

Department of Electrical and Computer Engineering

ee2023: Singus dud Sjüllings

Course Instructor

Ng Chun Sum (Ph.D.)
Associate Professor

Office: E4 06-19

Email: elengcs@nus.edu.sg

EE2023 Signals & Systems Page 0-2

EE2023 SCHEDULE (2012/13-I)

		LECTURE	TUT/LEC		
VENUE		E2-03-02	E2-03-02	REMARKS	
TIME		09:00 - 11:00	10:00 - 12:00	REIVIARNS	
DAY		TUESDAY	THURSDAY		
	01	14 Aug 2012	16 Aug 2012		
	02	21 Aug 2012	23 Aug 2012		
	03	28 Aug 2012	30 Aug 2012		
S	04	04 Sep 2012	06 Sep 2012		
DATES	05	11 Sep 2012	13 Sep 2012		
DA	06	18 Sep 2012	20 Sep 2012		
	Recess	22 Sep 2012	- 30 Sep 2012		
#	07	02 Oct 2012	04 Oct 2012		
—	08	09 Oct 2012	11 Oct 2012		
WEEK	09	16 Oct 2012	18 Oct 2012		
>	10	23 Oct 2012	25 Oct 2012		
	11	30 Oct 2012	01 Nov 2012		
	12	06 Nov 2012	08 Nov 2012		
	13	13 Nov 2012*	15 Nov 2012	Deepavali	
	Reading Week (17 Nov 2012 – 23 Nov 2012)				
EX	KAMIN	ATION	Time: 9:00 A Venue:	//2012 (Saturday) IM rm by checking this link ® EXAM TIMETABLE	

REFERENCES

- 1. Douglas K Lindner, Introduction to Signals & Systems, McGraw Hill
- 2. Hwei Hsu, Schaum's Outline of Signals and Systems, McGraw Hill

ASSESSMENT MODE

Quiz (25%) **Assignment** (15%) **Exam** (60%)

Date of Quiz: Possibly in the 7th or 8th week

Date of Assignment: Possibly in the 11th or 12th week

Tutorials will be scheduled as and when the group is ready. Hence, by default, all students should attend both sessions each week. Students will be notified of tutorials at least a week in advance so that you may prepare for it.

No labs in this module. The concepts covered here will be re-visited in the lab module EE2032 Signals & Communications Design Lab.

Pre-Requisite Knowledge

- Linear algebra and calculus
- Complex number arithmetic
- Complex functions
- Solutions of first and second order ODE
- Basic circuit theory : Ohms law, Kirchoff circuit laws
- Some familiarity with Fourier Series / Transform and Laplace Transform

You should have had exposure to these topics in MA1505, MA1506 and EG1108/CG1108/EE1002.

TABLE OF CONTENTS

TOPICS	Page	
1. Signals and Classification of Signals		
1.1 Signals	1-1	
1.1.1 Classification of Signals	1-2	
1.2 Basic Signals	1-12	
1.3 Time-Scaling, -Reversal and -Shifting of Signals	1-17	
End of Chapter 1		
2. Spectrum of Continuous-time Signals		
2.1 What is a Spectrum in the Context of Signals?	2-1	
2.1.1 Spectrum of a Sinusoid	2-2	
2.1.2 Complex Exponentials and Phasors (The concept of negative frequency)	2-4	
2.1.3 Spectrum of Non-Sinusoidal Signals	2-5	
2.2 Fourier Series	2-6	
2.3 Fourier Transform	2-13	
2.3.1 Properties of Fourier Transform	2-18	
2.4 Spectral Properties of a REAL Signal	2-29	
2.5 The Dirac- δ and Spectrum of Periodic Signals 2-33	2-33	
2.5.1 The Continuous-time Unit Impulse (Dirac-δ function)	2-33	
2.5.2 Spectrum of Periodic Signals	2-37	
End of Chapter 2		
3. ESD, PSD and Bandwidth		
3.1 Energy Spectral Density (ESD) a.k.a. Energy Spectrum	3-1	
3.2 Power Spectral Density (PSD) a.k.a. Power Spectrum	3-2	

TOPICS	Page	
3.3 ESD and PSD of a Periodic Signal $x_p\left(t ight)$ of Period T_p	3-3	
3.4 Bandwidth	3-10	
End of Chapter 3	3-14	
4. Sampling Theorem		
4.1 Ideal Reconstruction Filters	4-2	
4.2 Continuous-time Sampling	4-3	
End of Chapter 4	4-7	
5. Systems and Classification of Systems	5-1	
5.1 Systems	5-1	
5.1.1 Classification of Systems	5-2	
5.2 Remarks	5-8 5-8	
End of Chapter 5		
6. Laplace Transform (Re-visit)	6-1	
6.1 Definitions of Laplace Transform	6-1	
6.2 Properties of the Laplace Transform	6-3	
6.3 The Inverse Laplace Transform	6-9	
6.3.1 Partial-Fraction Expansion	6-10	
6.4 Relationship between the Fourier Transform and the Laplace Transform	6-14	
6.5 Transform Circuits	6-16	
End of Chapter 6	6-21	
	7-1	
7. Linear Time-Invariant Systems		
7.1 System Model	7-2	

TOPICS	Page	
7.2 System Stability (Role of Poles and Zeros)	7-4	
7.2.1 DE and TF of First-order Systems	7-10	
7.2.2 DE and TF of Second-order Systems	7-11	
7.3 Response of LTI Systems to Unit Impulse, Unit Step and Sinusoids	7-14	
7.3.1 Impulse Response	7-15	
7.3.2 Step Response	7-18	
7.3.3 Sinusoidal Response	7-21	
7.4 Frequency Response	7-23	
7.4.1 Bode Diagrams	7-25	
7.5 Transportation Delay	7-43	
End of Chapter 7		
8. Some Examples of Real Applications		
8.1 LTI Filters	8-1	
8.1.1 Butterworth Filter Approximation for Ideal Filter	8-3	
8.1.2 Application: Equalizers and Crossover Circuits	8-10	
8.1.3 Application: Harmonics Suppression using Notch Filters	8-13	
8.2 Application: AM Radio	8-16	
8.3 Application: Multiplexed Stereo in FM Radios	8-21	
End of Chapter 8		