You Only Look Once: Unified, Real-Time Object Detection

BURAK BOZDAĞ - 504211552

Introduction

- •Humans glance at an image and instantly know what it is
- •YOLO: Fast, generalizable, maintains accuracy

Introduction

- •Resizing to 448 x 448
- Running single CNN
- Thresholding by the model's confidence

Non-Maximal Suppression

- •Intersection Over Union (IOU) = Area of Overlap / Area of Union
- Selecting the right bounding box
- Eliminating redundant ones

Multiple Bounding Boxes

Final Bounding Boxes

Unified Detection

- Detection as a regression problem
- •Predicting for each cell:
 - Bounding boxes
 - Confidences
 - Class probabilities
- •S x S x (B * 5 + C) tensor

Network Design

- Inspired by the GoogLeNet [2]
- •24 convolutional, 2 FC

- •Inception modules
- •1x1 reduction + 3x3 convolutional

Comparison to Other Detection Systems

DPM: Deformable Part Models

Sliding window
DPM
R-CNN
All train region-based classifiers to perform detection

R-CNN: Regions with CNN features

Comparison to Other Detection Systems

With YOLO, you only look once at an image to perform detection

Experiments

- •Test bench specs:
 - NVIDIA GeForce Titan X
- No batch processing
- Base network: 45 FPS
- •Fast network: >150 FPS (<25 ms latency)

Datasets

- PASCAL VOC 2007 Challenge [4]
- •20 classes:
 - Person
 - Animal: bird, cat, cow, dog, horse, sheep
 - Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
 - Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
- •9963 images containing 24640 annotated objects

Datasets

- PASCAL VOC 2012 Challenge
- •20 classes
- •11530 images
- •27450 annotated objects

PASCAL VOC 2007

Real-Time Detectors	Train	mAP	FPS
100Hz DPM	2007	16.0	100
30Hz DPM	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM	2007	30.4	15
R-CNN Minus R	2007	53.5	6
Fast R-CNN	2007+2012	70.0	0.5
Faster R-CNN VGG-16	2007+2012	73.2	7
Faster R-CNN ZF	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

PASCAL VOC 2007 Error Analysis

- Correct:
 - Correct class
 - IOU > .5
- Localization:
 - Correct class
 - .1 < IOU < .5
- Similar:
 - Class is similar
 - IOU > .1
- Other:
 - Class is wrong
 - IOU > .1
- Background:
 - For any object
 - IOU < .1

Real-Time Detection in the Wild

Offici Deichon

starring

Conclusion

- Simple to construct
- •Can be trained directly on full images
- •Unlike classifier-based approaches, YOLO is trained on a loss function that directly corresponds to detection performance and the entire model is trained jointly

References

- [1] J. Redmon et al., "You Only Look Once: Unified, Real-Time Object Detection«, arXiv.org, 2016. [Online]. Available: https://arxiv.org/abs/1506.02640.
- [2] C. Szegedy et al., "Going Deeper with Convolutions", arXiv.org, 2014. [Online]. Available: https://arxiv.org/abs/1409.4842.
- [3] P. F. Felzenszwalb et al., "Object detection with discriminatively trained part based models", IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.
- [4] M. Everingham et al., "International Journal of Computer Vision", 88(2):303-338, 2010.