Sample size and variability

Jeff Leek

@jtleek

Central dogma of statistics

Sample size

N = Number of Measurements

(\$ you have) (\$/measurement)

Variability and power

- ▶ n = 10 for each group; effect = Δ = 5; pop'n SD = σ = 10 power.t.test(n=10, delta=5, sd=10) \longrightarrow 18%
 - power = 80%; effect = Δ = 5; pop'n SD = σ = 10 power.t.test(delta=5, sd=10, power=0.8)
 - power.t.test(delta=5, sd=10, power=0.8) $\longrightarrow n = 63.8 \longrightarrow 64 \text{ for each group}$
 - power = 80%; effect = Δ = 5; pop'n SD = σ = 10; one-sided power.t.test(delta=5, sd=10, power=0.8,
 - alternative="one.sided") \longrightarrow n = 50.2 \longrightarrow 51 for each group

Power curves

Three types of variablity

Var(Genomic Measurement)

- = Phenotypic variability
- + Measurement error
- + Natural biological variation

New technology doesn't eliminate variability

