Chapter 21-27

Summary

Seon-Hee Seo

Electric Charge

 The strength of a particle's electrical interaction with objects around it depends on its electric charge, which can be either positive or negative.

Conductors and Insulators

 Conductors are materials in which a significant number of electrons are free to move. The charged particles in nonconductors (insulators) are not free to move.

Conservation of Charge

 The net electric charge of any isolated system is always conserved.

Coulomb's Law

 The magnitude of the electrical force between two charged particles is proportional to the product of their charges and inversely proportional to the square of their separation distance.

$$F = \frac{1}{4\pi\varepsilon_0} \frac{|q_1| |q_2|}{r^2}$$

Eq. 21-4

The Elementary Charge

- Electric charge is quantized (restricted to certain values).
- e is the elementary charge

$$e = 1.602 \times 10^{-19} \,\mathrm{C}.$$

Eq. 21-12

Definition of Electric Field

The electric field at any point

$$\vec{E} = \frac{\vec{F}}{q_0}.$$

Eq. 22-1

Electric Field Lines

 provide a means for visualizing the directions and the magnitudes of electric fields

Field due to a Point Charge

The magnitude of the electric field *E* set up by a point charge *q* at a distance *r* from the charge is

$$E = \frac{1}{4\pi\varepsilon_0} \frac{|q|}{r^2}.$$

Eq. 22-3

Field due to an Electric Dipole

 The magnitude of the electric field set up by the dipole at a distant point on the dipole axis is

$$E = \frac{1}{2\pi\varepsilon_0} \frac{p}{z^3}$$

Eq. 22-9

Field due to a Charged Disk

 The electric field magnitude at a point on the central axis through a uniformly charged disk is given by

$$E = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right)$$

Force on a Point Charge in an Electric Field

 When a point charge q is placed in an external electric field E

$$\vec{F} = q\vec{E}$$
.

Eq. 22-28

Dipole in an Electric Field

 The electric field exerts a torque on a dipole

$$\vec{\tau} = \vec{p} \times \vec{E}.$$

Eq. 22-34

The dipole has a potential energy
 U associated with its orientation in
 the field

$$U=-\overrightarrow{p}\cdot \overrightarrow{E}.$$

Eq. 22-38

Gauss' Law

• Gauss' law is

$$arepsilon_0 \Phi = q_{
m enc}$$

Eq. 23-6

 the net flux of the electric field through the surface:

$$\Phi = \oint \vec{E} \cdot d\vec{A}$$

Eq. 23-6

Applications of Gauss' Law

surface of a charged conductor

$$E = \frac{\sigma}{\varepsilon_0}$$

Eq. 23-11

- Within the surface *E=0*.
- line of charge

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$

Eq. 23-12

• Infinite non-conducting sheet

$$E=\frac{\sigma}{2\varepsilon_0}$$

Eq. 23-13

Outside a spherical shell of charge

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$$

Eq. 23-15

Inside a uniform spherical shell

$$E = 0$$

Eq. 23-16

• Inside a uniform sphere of charge

$$E = \left(\frac{q}{4\pi\varepsilon_0 R^3}\right) r.$$

Eq. 23-20

24 Summary (I)

Electric Potential

• The electric potential *V* at point *P* in the electric field of a charged object:

$$V = \frac{-W_{\infty}}{q_0} = \frac{U}{q_0},$$

Eq. 24-2

Electric Potential Energy

• Electric potential energy *U* of the particle-object system:

$$U = qV$$
.

Eq. 24-3

 If the particle moves through potential ΔV :

$$\Delta U = q \, \Delta V = q(V_f - V_i).$$

Eq. 24-4

Mechanical Energy

 Applying the conservation of mechanical energy gives the change in kinetic energy:

$$\Delta K = -q \, \Delta V.$$

Eq. 24-9

• In case of an applied force in a particle

$$\Delta K = -q \, \Delta V + W_{\text{app}}.$$

Eq. 24-11

• In a special case when $\Delta K=0$:

$$W_{\rm app} = q \, \Delta V \quad (\text{for } K_i = K_f).$$
 Eq. 24-12

Finding V from E

 The electric potential difference between two point *I* and *f* is:

$$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}$$

Eq. 24-18

24 Summary (II)

Potential due to a Charged **Particle**

 due to a single charged particle at a distance r from that particle:

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

Eq. 24-26

 due to a collection of charged particles

$$V = \sum_{i=1}^{n} V_i = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{q_i}{r_i}$$
. Eq. 24-27

Potential due to an Electric **Dipole**

The electric potential of the dipole is

$$V = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2}$$

Eq. 24-30

Potential due to a Continuous **Charge Distribution**

 For a continuous distribution of charge:

$$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$$

Eq. 24-32

Calculating E from V

The component of *E* in any direction

$$E_s = -\frac{\partial V}{\partial s}$$
. Eq. 24-40

Electric Potential Energy of a System of Charged Particle

• For two particles at separation *r*:

$$U=W=\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r}.$$

Eq. 24-46

Capacitor and Capacitance

 The capacitance of a capacitor is defined as:

$$q = CV$$

Eq. 25-1

Determining Capacitance

• Parallel-plate capacitor:

$$C=\frac{\varepsilon_0 A}{d}.$$

Eq. 25-9

Cylindrical Capacitor:

$$C=2\pi\varepsilon_0\frac{L}{\ln(b/a)}.$$

Eq. 25-14

• Spherical Capacitor:

$$C=4\pi\varepsilon_0\frac{ab}{b-a}.$$

Eq. 25-17

Isolated sphere:

$$C = 4\pi\varepsilon_0 R$$
.

Eq. 25-18

Capacitor in parallel and series

• In parallel:

$$C_{\rm eq} = \sum_{j=1}^n C_j$$

Eq. 25-19

In series

$$\frac{1}{C_{\text{eq}}} = \sum_{j=1}^{n} \frac{1}{C_j}$$

Eq. 25-20

Potential Energy and Energy Density

• Electric Potential Energy (U):

$$U = \frac{q^2}{2C} = \frac{1}{2}CV^2$$

Eq. 25-21&22

• Energy density (*u*)

$$u=\frac{1}{2}\varepsilon_0 E^2.$$

Eq. 25-25

Capacitance with a Dielectric

If the space between the plates of a capacitor is completely filled with a dielectric material, the capacitance C is increased by a factor κ, called the dielectric constant, which is characteristic of the material.

Gauss' Law with a Dielectric

 When a dielectric is present, Gauss' law may be generalized to

$$\varepsilon_0 \oint \kappa \vec{E} \cdot d\vec{A} = q.$$

Eq. 25-36

Current

• The electric current *i* in a conductor is defined by

$$i = \frac{dq}{dt}.$$

Eq. 26-1

Current Density

 Current is related to current density by

Eq. 26-4

Drift Speed of the Charge Carriers

 Drift speed of the charge carriers in an applied electric field is related to current density by

$$\vec{J} = (ne)\vec{v}_d,$$

Eq. 26-7

Resistance of a Conductor

 Resistance R of a conductor is defined by

$$R = \frac{V}{i}$$

Eq. 26-8

 Similarly the resistivity and conductivity of a material is defined by Eq. 26-10&12

 Resistance or a conducting wire of length *L* and uniform cross section is Eq. 26-16

Change of ρ with Temperature

 The resistivity of most material changes with temperature and is given as $\rho - \rho_0 = \rho_0 \alpha (T - T_0)$. Eq. 26-17

Ohm's Law

 A given device (conductor, resistor, or any other electrical device) obeys Ohm's law if its resistance R (defined by Eq. 26-8 as V/i) is independent of the applied potential difference V.

Resistivity of a Metal

 By assuming that the conduction electrons in a metal are free to move like the molecules of a gas, it is possible to derive an expression for the resistivity of a metal:

$$\rho = \frac{m}{e^2 n \tau}.$$

Power

 The power P, or rate of energy transfer, in an electrical device across which a potential difference V is maintained is

$$P = iV$$

Eq. 26-26

If the device is a resistor, we can write

$$P=i^2R=\frac{V^2}{R}$$

Eq. 26-27&28

Emf

 The emf (work per unit charge) of the device is

$$\mathscr{E} = \frac{dW}{dq} \quad \text{(definition of } \mathscr{E}\text{)}.$$

Single-Loop Circuits

Current in a single-loop circuit:

$$i=\frac{\mathscr{E}}{R+r},$$

Eq. 27-4

Eq. 27-1

Power

- The rate P of energy transfer to the charge carriers is P = iVEq. 27-14
- The rate P_r at which energy is dissipated as thermal energy in the battery is $P_r = i^2 r$. Eq. 27-16
- The rate P_{emf} at which the chemical energy in the battery changes is $P_{\rm emf} = i\%$. Eq. 27

$$P_{\text{emf}} = i\mathscr{E}$$
.

Eq. 27-17

Series Resistance

When resistances are in series

$$R_{\rm eq} = \sum_{j=1}^{n} R_j$$

Eq. 27-7

Parallel Resistance

When resistances are in parallel

$$\frac{1}{R_{\rm eq}} = \sum_{j=1}^n \frac{1}{R_j}$$

Eq. 27-24

RC Circuits

 The charge on the capacitor increases according to

$$q = C\mathscr{E}(1 - e^{-t/RC})$$

Eq. 27-33

During the charging, the current is

$$i = \frac{dq}{dt} = \left(\frac{\mathscr{E}}{R}\right)e^{-t/RC}$$
 Eq. 27-34

During the discharging, the current

is
$$i = \frac{dq}{dt} = -\left(\frac{q_0}{RC}\right)e^{-t/RC}$$
 Eq. 27-40