REAL TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM USING IoT

Submitted by

SWATHI.A.P (113219041120)

SOWMYA.A (113219041114)

MADHUMITHA.S (113219041060)

KOKILA.B (113219041053)

BACHELOR OF ENGINEERING IN ELECTRONICS AND COMMUNICATION DEPARTMENT

FINAL CODE

Team ID	PNT2022TMID23523
	Real-time river water quality monitoring and control system

CODE:

Import common libraries
import numpy as np import
pandas as pd
import matplotlib.pyplot as plt

Import the PyGeohydro libaray tools import pygeohydro as gh from pygeohydro import NWIS, plot

Use the national water info system (NWIS)

nwis = NWIS()

Specify date range of interest dates

= ("2020-01-01", "2020-12-31") #

Filter stations to have only those with

proper dates stations =

```
info_box[(info_box.begin_date <=
dates[0]) &
(info_box.end_date >= dates[1])].site_no.tolist()
# Remove duplicates by converting to a set stations
= set(stations)
# Specify characteristics of interest
select_attributes = ['CAT_BASIN_AREA', 'CAT_ELEV_MAX',
'CAT_STREAM_SLOPE']
# Initialize a storage matrix
nldi_data = np.zeros((len(flow_data.columns), len(select_attributes)))
# Loop through all gages, and request NLDI data near each gage
for i, st in enumerate(flow_data.columns):
  # Navigate up all flowlines from gage
  flowlines = NLDI().navigate_byid(fsource = 'nwissite',
                    fid = f'\{st\}',
                    navigation="upstreamTributaries",
                    source = 'flowlines', distance = 10)
```

Get the nearest comid

 $station_comid = flowlines.nhdplus_comid.to_list()[0]$ # Source NLDI local data $nldi_data[i,:] = NLDI().getcharacteristic_byid(station_comid,$ "local", char_ids = select_attributes)