Procesy stochastyczne Zestaw zadań nr 6

Zadanie 1. Niech N_t będzie procesem Poissona z intensywnością λ . Udowodnij

$$\lim_{t \to \infty} \frac{N_t}{t} = \lambda \ p.n.$$

Zadanie 2. Udowodnij, że suma niezależnych procesów Poissona jest procesem Poissona. Jaką intesywność ma otrzymany proces?

Zadanie 3. Niech N_t będzie procesem Poissona z intensywnością λ . Znajdź postać funkcji kowariancji tego procesu

$$C_N(t,s) = Cov(N_t, N_s)$$

oraz funkcję autokorelacji tego procesu

$$A_N(t,s) = \rho\left(N_t, N_s\right).$$

Zadanie 4. Niech N_t będzie procesem Poissona z intensywnością λ i niech X_1 będzie czasem pierwszego przybycia. Pokaż, że warunkowo względem zdarzenia N(t) = 1, X_1 ma rozkład jednostajny na odcinku (0,t], czyli

$$\mathbb{P}\left(X_1 \le x | N(t) = 1\right) = \frac{x}{t}, \ 0 \le x \le t.$$

Zadanie 5. Udowodnij, że jednorodny proces Poissona ma własność Markowa.

Zadanie 6. Niech N będzie jednorodnym procesem Poissona z intensywnością λ . Dla pewnego s>0 określmy $\tilde{N}_t=N_{t+s}-N_s$. Udowodnij, że \tilde{N} jest procesem Poissona z tą samą intensywnością λ .

Poisson process with intensity 0.2

