安徽大学 2013—2014 学年第二学期

《 高等数学 A(二)、B(二) 》考试试卷(B卷) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	_	=	Ξ	四	五	总分
得 分						
阅卷人						

	植內斯	(每小题2分,	廿 10 公)
•	快工燃	(再小返 4 刀)	ガルカノ

得分

- 1. 已知 $(\stackrel{\mathbf{r}}{a} \times \stackrel{\mathbf{r}}{b}) \stackrel{\mathbf{r}}{g} = 1$,则 $[(\stackrel{\mathbf{r}}{a} + \stackrel{\mathbf{r}}{b}) \times (\stackrel{\mathbf{r}}{b} + \stackrel{\mathbf{r}}{c})] g(\stackrel{\mathbf{r}}{c} + \stackrel{\mathbf{r}}{a}) =$
- 2. 过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程为

3. 极限
$$\lim_{\substack{x \to 2 \\ y \to 0}} \frac{\tan(xy)}{y} =$$

- 5. 设 f(x) 是以 2p 为周期的周期函数,它在 [-p,p) 上的表达式为 $f(x) = 3x^2 + 1$,则将 f(x) 展开成 Fourier 级数为

二、选择题(每小题2分,共10分)

得分

- 6. 设直线 L 为 $\frac{x}{3} = \frac{y}{-2} = \frac{z}{7}$,平面 p 为 3x 2y + 7z = 8,则 L 与 p 的夹角为().
 - (A) 0;

恕

(B) p/2;

(C) p/3;

- (D) p/4.
- 7. 函数 z = f(x, y) 在点 (x_0, y_0) 的两个偏导数存在是 f(x, y) 在该点连续的 () 条件.
- (A) 充分非必要;

(B) 必要非充分;

(C) 充分必要;

- (D) 既非充分,也非必要.
- 8. 设 f(x,y) 为连续函数,则累次积分 $\int_0^1 dy \int_{y-1}^{\sqrt{1-y^2}} f(x,y) dx$ 交换积分次序后为().

(A)
$$\int_0^1 dx \int_0^{x+1} f(x,y) dy + \int_{-1}^0 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy$$
;

(B)
$$\int_0^1 dx \int_0^{1-x} f(x,y) dy + \int_0^1 dx \int_{-\sqrt{1-x^2}}^0 f(x,y) dy$$
;

(C)
$$\int_{-1}^{0} dx \int_{0}^{x+1} f(x, y) dy + \int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$$
;

(D)
$$\int_{-1}^{0} dx \int_{0}^{1-x} f(x,y) dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dy.$$

- 9. 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数必收敛的是().
 - (A) $\sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$; (B) $\sum_{n=1}^{\infty} u_n^2$;
 - (C) $\sum_{n=1}^{\infty} (u_{2n-1} u_{2n});$ (D) $\sum_{n=1}^{\infty} (u_n + u_{n+1}).$
- 10. 已知幂级数 $\sum_{n=1}^{\infty} \frac{(x-5)^n}{n}$,则其收敛域为() .
 - (A) [4,6];

(B) [4,6);

(C) (4,6];

(D) (4,6).

三、计算题(每小题9分,共63分)

11. 设空间曲线 L 的方程为 $x = \frac{t}{1+t}$, $y = \frac{1+t}{t}$, $z = t^2$, 求 L 在 t = 1 的点处的切线与法平面方程.

12. 设
$$x^2 + y^2 + z^2 = 4z$$
, 求 $\frac{\partial^2 z}{\partial x^2}$.

14. 计算曲线积分 $\int \frac{ydx-xdy}{x^2+y^2}$, 其中 L 为正方形 |x|+|y|=1,方向为逆时针方向.

线

闩

恕

槬

16. 计算第二类曲面积分 $\int_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$,其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$,方向取外侧.

17. 将 $f(x) = \frac{1}{x}$ 展开成 (x-3) 的幂级数.

题勿超装订线

槬

四、应用题 (每小题 6分, 共 12分)

得 分

18. 求函数 f(x, y, z) = x + y + 2z 在附加条件 $x^2 + y^2 + z^2 = 4$ 下的极值.

19. 已知一条非均匀金属丝L的方程为 $L: x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$, $(0 \le t \le 2)$. 它在 点 (x,y,z) 处的线密度是 $\mathbf{r}(x,y,z) = \frac{1}{x^2 + y^2 + z^2}$, 求该金属丝的质量.

五、证明题(每小题5分,共5分)

得 分

20. 设级数 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 都收敛,证明级数 $\sum_{n=1}^{\infty} (u_n + v_n)^2$ 收敛.

安徽大学 2013—2014 学年第二学期

《高等数学 A (二) B (二)》 (B 卷)

考试试题参考答案及评分标准

一、填空题(每小题2分,共10分)

- 1, 2; 2, 3x-7y+5z-4=0; 3, 2;
- 4、 $\{2,4,6\}$ (或写成2i+4i+6k):
- 5. $f(x) = p^2 + 1 + 12\sum_{i=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx$, $-\infty < x < +\infty$.
- 二、选择题(每小题2分,共10分)
- 6, B; 7, D; 8, C; 9, D;

- 10, B.

三、计算题(每小题9分,共63分)

11. **解**: 曲线在对应于t=1的点为 $\left(\frac{1}{2},2,1\right)$, 该点处的切向量为

$$\mathbf{r} = (x'(1), y'(1), z'(1)) = \left(\frac{1}{(1+t)^2}, -\frac{1}{t^2}, 2t\right)_{t=1} = \left(\frac{1}{4}, -1, 2\right)$$

故曲线在该点处的切线方程为 $\frac{x-\frac{1}{2}}{\frac{1}{2}} = \frac{y-2}{-1} = \frac{z-1}{2}$,即 $\frac{x-\frac{1}{2}}{1} = \frac{y-2}{-4} = \frac{z-1}{8}$.

法平面方程为 $\frac{1}{4}\left(x-\frac{1}{2}\right)-(y-2)+2(z-1)=0$,

即
$$2x - 8y + 16z - 1 = 0$$
. (9 分)

12. AP: $\Leftrightarrow F(x, y, z) = x^2 + y^2 + z^2 - 4z$, $\emptyset | F_x = 2x$, $F_y = 2y$, $F_z = 2z - 4$

当
$$F_z \neq 0$$
 时,有 $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{2x}{2z-4} = \frac{x}{2-z}$ 。

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{x}{2 - z} \right) = \frac{(2 - z) - x(0 - \frac{\partial z}{\partial y})}{(2 - z)^2} = \frac{2 - z + xz_x}{(2 - z)^2} = \frac{2 - z + \frac{x^2}{2 - z}}{(2 - z)^2}$$

$$= \frac{(2 - z)^2 + x^2}{(2 - z)^3}.$$
(9 \(\frac{\psi}{2}\))

13. 解: 由 $x^2 + y^2 = 2z$ 及 z = 2 消去 z ,得到 $x^2 + y^2 = 4$,故 V 在 xOy 平面上的投影区域为 $\{(x,y)|x^2 + y^2 \le 4\}$ 。

作柱面坐标变换 $x = r\cos q$, $y = r\sin q$, z = z,

则V可表示为 $V' = \{(r,q,z) | 0 \le r \le 2, 0 \le q \le 2p, r^2/2 \le z \le 2\}$ 。

故有
$$\iint_{V} (x^{2} + y^{2}) dx dy dz = \int_{0}^{2p} dq \int_{0}^{2} r^{3} dr \int_{r^{2}/2}^{2} dz$$

$$= \int_{0}^{2p} dq \int_{0}^{2} r^{3} (2 - r^{2}/2) dr$$

$$= \frac{16p}{2}. \tag{9分}$$

14. 解: 如图

$$\Rightarrow P(x, y) = \frac{y}{x^2 + y^2}, Q(x, y) = -\frac{x}{x^2 + y^2}, \quad 则$$

 $I = \mathbf{N} P dx + Q dy$, 设L所围闭区域为D, 故

$$\frac{\partial Q}{\partial x} = \frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{\partial P}{\partial y} \circ$$

取一小圆周 $C_e: x^2 + y^2 = e^2, e > 0$ 充分小, 使得 C_e 位于D

$$\int_{L^{+}} P dx + Q dy = \iint_{D_{e}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = 0 , \quad \exists \mathbb{P}$$

$$\int_{L^{+}} P dx + Q dy = -\int_{C_{e}^{-}} P dx + Q dy = \int_{C_{e}^{+}} P dx + Q dy$$

$$\underbrace{\frac{z = e \cos q}{z = e \sin q}}_{y = e \sin q} \int_{0}^{2p} \frac{(e \sin q)(-e \sin q) - (e \cos q)(e \cos q)}{e^{2}} dq = -\int_{0}^{2p} dq = -2p . \tag{9 \%}$$

15. 解: Σ 由 Σ , 和 Σ , 组成, 其中 Σ , 为平面z=1上被圆周 $x^2+y^2=1$ 所围的部分;

$$\Sigma_2$$
为锥面 $z = \sqrt{x^2 + y^2}$ (0 ≤ $z \le 1$)。

在
$$\Sigma_1$$
上, $dS = dxdy$;在 Σ_2 上, $dS = \sqrt{1 + {z_x}^2 + {z_y}^2} dxdy = \sqrt{2} dxdy$ 。

 Σ_1 和 Σ_2 在xoy平面上的投影区域 D_{yy} 均为 $\{(x,y)|x^2+y^2\leq 1\}$,故

$$\iint_{\Sigma} (x^2 + y^2) dS = \iint_{\Sigma_1} (x^2 + y^2) dS + \iint_{\Sigma_2} (x^2 + y^2) dS$$

$$= \iint_{D_{TD}} (x^2 + y^2) dx dy + \iint_{D_{TD}} (x^2 + y^2) \sqrt{2} dx dy = (1 + \sqrt{2}) \iint_{D_{TD}} (x^2 + y^2) dx dy$$

用极坐标变换,上式=
$$(1+\sqrt{2})\int_0^{2p} dq \int_0^1 r^3 dr = \frac{1+\sqrt{2}}{2}p$$
 (9分)

16. 解:直接应用高斯公式,

原式=
$$\iint_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv = 3 \iint_{V} (x^{2} + y^{2} + z^{2}) dv$$

$$= 3 \int_{0}^{2p} dq \int_{0}^{p} dj \int_{0}^{a} r^{2} \mathbf{g} r^{2} \sin j \, dr$$

$$= \frac{12}{5} p a^{5} .$$

$$(9 分)$$

17. 解: 因为
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, $x \in (-1,1)$

$$\overrightarrow{\text{mi}} \frac{1}{x} = \frac{1}{3+x-3} = \frac{1}{3} \frac{\mathbf{g}}{1+\frac{x-3}{3}} = \frac{1}{3} \frac{\mathbf{g}}{1-\left(-\frac{x-3}{3}\right)} = \frac{1}{3} \frac{\mathbf{g}}{\mathbf{g}} \sum_{n=0}^{\infty} \left(-\frac{x-3}{3}\right)^n, \quad \frac{3-x}{3} \in (-1,1)$$

$$\mathbb{E}\left[\frac{1}{x} = \frac{1}{3}\mathbf{g}\sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n-1}} (x-3)^n, \quad x \in (0,6)\right]$$
 (9 $\%$)

四.应用题(每小题6分,共12分)

18. 解:
$$\Diamond g(x,y,z) = x^2 + y^2 + z^2 - 4$$
, 故 $g(x,y,z) = 0$ 。 \Diamond 拉格朗日函数

19. 解: 弧微分
$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$

$$= \sqrt{(e^t \cos t - e^t \sin t)^2 + (e^t \sin t + e^t \cos t)^2 + (e^t)^2} dt = \sqrt{3}e^t dt$$
故金属丝的质量 $M = \int_L \frac{1}{x^2 + y^2 + z^2} ds = \int_0^{2p} \frac{1}{e^{2t} \cos^2 t + e^{2t} \sin^2 t + e^{2t}} \sqrt{3}e^t dt = \frac{\sqrt{3}}{2} (1 - e^{-2}). (6 分)$

五.证明题(每小题5分,共5分)

20.证明: 由题知
$$\sum_{n=1}^{\infty} (u_n + v_n)$$
 收敛,故有 $\lim_{n \to \infty} (u_n + v_n) = 0$,由极限的定义知,存在正整数 N ,当 $n \ge N$ 时,有 $u_n + v_n < 1$,故 $(u_n + v_n)^2 < u_n + v_n$,由比较判别法知 $\sum_{n=1}^{\infty} (u_n + v_n)^2$ 收敛. (5分)