HIGHER DIMENSIONAL HOLOMORPHIC QUANTUM FIELD THEORY

Theorem 0.1. Let \mathcal{E} be the fields of any holomorphically translation invariant field theory on \mathbb{C}^d with classical interaction $I \in \mathcal{O}_{loc}(\mathcal{E})$. Then, there exists a one-loop prequantization $\{I[L] \mid L > 0\}$ of I involving no counterterms. Moreover, we can pick the family $\{I[L]\}$ to be holomorphically translation invariant.

Theorem 0.2. Let $d \ge 1$, and let X be a Kähler manifold. For every trivialization of

$$\operatorname{ch}_{d+1}(T^{1,0}X) \in H^{d+1}(X; \Omega^{d+1}_{cl}) \hookrightarrow H^{2d+2}_{dR}(X),$$

there exists a unique (up to homotopy) cotangent quantization of the holomorphic σ -model of maps $\mathbb{C}^d \to X$ that is compatible with the action of translations and the unitary group U(d) on \mathbb{C}^d .

Theorem 0.3. (Chiral algebraic index theorem) Let $q \in D(0,1)^{\times}$, X be a compact complex manifold, and α a trivialization of $\operatorname{ch}_2(TX) \in H^2(X,\Omega^2_{cl})$, so that the factorization algebra $\operatorname{Obs}^q_{X,\alpha}$ of quantum observables of the two-dimensional holomorphic σ -model from E_q to X is defined (Theorem $\ref{Theorem}$). Then:

(1) there is quasi-isomorphism of sheaves of cochain complexes on X

$$\Phi^q: \operatorname{Hoch}(D^{\hbar}_{LX^{alg}};q) \xrightarrow{\simeq} \int_{E_q} \operatorname{Obs}_{X,\alpha}^q;$$

(2) there is a q-twisted trace map

$$\operatorname{Tr}_X^q:\operatorname{Hoch}(D_{LX^{alg}}^{\hbar};q)\to\mathbb{C}[[\hbar,\hbar^{-1}];$$

(3) if

$$1 \in H^* \int_{E_a} \mathrm{Obs}_{X,\alpha}^q \cong HH^*(D_{LX^{alg}}^{\hbar};q)$$

denotes the unit observable, then in cohomology the trace map satisfies

$$\operatorname{Tr}_X^q(1) = \int_Y \operatorname{Wit}(X, q).$$

Theorem 0.4. Suppose \mathcal{E} is a free holomorphic theory on a complex d-fold X that is invariant for holomorphic diffeomorphisms. Then, associated to \mathcal{E} there is a Gelfand-Fuks cohomology class

$$\alpha_{\mathcal{E}} \in H^{2d+1}_{GF}(\mathbf{W}_d),$$

and a map of factorization algebras on X

$$\Phi: \mathbb{U}_{\alpha_{\mathcal{E}}}(\mathfrak{T}_X) \to \mathrm{Obs}^{\mathrm{q}}_{\mathcal{E}}.$$

In other words, an extension of T_X parametrized by the class $\alpha_{\mathcal{E}}$ is a quantum symmetry of \mathcal{E} .

Theorem 0.5. The A_{∞} -algebra of operators on $S^3 \subset \mathbb{C}^2 \setminus \{0\}$ supported on the boundary of the twist of the $\mathcal{N}=1$ supersymmetric gauge theory on the 5-manifold

$$\left(\mathbb{C}^2\setminus\{0\}\right)\times\mathbb{R}_{\geq 0}$$

is equivalent to the enveloping algebra $U^{Lie}(\widehat{A_2\otimes \mathfrak{g}})$, where the central extension is associated to the element

$$ch_3(\mathfrak{g}^{ad}) \in Sym^3(\mathfrak{g}^{\vee})^{\mathfrak{g}}.$$