Bias Detection & Explainability in AI Models

48-Hour Technical Challenge – Mohamad Rasmy

1. Dataset & Sensitive-Feature Encoding

Rows & text synthesis. The original CSV contains 1 500 tabular résumés. For language-model fine-tuning, each row is serialised into a single string in the format

```
age: 41; gender: female; education level: 4; experience years: 0; previous companies: 1; distance from company: 34.43; interview score: 19; skill score: 56; personality score: 98; recruitment strategy: 2
```

Gender is encoded female=0, male=1 in the CSV and expressed verbatim in the text string.

Exploratory correlations. Numeric Pearson correlations (Figure 1) showed $\rho(\text{Age, Hiring}) = 0$ and $\rho(\text{Gender, Hiring}) = 0$; no linear dependence exists between sensitive attributes and the label.

Figure 1: Pearson correlations between numeric features (e.g. Age, Gender, SkillScore) and the HiringDecision.

Train—test split and intentional imbalance. We adopted an 80 / 20 split. When creating the training set we injected a representation imbalance: 60 % female vs. 40 % male. The test set remains naturally imbalanced (94 % male). To quantify adverse impact we enforce the four-fifths rule with tolerance $\tau = 0.7$:

$$\frac{\Pr(Hire = \text{YES} \mid X = Female)}{\Pr(Hire = \text{YES} \mid X = Male)} \leq \tau = 0.8 \quad [1]$$

2. Model Architecture & Performance

We fine-tuned DistilBERT-base-uncased [2] (3 epochs, batch 32).

Metric (test)	Accuracy	F1	Precision	Recall
DistilBERT baseline	0.843	0.841	0.850	0.843

Table 1: Down-stream performance.

3. Fairness Analysis

Let $S \in \{0, 1\}$ (female, male), Y the ground truth, \hat{Y} the prediction.

- Demographic Parity Gap $|\Pr(\hat{Y} = 1 \mid S = 0) \Pr(\hat{Y} = 1 \mid S = 1)|$. Measures overall hire-rate imbalance.
- Equal Opportunity Gap $|\Pr(\hat{Y} = 1 \mid Y = 1, S = 0) \Pr(\hat{Y} = 1 \mid Y = 1, S = 1)|$. Focuses on true-positive recall disparity.
- Average Odds Difference $\frac{1}{2}(|TPR_{\Delta}| + |FPR_{\Delta}|)$. Balances both recall and false-positive gaps.

Model	Dem. Parity	Equal Opp.	Avg. Odds
Baseline	0.006	0.263	0.175

Table 2: Group-fairness metrics (Fairlearn).

Interpretation. While hire rates are nearly identical, females suffer a 26 pp drop in recall—critical if the organisation prizes equal opportunity.

4. Explainability

Five predictions (3 Hires, 2 No-Hires) were de-composed with both **LIME** [3] and **SHAP** [4]. Four cases showed negligible attribution for gender tokens. In the fifth case (see Figures 2), both explainers assign a small positive weight to "female", though skill other tokens dominate—indicating limited gender influence overall.

Figure 2: SHAP explanation for the fifth sample: token "female" receives a mild positive attribution but is overshadowed by higher-impact skill tokens.

5. Bias Mitigation & Trade-offs

5.1 Reweighing

Weights $w(y,s) = \frac{P(Y=y)P(S=s)}{P(Y=y,S=s)}$ were attached to each example [5]. Weight distribution:

Weight	Gender	Label	Count
1.2577	0 (male)	1 (Hire)	104
1.0539	1 (female)	0 (NoHire)	497
0.9287	0 (male)	0 (NoHire)	376
0.8798	1 (female)	1 (Hire)	223

Higher weights emphasise under-represented male hires and female non-hires.

Reweighing cuts Equal-Opportunity and Average-Odds gaps by ~70 % at the cost of 4 % accuracy and a rise in parity gap (the model now hires females more often to equalise recall). For organisations valuing *error* parity over rate parity, the debiased model is preferable.

6. Conclusion

DistilBERT attains strong accuracy with balanced hire rates but unequal recall. Reweighing corrects this disparity with modest performance loss—illustrating the fairness/utility tension. Future work: adversarial debiasing and threshold tuning to simultaneously control all three metrics.

	Accuracy	Dem. Parity	Equal Opp.	Avg. Odds	
Baseline	0.843	0.006	0.263	0.175	
Reweigh	0.800	0.147	0.077	0.047	

Table 3: Effect of reweighing.

References

- [1] Feldman, R. et al. Certifying and removing disparate impact. KDD 2015.
- [2] Sanh, V. et al. DistilBERT: Smaller, faster, cheaper and lighter. NeurIPS 2019.
- [3] Ribeiro, M. T. et al. "Why Should I Trust You?" Explaining the predictions of any classifier. KDD 2016.
- [4] Lundberg, S. M., Lee, S.-I. A Unified Approach to Interpreting Model Predictions. NIPS 2017.
- [5] Kamiran, F., Calders, T. Data preprocessing techniques for classification without discrimination. KIS 2012.