Epreuve écrite

Examen de fin d'études secondaires 2011

Section:

C

Branche:

Mathématiques I

Numéro d'ordre du candidat

Exercice 1 (12 points)

On considère le système suivant :

$$\begin{cases} x + m^2y + z = 1\\ (m-1)x - 2y + 2mz = 2m\\ x - my + z = 1 \end{cases}$$

- 1. Déterminez les valeurs du paramètre réel m pour lesquelles le système ci-dessus admet une solution unique. (6 points)
- 2. Résolvez le système ci-dessus lorsque m = 0 et interprétez le résultat géométriquement. (3 points)
- 3. Résolvez le système ci-dessus lorsque m = -1 et interprétez le résultat géométriquement. (3 points)

Exercice 2 (8 points)

Dans un repère de l'espace on donne le point A(1;2;-1) et les vecteurs $\vec{u}(-1;2;-3)$ et $\vec{v}(-2;1;3)$.

 π est le plan comprenant le point A et de vecteurs directeurs \vec{u} et \vec{v} .

Déterminez

- 1. un système d'équations paramétriques du plan π , (1 point)
- 2. une équation cartésienne du plan π et (4 points)
- 3. une équation cartésienne d'un plan π' parallèle au plan π et passant par B(-1;-1;3) . (3 points)

Exercice 3 (10 points)

On considère dans \mathbb{C} le polynôme définie par $P(z) = z^3 + (2i - 4)z^2 + (6 - 7i)z + (7i - 1)$.

- 1. Calculez P(1-i). (2 points)
- 2. Résolvez dans \mathbb{C} l'équation P(z) = 0. (8 points)

Exercice 4 (10 points)

On considère les nombres complexes :

$$z_1 = 2 \cdot cis\left(\frac{-3\pi}{4}\right)$$
; $z_2 = -4i$; $z_3 = -\frac{\sqrt{6}}{2} + i\frac{\sqrt{2}}{2}$ et $Z = \frac{z_1^4 \cdot z_2^2}{z_3^6}$.

- 1. Mettez z_2 , z_3 , et Z sous forme trigonométrique. (6 points)
- 2. Ecrivez Z sous forme algébrique. (1 point)
- 3. Déterminez les racines 5^{ièmes} de Z. (3 points)

Epreuve écrite

Examen de fin d'études secondaires 2011

Section:

C

Branche:

Mathématiques I

Numéro d'ordre du candidat

Exercice 5 (20 points)

1. Déterminez le terme en x de $\left(5x^3 - \frac{1}{\sqrt{5}x^2}\right)^{17}$.

(5 points)

2. On tire au hasard et simultanément 6 cartes dans un jeu de 32.

(10 points)

Quelle est la probabilité d'obtenir

- a. exactement deux dames?
- b. au plus trois rois?
- c. au moins un as?
- 3. Une urne contient 15 boules dont 7 noires, 5 blanches et 3 rouges indiscernables au toucher. (5 points) On en tire au hasard et successivement 2 boules sans remise.

Quelle est la probabilité pour tirer

- a. 2 boules noires?
- b. 2 boules de même couleur?