WHAT IS CLAIMED IS:

6

1	1.	A method of transmitting data in a power transmission network that has at least one
2		power transmission line, the power transmission line carrying power in the form of time-
3		varying voltage and current, wherein the time-varying current results in interdependent
4		electric and magnetic field components, the method comprising:
5		transmitting data on the power transmission line using micro electromagnetic pulses

- transmitting data on the power transmission line using micro electromagnetic pulses to modulate the electric field component according to the data.
- The method of claim 1 wherein transmitting data comprises:

 providing a data signal generator to generate the data; and

 providing a micro electromagnetic pulse generator that generates micro

 electromagnetic pulses in accordance with the data to be transmitted.
- 1 3. The method of claim 2 wherein the electromagnetic pulse generator comprises a tripler circuit.
- The method of claim 3 further comprising:
 providing a shunt coil connected to an output of the tripler circuit.
- The method of claim 2 further comprising:

 providing a shunt coil connected to an output of the electromagnetic pulse generator;

 and

 providing a magnetic field directionalizer, wherein the shunt coil is wrapped around
- the magnetic field directionalizer.
- The method of claim 5, wherein the magnetic field directionalizer comprises:

 a first set of washers made of a non-conducting and non-magnetizing material;

 a second set of washers made of a ferroelectric material;

 a rod made of material that acts as a magnetic propagator insulator; and

 wherein the first set of washers are interspersed with the second set of washers on the

 rod.

- 1 7. The method of claim 6 further comprising:
- 2 providing a metallic tube having a polished inner surface; and
- disposing the shunt coil and a portion of the transmission line within the metallic
- 4 tube.

1	8.	A system for transmitting data in a power distribution network that has at least one
2	p	ower transmission line, the power transmission line carrying power in the form of time-
3	v	arying voltage and current, wherein the time-varying current results in interdependent
4	e	lectric and magnetic field components, the system comprising:
5	•	a data signal generator to generate data to be transmitted;
6		a micro electromagnetic pulse generator that generates electromagnetic pulses in
7	a	ccordance with the data to be transmitted; and
8		wherein the electromagnetic pulses are used to modulate the electric field component
9	a	ccording to the data.
1	9.	The system of claim 8, wherein the electromagnetic pulse generator comprises a
2	tr	ipler circuit.
1	10.	The system of claim 9 further comprising a shunt coil connected to an output of the
2	tr	ipler circuit.
1	11.	The system of claim 10 further comprising a magnetic field directionalizer, wherein
2	tl	ne shunt coil is wrapped around the magnetic field directionalizer.
1	12.	The system of claim 11, wherein the magnetic directionalizer comprises:
2		a first set of washers made of a non-conducting and non-magnetizing material;
3		a second set of washers made of a ferroelectric material;
4		a rod made of material that acts as a magnetic propagator insulator; and
5	•	wherein the first set of washers are interspersed with the second set of washers on the

- 1 13. The system of claim 12 further comprising:
- a metallic tube having a polished inner surface; and
- wherein the shunt coil and a portion of the transmission line are disposed within the
- 4 metallic tube.

rod.

6

- 1 14. The system of claim 8 further comprising a magnetic field directionalizer coupled to
 2 the micro electromagnetic pulse generator, wherein the magnetic field directionalizer
 3 induces a polarization leap in the magnetic field component to modulate the electric field
 4 component.
- 1 15. The system of claim 14 further comprising a collimator adapted to focus the
 2 polarization leap in the magnetic field component on an area near the power transmission
 3 line.

- 1 16. A method for transmitting data in a power transmission network, with the power transmission line carrying power in the form of time-varying voltage and current, the method comprising:
- applying an electromagnetic pulse to induce a polarization leap in a magnetic field surrounding the power transmission line; and
- detecting a change in an electric field surrounding the power transmission line caused by the polarization leap.
- 1 17. The method of claim 16 wherein the change in the electric field is detected at a remote location from a location where the electromagnetic pulse is applied.
- 1 18. The method of claim 17 wherein the remote location is at least a mile from the location where the electromagnetic pulse is applied.
- 1 19. The method of claim 17 wherein applying the electromagnetic pulse comprises creating a directional rise in the magnetic field.

- 1 20. A system for transmitting data in a power transmission network, with the power 2 transmission line carrying power in the form of time-varying voltage and current, the 3 system comprising:
- 4 means for generating a micro electromagnetic pulse; and
- means for applying the micro electromagnetic pulse to a magnetic field surrounding the power transmission line to create a directional rise in the magnetic field.
- 1 21. The system of claim 20 further comprising means for focusing the directional rise in 2 the magnetic field on an area surrounding the power transmission line.
- 1 22. The system of claim 20 further comprising means for generating a data signal, 2 wherein the micro electromagnetic pulse is generated in accordance with the data signal.
- 1 23. The system of claim 20 further comprising means for insulating the power transmission line from the means for applying the micro electromagnetic pulse.