Lab Assigment-5

• When writing a relational algebra it would work over all possible database instances and not just for the given example instance!

Consider the following database schema and example instance:

recipe

<u>name</u>	inventor	kitchen
Pasta and Meatballs	Le cook	Italian
Cheese Soup	The french	French
Burger	Cowboys	American

foodItem

<u>item</u>	type	calorie
		S
Pasta	Wheat	20
	product	
Meatballs	Meat	40
Tomato Sauce	Sauce	5
Onions	Vegetables	1
Cheese	Diary	30
Bread	Wheat	25
	product	
Ground Beef	Meat	45

Hints:

ingredient

<u>recipe</u>	<u>foodItem</u>	ounces
Pasta and Meatballs	Pasta	50
Pasta and Meatballs	Meatballs	10
Pasta and Meatballs	Tomato Sauce	5
Pasta and Meatballs	Onions	1
Cheese Soup	Onions	4
Cheese Soup	Cheese	15
Cheese Soup	Bread	20
Burger	Bread	10
Burger	Ground Beef	20

stock

<u>foodIte</u> m	<u>shop</u>	price
<u>m</u> Pasta	Aldi	5
Meatballs	Aldi	10
Tomato	Aldi	3
Sauce		
Tomato	Walmart	3
Sauce		
Cheese	Treasury	15
	Island	

- Underlined attribute form the primary key of a relation
- The attribute *recipe* of relation *ingredient* is a foreign key to relation *recipe*. The attribute *foodItem* of relation *ingredient* is a foreign key to relation *foodItem*.
- The attribute *foodItem* of relation *stock* is a foreign key to relation *foodItem*.

Question 1

Write a relational algebra expression that returns the food items required to cook the recipe "Pasta and Meat-balls". For each such food item return the item paired with the number of ounces required by the recipe.

Question 2

Write a relational algebra expression that returns food items that are sold at "Aldi" and their price.

Question 3

Write a relational algebra expression that returns food items (item) that are of type "Wheat product" or of type "Meat" and have at least 20 calories per ounce (attribute calories).

Question 4

Write a relational algebra expression that returns the items and their price for all items of type "Wheat product" sold at Aldi.

Question 5

Write a relational algebra expression that returns the names of all recipes that contain meat products (food items of type "Meat").

Question 6

Write a relational algebra expression that returns all recipes that contain both "Onions" and "Cheese".

Question 7

Write a relational algebra expression that returns the food items that are ingredients for "Cheese Soup" but not for "Burgers".

Question 8

Write a relational algebra expression that returns the total number of ounces for all ingredients per recipe.

Question 9

Write a relational algebra expression that returns the average price of food items per type. For example, this expression should return tuples like (Wheat product, 34.5).

Question 10

Write a relational algebra expression that returns the number of food item types for which the average calories for all food items of this type is higher than 40.