Algebraic Topology - Dunkin's Torus 5 -

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

November 2, 2021

Overview

The Fundamental Group Retractions and Fixed Points

- The Fundamental Theorem of Algebra

Definition

If $A \subset X$, a retraction of X onto A is a continuous map $r: X \to A$ such that r|A is the identity map of A. If such a map r exists, we say that A is a retract of X.

Lemma (55.1)

If A is a retract of X, then the homomorphism of fundamental groups induced by inclusion $j:A\to X$ is injective.

Theorem (55.2, No-retraction theorem)

There is no retraction of B^2 onto S^1 .

Lemma (55.3)

Let $h:S^1\to X$ be a continuous map. Then the following conditions are equivalent:

- (1) h is nulhomotopic.
- (2) h extends to a continuous map $k:B^2\to X$.
- (3) $\,h_{\ast}$ is the trivial homomorphism of fundamental groups.

Corollary (55.4)

The inclusion map $j:S^1\to\mathbb{R}^2-0$ is not nulhomotopic. The identity map $i:S^1\to S^1$ is not nulhomotopic.

Theorem (55.5)

Given a nonvanishing vector field on B^2 , there exists a point of S^1 where the vector field points directly inward and a point of S^1 where it points directly outward.

Note

• A vector field on B^2 is an ordered pair (x, v(x)), where $x \in B^2$ and v is a continuous map of B^2 into \mathbb{R}^2 .

$$\mathbf{v}(\mathbf{x}) = \mathbf{v}_1(\mathbf{x})\mathbf{i} + \mathbf{v}_2(\mathbf{x})\mathbf{j}$$

where
$$v = (v_1, v_2)$$
.

• A vector field is said to be nonvanishing if $v(x) \neq 0$ for every x.

Theorem (55.6, Brouwer Fixed-point Theorem for the Disc)

If $f:B^2\to B^2$ is continuous, then there exists a point $x\in B^2$ such that f(x)=x .

Corollary (55.7)

Let A be a 3 by 3 matrix of positive real numbers. Then A has a positive real eigenvalue.

Theorem (55.8)

There is an $\varepsilon > 0$ such that for every open covering $\mathcal A$ of T by sets of diameter less than ε , some point of T belongs to at least three elements of $\mathcal A$.

Exercises

Ex 55.1

Show that if A is a retract of B^2 , then every continuous map $f:A\to A$ has a fixed point.

Exercises

Ex 55.2

Show that if $h: S^1 \to S^1$ is nulhomotopic, then h has a fixed point and h maps some point x to its antipode -x.

Exercises

Ex 55.4

Suppose that you are given the fact that for each n, there is no retraction $r:B^{n+1}\to S^n$. Prove the following:

- (a) The identity map $i:S^n\to S^n$ is not nulhomotopic.
- (b) The inclusion map $\mathfrak{j}:S^n\to\mathbb{R}^{n+1}-\mathbf{0}$ is not nulhomotopic.
- (c) Every nonvanishing vector field on B^{n+1} points directly outward at some point of S^n , and directly inward at some point of S^n .
- (d) Every continuous map $f: B^{n+1} \to B^{n+1}$ has a fixed point.
- (e) Every n+1 by n+1 matrix with positive real entries has a positive eigen value.
- (f) If $h: S^n \to S^n$ is nulhomotopic, then h has a fixed point and h maps some point x to its antipode -x.

Theorem (56.1,The Fundamental Theorem of Algebra)

A polynomial equation

$$x^{n} + a_{n-1}x^{n-1} + \cdots + a_{1}x + a_{0} = 0$$

of degree n>0 with real or complex coefficients has at least one (real or complex) root.

Proof, Step1

Consider the map $f: S^1 \to S^1$ given by $f(z) = z^n$, where z is a complex number.

Claim: f* is injective.

Let $p_0: I \to S^1$ be the standard loop in S^1 ,

$$p_0(s) = e^{2\pi i s} = (\cos 2\pi s, \sin 2\pi s).$$

Then

$$f(p_0(s)) = (e^{2\pi i s})^n = e^{2\pi i n s} = (\cos 2\pi n s, \sin 2\pi n s).$$

 $f \circ p_0$ corresponds to the integer n under the standard isomorphism of $\pi_1(S^1, b_0)$ with the integers, whereas p_0 correspond to the number 1.

Proof, Step2

Claim : If $g:S^1 \to \mathbb{R}^2 - \mathbf{0}$ is the map $g(z) = z^n$, then g is not nulhomotopic.

Let $j: S^1 \to \mathbb{R}^2 - 0$ be the inclusion map. Then $g = j \circ f$. f_* and j_* are injective because S^1 is a retract of $\mathbb{R}^2 - 0$. Therefore, g_* is injective, and hence, g cannot be nulhomotopic.

Proof, Step3

Claim: If a polynomial equation

$$x^{n} + a_{n-1}x^{n-1} + \cdots + a_{1}x + a_{0} = 0,$$

with $|a_{n-1}| + \cdots + |a_1| + |a_0| < 1$, then the equation has a root lying in the unit ball B^2 .

Assume it has no such root. Then we can define a map $k:B^2\to\mathbb{R}^2-0$ by the equation

$$k(z) = z^{n} + a_{n-1}z^{n-1} + \cdots + a_{z}z + a_{0}.$$

Let $h = k|S^1$. Because h extends to a map of the unit ball into $\mathbb{R}^2 - \mathbf{0}$, the map h is nulhomotopic. On the other hand, define a homotopy F between h and g by

$$F(z,t) = z^n + t(a_{n-1}z^{n-1} + \cdots + a_0).$$

But it is a contradiction because g is not nulhomotpic.

Proof, Step4

Now let a polynomial equation

$$x^{n} + a_{n-1}x^{n-1} + \cdots + a_{1}x + a_{0} = 0$$

be given, and let us choose a real number c>0 and substitute x=cy. Then

$$y^{n} + \frac{a_{n-1}}{c}y^{n-1} + \dots + \frac{a_{1}}{c^{n-1}}y + \frac{a_{0}}{c^{n}} = 0.$$

Choose c large enough so that

$$\left|\frac{\alpha_{n-1}}{c}\right|+\cdots\left|\frac{\alpha_1}{c^{n-1}}\right|+\left|\frac{\alpha_0}{c^n}\right|<1.$$

By the Step 3, it has a root $y=y_0$, and then the original equation has the root $x_0=cy_0$.