«Механическая» эра вычислительной техники

Хронология основных событий «механической» эры выглядит следующим образом:

- **1492 год**. В одном из своих дневников Леонардо да Винчи приводит рисунок тринадцатиразрядного десятичного суммирующего устройства на основе зубчатых колес.
- **1623 год**. Вильгельм Шиккард (WilhelmSchickard, 1592–1635), профессор университета Тюбингена, разрабатывает устройство на основе зубчатых колес («считающие часы») для сложения и вычитания шестиразрядных десятичных чисел.Былоли устройство реализовано при жизни изобретателя, достоверно неизвестно, нов1960 году оно было воссоздано и проявило себя вполне работоспособным.
- **1642 год**. Блез Паскаль (BlaisePascal, 1623–1663) представляет «Паскалин» первое реально осуществленное и получившее известность механическое цифровоевычислительное устройство. Прототип устройства суммировал и вычитал пятиразрядные десятичные числа. Паскаль изготовил более десяти таких вычислителей,причем последние модели оперировали числами длиной в восемь цифр.
- 1673 год. Готфрид Вильгельм Лейбниц (GottfriedWilhelmLeibniz, 1646–1716) создает «пошаговый вычислитель» десятичное устройство для выполнения всехчетырех арифметических операций над 12-разрядными десятичными числами. Результат умножения представлялся 16 цифрами. Помимо зубчатых колес, в устройстве использовался новый элемент ступенчатыйвалик.
- 1786 год. Немецкий военный инженер Иоганн Мюллер (Johann Mueller, 1746–1830) выдвигает идею «разностной машины» специализированного калькулятора длятабулирования логарифмов, вычисляемых разностным методом. Калькулятор, построенный на ступенчатых валиках Лейбница, получился достаточно небольшим (13 см в высоту и 30 см в диаметре), но при этом мог выполнять все четыре арифметических действия над 14-разрядными числами.
- **1801 год**. Жозеф Мария Жаккард (Joseph-MarieJacquard, 1752–1834) строит ткацкий станок с программным управлением, программа работы которого задается с помощью комплекта перфокарт.
- 1832 год. Английский математик Чарльз Бэббидж (Charles Babbage, 1792–1871)создает сегмент разностной машины, оперирующий шестиразрядными числамии разностями второго порядка. Разностная машина Бэббиджа по идее аналогичнакалькулятору Мюллера.
- **1834 год**. Пер Георг Шутц (Per George Scheutz, 1785–1873) из Стокгольма, используя краткое описание проекта Бэббиджа, создает из дерева небольшую разностнуюмашину.
- 1836 год. Бэббидж разрабатывает проект «аналитической машины». Проект предусматривает три считывателя с перфокарт для ввода программ и данных, память (поБэббиджу «склад») на пятьдесят 40-разрядных чисел, два аккумулятора для хранения промежуточных результатов. В программировании машины предусмотренаконцепция условного перехода. В проект заложен также и прообраз микропрограммирования содержание

- инструкций предполагалось задавать путем позиционирования металлических штырей в цилиндре с отверстиями. По оценкам автора, суммирование должно было занимать 3 с, а умножение и деление 2–4 мин.
- **1843 год**. Георг Шутц совместно с сыном Эдвардом (EdvardScheutz, 1821–1881)строят разностную машину с принтером для работы с разностями третьего порядка.
- **1871 год**. Бэббидж создает прототип одного из устройств своей аналитической машины «мельницу» (так он окрестил то, что сейчас принято называть центральным процессором), а также принтер.
- **1885 год**. ДоррФельт (Dorr E. Felt, 1862–1930) из Чикаго строит свой «комптометр» первый калькулятор, где числа вводятся нажатием клавиш.
- **1890 год**. Результаты переписи населения в США обрабатываются с помощью перфокарточного табулятора, созданного Германом Холлеритом (HermanHollerith,1860–1929) из Массачусетсского технологического института.
- **1892 год**. Вильям Барроуз (William S. Burroughs, 1857–1898) предлагает устройство, схожее с калькулятором Фельта, но более надежное, и от этого события беретстарт индустрия офисных калькуляторов.
- **1937 год**. ДжоржСтибитц (George Stibitz, 1904–1995) из Bell Telephone Laboratoriesдемонстрирует первый однобитовый двоичный вычислитель на базе электромеханических реле.
- **1937 год**. Алан Тьюринг (Alan M. Turing, 1912–1954) из Кембриджского университета публикует статью, в которой излагает концепцию теоретической упрощенной вычислительной машины, в дальнейшем получившей название машиныТьюринга.
- **1938 год**. Клод Шеннон (Claude E. Shannon, 1916–2001) публикует статью о реализации символической логики на базе реле.
- **1938 год**. Немецкий инженер Конрад Цузе (KonradZuse, 1910–1995) строит механический программируемый вычислитель Z1 с памятью на 1000 битов. В последнеевремя Z1 все чаще называют первым в мире компьютером.
- **1939 год**. Джордж Стибитц и Сэмюэль Вильямс (Samuel Williams, 1911–1977) представили Model I калькулятор на базе релейной логики, управляемый с помощьюмодифицированного телетайпа, что позволило подключаться к калькулятору потелефонной линии. Более поздние модификации допускали также определеннуюстепень программирования.
- **1940 год**. Следующая работа Цузе электромеханическая машина Z2, основу которой составляла релейная логика, хотя память, как и в Z1, была механической.
- **1941 год**. Цузе создает электромеханический программируемый вычислитель Z3. Вычислитель содержит 2600 электромеханических реле. Z3 это первая попыткареализации принципа программного управления, хотя и не в полном объеме (в общепринятом понимании этот принцип еще не был сформулирован). В частности, не предусматривалась возможность условного перехода. Программа хранилась наперфоленте. Емкость (количество элементов данных, которые могут храниться) памяти составляла 64 22-битовых слова. Операция умножения занимала 3–5 с.

1943 год. Группа ученых Гарвардского университета во главе с Говардом Айкеном(HowardAiken, 1900–1973) разрабатывает вычислитель ASCC Mark I (AutomaticSequence-ControlledCalculator Mark I) — первый программно управляемый вычислитель, получивший широкую известность. Длина устройства составила 18 м,а весило оно 5 т. Машина состояла из множества вычислителей, обрабатывающихсвои части общей задачи под управлением единого устройства управления. Команды считывались с бумажной перфоленты и выполнялись в порядке считывания. Данные считывались с перфокарт. Вычислитель обрабатывал 23-разрядные числа,при этом сложение занимало 0,3 с, умножение — 4 с, а деление — 10 с.

1945 год. Цузе завершает Z4 — улучшенную версию вычислителя Z3. По архитектуре у Z4 очень много общих черт с современными ВМ: память и процессор представлены отдельными устройствами, процессор может обрабатывать числа с плавающей запятой и, в дополнение к четырем основным арифметическим операциям,способен извлекать квадратный корень. Программа хранится на перфоленте и считывается последовательно.