New Plant Disease Detection

CSML1020 Course Project

Jerry Khidaroo CSML1020 – Group 3 York University Toronto, ON Canada email@email.com Paul Doucet CSML1020 – Group 3 York University Toronto, ON Canada email@email.com

ABSTRACT

This paper will explore the classification of plant images to identify new plant diseases using a machine learning model.

The dataset was obtained from Kaggle and consists of over 87,000 rgb images of healthy and diseased crop leaves labeled by plant and disease type in 38 different classes.

CCS CONCEPTS

• Artificial Intelligence • Machine Learning • Image Classification

1 Introduction

The problem we will examine is a supervised multi-class image classification problem. The goal is to investigate which supervised machine learning models will give the best results in classifying the images from our dataset in the predefined categories.

2 Existing Work

LAISTING WOLK	
Plant Desease Classifictaion-VGG16	Example of
https://www.kaggle.com/wiwidsetiawan/p	classification
lant-desease-classifictaion-vgg16	using the
	VGG16 pre
	trained
	model
Fork of Plant Diseases Classification	Example of
Using incep3	classification
https://www.kaggle.com/vimaladit/fork-	using the
of-plant-diseases-classification-	Inception
using-incep3	Version 3
	pre trained
	model

3 Methodology

3.1 Data Preparation

The dataset was downloaded from the Kaggle website: https://www.kaggle.com/vipoooool/new-plant-diseases-dataset The dataset did not need any manipulation as it was previously divided into a useable directory structure for training and validation as well as several test images.

Table 1: Dataset Parsed from Category Folder Names

	plant	condition	count	status	disease
0	Tomato	Target_Spot	50	unhealthy	spot
1	Tomato	Early_blight	50	unhealthy	blight
2	Apple	healthy	50	healthy	healthy
3	Tomato	healthy	50	healthy	healthy
4	Blueberry	healthy	50	healthy	healthy
5	Grape	healthy	50	healthy	healthy
6	Peach	healthy	50	healthy	healthy
7	${\sf Cherry_(including_sour)}$	Powdery_mildew	50	unhealthy	mildew
8	Tomato	Leaf_Mold	50	unhealthy	mold
9	Apple	Black_rot	50	unhealthy	rot
10	Squash	Powdery_mildew	50	unhealthy	mildew
11	Corn_(maize)	Northern_Leaf_Blight	50	unhealthy	blight
12	Strawberry	Leaf_scorch	50	unhealthy	scorch
13	Pepper,_bell	healthy	50	healthy	healthy
14	Orange	Haunglongbing_(Citrus_greening)	50	unhealthy	greening
15	Potato	Late_blight	50	unhealthy	blight
16	Tomato	Late_blight	50	unhealthy	blight
17	Strawberry	healthy	50	healthy	healthy
18	Tomato	Tomato_Yellow_Leaf_Curl_Virus	50	unhealthy	virus
19	Corn_(maize)	Common_rust	50	unhealthy	rust
20	Raspberry	healthy	50	healthy	healthy
21	Tomato	Tomato_mosaic_virus	50	unhealthy	virus
22	Pepper,_bell	Bacterial_spot	50	unhealthy	spot
23	Cherry_(including_sour)	healthy	50	healthy	healthy
24	Tomato	Septoria_leaf_spot	50	unhealthy	spot
25	Peach	Bacterial_spot	50	unhealthy	spot
26	Apple	Cedar_apple_rust	50	unhealthy	rust
27	Tomato	Bacterial_spot	50	unhealthy	spot
28	Grape	Esca_(Black_Measles)	50	unhealthy	measles
29	Grape	Leaf_blight_(Isariopsis_Leaf_Spot)	50	unhealthy	spot
30	Corn_(maize)	Cercospora_leaf_spot_Gray_leaf_spot	50	unhealthy	spot
31	Apple	Apple_scab	50	unhealthy	scab
32	Grape	Black_rot	50	unhealthy	rot
33	Potato	healthy	50	healthy	healthy
34	Corn_(maize)	healthy	50	healthy	healthy
35	Potato	Early_blight	50	unhealthy	blight
36	Soybean	healthy	50	healthy	healthy
37	Tomato	Spider_mites_Two-spotted_spider_mite	50	unhealthy	mite

3.2 Data Exploration

The dataset consists of images of plant leaves in various conditions. The following graphs, show the distribution of this data.

Figure 1: Number of images by plant

Figure 2: Relative image percentages by health status

Figure 3: Number of images by disease

3.3 Data Preprocessing

The following data preprocessing methods will be evaluated to determine the best data augmentation for our input layer.

Data Augmentation

- Random Horizontal Shift
- Random Vertical Shift
- Random Horizontal Flip
- Random Vertical Flip
- Random Rotation
- Random Brightness
- Random Zoom

Figure 4: Data Augmentation Visualization for Random Vertical Shift

Data Pre-Processing

Figure 5: Code Snippet For Data Preprocessing Steps

Found 1900 images belonging to 38 classes.

Table 2: Preprocessing Results Based on Baseline VGG16 Model with Transfer Learning

П	Preprosessing Steps	accuracy
0	rescale=1./255	0.81
1	rescale=1./255, shear_range=0.2	0.74
2	rescale=1./255, zoom_range=0.2	0.75
3	rescale=1./255, width_shift_range=0.2	0.74
4	rescale=1./255, width_shift_range=0.2	0.77
5	rescale=1./255, shear_range=0.2, zoom_range=0.2, width_shift_range=0.2, height_shift_range=0.2	0.71
6	rescale=1./255, horizontal_flip=True, vertical_flip=True, rotation_range=90, brightness_range=[0.2,1.0], zoom_range=[0.5,1.0]	0.41

3.5 Model Evaluation & Selection

For the model evaluations, we will be running baselines (From scratch, with transfer learning, ...), Improving

3.5.1 Baseline Models

Several base models with transfer learning were run, using a sample of the complete dataset. The accuracy and loss were evaluated for each of the three base models: VGG16; ResNet50 and InceptionV3.

3.5.1.1 VGG16 Base Model with Transfer Learning

Model: "sequential"			
Layer (type)	Output Shape		Param #
vgg16 (Model)	(None, 7, 7,	512)	14714688
flatten (Flatten)	(None, 25088)	0
dense (Dense)	(None, 38)		953382
Total params: 15,668,070 Trainable params: 953,382 Non-trainable params: 14,714	, 688		

Preprosessing Steps accuracy 0 rescale=1./255 0.81 1 rescale=1./255, shear_range=0.2 0.83 2 rescale=1./255, zoom_range=0.2 0.81

3.5.1.2 ResNet50 Base Model with Transfer Learning

Layer (type)	Output	Shape	Param #
resnet50 (Model)	(None,	7, 7, 2048)	23587712
flatten_1 (Flatten)	(None,	100352)	0
dense_1 (Dense)	(None,	38)	3813414
Total params: 27,401,126 Trainable params: 3,813,414 Non-trainable params: 23,58			

	Preprosessing Steps	accuracy
0	rescale=1./255	0.25
1	rescale=1./255, shear_range=0.2	0.29
2	rescale=1./255, zoom_range=0.2	0.29

3.5.1.3 InceptionV3 Base Model with Transfer Learning

Layer (type)	0utput	Shape	Param #
inception_v3 (Model)	(None,	5, 5, 2048)	21802784
flatten_2 (Flatten)	(None,	51200)	0
dense_2 (Dense)	(None,	38)	1945638
Total params: 23,748,422 Trainable params: 1,945,638 Non-trainable params: 21,802	.784		

Preprosessing Steps accuracy rescale=1./255 0.74 rescale=1./255, shear_range=0.2 0.74

0.66

rescale=1./255, zoom_range=0.2

3.5.2 Improved Models

0

Hyperparameter Tuning

Best Paramaters: {'learning_rate': 0.0001, 'epochs': 3, 'batch_size': 32, 'activation': 'softmax'}

3.5.3 Final Model and Predictions

To Complete

4 Results

To Complete

5 Discussion

To Complete

6 Conclusion

To Complete

ACM Reference format:

FirstName Surname, FirstName Surname and FirstName Surname. 2018. Insert Your Title Here: Insert Subtitle Here. In *Proceedings of ACM Woodstock conference (WOODSTOCK'18)*. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/1234567890

ACKNOWLEDGMENTS

Insert paragraph text here. Insert paragraph text here.

REFERENCES

- Wiwid Setiawan, 2020. T Plant Desease Classifictaion-VGG16 https://www.kaggle.com/wiwidsetiawan/plant-desease-classifictaion-vgg16
- [2] Vimal Adit. 2019. Fork of Plant Diseases Classification Using incep3 https://www.kaggle.com/vimaladit/fork-of-plant-diseases-classification-using-incep3

[3]