

2.

Computer Networks II

Curso 17/18 :: 2017/18 :: Test 2

Escuela Superior de Informática

2025/0	13/27 18:49:43	

This exam consists of 25 question totalling 40 points. Three wrong answers substract a point. Only an answer if correct if otherwise not stated. Calculator use is forbidden.

Apellidos:	Nombre:	Grupo:
1. [6n] Civan the following network tonalogy connecting the N1. N	12 N2 NA N5 and N6 naturalis vaing the	D1 D6 moutons The

1. [6p] Given the following network topology connecting the N1, N2, N3, N4, N5 and N6 networks using the R1-R6 routers. The number of hoops for hosts directly connected is 0. Assume that the updates are received from routers on sorted by the router index (1 to 6). Answer the following questions about the routing algorithm based on distance vector using hop count metric.

(a)	Indic	cate the initial distance ve	ector for routers R1, R3, ar	nd R6:						
		a) R1=(N1,0,-;N2,0,-),	R3=(N2,0,-;N3,0,-;N4,0,-), R6=(N1,),-;N6,	0,-)				
		b) R1=(R2,0,-;R6,0,-;F	R3,0,-), R3=(R1,0,-;R2,0,-;	R4,0,-), R6	=(R1,0)),-;R2,0,-	;R5,0,-)			
		c) R1=(N1,0,-), R30(N	(3,0,-), R6=(N6,0,-)							
		d) R1=(R2,0,-;R6,0,-;F	R3,0,-), R3=(R1,0,-;R2,0,-;	R4,0,-), R6	=(R1,0)),-;R2,0,-	;R5,0,-)			
(b)	Indic	cate the distance vector of	f R1 after receiving the up	dates for the	e two fi	irst iterat	ions of the	proto	col:	
		a) R1=(N1,0,-;N2,0,-;N	N3,1,R2;N4,1,R3;N6,1,R6))						
		b) R1=(N1,0,-;N2,0,-;N	N3,1,R2;N4,1,R3;N6,1,R6	;N5,2,R3)						
		c) R1=(N1,0,-;N2,0,-;N	N3,1,R2;N4,1,R3;N6,1,R6;	N5,2,R6)						
		d) R1=(N1,1,-;N2,1,-;N	N3,2,R2;N4,2,R3;N6,2,R6)						
(c)	How	many protocol steps are	needed for protocol conve	rgence?						
		a) 1			c) 3					
		b) 2			d) 4					
(d)	Aftei	r protocol convergence, t	hrough which router and in	nterface doe	s R6 r	oute pacl	cets d <mark>estine</mark>	d for	the N4 networl	k?
		a) R2, 20.0.0.2			c) R1	, 20.0.0.	1			
		b) R5, 70.0.0.1				5, 0 <mark>.0.0.0</mark>				
			outers. To decrease the siz			_		ns to	divide the netw	ork into 5
regio	ns of	f 200 routers each of whi	ch, how many entries will	the hierarcl	nical ro	uti <mark>ng ta</mark> b	oles h <mark>ave?</mark>			
	a)	1000	□ b) 1005		c) 200				d) 204	

17 de mayo de 2018 1/5

Computer Networks II

Curso 17/18 :: 2017/18 :: Test 2

Escuela Superior de Informática

3. [6p] Given the following network topology that connects the LANs U, V, W, X, Y and Z through the S1-S5 switches. Ports are numbered using the number n (n).

LAN X=100 Mbps

(1) S1(id=15) (3) (5) S3(id=40) (7) (8) (8) S4(id=30) (9) LAN V=10	LAN W=10 Mbps (10) S5(id=50) (11)
 (a) Root switch: □ a) S1 □ b) S2 	□ c) S5 □ d) S3
(b) Root ports: ☐ a) 3,4,8,9,11 ☐ b) 2,5,8,10	□ c) 2,4,8,9 □ d) 1,2,7,9
(c) Designated ports:: (a) 1,3,4,7,9,11 (b) 2,3,6,7,9,11	□ c) 1,5,6,8,10,11 □ d) 2,3,7,9,11
(d) Blocked ports:	□ c) 9 □ d) 2
 4. [1p] Indicate what is the content of an LSP (or Link Statu a) Identifier origin, sequence number, age and list o b) Origin identifier, destination identifier, number o c) Target network, mask, next hop, and output interf d) Neighbor identifier and cost to neighbor. 	f neighbors (neighbor and cost identifier). f hoops.
the network. C) The hop counter increases to infinity.	tination. to B before B can propagate an update of a bug in the topology of tor to node B after it B has submitted an update due to a network

17 de mayo de 2018 2/5

Computer Networks II

Curso 17/18 :: 2017/18 :: Test 2

Escuela Superior de Informática

6. [1p] Given the following network topology and its corresponding sink tree with root in K. Indicate the branch of the tree containing N (from root to N) in the reverse path routing algorithm used in broadcast:

17 de mayo de 2018 3/5

Computer Networks II Curso 17/18 :: 2017/18 :: Test 2

Escuela Superior de Informática

12.	[1p]	Indicate which of the following is not the responsibility of a	NAS	se	rver:
		a) Packet Routing.		c)	Session maintenance.
		b) Authentication.		d)	Flow control.
13.	[1p]	What IP addresses, in addition to those assigned to each of t	he in	terf	aces of the network nodes, must exist on any network?
		a) Network address and broadcast address.			Loopback address.
		b) Network address, broadcast address, and multicast.			Address 0.0.0.0.0.
14	[1n]	What is the meaning of the address 0.0.0.151/24?			
17.	LIPI	a) The host 151 within my network.			
		b) The broadcast address within my network.			
	\Box	c) Host 0.0.0.0 within the network 151.			
		d) It is not a valid address.			
15	[1n]	In classless addressing, what does the notation /18 indicate?			
13.		a) It refers to the number of bits to the left of the mask who		1110	ie 1
		b) It refers to the number of bits to the right of the mask who			
		c) Refers to the number of addressable networks.	1050	vare	
		d) Refers to number of addressable hosts.			
16.	[1n]	An organization plans to divide the network address 161.2	5.45.	128	3/25 into 8 subnets applying the subnetting technique.
10.		rify the number of bits intended for NETID, to SUBNETID, a			
		a) NETID=25, SUBNETID=3, HOSTID=4		c)	NETID=16, SUBNETID=8, HOSTID=8
		b) NETID=22, SUBNETID=3, HOSTID=7		d)	NETID=25, SUBNETID=5, HOSTID=3
17.	[1p]	Say what is false about the subnetting technique (without VI	LSM)):	
		a) The number of subnets and the number of addresses will	l alwa	ays	be a power of 2.
		b) The mask used for each subnet has a variable size.			
		c) The border router must know the subnetwork division to	knov	v h	ow to route packets.
	Ш	d) There can be no overlapping of addresses in different su	bnets		
18.	[1p]	Given the /21 mask, what is the maximum number of IP add	lresse	s th	at can be assigned?
		a) 2 ²¹			2046
	Ш	b) 2 ¹¹	Ш	d)	2044
19.	[1p]	CANCELED			
	. 13				
20.	[1p]	What is the size of the global unicast IPv6 address space?			
		a) 2 ⁶⁴			2^{128}
		b) 2 ³²		d)	2^{112}
21.	[1p]	How are the IPv4 <i>Options</i> implemented in IPv6?			
		a) By means of the extension headers mechanism.			
		b) They are included in the payload of the message.			
		c) They are included in the mandatory header of the IPv6 n	nessa	ge.	
		d) They are negotiated between source and destination of the	he me	essa	age.
22.	_	Given a frame t1 = (origin=A, destination=D) and a forward s list=[D,E]), What decision will the bridge make when receive	_		e TR = (interface=i1, hosts list=[A,B,C]; interface=i2,
		a) Flood		c)	Resend to i2
		b) Discard t1		d)	Resend to i1
23.	[1p]	Which of the following is not an advantage of VLANs?			
		a) Security		c)	Performance
		b) User Mobility		d)	Larger bandwidth

4/5 17 de mayo de 2018

Computer Networks II Curso 17/18 :: 2017/18 :: Test 2

Escuela Superior de Informática

24.	24. [1p] Indicate what is false about a trunk port that connects 2 VLANs to 2 switches	:			
	a) Avoid setting a separate port for each VLAN that connects the switches.				
	b) Frames incorporate a header to identify which VLANs a frame should be	delivered to.			
	c) 802.1Q standard is used for the labelling of the frames.				
	d) Its goal is to reduce traffic between the 2 switches.				
25.	25. [6p] An organization has an address block 201.100.0.0/18 and wants to split it using	ng VLSM as follows:			
	■ 1 subnet A with 40 hosts				
	■ 1 subnet B with 400 hosts				
	■ 1 subnet C with 4100 hosts				
	To connect to subnets A, B and C, the R1 organization's frontier router is in turn respectively, via dedicated serial lines.	n connected to the R2, R3 and R4 routers			
	(a) Indicate which of the following is the network address, mask and broadcast ac	dress for subnet A:			
	a) Network=201.100.34.0, Mask=/26, Broadcast=201.100.34.63				
b) Network=201.100.40.0, Mask=/27, Broadcast=201.100.40.31					
	c) Network=201.100.0.0, Mask=/26, Broadcast=201.100.0.63				
	d) Network=201.100.0.0, Mask=/27, Broadcast=201.100.0.31				
	(b) Indicate which of the following is the address space for subnet B:				
	□ a) [201.100.32.0,201.100.33.255] □ c) [201.10	00.40.0,201.100.47.255]			
	\square b) [201.100.32.0,201.100.41.255] \square d) [201.1	00.0.0,201.100.7.255]			
	(c) Indicate which of the following is the network address, mask and broadcast ac	ldress for subnet C:			
a) Network=201.100.40.0, Mask=/20, Broadcast=201.100.240.255					
b) Network=201.100.40.0, Mask=/19, Broadcast=201.100.71.255					
□ c) Network=201.100.0.0, Mask=/18, Broadcast=201.100.63.255					
	☐ d) Network=201.100.0.0, Mask=/19, Broadcast=201.100.31.255				
(d) Indicate which of the following is the network address, mask and broadcast address for the R1-R2 subnet:					
	a) Network=201.100.40.0, Mask=/31, Broadcast=201.100.40.1				
	b) Network=201.100.40.0, Mask=/30, Broadcast=201.100.40.3				
	c) Network=201.100.40.64, Mask=/31, Broadcast=201.100.40.127				
	d) Network=201.100.34.64, Mask=/30, Broadcast=201.100.34.67				

17 de mayo de 2018 5/5