Math115A 2/10 notes

Vincent

2023-02-10

The matrix representation of the zero linear transformation $0: V \to W$ with respect to any ordered basis β, γ is $[0]^{\gamma}_{\beta} = (0)_{ij} \in M_{m \times n}(F)$ so the matrix that has all entries = 0

If V = W and β is an ordered basis for V then the identity linear transformation $I_V : V \to V$ defined by

$$I_V(x)=x, \forall x\in V$$
 has matrix rep $[I_V]^{\beta}_{\beta}=\begin{pmatrix} 1 & 0 \\ & 1 \\ 0 & 1 \end{pmatrix}\in M_{m\times n}$

14.1 Definition

Let $T, U : V \to W$ be two functions between vector spaces V, W over some field F. We define $T + U : V \to W$ by $(T + U)(v) = T(v) + U(v), \forall v \in V$. Also, if $c \in F$, we define $cT : V \to W$ by $(cT)(v) = cT(v), \forall v \in V$

14.2 Theorem

Let V, W be vector spaces and let $T, U : V \to W$ linear.

- (a) T + U and cT are linear, $\forall c \in F$
- (b) The set $\mathbb{L}(V, W)$ of linear transformations from V to W, with the operation of addition T + U and scalar multiplication cT defined in 14.1, is a vector space over the field F.

Proof:

- (a). if $x, y \in V$ Then (T+U)(x+y) = T(x+y) + U(x+y) = T(x) + T(y) + U(x) + U(y) = (T+U)(x) + (T+U)(y)Thus showing that T+U preservers addition similarly $(T+U)(cx) = T(cx) + U(cx) = cT(x) + cU(x) = c(T+U)(x) \forall c \in F$ So $T+U: V \to W$ is a linear. Similarly one shows that $cT: V \to W$ is linear
- (b) With the operations of addition and scalar multip. in (a) in defining 0 to be the zero transformation, that takes any $v \in V$ to 0_w , its very easy to check all VS1-8 axioms.

14.3 Notation

As already mentioned in 14.2 proof (b), we denote by $\mathbb{Z}(V, W)$. The set of linear transformations from V to W endowed with vector space structure defined in Theom 14.2 When V=W, denote $\mathbb{L}: (V, V) = \mathbb{L}(V)$

14.4 Theorem

Let V, W be linear dim vector spaces with ordered basis β , resp γ . If $T, U : V \to W$ are linear, Then:

If
$$I, U: V \to W$$
 are linear, The

(a)
$$[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$$

(b)
$$[cT]^{\gamma}_{\beta} = c[T]^{\gamma}_{\beta}, \forall c \in F$$

14.6 Corollary

Let V, W be finite dim vector and β, γ ordered basis for V, resp W.

The transformation from $\mathbb{L}(V,W)$ to $M_{m\times n}(F)$ defined by

 $T \to [T]^{\gamma}_{\beta}$ is linear and one to one **Proof:**

We already established linearity of this transformation and showed that $[T]^{\gamma}_{\beta} = [U]^{\gamma}_{\beta}$ then T + U, so one to