

${ m MU4IN210}$ - Robotique et Apprentissage

Lab: Tabular reinforcement learning

Authors: Youssef KADHI Vincent LIM

 $\begin{tabular}{ll} \it Teacher: \\ Olivier SIGAUD \end{tabular}$

1 MDPs and mazes

```
walls = [7, 8, 9, 10, 21, 27, 30, 31, 32, 33, 45, 46, 47]
height = 6
width = 9
m = build_maze(width, height, walls) # maze-like MDP definition
```

2 Dynamic Programming

Question 3

```
def value_iteration_q(mdp, render=True):
      q = np.zeros((mdp.nb_states, mdp.action_space.size)) # initial action
      values are set to {\tt 0}
      q_list = []
      stop = False
      if render:
          mdp.new_render()
      while not stop:
          qold = q.copy()
          if render:
               mdp.render(q)
14
          for x in range(mdp.nb_states):
16
               for u in mdp.action_space.actions:
                   if x in mdp.terminal_states:
                       # TODO: fill this
                       q[x, :] = mdp.r[x, u]
                   else:
20
                       # TODO: fill this
21
                       summ = 0
                       for y in range(mdp.nb_states):
                            summ = summ + mdp.P[x, u, y] * np.max(qold[y, :])
24
                       q[x, u] = mdp.r[x, u]+mdp.gamma * summ
25
26
          if (np.linalg.norm(q - qold)) <= 0.01:</pre>
               stop = True
28
29
          q_list.append(np.linalg.norm(q))
30
      if render:
31
          mdp.render(q)
      return q, q_list
```

Question 4

```
def get_policy_from_q(q):
    return np.argmax(q, axis=1)
```

```
def evaluate_q(mdp, policy):
    # Outputs the state value function of a policy
    q = np.zeros((mdp.nb_states, mdp.action_space.size))
    stop = False
    while not stop:
        qold = q.copy()
        q = evaluate_one_step_q(mdp, qold, policy)

# Test if convergence has been reached
    if (np.linalg.norm(q - qold)) < 0.01:
        stop = True
return q</pre>
```

```
def policy_iteration_q(mdp, render=True): # policy iteration over the q
     function
      q = np.zeros((mdp.nb_states, mdp.action_space.size)) # initial action
      values are set to 0
      q_list = []
      policy = random_policy(mdp)
      stop = False
      if render:
          mdp.new_render()
      while not stop:
          qold = q.copy()
          if render:
14
              mdp.render(q)
15
              mdp.plotter.render_pi(policy)
```

```
17
           # Step 1 : Policy evaluation
18
           q = evaluate_q(mdp, policy)
19
20
           # Step 2 : Policy improvement
21
           policy = get_policy_from_q(q)
22
23
24
25
           # Check convergence
26
           if (np.linalg.norm(q - qold)) <= 0.01:
27
28
               stop = True
           q_list.append(np.linalg.norm(q))
29
30
      if render:
31
           mdp.render(q, get_policy_from_q(q))
32
      return q, q_list
```



```
def policy_iteration_v(mdp, render=True):
      # policy iteration over the v function
      v = np.zeros(mdp.nb_states) # initial state values are set to 0
      v_list = []
      policy = random_policy(mdp)
      stop = False
      if render:
          mdp.new_render()
11
      while not stop:
12
          vold = v.copy()
13
          # Step 1 : Policy Evaluation
14
          v = evaluate_v(mdp,policy)
15
16
          if render:
               mdp.render(v)
18
               mdp.plotter.render_pi(policy)
19
20
          # Step 2 : Policy Improvement
21
          policy = get_policy_from_v(mdp, v)
22
23
          # Check convergence
24
          if (np.linalg.norm(v - vold)) < 0.01:</pre>
25
               stop = True
26
          v_list.append(np.linalg.norm(v))
27
28
29
      if render:
          mdp.render(v)
30
          mdp.plotter.render_pi(policy)
      return v, v_list
```

0.17	0.19	0.21	0.19	0.17		0.48	0.53	0.59
0.15		0.23	0.21	0.19		0.53	0.59	0.66
0.17		0.25	~ 0.23	≈ 0.21		0.59	0.66	0.73
0.19		0.28				0.53		0.81
0.21		0.31	0.35	0.39	0.43	0.48		0.9
0.23	0.25	0.28	0.31	0.\$5	0.39	0.43		1.0

function	number of iterations	number of elementary update	time
Value iteration v	21	505600	0s 210ms
Value iteration q	22	530880	1s 787ms
Policy iteration v	19	2186720	1s 113ms
Policy iteration q	20	6724480	3s 640ms

Policy iteration takes less iteration than value iteration but each one of his steps cost a lot of operation (almost as many as a complete value iteration) so it's slower. And we notice that the V function is quicker than the Q function probably due to the increased use of the max function in the Q function.

3 Reinforcement learning functions

```
def temporal_difference(mdp, pol, nb_episodes=50, alpha=0.2, timeout=25,
     render=True):
      # alpha: learning rate
      # timeout: timeout of an episode (maximum number of timesteps)
      v = np.zeros(mdp.nb_states) # initial state value v
      mdp.timeout = timeout
      if render:
          mdp.new_render()
      for _ in range(nb_episodes): # for each episode
10
11
          # Draw an initial state randomly (if uniform is set to False, the
     state is drawn according to the PO
                                              distribution)
13
          x = mdp.reset(uniform=True)
14
          done = mdp.done()
          while not done: # update episode at each timestep
16
              # Show agent
              if render:
                   mdp.render(v, pol)
20
              # Step forward following the MDP:
21
              # x=current state,
              # pol[i] = agent's action according to policy pol,
23
              # r=reward gained after taking action pol[i],
24
              # done=tells whether the episode ended,
25
              # and info gives some info about the process
26
               [y, r, done, _] = mdp.step(egreedy_loc(int(pol[x]), mdp.
27
     action_space.size, epsilon=0.2))
28
              \# Update the state value of x
29
              if x in mdp.terminal_states:
30
                   v[x] = r
                   delta = r + mdp.gamma*v[y]-v[x]
33
                   v[x] = v[x]+alpha*delta
34
35
              # Update agent's position (state)
36
              x = y
37
38
      if render:
39
          # Show the final policy
40
          mdp.current_state = 0
41
          mdp.render(v, pol)
42
      return v
```



```
def q_learning_soft(mdp, tau, nb_episodes=20, timeout=50, alpha=0.5,
     render=True):
      # Initialize the state-action value function
      # alpha is the learning rate
      q = np.zeros((mdp.nb_states, mdp.action_space.size))
      q_min = np.zeros((mdp.nb_states, mdp.action_space.size))
      q_list = []
      # Run learning cycle
      mdp.timeout = timeout # episode length
10
      if render:
11
          mdp.new_render()
12
13
      for _ in range(nb_episodes):
```

```
# Draw the first state of episode i using a uniform distribution
     over all the states
          x = mdp.reset(uniform=True)
16
          done = mdp.done()
17
          while not done:
18
              if render:
19
                   # Show the agent in the maze
20
                   mdp.render(q, q.argmax(axis=1))
21
22
               # Draw an action using a soft-max policy
               u = mdp.action_space.sample(prob_list=softmax(q, x, tau))
24
25
               # Perform a step of the MDP
26
               [y, r, done, _] = mdp.step(u)
27
28
              # Update the state-action value function with q-Learning
29
               if x in mdp.terminal_states:
30
                   q[x, u] = mdp.r[x, u] #TODO: fill this
31
               else:
                   delta = mdp.r[x, u] + mdp.gamma * q[y, np.argmax(q[y])] -
33
     q[x, u] #TODO: fill this
                   q[x, u] = q[x, u] + alpha*delta #TODO: fill this
34
35
               # Update the agent position
36
              x = y
37
          q_list.append(np.linalg.norm(np.maximum(q, q_min)))
38
39
      if render:
40
          # Show the final policy
41
          mdp.current_state = 0
42
          mdp.render(q, get_policy_from_q(q))
43
      return q, q_list
```



```
def q_learning_eps(mdp, epsilon, nb_episodes=20, timeout=50, alpha=0.5,
     render=True):
      # Initialize the state-action value function
      # alpha is the learning rate
      q = np.zeros((mdp.nb_states, mdp.action_space.size))
      q_min = np.zeros((mdp.nb_states, mdp.action_space.size))
      q_list = []
      # Run learning cycle
      mdp.timeout = timeout # episode length
10
      if render:
11
          mdp.new_render()
12
13
      for _ in range(nb_episodes):
```

```
# Draw the first state of episode i using a uniform distribution
     over all the states
          x = mdp.reset(uniform=True)
16
          done = mdp.done()
          while not done:
18
               if render:
19
                   # Show the agent in the maze
20
                   mdp.render(q, q.argmax(axis=1))
21
22
               # Draw an action using a soft-max policy
               u = egreedy(q, x, epsilon)
24
25
               # Perform a step of the MDP
26
               [y, r, done, _] = mdp.step(u)
27
28
               # Update the state-action value function with q-Learning
29
               if x in mdp.terminal_states:
30
                   q[x, u] = mdp.r[x, u] #TODO: fill this
31
               else:
32
                   delta = mdp.r[x, u] + mdp.gamma * q[y, np.argmax(q[y])] -
33
     q[x, u] #TODO: fill this
                   q[x, u] = q[x, u] + alpha*delta #TODO: fill this
34
35
               # Update the agent position
36
               x = y
37
          q_list.append(np.linalg.norm(np.maximum(q, q_min)))
38
39
      if render:
40
          # Show the final policy
          mdp.current_state = 0
42
          mdp.render(q, get_policy_from_q(q))
43
      return q, q_list
```

```
def sarsa_soft(mdp, tau, nb_episodes=20, timeout=50, alpha=0.5, render=
    True):

    q = np.zeros((mdp.nb_states, mdp.action_space.size))
    q_min = np.zeros((mdp.nb_states, mdp.action_space.size))
    q_list = []
    predefined = False

mdp.timeout = timeout # episode length

if render:
    mdp.new_render()

for _ in range(nb_episodes):
```

```
x = mdp.reset(uniform=True)
           done = mdp.done()
15
16
           while not done:
17
               if render:
18
                   mdp.render(q, q.argmax(axis=1))
19
20
               u = mdp.action_space.sample(prob_list=softmax(q, x, tau))
21
22
               [y, r, done, _] = mdp.step(u)
23
24
25
               y = discreteProb(mdp.P[x,u,:]) % mdp.nb_states
               u1 = mdp.action_space.sample(prob_list=softmax(q, y, tau))
26
27
               if x in mdp.terminal_states:
28
                   q[x, u] = r
29
               else:
30
                    delta = r + mdp.gamma * q[y, u1] - q[x, u]
31
                   q[x, u] = q[x, u] + alpha*delta
32
33
               x = y
34
35
               u = u1
           q_list.append(np.linalg.norm(np.maximum(q, q_min)))
36
37
      if render:
38
           mdp.current_state = 0
39
40
           mdp.render(q, get_policy_from_q(q))
      return q, q_list
```

```
def sarsa_eps(mdp, epsilon, nb_episodes=20, timeout=50, alpha=0.5, render=
     True):
    q = np.zeros((mdp.nb_states, mdp.action_space.size))
      q_min = np.zeros((mdp.nb_states, mdp.action_space.size))
      q_list = []
      predefined = False
      mdp.timeout = timeout # episode length
      if render:
          mdp.new_render()
      for _ in range(nb_episodes):
12
13
          x = mdp.reset(uniform=True)
          done = mdp.done()
14
          while not done:
              if render:
                  mdp.render(q, q.argmax(axis=1))
18
19
              u = egreedy(q, x, epsilon)
20
21
```

```
[y, r, done, _] = mdp.step(u)
23
               y = discreteProb(mdp.P[x,u,:]) % mdp.nb_states
24
               u1 = egreedy(q, y, epsilon)
25
26
               if x in mdp.terminal_states:
27
28
                    q[x, u] = r
               else:
29
                    delta = r + mdp.gamma * q[y, u1] - q[x, u]
30
                    q[x, u] = q[x, u] + alpha*delta
32
33
               x = y
               u = u1
34
           q_list.append(np.linalg.norm(np.maximum(q, q_min)))
35
36
      if render:
37
           mdp.current_state = 0
38
           {\tt mdp.render(q, get\_policy\_from\_q(q))}
39
      return q, q_list
```


When we choose a higher epsilon/tau randomness increase:

For q learning who is off policy the effect is an higher Norm but it still converge and give an effective result. Sarsa is on policy, so with a lot of randomness he's not going to learn anything effective and doesn't converge.

Question 14

alpha is the learning rate, setting it too low and the agent learn nothing new, too high and the agent will note have a memory of old value.

gamma is the discount factor, close to 0 the agent will prefer small immediate reward, close to one and the agent will prefer large late rewards.