Лабораторные работы №2.2 и №2.3 $$^{\rm Ha\ Temy:}$$ «Изучение спектров атомов водорода и йода»

Работу выполнил: Олейник Роман

Аннотация

Целями данной работы являются исследование сериальных закономерностей в оптическом спектре водорода и исследование спектра поглощения паров йода в видимой области.

Теоретические сведения: спектр водорода

Атом водорода является простейшей квантовой системой, для которой уравнение Шрёдингера может быть решено точно. Это также верно для водородноподобных атомов, то есть атомов с одним электроном на внешней оболочке. Из решения уравнения Шрёдингера следует, что внешний электрон в таких атомах обладает дискретным энергетическим спектром:

$$E_n = -\frac{m_e(Ze^2)^2}{2\hbar^2} \frac{1}{n^2},\tag{1}$$

где n есть номер энергетического уровня, Z есть зарядовое число ядра рассматриваемого атома, которое в случае атома водорода равно 1.

При переходе электрона с *n*-го на *m*-й уровень излучается фотон с энергией

$$E_{\gamma} = E_n - E_m = \frac{m_e e^2}{2\hbar^2} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right). \tag{2}$$

Длина волны соответствующего излучения $\lambda_{n,m}$ связана с номерами уровней следующим соотношением:

$$\lambda_{n,m}^{-1} = \frac{m_e e^2}{4\pi\hbar^3 c} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2}\right) = \text{Ry}Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2}\right),\tag{3}$$

где $\mathrm{Ry} = \frac{m_e e^2}{4\pi \hbar^3 c}$ есть постоянная Ридберга.

В данной работе будет исследоваться серия Бальмера атома водорода, в которой электроны совершают переходы с некоторого уровня n на уровень m=2.

Теоретические сведения: спектр йода

В первом приближении энергия молекулы может быть представлена в виде:

$$E = E_e + E_o + E_r, (4)$$

где E_e есть энергия электронных уровней, E_o есть энергия колебательных уровней, E_r есть энергия вращательных уровней.

В данной работе рассматриваются оптические переходы, то есть переходы, связанные с излучением фотонов в видимом диапазоне длин волн. Они соответсвтуют переходам между различными электронными состояниями. При этом также происходят изменения вращательного и колебательного состояний, однако в реальности ввиду малости характерных энергий вращательные переходы ненаблюдаемы.

Более конкретно, изучаются переходы из колебательного состояния с номером n_1 освновного электронного уровня с энергией E_1 в колебательное состояние с номером n_2 на электронный уровень с энергией E_2 . Энергия таких переходов описывается формулой:

$$h\nu_{n_1,n_2} = (E_2 - E_1) + h\nu_2(n_2 + \frac{1}{2}) - h\nu_1(n_1 + \frac{1}{2}), \tag{5}$$

где ν_1 и ν_2 суть энергии колебательных квантов на электронных уровнях с энергиями E_1 и E_2 .

При достаточно больших квантовых числах n_1 и n_2 колебательные уровни переходят в непрерывный спектр, что соответствует диссоциации молекулы. Наименьшая энергия, которую нужно сообщить молекуле в нижайшем колебательном состоянии, чтобы она диссоциировала, называется энергией диссоциации.

В данной работе определяются энергии диссоциации на первых двух электронных уровнях.

Обработка результатов

Во-первых, проградуируем спектрометр, для чего используем спектры неоновой и ртутной лампы, длины волн спектральных линий которых известны. Приведём соответствующую таблицу.

λ[Å]	6717	6678	6599	6533	6507	6402	6383	6334	6305	6267	6234	6217	6164	6143
(θ±1)[дел.]	2558	2542	2516	2494	2482	2450	2438	2422	2410	2396	2374	2372	2350	2340
λ[Å]	6096	6074	6030	5976	5945	5882	5852	5791	5770	5461	5401	4916	4358	4047
(θ±1)[дел.]	2322	2310	2290	2266	2246	2222	2204	2176	2164	1986	1944	1558	896	340

Построим также градуировочный график.

Для интерполяции данного графика на все промежуточные значения используем формулу Гартмана:

$$\lambda = \lambda_0 + \frac{C_0}{\theta - \theta_0},\tag{6}$$

где λ_0, C_0, θ_0 суть параметры, определяемые по трём ближайшим точкам графика.

Измерим положения трёх линий водорода из серии Бальмера — $H_{\alpha}, H_{\beta}, H_{\gamma}$. Линию H_{δ} пронаблюдать не удалось ввиду её слабой интенсивности.

Получили соответствующие показания спектрометра: $H_{\alpha} = 2500 \pm 1, H_{\beta} = 1508 \pm 1, H_{\gamma} = 874 \pm 1.$

С учётом градуировки спектрометра получаем следующие длины волн: $H_{\alpha}-656\pm2$ нм, $H_{\beta}-487\pm2$ нм, $H_{\gamma}-434\pm2$ нм.

Для каждой линии определим константу Ридберга по формуле (3), учитывая, что m=2, Z=1, а также, что для линии $H_{\alpha}-n=3$, для линии $H_{\beta}-n=4$,для линии $H_{\gamma}-n=5$.

Получаем следующие значения константы Ридберга: $Ry_{\alpha} = 0.0110 \pm 0.0001 \text{ нм}^{-1}$, $Ry_{\beta} = 0.0109 \pm 0.0001 \text{ нм}^{-1}$, $Ry_{\gamma} = 0.0109 \pm 0.0001 \text{ нм}^{-1}$.

По МНК определяем наилучшее значение константы Ридберга, а также его погрешность: $\mathrm{Ry}_E = (0.0109 \pm 0.0002)~\mathrm{Hm}^{-1}.$

Полученное значение в пределах погрешности совпадает с табличным значением: $Ry_T = 0.01097 \text{ нм}^{-1}$.

Запишем показания спектрометра для следующих переходов в молекуле йода: $\theta_{1,0}$ — переход из первого колебательного уровня основного состояния в нулевой колебательный уровень возбуждённого состояния, $\theta_{1,5}$ — переход из первого колебательного уровня основного состояния в пятый колебательный уровень возбуждённого состояния, θ_g — переход из нулевого колебательного уровня основного состояния в область непрерывного спектра возбуждённого состояния.

Получаем следующие данные: $\theta_{1,0}=2344\pm1,\ \theta_{1,5}=2242\pm1,\ \theta_g=1850\pm1.$ Отсюда находим соответствующие длины волн: $\lambda_{1,0}=615\pm2$ нм, $\lambda_{1,5}=594\pm2$ нм, $\lambda_g=522\pm2$ нм.

Определим энергию колебательного кванта возбуждённого состояния молекулы по формуле: $h\nu_2 = \frac{h\nu_{1,5} - h\nu_{0,5}}{5}$. Проделав вычисления, получаем, что $h\nu_2 = 0.014 \pm 0.002$ эВ.

Вычислим энергию электронного перехода $\Delta E = E_2 - E_1$, энергию диссоциации D_1 в основном состоянии и энергию диссоциации D_2 в возбуждённом состоянии, если известно, что энергия колебательного кванта основного состояния равна $h\nu_1 = 0,027$ эВ, а энергия возбуждения, то есть энергия перехода атома из области непрерывного спектра основного состояния в область непрерывного спектра возбуждённого состояния, равна $E_A = 0.94$ эВ. Имеем систему уравнений:

$$D_1 + E_A = h\nu_q, (7)$$

$$h\nu_g = D_2 + \Delta E,\tag{8}$$

$$h\nu_{1,0} = \Delta E + h\nu_2 - \frac{3}{2}h\nu_1,\tag{9}$$

$$h\nu_{1,5} = \Delta E + \frac{11}{2}h\nu_2 - \frac{3}{2}h\nu_1. \tag{10}$$

Из неё находим все необходимые значения: $\Delta E = 2.050 \pm 0.002$ эВ, $D_1 = 1.436 \pm 0.002$ эВ, $D_2 = 0.326 \pm 0.002$ эВ.

Вывод

В работе исследовались сериальные закономерности в оптическом спектре водорода и спектр поглощения паров йода в видимой области.

С помощью информации о спектральных линиях неона и ртути проградуирован спектрометр. Построен соответствующий график.

Получены длины волн линий H_{α} , H_{β} и H_{γ} серии Бальмера, вычислена постоянная Ридберга. В рамках погрешности данные совпали с табличными.

Получены длины волн, соответствующие некоторым электронно-колебательным переходам из основного состояния в возбуждённое. Вычислены энергия колебательного кванта возбуждённого состояния молекулы, энергия электронного перехода, энергии диссоциации молекулы в основном и в возбуждённом состояниях.

Все поставленные задачи выполнены, работа завершена успешно.