$-4+\sqrt{8}$ dla x=0; funkcja rosnąca w $(-\sqrt{8},-\sqrt{7})$ oraz w $(0,\sqrt{7})$; malejąca w $(-\sqrt{7},0)$ oraz w $(\sqrt{7},\sqrt{8})$; wypukła w (-2,2); wklęsła w $(-\sqrt{8},-2)$ oraz w $(2,\sqrt{8})$; punkty przegięcia (-2,0),~(2,0), proste $x=-\sqrt{8}$ oraz $x=\sqrt{8}$ styczne do wykresu funkcji. Wykres funkcji przedstawiono na rysunku 9.

14.1. 9.

14.2.
$$2\pi \left(3+2\sqrt{3}\right)$$

14.3. a)
$$m = -\frac{1}{2}$$
; b) $m = \frac{4}{3}$; c) $m = 0$ lub $m = 2\sqrt{3}$.

14.5. Elipsa o równaniu $\frac{x^2}{36} + \frac{(y-1)^2}{4} = 1$, środku S(0,1) i półosiach $a=6,\ b=2$. Pole figury wynosi $8\pi - 6\sqrt{3}$.

14.6. $+\infty$.

14.7. a)
$$\frac{1}{20}$$
; b) $\frac{7}{20}$.

14.8.
$$\frac{\sqrt{2} - \cos \alpha}{2 \sin \alpha} a, \quad \alpha \in \left(0, \frac{\pi}{2}\right).$$

15.1. 12 km/h, 15 km/h, AB = 27 km.

15.2.
$$\left(-\infty, -\sqrt{3}\right] \cup (2, \infty).$$

15.3.
$$108\sqrt{3} \text{ m}^2, \frac{405}{4}\sqrt{3} \text{ m}^3.$$

15.4. $w_n = 1600 + \frac{8000}{3} \left(\left(\frac{203}{200} \right)^{n-1} - 1 \right)$, pensja w kwietniu 2002 roku wynosi 1806,09 zł, średnia pensja w 2002 roku wynosi 1827,96 zł.

15.5. $f^{-1}(x) = \sqrt[3]{x}, \ x \in \mathbf{R}$. Wykres funkcji h przedstawiono na rysunku 10.

15.6.
$$\frac{\pi}{12} + k \frac{\pi}{3}, \ k \in \mathbf{Z}.$$