Unique Normal Forms in Infinitary Weakly Orthogonal Term Rewriting

Jörg Endrullis* Clemens Grabmayer Dimitri Hendriks*

Jan Willem Klop* Vincent van Oostrom

△) Universiteit Utrecht
 *) Vrije Universiteit Amsterdam

RTA 2010, Edinburgh, UK July 11–13, 2010

Weakly orthogonal vs. orthogonal

Weakly orthogonal (first-/higher-order) rewrite systems:

- definition: 'harmless' weakening of orthogonality
- for finitary TRSs: most 'nice' properties of orthogonal systems are preserved
- but: new concepts, and non-trivial adaptations are needed

In this paper we

- investigate infinitary weakly orthogonal rewrite systems
- show that uniqueness of infinitary normal forms fails in contrast to orthogonal systems
- explain how this failure can be repaired

Weakly orthogonal vs. orthogonal

Weakly orthogonal (first-/higher-order) rewrite systems:

- definition: 'harmless' weakening of orthogonality
- for finitary TRSs: most 'nice' properties of orthogonal systems are preserved
- but: new concepts, and non-trivial adaptations are needed

In this paper we:

- investigate infinitary weakly orthogonal rewrite systems
- show that uniqueness of infinitary normal forms fails in contrast to orthogonal systems
- explain how this failure can be repaired

Overview

- ► Definitions: weakly orthogonal, UN[∞]
- ► Counterexample to UN[∞] for weakly orthogonal TRSs
- ► Counterexample to UN^{∞} for $\lambda^{\infty}\beta\eta$
- Restoring infinitary confluence
- Diamond and triangle properties for developments

Weakly orthogonal (first-/higher-order) systems:

- left-linear
- all critical pairs are trivial.

Examples

➤ Successor/Predecessor TRS:

$$P(S(x)) \to x$$
 $S(P(x)) \to x$

with critical pairs:

$$S(x) \leftarrow \underline{S}(\underline{P}(S(x))) \rightarrow S(x)$$
 $P(x) \leftarrow \underline{P}(\underline{S}(P(x))) \rightarrow P(x)$

$$por(true, x) \rightarrow true$$

 $por(x, true) \rightarrow true$
 $por(false, false) \rightarrow false$

Weakly orthogonal (first-/higher-order) systems:

- left-linear
- all critical pairs are trivial.

Examples.

Successor/Predecessor TRS:

$$P(S(x)) \rightarrow x$$
 $S(P(x)) \rightarrow x$

with critical pairs:

$$S(x) \leftarrow \underline{S}(\overline{P}(\overline{S}(x))) \rightarrow S(x)$$
 $P(x) \leftarrow \underline{P}(\overline{S}(\overline{P}(x))) \rightarrow P(x)$

$$\operatorname{\mathsf{por}}(\operatorname{\mathsf{true}}, x) \to \operatorname{\mathsf{true}}$$
 $\operatorname{\mathsf{por}}(x, \operatorname{\mathsf{true}}) \to \operatorname{\mathsf{true}}$ $\operatorname{\mathsf{por}}(\operatorname{\mathsf{false}}, \operatorname{\mathsf{false}}) \to \operatorname{\mathsf{fals}}$

Weakly orthogonal (first-/higher-order) systems:

- left-linear
- all critical pairs are trivial.

Examples.

Successor/Predecessor TRS:

$$P(S(x)) \rightarrow x$$
 $S(P(x)) \rightarrow x$

with critical pairs:

$$S(x) \leftarrow \underline{S}(\overline{P}(\overline{S}(x))) \rightarrow S(x)$$
 $P(x) \leftarrow \underline{P}(\overline{S}(\overline{P}(x))) \rightarrow P(x)$

$$por(true, x) \rightarrow true$$

 $por(x, true) \rightarrow true$
 $por(false, false) \rightarrow fals$

Weakly orthogonal (first-/higher-order) systems:

- left-linear
- all critical pairs are trivial.

Examples.

Successor/Predecessor TRS:

$$P(S(x)) \rightarrow x$$
 $S(P(x)) \rightarrow x$

with critical pairs:

$$S(x) \leftarrow \underline{S}(\overline{P}(\overline{S}(x))) \rightarrow S(x)$$
 $P(x) \leftarrow \underline{P}(\overline{S}(\overline{P}(x))) \rightarrow P(x)$

$$\mathsf{por}(\mathsf{true},x) \to \mathsf{true}$$

 $\mathsf{por}(x,\mathsf{true}) \to \mathsf{true}$
 $\mathsf{por}(\mathsf{false},\mathsf{false}) \to \mathsf{fals}$

Weakly orthogonal (first-/higher-order) systems:

- left-linear
- all critical pairs are trivial.

Examples.

Successor/Predecessor TRS:

$$P(S(x)) \rightarrow x$$
 $S(P(x)) \rightarrow x$

with critical pairs:

$$S(x) \leftarrow \underline{S}(\overline{P}(\overline{S}(x))) \rightarrow S(x)$$
 $P(x) \leftarrow \underline{P}(\overline{S}(\overline{P}(x))) \rightarrow P(x)$

$$\mathsf{por}(\mathsf{true},x) \to \mathsf{true}$$

 $\mathsf{por}(x,\mathsf{true}) \to \mathsf{true}$
 $\mathsf{por}(\mathsf{false},\mathsf{false}) \to \mathsf{fals}$

Weakly orthogonal (first-/higher-order) systems:

- left-linear
- all critical pairs are trivial.

Examples.

Successor/Predecessor TRS:

$$P(S(x)) \rightarrow x$$
 $S(P(x)) \rightarrow x$

with critical pairs:

$$S(x) \leftarrow \underline{S}(\overline{P}(\overline{S}(x))) \rightarrow S(x)$$
 $P(x) \leftarrow \underline{P}(\overline{S}(\overline{P}(x))) \rightarrow P(x)$

$$por(true, x) \rightarrow true$$

 $por(x, true) \rightarrow true$
 $por(false, false) \rightarrow false$

Weakly orthogonal (first-/higher-order) systems:

- left-linear
- all critical pairs are trivial.

Examples.

Successor/Predecessor TRS:

$$P(S(x)) \rightarrow x$$
 $S(P(x)) \rightarrow x$

with critical pairs:

$$S(x) \leftarrow \underline{S}(\overline{P}(\overline{S}(x))) \rightarrow S(x)$$
 $P(x) \leftarrow \underline{P}(\overline{S}(\overline{P}(x))) \rightarrow P(x)$

$$por(true, x) \rightarrow true$$

 $por(x, true) \rightarrow true$
 $por(false, false) \rightarrow false$

- ▶ UN $^{\infty}$: $t_1 \leftarrow t \rightarrow t_2 \land t_1, t_2 \text{ normal forms} \implies t_1 = t_2$
- \triangleright SN $^{\infty}$: all infinite rewrite sequences are progressive (str. conv.)

- $ightharpoonup SN^{\infty} \Longrightarrow CR^{\infty}$, and $CR^{\infty} \Longrightarrow UN^{\infty}$.
- $ightharpoonup CR^{\infty}$ fails (Kennaway).
 - ▶ But for non-collapsing TRSs: CR[∞] holds
- ► UN[∞] holds (Kennaway/Klop).

- ▶ UN $^{\infty}$: $t_1 \leftarrow t \rightarrow t_2 \land t_1, t_2 \text{ normal forms} \implies t_1 = t_2$
- \triangleright SN $^{\infty}$: all infinite rewrite sequences are progressive (str. conv.)

- $ightharpoonup SN^{\infty} \Longrightarrow CR^{\infty}$, and $CR^{\infty} \Longrightarrow UN^{\infty}$.
- $ightharpoonup CR^{\infty}$ fails (Kennaway).
 - ▶ But for non-collapsing TRSs: CR[∞] holds
- ► UN[∞] holds (Kennaway/Klop).

- ▶ UN $^{\infty}$: $t_1 \leftarrow t \rightarrow t_2 \land t_1, t_2 \text{ normal forms} \implies t_1 = t_2$
- ► SN[∞]: all infinite rewrite sequences are progressive (str. conv.)

- ▶ $SN^{\infty} \Longrightarrow CR^{\infty}$, and $CR^{\infty} \Longrightarrow UN^{\infty}$.
- $ightharpoonup CR^{\infty}$ fails (Kennaway).
 - ▶ But for non-collapsing TRSs: CR[∞] holds
- ► UN[∞] holds (Kennaway/Klop).

- ▶ UN $^{\infty}$: $t_1 \leftarrow t \rightarrow t_2 \land t_1, t_2 \text{ normal forms} \implies t_1 = t_2$
- ► SN[∞]: all infinite rewrite sequences are progressive (str. conv.)

- ▶ $SN^{\infty} \Longrightarrow CR^{\infty}$, and $CR^{\infty} \Longrightarrow UN^{\infty}$.
- $ightharpoonup CR^{\infty}$ fails (Kennaway).
 - ▶ But for non-collapsing TRSs: CR[∞] holds
- ► UN[∞] holds (Kennaway/Klop).

- ▶ UN $^{\infty}$: $t_1 \leftarrow t \implies t_2 \land t_1, t_2 \text{ normal forms} \implies t_1 = t_2$
- ► SN[∞]: all infinite rewrite sequences are progressive (str. conv.)

- ▶ $SN^{\infty} \Longrightarrow CR^{\infty}$, and $CR^{\infty} \Longrightarrow UN^{\infty}$.
- ► CR[∞] fails (Kennaway).
 - ▶ But for non-collapsing TRSs: CR[∞] holds.
- ► UN[∞] holds (Kennaway/Klop).

- ▶ UN $^{\infty}$: $t_1 \leftarrow t \implies t_2 \land t_1, t_2 \text{ normal forms} \implies t_1 = t_2$
- ► SN[∞]: all infinite rewrite sequences are progressive (str. conv.)

- ▶ $SN^{\infty} \Longrightarrow CR^{\infty}$, and $CR^{\infty} \Longrightarrow UN^{\infty}$.
- ► CR[∞] fails (Kennaway).
 - ▶ But for non-collapsing TRSs: CR^{∞} holds.
- ► UN[∞] holds (Kennaway/Klop).

- ▶ UN $^{\infty}$: $t_1 \leftarrow t \implies t_2 \land t_1, t_2 \text{ normal forms} \implies t_1 = t_2$
- ► SN[∞]: all infinite rewrite sequences are progressive (str. conv.)

- $ightharpoonup SN^{\infty} \Longrightarrow CR^{\infty}$, and $CR^{\infty} \Longrightarrow UN^{\infty}$.
- ► CR[∞] fails (Kennaway).
 - ▶ But for non-collapsing TRSs: CR[∞] holds.
- ► UN[∞] holds (Kennaway/Klop).

Overview

- 1. Counterexample to UN^{∞} for weakly orthogonal iTRSs
- 2. Counterexample to UN^{∞} in $\lambda^{\infty}\beta\eta$
- 3. Restoring infinitary confluence
- 4. Diamond and triangle properties for developments
- 5. Summary

In the Successor/Predecessor TRS:

$$P(S(x)) \rightarrow x$$
 $S(P(x)) \rightarrow x$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\psi = \mathbf{PSS} PPP SSSS PPPPP SSSSSS ...$$

 \rightarrow SPP**P S**SSS PPPPP SSSSSS

 \rightarrow S P**P S**SS PPPPP SSSSSS.

 \rightarrow SPSS PPPPP SSSSSS

ightarrow S S PPPP**P S**SSSSS

 $\twoheadrightarrow SSSSS... = S^{\omega}$

In the Successor/Predecessor TRS:

$$PS \rightarrow x$$
 $SP \rightarrow x$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\psi = \mathbf{PSS} PPP SSSS PPPPP SSSSSS ...$$

 \rightarrow S PP**P S**SSS PPPPP SSSSSS

ightarrow S P**P S**SS PPPPP SSSSSS . .

ightarrow SPSS PPPPP SSSSSS.

ightarrow S S PPPP**P S**SSSSS

 $\twoheadrightarrow SSSSS... = S^{\omega}$

Counterexample: UN^{∞} fails weakly-ortho iTRS

In the Successor/Predecessor TRS:

$$PS \rightarrow x$$
 $SP \rightarrow x$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \ldots = P SS PPP SSSS PPPPP SSSSSS \ldots$$

We find:

$$\psi = \mathbf{PSS} PPP SSSS PPPPP SSSSSS ...$$

 \rightarrow S PP**P S**SSS PPPPP SSSSSS

ightarrow S P**P S**SS PPPPP SSSSSS .

 \rightarrow SPSS PPPPP SSSSSS

ightarrow S S PPPP**P S**SSSSS

→ SSSSS . . . = **S**^ω

Counterexample: UN^{∞} fails weakly-ortho iTRS

In the Successor/Predecessor TRS:

$$PS \rightarrow x$$
 $SP \rightarrow x$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \ldots = P SS PPP SSSS PPPPP SSSSSS \ldots$$

We find:

$$\psi = \underset{\longrightarrow}{\mathsf{PSS}} \mathsf{PPPSSSS} \mathsf{PPPPPSSSSSS} \dots$$

$$\xrightarrow{\longrightarrow} \mathsf{SPPSSS} \mathsf{PPPPPSSSSSS} \dots$$

$$\xrightarrow{\longrightarrow} \mathsf{SPSS} \mathsf{PPPPPSSSSSS} \dots$$

$$\xrightarrow{\longrightarrow} \mathsf{SS} \mathsf{PPPPPSSSSSS} \dots$$

In the Successor/Predecessor TRS:

$$PS \rightarrow x$$
 $SP \rightarrow x$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \ldots = P SS PPP SSSS PPPPP SSSSSS \ldots$$

We find:

$$\psi = \mathbf{PSS} \text{ PPP SSSS PPPPP SSSSS} \dots$$

$$\rightarrow \text{ S PPP SSSS PPPPP SSSSS} \dots$$

$$\rightarrow \text{ S PP SSS PPPPP SSSSS} \dots$$

$$\rightarrow \text{ SP SS PPPPP SSSSS} \dots$$

$$\rightarrow \text{ S S PPPPP SSSSS} \dots$$

In the Successor/Predecessor TRS:

$$PS \rightarrow x$$
 $SP \rightarrow x$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\psi = \mathbf{PSS} \text{ PPP SSSS PPPPP SSSSS} \dots$$

$$\rightarrow \text{ S PPP SSS PPPPP SSSSS} \dots$$

$$\rightarrow \text{ S PP SS PPPPP SSSSS} \dots$$

$$\rightarrow \text{ SP SS PPPPP SSSSS} \dots$$

$$\rightarrow \text{ S S PPPPP SSSSS} \dots$$

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\psi = \mathbf{PSS} \text{ PPPP SSSSS} \dots$$

$$\rightarrow$$
 S PP**P S**SSS PPPPP SSSSSS ...

$$\rightarrow$$
 S P**P** SSS PPPPP SSSSSS ...

$$\rightarrow$$
 SP SS PPPPP SSSSSS ...

$$\rightarrow$$
 S S PPPP**P S**SSSSS ...

$$\twoheadrightarrow SSSSSS... = S^{\omega}$$

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\psi = \mathbf{PSS} \text{ PPP SSSS PPPPP SSSSS} \dots$$

$$\rightarrow \text{S PPP SSSS PPPPP SSSSSS} \dots$$

$$\rightarrow \text{S PP SSS PPPPP SSSSSS} \dots$$

$$\rightarrow \text{SP SS PPPPP SSSSSS} \dots$$

$$\rightarrow \text{S S PPPPP SSSSSS} \dots$$

 $\twoheadrightarrow SSSSSS... = S^{\alpha}$

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\begin{split} \psi &= \mathbf{PSS} \text{ PPP SSSS PPPPP SSSSS} \dots \\ &\to \text{S PPP SSSS PPPPP SSSSS} \dots \\ &\to \text{S PP SSS PPPPP SSSSS} \dots \\ &\to \text{S P SS PPPPP SSSSS} \dots \\ &\to \text{S S PPPPP SSSSS} \dots \\ &\to \text{S S S S S S S S SSS} \dots \end{split}$$

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\psi = \mathbf{PSS} \text{ PPP SSSS PPPPP SSSSS} \dots$$

$$\rightarrow$$
 S PP**P S**SSS PPPPP SSSSSS ...

$$\rightarrow$$
 S P**P S**SS PPPPP SSSSSS ...

$$\rightarrow$$
 SPS PPPPP SSSSS ...

$$\rightarrow$$
 SSPPPP**PS**SSSSS ...

$$\twoheadrightarrow$$
 SSSSSS ... = S^{ω}

$$\psi = PSSPPPSSSSPPPPPSSSSSS ...$$

Counterexample: UN^{∞} fails weakly-ortho iTRS

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\psi = \mathbf{P} \mathbf{S} \mathbf{S} \text{ PPPP SSSSS} \dots$$

 $\rightarrow \mathbf{S} \text{ PPP SSSS PPPPP SSSSSS} \dots$

$$\rightarrow$$
 S P**P S**SS PPPPP SSSSSS ...

$$\rightarrow$$
 SP SS PPPPP SSSSSS ...

$$\rightarrow$$
 SSPPPP**P S**SSSSS ...

$$\twoheadrightarrow$$
 SSSSSS... = S^{ω}

$$\psi \to PSPP$$
 SSSS PPPPP SSSSSS

Counterexample: UN^{∞} fails weakly-ortho iTRS

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\begin{split} \psi &= \mathbf{PSS} \text{ PPP SSSS PPPPP SSSSS} \dots \\ &\to \mathbb{S} \text{ PPP SSSS PPPPP SSSSS} \dots \\ &\to \mathbb{S} \text{ PP SSS PPPPP SSSSS} \dots \\ &\to \mathbb{S} \text{ PSS PPPPP SSSSS} \dots \\ &\to \mathbb{S} \mathbb{S} \text{ PPPPP SSSSS} \dots \end{split}$$

And similarly:

$$\psi \rightarrow PPSSSSPPPPPSSSSSS...$$

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \ldots = P SS PPP SSSS PPPPP SSSSSS \ldots$$

We find:

$$\psi = \mathbf{PSS} \text{ PPP SSSS PPPPP SSSSS} \dots$$

$$\rightarrow \text{S PPP SSSS PPPPP SSSSSS} \dots$$

$$\rightarrow \text{S PP SSS PPPPP SSSSSS} \dots$$

$$\rightarrow \text{S P SS PPPPP SSSSSS} \dots$$

$$\rightarrow \text{S S PPPPP SSSSSS} \dots$$

And similarly:

$$\psi \rightarrow PPSSSPPPPSSSSSS...$$

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\begin{split} \psi &= \textbf{PSS} \text{ PPP SSSS PPPPP SSSSS} \dots \\ &\to \text{S PPP SSSS PPPPP SSSSS} \dots \\ &\to \text{S PP SSS PPPPP SSSSS} \dots \\ &\to \text{SP SS PPPPP SSSSS} \dots \\ &\to \text{S P SS PPPPP SSSSS} \dots \\ &\to \text{S S PPPPP SSSSS} \dots \end{split}$$

And similarly:

$$\psi \rightarrow PPSSPPPSSSSSS...$$

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

$$\psi = \mathbf{PSS} \text{ PPP SSSS PPPPP SSSSS} \dots$$

$$\rightarrow \text{S PPP SSSS PPPPP SSSSSS} \dots$$

$$\rightarrow \text{S PP SSS PPPPP SSSSSS} \dots$$

$$\rightarrow \text{S P SS PPPPP SSSSSS} \dots$$

$$\rightarrow \text{S S PPPPP SSSSSS} \dots$$

And similarly:

$$\psi \twoheadrightarrow \mathsf{PPSPPSSSSS} \dots$$

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \ldots = P SS PPP SSSS PPPPP SSSSSS \ldots$$

We find:

$$\psi \rightarrow PPPSSSSSS...$$

Counterexample: UN[∞] fails weakly-ortho iTRS

In the Successor/Predecessor TRS:

$$PS \rightarrow X$$
 $SP \rightarrow X$

with the normal forms $S^{\omega} = SSS...$ and $P^{\omega} = PPP...$ we consider:

$$\psi = P^1 S^2 P^3 S^4 P^5 S^6 \dots = P SS PPP SSSS PPPPP SSSSSS \dots$$

We find:

And similarly:

$$\psi \twoheadrightarrow \mathsf{PPPPP} \dots = \mathsf{P}^{\omega}$$

Counterexample: UN^{∞} fails weakly-ortho iTRS

Counterexample: UN^{∞} fails weakly-ortho iTRS

Graph for the oscillating PS-word $\psi = P^1 S^2 P^3 \dots$

Overview

- 1. Counterexample to UN[∞] for weakly orthogonal iTRSs
- 2. Counterexample to UN^{∞} in $\lambda^{\infty}\beta\eta$
- 3. Restoring infinitary confluence
- 4. Diamond and triangle properties for developments
- 5. Summary

$$\lambda^{\infty}\beta\eta$$

Terms of $\lambda^{\infty}\beta\eta$: the (potentially) infinite λ -terms in $Ter^{\infty}(\lambda)$

The rewrite rules of $\lambda^{\infty}\beta\eta$ are:

$$(\lambda x.M)N \xrightarrow{\beta} M[x:=N]$$

 $\lambda x.Mx \xrightarrow{\eta} M \qquad (x \text{ not free in } M)$

 $\lambda^{\infty}\beta\eta$ is weakly orthogonal, since the critical pairs are trivial:

$$Mx \stackrel{\beta}{\leftarrow} (\lambda x. Mx) x \stackrel{\eta}{\rightarrow} Mx$$
 (x not free in M)
 $\lambda x. M[y:=x] \stackrel{\beta}{\leftarrow} \lambda x. (\lambda y. M) x \stackrel{\eta}{\rightarrow} \lambda y. M$ (x not free in $\lambda y. M$)

Counterexample: UN $^{\infty}$ fails in $\lambda^{\infty}\beta\eta$

$$(\!(_)\!): \{P,S\}^{\omega} \to Ter^{\infty}(\lambda)$$
 defined by:

- $|w| = |w|_0$;
- ▶ for all $w \in \{P, S\}^{\omega}$, and $i \in \mathbb{Z}$:

$$(Pw)_i = (w)_{i-1} x_i$$

$$(Sw)_i = \lambda x_{i+1}.(w)_{i+1}$$

We saw for $\lambda^{\infty}\beta\eta$:

- $ightharpoonup UN^{\infty}$ fails
- ▶ Consequently: CR[∞] fails

- \triangleright CR $^{\infty}$ fails
- ▶ But: UN[∞] holds!

We saw for $\lambda^{\infty}\beta\eta$:

- $ightharpoonup UN^{\infty}$ fails
- ▶ Consequently: CR[∞] fails

However for $\lambda^{\infty}\beta$ it holds:

- \triangleright CR $^{\infty}$ fails
- ▶ But: UN[∞] holds!

Contrast with $\lambda^{\infty}\beta$

We saw for $\lambda^{\infty}\beta\eta$:

- ▶ UN[∞] fails
- ▶ Consequently: CR[∞] fails

However for $\lambda^{\infty}\beta$ it holds:

- $ightharpoonup CR^{\infty}$ fails
- ▶ But: UN[∞] holds!

Due to this, $\lambda^{\infty}\beta$ is important for the model theory of λ -calculus: for several models equality is captured by $\lambda^{\infty}\beta$ -convertibility:

- Böhm Trees
- Lévy–Longo Trees
- Berarducci Trees

- 3. Restoring infinitary confluence

Theorem

Weakly orthogonal TRSs without collapsing rules are inf. confluent.

Theorem

Weakly orthogonal TRSs without collapsing rules are inf. confluent.

Theorem

Weakly orthogonal TRSs without collapsing rules are inf. confluent.

Theorem

Weakly orthogonal TRSs without collapsing rules are inf. confluent.

Theorem

Weakly orthogonal TRSs without collapsing rules are inf. confluent.

Theorem

Weakly orthogonal TRSs without collapsing rules are inf. confluent.

Orthogonalization (of parallel steps)

Proposition

For parallel steps $\phi: s \longrightarrow t_1$ and $\psi: s \longrightarrow t_2$ in a w-o TRS there exists orthogonal steps ϕ' and ψ' such that ϕ' : $s \rightarrow t_1$ and $\psi': s \longrightarrow t_2$ (the pair $\langle \phi', \psi' \rangle$ is an orthogonalization of ϕ and ψ).

Orthogonalization (of parallel steps)

Proposition

For parallel steps $\phi: s \longrightarrow t_1$ and $\psi: s \longrightarrow t_2$ in a w-o TRS there exists orthogonal steps ϕ' and ψ' such that $\phi': s \longrightarrow t_1$ and $\psi': s \longrightarrow t_2$ (the pair $\langle \phi', \psi' \rangle$ is an orthogonalization of ϕ and ψ).

Proof.

In case of overlaps, we replace the outer redex with the inner one

(by weak orthogonality overlapping redexes have the same effect).

Orthogonalization (of parallel steps)

Proposition

For parallel steps $\phi: s \longrightarrow t_1$ and $\psi: s \longrightarrow t_2$ in a w-o TRS there exists orthogonal steps ϕ' and ψ' such that $\phi': s \longrightarrow t_1$ and $\psi': s \longrightarrow t_2$ (the pair $\langle \phi', \psi' \rangle$ is an orthogonalization of ϕ and ψ).

Proof.

In case of overlaps, we replace the outer redex with the inner one

(by weak orthogonality overlapping redexes have the same effect).

Infinitary Parallel Moves Lemma PML[∞]

Using additionally a:

refined compression lemma (preservation of min. depth of steps)

we show:

Lemma

Let R be a non-collapsing weakly orthogonal TRS. Then:

$$s \xrightarrow{\geq d_{\kappa}} t_{1}$$

$$\geq d_{\xi} \neq \sum_{t_{2} - \cdots - t_{2} = 1}^{\infty} d_{\kappa} + 1) \neq t_{2} \xrightarrow{\geq \min(d_{\kappa}, d_{\xi} + 1)} u$$

Restoring infinitary confluence

Theorem

Weakly orthogonal TRSs without collapsing rules are inf. confluent.

Overview

- 1. Counterexample to UN[∞] for weakly orthogonal iTRSs
- 2. Counterexample to UN^{∞} in $\lambda^{\infty}\beta\eta$
- 3. Restoring infinitary confluence
- 4. Diamond and triangle properties for developments
- 5. Summary

Definition A binary relation \rightarrow on A has: • the diamond property if: $\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$; ▶ the triangle property if: $\forall a \in A. \exists a^{\bullet} \in A. a \rightarrow a^{\bullet} \land (\forall b \in A. a \rightarrow b \Rightarrow$

Definition

- ▶ the diamond property if: $\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$;
- the triangle property if:

$$\forall a \in A. \exists a^{\bullet} \in A. a \rightarrow a^{\bullet} \land (\forall b \in A. a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}).$$

Definition

- ▶ the diamond property if: $\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$;
- the triangle property if:

$$\forall a \in A. \ \exists a^{\bullet} \in A. \ a \rightarrow a^{\bullet} \land (\forall b \in A. \ a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}).$$

Definition

- ▶ the diamond property if: $\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$;
- the triangle property if:

$$\forall a \in A. \ \exists a^{\bullet} \in A. \ a \rightarrow a^{\bullet} \ \land \ (\forall b \in A. \ a \rightarrow b \ \Rightarrow \ b \rightarrow a^{\bullet}).$$

Definition

- ▶ the diamond property if: $\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$;
- the triangle property if:

$$\forall a \in A. \exists a^{\bullet} \in A. \ a \rightarrow a^{\bullet} \land (\forall b \in A. \ a \rightarrow b \Rightarrow b \rightarrow a^{\bullet}).$$

Theorem

For every weakly orthogonal TRS without collapsing rules, for infinitary developments there hold:

- the diamond property;
- 2 the triangle property.

Our proof proceeds by

- refining an earlier cluster analysis (I-clusters and Y-clusters) from the finite case:
- a top-down orthogonalization algorithm.

Theorem

For every weakly orthogonal TRS without collapsing rules, for infinitary developments there hold:

- the diamond property;
- 2 the triangle property.

Our proof proceeds by:

- refining an earlier cluster analysis (I-clusters and Y-clusters) from the finite case:
- a top-down orthogonalization algorithm.

Overview

- 1. Counterexample to UN[∞] for weakly orthogonal iTRSs
- 2. Counterexample to UN^{∞} in $\lambda^{\infty}\beta\eta$
- 3. Restoring infinitary confluence
- 4. Diamond and triangle properties for developments
- 5. Summary

Summary

- Counterexample to UN[∞]/CR[∞] for weakly orthogonal TRSs
- ▶ By translation: counterexample to UN^{∞}/CR^{∞} for $\lambda^{\infty}\beta\eta$
- ► Restoring CR[∞] (hence UN[∞]) for non-collapsing w-o TRSs
- Diamond and triangle properties for developments in non-collapsing w-o TRSs

Summary

finitary infinitary **PML** CR UN NF PML^∞ CR∞ UN^∞ NF^{∞} **OTRS** yes yes yes yes yes yes yes no **WOTRS** yes yes yes yes yes no no no nc-WOTRS yes yes yes yes yes yes yes yes 1c-WOTRS yes yes yes yes yes ? ? no λβ yes yes yes yes yes no no yes fe-OCRS yes yes yes yes yes yes no no $\lambda \beta \eta$ yes yes yes yes no no no no WOCRS yes yes yes yes no no no no