コンピュータ援用論理設計中間課題

4年情報工学科2番

提出者: 4班 池内 隆一郎

提出締め切り: 平成28年6月24日(金)

提出日: 平成28年6月24日(金)

第1章 課題内容

課題内容は、以下に指定する 8bit の CPU を作成し考察することである。 CPU の仕様について表 1 に CPU の命令表を示す。 この仕様通りに 8bit CPU の内部には、ALU、デコーダ、マルチプレクサ 1、マルチプレクサ 2 を作成しそれを一つの回路にまとめ、テストを行い正しく動作しているか確認する。 最終的な入出力仕様は以下の通りである。

入力

- Ain, Bin, Cin, Din (8bit): 各レジスタの出力から与えられる入力
- Carryin (1bit): Carry フラグから与えられる入力
- op (4bit): プログラムカウンタから与えられる機械語

出力

- Aout, Bout, Cout, Dout (8bit): 各レジスタへの出力
- Carryout (1bit):加算器の桁上げの有無

表 1: CPU 命令表

포는 그그 생사	· · · ·		
機械語	命令	op	ニーモック
0000	ADD	A, B	$A \leq A + B$
0001	ADC	A, B	$A \leq A + B + Carry$
0010	SUB	А, В	A <= A - B
0011	MUL	А, В	A <= A * B
0100	AND	А, В	$A \leftarrow A \text{ and } B$
0101	OR	А, В	$A \leftarrow A \text{ or } B$
0110	NOT	A	$A \le not A$
0111	XOR	А, В	$A \leftarrow A \text{ xor } B$
1000	LD	A, B	A <= B
1001	LD	A, C	A <= C
1010	LD	A, D	A <= D
1011	LD	B, A	B <= A
1100	LD	B, C	B <= C
1101	LD	B, D	B <= D
1110	LD	C, A	C <= A
1111	LD	D, A	D <= A

第2章 ALU

ALU の verilog モジュールとテストのソースコード, alu_p44.v, alu_44_tb.v と, 実行結果のタイミングチャートをソースコード 1, ソースコード 2, 図 1 に示す.

```
module alu_pp44(Ain, Bin, Carryin, op, alu_enabled, Carryout, alu_out);
   input [7:0] Ain, Bin;
   input Carryin;
   input [2:0] op;
   input alu_enabled;
   output Carryout;
   output [7:0] alu_out;
   function [7:0] operate;
      input [7:0] Ain;
      input [7:0] Bin;
      input [2:0] op;
      input Carryin;
      input alu_enabled;
      begin
         if (alu_enabled == 1) begin
            case(op)
               3'b000: operate = Ain + Bin;
               3'b001: operate = Ain + Bin + Carryin;
               3'b010: operate = Ain - Bin;
               3'b011: operate = Ain * Bin;
               3'b100: operate = Ain & Bin;
               3'b101: operate = Ain | Bin;
               3'b110: operate = ~Ain;
               3'b111: operate = Ain ^ Bin;
            endcase
         end else operate = Ain;
      end
   endfunction
   function carry;
      input [7:0] Ain;
      input [7:0] Bin;
      input Carryin;
      input [2:0] op;
      begin
         if (alu_enabled == 1 && op == 3'b001) carry = (Ain + Bin
            + Carryin > 8'h80) ? 0 : 1;
      end
   endfunction
   assign alu_out = operate(Ain, Bin, op, Carryin, alu_enabled);
   assign Carryout = carry(Ain, Bin, Carryin, op);
endmodule
```

ソースコード 1 alu_pp44.v

```
module alu_pp44_tb;
    // Inputs
   reg [7:0] Ain;
   reg [7:0] Bin;
   reg Carryin;
   reg [2:0] op;
   reg alu_enabled;
   // Outputs
   wire Carryout;
   wire [7:0] alu_out;
   // Instantiate the Unit Under Test (UUT)
   alu_pp44 uut (
        .Ain(Ain),
        .Bin(Bin),
        .Carryin(Carryin),
        .op(op),
        .alu_enabled(alu_enabled),
        .Carryout(Carryout),
        .alu_out(alu_out)
   );
   initial begin
        // Initialize Inputs
        Ain = 0;
       Bin = 0;
        Carryin = 0;
        op = 0;
        alu_enabled = 0;
        // Wait 100 ns for global reset to finish
        #20 Ain = 25; Bin = 145; Carryin = 0; op = 6; alu_enabled = 0;
        #20 Ain = 251; Bin = 203; Carryin = 0; op = 0; alu_enabled = 1;
        #20 Ain = 21; Bin = 45; Carryin = 1; op = 0; alu_enabled = 1;
        #20 Ain = 248; Bin = 146; Carryin = 0; op = 0; alu_enabled = 1;
        #20 Ain = 31; Bin = 96; Carryin = 1; op = 1; alu_enabled = 1;
        #20 Ain = 57; Bin = 211; Carryin = 1; op = 1; alu_enabled = 1;
        #20 Ain = 78; Bin = 160; Carryin = 0; op = 1; alu_enabled = 1;
        #20 Ain = 13; Bin = 24; Carryin = 0; op = 2; alu_enabled = 1;
        #20 Ain = 189; Bin = 50; Carryin = 1; op = 2; alu_enabled = 1;
       #20 Ain = 123; Bin = 26; Carryin = 0; op = 2; alu_enabled = 1;
        #20 Ain = 117; Bin = 108; Carryin = 1; op = 3; alu_enabled = 1;
        #20 Ain = 126; Bin = 4;
                                  Carryin = 0; op = 3; alu_enabled = 1;
        #20 Ain = 39; Bin = 226; Carryin = 0; op = 3; alu_enabled = 1;
        #20 Ain = 243; Bin = 87;
                                  Carryin = 0; op = 4; alu_enabled = 1;
        #20 Ain = 84; Bin = 16; Carryin = 1; op = 4; alu_enabled = 1;
        #20 Ain = 156; Bin = 53; Carryin = 1; op = 4; alu_enabled = 1;
        #20 Ain = 222; Bin = 237; Carryin = 0; op = 5; alu_enabled = 1;
        #20 Ain = 98; Bin = 44; Carryin = 1; op = 5; alu_enabled = 1;
        #20 Ain = 190; Bin = 24; Carryin = 1; op = 5; alu_enabled = 1;
```

```
#20 Ain = 55; Bin = 200; Carryin = 0; op = 6; alu_enabled = 1; #20 Ain = 186; Bin = 32; Carryin = 1; op = 6; alu_enabled = 1; #20 Ain = 101; Bin = 57; Carryin = 1; op = 6; alu_enabled = 1; #20 Ain = 252; Bin = 234; Carryin = 0; op = 7; alu_enabled = 1; #20 Ain = 11; Bin = 107; Carryin = 1; op = 7; alu_enabled = 1; #20 Ain = 188; Bin = 230; Carryin = 0; op = 7; alu_enabled = 1; #20 $finish; end endmodule
```


図1 alu_pp44 のタイミングチャート

図1の実行結果をまとめ、ALUの実行結果の入出力表を3に示す.

表 2: alu_p44 の入出力表

		入力		г-рээ «Уухида		力
Ain	Bin	Carryin	op	alu_enabled	alu_out	Carryout
25	145	0	6	0	230	不定
251	203	0	0	1	198	不定
21	45	1	0	1	66	不定
248	146	0	0	1	138	不定
31	96	1	1	1	128	1
57	211	1	1	1	13	1
78	160	0	1	1	238	0
13	24	0	2	1	245	0
189	50	1	2	1	139	0
123	26	0	2	1	97	0
117	108	1	3	1	92	0
126	4	0	3	1	248	0
39	226	0	3	1	110	0
243	87	0	4	1	83	0
84	16	1	4	1	16	0
156	53	1	4	1	20	0
222	237	0	5	1	255	0
98	44	1	5	1	110	0
190	24	1	5	1	190	0
55	200	0	6	1	200	0
186	32	1	6	1	69	0
101	57	1	6	1	154	0
252	234	0	7	1	22	0
11	107	1	7	1	96	0
188	230	0	7	1	90	0

ソースコード 1, 2, 図 1, 表 2 について, alu_enabled 端子と ALU が正しく動作していることについて説明する.

● alu_enabled 端子: 全体の回路で1章の表1の命令表の機械語1001が入力された場合, ALU の opsel には001が入力される. ここでもし alu_enabled 端子がなければ, Carryout を書き 換えてしまい前の値を正常に受け継げない. 機械語0001と1001を判別するために, ソースコード1のように alu_enabled 端子を作成しこれにより, Carryout 端子が正常に前の値をそのまま使うように設計した. また, これにより, ALU を使わない場合 (LD 命令を使う場合) に複雑な case 文を通らなくて済むので, 性能の向上を期待することができる.

• ALU が正しく動作しているか:表 2 の実行結果より,以下の式が成り立つので出力が正しいということが確認できる。また, Carryout は前の値を正しく受け継いでいるので ALU は正しく動作している。

```
alu\_out = 25 = \overline{00011001} = 11100110 = 230
alu\_out = 251 + 203 = 11111011 + 11001011 = (1)11000110 = 198
alu\_out = 21 + 45 = 66
alu\_out = 248 + 146 = 11111000 + 10010010 = (1)10001010 = 138
alu\_out = 31 + 96 + 1 == 128
alu\_out = 57 + 211 = 111001 + 11010011 = 00001100 = 100001100 = 12
alu\_out = 78 + 160 = 238
alu\_out = 13 - 24 = 100000000 - 00001011 = 11110101 = 245
alu\_out = 189 - 50 = 139
alu\_out = 123 - 26 = 97
alu\_out = 117 * 108 = 1110101 * 1101100 = (11000) 1010111100 = 92
alu\_out = 126 * 4 = 11111110 * 100 = (1)) 111111000 = 248
alu\_out = 39 * 226 = 100111 * 11100010 = (10001)) 001101110 = 110
alu\_out = 243 and 87 = 11110011 \land 1010111 = 83
alu\_out = 84and16 = 1010100 \land 10000 = 16
alu\_out = 156 and 53 = 100111004 \land 110101 = 10100 = 20
alu\_out = 222 or 237 = 110111110 \lor 11101101 = 111111111 = 255
alu\_out = 98or44 = 1100010 \lor 101100 = 1101110 = 110
alu\_out = 190or24 = 101111110 \lor 11000 = 101111110 = 190
alu\_out = not55 = \overline{110111} = 11001000 = 200
alu\_out = not186 = \overline{10111010} = 1000101 = 69
alu\_out = not101 = \overline{1100101} = 10011010 = 154
alu\_out = 252xor234 = 111111100 \oplus 11101010 = 10110 = 22
alu\_out = 1xor107 = 1 \oplus 1101011 = 1100000 = 96
alu\_out = 188xor230 = 101111100 \oplus 11100110 = 1011010 = 90
```

第3章 デコーダ

デコーダの verilog モジュールとテストのソースコード, op_decode.v, op_decode_tb.v と, 実行 結果のタイミングチャートをソースコード 3, ソースコード 4, \boxtimes 2 に示す.

```
module op_decode(op, op_sel, reg_sel1, reg_sel2, alu_enabled);
    input[3:0] op;
    output[2:0] op_sel;
    output[1:0] reg_sel1, reg_sel2;
    output alu_enabled;
    reg[2:0] op_sel;
    reg[1:0] reg_sel1, reg_sel2;
    reg alu_enabled;
    always @(op) begin
        if (op < 4'b1000) begin
                op_sel <= op;
                reg_sel1 <= 2'b11;
                reg_sel2 <= 2'b10;
                alu_enabled <= 1;
        end else begin
            op_sel <= 0;
            alu_enabled <= 0;
            if (op < 4'b1011) reg_sel1 <= op;
            else begin
                reg_sel1 <= 2'b11;
                if (op < 4'b1110) reg_sel2 <= op;
                else reg_sel2 <= 2'b10;
            end
        end
    end
endmodule
```

ソースコード 3 op_decode.v

```
module op_decode_tb;
     // Inputs
     reg [3:0] op;
     // Outputs
     wire [2:0] op_sel;
     wire [1:0] reg_sel1;
     wire [1:0] reg_sel2;
     wire alu_enabled;
     // Instantiate the Unit Under Test (UUT)
     op_decode uut (
          .op(op),
          .op_sel(op_sel),
          .reg_sel1(reg_sel1),
          .reg_sel2(reg_sel2),
          .alu_enabled(alu_enabled)
     );
     initial begin
          // Initialize Inputs
         op = 0;
          // Wait 100 ns for global reset to finish
          #50 \text{ op} = 4,00000;
          #50 \text{ op} = 4,00001;
          #50 \text{ op} = 4'b0010;
          #50 \text{ op} = 4'b0011;
          #50 \text{ op} = 4'b0100;
          #50 \text{ op} = 4'b0101;
          #50 \text{ op} = 4'b0110;
          #50 \text{ op} = 4,00111;
          #50 \text{ op} = 4'b1000;
          #50 \text{ op} = 4'b1001;
          #50 \text{ op} = 4'b1010;
          #50 \text{ op} = 4'b1011;
          #50 \text{ op} = 4'b1100;
          #50 \text{ op} = 4'b1101;
          #50 \text{ op} = 4'b1110;
         #50 \text{ op} = 4'b1111;
          #50 $finish;
          // Add stimulus here
     end
endmodule
```

ソースコード 4 op_decode_tb.v

250 ns	300 ns	350 ns	400 ns	450 ns	500 ns	550 ns
4	5	6	7	K		
				0	1	k
7	2					
4	(5	(6	7	8	9	k

550 ns	600 ns	650 ns	700 ns	750 ns	800 ns
	(
2			3		
	3	0	(1	(:	2
10	(11)	12	13	14	15

図 2 op_decode のタイミングチャート

図2の実行結果をまとめ、op_decodeの実行結果の入出力表を表3に示す.

表 3: op_decode の入出力表

入力		出力							
op	op_sel	reg_sel1	reg_sel2	alu_enabled					
0000	0	3	2	1					
0001	1	3	2	1					
0010	2	3	2	1					
0011	3	3	2	1					
0100	4	3	2	1					
0101	5	3	2	1					
0110	6	3	2	1					
0111	7	3	2	1					
1000	0	0	2	0					
1001	1	1	2	0					
1010	2	2	2	0					
1011	3	3	3	0					
1100	4	3	0	0					
1101	5	3	1	0					
1110	6	3	2	0					
1111	7	3	2	0					

ソースコード 3, 4, 図 2, 表 3 より、デコーダ (op_decode) が正しく動作していることについて説明する. 第 2 章 ALU で説明した通り、ALU を有効かするかどうかを判定しなければ、Carryoutが正しく動作しないため、alu_enabled 端子を出力端子として作成した. この端子は、命令 (op) の最上位 bit が 0 から始まるのみ 1 を出力し ALU を有効化する. op_sel には、下位 3bit を出力することにより、ALU にどの演算かを伝える. また、reg_sel1、2 には、不定を出力させないために各マルチプレクサーを使わない命令の場合は、そのまま Ain、Bin を、Aout、Bout、へ出力できるようにした. マルチプレクサー 4(reg_sel1) では 3、マルチプレクサー 3(reg_sel2) では 2 を出力することにより、各マルチプレクサを使わない場合に入力をそのまま返すことができる. 転送命令 (LD) の場合は下位 2bit を出力することによりどこから転送するかを決定する. 表 2 より命令 (op) が上位 1bit が 1 の場合は、演算命令なので alu_enabled 端子を High にし、下位 3it をop_sel へ出力し、命令 (op) がマルチプレクサを使う場合は使うマルチプレクサに reg_sel に下位 2bit を出力しているので、デコーダの実行結果は正しく動作していることが確認できる.

第4章 マルチプレクサー

マルチプレクサ mux3, mux4の verilog モジュールとテストのソースコード, mux3.v, mux3.tb.v, mux4.v, mux4.tb.v, それぞれの実行結果のタイミングチャートをソースコード 5, ソースコード 6, ソースコード 7, ソースコード 8, 図 3, 図 4 に示す.

```
module mux3(Ain, Bin, Cin, Din, reg_sel, Bout);
    input [7:0] Ain, Bin, Cin, Din;
    input[1:0] reg_sel;
    output[7:0] Bout;
    function [7:0] select;
        input [7:0] Ain, Bin, Cin, Din;
        input [1:0] reg_sel;
        begin
            case (reg_sel)
                2'b11: select = Ain;
                2'b00: select = Cin;
                2'b01: select = Din;
                2'b10: select = Bin;
            endcase
        end
    endfunction
    assign Bout = select(Ain, Bin, Cin, Din, reg_sel);
endmodule
```

ソースコード 5 mux3.v

```
module mux3_tb;
    // Inputs
    reg [7:0] Ain;
    reg [7:0] Bin;
    reg [7:0] Cin;
    reg [7:0] Din;
    reg [1:0] reg_sel;
    // Outputs
    wire [7:0] Bout;
    // Instantiate the Unit Under Test (UUT)
    mux3 uut (
        .Ain(Ain),
        .Bin(Bin),
        .Cin(Cin),
        .Din(Din),
        .reg_sel(reg_sel),
```

```
.Bout(Bout)
   );
   initial begin
       // Initialize Inputs
       Ain = 0;
       Bin = 0;
       Cin = 0;
       Din = 0;
       reg_sel = 0;
       // Wait 100 ns for global reset to finish
       #20 Ain = 12; Bin = 114; Cin = 18; Din = 27; reg_sel = 0;
       #20 Ain = 196; Bin = 152; Cin = 240; Din = 221; reg_sel = 0;
       #20 Ain = 253; Bin = 241; Cin = 149; Din = 171; reg_sel = 0;
       #20 Ain = 26; Bin = 242; Cin = 75; Din = 228; reg_sel = 1;
       #20 Ain = 108; Bin = 90; Cin = 240; Din = 143; reg_sel = 1;
       #20 Ain = 4;
                     Bin = 195; Cin = 61; Din = 148; reg_sel = 1;
       #20 Ain = 201; Bin = 182; Cin = 158; Din = 203; reg_sel = 2;
       #20 Ain = 26; Bin = 196; Cin = 101; Din = 233; reg_sel = 2;
       #20 Ain = 244; Bin = 182; Cin = 24; Din = 240; reg_sel = 2;
       #20 Ain = 178; Bin = 221; Cin = 111; Din = 31; reg_sel = 3;
       #20 Ain = 209; Bin = 150; Cin = 173; Din = 137; reg_sel = 3;
       #20 Ain = 71; Bin = 173; Cin = 160; Din = 86; reg_sel = 3;
       #20 $finish;
        // Add stimulus here
   end
endmodule
```

ソースコード 6 mux3_tb.v

```
module mux4(Ain, Bin, Cin, Din, reg_sel, Aout);
    input[7:0] Ain, Bin, Cin, Din;
    input[1:0] reg_sel;
    output[7:0] Aout;
    function [7:0] select;
        input [7:0] Ain, Bin, Cin, Din;
        input [1:0] reg_sel;
        begin
            case (reg_sel)
                2'b00: select = Bin;
                2'b01: select = Cin;
                2'b10: select = Din;
                2'b11: select = Ain;
            endcase
        \verb"end"
    endfunction
    assign Aout = select(Ain, Bin, Cin, Din, reg_sel);
endmodule
```

ソースコード7 mux4.v

```
module mux4_tb;
    // Inputs
    reg [7:0] Ain;
    reg [7:0] Bin;
    reg [7:0] Cin;
    reg [7:0] Din;
    reg [1:0] reg_sel;
    // Outputs
    wire [7:0] Aout;
    // Instantiate the Unit Under Test (UUT)
    mux4 uut (
        .Ain(Ain),
        .Bin(Bin),
        .Cin(Cin),
        .Din(Din),
        .reg_sel(reg_sel),
        .Aout(Aout)
    );
    initial begin
        // Initialize Inputs
        Ain = 0;
        Bin = 0;
        Cin = 0;
        Din = 0;
        reg_sel = 0;
        // Wait 100 ns for global reset to finish
```

```
#20 Ain = 12; Bin = 114; Cin = 18; Din = 27; reg_sel = 0;
#20 Ain = 196; Bin = 152; Cin = 240; Din = 221; reg_sel = 0;
#20 Ain = 253; Bin = 241; Cin = 149; Din = 171; reg_sel = 0;

#20 Ain = 26; Bin = 242; Cin = 75; Din = 228; reg_sel = 1;
#20 Ain = 108; Bin = 90; Cin = 240; Din = 143; reg_sel = 1;
#20 Ain = 4; Bin = 195; Cin = 61; Din = 148; reg_sel = 1;
#20 Ain = 201; Bin = 182; Cin = 158; Din = 203; reg_sel = 2;
#20 Ain = 26; Bin = 196; Cin = 101; Din = 233; reg_sel = 2;
#20 Ain = 244; Bin = 182; Cin = 24; Din = 240; reg_sel = 2;
#20 Ain = 244; Bin = 182; Cin = 111; Din = 31; reg_sel = 3;
#20 Ain = 209; Bin = 150; Cin = 173; Din = 137; reg_sel = 3;
#20 Ain = 71; Bin = 173; Cin = 160; Din = 86; reg_sel = 3;
#20 $finish;
// Add stimulus here

end
endmodule
```

ソースコード 8 mux4_tb.v

Name	0 ns	20 ns	40 ns	60 ns
▶ 🌃 Bout[7:0]	0	18	240	149
Min[7:0]	0	12	196	253
▶ 🥌 Bin[7:0]	0	114	152	241
► 🥁 Cin[7:0]	0	18	240	149
▶ 🥁 Din[7:0]	0	27	221	171
▶ 🧃 reg_sel[1:0]			0	

80 ns	100 ns	120 ns	140 ns	160 ns
228	143	148	182	196
26	108	4	201	(26)
242	90	195	182	196
75	240	61	158	101
228	143	148	203	233
	1			2

180 ns	200 ns	220 ns	240 ns
182	178	209	71
244	178	209	71
182	221	150	173
24	111	173	160
240	31	137	86
		3	

図3 mux3のタイミングチャート

図4 mux4のタイミングチャート

図3の実行結果をまとめ、mux3の実行結果の入出力表を表4に示す.

表 4: mux3 実行結果の入出力表

	. 4. 111	入力		<u> Солусту</u>	出力
Ain	Bin	Cin	Din	reg_sel	Bout
12	114	18	27	0	18
196	152	240	221	0	240
253	241	149	171	0	149
26	242	75	228	1	228
108	90	240	143	1	143
4	195	61	148	1	148
201	182	158	203	2	182
26	196	101	233	2	196
244	182	24	240	2	182
178	221	111	31	3	178
209	150	173	137	3	209
71	173	160	86	3	71

図4の実行結果をまとめ、mux4の実行結果の入出力表を表5に示す.

表 5: mux4 実行結果の入出力表

	入力								
Ain	Bin	Cin	Din	reg_sel	Aout				
12	114	18	27	0	114				
196	152	240	221	0	152				
253	241	149	171	0	241				
26	242	75	228	1	75				
108	90	240	143	1	240				
4	195	61	148	1	61				
201	182	158	203	2	203				
26	196	101	233	2	233				
244	182	24	240	2	240				
178	221	111	31	3	178				
209	150	173	137	3	209				
71	173	160	86	3	71				

ソースコード 5, 6, 7, 8, 図 3, 図 4, 表 4, 表 5 より, マルチプレクサー (mux3, mux4) が正しく動作していることについて説明する. mux4 は第 1 章表 1 の CPU 命令表の 1000 から 1010, mux3 は 1011 から 1100 の範囲で Aout, Bout に命令表通りに Ain, Bin, Cin, Din を出力する. ここで, Aout, Bout の出力が不定になってしまうのを避けるために mux4 では reg_sel が 11 のとき, mux3 では reg_sel が 10 のときに Ain, Bin を Aout, Bout にそのまま出力する. またこれにより入力する値を変える, つまり, 回路をのつなぐ端子を変えることによって, mux4 は mux3 の動作を, または逆に mux3 を mux4 の動作をすることができるため, mux4, mux3 のどちらかだけでマルチプレクサーを表現することができる. 表 4 より, mux3 は reg_sel が, 0 のときは Cin の値, 1 のときは Din の値, 2 のときは Bin の値, 3 のときは Bin の値が Aout に出力されていることが確認することができる. 表 5 より, mux4 は reg_sel が, 0 のときは Bin の値, 1 のときは Cin の値, 2 のときは Din の値, 3 のときは Ain の値が Aout に出力されていることが確認することができる. これよりマルチプレクサーは正しく動作していることが確認することができる.

第5章 8bitCPU

 cpu_comb の verilog モジュールとテストのソースコード, $cpu_comb.v$, $cpu_comb_b.v$, 実行結果のタイミングチャートをソースコード 9, ソースコード 10, 図 5 に示す.

```
module cpu_comb(Ain,
                     Bin, Cin, Din, Carryin, op,
                     Aout, Bout, Cout, Dout, Carryout);
    input [7:0] Ain, Bin, Cin, Din;
    input Carryin;
    input [3:0] op;
    output [7:0] Aout, Bout, Cout, Dout;
    output Carryout;
    wire [2:0] op_sel;
    wire [1:0] reg_sel1, reg_sel2;
    wire [7:0] alu_out;
    wire alu_enabled;
    op_decode decoder (op, op_sel, reg_sel1, reg_sel2, alu_enabled);
    alu_pp44 alu (.Ain(Ain), .Bin(Bin), .Carryin(Carryin), .op(op),
        .alu_enabled(alu_enabled), .Carryout(Carryout), .alu_out(alu_out));
    mux4 m4 (.Ain(alu_out), .Bin(Bin), .Cin(Cin), .Din(Din),
        .reg_sel(reg_sel1), .Aout(Aout));
    mux3 m3 (.Ain(alu_out), .Bin(Bin), .Cin(Cin), .Din(Din),
        .reg_sel(reg_sel2), .Bout(Bout));
    assign Cout = (op == 4'b1110) ? Ain : Cin;
    assign Dout = (op == 4'b1111) ? Ain : Din;
endmodule
```

ソースコード 9 cpu_comb.v

```
module cpu_comb_tb;

// Inputs
    reg [7:0] Ain;
    reg [7:0] Bin;
    reg [7:0] Cin;
    reg [7:0] Din;
    reg Carryin;
    reg [3:0] op;

// Outputs
    wire [7:0] Aout;
    wire [7:0] Cout;
```

```
wire [7:0] Dout;
wire Carryout;
// Instantiate the Unit Under Test (UUT)
cpu_comb uut (
    .Ain(Ain),
    .Bin(Bin),
    .Cin(Cin),
    .Din(Din),
    .Carryin(Carryin),
    .op(op),
    .Aout(Aout),
    .Bout(Bout),
    .Cout(Cout),
    .Dout(Dout),
    .Carryout(Carryout)
);
initial begin
    // Initialize Inputs
    Ain = 0;
    Bin = 0;
    Cin = 0;
   Din = 0;
   Carryin = 0;
   op = 0;
   // Wait 100 ns for global reset to finish
    \#10 Ain = 101; Bin = 58; Cin = 83; Din = 87; Carryin = 0; op = 0;
    #10 Ain = 230; Bin = 37; Cin = 242; Din = 51; Carryin = 0; op = 0;
    #10 Ain = 153; Bin = 2;
                             Cin = 176; Din = 33;
                                                   Carryin = 0; op = 0;
    #10 Ain = 11; Bin = 182; Cin = 13; Din = 65;
                                                   Carryin = 1; op = 0;
                 Bin = 204; Cin = 228; Din = 220; Carryin = 0; op = 1;
    #10 Ain = 0;
    #10 Ain = 70; Bin = 60; Cin = 71; Din = 75; Carryin = 1; op = 1;
    #10 Ain = 151; Bin = 92; Cin = 224; Din = 8; Carryin = 1; op = 1;
   #10 Ain = 117; Bin = 183; Cin = 108; Din = 56; Carryin = 0; op = 1;
    #10 Ain = 181; Bin = 155; Cin = 244; Din = 225; Carryin = 1; op = 2;
    #10 Ain = 188; Bin = 8; Cin = 110; Din = 220; Carryin = 0; op = 2;
    #10 Ain = 237; Bin = 17; Cin = 240; Din = 237; Carryin = 0; op = 2;
    #10 Ain = 179; Bin = 170; Cin = 231; Din = 210; Carryin = 1; op = 2;
    #10 Ain = 214; Bin = 52; Cin = 96; Din = 97; Carryin = 1; op = 3;
                                        Din = 175; Carryin = 0; op = 3;
    #10 Ain = 194; Bin = 77; Cin = 82;
    \#10 Ain = 57; Bin = 198; Cin = 24; Din = 124; Carryin = 0; op = 3;
    #10 Ain = 227; Bin = 86; Cin = 185; Din = 228; Carryin = 0; op = 3;
    #10 Ain = 236; Bin = 182; Cin = 61; Din = 119; Carryin = 0; op = 4;
    #10 Ain = 59; Bin = 168; Cin = 54; Din = 152; Carryin = 0; op = 4;
    #10 Ain = 98; Bin = 19; Cin = 203; Din = 180; Carryin = 0; op = 4;
    #10 Ain = 200; Bin = 250; Cin = 243; Din = 89; Carryin = 1; op = 4;
    \#10 Ain = 202; Bin = 173; Cin = 54; Din = 35; Carryin = 0; op = 5;
    #10 Ain = 39; Bin = 23; Cin = 91; Din = 87; Carryin = 1; op = 5;
    #10 Ain = 217; Bin = 74; Cin = 152; Din = 104; Carryin = 1; op = 5;
    #10 Ain = 71; Bin = 179; Cin = 103; Din = 174; Carryin = 1; op = 5;
```

```
#10 Ain = 46; Bin = 244; Cin = 113; Din = 230; Carryin = 1; op = 6;
        #10 Ain = 209; Bin = 49; Cin = 50; Din = 204; Carryin = 0; op = 6;
        #10 Ain = 96; Bin = 225; Cin = 170; Din = 28; Carryin = 1; op = 6;
        #10 Ain = 152; Bin = 238; Cin = 221; Din = 142; Carryin = 1; op = 6;
        #10 Ain = 175; Bin = 206; Cin = 201; Din = 110; Carryin = 1; op = 7;
        \#10 Ain = 16; Bin = 26; Cin = 106; Din = 150; Carryin = 0; op = 7;
        \#10 Ain = 123; Bin = 253; Cin = 186; Din = 186; Carryin = 0; op = 7;
        #10 Ain = 85; Bin = 133; Cin = 59; Din = 182; Carryin = 1; op = 7;
        #10 Ain = 122; Bin = 33; Cin = 217; Din = 225; Carryin = 1; op = 8;
        #10 Ain = 49; Bin = 63; Cin = 65; Din = 237; Carryin = 0; op = 8;
        #10 Ain = 248; Bin = 195; Cin = 36; Din = 114; Carryin = 1; op = 8;
        #10 Ain = 155; Bin = 206; Cin = 101; Din = 189; Carryin = 0; op = 8;
       #10 Ain = 170; Bin = 150; Cin = 239; Din = 179; Carryin = 0; op = 9;
        #10 Ain = 229; Bin = 179; Cin = 57; Din = 46; Carryin = 0; op = 9;
        #10 Ain = 236; Bin = 149; Cin = 83; Din = 99; Carryin = 0; op = 9;
        #10 Ain = 113; Bin = 52; Cin = 6;
                                              Din = 119; Carryin = 1; op = 9;
        #10 Ain = 237; Bin = 204; Cin = 161; Din = 223; Carryin = 0; op = 10;
       #10 Ain = 24; Bin = 181; Cin = 91; Din = 183; Carryin = 0; op = 10; #10 Ain = 44; Bin = 174; Cin = 185; Din = 45; Carryin = 0; op = 10;
        #10 Ain = 84; Bin = 127; Cin = 145; Din = 187; Carryin = 0; op = 10;
        #10 Ain = 3; Bin = 236; Cin = 208; Din = 147; Carryin = 1; op = 11;
        #10 Ain = 90; Bin = 194; Cin = 197; Din = 225; Carryin = 0; op = 11;
        #10 Ain = 63; Bin = 92; Cin = 33; Din = 194; Carryin = 0; op = 11;
        #10 Ain = 204; Bin = 189; Cin = 203; Din = 129; Carryin = 1; op = 11;
        #10 Ain = 142; Bin = 192; Cin = 105; Din = 238; Carryin = 1; op = 12;
        #10 Ain = 188; Bin = 228; Cin = 142; Din = 10; Carryin = 0; op = 12;
        #10 Ain = 50; Bin = 35; Cin = 171; Din = 197; Carryin = 0; op = 12;
        #10 Ain = 119; Bin = 26; Cin = 148; Din = 47; Carryin = 0; op = 12;
        \#10 Ain = 13; Bin = 181; Cin = 52; Din = 139; Carryin = 1; op = 13;
       #10 Ain = 198; Bin = 2; Cin = 129; Din = 86; Carryin = 0; op = 13; #10 Ain = 230; Bin = 158; Cin = 157; Din = 55; Carryin = 0; op = 13;
       #10 Ain = 233; Bin = 54; Cin = 57; Din = 168; Carryin = 0; op = 13;
       #10 Ain = 187; Bin = 149; Cin = 107; Din = 212; Carryin = 0; op = 14;
        #10 Ain = 52; Bin = 143; Cin = 90; Din = 29; Carryin = 0; op = 14;
        #10 Ain = 53; Bin = 177; Cin = 220; Din = 40; Carryin = 0; op = 14;
        #10 Ain = 206; Bin = 85; Cin = 238; Din = 41; Carryin = 0; op = 14;
        \#10 Ain = 23; Bin = 76; Cin = 32; Din = 246; Carryin = 0; op = 15;
        #10 Ain = 248; Bin = 197; Cin = 56; Din = 252; Carryin = 1; op = 15;
        #10 Ain = 206; Bin = 31; Cin = 55; Din = 115; Carryin = 0; op = 15;
        #10 Ain = 218; Bin = 235; Cin = 93; Din = 29; Carryin = 0; op = 15;
        #10 $finish;
        // Add stimulus here
   end
endmodule
```

ソースコード 10 cpu_comb_tb.v

Name	0 ns	20 ns	40 ns	60 ns	80 ns	100 ns
▶ 🌃 Aout[7:0]	0 \ 159	11 (155	193 204	131 244	44 / 26	180
▶ ■ Bout[7:0]	0 (58	37 (2	182 204	60 (92	183 155	(8)
▶ ■ Cout[7:0]	0 \ 83	242 / 176	13 228	71 224	108 244	110
Dout[7:0]	0 \ 87	51 33	65 220	75 8	56 225	220
🖟 Carryout						
Ain[7:0]	0 \ 101	230 / 153	11 \ 0	70 \ 151	117 181	188
Bin[7:0]	0 \ 58	37 / 2	182 204	60 / 92	183 155	8
Cin[7:0]	0 \ 83	242 / 176	13 228	71 224	108 244	110
Din[7:0]	0 \ 87	51 (33	65 220	75 (8	56 225	220
🌆 Carryin						
▶ 5 op[3:0]		0	X	1	X	2

100 ns		120 ns		140 ns		160 ns		180 ns		200 ns		220 ns
180	220	9	120	90	22	66	164	40	2	200 X	239	55
8	17	170	52	77 (198	86	182	168	19	250	173	23
110	240	231	96	82	24	185	61	54	203	243 X	54	91
220	237	210	97	175	124	228	119	152	180	89 X	35	87
188	237	179	214	194	57	227	236	59	98	200 X	202	39
8	17	170	52	77	198	86	182	168	19	250 X	173	23
110	240	231	96	82	24	185	61	54	203	243 X	54	91
220	237	210	97	175	124	228	119	152	180	89 X	35	87
2	2			3				4	1	X		5

	240 ns	260 ns	280 ns	300 ns	320 ns	340 ns
219	247 209	46 (159	103 (97	10 (134	208 (33	63 \(
74	179 244	49 (225	238 206	26 253	133 33	63 (
152	103 / 113	50 (170	221 201	106 (186	59 217	65 (
104	174 230	204 (28	142 / 110	150 \ 186	182 225	237 \(
217	71 \ 46	209 (96	152 (175	16 (123	85 122	49 \
74	179 244	49 (225	238 (206)	26 (253	133 (33	63 (
152	103 / 113	50 (170	221 (201)	106 (186	59 217	65 (
104	174 230	204 (28	142 (110	150 (186	182 225	237 \(
5	X	6	X	7	X	8

Name	340 ns	360 ns	380 ns	400 ns	420 ns
▶ 🌃 Aout[7:0]	63 \ 195	206 239	57 🔀 83	6 (223	183 \ 45
▶ 👹 Bout[7:0]	63 \ 195	206 150	179 \ 149	52 204	181 / 174
▶ 🌃 Cout[7:0]	65 36	101 239	57 🔀 83	6 (161	91 \ 185
▶ ■ Dout[7:0]	237 \ 114	189 179	46 99	119 223	183 \ 45
la Carryout					
▶ I Ain[7:0]	49 248	155 170	229 236	113 237	24 \ 44
Bin[7:0]	63 195	206 150	179 \ 149	52 204	181 / 174
▶ 🚮 Cin[7:0]	65 36	101 239	57 83	6 (161	91 (185
Din[7:0]	237 \ 114	189 179	46 99	119 223	183 \ 45
🔚 Carryin					
▶ 🚮 op[3:0]	8	X	9	X	10

1440 ns	1460 ns	1480 ns	500 ns	520 ns	540 ns
187 (3	90 (63	204 / 142	188 (50	119 (13	198 230
127 3	90 (63	204 (105	142 171	148 (139	86 (55
145 208	197 33	203 (105	142 171	148 52	129 / 157
187 147	225 194	129 238	10 197	47 (139	86 \ 55
84 3	90 (63	204 142	188 50	119 (13	198 230
127 236	194 / 92	189 192	228 (35	26 (181	2 (158
145 208	197 33	203 (105	142 171	148 52	129 (157
187 147	225 (194	129 238	10 197	47 (139	86 (55
$\overline{}$	11	X	12	X	13

560 ns	580 ns	600 ns	620 ns	640 ns	660 ns	680 ns
233 (187	52 53	206 23	248 206	K	218	
168 149	143 (177	85 76	197 31	*	235	
57 187	52 53	206 32	56 55	*	93	
168 212	29 (40	41 23	248 206	*	218	
233 187	52 53	206 23	248 206	K	218	
54 149	143 (177	85 76	197 31	*	235	
57 107	90 220	238 32	56 55	*	93	
168 212	29 (40	41 246	252 115	*	29	
X	14	Х		15		

図 5 cpu_comb のタイミングチャート

図 5 の実行結果をまとめ、cpu_comb の実行結果の入出力表を表 6 に示す.

表 6: mux4 実行結果の入出力表

入力						出力				
Ain	Bin	Cin	Din	Carryin	op	Aout	Bout	Cout	Dout	Carryout
101	58	83	87	0	0	159	58	83	87	不定
230	37	242	51	0	0	11	37	242	51	不定
153	2	176	33	0	0	155	2	176	33	不定
11	182	13	65	1	0	193	182	13	65	不定
0	204	228	220	0	1	204	204	228	220	0
70	60	71	75	1	1	131	60	71	75	0
151	92	224	8	1	1	244	92	224	8	0
117	183	108	56	0	1	44	183	108	56	1
181	155	244	225	1	2	26	155	244	225	1
188	8	110	220	0	2	180	8	110	220	1
237	17	240	237	0	2	220	17	240	237	1
179	170	231	210	1	2	9	170	231	210	1
214	52	96	97	1	3	120	52	96	97	1
194	77	82	175	0	3	90	77	82	175	1
57	198	24	124	0	3	22	198	24	124	1
227	86	185	228	0	3	66	86	185	228	1
236	182	61	119	0	4	164	182	61	119	1
59	168	54	152	0	4	40	168	54	152	1
98	19	203	180	0	4	2	19	203	180	1
200	250	243	89	1	4	200	250	243	89	1
202	173	54	35	0	5	239	173	54	35	1
39	23	91	87	1	5	55	23	91	87	1
217	74	152	104	1	5	219	74	152	104	1
71	179	103	174	1	5	247	179	103	174	1
46	244	113	230	1	6	209	244	113	230	1
209	49	50	204	0	6	46	49	50	204	1
96	225	170	28	1	6	159	225	170	28	1
152	238	221	142	1	6	103	238	221	142	1
175	206	201	110	1	7	97	206	201	110	1
16	26	106	150	0	7	10	26	106	150	1
123	253	186	186	0	7	134	253	186	186	1
85	133	59	182	1	7	208	133	59	182	1
122	33	217	225	1	8	33	33	217	225	1
49	63	65	237	0	8	63	63	65	237	1
248	195	36	114	1	8	159	195	36	114	1
155	206	101	189	0	8	206	206	101	189	1
170	150	239	179	0	9	239	150	239	179	1
229	179	57	46	0	9	57	179	57	46	1

入力							出力				
Ain	Bin	Cin	Din	Carryin	op	Aout	Bout	Cout	Dout	Carryout	
236	149	83	99	0	9	83	149	83	99	1	
113	52	6	119	1	9	6	52	6	119	1	
237	204	161	223	0	10	223	204	161	223	1	
24	181	91	183	0	10	183	181	91	183	1	
44	174	185	45	0	10	45	174	185	45	1	
84	127	145	187	0	10	187	127	145	187	1	
3	236	208	147	1	11	3	3	208	147	1	
90	194	197	225	0	11	90	90	197	225	1	
63	92	33	194	0	11	63	63	33	194	1	
204	189	203	129	1	11	204	204	203	129	1	
142	192	105	238	1	12	142	105	105	238	1	
188	228	142	10	0	12	188	142	142	10	1	
50	35	171	197	0	12	50	171	171	197	1	
119	26	148	47	0	12	119	148	148	47	1	
13	181	52	139	1	13	13	139	52	139	1	
198	2	129	86	0	13	198	86	129	86	1	
230	158	157	55	0	13	230	55	157	55	1	
233	54	57	168	0	13	233	54	57	168	1	
187	149	107	212	0	14	187	149	187	212	1	
52	143	90	29	0	14	52	143	52	29	1	
53	177	220	40	0	14	53	177	53	40	1	
206	85	238	41	0	14	206	85	206	41	1	
23	76	32	246	0	15	23	76	32	23	1	
248	197	56	252	1	15	248	197	56	248	1	
206	31	55	115	0	15	206	31	55	206	1	
218	235	93	29	0	15	218	235	93	218	1	

ソースコード 9, 10, 図 5, 表 6, より, 8bitCPU(cpu_comb) が正しく動作していることについて説明する。まず, 演算命令の部分は以下の式が成り立つことにより Aout に演算結果が出力されていることが確認することができる。また,Aout 以外の出力端子は,Bout,Cout,Dout には,Bin,Cin,Din をそのまま出力し,Carryout には ADC 命令以外は前の出力をそのまま出力し,ADC 命令時にはキャリーなら High が出力されていることが確認できる。また,転送命令は,命令 (op) が 1000 のとき Aout に Bin を,命令 (op) が 1001 のとき Aout に Cin を,命令 (op) が 1010 のとき Aout に Din を,命令 (op) が 1011 のとき Bout に Ain を,命令 (op) が 1100 のとき Bout に Cin を,命令 (op) が 1110 のとき Bout に Ain を,命令 (op) が 1111 のとき Dout に Ain を出力し,出力に影響しない出力端子は同じレジスタの入力端子をそのまま出力していることが確認できるので 8bitCPU が正しく動作していることが分かる.

```
Aout = 101 + 58 = 159
Aout = 230 + 37 = 11100110 + 100101 = 11
Aout = 153 + 2 = 155
Aout = 11 + 182 = 193
Aout = 0 + 204 = 204
Aout = 70 + 60 + 1 = 131
Aout = 151 + 92 + 1 = 244
Aout = 117 + 183 = 1110101 + 10110111 = 100101100 = 44
Aout = 181 - 155 = 26
Aout = 188 - 8 = 180
Aout = 237 - 17 = 220
Aout = 179 - 170 = 9
Aout = 214 * 52 = 11010110 * 110100 = (101011)01111000 = 120
Aout = 194 * 77 = 11000010 * 1001101 = (111010)01011010 = 90
Aout = 57 * 198 = 111001 * 11000110 = (101100)00010110 = 22
Aout = 227 * 86 = 11100011 * 1010110 = (1001100)01000010 = 66
Aout = 236 and 182 = 11101100 \land 10110110 = 10100100 = 164
Aout = 59 and 168 = 111011 \land 10101000 = 101000 = 40
Aout = 98 and 19 = 1100010 \land 10011 = 10 = 2
Aout = 200 and 250 = 11001000 \land 11111010 = 11001000 = 200
Aout = 202 or 173 = 11001010 \lor 10101101 = 11101111 = 239
Aout = 39or23 = 100111 \lor 10111 = 55
Aout = 217or74 = 11011001 \lor 1001010 = 11011011 = 219
Aout = 71or179 = 1000111 \lor 10110011 = 11110111 = 247
Aout = not46 = \overline{101110} = 11010001
Aout = not209 = \overline{11010001} = 10011111
Aout = not96 = \overline{1100000} = 1100111
Aout = not152 = \overline{10011000} = 1100001
Aout = 175xor206 = 101011111 \oplus 110011110 = 1100001 = 97
Aout = 16xor26 = 10000 \oplus 11010 = 1010 = 10
Aout = 123xor253 = 1111011 \oplus 11111101 = 10000110 = 134
```

ソースコード 11 に mux3 の代わりに mux4 を使った cpu_comb の修正部分のソースコードを示す. mux3 と mux4 は端子をつなぎかえることによってお互い代替可能なので, どちらか片方

 $Aout = 85xor133 = 1010101 \oplus 10000101 = 11010000 = 208$

のモジュールを使いまわすほうが, 修正が効きやすく部品の種類が減り, 結果的にコストダウンにつながる.

ソースコード 11 mux3 の代わりに mux4 を使った cpu_comb.v の修正部

完成した 8bitCPU のブロック図を図 6 に示す. また、このブロック図は mux3 を使用しておらず、mux3 の動作を繋ぐ端子を変えることにより、mux4 が行っている。

図 6 cpu_comb のブロック図