6.890	Lecture 7	Sept. 24, 2014
Planar 3SAT	-: [Lic	htenstein-SICOMP 1982)
- NP-hard	I special case of	of 3SAT
— variable	-clause bipartite (vinc) whenever v	graph is planar
+ vemoins	planar after con	nactina variables
in a cu	rele: 1 > 12 -> -	· > V _N > V ₁
- OR	after connecting vo	ariables à clauses
	in a cycle D	yer & Frieze 1986)
		equire vis positive
i p. spli	t with into	negative connections
	positive connect	Tos negative connections
+ remains	planar it we req	uive all positive of cycle & negative monotone 35AT
connection	ns on one side	=> monatone 3SAT
CONTROL CONTROL	07(0)00(8:0:0	77.07010
		positive)
	(V1)-(V2)	
		negative
	[de Berg &	Khosravi - CocooN 2010]
- reductions	s from 3SAT	1

										(esse.	tial	lles	Lic	hte	nst(2în	198	2)
Pla	m	۵Υ	re	cti	lin	6 B1	<i>(</i>	35	AT	: 5	Kni	ath	&	Rag	nun	atho	λh	190	12]
		1/0	avic	hl	0	= 1	101	700	nto	l s	569	me	nt	\mathbb{Q}^{\prime}	×	((λχί	S	9
	_		aus	Se_	<u>-</u>	h	0115	300	tal	2	5091	hei	it (off		Χ (axi	5)	
					+	3		ler.	tica	al	Co	nne	ct	on?	s to	s V	avi	abs	les
	_	nc) C	NO!	SSÌI	N99	s/c) Ve	rli	Op	(0	the	, t	ha	и С	onv	18c	tion	5)
						0				1			cl	aus	, 6 L			_\	-)
													ひ	aus avs.			1	1	•
Pl	<u>m</u>	ar	mono	ono	ton	le_	re	cti	liv	eav	,	3S/	<u> 17</u> :	a	S (bo	re		
	+	W	onc	tor	le.	35	SAT	} 6	20.0	ch	clo	rus	e (all	P	sit	ive	,	
						•						٥,	(all	ı N	990	ativ	e	
	+	P	051	tive	2 (clo	xu5	es	a	bov	6	X	СX	is	—	ل	I	1	-
	+	N	ega	tiv	e c	clo	tus	es,		elo	W	χ	axi	S	1_				
						_		1	de	Be	rg C	KKI	105	rav	i –(Coc	001	V 20	010
	_	re	duc	tio	n	fro	γη	plo	lnai	V 1	æč	tili	1ea	r a	35,	AT			
			•																
\subseteq				0.0	^							•					. 0		^
	_	īf	a	W .	cl	aus	ses	a	n	gn	2 8	Sid	e.	of	Va	ria	ble	Cyc	cle_
			abo	ve	χ	, (XI.	S	in	pl	anc	ar 1	rec	til	inec	λV	35	AT)
		th	en	<u>`</u> €	P	Vi	α	tve	e	dy	10v	nic	P	rog	ra	m	3		
	\Rightarrow	īf	C	lai	126	25	a	lso	•	Con	nec	téc	Q `ī	n	Q.	Pal	h		4.
		+	er c en	ϵ	7	((Ma	rul		ford	e .	clo	use	S	9	Sa	me	Si	(
							(wa	ante	d	thi	s e	9.	for	Pi	ısh	-1/	Niv	iten	do)

Planar 1-in-3SAT: Dyer & Frieze 1986) - NP-hard special case of 1-in-3SAT - variable-clause bipartite graph is planar + remains planar after connecting variables in a cycle: 12 > 12 > -- > 1n > 12 - OR after connecting variables & clauses in a cycle Reduction from Planar 3SAT: - clause gadget <u>Planar positive 1-in-3SAT</u>: no negations Mulzer & Rote-J. ACM 2008] + remains planar after connecting variables
a cycle: 12 > 12 > -- > Vn > V1 Rectilinear --: - variable = horizontal segment on x axis - clause = horizontal segment (off x axis) + 3 vertical connections to variables Reduction from Planar 3SAT: - equal & not-equal gadgets - remove negations - expand clauses (2 cases: u=0 or 1)

Careful: Planar NAE 35AT is polynomial! [Moret - SIGACT News 1988] Reduction to Planor Max Cut: 2-color vertices of planar graph to maximize red-blue edges 4> ∈ P [Orlova & Dortman 1972] [Hadlock-SICOMP 1975] (in dual, red-blue edges are non-doubled edges in Chinese Postman problem) - variable gadget / wire - NAE clause nar X3C: [Dyer & Frieze 1986]

- bipartite graph of elements vs. 3-sets Planar X3C: is planar - reduction from planar 1-in-3SAT Planar 3DM: [Dyer & Frieze 1986] - special case where elements are 3-colored & each 3-set is trichromatic + remains planar if elements connected in cycle - reduction from planar 1-in-3SAT

Planar vertex cover:	[Lichtenstein 1982]
- given a planar graph - choose k vertices to hit all	
- choose k vertices to hit all	edges
- reduction from planar 3SAT	
- variable gadget: even c	
- clause gadget: triangle	
- maximum degree 3	
Planar (directed) Hamiltonian cycle:	[Lichtenstein 1982]
- reduction from planar 3SAT	
- visit cycle through varia	
- variable gadget = ladder	
- clause gadget - can't jump var> clause -	sother var.
- can't jump var> clause same reduction claimed for	undirected
Shakashaka [Guten 2008; Nikoli	2012-7
- reduction from Planar 3SAT	
Flattening fixed-angle chains:	
- reduction from Partition [Soss	
- reduction from planar monotone	rectilinear 3SAT
[Den	noine & Eisenstat 2011

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.