

ETC3250

Business Analytics

Week 2.

Assessing model accuracy

3 August 2015

Outline

1 Regression problems

2 Classification problems

Statistical learning Regression problems

2/24

Assessing model accuracy

Suppose we have a regression model $y = f(x) + \varepsilon$. Estimate \hat{f} from some **training** data, $Tr = \{x_i, y_i\}_1^n$. One common measure of accuracy is:

Training Mean Squared Error

$$MSE_{Tr} = \underset{i \in Tr}{Ave}[y_i - \hat{f}(x_i)]^2 = \frac{1}{n} \sum_{i=1}^n [(y_i - \hat{f}(x_i)]^2]$$

Assessing model accuracy

Suppose we have a regression model $y = f(x) + \varepsilon$. Estimate \hat{f} from some **training** data, $Tr = \{x_i, y_i\}_1^n$. One common measure of accuracy is:

Training Mean Squared Error

$$MSE_{Tr} = \underset{i \in Tr}{Ave}[y_i - \hat{f}(x_i)]^2 = \frac{1}{n} \sum_{i=1}^{n} [(y_i - \hat{f}(x_i))]^2$$

Better to compute it using **test** data $Te = \{x_j, y_j\}_1^m$

Test Mean Squared Error

$$MSE_{Te} = \underset{j \in Te}{Ave}[y_j - \hat{f}(x_j)]^2 = \frac{1}{m} \sum_{i=1}^{m} [(y_j - \hat{f}(x_j)]^2]$$

Training vs Test MSEs

- In general, the more flexible a method is, the lower its training MSE will be. i.e. it will "fit" the training data very well.
- However, the test MSE may be higher for a more flexible method than for a simple approach like linear regression.
- Flexibility also makes interpretation more difficult. There is a trade-off between flexibility and model interpretability.

Statistical learning Regression problems 4/24

Example: splines

Black: true curve
Orange: linear regression

Blue/green: Smoothing splines

Grey: Training MSE Red: Test MSE

Dashed: Minimum test MSE

Example: splines

Black: true curve Orange: linear regression

Blue/green: Smoothing splines

Grey: Training MSE Red: Test MSE

Dashed: Minimum test MSE

Example: splines

Black: true curve

Orange: linear regression

Blue/green: Smoothing splines

Grey: Training MSE Red: Test MSE

Dashed: Minimum test MSE

Bias-variance tradeoff

There are two competing forces that govern the choice of learning method: **bias** and **variance**.

Bias

is the error that is introduced by modeling a complicated problem by a simpler problem.

- For example, linear regression assumes a linear relationship when few real relationships are exactly linear.
- In general, the more flexible a method is, the less bias it will have.

Statistical learning Regression problems 8/24

Bias-variance tradeoff

There are two competing forces that govern the choice of learning method: **bias** and **variance**.

Variance

refers to how much your estimate would change if you had different training data.

In general, the more flexible a method is, the more variance it has.

The bias-variance tradeoff

MSE decomposition

If $Y = f(x) + \varepsilon$ and $f(x) = E[Y \mid X = x]$, then the expected **test** MSE for a new Y at x_0 will be equal to $E[(Y - \hat{f}(x_0))^2] = [Bias(\hat{f}(x_0))]^2 + Var(\hat{f}(x_0)) + Var(\varepsilon)$

Test $MSE = Bias^2 + Variance + Irreducible variance$

- The expectation averages over the variability of Y as well as the variability in the training data.
- As the flexibility of \hat{f} increases, its variance increases and its bias decreases.
- Choosing the flexibility based on average test MSE amounts to a bias-variance trade-off.

Statistical learning Regression problems 10/24

Bias-variance trade-off

Optimal prediction

MSE decomposition

If $Y = f(x) + \varepsilon$ and $f(x) = E[Y \mid X = x]$, then the expected **test** MSE for a new Y at x_0 will be equal to $E[(Y - \hat{f}(x_0))^2] = [Bias(\hat{f}(x_0))]^2 + Var(\hat{f}(x_0)) + Var(\varepsilon)$

The optimal MSE is obtained when

$$\hat{f} = f = \mathsf{E}[\mathsf{Y} \mid \mathsf{X} = \mathsf{x}].$$

Then bias=variance=0 and

MSE = irreducible variance

This is called the "oracle" predictor because it is not achievable in practice.

Statistical learning Regression problems 12/24

Outline

1 Regression problems

2 Classification problems

Classification problems

Here the response variable *Y* is qualitative.

- \blacksquare e.g., email is one of $\mathcal{C} = (\text{spam}, \text{ham})$
- e.g., voters are one of C = (Liberal, Labor, Green, National, Other)

Our goals are:

- Build a classifier C(x) that assigns a class label from C to a future unlabeled observation x.
- 2 Assess the uncertainty in each classification (i.e., the probability of misclassification).
- Understand the roles of the different predictors among $X = (X_1, X_2, \dots, X_p)$.

Classification problems

Here the response variable *Y* is qualitative.

- \blacksquare e.g., email is one of $\mathcal{C} = (\text{spam}, \text{ham})$
- e.g., voters are one of C = (Liberal, Labor, Green, National, Other)

Our goals are:

- Build a classifier C(x) that assigns a class label from C to a future unlabeled observation x.
- 2 Assess the uncertainty in each classification (i.e., the probability of misclassification).
- Understand the roles of the different predictors among $X = (X_1, X_2, \dots, X_p)$.

Classification problem

In place of MSE, we now use:

Error rate

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{f}(x_i))$$

where $\hat{f}(x_i)$ is the predicted class label and $I(y_i \neq \hat{f}(x_i))$ is an indicator function.

- That is, the error rate is the fraction of misclassifications.
- The training error rate is misleading (too small).
- We want to minimize the test error rate: $E(I(y_0 \neq \hat{y}_0))$

Statistical learning Classification problems 15/24

Classification problem

In place of MSE, we now use:

Error rate

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{f}(x_i))$$

where $\hat{f}(x_i)$ is the predicted class label and $I(y_i \neq \hat{f}(x_i))$ is an indicator function.

- That is, the error rate is the fraction of misclassifications.
- The training error rate is misleading (too small).
- We want to minimize the test error rate: $E(I(y_0 \neq \hat{y}_0))$

Statistical learning Classification problems

15/24

Optimal classifier

Suppose the K elements in \mathcal{C} are numbered $1, 2, \ldots, K$. Let

$$p_k(x) = \Pr(Y = k \mid X = x), \qquad k = 1, 2, ..., K.$$

These are the conditional class probabilities at x.

Then the Bayes classifier at x is

$$C(x) = j$$
 if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}$

- This gives the minimum average test error rate.
- It is an "oracle predictor" because we do not usually know $p_k(x)$.

Optimal classifier

Suppose the K elements in C are numbered 1, 2, ..., K. Let

$$p_k(x) = \Pr(Y = k \mid X = x), \qquad k = 1, 2, ..., K.$$

These are the conditional class probabilities at x. Then the Bayes classifier at x is

$$C(x) = j$$
 if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}$

- This gives the minimum average test error rate.
- It is an "oracle predictor" because we do not usually know $p_k(x)$.

Optimal classifier

Suppose the K elements in \mathcal{C} are numbered $1, 2, \ldots, K$. Let

$$p_k(x) = \Pr(Y = k \mid X = x), \qquad k = 1, 2, ..., K.$$

These are the conditional class probabilities at x. Then the Bayes classifier at x is

$$C(x) = j$$
 if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}$

- This gives the minimum average test error rate.
- It is an "oracle predictor" because we do not usually know $p_k(x)$.

Bayes error rate

Bayes error rate

$$1 - \mathsf{E}\left(\mathsf{max}_{j} \operatorname{Pr}(Y = j | X)\right)$$

- The "Bayes error rate" is the lowest possible error rate that could be achieved if we knew exactly the "true" probability distribution of the data.
- It is analogous to the "irreducible error" in regression.
- On test data, no classifier can get lower error rates than the Bayes error rate.
- In reality, the Bayes error rate is not known exactly.

Statistical learning Classification problems 17/24

Bayes optimal classifier

 X_1

Statistical learning

k-Nearest Neighbours

One of the simplest classifiers. Given a test observation x_0 :

- Find the K nearest points to x_0 in the training data: \mathcal{N}_0 .
- Estimate conditional probabilities

$$Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j).$$

Apply Bayes rule and classify x₀ to class with largest probability.

$$K = 3$$
.

KNN: K=10

 X_1

KNN: K=1 KNN: K=100

22/24

A fundamental picture

Model Complexity

A fundamental picture

Model Complexity

Model Complexity