arepsilon 計算とクラスの導入による具体的で直観的な集合論の構築

関根深澤研 百合川尚学 学籍番号:29C17095 指導教員 深澤正彰 教授

February 10, 2020

Contents

- 1 導入
- 2 言語
- ③ 式の書き換え
- 4 証明
- 5 保存拡大
- 6 いくつかの性質
- ☑ 証明が簡単になる例
- 8 まとめ

ε について

- ε 計算は数論の無矛盾性証明のために Hilbert[1] が開発.
- ε によって ∃,∀ を使う証明を命題論理の証明に埋め込める.
- 式 φ(x) に対して

導入

$$\varepsilon x \varphi(x)$$

という形のモノを作り、 ε 項と呼ぶ、命題論理の証明に埋め込む際に は、∃や∀の付いた式を

$$\varphi(x/\varepsilon x \varphi(x)) \stackrel{\text{def}}{\longleftrightarrow} \exists x \varphi(x),$$
$$\varphi(x/\varepsilon x \to x \varphi(x)) \stackrel{\text{def}}{\longleftrightarrow} \forall x \varphi(x)$$

によって変換する.

ε について

- 今回 ε 項を導入したのは「存在」と「実在」を同義とするため。
- 導入の意図は存在文に対して証人を与えること (Henkin 拡大):

$$\exists x \varphi(x) \rightarrow \varphi(\varepsilon x \varphi(x)).$$

この式は3に関する主要な公理.

- 「 φ である集合が存在すれば,その一つは $\varepsilon x \varphi(x)$ である.」
- 「 $\rightarrow \forall x \varphi(x) \rightarrow \exists x \rightarrow \varphi(x)$ 」と組み合わせると

$$\varphi(\varepsilon x \to \varphi(x)) \to \forall x \varphi(x)$$

が出る.

ε について

ZF 集合論では集合というモノが用意されていないため、「存在」は 「実在」ではない。たとえば

$$\exists x \, \forall y \, (y \notin x)$$

は定理であり「空集合は存在する」と読むが、空集合を "実際に取ってくる"ことは不可能.

- 空集合を手に入れる一つの方法は「定義による拡大」.
- ∀y(y ≠ ∅)を ∅ の定義式として公理に追加し, ∅ を "語彙" に追加.

εについて

ε 項を使えば、∃の公理と空集合の存在定理によって次が成立:

$$\forall y (y \notin \varepsilon x \forall y (y \notin x)).$$

赤字の部分が空集合を表す.

- 「定義による拡大」と ε 項による拡大の違い:
 - 前者は "∃xφ(x)" が証明されたらその度に集合論を拡大.
 - 後者は全ての存在文に対して、その成立不成立に関係なく対応する集合を一気に追加。

ε 項を使うメリット

- 「存在」の「実在」による補強が簡単で明示的.
- 量化 ∀,∃の範囲が具体的に掴める.
- 証明で用いる推論規則は三段論法のみで済む.
- 証明が容易になる場合がある。

導入

0000000

クラスについて

- Bourbaki[3] や島内 [4] でも ε 項を使った集合論を展開.
- ullet ところで、 $ullet \varphi$ である集合の全体」の意味の

$$\{x \mid \varphi(x)\}$$

というモノも取り入れたい.

Bourbaki[3] や島内 [4] では

$$\{x \mid \varphi(x)\} \stackrel{\text{def}}{=} \varepsilon y \, \forall x \, (\varphi(x) \leftrightarrow x \in y)$$

と定めるが,

$$\exists y \, \forall x \, (\varphi(x) \leftrightarrow x \in y)$$

が成立しない場合は「 φ である集合の全体」という意味を持たない.

● **ZF** 集合論では「定義による拡大」 or インフォーマルな導入.

クラスについて

- 「集合しか扱わない」という立場では集合ではない「モノの集まり」 は扱えない、それらを合法的に扱いたい。
- ◆ クラスを扱う理論として BG や MK がある. これらはクラス用の変項 (大文字) を用意して,

$$\exists X \, \forall x \, (\varphi(x) \leftrightarrow x \in X)$$

が成り立ったら「定義による拡大」で $\{x \mid \varphi(x)\}$ を追加 (Gödel[7], Morse[8], Fraenkel, Bar-Hillel&Levy[9]).

- クラス用の変項は不要で、あらゆる式に対して一気にクラスを導入する方法がある。
- 式 φ から直接 $\{x \mid \varphi\}$ を作ればよい (Bernays[5], 竹内 [6]).

導入

クラスについて

クラス

式 φ に x のみが自由に現れているとき, $\varepsilon x \varphi(x)$, $\{x \mid \varphi(x)\}$ の形のモノを クラス (class) と呼ぶ.

- クラスである ε 項は集合である (定理).
- 集合でないクラスもある. たとえば $\{x \mid x = x\}$ と $\{x \mid x \notin x\}$.

集合の定義は竹内[6]に倣う.

集合

クラスcが

$$\exists x (c = x)$$

を満たすとき c を集合 (set) と呼ぶ. $\rightarrow \exists x (c = x)$ である場合は真クラス (proper class) と呼ぶ、定義により集合はクラスである、

主結果

- ϵ 項とクラスの直接的な導入を組み合わせたが、これが **ZF** 集合論の "妥当" な拡張であるかどうかが問題になる.
- 実際, ZF 集合論の命題 ψ に対して

ZF 集合論で ψ が証明可能 \iff 新しい集合論で ψ が証明可能 が成り立つ、より精しく書くと、

主結果

 \mathcal{L}_{\in} の任意の文 (自由な変項が現れない式) ψ に対して,「 Γ から ψ への **HK** の証明で \mathcal{L}_{\in} の式の列であるものが取れる」ことと「 Σ から ψ への **HE** の証明で \mathcal{L} の文の列であるものが取れる」ことは同値.

ここで.

- Γ は \mathcal{L}_{C} の文で書かれた **ZF** 集合論の公理系.
- ∑ は £ の文で書かれた本論文の公理系.
- HK と HE は証明体系 (論理的公理+推論規則).

以下詳細.

言語 \mathcal{L}_{\in}

 \mathcal{L}_{\leftarrow} とは **ZF** 集合論の言語である.

言語 上← の語彙 (参考: 菊池 [12])

矛盾記号 ⊥ 論理記号 →, ∨, ∧, → 量化子 ∀, ∃ 述語記号 =, ∈ 変項 *x*, *y*, *z*, ····.

言語 \mathcal{L}_{C} の項と式

 \mathcal{L}_{\leftarrow} の項と式は次の規則で生成する.

\mathcal{L}_{F} の項と式

項 変項は項であり、またこれらのみが項である.

- 式 」は式である.
 - 項τと項σに対してτ∈σとτ=σは式である.
 - 式 φ に対して $\rightarrow \varphi$ は式である.
 - 式 φ と式 ψ に対して φ \lor ψ と φ \land ψ と φ \rightarrow ψ はいずれも式である.
 - 式 φ と項xに対して $\exists x\varphi$ と $\forall x\varphi$ は式である.
 - これらのみが式である.

言語の拡張

- クラスを正式に導入するために言語を拡張する.
- 拡張は二段階に分けて行う. 始めに ε 項のために拡張し、次に $\{x \mid \varphi(x)\}$ の形の項のために拡張する.
- ullet 始めの拡張で作る言語を $\mathcal{L}_{\mathcal{E}}$ と名付ける.

言語 $\mathcal{L}_{\mathcal{E}}$ の語彙 (参考:島内 [4])

矛盾記号 \bot 論理記号 \rightarrow , \lor , \land , \rightarrow 量化子 \forall , \exists , ε 述語記号 =, \in 変項 x, y, z, \cdots

$\mathcal{L}_{\mathcal{E}}$ の項と式

$\mathcal{L}_{\mathcal{E}}$ の項と式の定義 (参考: Moser&Zach[2])

- 変項は項である.
- 」は式である。
- 項τと項 σ に対して $\tau \in \sigma$ と $\tau = \sigma$ は式である.
- 式 φ に対して $\rightarrow \varphi$ は式である.
- 式 φ と式 ψ に対して $\varphi \lor \psi$ と $\varphi \land \psi$ と $\varphi \to \psi$ はいずれも式である.
- 式 φ と変項xに対して $\exists x \varphi$ と $\forall x \varphi$ は式である.
- 式 φ と変項xに対して $\epsilon x \varphi$ は項である.
- これらのみが項と式である.
- \bullet \mathcal{L}_{C} との大きな違いは項と式の生成が循環している点.
- $\mathcal{L}_{\mathcal{E}}$ の式が $\mathcal{L}_{\mathcal{E}}$ の項を用いて作られるのは当然ながら,その逆に $\mathcal{L}_{\mathcal{E}}$ の項もまた $\mathcal{L}_{\mathcal{E}}$ の式から作られる.
- \mathcal{L}_{C} の式は \mathcal{L}_{E} の式でもある.

言語 £

- $\mathcal{L}_{\mathcal{E}}$ の式 φ と変項 x で作られる $\varepsilon x \varphi$ なる項を ε 項 (epsilon term) という.
- £_ε の式 φ と変項 x で作られる {x | φ} なる項を内包項ということにする。

 \mathcal{L} は本論文特有の言語である。内包項を直接導入するのは竹内 [6] を参考にしているが、 $\mathcal{L}_{\mathcal{E}}$ の式を使うという点が本論文の特徴である。

言語 £ の語彙

矛盾記号 丄

論理記号 →, ∨, ∧, →

量化子 ∀, ∃

述語記号 =, ∈

変項 x,y,z,\cdots .

 ε 項と内包項 上記のもの

∫の項と式

£ の項と式の定義

項 変項, ϵ 項, 内包項は項である. またこれらのみが項である.

式 ● 」は式である.

- 項 τ と項 σ に対して $\tau \in \sigma$ と $\tau = \sigma$ は式である.
- 式 φ に対して $\neg \varphi$ は式である.
- 式 φ と式 ψ に対して φ \lor ψ と φ \land ψ と φ \rightarrow ψ はいずれも式である.
- 式 φ と変項xに対して $\exists x \varphi$ と $\forall x \varphi$ は式である.
- これらのみが式である.

扱う式の制限

上で作った項や式の中には

$$\varepsilon x (y = y), \{x \mid z \neq z\}, \forall x (u \in v)$$

のような意味の通らないものが氾濫しているので、排除する.

- $\varepsilon x \varphi$ なる形の ε 項は, φ に x "のみ" 自由に現れているとき主要 ε 項と呼ぶことにする.
- $\{x \mid \varphi\}$ なる形の内包項は、 φ に x "が" 自由に現れているとき、正則 内包項と呼ぶことにする.
- 以降扱う式に現れる ε 項は全て主要 ε 項,内包項は全て正則内包項であるとし, $\forall x \varphi$ や $\exists x \varphi$ なる式は φ に x が自由に現れているとする.

クラス

 $\{x \mid \varphi\}$ なる形の内包項は、 φ に x "のみ" 自由に現れているとき、主要内包項と呼ぶことにする。

クラス

主要 ε 項と主要内包項をクラス (class) と呼ぶ.またこれらのみがクラスである.

主要 ε 項は実際は集合である (後述).

$oldsymbol{\mathcal{L}}$ の式を $oldsymbol{\mathcal{L}_{\mathcal{E}}}$ の式に書き換える

 \bullet ε 項を導入したのは、存在文に対して証人を付けるため:

$$\exists x \varphi(x) \rightarrow \varphi(\varepsilon x \varphi(x)).$$

- しかし φ に内包項が使われているとき、 $\varepsilon x \varphi(x)$ は使えない (作られ ていない).
- ullet そのときは, φ を "同値" な $\mathcal{L}_{\mathcal{E}}$ の式 $\hat{\varphi}$ に書き換えて

$$\exists x \varphi(x) \rightarrow \varphi(\varepsilon x \hat{\varphi}(x))$$

を公理とする.

式の書き換え

 φ の部分式のうち原子式であるところを表に従って直したものを「 φ の書き換え」と呼ぶ。

	元の式	書き換え後
(1)	$a = \{z \mid \psi\}$	$\forall v (v \in a \leftrightarrow \psi(z/v))$
(2)	$\{y \mid \varphi\} = b$	$\forall u (\varphi(y/u) \leftrightarrow u \in b)$
(3)	$\{y \mid \varphi\} = \{z \mid \psi\}$	$\forall u (\varphi(y/u) \leftrightarrow \psi(z/u))$
(4)	$a \in \{z \mid \psi\}$	$\psi(z/a)$
(5)	$\{y \mid \varphi\} \in b$	$\exists s (\forall u (\varphi(y/u) \leftrightarrow u \in s) \land s \in b)$
(6)	$\{y \mid \varphi\} \in \{z \mid \psi\}$	$\exists s (\forall u (\varphi(y/u) \leftrightarrow u \in s) \land \psi(z/s))$

ここで,

- a,b は変項か主要 ε 項.
- $\psi(z/v)$ は ψ に自由に現れている z に v を代入した式.

ZF の公理系

Γの公理 (参考: Kunen[10])

外延性 「同一の要素を持つ集合同士は等しい」

$$\forall x \, \forall y \, (\, \forall z \, (z \in x \leftrightarrow z \in y) \rightarrow x = y \,).$$

相等性 「等しい集合同士の服属関係は一致する」

$$\forall x \, \forall y \, (x = y \rightarrow y = x),$$

$$\forall x \, \forall y \, \forall z \, (x = y \rightarrow (x \in z \rightarrow y \in z)),$$

$$\forall x \, \forall y \, \forall z \, (x = y \rightarrow (z \in x \rightarrow z \in y)).$$

置換 「集合を写像で写した像は集合」次の式の全称閉包:

$$\forall x \, \forall y \, \forall z \, (\varphi(x, y) \land \varphi(x, z) \rightarrow y = z)$$
$$\rightarrow \forall a \, \exists z \, \forall y \, (y \in z \leftrightarrow \exists x \, (x \in a \land \varphi(x, y))).$$

置換公理は式 arphi ごとに公理となるので $oldsymbol{oldsymbol{arphi}}$ と呼ばれる.

ZF の公理系

Γの公理

対 「対集合が存在する」

$$\forall x \, \forall y \, \exists p \, \forall z \, (x = z \vee y = z \, \leftrightarrow \, z \in p).$$

合併 「合併集合が存在する」

$$\forall x \exists u \, \forall y \, (\exists z \, (z \in x \land y \in z) \leftrightarrow y \in u).$$

冪 「冪集合が存在する」

$$\forall x \exists p \, \forall y \, (\forall z \, (z \in y \rightarrow z \in x) \leftrightarrow y \in p).$$

これらの公理によって既存の集合から新しい集合が作られる.

ZF の公理系

Γの公理

正則性 「空でない集合は自分自身と交わらない要素を持つ」

$$\forall r (\exists x (x \in r) \rightarrow \exists y (y \in r \land \forall z (z \in r \rightarrow z \notin y))).$$

無限 「自然数の全体を含む集合が存在する」

$$\exists x (\exists s (\forall t (t \notin s) \land s \in x) \land \forall y (y \in x \rightarrow \exists u (\forall v (v \in u \leftrightarrow v \in y \lor v = y) \land u \in x))).$$

正則性公理によって集合の範囲が決定する (整礎集合). また無限公理は唯一「集合の存在」に言及している.

古典論理

HK とは古典論理 (classical logic) の Hilbert 流証明体系である.

HK の論理的公理 (命題論理)(参考:戸次 [11])

含意の分配 $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)).$

含意の導入 $\varphi \to (\psi \to \varphi)$.

矛盾の導入 $\varphi \to (\neg \varphi \to \bot)$, $\neg \varphi \to (\varphi \to \bot)$.

否定の導入 $(\varphi \rightarrow \bot) \rightarrow \neg \varphi$.

論理和の導入 $\varphi \to \varphi \lor \psi$, $\psi \to \varphi \lor \psi$.

論理和の除去 $(\varphi \to \chi) \to ((\psi \to \chi) \to (\varphi \lor \psi \to \chi)).$

論理積の導入 $\varphi \rightarrow (\psi \rightarrow (\varphi \land \psi))$.

論理積の除去 $\varphi \wedge \psi \rightarrow \varphi$, $\varphi \wedge \psi \rightarrow \psi$.

二重否定の除去 $\rightarrow \varphi$ $\rightarrow \varphi$.

古典論理

HK の論理的公理 (量化)(参考:戸次 [11])

全称の導入 $\forall y (\psi \rightarrow \varphi(x/y)) \rightarrow (\psi \rightarrow \forall x \varphi).$

全称の除去 $\forall x \varphi \rightarrow \varphi(x/t)$.

存在の導入 $\varphi(x/t) \rightarrow \exists x \varphi$.

存在の除去 $\forall y (\varphi(x/y) \rightarrow \psi) \rightarrow (\exists x \varphi \rightarrow \psi).$

HK の証明 (参考:戸次 [11])

「 Γ から ψ への **HK** の証明で \mathcal{L}_{\in} の式の列であるもの」とは、 \mathcal{L}_{\in} の式の列 $\varphi_1, \cdots, \varphi_n$ で、 $\varphi_n \equiv \psi$ で、各 φ_i が次のいずれかであるもの:

- **HK** の公理である
- Γ の公理である
- φ_i, φ_k (i, k < i) から三段論法で得られる
- φ_i (i < i) から汎化で得られる.

Σの公理

- ∑は「対」「合併」「冪」「正則性」「無限」はΓと共通。
- ∑の「置換」は、二つの変項が現れる式に対しての言明に替わる。
- 新しく「内包性」と「要素」の公理が追加.

Σ の公理 (参考: 竹内 [6])

a,b,c をクラスとするとき

外延性 「同一の要素を持つクラス同士は等しい」

$$\forall z (z \in a \leftrightarrow z \in b) \rightarrow a = b.$$

相等性 「等しい集合同士の服属関係は一致する」

$$a = b \rightarrow b = a,$$

 $a = b \rightarrow (a \in c \rightarrow b \in c),$
 $a = b \rightarrow (c \in a \rightarrow c \in b).$

Σの公理

Σの公理

a,b をクラスとするとき

内包性 「 $\{y \mid \varphi(y)\}$ は φ であるモノの全体」

$$\forall x \, (x \in \{ y \mid \varphi(y) \} \leftrightarrow \varphi(x)).$$

ただし $\{y \mid \varphi(y)\}$ は主要内包項.

要素 「要素となりうるものは集合に限る」

$$a \in b \rightarrow \exists x (a = x).$$

- クラスは量化しないのでこれらの公理は図式 (schema) である.
- 要素の公理のココロは Gödel[7] から引用.

HE の公理

HE は本論文特有の証明体系である. 命題論理の論理的公理は **HK** と共通するが,量化公理が違う.

HE の論理的公理 (量化)

De Morgan の法則 $\rightarrow \forall x \varphi(x) \rightarrow \exists x \rightarrow \varphi(x)$.

全称の除去 $\forall x \varphi \rightarrow \varphi(x/\tau)$.

存在の導入 $\varphi(x/\tau) \rightarrow \exists x \varphi$.

存在の除去 $\exists x \varphi(x) \rightarrow \varphi(\varepsilon x \hat{\varphi}(x))$.

 $\hat{\varphi}$ とは、 φ が $\mathcal{L}_{\mathcal{E}}$ の式でない場合に書き換えたもの。 φ が $\mathcal{L}_{\mathcal{E}}$ の式ならば $\hat{\varphi}$ は φ とする。また τ は主要 ε 項とする。

HE の公理により、量化 $\forall x$, $\exists x$ の亘る範囲は主要 ε 項の上となる.

HE の証明

HK と違い, **HE** の証明は文で行う.

HE の証明

「 Σ から ψ への **HE** の証明で \mathcal{L} の文の列であるもの」とは、 \mathcal{L} の文の列 $\varphi_1, \dots, \varphi_n$ で、 $\varphi_n \equiv \psi$ で、各 φ_i が次のいずれかであるもの:

- HE の公理である
- Σの公理である
- $\varphi_i, \varphi_k(j, k < i)$ から三段論法で得られる

「 Σ から ψ への **HE** の証明で $\mathcal L$ の文の列であるもの」が取れることを

$$\Sigma \vdash \psi$$

と書く.

主結果の証明方針

次の3ステップに分割する:

- step1 「 Σ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」ならば「 Γ から ψ への **HK** の証明で $\mathcal{L}_{\mathcal{E}}$ の式の列であるものが取れる」ことを示す.
- step2 「 Γ から ψ への **HK** の証明で \mathcal{L}_{\in} の式の列であるものが取れる」ならば「 Σ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」ことを示す.
- step3 「 Σ から ψ への **HE** の証明で \mathcal{L} の文の列であるものが取れる」ならば 「 Σ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」ことを示す。 step3 の逆は明らか、 $\mathcal{L}_{\mathcal{E}}$ の文は \mathcal{L} の文なので、

step1 の略証

step1

「 Σ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」ならば「 Γ から ψ への **HK** の証明で $\mathcal{L}_{\mathcal{E}}$ の式の列であるものが取れる」

補題

「 Σ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」ならば「 Γ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」

 Σ の公理で $\mathcal{L}_{\mathcal{E}}$ の文で書かれているものに対して「 Γ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」ことを示せばよい.

step1 の略証

HK に $\exists x \varphi \rightarrow \varphi(x/\varepsilon x \varphi)$ の形の公理を追加した証明体系を **HK** ε とする.

補題

「 Γ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」ならば Γ から ψ への **HK** ε の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」

HE の公理で **HK** ε の公理でないものは

$$\neg \forall x \varphi \rightarrow \exists x \neg \varphi$$

のみ、これは **HK** の定理なので **HK** ε の定理でもある.

step1 の略証

• 「 Γ から ψ への **HK** ε の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるもの」の中の $\exists x \varphi \rightarrow \varphi(x/\varepsilon x \varphi)$ の形の公理を演繹定理で外に出すと:

$$\Gamma \vdash_{\mathsf{HK}, \mathcal{L}_{\mathcal{E}}} (\exists x \varphi \rightarrow \varphi(x/\varepsilon x \varphi)) \rightarrow \psi.$$

ullet 上の証明に現れる arepsilon x arphi を新しい変項 y で置き換えると

$$\Gamma \vdash_{\mathsf{HK}, \mathcal{L}_{\mathcal{E}}} (\exists x \varphi \rightarrow \varphi(x/y)) \rightarrow \psi.$$

● HK の汎化と量化公理より

$$\Gamma \vdash_{\mathsf{HK}, \mathcal{L}_{\mathcal{E}}} \exists y (\exists x \varphi \rightarrow \varphi(x/y)) \rightarrow \psi.$$

• $\vdash_{HK,f_s} \exists y (\exists x \varphi \rightarrow \varphi(x/y))$ なので、三段論法で

$$\Gamma \vdash_{\mathsf{HK},\mathcal{L}_{\mathcal{E}}} \psi.$$

step2 の略証

step2

「 Γ から ψ への **HK** の証明で \mathcal{L}_{\in} の式の列であるものが取れる」ならば 「 Σ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」

- 「 Γ から ψ への **HK** の証明で \mathcal{L}_{\subset} の式の列であるもの」を正則証明 (汎化の固有変項が一度しか使われない証明) に変換.
- 得られた正則証明に自由に現れる変項のうち、固有変項以外のものを すべて主要 ε 項に置き換える.
- ullet 固有変項を主要 ε 項に置き換える. このとき

$$\varphi(x/\varepsilon x \rightarrow \varphi) \rightarrow \forall x \varphi$$

が HE の定理であることを利用する.

step3 の略証

step3

「 Σ から ψ への **HE** の証明で \mathcal{L} の文の列であるものが取れる」ならば 「 Σ から ψ への **HE** の証明で $\mathcal{L}_{\mathcal{E}}$ の文の列であるものが取れる」

- \mathcal{L} の文の列である証明 $\varphi_1, \cdots, \varphi_n$ を $\mathcal{L}_{\mathcal{E}}$ の文に書き換える. このとき命題論理の公理と三段論法の形式は崩れない.
- **HE** の量化公理と Σ の公理は公理でない式に変わりうるが、それらが $\mathcal{L}_{\mathcal{E}}$ の文で証明可能であることを示す.

集合

集合

クラスaが集合であるとは、

$$\Sigma \vdash \exists x (a = x)$$

となること. $\Sigma \vdash \neg \exists x (a = x)$ なら a は真クラス (proper class).

主要 ε 項は集合

任意の主要 ε 項 τ に対して $\Sigma \vdash \exists x (\tau = x)$.

実際、外延性公理より $\tau = \tau$ となり、また

$$\tau = \tau \rightarrow \exists x (\tau = x)$$

は **HE** の量化公理なので、三段論法で $\exists x (\tau = x)$ が出る.

全称式の導出

全称式の導出

 φ を, x のみが自由に現れる \mathcal{L} の式とするとき,

$$\vdash \varphi(\varepsilon x \rightarrow \hat{\varphi}(x)) \rightarrow \forall x \varphi(x).$$

ただし $\hat{\varphi}$ は必要に応じて φ を $\mathcal{L}_{\mathcal{E}}$ の式に書き換えたもの.

実際,

$$\neg \forall x \varphi(x) \rightarrow \exists x \neg \varphi(x),$$
$$\exists x \neg \varphi(x) \rightarrow \neg \varphi(\varepsilon x \neg \hat{\varphi}(x))$$

は HE の量化公理であり、

$$\rightarrow \forall x \varphi(x) \rightarrow \neg \varphi(\varepsilon x \rightarrow \hat{\varphi}(x))$$

が導かれ. 対偶律より

$$\varphi(\varepsilon x \to \hat{\varphi}(x)) \to \forall x \varphi(x).$$

内包項の ε 項表現

集合である主要内包項は ε 項で書ける

 φ を, x のみが自由に現れる \mathcal{L} の式とするとき,

$$\exists s (\{x \mid \varphi(x)\} = s) \vdash \{x \mid \varphi(x)\} = \varepsilon s \, \forall x (\varphi(x) \leftrightarrow x \in s).$$

$$\forall x (\varphi(x) \leftrightarrow x \in s)$$
 は $\{x \mid \varphi(x)\} = s$ の書き換えなので,

$$\exists s (\{x \mid \varphi(x)\} = s) \rightarrow \{x \mid \varphi(x)\} = \varepsilon s \, \forall x (\varphi(x) \leftrightarrow x \in s)$$

は **HE** の量化公理である. 従って $\exists s (\{x \mid \varphi(x)\} = s)$ を公理とすれば

$$\{x \mid \varphi(x)\} = \varepsilon s \, \forall x \, (\varphi(x) \leftrightarrow x \in s)$$

が定理として出る.

書き換えの同値性

書き換えは同値

 φ を $\mathcal{L}_{\mathcal{E}}$ の文ではない \mathcal{L} の文とするとき,

$$\Sigma \vdash \varphi \leftrightarrow \hat{\varphi}$$
.

ただし $\hat{\varphi}$ は φ の書き換え.

内包性公理と要素の公理はこの同値性を得るためにある.

$\exists x \varphi(x) \rightarrow \exists y \varphi(y)$ の証明

 φ は \mathcal{L}_{\in} の式で、x のみ自由に現れているとし、y は x への代入について自由であるとするとき、

$$\vdash \exists x \varphi(x) \rightarrow \exists y \varphi(y).$$

HE で証明すると,

$$\exists x \varphi(x) \to \varphi(\varepsilon x \varphi(x)),$$

$$\varphi(\varepsilon x \varphi(x)) \to \exists y \varphi(y)$$

が共に HE の公理なので

$$\exists x \varphi(x) \rightarrow \exists y \varphi(y)$$

が従う.

$\exists x \varphi(x) \rightarrow \exists y \varphi(y)$ の証明

一方で **HK** で証明すると.

$$\varphi(x) \rightarrow \exists y \varphi(y)$$

は HK の公理であり、汎化によって

$$\forall x (\varphi(x) \rightarrow \exists y \varphi(y))$$

が得られる.

$$\forall x (\varphi(x) \rightarrow \exists y \varphi(y)) \rightarrow (\exists x \varphi(x) \rightarrow \exists y \varphi(y))$$

が HK の公理なので、三段論法で

$$\exists x \varphi(x) \rightarrow \exists y \varphi(y)$$

が出る.

$\exists x \varphi(x) \rightarrow \exists y \varphi(y)$ の証明

HE で証明した際, A を $\exists x \varphi(x)$, B を $\varphi(\varepsilon x \varphi(x))$, C を $\exists y \varphi(y)$ として

$$A \rightarrow B$$
,
 $B \rightarrow C$,
 $(B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C))$,
 $A \rightarrow (B \rightarrow C)$,
 $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$,
 $(A \rightarrow B) \rightarrow (A \rightarrow C)$,
 $A \rightarrow C$

を追加しなくては証明とならないが、証明の組み立ては **HK** よりも直観的である.

$\exists y (\exists x \varphi(x) \rightarrow \varphi(y))$ の証明

 φ は \mathcal{L}_{C} の式で、x のみ自由に現れているとし、y は x への代入について自由であるとするとき、

$$\vdash \exists y (\exists x \varphi(x) \rightarrow \varphi(y)).$$

HE で証明すると,

$$\exists x \varphi(x) \rightarrow \varphi(\varepsilon x \varphi(x))$$

は HE の公理であり、

$$(\exists x \varphi(x) \rightarrow \varphi(\varepsilon x \varphi(x))) \rightarrow \exists y (\exists x \varphi(x) \rightarrow \varphi(y))$$

も HE の公理なので、三段論法で

$$\exists y (\exists x \varphi(x) \rightarrow \varphi(y))$$

が従う.

$\exists y (\exists x \varphi(x) \rightarrow \varphi(y))$ の証明

一方で **HK** で証明すると,

$$\exists x \varphi(x) \rightarrow \exists y \varphi(y)$$

ح

$$(\exists x \varphi(x) \to \exists y \varphi(y)) \to (\neg \exists x \varphi(x) \lor \exists y \varphi(y)),$$

$$\to \exists y (\neg \exists x \varphi(x) \lor \varphi(y)),$$

$$\to \exists y (\exists x \varphi(x) \to \varphi(y))$$

の証明が必要になる. 明らかに数行で終わる証明ではないし, 証明の方針 も直観とはずれる.

まとめ

- 本論文では ε 項とクラスの直接的な導入を併せた集合論を構築した.
- それが、集合に関する言明に対しては **ZF** 集合論と同じ証明力であることを示した。

何が具体的で直観的か

- 量化の範囲が具体的.
- 初めから集合とクラスが用意されていて、集合とクラスの範囲が明確。
- 存在するなら取って来られる。

まとめ

- D. Hilbert and P. Bernays, 数学の基礎 (吉田夏彦, 渕野昌訳), 丸善出版株式会社, 2012, pp. 23-63, ISBN 978-4-621-06405-4.
- G. Moser and R. Zach, "The epsilon calculus and Herbrand complexity," Studia Logica, vol. 82, no. 1, pp. 133-155, 2006.
- N. Bourbaki, 数学原論 集合論 1 (前原昭二訳), 第一刷, 東京都書株式会社, 1968, pp. 64-65.
- 島内剛一, 数学の基礎, 第 1 版, 日本評論社, 2016, p. 67, ISBN 978-4-535-60106-2.
- P. Bernays, *Axiomatic Set Theory*, 2nd edition, North-Holland Publishing Company, 1968.
- 竹内外史, 現代集合論入門, 增強版, 日本評論社, 2016, pp. 138-183, ISBN 978-4-535-60116-1.
- K. Gödel, *The Consistency of the Continuum Hypothesis*, 8th printing, Princeton University Press 1970, p. 3, ISBN 0-691-07927-7.
- A. Morse, A Theory of Sets, Academic Press, 1965, pp. xix-xxiii.

- A. Fraenkel, Y. Bar-Hillel, and A. Levy, *Foundations of Set Theory*, 2nd revised edition, North-Holland Publishing Company, 1973, pp. 119-148.
- K. Kunen, キューネン数学基礎論講義 (藤田博司訳), 第 1 版, 日本評論社, 2016, pp. 123-221, ISBN 978-4-535-78748-3.
- 戸次大介, 数理論理学, 初版, 東京大学出版会, 2016, pp. 148-166, ISBN 978-4-13-062915-7.
- 菊池誠, 不完全性定理, 初版, 共立出版株式会社, 2017, pp. 86-91, ISBN 978-4-320-11096-0.