Business Case: Target SQL

1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. Data type of columns in a table

orde	rs Q QUERY - +	SHARE	COPY ± S	NAPSHOT	DELETE	≜ EXPORT ▼	
SCHEMA	DETAILS PREVIEW	LINEAGE	PREVIEW				
= Fi	Iter Enter property name or value						
	Field name	Туре	Mode	Collation	Default Value	Policy Tags ②	Description
	order_id	STRING	NULLABLE				
	customer_id	STRING	NULLABLE				
	order_status	STRING	NULLABLE				
	order_purchase_timestamp	TIMESTAMP	NULLABLE				
	order_approved_at	TIMESTAMP	NULLABLE				
	order_delivered_carrier_date	TIMESTAMP	NULLABLE				
	order_delivered_customer_date	TIMESTAMP	NULLABLE				
	order_estimated_delivery_date	TIMESTAMP	NULLABLE				

2. Time period for which the data is given

SELECT min(order_purchase_timestamp)AS
Start_Date,max(order_purchase_timestamp) AS End_Date
FROM `Target_SQL_Business_Case.orders`

3. Cities and States of customers ordered during the given period

SELECT customer_city,customer_state

FROM `Target_SQL_Business_Case.customers` c INNER JOIN `Target_SQL_Business_Case.orders` o

ON c.customer_id =o.customer_id

WHERE order_purchase_timestamp BETWEEN '2016-09-04' AND '2018-10-17'

LIMIT 100

;

2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

SELECT EXTRACT(year FROM order_purchase_timestamp) AS Year,

EXTRACT(month FROM order_purchase_timestamp) AS Month,

COUNT(order_id) AS Total_Order_Placed

FROM `Target_SQL_Business_Case.orders`

GROUP BY Month, Year

ORDER BY Year, Month

:

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT
```

;

```
COUNTIF(TIME >='04:00:00' AND TIME <='05:30:00') AS Orders_at_Dawn,/* Time Between 4 AM - 5.30 AM */

COUNTIF(TIME >='05:31:00' AND TIME <='12:00:00') AS Orders_at_Morning,/* Time Between 5.30 AM - 12 PM */

COUNTIF(TIME >='12:01:00' AND TIME <='21:00:00') AS Orders_at_Evening,/* Time Between 12 PM - 9 PM */

COUNTIF((TIME >='21:01:00' AND TIME <='23:59:59') OR (TIME >='00:00:01' AND TIME <='03:59:59'))

AS Orders_at_Night /* Time Between 9 PM - 4 AM */

FROM(

SELECT EXTRACT (TIME FROM order_purchase_timestamp)AS TIME
```

FROM `Target_SQL_Business_Case.orders`) AS Temp

3. Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by states

SELECT g.geolocation_state,EXTRACT(year FROM o.order_purchase_timestamp) AS Year,

EXTRACT(month FROM o.order_purchase_timestamp) AS Month,

COUNT(DISTINCT order_id) AS Total_Order_Placed

FROM `Target_SQL_Business_Case.geolocation` g INNER JOIN

`Target_SQL_Business_Case.customers` c

ON g.geolocation_zip_code_prefix =c.customer_zip_code_prefix

INNER JOIN `Target_SQL_Business_Case.orders` o ON

 $c.customer_id = o.customer_id$

GROUP BY Month, Year, g. geolocation_state

ORDER BY Year, Month

LIMIT 100

;

Quer	y results			₫ SA	VE RESULTS ▼
JOB IN	FORMATION RESULTS	JSON	EXECUTION DET	AILS EXECUTION GRAPH PR	EVIEW
Row	geolocation_state	Year	Month	Total_Order_Placed	
1	SP	2016	9	492	
2	RS	2016	9	103	
3	RR	2016	9	65	
4	DF	2016	10	305	
5	RR	2016	10	65	
6	SP	2016	10	16277	
7	PI	2016	10	56	
8	RN	2016	10	220	
9	CE	2016	10	477	
10	MT	2016	10	322	
11	MG	2016	10	11756	
12	PA	2016	10	296	

2. Distribution of customers across the states in Brazil

SELECT g.geolocation_state, COUNT(DISTINCT(c.customer_id))AS Total_Customers

FROM `Target_SQL_Business_Case.geolocation` g INNER JOIN `Target_SQL_Business_Case.customers` c

ON g.geolocation_zip_code_prefix=c.customer_zip_code_prefix

GROUP BY g.geolocation_state

ORDER BY Total_Customers DESC

LIMIT 100

٠

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	geolocation_state	4	Total_Orders		
1	SP	**	41731		
2	RJ		12839		
3	MG		11624		
4	RS		5473		
5	PR		5034		
6	SC		3651		
7	BA		3371		
8	ES		2027		
9	GO		2011		
10	DF		1974		
11	PE		1648		
12	CE		1332		

- 4. Impact on Economy: Analyze the money movement by ecommerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

```
SELECT ROUND(((Total_Cost_2018 - Total_Cost_2017)/Total_Cost_2017)*100,2) AS
Perc_Change
FROM
(
 SELECT
 (SELECT SUM(payment_value)
 FROM (`Target_SQL_Business_Case.payments` p INNER JOIN
`Target_SQL_Business_Case.orders` o
  ON p.order_id=o.order_id)
 WHERE order_purchase_timestamp BETWEEN '2017-01-01' AND '2017-07-31'
 ) AS Total_Cost_2017,
 (SELECT SUM(payment_value)
 FROM (`Target_SQL_Business_Case.payments` p INNER JOIN
`Target_SQL_Business_Case.orders` o
  ON p.order_id=o.order_id)
 WHERE order_purchase_timestamp BETWEEN '2018-01-01' AND '2018-07-31'
 ) AS Total_Cost_2018
 FROM (`Target_SQL_Business_Case.payments` p INNER JOIN
`Target_SQL_Business_Case.orders` o
 ON p.order_id=o.order_id)
LIMIT 1
) AS temp;
```


2. Mean & Sum of price and freight value by customer state

SELECT geolocation_state AS States,ROUND(Total_Sum + Total_Freight) AS Total_Cost,ROUND(((Total_Sum / No_of_Sum)+(Total_Freight/No_of_Sum)),2) AS Mean_Cost FROM (SELECT g.geolocation_state, ROUND(SUM(o.price),2) AS Total_Sum,ROUND(SUM(o.freight_value),2)AS Total_Freight,COUNT(o.price) AS

No_of_Sum

FROM `Target_SQL_Business_Case.order_items` o INNER JOIN `Target_SQL_Business_Case.sellers` s

ON o.seller_id = s.seller_id INNER JOIN `Target_SQL_Business_Case.geolocation` g

ON s.seller_zip_code_prefix = g.geolocation_zip_code_prefix

GROUP BY g.geolocation_state

) AS temp

ORDER BY Total_Cost DESC;

5. Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

SELECT DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,DAY) AS Actual_Days,

DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp,DAY) AS Estimated_Days

FROM `Target_SQL_Business_Case.orders`

WHERE order_delivered_customer_date IS NOT null

ORDER BY order_purchase_timestamp

LIMIT 10;

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRA
Row	Actual_Days	Estimated_Days	//		
1	54		18		
2	23		23		
3	24		34		
4	35		52		
5	30		56		
6	27		50		
7	10		50		
8	30		58		
9	28		52		
10	18		50		

- 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - time_to_delivery = order_purchase_timestamporder_delivered_customer_date
 - diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

 ${\tt SELECT\ DATE_DIFF\ (order_purchase_timestamp, order_delivered_customer_date, DAY)} \\ {\tt AS\ delivery_time,} \\$

DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date,DAY) AS diff_estimated_delivery

FROM `Target_SQL_Business_Case.orders`

WHERE order_delivered_customer_date IS NOT null

LIMIT 10

:

				_
JOB IN	FORMATION	RESULTS JSON	EXECUTION DETAILS	EXECUTION GRAPH P
Row	delivery_time	diff_estimated_delivery		
1	-7	45		
2	-30	-12		
3	-30	28		
4	-7	44		
5	-10	41		
6	-35	16		
7	-23	9		
8	-12	-5		
9	-12	12		
10	-7	1		

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
SELECT geolocation_state AS State,ROUND(AVG(freight_value)) AS
Mean_Freight,ROUND(AVG (diff_estimated_delivery)) AS diff_estimated_delivery

FROM

(

SELECT g.geolocation_state,i.freight_value,

DATE_DIFF (o.order_purchase_timestamp,o.order_delivered_customer_date,DAY) AS
delivery_time,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) AS diff_estimated_delivery

FROM `Target_SQL_Business_Case.orders` o INNER JOIN

`Target_SQL_Business_Case.order_items` i

ON o.order_id =i.order_id INNER JOIN `Target_SQL_Business_Case.geolocation` g

ON i.seller_id = s.seller_id INNER JOIN `Target_SQL_Business_Case.geolocation` g
```

WHERE o.order_delivered_customer_date IS NOT null

ON s.seller_zip_code_prefix = g.geolocation_zip_code_prefix

) AS temp

GROUP BY geolocation_state

LIMIT 10;

Quer	y results				≛ SAV
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PRE
Row /	State	11	Mean_Freight //	diff_estimated_delivery_/	
1	RJ		19.0	12.0	
2	SP		18.0	10.0	
3	MG		23.0	12.0	
4	SC		27.0	13.0	
5	PR		22.0	13.0	
6	ES		29.0	12.0	
7	RS		24.0	16.0	
8	DF		19.0	12.0	
9	RO		50.0	24.0	
10	BA		29.0	14.0	

4. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Top 5 States

```
SELECT geolocation_state AS State,ROUND(AVG(freight_value)) AS
Mean_Freight,ROUND(AVG (diff_estimated_delivery)) AS diff_estimated_delivery
FROM (
SELECT g.geolocation_state,i.freight_value,
DATE_DIFF (o.order_purchase_timestamp,o.order_delivered_customer_date,DAY) AS
delivery_time,
 DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY)
AS diff_estimated_delivery
FROM `Target_SQL_Business_Case.orders` o INNER JOIN
`Target_SQL_Business_Case.order_items`i
ON o.order_id =i.order_id INNER JOIN `Target_SQL_Business_Case.sellers` s
 ON i.seller_id = s.seller_id INNER JOIN `Target_SQL_Business_Case.geolocation` g
ON s.seller_zip_code_prefix = g.geolocation_zip_code_prefix
WHERE o.order_delivered_customer_date IS NOT null
) AS temp
GROUP BY geolocation_state
ORDER BY Mean_Freight DESC
LIMIT 5
```


Bottom 5 States

```
SELECT geolocation_state AS State,ROUND(AVG(freight_value)) AS
Mean_Freight,ROUND(AVG (diff_estimated_delivery)) AS diff_estimated_delivery
FROM
SELECT g.geolocation_state,i.freight_value,
DATE_DIFF (o.order_purchase_timestamp,o.order_delivered_customer_date,DAY) AS
delivery_time,
 DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY)
AS diff_estimated_delivery
 FROM `Target_SQL_Business_Case.orders` o INNER JOIN
`Target_SQL_Business_Case.order_items` i
ON o.order_id =i.order_id INNER JOIN `Target_SQL_Business_Case.sellers` s
ON i.seller_id = s.seller_id INNER JOIN `Target_SQL_Business_Case.geolocation` g
ON s.seller_zip_code_prefix = g.geolocation_zip_code_prefix
WHERE o.order_delivered_customer_date IS NOT null
) AS temp
GROUP BY geolocation_state
ORDER BY Mean_Freight
LIMIT 5
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	
Row	State	//	Mean_Freight	diff_estimated_c	
1	RN		16.0	16.0	
2	SP		18.0	10.0	
3	DF		19.0	12.0	
4	RJ		19.0	12.0	
5	PR		22.0	13.0	

5. Top 5 states with highest/lowest average time to delivery

Top 5 States

```
SELECT geolocation_state AS State,ROUND(AVG(freight_value)) AS Mean_Freight,ROUND(AVG (diff_estimated_delivery)) AS diff_estimated_delivery,ROUND(AVG (delivery_time)) AS Avg_delivery_time
```

FROM (

SELECT g.geolocation_state,i.freight_value,

DATE_DIFF (o.order_purchase_timestamp,o.order_delivered_customer_date,DAY) AS delivery_time,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) AS diff_estimated_delivery

FROM `Target_SQL_Business_Case.orders` o INNER JOIN `Target_SQL_Business_Case.order_items` i

ON o.order_id =i.order_id INNER JOIN `Target_SQL_Business_Case.sellers` s

ON i.seller_id = s.seller_id INNER JOIN `Target_SQL_Business_Case.geolocation` g

ON s.seller_zip_code_prefix = g.geolocation_zip_code_prefix

WHERE o.order_delivered_customer_date IS NOT null

) AS temp

GROUP BY geolocation_state

ORDER BY Avg_delivery_time DESC

LIMIT 5

;

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH
Row	State	/	Mean_Freight	diff_estimated_c	Avg_delivery_tin	
1	RN		16.0	16.0	-7.0	
2	RS		24.0	16.0	-11.0	
3	RJ		19.0	12.0	-11.0	
4	ES		29.0	12.0	-12.0	
5	SP		18.0	10.0	-12.0	

Bottom 5 States

```
Mean_Freight,ROUND(AVG (diff_estimated_delivery)) AS
diff_estimated_delivery,ROUND(AVG (delivery_time)) AS Avg_delivery_time

FROM (

SELECT g.geolocation_state,i.freight_value,

DATE_DIFF (o.order_purchase_timestamp,o.order_delivered_customer_date,DAY) AS
delivery_time,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY)
AS diff_estimated_delivery

FROM `Target_SQL_Business_Case.orders` o INNER JOIN
`Target_SQL_Business_Case.order_items` i
```

SELECT geolocation_state AS State,ROUND(AVG(freight_value)) AS

ON o.order_id =i.order_id INNER JOIN `Target_SQL_Business_Case.sellers` s

ON i.seller_id = s.seller_id INNER JOIN `Target_SQL_Business_Case.geolocation` g

ON s.seller_zip_code_prefix = g.geolocation_zip_code_prefix

WHERE o.order_delivered_customer_date IS NOT null

) AS temp

GROUP BY geolocation_state

ORDER BY Avg_delivery_time

LIMIT 5

,

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXECUTION O
Row	State	//	Mean_Freight	diff_estimated_c	Avg_delivery_tin
1	AM		27.0	-9.0	-47.0
2	MA		30.0	11.0	-17.0
3	RO		50.0	24.0	-17.0
4	CE		56.0	13.0	-16.0
5	MT		32.0	15.0	-14.0

6. Top 5 states where delivery is really fast/ not so fast compared to estimated date

Top 5 States

SELECT geolocation_state AS State,ROUND(AVG(freight_value)) AS Mean_Freight,ROUND(AVG (diff_estimated_delivery)) AS diff_estimated_delivery

FROM (

SELECT g.geolocation_state,i.freight_value,

DATE_DIFF (o.order_purchase_timestamp,o.order_delivered_customer_date,DAY) AS delivery_time,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) AS diff_estimated_delivery

FROM `Target_SQL_Business_Case.orders` o INNER JOIN `Target_SQL_Business_Case.order_items` i

ON o.order_id =i.order_id INNER JOIN `Target_SQL_Business_Case.sellers` s

ON i.seller_id = s.seller_id INNER JOIN `Target_SQL_Business_Case.geolocation` g

ON s.seller_zip_code_prefix = g.geolocation_zip_code_prefix

WHERE o.order_delivered_customer_date IS NOT null

) AS temp

GROUP BY geolocation_state

ORDER BY diff_estimated_delivery DESC

LIMIT 5;

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRA
Row	State	//	Mean_Freight	diff_estimated_c	
1	RO		50.0	24.0	
2	PB		35.0	20.0	
3	RS		24.0	16.0	
4	RN		16.0	16.0	
5	MT		32.0	15.0	

Bottom 5 States

SELECT geolocation_state AS State,ROUND(AVG(freight_value)) AS Mean_Freight,ROUND(AVG (diff_estimated_delivery)) AS diff_estimated_delivery

FROM (

SELECT g.geolocation_state,i.freight_value,

DATE_DIFF (o.order_purchase_timestamp,o.order_delivered_customer_date,DAY) AS delivery_time,

DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date,DAY) AS diff_estimated_delivery

FROM `Target_SQL_Business_Case.orders` o INNER JOIN `Target_SQL_Business_Case.order_items` i

ON o.order_id =i.order_id INNER JOIN `Target_SQL_Business_Case.sellers` s

ON i.seller_id = s.seller_id INNER JOIN `Target_SQL_Business_Case.geolocation` g

ON s.seller_zip_code_prefix = g.geolocation_zip_code_prefix

WHERE o.order_delivered_customer_date IS NOT null

) AS temp

GROUP BY geolocation_state

ORDER BY diff_estimated_delivery

LIMIT 5

:

	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION
Row /	State	//	Mean_Freight /	diff_estimated_c	
1	AM		27.0	-9.0	
2	SP		18.0	10.0	
3	MA		30.0	11.0	
4	RJ		19.0	12.0	
5	MG		23.0	12.0	

6. Payment type analysis:

1. Month over Month count of orders for different payment types

```
SELECT *, ROUND(((Next_Month-Total_Order)/Total_Order)*100,2) AS Perc_Change
FROM (

SELECT *,LEAD(Total_Order,1,1) OVER(PARTITION BY payment_type ORDER BY
Year,Month) AS Next_Month

FROM

(

SELECT payment_type,EXTRACT(year FROM order_purchase_timestamp) AS Year,

EXTRACT(month FROM order_purchase_timestamp) AS Month,

COUNT ( o.order_id) AS Total_Order

FROM `Target_SQL_Business_Case.orders` o INNER JOIN
`Target_SQL_Business_Case.payments` p

ON o.order_id = p.order_id

GROUP BY payment_type,Month,Year

) AS tem

ORDER BY Year,Month
) AS temp ;
```


2. Count of orders based on the no. of payment installments

SELECT payment_installments AS Installments,COUNT(order_id) AS Total_Orders

FROM `Target_SQL_Business_Case.payments`

GROUP BY payment_installments

ORDER BY payment_installments

Insights:

- 1. In Brazil up to the year 2017 end E-Commerce Business is at its peak and then settled stable till the year 2018.
- 2. Nov-Dec these are the months were business on its peak because of Christmas and New year.
- 3. Delivery and Transport department doing well as the Actual Delivery Time is less than the Estimated Delivery to Customers.
- 4. It is a good sign to further grow in companies business
- 5. States in the southern region have plenty no of customers than the northern region
- 6. Ceará, Rondônia, Piauí, Paraíba, and Mato Grosso are the name of the states where freight value is more.
- 7. Rio Grande do Norte, São Paulo, Distrito Federal, Rio de Janeiro, Paraná are the states where freight rates are minimum.
- 8. Rio Grande do Norte, Rio Grande do Sul, Rio de Janeiro, Espírito Santo, São Paulo states where average delivery time is less.
- 9. Amazonas, Maranhão, Rondônia, Ceará, Mato Grosso states where actual delivery time is more
- 10. Rondônia, Paraíba, Rio Grande do Sul, Rio Grande do Norte, Mato Grosso are the states where estimated delivery time is more.
- 11. Amazonas, São Paulo, Maranhão, Rio de Janeiro, Minas Gerais are the states where estimated delivery time is less.
- 12. Most of the peoples uses minimum no of installments for their items.

Recommendations:

- 1. Before Nov-Dec-Jan company should increase the number of employees, and increase the inventory and goods.
- 2. The company should take special focus on freight, transport, and delivery during these months.
- 3. In the northern region too many opportunities to build a business.
- 4. Ceará, Rondônia, Piauí, Paraíba, and Mato Grosso We should lower the freight rates, so we can reach more customers to grow business in this state.
- 5. Amazonas, Maranhão, Rondônia, Ceará, Mato Grosso In these states actual delivery time is more so need to work on that
- 6. We need to focus on how to minimize estimated delivery time by making necessary changes in the department.
- 7. As we lower the interest rates and increase installments make more convenient and flexible way to buy
- 8. We need to offer modern payment options which benefits our customer.
- 9. Providing a variety of payment options opens the door for more customers and could lead business long term