Lecture 5: Hierarchical Modeling

Professor Alexander Franks

Announcements

Reading: Chapter 5 of BDA

Hwk dve Sinlay.
 Ch. |0/11

Comparing Multiple Related Groups

- Hierarchy of nested populations
- Models which account for this are called hiearchical or multilevel models

Some examples:

- Patient outcomes within several different hospitals
- People within counties in the United States (e.g. Asthma mortality example)
- Athlete performance in sports
- Genes within a group of animals

- A study was performed for the Educational Testing Service (ETS) to evaluate the effects of coaching programs on SAT preparation
- Each of eight different schools used a short-term SAT prep coaching program
- Compute the average SAT score in those who did take the program minus those that did not participate in the program
- We observe the average difference varies by school. What accounts for these differences?

- Samply Voriability.

- Program effectiveness varies by School

+ Demographis

+ School Finds

+ Instructor Variation.

- Interested in "real" differences due to training
- Want to reduce effect of chance variability
- How do we estimate the effect of the program in each of the schools?

- Consider two extremes:
 - Estimate the effect of the program in every school independently
 - A separate prior distribution for each school effect
 - Or assume the effect is the same in every school
 - Combine all the data
 Mre Duta
 - A compromise between the above 2 options?

$$V_{i} \sim N(\Theta_{i}, \sigma_{i}^{2})$$

$$\frac{\sigma_{i}^{2}}{\sigma_{i}^{2}} is known$$

$$\frac{\sigma_{i}^{2}}{\eta_{i}^{3}}$$
No Pooling
$$O_{mik_{i}}^{2} = Y_{i}$$
Madel

$$y_j \sim N(\theta_j, \sigma_j^2)$$

- y_j is the observed effects of the program in school j
 - Based on a sample of test scores from those in the program and those not in the program
- θ_i are the true *unknown* effects of the program in school j
- Assume variances, σ_i^2 , are *known*
 - e.g. determined by the number of students in the sample

```
1 J \leftarrow 8

2 y = c(28, 8, -3, 7, -1, 1, 18, 12)

3 sigma \leftarrow c(15, 10, 16, 11, 9, 11, 10, 18)
```

- Assuming the effect of the program on each school is identical.
- What are the chances of seeing a value as large as 28?
- As small as -3?

$$Y_{i} \sim \mathcal{N}(\mathcal{M}, \sigma_{i}^{2})$$

- Assume the effect of the program on each school is identical, i.e. $\theta_j = \mu$
- Assume a flat prior on μ , what is $p(\mu \mid y_1, \dots, y_8, \sigma_1, \dots \sigma_8)$?

P(M/y,..., y)
$$\sigma_1$$
, σ_0) $\prec L(M) \prec$

$$\frac{g}{2\pi\sigma_i^2} = \frac{(y_i - M)^2}{2\sigma_i^2} \approx \exp\left[-\sum_{z=0}^{1} (y_z - M)^2\right]$$

$$= \exp\left[-\sum_{z=0}^{g} \frac{1}{2\sigma_i^2} (M^2 - 2y_i M)\right]$$
Check

2

```
1 ## Compute the precision frome each school
2 prec <- 1/sigma^2
3
4 ## global estimate is a weighted vareage
5 mu_global <- sum(prec * y / sum(prec))
6 mu_global</pre>
```

- Assume the effect of the program on each school is identical, i.e. $\theta_i = \mu$
- What are the chances of school 1 having an effect large as 28 (given $\sigma_1 = 15$)?
- Y_3 as small as -3 (given $\sigma_3 = 16$)?

$$= P(\tilde{\gamma} \geq 28 \mid M, \sigma = 15) P(My_{1,n} y_{6,n}) du$$

$$= P(\tilde{\gamma} \geq 28 \mid \sigma = 15, y_{1,n}, y_{8})$$

$$= P(\tilde{\gamma} \leq 28 \mid \sigma = 6, y_{1,n}, y_{8})$$

Pluly) N([Wiyi, 5/1/0;2) P(5/14) ~ N(4,02) Y = M+ E, y= Evigit E, + E, M= Zvigi + E2 /~ N(Ewigo, 5/62+02)

_ 1 /,5 5)

Posterior Prediction Under Complete Pooling

```
1 prec <- 1/sigma^2
2
3 ## global estimate is a weighted average
4 mu_global <- sum(prec * y / sum(prec))
5
6 print(sprintf("mu is %f", mu_global))
[1] "mu is 7.685617"
1 - pnorm(28, mean=mu_global, sd=sqrt(1/sum(1/sigma^2)+sigma[1]^2))
[1] 0.09560784
1 pnorm(-3, mean=mu_global, sd=sqrt(1/sum(1/sigma^2)+sigma[3]^2))
[1] 0.2587447</pre>
```

$$y_j \sim N(\theta_j, \sigma_j^2)$$

- θ_j are the true unknown effects of the program in school j
- y_j is the observed effects of the program in school j
 - Based on a sample of test scores from those in the program and those not in the program
 - Number of people in the sample determine the magnitude of σ_i^2

How do we estimate θ_j ?

- Assume effects are totally independent: $\hat{\theta}_{j}^{(MLE)} = y_{j}$ is the MLE
- Assume effects are identical: $\hat{\theta}_{j}^{(pool)} = \frac{\sum_{i} \frac{1}{\sigma_{i}^{2}} y_{i}}{\sum_{i} \frac{1}{\sigma_{i}^{2}}}$
 - Same effect for all schools: estimate using a weighted average of the observed effects

Eight Schools

```
1 theta j mle <- y</pre>
 2 theta j mle
[1] 28 8 -3 7 -1 1 18 12
 1 theta j pooled <- rep(sum(1/sigma^2 * y) / sum(1/sigma^2), J)</pre>
 2 theta j pooled
[1] 7.685617 7.685617 7.685617 7.685617 7.685617 7.685617 7.685617 7.685617
• Compromise: \hat{\theta}_{j}^{\text{shrink}} = w\theta_{j}^{\text{MLE}} + (1 - w)\theta^{pooled}
          0 = W = 1
```

Add a *shared* normal prior distribution to θ_j

$$\theta_j \sim N(\mu, \tau^2)$$
 $y_j \sim N(\theta_j, \sigma_j^2)$

- The global mean, μ , is also an unknown parameter. What prior should we choose?
- τ^2 determines how much weight weight we put on the independent estimate vs the pooled estimate.
- A 9-parameter posterior: $p(\mu, \theta_1, \dots, \theta_8 \mid y_1, \dots, y_8, \sigma_1, \dots, \sigma_8)$

If M and t^{2} known

What is $P(0, | y_{1}, \dots, y_{8}, \underline{M}, \underline{t^{2}})$? M, T $N(wY_{1}+(l-w)M_{1}, \frac{1}{\sqrt{t^{2}+\frac{1}{2}t}})$ $N = \sqrt{t_{1}}$ $N = \sqrt{t_{2}}$ $N = \sqrt{t_{2}}$ $N = \sqrt{t_{3}}$ $N = \sqrt{t_{4}}$ $N = \sqrt{t_{4}}$ $N = \sqrt{t_{4}}$ $N = \sqrt{t_{4}}$

Intuition for shrinkage

- $Y_j = \theta_j + \epsilon_j$
 - For simplicity assume $Var(\epsilon_j) = \sigma^2$ for all j
 - θ_j represents true effect in school j (signal)
 - $Var(\theta_j) = \tau^2$ represents how much the true effects vary across schools
 - \circ ϵ_{j} is sampling variability (noise, chance variation)

•
$$\hat{\theta}_{MLE} = Y_j$$
 28, $|0| - 3 = 5$
 $\hat{\theta}: \forall \epsilon = 9; + 6;$

$$Var(\hat{\theta}) \approx Var(9;) + Var(6;) = 7^2 + 5^2$$

Intuition for shrinkage

- Consequence: the observed outcomes always have higher variance than the signal, i.e. $Var(Y_j) > Var(\theta_j)$
- Intuition: reduce the variance by shrinking estimates to a common mean!
- The variance of the shrunken estimates should be close to au^2

Comments:

- The global average, μ , is a parameter so also has uncertainty
- How dow we determine how much to shrink, e.g. how do we determine τ^2 ?
- Is the training program effective in school *j*?
 - What is $P(\theta_i > 0 \mid y)$?
- On average (over all schools) is the training program P(y > 0/y)
 Posterior produche effective?
 - What is $P(\mu > 0 \mid y)$?

- If τ^2 is large, the prior for θ_j is not very strong
 - If $\tau^2 \to \infty$ equivalent to the no pooling model
- If τ^2 is small, we assume a priori that θ_j are very close
 - if $\tau^2 \to 0$ equivalent to the complete pooling model, $\theta_i = \mu$

Inference

- Factorize the density into tractable components

P(0, M) = P(M)P(9/M)

- $\blacksquare p(\theta_i \mid \mu, y_i)$
- Later: MCMC or other approximate methods

P(Dilyc, M) -> N(1/0/20 + ()M.

1/02-1/22

Eight Schools example

The impact of τ

The impact of τ

MLE vs Posterior Mean

