

Comparison with DK1.1_RF_mmW model(s)

Please use the bookmark to navigate

General information on Resistors models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 0.4um to 100um.
 - ✓ Drawn transistor width varies from 0.15um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

dormieub

Output parameters definitions

Model(s): nwres

✓ Rval : Resistance at Vres = 50e-3V

nwres **Electrical characteristics scaling**

dormieub

nwres, Rval [Ohm] vs W [m]

Temp==25 and Vres==50e-3 and l==50e-6 and w>0.18e-6

nwres, Rval*W/L [Ohm/sq] vs W [m]

Temp==25 and Vres==50e-3 and l==50e-6 and w>0.18e-6

nwres, Resistor matching [%] vs W [m]

Temp==25 and Vres==50e-3 and l==50e-6 and w>0.18e-6

nwres, Normalized matching sigma(R)/R * sqrt(W.L) [%.m] vs W [m]

nwres, Rval [Ohm] vs Temp [C]

w==5e-6 and Vres==50e-3 and l==50e-6

nwres, Rval*W/L [Ohm/sq] vs Temp [C]

w==5e-6 and Vres==50e-3 and l==50e-6

nwres, Resistor matching [%] vs Temp [C]

w==5e-6 and Vres==50e-3 and l==50e-6

nwres, Normalized matching sigma(R)/R * sqrt(W.L) [%.m] vs Temp [C]

dormieub

nwres, Rval [Ohm] vs Vres [V]

w==5e-6 and Temp==25 and l==50e-6

nwres, Rval*W/L [Ohm/sq] vs Vres [V]

w==5e-6 and Temp==25 and l==50e-6

nwres, Resistor matching [%] vs Vres [V]

w==5e-6 and Temp==25 and l==50e-6

nwres, Normalized matching sigma(R)/R * sqrt(W.L) [%.m] vs Vres [V]

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model nwres (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times vsub1 = 0
 - \times temp = 25 °C
 - \times vres = 50e-3 V
 - \mathbf{x} mc_sens = 0
 - **✗** sbenchlsf_release = Alpha
 - \mathbf{X} ams_release = 2018.3
 - **x** model_version = 1.3.a
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{X} vres = 0.05, 0.5, 1.0, 1.5, 2.0
 - \mathbf{x} temp = 25.0, -40.0, 0.0, 50.0, 85.0, 125.0
 - ✓ Extra parameters
 - \times rnwell_dev = 1

Sep 21, 2018

- Model nwres (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** mc_runs = 1000
 - \times vsub1 = 0
 - **x** temp = $25 \, ^{\circ}$ C
 - \times vres = 50e-3 V
 - \times mc_sens = 0
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} ams_release = 2018.3
 - **✗** model_version = 1.3.a
 - **x** mc_nsigma = 3
 - ✓ Sweep Parameters
 - \mathbf{x} vres = 0.05, 0.5, 1.0, 1.5, 2.0
 - **x** temp = 25.0, -40.0, 0.0, 50.0, 85.0, 125.0
 - ✓ Extra parameters
 - **x** rnwell_dev = 1

ST Confidential