13 сентября 2024 г.

Расчёт вероятностей

- 1. Вычислите с помощью любого удобного статистического пакета следующие значения:
- а) Вероятность того, что биномиальная случайная величина B(n=100, p=0.3) примет значение, не превышающее 25;
- b) Значение функции плотности нормальной случайной величины N(10, 25) в точке x = 7.5;
- с) Вероятность, что пуассоновская случайная величина $Pois(\lambda = 100)$ примет значение 115;
- d) Среднее значение 10000 независимых случайных величин, имеющих экспоненциальное распределение с $\lambda = 0.4$;
- е) Среднее значение 10000 независимых случайных геометрических случайных величин с p=0.1.

Генераторы случайных чисел

- 2. Сгенерируйте 5000 значений независимых случайных величин с распределением U[0,1]. Полученную выборку $\{x_i\}$ преобразуйте с помощью функции $f(x) = -\frac{\ln(1-x)}{2}$ и постройте гистограмму получившихся значений. Сравните её с гистограммой 5000 значений экспоненциальной случайной величины с $\lambda = 2$.
- 3. Сгенерируйте 5000 значений $X \sim U[0,2\pi]$ и 5000 значений $Y \sim Exp(1)$ и постройте с их помощью $Z_1 = \sqrt{2Y}\sin(X)$ и $Z_2 \sim \sqrt{2Y}\cos(X)$. Постройте гистограммы Z_1 и Z_2 , а также вычислите 3й и 4й моменты у получившихся выборок.
- 4. Выберите достаточно большое число n; например, подойдёт $n=10^5$. После этого сгенерируйте n независимых нормальных случайных величин $X_i \sim \mathcal{N}\left(0,\frac{1}{n}\right), \ i \in \{1,\dots,n\}$ и постройте вектор накопленных сумм W, в котором $W_1 = X_1, W_2 = X_1 + X_2, \dots, X_n = \sum_{i=1}^n X_i$. После этого постройте график функции, принимающей значения W_i в точках $\frac{i}{n} \in [0,1]$. График такой функции приближенно соответствует траектории так называемого винеровского процесса W_t на $t \in [0,1]$.

Приближенное решение задач методом Монте-Карло

- $5.\ X,Y$ брошены независимо на отрезок [0,1]. Найдите приближенное значение (с точностью до 2-го знака после запятой) вероятности того, что $\frac{X}{Y}$ ближе к чётному числу чем к нечётному.
- 6. Палку разломали на n кусков, из кусков выбрали 3 наугад. Найдите приближенное значение (с точностью до 2-го знака после запятой) вероятности того, что из кусков можно сложить треугольник при n=5,15,30.