: Fonction carré et cube : Chapitre

I. La fonction carré $x \rightarrow x^2$

1) Etude de la fonction

Activité 1 : La fonction « carré »

Soit A la fonction qui à tout nombre x de $[0; +\infty[$ associe l'aire d'un carré de côté x (le côté est mesuré en cm et l'aire en cm 2). Soit C la courbe représentant la fonction A.

1)	(a)	Exprimer	Α	en	fonction	de	x

A(3)

- 2) Soient a et b deux réels positifs tels que a < b.
- (a) Construire un carré de côté a et un carré de côté b.

(b) Quel carré semble avoir la plus grande aire ? Le démontrer.	

- 3) Tracer la courbe \overline{C} sur [0;3].
- 4) Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2$.

Observer C_f à la calculatrice. Expliquer comment tracer la courbe C_f sur [-3;0]. Justifier.

Définition	1 • 1	La fonction	carrá ast	dáfinia si	ır 🏻 nar	f(y) -
Delillillilli		La IUIICLIUII	Larre est	. uenne su	II IIV Dai	/ (X) -

Application 1 : Déterminer les images des nombres suivants par la fonction carré :

$$A = -\frac{1}{7}$$

$$B=10^{-5}$$

$$C = 3\sqrt{2}$$

$$D = \sqrt{3} - 2$$

Exercice 1 : Images, antécédents de nombres par la fonction carré

Soit *f* la fonction carré.

- 1. Calculer les images par f des nombres réels suivants :
 - a. 8 b. -6c. 0
- d. 0,4
- e. -1,5

- m. 2×10^3
- 2. Déterminer les éventuels antécédents des nombres suivants par f

Exercice 2 : Images, antécédents de nombres par la fonction carré

Recopier et compléter les phrases suivantes :

81 est le carré de ...

Le carré de $\sqrt{5}$ est ...

- ... est le carré de 3.2
- ... est le carré de $-\sqrt{3}$

Propriété 1 (signe): Un carré est toujours positif dans R.

Propriété 2 (variation) :

• La fonction carré est strictement

sur $]-\infty,0]$.

• La fonction carré est strictement

 $sur [0, +\infty[$.

Propriété 3 (comparaison): On a montré que :

- si 0 < a < b alors
- si a < b < 0 alors

Tableau de variation de la fonction carré :

Exercice 3: Tableau de variations de la fonction carré

- 1. Donner le tableau de variation de la fonction carré sur l'intervalle [2;5]
- 2. Donner le tableau de variation de la fonction carré sur l'intervalle [-3;0]
- 3. Donner le tableau de variation de la fonction carré sur l'intervalle [-7;6]

Exercice 4 : Extremums de fonction carré

- 1. Quel est le maximum de la fonction carré sur [-5; -3]?
- 2. Quel est le minimum de la fonction carré sur l'intervalle [1;4]
- 3. Déterminer deux intervalles où la fonction carré admet 1 pour minimum et 9 pour maximum.

Exercice 5 : Extremums de fonction carré

- Quel est le maximum de la fonction carré sur [-5; 3]?
- 2. Quel est le minimum de la fonction carré sur l'intervalle [-5;3]
- 3. Déterminer trois intervalles où la fonction carré admet 0 pour minimum et 25 pour maximum.

Exercice 6 : Variations de la fonction carré et comparaisons

Indiquer quelle propriété du cours permet d'affirme sans calcul que :

1. Si
$$\sqrt{2} < \frac{3}{2}$$
 alors $2 < \frac{9}{4}$

2. Si
$$-0.8 < -\frac{3}{4}$$
 alors $0.64 > \frac{9}{16}$

3. Si
$$1.5 < a < 1.6$$
 alors $2.25 < a^2 < 2.56$

4. Si
$$a < -1$$
 alors $a^2 > 1$

Exercice 7 : Variations de la fonction carré et comparaisons

1. Comparer les carrés des nombres a et b suivants sans aucun calcul :

a.
$$a = \sqrt{3}$$
 et $b = 2$

c.
$$a = 1,28 \text{ et}$$

 $b = \frac{4}{2}$

e.
$$a = \sqrt{7}$$
 et $b = 3$

g.
$$a = -1,28$$
 et $b = -\frac{4}{3}$

b.
$$a = -0.34$$
 et $b = -0.27$

d.
$$a = -\sqrt{2}$$
 et $b = -1.5$

f.
$$a = 3$$
 et $b = \sqrt{10}$

h.
$$a = 3 - \sqrt{3}$$
 et $b = 3 - \sqrt{5}$

2. Comparer les nombres suivants sans utiliser la calculatrice

a.
$$a = 3,456^2$$
 et $b = 3,546^2$

b = 3,546²
b.
$$a = (-7,878)^2$$
 et
 $b = (-7,879)^2$

c.
$$a = 4\pi^2$$
 et
 $b = 5,987^2$
d. $a = 2$ et $b = 2,1^2$

e.
$$a = (-\pi + 2)^2$$
 et
 $b = (-\pi + 1)^2$

$$b = (-n + 1)$$

f. $a = (3 - 2 \times 10^{-3})^2$ et

$$b = (2 + 1)$$

2) Parité

Propriété 4 : La fonction carré est

Remarque 1: Une fonction est paire si et seulement si :

- Son ensemble de définition D est symétrique par rapport à 0
- Pour tout $x \in D$, f(-x) = f(x)
- \Rightarrow On peut le vérifier ici : f(-x) =

Remarque 2 : La courbe d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

- ⇒ On va le vérifier maintenant :
 - 3) Parabole d'équation $y = x^2$

<u>Définition 2</u>: La fonction carré est représentée par une courbe appelée :

Elle est constituée des points $M(x; x^2)$ et a pour équation Le point O(0; 0) est appelée sommet de la parabole.

Exercice 8 : Représentation graphique de la fonction carré, images et antécédents

- 1. Dans un repère orthogonal (unité graphique : 3 cm sur l'axe des abscisses, 1 cm sur l'axe des ordonnées), représenter graphiquement la fonction carré sur [-3;3].
- ${\bf 2.} \quad {\bf En \ laissant \ appara \^{\bf i} tre \ les \ traits \ de \ construction, \ indiquer \ graphiquement:}$
 - a. comment déterminer l'image de $\frac{4}{3}$
 - b. comment déterminer les antécédents de 3.5
- 3. a. Quelles sont les valeurs exactes des antécédents de 3,5 ?
 - b. De quelle équation ces nombres sont-ils solutions ?

4) Equation $x^2 = a$

Propriétés 6 :

- Si a > 0, $x^2 = a$ admet
- Si a = 0, $x^2 = a$ admet
- Si a < 0, $x^2 = a$

Application 2 : Déterminer les antécédents des nombres suivants par la fonction carré :

Application 3 : Résoudre les équations suivantes :

$$x^2 - \frac{3}{5} = 0$$

$$(2x-1)^2=25$$

Exercice 9 : Equations de la forme $x^2 = a$

Résoudre les équations suivantes

a.
$$x^2 = 25$$

a.
$$x^2 = 25$$

b.
$$x^2 = 2$$

c.
$$x^2 = -10$$

c.
$$x^2 = -10$$

d.
$$x^2 = 12$$

$$^{2} = 12$$

f.
$$x^2 - \frac{9}{4} = 0$$

$$x^2 - \frac{9}{4} = 0$$

$$-1 = 81$$

$$x^2 - 1 = 81$$

k.
$$\frac{1}{2}x^2 =$$

$$x^2 = 2$$

o.
$$\frac{1}{2}x^2 = 50$$

o.
$$\frac{1}{2}x^2 = 50$$

o.
$$\frac{1}{2}x^2 = 50$$

a.
$$x^2 = 25$$

b. $x^2 = 2$
c. $x^2 = -10$
d. $x^2 = 12$
e. $x^2 + 1 = 0$
f. $x^2 - \frac{9}{4} = 0$
g. $x^2 - 1 = 81$
h. $x^2 + 6 = 127$
i. $2x^2 - 1 = 1$
j. $3x^2 + 2 = 0$
k. $\frac{9}{2}x^2 = 2$
l. $9x^2 - 4 = 12$
ii. $2x^2 - 1 = 1$
j. $3x^2 + 2 = 0$
k. $\frac{9}{2}x^2 = 2$
l. $9x^2 - 4 = 12$
ii. $2x^2 - 1 = 1$
j. $3x^2 + 2 = 0$
k. $\frac{9}{2}x^2 = 2$
l. $9x^2 - 4 = 12$
ii. $2x^2 - 1 = 1$
ii.

5) Encadrements et inéquations

On a déià vu : si 0 < a < b alors $0 < a^2 < b^2$ et si a < b < 0 alors $a^2 > b^2 > 0$.

Mais que se passe-t-il si a < 0 < b?

On ne peut pas conclure directement, il faut raisonner graphiquement.

Application 4:

1. Sachant que $-2 \le x \le 4$, encadrer x^2 .

	2		

2. Sachant que 3 < x < 5, encadrer x^2 .

2	2	

3. Sachant que $-8 < x < -\frac{2}{3}$, encadrer x^2 .

Exercice 10 : Encadrement de x^2

- 1. Proposer le meilleur encadrement possible de x^2 sachant que :
 - a. $x \in [2; 2.5]$
- b. $x \in]-1; -0.5[$

- c. $x \in [3; +\infty[$ 2. En s'aidant du tableau de variations de la fonction carré, proposer le meilleur encadrement possible de x^2 sachant que :

Application 5 : Dans chacun des cas suivants, à l'aide de la représentation graphique de la fonction carré, déterminer pour quelles valeurs de x on a (on fera apparaître les pointillés et des couleurs) :

Exercice 11: Inéquations avec la fonction carré

En s'aidant, de la parabole représentative de la fonction carré, résoudre chacune des inéquation (déterminer à quel intervalle ou réunion d'intervalle appartient x):

a.
$$0 < x^2 \le 4$$

c.
$$x^2 \ge 10^{-6}$$

e.
$$x^2 < 1$$

g.
$$x^2 \le 10$$

b.
$$1 \le x^2 \le 9$$

d.
$$x^2 > 100$$

f.
$$x^2 \ge 64$$

c.
$$x^2 \ge 10^{-6}$$
 e. $x^2 < 1$ g. $x^2 \le 10$ d. $x^2 > 100$ f. $x^2 \ge 64$ h. $4 < x^2 < 16$

II. Fonction cube

Définition 3: On appelle fonction cube la fonction définie sur \mathbb{R} par f(x) =

Exercice 12 : Compléter :

- L'image de 3 par la fonction cube est :
- L'image de 0 par I fonction cube est :
- L'image de -6 par la fonction cube est :
- L'image de $\sqrt{2}$ par la fonction cube est :
- L'antécédent de 2 par la fonction cube est :
- L'antécédent de 125 par la fonction cube est :
- L'antécédent de -8 par la fonction cube est :
- L'antécédent de -5 par la fonction cube est :

Propriété 7 (variations): La fonction cube est strictement

Sa courbe représentative est donnée ci-contre :

sur \mathbb{R} .

Exercice 13: Fonction cube

On note f la fonction cube.

- 1. Donner le sens de variations de f sur \mathbb{R} .
- 2. Représenter graphiquement cette fonction.
- 3. Calculer l'image de 0.5, puis celle de 10^{-2} par f.
- 4. Déterminer l'antécédent de 27, puis celle de -125 par la fonction cube.
- 5. Résoudre f(x) = 1
- 6. Résoudre graphiquement f(x) = 8.
- 7. Résoudre graphiquement $x^3 > 8$.

Exercice 14 : Fonction cube

Pour chacun des points suivants, dire s'il appartient ou non à la représentation graphique de la fonction

$$A(2;8)$$
 $B(-1;-1)$ $C(0;0)$ $D(-3;27)$

Exercice 15: Fonction cube

Construire le tableau de variation de la fonction cube sur chacun des intervalles suivants :

$$I = [1;4]$$
 $J = [-2;-1]$ $K = [-3;3]$

Propriété 8 : La fonction cube est

Sa courbe représentative est donc

En effet : f(-x) =

Définition 4: Soit x un nombre réel positif. La racine cubique de x, notée $\sqrt[3]{x}$, est l'unique nombre positif dont le cube est $x:(\sqrt[3]{x})^3=x$

Remarque : La calculatrice donne des valeurs approchées des racines cubiques qu'on ne sait pas calculer, il faut utiliser les touches SHIFT $^{\land}$ (il est écrit $^{x}\sqrt{}$ au dessus)

Exemple: $\sqrt[3]{2}$ est un irrationnel et $\sqrt[3]{2} \approx 1.2599$ au millième près.

Propriétés 9 : Soit k un réel.

- L'équation $x^3 = k$ admet une unique solution :
- L'inéquation $x^3 < k$ a pour ensemble de solution l'intervalle :

Application 9 : Résoudre. Donner la valeur exacte, puis, si la solution n'a pas d'écriture rationnelle.

utilisez la calculatrice pour donner une valeur approchée au centième près.

1)
$$x^3 = 1$$
 2) $x^3 = 5$ 3) $x^3 = 8$

Application 10 : Résoudre, en faisant un schéma et une lecture graphique si besoin :

4)
$$x^3 \le -1$$

Application 11 Donner un encadrement de x^3 dans chaque cas :

b) $-8 \ge x > -10$ c) $-3 < x \le 4$ a) 4 < x < 6

Exercice 16 : Résoudre les équations et inéquations suivantes :

a)
$$x^3 = 0$$

h)
$$x^3 < 6$$

b)
$$x^3 = 7$$

i)
$$x^3 \ge -2$$

c)
$$3x^3 = 8$$

i)
$$x^3 \ge -2$$

$$c_f = 0$$

j)
$$x^3 \le 8$$

d)
$$x^3 = -1$$

k)
$$x^3 \ge 27$$

e)
$$x^3 = -16$$

1)
$$x^3 < -4$$

f)
$$2x^3 = 24$$

$$\sigma$$
) $r^3 > 2$

m)
$$x^3 > -1$$

g)
$$x^3 > 2$$

n)
$$x^3 \le 64$$

Exercice 17: Donner un encadrement de x^3 dans chaque cas :

a)
$$4 \le x < 6$$

b)
$$-8 \ge x > -10$$

c)
$$-3 < x \le 4$$

III. Puissances

Définition 5 : Soit *a* un nombre et *n* un nombre entier naturel,

1er cas : Si $a \neq 0$, la puissance d'exposant n du nombre a est le nombre noté a^n et défini par:

- $a^0 =$ et $a^{1} =$
- si $n \ge 2$ alors a^n est le produit de n facteurs tous égaux à $a: a^n = a \times a \times ... \times a$ (avec *n* facteurs a)

2ème cas : Si a=0 et si n est un entier supérieur ou égal à 1, $0^n=$

La puissance d'exposant -n du nombre $a \neq 0$ est le nombre noté a^{-n} et défini par : a^{-n} Autrement dit, le nombre a^n est l'inverse de a^n . En particulier a^{-1}

Exemples:

$$3^{4} = \frac{3 \times 3 \times 3 \times 3}{4 \text{ fois}} \quad 3^{-4} = \frac{1}{3^{4}} = \frac{1}{3 \times 3 \times 3 \times 3} \quad 2^{0} = 1 \quad 3^{1} = 3 \quad 5^{-1} = \frac{1}{5} \quad (-1)^{2} = (-1) \times (-1) = 1$$

Propriété 11 : Cas particuliers : les puissances de 10

Si *n* est un entier naturel, $10^n = 1000 \dots 0$ (avec *n* zéros) et $10^{-n} = \frac{1}{10^n} = 0, 0 \dots 01$ (avec n zéros)

Propriétés 12 : a et b sont des nombres non nuls et m et n des entiers relatifs :

$$a^m \times a^n =$$

$$\frac{a^m}{a^n} =$$

$$(a^m)^n =$$

$$(ab)^n =$$

$$\left(\frac{a}{n}\right)^n =$$

Exemples:

$$3^{-6} \times 3^2 = 3^{-4}$$
 $\frac{7^4}{7^6} = 7^{-2}$ $(10^{-3})^{-2} = 10^6$ $(3 \times 5)^3 = 3^3 \times 5^3$ $\left(\frac{2}{5}\right)^5 = 2^5 \times 5^{-5}$

$$\frac{7^4}{76} = 7^{-2}$$

$$(10^{-3})^{-2} = 10$$

$$(3 \times 5)^3 = 3^3 \times 5$$

$$\left(\frac{2}{5}\right)^5 = 2^5 \times 5^{-5}$$

Pour les exercices 18 à 22 : Ecrire sous la forme a^n , où a et n sont des entiers relatifs.

Exercice 18: Exercice 19:

1)
$$A = (-5)^3 \times (-5)^3$$

1)
$$A = 5 \times 5^{-3}$$
 1) $A = (-5)^3 \times (-5)^7$

1)
$$A = \frac{2^7}{2^3}$$

Exercice 20:

1)
$$A = \frac{2^7}{2^3}$$
 1) $A = \frac{3^5 \times 3^2}{(3 \times 3^{-2})^{-1}}$

2)
$$B = (2^3)^3$$

2)
$$B = (2^3)^5$$
 2) $B = (-3)^{-2} \times (-3)^{-6}$

2)
$$B = \frac{2^3}{2^5}$$

3)
$$C = 7 \times 7^2$$
 3) $C = (-2)^{-3} \times (-2)^4$ 2) $B = \frac{2^3}{2^5}$ 2) $B = \frac{7 \times 7^{-3}}{7^{-1} \times (7^2)^{-3}}$

4)
$$D = (3^2)^{-5}$$

4)
$$D = (3^2)^{-5}$$
 4) $D = (3^2)^5 \times (-2)^5$

3)
$$C = \frac{15^{-5}}{3^{-5}}$$
 3) $C = \frac{12^2 \times 3^2}{9^2}$

3)
$$C = \frac{12^2 \times 3^2}{9^2}$$

4)
$$D = (2^3)^4 \times \frac{2}{2^{-7}}$$
 4) $D = \frac{5^7 \times 3^7}{15^7}$

4)
$$D = \frac{5^7 \times 3^7}{15^7}$$

Exercice 22:

1)
$$10^5 \times 10^{-1}$$

2)
$$10^{-2} \times 10^{-2}$$

2)
$$10^{-2} \times 10^{2}$$
 3) $10^{-6} \times (10^{2})^{4}$

$$\frac{10^3}{10^{-2}}$$

IV. Positions relatives de courbes

Le plan est muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$.

 C_f , C_g , C_h sont les courbes représentatives des fonctions : $x \to x$, $g: x \to x^2$ et $h: x \to x^3$, toutes trois strictement croissantes sur $[0; +\infty[$.

Propriétés 10 :

- Les points de coordonnées (0; 0) et (1; 1) sont communs aux trois courbes.
- Sur l'intervalle]0; 1[, la courbe C_h est endessous de C_q , elle-même en dessous de C_f .

Autrement dit, $\forall x \in]0$; 1[, $x^3 < x^2 < x$

• Sur l'intervalle]1 ; $+\infty$ [: la courbe C_f est endessous de C_g , elle-même en dessous de C_h .

Autrement dit, $\forall x \in]1$; $+\infty[, x < x^2 < x^3]$

Preuve:

• Si $0 \le x \le 1$ alors en multipliant chaque membre par x (positif) on obtient $0 \le x^2 \le x$ donc en particulier $x^2 \le x$.

En multipliant encore par x, on obtient $x^3 \le x^2$.

Ainsi : $x^3 \le x^2 \le x$.

• Si $x \ge 1$ alors en multipliant chaque membre par x (positif) on obtient $x^2 \ge x$.

En multipliant encore par x, on obtient $x^3 \ge x^2$.

Ainsi : $x \le x^2 \le x^3$.