3.15. Suppose $f, g \in \mathcal{V}(S, T)$ and that there exist constants C, D such that

$$C + \int\limits_S^T f(t,\omega) dB_t(\omega) = D + \int\limits_S^T g(t,\omega) dB_t(\omega) \qquad \text{for a.a. } \omega \in \Omega \;.$$

Show that

$$C = D$$

and

$$f(t,\omega) = g(t,\omega)$$
 for a.a. $(t,\omega) \in [S,T] \times \Omega$.

$$\mathbb{E}\left[\left(C-D\right)^{2}\right]=\mathbb{E}\left[\left(\int_{S}^{T}\left(g(t,\omega)-f(t,\omega)\right)dB_{t}(\omega)\right)^{2}\right]$$

On the other hand,

$$C-D=\mathbb{E}\left[(c-D)|F_{s}\right]=\mathbb{E}\left[\int_{s}^{T}\left(g(t,\omega)-f(t,\omega)\right)dB_{r}(\omega)|F_{s}\right]=0$$

Hence, C=D. Moreover, $(C-D)^2=0$ and $\mathbb{E}[(C-D)^2]=0$. Therefore,