Операции с плавающей точкой

ПРИ ПАРТНЕРСТВЕ

Занятие №9

19 ноября 2022

YADRO · MP

Илья КудрявцевПреподаватель Самарского университета

Дробные числа в формате с фиксированной точкой

Формат с фиксированной точкой предусматривает n целых бит и b дробных бит.

Вес дробных битов:

•
$$2^{-1} = 0.5$$

•
$$2^{-2} = 0.25$$

Дробные числа в формате с фиксированной точкой

Особенности формата с плавающей точкой

Проблемы формата с фиксированной точкой:

- Ограниченный динамический диапазон;
- Потеря точности (значащих цифр);

Достоинства формата с фиксированной точкой:

- Простота реализации;
- Использование тех же ресурсов, что и в целочисленных операциях

IEEE-754: Формат с плавающей точкой (одинарная точность)

Согласно IEEE 754, мантисса должна быть нормализованной, т.е. представленной в следующей форме (целочисленный бит должен всегда иметь значение 1)

Целая часть мантиссы указывается неявно, т.е. представляет собой «скрытый бит»

Мантисса умножается на знаковый бит, т.е. на +1 или -1

$$s = 0$$
: $(-1)^s = (-1)^0 = 1$ Положительные числа

$$s = 1$$
: $(-1)^s = (-1)^1 = -1$ Отрицательные числа

IEEE 754 определяет четыре варианта формата / точности. Чаще всего используется формат одинарной точности (Single) и формат двойной точности (Double).

	Format				
Length (bits)	Single	Single Extended	Double	Double Extended	
Significand	24	≥ 32	53	≥ 64	
Exponent	8	≥ 11	11	≥ 15	
Total	32	≥ 43	64	≥ 79	

В форматах одинарной и двойной точности используются, соответственно, 23-х разрядная и 52-разрядная мантисса

Для формата с одинарной точностью требуется:

23 бита мантиссы + 8 бит порядка + 1 бит знака = 32 бит.

Для формата с двойной точностью требуется:

52 бита мантиссы + 11 бит порядка + 1 бит знака = 64 бит.

- 16-разрядная с фиксированной точкой:
 - 2¹⁶ = 65536 возможных значений
- 32-разрядная с плавающей точкой:
 - Наибольшее значение: ±6.8 × 10³⁸, в стандарте IEEE-754: ±3.4 × 10³⁸
 - Наименьшее значение: ±5.9 × 10⁻³⁹, в стандарте IEEE-754: ±1.2 × 10⁻³⁸
- Расширенная точность (40-бит: знак + 8-битная экспонента + 31-битная мантисса)
- Двойная точность: (64-бит.: знак + 11-бит. эксп.+ 52-бит. мантисса)
- 32-разрядная с плавающей точкой:
 - Более высокая точность
 - Больший динамический диапазон
 - Проще в программировании

Согласно IEEE-754 должны поддерживаться следующие операции с плавающей точкой:

- Сложение, вычитание и умножение
- Деление, вычисление квадратного корня и остатка
- Сравнения
- Операции округления
- Преобразования между форматами
- Преобразования между форматами с плавающей точкой и целочисленными

- Мантисса и порядок определяют различные свойства чисел в формате с плавающей точкой
- Мантисса определяет разрешение
- Порядок определяет динамический диапазон числа
- Аналогично арифметике с фиксированной точкой, возможны переполнение и потеря точности

IEEE-754: Формат с плавающей точкой (32 бит)

Table 1–2. Representation of Special-Case Numbers in IEEE 754-1985 Standard					
Meaning	Sign Field	Exponent Field	Mantissa Field		
Zero	0/1	All 0's	All 0's		
Positive Denormalized	0	All 0's	Non-zero		
Negative Denormalized	1	All 0's	Non-zero		
Positive Infinity	0	All 1's	All 0's		
Negative Infinity	1	All 1's	All 0's		
Not a Number (NaN)	0/1	All 1's	Non-zero		

NaN	Zero	Infinity	Denormalized
• $(+\infty) + (-\infty) = \text{NaN}$ • $\text{NaN} + x = \text{NaN}$		 overflow: (a) + (a) = inf (inf) + x = inf (inf) + (inf) = inf 	• underflow: (a) + (-b) = denorm

IEEE-754: Формат с плавающей точкой (32 бит)

IEEE-754: Формат с плавающей точкой (32 бит)

IEEE-754 : Формат с плавающей точкой (32 бит)

		IEEE	754 Converter (JavaScript), V0.22			
	Sign	Exponent	Mantissa			
Value:	+1	2-126 (denormalized)	1.1920928955078125e-07 (denormalized)			
Encoded as:	0	0	1			
Binary:						
		·	29846432e-45 +1			
			29846432481707092372958328991613128026194187651577175			
	Error	due to conversion:				
	Binaı	ry Representation 00000	000000000000000000000000000000000000000			
	Hexadecimal Representation 0x00000001					
		IEEE	754 Convertor / Jova Sprint) 1/0 22			
		IEEE	754 Converter (JavaScript), V0.22			
	Sign	IEEE Exponent	754 Converter (JavaScript), V0.22 Mantissa			
Value:	Sign -1					
Encoded as:	-1 1	Exponent 2-126 (denormalized) 0	Mantissa 0.0 (denormalized) 0			
	-1 1	Exponent 2-126 (denormalized) 0	Mantissa 0.0 (denormalized) 0			
Encoded as:	-1 1 Deci	Exponent 2-126 (denormalized) 0 mal representation -0.0	Mantissa 0.0 (denormalized) 0			
Encoded as:	-1 1 Deci	Exponent 2-126 (denormalized) 0	Mantissa 0.0 (denormalized) 0			
Encoded as:	-1 1 V Deci	Exponent 2-126 (denormalized) 0 mal representation -0.0	Mantissa 0.0 (denormalized) 0 +1			
Encoded as:	-1 1 Deci	Exponent 2-126 (denormalized) 0 mal representation e actually stored in float: due to conversion:	Mantissa 0.0 (denormalized) 0			

IEEE-754 : Формат с плавающей точкой (32 бит)

IEEE-754 : Исключения в операциях с плавающей точкой

Исключение	Примечания
Переполнение	Результат ±∞
Потеря точности	Результат равен нулю или денормализован
Деление на нуль	Результат <u>+</u> ∞
Некорректная операция	Результат NaN (не число)
Неточность	Требуется округление

IEEE-754 : Операции с некорректным результатом

Операция	Примечания
Сложение/вычитание	Операции типа ∞ ± ∞
Умножение	Операции типа 0 × ∞
Деление	Операции типа 0/0 или ∞/∞
Вычисление остатка	Операции типа x REM 0 или ∞ <i>REMy</i>
Вычисление квадратного	Квадратный корень из отрицательного
корня	числа

Денормализованные числа

Побитовое представление: s_00000000_xxxxxxxxxxxxxxxxxxxxx (мантиса != 0)

Представление числа в десятичном виде:

$$F = (-1)^{S} 2^{-126} (M/2^{23})$$

Образуются при вычитании малых чисел, пример:

- 2) sum = $0.00010111101100011111000|1 * 2^{-123} = 0.10111101100011111000100 * 2^{-126}$ sum = $0.00000000_10111101100011111000100 \sim 0.74047 * 2^{-126}$

Усечение и округление

- Усечение и округление представляют собой операции уменьшения точности представления числа для сокращения размера мантиссы
- Рассмотрим пример в десятичной арифметике
- Предположим, что нужно сократить 27.3147 до трех цифр после десятичной точки
- После усечения получим 27.314, а после округления 27.315, так как операции отличаются

Усечение и округление

Операция округления обеспечивает более высокую точность, чем операция усечения, но требует дополнительной операции сложения.

Округление

Мантисса после сдвига: 1100100110011001010101<mark>0|101111</mark>

- L last bit последный бит, который помещается в размер мантиссы.
- G guard bit первый не помещающийся бит
- R round bit второй не помещающийся бит
- S sticky bit логическая сумма всех оставшихся битов

Округление происходит в случае, если условие **G** & (**L** | **R** | **S**) верно.

Таблица 4.1.

L	G	R	St	Cr
X	0	X	X	0
1	1	X	X	1
X	1	1	X	1
X	1	X	1	1

$$C_r = G(R + St + L) = 1,$$

Типичные операции IEEE-754

Asynchronous Floating-Point Adders and Communication Protocols: A Survey *Pallavi Srivastava 1, Edwin Chung 1 and Stepan Ozana 2*

Алгоритм операции умножения

• Шаг 1 : Умножение мантисс :

$$SIG_R = SIG_A \times SIG_B = 1.375 \times 1.5 = 2.0625$$

• Шаг 2: Сложение порядков

$$E_R = E_A + E_B = 5 + 7 = 12$$

Шаг 3: Нормализация результата путем коррекции мантиссы и порядка.
 (это необходимо, так как мантисса SIG_R > 2)

$$SIG_{R_{norm}} = \frac{SIG_R}{2} = \frac{2.0625}{2} = 1.03125$$

$$E_{R_{norm}} = E_R + 1 = 12 + 1 = 13$$

• Шаг 4 : Определение порядка результата $S_R = S_A \ xor \ S_B = 1$

Операция сложения

Блочная плавающая точка

- Блочная плавающая точка это технология работы с блоком чисел с одинаковым порядком (но разными мантиссами);
- Операции осуществляются над элементами блока без необходимости постоянной нормализации;
- Порядок корректируется только в случае сильного увеличения или уменьшения чисел;
- Величина порядка определяется числом максимальной величины;
- За счет упрощения техники применение блочной техники требует значительно меньшего объема ресурсов, чем стандартные операции с плавающей точкой;
- Технология блочной плавающей точки хорошо подходит к алгоритмам типа БПФ и реализуется в сигнальных процессорах.

Нестандартные форматы

- Не существует жесткого требования обязательного соответствия IEEE-754
- Анализируя требования приложения к точности и динамическому диапазону, можно подобрать соответствующие параметры формата с плавающей точкой
- Пример нестандартного формата с 4-х разрядным порядком и 11-разрядной мантиссой (16 разрядов с учетом знака)

 По сравнению со стандартным форматом обеспечивается более широкий динамический диапазон при незначительном снижении точности

Поддержка операций с плавающей точкой в Versal

DSPFP32

Primitive: The DSPFP32 consists of a floating-point multiplier and a floating-point adder with separate outputs.

PRIMITIVE_GROUP: ARITHMETIC PRIMITIVE_SUBGROUP: DSP

Posits

Beating Floating Point at its Own Game: Posit Arithmetic $John\ L.\ Gustafson$, $Isaac\ Yonemoto$

Posits

$$x = \begin{cases} 0, & p = 0, \\ \pm \infty, & p = -2^{n-1}, \\ sign(p) \times useed^k \times 2^e \times f, & \text{all other } p. \end{cases}$$

