Page (1) Final Revision-Algebra - 2 Prep-First Term

Alg.

((Sheet 1))

[1] Complete:

1) $\sqrt[3]{216} = \dots$

2)
$$\sqrt[3]{(\frac{1}{8})^2} = \dots$$

3) $\sqrt[3]{-64} + \sqrt{16} = \dots$

4)
$$\sqrt[3]{a}^3 = \dots$$

5) $X^3 = 64$ then $\sqrt{X} = \dots$

6)
$$\sqrt[3]{X}^{6} = \sqrt{\dots}$$

7) $\frac{X}{3} = \frac{9}{X^2}$ Then $X = \dots$

8) If the area of square = 169 cm^2 Then the side length = cm.

9) If the volume of cube 64 cm^3 Then its edge = cm.

[2] Find S.S of equations in Q:

1)
$$(X-2)^2 = 25$$

2)
$$(X + 3)^2 = 64$$

3)
$$\sqrt{2X-1} = 3$$

4)
$$\sqrt{2X} - 3 = 2$$

Page (2) Final Revision-Algebra - 2 Prep-First Term

5)
$$(X-2)^3 = 27$$

6)
$$(3 X + 1)^3 = -8$$

7)
$$(2X+1)^3-7=20$$

8)
$$(X+1)^3-2=6$$

9)
$$X^3 + 16 = \frac{3}{8}$$

10)
$$\sqrt[3]{X-2} = 3$$

11)
$$(X^3 - 14)^2 = 169$$

12)
$$\sqrt{(X-2)^2} = 4$$

منترى توجيد (لرياضيات أر عاول إووار

Page (3) Final Revision-Algebra - 2 Prep-First Term

((Sheet 2))

"The set of irrational numbers Q"

Which of the following irrational and the other rational:

1) $\sqrt{4}$

2) $\sqrt[3]{125}$

3) $\sqrt[3]{-8}$

√7

5) 2.5

6) ₹4

7) $\frac{22}{7}$

8) II

9) $\frac{10}{5}$

Find the value of X:

1) $X < \sqrt{2} < X + 1$

2) $X < \sqrt{80} < X + 1$

3) $X < \sqrt[3]{50} < X + 1$

Choose the correct answer :

1) The irrational number in the following number is

a) $\sqrt{\frac{1}{4}}$

b) 3√8

c) $\sqrt{\frac{4}{\alpha}}$

2) The irrational number located between 2 and 3 is

a) $\sqrt{10}$

b) $\sqrt{7}$

c) 2.5

3) The area of square whose side length is $\sqrt{3}$ cm = cm².

a) $4\sqrt{3}$

b) 9

c) 3

d) 6

Prove that:

1) $\sqrt{2}$ is included between 1.4 and 1.5

2) $\sqrt[3]{15}$ is included between 2.4 and 2.5

Represent on the number line:

1) $\sqrt{7}$

Page (4) Final Revision-Algebra - 2 Prep-First Term

((Sheet 3))

"The set of real numbers"

- $R = R_+ U \{0\} U R_-$
- \blacksquare R = Q U Q
- $R^* = R \{0\}$

Complete:

- 1) R = U U
- 2) $R = \dots U \dots U$
- 3) $R_+ \cap R_- = \dots$
- 4) R_{+} U R_{-} =
- 5) Q U Q =
- 6) Q ∩ Q` =
- 7) $R \{0\} = \dots$
- 8) $R R_+ = \dots$
- 9) $R R_{-} = \dots$
- 10) $R R^* = \dots$
- 11) $R Q = \dots$
- 12) $R Q^* = \dots$

Find S.S of equations in R:

1)
$$\frac{1}{2}$$
 $X^2 - 5 = 0$

2) \(\frac{3}{4} \text{ X}^2 + 2 = -11\\

\[
\sigma \frac{3}{4} \text{ X}^2 + 2 = -11\\

\[
\sigma \frac{1}{4} \text{ \frac{1}{4}} \\

\]

\[
\sigma \frac{1}{4} \text{ \frac{1}{4}} \\

\sim \frac{1

Page (5) Final Revision-Algebra - 2 Prep-First Term

((Sheet 4))

" Intervals "

♣ Interval is the set of all numbers which are subset from real numbers

[[Notes]]

- 1) $\{X: X \in R, -2 \le X \le 5\} = [-2, 5]$ "closed interval"
- 2) $\{X: X \in \mathbb{R}, -2 < X < 5\} =]-2, 5[$ "open interval"
- 3) $\{X: X \in \mathbb{R}, -2 \le X < 5\} = [-2, 5[$ "semi open or semi closed interval"
- 4) $\{X: X \in R, X \geq 3\} = [3, \infty[$
- 5) $\{X: X \in R, X < 2\} =]-\infty, 2[$
- 6) $R =]-\infty$, ∞
- 7) $R_{+} = [0, \infty)$
- 8) $R =] \infty , 0 [$
- 9) The set of non negative real numbers = $[0, \infty)$
- 10) The set of non positive real numbers = $]-\infty$, 0]

♣ Put ∈ , ∉ :

- 1) 2 [1,5]
- 2) -2] -2 , 1]
- 3) 0 [-1,4[

\bot If X = [2, 5], Y = [-1, 3] Find by using number line:

- $1) X \cap Y$
- 2) X U Y
- 3) X Y

4) Y – X

- 5) X
- 6) Y`

Find by using number line :

- 1) $[-1, 4] \cap [2, 5] = \dots$
- 2) [-3,3] U [1,5] =
- 3) $[-2, 3] [1, 4] = \dots$

Page (6) Final Revision-Algebra - 2 Prep-First Term

4)
$$[-3, 0] \cap]0, 2] = \dots$$

5)
$$[-1, \infty [U [-3 4] = \dots]$$

7)]-
$$\infty$$
 , 3] \cap [-4 , ∞ [=

8)
$$]-\infty$$
, 2] -] - ∞ , 0] =

9)
$$[3,5]$$
 U $\{3,5\}$ =

10)
$$[1,4] \cap \{1,4\} = \dots$$

11)
$$[1, 4] - \{1, 4\} = \dots$$

12)]2, 5 [
$$\cap$$
 { -2, 3, 4} =

13)
$$R_+ \cap [0, 5] = \dots$$

14) R U
$$]-1,4] = \dots$$

15)
$$R_{-} - [-1, 1] = \dots$$

Complete:

- 1) If $X \in [-3, 4]$, then $X^2 \in$
- 2) The sum of all real numbers in [-5, 5] is
- 3) If $X \in [1, 16]$, then $-\sqrt{X} \in ...$

منترى توجيد (الرياضيات أ ماول إووار

Page (7) Final Revision-Algebra - 2 Prep-First Term

((Sheet 5))

" Operations on the real numbers "

Find each of the following in simplest form :

1)
$$\sqrt{2} + 3\sqrt{2} + 2\sqrt{2} = \dots$$

2)
$$5\sqrt{3} - 2\sqrt{3} + 4\sqrt{3} = \dots$$

3)
$$\sqrt{5} - \sqrt{3} + 2\sqrt{5} + \sqrt{3} = \dots$$

4)
$$3\sqrt{2} - 2\sqrt{5} + 5\sqrt{2} + \sqrt{5} = \dots$$

5)
$$\sqrt{3} \times \sqrt{3} = \dots$$

6)
$$\sqrt{2} \times \sqrt{3} = \dots$$

7)
$$2\sqrt{2} \times 3\sqrt{5} = \dots$$

8)
$$2\sqrt{2} \times 3\sqrt{2} = \dots$$

9)
$$\sqrt{2} (5 + \sqrt{2}) = \dots$$

10)
$$(\sqrt{2} + 1) (\sqrt{3} + 2) = \dots$$

4 Put the denominator as whole number :

1)
$$\frac{10}{\sqrt{5}}$$

2)
$$\frac{2}{3\sqrt{2}}$$

3)
$$\frac{\sqrt{2}+3}{\sqrt{2}}$$

Complete:

- 1) The additive inverse of $\frac{6}{\sqrt{2}} = \dots$
- 2) The additive inverse of $(\sqrt{2} \sqrt{5}) = \dots$
- 3) The multiplicative inverse of $\sqrt{5}$ is
- 4) The multiplicative inverse of $\frac{\sqrt{2}}{6}$ is

منترى توجيه (الرياضيات أرا عاول إووار

Page (8) Final Revision-Algebra - 2 Prep-First Term

((Sheet 6))

" Operations on the square roots "

Find in simplest form :

1)
$$\sqrt{2} + \sqrt{18} + \sqrt{8}$$

2)
$$\sqrt{98} - \sqrt{128} - \sqrt{18} + 4\sqrt{2}$$

3)
$$2\sqrt{3} + \sqrt{27} - \sqrt{48}$$

4)
$$\sqrt{32} - \sqrt{72} + 6\sqrt{\frac{1}{2}}$$

5)
$$2\sqrt{5} + 4\sqrt{20} - 5\sqrt{\frac{1}{5}}$$

6)
$$\sqrt{3} + \frac{3}{\sqrt{3}} - \sqrt{2} \times \sqrt{6}$$

7)
$$\sqrt{27} + \sqrt{8} - 2\sqrt{12} + \sqrt{18}$$

8)
$$\sqrt{3} + 2\sqrt{20} + \sqrt{12} + \sqrt{45}$$

Complete:

1) If
$$X = \frac{\sqrt{6}}{\sqrt{2}}$$
 Then $X^{-1} = \dots$

2)
$$\sqrt{5}$$
, $\sqrt{20}$, $\sqrt{45}$, $\sqrt{80}$, in the same pattern

منترى توجيه (الرياضيات أرا عاول إووار

Page (9) Final Revision-Algebra - 2 Prep-First Term

((Sheet 7))

"The two conjugate numbers"

II Note 11

- 1) (X+3), (X-3) are conj
- 2) $(\sqrt{3} + \sqrt{2}), (\sqrt{3} \sqrt{2})$ are conj
- 3) $(\sqrt{5} 1), (\sqrt{5} + 1)$ are conj
- 4) $(\sqrt{5} + \sqrt{3}), (\sqrt{5} + \sqrt{3})$ not conj
- 1. If $X = \frac{2}{\sqrt{7} \sqrt{5}}$ $Y = \sqrt{7} \sqrt{5}$, Find $(X + Y)^2$
- 2. If $X = \sqrt{5} \sqrt{2}$ $Y = \frac{3}{\sqrt{5} \sqrt{2}}$ Prove that X and Y are conjugate numbers then Find $X^2 2XY + Y^2$
- 3. If $X = \sqrt{7} + \sqrt{5}$ $Y = \frac{2}{X}$ Find $\frac{X+Y}{XY}$
- 4. If $X = \frac{4}{\sqrt{7} \sqrt{3}}$ and $Y^{-1} = \frac{1}{\sqrt{7} \sqrt{3}}$ Find $X^2 Y^2$

Page (10) Final Revision-Algebra - 2 Prep-First Term

((Sheet 8))

" Operations on the cube roots "

Find in simplest form :

1)
$$\sqrt[3]{2} + \sqrt[3]{16} + 2 \sqrt[3]{54}$$

2)
$$\sqrt[3]{24} - 2\sqrt[3]{3} + \sqrt[3]{81}$$

3)
$$\sqrt[3]{-54} + \sqrt[3]{16} - \sqrt[3]{250}$$

4)
$$\sqrt[3]{81} + \sqrt[3]{-24} - 3 \sqrt[3]{\frac{1}{9}}$$

5)
$$\sqrt[3]{108} - 2\sqrt[3]{4} - \sqrt[3]{\frac{1}{2}}$$

6)
$$\sqrt[3]{3} - \sqrt[3]{4} \times \sqrt[3]{6} + 3\sqrt[3]{\frac{1}{9}}$$

7)
$$\frac{7}{3}\sqrt{18} + \sqrt[3]{54} - 7\sqrt{2} + \sqrt[3]{16}$$

8)
$$\sqrt[3]{-16} + \frac{14}{\sqrt{7}} - \sqrt{28} + \sqrt[3]{54}$$

منترى توجيه (الرياضيات أرماول إووار

Page (11) Final Revision-Algebra - 2 Prep-First Term

((Sheet 9))

"Applications on the real numbers"

Important rules:

[[Cube]]

$$L.S.A = 4 L^2$$

$$T.S.A = 6 L^2$$

Volume = L^3

[[Cuboid]]

$$L.S.A = 2(X + Y) \times Z$$

$$T.S.A = 2(XY + YZ + ZX)$$

Volume = XYZ

[[Circle]]

Circumference =
$$2 \Pi r$$

Area =
$$\Pi r^2$$

[[Sphere]]

Volume =
$$\frac{4}{3} \Pi r^3$$

Area =
$$4 \Pi r^2$$

[[Right circular cylinder]]

$$L.S.A = 2 \Pi rh$$

$$T.S.A = 2 \Pi rh + 2 \Pi r^2$$

Volume =
$$\Pi r^2 h$$

منترى توجيه (الرياضيات أر عاول إووار

Page (12) Final Revision-Algebra - 2 Prep-First Term

Complete :

- 4) Aright circular cylinder with volume 40Π cm³ and its height 10 cm then its base radius =
- 5) The volume sphere whose diameter $6 \text{ cm} = \dots \text{cm}^3$.

4 Problems:

- 1) A cube whose lateral area is 36 cm². Find its total area and its volume.
- 2) A cube its volume 27 cm³. Find its total area.
- 3) The sum of all edges of a cube is 60 cm. Find its volume.
- 4) Acuboid its dimensions 3 cm, 4 cm, 5 cm. Find its total area and its volume.
- 5) A circle its area 154 cm². Find its circumference.
- 6) Aright circular cylinder its volume 924 cm³ and its height 6 cm. Find the lateral area.
- 7) Find the height of right circular cylinder whose height is equal to its base radius and its volume is $72 \, \Pi \, \text{cm}^3$.
- 8) The volume of sphere is 4188 cm^3 . Find its radius length.
- 9) Ametalic sphere with diameter 6 cm has got melt and changed into circular cylinder with radius 3 cm. Find its height.

Page (13) Final Revision-Algebra - 2 Prep-First Term

((Sheet 10))

"Solving equations and inequalities of first degree in one variable

in R "

Find S.S of equations in R

1)
$$2 \times -3 = 4$$

2)
$$\sqrt{5} \times -1 = 4$$

Find S.S of inequalities in R and graph the S.S on number line:

1)
$$2 \times -1 \ge 3$$

2)
$$2 \times +5 \ge 3$$

3)
$$3-2 X \ge 7$$

4)
$$5 - 3 X \le 11$$

5)
$$-8 \le 3 \ X + 1 \le 4$$

6)
$$13 \ge 2 \times -1 \ge 5$$

7)
$$|-3| < 2 \times -1 < 5$$

8)
$$5 \le \frac{-2X+6}{3} < 4$$

9)
$$2+2 X \le 3 X +3 < 5+2 X$$

10)
$$X - 1 < 3 X - 1 \le X + 1$$

منترى توجيد (لرياضيات أر عاول إووار

Page (14) Final Revision-Algebra - 2 Prep-First Term

((Sheet 11))

"Relation between two variables"

1) Find three ordered pairs satisfy this relation:

$$2X + Y = 5$$

2) Represent graphically

$$X + 2Y = 3$$

$$Y - 3X = 1$$

3) Complete:

1) If
$$(3, 6)$$
 satisfies $Y = KX$. Then $K = \dots$

2) If
$$(3, 1)$$
 satisfies $Y - 3X = a$. Then $a = ...$

3) If
$$(3, a)$$
 satisfies $Y - 2X = 4$. Then $a = ...$

4) If
$$(K, 2K)$$
 satisfies $X + Y = 15$. Then $K =$

5) If
$$(2, -5)$$
 satisfies $3X - Y + C = 0$. Then $C =$

6) If the relation
$$2 X + Y = 6$$
. Then the intersection point of

$$X - a \times is \dots and Y - a \times is \dots and Y$$

Page (15) Final Revision-Algebra - 2 Prep-First Term

((Sheet 12)) "Slope of straight line"

$$S = \frac{Y_2 - Y_1}{X_2 - X_1}$$

1) Classify the slope of st. line in each of the following

" Positive - negative - zero - undefined "

2) Complete:

- 1) The slop of any horizontal st. line =
- 2) The slope of any vertical st. line =
- 3) If A, B, C, are collinear then the slope of $\overrightarrow{AB} = \dots$
- 4) The slope of st. line which passes through (2,3)(5,7) is
- 5) If the st. line which passes through (2,3)(5,k) parallel to $X-a \times is$ then K...........
- 3) If the slope st. line which passes through two points (1,3), (1,K) equal 3. Find the value of K.
- 4) Prove that A, B and C are collinear where A(1,1) B(2,2) C(-3,-3)

Page (16) Final Revision-Algebra - 2 Prep-First Term

((Sheet 13))

"Real life applications on the slope"

1) The opposite graph represents the motion of a car moving with uniform velocity determine the velocity of the car . $\frac{d \ln km}{}$

- 2) The following figure represents the motion of bicycle find the regular speed during
 - a) The first three hours
 - b) The next four hours

- 3) The opposite figure shows capital change of accompany during 8 years
- a) Find the slope of \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD}
- b) Find the starting capital of the company

منتری توجید (لریاضیات الم عاول إووار

Page (17) Final Revision-Algebra - 2 Prep-First Term

"Statistics"

1) Complete:

- a) The arithmetic mean of 5, 12, 17, 6 is
- b) If the lower limit of a set is 8 and the upper limit is 14 then its centre is
- c) If the lower limit of a set is 4 and its centre is 9 then its upper limit =
- d) The median of values 9, 4, 8, 1, 3 is
- e) The median of values 3, 7, 2, 9, 5, 11 is
- f) The point of intersection of ascending and descending cumulative frequency curve determines on the set axis
- g) The mode of values 5, 3, 8, 5, 9 is
- h) If the mode of values 12, 7, X + 1, 7, 12 is 7 then $X = \dots$

2)

Sets	5-	15-	25-	35-	Total
Freq	6	8	4	2	20

Find the mean

3)

Sets	0-	2-	4-	6-	Total
Freq	1	2	2	5	10

Find the median

4)

Sets	30-	40-	50-	60-	70-	80-	Total
Freq	3	4	12	8	7	6	40

Find the mode

Revision on algebra

Unit 1

1) Cube root of rational number:

[1] Complete:

1)
$$\sqrt[3]{216} = \dots$$

2)
$$\sqrt[3]{(\frac{1}{8})^2} = \dots$$

3)
$$\sqrt[3]{-64} + \sqrt{16} = \dots$$

4)
$$\sqrt[3]{a}^3 = \dots$$

5)
$$X^3 = 64$$
 then $\sqrt{X} = \dots$

6)
$$\sqrt[3]{X}^{6} = \sqrt{\dots}$$

7)
$$\frac{X}{3} = \frac{9}{X^2}$$
 Then X =

- 9) If the volume of cube 64 cm^3 Then its edge = cm.
- 10) If the volume of cube 125 cm^3 Then the sum of edges =cm.

Egyptian Virtual School

[2] Find S.S of equations in Q:

1)
$$(X-2)^2 = 25$$

2)
$$(X + 3)^2 = 64$$

3)
$$\sqrt{2X-1} = 3$$

Find s.s. in Q

$$(X-2)^3=27$$

$$(3 X + 1)^3 = -8$$

$$(2X+1)^3-7=20$$

$$(X+1)^3-2=6$$

$$X^3 + 16 = \frac{3}{8}$$

2) Set of irrational numbers

Which of the following numbers is rational and the other irrational

√4

2) √125

3) ∛-8

√7

5) 2.5

6) √4

7) $\frac{22}{7}$

8) П

9) $\frac{10}{5}$

Find the value of X:

$$X < \sqrt{2} < X + 1$$

$$X < \sqrt[3]{50} < X + 1$$

Prove that :

- 1) $\sqrt{2}$ is included between 1.4 and 1.5
- 2) √√15 is included between 2.4 and 2.5

Lhoose the correct answer:

- 1) The irrational number in the following number is
 - a) $\sqrt{\frac{1}{4}}$

- b) √8
- c) $\sqrt{\frac{4}{9}}$
- d) $\sqrt{2}$
- 2) The irrational number located between 2 and 3 is
 - a) $\sqrt{10}$

- b) √7
- c) 2.5
- d) $\sqrt{3}$
- 3) The area of square whose side length is $\sqrt{3}$ cm = cm².
 - a) $4\sqrt{3}$

b) 9

c) 3

d) 6

3) The set of real numbers

♣ Complete :

- 1) R = U U
- 2) R = U
- 3) $R_+ \cap R_- = \dots$
- 4) R₊ U R₋ =
- 5) Q U Q`=.....
- 6) Q ∩ Q` =
- 7) $R \{0\} = \dots$
- 8) R R₊ =
- 9) $R R_{.} = \dots$
- 10) R R* =
- 11) R-Q =
- 12) $R Q' = \dots$

Find S.S of equations in R:

1)
$$\frac{1}{2}$$
 $X^2 - 5 = 0$

$$2) \frac{3}{4} X^2 + 2 = -11$$

4) Intervals

♣ Put ∈ , ∉ :

- 1) 2 [1,5]
- 2) -2] -2 , 1]
- 3) 0 [-1,4[

If X = [2,5], Y = [-1,3] Find by using number line:

- 1) X ∩ Y
- 2) X U Y
- 3) X-Y

- 4) Y X
- 5) X
- 6) Y

Find by using number line:

- 1) $[-1, 4] \cap [2, 5] = \dots$
- 2) [-3,3] U [1,5] =
- [-2,3]-[1,4]=...
- $4)[-3,0]\cap]0,2]=.....$
- 5) [-1, ∞ [U [-34] =
- 6) [-1,5]-]-1,5[=.....
- 7)]- ∞ , 3] \cap [-4 , ∞ [=
- $8)]-\infty, 2]-]-\infty, 0] = \dots$
- 9) [3,5] U $\{3,5\}$ =
- $10)[1,4] \cap \{1,4\} = \dots$

- 15) R. $[-1, 1] = \dots$

5) Operations on real numbers

Find each of the following in simplest form:

1)
$$\sqrt{2} + 3\sqrt{2} + 2\sqrt{2} = \dots$$

2)
$$5\sqrt{3} - 2\sqrt{3} + 4\sqrt{3} = \dots$$

3)
$$\sqrt{5} - \sqrt{3} + 2\sqrt{5} + \sqrt{3} = \dots$$

4)
$$3\sqrt{2} - 2\sqrt{5} + 5\sqrt{2} + \sqrt{5} = \dots$$

5)
$$\sqrt{3} \times \sqrt{3} = \dots$$

6)
$$\sqrt{2} \times \sqrt{3} = \dots$$

7)
$$2\sqrt{2} \times 3\sqrt{5} = \dots$$

3)
$$2\sqrt{2} \times 3\sqrt{2} = \dots$$

9)
$$\sqrt{2} (5 + \sqrt{2}) = \dots$$

$$|0)(\sqrt{2}+1)(\sqrt{3}+2)=....$$

Put the denominator as whole number:

$$\frac{10}{\sqrt{5}}$$

2)
$$\frac{2}{3\sqrt{2}}$$

3)
$$\frac{\sqrt{2}+3}{\sqrt{2}}$$

La Complete :

- 1) The additive inverse of $\frac{6}{\sqrt{2}} = \dots$
- 2) The additive inverse of ($\sqrt{2}$ $\sqrt{5}$) =
- 3) The multiplicative inverse of $\sqrt{5}$ is
- 4) The multiplicative inverse of $\frac{\sqrt{2}}{6}$ is

Egyptian Virtual School

6) Operation on square root Find in simplest form:

1)
$$\sqrt{2} + \sqrt{18} + \sqrt{8}$$

2)
$$\sqrt{98} - \sqrt{128} - \sqrt{18} + 4\sqrt{2}$$

3)
$$2\sqrt{3} + \sqrt{27} - \sqrt{48}$$

4)
$$\sqrt{32} - \sqrt{72} + 6\sqrt{\frac{1}{2}}$$

5)
$$2\sqrt{5} + 4\sqrt{20} - 5\sqrt{\frac{1}{5}}$$

6)
$$\sqrt{3} + \frac{3}{\sqrt{3}} - \sqrt{2} \times \sqrt{6}$$

7)
$$\sqrt{27} + \sqrt{8} - 2\sqrt{12} + \sqrt{18}$$

8)
$$\sqrt{3} + 2\sqrt{20} + \sqrt{12} + \sqrt{45}$$

Complete:

1) If
$$X = \frac{\sqrt{6}}{\sqrt{2}}$$
 Then $X^{-1} = \dots$

2)
$$\sqrt{5}\,$$
 , $\sqrt{20}\,$, $\sqrt{45}\,$, $\sqrt{80}$, in the same pattern

7) The conjugate numbers

1. If
$$X = \frac{2}{\sqrt{7} - \sqrt{5}}$$
 $Y = \sqrt{7} - \sqrt{5}$, Find $(X + Y)^2$

2. If
$$X=\sqrt{5}-\sqrt{2}$$
 $Y=\frac{3}{\sqrt{5}-\sqrt{2}}$ Prove that X and Y are conjugate numbers then Find X^2-2 XY + Y²

4. If
$$X = \frac{4}{\sqrt{7} - \sqrt{3}}$$
 and $Y^{-1} = \frac{1}{\sqrt{7} - \sqrt{3}}$ Find X^2Y^2

8) Operation on cube root
Find in simplest form:

1)
$$\sqrt[4]{2} + \sqrt[4]{16} + 2 \sqrt[4]{54}$$

2)
$$\sqrt[3]{24} - 2\sqrt[3]{3} + \sqrt[3]{81}$$

3)
$$\sqrt[3]{-54} + \sqrt[3]{16} - \sqrt[3]{250}$$

4)
$$\sqrt[3]{81} + \sqrt[3]{-24} - 3\sqrt[3]{\frac{1}{9}}$$

5)
$$\sqrt[3]{108} - 2\sqrt[3]{4} - \sqrt[3]{\frac{1}{2}}$$

6)
$$\sqrt[3]{3} - \sqrt[3]{4} \times \sqrt[3]{6} + 3\sqrt[3]{\frac{1}{9}}$$

7)
$$\frac{7}{3}\sqrt{18} + \sqrt[3]{54} - 7\sqrt{2} + \sqrt[3]{16}$$

8)
$$\sqrt[3]{-16} + \frac{14}{\sqrt{7}} - \sqrt{28} + \sqrt[3]{54}$$

9) Application on real numbers

♣ Complete :

- If the volume of cube 64 cm³. Then its lateral area =cm²
- Aright circular cylinder with volume 40 Π cm³ and its height 10 cm then its base radius =
- 5) The volume sphere whose diameter 6 cm =cm³.
- 6) If the volume of sphere $\frac{9}{16} \Pi \text{ cm}^3$. Then its radius = cm.

* Problems :

- 1) A cube whose lateral area is 36 cm². Find its total area and its volume.
- 2) A cube its volume 27 cm3. Find its total area.

- 3) The sum of all edges of a cube is 60 cm. Find its volume.
- 4) Acuboid its dimensions 3 cm, 4 cm, 5 cm. Find its total area and its volume.

- 5) A circle its area 154 cm2. Find its circumference.
- 6) Aright circular cylinder its volume 924 cm3 and its height 6 cm. Find the lateral area.
- Find the height of right circular cylinder whose height is equal to its base radius and its volume is 72 II cm³.

- 8) The volume of sphere is 4188 cm3 . Find its radius length .
- Ametalic sphere with diameter 6 cm has got melt and changed into circular cylinder with radius 3 cm. Find its height.

10) Solving equations and inequality

1)
$$2x - 1 \ge 3$$

2) 2
$$X + 5 \ge 3$$

3) $3-2 \times 27$

8)
$$5 \le \frac{-2X+6}{3} < 4$$

9)
$$2+2 \times 3 \times +3 < 5 + 2 \times 4 = 10$$

10)
$$X - 1 < 3 X - 1 \le X + 1$$

Unit 2

- 1) Relation between two variables
 - 1) Find three ordered pairs satisfy this relation:

$$2X + Y = 5$$

2) Represent graphically

$$X + 2Y = 3$$

$$Y - 3X = 1$$

3) Complete:

- 1) If (3, 6) satisfies Y = KX. Then K =
- 2) If (3, 1) satisfies Y 3X = a. Then a = ...
- 3) If (3, a) satisfies Y 2X = 4. Then a = ...
- 4) If (K, 2K) satisfies X + Y = 15. Then K =
- 5) If (2, -5) satisfies 3X Y + C = 0. Then C =
- - a x is

2) Slope of straight line

- 1) Classify the slope of st. line in each of the following
 - " Positive negative zero undefined "

2) Complete:

- 1) The slop of any horizontal st. line =
- 2) The slope of any vertical st. line =
- 3) If A, B, C, are collinear then the slope of AB =
- 4) The slope of st. line which passes through (2,3)(5,7) is
- 5) If the st. line which passes through (2 , 3) (5 , k) parallel to X a x is then K
- 6) If the st. line which passes through (3,4) (K,7) parallel to Y a x is then K =
- 3) If the slope st. line which passes through two points (1,3), (1, K) equal 3.
 Find the value of K.
- 4) Prove that A, B and C are collinear where A(1,1) B(2,2) C(-3,-3)

Unit 3 statistics

1) Complete:

- a) The arithmetic mean of 5, 12, 17, 6 is
- b) If the lower limit of a set is 8 and the upper limit is 14 then its centre is
- c) If the lower limit of a set is 4 and its centre is 9 then its upper limit =
- d) The median of values 9, 4, 8, 1, 3 is
- e) The median of values 3, 7, 2, 9, 5, 11 is
- f) The point of intersection of ascending and descending cumulative frequency curve determines on the set axis
- g) The mode of values 5, 3, 8, 5, 9 is
- h) If the mode of values 12, 7, X + 1, 7, 12 is 7 then $X = \dots$

2)

Sets	5-	15-	25-	35-	Total
Freq	6	8	4	2	20

Find the mean

3)

Sets	0-	2-	4-	6-	Total
Freq	1	2	2	5	10

Find the median

4)

4,								
Sets	30-	40-	50-	60-	70-	80-	Total	
Freq	3	4	12	8	7	6	40	

Find the mode

Final revision algebra prep2 unit 1

1. Complete:

2)
$$(2\sqrt[3]{3})^3 = \dots \dots$$

3) The conjugate number of the number

$$\frac{2}{\sqrt{5}-\sqrt{3}}$$
 is

4) The additive identity in R is and the multiplicative neutral in R is

6) The multiplicative inverse of the element $\frac{1}{\sqrt{3}}$ is

7) The additive inverse of the number

$$\sqrt{3}$$
 (2 – $\sqrt{5}$)s

8)
$$\sqrt[3]{\frac{8x^3}{125 a^9}} = \dots$$

10)
$$\sqrt{25} = \sqrt[3]{....}$$

11)
$$\sqrt{3} \times \sqrt{6} = 3 \times \dots$$

12) -1
$$[-3, 0[$$
 (\in , \notin) 13) $]-4, 3] - R_{+} =$

13)
$$] -4$$
, $3] - R_+ = \dots$

14)
$$-3 \dots [-1, 4]$$
 (\in , \notin)

15)
$$R - [-2, \infty[=.....$$

17)
$$Q \cap Q' = \dots$$

18)Q
$$\cup$$
 Q' =.....

19)
$$R - Q = \dots$$

20)
$$R_{-} \cap R_{+} = \dots$$

23)
$$\sqrt{2}$$
 [2,5] (\in ,\notin)

25) If
$$x^2 = 36$$
, then $x^3 = \dots$

27) If
$$x^3 = 125$$
, then $x^2 = \dots$

28)
$$\sqrt{3}(\sqrt{6}-\sqrt{8})=\dots$$

29) The irrational number is the number that we cannot write in the form

30) The conjugate of irrational number
$$\sqrt{7} + 1$$
 is

31) The conjugate of irrational number
$$-2 + \sqrt{2}$$
 is

32)] -
$$\infty$$
 , 4] \cap [-1, ∞ [=......

33) $\sqrt[3]{-125 a^6} +$	$\sqrt{25 a^4} = \dots$							
34) If $a^2 + 4 = 0$ then its S.S in R is								
35) If the area of a	circle is 154 cm ² the	n its radius is						
2.Choose the correct	et answer:							
1) ³ √2 + ³ √2 =								
(a) ³ √2	(b) ³ √4	(c) ³ √8	(d) 2 ³ √2					
2) [-3 , 7] – { -3	, 7 } =							
(a)] -3 , 7 [(b) [-3 , 7 [(c)]-3 , 7]	(d) [-2 , 6]					
3) The Multiplicat	ive inverse of the nur	mber <u>√</u> 3s						
(a) 3√3	(b) √3	(c) 3	(d) 3					
4) The set of non i	negative real numbers	can be written in the f	form of an					
interval as								
(a) $[0,\infty[$	(b)]∞, 0[(c)]- ∞,0 [(d)]- ∞ ,0]					
5) The set of posit	ive real numbers can	be written in the form	of an					
interval as								
(a) $[0,\infty[$	$]\infty, 0[$	(c)]-∞,0[(d)]- ∞ ,0]					
6) \(\sqrt{64} \) - \(\sqrt{64} \) =	=							
(a) √64	(b) 4	(c) 8	(d) $\sqrt{4}$					
7) If $8y^3 = -125$ then $y = \dots$ $(\frac{5}{8}, \frac{-5}{2}, \frac{-125}{2}, -5)$								
3) If $X = [3,7]$, $Y = [3,7]$	3) If $X = [3,7]$, $Y = [1, \infty)$ [then find using the number line :							
a) X u Y		b) X n Y						

d) Y - X

f) **Y**

c) X - Y

e) **X**

4) simplify:

1)
$$\sqrt[3]{125} - \sqrt[3]{24}$$

2)
$$7\sqrt{2} + 3\sqrt{2}$$

$$\sqrt{75}-2\sqrt{27}+3\sqrt{3}$$

$$\sqrt{18} + 2\sqrt{8} - \sqrt{24}$$

5)
$$\sqrt[3]{54}$$
 - 2 $\sqrt[3]{-128}$ + $\sqrt[3]{16}$

6)
$$\sqrt[3]{54} + 8\sqrt[3]{\frac{-1}{4}} + 5\sqrt[3]{16}$$

5) Given
$$x = \frac{4}{\sqrt{7} - \sqrt{3}}$$
 and $y = \sqrt{7} - \sqrt{3}$

Prove that: x and y are Conjugates, then find: $x^2 - y^2$

6) If
$$x = \sqrt{8} + \sqrt{3}$$
 and $y = \sqrt{8} - \sqrt{3}$, find the value of $\frac{x + y}{xy - 3}$

7) If
$$x = \sqrt{2} + \sqrt{5}$$
, $y = \sqrt{2} - \sqrt{5}$

Find the value of the expression: $x^2 + 2xy + y^2$

8) find the S.S in R:

a)
$$3x^2+125=221$$

b)
$$2x^2 + 3 = 21$$

c)
$$3x^3 + 1 = 82$$

d)
$$(x^2 + 2)^3 = 64$$

(9) Prove that:

- 1) $\sqrt{2}$ is included between 1.4 and 1.5
- 2) $\sqrt[3]{2}$ is included between 1.2 and 1.3
- 3) $\sqrt{3}$ + 1 is included between 1.2 and 2.8

(10) Determine the point that represents each of following numbers on the number line:

1)
$$\sqrt{5}$$

2)
$$-\sqrt{5}$$

2)
$$-\sqrt{5}$$
 3) $\sqrt{5} + 1$ 4) $1 - \sqrt{5}$

4) 1 -
$$\sqrt{5}$$

11)Solve in R the following and represent them on the number line:

1)
$$2X - 3 \ge 1$$

$$_{2)} 3(X-1) < 9$$

$$3)$$
 $5 < X + 3 < 11$

4)
$$1 \le 2X - 1 \le 9$$

$$5)$$
 $5 < 7 - X \le 8$

6)
$$4X + 3 \le 6X + 5$$

$$_{7)} 3(X+2) > 5X$$

$$_{8)} 2-3(X-5) \ge X+7$$

9)
$$3x - 3 \le 7X + 1 \le 3X + 17$$

- 12) The lateral area of a right circular cylinder 52cm² and the length of its diameter is 8cm. find its volume. ($\pi = 3.14$)
- 13) If the height of a right circular cylinder equals its radius length and its volume is $72\pi \text{cm}^3$, find its height.
- 14) A metallic sphere with diameter length 6cm. has got melt and changed in to a right circular cylinder with radius 3 cm. find its height.
- 15) The volume of a sphere is 562.5π cm³ find its surface area in terms of π

Final revision on unit 2

(1) Complete:

- 1) The slope of the straight line which passes through the points (-1, 4), (2, 4) is
- 2) The slope of any straight line parallel to $x axis = \dots$
- 3) The slope of any straight line parallel to y axis is
- 4) If (-2, 7) satisfies the relation 2x + ky = 9, then $k = \dots$
- 5) If the slope of the straight line passing through (2, c) and (3, -1) is 4, then $c = \dots$
- 6) If (4x, -6) = (12, 3y), then $x = \dots$ and $y = \dots$
- 7) If (a, 3) is one of the solutions of the equation x 3y = 13, then $a = \dots$
- 8) The slope of any horizontal line =
- (2) Find the slope of the straight line which passes through the points:
- **1)** (4, 3), (2, 5)

2) (-6, -2), (-3, -4)

3) (4, -2), (4, -7)

- **4)** (-5, -3), (-2, -3)
- (4) Graph each of the following relations:

1)
$$y = 2x + 1$$

2)
$$x + y = 2$$

3)
$$y = 3$$

4)
$$2x = 4$$

- 5) the opposite figure shows the relation between the height of a person (in cm.) and his age (in years):
- **1. Find the slope of** \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CD} **What is the meaning of each?**
- 2. Calculate the difference between the height of this person when he was 8 years old and his height when he Was years old.

Final revision on unit 3

6) A class has 50 pupils , the following table shows the distribution of studying hours between them every day :

Sets	1-	2-	3-	4-	5-	6-	7-	Total
Frequency	2	3	5	12	15	7	6	50

- a) Find the mode mark using the histogram of this distribution.
- b) Find the median
- c) find the mean
- (2) The following table shows the frequency distribution of the weights of 50 students in kilograms:

Weight in Kg.	30-	35-	40-	45-	50-	55-	Total
No. of students	K+4	3K	4K	3K+1	3K-1	K+1	50

Find:

- (A) The value of K.
- (B) Graph the frequency histogram, then find the mode weight.

)Complete each of the following:									
	1- The mode of a set of values is									
	2- The mode of the values 3,6,10,13,19,19,21 is									
3- 11 th	3- If the mode of the values $\frac{1}{3}$, $\frac{1}{7}$, $\frac{1}{5}$, $\frac{1}{7}$ is $\frac{1}{X}$ then $x = \dots$									
4- The	mode of the val	ies 8 . 11 . 5 .	8.4.5.4.1	1,4 is						
				3, a+2 equals 12, then						
a=	a=									
1) Cho	1) Choose the correct answer from those given:									
1- The	1- The median of the values : 8,17,4,6,10 is									
	a)11	b)10	c)8	d)6						
2- The	median of the va	lues: 3,7,2, 9	, 5,11 is							
	a) 5	b)6	c)7	d)12						
3- The	3- The median of these numbers : 2,5,5,6,7,9,11,14,16,21 is									
	a)7	b)8	c)9	d)16						
4- If th	e order of the me	dian of a num	ber of values	is the third then the number						
of thes	e values is	•••••								
	a)3	b)4	c)5	d)6						
1) Cho	ose the correct	answer from	the given one	<u>s</u> :						
1- The	mean of the valu	ies 5,12,6,17 i	s	••						
	a)3	b)4	c)5	d)10						
2- The	mean of these nu	ımbers 2,5,8,9	,14,28 is							
	a)6	b)8	c)9	d)11						
3- If th	e mean of the va	lues 3, 4, 8,	a, a+2 is 15,	then a =						
	a)29	b)58	c)75	d)17						
4- The	mean of the valu	aes 2 - a, 4, 1	, 5 , 3+a is							
	a)1	b)2	c)3	d)15						
5-If th	ne mean of sid	e lengths of	a triangle is	s 8, then the perimeter						
of tria	ngle									
	a)8 cm	b)18 cm	c)24 cm	d)15						