Algoritmi di apprendimento

- Ci sono diversi algoritmi per l'apprendimento di alberi di decisione, fra questi:
 - Algoritmo di Hunt
 - ID3, C4.5
 - CART
 - ..

Algoritmo di Hunt

L'albero viene costruito procedendo *ricorsivamente* e suddividendo il learning set in sottoinsiemi *via via più "puri"*. Il generico passo di suddivisione di un nodo dell'albero esegue questi passi:

Dati:

 D_t = sottoinsieme del learning set associato al nodo t $y = \{y_1, y_2, ..., y_c\}$ = insieme delle etichette che identificano le classi

passo 1: se tutte le istanze in D_t appartengono alla stessa classe y_t allora il nodo è una foglia etichettata dalla classe y_t delle sue istanze

passo 2: si sceglie un attributo fra quelli che descrivono le istanze, si produce un nodo figlio per ogni possibile valore dell'attributo (il range è dato dal learning set?).

A ciascun nodo figlio si associa uno specifico valore e si associano ad asso anche quelle istanze, già associate al padre, per le quali l'attributo assume il valore corrispondente al nodo

Algoritmo di Hunt

- **nota 1**: se una certa combinazione di valori non è rappresentata da nessuna istanza, questa sarà associata alla classe di default (se esiste)
- **nota 2**: se tutte le istanze associate a un nodo sono identiche come tuple ma corrispondono a classi differenti (non-determinismo), il nodo non può essere scisso.

Diventa una foglia che ha associata la classe più rappresentata

nota 3: quando si termina la costruzione dell'albero?

nota 4: come si sceglie l'attributo di split?

In generale ...

Strategia greedy

 Gli attributi su cui effettuare gli split sono selezionati in modo da massimizzare una qualche misura di riferimento

Problemi:

- Come specificare la condizione di test sugli attributi scelti?
 - Attributi binari
 - Attributi nominali
 - Attributi ordinali
 - Attributi continui
- Come determinare lo split migliore?
- Quando fermarsi nella costruzione dell'albero?

Split su attributi binari

La risposta non può che essere sì oppure no

Il nodo corrente avrà due figli a seconda del valore rappresentato. Gli esempi associati al nodo radice verranno suddivisi fra i due figli a seconda del valore riportato in corrispondenza dell'attributo

Animali vivipari Animali non vivipari

Altri esempi: animale acquatico, volatile, a sangue caldo, ...

Split su attributi nominali

L'attributo assume valori su un insieme (finito) di etichette {L1, L2, ..., Ln}
Gli split possono essere binari oppure multivalore

Split su attributi nominali

Split multivalore: il nodo avrà tanti figli quanti sono i possibili valori dell'attributo

Cristina Baroglio

3 9

Cristina Baroglio

Split su attributi nominali

Split binari: il nodo avrà due figli, uno corrisponde a un valore, l'altro all'insieme dei rimanenti valori

Ci sono $2^{k-1}-1$ possibili alternative se l'attributo ha k valori alternativi possibili

Split su attributi ordinali

Anche in questo caso si possono avere split binari o multivalore con un vincolo: il raggruppamento dei valori deve rispettare l'ordinamento

Esempio: supponiamo di avere le misure small < medium < large < extralarge

Errato!! C ?? D

Cristina Baroglio

41 Cristina Baroglio

Split binari di attributi continui

In questo caso il test prevedono l'identificazione di un valore possibile v per l'attributo A in questione

Split multivalore di attributi continui

In questo caso il test prevedono l'identificazione di un insieme di valori v_i per l'attributo A in questione e la produzione di una serie di test $v_i \le A < v_{i+1}$

Occorre **discretizzare** la variabile continua identificando un numero finito di intervalli significativi di valori

Rischi?	Rischi?
	Imparare per induzione significa: generalizzare gli esempi contenuti in un learning set
Cristina Baroglio 45	Cristina Baroglio 46

Esempio		Esempio	
• Esempio distinguere "frutta" da altre cose		• Servono dei dati	
Cristina Baroglio 4	7	Cristina Baroglio	4 8

• Servono dei dati • Servono dei dati • Servono dei dati Eccoli! Esempi di frutti

49

Cristina Baroglio

5 0

Cristina Baroglio

Cambiamo domanda

Cristina Baroglio

Abbiamo un problema etico

• E se invece dei frutti dovessimo identificare persone?

Cristina Baroglio

Varie varietà

Apprendimento umano ≠ automatico

No: instanze troppo simili. Non tutti i casi inclusi

Costruire un learning set è difficile

Quel che è rilevante per un uomo è diverso da quel che è rilevante per uno strumento matematico

Cristina Baroglio

5 5

Cristina Baroglio

Apprendimento umano ≠ automatico

Supporto ≠ Delega

sopraffatta diventa un

"errore tollerabile"

I dati sono generalizzati in modo statistico Un piccolo errore è tollerabile

Lo strumento costruirà un modello che tiene conto di tutti tranne la ragazza verde

Sistemi di classificazione automatica usati spesso per supportare la decisione nei settori bancario e finanziario

Sistemi di supporto alla decisione

Sistemi di classificazione automatica usati spesso per supportare la decisione nei settori bancario e finanziario.

Dai giornali:

Prestito universitario non assegnato a causa del quartiere di provenienza del richiedente

SUPPORTO o DELEGA?

Usati meccanismi a base statistica "greedy", massimizzano una funzione di utilità

Fz di utilità finalizzata a massimizzare il recupero del prestito per chi offre il servizio

Strumento privo di visione, sensibilità complessiva, sociale

Quale split?

Supponiamo di dover costruire un DT che consenta di distinguere sedie da tavoli. È indifferente l'ordine con il quale scegliamo di effettuare gli split?

Partire da materiale da ruote oppure da schienale fa qualche differenza?

Cristina Baroglio

Bontà degli split

Criterio generale: alberi compatti sono preferiti ad alberi che consentono di raggiungere lo stesso grado di accuratezza (e di error rate) usando un maggior numero di test

Rasoio di Occam: a parità di assunzioni, la spiegazione più semplice è da preferire

William of Ockham

Misure per determinare la bontà di uno split

Cristina Baroglio

6 1

Cristina Baroglio

Misure per determinare la bontà di uno split

Ogni classe è equirappresentata Confusione alta Confusione alta Istanze in prevalenza di una stessa classe ma ancora confusione C Tutte istanze della stessa classe: insieme puro Cristina Baroglio 63

È meglio questo split ...

... o questo split?

Cristina Baroglio

Nodo Padre Nodo Figlio: prevalenza di viole Nodo Figlio: identifica una classe!

Criterio generale

- Sono preferiti gli split che producono nodi figli la cui estensione prevede minore confusione (il cui grado di purezza è maggiore)
- Misure alternative:
 - Entropia
 - Gini
 - Errore di classificazione

Cristina Baroglio

6 5

Base delle misure di selezione

Dato un nodo t, sia $p(i \mid t)$ la probabilità che un elemento estratto casualmente dall'insieme sia

p(viola | t) = 0.5

di classe i

(2 su 4)

p(iris | t) = 0.25

(1 su 4)

(1 su 4)

p(finto | t) = 0.25

(0.5, 0.25, 0.25) è la distribuzione di probabilità di appartenenza di un record estratto a caso dall'estensione associata al nodo t a una delle classi in questione

Entropia

Assunto nel calcolo dell'entropia: $0\log_{2}0=0$

Entropia

$$Entropia(t) = -\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t)$$

Assunto nel calcolo dell'entropia: $0 \log_2 0 = 0$

Supponiamo di avere due sole classi:

le distribuzioni (0, 1) e (1, 0) sono le migliori, purezza massima dell'insieme, nessuna confusione. Calcoliamo per il caso (0, 1)

Entropia: $-0\log_2 0 - 1\log_2 1 = 0$

La distribuzione (0.5, 0.5) è la peggiore, massimo grado di confusione:

Entropia: $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = -\log_2 2^{-1} = 1$

Misure: confronto

Valore dell'entropia per una sorgente binaria

69

Cristina Baroglio

Calcolo del guadagno

Problema della scelta dello split: valuto i diversi split che posso fare, usando attributi diversi, tramite una delle misure viste e scelgo quello che mi restituisce il risultato col minor grado di confusione

Misura del risultato di uno split:

Numero dei record del nodo figlio j-mo

Impurità del nodo genitore

Dall'impurità del nodo genitore viene sottratta la media pesata delle impurità dei nodi figli. Di solito la misura dell'impurità è scelta in modo tale da minimizzare l'impurità / massimizzare il guadagno

Information gain

Per information gain si intende una misura del guadagno ottenuta usando l'entropia come valore dell'impurità dei nodi:

$$\Delta \!=\! entropia(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} entropia(v_j)$$

Information gain

Per **information gain** si intende una misura del guadagno ottenuta usando l'**entropia** come valore dell'impurità dei nodi:

$$\Delta = entropia(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} entropia(v_j)$$

Nota: le misure del grado di confusione, come Gini ed entropia tendono a favorire attributi che hanno *molti valori diversi* rispetto ad attributi con *pochi valori* alternativi

Osservazione: un *identificatore univoco* (es. un numero di matricola) annulla l'entropia (ogni nodo figlio conterrà una sola istanza) ma non è un attributo significativo!

Possibile soluzione: usare solo split binari

Algoritmo

```
attributi
Dati:
E = learning set
F = attributi descrittivi
CreaAlbero(E, F) {
if ( stopping_cond(E, F) ) {
  Foglia = creaNodo();
  Foglia.etichetta = classifica(E);
  Risultato = Foglia;
else {
  Nodo = creaNodo();
  Nodo.test = trova best split(E, F):
  V = << insieme dei valori possibili risultanti da Nodo.test >>
  For each (v \in V) do {
      Ev = << insieme e \in E \mid Nodo.test(e) == <math>v >>
     Figlio = CreaAlbero(Ev, F);
      << aggiungi Figlio ai figli di Nodo, etichettandolo con v >>
  Risultato = Nodo:
return Risultato;
```

Algoritmo

```
attributi
Dati:
E = learning set
F = attributi descrittivi
CreaAlbero(E, F) {
if ( stopping_cond(E, F) ) {
 Foglia = creaNodo();
  Foglia.etichetta = classifica(E);
  Risultato = Foglia;
else {
  Nodo = creaNodo();
  Nodo.test = trova best split(E, F);
  V = << insieme dei valori possibili risultanti da Nodo.test >>
  For each (\mathbf{v} \in \mathbf{V}) do {
      Ev = << insieme e \in E | Nodo.test(e) == v>>
      Figlio = CreaAlbero(Ev, F);
      << aggiungi Figlio ai figli di Nodo, etichettandolo con v >>
  Risultato = Nodo;
return Risultato;
```

Algoritmo

```
attributi
Dati:
E = learning set
F = attributi descrittivi
CreaAlbero(E, F) {
if ( stopping_cond(E, F) ) {
  Foglia = creaNodo();
  Foglia.etichetta = classifica(E);
  Risultato = Foglia;
else {
  Nodo = creaNodo();
  Nodo.test = trova best split(E, F);
  V = << insieme dei valori possibili risultanti da Nodo.test >>
  For each (\mathbf{v} \in \mathbf{V}) do {
  Ev = << insieme e \in E \mid Nodo.test(e) == <math>v >>
      Figlio = CreaAlbero(Ev, F);
      << aggiungi Figlio ai figli di Nodo, etichettandolo con v >>
  Risultato = Nodo;
return Risultato;
```

Algoritmo

Dettagli

- trova_best_split: può essere individuato per esempio tramite il calcolo dell'entropia;
- classifica: può per esempio restituire la classe più rappresentata
- stopping_cond: può restituire vero per esempio quando tutte le istanze associate al nodo appartengono alla stessa classe oppure quando il numero di istanze è al di sotto di una certa soglia

Cristina Baroglio

Partizionamento dello spazio

Supponiamo di poter rappresentare le istanze del learning set come punti in uno spazio multidimensionale: ogni test corrisponde a un **taglio** (una **partizione**) di tale spazio, fatta lavorando su un **singolo attributo**

Partizionamento dello spazio

Supponiamo per semplicità di avere due soli attributi, corrispondenti ai due assi cartesiani. Le lettere rappresentano i valori possibili dei due attributi. Sono stati ordinati con un qualche criterio (anche solo associando numeri a label)

La radice ha associato l'intero learning set, contenuto nel rettangolo

Il primo test (linea verde) partiziona il learning set dividendo gli esempi per cui [attr2 >= X] da quelli per cui [attr2 < X]

Gli altri test partizionano insiemi più piccoli di esempi

Partizionamento dello spazio

E se gli esempi fossero messi così?

Lavorando su un singolo attributo non è possibile effettuare tagli diagonali o più complessi (tagli curvi)

Esistono in letteratura **alberi di decisione obliqui**, prodotti da meccanismi noti come *induzione costruttiva*, in grado di realizzare test basati su composizioni di attributi

8 5

Induzione di alberi di decisione: commenti 1/2

- Gli **algoritmi di induzione** di DT sono **non-parametrici**, non occorrono particolari assunzioni sulle distribuzioni di probabilità
- La costruzione di un albero ottimale è un **problema NP-completo**, solitamente si adottano delle euristiche
- La costruzione di un DT è computazionalmente poco costosa; dato un albero, la classificazione ha una complessità nel caso peggiore O(w), dove w rappresenta la profondità dell'albero
- Un DT è di semplice interpretazione, soprattutto se l'albero è piccolo
- I DT non sono adatti a risolvere certi problemi di tipo booleano, ad esempio a calcolare la funzione di parità (restituisci 1 se il #1 in una sequenza di bit è pari, 0 altrimenti) vedere esercizio pag 198
- La presenza di **attributi irrilevanti non influenza negativamente** la costruzione dell'albero

Induzione di alberi di decisione: commenti 2/2

- È possibile incorrere nella **frammentazione dei dati**: procedendo topdown a un certo punto i nodi hanno associato un numero di istanze troppo piccolo per essere statisticamente significativo
- Si può avere replicazione di sottoalberi
- Partizionamento dello spazio tramite tagli rettilinei e paralleli agli assi
- Poiché molte misure di impurità sono consistenti le une con le altre, variare funzione di impurità spesso non modifica sostanzialmente la qualità degli alberi costruiti

Interpretazione di un DT

If (A1 == v1 && A2 < v2 && A3 > v3 && A4 == v4) then C