Phase field models and their numerical methods

2. Energy stable numerical methods

August 14, 2019

- Classic implicit-explicit methods
 - Fully implicit schemes
 - Convex splitting schemes
 - Stabilization schemes
- Energy quadratization methods
 - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- Exponential time differencing (ETD) methods
 - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

Classic implicit-explicit methods

- Classic implicit-explicit methods
 - Fully implicit schemes
 - Convex splitting schemes
 - Stabilization schemes
- 2 Energy quadratization methods
 - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- 3 Exponential time differencing (ETD) methods
 - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

Allen-Cahn equation

Allen-Cahn equation:

$$u_t - \Delta u + \frac{1}{\varepsilon^2} f(u) = 0, \quad f(u) = F'(u) = u^3 - u.$$
 (1)

 L^2 gradient flow of the energy functional:

$$E(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + \frac{1}{\varepsilon^2} F(u) \right) dx, \quad F(u) = \frac{1}{4} (u^2 - 1)^2.$$
 (2)

Energy dissipation law (under suitable BCs):

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\|u_t\|^2. \tag{3}$$

Outline

Classic implicit-explicit methods

- Classic implicit-explicit methods
 - Fully implicit schemes
 - Convex splitting schemes
 - Stabilization schemes
- - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

First order scheme

Backward Euler (BE) scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} - \Delta u_{n+1} + \frac{1}{\varepsilon^2} f(u_{n+1}) = 0.$$
 (BE)

Theorem: Unique solvability and energy stability of (BE)

For $\Delta t < \varepsilon^2$, the BE scheme admits a unique solution and is energy stable:

$$E_{n+1} - E_n \le -\left(\frac{1}{\Delta t} - \frac{1}{2\varepsilon^2}\right) \|u_{n+1} - u_n\|^2,$$

where
$$E_n = E(u_n) = \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{4\varepsilon^2} \|u_n^2 - 1\|^2$$
.

See [Feng-Prohl, 2003] for the unique solvability.

We just show the energy stability.

First order scheme (continued)

Energy stability of (BE)

For $\Delta t \leq \varepsilon^2$, the BE scheme is energy stable:

$$E_{n+1} - E_n \le -\left(\frac{1}{\Delta t} - \frac{1}{2\varepsilon^2}\right) \|u_{n+1} - u_n\|^2,$$

where
$$E_n = E(u_n) = \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{4\varepsilon^2} \|u_n^2 - 1\|^2$$
.

Proof. Take the inner product of (BE) with $u_{n+1} - u_n$:

$$\frac{1}{\Delta t} \|u_{n+1} - u_n\|^2 + (\nabla u_{n+1}, \nabla u_{n+1} - \nabla u_n) + \frac{1}{\varepsilon^2} (f(u_{n+1}), u_{n+1} - u_n) = 0.$$

Since $2a(a - b) = a^2 - b^2 + (a - b)^2$, we have

$$(\nabla u_{n+1}, \nabla u_{n+1} - \nabla u_n) = \frac{1}{2} \|\nabla u_{n+1}\|^2 - \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{2} \|\nabla u_{n+1} - \nabla u_n\|^2.$$

First order scheme (continued)

The nonlinear term could be derived as

$$(f(u_{n+1}), u_{n+1} - u_n)$$

$$= (u_{n+1}^2 - 1, u_{n+1}(u_{n+1} - u_n))$$

$$= \frac{1}{2}(u_{n+1}^2 - 1, u_{n+1}^2 - u_n^2 + (u_{n+1} - u_n)^2)$$

$$= \frac{1}{2}(u_{n+1}^2 - 1, (u_{n+1}^2 - 1) - (u_n^2 - 1)) + \frac{1}{2}(u_{n+1}^2 - 1, (u_{n+1} - u_n)^2)$$

$$= \frac{1}{4}||u_{n+1}^2 - 1||^2 - \frac{1}{4}||u_n^2 - 1||^2 + \frac{1}{4}||u_{n+1}^2 - u_n^2||^2$$

$$+ \frac{1}{2}||u_{n+1}(u_{n+1} - u_n)||^2 - \frac{1}{2}||u_{n+1} - u_n||^2.$$

Then,

$$E_{n+1} - E_n \le -\left(\frac{1}{\Delta_t} - \frac{1}{2c^2}\right) \|u_{n+1} - u_n\|^2 - \frac{1}{2} \|\nabla u_{n+1} - \nabla u_n\|^2.$$

Second order scheme

The modified Crank-Nicolson (MCN) scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} - \frac{1}{2}\Delta(u_{n+1} + u_n) + \frac{1}{\varepsilon^2}\tilde{f}(u_{n+1}, u_n) = 0,$$
 (MCN)

where

$$\tilde{f}(v,w) = \begin{cases} F(v) - F(w) \\ v - w \end{cases}, \quad v \neq w, \\ F'(v), \qquad v = w.$$

Theorem: Energy stability of (MCN)

For any $\Delta t > 0$, the MCN scheme is energy stable:

$$E_{n+1} - E_n = -\frac{1}{\Delta t} ||u_{n+1} - u_n||^2,$$

where
$$E_n = E(u_n) = \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{4c^2} \|u_n^2 - 1\|^2$$
.

Second order scheme (continued)

Energy stability of (MCN)

For any $\Delta t > 0$, the MCN scheme is energy stable:

$$E_{n+1} - E_n = -\frac{1}{\Delta t} ||u_{n+1} - u_n||^2,$$

where
$$E_n = E(u_n) = \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{4\varepsilon^2} \|u_n^2 - 1\|^2$$
.

Proof. Take the inner product of (MCN) with $u_{n+1} - u_n$:

$$\frac{1}{\Delta t} \|u_{n+1} - u_n\|^2 + \frac{1}{2} (\|\nabla u_{n+1}\|^2 - \|\nabla u_n\|^2) + \frac{1}{\varepsilon^2} (\tilde{f}(u_{n+1}, u_n), u_{n+1} - u_n) = 0.$$

Since

$$(\tilde{f}(u_{n+1}, u_n), u_{n+1} - u_n) = (F(u_{n+1}) - F(u_n), 1),$$

we obtain

$$E_{n+1} - E_n = -\frac{1}{\Delta_t} \|u_{n+1} - u_n\|^2$$
.

Remarks on the fully implicit schemes

Advantages:

- Easy to construct;
- Truncated error only comes from the approximation of u_t .

Disadvantages:

- $\Delta t \leq \varepsilon^2$ for unique solvability and energy stability;
- Nonlinearity leads to large amounts of computation.

References:

- Feng-Prohl, Numer. Math., 2003.
- Du-Nicolaides, SIAM J. Numer. Anal., 1991.

Classic implicit-explicit methods

- Classic implicit-explicit methods
 - Fully implicit schemes
 - Convex splitting schemes
 - Stabilization schemes
- - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

Convex splitting form

Notice that

$$F(u) = F_{+}(u) - F_{-}(u),$$

where $F_+(u) = \frac{1}{4}(u^4 + 1)$ and $F_-(u) = \frac{1}{2}u^2$ are both convex.

Correspondingly,

$$E(u) = E_{+}(u) - E_{-}(u), \tag{4}$$

with
$$E_{\pm}(u) = \int_{\Omega} F_{\pm}(u) dx$$
.

The form (4) gives a *convex splitting* of the energy E.

First order scheme

The first order convex splitting scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} - \Delta u_{n+1} + \frac{1}{\varepsilon^2} (f_+(u_{n+1}) - f_-(u_n)) = 0, \quad (CS1)$$

where
$$f_+(u) = F'_+(u) = u^3$$
 and $f_-(u) = F'_-(u) = u$.

Theorem: Unique solvability and energy stability of (CS1)

For any $\Delta t > 0$, the CS1 scheme admits a unique solution and is energy stable:

$$E_{n+1} - E_n \le -\frac{1}{\Delta t} ||u_{n+1} - u_n||^2,$$

where
$$E_n = E(u_n) = \frac{1}{2} ||\nabla u_n||^2 + \frac{1}{\epsilon^2} (F(u_n), 1).$$

Classic implicit-explicit methods

Proof. Unique solvability. Define

$$\mathcal{E}(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + \frac{1}{4\varepsilon^2} u^4 - \frac{1}{\varepsilon^2} u_n u + \frac{1}{2\Delta t} (u - u_n)^2 \right) dx.$$

First variational derivative of \mathcal{E} :

$$\frac{\delta \mathcal{E}(u)}{\delta u} = -\Delta u + \frac{1}{\varepsilon^2} (u^3 - u_n) + \frac{1}{\Delta t} (u - u_n).$$

Notice that (CS1) is equivalent to

$$\frac{\delta \mathcal{E}(u_{n+1})}{\delta u} = 0. \tag{5}$$

Second variational of \mathcal{E} :

$$\frac{\mathrm{d}^2 \mathcal{E}(u + \lambda v)}{\mathrm{d}\lambda^2} \Big|_{\lambda = 0} = \int_{\Omega} \left(|\nabla v|^2 + \frac{3}{\varepsilon^2} u^2 v^2 + \frac{1}{\Delta t} v^2 \right) dx > 0, \quad \forall v \neq 0.$$

That is, \mathcal{E} is strictly convex and (CS1) is equivalent to

$$u_{n+1} = \operatorname{argmin} \mathcal{E}(v), \quad v \in H^1(\Omega).$$

First order scheme (continued)

Energy stability. Take the inner product of (CS1) with $u_{n+1} - u_n$:

$$\frac{1}{\Delta_{\bullet}}\|u_{n+1}-u_n\|^2+(\nabla u_{n+1},\nabla u_{n+1}-\nabla u_n)+\frac{1}{c^2}(f_+(u_{n+1})-f_-(u_n),u_{n+1}-u_n)=0,$$

where

$$(\nabla u_{n+1}, \nabla u_{n+1} - \nabla u_n) = \frac{1}{2} \|\nabla u_{n+1}\|^2 - \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{2} \|\nabla u_{n+1} - \nabla u_n\|^2.$$

Using the Taylor formula

$$F_{+}(u_{n}) = F_{+}(u_{n+1}) - f_{+}(u_{n+1})(u_{n+1} - u_{n}) + \frac{1}{2}F''_{+}(\xi_{1})(u_{n+1} - u_{n})^{2},$$

$$F_{-}(u_{n+1}) = F_{-}(u_{n}) + f_{-}(u_{n})(u_{n+1} - u_{n}) + \frac{1}{2}F''_{-}(\xi_{2})(u_{n+1} - u_{n})^{2},$$

we have

$$f_{+}(u_{n+1})(u_{n+1}-u_n) = F_{+}(u_{n+1}) - F_{+}(u_n) + \frac{1}{2}F''_{+}(\xi_1)(u_{n+1}-u_n)^2 \ge F_{+}(u_{n+1}) - F_{+}(u_n),$$

$$f_{-}(u_n)(u_{n+1}-u_n) = F_{-}(u_{n+1}) - F_{-}(u_n) - \frac{1}{2}F''_{-}(\xi_2)(u_{n+1}-u_n)^2 \le F_{-}(u_{n+1}) - F_{-}(u_n).$$

Then,

$$E_{n+1} - E_n \le -\frac{1}{\Delta t} \|u_{n+1} - u_n\|^2 - \frac{1}{2} \|\nabla u_{n+1} - \nabla u_n\|^2.$$

Relation between the BE and CS1 schemes

The CS1 scheme can be rewritten as the fully implicit scheme

$$\frac{u_{n+1} - u_n}{\Delta t'} - \Delta u_{n+1} + \frac{1}{\varepsilon^2} f(u_{n+1}) = 0, \tag{6}$$

with different time step size $\Delta t' = \frac{\Delta t \varepsilon^2}{\Delta t + \varepsilon^2}$.

Proof. Note that

$$u_{n+1}^3 - u_n = u_{n+1}^3 - u_{n+1} + (u_{n+1} - u_n) = f(u_{n+1}) + (u_{n+1} - u_n).$$

Substitute the above identity into (CS1):

$$\left(\frac{1}{\Delta t} + \frac{1}{\varepsilon^2}\right)(u_{n+1} - u_n) - \Delta u_{n+1} + \frac{1}{\varepsilon^2}f(u_{n+1}) = 0.$$

This is (6) with the time step $\Delta t'$ defined by $\frac{1}{\Delta t'} = \frac{1}{\Delta t} + \frac{1}{\varepsilon^2}$.

Relation between the BE and CS1 schemes (continued)

• Why is the CS1 scheme always energy stable? For any $\Delta t > 0$, since

$$\Delta t' = \frac{\Delta t \varepsilon^2}{\Delta t + \varepsilon^2} < \varepsilon^2,$$

the fully implicit scheme (6) is energy stable.

• Existence of a time-delay. Denote by $u^{BE}(t_n)$ and $u^{CS}(t_n)$ the solutions to (BE) and (CS1). Then,

$$u^{\text{CS}}(t_n) = u^{\text{BE}}(\delta t_n), \quad \delta = \frac{\varepsilon^2}{\Delta t + \varepsilon^2} < 1.$$

A larger time step size Δt , giving a smaller δ , leads to a more significant time-delay. Such a delay will diminish as $\Delta t \rightarrow 0$.

Classic implicit-explicit methods

The second order convex splitting (CS2) scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} - \Delta \frac{u_{n+1} + u_n}{2} + \frac{1}{\varepsilon^2} \left(\tilde{f}_+(u_{n+1}, u_n) - \left(\frac{3}{2} u_n - \frac{1}{2} u_{n-1} \right) \right) = 0.$$
(CS2)

Theorem: Energy stability of (CS2)

For any $\Delta t > 0$, the CS2 scheme is energy stable:

$$E_{n+1} - E_n \le -\frac{1}{\Delta t} ||u_{n+1} - u_n||^2,$$

where E_n is a modification of $E(u_n)$:

$$E_n = \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{4\varepsilon^2} \|u_n^2 - 1\|^2 + \frac{1}{4\varepsilon^2} \|u_n - u_{n-1}\|^2.$$

Energy stability of (CS2)

Classic implicit-explicit methods

For any $\Delta t > 0$, the CS2 scheme is energy stable:

$$E_{n+1} - E_n \le -\frac{1}{\Delta t} ||u_{n+1} - u_n||^2,$$

where
$$E_n = \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{4c^2} \|u_n^2 - 1\|^2 + \frac{1}{4c^2} \|u_n - u_{n-1}\|^2$$
.

Proof. Take the inner product of (CS2) with $u_{n+1} - u_n$:

$$\begin{split} \frac{1}{\Delta t} \|u_{n+1} - u_n\|^2 + \frac{1}{2} (\|\nabla u_{n+1}\|^2 - \|\nabla u_n\|^2) \\ + \frac{1}{\varepsilon^2} (\tilde{f}_+(u_{n+1}, u_n), u_{n+1} - u_n) - \frac{1}{\varepsilon^2} (\frac{3}{2} u_n - \frac{1}{2} u_{n-1}, u_{n+1} - u_n) = 0, \end{split}$$

where

$$(\tilde{f}_{+}(u_{n+1}, u_n), u_{n+1} - u_n) = (F_{+}(u_{n+1}) - F_{+}(u_n), 1).$$

Second order scheme (continued)

Since $\left(\frac{3}{2}b - \frac{1}{2}c\right)(a-b) = \frac{1}{2}a^2 - \frac{1}{2}b^2 - \frac{1}{4}(a-b)^2 + \frac{1}{4}(b-c)^2 - \frac{1}{4}(a-2b+c)^2$,

$$\left(\frac{3}{2}u_{n} - \frac{1}{2}u_{n-1}, u_{n+1} - u_{n}\right) = \frac{1}{2}\|u_{n+1}\|^{2} - \frac{1}{2}\|u_{n}\|^{2} - \frac{1}{4}\|u_{n+1} - u_{n}\|^{2} + \frac{1}{4}\|u_{n} - u_{n-1}\|^{2} - \frac{1}{4}\|u_{n+1} - 2u_{n} + u_{n-1}\|^{2}.$$

Then, we obtain

$$\begin{split} &\frac{1}{\Delta t}\|u_{n+1}-u_n\|^2+\frac{1}{2}(\|\nabla u_{n+1}\|^2-\|\nabla u_n\|^2)\\ &+\frac{1}{4\varepsilon^2}(F_+(u_{n+1})-F_+(u_n),1)-\frac{1}{2\varepsilon^2}\|u_{n+1}\|^2+\frac{1}{2\varepsilon^2}\|u_n\|^2\\ &+\frac{1}{4\varepsilon^2}\|u_{n+1}-u_n\|^2-\frac{1}{4\varepsilon^2}\|u_n-u_{n-1}\|^2+\frac{1}{4\varepsilon^2}\|u_{n+1}-2u_n+u_{n-1}\|^2=0, \end{split}$$

that is,

$$\underline{E}_{n+1} - \underline{E}_n = -\frac{1}{\Delta t} \|u_{n+1} - u_n\|^2 - \frac{1}{4\varepsilon^2} \|u_{n+1} - 2u_n + u_{n-1}\|^2. \quad \Box$$

Remarks on the convex splitting schemes

Advantages:

- Easy to construct;
- Unconditional unique solvability and energy stability (1st order);
- Easy to prove the energy stability.

Disadvantages:

- Existence of the time-delay may cause more truncated errors;
- Nonlinearity leads to large amounts of computation;
- Hard to obtain the energy stability for higher order schemes.

References:

- David J. Eyre, a note, 1997.
- Shen-Wang-Wang-Wise, SIAM J. Numer. Anal., 2012.
- Xu-Li-Wu, arXiv:1604.05402v4, 2017.

Classic implicit-explicit methods

- Fully implicit schemes
- Convex splitting schemes
- Stabilization schemes
- 2 Energy quadratization methods
 - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- 3 Exponential time differencing (ETD) methods
 - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

First order scheme

The first order stabilization (STAB1) scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} - \Delta u_{n+1} + \frac{1}{\varepsilon^2} f(u_n) + \frac{S}{\varepsilon^2} (u_{n+1} - u_n) = 0, \quad (STAB1)$$

where the constant $S \ge 0$ is called the stabilizer.

Rewrite the *linear* scheme (STAB1):

$$\left(\frac{1}{\Delta t} + \frac{S}{\varepsilon^2} - \Delta\right) u_{n+1} = \left(\frac{1}{\Delta t} + \frac{S}{\varepsilon^2}\right) u_n - \frac{1}{\varepsilon^2} f(u_n).$$

The operator of u_{n+1} is self-adjoint and positive definite, so the STAB1 scheme must admit a unique solution.

First order scheme (continued)

Theorem: Energy stability of (STAB1)

Denote $L = ||f'||_{L^{\infty}}$ and assume that $L < \infty$.

(i) For S = 0 and $\Delta t \leq \frac{2\varepsilon^2}{I}$, the STAB1 scheme is energy stable:

$$E_{n+1} - E_n \le -\left(\frac{1}{\Delta t} - \frac{L}{2\varepsilon^2}\right) \|u_{n+1} - u_n\|^2;$$

(ii) For $S \ge \frac{L}{2}$ and $\Delta t > 0$, the STAB1 scheme is energy stable:

$$E_{n+1} - E_n \le -\frac{1}{\Delta t} \|u_{n+1} - u_n\|^2$$

where
$$E_n = E(u_n) = \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{\epsilon^2} (F(u_n), 1).$$

First order scheme (continued)

Proof. Take the inner product of (STAB1) with $u_{n+1} - u_n$:

$$\left(\frac{1}{\Delta t} + \frac{S}{\varepsilon^2}\right) \|u_{n+1} - u_n\|^2 + (\nabla u_{n+1}, \nabla u_{n+1} - \nabla u_n) + \frac{1}{\varepsilon^2} (f(u_n), u_{n+1} - u_n) = 0,$$
where

$$(\nabla u_{n+1}, \nabla u_{n+1} - \nabla u_n) = \frac{1}{2} \|\nabla u_{n+1}\|^2 - \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{2} \|\nabla u_{n+1} - \nabla u_n\|^2.$$

Using the Taylor formula

$$F(u_{n+1}) = F(u_n) + f(u_n)(u_{n+1} - u_n) + \frac{1}{2}f'(\xi)(u_{n+1} - u_n)^2,$$

we have

$$f(u_n)(u_{n+1} - u_n) = F(u_{n+1}) - F(u_n) - \frac{1}{2}f'(\xi)(u_{n+1} - u_n)^2$$

$$\geq F(u_{n+1}) - F(u_n) - \frac{L}{2}(u_{n+1} - u_n)^2.$$

Then,
$$E_{n+1} - E_n \le -\left(\frac{1}{\Delta t} + \frac{S}{s^2} - \frac{L}{2s^2}\right) \|u_{n+1} - u_n\|^2$$
.

Classic implicit-explicit methods

$$E_{n+1} - E_n \le -\left(\frac{1}{\Delta_t} + \frac{S}{\varepsilon^2} - \frac{L}{2\varepsilon^2}\right) \|u_{n+1} - u_n\|^2.$$

For (i), when S = 0, we have

$$E_{n+1} - E_n \le -\left(\frac{1}{\Delta t} - \frac{L}{2\varepsilon^2}\right) \|u_{n+1} - u_n\|^2.$$

The condition $\Delta t \leq \frac{2\varepsilon^2}{L}$ leads to the energy stability.

For (ii), when $S \ge \frac{L}{2}$, we have

$$E_{n+1} - E_n \le -\frac{1}{\Delta t} ||u_{n+1} - u_n||^2.$$

Energy stability holds for any $\Delta t > 0$.

A question is whether $||f'||_{L^{\infty}}$ is finite.

In fact, we have the following result:

For the Allen-Cahn equation, if
$$u(0) \in [-1, 1]$$
 a.e., then $u(t) \in [-1, 1]$ a.e. for any $t > 0$.

For a large positive number $M \gg 1$, we modify the potential F(u) as

$$\tilde{F}(u) = \begin{cases} \frac{1}{4}(u^2 - 1)^2, & |u| \le M, \\ au^2 + bu + c, & |u| > M, \end{cases}$$

where $a, b, c \in \mathbb{R}$ are chosen such that $\tilde{F} \in C^2(\mathbb{R})$, and define $\tilde{f}(u) = \tilde{F}'(u)$. If we denote $L = ||\tilde{f}'||_{L^{\infty}}$, then L must be a finite number.

Relation between the STAB1 and CS1 schemes

Consider the splitting form $F(u) = F_{+}(u) - F_{-}(u)$ with

$$F_{+}(u) = \frac{S}{2}u^{2} + \frac{1}{4}, \quad F_{-}(u) = \frac{S+1}{2}u^{2} - \frac{1}{4}u^{4}, \quad S \ge 0.$$

Here.

- F_{\perp} is always convex in \mathbb{R} ;
- F_{-} is convex on [-1, 1] when $S \geq 2$.

The corresponding convex splitting scheme reads

$$\frac{u_{n+1}-u_n}{\Delta t}-\Delta u_{n+1}+\frac{S}{\varepsilon^2}u_{n+1}-\frac{1}{\varepsilon^2}(Su_n-f(u_n))=0,$$

which is exactly the STAB1 scheme.

Second order BDF-type stabilization (STAB-BDF2) scheme:

$$\frac{3u_{n+1} - 4u_n + u_{n-1}}{2\Delta t} - \Delta u_{n+1} + \frac{1}{\varepsilon^2} (2f(u_n) - f(u_{n-1})) + \frac{S}{\varepsilon^2} (u_{n+1} - 2u_n + u_{n-1})$$
(STAB-BDF2)

Theorem: Energy stability of (STAB-BDF2)

Denote $L = ||f'||_{L^{\infty}}$ and assume that $L < \infty$.

For $S \ge 0$ and $\Delta t \le \frac{2\varepsilon^2}{3I}$, the STAB-BDF2 scheme is energy stable:

$$E_{n+1} \leq E_n$$

where

$$E_n = \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{\varepsilon^2} (F(u_n), 1) + \left(\frac{1}{4\Delta t} + \frac{S + L}{2\varepsilon^2}\right) \|u_n - u_{n-1}\|^2.$$

Advantages:

- Easy to construct;
- Unconditional unique solvability and energy stability (1st order);
- Linear scheme with constant coefficient, so we can use FFT.

Disadvantages:

- Stabilization term introduces an extra truncated error;
- Theoretically, $||f'(u)||_{L^{\infty}} < \infty$ does not hold for general cases, unless we know $||u||_{L^{\infty}} \le C$ for some certain C;
- Hard to obtain the energy stability for higher order schemes.

References:

• Shen-Yang, Discrete Contin. Dyn. Syst., 2010.

Outline

- Classic implicit-explicit methods
 - Fully implicit schemes
 - Convex splitting schemes
 - Stabilization schemes
- 2 Energy quadratization methods
 - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- 3 Exponential time differencing (ETD) methods
 - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

Gradient flow and energy functional

Gradient flow:

$$\frac{\partial u}{\partial t} = G\mu, \quad \mu = \frac{\delta E}{\delta u}.\tag{7}$$

Energy dissipation law:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \left(\frac{\delta E}{\delta u}, \frac{\partial u}{\partial t}\right) = (\mu, G\mu) \le 0.$$

Energy functional:

$$E(u) = \frac{1}{2}(u, Lu) + E_1(u), \tag{8}$$

- G is self-adjoint and negative definite;
- L is self-adjoint and positive semi-definite;
- E_1 is nonlinear but with lower order derivatives than L and bounded from below.

The gradient flow (7) equipped with the energy (8) reads

$$u_t = G\mu, \quad \mu = Lu + N(u), \quad N(u) = \frac{\delta E_1}{\delta u}.$$
 (9)

- - Fully implicit schemes
 - Convex splitting schemes
- Energy quadratization methods
 - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

We further assume that E_1 takes the form $E_1(u) = \int F(u) dx$ with Fbounded from below. Without loss of generality, we assume F(u) > 0. Introduce an auxiliary variable $q(x,t) = \sqrt{F(u(x,t))}$.

Equivalent form of the gradient flow:

$$u_t = G\mu, \tag{10a}$$

$$\mu = Lu + \frac{q}{\sqrt{F(u)}}N(u),\tag{10b}$$

$$u_{t} = G\mu,$$

$$\mu = Lu + \frac{q}{\sqrt{F(u)}}N(u),$$

$$q_{t} = \frac{N(u)}{2\sqrt{F(u)}}u_{t}.$$
(10a)
$$(10b)$$

Equivalent form of the energy:

$$\widetilde{E}(u,q) = \frac{1}{2}(u,Lu) + ||q||^2.$$
 (11)

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{E}(u,q) = (\mu, G\mu) \le 0.$$

Energy quadratization methods

Proof. Take the inner product of (10a) with μ :

$$(\mu, u_t) = (\mu, G\mu).$$

Take the inner product of (10b) with u_t :

$$(\mu, u_t) = (Lu, u_t) + \left(\frac{N(u)}{\sqrt{F(u)}}q, u_t\right).$$

Take the inner product of (10c) with 2q:

$$2(q, q_t) = \left(\frac{N(u)}{\sqrt{F(u)}}u_t, q\right).$$

Then, we obtain

$$(\mu, G\mu) = (Lu, u_t) + 2(q, q_t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} (u, Lu) + \|q\|^2 \right).$$

Gradient flow:

$$u_t = G\mu,$$

 $\mu = Lu + \frac{q}{\sqrt{F(u)}}N(u),$
 $q_t = \frac{N(u)}{2\sqrt{F(u)}}u_t.$

First order IEQ (IEQ1) scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} = G\mu_{n+1},\tag{12a}$$

$$\frac{u_{n+1} - u_n}{\Delta t} = G\mu_{n+1},$$

$$\mu_{n+1} = Lu_{n+1} + \frac{q_{n+1}}{\sqrt{F(u_n)}}N(u_n),$$
(12a)

$$\frac{q_{n+1} - q_n}{\Delta t} = \frac{N(u_n)}{2\sqrt{F(u_n)}} \frac{u_{n+1} - u_n}{\Delta t}.$$
 (12c)

IEQ1 scheme: Unique solvability (continued)

For any $\Delta t > 0$, the IEQ1 scheme admits a unique solution.

Energy quadratization methods

IEQ1 scheme (denote
$$b_n=\frac{N(u_n)}{\sqrt{F(u_n)}}$$
):
$$\frac{u_{n+1}-u_n}{\Delta t}=G\mu_{n+1},$$

$$\mu_{n+1}=Lu_{n+1}+q_{n+1}b_n,$$

$$q_{n+1}-q_n=\frac{1}{2}b_n(u_{n+1}-u_n).$$

Proof. Eliminate μ_{n+1} and q_{n+1} :

$$\frac{u_{n+1} - u_n}{\Delta t} = GLu_{n+1} + G(q_n b_n) + \frac{1}{2}G(b_n^2 u_{n+1}) - \frac{1}{2}G(b_n^2 u_n),$$

or equivalently,

$$u_{n+1} - \Delta t G L u_{n+1} - \frac{\Delta t}{2} G(b_n^2 u_{n+1}) = u_n + \Delta t G(q_n b_n) - \frac{\Delta t}{2} G(b_n^2 u_n) =: c_n.$$

IEQ1 scheme: Unique solvability (continued)

$$u_{n+1} - \Delta t G L u_{n+1} - \frac{\Delta t}{2} G(b_n^2 u_{n+1}) = c_n.$$

Act G^{-1} on both sides:

$$\left(G^{-1} - \Delta t L - \frac{\Delta t}{2} b_n^2 I\right) u_{n+1} = G^{-1} c_n.$$

Here, $G^{-1} - \Delta t L - \frac{\Delta t}{2} b_n^2 I$ is negative definite.

Algorithm: IEQ1 scheme

Given u_n, q_n , to compute u_{n+1}, q_{n+1} as follows:

- Calculate b_n and c_n ;
- Solve $(I \Delta tGL)u_{n+1} \frac{\Delta t}{2}G(b_n^2u_{n+1}) = c_n$ to obtain u_{n+1} ;
- **S** Calculate q_{n+1} by $q_{n+1} = q_n + \frac{1}{2}b_n(u_{n+1} u_n)$.

For any $\Delta t > 0$, we have $E_{n+1} - E_n \leq \Delta t(\mu_{n+1}, G\mu_{n+1}) \leq 0$, where $E_n = E(u_n, q_n) = \frac{1}{2}(u_n, Lu_n) + ||a_n||^2$.

Proof. Take the inner product of (12a) with $\Delta t \mu_{n+1}$:

$$(\mu_{n+1}, \mu_{n+1} - \mu_n) = \Delta t(\mu_{n+1}, G\mu_{n+1}).$$

Take the inner product of (12b) with $u_{n+1} - u_n$:

$$(\mu_{n+1}, u_{n+1} - u_n) = (Lu_{n+1}, u_{n+1} - u_n) + (q_{n+1}b_n, u_{n+1} - u_n).$$

Take the inner product of (12c) with $2q_{n+1}$:

$$(2q_{n+1}, q_{n+1} - q_n) = (q_{n+1}b_n, u_{n+1} - u_n).$$

Then, we obtain

$$E_{n+1}-E_n+\frac{1}{2}(L(u_{n+1}-u_n),u_{n+1}-u_n)+\|q_{n+1}-q_n\|^2=\Delta t(\mu_{n+1},G\mu_{n+1}).$$

Remark. Generally, $q_n \neq \sqrt{F(u_n)}$, so $E_n \neq E(u_n)$.

Second order IEQ scheme: IEQ-CN

$$u_t = G\mu,$$

 $\mu = Lu + \frac{q}{\sqrt{F(u)}}N(u),$
 $q_t = \frac{N(u)}{2\sqrt{F(u)}}u_t.$

Crank-Nicolson-type IEO (IEO-CN) scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} = G\mu_{n+\frac{1}{2}},\tag{13a}$$

$$\mu_{n+\frac{1}{2}} = \frac{1}{2}L(u_{n+1} + u_n) + \frac{q_{n+1} + q_n}{2}\bar{b}_{n+\frac{1}{2}}, \tag{13b}$$

$$\frac{q_{n+1} - q_n}{\Delta t} = \frac{1}{2} \bar{b}_{n+\frac{1}{2}} \frac{u_{n+1} - u_n}{\Delta t},\tag{13c}$$

where
$$\bar{b}_{n+\frac{1}{2}} = \frac{3}{2}b_n - \frac{1}{2}b_{n-1}$$
 with $b_n = \frac{N(u_n)}{\sqrt{F(u_n)}}$.

Unique solvability

For any $\Delta t > 0$, the IEQ-CN scheme admits a unique solution.

Energy stability

For any $\Delta t > 0$, the IEQ-CN scheme is energy stable:

$$E_{n+1} - E_n = \Delta t(\mu_{n+1}, G\mu_{n+1}) \le 0,$$

where
$$E_n = \widetilde{E}(u_n, q_n) = \frac{1}{2}(u_n, Lu_n) + ||q_n||^2$$
.

Proof. Taking the inner products of (13a), (13b), (13c) with $\Delta t \mu_{n+\frac{1}{2}}$, $-(u_{n+1}-u_n)$, $\Delta t(q_{n+1}+q_n)$, respectively, and adding the resulted three equalities yield the expected result.

$$u_t = G\mu,$$

 $\mu = Lu + \frac{q}{\sqrt{F(u)}}N(u),$
 $q_t = \frac{N(u)}{2\sqrt{F(u)}}u_t.$

Second order BDF-type IEQ (IEQ-BDF2) scheme:

$$\frac{3u_{n+1} - 4u_n + u_{n-1}}{2\Delta t} = G\mu_{n+1},\tag{14a}$$

$$\mu_{n+1} = Lu_{n+1} + q_{n+1}\bar{b}_{n+1},\tag{14b}$$

$$\frac{3q_{n+1} - 4q_n + q_{n-1}}{2\Delta t} = \frac{1}{2}\bar{b}_{n+1}\frac{3u_{n+1} - 4u_n + u_{n-1}}{2\Delta t},$$
 (14c)

where $b_{n+1} = 2b_n - b_{n-1}$.

Second order IEQ scheme: IEQ-BDF2 (continued)

Unique solvability

For any $\Delta t > 0$, the IEQ-BDF2 scheme admits a unique solution.

Energy stability

For any $\Delta t > 0$, the IEQ-BDF2 scheme is energy stable:

$$E_{n+1} - E_n \le \Delta t(\mu_{n+1}, G\mu_{n+1}) \le 0,$$

where

$$E_n = \frac{1}{4} ((u_n, Lu_n) + (2u_n - u_{n-1}, L(2u_n - u_{n-1}))) + \frac{1}{2} (\|q_n\|^2 + \|2q_n - q_{n-1}\|^2).$$

Hints:

$$a(3a-4b+c) = \frac{1}{2}(a^2+(2a-b)^2) - \frac{1}{2}(b^2+(2b-c)^2) + \frac{1}{2}(a-2b+c)^2.$$

Advantages:

- Linear scheme and unique solvability;
- Unconditional energy stability (w.r.t. a modified energy);
- Easy to construct higher order schemes;

Disadvantages:

- Linear system with variable coefficient, cannot use FFT;
- For some problems, F(u) is not bounded from below.

References:

• XF Yang et al, J. Comput. Phys., 2016-2017.

Example 1. Phase field crystal model

Phase field crystal (PFC) model:

$$u_t = \Delta \mu, \quad \mu = u^3 + (1 - \varepsilon)u + 2\Delta u + \Delta^2 u.$$

Energy functional:

$$E(u) = \int \left(\frac{1}{4} u^4 + \frac{1 - \varepsilon}{2} u^2 - |\nabla u|^2 + \frac{1}{2} |\Delta u|^2 \right) dx.$$

Introduce an auxiliary variable $q = u^2$.

Example 1. Phase field crystal model (continued)

Equivalent energy:

$$\widetilde{E}(u,q) = \int \left(\frac{1}{4}q^2 + \frac{1-\varepsilon}{2}u^2 - |\nabla u|^2 + \frac{1}{2}|\Delta u|^2\right) dx.$$

Equivalent equation:

$$u_t = \Delta \mu,$$

$$\mu = qu + (1 - \varepsilon)u + 2\Delta u + \Delta^2 u,$$

$$q_t = 2uu_t.$$

IEO1 scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} = \Delta \mu_{n+1},\tag{15a}$$

$$\mu_{n+1} = q_{n+1}u_n + (1 - \varepsilon)u_{n+1} + 2\Delta u_n + \Delta^2 u_{n+1}, \quad (15b)$$

$$q_{n+1} - q_n = 2u_n(u_{n+1} - u_n). (15c)$$

Example 1. Phase field crystal model (continued)

Energy stability (Note that $q_n \neq u_n^2$, so $E_n \neq E(u_n)$.)

For any
$$\Delta t > 0$$
, we have $E_{n+1} - E_n \le -\Delta t \|\nabla \mu_{n+1}\|^2 \le 0$, where $E_n = \widetilde{E}(u_n, q_n) = \frac{1}{4} \|q_n\|^2 + \frac{1-\varepsilon}{2} \|u_n\|^2 - \|\nabla u_n\|^2 + \frac{1}{2} \|\Delta u_n\|^2$.

Proof. Take the inner product of (15a) with $\Delta t \mu_{n+1}$:

$$(\mu_{n+1}, u_{n+1} - u_n) = \Delta t(\mu_{n+1}, \Delta \mu_{n+1}) = -\Delta t \|\nabla \mu_{n+1}\|^2.$$

Take the inner product of (15b) with $u_{n+1} - u_n$:

$$(\mu_{n+1}, u_{n+1} - u_n) = (q_{n+1}u_n, u_{n+1} - u_n) + (1 - \varepsilon)(u_{n+1}, u_{n+1} - u_n) - 2(\nabla u_n, \nabla u_{n+1} - \nabla u_n) + (\Delta u_{n+1}, \Delta u_{n+1} - \Delta u_n).$$

Take the inner product of (15c) with $\frac{1}{2}q_{n+1}$:

$$\frac{1}{2}(q_{n+1},q_{n+1}-q_n)=(q_{n+1}u_n,u_{n+1}-u_n).$$

Just use the identities $a(a - b) = \cdots$ and $b(a - b) = \cdots$.

Epitaxial growth model without slope selection:

$$u_t = -\nabla \cdot \left(\frac{\nabla u}{1 + |\nabla u|^2}\right) - \varepsilon^2 \Delta^2 u,\tag{16}$$

Energy functional:

$$E(u) = \int \left(-\frac{1}{2}\ln(1+|\nabla u|^2) + \frac{\varepsilon^2}{2}|\Delta u|^2\right)dx. \tag{17}$$

Strictly speaking, the IEQ method cannot be applied on this model since $-\frac{1}{2}\ln(1+|\nabla u|^2)$ is unbounded from below. However, the basic idea could be used to construct an IEQ-like scheme.

Example 2. No-slope-selection epitaxial growth (continued)

Introduce an auxiliary variable $q = \sqrt{\ln(1 + |\nabla u|^2) + A}$, $\forall A > 0$.

Equivalent equation:

$$u_t = -\varepsilon^2 \Delta^2 u - \nabla \cdot (q\mathbf{v}), \tag{18a}$$

$$q_t = \mathbf{v} \cdot \nabla u_t, \tag{18b}$$

where

$$\mathbf{v} = \frac{\nabla u}{(1+|\nabla u|^2)\sqrt{\ln(1+|\nabla u|^2)+A}}.$$

Equivalent energy:

$$\widetilde{E}(u,q) = \int_{\Omega} \left(\frac{\varepsilon^2}{2}|\Delta u|^2 - \frac{1}{2}q^2 + \frac{1}{2}A\right)dx.$$

Taking the inner products of (18a) and (18b) with u_t and -q, and adding the resulted two equalities yield the energy dissipation law:

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{E}(u,q) = -\|u_t\|^2 \le 0.$$

Equivalent equation:

$$u_t = -\varepsilon^2 \Delta^2 u - \nabla \cdot (q \mathbf{v}),$$

$$q_t = \mathbf{v} \cdot \nabla u_t,$$

where

$$\mathbf{v} = \frac{\nabla u}{(1+|\nabla u|^2)\sqrt{\ln(1+|\nabla u|^2)+A}}.$$

First order scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} = -\varepsilon^2 \Delta^2 u_{n+1} - \nabla \cdot (q_n v_n), \tag{19a}$$

$$q_{n+1} - q_n = \mathbf{v}_n \cdot (\nabla u_{n+1} - \nabla u_n), \tag{19b}$$

where

$$\mathbf{v}_n = \frac{\nabla u_n}{(1 + |\nabla u_n|^2)\sqrt{\ln(1 + |\nabla u_n|^2) + A}}.$$

Energy stability

For any $\Delta t > 0$, we have $E_{n+1} - E_n \le -\frac{1}{\Delta t} \|u_{n+1} - u_n\|^2$, where $E_n = \widetilde{E}(u_n, q_n) = \frac{\varepsilon^2}{2} ||\Delta u_n||^2 - \frac{1}{2} ||q_n||^2 + \frac{1}{2} A |\Omega|$.

Proof. Take the inner product of (19a) with $u_{n+1} - u_n$:

$$\frac{1}{\Delta t} \|u_{n+1} - u_n\|^2 = -\varepsilon^2 (\Delta u_{n+1}, \Delta u_{n+1} - \Delta u_n) + (q_n v_n, \nabla u_{n+1} - \nabla u_n).$$

Take the inner product of (19b) with q_n :

$$(q_n, q_{n+1} - q_n) = (q_n \mathbf{v}_n, \nabla u_{n+1} - \nabla u_n).$$

Then, we obtain

$$E_{n+1} - E_n + \frac{\varepsilon^2}{2} \|\Delta u_{n+1} - \Delta u_n\|^2 + \frac{1}{2} \|q_{n+1} - q_n\|^2 = -\frac{1}{\Delta t} \|u_{n+1} - u_n\|^2. \quad \Box$$

Remark. Generally, $q_n \neq \sqrt{\ln(1+|\nabla u_n|^2)+A}$, so $E_n \neq E(u_n)$.

- - Fully implicit schemes
 - Convex splitting schemes
 - Stabilization schemes
- Energy quadratization methods
 - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

Without loss of generality, we assume $E_1(u) > 0$. Introduce a Scalar Auxiliary Variable $r(t) = \sqrt{E_1(u(t))}$.

Equivalent form of the gradient flow:

$$u_t = G\mu, \tag{20a}$$

$$\mu = Lu + \frac{r}{\sqrt{E_1(u)}}N(u), \tag{20b}$$

$$r_t = \frac{1}{2\sqrt{E_1(u)}} \int N(u)u_t \, \mathrm{d}x. \tag{20c}$$

Equivalent form of the energy:

$$\widetilde{E}(u,r) = \frac{1}{2}(u,Lu) + r^2.$$
 (21)

$$\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{E}(u,r) = (\mu, G\mu) \le 0.$$

Proof. Take the inner product of (20a) with μ :

$$(\mu, u_t) = (\mu, G\mu).$$

Take the inner product of (20b) with u_t :

$$(\mu, u_t) = (Lu, u_t) + \frac{r}{\sqrt{E_1(u)}}(N(u), u_t).$$

Multiply (20c) by 2r:

$$2rr_t = \frac{r}{\sqrt{E_1(u)}} \int N(u)u_t \, \mathrm{d}x.$$

Then, we obtain

$$(\mu, G\mu) = (Lu, u_t) + 2rr_t = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} (u, Lu) + r^2 \right) = \frac{\mathrm{d}}{\mathrm{d}t} \widetilde{E}(u, r).$$

First order SAV scheme

Gradient flow:

$$u_t = G\mu,$$

$$\mu = Lu + \frac{r}{\sqrt{E_1(u)}}N(u),$$

$$r_t = \frac{1}{2\sqrt{E_1(u)}}\int N(u)u_t dx.$$

First order SAV (SAV1) scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} = G\mu_{n+1},\tag{22a}$$

$$\mu_{n+1} = Lu_{n+1} + \frac{r_{n+1}}{\sqrt{E_1(u_n)}} N(u_n), \tag{22b}$$

$$\frac{r_{n+1} - r_n}{\Delta t} = \frac{1}{2\sqrt{E_1(u_n)}} \int N(u_n) \frac{u_{n+1} - u_n}{\Delta t} \, \mathrm{d}x.$$
 (22c)

SAV1 scheme: Unique solvability

For any $\Delta t > 0$, the SAV1 scheme admits a unique solution.

SAV1 scheme (denote
$$b_n = \frac{N(u_n)}{\sqrt{E_1(u_n)}}$$
):

$$\frac{u_{n+1} - u_n}{\Delta t} = G\mu_{n+1},$$

$$\mu_{n+1} = Lu_{n+1} + r_{n+1}b_n,$$

$$r_{n+1} - r_n = \frac{1}{2}(b_n, u_{n+1} - u_n).$$

Proof. Eliminate μ_{n+1} and r_{n+1} :

$$\frac{u_{n+1} - u_n}{\Delta t} = GLu_{n+1} + r_nGb_n + \frac{1}{2}(b_n, u_{n+1})Gb_n - \frac{1}{2}(b_n, u_n)Gb_n,$$

or equivalently,

$$u_{n+1} - \Delta t G L u_{n+1} - \frac{\Delta t}{2} (b_n, u_{n+1}) G b_n = u_n + \Delta t r_n G b_n - \frac{\Delta t}{2} (b_n, u_n) G b_n =: c_n.$$

SAV1 scheme: Unique solvability (continued)

$$u_{n+1} - \Delta t G L u_{n+1} - \frac{\Delta t}{2} (b_n, u_{n+1}) G b_n = c_n.$$

Act $(I - \Delta tGL)^{-1}$ on both sides:

$$u_{n+1} - \frac{\Delta t}{2}(b_n, u_{n+1})(I - \Delta tGL)^{-1}Gb_n = (I - \Delta tGL)^{-1}c_n.$$

Take the inner product with b_n :

$$(b_n, u_{n+1}) - \frac{\Delta t}{2}(b_n, u_{n+1})(b_n, (I - \Delta tGL)^{-1}Gb_n) = (b_n, (I - \Delta tGL)^{-1}c_n),$$

or equivalently,

$$\left[1 - \frac{\Delta t}{2}(b_n, (I - \Delta tGL)^{-1}Gb_n)\right](b_n, u_{n+1}) = (b_n, (I - \Delta tGL)^{-1}c_n).$$

Here, $(I - \Delta tGL)^{-1}G = (G^{-1} - \Delta tL)^{-1}$ is negative definite.

SAV1 scheme: Algorithm

Algorithm: SAV1 scheme

Given u_n, r_n , to compute u_{n+1}, r_{n+1} as follows:

- Calculate b_n , (b_n, u_n) , Gb_n , and c_n ;
- Solve $(I \Delta tGL)\theta_1 = Gb_n$ and $(I \Delta tGL)\theta_2 = c_n$ to get θ_1, θ_2 ;
- **6** Calculate (b_n, u_{n+1}) by $(b_n, u_{n+1}) = \frac{(b_n, \theta_2)}{1 \frac{\Delta t}{2}(b_n, \theta_1)};$
- Calculate u_{n+1} by $u_{n+1} = \frac{\Delta t}{2}(b_n, u_{n+1})\theta_1 + \theta_2$;
- **S** Calculate r_{n+1} by $r_{n+1} = r_n + \frac{1}{2}(b_n, u_{n+1}) \frac{1}{2}(b_n, u_n)$.

SAV1 scheme: Energy stability

For any $\Delta t > 0$, we have $E_{n+1} - E_n \leq \Delta t(\mu_{n+1}, G\mu_{n+1}) \leq 0$, where $E_n = \widetilde{E}(u_n, r_n) = \frac{1}{2}(u_n, Lu_n) + r_n^2$.

Proof. Take the inner product of (22a) with $\Delta t \mu_{n+1}$:

$$(\mu_{n+1}, u_{n+1} - u_n) = \Delta t(\mu_{n+1}, G\mu_{n+1}).$$

Take the inner product of (22b) with $u_{n+1} - u_n$:

$$(\mu_{n+1}, u_{n+1} - u_n) = (Lu_{n+1}, u_{n+1} - u_n) + r_{n+1}(b_n, u_{n+1} - u_n).$$

Multiply (22c) by $2r_{n+1}$:

$$2r_{n+1}(r_{n+1}-r_n)=r_{n+1}(b_n,u_{n+1}-u_n).$$

Then, we obtain

$$E_{n+1}-E_n+\frac{1}{2}(L(u_{n+1}-u_n),u_{n+1}-u_n)+(r_{n+1}-r_n)^2=\Delta t(\mu_{n+1},G\mu_{n+1}).$$

Second order SAV scheme: SAV-CN

$$u_t = G\mu,$$

$$\mu = Lu + \frac{r}{\sqrt{E_1(u)}}N(u),$$

$$r_t = \frac{1}{2\sqrt{E_1(u)}}\int N(u)u_t dx.$$

Crank-Nicolson-type SAV (SAV-CN) scheme:

$$\frac{u_{n+1} - u_n}{\Delta t} = G\mu_{n+\frac{1}{2}},$$

$$\mu_{n+\frac{1}{2}} = \frac{1}{2}L(u_{n+1} + u_n) + \frac{r_{n+1} + r_n}{2\sqrt{E_1(\bar{u}_{n+\frac{1}{2}})}}N(\bar{u}_{n+\frac{1}{2}}),$$
(23a)

$$\frac{r_{n+1} - r_n}{\Delta t} = \frac{1}{2\sqrt{E_1(\bar{u}_{n+\frac{1}{2}})}} \int N(\bar{u}_{n+\frac{1}{2}}) \frac{u_{n+1} - u_n}{\Delta t} \, \mathrm{d}x, \tag{23c}$$

where $\bar{u}_{n+\frac{1}{2}}$ is an approximation of $u(t_{n+\frac{1}{2}})$ with error $\mathcal{O}(\Delta t^2)$.

Second order SAV scheme: SAV-CN (continued)

Unique solvability

For any $\Delta t > 0$, the SAV-CN scheme admits a unique solution.

Energy stability

For any $\Delta t > 0$, the SAV-CN scheme is energy stable:

$$E_{n+1} - E_n = \Delta t(\mu_{n+1}, G\mu_{n+1}) \le 0,$$

where
$$E_n = \widetilde{E}(u_n, q_n) = \frac{1}{2}(u_n, Lu_n) + r_n^2$$
.

$$u_t = G\mu,$$

$$\mu = Lu + \frac{r}{\sqrt{E_1(u)}}N(u),$$

$$r_t = \frac{1}{2\sqrt{E_1(u)}}\int N(u)u_t dx.$$

Second order BDF-type SAV (SAV-BDF2) scheme:

$$\frac{3u_{n+1} - 4u_n + u_{n-1}}{2\Delta t} = G\mu_{n+1}, \tag{24a}$$

$$\mu_{n+1} = Lu_{n+1} + \frac{r_{n+1}}{\sqrt{E_1(\bar{u}_{n+1})}} N(\bar{u}_{n+1}), \tag{24b}$$

$$\frac{3r_{n+1} - 4r_n + r_{n-1}}{2\Delta t} = \frac{1}{2\sqrt{E_1(\bar{u}_{n+1})}} \int N(\bar{u}_{n+1}) \frac{3u_{n+1} - 4u_n + u_{n-1}}{2\Delta t} dx, \tag{24c}$$

where \bar{u}_{n+1} is an approximation of $u(t_{n+1})$ with error $\mathcal{O}(\Delta t^2)$.

Second order SAV scheme: SAV-BDF2 (continued)

Unique solvability

For any $\Delta t > 0$, the SAV-BDF2 scheme admits a unique solution.

Energy stability

For any $\Delta t > 0$, the SAV-BDF2 scheme is energy stable:

$$E_{n+1} - E_n \le \Delta t(\mu_{n+1}, G\mu_{n+1}) \le 0,$$

where

$$E_n = \frac{1}{4} ((u_n, Lu_n) + (2u_n - u_{n-1}, L(2u_n - u_{n-1}))) + \frac{1}{2} (r_n^2 + (2r_n - r_{n-1})^2).$$

References for SAV schemes:

- Shen-Xu-Yang, J. Comput. Phys., 2017.
- Shen-Xu-Yang, *arXiv:1710.01331v1*, 2017.

Example 1. Fractional Cahn-Hilliard equation

Consider the fractional Cahn-Hilliard equation

$$u_t = -(-\Delta)^{\alpha}(-\Delta u + \frac{1}{s^2}(u^3 - u)), \quad 0 \le \alpha \le 1,$$
 (25)

which is the $H^{-\alpha}$ gradient flow of the energy

$$E(u) = \int \left(\frac{1}{2}|\nabla u|^2 + \frac{1}{4\varepsilon^2}(u^2 - 1)^2\right) dx.$$
 (26)

We write the energy (26) in the form (8) by specifying

$$G = -(-\Delta)^{\alpha}, \quad L = -\Delta + \frac{S}{\varepsilon^2}, \quad E_1(u) = \frac{1}{4\varepsilon^2} \int (u^2 - 1 - S)^2 dx,$$

where S > 0 is a constant. Then, we have

$$N(u) = \frac{\delta E_1}{\delta u} = \frac{1}{\varepsilon^2} u(u^2 - 1 - S).$$

Example 2. No-slope-selection epitaxial growth

Consider the L^2 gradient flow of the energy

$$E(u) = \int \left(-\frac{1}{2} \ln(1 + |\nabla u|^2) + \frac{\varepsilon^2}{2} |\Delta u|^2 \right) dx.$$
 (27)

- IEQ method cannot be used.
- $\forall \alpha_0 > 0, \exists C_0 > 0 \text{ s.t. } \forall \alpha \geq \alpha_0, \text{ it holds}$

$$\int \left(-\frac{1}{2}\ln(1+|\nabla u|^2)+\frac{\alpha}{2}|\Delta u|^2\right)\mathrm{d}x\geq -C_0.$$

Choosing $\alpha \in (\alpha_0, \varepsilon^2)$, we write the energy (27) in the form (8) by specifying G = -I, $L = (\varepsilon^2 - \alpha)\Delta^2$, and

$$E_1(u) = \int \left(-\frac{1}{2} \ln(1 + |\nabla u|^2) + \frac{\alpha}{2} |\Delta u|^2 \right) dx.$$

- Classic implicit-explicit methods
 - Fully implicit schemes
 - Convex splitting schemes
 - Stabilization schemes
- 2 Energy quadratization methods
 - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- 3 Exponential time differencing (ETD) methods
 - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

Outline

- - Fully implicit schemes
 - Convex splitting schemes
 - Stabilization schemes
- - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- Exponential time differencing (ETD) methods
 - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

Consider the PDE for a scalar function $u: \overline{\Omega} \times [0, \infty) \to \mathbb{R}$ as

$$u_t = \mathcal{L}u + \mathcal{N}(u), \tag{28}$$

where

- \bullet L is a linear, self-adjoint, and negative definite operator;
- \bullet $\mathcal N$ denotes a generic nonlinear term.

Discretizing the PDE (28) in spatial variables (for instance, by spectral or finite difference approximations) often leads to a system of ODEs:

$$u_t + Lu = N(u). (29)$$

Note that *L* is symmetric, so could be diagonalized.

A single ODE: Exponential integration

The model ODE is

$$u' + cu = F(u). \tag{30}$$

Multiply (30) by the integrating factor e^{ct} :

$$(e^{ct}u)' = e^{ct}F(u).$$

Integrate the above from t_n to $t_{n+1} = t_n + \Delta t$:

$$e^{ct_{n+1}}u(t_{n+1}) = e^{ct_n}u(t_n) + \int_{t_n}^{t_{n+1}} e^{ct}F(u(t)) dt$$

= $e^{ct_n}u(t_n) + e^{ct_n}\int_0^{\Delta t} e^{cs}F(u(t_n+s)) ds.$

Multiply $e^{-ct_{n+1}}$ on both sides:

$$u(t_{n+1}) = e^{-c\Delta t}u(t_n) + e^{-c\Delta t} \int_0^{\Delta t} e^{cs} F(u(t_n + s)) ds.$$
 (31)

First order ETD scheme

$$u(t_{n+1}) = e^{-c\Delta t}u(t_n) + e^{-c\Delta t} \int_0^{\Delta t} e^{cs} F(u(t_n + s)) ds.$$
 (31)

This formula is exact.

The essence of the ETD methods is to approximate the integral.

First order ETD scheme

$$u(t_{n+1}) = e^{-c\Delta t}u(t_n) + e^{-c\Delta t} \int_0^{\Delta t} e^{cs} F(u(t_n + s)) ds.$$
 (31)

This formula is exact.

The essence of the ETD methods is to approximate the integral.

We denote by u_n the approximation to $u(t_n)$ and write $F_n = F(u_n)$.

First order ETD (ETD1) scheme

Using the first order approximation of F, that is, assuming that F is constant, $F = F_n + \mathcal{O}(\Delta t)$, in $[t_n, t_{n+1}]$, we obtain the ETD1 scheme

$$u_{n+1} = e^{-c\Delta t} u_n + \Delta t \phi_0(c\Delta t) F_n,$$

where
$$\phi_0(a) = \frac{1 - e^{-a}}{a}$$
.

Remark. In the limit $c \to 0$,

the ETD1 scheme
$$\longrightarrow u_{n+1} = u_n + \Delta t F_n$$
.

Second order ETD multistep scheme

$$u(t_{n+1}) = e^{-c\Delta t} u(t_n) + e^{-c\Delta t} \int_0^{\Delta t} e^{cs} F(u(t_n + s)) ds.$$
 (31)

Second order ETD multistep (ETDMs2) scheme

Assuming that F is linear, $F = F_n + \frac{F_n - F_{n-1}}{\Delta t}(t - t_n) + \mathcal{O}(\Delta t^2)$, we obtain the ETDMs2 scheme

$$u_{n+1} = e^{-c\Delta t} u_n + \frac{(1 - c\Delta t)e^{-c\Delta t} - 1 + 2c\Delta t}{c^2 \Delta t} F_n + \frac{-e^{-c\Delta t} + 1 - c\Delta t}{c^2 \Delta t} F_{n-1}.$$

Remark. In the limit $c \to 0$,

the ETDMs2 scheme
$$\longrightarrow u_{n+1} = u_n + \Delta t \left(\frac{3}{2} F_n - \frac{1}{2} F_{n-1} \right)$$
.

Second order ETD Runge-Kutta scheme

$$u(t_{n+1}) = e^{-c\Delta t}u(t_n) + e^{-c\Delta t} \int_0^{\Delta t} e^{cs} F(u(t_n + s)) ds.$$
 (31)

Second order ETD Runge-Kutta (ETDRK2) scheme

First, use the ETD1 scheme to generate

$$\tilde{u}_{n+1} = e^{-c\Delta t}u_n + \frac{1 - e^{-c\Delta t}}{c}F_n.$$

Assuming that F is linear, $F = F_n + \frac{F(\tilde{u}_{n+1}) - F_n}{\Delta t}(t - t_n) + \mathcal{O}(\Delta t^2)$, we obtain the ETDRK2 scheme

$$u_{n+1} = \tilde{u}_{n+1} + \frac{e^{-c\Delta t} - 1 + c\Delta t}{c^2 \Delta t} (F(\tilde{u}_{n+1}) - F_n).$$

A system of ODEs: Exponential integration

The model system of ODEs:

$$u_t + Lu = N(u). (29)$$

Pre-multiply (29) by the integrating factor e^{Lt} :

$$(e^{\mathbf{L}t}u)' = e^{\mathbf{L}t}N(u).$$

Integrate the above from t_n to $t_{n+1} = t_n + \Delta t$:

$$e^{Lt_{n+1}}u(t_{n+1}) = e^{Lt_n}u(t_n) + \int_{t_n}^{t_{n+1}} e^{Lt}N(u(t)) dt$$
$$= e^{Lt_n}u(t_n) + e^{Lt_n}\int_{0}^{\Delta t} e^{Ls}N(u(t_n+s)) ds.$$

Pre-multiply $e^{-Lt_{n+1}}$ on both sides:

$$u(t_{n+1}) = e^{-L\Delta t}u(t_n) + e^{-L\Delta t} \int_0^{\Delta t} e^{Ls} N(u(t_n+s)) ds.$$
 (32)

First order ETD scheme

$$u(t_{n+1}) = e^{-L\Delta t} u(t_n) + \int_0^{\Delta t} e^{-L(\Delta t - s)} N(u(t_n + s)) ds.$$
 (32)

The essence of the ETD methods is to approximate the integral.

We denote by u_n the approximation of $u(t_n)$.

- approximate $N(u(t_n + s)) \approx N(u(t_n))$ in $s \in [0, \Delta t]$;
- calculate the integral exactly.

ETD1 scheme

$$u_{n+1} = e^{-L\Delta t}u_n + \Delta t \phi_0(L\Delta t)N(u_n),$$

where

$$\phi_0(\boldsymbol{L}\Delta t) = \int_0^{\Delta t} e^{-\boldsymbol{L}(\Delta t - s)} ds = (\boldsymbol{L}\Delta t)^{-1} (\boldsymbol{I} - e^{-\boldsymbol{L}\Delta t}).$$

First order ETD scheme (continued)

ETD1 scheme

$$u_{n+1} = e^{-L\Delta t}u_n + \Delta t(L\Delta t)^{-1}(I - e^{-L\Delta t})N(u_n).$$

Act $e^{L\Delta t}$ on both sides of ETD1:

$$e^{\mathbf{L}\Delta t}u_{n+1}=u_n+\Delta t(\mathbf{L}\Delta t)^{-1}(e^{\mathbf{L}\Delta t}-\mathbf{I})N(u_n).$$

If we approximate $e^{L\Delta t} \approx I + L\Delta t$, then we obtain

$$(\mathbf{I} + \mathbf{L}\Delta t)u_{n+1} = u_n + \Delta t \mathbf{N}(u_n),$$

that is, the first order semi-implicit scheme of (29):

$$\frac{u_{n+1}-u_n}{\Delta t}+Lu_{n+1}=N(u_n).$$

Second order ETD multistep scheme

$$u(t_{n+1}) = e^{-L\Delta t}u(t_n) + \int_0^{\Delta t} e^{-L(\Delta t - s)} N(u(t_n + s)) ds.$$
 (32)

We denote by u_n the approximation of $u(t_n)$.

approximate

$$\frac{N(u(t_n+s))}{N(u(t_n+s))} \approx \left(1+\frac{s}{\Delta t}\right)N(u(t_n))-\frac{s}{\Delta t}N(u(t_{n-1})),$$

 $s \in [-\Delta t, \Delta t];$

• calculate the integral exactly.

ETDMs2 scheme

$$u_{n+1} = e^{-L\Delta t} u_n + \Delta t [(\phi_0 + \phi_1)(L\Delta t)N(u_n) - \phi_1(L\Delta t)N(u_{n-1})]$$

= $e^{-L\Delta t} u_n + \Delta t \{\phi_0(L\Delta t)N(u_n) + \phi_1(L\Delta t)[N(u_n) - N(u_{n-1})]\}$

where

$$\phi_1(\mathbf{L}\Delta t) = \int_0^{\Delta t} \frac{s}{\Delta t} e^{-\mathbf{L}(\Delta t - s)} ds = (\mathbf{L}\Delta t)^{-2} (\mathbf{L}\Delta t - \mathbf{I} + e^{-\mathbf{L}\Delta t}).$$

Second order ETD Runge-Kutta scheme

$$u(t_{n+1}) = e^{-L\Delta t}u(t_n) + \int_0^{\Delta t} e^{-L(\Delta t - s)} N(u(t_n + s)) ds.$$
 (32)

We denote by u_n the approximation of $u(t_n)$.

- approximate $N(u(t_n+s)) \approx \left(1-\frac{s}{\Delta t}\right)N(u(t_n))+\frac{s}{\Delta t}N(u(t_{n+1})), s \in [0, \Delta t],$ where $u(t_{n+1})$ is approximated by the ETD1 method;
- calculate the integral exactly.

ETDRK2 scheme

$$\begin{split} \tilde{\boldsymbol{u}}_{n+1} &= \mathrm{e}^{-\boldsymbol{L}\Delta t}\boldsymbol{u}_n + \Delta t \phi_0(\boldsymbol{L}\Delta t)\boldsymbol{N}(\boldsymbol{u}_n), \\ \boldsymbol{u}_{n+1} &= \mathrm{e}^{-\boldsymbol{L}\Delta t}\boldsymbol{u}_n + \Delta t [(\phi_0 - \phi_1)(\boldsymbol{L}\Delta t)\boldsymbol{N}(\boldsymbol{u}_n) + \phi_1(\boldsymbol{L}\Delta t)\boldsymbol{N}(\tilde{\boldsymbol{u}}_{n+1})] \\ &= \mathrm{e}^{-\boldsymbol{L}\Delta t}\boldsymbol{u}_n + \Delta t \{\phi_0(\boldsymbol{L}\Delta t)\boldsymbol{N}(\boldsymbol{u}_n) + \phi_1(\boldsymbol{L}\Delta t)[\boldsymbol{N}(\tilde{\boldsymbol{u}}_{n+1}) - \boldsymbol{N}(\boldsymbol{u}_n)]\} \end{split}$$

- - Fully implicit schemes
 - Convex splitting schemes
 - Stabilization schemes
- - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- Exponential time differencing (ETD) methods
 - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

Allen-Cahn equation

Initial-boundary-value problem of the Allen-Cahn equation:

$$u_t - \varepsilon^2 u_{xx} + u^3 - u = 0, \quad x \in (0, X), \ t \in (0, T],$$

 $u(\cdot, t)$ is X-periodic, $t \in [0, T],$
 $u(x, 0) = u_0(x), \quad x \in [0, X].$

Energy functional:

$$E(u) = \int_{(0,X)} \left(\frac{\varepsilon^2}{2} u_x^2 + \frac{1}{4} (u^2 - 1)^2 \right) dx.$$

We consider

- finite difference method for spatial discretization;
- ETD1 and ETDRK2 methods for temporal integration;
- energy stability for the fully discrete ETD1 scheme.

We use the *central finite difference* to approximate the Laplacian.

- $h = X/N_r$: uniform mesh size;
- $\{x_i = jh : 0 \le j \le N_x\}$: nodes on [0, X];
- D_h : the discrete matrix of the Laplacian operator.

Under the periodic boundary conditions, the matrix D_h is given by

$$D_h = rac{1}{h^2} egin{pmatrix} -2 & 1 & & & 1 \ 1 & -2 & 1 & & \ & \ddots & \ddots & \ddots & \ & & 1 & -2 & 1 \ 1 & & & 1 & -2 \end{pmatrix} \in \mathbb{R}^{N_x imes N_x}.$$

The discrete matrix D_h is symmetric and negative semi-definite.

Exponential time differencing (ETD) methods

The space-discrete scheme: find $v:[0,T]\to\mathbb{R}^{N_x}$ such that

$$\begin{cases} \frac{\mathrm{d}v}{\mathrm{d}t} = \varepsilon^2 D_h v + v - v^{.3}, & t \in (0, T], \\ v(0) = v_0. \end{cases}$$

Introduce a stabilizing parameter S > 0 and define

$$L_h := -\varepsilon^2 D_h + SI, \qquad f(v) := Sv + v - v^{-3}.$$

Then, we obtain

$$\frac{\mathrm{d}v}{\mathrm{d}t} + L_h v = f(v),$$

whose solution satisfies

$$v(t + \Delta t) = e^{-L_h \Delta t} v(t) + \int_0^{\Delta t} e^{-L_h (\Delta t - s)} f(v(t + s)) ds.$$

We know L_h is symmetric and positive definite.

ETD methods for the temporal integration

Setting

- $\Delta t = T/N_t$: uniform time step;
- $t_n = n\Delta t$: nodes in the time interval [0, T].

At the time level $t = t_n$, we have

$$v(t_{n+1}) = e^{-L_h \Delta t} v(t_n) + \int_0^{\Delta t} e^{-L_h (\Delta t - s)} f(v(t_n + s)) ds.$$
 (33)

- approximate $f(v(t_n + s))$ by $f(v(t_n))$ in $s \in [0, \Delta t]$,
- calculate the integral exactly.

We obtain the first order ETD scheme:

$$v^{n+1} = e^{-L_h \Delta t} v^n + \int_0^{\Delta t} e^{-L_h (\Delta t - s)} f(v^n) ds$$

$$= e^{-L_h \Delta t} v^n + \Delta t (L_h \Delta t)^{-1} (I - e^{-L_h \Delta t}) f(v^n).$$
(ETD1)

At the time level $t = t_n$:

$$v(t_{n+1}) = e^{-L_h \Delta t} v(t_n) + \int_0^{\Delta t} e^{-L_h (\Delta t - s)} f(v(t_n + s)) ds.$$
 (33)

• approximate $f(v(t_n + s))$ by a linear interpolation based on $f(v(t_n))$ and $f(v(t_{n+1}))$,

We obtain the *second order ETD Runge-Kutta scheme*:

$$\begin{cases} \widetilde{v}^{n+1} = e^{-L_h \Delta t} v^n + \int_0^{\Delta t} e^{-L_h (\Delta t - s)} f(v^n) \, ds, \\ v^{n+1} = e^{-L_h \Delta t} v^n + \int_0^{\Delta t} e^{-L_h (\Delta t - s)} \left[\left(1 - \frac{s}{\Delta t} \right) f(v^n) + \frac{s}{\Delta t} f(\widetilde{v}^{n+1}) \right] ds. \end{cases}$$
(ETDRK2)

Properties of matrix functions

Lemma: Properties of matrix functions

Given a symmetric matrix $M \in \mathbb{R}^{d \times d}$, let ϕ be defined on the spectrum of M, i.e., the values $\{\phi(\lambda_i): 1 \leq i \leq d\}$ exist, where $\{\lambda_i\}_{i=1}^d$ are the eigenvalues of M. Then

- \bullet $\phi(M)$ commutes with M;
- $\phi(M^T) = \phi(M)^T$;
- **3** the eigenvalues of $\phi(M)$ are $\phi(\lambda_i)$, $1 \le i \le d$;
- $\phi(P^{-1}MP) = P^{-1}\phi(M)P$ for any nonsingular $P \in \mathbb{R}^{d \times d}$.

Example

If $\phi(s) > 0$ for any $s \in \mathbb{R}$, then for any symmetric matrix $M \in \mathbb{R}^{d \times d}$. the matrix $\phi(M)$ is always symmetric and positive definite.

Exponential time differencing (ETD) methods

Implementations of matrix exponentials

Letting

$$\phi_{-1}(a) = e^{-a}, \quad \phi_0(a) = \frac{1 - e^{-a}}{a}, \quad \phi_1(a) = \frac{e^{-a} - 1 + a}{a^2},$$

we could write the ETD1 scheme as

$$v^{n+1} = \phi_{-1}(L_h \Delta t) v^n + \Delta t \phi_0(L_h \Delta t) f(v^n),$$

and the ETDRK2 scheme as

$$\begin{cases} \widetilde{v}^{n+1} = \phi_{-1}(L_h \Delta t) v^n + \Delta t \phi_0(L_h \Delta t) f(v^n), \\ v^{n+1} = \phi_{-1}(L_h \Delta t) v^n + \Delta t (\phi_0 - \phi_1) (L_h \Delta t) f(v^n) + \Delta t \phi_1(L_h \Delta t) f(\widetilde{v}^{n+1}). \end{cases}$$

The actions of exponentials $\phi_{\gamma}(L_h \Delta t)$ can be implemented efficiently.

Exponential time differencing (ETD) methods

Implementations of matrix exponentials (continued)

The exponentials $\phi_{\gamma}(L_h \Delta t)$ can be implemented by FFT.

Since $L_h = -\varepsilon^2 D_h + SI$ is self-adjoint and positive definite, we have $L_h = P^{-1} \hat{L}_h P$, where

$$(\widehat{L}_h\widehat{f})_k=\lambda_k\widehat{f}_k,$$

where $\{\lambda_k\}$ are the eigenvalues of L_h , that is,

$$\lambda_k = \frac{4\varepsilon^2}{h^2} \sin^2 \frac{k\pi}{N_x} + S > 0.$$

Then, we have

$$\phi_{\gamma}(L_h \Delta t) = P^{-1} \phi_{\gamma}(\widehat{L}_h \Delta t) P, \quad (\phi_{\gamma}(\widehat{L}_h \Delta t) \hat{f})_k = \phi_{\gamma}(\lambda_k \Delta t) \hat{f}_k.$$

P and P^{-1} can be implemented by FFT and iFFT, respectively, so the computational complexity is $\mathcal{O}(N \log N)$ per time step.

Energy stability of the ETD1 scheme

Energy functional:

$$E(u) = \int_{\Omega} F(u) dx - \frac{\varepsilon^2}{2} (u, u_{xx}), \quad F(u) = \frac{1}{4} (u^2 - 1)^2.$$

Define the discretized energy E_h :

$$E_h(v) = \sum_{i=1}^{N_x} F(v_i) - \frac{\varepsilon^2}{2} v^T D_h v.$$
 (34)

Theorem: Energy stability of the ETD1 scheme

Assume that $K := ||F''||_{L^{\infty}}$ and $S \ge \frac{K}{2}$. For any $\Delta t > 0$, we have

$$E_h(v^{n+1}) \leq E_h(v^n).$$

$$E_h(v) = \sum_{i=1}^{N_x} F(v_i) - \frac{\varepsilon^2}{2} v^T D_h v, \qquad f(v) = Sv - F'(v), \quad L_h = S - \varepsilon^2 D_h.$$

Proof. **Step 1.** Direct calculations:

$$E_h(v^{n+1}) - E_h(v^n) = \sum_{i=1}^{N_x} [F(v_i^{n+1}) - F(v_i^n)] - \frac{\varepsilon^2}{2} [(v^{n+1})^T D_h v^{n+1} - (v^n)^T D_h v^n].$$

We have

$$F(v_i^{n+1}) - F(v_i^n) = F'(v_i^n)(v_i^{n+1} - v_i^n) + \frac{1}{2}F''(\xi)(v_i^{n+1} - v_i^n)^2,$$

then, since $S \ge \frac{1}{2}F''(\xi)$,

$$\sum_{i=1}^{N_x} [F(v_i^{n+1}) - F(v_i^n)] \le (v^{n+1} - v^n)^T F'(v^n) + S(v^{n+1} - v^n)^T (v^{n+1} - v^n)$$

$$= S(v^{n+1} - v^n)^T v^{n+1} - (v^{n+1} - v^n)^T f(v^n).$$

$$E_h(v^{n+1}) - E_h(v^n) = \sum_{i=1}^{N_x} [F(v_i^{n+1}) - F(v_i^n)] - \frac{\varepsilon^2}{2} [(v^{n+1})^T D_h v^{n+1} - (v^n)^T D_h v^n].$$

$$\sum_{i=1}^{N_x} [F(v_i^{n+1}) - F(v_i^n)] \le S(v^{n+1} - v^n)^T v^{n+1} - (v^{n+1} - v^n)^T f(v^n).$$

Direct calculations (using $2a(a-b) = a^2 - b^2 + (a-b)^2$):

$$-\frac{\varepsilon^{2}}{2}[(v^{n+1})^{T}D_{h}v^{n+1} - (v^{n})^{T}D_{h}v^{n}]$$

$$= -\varepsilon^{2}(v^{n+1} - v^{n})^{T}D_{h}v^{n+1} + \frac{\varepsilon^{2}}{2}(v^{n+1} - v^{n})^{T}D_{h}(v^{n+1} - v^{n})$$

$$< -\varepsilon^{2}(v^{n+1} - v^{n})^{T}D_{h}v^{n+1}$$

Then,

$$E_h(v^{n+1}) - E_h(v^n) \le (v^{n+1} - v^n)^T (L_h v^{n+1} - f(v^n)).$$

$$v^{n+1} = e^{-L_h \Delta t} v^n + L_h^{-1} (I - e^{-L_h \Delta t}) f(v^n).$$
 (ETD1)

$$E_h(v^{n+1}) - E_h(v^n) \le (v^{n+1} - v^n)^T (L_h v^{n+1} - f(v^n)).$$

Step 2. Solve $f(v^n)$ from (ETD1):

$$f(v^{n}) = (I - e^{-L_{h}\Delta t})^{-1}L_{h}(v^{n+1} - e^{-L_{h}\Delta t}v^{n})$$

$$= (I - e^{-L_{h}\Delta t})^{-1}L_{h}(v^{n+1} - v^{n} + (I - e^{-L_{h}\Delta t})v^{n})$$

$$= (I - e^{-L_{h}\Delta t})^{-1}L_{h}(v^{n+1} - v^{n}) + L_{h}v^{n},$$

and then,

$$L_h v^{n+1} - f(v^n) = L_h (v^{n+1} - v^n) - (I - e^{-L_h \Delta t})^{-1} L_h (v^{n+1} - v^n)$$

= $\Delta t^{-1} B_1 (v^{n+1} - v^n)$,

where $B_1 := L_h \Delta t - (I - e^{-L_h \Delta t})^{-1} L_h \Delta t$. Then, we obtain

$$E_h(v^{n+1}) - E_h(v^n) \le \Delta t^{-1} (v^{n+1} - v^n)^T B_1(v^{n+1} - v^n).$$

We have obtained

$$E_h(v^{n+1}) - E_h(v^n) \le \Delta t^{-1} (v^{n+1} - v^n)^T B_1(v^{n+1} - v^n),$$

where
$$B_1 = L_h \Delta t - (I - e^{-L_h \Delta t})^{-1} L_h \Delta t$$
.

Define a function

$$g_1(a) := a - \frac{a}{1 - e^{-a}}, \quad a \neq 0,$$

then $B_1 = g_1(L_h \Delta t)$. Since

- $g_1(a) < 0$ for any a > 0,
- $L_h \Delta t$ is symmetric and positive definite,

we know that B_1 is symmetric and negative definite. So,

$$E_h(v^{n+1}) - E_h(v^n) \le \Delta t^{-1} (v^{n+1} - v^n)^T B_1(v^{n+1} - v^n) \le 0.$$

Recall the condition for the energy stability:

Assume that
$$K := ||F''||_{L^{\infty}}$$
 and $S \ge \frac{K}{2}$.

Theoretically, we need to check whether K exists and is finite or not.

- Another topic on the *maximum principle preserving* schemes;
- For some special model, S could be a genetic constant independent on the solution, see the next example.

- - Fully implicit schemes
 - Convex splitting schemes
- - Invariant energy quadratization (IEQ) schemes
 - Scalar auxiliary variable (SAV) schemes
- Exponential time differencing (ETD) methods
 - General theory for ODE systems
 - Example 1. Allen-Cahn equation
 - Example 2. No-slope-selection epitaxial growth model

No-slope-selection epitaxial growth model

Initial-boundary-value problem:

$$\begin{split} u_t + \varepsilon^2 u_{xxxx} + \left(\frac{u_x}{1 + u_x^2}\right)_x &= 0, \quad (x, t) \in (0, 2\pi) \times (0, T], \\ u(\cdot, t) \text{ is } 2\pi\text{-periodic}, \quad t \in [0, T], \\ u(x, 0) &= u_0(x), \quad x \in [0, 2\pi]. \end{split}$$

Energy functional:

$$E(u) = \int_{(0.2\pi)} \left(\frac{\varepsilon^2}{2} u_{xx}^2 - \frac{1}{2} \ln(1 + u_x^2) \right) dx.$$

We consider

- pseudo-spectral method for spatial discretization;
- ETD1 and ETDMs2 methods for temporal integration;
- energy stability for the fully discrete ETD1 scheme.

Consider a splitting of the form $E(u) = E_c(u) - E_e(u)$ as

$$E(u) = \int \left(\frac{\frac{A}{2}u_x^2 + \frac{\varepsilon^2}{2}u_{xx}^2\right) dx - \int \left(\frac{\frac{A}{2}u_x^2 + \frac{1}{2}\ln(1 + u_x^2)\right) dx,$$

where A > 0 is expected to be as small as possible.

- The convexity of $E_c(u)$ is obvious when A > 0.
- The convexity of $E_e(u)$ comes from the convexity of

$$G(a) := \frac{A}{2}a^2 + \frac{1}{2}\ln(1+a^2), \quad a \in \mathbb{R}.$$

Existence of the linear convex splitting

The function G(a) is convex in \mathbb{R} if and only if $A \geq \frac{1}{8}$.

Exponential time differencing (ETD) methods

Linear convex splitting of the energy functional (continued)

Letting $A \ge \frac{1}{8}$ be the stabilizer.

Rewrite the model equation as the splitting form:

$$u_t + \varepsilon^2 u_{xxxx} - A u_{xx} = -\left(\frac{u_x}{1 + u_x^2}\right)_x - A u_{xx}.$$

Due to the periodic boundary condition, we have

$$\int u(x,t) \, \mathrm{d}x = \int u_0(x) \, \mathrm{d}x, \quad t \in (0,T].$$

Without loss of generality, we assume that the mean of u is zero.

Spatial discretization: Pseudo-spectral method

Use the *pseudo-spectral method* to approximate spatial derivatives.

- $h = 2\pi/N_x$: uniform mesh size;
- $\Omega_h = \{x_j = jh : 0 \le j \le N_x\}$: nodes on $[0, 2\pi]$;
- $\mathcal{M} = \{f : \Omega_h \to \mathbb{R}\}$: set of all grid functions;
- $\mathcal{M}_0 = \{ f \in \mathcal{M} : \sum_i f_i = 0 \};$
- D_h : the discrete differentiation operator;
- $\Delta_h = D_h^2$: the discrete Laplacian operator.

Recall that

$$\mathcal{F}[u_x](k) = ik\mathcal{F}[u](k)$$
, \mathcal{F} : Fourier transform.

Spatial discretization: Pseudo-spectral method (continued)

For $f \in \mathcal{M}_0$, define the discrete Fourier transform $\hat{f} = Pf$ by

$$\hat{f}_k = \frac{1}{N_x} \sum_{i=1}^{N_x} f_i e^{-ikx_i}, \quad -\frac{N_x}{2} + 1 \le k \le \frac{N_x}{2},$$

and f can be reconstructed via $f = P^{-1}\hat{f}$ given by

$$f_i = \sum_{k=-\frac{N_x}{2}+1}^{\frac{N_x}{2}} \hat{f}_k e^{ikx_i}, \quad 1 \le i \le N_x.$$

For the discrete version, we can define the operator D_h by

$$D_h v = P^{-1} \widehat{D}_h P v, \quad v \in \mathcal{M},$$

where P denotes the discrete Fourier transform, and

$$(\widehat{D}_h \widehat{v})_k = ik\widehat{v}_k, \quad \widehat{v} = Pv.$$

Spatial discretization: Pseudo-spectral method (continued)

Note that

•
$$\mathcal{M}_0 = \{ f \in \mathcal{M} : \hat{f}_0 = 0 \}.$$

•
$$D_h v = 0$$
 for $v \in \mathcal{M}$ with $v_i = 1$ $(1 \le i \le N_x)$.

In fact, for (i),

$$\hat{f}_0 = \frac{1}{N_x} \sum_{i=1}^{N_x} f_i.$$

For (ii), we have $\hat{v}_0 = 1$ and for $k \neq 0$,

$$\hat{v}_k = \frac{1}{N_x} \sum_{i=1}^{N_x} (e^{-ijh})^k = \frac{1}{N_x} \cdot \frac{e^{-ijh}(1 - (e^{-ijh})^{N_x})}{1 - e^{-ijh}} = 0.$$

So, $(\widehat{D}_h \widehat{v})_k = 0$ for any k, and then $D_h v = 0$.

Spatial discretization: Pseudo-spectral method (continued)

The space-discrete scheme: find $v:[0,T]\to\mathbb{R}^{N_x}$ such that

$$\begin{cases} \frac{\mathrm{d}v}{\mathrm{d}t} + \varepsilon^2 \Delta_h^2 v - A \Delta_h v = -D_h \left(\frac{D_h v}{1 + |D_h v|^2} \right) - A \Delta_h v, & t \in (0, T], \\ v(0) = v_0. \end{cases}$$

Define

$$L_h := \varepsilon^2 \Delta_h^2 - A \Delta_h, \qquad f(v) := D_h \left(\frac{D_h v}{1 + |D_h v|^2} \right) + A \Delta_h v.$$

Then, we obtain

$$\frac{\mathrm{d}v}{\mathrm{d}t} + L_h v = -f(v),$$

whose solution satisfies

$$v(t + \Delta t) = e^{-L_h \Delta t} v(t) - \int_0^{\Delta t} e^{-L_h (\Delta t - s)} f(v(t + s)) ds.$$

We know L_h is symmetric and positive definite since v is mean-zero.

ETD methods for the temporal integration

Setting

- $\Delta t = T/N_t$: uniform time step;
- $t_n = n\Delta t$: nodes in the time interval [0, T].

At the time level $t = t_n$, we have

$$v(t_{n+1}) = \mathrm{e}^{-L_h \Delta t} v(t_n) - \int_0^{\Delta t} \mathrm{e}^{-L_h (\Delta t - \tau)} f(v(t_n + s)) \, \mathrm{d}s.$$

We need to approximate the time integration.

At the time level $t = t_n$, we have

$$v(t_{n+1}) = \mathrm{e}^{-L_h \Delta t} v(t_n) - \int_0^{\Delta t} \mathrm{e}^{-L_h (\Delta t - s)} f(v(t_n + s)) \, \mathrm{d}s.$$

- approximating $f(v(t_n + s))$ by $f(v(t_n))$ in $s \in [0, \Delta t]$,
- calculating the integral exactly.

We obtain the first order ETD scheme:

$$u^{n+1} = e^{-L_h \Delta t} u^n - \int_0^{\Delta t} e^{-L_h (\Delta t - s)} f(u^n) ds$$

= $e^{-L_h \Delta t} u^n - L_h^{-1} (I - e^{-L_h \Delta t}) f(u^n)$. (ETD1)

Mean-zero conservation: $\sum_{i} u_{i}^{n+1} = \sum_{i} u_{i}^{n}$.

ETD1 scheme: $u^{n+1} = e^{-L_h \Delta t} u^n - L_h^{-1} (I - e^{-L_h \Delta t}) f(u^n)$.

Mean-zero conservation: $\sum_{i} u_i^{n+1} = \sum_{i} u_i^n$.

Proof. We obtain from (ETD1) that

$$u^{n+1} - u^n = -(I - e^{-L_h \Delta t})u^n - L_h^{-1}(I - e^{-L_h \Delta t})f(u^n)$$

= -(I - e^{-L_h \Delta t})(u^n + L_h^{-1}f(u^n)).

Denote $v \in \mathcal{M}$ with $v_i = 1$ $(1 \le i \le N_x)$, so $L_h v = 0$. Then,

$$\sum_{i=1}^{N_X} (u_i^{n+1} - u_i^n) = v^T (u^{n+1} - u^n) = -v^T (I - e^{-L_h \Delta t}) (u^n + L_h^{-1} f(u^n))$$
$$= -(u^n + L_h^{-1} f(u^n))^T (I - e^{-L_h \Delta t}) v.$$

Note that $I - e^{-L_h \Delta t} = L_h \Delta t - \frac{1}{2} (L_h \Delta t)^2 + \cdots$, so $(I - e^{-L_h \Delta t})v = 0$.

At the time level $t = t_n$, we have

$$v(t_{n+1}) = \mathrm{e}^{-L_h \Delta t} v(t_n) - \int_0^{\Delta t} \mathrm{e}^{-L_h (\Delta t - s)} f(v(t_n + s)) \, \mathrm{d}s.$$

• approximating $f(v(t_n + s))$ by a linear extrapolation based on $f(v(t_n))$ and $f(v(t_{n-1}))$.

We obtain the second order ETD multistep scheme:

$$u^{n+1} = e^{-L_h \Delta t} u^n - \int_0^{\Delta t} e^{-L_h (\Delta t - s)} \left[\left(1 + \frac{s}{\Delta t} \right) f(u^n) - \frac{s}{\Delta t} f(u^{n-1}) \right] ds.$$
(ETDMs2)

Mean-zero conservation: $\sum_i u_i^{n+1} = \sum_i u_i^n$.

Implementations of matrix exponentials

Letting

$$\phi_{-1}(a) = e^{-a}, \quad \phi_0(a) = \frac{1 - e^{-a}}{a}, \quad \phi_1(a) = \frac{e^{-a} - 1 + a}{a^2},$$

we could write the ETD1 scheme as

$$u^{n+1} = \phi_{-1}(L_h \Delta t) u^n - \Delta t \phi_0(L_h \Delta t) f(u^n),$$

and the ETDMs2 scheme as

$$u^{n+1} = \phi_{-1}(L_h\Delta t)u^n - \Delta t(\phi_0 + \phi_1)(L_h\Delta t)f(u^n) - \Delta t\phi_1(L_h\Delta t)f(u^{n-1}).$$

The actions of exponentials $\phi_{\gamma}(L_h \Delta t)$ can be implemented efficiently.

Implementations of matrix exponentials (continued)

The exponentials $\phi_{\gamma}(L_h \Delta t)$ can be implemented by FFT.

Since $L_h = \varepsilon^2 \Delta_h^2 - A \Delta_h$ is self-adjoint and positive definite, we have $L_h = P^{-1} \hat{L}_h P$, where

$$(\widehat{L}_h \widehat{f})_k = \lambda_k \widehat{f}_k, \quad \widehat{f} = Pf, f \in \mathcal{M}_0,$$

where $\{\lambda_k\}$ are the eigenvalues of L_h , that is,

$$\lambda_k = \varepsilon^2 k^4 + Ak^2 > 0, \quad k \neq 0.$$

Then, we have

$$\phi_{\gamma}(L_h \Delta t) = P^{-1} \phi_{\gamma}(\widehat{L}_h \Delta t) P, \quad (\phi_{\gamma}(\widehat{L}_h \Delta t) \hat{f})_k = \phi_{\gamma}(\lambda_k \Delta t) \hat{f}_k.$$

P and P^{-1} can be implemented by FFT and iFFT, respectively, so the computational complexity is $\mathcal{O}(N \log N)$ per time step.

Energy stability of the ETD1 scheme

We always assume that $A \ge \frac{1}{8}$.

The discrete energy functional is defined as

$$E_h(u) = \frac{\varepsilon^2}{2} ||\Delta_h u||_2^2 - \frac{1}{2} \sum_{i=1}^{N_x} \ln(1 + (D_h u)_i^2).$$

ETD1 scheme: $u^{n+1} = e^{-L_h \Delta t} u^n - L_h^{-1} (I - e^{-L_h \Delta t}) f(u^n)$.

Theorem: Energy stability of the ETD1 scheme

For any $\Delta t > 0$, we have $E_h(u^{n+1}) \leq E_h(u^n)$.

Basic idea of the proof (similar to Allen-Cahn equation):

- $f(u^n) = -(I e^{-L_h \Delta t})^{-1} L_h(u^{n+1} u^n) L_h u^n$;
- $E_h(u^{n+1}) E_h(u^n) \le (u^{n+1} u^n)^T (L_h u^{n+1} + f(u^n))$ $= -(u^{n+1} u^n)^T ((I e^{-L_h \Delta t})^{-1} I) L_h(u^{n+1} u^n);$
- positive definiteness of $((I e^{-L_h \Delta t})^{-1} I)L_h$.

Exponential time differencing (ETD) methods

Energy stability of the ETD1 scheme (continued)

$$E_h(u) = \frac{\varepsilon^2}{2} \|\Delta_h u\|_2^2 - \frac{1}{2} \sum_{i=1}^{N_x} \ln(1 + (D_h u)_i^2).$$

Corollary: Uniform H^2 stability of the ETD1 scheme

For any $\Delta t > 0$, we have

$$\max_{1 \le n \le N_t} \|\Delta_h u^n\|_2 \le \frac{2}{\varepsilon} \sqrt{E_h(u^0) + C},$$

where the constant C depends only on ε .

Basic idea of the proof:

- $\ln(1+y) < \alpha y \ln \alpha + \alpha 1$ for any y > 0, $\alpha > 0$;
- discrete Poincaré inequality: $||D_h u^n||_2^2 \le C' ||\Delta_h u^n||_2^2$;
- $\frac{\varepsilon^2}{4} \|\Delta_h u^n\|_2^2 C \le E_h(u^n) \le E_h(u^{n-1}) \le \cdots \le E_h(u^0).$

References

General theory:

- Cox-Matthews, J. Comput. Phys., 2002.
- Hochbruck-Ostermann, SIAM J. Numer. Anal., 2005.
- Hochbruck-Ostermann, Acta Numer., 2010.

Application on phase field models:

- Ju-Zhang-Du, Comput. Mater. Sci., 2015.
- Ju-Zhang-Zhu-Du, J. Sci. Comput., 2015.
- Zhu-Ju-Zhao, J. Sci. Comput., 2016.
- Ju-Li-Qiao-Zhang, Math. Comp., 2018.
- Du-Ju-Li-Oiao, SINUM, 2019.