Ważnym pojęciem w analizie właściwości obiektów sterowania opisanych nieliniowymi równaniami stanu i wyjścia jest punkt stacjonarny. Rozważmy następujący model:

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = h(x(t))$$

Pierwsze równanie, to wektorowe równanie stanu określające, wymuszoną przez sygnały sterujące $\{u_i(t), i=1,...,m\}$, trajektorię stanu układu dynamicznego w przestrzeni n-wymiarowej (ściśle biorąc, na rozmaitości różniczkowej pełnego rzędu) jako symultaniczne rozwiązanie układu równań różniczkowych pierwszego rzędu postaci:

$$\dot{x}_{1} = f_{1}(x_{1}(t), x_{2}(t), ..., x_{n}(t); u_{1}(t), ..., u_{m}(t))$$

$$\dot{x}_{2} = f_{2}(x_{1}(t), x_{2}(t), ..., x_{n}(t); u_{1}(t), ..., u_{m}(t))$$

$$\dot{x}_{n} = f_{n}(x_{1}(t), x_{2}(t), ..., x_{n}(t); u_{1}(t), ..., u_{m}(t))$$

Wystarczy, że jedna z funkcji f_i jest nieliniowa, to mamy zadanie dynamiki nieliniowej, w którym to przypadku stosunkowo rzadko można uzyskać rozwiązanie jawne. Można wówczas spróbować je rozwiązać metodą całkowania numerycznego, pod warunkiem że rozwiązanie istnieje a iteracje są do niego zbieżne. Trudno jednak udowodnić istnienie rozwiązania w większości przypadków wielowymiarowych problemów nieliniowych, zwłaszcza dla przypadków z wymuszeniem.

Dlatego dostępnym sposobem analizy zachowania układu w niewielkim otoczeniu wybranego punktu przestrzeni stanu jest lokalna linearyzacja modelu. Autonomiczny, nieliniowy obiekt dynamiczny opisany jest równaniami:

$$\dot{x}(t) = f(x(t))$$

$$y(t) = h(x(t))$$

W szczególności istotne jest zachowanie układu autonomicznego (inaczej swobodnego, czyli pozbawionego sterowania) w otoczeniu tzw. punktów stacjonarnych, a więc takich, w których układ pozostaje w stanie ustalonym. Punkty te można wyznaczyć rozwiązując układ algebraicznych równań nieliniowych postaci:

$$f(x(t))=0.$$

Zakładamy, że układ jest regularny (niezdegenerowany). Wówczas rozwiązanie stanowi zbiór (izolowanych punktów w przestrzeni stanu $\{x_s^i, i=1,2,...,r\}$. Liczba miejsc zerowych funkcji wektorowej f wynika nie tylko z liczby współrzędnych wektora (liczby równań algebraicznych), ale zależy od typów nieliniowości .

Przykłady:

Układ dynamiczny pierwszego rzędu, o jednym stopniu swobody, opisany następującym równaniem stanu:

$$\dot{x} = -x^2 + 2$$

Ma dwa punkty stacjonarne: $X = -\sqrt{2}$ i $X = \sqrt{2}$.

Układ dynamiczny drugiego rzędu, o jednym stopniu swobody, opisany następującymi równaniami stanu:

$$\dot{x}_1 = x_1 + x_2,$$

 $\dot{x}_2 = x_1 \left(\cos x_2 + \frac{1}{2}\right),$

ma przeliczalnie wiele punktów stacjonarnych o współrzędnych:

$$\left[-\frac{\pi}{3}-2k\pi,\frac{\pi}{3}+2k\pi\right], \qquad k=0,1,...$$

W przypadku układów zdegenerowanych charakteryzujących się tzw. lokalnym defektem rzędu rozmaitości stanu lub istnieniem tzw. podrozmaitości osobliwej, miejscami zerowymi funkcji \boldsymbol{f} mogą być zbiory zwarte, o kowymiarze większym niż zero, np. orbity.

Nieliniowe układy afiniczne.

Ważną podklasę ogólnych modeli nieliniowych w przestrzeni stanu stanowią tzw. modele afiniczne:

$$\dot{x}(t) = f(x(t)) + g_1(x(t))u_1(t) + g_2(x(t))u_2(t) + \dots + g_m(x(t))u_m(t)$$
$$y(t) = h(x(t))$$

Modele tej klasy dobrze reprezentują (nie tylko lokalnie) dynamikę układów nieliniowych, w których, w równaniach stanu, można rozdzielić argumenty w postaci zmiennych stanu od sygnałów sterujących. Nie nakładają dodatkowych ograniczeń na dynamikę układu

autonomicznego. Akcję sterowań można interpretować jako możliwość wpływania na ewolucję wektora stanu w każdym aktualnym punkcie $\mathbf{x}(t)$ trajektorii, w hiperpłaszczyźnie $T_{\mathbf{x}}(\mathbf{x}(t))$ stycznej do niej w tym punkcie. Pola wektorowe $\{g_i(\mathbf{x}(t))\}$, $i=1,\ldots,m$ można interpretować jako kierunkowe współczynniki wzmocnienia odpowiednich sygnałów sterujących. Podkreślają one lokalny charakter sterowania (zmianę kierunku i "siły działania" skalarnego sygnału sterującego wzdłuż trajektorii stanu). Wektor sterowań jest elementem liniowej przestrzeni sterowań, co ułatwia operowanie nim. Z punktu widzenia sterowalności układu istotne, aby pola wektorowe tworzyły układ wektorów lokalnie liniowo niezależnych, a po uzupełnieniu o pole wektorowe $f(\mathbf{x}(t))$ umożliwiały osiąganie dowolnego punktu w przestrzeni stanu z dowolnego stanu początkowego poprzez odpowiednie sterowanie.

Linearyzacja modelu w otoczeniu punktu stacjonarnego.

Linearyzację modelu ogólnego przeprowadzimy dla otoczenia wybranego punktu stacjonarnego \mathbf{x}_{s}^{i} . Dla przejrzystości i bez utraty ogólności rozważań, w następujących dalej wzorach, pomińmy indeks górny i, wskazujący na konkretny punkt stacjonarny oraz indeks dolny s informujący, że chodzi o punkt stacjonarny jako punkt referencyjny . Zakładamy, że w tym punkcie $\mathbf{u}(0) = \mathbf{0}$. Używany w symbol normy oznacza normę Euklidesa.

Przez otoczenie punktu stacjonarnego rozumiemy n-wymiarową hiperkulę o środku w \mathbf{x} \mathbf{s}^i i o małym promieniu ε ($\|\varepsilon\| \ll 1$), oznaczoną $\mathbf{B_n}(\mathbf{x}_{\mathbf{s}^i}, \varepsilon)$. Rozwijając w szereg Taylora prawą stronę równania stanu układu autonomicznego otrzymujemy w zapisie symbolicznym:

$$\dot{z}(t) = f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} (z - x)^n$$
,

gdzie: \mathbf{z} oznacza dowolny wektor o końcu wewnątrz hiperkuli $\mathbf{B}_{\mathbf{n}}(\mathbf{x}_{s}^{i}, \varepsilon)$, $(\mathbf{z} - \mathbf{x})$ oznacza odchylenie od punktu stacjonarnego, $\|(\mathbf{z} - \mathbf{x})\| < \varepsilon$, symbol $\mathbf{f}^{(\mathbf{n})}(\mathbf{x})$ reprezentuje dla n=0 wartość *momentum* $\mathbf{f}(\mathbf{x})$ w punkcie stacjonarnym \mathbf{x} (równą zerowemu wektorowi),

• dla n=1 $f^{(1)}(\mathbf{x})$ reprezentuje Jacobian $J(\mathbf{x})$ wektorowego momentum, czyli gradient $\partial f/\partial \mathbf{z}^{\mathrm{T}}$ obliczony w punkcie stacjonarnym \mathbf{x} ;

- dla n=2 $\frac{f^{(2)}(\mathbf{x})}{2!}(\mathbf{z}-\mathbf{x})^2$ symbolizuje formę kwadratową $(\mathbf{z}-\mathbf{x})^T H(\mathbf{x})(\mathbf{z}-\mathbf{x})$, a $H(\mathbf{x})$ oznacza Hessjan: $\partial^2 f/\partial \mathbf{z}^T \partial \mathbf{z}$ obliczony w punkcie stacjonarnym \mathbf{x} .
- Dla n>2 są to formy tensorowe wyższych rzędów.

Z założonej analityczności f wynika, że normy tensorów, w tym Jacobianu i Hessjanu (wartości wyznaczników) są skończone. Oznaczmy je odpowiednio przez J i H. Ograniczmy rozwinięcie w szereg Taylora do trzech pierwszych wyrazów i przejdźmy do obliczenia normy po obu stronach równania:

$$\|\dot{z}(t)\| = \|f(z)\| = \|f(x) + J(x)(z-x) + (z-x)^T H(x)(z-x)\|$$

Z własności normy mamy:

$$\|\dot{z}(t)\| \leq J\varepsilon + H\varepsilon^2$$

J i \mathbf{H} są skończone (podobnie jak tensory wyższych rzędów), $\ldots \ll \mathcal{E}^3 \ll \mathcal{E}^2 \ll \mathcal{E}$, $\parallel \mathbf{f}(\mathbf{x}) \parallel = 0$ (wektor zerowy). Na tej podstawie wnioskujemy, że dla oszacowania wartości wektora *momentum* (prędkości zmian stanu) można się ograniczyć do zlinearyzowanego modelu:

$$\dot{z}(t) = A z(t),$$

gdzie: $\mathbf{A} = \mathbf{J}$ (macierz stanu o stałych elementach, modelu zlinearyzowanego równa Jacobianowi funkcji momentum, obliczonemu w punkcie stacjonarnym \mathbf{X} , $\mathbf{z}(t)$ – wektor stanu linearyzowanego układu pozostający w obrębie jego otoczenia ($\mathbf{B}_{\mathbf{n}}(\mathbf{X}_{\mathbf{s}}^{i}, \boldsymbol{\varepsilon})$).