

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 June 2002 (27.06.2002)

PCT

(10) International Publication Number WO 02/50071 A1

(51) International Patent Classification7: 417/14, A61P 29/00

A. [US/US]; 68 Northbrook Avenue. Lawrenceville, NJ 08648 (US).

(21) International Application Number: PCT/US01/49430

(74) Agents: HERMENAU, Ronald, S. et al.: Bristol-Myers Squibb Company, P.O. Box 4000, RT. 206 & Province Line

Road, Princeton, NJ 08543-4000 (US).

(22) International Filing Date:

19 December 2001 (19 12:2001)

(25) Filing Language: English

(81) Designated States (national): AE, AG, AL, AM, AT. AU, AZ. BA. BB. BG, BR. BY, BZ, CA. CH. CN, CO, CR, CU. CZ, DE. DK. DM. DZ. EC. EE, ES. FI, GB, GD, GE. GH. GM, HR. HU, ID, H., IN. IS. JP, KE, KG, KP, KR. KZ. LC. LK. LR, LS, LT. LU, LV. MA. MD, MG, MK. MN. MW. MX, MZ, NO. NZ, PH, PL, PT. RO, RU, SD, SE, SG, SI,

SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,

(26) Publication Language:

English

C07D 417/12.

(30) Priority Data: 60/257,830

21 December 2000 (21.12.2000)

(71) Applicant (for all designated States except US): BRISTOL-MYERS SQUIBB COMPANY [US/US]; P.O. Box 4000, RT. 206 & Province Line Road, Princeton, NJ 08543-4000 (US).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BARRISH, Joel, C. [US/US]; 38 Dorchester Lane, Richboro, PA 18954 (US). DAS, Jagabandhu [US/US]; 38 Martin Lane, Mercerville, NJ 08619 (US). KANNER, Steven, B. [US/US]; 16 Honey Brook Drive, Princeton. NJ 08540 (US). LIU, Chunjian [CN/US]; 52 Stanford Road East, Pennington, NJ 08534 (US). SPERGEL, Steven, H. [US/US]: 1807 Jericho Drive, Warrington, PA 18976 (US). WITAYK, John [US/US]; 25 Jared Drive, Robbinsville. NJ 08691 (US). DOWEYKO, Arthur, M. P. [US/US]; 9 Highland Avenue, Long Valley, NJ 07853 (US). FURCH, Joseph,

Published:

ZA, ZW.

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

50071 A

(54) Title: THIAZOLYL INHIBITORS OF TEC FAMILY TYROSINE KINASES

(57) Abstract: Novel thiazolyl compounds and salts thereof, pharmaceutical compositions containing such compounds, and methods of using such compounds in the treatment of Tec family tyrosine kinase-associated disorders such as cancer, immunologic disorders and altergic disorders

BNSDOCID <WO_____0250071A1_I_>

THIAZOLYL INHIBITORS OF Tec FAMILY TYROSINE KINASES

PCT/US01/49430

Field of the Invention

The present invention provides for thiazolyl compounds useful as inhibitors of Tec family tyrosine kinases (especially inhibitors of Emt) and to pharmaceutical compositions containing such compounds. The present invention further provides for methods of using such compounds as immunosuppressive, anti-inflammatory, anti-allergic, and anti-cancer agents.

Background of the Invention

The present invention relates to inhibitors of the Tec family tyrosine kinases, and particularly, inhibitors of Emt. The Tec family kinases include Emt [expressed mainly in T cells; Gibson, S. et al., Blood 82, 1561-1572 (1993)], Txk [T-cell expressed kinase; Haire, R. N. et al., Hum. Mol. Genet. 3, 897-901 (1994)], Tec [tyrosine kinase expressed in hepatocellular carcinoma cells; Mano et al., Oncogene 5, 1781-1786 (1990)], Btk [Bruton's tyrosine kinase; Vetrie, D. et al., Nature 361, 226-233, (1993)], and Bmx [bone marrow kinase, X-linked; Tamagnon, L. et al., Oncogene 9, 3683-3688 (1994)].

Mammalian immunity relies on the activation of T cells upon antigen presentation. The molecular mechanisms of T cell activation are initiated by the sequential activation of three distinct classes of non-receptor protein tyrosine kinases (PTK) following the engagement of the T cell antigen receptor (TCR). These three classes of PTK are the Src family kinases (Lck and Lyn), the Syk family kinases (ZAP-70 and Syk), and the Tec family kinases (Emt, Txk, and Tec). Inhibition of one or more of these kinases will impede the initiation signals and block T cell activation following antigen presentation. Thus, small molecular weight inhibitors of these kinases can be applied to treat the diseases that are associated with unwanted T cell activation.

Emt, also known as Itk (Interleukin-2-inducible T cell kinases) or Tsk (T-cell-specific tyrosine kinase), is expressed solely in T, natural killer, and mast cells. Emt is tyrosine-phosphorylated and activated in response to cross-linking of TCR, CD28, or CD2; and has been implicated in thymocyte development and the activation of T cells through TCR and CD28 engagement. Inside the cells, Emt is regulated by

5

10

15

20

25

membrane recruitment followed by Lck phosphorylation and autophosphorylation. Emt is recruited to the membrane rafts for Lck phosphorylation through the interaction between the pleckstrin homology (PH) domain of Emt and the membrane lipid, phosphotidylinositol (3,4,5)-triphosphate [Bunnell et al., J. Biol. Chem. 275, 2219-2230 (2000)].

Gene knockout studies reveal that mice lacking Emt have decreased numbers of mature thymocytes, especially CD4+ T cells. The T cells isolated from such mice are compromised in their proliferative response to allogeneic MHC stimulation, and to anti-TCR/CD3 cross-linking [Liao X. C. and Littman, D. R., Immunity 3, 757-769 (1995)]. These T cells also exhibit defective PLCγ1 tyrosine phosphorylation, inositol triphosphate production, Ca²⁺ moblization, and cytokine production (such as IL-2 and IFNγ) in response to TCR cross-linking [Schaeffer, E. M. et al., Science 284, 638-641 (1999)]. This genetic evidence indicates that Emt activity plays a requisite role in TCR signal transduction; and selective inhibition of Emt should have immunosuppressive, anti-inflammatory, and anti-proliferative effects. In addition, Emt-deficient mice are unable to establish functional Th2 cells (the IL-4 producing cells) and such mice are unable to clear parasitic infections depending upon a Th2 response [Fowell, D. J. et al., Immunity 11, 399-409 (1999)]. This observation also suggests that Emt may be an attractive target for modulating dysregulated allergic pathways mediated by Th2 cells.

Summary of the Invention

The present invention provides thiazolyl compounds of the following formula I and salts thereof for use as Emt tyrosine kinase inhibitors:

25

20

5

10

15

`>

where

Q₁ is thiazolyl;

 Q_2 is aryl or heteroaryl optionally independently substituted with one or more (preferably one to three) substituents R_{1a} ;

Z is

- (1) -0-,
- 5 (2)
 - (3) $-NR_{4}$ -,
 - (4) $-CR_4R_5$ -,

-S-,

- (5) $-CR_4R_5-O-CR_{4a}R_{5a}$ -,
- (6) $-CR_4R_5-NR_{4b}-CR_{4a}R_{5a}$ -,
- 10 (7) $-CR_4R_5-S-CR_{4a}R_{5a}$,
 - (8) $-CR_4R_5-O_7$
 - (9) $-O-CR_4R_5$ -,
 - (10) $-CR_4R_5-NR_{4b}-$,
 - (11) $-NR_{4b}-CR_4R_{5-}$,
- 15 (12) $-CR_4R_5-S_-$,
 - (13) $-S-CR_4R_5-$,
 - (14) $-S(O)_{q}$ where q is 1 or 2,
 - (15) $-CR_4R_5-S(O)_{q^-}$, or
 - (16) $-S(O)_{q}-CR_{4}R_{5}-;$
- 20 R₁ and R_{1a} are independently
 - (1) hydrogen or R₆,
 - (2) -OH or $-OR_{\delta}$,
 - (3) $-SH \text{ or } -SR_6$,
 - (4) $-C(O)_qH$, $-C(O)_qR_6$, or $-O-C(O)_qR_6$,
- 25 (5) $-SO_3H \text{ or } -S(O)_qR_6$,
 - (6) halo,
 - (7) cyano,
 - (8) nitro,
 - (9) $-Z_4-NR_7R_8$,
- 30 (10) $-Z_4-N(R_9)-Z_5-NR_{10}R_{11}$,
 - (11) $-Z_4-N(R_{12})-Z_5-R_6$, or
 - (12) $-P(O)(OR_6)_2$;

R₂ and R₃ are each independently H, -Z₄-R_{6a}, or -Z₄-NR_{7a}R_{8a}
R₄, R_{4a}, R_{4b}, R₅ and R_{5a} are each independently hydrogen, alkyl, aryl, aralkyl, cycloalkyl, or heteroarylalkyl;

- 5 R₆, R_{6a}, R_{6b} and R_{6c} are independently alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, aralkyl, heterocyclo, or heterocycloalkyl, each of which is unsubstituted or substituted with Z₁, Z₂ and one or more (preferably, one or two) groups Z₃,
- 10 R_7 , R_{7a} , R_8 , R_{8a} , R_9 , R_{10} , R_{11} and R_{12}

(B)

- (1) are each independently hydrogen, or $-Z_4R_{6b}$; or
- (2) R₇ and R₈, or R_{7a} and R_{8a} may together be alkylene, alkenylene, or heteroalkylene, completing a 3- to 8-membered saturated or unsaturated ring with the nitrogen atom to which they are attached, which ring is unsubstituted or substituted with Z₁, Z₂ and one or more groups Z₃, or
- (3) any two of R₉, R₁₀ and R₁₁ may together be alkylene, alkenylene or heteroalkylene completing a 3- to 8-membered saturated or unsaturated ring together with the nitrogen atoms to which they are attached, which ring is unsubstituted or substituted with one or more Z₁, Z₂ and Z₃;

 Z_1 , Z_2 and Z_3 are each independently

- (1) hydrogen or Z₆,
- (2) $-OH \text{ or } -OZ_6$,
- (3) $-SH \text{ or } -SZ_6$,
- 25 (4) $-C(O)_qH$, $-C(O)_qZ_6$, or $-O-C(O)_qZ_6$,
 - (5) $-SO_3H$, $-S(O)_aZ_6$, or $S(O)_aN(Z_9)Z_6$,
 - (6) halo,
 - (7) cyano,
 - (8) nitro,
- 30 (9) $-Z_4-NZ_7Z_8$,
 - (10) $-Z_4-N(Z_9)-Z_5-NZ_7Z_8$
 - (11) $-Z_4-N(Z_{10})-Z_5-Z_6$

4

15

5

- (12) $-Z_4-N(Z_{10})-Z_5-H$,
- (13) oxo,
- (14) any two of Z₁, Z₂, and Z₃ on a given substituent may together be alkylene or alkenylene completing a 3- to 8-membered saturated or unsaturated ring together with the atoms to which they are attached; or
- (15) any two of Z_1 , Z_2 , and Z_3 on a given substituent may together be $-O-(CH_2)_{a}-O-$;

 Z_4 and Z_5 are each independently

- 10 (1) a single bond,
 - (2) $-Z_{11}-S(O)_{q}-Z_{12}-$,
 - (3) $-Z_{11}$ -C(O)- Z_{12} -,
 - (4) $-Z_{11}$ -C(S)- Z_{12} -,
 - (5) $-Z_{11}$ -O- Z_{12} -,
- 15 (6) $-Z_{11}$ -S- Z_{12} -,
 - (7) $-Z_{11}$ -O-C(O)- Z_{12} -,
 - (8) $-Z_{11}$ -C(O)-O- Z_{12} -; or
 - (9) alkyl

Z₆ and Z_{6a} are independently

- 20 (i) alkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkenyl, cycloalkenylalkyl, aryl, aralkyl, alkylaryl, cycloalkylaryl, heterocyclo, or heterocycloalkyl;
 - (ii) a group (i) which is itself substituted by one or more of the same or different groups (i); or
- 25 (iii) a group (i) or (ii) which is independently substituted by one or more (preferably 1 to 3) of the groups (2) to (15) of the definition of Z_1 ;

 Z_7, Z_8, Z_9 and Z_{10}

- (1) are each independently hydrogen or $-Z_4-Z_{6a}$;
- (2) Z₇ and Z₈ may together be alkylene, alkenylene, or heteroalkylene
 30 completing a 3- to 8-membered saturated or unsaturated ring together
 with the atoms to which they are attached, which ring is unsubstituted
 or substituted with one or more Z₁, Z₂ and Z₃, or

(3) Z₇ or Z₈, together with Z₉, may be alkylene, alkenylene, or heteroalkylene completing a 3- to 8-membered saturated or unsaturated ring together with the nitrogen atoms to which they are attached, which ring is unsubstituted or substituted with one or more Z₁, Z₂ and Z₃;

- Z_{11} and Z_{12} are each independently
 - (1) a single bond,
 - (2) alkylene,
 - (3) alkenylene, or
 - (4) alkynylene.

10

15

20

25

30

)

Detailed Description of the Invention

The following are definitions of terms used in this specification. The initial definition provided for a group or term herein applies to that group or term throughout the present specification, individually or as part of another group, unless otherwise indicated.

The terms "alk" or "alkyl" refer to straight or branched chain hydrocarbon groups having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms. The expression "lower alkyl" refers to alkyl groups of 1 to 4 carbon atoms.

The term "alkenyl" refers to straight or branched chain hydrocarbon groups of 2 to 10, preferably 2 to 4, carbon atoms having at least one double bond. Where an alkenyl group is bonded to a nitrogen atom, it is preferred that such group not be bonded directly through a carbon bearing a double bond.

The term "alkynyl" refers to straight or branched chain hydrocarbon groups of 2 to 10, preferably 2 to 4, carbon atoms having at least one triple bond. Where an alkynyl group is bonded to a nitrogen atom, it is preferred that such group not be bonded directly through a carbon bearing a triple bond.

The term "alkylene" refers to a straight chain bridge of 1 to 5 carbon atoms connected by single bonds (e.g., $-(CH_2)_{X^-}$ wherein x is 1 to 5), which may be substituted with 1 to 3 lower alkyl groups.

The term "alkenylene" refers to a straight chain bridge of 2 to 5 carbon atoms having one or two double bonds that is connected by single bonds and may be substituted with 1 to 3 lower alkyl groups. Exemplary alkenylene groups are

-CH=CH-CH=CH-, -CH₂-CH=CH-, -CH₂-CH=CH-CH₂-, -C(CH₃)₂CH=CH- and -CH(C₂H₅)-CH=CH-.

The term "alkynylene" refers to a straight chain bridge of 2 to 5 carbon atoms that has a triple bond therein, is connected by single bonds, and may be substituted with 1 to 3 lower alkyl groups. Exemplary alkynylene groups are -C= C-, -CH₂-C= C-, -CH₂-C= C- and -C= C-CH₂-CH₂-C.

The term "heteroalkylene" refers to alkylene or alkenylene groups containing one or more heteroatoms N, O or S.

The terms "ar" or "aryl" refer to aromatic cyclic groups (for example 6 membered monocyclic, 10 membered bicyclic or 14 membered tricyclic ring systems) which contain 6 to 14 carbon atoms. Exemplary aryl groups include phenyl, naphthyl, biphenyl and anthracene.

The terms "cycloalkyl" refers to saturated or partially unsaturated (containing 1 or 2 double bonds) cyclic hydrocarbon groups containing 1 to 3 rings, including monocyclicalkyl, bicyclicalkyl and tricyclicalkyl, containing a total of 3 to 20 carbons forming the rings, preferably 3 to 7 carbons, forming the ring and which may be fused to 1 or 2 aromatic or heterocyclo rings, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohex

The terms "halogen" and "halo" refer to fluorine, chlorine, bromine and iodine.

The terms "heterocycle", "heterocyclic" or "heterocyclo" refer to fully saturated or unsaturated, including aromatic (i.e. "heteroaryl") cyclic groups, for

5

10

15

example, 4 to 7 membered monocyclic, 7 to 11 membered bicyclic, or 10 to 15 membered tricyclic ring systems, which have at least one heteroatom in at least one carbon atom-containing ring. Each ring of the heterocyclic group containing a heteroatom may have 1, 2, 3 or 4 heteroatoms selected from nitrogen atoms, oxygen atoms and/or sulfur atoms, where the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatoms may optionally be quaternized. The heterocyclic group may be attached at any heteroatom or carbon atom of the ring or ring system.

Exemplary monocyclic heterocyclic groups include pyrrolidinyl, pyrrolyl,

pyrazolyl, oxetanyl, pyrazolinyl, imidazolyl, imidazolinyl, imidazolidinyl, oxazolyl,
oxazolidinyl, isoxazolinyl, isoxazolyl, thiazolyl, thiadiazolyl, thiazolyl, thiazolyl, isothiazolyl, isothiazolidinyl, furyl, tetrahydrofuryl, thienyl, oxadiazolyl, piperidinyl,
piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolodinyl, 2-oxoazepinyl,
azepinyl, 4-piperidonyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl,
tetrahydropyranyl, morpholinyl, thiamorpholinyl, thiamorpholinyl sulfoxide,
thiamorpholinyl sulfone, 1,3-dioxolane and tetrahydro-1,1-dioxothienyl, triazolyl,

5 and the like.

Exemplary bicyclic heterocyclic groups include indolyl, benzothiazolyl, benzoxazolyl, benzodioxolyl, benzothienyl, quinuclidinyl, quinolinyl, tetra-hydroisoquinolinyl, isoquinolinyl, benzimidazolyl, benzopyranyl, indolizinyl, benzofuryl, chromonyl, coumarinyl, benzopyranyl, cinnolinyl, quinoxalinyl, indazolyl, pyrrolopyridyl, furopyridinyl (such as furo[2,3-c]pyridinyl, furo[3,2-b]pyridinyl] or furo[2,3-b]pyridinyl), dihydroisoindolyl, dihydroquinazolinyl (such as 3,4-dihydro-4-oxo-quinazolinyl), tetrahydroquinolinyl

and the like.

Exemplary tricyclic heterocyclic groups include carbazolyl, benzidolyl, phenanthrolinyl, acridinyl, phenanthridinyl, xanthenyl and the like.

The term "heteroaryl" refers to a 5- or 6- membered aromatic ring which includes 1, 2, 3 or 4 hetero atoms such as nitrogen, oxygen or sulfur, and such rings fused to an aryl, cycloalkyl, or heterocyclo ring (e.g. benzothiophenyl, indolyl), and includes possible N-oxides, such as

15 and the like.

5

Where q is 1 or 2, "-C(O)_qH" denotes -C(O)-H or -C(O)-OH; "-C(O)_qR₆" or "-C(O)_qZ₆" denote, respectively, -C(O)-R₆ or -C(O)-OR₆, or -C(O)-Z₆ or -C(O)-OZ₆; "-O-C(O)_qR₆" or "-O-C(O)_qZ₆" denote, respectively, -O-C(O)-R₆ or -O-C(O)-OR₆, or -O-C(O)-OZ₆; and "-S(O)_qR₆" or "-S(O)_qZ₆" denote, respectively, -SO-R₆ or -SO₂-R₆, or -SO-Z₆ or -SO₂-Z₆.

Compounds of the formula I may in some cases form salts which are also within the scope of this invention. Reference to a compound of the formula I herein is understood to include reference to salts thereof, unless otherwise indicated. The term "salt(s)", as employed herein, denotes acidic and/or basic salts formed with inorganic and/or organic acids and bases. Zwitterions (internal or inner salts) are included

20

within the term "salt(s)" as used herein (and may be formed, for example, where the R substituents comprise an acid moiety such as a carboxyl group). Also included herein are quaternary ammonium salts such as alkylammonium salts. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are useful, for example, in isolation or purification steps which may be employed during preparation. Salts of the compounds of the formula I may be formed, for example, by reacting a compound I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.

Exemplary acid addition salts include acetates (such as those formed with acetic acid or trihaloacetic acid, for example, trifluoroacetic acid), adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates, methanesulfonates, 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pectinates, persulfates, 3-phenylpropionates, phosphates, picrates, pivalates, propionates, salicylates, succinates, sulfates (such as those formed with sulfuric acid), sulfonates (such as those mentioned herein), tartrates, thiocyanates, toluenesulfonates, undecanoates, and the like.

Exemplary basic salts (formed, for example, where the R substituents comprise an acidic moiety such as a carboxyl group) include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as benzathines, dicyclohexylamines, hydrabamines, N-methyl-D-glucamines, N-methyl-D-glucamides, t-butyl amines, and salts with amino acids such as arginine, lysine and the like. The basic nitrogen-containing groups may be quaternized with agents such as lower alkyl halides (e.g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e.g. decyl, lauryl, myristyl

5

10

15

20

25

and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.

Prodrugs and solvates of the compounds of the invention are also contemplated herein. The term "prodrug", as employed herein, denotes a compound which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield a compound of the formula I, or a salt and/or solvate thereof. Solvates of the compounds of formula I are preferably hydrates.

All stereoisomers of the present compounds, such as those which may exist due to asymmetric carbons on the R substituents of the compound of the formula I, including enantiomeric and diastereomeric forms, are contemplated within the scope of this invention. Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations.

Throughout the specification, groups and substituents thereof are chosen to provide stable moieties and compounds.

Preferred compounds within the scope of the formula I include those wherein:

 Q_2 is phenyl optionally substituted with one or more groups as defined in R_{1a}

(especially, alkyl, hydroxy, alkoxy, haloalkoxy, halo, nitro, -C(O)₀R₆,

 $-C(O)_0H$, $-Z_4-NR_7R_8$, $-Z_4-N(R_{12})-Z_5-Z_6$, or $-Z_4-N(R_9)-Z_5-NR_{10}R_{11}$;

Z is selected from -S-, -CR₄R₅-S-, -S-CR₄R₅-, -CR₄R₅-O-CR_{4 α}R_{5 α}-,

 $-CR_4R_5-NR^4-CR_{4a}R_{5a}$, $-CR_4R_5$, $-CR_4R_5-SO_2$ - or $-CR_4R_5-S(O)$ -;

R₁ is hydrogen;

10

15

20

30

25 R₂ is hydrogen or alkyl; and

 R_3 is H, $-Z_4R_{6a}$ or $-Z_4NR_{7a}R_{8a}$.

More preferred compounds within the scope of formula I include those wherein:

Q2 is phenyl optionally substituted with one or more groups selected from alkyl,

alkoxy, hydroxy, $-C(O)R_6$ (especially wherein R_6 is optionally substituted alkyl or heterocyclo (especially piperazinyl), $-C(O)NR_7R_8$ or $-NR_7R_8$;

Z is selected from $-CR_4R_5$ -O- $CR_{4a}R_{5a}$ -, -S-, $-CR_4R_5$ -S- or -S- CR_4R_5 -;

- -- -- --

R₁ is hydrogen;

5

10

15

20

25

BNSDOCID <WO

0250071A1 L >

R₂ is hydrogen or alkyl; and

R₃ is -Z₄R_{6a}, especially where:

(a) Z₄ is a single bond and R_{6a} is optionally substituted heteroaryl (preferably pyridinyl, pyrimidinyl, or quinolinyl optionally substituted with one or more Z₁, Z₂ or Z₃ which are preferably alkyl, hydroxyalkyl, halo, -Z₄-NZ₇Z₈, -C(O)₀H, -C(O)₀Z₆, -OZ₆ or heterocyclo)

- (b) Z_4 is -C(O)- and R_{6a} is
 - (1) aryl (especially phenyl) optionally substituted with one or more Z₁, Z₂ or Z₃ (preferably -Z₄-NZ₇Z₈, -OZ_a, hydroxy, heterocyclo, or alkyl which may be optionally substituted with any of the preceding preferred Z₁, Z₂ or Z₃ groups) (where present, at least one substituent is preferably in the para position);
 - (2) alkyl optionally substituted with one or more Z_1 , Z_2 or Z_3 ;
 - (3) cycloalkyl (especially cyclopropyl) optionally substituted with one or more Z₁, Z₂ or Z₃ (especially aryl, aralkyl, halo, hydroxy,
 -C(O)_qH, -C(O)_qZ₆ or alkyl optionally substituted with hydroxy,
 -OZ₆ or -Z₄-NZ₇Z₈)); or
 - (4) heterocyclo (especially pyrrolidinyl, piperidyl, piperidenyl, piperazinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridinyl or pyrimidinyl) optionally substituted with one or more Z₁, Z₂ or Z₃ (especially -Z₄-NZ₇Z₈, -C(O)_qH, -C(O)_qZ₆, or alkyl optionally substituted with hydroxy, -OZ₆ or -Z₄-NZ₇Z₈); or
- (c) Z_4 is -C(O)-O- and R_{6a} is alkyl, cycloalkyl, aryl or aralkyl, any of which may be optionally substituted with one or more Z_1, Z_2 or Z_3

Preferred compounds within the scope of formula I include compounds of the following formula II:

where Z, Q_2 , R_1 , R_2 and R_3 are as described above (including the description of preferred substituents). Additionally, preferred compounds within the scope of formula II include compounds of the following formulae IIIa, IIIb and IIIc:

 $\begin{array}{c|c} R_2 & & & \\ R_{1ad} & & & \\ R_{1ab} & & & \\ R_{1aa} & & & \\ \end{array}$

where

5

10

Z is as described above (preferably -S-, -CR₄R₅-S-, or -S-CR₄R₅- where R₄ and R₅ are H);

R₁ is as described above (preferably H);

 R_2 and R_3 are as described above (including the description of preferred substituents); R_{1aa} is $-C(O)_qH$, $-C(O)_qR_6$, $-Z_4$ - NR_7R_8 , $-Z_4$ - $N(R_9)$ - Z_5 - $NR_{10}R_{11}$ or $-Z_4$ - $N(R_9)$ - Z_5 - R_6 ; and

15 R_{1ab}, R_{1ac} and R_{1ad} are independently selected from any R₁ group (especially, H, alkyl, hydroxy, nitro, halo, -OR₆, -NR₇R₈, -C(O)_qH or -C(O)_qR₆).

Preferred compounds within the scope of formulae III include compounds of the following formula IV

where

Z, R₁, R_{1aa}, R₂, and R₃ are as described above; and

One of R_{1ab}, R_{1ac} and R_{1ad} is H and the other two are independently alkyl, alkoxy,

haloalkoxy, hydroxy, nitro, halo, -NR₇R₈, -C(O)_qH or -C(O)_qR₆) (preferably alkyl or alkoxy). (preferably, R_{1c} is H when Z is -S-, and R_{1d} is H when Z is -S-CR₄R₅- or -O-CR₄R₅-);

Compounds within the scope of formula IV include compounds of the following formula V:

$$R_{2}$$
 R_{1ad}
 R_{1ac}
 R_{1ab}
 R_{1ab}
 R_{1ab}
 R_{1ab}

where

Z, R_1 , R_{1ab} , R_{1ac} , R_{1ad} , R_2 and R_3 are described for formula IV;

X₁ is C or N (preferably N);

15 X_2 is CZ_{3a} , NZ_{3a} , O or S (preferably CZ_{3a} , NZ_{3a} or O) (more preferably NZ_{3a}); Z_1 and Z_2 are as described for formula I (preferably H);

 Z_{3a} is H, hydroxy, optionally substituted alkyl (especially optionally substituted with hydroxy, cyano, aryl, $-OZ_6$, $-Z_4-NZ_7Z_8$, $-C(O)_qH$ or $-C(O)_qZ_6$), optionally substituted heterocyclo (preferably optionally substituted piperidinyl, tetrazolyl, pyridinyl, pyrimidinyl, or pyrrazolyl), optionally substituted aryl or aralkyl (especially optionally substituted with halo), $-OZ_6$, $-C(O)_qH$,

-C(O)_qZ_{6a}, -Z₄-NZ₇Z₈ (especially where Z₄ is a bond or -C(O)-), or - Z₄-N(Z₁₀)-Z₅-Z₆ (especially where Z₄ is a bond or -C(O)- and Z₅ is -O-, -SO₂-, or -C(O)O-);

n is 1 to 3; and

· 5 m is zero to 2.

10

15

20

25

30

Methods of Preparation

The compounds of the formula I may be prepared by methods such as those illustrated in the following Schemes A through C and I through VIII. Solvents, temperatures, pressures, and other reaction conditions may readily be selected by one of ordinary skill in the art. All documents cited are incorporated herein by reference in their entirety. Starting materials are commercially available or readily prepared by one of ordinary skill in the art. Constituents of compounds are as defined elsewhere in the specification or as specifically defined in a scheme.

The methods described herein may be carried out with starting materials and/or reagents in solution or alternatively, where appropriate, with one or more starting materials or reagents bound to a solid support (see (1) Thompson, L. A., Ellman, J. A., Chemical Reviews, 96, 555-600 (1996); (2) Terrett, N. K., Gardner, M., Gordon, D. W., Kobylecki, R. J., Steele, J., Tetrahedron, 51, 8135-8173 (1995); (3) Gallop, M. A., Barrett, R. W., Dower, W. J., Fodor, S. P. A., Gordon, E. M., Journal of Medicinal Chemistry, 37, 1233-1251 (1994); (4) Gordon, E. M., Barrett, R. W., Dower, W. J., Fodor, S. P. A., Gallop, M. A., Journal of Medicinal Chemistry, 37, 1385-1401 (1994); (5) Balkenhohl, F., von dem Bussche-Hünnefeld, Lansky, A., Zechel, C., Angewandte Chemie International Edition in English, 35, 2288-2337 (1996); (6) Balkenhohl, F., von dem Bussche-Hünnefeld, Lansky, A., Zechel, C., Angewandte Chemie, 108, 2436-2487 (1996); and (7) Sofia, M. J., Drugs Discovery Today, 1, 27-34 (1996)).

Compounds of formula I that contain chiral centers maybe obtained in nonracemic form by non-racemic synthesis or resolution by methods well known to those skilled in the art. Compounds that are non-racemic are designated as "chiral" in the examples.

In the examples described below it may be necessary to protect reactive functionality such as hydroxy, amino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in reactions. The introduction and removal of protecting groups are well known to those skilled in the art, for example see (Green, T. W. in "Protective Groups in Organic Synthesis", John Wiley and Sons, 1991).

X = Cl, Br, I, OSO₂R, OSO₂Ar Z = O, S, NR₄, OCR₄R₅, NR₄CR₄R₅

10

15

5

Scheme A illustrates a general method for forming compound \underline{Ia} which is a compound of formula I where Z = O, S, or NR_4 . Compound Ia can be formed by reacting compound \underline{i} with compound \underline{ii} in the presence of an organic or inorganic base e.g. alkalimetal alkoxide, alkyl or aryl lithium, or Grignard reagent in a protic or aprotic solvent e.g. tetrahydrofuran, ether, methyl alcohol, ethanol or dimethyl formamide at a temperature of 78 °C to 100 ° C.

20

Scheme B illustrates a general method for forming compound \underline{Ia} which is a compound of formula I where Z = O, S, NR4. Compound \underline{Ia} can be formed by

reacting compound <u>iii</u> with compound <u>iv</u> in presence of an organic or inorganic base e.g. alkali metal alkoxide, alkalimetal hydride, alkyl or aryl lithium or Grignard reagent in a protic or a protic solvent e.g. THF, ether, methanol, ethanol or DMF at a temperature of -78 °C to 100 °C.

Scheme C illustrates a general method for forming Compound <u>Ib</u> which is a compound of formula I where $Z = CR_4R_5$. Compound <u>Ib</u> can be formed by reacting Compound \underline{v} with an organometallic reagent e.g. alkyl or aryl lithium or cuprate or Grignard reagent and then reacting with Compound \underline{v} in an aprotic solvent e.g. ether, THF, DMF at a temperature of -78 °C to 60 °C.

Methods for preparing preferred examples of compound I are illustrated in Schemes I to IX.

Scheme I

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} R_1 \\ R_2 \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

 R_2 = alkyl, arylalkyl or Cycloalkylalkyl R_3 = COOR₆

As shown in Scheme I, amine <u>Ic</u> which can be formed by methods described in Schemes A, B or C can be reacted with a chloroformate <u>1</u> or dicarbonate <u>2</u> to form <u>Id</u>. Compound <u>Id</u> can be treated with a base such as sodium hydride, sodium/potassium hexamethyl disilazide, or lithium diisopropylamide (LDA), and an alkylating agent R₂X where X is halogen and R₂ is preferably alkyl, arylalkyl or cycloalkylalkyl to form Compound <u>Ie</u>.

Scheme II

 R_2 = any group as defined

 $R_3 = acyl \text{ or thioacyl}$

5

10

Amide/Thioamide

Carbamate

Urea/Thiourea

 $Z \neq NH$, CR_4R_5NH , $NHCR_4R_5$, or $CR_4R_5NCR_{4a}R_{5a}$

Scheme II illustrates methods which may be used for the preparation of Compounds \underline{Ig} , \underline{Ih} , \underline{Ii} , \underline{Ii} and \underline{Ik} which are compounds of formula I where R_2 is any group as defined, R_3 is an acyl or thioacyl, Z is not –NH and R_1 is not a primary or secondary amine. \underline{Ig} , \underline{Ih} , \underline{Ii} , \underline{Ii} and \underline{Ik} have other particular substituents which are specified in this Scheme and below. The starting compound \underline{If} can be prepared by suitable methods described in Schemes A, B or C.

Amide Ig can be prepared by treatment of amine If with a carboxylic acid 3 in the presence of reagents which activate the carboxyl group for reaction as described above, for example BOP reagent, HATU and carbodiimides such as DCC or EDCI either alone or in combination with a hydroxybenzotriazole. Alternatively, the alidhalide 4 may be reacted with amine compound If in presence of an acid scavenger such as pyridine ordiisopropyl ethyl amine. The corresponding thioamide Ih can be prepared by treatment of amide Ig with Lawesson's reagent as described above. Carbamate Ii can be prepared by treatment of amine compound If with a chloroformate 1 or dicarbonate 2 in the presence of an acid scavenger such as diisopropylethylamine, triethylamine or an aqueous inorganic base such as sodium/potassium bicarbonate, sodium/potassium carbonate or hydroxide.

The urea \underline{I} may be prepared by treatment of amine compound \underline{I} with either: 1) a chloroformate $\underline{1}$, such as phenyl chloroformate, followed by reaction with an amine $\underline{5}$; 2) a carbamoyl chloride $\underline{6}$ in presence of an acid scavenger such as

5

10

15

diisopropylethylamine; or 3) reaction with an isocyanate $\underline{7a}$ (where R_c in $\underline{Ii} = H$). The corresponding thiourea \underline{Ik} may be prepared by treatment of amine compound \underline{Ie} with a isothiocyanate $\underline{7b}$.

Ra is selected from those groups included in the definition of R_{6a} such that the group -C(=A)- R_a is an acyl group within the definition of R_3 . Rb and Rc are selected from those groups included in the definitions of R_{7a} and R_{8a} , such that the group -C(=A)-N(Rb)(Rc) is an acyl or thioacyl group within the definition of R_3 .

10 Scheme III

 R_2 = any group as defined other than acyl

 R_3 = alkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aralkyl or saturated heterocycle

Scheme III illustrates a method which can be used for the preparation of $\underline{\mathbb{I}}$, which is a compound of formula I where R_2 is any group as defined other than acyl, and which is selected such that the nitrogen to which it is attached is basic, R3 is

· 15

alkyl, cycloalkyl, cycloalkyl-alkyl, cycloalkenylalkyl, aralkyl or saturated heterocycle and Z is not – NH. The starting compounds Ik and Ic can be prepared by suitable methods described in Schemes A, B and C. As shown in Scheme III, amine compound Ik is reacted with an aldehyde or ketone 8 under reductive amination conditions described above to give the Compound Il. Compound Il may also be prepared by treatment of an amine compound Ic, where R2 and R3 are hydrogen, with I-butyl/I-amyl nitrite or sodium nitrite and an acid such as HCl, H2SO4 in presence of a copper (II) halide to give the halo compound vii, followed by displacement with amine 9 in the presence or absence of a base such as sodium or potassium hydride or the like (see Lee et al., J. Heterocyclic Chemistry 22,1621,1985). Rd and Re are independently selected from hydrogen, alkyl, aryl, cycloalkyl or cycloalkenyl or together are alkylene or alkenylene completing a 3- to 8-membered saturated or unsaturated ring, such that the group –CH(Rd)(Re) is a group within the definition of R.

15

10

Scheme IV

 R_2 = any group as defined other than acyl

 $R_3 = aryl$, heteroaryl

 $Z \neq NH$, CR_4R_5NH , $NHCR_4R_5$, or $CR_4R_5NCR_{4a}R_{5a}$

As shown in Scheme IV, when R₂ is any group as defined other than acyl, and is selected such that the nitrogen to which it is attached is basic, R₃ is an aryl or heteroaryl, amine compound <u>Ik</u> may be reacted with a halophenyl or haloheteroaromatic group <u>10</u> in the presence of a Pd(0)catalyst (See J. Am. Chem. Soc. 118, 7215, 1996) to give amine <u>Il</u>, which is a compound of formula I having the particular substituents described in this Scheme. The starting compound <u>Il</u> can be prepared by suitable methods described in Scheme A, B or C.

Scheme V

 R_2 = any group as defined

 $R_3 = heteroaryl$

 $Z \neq NH$, CR_4R_5NH , $NHCR_4R_5$, or $CR_4R_5NCR_{4a}R_{5a}$

5

As shown in Scheme V, when R₂ is any group as defined, R₃ is a heteroaromatic group, amine compound, Im may be reacted, in the presence of a base if needed, with a 2-halo-substituted heteroaromatic compound 11 where Q_a, together with atoms to which it is bonded, forms a 5- or 6-membered monocyclic or 10- to 12- membered bicyclic heteroaromatic group (such as forming 2-chloropyridine, 2-chloropyrimidine or 2-chloroquinoline) to give the amine compound In, where In is a compound of formula I having the particular substituents described in this scheme. The starting compound Im can be prepared by suitable methods described in Schemes A, B and C.

Scheme VI

$$R_{2} \longrightarrow R_{1}$$

$$R_{13} \longrightarrow R_{13} \longrightarrow R$$

As shown in Scheme VI, thiourea compound <u>Io</u> may be reacted with the

appropriate amine <u>12</u> in the presence of bis-(2-oxo-3-oxazolidinyl) phosphinic
chloride (BOP chloride), benzotriazol-1-yloxy-tris (dimethylamino) phosphonium
hexafluoro-phosphate (BOP-reagent), [O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium]hexafluorophosphate (HATU) and a carbodiimide such as
dicyclohexylcarbodiimide (DCC) or 3-ethyl-e(dimethylamino) propyl carbodiimide

(EDCI) or diisopropylcarbodiimide (DIC) in the presence of an organic base such as
triethylamine, diisopropylethylamine or dimethylaminopyridine in solvents such as
dimethylformamide, dichloromethane or tetrahydrofuran to form compound <u>Ip</u>, which
is a compound of formula I having the particular substituents described in this
scheme.

Alternatively, compound <u>Io</u> can be reacted with the appropriate amine <u>12</u> in the presence of a mercury (II) salt such as mercury chloride, or by other known methods in the literature, to form <u>Ip</u>. The starting material <u>Io</u> can be prepared by suitable methods described in Schemes A, B, or C or Scheme II.

As shown in Scheme VII, amine Iq can be reacted with diphenyl cyanocarbonimidate 13 either alone or in the presence of a base such as sodium hydride, sodium/potassium hexamethyldisilazide or dimethylaminopyridine in acetonitrile, tetrahydrofuran or dimethylformamide at room temperature or elevated temperature to form intermediate compound Ir which can be reacted with amine 14 to form compound Is, which is a compound of formula I having the particular substituents described in this scheme. The starting material Iq can be prepared by suitable methods described in Schemes A, B or C.

<u>Is</u>

Scheme VIII

$$R_{2}$$

$$R_{14}$$

$$R_{15}$$

$$R_{14}$$

$$R_{14}$$

$$R_{14}$$

$$R_{15}$$

$$R_{14}$$

$$R_{14}$$

$$R_{15}$$

$$R_{14}$$

$$R_{15}$$

$$R_{14}$$

$$R_{14}$$

$$R_{15}$$

$$R_{14}$$

$$R_{15}$$

$$R_{14}$$

$$R_{15}$$

$$R_{14}$$

$$R_{15}$$

$$R_{14}$$

$$R_{15}$$

$$R_{14}$$

$$R_{15}$$

As shown in Scheme VIII, compound Iq can be reacted with either 15 or 16 either alone or in the presence of a base such as sodium hydride, sodium/potassium hexamethyldisilazide or dimethylaminopyridine in dimethylformamide or tetrahydrofuran at room temperature or elevated temperature to form compounds It or Iu, respectively, which can be reacted separately with amine 14 at room temperature or elevated temperature to form compound Iv or Iw, respectively. Compounds Iv and Iw are compounds of formula I having the particular substituents as described in this

5

scheme. The starting material <u>Iq</u> can be prepared by suitable methods described in Schemes A, B or C.

As shown in Scheme IX, compound Ix may be reduced using, for example, lithium aluminum hydride in tetrahydrofuran at a temperature of 0-55 °C, or reacted with alkyl or aryl metal derivatives, such as alkyl lithium or Grignard reagents, in aprotic solvents such as diethyl ether or tetrahydrofuran, at a temperature of -78 to 100 °C to afford alcohol Iy. Alcohol Iy may then be reacted with compound vi alone or in the presence of organic or inorganic bases, such as sodium hydride, lithium hexamethyldisilazide, or potassium t-butoxide and the like, in a solvent such as dimethylformamide, and at a temperature of 0-100 °C to give compound Iaa.

5

Alternatively, the alcohol moiety of <u>ly</u> may be transformed into a leaving group via tosylation or conversion to a halide and then reacted with compound <u>18</u> alone or in the presence of bases such as sodium hydride in solvents such as tetrahydrofuran or dimethylformamide at a temperature from 0-100 °C to give compound <u>Ibb</u>.

5

10

15

20

25

30

Utility

The compounds of the present invention are immunosuppressive, antiinflammatory, anti-allergic, and anti-cancer agents. The compounds of the present invention inhibit Tec family tyrosine kinases (especially Emt) and are thus useful in the treatment, including prevention and therapy, of Tec family tyrosine kinaseassociated disorders, especially Emt-associated disorders. "Tec family tyrosine kinase-associated disorders" are those disorders which result from aberrant Tec family tyrosine kinase activity, and/or which are alleviated by the inhibition of one or more of these enzymes. Compounds within the scope of the present invention selectively inhibit Emt and are thus useful in the treatment, including prevention and therapy, of a range of disorders associated with the activation of Emt (e.g., inflammatory disorders, allergic disorders and cancer). In addition to Emt, the compounds of the present invention inhibit other Tec family kinases including Btk, Txk, Tec, and Bmx and are useful in the treatment of the disorders associated with the activation of these Tec family kinases. Such disorders are exemplified by, but are not limited to, transplant rejection; transplantation tolerance induction; arthritis including rheumatoid arthritis, psoriatic arthritis, and osteoarthritis; multiple sclerosis; chronic obstructive pulmonary disease (COPD) such as emphysema; inflammatory bowel diseases including ulcerative colitis and Crohn's disease; lupus (systemic lupus erythematosis); graft vs. host disease; T-cell mediated hypersensitivity diseases including contact hypersensitivity, delayed-type hypersensitivity, and gluten-sensitive enteropathy (Celiac disease); psoriasis; contact dermatitis (including that due to poison ivy); Hashimoto's thyroiditis; Sjogren's syndrom; autoimmune hyperthyroidism such as Graves's disease; Addison's disease (autoimmune disease of the adrenal glands); autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome); autoimmune alopecia; pernicious anemia; vitiligo; autoimmune

30

hypopituatarism; Guillain-Barre syndrome; diabetes (both type I and type II); other

autoimmune diseases; cancers such as leukemias and lymphomas; glomerulonephritis; serum sickness; uticaria; allergic diseases including respiratory allergies (asthma, hayfever, allergic rhinitis) and skin allergies; scleracierma; mycosis fungoides; acute inflammatory responses (such as acute respiratory distress syndrome and ischemia/reperfusion injury); dermatomyositis; alopecia areata; chronic actinic dermatitis; eczema; Behcet's disease; Pustulosis palmoplanteris; Pyoderma gangrenum; Sezary's syndrom; atopic dermatitis; systemic schlerosis; and morphea.

In a particular embodiment, the compounds of the present invention are useful for the treatment of the aforementioned exemplary disorders irrespective of their etiology, for example, for the treatment of transplant rejection, rheumatoid arthritis, multiple sclerosis, chronic obstructive pulmonary disease, inflammatory bowel disease, lupus, graft vs. host disease, T-cell mediated hypersensitivity disease, psoriasis, Hashimoto's thyroiditis, Guillain-Barre syndrom, cancer, contact dermatitis, allergic disease such as allergic rhinitis, asthma, ischemic or reperfusion injury, or atopic dermatitis whether or not associated with the Tec family tyrosine kinases.

The present invention also provides pharmaceutical compositions comprising at least one of the compounds of the formula I capable of treating a protein tyrosine kinase-associated disorder in an amount effective therefor, and a pharmaceutically acceptable vehicle or diluent. The compositions of the present invention may contain other therapeutic agents as described below, and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (for example, excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.

The compounds of the formula I may be administered by any suitable means, for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; buccally; parenterally, such as by subcutaneous, intravenous, intramuscular, or intrasternal injection or infusion techniques (e.g., as sterile injectable aqueous or non-aqueous solutions or suspensions); nasally such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally such as in the form of suppositories; in dosage unit formulations containing non-toxic, pharmaceutically acceptable vehicles or diluents. The present compounds may, for

5

10

15

20

25

example, be administered in a form suitable for immediate release or extended release. Immediate release or extended release may be achieved by the use of suitable pharmaceutical compositions comprising the present compounds, or, particularly in the case of extended release, by the use of devices such as subcutaneous implants or osmotic pumps. The present compounds may also be administered liposomally.

Exemplary compositions for oral administration include suspensions which may contain, for example, microcrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylcellulose as a viscosity enhancer, and sweeteners or flavoring agents such as those known in the art; and immediate release tablets which may contain, for example, microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and/or lactose and/or other excipients, binders, extenders, disintegrants, diluents and lubricants such as those known in the art. The present compounds may also be delivered through the oral cavity by sublingual and/or buccal administration. Molded tablets, compressed tablets or freeze-dried tablets are exemplary forms which may be used. Exemplary compositions include those formulating the present compound(s) with fast dissolving diluents such as mannitol, lactose, sucrose and/or cyclodextrins. Also included in such formulations may be high molecular weight excipients such as celluloses (avicel) or polyethylene glycols (PEG). Such formulations may also include an excipient to aid mucosal adhesion such as hydroxy propyl cellulose (HPC), hydroxy propyl methyl cellulose (HPMC), sodium carboxy methyl cellulose (SCMC), maleic anhydride copolymer (e.g., Gantrez), and agents to control release such as polyacrylic copolymer (e.g., Carbopol 934). Lubricants, glidants, flavors, coloring agents and stabilizers may also be added for ease of fabrication and use.

Exemplary compositions for nasal aerosol or inhalation administration include solutions in saline which may contain, for example, benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, and/or other solubilizing or dispersing agents such as those known in the art.

Exemplary compositions for parenteral administration include injectable solutions or suspensions which may contain, for example, suitable non-toxic, parenterally acceptable diluents or solvents, such as mannitol, 1,3-butanediol, water, Ringer's solution, an isotonic sodium chloride solution, or other suitable dispersing or

5

10

15

20

25

wetting and suspending agents, including synthetic mono- or diglycerides, and fatty acids, including oleic acid.

Exemplary compositions for rectal administration include suppositories which may contain, for example, a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperatures, but liquify and/or dissolve in the rectal cavity to release the drug.

Exemplary compositions for topical administration include a topical carrier such as Plastibase (mineral oil gelled with polyethylene glycol).

The effective amount of a compound of the present invention may be determined by one of ordinary skill in the art, and includes exemplary dosage amounts for an adult human of from about 0.1 to 100 mg/kg of body weight of active compound per day, which may be administered in a single dose or in the form of individual divided doses, such as from 1 to 4 times per day. It will be understood that the specific dose level and frequency of dosage for any particular subject may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the species, age, body weight, general health, sex and diet of the subject, the mode and time of administration, rate of excretion, drug combination, and severity of the particular condition. Preferred subjects for treatment include animals, most preferably mammalian species such as humans, and domestic animals such as dogs, cats and the like, subject to protein tyrosine kinase-associated disorders.

The compounds of the present invention may be employed alone or in combination with each other and/or other suitable therapeutic agents useful in the treatment of Tec family tyrosine kinase-associated disorders such as Emt inhibitors other than those of the present invention, antiinflammatories, antiproliferatives, chemotherapeutic agents, immunosuppressants, anticancer agents and cytotoxic agents.

Exemplary such other therapeutic agents include the following: protein tyrosine kinase inhibitors (such as those disclosed in WO 00/62778), cyclosporins (e.g., cyclosporin A), CTLA4-Ig, LEA-29Y, antibodies such as anti-ICAM-3, anti-IL-2 receptor (Anti-Tac), anti-CD45RB, anti-CD2, anti-CD3 (OKT-3), anti-CD4, anti-CD80, anti-CD86, monoclonal antibody OKT3, agents blocking the interaction

5

10

15

20

25

between CD40 and gp39, such as antibodies specific for CD40 and/or gp39 (i.e., CD154), fusion proteins constructed from CD40 and gp39 (CD40Ig and CD8gp39), inhibitors, such as nuclear translocation inhibitors, of NF-kappa B function, such as deoxyspergualin (DSG), non-steroidal antiinflammatory drugs (NSAIDs) such as ibuprofen, steroids such as prednisone or dexamethasone, gold compounds, antiproliferative agents such as methotrexate, FK506 (tacrolimus, Prograf), mycophenolate mofetil, cytotoxic drugs such as azathiprine and cyclophosphamide, phosphodiesterase (PDE) inhibitors, antihistamines, p³⁸ MAPK inhibitors, LTD₄ inhibitors such as zafirlukast (ACCOLATE) and montelukast (SINGULAIR), TNF-a 10 inhibitors such as tenidap, anti-TNF antibodies or soluble TNF receptor such as etanercept (Enbrel), rapamycin (sirolimus or Rapamune), leflunimide (Arava), and cyclooxygenase-2 (COX-2) inhibitors such as celecoxib (Celebrex) and rofecoxib (Vioxx), or derivatives thereof, and the PTK inhibitors disclosed in the following U.S. Patent Applications, incorporated herein by reference in their entirety: Serial No. 15 60/056,770, filed 8/25/97 (Attorney Docket No. QA202*), Serial No. 60/069,159, filed 12/9/97 (Attorney Docket No. QA202a*), Serial No. 09/097,338, filed 6/15/98 (Attorney Docket No. QA202b), Serial No. 60/056,797, filed 8/25/97 (Attorney Docket No. QA205*), Serial No. 09/094,797, filed 6/15/98 (Attorney Docket No. QA205a), Serial No. 60/065,042, filed 11/10/97 (Attorney Docket No. QA207*), 20 Serial No. 09/173,413, filed 10/15/98, (Attorney Docket No. QA207a), Serial No. 60,076,789, filed 3/4/98 (Attorney Docket No. QA208*), and Serial No. 09,262,525, filed 3/4/99 (Attorney Docket No. QA208a). See the following documents and references cited therein: Hollenbaugh, D., Douthwright, J., McDonald, V., and Aruffo, A., "Cleavable CD40Ig fusion proteins and the binding to sgp39", J. 25 Immunol. Methods (Netherlands), 188(1), p. 1-7 (Dec 15 1995); Hollenbaugh, D., Grosmaire, L. S., Kullas, C. D., Chalupny, N. J., Braesch-Andersen, S., Noelle, R. J., Stamenkovic, I., Ledbetter, J. A., and Aruffo, A., "The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity", EMBO J (England), 11(12), 30 p 4313-4321 (Dec 1992); and Moreland, L. W. et al., "Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion

protein, New England J. of Medicine, 337(3), p. 141-147 (1997).

Exemplary classes of anti-cancer agents and cytotoxic agents include, but are not limited to: alkylating agents, such as nitrogen mustards, alkyl sulfonates, nitrosoureas, ethylenimines, and triazenes; antimetabolites, such as folate antagonists, purine analogues, and pyrimidine analogues; antibiotics, such as anthracyclines, bleomycins, mitomycin, dactinomycin, and plicamycin; enzymes, such as Lasparaginase; farnesyl-protein transferase inhibitors; hormonal agents, such as glucocorticoids, estrogens/antiestrogens, androgens/antiandrogens, progestins, and luteinizing hormone-releasing hormone anatagonists, octreotide acetate; microtubuledisruptor agents, such as ecteinascidins or their analogs and derivatives; microtubulestabilizing agents such as paclitaxel (Taxol®), docetaxel (Taxotere®), and epothilones A-F or their analogs or derivatives; plant-derived products, such as vinca alkaloids, epipodophyllotoxins, taxanes; and topoisomerase inhibitors; prenyl-protein transferase inhibitors; and miscellaneous agents such as, hydroxyurea, procarbazine, mitotane, hexamethylmelamine, platinum coordination complexes such as cisplatin and carboplatin; and other agents used as anti-cancer and cytotoxic agents such as biological response modifiers, growth factors; immune modulators, and monoclonal antibodies. The compounds of the invention may also be used in conjunction with radiation therapy.

Representative examples of these classes of anti-cancer and cytotoxic agents 20 include, but are not limited to, mechlorethamine hydrochloride, cyclophosphamide, chlorambucil, melphalan, ifosfamide, busulfan, carmustin, lomustine, semustine, streptozocin, thiotepa, dacarbazine, methotrexate, thioguanine, mercaptopurine, fludarabine, pentastatin, cladribin, cytarabine, fluorouracil, doxorubicin hydrochloride, daunorubicin, idarubicin, bleomycin sulfate, mitomycin C, 25 actinomycin D, safracins, saframycins, quinocarcins, discodermolides, vincristine, vinblastine, vinorelbine tartrate, etoposide, teniposide, paclitaxel, tamoxifen, estramustine, estramustine phosphate sodium, flutamide, buserelin, leuprolide, pteridines, diyneses, levamisole, aflacon, interferon, interleukins, aldesleukin, filgrastim, sargramostim, rituximab, BCG, tretinoin, irinotecan hydrochloride, 30 betamethosone, gemcitabine hydrochloride, altretamine, and topoteca and any analogs or derivatives thereof.

5

10

Preferred members of these classes include, but are not limited to paclitaxel, cisplatin, carboplatin, doxorubicin, carminomycin, daunorubicin, aminopterin, methotrexate, methopterin, mitomycin C, ecteinascidin 743, porfiromycin, 5-fluorouracil, 6-mercaptopurine, gemcitabine, cytosine arabinoside, podophyllotoxin or podophyllotoxin derivatives such as etoposide, etoposide phosphate or teniposide, melphalan, vinblastine, vincristine, leurosidine, vindesine, and leurosine.

Examples of anti-cancer and other cytotoxic agents include the following: epothilone derivatives as found in U.S. Serial No. 09/506,481 filed February 17, 2000 (Attorney Docket No. LD186); German Patent No. 4138042.8; WO 97/19086, WO 98/22461, WO 98/25929, WO 98/38192, WO 99/01124, WO 99/02224, WO 99/02514, WO 99/03848, WO 99/07692, WO 99/27890, WO 99/28324, WO 99/43653, WO 99/54330, WO 99/54318, WO 99/54319, WO 99/65913, WO 99/67252, WO 99/67253, and WO 00/00485; cyclin dependent kinase inhibitors as found in WO 99/24416; and prenyl-protein transferase inhibitors as found in WO 97/30992 and WO 98/54966.

The above other therapeutic agents, when employed in combination with the compounds of the present invention, may be used, for example, in those amounts indicated in the Physicians' Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art.

Compounds within the scope of the present invention can be assayed for Tec family tyrosine kinase inhibitory activity using methods such as those described by Hawkins, J. and Marcy, A. *Prot. Express. Purif.* 2001, 22, 211-219, employing modifications readily known to those of skill in the art.

The following example compounds are Tec family tyrosine kinase inhibitors (especially Emt inhibitors) and illustrate embodiments of the present invention. These examples are not intended to limit the scope of the claims. Compounds of the Examples are identified by the example and step in which they are prepared (for example, "1A" denotes the title compound of step A of Example 1), or by the example only where the compound is the title compound of the example (for example, "2" denotes the title compound of Example 2).

5

10

15

20

25

Example 1

N-[5-[[3-[(4-Acetylpiperazin-1-yl)carbonyl]phenyl]thio]thiazol-2-yl]-4-(N,N-dimethylamino)benzamide

5

A. 3-[(2-Aminothiazol-5-yl)thio]benzoic acid methyl ester

10

15

20

A 4.37 M solution of sodium methoxide in methanol (10 mL, 43.7 mmol) was added dropwise to a stirred suspension of 2-amino-5-bromothiazole hydrochloride (2.16 g, 10 mmol) and 3-carboxythiophenol (1.85 g, 12 mmol) in methanol (75 mL) at 0-5 °C. The solution was allowed to warm to rt. for 2 h and a 4 M solution of hydrogen chloride in dioxane (15 mL, 60 mmol) was added. The suspension was stirred at rt. overnight and concentrated. The crude residue was diluted with satd. aqueous sodium bicarbonate solution (50 mL). The precipitated solid was filtered and washed with water (20 mL, 5x) and ether (20 mL, 5x). The solid was filtered and dried in vacuo at 60 °C to obtain the titled compound (1.97 g, 75%).

B. 3-[[2-[[(1,1-Dimethylethoxy)carbonyl]amino]thiazol-5-yl]thio]benzoic acid methyl ester

Di-t-butylcarbonate (4.36 g, 20 mmol) was added to a stirred solution of 2-amino-5-[(3-carbomethoxyphenyl)thio]thiazole (1.33 g, 5 mmol) and 4-N,N-dimethylaminopyridine (62 mg, 0.5 mmol) in THF (120 mL). The solution was stirred at rt. for 6 h and concentrated. The residue was purified using flash column chromatography on silica gel. Elution with 10% EtOAc in hexanes followed by 25% EtOAc in hexanes afforded a mixture of the titled compound and the corresponding bis(tert-butoxycarbonyl)amino adduct (1.8 g) as an oil.

10 C. 3-[[2-[[(1,1-Dimethylethoxy)carbonyl]amino]thiazol-5-yl]thio]benzoic acid

- A 1 N aqueous sodium hydroxide solution (50 mL, 50 mmol) was added dropwise to a stirred solution of 2-tert-butoxycarbonylamino-5-[(3-carbomethoxyphenyl)thio]thiazole (1.8 g, (contaminated with bis(tert-butoxycarbonyl)amino adduct)) in a methanol-THF mixture (160 mL, 3:1). The solution was stirred at rt. for 24 h and concentrated. The residue was acidified with 2 N aqueous HCl (30 mL) and the suspension was extracted with dichloromethane-methanol mixture (120 mL, 3:1, 2x). The combined organic extract was dried (MgSO₄), filtered and concentrated in vacuo to obtain the titled compound (1.32 g, 75% overall yield from Example 1, part A) as an off-white solid.
- 25 **D.** 5-[[3-[(4-Acetylpiperazin-1-yl)carbonyl]phenyl]thio]thiazol-2-ylcarbamic acid 1,1-(dimethylethyl) ester

A suspension of 2-*tert*-butoxycarbonylamino-5-[(3-carboxyphenyl)thio]thiazole (528 mg, 1.5 mmol), N-acetylpiperazine (239 mg, 1.87 mmol), ethyl-3-(3-dimethylamino)propyl carbodiimide hydrochloride (400 mg, 2 mmol), 1-hydroxy-7-azabenzotriazole (272 mg, 2 mmol) and diisopropylethylamine (560 μL, 4 mmol) in THF (20 mL) was heated to 55 °C for 2 h. The mixture was cooled to rt. and concentrated. The residue was purified using column chromatography on silica gel eluted with 2% methanol in dichloromethane followed by 5% methanol in dichloromethane to obtain the titled compound (400 mg, 58%) as a white foam.

E. 4-Acetyl-1-[3-[(2-aminothiazol-5-yl)thio]benzoyl]piperazine

$$H_2N$$
 S
 S
 N
 N
 Me

15

20

5

10

A solution of 2-tert-butoxycarbonylamino-5-[(3-N-acetylpiperazinylcarboxamidophenyl)thio]thiazole (400 mg, 0.87 mmol) in trifluoroacetic acid (6 mL) was stirred at rt. for 2 h. The solution was concentrated and the residue was partitioned between dichloromethane (30 mL) and satd. aqueous sodium bicarbonate solution (20 mL). The aq. layer was extracted with dichloromethane (20 mL). The dichloromethane extracts were combined, dried (MgSO₄), filtered and concentrated under reduced pressure and *in vacuo* to obtain the titled compound (300 mg, 95%) as a white solid.

F. N-[5-[[3-[(4-Acetylpiperazin-1-yl)carbonyl]phenyl]thio]thiazol-2-yl]-4-(N,N-dimethylamino)benzamide

5

10

15

A stirred suspension of 2-amino-5-[(3-N-acetylpiperazinylcarboxamidophenyl)-thio]thiazole (30 mg, 0.08 mmol), and 4-N,N-dimethylaminobenzoyl chloride (45.6 mg, 0.25 mmol) in dichloromethane (6 mL) was cooled to 0 °C and treated with pyridine (130 μ L). The cooling bath was removed and the solution was stirred at rt. for 2 h. The mixture was concentrated *in vacuo* and the residue was purified using reversed phase automated preparative HPLC (conditions: YMC S5 ODS A 20 x 100 mm column, 15 min gradient starting from 10% solvent B (90% MeOH, 10% H₂O, 0.1% TFA) and 90% solvent A (10% MeOH, 90% H₂O, 0.1% TFA) to 90% solvent B and 10% solvent A, flow rate 20 mL/min, λ = 220 nM to obtain the titled compound (8.7 mg, 21%) as a yellow solid: (M + H)⁺ = 510.27.

Example 2

20

4-Acetyl-1-[5-[[2-[N-(6-bromopyridin-2-yl)amino]thiazol-5-yl]thio]-2methylbenzoyl]piperazine

A. N-[[N-(6-Bromopyridin-2-yl)amino]thioxo]benzamide

A solution of 2-amino-6-bromopyridine (3 g, 17.34 mmol) and benzoyl isothiocyanate (2.3 mL, 17.34 mmol) in acetone (30 mL) was stirred at rt. for 35 min. The suspension was cooled in an ice-water bath, diluted with water (150 mL) and stirred for several min. The precipitate was filtered, washed with water and dried in vacuo. The solid was triturated with ether to obtain the titled compound (4.99 g, 86%) as an off-white solid.

B. N-(6-Bromopyridin-2-yl)thiourea

A suspension of 2-bromo-6-benzoylthioureidopyridine (4.99 g, 14.84 mmol) in 10% aqueous sodium hydroxide solution (10.4 mL, 26 mmol) was stirred at rt. for 10 min and then under reflux for an additional 10 min. The mixture was cooled to 0 °C and acidified with 1 N aqueous HCl solution to pH 4.0 and then adjusted to pH 8.5 with satd. aqueous potassium bicarbonate solution. The mixture was stirred at 0 °C for several min and the precipitate was filtered, washed several times with water and dried *in vacuo* over P₂O₅ to obtain the titled compound (3.23 g, 94%) as a white solid.

C. 6-Bromo-N-(2-thiazolyl)pyridin-2-amine

25

15

A suspension of 2-bromo-6-thioureidopyridine (3 g, 12.92 mmol) and chloroacetaldehyde (3.28 mL, 25.85 mmol) in ethanol (27 mL) and water (7 mL) was heated at reflux for 4.75 h. The solution was concentrated *in vacuo* and the residue was diluted with 1 N aqueous NaOH solution at 0 °C, stirred for 10 min, and the pH was then adjusted to 8.5 by addition of 6 N aqueous HCl solution. The precipitate was collected by filtration, washed several times with water and dried *in vacuo* over P₂O₅ to obtain the titled compound (3.17 g, 96%) as a light yellow solid.

D. 6-Bromo-N-(5-bromo-2-thiazolyl)pyridin-2-amine

A solution of bromine (1.1 mL, 20.9 mmol) in acetic acid (15 mL) was added dropwise to a solution of 2-[(6-bromo-2-pyridinyl)amino]thiazole (2.68 g, 10.46 mmol) in acetic acid (23 mL) at 40 °C. After addition, the mixture was stirred at rt. for 3 h. The mixture was diluted with aqueous potassium hydrogen sulfate solution (60 mL) at 0 °C and stirred for several min. The precipitated solid was filtered, washed several times with water and dried *in vacuo* over P₂O₅ to obtain the titled compound (3.28 g, 94%) as an off-white solid.

E. 5-[[2-[N-(6-Bromopyridin-2-yl)amino]thiazol-5-yl]thio]-2-methylbenzoic acid

25

5

10

A suspension of 2-[(6-bromo-2-pyridinyl)amino]-5-bromothiazole (100 mg, 0.3 mmol), 3-carboxy-4-methylthiophenol (170 mg, 0.98 mmol) and sodium

methoxide (210 μL, 25% w/w solution in methanol, 0.9 mmol) in methanol (4.9 mL) and THF (2 mL) was heated to 54 °C for 5.5 h. Supplemental sodium methoxide solution (1.42 mL) was added in portions over a period of 5 h. The mixture was heated to 54 °C for 16 h and concentrated. The residue was diluted with 1 N aqueous HCl solution at 0 °C and stirred for several minutes. The precipitated solid was filtered, washed several times with water and ether, and dried *in vacuo* over P₂O₅. Trituration with ether afforded the titled compound (103 mg, 81%) as an off-white solid.

10 F. 4-Acetyl-1-[5-[[2-[N-(6-bromopyridin-2-yl)amino]thiazol-5-yl]thio]-2-methylbenzoyl]piperazine

15

A suspension of 2-[(6-bromo-2-pyridinyl)amino]-5-(3-carboxy-4-methylphenyl-1-thio)thiazole (103 mg, 0.24 mmol), N-acetylpiperazine (37.2 mg, 0.29 mmol), ethyl-3-(3-dimethylamino)propyl carbodiimide hydrochloride (55.6 mg, 0.29 mmol), 1-hydroxy-7-azabenzotriazole (39.5 mg, 0.29 mmol) and diisopropylethylamine (130 μL, 0.72 mmol) in THF (10.5 mL) was heated to 58 °C for 1 h. The mixture was concentrated *in vacuo* and the residue was purified using column chromatography on silica gel. Elution with 1% methanol in dichloromethane followed by 2% and 4% methanol in dichloromethane afforded the titled compound (110 mg, 86%) as a yellow solid: mass spectrum (M + H)⁺ = 533.89.

25

Example 3

4-Acetyl-1-[5-[[2-[N-(2-pyridinyl)amino]thiazol-5-yl]thio]-2-methylbenzoyl]piperazine

5 A. N-[[N-(2-Pyridinyl)amino]thioxo]benzamide

This material was prepared by an analogous method as that of Example 2, part A, except using 2-aminopyridine to give the title compound as an ochre solid (100%).

B. N-(2-Pyridinyl)thiourea

15

This material was prepared by an analogous method as that described in Example 2, part B, except using the compound described in Example 3, part A to give the title compound as a yellow powder (73%).

20

C. N-(2-Thiazolyl)-2-pyridinamine

Example 3C was prepared by an analogous method as that of Example 2C, except using the compound described in Example 3, part B to give the title compound as an off-white solid (79%).

5 D. N-(5-Bromothiazol-2-yl)-2-pyridinamine

Example 3D was prepared by an analogous method as that of Example 2D, except using the compound described in Example 3, part C to give the title compound as an off-white solid (95%).

E. 2-Methyl-5-[[2-[N-(2-pyridinyl)amino]thiazol-5-yl]thio]benzoic acid

Example 3E was prepared by an analogous method as that of Example 2E, except using the compound described in Example 3, part D to give the title compound as a pale tan solid (84%).

F. 4-Acetyl-1-[5-[[2-[N-(2-pyridinyl)amino]thiazol-5-yl]thio]-2-methylbenzoyl]piperazine

25

15

Example 3F was prepared by an analogous method as that of Example 2F, except using the compound described in Example 3, part E to give the title compound as an off-white solid: mass spectrum $(M + H)^+ = 454.11$.

5

Example 4

4-Acetyl-1-[3-[[2-[N-(6-bromopyridin-2-yl)amino]thiazol-5-yl]thio]benzoyl]piperazine

10

A. 3-[[2-[N-(6-Bromopyridin-2-yl)amino]thiazol-5-yl]thio]benzoic acid

15

Example 4A was prepared by an analogous method as that of Example 2E, except using 3-carboxythiophenol in place of 3-carboxy-4-methylthiophenol to give the title compound as a solid.

20

B. 4-Acetyl-1-[3-[[2-[N-(6-bromopyridin-2-yl)amino]thiazol-5-yl]thio]benzoyl]piperazine

Example 4B was prepared by an analogous method as that of Example 2F, except using the compound described in Example 4, part A to give the title compound as a light peach-colored solid: mass spectrum $(M + H)^+ = 520.13$.

5

Example 5

4-Acetyl-1-[3-[[2-[N-(2-pyridinyl)amino]thiazol-5-yl]thio]benzoyl]piperazine

10

15 A. 3-[[2-[N-(2-Pyridinyl)amino]thiazol-5-yl]thio]benzoic acid

Example 5A was prepared by an analogous method as that of Example 2E,

except using the compound described in Example 3, part D and 3-carboxythiophenol
in place of 3-carboxy-4-methylthiophenol to give the title compound as a solid.

B. 4-Acetyl-1-[3-[[2-[N-(2-pyridinyl)amino]thiazol-5-yl]thio]benzo-yl]piperazine

Example 5B was prepared by an analogous method as that of Example 2F, except using the compound described in Example 5, part A to give the title compound as an off-white solid: mass spectrum $(M + H)^{+} = 440.3$.

Example 6

4-Acetyl-1-[3-[[2-[N-(6-methylpyridin-2-yl)amino]thiazol-5-yl]thio]benzoyl]piperazine

Example 6 was prepared by an analogous method as that of Example 2, except using 2-amino-6-methylpyridine in place of 2-amino-6-bromopyridine in Example 2A and 3-carboxythiophenol in place of 3-carboxy-4-methylthiophenol in Example 2E to give the title compound as a white solid: mass spectrum (M + H)⁺ = 454.11.

20 Example 7

 $\label{lem:condition} \begin{tabular}{ll} 4-Acetyl-1-[3-[[2-[N-(5-bromo-6-methylpyridin-2-yl)amino]thiazol-5-yl]thio]} \end{tabular}$

5

Example 7 was prepared by an analogous method as that of Example 2, except using 2-amino-5-bromo-6-methylpyridine in place of 2-amino-6-bromopyridine in Example 2A and 3-carboxythiophenol in place of 3-carboxy-4-methylthiophenol in Example 2E to give the title compound as a light tan solid: mass spectrum (M + H)⁺ = 534.

10

Example 8

4-Acetyl-1-[3-[[2-[N-(2-quinolinyl)amino]thiazol-5-yl]thio]benzoyl]piperazine

15

Example 8 was prepared by an analogous method as that of Example 2, except using 2-amino-quinoline in place of 2-amino-6-bromopyridine in Example 2A and 3-carboxythiophenol in place of 3-carboxy-4-methylthiophenol in Example 2E to give the title compound as a yellow solid: mass spectrum $(M + H)^+ = 490.08$.

20

Example 9

4-Acetyl-1-[3-[[2-[N-(2-pyridinyl)amino]thiazol-5-yl]thio]-4-methylbenzoyl]piperazine

Example 9 was prepared by an analogous method as that of Example 2, except using 2-amino-pyridine in place of 2-amino-6-bromopyridine in Example 2A and 3-carboxy-6-methylthiophenol in place of 3-carboxy-4-methylthiophenol in Example 2E to give the title compound as a white solid: mass spectrum $(M + H)^+ = 454.13$.

Example 10

4-Acetyl-1-[3-[[2-[N-[6-(1-piperidinyl)pyridin-2-yl]amino]thiazol-5-yl]thio]benzoyl]piperazine

15

20

5

10

A solution of Example 4 (30 mg, 0.058 mmol), piperidine (86 μ L, 0.87 mmol), 4-dimethylaminopyridine (7.1 mg, 0.058 mmol) in pyridine (300 μ L) was heated to 134 °C in a sealed vial under nitrogen for 8.75 h. Most of pyridine was removed on a speed-vac at 40 °C. The residue was purified using reversed phase automated preparative HPLC (conditions: YMC S5 ODS A 20 x 100 mm column, 15 min gradient starting from 10% solvent B (90% MeOH, 10% H₂O, 0.1% TFA) and 90% solvent A (10% MeOH, 90% H₂O, 0.1% TFA) to 90% solvent B and 10% solvent A, flow rate 20 mL/min, λ = 220 nM) to obtain the titled compound (25.2 mg, 68%) as a light tan solid.

Examples 11 through 22

General Procedure

Polymer-supported disopropylethylamine (37.6 mg, 0.124 mmol) was 5 dispensed into each well of a 48 well Mini-block reactor. A 0.087 M solution of the appropriate amines in THF-DMF mixture (1 mL, 9:1) was added to each well using the TECAN liquid handler. A solution of the carboxylic acid described in procedure 3E (10 mg, 0.029 mmol), ethyl-3-(3-dimethylamino)propylcarbodiimide hydrochloride (6.71 mg, 0.035 mmol), 1-hydroxy-7-azabenzotriazole (4.76 mg, 0.035 10 mmol) in THF-DMF mixture (1 mL, 4:1) was added to each well using the TECAN liquid handler. The Mini-block was sealed and mechanically shaken at 60 °C for 5 h and at room temperature for an additional 16 h. Polystyrene supported methylisocyanate resin (109.5 mg, Novabiochem) was added to each well and shaking was continued at room temperature for 16 h. Each reaction mixture was loaded onto 15 cation-exchange cartridges (CUBCX1HL, size: 500 mg/3 mL, United Chemical Technologies) and eluted sequentially with THF (8 mL), MeOH (8 mL), and 0.2 N ammonia in MeOH (4 mL). Fractions containing products were concentrated using a speed-vac. Residues were dissolved in THF-DMF mixture (9:1) and passed through anion exchange cartridges (CHQAX1, size: 500 mg/3 mL, United Chemical 20 Technologies) and eluted with MeOH (2 mL). Fractions containing the products were concentrated using the speed-vac to give Examples 11-22.

Ex. No.	Name	Structure	MS (M+H)
11	4-(2-Pyrimidinyl)-1-[5-[[2- [N-(2- pyridinyl)amino]thiazol- 5-yl]thio]-2- methylbenzoyl]piperazine	N N S S S S S S S S S S S S S S S S S S	488.3
12	4-Hydroxy-1-[5-[[2-[N-(2-pyridinyl)amino]thiazol-5-yl]thio]-2-methylbenzoyl]piperidine	N S S S S S S S S S S S S S S S S S S S	427.33
13	1,2,5,6-Tetrahydro-1-[5- [[2-[N-(2- pyridinyl)amino]thiazol- 5-yl]thio]-2-	N N S S CHO	409.2

Ex.	Name	Structure	MS
No.			(M+H)*
	methylbenzoyl]pyridine	·	
14	4-[2-(4-Morpholinyl)-2- oxoethyl]-1-[5-[[2-[N-(2-	CH ₃ N	456.2
	pyridinyl)amino]thiazol- 5-yl]thio]-2- methylbenzoyl]piperazine	NA BASAS TO TO TO THE STATE OF	
15	3-(Hydroxymethyl)-1-[5- [[2-[N-(2- pyridinyl)amino]thiazol- 5-yl]thio]-2- methylbenzoyl]piperidine	N S S OH OH	441.15
16	4-(1-Piperidinyl)-1-[5-[[2- [N-(2- pyridinyl)amino]thiazol- 5-yl]thio]-2- methylbenzoyl]piperidine	N N S S S S S S S S S S S S S S S S S S	494.3
17	4-Formyl-1-[5-[[2-[N-(2-pyridinyl)amino]thiazol-5-yl]thio]-2-methylbenzoyl]piperazine		440.08
18	3-Methyl-1-[5-[[2-[N-(2-pyridinyl)amino]thiazol- 5-yl]thio]-2- methylbenzoyl]piperidine	N N S S CH ₃	425.18
19	N-Methyl-N-phenyl-4-[5- [[2-[N-(2- pyridinyl)amino]thiazol- 5-yl]thio]-2- methylbenzoyl]-1- piperazineacetamide		559.3
20	4-[5-[[2-[N-(2- Pyridinyl)amino]thiazol- 5-yl]thio]-2- methylbenzoyl]-1- piperazineacetic acid ethyl ester	N N N N N N N N N N N N N N N N N N N	498.18
21	N-(2-Cyanoethyl)-2- methyl-5-[[2-[N-(2- pyridinyl)amino]thiazol- 5-yl]thio]benzamide	N S S S S S S S S S S S S S S S S S S S	396.14

Ex. No.	Name	Structure	MS (M+H)
	N-(Cyanomethyl)-2- methyl-5-[[2-[N-(2- pyridinyl)amino]thiazol- 5-yl]thio]benzamide	N N S S S S S S S S S S S S S S S S S S	382.12

5

Example 23

N-[5-[[5-[(4-Acetylpiperazin-1-yl)carbonyl]-2-methylphenyl]thio]thiazol-2-yl]-4-(N,N-dimethylamino)benzamide

10

A. 3-[(2-Aminothiazol-5-yl)thio]-4-methylbenzoic acid methyl ester

15

20

A 4.37 M solution of sodium methoxide in methanol (4.75 mL, 20.76 mmol) was added dropwise to a stirred suspension of 2-amino-5-bromothiazole hydrobromide (1.25 g, 4.8 mmol) and 3-carboxy-6-methyl-thiophenol (0.74 g, 4.4 mmol) in methanol (75 mL) at 0-5 °C. The solution was stirred at 75 °C overnight. The mixture was concentrated in vacuo and the residue was dissolved in water and then acidified with aqueous HCl solution. The precipitated brown solid was filtered, washed with water and dried in vacuo to obtain the carboxylic acid (1.15 g). A solution of this acid in MeOH, 4 N hydrogen chloride in dioxane and conc. H₂SO₄ (20 drops) was heated under reflux for 3 days. The solution was concentrated and the residue was partitioned between EtOAc and satd. aqueous NaHCO₃ solution. The

EtOAc extract was washed with satd. aqueous NaHCO₃ solution, dried (Na₂SO₄), filtered and concentrated in vacuo to obtain the title compound (1 g, 81%) as a yellowish-brown solid.

5

B. 3-[[2-[[4-(N,N-Dimethylamino)benzoyl]amino]thiazol-5-yl]thio]-4-methylbenzoic acid methyl ester

10

15

A suspension of compound A (1 g, 3.6 mmol), and 4-N,N-dimethylaminobenzoyl chloride (1.31 g, 7.1 mmol) in dichloromethane (25 mL) and pyridine (1 mL) was stirred at rt. for 2 days. Supplemental 4-N,N-dimethylaminobenzoyl chloride (500 mg, 2.72 mmol) was added and the mixture was stirred at rt. overnight. The solution was partitioned between dichloromethane and water. The dichloromethane extract was washed with 1 N aq. HCl solution, satd. aq. NaHCO₃ solution, dried (Na₂SO₄), filtered, and concentrated in vacuo to obtain the crude product, which was used without further purification.

20 C. 3-[[2-[[4-(N,N-Dimethylamino)benzoyl]amino]thiazol-5-yl]thio]-4-methylbenzoic acid

25

A 1 N aqueous sodium hydroxide solution (25 mL, 25 mmol) was added dropwise to a stirred solution of crude compound B in methanol. The solution was stirred at rt. for 72 h and concentrated. The residue was partitioned between dichloromethane and water. The aqueous extract was acidified with 1 N aqueous HCl

solution and the precipitated solid was collected by filtration and dried in vacuo to obtain the title compound C (850 mg, 58%) as a tan solid.

D. N-[5-|[5-[(4-Acetylpiperazin-1-yl)carbonyl]-2-methylphenyl]thio]thiazol-2-yl]-4-(N,N-dimethylamino)benzamide

A suspension of compound C (380 mg, 0.92 mmol), N-acetylpiperazine (236 mg, 1.84 mmol), ethyl-3-(3-dimethylamino)propyl carbodiimide hydrochloride (350 mg, 1.8 mmol), 1-hydroxy-7-azabenzotriazole (250 mg, 1.8 mmol) and diisopropylethylamine (1 mL, 7.1 mmol) in THF (20 mL) was heated to 66 °C overnight. The mixture was cooled to rt. and concentrated. The residue was purified using reversed phase automated preparative HPLC (conditions: YMC S5 ODS A 20 x 100 mm column, 15 min gradient starting from 10% solvent B (90% MeOH, 10% H₂O, 0.1% TFA) and 90% solvent A (10% MeOH, 90% H₂O, 0.1% TFA) to 90% solvent B and 10% solvent A, flow rate 20 mL/min, λ = 220 nM) to obtain the title compound (73 mg, 15% yield) as a yellow solid: mass spectrum (M + H)⁺ = 524.14.

20

5

Example 24

N-[5-[[3-[(4-Acetylpiperazin-1-yl)carbonyl]-4-methylphenyl]thio]thiazol-2-yl]-4-(N,N-dimethylamino)benzamide

Compound 24 was prepared by an analogous method as that of 23, except substituting 3-carboxy-4-methylthiophenol in place of 3-carboxy-6-methylthiophenol in Example 23A to give the title compound 24 as an orange solid: mass spectrum $(M + H)^+ = 524.11$.

Example 25

N-[5-[[3-[(4-Acetylpiperazin-1-yl)carbonyl]-4,5-dimethylphenyl]thio]thiazol-2-yl]-4-(N,N-dimethylamino)benzamide

15

5

10

Example 25 was prepared by an analogous method as that of Example 23, except substituting 3-carboxy-4,5-dimethylthiophenol for 3-carboxy-6-methylthiophenol in Example 23A to give the title compound as a light salmon colored solid: mass spectrum $(M + H)^+ = 538.33$.

20

Example 26

N-[5-[[3-[(4-Acetylpiperazin-1-yl)carbonyl]-4-aminophenyl]thio]thiazol-2-yl]-4-(N,N-dimethylamino)benzamide

Example 26 was prepared by an analogous method as that of 23, except substituting 3-carboxy-4-acetamido-thiophenol for 3-carboxy-6-methylthiophenol in Example 23A to give the title compound as a yellow solid: mass spectrum $(M + H)^+ = 525.21$.

Example 27

N-[5-[[5-[(4-Acetylpiperazin-1-yl)carbonyl]-2,4-10 dimethylphenyl]thio]thiazol-2-yl]-4-(N,N-dimethylamino)benzamide

Example 27 was prepared by an analogous method as that of 23, except

substituting 3-carboxy-4,6-dimethylthiophenol for 3-carboxy-6-methylthiophenol in

Example 23A to give the title compound as a light amber solid: mass spectrum (M + H)⁺ = 538.44.

20 <u>Example 28</u>

N-[5-[[3-[(4-Acetylpiperazin-1-yl)carbonyl]-4-hydroxyphenyl]thio]thiazol-2-yl]-4-(N,N-dimethylamino)benzamide

25

Example 28 was prepared by an analogous method as that of 23, except substituting 3-carboxy-4-hydroxy-thiophenol for 3-carboxy-6-methylthiophenol in Example 23A to give the title compound as a yellow solid: mass spectrum $(M + H)^{+} = 526.45$.

Example 29

N-[5-[[5-[(4-Acetylpiperazin-1-yl)carbonyl]-2,4dimethylphenyl]thio]thiazol-2-yl]-4-(1,1-dimethylethyl)benzamide

Example 29 was prepared by an analogous method as that of 23, except

substituting 3-carboxy-4,6-dimethylthiophenol for 3-carboxy-6-methylthiophenol in

Example 23A and substituting 4-tert-butylbenzoyl chloride for 4-N,N
dimethylaminobenzoyl chloride in Example 23B to give the title compound as an

amber solid: mass spectrum (M + H)⁺ = 551.12.

20

5

Example 30

4-(1,1-Dimethylethyl)-N-[5-[[5-[(4-hydroxypiperidin-1-yl)carbonyl]-2,4-dimethylphenyl]thio]thiazol-2-yl]benzamide

Example 30 was prepared by an analogous method as that of 23, except substituting 3-carboxy-4,6-dimethylthiophenol for 3-carboxy-6-methylthiophenol in Example 23A, substituting 4-t-butylbenzoyl chloride for 4-N,N-

dimethylaminobenzoyl chloride in Example 23B and substituting 4-hydroxypiperidine for N-acetylpiperazine in Example 23D to give the title compound as an amber solid: mass spectrum $(M + H)^+ = 524.32$.

Example 31

10

N-[5-[[[3-[(4-Acetylpiperazin-1-yl)carbonyl]phenyl]methoxy]methyl]thiazol-2-yl]-4-(1,1-dimethylethyl)benzamide

15

A. 2-[N-[4-(1,1-Dimethylethyl)benzoyl]amino]thiazole-5-carboxylic acid ethyl ester

20

25

A solution of ethyl 2-aminothiazole-5-carboxylate (0.52 g, 3.0 mmol), 4-t-butylbenzoyl chloride (1.3 mL, 6.7 mmol) and pyridine (1.2 mL) in dichloromethane (10 mL) was stirred at 0 °C for 1.25 h. It was then diluted with dichloromethane and washed with aqueous HCl (1 N) twice, saturated aqueous sodium bicarbonate, and brine. After drying over sodium sulfate, filtration and concentration *in vacuo* gave a

burgundy oil. Trituration with hexane afforded the desired amide as a light tan solid (0.88 g, 88% yield): LC/MS RT = 3.85 min; mass spectrum $(M + H)^+$ = 333.16.

B. 4-(1,1-Dimethylethyl)-N-[(5-hydroxymethyl)thiazol-2-yl]benzamide

To a light tan suspension of ethyl 2-[[4-(1,1-

dimethylethyl)phenyl)carbonyl]amino]-thiazole-5-carboxylate (0.88 g, 2.6 mmol) in tetrahydrofuran (7.0 mL) under nitrogen at 0 °C was added dropwise lithium aluminum hydride (1 M in THF, 10.6 mL). After 1.75 h, ice was added, followed by 1 N aqueous HCl. The mixture was extracted using ethyl acetate, and the combined organic layers were dried over sodium sulfate, filtered, and concentrated *in vacuo* to give the desired product as a light yellow solid (0.73 g, 95% yield): LC/MS RT = 3.11 min; mass spectrum $(M + H)^+ = 291.13$.

C. 4-Acetyl-1-(3-chloromethyl)benzoylpiperazine

20

25

5

10

15

To a solution of 3-chloromethylbenzoyl chloride (5.34 g, 28.2 mmol) in dichloromethane (25 mL) was added a solution of 1-acetylpiperazine (7.30 g, 57.0 mmol) in dichloromethane (25 mL) at 0 °C over 10 min. The resulting mixture was stirred at 0 °C for 1 hour and then at room temperature for another hour. During the reaction period, the mixture became cloudy. It was diluted with dichloromethane, washed with water, 1 N HCl, water, brine, and dried over anhydrous MgSO₄.

Evaporation of solvent gave the desired product (7.92 g, 100%) as a pale yellow viscous oil: LC/MS RT = 0.92 min; mass spectrum $(M + H)^+ = 281.19$.

D. N-[5-[[[3-[(4-Acetylpiperazin-1-yl)carbonyl]phenyl]methoxy]methyl]thia-zol-2-yl]-4-(1,1-dimethylethyl)benzamide

10

15

20

5

To a solution of 2-[[4-(1,1-dimethylethyl)phenyl)carbonyl]amino]-5-hydroxymethylthiazole (0.285 g, 0.983 mmol) and N-acetylpiperazinyl-(3-chloromethyl)benzamide (0.276 g, 0.983 mmol) in DMF (30 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 0.197 g, 4.92 mmol). The mixture was heated at 60 °C overnight and was quenched by adding MeOH. The solution was neutralized to pH 8 using 1 N HCl and diluted with ethyl acetate The solution was then washed with water, brine, dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was purified using flash column chromatography (5% MeOH/CHCl₃) to afford 30 mg of the desired material as a white solid: LC/MS RT = 3.49 min; mass spectrum (M + H)⁺ = 535.20.

Example 32

25 4-(1,1-Dimethylethyl)-N-[5-[[[3-[[4-(2-pyrimidinyl)piperazin-1-yl]carbonyl]-4-methylphenyl]thio]methyl]thiazol-2-yl]benzamide

A. N-[(5-Chloromethyl)thiazol-2-yl]-4-(1,1-dimethylethyl)benzamide

5

10

15

To a solution of 2-[[4-(1,1-dimethylethyl)phenyl)carbonyl]amino]-5-hydroxymethylthiazole (1.50 g, 5.16 mmol) in dichloromethane (40 mL) was added thionyl chloride (1.50 mL, 20.6 mmol) at 0 °C. The mixture was stirred for 2 h, after which the reaction was complete, as indicated by HPLC. Evaporation of solvent and excess thionyl chloride provided the desired material (1.58 g, 99%) as a pale yellow solid.

B. 5-[[[2-[[4-(1,1-Dimethylethyl)benzoyl]amino]thiazol-5-yl]methyl]thio]-2-methylbenzoic acid

To a solution of 3-mercapto-2-methylbenzoic acid (0.270 g, 1.60 mmol) in

20 DMF (5 mL) was added KOBu' (0.378 g, 3.20 mmol) at 0 °C. The mixture was

stirred at 0 °C for 20 min before 5-chloromethyl-2-[[4-(1,1dimethylethyl)phenyl)carbonyl]-amino]thiazole (0.445 g, 1.44 mmol) was added. The

mixture was stirred at 0 °C for 1 h and then poured into water (20 mL). The solution

was acidified to pH 2 using 1 N HCl. The precipitate was collected by filtration and dried over drierite under vacuum. The product (0.489 g, 77%) was obtained as a white solid: LC/MS RT = 3.96 min; mass spectrum $(M + H)^+ = 441.14$.

5 C. 4-(1,1-Dimethylethyl)-N-[5-[[[3-[[4-(2-pyrimidinyl)piperazin-1-yl]carbonyl]-4-methylphenyl]thio]methyl]thiazol-2-yl]benzamide

A mixture of the product of Example 32, part B (0.250 g, 0.567 mmol), 1-(2-pyrimidyl)piperazine (0.121 g, 0.737 mmol), benzotriazol-1-yloxytris(dimethylamino)phosphoniumhexafluorophosphate (0.476 g, 1.08 mmol), 4-methylmorpholine (0.31 mL, 2.82 mmol) in DMF (6 mL) was heated at 65 °C for 5 h. The mixture was then diluted with ethyl acetate, washed with water, 1N NaOH solution, water, and brine. The solution was dried over anhydrous MgSO₄ and concentrated under vacuum. The residue was purified using flash column chromatography (ethyl acetate) to provide the desired product (0.210 g, 63%) as a white solid: LC/MS RT = 3.94 min; mass spectrum (M + H)⁺ = 587.42.

20

Example 33

N-[5-[[N-[3-[(4-Acetylpiperazin-1-yl)carbonyl]phenylmethyl]-N-methylamino]methyl]thiazol-2-yl]-4-(1,1-dimethylethyl)benzamide

A. 4-Acetyl-1-[3-[(N-methylamino)methyl]benzoyl]piperazine

5

10

To N-Acetylpiperazinyl-(3-chloromethyl)benzamide (32C, 0.884 g, 3.15 mmol) was added methylamine (2.0 M in MeOH, 4.7 mL). The mixture was stirred at room temperature overnight. It was then diluted with water (20 mL), adjusted to pH 11 using 10% NaCO₃ solution, and extracted with ethyl acetate (5 x 30 mL). The combined organic extract was dried over anhydrous MgSO₄ and concentrated under vacuum. The residue was purified using flash column chromatography (30% MeOH/CHCl₃-80% MeOH/CHCl₃) to afford the desired amine (0.142 g, 16%) as a pale yellow viscous oil; LC/MS RT = 1.42 min, mass spectrum (M + H)⁺ = 276.23.

15 B. N-[5-[[N-[3-[(4-Acetylpiperazin-1-yl)carbonyl]phenylmethyl]-N-methylamino]methyl]thiazol-2-yl]-4-(1,1-dimethylethyl)benzamide

20

25

To a solution of 33A (72.0 mg, 0.261 mmol) in THF (3 mL) was added 5-chloromethyl-2-[[4-(1,1-dimethylethyl)phenyl)carbonyl]amino]thiazole (32A, 80.0 mg, 0.259 mmol) in one portion at 0 °C. The mixture was stirred room temperature for 3h and then at 45 °C for 2 h. It was then diluted with water (20 mL), adjusted to pH 11 using 10% NaCO₃ solution, and extracted with ethyl acetate (5 x 30 mL). The combined extract was dried over anhydrous MgSO₄ and concentrated in vacuo. The

residue was purified using preparative HPLC to afford 13.3 mg of the desired material as a TFA salt; LC/MS RT = 2.60 min, mass spectrum $(M + H)^+$ = 548.28.

5 Example 34

N-[5-[[3-[(4-Acetylpiperazin-1-yl)carbonyl]-4-methyl-6-methoxy-phenyl]thio]thiazol-2-yl]-4-(N-1,2-dimethylpropylaminomethyl)benzamide

A. [3-[(2-Aminothiazol-5-yl)thio]-4-methyl-6-methoxy]benzoic acid

A 4.37 M solution of sodium methoxide in methanol (33.7 mL, 147.3 mmol) was added dropwise to a stirred suspension of 2-amino-5-bromothiazole hydrobromide (9.96 g, 38.3 mmol) and 3-carboxy-4-methoxy-6-methyl-thiophenol (5.84 g, 27.5 mmol) in methanol (95 mL) at 0-5 °C under argon. The cooing bath was removed and the solution was stirred at rt. for 1 hr. The mixture was cooled to 0 °C and acidified with a 4 M solution of hydrogen chloride in dioxane (37 mL, 148 mmol). Supplemental hydrogen chloride in dioxane was added slowly to adjust the pH to 2. Precipitated salts were filtered and washed with methanol. The filtrate was concentrated under reduced pressure and the residual solid was washed with water (2 x 15 mL). The solid was dried in vacuo, and triturated with ether to obtain the titled compound (8.52 g, 87%) as a tan solid.

B. 5-[[[3-[(4-Acetylpiperazin-1-yl)carbonyl]-4-methyl-6-methoxy]phenyl]thio]-2-amino-thiazole

5

10

A suspension of [3-[(2-aminothiazol-5-yl)thio]-4-methyl-6-methoxy]benzoic acid (2 g, 6 mmol), N-acetylpiperazine (3.1 g, 24 mmol), ethyl-3-(3-dimethylamino)propyl carbodiimide hydrochloride (2.3 g, 12 mmol), 1-hydroxy-7-azabenzotriazole (980 mg, 7.2 mmol) and diisopropylethylamine (4.2 mL, 24 mmol) in THF (50 mL) and DMF (6 mL) was heated to 64 °C for 2.25 hr. The mixture was cooled to rt. and concentrated in vacuo. The residue was dissolved in dichloromethane and washed with water (50 mL) and 1 N aq. HCl solution (4 x 100 mL). The ageous layers were combined, brought to slightly alkaline pH using 1 N aq. NaOH solution and extracted with dichloromethane (6 x 70 mL). The dichloromethane extracts were combined, dried (Na₂SO₄), filtered, and concentrated. The residue was triturated with ether (90 mL) to obtain the titled product (1.99 g, 82%) as a light tan solid.

C. N-[5-[[[3-[(4-Acetylpiperazin-1-yl)carbonyl]-4-methoxy-6-methyl]phenyl]thio]thiazol-2-yl]-4-(chloromethyl)benzamide

20

25

15

A solution of 5-[[[3-[(4-acetylpiperazin-1-yl)carbonyl]-4-methyl-6-methoxy]phenyl]thio]-2-aminothiazole (102 mg, 0.28 mmol), 4-chloromethylbenzoyl chloride (53 mg, 0.28 mmol) and diisopropylethyl amine (140 μL, 1 mmol) in dichloromethane (8 mL) was stirred at rt. for 3 hr. Supplemental 4-

chloromethylbenzoyl chloride (26 mg, 0.14 mmol) was added and the solution was stirred for an additional 4 hr. The mixture was diluted with dichloromethane (40 mL) and washed with 1 N aq. HCl solution (2 x 10 mL) and aq. NaHCO₃ solution (2 x 15 mL). The dichloromethane extract was dried (MgSO₄), filtered, and concentrated in vacuo to obtain the crude titled product (205 mg) as a yellow foam.

D. N-[5-[[3-[(4-Acetylpiperazin-1-yl)carbonyl]-4-methyl-6-methoxy-phenyl]thio]thiazol-2-yl]-4-(N-1,2-dimethylpropylaminomethyl)benzamide

10

15

20

5

A solution of crude N-[5-[[[3-[(4-acetylpiperazin-1-yl)carbonyl]-4-methoxy-6-methyl]phenyl]thio]thiazol-2-yl]-4-(chloromethyl)benzamide (205 mg, 0.25 mmol) and 1,2-dimethylpropyl amine (87 mg, 1 mmol) in methanol (10 mL) was heated to 60 °C in a sealed tube for 24 hr. The mixture was cooled to rt. and concentrated *in vacuo*. The residue was purified using reverse phase automated preparative HPLC (conditions: YMC S5 ODS 30 x 250 mm column, 30 min gradient starting from solvent A (10% MeOH, 90% H₂O, 0.1% TFA) to solvent B (90% MeOH, 10% H₂O, 0.1% TFA), flow rate 25 mL/min, λ = 220 nM) to obtain the titled compound as a TFA salt (100 mg, 55% yield over two steps, white foam); LC/MS RT = 2.79 min; mass spectrum (M + H)⁺ = 610.32.

Example 35

4-Acetyl-1-[5-[[2-[N-(6-bromopyridin-2-yl)amino]thiazol-5-yl]oxo]-2-methylbenzoyl]piperazine

5

A. 5-[[2-[N-(6-Bromopyridin-2-yl)amino]thiazol-5-yl]oxo]-2-methylbenzoic acid ethyl ester

10

15

20

A suspension of 2-[(6-bromo-2-pyridinyl)amino]-5-bromothiazole (Example 2, part D: 400 mg, 1.19 mmol), ethyl 3-hydroxy-6-methylbenzoate (330 mg, 1.79 mmol) and cesium carbonate (1.6 g, 4.76 mmol) in acetone (16 mL) was heated under reflux for 16 hr. The mixture was cooled to rt. and cesium carbonate was filtered through a Whatman Autovial PTFE filter. The filtrate was concentrated, diluted with dichloromethane and filtered. The filtrate was concentrated and the residual brown oil was purified using silica gel column chromatography. Elution with 5% EtOAc in hexanes followed by 10%, 20%, 30%, and 50% EtOAc in hexanes afforded the title product (90 mg, 21%) as a light tan solid.

B. 5-[[2-[N-(6-Bromopyridin-2-yl)amino]thiazol-5-yl]oxo]-2-methylbenzoic acid

A solution of 5-[[2-[N-(6-bromopyridin-2-yl)amino]thiazol-5-yl]oxo]-2-methylbenzoic acid ethyl ester (90 mg, 0.21 mmol) and 1 N aq. NaOH solution (1.3 mL, 1.3 mmol) in THF (2 mL) and ethanol (2 mL) was stirred at rt. for 24 hr. The mixture was cooled to 0 °C and acidified with 6 N aq. HCl solution. After eveporation of the solvents *in vacuo*, the residue was diluted with water and the precipitate was filtered, washed with water, and dried *in vacuo* to obtain the titled compound (57 mg, 67%) as a yellow solid.

10 C. 4-Acetyl-1-[5-[[2-[N-(6-bromopyridin-2-yl)amino]thiazol-5-yl]oxo]-2-methylbenzoyl]piperazine

A suspension of 5-[[2-[N-(6-bromopyridin-2-yl)amino]thiazol-5-yl]oxo]-2-methylbenzoic acid (27.9 mg, 0.07 mmol), N-acetylpiperazine (17.9 mg, 0.14 mmol), ethyl-3-(3-dimethylamino)propyl carbodiimide hydrochloride (26.8 mg, 0.14 mmol), 1-hydroxy-7-azabenzotriazole (11.3 mg, 0.08 mmol) and diisopropylethylamine (37 μL, 0.21 mmol) in THF (2.3 mL) and DMF (0.4 mL) was heated to 60 °C for 3.25 hr.

The mixture was cooled to rt. and concentrated *in vacuo* on a speed vac. The residue was purified using silica gel column chromatography (5% acetone in dichloromethane followed by 1% and 2% methanol in dichloromethane) to afford the titled product (34 mg, 75%) as a light tan solid: LC/MS RT = 1.90 min; mass spectrum (M + H)⁺ = 516.45.

25

. 2

Example 36

4-Acetyl-1-[5-[[2-[N-(6-chloro-2-methyl-pyrimidin-4-yl)amino]thiazol-5-yl]thio]-2-methoxy-4-methylbenzoyl]piperazine

Sodium hydride (43.9 mg, 1.83 mmol) was added to a solution of 5-[[[3-[(4-acetylpiperazin-1-yl)carbonyl]-4-methyl-6-methoxy]phenyl]thio]-2-aminothiazole (Example 34, part B: 250 mg, 0.61 mmol) and 2-methyl-4,6-dichloropyrimidine (200 mg, 1.23 mmol). The mixture was heated to 50 °C for 16 hr, cooled to rt, and supplemental sodium hydride (43.9 mg, 1.83 mmol) was added. The mixture was heated to 50 °C for an additional 3 hr, cooled to rt, and excess hydride was quenched by the addition of glacial acetic acid. The mixture was concentrated in *vacuo*, diluted with satd. aq. NaHCO₃ solution, and extracted with THF-EtOAc mixture (4x). The organic extracts were combined, washed with satd. aq. NaHCO₃ solution, brine, dried (NaSO₄), filtered, and concentrated *in vacuo* to obtain a tan solid which was triturated with ether-EtOAc (4:1) to obtain the titled compound (260 mg, 80%) as a light tan solid.

15

Example 37

4-Acetyl-1-[5-[[2-[N-(6-N,N-dimethylaminoethylamino-2-methylpyrimidin-4-yl)amino]thiazol-5-yl]thio]-2-methoxy-4methylbenzoyl]piperazine

20

A solution of 4-acetyl-1-[5-[[2-[N-(6-chloro-2-methyl-pyrimidin-4-25 yl)amino]thiazol-5-yl]thio]-2-methoxy-4-methylbenzoyl]piperazine (Example 36: 10 mg, 0.019 mmol), N,N-dimethylethylenediamine (10 μ L, 0.094 mmol), and 4-dimethylaminopyridine (2.32 mg, 0.019 mmol) in dioxane (1 mL) was heated to 100 °C in a sealed vial for 16 hr. The mixture was purified using reversed phase automated preparative HPLC (conditions: YMC 20 x 100 mm column, 10 min gradient starting from 90% solvent A (10% MeOH, 90% H₂O, 0.1% TFA) and 10% solvent B (90% MeOH, 10% H₂O, 0.1% TFA) and final solvent:90% solvent B and 10% solvent A , flow rate 20 mL/min, λ = 220 nM) to obtain the titled compound as a TFA salt (14 mg, 36% yield, tan solid): LC/MS RT = 1.34 min; mass spectrum (M + H)⁺ = 585.16.

10

5

Example 38

15

A. 2-Amino-5-[(5-carbomethoxy-4-methoxy-2-methylphenyl)thio]thiazole

20

25

To a suspension of the compound described in Example 34, part A (2.00 g, 6.75 mmol) in MeOH (100 mL) was added HCl in diethyl ether (2.0 M, 10 mL) at rt. The mixture was heated at reflux overnight before MeOH was removed under vacuum. To the residue was added water (50 mL). The resulting mixture was adjusted to pH 12 with 1 N NaOH solution and then extracted with EtOAc (4 x 40 mL). The combined extract was washed with water and brine, and dried over

anhydrous MgSO₄. Evaporation of solvent under vacuum provided the titled compound (1.73 g, 82% yield) as a tan solid.

B. 2-[[(Cyclopropyl)carbonyl]amino]-5-[(5-carbomethoxy-4-methoxy-2-methylphenyl)thio]thiazole

A mixture of the compound from part A (1.73 g, 5.57 mmol),

- cyclopropylcarboxylic acid (95%, 0.69 mL, 8.28 mmol), 1-[(3-dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (1.90 g, 9.91 mmol), and 4-dimethylaminopyridine (0.070 g, 0.57 mmol) in CH₂Cl₂ (120 mL) was heated at reflux overnight. The mixture was cooled to rt, diluted with CH₂Cl₂ (50 mL), and washed with water, 1 N HCl solution, 1 N NaOH solution, water, and brine. The organic fraction was then dried over anhydrous MgSO₄. Evaporation of solvent under the content of the content
- organic fraction was then dried over anhydrous MgSO₄. Evaporation of solvent under vacuum provided the titled compound (1.91 g, 90% yield) as a beige solid.

C. 2-[[(Cyclopropyl)carbonyl]amino]-5-[(5-carboxy-4-methoxy-2-methylphenyl)thio]thiazole

5

10

15

A mixture of the compound from part B (0.550 g, 1.45 mmol) and 1 N NaOH (4.4 mL, 4.4 mmol) in THF (20 mL) was heated at reflux for 5 hr. Solvent was removed under vacuum, and the residue was acidified to pH 2 with 1 N HCl. The resulting precipitate was collected by suction filtration, washed with water, and dried over drierite under vacuum to afford the titled compound (0.484 g, 92% yield) as a beige solid.

D. 2-[[(Cyclopropyl)carbonyl]amino]-5-[(4-methoxy-2-methyl-5-piperazinylcarboanidophenyl)thio]thiazole

20

25

A solution of the compound from part C (0.252 g, 0.690 mmol.), piperazine (0.300 g, 3.60 mmol), (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP, 0.622 g, 1.40 mmol) and N-methylmorpholine (0.38 mL, 3.5 mmol) in DMF (7.0 mL) was heated in an oil bath at 65 °C for 2 hr. After cooling to room temperature, the reaction mixture was diluted with EtOAc and washed with water (2x). The organic layer was dried over sodium sulfate, filtered, and concentrated *in vacuo* to give the first crop of product (0.0805 g, 27% yield). The aqueous layers were combined and extracted with dichloromethane (5x). The organic

layers were combined, dried over sodium sulfate, filtered and concentrated *in vacuo*. Silica gel chromatography using dichloromethane:methanol:acetic acid (10:0.4:0.2) as eluent afforded the second crop of product (0.1860 g, 62% yield) as a white solid: $LC/MS (M + H)^+ = 433.56$.

5

E. 2-[[(Cyclopropyl)carbonyl]amino]-5-[[(4-methoxy-2-methyl-5-[[(4-tert-butoxycarbonylamino)aceto]piperazinylcarboxamido]phenyl]thio]thiazole

10

15

A mixture of the compound from part D (46.5 mg, 0.107 mmol), N-Bocglycine (38.5 mg, 0.22 mmol), BOP (92.9 mg, 0.21 mmol), and N-methylmorpholine (0.060 mL, 0.55 mmol) in DMF (0.5 mL) was mechanically shaken at 65 °C overnight. The reaction mixture was diluted with MeOH (0.5 mL), purified using preparative HPLC and lyophilized to give the titled compound (51.6 mg, 82% yield) as a white powder.

F. Title Compound

20

To a solution of the compound from part E (40.1 g, 0.068 mmol) in dichloromethane (1.0 mL) under nitrogen at 0 °C was added trifluoroacetic acid (1.0 mL). After 3 hr, the reaction mixture was concentrated *in vacuo* and triturated with diethyl ether to give the desired product (30.8 mg, 75 % yield) as a white solid: LC/MS $(M + H)^+ = 490.21$.

25

Example 39

A mixture of 2-[[(cyclopropyl)carbonyl]amino]-5-[(4-methoxy-2-methyl-5-piperazinylcarboamidophenyl)thio]thiazole (Example 38, part D: 46.5 mg, 0.107 mmol), N-methylglycine (19.6 mg, 0.22 mmol), BOP (92.9 mg, 0.21 mmol), and N-methylmorpholine (0.060 mL, 0.55mmol) in DMF (0.5 mL) was mechanically shaken at 65 °C overnight. The reaction mixture was diluted with MeOH (0.5 mL), purified using preparative HPLC, and lyophilized to give the title compound as a white powder TFA salt (27.3 mg, 41% yield): LC/MS (M + H)⁺ = 504.14.

10

5

Example 40

15

This material was prepared in the same manner as Example 39: LC/MS (M + H)⁺ = 518.22.

20

Example 41

A mixture of 2-[[(cyclopropyl)carbonyl]amino]-5-[(4-methoxy-2-methyl-5-piperazinylcarboamidophenyl)thio]thiazole (Example 38, part D: 20.0 mg, 0.0549 mmol), 1-(2-pyrimidyl)piperazine (18.0 mg, 0.110 mmol), BOP (36.4 mg, 0.0823 mmol), and N-methylmorpholine (0.027 mL, 0.246 mmol) in DMF (0.5 mL) was stirred at 55 °C overnight. The reaction mixture was diluted with MeOH (0.5 mL) and purified using preparative HPLC. The appropriate fractions were combined and concentrated, and the pH adjusted to12 with 1 N NaOH followed by extraction with CH₂Cl₂ (3 x 20 mL). The combined extract was dried over anhydrous MgSO₄. Evaporation of solvent under vacuum provided the desired product (20 mg, 71% yield) as a white solid: LC/MS (M + H)⁺ = 511.17.

Example 42

15

10

5

This material was prepared in the same manner as Example 41: LC/MS $(M + H)^+ = 511.15$.

20

Example 43

A. 2-Amino-5-[(4-methoxy-2-methyl-5-[[(morpholinyl)carboxamido] phenyl]thio]thiazole

5

10

A mixture of 2-Amino-5-[(5-carboxy-4-methoxy-2-methylphenyl)thio]thiazole (Example 34, part A: 1.00 g, 3.37 mmol), morpholine (0.59 mL, 6.74 mmol), BOP (2.24 g, 5.06 mmol), and N-methylmorpholine (1.60 mL, 14.6 mmol) in DMF (10 mL) was heated at 60 °C for 2.5 hr. The solution was diluted with EtOAc (150 mL), then washed with water (3 x 40 mL) and brine (40 mL). The aqueous layer was extracted with EtOAc (2 x 50 mL) and the combined organic layer was dried over anhydrous MgSO₄. The solution was concentrated under vacuum, and the residue purified using flash chromatography (silica gel, 6% MeOH/CHCl₃) to give the titled compound (0.935 g, 76% yield) as a tan solid.

15

B. 2-[[(5-Formyl-2-pyrrolyl)carbonyl]amino]-5-[[(morpholinyl)carboxamido] phenyl]thio]thiazole

20

25

To a suspension of 5-formyl-2-pyrrole carboxylic acid (0.320 g, 2.30 mmol) in CH₂Cl₂ (25 mL) at °C was added thionyl chloride, and the resulting mixture heated at reflux for 1.5 hr. The solvent and excess thionyl chloride was evaporated under vacuum. Residual thionyl chloride was removed by adding toluene (1 mL) and concentrating the mixture to dryness under vacuum. The residue was dissolved in CH₂Cl₂ (25 mL), and to the resulting solution was added a solution of the compound of part A (0.927 g, 2.54 mmol) and pyridine (1.1 mL, 13.6 mmol) in CH₂Cl₂ (30 mL).

The mixture was heated at reflux for 2.5 hr before it was concentrated to dryness under vacuum. To the solid residue was added 0.5 N HCl (40 mL) and the mixture was well stirred for 10 min. The precipitate was collected by suction filtration, washed with water, and dried over drierite under vacuum to give the title compound (0.880 g, 71% yield) as a tan solid.

C. 2-[[(5-Hydroxymethyl-2-pyrrolyl)carbonyl]amino]-5-[[(morpholinyl)carboxamido] phenyl]thio]thiazole

10

5

To a suspension of the compound from part B (0.400 g, 0.822 mmol) in DMF (40 mL) and MeOH (20 mL) was added NaBH₄ (0.622 g, 16.4 mmol) at 0 °C in one portion. The mixture was stirred at rt. overnight, after which period the

15 heterogeneous mixture became a clear solution. The reaction was quenched with water (5 mL), and the resulting solution was concentrated to approximately 20 mL. The residue was diluted with water (40 mL), extracted with EtOAc (3 x 40 mL) and CH₂Cl₂ (3 x 40 mL). The combined organic layer was concentrated under vacuum. To the residue was added Et₂O (20 mL). The resulting precipitate was collected by filtration, washed with water, and dried over drierite under vacuum to provide the title product (0.226 g, 56% yield) as a beige solid.

D. Title Compound

A mixture of the compound from part C (80 mg, 0.164 mmol) and thionyl chloride (2 mL) was heated at 60 °C for 1.5 hr. The excess thionyl chloride was evaporated under vacuum. Residual thionyl chloride was removed by adding toluene (1 mL) and concentrating the mixture to dryness under vacuum. The residue was dissolved in anhydrous DMF (2 mL), and to the resulting solution was added NH₃/MeOH (7 M solution, 7 mL, 7 mmol). The mixture was heated in a sealed tube at 55 °C for 16 hr. After cooling to rt, the reaction mixture was poured into 1 N HCl solution (15 mL). The resulting mixture was extracted with EtOAc (3 x 20 mL). The aqueous solution was adjusted to pH 12 with 10% NaOH solution, and extracted with EtOAc (4 x 30 mL). The combined extract was dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was purified using preparative HPLC and lyophilized to provide the titled product (3.0 mg, 3% yield) as a white powder, TFA salt: LC/MS (M + H)⁺ = 488.14.

15 <u>Example 44</u>

To a mixture of the compound of Example 43, part B (40 mg, 0.082 mmol) and MeNH₂/THF (2.0 M solution, 0.16 mL, 0.32 mmol) in anhydrous DMF (8 mL) at rt. was added NaBH(OAc)₃ (71 mg, 0.32 mmol) in one portion. The mixture was stirred at rt. for 6 hr before supplementary NaBH(OAc)₃ (35 mg, 0.16 mmol) was added. The mixture was allowed to stir at rt. overnight before it was quenched with saturated NaHCO₃ solution (10 mL). The mixture was then diluted with EtOAc (100 mL) and washed with water (3 x 25 mL). The aqueous solution was extracted with EtOAc (50 mL). The combined organic phase was washed with 10% LiCl solution (35 mL), and concentrated under vacuum. The residue was purified using preparative HPLC and lyophilized to provide the title product (22.7 mg, 45% yield) as a white powder, TFA salt: LC/MS (M + H)⁺ = 502.17.

79

5

10

20

25

Example 45

5

This material was prepared in a similar manner as Example 44: LC/MS (M + H)⁺ = 516.2.

10

Example 46

15

This material was prepared in the same manner as Example 44: LC/MS (M + H)⁺ = 532.19.

20

Example 47

To a mixture of the compound from Example 43, part B (20 mg, 0.041 mmol) and 1,2-dimethylpropylamine (7.2 mg, 0.082 mmol) in anhydrous DMF (4 mL) at rt. was added NaBH(OAc)₃ (17 mg, 0.082 mmol) in one portion. The mixture was stirred at rt. for 20 hr before supplementary NaBH(OAc)₃ (26 mg, 0.12 mmol) was added. The mixture was allowed to stir at rt. for an additional 24 hr before it was quenched with saturated NaHCO₃ solution (10 mL). The resulting mixture was diluted with EtOAc, washed with water (2x) and brine, and concentrated under vacuum. The residue was dissolved in MeOH (5 mL), and to the resulting solution was added 1 N HCl (2 mL). The mixture was then heated at reflux for 1.5 hr. After cooling to rt, the solution was adjusted to pH 12 with 1N NaOH solution, diluted with water (5 mL), and extracted with EtOAc (3x). The combined extract was washed with brine and concentrated under vacuum. The residue was purified using preparative HPLC and lyophilized to provide the desired product (4.6 mg, 17% yield) as a white powder, TFA salt: LC/MS (M + H)⁺ = 558.34.

15

10

5

Example 48

20

This material was prepared in the same manner as Example 44: LC/MS $(M + H)^{+} = 530.37$.

25

Example 49

A mixture of 2-pyrrolecarboxylic acid (6.5 mg, 0.058 mmol) and thionyl chloride (0.8 mL, 11.0 mmol) was heated at 60 °C for 1.5 hr. The excess thionyl chloride was evaporated under vacuum. Residual thionyl chloride was removed by adding toluene (1 mL) and concentrating the mixture to dryness under vacuum. The residue was dissolved in CH₂Cl₂ (1.5 mL), and to the resulting solution was added the compound of Example 34, part B (20 mg, 0.049 mmol) in CH₂Cl₂ (1.5 mL), followed by the addition of pyridine (0.080 mL, 0.99 mmol). The mixture was heated at reflux for 2 hr before it was concentrated under vacuum. The residue was purified using preparative HPLC to give the desired product (20.5 mg, 84% yield) as a pale yellow solid: LC/MS (M + H)⁺ = 500.33.

15 <u>Example 50</u>

20 A.

5

10

This compound was prepared from the compound described in Example 3, part E using previously described coupling conditions: $LC/M\dot{S}$ $(M + H)^{+} = 452.3$.

В.

5

A mixture of the compound from part A (112 mg, 0.25 mmol), (methoxycarbonylsulfamoyl)triethylammoniumhydroxide, inner salt (150 mg, 0.63 mmol) and triethylamine (0.09 mL, 0.63 mmol) in THF (3 mL) was stirred for 2 hr at rt. After partitioning the reaction mixture between EtOAc (25 mL) and water (25 mL), the organic layer was washed with water (25 mL) and brine (25 mL). The organic layer was dried over MgSO₄ and concentrated to afford 88 mg (82%) of the titled compound as a white solid: LC/MS (M + H)⁺ = 436.37.

15

20

25

10

C.

A mixture of the compound of part B (80 mg, 0.18 mmol) and tributyltin azide (150 mg, 0.45 mmol) in toluene (3 mL) was heated to $100\,^{\circ}$ C for 24 hr. A supplemental amount of tributyltin azide (150 mg, 0.45 mmol) was added and the mixture was heated at $100\,^{\circ}$ C for 24 hr. The reaction mixture was loaded onto a 1 x 5 cm silica gel column, which was eluted with 50 mL hexane, 50 mL of methylene chloride and 50 mL of 10% methanol/methylene chloride. Concentration of product containing fractions and trituration with ethyl ether afforded 12 mg (14%) of the titled compound as a tan solid: LC/MS $(M + H)^+ = 479.37$.

Example 51

5

10

15

A mixture of the compound described in Example 3, part E (15 mg, 0.044 mmol), methanesulfonamide (5 mg, 0.05 mmol), EDCI (10 mg, 0.05 mmol) and 4-dimethylaminopyridine (7 mg, 0.055 mmol) in methylene chloride (0.5 mL) was stirred 48 hr at rt. The reaction mixture was partitioned between EtOAc (5 mL) and saturated potassium bisulfate solution (5 mL). After washing with water (5 mL) and brine (5 mL), the organic layer was dried over magnesium sulfate and concentrated to afford 11 mg (61%) of the titled compound as a white powder: MS (M + H)⁺ = 421.22.

Examples 52-455
Using methods similar to those previously described, the following compounds 52 through 455 were synthesized.

Ex. No.	Structure	MS (M+H)
52		555.08
53		441.4
54		445.04
55		525.21

Ex. No.	Structure	MS (M+H)*
56		551.12
57		493.43
58	HALL	524.32
59	+0100	539.28
60		580.38
61		567.16
62		485.34
63		479.37
64	John Charles	540.14
65	Jointh's	540.53
66		499.45
67	JOLAN O	594.36

Ex.	Structure	MS (M+H)*
68		554.31
69		513.27
70		626.45
71	TOIOTH	640.32
72	7:01:000	599.29
73		573.28
74	Sidelite	612.46
75		574.38
76	TO! ATH	624.39
77		510.43
78	JOINO OF	510.34

Ex. No.	Structure	MS (M+H)+
79		541.35
80	401000	582.42
81		554.98
82		583.37
83	y diality	597.36
84		568.47
85		582,32
86		610.35
87		569.18
88		583.29

Ex. No.	Structure	MS (M+H)*
89		551.11
90		603.97
91		475.4
92		491.57
93		504.58
94	j. O. T.	489.6
95		489.58
96		543.52
97		491.28
98		519.5

Ex. No.	Structure	MS (M+H)*
99		595.19
100		493.38
101		465.29
102		452.12
103		516.2
104		544.32
105		568.28
106		598.18
107	7:0:00	596.35
108	Solato	626.54
109		568.26
110		608.5
111		564.43
112		594.51

Ex. No.	Structure	MS (M+H)*
113		608.46
114		634.26
115		610.58
116	DOLLAND	580.26
117		596.58
118	20111010	608.19
119	QiO!!!	594.34
120	Q::Oi-Mor	623.47
121		579.35
122	i O'O	581.36
123	dollor	607.51
124		584.18
125	T:O':Though	582.4
126	rio litto d'or	566.39
127	201100	585.22
128		585.17

Ex.	Structure	MS (M+H)*
No. 129		596.65
130		596.59
131	NH NH	470.4
132		580.26
133		594.4
134	0001000	644.4
135		644.35
136		568.24
137		568.43
138		598.18
139		610.26
140		610.24
141	منابات م	630.35
142	+:0'	580.4
143	This is a second	623.26

Ex. No.	Structure	MS (M+H)*
144	>>:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	622.43
145		644.28
146		644.2
147		630.19
148		598.19
149	4:01:11.010	598.2
150		634.3
151	A CHILLIAN CHO	634.32
152	+iOi!Oio	594.34
153	aidillado,	600.22
154		552.3
155		610.31
156	J. O'. O'O	608.3
157	Lichthada,	582.26
158	+ O'- O'- O'-	582.24

Ex. No.	Structure	MS (M+H)*
159		596.35
160	A DIVIO	604.38
161		660.12
162	Z-O'-D-O-	614.11
163	X O LO L	566.27
164		624.27
165	J. O'C	624.18
166		524.14
167	Si O'	582.17
168		510.09
169	J:01:12-01-0-	610.49
170	-XOLONO	583.21
171		525.14
172		585.18
173		571.19

Ex. No.	Structure	MS (M+H) ⁺
174		566.22
175		581.24
176		511.12
177		580.29
178	a point	727.23
179		593.28
180	+ O'LA-Q'O	622.36
181	XI VI	622.32
182		551.25
183		567.23
184		583.26
185		576.42
186		598.24
187	J. O'. O'O	608.31
188	J. O'day	584.16

Ex. No.	Structure	MS (M+H)*
189	201-10-0	607.33
190	adianoia	580.35
191	piatai	590.23
192		610.27
193		475.3
194		530.37
195		471.12
196		525.19
197		549.19
198		539.53
199		484.25
200		498.19
201		638.39

Ex. No.	Structure	MS (M+H)*
202		624.54
203		638.48
204	TO TO	622.33
205		632.34
206		662.22
207		582.19
208		612.35
209		612.34
210		568.19
211		527.19
212		485.1
213		514.97
214		484.06
215		614.32
216		526.23

...

Ex. No.	Structure	MS (M+H)*
217		614.2
218		514.25
219		528.25
220		611.31
221		535.31
222		503.25
223		586.37
224		579.26
225		593.35
226		597.43
227	X-GIIII-CI	597.33
228		607.21
229		583.57

Ex. No.	Structure	MS (M+H)
230		500.33
231		572.33
232		572.34
233		558.34
234		379.39
235	NH2	364.1
236		365.06
237		529.19
238		447.21
239		461.33
240		. 511.17

Ex.	Structure	MS (M+H)*
No. 241		502.17
242		532.19
243		.483.24
244	N N S S H O N S CH ₃	421.22
245	HO HO N S S S S S S S S S S S S S S S S S S	489.20
246		504.14
247		518.22
248		590.21
249		511.15
250	NATE OF THE PROPERTY OF THE PR	490.21
251		488.14
252		. 625.28

Ex.	Structure	MS (M+H)
No.		
253		· 611.30
254		651.19
255		651.17
256	Med N N N N N N N N N N N N N N N N N N N	612.14
257	Meo July Jo	612.14
258		419.2
259		420.22
260		441.3
	NOT (

- - ---

Ex. No.	Structure	MS (M+H) ⁺
261		483.4
262	Hayar II	454.3
	S HM	
263		439.4
	NH -	
264	NO N	535.3
265		483.4

Ex. No.	Structure	MS (M+H)
266	S S S S S S S S S S S S S S S S S S S	499.4
267		453.4
	HO NO	400.4
268		516.4
269		407.3
270		453.4
271	HQ NH	441.4

Ex. No.	Structure	MS (M+H)*
272		456.4
273		511.5
274		535.4
275		567.3
276	NAME OF THE PARTY	524.3
277	January San	441.4

Ex. No.	Structure	MS (M+H)*
278	Mag. IDI	507.3
279		409.3
280		427.3
281		441.4
282		483.4
283	MA MANAGER AND	530.4

Ex.	Structure	MS (M+H)*
No.		
284	N N N N N N N N N N N N N N N N N N N	462.4
285		453.4
286		502.4
287		452.3
288		545.4

Ex. No.	Structure	MS (M+H)*
289		487.4
	15	
290		513.3
291		554.2
292		534.3
293		559.4

Ex. No.	Structure	MS (M+H) ⁺
294	IN S	566.4
295	NA TO THE TOTAL PROPERTY OF THE TOTAL PROPER	501.1
	a C C C C	
296		498.4
297		535.2
298	MON S	491.4

Ex. No.	Structure	MS (M+H) ⁺
299		499.2
300		543.3
301		491.4
302		495.4
303	NOTICE AND ADDRESS OF THE PARTY	477.4
304		473.3

Ex. No.	Structure	MS (M+H)*
305		410.3
306		486.2
307		449.2
308	HO SH	431.3
309	N N N N N N N N N N N N N N N N N N N	468.4
310		397.3

Ex. No.	Structure	MS (M+H)*
311	HO H	425.3
	101	
312		411.3
		·
313		425.3
		·
314		452.4
·		
315		429.4
316	DH CH	571.1
	5 123	

Ex. No.	Structure	MS (M+H)*
317	MN S S	521.4
318		442.2
319		500.4
320		468.4
321		517.1
322		453.4

Ex. No.	Structure	MS (M+H)*
323	OH STATE OF THE ST	441.4
324	S-AM	598.1
325	No los	488.3
326		489.3
327		591.6

Ex. No.	Structure	MS (M+H)*
328		589.3
		·
329		453.3
,330		413.16
331		512.21
332		499.14
333		475.2
334		453.22
335		443.38

Ex.	Structure	MS (M+H)*
No.		
336	Mar Co	558.22
337		597.52
338		443.24
339		597.37
340		611.47
341		371.24
342		399.29
343		427.32

Ex. No.	Structure	MS (M+H)*
344		415.31
345	OH OH	401.34
346		456.35
347		412.19
348		397.59
349		438.59
350		516.45
351		477.44

Ex. No.	Structure	MS (M+H)*
352		495.01
353	CH CH	535.98
354		470.09
355		455.07
356		537.29
357	OH CH	537.33
358	OH OH	471.05
359	COH COH	471.44

Ex. No.	Structure	MS (M+H)*
360		486.42
361		541.08
362		525.12
363		555.11
364		539.34
365		524.94
366		496.92
367		534.01

Ex. No.	Structure	MS (M+H)
368		492.99
369		484.07
370		514.13
371		499.12
372		514.06
373		500.33
374		584.12
375		599.18
376		470.05

Ex. No.	Structure	MS (M+H)*
377	OH OH	484.09
378	B OH OH	535.96
379		440.1
380		443.06
381		485.36
382		514.07
383		. 512.19
384		468.13

Ex. No.	Structure	MS (M+H)
385		471.16
386	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500.1
387		515.28
388		533.21
389		514.29
390		584.34
391		598.36
392		625.42

Ex. No.	Structure	MS (M+H)*
393		619.38
394		585.12
395		599.13
396		558.1
397		583.11
398		586.28
499		608.27
400		627.3
401		641.34

Ex. No.	Structure	MS (M+H)
402		598.29
403		542.25
404		470.1
405		586.25
406		611.17
407		599.62
408		639.29
409		570.23
410		597.25

Ex. No.	Structure	MS (M+H)*
411		585.24
412		626.31
413		441.3
414		524.34
415		493.34
416		551.35
417		533.33
418		576.35
419		436.37
420		444.34
421		554.35

Ex. No.	Structure	MS (M+H)*
422	OH OH	430.32
423		479.37
424		540.32
425		527.09
426		513.5
427		457.06
428		443.49
429		457.44

Ex.	Structure	MS (M+H)
No.	ŎH	
430	Br W N S S S S S S S S S S S S S S S S S S	467.30/469.3 0
431		443.31
400	OH OH	070 70/074 1
432		612.18/614.1
433		569.42
434		541.4
435		473.45
436		618.06

Ex. No.	Structure	MS (M+H) ⁺
437		569.4
438		. 583.4
439		555.1
440		555.1
441		567.29
442		638.31
443		570.3

Ex. No.	Structure	MS (M+H)*
444		571.28
445	2 d d d d d d d d d d d d d d d d d d d	557.33
446		585.39
447	OH OH	571.27
448		598.15
449		498.19

Ex.	Structure	MS (M+H) ⁺
No.		
450		540.19
451		433.56
452		475.27
453		533.56
454		465.59
455		507.24

We claim:

1. A compound of formula I

- 5 including diastereomers, enantiomers and salts thereof where
 - Q₁ is thiazolyl;
 - Q_2 is aryl or heteroaryl optionally independently substituted with one or more substituents R_{1a} ;
- 10 Z is
 - (1) 0-,
 - (2) -S-,
 - $(3) -NR_{4-}$
 - (4) -CR₄R₅-,
- 15 (5) $-CR_4R_5-O-CR_{4a}R_{5a}$,
 - (6) $-CR_4R_5-NR_{4b}-CR_{4a}R_{5a}$ -,
 - $(7) CR_4R_5 S CR_{4a}R_{5a}$,
 - (8) $-CR_4R_5-O_-$,
 - (9) -O-CR₄R₅-,
- 20 (10) $-CR_4R_5-NR_{4b}$ -,
 - (11) $-NR_{4b}-CR_4R_{5}$ -,
 - (12) $-CR_4R_5-S-$,
 - (13) $-S-CR_4R_5-$,
 - (14) $-S(O)_{q}$ where q is 1 or 2,
- 25 (15) $-CR_4R_5-S(O)_{q}$, or
 - (16) $-S(O)_{q}-CR_{4}R_{5}-;$

R₁ and R_{1a} are independently

- (1) hydrogen or R_6 ,
- (2) OH or $-OR_6$

- (3) $-SH \text{ or } -SR_6$,
- (4) $-C(O)_{q}H$, $-C(O)_{q}R_{6}$, or $-O-C(O)_{q}R_{6}$,
- (5) $-SO_3H \text{ or } -S(O)_qR_6$,
- (6) halo,
- 5 (7) cyano,
 - (8) nitro,
 - (9) $-Z_4-NR_7R_8$,
 - (10) $-Z_4-N(R_9)-Z_5-NR_{10}R_{11}$,
 - (11) $-Z_4-N(R_{12})-Z_5-R_6$, or
- 10 (12) $-P(O)(OR_6)_2$;

R₂ and R₃ are each independently H, -Z₄-R_{6a}, or -Z₄-NR_{7a}R_{8a}

R₄, R_{4a}, R_{4b}, R₅ and R_{5a} are each independently hydrogen, alkyl, aryl, aralkyl, cycloalkyl, or heteroarylalkyl;

R₆, R_{6a}, R_{6b} and R_{6c} are independently alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, aralkyl, heterocyclo, or heterocycloalkyl, each of which is unsubstituted or substituted with Z₁, Z₂ and one or more groups Z₃,

$R_7,\,R_{7a},\,R_8,\,R_{8a},\,R_9,\,R_{10},\,R_{11}$ and R_{12}

- 20 (1) are each independently hydrogen, or -Z₄R_{6b}; or
 - (2) R₇ and R₈, or R_{7a} and R_{8a} may together be alkylene, alkenylene, or heteroalkylene, completing a 3- to 8-membered saturated or unsaturated ring with the nitrogen atom to which they are attached, which ring is unsubstituted or substituted with Z₁, Z₂ and one or more groups Z₃, or
- 25 (3) any two of R₉, R₁₀ and R₁₁ may together be alkylene, alkenylene or heteroalkylene completing a 3- to 8-membered saturated or unsaturated ring together with the nitrogen atoms to which they are attached, which ring is unsubstituted or substituted with one or more Z₁, Z₂ and Z₃;

Z_1 , Z_2 and Z_3 are each independently

- 30 (1) hydrogen or Z₆,
 - (2) $-OH \text{ or } -OZ_6$,
 - (3) $-SH \text{ or } -SZ_6$,

- (4) $-C(O)_{q}H$, $-C(O)_{q}Z_{6}$, or $-O-C(O)_{q}Z_{6}$,
- (5) $-SO_3H$, $-S(O)_qZ_6$, or $S(O)_qN(Z_9)Z_6$,
- (6) halo,
- (7) cyano,
- 5 (8) nitro,
 - (9) $-Z_4-NZ_7Z_8$,
 - (10) $-Z_4-N(Z_9)-Z_5-NZ_7Z_8$,
 - (11) $-Z_4-N(Z_{10})-Z_5-Z_6$,
 - (12) $-Z_4-N(Z_{10})-Z_5-H$,
- 10 (13) oxo,
 - (14) any two of Z₁, Z₂, and Z₃ on a given substituent may together be alkylene or alkenylene completing a 3- to 8-membered saturated or unsaturated ring together with the atoms to which they are attached; or
- (15) any two of Z_1 , Z_2 , and Z_3 on a given substituent may together be -O-(CH₂)_q-O-;

Z₄ and Z₅ are each independently

- (1) a single bond,
- (2) $-Z_{11}-S(O)_{q}-Z_{12}-$,
- 20 (3) $-Z_{11}$ -C(O)- Z_{12} -,
 - (4) $-Z_{11}$ -C(S)- Z_{12} -,
 - (5) $-Z_{11}$ -O- Z_{12} -,
 - (6) $-Z_{11}$ -S- Z_{12} -,
 - (7) $-Z_{11}$ -O-C(O)- Z_{12} -,
- 25 (8) $-Z_{11}$ -C(O)-O- Z_{12} -; or
 - (9) alkyl

Z₆ and Z_{6a} are independently

- (i) alkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkenyl, aryl, aralkyl, alkylaryl, cycloalkylaryl, heterocyclo, or heterocycloalkyl;
- (ii) a group (i) which is itself substituted by one or more of the same or different groups (i); or

(iii) a group (i) or (ii) which is independently substituted by one or more of the groups (2) to (15) of the definition of Z₁;

 Z_7 , Z_8 , Z_9 and Z_{10}

- (1) are each independently hydrogen or -Z₄-Z_{6a};
- 5 (2) Z₇ and Z₈ may together be alkylene, alkenylene, or heteroalkylene completing a 3- to 8-membered saturated or unsaturated ring together with the atoms to which they are attached, which ring is unsubstituted or substituted with one or more Z₁, Z₂ and Z₃, or
 - (3) Z₇ or Z₈, together with Z₉, may be alkylene, alkenylene, or heteroalkylene completing a 3- to 8-membered saturated or unsaturated ring together with the nitrogen atoms to which they are attached, which ring is unsubstituted or substituted with one or more Z₁, Z₂ and Z₃;

 Z_{11} and Z_{12} are each independently

- (1) a single bond,
- 15 (2) alkylene,
 - (3) alkenylene, or
 - (4) alkynylene;

provided that said compound is other than

(a) a compound of formula X

$$Q_2 \xrightarrow{Z_a} S \xrightarrow{N} H \xrightarrow{N} R_{a1} X$$

20

25

10

where

 Z_a is $-CR_4R_5$ -, $-NR_4$ -, or $-NR_4$ - CR_4R_5 -;

Q2 is as defined above;

Ra1 is alkyl, alkenyl, cylcoalkyl, heterocyclo, aryl, aralkyl or -NR7a1R8a1;

R_{7al} is alkyl, cycloalkyl, heterocylco, aryl, -C(O)aryl, or aralkyl; and

R_{8a1} is H, alkyl, alkenyl or alkynl;

or R_{7a1} and R_{7a1} combine to form a heterocylo group;

(b) a compound of formula XI

$$\mathbb{Q}_{2\mathbf{b}} \xrightarrow{\mathbb{Z}_{\mathbf{b}}} \mathbb{S} \xrightarrow{\mathbb{N}} \mathbb{H} \xrightarrow{\mathbb{N}} \mathbb{K}_{\mathbf{b}1} \mathbb{K}$$

where

 Z_b is $-CR_4R_5$ -, $-NR_4$ -, or $-NR_4$ - CR_4R_5 -;

Q2b is aryl

5 R_{b1} is H, alkyl optionally substituted with hydroxy, alkoxy, amino, alkylamino or dialkylamino;

L is phenyl or heteroaryl;

 R_{b2} is -NR_{b3}R_{b4}, or -N(H)C(O)R_{b5};

R_{b3} and R_{b4} are each independently H, cycloalkyl, alkyl or aryl;

or R_{b3} and R_{b4} together with the nitrogen atom to which they are attached combine to form 4-morpholinyl, 1-piperazinyl, N-alkyl-piperazinyl, N-aryl-piperazinyl, N-arylalkyl-piperazinyl, piperidinyl, pyrrolidinyl, 2-oxo-1-pyrrolidinyl, imidazolyl, or 3-azabicyclo[3.2.2]nonyl; and R_{b5} is carboxy, alkyl, perfluoroalkyl, alkynyl, aryl, 2-oxo-pyrrolidinyl or piperidinyl;

(c) a compound of formula XIIa or XIIb

$$\mathbb{Q}_{2}$$
 \mathbb{Z}_{c}
 \mathbb{Q}_{2}
 \mathbb{Z}_{c}
 \mathbb{Q}_{2}
 \mathbb{Z}_{c}
 \mathbb{Z}_{c}
 \mathbb{Q}_{2}
 \mathbb{Z}_{c}
 \mathbb{Z}_{c}

where

Q2 is as defined above;

20 Z_c is CH₂; and

R_{c1} is aryl or heterocyclo;

(d) a compound of formula XIII

$$Q_{2d} - Z_{d} = X_{d} = X_{$$

where

 Z_d is CH_2 ;

Q2d is aryl;

R_{d1} is

5

(1) $-C(O)NR_{d7}R_{d8}$,

(2)

$$\begin{pmatrix} R_{d5} \\ CO - N \end{pmatrix}_{c} \begin{pmatrix} CH_{2} \\ CH_{2} \end{pmatrix}_{e} A - \begin{pmatrix} CH_{2} \\ CH_{2} \end{pmatrix}_{f} COOH$$

where

c and d are zero to 1 providing c and d are not simultaneously

10

zero;

e is zero to 5; and

f is zero to 3; or

(3)

$$\begin{array}{c}
\begin{pmatrix}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

15

where

 c_1 , d_1 , f_1 , g_1 , k_1 , l_1 and m_1 are each independently zero or 1, where c_1 , f_1 and g_1 are not simultaneously zero, and where m_1 is not zero when f_1 or g_1 is 1;

 i_1 is zero or 1, where k_1 and l_1 are zero when i_1 is zero;

20

e₁ is zero to 3

h₁ is zero to 5;

j₁ is zero to 2; and

the sum of e_1 , h_1 and j_1 is 2 to 7;

A is -O-, -S-, -CH=CH-, or $-N(R_{d6})$ -;

25

 R_{d2} and R_{d3} are independently H, alkyl, cycloalkyl or heteroaryl;

R_{d4} is H, alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heteroaryl or heteroarylalkyl;

R_{d5} is H, alkyl or cycloalkyl;

R_{d6} is H, aryl, aralkyl, heteroaryl, hetercycloalkyl, carboxyalkyl, alkyl, cycloalkyl, -C(O)₂alkyl, -C(O)₂aralkyl, -C(O)alkyl, alkylsulphonyl, arylsulfonyl or heteroarylsulfonyl;

R_{d7} and R_{d8} together with the nitrogen atom to which they are attached combine to from a 5 to 8-membered saturated or unsaturated ring substituted with the group X; and

10 X is

$$\begin{array}{c|c}
 & CH_2 \\
g & N \\
CH_2 \\
h \\
CH_2 \\
h \\
CH_2 \\
j \\
COOH \\
CH_2 \\
COOH \\
CH_2 \\
COOH \\
CH_2 \\
CH_2 \\
CH_2 \\
COOH \\
CH_2 \\
CH_2 \\
COOH \\
CH_2 \\
CH_2$$

where

g is zero to 4;

i is zero or 1, with k being zero when i is zero;

15 the sum of h, i and j is ≥ 1 and ≤ 4 ;

k and m are independently zero or 1, with n being other than zero when m is 1; and

the sum of 1, m and n is ≥ 2 and ≤ 5 ;

(e) a compound of formula XIV

$$Q_{2e}$$
 Q_{2e} Q

20

25

where

$$Z_e$$
 is -S-, -S(O)_q- or -CH₂-S(O)_q-;

Q_{2e} is

- (2) aryl optionally substituted with one group selected from halo, hydroxy, alkoxy nitro, -NH₂, -alkyl(NH₂), -C(O)NH₂, -alkylC(O)NH₂ or -arylC(O)NH₂; or
- (3) heteroaryl optionally substituted with one group selected from alkyl, hydroxy, haloalkyl or NH₂;

 R_{e1} is H, alkyl, hydroxyalkyl, halogen or carboxy; and R_{e2} is H, -C(O)alkyl.-SO₂alkyl or -C(O)phenyl optionally substituted with halogen;

(f) a compound of formula XVa or XVb

$$R_{f1}$$
 R_{f2}
 R_{f3}
 R_{f3}
 R_{f2}
 R_{f3}
 R_{f3}

where

5

 Z_1 is $-CR_4R_5$ -, $-O-CR_4R_5$, or $-NR_4$ -, ;

 Z_{Γ} is $-CR_4R_5$ -;

Q2f is aryl or heteroaryl;

10 R_{f1} is alkyl, aryl, heteroaryl, or cycloalkyl;

R_{f1*} is H, alkyl, cycloalkyl, alkoxy, alkenyl, alkynyl, aryl, heterocyclo, aminosubstituted alkoxy, nitro, hydroxy, or NH₂;

R_{f2} is H, alkyl, aryl, heteroaryl, or cycloalkyl; and

R_{f3} is H, alkyl, cycloalkyl, aryl, halo, CF₃, or heterocyclo;

15 (g) a compound of formula XVI

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

where

 Z_g is -NH- or -NH-CR₄R₅-;

Q_{2g} is aryl, heteroaryl;

20 X is C or N

Q is a divalent radical containing 2 or 3 ring atoms each independently selected from C, N, O, S, CR_{g1}, NR_{g1}, which together with C* and N* form a 5 or 6-membered aromatic or nonaromatic ring;

R_{g1} is hydroxy, halo, cyano, nitro, alkyl, alkenyl, cycloalkyl, non-aromatic heterocyclo, aryl, heteroaryl, or -C(O)R_{g2};

or Rg1 cycloalkyl, heterocyclo or aryl that is fused to Q;

 R_{g2} is H, alkyl, cycloalkyl, non-aromatic heterocyclo. aryl, heteroaryl or -OC(O) R_{g3} ;

 R_{g3} is H, alkyl, cycloalkyl, non-aromatic heterocyclo, aryl, heteroaryl or – $C(O)NR_{g4}R_{g5}$;

 R_{g4} and R_{g5} are independently H, alkyl, cycloalkyl, heterocyclo, aryl or -C(R_{g6})=NR_{g7};

10 R_{g6} is H, alkyl, cycloalkyl, heterocyclo, aryl, amino, alkylamino, dialkylamino or -SO₂R_{g8};

R_{g7} is H, alkyl, cycloalkyl, heterocyclo, aryl heteroaryl, hydroxy, alkoxy, amino, alkylamino, dialkylamino, or -C(O)amino;

R_{g8} is alkyl, cycloalkyl, heterocyclo, aryl or -SO₂NR_{g9}R_{g10};

 R_{g9} and R_{g10} are independently H, alkyl, cyclcoalkyl, heterocyclo, aryl, or OR_{g11} ;

 R_{g11} is alkyl, cycloalkyl, heterocyclo, aryl, $-C(O)R_{g2}$, $-OC(O)R_{g3}$, $-C(O)NR_{g4}R_{g5}$, $-NR_{g12}R_{g13}$, or $-SR_{g14}$;

R_{g12} is H, alkyl, cycloalkyl, heterocyclo, aryl, hydroxy, alkoxy, amino, – C(O)R_{g2}, –OC(O)R_{g3}, –C(O)NR_{g4}R_{g5}, or -C(R_{g6})=NR_{g7};

 R_{g13} is H, alkyl, cycloalkyl, heterocyclo, aryl, $-C(O)R_{g2}$, $-OC(O)R_{g3}$, $-C(O)NR_{g4}R_{g5}$, $-C(R_{g6})=NR_{g7}$, $-SO_2R_{g8}$, or $-SO_2NR_{g9}R_{g10}$; and R_{g14} is H, alkyl, cycloalkyl, heterocylco, aryl or $-C(O)NR_{g4}R_{g5}$; or

25 (h) a compound of formula XVII

$$R_3$$
 N
 Z_h
 Q_{2h} XVII

where

 Z_h is -S- or $-S(O)_q$ - CR_4R_5 -; and

Q_{2h} is heteroaryl

30

20

5

2. A compound of claim 1 having the following formula II

$$R_2$$
 N R_1 R_2 N R_2 R_3 R_2 R_2 R_3

3. A compound of claim 1 wherein

Q2 is optionally substituted phenyl;

5 Z is selected from -S-, -CR₄R₅-S-, -S-CR₄R₅-, -CR₄R₅-O-CR₄₀R_{5a}-,

R₂ is hydrogen or alkyl; and

 R_3 is H, $-Z_4R_{6a}$ or $-Z_4NR_{7a}R_{8a}$.

- 4. A compound of claim 3 wherein the Q₂ phenyl is independently substituted with alkyl, hydroxy, alkoxy, haloalkoxy, halo, nitro, -C(O)_qR₆, -C(O)_qH, -Z₄-NR₇R₈, -Z₄-N(R₁₂)-Z₅-Z₆, or -Z₄-N(R₉)-Z₅-NR₁₀R₁₁).
 - 5. A compound of claim 4 wherein R_3 is $-Z_4R_{6a}$.

15

- 6. A compound of claim 5 wherein Z is -S-, -CR₄R₅-S-, or -S-CR₄R₅-.
- 7. A compound of formula IIIa, IIIb or IIIc

including diastereomers, enantiomers and salts thereof where

Z is

5 (1) -O-,

(2) -S-,

(3) $-CR_4R_5-O-CR_{4a}R_{5a}$ -,

 $(4) - CR_4R_5 - NR_{4b} - CR_{4a}R_{5a}$,

(5) -CR₄R₅-S-CR_{4a}R_{5a}-,

10 (6) $-CR_4R_5-O_{-}$

(7) -CR₄R₅-NR_{4b}-,

 $(8) - CR_4R_5-S-$

(9) -S-CR₄R₅-,

(10) $-S(O)_{q}$,

15 (11) $-CR_4R_5-S(O)_{q^-}$, or

(12) $-S(O)_q$ -CR₄R₅-;

R₁, R_{1ab}, R_{1ac} and R_{1ad} are independently

(1) hydrogen or R₆,

(2) -OH or $-OR_{6}$

20 (3) $-SH \text{ or } -SR_6$,

(4) $-C(O)_qH$, $-C(O)_qR_6$, or $-O-C(O)_qR_6$, where q is 1 or 2,

(5) $-SO_3H \text{ or } -S(O)_qR_6$,

(6) halo,

(7) cyano,

25 (8) nitro,

 $(9) -Z_4-NR_7R_8,$

(10) $-Z_4-N(R_9)-Z_5-NR_{10}R_{11}$,

(11) $-Z_4-N(R_{12})-Z_5-R_6$, or

(12) $-P(O)(OR_6)_2$;

 R_{1aa} is $-C(O)_qH$, $-C(O)_qR_6$, $-Z_4-NR_7R_8$, $-Z_4-N(R_9)-Z_5-NR_{10}R_{11}$ or $-Z_4-N(R_9)-Z_5-R_6$; R_2 and R_3 are each independently H, $-Z_4-R_{6a}$, or $-Z_4-NR_{7a}R_{8a}$;

- R_4 , R_{4a} , R_5 and R_{5a} are each independently hydrogen, alkyl, aryl, aralkyl, cycloalkyl, or heteroarylalkyl;
- 5 R₆, R_{6a}, R_{6b} and R_{6c} are independently alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, aralkyl, heterocyclo, or heterocycloalkyl, each of which is unsubstituted or substituted with Z₁, Z₂ and one or more groups Z₃,
- 10 R_7 , R_{7a} , R_8 , R_{8a} , R_9 , R_{10} , R_{11} and R_{12}
 - (1) are each independently hydrogen, or -Z₄R_{6b}; or
 - (2) R₇ and R₈, or R_{7a} and R_{8a} may together be alkylene, alkenylene, or heteroalkylene, completing a 3- to 8-membered saturated or unsaturated ring with the nitrogen atom to which they are attached, which ring is unsubstituted or substituted with Z₁, Z₂ and one or more groups Z₃, or
 - (3) any two of R₉, R₁₀ and R₁₁ may together be alkylene, alkenylene or heteroalkylene completing a 3- to 8-membered saturated or unsaturated ring together with the nitrogen atoms to which they are attached, which ring is unsubstituted or substituted with one or more Z₁, Z₂ and Z₃;
- Z_1 , Z_2 and Z_3 are each independently
 - (1) hydrogen or Z₆,
 - (2) -OH or $-OZ_6$,
 - (3) –SH or –SZ₆,
 - $(4) -C(O)_qH$, $-C(O)_qZ_6$, or $-O-C(O)_qZ_6$,
- 25 (5) $-SO_3H$, $-S(O)_qZ_6$, or $S(O)_qN(Z_9)Z_6$,
 - (6) halo,
 - (7) cyano,
 - (8) nitro,
 - $(9) -Z_4-NZ_7Z_8$
- 30 (10) $-Z_4-N(Z_9)-Z_5-NZ_7Z_8$,
 - (11) $-Z_4-N(Z_{10})-Z_5-Z_6$,
 - (12) $-Z_4-N(Z_{10})-Z_5-H$,

- (13) oxo,
- (14) any two of Z₁, Z₂, and Z₃ on a given substituent may together be alkylene or alkenylene completing a 3- to 8-membered saturated or unsaturated ring together with the atoms to which they are attached; or
- 5 (15) any two of Z_1 , Z_2 , and Z_3 on a given substituent may together be $-O-(CH_2)_{\sigma}-O-$;

Z₄ and Z₅ are each independently

- (1) a single bond,
- $(2) -Z_{11}-S(O)_{q}-Z_{12}-,$
- 10 (3) $-Z_{11}$ -C(O)- Z_{12} -,
 - $(4) -Z_{11}-C(S)-Z_{12}-$
 - $(5) -Z_{11}-O-Z_{12}-$
 - $(6) -Z_{11}-S-Z_{12}-$
 - $(7) -Z_{11}-O-C(O)-Z_{12}-$
- 15 (8) $-Z_{11}$ -C(O)-O- Z_{12} -; or
 - (9) alkyl

í

20

Z₆ and Z_{6a} are independently

- alkyl, hydroxyalkyl, alkoxyalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, aralkyl, alkylaryl, cycloalkylaryl, heterocyclo, or heterocycloalkyl;
- (ii) a group (i) which is itself substituted by one or more of the same or different groups (i); or
- (iii) a group (i) or (ii) which is independently substituted by one or more of the groups (2) to (15) of the definition of Z₁;
- 25 Z_7 , Z_8 , Z_9 and Z_{10}
 - (1) are each independently hydrogen or -Z₄-Z_{6a};
 - (2) Z₇ and Z₈ may together be alkylene, alkenylene, or heteroalkylene completing a 3- to 8-membered saturated or unsaturated ring together with the atoms to which they are attached, which ring is unsubstituted or substituted with one or more Z₁, Z₂ and Z₃, or
 - (3) Z₇ or Z₈, together with Z₉, may be alkylene, alkenylene, or heteroalkylene completing a 3- to 8-membered saturated or unsaturated ring together with the

nitrogen atoms to which they are attached, which ring is unsubstituted or substituted with one or more Z_1 , Z_2 and Z_3 ;

 Z_{11} and Z_{12} are each independently

- (1) a single bond,
- 5 (2) alkylene,
 - (3) alkenylene, or
 - (4) alkynylene;

provided said compound is other than a compound of formula XIV

$$Q_{2e}$$
 Z_{e} XIV R_{e2} XIV

10 where

 $Z_e - S_-, -S(O)_q - or - CH_2 - S(O)_q -;$

 Q_{2e} is phenyl optionally substituted with one group selected from halo, hydroxy, alkoxy nitro, -NH₂, -alkyl(NH₂), -C(O)NH₂, -alkylC(O)NH₂ or -arylC(O)NH₂;

15 R_{e1} is H, alkyl, hydroxyalkyl, halogen or carboxy; and R_{e2} is H, -C(O)alkyl,-SO₂alkyl or -C(O)phenyl optionally substituted with halogen.

8. A compound of claim 7 having the formula IIIa.

20

9. A compound of claim 8 where

Z is -S-, $-CR_4R_5$ -S-, or -S- $-CR_4R_5$ -;

R₂ is hydrogen or alkyl; and

 R_3 is $-Z_4R_{6a}$, where:

- (a) Z₄ is a single bond and R_{6a} is heteroaryl optionally substituted with one or more Z₁, Z₂ or Z₃;
 - (b) \mathbb{Z}_4 is $-\mathbb{C}(\mathbb{O})$ and \mathbb{R}_{6a} is
 - (1) aryl optionally substituted with one or more Z_1 , Z_2 or Z_3 ;
 - (2) alkyl optionally substituted with one or more Z_1 , Z_2 or Z_3 ;
- 30 (3) cycloalkyl optionally substituted with one or more Z_1 , Z_2 or Z_3 ; or
 - (4) heterocyclo optionally substituted with one or more Z_1 , Z_2 or Z_3 ; or

(c) Z_4 is -C(O)-O- and R_{6a} is alkyl, cycloalkyl, aryl or aralkyl, any of which may be optionally substituted with one or more Z_1 , Z_2 or Z_3 .

- 10. A compound of claim 9 wherein
- 5. R_{1aa} is $-C(O)R_{6a}$ or $-Z_4$ -NR₇R8; and

 R_{1ab} , R_{1ac} and R_{1ad} are independently H, alkyl, hydroxy, nitro, halo, -OR₆, -NR₇R₈, -C(O)_qH or -C(O)_qR₆.

- 11. A compound of claim 10 wherein at least one of R_{1ab} , R_{1ac} and R_{1ad} is other than H.
 - 12. A compound of claim 8 having the following formula IV

where one of R_{1ab} , R_{1ac} and R_{1ad} is H and the other two are independently alkyl, hydroxy, nitro. halo, $-OR_6$, $-NR_7R_8$, $-C(O)_0H$, or $-C(O)_9R_6$.

- 13. A compound of claim 12 wherein one of R_{1ab} , R_{1ac} and R_{1ad} is H and the other two are independently alkyl or $-OR_6$.
- 20 14. A compound of claim 13 wherein Z is -S- and R_{1c} is H.
 - 15. A compound of claim 13 wherein Z is -S-CR₄R₅-, and R_{1d} is H.
 - 16. A compound of claim 12 having the following formula V

$$R_{1}$$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{4}
 R_{5}
 R_{5

where

 X_1 is C or N;

 X_2 is CZ_{3a} , NZ_{3a} , O or S;

5 Z_{3a} is H, hydroxy, optionally substituted alkyl, optionally substituted heterocyclo, optionally substituted aryl, optionally substituted aralkyl, -OZ₆, -C(O)_qH, -C(O)_qZ_{6a}, -Z₄-NZ₇Z₈, or -Z₄-N(Z₁₀)-Z₅-Z₆;

n is 1 to 3; and

m is zero to 2.

10

- 17. A pharmaceutical composition comprising at least one compound of claim1 and a pharmaceutically acceptable vehicle or carrier therefor.
- 18. A pharmaceutical composition of claim 17 further comprising at least one
 additional therapeutic agent selected from anti-inflammatory agents, anti-proliferative agents, anti-cancer agents or anti-cytotoxic agents.
- 19. A pharmaceutical composition of claim 18 wherein the additional therapeutic agents are selected from steroids, mycophenolate mofetil, LTD₄ inhibitors,
 20 CTLA4-Ig, LEA-29Y, phosphodiesterase inhibitors, antihistamines, or p³⁸ MAPK inhibitors.
 - 20. A method of treating a Tec family tyrosine kinase-associated disorder comprising the step of administering to a patient in need thereof, an effective amount of at least one compound of claim 1.

21. The method of claim 20 wherein the Tec family tyrosine kinase-associated disorder is an Emt-associated disorder.

22. The method of claim 21 wherein the Emt-associated disorder is selected from transplant rejection, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, lupus, graft vs. host disease, T-cell mediated hypersensitivity disease, psoriasis, Hashimoto's thyroiditis, Guillain-Barre syndrome, cancer, contact dermatitis, allergic disease, asthma', ischemic or reperfusion injury, atopic dermatitis, allergic rhinitis, or chronic obstructive pulmonary disease.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 01/49430

A. CLASSI	IFICATION OF SUBJECT MATTER CO7D417/12 CO7D417/14 A61P2	9/00	
According to	o International Patent Classification (IPC) or to both national cla	ssification and IPC	
B. FIELDS	SEARCHED		
Minimum de IPC 7	ocumentation searched (classification system followed by class CO7D A61P	ilication symbols)	
Documenta	tion searched other than minimum documentation to the extent	that such documents are included in the fields so	earched
Electronic d	data base consulted during the international search (name of da	ta base and, where practical, search terms used	1)
EPO-In	ternal, PAJ, WPI Data, CHEM ABS D	ata, BIOSIS	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Catogory *	Citation of document, with indication, where appropriate, of the	ne relevant passages	Relevant to claim No.
x	WO 00 62778 A (BRISTOL MYERS S 26 October 2000 (2000-10-26)	·	1-22
	page 39, line 11 -page 46, lin 1-59; examples 1-580 	e 15; claims	
P,A	WO 01 17995 A (HUNGATE RANDALL MARK T (US); MANLEY PETER J (U 15 March 2001 (2001-03-15)		1-22
	page 1, line 9 -page 1, line 1 1-36; examples	4; claims	
ļ			
	<u> </u>		
Furt	her documents are listed in the continuation of box C.	Palent family members are listed	in annex.
	stegories of cited documents :	"T" later document published after the into or priority date and not in conflict with	
consid	ant defining the general state of the last which is not tered to be of particular relevance docurnent but published on or after the international	cited to understand the principle or the invention	eory underlying the
L docume	date ent which may throw doubts on prionty claim(s) of	"X" document of particular relevance; the c cannot be considered novel or cannot involve an inventive step when the do	be considered to
diatio	is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	'Y' document of particular relevance; the c cannot be considered to involve an in document is combined with one or mo	ventive step when the
other i	means ent published pnor to the international filling date but han the priority date claimed	ments, such combination being obvior in the art. *&* document member of the same patent	us to a person skilled
	actual completion of the international search	Date of mailing of the international sea	
3	June 2002	10/06/2002	
Name and r	mailing address of the ISA European Patent Office, P.B 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Authonized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Schmid, A	
SOME DOTACAM	210 tearned sheet I fill 1992)		

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-11 (partly)

Present claims 1-11 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds according to the present examples which have a backbone based on NH-thiazol-S-(or S-CH2)- phenyl-carbonyl with a substitution pattern according to the present examples.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/49430

Patent document cited in search report	}	Publication date		Patent family member(s)	Publication date
WO 0062778	A	26-10-2000	AU	4233800 A	02-11-2000
			BR	0009721 A	13-02-2002
			CN	1348370 T	08-05-2002
			EΡ	1169038 A1	09-01-2002
			NO	20014970 A	10-12-2001
			NZ	513639 A	28-09-2001
			WO	0062778 A1	26-10-2000
WO 0117995	Α	15-03-2001	AU	7351700 A	10-04-2001
			WO	0117995 A1 ··	15-03-2001

Form PCT/ISA/210 (patent family annex) (July 1992)