QMDA Homework 5

Generalized least squares

Consider a problem of the form Gm = d and of size N = M = 101. The model parameters are a discretized function m(x). The data kernel G computes data d(x) that are a moving average of m(x). However, this moving average differs from those presented in the lectures by having a "blur" that increases with x. Thus, d(x=5) is a blurred version of m(x) over the range $x=5\pm 2$, whereas d(x=90) is a blurred version of m(x) for the range of $x=90\pm 10$.

- A. Load into Matlab 'QMDA_HW_05.mat' (in "Files/Homework" on CourseWorks), which defines variables 'N', 'M', 'x', 'G', and 'dobs'. Plot the data kernel G as a 2D image, describe how it looks and why it has the averaging properties described above. Plot the observed data \mathbf{d}_{obs} as a function of x and describe them.
- B. Estimate the standard deviation of the data errors σ_e by examining \mathbf{d}_{obs} and assuming that the small-scale fluctuations of the data are mainly due to noise (these small-scale, random fluctuations are more prominent for x > 50). Assume also that all the data have the same error, so that the covariance of the data errors is $\Sigma_e = \sigma_e^2 \mathbf{I}$.
- C. Apply generalized least squares to compute the posterior mean vector $\boldsymbol{\mu}_{post}$ and the covariance matrix $\boldsymbol{\Sigma}_{post}$. Use a prior mean of zero and a prior covariance matrix that is diagonal as in $\boldsymbol{\Sigma}_{prior} = \sigma_m^2 \boldsymbol{I}$. The prior standard deviation σ_m quantifies how large are the expected fluctuations of the solution. Choose an initial value of σ_m based on the observed data \boldsymbol{d}_{obs} , which are just a smoothed version of \boldsymbol{m} . Compute the generalized least squares solution and plot two figures with
- 1. The posterior mean μ_{post} as a function of x and two lines that encompass the 95% credible interval around the posterior mean (based on the posterior variances in the diagonal of Σ_{post});
- 2. The observed data \mathbf{d}_{obs} and the data predicted by the posterior mean $\mathbf{d}_{pred} = \mathbf{G} \boldsymbol{\mu}_{post}$ as a function of x.
- D. Experiment by changing the assumed standard deviation of the data errors σ_e and the prior standard deviation σ_m . Comment on what happens if you make σ_e very large or very small or if you make σ_m very large or very small.
- E. Conclude by choosing final values of σ_e and σ_m that give a reasonably smooth posterior mean μ_{post} and predicted data \mathbf{d}_{pred} that are a good fit to \mathbf{d}_{obs} . Plot again the two figures described in step C for your final values of σ_e and σ_m .