Designing complex molecular qubits by using QC simulator and relativistic quantum chemistry

kuchemQCL

S. Nishio, K. Hino, K. Ueda,

Y. Miyokawa, M. Tsumura, T. Yoshida

From Theoretical Chemistry Lab.,

Graduate School of Science, Kyoto University

QPARC Challenge 2022 kuchemQCL 1 / 1

Introduction

Metal complex as molecular qubit candidate

Single molecule magnets (SMMs) are candidates for molecular qubits

Metal complex molecules that have total spin of S>1 shows zero-field splitting (ZFS), which leads to magnetic hysteresis

ZFS parameter, D, is a key to design SMMs, which can be efficiently calculated by wavefunction theories

Relativistic calculation is needed

Spin-orbit coupling should be considered in these systems

→ relativistic quantum chemistry methods

When S>1, ZFS appears

QPARC Challenge 2022 kuchemQCL 2 / 19

Our demonstration

$[Co(II)(OPh)_4]^{2-}$ complex

Formula : $C_{24}H_{20}CoO_4$, 225 electrons

Total spin is S=3/2 (quartet)

ref. https://doi.org/10.1021/ja2100142

QPARC Challenge 2022 kuchemQCL 3 / 1

Method 1. Classical calculation

Relativistic quantum chemistry calculations

We used Dirac-Coulomb Hamiltonian

We performed Dirac-Hartree-Fock (Dirac-HF) and subsequently Dirac-complete active space self-consistent field (Dirac-CASSCF) method to obtain exact values

CAS wavefunction and FCIDUMP

1e- and 2e-integrals of active orbitals are obtained as FCIDUMP format

Sum of nuclear and core orbital energy is treated as constant

$$\hat{H}_{\text{rel}} = \sum_{pq} h_{pq} \hat{E}_{pq} + \frac{1}{2} \sum_{pqrs} v_{pq,rs} \hat{E}_{pq,rs}$$

$$\hat{h}(1) = c^2(\beta - I_4) + c(\boldsymbol{\alpha}_1 \cdot \hat{\mathbf{p}}_1) - \sum_{A}^{\text{atoms}} \frac{Z_A}{r_{1A}} \operatorname{erf}(\sqrt{\zeta_A} r_{1A})$$

$$\hat{v}(1,2) = \frac{1}{r_{12}} - \left(\frac{\boldsymbol{\alpha}_1 \cdot \boldsymbol{\alpha}_2}{r_{12}} + \frac{(\boldsymbol{\alpha}_1 \cdot \boldsymbol{\nabla}_1)(\boldsymbol{\alpha}_2 \cdot \boldsymbol{\nabla}_2)r_{12}}{2}\right)$$
Omitted in our calculations

CAS consists of 7 electrons in 5 3d-orbitals

Packages and reference

We used BAGEL (https://nubakery.org) to perform Dirac-HF and Dirac-CASSCF

ref. https://doi.org/10.1016/j.poly.2013.04.008

QPARC Challenge 2022 kuchemQCL 4 / 1

Method 2. Quantum algorithm

Quantum algorithm

We utilized Dirac-CAS Hamiltonian obtained with BAGEL for VQE / SS-VQE algorithms

ref. https://dojo.qulacs.org/ja/latest/notebooks/6_quantum_chemistry_calculation.html

Anzats: hardware-efficient

Noise free

Depth is equal to the number of qubits

Cost function for SS-VQE

It is reported that VQE / SS-VQE are not efficient for degenerate systems ref. http://arxiv.org/abs/2111.02448

→We tried to avoid this problem by tuning weights in the cost function

Packages

We used OpenFermion, Qulacs, SciPy, and some self-made python scripts

QPARC Challenge 2022 kuchemQCL 5 / 10

Implementation efforts

Symmetry for 2e-integrals of Dirac-HF/CASSCF

Integrals in FCIDUMP that can be restored from symmetry are not written in the files!

→ We implemented scripts that fills integral matrices (fill_fcidump.py)

Orbital swap Kramers permutation $(pq|rs) = (qp|sr)^* \qquad (pq|rs) = (pq|\bar{s}\bar{r}) = (\bar{q}\bar{p}|rs) = (\bar{q}\bar{p}|\bar{s}\bar{r}) \\ (\bar{p}q|rs) = (\bar{p}q|\bar{s}\bar{r}) = -(\bar{q}p|rs) = -(\bar{q}p|\bar{s}\bar{r}) \\ (\bar{p}q|rs) = (\bar{p}q|\bar{s}r) = -(\bar{p}q|\bar{s}r) = (\bar{q}p|\bar{s}r) \\ (pq|rs) = (rs|pq) \qquad (\bar{p}q|r\bar{s}) = -(\bar{p}q|s\bar{r}) = -(\bar{q}p|r\bar{s}) = (\bar{q}p|s\bar{r})$

ref. https://doi.org/10.1063/1.3592148

Adaptation of complex-valued Hamiltonian

In Qamuy and Qulacs, complex-valued FCIDUMP and Anti-Hermite Pauli operators

are not supported

QPARC Challenge 2022 kuchemQCL 6 / 1

Workflow of our demo

Libraries	Processes	Returns
BAGEL	Dirac Hartree-Fock and Dirac CASSCF	Complex-valued FCIDUMP $E_{ m core}$, part of matrices $(p q)$ and $(pq rs)$ Exact values for comparison
>our script	Fill integral matrices by using symmetry rules	Complete matrices $(p q)$ and $(pq rs)$
OpenFermion	Get second quantized $\hat{H} \implies$ JW transformation	JW Hamiltonian (Sum of Pauli operator products)
Qulacs	Set quantum circuit VQE / SS-VQE	Cost function (No sampling)
SciPy	Minimize cost function → (BFGS method)	CASCI Energy, CI coefficients

QPARC Challenge 2022 kuchemQCL 7 / 19

Result 1. H₂ and O₂

Demonstrations for small molecules, relativistic VQE-CASCI

Exact values are obtained with BAGEL

| H₂ in singlet states, CAS(2e, 2o)

Exact -1.10844849 a.u. Error is less than 1e-9 a.u. Well converged! O₂ in triplet states, CAS(4e, 4o)

Exact -149.52905903 a.u. VQE conv -149.51136880 a.u. Error 1.77e-2 a.u.

QPARC Challenge 2022 kuchemQCL 8 / 1

Result 2. $[Co(OPh)_4]^{2-}$

$[Co(OPh)_4]^{2-}$ complex, CAS(7e, 5o)

Cost function is tuned as

$$L(\theta) = 2\langle GS(0)|\hat{H}|GS(0)\rangle + 1\langle GS(1)|\hat{H}|GS(1)\rangle$$

 \rightarrow weights should be tuned further? largely dependent on $\theta_{\rm init}$ difficult to conv at global min.

QPARC Challenge 2022 kuchemQCL 9 / 1

Conclusions, Members, and Acknowledgements

Conclusions

We present Dirac-CASCI simulation of [Co(II)(OPh)₄]²⁻ on VQE / SS-VQE

Our efforts: cost function and weight tuning see README.md for more detail!!!

Energy convergence is not good, due to weights of SS-VQE cost function, degeneracy, or anzats...?

Future prospects: fix convergence problem, obtain D value from SS-VQE, orbital optimization...?

Members of team kuchemQCL

NISHIO, Soichiro – team management, research, classical calculation, coding, and presentation

HINO, Kentaro – coding, research, team management, and presentation

UEDA, **Koki** - coding

MIYOKAWA, Katsuki – classical calculations

TSUMURA, Masaya - coding

YOSHIDA, Takumi – classical calculations

We are graduate students at theoretical chemistry lab. of Graduate School of Science, Kyoto University

| Acknowledgements

We thank theoretical chemistry lab. of Graduate School of Science, Kyoto University, and GOTO Gaku (alumnus) for calculation data of [Co(II)(OPh)₄]²⁻ in his master thesis (2022)

QPARC Challenge 2022 kuchemQCL 10 / 10