# Lecture 5

#### **Avi Herman**

#### 9/17/2024

### **Table of Contents**

- Rotational Motion
  - Units
  - Rules
  - Right Hand Rule
    - Visual Example of Right Hand Rule
    - Trick for Right Hand Rule
- Angular Velocity
  - o Example: Find the angular velocity of the second hand on a clock
- Torque
  - Diagram of Torque
- Friction
  - Visual Example of Friction
- PollEV Answers

## **Rotational Motion**

#### **Units**

| Translational Motion                     | Rotational Motion                                                     |
|------------------------------------------|-----------------------------------------------------------------------|
| Position: $ec{x}$ (m)                    | <b>Angle</b> : $\vec{	heta}$ (rad)                                    |
| Velocity: $ec{v}(rac{m}{s})$            | Angular Velocity: $\vec{\omega}$ ( $rac{\mathrm{rad}}{\mathrm{s}}$ ) |
| Acceleration: $ec{a}$ ( $rac{m}{s^2}$ ) | Angular Acceleration: $ec{lpha}(rac{\mathrm{rad}}{s^2})$             |
| Force: $ec{F}$ (N)                       | Torque: $\vec{	au}$ (Nm)                                              |
| Mass: $m$ (kg)                           | Rotational Mass/Moment of Inertia: $I$ (kg $\mathrm{m}^2$ )           |

#### **Rules**

| Translational Motion                     | Rotational Motion                                |
|------------------------------------------|--------------------------------------------------|
| No outside forces means constant $ec{v}$ | No outside torques means constant $\vec{\omega}$ |
| $ec{a} = rac{ec{	ext{Fnet}}}{m}$        | $ec{lpha}=rac{ec{	au}_{ m net}}{I}$             |
| $ec{F}_{ m BA} = -ec{F}_{ m AB}$         | $ec{	au}_{ m BA} = -ec{	au}_{ m AB}$             |

### **Right Hand Rule**

- The right hand rule is used to determine the direction of the angular momentum vector  $(\vec{\omega})$ .
- 1. Identify the Rotation Axis: Determine the axis around which the object is rotating.
- 2. **Curl Your Fingers**: Point the fingers of your right hand in the direction of the rotation (the direction in which the object is moving).
- 3. **Thumb Direction**: Extend your thumb perpendicular to your fingers. The direction your thumb points is the direction of the angular momentum vector  $(\vec{\omega})$ .
- Example
  - o If a wheel is rotating counterclockwise when viewed from above, you would:
  - o Point your fingers in the direction of the rotation (counterclockwise).
  - $\circ$  Your thumb will point upwards, indicating that the angular momentum vector  $(\vec{\omega})$  is directed upwards.

### **Visual Example of Right Hand Rule**



ullet Note  $ec{\omega}=ec{L}$  in this example  $^{ ext{(b)}}$ 

# **Trick for Right Hand Rule**

- Clockwise = away from you
- Counterclockwise = towards you

# **Angular Velocity**

$$ec{\omega}=rac{ec{ heta}_{ extit{f}}-ec{ heta}_{i}}{t_{ extit{f}}-t_{i}}$$

#### Example: Find the angular velocity of the second hand on a clock

- Understanding the Rotation and Angular Velocity
  - $\circ$  The second hand completes one full rotation (360°) in 60 seconds. In radians, a full rotation is  $2\pi$  radians.
- Right-Hand Rule
  - For clocks, the second hand rotates clockwise. However, angular velocity and momentum are typically defined using the right-hand rule:
    - Curl the fingers of your right hand in the direction of the second hand's rotation (clockwise).
    - Your thumb points in the direction of the angular velocity vector  $\vec{\omega}$ , which, in this case, points downward (into the clock face).
- Time for One Full Rotation
  - One complete revolution of the second hand takes 60 seconds.
- Calculating Angular Velocity
  - $\circ$  Angular velocity  $\omega$  is defined as the change in angular displacement over time. For uniform circular motion:

$$\omega = rac{\Delta heta}{\Delta t}$$

- ullet Here,  $\Delta heta = 2\pi$  radians (full circle) and  $\Delta t = 60 \mathrm{\ s.}$
- Angular Velocity (in radians per second)

$$\omega = \frac{2\pi \text{ rad}}{60 \text{ s}} = \frac{\pi}{30} \text{ rad/s}$$

# **Torque**

- Torque is the rotational equivalent of force.
- ullet  $ec{lpha}=rac{ec{ au}_{
  m net}}{I}$ 
  - $\circ$  Units of  $\vec{ au}$  are Nm
  - $\circ$  Units of  $\vec{lpha}$  are  $rac{\mathrm{rad}}{s^2}$
- I rotational mass measures  $\mathrm{mass} \times \mathrm{distance}^2$ 
  - $\circ$  Units of I are kg  $\mathrm{m}^2$
- $au = |ec{ au}| = ec{r} imes ec{F}_{\perp}$ 
  - $\circ$   $ec{r}$  is the distance from the axis of rotation
  - $\circ$   $ec{F}$  is the force applied

# **Diagram of Torque**



$$ullet$$
 Note  $ec F=ec F_\perp$ 

#### **Friction**

- Friction is a force that opposes motion.
  - Static friction prevents motion
  - Sliding friction slows motion
- ullet  $ec{F}_{
  m sliding\ friction} = \mu_{
  m sliding\ friction} \cdot ec{F}_{
  m support}$ 
  - $\circ~\mu$  is the coefficient of friction
  - $\circ$   $ec{F}_{
    m support}$  is the support force
- ullet  $\hat{F}_{
  m sliding\ friction} = -\hat{v}$  if  $ec{v}>0$ 
  - $\circ \hat{v}$  is the velocity of the object
- $F_{
  m static\ friction} = F_{
  m push}\ {
  m if}\ F_{
  m push} < \mu_{
  m static\ friction}\cdot F_{
  m support}$ 
  - $\circ$   $F_{
    m push}$  is the force applied to the object
  - $\circ~\mu_{
    m static~friction}$  is the coefficient of static friction
  - $\circ \; F_{
    m support}$  is the support force

### **Visual Example of Friction**



ullet Note  $ec{F}_{
m support} = ec{F}_{
m normal}$ 

**PollEV Answers** 

$$D\left(\frac{2\pi}{\mathrm{day}}=0.000727\frac{\mathrm{radians}}{s}\right)$$

• What is the angular speed of Earth around its axis?

To solve for the angular speed of the Earth around its axis, we can use the given information:

The Earth completes one full rotation ( $2\pi$  radians) in one day (24 hours).

First, convert the time period from days to seconds:

$$1~\mathrm{day} = 24~\mathrm{hours}$$
 
$$24~\mathrm{hours} = 24 \times 60~\mathrm{minutes} = 1440~\mathrm{minutes}$$
 
$$1440~\mathrm{minutes} = 1440 \times 60~\mathrm{seconds} = 86400~\mathrm{seconds}$$

Now, the angular speed ( $\omega$ ) is given by:

$$\omega = rac{\Delta heta}{\Delta t}$$

Where:

- $\Delta\theta = 2\pi \text{ radians}$
- $\Delta t = 86400 \text{ seconds}$

So,

$$\omega = \frac{2\pi \text{ radians}}{86400 \text{ seconds}}$$

Simplify the expression:

$$\omega = rac{2\pi}{86400} pprox 0.0000727 ext{ radians/second}$$

Thus, the angular speed of the Earth around its axis is approximately 0.0000727 radians/second.