I Questions de cours

1 - Exercice 69 banque CCINP :

On considère la matrice $A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}$ où a est un réel.

- a) Quel est le rang de la matrice A?
- b) Suivant les valeurs de a, déterminer les valeurs propres et la dimension des sous-espaces propres de A.
- 2 Exercice 71 banque CCINP:

Soient P le plan d'équation x + y + z = 0 et D la droite d'équation $x = \frac{y}{2} = \frac{z}{3}$.

- a) Vérifier que $\mathbb{R}^3 = P \oplus D$.
- b) Soient p la projection vectorielle de \mathbb{R}^3 sur P parallèlement à D et $u=(x,y,z)\in\mathbb{R}^3.$

Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .

- c) Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.
- 3 Exercice 73 banque CCINP:

On pose $A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$.

- a) Déterminer les valeurs propres et les vecteurs propres de A.
- b) En déduire une base dans laquelle la matrice de l'endomorphisme canoniquement associé à A est diagonale.
- c) Déterminer toutes les matrices qui commutent avec la matrice $\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$. En déduire que l'ensemble des matrices qui commutent avec A est $\operatorname{Vect}(I_2, A)$.

II Exercices axés sur le calcul

Exercice 1:

Calculer le polynôme caractéristique de la matrice par blocs $B = \begin{pmatrix} 0 & A \\ A & 0 \end{pmatrix}$ en fonction de celui de $A \in \mathcal{M}_n(\mathbb{K})$.

Soit
$$A = \frac{1}{2} \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}$$
.

- 1 Déterminer les valeurs propres de A.
- 2 Préciser une matrice P telle que $D = PAP^{-1}$ soit diagonale.
- 3 Préciser la limite de la suite $(A^n)_{n\in\mathbb{N}}$.

Exercice 3:

Soit $A = \begin{pmatrix} 7 & -1 \\ 1 & 5 \end{pmatrix}$.

- 1 Calculer le polynôme caractéristique de A.
- 2 En déduire, pour tout $n \in \mathbb{N},$ A^n en fonction de I_2 et d'une matrice nilpotente B que l'on précisera.
- 3 Déterminer la matrice $\exp(A)$ (on rappelle que $\exp(A) = \sum_{n=0}^{+\infty} \frac{1}{n!} A^n$).

Exercice 4:

On définit φ sur $\mathbb{R}[X]$ par :

$$\varphi: P \longmapsto (X-1)(X-2)P' - 2XP$$

- 1 Montrer que φ est un endomorphisme de $\mathbb{R}[X]$.
- 2 Soit P un vecteur propre de φ . Déterminer le degré de P.
- 3 Écrire dans la base $(1, X 1, (X 1)^2)$ la matrice M de la restriction de φ à $\mathbb{R}_2[X]$.
- 4 Déterminer les éléments propres de φ .

III Exercices axés sur le raisonnement

Exercice 5:

- 1 Montrer qu'une matrice nilpotente est de trace nulle.
- $2 \text{Soit } A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 0 & 2 \end{pmatrix}.$

Montrer, sans calculer le polynôme caractéristique, qu'il existe un réel λ tel que $A-\lambda I_3$ soit nilpotente.

Exercice 6 .

Soient $A = \begin{pmatrix} -1 & 0 & 1\\ \frac{1}{2} & -\frac{1}{2} & 0\\ -\frac{1}{4} & -\frac{1}{4} & -\frac{3}{2} \end{pmatrix}$ et $T = \begin{pmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 0 & 0 & -1 \end{pmatrix}$.

- 1 Montrer que -1 est valeur propre de A et préciser le sous-espace propre associé.
- 2 Montrer que A et T sont semblables.
- 3 En déduire le polynôme caractéristique de A.

IV Exercice avec questions ouvertes

Exercice 7:

- 1 Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ inversible est-elle limite d'une suite de matrices non inversibles ?
- 2 Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ non inversible est-elle limite d'une suite de matrices inversibles ?