

Sintesi di reti combinatorie

- Problema della sintesi:
 - data: una funzione booleana (espressa come tabella delle verità):
 - costruire (sintetizzare): lo schema logico di un circuito che la calcola
- Usiamo due passi:
 - 1: trovare una espressione booleana che esprime la funzione booleana data
 - 2: costruire la rete corrispondente all'espressione booleana
- In generale, per una data tabella delle verità possono esistere più espressioni booleane
 - la soluzione al problema di sintesi non è dunque unica!
 - problema: trovare la rete ottima (o almeno buona)

Reminder: reti combinatorie (funzionalmente) equivalenti

- Ogni rete combinatoria realizza una espressione booleana
- Ogni espressione booleana rappresenta una rete combinatoria
- Ma:
 - tante espressioni booleane diverse possono esprimere la stessa funzione booleana (data come una tabella di verità)!
 - (cioè dare lo stesso valore per gli stessi assegnamenti delle variabili)
- Data una funzione booleana (come tabella di verità) esistono molte reti combinatorie che la realizzano
- Reti combinatorie diverse che realizzano la medesima funzione combinatoria si dicono (funzionalmente) equivalenti
- Esse computano tutte la stessa funzione, ma hanno
 - Diverso costo
 - Diverse prestazioni (es: velocità, consumo ...)
- Ci dobbiamo porre il problema di scegliere la migliore
 - (o, almeno, una sufficientemente buona)

Sintesi di reti combinatorie

- Problema della sintesi:
 - data: una funzione booleana (espressa come tabella delle verità):
 - costruire (sintetizzare): lo schema logico di un circuito che la calcola
 - tipicamente: passaggio intermedio: una espressione booleana

Sintesi di reti combinatorie

- Esistono svariate tecniche di sintesi di reti combinatorie, che differiscono per:
 - Complessità della procedura
 - Qualità della rete combinatoria risultante (per dimensioni, costo, velocità, dissipazione di calore...)
- Una tecnica semplice e universale, benché generalmente non ottimale,
 è la sintesi attraverso Somma di Prodotti (detta 1^a forma canonica)

Sintesi come Somma di Prodotti (SoP) (o sintesi in 1a forma canonica)

- Input: la tabella delle verità della funzione da sintetizzare,
- Output: una somma di prodotti, cioè un'espressione booleana del tipo XXXX + YYYY + ZZZZ +
 dove ciascuno degli addendi della somma XXXX, YYYY ...
 è un prodotto (di un certo numero di fattori).
- Procedimento:
 per ogni 1 nella colonna dell'uscita della tabella delle verità:
 - costruire un addendo della somma come prodotto di tutti i parametri:
 - Se il parametro x_i ha valore 1 mettere nell'addendo il parametro naturale (es: A)
 - Se il parametro x_i ha valore 0 mettere nell'addendo il parametro negato (es: /A)
 - costruire la somma di tutti gli addendi così ottenuti

Sintesi come **Somma di Prodotti (SoP)**: spiegazione intuitiva (con un esempio)

- F=1 se e solo se uno qualsiasi
 dei casi 1 si verifica, cioè quando.
 - si verifica il primo:A vale 0 <u>e</u> B vale 0
- ...oppure...
 - si verifica il secondo:A vale 0 e B vale 1 -
- ...oppure...
 - si verifica il terzo:A vale 1 e B vale 1

Esempio: funzione maggioranza

- Si chiede di sintetizzare (in 1^a forma canonica) una funzione combinatoria dotata di 3 ingressi A, B e C, e di un'uscita F, definita (a parole) come segue:
 - Se la maggioranza degli ingressi vale 0, l'uscita vale 0
 - Se la maggioranza degli ingressi vale 1, l'uscita vale 1

Esempio: funzione maggioranza Tabella delle verità

Primo passo:
 scriviamo la tabella delle verità

Esempio: funzione maggioranza Tabella delle verità

- Primo passo: scriviamo la tabella delle verità
- E' quella mostrata a lato
- L'uscita vale 1 se e solo se 2 o tutti e 3 gli ingressi valgono 1 (cioè se e solo se il valore 1 è in maggioranza)

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Esempio: funzione maggioranza Sintesi espressione (in 1ma forma canonica)

- E' una somma di prodotti
- Il passaggio successivo
 è quello di implementare questa espressione in un circuito
- Vediamo un modo semplice di farlo (per le Somme di Prodotti)

# riga	Α	В	С	F
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1)	1
6	1	1	0	1
7	1	1		1

Modo pratico di disegnare un circuito per una Somma di Prodotti (step 1)


```
X = /A B C +
A /B C +
A B /C +
A B C
```


Modo pratico di disegnare un circuito per una Somma di Prodotti (step 2)

Modo pratico di disegnare un circuito per una Somma di Prodotti (step 3)

Modo pratico di disegnare un circuito per una Somma di Prodotti: una variante

Sintesi di espressioni, secondo modo: usare invece un **Prodotto di Somme (PoS)**

Detto anche "Seconda forma canonica"

Sintesi come Prodotto di Somme (PoS): spiegazione intuitiva (con un esempio)

(A+/B)

(/A+B)

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

- F=1 se e solo se <u>nessuno</u>
 dei casi 0 si verifica, cioè quando...
 - Non si verifica il primo: A non 0 <u>oppure</u> B non 0
- ...e inoltre...
 - non si verifica il secondo:A non 0 oppure B non 1
- ...e inoltre...
 - non si verifica il terzo:A non 1 oppure B non 0

Sintesi per PoS con l'esempio precedente

Modo pratico di disegnare un circuito per Prodotto di Somme

Quale metodo conviene?

- PoS o SoP?
- In genere
 - se ci sono pochi 1 conviene SoP
 - se ci sono pochi 0 conviene PoS

Università degli Studi dell'Insubria Dipartimento di Scienze Teoriche e Applicate Architettura degli elaboratori

Il Livello Logico-Digitale:

Trasformazione di Espressioni Booleane

Idea: ottimizzare l'espressione prima di implementarla in un circuito

Trasformazione di espressioni booleane

passare da una espressione booleana ad una equivalente (stessa funzione booleana) con lo scopo di ridurne la complessità

Legge	con AND	con OR (duale)	
Identità	1 A = A	0 + A = A	
Elemento nullo	0 A = 0	1 + A = 1	
Idempotenza	AA = A	A + A = A	
Inverso	A/A = 0	A + /A = 1	
Commutativa	AB = BA	A + B = B + A	
Associativa	(AB)C = A(BC)	(A + B) + C = A + (B + C)	
Distributiva	A + B C = (A + B) (A + C)	A(B+C) = AB + AC	
Assorbimento	A(A+B)=A	A + AB = A	
De Morgan	/(AB) = /A + /B	/(A + B) = /A/B	
Tertium non datur	/ / A = A		

Architettura degli elaboratori

Dimostrare che: A + B C = (A + B) (A + C)

Dimostrare che: A + B C = (A + B) (A + C)

$$(A + B) (A + C)$$

$$= AA + AC + BA + BC$$

$$= A + AC + BA + BC$$

$$= A(1+C) + BA + BC$$

$$= A + BA + BC$$

$$= A(1+B) + BC$$

$$= A + BC$$

(idempot. con AND)

(elem. nullo con OR)

(identità con AND)

(elem. nullo con OR)

(identità con AND)

Dimostrare che: A(A + B) = A

Dimostrare che: A(A + B) = A

$$A(A + B) = AA + AB$$

$$= A + AB$$
 (idempot. con AND)
$$= A(1+B)$$
 (elem. nullo con OR)
$$= A$$

Regole di trasformazione: note

- Le regole di trasformazione (o «di riscrittura»)
 ci consentono di passare da una espressione ad un'altra, equivalente.
 - l'equivalenza è garantita dalla teoria!
 - Obiettivo delle riscritture: ottimizzare l'espressione di partenza
 - Cioè: rendere il circuito associato piú economico, o piú veloce, etc
- Gli A, B nelle regole rappresentano sotto-espressioni qualsiasi
 - ▶ (non necessariamente variabili: es: (A(B+C) + A(B+C)) = A(B+C)
- Tutte le regole sono in doppia copia: una per l'AND una per l'OR
 - una è la regola DUALE dell'altra
 - cioè una è ottenuta dall'altra scambiando fra di loro:
 AND <==> OR e 0 <==> 1
- Ciascuna regola si può usare in un verso, o nel verso opposto
 - ▶ XXX = YYY → posso passare da XXX a YYY... oppure viceversa
- Alcune regole somigliano a quelle dell'algebra numerica tradizionale
 - Altre sono piuttosto diverse (per esempio i due assorbimenti)!