AFL 2023 Mid Sen Solution

- (a) Design an NFAover Σ = {a,b} without λ-transitions and with a single final state that accepts the set:
 - $\{a\} \cup \{b^n : n \ge 2\}.$

(b) Let L1 and L2 be two languages over the same alphabet Σ . Given that L1 and L1.L2 both are regular. Prove or disprove L2 must be regular.

1 mark

Disposit

La: farbn: n > 1} (non-regular)

L1:L2= Ø. {arbn: n > 1}

- Ø (regular).

Jene, L2 must not be regular.

1 mark

(c) What is the length of the shortest string not in the language denoted by the regular expression (ba+a)*(b+ba)*

L. { >, a,b, aa, ab, ba, bb, aaa, aab, aba, abb, baa,
bab, bba, bbb, aaaa, aaab, aaba, aabb, abaa, abab,
abba, abbb, baaa, baab, baba, babb, baa }

Not gerwated

Length of shortest string not in language = 4.

(d) Find a regular expression for the following DFA:

1 mark

Regular Expression-1: 0"1 (0+10"1)"

Regular expression-2: (0+10"1)" 10"

(e) Two regular expressions over the same alphabet are called equivalent if they generate the same language. Find out whether the following two regular expressions are equivalent:

1 mark

(ab*a+ba*b)* and (ab*a)* + (ba*b)*.

Not equivalent.

For instance, a abob $\in \mathcal{L}(ab^*a + ba^*b)^*$.

while a abob $\notin \mathcal{L}(ab^*a)^* + (ba^*b)^*$).

(a) Design a DFA for the following regular language over Σ= {0, 1}.
 L={The set of all strings, interpretated as binary representation of integers, are divisible by 2 but not divisible by 3}.

Let Li= set if all strings are divisible by 2

La= set of all strings are not divisible by 3.

Linea= set of all strings that are divisible by 2

but not divisible by 3.

Divisible by 3.

DFA for Li

DFA for L2

Drafu Linhz

Divisible by 2 but not divisible by 3

(b) Write down the statement of Pumping Lemma for regular languages.

Statement:

1 marie

Let L be an infinite regular language.

Then there exists some tre integer 'p' such that

any string we L with [w] > P can be decomposed as;

$$\omega = xy^{2}$$

$$\omega \text{ with } |xy| \leq P$$
and $|y| \geq 1$

$$\text{such that } |w_{i} = xy^{2}z \in L \text{ for all } i = 0,1,2...$$

3.(a) Design a DFA for the language $L=\{w \in (a+b)^* \mid w \text{ contains equal number of occurrences of the substrings 'ab' and 'ba'}\}$. For example, the string 'ababa' is in the language, whereas 'bbaba' is not in the language.

3 manig

- (b) Write down regular expressions for the following languages:
- i) L = {w ∈ {a, b}* : w starts with 'ab' but does not end with 'ab'}

ab (a+b)* (aa+ba+bb) + aba+abb

ii) L={
$$w \in \{a, b\}^*: n_b(w) \mod 5 > 0$$
}

(a*ba*ba*ba*ba*ba*ba*ba*ba*ba*ba*ba*

ta*ba*ba*ba*ba*)

iii) L={ w ∈ {a, b}* : every 'a' in w is immediately preceded and followed by 'b'} (0.5 mark)

(b+bab)

iv) L={ $w \in \{a, b\}^* : |w| \mod 3 \neq 0$ }

 $((a+b)^3)^*$ $((a+b)+(a+b)^2)$

(a) Consider the DFA $\{\{q0, q1, q2, q3, q4, q5, q6, q7, q8\}, \{a,b\}, \delta, q0, \{q4, q5, q8\}\}$

δ	a	b
q0	q1	q2
q1	q3	q8
q2	q4	q3
q3	q5	q3
q4	q4	q6
q5	q8	q6
q6	q7	q4

Minimize the above DFA and show the indistinguishable states.

Minimization of DFA by stake equivalence method.

0-equivalence: {90,9,92,93,96,97} {94,95,98}

q7

(untd.

1 - equivalence: { 90} {94,95,98} { 91, 96, 97} { 92, 93} 2-equivalence; { 90} { 94,95,98} { 9,} { 96,97} £ 92, 933 3- equivaler a: {ao} { 94, 95, 98 } 29,4 { 91,97} {92,934 (94,95,9g)

9 ndistinguishable staty arc: (92,93),
(96,97)
(94,95,98)

(b) Convert the NFA defined by:

$$\delta(q0, a) = \{q0, q1\}$$

$$\delta(q1, b) = \{q1, q2\}$$

$$\delta(q2, a) = \{q2\}$$

$$\delta(q0, \lambda) = \{q2\}$$

with initial state {q0} and final state {q2} into an equivalent DFA.

8	م	Ь	>	>*
→ Q ₀	{90,91}	1	{92}	{90,92}
91	-	{91,92}	_	{9,3

{92}

· gnitial state of DFA = x (gnitial state of NFA)

	8	a	Ь
×	→{90,92}	90,91,92h	ø
	*{90,91,92}	{90,9,924	(91,92}
	ϕ	Þ	ϕ
	*{91,92}	{92}	{91,924
	* {92}	{923	þ

6. (a) Prove that $L = \{ww^R \mid w \in \Sigma^*\}$ is not regular.	(3 marks)
-> Ossume that given L be regular.	
-> Let 'p' be a puriting length.	
-) Choose string $w = abba'$	
	201
$ \omega = a^p bba^p = 2p+2 >$	
-) Decomposes w	
w'into 3 pam.	
a ^{P-1} a bba ^P	
1) $ xy = (a^{p-1}a) = P \leq P$	
11) 41 - 12 = 1 ≥ 1	
Chavin i 2	- 1
= ap-1 a2 bba' = aptibba	8 4 L.
Hera, it is a contradiction to our as	
· ·	Goves)
(b) Show that regular languages are closed under intersection.	2 mark
Sol-1 AOB = AUB (De Morgan's law).	33434
ANB = AUB (De Morgan's law).	
=> AOB = AUB (Complementing both sides)	
=) AMB = AUB	
4012 = 11012	
= Regular U Regular	
- Regular U Regular Complement & union	\sim
= Regular = Regular (Pour	
	•

Sol-2

Constructive Proof.

where, M= (Q, Z, 81, 90, F1) M2= (R, Z, 82, 80, F2)

We can construct from M, and M2, a combined automaton M= (\hat{a}, \gamma, \hat{b}, (90, \gamma), \hat{F}),

when state set $\hat{Q} = Q \times R$ consists of pairs (9i, 7j) and transition function $\delta((9i,7j), \alpha) = (QK,71)$ whenever, $\delta_1(9i,\alpha) = 9K$

δ₂(«5, α) - «1

F= 9iEF1 and sjEF2

Then, it is simple mather to show that $\omega \in L_1 \cap L_2$ iff it is accepted b \widehat{M} . Consequely, $L_1 \cap L_2$ is regular.

(Proved)

Contd.

Let Li= {ow: w \ \{o,1\}^\} L2= { wo: we{ 0,13 } } ends with o 6- 2 2011/3 Q (2 9,191,92) F1 = {a13 = gitfi and ritfz Farfall L= 4 NL2 = J Starts with o and with of