AD-A046 262

NAVAL UNDERWATER SYSTEMS CENTER NEWPORT R I F/G 13/7
A DEVICE FOR PRODUCTION TESTING THE TENSILE STRENGTH OF CERAMIC--ETC(U)
MAY 71 G M MAYER, H J CINI
NUSC-TM-EB11-29-71
NL

UNCLASSIFIED

ADI ADI ADI ADI ADI ADI

AD 46262

END
DATE
FILMED
12-77
DDC

NAVAL UNDERWATER SYSTEMS CENTER
NEWPORT, RHODE ISLAND 02840

Project No.
A-224-00-00

A DEVICE FOR PRODUCTION TESTING
THE TENSILE STRENGTH OF CERAMIC RINGS

By
Gerald M. Mayer and Hector J. Cini
NN 15 C - 7 MTechnical Memorandum No. EB11-29-71

INTRODUCTION

INTRODUCTION

INTRODUCTION

The device described below was developed for better quality control of ceramic rings used in transducer construction. Previous tests conducted by Stanford Research Institute indicate that about 6% of the rings used in constructing TR-208 transducer elements have abnormally low tensile strength. This means that there is approximately 25% probability that a finished transducer element with a 4 ring stack will have at least one abnormally weak ring.

This production test device is used to stress each ring to a safe working level, approximately 60% of tensile yield strength and thereby eliminate any faulty rings before they are used in a transducer assembly.

APPROVED FOR PUBLIC PELEASE: DISTRIBUTION UNLIMITED

COD OFFICIAL MOS ONLY

496968

13

AD No.

DISCUSSION

The device is shown in Figure 1. A hydraulic pump supplies pressure to a small hydraulic jack, #1. Base plate #2, rubber washer #3, top plate #4 are held together by a bolt as an assembly and the bolt is threaded into the hydraulic jack #1. As the pressure is applied to the jack, the force causes the rubber washer #3 to compress against the base plate #4. This causes the rubber washer to expand radially and apply a uniform load on the ceramic ring. Releasing the pressure causes the rubber washer to return to its original position.

To test a ceramic ring, the ring is slipped over the top plate, down over the rubber washer, and brought to rest against the base plate. This positions the ring in line with the rubber washer. The assembly is then adjusted by the bolt so that the clearance between the ceramic ring and the rubber washer is approximately .002 to .005 inches.

Shroud #5 has a dual function. This is slipped over the assembly. The large hole fits over the ceramic ring under test and the shoulder of the small hole rests on the top surface of the ring. The small hole of the shroud fits over the top plate #4 and positions the shroud concentrically on the assembly. The shoulder on the shroud shorts out the electrical charge as the ring is stressed and protects the operator as he removed the ring which has passed the test. The large hole in the shroud fits over the ceramic ring and protects the operator from being injured by broken ceramic fragments from a ring that fractures.

Figure 2 shows an exploded view of the stress generating assembly and its component parts. Pressure gage #6 indicates the applied load in psi. No. 7 is a ceramic ring.

The stress impressed on the ceramic ring generated by the expanding rubber washer is determined by the load vs. stress calibration curve, Figure 3. This curve was generated by taking the average strain from two (2) strain gages on the outside diameter of a ceramic ring 90° apart and using a correction factor of 1.13 to obtain the maximum stress at the inner surface of the ring.

Maximum stress . 1.13 x E x e

The elastic modulus E was taken as 14×10^6 psi.

Figure 4 gives tabulated results on tensile tests on thirty-nine(39) TR-208A ceramic rings using the described device. Taking 10,000 psi as

Tech. Memo. No. EB11-29-71

the nominal tensile strength of the ceramic material and 60% of this as a safe working stress, it can be seen that three (3) rings are below the 6000 psi stress requirement. This indicates a 7.6% failure rate on the 39 rings. In a transducer of four (4) stacked rings using the above 39 rings, it is conceivable that one defective ring could have been used in three of the eight (8) transducer assemblies.

Ceramic rings of various diameters and heights can also be tested by merely changing the stress generating assembly parts #2, #3, and #4 to appropriate dimensions. The feature of the device is that it permits simulated hydrostatic loading without the use of a fluid medium.

Figure 5 is tabulated data on forty (40) ceramic rings tested to fracture. The data is self explanatory.

Figure 6 is tabulated in serial number order and stress at failure order. It is interesting to note in the stress at failure order that ring serial #'s 196, 194, 193, and 195 have the lowest stress at failure. The consecutive serial numbers suggest that this is not a randomly distributed weakness, but can probably be attributed to some event in the production process common to that group of rings.

RECOMMENDATIONS

It is recommended that a tensile strength test using a device similar to the one described above be made a specification requirement in the procurement of all ceramic rings intended for use in active sonar transducers.

HECTOR J. INI Mechanical Engineering Technician

GERALD M. MAYER

Supervisory Mechanical Engineer

Fig. 1

NUSC Tech Memo No. EB11-29-71

Naval Underwater Systems Center NP24 - 41111A - 5 - 71 Official Photograph

Fig. 2

NUSC Tech Memo No. EB11-29-71

Naval Underwater Systems Center NP24 - 41110A - 5 - 71 Official Photograph

BEST AVAILABLE COPY

CERAMIC RING TEST

FIGURE 4

A total of thirty-nine (39) ceramic rings were tested using the described device. Each ring was taken to its ultimate tensile strength. The load at fracture was recorded and the stress determined from the calibration curve of Figure 1.

Ring Serial Number	Load PSI To Fracture	Stress PSI	Ring Serial Number	Load PSI To Fractur	Stress re PSI
197	1740	11150	119	1740	11150
194	980	5300	105	1740	11150
193	1040	5700	98	1550	9600
200	1580	9800	113	1420	8500
195	1180	6700	86	1480	9000
199	1520	9300	87	1540	9500
196	500	2200	97	1740	11150
198	1280	7400	100	1720	11000
106	1440	8700	108	1640	10300
104	1680	10600	107	1780	11500
103	1440	8700	120	1400	8400
101	1760	11300	110	1240	7100
88	1850	12100	116	1660	10500
90	1480	9000	102	1680	10600
85	1800	11600	99	1640	10300
89	1800	11600	92	1800	11600
112	1380	8200	114	1420	8500
95	1700	10800	171	1580	9800
117	1620	10100	109	1760	11300
115	1640	10300	118 Ac	cidently Br	roken

CERAMIC RING TEST LATA EDO WISTERN TR-208 RINGS

								processor of the state of
SERIAL #	LON AT		STRESS AT					
SEXTAL T	FRACTURE		FRACTURE		 	<u> </u>		·····
197	1740			1				
194	980		11,100					
	1		5,250					1
193	1580		5,700					
195	1180		9,800					
199	1520		6,660					
194	500		9,300		-	1		Receive 8
198	1280		7,420		TESTED TO	DESIRO	TION M	Necelve 5
106	1440		8,670		Mr. G.	tare lon	1470	5 (ras det
104	1680		10,610		M. C.	the stres	9017.5	
103	1440		8,670	>	Tond .		- 330	(m) de
101	1760		11,300		O street		2481	pii (modal
88	1850		12,080		1 smell			1
90	1480		9,000					
85	1800		11,640					
87	1800		11,640					
112	1380		8,200					
95	1700		10,760					
117	1620		10,110					
115	1640		10,290					
119	1740		11,100	1				
105 .	1740		11,100					
98	1550		9,550					
113	1420		8,500 .		1.			
86	1480		9,000					
87	1540		7,480					
97	1740		11,100	1		ESTRUCTION		HIGH
100	1720		10,950		FIELD ME	ASURE MEN	777	
108	1640		10,290		Henre finct	- 1.1	1607	(model
120	1400		11,450		Hear fait		100 30	
110	1240		7,110		Trad The		152	psi (and to
116	1660		10,460		Titress		1232	
102	1680		10,610		311.13		, ,,,,	
99	1640		10290.					
92	1800		11.640					
114	1420		8,500					1
111	1580		.9,800					
109	1760		11,300					
118	NO SATA	- BROKEN A	Y Acciden	17)				
Mr.	rectine stre		VERALL PLI	FIGURE	T .			
Ostro.			8 psi.	5 on ru	slote			
	bacture stre		o1 ps/ >					innisting "

BEST AVAILABLE COPY

CETTAMIC RING TEST DATA

Lima	N Sir=	ORNER	FIC	SURE 6		Listed	IN FRACTO	RE SIKE	W also V.
	Smalet			1			Street at		1
Sex +	instance					Ser 8	fracture		
85	11640					196	2150		
86	9000					194	5250		
87	9480					193	5700		
88	12080					195	6660		
89	11640					110	7/10		
90	9000					198	7420		
92	11640					112	8200		
95	10760				*	120	8350		
97	11100					114	8500		
98	9550					113	8520	,	1
99	10290					103	8670		
100	10750					106	8670		
101	11300					80	9000		
102	10010					90	9000		
103	8670					199	9300	4.4	
104	10610					87	9480		,
105	11100					98	9550		
106	8610					111	9800		
107	11450	!				200	18.0 .		
108	10290					117	10110 -	- MESIAN	,
109	11300	•				99	10290	•	
110	7//0					108	10290		
/1/	9300					115	10290		
112	8200					116	10460		
113	8500					102	10610		
114	8500					104	10610		;
115	10290					95	10760		
116	10460					100	10950		. !
117	12110					97	11100		
118	NO BATA					105	11100		-
119	11100					119	11 100		1 .
120	8350					197	11100		1
. 193	5 100					101	11300		. ;
194	5 150					109	11300		
195	6660					107	11450		
194	2150					85	11640		
. 197	11100					89	11640		
198	7420					92	11640	1	
199	4300					2.8	12050	1	
200	1800					118	NO 847	W .	
					BES	T AV	AILAI	BLE (OPY