Coherent sheaves and exceptional collections

Songyu Ye

March 20, 2025

Abstract

Coherent sheaves, vector bundles, and exceptional collections in algebraic geometry.

Contents

1	Preliminaries	1
	1.1 Schemes	1
	1.2 Commutative Algebra	4
	1.3 Sheaves	5
2	Examples of Non-Vector Bundle Coherent Sheaves	6
3	Exceptional Collections in Derived Categories	8
4	Semiorthogonal Decompositions	8
5	The Splitting Problem and Beilinson's Exceptional Collection	9
	5.1 The Splitting Problem	9
	5.2 Beilinson's Exceptional Collection	9

1 Preliminaries

1.1 Schemes

Definition 1.1 (Closed and Non-closed Points). Let $X = \operatorname{Spec}(A)$ be an affine scheme.

- 1. A point $p \in X$ is called a closed point if the corresponding prime ideal \mathfrak{p} is a maximal ideal of A.
- 2. A point $p \in X$ is called a non-closed point if the corresponding prime ideal \mathfrak{p} is not maximal.

3. A generic point of an irreducible component of X corresponds to a minimal prime ideal of A.

Example 1.2. Consider $X = \operatorname{Spec}(\mathbb{C}[x,y])$, the affine plane over \mathbb{C} .

- 1. Closed points correspond to maximal ideals of the form (x-a,y-b) for $a,b \in \mathbb{C}$. These are the familiar points (a,b) in the complex plane.
- 2. Prime ideals like (x-1) correspond to non-closed points. Geometrically, this represents the "generic point" of the vertical line x=1.
- 3. The prime ideal (0) corresponds to the generic point of the entire plane.

Remark 1.3. For a scheme over a field k:

- 1. If k is algebraically closed (like \mathbb{C}), the closed points of $\operatorname{Spec}(k[x_1,\ldots,x_n])$ correspond exactly to the n-tuples $(a_1,\ldots,a_n)\in k^n$.
- 2. If k is not algebraically closed (like \mathbb{Q}), there are additional closed points. For example, in $\operatorname{Spec}(\mathbb{Q}[x])$, the ideal (x^2+1) is maximal and corresponds to a closed point, even though it does not correspond to a rational value of x.

Proposition 1.4. Let X be a scheme of finite type over a field k. Then:

- 1. The closed points of X are dense in X (Zariski topology).
- 2. If X is irreducible, it has a unique generic point.
- 3. The closure of any point $p \in X$ consists of p and all the specializations of p.

Definition 1.5 (Stalk of the Structure Sheaf). Let X be a scheme and $p \in X$ a point. The stalk of the structure sheaf \mathcal{O}_X at p, denoted $\mathcal{O}_{X,p}$, is defined as the direct limit:

$$\mathcal{O}_{X,p} = \varinjlim_{U \ni p} \mathcal{O}_X(U)$$

where the limit is taken over all open sets U containing the point p.

Proposition 1.6. Let $X = \operatorname{Spec}(A)$ be an affine scheme and $p \in X$ the point corresponding to a prime ideal $\mathfrak{p} \subset A$. Then:

$$\mathcal{O}_{X,p} \cong A_{\mathfrak{p}}$$

where $A_{\mathfrak{p}}$ is the localization of A at the prime ideal \mathfrak{p} .

Remark 1.7. The stalk $\mathcal{O}_{X,p}$ is always a local ring. Its unique maximal ideal, denoted \mathfrak{m}_p , consists of germs of functions that vanish at p.

Example 1.8. Let $X = \operatorname{Spec}(\mathbb{C}[x,y])$ and p the origin (corresponding to the maximal ideal (x,y)). Then:

$$\mathcal{O}_{X,p} \cong \mathbb{C}[x,y]_{(x,y)}$$

This is the ring of rational functions in x and y that are defined at the origin.

Example 1.9. Let $X = \operatorname{Spec}(\mathbb{C}[x,y]/(xy))$, a union of two coordinate axes, and p the origin. Then:

$$\mathcal{O}_{X,p} \cong \mathbb{C}[x,y]_{(x,y)}/(xy)$$

This local ring has zero divisors, reflecting the fact that p is a singular point of X.

Definition 1.10 (Residue Field). Let X be a scheme and $p \in X$ a point. The residue field at p, denoted $\kappa(p)$, is defined as:

$$\kappa(p) = \mathcal{O}_{X,p}/\mathfrak{m}_p$$

where \mathfrak{m}_p is the maximal ideal of the local ring $\mathcal{O}_{X,p}$.

Proposition 1.11. Let $X = \operatorname{Spec}(A)$ be an affine scheme and $p \in X$ the point corresponding to a prime ideal $\mathfrak{p} \subset A$. Then:

$$\kappa(p) \cong \operatorname{Frac}(A/\mathfrak{p})$$

the fraction field of the domain A/\mathfrak{p} .

Remark 1.12. For a closed point p corresponding to a maximal ideal \mathfrak{m} , we have $\kappa(p) \cong A/\mathfrak{m}$, which is already a field.

Example 1.13. Let $X = \operatorname{Spec}(\mathbb{C}[x, y])$.

1. For the closed point p corresponding to the maximal ideal (x - a, y - b), the residue field is:

$$\kappa(p) \cong \mathbb{C}[x,y]/(x-a,y-b) \cong \mathbb{C}$$

2. For the non-closed point q corresponding to the prime ideal (x - a), the residue field is:

$$\kappa(q) \cong \operatorname{Frac}(\mathbb{C}[x,y]/(x-a)) \cong \mathbb{C}(y)$$

the field of rational functions in one variable.

3. For the generic point η corresponding to the prime ideal (0), the residue field is:

$$\kappa(\eta) \cong \operatorname{Frac}(\mathbb{C}[x,y]) \cong \mathbb{C}(x,y)$$

the field of rational functions in two variables.

Example 1.14. Let $X = \operatorname{Spec}(\mathbb{Q}[x])$.

1. For the closed point p corresponding to the maximal ideal (x - a) where $a \in \mathbb{Q}$, the residue field is:

$$\kappa(p) \cong \mathbb{Q}[x]/(x-a) \cong \mathbb{Q}$$

2. For the closed point q corresponding to the maximal ideal $(x^2 + 1)$, the residue field is:

$$\kappa(q) \cong \mathbb{Q}[x]/(x^2+1) \cong \mathbb{Q}(i)$$

which is a degree 2 extension of \mathbb{Q} .

3. For the generic point η corresponding to the prime ideal (0), the residue field is:

$$\kappa(\eta) \cong \operatorname{Frac}(\mathbb{Q}[x]) \cong \mathbb{Q}(x)$$

Definition 1.15 (Geometric Point). A geometric point of a scheme X is a morphism $\operatorname{Spec}(K) \to X$, where K is an algebraically closed field.

Remark 1.16. A geometric point can be thought of as a scheme-theoretic point together with an embedding of its residue field into an algebraically closed field.

Proposition 1.17. Let X be a scheme over a field k. If k is algebraically closed, then every closed point of X naturally gives rise to a geometric point. If k is not algebraically closed, this is not generally true.

Example 1.18. For $X = \operatorname{Spec}(\mathbb{Q}[x])$, the closed point corresponding to $(x^2 + 1)$ has residue field $\mathbb{Q}(i)$. This gives two distinct geometric points when we consider embeddings of $\mathbb{Q}(i)$ into \mathbb{C} (corresponding to i and -i).

1.2 Commutative Algebra

Definition 1.19 (Support of a module). Let A be a ring and M an A-module. The support of M, denoted Supp(M), is the set of prime ideals

$$\operatorname{Supp}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M_{\mathfrak{p}} \neq 0 \}$$

Definition 1.20 (Annihilator of a module). Let A be a ring and M an A-module. The annihilator of M, denoted Ann(M), is the ideal of elements

$$Ann(M) = \{ a \in A \mid a \cdot m = 0 \text{ for all } m \in M \}$$

Proposition 1.21. Let A be a ring and M an A-module. Then

$$\operatorname{Supp}(M) = \operatorname{V}(\operatorname{Ann}(M)) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid \operatorname{Ann}(M) \subset \mathfrak{p} \}$$

In particular, the support of M is a closed subset of Spec(A).

1.3 Sheaves

Definition 1.22 (Quasi-Coherent Sheaf). Let X be a scheme. A sheaf \mathcal{F} of \mathcal{O}_X -modules is called quasi-coherent if for every open subset $U \subset X$, there exists a covering $\{U_i\}$ of U and a family of \mathcal{O}_{U_i} -modules \mathcal{F}_i such that for each i, there exists an isomorphism $\mathcal{F}|_{U_i} \cong \mathcal{F}_i$.

Definition 1.23 (Coherent Sheaf). Let X be a scheme. A quasi-coherent sheaf \mathcal{F} of \mathcal{O}_X -modules is called coherent if:

- 1. \mathcal{F} is of finite type, i.e., for every open subset $U \subset X$, there exists a surjection $\mathcal{O}_U^{\oplus n} \to \mathcal{F}|_U \to 0$ for some integer n.
- 2. For any open set $U \subset X$ and any morphism $\varphi : \mathcal{O}_U^{\oplus n} \to \mathcal{F}|_U$ of \mathcal{O}_U -modules, the kernel $\ker \varphi$ is of finite type.

Definition 1.24 (Support of a Sheaf). Let X be a scheme and \mathcal{F} a sheaf of \mathcal{O}_X -modules. The support of \mathcal{F} , denoted $\mathrm{Supp}(\mathcal{F})$, is the set of points $x \in X$ where the stalk \mathcal{F}_x is non-zero:

$$\operatorname{Supp}(\mathcal{F}) = \{ x \in X \mid \mathcal{F}_x \neq 0 \}$$

Proposition 1.25. For a coherent sheaf \mathcal{F} on a scheme X:

- 1. Supp(\mathcal{F}) is a closed subset of X.
- 2. If X is Noetherian, then $\operatorname{Supp}(\mathcal{F})$ equals the set of points where the fiber $\mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} \kappa(x)$ is non-zero.
- 3. For an affine scheme $X = \operatorname{Spec}(A)$ and $\mathcal{F} = \widetilde{M}$ corresponding to an A-module M, the support of \mathcal{F} corresponds to $\{\mathfrak{p} \in \operatorname{Spec}(A) \mid M_{\mathfrak{p}} \neq 0\}$.

Remark 1.26. On a noetherian scheme, a sheaf of \mathcal{O}_X -modules is coherent if and only if it is of finite type.

Definition 1.27 (Vector Bundle). A vector bundle of rank r on a scheme X is a coherent sheaf \mathcal{E} on X that is locally free of rank r, i.e., for every point $x \in X$, there exists an open neighborhood U of x such that $\mathcal{E}|_{U} \cong \mathcal{O}_{U}^{\oplus r}$.

Definition 1.28 (Torsion Sheaf). A coherent sheaf \mathcal{F} on a scheme X is called a torsion sheaf if its support is a proper closed subset of X. Equivalently, for any open affine subset $\operatorname{Spec}(A) \subset X$, the corresponding A-module $\Gamma(\operatorname{Spec}(A), \mathcal{F})$ is a torsion A-module.

Definition 1.29 (Points of a Scheme). Let $X = \operatorname{Spec}(A)$ be an affine scheme. The points of X are in one-to-one correspondence with the prime ideals of A. Given a prime ideal $\mathfrak{p} \subset A$, we denote the corresponding point by $p_{\mathfrak{p}}$, or simply p when the context is clear.

2 Examples of Non-Vector Bundle Coherent Sheaves

Example 2.1 (Skyscraper Sheaf). Let X be a scheme and $p \in X$ a point. The skyscraper sheaf \mathcal{O}_p is a coherent sheaf defined as:

$$\mathcal{O}_p(U) = \begin{cases} \kappa(p) & \text{if } p \in U \\ 0 & \text{if } p \notin U \end{cases}$$

The residue field $\kappa(p)$ is a module over several rings. In particular, we can see that it is coherent because it is generated by a single element over the ring at hand.

- It's an $\mathcal{O}_{X,p}$ -module via the natural quotient map $\mathcal{O}_{X,p} o \mathcal{O}_{X,p}/\mathfrak{m}_p$
 - Any function germ in $\mathcal{O}_{X,p}$ acts on elements of $\kappa(p)$
 - Elements in \mathfrak{m}_p act by zero
 - Elements outside \mathfrak{m}_p act as non-zero scalars
- It's an $\mathcal{O}_X(U)$ -module for any open set U containing p
 - The action is via the composition $\mathcal{O}_X(U) \to \mathcal{O}_{X,p} \to \kappa(p)$
 - This allows functions defined on U to act on the residue field
- For affine opens $U = \operatorname{Spec}(A)$ containing p, it's an A-module

- If p corresponds to the prime ideal $\mathfrak{p} \subset A$
- Then $\kappa(p) \cong A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \cong \operatorname{Frac}(A/\mathfrak{p})$
- The action is via $A \to A/\mathfrak{p} \to \operatorname{Frac}(A/\mathfrak{p})$

It is not a vector bundle because:

- It fails to be locally free at all points. It is a torsion sheaf: any function vanishing at p annihilates the entire sheaf.
- Its support is just the single point $\{p\}$, whereas vector bundles have support equal to X.

Example 2.2 (Ideal Sheaf of a Subvariety). Let $L \subset \mathbb{P}^n$ be a line with ideal sheaf \mathcal{I}_L . This is a coherent sheaf that fails to be a vector bundle because:

- Its rank is not constant: rank(\mathcal{I}_L) = 1 on $\mathbb{P}^n \setminus L$ but rank(\mathcal{I}_L) = 0 along L.
- The dimension of $(\mathcal{I}_L)_p \otimes \kappa(p)$ varies: it equals 1 for $p \notin L$ (as the stalk $(\mathcal{I}_L)_p \cong \mathcal{O}_{\mathbb{P}^n,p}$) but equals 0 for $p \in L$ (as all functions in the ideal vanish at points on L).

The exact sequence $0 \to \mathcal{I}_L \to \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_L \to 0$ illustrates this behavior.

Example 2.3 (Tangent Sheaf of a Singular Variety). For a singular variety X, the tangent sheaf \mathcal{T}_X is coherent but not a vector bundle because:

- At smooth points $x \in X$, the sheaf is locally free of rank dim X.
- At singular points, the stalk $(\mathcal{T}_X)_x$ fails to be a free $\mathcal{O}_{X,x}$ -module.
- For example, on a nodal curve, the tangent sheaf at the node has torsion.

Example 2.4 (Structure Sheaf of a Singular Variety). Let X be a singular variety with structure sheaf \mathcal{O}_X . Though \mathcal{O}_X is always coherent, it fails to be locally free at singular points:

- At a singular point $p \in X$, the stalk $\mathcal{O}_{X,p}$ is not a regular local ring.
- For instance, if $X = \{xy = 0\} \subset \mathbb{A}^2$, then at the origin, $\mathcal{O}_{X,(0,0)} \cong k[x,y]/(xy)$, which is not a free module over itself.

3 Exceptional Collections in Derived Categories

Definition 3.1 (Exceptional Object). An object E in a derived category $D^b(X)$ is called exceptional if:

- 1. $\operatorname{Hom}(E, E) \cong k$ (the base field)
- 2. $\operatorname{Hom}(E, E[n]) = 0$ for all $n \neq 0$

Definition 3.2 (Exceptional Collection). An exceptional collection in $D^b(X)$ is an ordered sequence of exceptional objects $\{E_1, E_2, \dots, E_n\}$ such that:

$$\operatorname{Hom}(E_j, E_i[m]) = 0$$
 for all $j > i$ and all $m \in \mathbb{Z}$

Definition 3.3 (Full Exceptional Collection). An exceptional collection $\{E_1, E_2, \dots, E_n\}$ in $D^b(X)$ is called full if the objects generate the derived category. Formally, this means the smallest triangulated subcategory of $D^b(X)$ containing the collection and closed under direct sums and direct summands is $D^b(X)$ itself.

Equivalently, for any object $Y \in D^b(X)$, if $\operatorname{Hom}(E_i[m], Y) = 0$ for all i = 1, 2, ..., n and all $m \in \mathbb{Z}$, then $Y \cong 0$.

Definition 3.4 (Strong Exceptional Collection). An exceptional collection $\{E_1, E_2, \dots, E_n\}$ is called strong if:

$$\operatorname{Hom}(E_i, E_j[m]) = 0$$
 for all i, j and all $m \neq 0$

4 Semiorthogonal Decompositions

Definition 4.1 (Semiorthogonal Decomposition). A semiorthogonal decomposition of a triangulated category \mathcal{T} is a sequence of full triangulated subcategories A_1, A_2, \ldots, A_n such that:

- 1. For any objects $A_i \in A_i$ and $A_j \in A_j$ with i > j, we have $Hom(A_i, A_j) = 0$.
- 2. For any object $T \in \mathcal{T}$, there exists a unique sequence of morphisms:

$$0 = T_n \to T_{n-1} \to \cdots \to T_1 \to T_0 = T$$

such that the cone of each morphism $T_i \to T_{i-1}$ lies in A_i for i = 1, 2, ..., n.

We denote this by $\mathcal{T} = \langle \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n \rangle$.

Proposition 4.2. A full exceptional collection $\{E_1, E_2, \dots, E_n\}$ in $D^b(X)$ gives rise to a semiorthogonal decomposition:

$$D^b(X) = \langle \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n \rangle$$

where A_i is the triangulated subcategory generated by E_i .

5 The Splitting Problem and Beilinson's Exceptional Collection

5.1 The Splitting Problem

The splitting problem in algebraic geometry asks: When is a vector bundle on a variety isomorphic to a direct sum of line bundles?

Theorem 5.1 (Grothendieck). Every vector bundle on \mathbb{P}^1 splits as a direct sum of line bundles:

$$\mathcal{E} \cong \bigoplus_{i=1}^r \mathcal{O}(a_i)$$

for some integers a_1, a_2, \ldots, a_r .

However, for projective spaces of higher dimension, the situation is different:

Theorem 5.2. For $n \geq 2$, there exist vector bundles on \mathbb{P}^n that do not split as direct sums of line bundles.

Example 5.3. The tangent bundle $T\mathbb{P}^n$ is a non-split vector bundle on \mathbb{P}^n for $n \geq 2$. It fits into the Euler sequence:

$$0 \to \mathcal{O} \to \mathcal{O}(1)^{n+1} \to T\mathbb{P}^n \to 0$$

This sequence is non-split, as it represents a non-zero element in the group $\operatorname{Ext}^1(T\mathbb{P}^n,\mathcal{O})$.

5.2 Beilinson's Exceptional Collection

Theorem 5.4 (Beilinson). The collection $\{\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2), \dots, \mathcal{O}(n)\}$ is a full exceptional collection in $D^b(\mathbb{P}^n)$.

This has several important consequences:

- 1. Every coherent sheaf (or complex of coherent sheaves) on \mathbb{P}^n can be reconstructed from its "cohomological information" with respect to this collection.
- 2. The Grothendieck group $K_0(\mathbb{P}^n)$ is a free abelian group of rank n+1 with basis given by the classes $[\mathcal{O}], [\mathcal{O}(1)], \dots, [\mathcal{O}(n)]$. This means that for any coherent sheaf \mathcal{F} on \mathbb{P}^n , its class in $K_0(\mathbb{P}^n)$ can be written uniquely as a integer linear combination of these classes:

$$[\mathcal{F}] = a_0[\mathcal{O}] + a_1[\mathcal{O}(1)] + \dots + a_n[\mathcal{O}(n)]$$

Remark 5.5. The fact that any coherent sheaf can be written as a linear combination of $[\mathcal{O}(i)]$ in $K_0(\mathbb{P}^n)$ does not imply that every vector bundle on \mathbb{P}^n splits as a direct sum of line bundles.

In particular the tangent bundle $T\mathbb{P}^n$ has class:

$$[T\mathbb{P}^n] = (n+1)[\mathcal{O}(1)] - [\mathcal{O}]$$

in $K_0(\mathbb{P}^n)$, but this does not mean $T\mathbb{P}^n \cong \mathcal{O}(1)^{\oplus (n+1)} \oplus \mathcal{O}^{\oplus (-1)}$, which is not even meaningful for a negative exponent.

The obstruction to a vector bundle splitting is measured by extension groups Ext¹, which precisely capture the non-splitting of exact sequences.