Anexo 2: Estadística mediante R

Abel Luis Muñoz Vera

9 de diciembre del 2022

Acerca de R y Rstudio

El siguiente documento busca compartir los resultados obtenidos en esta investigación, permitiendo replicar el proceso de construcción y transformación. El código escrito no es perfecto, pudo ser optimizado y simplificado enormemente, pero es lo que surgió en este proceso de aprendizaje y que espero sirva como ejemplo del uso del lenguaje R y Rstudio en la carrera de Administración Pública y Ciencia Política ya que permite un análisis de datos cuantitativos de mayor complejidad y profundidad.

El repositorio con las encuestas aplicadas, libro de claves, base de datos en formato excel (xlsx), así como otros documentos se encuentran disponibles en https://github.com/Abeluis/IMTM2022.

Acerca de R Markdown

Este es un documento en R Markdown. Markdown es un sencillo formato de sintaxis para la creación de documentos HTML, PDF y MS Word. Para más detalles sobre el uso de R Markdown consulta http://rmarkdown.rstudio.com.

En este R script Fueron utilizadas los siguientes paquetes:

```
library("readxl")
library("dplyr")
library("tidyverse")
library("knitr")
library("modeest")
library("summarytools")
library("psych")
library("sjPlot")
library("Hmisc")
library("ggplot2")
```

Base

Se importará el archivo **cuestionarios** con el libro **investigación_1** correspondiente a la base de datos con municipios, provincias, código FIGEM, variable IMTM 2015 y las que conforman las variables requeridas para la construcción del índice de madurez tecnológica municipal en las dimensiones infraestructura tecnológica, recursos humanos, gestión tecnológica municipal y servicios municipales en línea. Los subindices correspondientes a **investigacion_2**, **investigacion_3** e **investigacion_4** corresponden a *seg_info*, *procesos* y *tramites*.

```
# Archivo cargado con la libreria "readxl", libros separados
cuestionarios <- read_excel("Base.xlsx", sheet = 1)
medidas_seguridad <- read_excel("Base.xlsx", sheet = 2)
procesos <- read_excel("Base.xlsx", sheet = 3)
tramites <- read_excel("Base.xlsx", sheet = 4)</pre>
```

Objetivo general Creación Indice IMTM 2022

El objetivo planteado fue Analizar el nivel de madurez digital en los municipios de la región de Concepción al año 2022

Construcción Dataframe

```
# Sumar filas de variables subindices
 medidas_seguridad <- medidas_seguridad %>%
            mutate(num_seg = rowSums(.[4:7]))
 procesos <- procesos %>%
            mutate(num_procesos = rowSums(.[4:21]))
 tramites <- tramites %>%
            mutate(num_tramites = rowSums(.[4:26]))
# Calcular indicador con fórmula lineal
 medidas_seguridad <- mutate(medidas_seguridad, seg_info = (num_seg)/4)
 procesos <- mutate(procesos, procesos = (num_procesos)/18)</pre>
 tramites <- mutate(tramites, tramites = (num_tramites)/18)</pre>
# Limitar valor máximo a 1 según fórmula
 tramites$tramites <- ifelse(tramites$tramites > 1,1, tramites$tramites)
# Agregar variables transformadas
 cuestionarios$seg_info <- medidas_seguridad$seg_info</pre>
 cuestionarios$procesos <- procesos$procesos</pre>
 cuestionarios$tramites <- tramites$tramites</pre>
# Conversión a valores numericos
 cuestionarios <- cuestionarios %>%
 mutate_at(c('IMTM_2015', 'seg_info', 'num_serv', 'area_info', 'educ_info',
              'org_info', 'org_info_dep', 'procesos', 'tramites'), as.numeric)
# Creación de las dimensiones
 cuestionarios <- mutate(cuestionarios, IT = (seg_info + num_serv)/2) %%
 mutate(cuestionarios, RRHH = (area_info + educ_info + org_info)/3) %>%
 mutate(cuestionarios, GTM = (intranet + procesos + estrategia_servicios)/3) %>%
 mutate(cuestionarios, SML = (tramites)) %>%
 mutate(cuestionarios, IMTM_2022= (IT + RRHH + GTM + SML)/4)
# Valores redondeados 2 decimales
 cuestionarios <- cuestionarios %>% mutate_if(is.numeric, round, digits = 2)
```

Cuadro 1: IMTM Region del Biobío

Provincia	Municipalidades	Tipología	IMTM
Concepción	Chiguayante	1	0.73
Concepción	Concepción	1	0.89
Concepción	Coronel	2	0.63
Concepción	Florida	5	0.45
Concepción	Hualpén	1	0.81
Concepción	Hualqui	5	0.42
Concepción	Lota	2	0.39
Concepción	Penco	2	0.50
Concepción	San Pedro de la Paz	1	0.79
Concepción	Santa Juana	5	0.55
Concepción	Talcahuano	1	0.73
Concepción	Tomé	2	0.62
Biobío	Alto Biobío	5	NA
Biobío	Antuco	5	0.31
Biobío	Cabrero	3	0.34
Biobío	Laja	4	0.40
Biobío	Los Ángeles	2	0.82
Biobío	Mulchén	3	0.56
Biobío	Nacimiento	3	0.65
Biobío	Negrete	5	0.22
Biobío	Quilaco	5	0.28
Biobío	Quilleco	5	0.57
Biobío	San Rosendo	3	NA
Biobío	Santa Barbara	3	0.56
Biobío	Tucapel	5	0.45
Biobío	Yumbel	5	0.25
Arauco	Arauco	4	0.31
Arauco	Cañete	3	0.31
Arauco	Contulmo	5	0.33
Arauco	Curanilahue	3	0.42
Arauco	Lebu	3	0.39
Arauco	Los Álamos	3	0.53
Arauco	Tirúa	5	NA

Objetivo 1:

Para Caracterizar la madurez digital de los municipios de la región de Concepción al año 2022 según el Índice de madurez tecnológica Municipal se construirán dataframes para luego realizar tablas con los valores obtenidos en cada dimensión, correlaciones entre dimensión e índice, estadística descriptiva y por último gráficos de caja que permitan apreciar la distribución de estos valores.

Cuadro 2: IT Region del Biobío

Municipalidades	Medidas seguridad	Numero de servidores	IT
Chiguayante	1.00	0.26	0.63
Concepción	1.00	0.13	0.56
Coronel	1.00	0.40	0.70
Florida	0.75	0.13	0.44
Hualpén	1.00	0.00	0.50
Hualqui	0.25	0.06	0.16
Lota	1.00	0.00	0.50
Penco	1.00	0.13	0.56
San Pedro de la Paz	0.75	0.06	0.41
Santa Juana	1.00	0.06	0.53
Talcahuano	1.00	0.66	0.83
Tomé	1.00	0.20	0.60
Alto Biobío	NA	NA	NA
Antuco	0.00	0.00	0.00
Cabrero	1.00	0.26	0.63
Laja	0.75	0.06	0.41
Los Ángeles	1.00	0.40	0.70
Mulchén	1.00	0.00	0.50
Nacimiento	1.00	0.20	0.60
Negrete	0.00	0.06	0.03
Quilaco	0.25	0.13	0.19
Quilleco	0.75	0.20	0.48
San Rosendo	NA	NA	NA
Santa Barbara	0.75	0.26	0.50
Tucapel	0.75	0.13	0.44
Yumbel	0.50	0.13	0.32
Arauco	0.50	0.06	0.28
$Ca\tilde{n}ete$	0.75	0.06	0.41
Contulmo	0.50	0.00	0.25
Curanilahue	0.50	0.20	0.35
Lebu	1.00	0.13	0.56
Los Álamos	0.75	0.06	0.41
Tirúa	NA	NA	NA

Cuadro 3: RRHH Region del Biobío

Municipalidades	Area informática	Nivel educacional encargado	Area dependencia	RRHH
Chiguayante	1	1.0	1.0	1.00
Concepción	1	1.0	1.0	1.00
Coronel	1	1.0	1.0	1.00
Florida	0	1.0	1.0	0.67
Hualpén	1	1.0	1.0	1.00
Hualqui	1	0.5	1.0	0.83
Lota	1	1.0	0.4	0.80
Penco	1	1.0	1.0	1.00
San Pedro de la Paz	1	1.0	0.4	0.80
Santa Juana	1	1.0	0.6	0.87
Talcahuano	1	1.0	0.6	0.87
Tomé	1	0.5	0.4	0.63
Alto Biobío	NA	NA	NA	NA
Antuco	0	1.0	1.0	0.67
Cabrero	0	1.0	0.6	0.53
Laja	0	0.5	1.0	0.50
Los Ángeles	1	1.0	1.0	1.00
Mulchén	1	1.0	0.6	0.87
Nacimiento	1	1.0	1.0	1.00
Negrete	0	0.5	0.4	0.30
Quilaco	1	1.0	0.2	0.73
Quilleco	1	1.0	0.2	0.73
San Rosendo	NA	NA	NA	NA
Santa Barbara	1	1.0	1.0	1.00
Tucapel	1	1.0	0.2	0.73
Yumbel	0	1.0	0.6	0.53
Arauco	1	0.5	0.6	0.70
$Ca\~{n}ete$	0	0.5	1.0	0.50
Contulmo	1	1.0	0.6	0.87
Curanilahue	1	1.0	0.4	0.80
Lebu	1	1.0	0.2	0.73
Los Álamos	1	0.5	0.2	0.57
Tirúa	NA	NA	NA	NA

Cuadro 4: GTM Region del Biobío

Municipalidades	Intranet	Informatización procesos internos	Estrategia a ciudadanos	GTM
Chiguayante	1	1.00	1	1.00
Concepción	1	0.94	1	0.98
Coronel	0	0.83	0	0.28
Florida	0	0.89	1	0.63
Hualpén	1	0.94	1	0.98
Hualqui	1	0.94	0	0.65
Lota	0	0.33	0	0.11
Penco	0	0.33	1	0.44
San Pedro de la Paz	1	0.89	1	0.96
Santa Juana	1	0.56	0	0.52
Talcahuano	1	0.89	0	0.63
Tomé	1	0.94	1	0.98
Alto Biobío	NA	NA	NA	NA
Antuco	1	0.50	0	0.50
Cabrero	0	0.39	0	0.13
Laja	1	0.78	0	0.59
Los Ángeles	1	0.72	0	0.57
Mulchén	1	0.61	0	0.54
Nacimiento	0	0.94	0	0.31
Negrete	0	0.61	0	0.20
Quilaco	0	0.44	0	0.15
Quilleco	1	0.72	1	0.91
San Rosendo	NA	NA	NA	NA
Santa Barbara	1	0.67	0	0.56
Tucapel	1	0.67	0	0.56
Yumbel	0	0.50	0	0.17
Arauco	0	0.44	0	0.15
Cañete	0	0.39	0	0.13
Contulmo	0	0.50	0	0.17
Curanilahue	1	0.39	0	0.46
Lebu	0	0.50	0	0.17
Los Álamos	0	0.94	1	0.65
Tirúa	NA	NA	NA	NA

Cuadro 5: SML Region del Biobío

Municipalidades	Digitalización trámites	SML
Chiguayante	0.28	0.28
Concepción	1.00	1.00
Coronel	0.56	0.56
Florida	0.06	0.06
Hualpén	0.78	0.78
Hualqui	0.06	0.06
Lota	0.17	0.17
Penco	0.00	0.00
San Pedro de la Paz	1.00	1.00
Santa Juana	0.28	0.28
Talcahuano	0.61	0.61
Tomé	0.28	0.28
Alto Biobío	NA	NA
Antuco	0.06	0.06
Cabrero	0.06	0.06
Laja	0.11	0.11
Los Ángeles	1.00	1.00
Mulchén	0.33	0.33
Nacimiento	0.67	0.67
Negrete	0.33	0.33
Quilaco	0.06	0.06
Quilleco	0.17	0.17
San Rosendo	NA	NA
Santa Barbara	0.17	0.17
Tucapel	0.06	0.06
Yumbel	0.00	0.00
Arauco	0.11	0.11
Cañete	0.22	0.22
Contulmo	0.06	0.06
Curanilahue	0.06	0.06
Lebu	0.11	0.11
Los Álamos	0.50	0.50
Tirúa	NA	NA

Estadística descriptiva Dimensiones

```
# Crear elementos estadísticos
  min <- min(IT$IT, na.rm = TRUE)
  q1 <- quantile(IT$IT, probs = 0.25, na.rm = TRUE)
  media <- mean.default(IT$IT, na.rm = TRUE)</pre>
  mediana <- median.default(IT$IT, na.rm = TRUE)</pre>
  var <- var(IT$IT, na.rm = TRUE)</pre>
  desvest <- sd(IT$IT, na.rm = TRUE)</pre>
  q3 <- quantile(IT$IT, probs = 0.75, na.rm = TRUE)
  max <- max(IT$IT, na.rm = TRUE)</pre>
  rango <- (max - min)
  rango_iq <- (q3 - q1)
  s <- skew(IT$IT) /sqrt(6/1401)
  c <- kurtosi(IT$IT) /sqrt(6/1401)</pre>
# Crear vector con valores numéricos
  Descriptivos_IT <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                    max, rango, rango_iq, s, c))
# Dimensión RRHH
  min <- min(RRHH$RRHH, na.rm = TRUE)
  q1 <- quantile(RRHH$RRHH, probs = 0.25, na.rm = TRUE)
  media <- mean.default(RRHH$RRHH, na.rm = TRUE)</pre>
  mediana <- median.default(RRHH$RRHH, na.rm = TRUE)</pre>
  var <- var(RRHH$RRHH, na.rm = TRUE)</pre>
  desvest <- sd(RRHH$RRHH, na.rm = TRUE)</pre>
  q3 <- quantile(RRHH$RRHH, probs = 0.75, na.rm = TRUE)
  max <- max(RRHH$RRHH, na.rm = TRUE)</pre>
  rango <- (max - min)</pre>
  rango iq \leftarrow (q3 - q1)
  s <- skew(RRHH$RRHH) /sqrt(6/1401)
  c <- kurtosi(RRHH$RRHH) /sqrt(6/1401)
  Descriptivos_RRHH <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                       max, rango, rango iq, s, c))
# Descriptivos GTM
  min <- min(GTM$GTM, na.rm = TRUE)
  q1 <- quantile(GTM$GTM, probs = 0.25, na.rm = TRUE)
  media <- mean.default(GTM$GTM, na.rm = TRUE)</pre>
  mediana <- median.default(GTM$GTM, na.rm = TRUE)</pre>
  var <- var(GTM$GTM, na.rm = TRUE)</pre>
  desvest <- sd(GTM$GTM, na.rm = TRUE)</pre>
  q3 <- quantile(GTM$GTM, probs = 0.75, na.rm = TRUE)
  max <- max(GTM$GTM, na.rm = TRUE)</pre>
  rango <- (max - min)</pre>
  rango_iq <- (q3 - q1)
  s <- skew(GTM$GTM) /sqrt(6/1401)</pre>
  c <- kurtosi(GTM$GTM) /sqrt(6/1401)
  Descriptivos_GTM <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                     max, rango, rango_iq, s, c))
```

```
# Descriptivos SML
 min <- min(SML$SML, na.rm = TRUE)</pre>
  q1 <- quantile(SML$SML, probs = 0.25, na.rm = TRUE)
 media <- mean.default(SML$SML, na.rm = TRUE)</pre>
 mediana <- median.default(SML$SML, na.rm = TRUE)</pre>
  var <- var(SML$SML, na.rm = TRUE)</pre>
  desvest <- sd(SML$SML, na.rm = TRUE)</pre>
  q3 <- quantile(SML$SML, probs = 0.75, na.rm = TRUE)
  max <- max(SML$SML, na.rm = TRUE)</pre>
  rango <- (max - min)
  rango_iq <- (q3 - q1)
  s <- skew(SML$SML) /sqrt(6/1401)
  c <- kurtosi(SML$SML) /sqrt(6/1401)</pre>
  Descriptivos_SML <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                     max, rango, rango_iq, s, c))
# Indice IMTM 2022
  min <- min(IMTM_2022$IMTM_2022, na.rm = TRUE)
  q1 <- quantile(IMTM_2022$IMTM_2022, probs = 0.25, na.rm = TRUE)
  media <- mean.default(IMTM_2022$IMTM_2022, na.rm = TRUE)</pre>
  mediana <- median.default(IMTM_2022$IMTM_2022, na.rm = TRUE)</pre>
  var <- var(IMTM_2022$IMTM_2022, na.rm = TRUE)</pre>
  desvest <- sd(IMTM_2022$IMTM_2022, na.rm = TRUE)</pre>
  q3 <- quantile(IMTM_2022$IMTM_2022, probs = 0.75, na.rm = TRUE)
  max <- max(IMTM_2022$IMTM_2022, na.rm = TRUE)</pre>
 rango <- (max - min)</pre>
  rango iq \leftarrow (q3 - q1)
  s <- skew(IMTM_2022$IMTM_2022) /sqrt(6/1401)
  c <- kurtosi(IMTM_2022$IMTM_2022) /sqrt(6/1401)</pre>
  Descriptivos_IMTM <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                      max, rango, rango_iq, s, c))
# Creación Dataframe estadísticos descriptivos por dimensión
```

Cuadro 6: Estadística descriptiva Dimensiones IMTM 2022 Región del Biobío

Descriptivos	IT	RRHH	GTM	SML
Mínimo	0.00	0.30	0.11	0.00
Cuartil 1	0.36	0.67	0.18	0.06
Media	0.45	0.77	0.50	0.31
Mediana	0.49	0.80	0.53	0.17
Varianza	0.04	0.04	0.09	0.10
Desviación Estándar	0.19	0.19	0.30	0.31
Cuartil 3	0.56	0.97	0.64	0.46
Máximo	0.83	1.00	1.00	1.00
Rango	0.83	0.70	0.89	1.00
Rango intercuartil	0.20	0.30	0.47	0.40
Simetría	-8.09	-7.19	4.10	16.67
Curtosis	-1.12	-9.28	-18.44	-1.89

Correlación entre dimensiones e indice

Cuadro 7: Correlación entre las dimensiones y el IMTM

Dimensiones	Correlación
Correlación con IT	0.695
Correlación con RRHH	0.659
Correlación con GTM	0.717
Correlación con SML	0.820

Gráficos de caja

Gráfico de caja Dimensiones IMTM 2022

Objetivo 2:

Para Comparar la madurez digital entre los municipios de la región de Concepción al año 2022 se realizará un gráfico de puntos Cleveland, ademas de presentar los resultados de las variables.

Gráfico Cleveland de puntos agrupado por Provincia

IMTM municipios de la región del Biobío por provincia

Resultados IT

Cuadro 8: Total de medidas de seguridad

Num	Medidas de seguridad	Total	Faltantes
1	Antivirus	28	5
2	Antispam	19	14
3	Firewall	25	8
4	Autentificación y Criptografia	18	15

Medidas de seguridad en el municipio

Frecuencia de los valores del subindice medidas_seguridad

Cuadro 9: Cantidad de servidores

Cantidad	Total
Ninguno	5
Uno	7
Dos	8
Tres	4
Cuatro	3
Seis	2
Diez	1
NA	3

```
# num_serv gráfico
ggplot(Total_num_serv, aes(x = fct_reorder(cant_serv, total_serv), y = total_serv)) +
geom_col(aes(fill = cant_serv), colour = "black", position = "dodge",
width = 0.5) + scale_x_discrete("Servidores") + scale_y_continuous("Frecuencia") +
    labs(title = "Cantidad de servidores",
    subtitle = "Frecuencia de la variable num_serv") +
    scale_fill_discrete(guide = "none") +
    geom_text(aes(label = total_serv), vjust = -0.3)
```

Cantidad de servidores

Frecuencia de la variable num_serv

Resultados RRHH

Cuadro 10: Presencia de área informática municipal

Presencia	Total
No	7
Si	23
NA	3

```
# area_info gráfico
ggplot(Total_area_info, aes(x = si_no, y = total_area_info)) +
geom_col(aes(fill = si_no), colour = "black", position = "dodge", width = 0.5) +
scale_x_discrete("Presencia") + scale_y_continuous("Cantidad") +
labs(title = "Presencia de área informática municipal",
subtitle = "Frecuencia de la variable area_info") +
scale_fill_discrete(guide = "none") +
geom_text(aes(label = total_area_info), vjust = -0.3)
```

Presencia de área informática municipal

Frecuencia de la variable area_info

Cuadro 11: Nivel educacional encargado informática

Nivel	Total
Educación técnica	7
Educación superior	23
NA	3

```
scale_fill_discrete(guide = "none") +
geom_text(aes(label = total_educ_info), vjust = -0.3)
```

Nivel educacional encargado informática

Frecuencia de la variable educ_info

Cuadro 12: Depencia de la unidad de informática

Dependencia	Total
Alcalde	1
Admin Municipal	12
DAF	7
SECPLAN	8
Otro	2
NA	3

Dependencia de la unidad de informática

Frecuencia de la variable org_info

Cuadro 13: Presencia de intranet municipal

Presencia	Total
No	14
Si	16

Presencia	Total
NA	3

Resultados GTM

```
# intranet gráfico
ggplot(Total_intranet, aes(x = si_no, y = total_intranet)) +
geom_col(aes(fill = si_no), colour = "black", position = "dodge",
width = 0.5) + scale_x_discrete("Presencia") + scale_y_continuous("Frecuencia") +
labs(title = "Presencia de intranet municipal",
subtitle = "Frecuencia de la variable intranet") +
scale_fill_discrete(guide = "none") +
geom_text(aes(label = total_intranet), vjust = -0.3)
```

Presencia de intranet municipal

Frecuencia de la variable intranet

Cuadro 14: Presencia de estrategia servicios municipales

Presencia	Total
No	21
Si	9
NA	3

```
# estrategia_servicios gráfico
ggplot(Total_estrategia_s, aes(x = si_no, y = total_estrategia_s)) +
geom_col(aes(fill = si_no), colour = "black", position = "dodge",
width = 0.5) + scale_x_discrete("Presencia") + scale_y_continuous("Frecuencia") +
    labs(title = "Presencia de estrategia servicios municipales",
    subtitle = "Frecuencia de la variable estrategia_servicios") +
    scale_fill_discrete(guide = "none") +
    geom_text(aes(label = total_estrategia_s), vjust = -0.3)
```

Presencia de estrategia servicios municipales

Frecuencia de la variable estrategia servicios

Cuadro 15: Presencia de estrategia de gestión municipal

Presencia	Total
No	19
Si	11
NA	3

```
# estrategia_gestion gráfico
ggplot(Total_estrategia_g, aes(x = si_no, y = total_estrategia_g)) +
geom_col(aes(fill = si_no), colour = "black", position = "dodge",
width = 0.5) + scale_x_discrete("Presencia") + scale_y_continuous("Frecuencia") +
    labs(title = "Presencia de estrategia de gestión municipal",
    subtitle = "Frecuencia de la variable estrategia_gestion") +
    scale_fill_discrete(guide = "none") +
    geom_text(aes(label = total_estrategia_g), vjust = -0.3)
```

Presencia de estrategia de gestión municipal

Frecuencia de la variable estrategia_gestion


```
# procesos datos
Total_proceso <- colSums(procesos[ , 4:21], na.rm = TRUE) #1er paso

nombre_proceso <- c("Inventario", "Oficina de Partes (Documentos)",
    "Aseo y Ornato (Parques y Jardines)",
    "Planificación y control presupuestario", "Ingreso/egreso Tesorería",
    "Rentas y Patentes (Industriales, profesionales, alcoholes, etc.)",
    "Licencias de conducir", "Permisos de circulación",</pre>
```

```
"Juzgado de policía local y registro de multas", "Inspección",

"Administración del cementerio municipal", "Registro Social de hogares",

"Subsidios (incluye asistencia social y apoyo a la comunidad)",

"OMIL (bolsa de empleo)", "Organizaciones comunitarias",

"Dirección de obras municipales (DOM)",

"Administración de consultorios / farmacias", "Ventanilla única") #2do paso

lista_proceso <- c(1:18)

Total_procesos <- data.frame(lista_proceso, nombre_proceso,

Total_proceso) # 3er crear DF

row.names(Total_procesos) <- NULL # 4to paso quitar rownames

kable(Total_procesos, caption = "Total de procesos", align = 'c',

col.names = c("Num", "Nombre procesos", "Total")) # 5to paso crear tabla
```

Cuadro 16: Total de procesos

Num	Nombre procesos	Total
1	Inventario	26
2	Oficina de Partes (Documentos)	23
3	Aseo y Ornato (Parques y Jardines)	6
4	Planificación y control presupuestario	25
5	Ingreso/egreso Tesorería	30
6	Rentas y Patentes (Industriales, profesionales, alcoholes, etc.)	30
7	Licencias de conducir	27
8	Permisos de circulación	29
9	Juzgado de policía local y registro de multas	27
10	Inspección	14
11	Administración del cementerio municipal	14
12	Registro Social de hogares	21
13	Subsidios (incluye asistencia social y apoyo a la comunidad)	18
14	OMIL (bolsa de empleo)	15
15	Organizaciones comunitarias	17
16	Dirección de obras municipales (DOM)	18
17	Administración de consultorios / farmacias	13
18	Ventanilla única	11

Cantidad de procesos

Frecuencia del subindice procesos

Resultados SML

```
Total_tramite <- colSums(tramites[ , 4:26], na.rm = TRUE)
nombre_tramite <- c("Obtención de Patente comercial",
"Renovación de la Patente comercial", "Pago de la Patente comercial",
"Obtención de la Patente industrial", "Renovación de la Patente industrial",
"Obtención de Patente de alcoholes", "Renovación de la Patente de alcoholes",
"Pago de la Patente de alcoholes", "Certificado de no expropiación",
"Permiso de demolición", "Obtención de Permiso de edificación",
"Renovación de Permiso de edificación", "Pago de Permiso de edificación",
"Permiso de uso de bienes nacionales de uso público",
"Informe de zonificación",
"Recepción de obra", "Certificado de informaciones previas",
"Permiso de circulación", "Pago de multas en Juzgado de policía local",
"Solicitud de corte y poda de árboles", "Solicitud de cambio de domicilio",
"Obtención de Patente comercial", "Otro")
lista_tramite <- c(1:23)</pre>
Total_tramites <- data.frame(lista_tramite, nombre_tramite, Total_tramite)</pre>
row.names(Total_tramites) <- NULL</pre>
kable(Total_tramites, caption = "Total de trámites", align= 'c', col.names =
      c("Num", "Nombre trámites", "Total"))
```

Cuadro 17: Total de trámites

Num	Nombre trámites	Total
1	Obtención de Patente comercial	5
2	Renovación de la Patente comercial	7
3	Pago de la Patente comercial	16
4	Obtención de la Patente industrial	4
5	Renovación de la Patente industrial	5
6	Obtención de Patente de alcoholes	3
7	Renovación de la Patente de alcoholes	5
8	Pago de la Patente de alcoholes	10
9	Certificado de no expropiación	8
10	Permiso de demolición	8
11	Obtención de Permiso de edificación	8
12	Renovación de Permiso de edificación	6
13	Pago de Permiso de edificación	8
14	Permiso de uso de bienes nacionales de uso público	5
15	Informe de zonificación	7
16	Recepción de obra	7
17	Certificado de informaciones previas	7
18	Permiso de circulación	27
19	Pago de multas en Juzgado de policía local	8
20	Solicitud de corte y poda de árboles	3
21	Solicitud de cambio de domicilio	3
22	Obtención de Patente comercial	4
23	Otro	6

Cantidad de trámites informatizados

Frecuencia del subindice tramites

Objetivo 3:

Para Contrastar el IMTM 2015 y el IMTM 2022 se realizará una tabla de datos que incluya la diferencia entre ambas variables. También estadística descriptiva y gráficos de caja.

```
# Estadística descriptiva IMTM 2015
  min <- min(cuestionarios$IMTM_2015, na.rm = TRUE)</pre>
  q1 <- quantile(cuestionarios$IMTM_2015, probs = 0.25, na.rm = TRUE)
  media <- mean.default(cuestionarios$IMTM 2015, na.rm = TRUE)
  mediana <- median.default(cuestionarios$IMTM_2015, na.rm = TRUE)</pre>
  var <- var(cuestionarios$IMTM_2015, na.rm = TRUE)</pre>
  desvest <- sd(cuestionarios$IMTM_2015, na.rm = TRUE)</pre>
  q3 <- quantile(cuestionarios$IMTM_2015, probs = 0.75, na.rm = TRUE)
  max <- max(cuestionarios$IMTM_2015, na.rm = TRUE)</pre>
  rango <- (max - min)</pre>
  rango_iq <- (q3 - q1)
  s <- skew(cuestionarios$IMTM_2015) /sqrt(6/1401)
  c <- kurtosi(cuestionarios$IMTM_2015) /sqrt(6/1401)</pre>
  Descriptivos_IMTM_2015 <- as.numeric(c(min, q1, media, mediana, var, desvest,
                                           q3, max, rango, rango_iq, s, c))
  descriptivos <- data.frame(nombres, Descriptivos_IMTM_2015, Descriptivos_IMTM)</pre>
  descriptivos <- select(descriptivos, nombres, Descriptivos_IMTM_2015,</pre>
```

Cuadro 18: Diferencia descriptiva IMTM 2015 y 2022

Nombre	IMTM 2015	IMTM 2022	Diferencia
Mínimo	0.210	0.220	0.010
Cuartil 1	0.290	0.353	0.063
Media	0.444	0.507	0.063
Mediana	0.450	0.475	0.025
Varianza	0.023	0.035	0.012
Desviación Estándar	0.153	0.187	0.034
Cuartil 3	0.540	0.628	0.088
Máximo	0.800	0.890	0.090
Rango	0.590	0.670	0.080
Rango intercuartil	0.250	0.275	0.025
Simetría	4.065	5.842	1.777
Curtosis	-11.308	-15.555	-4.248

Cuadro 19: Diferencia IMTM 2015 y 2022

Provincia	Municipio	$IMTM\ 2015$	$IMTM\ 2022$	Diferencia
Concepción	Chiguayante	0.66	0.73	0.07
Concepción	Concepción	0.80	0.89	0.09
Concepción	Coronel	0.50	0.63	0.13
Concepción	Florida	0.49	0.45	-0.04
Concepción	Hualpén	NA	0.81	NA
Concepción	Hualqui	0.29	0.42	0.13
Concepción	Lota	0.26	0.39	0.13
Concepción	Penco	0.54	0.50	-0.04
Concepción	San Pedro de la Paz	0.40	0.79	0.39
Concepción	Santa Juana	NA	0.55	NA
Concepción	Talcahuano	0.69	0.73	0.04
Concepción	Tomé	0.45	0.62	0.17
Biobío	Alto Biobío	NA	NA	NA
Biobío	Antuco	0.23	0.31	0.08
Biobío	Cabrero	0.53	0.34	-0.19
Biobío	${ m Laja}$	0.29	0.40	0.11
Biobío	Los Ángeles	0.59	0.82	0.23
Biobío	Mulchén	0.29	0.56	0.27
Biobío	Nacimiento	0.45	0.65	0.20
Biobío	Negrete	0.44	0.22	-0.22
Biobío	Quilaco	0.23	0.28	0.05
Biobío	Quilleco	0.45	0.57	0.12
Biobío	San Rosendo	0.25	NA	NA
Biobío	Santa Barbara	0.63	0.56	-0.07
Biobío	Tucapel	0.37	0.45	0.08
Biobío	Yumbel	0.59	0.25	-0.34
Arauco	Arauco	0.48	0.31	-0.17
Arauco	Cañete	NA	0.31	NA
Arauco	$\operatorname{Contulmo}$	0.54	0.33	-0.21
Arauco	Curanilahue	0.49	0.42	-0.07
Arauco	Lebu	0.36	0.39	0.03
Arauco	Los Álamos	0.21	0.53	0.32
Arauco	Tirúa	0.37	NA	NA

```
## Boxplot IMTM 2015 y 2022
# Apilar valores IMTM como factor
contrastar <- cbind(contrastar[1:2:5], stack(contrastar[3:4]))
contrastar <- rename(contrastar, Valores = values, Índice = ind)

qplot(data = contrastar, y = Índice, x = Valores, fill = Índice,</pre>
```

```
geom = "boxplot", main = "Gráfico de caja IMTM 2015 y 2022") +
scale_fill_discrete(guide = "none")
```

Gráfico de caja IMTM 2015 y 2022

Objetivo 4: Categorizar según FIGEM y Provincia

```
FIGEM_1 <- filter(cuestionarios, FIGEM== 1)
FIGEM_2 <- filter(cuestionarios, FIGEM== 2)
FIGEM_3 <- filter(cuestionarios, FIGEM== 3)
FIGEM_4 <- filter(cuestionarios, FIGEM== 4)
FIGEM_5 <- filter(cuestionarios, FIGEM== 5)

Provincia_conce <- filter(cuestionarios, Provincia== "Concepción")
Provincia_biobio <- filter(cuestionarios, Provincia== "Biobío")
Provincia_arauco <- filter(cuestionarios, Provincia== "Arauco")
```

Estadística descriptiva FIGEM

```
# Descriptivos
min <- min(FIGEM_1$IMTM_2022, na.rm = TRUE)
q1 <- quantile(FIGEM_1$IMTM_2022, probs = 0.25, na.rm = TRUE)</pre>
```

```
media <- mean.default(FIGEM_1$IMTM_2022, na.rm = TRUE)</pre>
mediana <- median.default(FIGEM_1$IMTM_2022, na.rm = TRUE)</pre>
var <- var(FIGEM_1$IMTM_2022, na.rm = TRUE)</pre>
desvest <- sd(FIGEM_1$IMTM_2022, na.rm = TRUE)</pre>
q3 <- quantile(FIGEM_1$IMTM_2022, probs = 0.75, na.rm = TRUE)
max <- max(FIGEM_1$IMTM_2022, na.rm = TRUE)</pre>
rango <- (max - min)</pre>
rango_iq <- (q3 - q1)
s <- skew(FIGEM_1$IMTM_2022) /sqrt(6/1401)</pre>
c <- kurtosi(FIGEM_1$IMTM_2022) /sqrt(6/1401)</pre>
Descriptivos_F1 <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                     max, rango, rango iq, s, c))
min <- min(FIGEM_2$IMTM_2022, na.rm = TRUE)
q1 <- quantile(FIGEM_2$IMTM_2022, probs = 0.25, na.rm = TRUE)
media <- mean.default(FIGEM_2$IMTM_2022, na.rm = TRUE)</pre>
mediana <- median.default(FIGEM_2$IMTM_2022, na.rm = TRUE)</pre>
var <- var(FIGEM_2$IMTM_2022, na.rm = TRUE)</pre>
desvest <- sd(FIGEM_2$IMTM_2022, na.rm = TRUE)</pre>
q3 <- quantile(FIGEM_2$IMTM_2022, probs = 0.75, na.rm = TRUE)
max <- max(FIGEM_2$IMTM_2022, na.rm = TRUE)</pre>
rango <- (max - min)</pre>
rango_iq <- (q3 - q1)
s <- skew(FIGEM_2$IMTM_2022) /sqrt(6/1401)</pre>
c <- kurtosi(FIGEM_2$IMTM_2022) /sqrt(6/1401)</pre>
Descriptivos_F2 <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                     max, rango, rango_iq, s, c))
min <- min(FIGEM_3$IMTM_2022, na.rm = TRUE)</pre>
q1 <- quantile(FIGEM_3$IMTM_2022, probs = 0.25, na.rm = TRUE)
media <- mean.default(FIGEM_3$IMTM_2022, na.rm = TRUE)</pre>
mediana <- median.default(FIGEM_3$IMTM_2022, na.rm = TRUE)</pre>
var <- var(FIGEM_3$IMTM_2022, na.rm = TRUE)</pre>
desvest <- sd(FIGEM_3$IMTM_2022, na.rm = TRUE)</pre>
q3 <- quantile(FIGEM_3$IMTM_2022, probs = 0.75, na.rm = TRUE)
max <- max(FIGEM_3$IMTM_2022, na.rm = TRUE)</pre>
rango <- (max - min)</pre>
rango_iq <- (q3 - q1)
s <- skew(FIGEM_3$IMTM_2022) /sqrt(6/1401)</pre>
c <- kurtosi(FIGEM_3$IMTM_2022) /sqrt(6/1401)</pre>
Descriptivos_F3 <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                     max, rango, rango_iq, s, c))
min <- min(FIGEM_4$IMTM_2022, na.rm = TRUE)
q1 <- quantile(FIGEM_4$IMTM_2022, probs = 0.25, na.rm = TRUE)
media <- mean.default(FIGEM_4$IMTM_2022, na.rm = TRUE)</pre>
mediana <- median.default(FIGEM_4$IMTM_2022, na.rm = TRUE)</pre>
var <- var(FIGEM_4$IMTM_2022, na.rm = TRUE)</pre>
desvest <- sd(FIGEM_4$IMTM_2022, na.rm = TRUE)</pre>
q3 <- quantile(FIGEM_4$IMTM_2022, probs = 0.75, na.rm = TRUE)
```

```
max <- max(FIGEM_4$IMTM_2022, na.rm = TRUE)</pre>
rango <- (max - min)
rango_iq <- (q3 - q1)
s <- skew(FIGEM_4$IMTM_2022) /sqrt(6/1401)
c <- kurtosi(FIGEM_4$IMTM_2022) /sqrt(6/1401)</pre>
Descriptivos_F4 <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                    max, rango, rango iq, s, c))
min <- min(FIGEM 5$IMTM 2022, na.rm = TRUE)
q1 <- quantile(FIGEM_5$IMTM_2022, probs = 0.25, na.rm = TRUE)
media <- mean.default(FIGEM_5$IMTM_2022, na.rm = TRUE)</pre>
mediana <- median.default(FIGEM 5$IMTM 2022, na.rm = TRUE)</pre>
var <- var(FIGEM_5$IMTM_2022, na.rm = TRUE)</pre>
desvest <- sd(FIGEM_5$IMTM_2022, na.rm = TRUE)</pre>
q3 <- quantile(FIGEM_5$IMTM_2022, probs = 0.75, na.rm = TRUE)
max <- max(FIGEM_5$IMTM_2022, na.rm = TRUE)</pre>
rango <- (max - min)</pre>
rango_iq <- (q3 - q1)
s <- skew(FIGEM_5$IMTM_2022) /sqrt(6/1401)</pre>
c <- kurtosi(FIGEM_5$IMTM_2022) /sqrt(6/1401)</pre>
Descriptivos_F5 <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                    max, rango, rango_iq, s, c))
descriptivos <- data.frame(nombres, Descriptivos F1, Descriptivos F2,
                            Descriptivos F3, Descriptivos F4, Descriptivos F5)
kable(descriptivos, digits = 2, align = 'c',
    caption = "Estadística descriptiva IMTM 2022 por FIGEM Región del Biobío",
          col.names = c("Descriptivos", "1", "2", "3", "4", "5"))
```

Cuadro 20: Estadística descriptiva IMTM 2022 por FIGEM Región del Biobío

Descriptivos	1	2	3	4	5
Mínimo	0.73	0.39	0.31	0.31	0.22
Cuartil 1	0.73	0.50	0.38	0.33	0.29
Media	0.79	0.59	0.47	0.36	0.38
Mediana	0.79	0.62	0.48	0.36	0.38
Varianza	0.00	0.03	0.01	0.00	0.02
Desviación Estándar	0.07	0.16	0.12	0.06	0.12
Cuartil 3	0.81	0.63	0.56	0.38	0.45
Máximo	0.89	0.82	0.65	0.40	0.57
Rango	0.16	0.43	0.34	0.09	0.35
Rango intercuartil	0.08	0.13	0.18	0.05	0.16
Simetría	6.03	2.14	0.61	0.00	2.90
Curtosis	-25.94	-25.56	-26.81	-42.02	-24.42

Boxplot IMTM 2022 según FIGEM

Gráfico de caja por categoría FIGEM 2022

Boxplot IMTM 2015 según FIGEM

```
qplot(data = cuestionarios, x = FIGEM, y = IMTM_2015, fill = FIGEM,
    geom = "boxplot", ylab = "Valor",
    main = "Gráfico de caja por categoría FIGEM 2015")
```

Gráfico de caja por categoría FIGEM 2015

Estadística descriptiva Provincia

```
min <- min(Provincia_conce$IMTM_2022, na.rm = TRUE)</pre>
q1 <- quantile(Provincia_conce$IMTM_2022, probs = 0.25, na.rm = TRUE)
media <- mean.default(Provincia conce$IMTM 2022, na.rm = TRUE)
mediana <- median.default(Provincia_conce$IMTM_2022, na.rm = TRUE)</pre>
var <- var(Provincia conce$IMTM 2022, na.rm = TRUE)</pre>
desvest <- sd(Provincia_conce$IMTM_2022, na.rm = TRUE)</pre>
q3 <- quantile(Provincia_conce$IMTM_2022, probs = 0.75, na.rm = TRUE)
max <- max(Provincia_conce$IMTM_2022, na.rm = TRUE)</pre>
rango <- (max - min)
rango_iq <- (q3 - q1)
s <- skew(Provincia_conce$IMTM_2022) /sqrt(6/1401)
c <- kurtosi(Provincia_conce$IMTM_2022) /sqrt(6/1401)</pre>
Descriptivos_pconce <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                    max, rango, rango_iq, s, c))
min <- min(Provincia_biobio$IMTM_2022, na.rm = TRUE)</pre>
q1 <- quantile(Provincia_biobio$IMTM_2022, probs = 0.25, na.rm = TRUE)
media <- mean.default(Provincia_biobio$IMTM_2022, na.rm = TRUE)</pre>
mediana <- median.default(Provincia biobio$IMTM 2022, na.rm = TRUE)
var <- var(Provincia_biobio$IMTM_2022, na.rm = TRUE)</pre>
desvest <- sd(Provincia_biobio$IMTM_2022, na.rm = TRUE)</pre>
```

```
q3 <- quantile(Provincia_biobio$IMTM_2022, probs = 0.75, na.rm = TRUE)
max <- max(Provincia_biobio$IMTM_2022, na.rm = TRUE)</pre>
rango <- (max - min)</pre>
rango_iq <- (q3 - q1)
s <- skew(Provincia_biobio$IMTM_2022) /sqrt(6/1401)
c <- kurtosi(Provincia_biobio$IMTM_2022) /sqrt(6/1401)</pre>
Descriptivos_pbiobio <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                   max, rango, rango_iq, s, c))
min <- min(Provincia_arauco$IMTM_2022, na.rm = TRUE)</pre>
q1 <- quantile(Provincia_arauco$IMTM_2022, probs = 0.25, na.rm = TRUE)
media <- mean.default(Provincia_arauco$IMTM_2022, na.rm = TRUE)</pre>
mediana <- median.default(Provincia_arauco$IMTM_2022, na.rm = TRUE)</pre>
var <- var(Provincia_arauco$IMTM_2022, na.rm = TRUE)</pre>
desvest <- sd(Provincia_arauco$IMTM_2022, na.rm = TRUE)</pre>
q3 <- quantile(Provincia_arauco$IMTM_2022, probs = 0.75, na.rm = TRUE)
max <- max(Provincia_arauco$IMTM_2022, na.rm = TRUE)</pre>
rango <- (max - min)</pre>
rango_iq <- (q3 - q1)
s <- skew(Provincia_arauco$IMTM_2022) /sqrt(6/1401)
c <- kurtosi(Provincia_arauco$IMTM_2022) /sqrt(6/1401)</pre>
Descriptivos_parauco <- as.numeric(c(min, q1, media, mediana, var, desvest, q3,
                                   max, rango, rango iq, s, c))
descriptivos <- data.frame(nombres, Descriptivos_pconce, Descriptivos_pbiobio,
                            Descriptivos_parauco)
kable(descriptivos, digits = 2, align = 'c',
    caption = "Estadística descriptiva IMTM 2022 por provincia
    Región del Biobío", col.names = c("Descriptivos", "Concepción",
                                       "Biobío", "Arauco"))
```

Cuadro 21: Estadística descriptiva IMTM 2022 por provincia Región del Biobío

Descriptivos	Concepción	Biobío	Arauco
Mínimo	0.39	0.22	0.31
Cuartil 1	0.49	0.30	0.32
Media	0.63	0.45	0.38
Mediana	0.62	0.43	0.36
Varianza	0.03	0.03	0.01
Desviación Estándar	0.17	0.18	0.09
Cuartil 3	0.74	0.56	0.41
Máximo	0.89	0.82	0.53
Rango	0.50	0.60	0.22
Rango intercuartil	0.26	0.26	0.10
Simetría	0.46	6.74	10.00
Curtosis	-23.82	-16.25	-19.72

Boxplot IMTM 2022 según provincia

```
cuestionarios$Provincia <- factor(cuestionarios$Provincia)
qplot(data = cuestionarios, x = Provincia, y = IMTM_2022, fill = Provincia,
    geom = "boxplot", ylab = "Valor",
    main = "Gráfico de caja por provincia 2022")</pre>
```

Gráfico de caja por provincia 2022

Boxplot IMTM 2015 según provincia

```
cuestionarios$Provincia <-factor(cuestionarios$Provincia)
qplot(data = cuestionarios, x = Provincia, y = IMTM_2015, fill = Provincia,
    geom = "boxplot", ylab = "Valor",
    main = "Gráfico de caja por provincia 2015")</pre>
```


