1) Preparation tasks

Table with voltage divider, calculated and measured ADC values for all buttons

Push button	PC0 [A0] voltage (calculated)	PC0 [A0] voltage (measured)	ADC value (calculated)	ADC value (measured)
Right	0 V	0 V	0	0
Up	0,495 V	0,49 V	101	101
Down	1,202 V	1,20 V	246	245
Left	1,970 V	1,96 V	403	402
Select	3,182 V	3,18 V	651	650
none	5 V	4,99 V	1023	1022

2) ADC

Listing of ADC_vect from file main.c

```
ISR(ADC vect)
    uint16_t value = ADC;
    char lcd_string[8] = "
       // Clear decimal and hex positions
       lcd_gotoxy(8, 0);
       lcd_puts(lcd_string);
       // Print ADC value on LCD in decimal
       itoa(value, lcd_string, 10);
       lcd_gotoxy(8, 0);
       lcd_puts(lcd_string);
       if (value < 700)
              // Send data through UART
              uart_puts("ADC value in decimal: ");
              uart_puts(lcd_string);
              uart_puts("\r\n");
       }
       // Print ADC value on LCD in hex
       itoa(value, lcd_string, 16);
       lcd_gotoxy(13, 0);
       lcd_puts(lcd_string);
       // Clear key positions
       lcd_gotoxy(8, 1);
       lcd_puts("
       lcd_gotoxy(8, 1);
       // Print key
       if (value > 1000)
       {
              lcd_puts("NONE");
       }
       if (value < 70)</pre>
              lcd_puts("RIGHT");
       }
       if (value > 70 && value < 200)</pre>
       {
              lcd_puts("UP");
       }
       if (value > 200 && value < 370)
       {
              lcd puts("DOWN");
       }
       if (value > 370 && value < 600)</pre>
       {
              lcd puts("LEFT");
       }
```

```
if (value > 600 && value < 1000)
      {
             lcd_puts("SELECT");
      }
      // Code for calculating and displaying parity bit
      if (value > 1000)
      {
             int parity = 0;
              itoa(parity, lcd_string, 10);
             lcd_gotoxy(15,1);
              lcd_puts(lcd_string);
      }
      else
      {
             int memory[32];
             int i = 0, j, parity = 0;
             while (value > 0)
             {
                    memory[i] = value % 2;
                    value = value/2;
                    i++;
             }
             for (j = i - 1; j > 0; j--)
              if(memory[j] == 1)
             {
                    parity++;
             }
             else
              {
                    parity = 0;
              }
              itoa(parity, lcd_string, 10);
              lcd_gotoxy(15,1);
              lcd_puts(lcd_string);
      }
}
```

Screenshot of SimulIDE circuit when "Power Circuit" is applied

3) UART

- transmitting data DE2 in 4800 7O2 mode

Listing of code for calculating and displaying parity bit from file main.c

```
// Code for calculating and displaying parity bit
       if (value > 1000)
       {
              int parity = 0;
              itoa(parity, lcd_string, 10);
              lcd_gotoxy(15,1);
              lcd_puts(lcd_string);
      }
else
              int memory[32];
              int i = 0, j, parity = 0;
              while (value > 0)
              {
                     memory[i] = value % 2;
                     value = value/2;
                     i++;
              }
              for (j = i - 1; j > 0; j--)
              if(memory[j] == 1)
              {
                     parity++;
              }
              else
              {
                     parity = 0;
              }
              itoa(parity, lcd_string, 10);
              lcd_gotoxy(15,1);
              lcd_puts(lcd_string);
       }
```