Submission 1.2

Jonas Wechsler

August, September 2014

1 Arguments in English

$$P \Longrightarrow (F \Longrightarrow E) \qquad P_{1}$$

$$\neg E \qquad \qquad P_{2}$$

$$14 \quad \neg P \lor (F \Longrightarrow E) \qquad CDis(1)$$

$$\neg P \lor (\neg E \Longrightarrow \neg F) \qquad ContraPos(3)$$

$$\neg P \lor \neg F \qquad MP(2,4)$$

$$L \Longrightarrow Y \qquad \qquad P_{1}$$

$$\neg L \Longrightarrow (S \lor R) \qquad \qquad P_{2}$$

$$\neg (S \lor R) \Longrightarrow L \qquad ContraPos(2)$$

$$\neg (S \lor R) \Longrightarrow L \qquad ContraPos(2)$$

$$\neg (S \lor R) \Longrightarrow Y \qquad HS(1,3)$$

$$15 \quad \neg \neg (S \lor R) \lor Y \qquad CDis(3)$$

$$(S \lor R) \lor Y \qquad DN(4)$$

$$R \lor (Y \lor S) \qquad Commute \lor (5)$$

$$\neg R \Longrightarrow (Y \lor S) \qquad CDis(6)$$

$$\neg R \Longrightarrow (\neg Y \Longrightarrow S) \qquad CDis(7)$$

2 Claims

13 The statement $(A \wedge B) \wedge C$ is true if and only if A, B, and C are true. The statement $A \wedge (B \wedge C)$ is true if and only if B, C, and A are all true. Therefore, the statements $(A \wedge B) \wedge C$ and $A \wedge (B \wedge C)$ are equivalent.

The statement $(A \lor B) \lor C$ is false if and only if A, B, and C are false. The statement $A \lor (B \lor C)$ is false if and only if B, C, and A are all false. Therefore, the statements are equivalent.

 $(F \Longrightarrow T) \Longrightarrow F$ is False, while $F \Longrightarrow (T \Longrightarrow F)$ is True. Therefore, $A \Longrightarrow (B \Longrightarrow C)$ and $(A \Longrightarrow B) \Longrightarrow C$ are equivalent.

The statement $(A \iff B) \iff C$ is true if and only if A, B, and C are all equivalent. (All either true or false.) The statement $A \iff (B \iff C)$ is true if and only if A, B, and C are all equivalent. Therefore, the two statements are equivalent.

18 The argument $\frac{A}{C}$ will always be valid, because there is no case in which A and B will be true and C

will be false, since there is no case in which C is false.

- 19 $(A \lor B) \iff A \iff B$, since $A \iff B$ (A and B are logically equivalent) and $(A \lor A) \iff A$.
- 20 $A \vee B$ is contingent, because both A and B are contingent.

	A	$\mid B \mid$	$(\neg A \implies B)$	$A \lor B$	
	\overline{T}	T	T	\overline{T}	
21	T	F	T	$\mid T \mid$	
	F	T	T	$\mid T \mid$	
	F	F	F	F	
	A	B	$\neg (A \Longrightarrow \neg B) \mid A \wedge B$		
	\overline{T}	T	T	T	
	T	F	F	\parallel F	
	F	T	F	\parallel F	
	F	F	F	\parallel F	
	A	B	$\neg((A \implies B) \implies \neg(B \implies A))$		$A \iff B$
	\overline{T}	T	T		T
	T	F		F	
	F	T		F	
	F	F		$\mid T \mid$	

	A	$\mid B \mid$	$ \neg (\neg A \lor \neg B) $		$A \wedge B$
	T	T	T		T
22	T	F	F		F
	F	T	F		F
	F	F	F		F
	A	B	$\neg A \lor B$	A:	$\Longrightarrow B$
	T	T	T	T	
	T	F	F	F	
	F	T	T	$T \parallel$	
	F	F	T		T

 $F \mid F \mid \mid T \mid \mid T$ We have already Proven that \implies and \land are possible using this logical system, and $((A \implies B) \land (B \implies A))$ is equivalent to $A \iff B$, therefore \iff exists in this logical system.