Test Docker

November 14, 2021

This document is a test of Docker. The code is drawn from Section 10.9.1 of ISLR2. Please click Knit to verify that you can successfully compile this document.

First let's load some libraries (all of which are packaged in this Docker container).

```
library (ISLR2) # for Hitters data
library(kableExtra) # for nice tables
library(glmnet) # for lasso
library(keras) # for deep learning
library(tidyverse) # for everything else
```

First let's run the linear model:

Next let's run the lasso:

```
# compute prediction error
cpred <- predict (cvfit , x[testid , ], s = "lambda.min")
lasso_error = mean(abs (y[testid] - cpred))</pre>
```

Finally we train a neural network:

Loaded Tensorflow version 2.7.0

'geom_smooth()' using formula 'y ~ x'


```
# evaluate test error
npred <- predict(modnn, x[testid, ])
deep_learning_error = mean(abs(y[testid] - npred))</pre>
```

Let's compare the prediction errors:

Table 1: Comparing the test errors of three different prediction methods.

Method	Mean absolute error	
Linear Model	254.67	
Lasso	252.30	
Neural Network	487.95	

Table 1 shows the three prediction errors. we did not use enough epochs.	Here the neural network of	loes poorly, but this is a reflect	ion that