PELTON WHEEL EXPERIMENT DATA SHEET

ME 436: AERO-THERMAL-FLUIDS LABORATORY

DR. GOUSHCHA

DR. GOOSHCHA								
THE CITY COLLEGE (OF NEW YO	RK, NY						
DATE OF THE EXPERI			GROUP #: NAMES:					
		•						
Uncertainties		_						
Time (u_t)]						
Volume (u_V)								
Pressure (u_P)								
Spring Force (u_S)								
Tachometer (u_{ω})	TBD							
SET 1:	PRESSURE =			FLOWRATE=				
Mass (g)								
Spring Mass (kg)								
Rotations (rpm)								
SET 2:	PRESSURE =		F	FLOWRATE=				
Mass (g)								
Spring Mass (kg)								
Rotations (rpm)								
SET 3:	PRESSURE =		F	FLOWRATE=				
Mass (g)								
Spring Mass (kg)								
Rotations (rpm)								

INTSRUCTOR SIGNATURE:

PELTON WHEEL EXPERIMENT DATA SHEET

ME 436: AERO-THERMAL-FLUIDS LABORATORY

DR. GOUSHCHA

THE CITY COLLEGE OF NEW YORK, NY

SET 4:	PRESSURE =		FLOWRATE=				
Mass (g)							
Spring Mass (kg)							
Rotations (rpm)							

SET 5:	PRESSURE =		FLOWRATE=				
Mass (g)							
Spring Mass (kg)							
Rotations (rpm)							

TACHOMETER UNCERTAINTY				
N	(rpm)			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

$$s_{\overline{x}} = \frac{s_{x}}{\sqrt{N}}$$

$$s_{\overline{x}} = \frac{s_{x}}{\sqrt{N}}$$

$$t_{95}$$

$$u_{x} = \sqrt{(u_{Single\ Point})^{2} + (t_{95}s_{\overline{x}})^{2}}$$

$$u_{x}$$