

INSTITUT LADY DAVIS DE RECHERCHES MÉDICALES / LADY DAVIS INSTITUTE FOR MEDICAL RESEARCH

LDI Seminar Series in Biostatistics: Lecture 5

Kevin McGregor

October 23, 2017

Last time

- Showed how to form the one-way ANOVA test statistic
- Covered some basic post-hoc tests
- Simple introduction to the factorial ANOVA

Today

Putting it all together:

- We have seen a few simple tools to do statistical analysis
- But you should be thinking about the statistical analysis right from the conception of the project! Not just after you've collected data.
- What sorts of things should you consider before collecting data?
- When you finally do get the data, what should you do before starting any formal testing procedures?

Sample size and power calculations

Sample size and power calculations

Need for sample size calculations

- A sample size calculation is a common initial step when undertaking a new research project.
- Allows researchers to get reasonable estimates of the amount of data that would need to be collected to have a high probability of detecting an association (if such an association does truly exist).
- Involves creating a set of "what if" scenarios... various parameters will determine the required sample size, but we don't know their true values.
 - Though there may be existing research to give an idea of reasonable values of these parameters to try.

Reminder: types of errors

		Reality	
		H ₀ False	H ₀ True
Test	Reject H ₀	Correct rejection H_0 $Power = 1 - \beta$	Type I error = α
	Do not reject Accept H ₀	X Type II error	Correct acceptance of H_0

- Mainly interested in *power*, i.e. the probability of rejecting the null hypothesis given that it really is false.
- The type I error rate (probability of rejecting the null given that it's true) is actually equal to the significance level α .

Basic elements going into a sample size calculation

- Determining the type of test that will be performed is the first step to doing the sample size calculation.
 - To get a formula for sample size, we work backwards from the final test statistic (and its distribution under the two hypotheses) to see what values determine the required sample size.
- Basic important items: power we'd like to achieve, type I error rate (same as significance threshold), effect size, and standard deviation.
 - Will choose a range of reasonable values for each of these and see how the required sample size changes.
- Will illustrate through the independent-samples *t*-test.

Independent-samples *t*-test sample size calculation

- Recall that in the independent-samples *t*-test we're looking at the difference between the means of two groups $\Delta = \mu_2 \mu_1$.
- Standard deviation in each group is σ .
- Assume we want to have a power of 1β (common to choose $1 \beta = 0.8$).
- Assume we will test at significance level α .
- The minimum sample size in each group is then calculated as:

$$n_{group} = \frac{2(z_{1-\alpha/2} + z_{1-\beta})^2 \sigma^2}{\Delta^2}$$

where $z_{1-\alpha/2}$ is the value on the standard normal distribution such that the upper tail probability is $1-\alpha/2$.

Visualizing power

- The blue distribution is true distribution of *t*-statistics we would get under repeated samples from the population (fixed sample size).
- β is the probability of a type II error (do not declare significance when the null hypothesis is false).
 - Then 1β is the *power* (or *sensitivity*).

Visualizing Type I error

- The red distribution is the distribution of t-statistics if the null hypothesis were true.
- \bullet α is the probability of a type I error (declaring significance when the null hypothesis is true)
 - 1α is the *specificity*.

Independent-samples t-test sample size calculation

- To do the actual sample size study, we simply choose our power and significance level. Say, power = $1 \beta = 0.8$ and $\alpha = 0.05$.
- Choose a reasonable range of values for the mean difference Δ and the within-group standard deviation σ .
- Alternatively, you can specify values for the ratio $d = \frac{\Delta}{\sigma}$. This is the mean difference relative to the standard deviation.
 - Let's try three values for d: 0.5, 1, and 1.5.

Effect size

Same mean difference, but three different effect sizes.

Sample size vs. power

t tests – Means: Difference between two independent means (two groups) Tail(s) = Two. Allocation ratio N2/N1 = 1. α err prob = 0.05

Sample size calculation in practice

- Sample size calculations can be performed for more complicated analyses. (Multiple regression, ANOVA).
- Can also take other items into account: dependent observations, correlation between variables, confounding factors.
- For the most standard statistical tests, a good (free) software choice is G*Power
 - Other online resources also available.
- For very complicated analyses, a simulation can usually be done to determine power.

Randomization

Randomization

Confounding factor

- Suppose we're interested in the relationship between some predictor variable X and an outcome variable Y.
- In many observational studies there are factors which can induce a spurious association between X and Y.

• The variable C has an effect on both X and Y, and is therefore called a *confounder* or *confounding factor* in the relationship between X and Y.

Confounding factor

- A confounding variable can be dealt with by adjusting for it in the model.
- For example, in linear regression the confounder could be included as an additional predictor.
- There's an extension to ANOVA called ANCOVA (Analysis of Covariance) which would allow you to run an ANOVA while adjusting for the confounder.

Confounding factors in experiments

- In observational studies confounding factors are outside of the control of the investigator (e.g. age, sex, socioeconomic status, smoking, etc.)
- When designing an experiment, however, we have control over which individuals fall into different experimental groups.
- If we do a poor job of assigning individuals to the experimental groups we can end up with confounding variables through study design.
- Therefore, the assignment of experimental conditions (or treatments) must be randomized.
 - This way we know that no external variables could have affected the assignment of the experimental conditions. Theoretically don't have to adjust for anything.

Checking balance

- With a small sample size, randomization might not be enough...
- Could end up with imbalance of different kinds of individuals in the experimental groups just by chance.
 - e.g. Treatment group vs. control group in mice: could end up with more males in one group than the other.
- If imbalance is found before the experiment is started, you can rerandomize.
- Otherwise variables that are not balanced between experimental groups will have to be included in the analysis.

Technical factors

- Randomization is also important in mitigating the effect of technical factors.
- Factors in the lab can have an impact on measurements:
 - Processing samples in different batches (i.e. "batch effect")
 - The day that the samples are processed
 - The lab technician doing the experiment
- Randomize over everything! Don't process all samples from one experimental group in one go.

Batch effect example

- Recent example: examining differences in DNA methylation on the Illumina 450K chip with respect to disease cases/controls.
- Wanted to see DNA more methylated in case samples than in control samples.
- 450K platform can handle batches of 96 samples at a time. However, the effect between batches can be strong.
 - Normalization methods exist to mitigate batch effect.
 - Study design is still very important!

Bad study design

- Confounding by design... can't separate out batch effect from case/control differences.
- Normalization does not solve the problem!

Better study design

 Better design... making sure there are an similar number of cases and controls on each plate.

After you have data

After you have data

Creating a dataset

- Getting the data into a proper dataset can take a long time.
- Have to be very consistent with entering data
 - Make sure all factor variables are written exactly the same way... i.e. "male" would be considered a different group from "Male" in most software.
 - Dates should be in the same format throughout the file.
 - Use one kind of flag for missing data (I've seen empty cells, "NA", "N/A", "n/a", "na" all in the same dataset... the computer thinks they're different things!)
- Use informative variable names, and keep a separate file where you describe the different variables in more detail.

Think about confounders

- If you have observational data, you need to think about possible confounding variables.
 - Start by thinking about what variables could affect the outcome variable.
- If you have a randomized experiment, check for balance of your variables in the experimental groups. Might still have adjustment to do.
- Think about who or what the study applies to. Can results be generalized?

Running the test

- Think very carefully about what question you want to answer.
- Make sure you understand whatever test you're running... if not look it up or ask someone.
- Think about independence assumption... (remember that repeated measures from the same individual are not independent!)
- Check assumptions that can be checked.

Verify results

- Once you've done the test it's important to think about the vailidity of the results.
- Looking at effect sizes: does the estimated effect size make sense given the units of measurement in the data?
- Was a relationship between two variables the opposite of what was expected? Double check to make sure things are coded correctly (i.e. for a binary treatment variable maybe the 1's and 0's need to be reversed).
- Worried about an outlier? You can run the analysis with and without the outlier to see how sensitive the results are.
- The final model you choose should be based on good statistical practice... not the one that gives $\rho < 0.05$

Take-home message

- Statistical analysis is an incredibly important part of doing good research. You need to be thinking about it from the very beginning.
- It's very easy to run statistical analyses using modern software.
 However, you still need to have a good understanding of what the test is doing and how to properly interpret the results.
- Always a good idea to consult a statistician... and do so before you even begin an experiment!

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of. -Ronald Fisher

Thank you! - Merci!

Questions?