- 1. Игральный кубик подбрасывают два раза. Пусть X это остаток от деления на 3 результата первого броска, а Y остаток от деления на 3 суммарного результата двух бросков. Обозначим $\hat{Y} = \mathbb{E}(Y \mid X)$.
 - (a) Какие значения принимает \hat{Y} и с какими вероятностями?
 - (b) Найдите $\mathbb{P}(\hat{Y} = X)$.
- 2. Случайный процесс Z_t задан выражением $Z_t = \exp(-1 + 3W_t + bt)$, где b это константа.
 - (a) Найдите dZ_t
 - (b) Выпишите формулу для dZ_t в полной записи (с интегралами)
 - (c) При каком b процесс Z_t будет мартингалом?
- 3. Пусть $X_t = e^{t/2} \sin W_t$, а $Y = e^{-t/2} \cos W_t$.
 - (a) Найдите dX_t , dY_t
 - (b) Являются ли процессы X_t и Y_t мартингалами?
 - (c) Найдите $\mathbb{E}(X_t)$ и $\mathbb{E}(Y_t)$
- 4. Саша и Маша играют в орлянку. Саша немного жульничает, поэтому вероятность его победы в каждой отдельной партии равна 0.6. Ничья невозможна, они решили играть до преимущества одного из игроков в 10 побед, не обязательно подряд. Какова вероятность того, что победителем серии партии окажется Саша?
- 5. В рамках модели Блэка-Шоулса найдите текущую цену актива, который в момент времени T=2 выплачивает Вам сумму равную S_2/S_1 .