Bachelor-Vortrag Rillenhörner

Überblick

- Theorie
- Matlabmodelle
- Simulationen in CST Microwave Studio
- Herstellung
- Zusammenfassung

Aufbau von Rillenhörnern

Rillenhorntypen

- Aperturkontrolliert (Winkel < 20°)
- Öffnungswinkelkontrolliert (Winkel > 20°)
- Profilierte Hörner (nicht-lineares Profil)

In dieser Arbeit: nur aperturkontrollierte Rillenhörner mit einem Öffnungswinkel < 20°

Physikalischer Effekt

TE₁₁

 HE_{11}

Physikalischer Effekt

- Überführung der TE₁₁ Eigenwelle in eine hybride HE₁₁ Eigenwelle
- Unterschiedliche Randbedingungen für E- und H-Feld an metallischer Oberfläche
- Rillenstruktur -> gleiche
 Randbedingungen
 (E/H-Feld in radialer und axialer
 Richtung, nicht in Umfangrichtung)

Balanciert hybrider Zustand

- Annährung der Rillenstruktur als gleichmäßige Oberfläche (Voraussetzung: mehr als 3 Rillen/Wellenlänge)
- Oberflächenimpedanz unendlich für d = $\lambda/4$ (Kurzschluß transformiert in Leerlauf)
- "Balanciert hybrider Zustand"
- Amplitude kreissymmetrisch
- linear polarisiert

Modell der Balanciert hybriden Bedingungen (BH)

- Besselfunktion 1.
 Ordnung an der Apertur
- Nur Kopolarisation
- Gute Näherung in Hauptstrahlrichtung
- sehr einfach

Wandimpedanzmodell (WI) (1)

- Einbeziehung der Rillengeometrie
- Aussage über Ko- und Kreuzpolarisation
- Lösungen der charakterischen Gleichung -> Moden

Wandimpedanzmodell (2)

- Genauerer Verlauf bei Berücksichtigung mehrerer Eigenwellen
- Mehr als 8 nicht sinnvoll

Wandimpedanzmodell (3)

Wandimpedanzmodell und Balanciert-Hybrides-Modell

- WI-Modell genauer bei höherer Modenanzahl
- Hauptstrahlrichtung sehr ähnlich

Gaußmodell

- Gaußfunktion ist der Besselfunktion sehr ähnlich (an der Apertur)
- nur Kopolarisation
- einfache Formeln
- geeignet für optische Aufbauten

Anfangsregion

- Anpassung an den kreiszylindrischen Wellenleiter
- Variation der Rillenbreite und Rillentiefe (von λ/2 auf λ/4)
- langsamer Übergang
- hohe Bandbreite

Simulation in CST Microwave Studio

- Eingabe der Hörner mit Hilfe eines Makros
- sehr feine Strukturen
- viele Gitterzellen
- hoher Rechenaufwand

Simulationsparameter

- Aperturradius
- Öffnungswinkel
- Tiefe der Rillen
- Dichte der Rillen
- Anfangsregion: mit/ohne, Länge
- Frequenz 150 GHz, Wellenlänge 2mm, Rillentiefe 0,5mm

Einfluss des Aperturradius'

- größerer Radius -> niedrigere Strahlbreite
- Kreuzpolarisation fast unverändert

Einfluss des Öffnungswinkels

 Abhängigkeit der Strahlbreite vom Öffnungswinkel

Einfluss des Öffnungswinkels (2)

10° vs. 20° Öffnungswinkel

- Strahlbreite kleiner bei größerem Öffnungswinkel
- 0° 10° kaum Veränderung

Einfluss der Rillentiefe

- Rillentiefe beeinflußt Kreuzpolarisation
- λ/4 optimal
- Kopolarisation kaum beeinflußt

Zusammenhang Rillentiefe und Verhältnis Steg-/Rillenlänge

Optimale Rillentiefe, etwas tiefer als λ/4

Einfluss des Verhältnisses der Steg-/Rillenlänge

- t: Steglänge
- g: Rillenlänge
- Vergrößerung des Verhältnisses schwierig aufgrund mechanischer Stabilität

Einfluss der Rillendichte

 Mindestens 3 Rillen pro Wellenlänge

Einfluss der Anfangsregion

- Verbesserung der Anpassung durch Anfangsregion
- Alternative nur Variation der Rillentiefe
- durch Anfangsregion breitbandiger

Einfluss der Anfangsregion (2)

• Sollte 2 Wellenlängen lang sein

Zusammenfassung Simulation

- Apertur: Kopolarisation, Strahlbreite
- Rillengeometrie: Kreuzpolarisation, Minimum für d=λ/4
- Anfangsregion: Anpassung, Mindestlänge 2λ

Herstellung: Hornparameter

• Entwurf für 150 GHz, Wellenlänge 2mm

Parameter/Horn	1	2
Öffnungswinkel	20°	12°
Aperturradius	3λ	5λ
Tiefe der Rillen	0.26λ	0.26λ
Anzahl der Rillen	25	74

Überblick über die Herstellung

- Kern aus Aluminium drehen
- Kern mit Kupfer galvanisieren
- Kern wegätzen
- Flansch anbringen

Drehen des Kerns

Galvanisiert

Horn aufgeschnitten

Ergebnisse Fernfeld

Ergebnisse Fernfeld – Vergleich mit CST Simulation

Ergebnisse Fernfeld -Vergleich mit dem WI-Modell

Ergebnisse Feldmesssystem

Zusammenfassung

Vorteile:

- geringe Kreuzpolarisation
- symmetrischer Strahl
- niedrige Strahlbreite

Nachteile:

- aufwändige Fertigung
- Übereinstimmung Theorie, Praxis