

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Ciencias

Plan de estudios de la Licenciatura en Actuaría

Probabilidad II Clave Semestre Créditos Área 0626 10 Campo de Probabilidad y Estadística conocimiento Etapa **Básica** Curso (X) Taller () Lab () Sem () Modalidad Tipo T(X) P() T/P() Obligatorio (X) Optativo () Carácter **Horas** Obligatorio E () Optativo E() Semana Semestre **Teóricas** 5 **Teóricas** 80 **Prácticas** 0 **Prácticas** 0 5 Total 80 Total

Seriación			
Ninguna ()			
Obligatoria ()			
Asignatura antecedente			
Asignatura subsecuente			
	Indicativa (X)		
Asignatura antecedente	Probabilidad I		
	Cálculo Diferencial e Integral III		
	Álgebra Lineal I		
Asignatura subsecuente	Procesos Estocásticos I, Inferencia Estadística, Matemáticas		
	Actuariales del Seguro de Personas II		

Objetivo general:

Trabajar con vectores aleatorios, esto es, variables aleatorias en dimensiones mayores a uno y probar resultados clásicos importantes en la Teoría de la Probabilidad

Objetivos específicos:

- Conocer algunas definiciones básicas sobre vectores aleatorios y sus características.
- Estudiar funciones relacionadas con el concepto de momentos y esperanza condicional.
- Analizar métodos para la obtención de la distribución de funciones de vectores aleatorios.

• Entender el concepto de sucesiones y convergencia basados en teoremas y lemas relacionados con las variables aleatorias. Aplicar los resultados en diversas situaciones.

	Índice temático			
		Horas		
	Tema		semestre	
		Teóricas	Prácticas	
1	Vectores aleatorios	25	0	
2	Momentos y esperanza condicional	15	0	
3	Distribuciones de Funciones de Vectores Aleatorios	15	0	
4	Sucesiones y convergencia de variables aleatorias	25	0	
	Total		80	

	Contenido Temático					
	Tema y subtemas					
1	Vect	ores aleatorios				
	1.1	Definiciones básicas y ejemplos.				
	1.2	Distribuciones conjunta, marginales y sus propiedades.				
	1.3	Vectores aleatorios discretos (repaso) y absolutamente continuos.				
		Densidades y densidades marginales.				
	1.4	Densidades y distribuciones condicionales de vectores aleatorios				
		discretos, continuos y mezclas, incluyendo sumas aleatorias				
	1.5	Independencia.				
	1.6	Suma de variables aleatorias independientes (convolución).				
	1.7	Vectores Gaussianos.				
2	Momentos y esperanza condicional					
	2.1	Definiciones básicas. Esperanza, varianza, covarianza y coeficiente de correlación.				
	2.2	Desigualdades, incluyendo las de Jensen, Cauchy-Schwartz.				
	2.3	Función generadora de momentos, función generadora de momentos				
		factoriales.				
	2.4	Esperanza condicional, propiedades y ejemplos en los casos discreto,				
		continuo y mezclas, incluyendo sumas aleatorias.				
	2.5	Varianza Condicional. La esperanza condicional minimiza la varianza				
		condicional.				
3	Distr	ibuciones de Funciones de Vectores Aleatorios				
	= =342					
	3.1	Distribuciones de Máximos, Mínimos y Estadísticas de Orden.				
	3.1	Distribución X^2 , f y T.				
	3.2	Método usando el Teorema de Cambio de Variable.				
	5.4	Meddo dando el Teolema de Cambio de Variable.				

	3.3	Método para sumas de variables aleatorias independientes, usando funciones generadoras.	
4	Sucesiones y convergencia de variables aleatorias		
	4.1 4.2 4.3 4.4 4.5	Distintos modos de convergencia: convergencias casi segura, en probabilidad, en distribución, en media cuadrática. Definición y propiedades. Lema de Borel Cantelli. Algunas versiones de las Leyes Débil y Fuerte de los Grandes Números, con demostración (por ejemplo, la ley fuerte con cuarto momento finito). Función Característica. Teorema de continuidad de Levy (sin demostración).	
	4.6 4.7	Teorema del Límite Central. Simulación y aplicaciones.	

Estrategias didácticas	Evaluación del aprendizaje		
Exposición (X)		Exámenes parciales	(X)
Trabajo en equipo	(X)	Examen final	(X)
Lecturas	(X)	Trabajos y tareas	(X)
Trabajo de investigación	()	Presentación de tema	(X)
Prácticas (taller o laboratorio)	()	Participación en clase	(X)
Prácticas de campo ()		Asistencia	()
Aprendizaje por proyectos (X)		Rúbricas	()
Aprendizaje basado en problemas (X)		Portafolios	()
Casos de enseñanza ()		Listas de cotejo	()
Otras (especificar) Se recomiendan ta	Otras (especificar)		
regulares en las cuales el alumno aplique el material			
visto en clase y en las cuales esté obligado a revisar			
diversas fuentes bibliográficas para que enriquezca			
sus conocimientos con diferentes enfoques.			
Así mismo se sugieren prácticas de cómputo usando			
paquetes como R.			

Perfil profesiográfico		
Título o grado	Egresado de la licenciatura en Matemáticas, Actuaría o alguna otra carrera afín.	
	Es deseable que cuente con un posgrado en el área.	
Experiencia docente	Con experiencia docente en el área.	
Otra característica		

Bibliografía básica:

- Ash, Robert B. (1970). <u>Basic Probability Theory</u>. New York: John Wiley & Sons Inc.
 Chung, Kai Lai (1974). <u>Elementary probability theory with stochastic processes</u> (3^a ed.). New York: Springer-Verlag.
- Feller, W. (1978). <u>Introducción a la Teoría de Probabilidades y sus Aplicaciones. Vol. I y II</u>. Limusa.

- Feller, William (1968). An introduction to probability theory and its applications. Volumen 1. John New York: Wiley & Sons Inc.
- Feller, William (1971). An introduction to probability theory and its applications, Volumen 2. New York: John Wiley & Sons Inc.
- Gnedenko, B. V. (1975). The theory of probability. Chelsea.
- Grinstead, Snell (1997). Introduction to probability. AMS.
- Gut, Allan (2009). <u>An intermediate course in Probability, Springer Texts in Statistics</u> (2^a ed.). New York: Springer.
- Harris, B. (1966). Theory of probability. Addison-Wesley.
- Hoel, P. G., Port, S. C., Stone, C. J. (1971). <u>Introduction to probability theory</u>. Houghton Mifflin Company.
- Isaac, Richard (1995). The Pleasures of Probability. Springer-Verlag.
- Mood, A. M., Graybill, F. A., Boes, D. C. (1974). <u>Introduction to the theory of statistics</u> (3^a ed.). McGraw-Hill.
- Ross, S. (2000). <u>Introduction to probability models</u>. Academic Press.
- Ross, S. (1997). A first course in probability theory (5^a ed.). Prentice Hall.
- Stirzaker, David R. (1999). <u>Probability and Random Processes</u>. Cambridge University Press, Cambridge.
- Stirzaker, David R. (2003). <u>Elementary Probability</u> (2^a ed.). Cambridge University Press.

Bibliografía complementaria:

- Casella, George, Berger, Roger L. (2002). <u>Statistical inference</u>. Thomson Learning, la Universidad de Michigan.
- Chung, Kai Lai (2001). A Course in Probability Theory (2^a ed.). Academic Press.
- García Álvarez, Miguel Ángel (2005). <u>Indroducción a la teoría de la probabilidad: Primer curso</u>.
 Fondo de Cultura Economica.
- Neuts, M. F. (1973). Probability. Allyn and Bacon, Boston.
- Grimmet Geoffrey R., Stirzaker, David R. (2001). <u>Probability and Random Processes</u> (3^a ed.). Oxford University Press.
- Resnick, Sidney I (1999). A Probability Path. Birkhauser, Boston.
- Weaver, Warren (1963). <u>Lady Luck: The Theory of Probability</u>. Dover.