Lecture 10 - Unsupervised learning deep generative models

DD2424

April 25, 2019

Outline

- Generative Modeling
- Variational Auto Encoders
 - AutoEncoders
 - Variational Approximation
 - Examples
- Generative Adversarial Training
- Other methods

Outline

- Generative Modeling
- Variational Auto Encoders
 - AutoEncoders
 - Variational Approximation
 - Examples
- Generative Adversarial Training
- Other methods

Machine Learning as Input-Output

Machine Learning

Models so far

- Most common setup: Supervised Discriminative Learning
 - Supervised: Correct output (labels) are provided for a set of input examples
 - Discriminative: Directly model the correct output given the input
 - objects given image, pixel-level depth given image, sentiment given a text,
 - Most famous architectures are designed for a supervised discriminative task: AlexNet, Inception, ResNet, FCN, U-Net, LSTM, etc.

Goals

- Generate realistic samples
- Assign likelihood to samples

Goals

- Generate realistic samples
- Assign likelihood to samples

- Machine learning techniques as probabilistic models:
 - Generative Models: $P(\mathbf{x}, y)$ or $P(\mathbf{x})$
 - Discriminative models: $P(y|\mathbf{x})$
 - we get $P(y|\mathbf{x}) = P(\mathbf{x}, y)/P(\mathbf{x})$ in generative models

• Pros:

- Out of distribution samples
- Missing data
- Missing dimensions
- Semi-supervised learning
- Synthetic sample generation

Cons

- Number of data points
- Number of assumptions

 Underlying factors of variations, using simpler lower dimensional hidden variables, z

 z_1 : horizontal location

 z_2 : vertical location

 z_3 : rotation

$$\mathbf{x} \in \mathbb{R}^{32*32}$$

$$\mathbf{z} \in \mathbb{R}^3$$

•
$$P(\mathbf{z}|\mathbf{x})$$
, $P(\mathbf{x}|\mathbf{z})$

•
$$P(\mathbf{x}) = \int P(\mathbf{x}|\mathbf{z};\boldsymbol{\theta})P(\mathbf{z};\boldsymbol{\theta})d\mathbf{z}$$

11

Why are they called Generative models?

Sample from $P(\mathbf{x})$

Sample from $P(\mathbf{x}, y)$

- Sample y from P(y)
- Then sample **x** from $P(\mathbf{x}|y)$

That was the probabilistic approach, do all models do that though?

- Machine learning techniques as applications:
 - Discriminative model: $\underset{y}{\operatorname{argm}} ax \ score(\mathbf{x}, y)$
 - Generative model: $g(\mathbf{z}) \rightarrow \mathbf{x} \sim P(\mathbf{x})$ or $\mathbf{x}, y \sim P(\mathbf{x}, y)$

Deep Generative Models

• Deep networks that can sample $P(\mathbf{x})$ or $P(\mathbf{x}|y)$

• Often through a proxy z of $P(\mathbf{x}|\mathbf{z})$

 We focus on two main families: Variational Auto-Encoders (VAE) and Generative Adversarial Networks (GAN)

Deep Generative Models

we skip the historical methods such as:

- Restricted Boltzmann machines
 - Binary
 - Gaussian-Bernouli
 - DBM
- Deep belief networks

[Ruslan Salakhutdinov, "Learning Deep Generative Models", Annual Review of Statistics and Its Applications, 2015]

Outline

- Generative Modeling
- Variational Auto Encoders
 - AutoEncoders
 - Variational Approximation
 - Examples
- Generative Adversarial Training
- Other methods

Bottleneck Auto-Encoder Networks

$$\mathbf{x}, \hat{\mathbf{x}} \in \mathbb{R}^d$$
 $\mathbf{z} \in \mathbb{R}^p$ $d \gg p$

Bottleneck Auto-Encoder Networks

Ŷ

Loss function

$$L = \sum ||\mathbf{x} - \hat{\mathbf{x}}||^2$$

 $\mathbf{x}, \hat{\mathbf{x}} \in \mathbb{R}^d$

 $\mathbf{z} \in \mathbb{R}^p$

 $d \gg p$

Have you seen that kind of bottleneck networks before?

[Towards Domain Independence for Learning-Based Monocular Depth Estimation]

[SegNet]

What can AEs be used for?

Dimensionality Reduction

Pretraining

Denoising AutoEncoder

Image Inpainting

Dimensionality Reduction

Pretraining

Denoising AutoEncoder

Image Inpainting

Dimensionality Reduction

Pretraining

Denoising AutoEncoder

Image Inpainting

[source: Kirill Eremenko]

Vincent, H. Larochelle Y. Bengio and P.A. Manzagol, "Extracting and Composing Robust Features with Denoising Autoencoders", ICML 2008

Dimensionality Reduction

Pretraining

Denoising AutoEncoder

Image Inpainting

Are Auto-Encoders generative models?

not in principle!

Bengio, Yao, Alain, Vincent, "Generalized Denoising Auto-Encoders as Generative Models", NIPS 2013

Let's make it probabilistic and truly generative!

Kingma, Welling "Auto-Encoding Variational Bayes", ICLR 2013

Outline

- Generative Modeling
- Variational Auto Encoders
 - AutoEncoders
 - Variational Approximation
 - Examples
- Generative Adversarial Training
- Other methods

Variational Approximation

- We are usually dealing with an interactable inference
 - Sampling methods
 - techniques for approximate inference in probabilistic graphical models (e.g. Variational Inference)

KL-Divergence

KL-Divergence

Imagine a set of possible events and their associated probabilities

•
$$x_1 = rainy$$
, $p(x_1) = 0.5$

•
$$x_2 = cloudy$$
, $p(x_2) = 0.4$

•
$$x_3 = sunny$$
, $p(x_3) = 0.1$

Variational Approximation

Information:

$$I_P(x) = -\log P(x) \quad I \in [0, \infty), \quad I(x, y) = I(x) + I(y)$$

Entropy:

$$H(P) = \mathbb{E}_P[I_P(x)]$$
 when is it 0? when is it maximized?

KL-divergence:

$$\begin{aligned} D_{KL}(P \parallel Q) &= \mathbb{E}_{P} \Big[I_{Q}(x) - I_{P}(x) \Big] \\ &= \sum (-\log_{Q}(x) + \log_{P}(x)) P(x) = \sum_{P} P(x) \log_{\frac{P(x)}{Q(x)}} \\ &= \sum_{P} P(x) \log_{Q}(x) + \sum_{P} P(x) \log_{P}(x) \\ &= CE(P, Q) - H(P) \end{aligned}$$

KL-Divergence

Also called "relative entropy"

- is asymmetric! $\sum P(x) \log \frac{P(x)}{Q(x)}$
- defined only if for all i, Q(x) = 0 implies P(x) = 0 (absolute continuity)
- Always non-negative
 - Gibbs inequality: $\sum P(x)logP(x) \ge \sum P(x)logQ(x)$

• We are interested in the true posterior $P(\mathbf{z}|\mathbf{x})$

• Bayes Rule: $P(\mathbf{z}|\mathbf{x}) = \frac{P(\mathbf{x}|\mathbf{z})P(\mathbf{z})}{P(\mathbf{x})}$ but $P(\mathbf{x})$ is intractable

ullet We consider a simple approximate distribution parametrized by $oldsymbol{ heta}$ say $Q_{oldsymbol{ heta}}(\mathbf{z})$

• And try to make them as similar as possible: $\min_{\theta} KL(Q_{\theta}(\mathbf{z})||P(\mathbf{z}|\mathbf{x}))$

• What does it mean?

- The original inference becomes an optimization, and we are good at optimizations!
 - Optimizing parameters of the approximating family of distributions (referred to as variational parameters) for lowest distance between the approximating distribution and the true distribution (KL divergence)

4/25/2019 DD3412 - Lecture 2

KL-Divergence

- Asymmetry in KL divergence KL(P||Q): Intuitively, there are three cases, for an x
 - If P is high and Q is high then we are happy.
 - If P is high and Q is low then we pay a price.
 - If P is low then we don't care (because of the expectation over P(x))

$$\sum P(x) \log \frac{P(x)}{Q(x)}$$

4/25/2019 DD3412 - Lecture 2

Variational Inference

but wait, we didn't have access to the posterior in the first place, how can we optimize a distance to something we don't know then?

4/25/2019 DD3412 - Lecture 2

Variational Inference

$$KL(Q(\mathbf{z})||P(\mathbf{z}|\mathbf{x})) = -\sum_{\mathbf{z}} Q(\mathbf{z}) \log \frac{P(\mathbf{z}|\mathbf{x})}{Q(\mathbf{z})}$$
$$= -\sum_{\mathbf{z}} Q(\mathbf{z}) [\log \frac{P(\mathbf{x}, \mathbf{z})}{Q(\mathbf{z})} - \log P(\mathbf{x})]$$
$$= -\sum_{\mathbf{z}} Q(\mathbf{z}) \log \frac{P(\mathbf{x}, \mathbf{z})}{Q(\mathbf{z})} + \log P(\mathbf{x}) \sum_{\mathbf{z}} Q(\mathbf{z})$$

$$\rightarrow log P(\mathbf{x}) = KL(Q(\mathbf{z})||P(\mathbf{z}|\mathbf{x})) + \sum_{\mathbf{z}} Q(\mathbf{z})log \frac{P(\mathbf{x}, \mathbf{z})}{Q(\mathbf{z})}$$

constant

but, we can maximize this instead!

Variation Inference

• We call $\sum Q(\mathbf{z})log \frac{P(\mathbf{x},\mathbf{z})}{Q(\mathbf{z})}$

 Variational lower bound or evidence lower bound or evidence lower bound or ELBO for short!

Variational Inference

 When we decided on the direction of the KL divergence to minimize, which one would make more sense:

- $KL(Q(\mathbf{z})||P(\mathbf{z}|\mathbf{x}))$ or
- $KL(P(\mathbf{z}|\mathbf{x})||Q(\mathbf{z}))$

But we won't get the nice lower bound anymore

4/25/2019 DD3412 - Lecture 2

How to solve variational approximation

- Assumptions!
- Mean field (factorization of latent varibles)

• EM

•

$$\sum Q(\mathbf{z})log\frac{P(\mathbf{x},\mathbf{z})}{Q(\mathbf{z})}$$

Variational Inference

44

• We want to maximize ELBO given by $\sum Q(\mathbf{z})log \frac{P(\mathbf{x},\mathbf{z})}{Q(\mathbf{z})}$

$$\sum_{\mathbf{Q}(\mathbf{z})} Q(\mathbf{z}) \log \frac{P(\mathbf{x}, \mathbf{z})}{Q(\mathbf{z})} = \sum_{\mathbf{Q}(\mathbf{z})} Q(\mathbf{z}) \log \frac{P(\mathbf{x}|\mathbf{z})P(\mathbf{z})}{Q(\mathbf{z})}$$
$$= \sum_{\mathbf{Q}(\mathbf{z})} Q(\mathbf{z}) [\log P(\mathbf{x}|\mathbf{z}) + \log \frac{P(\mathbf{z})}{Q(\mathbf{z})}]$$
$$= E_{Q(\mathbf{z})} \log P(\mathbf{x}|\mathbf{z}) - KL(Q(\mathbf{z})||P(\mathbf{z}))$$

Variational Inference

$$\max_{\boldsymbol{\theta}} \left(E_{Q_{\boldsymbol{\theta}}(\mathbf{z})} log P(\mathbf{x}|\mathbf{z}) - KL(Q_{\boldsymbol{\theta}}(\mathbf{z})||P(\mathbf{z})) \right)$$

$$\uparrow$$

$$\uparrow$$

$$\mathsf{data\ likelihood}$$
 prior

Variational AutoEncoder

- In VAE **z** is the code
- Assume we model $P(\mathbf{x}|\mathbf{z})$ as a (deterministic) decoder
- Also assume that our approximate Q(z|x) as a probabilistic encoder

VAE

- $E_{Q(\mathbf{z})}logP(\mathbf{x}|\mathbf{z}) KL(Q(\mathbf{z})||P(\mathbf{z}))$
- Now we choose simple/proper form for P(z) and Q(z) for tractability!
 - Gaussian!
 - $P(\mathbf{z}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$
 - $Q(\mathbf{z}|\mathbf{x}) \sim \mathcal{N}(\mu(\mathbf{x}), \Sigma(\mathbf{x}))$
 - $P(\mathbf{x}|\mathbf{z}) \sim \mathcal{N}(\mu(\mathbf{z}), \Sigma(\mathbf{z}))$ or some deterministic $g(\mathbf{x})$

Variational AutoEncoder

But how can we backpropagate through a stochastic node?!

Re-parametrization Trick

• But how can we backpropagate through a stochastic node?!

VAE as generative model

50

- Sample **z** from $\mathcal{N}(\mathbf{0}, \mathbf{1})$
- Then sample \mathbf{x} using from $P(\mathbf{x}|\mathbf{z})$

Outline

- Generative Modeling
- Variational Auto Encoders
 - AutoEncoders
 - Variational Approximation
 - Examples
- Generative Adversarial Training
- Other methods

VAE as generative model

Intuition of Variotional AutoEncoder as a Generative Model

 Learning the original manifold is hard (high dimensional, non-linear, etc.)

• Learn a mapping from the hard distribution to a simple distribution (Encoder)

 Learn a remapping from the simple distribution to actual space (Decoder)

VAE (Example)

VAE (example)

VAE (Example)

DRAW

with attention

without attention

Disentangled Variational AutoEncoder

Probabilistic inference with simple interpretations

• (Slightly) Blurry images

Outline

- Generative Modeling
- Variational Auto Encoders
 - AutoEncoders
 - Variational Approximation
 - Examples
- Generative Adversarial Training
- Other methods

Generative Adversarial Networks

Generative Adversarial Networks (GAN)

Generative: we want to generate samples

Networks: we use deep networks for parametrization of our model

 Adversarial: Two adversary networks – one that generates (fake) samples, one that discriminates between fake and true samples

Adversarial:

• Key is end-to-end learning (backprop):

64

• Key is end-to-end learning (backprop):

Loss function

[openAI]

• KL-divergence:

$$D_{KL}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

• Jensen-Shannon Divergence: $D_{JS}(P||Q) = .5 * D_{KL}(P||^{(P+Q)}/_2) + .5 * D_{KL}(Q||^{(P+Q)}/_2)$

GAN objective

Let's see what objective we optimize in GANs

GAN objective

Let's see what objective we optimize in GANs

- Iterative Alternating Fashion
 - Let both discriminator and generator fiddle against a static version of their adversaries
 - For D: use SGD-like algorithm of choice (Adam) on two minibatches simultaneously:
 - A minibatch of training examples
 - A minibatch of generated samples
 - Loss: $-E_{x\sim P(x)}[log D(x)] E_{z\sim P_z(z)}[log(1-D(G(z)))]$ Type equation here.
 - For G: use SGD-like algorithm of choice (Adam) on one minibatch
 - A minibatch of generated samples
 - Loss: $E_{z \sim P_z(z)} [\log(1 D(G(z)))]$
 - Non-saturating Loss: $-E_{z\sim P_z(z)}[\log(D(G(z)))]$
 - Optional: run k steps of one player for every step of the other player.

Balance of power

[Arjovsky and Bottou, 2017]

71

• Low-dimensional support of both P(x) and $\hat{P}_{\theta}(x)$

D can discriminate all the time!

[Arjovsky&Bottou "TOWARDS PRINCIPLED METHODS FOR TRAINING GENERATIVE ADVERSARIAL NETWORKS"]

- Usually the discriminator "wins"
- This is a good thing—the theoretical justifications are based on assuming D is perfect
- Usually D is bigger and deeper than G
- Sometimes run D more often than G. Mixed results.
- Do not try to limit D to avoid making it "too smart"

Progressive GAN

Karras et al. "Progressive Growing of GANs for Improved Quality, Stability, and Variation", ICLR 2018

Wasserstein GAN

Or Earth Mover's distance

Wasserstein GAN

[Martin Arjovsky1, Soumith Chintala24,-and-Lieon Bottou, "Wasserstein GAN" 2017]]

Wasserstein GAN

- Works better when there is no overlap between true and fake distributions
- Attacks two problems:
 - Stabilizing the training
 - Convergence criteria
- No log in the loss. The output of DD is no longer a probability, hence we do not apply sigmoid at the output of DD
- Clip the weight of DD
- Train DD more than GG
- Use RMSProp instead of ADAM
- Lower learning rate, the paper uses α =0.00005
- Gradient Penalty (Gulrajani et al. 2017)

DC GAN

[Alec Radford, Luke Metz, Soumith Chintala, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016]

DCGAN

LSUN Bedrooms

InfoGAN

Latent-Space

[Redford et al. 2015]

DCGAN

Latent-Space

DCGAN

Latent-Space

Conditional GAN

[Odena et al 2016, Salimans et al. 2106)

Conditional GAN

Conditional GAN

InfoGAN

http://aiden.nibali.org/blog/2016-12-01-implementing-infogan/

Label Smoothing

Default discriminator cost:

```
• cross_entropy(1., discriminator(data))
+ cross_entropy(0., discriminator(samples))
```

One-sided label smoothed cost (Salimans et al 2016):

```
• cross_entropy(.9, discriminator(data))
+ cross_entropy(0., discriminator(samples))
```

- Benefits

- Good regularizer (Szegedy et al 2015)
- Does not reduce classification accuracy, only confidence

- Benefits specific to GANs:

- Prevents discriminator from giving very large gradient signal to generator
- Prevents extrapolating to encourage extreme samples

Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
              Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
 \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                       // mini-batch mean
  \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 // mini-batch variance
   \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                   // normalize
    y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                           // scale and shift
```

BN in GAN

Too much dependence to mini-batch members

Fixed-batch BN in GAN

- Fix a reference batch $R = \{r^{(1)}, r^{(2)}, ..., r^{(m)}\}$
- Given new inputs $X = \{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$
- Compute mean and standard deviation of features of R
 - Note that though R does not change, the feature values change when the parameters change
- Normalize the features of X using the mean and standard deviation from R
- Every $x^{(i)}$ is always treated the same, regardless of which other examples appear in the minibatch

[Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, "Improved Techniques for Training GANs", NIPS 2016]

Mode collapse

 GANs often seem to collapse to far fewer modes than the model can represent

- multiple parallel generators
- share parameters up to layer l
- applies a diversity loss on different generators
- Alternatively, have D predict which generator the fake sample came from!

[Ghosh et al. Multi-Agent Diverse Generative Adversarial Networks (2017)]

Can we combine the ideas of GAN and VAE?

VAE/GAN

Figure 1. Overview of our network. We combine a VAE with a GAN by collapsing the decoder and the generator into one.

Adversarial AutoEncoder

[Makhzani et al. "Adversarial Autoencoders" ICLR 2016]

Figure 1: The structure of Bidirectional Generative Adversarial Networks (BiGAN).

[Jeff Donahue, Philipp Krähenbühl, Trevor Darrell "Adversarial Feature Learning", ICLR 2017]

Adversarial VAE

[Lars Mescheder, Sebastian Nowozin, Andreas Geiger, "Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks", ICML 2018]

General Formulation

[Hu et al. "On Unifying Deep Generation Models", ICLR 2018]

Outline

- Generative Modeling
- Variational Auto Encoders
 - AutoEncoders
 - Variational Approximation
 - Examples
- Generative Adversarial Training
- Other methods

Other topics

- Adversarial Domain Adaptation
 - Coupled GAN [Liu&Tuzel "Coupled generative adversarial networks", NIPS 2016]
 - Cycle GAN [Zhu et al "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks" CVPR 2017]
 - UNIT [Liu et al. "Unsupervised Image to Image Translation Networks" NIPS 2017]
 - Multi Modal UNIT [Huang et al. Multimodal Unsupervised Image-to-Image Translation arXiv 2018]

• Pixel RNN [Oord et al. Pixel Recurrent Neural Networks ICML 2016]

Summary

- Variational AutoEncoder
 - Pretty principled
 - Efficient learning and inference in Sophisticated Bayesian Learning
 - Very useful codes
 - But slightly blurry
- GANs
 - Revolutionary idea
 - Sharp images
 - More difficult to optimize
 - Useful code
- Pixel RNN
 - Very simple and stable training process (softmax loss)
 - Relatively Slow compared to other approaches
 - Codes not so useful
- Combine or new Ideas!