PARAGON: QOS-AWARE SCHEDULING FOR HETEROGENEOUS DATACENTERS

Christina Delimitrou and Christos Kozyrakis
Stanford University

Executive Summary

- □ Problem: scheduling in cloud environments (e.g., EC2, Azure, etc.)
 - □ Heterogeneity → losses when running on wrong server
 - Interference → performance loss when interference is high
 - High rates of unknown workloads → no a priori assumptions
- □ How to get information for a workload?
 - Detailed profiling → intolerable overheads
 - Instead: Leverage info about previously scheduled apps → fast and accurate application classification
- Paragon is a scheduling framework that is:
 - Heterogeneity and interference-aware, app agnostic
 - Scalable & lightweight: scales to 10,000s of apps and servers
 - Results: 5,000 apps on 1,000 servers → 48% utilization increase,
 90% of apps < 10% degradation

Outline

- Motivation
- Application Classification
- Paragon
- Evaluation

Cloud DC Scheduling

- Workloads are unknown
 - Random apps submitted for short periods, known workloads evolve
- Significant churn (arrivals/departures)
- High variability in workloads characteristics
- Decisions must be performed fast

Common Practice Today

Least-loaded scheduling

- Using CPU & memory availability
- Ignores heterogeneity
- Ignores interference

Poor efficiency

- Over 48% degradation compared to running alone
- Some apps won't even finish

Common Practice Today

Least-loaded scheduling

- Using CPU & memory availability
- Ignores heterogeneity
- Ignores interference

Poor efficiency

- Over 48% degradation compared to running alone
- Some apps won't even finish

Common Practice Today

Least-loaded scheduling

- Using CPU & memory availability
- Ignores heterogeneity
- Ignores interference

Poor efficiency

- Over 48% degradation compared to running alone
- Some apps won't even finish

Insight

- □ Reason for scheduling inefficiency
 - Lack of knowledge of application behavior
 - Heterogeneity & interference characteristics
- Existing approach for app characterization: exhaustive profiling
 - High overheads, does not work with unknown apps
- Our work: Leverage knowledge about previously-scheduled apps
 - Accurate, small data Vs. noisy, big data

Insight

- □ Reason for scheduling inefficiency
 - Lack of knowledge of application behavior
 - Heterogeneity & interference characteristics
- Existing approach for app characterization: exhaustive profiling
 - High overheads, does not work with unknown apps
- Our work: Leverage knowledge about previously-scheduled apps
 - Accurate, small data Vs. noisy, big data

Outline

- Motivation
- Application Classification
- Paragon
- Evaluation

Understanding App Behavior

Goal: quickly extract accurate info on each application to guide scheduling

- Input:
 - Small signal about a new workload
 - Large amount of information about previously-scheduled applications
- Output:
 - Understand app behavior/requirements > recommendations for scheduling
- Looks like a classification problem
 - Similar to systems used in e-commerce, Netflix, etc.

Something familiar...

- Collaborative filtering similar to Netflix Challenge system
 - Singular Value Decomposition (SVD) + PQ reconstruction (SGD)
 - Leverage the rich information the system already has
- Extract similarities between applications on:
 - Heterogeneous platforms that benefit them
 - Interference they <u>cause</u> and <u>tolerate</u> in shared resources
- Recommendations on platforms and co-scheduled applications

Classification for Heterogeneity

The Netflix Challenge	Platform Classification		
Recommend movies to users	Recommend platforms to apps		
Utility matrix rows → users	Utility matrix rows → apps		
Utility matrix columns → movies	Utility matrix columns → platforms		
Utility matrix elements → movie ratings	Utility matrix elements → app scores		

□ Offline mode

- Profile a few apps (20-30) across the different configurations
- Assign performance scores per run (IPS, QPS, other system metric)

□ Online mode

- For each new app, run briefly on two platforms (1min)
- Assign performance scores
- Derive missing entries & identify similarities between apps

Classification for Interference

The Netflix Challenge	Interference Classification		
Recommend movies to users	Recommend minimally interfering co-runners to apps		
Utility matrix rows → users	Utility matrix rows → apps		
Utility matrix columns → movies	Utility matrix columns → microbenchmarks (Sols)		
Utility matrix elements → movie ratings	Utility matrix elements -> sensitivity scores to interference		

- □ Two types of interference:
 - Interference the application tolerates
 - Interference the application causes
- □ Identifying sources of interference (Sols):
 - Cache hierarchy, memory bandwidth/capacity, CPU, network/ storage bandwidth

Measuring Interference Sensitivity

- Rank sensitivity of an application to each microbenchmark (0-100%)
- Increase microbenchmark intensity until the application violates its QoS
 sensitivity to tolerated interference
- Similarly for sensitivity to caused interference

Classification Validation

- Large set of ST, MT, MP and I/O workloads
- 10 Server Configurations (SC)
- 10 Sources of Interference (Sol)

	Metric		Applications (%)			
		ST	MT	MP	I/O	
Heterogeneity	Select best SC	86%	86%	83%	89%	
	Select SC within 5% of best	91%	90%	89%	92%	
Interference	Avg. error across µbenchmarks	5.3%				
	Apps with < 10% error	ST: 81%		MT: 63%		
	Sol with highest error:					
	for ST: L1 i-cache	15.8%				
	for MT: LLC capacity	7.8%				

Classification Overhead

- Time overhead:
 - Training:
 - 2x1min runs for heterogeneity (alone) + 2x1min with two microbenchmarks for interference \rightarrow in parallel
 - Decision:
 - SVD + PQ reconstruction: $O(min(n^2m, m^2n)) + O(mn)$
 - Practically: msec for 1,000s apps and servers
- Space overhead:
 - 64B per app and 64B per server

Outline

- Motivation
- Application Classification
- Paragon
- Evaluation

Greedy Server Selection

- □ Two step process:
 - Select servers with minimal interference
 - Select server with best hardware configuration
- Overview:
 - Start with most critical resource
 - Prune servers that would violate QoS
 - Repeat for all resources
 - Select server with best HW configuration
 - If no candidate left, backtrack and relax QoS requirement
 - Rare, but ensures convergence

Monitor & Adapt

- Sources of inaccuracy:
 - App goes through phases
 - App is misclassified
 - App is mis-scheduled
- Monitor & adapt:
 - 1. Reactive phase detection: upon performance degradation, reclassify the workload and searches for a more suitable server
 - Preemptive phase detection: periodically sample a workload subset, reclassify and if heterogeneity/interference profile has changed reschedule before QoS degrades
- Preview: application scenario with changing workloads in evaluation

Outline

- Motivation
- Application Classification
- Paragon
- Evaluation

Methodology

Workloads:

- Single-threaded: SPEC CPU2006
- Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench, Specible
- Multiprogrammed mixes: 350 4-app mixes of SPEC CPU2006
- I/O: data mining, Matlab, single-node Hadoop

Systems:

- \square Small-scale \rightarrow 40-machine local cluster (10 configurations)
- \square Large-scale \rightarrow 1,000 EC2 servers (14 configurations)

Workload Scenarios:

Low load, high load, with phases and oversubscribed

- Paragon preserves QoS for 64% of workloads
- Bounds degradation to less than 10% degradation for 90% of workloads

- Paragon preserves QoS for 64% of workloads
- Bounds degradation to less than 10% degradation for 90% of workloads

- Paragon preserves QoS for 64% of workloads
- Bounds degradation to less than 10% degradation for 90% of workloads

- Paragon preserves QoS for 64% of workloads
- Bounds degradation to less than 10% degradation for 90% of workloads

- Paragon preserves QoS for 64% of workloads
- Bounds degradation to less than 10% degradation for 90% of workloads

- Paragon preserves QoS for 64% of workloads
- Bounds degradation to less than 10% degradation for 90% of workloads

Decision Quality

- □ LL: poor decision quality both for heterogeneity and interference
- NH: poor platform decisions, good interference decisions
- NI: good platform decisions, poor interference decisions
- Paragon: better than NI in heterogeneity, better than NH in interference

Increasing Utilization

- Paragon increases server utilization by 47%:
 - Same performance for user (QoS guarantees)
 - Better utilization for the DC operator → resource efficiency
- With baseline (LL):
 - Imbalance in server utilization (too high vs. too low)
 - Per-app QoS violations + scenario execution time increase

Workloads with Phases

- □ QoS is preserved for 75% of applications
 - Using the other schedulers preserves QoS for < 10% of apps</p>
- □ Paragon adapts to workload phases over time → performance recovers shortly after the phase change

Large Scale (EC2) — High Load

- LL: violates QoS for 99% of workloads
- NH: violates QoS for 96% of workloads
- NI: violates QoS for 97% of workloads

Large Scale (EC2) — High Load

- Paragon preserves QoS for 61% of workloads
- Bounds degradation to less than 10% for 90% of workloads.

Large Scale (EC2) — High Load

- Paragon preserves QoS for 61% of workloads
- Bounds degradation to less than 10% for 90% of workloads.

Conclusions

- A heterogeneity and interference aware DC scheduler
- Leverages robust analytical methods to quickly classify apps
- Minimizes interference and maximizes utilization
- It is scalable and lightweight

Questions?

Thank you!

cdel@stanford.edu

http://paragonDC.stanford.edu