Question 1.

What is the complexity of Insertion sort for an input scenario where two numbers inside every consecutive pair of a sorted array are switched. For example, $A = [7, 6, 9, 8, 11, 10, 12, 11, ..., a_j, a_{j-1}, ..., a_n, a_{n-1}]$.

Question 2.

Every patient must get an appointment beforehand to go to the Akdeniz University hospital on a particular day. Appointed patients for each day are given distinct patient numbers starting from 1. Hence, the first appointed patient gets the patient number 1, the second appointed patient gets 2 and so on. Unfortunately, the patients come to their appointments in a totally random order. Also, some patients do not come to their appointments. Assume that m patients got patient numbers on a particular day and n<m of them came to their appointment. These patients' patient numbers are stored in an n-dimensional array A ordered with respect to their arrival times (i.e. not their patient numbers). Give an O(n) average-time complexity algorithm to find the patient with the lowest patient number who did not show up for his/her appointment on that day. For example, let m=20 and n=11 with A=[16,13,9,5,4,13,1,6,7,8,2]. Then, the algorithm must return 3.

Hint: Divide-and-conquer.

Question 3.

Let $f(n) \ge 0$, $g(n) \ge 0$ be two functions, and a > 0 be a constant. State whether the statements below are true or not. For each statement that you think is true, show that it is true with a formal argument based on the definitions of asymptotic notations. For false statements, give a counterexample.

(a) $f(2n)=\Theta(f(n))$.

False. Counter-example: Choose $f(n)=2^n$

(b) If $f(n)=0(n^a)$, then $f(2n)=0(n^a)$.

True. Formal argument: By $f(n) = O(n^a)$, there exists a c such that $f(n) <= cn^a$ for all $n >= n_0$. Let's define a new variable z=2n. Since z=2n > n, $f(z=2n) <= cz^a$ for all $z >= 2n_0$.

(c) If f(n) = O(g(n)), $log(f(n)) \ge 0$ and $log(g(n)) \ge 0$, then log(f(n))= O(log(g(n)))

False. Counter-example: Choose f(n)=2, g(n)=1.

(d) If $f(n)\geq 1$, then f(n)+a=0(f(n)).

True. Formal argument: We need to find positive constants c and n_0 such that f(n)+a<=cf(n) for all $n>=n_0$. Choose c=a+1. Then, we need to show if a<=af(n) is really true. Yes, due to the given condition $f(n)\geq 1$.