

Statistik

CH.4 - Zweidimensionale Verteilungen

2024 | | Prof. Dr. Buchwitz, Sommer, Henke

Wirgeben Impulse

Lernziele

- Erweiterung der Streuungsbetrachtung von einem auf zwei Merkmale
- Erkennen des Zusammenhangs von Streuung mehrerer Variablen und (linearem) Zusammenhang
- Diskussion und Betrachtung relevanter MAßzahlen zur Messung von Zusammenhängen

Inhaltsübersicht

- 1 Streuung und Streudiagramme
- 2 Kovarianz
- 3 Korrelation

Rekapitulation: Streuung

Zweidimensionale Verteilungen

Ausgangspunkt:

- Jede statistische Einheit einer Grundgesamtheit trägt eine Vielzahl von Merkmalen.
- In diesem Kapitel werden zwei Merkmale gleichzeitig untersucht.
- Bei der Darstellung und Analyse von Abhängigkeiten zwischen Variablen muss das Skalenniveau berücksichtigt werden.

Beispiel:

- Studierende
 - lacktriangle Beispiel: Körpergröße und Gewicht ightarrow Streudiagramm
 - lacktriangleright Beispiel: Geschlecht und Studiengang ightarrow Kontingenztafel
- Kraftfahrzeuge
 - Beispiel: Höchstgeschwindigkeit und Motorleistung
 - Beispiel: Kraftstoffverbrauch und Getriebeart (Manuell/Automatik)

Beispiel: Streudiagramm

Größe (m)	Gewicht (kg)
1.63	68
1.51	81
1.56	72
1.95	128
1.80	60
1.79	64
1.78	94
1.68	62
1.89	109
1.61	75
1.89	76
1.97	126
1.61	98
1.57	71
1.83	66
1.80	111
1.72	89
1.52	76
1.54	45

R-Befehl: plot()

Inhaltsübersicht

- 1 Streuung und Streudiagramme
- 2 Kovarianz
- 3 Korrelation

Gewicht (kg) vs. Körpergröße (cm)

Gewicht in kg (X)

Aufgabe: Bestimmen des Vorzeichens

- $\mathbf{y}_i \bar{\mathbf{y}}$ ist die Differenz jeder Beobachtung \mathbf{y}_i vom arithmetischen Mittel der abhängigen Variablen
- $\mathbf{x}_i \bar{\mathbf{x}}$ ist die Abweichung \mathbf{x}_i vom arithmetischen Mittel des Prädiktors
- $(y_i \bar{y})(x_i \bar{x})$ ist das Produkt der vorherigen beiden Größen

Quadrant	\$y_i -\bar{y}\$	\$x_i - \bar{x}\$	\$(y_i - \bar{y})(x_i - \bar{x})\$
1 (oben rechts) 2 (oben links) 3 (unten links) 4 (unten rechts)			

9

Positiver Zusammenhang

- Wenn der Zusammenhang zwischen Y und X positiv ist (also wenn X größer wird, dann wird auch Y größer), dann sind mehr Datenpunkte im ersten und dritten Quadranten als im zweiten und vierten.
- Die Summe der Elemente in der letzten Spalte der vorherigen Tabelle ist dann mit großer Wahrscheinlichkeit positiv, also Cov(Y, X) > 0.

Positiver Zusammenhang

- Wenn der Zusammenhang zwischen Y und X positiv ist (also wenn X größer wird, dann wird auch Y größer), dann sind mehr Datenpunkte im ersten und dritten Quadranten als im zweiten und vierten.
- Die Summe der Elemente in der letzten Spalte der vorherigen Tabelle ist dann mit großer Wahrscheinlichkeit positiv, also Cov(Y, X) > 0.

Negativer Zusammenhang

- Wenn der lineare Zusammenhang zwischen Y und X negativ ist (z.B. wenn X sinkt, steigt Y), dann befinden sich mehr Datenpunkte im zweiten und vierten Quadranten als im ersten und dritten.
- Die Summe der Elemente in der letzten Spalte der vorherigen Tabelle ist dann mit großer Wahrscheinlichkeit negativ, also Cov(Y, X) < 0.

$$s_{XY} = Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})$$

- Die oben stehende Formeln gibt die Kovarianz zwischen X und Y an.
- Das Vorzeichen der Kovarianz ist ein Indikator für die Richtung eines bestehenden linearen Zusammenhangs zwischen Y und X.
- Die Kovarianz erlaubt es nicht, Aussagen über die Stärke eines Zusammenhangs zu treffen.
- Die Größe der Kovarianz ist abhängig von der zugrundeliegenden Einheit.
 Einheitenwechsel (z.B. von Euro zu TEuro) führen zu einer Wertveränderung.
- R-Befehl: cov()

Inhaltsübersicht

- 1 Streuung und Streudiagramme
- 2 Kovarianz
- 3 Korrelation

Korrelationskoeffizient

$$Cor(Y, X) = \frac{1}{n-1} \sum_{i=1}^{n} (\frac{y_i - \bar{y}}{s_y}) (\frac{x_i - \bar{x}}{s_x}) = \frac{Cov(Y, X)}{s_y s_x} = \frac{s_{XY}}{s_x \cdot s_y}$$

- Der Korrelationskoeffizient ist ein Maß für die Stärke des linearen Zusammenhangs.
- Im Unterschied zur Kovarianz ist Cor(Y, X) nicht skalenabhängig und erlaubt die Einschätzung von Stärke und Richtung eines linearen Zusammenhangs.
- R-Befehl: cor()

Cor(Y, X) = 0 bedeutet nicht, dass es zwischen X und Y keinen Zusammenhang gibt.

Eigenschaften

- Wertebereich: $-1 \le r_{XY} \le 1$
- Ist $r_{XY} = 0$, so sind X und Y nicht korreliert (unkorreliert).
- Ist $r_{XY} > 0$, so sind X und Y gleichläufig (gleichsinnig) korreliert.
- Ist $r_{XY} < 0$, so sind X und Y gegenläufig (ungleichsinnig) korreliert.
- Je größer $|r_{XY}|$ ist, desto stärker ist die Korrelation zwischen X and Y.

Scheinkorrelation

Scheinkorrelation: obwohl ein großer Wert des Korrelationskoeffizienten zwischen X und Y besteht, liegt kein *ursächlicher* (und/oder sachlogischer) Zusammenhang zwischen X und Y vor.

Beispiel

Zusammenhang zwischen Kindergeburten und der Anzahl der Storchenpaare, die sich in einer Region ansiedeln.

Scheinkorrelation

US Spending on science, space, and technology and Suicides by hangig, strangulation and suffocation korrelation: 0.9921

Weitere Beispiele unter: http://tylervigen.com/spurious-correlations

Verständnisfragen

- Welche Darstellungsmöglichkeiten gibt es für zweidimensionale Daten?
- Bedeutet ein Korrelationskoeffizient nah bei 1, dass ein sachlicher Zusammenhang zwischen den untersuchten Merkmalen besteht?
- Wie ist ein Korrelationskoeffizient nah bei -1 zu interpretieren?