Züchtungslehre - Übung 6

Peter von Rohr

November 5, 2015

Aufgabe 1 (5)

Das folgende kleine Beispiel-Pedigree ohne Inzucht soll als Beispiel dienen für das Aufstellen der inversen Verwandtschaftsmatrix. In der Listenform sieht das Pedigree wie folgt aus.

	sire	dam
1	<na></na>	<na></na>
2	<na></na>	<na></na>
3	1	2
4	1	<na></na>
5	4	2
6	4	2

Aufgrund der LDL-Zerlegung der inversen Verwandtschaftsmatrix \mathbf{A}^{-1} in Matrizen

$$\mathbf{A}^{-1} = \left(\mathbf{L}^T\right)^{-1} * \mathbf{D}^{-1} * \mathbf{L}^{-1}$$

können folgende Regeln zum direkten Aufstellen der Matrix \mathbf{A}^{-1} aufgestellt werden. Für den Fall, dass Inzucht nicht berücksichtigt wird, entsprechen die Diagnoalelemente der Matrix \mathbf{D}^{-1} folgenden Werten

Eltern	Wert in Matrix \mathbf{D}^{-1}
beide Eltern bekannt	2
ein Elternteil bekannt	$\frac{4}{3}$
Eltern unbekannt	1

Für unser Beispiel-Pedigree resultieren also folgende Werte für die Diagonalelemente von Matrix \mathbf{D}^{-1} . Das Diagonalelement, welches zu Tier i gehört bezeichnen wir auch mit α_i .

TierId	Wert in Matrix \mathbf{D}^{-1} (α_i)
1	1.00
2	1.00
3	2.00
4	1.33
5	2.00
6	2.00

Regeln für A^{-1}

Die Matrix \mathbf{A}^{-1} wird jetzt aufgrund der folgenden Regeln aufgestellt.

- Initialisierung aller Elemente in A^{-1} mit dem Wert 0
- $\bullet\,$ Hat Tier ibekannte Elter
nm und vdann folgende Veränderungen in
 \mathbf{A}^{-1} vornehmen
 - $-\alpha_i$ zum Element (i,i) (Zeile von Tier i und Kolonne von Tier i)hinzuzählen
 - $\frac{\alpha_i}{2}$ von den Elementen $(m,i),\,(i,m),\,(v,i)$ und (i,v)abziehen
 - $\frac{\alpha_i}{4}$ zu den Elementen $(m,m),\,(m,v),\,(v,m)$ und (v,v)hinzuzählen
- $\bullet\,$ Nur Elternteil m von Tier i ist bekannt, dann folgende Veränderungen in \mathbf{A}^{-1} vornehmen
 - α_i zum Element (i,i)hinzuzählen
 - $-\frac{\alpha_i}{2}$ von den Elementen (m,i) und (i,m) abziehen
 - $-\frac{\alpha_i}{4}$ zum Element (m,m) hinzuzählen
- Tier i hat keine bekannten Eltern, dann α_i zum Element (i,i) hinzuzählen

Umsetzung der Regeln

Die Umsetzung der Regeln zum Aufstellen der Matrix \mathbf{A}^{-1} verläuft gemäss folgenden Schritten

Schritt 1

Initialisierung der Matrix \mathbf{A}^{-1} mit 0. Somit haben wir

Schritt 2

Tiere 1 und 2 haben beide unbekannte Eltern deshalb gilt für sie die letzte der Regeln, d.h., zu den Diagonalelementen wird jeweilen das entsprechende α_i (d.h. α_1 für Tier 1 und α_2 für Tier 2) hinzugezählt

Schritt 3

Tier 3 hat bekannte Eltern 1 und 2, somit kommt die erste Regel zur Anwendung. Als erstes wird zum Diagnoalelement von \mathbf{A}^{-1} des Tieres 3 der Betrage α_3 dazugezählt.

Als zweites werden die Offdiagonalelemente von \mathbf{A}^{-1} , welche das Tier 3 mit seinen Eltern 1 und 2 verbindet, angeschaut. Dabei handelt es sich um die Elemente (1,3), (3,1), (2,3) und (3,2). Von diesen Elementen wird der Betrage von $\frac{\alpha_3}{2}$ abgezogen

Als drittes und letztes werden die Elemente der Eltern von Tier 3 um den Wert von $\frac{\alpha_3}{4}$ geändert. Dieser Betrage wird den Elementen (1,1), (1,2), (2,1) und (2,2) hinzugefügt. Somit sieht die Matrix \mathbf{A}^{-1} nach drei Schritten wie folgt aus.

Ihre Aufgabe

In den Schritten 4 bis 6 sollen Sie die entsprechenden Elemente für die Tiere 4, 5 und 6, gemäss den Regeln für das Aufstellen von \mathbf{A}^{-1} , berechnen und in der Matrix \mathbf{A}^{-1} hinzufügen.

Als Kontrolle können Sie dann die Inverse mit der Funktion

> getAInv(pedA1)

überprüfen.

Aufgabe 2 (7)

Beim Aufstellen der Matrix \mathbf{A}^{-1} unter Berücksichtigung der Inzucht gelten die gleichen Regeln, wie unter Aufgabe 1 beschrieben. Der einzige Unterschied liegt in der Berechnung der α_i Werte. Die α_i Werte entsprechen den Diagonalelementen von der Matrix \mathbf{D}^{-1} aus der LDL-Zerlegung von \mathbf{A}

$$\mathbf{A} = \mathbf{L} * \mathbf{D} * \mathbf{L}^T \tag{1}$$

Inzuchtgrad eines Tieres

Der Inzuchtgrad für Tier i ist im Diagnoalelement a_{ii} der Verwandtschaftsmatrix \mathbf{A} enthalten. Aufgrund der Zerlegung der Matrix \mathbf{A} in

$$\mathbf{A} = \mathbf{U} * \mathbf{U}^T \tag{2}$$

lässt sich das Diagnoalelement a_{ii} berechnen als

$$a_{ii} = \sum_{m=1}^{i} u_{im}^2 \tag{3}$$

Rekursive Berechnung der Elemente in Matrix U

Diagonalelemente u_{ii} der Matrix \mathbf{U} sind definiert als

$$u_{ii} = \sqrt{d_i} = \sqrt{1 - 0.25(a_{ss} + a_{dd})} \tag{4}$$

wobei d_i das i-te Diagonalelement der Matrix \mathbf{D} aus der LDL- Zerlegung (siehe Gleichung (1)) ist. Die Terme a_{ss} und a_{dd} entsprechen den Diagonalelementen der Verwandtschaftsmatrix \mathbf{A} für die Eltern s und d von Tier i.

Zusammen mit Gleichung (3) kann das Diagonalelement u_{ii} berechnet werden als

$$u_{ii} = \sqrt{1 - 0.25 \left(\sum_{m=1}^{s} u_{sm}^2 + \sum_{m=1}^{d} u_{dm}^2 \right)}$$
 (5)

Die Elemente der Nebendiagonale werden berechnet als

$$u_{ij} = 0.5 \left(u_{sj} + u_{dj} \right) \tag{6}$$

für Eltern s und d von Tier i.

Berechnung von α_i

Die Werte α_i entsprechen den Diagonale
lementen der Matrix \mathbf{D}^{-1} . Da \mathbf{D}^{-1} eine Diagonal
matrix ist, entspricht

$$\alpha_i = \frac{1}{u_{ii}^2} \tag{7}$$

Ihre Aufgabe

Füllen Sie die Tabelle mit den α Werten für jedes Tier aus unter Berücksichtigung von Inzucht. Dazu verwenden wir folgendes Pedigree, welches Tiere mit Inzucht aufweist.

```
> library(pedigreemm)
> nAnzTiere <- 6
> pedA2 \leftarrow pedigree(sire = c(NA,NA,1, 1,4,5),
                   dam = c(NA, NA, 2, NA, 3, 2), label = 1:nAnzTiere)
> print(pedA2)
  sire dam
1 <NA> <NA>
2 <NA> <NA>
3
     1
           2
     1 <NA>
5
     4
           3
     5
           2
```

Hier ist die Tabelle, in welche die α_i Werte eingetragen werden können.

TierId	Wert in Matrix \mathbf{D}^{-1} (α_i)
1	
2	
3	
4	
5	
6	

Zur Demonstration geben wir die Berechnung der ersten drei α_i Werte vor.

Schritt 1

Der Wert für α_1 für Tier 1 wird aufgrund der Gleichung (7) berechnet.

$$\alpha_1 = \frac{1}{u_{11}^2}$$

Da Tier 1 keine bekannten Eltern hat, reduziert sich die Formel in (5) zur Berechnung von u_{11} zu

$$u_{11} = \sqrt{1 - 0.25(0 + 0)} = 1$$

Somit ist auch $\alpha_1 = 1$

Schritt 2

Der Wert α_2 für Tier 2 wird analog zu Tier 1 berechnet. Tier 2 hat auch keine Eltern und somit ist auch $\alpha_2 = 1$.

Schritt 3

Tier 3 hat bekannte Eltern 1 und 2. Da α_3 als

$$\alpha_3 = \frac{1}{u_{33}^2}$$

definiert ist, müssen wir zuerst u_{33} aufgrund von Gleichung (5) berechnen.

$$u_{33} = \sqrt{1 - 0.25 \left(\sum_{m=1}^{1} u_{sm}^2 + \sum_{m=1}^{2} u_{dm}^2 \right)}$$
$$= \sqrt{1 - 0.25 \left(u_{11}^2 \right) - 0.25 \left(u_{21}^2 + u_{22}^2 \right)}$$

wobei u_{11} und u_{22} schon berechnet wurden. Den Wert für u_{21} bestimmen wir mit der Gleichung (6). Da beide Tiere 1 und 2 keine bekannten Eltern haben, ist $u_{21} = 0$. Somit können wir einsetzen und erhalten

$$u_{33} = \sqrt{1 - 0.25(1) - 0.25(0+1)} = \sqrt{0.5}$$

Daraus folgt, dass

$$\alpha_3 = \frac{1}{\left(\sqrt{0.5}\right)^2} = 2$$

Schritte 4 bis 6

Berechnen Sie die α_i Werte für Tiere 4 bis 6 und füllen Sie die Tabelle aus.

Zusatzaufgabe

Verwenden Sie die berechneten α_i Werte und stellen Sie die inverse Verwandtschaftsmatrix aufgrund der Regeln aus Aufgabe 1 auf. Kontrollieren Sie das Ergebnis mit der Funktion

> getAInv(pedA2)