

North South University

Department of Mathematics & Physics (DMP)

MAT250: Calculus and Analytical Geometry (Calculus III)

Instructor Dr. Md. Kamrujjaman

Associate Professor, Department of Mathematics, University of Dhaka

Office SAC 1016B

E-mail <u>kamrujjaman@du.ac.bd</u> md.kamrujjaman@northsouth.edu

Course coordinator : Prof. Dr. Md. Mamun Molla

Office hour: Thursdays and Saturdays \rightarrow 3:00pm – 4:00pm, and by appointment

Credit Hour

Course Objectives

- 1. To demonstrate the function of several variables and plotting 3D figures.
- 2. To teach the concept of partial derivatives and their applications.
- 3. To develop the ability of multiple integration in different coordinate systems.
- 4. To analyze the vector calculus and their physical significance.

Upon successful completion of this course, students will be able to:

- (CO-1)Classify the difference between single and several variables functions and limits as well as plotting 3D figures.
- (CO-2) Evaluate the partial derivatives for several variables functions and distinguish ordinary and partial derivatives.
- (CO-3) Apply multiple integration techniques to find area and volume of the different model geometries.
- (CO-4) Demonstrate their understanding of vector calculus and vector algebra.
- (CO-5) Apply line and surface integrals to evaluate the work done and the corresponding flux.

Course Learning Outcomes:

Mapping of Course Outcomes

#	Course Outcomes (CO)	Bloom's taxonomy domain/level (C: Cognitive P: Psychomotor A: Affective)	Delivery methods and activities	Assessment tools
CO-1	Classify the difference between single and several variables functions and limits as well as plotting 3D figures.	C1, C2, C3	Lecture Discussion	Quiz, Assignment
CO-2	Evaluate the partial derivatives for several variables functions and distinguish ordinary and partial derivatives.	C3, C4, P2	Lecture, inclass group discussion,	Concept clarification, Midterm exam, Assignment
CO-3	Apply multiple integration techniques to find area and volume of the different model geometries.	C2, C3, P2	Lecture, Discussion	Class work, Quiz, Assignment, Final Exam
CO-4	Demonstrate their understanding of vector calculus and vector algebra.	C2, P2	Lecture, Discussion	Concept, Demonstration, Quiz, Assignment, Final Exam
CO-5	Apply line and surface integrals to evaluate the work done and the corresponding flux.	C2, C3, C4, P2	Lecture Demonstration	Assignment, Final Exam

Text book: 1. Calculus: Early Transcendental; Anton, Bivens and Davis, 10th Edition.

Marks Distribution: (Subject to change according to the directives from UGC/NSU)

Assessment Strategy and Grading Scheme			
Grading tool	Marks		
Attendance	10%		
Assignments (At least 4 assignments)	10%		
Quizzes (Best 3 quizzes out of at least 5 quizzes)	20%		
Midterm	20%		
Final Exam	40%		

Course Content:

Partial Derivatives: (Exercise 13)

- 1. Functions of several variables, Limit and Continuity
- 2. Partial Derivatives, Differentiability and Chain Rule
- 3. Directional Derivatives, Tangent planes and normal vector, maxima and minima

Some Chapters from MAT240 (Need revision)

- 1. Cylindrical surface:3D graph plotting (11.1)
- 2. Parametric equation of lines (11.5)
- 3. Cylindrical and Spherical Coordinates (11.8)

Multiple Integrals: (Exercise 14)

- 1. Double Integrals over rectangular and non-rectangular regions
- 2. Double Integrals in Polar Coordinates
- 3. Triple Integrals: Cartesian, Cylindrical and spherical coordinates
- 4. Change of variables in Multiple Integrals; Jacobean

Vector Calculus: (Exercise 15)

Dot and cross product (exercise 11.3 and 11.4, need revision), Vector fields, Line integrals, Green's Theorem, Surface Integrals, The Divergence, Theorem, Stokes Theorem.

Course Schedule:

Lesson	Topics	Learning Activities	Assessment tools	Learning Outcome
1	Functions of two variables: drawing of natural domain	Lecture1	Discussions Mid term	CO-1
2	Function of two variables: 3D graph plotting	Lecture1		
3	Limits and Continuity	Lecture Assignment		CO-1
4	Partial Derivatives: first order derivatives and their physical significance	Lecture Group Discussion	Discussions Mid term	CO-2
5	Partial Derivatives: 2 nd and mixed order derivatives and their applications	Lecture Discussion	Mid term	CO-2
6	Differentiability and Chain Rule	Lecture	Mid term	CO-2
7	Directional Derivatives	Lecture Assignment	Mid term	CO-2
8	Tangent planes and normal line	Lecture	Mid term	CO-2
9	maxima and minima	Discussion Lecture Assignment	Mid term	CO-2
10	Double Integrals over rectangular regions	Lecture Assignment	Mid term	CO-3

11	Double Integrals over non-rectangular		Mid term	
	regions	Lecture		CO-1
12	Double Integrals over non-rectangular regions: volume calculation			
13	Revision of the previous lectures	Lecture	Mid term	
		assignment		
14	Midterm (Maximum 13 lectures)			
15	Double Integrals in Polar Coordinates	Lecture assignment	Mid term	CO-3
16	Double Integrals in Polar Coordinates			
17	Triple Integrals: in Cartesian coordinates	Lecture assignment	Mid term	CO-3
	Triple Integrals: in Cartesian coordinates	Lecture assignment	Mid term	CO-3
18	Change of variables in Multiple Integrals; Jacobean (chapter 14.7)	Lecture	Final	CO-3
19	Change of variables in Multiple Integrals; Jacobean (chapter 14.7)			
20	Cylindrical and Spherical Coordinates: chapter 11.8. We need this chapter for understanding Cylindrical and Spherical Coordinates	Lecture	Final	CO-3
21	Triple Integrals: Cylindrical and spherical coordinates (chapter 14.6) In this chapter we need the Jacobean concept from the chapter 14.7	Lecture	Final Exam	CO-3
22	Triple Integrals: Cylindrical and spherical coordinates (chapter 14.6)	Lecture	Final Exam	CO-3

23	Vector fields	Lecture	1	
23	vector nerus	200020	Final Exam	CO-4
24	Line integrals: for scalar function	Lecture		
			Final Exam	CO-4
25	Line integrals: for vector field	Lecture		
			Final Exam	CO-4
26	Line integrals: work done calculation	Lecture		
			Final Exam	CO-4
27	Green's Theorem	Lecture		
			Final Exam	CO-4
28	Surface Integrals: for scalar function	Lecture		
			Final exam	CO-5
29	Surface Integrals: for scalar function	Lecture		
			Final exam	CO-5
30	Divergence theorem	Lecture	Final exam	CO-5
31	Divergence theorem	Lecture	Final exam	CO-5
33	Stokes theorem: verification	Lecture,	Final exam	CO-5
34	Stokes theorem: evaluation of line integral	Lecture,	Final exam	CO-4
35	Stokes theorem: relation with Green's	Lecture,	Final exam	CO-4
	theorem		Formative assessment	
36	Revision on the previous lecture for final exam	Lecture,	Final exam	
	Final Exam			

Rules and regulations:

- (a) There is **no scope to retake a quiz**. In case of Mid-term- or Final exam, exceptional cases*(unfortunate physical inability, accidents, serious illness) may be considered conditionally (with a **penalty of 20% reduced marks**) with proper justification.
- (b) Three consecutive absents need an official clarification.
- (c) Student having attendance less than 60% of total classes will be not allowed to sit for Final Exam.
 - ** Minimum five quizzes will be taken.
 *** Minimum four assignments will be taken.

Note: Full attendance will carry the bonus marks.

****** No Make Up Exam ********