Wstęp do uczenia maszynowego

Dr inż. Urszula Libal

Informacje wstępne

Kurs

"Rozpoznawanie obrazów"

- **☐** Wykład 30h
- ☐ Laboratorium 30h

Zespół dydaktyczny

Katedra Akustyki, Multimediów i Przetwarzania Sygnałów

dr inż. Urszula Libal (wykład i lab)

Ocena końcowa

Ocena końcowa składa się z ocen z laboratorium (50%) i z wykładu (50%).

Wykład:

- 2 kolokwia
- ☐ krótkie pytania otwarte
- ☐ możliwość zwolnienia z egzaminu

Ocena z laboratorium

Laboratorium:

- pracujemy w Pythonie
- ☐ dwa zadania projektowe
- punkty za sprawozdanie w Jupyter Notebook oraz prezentację rozwiązań
- ❖ Zad. 1 (40 pkt) analiza jakości klasyfikacji dla benchmarkowych zbiorów danych
- ❖ Zad. 2 (60 pkt) większy projekt w 2-osobowych grupach

Eportal – link

Kurs "Rozpoznawanie obrazów":

https://eportal.pwr.edu.pl/

Uczenie maszynowe

Uczenie maszynowe (ang. machine learning) – obszar sztucznej inteligencji poświęcony algorytmom i metodom, które budują model matematyczny ("uczą się") na podstawie przykładowych danych, zwanych zbiorem uczącym. Po wyuczeniu, taki model może zostać użyty do podejmowania decyzji bez udziału człowieka.

Uczenie maszynowe

Podział na główne dziedziny:

- Uczenie nadzorowane (ang. Supervised learning)
- **Uczenie nienadzorowane** (ang. Unsupervised learning)
- **Uczenie przez wzmacnianie** (ang. Reinforcement learning)
- * Redukcja wymiarowości (ang. Dimensionality reduction)

Uczenie nadzorowane (ang. Supervised learning) – metody automatycznej **klasyfikacji** obiektów (bądź regresji) w oparciu o zbiór uczący, którego elementy <u>mają</u> przypisane **etykiety klas**.

Klasyfikacja – metoda przypisania obiektu do jednej z klas.

Klasy (np. tu dwie klasy: chihuahua, muffin)

Klasyfikator – algorytm klasyfikujący obiekty.

Zbiór uczący – zestaw obiektów, na podstwie których klasyfikator się uczy.

Obiekt:

Oryginalna klasa obiektu:

M CH M CH M CH M CH

(2 klasy: CH - chihuahua, M – muffin)

11

Obiekty:

(10 klas odpowiedających cyfrom)

Uczenie nienadzorowane (ang. Unsupervised learning) – metody automatycznej **klasteryzacji** obiektów w oparciu o zbiór uczący, którego elementy <u>nie maja</u> przypisanych **etykiet klas**.

Klasteryzacja – metoda podziału obiektów na klastry.

Klastry – wyodrębnione podzbiory obiektów, które łączą jakieś zbliżone cechy.

Obiekty w zbiorze uczącym nie zostały przypisane do klas.

Brak zdefiniowanych klas!

Klastry – przykład:

- ☐ klaster nr 1: "wiele ciemnych plam na jaśniejszym tle"
- □ klaster nr 2: "trzy ciemne plamy na beżowym tle"

Uczenie przez wzmacnianie

Uczenie przez wzmacnianie (ang. Reinforcement learning) – metoda uczenia polegająca na wzmacnianiu decyzji przy maksymalizowaniu ustalonego kryterium. Agent uczy się reguł danego środowiska w pętli, w sposób wielokrokowy.

Redukcja wymiarowości

Redukcja wymiarowości (ang. Dimensionality reduction) – transformacje danych z wysoko-wymiarowych do nisko-wymiarowych przestrzeni w taki sposób, aby promowane były cechy obiektów, które dobrze dyskryminują klasy.

Do metod redukcji wymiarowości zalicza się transformacje liniowe i nieliniowe, oraz takie grupy metod, jak selekcja cech i ekstrakcja cech.

Redukcja wymiarowości

Przykład: **PCA** (ang. Principal Component Analysis) – rzut wielowymiarowych danych na podprzestrzeń rozpiętą przez wektory własne.

Uczenie maszynowe - przed

Przed rozpoczęciem "uczenia" trzeba określić cechy (ang. features) obiektów:

Uczenie maszynowe - po

W przypadku klasyfikacji (uczenia nadzorowanego) możemy określić **jakość** wyuczonego klasyfikatora dokonując testowej klasyfikacji (obiektów ze zbioru testowego).

Obiekt:

Klasa wskazana przez klasyfikator (na czerwono błędnie):

CH

CH

M

CH

CH

CH

CH

CH