Nom: Classe:	
--------------	--

DOCUMENT RÉPONSE À RENDRE

Exercice 1

Question	Réponse
Une mémoire possède une largeur de 8 bits et une capacité (en octets) de 128 Kio. Combien de fils d'adresse possède cette mémoire ?	
Un mémoire possède un bus de donnée de 16 fils et un bus d'adresse de 16 fils. En puissance de deux , quelle est la capacité en bits de cette mémoire ?	
Une mémoire M1 possède un bus de donnée de 8 fils et un bus d'adresse de 16 fils. On assemble deux mémoires M1 en parallèle pour former une mémoire M2 . Quelle est la taille du bus d'adresse de la mémoire M2 ?	
Un microprocesseur possède un bus d'adresse de 20 fils. Six fils d'adresse sont utilisés pour la sélection des composants. À l'aide du décodage par zone, quel est le nombre maximum de composants que l'on peut connecter à ce microprocesseur ?	
Un microprocesseur possède un bus d'adresse de 22 fils. Il est connecté en mode linéaire aux quatre composants suivants : • une ROM (15 fils d'adresse); • une RAM (12 fils d'adresse); • deux périphérique quelconque (10 fils d'adresse). Combien de fils d'adresse sont inutilisés dans le cas de la mémoire RAM ?	

S2 – Examen 4 3/6

Exercice 2

Question	Réponse
Quelle est la profondeur de la mémoire <i>m</i> ?	
Quelle est la profondeur de la mémoire $m{M}$?	
Donnez le nombre de fils du bus d'adresse de la mémoire <i>m</i> .	
Donnez le nombre de fils du bus d'adresse de la mémoire M .	
Combien de mémoires doit-on assembler en parallèle ?	
Combien de mémoires doit-on assembler en série ?	
Combien de bits d'adresse vont servir à déterminer les entrées <i>CS</i> des mémoires ?	
Quand la mémoire ${\it M}$ est active, combien de mémoires ${\it m}$ sont actives simultanément ?	

Exercice 3

1. ROM:	2. Bits de sélection :
RAM:	
P1:	
P2:	

3. $CS_{ROM} =$	$CS_{P1} =$
$CS_{RAM} =$	$CS_{P2} =$

4.

Composant	Adresse basse	Adresse haute
ROM		
RAM		
P1		
P2		

S2 – Examen 4 4/6

-	•	
F.Xe	rcice	4

1. ROM:	2. Décodage linéaire possible (oui ou non) ?		
RAM:			
P1:	3. Bits de sélection :		
P2:			

4. CS _{ROM} =	$CS_{P1} =$	
CS _{RAM} =	$CS_{P2} =$	

Composant	5.		6.
Composant	Adresse basse	Adresse haute	Nombre d'images
ROM			
RAM			
P1			
P2			

Exercice 5

1.

Composant	Adresse basse	Adresse haute
ROM		
RAM		
P1		
P2		

2.

CS _{ROM} =	$CS_{P1} =$	
$CS_{RAM} =$	$CS_{P2} =$	

S2 – Examen 4 5/6

Architecture des ordinateurs – EPITA – S2 – 2024/2025

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.	

S2 – Examen 4 6/6