Course Code: ESC106A

Course Title: Construction Materials and Engineering Mechanics

Lecture No. 48: Problems on Rope friction

Delivered By: Dr. T. Valsa Ipe

Lecture Intended Learning Outcomes

At the end of this lecture, students will be able to:

- Draw Free Body diagrams of pulley in the given problems
- Evaluate frictional forces or find tension in the string on either side of the pulley by assuming impending state

Contents

Numerical problems on rope friction

Introduction

Rope Friction

Rope Friction

Equilibrium in the t-direction gives

$$T\cos\frac{d\theta}{2} + \mu dN = (T + dT)\cos\frac{d\theta}{2}$$

or

$$\mu dN = dT$$

since the cosine of a differential quantity is unity in the limit. Equilibrium in the n-direction requires that

$$dN = (T + dT) \sin \frac{d\theta}{2} + T \sin \frac{d\theta}{2}$$

or

$$dN = T d\theta$$

Rope Friction

Combining the two equilibrium relations gives

$$\frac{dT}{T} = \mu \, d\theta$$

Integrating between corresponding limits yields

$$\int_{T_1}^{T_2} \frac{dT}{T} = \int_0^\beta \mu \ d\theta$$

or

$$\ln \frac{T_2}{T_1} = \mu \beta$$

where the $\ln (T_2/T_1)$ is a natural logarithm (base e). Solving for T_2 gives

$$T_2 = T_1 e^{\mu \beta}$$

Example: What is the minimum coefficient of friction μ between the rope and the fixed shaft which will prevent the unbalanced cylinders from moving?

Ans: μ =0.22

Example: It is observed that the two cylinders will remain in slow steady motion as indicated in the drawing. Determine the coefficient of friction μ between the chord and the fixed shaft.

Ans: μ =0.244

Example: A force P = mg/6 is required to lower the cylinder at a constant slow speed with the cord making 1 turns around the fixed shaft. Calculate the coefficient of friction $\frac{1}{4}\mu$ between the cord and that shaft.

Example: A 70 Kg rock climber is lowered over the edge of the cliff by his two companions, who together exert a horizontal pull T of 36 Kg on the rope. Compute the coefficient of friction μ between the rope and the rock.

Example: A rope making $1\frac{1}{4}$ turns around a stationary horizontal drum is used to support a weight W. If the coefficient of friction is 0.3, what range of weight can be supported by exerting a 600N force at the other end of rope?

Ans: 56.87N to 6330.43N

Example: In the following figure, the coefficient of friction between the rope and the fixed drum is 0.2 and between other surfaces of contact is 0.3. Determine the minimum weight W to prevent downward motion of the 1000N block.

Summary

- Friction is the force resisting the relative motion of solid surfaces,
 fluid layers and material elements sliding against each other
- Based on the concept of rope friction, the problems are solved

