

Ollscoil na hÉireann Má Nuad

unmixR: Hyperspectral Unmixing in R

Conor McManus¹, Simon Fuller², Claudia Beleites^{3*}, Bryan A. Hanson^{4*}

4. Dept. of Chemistry & Biochemistry, DePauw University, Greencastle IN USA 3. Leibniz Institute of Photonic Technolology, Jena/D

*Contact: claudia.beleites@ipht-jena.de & hanson@depauw.edu

Hyperspectral Imaging

Hyperspectral images are 3D data sets of spectra collected over an x, y grid.

Applications: remote sensing/ airborne or satellite land imaging, biomedical microspectroscopy and art history investigations

Spectra: e.g. visible, near-infrared, mid-infrared, or Raman spectra.

Spectral Unmixing

Identify m pure component spectra in data, then derive respective concentrations.

Bilinear statistical model:

Mixture diagram for m components: (m-1)-simplex in m-1 dimensions (**A**).

2 components	1-simplex	iine	
3 components	2-simplex	triangle	<
4 components	3-simplex	tetrahedron	

Vertices are pure component spectra.

Assumptions:

- Data consists of mixture spectra
- Spectra of pure components are available somewhere in the data **X**
- Not too much noise on measurements (possibly after PCA)
- (Other methods relax assumptions 2 and 3)
- Number of pure components m ("chemical rank") provided by user input
- Abundances subject to non-negativity constraint

N-FINDR Algorithm

Heuristic: find m spectra within data set that span (m-1)-simplex with *largest volume*

- I. Project **X** into (m-1)-dimensional space (typically by PCA)
- 2. Initialize simplex with m arbitrary points
- 3. Iteratively grow simplex: For each vertex point in turn: exchange by point that maximizes simplex volume (keeping the other m-1 points constant) Iterate/refine until convergence
- 4. Return corresponding spectra of **X** as endmembers
- 5. predict abundances by non-negative least squares [nnls] on found endmembers

VCA Algorithm

Heuristic: projection of points onto arbitrary direction will always have 2 of the m vertices as maximum and minimum.

- 1. Project \boldsymbol{X} into (m-1)-dimensional space if data is considered too noisy
- 2. Project **X** onto arbitrary direction
- 3. Find first 2 vertices as min and max
- 4. Project **X** onto arbitrary direction orthogonal to all previously used directions
- 5. Find next vertex as unknown min or max
- 6. Repeat 4 and 5 until m vertices are found
- 7. Return corresponding spectra of **X** as endmembers
- 8. predict abundances by non-negative least squares [nnls] on found endmembers

AVIRIS Cuprite Data

Data Set:

- Acquired by NASA's Airborne Visible/ InfraRed Imaging Spectrometer
- of mining region in the south of Nevada/USA
- $45 \times 10 \, \text{km}$ (300 000 pixel subimage shown)
- 250 4 000 nm (224 spectral bands)
- Well-known ground truth

N-FINDR with m=19 endmembers

As example, we show 2 components identified as

- muscovite (mica, KAI₂(AISi₃O₁₀)(FOH)₂), and
- alunite (alumstone, KAl₃(SO₄)₂(OH)₆).

Raman Image of HeLa Cell

Data Set:

- Raman spectra of HeLa cell
- Excitation: 5 mW @ 488 nm, 0.5 s/spectrum
- Spectra: $600-1800 + 2800-3075 \,\mathrm{cm}^{-1}$, 314 bands (after pre-processing)
- Area: $60 \times 60 \,\mu\text{m}$, step size $0.5 \,\mu\text{m}$
- For details see reference [HeLa Cell].

N-FINDR with m=3 endmembers

 Solution is stable: Identical results for 100 runs with random initialization

VCA Results m=3 endmembers

- VCA is expected to be less stable than N-FINDR: no refinement of tentative vertices
- VCA faster than Winter's N-FINDR, but advantage small for improved algorithms.

R package unmixR

Conor McManus implemented N-FINDR [Winter, Dowler] and VCA [Nascimento, Lopez] algorithms as R package unmixR. He was supervised by Claudia Beleites, Simon Fuller and Bryan Hanson.

Claudia Beleites now maintains the package with help by Bryan Hanson.

The package is available at

http://github.com/Chathurga/unmixR

References

Winter ME et al.: N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data, Proc SPIE, 3753, 266-275 (1999). DOI: 10.1117/12.366289

Dowler SW et al.: Reducing the complexity of the N-FINDR algorithm for hyperspectral image analysis., IEEE Trans Image Process, 22, 2835–2848 (2013). DOI: 10.1109/TIP.2012.2219546

Nascimento JMP et al.: Vertex Component Analysis: A Fast

Rem Sens, 43, 898-910 (2005). DOI: 10.1109/TGRS.2005.844293 Iden Lopez S et al.: A Low-Computational-Complexity Algorithm for

Algorithm to Unmix Hyperspectral Data, IEEE Trans Geosci.

Hyperspectral Endmember Extraction: Modified Vertex Component Analysis, IEEE Geosci Rem Sens Lett, 9, 502-506

DOI: 10.1109/LGRS.2011.2172771

Cuprite: AVIRIS data: http://aviris.jpl.nasa.gov/ data/free_data.html,

spetroscopic and geological information: http://speclab. cr.usgs.gov/PAPERS/cuprite.clark.93/mineral_ map.html,

spetroscopic reference: Clark RN et al.: USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231 (2007).

HeLa Cell: Hedegaard M et al.: Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging, Theor Chem Acc, 130, 1249-1260 (2011). DOI: 10.1007/s00214-011-0957-1

hyperSpec: a package to handle hyperspectral data sets in R, Beleites C & Sergo V, Ver. 0.98-20140612 (2014).

nnls: The Lawson-Hanson algorithm for non-negative least squares, Mullen KM & van Stokkum IHM, Ver. 1.4 (2012).

lattice: Multivariate Data Visualization with R, Sarkar D, Springer (2008). Ver. 0.20-29

ggplot2: Elegant Graphics for Data Analysis, Wickham H, Springer (2009). Ver. 1.0.0

Acknowledgments

Conor McManus was supported by the Google Summer of Code 2013 to implement the algorithms.

Claudia Beleites thanks the BMBF for funding via the project "RamanCTC" (13N12685).

We thank Christian Matthäus for providing us with the HeLa cell data set.

useR! 2014 UCLA