ECEg 3142: Network Analysis and Synthesis Chapter 8: Filter Design

Chapter 8: Filter design

- 8.0. Introduction
- 8.1. Butterworth approximation
- 8.2 Chebyshev approximation
- 8.3 Comparison b/n Butterworth and Chebyshev approximation methods
- 8.4 Ideal vs. Real Low Pass Filter

8.0. Introduction

lecall a LPF passes LF signals but attenuates signals with frequencies higher han the cutoff frequency.

he magnitude and phase of an ideal LPF is

- $\omega_p \to PB \ edge \ {\rm freq.}$ $\omega_s \to SB \ edge \ freq.$
- $\omega_p < \omega < \omega_s \rightarrow transtion band$
- $\alpha_p \rightarrow Maximum\ PB\ attenuation\ in\ dB$
- $\alpha_s \rightarrow Minimum SB$ attenuation in dB

That is,
$$\alpha \leq \alpha_p$$
, $\omega \leq \omega_p$ and $\alpha \geq \alpha_s$, $\omega \geq \omega_s$

8. . Introduction ...

- The approximation methods solve the problem of selecting a realizable rational function whose frequency response approximates the given specification.
- There are different criterions for closeness of approximation.
- Minimizing the maximum error

$$\varepsilon(\omega) = Max |F(\omega) - T(\omega)|$$

Minimizing the mean square error

$$\varepsilon(\omega) = \int_{\omega_{p1}}^{\omega_{p2}} |F(\omega) - T(\omega)|^2 d\omega$$

8.0. Introduction ...

n all approximation methods the <u>normalized</u> transfer function of the LPF) is selected as

$$|T(j\omega)|^2 = \frac{1}{1 + \varepsilon^2 K_n^2(\omega)}$$

 W th

$$0 \le K_n^2(\omega) << 1, \quad 0 \le \omega \le \omega_p$$

 $K_n^2(\omega) >> 1, \quad \omega \ge \omega_s$

- With this selection, $|T(j\omega)|$ is approximately I in the PB and approximately 0 in the SB.
- From the previous equation, the attenuation function is

$$\alpha(\omega) = 10 \log \left[1 + \varepsilon^2 K_n^2(\omega) \right]$$

8.0. Introduction ...

The constant ε determines the PB and/or SB attenuation.

We will discuss the two well-known methods of filter design.

These are:

Butterworth

Chebyshev

8.

. Butterworth approximation

Butterworth approximation:

minimizes the maximum error

$$\varepsilon(\omega) = Max |F(\omega) - T(\omega)|$$

The error at $\omega = 0$ is zero.

i.e

$$F(0) = T(0)$$

Maximally flat at $\omega=0$.

$$\frac{d}{d\omega}K_n(\omega) = \frac{d^2}{d\omega^2}K_n(\omega) = \dots = \frac{d^{n-1}}{d\omega^{n-1}}K_n(\omega) = 0$$

n Butterworth approximation, $K_n(\omega)$ is selected as

$$K_n(\omega) = \beta_0 + \beta_1 \omega + \beta_2 \omega^2 + \dots + \beta_n \omega^n$$

To be maximally flat, all the derivatives of $K_n(\omega)$ must be

This reduces $K_n(\omega)$ to:

$$K_n(\omega) = \beta_n \omega^n$$

Therefore, the tr. fn and the attenuation function become:

$$\left|T(j\omega)\right|^2 = \frac{1}{1 + c^2 \left(\frac{\omega}{\omega_p}\right)^{2n}}$$

$$\alpha(\omega) = 10 \log \left[1 + c^2 \left(\frac{\omega}{\omega_p} \right)^{2n} \right]$$

Graphically, the gain function is

And the phase function is

the specifications are barely satisfied, we will have:

$$\alpha(\omega_p) = \alpha_p = 10 \log \left[1 + c^2 \left(\frac{\omega_p}{\omega_p} \right)^{2n} \right]$$

$$\alpha_p = 10 \log \left[1 + c^2 \right]$$

$$\alpha(\omega_s) = \alpha_s = 10 \log \left[1 + c^2 \left(\frac{\omega_s}{\omega_p} \right)^{2n} \right]$$

- The factor $k=\frac{\omega_p}{\omega_s}$ is called the **selectivity parameter.** Jsing k, $c^2=10^{-0.1\alpha_p}-1$

$$c^2 = 10^{0.1\alpha_p} - 1$$

$$\frac{c^2}{k^{2n}} = 10^{0.1\alpha_s} - 1$$

$$k_1 = \left[\frac{10^{0.1\alpha_p} - 1}{10^{0.1\alpha_s} - 1} \right]^{\frac{1}{2}}$$

Manipulating the above two equations

$$n = \frac{\log k_1}{\log k}$$

ince n has to be integer, it is selected as the next higher integer

$$n \ge \frac{\log k_1}{\log k}$$

• If $n = \frac{\log k_1}{\log k}$, then c obtained from α_p & α_s will be equal. • If $n = \frac{\log k_1}{\log k}$, then c is chosen to satisfy either α_p or α_s .

Example I

Design a LPF with the following specification

$$\alpha \le 1dB$$
, for $| f \le 3MHz$
 $\alpha \ge 60dB$, for $| f \ge 12MHz$

• Solution:

$$k = \frac{\omega_p}{\omega_s} = 0.25$$

$$k_1 = \left[\frac{10^{0.1\alpha_p} - 1}{10^{0.1\alpha_s} - 1} \right]^{\frac{1}{2}} = \left[\frac{10^{0.1} - 1}{10^6 - 1} \right]^{\frac{1}{2}} = 0.5089 * 10^{-3}$$

$$\log k_1 = -3.2934$$

$$n \ge \frac{\log k_1}{\log k} = \frac{-3.2934}{-0.6021} = 5.4702$$

• Since the filter order n has to be integer, the next higher nteger is taken n = 6

Example I ...

- Since n is not exactly equal to $\frac{\log k_1}{\log k}$, the value of c obtained rom the PB and SB attenuation are different.
- In this case, c can be taken to satisfy either α_p or α_s .
- To satisfy PB requirement

$$c = \sqrt{10^{0.1} - 1} = 0.5089$$

• To satisfy SB requirement

$$c = \sqrt{(0.25)^{12}(10^6 - 1)} = 0.2441$$

• The magnitude function is then

$$|T(j\omega)|^2 = \frac{1}{1 + c^2 \left(\frac{\omega}{\omega_p}\right)^{2n}}$$
$$|T(j\omega)|^2 = \frac{1}{1 + 0.259 \left(\frac{\omega}{\omega_p}\right)^{12}}$$

Example I ...

o obtain the transfer function T(s),

$$|T(j\omega)|^{2} = T(s)T(-s)|_{s=j\omega}$$

$$T(s)T(-s) = |T(j\omega)|^{2}|_{\omega = \frac{s}{j}}$$

- To obtain T(s) from T(s)T(-s), the LHS poles of T(s)T(-s) are aken.
- We find zeros of polynomials of the form sⁿ+a as discussed before.

Example 2

The specifications of a band-pass filter are

$$\alpha_p \le 3 dB$$
 50k rad/s $< \omega < 72k \text{ rad/s}$
 $\alpha_s \le 40 dB$ $\omega < 40k \text{ rad/s}$ $\omega > 120k \text{ rad/s}$

Solution:

- To synthesize BPF with Butterworth appx, we transform to LPF pec. first.
- The band-pass to low-pass transformation is

$$S_n = \frac{\omega_0}{BW} \left(\frac{S}{\omega_0} + \frac{\omega_0}{S} \right)$$

 s_n = the normalized LPF freq. variable

s = the BPF freq. variable

 ω_0 = the center frequency of the BPF

Example 2

Solution: ...

The center frequency and bandwidth of the BPF are

$$\begin{split} \omega_0 &= \sqrt{\omega_{p1}\omega_{p2}} = \sqrt{\omega_{s1}\omega_{s2}} = \sqrt{50krad*72krad} = 60krad/s \\ BW &= \omega_{p2} - \omega_{p1} = 22krad \end{split}$$

Hence, the transformed low - pass specifications are

$$\Omega_{p} = \frac{1}{BW} \frac{\omega_{p}^{2} - \omega_{0}^{2}}{\omega_{p}} = \frac{1}{22} \frac{72^{2} - 60^{2}}{72} = 1$$

$$\Omega_{s} = \frac{1}{BW} \frac{\omega_{s}^{2} - \omega_{0}^{2}}{\omega_{s}} = \frac{1}{22} \frac{120^{2} - 60^{2}}{120} = 4.095$$

The LPF specification becomes

$$\alpha_p \le 3 dB$$
 $\omega < 1$
 $\alpha_s \le 40 dB$ $\omega > 4.095$

Example 2

So ution: ...

• The normalized LPF is then designed using Butterworth appx. as

$$k = \frac{1}{4.095} = 0.2442$$

$$k_1 = \left[\frac{10^{0.3} - 1}{10^4 - 1}\right] = 0.0100$$

and

$$n \ge \frac{\log k_1}{\log k} = 3.27$$
. Let $n = 4$.

Since the attenuation at the pass-band edge is 3dB, c = 1. From Table 10.1 the low-pass transfer function (with $\omega_p = 1$ rad/sec) is

$$T_1(s) = \frac{1}{s^4 + 2.613s^3 + 3.414s^2 + 2.613s + 1}$$

Example 2

Solution: ...

The normalized LPF tr. fn is then transformed to BPF with

$$s_n = \frac{\omega_0}{BW} \left(\frac{s}{\omega_0} + \frac{\omega_0}{s} \right) = 0.0455 * 10^{-3} \frac{s^2 + (60 * 10^3)}{s}$$

- s_n is the normalize low pass filter variable
- s is the band pass filter variable
- Substituting this eqn in the LPF transfer function

$$T_{Bp}(s) = \frac{2.332 \times 100^{17} s^4}{(s^8 + 2.1978 \times 10^4 s^7 + 1.4883 \times 10^{10} s^6 + 2.4795 \times 10^{14} s^5 + 8.1238 \times 10^{19} s^4 + 8.9272 \times 10^{23} s^3 + 1.9259 \times 10^{29} s^2 + 1.0255 \times 10^{28} s + 1.6798 \times 10^{28})$$

- rom the standpoint of obtaining the best approximation to the deal filter characteristic from a polynomial of a given degree, he Butterworth approximation function doesn't do as well.
- This is so as it concentrates all approximating ability of the olynomial at $\omega = 0$, instead of distributing it over the range $0 < \omega < 1$.
- A better result is obtained if we look for a rational function hat distributes the approximation in the range $0 < \omega < 1$.
- This leads to Chebyshev polynomials which are defined as inearly independent solutions of the differential equation.

$$(1 - \omega^2)\ddot{y} - \omega\dot{y} - n^2y = 0$$

Dne of the solutions is

$$y = T_n^2(\omega) = cos(ncosh^{-1}\omega)$$

Using binomial expansion & manipulation leads to the recursive formula for $\frac{1}{n}(w)$

$$T_{n+1}(\omega) = 2\omega T_n(\omega) - T_{n-1}(\omega)$$

 $T_1(\omega) = \omega \quad and \quad T_0(\omega) = 1$

Jsing the recursive formula will lead to the following table

n	$T_n(\omega)$
0	I
- 1	ω
2	2ω²- I
3	4ω³-3ω
4	8ω ⁴ -8ω ² + I
5	I 6ω⁵-20ω³+5ω
6	32ω ⁶ -48ω ⁴ +18ω ² -1

or Chebyshev approximation

$$\left| T(j\omega) \right|^2 = \frac{1}{1 + \varepsilon^2 T_n^2 \left(\frac{\omega}{\omega_p} \right)^{2n}}$$

$$\alpha(\omega) = 10 \log \left[1 + \varepsilon^2 T_n^2 \left(\frac{\omega}{\omega_p} \right)^{2n} \right]$$

the specifications for LPF are barely satisfied,

$$\alpha(\omega_p) = \alpha_p = 10 \log \left[1 + \varepsilon^2 T_n^2 \left(\frac{\omega_p}{\omega_p} \right)^{2n} \right]$$
(noting also $T_n^2(1) = 1$)

$$\alpha_p = 10 \log \left[1 + \varepsilon^2 \right]$$

anl

an

$$\alpha(\omega_s) = \alpha_s = 10 \log \left[1 + \varepsilon^2 T_n^2 \left(\frac{\omega_s}{\omega_p} \right)^{2n} \right]$$

et,
$$\mathcal{E}^2=10^{0.1\alpha_p}-1$$

$$k=\frac{\omega_p}{\omega_s}\quad\text{and}\qquad k_1=\left\lceil\frac{10^{0.1\alpha_p}-1}{10^{0.1\alpha_s}-1}\right\rceil^{\frac{1}{2}}$$

• After mathematical manipulations, the filter order can be hown to be:

$$n \ge \frac{\cosh^{-1} \frac{1}{k_1}}{\cosh^{-1} \frac{1}{k}}$$

• As the filter order has to be an integer, it is taken as the next higher integer if the ratio is not exactly an integer.

$$|H(j\omega)|^2 = 1 + \varepsilon^2 T_n^2(\omega)$$

- The zeroes of H(s)H(-s) appear on a quadrantal symmetry they lien on an ellipse).
- We take the LHS zeros to H(s) and the rest for H(-s).
- t can be shown that the poles of T(s) are given as

$$\Rightarrow s_k = \sigma_k + j\varphi_k, \quad k = 0,1,2,...,2n-1$$

$$\Rightarrow \sigma_{k=} \sinh(v) \sin\left(\frac{2k+1}{2n}\pi\right)$$

$$\Rightarrow \varphi_{k=} \cosh(v) \cos\left(\frac{2k+1}{2n}\pi\right)$$

$$\Rightarrow v = \frac{1}{n} \sinh^{-1} \frac{1}{\varepsilon}$$

• We select the poles on the left hand side of the s plane.

lot of a Chebyshev transfer function is

Example 3

- The specifications of a low-pass filter are
- Pass-band ripple: IdB
- \triangleright Pass-band: $0 < \omega < 1.75$ MHz
- > Stop-band ripple at least 20dB at 2.5MHz and above.

Solution:

$$\varepsilon^2 = 10^{0.1\alpha_p} - 1 = 0.2589$$

 $\varepsilon = 0.5088$

o find filter order

$$k = \frac{\omega_p}{\omega_s} = \frac{1.75}{2.5} , \qquad \frac{1}{k_1} = \left[\frac{10^2 - 1}{10^{0.1} - 1} \right]^{\frac{1}{2}} = 19.56$$
Thus, $n \ge \frac{\cosh^{-1} 19.56}{\cosh^{-1} 1.43} = 4.0914 \implies n = 5$

Thus,
$$n \ge \frac{\cosh^{-1} 19.56}{\cosh^{-1} 1.43} = 4.0914$$
 $\Rightarrow n = 5$

Example 3 ...

o find T(s), we use the poles on the left hand side

$$s_k = \sigma_k + j\psi_k$$

$$\sigma_k = \sinh \nu \sin \left(\frac{2k+1}{2n}\pi\right), k = 0,1,2,...,2n-1$$

$$\psi_k = \cosh \nu \cos \left(\frac{2k+1}{2n}\pi\right)$$

$$\nu = \frac{1}{n} \sinh^{-1} \frac{1}{\varepsilon}$$

• That is σ_k should be negative

$$\implies \frac{2n-1}{2} \le k \le 2n-1$$

Example 3 ...

o find the poles

$$\nu = \frac{1}{n} \sinh^{-1} \frac{1}{\varepsilon} = \frac{1}{5} \sinh^{-1} \frac{1}{0.5088} = 0.2856$$

$$5 \le k \le 9$$

Inserting these values in the equation for finding the zeros,

$$-0.2895$$
, $-0.2342 \pm j0.612$, $-0.0895 \pm j0.9902$

• Then T(s) becomes

$$T(s) = \frac{1}{(s+0.2895)(s+0.2342+j0.612)(s+0.2342-j0.612)(s+0.0895+j0.9902)(s+0.0895-j0.9902)}$$

8.3 Comparison b/n Butterworth and Chebyshev approximation methods

Both produce all-pole transfer functions.

The degree of Chebyshev estimation is always lower than authors of the same specifications.

• Example: The specification of a LPF is

- Pass-band attenuation is IdB, Pass-band edge is I50 k rad/s
- Stop-band attenuation is 60dB, Stop-band edge is 200 k rad/s

• t can be shown that the filter orders are such that:

```
For Butterworth n = 27
```

For Chebyshev n = II

- Thus, the filter order is much lower for Chebyshev appx.
- Chebyshev appx. will have a lower value in the SB as long $c = \epsilon$ and hence better attenuation.
- Butterworth approximation leads to a more linear phase.

8. Comparison b/n Butterworth

Magnitude and phase comparisons:

8.3 Comparison b/n Butterworth

A small pass-band ripple and sharper cut off frequencies cannot be achieved at the same time for both approximations.

8.4 Ideal vs. Real Lowpass Filter

Comparing the ideal LPF with the realizable filter order, the deal LPF spec is the limit as the following three are satisfied.

- Pass-band attenuation approaches zero,
- Stop-band attenuation approaches infinity,
- Transition band approaches zero,
- To approach the ideal LPF, investigate the effect of PB & SB attenuations and transition band on the filter order.

8.4 Ideal vs. Real Lowpass Filter...

Pass-band attenuation vs. filter order

- rom Butterworth filter design, it can be shown as the PB ttenuation is decreased, the filter order increases.
- n the limit as PB attenuation => 0, filter order approaches ∞.

Stpp-band attenuation vs. filter order

- As the SB attenuation is increased, the filter order increases.
- n the limit as the SB attenuation => ∞, filter order
 pproaches ∞.

Transition band vs. filter order

- As the transition band is decreased, the filter order increases.
- n the limit the transition band => 0, the filter order pproaches ∞.