Comp-122 Assignment 2

Andrew Lawler

Introduction

For this assignment I was tasked with creating a cipher text encryption and decryption program.

For the first part of the task I was required to create an interface and then implement the interface in part B.

For part b, I had to implement the methods in a class called Caesar. Within this class I had the methods (rotate, frequencies, chiSquared and decipher). I implemented these methods using my knowledge of cipher text and the suitable examples shown to us.

Note: I asked Patrick if I could use a code snippet and he said it was fine. I used this snippet, which I heavily edited, to handle the rotating of lowercase and uppercase letters. I showed in the code which if statement this was. All code around it (eg: is letter) and other parts, are all my own. I also edited the code snippet as I wanted the code to be easy to edit for other inputted languages. You can see with the link provided in the code that the code itself has been changed a lot.

Next Parts

c. Testing input for Rotate.java

I implemented a system that will print wrong input length when there is not two inputs. It then tests the inputs to make sure they are in the correct format.

Input	Expected Output	Actual Output	Comments
	Too few parameters!	Too few parameters!	This shows that
	Usage: java Rotate n	Usage: java Rotate n	the program ends
	'cipher text'	'cipher text'	with an error
			message when
			there is nothing
			entered.
•	Too few parameters!	Too few parameters!	This result tells us
	Usage: java Rotate n	Usage: java Rotate n	that the program
	'cipher text'	'cipher text'	will revoke all
			types of input
			when there is not
			the correct
			amount of inputs.
3	Too few parameters!	Too few parameters!	This example
	Usage: java Rotate n	Usage: java Rotate n	shows the error
	'cipher text'	'cipher text'	message once
			again.

Andy	Too few parameters!	Too few parameters!	This shows that
	Usage: java Rotate n	Usage: java Rotate n	the program
	'cipher text'	'cipher text'	handles the one
			string input and
			provides the same
			error message.
Andy 3	No integer first, no	You did not enter an	The output here
	string second, wrong	integer first!	shows that order
	input	You did not enter a	matters. It tested
		string second!	the first input and
		Wrong inputs!	found it was not
			an integer and also
			found the second
			input was not a
			string. These are
			the wrong inputs.
3 Andy	dqgb	dqgb	Here you can see if
			we enter in the
			correct format it
			will work.

d. Testing input for BreakCaesar.java

I implemented the same system as for part c but with one input this time. It will check if the input size is equal to one and will then check if that input is a string. If either case is false we will get a specific error message.

Input	Expected Output	Actual Output	Comments
	Too few	Too few	This shows that the
	parameters!	parameters!	program requires
	Usage: java	Usage: java	inputs and will not
	BreakCaesar 'cipher	BreakCaesar 'cipher	let you enter
	text'	text'	nothing.
3	You didn't enter a	You did not enter a	This shows that you
	string	string!	need to enter a
			string because the
			input is tested.
		•	This was to test that
			the function did in
			fact let this in. A dot
			is allowed as we
			may form sentences
			to decrypt.
xf bsf ifsf	we are here	we are here	This was to test that
			the program would
			work.

e. UML Diagram

Class Description

I first initialized the interface for the assignment. This interface is called RotationCipher and its job is to simply state the methods for the subclass to implement. Interfaces state methods as public but it is known that they are in fact abstract also. Once I had implemented my interface, I moved onto my Caesar subclass. This subclass implements the interface itself. I wrote the code for the methods and made sure they followed the same input parameters and same name as the ones in the interface, it in turn overrides them.

I then was tasked with implementing the BreakCaesar and Rotate applications. For this task I extended the Caesar class further, once in the subclass I created a constructor which takes the string input and sends it to the decipher method from the parent class. This is the way my application works. I followed the same layout for Rotate. I extended the subclass and created a constructor which took the inputted argument and send it to the rotate method which in turn gets printed out.

I think the way I designed my classes is good because they all link together well and it keeps the code neat and efficient.

UML Diagram

f. JavaDocs

I was asked to use JavaDoc to add comments to my methods, interfaces and classes. I added these throughout my project and I also added some extra background information as I went along. You can find these HTML files within the docs folder in the submission folder.

g.

Question: Caesar would have written in Latin instead of English. What would we do differently if we know the language we're examining isn't English but some other language?

This scenario would be quite easy to implement. First, I would need to edit the global variables I provided at the top of the Caesar program. I coded the entire assignment to suit this scenario. You would simply change the alphabetlength integer to the length of your new languages alphabet and then also type the alphabet as a string into the alphabet char array part below. This would then implement these changes throughout the entire program as the entire program runs off of the values implemented in these variables. You would then only need to make one more change. You would edit the knownFreq double array with the frequencies for every letter in your language. Once complete, the code would run perfectly for your new given language.

h.

Question: Suppose we (somehow) know that the person doing the encryption uses one shift value for lower case letters, and a different shift value for upper case letters. What would we have to do differently? How would that affect our calculations, or how would we have to alter our program/calculations to account for this?