

DRIVER DROWSINESS DETECTION SYSTEM PRESENTATION

Importance of Drowsiness Detection in Driving

Driver drowsiness detection is crucial for preventing accidents, enhancing road safety, and improving overall driving performance

OVERVIEW OF DROWSINESS DETECTION

Statistics on Driver Fatigue and Accidents

Driver fatigue contributes to approximately 20% of annual road accidents, highlighting the critical need for detection systems.

Objectives of the Project

The project aims to develop an effective drowsiness detection system to enhance road safety and reduce accidents caused by driver fatigue.

Analytsis of the Jupyter Notebook

Step1

Structure of main.ipynb

The main.ipynb structure contains sections for data preprocessing, model training, evaluation, ensuring a systematic approach to driver drowsiness detection

Step2

Data Preprocessing Methods

Data preprocessing in main.ipynb includes normalization, handling missing values, and feature selection to enhance model accuracy and performance.

01

Overview of the Neural Network Architecture

The model employs a convolution neural network (CNN) architecture to effectively extract features from input images for drowsiness detection

03

Advantages of Chosen Architecture

The chosen architecture optimizes realtime processing, enhances accuracy in drowsiness detection, and supports scalability for future enhancements

02

Layers and Functions Explained

The model architecture consists of convolutional, pooling, and dense layers, optimizing feature extraction and classification for detecting driver drowsiness.