Soccer Player Archetype Detection and Clustering

Importing Packages and Reading Data

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.cluster import *
    from sklearn import metrics
    from scipy.spatial.distance import cdist

In [2]: def data_reader(original_path):
        data_original = pd.read_csv(original_path)
        return data_original

In [3]: data_path = './data/data.csv'
    data_pd = data_reader(data_path)
```

Defining Some Functions to Complete the Pre-processing Process

- data_separator() takes the original pandas dataframe, drops unnecessary attributes and any instances with null value. Then, it returns players and goalkeepers
 seperately. I seperated goalkeepers from other players since goalkeepers have different characteristics in terms of attributes. Goalkeeper archetype clustering
 might be a potential future work.
- organize_attributes() functions take the pandas dataframe of players, and then it creates a list of special features: pace, shooting, passing, dribbling, defending and pythsical. (goalkeeping skills are not used in this study.) These features are adapted from the stats of original FIFA player cards (https://www.futbin.com/stats-calculator).
- · organize_attributes_takeAll() directly returns the quantitative statistics given in the dataset (without calculating any extra feature).
- weight formatter() and height formatter() takes the dataframe of players and returns their numeric weight and height data in terms of lbs and centimeters.

```
In [4]: def data_separator(data_original):
               - seperates goalkeepers from the players, returns as a new pandas df, 'goalkeepers'.
               - cleans the unnecessary attributes of the data instances and returns the players as a pandas df, 'players'.
               goalkeepers = data_original[data_original['Position'] == 'GK']
               goalkeepers = goalkeepers.drop(['Unnamed: 0','ID','Photo','Flag','Potential','Club',\
               'Club Logo','Value','Wage','Special','Preferred Foot','International Reputation','Weak Foot','Skill Moves',\
'Work Rate','Body Type','Real Face','Position','Jersey Number','Joined','Loaned From','Contract Valid Until',\
'Release Clause', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RC
               'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB'], axis=1)
               players = data original[data original.Position != 'GK']
               players = data_original.drop(['Unnamed: 0','ID','Photo','Flag','Potential','Club',\
               'Club Logo','Value','Wage','Special','Preferred Foot','International Reputation','Weak Foot','Skill Moves',\
'Work Rate','Body Type','Real Face','Position','Jersey Number','Joined','Loaned From','Contract Valid Until',\
               'Release Clause'], axis=1)
               # if still, there are instances with NaN values, delete them all.
               players = players.dropna(how='any',axis=0)
               print(players.columns)
               dtype='object')
               players = players.reset index(drop=True)
               goalkeepers = goalkeepers.reset_index(drop=True)
               return players, goalkeepers
```

```
In [5]: def organize_attributes_takeAll(players):
                return players[['Crossing', 'Finishing', 'HeadingAccuracy', 'ShortPassing',
    'Volleys', 'Dribbling', 'Curve', 'FKAccuracy', 'LongPassing',
    'BallControl', 'Acceleration', 'SprintSpeed', 'Agility', 'Reactions',
    'Balance', 'ShotPower', 'Jumping', 'Stamina', 'Strength', 'LongShots',
    'Aggression', 'Interceptions', 'Positioning', 'Vision', 'Penalties',
    'Composure', 'Marking', 'StandingTackle', 'SlidingTackle']]
           def organize attributes(players):
                attribute_groups = dict()
                attribute_groups['pace'] = ['Acceleration','SprintSpeed']
attribute_groups['shooting'] = ['Finishing','LongShots','Penalties','Positioning','ShotPower','Volleys']
attribute_groups['passing'] = ['Crossing','Curve','FKAccuracy','LongPassing','ShortPassing','Vision']
attribute_groups['dribbling'] = ['Agility','Balance','BallControl','Composure','Dribbling','Reactions']
attribute_groups['defending'] = ['HeadingAccuracy','Interceptions','Marking','StandingTackle','SlidingTackle']
                attribute_groups['physical'] = ['Aggression','Jumping','Stamina','Strength']
# attribute_groups['gk'] = ['GKDiving', 'GKHandling','GKKicking', 'GKPositioning', 'GKReflexes']
                attr_list = []
                 for value in attribute_groups.values():
                      attr list += value
                pace_index = (players[attribute_groups['pace']].mean(axis=1))
                 shooting_index = (players[attribute_groups['shooting']].mean(axis=1))
                 passing_index = (players[attribute_groups['passing']].mean(axis=1))
                 dribbling_index = (players[attribute_groups['dribbling']].mean(axis=1))
                 defending_index = (players[attribute_groups['defending']].mean(axis=1))
                physical_index = (players[attribute_groups['physical']].mean(axis=1))
                 # gk_index = (players[attribute_groups['gk']].mean(axis=1);
                 # pos_list = ['LS','ST','RS','LW','LF','CF','RF','RW','LAM','CAM','RAM',\
# 'LM','LCM','CM','RCM','RM','LWB','LDM','CDM','RDM','RWB','LB','LCB','CB','RCB','RB']
                 # position_data = players[pos_list]
                 #position_data = position_data.div(players['Overall'].values, axis = 0)
                all_index= pd.concat([pace_index,shooting_index,passing_index, dribbling_index,
                                              defending_index,physical_index], axis=1 , ignore_index=True)
                all_index.columns = ['pace_index','shooting_index','passing_index',
                                              'dribbling_index','defending_index','physical_index']
                 Critical Step: All newly generated attributes are in the scale of [0,100].
                 Generated attributes are divided by the mean of all these attributes.
                 all_index = all_index.div(all_index.mean(axis=1).to_frame()[0], axis=0)
                 return all index.round(2)
In [6]: def weight_formatter(players):
                 all weights are used in lbs.
                for index, row in players.iterrows():
                      players.at[index, 'Weight'] = float(row['Weight'].split('lbs')[0])
                return players['Weight']
           def height_formatter(players):
                 converted all heights to centimeters.
                for index, row in players.iterrows():
                      players.at[index, 'Height'] = round(float(row['Height'].split("'")[0]) * 30.48 + float(row['Height'].split
            ("'")[1]) * 2.54)
                return players['Height']
In [7]: # Dropping the goalkeeper instances and removing unnecessary attributes.
           data_pd_cleaned, goalkeepers = data_separator(data_pd)
            # Creating some new features by using the columns in the input dataframe.
           data fielded = organize attributes(data pd cleaned)
            # Creating height and weight attributes for each player and adding to the current dataframe data_fielded.
```

data_fielded['height'] = height_formatter(data_pd_cleaned)
data_fielded['weight'] = weight_formatter(data_pd_cleaned)

Rescaling the Input Data

Two options are presented to scale the data attributes:

- option == 0: min-max normalization
- option == 1: standardization

```
In [8]: def rescale_df(df, option = 0):
    """
    set option to 0 for min-max normalization
    set option to 1 for standardization
    """
    if option == 0:
        temp_df = (df - df.min())/(df.max() - df.min())
    elif option == 1:
        temp_df = (df - df.mean()) / df.std()
    return temp_df
```

```
In [9]: # applying min-max normalization
  rescaled_data = rescale_df(data_fielded, 0)
  rescaled_data[:2]
```

Out[9]:

	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	
0	0.511628	0.743590	0.773196	0.716418	0.123077	0.160377	0.3125	0.368421	
1	0.503876	0.752137	0.608247	0.537313	0.153846	0.367925	0.6875	0.548872	

Clustering

After completing the data extraction process, we are are ready to start clustering. Clustering will be done based on the following features:

- pace_index : ['Acceleration', 'SprintSpeed']
- $\bullet \ \ shooting_index: ['Finishing', 'LongShots', 'Penalties', 'Positioning', 'ShotPower', 'Volleys']$
- passing_index : ['Crossing', 'Curve', 'FKAccuracy', 'LongPassing', 'ShortPassing', 'Vision']
- dribbling_index: ['Agility', 'Balance', 'BallControl', 'Composure', 'Dribbling', 'Reactions']
- defending_index : ['HeadingAccuracy','Interceptions','Marking','StandingTackle','SlidingTackle']
- physical_index : ['Aggression','Jumping','Stamina','Strength']
- height
- weight

Finding the Ideal Number of Clusters

The main purpose of clustering operation is to generate clusters with a minimized intra-cluster variation.

In order to define the optimal number of clusters, the elbow method is applied in a range of [0, 15].

Out[10]: Text(0, 0.5, 'loss values')

Here comes a discussion.

Although the optimal k value resulted from the previous figure is 4 (might also be 3 or 5), the results when I picked k=4 were not satisfactory for me (Some players that I would consider in seperate clusters were in the same cluster). After this obsevation, I decided to set k value as 7, as the number of clusters is a user specified parameter at all.

After completing the clustering operation, some identifier attributes (Name and Age) and the cluster labels of players are added so that similar players in each cluster will be observed.

```
In [12]: rescaled_data['Name'] = data_pd_cleaned['Name']
    rescaled_data['Age'] = data_pd_cleaned['Age']
    rescaled_data['Cluster'] = kmeanModel.labels_
```

In order to evaluate our model and to see similar players within the same clusters, show_cluster_samples() function is created.

```
In [13]: def show_cluster_samples(df, cluster_no, number_of_samples):
    return df[df['Cluster'] == cluster_no][:number_of_samples]
```

	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Clus	ter
3	0.372093	0.683761	0.731959	0.477612	0.338462	0.311321	0.520833	0.330827	K. De Bruyne	27		0
5	0.364341	0.615385	0.701031	0.597015	0.438462	0.226415	0.375	0.270677	L. Modrić	32		0
9	0.271318	0.700855	0.783505	0.492537	0.500000	0.150943	0.583333	0.43609	T. Kroos	28		0
23	0.348837	0.752137	0.783505	0.567164	0.292308	0.216981	0.520833	0.466165	J. Rodríguez	26		0
25	0.372093	0.641026	0.721649	0.656716	0.376923	0.198113	0.416667	0.481203	Isco	26		0
	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Clust	er
10	0.372093	0.367521	0.432990	0.328358	0.753846	0.528302	0.6875	0.466165	D. Godín	32		1
19	0.403101	0.358974	0.360825	0.298507	0.776923	0.556604	0.6875	0.578947	G. Chiellini	33		1
36	0.503876	0.128205	0.247423	0.358209	0.838462	0.660377	0.6875	0.646617	K. Koulibaly	27		1
52	0.550388	0.324786	0.402062	0.298507	0.707692	0.452830	0.729167	0.518797	R. Varane	25		1
63	0.434109	0.324786	0.288660	0.388060	0.761538	0.575472	0.6875	0.729323	M. Benatia	31		1
	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Cluste	er
0	0.511628	0.743590	0.773196	0.716418	0.123077	0.160377	0.3125	0.368421	L. Messi	31		2
2	0.558140	0.717949	0.711340	0.716418	0.130769	0.169811	0.416667	0.300752	Neymar Jr	26		2
4	0.550388	0.700855	0.701031	0.701493	0.138462	0.207547	0.375	0.398496	E. Hazard	27		2
11	0.333333	0.683761	0.783505	0.746269	0.284615	0.216981	0.375	0.285714	David Silva	32		2
13	0.503876	0.752137	0.742268	0.656716	0.100000	0.254717	0.479167	0.413534	P. Dybala	24		2
	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	N	ame	Age	Cluster
1	0.503876	0.752137	0.608247	0.537313	0.153846	0.367925	0.6875	0.548872	Cristiano Ron	aldo	33	3
6	0.410853	0.726496	0.608247	0.522388	0.276923	0.386792	0.583333	0.601504	L. Su	árez	31	3
8	0.410853	0.769231	0.587629	0.537313	0.207692	0.424528	0.583333	0.496241	R. Lewando	wski	29	3
14	0.341085	0.777778	0.618557	0.477612	0.276923	0.424528	0.6875	0.646617	H. k	ane	24	3
17	0.387597	0.743590	0.536082	0.417910	0.315385	0.462264	0.625	0.451128	E. Ca	vani	31	3
										_		
	-				defending_index		height				Cluste	_
46		0.692308	0.618557	0.537313	0.192308	0.264151			L. Sané	22		4
104	0.550388	0.709402	0.556701	0.567164	0.230769	0.301887		0.43609	A. Martial	22		4
148	0.635659	0.700855	0.484536	0.567164	0.176923	0.339623	0.520833			22		4
171	0.558140	0.683761	0.567010	0.507463	0.253846	0.320755	0.583333		Rodrigo	27	4	4
208	0.558140	0.692308	0.701031	0.656716	0.115385	0.273585	0.625	0.56391	J. Brandt	22	4	4
	nace index	shooting indox	nassina indov	dribbling index	defending_index	physical index	height	weight	Naı	ma 1	.ao C	luster
7	0.364341	0.487179	0.505155	0.328358	0.653846	0.452830	0.583333	0.533835	Sergio Ram		32	5
16	0.170543	0.487179	0.659794	0.492537	0.653846	0.443396	0.6875	0.43609	Sergio Busqu		29	5
22	0.255814	0.547009	0.536082	0.343284	0.638462	0.500000	0.625	0.56391	Casem		26	5
29	0.248062	0.487179	0.587629	0.447761	0.723077	0.349057	0.729167	0.699248	M. Humm		29	5
					0.669231							
33	0.364341	0.452991	0.536082	0.358209	0.009231	0.433962	v.:003333	0.533835	Thiago Si	ıva	33	5
	pace index	shooting index	passing index	dribbling index	defending_index	physical index	height	weight	,	lame	Age	Cluster
12	• -	0.470085	0.474227	0.507463	0.576923	0.424528	0.270833			Kanté	27	6
111		0.307692	0.525773	0.507463	0.615385	0.415094	0.375			rvajal	26	6
119		0.478632	0.536082	0.328358	0.553846	0.386792				/alker	28	6
167		0.256410	0.463918	0.402985	0.700000	0.509434	0.520833	0.43609	Nacho Ferna		28	6
		0.444444	0.432990	0.477612	0.630769	0.462264				andez	28	6
174	0.385349	U. 44444 4	0.432990	0.4//012	0.030769	0.402204	0.41000/	0.210011	1. 0	ueye	28	O

Comments & Evaluation

In this step, each of 7 clusters will be evaluated in terms of their general characteristics.

Cluster 0 (classy creator):

- These players are very important for the playmaking process.
- · They represent a transition between defence and attack.
- · Characteristics:
 - very good at passing.
- Examples: Kevin De Bruyne, Luka Modric, etc.

In [15]: show_cluster_samples(rescaled_data, 0, 5)

Out[15]:

	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Cluster
3	0.372093	0.683761	0.731959	0.477612	0.338462	0.311321	0.520833	0.330827	K. De Bruyne	27	0
5	0.364341	0.615385	0.701031	0.597015	0.438462	0.226415	0.375	0.270677	L. Modrić	32	0
g	0.271318	0.700855	0.783505	0.492537	0.500000	0.150943	0.583333	0.43609	T. Kroos	28	0
23	0.348837	0.752137	0.783505	0.567164	0.292308	0.216981	0.520833	0.466165	J. Rodríguez	26	0
25	0.372093	0.641026	0.721649	0.656716	0.376923	0.198113	0.416667	0.481203	Isco	26	0

Cluster 1 (genuine defender):

- This cluster consists of the solid defender players(most of the time centre-backs).
- They are mostly not responsible for playmaking. Their genuine duty is to stop opponent attackers by tackling etc.
- · Characteristics:
 - very good defending and physical stats.
 - most of the time, tall players.
- Examples: Diego Godin, Chiellini, Koulibaly, etc.

111 [10].

In [16]: show_cluster_samples(rescaled_data, 1, 5)

Out[16]:

	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Cluster
10	0.372093	0.367521	0.432990	0.328358	0.753846	0.528302	0.6875	0.466165	D. Godín	32	1
19	0.403101	0.358974	0.360825	0.298507	0.776923	0.556604	0.6875	0.578947	G. Chiellini	33	1
36	0.503876	0.128205	0.247423	0.358209	0.838462	0.660377	0.6875	0.646617	K. Koulibaly	27	1
52	0.550388	0.324786	0.402062	0.298507	0.707692	0.452830	0.729167	0.518797	R. Varane	25	1
63	0.434109	0.324786	0.288660	0.388060	0.761538	0.575472	0.6875	0.729323	M. Benatia	31	1

Cluster 2 (zig-zag dribbler):

- This kind of players are quite effective in dribbling inside the penalty area.
- They are not famous for very fast sprints, but they are more comfortable with zig-zag dribblings.
- · Characteristics:
 - low physical power.
 - very good at dribbling and shooting.
- Examples: Lionel Messi, Neymar, Eden Hazard, etc.

In [17]: show_cluster_samples(rescaled_data, 2, 5)

Out[17]:

	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Cluster
0	0.511628	0.743590	0.773196	0.716418	0.123077	0.160377	0.3125	0.368421	L. Messi	31	2
2	0.558140	0.717949	0.711340	0.716418	0.130769	0.169811	0.416667	0.300752	Neymar Jr	26	2
4	0.550388	0.700855	0.701031	0.701493	0.138462	0.207547	0.375	0.398496	E. Hazard	27	2
11	0.333333	0.683761	0.783505	0.746269	0.284615	0.216981	0.375	0.285714	David Silva	32	2
13	0.503876	0.752137	0.742268	0.656716	0.100000	0.254717	0.479167	0.413534	P. Dybala	24	2

Cluster 3 (solid scorer):

- These players are considered as the main goal change for their teams.
- They are not famous for very fast sprints, but they are more comfortable with zig-zag dribblings.
- Characteristics:
 - very good shooting skills.
 - good physical stats.
- Examples: C. Ronaldo, Luis Suarez, etc.

In [18]: show_cluster_samples(rescaled_data, 3, 5)

Out[18]:

	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Cluster	
1	0.503876	0.752137	0.608247	0.537313	0.153846	0.367925	0.6875	0.548872	Cristiano Ronaldo	33	3	
6	0.410853	0.726496	0.608247	0.522388	0.276923	0.386792	0.583333	0.601504	L. Suárez	31	3	
8	0.410853	0.769231	0.587629	0.537313	0.207692	0.424528	0.583333	0.496241	R. Lewandowski	29	3	
14	0.341085	0.777778	0.618557	0.477612	0.276923	0.424528	0.6875	0.646617	H. Kane	24	3	
17	0.387597	0.743590	0.536082	0.417910	0.315385	0.462264	0.625	0.451128	E. Cavani	31	3	

Cluster 4 (cheetah scorer):

- · This kind of players are quite effective in the empty space.
- They are famous for their very fast sprints.
- · Characteristics:
 - low physical power.
 - quite fast players.
 - very good at dribbling and shooting.
- Examples: Leroy Sane, Anthony Martial, etc.

In [19]: show_cluster_samples(rescaled_data, 4, 5)

Out[19]:

	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Cluster
46	0.596899	0.692308	0.618557	0.537313	0.192308	0.264151	0.583333	0.413534	L. Sané	22	4
104	0.550388	0.709402	0.556701	0.567164	0.230769	0.301887	0.583333	0.43609	A. Martial	22	4
148	0.635659	0.700855	0.484536	0.567164	0.176923	0.339623	0.520833	0.413534	T. Werner	22	4
171	0.558140	0.683761	0.567010	0.507463	0.253846	0.320755	0.583333	0.451128	Rodrigo	27	4
208	0.558140	0.692308	0.701031	0.656716	0.115385	0.273585	0.625	0.56391	J. Brandt	22	4

Cluster 5 (playmaker defender):

- This cluster consists of defenders (mostly centre-back and rarely defensive midfielder).
- They are good at passing and shooting. This makes them special as this kind of players are responsible for playmaking (i.e. starting point of the attack organizations.)
- · Characteristics:
 - good defending skills (not surprising).
 - good at passing and shooting.
- Examples: Sergio Ramos, Sergio Busquets, etc.

In [20]: show_cluster_samples(rescaled_data, 5, 5)

Out[20]:

	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Cluster	
7	0.364341	0.487179	0.505155	0.328358	0.653846	0.452830	0.583333	0.533835	Sergio Ramos	32	5	
16	0.170543	0.487179	0.659794	0.492537	0.653846	0.443396	0.6875	0.43609	Sergio Busquets	29	5	
22	0.255814	0.547009	0.536082	0.343284	0.638462	0.500000	0.625	0.56391	Casemiro	26	5	
29	0.248062	0.487179	0.587629	0.447761	0.723077	0.349057	0.729167	0.699248	M. Hummels	29	5	
33	0.364341	0.452991	0.536082	0.358209	0.669231	0.433962	0.583333	0.533835	Thiago Silva	33	5	

Cluster 6 (fast defender):

- Defenders with high velocity.
- Not a very good seperated cluster. It is a combination of left/right back players and speedy defensive midfielder.
- Characteristics: high speed, good physical stats.
- Examples: N. Kante, Carvajal, etc.

In [21]: show_cluster_samples(rescaled_data, 6, 5)

Out[21]:

	pace_index	shooting_index	passing_index	dribbling_index	defending_index	physical_index	height	weight	Name	Age	Cluster
12	0.410853	0.470085	0.474227	0.507463	0.576923	0.424528	0.270833	0.368421	N. Kanté	27	6
111	0.480620	0.307692	0.525773	0.507463	0.615385	0.415094	0.375	0.383459	Carvajal	26	6
119	0.503876	0.478632	0.536082	0.328358	0.553846	0.386792	0.583333	0.330827	K. Walker	28	6
167	0.472868	0.256410	0.463918	0.402985	0.700000	0.509434	0.520833	0.43609	Nacho Fernández	28	6
174	0.395349	0.444444	0.432990	0.477612	0.630769	0.462264	0.416667	0.270677	I. Gueye	28	6

Average Statistics for Each Cluster

	classy creator	genuine detender	zig-zag dribbier	solia scorer	cneetan scorer	playmaker detender	tast detender
pace_index	0.448213	0.463795	0.590973	0.485594	0.661553	0.348435	0.558428
shooting_index	0.554772	0.299422	0.626710	0.721341	0.642832	0.492038	0.379789
passing_index	0.594734	0.326003	0.620349	0.472672	0.469652	0.533178	0.443553
dribbling_index	0.463451	0.331158	0.620445	0.476189	0.550523	0.369799	0.440528
defending_index	0.452348	0.707274	0.229531	0.237052	0.190461	0.593589	0.541818
physical_index	0.355930	0.635784	0.253391	0.494208	0.379775	0.488871	0.458081
Age	25.816423	24.859334	24.188470	26.267072	23.022693	27.684424	23.625802
Cluster	0.000000	1.000000	2.000000	3.000000	4.000000	5.000000	6.000000

Some Final Observations

- Young defenders appear in the clusters fast defender and genuine defender. As they get older, they tend to improve their playmaking skills.
- · cheetah scorers are more likely the young wing-forwards while solid scorers are more experienced players.
- zig-zag dribblers have very low physical stats such as aggression, jumping, stamina, strength. Although it looks like a disadvantage, this characteristic probably lets them show their dribbling skills in a better way.
- Players with the best physical stats are in the cluster genuine defender.

Emre Dogan

Completed on January 19, 2020.