FEUILLE D'EXERCICES N°1

Éléments de topologie Calcul sous-différentiel

Exercice 1 – Indicatrices d'ensemble

Module A1, Propositions 2, 6 & 8

Soit $A_1, A_2 \subset \mathcal{X}$ deux ensembles non vides.

(a) Justifier que

- $dom \chi_{\mathcal{A}_1} = \mathcal{A}_1$
- (b) On suppose que A_1 est convexe. Montrer que χ_{A_1} convexe.
- (c) On suppose que A_1 est fermé. Montrer que χ_{A_1} s.c.i.
- (d) Montrer que

$$\chi_{\mathcal{A}_1 \cap \mathcal{A}_2} = \chi_{\mathcal{A}_1} + \chi_{\mathcal{A}_2}$$

À quelle condition dom $\chi_{A_1 \cap A_2}$ est-il non vide?

(e) En déduire que si A_1 et A_2 sont convexes, fermés et non vides, alors $\chi_{A_1 \cap A_2}$ est convexe, s.c.i. et propre.

Exercice 2 – Fonctions continues sur son domaine fermé

Module A1, Proposition 1

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction de domaine fermé non vide. On suppose que J est continue sur son domaine.

- (a) Soit $x^0 \in \text{dom } J$. Montrer que J est s.c.i. en x^0 .
- (b) Soit $x^0 \notin \text{dom } J$. Soit $(x_k)_{k \in \mathbb{N}}$ une suite convergente, de limite x^0 . Montrer que l'ensemble

$$\left\{k \in \mathbb{N} \mid x_k \in \operatorname{dom} J\right\}$$

est fini.

(c) On suppose que dom J est fermé non vide. Montrer que J est s.c.i.

Exercice 3 – Enveloppe supérieure de fonctions convexes s.c.i

Module A1, Propositions 5 & 11

Soit $\mathcal{I} \subset \mathbb{R}$ et $f_i : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe s.c.i. propre pour tout $i \in \mathcal{I}$. On note f l'enveloppe supérieure des f_i . Pour toute fonction $g : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$, on définit

$$\operatorname{epi} g = \left\{ (x, t) \in \mathcal{X} \times \mathbb{R} \mid t \ge g(x) \right\}$$

- (a) Soit $(x,y) \in \text{epi} f$. Montrer que
- $\forall i \in \mathcal{I}, \quad y \geq f_i(x)$

- (b) En déduire que
- $(x,y) \in \operatorname{epi} f \iff (x,y) \in \bigcap_{i \in \mathcal{I}} \operatorname{epi} f_i$
- (c) Justifier que epi f_i est convexe pour tout $i \in \mathcal{I}$.
- (d) Montrer que $\operatorname{epi} f$ est convexe. En déduire que f est convexe.
- (e) Soit $t \in \mathbb{R}$. Vérifier que
- $\left\{ x \in \mathcal{X} \mid t \ge f_i(x) \right\}$

est fermé pour tout $i \in \mathcal{I}$.

- (f) En déduire que $\operatorname{epi} f_i$ est fermé, puis que $\operatorname{epi} f$ est fermé.
- (g) En raisonnant par l'absurde, montrer que f est s.c.i.
- (h) La fonction f est-elle propre?

Exercice 4 – Fonction convexe non continue

On considère la fonction $f: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ définie par

$$\forall x \in \mathbb{R}, \qquad f(x) = \begin{cases} 0 & \text{si } x > 0 \\ 1 & \text{si } x = 0 \\ +\infty & \text{si } x < 0 \end{cases}$$

- (a) Quel est le domaine de f? La fonction f est-elle continue sur dom f?
- (b) Montrer que f est convexe.
- (c) La fonction f est-elle s.c.i.?

Exercice 5 – Caractérisation des fonctions fortement convexes

Module A1, Proposition 13

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction fortement convexe de module α .

(a) Justifier que f est strictement convexe.

Soit $x^0 \in \mathcal{X}$. On introduit la fonction

$$g: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty\} \\ \\ x & \mapsto & f(x) - \frac{\alpha}{2} \|x - x^0\|^2 \end{array} \right.$$

- (b) Montrer que g est convexe. En déduire que toute fonction fortement convexe est la somme d'une fonction convexe et d'une fonction quadratique.
- (c) Montrer que la somme d'une fonction convexe et d'une fonction fortement convexe, de module α , est fortement convexe, de module α .

Exercice 6 – Sous-différentiel de la norme

Soit \mathcal{X} un espace de HILBERT muni d'un produit scalaire noté $\langle \cdot, \cdot \rangle$, de norme associée $\| \cdot \|$.

- (a) Justifier que $\|\cdot\|$ est une fonction convexe.
- (b) Montrer que $\|\cdot\|$ est différentiable sur $\mathcal{X}\setminus\{0\}$, de gradient

$$\forall x \neq 0, \qquad \nabla \| \cdot \|(x) = \frac{x}{\|x\|}$$

- (c) Montrer que tout $p \in \mathcal{X}$ de norme inférieure ou égale à 1 est sous-gradient de $\|\cdot\|$ en 0.
- (d) Montrer que, si ||p|| > 1, alors

$$p \in \partial \|\cdot\|(0) \implies \|p\| \ge \|p\|^2$$

(e) En déduire que le sous-différentiel de la norme $\|\cdot\|$ est la boule unité fermée pour la même norme.

Exercice 7 – Sous-différentiel de la somme de fonctions convexes

Module A2, Proposition 8

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty, -\infty\}$ et $g: \mathcal{X} \to \mathbb{R} \cup \{+\infty, -\infty\}$ deux fonctions convexes telles que dom $f \cap \text{dom } g \neq \emptyset$.

- (a) Montrer que $\forall x \in \text{dom}(f+g), \quad \partial f(x) + \partial g(x) \subset \partial (f+g)(x)$
- (b) On considère la fonction réelle définie par

$$\forall x \in \mathbb{R}, \qquad f(x) = \begin{cases} -\sqrt{x} & \text{si } x \ge 0 \\ +\infty & \text{sinon} \end{cases}$$

Montrer que f est convexe, propre et s.c.i.

(c) Supposons qu'il existe $p \in \partial f(0)$. Justifier que

$$\forall x > 0, \qquad -1 \ge p\sqrt{x}$$

et que p < 0. Montrer que ce n'est pas possible.

- (d) Justifier que la fonction $g = \chi_{]-\infty;0]}$ est convexe, propre et s.c.i. Montrer que $\partial f(0) + \partial g(0) = \emptyset$.
- (e) Vérifier que $\partial(f+g)(0) =]-\infty; +\infty$ [. Conclure.