

End-to-End Pose Estimation from monocular Ice Hockey Videos

Bavesh Balaji, Jerrin Bright, Harish Prakash Systems Design Engineering Department University of Waterloo Waterloo, Ontario, Canada

MOTIVATION

- Pose estimation helps in better action recognition.
- Can be used to assess performance and strategy.

OVERALL FRAMEWORK

DATA

- Consists of 10 broadcast NHL videos.
- A total of 11,661 frames with ground-truth poses and bbox.

2-D Pose Estimation

MULTI STAGE POSE NETWORKS

- An encoder-decoder structure following a top-down approach.
- Addresses the design flaws in previous multi stage networks.
 - equal channel width design.
 - cross stage feature aggregation.

HIGH RESOLUTION NETWORKS

- Multi-stage network
- Parallel connections from high-to-low resolution.
- Repeated multi-scale fusion across parallel convolutions

DARK

- Coordinate decoding method that gives us better 2D coordinates from heatmaps.
- Uses the fact that predicted heatmap must be gaussian centred around max.activation.
- Taylor series to approximate differential.

TRANSPOSE-H

- Common CNN backbone used for feature extraction.
- The transformer encoder part provides long-term spatial relationships.

TRAINING DETAILS

COMMON HYPERPARAMETERS:-

- Batch size = 8
- epochs = 10
- Input size = (192, 256)

MSPN:-

• SGD with a learning rate of 1e-2, momentum = 0.9, weight_decay = 1e-5.

OTHER NETWORKS:-

• Adam with a learning rate of 1e-3.

RESULTS

Joint	Training Accuracy(%)			Validation Accuracy(%)				
	MSPN	HRNet-W48	HRNet-W32 + DARK	TransPose	MSPN	HRNet-W48	HRNet-W32 + DARK	TransPose
Left Shoulder	97.1	95.27	95.08	91.44	90.13	86.13	86.92	85.83
Right Shoulder	96.63	95.23	95.07	91.53	89.96	86.23	86.98	84.95
Left Elbow	94.86	89.97	90.80	86.92	87.12	81.07	82.51	81.95
Right Elbow	94.91	88.33	89.52	85.53	89.03	81.69	85.96	84.00
Left Wrist	93.34	87.69	87.13	83.70	86.13	80.27	80.38	80.77
Right Wrist	92.98	86.11	84.58	81.16	86.61	81.18	82.26	82.04
Left Hip	93.76	90.52	89.07	84.78	79.38	75.69	75.04	74.80
Right Hip	94.27	90.72	88.88	84.4	79.75	75.63	78.45	79.50
Left Knee	97.19	94.38	94.70	92.59	92.39	89.54	89.25	88.27
Right Knee	97.28	94.67	94.78	92.15	92.76	89.35	90.66	80.81
Left Ankle	97.21	93.89	93.02	91.23	92.01	87.00	86.51	86.65
Right Ankle	97.40	94.18	93.92	91.4	93.70	87.48	86.19	86.93
Total accuracy	95.71	91.86	91.40	83.75	88.35	83.51	84.32	88.16

11

VISUALIZATIONS

HRNet-W48

HRNet-W32 + DARK

TransPose-H(W4 8)

MSPN

3D Pose Estimation

Idea

- Teacher Estimator Trained on H36M dataset. Estimated 3D pose is feed as input to Student Estimator for training.
- Student Estimator Trained using 2D pose from hockey data and 3D pose data from the teacher estimator.

Multi-Hypothesis Former ¹

- MHG Generate Hypotheses
- Temporal Embedding
- SHR MSA+MLP
- CHI MCA+MLP

¹ W. Li, H. Liu, H. Tang, P. Wang, and L. V. Gool, "Mhformer: Multi-hypothesis transformer for 3d human pose estimation," CoRR, vol. abs/2111.12707, 2021. [Online].

Strided Transformer Encoder ¹

- VTE Captures global contexts
- STE Captures local contexts
- Pose Refinement

¹ Li, Wenhao, et al. "Exploiting temporal contexts with strided transformer for 3d human pose estimation." *IEEE Transactions on Multimedia* (2022).

Graph Attention Spatio-Temporal Network ¹

- Dilated Temporal Convolutional Networks
- Local Spatial Attention Graph
- Global Spatial Attention Graph

¹ Liu, Junfa, et al. "A graph attention spatio-temporal convolutional network for 3D human pose estimation in video." *2021 IEEE International Conference on Robotics and Automation (ICRA)*. IEEE, 2021.

Results

• MHFormer

• GASTNet

3D Pose Estimation

- Based on our literature survey and experimentations, we observed that transformers (PoseFormer, STE, MHFormer) have an inherent advantage in processing time (FLOPs), while CNNs (VideoPose3D, GAST-Net) exhibit a better accuracy under similar constraints.
- This can be attributed to the '<u>Inductive Bias</u>' in CNNs extensive correlations between feature spaces that help our target function learn a set of assumptions associated with the input and unseen output, intrinsically.
- Transformers lack this => Requires extensive feature engineering;
 CNNs => Generalizes well (relatively) w/o it.

"Why not induce 'inductive bias' into transformer?"

Base Paper: Published in IEEE Transactions on Multimedia, in 2022.

Existing Network Architecture

Position Embedding

VTE Layer VTE Layer

Fig 1. Existing VTE (left) and STE (right) architectures. Each block is x3 times, followed by a regression head at each stage to capture long-range information + aggregate local contexts.

STE Layer

MaxPool

(1, 256)

Regression Head

(3, 256)

Fig 2. Detailed view of STE architecture.

Proposed Network Architecture

Introducing IB into Transformer

Proposed Network Architecture

An instantiation of our proposed Temporal-convolution 3D Pose Estimation block. The input consists of 2D Keypoints with a receptive field of 27 frames with J = 17 Joints. The tensor (27, 34) denotes 27 frames and 34 channels. Each block has two 1D convolutional layers, where (3, 3, 256) denotes kernel size = 3, stride factor = 3 and output channels = 256, respectively. Every block also has a skip connection, which contains a MaxPooling1D + BatchNorm1D layer, to match the output tensors of Strided Convolutions.

Dataset

• We trained our proposed network on the Human3.6M Mocap dataset, with the same training scheme as STE, but with hyperparameter tuning. We choose this dataset since it's the de-facto for 3D PE tasks + useful for our model's relative performance measure.

It consists of 11 Subjects (S1-S11), whose actions are recorded using 4 calibrated cameras in an indoor, constrained setting.

For all 11 subjects, there are sequences of 15 actions captured, recorded at 50Hz.

Quantitative Results

• We present results based on "Mean Per Joint Position Error (MPJPE)", widely called <u>Protocol#1</u> in Pose Estimation Literature.

- <u>Training:</u> 3,119,616 frames;
- <u>Validation/Testing:</u> 543,488 frames;
- Optimizer: AdamW with Amsgrad;
- <u>Loss:</u> Average MPJPE (VTE + STE + TCN)

<u>Model</u>	Receptive Field	MPJPE (mm)		
Hossain et al. [2]	27 frames	58.3		
Cai et al. [3]	27 frames	48.8		
Pavllo et al. [4]	27 frames	48.6		
Chen et al. [5]	27 frames	48.3		
Wenhao et al. [1]	27 frames	<u>46.9</u>		
Ours (Trans-Conv)	27 frames	47.9		

Qualitative Results

Inference on an Ice-hockey Sequence

References

- [1] Wenhao Li, Hong Liu, Runwei Ding, Mengyuan Liu, Pichao Wang, and Wenming Yang. *Exploiting temporal contexts with strided transformer for 3D human pose estimation*. IEEE Transactions on Multimedia, 2022.
- [2] M. Rayat Imtiaz Hossain and J. J. Little. *Exploiting temporal information for 3d human pose estimation*. Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 68–84.
- [3] Y. Cai, L. Ge, J. Liu, J. Cai, T.-J. Cham, J. Yuan, and N. M. Thalmann. *Exploiting spatial-temporal relationships for 3d pose estimation via graph convolutional networks*. Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 2272–228
- [4] D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli. *3D human pose estimation in video with temporal convolutions and semi-supervised training*. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 7753–7762.
- [5] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun. *Cascaded pyramid network for multi-person pose estimation*. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7103–71