# Biosolids Calculations

Nick Moody

**Biosolids NM Coordinator** 

# **Biosolids Analysis Report**

| Parameter                                 | Result | Result<br>(Mg/Kg) |
|-------------------------------------------|--------|-------------------|
| Solids                                    | 30.94  | 309400            |
| Nitrogen (TKN)                            | 4.45   | 44500             |
| Phosphorus                                | 1.72   | 17200             |
| Potassium                                 | 0.20   | 2000              |
| Sulfur                                    | 0.60   | 6000              |
| Calcium                                   | 9.86   | 98600             |
| Magnesium                                 | 0.29   | 2900              |
| Sodium                                    | 0.10   | 1000              |
| Iron                                      |        | 49600             |
| Manganese                                 |        | 178               |
| Copper                                    |        | 269               |
| Zinc                                      |        | 421               |
| Ammonia Nitrogen                          | 0.27   | 2700              |
| NO <sub>3</sub> -NO <sub>2</sub> Nitrogen |        | 21                |
| Cadmium                                   |        | 2.0               |
| Chromium                                  |        | 49                |
| Nickel                                    |        | 19                |
| Lead                                      |        | 40                |
| Arsenic                                   |        | 2.15              |
| Mercury                                   |        | 0.96              |
| Selenium                                  | 10.10  | 2.23              |
| pH (Standard Units)                       | 12.10  | 4.40000           |
| Calcium Carbonate Eq                      | 14.63  | 146300            |
| Volatile Solids                           | 64.88  | 648800            |
| Organic Nitrogen<br>Molybdenum            | 4.18   | 41800             |
| Morybuchum                                |        | 10                |

All Values, except for Solids, are on a Dry Weight Basis.

The biosolids analysis reports nutrient levels in terms of the percent by weight.

We're going to figure out how much of each nutrient there is in terms of pounds per dry ton.

For % to decimal: divide by 100

(or use % button on calculator)

# Calculating Nitrogen

$$0.045$$
 (TKN) X 2,000 lbs/T = 89.0 lbs TKN/DT (4.45%)

$$0.0027 \text{ (NH}_3) \text{ X } 2,000 \text{ lbs./ T} = 5.4 \text{ lbs NH}_3/\text{DT}$$
 (0.27%)

 $89.0 \text{ TKN/DT} - 5.4 \text{ lbs NH}_3/\text{DT} = 83.6 \text{ lbs organic N/DT}$ 

# Nitrogen Calculations for Ammonium, Organic and Residual Nitrogen Based on Analysis of Material

# First Year - Plant Available Nitrogen (PAN)

Unit = Ton or 1,000 Gallons



#### Section IX. Biosolids Management

Table 9-1
Estimated Nitrogen Mineralization Rates for Biosolids<sup>1</sup>

|                        | Application Year    |                             |                              |                              |  |  |  |  |
|------------------------|---------------------|-----------------------------|------------------------------|------------------------------|--|--|--|--|
| Biosolids Type         | Application<br>Year | 1 Year After<br>Application | 2 Years After<br>Application | 3 Years After<br>Application |  |  |  |  |
| Lime Stabilized        | 0.30                | 0.10                        | 0.10                         | 0.05                         |  |  |  |  |
| Aerobic Digestion      | 0.30                | 0.10                        | 0.10                         | 0.05                         |  |  |  |  |
| Anaerobic Digestion    | 0.30                | 0.10                        | 0.10                         | 0.05                         |  |  |  |  |
| Composted <sup>2</sup> | 0.10                | 0.05                        | 0.03                         | 0.00                         |  |  |  |  |

- 1. To determine nitrogen available from previous Biosolids applications, multiply the percent organic nitrogen by the appropriate mineralization factor.
- 2. Total organic nitrogen content of 2% or less and no significant ammonia nitrogen.

Table 9-2 Biosolids Ammonium Nitrogen Availability Coefficients<sup>1</sup>

| Method of Application                         | Biosolids pH < 10 | Biosolids pH > 10 |
|-----------------------------------------------|-------------------|-------------------|
| Injection                                     | 1.00              | 1.00              |
| Incorporated within 24 hours                  | 0.85              | 0.75              |
| Incorporated within 1-7 days                  | 0.70              | 0.50              |
| Incorporated after 7 days or no incorporation | 0.50              | 0.25              |

 To determine the plant-available Biosolids ammonium nitrogen in the soil, multiply the Biosolids ammonium nitrogen concentration or total weight applied by the appropriate availability coefficient.

#### **Primary Nutrient Availability for Biosolids**

#### **Biosolids Phosphorus**

Available P<sub>2</sub>O<sub>5</sub> = Biosolids Analysis P<sub>2</sub>O<sub>5</sub>

If soils are testing M+ or above in phosphorus and the Biosolids will supply enough phosphorus for the crop according to the formula Available  $P_2O_5$  = Total  $P_2O_5$ , no fertilizer phosphorus should be used due to unlikely crop response and water quality concerns.

For soils testing Medium or below, starter applications of fertilizer phosphorus should be made even if the Biosolids contain sufficient phosphorus, since it is contained in slow release organic forms. For soils testing low, higher levels of phosphorus starter fertilizer are recommended.

#### **Biosolids Potassium**

Available K<sub>2</sub>O = Biosolids analysis K<sub>2</sub>O

Table 9-1
Estimated Nitrogen Mineralization Rates for Biosolids¹
(S&C pg 117)

|                        | Application Year    |                             |                              |                              |  |  |  |  |
|------------------------|---------------------|-----------------------------|------------------------------|------------------------------|--|--|--|--|
| Biosolids Type         | Application<br>Year | 1 Year After<br>Application | 2 Years After<br>Application | 3 Years After<br>Application |  |  |  |  |
| Lime Stabilized        | 0.30                | 0.10                        | 0.10                         | 0.05                         |  |  |  |  |
| Aerobic Digestion      | 0.30                | 0.10                        | 0.10                         | 0.05                         |  |  |  |  |
| Anaerobic Digestion    | 0.30                | 0.10                        | 0.10                         | 0.05                         |  |  |  |  |
| Composted <sup>2</sup> | 0.10                | 0.05                        | 0.03                         | 0.00                         |  |  |  |  |

Table 9-2
Biosolids Ammonium Nitrogen Availability Coefficients¹
(S&C pg 117)

| Method of Application                         | Biosolids pH < 10 | Biosolids pH ><br>10 |
|-----------------------------------------------|-------------------|----------------------|
| Injection                                     | 1.00              | 1.00                 |
| Incorporated within 24 hours                  | 0.85              | 0.75                 |
| Incorporated within 1-7 days                  | 0.70              | 0.50                 |
| Incorporated after 7 days or no incorporation | 0.50              | 0.25                 |

# First Year - Plant Available Nitrogen (PAN)





Availability Coefficients from Standards and Criteria Manure Biosolids

| Table | Table |
|-------|-------|
| 8-2   | 9-2   |
| Table | Table |
| 8-2   | 9-1   |

\_\_\_\_\_ #/unit x \_\_\_\_\_ units/ac. = \_\_\_\_ # PAN/ac.

Unit = Ton or 1,000 Gallons

# First Year - Plant Available Nitrogen (PAN)





# Availability Coefficients from Standards and Criteria

| <u>Manure</u> | <u>Biosolids</u> |
|---------------|------------------|
| Table         | Table            |
| 8-2           | 9-2              |
| Table         | Table            |
| 8-2           | 9-1              |

### **NUTRIENT MANAGEMENT Balance Sheet**

WilDaLyn Farms T-1989 Name: **Date:** February 2014

Tract:

| Field<br>Name                    | Ac.  | Crop<br>Rotation                     | Expctd<br>Yield<br>(bu or<br>tons) | Nutrient Needs (from soil test & expctd yield) N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O | Nitrogen<br>Residual<br>(leg./<br>organic) | Days<br>before<br>Incorp | Organic<br>Material<br>Applied<br>(1000<br>gal. or<br>tons/ac) | Org. Nut.<br>Applied<br>N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O | N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O<br>Need or<br>(Surplus) |
|----------------------------------|------|--------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| HF-1                             | 8    | Orchard-<br>grass<br>Pasture         | 2.94<br>ac/au                      | 50-40-70                                                                                         | 0/14                                       |                          |                                                                |                                                                           | 36-40-70                                                                  |
| HF-2A                            | 16   | Corn<br>(grain)                      | 121<br>bu/ac                       | 120-80-100                                                                                       | 0/14                                       | >7                       | 1.45 t/ac<br>Litter                                            | 55-80-77                                                                  | 51-0-23                                                                   |
| HF-2B<br>(P-1.5x)<br>P-Index     | 12   | Corn<br>(grain)                      | 90<br>bu/ac                        | 90-0-0                                                                                           | 0/0                                        | >2                       | 4.4 k/ac<br>Dairy                                              | 46-51-87                                                                  | 44-(51)-(87)                                                              |
| HF-2C<br>(N-<br>based)<br>Thres. | 9    | Orchard-<br>grass<br>Hay<br>(maint.) | 3.3 t/ac                           | 140-40-95                                                                                        | 0/0                                        | >7                       | 3.68 t/ac<br>Litter                                            | 140-202-196                                                               | 0-(162)-(101)                                                             |
| HF-3A                            | 11   | Corn<br>(grain)                      | 100<br>bu/ac                       | 100-100-80                                                                                       | 0/14                                       | >1                       |                                                                |                                                                           |                                                                           |
| HF-3B                            | 11.3 | Corn<br>(silage)                     | 22.5<br>t/ac                       | 165-120-240                                                                                      | 0/7                                        | >2                       | 6 k/ac<br>Dairy                                                | 63-69-119                                                                 | 95-51-121                                                                 |

# **Biosolids Application Rate**

From case study, Field 3A is a corn (grain) field.

Crop nutrient need is: 100-100-80

First, credit residual nitrogen carryover to crop nutrient needs:

$$100 \text{ lbs N} - 14 \text{ lbs N} = 86 \text{ lbs N} \text{ need}$$

Balance of crop nutrient need is: 86-100-80

# How Many Tons of Biosolids to Apply?

| Field<br>Name                        | Ac.      | Crop<br>Rotatio<br>n         | Expct<br>d<br>Yield<br>(bu or<br>tons) | Nutrient Needs (from soil test & expctd yield) N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O | Nitroge<br>n<br>Residua<br>I<br>(leg./<br>organic) | Days<br>befor<br>e<br>Incor<br>p | Organi<br>c<br>Materi<br>al<br>Applie<br>d<br>(1000<br>gal. or<br>tons/ac | Org. Nut.<br>Applied<br>N-P <sub>2</sub> O <sub>5</sub> -<br>K <sub>2</sub> O | N-P <sub>2</sub> O <sub>5</sub> -<br>K <sub>2</sub> O<br>Need or<br>(Surplus) | N-P <sub>2</sub> O <sub>5</sub> -<br>K <sub>2</sub> O<br>(commercia<br>I) | Notes |
|--------------------------------------|----------|------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|
| HF-<br>2C<br>(N-<br>based)<br>Thres. | 9        | Orchard - grass Hay (maint.) | 3.3<br>t/ac                            | 140-40-95                                                                                        | 0/0                                                | >7                               | 3.68<br>t/ac<br>Litter                                                    | 140-202-<br>196                                                               | 0-(162)-<br>(101)                                                             |                                                                           | 3     |
| HF-3A                                | 11       | Corn<br>(grain)              | 100<br>bu/ac                           | 100-100-80                                                                                       | 0/14                                               | >1                               |                                                                           |                                                                               |                                                                               |                                                                           | 4     |
| HF-3B                                | 11.<br>3 | Corn<br>(silage)             | 22.5<br>t/ac                           | 165-120-<br>240                                                                                  | 0/7                                                | >2                               | 6 k/ac<br>Dairy                                                           | 63-69-119                                                                     | 95-51-121                                                                     | 0-31-121 br<br>20-20-0 ba<br>75-0-0 sd                                    | 4     |

100 lbs N for corn - 14 lbs N residual = 86 lbs N from Biosolids

# First Year - Plant Available Nitrogen (PAN)





# Availability Coefficients from Standards and Criteria

| <u>Manure</u> | <u>Biosolids</u> |
|---------------|------------------|
| Table         | Table            |
| 8-2           | 9-2              |
| Table         | Table            |
| 8-2           | 9-1              |

Nitrogen needs are to be met through biosolids application

From worksheet, we get 29.13 lbs PAN/DT

Crop needs, less residual, are 86 lbs N

(14 lbs. dairy manure)

86 lbs N/ Acre = 2.95 DT/ A 29.13 lbs N/ DT

# Fill in Worksheet

Remember that the biosolids will arrive as wet tons, but we just calculated dry tons. So- we'll need to convert:

$$\frac{DT}{\text{% solids}} = WT$$

$$2.95 \text{ DT/ A} = 9.53 \text{ WT/ A}$$
 $0.3094$ 
(30.94% solids)

to achieve  $N = 86 \text{ lbs/ A}$ 

#### **NUTRIENT MANAGEMENT Balance Sheet**

WilDaLyn Farms T-1989 Name: **Date:** February 2014

Tract:

| Field<br>Name                    | Ac.  | Crop<br>Rotation                     | Expctd<br>Yield<br>(bu or<br>tons) | Nutrient Needs (from soil test & expctd yield) N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O | Nitrogen<br>Residual<br>(leg./<br>organic) | Days<br>before<br>Incorp | Organic<br>Material<br>Applied<br>(1000<br>gal. or<br>tons/ac) | Org. Nut.<br>Applied<br>N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O | N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O<br>Need or<br>(Surplus) |
|----------------------------------|------|--------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| HF-1                             | 8    | Orchard-<br>grass<br>Pasture         | 2.94<br>ac/au                      | 50-40-70                                                                                         | 0/14                                       |                          |                                                                |                                                                           | 36-40-70                                                                  |
| HF-2A                            | 16   | Corn<br>(grain)                      | 121<br>bu/ac                       | 120-80-100                                                                                       | 0/14                                       | >7                       | 1.45 t/ac<br>Litter                                            | 55-80-77                                                                  | 51-0-23                                                                   |
| HF-2B<br>(P-1.5x)<br>P-Index     | 12   | Corn<br>(grain)                      | 90<br>bu/ac                        | 90-0-0                                                                                           | 0/0                                        | >2                       | 4.4 k/ac<br>Dairy                                              | 46-51-87                                                                  | 44-(51)-(87)                                                              |
| HF-2C<br>(N-<br>based)<br>Thres. | 9    | Orchard-<br>grass<br>Hay<br>(maint.) | 3.3 t/ac                           | 140-40-95                                                                                        | 0/0                                        | >7                       | 3.68 t/ac<br>Litter                                            | 140-202-196                                                               | 0-(162)-(101)                                                             |
| HF-3A                            | 11   | Corn<br>(grain)                      | 100<br>bu/ac                       | 100-100-80                                                                                       | 0/14                                       | >1                       | 9.53<br>WT<br>(2.95<br>DT)                                     | 86-?-?                                                                    |                                                                           |
| HF-3B                            | 11.3 | Corn<br>(silage)                     | 22.5<br>t/ac                       | 165-120-240                                                                                      | 0/7                                        | >2                       | 6 k/ac<br>Dairy                                                | 63-69-119                                                                 | 95-51-121                                                                 |

# **Biosolids Analysis Report**

| Parameter                                                                                                             | Result %                                                      | Result<br>(Mg/Kg)                                                                        |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Solids Nitrogen (TKN) Phosphorus Potassium Sulfur Calcium Magnesium Sodium Iron Manganese Copper                      | 30.94<br>4.45<br>1.72<br>0.20<br>0.60<br>9.86<br>0.29<br>0.10 | 309400<br>44500<br>17200<br>2000<br>6000<br>98600<br>2900<br>1000<br>49600<br>178<br>269 |
| Zinc Ammonia Nitrogen NO <sub>3</sub> -NO <sub>2</sub> Nitrogen Cadmium Chromium Nickel Lead Arsenic Mercury Selenium | 0.27                                                          | 421<br>2700<br>21<br>2.0<br>49<br>19<br>40<br>2.15<br>0.96<br>2.23                       |
| pH (Standard Units) Calcium Carbonate Eq Volatile Solids Organic Nitrogen Molybdenum                                  | 12.10<br>14.63<br>64.88<br>4.18                               | 146300<br>648800<br>41800<br>13                                                          |

All Values, except for Solids, are on a Dry Weight Basis.

# **Calculating Phosphorus**

1.72 % elemental P

$$0.0172 \text{ P } \text{ X } 2,000 \text{ lbs/ T} = 34.4 \text{ lbs P/ DT}$$

For field nutrients, P is dealt with as  $P_2O_5$  (phosphate)

$$P \quad X \quad 2.29 \quad = \quad P_2O_5$$

(conversion factor)

$$34.4 \text{ lbs P/DT } \text{X} \ 2.29 =$$
 **78.8 lbs P<sub>2</sub>O<sub>5</sub>/DT**

# **Biosolids Analysis Report**

| Parameter                                                                                                                    | Result %                                                      | Result<br>(Mg/Kg)                                                                 |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Solids Nitrogen (TKN) Phosphorus Potassium Sulfur Calcium Magnesium Sodium Iron Manganese                                    | 30.94<br>4.45<br>1.72<br>0.20<br>0.60<br>9.86<br>0.29<br>0.10 | 309400<br>44500<br>17200<br>2000<br>6000<br>98600<br>2900<br>1000<br>49600<br>178 |
| Copper Zinc Ammonia Nitrogen NO <sub>3</sub> -NO <sub>2</sub> Nitrogen Cadmium Chromium Nickel Lead Arsenic Mercury Selenium | 0.27                                                          | 269<br>421<br>2700<br>21<br>2.0<br>49<br>19<br>40<br>2.15<br>0.96<br>2.23         |
| pH (Standard Units) Calcium Carbonate Eq Volatile Solids Organic Nitrogen Molybdenum                                         | 12.10<br>14.63<br>64.88<br>4.18                               | 146300<br>648800<br>41800<br>13                                                   |

All Values, except for Solids, are on a Dry Weight Basis.

# **Calculating Potassium**

0.20 % elemental K

$$0.0020 \text{ K} \text{ X} \text{ 2,000 lbs/ T} = 4.0 \text{ lbs K/ DT}$$

For field nutrients, K is dealt with as K<sub>2</sub>O (Potash)

$$K \quad X \quad 1.2 = K_2O$$

4.0 lbs K/ DT X 1.2 = 4.8 lbs 
$$K_2O/DT$$

We'll need to know how much

**Phosphate** and **Potash** will be applied when biosolids are used to meet the **Nitrogen** needs of the corn.

$$78.8 \text{ lbs } P_2O_5/DT X 2.95 DT/A = 232.46 \text{ lbs } P_2O_5/A$$

$$4.8 \text{ lbs } \text{K}_2\text{O}/\text{ DT } X 2.95 \text{ DT/A} =$$

**14.16** lbs  $K_2O/A$ 

Original Crop Needs: 100-100-80

| Nutrient       | Amount/ Source            | Net   |
|----------------|---------------------------|-------|
| Nitrogen: 100  | 14 lbs/ A from Residual   | 86    |
|                | 86 lbs/ A from Biosolids  | 0     |
| Phosphate: 100 | 232 lbs/A from Biosolids  | +132* |
| Potash: 80     | 14 lbs/ A from Biosolids  | - 66  |
|                | 66 lbs/ A from fertilizer | 0     |

<sup>\*</sup> Can be "banked" for crops in remainder of rotation (3 yrs X 120  $\#P_2O_5/yr$ )

#### **NUTRIENT MANAGEMENT Balance Sheet**

Name: WilDaLyn Farms Date: February 2014

**Tract:** T-1989

| Field<br>Name<br>HF-1                | <b>Ac.</b> | Crop<br>Rotation<br>Orchard  | Expctd<br>Yield<br>(bu or<br>tons) | Nutrient Needs (from soil test & expctd yield) N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O 50-40-70 | Nitrogen<br>Residual<br>(leg./<br>organic) | Days<br>before<br>Incorp | Organic<br>Material<br>Applied<br>(1000<br>gal. or<br>tons/ac) | Org. Nut.<br>Applied<br>N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O | N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O<br>Need or<br>(Surplus) | N-P <sub>2</sub> O <sub>5</sub> -K <sub>2</sub> O<br>(commercial<br>) | Notes  |
|--------------------------------------|------------|------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|
|                                      |            | -grass<br>Pasture            | ac/au                              | 00 10 70                                                                                                  | 0,11                                       |                          |                                                                |                                                                           | 36-40-70                                                                  | 36-40-70 br                                                           |        |
| HF-2A                                | 16         | Corn<br>(grain)              | 121<br>bu/ac                       | 120-80-100                                                                                                | 0/14                                       | >7                       | 1.45<br>t/ac<br>Litter                                         | 55-80-77                                                                  | 51-0-23                                                                   | 0-0-23 br<br>20-0-0 ba<br>31-0-0 sd                                   | 1<br>2 |
| HF-2B<br>(P-<br>1.5x)<br>P-<br>Index | 12         | Corn<br>(grain)              | 90<br>bu/ac                        | 90-0-0                                                                                                    | 0/0                                        | >2                       | 4.4 k/ac<br>Dairy                                              | 46-51-87                                                                  | 44-(51)-(87)                                                              | 20-0-0 ba<br>24-0-0 sd                                                | 2      |
| HF-2C<br>(N-<br>based)<br>Thres.     | 9          | Orchard - grass Hay (maint.) | 3.3<br>t/ac                        | 140-40-95                                                                                                 | 0/0                                        | >7                       | 3.68<br>t/ac<br>Litter                                         | 140-202-<br>196                                                           | 0-(162)-<br>(101)                                                         |                                                                       | 3      |
| HF-3A                                | 11         | Corn<br>(grain)              | 100<br>bu/ac                       | 100-100-80                                                                                                | 0/14                                       | >1                       | 9.53<br>WT<br>(2.95<br>DT)                                     | 86-232-14                                                                 | 0-(132)-66                                                                | 0-0-66 br                                                             | 4      |
| HF-3B                                | 11.3       | Corn<br>(silage)             | 22.5<br>t/ac                       | 165-120-<br>240                                                                                           | 0/7                                        | >2                       | 6 k/ac<br>Dairy                                                | 63-69-119                                                                 | 95-51-121                                                                 | 0-31-121 br<br>20-20-0 ba<br>75-0-0 sd                                | 4      |

#### Section IX. Biosolids Management

Table 9-1 Estimated Nitrogen Mineralization Rates for Biosolids<sup>1</sup>

|                        | Application Year    |                             |                           |                              |  |  |
|------------------------|---------------------|-----------------------------|---------------------------|------------------------------|--|--|
| Biosolids Type         | Application<br>Year | 1 Year After<br>Application | 2 Years After Application | 3 Years After<br>Application |  |  |
| Lime Stabilized        | 0.30                | 0.10                        | 0.10                      | 0.05                         |  |  |
| Aerobic Digestion      | 0.30                | 0.10                        | 0.10                      | 0.05                         |  |  |
| Anaerobic Digestion    | 0.30                | 0.10                        | 0.10                      | 0.05                         |  |  |
| Composted <sup>2</sup> | 0.10                | 0.05                        | 0.03                      | 0.00                         |  |  |

- 1. To determine nitrogen available from previous Biosolids applications, multiply the percent organic nitrogen by the appropriate mineralization factor.
- 2. Total organic nitrogen content of 2% or less and no significant ammonia nitrogen.

Table 9-2 Biosolids Ammonium Nitrogen Availability Coefficients<sup>1</sup>

| Method of Application                         | Biosolids pH < 10 | Biosolids pH > 10 |  |
|-----------------------------------------------|-------------------|-------------------|--|
| Injection                                     | 1.00              | 1.00              |  |
| Incorporated within 24 hours                  | 0.85              | 0.75              |  |
| Incorporated within 1-7 days                  | 0.70              | 0.50              |  |
| Incorporated after 7 days or no incorporation | 0.50              | 0.25              |  |

 To determine the plant-available Biosolids ammonium nitrogen in the soil, multiply the Biosolids ammonium nitrogen concentration or total weight applied by the appropriate availability coefficient.

#### **Primary Nutrient Availability for Biosolids**

#### **Biosolids Phosphorus**

Available P<sub>2</sub>O<sub>5</sub> = Biosolids Analysis P<sub>2</sub>O<sub>5</sub>

If soils are testing M+ or above in phosphorus and the Biosolids will supply enough phosphorus for the crop according to the formula Available  $P_2O_5$  = Total  $P_2O_5$ , no fertilizer phosphorus should be used due to unlikely crop response and water quality concerns.

For soils testing Medium or below, starter applications of fertilizer phosphorus should be made even if the Biosolids contain sufficient phosphorus, since it is contained in slow release organic forms. For soils testing low, higher levels of phosphorus starter fertilizer are recommended.

#### **Biosolids Potassium**

Available K<sub>2</sub>O = Biosolids analysis K<sub>2</sub>O

#### Biosolids Analysis Report

| Parameter                                 | Result | Result<br>(Mg/Kg) |
|-------------------------------------------|--------|-------------------|
| Solids                                    | 30.94  | 309400            |
| Nitrogen (TKN)                            | 4.45   | 44500             |
| Phosphorus                                | 1.72   | 17200             |
| Potassium                                 | 0.20   | 2000              |
| Sulfur                                    | 0.60   | 6000              |
| Calcium                                   | 9.86   | 98600             |
| Magnesium                                 | 0.29   | 2900              |
| Sodium                                    | 0.10   | 1000              |
| Iron                                      |        | 49600             |
| Manganese                                 |        | 178               |
| Copper                                    |        | 269               |
| Zinc                                      | 0.07   | 421               |
| Ammonia Nitrogen                          | 0.27   | 2700<br>21        |
| NO <sub>3</sub> -NO <sub>2</sub> Nitrogen |        | 2.0               |
| Cadmium                                   |        | 49                |
| Chromium                                  |        | 19                |
| Nickel<br>Lead                            |        | 40                |
| Arsenic                                   |        | 2.15              |
| Mercury                                   |        | 0.96              |
| Selenium                                  |        | 2.23              |
| pH (Standard Units)                       | 12.10  |                   |
| Calcium Carbonate Eq                      | 14.63  | 146300            |
| Volatile Solids                           | 64.88  | 648800            |
| Organic Nitrogen                          | 4.18   | 41800             |
| Molybdenum                                |        | 13                |
|                                           |        |                   |

All Values, except for Solids, are on a Dry Weight Basis.

# Calcium Carbonate Equivalent

- Pure calcium carbonate is used as the standard for liming materials and is assigned a rating of 100%.
- This rating is known and the calcium carbonate equivalent (CCE).
- All other liming materials are rated in relationship to pure calcium carbonate.

# Lime Applied

Calculating Lime Application

14.63 % Calcium Carbonate Equiv.

(from biosolids analysis)

2.95 DT/A X .1463 = .43 T/A of Lime

# Biosolids Nitrogen Residuals

#### Section IX. Biosolids Management

Table 9-1
Estimated Nit ogen Mineralization Rates for Biosolids<sup>1</sup>

|                        | Application Year    |                             |                              |                              |  |  |
|------------------------|---------------------|-----------------------------|------------------------------|------------------------------|--|--|
| Biosolids Type         | Application<br>Year | 1 Year After<br>Application | 2 Years After<br>Application | 3 Years After<br>Application |  |  |
| Lime Stabilized        | 0.30                | 0.10                        | 0.10                         | 0.05                         |  |  |
| Aerobic Digestion      | 0.30                | 0.10                        | 0.10                         | 0.05                         |  |  |
| Anaerobic Digestion    | 0.30                | 0.10                        | 0.10                         | 0.05                         |  |  |
| Composted <sup>2</sup> | 0.10                | 0.05                        | 0.03                         | 0.00                         |  |  |

- To determine nitrogel available from previous Biosolids applications, multiply the percent organic nitrogen by the appropriate mineralization factor.
- 2. Total organic nitrogen content or 2 or less and no significant ammonia nitrogen

Table 9-2 Biosolids Ammonium Nitrogen Availability Coefficients<sup>1</sup>

| Method of Application                         | Biosolids pH < 10 | Biosolids pH > 10 |  |
|-----------------------------------------------|-------------------|-------------------|--|
| Injection                                     | 1.00              | 1.00              |  |
| Incorporated within 24 hours                  | 0.85              | 0.75              |  |
| Incorporated within 1-7 days                  | 0.70              | 0.50              |  |
| Incorporated after 7 days or no incorporation | 0.50              | 0.25              |  |

 To determine the plant-available Biosolids ammonium nitrogen in the soil, multiply the Biosolids ammonium nitrogen concentration or total weight applied by the appropriate availability coefficient.

#### **Primary Nutrient Availability for Biosolids**

#### **Biosolids Phosphorus**

Available P<sub>2</sub>O<sub>5</sub> = Biosolids Analysis P<sub>2</sub>O<sub>5</sub>

If soils are testing M+ or above in phosphorus and the Biosolids will supply enough phosphorus for the crop according to the formula Available  $P_2O_5$  = Total  $P_2O_5$ , no fertilizer phosphorus should be used due to unlikely crop response and water quality concerns.

For soils testing Medium or below, starter applications of fertilizer phosphorus should be made even if the Biosolids contain sufficient phosphorus, since it is contained in slow release organic forms. For soils testing low, higher levels of phosphorus starter fertilizer are recommended.

#### **Biosolids Potassium**

## **Biosolids Residual**

Nitrogen Calculations for Ammonium, Organic and Residual Nitrogen Based on Analysis of Material

First Year - Plant Available Nitrogen (PAN)



# Use Table 9.1

Ammonium = 5.4 lbs.N/ Dry To

TKN = 89 lbs. N/DT

Organic  $N = \{6 \text{ lbs. N/ DT}\}$ 

Section IX. Biosd Management

Estimated Nitrogen Mineral on Rates for Biosolids<sup>1</sup>

|                        | Application Year    |                             |                                 |                              |  |  |
|------------------------|---------------------|-----------------------------|---------------------------------|------------------------------|--|--|
| Biosolids Type         | Application<br>Year | 1 Year After<br>Application | 2 Years<br>After<br>Application | 3 Years After<br>Application |  |  |
| Lime Stabilized        | 0.30                | 0.10                        | 0.10                            | 0.05                         |  |  |
| Aerobic Digestion      | 0.30                | 0.10                        | 0.10                            | 0.05                         |  |  |
| Anaerobic Digestion    | 0.30                | 0.10                        | 0.10                            | 0.05                         |  |  |
| Composted <sup>2</sup> | 0.10                | 0.05                        | 0.03                            | 0.00                         |  |  |

- To determine nitrogen available from previous Biosolids applications, multiply the percent organic nitrogen by the appropriate mineralization factor.
- 2. Total organic nitrogen content of 2% or less and no significant ammonia nitrogen.

Table 9-2 Biosolids Ammonium Nitrogen Availability Coefficients<sup>1</sup>

| Method of Application                         | Biosolids pH < 10 | Biosolids pH > 10 |
|-----------------------------------------------|-------------------|-------------------|
| Injection                                     | 1.00              | 1.00              |
| Incorporated within 24 hours                  | 0.85              | 0.75              |
| Incorporated within 1-7 days                  | 0.70              | 0.50              |
| Incorporated after 7 days or no incorporation | 0.50              | 0.25              |

 To determine the plant-available Biosolids ammonium nitrogen in the soil, multiply the Biosolids ammonium nitrogen concentration or total weight applied by the appropriate availability coefficient.

# To Calculate Biosolids Residual One Year after Application

Residual - Plant Available Nitrogen (for following year)



# Completed Worksheet

Residual - Plant Available Nitrogen (for following year)

$$8.36$$
 #/unit x  $2.95$  units/ac. =  $24.66$  Residual Nitrogen/ac.

# Ouestions i