Chapitre 9

Logarithme népérien

I. La fonction logarithme népérien

1) Liens avec la fonction exponentielle

La fonction exponentielle est continue et strictement croissante sur \mathbb{R} .

De plus, $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to +\infty} e^x = +\infty$, donc d'après la généralisation du théorème des valeurs intermédiaires, pour tout nombre réel x de $]0;+\infty[$, il existe un unique nombre réel y tel que $e^y = x$.

Définition:

La fonction **logarithme népérien**, notée \ln , est la fonction définie sur $]0;+\infty[$ qui à tout nombre réel x>0, associe l'unique solution de l'équation $e^y=x$ d'inconnue y.

On note $y = \ln x$.

Conséquences:

Elles découlent directement de la définition précédente.

- Pour tout nombre réel x>0 et tout nombre réel y, $x=e^y$ équivaut à $y=\ln x$.
- Pour tout nombre réel x>0, $e^{\ln x}=x$.
- Pour tout nombre réel x, $\ln(e^x) = x$.
- $\ln 1=0$ (car $e^0=1$); $\ln e=1$ (car $e^1=e$); $\ln \frac{1}{e}=-1$ (car $e^{-1}=\frac{1}{e}$)

Propriété:

Dans un repère orthonormé, les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation y=x.

<u>Démonstration</u>:

On note respectivement $\mathscr C$ et $\mathscr C'$ les courbes représentatives des fonctions \exp et \ln .

Pour tous nombres réels x et y>0, dire que M'(x;y) appartient à \mathscr{C}' équivaut à $y=\ln x$ c'est-à-dire $x=e^y$ ce qui équivaut à dire que M(y;x) appartient à \mathscr{C} .

 \mathscr{C} et \mathscr{C}' sont donc symétriques par rapport à la droite d'équation y=x.

Remarque:

On dit que les fonctions exp et ln sont réciproques l'une de l'autre.

2) Sens de variation de la fonction In

Propriété:

La fonction logarithme népérien est strictement croissante sur $]0;+\infty[$.

Démonstration:

a et b sont deux nombres réels tels que 0 < a < b, c'est-àdire tels que $e^{\ln a} < e^{\ln b}$.

La fonction exponentielle est strictement croissante sur $\mathbb R$ donc :

 $\ln a < \ln b$

Conséquences:

Pour tous nombres réels a>0 et b>0.

- $\ln a = \ln b$ équivaut à a = b
- $\ln a < \ln b$ équivaut à a < b
- $\ln a > 0$ équivaut à a > 1 et $\ln a < 0$ équivaut à 0 < a < 1.

II. Propriétés algébriques

1) Relation fonctionnelle

Propriété:

Pour tous nombres réels a>0 et b>0,

$$\ln(ab) = \ln(a) + \ln(b)$$

Démonstration :

a et b sont deux réels strictement positifs. On note $A = \ln(ab)$ et $B = \ln(a) + \ln(b)$.

Alors
$$e^A = ab$$
 et $e^B = e^{\ln(a) + \ln(b)} = e^{\ln(a)} \times e^{\ln(b)} = ab$. Donc $e^A = e^B$ d'où $A = B$.

Remarques:

- On dit que la fonction ln transforme les produits en somme.
- Pour tous nombres strictement positifs a_1 , a_2 , ..., a_n : $\ln(a_1 \times a_2 \times ... \times a_n) = \ln(a_1) + \ln(a_2) + ... + \ln(a_n)$

2) Logarithme d'un inverse, d'un quotient

Propriétés:

Pour tous nombres réels a>0 et b>0.

- $\ln \frac{1}{b} = -\ln b$
- $\ln \frac{a}{b} = \ln a \ln b$

<u>Démonstrations</u>:

- Pour b>0, $b \times \frac{1}{b} = 1$; donc $\ln\left(b \times \frac{1}{b}\right) = 0$, c'est-à-dire $\ln b + \ln\frac{1}{b} = 0$, d'où $\ln\frac{1}{b} = -\ln b$.
- Pour a > 0 et b > 0, $\ln \frac{a}{b} = \ln \left(a \times \frac{1}{b} \right) = \ln a + \ln \frac{1}{b} = \ln a \ln b$.

3) Logarithme d'une puissance, d'une racine carrée

Propriété:

Pour tout nombre réel a>0 et pour tout nombre entier relatif n:

$$\ln(a^n) = n \ln a$$

<u>Démonstration</u>:

- Cas où *n* est un nombre entier naturel : on utilise un raisonnement par récurrence.
 - Initialisation : pour n=0, $\ln(a^0)=\ln 1=0$ et $0 \ln a=0$.
 - Hérédité : on considère un nombre entier naturel k tel que $\ln(a^k) = k \ln a$. Alors $\ln(a^{k+1}) = \ln(a^k \times a) = \ln(a^k) + \ln a = k \ln a + \ln a = (k+1) \ln a$.
 - Conclusion: pour tout nombre entier naturel n, $\ln(a^n) = n \ln a$.
- Cas où *n* est un nombre entier strictement négatif

$$\ln(a^n) = \ln\left(\frac{1}{a^{-n}}\right) = -\ln(a^{-n}) = -(-n)\ln a = n\ln a \text{ car } -n>0.$$

Exemple:

Pour tout nombre réel x>0, $\ln(x^2)=2\ln x$.

Propriété:

Pour tout nombre réel a>0:

$$\ln \sqrt{a} = \frac{1}{2} \ln a$$

4

Démonstration:

Pour a > 0, $(\sqrt{a})^2 = a$, donc $\ln(\sqrt{a})^2 = \ln a$ soit $2 \ln \sqrt{a} = \ln a$, d'où $\ln \sqrt{a} = \frac{1}{2} \ln a$.

Exemple:

$$\ln \sqrt{2} - \frac{1}{3} \ln 4 = \frac{1}{2} \ln 2 - \frac{1}{3} \ln (2^2) = \frac{1}{2} \ln 2 - \frac{2}{3} \ln 2 = -\frac{1}{6} \ln 2.$$

III. Étude de la fonction In

1) Dérivabilité et continuité de In

Propriétés:

La fonction ln est dérivable sur $]0;+\infty[$ et pour tout nombre réel x>0.

$$\ln'(x) = \frac{1}{x}$$

Démonstrations:

Dans un repère orthonormé, les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation y=x. Or, les symétries axiales conservent le contact, donc une tangente à la courbe représentative de exp a pour symétrique une tangente à la courbe représentative de ln. De plus, aucune tangente à la courbe de exp n'est parallèle à l'axe des abscisses, donc aucune tangente à la courbe de ln n'est parallèle à l'axe des ordonnées.

5

Ainsi, la fonction exp étant dérivable sur \mathbb{R} , sa réciproque ln est dérivable sur $]0;+\infty[$.

• f est la fonction définie sur $]0;+\infty[$ par $f(x)=e^{\ln(x)}=x$.

ln est dérivable sur $]0;+\infty[$ donc f est dérivable sur $]0;+\infty[$ et pour tout x>0.

$$f'(x) = \exp'(\ln x) \times \ln'(x) = \exp(\ln x) \times \ln'(x) = x \ln'(x)$$
.

Or f(x)=x, donc f'(x)=1. Par conséquent, pour tout x>0, $\ln f(x)=\frac{1}{x}$.

Propriété:

La fonction ln est **continue** sur $]0;+\infty[$.

En effet, toute fonction dérivable sur un intervalle est continue sur cet intervalle.

Propriété:

La fonction ln est **concave** sur $]0;+\infty[$.

<u>Démonstration</u>:

Soit f la fonction définie, pour tout $x \in]0$; $+\infty[,f'(x)=\frac{1}{x}]$ et $f''(x)=\frac{-1}{x^2}$.

Or, pour tout $x \in]0$; $+\infty[$, $\frac{-1}{x^2} < 0$. Ainsi, f''(x) < 0 et, par conséquent, f est concave sur]0; $+\infty[$.

2) Limite de ln en 0 et en +∞

Propriétés:

- $\lim_{x \to +\infty} \ln x = +\infty$
- $\lim_{x \to 0} \ln x = -\infty$

<u>Démonstrations</u>:

- Pour tout nombre réel A, $\ln x > A \Leftrightarrow x > e^A$. Donc $\ln x > A$ pour tout nombre réel $x > e^A$ et donc $\lim_{x \to +\infty} \ln x = +\infty$.
- On a, pour x > 0, $\ln x = -\ln \frac{1}{x}$. Donc $\lim_{x \to 0} \ln x = \lim_{x \to 0} -\ln \frac{1}{x}$.

Or
$$\lim_{\substack{x \to 0 \ x > 0}} \frac{1}{x} = +\infty$$
 et $\lim_{\substack{X \to +\infty}} (-\ln X) = -\infty$.

D'après le théorème sur la limite d'une fonction composée $\lim_{x\to 0} \ln x = -\infty$.

3) Tableau de variation et courbe

L'axe des ordonnées est asymptote verticale à la courbe représentative de ln .

IV. Compléments sur la fonction In

1) Limites

Propriété:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Démonstration:

La fonction ln est dérivable sur $]0;+\infty[$, donc en 1.

Cela signifie que
$$\lim_{x\to 0} \frac{\ln(1+x) - \ln 1}{x} = \ln'(1)$$
.

Or
$$\ln 1 = 0$$
 et $\ln'(1) = \frac{1}{1} = 1$, donc $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$.

Remarque:

On en déduit que pour h proche de 0: $\ln(1+h) \approx h$.

Croissances comparées

Propriétés:

- $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$
- $\lim_{x \to 0} x \ln x = 0$

<u>Démonstrations</u>:

• Pour x>0, $\frac{\ln x}{x} = \frac{\ln x}{e^{\ln x}}$.

De plus
$$\lim_{x \to +\infty} \ln x = +\infty$$
 et $\lim_{X \to +\infty} \frac{X}{e^X} = 0$ (par croissance comparée)

Donc d'après le théorème de la limite d'une fonction composée, $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

• Pour x>0, $x \ln x = e^{\ln x} \times \ln x$.

De plus
$$\lim_{x\to 0} \ln x = -\infty$$
 et $\lim_{X\to -\infty} X e^X = 0$ (par croissance comparée)

Donc d'après le théorème de la limite d'une fonction composée, $\lim_{x\to 0} x \ln x = 0$

7

Généralisation:

Pour tout $n \in \mathbb{N}^*$,

- $\bullet \quad \lim_{x \to 0} x^n \ln x = 0$
- $\bullet \quad \lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$

2) Fonction $x \mapsto \ln(u(x))$

Notation:

u désigne une fonction strictement positive sur un intervalle I.

La fonction $x \mapsto \ln(u(x))$ définie sur *I* est notée $\ln u$.

$$x \mapsto u(x) \mapsto \ln(u(x))$$

Propriété:

u est une fonction dérivable et strictement positive sur un intervalle I.

La fonction $\ln u$ est **dérivable** sur I et $(\ln u)' = \frac{u'}{u}$.

Démonstration:

On utilise la propriété $(g \circ f)' = f' \times (g' \circ f)$.

En particulier, avec la fonction f=u, dérivable et strictement positive sur l'intervalle I et $g=\ln$, on obtient, pour tout réel x appartenant à I, la dérivée de $\ln(u(x))$:

$$\ln'(u(x)) = u'(x) \times \frac{1}{u(x)} = \frac{u'(x)}{u(x)}$$

8

Propriété:

Les fonctions u et $\ln u$ ont le même sens de variation sur I.

Démonstration :

 $(\ln u)'$ a le même signe que u' car u>0.

Exemple:

f est la fonction définie sur \mathbb{R} par $f(x) = \ln(x^2 + 1)$.

 $f = \ln u$ où u est la fonction définie sur \mathbb{R} par $u(x) = x^2 + 1$.

Or, u est dérivable et strictement positive sur \mathbb{R} , donc f est dérivable sur \mathbb{R} .

Pour tout nombre réel x, $f'(x) = \frac{2x}{x^2 + 1}$.

3) La fonction logarithme décimal

Définition:

La fonction logarithme décimal, notée \log , est définie pour tout réel x de $]0;+\infty[$ par :

$$\log x = \frac{\ln x}{\ln 10} .$$

Propriété:

La fonction logarithme décimal vérifie les mêmes propriétés algébriques que la fonction ln.

Exemples:

$$\log 1=0$$
; $\log 10=1$; $\log 0,1=-1$; $\log 100=2$; $\log 0,01=-2$

Remarques:

• Pour tout réel x strictement positif et tout entier relatif n, on a :

$$10^n \le x < 10^{n+1} \iff n \le \log x < n+1.$$

• Les fonctions $x \mapsto 10^x$ et $x \mapsto \log x$ sont réciproques l'une de l'autre.