Seguimos con transformaciones lineales....

Dada $f \in \mathcal{L}(V, W)$. Se llama Núcleo de la transformación lineal al conjunto

$$Nu(f) = \{x \in V: f(x) = \mathbf{0}_W\}$$

Propiedades

Propiedad (1):

El Nu(f) es subespacio de V

Esto se demuestra de inmediato, teniendo en cuenta que:

- $ightharpoonup 0_V \in Nu(f)$ porque para cualquier transformación lineal se cumple que $f(0_V) = 0_W$.
- ightharpoonup Tomando $x \, e \, y \, \in Nu(f)$ entonces la suma $x + \, y \, \in Nu(f)$ ya que $f(x + y) = f(x) + f(y) = 0_W$.
- ightharpoonup Por último, tomando un escalar $\alpha \in K$ y un vector $x \in Nu(f)$ se verifica $f(\alpha x) = \alpha f(x) = \alpha 0_W = 0_W$.

$$f$$
 es un monomorfismo $\Leftrightarrow Nu(f) = \{\mathbf{0}_V\}.$

Demostración:

- f es un monomorfismo $\Rightarrow Nu(f) = \{0_V\}$
- 1) $\{0_V\} \subseteq Nu(f)$ es inmediato ya Nu(f) que es un subespacio de V
- 2) Para probar que $Nu(f)\subseteq\{0_V\}$ tomemos un $x\in Nu(f)$ queremos probar que $x=0_V$

Como $x \in Nu(f)$ entonces $f(x) = 0_W$ pero también $f(0_V) = 0_W$ y siendo f un monomorfismo debe ser $x = 0_V$.

• $Nu(f) = \{0_V\} \Rightarrow f$ es un monomorfismo.

Partimos de f(x) = f(y) .Como f es una transformación lineal podemos escribir f(x) - f(y) = 0_W y f(x-y) = 0_W , de modo que $x-y \in Nu(f)$.

Siendo $Nu(f) = \{0_V\}$ y $x - y \in Nu(f)$ entonces x = y.

Hemos probado que:

Si $f(x)=f(y) \Rightarrow x=y$ de modo que es f inyectiva (monomorfismo).

```
Se f 1
```

Propiedad (3)

```
Sea f \in L(V, W).

f monomorfismo \Rightarrow
(\{v_1, v_2, ..., v_k\} es linealmente independiente \Rightarrow
\{f(v_1), f(v_2), ..., f(v_k)\} es linealmente independiente )
```

Demostración:

Queremos probar que $\{v_1, v_2, ..., v_k\}$ es linealmente independiente \Rightarrow $\{f(v_1), f(v_2), ..., f(v_k)\}$ es linealmente independiente.

Partimos entonces de $a_1f(v_1) + a_2f(v_2) + \cdots + a_kf(v_k) = 0_W$, usando propiedades de las transformaciones lineales podemos escribir: $f(a_1v_1 + a_2v_2 + \cdots + a_kv_k) = 0_W$ de modo que el vector $a_1v_1 + a_2v_2 + \cdots + a_kv_k \in Nu(f)$.

Como f es monomorfismo ($Nu(f)=\{0_V\}$)(propiedad (2)) se deduce que, $a_1v_1+a_2v_2+\cdots+a_kv_k=0_V$ y siendo el conjunto $\{v_1$, v_2 , ..., $v_k\}$ linealmente independiente (por hipótesis), resulta que $a_i=0$ con $1\leq i\leq k$.

Observación:

 $\{f(v_1), f(v_2), ..., f(v_k)\}$ es linealmente independiente \Rightarrow $\{v_1, v_2, ..., v_k\}$ es linealmente independiente y se cumple para cualquier transformación lineal.

Ejemplos:

• Dada $f: \mathbb{R}_1[x] \to \mathbb{R}^3 / f(a+bx) = (a \quad a+b \quad 0)^T$.

En este caso el $Nu(f)=\{a+bx\in\mathbb{R}_1\,[x]/\,f(a+bx)=(0\quad 0\quad 0)^T\}$, esto nos lleva a pedir que $a=0\quad y\quad b=0$. De modo que $Nu(f)=\{0_{\mathbb{R}_1\,[x]}\}$

y f es monomorfismo.

•
$$f: \mathbb{R}^{2x^2} \to \mathbb{R}^2 / f \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b \quad c-d)^T$$
.

En este caso el $Nu(f) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2x2} / f \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\} = \begin{pmatrix} 0 & 0 \end{pmatrix}^T \right\}.$

Se deduce que a+b=0 y c-d=0 y toda matriz que pertenezca al Nu(f) será de la forma $\begin{pmatrix} a & -a \\ c & c \end{pmatrix}$, a , $c \in \mathbb{R}$

 $Nu(f) = gen\left\{ \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$ y el conjunto $\left\{ \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$ es una base del Nu(f).

Y f no es monomorfismo.

Teorema de la dimensión

Sea V de dimensión finita n y $f \in \mathcal{L}(V, W)$.

Entonces $\dim Nu(f) + \dim Im(f) = \dim(V)$.

Demostración:

• Caso 1: $Nu(f) = \{0_V\}$, $\dim(Nu(f)) = 0$

Dada una base de V, $B = \{w_1, w_2, ..., w_n\}$.

Sabemos que $Im(f) = gen\{f(w_1), f(w_2), ..., f(w_n)\}$ y dado que en particular el conjunto B es linealmente independiente, por la propiedad (2), siendo f un monomorfismo, el conjunto $\{f(w_1), f(w_2), ..., f(w_n)\}$ es también linealmente independiente. De manera que el conjunto $\{f(w_1), f(w_2), ..., f(w_n)\}$ es una base para la Im(f) y se cumple la igualdad: $\dim Nu(f) + \dim Im(f) = \dim(V)$.

- Caso 2: $\dim \big(Nu \ (f) \big) = n \text{ , como } Nu \ (f) \subseteq V \text{ y } \dim(V) = n \text{ entonces } Nu \ (f) = V \text{ y } \text{ la } Im(f) = \{0_W\}.$ El teorema se cumple.
- Caso 3: Supongamos que el $\dim (Nu(f)) = k$, 0 < k < n y que el conjunto $\{u_1, u_2, \dots, u_k\}$ es una base del Nu(f).

Extendemos esa base $\{u_1, u_2, \dots, u_k\}$ a una base de V

Agregamos $\{u_{k+1},u_{k+2},\dots,u_n\}$ para que el conjunto $\{u_1,u_2,\dots,u_{k},u_{k+1},u_{k+2},\dots,u_n\}$ resulte una base de V.

Nuevamente $Im(f) = gen\{f(u_1), f(u_2), \dots, f(u_k), f(u_{k+1}), f(u_{k+2}), \dots, f(u_n)\}$

 $Im(f) = gen\{f(u_{k+1}), f(u_{k+2}), \dots, f(u_n)\}$. Este conjunto generador de la Im(f) tiene "n-k" vectores.

Planteamos la combinación lineal nula:

$$> a_{k+1}f(u_{k+1}) + a_{k+2}f(u_{k+2}) + \dots + a_nf(u_n) = 0_W$$

Reescribimos:

$$f(a_{k+1}u_{k+1} + a_{k+2}u_{k+2} + \dots + a_nu_n) = 0_W \Rightarrow a_{k+1}u_{k+1} + a_{k+2}u_{k+2} + \dots + a_nu_n \in Nu(f)$$

De modo que:

$$a_{k+1}u_{k+1} + a_{k+2}u_{k+2} + \ldots + a_nu_n = b_1u_1 + b_2u_2 + \cdots + b_ru_k \ \ \text{ya que el conjunto} \ \ \{u_1,u_2,\ldots,u_k\} \ \text{es base de} \ Nu(f)$$

Así
$$a_{k+1}u_{k+1} + a_{k+2}u_{k+2} + \ldots + a_nu_n - b_1u_1 - b_2u_2 - \cdots - b_ru_k = 0_V$$

Y dado que el conjunto $\{u_1,u_2,\dots,u_k$, $u_{k+1},\dots,u_n\}$ es una base de V , en particular L.I se deduce que $a_i = 0 \ \text{con} \ k+1 \le i \le n.$

Por lo que resultan

$$a_{k+1} = a_{k+2} = \dots = a_n = 0$$
 y el conjunto $\{f(u_{k+1}), f(u_{k+2}), \dots, f(u_n)\}$ es una base de $Im(f)$ y la $\dim(Im(f)) = n - k$.

De donde finalmente se verifica que: $\dim(Nu(f)) + \dim(Im(f)) = k + (n-k) = n = \dim(V)$

<u>Ejemplo</u>:

Sea
$$f: \mathbb{R}_2[x] \to \mathbb{R}^{2x^2}/f(a+bx+cx^2) = \begin{pmatrix} a+b & 0 \\ a+b-c & 2c \end{pmatrix}$$
.

Se pide:

- \triangleright Hallar una base del Nu(f) y una base de Im(f).
- \triangleright Es posible hallar $p \in \mathbb{R}_2[x]/f(p) = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$?
- ightharpoonup Es posible hallar $q \in \mathbb{R}_2[x]/f(q) = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$? En caso afirmativo, el polinomio q es único?
- Figure 1. Encontrar todos los polinomios $h \in \mathbb{R}_2[x]/f(h) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

 \triangleright Hallar una base del Nu(f).

Para calcular una base para el Nu(f) recordamos la definición y la adaptamos a este problema:

$$Nu(f) = \left\{ p \in \mathbb{R}_2[x]/f(p) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$$

En este caso entonces

$$f(a+bx+cx^2) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} a+b & 0 \\ a+b-c & 2c \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

De aquí resulta el sistema:

Por lo tanto, todo polinomio del Nu(f) es de la forma

$$p(x) = a + (-a)x + 0.x^2 = a(1-x), a \in \mathbb{R}$$

 $Nu(f) = gen\{1 - x\}$ y el conjunto $\{1 - x\}$ es linealmente independiente.

Respuesta:

Base de Nu(f) es $B_{Nu} = \{1 - x\}$ y dim(Nu(f)) = 1.

 \triangleright Hallar una base de Im(f)

Siguiendo la idea de la demostración extendemos una base de Nu(f) para obtener una base de $\mathbb{R}_2[x]$. Tomamos por ejemplo una base de $\mathbb{R}_2[x]$:

$$B_{\mathbb{R}_2[x]} = \{1 - x, x, x^2\}$$

$$Im(f) = gen\{f(1-x), f(x), f(x^2)\} = gen\{\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -1 & 2 \end{pmatrix}\}, \text{ es inmediato observar que el conjunto } \{\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -1 & 2 \end{pmatrix}\} \text{ es linealmente independiente por lo que } \{\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -1 & 2 \end{pmatrix}\}$$

Base de
$$Im(f)$$
 es $B_{Im} = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -1 & 2 \end{pmatrix} \right\}$ y dim $\left(Im(f)\right) = 2$.

Comentario

Si se ha calculado el Nu(f) y se conoce su dimensión, podemos recurrir al **teorema de la dimensión** para deducir la dim(Im(f)). Con este dato, encontrando dos matrices que pertenecen a la Im(f) y sean linealmente independientes, es suficiente.

ightharpoonup Es posible hallar $p \in \mathbb{R}_2[x]/f(p) = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$?

Para responder, sólo es necesario observar si $\begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \in Im(f)$.

En este caso como a+b=1 y c=1 y en a+b-c=-1 queda un absurdo.

Respuesta: No existe $p \in \mathbb{R}_2[x]/f(p) = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$.

ightharpoonup Es posible hallar $q \in \mathbb{R}_2[x]/f(q) = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$? En caso afirmativo, el polinomio q es único?

En este caso, $\begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \in Im(f)$ ya que a+b=2 y c=1 y en a+b-c=1 la ecuación se satisface.

Como $Nu(f) \neq \{0_V\}$, Existen infinitos polinomios $q \in \mathbb{R}_2[x] / f(q) = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$

Figure 1. Encontrar todos los polinomios $h \in \mathbb{R}_2[x]/f(h) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

En este caso directamente proponemos $f(a+bx+cx^2) = \begin{pmatrix} a+b & 0 \\ a+b-c & 2c \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

que lleva a $h(x) = a + (1 - a)x + x^2$, $a \in \mathbb{R}$.

En otras palabras, hemos encontrado la preimagen del conjunto $\left\{\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}\right\}$ y escribimos

$$f^{-1}\left(\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}\right) = \{h \in \mathbb{R}_2[x]: h(x) = a + (1-a)x + x^2, a \in \mathbb{R}\}$$

Sean Vy W dos K-espacios vectoriales, V de dimensión finita.

Sea $B=\{v_1,v_2,\dots,v_n\}$ una base de V y sean $w_1,w_2,\dots,w_n\in \mathbb{W}$ vectores arbitrarios.

Entonces **existe una única** transformación lineal $f: V \to W$ tal que $f(v_i) = w_i$ para cada $1 \le i \le n$.

El mismo resulta útil a la hora de proponer transformaciones lineales que cumplan con determinados requisitos. Más aún, no siempre la base canónica es la más conveniente para crear tales transformaciones.

Ilustramos

Definir una transformación lineal

 $T: \mathbb{R}^3 \to \mathbb{R}_2[x]$ que cumpla ambos requisitos:

i)
$$Nu(T) = \{x \in \mathbb{R}^3 : x_1 + x_2 - 2x_3 = 0\}$$

ii)
$$p(x) = 1 - x + x^2 \in Im(T)$$
.

Del Nu(T) elegimos una base cualquiera, por ejemplo $\left\{\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}\right\}$.

De modo que la $\dim(Nu(T)) = 2$.

Además, como p(x) debe $\in Im(T)$ entonces $Im(T) \neq \{0_{\mathbb{R}_2[x]}\}$.

Con el teorema de la dimensión se deduce entonces que: $\dim(Nu(T)) = 2$ y $\dim(Im(T)) = 1$

Así la
$$Im(T) = gen\{1 - x + x^2\}$$

Para construir una transformación lineal, tomamos como base de \mathbb{R}^3 a una que obtenemos extendiendo la base elegida del Nu(T). Esta elección es arbitraria

Puede ser $B = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$ y de este modo definimos una transformación lineal que cumple con

lo pedido, asignando imágenes a los vectores de esa base:

$$T\begin{pmatrix} 1\\-1\\0 \end{pmatrix} = 0_{\mathbb{R}_2[x]} \quad T\begin{pmatrix} 0\\2\\1 \end{pmatrix} = 0_{\mathbb{R}_2[x]} \quad T\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 1 - x + x^2$$

Observación:

La transformación lineal es única pues cumple con las hipótesis del Teorema fundamental pero, no es la única que podemos definir para cumplir con los requisitos del problema.

Inversa de una transformación lineal

Sea $f \in L(V, W)$ $f: V \to W$ es un isomorfismo \Leftrightarrow $(f \ es \ un \ monomorfismo \ (inyectiva)$ $y \ f \ es \ un \ epimorfismo \ (sobreyectiva))$

En este sentido si $f: V \to W \ es \ un \ isomorfismo$, existe la transformación lineal inversa de f .

$$f^{-1}: W \to V \ / \ (f^{-1} \circ f)(v) = I(v) \ \forall v \in V$$
 $(f \circ f^{-1})(w) = I(w) \ \forall w \in W.$

Nota: $Sea f \in L(V, W)$

$$f: V \to W$$
 es un isomorfismo $\Leftrightarrow Nu(f) = \{0_V\} e Im(f) = W$.

Si *V y W* son de dimensión finita entonces

$$f: V \to W \ es \ un \ isomorfismo \Rightarrow \dim(V) = \dim(W)$$
.

Propiedad de los isomorfismos

Sea
$$f: V \to W$$
 un isomorfismo
Si $B = \{v_1 \ v_2 \ ..., v_n\}$ es una base de V
 $\Rightarrow \{f(v_1), f(v_2), ..., f(v_n)\}$ es una base de W

La demostración ha sido considerada al trabajar con monomorfismos.

Ejemplo:

Sea
$$f: \mathbb{R}^3 \to \mathbb{R}_2[x] / f(a \ b \ c)^T = a + (a+b)x + (a+b+c)x^2$$
.

En este caso el $Nu(f)=\{0_{\mathbb{R}^3}\}$, luego f es monomorfismo.

Usando el teorema de la dimensión

$$\dim (Nu(f)) + \dim (Im(f)) = \dim (\mathbb{R}^3)$$

se deduce que: dim (Im(f)) = 3 y como $Im(f) \subseteq \mathbb{R}_2[x]$ y

 $\dim(\mathbb{R}_2[x]) = 3$ se concluye que $Im(f) = \mathbb{R}_2[x]$ y f es epimorfismo.

De modo que existe la transformación lineal inversa de \boldsymbol{f}

$$f^{-1}$$
: $\mathbb{R}_2[x] \to \mathbb{R}^3$.

Para eso tomamos cualquier base de \mathbb{R}^3 (la canónica en este caso es la más sencilla)

$$f\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) = 1 + x + x^{2}$$

$$f\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\right) = x + x^{2}$$

$$f\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\right) = x^{2}$$

$$f^{-1}(1 + x + x^{2}) = \begin{pmatrix}1\\0\\0\\1\\0\end{pmatrix}$$

$$f^{-1}(x + x^{2}) = \begin{pmatrix}0\\1\\0\\1\end{pmatrix}$$

$$f^{-1}(x^{2}) = \begin{pmatrix}0\\0\\1\\1\end{pmatrix}$$

Ya que siendo un isomorfismo la base elegida (en este caso la base canónica de \mathbb{R}^3) se transforma en una base de $\mathbb{R}_2[x]$

De aquí se puede encontrar finalmente la fórmula.

Usando coordenadas de cualquier polinomio en la base $B_1=\{1+x+x^2,x+x^2,x^2\}$ y propiedades de las transformaciones lineales.

La fórmula explícita de la inversa es:

$$f^{-1}: \mathbb{R}_2[x] \to \mathbb{R}^3/f^{-1}(a+bx+cx^2) = \begin{pmatrix} a \\ b-a \\ c-b \end{pmatrix}.$$

$$Nu(f) = \{x \in V: f(x) = \mathbf{0}_W\}$$

El Nu(f) es subespacio de V

Sea $f \in \mathcal{L}(V, W)$.

f es un monomorfismo $\Leftrightarrow Nu(f) = \{0_V\}.$

```
Sea f \in L(V, W).

f monomorfismo \Rightarrow
(\{v_1, v_2, ..., v_k\} es linealmente independiente \Rightarrow
\{f(v_1), f(v_2), ..., f(v_k)\} es linealmente independiente )
```

Sean Vy W dos K-espacios vectoriales, V de dimensión finita.

Sea $B = \{v_1, v_2, ..., v_n\}$ una base de V y sean $w_1, w_2, ..., w_n \in W$ vectores arbitrarios.

Entonces **existe una única** transformación lineal $f: V \to W$ tal que $f(v_i) = w_i$ para cada $1 \le i \le n$.

Teorema de la dimensión

Sea V de dimensión finita n y $f \in \mathcal{L}(V, W)$.

Entonces $\dim Nu(f) + \dim Im(f) = \dim(V)$.

Sea $f \in L(V, W)$ $f: V \to W$ es un isomorfismo \Leftrightarrow $(f \ es \ un \ monomorfismo \ (inyectiva)$ $y \ f \ es \ un \ epimorfismo \ (sobreyectiva))$

Sea $f: V \to W$ un isomorfismo

Si
$$B = \{v_1 \ v_2 \dots, v_n\}$$
 es una base de V

$$\Rightarrow \{f(v_1), f(v_2), \dots, f(v_n)\} \text{ es una base de } W$$

MATRIZ DE UNA TRANSFORMACIÓN LINEAL

Comenzamos con un ejemplo motivador

Sea
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 tal que $T(x) = Ax \operatorname{con} A = \begin{pmatrix} 2 & 4 & 0 \\ 1 & 5 & 3 \end{pmatrix}$

Veamos que
$$T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 0 \\ 1 & 5 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

¿Cuáles son las imágenes de $T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ y de $T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$?

$$T\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}4\\5\end{pmatrix} \text{ y } T\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}0\\3\end{pmatrix}$$

¿Reconocen en estas imágenes algún elemento de la matriz A?

Más general ahora:

Sean dos espacios vectoriales V y W, $T:V \to W$ una transformación lineal y $B = \{v_1, v_2, ..., v_n\}$ y $C = \{w_1, w_2, ..., w_m\}$ bases de V y W respectivamente.

Veamos cómo construir una matriz $[T]_B^C$ que represente dicha transformación lineal.

Cualquier vector del espacio vectorial V se puede escribir como combinación lineal de los vectores de la base B:

$$v = \sum_{j=1}^{n} \alpha_j v_j \quad \Rightarrow \quad [v]^B = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Luego
$$T(v) = T(\sum_{j=1}^{n} \alpha_j v_j) = \sum_{j=1}^{n} \alpha_j T(v_j)$$

Además, el transformado de cada vector de la base B se puede escribir como combinación lineal de los vectores de la base C

$$T(v_j) = \sum_{i=1}^m a_{ij} w_i$$

Entonces resulta:

$$T(v) = \sum_{j=1}^{n} \alpha_{j} \sum_{i=1}^{m} a_{ij} w_{i} = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} \alpha_{j} w_{i} =$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} (a_{ij} \alpha_{j}) w_{i} = \sum_{i=1}^{m} (\sum_{j=1}^{n} (a_{ij} \alpha_{j})) w_{i} =$$

$$= \sum_{i=1}^{m} \beta_{i} \ w_{i}$$

Podemos decir entonces que:

$$[T(v)]^{c} = \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{m} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{n} a_{1j} \alpha_{j} \\ \sum_{j=1}^{n} a_{2j} \alpha_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{mj} \alpha_{j} \end{bmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix}$$
$$[T]^{c}_{B} \in K^{mxn}$$

Vemos que las columnas de la matriz $[T]_B^C$ son las coordenadas en la base C de los transformados de los vectores de la base B.

Volviendo al ejemplo, las columnas de $A = \begin{pmatrix} 2 & 4 & 0 \\ 1 & 5 & 3 \end{pmatrix}$ resultan ser las coordenadas en la base canónica de R^2 de los transformados de los vectores de la base canónica de R^3 .

Otro ejemplo:

Dada $T: R_2[x] \to R^{2x^2}$ tal que $T(a_0 + a_1x + a_2x^2) = \begin{pmatrix} a_0 & a_0 + a_1 \\ -a_2 & 3a_1 \end{pmatrix}$. Hallar la $[T]_B^C$, siendo:

$$B = \{1 + x, 1 - x, -1 + x^2\} \text{ y } C = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

$$T(1+x) = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \text{ y } \begin{bmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \end{bmatrix}^c = \begin{pmatrix} 0 \\ 3 \\ -1 \\ -1 \end{pmatrix}$$

$$T(1-x) = \begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix} \text{ y } \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix} \end{bmatrix}^c = \begin{pmatrix} 0 \\ -3 \\ 3 \\ 1 \end{pmatrix}$$

$$T(-1+x^2) = \begin{pmatrix} -1 & -1 \\ -1 & 0 \end{pmatrix} \text{ y } \begin{bmatrix} \begin{pmatrix} -1 & -1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}^c = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$

$$[T]_B^C = \begin{pmatrix} 0 & 0 & -1 \\ 3 & -3 & 1 \\ -1 & 3 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

Proposiciones

T es monomorfismo $\Leftrightarrow Nul([T]_B^C) = \{0_{K^n}\}$

T es monomorfismo $\Leftrightarrow T$ es una transformación inyectiva \Leftrightarrow $(T(v) = 0_W \Rightarrow v = 0_V) \Leftrightarrow Nu(T) = \{0_V\}$ Si $T(v) = 0_W \Leftrightarrow [T(v)]^C = 0_{K^m} \Leftrightarrow [T]^C_B[v]^B = 0_{K^m} \Leftrightarrow [v]^B \in Nul([T]^C_B)$ Por otro lado $v = 0_V \Leftrightarrow [v]^B = 0_{K^n} \Leftrightarrow Nul([T]^C_B) = \{0_{K^n}\}$

T es epimorfismo $\Leftrightarrow Col([T]_B^C) = K^m$

 $T \text{ es epimorfismo } \Leftrightarrow Im(T) = W \Leftrightarrow gen\{T(v_1), T(v_2), \dots, T(v_n)\} = W \Leftrightarrow gen\{[T(v_1)]^C, [T(v_2)]^C, \dots, [T(v_n)]^C\} = K^m \Leftrightarrow Col([T]_B^C) = K^m$

T es isomorfismo $\Leftrightarrow [T]_B^C$ es inversible

T es isomorfismo \Leftrightarrow (T es monomorfismo y epimorfismo) \Leftrightarrow

$$(Nul([T]_B^C) = \{0_{K^n}\}, \{[T(v_1)]^C, [T(v_2)]^C, ..., [T(v_n)]^C\} \text{ es } LI \text{ y}$$

$$gen\{[T(v_1)]^C, [T(v_2)]^C, \dots, [T(v_n)]^C\} = K^m\}$$

 $\Leftrightarrow \{[T(v_1)]^C, [T(v_2)]^C, ..., [T(v_n)]^C\} \text{ es base de } K^m \Leftrightarrow$ existe la inversa de $[T]^C_B$

$$([T]_B^C)^{-1} = [T^{-1}]_C^B$$

Sea $T: V \to W$ una transformación lineal, B y C bases de V y W respectivamente sabemos que:

Si T(v) = w entonces:

$$[T]_{B}^{C} [v]^{B} = [T(v)]^{C} = [w]^{C} \Rightarrow ([T]_{B}^{C})^{-1} [T]_{B}^{C} [v]^{B} = ([T]_{B}^{C})^{-1} [w]^{C} \Rightarrow [v]^{B} = ([T]_{B}^{C})^{-1} [w]^{C}$$

$$[v]^{B} = ([T]_{B}^{C})^{-1} [w]^{C}$$
 (1)

Por otro lado, sabemos que: $v = T^{-1}(w)$ entonces

$$[v]^B = [T^{-1}]^B_C[w]^C$$
 (2)

De (1) y (2)
$$([T]_B^C)^{-1} = [T^{-1}]_C^B$$

Matriz de la composición

Sean $T_1: V \to W$ y $T_2: W \to U$ dos transformaciones lineales, la composición de T_1 con T_2 es una transformación lineal $T_2 \circ T_1: V \to U$ tal que $(T_2 \circ T_1)(v) = T_2 (T_1(v)) \forall v \in V$ llamando $T_2(w) = u$

Dadas B, C y D bases de V, W y U respectivamente veamos que:

$$[T_1]_B^C[v]^B = [T_1(v)]^C = [w]^C$$
 (1)

$$[T_2]_C^D[T_1]_B^C[v]^B = [T_2]_C^D[w]^C = [T_2(w)]^D = [u]^D \quad (2)$$
$$[(T_2 o T_1)]_B^D[v]^B = [u]^D \quad (3)$$

De(1),(2)y(3)

$$[(T_2 o T_1)]_B^D = [T_2]_C^D [T_1]_B^C$$

Sean $T_1: R_1(x) \to R^3$ y $T_2: R^3 \to R^{2x2}$ dos transformaciones lineales, tales que:

$$T_1(a_0 + a_1 x) = \begin{pmatrix} a_0 \\ 2a_0 + a_1 \\ a_1 \end{pmatrix} \text{ y } T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x & z \\ y - x & x \end{pmatrix}$$

Y sean
$$B = \{1 + x, x\}$$
 $C = \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ y

$$D = \left\{ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ bases de } R_1(x), \ R^3 \text{ y } R^{2x2}$$
 respectivamente.

$$T_1(1+x) = \begin{pmatrix} 1\\3\\1 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 1\\3\\1 \end{bmatrix} \end{bmatrix}^c = \begin{pmatrix} 1\\0\\1 \end{pmatrix} \ y \ T_1(x) = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 0\\1\\1 \end{pmatrix} \end{bmatrix}^c = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

$$[T_1]_B^C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$T_2 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{bmatrix}^D = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

$$T_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{bmatrix}^D = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$$

$$T_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{bmatrix}^D = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$[T_2]_C^D = \begin{pmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 1 & 1 & 0\\ 0 & -1 & 0 \end{pmatrix}$$

$$[(T_2 \circ T_1)]_B^D = [T_2]_C^D [T_1]_B^C = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & -1 \end{pmatrix}$$

Por otro lado:

$$T_2(T_1(a_0 + a_1x)) = T_2 \begin{pmatrix} a_0 \\ 2a_0 + a_1 \\ a_1 \end{pmatrix} = \begin{pmatrix} a_0 & a_1 \\ a_{0+}a_1 & a_0 \end{pmatrix}$$

$$T_2(T_1(1+x)) = T_2\begin{pmatrix} 1\\3\\1 \end{pmatrix} = \begin{pmatrix} 1&1\\2&1 \end{pmatrix}, \quad \begin{bmatrix} \begin{pmatrix} 1&1\\2&1 \end{pmatrix} \end{bmatrix}^D = \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}$$

$$T_2(T_1(x)) = T_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{bmatrix}^D = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$$

$$[(T_2 o T_1)]_B^D = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & -1 \end{pmatrix}$$

Resumen de conceptos

$$[T(v)]^{C} = \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{m} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{n} a_{1j} \alpha_{j} \\ \sum_{j=1}^{n} a_{2j} \alpha_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{mj} \alpha_{j} \end{bmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix}$$

$$[T]^{C}_{B} \in K^{m \times n}$$

$$[T(v)]^{\mathcal{C}} = [T]^{\mathcal{C}}_{\mathcal{B}}[v]^{\mathcal{B}}$$

T es monomorfismo $\Leftrightarrow Nul([T]_B^C) = \{0_{K^n}\}$

T es epimorfismo $\Leftrightarrow Col([T]_B^C) = K^m$

T es isomorfismo $\Leftrightarrow [T]_B^C$ es inversible

$$([T]_B^C)^{-1} = [T^{-1}]_C^B$$

$$[(T_2 o T_1)]_B^D = [T_2]_C^D [T_1]_B^C$$