Exercice 1 (6 points)

Cet exercice est un questionnaire à choix multiples (QCM).

Pour l'une des six questions, il y a deux réponses et pour les autres il ne peut y en avoir qu'une.

Vous répondrez en mettant dans la dernière colonne la(les) lettre(s) correspondant à la bonne réponse.

Aucune justification n'est demandée.

		A	В	С	La réponse
1	Le produit de 18 facteurs égaux à -8 s'écrit :	(-8)18	-818	18 × (-8)	A
2	À quelle autre expression le nombre Erreur! – Erreur! ÷ Erreur! est-il égal ?	Erreur! ÷ Erreur!	Erreur! – Erreur! × Erreur!	Erreur !	B et C
3	Quel est le nombre en écriture scientifique ?	$17,3 \times 10^{-3}$	0,97 × 10 ⁷	1,52 × 10 ³	С
4	$\frac{10^{-3} \times (10^3)^{-2} \times 10^2}{10^{-4} \times 10^{-2}}$ est égal à	10 ⁻¹³	10-1	10 ⁶	В
5	Un article vaut x euros. Cet article baisse de 5 %, son nouveau prix est :	$\frac{5}{100}x$	100 x	$\frac{95}{100}x$	С
6	Un objet coûtant 127 € augmente de 5 %. Le nouveau prix est alors de :	127,05 €	133,35 €	132 €	В

Exercice 2 (10 points)

1) a) 2 pts

	А	В	С	D	E	F	G	Н	I	J	К	L	М
1	Taille en cm	0	8	12	14	16	17	18	19	20	21	22	Total
2	Effectif	1	2	2	4	2	2	3	3	4	4	2	29
3													

2) On additionne le nombre de plantules mesurant 0, 8 ou 12 cm :

$$1 + 2 + 2 = 5$$

5 plantules ont une taille mesurant au plus 12 cm. 0,5 pt

3) Calculons la moyenne de cette série :

1 pt formule

$$\mathsf{M} = \frac{1 \times 0 + 2 \times 8 + 2 \times 12 + 4 \times 14 + 2 \times 16 + 2 \times 17 + 3 \times 18 + 3 \times 19 + 4 \times 20 + 4 \times 21 + 2 \times 22}{29}$$

$$M = \frac{481}{29}$$

 $M \approx 16,58$ **0,5** pt résultat

Donc, la moyenne de cette série est d'environ 16,6 cm. 0,5 pt arrondi

4) Nombre de plantules ayant une taille supérieure ou égale à 14 cm :

$$29 - (1 + 2 + 2) = 29 - 5 = 24$$
 1 pt

Calcul du pourcentage d'élèves ayant bien respecté le protocole :

$$\frac{24}{29} \times 100 \approx 82,75$$
 1 pt formule + 0,5 pt résultat

Le pourcentage des élèves de la classe ayant bien respecté le protocole est environ de 82,8 %.

0,5 pt arrondi

Exercice 3 (22 points)

- a) On lit sur le graphique que 200 tours Eiffel chez le fournisseur A coûtent 500 €.
- 1) b) On lit sur le graphique qu'avec 1 300 euros chez le fournisseur B on peut avoir 600 tours Eiffel. 1 pt
- 2) La représentation graphique du prix à payer chez le fournisseur B n'est pas une droite passant par l'origine, le prix n'est pas proportionnel au nombre de tours Eiffel achetées. 1 pt + 1 pt
- 3) a) On a : f(x) = 2.5x.

D'où : $f(1000) = 2.5 \times 1000$ 1 pt Donc : f(1000) = 2500 0.5 pt

4) a)

Nombre de tours Eiffel	1	100	200	1 000	x
Prix payé en euros avec le fournisseur C	152	350	550	2 150	150 + 2x

0,5 0,5 1

4) b) Il faut résoudre l'équation suivante :

$$150 + 2x = 5801$$
 pt
 $2x = 4301$ pt
 $x = 215$. 1 pt

x doit être un nombre entier, c'est le cas.

1 pt

Chez le fournisseur C on peut acheter 215 tours Eiffel pour 580 €.

4) c) Résolution de l'équation suivante:

$$2,5x = 150 + 2x$$

 $0,5x = 150$ 1 pt
 $x = 300$. 1 pt

2,5x est le prix à payer chez A pour acheter x tours Eiffel et **1 pt** 150 + 2x celui à payer chez C pour acheter ces x tours Eiffel. **1 pt** Résoudre l'équation 2,5x = 150 + 2x revient à chercher pour quelle quantité de tours Eiffel x, le prix à payer est le même chez les fournisseurs A et C. **1 pt**

x doit être un nombre entier, 300 l'est. 0,5 pt

Pour 300 tours Eiffel achetées, le prix à payer est le même chez les fournisseurs A et C, à savoir $750 \in 1$ pt + 1 pt $(5 \times 300 = 750 \text{ ou } 150 + 2 \times 300 = 150 + 600 = 750)$ 0,5 pt

Exercice 4 (18 points)

- 1) a) L'image de 3 par la fonction f est 3) = -5. 1 pt
- 1) b) On a f(-2) = 5, donc -2 a pour image 5 par la fonction f. 1 pt
- 1) c) On a f(0) = 1, donc 1 a pour antécédent 0 par f. 1 pt
- 2) a) On a: 1
 - 1 + 1 = 2 1 pt
 - $2^2 = 4$

Avec ce programme, 1 donne 4 comme résultat. 1 pt

- On a: \bullet -2
 - -2 + 1 = -1 1 pt
 - $(-1)^2 = 1$

Avec ce programme, -2 donne 1 comme résultat. 1 pt

- 2) b) On a: x
 - x + 1 = 2 1 pt
 - $(x + 1)^2$

Donc: $g(x) = (x+1)^2$. 1 pt

3) a) On a : $h(x) = 2x^2 - 3$

D'où : $h(3) = 2 \times 3^2 - 3$ 1 pt

$$h(3) = 2 \times 9 - 3 \, 0.5 \, pt$$

$$h(3) = 18 - 3 \, 0.5 \, pt$$

$$h(3) = 15.0,5 pt$$

Donc, l'image de 3 par la fonction h est 15. 0,5 pt

3) b) On a :
$$h(x) = 2x^2 - 3$$

D'où : $h(-4) = 2 \times (-4)^2 - 3$ 1 pt
 $h(-4) = 2 \times 16 - 3$ 0,5 pt
 $h(-4) = 32 - 3$ 0,5 pt
 $h(-4) = 29$. 0,5 pt
Donc, l'image de -4 par la fonction h est 29. 0,5 pt

4) La représentation n°1 est celle de f car c'est la seule pour laquelle l'image de 1 est −1. 1 pt

La représentation n°2 est celle de h car on a bien : h(0) = -3. 1 pt

La représentation n°3 est celle de g car on a bien : g(0) = 1. 1 pt

Exercice 5 (20 points)

- 1) 1,9 million = 1 900 000. 0,5 pt
 Or: 2 000 000-1 900 000 = 100 000. 0,5 pt
 Il aurait fallu 100 000 visiteurs de plus en 2019 pour atteindre les 2 millions de visiteurs. 1 pt
- 2) En 2019 année non bissextile, il y a eu 365 jours et 1 900 000 visiteurs. Or : 1 900 000 \div 365 \approx 5 205. 0,5 pt + 1 pt Il y a donc eu 5 205 visiteurs par jour en 2019, arrondi à l'unité. 0,5 pt Or : 5 200 < 5 205 < 5 250 0,5 pt L'affirmation est vraie. 0,5 pt
- 3) a) Les diviseurs de 126 sont : **1,5 pt**1; 2; 3; 6; 7; 9; 14; 18; 21; 42; 63; 126.
- 3) b) Les diviseurs de 90 sont : **1,5 pt**1; 2; 3; 5; 6; 9; 10; 15; 18; 30; 45; 90.
- 3) c) D'après 3a) et 3b), les diviseurs communs à 126 et à 90 sont : 1; 2; 3; 6; 9 et 18. 1 pt
- 3) d) D'après 3c) le professeur pourra constituer au maximum 18 groupes avec le même nombre de filles et de garçons. 1 pt
 126 ÷ 18 = 7 et 90 ÷ 18 = 5
 1 pt
 Ils comporteront alors 7 garçons et 5 filles.
 0,5 pt

4)

On a : (ED) \perp (AC) 0,5 pt

(BC)
$$\perp$$
 (AC)

Donc : (ED) // ((BC)

0,5 pt

On a : $D \in [AC]$.

Alors : AC = AD + DC

$$AC = 2 + 54,25$$

Donc : AC= 56,25 cm

0,5 pt

On sait que : - les droites (DC) et (EB) sont sécantes en A. 1 pt - (ED) // ((BC) 1 pt

D'après le théorème de Thalès : $\frac{AD}{AC} = \frac{AE}{AB} = \frac{DE}{BC}$

1 pt + 1 pt

Alors: $\frac{2}{56,25} = \frac{AE}{AB} = \frac{1,6}{BC}$

D'où : BC = $56,25 \times 1,6 \div 2$ 1 pt

Exercice 6 (23 points)

1) a) Soit p (p > 0) la profondeur de chaque escalator en m.

On doit résoudre : $135 = 6 \times 12,5 + 5p$ 1 pt 135 = 75 + 5p 1 pt 60 = 5p 1 pt p = 12 1 pt (p > 0)

La profondeur de chaque escalator est bien égale à 12 m. 0,5 pt

1) b) Soit h (h > 0) la hauteur d'un escalator en m.

On doit résoudre : $5 \times h = 32$ 1 pt $h = 32 \div 5$ h = 6,4 1 pt (h > 0)

La hauteur de chaque escalator est de 6,4 m. 0,5 pt

2) a) On sait que le triangle RST est rectangle en R. 1 pt

D'après le théorème de Pythagore, 1 pt

 $ST^2 = SR^2 + RT^2$ 1 pt

 $ST^2 = 12^2 + 6.4^2$ 1 pt

 $ST^2 = 144 + 40,96$

ST²= 184,96. **1 pt**

D'où ST = $\sqrt{184,96}$ 1 pt car ST est une longueur donc : ST > 0 0,5 pt

Donc : ST = 13,6 m. **1 pt**

2)b) On sait que le triangle RST est rectangle en R. 1 pt

Donc :
$$\cos \widehat{RST} = \frac{SR}{ST}$$
 1 pt
 $\cos \widehat{RST} = 1$ pt
 $\widehat{RST} \approx 28,07$ 1 pt

La mesure de l'angle formé par l'escalator avec l'horizontale (c'est-à-dire l'angle \widehat{RST}) arrondie au degré est bien de 28°. **0,5 pt**

