CELLULAR ENGINEERING: COMPUTATIONAL MODELING OF BIOPHYSICAL PROCESSES

Brian Castle

Department of Biomedical Engineering

University of Minnesota

Email: cast0189@umn.edu

Goals for Module 6:

- Introduce some of the basic physical and chemical processes that underlie cellular behaviors
- Give examples of how to approach modeling these intracellular processes
- Demonstrate how predictive models can be integrated with experiments to gain new insights
- Inspire you to further explore these concepts and computational modeling of cellular processes!

We have entered the post-genomic era, giving us the molecular parts list. We now need to build predictive models for cell behavior, so that we can design more effective therapies.

What can we model?

Spindle assembly checkpoint (SAC) signaling pathway

APC/C

Ubiquitylation

Biopolymer assembly dynamics

Musacchio and Salmon, Nat. Rev. Mol. Cell Biol., 2007

Kinetochore

Models must be based in physical and chemical principles

Essential Cellular Processes

- 1. Stuff inside cells has to move around...
 - Thermal energy and diffusion
- Things interact with each other and implement forces...
 - Mechanical forces and energy potentials
- 2. Interactions produce some signal...
 - Chemical reactions and kinetics

Let's do a quick thought experiment...

Diffusion

 Proteins and cells are subject to thermal forces, which are the result of collisions with water and other molecules in the surrounding fluid. As a result they are said to have thermal energy

Thermal energy \rightarrow in units of k_BT , where k_B is Boltzmann's constant and T is temperature

 Forces due to these collisions are randomly directed, and the resulting motion is characterized by frequent changes in direction, called diffusion

$$D = \frac{k_B T}{\gamma}$$
 For a sphere, $\gamma = 6\pi \eta R \leftarrow$ Radius of the sphere

here D is the diffusion coefficient and γ is the drag coefficient

Diffusion as a Random Walk

- Diffusion is a form of random motion that is characterized by frequent, abrupt changes in direction
- Diffusion in the absence of force can be approximated by a random walk

1D Random Walk

Diffusion as a Random Walk

$$X_{1} = X_{0} \pm \delta$$

$$X_{2} = X_{1} \pm \delta$$

$$\vdots$$

$$X_{n} = X_{n-1} \pm \delta$$

Let's simulate it...

Diffusion as a Random Walk

How far is the molecule or protein expected to go in time?

Mean-squared displacement (MSD)

$$\langle X_1^2 \rangle = \langle (X_0 \pm \delta)^2 \rangle = \delta^2$$

$$\langle X_2^2 \rangle = \langle (X_1 \pm \delta)^2 \rangle$$

$$= \langle X_1^2 \pm 2X_1 \delta + \delta^2 \rangle$$

$$= \langle X_1^2 \rangle + \langle \delta^2 \rangle$$

$$= \delta^2 + \delta^2$$

$$= 2\delta^2$$

$$\vdots$$

$$\langle X_2^2 \rangle = n\delta^2$$

If we say

$$t = n\tau$$

then the number of steps in time *t* is given by

$$n = t / \tau$$

and therefore

$$\langle x^2(t)\rangle = \frac{\delta^2}{\tau}t$$

Diffusion coefficient

$$D = \frac{\delta^2}{2\tau}$$
 (from Fick's Law)

then we have

$$\langle x^2(t)\rangle = 2Dt$$

Diffusion as a Random Walk

$$\langle x^2(t) \rangle = 2Dt$$

What if we expand in to multiple dimensions?

In 2-dimensions

$$r^2 = \delta^2 + \delta^2 = 2\delta^2$$

In 3-dimensions

$$r^2 = \delta^2 + \delta^2 + \delta^2 = 3\delta^2$$

therefore we have that

$$\langle r^2(t) \rangle = 2dDt$$
dimensionality

Diffusion in an Energy Potential

- A molecule always tends towards its lowest energy state (whether it is folding conformations or binding interactions)
- The chemical forces that drive biological processes have energies on the order of thermal energy (k_BT), meaning diffusive (random) motions are quite large comparatively, causing molecules to not always be at the lowest energy state
- Boltzmann's law states that if a particle or system is in thermal equilibrium, then the probability of being in state i that has energy U_i is given by

$$p_i = \frac{1}{Z} \exp\left(\frac{-U_i}{k_B T}\right)$$
 where $Z = \sum_i \exp\left(\frac{-U_i}{k_B T}\right)$ and $\sum_i p_i = 1$

Diffusion in an Energy Potential

Where would you expect to find more molecules?

Boltzmann's Law

$$\rho \propto \exp\left(\frac{-U}{k_{\rm\scriptscriptstyle B}T}\right)$$

$$p_1 > p_3 > p_2$$

$$\frac{p_2}{p_1} = \exp\left(\frac{-(U_2 - U_1)}{k_B T}\right) = \exp\left(\frac{-\Delta U}{k_B T}\right)$$

Reaction coordinate (distance)

Macromolecules and Proteins as a Simple Spring

For small extensions, the force-extension relationship of macromolecules and proteins is reasonably approximated by a spring

Macromolecules and Proteins as a Simple Spring

For small extensions, the force-extension relationship of macromolecules and proteins is reasonably approximated by a spring

Bimolecular Reactions

- In addition to mechanical and thermal forces, proteins are also subject to chemical forces, which arise from the formation of intermolecular bonds
- A very important chemical reaction in cell biology is the bimolecular reaction, in which two molecules come together to react or form a complex. A simple case is

Second-order, association rate constant or on-rate (units of
$$M^{-1}s^{-1}$$
)

$$A + B = AB$$

$$k_{-1} = AB$$
First-order, dissociation rate constant or off-rate (units of s^{-1})

Here A and B reversibly associate to form the complex AB.

Bimolecular Reactions

Dissociation constant
$$A + B \xrightarrow{k_1} AB$$

$$\frac{k_{-1}}{k_1} = K_D = \frac{1}{K} = \frac{[A]_{eq}[B]_{eq}}{[AB]_{eq}}$$
Equilibrium constant
$$[B]_{tot}$$

Let's say
$$[B]_{eq} = [B]_{tot} - [AB]_{eq}$$

then
$$K_D = \frac{([B]_{tot} - [AB]_{eq})[A]_{eq}}{[AB]_{eq}}$$

and
$$[AB]_{eq} = \frac{[B]_{tot}[A]_{eq}}{K_D + [A]_{eq}}$$

Reversible Reaction Kinetics

$$A+B \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} AB$$

Often we want to know how the concentration of each component changes in time. For species *A*, it is lost in time due to the forward reaction (binding to *B*) and created by the reverse reaction (unbinding of *AB*)

[A] lost by the forward reaction
$$\frac{d[A]}{dt} = -k_1[A][B] + k_{-1}[AB]$$
[A] created by the reverse reaction
$$\frac{d[A]}{dt} = \frac{d[B]}{dt} = -\frac{d[AB]}{dt}$$

Reversible Reaction Kinetics

$$A+B \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} AB$$

Let's say we add a small pulse of *A* at the beginning of the reaction, and want to know the timescale of *A* converting to *AB* through the forward reaction.

$$\frac{d[A]}{dt} = -k_1[A][B]$$

$$-\frac{1}{k_1[B]} \int \frac{1}{[A]} d[A] = \int dt$$

$$-\frac{1}{k_1[B]} \ln([A]) = t$$

We can solve to get

$$[A](t) = [A]_0 \exp(-k_1[B]t)$$

Enzyme Kinetics

 Enzymes act as biological catalysts, increasing the rate of a chemical reaction by lowering the activation energy between states

 An enzymatic reaction can be thought of as special case of the bimolecular reaction. Here we can think of A being the enzyme (E) and B the substrate (S), while AB is the intermediate that breaks down into the enzyme plus the product (P) such that

$$E+S \stackrel{k_1}{\Longrightarrow} ES \stackrel{k_2}{\longrightarrow} E+P$$
 or $S \stackrel{E}{\longrightarrow} P$

Enzyme Kinetics

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$
or more simply
$$S \xrightarrow{E} P$$

$$\frac{d[P]}{dt} = -\frac{d[S]}{dt} = \frac{V_{\text{max}}[S]}{K_M + [S]} \quad \text{where} \quad V_{\text{max}} = K_2[E]_{tot}$$

This is known as the **Michaelis-Menten equation**. Here K_M is the Michaelis-Menten constant and k_2 is the maximum catalysis rate per enzyme

Models must be based in physical and chemical principles

Essential Cellular Processes

- 1. Stuff inside cells has to move around...
 - Thermal energy and diffusion
- 1. Things interact with each other and implement forces...
 - Mechanical forces and energy potentials
- 2. Interactions produce some signal...
 - Chemical reactions and kinetics

For Thursday...

- Brief introduction to MATLAB and the MATLAB Live environment
 - Make sure you have access to MATLAB ahead of time! An instructional can be found on the Synapse page
- 2. Examples of how to approach simulating the processes discussed today
- 3. Introduction to the Module Activity