1. 遗传寻优设置

1. 编码方式: Encoding = 'RI'

2. 种群规模: NIND = 30

3. 算法模板: ea.soea_SEGA_templet

4. 最大进化代数: MAXGEN = 100

5. "进化停滞"判断阈值: trappedValue = 1e-6

6. 进化停滞计数器最大上限值: maxTrappedCount = 20

7. 交叉验证折数: CV=10

8. 训练集+验证集: [6426,10427] len: 4001【四折交叉验证,验证集长度1000】

9. 测试集: [14389,15388] len: 1000

10. 输入空间: wind_speed、sin(wind_direction)、cos(wind_direction)

11. 预测: wind_power

2. 模型组合方式

• 1. **Base**

- 1.1: default_tree_learner
- 1.2: default_linear_learner(ridge)
- 1.3: lasso_learner
- 1.4: kernel_ridge_learner
- 1.5: linear_svr_learner

• 2. **ESN + Base:**

- 2.1 esn_ridge_learner
- 2.2 esn_lasso_learner
- 2.3 esn_kernel_ridge_learner
- 2.4 esn_linear_svr_learner

3. NGBoost(Base):

- model_test(Base)
- 4. NGBoost(ESN + Base):
 - model_test(ESN + Base)
- 5. ESN + NGBoost(Base):
 - esn_model_test(Base)

3. 结果

3.1 esn_ridge_learner

esn 默认参数:

1. n_readout=1000

- 2. n_components=100
- 3. damping = 0.5
- 4. weight_scaling = 0.9
- 5. alpha = 1 (在 ridge 上的最优参数)
- 6. Test mse: 0.01642650566799493 (测试集长度1000)

寻优结果:

- 1. 最优MSE: 0.015390469160833288 (验证集长度1000)
- 2. Test mse: 0.016440854213573736 (测试集长度1000)
- 3. 最优控制变量值: (变量搜索范围)
 - **n_readout=3462** (1, 10000] int
 - **n_components=23** (1, 2000] int
 - damping = 0.26215546327467487 (0, 1] float
 - weight_scaling = 0.6234509481681756 (0.5, 1] float
 - alpha = 0.4649085531487292 (0, 1] float
- 4. 有效进化代数: 38
- 5. 最优的一代是第 18 代
- 6. 评价次数: 1140
- 7. 使用时间: 3297 秒

模型对比:

模型	1. ridge	2.1 esn+ridge [default]	4.1 ngboost(ens+ridge) [default]	5.1 esn+ngboost(ridge) [default]
默认 参数 设置	alpha=1	alpha=1 n_readout=1000 n_components=100 damping = 0.5 weight_scaling = 0.9	alpha=1 n_estimators=500 learning_rate=0.01 Score=MLE n_readout=1000 n_components=100 damping = 0.5 weight_scaling = 0.9	alpha=1 n_estimators=500 learning_rate=0.01 Score=CRPS n_readout=1000 n_components=100 damping = 0.5 weight_scaling = 0.9
MSE	0.0163812	0.01641301	0.01287494	0.3714271
<u>&</u>	WITH CASES	OF THE	10 10 10 10 10 10 10 10 10 10 10 10 10 1	THE STATE OF THE S
模型	3. ngboost(ridge)	2.2 esn+ridge [GA]	4.2 ngboost(ens+ridge) [GA]	5.2 esn+ngboost(ridge) [GA]
参数设置	alpha=1 n_estimators=500 learning_rate=0.01 Score=MLE	alpha=0.4649085531 n_readout=3462 n_components=23 damping = 0.26215546 weight_scaling = 0.623450948	alpha=0.4649085531 n_estimators=500 learning_rate=0.01 Score=MLE n_readout=3462 n_components=23 damping = 0.26215546 weight_scaling = 0.623450948	alpha=0.4649085531 n_estimators=500 learning_rate=0.01 Score=CRPS n_readout=3462 n_components=23 damping = 0.26215546 weight_scaling = 0.623450948
MSE	0.0126617	0.016440854	0.013522998	0.25163414
图	MEL S S 27 ML G A 732 mag	MISTOSOMA MISTOSOMA	MEL 5030 NL -0 A453	ME 0 2004 VIL 0 7173

对比 X.1 (默认参数)模型与 X.2 (遗传寻优参数)模型,遗传寻优后的 esn 参数值的表现甚至不如默认参数