7__titanic__machine__learning__from__disaster 吴清柳

July 24, 2023

1 泰坦尼克: 从灾难中生存

使用机器学习方法预测从泰坦尼克灾难中生存下来的概率

1.1 第一步: 定义问题

根据船上人员的性别, 年龄, 职业等信息, 设计一种算法来预测泰坦尼克号上的乘客的生存概率

1.2 第二步: 获取数据

```
pip install --upgrade kaggle
如果本地没有数据,则从 Kaggle 上进行下载. 需要设置账号和 API 到 ~/.kaggle/kaggle.json
kaggle competitions download -c titanic
```

1.3 第三步: 数据预处理

对数据进行清理

```
[3]: import sys
     import pandas as pd
     import matplotlib
     import numpy as np
     import scipy as sp
     import IPython
     import sklearn
     import random
     import time
     # ignore warnings
     import warnings
     warnings.filterwarnings('ignore')
     print('-'*25)
     # Input data files are available in the `../dataset/` directory
     from subprocess import check_output
     print(check_output(['ls', '../dataset']).decode('utf8'))
```

gender_submission.csv
test.csv
titanic.zip
train.csv

1.4 加载数据建模库

使用 scikit-learn 库来开发机器学习算法. 在 sklearn 中, 算法被叫做 Estimators, 实现在他们各自的类里. 对于数据可视化, 使用 matplotlib 和 seaborn 库.

```
[8]: # common model algorithms
     from sklearn import svm, tree, linear_model, neighbors, naive_bayes, ensemble,_
      →discriminant_analysis, gaussian_process
     from xgboost import XGBClassifier
     # common model helpers
     from sklearn.preprocessing import OneHotEncoder, LabelEncoder
     from sklearn import feature_selection, model_selection, metrics
     # visualization
     import matplotlib as mpl
     import matplotlib.pyplot as plt
     import matplotlib.pylab as pylab
     import seaborn as sns
     from pandas.plotting import scatter_matrix
     # configure visualization defaults
     # show plots in jupyter notebook inplace
     %matplotlib inline
     mpl.style.use('ggplot')
     sns.set_style('white')
     pylab.rcParams['figure.figsize']=12,8
```

1.5 了解数据

了解数据的形状 (数据类型, 数据值) 等等

- 1. Survived 代表乘客是否存活
- 2. PassengerID 和 Ticket 被假设为随机独立标识符,对输出没有影响,因此会被从分析中移除
- 3. Pclass 代表票型, 并映射社会经济状态, 表示 1 =上层阶级, 2 =中层阶级, 3 =下层阶级;
- 4. Name 是名字数据类型,可能可以在特征工程中根据 title 判断性别,从 surname 中家庭大小.
- 5. Sex 和 Embarked 变量是命名数据类型. 会被转为 dummy 变量来进行数学计算.
- 6. Age 和 Fare 变量是连续量化数据类型;
- 7. SibSp 表示同在船上的兄弟姐妹的数量, Parch 表示同在船上的父母孩子. 都是离散量化数据类型. 可以在特征工程中建立一个家庭大小, 是孤立的变量;
- 8. Cabin 变量是命名数据类型, 可以在特征工程中大致定位事故发生时在船上的位置, 以及根据等级判断接机. 然而, 犹豫有许多 Null 值, 该变量用处不大, 被排除在分析之外:

```
[11]: # import data
    data_raw = pd.read_csv("../dataset/train.csv")

# break dataset into train, test and validation
# the test file provided is the validation file for competition submission
# split the train set into train and test data
    data_val = pd.read_csv("../dataset/test.csv")

# to play with our data, create a copy
# python assignment or equal passes by reference vs vslues
    data1 = data_raw.copy(deep=True)

# however passing by reference is convenient, because learn both datasets at
# once
    data_cleaner = [data1, data_val]

# preview data
print(data_raw.info())
data_raw.sample(10)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
dtypes: float64(2), int64(5), object(5)						

duypes. 110d001(2), 111001(0), 00jec

memory usage: 83.7+ KB

None

[11]:	${\tt PassengerId}$	Survived	Pclass	Name	Sex	\
838	839	1	3	Chip, Mr. Chang	male	
585	586	1	1	Taussig, Miss. Ruth	female	
201	202	0	3	Sage, Mr. Frederick	male	
824	825	0	3	Panula, Master. Urho Abraham	male	
864	865	0	2	Gill, Mr. John William	male	
491	492	0	3	Windelov, Mr. Einar	male	

646 690 97 592		647 691 98 593		0 1 1 0	3 1 1 3		Dick, ield, Mr	Cor, Mr. l Mr. Alber . William Mr. Willia	t Adrian Bertram	male
	Age	SibSp	Parch			Ticket	Fare	Cabin	Embarked	
838	32.0	0	0			1601	56.4958	NaN	S	
585	18.0	0	2			110413	79.6500	E68	S	
201	${\tt NaN}$	8	2		CA	. 2343	69.5500	NaN	S	
824	2.0	4	1		3	101295	39.6875	NaN	S	
864	24.0	0	0			233866	13.0000	NaN	S	
491	21.0	0	0	SOTON/	OQ 3	101317	7.2500	NaN	S	
646	19.0	0	0			349231	7.8958	NaN	S	
690	31.0	1	0			17474	57.0000	B20	S	
97	23.0	0	1		PC	17759	63.3583	D10 D12	C	
592	47.0	0	0		A/	5 3902	7.2500	NaN	S	

1.5.1 数据清理:数据纠正,数据补全,数据创建和数据转换

在该阶段中, 1) 修正不正常数据和离群数据, 2) 完成丢失的信息, 3) 为分析创建新的特征, 4) 转换数据到正确的格式以用于计算和表示

```
[12]: print('Train columns with null values:\n', data1.isnull().sum())
print('-'*10)

print('Test/Validation columns with null values:\n', data_val.isnull().sum())
print('-'*10)

data_raw.describe(include='all')
```

Train columns with null values:

${\tt PassengerId}$	C
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

Test/Validation columns with null values:

PassengerId 0 Pclass 0

Name	0
Sex	0
Age	86
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	327
Embarked	0
dtype: int64	

dtype: int64

[12]:		PassengerId	Survived	Pclass			Name	Sex	\
	count	891.000000	891.000000	891.000000			891	891	
	unique	NaN	NaN	NaN			891	2	
	top	NaN	NaN	NaN	Braund	, Mr. Owen	Harris	${\tt male}$	
	freq	NaN	NaN	NaN			1	577	
	mean	446.000000	0.383838	2.308642			NaN	NaN	
	std	257.353842	0.486592	0.836071			NaN	NaN	
	min	1.000000	0.000000	1.000000			NaN	NaN	
	25%	223.500000	0.000000	2.000000			NaN	NaN	
	50%	446.000000	0.000000	3.000000			NaN	NaN	
	75%	668.500000	1.000000	3.000000			NaN	NaN	
	max	891.000000	1.000000	3.000000			NaN	NaN	
		Age	SibSp	Parch	Ticket	Fare	Cab	in \	
	count	714.000000	891.000000	891.000000	891	891.000000	2	04	
	unique	NaN	NaN	NaN	681	NaN	1	47	
	top	NaN	NaN	NaN	347082	NaN	B96 B	98	
	freq	NaN	NaN	NaN	7	NaN		4	
	mean	29.699118	0.523008	0.381594	NaN	32.204208	N	aN	
	std	14.526497	1.102743	0.806057	NaN	49.693429	N	aN	
	min	0.420000	0.000000	0.000000	NaN	0.000000	N	aN	
	25%	20.125000	0.000000	0.000000	NaN	7.910400	N	aN	
	50%	28.000000	0.000000	0.000000	NaN	14.454200	N	aN	
	75%	38.000000	1.000000	0.000000	NaN	31.000000	N	aN	
	max	80.000000	8.000000	6.000000	NaN	512.329200	N	aN	

Embarked 889 count unique 3 top S freq 644 mean NaN ${\tt NaN}$ std NaN min 25% ${\tt NaN}$

```
max
                  NaN
[13]: | # completing: complete or delete missing values in train and test/validation
      # dataset
      for dataset in data_cleaner:
          # complete missing age with median
          dataset['Age'].fillna(dataset['Age'].median(), inplace=True)
          # complete embarked with mode
          dataset['Embarked'].fillna(dataset['Embarked'].mode()[0], inplace=True)
          # complete missing fare with median
          dataset['Fare'].fillna(dataset['Fare'].median(), inplace=True)
      # delete the cabin feature/column and others previously stated to exclude in
      # train dataset
      drop_column=['PassengerId','Cabin','Ticket']
      data1.drop(drop_column,axis=1,inplace=True)
      print(data1.isnull().sum())
      print('-'*10)
      print(data_val.isnull().sum())
     Survived
                 0
     Pclass
                 0
     Name
                 0
```

Sex 0 Age SibSp Parch Fare Embarked dtype: int64 _____ PassengerId Pclass Name 0 Sex Age SibSp 0 Parch 0 Ticket Fare 0 Cabin 327 Embarked 0 dtype: int64

50%

75%

NaN

NaN

```
[15]: # create: feature engineering for train and test/validation dataset
      for dataset in data_cleaner:
          # discrete variables
          dataset["FamilySize"] = dataset["SibSp"] + dataset["Parch"] + 1
          dataset["IsAlone"] = 1 # initialize to yes/1 is alone
          dataset["IsAlone"].loc[
              dataset["FamilySize"] > 1
          ] = 0 # now update to no/0 if family size is greater than 1
          # quick and dirty code split title from name
          dataset["Title"] = (
              dataset["Name"]
              .str.split(", ", expand=True)[1]
              .str.split(".", expand=True)[0]
          )
          # continuous variable bins using qcut, cut into bins with approximately
          # equal amount of elements
          dataset["FareBin"] = pd.qcut(dataset["Fare"], 4)
          # age bins/buckets using cut with the same interval of each bin
          dataset["AgeBin"] = pd.cut(dataset["Age"].astype(int), 5)
      # cleanup rare title names
      print(data1["Title"].value_counts())
      stat min = (
          10 # while small is arbitrary, we'll use the common minimum in statistics
      title_names = (
          data1["Title"].value_counts() < stat_min</pre>
      ) # this will create a true false series with title name as index
      # apply and lambda functions are quick and dirty code to find and replace with
      # fewer lines of code
      data1["Title"] = data1["Title"].apply(
          lambda x: "Misc" if title_names.loc[x] == True else x
      print(data1['Title'].value_counts())
      print('-'*10)
      # preview data again
      data1.info()
      data val.info()
      data1.sample(10)
```

Title Mr 517

```
Miss
                182
Mrs
                125
Master
                  40
\mathtt{Dr}
                   7
                   6
Rev
Mlle
                   2
                   2
Major
Col
the Countess
                   1
Capt
                   1
Ms
                   1
Sir
                   1
                   1
Lady
Mme
                   1
Don
                   1
Jonkheer
                   1
Name: count, dtype: int64
Title
Mr
          517
Miss
          182
Mrs
          125
Master
           40
Misc
           27
Name: count, dtype: int64
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 14 columns):
 #
     Column
                 Non-Null Count
                                  Dtype
---
     _____
                 _____
                                  ____
 0
     Survived
                 891 non-null
                                  int64
 1
     Pclass
                 891 non-null
                                  int64
 2
     Name
                 891 non-null
                                  object
 3
     Sex
                 891 non-null
                                  object
 4
                                  float64
     Age
                 891 non-null
 5
     SibSp
                 891 non-null
                                  int64
 6
     Parch
                                  int64
                 891 non-null
 7
     Fare
                 891 non-null
                                  float64
 8
     Embarked
                 891 non-null
                                  object
     FamilySize 891 non-null
                                  int64
 9
 10 IsAlone
                 891 non-null
                                  int64
    Title
                                  object
 11
                  891 non-null
 12 FareBin
                 891 non-null
                                  category
```

dtypes: category(2), float64(2), int64(6), object(4)

891 non-null

memory usage: 85.9+ KB

13 AgeBin

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417

category

Data #	a columns Column			lumns): l Count	Dtype						
0	Passenge	erId 4	d 418 non-null		int64						
1	Pclass				int64						
2	Name				object						
3	Sex		118 non-		object						
4	Age		118 non-		float64						
5	SibSp		118 non-		int64						
6	Parch		118 non-		int64						
7	Ticket		118 non-		object						
8	Fare		118 non-		float64						
9	Cabin		91 non-		object						
10	Embarke				object						
11	FamilyS:				int64						
12	IsAlone		118 non-		int64						
13	Title	4	118 non-	-null	object						
14	FareBin		118 non-		categor	У					
15	AgeBin		118 non-		categor	-					
dtyr	_				_	, object(6	3)				
	ory usage			•							
[15]:	Survive	ed Pcl	ass					Nan	ne \		
321		0	3				Danoff	f, Mr. Yot	50		
847		0	3				Markoff,	Mr. Mari	in		
543		1	2				Beane,	Mr. Edwai	rd		
731		0	3			Ha	ssan, Mr. Ho				
320		0	3				Dennis,	Mr. Samue	el		
369		1	1		Aubart, Mme. Leontine Pauline						
270		0	1		Cairns, Mr. Alexander						
746		0	3		Abbott, Mr. Rossmore Edward						
599		1	1	Duff	Gordon, Sir. Cosmo Edmund ("Mr Morgan")						
820		1	1 Ha	ys, Mrs	. Charles	s Melville	(Clara Jenn	ings Gr			
	Sex	Age	SibSp	Parch	Fare	Embarked	FamilySize	IsAlone	Title	\	
321	male	27.0	0	0	7.8958	S	1	1	Mr		
847	male	35.0	0	0	7.8958	C	1	1	Mr		
543	male	32.0	1	0	26.0000	S	2	0	Mr		
731	male	11.0	0	0	18.7875	C	1	1	Mr		
320	male	22.0	0	0	7.2500	S	1	1	Mr		
369	female	24.0	0	0	69.3000	C	1	1	Misc		
270	male	28.0	0	0	31.0000	S	1	1	Mr		
746	male	16.0	1	1	20.2500	S	3	0	Mr		
599	male	49.0	1	0	56.9292	С	2	0	Misc		
820	female	52.0	1	1	93.5000	S	3	0	Mrs		

FareBin AgeBin

```
(-0.001, 7.91] (16.0, 32.0]
321
847
     (-0.001, 7.91]
                     (32.0, 48.0]
    (14.454, 31.0] (16.0, 32.0]
543
    (14.454, 31.0] (-0.08, 16.0]
731
320
    (-0.001, 7.91] (16.0, 32.0]
369 (31.0, 512.329]
                   (16.0, 32.0]
270
    (14.454, 31.0] (16.0, 32.0]
    (14.454, 31.0] (-0.08, 16.0]
746
                     (48.0, 64.0]
599 (31.0, 512.329]
    (31.0, 512.329] (48.0, 64.0]
820
```

1.5.2 转换格式

将类别数据转换成 dummy 变量, 用于数学分析.

此外,为数据建模定义 x(independent/features/explanatory/predictor/etc.) 和 y(dependent/target/outcome/response/etc.) 变量

```
[]: # convert: convert objects to categoryusiing Label Encoder for train and
     # test/validation dataset
     # code categorical data
     label = LabelEncoder()
     for dataset in data cleaner:
         dataset["Sex_Code"] = label.fit_transform(dataset["Sex"])
         dataset["Embarked_Code"] = label.fit_transform(dataset["Embarked"])
         dataset["Title_Code"] = label.fit_transform(dataset["Title"])
         dataset["FareBin_Code"] = label.fit_transform(dataset["FareBin"])
         dataset["AgeBin_Code"] = label.fit_transform(dataset["AgeBin"])
     # define y variable aka target/outcome
     Target = ["Survived"]
     # define x variables for original features aka feature selection
     data1_x = [
         "Sex",
         "Pclass",
         "Embarked",
         "Title",
         "SibSp",
         "Parch",
         "Age",
         "Fare",
         "FamilySize",
         "IsAlone",
     ] # pretty name/values for charts
     data1_x_calc = [
         "Sex_Code",
```

```
"Pclass",
    "Embarked_Code",
    "Title_Code",
    "SibSp",
    "Parch",
    "Age",
   "Fare",
] # code for algorithm calculation
# define x variables original w/bin features to remove continuous variables
data1_x_bin = [
   "Sex_Code",
    "Pclass",
    "Embarked_Code",
    "Title_Code",
    "FamilySize",
    "AgeBin_Code",
   "FareBin_Code",
]
data1_xy_bin = Target + data1_x_bin
print("Bin X Y: ", data1_xy_bin, "\n")
\# define x and y variables for dummy features original
data1_dummy=pd.get_dummies(data1[data1_x])
data1_x_dummy
```