

第1节 目标规划的数学模型

第2节 解目标规划的图解法

第3节 解目标规划的单纯形法

第4节 灵敏度分析

第5节 应用举例

第1节 目标规划的数学模型

第2节 解目标规划的图解法

第3节解目标规划的单纯形法

第4节 灵敏度分析

第5节 应用举例

第3节 解目标规划的单纯形法

目标规划的数学模型结构与线性规划的数学模型结构形式上没有本质的区别,所以可用单纯形法求解。但要考虑目标规划的数学模型一些特点,作以下规定:

- (1)因目标规划问题的目标函数都是求最小化,所以以 c_{j} - z_{j} ≥0 (j=1,2,...,n)为最优准则。
- (2)因非基变量的检验数中含有不同等级的优先因子,即

$$c_j - z_j = \sum a_{kj} P_k, \quad j = 1, 2, \dots, n, \quad k = 1, 2, \dots, K$$

$$z = \sum_{j=1}^{n} c_{j} x_{j} = \sum_{i=1}^{m} c_{i} x_{i} + \sum_{j=m+1}^{n} c_{j} x_{j}$$

$$= \sum_{i=1}^{m} c_{i} \left(b_{i} - \sum_{j=m+1}^{n} a_{ij} x_{j} \right) + \sum_{j=m+1}^{n} c_{j} x_{j}$$

$$= \sum_{i=1}^{m} c_{i} b_{i} + \sum_{j=m+1}^{n} \left(c_{j} - \sum_{i=1}^{m} c_{i} a_{ij} \right) x_{j}$$

第3节 解目标规划的单纯形法

目标规划的数学模型结构与线性规划的数学模型结构形式上没有本质的区别,所以可用单纯形法求解。但要考虑目标规划的数学模型一些特点,作以下规定:

- (1)因目标规划问题的目标函数都是求最小化,所以以 c_{j} - z_{j} ≥0 (j=1,2,...,n)为最优准则。
- (2)因非基变量的检验数中含有不同等级的优先因子,即

$$c_{j} - z_{j} = \sum a_{kj} P_{k}, \quad j = 1, 2, \dots, n, \quad k = 1, 2, \dots, K$$

 $P_1>>P_2>>...>>P_K$;从每个检验数的整体来看:检验数的正、负

首先决定于 P_1 的系数 α_{lj} 的正、负。若 $\alpha_{lj}=0$,这时此检验数的正、

负就决定于 P_2 的系数 α_{2j} 的正、负,下面可依此类推。

解目标规划问题的单纯形法的计算步骤:

- (1) 建立初始单纯形表,在表中将检验数行按优先因子个数分别列成 K行,置k=1。
- (2) 检查该行中是否存在负数,且对应的前k-1行的系数是零。若有 负数取其中最小者对应的变量为换入变量,转(3)。若无负数,则 转(5)。
- (3) 按最小比值规则确定换出变量,当存在两个和两个以上相同的最 小比值时,选取具有较高优先级别的变量为换出变量。
- (4) 按单纯形法进行基变换运算,建立新的计算表,返回(2)。
- (5) 当k=K时,计算结束。表中的解即为满意解。否则置k=k+1,返 回到(2)。

例: 用单纯形法求解目标规划问题

$$\min z = P_1 d_1^+ + P_2 (d_2^- + d_2^+) + P_3 d_3^-$$

$$2x_1 + x_2 + x_s = 11$$

$$x_1 - x_2 + d_1^- - d_1^+ = 0$$

$$x_1 + 2x_2 + d_2^- - d_2^+ = 10$$

$$8x_1 + 10x_2 + d_3^- - d_3^+ = 56$$

$$x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, 2, 3$$

(i) $\mathbf{W}_{x_{s}}$, d_{1} , d,-, d,-为初始 基变量,列初 始单纯形表

	$\mathbf{c_{i}}$						\mathbf{P}_{1}	P ₂	P ₂	P;		
$\mathbf{C}_{\mathbf{B}}$	X_{B}	b	X	X ₂	Xs	$\mathbf{d_1}$	$\mathbf{d_1}^+$	$\mathbf{d_2}^{-}$	$\mathbf{d_2}^+$	d ₃	$\mathbf{d_3}^+$	θ
P ₂ P ₃	$\mathbf{X}_{\mathbf{S}}$ \mathbf{d}_{1} \mathbf{d}_{2} \mathbf{d}_{3}	11 0 10 56	2 1 1 8	1 -1 [2] 10	1	1	-1	1	-1	1	-1	11/1 / 10/2 56/10
c _j -	Zj	P ₁ P ₂ P ₃	-1 -8	-2 -10			1		2	•	1	

- (ii) $\mathbf{N}_{k=1}$,检查检验数的 P_1 行,因该行无负检验数,故转(5)。
- (iii) 因k(=1) < K(=3),置k=k+1=2,返回到(2)。
- (iv) 查出检验数 P_2 行中有-1、-2;取min(-1,-2)=-2。

它对应的变量 x_2 为换入变量,转入(3)。

(v)在表1上计算最小比值

 $\theta = \min(11/1, /, 10/2, 56/10) = 10/2$

它对应的变量 d_2 -为换出变量,转入(4)

	c _i						P ₁	P ₂	P ₃	P ₃		
$\mathbf{C}_{\mathbf{B}}$	X _B	b	X 1	X 2	Xs	$\mathbf{d_1}$	$\mathbf{d_1}^+$	d_2	d_2^+	d_3	d_3^+	θ
	Xs	11	2	1	1							11/1
	d_1	0	1	-1		1	-1					/
P_2	$\mathbf{d_2}^{-}$	10	1	[2]				1	-1			10/2
\mathbf{P}_3	d_3	56	8	10						1	-1	56/10
	•	\mathbf{P}_1					1					
c_{j} - z_{j}	j	P ₂	-1	-2					2			
		P_3	-8	-10							1	

(vi) 即进行基变换运算

	c_{i}						\mathbf{P}_{1}	P ₂	P ₃	P_3		
$\mathbf{C}_{\mathbf{B}}$	X _B	b	X 1	X 2	Xs	$\mathbf{d_1}$	$\mathbf{d_1}^+$	d_2	$\mathbf{d_2}^+$	d_3	d_3^+	θ
	Xs	11	2	1	1							11/1
	$\mathbf{d_1}^{-}$	0	1	-1		1	-1					/
P_2	$\mathbf{d_2}^{-}$	10	1	[2]				1	-1			10/2
\mathbf{P}_3	d_3	56	8	10						1	-1	56/10
		\mathbf{P}_1					1					
c_{j} - z_{j}	j	P ₂	-1	-2					2			
		P_3	-8	-10							1	

X₂换入,d₂- 换出

表1

(vi) 即进行基变换运算,计算结果见表2

	$\overline{\mathbf{C_j}}$						P ₁	P ₂	P ₂	P ₃		
C_{B}	X _B	b	X_1	X_2	X_{S}	d ₁ -	d_1^+	d ₂ -	d_2^+	d ₃ -	d ₃ +	
	X _s	6	3/2		1			-1/2	1/2			6/1.5
	d_1	5	3/2			1	-1	1/2	-1/2			5/1.5
	X_2	5	1/2	1				1/2	-1/2			5/0.5
P_3	d_3	6	[3]					- 5	5	1	-1	6/3
		P_1					1					
C_{j} –	$-z_{\mathbf{j}}$	P_2						1	1			
]	P_3	-3					5	-5		1	

X₁换入, d₃- 换出

表2

?

(VII) 返回到(2)。依此类推,直至得到最终表为止。见表3。

	C_{j}						P ₁	P ₂	P ₂	P ₃		
$\mathbf{C}_{\mathbf{B}}$	X_{B}	b	X_1	X ₂	X_{S}	d ₁ -	d_{1}^{+}	d_{2}	$d_{2^{+}}$	d ₃ -	d_{3}^{+}	
	X_s	3	3			1		2	-2	-1/2	1/2	
	X_s d_1	2	2				1	3	-3	-1/2	1/2	
	X_2	4	4		1			4/3	-4/3	-1/6	1/6	
	X_1	2	2	1				-5/3	5/3	1/3	-1/3	
	F	1					1					
$\mathbf{C_{j}}$ –	$-z_{\mathbf{j}}$ P	2						1	1			
		3								1		
					_							

表3

 $\mathbf{R} x_1^* = 2$, $x_2^* = 4$ 为例的满意解

表3所示的解 $x_1^*=2$, $x_2^*=4$ 为例的满意解。此解相当于图5-1的G

(VII) 返回到(2)。依此类推,直至得到最终表为止。见表3。

C_{j}							\mathbf{P}_1	P ₂	P ₂	P ₃		
$C_B X$	B	b	X ₁	X ₂	X _S	d ₁ -	d_1^+	d ₂ -	d_2^+	d ₃ -	d_3^+	
X,	S	3	3			1		2	-2	-1/2	1/2	
d	- 1	2	2				1	3	-3	-1/2	1/2	
X	2	4	4		1			4/3	-4/3	-1/6	1/6	
X	1	2	2	1				-5/3	5/3	1/3	-1/3	
]	P_1					1					
$C_j - Z_j$	F	2						1	1			
		3								1		
				_								

表3

d₃+换入,d₁-换出

	C_{j}						\mathbf{P}_{1}	P ₂	P ₂	P ₃		
C_{B}	X_{B}	b	X_1	X ₂	X _S	d_{1}	d_{1}^{+}	d ₂ -	d_{2^+}	d ₃ -	d_{3}^{+}	
	X_s	1			1	-1	1	-1	1			
١.	d_3^+	4				2	-2	6	-6	-1	1	
Н	X_2	10/3				-1/3	1/3	1/3	-1/3			
Н	X_1	10/3	1	1		2/3	-2/3	1/3	-1/3			
]	P_1					1					
C_{j}	$-z_{\mathbf{j}}$ 1	2						1	1			
	$-z_{\mathbf{j}}$ I	3								1		

得到解 X_1 *=10/3, X_2 *=10/3

由表4得到解 $X_1^*=10/3$, $X_2^*=10/3$, 此解相当于图5-1的D点,G、D

两点的凸线性组合都是例1的满意解

第5章 目标规划

第1节 目标规划的数学模型

第2节 解目标规划的图解法

第3节解目标规划的单纯形法

第4节 灵敏度分析

第5节 应用举例

第4章 目标规划

第1节 目标规划的数学模型

第2节 解目标规划的图解法

第3节 解目标规划的单纯形法

第4节 灵敏度分析

第5节 应用举例

第4节 灵敏度分析

目标规划的灵敏度分析方法与线性规划相似,这里除分析各项系数 的变化外,还有优先因子的变化问题,下面举例说明改变目标优 先等级的分析。

目标函数:
$$\min z = P_1(2d_1^+ + 3d_2^+) + P_2d_3^- + P_3d_4^+$$

$$x_1 + d_2^- - d_2^+ = 4$$

满足约束条件:
$$\begin{cases} x_1 + x_2 + d_1^- - d_1^+ = 10 \\ x_1 + d_2^- - d_2^+ = 4 \\ 5x_1 + 3x_2 + d_3^- - d_3^+ = 56 \\ x_1 + x_2 + d_4^- - d_4^+ = 12 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, \quad i = 1, 2, 3, 4 \end{cases}$$

目标函数: $\min z = P_1(2d_1^+ + 3d_2^+) + P_2d_3^- + P_3d_4^+$

満足约束条件:
$$\begin{cases} x_1 + x_2 + d_1^- - d_1^+ = 10 \\ x_1 + d_2^- - d_2^+ = 4 \\ 5x_1 + 3x_2 + d_3^- - d_3^+ = 56 \\ x_1 + x_2 + d_4^- - d_4^+ = 12 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, \quad i = 1, 2, 3, 4 \end{cases}$$

得到最终表后,见下表

	c _j					2P ₁		3P ₁	P ₂			P ₃	
													θ
$\mathbf{C}_{\mathbf{B}}$	X _B	b	X ₁	X ₂	\mathbf{d}_1	d_1^+	d_2	$\mathbf{d_2}^+$	d_3	d_3^+	$\mathbf{d_4}^{-}$	d_4^+	
	X ₂	6		1	1	-1	-1	1					
	$\mathbf{x_1}$	4	1			-2	1	-1					
P ₂	d_3	18			-3	3	-2	2	1	-1			
	$\mathbf{d_4}^{-}$	2	1		-1	1					1	-1	
		\mathbf{P}_{1}				2		3					
c_{j} - z_{j}	j	P_2			3	-3	2	-2		1			
		P ₃										1	

目标函数: $\min z = P_1(2d_1^+ + 3d_2^+) + P_2d_3^- + P_3d_4^+$

目标函数的优先等级变化为:

- (1) min $z=P_1(2d_1^++3d_2^+)+P_2d_4^++P_3d_3^-$
- (2) $\min z = P_1 d_3 + P_2 (2d_1 + 3d_2 +) + P_3 d_4$ 试分析原解有什么变化。

$$\begin{cases} x_1 - x_2 + d_1^- - d_1^+ = 10 \\ x_1 + d_2^- - d_2^+ = 4 \\ 5x_1 + 3x_2 + d_3^- - d_3^+ = 56 \\ x_1 + x_2 + d_4^- - d_4^+ = 12 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, \quad i = 1, 2, 3, 4 \end{cases}$$

	$\mathbf{c}_{\mathbf{j}}$					2P ₁		3P ₁	P ₂			P ₃	
													θ
$\mathbf{C}_{\mathbf{B}}$	X _B	b	x ₁	X ₂	\mathbf{d}_1	d_1^+	d_2	d_2^+	d_3	d_3^+	$\mathbf{d_4}^{-}$	d_4^+	
	X ₂	6		1	1	-1	-1	1					
	$\mathbf{x_1}$	4	1			-2	1	-1					
P_2	d_3	18			-3	3	-2	2	1	-1			
	d_4	2	1		-1	1					1	-1	
		\mathbf{P}_{1}				2		3					
c_{j} - z_{j}	j	P ₂			3	-3	2	-2		1			
		P ₃										1	

目标函数: $\min z = P_1(2d_1^+ + 3d_2^+) + P_2d_3^- + P_3d_4^+$

目标函数的优先等级变化为:

- (1) min $z=P_1(2d_1+3d_2+)+P_2d_4+P_3d_3-$
- (2) min $z = P_1 d_3 + P_2 (2d_1 + 3d_2 +) + P_3 d_4$ 试分析原解有什么变化。

$$\begin{cases} x_1 - x_2 + d_1^- - d_1^+ = 10 \\ x_1 + d_2^- - d_2^+ = 4 \\ 5x_1 + 3x_2 + d_3^- - d_3^+ = 56 \\ x_1 + x_2 + d_4^- - d_4^+ = 12 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, \quad i = 1, 2, 3, 4 \end{cases}$$

解 分析(1), 实际是将原目标函数中 d_4 +, d。的优先因子对换了一下 这时将下表的检验数中的 P_2 、 P_3 行和 c_i 行的 P_2 、 P_3 对换即可。

这时可见原解仍满足最优解条件。

	c _j					2P ₁		3P ₁	P ₂			P ₃	θ
$\mathbf{C}_{\mathbf{B}}$	X _B	b	X ₁	X ₂	d_1	$\mathbf{d_1}^+$	d ₂ -	$\mathbf{d_2}^+$	d ₃ -	d_3^+	$\mathbf{d_4}^{-}$	$\mathbf{d_4}^+$	
	X ₂	6		1	1	-1	-1	1					
	X ₁	4	1			-2	1	-1					
P_2	d ₃ -	18			-3	3	-2	2	1	-1			
	$\mathbf{d_4}^{-}$	2	1		-1	1					1	-1	
		\mathbf{P}_{1}				2		3					
$\mathbf{c_{j}}$ - $\mathbf{z_{j}}$	j	$\mathbf{P_2}$			3	-3	2	-2		1			
		$\mathbf{P_3}$										1	

目标函数:
$$\min z = P_1(2d_1^+ + 3d_2^+) + P_2d_3^- + P_3d_4^+$$

目标函数的优先等级变化为:

- (1) min $z=P_1(2d_1^++3d_2^+)+P_2d_4^++P_3d_3^-$
- (2) $\min z = P_1 d_3 + P_2 (2d_1 + 3d_2 +) + P_3 d_4$ 试分析原解有什么变化。

$$\begin{cases} x_1 - x_2 + d_1^- - d_1^+ = 10 \\ x_1 + d_2^- - d_2^+ = 4 \\ 5x_1 + 3x_2 + d_3^- - d_3^+ = 56 \\ x_1 + x_2 + d_4^- - d_4^+ = 12 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, \quad i = 1, 2, 3, 4 \end{cases}$$

解分析(2),将变化了的优先等级直接反映到下表上。再计算检验数

	$\mathbf{c_{j}}$					2P ₂		<i>3P</i> ₂	P_1			P 3	θ
Св	XB	b	X1	X 2	d ₁ -	$\mathbf{d_1}^+$	d2 ⁻	d_2^+	d ₃ -	d3 ⁺	d ₄ -	d ₄ ⁺	
	X2	6		1	1	-1	-1	1					
	X 1	4	1			-2	1	-1					
P_1	d3 ⁻	18			-3	3	-2	2	1	-1			
1	d₄⁻	2	1		-1	[1]					1	-1	
	-	P 1			3	-3	2	-2		1			
c _j -z _j	j	P ₂				2		3					
		P 3										1	

然后进行迭代,直到求得新的满意解为止。从表中得到新的满意 $\mathbf{k} x_1 = 4, x_2 = 12$ 。

	ci					2P ₂		3P ₂	P_1			P ₃
C_{B}	X_{B}	b	\mathbf{x}_1	\mathbf{x}_2	d_1	d_1^+	d_2	d_2^+	d_3	d_3^+	d_4	d_4^+
	X2	8	1	1			-1	1			1	-1
	\mathbf{x}_1	4	1				1	-1				
\mathbf{P}_1	d_3^-	12					-2	2	1	-1	-3	[3]
$2P_2$	d_1^+	2			-1	1					1	-1
		P_1					2	-2		1	3	-3
c _j -z _j		P_2			2			3			-2	2
		P_3										1
	x ₂	12	1	1			-5/3	5/3	1/3	-1/3		
	x ₁	4	1				1	-1	2,0	1,0		
P_3	d_4^+	4					-2/3	2/3	1/3	-1/3	-1	1
$2P_2$	d_1^+	6			-1	1	-2/3	2/3	1/3	-1/3		
		P ₁							1			
c _j -z _j		P_2			2	0	4/3	5/3	-2/3	2/3		
		P_3					2/3	-2/3	-1/3	1/3	1	

第5章 目标规划

第1节 目标规划的数学模型

第2节 解目标规划的图解法

第3节 解目标规划的单纯形法

第4节 灵敏度分析

第5节 应用举例

第5章 目标规划

第1节 目标规划的数学模型

第2节 解目标规划的图解法

第3节 解目标规划的单纯形法

第4节 灵敏度分析

第5节 应用举例

第5节 应用举例

例 某单位领导在考虑本单位职工的升级调资方案时,依次遵守以下规定:

- (1) 不超过年工资总额60000元;
- (2) 每级的人数不超过定编规定的人数;
- (3) II, III级的升级面尽可能达到现有人数的20%, 且无越级提升; 此外, III级不足编制的人数可录用新职工,又I级职工中有10%要退 休

有关资料汇总于表中、问该领导应如何拟订一个满意的方案。

等级	工资额(元/月)	现有人数	编制人数
	2000	10	12
l II	1500	12	15
III	1000	15	15
合计		37	42

26

等级	工资额(元/月)	现有人数	编制人数
I	2000	10	12
ll II	1500	12	15
III	1000	15	15
合计		37	42

解:设x1,x2,x3分别表示提升到I、II级和录用新职工的人数.

P₁:不超过月工资总额60000元;

P₂:每级人数不超过定编规定的人数;

P;II、III级的升级面尽可能达到现有人数的20%

调整以后各级的人数为:

I级:10-10×10%+ x₁

II级:12- x₁+x₂

|||级:15-x₂+x₃

调整以后各级的人数为:

以:10-10×10%+x₁

川级:12- x₁+x₂

|||级:15- x₂+x₃

等级	工资额(元/月)	现有人数	编制人数
ı	2000	10	12
П	1500	12	15
III	1000	15	15
合计		37	42

分析:

P₁:不超过月工资总额60000元, P₁d₁+

 $2000(10-10\times10\%+x_1)+1500(12-x_1+x_2)+1000(15-x_2+x_3)+d_1-d_1+d_1$ =60000

 P_2 :每级人数不超过定编规定的人数, $P_2(d_2^+ + d_3^+ + d_4^+)$

以:10-10×10%+ x_1 + d_2 -- d_2 +=12

川级:12- $x_1+x_2+d_3-d_3+=15$

|||级:15- $x_2+x_3+d_4-d_4+=15$

调整以后各级的人数为:

|级:10-10×10%+x₁

II级:12- x₁+x₂

|||级:15-x₂+x₃

等级	工资额(元/月)	现有人数	编制人数
I	2000	10	12
II	1500	12	15
III	1000	15	15
合计		37	42

 P_3 :II、III级的升级面尽可能达到现有人数的20%, $P_3(d_5)$

$$P_3(d_5-+d_6-)$$

川级:
$$x_1+d_5-d_5+=12\times20\%$$

|||级:
$$x_2 + d_6^- - d_6^+ = 15 \times 20\%$$

P_1 :不超过月工资总额60000元, $P_1d_1^+$

$$2000(10-10\times10\%+x_1)+1500(12-x_1+x_2)+1000(15-x_2+x_3)+d_1-d_1+d_1$$
=60000

P_2 :每级人数不超过定编规定的人数, $P_2(d_2^+ + d_3^+ + d_4^+)$

| 級:10-10×10%+
$$x_1+d_2-d_2+=12$$

川级:12-
$$x_1+x_2+d_3-d_3+=15$$

|||级:15-
$$x_2+x_3+d_4-d_4+=15$$

P_3 :II、III级的升级面尽可能达到现有人数的20%, $P_3(d_5 + d_6)$

川级:
$$x_1+d_5-d_5+=12\times20\%$$

|||級:
$$x_2 + d_6 - d_6 + = 15 \times 20\%$$

数学模型为:

Minz=
$$P_1d_1^{++} P_2(d_2^{+} + d_3^{+} + d_4^{+}) + P_3(d_5^{-} + d_6^{-})$$

$$2000(10-10\times10\%+x_1)+1500(12-x_1+x_2)+1000(15-x_2+x_3)+d_1-d_1+=60000$$

$$10-10\times10\%+x_1+d_2-d_2+=12$$

12-
$$x_1+x_2+d_3-d_3+=15$$

15-
$$x_2+x_3+d_4-d_4+=15$$

$$x_1+d_5-d_5+=12\times20\%$$

$$x_2 + d_6 - d_6 + = 15 \times 20\%$$

$$x_1,x_2, x_3 \ge 0, d_i^-, d_i^+ \ge 0, i=1,2,3,4,5,6$$

$$\begin{aligned} & \text{Minz= P}_1 \mathbf{d}_1^{++} + \mathbf{P}_2 (\mathbf{d}_2^{+} + \mathbf{d}_3^{+} + \mathbf{d}_4^{+}) + \mathbf{P}_3 (\mathbf{d}_5^{-} + \mathbf{d}_6^{-}) \\ & 2000 (10 \text{-} 10 \times 10 \% + x_1 \text{-}) + 1500 (12 \text{-} x_1 + x_2) + 1000 (15 \text{-} x_2 + x_3) + \mathbf{d}_1^{--} \mathbf{d}_1^{+} = 60000 \\ & 10 \text{-} 10 \times 10 \% + x_1 + \mathbf{d}_2^{--} \mathbf{d}_2^{+} = 12 \\ & 12 \text{-} x_1 + x_2 + \mathbf{d}_3^{--} \mathbf{d}_3^{+} = 15 \\ & 15 \text{-} x_2 + x_3 + \mathbf{d}_4^{--} \mathbf{d}_4^{+} = 15 \\ & x_1 + \mathbf{d}_5^{--} \mathbf{d}_5^{+} = 12 \times 20 \% \\ & x_2 + \mathbf{d}_6^{--} \mathbf{d}_6^{+} = 15 \times 20 \% \\ & X_1, x_2, x_3 \ge 0, \ \mathbf{d}_i^{--} \mathbf{d}_i^{+} \ge 0, \mathbf{i} = 1, 2, 3, 4, 5, 6 \end{aligned}$$

该目标规划模型可用单纯形法求解,得到多重解。

变 量	含义	解 1	解 2	解 3	解 4
\mathbf{X}_1	晋升到 级的人数	2. 4	2.4	3	3
\mathbf{X}_2	晋升到 II 级的人数	3	3	3	5
X 3	新招收Ⅲ级的人数	0	3	3	5
d_1	工资总额的结余额	6300	3300	3000	0
d_2	I 级缺编人数	0.6	0.6	0	0
\mathbf{d}_3	Ⅱ 级缺编人数	2. 4	2. 4	3	1
d_4	Ⅲ级缺编人数	3	0	0. 6	0
d_5^+	Ⅱ 级超编人数	0	0	0	0.6
d_6^+	Ⅲ级超编人数	0	0	0	2

作业

P127 5.2 (1)