Quaternions

Contents

11.1 Algebraic considerations	1
11.2 Quaternions and \mathbb{E}^4	3
11.3 Quaternions and rotations in \mathbb{E}^3	4
11.4 Exercises	4

11.1 Algebraic considerations

Definition. Denote the standard basis of \mathbb{R}^4 by 1, i, j, k and consider the bilinear form

$$\cdot \cdot \cdot : \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}^4$$

given on the basis vectors by

We denote \mathbb{R}^4 with the above multiplication by \mathbb{H} . The elements of \mathbb{H} are called *quaternions*. The product is the *Hamilton product*.

Remark 11.1. From the definition we observe

1. The multiplication map on arbitrary quaternions $p = a_1 + b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}$ and $q = a_2 + b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k}$ is

$$pq = (a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2) + (a_1b_2 + a_2b_1 + c_1d_2 - c_2d_1)\mathbf{i} + (a_1c_2 + a_2c_1 - b_1d_2 + b_2d_1)\mathbf{j} + (a_1d_2 + a_2d_1 + b_1c_2 - b_2c_1)\mathbf{k}$$
(11.1)

- 2. Direct calculations show that \mathbb{H} is an algebra, usually called *quaternion algebra*.
- 3. \mathbb{H} is not commutative, $\mathbf{i} \times \mathbf{j} = \mathbf{k} = -\mathbf{j} \times \mathbf{i}$.
- 4. $\mathbb{R} \cdot 1$ is a subfield of \mathbb{H} so we just write \mathbb{R} for it.
- 5. $\mathbb{C} = \mathbb{R} \cdot 1 + \mathbb{R} \cdot \mathbf{i}$ is a subfield of \mathbb{H} .

Definition. For a quaternion $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{H}$, a is the real part $\Re (q)$ of q and $b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ the imaginary part $\operatorname{Im}(q)$ of q. We say that q is real if it equals its real part. We say that q is purely imaginary if it equals its imaginary part.

Proposition 11.2. A quaternion is real if and only if it commutes with all quaternions, i.e. the center of \mathbb{H} is \mathbb{R} .

Proof.

Proposition 11.3. A quaternion is purely imaginary if and only if its square is real and non-pozitive.

Proof.

Definition. For a quaternion $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{H}$, the *conjugate of q* is

$$\overline{q} = a - b\mathbf{i} - c\mathbf{j} - d\mathbf{k} = \Re (q) - \operatorname{Im}(q) \in \mathbb{H}.$$

Proposition 11.4. *For* $p, q \in \mathbb{H}$ *and* $a \in \mathbb{R}$ *we have*

- 1. $\overline{p+q} = \overline{p} + \overline{q}$
- $2. \ \overline{ap} = a\overline{p}$
- 3. $\overline{\overline{p}} = p$
- 4. $\overline{p \cdot q} = \overline{q} \cdot \overline{p}$
- 5. $p \in \mathbb{R} \Leftrightarrow \overline{p} = p$
- 6. p is purely imaginary $\Leftrightarrow \overline{p} = -p$
- 7. $\Re (p) = \frac{1}{2}(p + \overline{p})$
- 8. $Im(p) = \frac{1}{2}(p \overline{p})$

Proof. \Box

11.2 Quaternions and \mathbb{E}^4

By construction \mathbb{H} is \mathbb{R}^4 as real vector space, so we may view it as a 4-dimensional real affine space. If in addition we consider the 4-dimensional Euclidean structure we may identify \mathbb{H} with \mathbb{E}^4 . In particular, we may consider the standard scalar product $\langle _, _ \rangle : \mathbb{H} \times \mathbb{H} \to \mathbb{H} \cong \mathbb{R}^4$.

Proposition 11.5 (Compare this with the similar statements for $\mathbb{C} \cong \mathbb{E}^2$). *For* $p, q \in \mathbb{H}$ *we have*

- 1. $\langle p, q \rangle = \frac{1}{2} (\overline{p}q + \overline{q}p)$
- 2. $\langle p, p \rangle = \overline{p}p$
- 3. $||p|| = \sqrt{\overline{p}p}$

If in addition p and q are purely imaginary, we have

- 4. $\langle p,q\rangle = -\frac{1}{2}(pq+qp) = -\Re(pq)$
- 5. $\langle p, p \rangle = -p^2$
- 6. $||p|| = \sqrt{-p^2}$
- 7. $\langle p,q\rangle = 0 \Leftrightarrow pq = -qp$.

Proof. \Box

Definition. With our identification $||q|| = (\overline{q} q)^{\frac{1}{2}}$ is the *norm* of the quaternion q. If ||q|| = 1 we say that q is a *unit quaternion*.

Proposition 11.6. For any $p, q \in \mathbb{H}$ we have

$$||pq|| = ||p|| \cdot ||q||.$$

In particular, left and right multiplication by unit quaternions are isometries.

Proof.

Proposition 11.7. \mathbb{H} *is a skew field. The inverse of* $q \in \mathbb{H} \setminus \{0\}$ *is*

$$q^{-1} = \frac{\overline{q}}{\|q\|^2}.$$

Proof.

11.3 Quaternions and rotations in \mathbb{E}^3

We identified \mathbb{H} with \mathbb{E}^4 . Next we view \mathbb{E}^3 as a subspace of \mathbb{H} identifying it with purely imaginary quaterions $\text{Im}(\mathbb{H}) = \mathbb{R}\mathbf{i} + \mathbb{R}\mathbf{j} + \mathbb{R}\mathbf{k}$.

Proposition 11.8. Let q_1, q_2 be two quaternions with $a_i = \Re q_i$, $v_i = \operatorname{Im} q_i$. Making use of the scalar product and the vector product in \mathbb{E}^3 me have

$$q_1q_2 = (a_1 + v_1)(a_2 + v_2) = a_1a_2 - \langle v_1, v_2 \rangle + a_2v_1 + a_1v_2 + v_1 \times v_2. \tag{11.2}$$

Proof.

Proposition 11.9. Let $v = v_i \mathbf{i} + v_j \mathbf{j} + v_k \mathbf{k} \in D(\mathbb{E}^3) \cong \operatorname{Im}(\mathbb{H})$ be a unit quaternion and $p \in \mathbb{E}^3 \cong \operatorname{Im}(\mathbb{H})$ a point. The rotation of p around the axis $\mathbb{R}v$ by an angle θ is given by

$$p' = qpq^{-1}$$

where

$$q = \cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)v$$

Proof. \Box

11.4 Exercises

Exercise 1. Show that the conjugation map on quaternions restricted to \mathbb{E}^3 is an isometry. Does it preserve orientation?

Exercise 2. Check that the properties of the conjugation map given in Proposition 11.4 hold.

Exercise 3. Let $q = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} i$. Consider the map

$$x \mapsto qxq^{-1} + \mathbf{i} + \mathbf{j}$$

restricted to $\mathbb{E}^3 \cong \text{Im} \mathbb{H}$.

- 1. Why is it a helical displacement?
- 2. Find its pace and Chasles' decomposition for this map.

Exercise 4. (hard, see last semester) Show that $(a \times b) \times c = \langle a, c \rangle b - \langle b, c \rangle a$.

Exercise 5. Let *q* be one of the quaternions

i, k,
$$\cos(\alpha) + \sin(\alpha)$$
j, $\cos(\alpha)$ j + $\sin(\alpha)$ k

Determine The matrix of the isometry obtained by

- 1. left and right multiplication with q,
- 2. conjugating with q, i.e. $x \mapsto qxq^{-1}$.

Bibliography

- [1] D. Andrica, Geometrie, Cluj-Napoca, 2017.
- [2] P.A. Blaga, Geometrie și grafică pe calculator note de curs, Cluj-Napoca, 2016.
- [3] M. Craioveanu, I.D. Albu, Geometrie afină și euclidiană, Timișoara, 1982.
- [4] GH. Galbură, F. Radó, Geometrie, București, 1979.
- [5] P. Michele, Géométrie notes de cours, Lausanne, 2016.
- [6] A. Paffenholz, Polyhedral Geometry and Linear Optimization, Darmstadt, 2013.
- [7] C.S. Pintea, Geometrie afină note de curs, Cluj-Napoca, 2017.
- [8] I.P. Popescu, Geometrie afină si euclidiană, Timișoara, 1984.
- [9] F. Radó, B. Orbán, V. Groze, A. Vasiu, Culegere de probleme de geometrie, Cluj-Napoca, 1979.
- [10] M. Troyanov, Cours de géométrie, Lausanne, 2011.