Analysis 3 - Übung

11. UE am 13.01.2020

Richard Weiss

Florian Schager Paul Winkler Christian Sallinger Christian Göth Fabian Zehetgruber

Aufgabe 89. Bis zu welcher Ordnung sind die Funktionen $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = |x|, \quad f(x) = \begin{cases} 0 & x \le 0, \\ x^2 & 0 < x < 1, \\ ax - 1 & x \ge 1, \end{cases}$$

 $a \in \mathbb{R}$ schwach differenzierbar? Berechnen Sie die schwachen Ableitungen.

Zeigen Sie: Für $u(\mathbf{x}) = \log |\mathbf{x}|$ und $\nu_i(\mathbf{x}) = \frac{x_i}{|\mathbf{x}|^2}$ ist ν_i die schwache Ableitung $D^i u$ in \mathbb{R}^n .

Lösung. Trivial!

Aufgabe 90. Sind $u, v \in W^{1,2}(\Omega)$, so ist $uv \in W^{1,1}(\Omega)$ mit $D_i(uv) = D_iuv + uD_iv$

Lösung. Trivial!

Aufgabe 91. Verschwindet für eine Funktion $f : \mathbb{R} \to \mathbb{R}$ die schwache Ableitung der Ordnung n, so ist f ein Polynom der Ordnung n-1 fast überall.

Hinweis: Zeigen Sie, dass jede Testfunktion als Summe der n-ten Ableitung einer Testfunktion und einer Linearkombination der Funktionen $\Psi_0^{(l)}$, $l < n, \Psi_0$ wie im Beweis von 6.1.4. dargestellt werden kann und berechnen Sie $\int x^k \xi^{(l)}(x) dx$ für Testfunktionen ξ und $k \leq l$.

 $L\ddot{o}sung.$ Trivial!

Aufgabe 92. Zeigen Sie, dass aus der Existenz der schwachen Ableitung der Ordnung 2 im Allgemeinen für $n \ge 2$ nicht die Existenz der schwachen Ableitungen der Ordnung 1 folgt.

Hinweis: Betrachten Sie eine Funktion $f(x,y) = f_1(x) + f_2(y)$.

Zeigen Sie, dass für n=1 aus der Existenz einer schwachen k-ten Ableitung die Existenz der schwachen Ableitungen l-ter Ordnung für l < k folgt.

Lösung. Trivial!

Aufgabe 93. Zeigen Sie, dass $f \in L^p(\Omega), 1 genau dann in <math>W^{m,p}(\Omega)$ liegt, wenn die Abbildungen $\varphi \mapsto \int_{\Omega} f D^{\alpha} \varphi d\lambda^n$ fpr $|\alpha| \leq m$ stetig vom Raum der Testfunktionen versehen mit der L^q -Norm nach $\mathbb R$ ist.

Hinweis: Verwenden Sie, dass der Dualraum von L^p der L^q ist, das heißt jede beschränkte lineare Abbildung von einem dichten Teilraum des L^p nach \mathbb{C} ist von der Form $\varphi \mapsto \int \varphi g$ mit $g \in L^q$.

Lösung. Trivial!

Aufgabe 94. Ein Punkt $x \in \mathbb{R}^n$ heißt Dichtepunkt einer messbaren Teilmenge E von \mathbb{R}^n , wenn x Lebesguepunkt der Funktion $\mathbb{1}_{E \cup \{x\}}$ ist.

Zeigen Sie: Ist jeder Punkt $x \in [0,1]^n$ ein Dichtepunkt einer messbaren Teilmenge E von \mathbb{R}^n , so gilt $\lambda^n(E) \geq 1$.

Gibt es eine messbare Teilmenge E von \mathbb{R} , für die $\mathbb{R}\setminus\{0\}$ die Menge der Dichtepunkte von E ist?

Lösung. Trivial!

Aufgabe 95. Ist X ein Fixpunktraum und Y ein Retrakt von X, so ist Y ein Fixpunktraum.

 $L\ddot{o}sung$. Dass X **Fixpunktraum** ist heißt, X ist ein topologischer Raum, auf dem jede stetige Selbstabbildung einen Fixpunkt besitzt.

X topologischer Raum:
$$\forall T_X \in C(X,X): \exists x \in X: T_X(x) = x$$

Eine Teilmenge Y eines topologischen Raumes X heißt **Retrakt**, wenn es eine stetige Abbildung (**Retraktion**) R von X auf Y mit $R|_{Y} = \mathrm{id}_{Y}$ gibt.

$$Y \subseteq X, \exists R \in C(X,Y) : R|_Y = id_Y$$

Sei R die besagte Retraktion und $T_Y \in C(Y,Y)$ beliebig. Die wohldefinierte Komposition dieser stetigen Funktionen, ist stetig.

$$T_X := T_Y \circ R \in C(X, Y) \subseteq C(X, X).$$

Nun besitzt T_X also laut Voraussetzung einen Fixpunkt, also $\exists x \in X$:

$$T_Y(R(x)) = T_X(x) = x.$$

Weil $T_X(Y) \subseteq Y$, muss $x \in Y$. Wegen $R|_Y = \mathrm{id}_Y$, gilt $x = R|_Y(x) = R(x) =: y$. Zuletzt, erhält man $T_Y(y) = y$, also einen Fixpunkt y von T_Y .

Aufgabe 96. Zeigen Sie (Satz von Perron-Frobenius): Jede $n \times n$ Matrix $A = (a_{i,j})$ mit $a_{i,j} \geq 0$ für $1 \leq i, j \leq n$ hat einen Eigenwert $\lambda \geq 0$ mit zugehörigem Eigenvektor $x = (x_1, \ldots, x_n)$ mit $x_i \geq 0, 1 \leq i \leq n$.

Hinw.: Betrachten Sie die Abbildung $\zeta: x \to \frac{1}{\|Ax\|_1} Ax$ auf dem Simplex $\Delta := \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i = 1\}.$

Lösung. ζ ist tatsächlich eine Selbstabbildung in $(\Delta, \|\cdot\|_1)$, weil $\forall x \in \Delta$:

$$A, x \ge 0 \Rightarrow Ax \ge 0 \Rightarrow \zeta(x) = \frac{Ax}{\|Ax\|_1} \ge 0,$$

$$\sum_{i=1}^{n} \langle e_i, \zeta(x) \rangle = \| \zeta(x) \|_1 = \left\| \frac{Ax}{\|Ax\|_1} \right\|_1 = 1.$$

Nachdem $A \in L(\mathbb{R}^n, \mathbb{R}^n) = C(\mathbb{R}^n, \mathbb{R}^n)$ und $\|\cdot\|_1 \in C(\mathbb{R}^n)$, muss $\zeta \in C(\Delta, \Delta)$ ebenfalls stetig sein. Laut dem Fixpunktsatz von Brouwer, ist unsere (offensichtlich) kompakt und konvexe Menge $\Delta \subseteq \mathbb{R}^n$ ein Fixpunktraum, und ζ besitzt einen Fixpunkt $\exists x \in \Delta$:

$$x = \zeta(x) = \frac{1}{\|Ax\|_1} Ax \Leftrightarrow \lambda x = Ax,$$

wobei $\lambda := ||Ax||_1 \ge 0$ und $x \ge 0$.

Aufgabe 97. Zeigen Sie, dass das Gleichungssystem

$$\frac{1}{2}x_1^3 - \frac{1}{8}x_2^3 = x_1$$

$$\frac{1}{2}x_1^5 + \frac{1}{4}x_1^2x_2^4 + \frac{1}{4} = x_2$$

eine Lösung besitzt.

Lösung. Trivial!

Aufgabe 98. Zeigen Sie, dass es eine eindeutige Lösung u der Gleichung

$$u(x) = x + \frac{1}{2}\sin(u(x) + x)$$

in C[-1,1] gibt.

Lösung. Betrachte die, auf dem vollständigen metrischen Raum $(C[-1,1],d_{\infty})$ lebende, Selbstabbildung

$$T: u \mapsto \left(x \mapsto x + \frac{1}{2}\sin(u(x) + x)\right).$$

 $\text{Da sin'} = \cos, \text{ erhalten wir aus dem MWS der Differentialrechnung, dass } \forall \, a,b \in \mathbb{R}: \exists \, \xi \in [-1,1]: \\$

$$\left| \frac{\sin(a) - \sin(b)}{a - b} \right| = \left| \cos(\xi) \right| \le 1 \Leftrightarrow \left| \sin(a) - \sin(b) \right| \le |a - b|$$

Damit gilt $\forall u, v \in C[-1, 1]$:

$$\begin{split} d_{\infty}(T(u),T(v)) &= \sup_{x \in [-1,1]} \left| \left(x + \frac{1}{2} \sin(u(x) + x) \right) - \left(x + \frac{1}{2} \sin(v(x) + x) \right) \right| \\ &= \frac{1}{2} \sup_{x \in [-1,1]} \left| \sin(u(x) + x) - \sin(v(x) + x) \right| \\ &\leq \frac{1}{2} \sup_{x \in [-1,1]} \left| u(x) + x - (v(x) + x) \right| \\ &= \frac{1}{2} d_{\infty}(u,v). \end{split}$$

Somit ist die Selbstabbildung T eine Kontraktion mit Kontraktionsfaktor $\frac{1}{2}$. Es existiert also, laut dem Banach'schen Fixpunktsatz, eine eindeutige Lösung.