Südame- ja lihasaktiivsus

LOENG
KURSUS "SISSEJUHATUS
PSÜHHOFÜSIOLOOGIA RAKENDUSTESSE

DR. IIRIS TUVI

Kursuse loomist toetab Haridus- ja noorteameti IT Akadeemia

Sisukord

- Psühhofüsioloogiliste mõõtmiste üldised printsiibid
- Lihasaktiivsusest
- Südameaktiivsusest

Psühhofüsioloogiliste mõõtmiste üldised printsiibid

Psühhofüsioloogiline erutus (arousal)

Üldine kõrgenenud psühhofüsioloogiline vastus stiimulile?

Kasvab lineaarselt?

 \bigcirc 5

Erutust on mitmeid tüüpe.

Psühhofüsioloo giliste näitajate muster

Autonoomsed, kortikaalsed, käitumuslikud näitajad. Nt avastate, et rahakott on ära varastatud...

Lihaspinge
Naha elektrijuhtivus
Südame löögisagedus
Hingamise sügavus
Hingamise sagedus

Väheneb vastus korduvale stiimulile

Lühiajaline harjumine

Pikaajaline harjumine

Harjumine (habituation)

Figure 5.2. Habituation of the heart rate response to a moderate tone during trials $5,\,10$, and 15. Each data point represents the heart rate of one fictitious participant.

Kaasasündinud reaktsioonid

1. Suunamisreaktsioon

(Orienting response)

Suunamisreaktsioon – aitab tähele panna uut stiimulit ja võimendab sensoorset vastust

Ebavajalik motoorne aktiiv	
EEG signaali sagedus, pinge	─
Südame löögisagedus	
Hingamise sagedus	
Hingamise sügavus	
Perifeerne vasokonstriktsioon	─
Peas vasodilatsioon	─
Naha elektriinhtivus	

Kaasasündinud reaktsioonid II

- **2. Kaitse- reaktsioon**(defence response)
- 3. Ehmatusreaktsioon

(startle response)

Psühhofüsiol muster sarnane:

Verevool skeletilihastes

Verevool soolestikus

Südame löögisagedus

Vererõhk

Perifeerne vasokonstriktsioon

Peas vasokonstriktsoon

(ehmatusreaktsiooniga kaasneb ka silmapilgutus)

Erinevus on reaktsiooni tekkimise kiiruses ja harjumise kiiruses.

Algväärtuste seadus

Algväärtuste seadus -Law of initial values (LIV)

Kehtib:

Südame löögisageduse, naha elektrijuhtivuse, hingamise ja vererõhu puhul.

Abiks *Autonomic Liability Score*:

$$ALS = 50 + 10 \frac{Y_z - X_z r_{xy}}{(1 - r^2 xy)^{0.5}}$$

Mida kõrgema väärtusega on psühhofüsioloogiline näitaja enne katset, seda väiksem on muutuse kasv stiimulile

Figure 5.4. Heart rate response to a stimulus as a function of prestimulus heart rate. Each dot represents the heart rate for one fictitious participant.

Lihasaktiivsus

Milliseid
psühholoogilisi
protsesse saab
uurida? I

- -Motoorsete võimete areng
- -Lihaste taastumine peale õnnetust
- Vastust stressile (nt kaela ja turja lihaste aktiivsuse mõõtmise abil)
- Näolihaste aktiivsuse registreerimine seoses empaatiaga või emotsionaalse puudutusega jne.

Videonäide näolihaste aktiivsuse mõõtmisest

Lihasaktiivsus

Milliseid psühholoogilisi protsesse saab uurida? III

- tähelepanu uurimine ehmatusreaktsiooni silmapilgutuse kaudu (Acocella & Blumenthal, 1990)
- Videomängudega või linnapiirkondadega seotud emotsionaalsete seisundite hindamine ehmatusreaktsiooni silmapilgutuse kaudu (Nesbitt et al. 2015; Geiser, Walla, 2011)

Lihasaktiivsuse mõõtmise viisid

Sõltuvad uurimuse eesmärgist • Kogu keha liigutuste filmimine ja analüüsimine

 Lihase aksonipotensiaalide mõõtmine (elektromüograafia, EMG)

EMG

Elektroodide asetus ehmatusreaktsiooni silmapilgutuse mõõtmiseks

Sinised on asetatud orbicularis oculi-

Roheline – maandus (*ground*)

Südameaktiivsuse mõõdikud EKGs

Südamelöökide vaheline intervall -Inter Beat Interval (IBI) in msec

Südamelööke minutis – *beats per minute (BPM)*

Löökide vaheline intervall: IBI (ms)=60000/bpm Lööke minutis: BPM (bpm)= 60000/IBI

Psühholoogi huvi

Südame löögisagedus Baastase vs vastus manipulatsioonile (faasiline aktiivsus)

Muutust tavaliselt väljendatakse protsentides.

 Puhkeseisundi südamelöökide arv kui millegi indeks (korreleeritakse käitumusliku vastusega)

EKG mõõtmine

Mõõdetakse kahe elektroodiga, mis pannakse üsna kaugele üksteisest + nt Cyton

- Nt üks ühel käel, teine teisel käel
- Nt paremal pool rindkere, vasakul pool rindkere
- Nt paremal käel, paremal jalal jne

Kaudsed südameaktiivsuse mõõtmise viisid

Vererõhk

Verekoguse muutus

- Vererõhk (mm/Hg) vatsakeste kokkutõmbe ajal olev maksimaalne rõhk (süstoolne) vatsakeste lõõgastumise miinimum rõhk (diastoolne) nt 120/80 mmHg
- Takistusel põhinev kardiograafia –
 impedence cardiography ZCG (l/min)
 mõõdetakse verekoguste muutust
 rindkeres vahelduvvoolu abil
- Pulsi verekogus (pulse volume) südame löögisagedust on võimalik mõõta verekoguste muutuste kaudu nt sõrmes
- jne

Pulsi verekoguse mõõdikud

- a) Samad mis EKGs
- b) Samad mis EMGs

- Löökide vaheline intervall (IBI)
- Lööke minutis (BPM)
- Erinevus maksim ja minim sakiulatuse vahel
- Sakkide integreerimine ja sakkide aluse ala arvutamine

Milline südameaktiivsuse mõõtmisviis ja mõõdik valida? • Sõtub katsest, stiimulmaterjalist

Löökidevaheline intervall (IBI) valida

- 1) kui eeldatav muutus saabub kiiresti
- 2) kui muutused on suured
- Verekoguse mõõdikud mõelda, millised pildid aktiveerivad rohkem SNSi ja millised PNSi millistes organites ja kehaosades

Segavad faktorid südame aktiivsuse mõõtmisel

- Kehaasendi muutmine või lihtsalt keha liigutamine muudab südame löögisagedust
- Laboriruumis päevade kaupa veidi kõikuv temperatuur (mõjutab sõrmelt mõõdetud pulsi verekogust)
- Nahk on igaühel veidi erinev (sõrmed: nt kitarrimängijad vs mitte kitarrimängijad)
- Andur või elektroodid on halvasti paigaldatud

Viited I

- Asnaani, A., Sawyer, A. T., Aderka, I. M., & Hofmann, S. G. (2013). Effect of Suppression, Reappraisal, and Acceptance of Emotional Pictures on Acoustic Eye-Blink Startle Magnitude. *Journal of Experimental Psychopathology*, 4(2), 182–193. https://doi.org/10.5127/jep.028112
- Ardalan, A., Assadi, A.H., Surgent, O.J. et al. Whole-Body
 Movement during Videogame Play Distinguishes Youth with
 Autism from Youth with Typical Development. Sci Rep 9, 20094
 (2019). https://doi.org/10.1038/s41598-019-56362-6
- Inzelberg, L., Rand, D., Steinberg, S. *et al.* A Wearable High-Resolution Facial Electromyography for Long Term Recordings in Freely Behaving Humans. *Sci Rep* **8**, 2058 (2018). https://doi.org/10.1038/s41598-018-20567-y
- Künecke J, Hildebrandt A, Recio G, Sommer W, Wilhelm O
 (2014) Facial EMG Responses to Emotional Expressions Are
 Related to Emotion Perception Ability. PLoS ONE 9(1): e84053.
 https://doi.org/10.1371/journal.pone.0084053

Viited II

- Nesbitt, K., Blackmore, K., Hookham, G., Kay-Lambkin, F., & Walla, P. (2015). Using the startle eye-blink to measure affect in players. In *Serious Games Analytics: Methodologies for Performance Measurement, Assessment, and Improvement* (pp. 401–434). Springer International Publishing.
 https://doi.org/10.1007/978-3-319-05834-418
- Duran, G., Tapiero, I., & Michael, G. A. (2018). Resting heart rate: A physiological predicator of lie detection ability. *Physiology and Behavior*, 186, 10–15.
 https://doi.org/10.1016/j.physbeh.2018.01.0

