(1)
$$a_2a_4 = a_5 \Rightarrow a_1^2q^4 = a_1q^4 \Rightarrow a_1 = 1$$

 $a_3 - 4a_2 + 4a_1 = 0 \Rightarrow q^2 - 4q + 4 = 0 \Rightarrow q = 2$
故 $\{a_n\} = 2^{n-1}$ 是 "M-数列"

(2) ①
$$S_n = \frac{1}{\frac{2}{b_n} - \frac{2}{b_{n+1}}} = \frac{b_n b_{n+1}}{2(b_{n+1} - b_n)}$$

$$S_{n+1} = \frac{b_{n+1} b_{n+2}}{2(b_{n+2} - b_{n+1})}$$

$$b_{n+1} = S_{n+1} - S_n$$

$$= b_{n+1} \left[\frac{b_{n+2} (b_{n+1} - b_n) - b_n (b_{n+2} - b_{n+1})}{2(b_{n+2} - b_{n+1}) (b_{n+1} - b_n)} \right]$$

$$2(b_{n+2} b_{n+1} - b_{n+2} b_n - b_{n+1}^2 + b_n b_{n+1})$$

$$= (b_{n+2} b_{n+1} - 2b_n b_{n+2} + b_n b_{n+1})$$

$$b_{n+2} b_{n+1} - 2b_{n+1}^2 + b_n b_{n+1} = 0$$

$$b_{n+1} (b_{n+2} - 2b_{n+1} + b_n) = 0$$
故 $\{b_n\}$ 为等差数列
$$n = 1$$
 时, $1 = 2 - \frac{2}{b_2} \Rightarrow b_2 = 2$
故 $\{b_n\} = n$

② 设
$$\{c_n\} = q^{n-1}$$
 由题意: $c_k \le b_k \le c_{k+1}$ $q^{k-1} \le k \le q^k$ $(k-1) \ln q \le \ln k \le k \ln q$ $\frac{\ln k}{k} \le \ln q \le \frac{\ln k}{k-1}$ 设 $f(x) = \frac{\ln x}{x}$ 则 $f'(x) = \frac{1-\ln x}{x^2}$ $f'(x) = 0$ 时 $x = e$ $x < e$ 时 $f(x)$ 单调递增 $x > e$ 时 $f(x)$ 单调递减 故 $f(x)$ 在 $x = e$ 处取得最大值。 若 x 取整数, $f(2) = \frac{\ln 2}{2} = \ln(\sqrt[6]{8})$, $f(3) = \frac{\ln 3}{3} = \ln(\sqrt[6]{9})$ 故 $f(x)$ 在 $x = 3$ 处取得最大值 即只需 $q \ge \sqrt[3]{3}$, $f(x) \le \ln q$ 恒成立 设 $g(x) = \frac{\ln x}{x-1}$, $f'(x) = \frac{1-\frac{1}{x}-\ln x}{(x-1)^2}$ 记 $h(x) = 1 - \frac{1}{x} - \ln x$, $h'(x) = \frac{1}{x^2} - \frac{1}{x}$ $x > 0$ 时, $x = 1$ 时取得最大值 $h(1) = 0$ 故 $g'(x) \le 0$, $g(x)$ 单调递减 $k \le 3$ 时 $g(x)$ 递减 $f(x)$ 递增 只需 $\sqrt[3]{3} \le q \le \sqrt{3}$,

便有 $f(x) \leqslant f(3) \leqslant \ln q \leqslant g(3) \leqslant g(x)$

k>3后 g(x) 递减, 当 $g(x)<\ln\sqrt[3]{3}$ 时, 不等式在 k=3处不成立

$$\overrightarrow{m} g(5) = \ln(\sqrt[4]{5}) = \ln(\sqrt[12]{125})$$

$$g(6) = \ln(\sqrt[5]{6}) = \ln(\sqrt[15]{216})$$

$$\overrightarrow{\text{m}} \sqrt[3]{3} = \sqrt[12]{81} = \sqrt[15]{243}$$

故 k 最大为 5, 即 m=5