Class 5 - Data Visualization with ggplot2

Edward Vo (A16215241)

Using GGPLOT

head(cars)

The ggplot2 package needs to installed as it does not come with R "out of the box".

We use the install.packages() function to do this.

```
speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
```

To use ggplot I need to load it up before I can call ny of the functions in the package. I do this with the library() function.

```
library(ggplot2)
ggplot()
```

10

All ggplot figures have at least 3 things: - data (the stuff we want to plot) - aesthetic mapping (aes values) - geoms

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point()
```


ggplot is not the only graphing system in R there are lots of others. There is even "base R" graphics.

plot(cars)

Show relationship with smooth

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth()
```

 $\ensuremath{\mbox{`geom_smooth()`}}\ \mbox{using method} = \ensuremath{\mbox{'loess'}}\ \mbox{and formula} = \ensuremath{\mbox{'y}}\ \sim \ensuremath{\mbox{x'}}\ \mbox{'}$

Straight line, no shade

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth(method="lm", se=FALSE)
```

[`]geom_smooth()` using formula = 'y ~ x'

Label & change theme

`geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distances of Cars

Your informative subtitle text here

Section 6

Load data

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

Check # of rows and columns

```
nrow(genes)
```

```
[1] 5196
```

```
ncol(genes)
```

[1] 4

127/5196

[1] 0.02444188

Set up genes scatter plot

```
ggplot(genes) +
   aes(x=Condition1, y=Condition2) +
   geom_point()
```


Add state as metric

```
p <- ggplot(genes) +
   aes(x=Condition1, y=Condition2, col=State) +
   geom_point()
p</pre>
```


Change color scheme

```
p + scale_colour_manual( values=c("blue", "gray", "red") )
```


Add labels

Gene Expresion Changes Upon Drug Treatment

Section 7

```
Installation install.packages("gapminder")
    library(gapminder)
    url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
    gapminder <- read.delim(url)
Installing dplyr install.packages("dplyr")
    library(dplyr)</pre>
```

```
Attaching package: 'dplyr'
```

The following objects are masked from 'package:stats':

filter, lag

```
The following objects are masked from 'package:base': intersect, setdiff, setequal, union
```

Filter rows with only year 2007

```
gapminder_2007 <- gapminder %>% filter(year==2007)
```

Basic scatter plot

```
library(ggplot2)

ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  geom_point()
```


Make points transparent

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  geom_point(alpha=0.5)
```


Add more variables (colors for contininent, size proportional to population)

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```


Gradient population

```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```


Adjust point size

```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, size = pop) +
  geom_point(alpha=0.5)
```


New scale

Scaled to population and colored for 1957

Two in one code

Section 8

Load, filter, arrange data

```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
country continent year lifeExp
                                              pop gdpPercap
1
          China
                     Asia 2007
                               72.961 1318683096
                                                   4959.115
2
          India
                                                    2452.210
                     Asia 2007
                                64.698 1110396331
3 United States Americas 2007
                                78.242
                                        301139947 42951.653
4
      Indonesia
                     Asia 2007
                                70.650
                                        223547000
                                                    3540.652
5
         Brazil Americas 2007
                               72.390
                                        190010647
                                                   9065.801
```

Simple bar chart

```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop))
```


Color bars

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop, fill = continent))
```


Life expectancy gradient

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop, fill = lifeExp))
```


GDP gradient

```
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```


Ordered GDP gradient

```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```


Fill by country

```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


Flipping bar charts

Load data

```
head(USArrests)
```

	Murder	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

Plot by state ${\tt coord_flip}$ reverses X and Y axis

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


Custom scaling and aesthetics

Section 9

```
install.packages("gganimate") install.packages("gifski")
```

library(gapminder) library(gganimate) library(ggplot2)

 $\begin{array}{lll} {\rm ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) + geom_point(alpha = 0.7, show.legend = FALSE) + scale_colour_manual(values = country_colors) + scale_size(range = c(2, 12)) + scale_x_log10() + facet_wrap(\sim continent) + labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') + transition_time(year) + shadow_wake(wake_length = 0.1, alpha = FALSE) \\ \end{array}$

Section 10

Combine many panels

install.packages("patchwork")

```
library(patchwork)
```

Setup some example plots

 $\ensuremath{\tt `geom_smooth()`}\ using method = 'loess' and formula = 'y ~ x'$

