TDT4120 2003-12-09	Studnr:	Antall sider:	1/3	8

Eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900–1500

Faglig kontakt under eksamen:

Arne Halaas, tlf. 41661982; Magnus Lie Hetland, tlf. 91851949.

Hjelpemidler: Alle kalkulatortyper tillatt. Alle trykte og håndskrevne hjelpemidler tillatt.

Svar fortrinnsvis i anviste ruter på oppgavearket.

Tilleggsark kan vedlegges om nødvendig. Skriv studentnummer på alle ark. Oppgaven består av i alt 8 ark.

Oppgave 1 (5%)

a. Anta at vi sammenligner implementasjoner av to algoritmer A_1 og A_2 på samme maskin. For input-størrelse n bruker A_1 $9n^2$ steg mens A_2 bruker $81n \log_2 n$ steg. Hvert steg i A_2 krever dobbelt så mye tid som hvert steg i A_1 . For hvilke verdier av n bruker A_1 kortere tid enn A_2 ?

Svar (5%):			

Oppgave 2 (15%)

Anta at du har tre tabeller, A, B og C, med positive reelle tall. Hver av tabellene har lengde n.

a. Du vil finne et segment $A[i \dots j]$ slik at $A[i] \times A[i+1] \times \dots \times A[j]$ blir størst mulig. Hvordan vil du gå fram? Referer gjerne til algoritmer i pensum. Hva blir kjøretiden?

TDT4120 2003-12-09	Studnr:	Antall sider:	2/8
Svar (5%):			
inneholder b og C in	neholder c og slik at a	tre tall a , b og c , slik at A inn $+b+c=x$ for en gitt x . Beskri lgoritme som løser problemet	v kort (enten
Svar (5%):			
er heltallstabeller, og med pseudokode ell	at heltallene faller i e er dine egne ord) en stikkordsform) event	i oppgave b, men kan nå anta t tallområde fra 1 til M. Beskri algoritme som løser probleme tuelle antagelser om M og mas	v kort (enten t i $\Theta(n^2)$ tid,
Svar (5%):			
(e /e).			

2	/	O
S	/	С

Oppgave 3 (30%)

Du har oppdaget følgende pseudokode i en gammel lærebok i algoritmer. Du er usikker på hvilket språk læreboken er skrevet på, og har litt problemer med å skjønne enkelte av ordene i pseudokoden:

```
Brillig(A[1...N]):

if N = 1:

return A[1], A[1]

slithy \leftarrow \lfloor N/2 \rfloor

gyre, gimble \leftarrow Brillig(A[1...slithy])

wabe, mimsy \leftarrow Brillig(A[slithy + 1...N])

if gyre < wabe:

borogroves \leftarrow gyre

else

borogroves \leftarrow wabe

if gimble < mimsy:

mome \leftarrow mimsy

else

mome \leftarrow gimble

return borogroves, mome
```

a. Hva gjør algoritmen BRILLIG?

Svar (5%):			

b. Anta at N = 256. Hvor mange sammenligninger av typen *gyre* < *wabe* og *gimble* < *mimsy* utføres totalt? (Vi er kun ute etter ett tall.)

```
Svar (5%):
```

c. Sett opp en eksakt rekurrens som uttrykker antall sammenligninger som en funksjon C(N). Anta at $N=2^M$ for et heltall M.

```
Svar (5%):
```

d. Løs rekurrensen i oppgave c. Uttrykk svaret eksakt, uten bruk av asymptotisk notasjon.

4	/	8

Svar (5%):

Du bestemmer deg for å optimalisere algoritmen. Du endrer utsagnet

```
if N = 1: return A[1], A[1]
```

til det følgende:

```
 \begin{aligned} & \textbf{if } N = 2 \text{:} \\ & \textbf{if } A[1] < A[2] \text{:} \\ & \textbf{return } A[1], A[2] \\ & \textbf{return } A[2], A[1] \end{aligned}
```

e. Sett opp en eksakt rekurrens som uttrykker antall sammenligninger som en funksjon C(N). Anta at $N=2^M$ for et heltall M. Rekurrensen skal også telle sammenligninger av typen A[1] < A[2].

Svar (5%):	

f. Løs rekurrensen i oppgave e. Uttrykk svaret eksakt, uten bruk av asymptotisk notasjon.

Svar (5%):			

Oppgave 4 (30%)

a. Anta at du har en urettet graf. Du vet at hver node har maksimalt 3 naboer. Argumenter svært kort for at det er mulig å finne en to-farging av grafen som er slik at hver node maksimalt har 1 konflikt (nabo med samme farge).

Hint: Bruk det totale antall konflikter i argumentasjonen.

_	/	o
Э	/	ð

Antall sider: __

Svar (5%):
Anta at du har oppgitt et flytnettverk definert ved følgende kapasitetsmatrise:
[0 7 6 5 0 0]
$C = \begin{bmatrix} 0 & 7 & 6 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 5 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 9 & 0 \end{bmatrix}$
$C = \begin{bmatrix} 0 & 0 & 0 & 0 & 5 & 0 & 3 \end{bmatrix}$
0 0 0 0 0 6
$[0 \ 0 \ 0 \ 0 \ 0 \ 0]$
Her kan vi for eksempel se at kapasiteten mellom node 4 og node 5 er $C[4,5] = 5$. Anta at node 1 er kilden og at node 7 er sluket.
b. Hvor mange mulige snitt finnes det mellom kilde og sluk?
Svar (5%):
c. Hvordan kan man bruke FORD-FULKERSON til å finne et minimalt snitt? Skriv
kort.
Svar (5%):
d. Finn et minimalt snitt i flytnettverket. Beskriv snittet ved å oppgi alle nodene som befinner seg på samme side som kilden.
Swar (5%).
Svar (5%):

e. Et sett med stier i en graf G = (V, E) er kant-disjunkte hvis ingen kant i E inngår i mer enn en av stiene i settet. Beskriv en algoritme som finner (det maksimale) antall kant-disjunkte stier mellom to gitte noder s og t i en urettet graf.

TDT4120 2003-12-09	Studnr:	Antall sider:	6/8
Svar (5%):			
, ,			
f. Du ønsker å øke	den maksimale flyt	en i et flyt-nettverk så mye som	mulig, men
du får bare lov til å	endre kapasiteten p	å én kant. Hvordan finner du e	en slik kant?
		at du har algoritmer tilgjengeli kjøretiden ($worst$ -case, i Θ -notas	
alltid være mulig å fi			gong. Vir det
Svar (5%):			
(6 / 6).			

Oppgave 5 (5%)

a. Følgende problem ble gitt på eksamen i fjor:

Du har oppgitt et sett S bestående av N reelle tall, samt et reelt tall T og et heltall $K \leq N$. Finnes det en delmenge Q av S med K elementer, der summen av elementene i Q er maksimalt lik T?

Det finnes en algoritme som løser problemet i $\Theta(N)$ tid. Er det rimelig å tro at vi kan finne en like effektiv løsning på følgende problem? Begrunn svaret.
Du har oppgitt et sett S bestående av N reelle tall, samt et reelt tall T og et heltall $K \leq N$. Finnes det en delmenge Q av S med maksimalt K elementer, der summen av elementene i Q er lik T ?
Svar (5%):

Stud.-nr: _____

TDT4120 2003-12-09

7/8

Antall sider: ____

Oppgave 6 (15%)

```
Sum(N)
     top \leftarrow 1; S[top] \leftarrow N; S[0] \leftarrow 2; stacksum \leftarrow N
     WRITE('N = ')
     while top > 0
          for i in 1 \dots top - 1
                WRITE(S[i], ' + ')
          WRITELINE(S[top])
          while S[top] = 1
                top \leftarrow top - 1
                stacksum \leftarrow stacksum - 1
          if top > 0:
                S[top] \leftarrow S[top] - 1
                stacksum \leftarrow stacksum - 1
                while stacksum < N
                     top \leftarrow top + 1
                     if N – stacksum \leq S[top - 1]
                           S[top] \leftarrow N - stacksum
                          stacksum \leftarrow N
                     else
                           S[top] \leftarrow S[top - 1]
                          stacksum \leftarrow stacksum + S[top]
                WRITE(' = ')
```

a. Hva skriver funksjonen SUM ut hvis N=6? Anta at S er en tabell med så mye plass som er nødvendig. Anta at funksjonen WRITELINE skriver ut argumentene sine (uten mellomrom imellom) og starter en ny linje, mens WRITE skriver ut argumentene sine (uten mellomrom imellom) uten å starte en ny linje.

```
Svar (15%):
```