Fourier Analysis

Labix

May 26, 2023

Abstract

Contents

1	The	Fourier Series	2
	1.1	Introduction to the Fourier Series	2

Fourier Analysis Labix

1 The Fourier Series

1.1 Introduction to the Fourier Series

Definition 1.1.1: The nth Fourier Coefficient

Let f be an integrable function on an interval [a, b] with b - a = L, then the nth Fourier coefficient of f is defined by

$$f_n = \frac{1}{L} \int_a^b f(x) e^{-\frac{2\pi i n}{L}x} dx$$

where $n \in \mathbb{Z}$

Definition 1.1.2: Fourier Series

Define the Fourier series of f is given by

$$f_F(x) = \sum_{n=-\infty}^{\infty} f_n e^{\frac{2\pi i n}{L}x}$$

Definition 1.1.3: Nth partial sum

The Nth partial sum of the Fourier series of f, for $N \in \mathbb{N}$ is given by

$$S_N(f)(x) = \sum_{n=-N}^{N} f_n e^{\frac{2\pi i n}{L}x}$$

Theorem 1.1.4

Suppose that f is an integrable function on the circle with $f_n = 0$ for all $n \in \mathbb{N}$, then $f(\theta_0) = 0$ whenever f is continuous at the point θ_0 .

Corollary 1.1.5

Let f be a continuous function on the circle and that the Fourier series of f is absolutely convergent, then the Fourier series converges uniformly to f. That is

$$\lim_{N \to \infty} S_N(f)(\theta) = f(\theta)$$

Corollary 1.1.6

Let f be twice differentiable defined on the circle. Then

$$f_n = O\left(\frac{1}{|n|^2}\right)$$

as $|n| \to \infty$.

Definition 1.1.7: Convolution

Let f, g be 2π -periodic integrable functions on \mathbb{R} . Define their convolution f * g on $[-\pi, \pi]$ by

$$(f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x - y) dy$$

Fourier Analysis Labix

Proposition 1.1.8

Let f,g,h be $2\pi\text{-periodic}$ integrable functions. Then

- $\bullet \ f*(g+h)=(f*g)+(f*h)$
- (cf) * g = c(f * g) = f * (cg) for any $c \in \mathbb{C}$
- $\bullet \ f * g = g * f$
- $\bullet \ (f * g) * h = f * (g * h)$
- f * g is continuous
- $\bullet \ (f * g)_n = f_n g_n$

Definition 1.1.9: Family of Kernels

A family of kernels $\{K_n(x)\}_{n=1}^{\infty}$ on the circle is said to be a family of good kernels if

- For all $n \in \mathbb{N}$, $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(x) dx = 1$
- There exists M>0 such that for all $n\in\mathbb{N},$ $\int_{-\pi}^{\pi}|K_n(x)|\,dx\leq M$
- For every $\delta > 0$. $\int_{\delta \le |x| \le \pi} |K_n(x)| dx \to 0$