

Theoritical Calculation of altitude of unit optical depth- Table data

 $\tau(z) = 1 = \sigma^a H n(z)$

Exponential density: $n(z) = n_0 \exp\left(\frac{-z}{H}\right)$

Altitude of unit optical depth: $z = H \ln |H n_0 \sigma^a|$

Assuming: Scale Height H = 7 km, $n_0 = 2.7 \text{e} 19 \text{ cm}^{-3}$, σ^a for N_2 as given, we find the value for z for optical depth $\tau = 1$ by using the above formula

Calcula ted	Results				
Bin #	λ min (A)	λ max (A)	Mean λ (A)	Mean σN2abs (mega- barns)	Alt of tau=1 (km)
1	0.5	1	0.75	2.48e-5	43
2	1	1.5	1.25	1.47e-4	55.5
3	1.5	2	1.75	4.57e-4	63.5
4	2	2.5	2.25	1.02e-3	69.1
5	2.5	3	2.75	1.9e-3	73.3
6	3	4	3.5	4.0e-3	78.7
7	4	5	4.5	8.55e-3	84
8	5	6	5.5	1.55e-2	88.1
9	6	8	7	3.12e-2	93
10	8	10	9	6.32e-2	98
11	10	14	12	0.14	103.5
12	14	18	16	0.30	109

Effect of altitude bin Az

1. If we take the altitude bin in the model to be $\Delta z = 0.5$ to 1 km, the deviation in calculating the altitude of unit optical depth is minimum, so $\Delta z = 1$ km in the model.

Calcula ted	Results				
Bin #	λ min (A)	λ max (A)	Mean λ (A)	Mean σN2abs (mega- barns)	Alt of tau=1 (km)
1	0.5	1	0.75	2.48e-5	43
2	1	1.5	1.25	1.47e-4	55.5
3	1.5	2	1.75	4.57e-4	63.5
4	2	2.5	2.25	1.02e-3	69.1
5	2.5	3	2.75	1.9e-3	73.3
6	3	4	3.5	4.0e-3	78.7
7	4	5	4.5	8.55e-3	84
8	5	6	5.5	1.55e-2	88.1
9	6	8	7	3.12e-2	93
10	8	10	9	6.32e-2	98
11	10	14	12	0.14	103.5
12	14	18	16	0.30	109

Model Results			Altitued Difference (km)
σN2abs (mega-barns)	Alt of tau=1 (km)	Exact value of optical depth tau	(MII)
3.38E-05	46	1.12	3
1.49E-04	58	1.02	2.5
4.55E-04	65	1.32	1.5
1.03E-03	71	1.21	1.9
2.04E-03	75	1.26	1.7
3.91E-03	79	1.25	0.3
8.59E-03	83	1.39	1
1.56E-02	87	1.22	1.1
3.15E-02	90	1.17	3
6.43E-02	94	1.15	4
1.41E-01	99	1.24	4.5
3.02E-01	103	1.31	6

N₂ Cross-sections

- 1.I changed the crosssections of N_2 in the model to the one from the table.
- 2.The cross-section of the first bin is different in the model and the table.
- 3. Changing the crosssections only changes the altitude of unit optical depth in the first bin.
- 4.I checked the Henke + Fennelly data, and the model value is more accurate than the table value.

N₂ Cross-sections

Calcula ted	Results							Altitued Difference (km)
Bin #	λ min (A)	λ max (A)	Mean λ (A)	Mean σN2abs (mega- barns)	Alt of tau=1 (km)	Alt of tau=1 (km)	Exact value of optical depth tau	()
1	0.5	1	0.75	2.48e-5	43	45	1.12	2
2	1	1.5	1.25	1.47e-4	55.5	58	1.02	2.5
3	1.5	2	1.75	4.57e-4	63.5	65	1.32	1.5
4	2	2.5	2.25	1.02e-3	69.1	71	1.21	1.9
5	2.5	3	2.75	1.9e-3	73.3	75	1.26	1.7
6	3	4	3.5	4.0e-3	78.7	79	1.25	0.3
7	4	5	4.5	8.55e-3	84	83	1.39	1
8	5	6	5.5	1.55e-2	88.1	87	1.22	1.1
9	6	8	7	3.12e-2	93	90	1.17	3
10	8	10	9	6.32e-2	98	94	1.15	4
11	10	14	12	0.14	103.5	99	1.24	4.5
12	14	18	16	0.30	109	103	1.31	6

This bin changed

Estimation of n_o from the model

- 1. In the table (slide 2), it was assumed $n_0 = 2.7E19 \text{ cm}^3$
- 2.I used the formula from slide 2, to get an estimation of n_0 of the model.
- 3. This combination of scale height and density gives the same value of altitude of unit optical depth as in slide 5

n _o (cm³)	Height of unit optical depth (km)	Scale Height (km)
1.63e+19	45	7.82
3.01e+19	58	7.19
5.72e+19	65.5	6.70
1.13e+20	71	6.34
1.86e+20	75	5.95
2.45e+20	79	5.60
6.31e+20	83.5	5.27
1.84e+21	87	5.27
1.58e+21	90.5	5.30
9.81e+20	94.5	5.45
1.19e+21	99	5.40
5.36e+20	103	5.62

Estimation of altitude of unit optical depth using constant n_o

- 1. However, if I use $n_0 = 2.7E19$ cm³, the model's scale height, and the formula for altitude of unit optical height derived in slide 2, the altitude is very different (column2 of table on the right)
- 2. So the correct scale height and density is required to get the correct altitude.

n _o (cm³)	Height of unit optical depth (km)	Scale Height (km)
2.7e+19	48.9	7.82
2.7e+19	57	7.19
2.7e+19	60.5	6.70
2.7e+19	62	6.34
2.7e+19	63	5.95
2.7e+19	65.9	5.60
2.7e+19	65.9	5.27
2.7e+19	64.8	5.30
2.7e+19	68.9	5.30
2.7e+19	74.9	5.45
2.7e+19	78.5	5.40
2.7e+19	86.2	5.62

Calculation of altitudes with MSIS values of n_0

- 1. The MSIS value for $n_0 = 1.9 E19$ cm³
- 2. Taking scale height H= 7km and the formula for altitude of unit optical height derived in slide 2, and calculating the altitude of unit optical depth.
- 3. The altitudes are different than the ones calculated in the table with n_0 = 2.7E19 cm³

Calculat ed	Results				
Bin #	λ min (A)	λ max (A)	Mean λ (A)	Mean σN2abs (mega- barns)	Alt of tau=1 (km) n0= 2.7 E19
1	0.5	1	0.75	2.48e-5	43
2	1	1.5	1.25	1.47e-4	55.5
3	1.5	2	1.75	4.57e-4	63.5
4	2	2.5	2.25	1.02e-3	69.1
5	2.5	3	2.75	1.9e-3	73.3
6	3	4	3.5	4.0e-3	78.7
7	4	5	4.5	8.55e-3	84
8	5	6	5.5	1.55e-2	88.1
9	6	8	7	3.12e-2	93
10	8	10	9	6.32e-2	98
11	10	14	12	0.14	103.5
12	14	18	16	0.30	109

Alt of tau=1 (km) (n0=	Model Results		
1.9 E19)	Alt of tau=1 (km)		
40.6	46		
53.	58		
61	65		
66.6	71		
71	75		
76	79		
81.5	83		
85.6	87		
90.6	90		
95.5	94		
101	99		
106	103		

Conclusion

- 1. The difference in altitude of unit optical depth between the model data and the calculated data is due to the difference in the assumptions made in its calculations and the different values calculated by the model.
- 2.An altitude binning of $\Delta z = 0.5$ to 1 km is good for getting the correct altitude of optical depth.
- 3. The N_2 cross-section of the first bin in the model is more accurate than that given in the theoretical table.