Algoritmos Genéticos para o Problema da Mochila

Estéfane G. M. de Lacerda UFRN/DCA Setembro/2008

O Problema da Mochila

O Problema da Mochila

- Dados um conjunto de *n* objetos e uma mochila com:
 - c_j = benefício do objeto j
 - w_i = peso do objeto j
 - b = capacidade da mochila
- Determinar quais objetos devem ser colocados na mochila para maximizar o benefício total de tal forma que o peso da mochila não ultrapasse sua capacidade.

O Problema da Mochila zero-um

(do inglês, 0-1 knapsack problem)

Maximizar
$$z=\sum_{j=1}^n c_j s_j$$
Sujeita a $\sum_{j=1}^n w_j s_j \leqslant b$
 $s_i \in \{0,1\}$

Uma solução s é um vetor de uns e zeros. Se o objeto j está mochila então $s_j = 1$, caso contrário $s_i = 0$.

Algoritmo Genético

Cromossomo

 A solução s (um vetor de uns e zeros) é naturalmente representada por um cromossomo binário.

Operadores binários padrão

- Crossover de 1-ponto (ou 2-pontos, etc)
- Mutação (invertendo os bits)

Uma Instância do Problema da Mochila

Objeto (j)	1	2	3	4	5	6	7	8
Benefício (c_i)	3	3	2	4	2	3	5	2
Peso (w _i)	5	4	7	8	4	4	6	8

Capacidade da mochila: b = 25

11001110 (cromossomo válido)

peso =
$$5+4+4+4+6 = 23 \le 25$$

função objetivo = $3+3+2+3+5 = 16$

11111001 (inválido)

Como Lidar com Indivíduos Inválidos?

- Solução 1 reparar o indivíduo
- Solução 2 penalizar a função objetivo

Reparando o Indivíduo

- Indivíduo inválido
 - 11111001
 - peso = 36 > 25
 - Função objetivo = 16

- Indivíduo "reparado"
 - 11110000
 - Peso = 24 (ok!)
 - Função objetivo = 12

visitar cada bit da esquerda para a direita e desprezar os bits que invalidam a solução.

Reparando o Indivíduo

- Por qual ordem dos bits devem ser visitados?
 - Da esquerda para direita?
 - No sentido oposto?
 - Aleatoriamente?
- Algoritmo Guloso
 - Visitar primeiro os bits com a maior razão benefício/peso;
 - Pode produzir melhores resultados.

Penalizando a Função Objetivo

Um exemplo de penalidade é:

$$f(s) = \sum_{j=1}^{n} c_j s_j - \alpha \times max \left(0, \sum_{j=1}^{n} s_j w_j - b\right)$$

Onde α é um coeficiente de penalidade igual a:

$$\alpha = \sum_{j=1}^{n} c_{j} = 14$$

Objetos que ultrapassam a capacidade da mochila são penalizados.

Penalizando a Função Objetivo

Exemplo

- 11111001
- peso = 36 > 25
- Função original = 16
- Função com penalidade = 16 14 x (36-25) = -138