i} (x - x_j)$$

est une base de P_n

Démonstration:

De même que pour la base de Lagrange, il suffit de montrer que la famille est libre, que cardinal et dimension sont encore une fois égaux (et finis). Soit $(\lambda_0, ..., \lambda_n) \in \mathbb{R}^n$. On cherche :

$$\forall x \in \mathbb{R}, \lambda_0 + \lambda_1(x - x_0) + \dots + \lambda_n \prod_{j=0}^{n-1} (x - x_j) = 0$$

$$x = x_0 \implies \lambda_0 = 0$$

$$x = x_1 \implies \underbrace{\lambda_0}_{=0} + \lambda_1(x_1 - x_0) + \lambda_1(x_1 - x_0) \underbrace{(x_1 - x_1)}_{=0} + \dots = \lambda_1 \underbrace{(x_1 - x_0)}_{\neq 0} = 0$$

$$\implies \lambda_1 = 0$$

$$\vdots$$

$$x = x_n \implies \lambda_n = 0$$

Donc la famille est bien une base de P_n

1 Formule: Polynôme d'interpolation dans la base de Newton

Le polynôme d'interpolation dans la base de Newton est définie récursivement par la formule :

$$L_n(x) = L_{n-1}(x) + (f(x_n) - L_{n-1}(x_n)) \frac{\omega_{n-1}(x)}{\omega_{n-1}(x_n)}$$

Avec
$$\omega_0(x) = x - x_0$$
 et $\omega_{n-1}(x) = \prod_{j=0}^{n-1} (x - x_j)$

Démonstration:

On va chercher les racines du polynôme $L_n(x) - L_{n-1}(x)$.

$$L_n(x_n) - L_{n-1}(x_n) \neq 0$$

$$\forall 0 \le i \le n - 1, \ L_n(x_i) - L_{n-1}(x_i) = f(x_i) - f(x_i) = 0$$

D'où $x_0,...,x_{n-1}$ racines du polynôme. On a donc :

$$L_n(x) - L_{n-1}(x) = c_n \prod_{i=0}^{n-1} (x - x_i) = c_n \omega_{n-1}(x)$$

Déterminons à présent c_n à partir du point x_n :

$$L_n(x_n) - L_{n-1}(x_n) = f(x_n) - L_{n-1}(x_n)$$
$$= c_n \underbrace{\omega_{n-1}(x_n)}_{\neq 0}$$

$$\Rightarrow c_n = \frac{f(x_n) - L_{n-1}(x_n)}{\omega_{n-1}(x_n)}$$

Intéressons-nous de plus près au calcul de c_n .

$$c_{n} = \frac{f(x_{n})}{\omega_{n-1}(x_{n})} - \sum_{i=0}^{n-1} f(x_{i}) \prod_{\substack{j=0 \ j\neq i}}^{n-1} \frac{x_{n} - x_{j}}{(x_{i} - x_{j})(x_{n} - x_{j})(x_{n} - x_{i})}$$

$$= \frac{f(x_{n})}{\omega_{n-1}(x_{n})} - \sum_{i=0}^{n-1} f(x_{i}) \prod_{\substack{j=0 \ j\neq i}}^{n-1} \frac{1}{(x_{i} - x_{j})(x_{n} - x_{i})}$$

$$= \frac{f(x_{n})}{\omega_{n-1}(x_{n})} + \sum_{i=0}^{n-1} f(x_{i}) \prod_{\substack{j=0 \ j\neq i}}^{n-1} \frac{1}{(x_{i} - x_{j})(x_{i} - x_{n})}$$

$$= \frac{f(x_{n})}{\omega_{n-1}(x_{n})} + \sum_{i=0}^{n-1} f(x_{i}) \prod_{\substack{j=0 \ j\neq i}}^{n} \frac{1}{x_{i} - x_{j}}$$

$$= \sum_{i=0}^{n} f(x_{i}) \prod_{\substack{j=0 \ j\neq i}}^{n} \frac{1}{x_{i} - x_{j}}$$

On a donc

$$L_n(x) - L_{n-1}(x) = \omega_{n-1}(x) \sum_{i=0}^n f(x_i) \prod_{\substack{j=0 \ i \neq i}}^n \frac{1}{x_i - x_j}$$

Pour faciliter le calcul de $\sum_{i=0}^{n} f(x_i) \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{1}{x_i - x_j}$, on introduit les différences divisées.

$cute{e} finition: Différence divisée de f$

- Ordre $0: f[x_0] = f(x_0)$ - Ordre $1: f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i}$ - \vdots - Ordre $k: f[x_i, ..., x_{i+k}] \frac{f[x_{i+k}, ..., x_{i+1}] - f[x_i, ..., x_{i+k-1}]}{x_{i+k} - x_i}$

⇔ Lemme: Différence divisée et polynôme de Newton

$$\sum_{i=0}^{n} \frac{f(x_i)}{\prod_{\substack{j=0\\j\neq i}}^{n} (x_i - x_j)} = f[x_1, ..., x_n]$$

Démonstration:

On démontre ce lemme par récurrence :

$$n = 0 \Rightarrow f[x_0] = f(x_0)$$

Supposons à présent que

$$f[x_0,...,x_n] = \sum_{i=0}^n \frac{f(x_i)}{\prod_{\substack{j=0\\j\neq i}}^n (x_i - x_j)}$$
, pour $(x_0,...,x_n)$ tous distincts.

Prouvons le à présent au rang n+1 en utilisant la définition de la différence divisée :

$$f[x_0, ..., x_{n+1}] = \frac{f[x_1, ..., x_{n+1}] - f[x_0, ..., x_n]}{x_{n+1} - x_0}$$

avec x_{n+1} distinct des autres points.

Par hypothèse de récurrence, on a :

$$f[x_1, ..., x_{n+1}] = \sum_{i=1}^{n+1} \frac{f(x_i)}{\prod_{\substack{j=1\\j\neq i}}^{n+1} (x_i - x_j)}$$

$$f[x_0, ..., x_{n+1}] = \frac{1}{x_{n+1} - x_0} \left[\sum_{i=1}^{n+1} \frac{f(x_i)}{\prod_{\substack{j=1 \ j \neq i}}^{n+1} (x_i - x_j)} - \sum_{i=0}^{n} \frac{f(x_i)}{\prod_{\substack{j=0 \ j \neq i}}^{n} (x_i - x_j)} \right]$$

$$= \frac{1}{x_{n+1} - x_0} \left[\frac{f(x_{n+1})}{\prod_{\substack{j=1 \ j \neq i}}^{n} (x_{n+1} - x_j)} - \frac{f(x_0)}{\prod_{\substack{j=1 \ j \neq i}}^{n} (x_0 - x_j)} + \sum_{i=1}^{n} \left(\frac{f(x_i)}{\prod_{\substack{j=1 \ j \neq i}}^{n+1} (x_i - x_j)} - \frac{f(x_i)}{\prod_{\substack{j=0 \ j \neq i}}^{n} (x_i - x_j)} \right) \right]$$

$$= \frac{f(x_{n+1})}{\prod_{\substack{j=0 \ j \neq i}}^{n} (x_{n+1} - x_j)} + \frac{f(x_0)}{\prod_{\substack{j=1 \ j \neq i}}^{n+1} (x_0 - x_j)} + \frac{1}{x_{n+1} - x_0} \sum_{i=1}^{n} \left(\frac{f(x_i)}{\prod_{\substack{j=0 \ j \neq i}}^{n+1} (x_i - x_j)} (x_i - x_0 - x_i + x_{n+1}) \right)$$

$$= \sum_{i=0}^{n+1} \frac{f(x_i)}{\prod_{\substack{j=0 \ j \neq i}}^{n+1} (x_i - x_j)}$$

I Formule: Interpolation dans la base de Newton

$$L_n(x) = \sum_{i=0}^{n} f[x_0, ..., x_j] \prod_{i=0}^{j-1} (x - x_i)$$

3 Convergence, étude d'erreur

Soient $x_0,...,x_n$ distincts, $f \in \mathcal{C}^{n+1}$ sur $[\min\{x_0,...,x_n\},\max\{x_0,...,x_n\}]$ et $L_n(f,x)$ son polynôme d'interpolation. $\forall x \in [\min\{x_0,...,x_n\},\max\{x_0,...,x_n\}], \exists \zeta \in]\min\{x_0,...,x_n\},\max\{x_0,...,x_n\}[$

$$f(x) - L_n(f, x) = \frac{f^{(n+1)}(\zeta)}{(n+1)!} \omega_n(x)$$

Démonstration:

On définit une fonction

$$g(s) = f(s) - L_n(f, s) - k\omega_n(s)$$

La constante k est choisie est telle que g(x) = 0, c'est-à-dire :

$$k = \frac{f(x) - L_n(f, x)}{\omega_n(x)}, \ x \neq x_i, i = 0..n$$

Donc g(s) s'annule aux points $x_1,...,x_n,x$ (car $\forall i, g(x_i) = \underbrace{f(x_i) - L_n(f,x_i)}_{=0} - K\underbrace{\omega_n(x_i)}_{=0}$)

Donc g(s) admet n+2 zéros, donc, par le théorème de Rolle, g' admet n+1 zéros. On continue, et on obtient que $g^{(n+1)}$ a un zéro.

$$\exists \zeta_x; g^{(n+1)}(\zeta_x) = 0$$

$$g^{(n+1)}(s) = f^{(n+1)}(s) - \underbrace{L_n^{(n+1)}(f,s)}_{=0(degn)} - k\omega_n^{(n+1)}(s)$$

Or $(\omega_n(s))^{(n+1)} = (X^{n+1} + ...)^{(n+1)} = (n+1)!$. D'où :

$$g^{(n+1)}(s) = f^{(n+1)}(s) - \frac{f(x) - L_n(f, x)}{\omega_n(x)} \omega_n(s)$$

$$\Rightarrow f^{(n+1)}(\zeta_x) - \frac{f(x) - L_n(f, x)}{\omega_n(x)} \omega_n(\zeta_x) = 0$$

D'où le résultat.

⇔ Corollaire:

L'erreur dépend de la subdivision $\{x_i\}_{i=0}^n$ choisie.

Remarque: 1. Divergence du polynôme d'interpolation (?)

- 2. Une meilleure approche peut être obtenue par un changement de subdivision
- 3. Vu qu'il n'existe pas de subdivision pour laquelle le polynôme d'interpolation converge pour toute les fonctions, on peut diviser l'intervalle en petits sous-intervalles et interpoler avec des polynômes de degré plus petit.
- 4. On peut imposer les conditions de raccord : condition de régularité aux points communs de polynômes différents. Cela débouche sur la notion de splines : à partir de $\{x_i\}_{i=0}^n$ on construit une fonction cubique par morceaux qui interpole la fonction initiale.

♦ Définition:

La méthode d'interpolation converge vers f au point $x^* \in [a, b]$ si :

$$\lim_{n \to +\infty} L_n(f, x^*) = f(x^*)$$

⇔ Théorème:

Quelque soit la subdivision d'intervalle [a,b], il existe une fonction $f \in \mathcal{C}[a,b]$ tel que $L_n(f,x) \not\to f(x)$

⇒ Théorème:

 $\forall f \in \mathcal{C}[a,b]$, il existe une subdivision de [a,b] tel que la suite correspondante du polynôme d'interpolation converge vers f.

4 Splines

4.1 Généralités

$$a = x_0 < \dots < x_n = b$$

- La fonction $S_m(x)$ est dite spline de degré m si : 1. Sur chaque $[x_i,x_{i+1}]$, i=0 à n+1, $S_m(x)$ est un polynôme de degré au plus n 2. $S_m(f,x)\in\mathcal{C}^{m-1}[a,b]$ (régularité)

Le spline est un spline d'interpolation si $\forall i$ de 0 à n, $f(x_i) = S_m(f, x_i)$. Sinon, on parle de spline d'approximation.

Splines cubiques 4.2

Sur chaqu $[x_i, x_{i+1}]$, on interpole f par une fonction cubique $S_i(x)$. Avec les conditions de régularité :

- 1. $S_i(x_i) = S_{i-1}(x_i)$ (i=1 à n-1)
- 2. $S_i(x_i) = f(x_i)$ (i=0 à n)
- 3. $S'_i(x_i) = S'_{i-1}(x_i)$ (i=1 à n-1)
- 4. $S_i''(x_i) = S_{i-1}''(x_i)$ (i=1 à n-1)

Cela nous fait 4n-2 équations sur les $s_i(x)$, i=0 à n-1.

Or, $s_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$, donc pour définir tous les $\{s_i\}_{i=0}^{n-1}$, il nous faut 4n conditions. Il nous manque 2 conditions manquantes.

Possibilités

- 1. $S_0''(x_0) = 0$ et $S_{n-1}''(x_n) = 0$. (Spline naturel)
- 2. Si on connaît $f'(x_0)$ et $f'(x_n)$ alors $S_0'(x_0) = f'(x_0)$ et $S_{n-1}'(x_n) = f(x_n)$
- 3. Interpoler f aux points x_0, x_1, x_2 par $L_2(f, x)$ puis $S_0''(x_0) = L_2(f, x_0)''$ Interpoler f aux points x_{n-2}, x_{n-1}, x_n par $\bar{L}_2(f, x)$ puis imposer $S_{n-1}''(x_n) = L_2(f, x_n)''$

Deuxième partie

Intégration numérique

f est intégrable sur [a,b]. Comment peut-on calculer numériquement $\int_a^b f(x)dx$? On pose $I(f) = \int_a^b f(x)dx$.

Une formule pour calculer I(f) explicitement s'appelle une formule de quadrature ou une formule d'intégration numérique.

IL nous faut trouver une fonction approximant f tel que $I(f_n) = \int_a^b f_n(x) dx$ soit facile à calculer.

$$S_n(f) = I(f_n) \approx I(f)$$

Commet choisir f_n ?

On peut prendre:

- $-f_n(x) = L_n(f, x)$ (formule d'interpolation)
- Autre chose

2 méthodes de quadrature :

- Simple $(f(x) \approx L_n(f, x), x \in [a, b])$: pas de convergence.
- Composite : on sépare [a,b] en sous-intervalles. On pourra avoir convergence et stabilité.

1 Préliminaires

⇔ Lemme:

La formule

$$I(f) \approx \sum_{i=0}^{n} f(x_i) \int_{a}^{b} l_i(x) dx$$

$$l_i(x) = \prod_{\substack{j=0\\ i \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

pour $f \in \mathcal{C}^0[a,b]$ s'appelle la formule de quadrature de Newton-Cotes.

On pose $E_n(f) = I(f) - S_n(f)$ On a donc $|E_n(f)| \le (b-a)||f - f_n||_{\infty}$

Prenons $f_n = L_n(f, x)$.

$$S_n(f) = I(f_n) = \int_a^b \sum_{i=0}^n c_i l_i(x) dx$$
$$= \sum_{i=0}^n c_i \int_a^b l_i(x) dx$$
$$= \sum_{i=0}^n f(x_i) \int_a^b l_i(x) dx$$

 $oldsymbol{\mathbf{I}} Remarque:$

La formule de N-C est un cas particulier.

$$I(f) = \sum_{i=0}^{n} \alpha_i f(x_i)$$

 α_i coefficient de quadrature

 x_i nœuds (points) de quadrature

🔩 Définition: Degré d'exactitude

Le degré d'exactitude d'une formule de quadrature est l'entier maximal r>0 tel que

$$S_n(f) = I(f), \ \forall f \in \mathbb{R}_r[X]$$

I Propriété:

Le degré d'exactitude d'une formule de N-C (avec $\{x_i\}_{i=0}^n$) est supérieur ou égal à n.

Démonstration:

 $\forall f \in \mathbb{R}_n[X], f = L_n(f, x).$

$$I(f) = I(L_n(f, x)) = S_n(L_n(f, x)) = S_n(f)$$

$\overline{\mathbf{i}}$ Remarque:

Le degré d'exactitude maximal est 2n+1 (quadrature de Gauss)

2 Exemples de quadrature de type Newton-Cotes

2.1 Méthode du point milieu

f(x) sera interpolé en un point $x_0 = \frac{a+b}{2}$.

$$f(x) \approx f\left(\frac{a+b}{2}\right), \ x \in [a,b]$$

$$\int_{a}^{b} f(x)dx \approx (b-a)f\left(\frac{a+b}{2}\right)$$

⇒ Théorème: de la moyenne

Si G est continue et intégrable sur [a,b], $\phi(x) \ge 0$,

$$\forall x \in [a, b], \exists \eta \in]a, b[; \int_a^b G(x)\phi(x)dx = G(\eta) \int_a^b \phi(x)dx$$

1 Propriété: Calcul de l'erreur d'interpolation

$$\exists \eta \in]a,b[; \int_a^b f(x) dx - (b-a) f\left(\frac{a+b}{2}\right) = \frac{2}{3} \left(\frac{b-a}{2}\right)^3 f''(\eta)$$

Démonstration:

On utilise le développement de Taylor :

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f\left(\frac{a+b}{2}\right) dx + \underbrace{\int_{a}^{b} f'\left(\frac{a+b}{2}\right) \left(x - \frac{a+b}{2}\right) dx}_{=0} + \int_{a}^{b} \frac{f''(\zeta)}{2} \left(x - \frac{a+b}{2}\right)^{2} dx$$

$$= (b-a)f\left(\frac{a+b}{2}\right) + \frac{f''(\eta)}{2} \int_{a}^{b} \left(x - \frac{a+b}{2}\right)^{2}$$

$$= (b-a)f\left(\frac{a+b}{2}\right) + \frac{2}{3} \left(\frac{b-a}{2}\right)^{3} f''(\eta)$$

i Remarque:

Le degré d'exactitude de la méthode du point milieu est 1 et l'erreur :

$$E_n(f) = \frac{2}{3} \left(\frac{(b-a)}{2}\right)^3 f''(\eta)$$

2.2 Méthode du trapèze

On interpole f avec un polynôme de degré 1.

$$x_0 = a \text{ et } x_1 = b$$

Formule de quadrature :

$$S_1(f) = \frac{b-a}{2} [f(a) + f(b)]$$

Erreur de la méthode :

$$E_1(f) = -\frac{(b-a)^3}{12}f''(\eta)$$

Démonstration:

Si $f \in \mathcal{C}^2[a,b], \forall x, \exists \eta_x \in]a,b[$

$$f(x) - P_1(x) = \frac{(x-a)(x-b)}{2} f''(\eta_x)$$

$$E_1(f) = \int_a^b (f(x) - P_1(x)) dx = \int_a^b \frac{(x-a)(x-b)}{2} f''(\eta_x) dx$$

Par le théorème de la moyenne, $\exists \eta \in]a,b[$ tel que

$$E_1(f) = \frac{f''(\eta)}{2} \int_a^b (x-a)(x-b)dx$$

Le degré d'exactitude vaut 1.

2.3 Méthode de Simpson

On interpole f par un polynôme P_2 de degré 2.

$$x_0 = a$$
, $x_1 = \frac{a+b}{2}$, et $x_2 = b$

$$S_2(f) = \int_a^b P_2(x)dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Si $f \in \mathcal{C}^4[a,b], h = \frac{b-a}{2}$:

$$E_2(f) = -\frac{h^5}{90}f^{(4)}(\eta)$$

2.4 Méthode de Newton-Cotes

On prend le polynôme d'interpolation de f $L_n(f,x)$, deg $L_n=n$

$$S_n(f) = \int_a^b L_n(f, x) dx$$

 $I(f) \approx S_n(f)$ s'appelle la quadrature de Newton-Cotes d'ordre n.

⇔ Théorème:

- Si n pair, alors pour $f \in \mathcal{C}^{n+2}[a,b]$, la méthode de Newton-Cotes a un degré d'exactitude n+1 et l'erreur est d'ordre n+3
- Si n impair, pour $f \in \mathcal{C}^{n+1}[a,b]$, la méthode de Newton-Cotes a un degré d'exactitude n et l'erreur est d'ordre h^{n+2}

3 Convergence et stabilité

♦ Définition:

La méthode de quadrature est convergente sur H si $\forall f \in H$, $\lim_{n \to +\infty} E_n(f) = 0$

🔩 Définition:

La méthode est dite stable si :

$$\exists A > 0, \forall \{\varepsilon_i\}_{i=0}^n, |\sum_{i=0}^n \alpha_i \varepsilon_i| \le A \max_{0 \le i \le n} (\epsilon_i)$$

⇒ Théorème:

La méthode $I(f) \approx \sum_{j=0}^n \alpha_j^{(n)} f(x_j)$ est stable $\Leftrightarrow \exists C>0, \forall n, \sum_{i=0}^n |\alpha_j^{(n)}| \leq C$

Démonstration:

(\Rightarrow) Supposons que C n'existe pas. Alors $\lim_{n\to+\infty}\sum_{j=0}^{n}|\alpha_{j}^{(n)}|=+\infty$

Prenons $\varepsilon_j = \frac{\alpha_j^{(n)}}{|\alpha_j^{(n)}|},$ d'où $|\varepsilon_j| = 1 \ \forall j$

D'après la définition de stabilité :

$$\left| \sum_{j=0}^{n} \alpha_{j}^{(n)} \frac{\alpha_{j}^{(n)}}{|\alpha_{j}^{(n)}|} \right| = \sum_{j=0}^{n} |\alpha_{j}^{(n)}| \to +\infty$$

d'où la contradiction avec la définition de stabailité.

 $(\Leftarrow) \ \forall n, \forall \{\varepsilon_i\}_{i=0}^n$:

$$\left| \sum_{j=0}^{n} \alpha_j^{(n)} \varepsilon_j \right| \le \max_{0 \le i \le n} |\varepsilon_i| \sum_{j=0}^{n} |\alpha_j^{(n)}| \le C \max_{0 \le i \le n} |\varepsilon_i|$$

IRemarque:

La méthode de Newton-Cotes ne converge pas toujours!

4 Méthodes composites

On partitionne [a,b] et sur chaque intervalle $[x_i, x_{i+1}]$, on utilise Newton-Cotes avec un n assez petit.

$$I(f) = \int_{a}^{b} f(x)dx = \sum_{j=0}^{n-1} \int_{x_{j}}^{x_{j+1}} f(x)dx \approx \sum_{j=1}^{n-1} \int_{x_{j}}^{x_{j+1}} L_{k}(x)dx$$

4.1 Méthode des trapèzes composite

4.1.1 Défintion de la méthode

On fait la subdivision de [a,b], $a = x_0 < x_1 < ... < x_p = b$ qui est équidistante :

$$h = \frac{b-a}{p} = x_{i+1} - x_i$$

Sur chaque $[x_i, x_{i+1}]$, $\forall i \ a \ p-1$, on utilise la formule du trapèze :

$$\int_{x_i}^{x_{i+1}} f(x)dx = \frac{h}{2}(f(x_i) + f(x_{i+1}) + E_1^{(i)}(f)$$

avec $E_1^{(i)}(f)$ l'erreur de la méthode du trapèze.

Sur [a,b], cela nous donne:

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{p-1} \int_{x_{i}}^{x_{i+1}} f(x)dx$$
$$= \sum_{i=1}^{p-1} \frac{h}{2} [f(x_{i}) + f(x_{i+1})] + \sum_{i=1}^{p-1} E_{1}^{(i)}(f)$$

D'où la méthode des trapèzes composite :

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \sum_{i=1}^{p-1} [f(x_i) + f(x_{i+1})]$$

4.1.2 Convergence

On suppose que f est C^2 . D'après l'expression de l'erreur de la méthodes des trapèzes simples :

$$E_1^{(i)}(f) = -\frac{h^3}{12}f''(\eta_i), \eta_i \in]x_i, x_{i+1}[$$

D'où:

$$E_{tr}(f) = \sum_{i=0}^{p-1} E_1^{(i)}(f)$$
$$= -\frac{h^3}{12} \sum_{i=0}^{p-1} f''(\eta_i)$$

Comme f'' est continue sur [a,b], $\exists \eta \in]a,b[$ tel que :

$$f''(\eta) = \frac{1}{p} \sum_{i=0}^{p-1} f''(\eta_i)$$

(d'après le théorème de la moyenne)

D'où:

$$E_{tr}(f) = -\frac{h^2}{12} \frac{b-a}{p} \sum_{i=0}^{p-1} f''(\eta_i)$$
$$= -\frac{h^2}{12} (b-a) f''(\eta)$$

On a donc $E_{tr}(f) \xrightarrow[h \to 0]{} 0$. Donc la méthode des trapèzes converge $\forall f \in \mathcal{C}^2[a,b]$

4.1.3 Stabilité

Pour la méthode des trapèzes composites :

$$\sum_{i=0}^{p} |\alpha_i| = ph$$

car:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \sum_{i=0}^{p-1} [f(x_i) + f(x_{i+1})] = \frac{h}{2} f(a) + \frac{h}{2} f(b) + h \sum_{i=1}^{p-1} f(x_i)$$

Donc $\sum_{i=0}^{p} |\alpha_i| = ph = b - a < \infty$

4.2 Méthode de Simpson composite

On refait une subdivision de [a,b] équidistante :

$$a = x_0 < x_1 < \dots < x_{2p} = b$$

Sur $[x_{2i}, x_{2i+2}]$, on utilise la formule de Simpson.

$$\int_{x_{2i}}^{x_{2i+2}} f(x)dx = \frac{x_{2i+2} - x_{2i}}{6} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})] + E_2^{(i)}(f)$$

$$h = \frac{b-a}{2p} = x_{i+1} - x_i$$

$$\Rightarrow \int_{x_{2i}}^{x_{2i+2}} f(x)dx = \frac{h}{3} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})] + E_2^{(i)}(f)$$

D'où la méthode de Simpson composite :

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \sum_{i=0}^{p-1} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})] + \sum_{i=0}^{p-1} E_{2}^{(i)}(f)$$

La méthode de Simposon composite s'écrit donc :

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \sum_{i=0}^{p-1} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})]$$

La méthode est convergente et stable (voir en TD)

4.3 Méthode de Runge

Utile pour:

- l'estimation de l'erreur
- augmenter l'ordre de la méthode

Sur chaque $[x_i, x_{i+1}]$, on utilise une méthode d'intégration numérique :

$$I^{(i)}(f) \approx S_h^{(i)}(f) + Ch^m$$

On affine la subdivision en prenant un pas $\frac{h}{2}$:

$$I^{(i)} \approx S^{(i)}(f) + C\left(\frac{h}{2}\right)^m$$

On fait la différence entre les deux méthodes :

$$S_h^{(i)} - S_{\frac{h}{2}}^{(i)} \approx C \left(h^m - \left(\frac{h}{2} \right)^m \right) \approx C \left(\frac{h}{2} \right)^m (2^m - 1)$$

D'où l'erreur:

$$I^{(i)}(f) - S_{\frac{h}{2}}^{(i)}(f) \approx C \left(\frac{h}{2}\right)^m \approx \frac{S_{\frac{h}{2}}^{(i)} - S_{h}^{(i)}}{2^m - 1}$$

A partir de cela:

- 1. On peut estimer l'erreur (à posteriori) : On veut que $|I S_N| < \varepsilon$. Sur chaque $[x_i, x_{i+1}]$, on applique 2 fois la méthode S, à pas h puis à pas $\frac{h}{2}$, puis on applique la méthode de Runge.
 - Soit $|I^{(i)} S_{\frac{h}{2}}^{(i)}| < \varepsilon h$, pour tout i entre 0 et n-1, et on a ce qu'il faut
 - Soit il existe ² tel que

$$\left| \frac{S_{\frac{h}{2}}^{(J)} - S_h^{(J)}}{2^m - 1} \right| > \varepsilon h$$

Dans ce cas, on affine encore l'intervalle $[x_J, x_{J+1}]$, et on vérifie si entre le pas $\frac{h}{2}$ et $\frac{h}{4}$, on vérifie la condition.

2. On construit une méthode d'intégration numérique d'ordre plus élevé : Supposons que S est une méthode numérique d'ordre m.

$$I(f) - S_h(f) \approx Ch^m$$

A partir de la méthode de Runge, on a :

$$I(f) - \underbrace{\left[S_{\frac{h}{2}} + \frac{S_{\frac{h}{2}}(f) - S_h(f)}{2^m - 1}\right]}_{S^{(1)}(f) \text{ d'ordre } \ge m+1} \approx Ch^{m+1}$$

Avec la méthode du trapèze, on obtient par exemple la méthode de Simpson.

Méthode de Quadrature de Gauss

On cherche à calculer :

$$I(f) = \int_{a}^{b} p(x)f(x)dx$$

avec $p(x) \ge 0, x \in [a, b], \ p(x) \in L^1[a, b]$, fonction de poids. On cherche $S(f) = \sum_{i=0}^n c_i f(\tilde{x}_i)$ où on peut définir les c_i mais aussi les nœuds \tilde{x}_i .

On aura donc 2(n+1) paramètres, donc 2(n+1) équations. On pourra donc définir une méthode de quadrature à degré d'exactitude 2n+1.

⇒ Théorème:

Il n'existe pas de méthode de quadrature numérique de degré d'exactiture > 2n+1

Démonstration:

On le démontre par l'absurde.

Supposons que S(f) est exacte pour les polynômes de degré 2n+2, alors elle sera exacte pour un polynôme de la forme:

$$P_{2n+2}(x) = \prod_{j=0}^{n} (x - \tilde{x}_j)^2$$

On aura forcément $S(P_{2n+2}) = 0$, mais :

$$I(f) = \int_{a}^{b} p(x)P_{2n+2}(x)dx > 0 \text{ car } p(x)P_{2n+2}(x) \ge 0$$

La méthode n'est donc pas exacte pour un polynôme de degré 2n+2

- Pour le calcul de \tilde{x}_j , on pourrait utiliser la méthode des cofficients indéterminés, mais avec des calculs très
- On va trouver les nœuds $\{\tilde{x}_j\}_{j=0}^n$ comme les racines d'un polynôme orthogonal à poids p

Un système $\{\phi_j\}_{j=0}^n$ est orthogonal à poids p(x) si $\forall j,k=0..n,\ j\neq k$:

$$\langle \phi_j, \phi_k \rangle_p = \int_a^b p(x)\phi_j(x)\phi_k(x)dx = 0$$

${f i} Remarque:$

- Si $\{\phi_j\}_{j=0}^n$ est une famille de polynômes orthogonaux, alors c'est une base de $\mathbb{R}_n[X]$ Si $\{\phi_j\}_{j=0}^n$ est une famille de polynômes orthogonaux, alors $<\phi_n, P_{n-k}>_p=0 \ \forall P_{n-k}\in\mathbb{R}_{n-1}[X]$

Méthode de calculs

- Orthogonalisation par la méthode de Gram-Schmidt
- Définition de coefficients de ψ_n

En utilisant $\langle \phi_n, x^j \rangle = 0, \ j = 0..n - 1$

Un polynôme $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ s'appelle un polynôme unitaire

⇔ Théorème:

Un polynôme orthogonal $\psi_n(x)$, $\deg(\psi_n) = n$, a exactement n racines distinctes.

⇔ Théorème:

On veut calculer

$$I(f) = \int_{a}^{b} p(x)f(x)dx$$

où p(x) est la fonction de poids.

Soit $\{\tilde{x}_j\}_{j=0}^n$ les racines du polynôme orthogonal construit sur [a,b], à poids p(x) et de degré n+1.

On définit ensuite les coefficients c_i de telle façon que la méthode soit de degré d'exactitude $\geq n$

 \Rightarrow La formule obtenue aura le degré d'exactitude 2n+1, avec :

$$c_i = \int_a^b p(x)l_i(x)dx, \ l_i(x) = \prod_{j=0, j \neq i}^n \frac{x - \tilde{x}_j}{\tilde{x}_i - \tilde{x}_j}$$

$$S(f) = \sum_{i=0}^{n} c_i f(\tilde{x}_i)$$

Démonstration:

Soit P_{2n+1} un polynôme de degré 2n+1. Alors $P_{2n+1}(x) = \psi_{n+1}(x)r_n(x) + q_n(x)$ où $\deg(r_n) = \deg(q_n) = n$.

On prend la notation

$$I(f) = \int_{a}^{b} p(x)f(x)dx$$

$$\begin{array}{rcl} I(P_{2n+1}) & = & I(\psi_{n+1}r_n + q_n) \\ & = & I(\psi_{n+1}r_n) + I(q_n) \end{array}$$

Comme ψ_{n+1} est un prolynôme orthogonal à poirs p(x), alors il est orthogonal à tous les prolynpomes de degré au plus n, donc aussi au polynôme r_n .

$$I(\psi_{n+1}r_n) = 0$$

Et comme S(f) est une méthode d'intégration numérique de Newton-Cotes, S(P) = I(P) pour P polynôme de degré inférieur ou égale à n. Et comme $\deg(q_n)=n$, on peut dire des deux remarques précédentes :

$$I(P_{2n+1}) = I(q_n) = S(q_n)$$

De plus $S(P_{2n+1}) = S(\psi_{n+1}r_n) + S(q_n)$. Or,

$$S(\psi_{n+1}r_n) = \sum_{i=0}^n \alpha_i \underbrace{\psi_{n+1}(\tilde{x}_i)}_{=0} r_n(\tilde{x}_i) = 0$$

Donc:

$$S(P_{2n+1}) = S(q_n) = I(q_n) = I(P_{2n+1})$$

Troisième partie

Equation différentielles, problème de Cauchy

Soit $[a, b] \subset \mathbb{R}$ fermé borné. On fixe $x_0 \in [a, b]$.

♣ Définition: Problème de Cauchy

Trouver une fonction $y \in C^1[a, b]$ tel que :

$$\begin{cases} y'(x) &= f(x, y(x)) \\ y(x_0) &= y_0 \end{cases}$$

étant donné f définie et continue. y s'apelle la solution au problème de Cauchy.

⇒ Théorème:

Si f est continue alors f est intégrable sur [a,b] (fermé borné alors compact) au sens de Riemann. Le système devient alors :

 $y(x) = y(x_0) + \int_{x_0}^{x} f(t, y(t))dt$

La réciproque est vraie

→ Théorème: de Cauchy Lipschitz

Si f est définie et continue sur $[a,b] \times \mathbb{R}$, et si f vérifie la condition de Lipschitz (aka lipschitzienne) en y, alors la solution au problème de Cauchy existe et est unique.

→ Théorème: Version locale du dernier théorème

On suppose que f suit la condition de Lipschitz localement :

 $\exists V(x_0)$ voisinage de x_0 de longueur r_{x_0}

 $\exists V(y_0)$ voisinage de y_0 de longueur r_{y_0} , tel que :

$$\exists k > 0, \forall x \in V(x_0), \forall y_1, y_2 \in V(y_0), ||f(x, y_1) - f(x, y_2)|| \le k||y_1 - y_2||$$

Le problème de Cauchy admet alors une solution unique dans le domaine :

$$\left\{ x; |x - x_0| < r, r < \max\left\{ r_{x_0}, \frac{1}{2k}, \frac{r_{y_0}}{M} \right\} \right\}$$

avec $M = \max_{x \in V(x_0), y \in V(y_0)} |f(x, y)|$

On supposera toujours que f vérifie la condition de Lipschitz en y.

Réalisation de la méthode : On fixe $0 < T < +\infty$. On prend $[a,b] = [x_0, x_0 + T]$. On cherche à approximer y(x) aux points $x_j = x_{j-1} + h_j$, $j = 0..N_h$, avec $h_j > 0$, $x_{N_h} \le x_0 + T$. y_j seront les valeurs approchées de $y(x_j)$

♦ Définition:

La méthode est dite à un pas si le calcul de y_{n+1} ne dépend que de y_n (et pas de y_{n-1} , etc) Sinon, il s'agit d'une méthode à pas liés

♦ Définition:

La méthode est dite explicite si y_{n+1} est définie explicitement. Sinon, la méthode est implicite.

1 Méthode à un pas

La méthode à un pas s'écrit dans la forme suivante :

$$\left\{ \begin{array}{lcl} y_{j+1} & = & y_j + h_j \Phi(x_j, y_j, h_j) \\ y_0 & = & y(x_0) \end{array} \right.$$

avec $h_j = x_{j+1} - x_j$ et Φ la fonction d'incrément.

On doit étudier consistance, stabilité et convergence de cette méthode.

1.1 Etude de la consistance

🔩 Définition: Erreur de quadrature

Soit y(x) la solution au problème de Cauchy.

L'erreur de quadrature s'exprime comme :

$$\varepsilon_{i+1} = y(x_{i+1}) - y(x_i) - h_i \Phi(x_i, y_i, h_i)$$

♣ Définition: Consistance

On dit que la méthode est consistante si :

$$\lim_{h \to 0} \sum_{j=0}^{n} |\varepsilon_{j+1}| = 0$$

avec $h = \max_{i} h_{i}$

On suppose que Φ est une application continue sur $[a,b] \times \mathbb{R} \times [0,h^*]$ où $h^* < b-a$.

⇔ Théorème:

La méthode est consistante $\Leftrightarrow \forall x \in [a, b], \phi(x, y(x), 0) = f(x, y(x))$

Démonstration:

A reprendre

1.2 Etude de la stabilité

♦ Définition: Stabilité

Soient deux méthodes :

$$\begin{cases} y_{j+1} &= y_j + h_j \Phi(x_j, y_j, h_j) \\ y(x_0) &= y_0 \end{cases}$$

$$\begin{cases} z_{j+1} &= z_j + h_j \Phi(x_j, z_j, h_j) + \tilde{\varepsilon}_j \\ z(x_0) &= z_0 \end{cases}$$

On dit que la méthode est stable si $\exists C > 0$ tel que :

$$\max_{0 \le j \le n} |y_j - z_j| \le C \left(|y_0 - z_0| + \sum_{i=0}^{n-1} |\tilde{\varepsilon}_i| \right)$$

⇔ Théorème:

Si Φ est lipschitzienne par rapport à y, alors la méthode est stable.

Démonstration:

$$\begin{aligned} |y_{i+1} - z_{i+1}| & \leq & |y_i - z_i| + h_i |\Phi(x_i, y_i, h_i) - \Phi(x_i, y_i, h_i)| + |\tilde{\varepsilon}_i| \\ & \leq & (1 + h_i M) |y_i - z_i| + |\tilde{\varepsilon}_i| \\ & \leq & (1 + h_i M) (1 + h_{i-1} M) |y_{i-1} - z_{i-1}| + (1 + h_i M) |\tilde{\varepsilon}_{i-1}| + |\tilde{\varepsilon}_i| \\ & \leq & \prod_{j=0}^{i} (1 + h_j M) |y_0 - z_0| + \sum_{k=0}^{i} \prod_{j=k+1}^{i} (1 + h_j M) |\tilde{\varepsilon}_k| \end{aligned}$$

On utilise le fait que :

$$1 + h_j M \le e^{h_j M}$$

$$\prod_{j=k+1}^{i} (1 + h_{j}M) \leq \prod_{j=k+1}^{i} e^{h_{j}M}
\leq e^{M(x_{i+1} - x_{k+1})}
\leq e^{M(b-a)}$$

De même, $\prod_{j=0}^{i} (1 + h_j M) \le e^{M(b-a)}$ Alors

$$|y_{i+1} - z_{i+1}| \le e^{M(b-a)} \left(|y_0 - z_0| + \sum_{k=0}^{i} |\tilde{\varepsilon}_k| \right)$$

1.3 Convergence

🔩 Définition: Convergence

La méthode est convergente si :

$$\lim_{h\to 0}\max_{0\leq j\leq n}|y(x_j)-y_j|=0,\ h=\max_{0\leq j\leq n}h_j$$

⇔ Théorème:

Si la méthode est stable et consistante, alors elle est convergente.

Démonstration:

$$\begin{split} \tilde{z}_k &= y(x_k) \\ \tilde{z}_{k+1} &= \tilde{z}_k + h_k \Phi(x_k, \tilde{z}_k, h_k) + + \tilde{\varepsilon}_{k-1} \end{split}$$

avec:

$$\tilde{\varepsilon}_k = y(x_{k+1}) - y(x_k) - h_k \Phi(x_k, y(x_k), h_k) = \varepsilon_k$$

qui est bien l'erreur de troncature.

Comme le schéma est stable :

$$\exists C > 0; |y_{k+1} - \tilde{z}_{k+1}| \le C \left(|y_0 - \tilde{z}_0| + \sum_{j=1}^n |\varepsilon_j| \right)$$

Or $\tilde{z}_0 = y(x_0) = y_0$, donc $|y_0 - \tilde{z}_0| = 0$. De plus, par la notion de consistance, on a :

$$\lim_{h \to 0} \max_{0 \le k \le n} \sum_{j=0}^{k} |\tilde{\varepsilon}_j| = 0$$

Donc:

$$\lim_{h \to 0} \max_{0 \le i \le n} |y_i - \tilde{z}_i| = 0$$

1.4 Ordre d'une méthode

🔩 Définition: Ordre

La méthode (A) est d'ordre p si $\exists C > 0$ ne dépendant que de y et de Φ tel que :

$$|\varepsilon_k| \le Ch^{p+1}, \ h = \max_{0 \le j \le k} h_j$$

ou:

$$\left| \frac{y(x_{k+1}) - y(x_k)}{h_k} - \Phi(x_k, y(x_k), h_k) \right| \le Ch^p$$

En gros, on retrouve le taux d'acccroissement, et l'erreur entre l'approximation de y' et le vrai y' sera inférieur à Ch^p .

⇔ Théorème:

Si la méthode est consistante, elle est au moins d'ordre 1.

Démonstration:

$$\begin{split} |\varepsilon_{j}| &\leq |y(x_{j} + h_{j}) - y(x_{j}) - h_{j}\Phi(x_{j}, y(x_{j}), h_{j})| \\ y(x_{j} + h_{j}) &= y(x_{j}) + h_{j}y'(x_{j}) + O(h_{j}^{2}) \\ \Phi(x_{j}, y(x_{j}), h_{j}) &= \Phi(x_{j}, y_{j}, 0) + O(h_{j}) = f(x_{j}, y_{j}) + O(h_{j}) \text{ car consistante} \\ |\varepsilon_{j}| &= |h_{j}y'(x_{j}) - h_{j}f(x_{j}, y_{j}) + O(h_{j}^{2})| \\ &= |h_{j}y'(x_{j}) - h_{j}y'(x_{j}) + O(h_{j}^{2})| \\ &= O(h_{j}^{2}) \end{split}$$

1.5 Méthodes de Runge-Kutta

Soit $\{x_k\}_k$ les points de subdivision. On définit en plus des points intermédiaires :

$$x_{k,j} = x_k + \theta_j h, \ x_{k,j} \in [x_k, x_{k+1}], \ 0 \le \theta_j \le 1$$

$$y(x_{k,j}) - y(x_k) = \int_{x_k}^{x_{k,j}} y'(t)dt$$
$$= \int_{x_k}^{x_{k,j}} f(t, y(t))dr$$
$$\approx h \sum_{i=1}^r a_{j,i} f(x_{k,i}, y(x_{k,i}))$$

$$y(x_{k+1}) - y(x_k) = \int_{x_k}^{x_{k+1}} f(t, x(t)) dt$$
$$\approx h \sum_{i=1}^r c_i f(x_{k,i}, y(x_{k,i}))$$

$$\Rightarrow y_{k,j} = y_k + h \sum_{i=1}^r a_{j,i} f(x_{k,i}, y_{k,i}) \ (1^*)$$
$$\Rightarrow y_{k+1} = y_k + h \sum_{i=1}^r c_i f(x_{k,i}, y_{k,i})$$

Pour trouver y_{k+1} , il est nécessaire de résoudre le système $r \times r$ (1*)

1.5.1 Définition de la méthode à un pas :

avec:

$$y_{k+1} = y_k + h\Phi(x_k, y_k, h)$$

$$\Phi(x, y, h) = \sum_{i=1}^r c_i f(x + \theta_i h, \hat{y}_i)$$

$$\hat{y}_i = y + h \sum_{i=1}^r a_{i,l} f(x + \theta_l h, \hat{y}_l)$$

1.5.2 Comment calculer les itérations intermédiaires?

1. Si $a_{i,j} = 0$, $i \le j$, alors:

$$y_{k,j} = y_k + h \sum_{i=1}^{j-1} a_{j,i} f(x_{k,i}, y_{k,i})$$

Méthode explicite

2. Si $a_{i,j} = 0$, i < j, alors :

$$y_{k,j} = y_k + h \sum_{i=1}^{j} a_{j,i} f(x_{k,i}, y_{k,i})$$

Méthode semi-implicite

3. Si $a_{i,j} \neq 0$ méthode implicite. On a r équations non linéaires à r inconnues.

1.5.3 Ecriture sous forme de tableau

$$\begin{array}{c|cccc} \theta_1 & a_{11} & \cdots & a_{1,r} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_r & a_{r1} & \cdots & a_{rr} \\ \hline & c_1 & \cdots & c_r \end{array}$$

1.5.4 Propriétés de la méthode

⇔ Théorème:

La méthode de Runge-Kutta est consistante si et seulement si $\sum_{i=1}^r c_i = 1$

Démonstration:

· Théorème

Notons $A = \begin{pmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{r1} & \cdots & a_{rr} \end{pmatrix}$, $\rho(A)$ le rayon spectral de A et L la constante de Lipschitz de f.

- Si $h\rho(A)L < 1$, alors le calcul de y_k par Runge-Kutta est possible
- Si $h^*\rho(A)L < 1$, alors $\forall 0 < h \le h^*$, la méthode de Runge-Kutta est stable

1.5.5 Ordre de Runge-Kutta

Une méthode de Runge-Kutta est d'ordre 1 si et seulement si elle est consistante, soit $\sum_{i=1}^{r} c_i = 1$ LONGUE DEMONSTRATION

Méthode d'ordre
$$2 \Leftrightarrow \begin{cases} \sum_{j=1}^{r} c_j &= 1 \\ \sum_{j=1}^{r} c_j \theta_j &= \frac{1}{2} \\ \sum_{j=1}^{r} \sum_{i=1}^{r} c_j a_{ji} &= \frac{1}{2} \end{cases}$$

25

2 Méthodes à pas liés

Une méthode à pas liés s'écrit :

$$\sum_{i=0}^{s} \alpha_i y_{n+1-i} = h \sum_{i=0}^{s} \beta_i f_{n+1-i}$$
 (1)

où $f_{n+1-i} = f - x_{n+1-i}, y_{n+1-i}$ et $\alpha_0 \neq 0$

(1) est implicite si $\beta_0 = 0$ Sinon, la méthode est implicite.

${f i} Remarque:$

Pour calculer y_{n+1} , il faut connaître $y_{n+1-s},...,y_n$. Il faut alors une méthode à un pas pour l'initialiser. Faire attention à l'ordre de la méthode pour l'initialiser à chaque fois.

2.1 Méthode d'Adams

$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(x, y(x)) dx$$

On interpole l fonction f pour obenir les méthodes.

- Si on interpole f aux points $x_{n+1-s},...,x_n$, on obtient une méthode explicite $(\beta_0=0) \Rightarrow$ Adams-Bashforth
- Si on interpole f aux points $x_{n+1-s},...,x_{n+1}$, on obtient une méthode implicite \Rightarrow Adams-Moulton

Pour Adams-Bashforth, la méthode est d'ordre s. Pour Adams-Moulton, la méthode est d'ordre s+1.

2.2 Méthodes de prédiction-correction

On commence par la prédiction, par une méthode explicite d'ordre q pour calculer y_{n+1}^* Ensuite, on fait une correction, avec une méthode implicite d'ordre q+1. Cela consiste à remplacer $f(x_{n+1}, y_{n+1})$ par $f(x_{n+1}, y_{n+1}^*)$, d'où :

$$\alpha_0 y_{n+1} + \sum_{i=1}^{q} \alpha_i y_{n+1-i} = h \sum_{i=1}^{q} \beta_i f(x_{n+1-i}, y_{n+1-i}) + h \beta_0 f(x_{n+1}, y_{n+1}^*)$$

La méthode devient donc explicite et est d'ordre q+1.

On utilisera pour le calcul des autres itérations la valeur de y_{n+1} trouvée.

2.3 Consistance, stabilité, convergence, ordre

2.3.1 Consistance

🛂 Définition: Consistante

Une méthode à pas liés est consistante avec l'équation différentielle si et seulement si :

$$\lim_{h \to 0} |\varepsilon(h)| = \lim_{h \to 0} \max_{n} \left| \frac{1}{h} \left(\sum_{i=0}^{s} \alpha_{i} y(x_{n+1-i}) - h \sum_{i=0}^{s} \beta_{i} f(x_{n+1-i}, y(x_{n+1-i})) \right) \right| = 0$$

⇔ Théorème:

Une méthode à pas liés est consistante si et seulement si

$$\sum_{j=0}^{s} \alpha_j = 0$$

et

$$\sum_{j=0}^{s} j\alpha_j + \beta_j = 0$$

Démonstration:

Plus tard.

2.3.2 Stabilité

♣ Définition: Stabilité

Soient deux méthodes :

$$\begin{cases} \sum_{i=0}^{s} \alpha_i y_{n+1-i} = h \sum_{i=0}^{s} \beta_i f_{n+1-i} \\ y_0, ..., y_{s-1} \text{ sont donnés} \end{cases}$$

$$\begin{cases} \sum_{i=0}^{s} \alpha_i z_{n+1-i} = h \left(\sum_{i=0}^{s} \beta_i f(x_{n+1-i}, z_{n+1_i}) + \tilde{\varepsilon}_n \right) \\ z_0, ..., z_{s-1} \text{ sont donnés} \end{cases}$$

On dit que la méthode est stable si $\exists C_1,C_2>0$ tels que :

$$\max_{n} |y_n - z_n| \le C_1 \max_{0 \le k < s} |y_k - z_k| + C_2 \max_{n} |\tilde{\varepsilon}_n|$$

⇔ Théorème:

Une méthode à pas liés est stable si et seulement si le polynôme $\alpha(t) = \sum_{j=0}^{s} \alpha_j t^{s-j}$ est stable, ie si toutes les racines sont inférieures ou égales à 1 en valeur absolue ou les racines de module 1 sont simples.

2.3.3 Convergence

🔥 Définition: Convergente

Une méthode à pas liés est convergente si et seulement si :

$$\lim_{h \to 0} \max_{n} |y(x_n) - y_n| = 0 \text{ si } \lim_{h \to 0} y_i = y_0, \ i = 0, ..., s - 1$$

⇔ Théorème:

Une méthode à pas liés est convergente si et seulement si elle est consistante et stable.

Démonstration :

A faire plus tard.

2.3.4 Ordre

♦ Définition:

Une méthode à pas liés est dite d'ordre p si :

$$\max_{n} \left| \frac{1}{h} \left(\sum_{i=0}^{s} \alpha_{i} y(x_{n+1-i}) - h \sum_{i=0}^{s} \beta_{i} f(x_{n+1-ii}) \right) \right| = O(h^{p})$$