

Prova Modelo de Exame Final Nacional Prova 1 | Ensino Secundário | 2021

12° Ano de Escolaridade

Nuno Miguel Guerreiro

Duração da Prova: 150 minutos. | Tolerância: 30 minutos

A prova inclui 11 itens, identificados a sombreado azul, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 7 items da prova, apenas os 4 melhores contarão para a nota final.

É permitido o uso da régua, compasso, esquadro, transferidor e calculadora gráfica.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso do corretor. Risque aquilo que pretende que não seja classificado.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se na margem de cada página.

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Todos os itens desta prova são originais do autor – referência ao autor no margem da prova. Prova realizada em junho de 2021. Última atualização às 00:00 de 5 de Julho de 2021.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$${}^n \sqrt{\rho e^{i\theta}} = {}^n \sqrt{\rho} e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \ e \ n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^{u})' = u' e^{u}$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Cotações

(12)

(14)

(14)

1. Considere, num referencial o.n Oxyz, o prisma quadrangular [OABCDEFG] representado na Figura ao lado.

Sabe-se que:

- a superfície esférica S que passa em todos os vértices do prisma é definida por $(x-2)^2 + (y-2)^2 + (z-1)^2 = 9$;
- a área da base do prisma é 16.
- **1.1.** Seja α a amplitude do ângulo OGB.

Qual é o valor de $\cos \alpha$?

(A)
$$\frac{1}{3}$$

(B)
$$\frac{\sqrt{2}}{4}$$

(B)
$$\frac{\sqrt{2}}{4}$$
 (C) $\frac{2\sqrt{2}}{3}$ (D) $2\sqrt{2}$

- **1.2.** Determine a equação do plano tangente à superfície esférica S no ponto C.
- 2. Considere a progressão geométrica decrescente (u_n) de termos positivos.

Sabe-se que $2u_3 + 2u_1 = 5u_2$ e que $u_3 + u_4 + \cdots + u_{10} = 510$.

Determine uma expressão do termo de geral de (u_n) .

Apresente essa expressão na forma $a \times b^n$, em que $a \in b$ são números reais.

3. Seja (v_n) uma sucessão de termos negativos.

Considere as seguintes afirmações:

I) se (v_n) é decrescente, então (v_n) é necessariamente limitada;

II) se (v_n) é crescente, então (v_n) é convergente.

Qual das afirmações seguintes é verdadeira?

- (A) I) e II) são ambas verdadeiras.
- (B) I) é verdadeira e II) é falsa.
- (C) I) é falsa e II) é verdadeira.
- (D) I) e II) são ambas falsas.

(14)

4. Um grupo de 6 amigos, entre os quais estão o Alexandre e o Bruno, foram passar férias à Escócia.

O hotel onde ficaram tem dois elevadores no átrio principal. Cada elevador pode transportar 5 hóspedes de cada vez.

O grupo quis distribuir-se pelos dois elevadores, atendendo a que o Bruno e o Alexandre queriam ir juntos no elevador.

Determine o número de maneiras em que os amigos puderam distribuir-se pelos elevadores.

(14)

5. O Miguel vai resolver um exame constituído por duas partes: uma parte de escolha múltipla e outra de resposta aberta.

A parte de escolha múltipla é constituída por 10 questões com 4 possíveis opções cada. Dessas quatro opções, apenas uma está correta.

Acerca da chave correta, o professor informou que:

- a opção A é a opção correta em quatro perguntas consecutivas;
- a chave correta é constituída por quatro opções A, duas opções B, duas opções C e duas opções D.

O Miguel vai escrever, ao acaso, uma chave que respeite as condições enunciadas pelo professor.

Qual é a probabilidade da sua chave ser a chave correta?

Apresente o resultado na forma de fração irredutível.

(12)

6. Num dado mês, o Afonso pretendeu explorar os géneros musicais de R&B e Jazz. Na sua descoberta, ouviu música de 90 artistas diferentes, 60 dos quais são oriundos de Nova Iorque.

Entre os artistas de Jazz, 80% são oriundos de Nova Iorque. O Afonso também reparou que nenhum artista de R&B é descendente de Nova Iorque.

Quantos artistas de Jazz ouviu o Afonso durante esse mês?

- **(A)** 70
- **(B)** 75
- **(C)** 80
- **(D)** 85

(14)

7. Em \mathbb{C} , conjunto dos números complexos, considere os números complexos $z_1 = -1 + 2i$ e $z_2 = 3i^{43}$.

Para um dado $\beta \in]-\pi, 0[$, seja w o número complexo

$$w = \frac{(z_1 - \overline{z_2})^6}{\cos \beta - i \operatorname{sen} \beta}$$

Determine o valor de β tal que Re(w) + Im(w) = 0.

(12)

(14)

(14)

(14)

8. Na Figura 2, está representado, no plano complexo, o paralelogramo [OACB].

Sabe-se que:

- o ponto A é o afixo do número complexo z_A (de argumento θ), e o ponto B é o afixo do número complexo z_B ;
- o segmento [AB] é um lado de um pentágono regular centrado na origem.

Para um certo valor $\theta \in [0,\pi[$, o ponto C pertence ao eixo imaginário.

Qual é esse valor de θ ?

(A)
$$\frac{\pi}{10}$$

(B)
$$\frac{3\pi}{10}$$

(C)
$$\frac{3\pi}{5}$$

(A)
$$\frac{\pi}{10}$$
 (B) $\frac{3\pi}{10}$ (C) $\frac{3\pi}{5}$

Figura 2

9. Resolva a inequação $\frac{\log_2(4^x - 3) - 1}{x} \le 1$.

Apresente o conjunto-solução usando a notação de intervalos de números reais.

10. Um químico tóxico atacou as plantas que viviam numa estufa.

Admita que x dias após o instante em que a presença desse químico foi detetada, o número de plantas infetadas é dado aproximadamente por

$$n(x) = \frac{450}{1 + 2^{3 - 0.1x}}, x \in [0, 120]$$

(considere que x = 0 corresponde ao instante em que o químico foi detetado)

10.1. Mostre que nos primeiros doze dias da infeção existiu um instante em que o número de plantas infetadas era o dobro do número de plantas infetadas quando o químico foi detetado.

Sempre que proceder a cálculos intermédios, conserve, no mínimo, duas casas decimais.

10.2. Em dois instantes $t_1, t_2 \in]0,120[(t_2 > t_1)]$ dias após o instante em que o químico foi detetado, verificouse que o aumento médio de infeções desde a deteção do químico até cada um desses instantes era de 4 plantas por dia.

Utilizando a calculadora gráfica, determine esses instantes t_1 e t_2 .

Na sua resposta deve:

- equacionar o problema;
- reproduzir, num referencial, o(s) gráfico(s) da(s) função(ões) visualizada(s) na calculadora que lhe permite(m) resolver a equação;
- apresentar os valores de t₁ e t₂, com arredondamento (caso necessário) às unidades.

(14) 11. Seja f uma função, de domínio $\mathbb{R}^- \cup]1$, $+\infty[$, definida por $f(x) = \begin{cases} \frac{\sqrt{e^x - 1}}{x} & \text{se } x < 0 \\ \frac{\sqrt{x+3} - 2}{(x-1)^2} & \text{se } x > 1 \end{cases}$

Estude a função f quanto à existência de assíntotas verticais do seu gráfico.

(14) 12. Na Figura 3 (não necessariamente à escala), está representada, num referencial o.n xOy, uma circunferência de centro O.

Sabe-se que:

- os pontos B e C pertencem à circunferência, e os pontos A e
 C pertencem à reta de equação x = 1;
- α é a amplitude, em radianos, do ângulo $COA\left(\alpha \in \left]0, \frac{\pi}{2}\right[\right)$;
- o ponto B tem abcissa $\frac{3}{4}$, e o segmento [OB] pertence à bissetriz do ângulo COA.

Determine o valor de \overline{OA} .

Figura 3

13. Seja g', de domínio $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, a primeira derivada de uma função g, de domínio $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, definida por

 $g'(x) = (x + 1) \sin x + (1 - x) \cos x$

Sabe-se ainda que o gráfico de *g* passa pela origem do referencial.

- (12) 13.1. Qual é o valor de $\lim_{x\to 0} \frac{x}{g(x)}$?
 - **(A)** 0
- (B) $\frac{1}{2}$
- **(C)** 1
- **(D)** +∞
- **13.2.** Estude a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta deve apresentar:

- o(s) intervalo(s) em que o gráfico de g tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de g tem concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de g.

(14)

(14)

(14)

14. Sejam *a* e *b* duas constantes reais.

Considere a função h, de domínio \mathbb{R}^+ , definida por $h(x) = e^{ax} + b \ln x$.

A reta tangente ao gráfico de h no ponto de abcissa 1 é perpendicular à reta de equação $y=-\frac{1}{2}x-5$ e interseta a mesma no ponto de ordenada -4.

Determine o valor de a - b.

Apresente o valor na forma ln $k, k \in \mathbb{R}^+$.

15. Determine o valor de
$$\lim_{x \to +\infty} [x \operatorname{sen}(e^{-x})]$$
.

FIM