H(div; S) 协调的对称张量有限元

2025年6月20日

1 引言

在线弹性方程的混合元方法中,应力 σ 和位移 u 的有限元空间分别为 $H(\text{div};\mathbb{S})$ 和 L^2 ,其中 \mathbb{S} 为对称张量空间。对应的有限元空间 Σ_h 和 V_h 需要满足 Infsup 条件,该条件成立的前提是 $\text{div}\,\Sigma_h = V_h$ 。

对于任意的单纯形 T,令 $\mathbb{B}_k(\operatorname{div},T) := \{ \sigma \in \mathbb{P}_k(T,\mathbb{S}) \mid \sigma|_{\partial T} \cdot \boldsymbol{n} = 0 \}$ 为迹零多项式空间,对于该空间有

$$\operatorname{div} \mathbb{B}_k(\operatorname{div}, T) = \mathbb{P}_{k-1}(T, \mathbb{S}) \cap RM^{\perp}$$

其中 RM^{\perp} 为 RM 的 L^2 正交补空间, $RM := \mathbb{P}_0(T, \mathbb{R}^d) + \mathbb{P}_0(T, \mathbb{K})\boldsymbol{x}$, \mathbb{K} 为 d 维反对称矩阵。对于单纯形网格 T_h ,以及 T_h 上某个 $H(\operatorname{div}, \mathbb{S})$ 协调的有限元空间 Σ_h ,作如下假设:

- (A1) div $\Sigma_T = \mathbb{P}_{k-1}(T, \mathbb{S}), \quad \forall T \in \mathcal{T}_h.$
- (A2) 如下自由度在 Σ_h 上是线性无关的:

$$\mathcal{N}_{F,m{q}}(m{\sigma}) := \int_F (m{\sigma} \cdot m{n}) \cdot m{q} dS, \quad orall m{q} \in \mathbb{P}_1(T,\mathbb{R}^d), F \in \Delta_{n-1}\mathcal{T}_h$$

那么可以得到 $\operatorname{div} \Sigma_h = \mathbb{P}_{k-1}^{-1}(\mathcal{T}_h, \mathbb{S})$ 。其中假设 (A2) 保证了 $\Pi_{T \in \mathcal{T}_h} RM(T) \subseteq \operatorname{div} \Sigma_h$ 。

Hu-Zhang 元是一种 $H(\text{div},\mathbb{S})$ 协调有限元,其形函数空间为 $\mathbb{P}_k(T,\mathbb{S})$,因此自然满足假设 (A1),当 $k \geq d+1$ 时,又满足假设 (A2)。Hu-Zhang 元包含超光滑自由度,其要求在网格的所有小于等于 d-1 维的子单形上都法向连续,这些特点均源自于形函数空间的对称性与光滑性。

为了解决这个问题,形函数空间的选取可以在 $\mathbb{P}_k(T,\mathbb{S})$ 的基础上,加上一些额外的 $H(\text{div};\mathbb{S})$ 协调的函数。这些函数非光滑,在 ∂T 上的迹 $\sigma \cdot n$ 非零,以使假设 (A2) 中的自由度在 $k \leq d$ 时不再线性相关。且为了 (A1) 成立,这些函数要求散度为零。下面给出这些函数的构造方法。

2 可杂交化 H(div; S) 协调有限元

根据弹性复形的恰当性, $H(\text{div}; \mathbb{S})$ 协调且散度为零的函数组成了空间 U 在其对应的微分算子 d 下的像,其中 U 是弹性复形中 $H(\text{div}; \mathbb{S})$ 前面的空间。

$$U \xrightarrow{\mathrm{d}} H(\mathrm{div}; \mathbb{S}) \xrightarrow{\mathrm{div}} L^2(\mathbb{R}^d)$$
 (1)

因此,可以选取 U 中的函数在 d 下的像作为额外的函数,为了构造非无穷光滑函数引入如下的分裂单纯形。

2.1 分裂单纯形

对于一个 d 维单纯形 T, 其 d+1 个顶点为 x_0, \dots, x_d , 定义

$$oldsymbol{x}_c = rac{1}{d+1} \sum_{i=0}^d oldsymbol{x}_i, \quad oldsymbol{t}_{ij} = oldsymbol{x}_j - oldsymbol{x}_i, \quad oldsymbol{t}_{ic} = oldsymbol{x}_c - oldsymbol{x}_i$$

对于 $f \in \Delta(T)$,定义 $\mathbf{t}_{fc} = \mathbf{t}_{f[0]c} = \mathbf{x}_c - \mathbf{x}_{f[0]}$ 。通过连接 \mathbf{x}_c 和 \mathbf{x}_i 可以将 T 分裂为 d+1 个 d 维单纯形,记为 T^R 。 T_i 为 T^R 中不包含 \mathbf{x}_i 的单纯形,对于 $f \in \Delta_{d-1}T$, T_{f^*} 包含 f。 χ_{T_i} 为 T_i 上的特征函数。

图 1: 分裂单纯形

 λ_i 为 T^R 上连续的分片线性函数,满足

$$\lambda_i(\boldsymbol{x}_j) = \delta_{ij}, \quad \forall j = 0, \dots, d, \quad \text{and} \quad \lambda_i(\boldsymbol{x}_c) = 0.$$

Lemma 1. 对于 T^R 中的一个四面体 $T_i, 0 \le i \le d$, $\{t_{cm}\}_{m=0, m \ne i}^d$ 是 \mathbb{R}^d 中的一个基,且 $\{\nabla \lambda_m|_{T_i}\}_{m=0, m \ne i}^d$ 是其对偶基。

2.2 二维情况

在二维情况下, 弹性复形中 $U = H^2$, 微分算子 d = J 定义如下:

$$J(u) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \nabla^2 u \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 (2)

现在定义分裂三角形 T^R 上的 H^2 协调函数。令三个顶点为 $\boldsymbol{x}_0, \boldsymbol{x}_1, \boldsymbol{x}_2$,对于顶点 v,令 $[i,j]=v^*$,定义

$$\psi_v = \lambda_v^3 \lambda_i \chi_{T_j} - \lambda_v^3 \lambda_j \chi_{T_i}$$

Lemma 2. $\psi_v \in H^2(T^R)$.

证明. 只需证明 $\nabla \psi_v$ 在 T^R 上连续, 即在边 [v,c],[i,c],[j,c] 上跳量为零。

$$\nabla \psi_v = (3\lambda_v^2 \lambda_i \nabla \lambda_v + \lambda_v^3 \nabla \lambda_i) \chi_{T_i} - (3\lambda_v^2 \lambda_j \nabla \lambda_v + \lambda_v^3 \nabla \lambda_j) \chi_{T_i}$$

因为 λ_v 在 [i,c], [j,c] 上为零,所以 $\nabla \psi_v$ 在这两条边上跳量为零。在 [v,c] 上 λ_i 和 λ_j 都是零,因此 $[\![\nabla \psi_v]\!]|_{[v,c]} = \lambda_v^3(\nabla \lambda_i + \nabla \lambda_j)$ 。因为 T_i 和 T_j 面积相同,所以 $\nabla \lambda_i$ 和 $\nabla \lambda_j$ 方向相反,大小相等,所以 $\nabla \psi_v$ 在 [v,c] 上跳量为零。引理得证。

显然 ψ_v 与 $\mathbb{P}_k(T,\mathbb{S})$ 线性无关,更进一步的有以下引理:

Lemma 3. 不存在 $\mathbf{q} \in \mathbb{P}_k(T,\mathbb{S})$,使得 $(\mathbf{q} - J(\psi_v))|_{\partial T} \cdot \mathbf{n} = 0$ 。

证明. $J(\psi_v)$ 在 T^R 上不连续:

$$J(\psi_v): (oldsymbol{t}_{cv} \otimes oldsymbol{t}_{cv}) =
abla^2 \phi_v: (oldsymbol{n}_{cv} \otimes oldsymbol{n}_{cv}) = rac{\partial^2 \psi_v}{\partial n_{cv}^2}$$

因为 ψ_v 在 [v,c] 上二阶法向导数不连续,所以 $J(\psi_v)|_{T_i}: (\boldsymbol{t}_{ci}\otimes\boldsymbol{t}_{ci})$ 和 $J(\psi_v)|_{T_j}: (\boldsymbol{t}_{cj}\otimes\boldsymbol{t}_{cj})$ 在 \boldsymbol{x}_v 上不相等。所以 $J(\psi_v)|_{\partial T}\cdot\boldsymbol{n}$ 在 ∂T 上不连续。

若存在 $\mathbf{q} \in \mathbb{P}_k(T,\mathbb{S})$,使得 $(\mathbf{q} - J(\psi_v))|_{\partial T} \cdot \mathbf{n} = 0$,那么 \mathbf{q} 在 ∂T 上间断,显然不可能,因此引理得证。

Theorem 1. 定义 $\Sigma_T = \mathbb{P}_k(T,\mathbb{S}) + \operatorname{span}\{J(\psi_i)\}_{i=0}^2$, 那么 $\Sigma_T \in H(\operatorname{div};\mathbb{S})$, 且在 Σ_T 上如下自由度是唯一可解的:

$$(\boldsymbol{\sigma} \cdot \boldsymbol{n}, \boldsymbol{q}) \quad \forall e \in \Delta_1 T, \boldsymbol{q} \in \mathbb{P}_k(T, \mathbb{R}^2),$$
 (3)

$$(\boldsymbol{\sigma}: \boldsymbol{q}) \quad \forall \boldsymbol{q} \in \mathbb{B}_k(\text{div}; T)$$
 (4)

证明. $H(\text{div};\mathbb{S})$ 协调性显然,现在证明自由度的唯一可解性。首先统计自由度的个数,第一种自由度有 6(k+1) 个,根据几何分解,第二种自由度有 $\dim(\mathbb{B}_k(\text{div};T))=3(k-1)(k-2)/2+3(k-1)$ 个,空间 Σ_T 的维数为 3(k+1)(k+2)/2+3,经过计算可知空间维数与自由度个数相同。令 $\sigma \in \Sigma_T$ 且 σ 的自由度为零,因为 $\sigma \cdot \mathbf{n} \in \mathbb{P}_k(T,\mathbb{R}^2)$,所以自由度(3)为零说明 $\sigma \cdot \mathbf{n}|_{\partial T}=0$,根据引理 6 可知 $\sigma \in \mathbb{B}_k(\text{div};T)$ 。而自由度(4)为零说明 $\sigma=0$,因此自由度唯一可解性得证。

定义

 $\Sigma_h := \{ \boldsymbol{\sigma} \in L^2(\Omega) \mid \boldsymbol{\sigma}|_T \in \Sigma_T, \forall T \in \mathcal{T}_h, \text{ and Dof(3) is single valued} \}.$

那么 Σ_h 是一个 $H(\text{div}; \mathbb{S})$ 协调有限元空间。

2.3 任意维的情况

根据复形的方法可以将该方法推广到任意维的情况,但 2 维以上空间的弹性复形构造复杂,本节给出另外一种构造性的方法。首先考察前面章节中,在 2 维情况下增加的函数 $J(\psi_v)$ 的形式,记

$$\nabla^{\perp} f = \begin{pmatrix} -\frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial x} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \nabla f$$

为 ∇f 的旋转。那么根据 J 的定义 (2), 有

$$J(\psi_v) = 6(\lambda_v^2 \operatorname{sym}(\nabla^{\perp} \lambda_i \otimes \nabla^{\perp} \lambda_v) + \lambda_v \lambda_i \nabla^{\perp} \lambda_v \otimes \nabla^{\perp} \lambda_v) \chi_{T_j}$$
$$-6(\lambda_v^2 \operatorname{sym}(\nabla^{\perp} \lambda_j \otimes \nabla^{\perp} \lambda_v) + \lambda_v \lambda_j \nabla^{\perp} \lambda_v \otimes \nabla^{\perp} \lambda_v) \chi_{T_i}$$

注意,存在常数 c_1,c_2 ,使得

$$\nabla^{\perp} \lambda_v = c_1 \boldsymbol{t}_{ci} \chi_{T_j} + c_2 \boldsymbol{t}_{cj} \chi_{T_i}$$

记:

$$\psi_v^0 = \lambda_v \lambda_i (\boldsymbol{t}_{ci} \otimes \boldsymbol{t}_{ci}) \chi_{T_j}, \quad \psi_v^1 = \lambda_v \lambda_j (\boldsymbol{t}_{cj} \otimes \boldsymbol{t}_{cj}) \chi_{T_i},$$
$$\psi_v^2 = \lambda_v^2 (\operatorname{sym}(\boldsymbol{t}_{cv} \otimes \boldsymbol{t}_{ci}) \chi_{T_j} - \operatorname{sym}(\boldsymbol{t}_{cv} \otimes \boldsymbol{t}_{cj}) \chi_{T_i})$$

那么 $J(\psi_v)$ 是 $\psi_v^0, \psi_v^1, \psi_v^2$ 的一个线性组合,有一下引理:

Lemma 4. 上面定义的函数 $\psi_n^0, \psi_n^1, \psi_n^2 \in H(\text{div}; \mathbb{S})$ 。且存在某个线性组合散度为零。

证明. 只需证明在内部边 [v,c], [i,c], [j,c] 上的法向连续。现在 ψ_v^0 和 ψ_v^1 在这三条边上都是零,而 ψ_v^2 在 [i,c] 和 [j,c] 上是零的,且在 [v,c] 上,

$$\llbracket \psi_v^2 |_{[v,c]} \cdot \boldsymbol{n}_{[v,c]} \rrbracket = \frac{1}{2} \lambda_v^2 ((\boldsymbol{t}_{ci} + \boldsymbol{t}_{cj}) \cdot \boldsymbol{n}_{[v,c]}) \boldsymbol{t}_{cv}$$

因为

$$t_{ci} + t_{cj} = x_c - x_i + x_c - x_j = x_v - x_c = -t_{cv},$$

所以跳量为零。 $H(\text{div};\mathbb{S})$ 协调性得证。因此可以计算三个函数的散度,根据 $\nabla \lambda_v|_{T_i} \perp \boldsymbol{t}_{cj}$ 可得

根据上面的引理可知,可以使用构造性的方法来构造我们需要的函数,其关键是张量部分为 $\{t_{c0}, t_{c1}, \cdot, t_{cd}\}$ 之中的某两个向量的张量积,因为这些向量与 $\{\nabla \lambda_0, \nabla \lambda_1, \cdots, \nabla \lambda_d\}$ 具有某种对偶性见引理 1,使得构造的函数的散度易于计算。现在我们将该构造方法推广到任意维。

考虑 d 维单纯形 T, e 是 T 上的一个 l 维面, l < d - 1. 对于 $\alpha \in \mathbb{T}_k^l$, 定义

$$\lambda_e^{\alpha} = \lambda_{e[0]}^{\alpha_0} \lambda_{e[1]}^{\alpha_1} \cdots \lambda_{e[l]}^{\alpha_l}$$

我们类似与上面的方法,定义三类 $H(\mathrm{div};\mathbb{S})$ 协调的函数: 对于 $\alpha \in \mathring{\mathbb{T}}_k^l = \{\alpha \in \mathbb{T}_k^l \mid \alpha_i \neq 0, \forall i = 0, \cdots, l\}, \ i < j \in e^*,$ 定义

$$\psi_{ij,0}^{e,\alpha} = \lambda_e^{\alpha - \epsilon_0} \lambda_i \boldsymbol{t}_{ci} \otimes \boldsymbol{t}_{ci} \chi_{T_j}$$

$$\psi_{ij,1}^{e,\alpha} = \lambda_e^{\alpha - \epsilon_0} \lambda_j \boldsymbol{t}_{cj} \otimes \boldsymbol{t}_{cj} \chi_{T_i}$$

$$\psi_{ij,2}^{e,\alpha} = \lambda_e^{\alpha} (\operatorname{sym}(\boldsymbol{t}_{ce} \otimes \boldsymbol{t}_{ci}) \chi_{T_j} - \operatorname{sym}(\boldsymbol{t}_{ce} \otimes \boldsymbol{t}_{cj}) \chi_{T_i})$$

其中 $\epsilon_0 = (1,0,\cdots,0)$,是一个长度为 l+1 的数组。我们有以下引理:

Lemma 5. $\forall \alpha \in \mathring{\mathbb{T}}_k^l$, $i < j \in e^*$, 上面定义的函数 $\psi_{ij,0}^{e,\alpha}, \psi_{ij,1}^{e,\alpha}, \psi_{ij,2}^{e,\alpha} \in H(\mathrm{div};\mathbb{S})$ 。且存在某个线性组合散度为零。

证明. 对于 $f \in \Delta T$ 定义 $\bar{f} = f \cup \{x_c\} \in \Delta T^R$ 为 T^R 的一个内部面。我们只需要证明对于任意的 $f \in \Delta_{d-2}T$,三类函数在 \bar{f} 上的法向连续。

首先讨论 $\psi_{ij,0}^{e,\alpha}$ 的协调性, $\psi_{ij,1}^{e,\alpha}$ 证明类似,分情况讨论:若 $\bar{f} \notin \Delta_{d-1}T_j$ 那么显然 $\psi_{ij,0}^{e,\alpha}$ 在 \bar{f} 上为零。考虑 $\bar{f} \in \Delta_{d-1}T_j$ 的情况,令 $q = T_i \setminus \bar{f}$,若 q = i,那么 λ_i 在 \bar{f} 上为零,这说明 $\psi_{ij,0}^{e,\alpha}$ 在 \bar{f} 上为零,若 $q \neq i$,记那么 $\nabla \lambda_q$ 是 \bar{f} 上的一个法向量,根据引理 1 中的对偶性, $\nabla \lambda_q \cdot \boldsymbol{t}_{ci} = 0$,所以 $\psi_{ij,0}^{e,\alpha}$ 在 \bar{f} 上的法向分量为零。所以 $\psi_{ij,0}^{e,\alpha} \in H(\mathrm{div};\mathbb{S})$ 。

现在讨论 $\psi_{ij,2}^{e,\alpha}$ 的协调性,分情况讨论:若 $f \notin i^*$ 且 $f \notin j^*$,那么根据定义 $\psi_{ij,2}^{e,\alpha}$ 在 \bar{f} 上为零。考虑 $f \in j^*$ 的情况,即 $\bar{f} \in \Delta_{d-1}T_j$,记 $q = T_j \setminus \bar{f}$,若 q = e[0],那么 λ_e^{α} 在 \bar{f} 上为零,从而 $\psi_{ij,2}^{e,\alpha}$ 在 \bar{f} 上为零。若 $q \neq e[0]$ 且 $q \neq i$,由于 $\nabla \lambda_q$ 是 \bar{f} 上的一个法向量,根据引理 1 中的对偶性, $\nabla \lambda_q \cdot \boldsymbol{t}_{ce} = \nabla \lambda_q \cdot \boldsymbol{t}_{ci} = 0$,所以 $\psi_{ij,2}^{e,\alpha}$ 在 \bar{f} 上的法向分量为零。若 q = i,那么 $f = [i,j]^*$ 。对 $f \in i^*$ 的情况应用相同的论证方法,我们最终只需要对 $f = [i,j]^*$ 的情况进行讨论。此时 $\nabla \lambda_i |_{T_i}$ 和 $\nabla \lambda_j |_{T_i}$ 是 \bar{f} 上的法向量,且根据 T_i 和 T_j 体积相同可知 $\nabla \lambda_i |_{T_j} = -\nabla \lambda_j |_{T_i}$,由于 $i,j \in e^*$,所以

$$\nabla \lambda_i |_{T_i} \cdot \boldsymbol{t}_{ci} = \nabla \lambda_j |_{T_i} \cdot \boldsymbol{t}_{cj} = 0, \quad \nabla \lambda_i |_{T_i} \cdot \boldsymbol{t}_{ci} = \nabla \lambda_j |_{T_i} \cdot \boldsymbol{t}_{cj} = 1$$

取 $n_{\bar{f}} = \nabla \lambda_i |_{T_j}$, 那么:

$$\llbracket \psi_{ij,2}^{e,\alpha} \cdot \boldsymbol{n}_{\bar{f}} \rrbracket |_{\bar{f}} = \frac{1}{2} \lambda_e^{\alpha} ((\boldsymbol{t}_{ci} + \boldsymbol{t}_{cj}) \cdot \boldsymbol{n}_{\bar{f}}) \boldsymbol{t}_{ce} = \frac{1}{2} \lambda_e^{\alpha} (\boldsymbol{t}_{ci} + \boldsymbol{t}_{cj}) \cdot \nabla \lambda_i |_{T_j} \boldsymbol{t}_{ce} = 0$$

协调性得证。现在计算三类函数的散度,根据引理 1 中的对偶性,由于 $i,j \in e^*$ 所以

$$\begin{aligned} \operatorname{div}(\psi_{ij,0}^{e,\alpha}) &= \lambda_e^{\alpha - \epsilon_0} \boldsymbol{t}_{ci} \chi_{T_j}, \\ \operatorname{div}(\psi_{ij,1}^{e,\alpha}) &= \lambda_e^{\alpha - \epsilon_0} \boldsymbol{t}_{cj} \chi_{T_i}, \\ \operatorname{div}(\psi_{ij,2}^{e,\alpha}) &= \frac{\alpha_0}{2} \lambda_e^{\alpha - \epsilon_0} (\boldsymbol{t}_{ci} \chi_{T_j} - \boldsymbol{t}_{cj} \chi_{T_i}) \end{aligned}$$

$$\Rightarrow \psi_{ij}^{e,\alpha} = -\frac{\alpha_0}{2} \psi_{ij,0}^{e,\alpha} + \frac{\alpha_0}{2} \psi_{ij,1}^{e,\alpha} + \psi_{ij,2}^{e,\alpha}$$
 那么 $\operatorname{div}(\psi_{ij}^{e,\alpha}) = 0$.

Lemma 6. 不存在 $\mathbf{q} \in \mathbb{P}_k(T,\mathbb{S})$, 使得 $(\mathbf{q} - \psi_{ij}^{e,\alpha})|_{\partial T} \cdot \mathbf{n} = 0$ 。

证明. 证明与引理 6 类似。

Theorem 2. $\diamondsuit V_T := \mathbb{P}_k(T,\mathbb{S}) + \bigoplus_{l=0}^{d-2} \bigoplus_{e \in \Delta_l T} \operatorname{span}(\Phi_e^k)$, 其中:

$$\Phi_e^k = \{ \psi_{ij}^{e,\alpha} \mid i < j \in e^*, \alpha \in \mathring{\mathbb{T}}_k^l \}$$

那么 $V_T \in H(\text{div}; \mathbb{S})$ 。且在 V_T 上如下自由度是唯一可解的:

$$(\boldsymbol{\sigma} \cdot \boldsymbol{n}, \boldsymbol{q})_F \quad \forall F \in \Delta_{d-1} T, \boldsymbol{q} \in \mathbb{P}_k(T, \mathbb{R}^d),$$
 (5)

$$(\boldsymbol{\sigma}: \boldsymbol{q}) \quad \forall \boldsymbol{q} \in \mathbb{B}_k(\text{div}; T)$$
 (6)

证明. 证明与定理1类似。

定义全局空间

$$\Sigma_h := \{ \boldsymbol{\sigma} \in L^2(\Omega) \mid \boldsymbol{\sigma}|_T \in V_T, \forall T \in \mathcal{T}_h, \text{ and Dof}(5) \text{ is single valued} \}$$

Theorem 3. div $\Sigma_h = \mathbb{P}_{k-1}^{-1}(\mathcal{T}_h, \mathbb{S})$,且存在常数 C > 0,使得

$$\sup_{\boldsymbol{\tau} \in \Sigma_h} \frac{(\operatorname{div} \boldsymbol{\tau}, \boldsymbol{v})}{\|\boldsymbol{\tau}\|_{H(\operatorname{div})}} \ge C \|\boldsymbol{v}\|_{L^2} \tag{7}$$

证明.

3 数值实验

3.1 线弹性方程的混合元方法

设 Ω 为 \mathbb{R}^d (d=2,3) 中的多边形区域,边界为 $\partial\Omega$,我们考虑以下弹性问题:

$$\begin{cases} \mathcal{A}(\boldsymbol{\sigma}) - \varepsilon(\boldsymbol{u}) = 0, & \text{in } \Omega, \\ -\text{div}\boldsymbol{\sigma} = \boldsymbol{f}, & \text{in } \Omega, \\ \boldsymbol{u} = 0, & \text{in } \partial\Omega, \end{cases}$$

其中, σ 是应力张量, u 是物体的位移向量, f 是体力, $\varepsilon(u)$ 和 $\mathcal{A}(\sigma)$ 定义如下:

$$\varepsilon(\boldsymbol{u}) = \frac{1}{2}(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T), \quad \mathcal{A}(\boldsymbol{\sigma}) = \lambda_0 \boldsymbol{\sigma} - \lambda_1 \mathrm{tr}(\boldsymbol{\sigma})I.$$

令 λ 和 μ 是拉梅(Lamé)常数,上式中 $\lambda_0 = \frac{1}{2\mu}$ 和 $\lambda_1 = \frac{\lambda}{2\mu(2\mu+d\lambda)}$,I 是单位张量。将 Ω 划分为一组单纯形网格 \mathcal{T}_h ,并定义空间 Σ_h 和 $V_h := \mathbb{P}_{k-1}^{-1}(\mathcal{T}_h)$,线弹性方程的混合元方法为: 找到 $\sigma_h \in \Sigma_h$ 和 $u_h \in V_h$,使得

$$a(\boldsymbol{\sigma}_h, \boldsymbol{\tau}_h) + b(\boldsymbol{\tau}_h, \boldsymbol{u}_h) = 0, \quad \forall \boldsymbol{\tau}_h \in \Sigma_h,$$

$$b(\boldsymbol{\sigma}_h, \boldsymbol{v}_h) = (-\boldsymbol{f}, \boldsymbol{v}_h), \quad \forall v \in V_h,$$
(8)

其中

$$a(\boldsymbol{\sigma}_h, \boldsymbol{\tau}_h) = (\mathcal{A}(\boldsymbol{\sigma}_h), \boldsymbol{\tau}_h), \quad b(\boldsymbol{\tau}_h, \boldsymbol{u}_h) = (\operatorname{div} \boldsymbol{\tau}_h, \boldsymbol{u}_h)$$

3.2 二维

令真解为 $u = (\sin(5x)\sin(7y), \cos(5x)\cos(4y))$, $\Omega = (0,1)^2$, $\lambda_0 = 4$, $\lambda_1 = 1$ 。图 2 给出了 k = 2, 3, 5 时的数值结果,中可以看到, $||\boldsymbol{\sigma} - \boldsymbol{\sigma}_h||_{L^2} = O(h^{k+1})$ 和 $||\boldsymbol{u} - \boldsymbol{u}_h||_{L^2} = O(h^k)$ 。

图 2: k = 2, 3, 5 时的数值结果