Омский государственный университет им. Ф.М. Достоевского Институт математики и информационных технологий Кафедра алгебры

Аналог теоремы Каца для разрешимых аффинных групповых суперсхем

Дипломная работа

Специальность «Прикладная математика и информатика»

(nodnucь руководителя)

Введение

Главной задачей данной работы было изучение основ теории аффинных групповых схем и обобщение некоторых результатов на суперслучай. Аффинные схемы были введены А. Гротендиком в 1950-х гг. при построении теории схем как обобщение понятия аффинного и квазипроективного многообразий. Одним из главных инструментов теории аффинных схем является теория категорий. Основные понятия теории категорий можно найти в [5] или в работе С. Маклейна, одного из авторов теории категорий [6].

В литературе аффинные групповые суперсхемы часто для краткости называют супергруппами. В данной работе я буду для ясности использовать полное название.

Основной задачей этой работы является аналог теоремы Каца для разрешимых аффинных групповых суперсхем. В. Г. Кац в работе [2] о супералгебрах Ли доказал, что супералгебра Ли разрешима тогда и только тогда, когда разрешима ее четная часть. Супералгебры Ли тесно связаны с теоретической физикой, а в теории аффинных схем появляются при изучении супералгебр распределений. Еще один алгебраический объект, тесно связанный с физикой — алгебра Хопфа. Аналогочно тому, что категория аффинных групповых схем дуальна категории алгебр Хопфа ([3]), аффинные групповые суперсхемы дуальны супералгебрам Хопфа, что позволяет развивать одну и ту же теорию либо в терминах суперсхем, либо в терминах супералгебр Хопфа в зависимости от ситуации.

В первом разделе собраны необходимые предварительные сведения: понятия супералгебры, K-функторы, вводится основной объект исследований этой работы — аффинные групповые схемы, доказывается дуальность категорий аффинных групповых суперсхем категории супералгебр Хопфа. Второй раздел описывает супералгебры распределений аффинных групповых суперсхем и их связь с супералгебрами Ли. Некоторые дополнительные сведения для суперслучая можно найти в [4], исходные понятия алгебр распределений аффинных групповых схем можно найти в [3]. Вводится понятие функтора супералгебры Ли $\mathbf{Lie}(G)$. В третьем разделе вводятся понятия связной аффинной групповой суперсхемы. В четвертом разделе понятие разрешимой аффинной групповой схемы ([3], гл. 10) переносится на суперслучай, доказывается обоснованность этой аналогии. В заключительной части доказывается аналог теоремы Каца о разрешимости аффинных групповых суперсхем.

Содержание

1.	Предварительные сведения	3
	1.1. <i>К</i> -функторы	3
	1.2. Аффинные суперсхемы	3
	1.3. Лемма Йонеды	4
	1.4. Групповые K -функторы и аффинные групповые суперсхемы	5
	1.5. Дуальность категорий аффинных групповых суперсхем и супералгебр	
	Хопфа	5
2.	Супералгебры распределений и их связь с супералгебрами Ли	8
	2.1. Супералгебры распределений	8
	2.2. Действие сопряжения и функтор $\mathbf{Lie}(G)$	8
3.	Связные аффиные групповые суперсхемы	10
4.	Разрешимость аффиных групповых суперсхем	11
5.	Аналог теоремы Капа	12

1. Предварительные сведения

1.1. *K*-функторы

Определения, данные в [1] для обычного случая, можно почти дословно перенести на суперслучай. Некоторые из них можно найти в [4].

Введем некоторые предварительные обозначения. K – произвольное поле, \mathbf{SAlg}_K — категория супералгебр над полем K, \mathbf{Sets} — категория множеств, \mathbf{Gr} — категория групп.

Определение 1. K-функтором назовем функтор из категории \mathbf{SAlg}_K в \mathbf{Sets} .

Для K-функторов X, X' обозначим через $\mathrm{Mor}(X, X')$ множество морфизмов из в X'.

Определение 2. Пусть X - K-функтор. K-функтор Y называется подфунктором функтора X, если $\forall A, A' \in \mathbf{SAlg}_K \ \forall \ \varphi \in \mathrm{Hom}_{\mathbf{SAlg}_K}(A, A')$ выполнены условия: $Y(A) \subset X(A)$ и $Y(\varphi) = X(\varphi)|_{Y(A)}$.

Для любого семейства подфункторов $\{Y_i\}_{i\in I}\subset X$ определим функтор-пересечение $\bigcap_{i\in I}Y_i$ следующим образом:

$$(\bigcap_{i \in I} Y_i)(A) = \bigcap_{i \in I} Y_i(A).$$

Для $f \in \operatorname{Mor}(X, X') \ \forall \ Y' \subseteq X'$ определим функтор-прообраз

$$(f^{-1}(Y'))(A) = f(A)^{-1}(Y'(A))$$
 для $A \in \mathbf{SAlg}_K$.

Очевидно, что $\bigcap_{i\in I}Y_i$ и $f^{-1}(Y')$.

Определение 3. Прямым произведением K-функторов X_1 и X_2 называется функтор $(X_1 \times X_2)(A) = X_1(A) \times X_2(A)$ для $A \in \mathbf{SAlg}_K$.

1.2. Аффинные суперсхемы

Определение 4. K-функтор SSpR, определенный как

$$(SSpR)(A) = \operatorname{Hom}_{\mathbf{SAlg}_K}(R, A)$$
 для $A \in \mathbf{SAlg}_K$,

называется аффинной суперсхемой. Супералгебра $R \in \mathbf{SAlg}_K$ называется координатной супералгеброй суперсхемы SSpR. Если X = SSpR, то R обозначается K[X].

Определение 5. Аффинная суперсхема $\mathbf{A}^{m|n} = SSp \, K[t_1, \dots, t_m|z_1, \dots, z_n]$ называется (m|n)-аффинным суперпространством.

Очевидно, что $\mathbf{A}^{m|n}(B)=B_0^m\oplus B_1^n$ для $B\in\mathbf{SAlg}_K$. В частности, $\mathbf{A}^{1|1}(B)=B$ для любой супералгебры B.

Определение 6. Пусть I — суперидеал $B \in \mathbf{SAlg}_K$. Подфунктор $V(I) = \{ \varphi \in (SSpR)(A) \mid \varphi(I) = 0 \}$ функтора SSpR называется замкнутым подфунктором, соответствующим суперидеалу I.

Очевидно, что $V(I) \simeq SSp(K[X]/I)$.

Определение 7. Аффинная суперсхема X называется алгебраической, если $K[X] \simeq K[t_1, \ldots, t_m | z_1, \ldots, z_n] / I$ для некоторых $m, n \in \mathbb{N}$ и конечнопорожденного суперидеала I.

Определение 8. Аффинная суперсхема X называется редуцированной, если K[X] не содержит нильпотентных элементов, отличных от 0.

1.3. Лемма Йонеды

Лемма Йонеды — фундаментальное утверждение теории категорий — позволяет вложить любую категорию \mathcal{C} в категорию функторов, определенных в \mathcal{C} . В общем виде Лемму Йонеды можно найти в [6], в этой работе подробнее остановимся на случае для категории \mathbf{SAlg}_K .

Лемма 1 (лемма Йонеды). $\forall R \in \mathbf{SAlg}_K \ \forall K$ -функтора X существует канонический изоморфизм

$$Mor(SSpR, X) \simeq X(R),$$

который задается отображением $f \mapsto f(R)(id_R)$.

Доказательство. Пусть $f \in \text{Mor}(SSp\,R,X)$. Сначала убедимся, что $f(R)(id_R) \in X(R)$. Это следует из того, что $f(R): (SSp\,R)(R) = \text{Hom}_{\mathbf{SAlg}_K}(R,R) \to X(R)$. Далее убедимся, что приведенное отображение действительно является изоморфизмом.

По определению морфизма функторов $\forall A \in \mathbf{SAlg}_K \ \forall u \in \mathrm{Hom}_{\mathbf{SAlg}_K}(B,A)$ коммутативна диаграмма:

$$(SSpR)(B) \xrightarrow{f(B)} X(B)$$

$$(SSpR)(u) \downarrow \qquad \qquad \downarrow X(u)$$

$$(SSpR)(A) \xrightarrow{f(A)} X(A)$$

$$(1)$$

Возьмем R в качестве B и получим, что $f(A)\circ X(u)=(SSp\,R)(u)\circ f(R)$. Обозначим $x_f=f(R)(id_R)$. Принимая во внимание, что $(SSp\,R)(u)(id_R)=u\circ id_R$, получаем

$$f(A)(u) = X(u)(x_f).$$

Отсюда видно, что f однозначно определяется x_f . Осталось построить обратное отображение. Пусть $x \in X(R)$ и $A \in \mathbf{SAlg}_K$. Зададим $f_x(A) : SSp R \to X(A)$ отображением $u \mapsto X(u)(x)$. Несложно убедиться, что $f_x \in \mathrm{Mor}(SSp R, X)$ и что $x \mapsto f_x$ обратно отображению $f \mapsto f_x$.

Следствие 1. Если взять X = SSpR', то получим

$$\operatorname{Mor}(SSp R, SSp R') \simeq \operatorname{Hom}_{\mathbf{SAlg}_{K}}(R', R)$$
 (2)

для любых супералгебр R, R'.

Обозначим эту биекцию $f \mapsto f^*$ и будем называть f^* коморфизмом, соответствующим f. Таким образом, мы получили дуальность категорий аффинных суперсхем и супералгебр.

1.4. Групповые К-функторы и аффинные групповые суперсхемы

Определение 9. Групповым K-функтором будем называть функтор из $\mathbf{SAlg}_K \in \mathbf{Gr}$.

Если взять композицию группового функтора с забывающим функтором из **Gr** в **Sets**, то групповой *K*-функтор можно рассматривать как *K*-функтор. Поэтому все результаты для *K*-функторов можно перенести на групповые *K*-функторы.

Пусть G, H — групповые K-функторы. Обозначим через Mor(G, H) множество морфизмов из G в H, если рассматривать G и H как K-функторы; через Hom(G, H) множество морфизмов групповых функторов.

Определение 10. Аффинная групповая суперсхема — групповой K-функтор, который является аффинной суперсхемой, если его рассматривать как функтор.

Определение 11. Пусть G — групповой K-функтор. H называется групповым подфунктором G, если H — подфунктор G и \forall $A \in \mathbf{SAlg}_K$ H(A) — подгруппа в G(A).

Нетрудно убедиться, что пересечение групповых подфункторов — групповой подфунктор, прообраз группового подфунктора относительно гомоморфизма — групповой подфунктор.

Определение 12. Групповой подфунктор H функтора G называется нормальным (соответственно, центральным), если $\forall A \in \mathbf{SAlg}_K \ H(A)$ — нормальная (соответственно, центральная) подгруппа в G(A).

Определение 13. Пусть G — аффинная групповая суперсхема. H — замкнутая аффинная групповая суперподсхема, если H — групповой подфунктор G, который замкнут, если рассматривать H как подфунктор аффинной суперсхемы G.

1.5. Дуальность категорий аффинных групповых суперсхем и супералгебр Хопфа

Пусть G — групповой K-функтор, $A, B \in \mathbf{SAlg}_K$, $u \in \mathrm{Hom}_{\mathbf{SAlg}_K}(A, B)$, Групповая структура на G(A) определяет морфизмы K-функторов (для каждого функтора коммутативная диаграмма из определения морфизма функторов):

умножение $m_G: G \times G \to G \ (m_G(A) - \text{умножение в группе } G(A)),$

$$G(A) \times G(A) \xrightarrow{m_G(A)} G(A)$$

$$G(u) \times G(u) \downarrow \qquad \qquad \downarrow G(u)$$

$$G(B) \times G(B) \xrightarrow{f(A)} G(B)$$

$$(3)$$

единица $1_G: SSp K \to G \ (1_G(A): f \mapsto 1_{G(A)}$ для $f \in (SSp K)(A)),$

$$(SSp K)(A) \xrightarrow{1_G(A)} G(A)$$

$$(SSp K)(u) \downarrow \qquad \qquad \downarrow (SSp K)(u)$$

$$(SSp K)(B) \xrightarrow{1_G(A)} G(B)$$

$$(4)$$

обратная функция $i_G: G \to G$ $(i_G(A): g \mapsto g^{-1}$ для $g \in G(A))$

$$G(A) \xrightarrow{i_G(A)} G(A)$$

$$G(u) \downarrow \qquad \qquad \downarrow G(u)$$

$$G(B) \xrightarrow{i_G(A)} G(B)$$

$$(5)$$

Пусть G — аффинная групповая суперсхема. Согласно следствию 1 каждому из этих морфизмов единственным образом советствует свой коморфизм.

коумножение
$$\Delta_G=m_G^*:K[G]\to K[G]\otimes K[G],$$
 коединица $\varepsilon_G=1_G^*:K[G]\to K,$ антипод $s_G=i_G^*:K[G]\to K[G],$

Из аксиом групповой структуры следуют аксиомы коумножения, коединицы и антипода. Ниже эти аксиомы записаны в виде коммутативных диаграмм. Ассоциативность умножения $g_1(g_2g_3) = (g_1g_2)g_3$ переходит в коассоциативность коумножения:

$$K[G] \xrightarrow{\Delta} K[G] \otimes K[G]$$

$$\downarrow id \otimes \Delta \qquad \qquad (6)$$

$$K[G] \otimes K[G] \xrightarrow{\Delta \otimes 1} K[G] \otimes K[G] \otimes K[G]$$

Аксиома единицы eg = ge = g переходит в аксиому коединицы:

$$K \otimes K[G] = K[G] = K[G] \otimes K$$

$$\downarrow^{id \otimes id} \qquad \qquad \downarrow^{\Delta \otimes id} \qquad \qquad^{id \otimes id} \qquad (7)$$

$$K \otimes K[G] \xleftarrow{\varepsilon \otimes 1} \qquad K[G] \otimes K[G] \xrightarrow{1 \otimes \varepsilon} K[G] \otimes K$$

Аксиома обратного элемента $gg^{-1}=g^{-1}g=e$ переходит в аксиому антипода:

Следуя Свидлеру, будем писать $\Delta(c) = \sum c_1 \otimes c_2$ (Подробнее о способе записи сумм тензоров, получающихся в результате коумножения, можно посмотреть в [?]). Тогда вышеуказанные аксиомы записываются в виде:

$$(\Delta \otimes id) \circ \Delta = \Delta \circ (id \otimes \Delta) \qquad \sum c_{11} \otimes c_{12} \otimes c_2 = \sum c_1 \otimes c_{21} \otimes c_{22} =: \sum c_1 \otimes c_2 \otimes c_3,$$

$$(\varepsilon \otimes id) \circ \Delta = id = (id \otimes \varepsilon) \circ \Delta$$
 $c = \sum \Delta(c_1)c_2 = \sum c_1\Delta(c_2),$

$$1 \circ (id \otimes s) \circ \Delta = \eta \circ \varepsilon = 1 \circ (s \otimes id) \circ \Delta \qquad \varepsilon(c) = \sum c_1 s(c_2) = \sum s(c_1) c_2,$$

где η — единица K[G], 1 — умножение в $K[G] \otimes K[G]$.

Определение 14. Супералгебра вместе с коумножением, коединицей и антиподом, удовлетворяющими аксиомам 6, 7, 8 называется супералгеброй Хопфа.

Таким образом, имеем дуальность категорий аффинных групповых суперсхем и супералгебр Хопфа.

Определение 15. Пусть — супералгебра Хопфа. Суперидеал I называется суперидеалом Хопфа, если $\Delta(I) \subseteq C \otimes I + I \otimes C$, $I \subseteq \mathcal{M} = \ker \varepsilon$, $s(I) \subseteq I$.

2. Супералгебры распределений и их связь с супералгебрами Ли

2.1. Супералгебры распределений

Пусть X — аффинная суперсхема. Повторим определения, приведенные в [4] и [1]. Элемент из $\mathrm{Dist}_n(X,\mathcal{M}) = (K[X]/\mathcal{M}^{n+1})^*$ будем называть распределением на X с носителем в \mathcal{M} порядка $\leqslant n$, где \mathcal{M} — максимальный идеал супералгебры K[X]. Имеем

$$\bigcup_{n\geqslant 0} \mathrm{Dist}_n(X,\mathcal{M}) = \mathrm{Dist}(X,\mathcal{M}) \subseteq K[X]^*.$$

Если $g:X\to Y$ — морфизм аффинных суперсхем, то он порождает морфизм суперпространств $dg_{\mathcal{M}}:\mathrm{Dist}(X,\mathcal{M})\to\mathrm{Dist}(Y,(g^*)^{-1}(\mathcal{M}))$ такой, что

$$dg_{\mathcal{M}}(\mathrm{Dist}_n(X,\mathcal{M})) \subseteq \mathrm{Dist}_n(Y,(g^*)^{-1}(\mathcal{M})) \qquad \forall n \geqslant 0.$$

Если X = V(I) — замкнутая подсуперсхема в Y, то $\mathrm{Dist}(X,\mathcal{M})$ отождествляется с $\{\varphi \in \mathrm{Dist}(Y,\mathcal{M}) \mid \varphi(I) = 0\}$, где $I \subseteq \mathcal{M}$.

Если X — алгебраическая аффинная групповая суперсхема и $\mathcal{M} = \ker \varepsilon_X$, то $\mathrm{Dist}(X,\mathcal{M})$ обозначается как $\mathrm{Dist}(X)$. В этом случае $\mathrm{Dist}(X)$ имеет структуру супералгебры Хопфа с умножением $\varphi\psi(f) = \sum (-1)^{|\varphi||\psi|} \varphi(f_1) \psi(f_2)$ для $\varphi, \psi \in \mathrm{Dist}(X), f \in K[X]$, и коумножением $\Delta_X(f) = \sum f_1 \otimes f_2$, с единицей ε_X , коединицей $\varepsilon_{\mathrm{Dist}(X)}: \varphi \mapsto \varphi(1)$ и антиподом $s_{\mathrm{Dist}(X)}(\varphi)(f) = \varphi(s_X(f))$ для $\varphi \in \mathrm{Dist}(X)$ и $f \in K[X]$.

 $\mathrm{Dist}(X)$ — фильтрованная алгебра, т.е. $\forall m,n\geqslant 0\mathrm{Dist}_m(X)\mathrm{Dist}_n(X)\subseteq \mathrm{Dist}_{m+n}(X)$. Рассмотрим суперпространство $\mathrm{Lie}(X)=\{\varphi\in\mathrm{Dist}_1(X)\mid \varphi(1)=0\}$. Его можно наделить структурой супералгебры Ли, положив $[\varphi,\psi]=\varphi\psi-(-1)^{|\varphi||\psi|}\varphi\psi$.

Замечание 1. Lie(X) не является алгеброй Πu в обычном смысле — аксиомы выполняются в учетом четности элементов, а именно $\forall \varphi, \psi, \rho \in \text{Lie}(X)$

$$[\varphi, \psi] = (-1)^{|\varphi||\psi|} [\psi, \varphi],$$

$$[[\varphi,\psi],\rho] = (-1)^{|\psi||\rho|}[[\varphi,\rho],\psi] + [\varphi,[\psi,\rho]].$$

Как супералгебра Хопфа $\mathrm{Dist}(X)$ кокоммутативна, т.е. $\sum \varphi_1 \otimes \varphi_2 = \sum (-1)^{|\varphi_1||\varphi_2|} \varphi_2 \otimes \varphi_1$.

2.2. Действие сопряжения и функтор $\mathbf{Lie}(G)$

Определение 16. Пусть $A \in \mathbf{SAlg}_K$. Супералгеброй дуальных чисел называется $A[\varepsilon_0, \varepsilon_1] = \{a + \varepsilon_0 b + \varepsilon_1 c \mid a, b, c \in A\}, \ |\varepsilon_i| = i, \ \varepsilon_i \varepsilon_j = 0, \ i, j \in \{0, 1\}.$

Имеем проективный $p_A: A[\varepsilon_0, \varepsilon_1] \to A$ и инъективный $i_A: A \to A[\varepsilon_0, \varepsilon_1]$ морфизмы супералгебр, определенные как $a + \varepsilon_0 b + \varepsilon_1 c \mapsto a$ и $a \mapsto a$ соответственно.

Определение 17. Функтором супералгебры Ли будем называть функтор $\mathbf{Lie}(G)$, определенный как

$$\mathbf{Lie}(G) = \left(G(A[\varepsilon_0, \varepsilon_1]) \stackrel{G(p_A)}{\longrightarrow} G(A) \right), \qquad A \in \mathbf{SAlg}_K.$$

Пусть V — суперпространство. Определим функтор V_a из категории \mathbf{SAlg}_K в категорию векторных суперпространств: $V_a(A) = V \otimes A$.

Лемма 2. Существует изоморфизм абелевых групповых функторов $\mathrm{Lie}(G)_a \simeq \mathrm{Lie}(G)$, который задается отображением

$$(v \otimes a)(f) = \varepsilon_G(f) + (-1)^{|a||f|} \varepsilon_{v \otimes a} v(f) a, \qquad v \in \text{Lie}(G) = (\mathcal{M}/\mathcal{M}^2)^*, a \in A, f \in K[G].$$

Для более подробной информации см. [3].

Если мы отождествляем $\mathrm{Lie}(G)\otimes A$ с $\mathrm{Hom}_K(\mathcal{M}/\mathcal{M}^2,A)$ при помощи отображения $(v\otimes a)(f)=(-1)^{|a||f|}v(f)a$, то вышеуказанный изоморфизм может быть представлен отображением

$$u \mapsto \varepsilon_G + \varepsilon_0 u_0 + \varepsilon_1 u_1, \qquad u \in \operatorname{Hom}_K(\mathcal{M}/\mathcal{M}^2, A).$$

Определение 18. Рассмотрим действие аффинной групповой суперсхемы G на функтор $\mathbf{Lie}(G)$:

$$(g,x) \mapsto G(i_a)(g) x G(i_A)(g)^{-1}, \qquad g \in G(A), \ x \in \mathbf{Lie}(G)(A), \ A \in \mathbf{SAlg}_K.$$

Это действие называется сопряжением и обозначается Ad.

Пемма 3. Сопряжение линейно. В частности, оно порождает морфизм аффинных групповых схем $G \to \mathrm{GL}(\mathrm{Lie}(G))$.

3. Связные аффиные групповые суперсхемы

Связная компонента, связная супергруппа, утверждение про центр группы (если оно нужно для доказательства). [4]

Везде в этом пункте G — аффинная групповая суперсхема над полем K.

Определение 19. Подфунктор $\mathbf{Z}(G)$ групового K-функтора G называется центральным, если H – подфунктор в G и $\forall A \in \mathbf{SAlg}_K$ H(A) – центральная подгруппа в G(A).

Утверждение 1. Пусть G — аффинная групповая суперсхема. $\mathbf{Z}(G)$ — замкнутая аффинная групповая подсуперсхема в G.

Утверждение 2. Если G связна, $\operatorname{char} K = 0$, то $\operatorname{Lie}(\mathbf{Z}(G)) = \mathbf{Z}(\operatorname{Lie}(G))$.

Теорема 1. Пусть char K = 0, G - cвязная аффинная групповая суперсхема, I -максимальный абелев суперидеал в Lie(G). Существует $H \triangleleft G : Lie(H) = I$.

Доказательство. Обозначим L = Lie(G). Доказательство проведем индукцией по $\dim L$. Предположим, что если H — связная аффинная групповая суперсхема и $\dim \text{Lie}(H) < \dim L$, то утверждение выполнено для H.

Рассмотрим действие $\mathbf{Ad}: G \to \mathrm{GL}(I)$, $\ker \mathbf{Ad} = R$. Пусть $J = \mathrm{Lie}(R) = \{x \in L | [x,I] = 0\}$. Очевидно, $I \subseteq J$.

Если $\dim J \leqslant \dim L$, то по предположению индукции утверждение выполнено для R, т.е. $\exists \ H \lhd R : \mathrm{Lie}(H) = I$. Поскольку $H \lhd R$ и $R \lhd G$ как ядро \mathbf{Ad} , то $H \lhd G$, следовательно, утверждение выполнено для G.

Рассмотрим случай dim $J=\dim L$. Т.к. G алгебраическая, то dim $L<\infty\Rightarrow J=L$. Отсюда следует, что [L,I]=0, а в силу определения центра $I\subseteq \mathbf{Z}(L)$. По условию I — максимальный суперидеал $\Rightarrow I$ не может быть собственным подмножеством $\Rightarrow I=\mathbf{Z}(L)$. По лемме 2 получаем, что $I=\mathrm{Lie}(\mathbf{Z}(G))$, а $\mathbf{Z}(G)\lhd G$.

4. Разрешимость аффиных групповых суперсхем

Для того, чтобы сформулировать определение разрешимой супергруппы, сначала необходимо определить коммутант супергруппы.

Пусть S — алгебраическая матричная супергруппа. Рассмотрим отображение $S \times S \to S$, переводящее (x,y) в $xyx^{-1}y^{-1}$. Ядро I_1 соотвествующего отображения $K[S] \to K[S] \otimes K[S]$ состоит из функций, зануляющихся на всех коммутаторах из S; таким образом, замкнутое множество, им определяемое, является замыканием коммутаторов. Аналогично имеем отображение $S^{2n} \to S$, переводящее (x_1,y_1,\ldots,x_n,y_n) в $x_1y_1x_1^{-1}y_1^{-1}\cdots x_ny_nx_n^{-1}y_n^{-1}$. Соответствующее отображение $K[S] \to \otimes^{2n} K[S]$ имеет ядро I_n , определяющее замыкание произведения n коммутаторов. Очевидно, что $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$

Коммутаторная подгруппа в S — объединение произведений из n коммутаторов по всем n, поэтому идеалом функций, зануляющихся на S является $I = \bigcap I_n$. Замкнутое множество, определяемое идеалом I, является замыканием коммутаторной подгруппы. Это замкнутая нормальная подгруппа в S, которую будем называть коммутантом $\mathscr{D}S$. Итерируя эту процедуру, получаем цепочку замкнутых подгрупп \mathscr{D}^nS . Если S разрешима как абстрактрая группа, то последовательность \mathscr{D}^nS достигает $\{e\}$.

Все эти рассуждения могут быть проведены и в общем случае. Пусть G - аффинная групповая суперсхема над полем K. Имеем отображения $G^{2n} \to G$, которые соответствут $K[G] \to \otimes^{2n} K[G]$ с ядрами I_n , удовлетворяющими условию $I_1 \supseteq I_2 \supseteq \ldots$ Если $f \in I_{2n}$, то $\Delta(f)$ обращается в нуль на $K[G]/I_n \otimes K[G]/I_n$ в силу того, что при перемножении двух произведений по n коммутаторов образуется произведение 2n коммутаторов. Поэтому $I = \bigcap I_n$ определяет замкнутую подгруппу $\mathscr{D}S$.

Определение 20. Будем называть супергруппу G разрешимой, если \mathcal{D}^nG тривиальна для некоторого n.

Замечание 2. Все коммутаторы G(R) лежат в $\mathscr{D}G(R)$, $\mathscr{D}G$ - нормальная подгруппа в G.

Теорема 2. Пусть G – алгебраическая супергруппа. Если G связна, то и $\mathscr{D}G$ связна.

 \mathcal{A} оказательcтво.

Утверждение 3. $I = \bigcap I_n$ – суперидеал Хопфа

Утверждение 4. $\mathcal{D}G$ – нормальная подгруппа в G.

Утверждение 5. $I_{n+1} \subseteq I_n$

Утверждение 6. I – наименьшая замкнутая подгруппа G, содержащая произведение любых коммутаторов

Утверждение 7. G абелева $\Leftrightarrow Lie(G)$ абелева.

Доказательство. Достаточно доказать, что $\mathrm{Dist}(G)$ абелева $\Leftrightarrow K[G]^*$ кокоммутативна.

5. Аналог теоремы Каца

Лемма 4. Обозначим $Lie(G) = L = L_0 \oplus L_1$. $Lie(G_{ev}) = L_0$.

 $oxed{\square}$ оказательство.

Лемма 5. $A\phi\phi$ инная групповая суперсхема G абелева \Leftrightarrow $\mathrm{Lie}(G)$ абелева.

 $oxed{arDelta}$ оказательство.

Теорема 3 (Кац). Супералгебра Ли $L = L_0 \oplus L_1$ разрешима \Leftrightarrow разрешима алгебра Ли L_0 . Доказательство можно найти в статье [2].

Теорема 4. Пусть char K = 0, G - связная аффинная групповая суперсхема. G разрешима $\Leftrightarrow \text{Lie}(G)$ разрешима $\Leftrightarrow G_{ev}$ разрешима.

Доказательство. 1) тут ссылка на теорему Каца и на предыдущие леммы. из них следует вторая эквивалентность

2) Предположим, что G разрешима, т.е. для некоторого $n \in \mathbb{N}$

$$G \rhd G' \rhd G'' \rhd \ldots \rhd G^{(n)} = 1$$

Рассмотрим $G \triangleright G' \triangleright G''$, следовательно, имеем точную последовательность

$$1 \to G' \to G \to G/G' \to 1$$
,

которая эквивалентна точной последовательности для супералгебр Ли:

$$0 \to \operatorname{Lie}(G') \to \operatorname{Lie}(G) \to \operatorname{Lie}(G/G') \to 0$$

. Все факторы субнормальной цепочки абелевы $\Leftrightarrow G/G'$ абелев, откуда по лемме 5 получаем, что $\mathrm{Lie}(G/G')$ абелева.

Заключение

Список литературы

- [1] J.C. Jantzen. Representations of Algebraic Groups. Academic Press, Inc., Orlando, Florida, 1987.
- [2] V.G. Kac. Lie superalgebras. Advanced in Mathematics, 26:8–96, 1977.
- [3] W.C. Waterhouse. Introduction to Affine Group Schemes. Springer Verlag, 1979.
- [4] A.N. Zubkov. Affine quotients of supergroups. *Transformation Groups*, 14(3):713–745, 2009.
- [5] А. Деляну И. Букур. Введение в теорию категорий и функторов. Мир, Москва, 1972
- [6] С. Маклейн. Категории для работающего математика. ФИЗМАТЛИТ, 2004.