Analysis of a Complex Kind Week 7

Lecture 2: Isolated Singularities of Analytic Functions

Petra Bonfert-Taylor

Isolated Singularities

Definition

A point z_0 is an *isolated singularity* of f if f is analytic in a punctured disk $\{0 < |z - z_0| < r\}$ centered at z_0 .

- $f(z) = \frac{1}{z}$ has an isolated singularity at $z_0 = 0$.
- $f(z) = \frac{1}{\sin z}$ has isolated singularities at $z_0 = 0, \pm \pi, \pm 2\pi, \dots$
- $f(z) = \sqrt{z}$ and f(z) = Log z do not have isolated singularities at $z_0 = 0$ since these functions cannot be defined to be analytic in any punctured disk around 0.
- $f(z) = \frac{1}{z-2}$ has an isolated singularity at $z_0 = 2$.

Laurent Series

By Laurent's Theorem, if f has an isolated singularity at z_0 (so f is analytic in the annulus $\{0 < |z - z_0| < r\}$ for some r > 0) then f has a Laurent series expansion there:

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k$$

$$= \underbrace{\cdots \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{z - z_0}}_{\text{principal part}} + \underbrace{a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots}_{\text{analytic}}$$

Three fundamentally different things can happen that influence how f behaves near z_0 :

Three Types of Isolated Singularities

$$f(z) = \cdots \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots, \quad 0 < |z-z_0| < r$$

Examples:

- $f(z) = \frac{\cos z 1}{z^2} = \frac{1}{z^2} \left(-\frac{z^2}{2!} + \frac{z^4}{4!} + \cdots \right) = -\frac{1}{2!} + \frac{z^2}{4!} + \cdots$ No negative powers of z!
- $f(z) = \frac{\cos z}{z^4} = \frac{1}{z^4} \left(1 \frac{z^2}{2!} + \frac{z^4}{4!} + \cdots \right) = \frac{1}{z^4} \frac{1}{2!} \frac{1}{z^2} + \frac{1}{4!} \frac{z^2}{6!} + \cdots$ Finitely many negative powers of z!
- $f(z) = \cos\left(\frac{1}{z}\right) = 1 \frac{1}{2!} \frac{1}{z^2} + \frac{1}{4!} \frac{1}{z^4} \frac{1}{6!} \frac{1}{z^6} + \cdots$ Infinitely many negative powers of z!

Classification of Isolated Singularities

We classify singularities based upon these differences:

Definition

Suppose z_0 is an isolated singularity of an analytic function f with Laurent series

$$\sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$$
, $0<|z-z_0|< r$. Then the singularity z_0 is

- removable if $a_k = 0$ for all k < 0.
- a *pole* if there exists N > 0 so that $a_{-N} \neq 0$ but $a_k = 0$ for all k < -N. The index N is the *order* of the pole.
- essential if $a_k \neq 0$ for infinitely many k < 0.

Types of Singularities

The following table illustrates this definition:

z_0 is a	Laurent series in $0 < z - z_0 < r$
Removable singularity	$a_0+a_1(z-z_0)+\cdots$
Pole of order N	$\frac{a_{-N}}{(z-z_0)^N} + \cdots + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + \cdots$
Simple pole	$\frac{a_{-1}}{z-z_0}+a_0+a_1(z-z_0)+\cdots$
Essential singularity	$\cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + \cdots$

Removable Singularities

Recall: z_0 is a removable singularity of f if its Laurent series, centered at z_0 satisfies that $a_k = 0$ for all k < 0.

Example:
$$f(z) = \frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - + \cdots, 0 < |z| < \infty.$$

The Laurent series looks like a Taylor series! Taylor series are analytic within their region of convergence. Thus, if we define f(z) to have the value 1 at $z_0 = 0$, then f becomes analytic in \mathbb{C} :

$$f(z) = \begin{cases} \frac{\sin z}{z}, & z \neq 0 \\ 1 & z = 0 \end{cases}$$
 is analytic in \mathbb{C} .

We have removed the singularity.

Theorem (Riemann's Theorem)

Let z_0 be an isolated singularity of f. Then z_0 is a removable singularity if and only if f is bounded near z_0 .

Poles

Recall: z_0 is a pole of order N of f if its Laurent series, centered at z_0 satisfies that $a_{-N} \neq 0$ and $a_k = 0$ for all k < -N.

Example:
$$f(z) = \frac{\sin z}{z^5} = \frac{1}{z^4} - \frac{1}{3!} \frac{1}{z^2} + \frac{1}{5!} - \frac{1}{7!} z^2 + \cdots$$
 has a pole of order 4 at 0.

Theorem

Let z_0 be an isolated singularity of f. Then z_0 is a pole if and only if $|f(z)| \to \infty$ as $z \to z_0$.

Note: If f(z) has a pole at z_0 then $\frac{1}{f(z)}$ has a removable singularity at z_0 (and vice versa).

Essential Singularities

Recall: z_0 is an essential singularity of f if its Laurent series, centered at z_0 satisfies that $a_k \neq 0$ for infinitely many k < 0.

Example:
$$f(z) = e^{\frac{1}{z}} = \sum_{k=0}^{\infty} \frac{1}{k!} \frac{1}{z^k} = 1 + \frac{1}{z} + \frac{1}{2!} \frac{1}{z^2} + \frac{1}{3!} \frac{1}{z^3} + \cdots$$
 has an essential singularity at $z_0 = 0$.

Note that if $z = x \in \mathbb{R}$, then

$$f(z) = e^{1/x} \to \infty$$
 as $x \to 0$ from the right and $f(z) = e^{1/x} \to 0$ as $x \to 0$ from the left.

Also, if $z = ix \in i\mathbb{R}$ then

$$f(z) = e^{1/ix} = e^{-i/x}$$
 lies on the unit circle for all x .

It appears that f does not have a limit as $z \to z_0$.

Theorem (Casorati-Weierstraß)

Suppose that z_0 is an essential singularity of f. Then for every $w_0 \in \mathbb{C}$ there exists a sequence $\{z_n\}$ with $z_n \to z_0$ such that $f(z_n) \to w_0$ as $n \to \infty$.

Casorati-Weierstraß

Casorati-Weierstraß: Suppose that z_0 is an essential singularity of f. Then for every $w_0 \in \mathbb{C}$ there exists a sequence $\{z_n\}$ with $z_n \to z_0$ such that $f(z_n) \to w_0$. Example:

- Let $f(z) = e^{\frac{1}{z}}$. Then f has an essential singularity at 0. Let's pick a point $w_0 \in \mathbb{C}$, say, $w_0 = 1 + \sqrt{3}i$.
- By Casorati-Weierstraß there must exist $z_n \in \mathbb{C} \setminus \{0\}$ such that $e^{\frac{1}{z_n}} \to 1 + \sqrt{3}i$ as $n \to \infty$.
- How do we find z_n ?
- Idea: We can find z_n such that $e^{\frac{1}{z_n}} = 1 + \sqrt{3}i$, namely $\frac{1}{z_n} = \log(1 + \sqrt{3}i)$.
- Recall: $\log(z) = \ln(|z|) + i \arg(z)$.
- So $\log(1+\sqrt{3}i) = \ln 2 + i\frac{\pi}{3} + 2n\pi i$. Pick $z_n = \frac{1}{\ln 2 + i\frac{\pi}{3} + 2n\pi i}$.

Casorati-Weierstraß: Essential Singularity of $e^{\frac{1}{z}}$ at $z_0 = 0$.

$$z_n = \frac{1}{\ln 2 + i\frac{\pi}{3} + 2n\pi i}.$$

Then $z_n \to 0$ as $n \to \infty$. Furthermore:

$$e^{\frac{1}{z_n}} = e^{\ln(2) + i\frac{\pi}{3} + 2n\pi i}$$

$$= 2e^{i\frac{\pi}{3}}$$

$$= 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$

$$= 1 + \sqrt{3}i = w_0$$

for all n.

We thus found z_n with $z_n \to 0$ such that $f(z_n) = w_0$ for all n.

Picard's Theorem

We just observed a much stronger result that is true (but much harder to prove) for essential singularities:

Theorem (Picard)

Suppose that z_0 is an essential singularity of f. Then for every $w_0 \in \mathbb{C}$ with at most one exception there exists a sequence $\{z_n\}$ with $z_n \to z_0$ such that $f(z_n) = w_0$.

Example: $f(z) = e^{1/z}$ has an essential singularity at $z_0 = 0$. Also, $f(z) \neq 0$ for all z, and so by Picard's theorem, for every $w_0 \neq 0$ there must exist infinitely many z_n with $z_n \to 0$ such that $f(z_n) = w_0$.

Pick $w_0=1$ for example. Then $f(z)=w_0$ if $e^{1/z}=1$, that is $\frac{1}{z}=2n\pi i$ for some $n\in\mathbb{Z}$. Now let $z_n=\frac{1}{2n\pi i}$. Then $z_n\to 0$ as $n\to\infty$, and $f(z_n)=1$ for all n.