

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управлен	«Rин
	Программное обеспечение ЭВМ и информацион	
, ,	* *	
<u>ОТЧЕТ П</u>	<u>Ю ПРОИЗВОДСТВЕННОЙ П</u>	<u>РАКТИКЕ</u>
Студент	Авдейкина Валерия Павловна фамилия, имя, отчество	
Группа	ИУ7-43Б	
	технологическая	
_		
Название предприя	нтия МГТУ им. Н. Э. Баумана	
Студент		Авдейкина В. П.
	подпись, дата	фамилия, и.о.
Руководитель прак		Куров А. В.
	подпись, дата	фамилия, и.о.

Оценка

Оглавление

Введение			
1	Ана	алитическая часть	
	1.1	Зеркало с точки зрения физики	
	1.2	Предметная область	
	1.3	Формализация модели	
	1.4	Выбор модели трехмерного объекта	
		1.4.1 Каркасная модель	
		1.4.2 Поверхностная модель	
		1.4.3 Объемная модель	
		1.4.4 Вывод	
	1.5	Выбор алгоритма удаления невидимых ребер и поверхностей.	
		1.5.1 Алгоритм обратной трассировки лучей	
		1.5.2 Алгоритм, использующий Z-буфер	
		1.5.3 Алгоритм Робертса	
		1.5.4 Алгоритм Варнока	
	1.6	Выбор метода закрашивания областей	
		1.6.1 Простая закраска	
		<u> 1.6.2 Метод Гуро</u>	
		1.6.3 Метод Фонга	
		1.6.4 Алгоритм Варнока	
	1.7	Выбор метода затенения областей	
	1.8	Существующие программные обеспечения	

Введение

Целью данной работы является разработка программного обеспечения с пользовательским интерфейсом для моделирования зеркала, разделенного на области с поверхностями, имеющими различные отражательные свойства.

Для достижения поставленной цели требуется решить задачи:

- 1) проанализировать методы и алгоритмы моделирования зеркальной поверхности, имеющей определенные отражательные свойства;
- 2) спроектировать программное обеспечение с пользовательским интерфейсом, позволяющее генерировать зеркальную поверхность, разделенную на области, имеющие различные отражательные свойства;
- 3) выбрать средства реализации и реализовать на их основе спроектированное программное обеспечение;
- 4) исследовать характеристики реализованного программного обеспечения.

1 Аналитическая часть

1.1 Зеркало с точки зрения физики

Зеркало - поверхность, предназначенная для отражения света. *ссылки* на физические законы, свойства отражений? картинки?

1.2 Предметная область

1.3 Формализация модели

Сцена состоит из:

- источника света,
- трехмерного объекта,
- стены,
- зеркала,
- наблюдателя.

Источник света является материальной точкой, из которой во все стороны исходят лучи света. В частном случае, когда источник расположен в бесконечности, он имеет направленность. Положение источника света задается трехмерными координатами, цвет света описывается через RGB-параметры. что сказать об изначальном положении? связь с наблюдателем?

Трехмерный объект отображается с помощью модели из стандартного набора (дополнить). Поверхность объекта не обладает зеркальными свойствами. дополнить списком набора и стандартными параметрами для каждого из объектов что сказать об изначальном положении?

Стена представляет собой бесконечную плоскость, положение которой совпадает с положением зеркала. Она непрозрачная, не обладает ?зеркальными свойствами?, имеет отверстие, отсеченное границами зеркала, изначально параллельна плоскости экрана.

Зеркало представляет собой плоскость, ограниченную прямоугольной областью, размеры которой задаются длиной и шириной. Зеркальная поверхность обладает характеристиками: дополнить. Зеркало разбито на ?четыре?произвольное число? одинаковые прямоугольные области. Для каждой из малых областей характеристики зеркальной поверхности задаются с помощью значений ?соответствующих коэффициентов?. Также для каждой малой области задается вид зеркала: плоское, выпуклое, вогнутое. Выпуклое и вогнутое зеркало реализуются на основе вписанной окружности, находящейся в центре области. Основные характеристики (фокус, радиус кривизны) вогнутого и выпуклого зеркал задавать нельзя. Положение зеркала менять нельзя. что сказать об изначальном положении?

Наблюдатель и трехмерный объект находятся с той стороны зеркала, ????свойствами которой можно управлять (далее - поверхность зеркала)???. Положения наблюдателя и трехмерного объекта задаются соответственно координатами x, y, z. Они могут меняться посредством поворота, переноса.

1.4 Выбор модели трехмерного объекта

Основное назначение модели - правильное отображение формы и размеров объекта.

В основном используются три вида моделей:

- каркасные,
- поверхностные,
- объемные.

1.4.1 Каркасная модель

Бла-бла-бла

1.4.2 Поверхностная модель

Бла-бла-бла

1.4.3 Объемная модель

Бла-бла-бла

1.4.4 Вывод

Для достижения поставленной цели была выбрана ?поверхностная? модель, так как...

1.5 Выбор алгоритма удаления невидимых ребер и поверхностей

- 1.5.1 Алгоритм обратной трассировки лучей
- 1.5.2 Алгоритм, использующий Z-буфер
- 1.5.3 Алгоритм Робертса

1.5.4 Алгоритм Варнока

Бла-бла-бла, трассировка лучей.

- 1.6 Выбор метода закрашивания областей
- 1.6.1 Простая закраска
- 1.6.2 Метод Гуро
- 1.6.3 Метод Фонга
- 1.6.4 Алгоритм Варнока
- 1.7 Выбор метода затенения областей
- 1.8 Существующие программные обеспечения

Вывод