THE MATHEMATICS OF LATTICE-BASED CRYPTOGRAPHY

6. Ring-SIS and Ring-LWE

Alfred Menezes cryptography 101.ca

Outline

- 1. Polynomials rings
- 2. Ideal lattices
- 3. Cyclic lattices
- 4. Anti-cyclic lattices
- 5. Ring-SIS
- 6. Ring-LWE

LWE-based public-key encryption

Key generation: Alice does:

- 1. Select $s \in_R [-B, B]^n$.
- 2. Select $A \in_R \mathbb{Z}_q^{n \times n}$ and $e \in_R [-B, B]^n$.
- 3. Compute b = As + e.
- 4. Alice's public key is (A, b); her private key is S.

Decryption: To decrypt $c = (c_1, c_2)$, Alice does:

1. Output 0 if $|c_2 - s^T c_1| < q/4$, and 1 otherwise.

Encryption: To encrypt a message $m \in \{0,1\}$ for Alice, Bob does:

- 1. Obtain an authentic copy of Alice's encryption key (A, b).
- 2. Select $r, z \in_R [-B, B]^n$ and $z' \in_R [-B, B]$.
- 3. Compute $c_1 = A^T r + z$ and $c_2 = b^T r + z' + m \lceil q/2 \rceil$.
- 4. Output $c = (c_1, c_2)$.

Module-LWE: Replace \mathbb{Z}_q elements with polynomials in a certain polynomial ring over \mathbb{Z}_q .

Polynomial rings

- * $\mathbb{Z}[x]$ is the set of polynomials in x with integer coefficients.
- ◆ Let $f \in \mathbb{Z}[x]$ be a *monic* polynomial of degree n.
- * The **polynomial ring** $R = \mathbb{Z}[x]/(f)$ is comprised of the set of all polynomials in $\mathbb{Z}[x]$ of degree less than n, with multiplication of polynomials performed modulo the **reduction polynomial** f(x).
- * So, to multiply polynomials $a(x), b(x) \in R$:
 - 1. Multiply a(x) and b(x) in $\mathbb{Z}[x]$, obtaining a polynomial h(x) of degree at most 2n-2.
 - 2. Divide h(x) by f(x) to get a remainder polynomial r(x) of degree at most n-1.
 - 3. Then $a(x) \times b(x) = r(x)$ in R.

Representing polynomials as vectors

- * A polynomial $a(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ in $R = \mathbb{Z}[x]/(f)$ can be represented by its vector of coefficients $a = (a_0, a_1, ..., a_{n-1})$. The vector has length exactly n.
- + I'll write $a(x) \leftrightarrow a$.
- * Example: Consider $R = \mathbb{Z}[x]/(x^4 + 2x^2 11x + 1)$.
 - + The polynomials $a(x) = 23 + 11x^2 + 7x^3 \in R$ and $b(x) = 40 + 5x + 16x^2 \in R$ can be represented by the vectors a = (23, 0, 11, 7) and b = (40, 5, 16, 0)
 - + In R, we have a + b = (63, 5, 27, 7), a b = (-17, -5, -5, 7), and $a \times b = (709, 2324, 1618, 111)$.

Ideals

- + Let $R = \mathbb{Z}[x]/(f)$.
- ◆ An **ideal** of *R* is a subset $I \subseteq R$ such that:
 - i) $0 \in I$.
 - ii) If $a, b \in I$ then $a + b \in I$ and $a b \in I$.
 - iii) If $a \in I$ and $r \in R$, then $a \times r \in I$.
- **+ Example**: Let a(x) ∈ R. Then $\langle a(x) \rangle = \{a(x)r(x) \bmod f(x) \mid r \in R\}$ is an ideal of R, called the **principal ideal** generated by a(x).
- * **Example**: Let $a_1(x), a_2(x) \in R$. Then $\langle a_1(x), a_2(x) \rangle = \{a_1(x)r_1(x) + a_2(x)r_2(x) \mod f(x) \mid r_1, r_2 \in R\}$ is an ideal of R, called the ideal generated by $a_1(x)$ and $a_2(x)$.

Ideal lattices

- + Let $R = \mathbb{Z}[x]/(f)$ and let I be a nonzero ideal of R.
- ◆ Then $L(I) = \{a \mid a(x) \in I\}$ is an integer lattice in \mathbb{R}^n , called an **ideal** lattice.
- * **Remark**. L(I) does not necessarily have rank n, i.e., L(I) might be spanned by n-1 or fewer linearly independent lattice vectors.
- * We'll only be concerned with the cases $f(x) = x^n 1$ (cyclic lattices) and $f(x) = x^n + 1$ (anti-cyclic lattices).

Cyclic lattices

- * A lattice L is said to be **cyclic** if $v \in L$ implies that the right cyclic shift of v is also in L. (The *right cyclic shift* of $v = (v_0, v_1, ..., v_{n-1})$ is $(v_{n-1}, v_0, v_1, ..., v_{n-2})$.)
- * Cyclic lattices are examples of structured lattices.
- * Cyclic lattices were first studied by Micciancio in 2002.
- * Claim. Let $R = \mathbb{Z}[x]/(x^n 1)$. Then every ideal lattice is cyclic.
- **Proof.** Let L = L(I) be an ideal lattice, and let v ∈ L.

Matrix representation of a cyclic lattice (1)

- + Let $R = \mathbb{Z}[x]/(x^n 1)$, and let $a(x) \in R$.
- + Let $I = \langle a(x) \rangle$, and consider L = L(I).
- * Now, $I = \{a(x)r(x) \mod (x^n 1) \mid r(x) \in R\}$,
- + If $r(x) = r_0 + r_1 x + \dots + r_{n-1} x^{n-1}$, then $a(x)r(x) = r_0 a(x) + r_1 x a(x) + \dots + r_{n-1} x^{n-1} a(x) \mod (x^n 1).$
- * Hence, $\{a(x), xa(x), x^2a(x), ..., x^{n-1}a(x)\}$ is a spanning set for L (all polynomials are modulo $x^n 1$).
- * More precisely, the set of vector representations of a(x), $xa(x) \mod (x^n 1)$, ..., $x^{n-1}a(x) \mod (x^n 1)$ is a spanning set for L.

Matrix representation of a cyclic lattice (2)

- Let A be the $n \times n$ matrix whose columns are the vector representations of $a(x), xa(x), ..., x^{n-1}a(x) \mod (x^n - 1).$
- * A is a circulant matrix, denoted A = circ(a).
- **Fact**. *A* is invertible, i.e., L(A) is a full-rank lattice, if and only if $gcd(a(x), x^n - 1) = 1$ over Q.

- + Let's henceforth assume that $gcd(a(x), x^n 1) = 1$.
- * Now, if $r = (r_0, r_1, ..., r_{n-1})^T \in \mathbb{Z}^n$, then

$$+ \text{ So, } A = \begin{bmatrix} a_0 & a_{n-1} & a_{n-2} & \cdots & a_1 \\ a_1 & a_0 & a_{n-1} & \cdots & a_2 \\ a_2 & a_1 & a_0 & \cdots & a_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_0 \end{bmatrix}.$$

$$Ar = r_0 \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix} + r_1 \begin{bmatrix} a_{n-1} \\ a_0 \\ a_1 \\ \vdots \\ a_{n-2} \end{bmatrix} + r_2 \begin{bmatrix} a_{n-2} \\ a_{0} \\ \vdots \\ a_{n-3} \end{bmatrix} + \cdots + r_{n-1} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_0 \end{bmatrix}$$

Matrix representation of a cyclic lattice (3)

- * Summary. Let $R = \mathbb{Z}[x]/(x^n 1)$, and let $a(x) \in R$ with $\gcd(a(x), x^n 1) = 1$ over \mathbb{Q} . Then $L(\langle a(x) \rangle) = L(A)$ where $A = \operatorname{circ}(a)$.
- * More generally, let $a_1, a_2, ..., a_\ell \in R$ with $gcd(a_i, x^n 1) = 1$ over \mathbb{Q} .
- + Let $I = \langle a_1(x), a_2(x), ..., a_{\ell}(x) \rangle$ be an ideal in R.
- * Recall that $I = \{a_1r_1 + a_2r_2 + \dots + a_{\ell}r_{\ell} \mid r_i \in R\}.$
- $A_i = \operatorname{circ}(a_i)$

* Let $m = \ell n$, and define the $n \times m$ matrix $A = [A_1 | A_2 | \cdots | A_\ell]$, where $A_i = \text{circ}(a_i)$.

- $A = \begin{bmatrix} A_1 & A_2 & \cdots & A_{\ell} \end{bmatrix}$
- * Then, for $r_1, r_2, ..., r_{\ell} \in \mathbb{Z}^n$, $A_1 r_1 + A_2 r_2 + \cdots + A_{\ell} r_{\ell}$ $\leftrightarrow a_1(x) r_1(x) + a_2(x) r_2(x) + \cdots + a_{\ell}(x) r_{\ell}(x) \pmod{(x^n 1)}.$
- * Hence L(I) = L(A) is a rank-n, cyclic, integer lattice in \mathbb{R}^n .

One-way function

- * Setup. Let $R = \mathbb{Z}[x]/(x^n 1)$, let $a_1, a_2, ..., a_\ell \in_R R$, and let $m = \ell n$. Let $A = [A_1 | A_2 | \cdots | A_\ell]$ where $A_i = \text{circ}(a_i)$. Let q be a (relatively small) prime number with $2^m > q^n$. $A = \begin{bmatrix} A_1 & A_2 & \cdots & A_\ell \end{bmatrix}$
- * Consider the compression function $H_A: \{0,1\}^m \longrightarrow \mathbb{Z}_q^n$ defined by $H_A(z) = Az \pmod{q}$.
- * Micciancio (2002) proved that H_A is a **one-way function** *on average*, provided that a certain lattice problem in cyclic lattices is hard in the *worst-case*.
 - (The problem is to approximate the "covering radius" of any cyclic lattice.)
- * However, H_A is not collision resistant.

Finding collisions for H_A

- * Recall. $H_A: \{0,1\}^m \longrightarrow \mathbb{Z}_q^n$ is defined by $H_A(z) = Az \pmod{q}$, where $A = [A_1 \mid A_2 \mid \cdots \mid A_\ell]$ and $A_i = \operatorname{circ}(a_i)$.
- The problem is that since each A_i is circulant, we have A_i $\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} c_i \\ \vdots \\ c_i \end{bmatrix}$,

where c_i is the sum of the entries in the first row (or first column) of A_i .

- * This observation can be used to efficiently find a collision for H_A as follows:
 - 1. Determine $x_1, x_2, ..., x_\ell \in \{0, \pm 1\}$, such that $x_1c_1 + x_2c_2 + \cdots + x_\ell c_\ell = 0 \pmod{q}$. At least one of the x_i 's should be 1, and at least one should be -1.
 - 2. Define z to be the length-m vector $[z_1, z_2, ..., z_\ell]^T$, where z_i is the length-n vector all of whose components are x_i . Note that $Az = 0 \pmod{q}$.
 - 3. Let r_1 be the length-m vector obtained from z by setting all -1 entries to 0, and let $r_2 = r_1 z$. Then (r_1, r_2) is a collision for H_A .

Anti-cyclic lattices

- * A lattice L is said to be **anti-cyclic** if $v = (v_0, v_1, ..., v_{n-1}) \in L$ implies that $(-v_{n-1}, v_0, v_1, ..., v_{n-2})$ is also in L.
- * Anti-cyclic lattices were first studied by Lyubashevsky & Micciancio in 2006.
- * Anti-cyclic lattices are structured lattices.
- * Claim. Let $R = \mathbb{Z}[x]/(x^n + 1)$. Then every ideal lattice is anti-cyclic.
- **Proof**. Let L = L(I) be an ideal lattice, and let v ∈ L. Recall that $v = (v_0, v_1, ..., v_{n-1}) \leftrightarrow v(x) = v_0 + v_1 x + \cdots + v_{n-1} x^{n-1}$. Now, $xv(x) = v_0 x + v_1 x^2 + \cdots + v_{n-1} x^n$ $= -v_{n-1} + v_0 x + v_1 x^2 + \cdots + v_{n-2} x^{n-1} \bmod (x^n + 1)$

Matrix representation of an anti-cyclic lattice (1)

- + Let $n = 2^w$. Then $x^n + 1$ is irreducible over \mathbb{Q} .
- + Let $R = \mathbb{Z}[x]/(x^n + 1)$, and let $a(x) \in R$ with $a(x) \neq 0$. Then $\gcd(a(x), x^n + 1) = 1$.
- + Let $I = \langle a(x) \rangle$, and consider L = L(I).
- * Now, $I = \{a(x)r(x) \mod (x^n + 1) \mid r(x) \in R\}.$
- * Hence, the set of vector representations of a(x), $xa(x) \mod (x^n + 1)$, ... $x^{n-1}a(x) \mod (x^n + 1)$ is a spanning set for L.
- * In fact, the vectors are a basis for *L*.

* Let *A* be the $n \times n$ matrix whose columns are the vector representations of $a(x), xa(x), ..., x^{n-1}a(x) \mod (x^n + 1)$.

$$+ \text{ So, } A = \begin{bmatrix} a_0 & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \\ a_1 & a_0 & -a_{n-1} & \cdots & -a_2 \\ a_2 & a_1 & a_0 & \cdots & -a_3 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_0 \end{bmatrix}.$$

- + Then L(I) = L(A).
- * *A* is an anti-circulant matrix, denoted $A = \overline{\text{circ}}(a)$.
- * Notice that the row sums (and column sums) are no longer equal.

Example: Multiplication in $R = \mathbb{Z}[x]/(x^n + 1)$

- + Let n = 4, so $R = \mathbb{Z}[x]/(x^4 + 1)$.
- + Let $a(x) = 3 2x + 5x^2 4x^4 \in R$.

+ Then
$$A = \overline{\text{circ}}(a) = \begin{bmatrix} 3 & 4 & -5 & 2 \\ -2 & 3 & 4 & -5 \\ 5 & -2 & 3 & 4 \\ -4 & 5 & -2 & 3 \end{bmatrix}$$
.

- + Let $r(x) = 1 + 2x + 11x^2 7x^3 \in R$.
- * Exercise: Check that $a(x) \times r(x) \pmod{x^4 + 1} = -58 + 83x + 6x^2 37x^3$, and $A \cdot r^T = A \cdot [1, 2, 11, -7]^T = [-58, 83, 6, -37]^T$.

Matrix representation of an anti-cyclic lattice (2)

- * Summary. Let $n = 2^w$, let $R = \mathbb{Z}[x]/(x^n + 1)$, and let $a(x) \in R$ with $a(x) \neq 0$. Then $L(\langle a(x) \rangle) = L(A)$ where $A = \overline{\text{circ}}(a)$.
- * More generally, let $a_1, a_2, ..., a_\ell \in R$ with $a_i \neq 0$.
- + Let $I = \langle a_1(x), a_2(x), ..., a_{\ell}(x) \rangle$ be an ideal in R.
- + Let $m = \ell n$, and define the $n \times m$ matrix $A = [A_1 | A_2 | \cdots | A_\ell]$, where $A_i = \overline{\text{circ}}(a_i)$.

- = A_1 A_2 \cdots A_{ℓ}
- * Then, L(I) = L(A) is a rank-n, anti-cyclic, integer lattice in \mathbb{R}^n .
- * These *structured lattices* can be used to define a special case of SIS, called **Ring-SIS**.

Sizes

- * Recall: q prime, $\mathbb{Z}_q = \{0, 1, ..., q 1\}$, $n = 2^w$.
 - $+ R = \mathbb{Z}[x]/(x^n + 1), R_q = \mathbb{Z}_q[x]/(x^n + 1).$
- * For $r \in \mathbb{Z}_{q'}$ define $r \bmod q = \begin{cases} r, & \text{if } 0 \le r \le (q-1)/2, \\ q-r & \text{if } (q-1)/2 < r \le q-1. \end{cases}$
- * For $r \in \mathbb{Z}_{q'}$ define $||r||_{\infty} = |r \mod q|$.
 - * Example: For q = 23, $||3||_{\infty} = 3$ and $||19||_{\infty} = 4$.
- + For $a(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in R_{q'}$ define $||a||_{\infty} = \max ||a_i||_{\infty}$.
 - * Example: Let q = 23 and n = 8. Then $||3 + 19x^2 + 21x^3 + x^4||_{\infty} = 4$.

Ring-SIS

- * Introduced by Lyubashevsky-Micciancio and Peikert-Rosen (2006).
- * Ring-SIS(n, ℓ, q, B): Given $a_1, a_2, ..., a_{\ell} \in_R R_{q'}$ find $z_1, z_2, ..., z_{\ell} \in R_q$ such that $a_1 z_1 + a_2 z_2 + \cdots + a_{\ell} z_{\ell} = 0 \pmod{q}$, where $\|z_i\|_{\infty} \leq B$ and not all z_i are 0.
 - * Note: If $(z_1, z_2, ..., z_\ell)$ is a solution then so is $(xz_1, xz_2, ..., xz_\ell)$.
- * Equivalently, given $a_1, a_2, ..., a_\ell \in_R R_{q'}$ find nonzero $z \in [-B, B]^m$ such that $Az = 0 \pmod{q}$, where $A = [\overline{\text{circ}}(a_1) \mid \cdots \mid \overline{\text{circ}}(a_\ell)]_{n \times m}$. $A_i = \overline{\text{circ}}(a_i)$
- * So, Ring-SIS is a special case of SIS where the $A = \begin{bmatrix} A_1 & A_2 & \cdots & A_\ell \\ A_1 & A_2 & \cdots & A_\ell \end{bmatrix}$ matrix A is *structured*.
- * Lyubashevsky and Micciancio proved that solving Ring-SIS on average is at least as hard as solving SVP $_{\gamma}$ for anti-cyclic lattices *in the worst case*.

Example: Ring-SIS (1)

- + Let q = 59, n = 4, $f(x) = x^4 + 1$, $R_q = \mathbb{Z}_{59}[x]/(x^4 + 1)$, $\ell = 3$, B = 2.
- + Let $a_1(x) = 10 + 16x^2 + 51x^3$, $a_2(x) = 41 + 10x + 54x^2 + 16x^3$, $a_3(x) = 11 + 17x + 39x^2 + 5x^3 \in R_q$.
- * Ring-SIS instance:

Find $z_1, z_2, z_3 \in R_q$, not all 0, with $a_1 z_1 + a_2 z_2 + a_3 z_3 = 0 \pmod{q}$ and $||z_i||_{\infty} \le 2$.

* We have
$$A = \begin{bmatrix} 10 & 8 & 43 & 0 & | & 41 & 43 & 5 & 49 & | & 11 & 54 & 20 & 42 \\ 0 & 10 & 8 & 43 & | & 10 & 41 & 43 & 5 & | & 17 & 11 & 54 & 20 \\ 16 & 0 & 10 & 8 & | & 54 & 10 & 41 & 43 & | & 39 & 17 & 11 & 54 \\ 51 & 16 & 0 & 10 & | & 16 & 54 & 10 & 41 & | & 5 & 39 & 17 & 11 \end{bmatrix}_{4 \times 12}^{4 \times 12}$$

Example: Ring-SIS (2)

* Gaussian elimination (mod q) on A yields the following matrix in reduced form:

$$A' = \begin{bmatrix} 1 & 0 & 0 & 0 & 48 & 6 & 43 & 45 & 7 & 3 & 58 & 57 \\ 0 & 1 & 0 & 0 & 14 & 48 & 6 & 43 & 2 & 7 & 3 & 58 \\ 0 & 0 & 1 & 0 & 16 & 14 & 48 & 6 & 1 & 2 & 7 & 3 \\ 0 & 0 & 0 & 1 & 53 & 16 & 14 & 48 & 56 & 1 & 2 & 7 \end{bmatrix}.$$

* The set of all solutions $r = (r_1, r_2, ..., r_{12}) \in \mathbb{Z}_{59}^{12}$ to $A'r = 0 \pmod{q}$ is:

$$r_1 = 11r_5 + 53r_6 + 16r_7 + 14r_8 + 52r_9 + 56r_{10} + r_{11} + 2r_{12}$$

$$r_2 = 45r_5 + 11r_6 + 53r_7 + 16r_8 + 57r_9 + 52r_{10} + 56r_{11} + r_{12}$$

$$r_3 = 43r_5 + 45r_6 + 11r_7 + 53r_8 + 58r_9 + 57r_{10} + 52r_{11} + 56r_{12}$$

$$r_4 = 6r_5 + 43r_6 + 45r_7 + 11r_8 + 3r_9 + 58r_{10} + 57r_{11} + 52r_{12}.$$

Example: Ring-SIS (3)

- * The total number of solutions to $A'r = 0 \pmod{q}$ is $q^8 = 146,830,437,604,321$.
 - Of these, the number of solutions r that are nonzero and in $[-2, 2]^{12}$ is 24.
- * The nonzero Ring-SIS solutions (up to multiplication by ± 1 , $\pm x$, $\pm x^2$, $\pm x^3$) are:

$$R_1 = (1, 2, -1, 2, -1, 2, 0, -2, 1, 0, 0, 0)$$

 $R_2 = (1, 1, 0, 0, -2, -2, 0, 0, -2, 2, -1, 2)$
 $R_3 = (1, 2, -2, 1, -1, 2, 2, 0, 0, 2, 2, -2)$.

* For example, the first solution R_1 in polynomial form is:

$$z_1(x) = 1 + 2x - x^2 + 2x^3$$
, $z_2(x) = -1 + 2x - 2x^3$, $z_3(x) = 1$.

+ Check: $AR_1 = 0 \pmod{q}$ and $a_1(x)z_1(x) + a_2(x)z_2(x) + a_3(x)z_3(x) = 0$ in R_q .

Collision-resistant hash function

- * Setup. Select q and ℓ with $\ell > \log q$. Let $R_q = \mathbb{Z}_q[x]/(x^n+1)$, let $a_1, a_2, \ldots, a_\ell \in_R R_{q'}$ and let $m = \ell n$. $A_i = \overline{\operatorname{circ}}(a_i)$ Let $A = [A_1 \mid A_2 \mid \cdots \mid A_\ell]$ where $A_i = \overline{\operatorname{circ}}(a_i)$. $A_i = \overline{\operatorname{circ}}(a_i)$
- + Consider the compression function H_A : $\{0,1\}^m \longrightarrow \mathbb{Z}_q^n$ defined by $H_A(z) = Az \pmod{q}$.
- * **Exercise**: Prove that H_A is collision resistant provided that Ring-SIS is hard.
- * Then H_A is a **collision-resistant function** *on average*, provided that SVP_{γ} for anti-cyclic lattices is hard to solve in the worst case.

Ring-SIS versus SIS

SIS

- 1. The $n \times m$ matrix A requires storage for $mn \mathbb{Z}_q$ elements.
- 2. Computing $Ar \pmod{q}$ takes time O(mn).

Ring-SIS

- 1. The $n \times m$ matrix $A = [\overline{\text{circ}}(a_1) | \cdots | \overline{\text{circ}}(a_\ell)]$ can be derived from $\ell n = m \mathbb{Z}_q$ elements.
- 2. $Ar \pmod{q}$ can be computed in time $O(m \log n)$ using the Number-Theoretic Transform (when n divides q-1).

Security

- * No attacks (either theoretical or practical) are known on Ring-SIS that are faster than the fastest attacks known on SIS.
- * In other words, no attacks are known on Ring-SIS that exploit the structure in the matrix *A*.

Ring-LWE

- + Lyubashevsky-Peikert-Rosen (2010)
- + Let S_B denote the polynomials in $R_q = \mathbb{Z}_q[x]/(x^n + 1)$ whose coefficients (when reduced mods q) are in [-B, B].
- * Ring-LWE(n, k, q, B): Let $s \in_R R_q$ and $e_1, ..., e_k \in_R S_B$ where $B \ll q/2$. Let $a_1, ..., a_k \in_R R_q$ and $b_i = a_i s + e_i \in R_q$ for i = 1, ..., k. Given the a_i and b_i , determine s.
- * Equivalently, solve the following noisy linear systems of equations for $s \in \mathbb{Z}_q^n$ (and $e \in [-B, B]^{kn}$):

Example: Ring-LWE (1)

+ Let
$$q = 17$$
, $n = 4$, $f(x) = x^4 + 1$, $R_q = \mathbb{Z}_{17}[x]/(x^4 + 1)$, $k = 3$, $B = 3$.

* Ring-LWE instance:

Given
$$a_1(x) = 10 + 16x^2$$
,
 $a_2(x) = 7 + 10x + 3x^2 + 16x^3$,
 $a_3(x) = 9 + 12x + 16x^2 + 14x^3$,
 $b_1(x) = 16 + 9x + 6x^2 + 4x^3$,
 $b_2(x) = 2 + 16x + 12x^2$,
 $b_3(x) = 10 + 15x + 7x^2$,
find $s \in R_q$ such that
 $b_i - a_i s = e_i \in S_3$ for $i = 1,2,3$.

$$\begin{bmatrix} 10 & 0 & 1 & 0 \\ 0 & 10 & 0 & 1 \\ 16 & 0 & 10 & 0 \\ \hline 0 & 16 & 0 & 10 \\ \hline 7 & 1 & 14 & 7 \\ 10 & 7 & 1 & 14 \\ \hline 3 & 10 & 7 & 1 \\ \hline 16 & 3 & 10 & 7 \\ \hline 9 & 3 & 1 & 5 \\ \hline 12 & 9 & 3 & 1 \\ \hline 16 & 12 & 9 & 3 \\ \hline 14 & 16 & 12 & 9 \end{bmatrix}$$

$$b = \begin{bmatrix} 16 \\ 9 \\ 6 \\ 4 \\ \hline 2 \\ 16 \\ 12 \\ 0 \\ \hline 10 \\ 15 \\ 7 \\ 0 \\ 0 \end{bmatrix}.$$

Example: Ring-LWE (2)

- * Solve $As + e = b \pmod{17}$, where $s \in \mathbb{Z}_{17}^4$ and $e \in [-3,3]^{12}$.
- * Two solutions:
 - * $s = [5, 15, 15, 12]^T$, $e = [2, 0, -3, 1, -2, 1, 2, -2, -2, 1, 1, -3]^T$.
 - * $s = [14, 15, 14, 12]^T$, $e = [-2, 0, -1, 1, 0, -3, -1, 0, 3, -2, 2, 2]^T$.
- * The first solution in polynomial form is:
 - + $s(x) = 5 + 15x + 15x^2 + 12x^3$, $e_1(x) = 2 3x^2 + x^3$, $e_2(x) = -2 + x + 2x^2 2x^3$, $e_3(x) = -2 + x + x^2 3x^3$.
 - + Check: $As + e = b \pmod{q}$ and $a_i(x)s(x) + e_i(x) = b_i(x)$ in R_q for i = 1,2,3.

Ring-LWE security

- * Lyubashevsky-Peikert-Rosen proved that solving Ring-LWE on average is at least as hard as quantumly solving SIVP $_{\gamma}$ for anti-cyclic lattices in the worst case.
- * No attacks (either theoretical or practical) are known on Ring-LWE that are faster than the fastest attacks known on LWE.
- * Ring-LWE has the same advantages over LWE as Ring-SIS has over SIS.

Ring-LWE-based public-key encryption

Key generation: Alice does:

- 1. Select $s \in_R S_B$. [Note: short-secret Ring-LWE]
- 2. Select $a \in_R R_q$ and $e \in_R S_B$.
- 3. Compute $b = as + e \in R_q$.
- 4. Alice's public key is (*a*, *b*); her private key is *s*.

Decryption: To decrypt $c = (c_1, c_2)$, Alice does:

1. Output Round_q $(c_2 - sc_1)$.

Encryption: To encrypt a message $m \in \{0,1\}^n$ for Alice, Bob does:

- 1. Obtain an authentic copy of Alice's encryption (a, b).
- 2. Select $r, z, z' \in_R S_B$.
- 3. Compute $c_1 = ar + z$ and $c_2 = br + z' + \lceil q/2 \rfloor m$.
- 4. Output $c = (c_1, c_2) \in R_q \times R_q$.

Security: Indistinguishable against chosen-plaintext attacks assuming that Decisional short-secret Ring-LWE is hard.