

### **KAUDA ROBOTIC ARM**

**PROJECT NAME** 010-EL.DRW\_02

**REV.** 01

JOB 010-KaudaRA

**P. SUPPLY** 12V DC – 10A



| BILL OF MATERIALS |                  |                                   |      |                              |
|-------------------|------------------|-----------------------------------|------|------------------------------|
| N°                | Code             | Description                       | Qty. | Note                         |
| 1                 | 17HS19-2004S1    | Stepper motor Nema17 - 0,59Nm     | 4    |                              |
| 2                 | MG995            | Servomotor 20Kg – Metal Gear      | 2    |                              |
| 3                 | SG90             | Servomotor 1,2 Kg – Metal Gear    | 1    |                              |
| 4                 | CNC Shield V3    | CNC Shield V3                     | 1    |                              |
| 5                 | Arduino Mega     | Arduino Mega                      | 1    |                              |
| 6                 | A4988            | Stepper Motor driver              | 4    |                              |
| 7                 | LM2596S          | DC-DC Step Down Buck Converter 3A | 1    |                              |
| 8                 | Jack connector F | 12V – 10A Female Jack Connector   | 1    |                              |
| 9                 | Jack connector M | 12V – 10A Male Jack Connector     | 1    |                              |
| 10                | L298N            | DC Motor controller               | 1    | (Used with standard gripper) |



# LAYOUT

V1.1

Measurements expressed in mm



### CNC SHIELD - V3



## **POWER SUPPLY**

The converter The power supply section of the robot consists of a DCDC converter (to be set at an output voltage of 12V), the latter powered through a female Jack connector (connection made through soldering).

OUT must supply a splitter to which the servomotors and any 6 VDC utilities are connected.

The CNC card must be powered in parallel with the IN of the DCDC converter.

### Note:

It is very important to connect the GND of the output converter to the GND of the CNC Shield.

### CNC-SHIELD V3





### **CONFIGURATIONS**

It is essential to carry out 3 operations useful for configuring the drivers and the CNC-Shield.

- **1°:** Install **12** jumpers, 3 **for each driver station**, to configure the microstepping, inserting 3 will lead to 1/32 microstepping.
- 2°: Install 2 jumpers useful for the configuration of the A axis, inserting them on the PINs of the Y axis, the A axis will copy the movements of the latter.
- **3°:** Configure the maximum current for each winding of the stepper motors, a value that can be calculated and configured using the appropriate trimmer.

### Note:

The configuration is **very important** for a correct functioning and a correct management of the motors!



### CNC SHIELD - V3



### **STEPPER MOTOR**

The four stepper motors must be connected, through their pre-wired cable, to the CNC Shield, on the 4 dedicated connectors.

### Note:

It is very important to jumper the 4 pins indicated in the figure, so that the A axis copies the movements of the Y axis (A and Y axis will be the axes parallel to the robot base). The A and Y axes must be connected to their pins on the CNC board with the opposite direction, so that they rotate in the opposite direction with respect to each other.



# **GRIPPER**

The gripper, whose documentation can be downloaded from the section dedicated to optionals on the site, is highly recommended for more information and to facilitate use.

Measurements expressed in mm



## **SERVO MOTOR**

The three servomotors must be connected to the splitters indicated on the page dedicated to the system power supply (6V power supply side). The signal cable must be connected to the arduino mega board.

#### Note:

The figure shows 3 servo motors, and all 3 must be connected if you use the gripper present in the optionals (Pictured on the previous page), if you use the clamp controlled by a DC motor, follow the instructions on the next page.



## **DC MOTOR**

The DC motor used to control the clamp (standard, not optional) must be managed using a control module, the L298N, which must be connected as indicated in the figure.

### Note:

The DC motor is only present if the original robot gripper is used, not the optional version controlled with a servo motor.

# **FINAL NOTES**

DIY-TECH by Giovanni Lerda https://www.diy-technology.com