

Санкт-Петербургский государственный университет

Сложение разреженных матриц с использованием Brahma. FSharp

Кирилл Анатольевич Гарбар, группа 20.Б07-мм

6 июня 2022 г.

Научный руководитель: к.ф.-м.н. С.В. Григорьев, доцент кафедры информатики

Санкт-Петербург 2021

Введение

- Матрицы и векторы способ параллельной обработки и анализа графов
- Стандарт **GraphBLAS** определяет строительные блоки алгоритмов над графами на языке линейной алгебры
- GraphBLAS-sharp попытка реализовать GraphBLAS на языке F#
 - ▶ Brahma.FSharp транслятор из F# в OpenCL

Существующие решения

Критерии сравнения:

- Платформа для вычислений
- Язык программирования

Название	CPU/GPU	Язык
SuiteSparse	Да/Нет	С
GraphBLAST	Нет/Да	C++
CUSP	Нет/Да	C++
pggraphblas	Да/Нет	C
GraphBLAS-sharp	Да/Да	F#
Math.NET Numerics	Да/Нет	C#

Разреженные матрицы

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 4 & 0 \\ 0 & 2 & 6 \end{pmatrix}$$

- СОО координатный формат
 - массив_значений = [1, 2, 4, 2, 6]
 - массив номеров столбцов = [0, 1, 1, 1, 2]
 - ▶ массив_номеров_строк = [0, 0, 1, 2, 2]
- CSR Йельский формат
 - ▶ массив_значений = [1, 2, 4, 2, 6]
 - ▶ массив_номеров_столбцов = [0, 1, 1, 1, 2]
 - ▶ сжатый массив номеров строк = [0, 2, 3]

Явные и неявные нули

- Пример(как происходит в **SuiteSparse**) в результате операций над матрицей взешенного графа в одной из ячеек оказалось нулевое значение. Возможно два варианта:
 - ▶ 0 вес ребра графа явный ноль.
 - № 0 отсутвтвие ребра между вершинами, в таком случае 0 следует удалить неявный ноль
- Решения
 - Явная фильтрация неудобно, непроизводительно
 - **▶ Option** типы

Постановка задачи

Целью работы является реализация операций разреженной линейной алгебры для GraphBLAS-sharp с использованием Brahma.FSharp Поставленные задачи:

- Реализовать поэлементное сложение разреженных матриц, представленных в **CSR** формате
- Реализовать поддержку **option** типов в операции сложения элементов матриц, а также добавить возможность сложения матриц разного типа.
- Произвести сравнение производительности с **SuiteSpase** и **CUSP**, а также с уже реализованным сложением в координатном формате и с математической библиотекой **Math.NET Numerics**

Поэлементное сложение матриц в CSR формате

- Представить матрицу в координатном формате
 - ▶ Построить массив номеров строк по сжатому массиву номеров строк
- Произвести поэлементное сложение матриц в координатном формате
- Представить результирующую матрицу в CSR формате
 - ▶ Построить битмап уникальных вхождений в массив номеров строк
 - ▶ Посчитать количество ненулевых элементов в каждой строке
 - ▶ С помощью префиксной суммы, по массиву, полученному в прошлом пункте, получить сжатый массив номеров строк

Option типы и сложение матриц разных типов

- Слияние значений из обеих матриц
 - ▶ Вместо слияния в один массив распределить элементы по двум
 - ▶ Создать соответствующий битмап принадлежности элемента к левой или правой матрице
- Поэлементное сложение
 - ▶ Если есть пара элементов произвести сложение
 - ▶ Иначе, сложить элемент из одной матрицы с нулём другой матрицы
- Фильтрация нулей
 - ▶ Some value положить в результирующий массив
 - ▶ None игнорировать

Гибкость полученного решения

Написав соответствующую бинарную операцию, можно выразить:

- Поэлементное сложение
- Поэлементное умножение в SuiteSparse для этого написан отдельный алгоритм
- Операции, использующие матрицу как маску

Листинг 1: Операция поэлементного умножения в GraphBLAS-sharp

Постановка эксперимента

- BenchmarkDotNet
- SpBench
- Matrix Market format
- Intel Core i7-4790 CPU, 3.60GHz, 4 cores, 8 threads, 32GB DDR4 RAM, GTX 2070

Название	Размер	Количество	Заполненность	
Пазвание		элементов		
wing	62 032	243 088	0,0063%	
luxembourg_osm	114 599	119 666	0,0009%	
amazon0312	400 727	3 200 440	0,0019%	
amazon-2008	735 323	5 158 388	0,0009%	
web-Google	916 428	5 105 039	0,0001%	
webbase-1M	1 000 005	3 105 536	0,0003%	
cit-Patents	3 774 768	16 518 948	0,0001%	

Таблица: Матрицы, на которых производилось сравнение

Сравнение с SuiteSparse, CUSP и Math.NET

Название	GraphBLAS-sharp	SuiteSparse	CUSP	Math.NET Numerics
wing	$1,8 \pm 0,1$	$1,9\pm0,1$	$0,5 \pm 0,2$	$5,5\pm0,2$
luxembourg_osm	$2,9 \pm 0,3$	$1.9\pm0,5$	$0,5\pm0,1$	$286, 2 \pm 2, 2$
amazon0312	$17,0 \pm 0,8$	$28,9 \pm 0,2$	$2,8 \pm 0,1$	_
amazon-2008	$12, 2 \pm 0, 8$	$50, 1 \pm 2, 4$	$3,5\pm0,1$	_
web-Google	$18,4 \pm 0,6$	$58.8 \pm 0,7$	$3,6\pm0,1$	_
webbase-1M	$70,7\pm1,0$	$72,9 \pm 0,4$	$24,6 \pm 2,1$	_
cit-Patents	$54, 6 \pm 1, 2$	$157,4\pm1,2$	$8,5 \pm 1,2$	_

Таблица: Результаты сравнения библиотек на сложение в CSR формате, GTX 2070, среднее \pm стандартное отклонение, мс. Отсутствие данных означает, что среднее время превышает 100 секунд

Сравнение поэлементного умножения в GraphBLAS-sharp и SuiteSparse

Название	GraphBLAS-sharp CSR	SuiteSparse
wing	$2,5\pm0,4$	$1,0\pm0,1$
luxembourg_osm	$2,6\pm0,3$	$1,4 \pm 0,3$
amazon0312	$13,0\pm1,0$	$23,0 \pm 0,9$
amazon-2008	$9,1\pm0,8$	$35, 2 \pm 4, 0$
web-Google	$14,7\pm0,8$	$43,9 \pm 0,2$
webbase-1M	$55,4\pm1,2$	$31,0 \pm 1,6$
cit-Patents	$47,9 \pm 0,9$	$107,9 \pm 0,4$

Таблица: Сравнение результатов поэлементного умножения матриц, GTX 2070, среднее \pm стандартное отклонение, мс.

Выводы

- Достигнута приемлемая производительность, несмотря на реализацию на F# вместо C/C++
- Операция сложения достаточно гибкая, чтобы с её помощью произвести другие поэлементные операции, такие как поэлементное умножение

Результаты

- Реализовано поэлементное сложение разреженных матриц, представленных в **CSR** формате
- Реализована поддержка **option** типов в операции сложения элементов матриц, а также добавлена возможность сложения матриц разного типа
- Произведено сравнение производительности с SuiteSpase и CUSP, а также с уже реализованным сложением в координатном формате и с математической библиотекой Math.NET Numerics

Репозиторий с реализацией:

https://github.com/YaccConstructor/GraphBLAS-sharp/tree/net5 Имя пользователя: kirillgarbar