- In []: # Hello Mr. Biddulph! This file serves to show how data could be easily appended to an already # existing data set. For this project, I am using Jupyter Notebook. This is what Is commonly # used for AI and ML applications. I will add comments throughout to show you what is happening.
- In []: import pandas as pd
 import matplotlib.pyplot as plt
 import numpy as np
 import seaborn as sns
 # Importing cool Python tools for visualization.
- In []: originalData = pd.read_csv("/Users/alexhanley/MF/simulated_business_data.csv")
 # Importing our data file. This is randomly generated business data from ChatGPT.
- In []: originalData.head()
 # Displaying the first 5 lines of data for testing purposes.

Out[]:	Business Name		Address	Owner Age	Credit Score	Occupation	Taxable Value	Business Age	Mortgage
	0	Smith- Obrien	756 Cruz Creek Apt. 228, East Michaelstad, DC	65	414	Toxicologist	76225	24	No
	1	Cruz- Juarez	521 Quinn Avenue Suite 544, New Michaelmouth,	40	528	Engineer, control and instrumentation	196316	24	Yes
	2	Richardson PLC	PSC 8796, Box 4913, APO AE 77742	68	389	Medical physicist	669176	14	Yes
	3	Owen LLC	106 Jamie Mission, North William, AK 99899	26	395	Programmer, multimedia	279258	8	Yes
	4	Anderson Ltd	86642 Ellis Flat Suite 369, West Regina, KY 54296	60	503	Human resources officer	800800	21	No

In []: # Uh oh! Looks like we forgot to add the data for each businesses' revenue and their type of

```
# structure. Dont worry! Well append that easily.
In []: newDataToAppend = pd.read csv("/Users/alexhanley/MF/business structure revenue only.csv")
        # Our new data, it contains the business structure and its revenue.
In [ ]: newDataToAppend.head()
        # Displaying the first 5 lines of data for testing purposes.
Out[ ]:
                    Business Structure Revenue
        O Limited Liability Company (LLC) 1877825
         1
                           Corporation
                                       429610
                           Partnership 4624226
         2
        3
                     Sole Proprietorship 4118603
         4
                           Corporation 3754854
In [ ]: import pandas as pd
        # Ensure the new data is in the same order and has the same number of rows
        assert len(originalData) == len(newDataToAppend), "Datasets do not match in size."
        # Concatenate the new data to the original data as new columns
        combinedData = pd.concat([originalData, newDataToAppend], axis=1)
        # Print first 5 lines
        combinedData.head()
```

Out[]:		Business Name	Address	Owner Age	Credit Score	Occupation	Taxable Value	Business Age	Mortgage	Business Structure	Revenue
	0	Smith- Obrien	756 Cruz Creek Apt. 228, East Michaelstad, DC	65	414	Toxicologist	76225	24	No	Limited Liability Company (LLC)	1877825
	1	Cruz- Juarez	521 Quinn Avenue Suite 544, New Michaelmouth, 	40	528	Engineer, control and instrumentation	196316	24	Yes	Corporation	429610
	2	Richardson PLC	PSC 8796, Box 4913, APO AE 77742	68	389	Medical physicist	669176	14	Yes	Partnership	4624226
	3	Owen LLC	106 Jamie Mission, North William, AK 99899	26	395	Programmer, multimedia	279258	8	Yes	Sole Proprietorship	4118603
	4	Anderson Ltd	86642 Ellis Flat Suite 369, West Regina, KY 54296	60	503	Human resources officer	800800	21	No	Corporation	3754854

In []: # The next step would be to gain access to the Experian business data.

In []: # Here is a visualization of the AI potentially significant data we appended.

```
In [ ]: plt.figure(figsize=(10, 6))
    sns.boxplot(x='Business Structure', y='Revenue', data=combinedData)
    plt.title('Revenue Distribution by Business Structure')
    plt.xlabel('Business Structure')
```

```
plt.ylabel('Revenue')
plt.xticks(rotation=45)
plt.show()
# Business Structure to Revenue
```


Business Structure

```
In []: # Next, for fun, I created a small linear regression machine learning model to visualize # how easy it would be to gain AI insight after recieving data. Any data that needed # to be appended could be very easily. You can even switch out which data types you want # with a simple copy and paste.
```

```
In [ ]: from sklearn.model_selection import train_test_split
        from sklearn.linear model import LinearRegression
        from sklearn.metrics import mean squared error, r2 score
        from sklearn.preprocessing import OneHotEncoder
        import numpy as np
        one_hot_encoder = OneHotEncoder(sparse=False)
        X = one_hot_encoder.fit_transform(combinedData[['Business Structure']]) # Convert business structure to
        Y = combinedData['Revenue']
        xName = "Business Structure"
        yName = "Revenue"
        # Splitting the dataset into training and testing sets
        X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
        # Initializing and training the linear regression model
        model = LinearRegression()
        model.fit(X train, Y train)
        # Making predictions
        Y_pred = model.predict(X_test)
```

```
# Evaluating the model
meanSquaredError = mean_squared_error(Y_test, Y_pred)
r2Score = r2_score(Y_test, Y_pred)

print("Mean Squared Error:", meanSquaredError)
print("Coefficient of Determination (R^2):", r2Score)

if r2Score < 0.4:
    print("The correlation between {} and {} is not statistically significant. There is no correlation be elif r2Score > 0.4 and r2Score <= 1:
        print("The correlation between {} and {} is statistically significant. There is a significant correlation between {} and {} is statistically significant. There is a significant correlation between {} and {} is statistically significant. There is a significant correlation between {} and {} is statistically significant. There is a significant correlation between {} and {} is statistically significant.</pre>
```

Mean Squared Error: 8416218597912.085

Coefficient of Determination (R^2): -0.010416722198247852

The correlation between Business Structure and Revenue is not statistically significant. There is no correlation between the two.

/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/preprocessing/_en coders.py:975: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value. warnings.warn(

```
In []: # Wow, these numbers are horrific;). This is beacuse this was randomly generated data. The # odds that 1000 lines of randomly generated data lead to some correlation is 0.
```