Deep Q-Learning with Recurrent Neural Networks

Clare Chen

Vincent Ying

Dillon Laird

cchen9@stanford.edu vincenthying@stanford.edu

dalaird@cs.stanford.edu

Abstract

Deep reinforcement learning models have proven to be successful at learning control policies image inputs. They have, however, struggled with learning policies that require longer term information. Recurrent neural network architectures have been used in tasks dealing with longer term dependencies between data points. We investigate these architectures to overcome the difficulties arising from learning policies with long term dependencies.

Introduction

Recent advances in reinforcement Learning have led to human-level or greater performance on a wide variety of games (e.g. Atari 2600 Games). However, training these networks can take a long time, and the techniques presented in the state of the art [0] perform poorly on several games that require long term planning.

Deep Q-networks are limited in that they learn a mapping from a single previous state which constist of a small number of game screens. In practice, DQN is trained using an input consisting of the last four game screens. Thus, DQN performs poorly at games that require the agent to remember information more than four screens ago. This is evident from the types of games DQN performs poorly at, near or below human-level [0], in Figure 1.

We explore the concept of a deep recurrent Q-network (DRQN), a combination of a recurrent neural network (RNN) [6] and a deep Q-network (DQN) similar to [5] 1. The idea being that the RNN will be able to retain information from states further back in time and incorporate that into predicting better Q values and thus performing better on games that require long term planning.

Figure 1: Q*bert, Ms. Pac-Man and Montezuma's Revenge

In addition to vanilla RNN architectures we also examine augmented RNN architectures such as attention RNNs. Recent achievements of attention RNNs in translation tasks [2, 3] have shown promise. The advantage of using attention is that it enables DRQN to focus on particular previous states it deems important for predicting the action in the current state. We investigate augmenting DRQN with attention and evaluate its usefulness.

¹ code at https://github.com/dillonalaird/deep-rl-tensorflow

2 Relatd Work

Reinforcement learning covers a variety of areas from playing backgommon [7] to flying RC helicopters [8]. Traditionally reinforcement learning relied upon iterative algorithms to train agents on smaller state spaces. Later, algorithms such as Q-learning were used with non-linear function approximators to train agents on larger state spaces. These algorithms, however, were more difficult to train and would diverge [9].

Recent advances in reinforcement learning have made it possible to use deep neural networks as non-linear function approximators and train them without running into stability issues. These types of models are known as Q-networks and have been shown to be very successful at playing games such as Atari games where the input is nothing more than the pixels on the screen [0, 1].

We examine extending this framework to include RNNs. RNNs have been used before in Q-Learning [5] but on partially observable Markov decision processes created by flickering the game screen. Our goal is to improve the average score the agent receives.

3 Deep Q-Learning

We examine agents playing Atari games. In our environment the agents interact with an Atari emulator. At time t they recieve an observation $x_t \in \mathbb{R}^D$ which is a vector of pixels from the current game screen. The agent then takes an action, $a_t \in \mathcal{A} = \{1, \dots, K\}$ and receives a reward r_t which is the change in the game score.

The objective of the agent is to take actions that maximize the future discounted rewards. We can calculate the future rewards with $R_t = \sum_{t'=1}^T \gamma^{t'-1} r_{t'}$ where T is the end of the game and γ is our discount factor. One way to achieve this objective is by taking the action corresponding to the maximum action-value function:

$$Q^*(s, a) = \max_{\pi} \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s, a_t = a, \pi]$$

which is the expected value of the future discounted rewards under the policy $\pi = P(a|s)$, or the probability of taking an action given the agent is in a certain state. Unfortunately this method can be very difficult to calculate it so we approximate it with another function $Q(s,a;\theta) \approx Q^*(s,a)$. We examine several different types of deep neural network architectures for our function approximator which are called Q-networks.

Training this function can be unstable and will sometimes diverge. The following following loss function is used to help reduce some of these issues [0]:

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i) \right)^2 \right]$$
 (1)

Where experiences are defined as $e_t = (s_t, a_t, r_t, s_{t+1})$ and $D_t = \{e_1, \dots, e_t\}$. Experiences are drawn uniformly from our pool of stored experiences, $e_t \sim U(D)$. θ_i^- are the parameters used to compute the target. These parameters are only updated every C iterations and help stabilize training.

4 Deep Recurrent Q-Learning

We examine several architectures for the DRQN. The idea behind using a RNN on top of a DQN is to retain information for longer periods of time. This should help the agent accomplish tasks that may require the agent to remember a particular event that happened several dozens screen backs. We also examine using an attention mechanism in the RNN. Attention allows the RNN to focus on particular states it has seen in the past. One can think of it as assigning importance to the states iterated over by the RNN. We investigate 2 forms of attention; A linear attention that uses a learned vector to assign importances over the previous states and a global attention that assigns importances to previous states based on the current state.

The first architecture is a very basic extension of DQN. The architecture of DRQN augments DQN's fully connected layer with a LSTM. We accomplish this by looking at the last L states,

 $\{s_{t-(L-1)},\ldots,s_t\}$ and feed these into a convolutional neural network (CNN) to get intermediate outputs $\mathrm{CNN}(s_{t-i}) = x_{t-i}$. These are then fed into a RNN (we use an LSTM for this but it can be any RNN), $\mathrm{RNN}(x_{t-i},h_{t-i-1}) = h_{t-i}$, and the final output h_t is used to predict the Q value which is now a function of $Q(\{s_{t-(L-1)},\ldots,s_t\},a_t)$.

Figure 2: Architecture of the Attention DRQN

The second architecture we used was a version of an attention RNN we are calling linear attention. For the linear attention RNN we take the L hidden states outputted by the RNN, $\{h_{t-(L-1)},\ldots,h_t\}$ and calculate an inner product with v_a , $\{v_a^Th_{t-(L-1)},\ldots,v_a^Th_t\}$. This allows the model to focus more on nearby hidden states or further away states depending on what values of v_a are learned. We then take a softmax over these values, $a_{t-i} = \operatorname{softmax}(v_a^Th_{t-i})$. We use this softmax to take a weighted sum over the hidden states to get a context vector, $c_t = \sum_{i=0}^{L-1} a_{t-i}h_{t-i}$. This context vector is then used to predict the Q value.

The third architecture we used is global attention, similar to the global attention used in [3]. A diagram of this type of attention can be seen in Figure 2. We treat the current state, s_t as the "decoder" input and the previous L-2 states as the "encoder" inputs. We compute the following scores, $\{h_{t-(L-1)}^T h_t, \ldots, h_{t-1}^T h_t\}$. We then take a softmax over these values, $a_{t-i} = \operatorname{softmax}(h_{t-i}^T h_t)$. The context vector is computed as a weighted sum over the previous hidden states, $c_t = \sum_{i=1}^{L-1} a_{t-i} h_{t-i}$. Finally the context vector is used to compute $\tilde{h} = \tanh(W_a[h_t; c_t] + b_a)$ which is then used to predict the Q value. This type of attention allows the model to focus on previous states depending on the current state h_t as opposed to a fixed vector such as v_a .

Learning sequences of observations creates some difficulty when sampling experiences and using the loss function defined in (1). We propose a simple solution where we sample $e_t \sim U(D)$ and then take the previous L states, $\{s_{t-(L+1)}, \ldots, s_t\}$ and zero out states from previous games. For example if s_{t-i} was the end of the previous game then we would have states $\{\mathbf{0}, \ldots, \mathbf{0}, s_{t-(i+1)}, \ldots, s_t\}$ and similarly for the next state $\{\mathbf{0}, \ldots, \mathbf{0}, s_{t-(i+2)}, \ldots, s_{t+1}\}$.

5 Experiments

For our experiments we mainly focused on the game Q*bert. We chose Q*bert because it was a challenging game for DQN which achieved scores only slightly above human-level [0] but it was not so challenging that DQN could not make any progress, such as Montezuma's Revenge [0].

For input the DRQN takes a specified number of screens per state. The screen images are

grayscaled and resized to 80×80 . The first hidden layer convolves 16, 19×19 filters with stride 8 across the input image and applies a rectified linear unit. The second hidden layer convolves 32, 8×8 filters with stride 4, again followed by a rectified linear unit. Convolutional outputs are fed to an LSTM with 256 hidden units per layer. Finally, a fully connected linear layer outputs a Q-value for each possible action.

Figure 3: Graphs for Q*bert Over Iterations

For Figure 3 we trained 4 different models for about 5 million iterations on Q*bert which took about 6 days to complete. All the models use the same convolutional neural network described above for processing the images. DQN uses 4 game screens per state. All the DRQN models use L=16 and 2 screens per state. DRQN is a basic recurrent model with no attention mechanism. DRQN-l is the recurrent model with linear attention and DRQN-g is the recurrent model with global attention.

As you can see from Figure 3 the graphs for the DRQN models are very noisy. The regular DRQN performed the best in terms of average points per life but also had the most difficult time reducing the loss. DRQN-l had the noisiest graphs. It performed close to the highest and lowest value at some point on every statistic. DRQN-g's performance was dissapointing. It had the easiest time minimizing the loss but struggled to gain momentum on average reward per life.

	Best Score for Q*bert
DQN	700
DRQN	850
DRQN-I	700
DRQN-g	550

Figure 4: Best Scores for Q*bert

In Figure 4 we can see the best scores received from each of the algorithms playing 100 games of Q*bert. This table reflects where the algorithms ended up in the average rewards per life graph in Figure 3 with DRQN performing the best followed by DQN, DRQN-l and finally DRQN-g.

From these figures it is evident that while adding a recurrent layer helped the agent, adding an attention mechanism only hidnered the agent. We hypothesize several reasons that explain the poorer results. For one, the network that must be trained is bigger, there are more parameters to tune and it is apparent from the graphs that the attention DRQN did not converge. It is possible that training it longer would lead to better results. Another reason is that attention is not necessary for playing Q*bert since the agent receives the full game state on each screen it does not need to focus on game screens too far back.

Conclusion

We investigate using an RNN on top of a DQN (DRQN) and test several different types of attention to augment the RNN. We show that a basic DRQN is capable of achieving better scores than a DQN on a game that is difficult for DQN to play. We also show that adding attention can hinder the performance on certain games as well.

Going forward we would have liked to train the algorithms for even longer to see if attention eventually does perform better. It is apparent that the graphs have not converged and are still very noisy. We also think running the agent on games like Battlezone would have had a better time utilizing the attention mechanism to achieve higher scores. In Battlezone the entire game state is not revieled in a single screen so it is much more important to be able to refer back to previous screens for information.

Acknowledgements

We would like to thank carpedm20 for using his DQN repository as a base for running our experiments. It saved us a lot of time and allowed us to focus on the core part of our experiment which was testing DRON.

References

- [0] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level Control through Deep Reinforcement Learning. *Nature*, 518(7540):529-522, 2015.
- [1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. *arXiv preprint arXiv:1312.5602*, 2013.
- [2] Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. *arXiv preprint arXiv:1409.0473*, 2014.
- [3] Minh-Thang Luong, Hieu Pham and Chisopher D. Manning. Effective Approaches to Attention-based Neural Machine Translation. *arXiv preprint arXiv:1508.04025*, 2015.
- [4] Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov and Anastasiia Ignateva. Deep Attention Recurrent Q-Network. *arXiv preprint arXiv:1512.01693*, 2015.
- [5] Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially Observable MDPs. *arXiv* preprint arXiv:1507.06527, 2015.
- [6] Sepp Hochreiter and Jurgen Schmidhuber. Long Short-Term Memory. *Neural Computation*, 9(8):1735-1780, 1997
- [7] Gerald Tesauro. Temporal difference learning and td-gammon. *Communications of the ACM*, 38(3):58-68, 1005
- [8] Andrew Y. Ng, H. Jin Kim, Michael I. Jordan and Shankar Sastry. Autonomous Helicopter Flight via Reinforcement Learning. *Advances in Neural Information Processing Systems* 16, 2003.
- [9] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with function approximation. *Automatic Control, IEEE Transactions on*, 42(5):647-690, 1997.

Appendix A:

List of Hyperparameters			
minibatch size	32	number of experiences for SGD update	
replay memory buffer size	1000000	number of experiences in memory buffer	
agent history length	4-32	number of most recent frames experienced input to the Q network	
target network update frequency	10000	number of parameter updates after which the target network updates	
discount factor	0.99	Discount factor γ used in the Q-learning update	
action repeat	4	Repeat each action selected by the agent this many times	
update frequency	4	number of actions by agent between successive SGD updates.	
initial exploration	1	Initial value of ϵ in ϵ -greedy exploration	
final exploration	0.01	Final value of ϵ in ϵ -greedy exploration	
final exploration frame	100000	The number of frames over which the initial value of ϵ reaches final value	
no-op max	30	Maximum "do nothing" actions by agent at the start of episode.	
learning rate of training	0.00025	learning rate used by RMSProp	
decay of RMSProp optimizer	0.99	decay rate used by RMSProp	
β of RMSProp optimizer	0.01	β rate of RMSProp	