Naive Bayes Classifier - II

Classifier Based on Bayes' Theorem

Contents

- 1. Naive Bayes Classifier in Python
 - i. For Continuous predictors
 - ii. For Categorical predictors
- 1. Laplace Smoothing

Case Study – Modeling Loan Defaults

Background

 A bank possesses demographic and transactional data of its loan customers. If the bank has a model to predict defaulters it can help in loan disbursal decision making.

Objective

• To predict whether the customer applying for the loan will be a defaulter or not.

Available Information

- Sample size is 700
- Independent Variables: Age group, Years at current address, Years at current employer, Debt to Income Ratio, Credit Card Debts, Other Debts. The information on predictors was collected at the time of loan application process.
- **Dependent Variable**: Defaulter (=1 if defaulter ,0 otherwise). The status is observed after loan is disbursed.

Data Snapshot

Independent Variables

Dependent Variable

S	SN	AGE	EMPLOY	ADDRESS	DEBTINC	CREDDEBT	OTHDEBT	DEFAULTE		
	1	3	17	12	9.3		5.01	1		
	2	1	10	6	17.3		4	0		
	3	2	15 15	14 14	5.5 2.9		2.17 0.82	0		
		20-00	2				1000000	10772	V-1	
Column		Descript		Тур		<i>l</i> leasure	ment	Possible	values	
SN	S	erial Nur	mber	nume	ric	-		-		
						1(<28 ye	ars),			
AGE		Age Gro	ups	Integ	er 2	2(28-40 y	ears),	3	3	
		0				3(>40 years)		J		
	Nι	ımber of	years							
EMPLOY	' cust	omer wo	orking at	Integ	er	-		Positive	value	
		rent em	_							
	Nι	ımber of	years							
ADDRESS	s cust	omer sta	aying at	Integ	er	-		Positive	value	
	CU	rrent ad	dress							
DEBTING	Debt	to Incor	ne Ratio	Continu	ious	ous - Positive		value		
CREDDEB	T Cred	lit to Del	oit Ratio	Continu	ious	-		Positive	value	
OTHDEB [*]	Т	Other D	ebt	Continu	ious	-		Positive	value	
רבר או וו דר	Wh	ether cu	stomer	Intog	or	1(Defaul	ter),	7		
DEFAULTE	det	aulted o	n loan	Integ	0(Non-Def	aulter)	2		

Naive Bayes Method in Python

Importing required Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB, MultinomialNB

from sklearn.metrics import confusion_matrix, f1_score,
precision_score, recall_score, accuracy_score,
roc_curve, roc_auc_score
```

- Naive Bayes methods differ based on the type of predictors- continuous or categorical
- Python's sklearn has various methods available and the two methods explored hereon are Gaussian Naive Bayes and Multinomial Naive Bayes.

Importing and Readying the Data for Modeling

```
bankloan = pd.read_csv("BANK LOAN.csv")
bankloan1 = bankloan.drop(['SN','AGE'], axis = 1)
bankloan1.head()
```

- drop() is used to remove unwanted variables. AGE is removed because it is a categorical variable.
- axis = 1 drops columns.

Output

	EMPLOY	ADDRESS	DEBTINC	CREDDEBT	OTHDEBT	DEFAULTER
0	17	12	9.3	11.36	5.01	1
1	10	6	17.3	1.36	4.00	0
2	15	14	5.5	0.86	2.17	0
3	15	14	2.9	2.66	0.82	0
4	2	0	17.3	1.79	3.06	1

Creating Train and Test Data Sets

- train_test_split() from sklearn.model_selection is used to split dataset into random train and test sets.
- test_size represents the proportion of dataset to be included in the test set.
- random_state sets the seed for the random number generator.

```
# Model Fitting
NBmodel = GaussianNB()
NBmodel.fit(X_train, y_train)
# Predicted Probabilities
predprob test = NBmodel.predic
```

- GaussianNB() fits a Gaussian Naive
 Bayes algorithm for classification.
- This model is suitable for continuous predictors and assumes the likelihood of predictors to be normal.

Output

 predict_proba() returns predicted probabilities for the test data.

Custom Cutoff Value for Prediction Labels

```
cutoff = 0.3
pred_test = np.where(predprob_test[:,1] > cutoff, 1, 0)
pred_test

The output is an array of binary
labels.
```

Output

```
# Confusion Matrix
confusion_matrix(y_test, pred_test, labels=[0, 1])
                                     accuracy_score() = number of correct
array([[135, 22],
                                         predictions out of total predictions
       [ 26, 27]])
                                        precision score() = true positives / (true
accuracy score(y test, pred test)
                                         positives + false positives)
0.7714285714285715
                                        recall_score() also known as 'Sensitivity' =
precision_score(y test, pred test)
                                         true positives / (true positives + false
0.5510204081632653
                                         negatives)
recall score(y test, pred test)
0.5094339622641509
```

```
# Area Under ROC Curve

auc = roc_auc_score(y_test, predprob_test[:,1])

print('AUC: %.3f' % auc)

AUC: 0.816

roc_auc_score computes Area Under the ROC curve.
```



```
# ROC Curve
NBfpr, NBtpr, thresholds = roc curve(y test, predprob test[:,1])
                                       roc_curve is used to Compute
# plot the roc curve for the model
                                        Receiver operating characteristic.
plt.figure()
1w = 2
plt.plot(NBfpr, NBtpr, color='darkorange',lw=lw, label='ROC curve
(area = \%0.3f)' \% auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.axis('tight')
plt.xlabel('False Positive Rate');plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
```

Output:

Case Study – Employee Churn Model

Background

 A company has comprehensive database of its past and present workforce, with information on their demographics, education, experience and hiring background as well as their work profile. The management wishes to see if this data can be used for predictive analysis, to control attrition levels.

Objective

• To develop an Employee Churn model via Naive Bayes

Available Information

- Sample size is 83
- Gender, Experience Level (<3, 3-5 and >5 years), Function (Marketing, Finance, Client Servicing (CS)) and Source (Internal or External) are independent variables
- Status is the dependent variable (=1 if employee left within 18 months from joining date)

Data Snapshot

EMPLOYEE CHURN DATA

			epender Variable	t Independent Variables				
		sn 1	status 1	function CS	exp <3	gender M	source external	
Columns	De	escripti	ion	Тур	oe -	Measurement		Possible values
sn	Seri	ial Nun	nber	Integer -		-		
status	= 1 If the Employee Left Within 18 Months of Joining = 0 Otherwise		Integ	ger	1,0		2	
function	Employ	yee Job	Profile	Character CS, FINANC MARKETIN			3	
exp	Experi	ience in	n Years	Character		<3,3-5,>5		3
gender	Gender o	of the E	Employee	Character		M,F	=	2
source	was A	Appoint	mployee ed via mal Links	Chara	cter	exterr interr	•	2

Importing and Readying the Data for Modeling, Model Fitting
empdata = pd.read_csv("EMPLOYEE CHURN DATA.csv")
empdata1 = empdata.loc[:, empdata.columns != 'sn']

loc() is used to create a subset of the data frame using column name. Removing column with serial numbers.

Output

empdata1.head()

source	gender	exp	function	status	
external	M	<3	CS	1	0
external	M	<3	CS	1	1
internal	M	>=3 and <=5	CS	1	2
internal	F	>=3 and <=5	CS	1	3
internal	M	<3	CS	1	4

Creating Dummy Variables

```
empdata2 = pd.get_dummies(empdata1)
empdata2.head()
```

pd.get_dummies() converts categorical variables into dummy variables. This step is crucial because the naive Bayes function used for categorical variables requires this format.

Output

source_internal	source_external	 function_CS	status	
0	1	 1	1	0
0	1	 1	1	1
1	0	 1	1	2
1	0	 1	1	3
1	0	 1	1	4

Creating Data Partitions

X_emp = empdata2.loc[:,empdata2.columns != 'status']
y_emp = empdata2.loc[:, 'status']

Model Fitting

MNBmodel = MultinomialNB(alpha = 0)

MNBmodel.fit(X emp, y emp)

- MultinomialNB() fits a Multinomial Naive Bayes algorithm for classification. This model is suitable for categorical predictors.
- alpha = 0 ensures the model doesn't apply any smoothing on the data.

Predicted Probabilities

```
predprob_MNB = MNBmodel.predict_proba(X_emp)
predprob_MNB

# Output

array([[0.06419224, 0.93580776],
```

Custom Cutoff Value for Prediction Labels

```
cutoff = 0.3
pred_test = np.where(predprob_MNB[:,1] > cutoff, 1, 0)
```

```
# Confusion Matrix
confusion matrix(y emp, pred test, labels=[0, 1])
                                      accuracy_score() = number of
array([[37, 13],
                                      correct predictions out of total
       [ 3, 30]])
                                      predictions
accuracy score(y emp, pred test)
                                      precision_score() = true positives /
0.8072289156626506
                                      (true positives + false positives)
precision_score(y emp, pred test)
0.6976744186046512
                                      recall score() also known as
                                      'Sensitivity' = true positives / (true
recall_score(y emp, pred test)
0.9090909090909091
                                      positives + false negatives)
# Area Under ROC Curve
auc = roc_auc_score(y_emp, predprob_MNB[:,1])
print('AUC: %.3f' % auc)
AUC: 0.871
```

ROC Curve MNBfpr, MNBtpr, thresholds = roc curve(y emp, predprob MNB[:,1]) # plot the roc curve for the model plt.figure() 1w = 2plt.plot(MNBfpr, MNBtpr, color='darkorange',lw=lw, label='ROC curve (area = %0.3f)' % auc)plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.axis('tight') plt.xlabel('False Positive Rate');plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show()

Output

Laplace Smoothing

$$P(x = x_i | y = y_i) = f_i/N_i$$

This prob will be 0 if numerator count (f_i) is 0

Laplace smoothing will replace this probability with a value obtained by the formula:

$$\widehat{\theta}_{i} = \frac{f_{i} + \alpha}{N_{j} + \alpha d_{i}}$$

where

 α : Smoothing Parameter

 $_{j}$: Number of observations for $Y = y_{j}$

 d_i : Number of classes of x

Quick Recap

Naive Bayes in Python

• GaussianNB for continuous variables, MultinomialNB for categorical variables in library sklearn.naive_bayes

Laplace Smoothing

- If a given class and feature value never occur together in the training data, then the frequency-based probability estimate will be zero.
- A pseudo-count is incorporated, in all probability estimates such that no probability is ever set to be exactly zero.
- This way of regularizing naive Bayes is called Laplace Smoothing