WHAT IS CLAIMED IS:

1	1. A method of determining spatial target probability using a model of
2	multisensory processing by the brain, said method comprising the steps of:
3	acquiring at least two inputs from a location in a desired environment where
4	a first target is detected;
5	applying said inputs to a plurality of model units in a map corresponding to
6	a plurality of locations in said environment;
7	approximating a posterior probability of said first target at each of said
8	model units;
9	finding a model unit with a highest posterior probability;
10	choosing a location in said environment corresponding to said model unit
11	with a highest posterior probability as a location of a next target.
1	2. The method as defined in claim 1, wherein said at least two inputs
2	are sensory inputs.
1	3. The method as defined in claim 2, wherein said at least two sensory
2	inputs are video and audio inputs.
1	4. The method as defined in claim 1, wherein said posterior probability
2	is a conditional probability of said first target given said at least two inputs.
1	5. The method as defined in claim 4, wherein said posterior probability
2	is computed using Bayes' rule.

1 6. The method as defined in claim 5, wherein said posterior probability 2 is approximated using a sigmoid curve function. 1

1

3

4

5

6

1

2

- 7. 1 The method as defined in claim 5, wherein said posterior probability is approximated using a linear function. 2
- 8. The method as defined in claim 5, wherein said posterior probability 1 is approximated using a bounded linear function. 2
- 9. The method as defined in claim 4, wherein said posterior probability 1 is approximated using a sigmoid curve function. 2
 - The method as defined in claim 4, wherein said posterior probability 10. is approximated using a linear function.
 - The method as defined in claim 4, wherein said posterior probability 11. is approximated using a bounded linear function.
 - The method as defined in claim 4, wherein said next target is the 12. same as said first target.
- 13. A method of determining spatial target probability using a neural network model of multisensory processing by the brain, said method comprising the steps 2 of:
 - training a plurality model units in a map corresponding to a plurality of locations in a desired environment to output a desired value when an actual target is detected;
- applying at least two inputs from said actual target in said desired 7 environment; 8
- finding one of said model units with a highest desired value; and 9 choosing a location in said environment corresponding to said model unit 10 with said highest value as a location of said actual target. 11

į.
ũ
J. William
TŲ.
g.
20
T,

14.

2	includes:
3	positioning a training target at a random location in said desired
4	environment;
5	acquiring at least two inputs from said training target;
6	applying said at least two inputs said plurality model units in said map and
7	obtaining actual responses of said model units;
8	generating desired responses for said model units;
9	finding differences between said actual and desired responses; and
10	using back-propagation to reduce said differences between said actual and
11	desired responses.
1	15. A camera apparatus for automatically tracking a target in a known
2	environment, said system comprising:
3	at least one audio and at least one video sensors for receiving audio and
4	video signals from the target;
5	a controller for receiving said audio and video signals from said audio and
6	video sensors and determining a probability of the target being at a location in the
7	environment using a program modeling mutisensory processing of the brain;
8	at least one of a moveable directional audio and video sensor for turning to
9	a location in the environment where a target probability is high as determined by said
10	controller.
1	16. The apparatus as defined in claim 15 wherein said modeling program
2	approximates a posterior probability of the target given said audio and video signals from
3	the target.
1	17. The method as defined in claim 16, wherein said posterior
2	probability is approximated using a linear function.

The method as defined in claim 13, wherein said training step

1

2

1

2

1

2

- 1 18. The method as defined in claim 16, wherein said posterior probability is approximated using a bounded linear function.
- 1 19. The method as defined in claim 16, wherein said posterior probability is approximated using a sigmoid curve function.
- 1 20. The apparatus as defined in claim 15 wherein said modeling program 2 approximates Bayes' rule for calculating target probability given said audio and video 3 signals from the target.
 - 21. The method as defined in claim 20, wherein said Bayes' rule is approximated using a linear function.
 - 22. The method as defined in claim 15, wherein said Bayes' rule is approximated using a bounded linear function.
 - 23. The method as defined in claim 15, wherein said Bayes' rule is approximated using a sigmoid curve function.
- 1 24. The apparatus as defined in claim 15 wherein said modeling program 2 estimates said target probability by training a