Investigación Operativa

Segundo Cuatrimestre 2024

Práctica 2: Simplex

Ejercicio 1. Resolver gráficamente los siguientes problemas de programación lineal:

a) b)
$$\max z = 7x_1 + 8x_2$$
s.a: $4x_1 + x_2 \le 100$ $\min z = 3x_1 + 9x_2$

$$x_1 + x_2 \le 80$$
 s.a: $-5x_1 + 2x_2 \le 30$

$$x_1 \le 40$$
 $-3x_1 + x_2 \le 12$

$$x \ge 0$$

Ejercicio 2. Resuelva los siguientes problemas aplicando Simplex. Verificar los resultados obtenidos usando SCIP.

a) c)
$$\max z = 3x_1 - x_2 - 3x_3$$
 s.a: $x_1 + 3x_2 - x_3 + 2x_4 \le 2$
$$2x_1 + x_2 - 4x_3 \le 1$$

$$-4x_2 + 2x_3 \le 10$$

$$x \ge 0$$

$$x \le 0$$

$$\max 3x_1 + 2x_2 - 4x_3$$
 s.a: $x_1 + x_2 - 2x_3 \le 4$
$$-2x_1 + 3x_3 \ge -5$$

$$2x_1 + x_2 - 3x_3 \le 7$$

$$x_1, x_2 \ge 0$$

$$x_3 \le 0$$

b)
$$\min z = x_1 - 2x_3$$
s.a: $-2x_1 + x_2 \le 4$

$$-x_1 + 2x_2 \le 7$$

$$x_3 \ge -3$$

$$x \ge 0$$

$$\max 5x_1 + 6x_2 + 9x_3 + 8x_4$$
s.a: $x_1 + 2x_2 + 3x_3 + x_4 \le 5$

$$x_1 + x_2 + 2x_3 + 3x_4 \le 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Ejercicio 3. ¿Puede una variable que acaba de dejar la base volver a entrar en el siguiente paso del algoritmo Simplex?

Ejercicio 4. Demuestre que el problema de minimizar $c^t x$ sujeto a Ax = b carece de interés porque sobre $\{x : Ax = b\}$ no existe el mínimo de $c^t x$ o bien $c^t x$ es constante.

Ejercicio 5. Supongamos que se ha resuelto un problema de programación lineal y se desea incorporar al planteo una nueva variable no negativa con sus correspondientes datos. ¿Cómo se puede proceder sin rehacer todos los cálculos?

Ejercicio 6. Resuelva los siguientes problemas de Programación Lineal utilizando el método simplex. Verificar los resultados obtenidos usando SCIP.

a) c)
$$\min z = -5x_1 - 7x_2 - 12x_3 + x_4$$

$$\sin z = 3x_1 - 2x_2 - 4x_3$$

$$\sin z = -2x_2 + x_3 \le 30$$

$$\cos z \ge 0$$
 d)
$$\cos z \ge 0$$
 d)
$$\cos z \ge 0$$

$$\cos z \le 0$$

Ejercicio 7. Considere el siguiente problema de programación lineal:

$$\min z = -\frac{3}{4}x_1 + 150x_2 - \frac{1}{50}x_3 + 6x_4$$

$$s.a: \frac{1}{4}x_1 - 60x_2 - \frac{1}{25}x_3 + 9x_4 + x_5 = 0$$

$$\frac{1}{2}x_1 - 90x_2 - \frac{1}{50}x_3 + 3x_4 + x_6 = 0$$

$$x_3 + x_7 = 1$$

$$x \ge 0$$

- a) Verifique que si se usa como criterio elegir la variable con menor índice para entrar a la base cuando hay empate, entonces el algoritmo no termina.
- b) Verifique que $(\frac{1}{25}, 0, 1, 0, \frac{3}{100}, 0, 0)$ es una solución óptima y que su valor en la función objetivo es $z_0 = -\frac{1}{20}$.

Ejercicio 8. Considere el modelo lineal:

min
$$z = c^t x$$

s.a: $Ax = b$
 $e^t x = 1$
 $x_i \ge 0 \quad \forall i \in \{1, \dots, n-1\}$
 x_n libre

donde $e = (1, ..., 1)^t$, $b, c \in \mathbb{R}^n$ y A está definida por:

$$A_{ij} = \begin{cases} 1 & \text{si } i = j \text{ o } j = n \\ 0 & \text{c.c.} \end{cases}$$

Usar la restricción $e^t x = 1$ para eliminar la variable libre. ¿Se podría hacer lo mismo si x_n no fuera libre?

Ejercicio 9. Considere el modelo lineal:

$$min z = c^t x
s.a: Ax = b
 x \ge 0$$

Formule un modelo equivalente en forma estándar tal que el vector de términos independientes sea cero.

Pista: se puede hacer introduciendo una variable y una restricción adicionales.

Ejercicio 10. Halle todos los valores del parámetro α tales que las regiones definidas por las siguientes restricciones presenten vértices degenerados:

Ejercicio 11. Aplique el test de optimalidad para encontrar todos los valores del parámetro α tales que $x^* = (0, 1, 1, 3, 0, 0)^t$ sea una solución óptima del siguiente problema de programación lineal:

Ejercicio 12. El siguiente diccionario corresponde a alguna iteración del método simplex para un problema de minimización:

Hallar condiciones sobre a, b, \ldots, g para que se cumpla:

- a) la base actual es óptima.
- b) la base actual es la única base óptima.
- c) la base actual es óptima pero no única.
- d) el problema no está acotado.
- e) que x_4 entre en la base y el cambio en la función objetivo sea cero.

Ejercicio 13. Usar el método simplex (de dos fases o Método M) para resolver los siguientes problemas de programación lineal:

c)

d)

$$\min_{s.a:} z = x_1 - 2x_2 - 8x_5
s.a: -2x_1 + x_2 + x_3 - x_5 \ge 4
-x_1 + 2x_2 + x_6 \ge 7$$

$$x_3 + \frac{1}{3}x_6 \le 11$$

$$6x_2 + x_4 \le 3$$

$$x \ge 0$$
f)
$$\min_{s.a:} z = 2x_1 - 2x_2 - x_3 - 2x_4 + 3x_5$$

$$s.a: -2x_1 + x_2 - x_3 - x_4 = 1$$

$$x_1 - x_2 + 2x_3 + x_4 + x_5 = 4$$

$$-x_1 + x_2 - x_5 = 4$$

$$x \ge 0$$

x > 0

x > 0