MATEMATYKA II

Jakub Guzek

Uwaga!

Poniższe opracowanie jest oparte głównie na podstawie wykładów z przedmiotu **Matematyka** II prowadzonych na kierunku **Biotechnologia** w Szkole Głównej Gospodarstwa Wiejskiego w Warszawie. Jest ono autorstwa studentów toteż może zawierać błędy i do zawartych w nim informacji należy poodchodzić z głową.

SPIS TREŚCI

1	\mathbf{Cal}	ii niewłaściwe	2						
	1.1	Całki niewłaściwe pierwszego rodzaju	2						
	1.2	Całki niewłaściwe drugiego rodzaju	2						
2	Macierze i wyznaczniki 3								
	2.1	Pojęcie macierzy	3						
	2.2	Działania na macierzach	3						
		2.2.1 Działania proste	3						
		2.2.2 Wyznaczniki	4						
3	Ukł	kład równań liniowych							
4	Geo	metria analityczna w przestrzeni	9						
	4.1	Wektory	9						
	4.2	Równania płaszczyzn	11						
5	Funkcje wielu zmiennych								
	5.1	Pochodne cząstkowe	14						
	5.2	Ekstrema funkcji wielu zmiennych	15						
		v	15						
		5.2.2 Ekstrema globalne funkcji wielu zmiennych	16						
6	Równania różniczkowe zwyczajne 18								
	6.1	v v	20						
	6.2	Ç 1	23						
		J 7 1 0	23						
		3	24						
	6.3	0							
	6.4	, , , , , , , , , , , , , , , , , , , ,							
	6.5	.5 Równania różniczkowe liniowe rzędu II							
		6.5.1 Równania różniczkowe liniowe jednorodne rzędu drugiego	28						
		6.5.2 Równania różniczkowe liniowe jednorodne drugiego rzędu o stałych współczyn-							
		nikach	28						
		6.5.3 Równania różniczkowe liniowe niejednorodne drugiego rzędu o stałych współczyn	_						
		nikach	30						

1. Całki niewłaściwe

Warunkiem koniecznym istnienia całki Riemanna jest ograniczoność funkcji. Często trzeba jednak obliczyć całki, w których funkcji podcałkowa jest nieograniczona, lub przedział całkowania jest nieograniczony.

Całka niewłaściwa jest uogólnieniem pojęcia całki Riemanna.

1.1 Całki niewłaściwe pierwszego rodzaju

1. f(x) jest całkowalna na przedziale $\langle a; b \rangle \ \forall b > a$

$$\int_{a}^{+\infty} f(x) dx = \lim_{T \to \infty} \int_{a}^{T} f(x) dx \tag{1.1}$$

2. f(x) jest całkowalna na przedziale $\langle a;b\rangle \ \forall a>b$

$$\int_{-\infty}^{b} f(x) dx = \lim_{S \to -\infty} \int_{S}^{b} f(x) dx \tag{1.2}$$

Szczególnie:

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{C} f(x) dx + \int_{C}^{\infty} f(x) dx$$
 (1.3)

Pzykład

a)

Obliczyć całki

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{T \to \infty} \int_{1}^{T} x^{-2} dx = \lim_{T \to \infty} \left(\frac{1}{T} + 1\right) = 1$$
b)
$$\int_{-\infty}^{\infty} \frac{1}{x^{2} + 1} dx = \operatorname{arctg} x + C$$

$$\int_{-\infty}^{\infty} \frac{1}{x^{2} + 1} dx = \int_{-\infty}^{0} \frac{1}{x^{2} + 1} dx + \int_{0}^{\infty} \frac{1}{x^{2} + 1} dx$$

$$\int_{0}^{\infty} \frac{1}{x^{2} + 1} dx = \lim_{T \to \infty} \int_{T}^{\infty} \frac{1}{x^{2} + 1} dx = \lim_{T \to \infty} (\operatorname{arctg} T - \operatorname{arctg} 0) = \frac{\pi}{2}$$

Analogicznie druga całka

1.2 Całki niewłaściwe drugiego rodzaju

Niech funkcja $f: \langle a; b \rangle \to \mathbb{R}$ będzie funkcją całkowalną w sensie Riemanna na każdym z przedziałów $\langle a; c \rangle$ przy czym a < c < b

Załóżmy też, że funkcja f jest nieograniczona w pewnym sąsiedztwie punktu b

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to b} \int_{a}^{c} f(x) \, dx \tag{1.4}$$

Analogicznie gdy funkcja jest nieograniczona na pewnym sąsiedztwie punktu a

$$\int_{a}^{b} f(x) dx = \lim_{c \to a} \int_{c}^{b} f(x) dx \tag{1.5}$$

Przykład

$$\int_0^1 \frac{1}{x} dx = \lim_{a \to 0^+} \int_a^1 \frac{1}{x} dx = \lim_{a \to 0^+} (\ln 1 - \ln |a|) = 0 - (-\infty) = \infty$$

Całka jest rozbieżna

2. Macierze i wyznaczniki

2.1 Pojęcie macierzy

Definicja 2.1. Macierzą rzeczywistą (dalej: macierzą) wymiarów $m \times n$ gdzie $m \wedge n \in \mathbb{N}$ nazywamy prostokątną tablicę złożoną z $m \cdot n$ liczb rzeczywistych znajdujących się w m wierszach i n kolumnach

Macierze oznaczmy dużymi literami alfabetu łacińskiego. a_{ij} – element macierzy A w *i*-tym rzędzie i *j*-tej kolumnie

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

Macierze A i B są równe wtedy, i tylko wtedy, gdy mają takie same wymiary $m \times n$ oraz $a_{ij} = b_{ij}$ $\forall i \in \{1, ..., m\} \land \forall j \in \{1, ..., n\}$

Definicja 2.2. Macierz kwadratowa stopnia n to macierz wymiarów $n \times n$, w której elementy $a_{11}, a_{22}, \ldots, a_{nn}$ tworzą główną przekątną.

Definicja 2.3. Macierz diagonalna to macierz kwadratowa stopnia n, na której wszystkie elementy nie stojące na głównej przekątnej są równe 0. W przypadku macierzy diagonalnej główna przekątna jest nazywana diagonalą.

Definicja 2.4. Macierz jednostkowa to taka macierz diagonalna, której wszystkie elementy stojące na głównej przekątnej są równe 1. Macierz jednostkową stopnia n oznaczamy I_n

2.2 Działania na macierzach

2.2.1 Działania proste

Niech dane będą macierze $A = [a_{ij}]$ i $B = [b_{ij}]$ będą macierzami wymiaru $m \times n$. Sumą (różnicą) macierzy A i B nazywamy macierz $C = [c_{ij}]$ wymiaru $m \times n$, której elementy określone są wzorem

$$c_{ij} = a_{ij} + b_{ij} \tag{2.1}$$

lub

$$c_{ij} = a_{ij} - b_{ij} (2.2)$$

Przykład

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$A + B = \begin{bmatrix} 2 & 2 & 4 \\ 4 & 6 & 6 \end{bmatrix}$$

Definicja 2.5. Iloczynem macierzy A przez liczbę $\alpha \in \mathbb{R}$ nazywamy macierz C takiego samego wymiaru jak macierz A, której elementy określone są wzorem

$$c_{ij} = \alpha \cdot a_{ij} \tag{2.3}$$

Definicja 2.6. Niech macierz $A = [a_{ij}]$ ma wymiary $m \times n$, a macierz $B = [b_{ij}]$ wymiary $n \times k$ Iloczynem macierzy A i B nazywamy macierz $C = [c_{ij}]$ o wymiarach $m \times k$ której elementy określone są wzorem

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \ldots + a_{in} \cdot b_{kj} \quad \text{dla } i \in \{1, \ldots, n\}; \ j \in \{1, \ldots, n\}$$

$$(2.4)$$

Mnożenie macierzy nie jest przemienne

Przykład

$$\begin{bmatrix} 1 & 0 & 3 & 5 \\ 2 & 1 & 7 & 4 \end{bmatrix} \quad \cdot \quad \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 2 & 5 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 2+0+6+0 & 1+0+15+35 \\ 4+4+14+0 & 2+2+35+28 \end{bmatrix} = \begin{bmatrix} 8 & 51 \\ 22 & 67 \end{bmatrix}$$

Definicja 2.7. Macierzą transponowaną do macierzy $A = [a_{ij}]$ wymiaru $m \times n$ nazywamy macierz $B = A^T$ wymiaru $n \times m$, taką że element $b_{ij} = a_{ji}$

Własności transpozycji macierzy

- 1. $(A+B)^T = A^T + B^T$
- 2. $(A^T)^T = A$
- 3. $(\alpha A^T) = \alpha A^T$

2.2.2 Wyznaczniki

Definicja 2.8. Wyznacznikiem macierzy keadratowej nazywamy funkcje, która każdej macierzy $A = [a_{ij}]_{n \times n}$ przypisuje liczbę det. A = |A|. Funkcja ta określona jest wzorem indukcyjnym

- 1. jeżeli A ma stopień (wymiar) n = 1, $A_{1\times 1}$ to $|A| = a_{11}$
- 2. jeżeli ma stopień $n \ge 1$, $A_{n \times n}$ to

$$|A| = (-1)^{1+1} \cdot a_{11} \cdot |A_{11}| + (-1)^{1+2} \cdot a_{12} \cdot |A_{12}| + \dots + (-1)^{1+n} \cdot a_{1n} \cdot |A_{1n}|$$
 (2.5)

gdzie A_{ij} oznacza macierz wymiaru n-1 otrzymaną z macierzy A poprzez skreślenie i-tego wiersza i j-tej kolumny.

Reguła 2.1 (Reguła obliczania wyznacznika stopnia drugiego).

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c \tag{2.6}$$

4

Reguła 2.2 (Metoda Sarrusa). Gdy wyznacznik jest stopnia trzeciego, tj. n=3, do obliczenia wyznacznika często stosuje się tzw. Metodę Sarrusa. Polega ona na tym, że poniżej (lub obok) wyznacznika stopnia trzeciego dopisujemy jego pierwszy wiersz (kolumnę), pod nim drugi wiersz (kolumnę) a następnie tworzymy sześć iloczynów (po trzy czynniki w każdym), z których trzy. bierzemy nie zmieniając ich znaków, a w trzech pozostałych iloczynach zmieniamy ich znaki (patrz Fig.1), a następnie wszystkie sześć iloczynów sumujemy.

Fig. 1: Schemat metody Sarrusa

Definicja 2.9. Niech $A = [a_{ij}]_{n \times n}$, $n \ge 2$. Dopełnieniem algebraicznym elementu a_{ij} nazywamy liczbę $D_{ij} = (-1)^{i+j} det$. A_{ij}

Definicja 2.10 (rozwinięcie LaPlace'a wyznacznika). Niech $A = [a_{ij}]_{n \times n}$, $n \ge 2$ oraz niech liczby i oraz j, gdzie $1 \le i, j \le n$ będą ustalone. Wtedy

- 1. $det.A = a_{i1} \cdot D_{i1} + a_{i2} \cdot D_{i2} + ... + a_{in} \cdot D_{in}$ rozwinięcie LaPlace'a względem i-tego wiersza
- 2. $det.A = a_{1j} \cdot D_{1j} + a_{2j} \cdot D_{2j} + \ldots + a_{nj} \cdot D_{nj}$ rozwinięcie LaPlace'a względem j-tej kolumny. Najlepiej wybrać taki wiersz/kolumnę (i/j) w której jest jak najwięcej zer.

Własności wyznaczników

Wyznacznik macierzy kwadratowej:

- 1. mającej kolumny (wiersze) złożone z samych zer jest równy 0
- 2. zmieni znak jeśli przestawimy między sobą dwie kolumny (lub wiersze)
- 3. mającej dwie jednakowe kolumny (dwa jednakowe wiersze) jest równy 0
- 4. jeżeli wszystkie elementy pewnej kolumny (pewnego wiersza) zawierają wspólny czynnik to czynnik ten można wyłączyć przed wyznacznik tej macierzy.

$$\begin{vmatrix} a_{i1} & \dots & c \cdot a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & c \cdot a_{nj} & \dots & a_{nm} \end{vmatrix} = c \cdot \begin{vmatrix} a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nm} \end{vmatrix}$$

- 5. nie zmieni się jeśli do elementów dowolnego wiersza (kolumny) tej macierzy dodamy sumę odpowiadających im elementów innych wierszy (kolumn) tej macierzy pomnożonych przez dowolne liczby
- 6. i jej transpozycji są równe, czyli $|A| = |A^T|$

Definicja 2.11. Niech $A+[a_{ij}]_{n\times n}$. Macierzą odwrotną do macierzy A nazywamy macierz oznaczaną przez A^{-1} , która spełnia warunek $A\cdot A^{-1}=A^{-1}\cdot A=I_n$, gdzie I_n jest macierzą jednostkową stopnia n

Definicja 2.12. Macierz kwadratową A nazywamy macierzą osobliwa gdy |A| = 0. W przeciwnym wypadku mówimy, że macierz jest nieosobliwa.

Twierdzenie 2.1. Macierz kwadratowa A jest odwracalna wtedy, i tylko wtedy, gdy macierz A jest nieosobliwa. Jeżeli $A = [a_{ij}]_{n \times n}$ jest nieosobliwa to

$$A^{-1} = \frac{1}{|A|} [D_{ij}]^T \tag{2.7}$$

5

 $gdzie [D_{ij}]$ – macierz dopełnień algebraicznych

 $\bf Reguła~2.3~(Bezwyznacznikowy algorytm znajdowania macierzy odwrotnej).$

$$[A:I] \xrightarrow{\text{elementarne operacje}} [I:A^{-1}]$$

Przykład

$$\begin{bmatrix} 1 & 1 & 1 & 1 & \vdots & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & \vdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & \vdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{W'_1 = W_1 - W_2} \begin{bmatrix} 1 & 0 & 0 & 0 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & \vdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & \vdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{W'_2 = W_2 - W_3} \begin{bmatrix} 1 & 0 & 0 & 0 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & \vdots & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \vdots & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \vdots & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & \vdots & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix}$$

Własności macierzy odwrotnej:

1.
$$det(A^{-1}) = (det A)^{-1} = \frac{1}{det A}$$

2.
$$(A^{-1})^{-1} = A$$

3.
$$(A^T)^{-1} = (A^{-1})^T$$

4.
$$(AB)^{-1} = A^{-1} \cdot B^{-1}$$

5.
$$(\alpha \cdot A)^{-1} = \frac{1}{\alpha} \cdot A^{-1}$$

6.
$$(A^n)^{-1} = (A^{-1})^n$$

3. UKŁAD RÓWNAŃ LINIOWYCH

Układem równań liniowych z niewidomymi $\{x_1; x_2; \dots; x_n\}$ gdzie $m, n \in \mathbb{N}$ nazywamy układ równań postaci

$$\begin{cases} a_{11}x_1 & + \dots + & a_{1j}x_j & + \dots + & a_{1n}x_n = & b_1 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ a_{i1}x_1 & + \dots + & a_{ij}x_j & + \dots + & a_{in}x_n = & b_i \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ a_{m1}x_1 & + \dots + & a_{mj}x_j & + \dots + & a_{mn}x_n = & b_m \end{cases}$$

Rozwiązaniem układu równań liniowym nazywamy ciąg $(x_1; x_2; ...; x_n)$ spełniających ten układ równań.

Układ równań można zapisać w postaci

$$AX = B (3.1)$$

Gdzie:

A – Macierz główna

X – Macierz niewiadomych

B – Macierz wyrazów wolnych

Definicja 3.1. Układ równań liniowych postaci AX = 0 gdzie $A = [a_{ij}]_{m \times n}$; $0 = [0_{ij}]_{m \times n}$ nazywamy układem jednorodnym Układ jednorodnym na zawsze jedno rozwiązanie

Definicja 3.2. Układ równań liniowych postaci AX = B w którym macierz B jest macierzą niezerową nazywamy układem niejednorodnym

Definicja 3.3. Układem Cramera to układ równań liniowych AX=B w którym A jest macierzą kwadratową nieosobliwą $(\det A \neq 0)$

Twierdzenie 3.1. Układ Cramera AX = B ma dokładnie jedno rozwiązanie. Rozwiązanie to jest określone wzorem

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}; gdzie \ x_1 = \frac{\det A_1}{\det A}; x_2 = \frac{\det A_2}{\det A}; \dots; x_n = \frac{\det A_n}{\det A}$$
 (3.2)

n oznacza stopień macierzy A Gdzie: A_j , $j \leq n$ oznacza macierz A w którje j-tą kolumnę zastąpiono kolumną wyrazów wolnych.

Przykład

$$\begin{cases} x_1 + x_2 + 2x_3 = 5 \\ 3x_1 - x_2 - x_3 = 5 \\ x_1 - 4x_2 - x_3 = 4 \end{cases}$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & -1 & -1 \\ 1 & -4 & -1 \end{bmatrix}; \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}; \quad B = \begin{bmatrix} 5 \\ 5 \\ 4 \end{bmatrix}$$

$$\begin{vmatrix} 1 & 1 & 2 \\ 3 & -1 & -1 \\ 1 & -4 & -1 \end{vmatrix} = -23 \neq 0$$

Jest to układ Cramera

$$W_{1} = \begin{bmatrix} 5 & 1 & 2 \\ 5 & -1 & -1 \\ 4 & -4 & -1 \end{bmatrix} = -46; \quad W_{2} = \begin{bmatrix} 1 & 5 & 2 \\ 3 & 5 & -1 \\ 1 & 4 & -1 \end{bmatrix} = 23; \quad W_{3} = \begin{bmatrix} 1 & 1 & 5 \\ 3 & -1 & 5 \\ 1 & -4 & 4 \end{bmatrix} = -46$$
$$x_{1} = \frac{-46}{-23} = 2; \quad x_{2} = \frac{23}{-23} = -1; \quad x_{3} = \frac{-46}{-23} = 2$$

 $\bf Metoda~3.1~(Metoda macierzy odwrotnej).$ Rozwiązanie układu Cramera AX=Bjest określone wzorem

$$X = A^{-1}B \tag{3.3}$$

Metoda 3.2. (Metoda eliminacji Gaussa) Niech AX = B będzie układem równań liniowych gdzie A jest macierzą wymiaru $m \times n$. Układ ten rozwiązujemy następująco

(1) budujemy macierz rozszerzoną układu postaci

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

- (2) na macierzy rozszerzonej dokonujemy równoważnych przekształceń układu, są to
 - zmiana między sobą wierszy: $w_i \leftrightarrow w_j$
 - mnożenie wiersza przez stałą różną od zera: $w_i' = c \cdot w_i$
 - dodanie do wszystkich wyrazów ustalonego wiersza odpowiadających im wyrazów innego wiersza pomnożonych przez stałą: $w_i' = w_i + c \cdot w_j$
 - skreślenie wiersza złożonego z samych zer
 - skreślenie jednego z wierszy równych lub proporcjonalnych
 - zamiana miejscami dwóch kolumn przy jednoczesnej zamianie niewiadomych

Ostatecznie układ sprowadzamy do postaci

$$[A'|B'] = \begin{bmatrix} 1 & 0 & \dots & 0 & s_{1r+1} & s_{1n} & z_1 \\ 0 & 1 & \dots & 0 & s_{2r+1} & s_{2n} & z_2 \\ \vdots & \vdots & \ddots & \vdots & & & \vdots \\ 0 & 0 & \dots & 1 & s_{rr+1} & s_{sr} & z_r \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 & z_{r+1} \end{bmatrix}$$

Przykład

Rozwiąż układ równań metodą eliminacji Gaussa

$$\begin{cases} 2x_1 + 3x_2 - x_3 = 4 \\ x_1 + 4x_2 + 2x_3 = 10 \\ 5x_1 - 4x_2 + 4x_3 = 2 \end{cases}$$

$$[A|B] = \begin{bmatrix} 2 & 3 & -1 & | & 4 \\ 1 & 4 & 2 & | & 10 \\ 5 & -4 & 4 & | & 2 \end{bmatrix} \xrightarrow{W'_1 = W_1 - W_2} \xrightarrow{W'_3 = W_3 - 5W_2} \begin{bmatrix} 1 & -1 & -3 & | & -6 \\ 1 & 4 & 2 & | & 10 \\ 0 & -24 & -6 & | & -48 \end{bmatrix} \xrightarrow{W'_2 = W_2 - W_1} \xrightarrow{W'_2 = W_2 - W_1}$$

$$\begin{bmatrix} 1 & -1 & -3 & | & -6 \\ 0 & 5 & 5 & | & 16 \\ 0 & -24 & -6 & | & -48 \end{bmatrix} \xrightarrow{W'_3 = W_3 + 5W_2} \xrightarrow{W'_2 = W_2 / 5} \begin{bmatrix} 1 & -1 & -3 & | & -6 \\ 0 & 1 & 1 & | & \frac{16}{5} \\ 0 & 1 & 19 & | & 32 \end{bmatrix} \xrightarrow{W'_1 = W_1 + W_2} \xrightarrow{W'_3 = W_3 - W_2}$$

$$\begin{bmatrix} 1 & 0 & -2 & | & -\frac{14}{5} \\ 0 & 1 & 1 & | & \frac{16}{5} \\ 0 & 1 & 1 & | & \frac{16}{5} \\ 0 & 0 & 1 & | & \frac{8}{5} \end{bmatrix} \xrightarrow{W'_1 = W_1 + 2W_3} \xrightarrow{W'_2 = W_2 - W_3} \begin{bmatrix} 1 & 0 & 0 & | & \frac{25}{5} \\ 0 & 1 & 0 & | & \frac{8}{5} \\ 0 & 0 & 1 & | & \frac{8}{5} \end{bmatrix}$$

$$X = \begin{bmatrix} 2 \\ \overline{5} \\ 8 \\ \overline{5} \end{bmatrix} \Longrightarrow x_1 = \frac{2}{5}; \ x_2 = \frac{8}{5}; \ x_3 = \frac{8}{5}$$

Definicja 3.4 (Minor macierzy). Niech A będzie dowowlną macierzą wymiaru $m \times n$ oraz niech $1 \le k \le min(m \times n)$. Minorem stopnia k macierzy A nazywamy wyznacznik macierzy kwadratowej która powstałą po skreśleniu m-k wierszy oraz n-k kolumn macierzy A

Definicja 3.5 (Rząd macierzy). Rzędem macierzy nazywamy największy stopień jej niezerowego minora. Rzędem macierzy A oznaczany przez rz A. Przypisujemy, że rząd macierzy zerowej jest równy 0

Przykład

Znaleźć rzad podanej macierzy

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 4 & 1 \\ -1 & 0 & 7 \end{bmatrix}$$

$$\begin{vmatrix} 1 & -2 & 3 \\ -3 & 4 & 1 \\ -1 & 0 & 7 \end{vmatrix} = 0; \quad \text{Wiec } rz A \leqslant 2$$

$$\begin{vmatrix} 1 & -2 \\ -3 & 4 \end{vmatrix} = 2; \quad \text{Wiec } rz A = 2$$

Twierdzenie 3.2 (Twierdzenie Kroneckera–Capellego). Układ równań liniowych AX = B ma rozwiązanie wtedy, i tylko wtedy, gdy rząd macierzy A jest równy rzędowi macierzy rozszerzonej [A|B] tego układu

$$rz\left[A|B\right] = rz\,A\tag{3.4}$$

Niech AX = B będzie układem równań liniowych z n – niewiadomymi. Wówczas

- 1. Jeżeli $rz[A|B] \neq rzA$, to układ nie ma rozwiązań
- 2. Jeżeli $rz\left[A|B\right]=rz\,A=n,$ to układ ma dokłądnie jedno rozwiąznie
- 3. Jeżeli $rz[A|B] \geqslant rzA = r < n$, to układ ma nieskończenie wiele rozwiązań zależnych od n-r parametrów.

4. Geometria analityczna w przestrzeni

Definicja 4.1. Przestrzenią \mathbb{R}^3 nazywamy zbiór wszystkich uporządkowanych trójek (x,y,z) liczb rzeczywistych

$$\mathbb{R}^3 = [(x, y, z) \colon x, y, z \in \mathbb{R}]$$

4.1 Wektory

Definicja 4.2. Wektorem zaczepionym nazywamy parę punktów AB. Jeżeli $A=(x_A,y_A,z_A)$, $B=(x_B,y_B,z_B)$ to $\overrightarrow{AB}=[(x_B-x_A,y_B-y_A,z_B-x_A]$

Definicja 4.3. Niech $\vec{u} = [x, y, z], \vec{w} = [x_1, y_1, z_1], \vec{v} = [x_2, y_2, z_2]$

- 1. suma wektorów \vec{w} i \vec{v} jest określona wzorem $\vec{u} = \vec{w} + \vec{v} = [x_1 + x_2, y_1 + y_2, z_1 + z_2]$
- 2. różnica wektorów \vec{w} i \vec{v} jest określona wzorem $\vec{u} = \vec{w} \vec{v} = [x_1 x_2, y_1 y_2, z_1 z_2]$
- 3. iloczyn wektora \vec{u} przez liczbę α określamy wzorem $\alpha \vec{u} = [\alpha x, \alpha y, \alpha z]$

Definicja 4.4. Układem współrzędnych w przestrzeni nazywamy trzy ustalone proste x,y,z przecinające się w jednym punkcie O, które są wzajemnie prostopadłe. Taki układ oznaczamy przez OXYZ. Proste OX,OY,OZ nazywamy osiami. Płaszczyzny XOY,YOZ,XOZ płaszczyznami układu współrzędnych

Fig. 2: Układ współrzędnych w przestrzeni

Definicja 4.5. W zależności od wzajemnego położenia osi OX, OY, OZ układu współrzędnych wymieniamy dwie jego orientacje, układ prawoskrętny i układ lewoskrętny

Definicja 4.6. Wektory $\vec{i} = [1, 0, 0]$, $\vec{j} = [0, 1, 0]$, $\vec{k} = [0, 0, 1]$ nazywamy wersorami odpowiednio na osiach OX, OY, OZ

Definicja 4.7. Długość wektora $\vec{u} = [x, y, z]$ jest określona wzorem

$$|\vec{u}| = \sqrt{x^2 + y^2 + z^2} \tag{4.1}$$

Własności długości wektorów

Niech \overrightarrow{u} i \overrightarrow{v} będą wektorami w \mathbb{R}^3 oraz niech $\alpha \in \mathbb{R}$ Wtedy:

- 1. $|\vec{u}| \geqslant 0$
- 2. $|\vec{u}| = 0 \iff \vec{u} = 0$
- 3. $|\alpha \vec{u}| = |\alpha||\vec{u}|$
- 4. $|\vec{u} + \vec{v}| \leq |\vec{u}| + |\vec{v}|$
- 5. $||\vec{u}| |\vec{v}|| \le |\vec{u} \vec{v}|$

Definicja 4.8. Niech wektory $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$. Kombinacją liniową tych wektorów nazywamy

$$\overrightarrow{v} = a \cdot \overrightarrow{v}_1 + b \cdot \overrightarrow{v}_2 + c \cdot \overrightarrow{v}_3$$

Definicja 4.9. Wektory $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}\in\mathbb{R}^3$ są liniowo niezależne gdy żaden z nich nie jest kombinacją liniową pozostałych

Twierdzenie 4.1. $W \mathbb{R}^3$ możemy mieć maksymalnie trzy liniowo niezależne wektory

Definicja 4.10. Niech \vec{u} i \vec{v} będą dowolnymi wektorami w \mathbb{R}^3 . Iloczynem skalarnym wektorów \vec{u} i \vec{v} określamy wzorem

$$\vec{u} \circ \vec{v} = |\vec{u}||\vec{v}|\cos\angle(\vec{u}; \vec{v}) \tag{4.2}$$

Twierdzenie 4.2. Niech $\vec{u} = [x_1, y_1, z_1], \ \vec{v} = [x_2, y_2, z_2]$ będą wektorami w \mathbb{R}^3 . Wtedy

$$\vec{u} \circ \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2 \tag{4.3}$$

Własności iloczynu skalarnego

Niech $\vec{u}, \vec{w}, \vec{v}$ będą dowolnymi wektorami w \mathbb{R}^3 oraz niech $\alpha \in \mathbb{R}$. Wtedy

- 1. $\vec{u} \circ \vec{v} = \vec{v} \circ \vec{u}$
- 2. $(\alpha \vec{u}) \circ \vec{v} = \alpha (\vec{u} \circ \vec{v})$
- 3. $\vec{u} \circ \vec{u} = |\vec{u}|^2$
- 4. $(\vec{u} + \vec{w}) \circ \vec{v} = \vec{u} \circ \vec{v} + \vec{w} \circ \vec{v}$
- 5. $|\vec{u} \circ \vec{v}| \leq |\vec{v}| \circ |\vec{u}|$
- 6. wektory \vec{u} i \vec{v} są prostopadłe wtedy, i tylko wtedy, gdy $\vec{u} \circ \vec{v} = 0$

Twierdzenie 4.3. Niech $\vec{u} = [x_1, y_1, z_1]$, $\vec{w} = [x_2, y_2, z_2]$, $\vec{v} = [x_3, y_3, z_3]$ będą wektorami w \mathbb{R}^3 . Mówimy, że wektory \vec{u} , \vec{w} , \vec{v} tworzą układ o orientacji zgodnej z orientacją układu współrzędnych, jeżeli

$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} > 0$$

Definicja 4.11. Niech \vec{u} i \vec{v} będą niewspółliniowymi wektorami w \mathbb{R}^3 . Iloczynem wektorowym uporządkowanej pary wektorów \vec{u} i \vec{v} nazywamy wektor \vec{w} , który spełnia warunki

- 1. jest prostopadły do płaszczuzny rozpiętej na wektorach \vec{u} i \vec{v}
- 2. jego długość jest równa polu równoległoboku rozpiętego na wektorach \vec{u} i \vec{v} , tj. równa

$$|\vec{u}||\vec{v}|\sin\angle(\vec{u};\vec{v})$$

3. orientacja trójki wektorów jest zgodna z orientacją układu współrzędnych OXYZ

Iloczyn wektorowy pary wektorów \vec{u} i \vec{v} oznaczamy przez $\vec{u} \times \vec{v}$. Jeżeli wektory są współliniowe to przyjmujemy, że $\vec{u} \times \vec{v} = 0$

Twierdzenie 4.4. Niech $\vec{u} = [x_1, y_1, z_1], \ \vec{v} = [x_2, y_2, z_2]$ będą wektorami w \mathbb{R}^3 . Wtedy

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

$$\tag{4.4}$$

gdzie \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} oznaczają wersory odpowiednio na osiach OX, OY, OZ

Własności iloczynu wektorowego

Niech $\vec{u}, \vec{w}, \vec{v}$ będą dowolnymi wektorami w \mathbb{R}^3 oraz $\alpha \in \mathbb{R}$. Wtedy

- 1. $\vec{u} \times \vec{v} = -(\vec{u} \times \vec{v})$
- 2. $(\alpha \vec{u} \times \vec{v} = \vec{u} \times (\alpha \vec{v}) = \alpha (\vec{u} \times \vec{v})$
- 3. $(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}$
- 4. $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
- 5. $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|$
- 6. wektory \overrightarrow{u} i \overrightarrow{v} są równoległe wtedy, i tylko wtedy, gdy $\overrightarrow{u} \times \overrightarrow{v} = 0$

Twierdzenie 4.5. Pola równoległoboku rozpiętego na wektorach \vec{u} i \vec{v} wyraża się wzorem

$$S = |\vec{u} \times \vec{v}| \tag{4.5}$$

Definicja 4.12. Niech $\vec{u}, \vec{v}, \vec{w}$ będą wektorami w \mathbb{R}^3 . Iloczynem mieszanym uporządkowanej trójki wektorów $\vec{u}, \vec{v}, \vec{w}$ określamy wzorem

$$(\vec{u}, \vec{v}, \vec{w}) = (\vec{u} \times \vec{v}) \circ \vec{w} \tag{4.6}$$

Twierdzenie 4.6. Iloczyn mieszany wektorów $\vec{u}, \vec{v}, \vec{w}$ jest równy objętości równoległościanu V rozpiętego na wektorach $\vec{u}, \vec{v}, \vec{w}$

$$V = |(\vec{u}, \vec{v}, \vec{w})| \tag{4.7}$$

Twierdzenie 4.7. Jedna szósta iloczynu mieszanego wektorów \vec{u} , \vec{v} , \vec{w} jest równa objętości czworościanu V rozpiętego na wektorach \vec{u} , \vec{v} , \vec{w}

$$V = \frac{1}{6} |(\vec{u}, \vec{v}, \vec{w})| \tag{4.8}$$

4.2 Równania płaszczyzn

Definicja 4.13. Równanie płaszczyzny π w przestrzeni \mathbb{R}^3 przechodzącej przez punkt $P_0=(x_0,y_0,z_0)\in\mathbb{R}^3$ ma postać

$$\pi \colon A(x - x_0) + B(y - y_0) + C(z - z_0) = 0 \tag{4.9}$$

Twierdzenie 4.8. Równanie płaszczyzny π w przestrzeni \mathbb{R}^3 przechodzącej przez trzy niewspółliniowe punkty $P_1 = (x_1, y_1, z_1), P_2 = (x_2, y_2, z_2), P_3 = (x_3, y_3, z_3)$ ma postać

$$\pi : \begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = 0 \tag{4.10}$$

Definicja 4.14 (Równanie ogólne płaszczyzny). Równanie płaszczyzny π w przestrzeni \mathbb{R}^3 prostopadłej do wektora $\overrightarrow{v} = [A, B, C] \in \mathbb{R}^3$ ma postać

$$\pi: Ax + By + Cz + D = 0 \tag{4.11}$$

Definicja 4.15 (Równanie parametryczne prostej). Równanie prostej l w przestrzeni \mathbb{R}^3 przechodzącej przez punkt $P_0 = (x_0, y_0, z_0) \in \mathbb{R}^3$ i równoległej do niezerowego wektora $\overrightarrow{v} = [a, b, c] \in \mathbb{R}^3$ ma postać

$$l: \begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$
 (4.12)

Ten sposób zapisu równania prostej nazywamy jej równaniem parametrycznym

Definicja 4.16 (Równanie kierunkowe prostej). Równanie prostej l w przestrzeni \mathbb{R}^3 przechodzącej przez punkt $P=(x_0,y_0,z_0)\in\mathbb{R}^3$ i wyznaczonej przez niezerowy wektor kierunku $\overrightarrow{v}=[a,b,c]\in\mathbb{R}^3$ ma postać

$$l: \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \tag{4.13}$$

Ten sposób zapisu równania parametrycznego prostej nazywamy jej równaniem kierunkowym

Przykład

Napisz równanie parametryczne i kierunkowe prostej przechodzącej przez punkt P=(-1;0;3) i równoległej do wektora $\overrightarrow{v}=[2;-1;5]$

(1) Równanie kierunkowe prostej

$$\frac{x+1}{2} = -\frac{y}{1} = \frac{z-3}{5}$$

(2) Równanie parametryczne prostej

$$\begin{cases} x = 2t - 1 \\ y = -t \\ z = 3 + 5t \end{cases}$$

Definicja 4.17 (Równanie krawędziowe prostej). Prostą l w przestrzeni \mathbb{R}^3 , która jest częścią wspólną dwóch nierównoległych płaszczyzn $\pi_1: A_1x + B_1y + C_1z + D_1 = 0$ oraz $\pi_2: A_2x + B_2y + C_2z + D_2 = 0$ zapisuje się w postaci

$$l: \begin{cases} \pi_1 \colon A_1 x + B_1 y + C_1 z + D_1 = 0\\ \pi_2 \colon A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

$$(4.14)$$

Ten sposób zapisu równania prostej nazywamy jej równaniem krawędziowym

Fig. 3: Graficzna interpretacja równania krawędziowego prostej

Definicja 4.18. Wektor kierunkowy prostej opisanej równaniem

$$l: \begin{cases} \pi_1 \colon A_1 x + B_1 y + C_1 z + D_1 = 0 \\ \pi_2 \colon A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

ma postać

$$\vec{v} = [A_1; B_1; C_1] \times [A_2; B_2; C_2]$$

Twierdzenie 4.9. Odległość punktu $P_0 = (x_0, y_0, z_0)$ od płaszczyzny π_1 : Ax + By + Cz + D = 0 wyraża się wzorem

$$\delta(P_0; \pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$
(4.15)

5. Funkcje wielu zmiennych

Definicja 5.1. Funkcją f, n zmiennych x_1, x_2, \ldots, x_n określoną w zbiorze $X \subseteq \mathbb{R}^n$ o wartościach w zbiorze \mathbb{R} nazywamy przyporządkowanie każdemu punktowi $P(x_1, x_2, \ldots, x_n) \in X$ dokładnie jednej liczby rzeczywistej $f(x_1, x_2, \ldots, x_n)$. Zbiór X nazywamy dziedziną funkcji.

Funkcję taką oznaczmy $f\colon X\to\mathbb{R}$ lub $z=f(x_1,x_2,\ldots,x_n)$ dla $x_1,x_2,\ldots,x_n\in\mathbb{R}$

Definicja 5.2. Wykresem funkcji $f: \mathcal{D} \to \mathbb{R}$ nazywamy zbiór

$$W = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : z = f(x_1, x_2, \dots, x_n)\}$$
(5.1)

Wykresem funkcji dwóch zmiennych może być w przestrzeni \mathbb{R}^3 pewna powierzchnia wówczas równanie z=f(x,y) nazywamy równaniem tej powierzchni

Pezykład

Wyznaczyć i narysować dziedzinę funkcji $f(x,y) = \sqrt{xsiny}$

$$xsiny \geqslant 0 \Longrightarrow \mathcal{D} = \begin{cases} x \geqslant 0 \\ siny \geqslant 0 \end{cases} \quad \text{lub} \quad \mathcal{D} = \begin{cases} x \leqslant 0 \\ siny \leqslant 0 \end{cases}$$

Definicja 5.3. Warstwicą (poziomicą) funkcji $f \colon \mathcal{D} \to \mathbb{R}, \ \mathcal{D} \subseteq \mathbb{R}^n$ odpowiadającej wartości c nazywamy podzbiór przestrzeni \mathbb{R}^n

$$\{(x_1, x_2, \dots, x_n) \in \mathcal{D} \colon f(x_1, x_2, \dots, x_n) = c\}$$
 (5.2)

Przykład

Narysuj wykres funkcji f i na jego podstawie narysuj warstwicę.

a)
$$f(x,y) = x^2 + y^2$$

Dla $c = 0$ (0,0)

Dla c>0 $x^2+y^2=\sqrt{c}$ czyli okrąg o środku w punkcie (0,0) i promieniu \sqrt{c} (patrz fig,4(b))

Fig. 4: Wykres funkcji $f(x,y)=x^2+y^2$ (a) i poziomice funkcji $f(x,y)=x^2+y^2$ dla $c_1=4$ i $c_2=9$ (b)

b)
$$f(x,y) = x^2$$

Fig. 5: Wykres funkcji $f(x,y)=x^2$ (a) i poziomice funkcji $f(x,y)=x^2$ dla $c_1=4$ i $c_2=9$ (b)

Definicja 5.4. Otoczenie w \mathbb{R}^3 $U(P_0;r)$ punktu P_0 o promieniu r>0 jest zbiorem wszystkich punktów P, których odległość od punktu P_0 jest mniejsza od r wraz z punktem P_0 . Inaczej zbiór ten nazywamy kulą o środku w punkcie P_0 i promieniu r

Definicja 5.5. Sąsiedztwo $S(P_0; r)$ punktu P_0 o promieniu r > 0 jest to zbiór wszystkich punktów P których odległość od punktu P_0 jest mniejsza od r bez punktu P_0 .

5.1 Pochodne cząstkowe

Definicja 5.6 (Pochodne cząstkowe rzędu pierwszego). Niech funkcja f będzie określona w otoczeniu $U(P_0;r)$ punktu $P_0=(x_1^0,x_2^0,\ldots,x_n^0)$. Niech $\Delta x_i\neq 0$ będzie przyrostem zmiennej x_i , a punkt P punktem przesuniętym o Δx_i względem punktu P_0 . Jeśli istnieje skończona granica

$$\lim_{\Delta x_i \to 0} \frac{f(P) - f(P_0)}{\Delta x_i}$$

To nazywamy ją pochodną cząstkową rzędu pierwszego funkcji f względem zmiennej x_i w punkcie P_0 i oznaczamy symbolem

$$\frac{\partial f}{\partial x_i}(P_0)$$
 lub $f'_{x_i}(P_0)$

Przy obliczaniu f'_{x_1} pozostałe zmienne traktujemy jak stałe.

Przykład

Obliczyć pochodne z funkcji $f(x,y) = 2x^2 + xy^2$

Definicja 5.7 (Pochodne cząstkowe rzędu drugiego). Pochodne cząstkowe rzędu pierwszego pochodnych cząstkowych względem zmiennej x_i nazywamy pochodnymi cząstkowymi rzędu drugiego i oznaczamy symbolem

 $f_{x_i x_i}^{"} = (f_{x_i}^{'})_{x_i}^{'}$

lub

$$\frac{\partial^2 f}{\partial x_i \partial x_j}$$

Pochodne drugiego rzędu tej samej zmiennej co pochodne pierwszego rzędu nazywamy czystymi, pozostałe mieszanymi.

Definicja 5.8 (Pochodne cząstkowe wyższych rzędów). Pochodną cząstkową rzędu pierwszego pochodnej cząstkowej rzędu n nazywamy pochodną cząstkową rzędu n+1

Definicja 5.9. Pochodną funkcji wielu zmiennych $f: \mathcal{D} \to \mathbb{R}$ w punkcie $P_0 = (x_1, x_2, \dots, x_n) \in \mathcal{D} \subseteq \mathbb{R}^n$ nazywamy wektor $\nabla f(P_0)$ zwany gradientem funkcji, którego współrzędne równe są kolejnym pochodnym cząstkowym funkcji f

$$\nabla f(P_0) = \operatorname{grad}_f(P_0) = \left[\frac{\partial f}{\partial x_1}(P_0); \frac{\partial f}{\partial x_2}(P_0); \dots; \frac{\partial f}{\partial x_n}(P_0) \right]$$
 (5.3)

5.2 Ekstrema funkcji wielu zmiennych

5.2.1 Ekstrema lokalne funkcji wielu zmiennych

Niech funkcja f będzie określona w pewnym otoczeniu punktu P_0 .

Definicja 5.10. Jeżeli istnieje sąsiedztwo S punktu P_0 takie że

$$\forall P \in S \, f(P) > f(P_0) \tag{5.4}$$

to funkcja ma w punkcie P_0 minimum właściwe

Definicja 5.11. Jeżeli istnieje sąsiedztwo S punktu P_0 takie że

$$\forall P \in S f(P) < f(P_0) \tag{5.5}$$

to funkcja ma w punkcie P_0 maksimum właściwe

Jeżeli zamiast nierówności mocnej zachodzi nierówność słaba funkcja f ma w P_0 minimum lub maksimum niewłaściwe.

Powiedzenie, że funkcja ma punkcie P_0 maksimum właściwe oznacza że P_0 jest punktem wewnętrznym dziedziny funkcji f i że istnieje sąsiedztwo punktu P_0 takie że we wszystkich punktach tego sąsiedztwa funkcja przybiera wartoście mniejsze niż w punkcie P_0

Przypadek szczególny n=2.

Definicja 5.12 (Warunek konieczny istnienia ekstremum). Jeśli funkcja f dwóch zmiennych ma pochodne cząstkowe pierwszego rzędu w punkcie P_0 (zwanym punktem stacjonarnym) i ma w tym punkcie ekstremum to:

$$\begin{cases} \frac{\partial f}{\partial x}(P_0) = 0\\ \frac{\partial f}{\partial y}(P_0) = 0 \end{cases}$$
(5.6)

Inaczej ten warunek możemy zapisać

$$\nabla f(P_0) = [0, 0] \tag{5.7}$$

Definicja 5.13 (Warunek wystarczający istnienia ekstremum funkcji dwóch zmiennych). Jeżeli funkcja f ma w pewnym otoczeniu punktu stacjonarnego P_0 ciągłe pochodne cząstkowe drugiego rzędu oraz

$$H^{1}(P_{0}) = \begin{vmatrix} \frac{\partial^{2} f}{\partial x^{2}}(P_{0}) & \frac{\partial^{2} f}{\partial x \partial y}(P_{0}) \\ \frac{\partial^{2} f}{\partial y \partial x}(P_{0}) & \frac{\partial^{2} f}{\partial y^{2}}(P_{0}) \end{vmatrix} > 0$$

$$(5.8)$$

to funkcja f ma w punkcie P_0 ekstremum lokalne. Przy czym:

$$\frac{\partial^2 f}{\partial x^2}(P_0) < 0 \Longrightarrow \text{ jest to maksimum}$$

$$\frac{\partial^2 f}{\partial x^2}(P_0) > 0 \Longrightarrow \text{ jest to minimum}$$

A także:

$$H(P_0) < 0 \Longrightarrow w P_0$$
 brak ekstremum $H(P_0) = 0 \Longrightarrow ?$

Przykład

Sprawdź czy funkcja ma ekstrema lokalne. Jeżeli tak wyznacz je. $z=(x-1)^2-2y^2$

(1) Warunek konieczny istnienia ekstremum lokalnego

$$\frac{\partial z}{\partial x} = 2x - 2; \quad \frac{\partial z}{\partial y} = -4y$$

$$\begin{cases} 2x - 2 = 0 \\ -4x = 0 \end{cases} \implies \begin{cases} x = 1 \\ y = 0 \end{cases}$$

 $P_0 = (1,0)$ – punkt stacjonarny

(2) Warunek wystarczający istnienia ekstremum lokalnego

$$\frac{\partial^2 z}{\partial x^2} = 2;$$
 $\frac{\partial^2 z}{\partial x \partial y} = 0;$ $\frac{\partial^2 z}{\partial y \partial x} = 0;$ $\frac{\partial^2 z}{\partial y^2} = -4$

$$H = \begin{vmatrix} 2 & 0 \\ 0 & -4 \end{vmatrix} = -8 < 0 \Longrightarrow$$
 Funkcja nie ma ekstremów lokalnych

5.2.2 Ekstrema globalne funkcji wielu zmiennych

Twierdzenie 5.1 (Twierdzenie Weierstrassa). Funkcja ciągła na zbiorze zwartym (czyli domkniętym i ograniczonym) przyjmuje wartość najmniejszą i największą, czyli maksimum i minimum absolutne (globalne).

Metoda 5.1. Aby wyznaczyć wartość największą i najmniejszą funkcji f na zbiorze A należy

- (1) Znaleźć punkty stacjonarne leżące wewnątrz obszaru A
- (2) Znaleźć punkty stacjonarne na brzegach obszaru A
- (3) Obliczyć wartości funkcji w wyznaczonych punktach stacjonarnych i w tych, w których nie istnieje pochodna

 $^{^1{}m Hesjan}$

(4) Z wyznaczonych wartości wybrać wartość najmniejszą i największą

Przykład

Znaleźć najmniejszą i największą wartość funkcji $f(x,y)=x^2y(2-x-y); A=\{(x,y)\in\mathbb{R}\colon x\geqslant 0; y\geqslant 0; x+y\leqslant 6\}$

(1) Wyznaczamy punkty stacjonarne w obszarze A

$$\begin{cases} f'_x = xy(4 - 3x - 3y) = 0 \\ f'_y = x^2(2 - x - 2y) = 0 \end{cases} ; \quad (x, y) \in int.A$$

$$\begin{cases} x = 1 \\ y = \frac{1}{2} \end{cases} \implies P_0 = \left(1; \frac{1}{2}\right) \in A$$

(2) Wyznaczamy punkty stacjonarne na brzegach obszaru A

a)
$$y = 0; \quad x \in (0; 6) \Longrightarrow f(x, 0) = x^2 \cdot 0 \cdot (2 - x - 0) = 0$$

$$\begin{cases} x = 0 \\ y = 0 \end{cases} \Longrightarrow P_1 = (0, 0)$$

b)
$$x = 0; \quad y \in (0; 6) \Longrightarrow f(0, y) = 0 \cdot y \cdot (2 - 0 - y) = 0$$

$$\begin{cases} x = 0 \\ y = 0 \end{cases} \Longrightarrow P_1 = (0, 0)$$

c)
$$y = 6 - x; \quad x \in (0; 6)$$

$$f(x, 6 - x) = x^{2}(6 - x)(2 - x - 6 + x) = -4(6x^{2} - x^{3}) = 4x^{3} - 24x^{2}$$

$$f'(x) = 12x^{2} - 48x = 0$$

$$12x(x - 4) = 0 \Longrightarrow x = 4 \land y = 2$$

$$\begin{cases} x = 4 \\ y = 2 \end{cases} \Longrightarrow P_{2} = (4, 2)$$

d)
$$P_3 = (6,0)$$

$$P_4 = (0,6)$$

(3) Badamy wartość funkcji w wyznaczonych wcześniej punktach

$$f\left(1;\frac{1}{2}\right) = \frac{1}{4};$$
 $f(4,2) = -128;$ $f(0;0) = 0;$ $f(6;0) = 0;$ $f(0;6) = 0$

(4) Wybieramy największą i najmniejszą wartość funkcji

$$M = \frac{1}{4} dla P_0 = (1; \frac{1}{2})$$

 $m = -128 dla P_1 = (4; 2)$

6. Równania różniczkowe zwyczajne

Równania różniczkowe należą do kategorii równań funkcyjnych, czyli takich, w których niewiadomą jest funkcja. O ich specyfice decyduje to, że oprócz niewidomej funkcji w równaniu występuje również pochodna (pochodne) tej funkcji.

Przymiotnik zwyczajne oznacza żę funkcja niewiadoma zależy od jednej zmiennej.

Równania różniczkowe w których występują funkcje wielu zmiennych noszą nazwę równań różniczkowych cząstkowych.

Definicja 6.1 (Równanie różniczkowe w postaci uwikłanej). Równaniem różniczkowym zwyczajnym rzędu n nazywamy równianie

$$F(x; y; y'; y''; \dots; y^{(n)}) = 0$$
(6.1)

w którym niewiadomą jest funkcja y zmiennej x i w którym występują pochodne tej funkcji. Równanie w takiej postaci nazywamy równaniem uwikłanym.

Definicja 6.2 (Równanie różniczkowe w postaci rozwikłanej). Równanie (6.1) można rozwikłać względem najwyższej pochodnej otrzymując równanie w postaci rozwikłanej.

$$y^{(n)} = f(x, y', \dots, y^{(n-1)})$$
(6.2)

Definicja 6.3. Liczbę $n \ge 1$ nazywamy rzędem równania różniczkowego, jeżeli w równaniu tym występuje pochodna rzędu n i nie występują pochodne rzędu wyższego niż n.

Definicja 6.4. Rozwiązaniem szczególnym (całką szczególną) równania różniczkowego na przedziale (a;b) nazywamy funkcję spełniającą to równanie w każdym puncie tego przedziału.

Przykład

Funkcja $y = xe^x$ jest rozwiązaniem szczególnym równania $y' + y = e^x$ na przedziale $(-\infty, \infty)$.

Definicja 6.5. Wykres rozwiązania szczególnego równania różniczkowego nazywamy krzywą całkową

Definicja 6.6 (Zagadnienie Cauchy'ego). Zagadnieniem Cauchy'ego dla równania różniczkowego rzędu n nazywamy następujące zagadnienie:

Znaleźć rozwiązanie szczególne równania $F(x;y;y';y'';\dots;y^{(n)})=0$ spełniające warunki początkowe

$$y(x_0) = y_0; y'(x_0) = y_1; \dots; y^{(n-1)}(x_0) = y_{n-1}$$

gdzie liczby x_0 oraz y_0, y_1, \dots, y_{n-1} zwane wartościami początkowymi są dane.

W przypadku n = 1 warunek poczatkowy ma postać

$$y(x_0) = y_0$$

Zagadnienie Cauchy'ego bywa nazywane zagadnieniem poczatkowym

Definicja 6.7. Jeżeli każdemu układowi n liczb (C_1, C_2, \ldots, C_n) wybieranych dowolnie z pewnych przedziałów, jest przyporządkowana dokładnie jedna krzywa całkowa równania różniczkowego rzędu n, to mówimy, że jest określona rodzina krzywych całkowych tego równania zależna od parametrów (C_1, C_2, \ldots, C_n) .

Definicja 6.8. Rozwiązaniem ogólnym (całką ogólną) równania różniczkowego rzędu n nazywamy rodzinę krzywych całkowych tego równania zależną od n parametrów $(C_1; C_2; \ldots; C_n)$, których wartości można tak dobrać, aby otrzymać krzywą całkową spełniającą warunki początkowe

$$y(x_0) = y_0; y'(x_0) = y_1; \dots y^{(n-1)}(x_0) = y_{n-1}$$
 (6.3)

dla każdego układu wartości początkowych $x_0, y_0, y_1, \dots, y_{n-1}$, dla których taka krzywa istnieje.

Uwagi:

• Istnieja równania różniczkowe nie posiadające rozwiązań np.

$$e^{y'} = 0$$

- Nie zawsze istnieje rozwiązanie szczególne równania spełniające konkretne warunki początkowe.
- Są równania mające wiele rozwiązań tego samego zagadnienia Cauchy'ego

Definicja 6.9 (Równanie rzędu pierwszego). Zapis równania rzędu pierwszego

$$F(x; y; y') = 0 (6.4)$$

nazywamy postacią ogólną (uwikłaną) równania, a zapis

$$y' = f(x, y) \tag{6.5}$$

nazywamy postacią rozwikłaną.

Twierdzenie 6.1 (Twierdzenie Peano²). Jeżeli prawa strona równania różniczkowego

$$y' = f(x; y)$$

jest funkcją ciągłą w obszarze $D \subset \mathbb{R}^2$ to przez każdy punkt tego obszaru przechodzi co najmniej jedna krzywa całkowa tego równania (tzn. zagadnienie Cauchy'ego z warunkiem pczątkowym $y(x_0) = y_0$ gdzie $(x_0; y_0) \in D$ posiada rozwiązania)

Definicja 6.10 (Warunek Lipschitza). Funkcja $f: \mathcal{D} \to \mathbb{R}$ spełnia warunek Lipschitza na \mathcal{D} wtedy, i tylko wtedy, gdy

$$\exists L > 0 \quad \forall x_1, x_1 \in \mathcal{D} \quad |f(x_1) - f(z_2)| \leqslant L|x_1 - x_2|$$
 (6.6)

Mówimy wówczas, że funkcja spełnia warunek Lipschitza ze stała L.

Twierdzenie 6.2 (Twierdzenie Picarda). Jeżeli prawa strona równania różniczkowego

$$y' = f(x, y)$$

jest funkcją ciągłą w otoczeniu U punktu (x_0, y_0) i spełnia w nim warunek Lipschitza, to przez ten punkt przechodzi dokładnie jedna krzywa całkowa tego równania (tzn. zagadnienie Cauchy'ego z warunkiem początkowym $y(x_0) = y_0$ gdzie $(x_0, y_0) \in D$ posiada lokalnie jednoznaczne rozwiązanie)

²Warunek konieczny istnienia rozwiązań

6.1 Równania różniczkowe o zmiennych rozdzielonych

Definicja 6.11. Równaniem różniczkowym zmiennych rozdzielnych nazywamy równanie, które można przedstawić w postaci

$$y' = \frac{f(x)}{g(y)}$$

Twierdzenie 6.3. Jeżeli f jest funkcji ciągłą na przedziale (a; b), zaś g funkcją ciągłą i różną od zera na przedziale (c; d) to:

1. Całka ogólna równania jest postaci

$$G(y) = F(x) + C$$

gdzie G jest funkcją pierwotną funkcji g na przedziale (c;d), a F funkcją pierwotną funkcji f na przedziale (a;b).

2. $\forall x_0 \in (a;b) \land \forall y_0 \in (c;d)$ zagadnienie Cauchy'ego

$$\begin{cases} \frac{dy}{dx} = \frac{f(x)}{g(y)} \\ y(x_0) = y_0 \end{cases}$$

ma dokładnie jedno rozwiązanie

Metoda 6.1. Metoda wyznaczania rozwiązania ogólnego równania o zmiennych rozdzielonych

(1) Zapisania równanie w postaci

$$\frac{dy}{dx} = \frac{f(x)}{g(y)}$$

(2) Rozdzielenie zmiennych

$$g(y)dy = f(x)dx$$

(3) Obustronne scałkowanie równania

$$\int g(y)dy = \int f(x)dx$$

(4) Rozwiązanie ogólne równanie ma postać

$$G(y) = F(x) + C$$

gdzie G jest funkcją pierwotną funkcji g na przedziale (c;d) zaś F funkcją pierwotną funkcji f na przedziale (a;b).

Ostatnia równość zazwyczaj określa funkcję y w sposób uwikłany. Często zdarza się, że związku tego nie udaje się rozwikłać

Przykład

a)
$$y' = e^{-y} \cos x$$
 $y(0) = 0$

(1) Zapisanie równania w postaci równania o zmiennych rozdzielonych

$$\frac{dy}{dx} = e^{-y}\cos x$$

(2) Rozdzielenie zmiennych

$$e^y dy = \cos x dx$$

(3) Scałkowanie obustronnie równania

$$\int e^y \, dy = \int \cos x \, dx$$

(4) Rozwiązanie ogólne

$$e^y = \sin x + C$$

(5) Rozwikłanie

$$y = \ln|\sin x + C|$$
$$y(0) = 0 \Longrightarrow 0 = \ln|\sin 0 + C|$$
$$C = 1 \Longrightarrow y = \ln|\sin x + 1|$$

b) Rozwiązać zagadnienie Cauchy'ego

$$\begin{cases} (2y^2 + 1)y' - 2xy = 0\\ y(1) = 2 \end{cases}$$

(1) Rozdzielenie zmiennych

$$(2y^{2}+1)\frac{dy}{dx} = 2xy \qquad / \cdot \frac{dx}{y}$$
$$\frac{2y^{2}+1}{y} dy = 2x dx$$

(2) Scałkowanie obustronnie równania

$$\int \left(2y + \frac{1}{y}\right) \, dy = \int 2x \, dx$$

(3) Rozwiązanie ogólne

$$y^2 + \ln|y| = x^2 + C$$

Podstawiając x=1 i y=2 otrzymujemy $C=3+\ln 2$, więc ostatecznie:

$$y^2 + \ln|y| = x^2 + 3 + \ln 2$$

c) Wyznacz krzywą całkową równania $y'=-\frac{x}{y}$ przechodzącą przez punkt (1;1)

Niech f będzie funkcją ciągłą na przedziale (a; b), spełniającą na nim warunek $f(u) \neq u$.

Definicja 6.12. Równaniem różniczkowym jednorodnym nazywamy równanie które można zapisać w postaci

$$y' = f\left(\frac{y}{x}\right)$$

Metoda 6.2. Metoda rozwiązania równania różniczkowego jednorodnego za pomocą podstawienia i sprowadzenia do równania o zmiennych rozdzielonych

1 Podstawienie

$$u(x) = \frac{y(x)}{x}$$

(2) Różniczkowanie

$$y(x) = u(x) \cdot x \Longrightarrow \frac{dy}{dx} = u(x) + \frac{du(x)}{dx}x$$

(3) Wstawienie do równania

$$u(x) + \frac{du(x)}{dx}x = f(u(x))$$

(4) Rozdzielenie zmiennych

$$\frac{du(x)}{f(x) - u(x)} = \frac{dx}{x}$$

- (5) Rozwiązanie równania korzystając z Metody 6.1
- (6) Powrót do wyjściowej funkcji y

Uwaga Jeżeli warunek $f(u) \neq u$ nie jest spełniony należy dodatkowo rozważyć równanie f(u) = u

Przykład

Rozwiąż równanie $y' = \frac{y}{x} - \sqrt{\frac{y}{x}}$

(1) Podstawienie

$$u = \frac{y}{r}$$

(2) Różniczkowanie

$$y = ux \Longrightarrow \frac{dy}{dx} = u + \frac{du}{dx}x$$

(3) Wstawienie do równania

$$u + \frac{du}{dx}x = u - \sqrt{u}$$

(4) Rozdzielenie zmiennych

$$\frac{du}{dx}x = -\sqrt{u} \Longrightarrow \frac{du}{\sqrt{u}} = -\frac{dx}{x}$$

(5) Scałkowanie obustronnie równania

$$\int \frac{1}{\sqrt{u}} \, du = -\int \frac{1}{x} \, dx$$

(6) Rozwiązanie ogólne ma postać

$$2\sqrt{u} = -\ln|x| + C$$

(7) Powrót do wyjściowej funkcji y

$$u = \frac{1}{4}(C - \ln|x|)^2$$

$$y = -\frac{x}{4}(\ln|x| - C)^2$$

Dla $f(u)=u\ \sqrt{u}=0,$ więc istnieje drugie rozwiązanie: y=0

Metoda 6.3. Do równania o zmiennych rozdzielonych można też sprowadzić równanie typu

$$y' = f(ax + by + c) \tag{6.7}$$

gdzie f jest funkcją ciągłą, a,b,c stałymi $a\neq 0,\,b\neq 0$

1 Podstawienie

$$u = ax + by + c$$

Wówczas:

$$\frac{\mathrm{d}u}{\mathrm{d}x} = a + b\frac{\mathrm{d}y}{\mathrm{d}x} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{b}\left(\frac{\mathrm{d}u}{\mathrm{d}x} - a\right) = f(u)$$

(2) Rozdzielenie zmiennych

$$\frac{\mathrm{d}u}{a+b\,f(u)} = \mathrm{d}x$$

Gdy a=0, lub b=0 równanie jest równaniem o zmiennych rozdzielonych. Przypadek $a+b\,f(u)=0$ należy sprawdzić oddzielnie.

6.2 Równania różniczkowe liniowe rzędu pierwszego

6.2.1 Równania różniczkowe liniowe jednorodne rzędu pierwszego

Definicja 6.13. Równaniem różniczkowym liniowym rzędu pierwszego nazywamy równanie postaci

$$y' + p(x)y = f(x) \tag{6.8}$$

gdzie p(x) i f(x) są funkcjami ciągłymi na przedziale (a;b). Przedział (a;b) może być skończony lub nieskończony

Definicja 6.14. Równanie różniczkowe liniowe rzędu pierwszego nazywamy jednorodnym (RJ), jeżeli $f(x) \equiv 0$ na rozważanym przedziale tzn.

$$y' + p(x)y = 0 ag{6.9}$$

Równanie różniczkowe liniowe rzędy pierwszego nazywamy niejednorodnym (RN) jeżeli funkcja f nie jest tożsamościowo równa zeru na rozważanym przedziałe tzn.

$$y' + p(x)y = f(x) \neq 0 (6.10)$$

Metoda 6.4. Równania postaci

$$y' + p(x)y = 0$$

Są spełniane przez funkcję y(x) = 0.

Jeżeli $y(x) \neq 0$, to mamy równania o zmiennych rozdzielonych.

Rozwiazanie takiego równania ma postać

$$y = Ce^{-P(x)}; \qquad C \in \mathbb{R} \setminus \{0\}$$
(6.11)

Uwaga: Dla C=0 powyższy wzór obejmuje również rozwiązanie $y(x)\equiv 0$

Twierdzenie 6.4. Jeżeli funkcja p(x) jest funkcją ciągłą na przedziale (a;b) to:

1. Całka ogólna równania jednorodnego (CORJ) jest postaci

$$y = Ce^{-P(x)}$$

 $gdzie\ funkcja\ P\ jest\ funkcją\ pierwotną\ funkcji\ p\ na\ przedziale\ (a;b)$

2. Dla każdego $x_0 \in (a;b)$ i $y_0 \in (-\infty,\infty)$ zagadnienie Cauchy'ego

$$\begin{cases} y' + p(x) = 0\\ y(x_0) = y_0 \end{cases}$$

ma dokładnie jedno rozwiązanie

6.2.2 Równania różniczkowe liniowe niejednorodne rzędu pierwszego

Będziemy rozważać równanie różniczkowe liniowe rzędu pierwszego postaci

$$y' + p(x)y = f(x)$$

gdzie p(x) i f(x) są funkcjami ciągłymi na przedziale (a;b) i funkcji f nie jest tożsamościowa równa zeru na rozważanym przedziale. Nazywamy je wówczas równaniem niejednorodnym.

Rozwiązywanie równania niejednorodnego jest realizowane w dwóch etapach

- 1. W pierwszym rozwiązujemy odpowiadające mu równanie jednorodne. Stosujemy w tym celu metodę rozdzielania zmiennych, bądź korzystamy z wzoru określającego całkę ogólną równania liniowego jednorodnego
- 2. w etapie dugim stosujemy metodę uzmiennienia stałej lub metodę przewidywań

Metoda 6.5 (Metoda uzmienniania stałej). W metodzie tej opieramy się na całce ogólnej równania jednorodnego, która ma zawsze postać

$$y = Ce^{-P(x)}$$

gdzie P(x) jest ustaloną funkcją pierwotną funkcji p(x)

Całka ogólna równania niejednorodnego (CORN) wyraża się podobnym wzorem z tą różnicą że zamiast stałej C występuje w nim pewna funkcja zmiennej x. Aby ją znaleźć zastępujemy stałą C nieznaną funkcją którą oznaczamy C(x) (nazywamy to uzmiennieniem stałej) a następnie staramy się dobrać ją tak by wzór

$$y = C(x)e^{-P(x)} \tag{6.12}$$

definiował rozwiązanie ogólne równania niejednorodnego

(1) Różniczkowanie równości (6.12)

$$y' = C'(x)e^{-P(x)} - C(x)p(x)e^{-P(x)}$$

(2) Podstawienie do RN

$$C'(x)e^{-P(x)} - C(x)p(x)e^{-P(x)} + C(x)p(x)e^{-P(x)} = f(x)$$

(3) Redukujemy wyrazy podobne

$$C'(x)e^{-P(x)} - C(x)p(x)e^{-P(x)} + C(x)p(x)e^{-P(x)} = f(x)$$

(4) Całkowanie funkcji C'(x)

$$C(x) = \int C'(x) dx = \int f(x)e^{P(x)} dx = \Phi(x) + C_1$$

gdzie Φ jest dowolną ustaloną funkcją pierwotną funkcji $f(x)e^{P(x)}$.

Ostatecznie całka ogólna równania niejednorodnego ma postać

$$y(x) = (\Phi(x) + C_1)e^{-P(x)}$$
(6.13)

Twierdzenie 6.5. Jeżeli p i f są funkcjami ciągłymi na przedziale (a; b) to:

1. CORN jest postaci

$$y(x) = (\Phi(x) + C_1)e^{-P(x)}$$
(6.14)

gdzie P jest funkcją pierwotną funkcji p na przedziale (a;b), zaś Φ jest ustaloną funkcją pierwotną funkcji $f(x)e^{-P(x)}$

2. Dla każdego $x_0 \in (a;b)$ i $y_0 = (-\infty; \infty)$ zagadnienie Cauchy'ego

$$\begin{cases} y' + p(x)y = f(x) \\ y(x_0) = y_0 \end{cases}$$
 (6.15)

ma dokładnie jedno rozwiązanie

Metoda 6.6 (Metoda przewidywań). Metoda przewidywań całkowania równania niejednorodnego

$$y' + p(x)y = f(x)$$

opiera się na następującym twierdzeniu

Twierdzenie 6.6. Suma całki ogólnej równania jednorodnego i jakiejkolwiek całki szczególnej równania niejednorodnego jest całką ogólną równania niejednorodnego

$$CORN = CORJ + CSRN$$

W metodzie tej CORJ wyznaczamy tak jak poprzednio, zaś postać CSRN "odgadujemy" bazując na doświadczeniach zdobytych przy całkowaniu pewnych klas równań.

Przewidywanie postaci CSRN jest stosunkowo proste jeżeli:

- funkcja p(x) występująca w równaniu jest stałą
- równocześnie funkcja f(x) jest:
 - wielomianem
 - $\operatorname{suma} \operatorname{funkcji} \alpha \sin \omega x + \beta \cos \omega x$
 - funkcją typu ae^{bx} , gdy $b \neq -p$
 - sumą, lub iloczynem funkcji trzech wyżej wymienionych typów

$\mathbf{f}(\mathbf{x})$	Przewidywana postać CSRN
Wielomian stopnia n	ogólna postać wielomianu stopnia n
ae^{bx}	$Ae^{bx} \text{ gdy } b \neq -p$ $Axe^{bx} \text{ gdy } b = -p$
$\alpha \sin \omega x + \beta \cos \omega x$	$A\sin\omega x + B\cos\omega x$
Suma lub iloczyn powyższych funkcji	Suma lub iloczyn powyższych funkcji

W przeciwieństwie do metody uzmienniania stałej metoda przewidywań nie jest metodą uniwersalną

Przykład

Stosując metodę przewidywań, znaleźć całkę ogólną równania

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = x^3$$

Na podstawie twierdzenia 6.4 CORJ

$$y = Ce^{-4x}$$

Wyznaczanie CSRN metodą przewidywań

$$f(x) = x^3 \Longrightarrow y_1 = Ax^3 + Bx^2 + Cx + D$$
$$y_1' = 3Ax^2 + 2Bx + C$$

Wstawienie do równania

$$3Ax^{2} + 2Bx + C + 4(Ax^{3} + Bx^{2} + Cx + D) = x^{3}$$

$$\begin{cases} 4A = 1 \\ 3A + 4B = 0 \\ 2B + 4C = 0 \\ C + 4D = 0 \end{cases} \implies A = \frac{1}{4}; \quad B = -\frac{3}{16}; \quad C = \frac{3}{32}; \quad D = -\frac{3}{128}$$

Więc CSRN wynosi

$$y_1 = \frac{1}{4}x^3 - \frac{3}{16}x^2 + \frac{3}{32}x - \frac{3}{128}$$

Zatem szukanym rozwiązaniem równania jest

$$y = Ce^{-4x} + \frac{1}{4}x^3 - \frac{3}{16}x^2 + \frac{3}{32}x - \frac{3}{128}$$

Twierdzenie 6.7. Sumą całki szczególnej równania

$$y' + p(x)y = f_1(x)$$

i całki szczególnej równania

$$y' + p(x)y = f_2(x)$$

jest całką szczególną równania

$$y' + p(x)y = f_1(x) + f_2(x)$$

Twierdzenie to stosujemy, gdy funkcje f_1 i f_2 są różnych typów. Niezależne wyznaczanie całek szczególnych dla każdego z równań jest bowiem prostsze rachunkowo.

6.3 Równania różniczkowe Bernoulliego

Definicja 6.15. Równanie różniczkowe

$$y' + p(x)y = q(x)y^{r} (6.16)$$

gdzie $r \in \mathbb{R} \setminus \{0,1\}$ nazywamy równaniem różniczkowym Bernoulliego. Dla r=1 lub r=0 to równanie jest równaniem liniowym jednorodnym lub równaniem liniowym niejednorodnym. Dla $r>1, y\equiv 0$ jest rozwiązaniem równania

Metoda 6.7 (Metoda rozwiązania równania różniczkowego Bernoulliego). Równanie różniczkowe Bernoulliego można rozwiązać za pomocą podstawienia, które sprowadza je do równania liniowego.

$$z = y^{1-r} \tag{6.17}$$

(1) Różniczkowanie

$$z' = (1 - r)y^{-r} \cdot y'$$

(2) Pomnożenie równania (6.17) obustronnie przez $(1-r)y^{-r}$

$$(1-r)y^{-r} \cdot y' + (1-r)p(x)y^{1-r} = (1-r)q(x)$$
$$z' + (1-r)p(x)z = (1-r)q(x)$$

Przykład

Rozwiązać równanie $y' - 2xy = 2x^3y^2$

$$y' - 2xy = 2x^3y^2 / : y^2$$
 dla $y \neq 0$
 $y^{-2} \cdot y' - 2xy^{-1} = 2x^3$

Podstawiając $z=y^{-1}$ dostajemy równanie liniowe

$$z' + 2xz = -2x^3$$

Rozwiązujemy równanie jednorodne

$$\frac{\mathrm{d}z}{z} = -2x\mathrm{d}x \Longrightarrow \int \frac{1}{z} \,\mathrm{d}z = \int -2x \,\mathrm{d}x$$

$$z = Ce^{-x^2}$$

$$C \in \mathbb{R}$$

Uzmienniamy stałą

$$z = C(x)e^{-x^{2}}; \quad z' = C'(x)e^{-x^{2}} - C(x)2xe^{-x^{2}}$$

$$C'(x)e^{-x^{2}} - C(x)2xe^{-x^{2}} + C(x)2xe^{-x^{2}} = -2x^{3}$$

$$C'(x) = -2x^{3}e^{x^{2}} \Longrightarrow C(x) = -e^{x^{2}}(x^{2} - 1) + C_{1}$$

$$C_{1} \in \mathbb{R}$$

Podstawiamy C(x) z powrotem do równania

$$z = C_1 e^{-x^2} - x^2 + 1$$

Wracamy do funkcji \boldsymbol{y}

$$y = \frac{1}{C_1 e^{-x^2} - x^2 + 1}$$
 Spełnione także dla $y = 0$

6.4 Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego

Definicja 6.16. Równania różniczkowe rzędu drugiego postaci

$$F(x, y', y'') = 0 (6.18)$$

(ynie występuje w nich w sposób jawny) można sprowadzić do równania pierwszego rzędy przez podstawienie

$$y' = u(x)$$

Definicja 6.17. Równanie różniczkowe drugiego rzędu postaci

$$F(y, y', y'') = 0 (6.19)$$

(xnie występuje w nich w sposób jawny) można sprowadzić za pomocą podstawienia

$$y' = u(y)$$

do równania

$$F\left(y,u,u\frac{\mathrm{d}u}{\mathrm{d}y}\right) = 0$$

6.5 Równania różniczkowe liniowe rzędu II

Definicja 6.18. Równaniem różniczkowym liniowym rzędu drugiego nazywamy równanie postaci

$$y'' + p(x)y' + q(x)y = f(x)$$
(6.20)

przy czym dla $f(x) \equiv 0$ nazywamy je równaniem jednorodnym, a dla $f(x) \not\equiv 0$ niejednorodnym

Twierdzenie 6.8. Jeżeli funkcje p, q, f są ciągłe na przedziale (a,b), $x_0 \in (a,b)$ oraz y_0 , $y_1 \in \mathbb{R}$ to zagadnienie Cauchy'ego

$$\begin{cases} y'' + p(x)y' + q(x)y = f(x) \\ y(x_0) = y_0 \\ y'(x_0) = y_1 \end{cases}$$
(6.21)

 $ma\ dokładnie\ jedno\ rozwiązanie\ na\ przedziale\ (a,b)$

6.5.1 Równania różniczkowe liniowe jednorodne rzędu drugiego

Definicja 6.19. Równaniem różniczkowym liniowym jednorodnym rzędu pierwszego nazywamy równanie postaci

$$y'' + p(x)y' + q(x)y = 0 (6.22)$$

Twierdzenie 6.9. Jeżeli funkcje $y_1(x)$ i $y_2(x)$ są całkami szczególnymi równania liniowego jednorodnego to kombinacja liniowa tych funkcji

$$y(x) = C_1 y_1(x) + C_2 y_2(x)$$

jest rozwiązaniem tego równania

Definicja 6.20. Funkcje $y_1(x)$ i $y_2(x)$ są liniowo niezależne na przedziale (a,b) jeżeli

$$C_1 y_1(x) + C_2 y_2(x) \equiv 0 \iff C_1 = C_2 = 0$$
 (6.23)

Twierdzenie 6.10. Funkcje $y_1(x)$ i $y_2(x)$ klasy $C^1(a,b)$ są liniowo niezależnie wtedy, i tylko wtedy, gdy wyznacznik Wrońskiego (wrońskian)

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} \neq 0; \quad dla \ x \in (a;b)$$

Definicja 6.21. Liniowo niezależnie rozwiązanie równania liniowego jednorodnego nazywamy układem fundamentalnym (podstawowym) tego równania

Twierdzenie 6.11. Jeżeli funkcje $y_1(x)$ i $y_2(x)$ tworzą fundamentalny układ rozwiązań to

$$y(x) = C_1 y_1(x) + C_2 y_2(x)$$

jest całką ogólną równania jednorodnego

Uwaga

- Nie istnieje ogólna metoda wyznaczania układu fundamentalnego rozwiązań dla dowolnego równania różniczkowego liniowego jednorodnego drugiego rzędu
- \bullet Układ fundamentalny rozwiązań można zawsze wyznaczyć w przypadku równań o stałych współczynnikach

6.5.2 Równania różniczkowe liniowe jednorodne drugiego rzędu o stałych współczynnikach

Definicja 6.22. Równaniem różniczkowym liniowym jednorodnym drugiego rzędu o stałych współczynnikach nazywamy równanie postaci

$$y'' + py' + qy = 0 (6.24)$$

gdzie $p, q \in \mathbb{R}$

Rozwiązań tego równania poszukuje się w postaci funkcji

$$y = e^{rx}; \quad y' = re^{rx}; \quad y'' = r^2 e^{rx}$$

Po wstawieniu tych funkcji do równania i obustronnego podzielenia go przez e^{rx}

$$r^2 + pr + q = 0$$

Jest to tzw. równanie charakterystyczne.

Twierdzenie 6.12. Jeżeli r jest pierwiastkiem równania charakterystycznego to funkcja $y = e^{rx}$ jest rozwiązaniem równania różniczkowego liniowego jednorodnego drugiego rzędu o stałych współczynnikach.

Wyznaczanie układu fundamentalnego rozwiązań

• Jeżeli równanie charakterystyczne ma dwa różne pierwiastki rzeczywiste r_1 i r_2 ($\Delta>0$) to układ fundamentalny tworzą funkcje

$$y_1(x) = e^{r_1 x}; \quad y_2(x) = e^{r_2 x}$$

a całka ogólna równania jednorodnego ma postać

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

 \bullet Jeżeli równanie charakterystyczne ma jeden pierwiastek rzeczywisty $r~(\Delta=0)$ to układ fundamentalny tworzą funkcje

$$y_1(x) = e^{rx}; \quad y_2(x) = xe^{rx}$$

a całka ogólna równania jednorodnego ma postać

$$y(x) = C_1 e^{rx} + C_2 x e^{rx}$$

• Jeżeli równanie charakterystyczne ma dwa pierwiastki zespolone $r_1 = \alpha + \beta 1$ oraz $r_2 = \alpha - \beta 1$ ($\Delta < 0$) to układ fundamentalny tworzą funkcje

$$y_1(x) = e^{\alpha x} \cos \beta x; \quad y_2(x) = e^{\alpha x} \sin \beta x$$

a całka ogólna równania jednorodnego ma postać

$$y(x) = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

Liczby Zespolone

Liczbę postaci

$$z = a + bi (6.25)$$

przy czym $a, b \in \mathbb{R}$

nazywamy liczą zespoloną

a – część rzeczywista liczby zespolonej

b – część urojona

i – jednostka urojona $i^2 = -1$

6.5.3 Równania różniczkowe liniowe niejednorodne drugiego rzędu o stałych współczynnikach

 $\bf Metoda~6.8~(Metoda~przewidywań~dla~równania liniowego niejednorodnego drugiego rzędu). Metodę przewidywań można stosować w wypadku równań o stałych współczynnikach, gdy wyraz wolny ma jedną z postaci przedstawionych w kolumnie 2 tabeli 1$

Całkę ogólną równania niejednorodnego (CORN) wyznacza się korzystając z zależności

$$CORN = CORJ + CSRN$$

Podobnie jak w wypadku równań różniczkowych rzędu pierwszego prawdziwe jest twierdzenie

Twierdzenie 6.13. Suma całki szczególnej równania

$$y' + p(x)y = f_1(x)$$

i całki szczególnej równania

$$y' + p(x)y = f_2(x)t$$

jest całką szczególną równania

$$y' + p(x)y = f_1(x) + f_2(x)$$

Table 1: Przewidywana postać CSRN dla równania liniowego niejednorodnego o stałych współczynnikach

Lp.		Prawa strona równania $(f(x))$	Równanie charakterystyczne	Przewidywana postać CSNR
	a		Liczna 0 nie jest pierwiastkiem równania	$W_n(x)$ – ogólna postać wielomianu
1		$P_n(x)$	${\it charakterystycznego}$	stopnia n
1	b	wielomian stopnia n	Liczba 0 jest m-krotnym	$x^m W_n(x)$
			pierwiastkiem równania	
			charakterystycznego	
			Liczba k nie jest	$W_n(x)e^{kx}$
	a		pierwiastkiem równania	
			charakterystycznego	
2		$P_n(x)e^{kx}; k \in \mathbb{R}$	Liczba k jest m-krotnym	$x^m W_n(x) e^{kx}$
	b		pierwiastkiem równania	
			charakterystycznego	
		D ()	Liczba $\pm \beta i$ nie jest	$W_n(x)\cos\beta x + V_n(x)\sin\beta x$
	a		pierwiastkiem równania	
			charakterystycznego	
3	b	$P_n(x)\cos\beta x + Q_n(x)\sin\beta x$	Liczba $\pm \beta i$ jest m-krotnym	m(II7 () 0 1
		b	pierwiastekiem równania	$x^{m}(W_{n}(x)\cos\beta x + V_{n}(x)\sin\beta x)$
			charakterystycznego	
	a	à.	Liczba $\alpha \pm \beta i$ nie jest	$W_n(x)e^{\alpha x}\cos\beta x +$
			pierwiastkiem równania	
,		$P_n(x)e^{\alpha x}\cos\beta x$ +	charakterystycznego	$V_n(x)e^{\alpha x}\sin\beta x$
4	b	$Q_n(x)e^{\alpha x}\sin\beta x$	Liczba $\alpha \pm \beta i$ jest m-krotnym	m/III/ () -07 0
		, , ,	pierwiastekiem równania	$x^m(W_n(x)e^{\alpha x}\cos\beta x +$
			charakterystycznego	$V_n(x)e^{\alpha x}\sin\beta x)$

Metoda 6.9 (Metoda uzmienniania stałych dla równania liniowego niejednorodnego rzędu drugiego). Podobnie jak w wypadku równania pierwszego rzędu należy uzmiennić stałe w CORJ

$$y(x) = C_1(x)y_1(x) + C_2(x)y_2(x)$$
$$y'(x) = C'_1(x)y_1(x) + C_1(x)y'_1(x) + C'_2(x)y_2(x) + C_2(x)y'_2(x)$$

Po przekształceniu otrzymujemy układ równań

$$\begin{cases}
C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0 \\
C_1(x)y_1'(x) + C_2(x)y_2'(x) = f(x)
\end{cases}$$
(6.26)

z którego można wyznaczyć $C_1'(x)$ i $C_2'(x).$ Po scałkowaniu i postawieniu wyznaczonych funkcji do równania otrzymujemy CORN