WIKIPEDIA TOXIC COMMENT CLASSIFICATION

Karthik Enjeti

enjeti.k@northeastern.edu

DATASET

- The dataset is obtained from Kaggle (https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview) and has been put together by Jigsaw and Google.
- It consists of comments from Wikipedia talk pages which are classified into 6 categories of toxicity namely toxic, severe-toxic, obscene, threat, insult and identity-based hate.
- The dataset consists of 312,735 comments which have been collected between 2011 and 2015 and have been tagged by groups of people.

EDA

- Correlation between toxic categories
- Deriving features such as length of comments, exclamation mark, uppercase words and large spaces in text and observing if any relation to toxic categories

Word Analysis

Relevant words which most frequently appear based on the toxic category, which yielded the below results

Bidirectional-LSTM

Data Pre-processing and Model structure

As part of pre-processing data, we tokenize the text and then performing padding as comments are of different lengths and to avoid complications as we progress. We have set max length of vector as 100.

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 100)]	0
embedding (Embedding)	(None, 100, 128)	2560000
bidirectional (Bidirectional	(None, 100)	71600
dropout (Dropout)	(None, 100)	0
dense (Dense)	(None, 50)	5050
dropout_1 (Dropout)	(None, 50)	0
dense_1 (Dense)	(None, 6)	306
Total params: 2,636,956	=======================================	=======

Total params: 2,636,956 Trainable params: 2,636,956 Non-trainable params: 0

.....

Loss-Function: Binary cross entropy

Activation Function: Sigmoid

Optimizer: Adam

Model Tuning and Result

Tuning

- Batch Size: 24,32,100,1024
- Epochs: Number of iterations (Early Stopping)
- Activation Function: Relu, tanh, sigmoid

Training Results

Testing Results

```
In [213]: 1 print(accuracy)
0.9990010857582092
```

Conclusion

- A deep neural network is far more reliable for diverse cases than a simplistic model based of word frequencies.
- Of the available neural network models, BERT, LSTM's and SVM's perform the best for text processing tasks such as multi-class text classification.

Scope and Improvements

- We have taken only English comments into consideration, but online content consists of different languages. Often a toxic comment can consist of cusswords from multiple languages.
- A more reliable method is needed to identify spelling correction for cusswords in comments
- Offensive content is not always in text but also in the form of audio, gifs, videos and hyperlinks. Although we know of multiple manners in tackling these individually, we must see how to integrate these together.

References

- https://medium.com/@raghavaggarwal0089/bi-lstm-bc3d68da8bd0
- Introduction to Natural Language Processing, Jacob Eisenstein
- https://datascience.stackexchange.com/questions/25650/what-is-lstm-bilstm-and-when-to-use-them
- https://machinelearningmastery.com/develop-bidirectional-lstm-sequence-classification-python-keras/
- https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/