1. Evaluate each of the following integral	1.	Evaluate	each	of	the	following	integrals
--	----	----------	------	----	-----	-----------	-----------

(i)
$$\int e^{2x-5} dx$$

[3]

 $\frac{1}{2}e^{2x-5}+c$

(ii) $\int \frac{1}{2x^2 + 5} \, \mathrm{d}x$ [7]

 $\int \frac{1}{5(1+\frac{2}{5}x^2)} dx = \frac{1}{5} \int \frac{1}{1+(\sqrt{\frac{2}{5}}x)^2} dx$ $= \frac{1}{5} \cdot \frac{1}{\sqrt{\frac{2}{5}}} \tan^2(\sqrt{\frac{2}{5}}x) + C$

 $= \frac{\sqrt{10}}{10} \tan^{-1}\left(\frac{\sqrt{10}}{5} \times 1\right) + C$

(iii) $\int_0^{\frac{1}{6}\pi} (\cos x + 2\sin x)^2 dx$ [7]

 $\int_0^{\frac{\pi}{6}} \left(\cos^2 x + 2\sin x\cos x + 4\sin^2 x\right) dx$

 $= \int_0^{\pi} \left[1 + 3 \left(\frac{1 - \omega_{52} x}{2} \right) + 2 \sin 2 x \right] dx$

 $= \left[\frac{5}{2}\chi - \frac{3}{2} \cdot \frac{1}{2} \sin 2\chi + 2(-\frac{1}{2}) \cos 2\chi \right]_{0}^{\frac{\pi}{6}}$ $= \left[\frac{5}{12}\pi - \frac{3}{4} \times \frac{\sqrt{5}}{2} - \frac{2}{2} \cdot \frac{1}{2}\right] - \left[0 - 0 - \frac{1}{4}\right] = \frac{1}{2} + \frac{5}{12}\pi - \frac{3\sqrt{5}}{5} - \frac{1}{4}\frac{1}{2}$

 $= \frac{1}{12} + \frac{5}{12} \pi - \frac{3}{5} \sqrt{3}.$

$\cap \overline{A}$	
π (seex + tunx) dx	
J - 74	
$= \pi \left(\frac{\frac{\pi}{4}}{4} \left(\operatorname{sei}_{X} + 2 \operatorname{sei}_{X} + \operatorname{anx} + \operatorname{sei}_{X} - 1 \right) dX \right)$	
<u></u>	
$= \pi \left[2 + anx - x + 2 \sec x \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}$	
$= \pi \left(\left[2 - \frac{\pi}{4} + 2\sqrt{2} \right] - \left[-2 + \frac{\pi}{4} + 2\sqrt{2} \right] \right)$	
$= \mathcal{K}(4-\frac{\mathcal{L}}{2})$	
~~	
1652	
	'
1 210%	
1 a. tun' (xn)	

3. A curve is such that $\frac{dy}{dx} = e^{2x} - 2e^{-x}$. The point $(0,1)$ lies on the curve.	
(i) Find the equation of the curve.	[4]
$y = \int \frac{dy}{dx} dx = \int e^{2x} + 2e^{-x} + C$	
1= ½ +2 + c => c = -3	
1= 2+2+0=> 0===2	
$y = \frac{1}{2}e^{2x} + 2e^{-x} - \frac{3}{2}$	
$=$ $\frac{1}{2}$ $=$ $\frac{1}{2}$ $=$ $\frac{1}{2}$ $=$ $\frac{1}{2}$	
(ii) The curve has one stationary point. Find the x -coordinate of this point and determined is a maximum or a minimum point.	[-1
$\frac{y}{dx} = 0 \qquad \Rightarrow \qquad e^{2x} - 2e^{-x} = 0$	
$e^{-x}(e^{3x}-z)=0$	
$\Rightarrow e^{3x} = 2 \Rightarrow x = \frac{1}{3}$	-lnz
7511 -X	
$\frac{d^2y}{dx^2} = ze^x + 2e^{-x}$	
X= \frac{1}{2} 0 \(\sigma z \), \(\frac{1}{2} \sigma z \)	
N= 3 VMZ, odx >0,	

So it is a minimum.

THE END