SPHCOFEM

Smoothed particle hydrodynamics coupling finite element method Luděk Hynčík

The 3-Clause BSD License © 2000, 2002, 2015, 2020 – 2023 https://github.com/sphcofem

Contents

1	The	eory		3
2	Use	r manı	ual	4
	2.1	Simula	ation run	4
	2.2	Input	file	5
		2.2.1	File name	5
		2.2.2	Dimension	6
		2.2.3	Termination time	7
		2.2.4	Time controls	8
		2.2.5	Global acceleration field	9
		2.2.6	Calculation optimization	10
		2.2.7	SPH definitions	12
		2.2.8	FEM definitions	14
		2.2.9	Saving variables	15
		2.2.10	Functions	19
		2.2.11	Materials	21
		2.2.12	Contacts	25
		2.2.13	Particles	27
		2.2.14	Nodes	28
		2.2.15	Elements	29
		2.2.16	Initial pressure	29
		2.2.17	Initial velocity	31
		2.2.18	Acceleration field	32
		2.2.19	Nodal force	33
		2.2.20	Nodal damping	35
		2.2.21	Boundary conditions	36
		2.2.22	Local coordinate system	39
		2.2.23	Rigid body	40
	2.3	Outpu	t file	41
3	Vali	idation		46
\mathbf{R}_{0}	efere	nces		47

1 Theory

The theoretical aspects of the SPHCOFEM code are summarizes in [2, 3, 4, 5, 6]. The code calculates problems, where smoothed particle hydrodynamics (SPH represented by particles) is coupled to the boundary represented by the finite element method (FEM). So further speaking about particles or domain represent the domains and speaking about boundary nodes (or just nodes) and boundary elements (or just elements) represents the boundary.

2 User manual

2.1 Simulation run

The simulation is run by typing sphcofem < input_file.in, which reads the given input file input_file.in directly. The solver prints the simulation status to the standard output defined in the input file.

input_file.in is a structured text file with the keywords and variables defined in the next section. Three types of variables are taken into account, strings (%s), integers (%d) and real numbers (%f). The default values are in [].

input_file.in can be created either by the particular keywords or using MATLAB script model_save.m with predefined variables. There can be commented lines beginning by \$. Character \$ must not be within the function definition section. An existing input_file.in can be read using MATLAB script model_read.m into the predefined variables.

sphcofem < input_file.in > output_file.txt can also save the simulation status to
the text file output_file.txt, if the standard output is the screen. The simulation results
are save to the binary file output_file.out.

The basic check on variable consistency and correctness is done at the beginning. If there is an error, it is written to the text message file output_file.msg. If there are no initialization errors, the message file output_file.msg consists of warnings. The message file is closed after initialization and all further information is written to the standard output. The text file output_file.log is being created to summarize the memory integrity.

Simulation can be stopped by copying the signal file signal to the simulation folder. Based on the existence of the signal file signal, the solver stops the simulation, deletes the signal file signal and saves the current state.

2.2 Input file

2.2.1 File name

Keyword NAME defines the name of the output file (%s). The results are written to the binary file NAME.out.

Variable description:

Keyword	Variable	
1xcy word	$\%\mathrm{s}$	
NAME	name	

Keyword definition:

NAME %s

MATLAB definition:

Keyword NAME is not necessary in the input file. The default value is:

Variable	name
Default value	[sphcofem]

2.2.2 Dimension

Keyword DIM defines dimensionality of the problem dim (%d).

Variable description:

Keyword	Variable	
1xcy word	%d	
DIM	dim	

Keyword description:

```
DIM %d
```

MATLAB description:

```
dim = %d;
```

Keyword DIM is not necessary in the input file. Input 0 for dimmeans a default value. The default value is:

Variable	dim
Default value	[3]*

*The solver runs in 3D by default. However, converting problems into 1D or 2D considerably decreases the calculation time comparing to 3D due to the nearest neighbour search in lower dimension. Then, the correct dimension dim must be set in order to have correct kernel and smoothing length. 1D problem setting expects user input in the x-axis and 2D problem setting expects expect user input in the x-axis and the y axis. For 1D and 2D problems, the input related to the remaining second and/or third dimension(s) is ignored (set to zero by default) and not saved to the output file.

2.2.3 Termination time

Keyword TMAX defines the termination time of the dynamical analysis t_max (%f).

Variable description:

Keyword	Variable	
11Cy word	%f	
TMAX	t_max	

Keyword description:

MATLAB description:

$$tnax = %f;$$

Keyword TMAX is necessary in the input file.

2.2.4 Time controls

Keyword TIME defines the time interval between two saved states dt_save (%f), the initial time step dt_init (%f), the maximum time step dt_max (%f), the Courant number for stabilizing the SPH calculation time step cour (%f) and the stabilizing coefficient for finite element time step kstab (%f).

Variable description:

Keyword	Variables					
1xey word	%f	%f	%f	%f	%f	
TIME	dt_save	$\mathtt{dt}_{-}\mathtt{init}$	dt_max	cour	kstab	

Keyword description:

MATLAB description:

Keyword TIME is not necessary in the input file. Input 0 for dt_init, cour or kstab means default values. The defaule values are:

Variable	dt_save	$\mathtt{dt}_{-}\mathtt{init}$	dt_max	cour	kstab
Default value	$[0.0]^*$	[0.1]	$[0.0]^{**}$	[0.9]	[0.9]

^{*[0.0]} means each state is saved.

^{**[0.0]} means no upper bound on the time step.

2.2.5 Global acceleration field

Keyword GACC defines the global acceleration field ax (%f), ay (%f) and az (%f) acting to the whole model.

Variable description:

Keyword	Variables			
Reyword	%f	%f	%f	
GACC	ax	ay	az	

Keyword description:

MATLAB description:

Keyword GACC is not necessary in the input file. Default values are:

Variable	ax	ay	az
Default value	[0.0]	[0.0]	[0.0]

The keyword GACC can be used to avoid adding the acceleration field to each particle or node.

2.2.6 Calculation optimization

Keyword OPTIM provides additional parameters to optimize the SPH calculation. It defines the switch, if the data will be checked data_check (%d), the switch, if the output will be printed data_print (%d), the step between integration cycles output cycle_print (%d), the nearest neighbour search (NNS) model nnopt (%d), the radius multiplier for the NNS opt (%f), the number of cycles between consequent contact search cycle_contact (%d), the integration scheme integration (%d) and the memory check option mem_check (%d).

Variable description:

	Variables				
Keyword	%d	%d	%d	%d	%d
	%d	%d	%d		
OPTIM	data_check	data_print	$cycle_print$	nnopt	opt
OFIIM	cycle_contact	integration	$\mathtt{mem_check}$		

Keyword description:

MATLAB description:

Keyword OPTIM is not necessary in the input file. Input 0.0 for opt means a default value. Default values are:

Variable	Value	Description	Remark	
data_check	0	Inactive		
data_clieck	[1]	Active		
	0	Output suppressed		
$\mathtt{data_print}$	[1]	Standard output		
	2	Text file output*		
cycle_print	0	Printing suppressed		
Cycle_print	N	Each N cycles	Default N=1	
	[0]	No NNS clustering	opt ignored	
nnopt	1	NNS clustering at the beginning	Default opt=1.0	
	N	NNS clustering each N cycles	Delault opt—1.0	
cycle_contact	N	Contact calculation each N cycles	Default N=1	
	0	Euler method		
integration	[1]	Central acceleration		
integration	2	Predictor-corrector		
	3	Predictor-corrector leapfrog		
mem_check	0	Inactive		
mem_cneck	[1]	Active		

^{*}The text output file is ${\tt NAME.txt}.$

2.2.7 SPH definitions

Keyword SPH defines the parameters for the smoothed particle hydrodynamics (SPH) method. It defines the viscosity model visc (%d), the artificial viscosity parameters (alpha) (%f) and (beta) (%f), the (eta) (%f) parameter, the artificial stress parameters (zeta) (%f), (nas) (%f) and (theta) (%f), the X-SPH option (xsph) (%d) and the X-SPH coefficient (xeps) (%f).

Variable description:

Keyword					Variable	es			
Reyword	%d	%f	%f	%f	%f	%f	%f	%d	%f
SPH	visc	alpha	beta	eta	zeta*	nas*	theta*	xsph	xeps

^{*}Artificial stress parameters are ignored, if material models 7, 8, 9 or 27 are not present.

Keyword description:

MATLAB description:

Keyword SPH is not necessary in the input file. Default values are:

Variable	visc	alpha	beta	eta	zeta	nas	theta	xsph	xeps
Default value	[0]	[1.2]	[1.5]	[0.1]	[0.3]	[4]	[0.01]	[0]	[0.5]

Variable possible values:

Variable	Value	Description	Remark					
	Viscosity models							
visc	[0]	Artificial viscosity only	Always active					
		Second order viscous term						
visc	1	Kernel second derivative						
		Viscosity approximations						
	2	Monaghan, Cleary, Gingold (2006)	[8, 1, 7]					
	3	Morris et al. (1997)	[9, 7]					
visc	4	Takeda et al. (1994)	[11, 7]					
	5	Onderik et al. (2007)	[10, 7]					
	6	Monaghan and Gingold (1983)	[8, 7]					
		XSPH						
	0	Inactive						
vanh	1	Active only for predictor step						
xsph	2	Active only for corrector step						
	3	Active for both predictor and corrector steps						

2.2.8 FEM definitions

Keyword FEM provided additional parameters for the finite element (FEM) method. It concerns material damping parameters ${\tt c0}$ and ${\tt c1}$.

Variable description:

Keyword	Var	iables
1xey word	%f	%f
FEM	с0	c1

Keyword description:

MATLAB description:

$$fem = [\%f, \%f];$$

Keyword FEM is not necessary in the input file. Default values are:

Variable	с0	c1
Default value	[0.0]	[0.0]

2.2.9 Saving variables

Keyword SAVE defines what variables are save to the output file FILE.out. Time t and positions of all particles xs, ys, zs and all boundary nodes xb, yb, zb are saved in default (if the particles and/or nodes exist).

Variable description:

					V	ariables					
	%d	%d	%d	%d	%d	%d	%d	%d	%d		
Keyword	%d	%d	%d	%d	%d	%d	%d	%d	%d	%d	%d
Reyword	%d	%d	%d	%d	%d				•		
	%d	%d	%d	%d							
	%d	%d	%d	%d	%d	%d	%d	%d			
	dt	kines	innes	potes	kineb	disib	defob	poteb	tote		
	vs	dvs	as	fs	rhos	drhos	us	dus	ps	cs	hs
SAVE	es	des	Os	Ds	dDs						
	vb	ab	fb	Fc		_					
	xr	psir	vr	or	ar	alphar	fr	Mr			

Keyword description:

MATLAB description:

Keyword SAVE is not necessary in the input file. Using saver is MATLAB is necessary due to the collision with a standard MATLAB keyword. Default values are:

Quantity		Vari	able	Value	Saving
	Qualitity	Solver	MATLAB	value	Saving
	Time step	save_dt	dt	[0]	Inactive
		save_ut	a c	1	Active

Quantity	Vari	able	Value	Saving	
Qualitity	Solver	MATLAB	value	Daving	
Particles kinetic	save_kine_s	kines	[0]	Inactive	
energy	save_kiiie_s	kines	1	Active	
Particles internal	save_inne_s	innes	[0]	Inactive	
energy	save_iiiie_s	imes	1	Active	
Particles potential	gave note a	potes	[0]	Inactive	
energy	save_pote_s	poces	1	Active	

Quantity	Vari	able	Value	Saving	
Qualitity	Solver	MATLAB	varue	Saving	
Nodal kinetic energy	save_kine_b	kineb	[0]	Inactive	
rvodar kinetie energy	Save_Kine_b	Killep	1	Active	
Nodal dissipation	ation save_inne_b inneb	inneb	[0]	Inactive	
energy	Save_IIIIIe_D	imien	1	Active	
Elements deformation	save_defo_b	defob	[0]	Inactive	
energy	save_delo_b	delop	1	Active	
Elements potential	save_pote_b	poteb	[0]	Inactive	
energy	save_pote_b	poven	1	Active	

Quantity	Vari	able	Value	Saving
Qualitity	Solver	MATLAB	value	Saving
Total energy	save_tote	tote	[0]	Inactive
Total ellergy	save_tote	cote	1	Active

Quantity	Vari	able	Value	Saving	
Quantity	Solver	MATLAB	value	Daving	
Particles velocities	save_v_s	VS	[0]	Inactive	
1 articles velocities	save_v_s	VS	1	Active	
Particles velocities	save_dv_s	dvs	[0]	Inactive	
derivative	Save_uv_s	avs	1	Active	
Particles accelerations	save_a_s	as	[0]	Inactive	
Tarticles accelerations	savc_a_s	as	1	Active	
Particles forces	$save_f_s$	fs	[0]	Inactive	
1 at ticies forces	5ave_1_5	15	1	Active	

Quantity	Vari	able	Value	Saving
Qualitity	Solver	MATLAB	varue	Saving
Particles density	save_rho_s	rhos	[0]	Inactive
1 articles defisity	save_1110_s	11105	1	Active
Particles density	save_drhodt_s	drhos	[0]	Inactive
derivatives	save_drillodt_s	dinos	1	Active
Particles internal	G07/0 11 G	us	[0]	Inactive
energy	save_u_s		1	Active
Particles internal	save_dudt_s	dus	[0]	Inactive
energy derivative	save_dudt_s		1	Active
Particles pressure	gaya n g	ng	[0]	Inactive
r articles pressure	save_p_s	ps	1	Active
Particles sound speed	COMO O C	6.0	[0]	Inactive
r articles sound speed	save_c_s	CS	1	Active
Particles smoothing	save_h_s	hs	[0]	Inactive
length	save_II_5	112	1	Active

Quantity	Vari	able	Value	Saving
Quantity	Solver	MATLAB	varue	Saving
Particles deformation	save_e_s	es	[0]	Inactive
Tarticles deformation	save_e_s	65	1	Active
Particles deformation	save_dedt_s	des	[0]	Inactive
rate	save_dedt_s	ues	1	Active
Particles rotation	save_O_s	Os	[0]	Inactive
Tarticles rotation	save_O_s	os.	1	Active
Particles deviatoric	save_S_s	Ds	[0]	Inactive
stress	save_b_s	מע	1	Active
Particles deviatoric	save_dSdt_s	dDs	[0]	Inactive
stress derivative	save_dodt_s	ads	1	Active

Quantity	Vari	able	Value	Saving
Qualitity	Solver MATLAB		value	Daving
Nodal velocities	al velocities save_v_b vb -		[0]	Inactive
rodar velocities	save_v_b	VB	1	Active
Nodal accelerations	save_a_b	ab	[0]	Inactive
Nodai accelerations	save_a_b	ab	1	Active
Nodal forces	save_f_b	fb	[0]	Inactive
Nodal forces	save_1_b	10	1	Active

Quantity	Vari	able	Value	Saving
Quantity	Solver	MATLAB	Value	Saving
Rigid bodies positions	save_x_r	xr	[0]	Inactive
rugid bodies positions	Save_A_1	XI	1	Active
Rigid bodies rotations	save_psi_r	psir	[0]	Inactive
rugid bodies rotations	save_psi_i	psii	1	Active
Rigid bodies velocities	save_v_r	vr	[0]	Inactive
reigid bodies velocities	Save_v_i	VI	1	Active
Rigid bodies	save_omega_r	omegar	[0]	Inactive
rotational velocities	save_omega_i	omegar	1	Active
Rigid bodies	save_a_r	ar	[0]	Inactive
accelerations	save_a_r	aı	1	Active
Rigid bodies	save_alpha_r	alphar	[0]	Inactive
rotational acceleration	save_aipiia_i	aiphai	1	Active
Rigid bodies forces	save_f_r	fr	[0]	Inactive
reigid bodies forces	save_1_1	11	1	Active
Rigid bodies moments	save_M_r	Mr	[0]	Inactive
rugid bodies moments	save_w_	1.11	1	Active

Quantity	Vari	able	Value	Saving	
Quantity	Solver	MATLAB	value	Saving Inactive	
Contact force	save_f_c	fc	[0]	Inactive	
Contact force	save_i_c	10	1	Active	

2.2.10 Functions

Keyword FUNCT defines the function y=f(x). The first line comsists of the function number num, the number of function data pairs N, the x-multiplier mx, the y-multiplier, my, the x-shift dx and the y-shift dy. N lines defining the function data pairs xi and xi, $i \in \{1, \ldots, N\}$ follows.

Variable description:

Keyword			Variables						
IXey	voru	%d	%f	%f					
FUNC	T	num	N	mx	my	dx	dy		
%f	%f								
x1	у1								
x2	у2								
xN	уN								

Keyword definition (for more functions repeat the function section):

MATLAB definition (for more material models add lines the material matrix):

```
funct = [%d, %d;
%f, %f;
%f, %f;
%f, %f;
%f, %f;
. . . ;
%f, %f;
%d, %d;
%f, %f;
%f, %f;
%f, %f;
%f, %f;
. . . ;
%f, %f;
...;
%f, %f;
%d, %d;
%f, %f;
%f, %f;
%f, %f;
%f, %f;
...;
%f, %f];
```

Keyword FUNCT is necessary in the input file.

2.2.11 Materials

Keyword MATER defines the constitutive equation for the implemented material models. The variables depends on the particular material model.

Variable description:

Keyword												
Reyword	%d	%d	%d	%f	%f	%f	%f	%f	%f	%f	%f	%f
MATER	num	dom	type	rho	mu	Т	kap	gam	aux1	aux2	aux3	aux4

Keyword definition (for more material models repeat the material line):

```
MATER %d %d %d %f %f %f %f %f %f %f %f %f MATER %d %d %d %f %f %f %f %f %f %f %f %f ...
MATER %d %d %d %f %f %f %f %f %f %f %f %f
```

MATLAB definition (for more material models add lines the material matrix):

Keyword MATER is necessary in the input file.

Materials implemented:

Dimension	Type	Constitutive equation	Remark					
	Rigid body							
1D, 2D, 3D	0	Rigid body	Particles and nodes can be combined in single material					
Fluid equation of state (EOS)								
	1	Gas EOS	_					
1D, 2D, 3D	2	Liquid EOS	Material bulk modulus K					
	3	Liquid EOS (SPH)	$K = \rho c^2$					
I	Linear ela	astic solid FEM (elements with node	es N_1, N_2, N_3, N_4)					
1D	4, 5, 6	Mass point	Takes N_1 into account					
	4	Bar	Takes N_1 and N_2 into account					
2D	5	Beam	Takes N_1 and N_2 into account					
21)	6	Triangle	$N_4 = N_3$					
		Rectangle	_					
		Bar	Not implemented					
	4	Triangle membrane	Only for contact					
		Rectangle membrane	Not implemented					
3D		Beam	Not implemented					
	5	Triangle shell	Only for contact					
		Rectangle shell*	Not implemented					
	6	Tetrahedron	_					
		Solid SPH						
	7	Linear elastodynamics (Hookean)	_					
1D, 2D, 3D	8	Elastodynamics (Neo-Hookean)	Not implemented					
	9	User-defined	In user_defined_material.c					
		Fluid EOS with tension						
1D 2D 2D	12	Type 2 with inter-particle tension						
1D, 2D, 3D	13	Type 3 with inter-particle tension						
	1	SPH with Mue-Grüneisen E0	OS					
1D 0D 0D	23	Type 3 with Mue-Grüneisen EOS						
1D, 2D, 3D	27	Type 7 with Mue-Grüneisen EOS						

^{*}Not possible for rigid body material type 0. For rigid body material type 0, only triangular

elements are possible as 2D representation in 3D.

Variable constitutive parameters (— means that the particular variable is not taken into account):

					MATER					
Type	dom	rho	mu	T	kappa	gamma	aux1	aux2	aux3	aux4
%d	%d	%f	%f	%f	%f	%f	%f	%f	%f	%f
					Rigid body					
0	d	ρ	G	K	_	γ	COG	N_1	N_2	N_3
U	d	$-\rho$	m	I_1	I_2	I_3		111	1 1 2	113
					Fluid SPH					
1	d	ρ	μ	T	κ	c_V			—	
2	d	ρ	μ	K	p_0	γ				
3	d	ρ	μ		p_0	γ				
					Solid FEM					
4	d	ρ	ν	E	A^* (2D, 3D)	b	_			
	<i>u</i>		V		t^{**} (3D)	U				
5	d	ρ	ν	E	A^* (2D, 3D)	b				
		P			t^{**}					
	_			_	A^* (2D, 3D)	_				
6	d	ρ	ν	E	t*** (2D)	b			_	_
					— (tertahedron)					
		ı	ı		Solid SPH					
7	d	ρ	G	K	p_0	γ	—			
8	d	ρ			_					
9	d	ρ	c_1^{****}	c_2	c_3	c_4	c_5	c_6	c_7	c_8
					Fluid SPH with te	ension				
12	d	ρ	μ	K	k	γ				
13	d	ρ	μ		k	γ				
				SP	H with Mue-Grüne	eisen EOS	S			
23	d	ρ	μ	K	p_0		S	Γ_0	_	
27	d	ρ	μ	K	p_0		S	Γ_0		

^{*}Cross-sectional area A for bar or beam element in 2D and 3D $(N_2 = N_3 = N_4)$.

Variable dom represent possibility to divide the model into several domains $d \in \{1, 2, 3, \ldots\}$. Particles, nodes and elements in different domains do not interact (either by smoothing or by contacts).

^{**}Thickness of memrane or shell element in 3D (triangle defined by $N_3=N_4$).

^{***}Thickness of triangle or rectangle element in 2D (triangle defined by $N_3 = N_4$).

^{****}c = user coefficient.

2.2.12 Contacts

Keyword CONTACT defines the contact between two materials. It concerns the contact number (%d), the contact type (%d), the slave* material number (%d), the master* material number (%d), the contact thickness ct** (%f), the linear penalty factor klin (%f), the nonlinear penalty factor klin (%f), the contact friction coefficient kf (%f) and the contact damping kd (%f).

The slave material segment motion is driven by the master material segment motion.

**For contacts, where particles are active, ct can be negative. The contact thickness is then calculated as the negative value of ct times the particles smoothing length.

Keyword description (for more contact models repeat the contact line):

```
CONTACT %d %d %d %d %f %f %f %f %f CONTACT %d %d %d %d %f %f %f %f %f ...
CONTACT %d %d %d %d %f %f %f %f %f
```

MATLAB definition (for more material models add lines the contact matrix):

```
contact = [%d, %d, %d, %f, %f, %f, %f, %f %f;
%d, %d, %d, %f, %f, %f, %f %f;
...
%d, %d, %d, %d, %f, %f, %f, %f %f];
```

Keyword CONTACT is not necessary in the input file.

Contacts implemented:

Ma	terial	Segment			
Slave	Master	Slave	Master		
SPH	FEM	Particle	Boundary		
FEM	FEM	Node	Boundary		
SPH	SPH	Particle	Particle		

Contact models for FEM/SPH, FEM/FEM and SPH/SPH contacts:

Dimension	Type	Description	Slave	Master	Remark	
	0	Null*	Particle	Particle		
1D	1	Penalty	1 article	1 article		
	<u> </u>	1 charty	Node	Particle		
	3	Tied	11000	or node		
	0	0 Null		Particle		
	1	Penalty	Particle	T car order		
2D			Particle		Outer	
	2	Sliding w/o separation	or node	Line N_1, N_2	normal	
	3	Tied			required	
	0	Null	Particle	Particle		
	1	Penalty	1 di cicio	1 di dicio		
3D		1 charty	Particle	Triangles N_1 ,	Outer	
	2	Sliding w/o separation	or node	N_2, N_3 and	normal	
	3	Tied	32 220 040	N_1, N_3, N_4^{**}	required	

^{*}Null contact serves for defining area, where no interaction (by contact or by smoothing length interpolation) among particles appears.

^{**}Bar and beam elements in 3D are ignored in the contact calculation.

2.2.13 Particles

Keyword SNODE defines the particles. Each row concerns of the particle number ns (%d), the material number ms (%d), the represented volume vs (%f) and the particle coordinates xs (%f), ys (%f) and zs (%f).

Variable description:

Keyword			Varia	bles		
1xey word	%d	%d	%f	%f	%f	%f
SNODE	ns	ms	vs	xs	ys	zs

Keyword definition (for more material models repeat the particle line):

```
SNODE %d %d %f %f %f %f
SNODE %d %d %f %f %f
...
SNODE %d %d %f %f %f %f
```

MATLAB definition (for more material models add lines the particle matrix):

```
snode = [%d, %d, %f, %f, %f, %f, %f;
%d, %d, %f, %f, %f, %f;
...
%d, %d, %f, %f, %f, %f, %f];
```

The particles numbering must be complementary to the boundary nodes numbering. At least one keyword SNODE or BNODE is necessary in the input file.

2.2.14 Nodes

Keyword BNODE defines the boundary nodes. Each row concerns of the nodal number nb (%d) and the nodal coordinates xb (%f), yb (%f) and zb (%f).

Variable description:

Keyword		Variables					
Reyword	%d	%f	%f	%f			
BNODE	nb	хb	уb	zb			

Keyword definition (for more material models repeat the node line):

```
BNODE %d %f %f %f
BNODE %d %f %f %f
...
BNODE %d %f %f %f
```

MATLAB definition (for more material models add lines the node matrix):

```
bnode = [%d, %f, %f, %f;
%d, %f, %f, %f;
...
%d, %f, %f, %f];
```

The boundary nodes numbering must be complementary to the particles numbering. At least one keyword SNODE or BNODE is necessary in the input file.

2.2.15 Elements

Keyword BELEM defines the boundary finite elements. Each row concerns of the element number ne (%d), the element material number me (%d) and four nodes n1 (%d), n2 (%d), n3 (%d) and n4 (%d). For bars and beams, n3 and n4 are not taken into account. If n3 equals n4, the triangular element is considered in 2D.

Variable description:

Keyword		Variables							
Reyword	%d	%d	%d	%d	%d	%d			
BELEM	n	m	n1	n2	n3	n4			

Keyword definition (for more material models repeat the element line):

```
BELEM %d %d %d %d %d
BELEM %d %d %d %d %d
...
BELEM %d %d %d %d %d
```

MATLAB definition (for more material models add lines the element matrix):

```
snode = [%d, %d, %d, %d, %d;
%d, %d, %d, %d, %d;
...
%d, %d, %d, %d, %d];
```

Keyword BELEM is not necessary in the input file.

2.2.16 Initial pressure

Keyword INPRE defines the initial pressure for particles. Each row concerns of the particle number $n \ (\%d)$ and the initial pressure $ps \ (\%f)$.

Variable description:

Keyword	Variables		
Reyword	%d	%f	
INPRE	n	ps	

Keyword definition (for more material models repeat the initial pressure line):

```
INPRE %d %f
INPRE %d %f
...
INPRE %d %f
```

MATLAB definition (for more material models add lines the initial pressure matrix):

```
inpre = [%d, %f;
%d, %f;
...
%d, %f];
```

Keyword INPRE is not necessary in the input file.

2.2.17 Initial velocity

Keyword INVEL defines the initial velocity for both particles and boundary nodes. Each row concerns of the particle or nodal number n (%d) and the translational velocities vx (%f), vy (%f) and vz (%f) and the rotational velocities ox (%f), oy (%f) and oz (%f) in the coordinate system frame frame (%d). Rotational velocities ox, oy, oz and frame are ignored if the particle or the node, on which the initial velocity is specified, is not a centre of gravity of a rigid body.

Variable description:

Keyword	Variables					s		
1xey word	%d	%f	%f	%f	%f	%f	%f	%d
INVEL	n	vx	vy	٧Z	ox	оу	oz	frame

Keyword definition (for more material models repeat the initial velocity line):

```
INVEL %d %f %f %f %f %f %d
INVEL %d %f %f %f %f %d
...
INVEL %d %f %f %f %f %f %d
```

MATLAB definition (for more material models add lines the initial velocity matrix):

```
invel = [%d, %f, %f, %f, %f, %f, %d;
%d, %f, %f, %f, %f, %f, %d;
...
%d, %f, %f, %f, %f, %f, %d];
```

Keyword INVEL is not necessary in the input file.

2.2.18 Acceleration field

Keyword ACFLD defines the acceleration field for both particles and boundary nodes. Each row concerns the particle or nodal number n (%d), the acceleration field type type (%d) and the accelerations ax (%f), ay (%f) and az (%f). Coordinate frame is ignored if the particle or the node, on which the initial acceleration field is specified, is not a centre of gravity of a rigid body.

Variable description:

Keyword			Variables			
riey word	%d	%d	%f	%f	%f	%d
ACFLD	n	type	ax	ay	az	frame

Keyword definition (for more material models repeat the acceleration field line):

```
ACFLD %d %d %x %x %x %d
ACFLD %d %d %x %x %x %d
...
ACFLD %d %d %x %x %x %d
```

MATLAB definition (for more material models add lines the acceleration field matrix):

```
acfld = [%d, %d, %x, %x, %x; %d, %d, %x, %x, %x, %d; ... %d, %d, %x, %x, %x, %d];
```

Keyword ACFLD is not necessary in the input file.

Variable possible values:

Description	Variable	Type	\mathbf{F}	Status
x-acceleration		0	f	Constant $a_x = ax$
x-acceleration	ax	1	d	Function ax prescribing $a_x(t)$
y-acceleration	277	0	f	Constant $a_y = ay$
y-acceleration	ay	1	d	Function ay prescribing $a_y(t)$
z-acceleration	az	0	f	Constant $a_z = az$
z-acceleration		1	d	Function az prescribing $a_z(t)$

2.2.19 Nodal force

Keyword FORCE defines the force acting on the nodes for both particles and boundary nodes. Each row concerns the particle or nodal number n (%d), the acceleration field type type (%d) and the forces fx (%f), fy (%f) and fz (%f) and the moments fx (%f), fy (%f) and fz (%f) and the moments mx (%f), my (%f) and mz (%f) in the coordinate system frame frame (%d). Moments mx, my, mz and frame are ignored if the particle or the node, on which the nodal force is specified, is not a centre of gravity of a rigid body.

Variable description:

Keyword	Variables								
1xey word	%d	%d	%f	%f	%f	%f	%f	%f	%d
FORCE	n	type	fx	fy	fz	mx	my	mz	frame

Keyword definition (for more material models repeat the nodal force field line):

```
FORCE %d %f %f %f %f %f %d
FORCE %d %f %f %f %f %f %d
...
FORCE %d %f %f %f %f %f %d
```

MATLAB definition (for more material models add lines the nodal force field matrix):

```
force = [%d, %f, %f, %f, %f, %f, %d; %d, %f, %f, %f, %d; %d, %f, %f, %f, %f, %d; ... %d, %f, %f, %f, %f, %f, %d];
```

Keyword FORCE is not necessary in the input file.

Variable possible values:

Description	Variable	Type	\mathbf{F}	Status
x-force	fx	0	f	Constant $f_x = fx$
x-torce	IX	1	d	Function ax prescribing $f_x(t)$
y-force	fy	0	f	Constant $f_y = fy$
y-torce	ı y	1	d	Function ay prescribing $f_y(t)$
z-force	fz	0	f	Constant $f_z = fz$
Z-101CC		1	d	Function az prescribing $f_z(t)$
x-moment	mx	0	m	Constant $m_x = mx$
x-moment	шх	1	d	Function ax prescribing $m_x(t)$
y-moment	mır	0	m	Constant $m_y = my$
y-moment	my	1	d	Function ay prescribing $m_y(t)$
z-moment	mz	0	m	Constant $m_z = mz$
z-moment	1112	1	d	Function az prescribing $m_z(t)$

2.2.20 Nodal damping

Keyword NDAMP defines the damping of the boundary nodes. Each row concerns of the nodal number n (%d) and the damping dx (%f), dy (%f) and dz (%f).

Variable description:

Keyword		Variables					
1xey word	%d	%f	%f	%f			
NDAMP	n	fx	fy	fz			

Keyword definition (for more material models repeat the nodal damping field line):

```
NDAMP %d %f %f %f
NDAMP %d %f %f %f
...
NDAMP %d %f %f %f
```

MATLAB definition (for more material models add lines the nodal damping field matrix):

```
ndamp = [%d, %f, %f, %f; %d, %f, %f; %d, %f, %f, %f; ... %d, %f, %f, %f];
```

Keyword NDAMP is not necessary in the input file.

2.2.21 Boundary conditions

Keyword BOUNC defines the boundary conditions for both particles and boundary nodes. Each row concerns of the particle or nodal number n (%d), the boundary condition type type (%d), and the conditions bx (%d), by (%d) and bz (%d). Further, rotational boundary conditions for rigid body motion rx (%d), ry (%d) and bz (%d) in the coordinate system frame frame (%d). Boundary conditions rx, ry, bz and frame are ignored if the particle or the node, on which the boundary condition is specified, is not a centre of gravity of a rigid body.

Variable description:

Keyword				V	⁷ ariab	les			
Reyword	%d	%d	%d	%d	%d	%d	%d	%d	%d
BOUNC	n	type	bх	by	bz	rx	ry	rz	frame

Keyword definition (for more material models repeat the boundary condition line):

```
BOUNC %a %a %a %a %a %a %a %a
BOUNC %a %a %a %a %a %a %a %a
...
BOUNC %a %a %a %a %a %a %a %a
```

MATLAB definition (for more material models add lines the boundary condition matrix):

Keyword BOUNC is not necessary in the input file.

Boundary conditions implemented:

Type	Boundary condition	Remark		
0	Static	Restricted motion		
-1*	Static	Keeping translational initial conditions		
1	Displacement	Prescribed nodal displacement		
2	Velocity	Prescribed nodal velocity		
3	Acceleration	Prescribed nodal acceleration		

^{*}Boundary condition type -1 moves the particles or nodes using their initial conditions. If the initial condition is not given, it is the same as boundary condition type 0.

Variable possible values:

Description	Variable	Value	Status					
	Static							
1 1.	,	0	Free					
x-translation	bx	1	Fixed					
- translation	b	0	Free					
y-translation	by	1	Fixed					
z-translation	bz	0	Free					
z-translation	UZ	1	Fixed					
	Prescribe	ed nodal o	displacement					
		0	Free					
x-translation	bx	-1	Fixed					
		N_1	Function N_1 prescribing $x(t)$					
		0	Free					
y-translation	by	-1	Fixed					
		N_2	Function \mathbb{N}_2 prescribing $y(t)$					
		0	Free					
z-translation	bz	-1	Fixed					
		N_3	Function N_3 prescribing $z(t)$					
	Prescr	ibed noda	al velocity					
		0	Free					
x-translation	bx	-1	Fixed					
		N_1	Function \mathbb{N}_1 prescribing $v_x(t)$					
		0	Free					
y-translation	by	-1	Fixed					
		N_2	Function N_2 prescribing $v_y(t)$					
		0	Free					
z-translation	bz	-1	Fixed					
		N_3	Function N_3 prescribing $v_z(t)$					
	Prescrib	ed nodal	acceleration					
		0	Free					
x-translation	bx	-1	Fixed					
		N_1	Function N_1 prescribing $a_x(t)$					
		0	Free					
y-translation	by	-1	Fixed					
		N_2	Function N_2 prescribing $a_y(t)$					
		0	Free					
z-translation	bz	-1	Fixed					
		N_3	Function N_3 prescribing $a_z(t)$					

Description	Variable	Value	Status				
Static							
		0	Free				
x-rotation	rx	1	Fixed				
		0	Free				
y-rotation	ry	1	Fixed				
z-rotation	~=	0	Free				
z-rotation	rz	1	Fixed				
	Prescribe	ed nodal	displacement				
		0	Free				
x-rotation	rx	-1	Fixed				
		N_1	Function N_1 prescribing $\psi(t)$				
		0	Free				
y-rotation	ry	-1	Fixed				
		N_2	Function \mathbb{N}_2 prescribing $\theta(t)$				
	rz	0	Free				
z-rotation		-1	Fixed				
		N_3	Function N ₃ prescribing $\phi(t)$				
	Prescr	ribed noda	al velocity				
		0	Free				
x-rotation	rx	-1	Fixed				
		N_1	Function \mathbb{N}_1 prescribing $\omega_x(t)$				
		0	Free				
y-rotation	ry	-1	Fixed				
		N_2	Function N ₂ prescribing $\omega_y(t)$				
		0	Free				
z-rotation	rz	-1	Fixed				
		N_3	Function N ₃ prescribing $\omega_z(t)$				
	Prescrib	ed nodal	acceleration				
		0	Free				
x-rotation	rx	-1	Fixed				
		N_1	Function N_1 prescribing $\alpha_x(t)$				
		0	Free				
y-rotation	ry	-1	Fixed				
		N_2	Function N_2 prescribing $\alpha_y(t)$				
		0	Free				
z-rotation	rz	-1	Fixed				
		N_3	Function N ₃ prescribing $\alpha_z(t)$				

2.2.22 Local coordinate system

Initial condition INVEL and boundary conditions ACFLD, FORCE and BOUNC can be defined in local coordinate system of a rigid body, if those are applied to the rigid body centre of gravity. The local coordinate system is defined by frame (%d) with the following possible values:

Description	Variable	Value	Status
		0	Global axes system
Condinate		1	Local connected to the rigid body principal inertia axes system only for translation
Coordinate system	frame	2	Local connected to the rigid body principal inertia axes system only for rotation
		3	Local connected to the rigid body principal inertia axes system for translation and rotation

2.2.23 Rigid body

Rigid body is given by material type 0. All particles and nodes belonging to elements from material type 0 are included to a rigid body. Rigid body number is allocated automatically beginning from 1. For rigid body parameters see the material section. Two types of rigid bodies are implemented:

- 0. For rigid body type 0 (material $\rho > 0$), the mass and moments of inertia are calculated from the mass distribution among the particles and nodes affiliated to the rigid body. Centre of gravity COG node or particle coordinates are calculated from the mass distribution too and particles or nodes N_1 , N_2 and N_3 coordinates are set to be coincident with the global coordinate system in time t = 0. Original nodes or particles coordinates COG, N_1 , N_2 and N_3 are rewritten.
- 1. For rigid body type 1 (material $\rho < 0$), the mass m and principal moments of inertia I_1 , I_2 and I_3 are given and ρ is used only for nearest neighbour smoothing. Nodes or particles N_1 , N_2 and N_3 are expected to define the principal inertia axes from the centre of gravity node or particle COG and must form an orthogonal axes system.

Material	Type	rho	mu	T	kappa	gamma	aux1	aux2	aux3	aux4
					Rigid b	ody				
0	0	ρ	G	K	p_0	γ	Calcu	lated a	nd rewi	ritten
0	1	$-\rho$	m	I_1	I_2	I_3	COG	N_1	N_2	N_3

The rigid body type 0 constraints the particles and nodes in a similar way as boundary conditions with the advantage that initial and boudary conditions apply only on its centre of gravity. Particles constrained in rigid body type 0 hold the rigid body motion updating state variables including stress and strain. For particles constrained in the rigid body type 1, the state variables including stress and strain are not updated and the rigid body keeps the initial date variables of the particles involved. Nodes constrained in rigid body type 0 or 1 hold the rigid body motion.

2.3 Output file

The results are saved in FILE.out based on saved variables defined by SAVE. The results can be read and displayed by MATLAB scripts results_read.m and results_view.m.

The beginning of FILE.out file consists of all global definitions and counts followed by the variables saved at the defined time steps. The order of appearance is according to the following tables.

Quantity		Solver			MATLAE	3
Quantity	Variable	\mathbf{Size}^*	Format	Variable	Size	Format
Dimension	dim	1	integer	dim	1	integer*4
X-SPH switch	ix	1	integer	ix	1	integer*4
Number of materials	n_m	1	integer	n_m	1	integer*4
Number of particles	n_s	1	integer	n_s	1	integer*4
Number of nodes	n_b	1	integer	n_b	1	integer*4
Number of elements	n_e	1	integer	n_e	1	integer*4
Number of rigid bodies	n_r	1	integer	n_e	1	integer*4
Number of contacts	n_c	1	integer	n_c	1	integer*4
Material numbers	num_m	[1, n _m]	integer	num_m	[1, n_m]	integer*4
Particle numbers	num_s	[1, n _s]	integer	num_s	[1, n_s]	integer*4
Nodal numbers	num_b	[1, n_b]	integer	num_b	[1, n_b]	integer*4
Element numbers	num_e	[1, n_e]	integer	num_e	[1, n_e]	integer*4
Particle materials	mat_s	[1, n ₋ s]	integer	mat_s	[1, n _s]	integer*4
Elements materials	mat_e	[1, n_e]	integer	mat_e	[1, n_e]	integer*4
Element nodes	nod_e	[1, 4*n_e]	integer	bele	[n_e, 4]	integer*4
Saved variables switch	variable**	1	integer	saver	[1, 37]	integer*4

^{*1} means a scalar, [m, n] means a matrix of size size $(m \times n)$.

The particular output variables defined by SAVE are stored in the binary file FILE.out as a sequence related to the saved time steps. At each defined time step, firstly the scalar variables are saved. Only variables having 1 in SAVE are saved to FILE.out. The script results_read.m reads the results to the following variables:

^{**}variable represent 37 variables according to the definition in the SAVE keyword, particularly save_dt, save_kine_s, save_inne_s, save_pote_s, save_kine_b, save_disi_b, save_defo_b, save_pote_b, save_tote, save_v_s, save_dv_s, save_a_s, save_f_s, save_rho_s, save_drhodt_s, save_u_s, save_dudt_s, save_p_s, save_c_s, save_h_s, save_S_s, save_dSdt_s, save_e_s, save_dedt_s, save_0_s, save_v_b, save_a_b, save_f_b, save_x_r, save_psi_r, save_v_r, save_omega_r, save_a_r, save_alpha_r, save_f_r, save_M_r and save_f_c. In the MATLAB script, they are represented by a row vector of of size (1 × 37)

Quantity	,	Solver		MATLAB			
Quantity	Variable	Size	Format	Variable	Size	Format	
Time	t	1	double	t	[s*, 1]	real*8	
Time step	dt	1	double	dt	[s, 1]	real*8	
Particles kinetic energy	kines	1	double	kine_s	[s, 1]	real*8	
Particles internal energy	ionnes	1	double	inne_s	[s, 1]	real*8	
Particles potential energy	potes	1	double	pote_s	[s, 1]	real*8	
Nodal kinetic energy	kineb	1	double	kine_b	[s, 1]	real*8	
Nodal dissipation energy	disib	1	double	disi_b	[s, 1]	real*8	
Nodal deformation energy	defob	1	double	defo_b	[s, 1]	real*8	
Total energy	tote	1	double	tote	[s, 1]	real*8	

^{*}Variable ${\tt s}$ is the number of saved states. Variable ${\tt s}$ is not known in advance, the MATLAB script just reads until the end of file. Thanks to MATLAB, variable ${\tt s}$ is not necessary to be pre-allocated.

The vector and matrices follow. The vectors (e.g. particle pressures) are saved as a row. If any variables has more dimensions (e.g. particle coordinates), the x-dimension is the first row, th y-dimension follows and the z-dimension is the last row. The saved number of dimensions depends on dim.

Quantity		Solver			MATLAB	
Quantity	Variable	Size	Format	Variable	Size	Format
D4:-1				xs	[s, n_s]	real*8
Particles positions	x_s	[1, dim*n_s]	double	ys*	[s, n_s]	real*8
positions				zs**	[s, n_s]	real*8
D4:-1				vxs	[s, n_s]	real*8
Particles velocities	v_s	[1, dim*n_s]	double	vys	[s, n_s]	real*8
voideities				vzs	[s, n ₋ s]	real*8
Particles				dvxs	[s, n_s]	real*8
velocities	dv_s	[1, dim*n_s]	double	dvys	$[s, n_s]$	real*8
derivatives				dvzs	$[s, n_s]$	real*8
Particles				axs	[s, n ₋ s]	real*8
accelerations	a_s	[1, dim*n_s]	double	ays	[s, n_s]	real*8
				azs	[s, n ₋ s]	real*8
				fxs	[s, n_s]	real*8
Particles forces	f_s [1, dim	[1, dim*n_s]	double	fys	[s, n ₋ s]	real*8
				fzs	[s, n _s]	real*8

^{*}All variables in y-direction are saved only for 2D and 3D problems.

^{**}All variables in z-direction are saved only for 3D problems.

Quantity	1	Solver		MATLAB			
Quantity	Variable	Size	Format	Variable	Size	Format	
Particles density	rho_s	1	dlouble	rhos	[s, n_s]	real*8	
Particles density derivative	drhodt_s	1	dlouble	drhos	[s, n_s]	real*8	
Particles internal energy	u_s	1	dlouble	us	[s, n_s]	real*8	
Particles internal energy derivative	dudt_s	1	dlouble	dus	[s, n_s]	real*8	
Particles pressure	p_s	1	dlouble	ps	[s, n_s]	real*8	
Particles sound speed	C_S	1	dlouble	cs	[s, n_s]	real*8	
Particles smoothing length	h_s	1	dlouble	hs	[s, n_s]	real*8	

The matrices variables (e.g. deviatoric stress) are usually symetric, taking into account the positions xx, xy, xz, yy, yz, zz, which are saved as six vectors one by one. For matrices, all dimensions are saved regardless dim.

Quantity		Solver		MATLAB			
Quantity	Variable	Size	Format	Variable	Size	Format	
Particles deformation	e_s	[1, dime*n_s]*	dlouble	es	[s, dime*n_s]	real*8	
Particles deformation rate	dedt_s	[1, dime*n_s]	dlouble	des	[s, dime*n_s]	real*8	
Particles rotation	0_s	[1, dimo*n_s]*	dlouble	0s	[s, dimo*n_s]	real*8	
Particles deviatoric stress	S_s	[1, dime*n_s]	dlouble	Ss	[s, dime*n_s]*	real*8	
Particles deviatoric stress derivative	dSdt₋s	[1, dime*n_s]	dlouble	dSs	[s, dime*n_s]	real*8	

*dime and dimo depend on dim as only an upper triangular matrix for the particular dimension is always saved. For 1D problems, Os and Ss are not save at all as they are irrelevant in 1D. For 2D problems, dime = 3 and dimo = 1, for 3D problems, dime = 6 and dimo = 3. The reason is that es and Ss are symmetric matrices (so only 3 elements needed in 2D and only 6 elements needed in 3D) and Os is an antisymmetric matrix with zeros on diagonal (so only 1 element needed in 2D and only 3 elements needed in 3D).

Quantity		Solver			MATLAB	
Quantity	Variable	Size	Format	Variable	Size	Format
				xb	[s, n_b]	real*8
Nodal positions	x_b	[1, dim*n_b]	double	yb*	[s, n_b]	real*8
				zb**	[s, n_b]	real*8
			double	vxb	[s, n_b]	real*8
Nodal velocities	v_b	[1, dim*n_b]		vyb	[s, n_b]	real*8
				vzb	[s, n_b]	real*8
N - J - 1				axb	[s, n_b]	real*8
Nodal accelerations	a_b	[1, dim*n_b]	double	ayb	[s, n_b]	real*8
accelerations				azb	[s, n_b]	real*8
				fxb	[s, n_b]	real*8
Nodal forces	f_b [1,	$[1, dim*n_b]$	double	fyb	[s, n_b]	real*8
				fzb	[s, n_b]	real*8

^{*}All variables in y-direction are saved only for 2D and 3D problems.

^{**}All variables in z-direction are saved only for 3D problems.

Quantity		Solver			MATLAB	
Quantity	Variable	Size	Format	Variable	Size	Format
D:::1 b - 1:				xr	[s, n_r]	real*8
Rigid bodies positions	x_r	[1, dim*n_r]	double	yr*	[s, n_r]	real*8
positions				zr**	[s, n_r]	real*8
D:::1 b - 1:				psixr	[s, n_r]	real*8
Rigid bodies rotations	psi_r	[1, dimr*n_r]***	double	psiyr	[s, n_r]	real*8
Totalions				psizr	[s, n_r]	real*8
D: :11 1:				vxr	[s, n_r]	real*8
Rigid bodies velocities	v_r	[1, dim*n_r]	double	vyr	[s, n_r]	real*8
voiceities				vzr	[s, n_r]	real*8
Rigid bodies		[1, dimr*n_r]***	double	oxr	[s, n_r]	real*8
rotational	o_r			oyr	[s, n_r]	real*8
velocities				ozr	[s, n_r]	real*8
D:::1 b - 1:			double	axr	[s, n_r]	real*8
Rigid bodies accelerations	a_r	[1, dim*n_r]		ayr	[s, n_r]	real*8
accordianons				azr	[s, n_r]	real*8
Rigid bodies				alphaxr	[s, n_r]	real*8
rotational	alpha_r	[1, dimr*n_r]***	double	alphayr	[s, n_r]	real*8
accelerations				alphazr	[s, n_r]	real*8
D:::1 b - 1:				fxr	[s, n_r]	real*8
Rigid bodies forces	f_r	[1, dim*n_r]	double	fyr	[s, n_r]	real*8
101000				fzr	[s, n_r]	real*8
Dimid he lier				Mxr	[s, n_r]	real*8
Rigid bodies moments	$M_{-}r$	[1, dimr*n_r]***	double	Myr	[s, n_r]	real*8
				Nzr	[s, n_r]	real*8

^{*}All variables in y-direction are saved only for 2D and 3D problems.

^{***}dimr depends on dim. For 1D problems, psir, or and alphar are not save at all as they are irrelevant in 1D. For 2D problems, dimr = 1 and for 3D problems, dimr = 3. The reason is that there is only a single rotation in 2D and 2 rotations in 3D.

Quantity		Solver	MATLAB			
Quantity	Variable	Size	Format	Variable	Size	Format
Ctt				fxc	[s, n_b]	real*8
Contact force	F_c	[1, dim*n_c]	double	fyc*	[s, n_b]	real*8
10100				fzc**	[s, n_b]	real*8

^{*}Force in y-direction are saved only for 2D and 3D problems.

For displaying particular options, the script results_read.m uses particular switches:

^{**}All variables in z-direction are saved only for 3D problems.

^{**}Force in z-direction are saved only for 3D problems.

Variable	Switch	Value	Description
nt	Movie step	vector	nt is vector of saved time steps
iw	Save movie	[0]	No
T W	Save movie	1	Yes
id	Movie	[0]	Movie only
Iu	composition	1	Movie with a variable*
		0	Contours (only in 2D)
ip	Draw	[1]	Particles
		2	Particles with velocity (only in 2D)
ik	Draw particular	vector	ik is vector of particle numbers (empty
111	particles	VCC001	vector draws all particles)
	Duore houndons	[0]	No
ib	Draw boundary elements	1	Yes
	Cicinonio	2	Element with edges

^{*}The variable is defined in c2 and described in c2val. Variable c2 is one of the output variables in MATLAB. E.g. c2 = exx; and c2val = $e_{-}\{xx\}$; show colour contours for deformation ϵ_{xx} .

3 Validation

The validation for 1D, 2D and 3D cases is summarized in $[2,\,3,\,4,\,5].$

References

- [1] P. W. Cleary. Modelling confined multi-material heat and mass flows using SPH. *Applied Mathematical Modelling*, 22:981–993, 1998.
- [2] L. Hynčík. Biomechanical model of abdominal organs and tissues for crash test purposes. PhD thesis, University of West Bohemia, 2002.
- [3] L. Hynčík. Smoothed particle hydrodynamics: Theory and practice. *Engineering Mechanics*, 9(6):1–15, 2002.
- [4] L. Hynčík. Interaction of flowing liquid with deformable boundary by coupling SPH to FE. In J.F. Silva Gomes & S.A. Meguid, editor, 6th International Conference on Mechanics and Materials in Design, pages 959–966, 2015.
- [5] L. Hynčík. SPHCOFEM: Solver for coupling SPH and FE. In Springer, editor, 7th WACBE World Congress on Bioengineering 2015, volume 52, pages 162–165, 2015.
- [6] L. Hynčík. On modelling ballistoic gelatine by SPH. In J.F. Silva Gomes & S.A. Meguid, editor, 9th International Conference on Mechanics and Materials in Design, pages 1–6, 2022.
- [7] F. Macià, J. M. Sánchez, Souto-Iglesias A., and González L. M. Wcsph viscosity diffusion processes in vortex flows. *International Journal for Numerical Methods i Fluids*, pages 1–25, 2011.
- [8] J. J. Monaghan and R. A. Gingold. Shock simulation by the particle method. *Journal of Computational Physics*, 52:374–389, 1983.
- [9] J. P. Morris, P. J. Fox, and Y. Zhu. Modeling low reynolds number incompressible flows using sph. *Journal of Computational Physics*, 136:214–226, 1997.
- [10] J. Onderik and R. Ďurikovič. Efficient neighbor search for particle-based fluids. *Journal of the Applied Mathematics*, *Statistics and Informatics*, 2(3):1–15, 2007.
- [11] H. Takeda, S. M. Miyama, and M. Sekiya. Numerical simulation of viscous flow by smoothed particle hydrodynamics. *Progress of Theoretical Physics*, 92(5):939–960, 1999.