Database Management Systems (DBMS)

Lec 10: Entity-Relationship Model (cont.)

Ramesh K. Jallu

IIIT Raichur

Date: 2/3/21

Recap

- Relationship sets
- Structural constraints
- Identifying relationships

Today's plan

- Two more examples
 - University database
 - Bank database
- Relationship types of higher degree
- Common mistakes in designing ER diagrams

Binary vs *n*-ary relationships

 Some relationships that appear to be nonbinary could actually be better represented by several binary relationships

Binary vs *n*-ary relationships

Converting an *n*-ary relationship to a set of binary relations

Rules for converting

- We replace the relationship set R with an entity set E, and we create three relationship sets
 - R_A, R_B, and R_C are many-to-one relationships from E to A, E to B, and from E to C, resp.
- E is required to have total participation in each of R_A , R_B , and R_C
- If R had any attributes, these are assigned to entity set E; further, a special identifying attribute is created for E

Rules for converting (Cont.)

- For each relationship (a_i, b_i, c_i) in the relationship set R, we create a new entity e_i in the entity set E
- In each of the three new relationship sets, we insert a relationship (e_i, a_i) in R_A , (e_i, b_i) in R_B , and (e_i, c_i) in R_C
- We can generalize this process in a straightforward manner to n-ary relationship sets
- Thus, conceptually, we can restrict the ERmodel to include only binary relationship sets

Not always desirable

- An identifying attribute may have to be created for the entity set created to represent the relationship set. This attribute, along with the extra relationship sets required, increases the complexity of the design
- An *n*-ary relationship set shows more clearly that several entities participate in a single relationship.
- There may not be a way to translate constraints on the ternary relationship into constraints on the binary relationships. For example, consider a constraint that says that R is many-to-one from A, B to C; that is, each pair of entities from A and B is associated with at most one C entity. This constraint cannot be expressed by using cardinality constraints on the relationship sets R_A , R_B , and R_C .

Relationship types of degree higher than two

Relationship types of degree higher than two

Example

Key points

- It is often tricky to decide whether a particular relationship should be represented as a relationship type of degree n or should be broken down into several relationship types of smaller degrees
- The designer must base this decision on the semantics or meaning of the particular situation being represented
- The designer must base this decision on the semantics or meaning of the particular situation being represented
- If the ER model that permit only binary relationships, a ternary relationship must be represented as a weak entity type, with no partial key and with three identifying relationships

 Use of the primary key of an entity type as an attribute of another entity type, instead of using a relationship

 Use of the primary key of an entity type as an attribute of another entity type, instead of using a relationship

 To designate the primary key attributes of the related entity sets as attributes of the relationship

- To use a relationship with a single-valued attribute in a situation that requires a multivalued attribute
 - e.g., store the marks that a student gets in different assignments of a course

- To use a relationship with a single-valued attribute in a situation that requires a multivalued attribute
 - e.g., store the marks that a student gets in different assignments of a course

- To use a relationship with a single-valued attribute in a situation that requires a multivalued attribute
 - e.g., store the marks that a student gets in different assignments of a course

- To use a relationship with a single-valued attribute in a situation that requires a multivalued attribute
 - e.g., store the marks that a student gets in different assignments of a course

Removing redundant attributes

 The attribute D_name in **Student** replicates information present in the relationship, and is therefore redundant and needs to be removed

Thank you!