Soft Sensor Design for Sulphur Recovery Unit

Under Prof. Jayaram Valluru

Algorithms applied

Multi -Linear Regression

Idea: Examine the linear relationship between 1 dependent (y) & 2 or more independent variables (x_i)

Population model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \epsilon$$

Estimated multiple regression model:

Multi -Linear Regression

Predictive Performance	Values
Sum of Squared Errors (SSE)	0.41361865234861006
Mean Absolute Error(MAE)	0.47190470826437003
R^2	0.5037888675042501
Akaike Information Criterion (AIC)	-16761.412301247583
Bayesian Information Criterion (BIC)	-16731.720073491757

β.	β.	β.	β.	β.	β.
-0.010470	0.136875	0.15691	0.322204	0.03659 1	0.23094

Polynomial Regression

- Used when relationship nonlinear
- Can estimate a polynomial fit of higher-order
- User needs to define order
- $y = b + m_1 x^1 + m_2 x^2 + m_3 x^3$
- Sidenote: polynomial regression still type of linear regression (x² is just feature and m₂ a linear parameter)

Polynomial Regression

For degree = 6

Degree	R2 score
2	0.531
3	0.585
4	0.621
5	0.662
6	0.686

Predictive Performance	Values
Sum of Squared Errors (SSE)	0.26149008571890997
Mean Absolute Error(MAE)	0.3801269169579971
R^2	0.6862948737098291
Akaike Information Criterion (AIC)	-18046.72248558417
Bayesian Information Criterion (BIC)	-18017.030257828344

KNN(k – Nearest Neighbour)

KNN (k - Nearest Neighbour)

Predictive Performance	Values
Sum of Squared Errors (SSE)	0.2537100869279591
Mean Absolute Error(MAE)	0.33300396169203117
R2	0.6956284034937315
Akaike Information Criterion (AIC)	-18131.384702830765
Bayesian Information Criterion (BIC)	-18101.69247507494

ANN(Artificial Neural Network)

ANN(Artificial Neural Network)

Number of Epocs =300

Predictive Performance	Values
Sum of Squared Errors (SSE)	0.20884828958355764
Mean Absolute Error(MAE)	0.3279026738079866
R^2	0.7494483246690901
Akaike Information Criterion (AIC)	-18676.804002033543
Bayesian Information Criterion (BIC)	-18647.111774277717

LSTM

LSTM

Number of Epocs = 1000

Predictive Performance	Values
Sum of Squared Errors (SSE)	0.17731212350159817
Mean Absolute Error(MAE)	0.3016487145636578
R^2	0.7872817168462738
Akaike Information Criterion (AIC)	-19135.645325211815
Bayesian Information Criterion (BIC)	-19105.95309745599

Conclusion

Model	R ² score
Multi-Linear Regression	0.503
Polynomial Regression	0.686
KNN	0.696
ANN	0.749
LSTM	0.787