CHAPTER-2

- <u>Biot-Savart's Law:</u> States that the differential magnetic field intensity *dH* produced at a point *P* by the differential current element *I dl* is
 - \circ proportional to the product I dl
 - o proportional sin of the angle α between the element and the line joining P to the element
 - Inversely proportional to the square of the distance *R* between *P* and the element

$$dH \propto \frac{I \, dl \sin \alpha}{R^2}$$

$$dH = \frac{kI \, dl \sin \alpha}{R^2}$$

$$k = \frac{1}{4\pi}$$

$$dH = \frac{I \, dl \sin \alpha}{4\pi R^2}$$

$$d\mathbf{H} = \frac{I \ d\mathbf{l} \times \mathbf{a}_R}{4\pi R^2} = \frac{I \ d\mathbf{l} \times \mathbf{R}}{4\pi R^3}$$

•
$$I d\mathbf{l} \equiv \mathbf{K} dS \equiv \mathbf{J} dv$$

•
$$\mathbf{H} = \int_{S} \frac{\mathbf{K} \, dS \times \mathbf{a}_{R}}{4\pi R^{2}}$$

•
$$\mathbf{H} = \int_{v} \frac{\int dv \times \mathbf{a}_{R}}{4\pi R^{2}}$$

(Line Current)

(Surface Current)

(Volume Current)

- Magnetic field due to line current
- Field due to finite length current element

$$\mathbf{H} = \frac{I}{4\pi\rho} (\cos\alpha_2 - \cos\alpha_1) \mathbf{a}_{\phi}$$

• Field due to semi- infinite length element

$$\mathbf{H} = \frac{I}{4\pi\rho} \mathbf{a}_{\phi}$$

$$\mathbf{H} = \frac{I}{2\pi\rho} \mathbf{a}_{\phi}$$

• $\mathbf{a}_{\phi} = \mathbf{a}_{l} \times \mathbf{a}_{\rho}$

Ampere's Circuit Law

• States that the line integral of **H** around a closed path is the same as the net current I_{enc} enclosed by the path.

$$\oint \mathbf{H}.\,d\mathbf{l} = I_{enc}$$

• Applying the Stoke's theorem,

$$I_{enc} = \oint_{L} \mathbf{H}. d\mathbf{l} = \int_{S} (\mathbf{\nabla} \times \mathbf{H}). d\mathbf{S}$$

- By the definition, $I_{enc} = \int_{S} J. dS$
- This also says magnetostatic field is not conservative.
- **H** due to infinite line current:

$$I = \int H_{\phi} \mathbf{a}_{\phi} \cdot \rho d\phi \mathbf{a}_{\phi} = H_{\phi} \int \rho \ d\phi$$

$$\mathbf{H} = \frac{I}{2\pi\rho} \mathbf{a}_{\phi}$$

• **H** due to infinite sheet current:

$$\oint_{L} \mathbf{H}.\,d\mathbf{l} = I_{enc} = k_{y}b$$

$$\mathbf{H} = \begin{cases} \frac{1}{2} k_y \mathbf{a}_x, & z > 0 \\ -\frac{1}{2} k_y \mathbf{a}_x, & z < 0 \end{cases}$$
$$\mathbf{H} = \frac{1}{2} \mathbf{K} \times \mathbf{a}_n$$

• **H** due to infinitely long coaxial transmission line:

$$\mathbf{H} = \begin{cases} \frac{I\rho}{2\pi a^2} \mathbf{a}_{\phi}, & 0 \leq \rho \leq a \\ \frac{I}{2\pi\rho} \mathbf{a}_{\phi}, & a \leq \rho \leq b \\ \frac{I}{2\pi\rho} \left[1 - \frac{\rho^2 - b^2}{t^2 + 2bt} \right] \mathbf{a}_{\phi}, & b \leq \rho \leq b + t \\ 0, & \rho \geq b + t \end{cases}$$

Magnetic Flux Density:

- $\mathbf{B} = \mu_o \mathbf{H}$
- μ_o :permiability of free space= $4\pi \times 10^{-7}$ H/m
- The magnetic flux through a surface S is given by

$$\psi = \int_{S} \mathbf{B} . \, d\mathbf{S}$$

 ψ : Magnetic flux in webers (Wb) B: Magnetic flux density in webers/m² or tesla (T)

• $\psi = \oint_S \mathbf{B} \cdot d\mathbf{S} = 0$ - \rightarrow An isolated magnetic charge does not exist.

•
$$\nabla \cdot \mathbf{B} = 0$$

Differential (Point Form)	Integral Form	Remarks
$\nabla \cdot \mathbf{D} = \rho_v$	$\oint_{S} \mathbf{D}. d\mathbf{S} = \int_{v} \rho_{v} dv$	Gauss's Law
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B}. d\mathbf{S} = 0$	Nonexistence of magnetic monopole
$\nabla \times \mathbf{E} = 0$	$\oint_{L} \mathbf{E} \cdot d\mathbf{l} = 0$	Conservative nature of electrostatic field
$\nabla \times \mathbf{H} = \mathbf{J}$	$\oint_L \mathbf{H}. d\mathbf{l} = \int_S \mathbf{J}. d\mathbf{S}$	Ampere's law

Magnetic Scalar and Vector Potentials

•
$$\mathbf{H} = -\nabla V_m$$
 if $\mathbf{J} = 0$

•
$$\mathbf{B} = \nabla \times \mathbf{A}$$

•
$$V = \int \frac{dQ}{4\pi\epsilon_o r}$$

•
$$\mathbf{A} = \int_{L} \frac{\mu_{o} I d\mathbf{l}}{4\pi R}$$
 (Line Current)

•
$$\mathbf{A} = \int_{S} \frac{\mu_o \mathbf{K} dS}{4\pi R}$$
 (Surface Current)

•
$$\mathbf{A} = \int_{v} \frac{\mu_{o} \mathbf{J} dv}{4\pi R}$$
 (Volume Current)

•
$$\mathbf{B} = \frac{\mu_o}{4\pi} \int_L \frac{Id\mathbf{l}' \times \mathbf{R}}{R^3}$$

•
$$\mathbf{B} = \nabla \times \int_{L} \frac{\mu_{o} I d \mathbf{l}'}{4\pi R}$$

•
$$\mathbf{A} = \int_{L} \frac{\mu_o I d\mathbf{l}'}{4\pi R}$$

•
$$\psi = \oint_S \mathbf{B} . d\mathbf{S} = \oint_S \nabla \times \mathbf{A} . d\mathbf{S}$$

•
$$\psi = \oint_L \mathbf{A} \cdot d\mathbf{l}$$

Forces due to Magnetic Fields

Force on a charged particle:

•
$$\mathbf{F}_e = Q\mathbf{E}$$

•
$$\mathbf{F}_m = Q\mathbf{u} \times \mathbf{B}$$

•
$$\mathbf{F} = \mathbf{F}_e + \mathbf{F}_m = Q(\mathbf{E} + \mathbf{u} \times \mathbf{B})$$

Force on a charged particle:

•
$$J = \rho_v \mathbf{u}$$

•
$$\mathbf{F} = \oint_{L} Id\mathbf{l} \times \mathbf{B}$$

•
$$\mathbf{F} = \int_{S} \mathbf{K} \, dS \times \mathbf{B}$$

•
$$\mathbf{F} = \int_{v} \mathbf{J} \, dv \times \mathbf{B}$$

• **B**: Force per unit current element

Force between two Current Elements:

•
$$d(d\mathbf{F}_1) = I_1 d\mathbf{l}_1 \times d\mathbf{B}_2$$

 $d\mathbf{B}_2 = \frac{\mu_o I_2 d\mathbf{l}_2 \times \mathbf{a}_{R_{21}}}{4\pi R_{21}^2}$
 $d(d\mathbf{F}_1) = \frac{\mu_o I_1 d\mathbf{l}_1 \times (I_2 d\mathbf{l}_2 \times \mathbf{a}_{R_{21}})}{4\pi R_{21}^2}$

$$\mathbf{F}_{1} = \frac{\mu_{0} I_{1} I_{2}}{4\pi} \oint_{L_{1}} \oint_{L_{2}} \frac{d\mathbf{l}_{1} \times (d\mathbf{l}_{2} \times \mathbf{a}_{R_{21}})}{R_{21}^{2}}$$

- This is also known as Ampere's Force Law
- $\mathbf{F}_2 = -\mathbf{F}_1$