

Efficient non-native SNARK recursion using bivariate polynomial testing

Ivo Kubjas

- cryptographer at Consensys
- gnark co-maintainer
- Linea co-developer

Short proof of statement

Many ways to compute a proof

- Sum-check represent statement as a multilinear polynomial. Verifier needs to do final evaluation
- GKR layered sum-check.
- STARKs represent statement as constrained execution steps. Based on hash functions.
- Groth16 based on pairings. Per-circuit (huge) keys. Constant proof and verification.
- PLONK usually initialized using pairings. Universal (huge) keys. Constant proof and verification.

fast prover, less assumptions, longer proof, slower verification

slover prover, more assumptions, short proof, fast verification

etc.

Optimize for prover and verifier speed

We can implement a proof verifier as a statement.

Proof independence

Frequently can prove independent statements in parallel

PLONK in PLONK

In Linea:

- BN254 PLONK in BLS12-377 PLONK
- BLS12-377 Vortex in BLS12-377 PLONK
- BLS12-377 PLONK in BW6-761 PLONK
- BW6-761 PLONK in BN254 PLONK

Field (mis)match

We need to compute target curve operations over $\mathbb{F}_{_{\mathrm{D}}}$ in the current curve scalar field $\mathbb{F}_{_{\mathrm{Q}}}$

We're lucky to have 2-chain BLS12-377/BW6-761 where there is match \mathbb{F}_p = \mathbb{F}_q

For other combinations we need to emulate multiprecision arithmetic:

- Non-native a as: $a = \sum_i a_i 2^{iB}$, where a_i are native field elements
- Representing $a(X) = \sum_i a_i X^i$, can verify computation $a(\tau)^*b(\tau) = c(\tau) + n(\tau)p(\tau)$

Field extensions

Pairing friendly curves have a pairing function e(P, Q) = T, where $P \in \mathbb{G}_{V}$, $Q \in \mathbb{G}_{V}$, $T \in \mathbb{G}_{T}$

• \mathbb{G}_1 curve itself, \mathbb{G}_2 and \mathbb{G}_T extensions field of the base field: $\mathbb{G}_2 \approx \mathbb{F}_p^{\ \ m}$, $\mathbb{G}_T \approx \mathbb{F}_p^{\ \ k}$

$$Q \in \mathbb{F}_{p}^{m}: Q(X) = Q_{0} + Q_{1} X + ... + Q_{m-1} X^{m-1}$$

$$(Q_{0}, Q_{1}, ..., Q_{m-1})$$

$$T \in (\mathbb{F}_{p}^{3})^{2}: ((T_{O'}, T_{1'}, T_{2}), (T_{3'}, T_{4'}, T_{5}))$$

$$((A_{O'}, A_{1'}, A_{2}), (A_{3'}, A_{4'}, A_{5})) * ((B_{O'}, B_{1'}, B_{2}), (B_{3'}, B_{4'}, B_{5})) =$$

For efficiency reasons usually are built using towers

$$((\mathsf{A}_{\mathsf{O}'}\,\,\mathsf{A}_{_{1'}}\,\,\mathsf{A}_{_{2}})^{*}(\mathsf{B}_{\mathsf{O}'}\,\,\mathsf{B}_{_{1'}}\,\,\mathsf{B}_{_{2}}),\,(\mathsf{A}_{\mathsf{O}'}\,\,\mathsf{A}_{_{1'}}\,\,\mathsf{A}_{_{2}})^{*}(\mathsf{B}_{\mathsf{3}'}\,\,\mathsf{B}_{_{4'}}\,\,\mathsf{B}_{_{5}}) + (\mathsf{A}_{\mathsf{3}'}\,\,\mathsf{A}_{_{4'}}\,\,\mathsf{A}_{_{5}})^{*}(\mathsf{B}_{\mathsf{O}'}\,\,\mathsf{B}_{_{1'}}\,\,\mathsf{B}_{_{2}}))$$

BN254	BLS12-377	BW6-761	
Fp ² [u] = Fp/u ² +1	F p ² [u] = F p/u ² +5	F p³[u] = F p/u³+4	
Fp ⁶ [v] = Fp ² /v ³ -9-u	F p ⁶ [v] = F p ² /v ³ -u	F p ⁶ [v] = F p ³ /v ² -u	
Fp ¹² [w] = Fp ⁶ /w ² -v	Fp ¹² [w] = Fp ⁶ /w ² -v		

feltroidprime · Follow

Last edited by feltroidprime on Nov 17, 2023 Contributed by

Faster Extension Field multiplications for Emulated Pairing Circuits

We can define $P_{12}(x)=x^{12}-18x^6+82$ and $P_6(x)=x^6-18x^3+82$ as the irreducible polynomials generating the *direct* extensions $\mathbb{F}_{p^{12}}=\mathbb{F}_p[w]/P_{12}(w)$ and $\mathbb{F}_{p^6}=\mathbb{F}_p[v]/P_6(v)$.

Whereas, using the direct representation, one can write $X \in \mathbb{F}_{p^{12}}$ using $x_0, \dots, x_{11} \in \mathbb{F}_p$:

$$X = x_0 + x_1 w + x_2 w^2 + x_3 w^3 + x_4 w^4 + x_5 w^5 + x_6 w^6 + x_7 w^7 + x_8 w^8 + x_9 w^9 + x_{10} w^{10} + x_{11} w^{11}$$

ullet Perform the Euclidean division of C by the irreducible polynomial P_{12} of degree 12 and obtain the quotient Q and the remainder R of degree (at most) 10 and (at most) 11 such that:

$$A(x) * B(x) = Q(x) * P_{12}(x) + R(x)$$
(1)

- ullet Evaluate $a_i=A_i(z_i), b_i=B_i(z_i), q_i=Q_i(z_i), p_i=P_{12}(z_i), r_i=R_i(z_i)$
- Verify that $a_i*b_i=q_i*p_i+r_i$.

 According to the Schwartz-Zippel Lemma, if Q and R are incorrect, the evaluated polynomials will differ with a very high probability.

On Proving Pairings

Andrija Novakovic^{*1} and Liam Eagen^{†2}

¹Geometry Research ²Alpen Labs, Zeta Function Technologies

April 24, 2024

BW6-761 and BLS12-377

Direct extensions $\mathbb{F}p^{6}[v] = \mathbb{F}p/v^{6}+4$ and $\mathbb{F}p^{12}[w] = \mathbb{F}p/w^{12}+5$

Need to show:

$$A(z)*B(z)=C(z) + P_{6}(z)*N(z)$$

$$(A_0 + A_7 + A_2 z^2 + A_3 z^3 + A_4 z^4 + A_5 z^5) * (B_0 + B_7 + B_2 z^2 + B_3 z^3 + B_4 z^4 + B_5 z^5) = \dots$$

non-native!

Non-native multivariate evaluation

Actually, we can evaluate multivariate operations in non-native with same cost.

Instead of:

$$a * b = r + n * p$$

We show:

$$\Sigma_i \Pi_i a_i^{eij} = r + n * p$$

Using:

$$\Sigma_i \prod_i a_i(\tau)^{eij} = r(\tau) + n(\tau) * p(\tau)$$

Written out

$$(A_0 + A_Z + A_2 z^2 + A_3 z^3 + A_4 z^4 + A_5 z^5) * (B_0 + B_Z + B_2 z^2 + B_3 z^3 + B_4 z^4 + B_5 z^5) = (C_0 + C_Z + C_2 z^2 + C_3 z^3 + C_4 z^4 + C_5 z^5) + (N_0 + N_Z + N_2 z^2 + N_3 z^3 + N_4 z^4 + N_5 z^5) * (P_0 + P_Z + P_2 z^2 + P_3 z^3 + P_4 z^4 + P_5 z^5)$$

- 1. Evaluate z, ..., z⁵
- 2. Evaluate $\pi = P(z)$ for all checks
- 3. Evaluate $\alpha = A(z)$ and $\beta = B(z)$ for every check
- 4. Check:

$$C_0 + C_z + C_2 z^2 + C_3 z^3 + C_4 z^4 + C_5 z^5 + N_0 \pi + N_2 \pi + N_2 z^2 \pi + N_3 z^3 \pi + N_4 z^4 \pi + N_5 z^5 \pi - \alpha - \beta = 0$$

Reduction to 3 non-native operations

Main cost in range checking the hinted values

Benchmarks

Constraints in PLONKish (with commitment column)

Operation	Before	After	Reduction
Miller loop	6500708	3841000	41%
Miller loop fixed G2	5344302	2680076	49%
final exponentiation	5245872	3362746	36%
full pairing	11486969	6947630	40%
full pairing fixed G2	10440385	5888826	44%

Improvements

- We don't need to hint every quotient separately, but can combine
 - o Both for non-native multivariate evaluations and extension multiplication
- Can apply non-native multivariate evaluations to scalar multiplications and exponentiations (fixed exponent)
- Currently implemented only for BW6-761, also for BN254, BLS12-377

$$A_1(z)*B_1(z)=C_1(z)+P_6(z)*N_1(z)$$

$$A_2(z)*B_2(z)=C_2(z) + P_6(z)*N_2(z)$$

$$A_3(z)*B_3(z)=C_3(z) + P_6(z)*N_3(z)$$

•••

$$(\Sigma_i \lambda_i A_i(z)B_i(z)) = (\Sigma_i \lambda_i C_i(z)) + P_6(z) N_{\lambda}(z)$$

Thank you

gnark.io linea.build gnark@consensys.net

TG: t.me/ivokub

Github: github.com/ivokub X: x.com/ikubjas

ivo.kubjas@consensys.net

