

EEE 6212 Semiconductor Materials

Lecture 28: Nano-Technologies

EEE 6212 - Semiconductor Materials

2

Lecture 25: Nano-Technologies

- 'how to ?': fabrication methods for nanotechnology
- 'what for ?': nano-technological devices
- 'where ?': typical application areas

EEE 6212 - Semiconductor Materials 3 motivation: review of DOS in 3D, 2D,1D,0D

The stronger the confine ment is, the more the initially continuous DOS splits up into discrete levels.

This means a narrower range of wavelengths in optical emission or absorption, which is useful for opto-electronics.

type of confinement

none (3D)

a potential well or quantum well confines particles to movement in (x,y) plane (2D)

a quantum wire or nanorod confines particles to movement along *y*direction only (1D)

total confinement by quantum dot: particle can no longer move at all (0D)

EEE 6212 - Semiconductor Materials

fabrication methods for nanotechnology

primary fabrication methods:

- 1. epitaxy
 - a. growth of thin or thick layers
 - b. in-situ surface treatment (oxidation, nitridation, annealing)
- 2. lithography
 - a. local deposition or etching
 - b. metallisation
- 3. ion implantation
 - a. doping
 - b. intermixing

4. colloidal chemistry

- formation of nano-rods or nanoparticles from suspension
- b. surface functionalisation

EEE 6212 - Semiconductor Materials **epitaxy**

5

1. epitaxy

- a. growth of thin or thick layers
 - o molecular beam epitaxy (MBE) from atomic species
 - chemical vapour deposition (CVD) from molecular species,
 e.g. reduction of silicon tetrachloride: SiCl₄+2H₂→Si+4HCl, or decomposition of silane: SiH₄ → Si + 2H₂;
 n-doping by PH₃ or AsH₃, p-doping by diborane (B₂H₆)
 (autodoping by impurities from substrate if growth is too slow!)
 - metal-organic vapour phase epitaxy (MOVPE or MOCVD), particularly for GaN and CdTe based compounds
 - o liquid-phase epitaxy
- b. in-situ surface treatment
 - dry oxidation by molecular oxygen (slow): SiH₄+O₂ → SiO₂ +2H₂
 - wet oxidation under steam (fast): Si + 2H₂O → SiO₂ +2H₂
 - o **pyrolytic oxidation** of alkoxysilanes: $Si(C_2H_5O)_4 + 12O_2 \rightarrow SiO_2 + 10 H_2O + 8 CO_2$
 - nitridation with ammonia (NH₃) forms Si₃N₄ diffusion barriers
 - o rapid thermal annealing

EEE 6212 - Semiconductor Materials colloidal chemistry

8

4. colloidal chemistry

- a. formation of nano-rods or nano-particles from crystallite growth in suspension
- b. surface functionalisation by organic molecules to provide steric hindrance to clustering so the nano-particles stay separate
- c. dispersion of gold or silver nano-particles onto (patterned) semiconductor surfaces to improve light coupling by their surface plasmons

surface plasmons of Ag particles as function of thickness of SiO₂ interlayer to Au film

surface plasmons of Au particles as function of their diameters of 14 (red), 75 and 86nm

EEE 6212 - Semiconductor Materials 9 nano-technological semiconductor devices

devices:

- **1. electronics** (voltage <-> current, charge storage)
 - a. smaller and faster MOSFETs as switches and amplifiers
 - b. devices for quantum computing based on single electrons or spins
- 2. opto-electronics (current-> light)
 - a. more powerful LEDs
 - b. more powerful and longer lasting LASER diodes
 - c. integration of LASERs with MOSFETs for optical computing
 - d. quantum cascade LASERs for tailoured IR applications
- 3. solar cells (light -> current)
 - a. new concepts by incorporating quantum dot or quantum wire structures
 - b. improvement of surface coupling by plasmonics
 - c. improved sub-wavelength anti-reflective coatings
 - d. multi-junction solar cells

EEE 6212 - Semiconductor Materials

MOSFETs: two recent highlights

engineers from MIT have fabricated a double quantum well MOS-FET. Solar UK conference, Watford, 6 November 2014

10

TEM cross-sectional images through the probably smallest MOS-FET made by IBM and GlobalFoundries to date: SiGe channel Tri-gate pFET with H_{fin} =17nm, W_{fin} = 10-18nm (a) and gate length L_{g} <20 nm (b). Hasemi et al., paper T2-2, Symp. VLSI Technol. and Circuits, Tokyo, 10-14 June 2013

EEE 6212 - Semiconductor Materials solar cells: structural types

13

main categories of photovoltaic cells:

- 1. crystalline silicon (c-Si) solar cells,
- 2. thin film solar cells (TFSC),
- 3. multi-junction (MJ) solar cells

category	technology	η (%)	V _{oc} (V)	I _{SC} (A)	W/m²	<i>t</i> (µm)
c-Si	mono-cryst.	24.7	0.5	0.8	63	100
	poly-cryst.	20.3	0.615	8.35	~200	200
TSFC	amorphous Si	11.1	6.3	0.0089	33	1
4434°	CdTe	16.5	0.86	0.029	~100	5
. XX .	Culn _x Ga _(1-x) Se ₂ (CIGS)	19.5	-	-	-	1
multi-junction cells	III/V's on Ge	40.7	2.6	1.81	476	140

EEE 6212 - Semiconductor Materials solar cells: thin film solar cells

14

Desert Sunlight, CA, USA: the largest solar photovoltaic installation in the world (as of March 2015): 8 million **thin-film CdTe based** solar cells on 3800 acres, 550MW, powering 160 000 average homes

EEE 6212 - Semiconductor Materials nano-technological applications

18

application areas:

1. physics

- a. improved data storage
- b. quantum computing schemes

2. chemistry

- a. more efficient catalysts
- b. water and dirt-repellent surfaces ('lotus effect')

3. medicine

- a. colour coded quantum dots for in-vivo imaging of living organisms in 3D
- b. colour coded quantum dots for DNA testing
- c. improved healthcare and cancer treatments by quantum dot assisted drug delivery

4. other

- a. invisible watermarking of goods and banknotes
- b. forensics, e.g. nano-particles in gunshot residue