Part II - Logic and Set Theory Theorems

Lectured by I. B. Leader

Lent 2015

Ordinals and cardinals

Well-orderings and order-types. Examples of countable ordinals. Uncountable ordinals and Hartogs' lemma. Induction and recursion for ordinals. Ordinal arithmetic.

[5]

Posets and Zorn's lemma

Partially ordered sets; Hasse diagrams, chains, maximal elements. Lattices and Boolean algebras. Complete and chain-complete posets; fixed-point theorems. The axiom of choice and Zorn's lemma. Applications of Zorn's lemma in mathematics. The well-ordering principle.

Propositional logic

The propositional calculus. Semantic and syntactic entailment. The deduction and completeness theorems. Applications: compactness and decidability. [3]

Predicate logic

The predicate calculus with equality. Examples of first-order languages and theories. Statement of the completeness theorem; *sketch of proof*. The compactness theorem and the Lowenheim-Skolem theorems. Limitations of first-order logic. Model theory. [5]

Set theory

Set theory as a first-order theory; the axioms of ZF set theory. Transitive closures, epsilon-induction and epsilon-recursion. Well-founded relations. Mostowski's collapsing theorem. The rank function and the von Neumann hierarchy. [5]

Consistency

Problems of consistency and independence

[1]

Contents

1 Pro		opositional calculus		
	1.1	Semantic implication	3	
	1.2	Syntactic implication	3	

1 Propositional calculus

1.1 Semantic implication

Proposition.

- (i) If v and v' are valuations with v(p) = v'(p) for all $p \in P$, then v = v'.
- (ii) For any function $W: P \to \{0,1\}$, there is a valuation v such that v(p) = w(p) for all $p \in L$, i.e. we can extend w to a full valuation.

This means "A valuation is determined by its values on P, and any values will do".

1.2 Syntactic implication

Proposition (Deduction theorem). Let $S \subset L$ and $p, q \in L$. Then $S \vdash (p \Rightarrow q)$ if and only if $S \cup p \vdash q$.

"⊢ behaves like the connective ⇒ in the language"

Proposition (Soundness theorem). If $S \vdash t$, then $S \models t$.

Theorem (Model existence theorem). If $S \models \bot$, then $S \vdash \bot$ i.e., if S has no model, then S is consistent. i.e. If S is consistent, then S has a model. *Note*: Some books call this the "completeness theorem", because the rest of the completeness theorem follows trivially from this.

Corollary (Adequacy theorem). Let $S \subset L$, $t \in L$. Then $S \models t$ implies $S \vdash t$.

Theorem (Completeness theorem). Le $S \subset L$ and $t \in L$. Then $S \models t$ if and only if $S \vdash t$.

Corollary (Compactness theorem). Let $S \subset L$ and $t \in L$ with $S \models t$. The some finite $S' \subset S$ has $S' \models t$.

Corollary (Decidability theorem). Let finite $S \subset L$, $t \in L$. Then there exists an algorithm that determines, in finite time, whether or not $S \vdash t$.