Lineární algebra – 3. cvičení

1. Pro matice

$$A = \begin{pmatrix} 1 & 3 & -1 \\ 0 & 2 & 6 \\ -2 & 1 & 1 \end{pmatrix} \qquad a \qquad B = \begin{pmatrix} 2 & 0 & -3 \\ 5 & 7 & 1 \\ 0 & 2 & -4 \end{pmatrix},$$

vypočtěte A + B, $A \cdot B$, $B \cdot A$ a A^{\top} .

2. Pokud existují, najděte $A \cdot B$ a $B \cdot A$ pro

$$A = \begin{pmatrix} 1 & -2 & 3 & 1 \\ 2 & -1 & 0 & 5 \end{pmatrix} \qquad a \qquad B = \begin{pmatrix} 5 & 3 \\ -5 & 1 \\ 2 & -3 \end{pmatrix}.$$

3. Označme $\mathcal{M}_{m,n}$ vektorový prostor matic řádu $m \times n$ nad \mathbb{R} . Ukažte, že pro libovolné $A \in \mathcal{M}_{n,n}$ množina

$$\mathcal{K}_A := \{ B \in \mathcal{M}_{n,n} \mid A \cdot B = b \cdot A \}$$

tvoří vektorový prostor.

- 4. Najděte bázi prostoru \mathcal{K}_A pro $A = \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}$.
- 5. Ukažte, že matice

$$A = \begin{pmatrix} 3 & -3 & 0 \\ 1 & 3 & 3 \\ 0 & -8 & -6 \end{pmatrix}$$

je nilpotentní, tj existuje $n \in \mathbb{N}$ takové, že A^n je rovno nulové matici.

6. ★ Ukažte, že matice

$$A = \begin{pmatrix} 3 & -3 & 0 \\ 1 & 3 & 3 \\ 0 & -8 & -5 \end{pmatrix}$$

není nilpotentní.

- 7. Tvoří nilpotentní matice vektorový prostor?
- 8. Buď \mathcal{P} množina všech nekonečných posloupností, tj. funkcí $\mathbb{N} \to \mathbb{R}$. Ověřte, že \mathcal{P} je vektorovým prostorem. Jaká je jeho dimenze?
- 9. Vyřešte maticovou rovnici $A \cdot X = I$, kde

$$A = \begin{pmatrix} 1 & -2 & -1 \\ 1 & 3 & 2 \\ 1 & -2 & 0 \end{pmatrix}, \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{a} \qquad X = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \\ x_{3,1} & x_{3,2} & x_{3,3} \end{pmatrix}.$$

Jak říkáme matici X?