## Literature:

MOSFET: p 292-318

Transistor amplifier: P 350-431

Frequency response: p 649 – 675

## Assignments:

## 8.1:

A MOSFET circuit is shown in Fig. 1. It is assumed that:  $V_{DD}=10$  V,  $R_G=33$   $K\Omega$ ,  $R_D=5.6$   $K\Omega$  and the channel length modulation coefficient  $\lambda=0$ . Furthermore, we assume that  $V_{TH}=2$  V and  $k_n=0.9*10^{-3}$   $A/V^2$ .

- (a) To achieve  $I_D = 1 \, mA$ ,  $V_{GS} = ?$
- (b) To have  $V_{GS}$  obtained in (a),  $V_{BB} = ?$  Explain why.
- (c) To ensure the MOSFET operating in saturation, how large is the output signal swing?
- (d) Setup a small signal circuit and calculate the component values and voltage gain  $A_n$ .
- (e) To achieve a maximum output signal swing for  $I_D=1\ mA$ ,  $R_D=?$
- (f) If the channel length modulation coefficient  $\lambda=0.5$  and  $R_D=5.6~K\Omega$  are considered, the output resistance  $r_o=$ ? The voltage gain  $A_v=$ ?



Fig. 1 A MOSFET circuit

A common gate amplifier is given in Fig.2.

- (a) Draw the internal capacitors of the circuit.
- (b) Simplify the circuit by merging the capacitors.
- (c) Is there any floating capacitor in the circuit?
- (d) If yes, how to decompose the floating capacitor into two capacitors connected to AC ground by using Millers theorem?



Fig. 2 A common gate amplifier