Industrial Robots

Industrial robots are mostly large-scale robot arms or manipulators

Within a production line the manipulators are formed into workcells that perform a specific stage of the production

Arranging the production line into robotic workcells automates the manufacturing process. This is called *Computer Integrated Manufacturing* (CIM)

Having workcells that can communicate with each other and can be rearranged and reprogrammed to form other production line configuration is part of a *Flexible Manufacturing Systems* (FMS)

Industrial Robot Activities

Handling- the robot's capacity to pick up objects and deposit them in specified locations:

- Palletising (placing objects on pallets in an ordered fashion)
- Warehouse loading/unloading
- Mill and machine tool tending
- Part sorting
- Packaging

Industrial Robot Activities

Manipulation – is the robot's capacity to transform raw materials into finished products:

- Arc and spot welding
- Painting
- Gluing and sealing
- Laser and water jet cutting
- Milling and drilling
- Casting and die spraying
- Grinding.
- Screwing and wiring.
- Assembling mechanical and electrical components.
- Assembling electronic boards.

Industrial Robot Activities

Inspection – is the robot's capacity to measure, examine and test products:

- Object inspection.
- Contour finding.
- Detection of manufacturing imperfections .

Robot Joints

Most robots consist of a sequence of rigid links connected by joints. These joints come in two forms: *prismatic* and *revolute*

Prismatic Joints are linear joints with no rotation. They are represented by the letter P and the following schematic symbols:

Robot Joints

Revolute Joints are rotation joints that move about a perpendicular axis. They are represented by the letter R and following schematic symbols:

Workspace or Work Envelope

The workspace of a robot manipulator is the area within which the end of the manipulator (called *the end effector*) can access. This is the operational limits of the robot and is defined by the articulation of the joints.

Cartesian or Rectangular Robot

Samsung Electronics: FARAMAN RCM4-M

Cylindrical Robot

Samsung Electronics: LTR A1000

Spherical or Polar Robot

Huntington PCM 640

SCARA Robot

Toshiba SR-554HSP

Anthropomorphic Robot

Kuka Kr500

Anatomy of a Robot Manipulator

Wrist Motion

Advantages and disadvantages of using these types of robots

SEE Fuller

End Effectors

The End Effector is regarded as the *hand* or *tool* at the "business end" of the manipulator or robot arm. Sometimes called *End of Arm Tooling*" (EOAT), there are different types of End Effectors that can be deployed depending on the task being performed. Generally there are three basic types:

- Robotic Process Tools: specific tools that can be used in the manufacturing process
 - Material Applying Tools: used for applying material e.g. welding and
 3D printing processes
 - Material Removal Tools: used to remove material e.g. drills, cutting tools, sanders
 - Painting Tools: used to apply paint and glue
 - Assembly Tools: used to screw or rivet components together

End Effectors

- Robotic Sensors: specific tools for sensing, scanning, testing, inspecting and monitoring functions
- Robotic Grippers: the most common End Effector generally representing a human hand with 2-5 fingers
 - Electric Grippers: use motor-driven fingers
 - Pneumatic Grippers: use air-driven pistons to operate fingers
 - Suction Cups: use vacuums to pick up objects
 - Magnetic Grippers: use magnets to pick up objects
 - Mechanical Grippers: non-power mechanical grippers e.g. forks and hooks

Characteristics of a Robot Manipulator

Manipulators (and other robots) can be characterised using the following terms:

- Payload amount of weight it can safely carry
- Reach maximum distance robot can reach
- Precision accuracy with which the robot can reach a specified point
- Repeatability accuracy with which the robot can acquire the same point if the motion is repeated many times