Problema 3)

Considere: $f: \mathbb{R} \to \mathbb{R}$ (Dato no menor)

$$f(x) = \frac{\sqrt{x-1}}{x}$$

- a) Determinar Dominio e Imagen, despues decir si es sobreyectiva
 - Dominio e Imagen:

Dom
$$f = \{x \in \mathbb{R} / x \neq 0 \land x \geqslant 1\} = \mathbb{R}_{\geqslant 1}$$

Im f = Es un poco mas complicado de determinar.

- Claramente por la presencia de la raiz: $f \ge 0$, el 0 es un valor valido para la imagen pues si $x = 1 \Rightarrow f = 0$.
- Para seguir descubriendo mas de la imagen, recomiendo siempre "despejar" la y $y=\frac{\sqrt{x-1}}{x} \Leftrightarrow x^2y^2=x-1 \Leftrightarrow y^2x^2-x+1=0$

Resuelvo entonces la cuadratica:

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4y^2(1)}}{2y^2} = \frac{1 \pm \sqrt{1 - 4y^2}}{2y^2}$$

- El discriminante me dice algo sobre la imagen: $1-4y^2\geqslant 0 \Leftrightarrow \pm\frac{1}{2}\geqslant y$, recordar sin embargo que $y\geqslant 0$ por lo cual: $\frac{1}{2}\geqslant y$.
- Juntando con lo anterior: $0\leqslant y\leqslant \frac{1}{2}$, es decir: im $f=\left\{y\in\mathbb{R}\,/\,0\leqslant y\leqslant \frac{1}{2}\right\}$
- Grafico de la funcion en cuestion:

- Observe que $y \to 0$ cuando $x \to \infty$ (Proximos practicos)
- Cuando x = 1, y = 0
- Como se indica en el ejercicio: $f: \mathbb{R} \to \mathbb{R}$ y como $\operatorname{Im} f \subset \mathbb{R}$ pero $\operatorname{Im} f \neq \mathbb{R}$ la conclusion es que la funcion no es sobreyectiva.

- b) Mostrar que: $f\left(\frac{b}{b-1}\right) = f(b) \ b > 1$
 - $f(x) = \frac{\sqrt{x-1}}{x} \Rightarrow f\left(\frac{b}{b-1}\right) = \frac{\sqrt{\frac{b}{b-1}-1}}{\frac{b}{b-1}} = \frac{\sqrt{\frac{b-b+1}{b-1}}}{b}(b-1) = \frac{\sqrt{b-1}}{b} = f(b)$
- c) El la funcion inyectiva? Es posible encontrar f^{-1} ?
 - La respuesta sobre la inyectividad es no, y el porque esta en el ejercicio anterior: $f\left(\frac{b}{b-1}\right) = f(b)$
 - Si b=2 tendremos que $\frac{b}{b-1}=b$
 - Si b > 2 luego $1 < \frac{b}{b-1} < 2$
 - Si 1 < b < 2 luego $\frac{b}{b-1} > 2$
 - $\frac{b}{b-1} \rightarrow 1$ cuando $b \rightarrow \infty$
 - $-\frac{b}{b-1}$ describe elementos en el dominio de f.

- Es posible encontrar la inversa si se restringe a alguno de estos dos intervalos:
 - $f: (1,2] \to (0,\frac{1}{2}]$
 - $f: [2, \infty) \rightarrow (0, \frac{1}{2}]$
- No voy a incluir al 1 porque, aunque se que f(1) = 0, el 0 es un valor asintotico para la funcion inversa. Solamente en el limite, cuando $y \to 0$ obtengo y = 1

Extra:

La funcion inversa:

$$x = \frac{1 \pm \sqrt{1 - 4y^2}}{2y^2}$$

Si tomo:

$$y = \frac{\sqrt{x-1}}{x} \Leftrightarrow y^2 = \frac{x-1}{x^2} \Leftrightarrow 1-4y^2 = 1-4\left(\frac{x-1}{x^2}\right) = \frac{x^2-4x+4}{x^2} = \frac{(x-2)^2}{x^2}$$

Entonces:

$$\sqrt{1-4\,y^2} = \frac{(x-2)}{x} \Leftrightarrow x = \frac{1\pm\frac{x-2}{x}}{2\frac{x-1}{x^2}} = \frac{x^2\left(\frac{x\pm(x-2)}{x}\right)}{2(x-1)} = \frac{x(x\pm(x-2))}{2(x-1)}$$

Discriminamos:

$$\frac{x(x \pm (x-2))}{2(x-1)} = \begin{cases} \sin + \Rightarrow \frac{x(2x-2)}{2(x-1)} = x \\ \sin - \Rightarrow \frac{2x}{2(x-1)} = \frac{x}{x-1} \end{cases}$$

Recuerde que: $f\left(\frac{x}{x-1}\right) = f(x)$ para x > 1

