This plugin takes a raster whose values span a wide range, and produces a raster with only five unique values: 1, 2, 3, 4 and 5, each with the same frequency as default (20%), or with class frequencies set by the user, using the advanced parameter settings.

1 – Installing and running the plugin:

To install de plugin, open the QGis plugins repository and find "Raster Quantilizer" on the list of all plugins, and click <u>Install Plugin</u>:

Once installed, **run the plugin** by opening Processing Toolbox and clicking at Raster Quantilizer, as shown:

2 -Running the plugin with default settings:

When the user runs the plugin, he accepts and uses the default settings, i.e., the same frequency (20%) for each of the five classes, as shown on Advanced Parameters:

The following table shows the relations between percentiles, class percentages and the percentile upper limits:

From percentile	To percentile	Class	Class	Percentile
		number	percentage	upper limit
0	20	1	20%	20
20	40	2	20%	40
40	60	3	20%	60
60	80	4	20%	80
80	100	5	20%	100

In the following example, taken from a Digital Terrain Model, and using the default parameters, the following quantilized raster was obtained:

Raster Quantilizer Plugin Ver. 0.2

The quantilized raster is:

The Histogram shows that the frequency of all five classes is, essentially, the same (20% each):

2 - Changing the plugin default settings:

Sometimes the user needs to quantilize a raster with different frequencies for the five classes. This can be achieved by changing the default values of the Upper Percentile Limits, as shown below:

In this case, the user wants to have a quantilized raster with a frequency of 5% for each class 1 and 5, and 30% frequency for each of the remaining classes:

From percentile	To percentile	Class	Class	Percentile
		number	percentage	upper limit
0	5	1	5%	5
5	35	2	30%	35
35	65	3	30%	65
65	95	4	30%	95
95	100	5	5%	100

The result is:

And the Histogram for this quantilized raster is:

This histogram shows that classes 1 and 5 have a frequency percentage of 5% each, and the other classes (2, 3 and 4) have a frequency percentage of 30% each.