Homework #2

CSCI 580, Fall 2023 Section 1

Liam Smith

Instructions

In this assignment, you will be using the <u>ACME Sales</u> dataset to generate visualizations. Each question below asks you to provide a code section that will generate the requested chart type.

For full credit, make sure that each chart you generate

- has an appropriate title that clearly describes the information presented
- uses relevant labels for each axis
- deviates from any default style setting by changing the default (line/bar) color, marker shape, marker color, line width, or other feature
- uses any additional chart feature that will enhance the information your visualization is attempting to convey.

You are free to choose using matplotlib or seaborn or any other library to generate your visualization.

To get you started, the following code loads the <u>ACME Sales</u> dataset into a <u>pandas</u> DataFrame object and uses *Google Colab*'s interactive table feature to show you what the data looks like:

import pandas as pd

df = pd.read_csv('https://www.ecst.csuchico.edu/~bjuliano/csci581/datasets/acme_sal
df

	month_number	facecream	facewash	toothpaste	bathsoap	shampoo	moisturize
0	1	2500	1500	5200	9200	1200	15
1	2	2630	1200	5100	6100	2100	12
2	3	2140	1340	4550	9550	3550	13 ₀
3	4	3400	1130	5870	8870	1870	11;
4	5	3600	1740	4560	7760	1560	17
5	6	2760	1555	4890	7490	1890	15
6	7	2980	1120	4780	8980	1780	11:
7	8	3700	1400	5860	9960	2860	14
8	9	3540	1780	6100	8100	2100	17
9	10	1990	1890	8300	10300	2300	18!
10	11	2340	2100	7300	13300	2400	21
11	12	2900	1760	7400	14400	1800	17

1. Generate a line chart showing the company's total profit per month.

→ Solution:

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('https://www.ecst.csuchico.edu/~bjuliano/csci581/datasets/acme_sal
df
x_vals = df['month_number']
y_vals = df['total_profit']
```

```
plt.plot(x_vals, y_vals, label='Line Chart', marker='s', linestyle='-', color='Lawr
for x, y in zip(x_vals, y_vals):
    plt.annotate(f'({x}, {y})', (x, y), xytext=(0, 10), textcoords="offset points",

plt.xlabel('Month')
plt.ylabel('Profit USD')
plt.title('Profit Per Month')
plt.legend()
plt.grid(True)
```

plt.show()

2. Generate a multiline plot (i.e., use a separate plot line for

 each of the six products) showing the total units sold per month for each product.

→ Solution(s)

```
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('https://www.ecst.csuchico.edu/~bjuliano/csci581/datasets/acme_sal
x vals = df['month number']
creamY = df['facecream']
washY = df['facewash']
moistY = df['moisturizer']
shampY = df['shampoo']
soapY = df['bathsoap']
toothY = df['toothpaste']
plt.plot(x_vals, creamY, label='Shaving Cream', marker='s', linestyle='-', color='S
plt.plot(x_vals, washY, label='Face Cream', marker='h', linestyle='-', color='orang
plt.plot(x_vals, moistY, label='Moisturizer', marker='p', linestyle='-', color='pur
plt.plot(x_vals, shampY, label='Shampoo', marker='v', linestyle='-', color='red')
plt.plot(x_vals, toothY, label='Bathsoap', marker='^', linestyle='-', color='green'
plt.plot(x_vals, toothY, label='Toothpaste', marker='o', linestyle='-', color='blue
plt.xlabel('Month Number')
plt.ylabel('Units Sold')
plt.legend()
plt.show()
```


3. Generate a scatter plot that shows the toothpaste sales data for each month.

▼ Solution(s)

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df = pd.read_csv('https://www.ecst.csuchico.edu/~bjuliano/csci581/datasets/acme_sal
df
x_vals = df['month_number']
# x_vals = df['facecream']
y_vals = df['facecream']
plt.scatter(x_vals, y_vals, marker='o', linestyle='-', color='purple')
```

```
for x, y in zip(x_vals, y_vals):
    plt.annotate(f'({x}, {y})', (x, y), xytext=(0, 10), textcoords="offset points",

# plt.xticks(df['month_number'].tolist())
plt.xlabel('Month')
plt.ylabel('Profit USD')
plt.title('Monthly toothpaste sales data')
plt.legend()
plt.grid(True)
```

plt.show()

/var/folders/dq/hsqrwhy96kv60x8zvgbhx3800000gn/T/ipykernel_12023/2183826115.py
See: https://matplotlib.org/stable/tutorials/intermediate/legend_guide.html#in
 plt.legend()

No artists with labels found to put in legend. Note that artists whose label

- 4. Generate a bar chart showing the face cream and face
- wash sales per month. Use a separate bar for each product in the same chart.
- → Solution(s)

```
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pylab as plb
df = pd.read_csv('https://www.ecst.csuchico.edu/~bjuliano/csci581/datasets/acme_sal
df
barWidth = 2000
cream = df['facecream'].tolist()
wash = df['facewash'].tolist()
months = df['month number'].tolist()
fig, axis = plt.subplots()
print(fig)
\# cream = [-x \text{ for } x \text{ in cream}]
print(cream)
bars1 = axis.bar(x=months, height=cream, align='edge', label='Facecream', width=-0.
for bar in bars1:
    y = bar.get_height()
    plt.text(bar.get_x() + bar.get_width() / 2, y+20, round(y, 2), va='bottom', ha=
bars2 = axis.bar(x=months, height=wash, align='edge', label='Facewash', width=0.4,
for bar in bars2:
    y = bar.get_height()
    plt.text(bar.get_x() + bar.get_width() / 2, y, round(y, 2), va='bottom', ha='ce
plt.ylabel('Units sold')
plt.xlabel("Month Number")
plt.title('Sales Data of Acme Facewash and Facecream')
# plt.xlabel(df['month number'].tolist())
```

```
plt.xticks(months)
plt.legend()
plt.show()
```

Figure(640x480)
[2500, 2630, 2140, 3400, 3600, 2760, 2980, 3700, 3540, 1990, 2340, 2900]

- 5. Generate a pie chart showing the sales proportion of→ each product for the total sale for the year. Explode the
- → Solution(s)

import pandas as pd

slice that has the highest proportion.

```
import matplotlib.pyplot as plt
df = pd.read_csv('https://www.ecst.csuchico.edu/~bjuliano/csci581/datasets/acme_sal
df
cream = df['facecream'].tolist()
wash = df['facewash'].tolist()
moist = df['moisturizer'].tolist()
shamp = df['shampoo'].tolist()
soap = df['bathsoap'].tolist()
tooth = df['toothpaste'].tolist()
labels = ['Facecream', 'Facewash', 'Moisturizer', 'Shampoo', 'Bathsoap', 'Toothpast
# labels = list(labels)
plt.legend()
plt.title('Percentage of Sales per Product for the Year')
percentages = [sum(x) for x in zip(cream, wash, moist, shamp, soap, tooth)]
maxPos = percentages.index(max(percentages))
seperate = [0.1 if i == maxPos else 0 for i in range(len(percentages))]
plt.pie(percentages, explode=seperate, autopct='%1.1f%')
```

```
No artists with labels found to put in legend.
                                                Note that artists whose label
([<matplotlib.patches.Wedge at 0x129871e90>,
  <matplotlib.patches.Wedge at 0x1298a4c50>,
  <matplotlib.patches.Wedge at 0x1298a6410>,
  <matplotlib.patches.Wedge at 0x1298a7b10>,
  <matplotlib.patches.Wedge at 0x1298b5150>,
  <matplotlib.patches.Wedge at 0x1298b6950>,
  <matplotlib.patches.Wedge at 0x1298c0210>,
  <matplotlib.patches.Wedge at 0x1298c1b50>,
  <matplotlib.patches.Wedge at 0x1298b5250>,
  <matplotlib.patches.Wedge at 0x1298c48d0>,
  <matplotlib.patches.Wedge at 0x1298c6010>,
  <matplotlib.patches.Wedge at 0x1298c7710>],
 [Text(1.0695005389693513, 0.25723257403421385, ''),
  Text(0.8573228361733413, 0.6892006635049756,
  Text(0.4658216562783232, 0.9964989636432744,
  Text(-0.06947722811300897, 1.0978036777009508, ''),
  Text(-0.5719444887538202, 0.9396166781108835,
  Text(-0.9294931397842136, 0.5882537743985028, ''),
  Text(-1.0937420851278845, 0.11716762018624347, ''),
  Text(-1.0100630208985955, -0.43562907824570635, ''),
  Text(-0.6392952352401522, -0.895154513030705, ''),
  Text(-0.06603846654573663, -1.0980159019505535, ''),
  Text (0.5924068388935678 _0.9268517342229718
```

```
Text(1.1329699782371347, -0.3954478833087194, '')],
[Text(0.5833639303469188, 0.1403086767459348, '7.5%'),
Text(0.4676306379127315, 0.3759276346390776, '6.5%'),
Text(0.25408453978817624, 0.5435448892599678, '8.0%'),
Text(-0.03789666987982306, 0.5988020060187004, '7.9%'),
Text(-0.31196972113844734, 0.5125181880604818, '7.5%'),
Text(-0.5069962580641164, 0.3208656951264561, '7.2%'),
Text(-0.596586591887937, 0.06390961101067826, '7.4%'),
Text(-0.34870649194917386, -0.23761586086129435, '9.0%'),
Text(-0.34870649194917386, -0.48826609801674814, '8.3%'),
Text(-0.32313100303285514, -0.5989177647003019, '9.5%'),
Text(0.32313100303285514, -0.5055554913943482, '10.5%'),
Text(0.660899153971662, -0.2306779319300863, '10.7%')])
```

Percentage of Sales per Product for the Year

Notes

(Optional) Include any final thoughts, comments, or observations here, if applicable.