Processando a Informação: um livro prático de programação independente de linguagem

Rogério Perino de Oliveira Neves Francisco de Assis Zampirolli

EDUFABC editora.ufabc.edu.br

Notas de Aulas inspiradas no livro

Utilizando a(s) Linguagem(ns) de Programação:

C

Exemplos adaptados para Correção Automática no Moodle+VPL

Francisco de Assis Zampirolli

17 de dezembro de 2022

2 Sumário

Sumário

	Processando a Informação: Cap. 2: Organização de Código - Prá	tica 1 .	2
	0.1.1 Exercícios		9

0.1 Processando a Informação: Cap. 2: Organização de Código- Prática 1

Este caderno (Notebook) é parte complementar *online* do livro **Processando a Informação: um livro prático de programação independente de linguagem**, que deve ser consultado no caso de dúvidas sobre os temas apresentados.

Este conteúdo pode ser copiado e alterado livremente e foi inspirado nesse livro.

0.1.1 Exercícios

Organizar cada questão em partes:

• ENTRADA DE DADOS \Rightarrow PROCESSAMENTO DA INFORMAÇÃO \Rightarrow SAÍDA

Seguindo o pseudocódigo a seguir:

```
# MINHA(S) FUNÇÃO(ÕES)
função delta(recebe: real a, real b, real c) retorna real d {
    d = b2 - 4ac
    retorne d
}

principal {
    # ENTRADAS
    a = 5
    b = -2
    c = 4
```

```
# PROCESSAMENTO
real valor = delta(a, b, c) # AQUI ESTÁ A CHAMADA DA FUNÇÃO

# SAÍDA
escreva("O delta de ax2 +bx + c é" + valor)
}
```

- 1. Crie um método que receba um valor inteiro qualquer e retorne 0 se este valor for par ou 1 se for ímpar (Dica: utilizar o operador resto %). Teste em um programa principal várias chamadas deste método.
- 2. Descreva o procedimento ou função para receber um ponto em coordenadas cartesianas (X, Y) e retornar a distância euclidiana até a origem (0, 0). Teste em um programa principal várias chamadas deste método.
- 3. Crie um método para calcular o ângulo formado entre um par de pontos X, Y, e o eixo x no plano cartesiano. Teste em um programa principal várias chamadas deste método.
- 4. Crie um método para calcular o ângulo formado entre um par de pontos X1, Y1 e X2, Y2 e o eixo x no plano cartesiano. Teste em um programa principal várias chamadas deste método.
- 5. Crie um programa com variáveis globais de um retângulo para base, altura e área. Crie no mesmo programa funções para calcular cada um dos 3 valores a partir dos outros 2: calcula_base(), calcula_altura() e calcula_area(). Teste em um programa principal várias chamadas deste método.