《数值分析》中期练习

一、计算题

1. 已知y = f(x)的在部分节点上的函数值如下表所示:

x_i	-2	0	1	2
$f(x_i)$	-7	1	2	9

试构造三次插值多项式,并估计在x=1.3处的值。

2. 已知实验数据如下:

x_i	10	11	12	13	14	15
$f(x_i)$	20	23	25	27	26	28

请列出用最小二乘法求线性及二次拟合函数的方程组。

二、证明题

1. 设 $f^{(n)}(x)$ 在区间[a,b]上连续, $f^{(n+1)}(x)$ 在(a,b)内存在,节点 $a \le x_0 < x_1 < \cdots < x_n \le b$, $L_n(x)$ 是对应的插值多项式,证明:对任何 $x \in [a,b]$,插值余项为

$$R_{n}(x) = f(x) - L_{n}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x),$$

其中 $\xi \in (a,b)$ 依赖于x,且 $\omega_{n+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$.

2. 设X是实数域上的内积空间,证明对 $\forall u, v \in X$,都有

$$(u,v)^2 \le (u,u)(v,v)$$
.

3. 证明切比雪夫多项式 $T_n(x) = \cos(n\arccos x), |x| \le 1 \ (n = 0, 1, 2, \cdots)$ 是关于权函数 $\rho(x) = \frac{1}{\sqrt{1-x^2}}$ 在区间[-1, 1]上的正交多项式.