Week5: 3.24作业

P49

 $1.2^{\circ} \sim 3^{\circ}$

2.1°~2°

P53

1.3° ~4°

2.3°~4°

助教-齐瑜鹏 发表于 03-24 12:13 166人已读

P49 T1

1. 证明以下各对公式是等值的.

$$1^{\circ} p \rightarrow q$$
 和 $\neg q \rightarrow \neg p$.

$$2^{\circ} (\neg p \land \neg q) \rightarrow \neg r \not \uparrow r \rightarrow (q \lor p).$$

$$3^{\circ} (\neg p \lor q) \rightarrow r \not tarrow (p \land \neg q) \lor r$$
.

$$4^{\circ} \neg (\neg p \lor q) \lor r \not \Rightarrow (p \rightarrow q) \rightarrow r$$

• 以第三小问为例子 列真值表

解

等值的定义: -p 与 q 等值,

是指 $p \leftrightarrow q$ 是永真式

((\neg	p	V	q)	\rightarrow	r)	\leftrightarrow	((p	\wedge	\neg	q)	V	r)
	1	0	1	0		0	0		1		0	0	1	0		0	0	
	1	0	1	0		1	1		1		0	0	1	0		1	1	
	1	0	1	1		0	0		1		0	0	0	1		0	0	
	1	0	1	1		1	1		1		0	0	0	1		1	1	
	0	1	0	0		1	0		1		1	1	1	0		1	0	
	0	1	0	0		1	1		1		1	1	1	0		1	1	
	0	1	1	1		0	0		1		1	0	0	1		0	0	
	0	1	1	1		1	1		1		1	0	0	1		1	1	

表 3: 公式 $((\neg p \lor q) \to r) \leftrightarrow ((p \land \neg q) \lor r)$ 的真值表

因此 $((\neg p \lor q) \to r) \leftrightarrow ((p \land \neg q) \lor r)$ 是永真式, 由定义可知 $(\neg p \lor q) \to r$ 与 $(p \land \neg q) \lor r$ 等值。

P49 T2

证明¬(x₁∨¬x₂)→(x₂→x₃)与以下公式都等值.

$$1^{\circ} \neg (x_2 \rightarrow x_1) \rightarrow (\neg x_2 \lor x_3).$$

$$2^{\circ} (\neg x_1 \wedge x_2) \rightarrow \neg (x_2 \wedge \neg x_3).$$

P53 T1

1. 求以下公式的等值主析取范式.

$$1^{\circ} x_{1} \leftrightarrow x_{2}.$$

$$2^{\circ} x_{1} \rightarrow (\neg x_{2} \lor x_{3}).$$

$$3^{\circ} (x_{1} \land x_{2}) \lor (\neg x_{2} \leftrightarrow x_{3}).$$

$$4^{\circ} \neg ((x_{1} \rightarrow \neg x_{2}) \rightarrow x_{3}).$$

$$5^{\circ} ((x_{1} \rightarrow x_{2}) \rightarrow x_{3}) \rightarrow x_{4}.$$

- 第三问
 - 3° 根据如下的真值表

(x_1	\wedge	x_3)	\ \	(\neg	x_2	\leftrightarrow	x_3)
	0	0	0		0		1	0	0	0	
	0	0	1		1		1	0	1	1	
	0	0	0		1		0	1	1	0	
	0	0	1		0		0	1	0	1	
	1	0	0		0		1	0	0	0	
	1	1	1		1		1	0	1	1	
	1	0	0		1		0	1	1	0	
	1	1	1		1		0	1	0	1	

表 1: 公式 3° 的真值表

得到公式 3° 的成真指派是 (0,0,1),(0,1,0),(1,0,1),(1,1,0),(1,1,1)。 写出与这 5 个成真指派相对应的基本合取式: $\neg x_1 \land \neg x_2 \land x_3$, $\neg x_1 \land x_2 \land \neg x_3$, $x_1 \land \neg x_2 \lor x_3$, $x_1 \land x_2 \land \neg x_3$,然后以它们为析取支构成析取范式,便得所求:

 $(x_1 \land x_2 \land x_3) \lor (x_1 \land x_2 \land \neg x_3) \lor (x_1 \land \neg x_2 \lor x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land \neg x_2 \land x_3)$

第四问

4° 根据如下的真值表

「	((x_1	\rightarrow	\neg	x_2)	\rightarrow	x_3)
1		0	1	1	0		0	0	
0		0	1	1	0		1	1	
1		0	1	0	1		0	0	
0		0	1	0	1		1	1	
1		1	1	1	0		0	0	
0		1	1	1	0		1	1	
0		1	0	0	1		1	0	
0		1	0	0	1		1	1	

表 2: 公式 4°的真值表

得到公式 4° 的成真指派是 (0,0,0), (0,1,0), (1,0,0)。写出与这 3 个成真指派相对应的基本合取式: $\neg x_1 \land \neg x_2 \land \neg x_3$, $\neg x_1 \land x_2 \land \neg x_3$, $x_1 \land \neg x_2 \land \neg x_3$, 然后以它们为析取支构成析取范式,便得所求:

$$(x_1 \land \neg x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land \neg x_2 \land \neg x_3)$$

P53 T2

2. 求以下公式的等值主合取范式.

$$1^{\circ} (\neg x_1 \lor x_2) \to x_3.$$

$$2^{\circ} x_1 \leftrightarrow x_2.$$

$$3^{\circ} (x_1 \land x_2 \land x_3) \lor (\neg x_1 \land \neg x_2 \land x_3).$$

$$4^{\circ} ((x_1 \to x_2) \to x_3) \to x_4.$$

• 以第四问为例子

((x_1	\rightarrow	x_2)	\rightarrow	x_3)	\rightarrow	x_4
	0	1	0		0	0		1	0
	0	1	0		0	0		1	1
	0	1	0		1	1		0	0
	0	1	0		1	1		1	1
	0	1	1		0	0		1	0
	0	1	1		0	0		1	1
	0	1	1		1	1		0	0
	0	1	1		1	1		1	1
	1	0	0		1	0		0	0
	1	0	0		1	0		1	1
	1	0	0		1	1		0	0
	1	0	0		1	1		1	1
	1	1	1		0	0		1	0
	1	1	1		0	0		1	1
	1	1	1		1	1		0	0
	1	1	1		1	1		1	1

表 3: 公式 4° 的真值表

得到公式 ¬(((
$$x_1 \to x_2$$
) → x_3) → x_4) 的成真指派是
$$(0, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0)$$
 则 ¬((($x_1 \to x_2$) → x_3) → x_4) 的等值主析取范式是
$$(\neg x_1 \land \neg x_2 \land x_3 \land \neg x_4) \lor (\neg x_1 \land x_2 \land x_3 \land \neg x_4) \lor (x_1 \land \neg x_2 \land \neg x_3 \land \neg x_4)$$
 ∨ $(x_1 \land \neg x_2 \land x_3 \land \neg x_4) \lor (x_1 \land x_2 \land x_3 \land \neg x_4)$ 由此得 $((x_1 \to x_2) \to x_3) \to x_4$ 的等值主合取范式是
$$(x_1 \lor x_2 \lor \neg x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3 \lor x_4)$$
 ∧ $(\neg x_1 \lor x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor \neg x_3 \lor x_4)$

tip