EXPERIMENT 5

GitHub Link: https://github.com/Adiiii02/DL-LAB/tree/main/EXP-5

EXPERIMENT OBJECTIVE

To implement a Sequence-to-Sequence (Seq2Seq) model for English-to-Spanish translation using LSTM networks. This experiment explores two major architectures:

- 1. LSTM Encoder-Decoder without Attention
- 2. LSTM Encoder-Decoder with Attention:
 - Bahdanau (Additive) Attention
 - Luong (Multiplicative) Attention

Each model is evaluated using BLEU scores and visualizations on the English-Spanish Dataset

DATA PREPROCESSING

Loading the Dataset

- The dataset is loaded from a .txt file (spa.txt) containing English-Spanish sentence pairs separated by tabs.
- Each line is parsed to extract one English and one Spanish sentence.
- Sentences are lowercased, stripped of whitespace, and cleaned using regex to remove punctuation and special characters.

Tokenization and Vocabulary Creation

- Sentences are tokenized using NLTK's 'word tokenize'
- Special tokens <sos>, <eos>, <pad>, and <unk> are added.
- Two vocabularies are created:
 - input vocab for English
 - target_vocab for Spanish
- Each word is mapped to a unique index using `word_to_index`, and reverse lookup is maintained with `index to word`.

Generating Training Sequences

- Each sentence is converted into a sequence of integer tokens.
- Spanish target sentences are wrapped with <sos> and <eos> tokens for decoder input and output.
- Sentences are padded to match the maximum sequence length in the batch using PyTorch's pad sequence().

Dataset Splitting

- From the cleaned and tokenized dataset:
 - 80% is used for training
 - 10% for validation
 - 10% for testing
- Data is shuffled before splitting to ensure randomness.

NEURAL NETWORK IMPLEMENTATION

LSTM Encoder-Decoder Without Attention

Architecture

- **Input Layer:** Token indices passed into an embedding layer.
- Encoder:
 - o **Embedding Layer:** Maps input token indices to dense vector representations.
 - LSTM Layer: Processes the input sequence and returns final hidden and cell states.

Decoder:

- o **Embedding Layer:** Converts target input tokens to embeddings.
- LSTM Layer: Initialized with encoder's final states; generates decoder outputs.
- **Fully Connected Layer:** Maps LSTM outputs to the target vocabulary space for word prediction.

Weight Initialization

• Weights in LSTM and fully connected layers are initialized randomly.

Activation Functions

- Tanh: Used inside the LSTM units.
- **Softmax:** Applied to the output layer to generate word probability distributions.

Regularization

- Dropout (0.5) is applied in embedding layers of both encoder and decoder to prevent overfitting.
- Padding tokens are ignored in both attention weights and loss calculations using ignore_index=<pad> in the loss function.

LSTM Encoder-Decoder With Attention

Architecture

- **Input Layer**: Input and target sequences are processed through embedding layers.
- Encoder:
 - Embedding Layer: Converts token indices to embeddings.
 - Bidirectional GRU Layer: Processes the input sequence in both forward and backward directions and outputs all hidden states, which are used by the attention mechanism.

• Attention Layer:

- Computes attention scores between current decoder state and encoder outputs.
- Generates a context vector as a weighted sum of encoder hidden states.

Decoder:

- Embedding Layer: Same as above.
- **GRU Layer**: Accepts embedded input + context vector.
- Fully Connected Layer: Maps decoder output to the vocabulary size.

Weight Initialization

• Weights are initialized randomly.

Activation Functions

- **Tanh**: Used in combining hidden states in the encoder and in the attention mechanism.
- Softmax:
 - Applied to attention scores to compute weights.
 - Applied to final decoder output for word prediction.

Regularization

- Dropout (0.5) is applied in embedding layers of both encoder and decoder to prevent overfitting.
- Padding tokens are ignored in both attention weights and loss calculations using ignore_index=<pad> in the loss function.

TRAINING CONFIGURATION

Training the Model

• Loss Function: Cross-Entropy Loss

• Optimizer: Adam Optimizer

• Learning Rate: 0.001

• **Epochs**: 25

• Batch Size: 64

• **Teacher Forcing Ratio:** 0.5 (50% chance of using ground truth vs predicted token during training)

Training Process

- Training is performed using **Teacher Forcing**:
 - At each timestep, the actual target word is fed into the decoder during training instead of the predicted word.
- For both models:
 - Encoder processes the source sentence and generates hidden states.
 - Decoder uses those hidden states (and attention context, if applicable) to predict the target sentence.
 - Gradients are computed using backpropagation.
 - Weights are updated using the Adam optimizer.
- Validation is performed at the end of each epoch to monitor overfitting and performance.

TRAINING AND RESULTS

Key Performance Metrics

LSTM Encoder-Decoder without Attention:

- Slower convergence across epochs.
- Struggles with longer or more complex sentence structures.
- Final loss increases toward the end, indicating some instability or overfitting.
- Final Val Loss: 4.648
- **BLEU Score:** 0.080

LSTM Encoder-Decoder with Attention:

- Bahdanau Attention:
 - Faster and smoother convergence in early epochs.
 - Final loss is lower than both the vanilla model.
 - Generated translations are more fluent and contextually aware.
 - Final Val Loss: 4.1747
 - BLEU Score: 0.085

• Luong Attention:

- Demonstrates better BLEU performance compared to Bahdanau.
- Efficient attention computation using dot-product leads to competitive training times.
- Slightly lower loss than Bahdanau and better sentence-level translation accuracy.

• **Final Val Loss:** 3.8446

BLEU Score: 0.1093

Evaluation Results

Model	Final Loss	BLEU Score
LSTM Encoder-Decoder (No Attention)	4.648	0.080
LSTM with Bahdanau Attention	4.1747	0.085
LSTM with Luong Attention	3.8446	0.1093

TRANSLATION GENERATION

Process

- A function is implemented to generate Spanish translations from a given English input sentence.
- The input sentence is tokenized and passed through the encoder to extract context vectors
- The decoder then predicts the next token iteratively, using:
 - Just the final encoder state in the Vanilla (no attention) model
 - Encoder hidden states + attention scores in the Bahdanau and Luong models
- The process stops when the <eos> token is generated, or max length is reached.
- Translations generated by attention models are more coherent and contextually aligned.

Example Output
Input Sentence :-
"I am fine "
Generated Translation (Encoder-Decoder without Attention): -
"soy muy carro"
Input Sentence :-
"there s no salt"
Generated Translation (Bahdanau Attention): "ah tienes en casa"
Generated Translation (Luong Attention): "no no es ning n ."

VISUALIZATIONS

/ç¡# Bahdanau Attention:

/¡#Ç Luong Attention:

OBSERVATIONS AND CONCLUSIONS

- The use of attention mechanisms (Bahdanau and Luong) leads to significantly lower loss and higher BLEU scores than the vanilla encoder-decoder.
- Bahdanau attention shows slight performance superiority for longer sentences due to its additive and flexible scoring.
- Luong attention, while marginally ahead in BLEU score, provides competitive performance with slightly faster computation.
- The switch from one-hot encoding to embedding layers results in richer, more efficient token representation, enhancing translation quality.
- Improved BLEU scores clearly reflect better word alignment and more context-aware translations thanks to attention.

Potential Future Improvements:

- Integrate pretrained embeddings (e.g., GloVe, FastText) for semantic depth.
- Train on larger datasets to enhance generalization and robustness.
- Migrate to Transformer-based architectures for cutting-edge performance.