Udine, 22 gennaio 2018

- 1. Sia $\mathcal{F} = \mathcal{F}(2, t, p_{max}, p_{min})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi t, p_{max}, p_{min} in modo che $t = p_{max}, realmin = 1/32$ e realmax = 63. Calcola gli elementi positivi di \mathcal{F} .
 - Definisci in generale la precisione di macchina ue determina quella di \mathcal{F} .
 - Sia $x = (0.\overline{10})_2$ Determina $\tilde{x} = fl(x) \in \mathcal{F}$.
 - Sia $y = (10.\overline{10})_2$. Determina $\tilde{y} = fl(y) \in \mathcal{F}$.
 - Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10 e calcola gli errori relativi.
 - Calcola $\tilde{z} = \tilde{x}fl(+)\tilde{y} \in \mathcal{F}$.
 - Definisci i numeri denormalizzati. Quanti sono i numeri denormalizzati relativi a \mathcal{F} ?
- 2. Si vuole calcolare la funzione y = f(x).
 - Definisci l'errore inerente ed il concetto di condizionamento.
 - Studia il condizionamento della funzione $f(x) = (1 + x^2)(1 x)$ al variare di x.
 - Definisci l'errore algoritmico ed il concetto di stabilità.
 - Studia la stabilità degli algoritmi ottenuti dall' identità $(1+x^2)(1-x)=1-x+x^2-x^3$.
- 3. Sia $f(x) = x^3 3x^2 + 1$.
 - Disegna il grafico di f. Localizza le tre radici α, β, γ con $\alpha < \beta < \gamma$
 - Studia la convergenza ad α del metodo di Newton. La successione ottenuta con $x_0 = -0.5$ è convergente ad α ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
 - La successione ottenuta con $x_0 = 1$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
 - Studia la convergenza a γ del metodo di Newton. La successione ottenuta con $x_0 = 3$ è convergente a γ ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.

Sia $g(x) = 3 - \frac{1}{x^2}$. Verifica che α, β, γ sono punti fissi di g.

- Studia la convergenza ad α, β, γ del metodo iterativo $x_{k+1} = g(x_k), k = 0, 1, \ldots$ Quando convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- Definisci il concetto di ordine di convergenza per una generica successione $x_k \to \alpha$ per $k \to +\infty$.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} 1 & -2 & \alpha \\ -2 & 3 & 4 \\ \alpha & 4 & 0 \end{array} \right).$$

- Disegna il grafico della funzione $\alpha \to ||A||_{\infty}$.
- Calcola la fattorizzazione LU di A.
- Per quale scelta del parametri α il sistema Ax = b ha unica soluzione?
- Illustra in generale la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Per quali valori del parametro α il metodo di Gauss con il pivot parziale al secondo passo scambia la seconda con la terza riga di A?
- Sia $\alpha=2$. Calcola la fattorizzazione PA=LU con la tecnica del pivot parziale.
- Nota la fattorizzazione PA = LU come risolvi in generale il sistema lineare Ax = b?
- Proponi un algoritmo per calcolare in generale la soluzione di Ux = d con U triangolare superiore, scrivi la pseudocodifica e analizza il costo computazionale.
- 5. Sia $f(x) = \log_2(x)$. Dati i punti $P_0 = (\frac{1}{2}, f(\frac{1}{2})), P_1 = (1, f(1)), P_2 = (2, f(2)).$
 - Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Scrivi la formula dell'errore f(x) p(x) e determina una limitazione di $\max_{x \in [0.5, 2]} |f(x) p(x)|$.
 - Dato l' ulteriore punto $P_3=(4,f(4))$, determina il polinomio \tilde{p} che interpola i quattro punti nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei tre punti P_0, P_1, P_2 nel senso dei minimi quadrati.
 - Determina il polinomio rdi primo grado di miglior approssimazione dei tre punti P_1, P_2, P_3 nel senso dei minimi quadrati.
- 6. Scrivi la definizione di polinomio cubico di Hermite a tratti.
 - Scrivi la definizione di Spline cubica.
 - In cosa differiscono le due funzioni?