CS4400 DEEP REINFORCEMENT LEARNING

Lecture 11: Advanced MARL

Wendelin Böhmer

<j.w.bohmer@tudelft.nl>

11th of January 2024

Content of this lecture

- 11.1 Value factorization
- 11.2 Relative overgeneralization
- 11.3 Communication

11.1

Advanced MARL Value factorization

core concept: Value factorization

- Cooperative tasks allow centralized objectives
 - with decentralized decision policies
- Decentralizable value factorization $Q_{\theta}(au_t, a) := \sum_{i=1}^{n} q_{\theta}^i(au_t^i, a^i)$ called value decomposition networks (VDN)

 - utilities q_{θ}^{i} do not fulfill Bellman equation

$$a_t^* = \underset{\boldsymbol{a} \in \mathcal{A}}{\operatorname{arg max}} Q_{\theta}(\boldsymbol{\tau}_t, \boldsymbol{a}) = \left\{ \underset{a^i \in \mathcal{A}^i}{\operatorname{arg max}} q_{\theta}^i(\tau_t^i, a^i) \right\}_{i=1}^N$$

Optimized with centralized (double) DQN loss

$$\mathcal{L}_{[\theta]}^{\text{VDN}} := \mathbb{E}_{\mathcal{D}} \Big[\Big(r_t + \gamma Q_{\theta'} \big(\boldsymbol{\tau}_{t+1}, \arg \max_{\boldsymbol{a} \in \mathcal{A}} Q_{\theta} (\boldsymbol{\tau}_{t+1}, \boldsymbol{a}) \big) - Q_{\theta} (\boldsymbol{\tau}_t, \boldsymbol{a}_t) \Big)^2 \Big]$$

VDN by Sunehag et al. (2018)

Monotonic value factorization

- VDN factorization restricts function class of Q_{θ}
 - Any monotonic value mixture is decentralizable: $\frac{\partial Q_{\theta}(\tau_t, a)}{\partial q_{\theta}^i(\tau_t^i, a^i)} \geq 0$
 - e.g. VDN is monotonic $\frac{\partial \sum_{j=1}^N q_{\theta}^j(\tau_t^j,a^j)}{\partial q_{\theta}^i(\tau_t^i,a^i)}=1$

Monotonic value factorization

- VDN factorization restricts function class of Q_{θ}
- Any monotonic value mixture is decentralizable: $\frac{\partial Q_{\theta}(\tau_t, a)}{\partial q_{\theta}^i(\tau_t^i, a^i)} \geq 0$
 - e.g. VDN is monotonic $\frac{\partial \sum_{j=1}^N q_\theta^j(\tau_t^j,a^j)}{\partial q_\theta^i(\tau_t^i,a^i)}=1$
- QMIX: learn centralized monotonic mixture network f_ϕ
 - f_{ϕ} not required during execution
 - f_ϕ yields different mixing for different states s_t

$$Q_{\theta\phi}(s_t, \boldsymbol{\tau}_t, \boldsymbol{a}) := f_{\phi}(s_t, q_{\theta}^1(\tau_t^1, a^1), \dots, q_{\theta}^N(\tau_t^N, a^N)) =: f_{\phi}(s_t, \boldsymbol{q}_{\theta}(\boldsymbol{\tau}_t, \boldsymbol{a}))$$

• Hyper-network f_{ϕ} with non-negative weights, e.g.:

$$f_{\phi}(\boldsymbol{s},\boldsymbol{q}) = \boldsymbol{w}_{(\boldsymbol{s})}^{1\top} \sigma(\boldsymbol{W}_{\!\!(\boldsymbol{s})}^2 \boldsymbol{q} + \boldsymbol{w}_{(\boldsymbol{s})}^3) + w_{(\boldsymbol{s})}^4 \,, \quad \boldsymbol{w}_{(\boldsymbol{s})}^k = \underbrace{\lfloor \boldsymbol{A}_2^k \, \bar{\sigma}(\!\boldsymbol{A}_1^k \boldsymbol{s} + \! \boldsymbol{b}_1^k)}_{\text{hyper-net parameters } \phi} + \underline{\boldsymbol{b}_2^k \rfloor}_{\text{hyper-net parameters } \phi}$$

QMIX by Rashid et al. (2018, 2020b)

Comparison: StarCraft II micro-management

- Play against build-in Al
- Partial observability
- Varying units available
 - here: stalkers and zealots

StarCraft II multi-agent challenge (SMAC, Samvelyan et al., 2019); QTRAN (Son et al., 2019); results from (Rashid et al., 2020b)

- Centralized value functions can be factorized
- Factorization must be monotonic in per-agent utilities
- Maximizing utilities independently maximizes joint value
- QMIX extends VDN by using non-negative hyper-networks
- QTRAN defines decentrability as constraints, but is instable

Learning Objectives

LO11.1: Explain monotonic value factorization in VDN and QMIX

11.2

Advanced MARL

Relative overgeneralization

- Why is independent learning or value factorization problematic?
 - e.g. single-state IQL $q^i(a^i; \pi^{-i}) := \mathbb{E} ig[Q^{m{\pi}}(m{a}) \, | \, m{a}^{-i} \sim \pi^{-i}(\cdot) ig]$
- What are the IQL values if all agents explore randomly?
 - team needs to transport a fragile box (reward +1)
 - the box falls (punishment -1) if A is too far from B
 - will a team of IQL agents learn an optimal policy?

			Α		
		\leftarrow	Ø	\rightarrow	
	\leftarrow	0	-1	-1	
В	Ø	0	0	-1	
	\rightarrow	0	0	+1	
$q_{explore}^A$?		

image source: pxhere.com

- Why is independent learning or value factorization problematic?
 - e.g. single-state IQL $q^i(a^i; \boldsymbol{\pi}^{-i}) := \mathbb{E} [Q^{\boldsymbol{\pi}}(\boldsymbol{a}) \, | \, \boldsymbol{a}^{-i} \sim \boldsymbol{\pi}^{-i}(\cdot)]$
- What are the IQL values if all agents explore randomly?
 - agent A learns incorrectly to go backwards

			Α			
		\leftarrow	Ø	\rightarrow	q_{exp}^B	q_{gre}^B
	\leftarrow	0	-1	-1		
В	Ø	0	0	-1	?	
	\rightarrow	0	0	+1		
$q_{explore}^A$		0	$-\frac{1}{3}$	$-\frac{1}{3}$		

this exploration effect on independent values is called relative overgeneralization (Panait et al., 2006); image source: pxhere.com

- Why is independent learning or value factorization problematic?
 - e.g. single-state IQL $q^i(a^i; \boldsymbol{\pi}^{-i}) := \mathbb{E} \big[Q^{\boldsymbol{\pi}}(\boldsymbol{a}) \, | \, \boldsymbol{a}^{-i} \sim \boldsymbol{\pi}^{-i}(\cdot) \big]$
- What are the IQL values if all agents explore randomly?
 - agent A learns incorrectly to go backwards
 - agent B learns correctly to go forwards
- Will the team learn the task when they act more greedy?

			Α			
		\leftarrow	Ø	\rightarrow	q_{exp}^B	q_{gre}^B
	\leftarrow	0	-1	-1	$-\frac{2}{3}$	
В	Ø	0	0	-1	$-\frac{1}{3}$?
	\rightarrow	0	0	+1	$\frac{1}{3}$	
$q_{explore}^A$		0	$-\frac{1}{3}$	$-\frac{1}{3}$		
1A	q_{greedy}^A		?			

this exploration effect on independent values is called relative overgeneralization (Panait et al., 2006); image source: pxhere.com

- Why is independent learning or value factorization problematic?
 - e.g. single-state IQL $q^i(a^i; \pi^{-i}) := \mathbb{E} \big[Q^{\pi}(a) \, | \, a^{-i} \sim \pi^{-i}(\cdot) \big]$
- What are the IQL values if all agents explore randomly?
 - agent A learns incorrectly to go backwards
 - agent B learns correctly to go forwards
- Will the team learn the task when they act more greedy?

•
$$q^A(a_{\to}^A) = \pi^B(a_{\to}^B) - (1 - \pi^B(a_{\to}^B)), \quad \pi^B(a_{\to}^B) > \frac{1}{2} \implies q^A(a_{\to}^B) > 0$$

				-		
			Α			
		\leftarrow	Ø	\rightarrow	q_{exp}^B	q_{gre}^B
	\leftarrow	0	-1	-1	$-\frac{2}{3}$	0
В	Ø	0	0	-1	$-\frac{1}{3}$	0
	\rightarrow	0	0	+1	$\frac{1}{3}$	+1
$q_{explore}^A$		0	$-\frac{1}{3}$	$-\frac{1}{3}$		
q_{greedy}^A		0	0	+1		

this exploration effect on independent values is called relative overgeneralization (Panait et al., 2006); image source: pxhere.com

Question: unlearnable games

Create a reward matrix for a one-state 2 player cooperative game, which cannot be learned by IQL agents

Question: unlearnable games

- Create a reward matrix for a one-state 2 player cooperative game, which cannot be learned by IQL agents
- for example the following table
 - note that an unfactored value $Q^{\pi}(a)$ could solve the task

			Α		
		a_1^A	a_2^A	a_3^A	q_{exp}^B
	a_1^B	0	0	-2	$-\frac{2}{3}$
В	a_2^B	0	0	-2	$-\frac{2}{3}$
	a_3^B	-2	-2	+1	-1
$q_{explore}^A$		$-\frac{2}{3}$	$-\frac{2}{3}$	-1	

Question: unlearnable games

- Create a reward matrix for a one-state 2 player cooperative game, which cannot be learned by IQL agents
- for example the following table
 - note that an unfactored value $Q^{\pi}(a)$ could solve the task
 - ullet punishment p only increases $\emph{probability}$ of failure

			Λ		
			А		
		a_1^A	a_2^A	a_3^A	q_{exp}^B
	a_1^B	0	0	-p	$-\frac{p}{3}$
В	a_2^B	0	0	-p	$-\frac{p}{3}$
	a_3^B	-p	-p	+1	$\frac{1-2p}{3}$
$q_{explore}^A$		$-\frac{p}{3}$	$-\frac{p}{3}$	$\frac{1-2p}{3}$	

assignment sheet 4

Optimistic return methods

IQL always learn when partners behave optimal

$$TD(\tau_{t+1}^{i}, r_{t}^{i}) = r_{t}^{i} + \gamma \max_{a'^{i}} q_{\theta^{i}}^{i}(\tau_{t+1}^{i}, a'^{i}) - q_{\theta^{i}}^{i}(\tau_{t}^{i}, a_{t}^{i})$$

- Distributed Q-learning pretends others play best
 - use best past reward: $TD(\tau_{t+1}^i, \max\{r_{t'}^i | \frac{s_{t'} = s_t}{a_{t'} = a_t}\})$
 - or ignore negative TD errors: $\max(0, \text{TD}(\tau_{t+1}^i, r_t^i))$
 - both fail in stochastic environments

 ϵ -greedy experiment with p=-2 number of games Distributed Q-learning (Lauer and Riedmiller, 2000)

Optimistic return methods

IQL always learn when partners behave optimal

$$TD(\tau_{t+1}^{i}, r_{t}^{i}) = r_{t}^{i} + \gamma \max_{a'^{i}} q_{\theta^{i}}^{i}(\tau_{t+1}^{i}, a'^{i}) - q_{\theta^{i}}^{i}(\tau_{t}^{i}, a_{t}^{i})$$

- Distributed Q-learning pretends others play best
 - use best past reward: $\mathrm{TD}(\tau_{t+1}^i, \max\{r_{t'}^i|\frac{s_{t'}=s_t}{a_{t'}=a_t}\})$
 - or ignore negative TD errors: $\max(0, \mathrm{TD}(\tau_{t+1}^i, r_t^i))$
 - both fail in stochastic environments
- Lenient learning reduces slowly to IQL
 - ignore negative TD errors only sometimes
 - decreases ignoring probability $\eta(s,a)$ with visitations
 - deep version must remember $\eta(s,a)$ in hash table

Optimistic return methods

IQL always learn when partners behave optimal

$$TD(\tau_{t+1}^{i}, r_{t}^{i}) = r_{t}^{i} + \gamma \max_{a'^{i}} q_{\theta^{i}}^{i}(\tau_{t+1}^{i}, a'^{i}) - q_{\theta^{i}}^{i}(\tau_{t}^{i}, a_{t}^{i})$$

- Distributed Q-learning pretends others play best
 - use best past reward: $TD(\tau_{t+1}^i, \max\{r_{t'}^i | \frac{s_{t'} = s_t}{a_{t'} = a_t}\})$
 - or ignore negative TD errors: $\max(0, \text{TD}(\tau_{t+1}^i, r_t^i))$
 - both fail in stochastic environments
- Lenient learning reduces slowly to IQL
 - ignore negative TD errors only sometimes
 - decreases ignoring probability $\eta(s,a)$ with visitations
 - deep version must remember $\eta(s,a)$ in hash table
- Weighted-QMIX weights some outcomes with $\alpha \in [0, 1]$
 - QMIX with additional centralized Q-value function
 - weights TD-errors with α if greedy policies disagree wighted QMIX by Rashid et al. (2020b), other approaches sample similar tasks optimistically (e.g. Gupta et al., 2021)

Higher order factorizations

- Unfactored value functions have huge action space
- Use higher order functions can coordinate more agents

$$Q^{\boldsymbol{\pi}}(\boldsymbol{\tau}_t,\boldsymbol{a}) := \underbrace{\sum_{i \in \mathcal{E}^1} q^i(\tau_t^i,a^i)}_{\text{COORDINATION GRAPH}} + \sum_{(i,j) \in \mathcal{E}^2} q^{ij}(\boldsymbol{\tau}_t^{ij},\boldsymbol{a}^{ij}) + \sum_{(i,j,k) \in \mathcal{E}^3} \dots$$

max-plus algorithm see Pearl (1988), CG introduced by Guestrin et al. (2002), tabular CG used in Kok and Vlassis (2006)

P) Higher order factorizations

- Unfactored value functions have huge action space
- Use higher order functions can coordinate more agents

$$Q^{\boldsymbol{\pi}}(\boldsymbol{\tau}_t,\boldsymbol{a}) := \underbrace{\sum_{i \in \mathcal{E}^1} q^i(\tau_t^i,a^i)}_{\text{Coordination graph}} + \sum_{(i,j) \in \mathcal{E}^2} q^{ij}(\boldsymbol{\tau}_t^{ij},\boldsymbol{a}^{ij}) + \sum_{(i,j,k) \in \mathcal{E}^3} \dots$$

- Maximum no longer decentralizable
 - e.g. coordination graph (CG) $\mathcal{G} := \langle \mathcal{E}^1, \mathcal{E}^2 \rangle$
 - all agents are nodes: $\mathcal{E}^1 := \{i\}_{i=1}^N$
 - pairwise coordination: $\mathcal{E}^2 \subseteq \{(i,j)|1 \leq i \leq N, 1 \leq j \leq N\}$
 - maximum can be computed with max-plus algorithm
 - · computed using multiple message passes between agents

max-plus algorithm see Pearl (1988), CG introduced by Guestrin et al. (2002), tabular CG used in Kok and Vlassis (2006)

Deep coordination graphs

Deep coordination graphs (DCG) implements pairwise edges

$$Q_{\theta\phi\psi\varphi}^{\mathrm{DCG}}(s_t, \pmb{\tau}_t, \pmb{a}) := q_{\varphi}^0(s_t) + \sum_{i \in \mathcal{E}^1} q^i(\tau_t^i, a^i) + \sum_{(i,j) \in \mathcal{E}^2} q^{ij}(\pmb{\tau}_t^{ij}, \pmb{a}^{ij})$$

- Required extensive engineering to work with neural nets
 - shared history encoding: $m{h}_t^i := h_\psi(au_t^i) = h_\psi(m{h}_{t-1}^i, o_t^i, a_{t-1}^i)$
 - shared utility functions in \mathcal{E}^1 : $q^i(\tau^i_t,a^i):=q^v_{\theta}(\boldsymbol{h}^i_t,a^i)$
 - symmetrized shared payoff functions in \mathcal{E}^2 :

$$q^{ij}(\tau_t^{ij}, \mathbf{a}^{ij}) := \frac{1}{2} \left(q_{\phi}^e(\mathbf{h}_t^i, \mathbf{h}_t^j, a^i, a^j) + q_{\phi}^e(\mathbf{h}_t^j, \mathbf{h}_t^i, a^j, a^i) \right)$$

K-rank approximation of payoff matrices:

$$q_{\phi}^{e}(\boldsymbol{h}_{t}^{i}, \boldsymbol{h}_{t}^{j}, a^{i}, a^{j}) := \sum_{k=1}^{K} g_{\phi}^{k}(\boldsymbol{h}_{t}^{i}, \boldsymbol{h}_{t}^{j}, a^{i}) \, \bar{g}_{\phi}^{k}(\boldsymbol{h}_{t}^{i}, \boldsymbol{h}_{t}^{j}, a^{j})$$

• state-dependent bias $q_{\omega}^{0}(s_{t})$

Böhmer et al. (2020) introduce DCG, and Castellini et al. (2019) explore higher order factors

punishment –2/attempt
 catch removes agents+prey

image and upper results from Böhmer et al. (2020), lower results from (Rashid et al., 2020a)

T (mil)

0.8

1.0

- Random exploration can cause RO in independent learners
- When expected return is low only because others explore
- Can be counteracted by down-weighting errors with low returns
- Higher-order value factorization can represent joint-Q-values
- DCG requires message passing and many stabilization tricks

Learning Objectives

LO11.2: Derive when a game exhibits relative overgeneralization

LO11.3: Explain what can be done against relative overgeneralization

11.3

Advanced MARL Communication

Communication between agents

- Coordination graphs use communication for message passing
 - communication protocol fixed by max-plus algorithm
 - can we learn a useful protocol between agents?
- Communication almost always possible
 - implicitly by manipulating the environment
 - explicitly by using "cheap-talk" channels
- Not every game benefits from communication
 - no incentive to help opponent in zero-sum games
 - messages in general-sum games can be antagonistic
 - fully observable cooperation games do not need communication
 - e.g. communicate all observations for centralized agent

core concept: Differentiable communication

- Learn communication implicitly as part of architecture
 - requires additional cheap-talk channels
 - messages m_t^i at time t are inputs of time t+1
- Continuous messages allow gradient flow between agents

e.g. Wang et al. (2018) use graph neural networks for message passing, figure modified from Förster et al. (2016)

- Learn communication implicitly as part of architecture
 - requires additional cheap-talk channels
 - messages m_t^i at time t are inputs of time t+1
- Continuous messages allow gradient flow between agents
- No gradient flow through sampled messages!
 - $m_t^i \in \{1, \dots, M\}$
 - $m_t^i \sim \mu_\theta^i(\cdot|\tau_t^i)$

figure from Förster et al. (2016), sending (non-differentiable) messages between RNN-agents

core concept: Differentiable communication

Action

Select

DRU

- Learn communication implicitly as part of architecture
 - requires additional *cheap-talk* channels
 - messages m_t^i at time t are inputs of time t+1
- Continuous messages allow gradient flow between agents
- No gradient flow through sampled messages!
 - $m_t^i \in \{1, ..., M\}, \ \epsilon \sim \mathcal{N}(\cdot | 0, 1)$
 - $m_t^i = f_\theta(\tau_t^i, \epsilon) \sim \mu_\theta^i(\cdot | \tau_t^i)$
- Use reparametrization trick
 - gradient flows through f_{θ}

DRU

Action

Select

a t

Environment

figure with reparametrizaytion modules (DRU) from Förster et al. (2016), see also Jang et al. (2017) for differentiable sampling

Agent 2

m

C-Net

11.3) Learning communication protocols

- Can we learn to communicate in cooperative games?
 - provide some communication actions, e.g. $m_t^i \in \{0,1\}$
 - negotiate meaning of m_t^i during training
- Established conventions are hard to change, e.g.
 - A sees $\triangle \Rightarrow m^A = 1$
 - $m^A = 1 \Rightarrow \mathsf{B} \mathsf{ does } \triangle$
- Many Nash-equilibria!

		B does						
		0	\bigcirc \triangle \triangledown					
S	\bigcirc	+1	-1	-1				
sees	\triangle	-1	$+\frac{1}{2}$	-1				
⋖	∇	-1	$-\overline{1}$	$+\frac{1}{2}$				

example and PCA plot by Jakob Förster

- Communication can help to coordinate agents
- Not all games benefit from communication
- Differentiable communication in centralized training
- Discrete channels must use the reparameterization trick
- Learned communication protocols have many Nash equilibria

Learning Objectives

LO11.4: Explain in which games communication is beneficial LO11.5: Explain differentiable communication and how it can fail

- Next lecture: applied RL!
 - Questions? Ask them here: answers.ewi.tudelft.nl

image source: xkcd.com

References I

- Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In *Proceedings of Machine Learning and Systems (ICML)*, pages 2611–2622, 2020. URL https://arxiv.org/abs/1910.00091.
- Jacopo Castellini, Frans A. Oliehoek, Rahul Savani, and Shimon Whiteson. The representational capacity of action-value networks for multi-agent reinforcement learning. In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS '19, pages 1862–1864, 2019. URL
 - http://www.ifaamas.org/Proceedings/aamas2019/pdfs/p1862.pdf.
- Jakob Förster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to communicate with deep multi-agent reinforcement learning. In Advances in Neural Information Processing Systems 29, pages 2137–2145. 2016. URL http://papers.nips.cc/paper/
 - 6042-learning-to-communicate-with-deep-multi-agent-reinforcement-learning.pdf.
- Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In ICML, volume 2, pages 227–234, 2002.
- Tarun Gupta, Anuj Mahajan, Bei Peng, Wendelin Böhmer, and Shimon Whiteson. UneVEn: Universal value exploration for multi-agent reinforcement learning. In *Proceedings of the International Conference on Machine Learning (ICML)*. 2021. URL https://arxiv.org/abs/2010.02974.
- Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumbel-softmax. In *Proceedings International Conference on Learning Representations 2017*, 2017. URL https://openreview.net/pdf?id=rkE3y85ee.
- Jelle R Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff propagation. *Journal of Machine Learning Research*, 7(Sep):1789–1828, 2006.
- Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In In Proceedings of the Seventeenth International Conference on Machine Learning, pages 535–542. Morgan Kaufmann, 2000.
- Liviu Panait, Sean Luke, and R. Paul Wiegand. Biasing coevolutionary search for optimal multiagent behaviors. IEEE Transactions on Evolutionary Computation. 10(6):629–645, 2006.

References II

- Liviu Panait, Karl Tuyls, and Sean Luke. Theoretical advantages of lenient learners: An evolutionary game theoretic perspective. *The Journal of Machine Learning Research*, 9:423–457, 2008.
- Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988. ISBN 0-934613-73-7.
- Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N. Förster, and Shimon Whiteson. QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning. In *International Conference on Machine Learning (ICML)*, pages 4292–4301, 2018.
- Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding monotonic value function factorisation. In Advances in Neural Information Processing Systems, 2020a. URL https://arxiv.org/abs/2006.10800.
- Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N. Förster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement learning. *Journal of Machine Learning Research (JMLR)*, 2020b. URL https://arxiv.org/abs/2003.08839.
- Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Förster, and Shimon Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.
- Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN: Learning to factorize with transformation for cooperative multi-agent reinforcement learning. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 5887–5896, 2019. URL http://proceedings.mlr.press/v97/son19a.html.
- Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-decomposition networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pages 2085–2087, 2018.

References III

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with graph neural networks. In ICLR, 2018. URL https://openreview.net/forum?id=S1sqHMZCb.

Ermo Wei and Sean Luke. Lenient learning in independent-learner stochastic cooperative games. *The Journal of Machine Learning Research*, 17(1):2914–2955, 2016.

