

Fortgeschrittenen Praktikum

Dr. Bruno Gompf, Tel. 0711-685-65146

Zeeman-effect

The Zeeman-effect contains all effects that can be observed related to spectral lines whose emitters are exposed to a magnetic field. It is differentiated between the "normal" and the "anomalous" Zeeman-effect. The normal Zeeman-effect emerges at pure orbital angular momentum L (S=0), every state splits into 2L+1 equidistant levels. At the anomalous Zeeman-effect the spin- and the orbit-momentum couple to the total momentum J=L+S ($S \neq 0$) causing a splitting into 2J+1 levels.

At strong external magnetic fields the Paschen-Back effect occurs whereby the L-S-coupling becomes negligible compared to the energy of the single magnetic moments in the field.

In the experiment the shift from 3^3D to 2^3P ($\lambda = 587.6$ nm) in Helium in a variable magnetic field is analyzed.

I. Required knowledge

Multiplet systems, nomenclature of terms (Lit. 1, 2, 3)

Zeeman effect (normal and anomalous) and Paschen-Back effect (Lit. 1, 2, 3)

Selection rules and polarization (Lit. 1, 2, 3)

Energy level schemes for the visible He-spectrum (Lit. 1)

Arrangement of the Fabry-Perot spectrometer (dispersion range, resolving power, interference order, finesse) (Lit. 4)

Digital camera (CMOS and CCD array, creation of colors) (Lit. 5, 6)

II. Literature

H. Haken, Atomic and Quantum Physics, Springer-Verlag 1987
 H.C. Wolf:

2. W. Demtröder: Atoms, molecules and photons, Springer 2006

3. R. Eisberg Quantum physics of atoms, molecules, solids, nuclei and particles, 1985

R. Resnick:

4. W. Demtröder: Laser spectroscopy, Springer 2003

5. http://micro.magnet.fsu.edu/primer/digitalimaging/concepts/ccdanatomy.html

6. http://www.microscopvu.com/articles/digitalimaging/ccdintro.html

III. Experimental task

The splitting of a spectral line of Helium (3^3D-2^3P , $\lambda = 587.6$ nm) in a magnetic field is investigated at different field strengths with the help of a Fabry-Perot interferometer. The ring-shaped interference pattern is recorded by a digital camera.

- 1. Calibrate the magnetic field with the Hall probe (remanence of the magnet?).
- Adjust the optical assembly of the transversal observation so that you can see a sharp, highcontrast and good illuminated ring system.
- Vary the exposure time, shutter and ISO-Values for optimal results.
- 4. Take images of the ring system at different magnetic field strength (increment 50 mA 100 mA, up to 1.0 T).
- Adjust the optical assembly of the longitudinal observation so that you can see sharp, highcontrast and good illuminated sections of the ring system.
- Take images by rotating the polarizer (increment 5°).

IV. Experimental analysis

Transversal observation:

Plot the squared of the ring diameters against the magnetic field B. Determine Bohr's magneton µ_B under the assumption, that Paschen-Back effect prevails.

Longitudinal observation:

Create a Video-clip from the images and explain what can be seen.

V. Necessary data

Wavelength: $\lambda = 587.6 \text{ nm}$ Etalon distance: d = 9.462 mm

Interference filter: $\lambda = 589 \text{ nm}$, HW = 23 nm Pixel dimensions: $7.81 \mu \text{m} \times 7.81 \mu \text{m}$

VI. Attention

- 1. **Caution:** High voltage up to 4.9 kV (4.0 mA) at the lamp! Do not change the adjustment of the power supply and do not touch the set-up while the lamp is switched on.
- Caution: The current for the magnet coils has to be lower than 1.0 A for permanent use, 2.0 A for short times.
- Do not turn bolts and nuts at the Fabry-Perot-Etalon!
 The polarization of the turnable polarizer is **not** indicated by the mark on the mounting but by the red line near the screws (important for the optimal adjustment).

VII. Experimental set-up:

Transversal:

Longitudinal:

