Jakub Łabendowicz 10.03.2020r.

Sprawozdanie

E5.1 Pomiary SEM ogniwa metodą kompensacji.

Cel:

Celem ćwiczenia jest wyznaczenie siły elektromotorycznej za pomocą metody kompensacji.

Użyte wzory:

$$E_x = I * R_x$$

gdzie:

 E_x – siła elektromotoryczna

I – natężenie prądu elektrycznego

 R_x – opór elektryczny

Tabela:

1 ubout									
Lp.	I [A]	ΔΙ	Rx [Ω]	ΔRx	Ex [V]	Exśr	ΔΕχ	ΔExśr	ΔΕχ%
1	0,0006	0,0000058	8010		4,806		0,058		1,216
2	0,0008	0,0000074	6010		4,808		0,044		0,925
3	0,001	0,000009	4810		4,810		0,043		0,900
4	0,0012	0,0000106	4010	20	4,812	4,809	0,043	0,045	0,883
5	0,0014	0,0000122	3430		4,802		0,042		0,871
6	0,0016	0,0000138	3010		4,816		0,042		0,863
7	0,0018	0,0000154	2670		4,806		0,041		0,856

Przykładowe obliczenia:

$$E_x = I * R_x = 0.000600A * 8010\Omega = 4.806V$$

$$V = A * \Omega$$

Ocena niepewności:

Miernik cyfrowy:

 $\Delta I = klasa * odczyt + dokładność miernika$

 $\Delta I = 0.8\% * 0.0006A + 0.000001A = 0.0000058A$

 $\Delta I = 0.8\% * 0.0018 + 0.000001A = 0.0000154A$

Opornik dekadowy:

 $\Delta R_x = klasa * zakres + dokładność miernika$

 $\Delta R_x = 0.1\% * 10000\Omega + 10\Omega = 20\Omega$

Wzory:

$$\Delta E_{x} = R_{x} * \Delta I + I * \Delta R_{x}$$

$$\Delta E_{x\%} = \frac{\Delta E_x}{E_x} * 100\%$$

Obliczenia:

$$\Delta E_x = 8010\Omega * 0,0000058A + 0,0006A * 20\Omega = 0,058V$$

$$\Delta E_{x\%} = \frac{0,058V}{4,806V} * 100\% = 1,216\%$$

Wynik:

 $E_x = 4,809V \pm 0,045V$

Wnioski:

Cel ćwiczenia udał się. Szukana wartość wynosi 4,809V. Niepewność pomiaru jest niewielka i wynosi 0,045V. Błąd jest równy ułamek procenta.