Generierung des Eingangssingals für Barrier Bucket RF Systeme and der GSI

Jonas Christ, Artem Moskalew, Maximilian Nolte Jens Harzheim, M.Sc.

Projektseminar Beschleunigertechnik

Outline

- 1 Einführung
 - Problemstellung
 - Aufbau
- 2 Optimierung
 - Optimierung der Übertragungsfunktion
 - Optimierung der Kennlinie

■ Barrier-Bucket System

- Barrier-Bucket System :
 - Longitudinale Manipulation des Teilchenstrahls

- Barrier-Bucket System :
 - Longitudinale Manipulation des Teilchenstrahls
- Ziel

- Barrier-Bucket System :
 - Longitudinale Manipulation des Teilchenstrahls
- Ziel :
 - Gap Spannung in Form einer Ein-Sinus Periode
 - Qualität das Signals

- Gegeben:
 - Lineare Übertragungsfunktion *H* bestimmt durch Pseudorauschen
 - System linear bis $\hat{U}_{BB} \approx 550 \, V$ genähert

- Gegeben:
 - Lineare Übertragungsfunktion *H* bestimmt durch Pseudorauschen
 - System linear bis $\hat{U}_{BB} \approx 550 \, V$ genähert
- Hammerstein Modell :
 - Ergänzung um eine nichtlineare Vorverzerrung mit einem Potenzreihenansatz

$$U_{?}(t) = \sum_{n=1}^{N} a_n \left[U_{in}(t) \right]^n \quad \underline{U}_{out}(\omega) = H(\omega) \cdot \underline{U}_{?}(\omega)$$

- Gegeben:
 - Lineare Übertragungsfunktion *H* bestimmt durch Pseudorauschen
 - System linear bis $\hat{U}_{BB} \approx 550 \, V$ genähert
- Hammerstein Modell :
 - Ergänzung um eine nichtlineare Vorverzerrung mit einem Potenzreihenansatz

$$U_{?}(t) = \sum_{n=1}^{N} a_n \left[U_{in}(t) \right]^n \quad \underline{U}_{out}(\omega) = H(\omega) \cdot \underline{U}_{?}(\omega)$$

- Zielsetzung :
 - Parameter an der Kennlinie K zubestimmen
 - Ersten Optimierungs Ansatz implementieren

Optimierung von K

- Bestimmung von K mit linear vorverzerrten Signal
- Anpassung von K für nichtliniear vorverzerrte Signale

$$U_{2,\text{meas}}(t) = \sum_{n=1}^{N} \overline{a}_n [U_{in}(t)]^n \qquad U_{2,\text{ideal}}(t) = \sum_{n=1}^{N} a_n [U_{in}(t)]^n$$
 (1)

Oder direkt über die Differenz der Signale

$$\Delta U_{?}(t) = U_{?,\text{meas}}(t) - U_{?,\text{ideal}}(t) = \sum_{n=1}^{N} (\bar{a}_{n} - a_{n}) [U_{in}(t)]^{n} = \sum_{n=1}^{N} \tilde{a}_{n} [U_{in}(t)]^{n}$$
 (2)

Optimierung von K

- Bestimmung der Parameter ã_n
- Vergleichen der Samples $\Delta U_{?,i} = \Delta U_?(i \cdot \Delta t)$ mit $U_{in,i} = U_{in}(i \cdot \Delta t)$
- Lösung des linearen Optimierungsproblems ergibt die Anpassung der alten Parameter

$$a_n^{i+1} = a_n^i + \sigma_a^i \tilde{a}_n^i \tag{3}$$

Erster Ansatz

- *K* im gleichen Spannungsbereich anpassen
- Referenz zum Rechnen $U_{out.ideal}$ mit $V_{PP} = 6 \text{ V}$
- Eingangsspannung mit $V_{PP} = 587 \text{ mV}$

Erster Ansatz

Grenzen der Kennlinie

Grenzen der Kennlinie

Zweiter Ansatz

- *K* in einem kleineren Spannungsbereich anpassen
- Referenz zum Rechnen $U_{out,ideal}$ mit $V_{PP} = 3 \text{ V}$
- Eingangsspannung mit V_{PP} = 290 mV
- Ausgangsspannung gemessen über Gapspannungsteiler $V_{PP} = 2.7 \text{ V}$

Zweiter Ansatz

