

TMA4145 Linear

Methods

Norwegian University of Science and Technology

Fall 2017

Department of Mathematical Sciences

Exercise set 5: Solutions

Please justify your answers! The most important part is how you arrive at an answer, not the answer itself.

- |1| Let $(x_n)_{n\in\mathbb{N}}$ be a convergent sequence in a normed space $(X, \|.\|)$.
 - a) Show that $(x_n)_{n\in\mathbb{N}}$ is a bounded subset of X.
 - **b)** Show that $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence.

Solution. a) Denote the limit of $(x_n)_{n\in\mathbb{N}}$ by x. Since the sequence converges, we can find an $N \in \mathbb{N}$ such that $||x - x_n|| < 1$ for any $n \geq N$. This is simply the definition of convergence in a normed space, with $\epsilon = 1$. For $n \geq N$, we can bound the norm of $||x_n||$, since

$$||x_n|| = ||x_n - x + x||$$

 $\leq ||x_n - x|| + ||x||$
 $\leq 1 + ||x||$

by the triangle inequality. Hence 1 + ||x|| is an upper bound for $||x_n||$ for $n \ge N$. Since N is a finite number, we then find an upper bound B for $||x_n||$ for every $n \in \mathbb{N}$, by defining

$$B = \max(\|x_1\|, \|x_2\|, ..., \|x_{N-1}\|, 1 + \|x\|).$$

b) To show that the sequence is Cauchy we need, for every $\epsilon > 0$, to find $N \in \mathbb{N}$ such that $||x_m - x_n|| < \epsilon$ whenever $m, n \ge N$. Let us therefore fix some arbitrary $\epsilon > 0$. Since $x_n \to x$, we can find $N \in \mathbb{N}$ such that $||x - x_n|| < \frac{\epsilon}{2}$ for every $n \ge N$. Then, if $m, n \geq N$, we have

$$||x_m - x_n|| = ||x_m - x + x - x_n||$$

 $\leq ||x_m - x|| + ||x - x_n|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

by the triangle inequality. Hence this N works.

2 We denote by c_f the vector space of all sequences with only finitely many non-zero terms. Show that c_f is not a Banach space with the norm $\|\cdot\|_{\infty}$. As usual, $\|\cdot\|_{\infty}$ is defined by

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$$

for a sequence $x = (x_n)_{n \in \mathbb{N}} \in c_f$.

Solution. We will find a sequence $y_n \in c_f$ that is Cauchy yet not convergent (note that y_n is a sequence for each value of n – we have a sequence of sequences). Define

$$y_n = (1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, 0, 0, ...).$$

If we now consider y_n to be elements of the larger space ℓ^{∞} , we have that $y_n \to y$ where

$$y = (1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{1000}, \frac{1}{1001}, ...).$$

To prove that $y_n \to y$, simply note that $\|y - y_n\|_{\infty} = \sup_{k \ge n} \frac{1}{k} = \frac{1}{n}$, and clearly $\frac{1}{n} \to 0$. The "problem" in this case is that $y_n \in c_f$, yet clearly $y \notin c_f$. Since the sequence y_n converges, it is Cauchy by problem 1b. However, since the limit is unique and $y_n \to y$ in ℓ^{∞} , the sequence y_n cannot converge in c_f (if it did converge to some element y' in c_f , the sequence would have two different limits $y \neq y'$ in ℓ^{∞}).

 $\boxed{\mathbf{3}}$ For each $n \in \mathbb{N}$, let

$$x^{(n)} := (1, \frac{1}{2}, \dots, \frac{1}{n}, 0, 0, \dots),$$

which we regard as an element of the space $\ell^p(\mathbb{R})$ (for any given $p \in [1, \infty]$).

- a) Find the limit of the sequence $(x^{(n)})_{n\geq 1}$ in $(\ell^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$. Prove your claim.
- **b)** Does $(x^{(n)})_{n\geq 1}$ have a limit in $(\ell^1(\mathbb{R}), \|\cdot\|_1)$? If the limit exists, find it and prove that it is the limit.
- c) Does $(x^{(n)})_{n\geq 1}$ have a limit in $(\ell^2(\mathbb{R}), \|\cdot\|_2)$? If the limit exists, find it and prove that it is the limit.

Solution. a) Let $x := \left(1, \frac{1}{2}, \dots, \frac{1}{n}, \frac{1}{n+1}, \dots\right)$. Then clearly $x \in \ell^{\infty}(\mathbb{R})$.

We show that $x^{(n)} \to x$ with respect to the $\|\cdot\|_{\infty}$ norm. It is enough to show that

$$||x^{(n)} - x||_{\infty} \to 0.$$

But

$$x^{(n)} - x = (0, \dots, 0, -\frac{1}{n+1}, -\frac{1}{n+2}, \dots),$$

SO

$$||x^{(n)} - x||_{\infty} = \frac{1}{n+1} \to 0$$
 as $n \to \infty$.

b) Let us assume that $(x^{(n)})$ has a limit in $(\ell^1(\mathbb{R}), \|\cdot\|_1)$, and let us denote that limit by y.

It follows from lemma 4.1 in the notes that

$$||x^{(n)}||_1 \to ||y||_1.$$

But

$$||x^{(n)}||_1 = 1 + \frac{1}{2} + \ldots + \frac{1}{n} \to \infty$$
 as $n \to \infty$,

so $||y||_1 = \infty$. But then $y \notin \ell^1(\mathbb{R})$, so the sequence $(x^{(n)})$ cannot have a limit in $(\ell^1(\mathbb{R}), ||\cdot||_1)$.

c) We show that the sequence $(x^{(n)})$ converges to the vector x defined in part a) also in $(\ell^2(\mathbb{R}), \|\cdot\|_2)$. First note that $x \in \ell^2(\mathbb{R})$, since

$$||x||_2^2 = \sum_{j=1}^{\infty} \left(\frac{1}{j}\right)^2 = \sum_{j=1}^{\infty} \frac{1}{j^2} < \infty.$$

It is enough to show that $||x^{(n)} - x||_2 \to 0$. We have:

$$||x^{(n)} - x||_2^2 = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots \to 0 \quad \text{as } n \to \infty,$$

because this is the tail of the convergent series $\sum_{j=1}^{\infty}\frac{1}{j^2}$.

- 4 Let C[a,b] be the vector space of all continuous functions $f:[a,b] \to \mathbb{R}$. We will consider two norms on this space, $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$.
 - a) Prove that for all $f \in C[a, b]$ we have

$$||f||_1 \le (b-a) ||f||_{\infty}$$
.

- **b)** Let (f_n) be a sequence in C[a, b]. Prove that if $f_n \to f$ with respect to $\|\cdot\|_{\infty}$ then $f_n \to f$ with respect to $\|\cdot\|_1$.
- c) Show that the reverse of the statement in b) is not always true.

Solution. a) Since for all $x \in [a, b]$, we have $|f(x)| \leq ||f||_{\infty}$, we derive the following:

$$||f||_1 = \int_a^b |f(x)| dx \le \int_a^b ||f||_\infty dx = (b-a) ||f||_\infty.$$

b) If $f_n \to f$ with respect to $\|\cdot\|_{\infty}$ then $\|f_n - f\|_{\infty} \to 0$ – this is more or less the definition of convergence in a normed space.

But from part a) of this problem, $||f_n - f||_1 \le (b - a) ||f_n - f||_{\infty}$.

Then by the squeeze test, we must also have that $||f_n - f||_1 \to 0$, showing, again by problem 1 part a), that $f_n \to f$ with respect to $||\cdot||_1$.

c) For simplicity, let us work with C[0, 1].

We define $f: [0,1] \to \mathbb{R}$ as f(x) = 1 for all x.

Moreover, we define the sequence of functions $(f_n)_{n\geq 1}$ as follows:

$$f_n(x) = \begin{cases} nx, & \text{if } x \in [0, \frac{1}{n}] \\ 1, & \text{if } x \in [\frac{1}{n}, 1]. \end{cases}$$

Make sure you draw a picture of these functions, it is more important than their actual formulas. An easy calculation then shows that

$$||f_n - f||_1 = \int_0^1 |f_n(x) - f(x)| dx = \frac{1}{2} (1 \times \frac{1}{n}) = \frac{1}{2n} \to 0,$$

so $f_n \to f$ with respect to the $\|\cdot\|_1$ norm.

On the other hand, f(0) = 1 and for all $n \ge 1$ we have $f_n(0) = 0$, so $|f_n(0) - f(0)| = 1$. This shows that

$$||f_n - f||_{\infty} \ge 1$$
 for all $n \ge 1$,

hence f_n cannot converge to f with respect to the $\|\cdot\|_{\infty}$ norm.