PROBABILITY: PROBLEM SET 1

ZEHAO WANG

Update: September 12, 2021

1.1.1

Let $\Omega = \mathbf{R}$, $\mathcal{F} =$ all subsets so that A or A^c is countable, P(A) = 0 in the first case and = 1 in the second. Show that (Ω, \mathcal{F}, P) is a probability space.

Proof.

- a), For the case A is countable, A^c must be uncountable, because \mathbb{R} is uncountable. But $(A^c)^c = A$ is countable, which means $A^c \in \mathcal{F}$. So, if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$. For the case A^c is countable, which means $A \in \mathcal{F}$. In summary, if $A \in \mathcal{F}$, then we have $A^c \in \mathcal{F}$.
- b), For any countable sequence sets $A_i \in \mathcal{F}$, A_i must be either the subset of \mathbb{Q} or at least including all irrational numbers, which cloud make sure A or A^c is countable, because only rational numbers in real numbers are countable. So, $\cup_i A_i$ is either the subset of the \mathbb{Q} or at least including all irrational numbers. In this case, Either $\cup_i A_i$ or $(\cup_i A_i)^c$ is countable. i.e. $\cup_i A_i \in \mathcal{F}$.

So, \mathcal{F} is σ -algebra. For P, because Ω is uncountable, $P(\Omega)=1$. Thus, (Ω,\mathcal{F},P) is a probability space.

1.1.3

A σ -field \mathcal{F} is said to be countably generated if there is a countable collection $\mathcal{C} \subset \mathcal{F}$ so that $\sigma(\mathcal{C}) = \mathcal{F}$. Show that \mathcal{R}^d is countably generated.

Proof.

With the hint from exercise 1.1.2, we can prove that $\sigma(\mathcal{S}_d) = \mathcal{R}^d$. $\mathcal{S}_d = \{(a_1, b_1] \times (a_2, b_2] \times \cdots \times (a_n, b_n] : -\infty \leq a_1 < b_1 \leq +\infty\}$. Let \mathcal{O} denotes all open subsets in \mathcal{R}^d . So, \mathcal{R}^d can be generated by \mathcal{O} . Then, we need to prove $\sigma(\mathcal{O}) \subset \sigma(\mathcal{S}_d)$ and $\sigma(\mathcal{S}_d) \subset \sigma(\mathcal{O})$.

a). Notice that

$$(a_1, b_1) \times \cdots \times (a_d, b_d) = \bigcup_{n \to \infty} (a_1, b_1 - 1/n] \times \cdots \times (a_d, b_d - 1/n]$$

which means the open rectangles $(a_1, b_1) \times \cdots \times (a_d, b_d) \subset \sigma(S_d)$. For any open set in $\sigma(O)$, it can be represented as countable union of open rectangles of rational numbers, because rational

numbers are dense and countable. So, we have $\sigma(\mathcal{O}) \subset \sigma(\mathcal{S}_d)$.

b), Observe that

$$(a_1, b_1] \times \cdots \times (a_d, b_d] = \bigcap_{n \to \infty} (a_1, b_1 + 1/n) \times \cdots \times (a_d, b_d + 1/n)$$

Because the union of open sets is open set, as well, we can get that $S_d \subset \sigma(\mathcal{O})$. Futher, $\sigma(S_d) \subset \sigma(\mathcal{O})$.

c), Combine a) and b), we know that $\sigma(\mathcal{S}_d) = \mathcal{R}^d$. Let $\mathcal{Q} = \{(q_1, \infty) \times \cdots \times (q_n, \infty) : q_i \in \mathbb{Q}\}$. For any $\mathcal{S} = (a_1, b_1] \times \cdots \times (a_d, b_d] \in \mathcal{S}_d$, since \mathbb{Q} is countable, \mathcal{S} can be represented as countable intersection and union operations of the subsets in \mathcal{Q} . So, $\sigma(\mathcal{Q}) = \sigma(\mathcal{S}_d)$. Then, we can get that \mathcal{R}^d is countably generated.

1.1.4

- (i) Show that if $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ are σ -algebras, then $\cup_i \mathcal{F}_i$ is an algebra.
- (ii) Give an example to show that $\bigcup_i \mathcal{F}_i$ need not be a σ -algebra.

Proof.

i),

- For any $A \in \bigcup_i \mathcal{F}_i$, there must be a k, such that $A \in \mathcal{F}_k$. So, $A^c \in \mathcal{F}_k$. Thus, $A^c \in \bigcup_i \mathcal{F}_i$.
- For $A, B \in \bigcup_i \mathcal{F}_i$, there must be a, b, such that $A \in \mathcal{F}_a$, $B \in \mathcal{F}_b$. So, $A \cup B \subset \mathcal{F}_a \cup \mathcal{F}_b \subset \bigcup_i \mathcal{F}_i$.

So, $\cup_i \mathcal{F}_i$ is an algebra.

Solution.

ii), Let $\mathcal{F}_i = \{-i, \dots, i\}$, and $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \dots$. For $\mathcal{A}_i = \{i\} \in \cup_i \mathcal{F}_i, \cup_i^{\infty} \mathcal{A}_i = \mathbb{N} \setminus \{0\}$. If $\cup_i \mathcal{F}_i$ is a σ -algebra, there should be a k, such that $\mathbb{N} \setminus \{0\} \subset \mathcal{F}_k$, however, it is impossible. So, $\cup_i \mathcal{F}_i$ need not be a σ -algebra. a

^aMaybe not correct.

1.1.5

A set $A \subset \{1, 2, \dots\}$ is said to have asymptotic density θ if

$$\lim_{n \to \infty} |A \cap \{1, 2, \cdots, n\}| / n = \theta$$

Let \mathcal{A} be the collection of sets for which the asymptotic density exists. Is \mathcal{A} a σ -algebra? an algebra?

Solution.

Let $A_1 = \{1, \dots, n_1, \eta_1 + \beta_1 + \beta_1 + \beta_2 + \beta_1 \}$,

$$|A_1 \cap \{1, 2, \cdots, 2n_1\}|/(2n_1) = \frac{1}{2};$$

Let $A_2 = \{1, \cdots, n_1, \eta_1 + 1/4/4/4/4/4/4/4/4\}$,

$$|A_2 \cap \{1, 2, \cdots, 4n_1\}|/(4n_1) = \frac{1}{4};$$

$$|A_3 \cap \{1, 2, \cdots, 6n_1\}|/(6n_1) = \frac{3}{6} = \frac{1}{2};$$

Let $A_4=\{1,\cdots,n_1,m_1,m_1,m_1,m_1,4m_1,4n_1+1,\cdots,6n_1,6m_1,6m_1,m_1,m_1,m_1,m_1\},$

$$|A_4 \cap \{1, 2, \cdots, 12n_1\}|/(12n_1) = \frac{3}{12} = \frac{1}{4};$$

.

Like this, we can get an infinite countable set sequence $\{A_i\}$, and its limit oscillates between $\frac{1}{2}$ and $\frac{1}{4}$. So, the limit of $\{A_i\}$ doesn't exist, i.e. $\bigcup_{i=1}^{\infty} A_i \notin \mathcal{A}$, however, $A_i \in \mathcal{A}$. Hence, \mathcal{A} isn't a σ -algebra.

I guess it may not be an algebra. But I can not get an example to prove it.

1.2.1

Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.

Proof.

First, $Z:\Omega\to\mathbb{R}$,

$$z(\omega) = \begin{cases} X(\omega) \in \mathbb{R}, \omega \in A \\ Y(\omega) \in \mathbb{R}, \omega \in A^c \end{cases},$$

So, $Z(\omega) \in \mathbb{R}$.

Second, for borel set $B \in \mathbb{R}$, we need to prove that $Z^{-1} \in \mathcal{F}$.

$$Z^{-1}(B) = \{ \omega \in \Omega : Z(\omega) \in B \}$$

$$= \{ \omega \in A : X(\omega) \in B \} \cup \{ \omega \in A^c : Y(\omega) \in B \}$$

$$= \{ A \cap X^{-1}(B) \} \cup \{ A^c \cap Y^{-1}(B) \}.$$

Because A and $A^c \in \mathcal{F}, Z^{-1} \in \mathcal{F}$.

1.2.4

Show that if $F(x) = P(X \le x)$ is continuous, then Y = F(X) has a uniform distribution on (0,1), that is, if $y \in [0,1], P(Y \le y) = y$.

1.2.7

- (i) Suppose X has density function f. Compute the distribution function of X^2 and then differentiate to find its density function.
- (ii) Work out the answer when X has a standard normal distribution to find the density of the chi-square distribution.

1.3.1

Show that if \mathcal{A} generates \mathcal{S} , then $X^{-1}(\mathcal{A}) \equiv \{\{X \in A\} : A \in \mathcal{A}\}$ generates $\sigma(X) = \{\{X \in B\} : B \in \mathcal{S}\}.$

1.3.5

A function f is said to be lower semicontinuous or l.s.c. if

$$\liminf_{y \to x} f(y) \ge f(x)$$

and upper semicontinuous (u.s.c.) if -f is l.s.c. Show that f is l.s.c. if and only if $\{x : f(x) \le a\}$ is closed for each $a \in \mathbf{R}$ and conclude that semicontinuous functions are measurable.