Двойственный симплекс-метод

- **N** вектор номеров базисных (единичных) столбцов матрицы К
- **X** вектор, компоненты которого есть базисные компоненты опорного плана. Остальные компоненты опорного плана равны 0
- **CN** вектор, составленный из коэффициентов линейной функции f при базисных переменных

При решении задач двойственным симплексметодом на каждой итерации обеспечивается выполнение условия оптимальности текущего решения, не являющегося допустимым. Критерием окончания процесса итераций является получение допустимого решения.

Алгоритм:

- Находят номер I из условия
 b_i = min b_i (i=1, ..., m)
- 2) Если b_I ≥0, то псевдоплан является опорным планом, оптимальное решение найдено.
- 3) Если $b_l < 0$, $a_{lj} \ge 0$, (j=1, ..., n), то ЗЛП не имеет решения. Если существует $a_{lj} < 0$, вычисляются симплекс-разности

$$\Delta_j = (CN, a_j) - c_j$$

4) Находят номер k из условия

$$\theta = \min (\Delta_j / -a_{lj}) = \Delta_k / -a_{lk},$$

 $a_{lj} < 0 (j=1, ..., n)$

а_{lk} – направляющий элемент

5) Вычисляют компоненты вектора N.

$$N_{i}^{S} = N_{i}^{S-1}, i \neq I, N_{I}^{S} = k$$

6) Применяют метод Жордана-Гаусса.

Пример 1. Дана ЗЛП

$$\min(2x_1 + 4x_2)$$

$$\begin{cases} 3x_1 + x_2 \ge 3, \\ 4x_1 + 3x_2 \ge 6, \\ x_1 + 2x_2 \le 3, \\ x_1 \ge 0, \\ x_2 \ge 0 \end{cases}$$

Приведем ЗЛП к каноническому виду

$$\max(-2x_1-4x_2) \qquad \text{или} \qquad \max(-2x_1-4x_2)$$

$$\begin{cases} 3x_1+x_2-S_1=3,\\ 4x_1+3x_2-S_2=6,\\ x_1+2x_2+S_3=3,\\ x_{1,2}\geq 0,\\ S_{1,2,3}\geq 0 \end{cases} \qquad \begin{cases} -3x_1-x_2+S_1=-3,\\ -4x_1-3x_2+S_2=-6,\\ x_1+2x_2+S_3=3,\\ x_{1,2}\geq 0,\\ S_{1,2,3}\geq 0 \end{cases}$$

$$\max(-2x_{1} - 4x_{2})$$

$$\begin{cases}
-3x_{1} - x_{2} + S_{1} = -3, \\
-4x_{1} - 3x_{2} + S_{2} = -6, \\
x_{1} + 2x_{2} + S_{3} = 3, \\
x_{1,2} \ge 0, \\
S_{1,2,3} \ge 0
\end{cases}$$

$$\begin{pmatrix}
-3 & -1 & 1 & 0 & 0 & -3 \\
-4 & -3 & 0 & 1 & 0 & -6 \\
1 & 2 & 0 & 0 & 1 & 3
\end{pmatrix}$$

$$f = -2x_1 - 4x_2 + 0 \cdot S_1 + 0 \cdot S_2 + 0 \cdot S_3$$

S	i	N	CN	b	a ₁	a ₂	a ₃	a ₄	a ₅	
0	1	3	0	-3	-3	-1	1	0	0	
	2	4	0	-6	-4	-3	0	1	0	
	3	5	0	3	1	2	0	0	1	
			f=0	Δ	2	4	0	0	0	l=2 k=1
				θ	2/4	4/3	-	-	-	
1	1	3	0	3/2	0	5/4	1	-3/4	0	
	2	1	-2	3/2	1	3/4	0	-1/4	0	
	3	5	0	3/2	0	5/4	0	1/4	1	
			f=-3	Δ	0	5/2	0	1/2	0	

Пример 2. Дана ЗЛП

$$\min(6x_1 + 3x_2)$$

$$\begin{cases}
-3x_1 + x_2 \ge 1, \\
2x_1 - 3x_2 \ge 2, \\
x_1 \ge 0, \\
x_2 \ge 0
\end{cases}$$

Приведем ЗЛП к каноническому виду

$$\max(-6x_1 - 3x_2)$$

$$\begin{cases}
-3x_1 + x_2 - S_1 = 1, \\
2x_1 - 3x_2 - S_2 = 2, \\
x_{1,2} \ge 0, \\
S_{1,2,3} \ge 0
\end{cases}$$

$$\max(-6x_1 - 3x_2) \qquad \max(-6x_1 - 3x_2)$$

$$\begin{cases}
-3x_1 + x_2 - S_1 = 1, \\
2x_1 - 3x_2 - S_2 = 2,
\end{cases} \qquad \begin{cases}
3x_1 - x_2 + S_1 = -1, \\
-2x_1 + 3x_2 + S_2 = -2,
\end{cases}$$

$$x_{1,2} \ge 0,$$

$$S_{1,2,3} \ge 0$$

$$S_{1,2,3} \ge 0$$

$$f = -6x_1 - 3x_2 + 0 \cdot S_1 + 0 \cdot S_2 + 0 \cdot S_3$$

S	i	N	CN	b	a ₁	a ₂	a ₃	a ₄	
0	1	3	0	-1	3	-1	1	0	
	2	4	0	-2	-2	3	0	1	
			f=0	Δ	6	3	0	0	l=2 k=1
				θ	3	-	-	-	
1	1	3	0	-4	0	7/2	1	3/2	
	2	1	-6	1	1	-3/2	0	-1/2	
		Δ		f=-6	0	12	0	3	

 b_{l} =-4 < 0, все $a_{lj} \ge 0$, решения нет