Analysis

1	Real Numbers	2
	1.1 Fields	2
	1.2 Ordered Fields	5
	1.3 The Real Field	
2	Basic Topology	7
	2.1 Metric Spaces	7
	2.2 Compact Sets	9
3	Sequences and Series	11
4	Continuity	13
	4.1 Limits of Functions	13
	4.2 Continuous Functions	14
	4.3 Continuity and Compactness	15
5	Differentiation	16
6	Integration	17

Real Numbers

1.1 Fields

Definition 1.1. A nonempty set F and two operations + and \cdot form a **field** if the following axioms $(A \ 1) - (A \ 5)$, $(M \ 1) - (M \ 5)$ and (D) are satisfied.

- (A 1) $x + y \in F$ for any $x, y \in F$.
- (A 2) x + y = y + x for any $x, y \in F$.
- (A 3) (x+y) + z = x + (y+z) for any $x, y, z \in F$.
- (A 4) There is an element $0 \in F$ such that x + 0 = x for any $x \in F$.
- (A 5) For each $x \in F$ there is an element -x in F such that x + (-x) = 0.
- (M 1) $x \cdot y \in F$ for any $x, y \in F$.
- (M 1) $x \cdot y = y \cdot x$ for any $x, y \in F$.
- (M 2) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for any $x, y, z \in F$.
- (M 3) There is an element $1 \in F \setminus \{0\}$ such that $x \cdot 1 = x$ for any $x \in F$.
- (M 4) For each $x \in F \setminus \{0\}$ there is an element x^{-1} in F such that $x \cdot x^{-1} = 0$.
 - (D) $x \cdot (y+z) = x \cdot y + x \cdot z$ for any $x, y, z \in F$.

Theorem 1.2. Let F be a field. Then the following statements are true for any $x, y, z \in F$.

- (a) If x + y = x + z, then y = z.
- (b) If x + y = x, then y = 0.
- (c) If x + y = 0, then y = -x.
- (d) -(-x) = x.

Proof. Note that these statements are consequence of axioms (A 1) - (A 5).

(a) We have

$$y = 0 + y$$

$$= (-x + x) + y$$

$$= -x + (x + y)$$

$$= -x + (x + z)$$

$$= (-x + x) + z$$

$$= 0 + z$$

$$= z.$$

- (b) Since x + y = x = x + 0, we have y = 0 by (a).
- (c) Since x + y = 0 = x + (-x), we have y = -x by (a).
- (d) Since -x + x = 0, we have -(-x) = x by (c).

Theorem 1.3. Let F be a field. Then the following statements are true for any $x \in F \setminus \{0\}$ and $y, z \in F$.

- (a) If $x \cdot y = x \cdot z$, then x = y.
- (b) If $x \cdot y = x$, then y = 1.
- (c) If $x \cdot y = 1$, then $y = x^{-1}$.
- (d) $(x^{-1})^{-1} = x$.

Proof. Note that these statements are consequence of axioms (M 1) - (M 5).

(a) We have

$$y = 1 \cdot y$$

$$= (x^{-1} \cdot x) \cdot y$$

$$= x^{-1} \cdot (x \cdot y)$$

$$= x^{-1} \cdot (x \cdot z)$$

$$= (x^{-1} \cdot x) \cdot z$$

$$= 1 \cdot z$$

$$= z.$$

- (b) Since $x \cdot y = x = x \cdot 1$, we have y = 1 by (a).
- (c) Since $x \cdot y = 1 = x \cdot x^{-1}$, we have $y = x^{-1}$ by (a).
- (d) Since $x^{-1} + x = 1$, we have $(x^{-1})^{-1} = x$ by (c).

Theorem 1.4. Let F be a field. Then the following statements are true for any $x, y \in F$.

- (a) $0 \cdot x = 0$.
- (b) $(-x) \cdot y = -(x \cdot y) = x \cdot (-y)$.

(c) $(-x) \cdot (-y) = x \cdot y$.

Proof.

(a) We have

$$0 \cdot x + 0 \cdot x = (0+0) \cdot x = 0 \cdot x,$$

implying $0 \cdot x = 0$.

(b) Since

$$(-x) \cdot y + x \cdot y = (-x + x) \cdot y = 0 \cdot y = 0,$$

we have $(-x) \cdot y = -(x \cdot y)$. One can prove $x \cdot (-y) = -(x \cdot y)$ similarly.

(c) We have

$$(-x) \cdot (-y) = -(x \cdot (-y)) = -(-(x \cdot y)) = x \cdot y$$

by applying (b) twice.

1.2 Ordered Fields

Definition 1.5. An **ordered field** is a field on which relation < is defined such that the following axioms (O 1) – (O 4) hold for any $x, y, z \in F$.

- (O 1) One and only one of the statements x = y, x < y, y < x is true.
- (O 2) If x < y and y < z, then x < z.
- (O 3) If x < y, then x + z < y + z.
- (O 4) If 0 < x and 0 < y, then $0 < x \cdot y$.

Definition 1.6. Let F be an ordered field. The relations >, \leq and \geq are defined as follows for any $x, y \in F$.

$$x > y \Leftrightarrow y < x$$

 $x \le y \Leftrightarrow x < y \text{ or } x = y$
 $x \ge y \Leftrightarrow x > y \text{ or } x = y$.

Definition 1.7. Let F be an ordered field and let $S \subseteq F$.

- An **upper bound** of S is an element x in F such that $x \ge y$ for any $y \in S$. We say that S is **bounded above** if S has an upper bound.
- A **lower bound** of S is an element x in F such that $x \leq y$ for any $y \in S$. We say that S is **bounded below** if S has a lower bound.

Definition 1.8. Let F be an ordered field and let $S \subseteq F$.

- An element of S is called the **maximum** of S, denoted by $\max(S)$, if it is an upper bound of S.
- An element of S is called the **minimum** of S, denoted by $\min(S)$, if it is a lower bound of S.
- The minimum of the set of upper bounds of S is called the **supremum** of S, denoted by $\sup(S)$.
- The maximum of the set of lower bounds of S is called the **infimum** of S, denoted by $\inf(S)$.

1.3 The Real Field

Definition 1.9. \mathbb{R} is an ordered field such that every nonempty subset S of \mathbb{R} that is bounded above has a supremum. The elements of \mathbb{R} are called the **real numbers**.

Theorem 1.10 (Archimedean Property). For any $x, y \in \mathbb{R}$ with x > 0, there is a positive integer n such that

$$n \cdot x > y$$
.

Proof. Let

 $S = \{nx : n \text{ is a positive integer}\}.$

Suppose that y is an upper bound of S. It follows that S has a supremum z. Note that z-x is not an upper bound of S since z-x < z. Thus, z-x < mx for some positive integer m, implying z < (m+1)x, contradiction to the fact that z is an upper bound of S. Hence, y is not an upper bound of S, completing the proof.

Basic Topology

2.1 Metric Spaces

Definition 2.1. A set X and a function $d: X \times X \to \mathbb{R}$ form a **metric space** if the following properties hold for any $x, y, z \in X$.

- 1. $d(x,y) \ge 0$, and d(x,y) = 0 holds if and only if x = y.
- 2. d(x,y) = d(y,x).
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

Remark. We may use the underlying set X to represent the metric space (X, d), and in this case, the distance function d is denoted by d_X .

Definition 2.2. Let X be a metric space. For any $\epsilon > 0$ and $x \in X$, we define the **open ball** of radius ϵ centered at x by

$$B_{\epsilon}(x) = \{ y \in X : d_X(x, y) < \epsilon \}.$$

Definition 2.3. Let X be a metric space with $S \subseteq X$ and $x \in X$.

- We say that x is an **interior point** of S if $B_{\epsilon}(x) \subseteq S$ for some $\epsilon > 0$. If every point of S is an interior point of S, then S is said to be **open**.
- We say that x is an **limit point** of S if $(B_{\epsilon}(x) \setminus \{x\}) \cap S$ is not empty for all $\epsilon > 0$. If every limit point of S is a point of S, then S is said to be **close**.

Theorem 2.4. Let X be a metric space and $S \subseteq X$. Then S is open if and only if $X \setminus S$ is closed.

Proof. (\Rightarrow) Suppose that x is a limit point of $X \setminus S$. Then $B_{\epsilon}(x) \setminus S \neq \emptyset$ for any $\epsilon > 0$, implying that x is not an interior point of S. Since S is open, we have $x \notin S$, i.e., $x \in X \setminus S$. Thus, $X \setminus S$ is closed.

 (\Leftarrow) Let $x \in S$. If x is a limit point of $X \setminus S$, then $x \in X \setminus S$ since $X \setminus S$ is closed, contradiction. Thus, x is not a limit point of $X \setminus S$, and there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq S$, implying that S is open.

Theorem 2.5. Let $\{S_{\alpha}\}_{{\alpha}\in A}$ be a collection of open sets.

(a) $\bigcup_{\alpha \in A} S_{\alpha}$ is open.

(b) If A is nonempty and finite, then ⋂_{α∈A} S_α is open.
Proof.
(a) Suppose that x ∈ ⋃_{α∈A} S_α. Then x ∈ S_α for some α ∈ A. Since S_α is open, x is an interior point of S_α, and it follows that x is an interior point of ⋃_{α∈A} S_α. Thus, ⋃_{α∈A} S_α is open.
(b) Suppose that x ∈ ⋂_{α∈A} S_α. For each α ∈ A, since S_α is open, we have B_{ε_α}(x) ⊆ S_α for some ε_α > 0. Since A is finite and nonempty, ε = min({ε_α} s_{α∈A}) exists. It follows that B_ε(x) ⊆ ⋂_{α∈A} S_α, implying that x is an interior point of ⋂_{α∈A} S_α. Thus, ⋂_{α∈A} S_α is open.
Corollary 2.6. Let {S_α}_{α∈A} be a collection of closed sets.

(a) $\bigcap_{\alpha \in A} S_{\alpha}$ is closed.

(b) If A is nonempty and finite, then $\bigcup_{\alpha \in A} S_{\alpha}$ is closed.

Proof. Straightforward from Theorem 2.4 and Theorem 2.5.

2.2 Compact Sets

Definition 2.7. Let (X,d) be a metric space and let $S \subseteq X$.

- A cover of S is a collection of subsets of X whose union contains S. An open cover of S is a cover of S whose elements are all open.
- We say that S is **compact** if every open cover Ω of S contains a finite cover Φ of S.

Theorem 2.8. Let (X, d) be a metric space and let $R \subseteq S \subseteq X$. If S is compact and R is closed, then R is compact.

Proof. Suppose that R has an open cover Ω . Then $\Omega' = \Omega \cup \{X \setminus R\}$ is an open cover of S since $X \setminus R$ is open. Let $\Phi' \subseteq \Omega'$ be a finite cover of S, and let $\Phi = \Phi' \setminus \{X \setminus R\}$. Then Φ is a finite open cover of R with $\Phi \subseteq \Omega$. Thus, R is compact.

Theorem 2.9 (Nested Interval Theorem). Let $\langle I_n \rangle$ be a sequence of rectangles in \mathbb{R}^k such that $I_{n+1} \subseteq I_n$, then the intersection of $\{I_n : n \in \mathbb{N}\}$ is nonempty.

Proof. For each positive integer n, let

$$I_n = [a_n^{(1)}, b_n^{(1)}] \times \cdots \times [a_n^{(k)}, b_n^{(k)}].$$

For each $i \in \{1, \ldots, k\}$, we have

$$a_n^{(i)} \le a_{n+m}^{(i)} \le b_{n+m}^{(i)} \le b_m^{(i)}$$

for any $n, m \in \mathbb{N}$. Thus, $\{a_n^{(i)} : n \in \mathbb{N}\}$ is bounded above, implying the existence of

$$x_i = \sup(\{a_n^{(i)} : n \in \mathbb{N}\}).$$

We have

$$a_n^{(i)} \le x_i \le b_m^{(i)}$$

for any $n, m \in \mathbb{N}$. Thus,

$$x = (x_1, \dots, x_n) \in \bigcap_{n \ge 1} I_n,$$

completing the proof.

Theorem 2.10. Every k-cell in \mathbb{R}^k is compact.

Proof. Let $I = [a_1, b_1] \times \cdots \times [a_k, b_k]$. We have

$$||x - x'|| \le \sqrt{\sum_{i=1}^k (a_i - b_i)^2}$$

for any $x, x' \in I$. Assume that there is an open cover \mathcal{O} of I that contains no finite subcover of I. Let $c_i = (a_i + b_i)/2$ for all $i \in \{1, ..., n\}$, and let

$$C = \{I^{(1)} \times \dots \times I^{(k)} : I^{(i)} \in \{[a_i, c_i], [c_i, b_i]\} \text{ for } 1 \le i \le k\}$$

be a collection of 2^k k-cells whose union is I. Then there must be a k-cell $I' \in \mathcal{C}$ cannot be covered by any finite subset of \mathcal{O} , or I could be covered by that set, contradtion.

Thus, if I is not compact, then we can construct a sequence $\langle I_n \rangle$ of k-cells which are not covered by any finite subset of \mathcal{O} such that $I_1 = I$, $I_{n+1} \subseteq I_n$ for any integer $n \ge 1$, and

$$||x - x'|| \le \frac{\sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}}{2^{n-1}}$$

holds for any $x, x' \in I_n$. It follows that there is a point $y \in \bigcap \{I_n\}$, and we have $y \in S$ for some $S \in \mathcal{O}$. Since S is open, we have $B_r(y) \subseteq S$ for some r > 0. Let N be a positive integer such that

$$2^{N} > \frac{\sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}}{r/2}.$$

Then for any $x \in I_N$,

$$||x - y|| \le \frac{\sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}}{2^{N-1}} < r,$$

implying $x \in B_r(y) \subseteq S$. It follows that $I_N \subseteq S$, and $\{S\}$ is a finite subset of \mathcal{O} , contradtion. Thus, I is compact.

Theorem 2.11 (Heine–Borel Theorem). Let $S \subseteq \mathbb{R}^k$. Then S is compact if and only if S is closed and bounded.

Proof. (\Leftarrow) If S is closed and bounded, then there is a k-cell I with $S \subseteq I$. Since I is compact, and S is closed, we conclude that S is compact.

(⇒) Suppose that S is compact. Then S is closed. Since $\mathcal{O} = \{B_r(0_{\mathbb{R}^k}) : r \in \mathbb{N}\}$ is an open cover of S, there is $\mathcal{O}' \subseteq \mathcal{O}$ such that $S \subseteq \bigcup \mathcal{O}'$. It can be shown that $\bigcup \mathcal{O}'$ is bounded, and thus S is bounded.

Sequences and Series

Definition 3.1. Let X be a metric space and let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. We say that $(x_n)_{n\in\mathbb{N}}$ converges to a point $x\in X$, denoted by

$$\lim_{n \to \infty} x_n = x,$$

if for any real number $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

$$d_X(x_n, x) < \epsilon$$

holds for all $n \in \mathbb{N}$ with $n \geq n_0$.

- We say that $(x_n)_{n\in\mathbb{N}}$ is **convergent** if it converges to some point in X.
- We say that $(x_n)_{n\in\mathbb{N}}$ is **divergent** if it is not convergent.

Theorem 3.2. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a metric space X. If $(x_n)_{n\in\mathbb{N}}$ converges to both $x\in X$ and $x'\in X$, then x=x'.

Proof. For any $\epsilon > 0$, there exists a positive integer N such that

$$d_X(x_n, x) < \frac{\epsilon}{2}$$
 and $d_X(x_n, x') < \frac{\epsilon}{2}$

hold for any integer $n \geq N$. It follows that

$$d_X(x,x') \le d_X(x_n,x) + d_X(x_n,x') < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

holds for any integer $n \geq N$. Thus, x = x'.

Theorem 3.3. Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be real sequences with

$$\lim_{n \to \infty} a_n = L \quad \text{and} \quad \lim_{n \to \infty} b_n = M.$$

Then the following statements are true.

- (a) $\lim_{n \to \infty} (a_n + b_n) = L + M$, and $\lim_{n \to \infty} (a_n b_n) = L M$.
- (b) $\lim_{n\to\infty} a_n b_n = LM$.
- (c) If $L \neq 0$ and $a_n \neq 0$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} a_n^{-1} = L^{-1}$.

Proof.

(a) For any $\epsilon > 0$, there exists a positive integer N such that for any $n \geq N$, we have

$$|a_n - L| < \frac{\epsilon}{2}$$
 and $|b_n - M| < \frac{\epsilon}{2}$

implying

$$|(a_n + b_n) - (L + M)| \le |a_n - L| + |b_n - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

(b) Let C > 0 such that $|L| \le C$ and $|b_n| \le C$ for any positive integer n. For any $\epsilon > 0$, there exists a positive integer N such that for any $n \ge N$, we have

$$|a_n - L| < \frac{\epsilon}{2C}$$
 and $|b_n - M| < \frac{\epsilon}{2C}$,

implying

$$|a_n b_n - LM| = |(a_n - L)b_n + (b_n - M)L|$$

$$\leq |a_n - L||b_n| + |b_n - M||L|$$

$$< \frac{\epsilon(|b_n| + L)}{2C}$$

$$< \epsilon.$$

(c) For any $\epsilon > 0$, there exists a positive integer N such that for any $n \geq N$, we have

$$|a_n - L| < \frac{|L|^2 \epsilon}{2}$$
 and $|a_n - L| < \frac{|L|}{2}$.

It follows that

$$|a_n| = |L + (a_n - L)| \ge |L| - |a_n - L| > \frac{|L|}{2},$$

implying

$$\left| \frac{1}{a_n} - \frac{1}{L} \right| = \left| \frac{a_n - L}{a_n L} \right| = \frac{|a_n - L|}{|a_n||L|} < \frac{2|a_n - L|}{|L|^2} < \epsilon.$$

Definition 3.4. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of real numbers.

- We say that $(a_n)_{n\in\mathbb{N}}$ is increasing (resp., strictly increasing) if $a_n \leq a_{n+1}$ (resp., $a_n < a_{n+1}$) holds for all $n \in \mathbb{N}$.
- We say that $(a_n)_{n\in\mathbb{N}}$ is **decreasing** (resp., **strictly decreasing**) if $a_n \geq a_{n+1}$ (resp., $a_n > a_{n+1}$) holds for all $n \in \mathbb{N}$.

Theorem 3.5. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. If $(a_n)_{n\in\mathbb{N}}$ is increasing and its range is bounded above, then $(a_n)_{n\in\mathbb{N}}$ converges.

Proof. Let $L = \sup(\{a_n\}_{n \in \mathbb{N}})$. For any $\epsilon > 0$, since $L - \epsilon$ is not an upper bound of $\{a_n\}_{n \in \mathbb{N}}$, there exists $n_0 \in \mathbb{N}$ with $a_{n_0} > L - \epsilon$. Since $(a_n)_{n \in \mathbb{N}}$ is increasing, for any integer $n \geq n_0$ we have

$$L - \epsilon < a_{n_0} \le a_n \le L,$$

implying $|a_n - L| < \epsilon$. Thus, $(a_n)_{n \in \mathbb{N}}$ converges to L.

Definition 3.6. Let X be a metric space and let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. We say that $(x_n)_{n\in\mathbb{N}}$ is a **Cauchy sequence** if for any $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$, such that

$$d_X(x_n, x_m) < \epsilon$$

holds for any $n, m \in \mathbb{N}$ with $n \geq n_0$ and $m \geq n_0$.

Continuity

4.1 Limits of Functions

Definition 4.1. Let X and Y be a metric spaces. Let $f: D \to Y$ be a map with $D \subseteq X$. Then we say that $b \in Y$ is the **limit** of f at $a \in X$, denoted by

$$\lim_{x \to a} f(x) = b,$$

if for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$d_Y(f(x), b) < \epsilon$$

holds for any $x \in S$ with

$$0 < d_X(x, a) < \delta$$
.

4.2 Continuous Functions

Definition 4.2. Let X and Y be metric spaces. Let $f: D \to Y$ be a map with $D \subseteq X$. We say that f is **continuous** at $a \in X$ if for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$d_Y(f(x), f(a)) < \epsilon$$

holds for any $x \in D$ with

$$d_X(x,a) < \delta.$$

Also, we say that f is **continuous** on D if f is continuous at every point of D.

Theorem 4.3. Let X and Y be metric spaces. Let $f: X \to Y$ be a map. Then f is continuous if and only if $f^{-1}(E)$ is open for any open set E in Y.

Proof. To be completed. \Box

4.3 Continuity and Compactness

Theorem 4.4. Let X and Y be metric spaces. Let $f: X \to Y$ be a map. If $K \subseteq X$ is compact, then f(K) is compact.

Proof. To be completed. \Box

Chapter 5 Differentiation

Integration