Sep 21, 2021 DimA Mikhaylov Homework#3

Stat 6021: Homework Set 3

(2) HW3_start. Rmd" is a Hacked on UVA collab.

- 1. (R required) We will use the dataset "Copier.txt" for this question. The Tri-City Office Equipment Corporation sells an imported copier on a franchise basis and performs preventive maintenance and repair service on this copier. The data have been collected from 45 recent calls on users to perform routine preventive maintenance service; for each call, Serviced is the number of copiers serviced and Minutes is the total number of minutes spent by the service person.
 - (a) What is the response variable in this analysis? What is predictor in this analysis?
 - (b) Produce a scatterplot of the two variables. How would you describe the relationship between the number of copiers serviced and the time spent by the service person?
 - (c) Use the lm() function to fit a linear regression for the two variables. Where are the values of $\hat{\beta}_1$, $\hat{\beta}_0$, R^2 , and $\hat{\sigma}^2$ for this linear regression?
 - (d) Interpret the values of $\hat{\beta}_1$, $\hat{\beta}_0$ contextually. Does the value of $\hat{\beta}_0$ make sense in this context?
 - (e) Use the anova() function to produce the ANOVA table for this linear regression. What is the value of the ANOVA F statistic? What null and alternative hypotheses are being tested here? What is a relevant conclusion based on this ANOVA F statistic?
 - 2. (Do not use R in this question) Suppose that for n=6 students, we want to predict their scores on the second quiz using scores from the first quiz. The estimated regression line is

$$\hat{y} = 20 + 0.8x.$$

(a) For each individual observation, calculate its predicted score on the second quiz \hat{y}_i and the residual e_i . You may show your results in the table below.

$$\hat{y}_{i} = \hat{\beta}_{o} + \hat{\beta}_{1} \cdot x_{i}$$

$$\beta_{o} = \lambda_{0}, \quad \beta_{1} = 0.8$$

$$e_{i} = y_{i} - \hat{y}_{i}$$

$\overline{x_i}$	70	75	80	80	85	90
y_i	75	82	80	86	90	91
$\frac{\hat{y_i}}{\hat{y_i}}$	76	30	84	84	88	92
e_i	-1	2	-4	2	2	-1

1

$$\bar{y} = 84$$
 $RSS = \sum (\hat{y}_i - \bar{y})^2 =$
 $= 160 \Rightarrow MSR = \frac{160}{1} = 160$

(b) Complete the ANOVA table for this dataset below. Note: Cells with *** in them are typically left blank.

n=6, k=1
def(num)=1
defair) = 6-2=4

	DF	SS	MS	F-stat	p-value
Regression	1	160	160	21,33	0.0099
Residual	4	30	7.5	***	***
Total	5	190	***	***	***

 $SSE = \sum (y_i - \hat{y})^2 =$ = 1+4+16+4+4+1 = 30 => MSE = 30 7.5

Follow = 6-2=4Total 5 190 *** ***

F = $\frac{MSR}{MSE} = \frac{160}{7.5} = 21.33$ (c) Calculate the sample estimate of the variance σ^2 for the regression model.

(d) What is the value of R^2 have? $R^2 = 28$

(d) What is the value of R^2 here? $R = \frac{RSS}{SST} = \frac{160}{190} = 0.84$ (e) Carry out the ANOVA F test. What is an appropriate conclusion?

Reject Ho that $\beta_1 = 0 \Rightarrow accept$ Ha that β_1 is not zero with ρ -value = 0.009

3. (No R required) The least squares estimators of the simple linear regression model are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
(1)

and

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}. \tag{2}$$

These are found by minimizing the sum of squared errors, i.e., minimize

$$SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$
 (3)

Recall that fitted values and residuals from the fitted regression line are defined as

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \tag{4}$$

and

$$e_i = y_i - \hat{y}_i. (5)$$

Using equations (1) to (5), show that the following equalities, (6) to (9), hold:

$$\sum_{i=1}^{n} e_i = 0 \tag{6}$$

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \hat{y}_i \tag{7}$$

$$\sum_{i=1}^{n} x_i e_i = 0 \tag{8}$$

$$\sum_{i=1}^{n} \hat{y}_i e_i = 0. (9)$$

Hint: Deriving the partial derivatives of the SS_{res} , (3), with respect to $\hat{\beta}_1$ and $\hat{\beta}_0$ will be useful.

Also, give a one-sentence interpretation of what the equalities (6) to (9) mean.

Using least-squares evikeion for astimating regression parameters from:

S (
$$\beta_0, \beta_1$$
) = $\sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} (y_i - (\beta_0 + \hat{\beta}_1 x_i))$ from (5) and (4)

Using least-squares evikeion for astimating regression parameters from:

S (β_0, β_1) = $\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$ and least-squares estimators must satisfy

 $\frac{2S}{2\beta_0} = -2\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$ and $\frac{2S}{2\beta_1} = -2\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0$

Taxing derivative with respect to β_0 will give $\sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} e_i \cdot 1 = 0$

Hand taxing derivative with respect to β_1 gives $\sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} (y_i - \hat{y}_i) = 0$

Therefore, $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \hat{y}_i$. Finally, since $\sum_{i=1}^{n} e_i = 0 = \infty$

Therefore, $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \hat{y}_i$. Finally, since $\sum_{i=1}^{n} e_i = 0 = \infty$

Therefore from $\sum_{i=1}^{n} \hat{y}_i$ and $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} y_i =$