Sarsa

Shusen Wang

Discounted Return

Definition of discounted return:

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \gamma^4 \cdot R_{t+4} + \cdots$$

$$= \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \gamma^3 \cdot R_{t+4} + \cdots)$$

Discounted Return

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \gamma^4 \cdot R_{t+4} + \cdots$$

$$= R_t + \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \gamma^3 \cdot R_{t+4} + \cdots)$$

$$= U_{t+1}$$

Discounted Return

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \gamma^4 \cdot R_{t+4} + \cdots$$

$$= R_t + \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \gamma^3 \cdot R_{t+4} + \cdots)$$

$$= U_{t+1}$$

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

- Assume R_t depends on (S_t, A_t, S_{t+1}) .
- $Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[U_t | s_t, \mathbf{a_t}]$

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t|s_t, a_t]$$

= $\mathbb{E}[R_t + \gamma \cdot U_{t+1}|s_t, a_t]$

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | s_t, a_t]$$

$$= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t]$$

$$= \mathbb{E}[R_t | s_t, a_t] + \gamma \cdot \mathbb{E}[U_{t+1} | s_t, a_t]$$

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

$$\begin{aligned} \bullet \ Q_{\pi}(s_t, a_t) &= \mathbb{E}[U_t | s_t, a_t] \\ &= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t] \\ &= \mathbb{E}[R_t | s_t, a_t] + \gamma \left(\mathbb{E}[U_{t+1} | s_t, a_t] \right) \end{aligned}$$

$$\mathbb{E}[U_{t+1}|s_t, a_t] = \mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1})|s_t, a_t]$$

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

• Assume R_t depends on (S_t, A_t, S_{t+1}) .

$$\begin{aligned} \bullet \ Q_{\pi}(s_t, a_t) &= \mathbb{E}[U_t | s_t, a_t] \\ &= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t] \\ &= \mathbb{E}[R_t | s_t, a_t] + \gamma \left(\mathbb{E}[U_{t+1} | s_t, a_t] \right) \\ &= \mathbb{E}[U_{t+1} | s_t, a_t] = \mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t] \end{aligned}$$

 Q_{π} eliminates all the future states and actions from time t+2.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | s_t, a_t]$$

 $= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t]$
 $= \mathbb{E}[R_t | s_t, a_t] + \gamma \left(\mathbb{E}[U_{t+1} | s_t, a_t]\right)$
 $= \mathbb{E}[R_t | s_t, a_t] + \gamma \cdot \mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t].$

Identity:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1})]$$
, for all π .

Identity:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1})]$$
, for all π .

- We do not know the expectation.
- Approximate it using Monte Carlo (MC).

Identity:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1})]$$
, for all π .

 y_t is its MC approximation.

- Let (s_{t+1}, r_t) be an observation of (S_{t+1}, R_t) .
- Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.

Identity:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1})]$$
, for all π .

 y_t is its MC approximation.

TD learning: Encourage $Q_{\pi}(s_t, a_t)$ to approach y_t .

Sarsa: Tabular Version

Tabular Version

- We want to learn $Q_{\pi}(s, \mathbf{a})$.
- Suppose the numbers of states and actions are finite.
- Draw a table and learn the entries.

	Action a_1	Action a_2	Action a_3	Action a_4	•••
State s_1					
State s ₂					
State s ₃					
•					

Sarsa (tabular version)

• Observe (s_t, a_t, r_t, s_{t+1}) .

• Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$, where π is the policy function.

• TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.

	Action a_1	Action a_2	Action a_3	Action a_4	•••
State s_1					
State s ₂					
State s ₃					
•					

Sarsa (tabular version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$, where π is the policy function.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.
- TD error: $\delta_t = Q_{\pi}(s_t, \mathbf{a_t}) y_t$.
- Update: $Q_{\pi}(s_t, a_t) \leftarrow Q_{\pi}(s_t, a_t) \alpha \cdot \delta_t$.

make
$$Q_{\pi}(s_t, a_t)$$
 closer to y_t

Sarsa: Neural Network Version

Value Network Version

• Approximate $Q_{\pi}(s, \mathbf{a})$ by the value network, $q(s, \mathbf{a}|\mathbf{w})$.

Value Network Version

- Approximate $Q_{\pi}(s, \mathbf{a})$ by the value network, $q(s, \mathbf{a}|\mathbf{w})$.
- Note that $Q_{\pi}(s, \mathbf{a})$ and $q(s, \mathbf{a}|\mathbf{w})$ depend on π .
- q is used as the critic who evaluates the actor. (Actor-Critic Method.)
- We want to learn the parameter, w.

Sarsa (Value Network Version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$, where π is the policy function.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}|\mathbf{w})$.

Sarsa (Value Network Version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$, where π is the policy function.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}|\mathbf{w})$.
- TD error: $\delta_t = q(s_t, \mathbf{a_t}|\mathbf{w}) y_t$.
- SGD: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial q(s_t, \mathbf{a_t} | \mathbf{w})}{\partial \mathbf{w}}$

Summary

- Goal: Learn the action-value function Q_{π} .
- Tabular version (directly learn Q_{π}).
 - There are finite states and actions.
 - Draw a table, and update the table using Sarsa.
- Value network version (function approximation).
 - Approximate Q_{π} by the value network $q(s, \boldsymbol{a}|\mathbf{w})$.
 - Update the parameter, w, using Sarsa.
 - Application: actor-critic method.

Thank you!