Theoretical Guide Lenhadoras de Segtree

Nathália Pereira, Duda Holanda & Duda Carvalho

\mathbf{C}_{0}	ontents	3	Bitwise
			3.1 Turn bit on or off
1	Misc 1		3.2 Check if bit is on or off
	1.1 Check for overflow 1		3.3 Number of bits on
	1.2 Input by file		3.4 Count leading zeros
			3.5 MSB
2	Geometry 1		3.6 Count trailing zeros
	2.1 Distances		3.7 LSB
	2.1.1 Euclidean		3.8 XOR from 1 to n
	2.1.2 Manhattan		3.9 NOT
	2.2 Maximum possible manhattan distance between two points given		3.10 AND
	n points		3.11 OR
	2.3 Boundary points		3.12 NAND
	2.4 Pick's Theorem		3.13 NOR
	2.5 Triangle Existence Condition		3.14 XOR
	2.6 Perimeter		3.15 XNOR
	2.6.1 Circle	- 1	
	2.7 Areas	4	
	2.7.1 Circle		4.1 Divisibility Criteria
	2.7.2 Triangle		4.1.1 2
	2.7.3 Square		4.1.2 3
	2.7.4 Rectangle		$4.1.3$ 4 \dots
	2.7.5 Rhombus		4.1.4 5
	2.8 Volumes		4.1.5 6
	2.8.1 Sphere		4.1.6 7
	2.8.2 Prism		4.1.7 8
	2.8.3 Pyramid		4.1.8 9
	2.8.4 Cone		4.2 Logarithm
	2.9 Sines Rule		C++
	2.10 Cossines Rule	9	5.1 Ordered set and multiset
	2.11 Shoelace Formula		5.2 Priority Queue

6	Combinatorics											
	6.1	Burnside's Lemma										
7	Con	astants										
8	Number Theory											
	8.1	Number of Divisors										
	8.2	Number of digits of n! in base b										
	8.3	Prime counting function - $\pi(x)$										
	8.4	Sum of digits of n in base b										
	8.5	Fermat's Theorems										
9	Ider	ntities										
10	Pro	gressions										
	10.1	Arithmetic Progression										
		10.1.1 General Term										
		10.1.2 Sum										
		10.1.3 Sum of Second Order Arithmetic Progression										
	10.2	Geometric Progression										
		10.2.1 General Term										
		10.2.2 Sum										
		10.2.3 Infinite Sum										

1 Misc

1.1 Check for overflow

Returns false if there is no overflow and true if there is overflow. The variable v stores the result of the operation.

```
long long v;
__builtin_add_overflow(a, b, v);
cout << v;
__builtin_sub_overflow(a, b, v);
__builtin_mul_overflow(a, b, v);</pre>
```

1.2 Input by file

freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);

2 Geometry

2.1 Distances

2.1.1 Euclidean

$$d(p,q) = \sqrt{(q.x - p.x)^2 + (q.y - p.y)^2}$$

2.1.2 Manhattan

$$|p.x - q.x| + |p.y - q.y|$$

2.2 Maximum possible manhattan distance between two points given n points

Given n points, for instance:

Rotate all coordinates 45^o do that (x,y) becomes (x+y,y-x), so, p becomes p' and q becomes q'.

The maximum manhattan distance is obtaining by choosing the two points that maxime:

$$max(|p'.x - q'.x|, |p'.y - q'.y|)$$

2.3 Boundary points

The number of integer points in the boundary of a polygon is:

$$B = v + b$$

where v is the number of vertices (integer points as well) and b is the number of integer points situated between two vertices, like in the following figure:

b can be calculated for every line connecting two points (including the line between the last and the first point) as follows:

$$boundary_points(p,q) = \begin{cases} |p.y - q.y| - 1 & p.x = q.x \\ |p.x - q.x| - 1 & p.y = q.y \\ gcd(|p.x - q.x|, |p.y - q.y|) - 1 \end{cases}$$

2.4 Pick's Theorem

$$A = a + \frac{b}{2} + 1$$

where A is the area of the polygon, a is the number of integer points inside the polygon and b is the number of integer points in the boundary of the polygon

2.5 Triangle Existence Condition

$$a+b \ge c$$

$$a+c \ge b$$

$$b+c \ge a$$

2.6 Perimeter

2.6.1 Circle

$$2\pi r$$

2.7 Areas

2.7.1 Circle

$$\pi r^2$$

2.7.2 Triangle

$$\frac{b*h}{2}$$

2.7.3 Square

$$l^2$$

2.7.4 Rectangle

hr

2.7.5 Rhombus

D is the biggest diagonal and d is the smallest diagonal

$$A = \frac{1}{2} * D * d$$

2.8 Volumes

2.8.1 Sphere

$$\frac{4}{3}\pi r^3$$

2.8.2 Prism

$$V = bh$$

2.8.3 Pyramid

$$\frac{bh}{3}$$

2.8.4 Cone

$$\frac{\pi r^2 h}{3}$$

2.9 Sines Rule

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

2.10 Cossines Rule

$$a^2 = b^2 + c^2 - 2bccos(\alpha)$$

2.11 Shoelace Formula

$$A = \frac{1}{2} \left| \sum_{i=1}^{n-1} (p_i \times p_{i+1}) = \frac{1}{2} \left| \sum_{i=1}^{n-1} (x_i y_{i+1} - x_{i+1} y_i) \right| \right|$$

Where the points p_1, pn, \ldots are in adjecent order and the first and last vertex is the same, that is, $p_1 = pn$

3 Bitwise

3.1 Turn bit on or off

Turn on bit i x $\mid= (1 << i)$ Turn off bit i x &= (1 << i)

3.2 Check if bit is on or off

Check if bit is on x & (1 << i)Check if bit is off !(x & (1 << i))

3.3 Number of bits on

__builtin_popcount(x)

3.4 Count leading zeros

__builtin_clz(z)
__builtin_clzll(z)

3.5 MSB

32 - _builtin_clz(x) 64 - __bultin_clzl1(x)

3.6 Count trailing zeros

__builtin_ctz(x)
__builtin_ctzll(x)

3.7 LSB

__builtin_ffs(X)

3.8 XOR from 1 to n

$$f(n) = \begin{cases} n & n \equiv 0 \pmod{4} \\ 1 & n \equiv 1 \pmod{4} \\ n+1 & n \equiv 2 \pmod{4} \\ 0 & n \equiv 3 \pmod{4} \end{cases}$$

3.9 NOT

A	X
0	1
1	0

3.10 AND

A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

3.11 OR

A	В	X
0	0	0
0	1	1
1	0	1
1	1	1

3.12 NAND

A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

3.13 NOR

A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

3.14 XOR

A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

3.15 XNOR

A	B	X
0	0	1
0	1	0
1	0	0
1	1	1

4 Basic Math

4.1 Divisibility Criteria

4.1.1 2

The last digit is either 0, 2, 4, 6 or 8

4.1.2 3

The sum of the digits is also divisible by 3

4.1.3 4

The last two digits form a number that is divisble by 4

4.1.4 5

The last digit is either 0 or 5

4.1.5 6

It has to be divisible by both 2 and 3

4.1.6 7

The subtraction of the number formed without the last digit and the last digit times 2 is also divisible by 7

4.1.7 8

The last three digits form a number that is divisble by 8

4.2 Logarithm 8 NUMBER THEORY

4.1.8 9

The sum of the digits is also divisible by 9

4.2 Logarithm

$$\begin{split} \log_b mn &= \log_b m + \log_b n \qquad \log_b \frac{m}{n} = \log_b m - \log_n n \qquad \log_b n^p = p \log_b n \\ \log_b \sqrt[q]{n} &= \frac{1}{q} \log_b n \qquad \log_b n = \log_a n \log_b a \qquad b^{\log_b k} = k \\ \log_b a &= \frac{\log_c a}{\log_c b} \qquad \log_b a = \frac{1}{\log_a b} \qquad \log_b a \ \log_a c = \log_b c \\ \log_b 1 &= 0 \qquad \log_b b = 1 \end{split}$$

C++

Ordered set and multiset

typedef tree < pair < ll, ll >, null type, less < pair < ll, ll >>, rb tree tag, tree order statistics node update> ordered set; To change to multiset switch equal to less equal.

Priority Queue

template < class T > using min priority queue = priority queue <T, vector <T>, greater <T>>;

Combinatorics

Burnside's Lemma

Burnside's lemma can be used to count the number of combinations so that only one representative is counted for each group of symmetric combinations. For example, if we have a necklace with different colored pearls and we want to know how many different combinations we can make.

For example, if we have a necklace colored like this:

This variations are the same if we consider that we can rotate the necklace:

When the number of steps is k, the number of necklaces that remain the same are:

$$m^{\gcd(k,n)}$$

The number of different combinations for m colors and a necklace of size n is

$$\sum_{i=0}^{n-1} \frac{m^{\gcd(i,n)}}{n}$$

So a necklace of length 4 with 3 colors has

$$\frac{3^4 + 3 + 3^2 + 3}{4} = 24$$

Constants

 $LLINF = 0 \times 3f3f3f3f3f3f3f3fLL$

PI = acos(-1)

Number Theory

$$(a+b) \mod m = (a \mod m + b \mod m) \mod m$$

 $(a-b) \mod m = (a \mod m - b \mod m) \mod m$
 $(a \times b) \mod m = ((a \mod m) \times (b \mod m)) \mod m$
 $a^b \mod m = (a \mod m)^b \mod m$
 $a \equiv b \pmod m \iff (b-a)|m$

8.1 Number of Divisors

10 PROGRESSIONS

$$\gcd(a_1, a_2, a_3, a_4) = \gcd(a_1, \gcd(a_2, \gcd(a_3, a_4)))$$
$$\operatorname{lcm}(a, b) \times \gcd(a, b) = a \times b$$
$$\operatorname{lcm}(a, b) = \frac{a \times b}{\gcd(a, b)} = \frac{a}{\gcd(a, b)} \times b$$
$$\gcd(a, b) = b?\gcd(b, a\%b) : a$$

8.1 Number of Divisors

The number of divisors of n is about $\sqrt[3]{n}$.

\overline{n}	6	60	360	5040	55440	720720	4324320	21621600
d(n)	4	12	24	60	120	240	384	576

8.2 Number of digits of n! in base b

$$\log_b n! = \log_b (1 \times 2 \times 3 \times ... \times n) = \log_b 1 + \log_b 2 + \log_b 3 + ... + \log_b n$$

8.3 Prime counting function - $\pi(x)$

Expected to have $\frac{x}{\log x}$ primes within [1, x]. The prime counting function is asymptotic to $\frac{x}{\log x}$, by the prime number theorem.

X	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
$\pi(x)$	4	25	168	1229	9592	78498	664579	$5\ 761\ 455$

8.4 Sum of digits of n in base b

$$f(n,b) = \begin{cases} n & n < b \\ f\left(n, \left\lfloor \frac{n}{b} \right\rfloor + (n \mod b) \right) & n \ge b \end{cases}$$

8.5 Fermat's Theorems

Let P be a prime number and a an integer, then:

$$a^p \equiv a \pmod{p}$$
$$a^{p-1} \equiv 1 \pmod{p}$$

Lemma: Let p be a prime number and a and b integers, then:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

Lemma: Let p be a prime number and a an integer. The inverse of a modulo p is a^{p-2} :

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

9 Identities

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$
$$\sum_{i=1}^{n} \frac{1}{i} \approx \log n \qquad \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$

10 Progressions

10.1 Arithmetic Progression

10.1.1 General Term

$$a_1 + (n-1)r$$

10.1.2 Sum

$$\frac{(a_1+a_n)n}{2}$$

10.1.3 Sum of Second Order Arithmetic Progression

 a_1 is the first element of the original progression, b_1 is the first element of the derived progression, n is the number of elements of the original progression and r is the ratio of the derived progression

$$a_1n + \frac{(b_1n(n-1)}{2} + \frac{rn(n-1)(n-2)}{6}$$

- 10.2 Geometric Progression
- 10.2.1 General Term

$$a_1q^{n-1}$$

10.2.2 Sum

$$\frac{a_1(q^n-1)}{q-1}$$

10.2.3 Infinite Sum

$$-1 < q < 1$$

$$\frac{a_1}{1 - q}$$