BLM1612 - Circuit Theory

The Instructors:

Dr. Öğretim Üyesi Erkan Uslu

euslu@yildiz.edu.tr

Dr. Öğretim Üyesi Hamza Osman İlhan

hoilhan@yildiz.edu.tr

RC and **RL** Circuits

First Order Circuits

Objectives of Lecture

- Explain the operation of a RC circuit in dc circuits
 - As the capacitor stores energy when voltage is first applied to the circuit or the voltage applied across the capacitor is increased during the circuit operation.
 - As the capacitor releases energy when voltage is removed from the circuit or the voltage applied across the capacitor is decreased during the circuit operation.
- Explain the operation of a RL circuit in dc circuit
 - As the inductor stores energy when current begins to flow in the circuit or the current flowing through the inductor is increased during the circuit operation.
 - As the inductor releases energy when current stops flowing in the circuit or the current flowing through the inductor is decreased during the circuit operation.

Natural Response

- The behavior of the circuit with no external sources of excitation.
 - There is stored energy in the capacitor or inductor at time = 0 s.
 - For t > 0 s, the stored energy is released
 - Current flows through the circuit and voltages exist across components in the circuit as the stored energy is released.
 - The stored energy will decays to zero as time approaches infinite, at which point the currents and voltages in the circuit become zero.

- Suppose there is some charge on a capacitor at time t = 0 s.
 - This charge could have been stored because a voltage or current source had been in the circuit at t
 \$\leq\$0 s, but was switched off at \$t = 0 s.
- We can use the equations relating voltage and current to determine how the charge on the capacitor is removed as a function of time.
 - The charge flows from one plate of the capacitor through the resistor R to the other plate to neutralize the charge on the opposite plate of the capacitor.

Equations for RC Circuit

$$C\frac{dV_C}{dt} + \frac{V_R}{R} = 0$$

$$V_R = V_C$$

$$\frac{dV_C}{dt} + \frac{V_C}{RC} = 0$$

$$\frac{1}{V_C} \frac{dV_C}{dt} + \frac{1}{RC} = 0$$

$$\frac{dV_C}{V_C} = -\frac{1}{RC} dt$$

$$\ln(V_C) = -\frac{t}{RC} + \ln(V_C|_{t=t_o})$$

Equations for RC Circuit

If
$$V_o = V_C \big|_{t=0s}$$
 and $\tau = RC$

$$V_C(t) = V_o e^{-\frac{t}{\tau}}$$
 when $t \ge 0s$

$$I_{R}(t) = -I_{C}(t) = \frac{V_{o}}{R}e^{-\frac{t}{\tau}}$$

Since the voltages are equal and the currents have the opposite sign, the power that is dissipated by the resistor is the power that is being released by the capacitor.

$$p_{R}(t) = V_{R}I_{R} = \frac{V_{o}^{2}}{R}e^{-\frac{2t}{\tau}}$$

$$w(t) = \int_{0s}^{t} p_R(t)dt = \frac{CV_o^2}{2} \left[1 - e^{-\frac{2t}{\tau}} \right]$$

The Key to Working with a Source-Free RC Circuit Is Finding:

- The initial voltage $v(0) = V_0$ across the capacitor.
 - Can be obtained by inserting a d.c. source to the circuit for a time much longer than τ (at least $t = -5\tau$) and then removing it at t = 0.
 - Capacitor
 - Open Circuit Voltage
- The time constant τ .
 - In finding the time constant $\tau = RC$, R is often the Thevenin equivalent resistance at the terminals of the capacitor;
 - that is, we take out the capacitor C and find $R = R_{Th}$ at its terminals

Time constant

- The natural response of a capacitive circuit refers to the behavior (in terms of voltages) of the circuit itself, with no external sources of excitation.
 - The natural response depends on the nature of the circuit alone, with no external sources.
 - In fact, the circuit has a response only because of the energy initially stored in the capacitor.
- The voltage response of the RC circuit

- Time constant, $\tau = RC$
 - The time required for the voltage across the capacitor to decay by a factor of 1/e or 36.8% of its initial value.

Equations for RL Circuits

$$V_L + V_R = 0$$
$$I_L = I_R$$

$$V_{L} = L \frac{dI_{L}}{dt}$$
$$I_{R} = V_{R}/R$$

$$L\frac{dI_L}{dt} + RI_R = 0$$

$$\frac{dI_L}{dt} + \frac{RI_L}{L} = 0$$

$$\frac{1}{I_L} \frac{dI_L}{dt} + \frac{R}{L} = 0$$

$$\frac{dI_L}{I_L} = -\frac{R}{L}dt$$

$$\ln(I_L) = -\frac{R}{L}t + \ln(I_L|_{t=0s})$$

Equations for RL Circuit

If
$$I_o = I_L \big|_{t=0s}$$
 and $\tau = \frac{L}{R}$

R
$$I_L(t) = I_o e^{-\frac{t}{\tau}} \quad \text{when } t \ge 0s$$

$$V_R(t) = -V_L(t) = RI_o e^{-\frac{t}{\tau}}$$

Since the voltages are equal and the currents have the opposite sign, the power that is dissipated by the resistor is the power that is being released by the inductor.

$$p_{R}(t) = V_{R}I_{R} = RI_{o}^{2}e^{-\frac{2t}{\tau}}$$

$$w(t) = \int_{0s}^{t} p_R(t)dt = \frac{LI_o^2}{2} \left[1 - e^{-\frac{2t}{\tau}} \right]$$

The Key to Working with a Source-Free RL Circuit Is Finding:

- The initial current $i(0) = I_0$ through the inductor.
 - Can be obtained by inserting a d.c. source to the circuit for a time much longer than τ (at least $t = -5\tau$) and then removing it at t = 0.
 - Inductor
 - Short Circuit Current
- The time constant τ .
 - In finding the time constant $\tau = L/R$, R is often the Thevenin equivalent resistance at the terminals of the inductor;
 - that is, we take out the inductor L and find $R = R_{Th}$ at its terminals

Time constant

- The natural response of an inductive circuit refers to the behavior (in terms of currents) of the circuit itself, with no external sources of excitation.
 - The natural response depends on the nature of the circuit alone, with no external sources.
 - In fact, the circuit has a response only because of the energy initially stored in the inductor.
- The current response of the *RL* circuit

- Time constant, $\tau = L/R$
 - The time required for the current in the inductor to decay by a factor of 1/e or 36.8% of its initial value.

Singularity Functions

- Singularity functions (also called switching functions) are very useful in circuit analysis.
- They serve as good approximations to the switching signals that arise in circuits with switching operations.
- They are helpful in the neat, compact description of some circuit phenomena,
 - especially the step response of RC or RL circuits
- Singularity functions are functions that either are discontinuous or have discontinuous derivatives.

Unit Step Function

• The unit step function (u(t)) is 0 for negative values of t and 1 for positive values of t.

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

$$u(t - t_0) = \begin{cases} 0, & t < t_0 \\ 1, & t > t_0 \end{cases}$$

$$u(t+t_0) = \begin{cases} 0, & t < -t_0 \\ 1, & t > -t_0 \end{cases}$$

$$v(t) = \begin{cases} 0, & t < t_0 \\ V_0, & t > t_0 \end{cases}$$

$$v(t) = V_0 u(t - t_0)$$

Unit Step Function

• Voltage source of $V_0u(t)$ and its equivalent circuit.

• Current source of $I_0u(t)$ and its equivalent circuit.

Unit Impulse Function

• The derivative of the unit step function u(t) is the unit impulse function $(\delta(t))$

$$\delta(t) = \frac{d}{dt}u(t) = \begin{cases} 0, & t < 0 \\ \text{Undefined}, & t = 0 \\ 0, & t > 0 \end{cases} \qquad \int_{0^{-}}^{0^{+}} \delta(t) \, dt = 1$$

$$\int_0^{0^+} \delta(t) \, dt = 1$$

Integration of Unit Functions

• To illustrate how the impulse function affects other functions, let us evaluate the integral

$$\int_{a}^{b} f(t)\delta(t-t_0)dt$$

$$\int_{a}^{b} f(t)\delta(t - t_{0})dt = \int_{a}^{b} f(t_{0})\delta(t - t_{0})dt$$
$$= f(t_{0}) \int_{a}^{b} \delta(t - t_{0})dt = f(t_{0})$$

• This is a highly useful property of the impulse function known as the sampling or sifting property.

Unit Ramp Function

$$r(t) = \int_{-\infty}^{t} u(\lambda) d\lambda = tu(t)$$

$$r(t) = \begin{cases} 0, & t \le 0 \\ t, & t \ge 0 \end{cases}$$

$$r(t - t_0) = \begin{cases} 0, & t \le t_0 \\ t - t_0, & t \ge t_0 \end{cases}$$

$$r(t + t_0) = \begin{cases} 0, & t \le -t_0 \\ t + t_0, & t \ge -t_0 \end{cases}$$

Relationships of singularity functions

• The three singularity functions (impulse, step, and ramp) are related by differentiation as

$$\delta(t) = \frac{du(t)}{dt}, \qquad u(t) = \frac{dr(t)}{dt}$$

or by integration as

$$u(t) = \int_{-\infty}^{t} \delta(\lambda) d\lambda, \qquad r(t) = \int_{-\infty}^{t} u(\lambda) d\lambda$$

Transient responses of RC and RL circuits

- AKA a forced response to an independent source
- Capacitor and inductor store energy when there is:
 - a transition in a unit step function source, $\mathbf{u}(t-t\mathbf{o})$
 - a voltage or current source is switched into the circuit.

Because $I_1 = 0A$ (replace it with an open circuit).

• Find the final condition of the voltage across the capacitor.

- Replace C with an
open circuit and
determine the voltage
across the terminal.

$$I_C = 0A$$
 when $t \sim \infty$ s
 $V_C = V_R = I_1 R$ when $t \sim \infty$ s

• In the time between t_0 and $t = \infty$ s, the capacitor stores energy and currents flow through R and C.

$$V_{C} = V_{R}$$

$$I_{C} = C \frac{dV_{C}}{dt}$$

$$I_{R} = \frac{V_{R}}{R}$$

$$I_{R} + I_{C} - I_{1} = 0$$

$$\frac{V_C}{R} + C \frac{dV_C}{dt} - I_1 = 0$$

$$V_C(t) = RI_1 \left[1 - e^{-\frac{t - t_0}{\tau}} \right] \qquad \tau = RC$$

$$\tau = RC$$

• Initial condition is not important as the magnitude of the voltage source in the circuit is equal to 0V when $t \le t_0$.

- Since the voltage source has only been turned on at $t = t_o$, the circuit at $t \le t_o$ is as shown on the left.
- As the inductor has not stored any energy because no power source has been connected to the circuit as of yet, all voltages and currents are equal to zero.

- So, the final condition of the inductor current needs to be calculated after the voltage source has switched on.
 - Replace L with a short circuit and calculate $I_L(\infty)$.

Final Condition

$$\begin{split} \frac{dI_{L}}{dt} + RI_{R} - V_{1} &= 0\\ \frac{dI_{L}}{dt} + \frac{R}{L}I_{L} - \frac{V_{1}}{L} &= 0\\ I_{L}(t) &= \frac{V_{1}}{R} \left[1 - e^{-(t - t_{o})/\tau} \right] \end{split}$$

$$-V_1 + V_L + V_R = 0$$

$$I_L = I_R = V_R / R$$

$$V_L = L \frac{dI_L}{dt}$$

$$\tau = \frac{L}{R}$$

Complete Response

- Is equal to the natural response of the circuit plus the forced response
 - Use superposition to determine the final equations for voltage across components and the currents flowing through them.
- Typically, it is assumed that the currents and voltages in a circuit have reached steady-state once 5τ have passed after a change has been made to the value of a current or voltage source in the circuit.

Example 01...

• Suppose there were two unit step function sources in the circuit.

- The solution for Vc would be the result of superposition where:
 - $-I_2 = 0A$, I_1 is left on
 - The solution is a forced response since I₁ turns on at t = t₁
 - $-I_1 = 0A$, I_2 is left on
 - The solution is a natural response since I₂ turns off at t = t₂

$$V_C(t) = 0V$$
 when $t < t_1$

$$V_C(t) = RI_1 \left[1 - e^{-\frac{(t-t_1)}{RC}} \right] \text{ when } t > t_1$$

$$V_C(t) = -RI_2 \quad \text{when } t < t_2$$

$$V_C(t) = -RI_2 e^{-\frac{(t-t_2)}{RC}} \quad \text{when } t > t_2$$

• If $t_1 < t_2$

$$V_{C}(t) = 0V - RI_{2} \qquad \text{when } t < t_{1}$$

$$V_{C}(t) = RI_{1} \left[1 - e^{-\frac{(t-t_{1})}{RC}} \right] - RI_{2} \qquad \text{when } t_{1} < t < t_{2}$$

$$V_{C}(t) = RI_{1} \left[1 - e^{-\frac{(t-t_{1})}{RC}} \right] - RI_{2} e^{-\frac{(t-t_{2})}{RC}} \qquad \text{when } t > t_{2}$$

General Equations

- When a voltage or current source changes its magnitude at t = 0s in a simple RC or RL circuit.
 - Equations for a simple RC circuit

$$\begin{split} V_C(t) &= V_C(\infty) + \left[V_C(0) - V_C(\infty) \right] e^{-t/\tau} \\ I_C(t) &= \frac{C}{\tau} \left[V_C(\infty) - V_C(0) \right] e^{-t/\tau} \end{split}$$

$$\tau = RC$$

Equations for a simple RL circuit

$$\begin{split} I_L(t) &= I_L(\infty) + \left[I_L(0) - I_L(\infty)\right] e^{-t/\tau} \\ V_L(t) &= \frac{L}{\tau} \left[I_L(\infty) - I_L(0)\right] e^{-t/\tau} \\ \tau &= L/R \end{split}$$

Example 02...

$$V(t) = 5V [1 - u(t)]$$

...Example 02

$$V(t) = 5V [1 - u(t)]$$

$$t > 0$$

 $\tau = L/R = 10 \text{mH}/1 \text{k}\Omega = 10 \text{ ns}$
 $I_L = I_R = i(0) e^{-t/\tau} = 5 \text{mA } e^{-t/10 \text{ns}}$
 $V_R = 1 \text{k}\Omega I_R = 5 \text{V } e^{-t/10 \text{ns}}$
 $V_L = L(dI_L/dt) = -5 \text{V } e^{-t/10 \text{ns}}$

Note
$$V_R + V_I = 0 V$$

Example 03...

$$V(t) = 5V [1 - u(t - 2ms)]$$

...Example 03...

t < 2ms

...Example 03...

• t < 2ms

- C1 is an open.
 - The voltage across the capacitor is equal to the voltage across the $12k\Omega$ resistor.

...Example 03...

t > 2ms

...Example 03

t > 2ms

$$\begin{split} \tau &= R_{eq}C = 3k\Omega(2\mu F) = 6 \text{ ms} \\ V_C &= V_C(2ms)e^{-(t-2ms)/\tau} = 4V \text{ } e^{-(t-2ms)/6ms} \\ V_R &= V_C \\ I_C &= C \text{ } dV_c/dt = 2\mu F(-4V/6ms) \text{ } e^{-(t-2ms)/6ms} \\ &= -1.33 \text{ } e^{-(t-2ms)/6ms} \text{ } mA \\ I_R &= -I_C = 1.33 \text{ } e^{-(t-2ms)/6ms} \text{ } mA \end{split}$$
 Note $I_R + I_I = 0 \text{ } mA$

Example 04...

...Example 04...

...Example 04...

Find the initial condition.

t < 0s

$$V_L = 0V$$

$$V_R = 6V$$

$$I_L = I_R = 2mA$$

Therefore,

$$I_o = 2mA$$

...Example 04...

...Example 04

Note
$$V_R + V_L = 0 V$$