Probability and Statistics

4 - Continuous Random Variables

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

December 05, 2023

HU (du heat lecture on friday): Exc. 6, Q.1-3

Definition (4.39)

A random variable X has a exponential distribution, $X \sim \exp(\lambda)$, for some parameter $\lambda > 0$, if it has a pdf defined by:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$$

$$\left(\text{Note:} \int_0^\infty \lambda e^{-\lambda x} dx = -e^{-\lambda x}\Big|_0^\infty = 1\right)$$

Lemma (4.40)

If $X \sim \exp(\lambda)$, then:

(i)
$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

(ii)
$$E(X^n) = \frac{n!}{\lambda^n}$$
 for $n \in \mathbb{N}$

(iii)
$$E(X) = \frac{1}{\lambda}$$
, $Var(X) = \frac{1}{\lambda^2}$, $skew(X) = 2$, $kurt(X) = 9$

(iv)
$$\overline{\phi_X(t)} = \frac{\lambda}{\lambda - t}$$
 for $t < \lambda$

(v)
$$F_X^{-1}(p) = -\frac{\ln(1-p)}{\lambda}$$
 for $p \in (0,1)$

(vi) first quartile, median and third quartile are:

$$\ln(4/3)/\lambda \approx 0.288/\lambda$$
, $\ln(2)/\lambda \approx 0.693/\lambda$, $\ln(4)/\lambda \approx 1.386/\lambda$

$$n(2)/\lambda \approx 0.693/\lambda$$
,

$$\ln(4)/\lambda \approx 1.386/\lambda$$

m = E(x) , A := & [sucon] rete

Memorylessness of Exponential Distributions

Theorem (4.42)

X has an exponential distribution, if and only if X has the memoryless property:

$$\Pr(X > t + h \mid X > t) = \Pr(X > h)$$
 for all $t, h \ge 0$

Theorem (4.44)

Let T be a continuous random variable with a continuous pdf f_T with constant success rate λ , i. e. for all t > 0, we have:

$$\lambda = \lim_{\Delta t \to 0} \frac{\Pr(T \le t + \Delta t \mid T > t)}{\Delta t}$$

Then $T \sim \exp(\lambda)$.

11 (4.42)

$$\lim_{\Delta t \to 0} \frac{F_{\tau}(\Delta t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{1 - e^{-\lambda \Delta t}}{\Delta t} = \frac{d}{dt} \left(1 - e^{-\lambda t} \right)$$

$$\lambda = \lim_{\Delta t \to 0} \frac{P_{\Gamma}(T \in t + \Delta t \mid T > t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{P_{\Gamma}(t \in T \in t + \Delta t \mid T > t)}{P_{\Gamma}(T > t) \cdot \Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{\int_{t \to t}^{T}(t) dt}{\left(A - F_{\Gamma}(t)\right) \cdot \Delta t} = \frac{A}{A - F_{\Gamma}(t)} \int_{t \to t}^{T}(t) = -A \int_{t \to t}^{T}(t) dt \int_{t \to t}^{T}(t)$$

76 / 141

Minimum of independent $X_i \sim \exp(\lambda_i)$

Theorem (4.41)

Let $X_1,...,X_n$ be independent random variables with $X_i \sim \exp(\lambda_i)$ for i=1,...,n. Then

$$X = \min\{X_1, ..., X_n\}$$

is a random variable with $X \sim \exp(\lambda_1 + \cdots + \lambda_n)$.

$$\begin{split} F_{X}(x) &= \Pr(X \leq x) = 1 - \Pr(X > x) = 1 - \Pr(X_{1} > x_{1} \times x_{2} > x_{1} - ... \mid X_{m} > x_{1}) \\ &= 1 - \Pr(X_{1} > x_{1}) \cdot \Pr(X_{2} > x_{2}) - \cdots \cdot \Pr(X_{m} > x_{1}) \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{2}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{2}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{2}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{2}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{2}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{1}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{1}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{1}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{1}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{1}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-(\lambda_{1} + ... + \lambda_{m}) x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{1}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-\lambda_{1} x_{1}} + e^{-\lambda_{1} x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{1}} - \cdots \cdot e^{\lambda_{m} \cdot x_{m}} = 1 - e^{-\lambda_{1} x_{1}} + e^{-\lambda_{1} x_{1}} \\ &= 1 - e^{-\lambda_{1} x_{1}} \cdot e^{-\lambda_{2} x_{1}} - \cdots \cdot e^{-\lambda_{1} x_{1}} + e^{\lambda_{1} x_{1}} + e^{-\lambda_{1} x_{1}} + e^{-\lambda_{1} x_{1}} + e^{-\lambda_{1} x_$$

Stefan Heiss (TH OWL)

 $= \Lambda - (\Lambda - e^{-\lambda/x}) = e^{-\lambda/x}$

Theorem (4.43)

Let $\lambda > 0$ and let X_1, \ldots, X_n be independent random variables with $X_i \sim \exp(\lambda)$ for $i=1,\ldots,n$. Furthermore, let X_{i_1},\ldots,X_{i_n} be a reordering of X_1,\ldots,X_n , such that:

$$h(\lambda)$$
 for h that:

$$X_{i_1} \leq \ldots \leq X_{i_n}$$

Then

$$Y_k := X_{i_k} - X_{i_{k-1}} \qquad (X_{i_0} := 0)$$

is random variable with $Y_k \sim \exp((n+1-k)\lambda)$.

$$Y_{k}: X_{i_{k}+1}, X_{i_{k}}$$
 $P_{r}(X_{i_{k}} \times X_{i_{k}} + \xi) = e^{-\lambda t}$

-> result follows by induction

became of the woodylon

Reliability theory

Definition (4.45)

Let T be a random variable, describing the <u>lifetime</u> or <u>time-to-failure</u> of a device or system and let f_T and F_T be its density functions.

(i) The *reliability function* is defined by:

$$R(t) := \Pr(T > t) = 1 - F_T(t)$$

(ii) The mean time to failure (MTTF) is defined to be the expected lifetime:

$$MTTF := E(T)$$

$$\lambda(t) := \lim_{\Delta t \to 0} \frac{\Pr(T \le t + \Delta t \mid T > t)}{\Delta t}$$

Reliability theory

MITE = ELT) =
$$\int_{0}^{\infty} t \cdot f_{\tau}(t) dt = -t \cdot (1 - \overline{f_{\tau}}(t)) + \int_{0}^{\infty} 1 \cdot R(t) dt$$

Add. anythin: $\infty \cdot 0 = 0$

 $MTTF = \int_0^\infty R(t) dt$

Reliability theory

Lemma (4.47)

(i)

$$\lambda(t) = \frac{f_T(t)}{1 - F_T(t)} = \frac{f_T(t)}{\int_t^{\infty} f_T(\tau) d\tau} = -\frac{R'(t)}{R(t)}$$

(ii)

$$F_T(t) = 1 - e^{-\int_0^t \lambda(\tau) d\tau}, \qquad f_T(t) = \lambda(t) e^{-\int_0^t \lambda(\tau) d\tau}$$

(iii) If $\lambda(t) = \lambda$ is constant, then $T \sim \exp(\lambda)$.

(i)
$$\lambda(H = \frac{1}{\Delta b}, \frac{P_{r}(t - \tau + \Delta b)}{P_{r}(\tau + t) \cdot \Delta b} = \frac{1}{P_{r}(\tau + b)} \frac{\overline{F_{r}(t + \Delta b)} - \overline{F_{r}(t)}}{\Delta b} = \frac{1}{P_{r}(\tau + b)} \frac{1}{A - \overline{F_{r}(b)}}$$

(11) (111); Hb