BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE-PILANI, HYDERABAD CAMPUS

FIRST SEMESTER 2022-2023

Course Handout (Part II)

29-8-2022

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : Phy F211

Course Title : Classical Mechanics Instructor-in-Charge : SOURI BANERJEE

<u>Course Description</u>: The course begins with Lagrangian dynamics which is subsequently takes to Hamiltonian Mechanics and covers Hamilton's equations of motion. It initiates Poisson's Bracket which is gate way to Quantum Mechanics. It ends with rigorous coverage of rotational dynamics and heavy symmetrical top

<u>Scope & Objectives</u>: This is an advanced course on classical mechanics which deals with some advanced techniques for solving problems of mechanics. It also deals with formulations of classical mechanics that find their use in quantum mechanics as well as classical statistical mechanics.

<u>Text Book</u>: H. Goldstein, C. Poole & J. Safko, Classical Mechanics, Third Edition, Pearson Education, Inc., 2002

<u>Reference Books</u>: 1) N. C. Rana and P S Joag, Classical Mechanics, Mc Graw Hill, 2006 <u>Course Plan:</u>

Lecture No.	Learning Objectives	Topics to be covered	Chapter in the Text Book
1-3	Draw backs of Newtonian Mechanics	de Alembert's principle of virtual work	1.1 to 1.3
4-6	Generalized Coordinate	Lagrange's equation	1.4
7-14	Illustration of the applications of Lagrange's equations.	Various applications of Lagrangian formulation, Foucault's Pendulum	1.5 – 1.6
15-19	To prove certain conservation theorem and introducing Hamiltonian	Cyclic coordinates and conservation theorems.	Class Notes and 2.6-2.7
18-20	Hamiltonian	The Hamilton's equations of motion and its application	Class Notes
21-23	Learn techniques of calculus of variation in order to obtain equations of motion by minimizing action.	Some techniques of calculus of variation and derivation of Lagrange's equations from Hamiltons principle	2.2 – 2.3
24-26	Canonical Transformation	The Poisson Brackets, the gateway to Quantum Mechanics	Class notes or 9.1-9.7
27-30	Hamilton-Jacobi formalism	Application to standard problems, Linking Quantum Mechanics	10.1-10.4 and Class notes

31-34	To study rotation of coordinate	Orthogonal transformations and	4.1-4.3
	systems and orthogonal	their properties	
	transformations in order to		
	understand kinematics of rigid		
	bodies.		
35-42	To obtain the kinetic energy and	Angular momentum and kinetic	5.1 – 5.7
	angular momentum of a rotating	energy of motion about a point and	
	rigid body and introduce moment of	inertia tensor. The principal axis	
	inertia tensor. To introduce	transformation. The Euler equation of	
	principal axes of inertia. Euler	motion and torque-free motion of a	
	Angles	rigid body. Top Motion	

Evaluation Scheme:

EC	Evaluation	Duration.	Weight	Date, Time &	Nature of Component.
No.	Component.		age	Venue.	
1	Midsem	90 mins	35%	31/10 9.00 - 10.30AM	Close Book
2	Quiz	30 mins	25%	TBA	Open book (best 3 out of
					4 to be taken)
4	Comprehensive	180 mnts	40%	17/12 FN	Open book
	Examination				

Chamber Consultation Hour: To be announced in the class.

Notices: Notices concerning the course will be put up on the **PHYSICS** notice board.

<u>Make-up Policy:</u> Make-up for the tests will be granted only for genuine cases of health problems or urgency for going out of town.

<u>Academic honesty and integrity policy</u>: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge PHY F211