Prosimy wypełnić poniższe pola DRUKOWANYMI literami:

Imię i nazwisko			
E-mail			
Nr telefonu	Klasa	Rozmiar koszulki	
+ 4 8			

Test kwalifikacyjny na Warsztaty Matematyczne 2023

Klasy trzecie i czwarte

Test składa się z uporządkowanych w kolejności <u>losowej</u> 30 zestawów po 3 pytania. Na pytania odpowiada się "tak" lub "nie" poprzez wpisanie odpowiednio " \mathbf{T} " bądź " \mathbf{N} " w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja odpowiedzi "tak" i "nie". W zestawach zaznaczonych gwiazdką (gwiazdka wygląda tak: *) prócz udzielenia odpowiedzi należy je uzasadnić. Test trwa 180 minut.

Zasady punktacji

- Za pojedynczą poprawną odpowiedź: 1 punkt.
- Za pojedynczą niepoprawną odpowiedź: -1 punkt.
- Za brak odpowiedzi: **0** punktów.
- Za zadanie zrobione w całości dobrze dodatkowe 2 punkty.
- Za poprawne uzasadnienie pojedynczej odpowiedzi: 1 punkt.
- Za niepoprawne uzasadnienie pojedynczej odpowiedzi bądź brak takowego: 0 pkt.

Powodzenia!

Uwaga! Przez zbiór liczb naturalnych w zadaniach rozumiemy zbiór liczb całkowitych większych lub równych 0.

1.	Liczba $\sqrt{48 - 24\sqrt{3}} - \sqrt{28 - 16\sqrt{3}}$ jest:
	□ ujemna
	☐ całkowita
	□ niewymierna

2.	W trójkącie prostokątnym ABC poprowadzono na przeciwprostokątną BC wysokość o spodku D. promienie okręgów opisanych na ABD i ACD to odpowiednio 5 i 12. Długość promienia okręgu opisanego na ABC:
	☐ nie jest jednoznacznie wyznaczona
	☐ jest równa 13
	jest większa niż 15
3*.	Minimalna liczba pociągnięć (pociągnięcie kończy się, kiedy oderwiesz ołówek od papieru) niezbędnych do narysowania poniższej figury, jeśli żadnej linii nie wolno przechodzić dwukrotnie jest:
	☐ równa 3 ☐ równa 4
	Tówna 5
4.	Dane są takie liczby dodatnie, wymierne a,b,c,d , że $ad-bc\neq 0$. Wówczas funkcja $f: \mathbb{R} \setminus \mathbb{Q} \to \mathbb{R}$ zadana wzorem $f(x) = \frac{ax+b}{cx+d}$ jest:
	☐ różnowartościowa
	\square na (\mathbb{R})
	monotoniczna

5*. Dany jest kwadrat ABCD o boku długości 17 cm. Na bokach BC i CD obrano odpowiednio punkty E i F, że BE=7 cm oraz $\angle EAF=45^{\circ}$. Wówczas:

BE + FD = EF

 \square BE < FD

 $\hfill \Box$ jeśli pole trójkąta ECF to $x\ cm^2$ to x jest liczbą niewymierną

6. Liczby $a \le b \le c$ są długościami boków trójkąta ostrokątnego ABC. Wynika stąd, że:

 $\hfill \Box$ równanie $\sin(x)=\frac{a+b}{c}$ ma rozwiązanie

 \Box pole trójkąta ABCjest nie większe od $\frac{1}{2}bc$

7. Każdej literze przypisano inną cyfrę od 0 do 9:

 \square N=0

 \square A > 6

 $\square Y < 3$

8*.	Dwoje graczy gra w grę wykonując ruchy na przemian. Każdy ruch polega na zamianie dodatniej liczby całkowitej n w inną dodatnią liczbę całkowitą znajdującą się w przedziale $\left[\frac{n}{3},\frac{n}{2}\right]$. Gracz, który nie może wykonać ruchu przegrywa. Rozstrzygnąć, czy rozpoczynający gracz ma strategię wygrywającą dla liczby początkowej n wynoszącej:
	$ \begin{array}{c} $
9.	Po podzieleniu wielomianu $x^3+x^5+x^7+x^9+x^{11}+x^{2023}+x^{2024}$ przez x^2-1 otrzymujemy resztę. Czy dla x całkowitego może ona być równa
	☐ 256? ☐ 369? ☐ 1111?
10.	Funkcja $f: \mathbb{Z} \to \mathbb{Z}$ jest okresowa z okresem n , spełnia równania $f(a)f(b) = f(ab)$ i $f(0) = 0$. Ponadto istnieje x taki, że $f(x) = -1$. Prawdą jest, że:
	dla dowolnego całkowitego $n>2$ istnieje co najmniej jedna taka funkcja jeśli n jest ustaloną nieparzystą liczbą pierwszą, to istnieje dokładnie jedna taka funkcja
	$\hfill \square$ jeśli dla danego n istnieje taka funkcja, to spełnia ona $f(-1)=-1$
11.	Czy szachownicę 11x11 z usuniętym prawym dolnym rogiem da się pokryć klockami o podanym kształcie? Klocki można obracać, ale nie można odbijać symetrycznie.
	40 sztukami klocków: 30 sztukami klocków:
	24 sztukami klocków:

12*.	Liczbę nazywamy $elegancką,$ jeśli da się ją jednoznacznie przedstawić w postaci $53x+101y$ dla całkowitych nieujemnych $x,y.$ Prawdą jest że:
	uma liczb eleganckich jest elegancka
	liczb eleganckich jest nieskończenie wiele
	$\hfill 5353$ jest najmniejszą liczbą postaci $53x+101y,$ która nie jest elegancka
13.	Dana jest ciągła funkcja $f:[0,1]\to [0,1]$. Istnieje $a\in [0,1]$, takie że $f(a)\neq a, f(f(a))\neq a$ ale $f(f(f(a)))=a$. Czy istnieje:
	Lakie $d \in [0,1]$, że $f(d) \neq d$, $f(f(d)) \neq d$, $f(f(f(d))) \neq d$, $f(f(f(f(d)))) \neq d$ ale $f(f(f(f(d)))) = d$?
14.	Czy:
	dla każdych całkowitych $m \ge n \ge 1$ zachodzi $\frac{n^2m+11m}{nm+1} \ge 6$?
	dla każdych rzeczywistych a,b,c,d zachodzi $abcd-\frac{a^2}{2}-\frac{b^4}{4}-\frac{c^8}{8}-\frac{d^{16}}{16}\leqslant \frac{1}{15}$?
	dla każdych całkowitych $m>n\geqslant 1$ zachodzi $\frac{m^2-n}{m^2+n^2}\leqslant \frac{35}{36}$?
15.	Dane jest radio przyjmujące dwie baterie. Aby radio zadziałało obie włożone baterie muszą być sprawne. Wkładając parę baterii do radia dokonujemy sprawdzenia. Wiemy, że:
	mamy 8 baterii, z czego 4 sprawne. Czy wystarczy 7 sprawdzeń aby na pewno uruchomić radio?
	mamy 10 baterii, z czego 4 sprawne. Czy wystarczy 10 sprawdzeń aby na pewno uruchomić radio?
	mamy 9 baterii, z czego 5 sprawnych. Czy wystarczy 6 sprawdzeń aby na pewno uruchomić radio?

16*.	Liczby rzeczywiste x i y spełniają równanie $(x+5)^2+(y-12)^2=14^2$. Minimalna wartość wyrażenia x^2+y^2 wynosi:
	$ \begin{array}{c} \square \\ 2\\ \square \\ 1\\ \square \\ \sqrt{3} \end{array} $
17.	Dane są trójkąty przeciwnie zorientowane ABC oraz XYZ takie, że $AB \parallel XY$, $BC \parallel YZ$ oraz $CA \parallel ZX$. Oznaczmy środki AX , BY i CZ jako K , L , M . Wiedząc że obwód trójkąta ABC wynosi 17, a obwód XYZ wynosi 15 rozstrzygnij:
	$\hfill\Box$ czy trójkąty ABC i KLM są podobne? $\hfill\Box$ czy obwód KLM wynosi 1? $\hfill\Box$ czy obwód KLM wynosi 2?
18.	W czworościanie $ABCD$ kąty ABC i BCD są proste. Wynika z tego, że:
19.	Jeśli x , y , z są nieujemnymi liczbami rzeczywistymi spełniającymi $x+y+z=1$ to prawdziwe są nierówności:
	$ \Box \frac{1}{3}(xy+yz+zx) \geqslant xy+yz+zx-\frac{2}{9} $ $ \Box xy^2+yz^2+zx^2 \geqslant xy+yz+zx-\frac{2}{9} $ $ \Box xy^2+yz^2+zx^2 \geqslant \frac{1}{3}(xy+yz+zx) $
20.	Dana jest klika o n wierzchołkach oraz krawędziach pokolorowanych na k kolorów. Prawdą jest, że:
	dla $n=6$, $k=2$ istnieje trójkąt o jednokolorowych krawędziach dla $n=16$, $k=3$ istnieje trójkąt o jednokolorowych krawędziach dla $n=5$, $k=2$ istnieje cykl o jednokolorowych krawędziach

21.	Liczby rzeczywiste a i b są różne od zera, a liczba $a\sqrt{2}+b\sqrt{3}$ jest wymierna. Wynika z tego, że:
	obie liczby a i b są niewymierne co najmniej jedna z liczb a i b jest wymierna co najmniej jedna z liczb a i b jest niewymierna
22*.	Pierwiastki wielomianu $4x^7 - 4x^6 - 25x^5 + 23x^4 + 49x^3 - 39x^2 - 30x + 18$ posiadają własność:
	uma wynosi 1
	przynajmniej jeden z nich jest niewymierny
	\square iloczyn jest równy $\frac{9}{2}$
23.	Na pewnym n -osobowym przyjęciu nie ma takiej trójki osób, że wszyscy się znają. Czy prawdą jest że:
	\square istnieje $n\geqslant 7$ takie, że nie ma również żadnej trójki osób w której wszyscy się nie znają.
	$\hfill \square$ jeśli $n=11$ to na przyjęciu może być 31 znajomości
	$\hfill \square$ jeśli $n=21$ to na przyjęciu może być 111 znajomości

24*. Dany jest duży trójkąt równoboczny o boku 9. Chcemy umieścić w nim k trójkątów równobocznych o boku 1, takich że ich boki są równoległe do boków dużego trójkąta, ale trójkąty są obrócone o 180 stopni (są do góry nogami). Małe trójkąty nie mogą nachodzić na siebie (mogą za to stykać się brzegami) ani wystawać poza duży trójkąt. Czy jest to możliwe:

 \square dla k = 36

 $\hfill \Box$ dla k=63

 \square dla k = 55

25. Liczba uporządkowanych trójek liczb rzeczywistych (x,y,z) spełniających układ równań

$$\begin{cases} x + y^2 + z^2 = a \\ x^2 + y + z^2 = a \\ x^2 + y^2 + z = a \end{cases}$$

wynosi:

 \square 8 gdy a=8

26. Dany jest wielomian $W(x)=x^4-3x^3+5x^2-9x$. Liczba par różnych liczb całkowitych a,b spełniających równanie

$$W(a) = W(b)$$

wynosi dokładnie:

 \square 1

 \Box 4

 \square 5

27.	Liczby całkowite dodatnie $x_1, x_2, x_3.x_4, x_5, x_6, x_7$ spełniają warunki:
	$x_6 = 144 \text{ oraz } x_{n+3} = x_{n+2}(x_{n+1} + x_n) \text{ dla } n = 1, 2, 3, 4.$
	x_7 jest równe:
	3456
	☐ dowolnej wielokrotności 288
	\square nie da się jednoznacznie wyznaczyć wartości x_7
28.	Dana jest liczba całkowita $n\geqslant 1$. Ile wynosi liczba możliwych wartości iloczynu $k\cdot m$, gdzie k,m są liczbami całkowitymi spełniającymi nierówności
	$n^2 \leqslant k \leqslant m(n+1)^2?$
	$ 2n^2 + 4n $
	$ 2n^2 + 5n + 2 $
	$ 2n^2 + 5n + 3 $
29.	Liczba pierwsza $p>3$ daje resztę 2 z dzielenia przez 3. Niech
	$a_k = k^2 + k + 1$ dla $k = 1, 2, 3, \dots, p - 1$.
	Reszta z dzielenia przez p iloczynu $a_1a_2a_3\dots a_{p-1}$ wynosi
	$ \begin{array}{c} \square \ 1 \\ \square \ 2 \\ \square \ 3 \end{array} $
30.	Dane są pary funkcji f,g określone na zbiorze wszystkich liczb rzeczywistych i przyjmujące wartości rzeczywiste. Dla dowolnych liczb rzeczywistych x,y spełniona jest równość $g(f(x)-y)=f(g(y))+x.$
	Wynika z tego, że:
	$\hfill \Box$ funkcje f i g są liniowe
	☐ istnieje dokładnie jedna para takich funkcji
	istnieje nieskończenie wiele takich par funkcji