

NeuroScience 101

Hector Orozco & Saurabh Shaw

NeuroTech 101

Monthly workshops during the next 6 months that end with a Hackathon

This year:

- NeuroDevices 101 (DONE)
- Neuroscience 101 (Today)
- Digital Signal Processing & Feature Extraction I (TBD)

All resources will be available on GitHub!

NeuroScience 101: Objectives

 Discuss the neural signals commonly used for neurotech projects

 Understand the neural underpinnings of such signals and how to generate them

Quick intro: EEG

Underlying neural activity from neural cortex

Volume conduction

Electrode coverage

External noise

Modes of EEG generation:

Exogenous (ERP based)

Endogenous (abstract features based)

EEG signals

Signal	Physiological phenomena	Number of choices	Training	Information transfer rate
VEP	Brain signal modulations in the visual cortex	High	No	60–100 bits/min
SCP	Slow voltages shift in the brain signals	Low (2 or 4, very difficult)	Yes	5–12 bits/min
P300	Positive peaks due to infrequent stimulus	High	No	20–25 bits/min
Sensorimotor rhythms	Modulations in sensorimotor rhythms synchronized to motor activities	Low (2, 3, 4, 5)	Yes	3–35 bits/min

Exogenous EEG based devices

Rely on stimulus based EEG responses

User trains to associate the elicited EEG response with a control signal

Majority of applications

Visual Evoked Potential (VEP)

Stimulus: Flashing lights or lights moving across the visual field.

Activity in Occipital lobe

Flashes < 2 Hz - Transient VEP

Flashes > 6 Hz - Steady State VEP

P300

Stimulus: Oddball

Multiple regions

The magnitude of P300 shows the level of surprise

Endogenous EEG based devices

Rely on user generated potentials (without external stimulus)

User trains to reliably generate potentials

Applications are limited

Slow Cortical Potentials (SCP)

Stimulus: Movement Related

Activity in Supplementary Motor Cortex

One important subtype - Movement Related Cortical Potential (MRCP)

Sensorimotor Rythms

Where are these located?

Exogenous vs Endogenous?

Approach	Brain signals	Advantages	Disadvantages
Exogenous BCI	- SSVEP - P300	 Minimal training Control signal set-up easily and quickly High bit rate (60 bits/min) Only one EEG channel required 	 Permanent attention to external stimuli May cause tiredness in some users
Endogenous BCI	SCPsSensorimotor rhythms	 Independent of any stimulation Can be operated at free will Useful for users with sensory organs affected Suitable for cursor control applications 	 Very time-consuming training (months or weeks) Not all users are able to obtain control Multichannel EEG recordings required for good performance Lower bit rate (20–30 bits/min)

What type of BCI to make?

P300 Speller

```
A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 1 2 3 4
5 6 7 8 9 _
```

MRCP Trainer

MRCP Trainer

Open ended features - Entertainment BCI

NeuroTechHa - Join the conversation!

NeuroTechX's Slack, _hamilton channel

Twitter: @NeuroTechHa

Meetup: NeuroTechHa

Facebook: NeuroTechHa

Questions/Feedback?

Thanks!