BIOS 667: Longitudinal Data Analysis

REML - summary

The restricted likelihood (residual likelihood, marginal likelihood) arises in the following setup.

The $n \times 1$ response vector Y is multivariate normal with $EY = \mu = X\beta$, where X is $n \times p$, full column rank $(p \le n)$, $cov(Y) = \Sigma(\theta)$, where θ is a $q \times 1$ vector that determines $\Sigma(\theta)$.

The log-likelihood is

$$l(\beta, \theta; Y) = -\frac{1}{2} \log |\Sigma| - \frac{1}{2} (Y - X\beta)^{\top} \Sigma^{-1} (Y - X\beta).$$

Note: Additive constants will be dropped from log-likelihoods.

Take any projection matrix, P, that projects on the column space of X, and form the residuals

$$R = Y - PY = (I - P)Y.$$

The REML log-likelihood is

$$l_{REML}(\theta; R) = -\frac{1}{2} \log |\Sigma| - \frac{1}{2} \log |X^{\top} \Sigma^{-1} X| - \frac{1}{2} Q(R, \Sigma, X),$$

where

$$Q(R, \Sigma, X) = R^{\top} \left\{ \Sigma^{-1} - \Sigma^{-1} X (X^{\top} \Sigma^{-1} X)^{-1} X^{\top} \Sigma^{-1} \right\} R.$$

The REML likelihood involves only Σ (or θ), but not β . The REML likelihood can not be used for inference about β . Specifically, likelihood ratio tests for β based on the REML likelihood are **not possible**.

The REML likelhood is invariant to the choice of P. That is, even though different choices of P lead to different residuals R, they lead to the same REML likelihood.

The REML likelihood is a genuine likelihood and can be used like any ordinary likelihood for inference about θ . This includes REML estimation of θ , likelihood ratio, score and Wald tests, Fisher information, etc. Maxmimization of l_{REML} is typically an iterative computation using Fisher scoring or other methods.

Once $\hat{\theta}$, and hence $\hat{\Sigma}$, is available from REML, an estimate of β can be obtained by a WLS-like computation as $\hat{\beta} = (X^{\top}WX)^{-1}X^{\top}WY$ where $W = \{\Sigma(\hat{\theta})\}^{-1}$. This is confusingly called the "REML estimator of β " even though the REML likelihood actually does not involve β at all (we can't maximize the REML likelihood over β).

The model-based estimator of $\operatorname{cov}(\hat{\beta})$ is $(X^{\top}WX)^{-1}$. This matrix can be used for inference (confidence intervals, Wald-type tests) about β .

Unlike WLS (where W is a non-random matrix), $\hat{\beta}$ here is generally biased. The reason is that W, being a function of Y, is random and does not factor out of expectations as it does in WLS.

In longitudinal and clustered data setups, the matrix Σ is block-diagonal with blocks Σ_i , and X is similarly partitioned into $\{X_i\}$. In this case, some of the above expressions can be written as summations. For example, $X^{\top}\Sigma^{-1}X = \sum_{i=1}^K X_i^{\top}\Sigma_i^{-1}X_i$, where K is the number of subjects or clusters.