

Questions - Area Under Curve

LEVEL-I

- 1. Prove that the area enclosed between the parabolas $y^2 = 4ax$ and $x^2 = 4$ by is 16 ab/3.
- 2. Prove that the area included between the parabola $y^2 = 4ax$ and the line y = mx is $8a^2/3m^3$.
- 3. Find the area bounded on the right by the line x + y = 2, on the left by the parabola $y = x^2$ and above by the x-axis.
- **4.** Find the area of the region bounded by the curves, $y = x^2 + 2$; y = x; x = 0 and x = 3.
- 5. Find the area bounded by the curve $y = x^2 + 1$ and the tangents to it drawn from the origin.
- **6.** Find the area bounded by the curve $y^2 = x$ and x = |y|.
- 7. Find the area of the region bounded by the parabola $y = x^2$ and the rays given by y = |x|.
- 8. Find the area of the figure bounded by the parabola $(y 2)^2 = x 1$ the tangent to it at the point with ordinate 3 and the x-axis.
- 9. Find the area of the circle $4x^2 + 4y^2 = 9$, which is interior to the parabola $y^2 = 4x$.
- 10. Find the area of the region enclosed between the two circles $x^2 + y^2 = 1$ and $(x 1)^2 + y^2 = 1$.
- 11. Find the area of the circle $x^2 + y^2 = 16$, which is exterior to the parabola $y^2 = 6x$.
- Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$. (a > 0, b > 0)
- 13. Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the ordinates x = ae and x = 0, where $b^2 = a^2 (1 e^2)$.
- 14. Find the value of 'c' for which the area of the figure bounded by the curve, $y = 8x^2 x^5$, the straight lines x = 1 and x = c and the abscissa axis is equal to 16/3.
- 15. Find the area enclosed by the curves $3x^2 + 5y = 32$ and y = |x 2|.

LEVEL-II

- 1. Find the area of the region $\{(x, y)\}: 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}.$
- 2. The tangent to the parabola $y = x^2$ has been drawn so that the abscissa x_0 of the point of tangency belongs to the interval [1, 2]. Find x_0 for which the triangle bounded by the tangent, the axis of ordinates and the straight line $y = x_0^2$ has the greatest area.
- 3. Find the area bounded by the curves $y = x^4 2x^2$ and $y = 2x^2$.
- 4. Find the area bounded $y^2 = 4(x + 1)$, $y^2 = -4(x 1)$ and y = |x| above axis of x.
- 5. Compute the area of the figure bounded by the curve $y^2 = 4x$ and a normal to it inclined at an angle of 135^0 to the positive x-axis.
- 6. Compute the area of the figure which lies in the first quadrant inside the curve $x^2 + y^2 = 3a^2$ and is bounded by the parabola $x^2 = 2$ ay and $y^2 = 2$ ax (a > 0).
- 7. Find the area common to the two curves $y^2 = ax$ and $x^2 + y^2 = 4ax$.
- 8. Find the area of the region in the first quadrant bounded on the left by the y-axis, below by the curve $x = 2\sqrt{y}$, above left by the curve $y = (\sqrt{x} + 1)$, and above right by the line x = 3 y.
- 9. Find the value of K for which the area bounded by the parabola $y = x^2 + 2x 3$ and the line y = Kx + 1 is least. Also find the least area.
- 10. Find the area of the region in the first quadrant enclosed by the x-axis, the line $x = \sqrt{3}$ y and the circle $x^2 + y^2 = 4$.
- 11. (i) Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$.
 - (ii) Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$.
- 12. Prove that whole area of the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is π ab.
- 13. Show that the area common to the ellipses $a^2x^2 + b^2y^2 = 1$, $b^2x^2 + a^2y^2 = 1$ where 0 < a < b is $4(ab)^{-1} \tan^{-1}(a/b)$.
- Find the values of m(m > 0) for which the area bounded by the line y = mx + 2 and $x = 2y y^2$ is, (i) 9/2 square units and (ii) minimum. Also find the minimum area.
- 15. The line 3x + 2y = 13 divides the area enclosed by the curve, $9x^2 + 4y^2 18x 16y 11 = 0$ into two parts. Find the ratio of the longer area to the smaller area.

IIT JEE PROBLEMS

(OBJECTIVE)

(A) Fill in the blanks

- **1.** Match the following
 - (i) Area bounded by $-4y^2 = x$ and $x 1 = -5y^2$ is _____.

(B) Multiple choice questions with one or more than one correct answer:

- For which of the following values of m, is the area of the region bounded by the curve $y = x x^2$ and the line y = mx equals 9/2? [IIT 99]
 - (A) 4

(B) - 2

(C) 2

(D)4

 $(C) \qquad \text{Multiple choice questions with one correct answer:} \\$

- 1. The area bounded by the curves y = f(x), the x-axis and the ordinates x = 1 and x = b is $(b-1)\sin(3b+4)$. Then f(x) is [IIT 82]
 - (A) $(x-1)\cos(3x+4)$

- (B) $\sin(3x + 4)$
- (C) $\sin(3x+4) + 3(x-1)\cos(3x+4)$
- (D) none of these

2. The area bounded by the curves y = |x| - 1 and y = -|x| + 1 is

(A) 1

(B) 2

(C) $2\sqrt{2}$

(D) 4

[IIT-2002]

3. The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x and x-axis in the 1st quadrant is

(A)9

(B) 27/4

(C)36

(D) 18

[IIT-2003]

4. The area bounded by the angle bisectors of the lines $x^2 - y^2 + 2y = 1$ and the line x + y = 3, is

(A) 2

(B) 3 (D) 6

(C) 4

[IIT-2004]

The area enclosed between the curves $y = ax^2$ and $a = ay^2$ (a > 0) is 1 sq. unit, then the value of a is

(A) $\frac{1}{\sqrt{3}}$

(B) $\frac{1}{2}$

(C) 1

(D) $\frac{1}{3}$

[IIT-2004]

6. The area bounded by the parabolas $y = (x + 1)^2$ and $y = (x - 1)^2$ and the line y = 1/4 is

(A) 4 sq. units

(B) 1/6 sq. units

[IIT-2005]

(C) 4/3 sq. units

(D) 1/3 sq. units

IIT JEE PROBLEMS

(SUBJECTIVE)

- 1. Find the area bounded by the curve $x^2 = 4y$ and the straight line x = 4y 2. [IIT 81]
- For any real t, $x = \frac{e^t + e^{-t}}{2}$, $y = \frac{e^t e^{-t}}{2}$ is a point on the hyperbola $x^2 y^2 = 1$. Show that the area bounded by this hyperbola and the lines joining its centre to the points corresponding to t_1 and $-t_1$ is t_1 .
- 3. Find the area bounded by the x-axis, parts of the curve $y = \left(1 + \frac{8}{x^2}\right)$ and the ordinates at x = 2 and x = 4. If the ordinate at x = a divides the area into two equal parts, find a. **[IIT 83]**
- 4. Find the area of the region bounded by the x-axis and the curves defined by $y = \tan x \frac{\pi}{3} \le x \le \frac{\pi}{3}$, $y = \cot x$ $\frac{\pi}{6} \le x \le \frac{3\pi}{2}$. [IIT 84]
- 5. Sketch the region bounded by the curves $y = \sqrt{5-x^2}$ and y = |x 1| and find its area. [IIT 85]
- 6. Find the area bounded by the curves $x^2 + y^2 = 4$, $x^2 = -\sqrt{2} y$ and x = y. [IIT 86]
- 7. Find the area bounded by the curves, $x^2 + y^2 = 25$, $4y = |4 x^2|$ and x = 0 above the x axis. [IIT 87]
- 8. Find the area of the region bounded by the curve C: $y = \tan x$, tangent drawn to C at $x = \frac{\pi}{4}$ and the x-axis.
- 9. Find all maxima and minima of the function $y = x(x-1)^2$, $0 \le x \le 2$. Also determine the area bounded by the curve $y = x(x-1)^2$, the y-axis and the line y = 2. **[IIT 89]**
- 10. Compute the area of the region bounded by the curves $y = ex \lambda n x$ and $y = \frac{\lambda n x}{ex}$, where in c = 1.
- 11. Sketch the curves and identify the region bounded by $x = \frac{1}{2}$, x = 2, $y = \lambda n x$ and $y = 2^x$. Find the area of this region. [IIT 91]

- 12. Sketch the region bounded by the curves $y = x^2$ and $y = \frac{2}{(1+x^2)}$. Find the area. [IIT 92]
- 13. Find the area bounded by the curve y = x(x 1)(x 2) and the axis of x. [REE-93]
- In what ratio does the x-axis divide the area of the region bounded by the parabolas $y = 4x x^2$ and $y = x^2 x$? [IIT-94]
- Find the ratio in which the area bounded by the curves $y^2 = 12x$ and $x^2 = 12y$ is divided by the line x = 3. [**REE-95**]
- **16.** Find the area given by $x + y \le 6$, $x^2 + y^2 \le 6y$ and $y^2 \le 8x$. [**REE-95**]
- Consider a square with vertices at (1, 1), (-1, 1), (-1, -1) and (1, -1). Let S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area. [IIT-95]
- 18. Find the area of the region formed by $x^2 + y^2 6x 4y + 12 \le 0$, $y \le x$ and $x \le 5/2$. [REE-96]
- 19. Let A_n be the area bounded by the curve $y=(\tan x)^n$ and the lines x=0, y=0 and $x=\pi/4$. Prove that for n>2, $A_n+A_{n-2}=1/(n-1)$ and deduce that $1/(2n+2)< A_n<1/(2n-2)$. **[IIT-96]**
- 20. Let $f(x) = \text{Maximum } \{x^2, (1-x)^2, 2x(1-x)\}$, where $0 \le x \le 1$. Determine the area of the region bounded by the curves y = f(x), x axis, x = 0 and x = 1. **[IIT-97]**
- 21. Indicate the region bounded by the curves $x^2 = y$, y = x + 2 and x-axis and obtain the area enclosed by them. [REE-97]
- 22. Find all the possible values of b > 0, so that the area of the bounded region enclosed between the parabolas $y = x bx^2$ and $y = \frac{x^2}{b}$ is maximum. [IIT 97]
- 23. Let O (0, 0), A (2, 0) and B(1, $\frac{1}{\sqrt{3}}$) be the vertices of a triangle. Let R be the region consisting of all those points P inside $\triangle OAB$ which satisfy d(P, OA) \le min {d(P, OB), d(P, AB)}, where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area. [IIT 97]
- **24.** Let C_1 and C_2 be the graph of the functions $y = x^2$ and y = 2x, $0 \le x \le 1$ respectively. Let C_3 be the graph of a function y = f(x), $0 \le x \le 1$, f(0) = 0. For a point P and C_1 , let the lines through P, parallel to the axes, meet C_2 and C_3 at Q and R respectively. If for every position of P (on C_1), the areas of the shaded regions OPQ and ORP are equal, determine the function f(x). **[IIT-98]**

- 25. Indicate the region bounded by the curves $y = x \log x$ and $y = 2x 2x^2$ and obtain the area enclosed by them. [REE-98]
- 26. Let f(x) be a continuous function given by $f(x) = \begin{cases} 2x & \text{for } |x| \le 1 \\ +ax+b & \text{for } |x| > 1 \end{cases}$. Find the area of the region in the third quadrant bounded by the curves, $x = -2y^2$ and y = f(x) lying on the left of the line 8x + 1 = 0.
- 27. Find the area of the region lying inside $x^2 + (y 1)^2 = 1$ and outside $c^2 x^2 + y^2 = c^2$ where $c = \sqrt{2} 1$. [REE-99]
- **28.** Find the area enclosed by the parabola $(y-2)^2 = x-1$, the tangent to the parabola at (2,3) and the x axis. [**REE-2000**]
- 29. Let $b \neq 0$ and for $j = 0, 1, 2, \ldots, n$, let S_j be the area of the region bounded by the y axis and the curve $xe^{ay} = \sin by$, $\frac{j\pi}{b} \leq y \leq \frac{(j+1)\pi}{b}$. Show that S_0 , S_1 , S_2 , S_n are in geometric progression. Also, find their sum for a = -1 and $b = \pi$. [IIT-2001]
- 30. Find the area of the region bounded by the curves $y = x^2$, $y = |2 x^2|$ and y = 2, which lies to the right of the line x = 1. [IIT-2002]
- 31. Find the area bounded by the curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x 3$. [IIT-2005]
- 32. If $\begin{bmatrix} 4a^2, & 4a, & 1 \\ 4b^2, & 4b, & 1 \\ 4c^2, & 4c, & 1 \end{bmatrix} \begin{bmatrix} f(-1) \\ f(1) \\ f(2) \end{bmatrix} = \begin{bmatrix} 3a^2 + 3a \\ 3b^2 + 3b \\ 3c^2 + 3c \end{bmatrix}$, f(x) is a quadratic function and its maximum value

occurs at a point V. A is a point of intersection of y = f(x) with x-axis and point B is such that chord AB subtends a right angle at V. Find the area enclosed by f(x) and chord AB. [IIT-2005]

SET-I

The area (in square units) bounded by the curve $y = x^3$, the x-axis and the ordinate at x = -2 and 1. x = 1 is

(A)
$$\frac{9}{2}$$

(B)
$$\frac{15}{2}$$

(C)
$$\frac{15}{4}$$

(D)
$$\frac{17}{4}$$

2. The area bounded by parabola $y^2 = x$, straight line y = 4 and y-axis is

(A)
$$\frac{16}{3}$$

(B)
$$\frac{64}{3}$$

(C)
$$7\sqrt{2}$$

(D) none of these

Area bounded by parabola $y^2 = x$ and straight line 2y = x is **3.**

(A)
$$\frac{4}{3}$$

(C)
$$\frac{2}{3}$$

(D) $\frac{1}{2}$

Area bounded by lines y = 2 + x, y = 2 - x and x = 2 is 4.

(D) 16

The area of the curve $x^2 + y^2 = 2$ ax is **5.**

(A)
$$\pi a^2$$

(B)
$$2\pi a^2$$

(C)
$$4\pi a^2$$

(D)
$$\frac{1}{2}\pi a^2$$

The area enclosed by the parabola $y^2 = 8x$ and the line y = 2x is **6.**

(A)
$$\frac{4}{3}$$

(B)
$$\frac{3}{4}$$

(B)
$$\frac{3}{4}$$
 (C) $\frac{1}{4}$

(D) $\frac{1}{2}$

7. The area bounded by the curve $y = \sin x$ and x-axis from x = 0 to 2π is

(D) 4

8. The area between x-axis and curve $y = \cos x$ when $0 \le x \le 2\pi$ is

$$(A) 0$$

$$(C)$$
 3

(D) 4

9. The area common to the parabola $y = 2x^2$ and $y = x^2 + 4$ is

(A)
$$\frac{2}{3}$$
 sq. units

(B)
$$\frac{3}{2}$$
 sq. units

(A)
$$\frac{2}{3}$$
 sq. units (B) $\frac{3}{2}$ sq. units (C) $\frac{32}{3}$ sq. units (D) $\frac{3}{32}$ sq. units

10. The area bounded by the curve $y = x^3$, x-axis and two ordinates x = 1 to x = 2 is equal to

(A)
$$\frac{15}{2}$$
 sq. unit

(B)
$$\frac{15}{4}$$
 sq. unit

(B)
$$\frac{15}{4}$$
 sq. unit (C) $\frac{17}{2}$ sq. unit (D) $\frac{17}{4}$ sq. unit

11. The area bounded by the curve $y = 4x - x^2$ and the x-axis is

(A)
$$\frac{30}{7}$$
 sq. unit (B) $\frac{31}{7}$ sq. unit (C) $\frac{32}{3}$ sq. unit (D) $\frac{34}{3}$ sq. unit

(B)
$$\frac{31}{7}$$
 sq.unit

(C)
$$\frac{32}{3}$$
 sq.unit

(D)
$$\frac{34}{3}$$
 sq.uni

12.	The area formed by triangular shaped region bounded by the curves $y = \sin x$, $y = \cos x$ and
	x = 0 is

(A)
$$\sqrt{2} - 1$$

(C)
$$\sqrt{2}$$

(D)
$$1+\sqrt{2}$$

13. The area bounded by
$$y = 1 + \frac{8}{x^2}$$
 and the ordinates $x = 2$ and $x = 4$ is

14. The area bounded by
$$y = 2 - x^2$$
 and $x + y = 0$ is

(A)
$$\frac{7}{2}$$
 sq. unit (B) $\frac{9}{2}$ sq. unit (C) 9 sq. unit

(B)
$$\frac{9}{2}$$
 sq. unit

15. The area bounded by the curve x-axis and
$$y = x^4 - 2x^3 + x^2 + 3$$
 with x-axis and ordinates corresponding to the minima of y is

(B)
$$\frac{91}{30}$$

(C)
$$\frac{30}{9}$$

16. The area bounded by the curves
$$y = |x| - 1$$
 and $y = -|x| + 1$ is

$$(B)$$
 2

(C)
$$2\sqrt{2}$$

17. The area bounded by the parabola
$$y^2 = 4$$
 ax and $x^2 = 4$ ay is

$$(A) \frac{8a^3}{3}$$

(B)
$$\frac{16a^2}{3}$$

(B)
$$\frac{16a^2}{3}$$
 (C) $\frac{32a^2}{3}$

(D)
$$\frac{64a^2}{3}$$

18. The area bounded by the parabola
$$x = 4 - y^2$$
 and the y-axis, in square units, is

(A)
$$\frac{3}{32}$$

(B)
$$\frac{32}{3}$$

(B)
$$\frac{32}{3}$$
 (C) $\frac{33}{3}$

(D)
$$\frac{16}{3}$$

19. The area of the region bounded by the limits
$$x = 0$$
, $x = \frac{\pi}{2}$ and $f(x) = \sin x$, $g(x) = \cos x$ is

(A)
$$2(\sqrt{2}+1)$$

(B)
$$\sqrt{3} - 1$$

(C)
$$2(\sqrt{3}-1)$$
 (D) $2(\sqrt{2}-1)$

(D)
$$2(\sqrt{2}-1)$$

20. The area of the region bounded by the parabola
$$y = x^2 + 1$$
 and the straight line $x + y = 3$ is given by

(A)
$$\frac{45}{7}$$

(B)
$$\frac{25}{4}$$

(B)
$$\frac{25}{4}$$
 (C) $\frac{\pi}{18}$ (D) $\frac{9}{2}$

(D)
$$\frac{9}{2}$$

SET_II

		5.	L1-11				
1.	The area enclosed by the curves $x^2 = y$, $y = x + 2$ and x-axis is						
	(A) $\frac{5}{6}$	(B) $\frac{5}{4}$	(C) $\frac{5}{2}$	(D) none of these			
2.	The ratio in which the area bounded by the curves $y^2 = 12x$ and $x^2 = 12y$ is divided by the $x = 3$, is						
	(A) 15:49	(B) 13:48	(C) 12:37	(D) none of these			
3.	The area of figure bou ordinate 3 and the x-ax		$(y-2)^2 = x - 1$, the tange	gent to it at the point with the			
	(A) 3	(B) 6	(C) 9	(D) none of these			
4.	The area of the region enclosed by the curves $y = x \log x$ and $y = 2x - 2x^2$ is						
	(A) $\frac{7}{12}$	_	(C) $\frac{5}{12}$	(D) none of these			
5.	If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where $b > 0$ is maximum, then $b =$						
	(A) 0	(B) 1	(C) 2	(D) none of these			
6.	The area of the region formed by $x^2 + y^2 - 6x - 4y + 12 \le 0$, $y \le x$ and $x \le \frac{5}{2}$ is						
	(A) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$	(B) $\frac{\pi}{6} + \frac{\sqrt{3}-1}{8}$	(C) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$	(D) none of these			
7.	The area of the region (in square units) bounded by the curve $x^2 = 4y$, line $x = 2$ and x-axis is						
	(A) 1	(B) $\frac{2}{3}$	(C) $\frac{4}{3}$	(D) $\frac{8}{3}$			
8.	The area bounded by the x-axis and the curve $y = 4x - x^2 - 3$ is						
	(A) $\frac{4}{3}$	(B) $\frac{3}{4}$	(C) 7	(D) $\frac{3}{2}$			
9.	The area of the region	bounded by $y = x - 1 $	and $y = 1$ is				
	(A) 1	(B) 2	(C) $\frac{1}{2}$	(D) none of these			
10.	The area between the	curve $y = x $ and x-axis	s is				
	(A) 1	(B) $\frac{1}{2}$	(C) 2	(D) $\frac{1}{3}$			

11.	Area bounded by the curves $y = x \sin x$ and x-axis between $x = 0$ and $x = 2\pi$ is						
	(A) 2π	(B) 3π	(C) 4π	(D) none of these			
12.	Area bounded by the curve $xy^2 = a^2(a - x)$ and y-axis is						
	$(A) \frac{\pi a^2}{2}$	(B) πa^2	(C) $3\pi a^2$	$(D) \frac{3\pi a^2}{2}$			
13.	Area bounded by the (A) log 2	curves $x = 1, x = 3, xy = (B) \log 3$	1 and x-axis is (C) log 5	(D) none of these			
14.	Area between the curve $y = 4 + 3x - x^2$ and x-axis is						
	(A) $\frac{125}{3}$ sq. units	(B) $\frac{125}{4}$ sq. units	(C) $\frac{125}{6}$ sq. units	(D) none of these			
15.	Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line $y = 3$ is						
	(A) 2 sq.units	(B) $\frac{9}{4}$ sq.units	(C) $6\sqrt{3}$ sq. units	(D) none of these			
16.	Area common to the curves $y = x^3$ and $y = \sqrt{x}$ is						
	(A) $\frac{5}{3}$	(B) $\frac{5}{4}$	(C) $\frac{5}{12}$	(D) none of these			
17.	The larger of the area bounded by $y = \cos x$, $y = x + 1$ and $y = 0$ is						
	(A) $\frac{1}{2}$	(B) $\frac{3}{2}$	(C) 1	(D) none of these			
18.	The area of the region	bounded by the curve	$y = x - x^2$ between $x = 0$	and $x = 1$ is			
	$(A) \frac{1}{6}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) $\frac{5}{6}$			
19.	The area of the region	bounded the curve y =	$2x - x^2$ and the line $y = x$	ais			
	(A) $\frac{1}{2}$	(B) $\frac{1}{3}$	(C) $\frac{1}{4}$	(D) $\frac{1}{6}$			
20.	The area bounded by	the curves $y = \sin x$ be	etween the ordinates x =	= 0, $x = \pi$ and the x-axis is			

(C) 3 sq. units

(D) 1 sq. units

(B) 4 sq. units

(A) 2 sq. units

SET-III

A. Multiple choice Questions with one correct answer

1.	If A is the area lying between the curve $y=\sin x$ and x-axis between $x=0$ and $x=0$	$\frac{\pi}{2}$. Area of the
	region between the curves $y = \sin 2x$ and x-axis in the same interval is given by	

(A) $\frac{A}{2}$

(B)A

(C) 2A

(D) none of these

2. The area of the triangle formed by the positive x-axis and the normal and tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is

(A) $\sqrt{3}$

(B) $\frac{1}{\sqrt{3}}$

(C) $2\sqrt{3}$

(D) none of these

The area of the region bounded by the two parabolas $y = x^2$ and $y^2 = x$ is **3.**

(A) $\frac{1}{2}$

(B) $\frac{1}{3}$

(C) $\frac{1}{4}$ (D) $\frac{1}{5}$

4. The area bounded by y = |x + 3|, x-axis and the two ordinates x = -6 and x = 0

(A)3

(B)6

(C) 9

(D) 12

В. Multiple choice Questions with one or more than one correct answer

If a curve $y = a\sqrt{x} + bx$ passes through the point (1, 2) and the area bounded by the curve, **5.** line x = 4 and x-axis is 8 square units, then

(A) a = 3

(B) a = -3

(C) b = 1

(D) b = -1

Area laying between the curves $y = \tan x$, $y = \cot x$ and x-axis, $x \in [0, \pi/2]$ is **6.**

 $(A) \frac{1}{2} \log 4$

(B) log2

(C) $2\log \frac{1}{\sqrt{2}}$

(D) none of these

C. Fill in the blanks

If the ordinate x = a divides the area bounded by x-axis, part of the curve $y = 1 + \frac{8}{x^2}$ and the 7. ordinates x = 2, x = 4, into two equal parts, then the value of 'a' is ______.

The area of the region bounded by $x^2 + y^2 - 2x \le 1$; $x + y \le 1$; $y \ge 0$ is _____. 8.

9. The area bounded by the curves $y = \sin x$ and $y = \cos x$ between two consecutive points of their intersection is ______.

10. The area of the region enclosed by the line x = 0, y = 3 and curve $x = 2y^2$ is ______.

11. The area of the region enclosed by the line 4x = y + 16 and curve $y^2 - 4x = 4$ is ______.

D. Match the column

12. Column I

- (a) The area between the curves $y = 2x^4 x^2$, the x-axis and the ordinates of two minimum of the curve is
- (b) The area bounded by the curve $x = at^2$,

$$y = 2at$$
, and the x-axis $(1 \le t \le 3)$ is

(c) The area of a circle centred at (1, 2) and

(d) The area of the bounded by $y = \cos x$, y = 0, |x| = 1 is given by

13. Column I

(a) The area bounded by the curves $y = 2 \cos x$ and the

x-axis from
$$x = 0$$
 to $x = 2\pi$ is

- (b) The area in the first quadrant between $x^2 + y^2 = \pi^2$ and $y = \sin x$ is
- (c) The measurement of the area bounded by the coordinate axes and the curve $y = log_a x$ is
- (d) The area of the loop between the curve $y = a \sin x$ and x-axis is

14. Column I

- (a) The area between the parabolas $y^2 = 4ax$ and $x^2 = 8ay$ is
- (b) Area bounded by the curve y = (x 1)(x 2)(x 3) and x-axis lying between the ordinates x = 0 and x = 3 is equal to
- (c) The area cut off the parabola $4y = 3x^2$ by the straight line

$$2y = 3x + 12$$
 in sq. units is

(d) The area of the region satisfying
$$|x| + |y| \le \sqrt{\pi}$$
 is

Column II

(P) 2 sin 1

(Q)
$$\frac{7}{120}$$

- 120
- $(R) \frac{104a^2}{3}$
- (S) 25π

Column II

$$(P) \frac{(\pi^3 - 8)}{4}$$

- (Q) 1
- (D) 0
- (R) 2a
- (S) 8

Column II

- (P) 27
- $(Q) 2\pi$
- $(\mathbf{Q}) 2\pi$
- (R) $\frac{32}{3}a^2$
- (S) $\frac{11}{4}$

WI**Read the following passage:**

If the function $f(x) \ge 0$ is smooth on [a, b], the area of the surface generated by revolving the curve y = f(x) about the x-axis is

$$S = \int\limits_a^b 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

$$= \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx$$
(i)

If $x = g(y) \ge 0$ is smooth on [c, d], the area of the surface generated by revolving the curve x = g(y)about the y-axis is

$$S = \int_{c}^{d} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy = \int_{c}^{d} 2\pi g(y) \sqrt{1 + (g'(y))^{2}} dy$$
(ii)

The area of the surface generated by revolving the curve $x = 2\sqrt{x}$, $1 \le x \le 2$ about x - axis is **15.**

$$(A) \ \frac{8\pi}{3} \Big(2\sqrt{2} - 3\sqrt{2}\Big)$$

(B)
$$\frac{8\pi}{3} (2\sqrt{2} - 3\sqrt{3})$$

$$(C)\frac{8\pi}{3}\left(3\sqrt{3}-2\sqrt{2}\right)$$

(D)
$$\frac{8\pi}{3} (3\sqrt{2} - 2\sqrt{3})$$

The line segment x = 1 - y, $0 \le y \le 1$, is revolved about the y-axis to generate the cone then its lateral 16. surface area is

(A)
$$\pi\sqrt{3}$$

(B)
$$\frac{\pi}{\sqrt{2}}$$

(D)
$$\pi\sqrt{2}$$

The area of the surface generated by revolving the curve $x = 2\sqrt{4-y}$, $0 \le y \le 15/4$ **17.** about y-axis is

$$(A) \frac{5\pi\sqrt{35}}{3}$$

$$(B) \frac{35\pi\sqrt{5}}{3}$$

$$(C) \frac{35\pi\sqrt{3}}{5}$$

(B)
$$\frac{35\pi\sqrt{5}}{3}$$
 (C) $\frac{35\pi\sqrt{3}}{5}$ (D) $\frac{3\pi\sqrt{35}}{5}$

18. The surface area of a sphere of radius 'a' by using equation (i) to find the area of the surface generated by revolving the curve $y = \sqrt{a^2 - x^2}$, $-a \le x \le a$ about x-axis is

(A)
$$\pi a^2$$

(B)
$$4\pi a^2$$

(B)
$$4\pi a^2$$
 (C) $\frac{4\pi a^2}{3}$ (D) $\frac{3\pi a^2}{4}$

(D)
$$\frac{3\pi a^2}{4}$$

WII **Read the following passage:**

The volume of the solid generated by revolving about the x-axis the region between the x-axis and the graph of the continuous function $y = R(x), a \le x \le b, is$

The volume of the solid generated by revolving about the y-axis the region between they-axis and the graph of the continuous function

$$x = R(y), c \le y \le d, is$$

$$V = \int_{c}^{d} \pi (radius)^{2} dx = \int_{c}^{d} \pi [R(y)]^{2} dy$$
(ii)

- The region between the curve $y=\sqrt{x}$, $0 \le x \le 4$, and the x-axis is revolved about the x-axis to 19. generate a solid. Then its volume is
 - (A) 4π
- (B) 3π
- (C) 8 π
- (D) 5π
- The volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines 20. y = 1, x = 4 about the line y = 1 is (B) $\frac{3\pi}{7}$ (C) $\frac{5\pi}{6}$ (D) $\frac{7\pi}{6}$
 - (A) $\frac{6\pi}{7}$

- 21. The volume of the solid generated by revolving the region between the y-axis and the curve x = 2/y, $1 \le y \le 4$, about the y-axis is
 - (A) 4π
- (B) 5π
- (C) 3π
- (D) 6π
- 22. The volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3
 - (A) $\frac{66\pi\sqrt{2}}{15}$ (B) $\frac{64\pi\sqrt{2}}{15}$ (C) $\frac{6\pi\sqrt{2}}{15}$

LEVEL-I

ANSWER KEY

- **3.** 5/6 sq. units
- **4.** 21/2 sq. units

- 5. $\frac{2}{3}$
- **6.** 1/3

7. 1/3

8. 9

9. $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} + \frac{\sqrt{2}}{6}$

- 10. $\frac{2\pi}{3} \frac{\sqrt{3}}{2}$
- 11. $\frac{4}{3}(8\pi \sqrt{3})$

12. $\frac{43}{4}(\pi-2)$

13. ab
$$\left[e\sqrt{1-e^2} + \sin^{-1} e \right]$$
 14. C = -1 or $\left[-\sqrt{17} \right]^{1/3}$

14. C = -1 or
$$\sqrt{17}$$

15.
$$\frac{33}{2}$$
 sq. units

LEVEL-II

1. 23/6 sq. units

- **2.** $\mathbf{x}_0 = 2$, $\mathbf{A}(\mathbf{x}_0) = 8$
- **3.** 128/15 sq. units

- 4. $\frac{8}{3} \frac{8}{3} \mathbf{G} 2\sqrt{2} \mathbf{I}^{3/2} \mathbf{Q} \sqrt{2} 2 \mathbf{I}^2$
- **5.** 64/3 sq. units
- 6. $\sqrt{3} + \frac{3}{2} \cdot \arcsin \frac{1}{3} = \frac{3}{3} + \frac{4\pi}{3}$

9. K = 2, A = 32/3

10. $\frac{\pi}{3}$

- **11.(i)** $\frac{a^2}{2} \left(\frac{\pi}{2} 1 \right)$
- (ii) 4π
- **14.(i)** m = 1 (ii) m = $-\frac{1}{2}$, area = 0

15.
$$\frac{3\pi+2}{\pi-2}$$

IIT JEE PROBLEMS

(OBJECTIVE)

(A) 1. $\frac{4}{3}$

(B) 1. B, D

- **1.** C **(C)**
- **2.** B
- **3.** D
- **5.** A
- **6.** D

IIT JEE PROBLEMS

(SUBJECTIVE)

1.
$$\frac{9}{8}$$
 sq.units

3.
$$a = 2\sqrt{2}$$

5.
$$\frac{5}{2} \left[\sin^{-1} \frac{2}{\sqrt{5}} + \sin^{-1} \frac{1}{\sqrt{5}} \right] - \frac{3}{2}$$
 sq. units 6. $\frac{5}{3}$ sq. units

6.
$$\frac{5}{3}$$
 sq. units

7.
$$2 + \frac{25}{2}\sin^{-1}\frac{4}{5}$$
 sq. units 8. $\lambda n\sqrt{2} + \frac{\pi}{4} - \frac{1}{2}$ sq. units 9. $\frac{10}{3}$ sq. units

8.
$$\lambda n \sqrt{2} + \frac{\pi}{4} - \frac{1}{2}$$
 sq. units

9.
$$\frac{10}{3}$$
 sq. units

10.
$$\frac{e^2-5}{4e}$$
 sq. units

10.
$$\frac{e^2 - 5}{4e}$$
 sq. units **11.** $-\frac{1}{2} + \left(4 - \sqrt{2}\right) \frac{1}{\lambda n 2} + \frac{3}{2} \lambda n 2$ sq. units

12.
$$\pi - \frac{2}{3}$$
 sq. units **13.** $\frac{1}{2}$ **14.** 4 : 121 **15.** 49 : 15

13.
$$\frac{1}{2}$$

16.
$$(9\pi/4) - (1/6)$$

16.
$$(9\pi/4) - (1/6)$$
 17. $\frac{1}{3}$ **18.** $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ **20.** 17/27 sq. units

18.
$$\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$$

22.
$$b = 1$$

23.
$$2 - \sqrt{3}$$

24.
$$f(x) = x^3 - x^2$$

26.
$$257/192$$
; $a = 2$; $b = -1$

27.
$$\frac{\pi - 2}{2\sqrt{2}}$$
 sq. units 28. 9 sq. units

29.
$$\frac{S_j}{S_{j+1}} = e^{\frac{\pi a}{b}}; S_0 = \frac{b^{\frac{a\pi}{b}} + 1}{a^2 + b^2}$$
 for $a = -1$, $b = \pi$, $S_0 = \frac{\pi(e+1)}{\pi^2 + 1}$ and $r = \pi$

30.
$$\frac{29}{3} - 4\sqrt{2}$$
 sq. units 31. $\frac{1}{3}$ sq. units 32. $\frac{125}{3}$ sq. units

31.
$$\frac{1}{3}$$
 sq. units

32.
$$\frac{125}{3}$$
 sq. units

SET-I										
1.	C	2.	В	3.	A	4.	В	5	•	A
6.	A	7.	D	8.	D	9.	C	1	0.	В
11.	C	12.	A	13.	В	14.	В	1	5.	В
16.	В	17.	В	18.	В	19.	D	2	0.	D
	SET-II									
1.	A	2.	A	3.	C	4.	A	5	•	В
6.	C	7.	В	8.	A	9.	A	1	0.	A
11.	C	12.	В	13.	В	14.	C	1	5.	В
16.	C	17.	В	18.	A	19.	D	2	0.	A
SET-III										
1.	В	2.	С	3.	В	4.	C	5.	AΓ)
6.	AB	7.	$2\sqrt{2}$	8.	$\frac{\pi}{4}$	9.	$2\sqrt{2}$			
10.	18	11.	243/8	12.	a-Q, b-R, c-S	, d-P				
13.	a-S, b-P, c-Q,	, d-R		14.	a-R, b-S, c-P,	d-Q				
15.	C	16.	D	17.	В	18.	В	1	9.	C

22.

В

20.

D

21. C