2ª Lista de Revisão - Modelagem Matemática I - Turma C03N

(1) [DE ANDRADE] Resolva os seguintes problemas de transporte:

a.

	DESTINOS						
FONTES	1	2	3	4	FORNECIMENTO		
1	12	10	12	14	500		
2	16	4	14	12	100		
3	18	6	8	16	500		
DEMANDA	300	400	600	700			

b.

	DESTINOS						
FONTES	1	2	3	4	FORNECIMENTO		
1	10	6	2	20	16		
2	10	14	6	4	8		
3	6	4	2	16	18		
DEMANDA	8	16	6	12			

(2) [DE ANDRADE - adaptada] Modele o problema de caminho mínimo dado pelo grafo abaixo, sendo que A é o vértice inicial e G é o vértice final.

(3) [DE ANDRADE - adaptada] Modele o problema de determinação de fluxo máximo dado pelo grafo abaixo, sendo A o vértice inicial e G o vértice final.

(4) Resolva o problema de alocação de tarefas dado pela seguinte tabela de custos unitários:

Tarefa\Processador	P1	P2	Р3	P4
T1	1	6	2	5
T2	1	2	2	2
Т3	7	7	6	6
T4	5	6	6	4

(5) [DE ANDRADE] Resolva pelo Método Branch & Bound:

a. A

Maximizar
$$z = 4x_1 + 6x_2$$

Sujeito a:
$$4x_1 + 5x_2 \le 40$$

$$3x_1 + 6x_2 \le 36$$

$$2x_1 \le 16$$

$$\cos x_1, x_2 \ge 0 \text{ e inteiros.}$$

b. B

Maximizar
$$z = 3x_1 + 6x_2$$
Sujeito a:
$$9x_1 + 8x_2 \le 72 \\
-5x_1 + 4x_2 \le 20 \\
2x_1 - 4x_2 \le 0 \\
x_2 \le 6$$
com $x_1, x_2 \ge 0$ e inteiros.