Linear Algebra & Differential Equations Cheat Sheet by Druy Pai

1 Vector Spaces Vector space V: set with commutative, distributive, associative ad-

Vector subspace W: subset of vector space V with zero vector, closed under addition and scalar multiplication **Linear independence**: $\sum_{k=1}^{n} a_k \mathbf{v}_k = 0 \rightarrow a_k = 0$; form matrix of \mathbf{v}_k and show $N(A) = \{0\}$, for $A \in M_{m \times n}$ (here and after) **Linear dependence**: $\sum_{k=1}^{n} a_k \mathbf{v}_k = 0$ for a_k not all zero

dition, scalar multiplication, additive/multiplicative identity

S(A): set of linear combinations of the columns of A. N(A): span of solutions of Ax = 0. Row reduce A.

Dimension: number of elements in a basis.

Invertible matrix theorem and extensions:

R(A): space spanned by the rows of A. Row-reduce A and choose the rows that contain the pivots. C(A): space spanned by the columns of A. Row-reduce A and

choose the columns of A that contain the pivots. LN(A): span of solutions of $\mathbf{x}^{T}A = \mathbf{0}$. Find $N(A^{T})$ **Linearity** of transform: $\mathcal{T}(\sum_{k=1}^{n} c_k \mathbf{v}_k) = \sum_{k=1}^{n} c_k \mathcal{T}(\mathbf{v}_k)$

Matrix of linear transform: $[\mathscr{T}(\mathbf{e}_1) \quad \dots \quad \mathscr{T}(\mathbf{e}_n)]$ One-to-one: $\mathscr{T}(\mathbf{u}) = \mathbf{0} \to \mathbf{u} = \mathbf{0}$, onto: $Ran(\mathscr{T}(\mathbf{x})) = R^m$ **Basis vectors**: linearly independent set \mathcal{B} s.t. $S(\mathcal{B}) = V$. To show something is a basis, show linear independence and full span. Basis from set: find column space of matrix formed from the set. Form a basis from a vector space: write any element of a vector space as a linear combination of a spanning set.

rank(A) = dim(C(A)) = number of pivots, nullity(A) = $\dim(N(A))$, **Rank-Nullity Theorem**: $\operatorname{rank}(A) + \operatorname{nullity}(A) = n$. Theorem: if one basis of V has n vectors, then so does every basis. **Basis Theorem**: if $\dim(V) = n$, any linearly independent set has

 $\leq n$ vectors, any spanning set has $\geq n$ vectors, where equality Basis isomorphism: for each vector in \mathcal{B} , write it as a linear combination of the vectors of \mathcal{C} . Put the weights in a vector as coordinates; put all the vectors as columns of a matrix to get $P_{C \leftarrow B}$ where

 $[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$. A special case is where $\mathcal{C} = \mathcal{E}$ (standard basis) Matrix of linear transform in basis isomorphism: take $[\mathcal{T}(\mathbf{b}_k)]_c$ instead of $[\mathbf{b}_k]_{\mathcal{C}}$ in the intermediate step of above process. Change of basis: $[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}} \to [\mathcal{C} \quad \mathcal{B}] \sim [\mathcal{I} \quad P_{\mathcal{C} \leftarrow \mathcal{B}}]$

The solution (is)... Unique Pivot in every row Pivot in every column $S\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}=R^n$ $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ linearly independent Ax = 0 iff x = 0 $C(A) = R^m$ N(A) = 0 $\dim(\mathsf{C}(A)) = m$ $\dim(\mathsf{N}(A)) = 0$ $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ basis for \mathbb{R}^m (m=n) $Ran(\mathcal{T}(\mathbf{x})) = R^m$ $Ker(\mathcal{T}(\mathbf{x})) = \{\mathbf{0}\}\$ $\mathcal{T}(\mathbf{x})$ is onto (surjective) $\mathcal{T}(\mathbf{x})$ is one-to-one (injective) $C(A^T) = R^n$ $N(A^T) = \{0\}$ A^{-1} exists (m = n)A is row equivalent to I(m = n) A^{T} is invertible (m=n) CA = AC = I where C exists $\det(A) \neq 0 \ (m=n)$ $\det(A^{\mathrm{T}}) \neq 0 (m=n)$

Determinants: through cofactors - fix i or j (WLOG i), then $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij}) = \sum_{i=1}^{n} a_{ij} C_{ij}$; matrix of cofactors $C = [C_{ij}]$

No zero eigenvectors of A (m = n)

Matrix inverse: General: $[A I] \sim [I A^{-1}] = \frac{1}{\det(A)}C^{T}, A \in$ 2 Diagonalization

Characteristic polynomial: $\chi_A(\lambda) = \det(A - \lambda I)$; provides eigen-

Eigenvalues, eigenvectors: \mathbf{v} , λ such that $A\mathbf{v} = \lambda \mathbf{v}$. Find by solving $\chi_A(\lambda) = 0$ and for each λ solving $N(A - \lambda I)$ **Multiplicity**: algebraic multiplicity – number of times $(\lambda - \lambda_k)$ di-

vides evenly $\chi_A(\lambda)$; geometric multiplicity – number of linearly independent eigenvectors associated with λ_k **Eigenspaces**: E_{λ_k} – span of eigenvectors associated with λ_k ,

 $\mathsf{E}_{\lambda_k}(A) = \mathsf{N}(A - \ddot{\lambda}_k I).$ **Generalized eigensystem** of rank m: \mathbf{v} , λ such that $(A - \lambda I)^m \mathbf{v} =$ **0**. Find by solving $(A - \lambda I)\mathbf{v} = \mathbf{x}$ for \mathbf{x} a generalized eigenvector

Generalized eigenspaces: $\mathsf{E}_{\lambda_k}^g$ – span of generalized eigenvectors associated with λ_k , $\mathsf{E}^g_{\lambda_k}(A) = \bigcup_{m \in \mathbb{N}} \mathsf{N}((A - \lambda_k I)^m)$.

Jordan normal form: $J = \text{diag}(J_1, \dots, J_n)$ where $J_k =$

$$\begin{bmatrix} \lambda_k & 1 & & & \\ & \lambda_k & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_k & \end{bmatrix}$$
 is $m \times m$, where m is the algebraic multiplicity of λ_k with regards to the polynomial $\det(A - \lambda I)$. **Diagonalizablility**: A is diagonalizable if $A = PDP^{-1}$ for some

diagonal D and invertible P. We construct P, D by making the kth column of each the kth eigenvector/eigenvalue respectively. **Similarity**: $A \sim B$ if $A = PBP^{-1}$ for some invertible P.

Theorem: A is diagonalizable iff A has n linearly independent Theorem: If A has n distinct eigenvalues, then A is diagonalizable.

Matrices can be diagonalizable but not invertible, and some matrices aren't diagonalizable.

Complex eigenvalues: If for some diagonalizable matrix A and integer k, $\lambda_k = a + bi$ (which has a conjugate pair), and \mathbf{v}_k is its eigenvector, then $A = PDP^{-1}$, where $P = [\mathbf{v}_1 \dots \text{Re}(\mathbf{v}_k) \text{Im}(\mathbf{v}_k) \dots \mathbf{v}_n], D =$ $\operatorname{diag}(\lambda_1,\ldots,C,\ldots,\lambda_n)$, $C=\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ (note that we thus skip the conjugate pair of the eigenvalue/eigenvector entirely). 3 Orthogonality

Orthogonality: two vectors \mathbf{u} , \mathbf{v} are orthogonal if $\langle \mathbf{u} | \mathbf{v} \rangle = 0$, the

set $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is orthogonal if $\mathbf{u}_i \cdot \mathbf{u}_i = 0$ when $i \neq j$. **Orthonormality**: the set $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is orthonormal if it is orthog-

onal and $\|\mathbf{u}_k\| = \sqrt{\langle \mathbf{u}_k | \mathbf{u}_k \rangle} = 0$ (**norm**) for all k. **Orthogonal subspace** W^{\perp} : set of **v** which are orthogonal to every

 $\mathbf{w} \in W$. To find orthogonal complement, find a basis $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ of W, and put the vector $\mathbf{w}_k^{\mathrm{T}}$ as the kth row of A. Then $\mathbf{W}^{\perp} = \mathbf{N}(A)$. Fundamental spaces: $(R(A))^{\perp} = N(A) = C(A^{T}); (C(A))^{\perp} = C(A$ **Coordinates in an orthogonal basis**: if $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthogo-

nal basis, then $\mathbf{y} = \sum_{k=1}^{n} c_k \mathbf{u}_k \to c_k = \frac{\langle \mathbf{y} | \mathbf{u}_k \rangle}{\langle \mathbf{u}_k | \mathbf{u}_k \rangle}$ **Orthogonal projection**: if $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is a basis for W, then the

orthogonal projection of \mathbf{y} on \mathbf{W} is $\hat{\mathbf{y}} = \sum_{k=1}^{n} \frac{\langle \mathbf{y} | \mathbf{u}_k \rangle}{\langle \mathbf{u}_k | \mathbf{u}_k \rangle} \mathbf{u}_k$; thus, $\operatorname{proj}_{\mathbf{C}(A)} \mathbf{v} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\mathbf{v}.$

Orthogonal matrix: a matrix (say, Q) with orthonormal columns; fulfills: $O^{T}O = I$, OO^{T} is the orthogonal projection matrix on C(Q), ||Qx|| = ||x||, and $\langle Qx|Qy \rangle = \langle x|y \rangle$ **Gram-Schmidt**: start with $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$. Then for $1 \leq j \leq n$

we have $\mathbf{v}_j = \mathbf{u}_j - \sum_{k=1}^{j-1} \frac{\langle \mathbf{u}_j | \mathbf{v}_k \rangle}{\langle \mathbf{v}_k | \mathbf{v}_k \rangle} \mathbf{v}_k$. Then $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthogonal basis for $S(\mathcal{B})$, and if $\mathbf{w}_k = \frac{\mathbf{v}_k}{\|\mathbf{v}_k\|}$, then $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ is an orthonormal basis for $S\{B\}$.

QR-factorization: the columns $\{q_1, \dots, q_n\}$ of *Q* are orthonormal basis for C(A) (find using Gram-Schmidt). Then $R = Q^{T}A$; alternatively, $R_{ii} = \langle \mathbf{q}_i | \mathbf{a}_i \rangle$ for $i \leq j$, and 0 otherwise. **Least-squares solution**: to solve an inconsistent system $A\mathbf{x} = \mathbf{b}$ in the least-squares sense, solve it for $A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$. It is guaranteed

that $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} ||A\mathbf{x} - \mathbf{b}||$. Note that $\hat{\mathbf{x}}$ isn't in C(A) or N(A), but $A^{\mathsf{T}}\mathbf{b} \in \mathsf{C}(A^{\mathsf{T}}A)$. Alternatively, if A = QR, then $\hat{\mathbf{x}} = R^{-1}Q^{\mathsf{T}}\mathbf{b}$. **Inner product spaces**: vector spaces with arbitrary inner products. All the techniques still work, except possibly with linear transformations instead of matrices. Inequalities: Cauchy-Schwarz – $\langle \mathbf{u} | \mathbf{v} \rangle \leq \|\mathbf{u}\| \|\mathbf{v}\|$; triangle – $\|u + v\| \leq \|u\| + \|v\|$

4 Symmetric Matrices **Symmetric matrix**: $A = A^{T}$, has n real eigenvalues, always diag-

onalizable, orthogonally diagonalizable ($A = PDP^{-1}$, where P is an orthogonal matrix.) The same properties hold for Hermitian matrices over the complex numbers. (That is, $A = A^* = \overline{A^T}$) Theorem: if A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal. Orthogonal diagonalization: first diagonalize, then apply Gram-Schmidt on each eigenspace and normalize the orthogonal eigen-

Quadratic forms: to find the matrix O, put the x_i^2 -coefficients on the diagonal, and evenly distribute the other terms between Q_{ij} and Q_{ji} . Then orthogonally diagonalize $Q = PDP^{T}$. Then let $\mathbf{v} = P^{\mathrm{T}}\mathbf{x}$ (which is just coordinate isomorphism), then the

is the diagonal matrix of eigenvalues, and $A = PDP^{T}$.

kth eigenvalue in the given diagonalization). Theorem: if $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of $A^{T}A$ in order of the corresponding eigenvalues, and A has r nonzero singular values, then $\{A\mathbf{v}_1, \dots, A\mathbf{v}_n\}$ is an orthogonal basis for C(A), and rank(A) = r.

Singular Value Decomposition: $A = U\Sigma V^{T}$, where A has rank r, Σ is an $m \times n$ matrix where $\Sigma_{kk} = \sigma_k$ for $1 \le k \le r$ and $\sigma_1 \ge \cdots \ge \sigma_n$ (for σ_k singular values) and zero elsewhere, and *U* is $m \times m$ orthogonal, and *V* is $n \times n$ orthogonal.

Singular values: positive square roots of the eigenvalues of $A^{T}A$.

Bases: let $A = U\Sigma V^{T}$ be an SVD, then orthonormal bases for – $C(A): \{\mathbf{u}_1, ..., \mathbf{u}_r\}; LN(A): \{\mathbf{u}_{r+1}^T, ..., \mathbf{u}_m^T\}; R(A): \{\mathbf{v}_1^T, ..., \mathbf{v}_r^T\};$ $N(A): \{v_{r+1}, \ldots, v_n\}.$

Computing SVD: find an orthogonal diagonalization of $A^{T}A$. Ar-

range the eigenvalues of $A^{T}A$ in decreasing order. Construct V as the set of corresponding unit eigenvectors $V = [\mathbf{v}_1 \quad \dots \quad \mathbf{v}_n]$. Take the square roots of the *r* nonzero singular values (in order) $\sigma_1, \ldots, \sigma_r$ and place them in Σ as the first r elements on the diagonal. The first r columns of U are the normalized vectors obtained from $A\mathbf{v}_k$; that is, $\mathbf{u}_k = \frac{1}{\sigma_k} A\mathbf{v}_k$ for $1 \le k \le r$. The rest are obtained by extending $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ to a basis of \mathbb{R}^m and performing

Gram-Schmidt with normalizations to get $U = [\mathbf{u}_1 \quad \dots \quad \mathbf{u}_m]$. **Spectral decomposition**: $A = \sum_{k=1}^{n} \lambda_k \mathbf{u}_k \mathbf{u}_k^{\mathrm{T}}$, for \mathbf{u}_k the kth unit eigenvector of A associated with eigenvalue λ_k .

5 Linear Ordinary Differential Equations Principle of superposition: $y(t) = y_v(t) + y_h(t)$

Homogeneous solutions: auxiliary equation - replace equation by polynomial – $\sum_{k=0}^{n} a_k y^{(k)} \rightarrow \sum_{k=0}^{n} a_k y^k$. Solve polynomial. Simple zeros (multiplicity 1) yield linearly independent eigenfunctions $e^{\lambda t}$ for λ a zero. Multiplicity m zeros give $\sum_{k=0}^{m-1} c_k t^k e^{\lambda t}$ for λ the zero to maintain linear independence of eigenfunctions. Complex zeros $\lambda = a + bi$ give $c_1e^{at}\cos(bt) + c_2e^{at}\sin(bt)$. Summing these where applicable gets $y_h(t)$.

Undetermined coefficients: if the inhomogeneous term is $Ct^m e^{rt}$, then $y_v(t) = t^s e^{rt} \sum_{k=0}^m a_k t^k$, where s = m if r is a root of the auxiliary polynomial with multiplicity m, and 0 otherwise. If the inhomogeneous term is $Ct^m e^{\alpha t} \sin(\beta t)$ or $Ct^m e^{\alpha t} \cos(\beta t)$, then $y_p(t) = t^s e^{\alpha t} (\sin(\beta t) (\sum_{k=0}^m a_k t^k) + \cos(\beta t) (\sum_{k=0}^m b_k t^k)), \text{ where } s = 0$ *m* if $\alpha + \beta i$ is a root of the auxiliary polynomial with multiplicity m, and 0 otherwise.

Variation of parameters: suppose $y_p(t) = \sum_{k=1}^n v_k(t)y_k(t)$, where each of the y_k are homogeneous solutions. Then . Invert the Wronskian and solve $W[y_1,\ldots,y_n]$

Wronskian: $W[y_1, \ldots, y_n] =$

for the v'_k (maybe by Cramer's rule), integrate to get the v_k , and finally use $y_v(t) = \sum_{k=1}^n v_k(t) y_k(t)$. **Linear independence**: y_1, \ldots, y_n are linearly independent if $\sum_{k=1}^{n} a_k(t) y_k(t) = 0 \rightarrow a_k = 0$ for all k. To show linear dependence,

find coefficients directly. To show linear independence, form the Wronskian, pick t_0 such that $det(W[y_1, ..., y_n](t_0))$ is easy to evaluate, and compute it. If the determinant is nonzero, then the functions are linearly independent. **Fundamental solution set**: y_1, \dots, y_n are linearly independent so-

Largest interval of existence: for each term in the differential equation, look at the domain and the part containing the initial vectors. Then *P* is the matrix of orthonormal eigenvectors, and *D* condition, then intersect all valid regions and make the set open. **Reduction of order**: for a differential equation $\sum_{k=0}^{n} a_k y^{(k)}(t) =$ f(t), we reduce it to a first order vector equation $\mathbf{y}' = A\mathbf{y} + \mathbf{f}(t)$

lutions, then they form a fundamental solution set

Quadratic forms. To find the matrix
$$Q_r$$
 put the x_i -coefficients on the diagonal, and evenly distribute the other terms between Q_{ij} and Q_{ji} . Then orthogonally diagonalize $Q = PDP^T$. Then let $\mathbf{y} = P^T\mathbf{x}$ (which is just coordinate isomorphism), then the quadratic form becomes $Q\mathbf{y} = \sum_{k=1}^n \lambda_k y_k^2$, where $\lambda_k = D_{kk}$ (the k th eigenvalue in the given diagonalization).

Theorem: if $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthonormal basis of \mathbf{R}^n consisting of eigenvectors of A^TA in order of the corresponding eigenvalues, and A has r nonzero singular values, then $\{A\mathbf{v}_1, \dots, A\mathbf{v}_n\}$ is an

acteristic polynomial of the matrix A. Using other methods yields particular solutions. 6 System of Differential Equations

Homogeneous solution: $\mathbf{x}' = A\mathbf{x}$ solved by $\mathbf{x}_h(t) = \sum_{k=1}^n c_k e^{\lambda_k t} \mathbf{v}_k$, where λ_k are eigenvalues of A corresponding to \mathbf{v}_k

Generalized eigenvectors: if we don't have enough eigenvectors for an eigenvalue λ_k , find the generalized eigensystem $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ where subscript indicates rank. Then $\mathbf{v}_v(t)=$ $\sum_{i=1}^{m} c_i e^{\lambda_k t} \left(\sum_{i=1}^{i} t^{i-j+1} \mathbf{v}_i \right) \text{ (Ex: } A e^{\lambda t} \mathbf{v}_1 + B(t e^{\lambda t} \mathbf{v}_1 + e^{\lambda t} \mathbf{v}_2) \text{)}.$

Complex eigenvalues: if $\lambda_k = \alpha + i\beta$ and $\mathbf{v}_k = \mathbf{a} + i\mathbf{b}$, then the corresponding term in the homogeneous solution is $e^{\alpha t}(c_1(\cos(\beta t))a)$ $\sin(\beta t)\mathbf{b}) + c_2(\sin(\beta t)\mathbf{a} + \cos(\beta t)\mathbf{b}).$ Undetermined coefficients: single-variable undetermined coeffi-

cients, except coefficients are *n*-dimensional vectors; plug into the differential equation and solve for coefficients. Fundamental solution matrix X(t): matrix of homogeneous solutions as column vectors; set coefficients to 1 for simplicity. $y_h(t) =$

X(t)**c** for **c** a constant vector. **Variation of parameters:** $\mathbf{v}_v(t) = X(t) \int X^{-1}(t) \mathbf{f}(t) dt$.

Matrix exponential: $e^{At} = \sum_{k=0}^{n} \frac{A^{n}t^{k}}{k!}$. Diagonalization: A =

 $PDP^{-1} \rightarrow e^{At} = Pe^{Dt}P^{-1}$, where e^{Dt} is a diagonal (or Jordan) matrix with diagonal entries $e^{\lambda_k t}$. Note that $e^{At} = X(t)X(0)^{-1}$. Jordan matrices are $J_i = e^{\lambda_i t} \sum_{k=0}^{m-1} \frac{(A-\lambda I)^k t^k}{k!}$ for m the algebraic multiplicity of λ . Solution of $\mathbf{x}' = A\mathbf{x}$ is then $\mathbf{x}(t) = e^{At}\mathbf{c}$ for \mathbf{c} a

constant vector. 7 Fourier Series

Fourier Series: f defined on $(-L, L) - f(x) \sim \frac{f(x^+) + f(x^-)}{2} = \frac{a_0}{2} + \frac{a_0}{2}$ $\sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{\pi k x}{L}\right) + b_k \sin\left(\frac{\pi k x}{L}\right) \right), \ a_k = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{\pi k x}{L}\right) dx,$ $b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{\pi kx}{L}) dx$, $\frac{a_0}{2}$ is the average value of f on (-L, L), and $\lim_{\epsilon \to 0^{\times}} f(x + \epsilon) = f(x^{\times})$.

Cosine/Sine Series: f defined on (0, L), g either cosine or sine – $f(x) \sim \sum_{k=0}^{\infty} a_k g\left(\frac{\pi k x}{L}\right), a_k = \frac{2}{L} \int_0^T f(x) g\left(\frac{\pi k x}{L}\right) dx$

Orthogonality formulae: $\int_{-L}^{L} \cos\left(\frac{\pi mx}{L}\right) \sin\left(\frac{\pi nx}{L}\right) dx = 0,$ $\int_{-L}^{L} \cos\left(\frac{\pi mx}{L}\right) \cos\left(\frac{\pi nx}{L}\right) dx = \int_{-L}^{L} \sin\left(\frac{\pi mx}{L}\right) \sin\left(\frac{\pi nx}{L}\right) dx = L\delta_{mn}.$