AD NUMBER AD860478 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; OCT 1969. Other requests shall be referred to National Aeronautics and Space Administration-Manned Spacecraft Center, Attn: NASA-MSC, Houston, TX 77058. This document contains export-controlled technical data.

AUTHORITY

USAEDC ltr, 27 Jun 1973

SUMMARY OF FIVE YEARS OF ALTITUDE TESTING OF THE APOLLO SERVICE MODULE ENGINE IN ALTITUDE TEST CELL (J-3)

This condition is entimited Pur A. A. June, 73.

G. H. Schulz ARO, Inc.

October 1969

This document is subject to special export controls and each transmitted to foreign governments or foreign nationals may be made only with prior approval of NASA-MSC (EP-2), Houston, Texas 77058.

ROCKET TEST FACILITY

ARNOLD ENGINEERING DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

ARNOLD AIR FORCE STATION, TENNESSEE

NOTICES

When II. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or self-any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

SUMMARY OF FIVE YEARS OF ALTITUDE TESTING OF THE APOLLO SERVICE MODULE ENGINE IN ALTITUDE TEST CELL (J-3)

G. H. Schulz ARO, Inc.

This document is subject to special export controls and each transmitted to foreign governments or foreign nationals may be made only with prior approval of NASA-MSC (EP-2), Houston, Texas 77058.

This close conthis soon approved for public releases the 13.

This close conthis soon approved for public releases the 13.

This close conthis soon approved for public releases the 13.

FOREWORD

This report is a summary of the salient results of altitude development and qualification testing programs on the Aerojet-General Corporation (AGC) AJ10-137 liquid-propellant rocket engine for the Apollo Service Propulsion System. These programs were sponsored by the National Aeronautics and Space Administration-Manned Space-craft Center (NASA-MSC). Technical liaison was provided by AGC which was a subcontractor of North American Aviation-Space and Information Division (NAA-S&ID), prime contractor to NASA for the complete Apollo Service Module vehicle.

The test programs were requested to support the Apollo project under Program Area 921E, Project 9281. Testing was conducted by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee. The results reported in this document were obtained in the Propulsion Engine Test Cell (J-3) of the Rocket Test Facility (RTF) during the period from May 1963 through August 1968 under ARO Project Numbers RM1306, RM1356, RM1413, RM1607, RM1630, and RM1731. The manuscript was submitted for publication on May 29, 1969.

Information in this report is embargoed under the Department of State International Traffic in Arms Regulations. This report may be released to foreign governments by departments or agencies of the U.S. Government subject to approval of the National Aeronautics and Space Administration-Manned Spacecraft Center, or higher authority. Private individuals or firms require a Department of State export license.

This report was produced by the J-3 Projects Section, RTF, viz., R. L. Barebo, A. L. Berg, K. L. Farrow, M. W. McIlveen, J. M. Pelton, C. E. Robinson, and G. H. Schulz.

This technical report has been reviewed and is approved.

Donald W. Ellison
Lt Colonel, USAF
AF Representative, RTF
Directorate of Test

Roy R. Croy, Jr. Colonel, USAF Director of Test

ABSTRACT

The primary results of the development and qualification testing of the Aerojet-General Corporation AJ10-137 rocket engine for the Apollo Service Module conducted at the Arnold Engineering Development Center (AEDC) are summarized. Testing of the AJ10-137, a 20,000-lbf nominal thrust liquid-propellant engine, was conducted at combustion chamber pressures of from 77 to 133 psia and at mixture ratios of the two hypergolic propellants, nitrogen tetroxide and Aerozine-50®, from 1.4 to 2.4. Both Block I and Block II engines were tested to determine engine performance and to establish durability and reliability of the basic engine design and subsequent modifications. As a result of these tests, the Block II engine performance was established, and the engine was qualified for the lunar mission. This testing indicated and permitted solution of inadequate durability of the ablative combustion chamber at low-pressure/altitude conditions. The chamber had appeared reliable in sea-level testing conditions. Engine ignition, shutdown, and short-duration firing transient operation characteristics and performance were documented in a propulsion system configuration which included full-scale models of the spacecraft propellant tanks and lines. Satisfactory engine operation and durability were demonstrated in various simulated mission situations, such as extended-duration firings up to 635 sec, multiple firings of fractional-second durations with various coast intervals, and various propellant temperatures from 30 to 130°F.

This document is subject to special expert controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA-MSC (EP-2), Houston, Texas 77058.

This document has been exproved for public release fetter.

This document has been exproved for public release fetter.

This document has been exproved for public release.

CONTENTS

iii
6
14 33 51 51 58 ts
14 33 51 51 58 ts
33 51
51
58 ts
58 ts
ts 64
85
ccuracies 67
nd Lunar
1
2
2
2
2
2

AEDC-TR-69-144

Figure		Page
11.	Ablative Thrust Chamber Details	15
12.	Chamber/Nozzle Extension Flange Designs	16
13.	Chamber Flange Separation (Phase V, S/N 324)	17
14.	Combustion Chamber Flange Designs (Injector Interface)	17
15.	Chamber S/N 75, Postfire	18
16.	Chamber Failures at Forward Flange Area	19
17.	Chamber S/N 208, Postfire, Injector End	21
18.	Prefire, Chamber S/N 211 with Anchor Pins	22
19.	Postfire Condition, Chamber S/N 211	22
20.	Temperature History, Chamber without Anchor Pins	23
21.	Temperature History, Chamber with Anchor Pins	24
22.	Temperature History, Chamber S/N 213	25
23.	Temperature History, Chamber S/N 213	26
24.	Postfire Condition, Chamber S/N 213	27
25.	Temperature History, Chamber S/N 222	28
26.	Temperature History, Chamber S/N 222	29
27.	Postfire Condition, Chamber S/N 222, New-Type Chamber Seal	30
28.	Combustion Chamber Temperature History	31
29.	Injector Flange Temperature History	32
30.	Unbaffled Doublet Injector, View Looking Upstream	34
31.	Baffled Doublet Injector	34
32.	Injector Fuel Header Failure, S/N AFF-37	36
33.	Combustion Chamber Ablation and Melting	37
34.	Combustion Chamber Damage on Engine Assembly No. 2	38
35.	Postfiring View of Combustion Chamber Used during Series A-06, S/N A-1	38

Figure		Page
36.	Baffled Injector	39
37.	Engine S/N 11A Injector, Postfire	40
38.	Pulse Charge Container	41
39.	Typical Pulse Charge Detonation and Recovery (Phase II, M-16)	42
40.	Postfire Chamber S/N 260	. 44
41.	Postfire Chamber S/N 261	45
42.	Baffled Injector	46
43.	Typical Combustion Chamber	49
44.	Injector Damage after Ignition Testing, Phase VI	50
45.	Thrust Chamber Valve Cutaway	51
46.	Fuel Pressure Actuated Thrust Chamber Valve Schematic	52
47.	Pneumatically Actuated Thrust Chamber Valve	53
48.	Phase I Adjusted Engine Performance	59
49.	Block I Engine Performance, Isp _{vac}	60
50.	Engine Performance with Injector S/N 110, Isp _{vac}	61
51.	Vacuum Performance with Long Baffled, Counterbored Orifices Injector, Phase IV.	62
52.	Block II Engine Performance at Design Chamber Pressure, Phase V	63
53.	Phase VI Engine Performance Compared with Previous Test	63
54.	Block II Engine Vacuum Specific Impulse-Chamber Pressure Relationship at Design Mixture Ratio, Phase V	64
55.	Comparison of the Chamber Pressure Transients using Fuel Pressure Actuated and Pneumatically Actuated TCV	67
56.	Typical Ignition Transients	68
57.	Typical Shutdown Transients	70
58.	Comparison of Impulse Bit Operation Using Different Types of TCV's	71

AEDC-TR-69-144

Figur	<u>'e</u>	Page
59.	Impulse Bit Operation	72
60.	Comparison of Chamber Pressure Transients Using Different TCV Actuation Systems	73
61.	Injector Temperature History after Short Firing FJ-33.	74
62.	Effect of Multiple Firings on Injector Temperatures	75
63.	Combustion Chamber Pressure Measurement Locations	76 [°]
64.	Typical Start Transient Oscillograms	79
65.	Combustion Overpressure Duration as a Function of TCV Opening Time	80
66.	Combustion Overpressure as a Function of Propellant and Injector Temperatures	81
67.	Combustion Overpressure as a Function of TCV Opening Time	82
68.	Combustion Overpressure as a Function of the Time from Oxidizer Injector Fill to Chamber Pressure Rise	83
6 9.	Comparison of Peak Chamber Pressure Measured with Variable-Capacitance-Type Transducers and Flight-Type Transducer	83
70.		84
	TABLES	
I.	Engine Component Variations	7
II.	Mod I-C Bipropellant Valve (S/N 128) Leakage Rates	55
III.	Mod I-D Bipropellant Valve (S/N 122) Leakage Rates	56
IV.	Mod I-E Bipropellant Valve (S/N 126) Leakage Rates	57
v.	Test Conditions for Ignition Characteristics	77
VI.	Average Combustion Overpressures	78

SECTION I

In this report are summarized the salient results of development and qualification tests of the Apollo Service Propulsion System (SPS) engine (Fig. 1) at the Arnold Engineering Development Center during the period from June 1963 to August 1968. The Apollo SPS engine is a liquid-propellant rocket engine designed for a spaceflight operation thrust level of about 20,000 lbf with such novel features as relatively low pressure combustion, ablation-cooled combustion chamber, and

Fig. 1 The Apollo Spacecraft Service, Command, and Lunar Modules

lightweight radiation-cooled exhaust nozzle with a large area ratio (62.5:1) (Fig. 2). The engine, manufactured with the designation AJ10-137 by the Aerojet-General Corporation, provided the main propulsion of the Apollo Service and Command Modules for the cislunar and lunar orbit portions of the Apollo lunar missions. The Apollo SPS engine program at AEDC was conducted in Propulsion Engine Test Cell (J-3) (Fig. 3) of the Rocket Test Facility (RTF). It was originally planned to test eleven engine assemblies in two phases, development (Fig. 4) and qualification, to have been completed in about nine months.

Fig. 2 Service Propulsion System Block II Engine

Fig. 3 Drawing of Full-Scale SPS Replica (F-3) in Test Cell J-3

Fig. 4 Phase I Test Installation in Test Cell J-3

It was planned to select an exhaust nozzle extension from a few candidate designs, document engine durability and performance at various operating conditions in the test cell vacuum environment (cell pressure below 0.15 psia), and proceed with formal qualification. However, unexpected vacuum environment effects on engine durability and performance prolonged the initial development and resulted in qualification of an interim compromise engine (Block I) in April 1966. Ensuing development tests produced a Block II engine with improved performance and good durability. The Block II engine design was qualified in February 1967, except for the bipropellant valve which was qualified in August 1968. The chronology of the Apollo SPS engine program at AEDC

was:		No. of Firings	Engine Assemblies	Inclusive <u>Dates</u>
Phase I	Development	77	12	5/63 to 4/64
Phase II	Development/ Prequalification	192	9	8/64 to 10/65
Phase III	Qualification (Block I)	104	7_	11/65 to 4/66
Phase IV	Development (Block II)	261	9	4/66 to 10/66
Phase V	Qualification (Block II)	180	6	11/66 to 2/67
Phase VI	Qualification and R&D (Block II)	222	5	2/68 to 9/68
		1036	48	

During these tests, design modifications were indicated and proved for the exit nozzle extension, combustion chamber, injector, and bipropellant valve. Also, during Phases II through V, gimbal operations and dynamics were demonstrated and documented for manufacturer analysis, combustion stability was proved with explosive pulse charges, and engine operation transients were recorded with propellant system dynamics duplicated by a full-scale boilerplate replica of SPS propellant tanks and lines, designated the F-3 test fixture. Apollo SPS propellant pressurization system and propellant utilization system were not used because a variety of off-design tank pressures were required during nearly all test periods and the SPS pressurization regulators were not

¹The propellant utilization system senses remaining propellant quantities and shifts oxidizer flow rate with a throttling valve for balanced propellant consumption to minimize residual propellant weight.

readily adaptable to the wide pressure range, the SPS pressurization system was not designed for remotely controlled operation, and a utilization system was not available for AEDC tests. The AEDC pressure regulators were used, and a fixed orifice was substituted in the oxidizer line for the utilization valve. Results of the individual test phases or portions thereof are detailed in Refs. 1 through 16.

Table I is an outline of the SPS engine component variations that were evaluated in this program and are discussed in this report. The development history is given for the simulated altitude tests that resulted in satisfactory operation and durability of the metallic exit nozzle extension, the fiber glass/phenolic combustion chamber, the propellant injector, and the engine-mounted bipropellant valve (TCV). The F-3 fixture was changed from Block I to Block II configuration propellant lines and tank arrangement between test periods DC and DD of Phase IV (Parts I and II). The change was deferred from the start of Phase IV to permit early evaluations of the Block II engine performance and durability while the F-3 design modification kit was being fabricated. Engine ballistic performance and operating characteristics are summarized for the altitude tests from early engine evaluations through the Block II engine qualification, the influences of propellant mixture ratio (MR) and temperatures and of combustion pressures on specific impulse (I_{SD}) are indicated, and the engine ignition (FS1), shutdown (FS2), and short-duration (impulse bit) firing characteristics are exemplified.

SECTION II ENGINE COMPONENT DEVELOPMENT

2.1 NOZZLE EXTENSION

A nozzle development program involving eight designs was conducted as part of the development of the SPS engine at AEDC (Phase I). The eight nozzle extension designs tested at AEDC are shown in Fig. 5. The nozzle extension was attached to the chamber at an expansion area ratio (A/A*) of 6:1, providing an overall expansion ratio of 62.5:1 at the nozzle exit. The nozzle extension was radiation cooled and was constructed of columbium and titanium alloys.

TABLE I ENGINE COMPONENT VARIATIONS

Test	Engine	Combusi	ion Chamber	N	ezale Extension		Injector	T	Bipropellant Valve
No.	S/N	S/N	Type ¹	3/N	Type ²	S/K	Туре	S/N	Туре
					Phase 1	Developm	ent		
A-01 to -02	1=	10	8·1.I	A-4	All Ti	AF-30	I and leading and Talabat	W.F. 1	Preprototype, Fuel Actuated
A-01 to -02	2=		6-1,1 1 1	A-11	A: Ti	AF-20	Doublet	CF-3	i Preprocotype, Fuel Actuated
B-01	3*	30	i	A-2	All TL Reinforced		Quadlet	CF-4	1 [
B-02	4.0	30		A-1	Cb 20:1/Ti	AFF-4	Quedial	CF-5	ļ
C-1 to -11	5+	4*	12·1,K	ARO	Sleinless Steel	AFF-24	Doublet		Nonflight
C-12	8≉	4=	12·1,K	*	All Ti, Reinforced		ı l	22.	Nonflight
B-03	7*	5*	6:1,J		Cb 20-1/Ti, 3 Rings		1 1	CF-5	Preprototype, Fuel Actuated
C-13, -14 A-03, -04	84	AEDC-1	12:1,K	ARO A-2	Stainless Steel	AFF-24 AFF-24	i i		Nonflight
C-01	10+	AEDC-1	<u> </u>	A-2	All Ti, Reinforced All Ti, Reinforced			18	Nonflight Protetype, Fuel Actuated
B-04, -05	110	2+	6:1 _. J	21		AFF-37	l i	17	1 toctype, Fuel Actuated
C-02	12*	AEDC-3	12:1,k		All Ti, Reinforced		1 1	17	1 1
A-05	130	A-9	8·1,J	1	Cb/Ti, Reinforcec		3	22	L l
C-03	14*	3*	0·1,I	22		AFF-23		17	P
A-06	15*	A-1	1,1:8	22		BF-18	8-Baffle, Doublet	CF-3	Preprototype, Fuel Actusted
C-04	18*		A:1,Mod. J;	7	•	AFF-23	Doublet	17	Prototype, Fuel Actualed
	'	1	Lightweight					1	la constant
			_		Phase II Developm	ent and Pr	equalification		
A, C	9	A-11	8·1;J	1	Cb/Tl	AFF-78	Doublet	20	Block 1, Fuel Actuated
D, F	9-1	50	8.1, Mod. J	39	Cb 40,1/T1	AFF-78	Doublet	20	
G, K	11	47	1	26	l 1	AFF-48	Baffled; Doub.et	32	
L	8A	77		27		47		36	l Ì
M, N	11A	75		28	} <u>}</u>	91		32	· · · · · · · · · · · · · · · · · · ·
P, Q R, S	9B 11B	74 :35		25 26		47		101	Pneumatically Actuated
T. U	lic	208		27		84			i I
v, w	iiD	211		26	j	64	\ ,	1 1]
			·		Phone IV	Qualifica	l on	•	·
-1		244				_	Baffled, Doublet	100	
CA CB	23 23A	214 213	6·1, Mod, J	42	Cb 40.1/Tl	85 85	Danied, Doublet	108	Pneumstically Actuated
CC	23B	219		45		82	l l	1 1	
CD	23C	222		Ιĩ		Ιï		1 1	
CÉ, CF	23D	223		1 1		1 1			
CG, CH	22	220		42		84		104	
CI	21	212	: +	29	L	71		105	L
					Phase IV Block	ll Dave.or	ment Perl I		
DA	22D	260	6.1.Mod. J	28	Сь 40:1/Ті	87	Baffled; Doublel; Block 1	104	Pneumatically Actuated
DB	22E	261	1	ΙŤ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	73	Added Fuel Holes	1 1	
DC	22F	283	+	+	į į	73	Added Fuel Heles	1 1	↓
					Phase	IV Part	1		
					C) 40.4151	T	n n e 4 mm	100	B
DD DE	21A 21B	293 299	6-1, A-100	27 27	Cb 40-1/T1	110	B,D,5-4-2*** B,D,5-4-2	102	Pneumatically Actuated
DF	21C	303		41	1 1	63	B;D, Blk 1, 8-4-4	i i	
DG	21D	305		41	l	93	B;D. Blk 1, 5-4-4	1	i i
DH	21E	308	'	42	1	105	B,D,5-4-4,Counterbored	1	l l
DI	217	310	ı l	42	i	105	B,D,5-4-4,Counterbored]	l
			-		Phase V Blo	ck II Quoi	ficetion	-	***************************************
EA	54	311	5·1, A-1	52	Cb 40,1/Ti	104	Baffled, Doublet,	122	Pneumetically Actuated
EB	54A	315	7, 77,	52	TV.1, 11	104	5-4-4; Counterbores	122	1
EC	54B	313		54		115		128	1
ED	54C	320		54		115		128	l l
EE	55	318	1 1	52	. 1	103		122	!
EF	55A	324	_ +	54	<u> </u>	103	1	122	<u></u>
					Phase VI Block II	Qualificat	ion and R&D		
FA	54D	351	6:1, A-2**	54	Cb 40:1/T1	104	5-4-4 Beff.ed;	128	Mod I-C (Al: Pneumatic)
FB	. 1	i 1				. 1	Doublet, Counterbared		
FC	1 .	1 1		! !	1 !	1	1 1		l l
FD FE	54E 54F	1 1		1	l 1	84	l	DV-2	
FF	ا ا	1 1	l I	- 1		l "i"	<u>. !</u>	1 1	l (
FG	ıl	1 1	l I	ı l	1 1	1 1	l [1 1
FH	l I	 	1 1	 			1 1		l I
FJ	'		·		i	1 1		t	res and an armonic
FΧ	3¢G	352	.	82		1 1		,122	Mod I-D (All Preumatic)
FL	54G	352		52	1 I	1	1 1	122	S-2
FM	55	1	Steinless	54		98	i I	DV-4	1
FN FO]	!	Sleel; 0:1/			Į. I		i l	١
FP	54H	35.2	6-1, A-2**	52		94		125	: Mod I-E (All Pneumatic)
FQ	54H	35 2	6.1, A-2**	52	+	94	 	126	Mod 1-E (All Preumatic)
		45.5	**** ** ***	,	100	1	· •		1 222 A - 20 20 - 1 15 - 15 - 15 - 15 - 15 - 15 - 15 -

^{*}Arbitrary number assignment for ARO identification
**Also Nod. J flangs, but injector seel and chamber construction changed
***Number sequence indicates beffic configuration - see Section 2.3

¹Exit ares rotto IA/A*) and nozzle flange design ²Area ratio (A/A*) of material change joint, material, construction feature

The eteinices steel extension was built by ARO for certain development test firings

Material:

Reinforcement: Three Circumfer-ential Stiffeners

A/A* = 6A/A = 20

Columbium, 6:1 to 20:1 Material:

Titanium,

20:1 to 62.5:1 Reinforcement:

Three Circumfer-ential Stiffeners

a. Configuration i

Material: Titanium

17 Circumferential Reinforcement:

and 36 Longitudinal **Stiffeners**

A/A* = 12

Material: Titanium

12 Circumferential and 36 Longitudinal Reinforcement:

Stiffeners

c. Configuration III

d. Configuration IV

Fig. 5 Exit Nozzle Extension Configurations

Columbium, 6:1 to 20:1 Material:

Titanium, 20:1 to 62.5:1

10 Circumferential Reinforcement:

and 16 Longitudinal

Stiffeners

A/A* = 6A/A* = 20 A/A* = 49

Columbium, 6:1 to 20:1 Material:

Titanium, 20:1 to 62.5:1

Reinforcement: 2 Circumferential

and 32 Longitudinal Stiffeners

e. Configuration V

f. Configuration VI

Material: Columbium,

6:1 to 20:1

Titanium, 20:1 to 62.5:1

9 Circumferential Reinforcement:

and 16 Longitudinal Stiffeners

Material: Columbium, 6:1 to 40:1

Titanium, 40:1 to 62.5:1

Two Circumferential Stiffeners Reinforcement:

g. Configuration VII

Fig. 5 Concluded

h. Configuration VIII

Configuration I (Fig. 5a) was used to start testing although previous subscale tests indicated all-titanium construction would not withstand long firing durations. This nozzle extension was constructed of a titanium alloy consisting of 5-percent aluminum, 2.5-percent tin, and 92.5-percent titanium. The nozzle extension had a wall thickness of 0.025 in. and a nominal weight of 132 lbm. Three circumferential stiffeners, located as shown in Fig. 5a, were used for structural reinforcement. Three extensions of this design were used. The first failed because of facility exhaust diffuser operational difficulties; the second failed because of an engine injector failure which produced severe oscillatory side forces. Both of these failures were within the first 6 sec of operation. The third nozzle extension failed after about 8 sec of normal engine and facility operation because of circumferential buckling at the nozzle attachment flange (A/A* = 6:1) as shown in Fig. 6.

Fig. 6 Nozzle Extension Failure during Test B-2, Configuration !

As anticipated, the failure indicated insufficient structural strength of titanium at the high temperature operating conditions.

The second nozzle extension configuration (Configuration II, Fig. 5b) was constructed of columbium from the 6:1 to 20:1 area ratio and titanium alloy from the 20:1 area ratio to the nozzle exit. Three circumferential stiffeners, located in the same manner as on Configuration I, were used for structural reinforcement. The columbium section was implemented because of its higher structural strength at elevated temperatures. This nozzle was expected to be adequately durable, and the design proved to be more durable under normal operating conditions than did Configuration I; however, the new design still did not have sufficient strength to withstand normal operating temperatures. The nozzle failed in the titanium section in a similar manner as Configuration I, after about 97 sec of engine operation (Fig. 7). The circumferential failure of Configuration II occurred just aft of the columbium in the titanium at the 24:1 area ratio. This indicated that the columbium section was satisfactory but that the titanium portion was not strong enough.

Fig. 7 Nozzle Extension Failure, Configuration II

After nozzle extension design Configuration II, several designs using all titanium and columbium-titanium combinations with various patterns of circumferential and longitudinal stiffeners (Figs. 5c, d, e, f, and g) were tested with varying degrees of success. (Two of these nozzles, Configurations III and IV, were designed to attach to the 12:1 area ratio chamber discussed later.) The persistence of facility exhaust diffuser operational difficulties, in conjunction with structurally inadequate nozzle extensions, precluded a definitive analysis of the effectiveness of the nozzle extension designs. But the nozzle designs with both longitudinal and circumferential stiffeners did have one very apparent inadequacy in common: the stiffeners remained cooler than the sheet metal skin, and wrinkles and cracks occurred because of the differential thermal expansion between the skin and stiffeners (Fig. 8).

Fig. 8 Differential Expansion Effects on Nozzle Extension, Configurations III and IV

A satisfactory nozzle design resulted from the nozzle development program (Configuration VIII). For this design, columbium was used from the 6:1 to the 40:1 area ratio station and titanium from the 40:1 to the 62.5:1 area ratio station (Figs. 2 and 5h). Configuration VIII weighed approximately 170 lb. This extension had a history of success

extending from Phase II through Phase VI. The nozzle serial numbers, the cumulative firing duration, and the number of engine ignitions on each Configuration VIII nozzle extension tested from Phase II through Phase VI are listed below:

Nozzle Serial Number	Cumulative Firing Time, sec	Number of Ignitions
25	408	27*
26	1158	5 7
27	2890	86
28	1088	56*
29	2710	110
39	615	15
41	1512	55
42	3281	119
4 5	1767	48
52	3184	111
54	3187	231

*Destroyed by Combustion Chamber Failure (Phase II)

These data indicate the relatively good durability of this nozzle configuration compared with the engine design operating life of 750 sec total burning time and 50 starts. Many of the nozzles listed above were still usable after the listed firing time.

A temperature history and a profile are presented in Figs. 9 and 10, respectively, for a typical Configuration VIII nozzle.

Fig. 9 Nozzle Temperature History, Configuration VIII

Ī

Fig. 10 Nozzle Temperature Profile, Configuration VIII

2.2 COMBUSTION CHAMBER

The combustion chamber was constructed with a silica cloth (Refrasil®) tape ablative liner bonded with phenolic resin, an asbestos insulating layer bonded with phenolic, and an outer structural wrap of glass cloth and filament rovings bonded with epoxy resin. Injector and nozzle extension mounting flanges were bonded between the insulating layer and the outer structural wrap. The ablative liner tape was oriented with an aft-running slant to provide a "shingle" effect for the combustion gas flow. Chamber construction began with the ablative liner formed on a contoured mandrel and autoclave cured. The insulation layer was added and cured. The metal attachment flanges and structural wraps were added to complete the assembly.

The basic chamber design and contour were not greatly changed during testing at AEDC (see Fig. 11a). A lightweight construction chamber was tested during Phase I, test C-04, but the thinned chamber failed upstream of the nozzle extension attachment flange after a 635-sec firing and an accumulated firing time of 746 sec. Subsequent tests were conducted with the heavier standard chamber construction; however, major changes were made in the attachment flanges at the injector and nozzle extension interfaces. The changes to the combustion chamber/nozzle extension flanges were made for weight reduction; the changes to the injector/combustion chamber flange were incorporated to improve gas seal reliability and to prevent delamination of the liner. Two combustion chambers, which differed from the basic 6:1 area ratio configuration shown in Fig. 11a, extended to the 12:1 area ratio station (Fig. 11b). The longer chamber proved unnecessary when columbium material provided adequate high temperature strength for the nozzle extension.

a. Dimensions of Standard 6:1 Area Ratio Chamber

b. Dimensions of 12:1 Area Ratio ChamberFig. 11 Ablative Thrust Chamber Details

The changes to the combustion chamber/nozzle extension flange are shown in Fig. 12. The original flanges were designated the "I" and "K" types (Figs. 12a and b, respectively), with the former used on the 6:1 area ratio chambers and the latter on the 12:1 chambers. When the nozzle extension was modified from all titanium to the columbium/titanium type (see Section 2.1), the chamber flange design was altered and designated as the J-flange (Fig. 12c). After the nozzle construction proved satisfactory in the interface area, the design was modified to provide a lighter weight configuration, and was designated as the "modified J flange" (Fig. 12d). Additional testing confirmed the adequacy of this design, and it became the approved configuration which was used on all engines in Phases II through VI. The only other difficulty encountered with this flange design was during Phase V when a bond separation occurred at the chamber flange (Fig. 13).

Fig. 12 Chamber/Nozzle Extension Flange Designs

Fig. 13 Chamber Flange Separation (Phase V, S/N 324)

The various designs of chamber forward end (chamber/injector interface) which were tested are shown in Fig. 14. The original design for the injector/chamber flange (Fig. 14a) was used for all chambers in Phase I and all but the last four test periods of Phase II. About the middle of Phase II, after test period M, posttest inspection of the chamber (S/N 75) revealed delaminations of the ablative material at the injector seal area (Fig. 15).

Fig. 14 Combustion Chamber Flange Designs (Injector Interface)

c. Modified Chamber Flange (Used during Last 7 Test Periods of Phase III)

d. Madified Chamber Flange (Used during First Three Test Periods of Phase IV)

e. Madified Chamber Flange (Used during Remaining Phase IV and All Of Phase V and VI Tests)

Fig. 14 Concluded

Fig. 15 Chamber S/N 75, Pastfire

Test periods P, Q, R, and S, with chambers S/N 74 and 155 of the same design, revealed the severity of the problem with failures at the forward flange (Fig. 16a). These two chambers had operated for a total of 408 and 332 sec, respectively, of which 223 and 149 sec, respectively, were at the maximum chamber pressure (125 psia). Figure 16b shows chamber S/N 74 with a section removed and indicates the condition of the failure area. It was noted that the bond area was protected by virgin material in the radial direction, but the portion of the chamber that seals the joint of the injector flange was severely charred and eroded. Figure 16c is a top view of chamber S/N 155 showing the severity of erosion in the seal area. These delaminations of the ablative liner were suspected of contributing to, or perhaps even initiating, the flange-bond failures by permitting hot gas leakage behind the chamber/injector seal.

a. Engine S/N 11B Injector and Chamber Flange (S/N 155)

Fig. 16 Chamber Failures at Forward Flange Area

b. Chamber S/N 74

c. Chamber S/N 155 Fig. 16 Concluded

A chamber modification was made with additional glass roving to prevent flange movement, and the injector seal was redesigned to include an aluminum cap over the asbestos insulating layer and partially over the ablative liner as shown in Fig. 14b. An O-ring was added to prevent the flow of gas along the phenolic into the flange bond area. This modified chamber was tested for a total of 766 sec, of which 200 sec were at a chamber pressure of 125 psia and 355 sec at 110 psia. The chamber exhibited a notable improvement in durability over those previously tested even though posttest examination did reveal some delamination in the forward ablative liner and erosion of the metal cap (Fig. 17).

Fig. 17 Chamber S/N 208, Postfire, Injector End

To prevent delamination of the forward end, stainless steel pins were installed in the ablative liner to anchor the Refrasil material laminations (Figs. 14b and 18). Twenty-two pins were equally spaced

Fig. 18 Prefire, Chamber S/N 211 with Anchor Pins

in two areas. Unpinned areas were left in between for comparison to aid evaluation of any improvement in interface durability. The test period for this chamber was discontinued short of completion because of high temperatures of the injector and chamber flanges. The total firing time was 501 sec, of which the final 278 sec were at 125-psia chamber pressure. Posttest examination revealed the same forward end delamination and showed that the anchor pins had not appreciably improved chamber interface durability (Fig. 19).

Fig. 19 Postfire Condition, Chamber S/N 211

Figures 20 and 21 are temperature histories for the chambers with and without the stainless steel pins. There was no apparent improvement in the overall temperature history from the use of the pins. The temperature histories in Fig. 21 do not indicate any differences between the areas with and without pins. Use of pins was discontinued. These tests completed Phase II testing.

The initial two chambers tested in Phase III were of the same construction as shown in Figs. 11a and 14b. These two chambers exhibited the same forward end delaminations as experienced previously. Graphs of the temperature-time history of the chamber flange and injector are shown in Figs. 22 and 23 for the second of the two chambers (S/N 213). Figure 24 is a postfire view of this chamber.

a. Initial Firings

b. Final Firings
Fig. 20 Temperature History, Chamber without Anchor Pins

Fig. 21 Temperature History, Chamber with Anchor Pins

Fig. 22 Temperature History, Chamber S/N 213

Fig. 23 Temperature History, Chamber S/N 213

Fig. 24 Postfire Condition, Chamber S/N 213

After the test of chamber S/N 213, a new injector/chamber seal was devised with Refrasil and silicone rubber gaskets and silicone O-rings to seal the outboard surfaces of the flange, as shown in Fig. 14c. This seal performed satisfactorily as can be seen by comparing Figs. 22 and 23 with Figs. 25 and 26, which show temperatures obtained using the old-type seal (S/N 213) and corresponding data graphs for the new seal (chamber S/N 222). Test durations were the same, but temperatures with the new seal were considerably lower during the long firings. Figure 27 is a postfire view of the chamber on which the new-type seal was used. This new chamber/injector seal was used on the remainder of the chambers tested in Phase III and performed satisfactorily until the final test period. The final test period of Phase III consisted of long-duration firings at high combustion chamber pressure (110 psia). Figures 28 and 29 are temperature-time graphs of the injector flange temperatures from these firings and show the increasing flange temperatures, which were indicative of incipient failure. This engine was not disassembled prior to shipment; therefore, no postfire photographs are available. This completed the testing of the Block I chamber.

Fig. 25 Temperature History, Chamber S/N 222

Fig. 26 Temperature History, Chamber S/N 222

Fig. 27 Postfire Condition, Chamber S/N 222, New-Type Chamber Seal

Fig. 28 Combustion Chamber Temperature History

Fig. 29 Injector Flange Temperature History

Testing of the Block II chamber design (see Section I) involved evaluation of a new chamber/injector seal (Fig. 14d). This seal consisted not only of a silicone gasket and O-rings, as used previously, but also included an extension of the injector ID to form a lip over the interface area. This seal configuration performed satisfactorily. An injector/chamber compatibility problem still caused severe erosion of the chamber downstream of the seal area (Section 2.3.4).

The only other change to the chamber design, to ensure the physical integrity of the interface seal, was the addition of a mechanical lock between the insulation and the ablative liner (Fig. 14e). This lock scheme was a series of steps at the interface of the insulation and ablative liner to prevent slippage of the ablative liner away from the injector. This design was satisfactory, and no further complications were encountered during Phases IV, V, and VI.

During Phase VI test period DC, chamber S/N 263 developed two "blisters" in the ablative lining where the lining bond to the insulation layer separated locally, about halfway between the injector and throat. Several minor changes were made to the chamber fabrication and cure cycle which were not documented at AEDC because neither the type nor degree of change was made available by the manufacturer. The cure cycle changes prevented blisters, and the subsequent chamber durability was quite good.

2.3 INJECTOR

2.3.1 Phase I

Four injector designs were tested during the initial phase. These included a long impingement triplet, a quadlet impingement, and a doublet impingement; all of which were unbaffled. A doublet impingement type which had six radial baffles and one cylindrical baffle was also tested. Figures 30 and 31 show the unbaffled and baffled doublet impingement injectors. The unbaffled injectors were all similar except that the pattern of the orifices was changed. Film cooling of the injector/combustion chamber interface and chamber wall was provided by fuel flow from nonimpinging orifices in the outer fuel ring of the injector, adjacent to the mounting flange. Approximately 5 percent of the fuel flow was injected for film cooling.

The long impingement triplet injector (S/N AF-30) was tested first and was used for two firings of 4- and 6-sec duration. Combustion instability of 90-Hz frequency developed during the first test, and 1600-Hz instability developed during the second test.

Fig. 30 Unbaffled Doublet Injector, View Looking Upstream

a. View Lookino Upstream

Fig. 31 Baffled Doublet Injector

b. Three-Quarter View Looking Upstream

Fig. 31 Concluded

The second injector tested had a quadlet configuration with two oxidizer and two fuel orifices impinging. Three separate tests of 5, 8, and 15 sec were conducted with this injector; the last two were terminated early because of nozzle extension failures (see Section 2.1).

Four different injectors of the third configuration were tested as shown below:

Injector S/N	Test (Phase I)	Total Firing Time, sec
AF-29	A1-01, -02, -03	14
AFF-24	C-1 to C-14 A-03, -04, -05	1319
AFF-37	B-03, -04, -05	202
AFF-23	C-01, -02, -03, -04	1787

Injector S/N AF-29 failed during the last 4 sec of testing when a 120-deg segment of the outer oxidizer ring failed. Injector S/N AFF-24 performed satisfactorily during facility checkout firings (C-01 to C-14) and two engine development tests (A-03, -04). The last firing of test A-05 was terminated automatically by the combustion stability monitor (CSM) when a check valve burst in the thrust chamber valve actuator dump line. The injector had performed satisfactorily. Injector S/N AFF-37 performed satisfactorily during tests B-04 and B-05-1, -2, and -7, but during test B-05-3, combustion instability developed and the fuel header developed a crack before the test was terminated (Fig. 32). Extreme chamber ablation had resulted from the instability (Fig. 33). The CSM had not terminated the test because it has been set for ±150 g's and a minimum of 1000 Hz, whereas the instability conditions were 150 g's at a frequency of 760 Hz. The CSM was reset for subsequent tests to terminate when the vibration conditions exceeded ±60 g's and 600 Hz for over 0.040 sec.

Fig. 32 Injector Fuel Header Failure, S/N AFF-37

Fig. 33 Combustion Chamber Ablation and Melting

The last unbaffled doublet injector tested in Phase I was S/N AFF-23. At the completion of test C-01-1, an inspection showed that the injector was in good condition but that the chamber was severely eroded as shown in Fig. 34. This condition indicated an abnormal mixing pattern because this type of erosion was not present with the other injectors of this configuration. However, when this injector was tested again during tests C-03 (firings 1-21) and C-04 (firing 1-8), there was no evidence of chamber erosion; included was one firing of 635 sec (C-04-6). There was one CSM shutdown, 0.6 sec after ignition during firing C-04-4. No other difficulties were encountered.

The last injector tested in Phase I was the baffled doublet configuration, S/N BF-18 (Fig. 31). This injector was tested for a total of 379 sec in test series A-06 (7 firings), which included one firing of 260 sec. The injector performed satisfactorily with no CSM shutdowns. Postfire inspection revealed no abnormalities of the injector, but three longitudinal "streaks" occurred on the chamber wall, two of which extended to the throat (Fig. 35). These streaks were not in line with the baffles and were not attributed to the wake from the baffles.

Fig. 34 Combustion Chomber Domage on Engine Assembly No. 2

Fig. 35 Postfiring View of Combustion Chomber Used during Series A-06, S/N A-1

2.3.2 Phase II

During Phase II, five different injectors were used; all were the doublet impingement type; one was unbaffled, and the other four were baffled. The unbaffled injector was similar to those of Phase I, but the baffled type had five radial baffles instead of six, as used previously (Fig. 36).

Fig. 36 Baffled Injector

The unbaffled injector (S/N AFF-78) was used in test periods A through F and performed satisfactorily with the exception of three tests which were terminated by the CSM. To eliminate the combustion instability problem, baffled injectors were introduced and were used for the remaining tests in Phases II, III, IV, and V. The baffles on these injectors were regeneratively cooled, using fuel as the coolant; the fuel was routed back to the injection ring passages and was not discharged directly from the baffles, except for the baffle tip weep holes. The baffled injector S/N's, the test numbers, and the total accumulated firing times were:

Injector, S/N	Test Period	Accumulated Firing Time, sec
AF-46	G, H, I, J, K, R, S	888
-47	L, P, Q	1011
-91	M, N	756
-64	T, U, V, W	1267

These injectors performed satisfactorily with the exception of S/N 91 which developed a crack in a weld adjacent to the cylindrical baffle (Fig. 37). This condition had been anticipated by AGC, and corrective measures were taken with the welding process. The baffled injectors caused no CSM shutdown during this phase. To induce combustion instability and document the suppression ability of the injector, a pulse charge (bomb) was placed on the injector face prior to each test period. The pulse charge was a No. 8 blasting cap plus 2.46 gm of C-4-type explosive in a Teflon® holder, which was screwed into the center of the injector face (Fig. 38). The pulse charge was located about 6 in. downstream of the injector face, and charge ignition was by combustion heat. A typical firing thrust/time history, showing the detonation and recovery of the thrust to normal, is shown in Fig. 39.

Fig. 37 Engine S/N 11A Injector, Postfire

a. Holder Disassembled

b. Holder Assembled

Fig. 38 Pulse Charge Container

Fig. 39 Typical Pulse Charge Detonation and Recovery (Phase II, M-16)

2.2.3 Phase III

Four injectors were tested during nine Phase III test periods. The injector S/N's, test periods, the total accumulated firing time, and the termination criteria or "kill limits" for the CSM were:

				CSM Limits	
Injector S/N	Test Period	Total Accumulated Firing Time, sec	Peak-to-Peak Acceleration, g	Frequency, Hz	Time Interval,
65	CA	507	120	600 to 7000	0.040
65	CB	505		3 1 20	
82	CC	509			
82	CD	505	180	11111	0.060
82	CE	602			0.080
82	CF	150		To The said	
94	CG	604			
94	СН	152			
71	CI	690	+	•	+

All injectors performed satisfactorily with only two engine shutdowns by the CSM (CC-13, CC-15). Engine vibration data showed that the combustion irregularity, which was commonly characteristic of the ignition transient, was satisfactorily dissipating at the instant of CSM triggering during these tests. In each case, combustion had returned to normal shortly after CSM triggering and before bipropellant valve activation. Therefore, the acceleration level and duration criteria for shutdown were extended to preclude further unnecessary terminations.

2.3.4 Phase IV

Block II development testing was initiated with Phase IV for the primary purpose of increasing performance. The mixture ratio was changed from 2.0 to 1.6, but the configuration of the injector remained the same. Five injectors were tested before the design of the Block II injector was finalized. The test numbers and the firing durations were:

Injector S/N	Test	Firing Duration, sec
97	DA 1-24	808
73	DB 1-28 DC 1-4	748 602
110	DD 1-17 DE 1-15	755 757
93	DF 1-15 DG 1-14	760 752
105	DH 1-11 DI 1-14	758 755

The initial injectors (S/N 97 and 73) showed evidence of a severe chamber compatibility (erosion) problem at the higher performance levels. Prior testing at AGC had indicated the existence of a chamber erosion problem at the injector baffle areas, which this altitude testing confirmed. The erosion in the injector baffle area was attributed to a low pressure area in the corners, between the baffle tips and the chamber wall. Resulting combustion cross-flow disrupted the fuel coolant film. Figure 40 indicates an apparent change in flow direction. To prevent this change in direction of fuel coolant flow, three propellant orifices were added to the next injector (S/N 73) on each side of the radial baffles (one additional doublet and one fuel cooling orifice) for a total of 30 holes. The test of this configuration revealed that the erosion problem still existed (see Fig. 41) but that the fuel coolant flow was not disrupted as before because the temperatures were lower at the injector/chamber interface. For the second test period with this injector (period DC,

injector S/N 73), a chamber with a modified fabrication process was used. With the exception of two blisters, the chamber condition after testing was quite good. The next injector tested (S/N 110), although of similar construction, did exhibit some spontaneous combustion irregularities (called "pops"). Injector S/N 93 was the same as those previously tested except the injector baffle chord was lengthened at the outer radius from 2 to 4 in. (see Fig. 42). This injector also produced combustion pops and developed a cracked weld at the juncture of the radial baffle and the cylindrical hub. The final injector of this phase (S/N 105) had all the oxidizer orifices and selected fuel orifices counterbored (Fig. 42c) to reduce the orifice L/D ratio and to stabilize the injected streams. No combustion pops were observed with this injector configuration (long baffles and counterbored orifices), which became the Block II design and was used for the Phase V and VI qualification testing.

Fig. 40 Postfire Chamber S/N 260

Fig. 41 Postfire Chamber S/N 261

a. Injector Face
Fig. 42 Baffled Injector

b. Baffle Configuration Fig. 42 Continued

c. Counterbored Injector S/N 105 Fig. 42 Concluded

2.3.5 Phase V

During qualification testing, three injectors were used:

Injector S/N	Test	Total Firing Duration, sec
104	EA 1-12	754
	EB 1-12	753
115	EC 1-12	754
	ED 1-12	754
103	EE 1-12	754
	EF 1-12	754

All injectors performed satisfactorily. There was no evidence of combustion pops, the chamber compatibility was good, and there was little ablation evident when comparing prefire and postfire conditions of the chamber interiors (Fig. 43).

Fig. 43 Typical Combustion Chamber

2.3.6 Phase VI

During qualification and research testing, three injectors were used:

Injector S/N	Test Periods	Total Firing Duration, sec
104	FA to FD	827
94	FE to FL, FP to FQ	959
98	FM to FO	62

Injector operation, performance, and chamber compatibility were satisfactory. During the research testing of the ignition characteristics of injector S/N 98, some of the oxidizer injection ports were damaged in the center hub section as shown in Fig. 44. The cause of the damage was not identified; a careful survey of the data did not reveal any unusual occurrences which would have caused such damage. The orifice deformation had no noticeable effect on engine performance and operation.

a. Area of Damage

b. Close-Up View
Fig. 44 Injector Damage after Ignition Testing, Phase VI

2.4 BIPROPELLANT VALVE

During testing of the Apollo Service Module engine at AEDC, two different flight-type bipropellant thrust chamber valve (TCV) configurations were used. The only difference was in the method of actuation; the first configuration used was actuated by fuel pressure, and the second was actuated by pneumatic pressure. Each of the two configurations consisted of a dual-passage arrangement for both the oxidizer and the fuel flow valves (Fig. 45). Each of these propellant valve assemblies contained eight ball valves, four each in the fuel and the oxidizer sides arranged in a parallel-series configuration. Each of four pressure-driven actuators operated one fuel and one oxidizer ball valve. Each of two electrical solenoid pilot valves operated a pair of actuators. Half of the operating components comprised a bank which consisted of one pilot valve, two actuators, and the associated four ball valves. The banks were identified as A and B. Either bank A or B or both could be used to fire or shut down the engine. This redundancy was to provide control of engine operation in the event of a failure of either bank.

Fig. 45 Thrust Chamber Valve Cutaway

The first TCV valve configuration, which was used throughout Phase I and through the N test period of Phase II, was the fuel pressure actuation type (Fig. 46).

Fig. 46 Fuel Pressure Actuated Thrust Chamber Valve Schematic

Because occasional difficulties were encountered with the valve closing, an auxiliary gas-operated valve closing system was installed for ground tests at AEDC. Problems with this valve configuration were primarily with the pilot valves which stuck in intermediate positions.

The second TCV configuration, used from the beginning of test period P of Phase II through Phase VI, was opened by pneumatic pressure supplied from engine-mounted gaseous nitrogen storage spheres. The spheres were charged to 2500 psia, and the pressure to the actuators was regulated to approximately 220 psia (Fig. 47). For Phases IV and V, the actuator spring force and the regulated nitrogen pressure were increased to shorten actuation time for improved repeatability of starting and shutdown transient impulse (see Section 3.2).

Difficulties were experienced intermittently with these TCV's. The main problem was leakage past the ball valve seals in excess of the maximum specification value of 400 standard cc/hr. During the first half of Phase V (Tests EA through EC), ball seals of white Teflon (TFE) were used; during the later half, Teflon Floura Blue[®] (BF-1) seals were installed. Neither type of seal was completely satisfactory.

Fig. 47 Pneumatically Actuated Thrust Chamber Valve

Phase VI was instituted as a penalty qualification for the TCV, and three TCV assemblies with design variations (as shown below) were tested.

TCV Model	Test Period	Primary Design Changes
Mod I-C	FA-FD	Upstream ball seals added; seal material changed to glass-filled TFE; seal spring cartridge changed to greater number of springs with lower individual spring constant; one-piece ball shafts replaced two-piece stub shafts.
Mod I-D	FK-FL	Seal material changed to glass-filled BF-1; spring cartridge changed; oxidizer ball shaft seals and shaft drain manifolds changed; actuator shaft roller changed from Delrin® to CRES; gearbox tie bolts made hollow for vents.
Mod I-E	FP-FQ	Actuator piston changed from Delrin to aluminum; actuator O-ring design changed; fuel ball shaft seals and drain manifold seals changed.

The Mod-IC design was more durable than the Phase V TCV had been, but still developed excessive ball seal leaks and shaft seal leaks (Ref. 14). The Mod-ID glass-filled BF-1 ball seals and oxidizer ball shaft seals were fairly satisfactory; this valve revealed a differential thermal expansion problem in the actuator which produced excessive GN2 leakage. The Mod I-E valve had some further shaft seal changes which remedied the shaft seal leakage tendency. This valve developed only one ball seal leak which exceeded the specification limit (Ref. 16). The one leak was caused by a peculiarly damaged seal which could not be related to valve operation or malfunction; therefore, the Mod I-E TCV was determined to be qualified satisfactorily. The pretest and posttest ball seal and shaft seal leakage rates for the Mod I-C, Mod I-D, and Mod I-E TCV qualification tests are presented in Tables II through IV.

TABLE II

MOD I-C BIPROPELLANT VALVE (S/N 128) LEAKAGE RATES

	Specified	Pretest Leakage, cc/hr				Pos	ttest Les	kage, co	/hr
	Leakage	X	100-	200-			100-	200-	
Seal Identification	Limit, cc/hr	2-5 psig	105 psig	205 psig	2-5 psig	2-5 psig	105	205 Psig	2-5
Seal Identification	GC/III	Pare _	PRIK	PETR	DRIFE	DRIE	psig	DBIR	psig
Downstream Seals									
Fuel Ball 1	150	0	0	0	0	0	0	0	0
Fuel Ball 2	150	0	0	0.	0	0	0	0	0
Fuel Ball 3	150	10	50	0	0	0	0	0	0
Fuel Ball 4	150	0	0	0	0	0	0	o	0
Oxidizer Ball 1	150	0	0	0	0	0	7,200	32,400	0
Oxidizer Ball 2	150	0	0	0	0	0	0	0	0
Oxidizer Ball 3	150	5	0	0	0	0	0	0	0
Oxidizer Ball 4	150	0	0	0	0	0	0	0	0
Upstream Seals		į,		j					
Fuel Ball 1	150	٥	ا ہ ا	٥	0	0	o	5	0
Fuel Ball 2	150	5	٥	2.5	o	5	0	ó	3
Fuel Ball 3	150	Ó	5	12.5	o	7.5	0	2.5	2.5
Fuel Ball 4	150	1	25	50	2.5	5	0	5	0
Oxidizer Ball 1	150	0	0	0	0	o	o	510	0
Oxidizer Ball 2	150	0	37.5	60	0	0	28	500	0
Oxidizer Ball 3	150	0	0	0	0	0	0	0	0
Oxidizer Ball 4	150	0	240	140	5	0	45	900	0
Shaft Seals	3		774 - 774		-		110		
(valve closed)	1 8			8					
Fuel Balls 1 + 4	20	0	0	0	0	0	0	0	ا ه
Fuel Balls 2 + 3	40	0	0	0	0	0	0	ا ه	0
Oxidizer Balls 1 + 4	40	0	0	22.5	0	14,200	10,800	4,800	450
Oxidizer Balls 2 + 3	_ 20	_ 0		_ 0	<u> </u>			o_	_ o
7-37-3-3 2033			70-		J/50 IS	(500 Table 5	70-	(X)	
(valve open)		2-5 psig	72		2-5	2-5	72		2-5
Fuel, all	40	DRIK	psig O		psig O	psig O	psig O		psig O
Oxidizer, all	40	2.5	0		0	17,280	34,200		
ONTHIEL, all	~	2.7				11,200	34,200		17,960

Leakage determined with GN2

TABLE III

MOD I-D BIPROPELLANT VALVE (S/N 122) LEAKAGE RATES

		Pret	est Leak	age, cc/	'hr	Postt	est Leak:	age, cc/	hr
	Specification Leakage	Differ	ential F	ressure,	psi		ential P		
Ball Seals	Limit (Ref. 16), cc/hr	2 to 5	100 to 105	200 to 205	2 to 5	2 to 5	100 to 105	200 to 205	2 to 5
Upper Fuel Bore 1 2 3 4 Lower Fuel	on each cc/hr and on each cc/hr and	0 0 0 0	0 15 0 7.5	0 10 0 4.0	0 5 0 0	0 0 0	342 0 0 0	600 0 0	0 0 0
Bore 1 2 3 4 Upper Oxidizer	seals cto 300 cc/hr. seals to 400 cc/hr.	0 0 0 0	0 0 5.0 0	4.0 0 0	0 0 0	0 0 0	600 0 0	389 0 0 0	0 0 0 0
Bore 1 2 3 4 Lower Oxidizer	For the two may leak up up to 5000 c For the two may leak up up to 10,000	0 0 0	0 5.0 0 5.0	2.0 10.0 0 2.5	0 0 0	5 25 0 0	45 200 62.5 50	10 600 212 42.5	25 80 0 2.5
Bore 1 2 3 4	Prefire - ball, one the other Postfire - ball, one the other the other	11.0 0 0 0	30.0 0 5.0	5.0 0 5.0	5.0 0 0	5 5 0 12.5	243 130 3 5148	330 130 2.5 9000	0 15 0 21.5
Shaft Seals (Valve Closed) Fuel 1 and 4 2 and 3 Oxidizer	20 40	0 0	0 0	0 0	0	0 0	0 0	0	0
l and 4 2 and 3 (Valve Open)	40 20	0	0 0 (10 psig)	0 0	0 0 -	0	0 0 (70 ± 2 psig)	2.5 5.0	0
Fuel, All Oxidizer, All	40 40	0 0	0	<u>-</u> -	0 0	0	0 0	- -	0

TABLE IV

MOD I-E BIPROPELLANT VALVE (S/N 126) LEAKAGE RATES

		Pre	test Lea	kage, cc	/hr	Postt	est Leak	age, cc/l	nr
	Specification Leakage	Differ	ential P	ressure,	psi	Differ	ential P	ressure,	psi
Ball Scals	Limit (Ref. 16), cc/hr	2 to 5	100 to 105	200 to 205	2 to 5	2 to 5	100 to 105	200 to 205	2 to 5
Upper Fuel Bore 1 2 3 4	on each cc/hr and on each cc/hr and	0 0 0	0 0 0 0	0 0 0 0	0 0 0	4 9 0	8 263 18 1	5 450 8 3	1 9 0 0
Lower Fuel Bore 1 2 3 4 Upper Oxidizer	seals to 300 cc/hr. seals to 400	8 0 6 0	5 0 23 0	2 0 15 5	1 0 8 0	0 10 5 0	11 368 45 9	23 960 44 14	0 10 5 0
Bore 1 2 3 4 Lower Oxidizer	- For the two e may leak up r up to 5000 c - For the two e may leak up r up to 10,000	3 0 2 0	5 20 23 25	0 35 35 41	0 1 1 0	11 0 1500 0	400 0 26,400	1390 0 48,900 0	134 0 1320 0
Bore 1 2 3 4	Prefire - ball, one the other Postfire - ball, one the contraction of the ball, one the other	0 0 0 0	0 26 0 20	0 50 0 25	0 0 0 0	100 9 3 42	2400 16 5 720	2250 49 1 1680	93 4 5 25
Shaft Seals (Valve Closed) Fuel - 1 and 4 2 and 3 Oxidizer -	20 40	0	0	0	0	0	0	0	0
l and 4 2 and 3 (Valve Open)	40 20	0	0	0	0 0	0	0	0	0
Fuel - All Oxidizer - All	40 40	0	0	0 8	0 3	0 0	0 0	0 5	0 0

SECTION III BALLISTIC PERFORMANCE DEVELOPMENT

3.1 OVERALL ENGINE PERFORMANCE

The overall engine performance (vacuum specific impulse, Ispuse) data for the early Block I engine development testing of Phase I (reported in Refs. 1 through 6) were adjusted for this report as described below. Phase I testing was conducted prior to installation of the flowmeter calibration system in test cell J-3. Therefore, the propellant flowmeter constants used in reducing the original Phase I data were obtained from straight pipe laboratory calibrations using water. For the purpose of this report, the assumption was made that the difference between a water and a propellant calibration was the same in a straight pipe as in the propellant line configuration. This is not entirely correct; however, it improved the Phase I data sufficiently to permit comparison with later data. The magnitude of the change in flowmeter calibration constant, between that obtained with the flowmeters calibrated in propellant and a calibration using water, was determined after installation of the in-place flowmeter calibration system. These changes were +0.94 and +1.99 percent for fuel and oxidizer, respectively, when both calibrations were conducted in place with propellant. These corrections were applied to the available Phase I Ispvac data from three test periods using unbaffled doublet injectors. Although the corrected $I_{Sp_{vac}}$ data still show some scatter (Fig. 48), the average $I_{\mbox{\scriptsize SP}_{\mbox{\scriptsize Vac}}}$ at a mixture ratio of 2.0 is approximately 308 lbf-sec/lbm which compares closely with the 308.8 lb_f -sec/ lb_m obtained during the first Phase II testing using an injector of the same design and propellant flowmeter constants obtained with propellants (Ref. 17).

The baffled-type injector was adopted for later Phase II testing because of the better combustion stability which had been demonstrated in Phase I, and in sea-level firings by the engine manufacturer. The engine demonstrated improved combustion stability as evidenced by the absence of valid CSM shutdowns even when pressure pulse bombs were employed to excite injector flow and combustion oscillations. Also, the engine performance was somewhat improved with this injector as shown in Fig. 49a; an $I_{\rm SP_{\rm Vac}}$ of about 311. $3~lb_{\rm f}/lb_{\rm m}/\rm sec$ was obtained at the design mixture ratio of 2.0. The engine was qualified in Phase III with an average specific impulse level of about 312 $lb_{\rm f}/lb_{\rm m}/\rm sec$ (Fig. 49b); this was still considered inadequate for flights beyond the earth orbiting missions.

Fig. 48 Phase I Adjusted Engine Performance

b. Qualification Testing (Phase III)

Fig. 49 Block | Engine Performance, Ispyac

Sufficient testing had been conducted in Phases II and III at lower than design mixture ratios to indicate that considerably higher performance might be derived at a mixture ratio of 1.6 (Fig. 49b). The selection of a different mixture ratio would normally necessitate a radical redesign of the propellant tankage for a Block II Service Module configuration. However, the specific mixture ratio of 1.6 results in equal volumetric flow rates of oxidizer and fuel. A rearrangement of plumbing interchanged one oxidizer tank and one fuel tank to produce a new tandem tank configuration with equal total volumes. Initial Phase IV Block II development testing verified the engine performance of Phase III and extended the testing range to various levels of combustion chamber pressure and propellant temperatures. The best engine performance averaged about 315 lbf/lbm/sec Ispvac at the new design mixture ratio

of 1.6 for Block II (Fig. 50). However, this higher engine performance had a deleterious effect on the ablative combustion chamber durability, as described in Section 2.2; therefore, an injector modification involving additional doublets and fuel film cooling holes was instituted to regain injector-to-chamber compatibility. Engine performance with this injector was not changed greatly as shown in Fig. 50a, but a second injector with additional orifices (S/N 110) did produce somewhat lower performance.

a. Effect of Additional Injector Orifices

b. Propellant Temperature Effect on Performance with the Long Baffled Injector S/N 93 Fig. 50 Engine Performance with Injector S/N 110, I_{spyac}

Development attention was then turned to elimination of the disconcerting sporadic combustion irregularities termed "pops." Injector baffle chord length was increased at the outer tips of the radial baffles, but this failed to reduce the pops noticeably. Although engine performance at design operating conditions was unchanged by the longer baffles, this particular injector did show a new sensitivity to propellant temperature (T_D) as shown in Fig. 50b. Highly discerning analyses by the engine manufacturer produced the deduction that the pops were caused by hydraulic instability of propellant streams out of the injector. Injector hole configuration changes were made (counterbored orifices, Section 2.3.4), the pop frequency and intensity were reduced to insignificance, and the Phase IV Block II engine development was finished; however, the engine performance at design operating conditions was now reduced to about 313.5 $lb_f/lb_m/sec~I_{Sp_{vac}}$, as shown in Fig. 51. The oxidizer type was changed between tests DC and DD of Phase IV from MIL-P-26539, nitrogen tetroxide, to MSC-PPD-2A, nitrogen tetroxide, which contained about 0.6 percent of nitric oxide (NO) inhibiting agent. The oxidizer change did not produce any noticeable change in engine performance or operating characteristics.

Fig. 51 Vacuum Performance with Long Baffled, Counterbored Orifices Injector, Phase IV

Phase V, Block II engine qualification performance is summarized in Fig. 52. The performance of the three Block II engine injectors tested varied from 311.3 to 314.8 $lb_f/lb_m/sec$ at design operating conditions. Considerable analysis effort was expended to determine why the performance of each injector was different, but no data irregularities could be identified. Since each injector was tested with two different engine buildups in two different test periods with separate instrument calibrations and since the data repeatability was quite good, the conclusion was made that the different performance levels were characteristic of the individual injectors.

Fig. 52 Block II Engine Performance at Design Chamber Pressure, Phase V

Phase VI engine performance data approximated previous performance at nominal operating conditions as shown in Fig. 53.

Fig. 53 Phase VI Engine Performance Compared with Previous Test

AEDC-TR-69-144

Engine performance was markedly influenced by combustion chamber pressure. Figure 54 shows the effect of chamber pressure which was experienced by the Phase V Block II qualification engines. The same general trend was typical of all the Apollo engine testing. Improved performance, which might have been obtained by simply operating at higher chamber pressure, was always precluded by the marginal durability of the ablative combustion chamber with the more severe (high pressure) operation.

Fig. 54 Block II Engine Vacuum Specific Impulse-Chamber Pressure Relationship at Design Mixture Ratio, Phase V

The Block II engine produced characteristic velocities (c*) of about 5900 ft/sec and vacuum thrust coefficients ($C_{F_{vac}}$) of about 1.71, using the combustion chamber pressure measured near the outer edge of the injector face (Fig. 14e).

Estimates of the accuracy of the engine performance data obtained in these tests are described in the Appendix.

3.2 IMPULSE OF IGNITION AND SHUTDOWN TRANSIENTS

The impulse (lb_f-sec) of starting and shutdown transients was calculated for all test phases, except Phase I, to determine the

magnitude and repeatability of the impulse associated with the transient portion of engine firings.

The total impulse of the start transients was calculated for the time period from ignition (initial chamber pressure rise, i. e., p_c = 1 psia) to 100 percent of steady-state thrust. The impulse was derived from calculated thrust based on measured chamber pressure:

$$I_t = C_{F_{\mathbf{vac}}} A_t \int_{t_1}^{t_2} p_c dt$$

Intermediate impulse values were also derived at 10-percent intervals of chamber pressure up to the steady-state value.

The total impulse of the shutdown transient was calculated by a similar equation. For Phase II, the integral covered the time period from shutdown signal (FS2) to the 1-percent steady-state thrust level. For the later phases, the integral extended from FS2 to the time at which the nozzle throat became unchoked (i. e., when the chamber-tocell pressure ratio (p_c/p_{cell}) declined to 1.135 for Phase III, to 1.2 for Phases IV and V, and when chamber pressure declined to 0.3 psia for Phase VI). Vacuum thrust computed from measured thrust was not used because at low chamber pressures the exhaust nozzle does not flow full and the thrust measurement system did not record transients accurately. Measured combustion chamber pressure data were reduced at 0.005-sec intervals (200 intervals/sec) from the continuous magnetic tape recording of a close-coupled transducer. Beginning with Phase III, the shutdown combustion chamber pressure was reduced at 0.02-sec intervals (50 intervals/sec), and a low-range combustion chamber pressure data channel (0 to 15 psia) was added to increase accuracy at low pc values.

The combustion chamber pressure was used with calculated nozzle throat area and C_{Fvac} which were obtained from the data of a preceding or succeeding steady-state firing nearest the transient of interest and were assumed to be constant throughout the transient.

3.2.1 Ignition Transient Characteristics

The impulse (lbf-sec) developed during the engine ignition transients was determined beginning with Phase II. A partial summary of the impulse developed from ignition to 90-percent steady-state thrust is shown below:

				$P_{\mathbf{c}}$		Ignition t eady-Stat		
Phase		TCV Type	TCV Bank	Level, psia	Impulse, lbf-sec	1σ, lb-sec	Time, sec	1σ, sec
II	Bloc Fuel Pres Actu	sure	A	100	1680	±327	0.465	±0.037
п		matically	A and B	104	2049	±175	0.440	±0.002
11	Actu	ated	A and B***	104	149		0. 355	
Ш			A and B	105	266	± 91	0.468	±0.026
Ш			A or B	107	580	±140	0.552	±0.053
IV		(a)	Α	97	558	± 83	0.586	±0.009
IV	1	(a)	A *	110	471	± 76	0.530	±0.004
v	ļ	(a)	A**	97	568	±119	0.559	±0.016

⁽a) TCV modified with additional actuator spring force and increased regulator pressure

The magnitude of the ignition impulse was primarily dependent on

- (1) the TCV timing, (2) the steady-state chamber pressure level,
- (3) the TCV bank selected, and (4) the propellant temperature.

Typical ignition transients of the fuel pressure actuated and the pneumatic TCVs (Phase II) are compared in Fig. 55. The slower opening of the fuel-actuated TCV caused the chamber pressure to rise more slowly and generally resulted in larger ignition impulse as shown in Fig. 56. Also, the fuel-actuated valve produced unsatisfactorily large variations in ignition impulse.

The data from Phases III and V (Block I and Block II Qualification tests) are compared with the qualification specifications in Refs. 10 and 13; the pneumatic valve did not sufficiently improve impulse repeatability.

^{*} Using only firings where TCV temperature was below 100°F

^{**} Using only firings with standard interface pressures

 $⁽p_{oxid} = 160 \pm 4 \text{ psia}; p_{fuel} = 166 \pm 4 \text{ psia})$

^{***} Valve timing shortened

Fig. 55 Comparison of the Chamber Pressure Transients using Fuel Pressure
Actuated and Pneumatically Actuated TCV

Fig. 56 Typical Ignition Transients

It was noted that the transient ignition impulse was affected by the prefire temperature of propellants in the TCV. High propellant temperature resulted in slower chamber pressure rise to 90 percent, which increased the ignition transient time and hence the ignition impulse. For the later part of Phase IV, the average ignition impulse was calculated using only those data obtained when the TCV temperature was below 100°F.

3.2.2 Shutdown Transient Characteristics

Impulse (lbf-sec) developed during the engine shutdown transient was computed as described in Section 3.2; however, the shutdown transient was considered terminated at the 10-percent level, since the tailoff had a relatively small effect on the total impulse and its time duration was highly sensitive to cell pressure variations. The data obtained are summarized below:

			From FS2 to 10-percent Steady-State Thrust						
Phase	TCV Type	TCV Bank	P _C Level, psia	Impulse, lb _f -sec	1σ	Time, sec	1σ		
II, Part 1	Fuel Pressure Actuated	Α	100	13, 731	± 543	0.856	±0.014		
II, Part 1	Fuel Pressure Actuated	A*	100	6,368	± 390	0.641	±0.025		
II, Part 2	Pneumatically	A and B	104	10,029	± 709	0.759	±0.025		
III	Actuated	A and B	105	10,710	± 343	0,802	±0.040		
III		A or B	10,7	9,854	± 319	0.795	±0.049		
IV, Part 1	(a)	Α	97	9, 702	± 366	0.868	±0.030		
IV, Part 2	(a)	Α	110	10,006	± 682	0.871	±0.062		
	(a)	В	110	9,716	±1322	0.878	±0.105		
	(a)	Α	97	8,907	x B19	0.843	±0.074		
	(a)	В	97.	8,497	± 457	0.812	±0.027		
v	(a)	A	97	10,190	± 430	1. 008	±0.030		

(a) TCV modified with additional actuation spring and increased regulator pressure $% \left(1\right) =\left(1\right) +\left(1\right)$

The magnitude of the shutdown total impulse was influenced by (1) propellant supply pressures (firing p_c), (2) TCV bank selected, (3) propellant temperature, and (4) TCV closing time.

During the initial part of Phase II, when the fuel pressure actuated TCV was used, there were two distinct levels of TCV closing times with corresponding different levels of shutdown impulse because of different valve actuation timing.

The timing was being adjusted by the engine manufacturer to improve the repeatability of the transient total impulse. Beginning with

^{*} Valve timing shortened

the later part of Phase II, summarized data indicate that, in general, the use of bank A of the pneumatic TCV resulted in larger total shutdown impulse than did bank B. Again, this was the result of the individual bank timing adjustments. Phase III average engine shutdown transient impulse and time (from FS2 to 10 percent of steady-state thrust level) were beyond target values regardless of TCV bank selection. In the nine Phase V testing firings (6 with bank A; 3 with bank B) that were conducted with standard interface pressure conditions, the data showed that (1) the time from FS2 to 10 percent of steady-state thrust exceeded the target limit by 12 percent, and (2) the corresponding impulse was considered satisfactory although the run-to-run variation exceeded the target repeatability limits of ±300 lbf-sec.

Typical shutdown transients for the two different types of TCV are presented in Fig. 57.

Fig. 57 Typical Shutdown Transients

3.3 IMPULSE BIT FIRINGS

The total impulse (lbf-sec) of the impulse bit firings (duration of 1 sec or less) was calculated by a method similar to that used for ignition and shutdown transients, except that the impulse was totaled for the entire firing from ignition through thrust decay to the unchoked p_c/p_{cd} ratio (as described in Section 3.2). Since the impulse bit firings were too short to establish steady-state engine performance, CF_{vac} and A_t were obtained from the nearest firing which produced steady-state data at the same operating conditions. The CF_{vac} and A_t were assumed to be constant throughout the impulse bit firing. Impulse versus firing signal duration, using TCV bank A or bank B, for the various phases is presented in Figs. 58 and 59. The total impulse,

Fig. 58 Comparison of Impulse Bit Operation Using Different Types of TCV's

Fig. 59 Impulse Bit Operation

developed during the impulse bit firings, was almost directly proportional to the firing signal duration. The magnitude of the total impulse to a lesser degree was also a function of (1) propellant supply pressures, (2) the TCV type and bank selected, (3) the TCV opening and closing times, and (4) the temperature of the TCV. Figure 58 indicates that the fuel-operated TCV produced considerably higher total impulses than did the pneumatically actuated TCV. In addition to slower operation, the fuel-operated TCV opened earlier, and ignition occurred earlier, thus producing a slightly longer burning time and consequently a larger total impulse. The effect of this earlier opening, which produced larger impulse, is clearly indicated by the chamber pressure transients shown in Fig. 60.

Figures 58 and 59 also indicate that, with the exception of the later part of Phase IV, bank B of the pneumatically actuated TCV produced higher total impulses for the same firing signal duration than did bank A. This was a consequence of the intentional difference in timing of the two valve banks. By extrapolation, the minimum firing signal duration to obtain any impulse was approximately 0.19 sec for the fuel-operated TCV compared with about 0.30 sec for the pneumatically actuated TCV.

Fig. 60 Comparison of Chamber Pressure Transients Using Different TCV Actuation Systems

SECTION IV RESEARCH AND DEVELOPMENT TESTING

4.1 PROPELLANT EVAPORATIVE COOLING EFFECTS

The cooling effect of propellants evaporating in the injector after engine shutdown was investigated during Phase VI test periods FE to FJ (Ref. 15). The injector temperature was depressed as much as 9°F in certain locations within 2.5 min after short firings which induced minimum heating (Fig. 61). The cooling effect was demonstrated to be cumulative with a series of short firings at short intervals as shown in Fig. 62. Although insufficient testing was done to establish what "optimum" conditions of firing and coast durations would produce the lowest temperatures or cause propellant freezing, a local temperature low of 17°F was reached in one instance, as shown in Fig. 62b.

a. Temperature near Oxidizer Header

b. Temperature at Outer Rim

c. Fuel Temperature near Fuel Header

Fig. 61 Injector Temperature History after Short Firing FJ-33

a. Multiple Firings with 4-Min Interval

b. Multiple Firings with 6-Min Interval
Fig. 62 Effect of Multiple Firings on Injector Temperatures

4.2 IGNITION CHARACTERISTICS (PHASE VI)

The combustion chamber pressure data obtained from Apollo Spacecraft flights 17 and 20 indicated that a momentary combustion overpressure had occurred during the engine ignition transient of the Service Module primary propulsion system. The indicated magnitude and duration of the overpressure were considered detrimental to the Command Module/Lunar Module interstage structure of the Apollo vehicle. Phase VI test periods FM, FN, and FO were conducted to investigate the magnitude and duration of combustion overpressure at ignition as influenced by various starting conditions, and concurrently, to evaluate the standard flight-type chamber pressure transducer (Ref. 15). The testing was conducted with a steel combustion chamber which permitted installation of multiple high-response chamber pressure transducers in addition to the flight-type transducer (Fig. 63). The various starting conditions of temperatures and modes of TCV operation are listed in Table V ("dry" TCV indicates the absence of propellants trapped in the cavities between the valve balls, as would be the condition prior to the first engine firing of a space mission).

a. Flight-Type Transducer Installation

b. Steel Chamber Pressure Taps
Fig. 63 Combustion Chamber Pressure Measurement Locations

TABLE V
TEST CONDITIONS FOR IGNITION CHARACTERISTICS

100	Cnamber	TCV	Propellant	Injector	TCV	TCV	TCV	TCV Openin	g Time, sec
No.	Pressure,	Temperature,	Temperature,	Temperature,	Bank	Starting	Actuator Temperature,	Controlli	
140.	рсв, рыа		*F	°F	Selection	Condition	*k	Bank A Valve Set 1	Bar.k B Valve Set
		·		Tea: Per	10d FM				
01	95 2	35	32	39	A	Dry	33	0.580	12714.7
02'	95.2	31	31	33	В		30		0 860
03	. 95.2	30	32	35	AB*		25	0.620	0 910
04 .	96.5	28	31	35	A	Wet	27	0 010	
05	95.2	26	31	38	Α	1 1	26	0, 620	
06	95.2	28	31	39	A	! '	26	0 620	l
07	100, 3	25	30	39	AB=	i l	25	0.6:0	0 850
80	99.0	24	31	3t	AB*	11,	25	0.630	0 910
OE	100.4	25	31	40	VR*		25	0 6:0	0 880
10	99.1 99.1	26 27	. 32	36 الد	AB*	Dry	26 25	0 590 0.610	0.850
11 12	96.5	28	j 31	13	AB*	1]	25	0.590	0,010
13	111.9	29	35	34	A	Wet	25	0.510	0.510
14	111.9	30	J5	31	Â	l Wet	30	0 610	
15	111.9	30	34	37	Â		24	0 580	1
18	109.3	26	31	38	В	i i i	25	0 000	0.930
17	117.0	26	31	37	AB+		25	0,630	0 965
18	117.0	26	30	38	AB=		25	0,630	0.965
19	117 0	26	30	35	AB*		25	0 620	0 960
	·	l	L 	Test Per	10d FN				L
01	112.6	84	70	80	A	Dry	,	0.590	1
02	115.2	59	57	85	A	Wet		0 605	
03	113 9	62	66	87	A	Wet	•-	0 600	191
04	113.9	55	66	no n	В	Dry			0 640
05	113.9	58	65	96	В	Wet			0 640
06	115.2	52	64	94	В		}		0 650
07	119.1	55	65	95	AB			0.565	0 650
08	119.1 117.8	58 57	65 65	100 87	AB AB	{	I	0 540 0 570	0.640 0.625
	111/100		03	Cest Per				0 770	0.02.
<u> </u>	99 7	38	70	26		D	5	0,540	0, 560
01 . 02	97.8	28	32	27	AB*	Dry	143 41	0.540	0.925
03	97.8	35	25	40	AB*	Wet	43	0.560	0 960
04	97 8	34	28	38	AB*	76.	46	0.575	0.920
05	97.8	30	28	40	AB*		44	0 570	0.850
06	95.9	55	32	50	B+	1 1	62		0.675
07	978	67	62	58	AB	Dry	59	0 475	0.521
80	95. ປ	69	61	78	AB	W et	60	0. 490	0.543
09	103 0	63	52	47	AB	Dry	78	0 495	0.560
10	103.0	61	48	87	AB	Dry	65	0. ~73	0.532
11 1	101.0	ñ 2	50	78	AB	Wet	70	0, -7J	0.539
12	101.0	66	52	95	AB		73	0.520	0.5-0
13	103 0	67	52	98	AB	'	71	0 525	0.370
14	:17, 3	70	54	95	AB	'	72	0.540	0 575
15	119,7	89 83	54	99	AB AB	ı I 1	73	0 505	0,560
16 17	118.1 118.1	83 67	53 54	82 48	AB	Dry	68 65	0, 520 0 520	0.595
18	116, 9	68] 54	48	AB	ا مرا	65	0 473	0.590 0.528
	109.3	88	54	160	B		65	ניד ט	0.528
	109.3	74	160	140	A		65	0 484] """
19	100.0	73	62	140	B	Wet	64	() WOW	U. 570
19 20	111 2		0.07	121	l A	"i"	65	0.500	3,3,0
19 20 21	111 2 92.0	72	. 6i.t ¹						
19 20 21 22	92.0	72 72	6.4			.] !	65	W	0.575
19 20 21	92.0 94.0	72 72 72	, 63 5-4	120] в ¦	· '	65 65	-	0.575
19 20 21 22 23	92.0	72	fi-e			' ('		0 460	0.575 0.543

*Improper TCV Operation

The combustion overpressure (peak) ranged from 0 to 48 percent above the steady-state chamber pressure level, as shown in Table VI (Fig. 64 depicts typical start transients). The combustion overpressure duration displayed no apparent trend based on the various starting conditions (Fig. 65).

Overpressure Duration, msec	Proportion of All Starts, percent
Less than 20	10
20 to 30	· 75
30 to 40	18

TABLE VI AVERAGE COMBUSTION OVERPRESSURES

Firing No.	Average Chamber Pressure Value, psia	Average Duration, sec	Average Combustion Overpressure, percent	Firing No.	Average Chamber Pressure Value, psia	Average Duration, sec	Average Combustion Overpressure, percent
FM-01	95.4	30. 3	25,5	FO-01	99.9	2 5. 0	26. 3
02	94.4	15.0	7. 1	02	102.0	25,0	31,4
03	97.8	32. 3	27.7	03	100.6	29.7	18.0
04	97.1	25,0	11.0	04	101.9	26.7	16.6
05	96.2	22.5	8.6	05	100.1	30. 7	23.4
06	95.8	21.3	14, 2	06	98.0	20.0	12.9
07	99.8	25.8	23.3	07	100.9	39.5	36. 1
08		27.8	23.2	j 08	98.1	32.7	35.6
09	99.8	25.8	20.0	j 09	103.5	27.3	34, 5
10	99.3	25.0	19.4	10	100.6	25.3	47.9
11	98.9	23, 5	23. 7	11	102.4	33.0	30. 4
12	99.9	24.5	19.4	12	101.2	30.0	36.0
13	114.3	25.0	3.6	13	102.6	29.3	30.5
14	114.3	24.5	2.8	14	117.2	39.3	10.4
15	114.3	20, 3	3.6	15	121.7	26.7	22.5
16	112.1	No Over-		16	118.3	28.3	22, 2
	-,	pressure		17	117.5	22. 3	40.0
17	119.4	28.0	11.6	18	119.2	25.5	36.4
18	118.3	28.0	10.7	19	111.6		8.9
19	117.9	28.5	6.2	20	112, 2	31.0	10.9
				21	113.7	21.5	6.0
FN-01	111.3	22, 3	14.2	22	94.6	37.7	15.9
02	112.6	23.0	1.7	23	97.3	23.3	
03	112. 2	23.5	2.9	24	95.9	25.7	18.1
04	112.2	20.0	7,5	25	95.7	21.3	14,7
i 05 :		19.5	5.2	26	117.4	21, 3	24.3
06	113.1	20.0	2.4				
07	117.2	29.3	17.3		i i		
08	116.7	28.0	17.4				
09	115.9	29.5	19.0				

Fig. 64 Typical Start Transient Oscillograms

Fig. 65 Combustion Overpressure Duration as a Function of TCV Opening Time

Propellant and injector temperatures from 30 to 70°F did not have any pronounced influence on combustion overpressure (Fig. 66).

Fig. 66 Combustion Overpressure as a Function of Propellant and Injector Temperatures

The most influential factor in producing and aggravating the combustion overpressure appeared to be the injector filling characteristic, which was contingent on the operation of the TCV and the prestart propellant pressures. Combustion overpressure was generally less severe when the TCV opened slowly or the start was made with single-bore TCV operation, as shown in Fig. 67 (see also Fig. 55). Also, combustion overpressure tended to be less severe with the wet bore starts (i. e., propellant trapped in the inter-ball cavities) or with higher prestart propellant pressures (higher target chamber pressure). Any combination of starting conditions which resulted in the injector being filled before ignition occurred produced the more severe combustion overpressures, and the overpressure increased with increased ignition delay as shown in Fig. 68. The flight-type transducer chamber pressure data did not agree with the data obtained from the other transducers either for the peak pressures or for steady-state pressure, as shown in Figs. 69 and 70.

a. Dual-Bore Mode

b. Single-Bore, Bank A

c. Single-Bore, Bank B

Fig. 67 Combustion Overpressure as a Function of TCV Opening Time

Fig. 68 Combustion Overpressure as a Function of the Time fram Oxidizer Injector Fill to Chamber Pressure Rise

Fig. 69 Camparison of Peak Chamber Pressure Measured with Variable-Capacitance-Type
Transducers and Flight-Type Transducer

Fig. 70 Comparison of Flight-Type and Variable-Capacitance-Type Transducer Chamber Pressure Data

REFERENCES

- DeFord, J. F. "Simulated Altitude Testing of the Aerojet-General Corporation AJ10-137 Rocket Engine (Report I - Phase I Development Test)." AEDC-TDR-64-81 (AD350408), May 1964.
- McIlveen, M. W. "Simulated Altitude Testing of the Aerojet-General Corporation AJ10-137 Rocket Engine (Report II Phase I Development Test)." AEDC-TDR-64-82 (AD350407), May 1964.
- 3. Vetter, N. R. and DeFord, J. F. "Simulated Altitude Testing of the Aerojet-General Corporation AJ10-137 Rocket Engine (Report III Phase I Development Test)." AEDC-TDR-64-146 (AD352141), July 1964.
- 4. McIlveen, M. W. "Simulated Altitude Testing of the Aerojet-General Corporation AJ10-137 Rocket Engine (Report IV Phase I Development Test)." AEDC-TDR-64-147 (AD352327), August 1964.
- 5. Vetter, N. R. and DeFord, J. F. "Simulated Altitude Testing of the Aerojet-General Corporation AJ10-137 Rocket Engine (Report V Phase I Development Test)." AEDC-TDR-64-158 (AD352700), August 1964.
- 6. Vetter, N. R. and McIlveen, M. W. "Simulated Altitude Testing of the Aerojet-General Corporation AJ10-137 Rocket Engine (Report VI Phase I Development Test)." AEDC-TDR-64-171, September 1964.
- 7. Schulz, G. H. and DeFord, J. F. "Simulated Altitude Testing of the Apollo Service Module Propulsion System (Report I Phase II Development Test)." AEDC-TR-65-233 (AD368743), January 1966.
- 8. Robinson, C. E. and Runyan, R. B. "Thrust Vector Determination for the Apollo Service Module Propulsion Engine using a Six-Component Force Balance." AEDC-TR-65-250 (AD475564), December 1965.
- 9. Schulz, G. H. and DeFord, J. F. "Simulated Altitude Testing of the Apollo Service Module Propulsion System (Report II Development Test)." AEDC-TR-66-17 (AD369807), February 1966.
- 10. Gall, E. S., McIlveen, M. W., and Berg, A. L. "Qualification Testing of the Block I Apollo AJ10-137 Service Module Engine." AEDC-TR-66-129, August 1966.

- 11. Pelton, J. M. and McIlveen, M. W. "Block II AJ10-137 Apollo Service Module Engine Test at Simulated High Altitude (Report I Phase IV Development)." AEDC-TR-66-169, November 1966.
- 12. DeFord, J. F., McIlveen, M. W., and Berg, A. L. "Block II AJ10-137 Apollo Service Module Engine Testing at Simulated High Altitude (Report II Phase IV Development)." AEDC-TR-67-47, April 1967.
- 13. Gall, E. S., McIlveen, M. W., and Berg, A. L. "Qualification Tests of the Apollo Block II Service Module Engine (AJ10-137)." AEDC-TR-67-63, May 1967.
- 14. Schulz, G. H., Berg, A. L., and Robinson, C. E. "Apollo Block II SPS Engine (AJ10-137) Environmental Tests and Mod I-C Bi-propellant Valve Qualification Tests (Phase VI, Part I)."

 AEDC-TR-68-178, October 1968.
- 15. Barebo, R. L. and Ansley, R. C. "Investigation of Combustion Overpressure during Ignition of the Apollo Block II SPS Engine (AJ10-137) (Phase VI, Part II)." AEDC-TR-68-273, November 1968.
- 16. Farrow, K. L., Berg, A. L., and Robinson, C. E. "Apollo Block II SPS Engine (AJ10-137) Mod I-D and Mod I-E Bipropellant Valves Qualification Tests (Phase VI, Part III)." AEDC-TR-69-7 (AD850062), April 1969.
- 17. Berg, A. L. "Rocket Propellant Inplace Flowmeter Calibration System-Propulsion Engine Test Cell (J-3)." AEDC-TR-68-41, May 1968.

APPENDIX DATA ACQUISITION AND REDUCTION ACCURACIES

CHI.

All engine ballistic performance parameters were recorded on magnetic tape in continuous modulated frequency form throughout Phases II through V.

Digital computers were used to recover data from the magnetic tape records, produce data printouts in engineering units, and calculate engine ballistic performance information.

The equations used for determining engine performance were in accord with general industry practice, except for special adaptations which were incorporated to account for throat area changes of the ablative combustion chamber. Chamber pressure (p_c) was measured at the injector face with an in-place calibrated pressure transducer. Vacuum specific impulse $(I_{\rm Sp_{Vac}})$ was calculated from measured thrust (F_a) obtained from in-place calibrated load cells and measured flow rates (\dot{w}) obtained from turbine-type flowmeters calibrated in place with propellants. Steady-state performance calculations were made from measured data which were averaged over 2-sec time intervals.

The estimated uncertainty (two standard deviations) of the measured parameters required for engine performance was as follows:

į	(10,0%)	Estimated Uncertainty, 2σ, percent							
	Parameter	Phase II Part I	Phase II Part II	Phase III	Phase IV Part I	Phase IV Part II	Phase V		
	Fa	0.30	0.30	0.30	0.30	0.30	0.30		
i	р _с	0.50	0.50	0.50	0.50	0. 50	0.50		
	$\dot{ ext{w}}_{ ext{fuel}}$	0.40	0.44	0.44	. 0.42	0.44	0.34		
	$\dot{w}_{ extsf{oxid}}$	0.36	0.36	0.30	0.42	0.42	0.28		
	p_{cell}	3.70	3. 70	3.70	3.70	3.70	3,70		

The estimated uncertainty (two standard deviations, 2σ) in calculated total propellant flow rate (\dot{w}_t), vacuum thrust (F_{vac}), and vacuum specific impulse ($I_{Sp_{vac}}$) was:

	Estimated Uncertainty, 2σ, percent								
Parameter	Phase II Phase II Phas Part I Part II		Phase III	Phase IV Part I	Phase IV Part II	Phase V			
ŵt	0.28	0.28	0.24	0.30	0.30	0. 22			
F _{vac}	0. 32	0. 32	0.32	0.32	0. 32	0.32			
I _{sp_{vac}}	0.42	0.42	0.40	0.44	0.44	0.38			

Security Classification	
DOCUMENT CONT	ROL DATA - R & D
(Security classification of title, body of abstract and indexing a	annotation must be entered when the overall report le classified)
i. ORIGINATING ACTIVITY (Corporate author) Arnold Engineering Development Cente	26. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
ARO, Inc., Operating Contractor	
Arnold Air Force Station, Tennessee	37389 N/A
3. REPORT TITLE	
SUMMARY OF FIVE YEARS OF ALTITUDE TE	ESTING OF THE APOLLO SERVICE
MODULE ENGINE IN ALTITUDE TEST CELL	(J-3)
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	
Final Report May 1963 through A	document has been approved to be to rejease of the distribution is unlimited.
B. AUTHOR(5) (First name, middle initial, last name)	Les hoor approved with A E way
G. H. Schulz, ARO, Inc. This	document has been appropriated.
مدري أن ا	its distribution is unimated a figure
<u> </u>	_ Otto
6. REPORT DATE	78. TOTAL NO. OF PAGES 7b. NO. OF REFS
October 1969	96 17
54. CONTRACT OR GRANT NO F40600-69-C-0001	9a. ORIGINATOR'S REPORT NUMBER(S)
6. PROJECT NO. 9281	AEDC-TR-69-144
9281	
^{c.} Program Area 921E	9b. OTHER REPORT NO(5) (Any other numbers that may be sesigned this report)
d.	N/A
10. DISTRIBUTION TATEMENT This document is su	bject to special export controls and
each transmittal to foreign governme	nts or foreign nationals may be made
only with prior approval of NASA-MSC	EP-2), Houston, Texas 77058.
	Proportion and the second seco
11. SUPPLEMENTARY NOTES	NASA-MSC (EP-2)
Available in DDC.	Houston, Texas 77058

The primary results of the development and qualification testing of the Aerojet-General Corporation AJ10-137 rocket engine for the Apollo Service Module conducted at the Arnold Engineering Development Center (AEDC) are summarized. Testing of the AJ10-137, a 20,000-1bf nominal thrust liquid-propellant engine, was conducted at combustion chamber pressures of from 77 to 133 psia and at mixture ratios of the two hypergolic propellants, nitrogen tetroxide and Aerozine-50, from 1.4 to 2.4. Both Block I and Block II engines were tested to determine engine performance and to establish durability and reliability of the basic engine design and subsequent modifications. As a result of these tests, the Block II engine performance was established, and the engine was qualified for the lunar mission. This testing indicated and permitted solution of inadequate durability of the ablative combustion chamber at low-pressure/altitude conditions. The chamber had appeared reliable in sea-level testing conditions.

This document is subject to special export controls and each transmittal to foreign governments or foreign pationals may be made only with prior approval of NASA-MSC (EQ-2), Houston, Texas 77058.

DD FORM 1473

UNCLASSIFIED Security Classification

Security Classification						•
14. KEY WORDS	KEY WORDS		LIN		LINKC	
	ROLE	WT	ROLE	WT	ROLE	WT
Apollo Service Module						
rocket engines						
liquid propellants						
altitude simulation		!		1		
performance evaluation				10		
summarizing						
spacecraft propulsion						
lunar spacecraft						
manned space flight]					
Apollo Service Propulsion System						
AJ10-137 rocket engine						
				ŀ	1	
					ļ	
			•			
		ł.				
	i					
•						
_]					
			1			.,
3						4
20	8	3 3	8	6		2 8
AFSC AFEAG AFS Toma	2			is #		
	L				L	

UNCLASSIFIED

Security Classification