cost ratio adaptively chosen for classifiers. The experimental results have shown the proposed approach can achieve the superior performance. In the future, the per-

formance of the proposed approach will be further improved, with more effective yet efficient under-sampling and over-sampling methods.

Table 3: AUC of 14 methods.

	SVM	Bugg	Ada	Asym	Unde	SMOTE	Char	RI	BRI	Under-RI	Over-RI	Cascado	Easy	My approach
Cen	0.991	0.995	0.998	9.508	0.989	0.495	0.996	0.784	0.749	0.786	0.785	0.996	0.994	0.993
. 7	0.400	0.466	0.474	0.670	0.075	0.476	0.070	0.001	0.000	0.77	0.401	0.074	0.074	0.407
ionosphere	0.700	0.702	1.00	1.00	1.00	1.000	1.00	1.00	0.709	1.00	1.000	1.000	1.400	0.784
letter	0.799	0.397	1.000	1.000	1.000	1.000	1.000	1.000	0.799	1.000	1.000	1.600	1.000	1.000
phoneme	0.010	0.055	0.265	0.965	0.053	0.964	0.960	0.065	0.960	0.052	0.964	0.962	0.958	0.911
ALCOHOL:	0.424	0.44	0.00	0.650	0.44	0.44	0.6	0.46	0.456	0.00	0.4.60	0.440	0.4.5	0.45
satimage	0. 30	0.740	U. O.	0.500	U. 743	0.5740	0.07	0.01	0.02	(Ja /2) E	U5 (U2	0.749	0.747	0.747
wabe	0.995	0.587	0.994	0.594	0.993	0.594	0.93	0.991	0.990	0.991	0.991	0.994	0.993	0.95
abalone	0.776	0.824	0.811	0.612	0.830	0.831	0.850	0.827	0.853	0.342	0.823	0.828	0.847	0.365
7 7	0.70	0.26	0.11	0.010	0.15	0.15	0. 56	0.24	0.055	0.712	0.60	0.025	0.017	0.000
balance	U.UIC	0.50	0.010	0.015	0.017	0.017	0.032	0.50	0.000	U. 172	0.4.56	0.037	0.055	0.090
Chec	0.692	0.705	0.675	0.675	0.671	9.686	0.696	0.669	0.683	0.676	0.666	0.086	0.704	0.726
haberman	0.200	0/60	0/41	0.030	0 10	0.45	0.20	0.44	0 75	0 42	0.41	0 52	0 (9	0.706
naberman	0. 00	0.003	0.041	0.033	0.040	0.047	0.030	0.041	0.077	0.042	0.041	0.055	0.000	0.700
housing	0.501	0.625	0.615	0.615	0.001	0.610	0.611	0.626	U. 70	UNDZU	0.626	0.808	0.625	0.839
mf-morph	0.917	0.887	0.888	0.888	0.916	0.912	0.712	0.880	0.901	0.91	0.881	0.905	0.918	0.931
	0.000	0.00	0.404	0.01	0.01	0.00	0.00	0446	0.00	0.000	0.0	0.01	0.404	0.029
mt-zernike	0.500	0.651	0. 200	0.001	0.001	0.002	0.70.	0.040	0.000	0.002	0.654	0.091	0.704	0.728
pi <mark>na</mark>	0.628	0.621	0.788	0.788	0. 0.	0. 92	0.786	0.621	0.00	0.010	0.812	U. 22	0.000	0.828
velticle	0.852	0.859	0.854	0.6 53	0.840	0.858	0.656	0.869	0.850	0.355	0.866	0.850	0.859	0.379
7	0.720	0.00	0.214	0.501	0.04	0.200	0.204	0.75	0.44	0 (1	0.70	0.710	0.205	0.729
White	0. 20	0.000	0. 10	J. / Z1	0.05-	0. 02	0. 00	0.077	0.040	0.001	0.070	0. 12	0. 07	0. Zc
average	0.851	0.838	0.842	0.843	0.846	0.850	0.853	0.823	0.828	0.833	0.823	0.853	0.858	0.884

Table 4: F-measure of 14 methods.

	SVM	Bagg	Ada	Asym	Under	SMOTE	Chan	RF	BRF	Under-RF	Over-RF	Cascade	Easy	My approach
car	0.909	0.933	0.967	0.966	0.884	0.930	0.916	0.307	0.521	0.513	0.518	0.945	0.917	0.943
ionosphere	0.926	0.883	0.907	0.910	0.900	0.907	0.910	0.906	0.887	0.895	0.904	0.903	0.903	0.929
letter	0.961	0.962	0.988	0.987	0.903	0.954	0.905	0.979	0.889	0.895	0.986	0.979	0.909	0.990
phoneme	0.726	0.834	0.850	0.852	0.819	0.847	0.837	0.850	0.821	0.813	0.851	0.833	0.822	0.730
satimage	0.582	0.641	0.664	0.668	0.546	0.610	0.607	0.666	0.553	0.557	0.689	0.647	0.572	0.607
wdbc	0.965	0.938	0.956	0.956	0.952	0.957	0.954	0.954	0.945	0.948	0.955	0.951	0.951	0.965
abalone	0.025	0.170	0.210	0.222	0.367	0.379	0.400	0.189	0.382	0.375	0.253	0.378	0.375	0.432
balance	0.000	0.000	0.000	0.000	0.175	0.149	0.156	0.000	0.167	0.168	0.000	0.198	0.161	0.443
стс	0.137	0.362	0.388	0.400	0.429	0.421	0.437	0.347	0.441	0.435	0.408	0.437	0.453	0.473
haberman	0.204	0.334	0.348	0.360	0.442	0.405	0.380	0.321	0.468	0.445	0.348	0.431	0.463	0.470
housing	0.264	0.419	0.475	0.485	0.529	0.532	0.523	0.445	0.515	0.537	0.490	0.516	0.523	0.558
mf-morph	0.011	0.263	0.321	0.344	0.579	0.560	0.635	0.261	0.627	0.602	0.349	0.587	0.623	0.650
mf-zernike	0.087	0.183	0.188	0.191	0.538	0.538	0.577	0.144	0.500	0.530	0.292	0.538	0.567	0.603
pima	0.612	0.644	0.611	0.613	0.644	0.627	0.618	0.641	0.663	0.668	0.656	0.648	0.654	0.669
vehicle	0.477	0.526	0.545	0.561	0.623	0.615	0.608	0.544	0.633	0.633	0.564	0.618	0.637	0.669
wpbc	0.301	0.410	0.432	0.444	0.449	0.459	0.448	0.393	0.401	0.419	0.397	0.450	0.438	0.396
average	0.449	0.531	0.553	0.559	0.611	0.618	0.619	0.496	0.588	0.589	0.541	0.628	0.623	0.658

Table 5: G-mean of 14 methods.

	SVM	Bagg	Ada	Asym	Under	SMOTE	Chan	RF	BRF	Under-RF	Over-RF	Cascade	Easy	My approach
car	0.944	0.964	0.980	0.981	0.956	0.969	0.970	0.452	0.693	0.687	0.690	0.980	0.973	0.982
ionosphere	0.941	0.906	0.820	0.922	0.918	0.922	0.923	0.918	0.911	0.916	0.918	0.920	0.921	0.941
letter	0.972	0.972	0.989	0.988	0.994	0.995	0.992	0.980	0.989	0.993	0.987	0.996	0.994	0.988
phoneme	0.796	0.880	0.8901	0.892	0.889	0.899	0.897	0.892	0.893	0.887	0.897	0.894	0.892	0.826
satimage	0.703	0.729	0.754	0.761	0.871	0.862	0.881	0.744	0.881	0.883	0.782	0.875	0.887	0.890
wdbc	0.972	0.950	0.963	0.963	0.963	0.964	0.962	0.962	0.957	0.960	0.963	0.962	0.963	0.972
abalone	0.076	0.337	0.396	0.412	0.765	0.742	0.778	0.363	0.790	0.778	0.457	0.752	0.780	0.792
balance	0.000	0.000	0.001	0.002	0.560	0.465	0.465	0.000	0.548	0.548	0.000	0.610	0.580	0.807
cmc	0.268	0.509	0.561	0.577	0.623	0.605	0.622	0.516	0.634	0.627	0.587	0.631	0.647	0.666
haberman	0.307	0.476	0.502	0.515	0.592	0.562	0.536	0.476	0.618	0.593	0.504	0.585	0.611	0.587
housing	0.382	0.553	0.615	0.627	0.725	0.710	0.698	0.580	0.718	0.735	0.638	0.710	0.730	0.738
mf-morph	0.018	0.483	0.560	0.594	0.873	0.841	0.920	0.479	0.918	0.888	0.597	0.863	0.914	0.926
mf-zernike	0.185	0.378	0.386	0.392	0.848	0.813	0.854	0.326	0.831	0.844	0.519	0.817	0.870	0.874
pima	0.690	0.720	0.694	0.696	0.719	0.708	0.700	0.717	0.735	0.740	0.731	0.728	0.732	0.730
vehicle	0.588	0.642	0.664	0.679	0.768	0.743	0.738	0.659	0.780	0.779	0.689	0.757	0.780	0.805
wpbc	0.378	0.510	0.537	0.549	0.617	0.610	0.585	0.477	0.567	0.588	0.494	0.630	0.628	0.598
average	0.513	0.625	0.644	0.659	0.792	0.775	0.782	0.596	0.778	0.777	0.653	0.794	0.806	0.820