Lecture Summary: Errors in Parameter Estimation

Lecture: 9.3 - Errors in Parameter Estimation

Source: Lec8.3.pdf

Key Points

• The Parameter Estimation Problem:

- Estimation involves deriving an unknown parameter θ from iid samples X_1, X_2, \ldots, X_n .
- The parameter θ is fixed, but the estimator $\hat{\theta}$ is a random variable with its own distribution.
- A good estimator produces errors that are small and close to zero.

• Error in Estimation:

- Error is defined as:

Error =
$$\hat{\theta}(X_1, \dots, X_n) - \theta$$
.

- The error is a random variable, and its absolute value should ideally remain small.
- A mathematical approach to controlling error:

 $P(|\text{Error}| > \delta)$ should be small, where δ is a threshold.

- The choice of δ is context-dependent and often relative to the magnitude of θ .

• Relative Error Thresholds:

- Errors should be characterized as a fraction of the parameter being estimated.
- For example:
 - * For Bernoulli(p): $|\text{Error}| \le p/10$ (10% error relative to p).
 - * For Normal(μ, σ^2): Error relative to μ varies with scale.

• Comparing Estimators:

- Three estimators for p in Bernoulli trials were evaluated:
 - 1. $\hat{p}_1 = 0.5$ (fixed).
 - 2. $\hat{p}_2 = \frac{X_1 + X_2}{2}$ (uses only the first two samples).
 - 3. $\hat{p}_3 = \frac{\sum_{i=1}^n X_i}{n}$ (sample mean).
- Observations:
 - * \hat{p}_1 is constant and does not adapt to p.
 - * \hat{p}_2 adapts but has high variability.
 - * \hat{p}_3 uses all samples, balances adaptability and stability, and shows the best performance.

• Chebyshev's Inequality in Estimation:

- Chebyshev's bound on error:

$$P(|\text{Error}| > \delta) \le \frac{\text{Var}(\text{Error})}{\delta^2}.$$

- For \hat{p}_3 :
 - * $\mathbb{E}[\text{Error}] = 0$ (unbiased).
 - * $Var(Error) = \frac{p(1-p)}{n}$.
 - * Probability bound for |Error| > p/10:

$$P(|\text{Error}| > p/10) \le \frac{100(1-p)}{np}.$$

– As $n \to \infty$, $P(|\text{Error}| > \delta) \to 0$, demonstrating the estimator's performance improvement with more samples.

• Key Insights:

- Good estimators adapt to the parameter and leverage all available data.
- Increasing the sample size reduces error variance and improves reliability.
- Concentration results like Chebyshev's and Chernoff bounds highlight how probabilities of large errors diminish with more samples.

Simplified Explanation

Key Idea: Errors in parameter estimation should be small and decrease as the sample size increases.

Comparison of Estimators: - \hat{p}_3 (sample mean) is effective because it uses all samples, adapts to p, and reduces error variance as n grows.

Why It Matters: Accurate estimators provide reliable parameter estimates for decision-making and data analysis.

Conclusion

In this lecture, we:

- Explored how errors in parameter estimation are characterized and controlled.
- Evaluated the performance of different estimators for Bernoulli(p).
- Used Chebyshev's inequality to quantify error probabilities.

The concepts discussed are foundational for designing effective estimators that leverage data efficiently while minimizing estimation errors.