CS 5050 ADVANCED ALGORITHMS

Fall Semester, 2018

Asymptotic Notation and Math Review

1 Asymptotic Notation (Growth of Functions)

Note: big-O, big- Ω , big- Θ are required, but small-o and small- ω are optional (but strongly recommended to know).

Let f(n) and g(n) be any two functions of n with $f(n) \ge 0$ and $g(n) \ge 0$ for all n. We have the following definitions.

big-O: f(n) = O(g(n)) if and only if there exist a constant c > 0 and n_0 , such that $f(n) \le c \cdot g(n)$ for all $n > n_0$.

Examples: $1000 = O(\log n)$, 3n + 5 = O(n), $2n^3 - 4n^2 = O(n^3)$, $n^9 = O(2^n)$

Big-O provides an asymptotic upper bound.

big- Ω : $f(n) = \Omega(g(n))$ if and only if there exist a constant c > 0 and n_0 , such that $f(n) \ge c \cdot g(n)$ for all $n > n_0$.

Examples: $\log n = \Omega(100), 3n + 5 = \Omega(n), 2n^3 - 4n^2 = \Omega(n^3), n^2 = \Omega(n \log n)$

Big- Ω provides an asymptotic lower bound.

big- Θ : $f(n) = \Theta(g(n))$ if and only if there exist constants $c_1 > 0$, $c_2 > 0$, and n_0 , such that $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n > n_0$.

Examples: $n^3 + 2n^2 - 12 = \Theta(n^3)$, $3n + \log n + 5 = \Theta(n)$, $2n^3 - 4n^2 = \Theta(n^3)$

small-o: f(n) = o(g(n)) if and only if for any constant c > 0, there exists n_0 , such that $f(n) < c \cdot g(n)$ for all $n > n_0$.

Examples: $3n \log n + 4 = o(n^2), n^2 = o(n^3), n^6 = o(3^n)$

small- ω : $f(n) = \omega(g(n))$ if and only if for any constant c > 0, there exists n_0 , such that $f(n) > c \cdot g(n)$ for all $n > n_0$.

Examples: $n^2 = \omega(3n \log n + 4), n^3 = \omega(n^2), 3^n = \omega(n^6)$

The following are some properties. To help you understand them intuitively, you may simply think of that you are comparing two real numbers a and b.

 $\bullet \ f(n) = O(g(n)) \Longleftrightarrow g(n) = \Omega(f(n))$

Think of: $a < b \iff b > a$

• $f(n) = \Omega(g(n)) \iff g(n) = O(f(n))$

Think of: $a \ge b \iff b \le a$

- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$ Think of: $a = b \iff a < b$ and a > b
- $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$ Think of: $a < b \iff b > a$
- $f(n) = o(g(n)) \Longrightarrow f(n) = O(g(n))$ and $f(n) \neq \Theta(g(n))$

Although the reverse may not be true, you may consider it true for most functions (I believe for all functions you will see in this class).

Think of: $a < b \iff a \le b$ and $a \ne b$

2 Mathematics Review

Exponentials: For all real a > 0, m, and n,

$$a^0 = 1, a^1 = a, a^{-1} = \frac{1}{a}, (a^m)^n = a^{mn}.$$

Logarithms: For all real a > 0, b > 0, c > 0, and n,

$$\log_c(ab) = \log_c a + \log_c b$$
, $\log_b a^n = n \log_b a$, $\log_b a = \frac{\log_c a}{\log_c b}$, $\log_b \frac{1}{a} = -\log_b a$, $a = b^{\log_b a}$, $a^{\log_b c} = c^{\log_b a}$.

Arithmetic series:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{1}{2}n(n+1).$$

Sums of squares:

$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1).$$

Geometric series:

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}.$$

When the summation is infinite and |x| < 1, we have the infinite decreasing geometric series

$$\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots = \frac{1}{1-x}.$$