Business Data Analytics

MTAT.03.319

Lecture 6

Rajesh Sharma https://css.cs.ut.ee/

Till now and today!

Cross Selling & Upselling

How to sell more?

Here is a simple but powerful rule - always give people more than they expect to get.

Nelson Boswell

Tips

- You already know about following tips
 - "The cost of acquiring a new customer is often around 4 times more expensive than it is to sell to an existing customer."
- So better to sell it to existing customers.
- But how ?
 - The most successful business practices to achieve this are by up-selling and cross-selling.

Fast Food Seller

Would you like potatoes with that ? ☺

Cross Selling

Cross Selling: Amazon Shopping

Cross Selling: Definition

 To sell related or complementary products to a new or existing customer.

https://www.investopedia.com/terms/c/cross-sell.asp

 Cross-selling is a sales technique used to get a customer to spend more by purchasing a product that's related to what's being bought already.

Source: https://www.shopify.com/encyclopedia/cross-selling

UpSelling

Listen free or subscribe to Spotify Premium.

Up-Selling

Cross and Up Selling: Definition

• Up-selling: is a sales technique where a seller induces the customer to purchase more expensive items, upgrades or other add-ons in an attempt to make a more profitable sale.

Source: https://en.wikipedia.org/wiki/Upselling

• Cross-selling: To sell related or complementary products to a new or existing customer.

Tips For Cross/Up selling?

Cross Selling

- Peers Also Bought
- Incentives
- Discounted Second Buy
- Build A Relationship And Then Ask

Up Selling

- Sell the benefits of the up-sell
- Keep The Up-Sell Below 25% Of The Original Order

Return of Cross/Up Selling Strategy?

- Amazon reportedly attributes as much as 35 percent of its sales to cross-selling through its options on every product page
 - "customers who bought this item also bought" and
 - "frequently bought together".

Cross | Up Selling | Selling

Who?

- Identify the customer or a cluster for a better approach.
- Present relevant offers based on his buying history and/or socialdemographics characteristics.

What?

- Identify the products or services which best fit the buying situation.
- Constantly analyze buying behavior in order to identify new trends (predictive models)

When, Where?

- Identify the best froment during the buying flow to offer another product or service.
- Respect the users main objective

How?

- dentify the best position on the screen
- Identify the best model (text based, txt+img, advertising, radiobuttons, checkboxes, etc)

Customer Lifecycle Management

How to solve this problem?

- Question: What products to recommend to whom?
- Solution: Recommendation Systems
- What products?
 - Popularity
 - Market Basket Analysis
 - Collaborative filtering
- What products to whom ?
 - Collaborative filtering

What products to recommend to whom?: Recommender Systems

Goal of a Recommender System: Identify products most relevant to the user (Eg. Top n offers).

Recommendation Examples in Online Markets

Platforms

Jobs

<

Python for Data Analysis:
Data Wrangling with
Pandas, NumPy, and...
Wes McKinney
127
Paperback

\$27.68 Prime

Solution 1: Popularity based Recommender System

Recommend items viewed/purchased by most people Recommendations: Ranked list of items by their purchase count

Popularity follows almost Pareto Law

- 20% (highly valued customers) of customers bring 80% of profit
- 20% of products bring 80% of the profit
 - But what about rest of the 80% products?
 Popularity based techniques are not helpful

Popular products*!

About 2,490,000,000 results (0.53 seconds)

There are many popular ecommerce products to sell them online like:

- Smartwatches.
- Video Doorbells.
- Facial Masks.
- · Highlighters.
- Phone Cases.
- Avocado Oil.
- Bluetooth Speakers.
- · Enamel Pins.

More items...

*Based on Dec 2018

Popularity is safe but

what about association among the products you recommend?

Solution 2: Market Basket Analysis

Market

Basket

Analysis

MBA

MBA put sense while recommending products

Market Basket Analysis (MBA)

Technique/Algorithm to identify the association rules from the data

- Input
 - List of purchases by customers over different visits
- Output
 - What items purchased together

MBA: Terminologies

- Items: Objects that we are identifying associations between.
- Examples:
 - In a supermarket, each item is a product.
 - For a publisher, each item might be an article, a blog post, a video etc.
- A group of items is an item set.
 - $\{i_1, i_2, i_3, ..., i_k\}$

- Items: Objects that we are identifying associations between.
- Transactions: Transactions are instances of groups of items co-occurring together.
- Examples:
 - For an online retailer, a transaction is, generally, a group of items bought together
 - For a publisher, a transaction might be the group of articles read in a single visit to the website.
 - NOTE: It is up to the analyst to define over what period to measure a transaction.
- For each transaction, we have an item set.
 - $t_n = \{i_1, i_2, i_3, ..., i_k\}$

- Items: Objects that we are identifying associations between.
- Transactions: Transactions are instances of groups of items cooccurring together.
- Rules: are statements of the form
 - $\{i_1, i_2, i_3,...\} => \{i_k\}$
 - if you have the items in item set (on the left hand side (LHS) of the rule i.e. $\{i_{1, i_2,...}\}$, then it is likely that a visitor will be interested in the item on the right hand side (RHS) i.e. $\{i_k\}$.
 - In the example above, rule would be:
 - {flour, sugar} => {eggs}

- Items: Objects that we are identifying associations between.
- Transactions: Transactions are instances of groups of items cooccurring together.
- Rules: are statements of the form
 - $\{i_1, i_2, i_3,...\} => \{i_k\}$
 - if you have the items in item set (on the left hand side (Ln. visitor will be interested in the item on the right hand side "
 - In the example above, rule would be:
 - {flour, sugar} => {eggs}

This is what MBA finds

- Items: Objects that we are identifying associations between.
- Transactions: Transactions are instances of groups of items cooccurring together.
- Rules: Find associated items for sale
- Output of MBA ?

Market basket analysis is generally a set of rules, that we can then exploit to make business decisions (related to marketing or product placement, for example). Association rules -> Generates rules Example: (X -> Y)

Market Basket -> Assigns business outcome to those rules

Example: X,Y could be sold together

What MBA tries to find?

- MBA investigates if association between A and B (that is A -> B) is
 - Random
 - Or there is some statistical basis of it
- Question: Can we come up with some quantitative metric for the above investigation?
 - Answer: Lift
- Question: How to calculate Lift?
- Answer: By using:
 - Support
 - Confidence
 - Expected Confidence

- It works basically on following concepts
 - Support: #(co-occurrence of A and B)/T
 - What is co-occurrence of two items name A and B
 - (Co-occurrence of A and B)/ Total Transactions.
 - Confidence: #(A and B)/#(A):
 - The proportion of transactions which contain A and also contain B.
 - How confident we are that B is present in presence of A.
 - Ratio of Support of (A and B), and Support of A.
 - Expected Confidence:
 - How confident we are that B is present in absence of A (or do not care about A).
 - # transactions where B is present /Total transactions

• Lift:

- Ratio of Confidence and Expected Confidence
- Ratio of (B in presence of A) and (B in absence of A)
- Explains the change in probability of B over "presence of A" and "absence of A"
- Lift <= 1
 - A has no impact on B
- Lift > 1
 - Relationship between A and B is significant
 - Larger the lift ratio, the more significant the association.

Retail Case Study

Possible shopping Baskets (T)		
Transaction 1	Beer, Diaper, Chips, Aspirin	
Transaction 2	Diaper, Beer, Chips, Lotion, Juice, Milk	
Transaction 3	Soda, Chips, Milk	
Transaction 4	Soup, Beer, Diaper, Milk, Icecream	
Transaction 5	Soda, Coffee, Milk, Bread	
Transaction 6	Beer, Chips	

Retail Case Study

Possible shopping Baskets (T)		
Transaction 1	Beer, Diaper, Chips, Aspirin	
Transaction 2	Diaper, Beer, Chips, Lotion, Juice, Milk	
Transaction 3	Soda, Chips, Milk	
Transaction 4	Soup, Beer, Diaper, Milk, Icecream	
Transaction 5	Soda, Coffee, Milk, Bread	
Transaction 6	Beer, Chips	

Frequent Items (based on Ms = 30)

(Beer, Diaper): with support 50 %

(Beer, Chips): with support 50 %

Retail Case Study

Possible shopping Baskets (T)		
Transaction 1	Beer, Diaper, Chips, Aspirin	
Transaction 2	Diaper, Beer, Chips, Lotion, Juice, Milk	
Transaction 3	Soda, Chips, Milk	
Transaction 4	Soup, Beer, Diaper, Milk, Icecream	
Transaction 5	Soda, Coffee, Milk, Bread	
Transaction 6	Beer , Chips	

Frequent Items (based on Ms = 30)

(Beer, Diaper): with support 50 %

(Beer, Chips): with support 50 %

A is Beer and B is either Diaper or Chips

Confidence: #(A and B)/#(A)

Expected Confidence: # transactions where

B is present /Total transactions

Lift= Confidence/ Expected Confidence

Rule 1 Beer -> Diaper Confidence = 3/4, Expected Confidence = 3/6Lift = (3/4)/(3/6) = 1.5

Rule 2 Beer -> Chips Confidence = 3/4, Expected Confidence = 4/6Lift = (3/4)/(4/6) = 1.1

Support = (Co-occurrence of A and B)/ Total Transactions.

Let us summarize about the problem*

- Generate set of rules that link two or more products together.
- Each of these rules should have a lift greater than one.
- Also, we are interested in the support and confidence of those rules:
 - Higher confidence rules are ones where there is a higher probability of items on the RHS being part of the transaction given the presence of items on the LHS.
- Recommendations based on these rules to drive a higher response rate.
 - We're also better off actioning rules with higher support first, as these will be applicable to a wider range of instances.

*Problem: How to find rules which can help us in finding patterns?

MBA is through association rules

- We have to generate rules
- 3 Types
 - Actionable Rules: On which you can take action.
 - Trivial Rules: Interesting and need to do more research on.
 - Inexplicable Rules: Complex or uncomprehensible (does not make sense)

Association rules -> Generates rules Example: (X -> Y)

Market Basket -> Assigns business outcome to those rules

Example: X,Y could be sold together

How to make Personalized recommendation

Users who liked "Love Simon" also liked following movies

Solution 3: Collaborative Filtering (CF)

User-based

Find users who have a similar taste of products as the current user.

Similarity is based upon similarity in users' purchasing behaviour.

"User x is similar to user y because both purchased items A, B and C."

Item-based

Recommend items that are similar to the items the user bought.

Similarity is based upon co-occurence of purchases.

"Items A and B were purchased by user x, so they are similar."

Netflix Challenge!

DVD Rental
Utilizing the Inventory

Grand prize

of US\$1,000,000

September 21, 2009

User – User Collaborative Filtering

Similar Users

Movies

Users

	HP1	HP2	НР3	TW	SW1	SW2	SW3
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

- Consider users x and y with rating vectors r_x and r_y
- We need similarity metric Sim(x,y)
- Capture the intuition that Sim(A,B) > Sim(A,C)

Similar Users: Jaccard Similarity

Movies

	HP1	HP2	НР3	TW	SW1	SW2	SW3
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

- Jaccard similarity(A,B) = $\frac{r_A \cap r_B}{r_A \cup r_B}$ Jaccard distance = $1 \frac{r_A \cap r_B}{r_A \cup r_B}$
- Sim (A,B) = 1/5; Sim (A,C) = 2/4
 - Sim(A,B) < Sim(A,C) : Ignores the rating values

Similar Users: Cosine Similarity

Movies

	HP1	HP2	НР3	TW	SW1	SW2	SW3
Α	4	0	0	5	1	0	0
В	5	5	4	0	0	0	0
С	0	0	0	2	4	5	0
D	0	3	0	0	0	0	3

NOTE: Fill empty values by 0

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_2 \|\mathbf{B}\|_2} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

Cosine similarity(A,B) =
$$\frac{4*5 + 0*5 + 0*4 + 5*0 + 1*0 + 0*0 + 0*0}{\text{Sqrt} (4^2 + 0^2 + 0^2 + 5^2 + 1^2 + 0^2 + 0^2) * \text{Sqrt} (5^2 + 5^2 + 4^2 + 0^2 + 0^2 + 0^2 + 0^2)}$$
$$= 0.38$$

Users

Similar Users: Cosine Similarity

Movies

	HP1	HP2	НР3	TW	SW1	SW2	SW3
Α	4	0	0	5	1	0	0
В	5	5	4	0	0	0	0
С	0	0	0	2	4	5	0
D	0	3	0	0	0	0	3

NOTE: Fill empty values by 0

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_2 \|\mathbf{B}\|_2} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

- Cosine similarity(A,B) = $Cos(r_A, r_B)$
- -1 : dissimilar, 0: orthogonal; +1: similar
- Sim (A,B) = 0.38; Sim (A,C) = 0.32
 - Sim(A,B) > Sim(A,C) : but not much

Problem: Treat missing values as negative

Users

Similar Users: Centered Cosine

Normalized ratings by subtracting the row mean

Movies

	HP1	HP2	НР3	TW	SW1	SW2	SW3
Α	4			5	1		
В	5	5	4				
С				2	4	5	
D		3					3

Avg. Rat
10/3
14/3
11/3
6/2 =3

In each row, original value – Avg. Rat

SW2 HP1 HP2 HP3 TW SW1 SW3 Α 2/3 0 5/3 -7/3 0 0 -2/3 0 0 1/3 1/3 0 0 -5/3 1/3 0 4/3 0 0 0 D 0 0 0 0 0 0 0

Each row addition = 0

Ratings are centered around 0.

+: users liked it

- : users did not like it

Similar Users: Centered Cosine (2)

Movies

	HP1	HP2	НР3	TW	SW1	SW2	SW3
Α	2/3	0	0	5/3	-7/3	0	0
В	1/3	1/3	-2/3	0	0	0	0
С	0	0	0	-5/3	1/3	4/3	0
D	0	0	0	0	0	0	0

Also known as pearson correlation.

- Sim (A,B) = 0.09; Sim (A,C) = -0.56
 - Sim(A,B) >> Sim(A,C) : but not much
- Captures intuition better
 - Missing ratings treated as "average"
 - Handles "tougher raters" and "easy raters"

Rating Predictions

- Goal: Prediction for user X and item i
- What we need:
 - Let r_X be the rating for the user X.
 - Let N be the set of k users most similar to X, who have rated item i.

• Option 1:
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$
 (Average) For a neighbor y in (\in) the set N

s is the similarity of the user x and its neighbor y

• Option2:
$$r_{xi} = \frac{\sum_{y \in N} s_{xy} r_{yi}}{\sum_{y \in N} s_{xy}}$$
 (Weighted Average)

Item – Item Collaborative Filtering

Item – Item Collaborative Rating

- For item *i*, find other similar items.
- Estimate rating for item *i* based on ratings for similar items
- Can use some similarity metrics and prediction functions as in useruser model.

•
$$r_{\chi i} = \frac{\sum_{j \in N(i:x)} s_{ij} r_{\chi j}}{\sum_{j \in N(i:x)} s_{ij}}$$
 s_{ij} : similarity of items i and j $r_{\chi i}$: ratings of item i by the user x $r_{\chi i}$: rated by user x.

Item – Item Collaborative Filtering

	users											
	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

Ratings are between 1 to 5 Empty boxes: unknown rating

?: Estimate the rating of movie 1 by the user 5

Neighborhood (N) = 2 Select 2 movies similar to "movie 1" and rated by user 5.

Remember N = 2Select 2 movies similar to "movie 1" and rated by user 5.

$$r_{xi} = \frac{\sum_{j \in N(i:x)} s_{ij} r_{xj}}{\sum_{j \in N(i:x)} s_{ij}}$$

12

3

5

5

2

4

sim(1,m)

1.00

-0.18

0.41

-0.10

-0.31

0.59

Sim = Pearson Coeff.

- 1) Subtract mean rating m_i from each movie i.
 - 1) $m_1 = (1+3+5+5+4)/5 = 3.6$
 - 2) Row 1 = (-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0)
- Compute Cosine similarities between rows

Weighted Average =
$$(0.41*2 + 0.59*3)/(0.41+0.59)$$

User to User Vs Item to Item

- Item-Item outperforms User-User
- Users are more complex than Items
 - Sparse: Users have limited interests (in buying)
 - Not all users can have likes/interests about all the items
- Items are simple: example: limited genres.
- Item similarity makes more sense than Users similarity

Evaluation

If you analyse it as regression problem

- MAE
- Mean Square Error
- Root Mean Square Error

If you analyse it as regression problem

- Problems of RMSE/MAE etc
 - Prediction diversity
 - Prediction context
 - Order of predictions

- Alternative: Precision at top-k
 - Percentage of predictions in the user's top-k withheld ratings

How can we find similar items?

- You can use algorithm like KNN (K-Nearest Neighbor)
- It is a classification algorithm
- But basically you can use the idea of this algorithm for finding similar users ..

Loan Default Problem using KNN

Loan and Age are two input parameters/features
Red and Blue are the training data points
Green is the test data point

Q1 : How to classify (or predict) about the gender of the green data?

Algorithm

- 1) Find K data points which are nearest to the green dot.
- 2) Assign (classify) the color (class) of the majority (among K neighbors) to the green (or the new data point)

Q2: How to find identify which K neighbors are nearest among all the neighbors?

Answer: Use Distance metric

Distance Metrics revisited

Categorical

- Jaccard Distance: Ratio of Intersection/Union
- Hamming Distance

$$D_H = \sum_{i=1}^{\kappa} \left| x_i - y_i \right|$$

$$x = y \Rightarrow D = 0$$

$$x \neq y \Rightarrow D = 1$$

Χ	Υ	Distance
Male	Male	0
Male	Female	1

Continuous

$$\sum_{i=1}^{\kappa} |x_i - y_i|$$

NOTE: Distance is (1- similarity)

How to Pick the value of K?

- Inspect your data to choose the value of K: Visualize your data
- Historically, the optimal value of K=3 to 10
- Large K, reduces the noise but no guarantee
- If K is odd : Avoid ties
- If K is even: Flip a coin (randomly assign) or do not assign the category
- Set aside a data from your training data to determine a good value of K

K-NN

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Υ <table-cell-columns></table-cell-columns>	8000
		1	
48	\$142,000	?	
tance			

 $D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$

We can now use the training set to classify an unknown case (Age=48 and Loan=\$142,000) using Euclidean distance.

If K=1 then the nearest neighbor is the last case in the training set with Default=Y.

K-NN

Age	Loan	Default	Distance	
25	\$40,000	N	102000	
35	\$60,000	N	82000	
45	\$80,000	N	62000	
20	\$20,000	N	122000	
35	\$120,000	N	22000	2
52	\$18,000	N	124000	
23	\$95,000	Υ	47000	
40	\$62,000	Υ	80000	
60	\$100,000	Υ	42000	3
48	\$220,000	Υ	78000	
33	\$150,000	Υ <table-cell-columns></table-cell-columns>	8000	1
		1		
48	\$142,000	?		
once				

 $D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$

We can now use the training set to classify an unknown case (Age=48 and Loan=\$142,000) using Euclidean distance.

With K=3, there are two Default=Y and one Default=N out of three closest neighbors. The prediction for the unknown case is again Default=Y.

Standardized Distance

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	N≪	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Y	0.4437
1	0.41	Y	0.3650
0.7	1.00	Y	0.3861
0.325	0.65	Y	0.3771
	-		
0.7	ariable 0.61	ذ خم	

If K = 1, then green dot = N

Remember: without non standardized, answer is Y

Comparison of MBA & CF

Market Basket Analysis

- Association Rule Mining
- Lacks the personalized approach
- Clustering problem
- Unsupervised approach
- No labeled data is provided
- Scalable
- No serendipity
- Mostly look for popular items

Collaborative Filtering

- User-user or Item-Item Filtering
- Can be used for personalized recomm.
- More of a regression problem
- UnSupervised approach
- Labels (ratings etc) are provided.
- Computationally expensive
- Serendipity possible
- Looks at products in the long tail
- Cons: Cold start, Sparisity, First Rater, popularity bias

Summary

- What is cross and up selling.
- Techniques
 - Popularity based
 - Market Basket Analysis
 - Collaborative Filtering
 - User-User CF
 - Item-Item CF
- K-NN algorithm