CPMG Equations

Introduction

The general case for two-site exchange is:

$$R_2 = R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2\tau}cosh^{-1}(D_{+}cosh(\tau\lambda_{+}) - D_{-}cos(\tau\lambda_{-}))$$

Here

$$D_{\pm} = \frac{1}{2} \left(\pm 1 + \frac{\Psi + 2\Delta\omega^{2}}{(\Psi^{2} + \zeta^{2})^{1/2}} \right)$$

$$\lambda_{\pm} = \frac{1}{\sqrt{2}} \left(\pm \Psi + (\Psi^{2} + \zeta^{2})^{1/2} \right)^{1/2}$$

$$\Psi = k_{ex}^{2} - \Delta\omega^{2}$$

$$\zeta = 2\Delta\omega(k_{AB} - k_{BA})$$

$$k_{ex} = k_{AB} + k_{BA}$$

We also sometimes use $\nu = \frac{1}{2\tau}$ instead of τ .

Experimentally one measures R_2 for various τ and one wants to find R_{2max} , k_{AB} , k_{BA} and $\Delta\omega$ which give the best fit.

Case: $\tau \to 0$

Consider $\tau \to 0$ (or equivalently $\nu \to \infty$).

For small z we have that $\cosh(z) \simeq 1 + \frac{1}{2}z^2$ and $\cos(z) \simeq 1 - \frac{1}{2}z^2$. Thus we see that for small τ we have

Then

$$cosh(\tau\lambda_{+}) \simeq 1 + \frac{1}{2}\tau^{2}\lambda_{+}^{2}$$
$$cos(\tau\lambda_{-}) \simeq 1 - \frac{1}{2}\tau^{2}\lambda_{-}^{2}$$

Thus

$$D_{+}cosh(\tau\lambda_{+}) - D_{-}cos(\tau\lambda_{-}) \simeq D_{+} - D_{-} + \frac{1}{2}\tau^{2}(D_{+}\lambda_{+}^{2} + D_{-}\lambda_{-}^{2})$$
$$= 1 + \frac{1}{2}\tau^{2}(D_{+}\lambda_{+}^{2} + D_{-}\lambda_{-}^{2})$$

For small z we have that $\cosh^{-1}(1+\frac{1}{2}z^2)\simeq z$. Therefore we see that for small τ we have

$$R_2 \simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\left(D_+\lambda_+^2 + D_-\lambda_-^2\right)^{1/2}$$

Case: $\tau \to \infty$

Consider $\tau \to \infty$ (or equivalently $\nu \to 0$).

Then we can ignore the cosine term. For large z we have that $\cosh(z) \simeq \frac{1}{2}e^z$. Thus we see that for large τ we have

$$D_{+}cosh(\tau\lambda_{+}) \simeq \frac{1}{2}D_{+}e^{\tau\lambda_{+}} = \frac{1}{2}e^{\tau\lambda_{+} + lnD_{+}}$$

For large z we have that $\cosh^{-1}(\frac{1}{2}e^z) \simeq z$. Therefore we see that for large τ we have

$$R_2 \simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2\tau}(\tau\lambda_+ + lnD_+)$$

 $\simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\lambda_+$

Case: $k_{AB} = k_{BA}, \Psi > 0$

The assumption that $k_{AB} = k_{BA}$ makes the equations much simpler. Immediately we have $\zeta = 0$.

 $\Psi > 0$ means that $k_{ex} > \Delta \omega$. With $\Psi > 0$ we also have

$$D_{+} = 1 + \frac{\Delta\omega^{2}}{\Psi} = \frac{k_{ex}^{2}}{\Psi}$$

$$D_{-} = \frac{\Delta\omega^{2}}{\Psi}$$

$$\lambda_{+} = \Psi^{1/2}$$

$$\lambda_{-} = 0$$

As $\tau \to 0$ we find that

$$R_{2} \simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\left(D_{+}\lambda_{+}^{2} + D_{-}\lambda_{-}^{2}\right)^{1/2}$$

$$= R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}D_{+}^{1/2}\lambda_{+}$$

$$= R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\frac{k_{ex}}{\Psi^{1/2}}\Psi^{1/2}$$

$$= R_{2max}$$

Thus looking at the smallest τ (largest ν) should determine a reasonable first estimate of R_{2max} .

As $\tau \to \infty$ we have that

$$R_2 \simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\lambda_+$$

$$= R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\Psi^{1/2}$$

$$= R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}(k_{ex}^2 - \Delta\omega^2)^{1/2}$$

This doesn't help too much.

Case: $k_{AB} = k_{BA}, k_{ex} \gg \Delta \omega$

Fast exchange has $k_{ex} \gg \Delta \omega$, and this implies that $\Psi > 0$. We write

$$\Psi = k_{ex}^2 - \Delta\omega^2 = k_{ex}^2(1 - \epsilon)$$

where $\epsilon = \frac{\Delta \omega^2}{k_{ex}^2} \ll 1$ and so is small.

Then to first order we have

$$\Psi^{1/2} = k_{ex}(1 - \epsilon)^{1/2} \simeq k_{ex}(1 - \frac{1}{2}\epsilon)$$

and

$$\frac{1}{\Psi} = \frac{1}{k_{ex}^2} \frac{1}{(1 - \epsilon)} \simeq \frac{1}{k_{ex}^2} (1 + \epsilon)$$

Then

$$D_{+} = \frac{k_{ex}^{2}}{\Psi} \simeq 1 + \epsilon$$

$$D_{-} = \frac{\Delta\omega^{2}}{\Psi} \simeq \epsilon$$

$$\lambda_{+} = \Psi^{1/2} \simeq k_{ex}(1 - \frac{1}{2}\epsilon)$$

$$\lambda_{-} = 0$$

It turns out to be easier not to expand λ_+ in terms of ϵ immediately but only later. Then

$$D_{+}cosh(\tau\lambda_{+}) - D_{-}cos(\tau\lambda_{-}) \simeq (1 + \epsilon)cosh(\tau\lambda_{+}) - \epsilon$$
$$= cosh(\tau\lambda_{+}) + \epsilon (cosh(\tau\lambda_{+}) - 1)$$
$$= A + B\epsilon$$

where

$$A = \cosh(\tau \lambda_{+})$$
$$B = \cosh(\tau \lambda_{+}) - 1$$

We need to find $\cosh^{-1}(A + B\epsilon) = C + D\epsilon$. Taking \cosh on both sides gives

$$A + B\epsilon = \cosh(C + D\epsilon)$$

$$= \cosh(C)\cosh(D\epsilon) + \sinh(C)\sinh(D\epsilon)$$

$$\simeq \cosh(C) + D\epsilon \sinh(C)$$

and thus we have A = cosh(C) and B = D sinh(C) and so as long as $A \neq 1$ (as here except in special case $\tau = 0$) we have

$$C = \cosh^{-1}(A)$$
$$D = \frac{B}{\sqrt{A^2 - 1}}$$

Here that gives

$$\begin{split} C &= \tau \lambda_+ \\ D &= \frac{\cosh(\tau \lambda_+) - 1}{\sqrt{\cosh^2(\tau \lambda_+) - 1}} \\ &= \left(\frac{\cosh(\tau \lambda_+) - 1}{\cosh(\tau \lambda_+) + 1}\right)^{1/2} \\ &= \tanh(\frac{1}{2}\tau \lambda_+) \end{split}$$

(from a standard half-angle formula). Therefore

$$\begin{split} R_2 &\simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2\tau}\left(\tau\lambda_+ + \epsilon \tanh(\frac{1}{2}\tau\lambda_+)\right) \\ &\simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\left(k_{ex}(1 - \frac{1}{2}\epsilon) + \frac{\epsilon}{\tau}\tanh(\frac{1}{2}\tau k_{ex})\right) \\ &= R_{2max} + \frac{\epsilon k_{ex}}{4}\left(1 - \frac{2}{\tau k_{ex}}\tanh(\frac{1}{2}\tau k_{ex})\right) \\ &= R_{2max} + \frac{\Delta\omega^2}{4k_{ex}}\left(1 - \frac{2}{\tau k_{ex}}\tanh(\frac{1}{2}\tau k_{ex})\right) \\ &= R_{2max} + \frac{\Delta\omega^2}{4k_{ex}}\left(1 - \frac{4\nu}{k_{ex}}\tanh(\frac{k_{ex}}{4\nu})\right) \end{split}$$

As before, in the limit as $\tau \to 0$ we have $R_2 \simeq R_{2max}$. The limit $\tau \to \infty$ gives

$$R_2 \simeq R_{2max} + \frac{\Delta\omega^2}{4k_{ex}}$$

Case: $k_{AB} = k_{BA}, \Psi < 0$

The assumption that $k_{AB} = k_{BA}$ makes the equations much simpler. Immediately we have $\zeta = 0$.

 $\Psi < 0$ means that $k_{ex} < \Delta \omega$. With $\Psi < 0$ we also have

$$D_{+} = \frac{\Delta\omega^{2}}{|\Psi|}$$

$$D_{-} = -1 + \frac{\Delta\omega^{2}}{|\Psi|} = \frac{k_{ex}^{2}}{|\Psi|}$$

$$\lambda_{+} = 0$$

$$\lambda_{-} = |\Psi|^{1/2}$$

As $\tau \to 0$ we find that

$$R_{2} \simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\left(D_{+}\lambda_{+}^{2} + D_{-}\lambda_{-}^{2}\right)^{1/2}$$

$$= R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}D_{-}^{1/2}\lambda_{-}$$

$$= R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\frac{k_{ex}}{|\Psi|^{1/2}}|\Psi|^{1/2}$$

$$= R_{2max}$$

This is the same result as for $\Psi > 0$, so again we can use the smallest τ (largest ν) to determine a reasonable first estimate of R_{2max} .

As $\tau \to \infty$ we have that

$$R_2 \simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2}\lambda_+$$
$$= R_{2max} + \frac{1}{2}k_{ex}$$

Combined with the $\tau \to 0$ estimate of R_{2max} we see that we can use the largest τ (smallest ν) to determine a reasonable first estimate of k_{ex} .

Case: $k_{AB} = k_{BA}, k_{ex} \ll \Delta \omega$

Slow exchange has $k_{ex} \ll \Delta \omega$, and this implies that $\Psi < 0$. We write

$$\Psi = k_{ex}^2 - \Delta\omega^2 = -\Delta\omega^2(1 - \epsilon)$$

where $\epsilon = \frac{k_{ex}^2}{\Delta \omega^2} \ll 1$ and so is small.

Then to first order we have

$$|\Psi|^{1/2} = \Delta\omega(1-\epsilon)^{1/2} \simeq \Delta\omega(1-\frac{1}{2}\epsilon)$$

and

$$\frac{1}{|\Psi|} = \frac{1}{\Delta\omega^2} \frac{1}{(1-\epsilon)} \simeq \frac{1}{\Delta\omega^2} (1+\epsilon)$$

Then

$$D_{+} = \frac{\Delta\omega^{2}}{|\Psi|} \simeq 1 + \epsilon$$

$$D_{-} = \frac{k_{ex}^{2}}{|\Psi|} \simeq \epsilon$$

$$\lambda_{+} = 0$$

$$\lambda_{-} = |\Psi|^{1/2} \simeq \Delta\omega(1 - \frac{1}{2}\epsilon) \simeq \Delta\omega$$

It turns out to be easier not to expand λ_{-} in terms of ϵ . Then

$$D_{+}cosh(\tau\lambda_{+}) - D_{-}cos(\tau\lambda_{-}) \simeq (1 + \epsilon) - \epsilon \cos(\tau\lambda_{-})$$
$$= 1 + \epsilon (1 - \cos(\tau\lambda_{-}))$$

For z small we have $cosh(z) \simeq 1 + \frac{1}{2}z^2$ and so we see that for small t we have $cosh^{-1}(1+t) \simeq (2t)^{1/2}$. Thus we have

$$R_{2} \simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2\tau} \left(2\epsilon(1 - \cos(\tau\lambda_{-}))\right)^{1/2}$$

$$= R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2\tau} \left(4\epsilon \sin^{2}(\frac{1}{2}\tau\lambda_{-})\right)^{1/2}$$

$$= R_{2max} + \frac{1}{2}k_{ex} - \frac{\epsilon^{1/2}}{\tau}\sin(\frac{1}{2}\tau\lambda_{-})$$

$$\simeq R_{2max} + \frac{1}{2}k_{ex} \left(1 - \frac{2}{\tau\Delta\omega}\sin(\frac{1}{2}\tau\Delta\omega)\right)$$

$$= R_{2max} + \frac{1}{2}k_{ex} \left(1 - \frac{4\nu}{\Delta\omega}\sin(\frac{\Delta\omega}{4\nu})\right)$$

(using a standard half-angle formula).

Case: $k_{AB} = k_{BA}, k_{ex} \approx \Delta \omega$

The case when $k_{ex} \approx \Delta \omega$ is interesting because the general equation has singularities (which cancel) so making it numerically unsuitable. This does not happen if $k_{AB} \neq k_{BA}$ so that $\zeta \neq 0$.

First consider the case when $\Psi > 0$, so that $\epsilon = \Psi = k_{ex}^2 - \Delta\omega^2 > 0$ but is small. Then

$$D_{+} = 1 + \frac{\Delta\omega^{2}}{\Psi} = \frac{k_{ex}^{2}}{\epsilon}$$

$$D_{-} = \frac{\Delta\omega^{2}}{\epsilon}$$

$$\lambda_{+} = \Psi^{1/2} = \epsilon^{1/2}$$

$$\lambda_{-} = 0$$

Thus

$$\begin{split} D_{+}cosh(\tau\lambda_{+}) - D_{-}cos(\tau\lambda_{-}) &= \frac{k_{ex}^{2}}{\epsilon}cosh(\tau\epsilon^{1/2}) - \frac{\Delta\omega^{2}}{\epsilon} \\ &\simeq \frac{1}{\epsilon}(k_{ex}^{2}(1 + \frac{1}{2}\tau^{2}\epsilon) - (k_{ex}^{2} - \epsilon)) \\ &= 1 + \frac{1}{2}k_{ex}^{2}\tau^{2} \end{split}$$

Therefore

$$R_2 \simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2\tau}cosh^{-1}(1 + \frac{1}{2}k_{ex}^2\tau^2)$$

Next consider the case when $\Psi < 0$, so that $\epsilon = -\Psi = \Delta \omega^2 - k_{ex}^2 > 0$ but is small. Then

$$D_{+} = \frac{\Delta\omega^{2}}{|\Psi|} = \frac{\Delta\omega^{2}}{\epsilon}$$

$$D_{-} = -1 + \frac{\Delta\omega^{2}}{|\Psi|} = \frac{k_{ex}^{2}}{\epsilon}$$

$$\lambda_{+} = 0$$

$$\lambda_{-} = |\Psi|^{1/2} = \epsilon^{1/2}$$

Thus

$$D_{+}cosh(\tau\lambda_{+}) - D_{-}cos(\tau\lambda_{-}) = \frac{\Delta\omega^{2}}{\epsilon} - \frac{k_{ex}^{2}}{\epsilon}cos(\tau\epsilon^{1/2})$$

$$\simeq \frac{1}{\epsilon}((k_{ex}^{2} + \epsilon) - k_{ex}^{2}(1 - \frac{1}{2}\tau^{2}\epsilon))$$

$$= 1 + \frac{1}{2}k_{ex}^{2}\tau^{2}$$

And so again

$$R_2 \simeq R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2\tau}cosh^{-1}(1 + \frac{1}{2}k_{ex}^2\tau^2)$$

So if you can work around the singularity the result is continuous across $\Psi = 0$.

Case: $k_{AB} = k_{BA}$, $\Psi > 0$, derivatives

For the non-linear fitting routine we need the derivatives of R_2 with respect to the parameters R_{2max} , k_{ex} and $\Delta\omega$.

For this case remember that we have

$$D_{+} = 1 + \frac{\Delta\omega^{2}}{\Psi} = \frac{k_{ex}^{2}}{\Psi}$$

$$D_{-} = \frac{\Delta\omega^{2}}{\Psi}$$

$$\lambda_{+} = \Psi^{1/2}$$

$$\lambda_{-} = 0$$

$$\Psi = k_{ex}^{2} - \Delta\omega^{2}$$

Thus

$$R_2 = R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2\tau}\cosh^{-1}(D_{+}\cosh(\tau\lambda_{+}) - D_{-})$$

The trivial derivative is

$$\frac{\partial R_2}{\partial R_{2max}} = 1$$

Note that

$$\frac{d}{dx}cosh^{-1}(x) = \frac{1}{\sqrt{x^2 - 1}}$$

Let

$$v = D_{+}cosh(\tau\lambda_{+}) - D_{-}$$

Then

$$\begin{split} \frac{\partial R_2}{\partial k_{ex}} &= \frac{1}{2} - \frac{1}{2\tau} \frac{1}{\sqrt{v^2 - 1}} \frac{\partial v}{\partial k_{ex}} \\ \frac{\partial v}{\partial k_{ex}} &= \frac{\partial D_+}{\partial k_{ex}} cosh(\tau \lambda_+) + D_+ \tau sinh(\tau \lambda_+) \frac{\partial \lambda_+}{\partial k_{ex}} - \frac{\partial D_-}{\partial k_{ex}} \\ \frac{\partial D_+}{\partial k_{ex}} &= \frac{\partial D_-}{\partial k_{ex}} = -\frac{2k_{ex}\Delta\omega^2}{\Psi^2} \\ \frac{\partial \lambda_+}{\partial k_{ex}} &= k_{ex}\Psi^{-1/2} \end{split}$$

And

$$\begin{split} \frac{\partial R_2}{\partial \Delta \omega} &= -\frac{1}{2\tau} \frac{1}{\sqrt{v^2 - 1}} \frac{\partial v}{\partial \Delta \omega} \\ \frac{\partial v}{\partial \Delta \omega} &= \frac{\partial D_+}{\partial \Delta \omega} cosh(\tau \lambda_+) + D_+ \tau sinh(\tau \lambda_+) \frac{\partial \lambda_+}{\partial \Delta \omega} - \frac{\partial D_-}{\partial \Delta \omega} \\ \frac{\partial D_+}{\partial \Delta \omega} &= \frac{\partial D_-}{\partial \Delta \omega} = \frac{2k_{ex}^2 \Delta \omega}{\Psi^2} \\ \frac{\partial \lambda_+}{\partial \Delta \omega} &= -\Delta \omega \Psi^{-1/2} \end{split}$$

Case: $k_{AB} = k_{BA}$, $\Psi < 0$, derivatives

For the non-linear fitting routine we need the derivatives of R_2 with respect to the parameters R_{2max} , k_{ex} and $\Delta\omega$.

For this case remember that we have

$$D_{+} = \frac{\Delta\omega^{2}}{|\Psi|}$$

$$D_{-} = -1 + \frac{\Delta\omega^{2}}{|\Psi|} = \frac{k_{ex}^{2}}{|\Psi|}$$

$$\lambda_{+} = 0$$

$$\lambda_{-} = |\Psi|^{1/2}$$

$$|\Psi| = \Delta\omega^{2} - k_{ex}^{2}$$

Thus

$$R_2 = R_{2max} + \frac{1}{2}k_{ex} - \frac{1}{2\tau}cosh^{-1}(D_+ - D_-cos(\tau\lambda_-))$$

The trivial derivative is

$$\frac{\partial R_2}{\partial R_{2max}} = 1$$

Let

$$v = D_+ - D_- cos(\tau \lambda_-)$$

Then

$$\begin{split} \frac{\partial R_2}{\partial k_{ex}} &= \frac{1}{2} - \frac{1}{2\tau} \frac{1}{\sqrt{v^2 - 1}} \frac{\partial v}{\partial k_{ex}} \\ \frac{\partial v}{\partial k_{ex}} &= \frac{\partial D_+}{\partial k_{ex}} - \frac{\partial D_-}{\partial k_{ex}} cos(\tau \lambda_-) + D_- \tau sin(\tau \lambda_-) \frac{\partial \lambda_-}{\partial k_{ex}} \\ \frac{\partial D_+}{\partial k_{ex}} &= \frac{\partial D_-}{\partial k_{ex}} = \frac{2k_{ex} \Delta \omega^2}{\Psi^2} \\ \frac{\partial \lambda_-}{\partial k_{ex}} &= -k_{ex} |\Psi|^{-1/2} \end{split}$$

And

$$\begin{split} \frac{\partial R_2}{\partial \Delta \omega} &= -\frac{1}{2\tau} \frac{1}{\sqrt{v^2 - 1}} \frac{\partial v}{\partial \Delta \omega} \\ \frac{\partial v}{\partial \Delta \omega} &= \frac{\partial D_+}{\partial \Delta \omega} - \frac{\partial D_-}{\partial \Delta \omega} cos(\tau \lambda_-) + D_- \tau sin(\tau \lambda_-) \frac{\partial \lambda_-}{\partial \Delta \omega} \\ \frac{\partial D_+}{\partial \Delta \omega} &= \frac{\partial D_-}{\partial \Delta \omega} = -\frac{2k_{ex}^2 \Delta \omega}{\Psi^2} \\ \frac{\partial \lambda_-}{\partial \Delta \omega} &= \Delta \omega |\Psi|^{-1/2} \end{split}$$

Case: $k_{AB} \neq k_{BA}$, derivatives

For the non-linear fitting routine we need the derivatives of R_2 with respect to the parameters R_{2max} , k_{AB} , k_{BA} and $\Delta\omega$.

The trivial derivative is

$$\frac{\partial R_2}{\partial R_{2max}} = 1$$

Let

$$v = D_{+}cosh(\tau\lambda_{+}) - D_{-}cos(\tau\lambda_{-})$$

Then

$$\begin{split} \frac{\partial R_2}{\partial k_{AB}} &= \frac{1}{2} - \frac{1}{2\tau} \frac{1}{\sqrt{v^2 - 1}} \frac{\partial v}{\partial k_{AB}} \\ \frac{\partial v}{\partial k_{AB}} &= \frac{\partial D_+}{\partial k_{AB}} \cosh(\tau \lambda_+) + D_+ \tau \sinh(\tau \lambda_+) \frac{\partial \lambda_+}{\partial k_{AB}} - \frac{\partial D_-}{\partial k_{AB}} \cos(\tau \lambda_-) + D_- \tau \sin(\tau \lambda_-) \frac{\partial \lambda_-}{\partial k_{AB}} \\ \frac{\partial D_\pm}{\partial k_{AB}} &= \frac{k_{ex}}{(\Psi^2 + \zeta^2)^{1/2}} - \frac{(\Psi + 2\Delta\omega^2)(\Psi k_{ex} + \zeta\Delta\omega)}{(\Psi^2 + \zeta^2)^{3/2}} \\ \frac{\partial \lambda_\pm}{\partial k_{AB}} &= \frac{1}{2\lambda_\pm} \left(\pm k_{ex} + \frac{\Psi k_{ex} + \zeta\Delta\omega}{(\Psi^2 + \zeta^2)^{1/2}} \right) \end{split}$$

And

$$\begin{split} \frac{\partial R_2}{\partial k_{BA}} &= \frac{1}{2} - \frac{1}{2\tau} \frac{1}{\sqrt{v^2 - 1}} \frac{\partial v}{\partial k_{BA}} \\ \frac{\partial v}{\partial k_{BA}} &= \frac{\partial D_+}{\partial k_{BA}} cosh(\tau \lambda_+) + D_+ \tau sinh(\tau \lambda_+) \frac{\partial \lambda_+}{\partial k_{BA}} - \frac{\partial D_-}{\partial k_{BA}} cos(\tau \lambda_-) + D_- \tau sin(\tau \lambda_-) \frac{\partial \lambda_-}{\partial k_{BA}} \\ \frac{\partial D_\pm}{\partial k_{BA}} &= \frac{k_{ex}}{(\Psi^2 + \zeta^2)^{1/2}} - \frac{(\Psi + 2\Delta\omega^2)(\Psi k_{ex} - \zeta\Delta\omega)}{(\Psi^2 + \zeta^2)^{3/2}} \\ \frac{\partial \lambda_\pm}{\partial k_{BA}} &= \frac{1}{2\lambda_\pm} \left(\pm k_{ex} + \frac{\Psi k_{ex} - \zeta\Delta\omega}{(\Psi^2 + \zeta^2)^{1/2}} \right) \end{split}$$

And

$$\begin{split} \frac{\partial R_2}{\partial \Delta \omega} &= -\frac{1}{2\tau} \frac{1}{\sqrt{v^2 - 1}} \frac{\partial v}{\partial \Delta \omega} \\ \frac{\partial v}{\partial \Delta \omega} &= \frac{\partial D_+}{\partial \Delta \omega} cosh(\tau \lambda_+) + D_+ \tau sinh(\tau \lambda_+) \frac{\partial \lambda_+}{\partial \Delta \omega} - \frac{\partial D_-}{\partial \Delta \omega} cos(\tau \lambda_-) + D_- \tau sin(\tau \lambda_-) \frac{\partial \lambda_-}{\partial \Delta \omega} \\ \frac{\partial D_\pm}{\partial \Delta \omega} &= \frac{\Delta \omega}{(\Psi^2 + \zeta^2)^{1/2}} - \frac{(\Psi + 2\Delta \omega^2)(-\Psi \Delta \omega + \zeta(k_{AB} - k_{BA}))}{(\Psi^2 + \zeta^2)^{3/2}} \\ \frac{\partial \lambda_\pm}{\partial \Delta \omega} &= \frac{1}{2\lambda_\pm} \left(\mp \Delta \omega + \frac{-\Psi \Delta \omega + \zeta(k_{AB} - k_{BA})}{(\Psi^2 + \zeta^2)^{1/2}} \right) \end{split}$$