BOLETÍN DE CRECIMIENTO Y DECRECIMIENTO DE FUNCIONES

1º) Estudia el crecimiento y el decrecimiento de las siguientes funciones:

a)
$$f(x) = 3x^2 - 2x + 1$$

b)
$$f(x) = 2x^3$$

c)
$$f(x) = 3 + 12x - 3x^2$$

d)
$$f(x) = (x+2)^2$$

e)
$$f(x) = \frac{x^2 - 3x + 1}{2}$$

Solución:

•
$$f'(x) = 6x - 2 \Rightarrow$$

$$\begin{cases}
D(f') = R \\
f'(x) = 0 \Rightarrow 6x - 2 = 0 \Rightarrow x = 1/3
\end{cases}$$

Creciente (1/3,+∞)

Decreciente (-∞,1/3)

Mínimo (1/3,f(1/3)) = (1/3,2/3)

•
$$f'(x) = 6x^2 \Rightarrow \begin{cases} D(f') = R \\ f'(x) = 0 \Rightarrow 6x^2 = 0 \Rightarrow x = 0 \end{cases}$$

Creciente en todo R

•
$$f'(x)=12-6x \Rightarrow \begin{cases} D(f')=R \\ f'(x)=0 \Rightarrow 12-6x=0 \Rightarrow x=2 \end{cases}$$

Creciente (-∞,2)

Decreciente (2,+∞)

Máximo (2,f(2)) = (2,15)

•
$$f'(x) = 2(x+2) \Rightarrow$$

$$\begin{cases}
D(f') = R \\
f'(x) = 0 \Rightarrow 2x + 4 = 0 \Rightarrow x = -2
\end{cases}$$

•
$$f'(x) = \frac{2x-3}{2} \Rightarrow \begin{cases} D(f') = R \\ f'(x) = 0 \Rightarrow 2x-3 = 0 \Rightarrow x = 3/2 \end{cases}$$

Creciente (3/2,+∞)

Decreciente (-∞,3/2)

Mínimo (3/2,f(3/2)) = (3/2,-5/8)

2º) Consideremos la función $f(x) = \frac{1+x^2}{x^2}$. Hallar sus intervalos de crecimiento y decrecimiento.

SOLUCIÓN.

Tenemos: $f'(x) = -\frac{2}{x^3} \Rightarrow \frac{f'(x) > 0}{0}$ luego la función es creciente en $(-\infty, 0)$ y decreciente en $(0, \infty)$.

3º) Hallar los intervalos de monotonía (crecimiento y decrecimiento) de la función:

$$f(x) = \frac{x^2 + x + 1}{x^2 + 1}$$

Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

$$f'(x) = \frac{(2x+1)\cdot(x^2+1) - (x^2+x+1)\cdot 2x}{(x^2+1)^2}$$
$$= \frac{(2x^3+2x+x^2+1) - (2x^3+2x^2+2x)}{(x^2+1)^2} = \frac{-x^2+1}{(x^2+1)^2}$$

Si la igualamos a cero, nos queda:

$$\frac{-x^2 + 1}{(x^2 + 1)^2} = 0 \qquad \Rightarrow \qquad -x^2 + 1 = 0 \qquad \Rightarrow \qquad x^2 = 1 \qquad \Rightarrow \qquad \begin{cases} x = -1 \\ x = 1 \end{cases}$$

Por lo tanto, tendremos tres intervalos:

$$\begin{array}{ll} (-\infty,-1) & \textit{miramos} \ f'(-2) = \frac{-(-2)^2+1}{((-2)^2+1)^2} = \frac{-3}{25} < 0 \ \textit{decreciente} \\ \\ (-1,1) & \textit{miramos} \ f'(0) = \frac{-0^2+1}{(0^2+1)^2} = \frac{1}{1} = 1 > 0 \ \textit{creciente} \\ \\ (1,\infty) & \textit{miramos} \ f'(2) = \frac{-2^2+1}{(2^2+1)^2} = \frac{-3}{25} < 0 \ \textit{decreciente} \end{array}$$