Generalization

MLAI: Week 3

Neil D. Lawrence

Department of Computer Science Sheffield University

15th October 2013

Review

- ► Last time: Looked at univariate and multivariate linear regression.
- ► Showed how to maximize the likelihood of a multivariate model.
- ► Introduced basis functions to make the model non-linear.

Outline

Basis Functions

Fitting Basis Functions

Generalization

Review: Overdetermined Systems

Underdetermined Systems

Bayesian Perspective

Basis Functions

Nonlinear Regression

- ► Problem with Linear Regression—x may not be linearly related to y.
- ▶ Potential solution: create a feature space: define $\phi(\mathbf{x})$ where $\phi(\cdot)$ is a nonlinear function of \mathbf{x} .
- Model for target is a linear combination of these nonlinear functions

$$f(\mathbf{x}) = \sum_{i=1}^{K} w_i \phi_i(\mathbf{x})$$
 (1)

Quadratic Basis

▶ Basis functions can be global. E.g. quadratic basis:

$$[1, x, x^2]$$

Figure: A quadratic basis.

Quadratic Basis

► Basis functions can be global. E.g. quadratic basis:

$$[1, x, x^2]$$

Figure: A quadratic basis.

Quadratic Basis

▶ Basis functions can be global. E.g. quadratic basis:

$$[1, x, x^2]$$

Figure: A quadratic basis.

Functions Derived from Quadratic Basis

$$f(x) = w_1 + w_2 x + w_3 x^2$$

Figure: Function from quadratic basis with weights $w_1 = 0.87466$, $w_2 = -0.38835$, $w_3 = -2.0058$.

Functions Derived from Quadratic Basis

$$f(x) = w_1 + w_2 x + w_3 x^2$$

Figure: Function from quadratic basis with weights $w_1 = -0.35908$, $w_2 = 1.2274$, $w_3 = -0.32825$.

Functions Derived from Quadratic Basis

$$f(x) = w_1 + w_2 x + w_3 x^2$$

Figure: Function from quadratic basis with weights $w_1 = -1.5638$, $w_2 = -0.73577$, $w_3 = 1.6861$.

Radial Basis Functions

► Or they can be local. E.g. radial (or Gaussian) basis $\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{\ell^2}\right)$

Figure: Radial basis functions.

Radial Basis Functions

► Or they can be local. E.g. radial (or Gaussian) basis $\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{\ell^2}\right)$

Figure: Radial basis functions.

Radial Basis Functions

► Or they can be local. E.g. radial (or Gaussian) basis $\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{\ell^2}\right)$

Figure: Radial basis functions.

Functions Derived from Radial Basis

$$f(x) = w_1 e^{-2(x+1)^2} + w_2 e^{-2x^2} + w_3 e^{-2(x-1)^2}$$

Figure: Function from radial basis with weights $w_1 = -0.47518$, $w_2 = -0.18924$, $w_3 = -1.8183$.

Functions Derived from Radial Basis

$$f(x) = w_1 e^{-2(x+1)^2} + w_2 e^{-2x^2} + w_3 e^{-2(x-1)^2}$$

Figure: Function from radial basis with weights $w_1 = 0.50596$, $w_2 = -0.046315$, $w_3 = 0.26813$.

Functions Derived from Radial Basis

$$f(x) = w_1 e^{-2(x+1)^2} + w_2 e^{-2x^2} + w_3 e^{-2(x-1)^2}$$

Figure: Function from radial basis with weights $w_1 = 0.07179$, $w_2 = 1.3591$, $w_3 = 0.50604$.

Outline

Basis Functions

Fitting Basis Functions

Generalization

Review: Overdetermined Systems

Underdetermined Systems

Bayesian Perspective

Basis Function Models

► A Basis function mapping is now defined as

$$f(\mathbf{x}_i) = \sum_{j=1}^m w_j \phi_{i,j} + c$$

Vector Notation

▶ Write in vector notation,

$$f(\mathbf{x}_i) = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_i + c$$

Log Likelihood for Basis Function Model

► The likelihood of a single data point is

$$p\left(y_i|x_i\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\left(y_i - \mathbf{w}^\top \boldsymbol{\phi}_i\right)^2}{2\sigma^2}\right).$$

Leading to a log likelihood for the data set of

$$L(\mathbf{w}, \sigma^2) = -\frac{N}{2} \log \sigma^2 - \frac{N}{2} \log 2\pi - \frac{\sum_{i=1}^{N} (y_i - \mathbf{w}^\top \boldsymbol{\phi}_i)^2}{2\sigma^2}.$$

And a corresponding error function of

$$E(\mathbf{w}, \sigma^2) = \frac{N}{2} \log \sigma^2 + \frac{\sum_{i=1}^{N} (y_i - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_i)^2}{2\sigma^2}.$$

Expand the Brackets

$$\begin{split} E(\mathbf{w}, \sigma^2) &= \frac{N}{2} \log \sigma^2 + \frac{1}{2\sigma^2} \sum_{i=1}^{N} y_i^2 - \frac{1}{\sigma^2} \sum_{i=1}^{N} y_i \mathbf{w}^{\top} \phi_i \\ &+ \frac{1}{2\sigma^2} \sum_{i=1}^{N} \mathbf{w}^{\top} \phi_i \phi_i^{\top} \mathbf{w} + \text{const.} \\ &= \frac{N}{2} \log \sigma^2 + \frac{1}{2\sigma^2} \sum_{i=1}^{N} y_i^2 - \frac{1}{\sigma^2} \mathbf{w}^{\top} \sum_{i=1}^{N} \phi_i y_i \\ &+ \frac{1}{2\sigma^2} \mathbf{w}^{\top} \left[\sum_{i=1}^{N} \phi_i \phi_i^{\top} \right] \mathbf{w} + \text{const.} \end{split}$$

Multivariate Derivatives Reminder

▶ We will need some multivariate calculus.

$$\frac{\mathrm{d}\mathbf{a}^{\top}\mathbf{w}}{\mathrm{d}\mathbf{w}} = \mathbf{a}$$

and

$$\frac{\mathrm{d}\mathbf{w}^{\top}\mathbf{A}\mathbf{w}}{\mathrm{d}\mathbf{w}} = \left(\mathbf{A} + \mathbf{A}^{\top}\right)\mathbf{w}$$

or if **A** is symmetric (*i.e.* $\mathbf{A} = \mathbf{A}^{\top}$)

$$\frac{\mathbf{d}\mathbf{w}^{\top}\mathbf{A}\mathbf{w}}{\mathbf{d}\mathbf{w}} = 2\mathbf{A}\mathbf{w}.$$

Differentiate

Differentiating with respect to the vector \mathbf{w} we obtain

$$\frac{\partial L(\mathbf{w}, \beta)}{\partial \mathbf{w}} = \beta \sum_{i=1}^{N} \phi_i y_i - \beta \left[\sum_{i=1}^{N} \phi_i \phi_i^{\mathsf{T}} \right] \mathbf{w}$$

Leading to

$$\mathbf{w}^* = \left[\sum_{i=1}^N \boldsymbol{\phi}_i \boldsymbol{\phi}_i^\top\right]^{-1} \sum_{i=1}^N \boldsymbol{\phi}_i y_i,$$

Rewrite in matrix notation:

$$\sum_{i=1}^{N} \boldsymbol{\phi}_{i} \boldsymbol{\phi}_{i}^{\top} = \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}$$

$$\sum_{i=1}^{N} \boldsymbol{\phi}_{i} y_{i} = \boldsymbol{\Phi}^{\top} \mathbf{y}$$

Update Equations

▶ Update for w*.

$$\mathbf{w}^* = \left(\mathbf{\Phi}^\top \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^\top \mathbf{y}$$

► The equation for σ^{2^*} may also be found

$$\sigma^{2^*} = \frac{\sum_{i=1}^{N} \left(y_i - \mathbf{w}^{*\top} \boldsymbol{\phi}_i \right)^2}{N}.$$

Reading

- ► Section 1.4 of Rogers and Girolami.
- ► Chapter 1, pg 1-6 of Bishop.
- ► Chapter 3, Section 3.1 of Bishop up to pg 143.

Outline

Basis Functions

Fitting Basis Functions

Generalization

Review: Overdetermined Systems

Underdetermined Systems

Bayesian Perspective

Left: fit to data, *Right*: model error. Polynomial order 0, model error -3.3989, $\sigma^2 = 0.286$, $\sigma = 0.535$.

Left: fit to data, *Right*: model error. Polynomial order 1, model error -21.772, $\sigma^2 = 0.0733$, $\sigma = 0.271$.

Left: fit to data, *Right*: model error. Polynomial order 2, model error -29.101, $\sigma^2 = 0.0426$, $\sigma = 0.206$.

Left: fit to data, *Right*: model error. Polynomial order 3, model error -29.907, $\sigma^2 = 0.0401$, $\sigma = 0.200$.

Left: fit to data, *Right*: model error. Polynomial order 4, model error -29.943, $\sigma^2 = 0.0400$, $\sigma = 0.200$.

Left: fit to data, *Right*: model error. Polynomial order 5, model error -30.056, $\sigma^2 = 0.0397$, $\sigma = 0.199$.

Left: fit to data, *Right*: model error. Polynomial order 6, model error -32.866, $\sigma^2 = 0.0322$, $\sigma = 0.180$.

Overfitting

- ► Increase number of basis functions, we obtain a better 'fit' to the data.
- ► How will the model perform on previously unseen data?

Training and Test Sets

- We call the data used for fitting the model the 'training set'.
- ▶ Data not used for training, but when the model is applied 'in the field' is called the 'test data'.
- Challenge for generalization is to ensure a good performance on test data given only training data.

Validation Set

Left: fit to data, *Right*: model error. Polynomial order 0, training error -1.8774, validation error -0.13132, $\sigma^2 = 0.302$, $\sigma = 0.549$.

Left: fit to data, *Right*: model error. Polynomial order 1, training error -15.325, validation error 2.5863, $\sigma^2 = 0.0733$, $\sigma = 0.271$.

Left: fit to data, *Right*: model error. Polynomial order 2, training error -17.579, validation error -8.4831, $\sigma^2 = 0.0578$, $\sigma = 0.240$.

Left: fit to data, *Right*: model error. Polynomial order 3, training error -18.064, validation error 11.27, $\sigma^2 = 0.0549$, $\sigma = 0.234$.

Left: fit to data, *Right*: model error. Polynomial order 4, training error -18.245, validation error 232.92, $\sigma^2 = 0.0539$, $\sigma = 0.232$.

Left: fit to data, *Right*: model error. Polynomial order 5, training error -20.471, validation error 9898.1, $\sigma^2 = 0.0426$, $\sigma = 0.207$.

Left: fit to data, *Right*: model error. Polynomial order 6, training error -22.881, validation error 67775, $\sigma^2 = 0.0331$, $\sigma = 0.182$.

- ► Take training set and remove one point.
- ► Train on the remaining data.
- Compute the error on the point you removed (which wasn't in the training data).
- ▶ Do this for each point in the training set in turn.
- Average the resulting error. This is the leave one out error.

Polynomial order 0, training error -3.346, leave one out error 0.045811.

Polynomial order 0, training error -3.346, leave one out error 0.045811.

Polynomial order 0, training error -3.346, leave one out error 0.045811.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 1, training error -21.183, leave one out error -0.15413.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 2, training error -28.403, leave one out error 0.34669.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 3, training error -29.223, leave one out error 0.51621.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 4, training error -29.324, leave one out error 0.84844.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 5, training error -29.524, leave one out error 1.48.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

Polynomial order 6, training error -32.237, leave one out error 1.5047.

k Fold Cross Validation

- Leave one out cross validation can be very time consuming!
- ▶ Need to train your algorithm *N* times.
- ► An alternative: *k* fold cross validation.

Polynomial order 1, training error -18.873, leave one out error -0.15413.

Polynomial order 1, training error -18.873, leave one out error -0.15413.

Polynomial order 1, training error -18.873, leave one out error -0.15413.

Polynomial order 1, training error -18.873, leave one out error -0.15413.

Polynomial order 1, training error -18.873, leave one out error -0.15413.

Polynomial order 1, training error -18.873, leave one out error -0.15413.

Polynomial order 2, training error -25.177, leave one out error 0.34669.

Polynomial order 2, training error -25.177, leave one out error 0.34669.

Polynomial order 2, training error -25.177, leave one out error 0.34669.

Polynomial order 2, training error -25.177, leave one out error 0.34669.

Polynomial order 2, training error -25.177, leave one out error 0.34669.

Polynomial order 2, training error -25.177, leave one out error 0.34669.

Polynomial order 3, training error -25.777, leave one out error 0.51621.

Polynomial order 3, training error -25.777, leave one out error 0.51621.

Polynomial order 3, training error -25.777, leave one out error 0.51621.

Polynomial order 3, training error -25.777, leave one out error 0.51621.

Polynomial order 3, training error -25.777, leave one out error 0.51621.

Polynomial order 3, training error -25.777, leave one out error 0.51621.

Polynomial order 4, training error -26.048, leave one out error 0.84844.

Polynomial order 4, training error -26.048, leave one out error 0.84844.

Polynomial order 4, training error -26.048, leave one out error 0.84844.

Polynomial order 4, training error -26.048, leave one out error 0.84844.

Polynomial order 4, training error -26.048, leave one out error 0.84844.

Polynomial order 4, training error -26.048, leave one out error 0.84844.

Polynomial order 5, training error -26.892, leave one out error 1.48.

Polynomial order 5, training error -26.892, leave one out error 1.48.

Polynomial order 5, training error -26.892, leave one out error 1.48.

Polynomial order 5, training error -26.892, leave one out error 1.48.

Polynomial order 5, training error -26.892, leave one out error 1.48.

Polynomial order 5, training error -26.892, leave one out error 1.48.

Polynomial order 6, training error -29.395, leave one out error 1.5047.

Polynomial order 6, training error -29.395, leave one out error 1.5047.

Polynomial order 6, training error -29.395, leave one out error 1.5047.

Polynomial order 6, training error -29.395, leave one out error 1.5047.

Polynomial order 6, training error -29.395, leave one out error 1.5047.

Polynomial order 6, training error -29.395, leave one out error 1.5047.

Reading

► Section 1.5 of Rogers and Girolami.

Outline

Basis Functions

Fitting Basis Functions

Generalization

Review: Overdetermined Systems

Underdetermined Systems

Bayesian Perspective

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

$$y_1 - y_2 = m(x_1 - x_2)$$

$$\frac{y_1 - y_2}{x_1 - x_2} = m$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$c = y_1 - mx_1$$

Two Simultaneous Equations

How do we deal with three simultaneous equations with only two unknowns?

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

$$y_3 = mx_3 + c$$

Overdetermined System

▶ With two unknowns and two observations:

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

Overdetermined System

▶ With two unknowns and two observations:

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

► Additional observation leads to *overdetermined* system.

$$y_3 = mx_3 + c$$

Overdetermined System

With two unknowns and two observations:

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

► Additional observation leads to *overdetermined* system.

$$y_3 = mx_3 + c$$

► This problem is solved through a noise model $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y_1 = mx_1 + c + \epsilon_1$$

$$y_2 = mx_2 + c + \epsilon_2$$

$$y_3 = mx_3 + c + \epsilon_3$$

Noise Models

- ▶ We aren't modeling entire system.
- ► Noise model gives mismatch between model and data.
- Gaussian model justified by appeal to central limit theorem.
- ▶ Other models also possible (Student-*t* for heavy tails).
- Maximum likelihood with Gaussian noise leads to least squares.

Outline

Basis Functions

Fitting Basis Functions

Generalization

Review: Overdetermined Systems

Underdetermined Systems

Bayesian Perspective

What about two unknowns and *one* observation?

$$y_1 = mx_1 + c$$

$$m=\frac{y_1-c}{r}$$

$$c = 1.75 \Longrightarrow m = 1.25$$

$$c = -0.777 \Longrightarrow m = 3.78$$

$$c = -4.01 \Longrightarrow m = 7.01$$

$$c = -0.718 \Longrightarrow m = 3.72$$

$$c = 2.45 \Longrightarrow m = 0.545$$

$$c = -0.657 \Longrightarrow m = 3.66$$

$$c = -3.13 \Longrightarrow m = 6.13$$

$$c = -1.47 \Longrightarrow m = 4.47$$

Can compute m given c. Assume

$$c \sim \mathcal{N}(0,4)$$
,

we find a distribution of solutions.

Different Types of Uncertainty

- ► The first type of uncertainty we are assuming is *aleatoric* uncertainty.
- ► The second type of uncertainty we are assuming is *epistemic* uncertainty.

Aleatoric Uncertainty

- ► This is uncertainty we couldn't know even if we wanted to. e.g. the result of a football match before it's played.
- ▶ Where a sheet of paper might land on the floor.

Outline

Basis Functions

Fitting Basis Functions

Generalization

Review: Overdetermined Systems

Underdetermined Systems

Bayesian Perspective

Bayesian Approach

Likelihood for the regression example has the form

$$p(\mathbf{y}|\mathbf{w}, \sigma^2) = \prod_{i=1}^N \mathcal{N}(y_i|\mathbf{w}^\top \boldsymbol{\phi}_i, \sigma^2).$$

- Suggestion was to maximize this likelihood with respect to w.
- ► This can be done with gradient based optimization of the log likelihood.
- ► Alternative approach: integration across **w**.
- Consider expected value of likelihood under a range of potential ws.
- ► This is known as the *Bayesian* approach.

Note on the Term Bayesian

- We will use Bayes' rule to invert probabilities in the Bayesian approach.
 - Bayesian is not named after Bayes' rule (v. common confusion).
 - The term Bayesian refers to the treatment of the parameters as stochastic variables.
 - ► This approach was proposed by Laplace (1774) and Bayes (1763) independently.
 - For early statisticians this was very controversial (Fisher et al).

► Jacob Bernoulli described this distribution in terms of an 'urn'.

- ► Jacob Bernoulli described this distribution in terms of an 'urn'.
- Write as a function

$$P(Y = y) = \pi^{y} (1 - \pi)^{1 - y}$$

- ► Jacob Bernoulli described this distribution in terms of an 'urn'.
- ► Write as a function

$$P(Y = y) = \pi^{y} (1 - \pi)^{1-y}$$

► Thomas Bayes considered a ball landing uniformly across a table.

► Thomas Bayes considered a ball landing uniformly across a table.

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (Bayes, 1763, page 385).

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (Bayes, 1763, page 385).

- ► Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (Bayes, 1763, page 385).
- ► The position of the first ball gives the parameter π .

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (Bayes, 1763, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.

- ► Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (Bayes, 1763, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.
- ► This treatment of a parameter, π , as a random variable that was/is considered controversial.

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (Bayes, 1763, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.
- ► This treatment of a parameter, π , as a random variable that was/is considered controversial.

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (Bayes, 1763, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.
- ► This treatment of a parameter, π , as a random variable that was/is considered controversial.

- Thomas Bayes considered a ball landing uniformly across a table.
- ► And another ball landing on the left or right (Bayes, 1763, page 385).
- ► The position of the first ball gives the parameter π .
- ► That 'parameter' is *itself* a random variable.
- ► This treatment of a parameter, π , as a random variable that was/is considered controversial.

Bayesian Controversy

- ▶ Bayesian controversy relates to treating *epistemic* uncertainty as *aleatoric* uncertainty.
- Another analogy:
 - Before a football match the uncertainty about the result is aleatoric.
 - If I watch a recorded match without knowing the result the uncertainty is epistemic.

Simple Bayesian Inference

$$posterior = \frac{likelihood \times prior}{marginal\ likelihood}$$

Four components:

- 1. Prior distribution: represents belief about parameter values before seeing data.
- 2. Likelihood: gives relation between parameters and data.
- 3. Posterior distribution: represents updated belief about parameters after data is observed.
- 4. Marginal likelihood: represents assessment of the quality of the model. Can be compared with other models (likelihood/prior combinations). Ratios of marginal likelihoods are known as Bayes factors.

Outline

Basis Functions

Fitting Basis Functions

Generalization

Review: Overdetermined Systems

Underdetermined Systems

Bayesian Perspective

Prior Distribution

- ▶ Bayesian inference requires a prior on the parameters.
- ► The prior represents your belief *before* you see the data of the likely value of the parameters.
- ► For linear regression, consider a Gaussian prior on the intercept:

$$c \sim \mathcal{N}(0, \alpha_1)$$

Posterior Distribution

- ► Posterior distribution is found by combining the prior with the likelihood.
- Posterior distribution is your belief after you see the data of the likely value of the parameters.
- ► The posterior is found through Bayes' Rule

$$p(c|y) = \frac{p(y|c)p(c)}{p(y)}$$

Bayes Update

Figure: A Gaussian prior combines with a Gaussian likelihood for a Gaussian posterior.

Bayes Update

Figure: A Gaussian prior combines with a Gaussian likelihood for a Gaussian posterior.

Bayes Update

Figure: A Gaussian prior combines with a Gaussian likelihood for a Gaussian posterior.

Stages to Derivation of the Posterior

- Multiply likelihood by prior
 - they are "exponentiated quadratics", the answer is always also an exponentiated quadratic because $\exp(a^2) \exp(b^2) = \exp(a^2 + b^2)$.
- Complete the square to get the resulting density in the form of a Gaussian.
- Recognise the mean and (co)variance of the Gaussian. This is the estimate of the posterior.

$$p(c) = \frac{1}{\sqrt{2\pi\alpha_1}} \exp\left(-\frac{1}{2\alpha_1}c^2\right)$$

$$p(\mathbf{y}|\mathbf{x}, c, m, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - mx_i - c)^2\right)$$

$$p(c) = \frac{1}{\sqrt{2\pi\alpha_1}} \exp\left(-\frac{1}{2\alpha_1}c^2\right)$$

$$p(\mathbf{y}|\mathbf{x}, c, m, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - mx_i - c)^2\right)$$

$$p(c|\mathbf{y}, \mathbf{x}, m, \sigma^2) = \frac{p(\mathbf{y}|\mathbf{x}, c, m, \sigma^2)p(c)}{p(\mathbf{y}|\mathbf{x}, m, \sigma^2)}$$

$$p(c) = \frac{1}{\sqrt{2\pi\alpha_1}} \exp\left(-\frac{1}{2\alpha_1}c^2\right)$$

$$p(\mathbf{y}|\mathbf{x}, c, m, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - mx_i - c)^2\right)$$

$$p(c|\mathbf{y}, \mathbf{x}, m, \sigma^2) = \frac{p(\mathbf{y}|\mathbf{x}, c, m, \sigma^2)p(c)}{\int p(\mathbf{y}|\mathbf{x}, c, m, \sigma^2)p(c)dc}$$

$$p(c) = \frac{1}{\sqrt{2\pi\alpha_1}} \exp\left(-\frac{1}{2\alpha_1}c^2\right)$$

$$p(\mathbf{y}|\mathbf{x}, c, m, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - mx_i - c)^2\right)$$

$$p(c|\mathbf{y}, \mathbf{x}, m, \sigma^2) \propto p(\mathbf{y}|\mathbf{x}, c, m, \sigma^2)p(c)$$

$$\log p(c|\mathbf{y}, \mathbf{x}, m, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - c - mx_i)^2 - \frac{1}{2\alpha_1} c^2 + \text{const}$$
$$= -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - mx_i)^2 - \left(\frac{N}{2\sigma^2} + \frac{1}{2\alpha_1}\right) c^2$$

 $\log p(c|\mathbf{y}, \mathbf{x}, m, \sigma^2) = -\frac{1}{2\sigma^2}(c - \mu)^2 + \text{const},$

where $\tau^2 = (N\sigma^{-2} + \alpha_1^{-1})^{-1}$ and $\mu = \frac{\tau^2}{\sigma^2} \sum_{n=1}^{N} (y_i - mx_i)$.

complete the square of the quadratic form to obtain

 $+c\frac{\sum_{i=1}^{N}(y_i-mx_i)}{\sigma^2}$

The Joint Density

- ► Really want to know the *joint* posterior density over the parameters *c* and *m*.
- ► Could now integrate out over *m*, but it's easier to consider the multivariate case.

Aleatoric Uncertainty

- ► This is uncertainty we couldn't know even if we wanted to. e.g. the result of a football match before it's played.
- ▶ Where a sheet of paper might land on the floor.

Epistemic Uncertainty

- ► This is uncertainty we could in principal know the answer too. We just haven't observed enough yet, e.g. the result of a football match *after* it's played.
- What colour socks your lecturer is wearing.

Reading

- ▶ Bishop Section 1.2.3 (pg 21–24).
- ▶ Bishop Section 1.2.6 (start from just past eq 1.64 pg 30-32).
- ▶ Rogers and Girolami use an example of a coin toss for introducing Bayesian inference Chapter 3, Sections 3.1-3.4 (pg 95-117). Although you also need the beta density which we haven't yet discussed. This is also the example that Laplace used.

Reading Summary

- Basis Functions
 - Section 1.4 of Rogers and Girolami.
 - ► Chapter 1, pg 1-6 of Bishop.
 - ► Chapter 3, Section 3.1 of Bishop up to pg 143.
- Generalization
 - Section 1.5 of Rogers and Girolami.
- Bayesian Inference
 - Rogers and Girolami use an example of a coin toss for introducing Bayesian inference Chapter 3, Sections 3.1-3.4 (pg 95-117). Although you also need the beta density which we haven't yet discussed. This is also the example that Laplace used.
 - ► Bishop Section 1.2.3 (pg 21–24).
 - ▶ Bishop Section 1.2.6 (start from just past eq 1.64 pg 30-32).

References I

- T. Bayes. An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society*, 53:370–418, 1763. [DOI].
- C. M. Bishop. *Pattern Recognition and Machine Learning*. Springer-Verlag, 2006. [Google Books].
- P. S. Laplace. Mémoire sur la probabilité des causes par les évènemens. In *Mémoires de mathèmatique et de physique, presentés à lAcadémie Royale des Sciences, par divers savans, & lù dans ses assemblées 6*, pages 621–656, 1774. Translated in Stigler (1986).
- S. Rogers and M. Girolami. *A First Course in Machine Learning*. CRC Press, 2011. [Google Books] .
- S. M. Stigler. Laplace's 1774 memoir on inverse probability. *Statistical Science*, 1:359–378, 1986.