CS657A: Information Retrieval Evaluation Measures

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs657/

 2^{nd} semester, 2021-22 Tue 1030-1145, Thu 1200-1315

Errors

- Positives (P): Documents that are "true" answers, i.e., "relevant"
- Negatives (N): Documents that are not relevant: N = D P
- ullet For a particular retrieval algorithm ${\cal A}$,
 - ullet P': Documents returned as relevant by ${\cal A}$
 - ullet ${\it N}'$: Documents not returned as relevant by ${\cal A}$
- True Positives (*TP*): Relevant documents returned by $A: P \cap P'$
- True Negatives (TN): Irrelevant documents not returned by A: $N \cap N'$
- False Positives (*FP*): Irrelevant documents returned by $A: N \cap P'$
- False Negatives (FN): Relevant documents not returned by $A: P \cap N'$

$$P = TP \cup FN$$
 $N = TN \cup FP$ $P' = TP \cup FP$ $N' = TN \cup FN$

- In statistics,
 - Type I error: FP
 - Type II error: FN

Confusion Matrix

- Confusion matrix visually represents the information
- Rows indicate "true" relevance: P and N
- Columns indicate those returned by A: P' and N'
- Shows which error is more

Se	tc	Returned by ${\cal A}$			
Je	ıs	Positives P'	Negatives <i>N'</i>		
T	Positives P	TP	FN		
True answers	Negatives N	FP	TN		

- Is more useful when extended for multiple classes (not just relevant versus irrelevant)
- Shows which classes are confused more against which other classes

Error Parameters or Performance Metrics

Parameter	Interpretation	Formula
Precision	Proportion of positives in those returned by ${\cal A}$	$\frac{ TP }{ TP \cup FP } = \frac{ TP }{ P' }$
Recall or Sensitivity or True positive rate	Proportion of positives returned by ${\cal A}$	$\frac{ TP }{ TP \cup FN } = \frac{ TP }{ P }$
Specificity or True negative rate	Proportion of negatives not returned by ${\cal A}$	$\frac{ TN }{ TN \cup FP } = \frac{ TN }{ N }$
False positive rate	Proportion of negatives returned by ${\cal A}$	$\frac{ FP }{ TN \cup FP } = \frac{ FP }{ N }$
False negative rate	Proportion of positives not returned by ${\cal A}$	$\frac{ FN }{ TP \cup FN } = \frac{ FN }{ P }$
Accuracy	Proportion of positives returned and negatives not returned by ${\cal A}$	<i>TP</i> ∪ <i>TN</i> <i>D</i>
Error rate	Proportion of positives not returned and negatives returned by ${\cal A}$	<u> FP∪FN </u> D

Single Measures

- Single measures capturing both precision and recall
- F-score or F-measure or F1-score is the harmonic mean of precision and recall

$$Fscore = \frac{2.Precision.Recall}{Precision + Recall}$$

In terms of errors

$$Fscore = \frac{2.TP}{2.TP + FN + FP}$$

- Similarly, G-measure is geometric mean of precision and recall
- EER or Equal Error Rate is when FP rate is equal to FN rate

Weighting Precision versus Recall

- Suppose recall and precision are weighted at a ratio $\alpha:(1-\alpha)$
- F-score is the weighted harmonic mean

$$\frac{1}{F} = \alpha \cdot \frac{1}{P} + (1 - \alpha) \cdot \frac{1}{R}$$

- $\beta^2 = \frac{1-\alpha}{\alpha}$ measures the relative importance of precision over recall
 - $\alpha \in [0,1]$ while $\beta \in [0,\infty]$
 - $\beta > 1$ emphasizes precision, while $\beta < 1$ emphasizes recall
- Using β^2 , weighted F-score is

$$F = \frac{(\beta^2 + 1).P.R}{\beta^2.P + R}$$

- When $\beta = 1$, precision and recall are equally weighted ($\alpha = 1/2$)
- F1-score is the harmonic mean

Example

$$D = \{d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8\}$$
 Correct answer set $= \{d_1, d_5, d_7\}$ Algorithm \mathcal{A} returns $= \{d_1, d_3, d_5, d_6\}$
$$\therefore P = \{d_1, d_5, d_7\}$$

$$N = \{d_2, d_3, d_4, d_6, d_8\}$$

$$TP = \{d_1, d_5\}$$

$$TN = \{d_2, d_4, d_8\}$$

$$FP = \{d_3, d_6\}$$

$$FN = \{d_7\}$$

$$\therefore \text{Recall} = 2/3 = 0.667$$

$$\text{Precision} = 2/4 = 0.500$$

$$\text{F-score} = 4/7 = 0.571$$

$$\text{Accuracy} = 5/8 = 0.625$$

ROC Curve

- Performance of an algorithm depends on parameters
- To assess over a range of parameters, ROC curve is used
 - 1 Specificity (x-axis) versus Sensitivity (y-axis)
 - False positive rate (x-axis) versus True positive rate (y-axis)

ROC Curve

- Performance of an algorithm depends on parameters
- To assess over a range of parameters, ROC curve is used
 - 1 Specificity (x-axis) versus Sensitivity (y-axis)
 - False positive rate (x-axis) versus True positive rate (y-axis)
- ullet A random guess algorithm is a 45° line

- Area under the ROC curve (AUC or AUROC) measures accuracy (or discrimination)
- What AUC is good?
 - 0.9+: excellent; 0.8+: good; 0.7+: fair; 0.6+: poor; 0.6-: fail
- EER denotes the point in ROC where FP rate is equal to FN rate

Precision-Recall Curve

Precision versus recall

• Breakeven point where precision is the same as recall

Interpolated Precision

• Interpolated precision at recall level r is maximum precision achieved at any recall level $r' \geq r$

$$\mathsf{inter\text{-}prec}(\mathit{r}) = \max_{\forall \mathit{r}' \geq \mathit{r}} \mathit{p}(\mathit{r})$$

- Eleven-point interpolated precision: Interpolated precisions at particular standard recall values
 - 0.0, 0.1, ..., 1.0
 - Uses interpolated precision

Mean Reciprocal Rank

- For some applications, only the first answer matters
 - "I'm feeling lucky"
- Reciprocal rank measures the rank of the first relevant document in the retrieved list

$$RR = \frac{1}{rank}$$

- Falls quickly
- Mean over multiple queries produces mean reciprocal rank (MRR)

$$MRR = \frac{1}{|Q|} \cdot \sum_{\forall i=1}^{Q} RR(q_i)$$

Set-Based Measures

- Suppose, the correct relevant set of documents is C
- A set of documents R is retrieved
- Jaccard similarity or Jaccard coefficient is

$$JS(R, C) = \frac{|R \cap C|}{|R \cup C|}$$

Dice coefficient is

$$DC(R, C) = \frac{2 \cdot |R \cap C|}{|R| + |C|}$$

Order of Answers

- Suppose there are 5 relevant documents
- Every method is allowed to retrieve 10 documents
- Method 1 retrieves them at ranks 1, 3, 6, 9, 10
- Method 2 retrieves them at ranks 2, 5, 6, 7, ...
- Method 3 retrieves them at ranks 2, 3, 4, 5, 6
- Which one is better?

Average Precision

- Average precision (AP)
- Suppose there are R relevant documents
- A method retrieves *n* documents as answer

$$AP@n = \frac{1}{|R|} \sum_{i=1}^{n} \left(Precision(i).Relevance(i) \right)$$

- Precision(i) is precision for first i answers
- Relevance(i) is relevance of ith answer
 - 1 if ith answer is relevant
 - 0 otherwise, i.e., when answer is not relevant
- AP is average of precision whenever recall changes
- ullet Between 1 (for an ideal answer) and 0 (for a completely wrong answer)

Example

- Method 1 retrieves them at ranks 1, 3, 6, 9, 10
- Method 2 retrieves them at ranks 2, 5, 6, 7, ...
- Method 3 retrieves them at ranks 2, 3, 4, 5, 6
- Ideal method retrieves them at ranks 1, 2, 3, 4, 5

Method	Position							AP			
	1	2	3	4	5	6	7	8	9	10	@10
Method 1	+	-	+	-	-	+	-	-	+	+	
(precision)	1/1	0	2/3	0	0	3/6	0	0	4/9	5/10	0.62
Method 2	-	+	-	-	+	+	+	-	-	-	
(precision)	0	1/2	0	0	2/5	3/6	4/7	0	0	0	0.39
Method 3	-	+	+	+	+	+	-	-	-	-	
(precision)	0	1/2	2/3	3/4	4/5	5/6	0	0	0	0	0.71

• Average precision prefers correct answers at higher ranks

Mean Average Precision (MAP)

Mean average precision is mean of average precision for Q queries

$$MAP@k = \frac{1}{|Q|} \cdot \sum_{\forall i=1}^{Q} AP@k(q_i)$$

- MAP is found to be more robust than other measures
- It is, therefore, used widely

R-Precision

- Which k to use for precision@k?
- R-precision: *k* is set to the number of relevant documents *R*
- Then, precision is the same as recall
- This is the same as breakeven point

Discounted Cumulative Gain

- Not all relevant documents have the same relevance
- Suppose *d_i* have a relevance score *rel_i*
 - $r_i = 0$ if d_i is irrelevant
- Quality should take into account the relevance
 - Highly relevant documents should rank higher
- At rank p of a retrieved list, discounted cumulative gain accumulates gain discounted by rank

$$DCG(p) = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

• Alternatively, $\sum_{i=1}^{p} \log_2{(1+i)}$ and/or $2^{\textit{rel}_i} - 1$

Example

rank _i	rel _i	factor	gain	DCG
1	4	1.00	4.00	4.00
2	3	1.00	3.00	7.00
3	4	0.63	2.52	9.52
4	2	0.50	1.00	10.52
5	0	0.43	0.00	10.52
6	0	0.39	0.00	10.52
7	0	0.36	0.00	10.52
8	1	0.33	0.33	10.86
9	1	0.32	0.32	11.17
10	0	0.30	0.00	11.17

Normalized Discounted Cumulative Gain

- DCG keeps increasing
- Normalization to make it between 0 and 1
- Ideal ranking from the set of results available
- If ranking is (4, 3, 4, 2, 0, 0, 0, 1, 1, 0), perfect ranking is (4, 4, 3, 2, 1, 1, 0, 0, 0, 0)
- Ideal discounted cumulative gain (IDCG) is DCG of ideal ranking
- Normalized discounted cumulative gain (NDCG) is ratio of DCG to IDCG at each rank

$$NDCG = \frac{DCG}{IDCG}$$

NDCG

	DCG	IDCG	NDCG
1	4.00	4.00	1.00
2	7.00	8.00	0.88
3	9.52	9.89	0.96
4	10.52	10.89	0.97
5	10.52	11.32	0.93
6	10.52	11.71	0.90
7	10.52	11.71	0.90
8	10.86	11.71	0.93
9	11.17	11.71	0.95
10	11.17	11.71	0.95

Ranking of Answers

- Which are the 5 closest state capital cities from Kanpur?
 - Lucknow, Jaipur, Bhopal, Patna, Dehradun
- Using relevance
 - Lucknow: 5
 - Jaipur: 4
 - Bhopal: 3
 - Patna: 2
 - Dehradun: 1
 - Any other answer: 0
- Which answer is better?
 - Method 1: L-P-B-J-D
 - Method 2: L-J-D-P-B
 - Method 3: L-J-X-B-P

Example

rank;	factor	Method 1		Met	Method 2		Method 3		Ideal Method	
Taliki	Tactor	reli	DCG	reli	DCG	reli	DCG	reli	IDCG	
1	1.00	5	5.00	5	5.00	5	5.00	5	5.00	
2	1.00	2	7.00	4	9.00	4	9.00	4	9.00	
3	0.63	3	8.89	1	9.63	0	9.00	3	10.89	
4	0.50	4	10.89	2	10.63	3	10.50	2	11.89	
5	0.43	1	11.32	3	11.92	2	11.36	1	12.32	

Kendall's Tau Coefficient

- Two ranked lists can also be compared using rank correlation measures
- Suppose ranked lists are r_1, \ldots, r_n and s_1, \ldots, s_n
- There are $n_0 = \binom{n}{2} = n(n-1)/2$ pairs of relative rankings
- $a_{ij} = sign(r_i r_j)$ and $b_{ij} = sign(s_i s_j)$
- A ranking pair ij is concordant, c, if they agree, i.e., $a_{ij} = b_{ij}$
- A ranking pair ij is discordant, d, if they disagree, i.e., $a_{ij} \neq b_{ij}$
- Kendall's tau coefficient measures the difference of the two

$$\tau = \frac{(n_c - n_d)}{n_0}$$

• If there are n_1 and n_2 pairs at same ranking

$$\tau = \frac{(n_c - n_d)}{\sqrt{n_0 - n_1} \sqrt{n_0 - n_2}}$$

BPREF

- Binary preference (BPREF) measures how quickly relevant documents are retrieved before irrelevant ones
- For R relevant documents

$$BPREF = \frac{1}{|R|} \sum_{\forall d_r \in R} \left(1 - \frac{n_{d_r}}{|R|} \right)$$

- \bullet d_r is a relevant document
- ullet n_{d_r} is the number of irrelevant documents retrieved before d_r
- Documents retrieved but not judged are ignored
- Example: IRII (with |R| = 2)
 - BPREF = 1/2[(1-1/2)] = 1/4
- Example: IRNNRI (with |R| = 2)
 - BPREF = 1/2[(1-1/2) + (1-1/2)] = 1/2
- Example: IRNNRIRI (with |R| = 3)
 - BPREF = 1/3[(1-1/3) + (1-1/3) + (1-2/3)] = 5/9

Pooling

- How is the ground truth created?
- Domain experts are handed only a few documents
- These documents are retrieved using a variety of IR methods
- If none of the IR methods has retrieved a document, it is possibly not relevant at all
- This is called pooling
- Do experts agree?
- Rarely, since every human has her own idiosyncrasies and ideas

Kappa Statistic

- For categorical judgments: "relevant" or "irrelevant"
- Suppose proportion of two judges agreeing is P(A)
- Kappa statistic or Cohen's kappa is agreement rate

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)}$$

- \bullet P(E) is proportion of agreement by chance
- If number of relevant and irrelevant documents is the same, then $P(\it{E}) = 0.5$
- Kappa statistic can be negative
- It is 1 when two judges always agree
- It is 0 when two judges always agree only randomly
- > 0.8: excellent; > 0.6: good; > 0.4: fair; > 0.2: slight
- Below that, either the task is too confusing, or the dataset is too poor

Estimating Random Agreements

 \bullet P(E) can be estimated in a more robust manner using actual data

	#R(B)	#I(B)	Total
#R(A)	20	12	32
#I(A)	4	4	8
Total	24	16	40

- P(agreement) = (20+4)/40 = 0.60
- Expected probability of both experts saying "R" is $P(R,R)=32/40\times24/40=0.48$
- Expected probability of both experts saying "I" is $P(I, I) = 8/40 \times 16/40 = 0.08$
- Expected agreement is P(E) = 0.48 + 0.08 = 0.56
- $\kappa = (0.60 0.56)/(1 0.56) = 0.09$

Estimating using Pooling

Chance agreements are better estimated using pooling

	#R(B)	#I(B)	Total
#R(A)	20	12	32
#I(A)	4	4	8
Total	24	16	40

- P(agreement) = (20+4)/40 = 0.60
- Expected probability of a document being categorized as "R" is P(R) = (32 + 24)/(40 + 40) = 0.70
- Expected probability of a document being categorized as "I" is P(I) = (8+16)/(40+40) = 0.30
- Expected probability of agreement is $P(E) = P(R)^2 + P(I)^2$ = $0.70^2 + 0.30^2 = 0.58$
- $\kappa = (0.60 0.58)/(1 0.58) = 0.05$

Fleiss' Kappa

- What if there are multiple experts and/or multiple categories?
- Fleiss' kappa
- Suppose n documents are judged over k categories by m experts
 - Cohen's kappa: k = 2, m = 2
- There can be more than m experts and not all of them need to judge all documents
- x_{ij} is the number of experts assigning category j to document i
 - $\forall i, \; \sum_{\forall j} x_{ij} = m$
 - $\sum_{\forall i} \sum_{\forall j} x_{ij} = m.n$
- Proportion of documents assigned to category *j* is

$$p_j = \frac{1}{m.n} \sum_{\forall i} x_{ij}$$

Therefore, probability of agreement by chance is

$$P(E) = \sum_{\forall j} p_j^2$$

Proportion of Agreement

- ullet For a document i, for a category j, pairs of experts agreeing is ${x_{ij} \choose 2}$
- Total number of possible pairs of experts is $\binom{m}{2}$
- ullet Hence, over all categories, proportion of agreement for document i is

$$p_a(i) = \frac{\sum_{\forall j} \binom{x_{ij}}{2}}{\binom{m}{2}} = \frac{(\sum_{\forall j} x_{ij}^2) - m}{m(m-1)}$$

Average proportion of agreement over all documents is

$$P(A) = \frac{1}{n} \cdot \sum_{\forall j} p_{a}(j) = \frac{\left(\sum_{\forall i} \sum_{\forall j} x_{ij}^{2}\right) - m \cdot n}{n \cdot m(m-1)}$$

Fleiss' kappa is

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)}$$

Example

Xij	1	2	3	4	5	$p_a(i)$
1	0	0	0	0	14	1.00
2	0	2	6	4	2	0.25
3	0	0	3	5	6	0.31
4	0	3	9	2	0	0.44
5	2	2	8	1	1	0.33
6	7	7	0	0	0	0.46
7	3	2	6	3	0	0.24
8	2	5	3	2	2	0.18
9	6	5	2	1	0	0.29
10	0	2	2	3	7	0.29
Total	20	28	39	21	32	140
p_j	0.14	0.20	0.28	0.15	0.23	

- Contingency table
- $\mathit{m} = 14$ experts for $\mathit{n} = 10$ documents over $\mathit{k} = 5$ categories
- Proportion of category 1 is $p_1 = 20/140 = 0.14$
- Agreement for document 2 is $p_a(2) = (0^2 + 2^2 + 6^2 + 4^2 + 2^2 14)/(14 \times 13) = 0.25$

Example (contd.)

Xij	1	2	3	4	5	$p_a(i)$
1	0	0	0	0	14	1.00
2	0	2	6	4	2	0.25
3	0	0	3	5	6	0.31
4	0	3	9	2	0	0.44
5	2	2	8	1	1	0.33
6	7	7	0	0	0	0.46
7	3	2	6	3	0	0.24
8	2	5	3	2	2	0.18
9	6	5	2	1	0	0.29
10	0	2	2	3	7	0.29
Total	20	28	39	21	32	140
p_j	0.14	0.20	0.28	0.15	0.23	

- Overall agreement is $P(A) = (1.00 + 0.25 + \cdots)/10 = 0.38$
- Expected agreement is $P(E)=0.14^2+0.20^2+\cdots=0.21$
- Therefore, $\kappa = (0.38 0.21)/(1 0.21) = 0.22$