A Gentle Adventure Mechanising Message Passing Concurrency Systems

An Experience/Walkthrough Report

David Castro-Perez, Lorenzo Gheri, Francisco Ferreira, Martin Vassor, and Nobuko Yoshida

DisCoTec22

Imperial College London

Roadmap

1. Binders and Linearity

Act I: Binary Session Types

2. Multiparty Processes and Coinduction

Act II: Mechanising Multiparty Processes

Act III: Mechanising Multiparty Session Types

SmolEMTST: Tutorial Repository

SmolEMTST: Tutorial Repository

SmolEMTST: Tutorial Repository

David Castro-Perez

Imperial College London and University of Kent, UK

Lorenzo Gheri

Imperial College London UK

We design and implement Zooid, a domain specific lan-

guage for certified multiparty communication, embedded

in Cog and implemented aton our mechanisation framework of asynchronous multiparty session types (the first of its

kind). Zooid provides a fully mechanised metatheory for the semantics of global and local types, and a fully verified

end-point process language that faithfully reflects the type-

level behaviours and thus inherits the global types properties

such as deadlock freedom, protocol compliance, and liveness

Abstract

guarantees.

Bι

D) F

Reads

Tit

in the Coq proof assistant, using locally nameless for binders and small scale reflection to simplify the handling of linear typing environments.

Mechanising the Honda, Vasconcelos and Kubo's binary session type system

Honda, K., Vasconcelos, V. T., and Kubo, M. (1998). Language primitives and type discipline for structured communication-based programming. In Hankin, C., editor, <u>Programming Languages and Systems</u>, pages 122–138, Berlin, Heidelberg. Springer Berlin Heidelberg

Processes: Key Features

Processes: Key Features

Binder Mechanisation: DeBruijn Indices

Terms
$$M, N := n \mid M N \mid \lambda. M$$

Binder Mechanisation: DeBruijn Indices

Binder Mechanisation: DeBruijn Indices

Terms $M, N := n \mid M N \mid \lambda. M$

$$\lambda$$
. $(\lambda.0)$ $(\lambda.01)$

Binder Mechanisation: Locally Nameless

Binder Mechanisation: Locally Nameless

Terms:
$$M, N := n \mid x \mid M N \mid \lambda. M$$

$$M^x \equiv \{0 o x\}M$$
 Open a term
$$\begin{split} \frac{\Gamma(x) = T}{\Gamma \vdash x : T} & \frac{\forall x \notin L \quad \Gamma, x : S \vdash M^x : T}{\Gamma \vdash \lambda. M : S \to T} \end{split}$$
 \tag{\text{\sigma} x M \in \{0 \lefta x\} M \tag{Close a term} \\ \frac{\sigma \lefta M : S \to T \quad \Gamma \tag N : S}{\Gamma \tag N : T} \\ \frac{\Gamma \tag N : S \to T \quad \Gamma \tag N : S}{\Gamma \tag N : T} \end{This identity}

Process Mechanisation

```
Inductive name : Set :=
    fnm: atom \rightarrow name
    bnm : nat \rightarrow name
Definition channel := name.
Inductive proc : Set :=
  send: channel \rightarrow exp \rightarrow proc \rightarrow proc
  receive : channel \rightarrow proc \rightarrow proc
  throw: channel \rightarrow channel \rightarrow proc \rightarrow proc
  catch : channel \rightarrow proc \rightarrow proc
 nu_ch: proc → proc (* hides a channel *)
```

```
Inductive lc:proc \rightarrow Prop:=
 lc_send : forall k e P,
     lc nm k \rightarrow
    lc_exp e \rightarrow
    1c P \rightarrow
    lc (send k e P)
| lc_receive : forall (L : seq atom) k P,
    1c \text{ nm k} \rightarrow
    (forall x, x \setminus notin L \rightarrow lc (open P x)) \rightarrow
     lc (receive k P)
lc throw: forall k k' P.
     lc_nm k \rightarrow lc_nm k' \rightarrow
    1cP→
     1c (throw k k' P)
| lc_catch : forall (L : seq atom) k P,
     1c nm k \rightarrow
     (forall x, x \setminus notin L \rightarrow lc (open P x)) \rightarrow
    ic (catch k P)
```

Semantics (Excerpt as in Paper)

R-PASS throw
$$k$$
 $[k']$; $P \mid \operatorname{catch} k$ $(k').Q \to P \mid Q$
R-COM $k ! [e]$; $P \mid k ? (x).Q \to P \mid \{x \to e\}Q$
R-CONG $P \equiv P'$ and $P' \to Q'$ and $Q' \equiv Q \Rightarrow P \to Q$
R-SCOP $P \to Q \Rightarrow \nu_c(k).P \to \nu_c(k).Q$
R-PAR $P \to P' \Rightarrow P \mid Q \to P' \mid Q$

Mechanising the Semantics

Using Locally Nameless, α -equivalent terms are syntactically equal

How do we mechanise R-PASS?

throw
$$k\left[k'\right];P\mid \mathrm{catch}\ k\left(k'\right).Q\rightarrow P\mid Q$$

Mechanising the Semantics

Using Locally Nameless, α -equivalent terms are syntactically equal

How do we mechanise R-PASS?

throw
$$k[k']; P \mid \mathsf{catch}\ k(k').Q \to P \mid Q$$

A naive attempt:

throw
$$k[k']; P \mid \text{catch } k().Q \rightarrow P \mid Q^{k'}$$

Mechanising the Semantics

Using Locally Nameless, α -equivalent terms are syntactically equal

How do we mechanise R-PASS?

throw
$$k[k']; P \mid \mathsf{catch}\ k(k').Q \to P \mid Q$$

A **WRONG** attempt:

throw
$$k[k']; P \mid \text{catch } k().Q \rightarrow P \mid Q^{k'}$$

Why is our mechanisation of r-pass wrong?

Type
$$\alpha, \beta ::= ![S]; \alpha \mid ?[S]; \alpha \mid \text{end} \mid \bot$$

Typing $\Delta ::= \cdot \mid \Delta, k : \alpha$

Subject Reduction: if $\Gamma \vdash P \triangleright \Delta$ with Δ balanced, and $P \rightarrow Q$, then there exists Δ' s.t. $\Gamma \vdash Q \triangleright \Delta'$, with Δ' balanced.

Why is our mechanisation of r-pass wrong?

Type
$$\alpha, \beta ::= ![S]; \alpha \mid ?[S]; \alpha \mid \text{end} \mid \bot$$

Typing $\Delta ::= \cdot \mid \Delta, k : \alpha$

Subject Reduction: if $\Gamma \vdash P \triangleright \Delta$ with Δ balanced, and $P \rightarrow Q$, then there exists Δ' s.t. $\Gamma \vdash Q \triangleright \Delta'$, with Δ' balanced.

Why is our mechanisation of r-pass wrong?

$$\begin{array}{ll} \mathsf{Type} & \alpha,\beta & ::= & ![S];\alpha \mid ?[S];\alpha \mid \mathsf{end} \mid \bot \\ \mathsf{Typing} & \Delta & ::= & \cdot \mid \Delta,k:\alpha \end{array}$$

Subject Reduction: if $\Gamma \vdash P \triangleright \Delta$ with Δ balanced, and $P \rightarrow Q$, then there exists Δ' s.t. $\Gamma \vdash Q \triangleright \Delta'$, with Δ' balanced.

Rule throw $k[k']; P \mid \text{catch } k().Q \rightarrow P \mid Q^{k'}$ breaks subject reduction.

The Problem with Equating α -equivalent Terms

The idea behind R-PASS:

throw
$$k[k_0]; P \mid \text{catch } k(k_1).Q \rightarrow P \mid Q'$$

if $\text{catch } k(k_1).Q \equiv_{\alpha} \text{catch } k(k_0).Q'$

The Problem with Equating α -equivalent Terms

The idea behind R-PASS:

throw
$$k[k_0]; P \mid \text{catch } k(k_1).Q \rightarrow P \mid Q'$$

if $\text{catch } k(k_1).Q \equiv_{\alpha} \text{catch } k(k_0).Q'$

 k_0 cannot be free in Q

The Problem with Equating α -equivalent Terms

The idea behind R-PASS:

throw
$$k[k_0]; P \mid \text{catch } k(k_1).Q \rightarrow P \mid Q'$$
 if catch $k(k_1).Q \equiv_{\alpha} \text{catch } k(k_0).Q'$

 k_0 cannot be free in Q

We used a **standard** representation of binders, to mechanise a **non-standard**, **but correct** use of binders.

Mechanising the Revised System

Yoshida, N. and Vasconcelos, V. T. (2007). Language primitives and type discipline for structured communication-based programming revisited: Two systems for higher-order session communication. Electronic Notes in Theoretical Computer Science, 171(4):73 – 93. Proceedings of the First International Workshop on Security and Rewriting Techniques (SecReT 2006)

Processes, Channels, and Polarities

A solution to the naive $_{\text{R-PASS}}$ is to distinguish **channel polarities** ([Gay and Hole, 2005])

$$p,q := + \mid -$$
 throw $k^p \left[k'^q \right]; P \mid \operatorname{catch} k^{\overline{p}} \left(\right). Q \to P \mid Q^{k'^q}$

```
Inductive channel :=
| Ch of (kvar * polarity)
| Var of cvar.

Inductive proc : Set :=
| send : channel → exp → proc → proc
| receive : channel → proc → proc
| throw : channel → channel → proc → proc
| catch : channel → proc → proc
| nu_ch : proc → proc
```

Atoms: Separating Namespaces

```
Module CA := AtomScope Atom.Atom. (* Module of the atoms for channels *)
Module KA := AtomScope Atom.Atom. (* Module of the atoms for channel name *)
Module EA := AtomScope Atom.Atom. (* Module of the atoms for expressions *)

Notation cvar := (CA.var).
Notation kvar := (KA.var).

Notation evar := (EA.var).
```

Typing

```
Inductive tp: Set := 

| input: sort \rightarrow tp \rightarrow tp 

| output: sort \rightarrow tp \rightarrow tp 

| ended: tp | ...
```

```
Inductive oft : sort_env → proc → tp_env → Prop :=
| t_send : forall G kt e P D S T,
    oft_exp G e S →
    oft G P (add kt T D) →
    oft G (send (chan_of_entry kt) e P) (add kt (output S T) D)
| ...
```

Linear Environments

```
\Delta ::= \cdot \mid \Delta, k : \alpha
Inductive env := Undef | Def of {finMap K \rightarrow V}.

Definition add x t E :=

if x \in dom E then Undef else upd x t E.
```

We defined operations on environments that contain **linear** channels.

Adding a channel that is already in the environment results in an **undefined** environment.

We use this fact pervasively in our mechanised proofs.

Subject Reduction

```
Theorem SubjectReduction G P Q D:
oft G P D \rightarrow P \longrightarrow * Q \rightarrow exists D', oft G Q D'.
```

Mechanising a Proof of Subject Reduction

Using separate namespaces requires us to prove distinct **substitution lemmas** for every different kind of binder (expression, channel, shared channel).

Separate namespaces helps us avoid errors (e.g. using a channel instead of an expression), and simplifies proofs.

Linear environments allow us to make simplifying assumptions about defined environments.

Summary of Act I

- Deep Embedding binders allows us to fully control the calculus.
- LN requires a number of theorems and lemmas to prove our basic safety properties.
- EMTST (our tool) helps with nominal sets and environments.
- Next, we will explore what do we gain if we give up control (using shallow embeddings).

- Gay, S. and Hole, M. (2005). Subtyping for Session Types in the Pi Calculus. Acta Informatica, 42(2):191–225.
- Honda, K., Vasconcelos, V. T., and Kubo, M. (1998). Language primitives and type discipline for structured communication-based programming. In Hankin, C., editor, Programming Languages and Systems, pages 122–138, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Yoshida, N. and Vasconcelos, V. T. (2007). Language primitives and type discipline for structured communication-based programming revisited: Two systems for higher-order session communication. Electronic Notes in Theoretical Computer Science, 171(4):73 93. Proceedings of the First International Workshop on Security and Rewriting Techniques (SecReT 2006).