TP Capteur

MSC 2022 - CHAPUIS Clément & SUTRA Aurélien

- La norme l²C (Inter-Integrated Circuit) a été développée par Philips en 1982.
- La version la plus récente est la 6^{ème}
- 4 fils dont Vcc et GND pour l'alimentation, SCL pour l'horloge et SDA pour l'échange de donnée
- Un bus série transmet l'information bit par bit à des instants qui dépendent de l'horloge (synchrone). Il peut communiquer de esclave à maître et de maître à esclave (bidirectionnel) mais pas simultanément (half-duplex).
- Adresse classiquement codée sur 7 bit + 1 bit R/W =>128 appareils adressés
- La vitesse de transmission est 5Mbps

 La fonction à utiliser pour scanner le bus est : HAL_I2C_IsDeviceReady

HAL_I2C_IsDeviceReady

Function name HAL_StatusTypeDef HAL_I2C_IsDeviceReady

(I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint32_t

Trials, uint32_t Timeout)

Function description Checks if target device is ready for communication.

 Ci-contre un exemple d'utilisation de cette fonction pour scanner le bus I2c

```
#include "main.h"
#include "stdio.h"
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef huart1;
uint8_t Buffer[25] = {0};
uint8_t Space[] = " - ";
uint8_t StartMSG[] = "Starting I2C Scanning: \r\n";
uint8_t EndMSG[] = "Done! \r\n\r\n";
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART1_UART_Init(void);
int main(void)
    uint8_t i = 0, ret;
    HAL_Init();
    SystemClock_Config();
    MX_GPIO_Init();
    MX_I2C1_Init():
    MX_USART1_UART_Init();
    HAL_Delay(1000);
    /*-[ I2C Bus Scanning ]-*/
    HAL_UART_Transmit(&huart1, StartMSG, sizeof(StartMSG), 10000);
    for(i=1; i<128; i++)
        ret = HAL_I2C_IsDeviceReady(&hi2c1, (uint16_t)(i<<1), 3, 5);</pre>
        if (ret != HAL_OK) /* No ACK Received At That Address */
            HAL_UART_Transmit(&huart1, Space, sizeof(Space), 10000);
        else if(ret == HAL_OK)
            sprintf(Buffer, "0x%X", i);
            HAL_UART_Transmit(&huart1, Buffer, sizeof(Buffer), 10000);
    HAL_UART_Transmit(&huart1, EndMSG, sizeof(EndMSG), 10000);
    /*--[ Scanning Done ]--*/
    while (1)
```

Capteur MPU-9250

- Le registre WHOAMI permet de vérifier l'identité du capteur utilisé.
- La valeur attendue est une ID d'appareil sur 8 bit.
- HAL_I2C_Mem_Read permet de lire la valeur du registre WHOAMI

Name: WHOAMI Serial IF: Read Only Reset value: 0x68

BIT	NAME	FUNCTION
[7:0]	WHOAMI	Register to indicate to user which device is being accessed.

This register is used to verify the identity of the device. The contents of WHO_AM_I is an 8-bit device ID. The default value of the register is 0x71.

HAL_I2C_Mem_Read

Function name HAL_StatusTypeDef HAL_I2C_Mem_Read

(I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t * pData, uint16_t

Size, uint32 t Timeout)

Function description Read an amount of data in blocking mode from a specific memory

address.

Température

- Pour lire la température mesurée par le capteur, il faut lire les registres TEMP_OUT_H et TEMP_OUT_L
- Pour convertir les données du capteur en °C, on fait le calcul suivant : TEMP_degC=((TEMP_OUT-RoomTemp_Offset)/Temp_Sensitivity) + 21degC
- Roomtemps représente la temperature ambiante de la pièce (21°C), sans unité. Temp sensitivity est la sensibilité du capteur en LSB/°C

21°C

Room Temp Offset

4.23 Registers 65 and 66 - Temperature Measurement

Name: TEMP_OUT_H

Serial IF: SyncR

Reset value: 0x00 (if sensor disabled)

BIT	NAME	FUNCTION	
[7:0]	D[7:0]	High byte of the temperature sensor output	

FUNCTION

Name: TEMP_OUT_L

Serial IF: SyncR

LSB

Reset value: 0x00 (if sensor disabled)

BIT NAME

						1,5		Low byte of the temperature sensor output:
Parameter	Conditions	MIN	TYP	MAX	Units]		TEMP_degC = ((TEMP_OUT - RoomTemp_Offset)/Temp_Sensitivity) + 21degC Where Temp_degC is the temperature in degrees C measured by the temperature sensor. TEMP_OUT is
Supply Ramp Time	Monotonic ramp. Ramp rate is 10% to 90% of the final value	0.1		100	ms	[7:0]	D[7:0]	
Operating Range	Ambient	-40		85	°C		the actual output of the temperature sensor.	
Sensitivity	Untrimmed		333 97		I SR/°C	8 58		

0

Accélération

- Les registres à lire pour connaître l'accélération sont accel_xout, accel_yout et accel_zout.
 Chacun est codé sur 16 bits
- Le passage des données brutes en g se fait à partir de l'échelle choisie. Par exemple, pour une échelle de +-2, on a 0x0000 qui correspond à -2g et 0xFFFF qui correspond à 2g
- D'après la doc : « When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. »

4.7 Register 28 - Accelerometer Configuration

Serial IF: R/W

Reset value: 0x00

BIT	NAME	FUNCTION
[7]	ax_st_en	X Accel self-test
[6]	ay_st_en	Y Accel self-test
[5]	az_st_en	Z Accel self-test
[4:3]	ACCEL_FS_SEL[1:0]	Accel Full Scale Select: ±2g (00), ±4g (01), ±8g (10), ±16g (11)
[2:0]	-	Reserved