

YC31xx IIC 应用说明

V1.0

Yichip Microelectronics ©2014

Revision History

Version	Date	Author	Description
V1.0	2020-2-19	Dengzhiqian	Initial version

Confidentiality Level:

confidential

目录

1.	1.	工档说明	4
		编写目的	
		适用范围	
		文件说明	
2.		结构体说明	
		2.1. IIC 初始化结构体说明	
3.		函数说明	
	3.1.	IIC_Init	5
		IIC_SendData	
	3.3.	IIC_ReceiveData	6
4.		示例代码及说明	
	4.1.	示例代码	6

1. 文档说明

1.1 编写目的

为使用 IIC 相关 demo 及 demo 中相关 API 提供指南

1.2 适用范围

31xx 系列芯片

1.3 文件说明

IIC Demo 路径为

ModuleDemo\IIC

IIC 库文件为如下图 yc_iic.c 与 yc_iic.h,路径为 Librarier\sdk

2. 结构体说明

2.1. IIC 初始化结构体说明

结构体名称: IIC_InitTypeDef 说明: 目的是配置 IIC 总线速率

元素名称	类型	说明	元素取值范围
------	----	----	--------

YC31xx WDT 应用说明

scll	uint8_t	Specifies the Clock Pulse Width Low	0~0xff
sclh	uint32_t	Specifies the Clock Pulse Width High	0~0xff
stsu	uint8_t	Specifies the Start Setup Time	0~0xff
sthd	uint8_t	Specifies the Start Hold Time	0~0xff
sosu	uint8_t	Specifies the Stop Setup Time	0~0xff
dtsu	uint8_t	Specifies the Data Setup Time	0~0xff
dthd	uint8_t	Specifies the Data Hold Time	0~0xff

3. 函数说明

3.1. IIC_Init

函数原型: void IIC_Init(IIC_InitTypeDef* IIC_InitStruct);

说明: IIC 初始化函数, 目的是为 IIC 核心寄存器赋初值

参数	方向	说明
IIC_InitTypeDef* IIC_InitStruct	IN	参考 IIC 初始化结构体

返回值	说明
None	None

${\bf 3.2.\,IIC_SendData}$

函数原型: void IIC_SendData(uint8_t *Src, uint16_t len); 说明:

IIC 数据发送函数,目的是将数据写入 DMA。

参数	方向	说明
uint8_t *Src	IN	待发送数据所在的首地址

YC31xx WDT 应用说明

uint16_t len	IN	- 待发送数据的长度
--------------	----	-----------------

返回值	说明
None	None

3.3. IIC_ReceiveData

函数原型: void IIC_ReceiveData(uint8_t *Src, uint16_t Srclen, uint8_t *Dest, uint16_t Destlen) 说明: IIC 数据接收函数,目的是将数据从 DMA 读出。

参数	方向	说明
uint8_t *Src	IN	待发送数据所在的首地址
uint16_t Srclen	IN	待发送数据的长度
uint8_t *Dest	OUT	待接收数据存放地址
uint16_t Destlen	OUT	待接收数据长度

返回值	说明
None	None

4. 示例代码及说明

示例代码存放在 ModuleDemo\IIC 目录下(如下图)

两个均是 IIC 读写 EEPROM 示例 (EEPROM 大小不同)

4.1. 示例代码

int main(void)

IIC_Configuration(); // IIC 初始化配置

```
MyPrintf("Yichip Yc3121 IIC Demo V1.0.\n");
   IIC_EEPROM_Test(); // IIC 读写 EEPROM 测试
    while (1)
}
void IIC_Configuration(void)
    /* Configure the IIC bus data and clock IO. */
    GPIO Config(GPIOB, GPIO Pin 2, IIC SDA);
    GPIO_Config(GPIOA, GPIO_Pin_11, IIC_SCL);
    /* Configure the IIC bus rate */
    IIC_CONFIGCB->scll = 236;
    IIC CONFIGCB->sclh = 236;
    IIC CONFIGCB->stsu = 118;
    IIC CONFIGCB->sthd = 118;
    IIC_CONFIGCB->sosu = 118;
    IIC_CONFIGCB->dtsu = 118;
    IIC\_CONFIGCB->dthd = 0;
    IIC Init(IIC CONFIGCB);
}
void IIC EEPROM Test(void)
    /* AT24C02 storage capacity of 2K, 32 pages, 8 bytes per page, address length of 8 bits. */
/* LSB 0xa0 is the control bit write operation and 0xa1 is the control bit read operation.*/
    uint8_t src_w[10] = \{0xa0, 0x00, 's', 'u', 'c', 'c', 'e', 's', 's', '!'\};
    uint8_t src_r[3] = \{0xa0, 0x00, 0xa1\};
uint8_t dest[9] = {"None"};
    dest[8] = '\0';
                                                                              因板子上
/*此两 GPIO 配置是为了将板子上的 EEPROM 进行写保护(拉高为写保护)
的 EEPROM 不识设备地址
     正常情况下不需此操作
    GPIO_Config(IIC_WP2_PORT, IIC_WP2_PIN, OUTPUT_LOW);
    GPIO_Config(IIC_WP128_PORT, IIC_WP128_PIN, OUTPUT_HIGH);
    IIC_SendData(src_w, 10);
    MyPrintf("Initial dest: %s\n", dest);
    IIC_ReceiveData(src_r, 3, dest, 8);
    MyPrintf("End dest: %s\n", dest);
    GPIO_Config(IIC_WP2_PORT, IIC_WP2_PIN, OUTPUT_HIGH);
    GPIO Config(IIC WP128 PORT, IIC WP128 PIN, OUTPUT HIGH);
}
```