

"By Akshen Dhami"

What is EDA?

Exploratory Data Analysis (EDA) is the process of exploring, summarizing, and visualizing data to understand its underlying structure, detect patterns, and find anomalies before applying modeling or prediction.

When to Use:

Falways perform EDA before any modeling or machine learning — it forms your understanding of the dataset and reveals necessary preprocessing steps.

Output Understanding Data

Data

Units of information — structured (like CSV files or databases) or unstructured (like images, audio, or text).

Types of Variables

1. Numerical Variables (Quantitative)

	-	Example	Python Example
Continuous	Infinite possible values within a range	Temperature, height, weight	tips['total_bill']
Discrete	Countable finite values	Number of siblings, products bought	titanic['sibsp']

import seaborn as sns

tips = sns.load_dataset('tips')

titanic = sns.load_dataset('titanic')

print(tips['total_bill'].head()) # Continuous

print(titanic['sibsp'].head()) # Discrete

When to Use:

- Continuous → For statistical and numerical modeling (regression, distribution analysis).
- ightharpoonup Discrete ightharpoonup When counting items, frequencies, or categorical occurrences numerically.

2. Categorical Variables (Qualitative)

Type Description		Example	Python Code
Nominal	No order among categories	Gender (Male/Female)	titanic['sex'].head()
Binary	Exactly two categories	Smoker: Yes/No	tips['smoker'].head()
Ordinal	Ordered categories	Class: 1st > 2nd > 3rd	titanic['class'].head()

When to Use:

- Nominal → When categories have no ranking (e.g., colors, city names).
- Ordinal → When categories have meaningful order (e.g., education level).
- Binary → When working with two possible states (True/False, 1/0).

🔅 Data Types (Check & Change)

Check Data Types

titanic.dtypes

Change Data Type

titanic['age'] = titanic['age'].astype('float')

When to Use:

- Always check data types before computation or visualization.
- Convert incorrect data types (like strings in numeric columns) to appropriate formats to avoid calculation errors.

S Accessing Data with loc and iloc

Method	Description	Example	Output
lloc	Access rows/columns by labels	titanic.loc[0, 'sex']	Access "sex" of first passenger
iloc	Access by index positions	titanic.iloc[0, 2]	Access first row, third column
loc slice	Select multiple rows by label		Returns multiple rows and columns
iloc slice	Select by range	titanic.iloc[0:5, 0:3]	First 5 rows, 3 columns

When to Use:

- \bigvee loc \rightarrow When you know the **column names** or **row labels**.
- \bigvee iloc \rightarrow When you want to slice by **numerical index position**.
- Always use iloc in loops or when column names are dynamic.

Descriptive Statistics

Measure	sure Description Example		Python Code
Mean	Arithmetic average	Average restaurant bill	tips['total_bill'].mean()
Median	Middle value	Middle bill value	tips['total_bill'].median()
Mode	Most frequent	Common tip	tips['tip'].mode()[0]

tips[['total_bill', 'tip']].describe()

When to Use:

- ✓ Mean → Data is normally distributed and without outliers.
- Median → Data is skewed or has outliers (robust to extreme values).
- Mode → Data is categorical or you want the most common occurrence.

🙀 Distribution of Data

sns.histplot(tips['total_bill'], kde=True)

When to Use:

- Always visualize distribution before deciding on transformations or model types.

6 Measures of Dispersion

Measure	Description	Code	When to Use
Variance	Spread of data around mean	tips['total_bill'].var()	To measure variability in continuous data
Standard Deviation	Square root of variance	tips['total_bill'].std()	To compare spread in similar scale
Coefficient of Variation	Std ÷ Mean	tips['total_bill'].std()/tips['total_bill'].mean()	When comparing relative variability across different datasets

Skewness & Kurtosis

Concept	Meaning	Types	Example	Code
Skewness	Asymmetry of data	IIRight (+ve). Left (-ve). Zero	Income (right- skewed)	tips['total_bill'].skew()
Kurtosis		llPlatvkurtic (flat). Mesokurtic I	Exam scores clustering	tips['total_bill'].kurt()

When to Use:

- Use skewness & kurtosis to understand **shape of data distribution** before applying parametric statistical tests.
- ✓ If skewness $> \pm 1 \rightarrow$ data is **heavily skewed** \rightarrow consider transformation.

Measure	Description	Types	Example	Code
Covariance	How two variables vary together	+ve, -ve, 0	Bill ↑ → Tip ↑	tips.cov()
Correlation	Strength of relationship (–1 to +1)	Positive, Negative, None	Bill vs Tip	tips.corr()

sns.heatmap(tips.corr(), annot=True, cmap='coolwarm')

When to Use:

- \checkmark Correlation \rightarrow for **linear relationships** between variables.
- Covariance → for magnitude and direction of co-movement.
- ☑ Use **correlation** more often easier to interpret and scale-independent.

Empirical Rule (68–95–99.7 Rule) & Z-Score

Empirical Rule

- 68% of values within 1 std
- 95% within **2 std**
- 99.7% within **3 std**

Z-Score

Represents how many std deviations a value is from mean.

from scipy import stats

tips['z_score'] = stats.zscore(tips['total_bill'])

When to Use:

✓ Use Z-scores for **outlier detection** and **standardization**.

Great for normally distributed variables to find extremes.

Outliers

What: Data points far from the central trend.

1 Z-Score Method

outliers_z = tips[(tips['z_score'] > 3) | (tips['z_score'] < -3)]

2 IQR Method

Q1, Q3 = tips['tip'].quantile([0.25, 0.75])

IQR = Q3 - Q1

outliers_iqr = tips[(tips['tip'] < (Q1 - 1.5 * IQR)) | (tips['tip'] > (Q3 + 1.5 * IQR))]

When to Use:

- Use Z-score for normal data;
- ✓ Use IQR for non-normal or skewed data.

* Missing Values

titanic.isnull().sum()

Method	Description	Code	When to Use
Ilmnutation	Replace with mean/median/mode	titanic['age'].fillna(titanic['age'].median(), inplace=True)	If missingness is small and predictable
Deletion	ID)rop rows/columns	titanic.dropna(subset=['embarked'], inplace=True)	If missing data is small fraction (<5%)
Visualization	Detect pattern	sns.heatmap(titanic.isnull(), cbar=False)	Before imputing, check patterns visually

Encoding Categorical Data

Туре	Descriptio n	Code	When to Use
(k-1)	Creates k–1 binary columns	nd get_dummies(titanic['sex']_dron_first=True)	Use when avoiding multicollinearit y

Туре	Descriptio n	Code	When to Use
One-Hot	Creates separate binary columns	pd.get_dummies(titanic['sex'])	For non- ordinal, independent categories
Label	integer	from sklearn.preprocessing import LabelEncoder; titanic['sex']=LabelEncoder().fit_transform(titanic['se x'])	For ordinal categories or tree models
Frequenc y	occurrence	freg = titanic['embarked'].value_counts()/len(titanic);	When number of categories is large

Feature Scaling

Method	Descriptio n	Code	When to Use
Standardizatio n	Mean=0, Std=1	from sklearn.preprocessing import StandardScaler; tips[['total_bill','tip']] = StandardScaler().fit_transform(tips[['total_bill','tip']])	For algorithms like SVM, PCA, Logistic Regression
Min–Max	Scale between 0– 1	from sklearn.preprocessing import MinMaxScaler; tips[['total_bill','tip']] = MinMaxScaler().fit_transform(tips[['total_bill','tip']])	For bounded feature importanc e (Neural Networks,

Data Transformation

Transformation	Purpose	Clarification	Code	When to Use
Log Transform	right		import numpy as np; np.log(tips['total_bill'])	For exponential distributions (e.g. income, sales)
Exponential Transform		Revert to original	np.exp(tips['total_bill'])	To reverse log scaling
Вох-Сох	Normalize positive- only data	Requires >0	from scipy import stats; stats.boxcox(tips['total_bill'])	When data is strictly positive

Transformation	Purpose	Clarification	Code	When to Use
Yeo-Johnson	lwith		from scipy import stats; stats.yeojohnson(tips['total_bill'])	When data includes negative values

🚺 Types of EDA Analysis

Туре	Focus	Numerical Methods	Categorical Methods	When to Use
Univariate	I1 variable l	Histogram, Boxplot, Summary		To understand distribution of individual variables
Bivariate		Scatterplot, Correlation	Crosstab, Stacked bar	To explore relationships
Multivariate	3+ variables	Pairplot, Heatmap	' '	To observe combined effects and interactions

Train-Test Split

from sklearn.model_selection import train_test_split

X = tips[['total_bill', 'size']]

y = tips['tip']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

When to Use:

- Before model training to evaluate generalization.
- ▼ 70–30 or 80–20 split is typical depending on data size.

Summary — Everything Covered

- Data types & variable types
- Data type checks & conversions
- Accessing data (iloc, loc)
- Descriptive stats
- **V** Dispersion & shape measures
- Covariance & correlation
- Z Empirical Rule & Z-scores
- Outlier detection (Z & IQR)
- Missing value handling
- Z Encoding & scaling
- V Data transformation
- EDA types (univariate/bivariate/multivariate)
- Train-test split with use cases