PageRank: The "Flow" Formulation

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal? 类似于:本文猛不猛,看 引用。还是个recursi ve的
 - Links from important pages count more
 - Recursive question!

Inlinks = Links on other websites that send traffic to your site (进来的). Inlinks are harder to fake than outlinks 所以通常采用比较多,类似于他引 Outlinks = Links on your site that send people to other sites (出去的)

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_i / n votes
- Page j's own importance is the sum of the votes on its in-links

$$r_{j} = r_{i}/3 + r_{k}/4$$

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for page j

此处的i 是所有指向j 的i 网页的集合
$$r_j = \sum_{i o j} \frac{r_i}{d_i}$$

 d_i out-degree of node i

The web in 1839

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution

- Flow equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$
- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:

$$r_y + r_a + r_m = 1$$

Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!