$S = \iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} - \frac{2}{3} r_{1} \left(2 \partial_{\beta} \mathcal{A}_{\alpha_{1}\theta} - \partial_{\beta} \mathcal{A}_{\alpha_{\theta}} + 4 \partial_{\beta} \mathcal{A}_{\beta_{1}\theta_{\theta}} + \partial_{\beta} \mathcal{A}_{\alpha_{\beta}\theta} - \partial_{\theta} \mathcal{A}_{\alpha_{\beta}} \right) \partial^{\theta} \mathcal{A}^{\alpha\beta_{1}} + r_{1} \left(\partial_{\alpha} \mathcal{A}^{\alpha_{1}\theta_{\theta}} - \partial_{\theta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} - \partial_{\theta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} - \partial_{\theta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} \right) \partial^{\theta} \mathcal{A}^{\alpha\beta_{1}\theta_{\theta}} + r_{2} \left(\partial_{\alpha} \mathcal{A}^{\alpha_{1}\theta_{\theta}} - \partial_{\beta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} - \partial_{\theta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} - \partial_{\theta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} \right) \partial^{\theta} \mathcal{A}^{\alpha\beta_{1}\theta_{\theta}} + r_{2} \left(\partial_{\alpha} \mathcal{A}^{\alpha_{1}\theta_{\theta}} - \partial_{\alpha} \mathcal{A}_{\alpha_{1}\theta_{\theta}} - \partial_{\theta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} - \partial_{\theta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} \right) \partial^{\theta} \mathcal{A}^{\alpha\beta_{1}\theta_{\theta}} + r_{2} \left(\partial_{\alpha} \mathcal{A}^{\alpha_{1}\theta_{\theta}} - \partial_{\alpha} \mathcal{A}_{\alpha_{1}\theta_{\theta}} - \partial_{\theta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} \right) \partial^{\theta} \mathcal{A}^{\alpha\beta_{1}\theta_{\theta}} + r_{2} \left(\partial_{\alpha} \mathcal{A}^{\alpha_{1}\theta_{\theta}} - \partial_{\alpha} \mathcal{A}_{\alpha_{1}\theta_{\theta}} - \partial_{\theta} \mathcal{A}_{\alpha_{1}\theta_{\theta}} - \partial_$

0

0

0

0

0

0

0

0

0

0

0

 $\stackrel{1^+}{\cdot} \sigma^{\parallel} \uparrow^{\alpha\beta}$

 $^{1^{+}}_{\bullet}\sigma^{\perp}$ $^{\alpha\beta}$

 $\mathbf{1}^{+}_{\bullet}\tau^{\parallel}\uparrow^{\alpha\beta}$

 $\cdot \sigma^{\parallel} \uparrow^{\alpha}$

 $^{1^{-}}\sigma^{\perp}\dagger^{\alpha}$

 $\mathbf{1}^{\scriptscriptstyle{-}}_{\:\raisebox{1pt}{\text{.}}}\tau^{\parallel} \uparrow^{\alpha}$

0

0

0

0

 $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$

 $3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} =$

 $2\;\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\;\;\chi}^{\;\;\delta} + 3\;\left(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi}\right)$

 $\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$

0

0

PSALTer results panel

	1- τ [⊥] † α	0	0	0	0	0	0	0	$ 2^{+}_{\bullet}\sigma^{\parallel}_{\alpha\beta} $	$2^{+}_{\bullet}\tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$	
	_							$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0	
								$2^+_{\bullet} \tau^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	
								$^{2^{-}}\sigma^{\parallel}\uparrow^{\alpha\beta\chi}$	0	0	$\frac{1}{k^2 r_1}$	
Source constraints												
Spin-parity form	Covaria	nt forn	า									Multiplicities
^{0−} σ == 0	εη _{αβχδ} δ	$\delta \sigma^{\alpha\beta\chi} =$	= O									1
^{Θ+} τ [⊥] == Θ	$\partial_{\beta}\partial_{\alpha}\tau$ (Δ +?	\mathcal{K}) $\alpha\beta = 0$	0									1
^{Θ⁺} τ == Θ	$\partial_{\beta}\partial_{\alpha}\tau$ (Δ +2	\mathcal{K}) $\alpha\beta = 0$	$\partial_{eta}\partial^{eta}_{ au}$ (Δ +	$-\mathcal{K})^{\alpha}_{\alpha}$								1
° σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} =$	· 0										1
1- ₇ - ^{\alpha} == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}$ (2	Δ+ K) ^{βχ} :	$= \partial_{\chi} \partial^{\chi} \partial_{\beta}$	τ (Δ+Κ)	αβ							3
1- ₇ a == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}$ (2	Δ+ K) ^{βχ} :	$= \partial_{\chi} \partial^{\chi} \partial_{\beta}$	τ (Δ+Κ)	βα							3
1- _σ ^Δ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	== 0										3
1 _• τ αβ == Θ	$\partial_{\chi}\partial^{\alpha}\tau$ (Δ +5	\mathcal{K}) $^{\beta\chi} + \partial$	$\chi \partial^{\beta} \tau (\Delta + \mathcal{I})$	$(x)^{\chi \alpha} + \hat{c}$	$\partial_{\chi}\partial^{\chi}\tau$ (Δ + \mathcal{P}	c) ^{αβ} ==						3

 $4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi}_{\ \chi} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\beta\alpha} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\beta\alpha} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\beta\alpha} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\beta\alpha} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\beta\alpha} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\lambda}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\lambda}\partial^{\chi}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\lambda}\partial^{\lambda}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\lambda}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\lambda}\partial^{\lambda}\tau\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial$

 $2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta} = 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + 20\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + 20\ \partial_{\delta}\partial^{\alpha}\sigma\left(\Delta+\mathcal{K}\right)^{\chi\beta} + 20\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + 20\ \partial_{\delta}\partial^{\alpha}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + 20\ \partial_{\delta}\partial^{\alpha}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + 20\ \partial_{\delta}\partial^{\alpha}\sigma\left(\Delta+\mathcal{K}\right)^{\chi\beta} + 20\ \partial$

 $3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi}{}_{\chi}$

Massive spectrum

Total expected gauge generators:

(No particles)

 $\frac{1^+ \sigma^{\perp}^{\alpha\beta}}{2^+ \tau^{\parallel}^{\alpha\beta}} == 0$

 $2^+_{\bullet \sigma} \parallel^{\alpha \beta} = 0$

Massless spectrum

3 ,

Unitarity conditions						
Polarisations:	2					

$\left(r. < 0 \&\&\left(r. < -r. ||r. > -2r.\right)\right) ||\left(r. > 0 \&\& -2r. < r. < -r.\right)\right)$