Computer Vision II: Multiple View Geometry (IN2228)

Chapter 06 2D-2D Geometry (Part 1 Overview and Fundamentals)

Dr. Haoang Li

01 June 2022 11:00-11:45

Outline

- Overview of 2D-2D Geometry
- > Two-view Geometric Constraints
- Eight-point Method

- Intuitive Illustration
- ✓ Camera pose estimation We can easily imagine that the image A is obtained by the left camera (eye) and image B is obtained by the right camera (eye).

Image A

Image B

Camera motion can be inferred from two consecutive image frames.

- Intuitive Illustration
- ✓ Camera pose estimation We infer the camera motion from some object correspondences. Objects can be further abstracted by points and lines.

Image A

Image B

Image A

Image B

Object correspondences

Point correspondences

- Intuitive Illustration
- √ 3D reconstruction

Two human eyes

3D perception from two human eyes

Brain

- Intuitive Illustration
- ✓ 3D reconstruction Given a pair of 2D points in two images, the 3D point's position in space is found as the intersection of the two projection rays.

Triangulation

Depth from disparity

Problem Formulation

- Problem Formulation
- ② 我们能否独立于三维点的估计而解决相对运动的估计(*RR,TT*)? 是的!接下来的几张幻灯片证明了这是可能的。

[7] 一旦 (RR,TT) 被知道,三维点就可以用三角化算法(即最小平方近似加重投影误差最小化)进行三角化。

- **父** Can we solve the estimation of relative motion (R,T) independently of the estimation of the 3D points? Yes! The next couple of slides prove that this is possible.
- ✓ Once (R,T) are known, the 3D points can be triangulated using the triangulation algorithm (i.e., least square approximation plus reprojection error minimization)

Problem Formulation

unknown dot: scale

✓ Recover simultaneously 3D scene structure and camera poses (up to scale) from two images. (More specifically, camera pose first, followed by 3D structure.)

✓ Intrinsic parameters of camera is known from calibration. We can also handle uncalibrated case.

- **Problem Formulation**
- \checkmark Given a set of n point correspondences $\{p_1^i = (u_1^i, v_1^i), p_2^i = (u_2^i, v_2^i)\}$ between two images, where $i = 1 \dots n$, the goal is to simultaneously
- estimate the 3D points Pⁱ and
- the camera relative-motion parameters (R, T)

Scale Ambiguity

If we rescale the entire scene and camera views, the projections (in pixels) of the scene points in both images remain exactly the same:

如果我们重新缩放整个场景和摄像机视图,两幅图像中的场景 点的投影(以像素为单位)保持完全相同:

- Reduce the size of 3D object: smaller projection
- 缩小三维物体的尺寸: 更小的投影
- Reduce the distance from camera to 3D object: bigger projection
- 缩小相机与3D物体的距离: 更大的投影
- Simultaneously reduce the size of 3D object and reduce the distance from camera to 3D object?
- 同时缩小三维物体的尺寸和减少摄像机到三维物体的距离

- Scale Ambiguity
- For monocular case, it is not possible to recover the absolute scale of the scene.
- Thus, only 5 degrees of freedom are measurable:
- Three parameters to describe the rotation
- Two parameters for the parameters for the translation up to a scale (we can only compute the direction of translation but not its length)

对干单眼的情况,不可能恢复场 景的绝对比例。

因此,只有5个自由度是可以测量

- 三个参数来描述旋转
- 两个参数用干描述平移到一个尺 但不能计算其长度)

- Number of Point Correspondences
- \checkmark 4*n* knowns:
- n correspondences; each one (u_1^i, v_1^i) and (u_2^i, v_2^i) , i=1...n
- \checkmark 5+3n unknowns
- 5 for the motion up to a scale (3 for rotation, 2 for translation)
- 3n is number of coordinates of n 3D points (x, y, z)
- ✓ If and only if the number of independent equations ≥ number of unknowns

- Number of Point Correspondences
- ✓ In 1913, Kruppa showed that 5 image correspondences is the minimal case and that there can be at up to 11 solutions [1].
- ✓ In 1981, the first popular solution uses 8 points and is called the 8 point algorithm or Longuet Higgins algorithm [2].
- ✓ In 2004 , Nister proposed the first efficient and non-iterative solution . It uses Groebner basis decomposition [3].
- [1] E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspektiven mit Innerer Orientierung, Sitz. Ber. Akad. Wiss., Wien, Math. Naturw. Kl., Abt. IIa. IIa., 1913
- [2] H. Christopher Longuet Higgins, A computer algorithm for reconstructing a scene from two projections, Nature, 1981.
- [3] D. Nister, An Efficient Solution to the Five Point Relative Pose Problem, PAMI, 2004.

Epipolar planes and lines

摄像机中心 ll和 C rr以及图像点 pp和 pp '确定所谓的外极平面。

? 上极平面与两个影像平面的交点被称为上极点线。

- ✓ The camera centers C_l and C_r and the image point p and p' determine the so-called epipolar plane.
- ✓ The intersections of the epipolar plane with the two image planes are called epipolar lines.

> Epipolar planes and lines

- ✓ The epipolar line is the projection of a back projected ray $\pi^{-1}(p)$ onto the other camera image
- ✓ The epipole is the projection of the optical center on the other camera image
- ✓ A pair of images has two epipoles.

Essential Matrix

Coplanarity constraint

Right camera frame

 $\overline{p}_1, \overline{p}_2, T$ are coplanar

epipolar plane

 $\overline{p}_{2}^{T} \cdot n = 0 \implies \overline{p}_{2}^{T} \cdot (T \times \overline{p'}_{1})) = 0 \implies \overline{p}_{2}^{T} (T \times (R\overline{p'}_{1}))$ From dot product to matrix multiplication

Left camera frame

Fssential Matrix

$$egin{aligned} \mathbf{a} imes \mathbf{b} = [\mathbf{a}]_{ imes} \mathbf{b} = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix} \end{aligned}$$

Coplanarity constraint

$$\bar{p}_{2}^{T}(T \times (R\bar{p}_{1})) = 0 \qquad \Rightarrow \bar{p}_{2}^{T} [T_{\times}]R \ \bar{p}_{1} = 0 \qquad \Rightarrow \bar{p}_{2}^{T} E \ \bar{p}_{1} = 0$$
Associative law

Definition of essential matrix

$$E = [T_{\times}]R$$
 essential matrix

R and T can be computed from E

> From Essential Matrix to Fundamental Matrix

到目前为止,我们假设相机的内在参数是已知的,我们使用归一化的图像坐标

来获得校准相机的外极约束: So far, we have assumed that the camera intrinsic parameters are **known** and we have used **normalized** image coordinates to get the epipolar constraint for calibrated cameras:

$$\overline{\mathbf{p}}_{2}^{T} \to \overline{\mathbf{p}}_{1} = 0 \qquad \begin{bmatrix} \overline{u}_{2}^{i} \\ \overline{v}_{2}^{i} \\ 1 \end{bmatrix}^{T} \to \begin{bmatrix} \overline{u}_{1}^{i} \\ \overline{v}_{1}^{i} \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} \overline{u}_1^i \\ \overline{v}_1^i \\ 1 \end{bmatrix} = \mathbf{K}_1^{-1} \begin{bmatrix} u_1^i \\ v_1^i \\ 1 \end{bmatrix} \qquad \begin{bmatrix} \overline{u}_2^i \\ \overline{v}_2^i \\ 1 \end{bmatrix} = \mathbf{K}_2^{-1} \begin{bmatrix} u_2^i \\ v_2^i \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} u_2^i \\ v_2^i \\ 1 \end{bmatrix}^{\mathrm{T}} \mathbf{K}_2^{-\mathrm{T}} \to \mathbf{K}_1^{-1} \begin{bmatrix} u_1^i \\ v_1^i \\ 1 \end{bmatrix} = 0$$

- Fundamental Matrix
- ✓ Definition of fundamental matrix

$$\begin{bmatrix} u_2^i \\ v_2^i \\ 1 \end{bmatrix} \begin{bmatrix} K_2^{-T} \to K_1^{-1} \\ V_1^i \\ 1 \end{bmatrix} = 0$$

 \Diamond

Advantage: Based on fundamental matrix, we work directly in ordinary image plane,

instead of normalized image plane.

- Computation of Fundamental/Essential Matrix
- ✓ Eight-point method (Direct linear transform--DLT)
- Essential matrix
- Fundamental matrix

- ✓ Five-point method (introduce in the next class)
- Essential matrix

Classical Version

- ✓ We first take essential matrix estimation for example [1].
- \checkmark Each pair of point correspondences $\overline{\boldsymbol{p}}_1 = (\overline{u}_1, \overline{v}_1, 1)^T$, $\overline{\boldsymbol{p}}_2 = (\overline{u}_2, \overline{v}_2, 1)^T$ provides a linear equation:

[1] H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, Nature, 1981

Classical Version

$$\overline{u}_{2}\overline{u}_{1}e_{11} + \overline{u}_{2}\overline{v}_{1}e_{12} + \overline{u}_{2}e_{13} + \overline{v}_{2}\overline{u}_{1}e_{21} + \overline{v}_{2}\overline{v}_{1}e_{22} + \overline{v}_{2}e_{23} + \overline{u}_{1}e_{31} + \overline{v}_{1}e_{32} + e_{33} = 0$$

Note:

- ✓ The 8-point algorithm assumes that the entries of E are all independent. This is not true since, for the calibrated case, they depend on 5 parameters (R and T).
- ✓ The 5-point algorithm (introduced later) uses the epipolar constraint considering the dependencies among all entries.

$$\overline{V}_1, \overline{V}_1, \overline{V}_2, \overline{V}_2$$

Classical Version

For n points, we can write

Normalized image coordinates

$$\begin{pmatrix} x_+^i & y_+^i & z_+^i & 1 & 0 & 0 & 0 & 0 & -u_i x_+^i & -u_i y_+^i & -u_i z_+^i & -u_i z_+^i & -u_i y_-^i & -u_i z_+^i & -u_i z_+$$

$$Q \cdot \overline{E} = 0$$

$$\bar{E}$$
 (this matrix is **unknown**)

 e_{11}

Classical Version

是小的解决方案

- $-Q(n \times 9)$ 应该有8级,才能有唯一的(在一定范围内) 非微不足道的解
- 不同的 E 矩阵在一定范围内会导致相同的旋转和平移结果(规范=1)。
- 每个点的对应关系提供了一个独立的方程
- 因此,需要8个点的对应关系

Minimal solution

- $Q_{(n imes 9)}$ should have rank 8 to have a unique (up to a scale) non-trivial solution $ar{E}$
- Different E matrices up to scale lead to the same result of rotation and translation (norm=1)
- · Each point correspondence provides 1 independent equation
- Thus, 8 point correspondences are needed

Over-determined solution

- n > 8 points
- A solution is to minimize $||Q\bar{E}||^2$ subject to the constraint $||\bar{E}||^2 = 1$
- The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix Q^TQ

过度确定的解决方案

- n > 8点
- 一个解决方案是在约束条件下最小化
- 解决方案是与矩阵的最小特征值相对应的特征向量

- Extension to Fundamental matrix
- Similarly, eight-point method for fundamental matrix can be formulated as

$$\begin{bmatrix} u_2^i \\ v_2^i \\ 1 \end{bmatrix}^{\mathrm{T}} \mathbf{F} \begin{bmatrix} u_1^i \\ v_1^i \\ 1 \end{bmatrix} = 0 \quad \Rightarrow \quad \begin{bmatrix} u_2^1 u_1^1 & u_2^1 v_1^1 & u_2^1 & v_2^1 u_1^1 & v_2^1 v_1^1 & v_2^1 & u_1^1 & v_1^1 & 1 \\ u_2^2 u_1^2 & u_2^2 v_1^2 & u_2^2 & v_2^2 u_1^2 & v_2^2 v_1^2 & v_2^2 & u_1^2 & v_1^2 & 1 \\ \vdots & \vdots \\ u_2^n u_1^n & u_2^n v_1^n & u_2^n & v_2^n u_1^n & v_2^n v_1^n & v_2^n & u_1^n & v_1^n & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix} = 0$$
use the original image coordinates instead of normalized image coordinates.

We use the original image coordinates instead of normalized image coordinates.

Normalized Version

Motivation

✓ Orders of magnitude difference between column of data matrix.

✓ Least-square method yields poor results.

									J_{12}	
									f_{13}	
250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81	1.00	0 13	
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79	1.00	f_{21}	
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81	1.00	£	=0
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65	1.00	J_{22}	= 0
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15	1.00	f	
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14	1.00	J_{23}	
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64	1.00	f_{31}	
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48	1.00	J 31	
~10000	~1000	0 ~100	~100	000 ~	10000	~100 ~	~100 ~1	00 1	f_{32}	
Orders of magnitude difference									f_{33}	

between column of data matrix → least-squares yields poor results

Normalized Version

Motivation

- ✓ Poor numerical conditioning, which makes results very sensitive to noise
- ✓ This problem can be fixed by rescaling the data: Normalized 8-point algorithm [1]

[1] R. Hartley, In defense of the eight point algorithm, IEEE Transactions of Pattern Analysis and Machine Intelligence (TPAMI), 1997

Normalized Version

In the original 1997 paper, Hartley proposed to rescale the two 2D point sets such that the centroid of each set is 0 and the mean standard deviation $\sqrt{2}$ (equivalent to having the points distributed around a circled passing through the four corners of the $[-1,1] \times [-1,1]$ square).

- Normalized Version
- ✓ This can be done for every point as follows $\widehat{p^i} = \frac{\sqrt{2}}{\sigma}(p^i \mu)$ where $\mu = (\mu_x, \mu_y) = \frac{1}{N} \sum_{i=1}^n p^i$ is the centroid and $\sigma = \frac{1}{N} \sum_{i=1}^n \left\| p^i \mu \right\|^2$ is the mean standard deviation of the point set.
- ✓ This transformation can be expressed in matrix form using homogeneous coordinates:

$$\widehat{p^i} = \begin{bmatrix} \frac{\sqrt{2}}{\sigma} & 0 & -\frac{\sqrt{2}}{\sigma} \mu_x \\ 0 & \frac{\sqrt{2}}{\sigma} & -\frac{\sqrt{2}}{\sigma} \mu_y \\ 0 & 0 & 1 \end{bmatrix} p^i$$

Normalized Version

The Normalized 8-point algorithm can be summarized in three steps:

- 1. Normalize the point correspondences: $\widehat{p_1} = B_1 p_1$, $\widehat{p_2} = B_2 p_2$
- 2. Estimate normalized \widehat{F} with 8 point algorithm using normalized coordinates \widehat{p}_1 , \widehat{p}_2
- 3. Compute unnormalized F with 8 point algorithm using normalized coordinates (known) $\widehat{p_2}^T\widehat{\widehat{F}}$ $\widehat{p_1}=0$ Output of second step Original 2D coordinates

Normalized Version

Comparison between Normalized and non-normalized versions

	W ELDI		
	8-point	Normalized 8-point	Nonlinear refinement
Avg. Ep. Line Distance	2.33 pixels	0.92 pixel	0.86 pixel

Summary

- Overview of 2D-2D Geometry
- Two-view Geometric Constraints
- Eight-point Method

Thank you for your listening!

If you have any questions, please come to me :-)