

Progettazione Logica Basi di Dati

Corso di Laurea in Informatica per il Management

Alma Mater Studiorum - Università di Bologna

Prof. Marco Di Felice

Dipartimento di Informatica – Scienza e Ingegneria marco.difelice3@unibo.it

L'obiettivo della **progettazione logica** è la realizzazione del modello logico (es. relazionale) a partire dalle informazioni del modello E-R.

Una possibilità (DA EVITARE) è quella di tradurre ogni entità ed ogni relazione del modello E-R con una tabella corrispondente ...

PROBLEMI:

- Efficienza → Quante tabelle sono generate? Efficienza delle operazioni sui dati?
- Correttezza → Come si possono tradurre le generalizzazioni?
 Non esiste un costrutto equivalente nel modello E-R ...

Per garantire la qualità dello schema prodotto, la **progettazione logica** tipicamente include due passaggi:

- Ristrutturazione del modello concettuale → modificare lo schema E-R al fine di abilitare la traduzione nel modello logico e di ottimizzare il progetto nel suo complesso.
- Traduzione nel modello logico → traduzione dei costrutti del modello E-R nei costrutti equivalenti del modello relazionale ...

Prima di tradurre il modello E-R, è necessario **ristrutturarlo** per motivi di **correttezza/efficienza**:

FASI (F) PREVISTE (alcune di esse potrebbero non essere necessarie)

- o F0. Eliminazione delle generalizzazioni
- o **F1.** Eliminazione degli attributi multi-valore
- F2. Partizionamento/accorpamento di concetti
- o **F3.** Analisi delle ridondanze

SOLUZIONE 1 (SOL1): Accorpamento delle entità figlie nell'entità genitore (con accorpamento dei relativi attributi e delle relazioni)...

SOLUZIONE 2 (SOL2): Accorpamento delle entità genitore nelle entità figlie (con accorpamento dei relativi attributi e delle relazioni)...

Quale traduzione utilizzare?

- SOL1 introduce valori nulli ed un attributo aggiuntivo, ma è conveniente quando non ci sono troppe differenze concettuali tra E0, E1 ed E2 ...
- SOL2 è possibile solo se la generalizzazione è totale, non introduce valori nulli, ma è conveniente quando ci sono operazioni che coinvolgono per lo più E1 ed E2 ma non l'entità genitore E0 ...

SOLUZIONE 3 (SOL3): Sostituzione delle generalizzazione con relazioni tra entità genitore ed entità figlie.

- SOL3 non introduce valori nulli, ed è utile quando ci sono operazioni che si riferiscono solo ad istanze di E1, E2 ed E0, ma presenta la necessità di introdurre dei vincoli:
 - Un'occorrenza di E0 non può partecipare in contemporanea ad R01 ed R02.
 - Se la generalizzazione è totale, ogni occorrenza di E0 deve appartenere ad R01 o R02 ...

Prima di tradurre il modello E-R, è necessario **ristrutturarlo** per motivi di **correttezza/efficienza**:

FASI (F) PREVISTE (alcune di esse potrebbero non essere necessarie)

- o **FO**. Eliminazione delle generalizzazioni
- F1. Eliminazione degli attributi multi-valore
- o **F2.** Partizionamento/accorpamento di concetti
- o **F3.** Analisi delle ridondanze

Gli **attributi multivalore** non sono presenti nel modello logico, ma possono essere modellati anche con una **relazione uno-a-molti** ...

Gli **attributi multivalore** non sono presenti nel modello logico, ma possono essere modellati anche con una **relazione uno-a-molti** ...

Prima di tradurre il modello E-R, è necessario **ristrutturarlo** per motivi di **correttezza/efficienza**:

FASI (F) PREVISTE (alcune di esse potrebbero non essere necessarie)

- o **FO**. Eliminazione delle generalizzazioni
- F1. Eliminazione degli attributi multi-valore
- F2. Partizionamento/accorpamento di concetti
- o **F3.** Analisi delle ridondanze

Per una dato modello E-R, è possibile ridurre il numero di accessi:

- separando attributi che vengono acceduti separatamente → partizionamenti
- o raggruppando attributi di entità diverse ma acceduti allo stesso tempo → accorpamenti
- E' necessario avere una stima sul volume dei dati per un'indicazione se/come partizionare/accorpare entità.

Gli accorpamenti di entità riguardano relazioni uno-ad-uno...

Partizionamento verticale di un'entità sulla base dei suoi attributi.

Prima di tradurre il modello E-R, è necessario **ristrutturarlo** per motivi di **correttezza/efficienza**:

FASI (F) PREVISTE (alcune di esse potrebbero non essere necessarie)

- o **FO**. Eliminazione delle generalizzazioni
- F1. Eliminazione degli attributi multi-valore
- o **F2.** Partizionamento/accorpamento di concetti
- F3. Analisi delle ridondanze

Nel modello E-R, potrebbero essere presenti **ridondanze sui dati**, ossia **informazioni significative ma derivabili da altre** già presenti nel modello E-R.

- (Eventuali) vantaggi delle ridondanze:
 - Operazioni sui dati più efficienti
- Svantaggi delle ridondanze:
 - Maggiore occupazione di memoria
 - Maggiore complessità degli aggiornamenti

Esempi di ridondanze concettuali in un diagramma E-R

In questa fase della progettazione logica, è necessario valutare cosa fare delle **ridondanze concettuali**...

- SOLUZIONE1: Eliminare l'attributo NumeroAbitanti
- o **SOLUZIONE2**: Conservare l'attributo nel diagramma E-R.

Per scegliere cosa fare di un attributo ridondante, è possible utilizzare l'analisi del modello E-R che abbiamo visto nella progettazione concettuale.

Sia S lo schema E-R senza ridondanze Sia S_{rid} lo schema E-R con ridondanze

- 1. Si calcolano il costo e l'occupazione di memoria di entrambi gli schemi: $\langle c(S), m(S) \rangle = \langle c(S_{rid}), m(S_{rid}) \rangle$
- 2. Si **confrontano** $c(S)/c(S_{rid})$ e $|m(s) m(S_{rid})|$
- 3. Si prende una decisione in base al valore delle metriche

Per effettuare l'analisi del modello E-R, è necessario disporre delle tavole dei volumi e delle operazioni.

- Operazione 1 (OP1): Inserire una nuova persona (200 volte/giorno).
- Operazione 2 (OP2): Visualizzare tutti i dati di una città, incluso il numero di abitanti (5 volte/giorno)

TAVOLA delle OPERAZIONI

Operazione	Tipo	Frequenza
Operazione1	1	200
Operazione2	I	5

Per effettuare l'analisi del modello E-R, è necessario disporre delle tavole dei volumi e delle operazioni.

TAVOLA dei VOLUMI

Concetto	Tipo	Volume
Città	E	100
Persona	Е	500000
Residenti	R	500000

Assumiamo che le informazioni sui volumi siano fornite dal documento di specifica.

Analisi dello schema S_{rid} (caso con ridondanza):

Operazione 1 (OP1): frequenza 200 volte/giorno

Concetto	Costrutto	Accessi	Tipo
Persona	Entita'	1	W
Residenti	Relazione	1	W
Citta'	Entita'	1	W

$$\mathbf{w_l} = 1$$
 $\alpha = 2$

$$c(OP1)=200*1*(3*2)=1200$$

Analisi dello schema S_{rid} (caso con ridondanza):

Operazione 2 (OP2): frequenza 5 volte/giorno

Concetto	Costrutto	Accessi	Tipo
Citta'	Entita'	1	L

$$w_l=1$$
 $\alpha=2$

$$c(OP2)=5*1*(0*2+1)=5$$

Analisi dello schema S (caso senza ridondanza):

Operazione 1 (OP1): frequenza 200 volte/giorno

Concetto	Costrutto	Accessi	Tipo
Persona	Entita'	1	W
Residenti	Relazione	1	W

$$w_{l}=1$$
 $\alpha=2$

$$c(OP1)=200*1*(2*2+0)=800$$

Analisi dello schema S (caso senza ridondanza):

Operazione 2 (OP2): frequenza 5 volte/giorno

Concetto	Costrutto	Accessi	Tipo
Citta'	Entita'	1	L
Residenza	Relazione	5000	L

$$w_{l}=1$$
 $\alpha=2$

$$c(Op2) = 5*1*(0*2 +5001) = 25005$$

Riassumendo:

$$ightharpoonup c(S_{rid}) = c(Op1) + c(Op2) = 1200 + 5 \sim 1200$$

$$> c(S) = c(Op1) + c(Op2) = 800 + 25005 \sim 26000$$

Vediamo ora l'occupazione di memoria:

$$\rightarrow$$
 m(S) = \times (byte)

$$\rightarrow$$
 m(S_{rid}) = X + 100 *4 = X+ 400 (byte)

`

Volume dell'entità Citta

Il campo aggiuntivo richiede 4 byte

Riassumendo, la presenza della ridondanza:

- Introduce un overhead di memoria di 400 byte
- Migliora lo speedup delle operazioni:
 26000/1200 ~ 20!

<u>Risultato dell'analisi delle ridondanze</u>: In questo caso, è conveniente MANTENERE (o nel caso introdurre) l'attributo Numero Abitanti!

Per garantire la qualità dello schema prodotto, la **progettazione logica** tipicamente include due passaggi:

- Ristrutturazione del modello concettuale → modificare lo schema E-R al fine di abilitare la traduzione nel modello logico e di ottimizzare il progetto nel suo complesso.
- Traduzione nel modello logico → traduzione dei costrutti del modello E-R nei costrutti equivalenti del modello relazionale ...

La **progettazione logica** deve tradurre i costrutti del modello E-R nei costrutti del modello logico di riferimento (nel nostro caso, il modello relazionale), garantendo l'**equivalenza** dei modelli ...

In sintesi:

- Le entità diventano tabelle sugli stessi attributi.
- Le relazioni del modello E-R diventano tabelle sugli identificatori delle entità coinvolte (più gli attributi propri),.. ma sono possibili traduzioni differenti sulla base delle cardinalità.

Traduzione di entità con identificatore interno

 Le entità del modello E-R si traducono in tabelle del modello relazionale. L'identificatore del modello E-R diventa la chiave primaria della tabella.

Traduzione di entità con identificatore esterno

 Le entità con identificatore esterno si traducono in una tabella che include tra le chiavi gli identificatori dell'entità esterna.

Traduzione di entità con identificatore esterno

STUDENTE(Matricola, NomeUniversita, Nome, Cognome)

UNIVERSITA(Nome, Citta, Indirizzo)

Traduzione di **relazioni molti-a-molti**

- Ogni entità diventa una tabella con lo stesso nome, stessi attributi e per chiave il suo identificatore.
- Ogni relazione diventa una tabella, con gli stessi attributi e come chiave gli identificatori delle entità coinvolte.

Traduzione di **relazioni molti-a-molti**

IMPIEGATO(Matricola, Cognome)

PROGETTO(Codice, Descrizione, Budget)

LAVORO(Matricola, Codice, Data)

Vincoli di integrità tra gli attributi

Traduzione di **relazioni molti-a-molti**

IMPIEGATO(Matricola, Cognome)

PROGETTO(Codice, Descrizione, Budget)

LAVORO(MatImpiegato, CodProgetto, Data)

E' possibile ridenonimare gli attributi della relazione

Traduzione di **relazioni uno-a-molti**

Sono possibili due traduzioni:

- 1. Traducendo la relazione come una tabella separata (come nel caso delle relazioni molti-a-molti).
- 2. Inglobando la relazione nell'entità con card. massima 1.

Traduzione di **relazioni uno-a-molti**

GIOCATORE(Nome, Cognome, Ruolo)

TRADUZIONE 1

SQUADRA(Nome, Citta', Sede)

CONTRATTO(Nome, Cognome, NomeSquadra,Ingaggio)

Traduzione di **relazioni uno-a-molti**

TRADUZIONE 2

GIOCATORE(Nome, Cognome, Ruolo, NomeSquadra, Ingaggio) **SQUADRA**(Nome, Citta', Sede)

Traduzione di **relazioni uno-a-molti**

Cosa accade se vario la cardinalità min. di GIOCATORE?

- o cardMin=0 → Soluzione 1 preferibile
- o cardMin=1 → Soluzione 2 preferibile

Traduzione di **relazioni uno-a-uno**

 Sono possibili 3 diverse alternative, in base alla cardinalità minima delle due entità in gioco ...

Traduzione di **relazioni uno-a-uno**

- Caso 1: Cardinalità obbligatorie per entrambe le entità (cardMin pari ad 1 per entrambe).
 - Si traduce il modello **inglobando la relazione in una delle due entità** (traduzioni simmetriche).

Traduzione di **relazioni uno-a-uno**

IMPIEGATO(Nome, Cognome, Stipendio, Data, NomeUfficio)

UFFICIO(Nome, Citta', Sede)

In alternativa, è possibile inglobare la relazione DIREZIONE nell'entità UFFICIO ...

Traduzione di **relazioni uno-a-uno**

 Caso 2: Partecipazione obbligatoria per una delle entità (cardMax=1 per una delle due).

Si traduce il modello inglobando la relazione nell'entità che ha partecipazione obbligatoria ...

Traduzione di **relazioni uno-a-uno**

IMPIEGATO(Nome, Cognome, Stipendio)

UFFICIO(Nome, Città, Sede, Data, NomeDirettore, CognomeDirettore)

Traduzione di **relazioni uno-a-uno**

- Caso 3: Partecipazione facoltativa per entrambe le entità (cardMin pari a 0 per entrambe).
 - Si traduce il modello **traducendo la relazione come una tabella a sè stante** (analogo del caso uno-a-molti).

Traduzione di **relazioni uno-a-uno**

IMPIEGATO(Nome, Cognome, Stipendio)

UFFICIO(Nome, Citta', Sede)

DIREZIONE(NomeUfficio, NomeDirettore, CognomeDirettore, Data)

Come per la fase di progettazione concettuale, è necessario corredare lo schema logico di opportuna documentazione perchè non tutti i vincoli sono esprimibili nello schema logico:

- Tabella delle business rules (vista in precedenza)
- Insieme dei vincoli di integrità referenziali
 - Rappresentati attraverso tabella
 - Rappresentati in maniera grafica (diagramma logico).

Esempio di diagramma logico, con vincoli di integrità ...

Ricapitolando:

- STEP 2: Progettazione Logica
 - STEP 2.1: Analisi delle ridondanze
 - STEP 2.2: Eliminazione delle generalizzazioni e degli attributi multi-valore
 - STEP 2.3: Accorpamenti/partizionamenti di concetti
 - STEP 2.4: Traduzione nel modello logico