DESCRIPTION

The 8280 Decade Counter and 8281 16-State Binary Counter are four-bit suybsystems providing a wide variety of counter/storage register applications with a minimum number of packages.

The 8280 Decade Counter can be connected in the familiar BCD counting mode, in a divide-by-two and divide-by-five configuration or in the Bi-Quinary mode. The Bi-Quinary mode produces a square wave output which is particularly useful in frequency synthesizer applications.

The 8281 Binary Counter may be connected as a divide-by-two, eight, or sixteen counter.

Both devices have strobed parallel-entry capability so that the counter may be set to any desired output state. A HIGH or LOW at data input will be transferred to the associated output when the strobe input is LOW. For additional felxibility, both units are provided with a reset input which is common to all four bits. A LOW on the Reset line forces all four outputs LOW.

The counting operation is performed on the falling (negative-going) edge of the input clock pulse, however there is no restriction on the transition time since the individual binaries are level-sensitive.

PIN CONFIGURATION

ORDERING CODE (See Section 9 for further Package and Ordering Information)

PACKAGES	PIN CONF.		-	RANGES 0°C to +75°C	MILITARY RANGES V _{CC} =5V±5%; T _A =-55°C to +125				
Plastic DIP	Fig. A	N8280N	•	N8281N					
Ceramic DIP	Fig. A	N8280F	•	N8281F	S8280F	•	S8281F		
Flatpak	Fig. B				\$8280W	•	S8281W		

DC ELECTRICAL CHARACTERISTICS

PARAMETER		TEST CONDITIONS		8280		8281		
	TANAMETEN	1201 GONDINGNO	Min	Max	Min	Max	UNIT	
VOH	Output HIGH voltage	$V_{CC} = 4.75V, I_{OH} = -800\mu A$	2.6		2.6		٧	
VOL	Output LOW voltage	V _{CC} = 4.75, I _{OL} = 16mA		0.4		0.4	V	
IH	Input HIGH current Strobe, Data inputs Reset, Clock 1 Clock 2	V _C = 5.25V, V _{IN} = 4.5V		40 80 80		40 80 40	μΑ μΑ μΑ	
ήL	Input LOW current Strobe input Data input Reset, Clock 1 Clock 2	V _{CC} = 5.25V, V _{IN} = 0.4V	-0.1 -0.1 -0.1 -0.1	-1.6 -1.2 -3.2 -3.2	-0.1 -0.1 -0.1 -0.1	-1.6 -1.2 -3.2 -1.6	mA mA mA	
V _{BD}	Input breakdown voltage	V _{CC} = 4.75V, I _{IN} = 10mA	5.5		5.5		V	
los	Output short circuit current	V _{CC} = 5.25V, V _{OUT} = OV	-10	-60	-10	-60	mA	
lcc	Supply current	V _{CC} = 5.25V		45		45	mA	

LOGIC DIAGRAM

COUNT SEQUENCES for 8280

BCD DECADE (b)					BI-QU	INARY (c)		
COUNT	Q ₃	Q ₂	Q ₁	Q _O	COUNT	QO	Q ₃	Q ₂	Q ₁
0	L	L.	L	L	0	L	L	L	L
1	L	L	L	Н	1	L	L	L	Н
2	L	L	Н	L	2	L	L	н	L
3	L	· L	Н	. H	3	L	L	н	н
4	L	Н	L	L	4	L	н	L	L
5	L	Н	L	Н	5	Н	L,	L	L
. 6	L	Н	Н	L	6	Н	L	L.	Н
7 :	L	Н	Н	Н	7	Н	L	н	L
8	Н	L.	L	L	8	Н	L	Н	Н
9	Н	L	L	н	9	Н	Н	L	L

NOTES

- b. Input applied to $\text{CP}_0;\, \text{Q}_0$ connected to $\text{CP}_1,\,$ c. Input applied to $\text{CP}_1;\, \text{Q}_3$ connected to $\text{CP}_0.$

LOGIC DIAGRAM

COUNT SEQUENCES for 8281

	4-BIT BINARY(b)						
COUNT	Q ₃	Q ₂	Q ₁	Q ₀			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	н	L			
3	L	L	н	н			
4	L	·H	L	L			
5	L	Н	L	H			
6	L	Н	н	L			
7	L	Н	Н	Н			
8	Н	L	L	L			
9	Н	L	L	Н			
10	Н	L	Н	L			
11	н	L	Н	Н			
. 12	Н	Н	L	L			
13	н	н	L	н			
14	н	Н	Н	L			
15	Н	Н	Н	Н			

b. \mathbf{Q}_0 connected to $\overline{\mathbf{CP}}_1$; input applied to $\overline{\mathbf{CP}}_0$

MODE SELECT—FUNCTION TABLE

OPERATING MODE		INP	OUTPUTS		
OPERATING MODE	MR	PL	CP	Dn	Q _n
Reset (Clear)	L	x	x	x	L
Parallel Load	Н	L L	X X	L H	L H
Count	н	н	1	х	count

H = HIGH voltage level

AC CHARACTERISTICS: $T_A = 25^{\circ}C$ (See Section 4 for Test Circuits and Conditions)

				82	80	82	81	
PARAMETER		TEST CONDITIONS		R ₁ =	24pF = ∞Ω 84.5Ω	$C_L = 24pF$ $R_1 = \infty\Omega$ $R_2 = 84.5\Omega$		UNIT
	·			Min Max		Min Max		
fMAX	Maximum count frequency	Figure 1	CP ₀	20		20		MHz
WIAA	INIOA	i igui o i	CP ₁	10		10		MHz
^t PLH ^t PHL	Propagaton delay CP ₀ to Q ₀	Figure 1		25 25		25 25	ns ns	
^t PLH ^t PHL	Propagation delay CP ₁ to Q ₁	Figure 1		25 25		25 25	ns ns	
[†] PLH [†] PHL	Propagation delay CP ₁ to Q ₂	Figure 1			50 50		50 50	ns ns
^t PLH ^t PHL	Propagation delay CP ₁ to Q ₃	Figure 1			25 25		75 75	ns ns
^t PLH ^t PHL	Propagation delay Data to output	Figure 2			40 35		40 35	ns ns
tPLH tPHL	Propagation delay PL to output	Figure 3			40 35		40 35	ns ns
tPHL	Propagation delay MR to output	Figure 4			45		45	ns

L = LOW voltage level

X = Don't care

^{¥ =} HIGH-to-LOW Clock Transition

AC SETUP REQUIREMENTS: T_A = 25°C (See Section 4 for Test Circuits and Conditions)

PARAMETER		TEST CONDITIONS	82	80	8281		UNIT	
			Min	Max	Min	Max		
tw	Clock pulse width	Figure 1	CP ₀	25		25		ns
			CP₁	25		25		ns
tw	MR pulse width	Figure 4	35		35		ns	
tw	PL pulse width	Figure 3		35		35		ns
trec	Recovery time MR to CP	Figure 4		75		75		ns
trec	Recovery time PL to CP	Figure 3		40		40		ns

AC WAVEFORMS

AC WAVEFORMS (Cont'd)

