Lista 1 - Macroeconomia III 2017

Professor: Ricardo Cavalcanti Monitora: Kátia Alves

Alunos: Alexandre Machado e Raul Guarini

Exercício 1

Exercício 2

i) Seja a função u(.) estritamente crescente. Isto implica que a restrição de recursos do planejador vale com igualdade em todo instante do tempo. Dada a parametrização escolhida, isto é equivalente a $\gamma > 0$. Daí, é verdade que

$$c_t = k_t^{\alpha} + (1 - \delta)k_t - k_{t+1}$$

em todo período, já introduzindo o formato funcional da função de produção. Deste modo, o problema pode ser visto como a escolha da sequência ótima de capital:

$$\max_{\{k_{t+1}\}_{t=0}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^{t} u(k_{t}^{\alpha} + (1-\delta)k_{t} - k_{t+1}) \right\}$$
s.a
$$\begin{cases} k_{t+1} \in [0, k_{t}^{\alpha}] \\ k_{0} \text{ dado} \end{cases}$$

ii) A variável de estado relevante é o capital atual, sendo o consumo atual e o capital do próximo período as variáveis de controle. Entretanto, a restrição de recursos, ao valer com igualdade, nos permite lidar apenas com uma variável de controle, a saber, o capital do próximo período. Formulação recursiva:

$$V(k) = \max_{k'} \{ u(k^{\alpha} + (1-\delta)k - k') + \beta V(k') \}$$
s.a $k' \in [0,k^{\alpha}]$

iii) O operador de Bellman nesse caso é dado por

$$T[V](k) = \max_{k'} \{ u(k^{\alpha} + (1 - \delta)k - k') + \beta V(k') \}$$

A solução do problema do consumidor consiste num ponto fixo deste operador.

- iv) Código anexo.
- v) Código anexo.

Exercício 3

Exercício 4

Exercício 5

Exercício 6

Exercício 7