

Programista

Tablica wypełniona liczbami

Fizyk

Obiekt opisywany za pomocą długości, kierunku i zwrotu.

Matematyk

Współrzędne punktu w przestrzeni.

Wektor – reprezentacja danych

"p" for "patient"

Tensor - przykład

Tensor - reprezentacja

Mnożenie macierzy

$$\mathbf{X} = \begin{bmatrix} [5 & 6 & 1 & 2] \\ [8 & 7 & 6 & 3] \\ [5 & 0 & 6 & 4] \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} [3 & 0 & 4 & 9] \\ [4 & 6 & 5 & 8] \\ [7 & 0 & 1 & 5] \end{bmatrix}$$

$$\mathbf{Z} = \mathbf{X} * \mathbf{Y} = \begin{bmatrix} [15 & 0 & 4 & 18] \\ [32 & 42 & 30 & 24] \\ [35 & 0 & 6 & 20] \end{bmatrix}$$

Każdy element macierzy X jest pomnożony przez odpowiadający mu element macierzy Y

$$x_{11} = 5$$
 $y_{11} = 3$ $z_{11} = x_{11} \times y_{11} = 15$
 $x_{12} = 6$ $y_{12} = 0$ $z_{12} = x_{12} \times y_{12} = 0$

$$X_{3 \times 4}$$

$$Y_{3\times4}$$

← Wymiar obu macierzy musi być taki sam

Mnożenie macierzy (algebraiczne) (dot product)

$$X = \begin{bmatrix} [9 & 2 & 2] \\ [4 & 0 & 0] \\ [9 & 3 & 9] \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} [8 & 1 & 1] \\ 9 & 6 & 8] \\ [7 & 4 & 8] \end{bmatrix}$$

$$\mathbf{Z} = \mathbf{X} \cdot \mathbf{Y} = \begin{bmatrix} 104 & 29 & 41 \\ 32 & 4 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 162 & 63 & 105 \end{bmatrix}$$

 $Z_{21} = X_{21} \times Y_{11} + X_{22} \times Y_{21} + X_{23} \times Y_{31}$

$$z_{11} = x_{11} \times y_{11} + x_{12} \times y_{21} + x_{13} \times y_{31}$$
 $z_{12} = x_{11} \times y_{12} + x_{12} \times y_{22} + x_{13} \times y_{32}$

$$B_{m \times q}$$

← pierwszy wymiar macierzy A
 musi być taki sam jak drugi wymiar
 macierzy B

The Matrix is everywhere. It is all around us. Even now, in this very room.

Mnożenie macierzy (geometria regresji)

$$y = AX + b + e$$

$$\hat{y} = AX + b$$

 $zarobki = a \times doświdczenie + b$

b	dośwaidczenie	zarobki
1	4.057534	5.586908
1	2.750049	6.105262
1	2.964347	2.533063
1	3.410334	6.332447
1	1.828527	1.840721
1	0.548475	0.355877
1	0.876145	2.176086
1	4.729183	6.966537
1	1.834105	3.784180
1	2.904804	2.281207

$zarobki_1 = a \times doświdczenie_1 + b$
$zarobki_2 = a \times doświdczenie_2 + b$
$zarobki_3 = a \times doświdczenie_3 + b$
()

Mnożenie macierzy (reprezentacja regresji)

$$y = AX + b$$
, $b = 0$ $y = AX$

A =	współczynniki
	a_1
	a_2
	a_3

wspołczynniki		
a_		
a_2		
a_(

 $opóźnienie = a_1 \times długość + \ a_2 \times szerokość + a_3 \times wysokość$

długość	szerokość	wysokość	opóźnienie
79.564798	139.113256	165.247195	0.601009
67.174099	47.367705	286.349772	3.031186
118.450682	10.869266	83.118642	4.160437
14.156648	25.846663	189.236549	1.326778
200.551913	95.144694	37.003291	3.453975
63.339889	99.574222	137.854002	1.106210
156.675029	204.190017	16.619945	0.091691

Metoda najmniejszych kwadratów

$$Y = \beta X + e$$

$$\widehat{Y} = \beta X$$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

$$\mathbf{X} = \begin{pmatrix} x_{1,0} & x_{1,1} & \dots & x_{1,p-1} \\ x_{2,0} & x_{2,1} & \dots & x_{2,p-1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,0} & x_{n,1} & \dots & x_{n,p-1} \end{pmatrix}.$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Prawdopodobieństwo

$$P(A) = \frac{|A|}{|\Omega|}$$

$$\mathbb{P}(\varnothing) = 0,$$

$$A \subset B \to \mathbb{P}(A) \le \mathbb{P}(B),$$

$$0 \le \mathbb{P}(A) \le 1,$$

$$\mathbb{P}(A^C) = 1 - \mathbb{P}(A),$$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Prawdopodobieństwo warunkowe

Prawdopodobieństwo całkowite

$$P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + P(A|B3)P(B3) + P(A|B4)P(B4) + P(A|B5)P(B5) + P(A|B6)P(B6)$$

$$P(\Omega) = P(B1) + P(B2) + P(B3) + P(B4) + P(B5) + P(B6)$$

Twierdzenie Bayesa

przykład praktyczny (prawdopodobieństwo choroby)

Dany jest test o wrażliwości 80%, co oznacza, że jeśli choroba występuje to test będzie pozytywny z prawdopodobieństwem 0.8. Prawdopodobieństwo wystąpienia choroby to 0.004.

Test zwraca 10% fałszywie pozytywnych wyników.

$$P(test_{pozytywny}|pacjent_{chory}) = 0.8$$

$$P(pacjent_{chory}) = 0.004$$

$$P(test_{pozytywny}|pacjent_{zdrowy}) = 0.1$$

$$P(test_{pozytywny}|pacjent_{zdrowy}) = 0.1$$

$$P(pacjent_{chory}|test_{pozytywny}) = \frac{P(test_{pozytywny}|pacjent_{chory})P(pacjent_{chory})}{P(test_{pozytywny})}$$

$$= \frac{P(test_{pozytywny}|pacjent_{chory})P(pacjent_{chory})P(pacjent_{chory})}{P(test_{pozytywny}|pacjent_{chory})P(pacjent_{chory}) + P(test_{pozytywny}|pacjent_{zdrowy})P(pacjent_{zdrowy})}$$

$$= \frac{0.8 \times 0.004}{0.8 \times 0.004 + 0.1 \times 0.996} = 0.031$$

Twierdzenie Bayesa

$$P(test_{pozytywny}|pacjent_{chory}) = 0.8$$

$$P(pacjent_{chory}) = 0.004$$

- $P(test_{pozytywny}|pacjent_{zdrowy}) = 0.1$
- llość osób: 10 000
- ilość osób chorych: $10\ 000 * P(pacjent_{chory}) = 40$
- ilość osób chorych z pozytywnym wynikiem: $40 * P(test_{pozytywny} | pacjent_{chory}) = 32$
- ilość osób zdrowych z pozytywnym wynikiem: 9 960 * $P(test_{pozytywny}|pacjent_{zdrowy}) = 996$
- ilość osób z pozytywnym wynikiem: 996 + 32 = 1028

Jakie jest prawdopodobieństwo wylosowanie osoby chorej wśród wszystkich osób z pozytywnym wynikiem testu?

$$P(pacjent_{chory}|test_{pozytywny}) = \frac{32}{1028} = 0.031$$

Twierdzenie Bayesa

przykład praktyczny (Naïve Bayes)

$$P(dom|x) = \frac{P(x|dom)P(dom)}{P(x)}$$

$$P(mieszkanie|x) = \frac{P(x|mieszkanie)P(mieszkanie)}{P(x)}$$

$$P(dom) = \frac{|dom|}{|obserwacje|} = \frac{20}{30}$$

$$P(x|dom) = \frac{|dom\ w\ otoczeniu|}{|dom|} = \frac{1}{20}$$

$$P(x) = P(x|dom)P(dom)$$

$$+P(x|mieszkanie)P(mieszknie)$$

$$= \frac{1}{20} \frac{20}{30} + \frac{4}{10} \frac{10}{30} = \frac{4}{30}$$

$$P(dom|x) = 0.25$$

WIEK

Zmienna Losowa

Zmienna losowa to funkcja:

$$X: \Omega \longrightarrow E \subset \mathbb{R}$$

$$\Omega = \{$$

Funkcja Prawdopodobieństwa (rozkład zmiennej losowej)

Probability density function (PDF)

$$f_X(x) = P(X = x)$$

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$P(X = 1) = \frac{1}{6}$$
 $P(X = 2) = \frac{1}{6}$ $P(X = 3) = \frac{1}{6}$ (...)

np. rozkład normalny

Dystrybuanta

Cumulative distribution function (CDF)

$$F_X(x) = P(X \le x)$$

Każda dystrybuanta F(x) jest funkcją

- niemalejącą,
- · dążącą do 1 dla $x \to +\infty$,
- · dążącą do 0 dla $x \to -\infty$,
- prawostronnie ciągłą,
- posiadającą lewostronne granice,
- różniczkowalną prawie wszędzie.

Dystrybuanta

Cumulative distribution function (CDF)

$$F_X(x) = P(X \le x)$$

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$P(X = 1) = \frac{1}{6}$$
 $P(X = 2) = \frac{1}{6}$ $P(X = 3) = \frac{1}{6}$ (...)

$$P(X \le 1) = P(X = 1) = \frac{1}{6}$$

$$P(X \le 2) = P(X = 1) + P(X = 2) = \frac{2}{6}$$

$$P(X \le 3) = P(X = 1) + P(X = 2) + P(X = 3) = \frac{3}{6}$$

$$P(X \le 3.42) = P(X = 1) + P(X = 2) + P(X = 3) = \frac{3}{6}$$
 (...)

Parametry opisujące rozkłady

Wartość oczekiwana

Dyskretna zmienna losowa

Ciggła zmienna losowa

$$\mathrm{E}[X] = \sum_{i=1}^{\infty} x_i \, p_i,$$

$$\mathrm{E}[X] = \sum_{i=1}^\infty x_i \, p_i, \qquad \mathrm{E}[X] = \int_{-\infty}^\infty x f(x) \, dx.$$

Wartość oczekiwaną nazywamy spodziewany wynik doświadczenia losowego przy założonym prawdopodobieństwie jego wystąpienia.

$$egin{aligned} ext{Var}(X) &= ext{E}ig[(X - ext{E}[X])^2ig] \ &= ext{E}ig[X^2 - 2X \, ext{E}[X] + ext{E}[X]^2ig] \ &= ext{E}ig[X^2ig] - 2 \, ext{E}[X] \, ext{E}[X] + ext{E}[X]^2 \ &= ext{E}ig[X^2ig] - ext{E}[X]^2 \end{aligned}$$

Wariancja jest podstawową miarą zmienności zmiennej losowej. Wariancja informuje o tym, jak duże jest zróżnicowanie wyników w danym zbiorze wyników (zmiennej).

Rozkład normalny – reguła trzech sigm

Case study: Dopancerznie samolotów

https://en.wikipedia.org/wiki/Survivorship bias#In the military

The red dots indicate areas of combat damage received by surviving WWII bombers. Where would you add armor to increase survivability? The statistician Abraham Wald recommended reinforcing the areas without damage. Since these data came from surviving aircraft only, bombers hit in undotted areas were the ones that did not make it back.

Case study: Produkcja czołgów

An empirical Approach to Economic Intelligence in World War II, Journal of the American Statistical Association, Vol. 42, No. 237 (Mar., 1947), pp. 72–91.

https://en.wikipedia.org/wiki/German_tank_problem

Produkcja czołgów (dane historyczne):			
Miesiąc	est. statystyków	est. agentów	dane prod.
Czerwiec 1940	169	1000	122
Czerwiec 1941	244	1550	271
Sierpień 1942	327	1550	342

Paradoks Simpsona

Przyjęci na studia (Univ. of California, Berkeley)

	Zgłoszeń	Przyjętych
Mężczyźni	2691	(1198) 45%
Kobiety	1835	(614) 33%

Przyjęci z podziałem na kierunki

Mężczyźni		Kobiety		
Κ.	Zgłoszeń	Przyjętych	Zgłoszeń	Przyjętych
Α	825	(512) 62%	108	(89) 82%
В	560	(353) 63%	25	(17) 68%
С	325	(120) 37%	593	(219) 37%
D	417	(138) 33%	375	(131) 35%
Е	191	(53) <mark>28%</mark>	393	(134) 34%
F	373	(22) 6%	341	(24) 7%

Wybieramy koszyk, z koszyka losujemy kulę, wygrywa zielona. Który koszyk wybrać?

A teraz?

$$\frac{6}{9} > \frac{9}{14}$$

A jak połączymy zawartość koszyków?

Wariancja

```
N1 = np.random.normal(loc=0.0, scale= 0.5, size=100_000)
    N2 = np.random.normal(loc=0.0, scale= 3.0, size=100_000)
    N3 = np.random.normal(loc=0.0, scale=10.0, size=100_000)
    plt.figure(figsize=(10, 5))
    plt.hist(N3, bins=50, alpha=0.3, color='blue')
    plt.hist(N2, bins=50, alpha=0.3, color='green')
    plt.hist(N1, bins=50, alpha=0.3, color='red')
    plt.show()
Г→
     7000
     6000
     5000
     4000
     3000
     2000
     1000
              -40
                              -20
                                                              20
                                                                               40
```

Podatawowe statystyki – wzory!

$$\mathbb{E} X = \sum_{i=1}^n x_i p_i$$

$$egin{aligned} ext{Var}(X) &= ext{E}ig[(X - ext{E}[X])^2ig] \ &= ext{E}ig[X^2 - 2X \, ext{E}[X] + ext{E}[X]^2ig] \ &= ext{E}ig[X^2ig] - 2 \, ext{E}[X] \, ext{E}[X] + ext{E}[X]^2 \ &= ext{E}ig[X^2ig] - ext{E}[X]^2 \end{aligned}$$

$$\sigma(X) = \sqrt{\mathrm{E}ig[(X - \mathrm{E}[X])^2ig]} \ = \sqrt{\mathrm{E}ig[X^2ig] - (\mathrm{E}[X])^2}$$

kowariancja:
$$\mathrm{cov}(X,Y) = \mathrm{E} ig[(X - \mathrm{E} X) \cdot (Y - \mathrm{E} Y) ig]$$
 .

Współczynnik
korelacji Pearsona :
$$r_{XY} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

statystyka:

Wariancja populacji:

$$s^2=rac{1}{n}\sum_{i=1}^n{(x_i-\overline{x})^2}$$

Wariancja próbki:

$$s^2=rac{1}{n-1}\sum_{i=1}^n\left(x_i-\overline{x}
ight)^2.$$

Wariancja-znana średnia:

$$s^2 = rac{1}{n} \sum_{i=1}^n \left(x_i - \mu
ight)^2$$

$$\bar{x}$$
 – średnia μ – wartość oczekiwana

Współczynnik korelacji Pearsona

współczynnik określający poziom zależności liniowej między zmiennymi losowymi

