

Fuzzy Logic

Seminar im Sommersemester 2006 an der TU-Darmstadt (Prof. Dr. Fürnkranz)

Inhalt

- Geschichte und Definition
- Grundlegende Begriffe
- "Fuzzy Process"
- Anwendungen
 - Beispiel: Threat Assessment
- Quellen

Geschichte und Definition

- Eingeführt in der Mitte der 60er Jahre vom Berkeley University's Professor Lotfi Zadeh
- "fuzzy logic is a means of presenting problems to computers in a way akin to the way humans solve them"
- "the essence of fuzzy logic is that everything is a matter of degree"

Geschichte und Definition

Fuzzy Logik ist:

- Eine Methodik Probleme zu lösen
- Eine Übermege der konventionellen Logik die erweitert wurde, um das Konzept "teilweise wahr" behandeln zu können

- "crisp" Daten und Menge
 - Bekannter mathematischer Begriff
 - Umfaßt die numerischen Werte
 - z.B. A = {2,4,6,...}

- Linguistische Variablen
 - Variablen, die linguistische Werte besitzen
 - z.B. T(height) = { "short", "medium", "tall" }
 - Definieren den Zugehörigkeitsgrad (degree of membership)

- Mitgliedsgradfunktion (membership function)
 - Bildet die Eingabevariablen ("crisp" Daten) zum Zugehörigkeitsgrad

- Definition: Fuzzy Menge
 - Die Menge aller Paare $(x,\mu(x))$, wobei x die "crisp" Daten sind und $\mu(x)$ die Zugehörikeitsfunktion

- Fuzzyfication
 - Für jede Eingabevariable ("crisp Daten") wird mit Hilfe der Zugehörigkeitsfunktion (membership function) der Fuzzy-Menge der Zugehörigkeitsgrad zum entsprechenden linguistischen Wert bestimmt

- Inferenz und Komposition der Regel
 - Die linguistischen Werte werden miteinander verknüpft, so dass logische Regeln entstehen, die die Ausgabe bestimmen
 - "If A then B"
 - Disjunktion Truth(A OR B) = MAX(Truth(A),Truth(B))
 - Konjunktion Truth(A AND B) = MIN(Truth(A), Thruth(B))
 - Negation Truth(NOT A) = 1 Truth(A)

- Inferenz
 - der Vorgang, bei dem von den fuzzy Regeln linguistische Werte abgeleitet werden

3 Schritte

- Aggregation: Berechnen des "IF" Teils der Regel
- Komposition: Berechnen des "THEN" Teils der Regel
- Bestimmen des Zugehörigkeitsgrads für alle lingustischen Terme

- Defuzzification
 - Der Vorgang, bei dem aus Gesamtzugehörigkeitsfunktion eine konkrete Ausgangsgröße ermittelt werden kann

- Methode
 - Maximumsmetode: Nur die Regel mit dem höchsten Zugehörigkeitsgrad wird betrachtet. Das Maximum der zugehörigen Ausgangs-Fuzzy-Menge bestimmt die "crisp" Ausgangsgröße
 - Flächenschwerpunkt (Center of Area):Suche des Flächenschwerpunkts der Ausgangsmenge

- Gegeben
 - die "force" und "size of force"
- Bestimme
 - das "threat level" und die Anzahl von "defence units"

- Fuzzyfication
 - Bestimme die fuzzy Mengen für die 2 Eingabevariablen.
 - Range = { "Close", "Medium", "Far" }
 - Force Size = { "Tiny", "Small", "Moderate", "Large" }

- Berechne
 - den Zugehörigkeitsgrad für die Eingabe: 8 units und 25 hexes

Fuzzy Menge	Zugehörigkeitsgrad	
Close	0.17	
Medium	0.75	
Far	0.0	
Tiny	0.2	
Small	0.73	
Moderate	0.0	
Large	0.0	

- Fuzzy assotiative Matrix/Regel Matrix
 - Threat Level ={"Low",
 "Medium", "High"}, mit
 Singleton Werte
 entsprechend 10, 30, 50

	Close	Medium	Far
Tiny	Medium	Low	Low
Small	High	Low	Low
Moderate	High	Medium	Low
Large	High	High	Medium

- Inferenz und Komposition der Regel
 - Low = OR (AND (Medium, Tiny), AND (Medium, Small))
 - Medium = AND (Close, Tiny)
 - High = AND (Close, Small)

- Defuzzification: Center of Singleton Method
 - Deploy = (Low * 10 + Medium * 30 + High * 50) / (Low + Medium + High)

Quellen

- www.wikipedia.org
- http://www.iicm.edu/greif/node9.html
- http://www.comp.nus.edu.sg/~pris/FuzzyLogic
- Mat Buckeland: Programming Game AI bei Example
- David M. Bourg, Glenn Seemann: Al for Game Developers