Zadanie 11. *(3 pkt)*

Wyznacz dziedzinę funkcji $f(x) = \log_{x^2-3}(x^3 + 4x^2 - x - 4)$ i zapisz ją w postaci sumy przedziałów liczbowych.

Zadanie 12. (4 pkt)

Dana jest funkcja: $f(x) = \cos x - \sqrt{3} \sin x$, $x \in R$.

- a) Naszkicuj wykres funkcji f.
- b) Rozwiąż równanie: f(x) = 1.

Zadanie 13. (4 pkt)

Rzucamy n razy dwiema symetrycznymi sześciennymi kostkami do gry. Oblicz, dla jakich n prawdopodobieństwo otrzymania co najmniej raz tej samej liczby oczek na obu kostkach jest mniejsze od $\frac{671}{1296}$.

Zadanie 14. (5 pkt)

Oblicz:
$$\lim_{n\to\infty} \frac{1+4+7+...+(3n-2)}{5+7+9+...+(2n+3)}.$$

Zadanie 15. (4 pkt)

W dowolnym trójkącie ABC punkty M i N są odpowiednio środkami boków AC i BC (Rys. 1).

Zapoznaj się uważnie z następującym rozumowaniem:

Korzystając z własności wektorów i działań na wektorach, zapisujemy równości:

$$\overline{MN} = \overline{MA} + \overline{AB} + \overline{BN}$$
 (1)

oraz

$$\overline{MN} = \overline{MC} + \overline{CN}$$
 (2)

Po dodaniu równości (1) i (2) stronami otrzymujemy:

$$2 \cdot \overline{MN} = \overline{MA} + \overline{MC} + \overline{AB} + \overline{BN} + \overline{CN}$$

Ponieważ $\overline{MC} = -\overline{MA}$ oraz $\overline{CN} = -\overline{BN}$, więc:

$$2 \cdot \overline{MN} = \overline{MA} - \overline{MA} + \overline{AB} + \overline{BN} - \overline{BN}$$

$$2 \cdot \overline{MN} = \overrightarrow{0} + \overline{AB} + \overrightarrow{0}$$

$$\overline{MN} = \frac{1}{2} \cdot \overline{AB}$$
.

Wykorzystując własności iloczynu wektora przez liczbę, ostatnią równość można zinterpretować następująco:

odcinek łączący środki dwóch boków dowolnego trójkąta jest równoległy do trzeciego boku tego trójkąta, zaś jego długość jest równa połowie długości tego boku.

Przeprowadzając analogiczne rozumowanie, ustal związek pomiędzy wektorem \overline{MN} oraz wektorami \overline{AB} i \overline{DC} , wiedząc, że czworokąt ABCD jest dowolnym trapezem, zaś punkty M i N są odpowiednio środkami ramion AD i BC tego trapezu (Rys. 2).

Podaj interpretację otrzymanego wyniku.

Zadanie 16. (5 *pkt*)

Sześcian o krawędzi długości a przecięto płaszczyzną przechodzącą przez przekątną podstawy i nachyloną do płaszczyzny podstawy pod kątem $\frac{\pi}{3}$. Sporządź odpowiedni rysunek. Oblicz pole otrzymanego przekroju.

Zadanie 17. (7 *pkt*)

Wykaż, bez użycia kalkulatora i tablic, że $\sqrt[3]{5\sqrt{2}+7} - \sqrt[3]{5\sqrt{2}-7}$ jest liczbą całkowitą.

Zadanie 18. (8 pkt)

Pary liczb(x, y) spełniające układ równań:

$$\begin{cases} -4x^2 + y^2 + 2y + 1 = 0 \\ -x^2 + y + 4 = 0 \end{cases}$$

są współrzędnymi wierzchołków czworokąta wypukłego ABCD.

- a) Wyznacz współrzędne punktów: A, B, C, D.
- b) Wykaż, że czworokąt ABCD jest trapezem równoramiennym.
- c) Wyznacz równanie okręgu opisanego na czworokącie ABCD.

Zadanie 19. (10 pkt)

Dane jest równanie: $x^2 + (m-5)x + m^2 + m + \frac{1}{4} = 0$.

Zbadaj, dla jakich wartości parametru m stosunek sumy pierwiastków rzeczywistych równania do ich iloczynu przyjmuje wartość najmniejszą. Wyznacz tę wartość.

ODPOWIEDZI

$$x \in (-4; -2) \cup (-2; -\sqrt{3}) \cup (\sqrt{3}; 2) \cup (2; +\infty)$$

$$x = 2k\pi \qquad \lor \qquad x = -\frac{2}{3}\pi + 2k\pi$$

$$n \in \{1, 2, 3\}$$

$$\frac{3}{2}$$

$$S = \frac{2(\sqrt{6} - 1)a^2}{3}$$

$$A = (-1; -3), B = (1; -3), C = (3; 5), D = (-3; 5)$$
$$x^{2} + \left(y - \frac{3}{2}\right)^{2} = \frac{85}{4}$$
$$f(-6) = \frac{4}{11}$$