

Artificial Neural Networks Machine Learning

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

Birds inspired us to fly

Burdock plants inspired velcro

Dolphins inspired sonar development

https://sites.google.com/site/echolocationkawproject/_/rsrc/1459209762464/sonars/image.jpeg

Dogs inspired ...

It seems logical to look at the brain's architecture for inspiration on how to build an intelligent machine.

Today's Agenda

- Artificial Neural Networks
 - From Biological to Artificial Neurons
 - Biological Neurons
 - Logical Computations with Neurons
 - The Perceptron
 - Examples
 - Neural Network

From Biological to Artificial Neurons

References

- ____
 - "A logical calculus of the ideas immanent in nervous activity", 1943:
 https://link.springer.com/content/pdf/10.1007%2FBF02478259.pdf
 - "The Perceptron: A perceiving and recognizing automaton", 1957
 https://www.import.io/wp-content/uploads/2017/06/rosenblatt-1957.pdf
- "Perceptrons: An Introduction to Computational Geometry", 1969
- "Learning representations by back-propagating errors", 1986
 https://www.nature.com/articles/323533a0

https://web.stanford.edu/class/psych209a/ReadingsByDate/02_06/PDPVollChapter8.pdf

ILSVRC 2012 — Image Classification task

Rank	Name	Error Rate (%)	Description
1	University of Toronto		Deep Learning
2	University of Tokyo	26.2	
3	University of Oxford	26.9	Hand-crafted features and learning models
4	Xerox/INRIA	27.0	9

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

"ImageNet classification with deep convolutional neural networks". NIPS, 2012.

ILSVRC 2012 — Image Classification task

Rank	Name	Error Rate (%)	Description
1	University of Toronto	15.3	Deep Learning
2	University of Tokyo	26.2	
3	University of Oxford	26.9	Hand-crafted features and learning models
4	Xerox/INRIA	27.0	9

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

"ImageNet classification with deep convolutional neural networks". NIPS, 2012.

[&]quot;ImageNet classification with deep convolutional neural networks". NIPS, 2012.

Will this wave die out like the previous ones did?

From Biological to Artificial Neurons

1. There is now a **huge quantity of data** available to train neural networks.

IM ... GENET

www.image-net.org

22K categories and 14M images

- Animals
 - Bird
 - Fish
 - Mammal
 - Invertebrate
 Materials

- Plants
 - Tree
 - Flower
- Food

- Structures Artifact
 - Tools

 - Appliances
 - Structures

- Person
- Scenes
 - Indoor
 - Geological
 - **Formations**
- Sport Activities

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

From Biological to Artificial Neurons

- 1. There is now a **huge quantity of data** available to train neural networks.
- 2. Computing power now makes it possible to train large neural networks in a reasonable amount of time.

http://www.tomshardware.com/news/google-automl-aritifical-intelligence-ai,34533.html

From Biological to Artificial Neurons

- 1. There is now a **huge quantity of data** available to train neural networks.
- 2. Computing power now makes it possible to train large neural networks in a reasonable amount of time.
- 3. The training algorithms have been improved.

 Home
 News
 Journals
 Topics
 Careers

 Latest News
 ScienceInsider
 ScienceShots
 Sifter
 From the Magazine
 About News
 Quizzes

SHARE

A representation of a neural network.

Akritasa/Wikimedia Commons

Brainlike computers are a black box. Scientists are finally peering inside

By Jackie Snow | Mar. 7, 2017, 3:15 PM

Last month, Facebook announced software that could simply look at a photo and tell, for example, whether it was a picture of a cat or a dog. A related program identifies cancerous

Grad-CAM for dog

From Biological to Artificial Neurons

- 1. There is now a **huge quantity of data** available to train neural networks.
- 2. Computing power now makes it possible to train large neural networks in a reasonable amount of time.
- 3. The training algorithms have been improved.
- 4. ANNs seem to have entered a virtuous circle of funding and progress.

Biological Neurons

https://www.youtube.com/watch?v=A9Xru1ReRwc

Logical Computations with Neurons

Logical Computations with Neurons

McCulloch and Pitts (1943) proposed a very simple model:

- It has one or more binary (on/off) inputs and one binary output.
- The artificial neuron simply activates its output when more than a certain number of its inputs are active.

Artificial Neural Networks performing simple logical computations

Invented in 1957 by Frank Rosenblatt.

- It is based on a Linear Threshold Unit (LTU):
 - The inputs and output are now numbers (instead of binary on/off values) and each input connection is associated with a weight.
- The LTU computes a weighted sum of its inputs then it applies a step function to that sum and outputs the result.

Linear Threshold Unit

Linear Threshold Unit

$$heaviside(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$

Linear Threshold Unit

$$\text{heaviside}(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$

$$sign(z) = \begin{cases} -1 & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ +1 & \text{if } z > 0 \end{cases}$$

Inputs

Sigmoid (Logistic)
Inputs activation function

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

Inputs

Examples

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \text{ AND } x_2$

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \land ND x_2$

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \land ND x_2$

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \land ND x_2$

g(z)

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \land ND x_2$

g(z)

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \land ND x_2$

g(z)

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \land ND x_2$

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \land ND x_2$

Simple Example: OR

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \text{ OR } x_2$

Simple Example: OR

$$x_1, x_2 \in \{0,1\}$$
 $y = x_1 \text{ OR } x_2$

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

"activation" of unit i in layer j

Layer 1 Layer 2 Layer 3

"activation" of unit i in layer j

 $\mathfrak{G}^{(j)}$ matrix of weights controlling function mapping from layer j to layer j+1

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

matrix of weights controlling function mapping from layer j to layer j+1

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

matrix of weights controlling function mapping from layer j to layer j+1

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

matrix of weights controlling function mapping from layer j to layer j+1

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

 $a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$ $h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$

 $\Theta^{(j)}$ matrix of weights controlling function mapping from layer j to layer j+1

Feedforward Neural Network (forward propagating)

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$$

Other Network Architectures

Example: XNOR $x_1, x_2 \in \{0,1\}$ $y = x_1 \times 1000 \times 10^{-2}$

Example: XNOR $x_1, x_2 \in \{0,1\}$ $y = x_1 \times NOR x_2$

Example: XNOR $x_1, x_2 \in \{0,1\}$ $y = x_1 \times NOR x_2$

+20

Example: XNOR $x_1, x_2 \in \{0,1\}$ $y = x_1 \times NOR x_2$

Example: XNOR $x_1, x_2 \in \{0,1\}$ $y = x_1 \times 1000 \times 10^{-2}$

Neural Network Intuition

Neural Network Intuition

Toy 2d classification with 2-layer neural network

https://youtu.be/3JQ3hYko51Y

Neural Network Zoo

http://www.asimovinstitute.org/neural-net work-zoo/

To be continued ...

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 10
- Pattern Recognition and Machine Learning, Chap. 5
- Pattern Classification, Chap. 6
- Free online book: http://neuralnetworksanddeeplearning.com

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 4 & 5
- https://www.coursera.org/learn/neural-networks