

Neuronske mreže

Generativni modeli

– Agenda

- Variational Autoencoders
- Generative Adversarial Networks
- Dodatno čitanje

- Autoenkoder:
 - Veštačka neuronska mreža koja se koristi za učenje efikasnog kodiranja
 - Cilj je naučiti kompresovanu, distribuiranu reprezentaciju podataka
 - Osnovna struktura:
 - Feed-forward MLP sa:
 - Istim brojem ulaznih i izlaznih neurona
 - Nekoliko skrivenih slojeva

- Autoenkoder:
 - Za razliku od standardnog MLP, autoenkoder uči da rekonstruiše ulaz
 - Enkoder deo mreže koji uči efikasno kodiranje podataka
 - Dekoder deo mreže koji uči efikasno dekodiranje (rekonstrukciju) podataka.

- Varijacije autoenkodera:
 - Denoising Autoencoder (DAE) ulaz sa šumom, na izlazu se očekuje rekonstruisan ulaz, ali bez šuma

- Varijacije autoenkodera:
 - Stacked Autoencoder (SAE) suštinski deep autoenkoder, ima više skrivenih slojeva

- Varijacije autoenkodera:
 - Convolutional Autoencoder (CAE) autoenkoder sa konvolutivnim slojevima

- Obučavanje autoenkodera:
 - Standardni Backpropagation sa nekim od Gradient Descent algoritama
 - Cilj je što više smanjiti razliku između ulaza i rekonstruisanog izlaza:
 - Često se minimizuje MSE (Mean Squared Error) između svih ulaznih neurona i njima odgovarajućih izlaznih neurona.

- Upotreba autoenkodera:
 - Učenje osobina podataka
 - Smatra se da će autoenkoder tokom učenja rekonstrukcije ulaza naučiti i neke osobine podataka:
 - Konvolutivni autoenkoder nauči iste filtere kao i CNN

- Upotreba autoenkodera:
 - Jako korisni ako nema puno obeleženih podataka:
 - Neobeleženi podaci se daju autoenkoderu pretraining
 - Nakon pretraining-a, uzima se samo enkoder deo mreže
 - Na pretrenirani enkoder doda se još par slojeva i takva mreža se obučava nad obeleženim podacima - fine-tuning.

Običan autoenkoder:

Kako ćemo odrediti encoding vektor ako želimo da generišemo novi primerak?

 Vizuelna reprezentacija 2D skrivenog (*latent*) prostora je prikazana na slici:

Ako izaberemo *encoding* iz praznog dela prostora (u kome nije bilo primeraka), dekoder neće znati kako da se ponaša i generisaće loš izlaz.

Prostor nije modelovan kao kontinualan (postoje *gap*-ovi), što je problem u ovom slučaju jer se ne može interpolirati.

- Variational Autoencoders (VAE) se prvi put pojavljuju 2013. godine
- Generativni model:
 - Omogućava generisanje dodatnih primeraka iz iste distribucije
 - Upravljamo u kom smeru će generisanje ići (smer varijacije u podacima)
 - Istraživanje postojeće distribucije.

- Običan autoenkoder tehnički jeste generativan model, ali radi u rekonstruktivnom režimu:
 - Nije mogao da radi bez enkodera
- VAE-u encoding treba samo prilikom treninga:
 - Mogu se ručno zadavati stvari za generisanje

- Latent space (prostor naučenih/skrivenih encoding-a) se modeluje kao kontinualan
- Umesto jednog vektora, izlaz enkodera će biti dva vektora:
 - Vektor aritmetičkih sredina
 - Vektor standardnih devijacija.

- Pošto su u pitanju slučajne promenljive, svaki put će encoding biti malo drugačiji
- Kao loss funkcija se koristi <u>KL</u> <u>divergence</u>:
 - Meri koliko dve distribucije divergiraju jedna od druge

 VAE će generisati vrednosti za sve primere (oko sredine gledajući vrednost standardne devijacije)

Latent attributes

OpenAl Glow

Enkoder se često naziva recognition model, a dekoder generative model.

 Omogućava vektorsku aritmetiku nad encoding vektorima:

- 1. Naći primerak sa naočarima i primerak bez naočara i naći njihovu razliku
- 2. Sabrati dobijenu razliku (naočare) sa bilo kojim drugim licem i propustiti kroz dekoder
- 3. Rezultat:

- Problem dosadašnjih generativnih modela je u tome što nemaju mogućnost aproksimacije kompleksnih probabilističkih funkcija (u teoriji moguće, u praksi ne):
 - Potreban je jako veliki broj distribucija da bi se sve aproksimiralo
- Izlaz je bio nejasan (eng. blurry) zbog samog načina kodiranja:
 - VAE radi sa malim skupom osobina.

- Generative Adversarial Networks (GAN) imaju drugačiji pristup:
 - o Ideja je slična:
 - Generisanje primera podataka
 - Koristi se nasumičan šum na ulazu

Output: Sample from training distribution

Input: Random noise

- *GAN* se sastoji iz dve neuronske mreže:
 - Generator
 - Na osnovu šuma generiše izlaz
 - Diskriminator
 - Na osnovu skupa podataka i izlaza generatora daje informaciju da li je izlaz generatora fake ili ne

- Ove dve neuronske mreže se takmiče (adversarials) jedna protiv druge
 - Generator pokušava da izgeneriše izlaz koji će moći da prođe kao dobar (da prevari diskriminator)
 - Diskriminator pokušava da postane pametniji i da ne dozvoli generatoru da ga prevari

GAN output Your GAN in paper

output

- GAN danas
 - Generisanje slika visoke rezolucije

DCGAN EBGAN-PT 11/2015 9/2016

BEGAN 3/2017 128 × 128

Progressive GAN 10/2017 1024 x 1024

Figure 3: Generator Architecture

Figure 4: Discriminator Architecture

- Conditional GAN
 - Primeniti i labele kako bi uslovili kako će generisani izlaz izgledati:
 - Druga loss funkcija koja više kažnjava grešku u labeli.

Pose Guided Person Image Generation

- Cycle GAN
 - o Ideja je da proces svedemo na image reconstruction

Cycle GAN

 Umesto da vršimo rekonstrukciju, diskriminator će navoditi generator da generiše određeni stil

Jedan deo mreže se intuitivno koristi za čuvanje osobina slike, a diskriminator će uticati da slika poprimi određeni stil.

Zebras C Horses

Monet 🕻 Winter zebra \longrightarrow horse winter Monet -

horse \rightarrow zebra

summer

photo -

PixeIDTGAN

Pix2pix HD - obrnut postupak u odnosu na semantičku segmentaciju slike

Image-to-Image Demo

StackGAN - Text to image

StackGAN - Text to image

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding $\varphi(t)$ is used by both generator and discriminator. It is projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

Image inpainting

Neural Photo Editor

Sketchy GAN

3D Object generation

CFPGAN - Face Restoration

GAN Dissection

Dodatno čitanje

— Dodatno čitanje

- Auto-Encoding Variational Bayes
- Stanford: Generative Models
- Building Autoencoders in Keras
- Intuitively Understanding Variational Autoencoders
- Variational autoencoders.
- OpenAl Research: Generative models

– Dodatno čitanje

- gans-awesome-applications
- GAN Some cool applications of GAN
- GAN Playground
- Demystifying Generative Adversarial Networks
- CS236G Generative Adversarial Networks (GANs)

Hvala na pažnji!

Pitanja?