

N-channel Enhanced mode TO-220F MOSFET

Features

- High ruggedness
- Low R_{DS(ON)} (Typ 1.0Ω)@V_{GS}=10V
 Low Gate Charge (Typ 25nC)
- Improved dv/dt Capability
- 100% Avalanche Tested
- Application: Charger, LED

1. Gate 2. Drain 3. Source

General Description

This power MOSFET is produced with advanced technology of SAMWIN. This technology enable the power MOSFET to have better characteristics, including fast switching time, low on resistance, low gate charge and especially excellent avalanche characteristics.

Order Codes

Item	Sales Type	Marking	Package	Packaging
1	SW F 8N70A	SW8N70A	TO-220F	TUBE

Absolute maximum ratings

Symbol	Parameter		Value	Unit
V _{DSS}	Drain to source voltage		700	V
	Continuous drain current (@T _C =25°C)		8*	А
I _D	Continuous drain current (@T _C =100°C)		5.04*	А
I _{DM}	Drain current pulsed	(note 1)	32	А
V _{GS}	Gate to source voltage		±30	V
E _{AS}	Single pulsed avalanche energy	(note 2)	500	mJ
E _{AR}	Repetitive avalanche energy	(note 1)	76	mJ
dv/dt	Peak diode recovery dv/dt	(note 3)	5	V/ns
	Total power dissipation (@T _C =25°C)		39.8	W
P _D	Derating factor above 25°C		0.3	W/°C
T _{STG} , T _J	Maximum lead temperature for soldering		-55 ~ + 150	°C
T _L			300	°C

^{*.} Drain current is limited by junction temperature.

Thermal characteristics

	Symbol	Parameter	Value	Unit
	R_{thjc}	Thermal resistance, Junction to case	3.14	°C/W
ſ	R_{thja}	Thermal resistance, Junction to ambient	46.7	°C/W

Electrical characteristic ($T_C = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Off charac	teristics	•			•	
BV _{DSS}	Drain to source breakdown voltage	V _{GS} =0V, I _D =250uA	700			V
ΔBV _{DSS} / ΔT _J	Breakdown voltage temperature coefficient	I _D =250uA, referenced to 25°C		0.73		V/ºC
	Design to account localization account	V _{DS} =700V, V _{GS} =0V			1	uA
I _{DSS}	Drain to source leakage current	V _{DS} =560V, T _C =125°C			50	uA
	Gate to source leakage current, forward	V _{GS} =30V, V _{DS} =0V	0	7	100	nA
I_{GSS}	Gate to source leakage current, reverse	V _{GS} =-30V, V _{DS} =0V		9	-100	nA
On charact	teristics				•	
$V_{GS(TH)}$	Gate threshold voltage	V _{DS} =V _{GS} , I _D =250uA	2.1		4	V
R _{DS(ON)}	Drain to source on state resistance	V _{GS} =10V, I _D =4A		1.0	1.2	Ω
G_{fs}	Forward transconductance	V_{DS} =30V, I_{D} =4A		5.1		S
Dynamic c	haracteristics					
C _{iss}	Input capacitance			1660		
C _{oss}	Output capacitance	V_{GS} =0V, V_{DS} =25V, f=1MHz	1	134		pF
C_{rss}	Reverse transfer capacitance			9		
t _{d(on)}	Turn on delay time			14		
t _r	Rising time	V_{DS} =350V, I_{D} =8A , R_{G} =25 Ω ,		25		ns
$t_{d(off)}$	Turn off delay time	V _{GS} =10V (note 4,5)		61		
t _f	Fall time			30		
Q_g	Total gate charge	V _{DS} =560V, V _{GS} =10V, I _D =8A		25		nC
Q_{gs}	Gate-source charge	(note 4,5)		6		
Q_{gd}	Gate-drain charge			10		

Source to drain diode ratings characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _S	Continuous source current	Integral reverse p-n Junction diode in the MOSFET			8	Α
I _{SM}	Pulsed source current				32	Α
V _{SD}	Diode forward voltage drop.	I _S =8A, V _{GS} =0V			1.15	V
t _{rr}	Reverse recovery time	I _S =8A, V _{GS} =0V, dI _F /dt=100A/us		375		ns
Q _{rr}	Reverse recovery charge			4.45		uC

※. Notes

- 1. Repeatitive rating : pulse width limited by junction temperature.
- L = 15.6mH, I_{AS} =8A, V_{DD} =50 V, R_{G} =25 Ω , Starting T_{J} = 25 $^{\circ}$ C I_{SD} ≤ 8A, di/dt = 100A/us, V_{DD} ≤ BV_{DSS}, Staring T_{J} =25 $^{\circ}$ C Pulse Test : Pulse Width ≤ 300us, duty cycle ≤ 2% 2.
- 3.
- 4.
- 5. Essentially independent of operating temperature.

Fig. 1. On-state characteristics

Fig. 3. Gate charge characteristics

Fig 5. Breakdown Voltage Variation vs. Junction Temperature

Fig. 2. On-resistance variation vs. drain current and gate voltage

Fig. 4. On state current vs. diode forward voltage

Fig. 6. On resistance variation vs. junction temperature

Fig. 7. Maximum safe operating area

Fig. 8. Capacitance Characteristics

Fig. 9. Transient thermal response curve

Fig. 10. Gate charge test circuit & waveform

Fig. 11. Switching time test circuit & waveform

Fig. 12. Unclamped Inductive switching test circuit & waveform

Fig. 13. Peak diode recovery dv/dt test circuit & waveform

DISCLAIMER

- * All the data & curve in this document was tested in XI'AN SEMIPOWER TESTING & APPLICATION CENTER.
- * This product has passed the PCT,TC,HTRB,HTGB,HAST,PC and Solderdunk reliability testing.
- * Qualification standards can also be found on the Web site (http://www.semipower.com.cn)

* Suggestions for improvement are appreciated, Please send your suggestions to **samwin@samwinsemi.com**