Study of quantum electrodynamics effects in cavity with carbon nanotubes ¹

Federico Rapisarda Nano-optique group LPENS

Politecnico di Torino

Université de Paris

Paris, 29 June 2021

Quantum information - the flying qubit

How does a quantum network work?

Quantum information - the flying qubit

How does a quantum network work?

ullet information processing in network's nodes o stationary qubits

Quantum information - the flying qubit

How does a quantum network work?

- ullet information processing in network's nodes o stationary qubits
- ullet decoherence-free information exchange between nodes ightarrow flying qubits

Photons polarization can encode informations!

Why CNTs?

Key requirements for quantum telecommunication:

- NIR emission
- high emission efficiency

Why CNTs?

Key requirements for quantum telecommunication:

- NIR emission
- high emission efficiency

The Nano-optique group work

How to boost and control the emitting features of CNTs?

Two parallel paths:

 modification of crystalline structures, environment and chemical features of materials

The Nano-optique group work

How to boost and control the emitting features of CNTs?

Two parallel paths:

- modification of crystalline structures, environment and chemical features of materials
- photonic tools to reshape the emission properties of emitting material

Carbon nanotubes in cavity

- Fibered Fabry-Perot cavity
- RT excitonic states exploitation for tuned optical transitions

Collaboration with Jacob Reichel, LKB PSL₩

Carbon nanotubes in cavity

 Fibered Fabry-Perot cavity.
Spectral and spatial coupling of CNTs

The deep-subwavelngth regime

Sub-diffraction image of the intensity map

"Diverging" optical field

EM field finite element simulation

Sample preparation

Dielectric nano-antenna

Sample preparation

Dielectric nano-antenna

Sample fabrication

nano-bridge

nano-gap

Sample characterization

Sample characterization

Polarization measurements

Sub-diffraction image of the intensity map

"Diverging" optical field

EM field finite element simulation

1 acquisition, N pixels of detection of PL

C. Raynaud, T. Claude, A. Borel, M. Amara, A. Graf, et al.. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature. Nano Letters, American Chemical Society, 2019, 19 (10), pp.7210-7216.

C. Raynaud, T. Claude, A. Borel, M. Amara, A. Graf, et al.. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature. Nano Letters, American Chemical Society, 2019, 19 (10), pp.7210-7216.

C. Raynaud, T. Claude, A. Borel, M. Amara, A. Graf, et al.. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature. Nano Letters, American Chemical Society, 2019, 19 (10), pp.7210-7216.

C. Raynaud, T. Claude, A. Borel, M. Amara, A. Graf, et al.. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature. Nano Letters, American Chemical Society, 2019, 19 (10), pp.7210-7216.

Organic dye for super-resolution

Organic dye for super-resolution

New route: Alexa + polystyrene matrix

HSQ for super-resolution

HSQ for super-resolution

Statistical blinking

	standard deviation	Shot-noise	$\operatorname{std/noise}$
laser	120 ± 10	115 ± 10	~ 1
L3C1 antenna	135 ± 10	130 ± 10	~ 1

My internship so far

- Coupling of CNTs in cavity (in collaboration with PhD student Antoine Borel)
- Nano-antenna design and production
- Setup design and building
- Preliminary steps towards super-resolution measurements

Towards a new physics

Acknowledgments

The Nano-optique group:

prof. C.Voisin, C.Diederichs, E.Baudin, dr. Y.Chassagneux

PhD Antoine Borel, Raouf Amara, Zakaria Said, Marin Tharrault

Thank you for your attention

References

- Mark Fox, Quantum optics, an introduction, Oxford University Press, 2006
- Nielsen and Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2010
- [3] Christophe Raynaud, Spectroscopie d'absorption et d'émission des excitons dans les nanotubes de carbone, 2018, PhD thesis from Université Paris Diderot.
- Morgane Gandil. Propriétés magnéto-optiques des nanotubes de carbone individuels suspendus. 2017 PhD thesis from Université de Bordeaux.
- Valerian Giesz, Cavity-enhanced photon-photon interactions with bright quantum dot sources. PhD thesis from Université Paris Saclay, 2015
- [6] Choi et al. Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities. Physical Review Letters, 2017. DOI: 10.1103/PhysRevLett.118.223605.
- Adrien Jeantet. Cavity Quantum Electrodynamics with Carbon Nanotubes. 2017. PhD thesis from Université Paris Diderot.
- [8] Dempsey et al. Evaluation of fluorophores for optimal performance in localization-based superresolution imaging. Nat Methods, 2012. DOI: 10.1038/nmeth.1768.
- [9] Xu et al. Stochastic optical reconstruction microscopy (STORM). Curr Protoc Cytom, 2018. DOI: 10.1002/cpcy.23.
- [10] Rust et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nature methods, October 2006, Vol. 3, n.15, pages 793-795,
- [11] Urban et al. Subsurface super-resolution imaging of unstained polymer nanostructures. Nature, June 2016. DOI: 10.1038/srep28156.
- [12] Théo Habrant-Claude, Contrôle de l'émission dans la bande télécom de nanotubes de carbone individuels couplés à une micro-cavité fibrée. 2019. PhD thesis from Université Paris Diderot.
- [13] C. Raynaud, T. Claude, A. Borel, M. Amara, A. Graf, et al.. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature, Nano Letters, American Chemical Society, 2019, 19 (10), pp.7210-7216.
- [14] Antolovic at al. SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking, Nature, 2017, DOI: 10.1038/srep44108.
- [15] Aharonovich et al. Solid-state single-photon emitters. Nature photonics, 2016. DOI: 10.1038/nphoton.2016.186.
- [16] Wang et al. 3D Super-Resolution Imaging with Blinking Quantum Dots, DOI: 10.1021/nl4026665

Isolation of single antenna

The strong coupling regime

Raman spectroscopy of CNTs

