Deep Learning and Generative Al

Deep Learning

Recap:

Logistic Regression!

Will it Rain?

 x_i = features for day i

features

Cloud Cover	Humidity	Temperature	Air Pressure
0.5	80%	75	1.2

outcome

Did it Rain
1

 y_i = 1, rains y_i = 0, no rain

$$(b_1 \times x_{i1})$$

$$(b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \cdots + (b_M \times x_{iM})$$

$$(b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$
 bias

Will it Rain?

 x_i = features for day i

-					
e	2	ŤΙ	II	-ρ	<
-	u	"	a i	-	9

Cloud Cover	Cloud Cover Humidity		Air Pressure	
0.5	80%	75	1.2	
0.2	95%	83	1.3	

$$z_1 = (b_1 \times 0.5) + (b_2 \times 0.8) + (b_3 \times 75) + (b_4 \times 1.2) + b_0$$
 $y_1 =$

$$z_2 = (b_1 \times 0.2) + (b_2 \times 0.95) + (b_3 \times 83) + (b_4 \times 1.3) + b_0$$
 $y_2 = 0$

$$y_i = 0$$
, no

outcome

Will it Rain?

 x_i = features for day i

_		20.000			
fe	2	h.	Ir	0	C
10	a	ιι	41	C	0

Cloud Cover	Cloud Cover Humidity		Air Pressure	
0.5	80%	75	1.2	
0.2	95%	83	1.3	

$$z_1 = (b_1 \times 0.5) + (b_2 \times 0.8) + (b_3 \times 75) + (b_4 \times 1.2) + b_0$$
 $y_1 = 1$

$$z_2 = (b_1 \times 0.2) + (b_2 \times 0.95) + (b_3 \times 83) + (b_4 \times 1.3) + b_0$$
 $y_2 = 0$

sigma
$$p(y_i = 1 | x_i) = \sigma(z_i)$$

$$y_i = 0$$
, no

outcome

Will it Rain?

 x_i = features for day i

f	26	a t	11	r	0	c
16	= c	ıι	u	1	C	0

Cloud Cover	Cloud Cover Humidity		Air Pressure	
0.5	80%	75	1.2	
0.2	95%	83	1.3	

$$z_1 = (b_1 \times 0.5) + (b_2 \times 0.8) + (b_3 \times 75) + (b_4 \times 1.2) + b_0$$
 $y_1 = 1$

$$z_2 = (b_1 \times 0.2) + (b_2 \times 0.95) + (b_3 \times 83) + (b_4 \times 1.3) + b_0$$
 $y_2 = 0$

sigma
$$p(y_i = 1 | x_i) = \sigma(z_i)$$

$$y_i$$
 = 1, yes

$$y_i = 0$$
, no

outcome

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

$$p(y_i = 1 | x_i) = \sigma(z_i)$$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

Sigmoid Function $p(y_i = 1 | x_i) = \sigma(z_i)$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

Sigmoid Function $p(y_i = 1 | x_i) = \sigma(z_i)$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

Sigmoid Function $p(y_i = 1 | x_i) = \sigma(z_i)$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

Sigmoid Function $p(y_i = 1|x_i) = \sigma(z_i)$

Outcome of Z

- Z_i = Large and positive indicates y_i = 1 is likely
- \mathbf{Z}_i = Large and negative indicates \mathbf{y}_i = 0 is likely

$$z_i = (b_1 \times 0.5) + (b_2 \times 0.8) + (b_3 \times 75) + (b_4 \times 1.2) + b_0$$

features

Cloud Cover	Humidity	Temperature	Air Pressure	
0.5	80%	75	1.2	

 Z_i

Logistic Regression

Logistic Regression

Generalization of Logistic Regression: Learned Features

Generalization of Logistic Regression: Learned Features

Analysis of Documents

 x_i = features for document i

•	0-020-1			71.60m		ولتت
fe	a	ŤΙ		ri	2	2
1	u	.,	4	١,	-	9

Word 1	Word 2	Word 3	•	•	•	•	Word V
11	20	10	•	•	•	•	32

number of times each word appears in document

outcome

Liked/ Disliked y_i = 1, like y_i = 0, dislike

Gradient Descent

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Starting Parameters
$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \cdots$$

$$\begin{array}{ll}
\nabla L(\theta) & \theta^{1} = \theta^{0} - \eta \nabla L(\theta^{0}) \\
\left[\frac{\partial L(\theta)}{\partial L(\theta)} \right] \partial w_{1} \\
\partial L(\theta) \partial w_{2} \\
\vdots & Compute \nabla L(\theta^{1}) \\
\theta^{2} = \theta^{1} - \eta \nabla L(\theta^{1})
\end{array}$$

Millions of parameters

 $\partial L(\theta)/\partial b_2$

To compute the gradients efficiently, we use **backpropagation**.

Gradient Descent

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Starting Parameters
$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \cdots$$

$$\begin{array}{ll}
\nabla L(\theta) \\
\left[\frac{\partial L(\theta)}{\partial w_1} \right] & Compute \, \nabla L(\theta^0) \\
\partial L(\theta)/\partial w_2 \\
\vdots & Compute \, \nabla L(\theta^1) \\
\theta^1 = \theta^0 - \eta \nabla L(\theta^0) \\
\theta^2 = \theta^1 - \eta \nabla L(\theta^1)
\end{array}$$

Millions of parameters

 $\partial L(\theta)/\partial b_2$

To compute the gradients efficiently, we use **backpropagation**.

Chain Rule

Case 1

$$y = g(x)$$
 $z = h(y)$

$$\Delta x \to \Delta y \to \Delta z$$
 $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

www.aiquest.org