COMP1411 (Spring 2022) Introduction to Computer Systems

Individual Assignment 1 Duration: <u>00:00, 19-Feb-2022</u> ~ <u>23:59, 20-Feb-2022</u>

Name	JIANG GUANLIN
Student number	21093962D

Question 1. [0.5 marks]

Suppose that x and y are unsigned integers.

Rewrite the following C-language statement by using << and -.

$$y = x * 77;$$

Introducing new variables (other than x and y) is not allowed.

Show your steps. Only giving the final result will NOT get a full mark of this question.

Answer:

$$y = x * (128 - 32 - 16 - 2 - 1)$$

$$y = x * (2^7 - 2^5 - 2^4 - 2^1 - 2^0)$$

$$y = (x << 7) - (x << 5) - (x << 4) - (x << 1) - (x << 0);$$

Question 2. [1 mark]

Suppose that a, b, c and z are all 32-bit unsigned integers.

- (1) Assume that the left-most bit is the highest bit. Write C-language statements to set the value of **z**, such that:
 - a. the left-most 10 bits of z are the same as the right-most 10 bits of a;
 - b. the right-most 14 bits of z are the same as the left-most 14 bits of b;
 - c. the middle 8 bits of z are the same as the right-most 8 bits of c.

Note that:

- You are only allowed to use bit shift operations and logic operations (including bit-wise operators, such as | ^ &) to set the value of z;
- NO arithmetic or if-then-else test (in any form) is allowed;
- Introducing new variables (other than x, y and z) is NOT allowed;
- Using masks is NOT allowed.
- (2) If $\mathbf{a} = 0 \times C9E3BA75$, $\mathbf{b} = 0 \times 268DBA83$, and $\mathbf{c} = 0 \times 63ABE432$, what the be the resulting value of \mathbf{z} ? Please write the value of \mathbf{z} in hex-decimal form starting with prefix $0 \times C9E3BA75$.

Show your steps. Only giving the final result will NOT get a full mark of this question.

Answer:

The answer is z = 0x9D4C89A3

Question 3. [2 marks]

Assume on a big-endian machine, a 32-bit single-precision floating-point number is stored in the addresses $0x0200 \sim 0x0203$ is as follows:

Address	Byte in the Address
0x0200	0xC1
0x0201	0x94
0x0202	0x02
0x0203	0x3F

Convert the above floating-point number to a decimal number.

For the converted decimal number, leave only 3 digits after the decimal point and discard all the rest digits; DO NOT write the result in the exponential form of the power of 2 or 10.

Show your steps. Only giving the final result will NOT get a full mark of this question.

Answer:

C194023F → 1 10000011 0010100000001000111111

S = 1 means Negative (-)

Exp = 10000011(2) = 131(10) = Bias + E = 127(10) + E

E = 131 - 127 = 4

 $M = 1.001010000000010001111111 (2) \rightarrow 1.15631854534149169922 (10)$

 $v = (-1)^s * M * 2^E$

 $v = (-1)^1 * 1.15631854534149169922 * 2^4$

v = -18.5010967255 = -18.501

The answer is -18.501

Question 4. [1.5 marks]

Consider a 10-bit floating-point representation based on the IEEE floating-point format:

- the highest bit is used for the sign bit,
- the sign bit is followed by 4 exponent bits, which are then
- followed by 5 fraction bits.

Question 1: What is the largest positive normalized number? Write the numbers in both the binary form and the decimal value.

Question 2: **Convert** the decimal number 12.875 into the above 10-bit IEEE floating-point format. Write the result in the binary form.

Show your steps for both Question 1 and Question 2. Only giving the final result will NOT get a full mark of this question.

Answer:

Q1:

Binary: 0 1110 11111

Sign: $0 \rightarrow + (positive)$

Bias =
$$2 \wedge (4 - 1) - 1 = 7$$

$$E = Exp - Bias = 1110(2) - 7 = 14 - 7 = 7$$

$$M = 1.11111(2) = 1.96875(10)$$

$$V = (-1)^s * M * 2^E = 1 * M * 2^7 = 1.96875 * 2^8 = 252$$

Q2:

$$12.875 = 2^3 + 2^2 + 2^{-1} + 2^{-2} + 2^{-3}$$

$$12.875(10) = 1100.111(2)$$

The exponent: E = 3

Bias =
$$2 \land (k-1) - 1 = 2 \land (4-1) - 1 = 7$$

$$Exp = Bias + 3 = 7 + 3 = 10(10) = 1010(2)$$

The sign: S = 0 (positive)

The fraction should be: 1.100111(2)

Without the '1.', so the frac part is 100111. But because of frac part just need 5 bits, this is 6 bits,

We need to be rounding this: $1.100111 \rightarrow 1.11000$

The IEEE single precision float number: 0 1010 11000