Aggregated Residual Transformations for Deep Neural Networks: ResNeXt

Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

ISL

안재원

CONTENTS

- Introduction
- ResNeXt
- Experiments

Transition form 'Feature engineering' to 'Network engineering'

- Hand-designed(made) feature.
 - SIFT(Scale Invariant Feature Transform)

- HOG(Histogram of Oriented Gradient)

• Features learning by neural networks

VGG-nets/ResNets & Inception model(GoogLeNets)

• Stacking building blocks

- 깊으면 깊을 수록 더 좋은 성능을 보임

VGGNet

- 무조건 깊을 수록 좋은 것은 아니다.

- ResNets

- 어떻게 깊어져야 하는가.

VGG-nets/ResNets & Inception model(GoogLeNets)

- Block이 Network 목적에 적합한가?
- 적절한 Layer가 사용되고 있는가?

VGGNet

- Conv-Layer 에서 3x3 kernel을 사용했을 때?
 Conv-Layer 에서 5x5 kernel을 사용했을 때?
 Conv-Layer 에서 3x3 kernel과 5x5 kernel을 섞어서 사용했을 때?

딥러닝 관련 논문들의 실험결과의 성능이 들쑥날쑥한 이유가 이 부분 때문이지 않을까...

- Overfitting의 문제

간단한 구조의 사용으로 인한 자유로움은 떨어진다.

VGG-nets/ResNets & Inception model(GoogLeNets)

• Split - transform - merge

- 자유도 높은(적응력 높은) 네트워크 구성이 필요하다.
 더 깊은(Deep) 네트워크가 아닌 더 넓은(Wide) 네트워크를 구성.
 즉, 더 넓고 더 자유로운 네트워크가 필요하다.

ResNeXt

Simple Neurons

• 한 Neuron에 입력되는 값이 만들어지는 과정

$$= \sum_{i=1}^{4} w_{i,1} x_i = F_1(X)$$

ResNeXt

Split-Transform-Merge

- Inception model(Network in Network)

- Neuron

- Network in 'Neuron'

- Aggregated transformations

$$\mathcal{F}_1(X) = \sum_{i=1}^{C} \mathcal{T}_i(X)$$
 Cardinality : The size of set of transformation

- Aggregated transformations with residual

$$y_1(X) = X + \sum_{i=1}^{C} T_i(X)$$

ResNeXt

ResNeXt

- ResNeXt model

- Equivalent model I.(Similar to the Inception-ResNet) 모든 split 에 다하여 같은 꼴의 Transform을 적용하는가?

- Equivalent model II.(Similar to the ResNet)

Split간에 영향을 주는가?

Experiments

• ResNet과 ResNeXt 성능 비교.

Figure 5. Training curves on ImageNet-1K. (**Left**): ResNet/ResNeXt-50 with preserved complexity (\sim 4.1 billion FLOPs, \sim 25 million parameters); (**Right**): ResNet/ResNeXt-101 with preserved complexity (\sim 7.8 billion FLOPs, \sim 44 million parameters).

• ResNeXt의 Cardinality에 따른 성능 비교.

	setting	top-1 error (%)
ResNet-50	1 × 64d	23.9
ResNeXt-50	$2 \times 40d$	23.0
ResNeXt-50	$4 \times 24d$	22.6
ResNeXt-50	8 × 14d	22.3
ResNeXt-50	$32 \times 4d$	22.2
ResNet-101	1 × 64d	22.0
ResNeXt-101	$2 \times 40d$	21.7
ResNeXt-101	$4 \times 24d$	21.4
ResNeXt-101	8 × 14d	21.3
ResNeXt-101	$32 \times 4d$	21.2

Experiments

• Wider VS Cardinality I.

	setting	top-1 err (%)	top-5 err (%)	
1× complexity references:				
ResNet-101	1 × 64d	22.0	6.0	
ResNeXt-101	$32 \times 4d$	21.2	5.6	
2× complexity models follow:				
ResNet-200 [15]	1 × 64d	21.7	5.8	
ResNet-101, wider	1 × 100 d	21.3	5.7	
ResNeXt-101	2 × 64d	20.7	5.5	
ResNeXt-101	64 × 4d	20.4	5.3	

2번 Equivalent

• Wider VS Cardinality II.

Figure 7. Test error *vs.* model size on CIFAR-10. The results are computed with 10 runs, shown with standard error bars. The labels show the settings of the templates.

실험 결과의 모든 내용이 성능 향상을 보임.

Q&A