

University of Central Punjab

Faculty of Information Technology

Data Structures and Algorithms Spring 2022

	Lab 11
Topic	 Trees ADT Binary Search Tree (BST) Recursion
Objective	The basic purpose of this lab is to practice the insertion of BST and traversal of BST

Instructions:

- Indent your code.
- Comment your code.
- Use meaningful variable names.
- Plan your code carefully on a piece of paper before you implement it.
- Name of the program should be same as the task name. i.e. the first program should be Task_1.cpp
- void main() is not allowed. Use int main()
- You have to work in multiple files. i.e separate .h and .cpp files
- You are not allowed to use system("pause")
- You are not allowed to use any built-in functions
- You are required to follow the naming conventions as follow:
 - o <u>Variables:</u> firstName; (no underscores allowed)
 - o <u>Function:</u> getName(); (no underscores allowed)
 - O <u>ClassName:</u> BankAccount (no underscores allowed)

Students are required to complete the following tasks in lab timings.

Task 1

Create a C++ generic abstract class Node

Attributes:

- 1. Type data;
- 2. Node * left_child;
- 3. Node * right_child;

Functions:

- Write parameterized constructor with default arguments for the above class.
- Write Copy constructor for the above class.
- Write Destructor for the above class.

Task 2

Create an abstract class tree using the node class created in Task 1:

Attributes:

1. Node *Root

Functions:

- Virtual void insert_node(Type value) =0;
 - This functions inserts a node in the binary search tree
- Virtual void Print_inOrder()= 0;

This functions traverse and prints all the values of binary search tree the tree in order method

• Virtual void Print PostOrder()= 0;

This functions traverse and prints all the values of binary search tree the tree post order method

- Virtual void Print_PreOrder()= 0;
 - This functions traverse and prints all the values of binary search tree the tree pre order method
- Write parameterized constructor with default arguments for the above class.
 - Write Copy constructor for the above class.
 - Write Destructor for the above class.

Task 3

Create a class BST by using the abstract class created in Task 2. Override already declared virtual method "Insert_node()" according to BST and also implement other virtual methods.

Attributes:

1. Node *Root

Functions:

• Bool is_Bst_Empty()

This functions check whether the binary search tree is empty or not

- Write parameterized constructor with default arguments for the above class.
 - Write Copy constructor for the above class.
 - Write Destructor for the above class.

Binary Search Tree:

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned properties -

- The value of the key of the left sub-tree is less than the value of its parent (root) node's key.
- The value of the key of the right sub-tree is greater than or equal to the value of its parent (root) node's key.

(a) Inorder

(Left, Root, Right):10 14 19 27 31 35 42

- (b) Preorder (Root, Left, and Right): 27 14 10 19 35 31 42
- (c) Postorder (Left, Right, and Root): 10 19 14 31 42 35 27