1. Prove the followings.

- (1). Give an example of integral domain s.t. dose not satisfy the factor chain condition.
- (2). Let R be a integral domain satisfying factor chain condition. Prove R is a UFD iff any two elements in R have greatest common divisor.

Proof. i) Let $R=\overline{\mathbb{Z}}$ be the integral closure of \mathbb{Z} in C . In other words, R consists of every complex number that is the root of a nonzero monic polynomial in Z[x] (And yes, R is a ring, for an elegant proof of why integral closures are rings, check out Kaplansky's book Commutative Rings). Note that every element of $\mathbb{Q}\backslash\mathbb{Z}$ is not in R (eg there is no monic polynomial in $\mathbb{Z}[x]$ with $\frac{1}{2}$ as a root), thus R is not a field. So, pick any nonzero nonunit $r\in R$. Then, there exist $a_0,a_1,\cdots,a_{n-1}\in\mathbb{Z}$ (not all zero) such that

$$a_0 + a_1 r + a_2 r^2 + \dots + a_{n-1} r^{n-1} + r^n = 0$$

Note that \sqrt{r} is a complex number and in fact

$$a_0 + a_1(\sqrt{r})^2 + a_3(\sqrt{r})^6 + \dots + a_{n-1}(\sqrt{r})^{2n-2} + (\sqrt{r})^{2n} = 0$$

Therefore $\sqrt{r} \in R$ and we have $r = \sqrt{r}\sqrt{r}$. Thus no nonzero nonunit element of R is irreducible and in fact R is an antimatter domain.

ii) One direction is easy. 设 R 是 UFD, $a,b\in R$, $a=up_1^{e_1}\cdots p_t^{e_t}$, $b=vp_1^{f_1}\cdots p_t^{f_t}$, 其中 $u,v\in R^\times,p_i$ 为素元素, $e_i,f_i\geq 0 (\forall i)$, 则 $(a,b)=\prod_{i=1}^t p_i^{\min\{e_i,f_i\}}$.

反之, 设 p 为 R 的不可约元, $p \mid ab(a, b \in R)$. 若 (p, a) = p, 则 $p \mid a$. 否则 (由于 p 不可约) 可设 (p, a) = 1.

由此易见 (pb,ab)=b: 设 (pb,ab)=d,则 $b\mid d$. 设 d=ub, 只要证 $u\in R^{\times}$. 事实上, 由于 $d\mid pb$, 故存在 $e\in R$ 使得 pb=de, 即 pb=ube, 亦即 p=ue, 所以 $u\mid p$. 同样地, 存在 $f\in R$ 使得 ab=df, 即 ab=ubf, 亦即 a=uf, 所以 $u\mid a$. 于是 $u\mid (p,a)$. 而 (p,a)=1, 故 $u\in R^{\times}$. 由于 $p\mid ab$, 故 $p\mid (pb,ab)=b$.

这就证明了 p 为 R的素元素, 于是 R 是 UFD.

2. Prove the followings.

- (1). Let R be a UFD, S is a multiplicatively closed set of $R, 0 \notin S$. Prove that the ring of fractions $S^{-1}R$ is a UFD.
- (2). Give an example to show that the subring of a UFD may not a UFD.
- (3). Let R be a UFD, P is a prime ideal of R . Give an example to show that the quotient ring R/P may not a UFD.

Proof.

- 3. 提示: 设 $\frac{r}{s}, \frac{r'}{s'} \in S^{-1}R$, 由于 s, s' 都是 $S^{-1}R$ 的可逆元,故 (r, r') 是 $\frac{r}{s}, \frac{r'}{s'}$ 的最大公因子. 再应用习题 2 的结果.
- 4. 提示: $R = \mathbb{Z}[\sqrt{-5}]$ 不是 UFD, 它是其分式域 (当然是 UFD) 的子环.
- 5. 提示: $\mathbb{Z}[x]$ 是 UFD, $(x^2 + 5)$ 是其素理想,但 $\mathbb{Z}[x]/(x^2 + 5) \cong \mathbb{Z}[\sqrt{-5}]$ 不是 UFD.

П

3. (1). Prove that any principle ideal of $\mathbb{Z}[x]$ is not a maximal ideal. (2). Prove that all non-zero prime ideals in PID are maximal ideals.

Proof. i) For any principle ideal $(f(x)) \subseteq \mathbb{Z}[x]$, $R \neq (f(x), x) \supseteq (f(x))$ if f(0) = 0. If $f(0) \neq 0$, choose prime $p \nmid a_n$ where a_n is the leading coefficient of f. Then $(f(x), p) \neq R$.

Alternating proof. Let $p\in\mathbb{Z}$ be a prime such that $p\nmid \mathrm{LC}(f)$, where $\mathrm{LC}(f)$ stands for the leading coefficient of f. Moreover p is non-zero in $\mathbb{Z}[x]/(f)$, hence invertible in $\mathbb{Z}[x]/(f)$, so there are $g,h\in\mathbb{Z}[x]$ such that pg(x)+f(x)h(x)=1. It follows that $\bar{f}\bar{h}=\bar{1}$ in $(\mathbb{Z}/p\mathbb{Z})[x]$, and this is impossible since $\deg \bar{f}=\deg f\geq 1$.

- ii) Let I be a prime ideal of $\mathbb{Z}[x]$, then I=(a) where a is a prime and so a is irreducible. If there is $(a)\subsetneq (b)\neq R$, then a=mb for some m. Either m or b is invertible, and both of them is impossible. \square
- 4. Let K be a field. The formal power series $\sum_{i=0}^{\infty}a_ix^i$ $(a_i\in K)$ form a ring under the usual addition and multiplication, which is called the ring of formal power series in one variable over K , denoted by K[[x]].
 - (1). Let $f(x) = \sum_{i=0}^\infty a_i x^i \in K[[x]]$, prove that f(x) is invertible iff $a_0
 eq 0$.
 - (2). Prove K[[x]] is a PID.

Proof. i) Note that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, then $f(x) = a_0 + g(x)$ and $f(x)^{-1} = \frac{1}{a_0} \sum_{n=0}^{\infty} (-g(x)/a_0)^n \in K[[x]]$. If $a_0 = 0$, then for any $g \in K[[x]]$, gf(0) = 0 and so f is not invertible.

- ii) If $a_0=0$, then f is invertible and (f)=K[[x]]. Let $I\neq K[\![x]\!]$ be an ideal of K[[x]], then $f\in I$ yields that $a_0=0$. It follows that I=(x). Therefore, $I\in\{(x),K[\![x]\!],(0)\}$ and so $K[\![x]\!]$ is a PID.
- 5. Let R be a PID, $a,b,d\in R$, then (a,b)=(d) (as ideals) iff d is the greatest common divisor of a and b.

Proof. If (a,b)=(d), then $d \mid a$ and $d \mid b$. If $e \mid a$ and $e \mid b$, then $(e) \supseteq (a,b)=(d)$ and so $e \mid d$. Thus d is the gcd.

Conversely if d is the greatest common divisor of a and b, then $(a,b)\subseteq (d)$. If there exists $(a,b)=(e)\subsetneq (d)$, then $d\mid e$ and $a\mid e, a\mid e$, which is impossible. Therefore, (a,b)=(d).

6. Let D, R be PIDs, $R \subseteq D$. $a, b, d \in R$, d is the greatest common divisor of a and b in R. Prove that d is also the greatest common divisor of a and b in D.

Proof. Note that $d \mid a$ and $d \mid b$ hold in D. It follows that $(a,b) \subseteq (d)$ in D. Since d is the greatest common divisor of a,b in R, we have (a,b)=(d) in R. There exists $r_1,r_2 \in R$ such that $r_1a+r_2b=d$ and it also holds in D. Therefore, $(a,b)\supseteq (d)$ in D and so (a,b)=d. That is, d is also the greatest common divisor of a and b in D.

- 7. Let K be a algebraic number field. We call $\alpha \in K$ an algebraic integer if α is a root of a monic polynomial with integer coefficients. Let d be integer with no square factors. Let $K = \mathbb{Q}(\sqrt{d})$.
 - (1). If $d \equiv 2, 3 \pmod{4}$, prove that all algebraic integer in K is a set:

$$\{a+b\sqrt{d}\mid a,b\in\mathbb{Z}\}$$

• (2). If $d \equiv 1 \pmod{4}$, prove that all algebraic integer in K is a set:

$$\left\{a+brac{1+\sqrt{d}}{2}igg|\,a,b\in\mathbb{Z}
ight\}$$

Therefore all algebraic integers in K form a ring, called the algebraic integer ring of K.

Proof. i) If $a+b\sqrt{d}$ is an algebraic integer, then $x^2-2ax+a^2-b^2d\in\mathbb{Z}[x]$, that is, 2a and a^2-b^2d are integers. Assume that one of $a,b\notin\mathbb{Z}$. If a=k/2 with odd k, then $4\mid k^2-4b^2d$ and $4b^2d\equiv 1\pmod 4$, which is impossible by $4b^2\equiv 1\pmod 4$. If $a\in\mathbb{Z}$, then $b^2d\in\mathbb{Z}$ and $b\in\mathbb{Z}$ by d square-free, contradiction. Now we finish the proof.

- ii) Similarly, 2a and a^2-b^2d are integers. Assume that one of $a,b\not\in\mathbb{Z}$. If a=k/2 with odd k, then $4\mid k^2-4b^2d$ and $4b^2d\equiv 1\pmod 4$ yield that b=m/2 with odd m. Therefore, $a+b\sqrt{d}=k/2+m/2\sqrt{d}$. If $a\in\mathbb{Z}$, then $b\in\mathbb{Z}$. Hence, $a+b\sqrt{d}\in\left\{a+b\frac{1+\sqrt{d}}{2}\mid a,b\in\mathbb{Z}\right\}$.
- 8. (1). Prove the algebraic integer ring of $\mathbb{Q}(\sqrt{-3})$ is a ED. (2). Prove the algebraic integer ring of $\mathbb{Q}(\sqrt{2})$ is a ED. (3). Prove the algebraic integer ring of $\mathbb{Q}(\sqrt{5})$ is a ED.

Proof. i) 这是课本的做法:

例 2.12 令 $R = \mathbb{Z}[i] = \{m+ni \mid m,n \in \mathbb{Z}\}$, 其中 $i = \sqrt{-1}$. 我们来证明 R 是欧几里得环. 为此, 对于 $a = m+ni \in R$, 定义 $d(a) = |a|^2 = m^2 + n^2$. 对于任意的 $a,b \in R$, $b \neq 0$, $bR = \{(m+ni)b \mid m,n \in \mathbb{Z}\}$ 是复平面 \mathbb{C} 上边长为 |b| 的正方形网格的格点. 设与点 a 距离最近的格点为 $(m_0 + n_0i)b$. 取 $q = m_0 + n_0i$, r = a - qb, 则 |r| < |b| (即正方形上一点到四个顶点距离的最小值小于边长), 故 d(r) < d(b). 这就证明了 R 是欧几里得环.

Similarly, 用锐角为 $\pi/3$ 的菱形代替正方形。In this case, $d(m+n\frac{1+\sqrt{-3}}{2})=m^2+mn+n^2$.

ii) $a+b\sqrt{2}\mapsto |a^2-2b^2|.$ It is similar as the following property.

 $\mathbb{Z}[\sqrt{-2}]$ is an Euclidean domain.

 $\begin{array}{l} \textit{Proof.} \quad \text{Define } r: \mathbb{Q}[\sqrt{-2}] \to \mathbb{Q}, a+b\sqrt{-2} \mapsto a^2+2b^2 \text{ and note that } r(\mathbb{Z}[\sqrt{-2}]) \subseteq \mathbb{Z}, \\ r(a)r(b) = r(ab) \text{ for all } a,b \in \mathbb{Q}[\sqrt{2}]. \text{ For any } a+b\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}] \text{ and } c+d\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}], \text{ we aim to find } q \in \mathbb{Z}\sqrt{-2} \text{ such that } r(a+b\sqrt{2}-q(c+d\sqrt{2})) < r(c+d\sqrt{2}), \text{ that is, } r(\frac{a+b\sqrt{2}}{c+d\sqrt{2}}-q) < 1. \end{array}$

It suffices to show for any $u+v\sqrt{-2}\in\mathbb{Q}\sqrt{-2}$ there exists $m+n\sqrt{-2}\in\mathbb{Z}\sqrt{-2}$ satisfying $|(u-m)^2-2(v-n)^2|<1$, and we only need to choose $m,n\in\mathbb{Z}$ such that |u-m|<1/2 and |v-n|<1/2 as $1\cdot 1/4+2\cdot 1/4<1$.

iii) Take

$$egin{aligned} \delta: \mathbb{Z} + rac{1+\sqrt{5}}{2}\mathbb{Z} &
ightarrow \mathbb{Z}, \ a+brac{1+\sqrt{5}}{2} &
ightarrow \left| \left(a+brac{1+\sqrt{5}}{2}
ight) \left(a+brac{1-\sqrt{5}}{2}
ight)
ight|. \end{aligned}$$

Now we finish the proof.

Remark. In fact, i) and iii) can use the same method as ii). Denote $R = \left\{a + b\frac{1+\sqrt{d}}{2} \,\middle|\, a,b \in \mathbb{Z}\right\}$. Take $r: \mathbb{Q}[\sqrt{d}] \to \mathbb{Q}, a + b\sqrt{d} \to |a^2 - db^2| \text{ for } d \in \mathbb{Z}, \text{ then we aim to find } q \in R \text{ such that } r(\frac{a+b\sqrt{2}}{c+d\sqrt{2}} - q) < 1 \text{ for any } a + b\sqrt{d}, c + d\sqrt{d} \in R.$ Note that for any $u + v\sqrt{d} \in \mathbb{Q}[\sqrt{d}]$ there exists $m + n\sqrt{-2} \in R$ such that |u-m| < 1/4 and |v-n| < 1/4, thus q exists.

9. Prove the invertible elements in $\mathbb{Z}[i]$ where $i = \sqrt{-1}$ is $\{\pm 1, \pm i\}$.

Proof. If (a+bi)(c+di)=1, then ac-bd=1 and ad+bc=0. Since a+bi, c+di are invertible and $\mathbb{Z}[i]$ is an ED with norm $a+bi\mapsto a^2+b^2$, we have $a^2+b^2\leqslant 1$ and $c^2+d^2\leqslant 1$. It deduces that all invertible elements in $\mathbb{Z}[i]$ are $\{\pm 1, \pm i\}$.

10. Let p be a prime, if $p \equiv 1 \pmod{4}$, prove there exist $a, b \in \mathbb{Z}$ s.t. $p = a^2 + b^2$.

Proof. If $p \equiv 1 \mod 4$, then $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$ is a cyclic group of order p-1. Because $4 \mid p-1$ and G is cyclic, there is an element $\alpha \in G$ of order 4. Thus, in $\mathbb{Z}[i]/(p)$, there are more than 2 solutions to the equation $x^2 + 1 = 0$, namely $\pm \alpha, \pm i \in \mathbb{Z}[i]/(p)$. Recall that the number of roots of a non-zero polynomial over commutative integral domain is at most its degree, so $\mathbb{Z}[i]/(p)$ is not an integral domain. Thus p is not prime and so is reducible in $\mathbb{Z}[i]$.

Assume that p=(a+bi)(c+di) with a+bi, c+di are non-units. Define $d:\mathbb{Z}[i]\to\mathbb{Z}, a+bi\mapsto a^2+b^2$, then we can verify d(xy)=d(x)d(y) for any $x,y\in\mathbb{Z}[i]$. Hence we have $p^2=d(p)=d(a+bi)d(c+di)=(a^2+b^2)(c^2+d^2)$. Since a+bi is not invertible, $d(a+bi)\neq 1$ and $a^2+b^2=p$.