Is Z enough? Impact of Meta-Analysis using only Z/T images in lieu of estimates and standard errors

Camille Maumet¹, TODO pain, and Thomas E. Nichols^{1,2}

¹ Warwick Manufacturing Group, The University of Warwick, Coventry, UK.
² Statistics Department, The University of Warwick, Coventry, UK.

TODO: find another title

Abstract. The abstract should summarize the contents of the paper using at least 70 and at most 150 words. It will be set in 9-point font size and be inset 1.0 cm from the right and left margins. There will be two blank lines before and after the Abstract. . . .

Keywords: TODO

1 Introduction

2 Methods

2.1 Theory

Given a set of k studies, we denote for each study i: its contrast estimate by Y_i , its contrast variance estimate by V_{Y_i} , its standardized statistical map by Z_i and its sample size by n_i .

Combining contrast estimates and their standard error The gold standard approach to combine contrast estimates and their standard errors is to input them into a GLM [3], creating effectively the third-level of a hierarchical model (level 1: subject; level 2: study; level 3: meta-analysis). The general formulation is:

$$Y = X\beta + \epsilon \tag{1}$$

where β is the meta-analytic parameter to be estimated, $Y = [Y_1 \dots Y_k]^T$ is the vector of contrast estimates and $\epsilon \sim \mathcal{N}(0, W)$ is the residual term. Eq. (1) can be solved by weighted least square giving:

$$\hat{\beta} = (X^T W X)^{-1} X^T W Y \tag{2}$$

$$Var(\hat{\beta}) = (X^T W X)^{-1} \tag{3}$$

In a random-effects model, we have $W = diag(\sigma_1^2 + \tau^2 \dots \sigma_k^2 + \tau^2)$ where τ^2 denotes the between-studies variance. Approximating σ_i^2 by V_{Y_i} and given $\hat{\tau^2}$ an

	Statistic	Disbribution under H_0
FFX GLM	$\frac{1}{\sqrt{\sum_{i=1}^{k} 1/V_{Y_i}}} \sum_{i=1}^{k} \frac{Y_i}{V_{Y_i}}$	$\mathcal{T}_{(\sum_{i=1}^k n_i-1)-1}$
MFX GLM	$\frac{1}{\sqrt{\sum_{i=1}^{k} 1/(V_{Y_i} + \hat{\tau}^2)}} \sum_{i=1}^{k} \frac{Y_i}{V_{Y_i} + \hat{\tau}^2}$	\mathcal{T}_{k-1}
RFX GLM	$\frac{1}{\widehat{\sigma}_C^2/\sqrt{k}} \sum_{i=1}^k \frac{Y_i}{k}$	\mathcal{T}_{k-1}
Contrast Permutation	$\frac{1}{\widehat{\sigma}_C^2/\sqrt{k}} \sum_{i=1}^k \frac{Y_i}{k}$	Determined through permutations with sign switching.
Fisher's	$-2\sum_{i=1}^{k}\ln(\varPhi(-Z_i)))$ $\sum_{i=1}^{k}Z_i$	$\chi^2_{(2k)}$
Stouffer's	\sqrt{k}	$\mathcal{N}(0,1)$
Optimally weighted-Z	$\frac{\sum_{i=1}^{k} \sqrt{n_i} Z_i}{\sqrt{\sum_{i=1}^{k} n_i}}$	$\mathcal{N}(0,1)$
Stouffer's MFX	$rac{\sum_{i=1}^k Z_i}{\sqrt{k}\hat{\sigma}}$	\mathcal{T}_{k-1}
Z Permutation	$\frac{\sum_{i=1}^{k} Z_i}{\sqrt{k}}$	Determined through permutations with sign switching.

Table 1. Statistics for one-sample meta-analysis tests and distributions under the null hypothesis.

estimate of τ^2 we obtain the statistics detailed in table 1 for a one sample test. This reference approach will be referred to as **Mixed-effects** (MFX) GLM.

In a fixed-effects model (i.e. assuming no between-study variances), we have $W = diag(\sigma_1^2 \dots \sigma_k^2)$ where σ_i^2 denotes the contrast variance for study i. This approach will be referred to as **Fixed-effects (FFX) GLM**.

Combining contrast estimates In the absence of standard error, the contrast estimates Y_i can be combined by assuming that the within-study variance σ_i^2 is roughly constant $(\sigma_i^2 \simeq \sigma^2 \ \forall \ 1 \leq i \leq k)$ or negligible by comparison to the between-study variance $(\sigma_i^2 \ll \tau^2 \ \forall \ 1 \leq i \leq k)$. Then $W = diag(\sigma_C^2 \dots \sigma_C^2)$ where σ_C^2 is the combined within and between-subject variance such as $\sigma_C^2 \simeq \tau^2$ or $\sigma_C^2 \simeq \tau^2 + \sigma^2$. Under these assumptions, eq. (1) can be solved by ordinary least square giving:

$$\hat{\beta} = (X^T X)^{-1} X^T Y \tag{4}$$

$$Var(\hat{\beta}) = (X^T W X)^{-1} \tag{5}$$

Given $\hat{\sigma_C^2}$ an estimate of σ_C^2 we obtain the statistics presented in table 1 for one sample tests. This approach will be referred to **Random-effects** (**RFX**) **GLM** in the following.

As an alternative to parametric approaches, non-parametric statistics [5,6] can be computed by comparing the RFX GLM T-statistic to the distribution obtained by permuting the sign of each sample included in the analysis. This approach will be referred to as **Contrast permutation**.

Combining standardised statistics In the presence of standardised statistical estimates, **Fisher's** meta-analysis provide a statistic to combine the associated p-values [4]. **Stouffer's** approach combines directly the standardised statistic [7]. In [9] following [2], the author proposed a weighted method that weights each study's Z_i by the square root of its sample size [3,7]. This approach will be referred to as **Optimally weighted-Z**. All these meta-analytic statistics assumes fixed-effects (no between-study variance) and are suited only for one-sample tests. The corresponding statistics are presented in table 1.

As suggested in [1], to get a kind of MFX with Stouffer's approach, the standardised statistical estimates Z_i can be combined in an OLS analysis. The corresponding estimate, referred as **Stouffer's MFX** is also provided in 1

As an alternative to parametric approaches, a non-parametric distribution [5, 6] can be estimated by permutation on the Z_i 's. This approach will be referred to as **Z** permutation.

2.2 Experiments

Simulations To verify the validity of each estimator under the null hypothesis we estimated the false positive rate at p < 0.05 uncorrected. For each meta-analysis, we simulated a contrast estimate and a variance estimates such as:

$$Y_i \sim \mathcal{N}(0, \frac{\sigma_i^2}{n_i} + \tau^2) \tag{6}$$

$$V_{Y_i} \sim \frac{\sigma_i^2}{n_i - 1} \chi_{(n_i - 1)}^2$$
 (7)

where $\sigma_i^2 \in [1/2, 1, 2, 4]$ is the within-study variance, $\tau^2 \in [0, 1]$ is the between-study variance (fixed-effects if τ^2 is 0, random-effects otherwise). We simulated different number of studies per meta-analysis: $k \in [5, 10, 25, 50]$ and the number of subjects per studies n_i was selected such as we would have varying number of subjects per studies in given meta-analysis across the common range of subjects involved in neuroimaging studies. In each simulated meta-analysis we simulated one study with exactly 20, 25, 10 and 50 subjects. For the remaining studies the number of subjects were drawn from uniform distributions a quarter from $\mathcal{U}(11, 20)$, a quarter from $\mathcal{U}(26, 50)$ and the remaining from $\mathcal{U}(21, 25)$. A total of 32 parameter sets (4 σ_i^2 x 2 τ^2 x 4 k) was therefore tested, 71 repeats with 5041 samples per repeats were simulated.

Real data We first compared the Z-scores obtained by the three approaches using a Bland-Altman plot. Then, as results are usually presented as a thresholded map, we computed the dice similarity score between thresholded maps obtained with Stouffer's and weighted-Z FFX with FLAME FFX for three (uncorrected) thresholds: p; 0.001, 0.01 and 0.05. Finally, as results are best reported using a multiple comparison correction, we defined ground truth activations as the FLAME FFX analysis FDR-corrected at a threshold of p;0.05 and plotted Receiver-Operating-Characteristics (ROC) curves of Stouffer's and weighted-Z FFX.

All plots were generated using ggplot [8].

3 Results

3.1 Simulations

Fig. 1 displays the false positive rate at p < 0.05 obtained for the eight estimators over all set of parameters in the absence and presence of random-effects. From this graph, it is clear that the fixed-effects meta-analytic summary statistics, i.e. Fisher's, Stouffer's and weighted-z estimates are overly liberal in the presence of random-effects. As expected the original Fisher's approach is the most invalid. Surprisingly, FFX GLM is also invalid under fixed-effects, maybe suggesting inaccurate degrees of freedoms (here set to $(\sum_{i=1}^k n_i - 1) - 1)$). Stouffer's MFX, GLM RFX and permutations of Y_i 's or Z_i 's provide valid estimates. The permutation estimates present the largest sampling variance.

Fig. 1. False positive rates of the meta-analytic estimators under the null hypothesis for p < 0.05.

The impact of the number of studies involved in the meta-analysis and of the size of the within-study variance are investigated in fig. 2. The permutation estimates appears conservative (FPR $\simeq 0.03$) when 5 studies are involved. All approaches perform equally as soon as 10 or more studies are included in the meta-analysis.

Fig. 2. False positive rates of the valid random-effects meta-analytic estimators under the null hypothesis for p < 0.05 as a function of the number of studies and the within-study variance.

3.2 Real data

Fig. 3 plots the difference between the z-score estimated by each meta-analytic approach and the reference z-score computed with MFX GLM. GLM RFX and contrast permutations provide z-scores estimate that are equal or smaller than the reference. Z permutation provides slightly larger z-scores between 1 and 3 (reference p-values between 0.16 and 0.0013) but is mostly in agreement with the reference z-scores. On the other hand, Stouffer's MFX is more liberal than the reference for z-score ranging from 3 to 5 (reference p-values between 0.0013 and 2.9e-07) and more stringent for z-scores smaller than 5.

Dice among valids

StouffersMFX: 0.9454
 PermutZ: 0.9450
 GLMRFX: 0.8994
 PermutCon: 0.8991

Fig. 3. Difference between the z-score estimated from each meta-analytic approach and the reference z-score from MFX GLM as a function of reference z-score

WeightedZ: 0.9244
 Stouffers: 0.9184
 GLMFFX: 0.8972
 fishers: 0.8382

AUC between 0 and 0.1 among valids

StouffersMFX: 0.8924
 PermutZ: 0.8919
 GLMRFX: 0.7809
 PermutCon: 0.7815

WeightedZ: 0.8293
 Stouffers: 0.8619
 fishers: 0.6329
 GLMFFX: 0.6111

4 Conclusion

We have found appreciable differences between the Z-score only approaches as compared to a gold-standard approach. Overall the weighted-Z method provided results that were closer to the ground truth than Stouffer's approach. We hypothesize that Stouffer's methods may be attributing greater weights to less-representative subsets of the data. All three procedures are valid, but the

gold-standard should be giving the most faithful representation of the population effect. This advocates over the development of tools supporting the sharing E+SE's.

5 Acknowledgements

We gratefully acknowledge the use of this data from the Tracey pain group, FMRIB, Oxford.

References

- 1. Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. *NeuroImage*, 45(3):810–23, 2009.
- 2. Peter Cummings. On the combination of independent tests. *Magyar Tud. Akad. Mat. Kutato Int. Kozl.*, 3:171–197, 1958.
- 3. Peter Cummings. Meta-analysis based on standardized effects is unreliable. Archives of pediatrics & adolescent medicine, 158(6):595–7, 2004.
- R.A. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh, 1932.
- A. P. Holmes, R. C. Blair, G. J.D. Watson, and I. Ford. Nonparametric Analysis of Statistic Images from Functional Mapping Experiments. *Journal of Cerebral Blood Flow and Metabolism*, 16:7–22, 1996.
- 6. Thomas E. Nichols and Andrew P Holmes. Nonparametric permutation tests for functional neuroimaging: a primer with examples. *Human brain mapping*, 15(1):1–25, January 2002.
- S. Stouffer, L. DeVinney, and E. Suchmen. The American Soldier: Adjustment During Army Life, volume 1. Princeton University Press, Princeton, NJ, 1949.
- 8. H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009.
- D V Zaykin. Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. *Journal of evolutionary biology*, 24(8):1836–41, 2011.