Modellierung turbulenter technischer Strömungen

11. Feinstrukturmodellierung 2

Prof. Dr.-Ing. C. Hasse

Inhalt dieses Vorlesungsabschnitts

- 10.1 Rolle des Feinstrukturmodells
- 10.2 Vorstellung ausgewählter Feinstrukturmodelle
 - ▶ Möglichkeiten der Klassifizierung
 - ► Modelle in RANS-Tradition

Kapitel 10

- 11.1 Vorstellung ausgewählter Feinstrukturmodelle
 - ► Modelle mit Zerlegung der aufgelösten Skalen
- 11.2 Modelle für die Filterweite
- 11.3 Selektive Prozeduren
- 11.4 Implizite LES

Kapitel 11

Inhalt dieses Vorlesungsabschnitts

- 10.1 Rolle des Feinstrukturmodells
- 10.2 Vorstellung ausgewählter Feinstrukturmodelle
 - ► Möglichkeiten der Klassifizierung
 - ► Modelle in RANS-Tradition

Capitel 10

- 11.1 Vorstellung ausgewählter Feinstrukturmodelle
 - ► Modelle mit Zerlegung der aufgelösten Skalen
- 11.2 Modelle für die Filterweite
- 11.3 Selektive Prozeduren
- 11.4 Implizite LES

Kapitel 11

- 11.1 Vorstellung ausgewählter Feinstrukturmodelle
 - Modelle mit Zerlegung der aufgelösten Skalen

- Motivation:
 - ► Bisher verwendete Informationen:
 - Gesamtes aufgelöstes Geschwindigkeitsfeld
 - Filterweite
 - ► Nun:
 - Betrachtung des Multiskalencharakters der Turbulenz
- Methodischer Ansatz:
 - ► Filteransatz (mehrfache Anwendung von Filtern)
 - → Nur bei LES anwendbar
 - → entscheidender Unterschied zu RANS-Modellierung
 - ► Unterscheidung zwischen Modellen und Prozeduren

Klassifizierung Feinstrukturmodelle

	d	eterministisch		
$ u_t$			$ au_{ij}$	
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung
SM	K_{τ} -Glg.	$\tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\mathbf{\Omega}})$	τ_{ij} -Glg.	
WALE	K_{τ} -Glg. ν_t -Glg.	$ \tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\mathbf{\Omega}}) \\ SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}}) $		
σ -Modell				
selektive Prozeduren		1	,	,
dynamische Prozedur				
ge	emischte Modelle)		
stochastisch				
$\nu_t + \mathrm{Kraftterm}$			Mikrowirbel	

- Dynamische Prozedur nach Germano (1991) [1]:
 - ▶ Motivation
 - ► Festlegung Modellkonstante für bisher besprochenen Modelle nötig
 - ► Methode für "automatisierte" Bestimmung wünschenswert
 - ► Konstanten → Parameter/ Koeffizienten

- Dynamische Prozedur nach Germano (1991) [1]:
 - ► Ausgangspunkt:
 - ► Feinstrukturmodell der Form

$$\tau_{ij}^{mod}(C_m, \Delta, \overline{u}_i) \text{ für } \tau_{ij}^{SGS} \text{ oder } \tau_{ij}^{SGS,a}$$

- ► Eingangsgrößen:
 - $ightharpoonup \overline{u}_i$... Geschwindigkeit
 - $ightharpoonup \Delta$... zugehörige Länge
 - $ightharpoonup C_m$... Modell-Parameter
- ▶ Anwendung des sog. Gitterfilters $G_{\bar{\Delta}}$ mit Filterweite $\bar{\Delta}$ führt auf \bar{u}_i und zu modellierenden Feinstrukturspannungen τ_{ij}^{SGS}
- ► Einführung eines zweiten Filters. $\hat{\Delta}$ mit der Filterweite (Testfilter), Forderung: $\hat{\Delta} > \bar{\Delta}$

- Dynamische Prozedur nach Germano (1991) [1]:
 - ► Filterung der bereits mit dem Filter $G_{\bar{\Delta}}$ gefilterten Impulserhaltungsgleichungen mit dem Filter $G_{\hat{\Delta}}$: (Nach Ausnutzung Linearität und Vertauschen von Filter und Ableitung, Homogenität des Filters vorausgesetzt → keine Kommutatorterme)

$$\frac{\partial \widehat{\overline{u}}_i}{\partial t} + \frac{\partial \widehat{\overline{u}}_i \overline{u}_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \widehat{\overline{p}}}{\partial x_i} + \nu \frac{\partial^2 \widehat{\overline{u}}_i}{\partial x_j^2} - \frac{\partial \widehat{\tau_{ij}^{SGS}}}{\partial x_j}$$

► Konvektionsterm ungeschlossen, Umformulierung:

$$\frac{\partial \widehat{\overline{u}_i} \overline{\overline{u}_j}}{\partial x_j} = \frac{\partial \left(\widehat{\overline{u}_i} \overline{\overline{u}_j} + \widehat{\overline{u}_i} \widehat{\overline{u}_j} - \widehat{\overline{u}_i} \widehat{\overline{u}_j} \right)}{\partial x_j}$$

► Einsetzen des Ausdrucks in obige Gleichung und weitere Umformung:

$$\frac{\partial \widehat{\overline{u}}_i}{\partial t} + \frac{\partial \widehat{\overline{u}}_i \widehat{\overline{u}}_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \widehat{\overline{p}}}{\partial x_i} + \nu \frac{\partial^2 \widehat{\overline{u}}_i}{\partial x_j^2} - \frac{\partial T_{ij}^{SGS}}{\partial x_j}$$

- Dynamische Prozedur nach Germano (1991) [1]:
 - ▶ resultierende Definition des Feinstrukturtensors auf Testfilter-Niveau:

$$T_{ij}^{SGS} = \widehat{\tau_{ij}^{SGS}} + \left(\widehat{\overline{u}_i}\overline{u}_j - \widehat{\overline{u}}_i\widehat{\overline{u}}_j\right)$$

▶ Einsetzen der Definition von τ_{ij}^{SGS} :

$$T_{ij}^{SGS} = \left(\widehat{\overline{u_i u_j}} - \widehat{\overline{u_i u_j}}\right) + \left(\widehat{\overline{u_i u_j}} - \widehat{\overline{u}_i}\widehat{\overline{u}_j}\right) = \widehat{\overline{u_i u_j}} - \widehat{\overline{u}_i}\widehat{\overline{u}_j}$$

▶ Definition des Leonard-Terms auf Testfilterniveau:

$$L_{ij} = \widehat{\overline{u}_i} \overline{u}_j - \widehat{\overline{u}}_i \widehat{\overline{u}}_j$$

► Einsetzen in obige Definition führt auf sog. Germano-Identität:

$$T_{ij}^{SGS} = \widehat{\tau_{ij}^{SGS}} + L_{ij}$$

- Dynamische Prozedur nach Germano (1991) [1]:
 - ▶ Visualisierung der durch die Filter $G_{\bar{\Delta}}$ und $G_{\hat{\Delta}}$ entstehenden Feinstrukturspannungen:

- Dynamische Prozedur nach Germano (1991) [1]:
 - ► Idee: Verwendung des gleichen FS-Modells für die durch die beiden Filter erzeugten Feinstrukturspannungen:

$$\bar{\Delta}$$
-Niveau : $\tau_{ij}^{SGS} = \overline{u_i u_j} - \overline{u}_i \, \overline{u}_j \approx \tau_{ij}^{mod}(C_m, \bar{\Delta}, \overline{u}_i)$

$$\widehat{\Delta}$$
-Niveau : $T_{ij}^{SGS} = \widehat{\overline{u_i u_j}} - \widehat{\overline{u}_i} \widehat{\overline{u}_j} \approx \tau_{ij}^{mod}(C_m, \widehat{\Delta}, \widehat{\overline{u}_i})$

► Einsetzen der Modelle für die Feinstrukturspannungen in Germano-Identität

$$L_{ij} = T_{ij}^{SGS} - \widehat{\tau_{ij}^{SGS}}$$

$$L_{ij}^{mod} = \tau_{ij}^{mod}(C_m, \hat{\Delta}, \hat{\overline{u}}_i) - \widehat{\tau_{ij}^{mod}}(C_m, \overline{\Delta}, \overline{u}_i)$$

- Dynamische Prozedur nach Germano (1991) [1]:
 - ▶ Berechnung Leonard-Term auch aus aufgelöstem Geschwindigkeitsfeld möglich:

$$L_{ij} = \widehat{\overline{u}_i} \overline{u}_j - \widehat{\overline{u}}_i \widehat{\overline{u}}_j$$

► Feinstrukturmodell sollte auf Gleichheit des modellierten und aus Filterung gewonnen Leonard-Terms führen:

$$L_{ij} - L_{ij}^{mod} = 0$$

- ightarrow Anpassung des Modellparameters C_m
- ▶ Problem: überbestimmtes System (6 Gleichungen für 1 Unbekannte)
 - → Erfüllung nur im statistischen Sinn möglich
- ► Lilly (1992) [2]: Minimierung im Sinne kleinster Fehlerquadrate

- Dynamische Prozedur nach Germano (1991) [1]:
 - ► Anwendung auf das Smagorinsky-Modell:
 - ► Einsetzen der Modell-Definition in Germano-Identität:

$$L_{ij}^{a,mod} = -2C\hat{\Delta}^2 |\hat{\overline{\mathbf{S}}}| \hat{\overline{S}}_{ij} + 2C(\overline{\Delta}^2 |\overline{\mathbf{S}}| \overline{S}_{ij})$$

$$C = C_S^2$$

- ► Herausziehen C aus Filter unter Annahme der Homogenität möglich (tatsächlich nicht erfüllt, Fehlerquelle)
- ► Einführung der Definition

$$M_{ij} = -\hat{\Delta}^2 |\hat{\overline{\mathbf{S}}}| \hat{\overline{S}}_{ij} + \widehat{(\overline{\Delta}^2 |\overline{\mathbf{S}}| \overline{S}_{ij})}$$

▶ Damit Ausdruck für Germano-Identität:

$$L_{ij}^{a,mod} = 2CM_{ij}$$

- Dynamische Prozedur nach Germano (1991) [1]:
 - Anwendung auf das Smagorinsky-Modell:
 - ▶ Definition des Quadrates des Fehlers:

$$Q = (L_{ij}^a - 2CM_{ij})^2$$

$$L_{ij}^{a,mod}$$

► Minimierungsansatz:

$$\frac{\partial Q}{\partial C} = 0$$

► Ergebnis:

$$C = \frac{1}{2} \frac{L_{ij}^a M_{ij}}{M_{ij} M_{ij}}$$

- Dynamische Prozedur nach Germano (1991) [1]:
 - ► Anmerkungen:
 - Bezeichnung Modell mit dynamischer Bestimmung der Konstanten als dynamisches Modell
 - → z.B. "dynamisches Smagorinsky Modell" (DSM)
 - ightharpoonup Vorgabe Wert für C_m entfällt
 - ► Lokal und momentan Auftreten negativer Werte möglich
 - Interpretation als Energietransport von nicht-aufgelösten zu aufgelösten Skalen, physikalisch realistisch
 - aber: Probleme mit Stabilität im numerischen Lösungsalgorithmus möglich
 - \rightarrow Beschränkung sinnvoll, z.B. $\nu_{SGS} \geq 0$ oder $\nu_{SGS} + \nu \geq 0$

- Dynamische Prozedur nach Germano (1991) [1]:
 - ► Anmerkungen:
 - ▶ i.A. starke Oszillation von C in Raum und Zeit
 - → Glättung notwendig, Umsetzung z.B. durch
 - ► Mittelung von Zähler und Nenner über statistisch homogene Richtungen (z.B. wandparallele Ebene bei Simulation ebener
 - (z.B. wandparallele Ebene bei Simulation ebener Kanalströmung)
 - ► Relaxation in der Zeit (Zeitschritt im Exponenten):

$$C^{n+1} = \epsilon C + (1 - \epsilon)C^n$$
 $\epsilon = 0.001 \text{ oder } \epsilon = 0.005$

- ightharpoonup Verhältnis $\hat{\Delta}/\bar{\Delta}$ als Parameter vorzugeben
 - → geringe Sensitivität bezüglich dieses Wertes
 - \rightarrow meist mit $\bar{\Delta}/\bar{\Delta}=2$ festgelegt

Klassifizierung Feinstrukturmodelle

	d	eterministisch		
$ u_t$			$\overline{ au_{ij}}$	
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung
SM	K_{τ} -Glg.	$ au_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\mathbf{\Omega}})$	τ_{ij} -Glg.	
WALE	K_{τ} -Glg. ν_t -Glg.	$SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}})$	Ĭ	
σ -Modell				
selektive Prozeduren		,	•	,
dynamische Prozedur				
ge:	mischte Modelle			
stochastisch				
$\nu_t + ext{Kraftterm}$		Mikrowirbel		

- Skalenähnlichkeitsmodell "Scale Similarity Model" (SSM, 1980) [1]:
 - exakter Feinstrukturtensor:

$$\tau_{ij} = \overline{u_i u_j} - \overline{u}_i \, \overline{u}_j$$

▶ Modellbildung durch Ersetzen von u_i durch \overline{u}_i :

$$\tau_{ij}^{SSM} = C_{SSM}(\overline{\bar{u}_i}\overline{\bar{u}}_j - \overline{\bar{u}}_i\,\overline{\bar{u}}_j)$$

- ► Interpretation:
 - Feinstrukturanteile, die mit \overline{u}_i gebildet werden, sind ähnlich denen, die mit u_i gebildet werden
 - → Skalenähnlichkeitsmodell, engl.: "Scale Similarity Model" (SSM)
- ightharpoonup Wahl der Konstante: $C_{SSM}=1$

- Skalenähnlichkeitsmodell "Scale Similarity Model" (SSM, 1980) [1]:
 - ► Anmerkungen:
 - $ightharpoonup au_{ij}^{SSM}$ nicht vom Wirbelviskositätstyp
 - ► Modifizierte Zerlegung des Feinstrukturtensor (*m* ...modifiziert):

$$\tau_{ij}^{SGS} = \frac{\overline{u}_i \overline{u}_j - \overline{u}_i \overline{u}_j + \overline{u'_i \overline{u}_j} + \overline{u}_i \overline{u'_j} - \overline{u'}_i \overline{u}_j - \overline{u}_i \overline{u'}_j + \overline{u'_i u'_j} - \overline{u'}_i \overline{u'}_j}{L_{ij}^m}$$

$$C_{ij}^m \qquad R_{ij}^m$$

- → Jeder Term für sich Galilei-invariant
 - Vergleich mit modelliertem Feinstruktur-Tensor:

$$\tau_{ij}^{SSM} = C_{SSM}(\overline{u}_i \overline{u}_j - \overline{u}_i \overline{u}_j) \approx L_{ij}^m$$

modellierter Tensor entspricht "lediglich" modifiziertem Leonardterm

- Skalenähnlichkeitsmodell "Scale Similarity Model" (SSM, 1980) [1]:
 - ► Anmerkungen:
 - ▶ nicht problematisch, da C_{ij}^m und R_{ij}^m Produkte aus u_i' und \bar{u}_i beinhalten → Annahme LES:

$$|u_i'| < |\bar{u_i}| \longrightarrow |L_{ij}^m| > |C_{ij}^m| > |R_{ij}^m|$$

- ▶ Problem bei Umsetzung in LES:
 - ▶ aktuelle Lösung \bar{u}_i beeinflusst durch Approximation im Modell **und** Diskretisierungsfehler → effektiver Filterkern $G_{\tilde{\Delta}}$ nicht bekannt, prinzipiell Lösung von:

$$\tau_{ij}^{SSM} = C_{SSM}(\overline{\tilde{u}_i \tilde{u}_j} - \overline{\tilde{u}_i} \, \overline{\tilde{u}_j})$$

explizite Filterung muss in diskretisierter Form umgesetzt werden

Klassifizierung Feinstrukturmodelle

	d	eterministisch		
$\overline{ u_t}$			$\overline{ au_{ij}}$	
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung
SM	K_{τ} -Glg.	$\tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\mathbf{\Omega}})$	τ_{ij} -Glg.	
WALE	K_{τ} -Glg. ν_t -Glg.	$\begin{array}{c c} \tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\mathbf{\Omega}}) \\ \mathrm{SSM} (\overline{\overline{u}} \mathrm{oder} \hat{\overline{u}}) \end{array}$		
σ -Modell				
selektive Prozeduren				
dyn	amische Prozedu	ır		
gemischte Modelle)		
stochastisch				
$\nu_t + ext{Kraftterm}$			Mikrowirbel	

- ► Gemischtes Modell, "Mixed Model" (MM, 1980) [1]:
 - ► SSM wenig dissipativ, daher Kombination mit Smagorinsky-Modell:

$$\tau_{ij}^{a,MM} = (\tau_{ij}^{SSM})^a + \tau_{ij}^{a,SM}$$

- ► Verringerung Modellkonstante des Smagorinsky-Modells möglich
- ▶ Subtraktion der Spur von τ_{ij}^{SSM} bei starker Anisotropie problematisch:
 - ► Subtrahierte Spur wird durch Beitrag im Pseudo-Druck ausgeglichen
 - ▶ Fall $\tau_{11} \gg \tau_{22} \approx \tau_{33}$:
 - ► Abzug Spur $\delta_{ij} au_{kk}^{SSM}/3$
 - ► Entsprechend großer Beitrag in den anderen Komponenten wenn τ_{11} größer als andere Einträge
 - \rightarrow Sprung in Pseudo-Druck $\overline{\Pi}=\overline{p}+\tau_{kk}/3$ möglich um diesen Anteil zu kompensieren
 - ► mögliche Verbesserung:
 - → Modellierung des gesamten Feinstruktur-Tensors

- Wirbelviskositätsmodell von Bardina (1980) [1]:
 - ► Idee: Bestimmung Wirbelviskosität aus Schätzwert für lokale nichtaufgelöste turbulente kinetische Energie (kinetische Energie der Feinstrukturspannungen)

$$K_{tot} - K_{GS} = \frac{1}{2} (u_i u_i) - \frac{1}{2} (\bar{u}_i \bar{u}_i) \approx K_{\tau}$$
unbekannt

- ightharpoonup Zweite (explizite) Anwendung des Filters auf \bar{u}_i ,
 - → Ausdruck für die dann noch aufgelöste kinetische Energie:

$$K_{GGS} = \frac{1}{2}(\bar{\bar{u}}_i\bar{\bar{u}}_i)$$

- ▶ Wirbelviskositätsmodell von Bardina (1980) [1]:
 - ▶ Differenz zwischen kinetischer Energie der aufgelösten (einfach gefilterten) und nochmals gefilterten Skalen:

$$K_{GS} - K_{GGS} = \frac{1}{2}(\bar{u}_i \bar{u}_i) - \frac{1}{2}(\bar{\bar{u}}_i \bar{\bar{u}}_i)$$

Definition der Geschwindigkeitsskala über

$$u_{FS} = \sqrt{K_{GS} - K_{GGS}}$$

► Bestimmung der Wirbelviskosität:

$$\nu_{SGS} = C_q \Delta \sqrt{K_{GS} - K_{GGS}}$$

- Mixed Scale Model (MSM, 1996) [1]:
 - ► Motivation:
 - ► Geschwindigkeitsskala in Modell von Bardina vorrangig durch feinste aufgelöste Skalen bestimmt:

- ► Mixed Scale Model (MSM, 1996) [1]:
 - ► Kombination mit Geschwindigkeitsmaß des Smagorinsky-Modells
 - Ausdruck für Wirbelviskosität:

$$\nu_t^{MSM} = C_{MSM} \Delta^{1+\alpha} |\bar{\mathbf{S}}|^{\alpha} \left(\sqrt{K_{GS} - K_{GGS}} \right)^{\frac{1-\alpha}{2}}$$

➤ Typische Werte für Konstanten:

$$\alpha = 0.5$$
 und $C_{MSM} = 0.06$ oder $C_{MSM} = 0.1$

► Auch Kombination der Konstanten der Einzelmodelle möglich:

z.B.
$$C_{MSM} = C_q^{1-\alpha} C_S^{2\alpha}$$

$$C_q = 0,2 \qquad C_S = 0,1$$

Klassifizierung Feinstrukturmodelle

	d	eterministisch		
$ u_t$ $ au_{ij}$				
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung
SM	K_{τ} -Glg.	$\tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\Omega})$ $SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}})$	τ_{ij} -Glg.	
WALE	K_{τ} -Glg. ν_t -Glg.	$SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}})$		
σ -Modell				
selektive Prozeduren				
dynamische Prozedur				
gemischte Modelle				
stochastisch				
$\nu_t + ext{Kraftterm}$		Mikrowirbel		

Deterministische Schätzung der Feinstruktur

- ► Idee:
 - ▶ Bestimmung der Feinstrukturspannungen $\tau_{ij}^{SGS} = \overline{u_i u_j} \overline{u_i} \overline{u_j}$, unter Kenntnis des (ungefilterten) Geschwindigkeitsfeldes u_i möglich
 - ightharpoonup Problem: u_i unbekannt
 - \rightarrow Schätzung $u_i^* \approx u_i$ ermitteln, welches Grob- und Feinstrukturanteile enthält
 - ► damit Bestimmung Feinstrukturspannungen:

$$\tau_{ij}^{mod} = \overline{u_i^* u_j^*} - \overline{u_i^*} \overline{u_j^*}$$

$$oder$$

$$\tau_{ij}^{mod} = \overline{u_i^* u_j^*} - \overline{u}_i \overline{u}_j$$

ightharpoonup Unterschied Modellvarianten in Bestimmung u_i^*

Klassifizierung Feinstrukturmodelle

	d	eterministisch		
$ u_t$			$ au_{ij}$	
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung
SM	K_{τ} -Glg.	$ \tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\Omega}) \\ SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}}) $	τ_{ij} -Glg.	
WALE	K_{τ} -Glg. ν_t -Glg.	$ SSM (\overline{\overline{u}} oder \hat{\overline{u}}) $		
σ -Modell				
selektive Prozeduren			•	
dynamische Prozedur				
gemischte Modelle				
stochastisch				
$ u_t + ext{Kraftterm}$		Mikrowirbel		

Stochastische Modelle

- Motivation:
 - ▶ Dissipation nur im statistischen Sinne von großen Skalen bestimmt
 - ► Energietransport zwischen GS und FS kann in beide Richtungen stattfinden (sh. Vorlesung spektrale Turbulenz)
 - ► Abbildung dieser Effekte über stochastische Komponente
 - ▶ auch mit Skalenähnlichkeitsmodellen und Modellen mit deterministischer Schätzung der Feinstruktur darstellbar
 - Aber: Bessere Steuerung dieser Prozesse mit stochastischen Modellen möglich

Stochastische Modelle

- ▶ Umsetzung:
 - Stochastische Kraftterme im Ortsbereich:
 - ► z.B. Leith (1990) [1], Mason und Thomson (1992) [2]
 - ► Erweiterung Wirbelviskositätsmodelle durch stochastischen Kraftterm
 - direktes Einfügen dieses in Impulserhaltungsgleichungen
 - ► Stochastische Mikrowirbel:
 - ► Vorschlag von Scotti und Meneveau (1999) [3]
 - ► Generierung eines synthetischen FS-Geschwindigkeitsfeldes mit gewünschtem fraktalen Charakter über chaotische Abbildung
 - ▶ daraus Berechnung
- Kritik an stochastischen Modellen
 - ► Räumliche Struktur basiert (zum Teil auf geglätteten) Zufallszahlen
 - → wenig physikalisch begründete räumliche Struktur

^{[2]:} Mason, P. J.; Thomson, D.: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242 (1992) 51–78 |

11.2 Modelle für die Filterweite

Modelle für die Filterweite

- Wahl der Filterweite:
 - ▶ durch implizite Filterung wird Form und Breite des Gitter-Filters durch viele Faktoren beeinflusst (z.B. numerisches Verfahren)
 - ► Angabe des Filterkerns nur näherungsweise möglich
 - → Modell für die Angabe der Filterweite notwendig
 - ► Ansätze:
 - ► Berechnung anhand Zellvolumen:

$$\Delta = (\Delta_x \Delta_y \Delta_z)^{1/3} = (Vol)^{1/3}$$

► Geometrisches Mittel:

$$\Delta = \sqrt{(\Delta_x^2 + \Delta_y^2 + \Delta_z^2)/3}$$

► Maximale Gitterweite (größte Gitterabmessung charakterisiert isotrope Wirbel, die durch Gitter nicht "zerstört" werden):

$$\Delta = \max\{\Delta_x, \Delta_y, \Delta_z\}$$

Modelle für die Filterweite

- Wahl der Filterweite:
 - ▶ durch implizite Filterung wird Form und Breite des Gitter-Filters durch viele Faktoren beeinflusst (z.B. numerisches Verfahren)
 - ► Angabe des Filterkerns nur näherungsweise möglich
 - → Modell für die Angabe der Filterweite notwendig
 - ► Ansätze:
 - ► Berücksichtigung des Seitenverhältnis der Zellen:

$$\Delta = f(a_1, a_2)(\Delta_x \Delta_y \Delta_z)^{1/3}$$

$$f(a_1, a_2) = \cosh\left(\sqrt{\frac{4}{27}[\log^2(a_1) - \log(a_1)\log(a_2) + \log^2(a_2)]}\right)$$

$$a_1 = \Delta_x/\Delta_z \text{ und } a_2 = \Delta_y/\Delta_z$$

► leicht zu adaptierende Ansätze (wie Verwendung des Zellvolumens) vorteilhaft auf unstrukturierte Gitter

11.3 Selektive Prozeduren

Klassifizierung Feinstrukturmodelle

	d	eterministisch		
$ u_t$			$ au_{ij}$	
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung
SM	K_{τ} -Glg.	$ \tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\mathbf{\Omega}}) \\ SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}}) $	τ_{ij} -Glg.	
WALE	K_{τ} -Glg. ν_t -Glg.	$SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}})$		
σ -Modell				
selektive Prozeduren		1	,	,
dyn	amische Prozedu	ır		
gemischte Modelle				
stochastisch				
$\nu_t + ext{Kraftterm}$		Mikrowirbel		

Selektive Prozeduren

- "Selektive Prozeduren":
 - ► Feinstrukturmodelle nur in Konfigurationen gültig, in denen die Annahmen, unter denen sie hergeleitet wurden, gültig sind
 - ▶ problematisch bei z.B. starker Anisotropie in der Nähe fester Wände
 - → Erweiterung Ausgangsmodell um Korrekturen in kritischen Bereichen
 - ▶ Bestandteile:
 - ► Kriterium, welches Anwendbarkeit des Modells bewertet
 - Mechanismus, der in Abhängigkeit dieses Kriteriums das Modell an- oder abschaltet

Selektive Prozeduren

- ▶ Dämpfungsfunktionen in Nähe fester Wände:
 - ► Reduzierung der Wirbelviskosität in Abhängigkeit des Wandabstandes (y):

$$\nu_{SGS} = (f(y^+)C_S\Delta)^2|\overline{S}|$$

► Umsetzung z.B. mit van Driestscher Dämpfung [1]:

$$f_D(y^+) = 1 - e^{-y^+/\Lambda^+}$$
$$\Lambda^+ = 25$$

korrektes asymptotisches Verhalten in Nähe fester Wände:

$$\nu_{SGS} \sim y^3$$

- → durch van Driestsche Dämpfung nicht erfüllt
- Vorschlag von Piomelli [2]: $f_P(y^+) = \sqrt{1 e^{-(y^+/\Lambda^+)^3}}$

Selektive Prozeduren

- Dämpfungsfunktionen in nähe fester Wände:
 - ► Reduzierung ebenfalls möglich über Verringerung des Längenmaßes:

$$l_{fs} = \min\{y, \Delta\}$$

- ► Vorteile Dämpfungsfunktionen:
 - ► Weitergabe bekannter Informationen über statistische Größen an Feinstruktur-Modell möglich
- ► Nachteile Dämpfungsfunktionen:
 - Auswirkungen schlecht abschätzbar
 - ▶ u.U. technische Schwierigkeiten bei Bestimmung des Wandabstandes jeder Zelle in komplexen Geometrien oder bei Gebietszerlegung

11.4 Implizite LES

Implizite LES

- Merkmale:
 - ► Kein Feinstrukturmodell verwendet
 - ► Dissipation wird allein durch numerische Dissipation bereitgestellt
 - ▶ Unterscheidung zwischen MILES und ILES:
 - "monotonically integrated LES" (MILES):
 - Abbruchfehler stellt ausreichendes Maß an Dissipation bereit
 - ▶ Diskretisierungsschemata monotonieerhaltend
 - ▶ "implicit LES" (ILES):
 - ► Abbruchfehler so gestaltet, dass dessen Verhalten dem eines bestimmten Feinstrukturmodells entspricht

Klassifizierung Feinstrukturmodelle

	d	eterministisch		
$ u_t$		$ au_{ij}$		
algebraisch	Transportgl.	algebraisch	Transportgl.	Schätzung
SM	K_{τ} -Glg.	$ \tau_{ij} = f_{ij}(\overline{\mathbf{S}}, \overline{\Omega}) \\ SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}}) $	τ_{ij} -Glg.	
WALE	K_{τ} -Glg. ν_t -Glg.	$ SSM (\overline{\overline{u}} \text{ oder } \hat{\overline{u}}) $		
σ -Modell				
selektive Prozeduren				
dynamische Prozedu		ur		
gemischte Modelle		,		
stochastisch				
$\nu_t + ext{Kraftterm}$		Mikrowirbel		

11.5 Lernziele

Lernziele: Sie sollen ...

- den Unterschied zwischen Modellen in RANS Tradition und Modellen mit Zerlegung aufgelöster Skalen erläutern können
- die Idee der dynamischen Prozedur nach Germano sowie die dazu notwendigen Schritte erklären können
- den Modellierungsansatz hinter dem SSM Modell kennen
- die Notwendigkeit für Modelle der Filterweite herausstellen und ein Modell nennen können
- den Unterschied zwischen selektiven Modellen und selektiven Prozeduren erklären können
- ▶ ein Anwendungsbeispiel für selektive Prozeduren erläutern können
- die besondere Aufgabe der Diskretisierungsschemata bei impliziter LES kennen

