COPY OF ALL CLAIMS

Ş

1. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I

$$R^4$$
 R^2
 R^1

where:

R¹ is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalƙyl, C_1 - C_6 -alkoxyiminomethyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, C_1 - C_6 -alkyl)aminosulfonyl,

N, N-di-(C_1 - C_6 -alkyl) aminosulfonyl ,

N-(C₁-C₆-alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

 $N-(C_1-C_6-alkyl)-N-(C_1-C_6-alkylsulfonyl)amino,$

 $N-(C_1-C_6--alkyl)-N-(C_1-C_6-haloalkylsulfonyl)amino,$

phenoxy, heterocyclyloxy, or phenylthio or heterocyclylthio, it being possible for the four last-mentioned radicals to be partially or fully halogenated and/or to carry one to two of the following one to three of the following substituents:

<u>5</u>.

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 R^2 , R^3 are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or halogen;

R4 is a compound IIa or IIb

$$(R^6)$$
 R^5
 R^5
 R^5
 R^5
 R^6

where

is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹,

OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked

heterocyclyl or O-(N-linked heterocyclyl), it being possible for the heterocyclyl radical of the two last-mentioned substituents to be partially or fully halogenated and/or to

Ŷ

carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R⁶ is nitro, halogen, cyano, C₁-C₆-alkyl,

C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,

di-(C₁-C₆-alkylthio)methyl,

 $(C_1-C_6-alkoxy)(C_1-C_6-alkylthio)$ methyl, hydroxyl,

C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,

 C_1 - C_6 -alkoxycarbonyloxy, C_1 - C_6 -alkylthio,

 C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl,

C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,

 C_1 - C_6 -haloalkylsulfonyl, C_1 - C_6 -alkylcarbonyl,

 C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or

C₁-C₆-haloalkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form an -O-(CH_2)_m-O-, -O-(CH_2)_m-S-, -S-(CH_2)_m-S-, -O-(CH_2)_n- or -S-(CH_2)_n chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a -(CH_2)_p chain which possibly is interrupted by oxygen or sulfur and/or is unsubstituted or substituted by one to four radicals from the following group: halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a methylidene group which is unsubstituted or substituted by one or two radicals from the following group: halogen, hydroxyl, formyl, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

or

two radicals, which are linked to the same carbon, together with this carbon form a carbonyl group;

or

two radicals, which are linked to different carbons, together form a -(CH₂)_n chain which is unsubstituted or

÷.

substituted by one to three radicals from the following group:

halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, hydroxyl or C₁-C₆-alkoxycarbonyl;

 R^7 is C_1-C_6 ,-alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl,

 C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cyloalkyl,

C₁-C₂₀-alkylcarbonyl, C₂-C₆-alkenylcarbonyl,

C₂-C₆-alkynylcarbonyl, C₃-C₆-cyloalkylcarbonyl,

C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl,

C₃-C₆-alkynyloxycarbonyl,

(C₁-C₂₀-alkylthio)carbonyl,

C₁-C₆-alkylaminocarbonyl,

C₃-C₆-alkenylaminocarbonyl,

 C_3 - C_6 -alkynylaminocarbonyl,

N,N-di-(C₁-C₆-alkyl)aminocarbonyl,

N-(C_3 - C_6 -alkenyl)-N-(C_1 - C_6 -alkyl) aminocarbonyl ,

N-(C_3 - C_6 -alkynyl)-N-(C_1 - C_6 -alkyl) aminocarbonyl ,

N-(C₁-C₆-alkoxy)-

N-(C_1 - C_6 -alkyl) aminocarbonyl, N-(C_3 - C_6 -alkenyl)-

N-(C₁-C₆-alkoxy) aminocarbonyl , N-(C₃-C₆-alkynyl)-

N-(C₁-C₆-alkoxy) aminocarbonyl, di-(C₁-C₆-alkyl)-

aminothiocarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl,

 C_1 - C_6 -alkoxyimino- C_1 - C_6 -alkyl,

N-(C₁-C₆-alkylamino) imino-C₁-C₆-alkyl or

N,N-di-(C₁-C₆-alkylamino)imino-C₁-C₆-alkyl, it being possible for the above-mentioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three of the following groups:

cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di-(C₁-C₄- alkyl)amino,

 C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxy- C_1 -

C₄-alkoxycarbonyl, di-(C₁-C₄-alkyl)amino-C₁-C₄-

alkoxycarbonyl, hydroxycarbonyl, C₁-C₄-alkylaminocarbonyl,

di-(C₁-C₄-alkyl)aminocarbonyl, aminocarbonyl, C₁-C₄-

alkylcarbonyloxy or C₃-C₆-cycloalkyl;

phenyl, phenyl-C₁-C₆-alkyl, phenylcarbonyl-C₁-C₆-alkyl,

phenylcarbonyl, phenoxycarbonyl, phenoxythiocarbonyl,

phenoxy-C₁-C₆-alkylcarbonyl, phenylaminocarbonyl, N-(C₁-

C₆-alkyl)-N-(phenyl)aminocarbonyl, or phenyl-C₂-C₆-

alkenylcarbonyl, it being possible for the phenyl radical of

the 10 last-mentioned substituents to be partially or fully

halogenated and/or to carry one to three of the following

radicals:

phenyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆-alkyl, phenylcarbonyl-C₁-C₆-alkyl, heterocyclylcarbonyl-C₁-C₆-alkyl, phenylcarbonyl,

heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, phenylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl- C_2 - C_6 -alkenylcarbonyl or heterocyclyl- C_2 - C_6 -alkenylcarbonyl, it being possible for the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -halogenalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^8 , R^9 are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, amino, C_1 - C_6 -alkylamino, C_1 - C_6 -haloalkylamino, it being possible for the abovementioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three of the following groups:

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di-(C_1 - C_4 - alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di-(C_1 - C_4 -alkyl)amino- C_1 - C_4 -

alkoxycarbonyl,

hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl;

phenyl, phenyl-C₁-C₆-alkyl, phenoxy, it being possible for the phenyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, it being possible for the phenyl and the heterocyclyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{10} is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, amino, C_1 - C_6 -alkylamino, di- $(C_1$ - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the

following group:

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl; phenyl, or phenyl- C_1 - C_6 -alkyl, where the phenyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl-or-heterocyclyl- C_1 - C_6 -alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{11} , R^{12} are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

- I is 0 to 6;
- m is 2 to 4;
- n is 1 to 5;

- p is 2 to 5; and their agriculturally useful salts.
- (currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 where
 - R¹ is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, it being possible for the two last-mentioned radical radicals to be partially or fully halogenated and/or to carry one to two carry one to three of the substituents mentioned below:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;
 - is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹

 OPSR⁸R⁹, NR¹⁰R¹¹ or N-bonded heterocyclyl, which is unsubstituted or partially or fully halogenated and/or carries one to three of the following radicals:

 nitro, cyano, C₁-C₄-alkyl, G₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-G₄-haloalkoxy.
- 3. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim I, where
 - R⁵ is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which is unsubstituted

i,

or partially or fully halogenated and/or carries one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy.

- 4. (previously presented) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where
 - R^7 is C_1 - C_6 -alkyl, C_1 - C_{20} -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, $(C_1$ - C_{20} -alkylthio)carbonyl, N_1 -di- $(C_1$ - C_6 -alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy- C_1 - C_6 -alkylcarbonyl, it being possible for the phenyl radical of the three last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;

 R^{11} is C_1 - C_6 -alkyl.

- (previously presented) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1, where
 - R⁶ is nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, di-(C₁-

 $C_6\text{-alkoxy})\text{methyl, di-}(C_1\text{-}C_6\text{-alkylthio})\text{methyl, }(C_1\text{-}C_6\text{-alkylthio})\text{-}$ $\text{alkoxy})(C_1\text{-}C_6\text{-alkylthio})\text{-}$ $\text{methyl, hydroxyl, }C_1\text{-}C_6\text{-alkoxy, }C_1\text{-}C_6\text{-haloalkoxy, }C_1\text{-}C_6\text{-alkylthio, }C_1\text{-}C_6\text{-haloalkylthio, }C_1\text{-}C_6\text{-alkylsulfinyl, }C_1\text{-}C_6\text{-alkylsulfinyl, }C_1\text{-}C_6\text{-alkylsulfonyl, }C_1\text{-}C_6\text{-alkylsulfonyl, }C_1\text{-}C_6\text{-alkylsulfonyl, }C_1\text{-}C_6\text{-haloalkylsulfonyl, }C_1\text{-}C_6\text{-haloalkylsulfonyl, }C_1\text{-}C_6\text{-haloalkylsulfonyl, }C_1\text{-}C_6\text{-haloalkylsulfonyl, }C_1\text{-}C_6\text{-haloalkylsulfonyl, }C_1\text{-}C_6\text{-haloalkylsulfonyl, }C_1\text{-}C_6\text{-haloalkylsulfonyl, }C_1\text{-}C_6\text{-haloalkoxycarbonyl, }C_1\text{-}C_6\text{-haloalkylcarbonyl, }C_$

or

two radicals , which are linked to the same carbon, together form an -O-(CH_2)_m-O-, -O-(CH_2)_m-S-, -S-(CH_2)_m-S-, -O-(CH_2)_n- or -S-(CH_2)_n chain which is unsubstituted or substituted by one to three radicals from the following group :

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

or

or

two radicals , which are linked to the same carbon, together form a $-(CH_2)_p$ chain which possibly is interrupted by oxygen or sulfur and which is unsubstituted or substituted by one to four radicals from the following group :

halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄ -alkoxycarbonyl;

15

two radicals, which are linked to the same carbon, together with this carbon form a carbonyl group.

6. (previously presented) A process for preparing compounds of the formula I as claimed in claim 1 where R⁵ = halogen, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)$$

where the variables R^1 to R^3 , and I are each as defined in claim 1, with a halogenating agent.

7. (previously presented) A process for preparing compounds of the formula I as claimed in claim 1 where $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ or $OPSR^8R^9$,

which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)$$

where the variables R^1 to R^3 , and I are each as defined in claim 1, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $Iv\delta$ or $IV\epsilon$,

where the variables R⁷ to R⁹ are each as defined in claim 1 and L¹ is a nucleophilically replaceable leaving group.

8. (currently amended) A process for preparing compounds of the formula I as claimed

in claim 1 where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, or N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where R^5 = halogen, OSO_2R^8),

$$(\mathsf{R}^6)_{\mathsf{I}} = \mathsf{R}^3 \\ \mathsf{R}^4 \\ \mathsf{R}^5 = \mathsf{R}^3 \\ \mathsf{R}^4 \\ \mathsf{R}^6 \\ \mathsf$$

I where R5= halogen or OSO₂R8

where the variables R^1 to R^3 , R^6 and I are each as defined in claim 1, with a compound of the formula $V\alpha,V\beta,V\gamma,V\delta,V\epsilon,V\eta,V\vartheta$,

HOR
7
 HSR 7 HPOR 8 R 9 HNR 10 R 11 HONR 11 R 12 (Vα) (Vβ) (Vγ) (Vδ) (Vε) H(N-linked heterocyclyl) $\frac{H(ON-linked)}{heterocyclyl}$

where the variables R7 to R12 are each as defined in claim 1, if appropriate

in the presence of a base.

9. (previously presented) A process for preparing compounds of the formula I as claimed in claim 1, where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (\equiv I where $R^5 = SR^8$),

$$(\mathsf{R}^6)_{\mathsf{I}} \overset{\mathsf{R}^3}{\longrightarrow} \mathsf{R}^2$$
 and/or
$$(\mathsf{R}^6)_{\mathsf{I}} \overset{\mathsf{R}^3}{\longrightarrow} \mathsf{R}^2$$

I where R5= SR8

where the variables R¹ to R⁸ and I are each as defined in claim 1, with an oxidizing agent.

10. (previously presented) A composition, comprising a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 and auxiliaries which

are conventionally used for formulating crop protection agents.

- 11. (previously presented) A process for preparing a composition as claimed in claim 10, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and auxiliaries which are conventionally used for formulating crop protection agents.
- 12. (previously presented) A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 1 to act on plants, their habitat and/or on seeds.
- 13. (canceled)
- 14. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I

$$\mathbb{R}^4$$
 \mathbb{R}^2 \mathbb{R}^2

where:

is hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxyiminomethyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, C_1 - C_6 -alkyl)aminosulfonyl,

N, N-di-(C_1 - C_6 -alkyl) aminosulfonyl ,

N-(C₁-C₆-alkylsulfonyl)amino,

N-(C₁-C₆-haloalkylsulfonyl)amino,

N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino,

 $N-(C_1-C_6--alkyl)-N-(C_1-C_6-haloalkylsulfonyl)$ amino,

phenoxy, heterocyclyloxy, or phenylthio or heterocyclylthio, it being possible for the two four last-mentioned radicals to be partially or fully halogenated and/or to carry one to two one to three of the following substituents:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 R^2 , R^3 are hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or halogen;

R⁴ is a compound lla

$$(\mathsf{R}^6)_{\mathsf{I}} \qquad (\mathsf{R}^6)_{\mathsf{I}} \qquad \mathsf{IIb}$$

where

R⁵ is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹,

OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), it being possible for the heterocyclyl radical of the two last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

nitro, cyano, C₁-G₄-alkyl, G₁-G₄-haloalkyl, G₁-G₄-alkoxy or G₁-G₄-haloalkoxy;

R⁶ is nitro, halogen, cyano, C₁-C₆-alkyl,

C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,

di-(C₁-C₆-alkylthio)methyl,

(C₁-C₆-alkoxy)(C₁-C₆-alkylthio)methyl, hydroxyl,

 C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy,

C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio,

C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,

 $C_1\text{-}C_6\text{-haloalkylsulfinyl},\ C_1\text{-}C_6\text{-alkylsulfonyl},$

C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,

 C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or

C₁-C₆-haloalkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form an -O-(CH_2)_m-O-, -O-(CH_2)_m-S-, -S-(CH_2)_m-S-, -

 $O-(CH_2)_n$ - or $-S-(CH_2)_n$ chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a -(CH_2)_p chain which possibly is interrupted by oxygen or sulfur and/or is unsubstituted or substituted by one to four radicals from the following group: halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_4 -alkoxycarbonyl;

or

two radicals , which are linked to the same carbon, together form a methylidene group which is unsubstituted or substituted by one or two radicals from the following group: halogen, hydroxyl, formyl, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

or

two radicals, which are linked to the same carbon,

together with this carbon form a carbonyl group;

or

·ś. · · · · · · · · · · · ·

two radicals , which are linked to different carbons, together form a $-(CH_2)_n$ chain which is unsubstituted or substituted by one to three radicals from the following group: halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, hydroxyl or C_1 - C_6 -alkoxycarbonyl;

 $R^7 \qquad \text{is C_1-C_6,-alkyl, C_3-C_6-alkenyl, C_3-C_6-haloalkenyl,} \\ C_3-C_6-alkynyl, C_3-C_6-haloalkynyl, C_3-C_6-cyloalkyl,} \\ C_1-C_{20}-alkylcarbonyl, C_2-C_6-alkenylcarbonyl,} \\ C_2-C_6-alkynylcarbonyl, C_3-C_6-cyloalkylcarbonyl,} \\ C_1-C_6-alkoxycarbonyl, C_3-C_6-alkenyloxycarbonyl,} \\ C_3-C_6-alkynyloxycarbonyl,} \\ (C_1-C_{20}-alkylthio)carbonyl,} \\ C_3-C_6-alkylaminocarbonyl,} \\ C_3-C_6-alkenylaminocarbonyl,} \\ C_3-C_6-alkynylaminocarbonyl,} \\ N,N-di-(C_1-C_6-alkyl)aminocarbonyl,} \\ N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl) aminocarbonyl,} \\ N-(C_3-C_6-alkenyl)-N-(C_1-C_6-alkyl) aminocarbonyl,} \\ N-(C_3-C_6-alkynyl)-N-(C_1-C_6-alkyl) aminocarbonyl,} \\ N-(C_3-C_6-alkynyl)-N-(C_3-C_6-alkyl) aminocarbonyl,} \\ N-(C_3-C_6-alkynyl)-N-(C_3-C_6-alkyl) aminocarbonyl,} \\ N-(C_3-C_6-alkyl)-N-(C_3-C_6-alkyl) aminocarbonyl,} \\ N-(C_3-C_6-alkyl)-N-(C_3-C_6-alkyl)-N-(C_3-C_6-alkyl)-N-(C_3-C_6-alkyl)-N-(C_3-C_6-alkyl)-N-(C_3-C_6-alkyl)-N-(C_3-C_6-alkyl)-N-(C_3-C_$

4,000

N-(C₁-C₆-alkoxy)-

N-(C₁-C₆-alkyl) aminocarbonyl, N-(C₃-C₆-alkenyl)-

N-(C₁-C₆-alkoxy) aminocarbonyl, N-(C₃-C₆-alkynyl)-

N-(C₁-C₆-alkoxy) aminocarbonyl, di-(C₁-C₆-alkyl)-

aminothiocarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl,

C₁-C₆-alkoxyimino-C₁-C₆-alkyl,

N-(C_1 - C_6 -alkylamino) imino- C_1 - C_6 -alkyl or

alkylcarbonyloxy or C₃-C₆-cycloalkyl;

N,N-di-(C_1 - C_6 -alkylamino)imino- C_1 - C_6 -alkyl, it being possible for the above-mentioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry one to three of the following groups: cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di-(C_1 - C_4 -alkyl) amino, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di-(C_1 - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkyl)

phenyl, phenyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, phenoxycarbonyl, phenoxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, phenylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(phenyl)aminocarbonyl, or phenyl- C_2 - C_6 -alkenylcarbonyl, it being possible for the phenyl radical of the 10 last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

4 . 5 . 5

phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, heterocyclyloxycarbonyl, phenoxythiocarbonyl, heterocyclyloxythiocarbonyl, phenoxy- C_1 - C_6 -alkylcarbonyl, heterocyclyloxy- C_1 - C_6 -alkylcarbonyl, phenylaminocarbonyl, N- $(C_1$ - C_6 -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N- $(C_1$ - C_6 -alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl- C_2 - C_6 -alkenylcarbonyl or heterocyclyl- C_2 - C_6 -alkenylcarbonyl, it being possible for the phenyl and the heterocyclyl-radical of the 20 last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -halogenalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -alkyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -alkoxy or C_1 - C_4 -alkoxy or C_1 - C_4 -alkyl, C_1 - C_4 -

haloalkoxy; $R^8, R^9 \ \text{are } C_1-C_6\text{-alkyl}, \ C_3-C_6\text{-alkenyl}, \ C_3-C_6\text{-haloalkenyl}, \ C_3-C_6\text{-alkynyl}, \ C_3-C_6\text{-cycloalkyl}, \ \text{hydroxyl}, \ C_1-C_6\text{-alkylamino}, \ C_1-C_6\text{-haloalkylamino}, \ \text{discrete}$ alkoxy, amino, $C_1-C_6\text{-alkylamino}, \ C_1-C_6\text{-haloalkylamino}, \ \text{discrete}$

 $(C_1-C_6$ -alkyl)amino or di- $(C_1-C_6$ -haloalkyl)amino, it being possible for the abovementioned alkyl, cycloalkyl and alkoxy radicals to be partially or fully halogenated and/or to carry

one to three of the following groups:

L. 7"

cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl; phenyl, phenyl- C_1 - C_6 -alkyl, phenoxy, it being possible for the phenyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenoxy, heterocyclyloxy, it being possible for the phenyl and the heterocyclyl radical of the last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{10} is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkynyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, amino, C_1 - C_6 -alkylamino, di- $(C_1$ - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino, it being possible for the abovementioned alkyl, cycloalkyl and alkoxy radicals to be

partially or fully halogenated and/or to carry one to three radicals from the following group: cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxycarbonyl, di- $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1 - C_4 -alkylaminocarbonyl, di- $(C_1$ - C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1 - C_4 -alkylcarbonyloxy or C_3 - C_6 -cycloalkyl; phenyl, or phenyl- C_1 - C_8 -alkyl, it being possible for the phenyl radical of the two last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the

phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl or heterocyclyl-G₁-G₆-alkyl, it being possible for the phenyl or heterocyclyl radical of the four last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{11} , R^{12} are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

I is 0 to 6;

following radicals:

m is 2 to 4;

- n is 1 to 5;
- p is 2 to 5; and their agriculturally useful salts.
- 15. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where
 - is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, it being possible for the two last-mentioned radical radicals to be partially or fully halogenated and/or to carry one to two one to three of the substituents mentioned below:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;
 - is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹

 OPSR⁸R⁹, NR¹⁰R¹¹ or N-bonded heterocyclyl which is unsubstituted or partially or fully halogenated and/or carries one to three of the following radicals:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.
- 16. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where

is halogen, OR⁷, NR¹⁰R¹¹ or N-bonded heterocyclyl which is unsubstituted or partially or fully halogenated and/or carries one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

- 17. (currently amended) A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 14, where
 - R⁷ is C₁-C₆-alkyl, C₁-C₂₀-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl, N,N-di-(C₁-C₆-alkyl)aminocarbonyl, phenyl, phenylcarbonyl or phenoxy-C₁-C₆-alkylcarbonyl, it being possible for the phenyl radical of the three last-mentioned substituents to be partially or fully halogenated and/or to carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;
 - R^{10} is C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy;
 - R^{11} is C_1 - C_6 -alkyl.
- 18. (previously presented) A process for preparing compounds of the formula I as claimed in claim 14 where R⁵ = halogen, which comprises reacting a

cyclohexanedione derivative of the formula III,

$$(R^6)$$

where the variables R¹ to R³, and I are each as defined in claim 14, with a halogenating agent.

19. (previously presented) A process for preparing compounds of the formula I as claimed in claim 14 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$

where the variables R^1 to R^3 , and I are each as defined in claim 14, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $Iv\delta$ or $IV\epsilon$,

$$L^1-R^7$$
 L^1-SO_2 R^8 $L^1-PR^8R^9$ $L^1-POR^8R^9$ $L^1-PSR^8R^9$ (IV α) (IV β) (IV β) (IV δ) (IV δ)

where the variables R⁷ to R⁹ are each as defined in claim 14 and L¹ is a nucleophilically replaceable leaving group.

20. (currently amended) A process for preparing compounds of the formula I as claimed in claim 14 where R⁵ = OR⁷, SR⁷, POR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², or N-linked

heterocyclyl N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where R⁵ = halogen, OSO₂R⁸),

$$(R^6) = \begin{pmatrix} R^3 & R^2 & R^3 & R^2 & R^4 &$$

I where R⁵= halogen or OSO₂R8

HOR'	HSR'	HPOR°R* HNR"R"		HONR"R"
(Va)	(Vβ)	(Vγ)	(Vδ)	(Vε)
H(N-linked		H(ON-linked		
heterocyclyl)		heterocyclyl)		
Vη		₩9		

where the variables R7 to R12 are each as defined in claim 14, if

appropriate in the presence of a base.

21. (previously presented) A process for preparing compounds of the formula I as claimed in claim 14 where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula I β (\equiv I where $R^5 = SR^8$),

$$(\mathsf{R}^6) \overset{\mathsf{R}^3}{\longleftarrow} \mathsf{R}^2$$
 and/or
$$(\mathsf{R}^6) \overset{\mathsf{R}^5}{\longleftarrow} \mathsf{R}^3$$

I where R5= SR8

where the variables R¹ to R⁵, R⁷, R⁸ and I are each as defined in claim 14, with an oxidizing agent.

22. (currently amended) A composition, comprising a herbicidally effective amount of at

least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 14 and conventional crop protection formulation auxiliaries which are conventionally used for formulating crop protection agents.

- 23. (currently amended) A process for preparing a composition as claimed in claim 22, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I and conventional crop protection formulation auxiliaries which are conventionally used for formulating crop protection agents.
- 24. (previously presented) A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of formula I as claimed in claim 14 to act on plants, their habitat and/or on seeds.

25. (canceled)