Package 'ZIprop'

October 12, 2022

Type Package

Title Permutations Tests and Performance Indicator for Zero-Inflated Proportions Response
Version 0.1.1
Date 2021-06-07
Author Melina Ribaud
Maintainer Melina Ribaud <melina.ribaud@gmail.com></melina.ribaud@gmail.com>
Description Permutations tests to identify factor correlated to zero-inflated proportions response. Provide a performance indicator based on Spearman correlation to quantify the part of correlation explained by the selected set of factors. See details for the method at the following preprint e.g.: https://hal.archives-ouvertes.fr/hal-02936779v3 .
<pre>URL https://gitlab.paca.inrae.fr/meribaud/ziprop</pre>
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 3.5.0), rgenoud, purrr, data.table, parallel
Suggests markdown, knitr, ggplot2, ggrepel, ggthemes, kableExtra, stringr
RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2021-06-09 13:20:02 UTC
R topics documented:
delta
1

2 delta

	fact2mat	5
	indicator	5
	indicator_max	6
	model_matrix	7
	permDT	8
	scale_01	9
	T_stat_discr	10
	T_stat_multi	10
	ZIprop	11
Index		12

delta

The scalar delta

Description

Calculate the scalar delta. This parameter comes from the optimal Spearman's correlation when the rank of two vectors X and proba are equal except on a given set of indices. In our context, this set correspond to the zero-values of the vector proba.

Usage

```
delta(X, proba)
```

Arguments

```
X a vector.

proba a zero-inflated proportions response.
```

Value

Delta the scalar Delta calculated for the vector x and the vector proba.

Examples

```
X = rnorm(100)
proba = runif(100)
proba[sample(1:100,80)]=0
Delta = delta(X,proba)
print(Delta)
```

diffFactors 3

diffFactors

diffFactors

Description

Data for the comparison of COVID-19 mortality in European and North American geographic entities

Usage

```
data(diffFactors)
```

Format

A data frame with 483 rows and 32 variables

Details

- geographic_entity_receptor are the entity receptor
- geographic_entity_source are the entity source
- proba is the probability that the receptor follows the mortality dynamics of the source
- other columns are the difference between factors

Author(s)

Melina Ribaud, Davide Martinetti and Samuel Soubeyrand

References

doi: 10.5281/zenodo.4769671

equineDiffFactors

equineDiffFactors

Description

Equine Influenza dataset

Usage

```
data(equineDiffFactors)
```

Format

A data frame with 2256 rows and 8 variables

4 example_data

Details

- ID.source are the ID of source hosts
- ID.recep are the ID of receiver hosts
- y are the vector of transmission probabilities source -> receiver
- other columns are the factors

Author(s)

Melina Ribaud and Joseph Hughes

References

doi: /10.5281/zenodo.4837560

example_data

Zero-inflated proportions dataset

Description

A dataset example to test the package functions. The factor X1 to X5 and F1 to F5 are correlated to the responses y.

Usage

```
data(example_data)
```

Format

A data frame with 440 rows and 23 variables

Details

- ID.source are the ID of source hosts
- ID.recep are the ID of receiver hosts
- y are the vector of transmission probabilities source -> receiver
- X1 to X10 are continuous factor
- F1 to F10 are discrete factor

fact2mat 5

fact2mat

Turn factor into multiple column

Description

Turns a factor with several levels into a matrix with several columns composed of zeros and ones.

Usage

```
fact2mat(x)
```

Arguments

Χ

a vector.

Value

Columns with zeros and ones.

Examples

```
x = sample(1:3,100,replace = TRUE)
fact2mat(x)
```

indicator

The performance indicator

Description

Calculate the indicator for a vector X and a zero-inflated proportions response proba.

Usage

```
indicator(X, proba)
```

Arguments

Χ

a vector.

proba

a zero-inflated proportions response.

Value

a scalar represents the performance indicator and the vector proba.

6 indicator_max

Examples

```
X = rnorm(100)
proba = runif(100)
proba[sample(1:100,80)]=0
print(indicator(X,proba))
```

indicator_max

The max performance indicator

Description

Search for the set of parameters that maximize the indicator (equivalent to Spearman correlation). For a given set of factors scaled between 0 and 1 and a zero-inflated proportions response.

Usage

```
indicator_max(
  DT,
  ColNameFactor,
  ColNameWeight = "weight",
  bounds = c(-10, 10),
  max_generations = 200,
  hard_limit = TRUE,
  wait_generations = 50,
  other_class = NULL
)
```

Arguments

```
a data table contains the factors and the response.
DT
ColNameFactor
                  a char vector with the name of the selected factor.
ColNameWeight
                  a char with the name of the ZI response.
bounds
                  default is $[-10;10]$. Upper and Lower bounds.
max_generations
                  default is 200 see genoud for more information.
hard_limit
                  default is TRUE see genoud for more information.
wait_generations
                  default is 50 see genoud for more information.
other_class
                  a char vector with the name of other classes than numeric (factor or char).
```

Value

Return a list of two elements with the value of the indicator and the associate set of parameters (beta).

model_matrix 7

Examples

```
library(data.table)
data(example_data)
# For real cases increase max_generations and wait_generations
I_max = indicator_max(example_data,
names(example_data)[c(4:8, 14:18)],
ColNameWeight = "proba",
max_generations = 20,
wait_generations = 5)
print(I_max)
```

 $model_matrix$

Construct Design Matrix

Description

Creates a design matrix by expanding factors to a set of dummy variables.

Usage

```
model_matrix(DT, ColNameFactor, other_class)
```

Arguments

DT a data table contains the factors and the response.

ColNameFactor a char vector with the name of the selected factor.

other_class a char vector with the name of other classes than numeric (factor or char).

Value

return the value.

Examples

```
library(data.table)
data(example_data)
m = model_matrix (example_data,
colnames(example_data)[-c(1:3)],
other_class = colnames(example_data)[14:23])
print(m)
```

8 permDT

permDT Permutations tests

Description

Permutations tests to identify factor correlated to a zero-inflated proportions response. The statistic are the Spearman's correlation for numeric factor and mean by level for other factor.

Usage

```
permDT(
 DT,
  ColNameFactor,
 B = 1000,
  nclust = 1,
  ColNameWeight = "weight",
  ColNameRecep = "ID.recep",
 ColNameSource = "ID.source",
  seed = NULL,
  no_const = FALSE,
 num_class = ColNameFactor,
 other_class = NULL,
 multiple_test = FALSE,
  adjust_method = "none",
  alpha = 0.05
)
```

ArgumentsDT

	<u> </u>
ColNameFactor	a char vector with the name of the selected factor.
В	number of permutations (use at least B=1000 permutations to get a correct accuracy of the p-value.)
nclust	number of proc for parallel computation.
ColNameWeight	a char with the name of the ZI response.
ColNameRecep	colname of the column with the target names
ColNameSource	colname of the column with the contributor names
seed	vector with the seed for the permutations: size(seed)=B
no_const	FALSE for receiver block constraint for permutations: TRUE no constraint.
num_class	a char vector with the name of numeric factor.
other_class	a char vector with the name of other classes than numeric (factor or char).
multiple_test	useful option only for discrete factors: Set TRUE to calculate multiple tests.
adjust_method	p-values adjusted methods (default "none"). c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none").
alpha	significant level (default 0.05).

a data table contains the factors and the response.

scale_01

Value

A data frame with two columns. One for the statistics and the other one for the p-value.

Examples

```
library(data.table)
data(example_data)
res = permDT (example_data,
colnames(example_data)[c(4,10,14,20)],
B = 10,
nclust = 1,
ColNameWeight = "y",
ColNameRecep = "ID.recep",
ColNameSource = "ID.source",
seed = NULL,
num_class = colnames(example_data)[c(4,10)],
other_class = colnames(example_data)[c(14,20)])
print(res)
```

scale_01

Scale vector

Description

Scale a vector between 0 and 1.

Usage

```
scale_01(x)
```

Arguments

Χ

a vector.

Value

the scaled vector of x.

Examples

```
x = runif(100,-10,10)
x_scale = scale_01(x)
range(x_scale)
```

T_stat_multi

T_stat_discr

Statistic for non-numeric factor tests

Description

Statistic for non-numeric factor tests (same statistic as H-test).

Usage

```
T_stat_discr(permu, al)
```

Arguments

permu the response vector.

al the factor.

Value

the statistic.

Examples

```
permu = runif(100,-10,10)
al = as.factor(sample(1:3,100,replace=TRUE))
T_stat_discr(permu, al)
```

T_stat_multi

Statistic for non-numeric factor multiple tests

Description

Statistic for non-numeric factor multiple tests (difference in mean ranks).

Usage

```
T_stat_multi(permu, al)
```

Arguments

permu the response vector.

al the factor.

Value

the means difference of two levels for a discrete factor.

ZIprop 11

Examples

```
permu = runif(100,-10,10)
al = as.factor(sample(1:3,100,replace=TRUE))
T_stat_multi(permu, al)
```

ZIprop

ZIprop: A package for Zero-Inflated Proportions data (ZIprop)

Description

We propose a by block-permutation-based methodology (i) to identify factors (discrete or continuous) that are potentially significant, (ii) to define a performance indicator to quantify the percentage of correlation explained by the significant factors subset for Zero-Inflated Proportions data (ZIprop).

References

Melina Ribaud, Edith Gabriel, Joseph Hughes, Samuel Soubeyrand. Identifying potential significant factors impacting zero-inflated proportions data. 2020. hal-02936779

Index

```
*\ diffFactors
    diffFactors, 3
*\ equine Diff Factors
    equineDiffFactors, 3
* example_data
    example_data, 4
delta, 2
diffFactors, 3
{\tt equineDiffFactors}, {\tt 3}
\verb|example_data|, 4
fact2mat, 5
genoud, 6
indicator, 5
indicator_max, 6
model_matrix, 7
permDT, 8
scale_01, 9
T_stat_discr, 10
T_stat_multi, 10
ZIprop, 11
```