9 10 10 10 10 10 10 10 16 16

Claims:

1. A method of processing a digital image, comprising the steps of:

providing digital data indexed to represent positions on a display, said digital data being indicative of an intensity value $I_i(x,y)$ for each position (x,y) in each i-th spectral band;

adjusting said intensity value for said each position in each i-th spectral band to generate an adjusted intensity value for said each position in each i-th spectral band in accordance with

$$\sum_{n=1}^{N} W_{n} \left(\log I_{i}(x,y) - \log [I_{i}(x,y) * F_{n}(x,y)] \right), i=1,...,S$$

where S is the number of unique spectral bands included in said digital data and, for each n, W_n is a weighting factor and $F_n(x,y)$ is a unique surround function applied to said each position (x,y) and N is the total number of unique surround functions;

filtering said adjusted intensity value for said each position of said image in each of said S spectral bands using a filter function wherein a filtered intensity value $R_i(x,y)$ is defined; and

selecting a maximum intensity value $V_i(x,y)$ from the group consisting of said intensity value $I_i(x,y)$ and said filtered intensity value $R_i(x,y)$.

1

2

- 3. A method according to claim 2 wherein said Gaussian function is of the form
 - $\frac{-r^2}{c_n^2}$

3

satisfying the relationship

$$k_n \iint e^{\frac{-r^2}{c_n^2}} dx dy = 1$$

where

$$r = \sqrt{x^2 + y^2}$$

and, for each n, k_n is a normalization constant and c_n is a unique constant for each of said N unique surround functions.

4. A method according to claim 1 further comprising the step of multiplying said filtered intensity value $R_i\left(x,y\right)$ by

$$\log \left[\frac{BI_{i}(x,y)}{\sum_{i=1}^{S} I_{i}(x,y)} \right]$$

to define a color-restored intensity value $R'_i(x,y)$, where B is a constant, wherein said step of selecting using said filtered intensity value $R_i(x,y)$ is replaced with the step of selecting a maximum intensity value $V_i(x,y)$ from the group consisting of said intensity value $I_i(x,y)$ and said color-restored intensity value $R'_i(x,y)$.

- 5. A method according to claim 1 wherein said each position (x,y) defines a pixel of said display.
- 6. A method according to claim 1 wherein, for each n, $W_n=1/N$.
- 7. A method according to claim 1 further comprising the step of displaying an improved image using said maximum intensity value $V_i(x,y)$.
- 8. A method according to claim 4 further comprising the step of displaying an improved image using said maximum intensity value $V_i(x,y)$.

9. A method according to claim 1 further comprising the steps of:

defining a classification of said image based on dynamic range of said image in each of said S spectral bands; and selecting said filter function based on said classification of said image.

- 10. A method according to claim 9 wherein said step of defining comprises the step of using image statistics associated with said image in each of said S spectral bands.
- 11. A method according to claim 10 wherein said image statistics include brightness and contrast of said image in each of said S spectral bands.
- 12. A method according to claim 4 further comprising the steps of:

defining a classification of said image based on dynamic range of said image in each of said S spectral bands; and selecting said filter function based on said

classification of said image.

13. A method according to claim 12 wherein said step of defining comprises the step of using image statistics associated with said image in each of said S spectral bands.

14.	A	method	according	to	cla	im	13	whe	ere	in sa	aid	ima	ıge
statis	sti	cs inclu	ıde brightn	ess	and	CO	ntra	st	of	said	ima	age	in
each (of	said S s	spectral bas	nds.									

15. A method of processing a digital image, comprising the steps of:

providing digital data indexed to represent the positions of a plurality of pixels of a J-row by K-column display, said digital data being indicative of an intensity value I(x,y) for each of said plurality of pixels where x is an index of a position in the J-th row of said display and y is an index of a position in the K-th column of said display wherein a JxK image is defined;

convolving said digital data associated with each of said plurality of pixels with a function

$$e^{\frac{-r^2}{c^2}}$$

to form a discrete convolution value for each of said plurality of pixels, said function satisfying the relationship

$$k \iint e^{\frac{-r^2}{c^2}} dx dy = 1$$

where

$$r = \sqrt{x^2 + y^2}$$

k is a normalization constant and c is a constant;

converting, for each of said plurality of pixels, said discrete convolution value into the logarithm domain;

converting, for each of said plurality of pixels, said intensity value into the logarithm domain;

subtracting, for each of said plurality of pixels, said discrete convolution value so-converted into the logarithm domain from said intensity value so-converted into the logarithm domain, wherein an adjusted intensity value is generated for each of said plurality of pixels;

filtering said adjusted intensity value for each of said plurality of pixels with a filter function wherein a filtered intensity value R(x,y) is defined; and

selecting, for each of said plurality of pixels, a maximum intensity value V(x,y) from the group consisting of said intensity value I(x,y) and said filtered intensity value R(x,y).

- 16. A method according to claim 15 wherein the value of said constant c is selected to be in the range of approximately 0.01 to approximately 0.5 of the larger of J and K.
- 17. A method according to claim 15 further comprising the step of displaying an improved image using said maximum intensity value V(x,y).
- 18. A method according to claim 15 wherein said step of filtering includes the step of selecting said filter function based on dynamic range of said JxK image.

19. A method of processing a digital image, comprising the steps of:

providing digital data indexed to represent the positions of a plurality of pixels of an J-row by K-column display, said digital data being indicative of an intensity value $I_i(x,y)$ for each i-th spectral band of S spectral bands for each of said plurality of pixels where x is an index of a position in the J-th row of said display and y is an index of a position in the K-th column of said display wherein a $(JxK)_i$ image is defined for each of said S spectral bands and a JxK image is defined across all of said S spectral bands;

convolving said digital data associated with each of said plurality of pixels in each i-th spectral band with a function

$$e^{\frac{-r^2}{c_n^2}}$$

for n=2 to N to form N convolution values for each of said plurality of pixels in each said i-th spectral band, said function satisfying the relationship

$$k_n \iint e^{\frac{-r^2}{c_n^2}} dx dy = 1$$

where

$$r = \sqrt{x^2 + y^2}$$

and, for each n, k_n is a normalization constant and c_n is a unique constant;

converting, for each of said plurality of pixels in each

said i-th spectral band, each of said N convolution values into the logarithm domain;

converting, for each of said plurality of pixels in each said i-th spectral band, said intensity value into the logarithm domain;

subtracting, for each of said plurality of pixels in each said i-th spectral band, each of said N convolution values so-converted into the logarithm domain from said intensity value so-converted into the logarithm domain, wherein an adjusted intensity value is generated for each of said plurality of pixels in each said i-th spectral band based on each of said N convolution values;

forming a weighted sum for each of said plurality of pixels in each said i-th spectral band using said adjusted intensity values;

filtering said weighted sum for each of said plurality of pixels in each said i-th spectral band with a filter function wherein a filtered intensity value $R_i(x,y)$ is defined; and

selecting a maximum intensity value $V_i(x,y)$ from the group consisting of said intensity value $I_i(x,y)$ and said filtered intensity value $R_i(x,y)$.

20. A method according to claim 19 wherein the value for each said unique constant c_n is selected to be in the range of approximately 0.01 to approximately 0.5 of the larger of J and K.

21. A method according to claim 19 further comprising the step of multiplying said filtered intensity value $R_i(x,y)$ by

$$\log \left[\frac{BI_{i}(x,y)}{\sum_{i=1}^{S} I_{i}(x,y)} \right]$$

to define a color-restored intensity value $R'_i(x,y)$, where B is a constant and S is a whole number greater than or equal to 2, wherein said step of selecting using said filtered intensity value $R_i(x,y)$ is replaced with the step of selecting a maximum intensity value $V_i(x,y)$ from the group consisting of said intensity value $I_i(x,y)$ and said color-restored intensity value $R'_i(x,y)$.

22. A method according to claim 19 further comprising the step of displaying an improved image using said maximum intensity value $V_i(x,y)$.

2

3

5

6

1

2

3

1

2

23.	A me	ethod	accord	ding	to	claim	21	fur	ther	compris	sing	the
step	of	displ	aying	an	imp	roved	ima	ge	using	g said	max	imum
inten	sity	value	e V _i (x,	у).								

24. A method according to claim 19 further comprising the steps of:

defining a classification of said JxK image based on dynamic range of each said $(JxK)_i$ image; and

selecting said filter function based on said classification of said JxK image.

- 25. A method according to claim 24 wherein said step of defining comprises the step of using image statistics associated with each said $(JxK)_i$ image.
- 26. A method according to claim 25 wherein said image statistics include brightness and contrast of each said $(JxK)_i$ image.
- 27. A method according to claim 21 further comprising the steps of:

defining a classification of said JxK image based on dynamic range of each said (JxK); image; and

selecting said filter function based on said classification of said JxK image.

1	28.	A me	ethod	accor	ding	to	clai	im	27	wher	rein	sai	d	step	of
2	defin	ing	compr	ises	the	ste	ep o	of	us	ing	imag	re :	sta	atist	ics
3	assoc	iated	d with	each	said	(J>	κK) ,	ima	age.						

29. A method according to claim 28 wherein said image statistics include brightness and contrast of each said $(JxK)_i$ image.

30. A method of processing a digital image, comprising the steps of:

providing digital data indexed to represent positions of an image having S spectral bands for simultaneous output on a display, said digital data being indicative of an intensity value $I_i(x,y)$ for each position (x,y) in each i-th spectral band;

adjusting said intensity value for said each position in each i-th spectral band to generate an adjusted intensity value for said each position in each i-th spectral band in accordance with

$$\sum_{n=1}^{N} W_{n} (\log I_{i}(x, y) - \log [I_{i}(x, y) * F_{n}(x, y)]), i=1, ..., S$$

where S is a whole number greater than or equal to 2 and defines the total number of spectral bands included in said digital data and, for each n, W_n is a weighting factor and $F_n(x,y)$ is a unique surround function of the form

$$e^{\frac{-r^2}{c_n^2}}$$

satisfying the relationship

$$k_n \iint e^{\frac{-r^2}{c_n^2}} dx dy = 1$$

17 where

$$r = \sqrt{x^2 + y^2}$$

and, for each n, k_n is a normalization constant and c_n is a

unique constant where N is the total number of unique surround functions;

filtering said adjusted intensity value for said each position in each i-th spectral band with a filter function wherein a filtered intensity value $R_i(x,y)$ is defined;

multiplying said filtered intensity value $R_{i}(x,y)$ by

$$\log \left[\frac{BI_{i}(x,y)}{\sum_{i=1}^{S} I_{i}(x,y)} \right]$$

to define a color-restored intensity value $R'_{i}(x,y)$, where B is a constant; and

selecting a maximum intensity value $V_i(x,y)$ from the group consisting of said intensity value $I_i(x,y)$ and said color-restored intensity value $R'_i(x,y)$.

- 31. A method according to claim 30 wherein, for each n, $\label{eq:wn} W_n {=} 1/N \,.$
- 32. A method according to claim 30 wherein the value for each said unique constant c_n is selected to be in the range of approximately 0.01 to approximately 0.5 of the larger of J and K.
- 33. A method according to claim 30 further comprising the step of displaying an improved image using said maximum intensity value $V_i(x,y)$.

34.	A	method	according	to	claim	30	further	comprising	the
steps	0	f:							

defining a classification of said image based on dynamic range of said image in each of said S spectral bands; and selecting said filter function based on said classification of said image.

- 35. A method according to claim 34 wherein said step of defining comprises the step of using image statistics associated with said image in each of said S spectral bands.
- 36. A method according to claim 35 wherein said image statistics include brightness and contrast of said image in each of said S spectral bands.