

# PRIMARY OBJECTIVES OF THIS PRESENTATION

- 1. Overview of the drone design cycle
- 2. Defining abstraction layers in a drone
- 3. Discussing and Comparing possible design Approaches
- 4. Short term and long term consequences of each design.

## MIND MAP OF DRONE DESIGN LIFE CYCLE



### ABSTRACTION LAYERS IN DRONE DESIGN



### **DESIGN CHOICES**

Propulsion design choices – ok (Quad rotor) Prototype Power supply and management – ok Radio flight Control -ok Telemetry and video feed transmission - TS832 Navigation and mission planning system - PIXHAWK Collision avoidance system. -OPTICAL FLOW, ???

# PROPULSION DESIGN CHOICES

### **Available options**

- 1. Quad rotor design
- 2. Hex rotor design
- 3. Single rotor design

# COMPARISON OF PROPULSION SYSTEMS

| Single rotor design                                                                                                                                                                                                                                                                                                                                                                                                                                | Multi rotor design                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Higher lift efficiency</li> <li>Inherent flight stability (Doesnt Require complex and continous Flight adjustments).</li> <li>Large payload capacity per watt</li> <li>Requires larger blades</li> <li>Larger blades can cause high damage on impact but can be mitigated by mesh shielding.</li> <li>Longer ranges and stable operation winds.</li> <li>Lower maneuverability compared to multi rotor design. 2 + 0.5 + 0.5 +</li> </ol> | <ol> <li>Lower Efficiency</li> <li>Requires active fly-by control<br/>System</li> <li>Lower payload capacity per-watt</li> <li>Requires smaller blades</li> <li>Smaller Blades are safer and<br/>Cheaper to use</li> <li>Short range and relatively unstable<br/>in strong winds compared to large<br/>single rotor design</li> <li>High Maneuverable design with<br/>3(TRUE) + 3(PSEUDO (0.5))<br/>degrees of freedom</li> </ol> |
| 0.5 8. Good for larger capacities                                                                                                                                                                                                                                                                                                                                                                                                                  | 8. Good for payloads smaller than 15 kg and for surveillence drones                                                                                                                                                                                                                                                                                                                                                               |

# WHY SINGLE ROTOR PROPULSION IS BETTER IN FUTURE DESIGN?

- Advantages
- Higher lift efficiency ( due to increased thrust per watt)
- Longer range
- Higher payload capacity
- Reduced cost ( due to less rotors and energy required)

### SINGLE ROTOR DESIGN CURRENTLY IN MARKET





YAMAHA RMAX SERIES FARMING DRONES

### SINGLE ROTOR DESIGN CURRENTLY IN MARKET



**R22-UV** 

PRECISION FARMING DEMONSTRATION

BY UAVOS COMPANY

# CHALLENGES IN SINGLE ROTOR PROPULSION FEATURES

- Requires mechanically complex hub design
  - → MITIGATION == ??
  - RESEARCH ON HUB DESIGN --- in future ??
- → (Requires mechanical engineering expertise in transmission design systems and machining techniques.





# CHALLENGES IN SINGLE ROTOR PROPULSION FEATURES

- → Larger blades are dangerous to operate
  - → MITIGATION --- MESH SHIELDING ???
- → High drift in air flow during spray
  - → MITIGATION == Change orientation and position of sprayer

 → Larger blades are dangerous to operate
 → MITIGATION ---MESH SHIELDING ???



### PROPULSION CHOICES SUMMARY

- ALTHOUGH SINGLE ROTOR DESIGN IS AN EFFICIENT DESIGN COMPARED MULTI ROTOR DESIGN IN BOTH ECONOMICS, OPERATIONAL RANGES AND CAPABILITIES, IT REQUIRES A LOT OF MECHANICAL EXPERTISE AND WORK (NOT IMPOSSIBLE THOUGH).
- DUE TO THIS ITS BETTER TO SLOWLY DO THE RESEARCH & DEVELOPMENTS DURING THE COURSE OF THE STARTUP
- RESEARCH AND DESIGN ON COAXIAL ROTORS DESIGN (Sikorsky S-97 Raider), DUAL ROTOR DESIGN (CHINOOK) FOR INCREASED PAYLOAD REQUIREMENTS





# SCHEMATIC DIAGRAM OF THE PROTOTYPE



# POWER MANAGEMENT UNIT:-

(Pixhawk 4 Power Module (PM07))



# FLIGHT CONTROLLER RADIO TRANSMITTER AND RECEIVER

Fly Sky FS-i6X 2.4GHz 6CH AFHDS 2A RC Transmitter With FS-iA10B 2.4GHz 10CH Receiver

FOR CONTROLLING THE FLIGHT





TELEMETRY RADIOS

SiK Telemetry Radio

USED FOR RELAYING TELEMETRY DATA OVER ONG RANGES



# VIDEO TRANSMISSION



USING OPENHO FRAMEWORK TO USE WIFI ADAPTER FOR VERY LONG RANGE VIDEO TRANSMISSION.

(ADVANTAGES ): CHEAPER & ADVANCED FEATURES

CAN BE ADDED (LIKE FUSED DATA LINKS, WIFI TETHERING, CONFIG FLEXIBILITY)

(DISAVANTAGES ) : HARDER IN SOFTWARE COMPLEXITY

#### **ALTERNATIVE:**

TS832 Analogue video transmitter

#### **ADVANTAGES**:

- 1. PLUG AND PLAY
- 2. GOOD OUT OF THE BOX EXPERIENCE
- 3. INDEPENDENT OF PIXHAWK FLIGHT CONTROLLER
- 4. GOOD RANGE
- 5. CAN BE USED WITHOUT ANY SBC( RASPBERRY PI )

#### **DISADVANTAGES:**

- 1. HIGHER COST
- 2. CAN ONLY TRANSMIT VIDEO DATA
- 3. ITS A DUMB TX/RX MODULE (MEANING HARDER TO MODIFY AND ADD NEW FEATURES)



\ 0 CAMERA ??!! 0 /

ANYTHING IS OK !!!
As "LONG AS THEY HAVE A CSI OR USB OUTPUT"

### **SUMMARY**

- 1. SINGLE ROTOR PROPULSION IS TECHNICALLY BETTER BUT FOR INITIAL DESIGN STAGE MULTIROTOR DESIGN IS BETTER DUE TO LACK OF MECHANICAL ENGINEERING EXPERTISE, DESIGN TIME, CONSTRUCTION CONSTRAINTS.
- 2. MINIMUM HARDWARE COMPONENTS REQUIRED FOR THE MINIMUM FUNCTIONALITY HAVE BEEN PRESENTED IN THIS PRESENTATION
- 3. THERE IS A TRADE OFF BETWEEN SOFTWARE, HARDWARE COMPLEXITIES AND ECONOMICS, TIME FOR CONSTRUCTION AND MAINTAINANCE && FEATURES