1. Let the wavefunction $\Psi(x,t)$ be a solution to the time-dependent Schrödinger equation when the potential energy is given by V(x). What is the solution to the Shrödinger equation if we now consider a potential of $V(x) + V_0$ where V_0 is a real positive constant.

2. A particle is observed in a quantum state described by the wavefunction

$$\Psi(x,t) = A \exp\left(-a\left(\frac{mx^2}{\hbar} + it\right)\right),$$

where A and a are real positive constants.

(a) Normalize Ψ .

As shown in Griffiths, if Ψ is normalized at any time t it is normalized at all times t. We will normalize Ψ at t=0.

$$1 = \int_{-\infty}^{\infty} \Psi(x, t = 0) dx$$

$$= \int_{-\infty}^{\infty} A \exp\left(\frac{-amx^2}{\hbar}\right) dx$$

$$= A \int_{-\infty}^{\infty} \exp\left(\frac{-amx^2}{\hbar}\right) dx$$

$$= A \sqrt{\frac{\pi}{\left(\frac{am}{\hbar}\right)}}$$

$$= A \sqrt{\frac{\pi\hbar}{am}}.$$

Thus

$$A = \sqrt{\frac{am}{\pi\hbar}}.$$

- (b) What is the potential V(x) that this particle finds itself within?
- (c) Determine the expectation values $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, $\langle p^2 \rangle$.
- (d) Determine the standard deviations for position, σ_x , and momentum, σ_p .
- (e) Are your values for σ_x and σ_p consistent with the uncertainty principle?

3. An electron is trapped in a harmonic quadratic potential. Suppose the expectation value for its position is given by $\langle x \rangle = \frac{a}{2} \sin(\omega t)$. Here, a is a real constant with units of length and ω is an angular frequency. What, if anything, can be concluded about the electron's momentum?