Domanda 1

Risposta non data

Punteggio max.: 1,00

Se

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

Allora:

$$\bigcirc$$
 a. $K_2(A)=rac{4}{3}$.

$$\bigcirc$$
 b. $K_2(A)=4$.

$$\odot$$
 c. $K_2(A)=2$.

La risposta corretta è: $K_2(A)=2.$

Se A è una matrice quadrata n imes n mal condizionata, allora:

- lacksquare a. K(A) è molto grande.
- \bigcirc b. $||A^{-1}||$ è molto grande.
- \bigcirc c. $\left|\left|A\right|\right|_2$ è molto grande.

La risposta corretta è: K(A) è molto grande.

Domanda 3

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia Ax=b un sistema lineare. Quale delle seguenti affermazioni è corretta:

($\Delta x=$ errore su x , $\Delta b=$ errore su b)

- $^{\odot}$ a. $\frac{||\Delta x||}{||x||} \geq ||A||||A^{-1}||\frac{||\Delta b||}{||b||}$
- \bigcirc b. $rac{||x||}{||\Delta x||} \geq ||A||||A^{-1}||rac{||b||}{||\Delta b||}$
- oc. Nessuna delle precedenti.

La risposta corretta è: Nessuna delle precedenti.

×

Sia Ax=b un sistema lineare. Quale delle seguenti affermazioni è corretta:

($\Delta x=$ errore su x , $\Delta b=$ errore su b)

- $^{\odot}$ a. $\frac{||\Delta x||}{||x||} \leq ||A||||A^{-1}||\frac{||\Delta b||}{||b||}$
- \bigcirc b. $rac{||x||}{||\Delta x||} \leq ||A||||A^{-1}||rac{||b||}{||\Delta b||}$
- $\bigcirc \ \mathsf{c.} \quad \overline{\frac{||\Delta b||}{||b||} \leq ||A||||A^{-1}||\frac{||\Delta x||}{||x||}}$

La risposta corretta è: $rac{||\Delta x||}{||x||} \leq ||A||||A^{-1}||rac{||\Delta b||}{||b||}$

Domanda 5

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Dati n+1 punti $\{x_i,y_i\}$, $i=0,\ldots,n$:

- \bigcirc a. Esistono due polinomi di interpolazione di grado $\le n$.
- \odot b. Esiste un solo polinomio di interpolazione di grado $\leq n$.
- \bigcirc c. Esistono infiniti polinomi di interpolazione di grado $\geq n$.

La risposta corretta è: Esiste un solo polinomio di interpolazione di grado $\leq n$.

Sia $\Pi(x)$ il polinomio che interpola i punti $(x_i,f(x_i))$, con $\,i=0,\ldots,n$. Vale:

- \bigcirc a. Se $n o\infty$ dell'errore $\Pi(x)-f(x) o 0$.
- \odot b. Se $n o \infty$ non posso dire niente dell'errore di interpolazione $\Pi(x) f(x)$.
- \odot c. Se $n o \infty$ dell'errore di interpolazione $\Pi(x) f(x) o \infty$.

La risposta corretta è: Se $n o \infty$ non posso dire niente dell'errore di interpolazione $\Pi(x) - f(x)$.

Domanda 7

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^n o\mathbb{R}$ funzione differenziabile strettamente convessa . Vale:

- \bigcirc a. Se $abla f(x^*) = 0$ allora x^* è un punto di massimo globale.
- \bigcirc b. Se $\nabla f(x^*) = 0$ allora x^* è un punto di minimo o massimo globale.
- lacksquare c. Se $abla f(x^*) = 0$ allora x^* è un punto di minimo globale.

La risposta corretta è: Se $abla f(x^*)=0$ allora x^* è un punto di minimo globale.

Domanda 8

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia $f:\mathbb{R}^n o\mathbb{R}$ funzione convessa . Vale:

- lacksquare a. Se $abla f(x^*) = 0$ allora x^* è un punto di minimo locale.
- \bigcirc b. Se $abla f(x^*) = 0$ allora x^* è un punto di minimo globale.
- c. Nessuna delle precedenti.

La risposta corretta è: Se $abla f(x^*)=0$ allora x^* è un punto di minimo globale.

				n
Do	ma	nd	a :	y

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se

$$A = \left[egin{array}{cc} -1 & 1 \ 0 & 3 \end{array}
ight]$$

Allora:

- \bigcirc a. A è simmetrica e definita positiva.
- \bigcirc b. A è simmetrica ma non definita positiva.

La risposta corretta è: A è non simmetrica e definita positiva.

Domanda 10

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Una matrice $U \ n imes n$ è ortogonale se:

- a. Le sue colonne sono vettori ortogonali.
- O b. Le sue righe sono vettori ortonormali.
- o. Le sue colonne sono vettori ortonormali.

La risposta corretta è: Le sue colonne sono vettori ortonormali.

Data la matrice:

$$A = \left[egin{array}{cccc} 1 & 3 & 2 \ -4 & 0 & 3 \ 0 & 1 & -3 \end{array}
ight]$$

La norma 1 di A:

- $\bigcirc \ \text{a.} \ ||A||_1=6.$
- \bigcirc b. $||A||_1=8$.
- \odot c. $||A||_1=7$.

La risposta corretta è: $||A||_1 = 8$.

Domanda 12

Risposta non data

Punteggio max.: 1,00

Se

$$A = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

allora:

- \bigcirc a. La norma-2 di A è $||A||_2=3$.
- \bigcirc b. La norma-2 di A è $||A||_2=0$.
- \bigcirc c. La norma-2 di A è $||A||_2=1$.

La risposta corretta è: La norma-2 di A è $||A||_2=3$.

Domanda 13

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Usando la notazione scientifica normalizzata con base eta=10, se x=0.006, allora:

- a. Nessuna delle precedenti.
- \odot b. La mantissa di x è 0.6 e la parte esponenziale è 10^{-2} .
- \circ c. La mantissa di x è 6 e la parte esponenziale è 10^{-3} .

La risposta corretta è: La mantissa di x è 0.6 e la parte esponenziale è $10^{-2}\,\mathrm{.}$

Siano x = 3.89167 e y = 0.4567.

Quanto vale e z=x+y in $\mathcal{F}(10,5,-5,5)$?

- \odot a. $0.43473 imes 10^{0}$.
- \odot b. 0.43473×10^{1} .
- \odot c. 4.3483×10 .

La risposta corretta è: $0.43473 imes 10^{1}$.

Domanda 15

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(0,0)^T$ e lpha=1, allora:

- \bigcirc a. $x^{(1)}=(1,0)^T$.
- lacksquare b. $x^{(1)} = (-1,0)^T$.
- \circ c. $x^{(1)} = (0,0)^T$.

La risposta corretta è: $x^{(1)} = (-1,0)^T$.

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=e^{x_1}+x_2^2$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(0,0)^T$ e lpha=1, allora:

- a. $x^{(1)} = (-1,0)^T$.
- \circ b. $x^{(1)} = (0,0)^T$.
- \odot c. $x^{(1)}=(-1,2)^T$.

La risposta corretta è: $x^{(1)} = (-1,0)^T$.

Domanda 17

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia A matrice m imes n con (m>n) e rg(A)=k < n, allora il problema lineare ai minimi quadrati $min||Ax-b||_2^2$:

- a. Non ammette soluzioni.
- b. Ha infinite soluzioni.
- ◎ c. Ha una e una sola soluzione.

La risposta corretta è: Ha infinite soluzioni.

Un problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m imes n \quad (m>n)$:

- a. Ha almeno una soluzione.
- b. Ha infinite solizioni.
- oc. Non sempre ha una soluzione.

La risposta corretta è: Ha almeno una soluzione.

Domanda 19

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Ogni matrice A non singolare di dimensioni n imes n è fattorizabile come PA = LR,

- ullet a. $\,$ con P matrice di permutazione, L matrice con tutti 0 sulla diagonale e R triangolare inferiore non singolare.
- \odot b. $\operatorname{con} P$ matrice diagonale, L matrice simmetrica con tutti 1 sulla diagonale e R triangolare superiore non singolare.
- c. entrambe sono errate.

La risposta corretta è: entrambe sono errate.

Usando la fattorizzazione di Cholesky $(A=L\overline{L}^T)$ il sistema Ax=b si puo' risolvere risolvendo:

- \bigcirc a. i due sistemi $\left\{egin{align*} L^Ty = b \ Ly = x \end{array}
 ight.$ $\left\{egin{align*} Ly = b \ L^Tx = y \end{array}
 ight.$
- \odot c. il sistema $L^Tx=b$

La risposta corretta è: i due sistemi $\left\{egin{align*} Ly=b \ L^Tx=y \end{array}
ight.$

Domanda 21

Risposta non data

Punteggio max.: 1,00

Sia

$$A = egin{bmatrix} 4 & 0 & 0 \ rac{1}{2} & rac{1}{2} & 0 \ 0 & -rac{1}{3} & rac{1}{3} \end{bmatrix} b = egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$$

- a. Il metodo di Jacobi è convergente quello di Gauss-Seidel no.
- b. Il metodo di <u>Gauss</u>-Seidel e il metodo di Jacobi non convergono.
- oc. Il metodo di Gauss-Seidel e il metodo di Jacobi convergono.

La risposta corretta è: Il metodo di Gauss-Seidel e il metodo di Jacobi non convergono.

Una matrice di rango r ha esattamente:

- \bigcirc a. r valori singolari =0.
- \bigcirc b. r valori singolari < 0.
- \odot c. r valori singolari ≥ 0 .

La risposta corretta è: r valori singolari ≥ 0 .

Domanda 23

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se Σ è la matrice della decomposizione SVD di A,

$$\Sigma = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

allora:

$$\bigcirc$$
 a. $K_2(A)=rac{1}{2}.$

$$\odot$$
 b. $K_2(A)=1$.

$$\bigcirc$$
 c. $K_2(A)=4$.

La risposta corretta è: $K_2(A) = 1$.

■ LAB5

Vai a...

quiz studenti 22-23 tempo 30 ▶