DGL-V2 README: Sealed Vacuum Disc Structures

Dragon Link Global License V2 Companion Overview

Title: Sealed Vacuum Envelope Discs for Responsive Atmospheric Lift

Version: v1.0.0.0

Author: Justin Robert Marcotte – Echelon Dynamics Technologies

Date: June 10, 2025

DGL-V2 introduces a more advanced class of lift architecture: **fully sealed vacuum-based disc structures**. These are not traditional airships, and not pressure vessels in the conventional sense — they are **hydrogen-expanded**, **vacuum-formed envelopes**, shaped to hold lift without internal supports or active gas cycling.

This README expands on how a **flattened disc-shaped vessel** using a sealed envelope and internal vacuum modulation can achieve and maintain lift, stabilize its geometry, and serve as a platform for both scientific and propulsion research.

Core Concept

Create a sealed envelope, fill internal bladders with hydrogen, and remove as much atmosphere as possible from the envelope cavity.

The result: the hydrogen expands within, becoming lighter — and the entire structure lifts.

Unlike DGL-V1 (which assumes a vacuum-regulated envelope surrounding flexible hydrogen cells), DGL-V2 pushes the concept to its extreme:

- A completely sealed outer skin
- No active suction system once sealed

- Hydrogen becomes the internal shaping agent
- Lift is generated by the internal vacuum + hydrogen expansion

The structure becomes a **floating disc**, not from gas pressure — but from **the absence of** matter inside it.

Structural Breakdown

Component	Description
Outer Envelope	Lightweight but rigid or semi-flexible disc skin — sealed completely from external atmosphere
Hydrogen Bladders	Modular, sealed gas cells arranged internally — not stretched, but free-floating until expanded
Internal Vacuum Cavity	Air is removed before sealing, creating a negative pressure relative to external atmosphere
Shape Locks (optional)	Physical or material-based "stoppers" to prevent disc collapse under compression

Once sealed:

- Hydrogen expands into available vacuum space
- Envelope remains stable through equalized pressure and disc geometry
- No internal air remains only hydrogen and vacuum-separated surfaces

Lift Mechanics

This structure **does not rely on hot gas**, helium, or air venting. It lifts because:

- 1. The internal vacuum reduces the overall density of the craft
- 2. The hydrogen expands and displaces volume with minimal weight

3. The disc's flat shape maximizes surface area while reducing vertical drag

This configuration achieves **stable lift**, potentially with less total hydrogen mass than traditional blimps.

Lift becomes a product of:

- Envelope size
- Internal pressure delta
- Hydrogen volume vs. ambient density

Why It Matters

DGL-V2 represents a significant evolution from traditional lift vehicles:

Traditional Blimp	DGL-V2 Disc
Uses helium or hot hydrogen	Uses cold, sealed hydrogen only
Gas fills the envelope directly	Gas is contained and expanded inside a vacuum cavity
Envelope flexes or deforms	Envelope remains sealed and rigid (disc shape or torus)
Lift modulated by valves or heating	Lift is inherent to the structure and environment

This allows:

- Longer stationkeeping
- Improved aerodynamic resistance to wind shearing
- Stackable disc geometries
- Safer, simpler maintenance (no moving lift-control parts)

Manufacturing & Deployment Notes

- Discs may be built from high-strength polymers, composites, or aerogel-enhanced skins
- Hydrogen bladders should be non-permeable, sealed prior to deployment
- Vacuum must be created and sealed before atmospheric exposure
- Surface reinforcement (ribs, etched rings, honeycombs) may be used to prevent collapse
- Systems can be launched folded, then expanded in upper atmosphere

Use Cases

- High-altitude science platforms
- Hovering solar collectors
- Atmospheric buoy swarms
- Ultra-light airframe drones
- Staging nodes for orbital construction

These discs are not toys — they are potential **infrastructure-grade sky platforms**.

🔄 Integration with Other DGL Systems

- Can function as passive lifters in DGL-T1 modular trains
- May act as nodes in DGL-VX collapsible pressure networks

• Allow for saucer or ring-shaped UAP-style platforms (experimental, but now mechanically valid)

This License Protects The Truth

DGL-V2 ensures no individual or company can:

- Patent or lock down the method of using sealed hydrogen/vacuum discs for lift
- Prevent others from constructing atmospheric discs that use this structure
- Claim exclusive rights to build disc-shaped buoyant systems using sealed pressure differentials

This is open-source aerospace. It belongs to everyone.

Attribution Requirement

If you build or base your design on DGL-V2, include:

"Based on DGL-V2 Vacuum Disc Structure, developed by Echelon Dynamics Technologies."

Final Thought

This is not a UFO.

This is not science fiction.

This is vacuum buoyancy geometry — made modular, buildable, and public.

You may build this.

You may scale this.

You may shape the sky.

—

DGL-V2 README v1.0.0.0

© 2025 Echelon Dynamics Technologies

Horiste