DIALOG(R)File 351:Derwent WPI

(c) 2006 The Thomson Corporation. All rts. reserv.

0002822834

WPI ACC NO: 1983-C5117K/

Re-structural integrated circuit with high gate density - has multiprocessor operated as lock-step or pipelined unit, and multilevel interrupt management system

Patent Assignee: TEXAS INSTR INC (TEXI)

Inventor: BUDZINSKI R L

Patent Family (4 patents, 5 countries)

Patent

Application

Number

Kind Date Number Kind Date Update

EP 71727

A 19830216 EP 1982105491 A 19820623 198308 B

JP 58058672 A 19830407

198320 E

EP 71727

B 19861001 EP 1982105491 A 19820623 198640 E

DE 3273549

G 19861106

198646 E

Priority Applications (no., kind, date): US 1981286426 A 19810724; US 1981286425 A 19810724; US 1981286424 A 19810724

Patent Details

Number Kind Lan Pg Dwg Filing Notes

EP 71727

A EN 28

Regional Designated States, Original: DE FR GB NL

EP 71727

B EN

Regional Designated States, Original: DE FR GB NL

Alerting Abstract EP A

The circuit has a monolithic substrate, having a number of 16-bit processors all accessing a common memory, busses including a status bus with synchronisation and arithmetic linkage lines. Each processor comprises a respective status bus multiplexer connected to the respective processor status bus. A bus control unit selectively connects the processor to the data bus or directly to a corresponding RAM memory module.

Each processor also contains interrupt manager which tests each successive interrupt signals to determine whether the respective processor which includes the interrupt manager is designated by the successive interrupt signal as an interrupter. The interrupt manager stores the priority of the one of the interrupt signals which initiated respective sequence of commands is currently being executed by the processor. The processors may be reconfigured programmably to operate independently in lock step or as pipelined processors.

Title Terms /Index Terms/Additional Words: STRUCTURE; INTEGRATE; CIRCUIT; HIGH; GATE; DENSITY; MULTIPROCESSOR; OPERATE; LOCK; STEP; PIPE; UNIT; MULTILEVEL; INTERRUPT; MANAGEMENT; SYSTEM

Class Codes

(Additional/Secondary): G06F-013/00, G06F-015/06, H01L-027/04

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F01; T01-F02; T01-J02

Original Publication Data by Authority

Germany

Publication No. DE 3273549 G (Update 198646 E)

Publication Date: 19861106

Language: DE

Priority: US 1981286424 A 19810724

US 1981286425 A 19810724 US 1981286426 A 19810724

EPO

Publication No. EP 71727 A (Update 198308 B)

Publication Date: 19830216

**Integrierte Schaltung mit aenderbarer Struktur

Restructurable integrated circuit Circuit integre restructurable**

Assignee: TEXAS INSTRUMENTS INCORPORATED, 13500 North Central Expressway,

Dallas Texas 75265, US (TEXI)

Inventor: Budzinski, Robert L., 1106 Edgewood Drive, Richardson Texas

75081, US

Agent: Leiser, Gottfried, Dipl.-Ing., et al, Patentanwaelte Prinz, Bunke

Partner Ernsberger Strasse 19, D-8000 Muenchen 60, DE

Language: EN (28 pages)

Application: EP 1982105491 A 19820623 (Local application)

Priority: US 1981286424 A 19810724

US 1981286425 A 19810724 US 1981286426 A 19810724

Designated States: (Regional Original) DE FR GB NL Original IPC: G06F-13/00 G06F-15/06 H01L-27/04 Current IPC: G06F-13/00 G06F-15/06 H01L-27/04

Original Abstract: Restructurable integrated circuit. A restructurable integrated circuit, including four 16-bit processors PRO, PR1, PR2, PR3, data and control memories 66 and 78, and external interfaces 72, 73, 74, 75, 76 all mounted on a chip. The processors include reconfigurable connections through a status bus 52, microprogramming capability with dynamic logic array interpretation, and a multi-level flexible interrupt management system, so that the processors PR0-PR3 may be reconfigured programmably to operate independently, in lockstep, or as pipelined processors. All processors PR0-PR3 are connected to data, control, and status busses 56, 14, and 52, in addition, external control, data, and status interfaces 72-76 are also provided, connected through the respective corresponding busses 56, 14, and 52 to each of the processors PR0-PR3. These external interfaces are connected to all of the interconnections which permit reconfigurability among the processors on a chip, and these external interfaces permit coordination of the processors on more than one RIC chip.

Publication No. EP 71727 B (Update 198640 E)

Publication Date: 19861001

**Integrierte Schaltung mit aenderbarer Struktur

Restructurable integrated circuit Circuit integre restructurable**

Assignee: TEXAS INSTRUMENTS INCORPORATED, 13500 North Central Expressway,

Dallas Texas 75265, US

Inventor: Budzinski, Robert L., 1106 Edgewood Drive, Richardson Texas

75081, US

Thatte, Satish M., 1304 Elk Grove, Richardson Texas 75081, US Agent: Leiser, Gottfried, Dipl.-Ing., et al, Patentanwaelte Prinz, Bunke Partner Ernsberger Strasse 19, D-8000 Muenchen 60, DE

Language: EN

Application: EP 1982105491 A 19820623 (Local application)

Priority: US 1981286424 A 19810724

US 1981286425 A 19810724 US 1981286426 A 19810724

Designated States: (Regional Original) DE FR GB NL

Claim: The circuit has a monolithic substrate, having a number of 16-bit processors all accessing a common memory, busses including a status bus with synchronisation and arithmetic linkage lines. Each processor comprises a respective status bus multiplexer connected to the respective processor status bus. A bus control unit selectively connects the processor to the data bus or directly to a corresponding RAM memory module.

Each processor also contains interrupt manager which tests each successive interrupt signals to determine whether the respective processor which includes the interrupt manager is designated by the successive interrupt signal as an interrupter. The interrupt manager stores the priority of the one of the interrupt signals which initiated respective sequence of commands is currently being executed by the processor. The processors may be reconfigured programmably to operate independently in lock step or as pipelined processors. (28pp)

Japan

Publication No. JP 58058672 A (Update 198320 E)

Publication Date: 19830407

Language: JA

Priority: US 1981286426 A 19810724

① 日本国特許庁 (JP)

⑩特許出願公開

[®] 公開特許公報 (A)

昭58—58672

DInt. Cl.3 G 06 F 15/16

識別記号

庁内整理番号 6619-5B

43公開 昭和58年(1983)4月7日

13/00 15/06 H 01 L 27/04

7361-5B 7343-5B 8122-5F

発明の数 - 3 審査請求 未請求

(全 58 頁)

纽再構成可能集積回路

创特

昭57—128805

22出

昭57(1982)7月23日

優先権主張

301981年7月24日30米国(US)

30286425

391981年7月24日39米国(US)

30286424

図1981年7月24日図米国(US)

30286426

者 ロパート・エル・パドジンスキ アメリカ合衆国テキサス州7508 1リチヤードソン・エッジウッ ド・ドライブ1106

@発

サテイツシユ・エム・ザット

アメリカ合衆国テキサス州7508 1リチヤードソン・エルク・グ

ラーヴ1304

⑪出 願 人 テキサス・インストルメンツ・

インコーポレーテッド

アメリカ合衆国テキサス州ダラ ス・ノース・セントラル・エク

スプレスウエイ13500

邳代 理 人 弁理士 中村稔

外4名

1. 発明の名称 再構成可能集積回路

2.特許請求の範囲

複数のプロセッサと、

上記のプロセッサの全てに各々が接続される 複数のパスと、

各々の上記プロセッサに接続されて上記プロ セッサの構成を選択的に変更しこれによつて上 記プロセッサをロックステップでまたは独立に 作動可能とする手段

を有するモノリンツク基板を有する集積回路。

(2) 上記パスが複数の線を有する状況パスを有し 上記状況ペスの上記線が同期線及び演算連結線 を有してむり、

各々の上記プロセッサが上記プロセッサの各 各及び上記状況パスに接続される状況パスマル チプレクサを有し、上配それぞれの状況パスマ ルチプレクサが選択的且つプログラムに沿つて 上記状況ペスの選択された線に接続又は割込み を行い、さらに上記それぞれのプロセツサを選

択的に上記状況パスに接続し、これによつて上 記それぞれのプロセッサが上記状況パスを通し て上記プロセッサのりちの隣接するものに接続 されるようになつた特許請求の範囲第1項の集 費回路。

(3) 各々の上記プロセンサが上記それぞれのプロ センサに与えられる命令を受けとる為に接続さ れるダイナミック型論理配列(DLA)を有し 上記 D L A は:A N D マトリクス及び O R マト リクスと:上記ANDマトリクスを上記ORマ トリクスに接続する中間線と:上記AND及び ORマトリクスの最初の1つと接続する複数の 入力線と:上記AND及びORマトリクスの他 の1つと接続される複数の出力線を含み、上記 D L A の上記 A N D 及び O R マトリクスの少く とも1つが行列に配列されて、それぞれの上配 マトリクス内の区画を規定するようになつてお

上記区画は所望の論理機能を行うように配置 された選ばれた数の能動業子を含むように選択 的に配列されており:

さらに複数の制御線が設けられ、各々の上記制御線が選択的に1つ又は2つ以上の上記区画に存在する上記能動業子を作動させたり作動を切つたりする為に接続されることで上記 D L A が上記制御線の状況に応じて選択された論理機能を行うようになつており、

これによつて上記 D L A が制御線の状況に従 つて上記それぞれのプロセンサに選択的に与え ちれた命令を通訳するようになる、

特許請求の範囲第1項の集積回路。

(4) 複数のRAMメモリモシュールを持つRAMメモリが設けられ、前記パスは複数の線を持つアータパスを有し、ざらに複数のパス制御コニットを有し、が制御コニットの各をでいるというのでは、上記パールの1つ、及び上記データパスに接続するようになった特許請求

示されているかを判断し、上記割込み管理が上 記プロセッサによつて現在実行中のそれぞれの 命令シーケンスのいずれかを開始した上記割込 み信号のうちの1つの優先順位を記憶し、対応 するコンテクストスイッチ出力を与えており、

上記各々のプロセンサは上記割込み管理回路 の上記コンテクストスインチ線に接続されるスケデュラーを含み、

上記コンテクストスインチが新しく受取つた 割込み信号がより高い優先性レベルを有してい るととを示す時はいつでも上記スケデュラーが 上記対応するプロセンサによつて現在実行され る上記命令のシーケンスのとりかえを行うよう になつた、

特許請求の範囲第1項の集積回路。

(7) 上記パスは制御パスを含み、さらに上記制御パスに接続され外部ピンを有する外部割込み管理回路は、 理回路が設けられ、上記外部割込み管理回路は、 上記対応する割込み信号のフォーマットを特定 する長さに関する情報及び型に関する情報をそ の範囲第1項の集積回路。

- (5) 各々のプロセンサの構造を変更する上記手段は、その作動によつて各々の上記プロセンサが同一の再構成可能集積回路上又は他の同様を再構成可能集積回路上の1つ又は2つ以上の上記プロセンサとロックステンプ状態でまたはこれらから独立して選択的且つプログラムに沿つて作動可能である特許請求の範囲第1項の集積回路。
- (6) 上記パスが制御パスを有し、上記制御パスが命令を転送する線及び割込み信号を転送する線を含んでおり、各々の上記割込みを含んでおり、各々の上記割からない。 会のシーケンスを開始するに接続であるのシーケンスを開始するにあり、各々の上記割込み信号を受取る割込み信号を引い、上記割込み管理のより、上記割込みである。 連続する割込み信号によって割込みによる割込み信号によって割込み信号によって割込み信号によって割込み信号によって割込み信号によって割込みによって割込みによって割込みによって割込みによって割込みによって割込みによって割込みによって割込みによって割込みによって割込みによって割込みによってある。

れぞれ含む割込み信号を受信及び送信する為の 手段を有し上記長さの情報は、各々の割込み信 号の長さを特定するようになつた特許請求の範 囲第1項の集積回路。

(8) 上記パスが複数の線を含む状況パスを有し、 上記状況パスの上記線が同期及びアース連結線 を有し、

上記プロセッサが上記それぞれのプロセッサ及び上記状況バスに接続されるそれぞれの状況バスマルチプレクサを有し、上記それぞれの状況パスマルチプレクサが上記状況バスの選択された線を選択的かつプログラムに沿つて接続したれてよって上記れている。 大況バスに選択的に接続していて上記とれぞれのプロセッサを上記状況バスを通して上記れていまって上記れている。 プロセッサに隣接するものに選択的且つプログラムに沿つて接続し、

各々の上記プロセンサは、ダイナミンク論理 配列(DLA)を持ち、上記OLAがANDマトリクス、ORマトリクス、上記ANDマトリ クスをORマトリクスに接続する中間線とからなり、

上記AND及びORマトリクスのうちの第1 のものに接続される複数の入力額と、

上記AND及びORマトリクスのうちの他の ものに接続される複数の出力線とが設けられ、 上記DLAの上記AND及びORマトリクス の少くとも1つが行列に配列されて上記それぞ れのマトリクス内の区画を規定しており、

各々の上記区画が所望の論理機能を行わせる 為配置された選択された数の能動衆子を含むよ うに配列されており、

複数の制御線が、その各々が1つ又は2つ以上の上記区面に存在する上記能動案子を選択的に作動させたり又は作動を切つたりすることができるように接続され、上記DLAが上記制御線の状況に応じて選択された論理機能を行うようになつており、

上記 D L A が上記状況マルチプレクサに接続 され、これによつて上記それぞれの状況マルチ

数のパスとを有するモノリシック誘板からなり、 上記複数のパスが複数の状況線を含み、

各々の上記プロセンサがデータパスハードウエアを有しさらにプログラム可能な論理配列(PLA)を有していて、上記複数のパスの上記状況線が上記PLAの入力及び出力、また上記PLAの上記出力及び入力線に接続されている

プレクサから、上記それぞれのプロセンサに与 えられた入力及び出力が上記 D L A によつてプ ログラムに沿つて接続されるようになつた特許 請求の範囲第1項の集積回路。

(9) 複数のプロセツサと:

各々1つ又は2以上の上記プロセンサに接続された割込み管理回路とを有し、上記プロセンサの全てが上記割込み管理回路のそれぞれ1つに接続されており、

それぞれの上記外部割込み管理回路間で信号 を伝達するパス手段が設けられ、

上記各々の外部割込み管理回路は、それぞれ 長さに関する情報及び型に関する情報を含む割 込み信号の受信及び送信を行う手段を有し、各 各の上記型に関する情報が対応する割込み信号 のフォーマットを特定し、各々の上記長さに関 する情報が上記対応する割込み信号の長さを特 定している多重プロセッサンステム。

(1) 複数のプロセッサと、 こうこうこうこう

各々が上記プロセッサの全てに接続される複

3. 発明の詳細な説明

本発明はソフトウェアで変更が可能なプロセッサ間の接続を行う内部接続を持ち、共通メモリの全てにアクセスする多重ピットプロセッサを有し、様々な計算構成の改変も可能である再構成可能な」 C に関する。

VLSI技術によつて得ることのできる経済的利点をいかす場合の主な問題点は、将来的な VLSI 部品で満足のゆくレベルまで価格を低減できるほど充分な量産が可能なものはわずかしかないということである。特に、応用例の多くの場合、プロセッサの機能にそれぞれ独自の構造を要求するので、各々の応用例に用いられるプロセッサはその目的に特に設計されることになり、必然的に高価格になる。

本発明の特に目的とすることは、1種の一般的 1 C チップの設計を用いて多数の種々の応用例に おけるプロセス上の要求を満たし、それに伴なつ て 1 C を非常に経済的に製造できるようにするこ とである。 主要プロセンサに加え」/O機能制御(CRT デイスプレイのような)、メモリ管理、又は、特定の演算処理の為の専用プロセンサを使用することは好都合である事が多い。しかしながら、上記で示した様に、個々の目的のために特別に設計されたVLSIは高価であるので、このような専用プロセンサによつて得られる利益は十分には活かし得ていない。

本発明の他の目的は、特別製ではない一般的 ICを用いて特別な目的専用のプロセッサを容易 に構成する手段を提供することである。

このような専用プロセンサを用いるにあたつては、これらを一般的な目的のプロセンサと共に単一チップ上に集積すれば、特に好都合であることが多い。しかしながら、このような構造は更に特別な設計を必要とし、前述のように価格的な不都合の問題が生じることになる。

本発明の他の目的は、容易に量産可能な一般的な目的の再構成可能 I C を用いて、一般的な目的のプロセンサと 1 つ以上の特定目的のプロセンサ

そこで、本発明の他の目的は、ケートの高楽費を保持しながらカスタムメイドの楽積回路の必要を充たすことのできる集積回路を提供することである。

ゲートアレイは、非常に触通性の高いしSIV はVLSI部品を提供することができ、さらにゲートアレイは、ある種の特定な機能たとえば高速 乗算器又はクロスパースイッチのような機能を 効に行うことができる。しかしながら、ゲートアレイは、プログラム可能なシステムの補助には まり適さないし、ゲートアレイの集積度は通常プロセッサほど高くない。

したかつて、本発明の他の目的は、ゲートアレイより高いゲートの集積度を持ち、プログラム可能なシステムの補助に一層通した再構成可能集積 回路を提供することである。

比較的大規模で複雑なシステムを数学的にモアル設計したい場合、各々のプロセンサのアータ処理能力は比較的低くとも、高次の並列頂算処理によって全体的なアータ処理は非常に高くなるよう

とを単一チップ上に集積可能にすることである。

特定目的のために設計されたVLSIの他の問題点は、部品製造の歴史が長くなるほど完成部品の価格と歩留まりおよび信頼性が、「ラーニングカーブ(智熟曲線)」に沿つて良くなるという頃向があるのに対し、カスタムメイドによる特定目的の設計では、価格や信頼性に顕著な改善があるわれる程充分に長期の期間にわたり大量生産が行われることは通常はないということである。

したがつて、本発明の他の目的は、価格、歩留 まりおよび信頼性がラーニングカープに浴つて顕 著に改善されるよう長期にわたり大量生産が可能 な一般的目的を有する部品を提供することである。

カスタムメイドすなわち特定目的のために設計されたVLSIは高価であるとともに、ケートの 集積度が比較的低いという問題点をさらに有する 場合が多い。これは、少量で生産される部品であ る為にパッキングの集積度を最適とする為に多く の時間及び多くの費用を費すことは、経済的でな くなるという理由からである。

に大規模配列でプロセッサを使用することが望ま しい場合が多い。しかし、このような配列でプロセッサを使用することは、通常は特定の目的の為のシステムとして構成されるので今のところ比較的高価なものとならさるえない。

同僚にして、非常に広い多重情密ワード(ことで複雑な軌道的システムが非常に長期にわたつてモデルされなくてはならない)を用いて畏い連続する計算を実行することがしばしば望まれる。この場合に於ても、既製のシステムを適合させると、通常高価格又は低速となるか、又はこの両方の問題が生じることになる。

故に、本発明の他の目的は、特別なハードウエアを設計することなく、多数のこのような集機回路を結合して、安価に配列処理及び/又は多重精密処理を行うようにプロセッサを集機回路中に設けることである。

カスタムメイドVLS」のこの他の重大な問題 点は、ハードウエアの設計の変更及びテストが必 要とされるので設計のサイクルタイムがどうして も長くなることである。

そこで、本発明の他の目的は、単にソフトウエア及び/又はファームウェアを変化することによって特定の応用例にあわせて再構成可能な楽積回路を提供することである。

多重処理システム、ダイナミック構造及びマイ クロプロセッサ構造の背景を一般的に理解する為 の参考文献としては以下のものがある。

「多重プロセッサ及び並列処理」(ed P. エンスロウ シュニア 1974); A.アプトアラ& A.メルッア、「テッタルコンピュータ設計の目的」(1976); C.ミード& L.コンウエイ、「V L S!システム入門」(1980); R.クルツ、「マイクロプロセッサ及び論理設計」(1980); G.メイヤー、「コンピュータ構造の発展」(1978); ペアー、「多重処理システム」 25 IEEEトランズアクションズ・オン・コンピューターズ 1271 頁(1976); サーバー& カルド、「協働並列プロセッサ」、7コンピュータサーベイ215頁(1975); カータンエフ&カータンエフ、

のアプリケーション首語の磁訳にも適合するVLSI プロセンサを経済的に与える手段を提供すること である。

多重処理システムの利用に関してのとの他の問題点は、ハードウエア構造に融通性がないという問題である。多重処理システムの動作の大部分は、ハードウエアの構造によつて決定されるので、また現在のところ提案されている全てのハードウエア構造はある型の問題に対し最適でも他には最適

「ダイナミック構造:その問題と解法」コンピュータマガジン78年7月26頁;カータジエフ&カータシエフ、「ダイナミック構造を持つ多重コンピュータンステム」28 IEEEトランズ 70.4頁 (1979);カータシエフ&カータシエフ「80年代の為のスーパーシステム」コンピュータマガジン、1980年11月号11頁;及びヴィンク「スーパシステムに適合可能な構造」コンピュータマガジン1980年11月号17頁。これらは全てことに参照として示す。

使用者があまり知識を持たないような場合、特定の仕事にあわせた非常に高度なアプリケーション冒語を設計することは、特に好都合である場合が多い。しかしながら、このようなアプリケーション冒語がソフトウエアの形で実施される場合、速度が落ちることになるのが普通であるし、ハードウエアで実施されれば、通常、非常に高価なものとなる。

故に、本発明のとの他の目的は、あらゆる所望

ではないと思われるので、真に一般的な目的を果たすシステム(汎用システム)を実現する多重プロセッサハードウェア構造はまだ1 つもできていないと思われる。

そこで、本発明の他の目的は、再構成可能であ つてこの為に真に汎用多重プロセンサハードウェ て構造となり得る多重プロセンサハードウェア構 造を提供することである。

多くの多重プロセンサンステムに発生するこの 他の問題点としては、2つ以上のプロセンサルに は、2つ以上のプロセンサルに るプロセンサによってきる。いずれか1 つのプロセンサによってきるように である。であるが、 これにプロセンサルンステムによっ たれる一方、多重プロセンサることになる。 る大部分の利益を犠牲にすることになる。

したがつて、本発明の他の目的は、どのプロセッサもメモリのいずれの頑嫌にもアクセス可能でありながら、アータの完全性も保持できる多重ア

ロセンサンステムを提供することである。

マイクロプロセッサ自語と構造(アーキテクチャ)の間の、またマイクロコンピュータとミニコンピュータシステムの間のエミュレーションには、現在、比較的高額な費用がかかる。もしてきれば、ユレーションをもつと安価にすることができれば、より安価な開発及び試験が可能となり、たれば、より安価な開発及び試験が可能となり、これによつて特定目的に設計された応用シスの使用範囲が広がり、新しい技術に一層早く適合できるようになる。

本発明の他の目的は、触通性があつて効率的な エミュレーションを行うことができる単一チップ プロセッサを提供することである。

故障のあつた場合をでも性能低下をおだやかに することができるマイクロプロセンサンステムを 提供することも望ましい。こうすることによつて、 ハードウエアに最初に生じた重要な誤動作は、チ ップの機能に影響を与えなくなり、単にチップの 機能をわずかに低下させるだけになるので、信頼

けとり循環させる I / O 通信機能及び外部プロセッサと接続するプロセッサ間の通信機能を選成するには、これらのためにハードウエアを別々に備えるとすれば非常に多くのハードウエアを必要とする。

本発明の他の目的は、 I / O 通信及び中間にあるプロセッサ間通信の両方を操作できる外部インタフエースを提供することである。

本発明の他の目的は、各々のプロセンサ内でプロセンサ間通信を管理する為また外部で発生した割込みを転送する為の両方に割込みを使用できるように作られた割込み管理構造を提供することである。

プロセンサンステムの動作機能又は構造を変更 する必要がある時に論理を再設計すると費用がか かり困難であるばかりでなく時間もかかる。

したがつて、本発明の他の目的は、論理を再設 計するのではなくプログラミングを変更する事に よつていかなるレベルにおいてもプロセンサのオ ペレーションを容易に変更できるようにすること 性及び歩留まりの両方が大巾に改善される。

本発明の他の目的は、ハードウェアに與りがあ つた場合、 壊骸的な誤りとするよりむしろかだや かな機能低下をおこすマイクロプロセンサシステ ムを提供することである。

非常に多数のプロセッサを持つ多重プロセッサンステムは、多重プロセッサが高価であること、これらの内部接続が困難であること及び大規模なンステム内のプロセッサ間のインタフェースの為に適当なプロトコールを特定することが非常に困難であること、などのために、今までのところその利点をわずかに利用できるのみである。

本発明の他の目的は、所要数のプロセッサを内 成している多重プロセッサンステムの中に容易に 組み込み得るプロセッサを提供することである。

I Cプロセツサを多重プロセッサンステムの中に組み込み得るようにする場合、さらに生ずる問題点は、外部プロセッサとのインターフェースの為にチップ上に別のハードウェアを準備する必要があることである。外部で発生された割込みを受

である。

プロセツサのハードウェアンステムにアーキテクチャコンパイラー (architecture complier)を提供できるようにすることは、非常に頷きしいことである。このようなコンパイラは、プログラムであることを可能にする。しかしながらこのようなコンパイラーを補助する為には、機能的な内部接続の再構成を選択的且でする必要がある。

そとで、本発明の他の目的は、アーキテクチャコンパイラを便用する為に必要な機能の変更が可能な構造を持つプロセンサンステムを提供するととである。

本発明は、単一チップ上に4つのマイクログログログラム可能な16ピットマイクロコンピュータを備えるものである。マイクロプログラミング機能は、個々のプロセッサを含む大規模PLAにより与えられるものである。各々のプロセッサは状況

(status) パス、アータパス、及び制御パスと呼ぶるつの各々の主要パスに接続される。それぞれのプロセッサは、プログラム可能な内部を接近して動く状況パスマルチプレクサをそれぞれとと接続される。このようにして状況パス接続の種々の構成が可能となることで、プロセッサーとして)ロックステップ

(lockstep) で作動させることも、パイプラインで動作させることもできる。このように、プログラムの融通性を与える2つの主要なソースが得られる。即ち、PLA翻訳によるマイクロプログラミングの融通性であり、プログラム可能状況パス接続を使用し、各々のプロセッサによつて翻訳された命令の流れを制御することによるプロセッサ再構成の融通性である。

プロセッサ制御に於てこの融通性を利用する為、 各々のチップレベルの命令は、1つまたは2つ以 上の特定のプロセッサへと送られる。故に、プロ

用される。(1つの外部割込み管理及び2つの外部状況ボート及び2つの外部データボートを含む外部インターフェース制御によつても、2個以上のRICチップ上のプロセッサを一緒に前に示したような様々なモードで連結することが可能である。更に、外部インターフェース制御もまた外部メモリ、1/0装置その他へのアクセスを制御している。

セッサが(個々のプロセッサが同一のデータの流 れの中で次々と異るオペレーションを実行する)ペ イプラインモードで動作することが望ましい時、 各々のプロセッサはそれぞれ命令を受け、ペイプ ラインシーケンス内のその位置に適当なオペレー ションを奥行する。ロックステップ処理の場合、 1つのプロセッサは、(シーケンスその他の制御 する)マスタープロセッサとして指定され、他の ロックステップ型プロセッサは全て同時に制御さ れる。これらの再構成の種々のモードもまた組合 せ得るので例えば、1つのチップは4つの独立な 16ピットプロセッサ、2つのパイプライン型 32ピットプロセッサ、1つの48ピットプロセ ッサ (3 つのロックステップ型 1 6 ピットプロセ ツサー及び1つの独立16ピットプロセツサ等を 含むように再構成される。制御イスが複数の関連 のない命令シーケンスを運搬する為に区分され得 るので、単一の創御記憶管理を用い仲裁(arbitrate され制御パスへの仲根が行われる多重割込み階級 組織 (multilevel interrupt hierarchy) が使

性の一致が起こらをいようにする。第2に、全ての割込み(Interrupts)が並列に送られて、確認が行われる。第3に、実行を進める為に必要とされる費源を全部は手に入れることができなかつたプロセンサはいずれも、予め入手してあつた費額を全て放棄し、必要な資源が入手できるようになるまで徐機する。

このような重要な構成要素に加えて、設計の仕様を完全に満たす為には多数の従来の部品も使用される。例えば各々のプロセッサは、ALU、ペレルシフター、メモリマッパー、マイクロシーケンサ等を有している。

本発明による利点は、前述した本発明の目的を全て解決するものであり、他の利点も当分野に通常の知識を有するものであれば明らがであると考える。例えば、構造の大部分(例えば全部で4つのプロセッサ)は同じものを複製して使えばよいので、ほとんど4のファクターでRICチップのハードウエアの配置を考える時間が低減される。

もちろん、プロセッサは16ピットプロセッサ:

である必要はなく、変わりに32ピット、8ピットその他であつてもよい。同様にして、チップ上のプロセッサの数は、4である必要はなく3でもまた5以上でもよい。実際は、教大のプロセッサ数は、数億に有力になってがである。このような場合である。このような場合によったい。ないようない。もれれれのペスの規模は、それ相当に変化させならない。

本発明は、複数のプロセッサ、それぞれが上記プロセッサの全てに接続される複数のバス及び上記のプロセッサの各々に接続され、上記プロセッサを選択的に再構成することによつて、上記プロセッサがロックステップ又は独立して動作することを可能にする手段とを有する、モノリシック基板からなる再構成可能集積回路を提供するものである。

上記プロセンサは、上記それぞれのプロセンサに 与えられる命令を受けとる為に接続されるダイナ ミック論理配列(DLA)を有し、上記 DLAは、 ANDマトリクスと、ORマトリクスと、上記 ANDマトリクスを上記ORマトリクスに接続す る中間線と、AND及びORマトリクスの最初の 1 つ に 接続 される 複数 の入力 線 と、 上 記 AND及 びORマトリクスの他の1つに接続される複数の 出力級とを有し、上記DLA内の上記AND及び ORマトリクスの少くとも1つは、上配のそれぞ、 れのマトリクス内の区面を規定する為に行列で配 列され、各々の上記区画は所定数の能動象子が含 まれるように選択的に配列され所望の論理機能が 行われるようになつており、さらに、複数の制御 線が設けられ、各々の上配制御線は、1つ又はそ れ以上の上記区画内に配置される上記能動素子に 接続され選択的に作動可能にしたり作動不可能に したりして、上記DLAが、上記制御線の状況に 応じて選択された論理機能を行なうようにし、と れによつて上記DLAは上記それぞれのプロセッ

また、本発明は、複数のプロセッサと、それぞれが全てのプロセッサに接続された複数のパスとを有するモノリシック基板からなり、前記パスは複数の線を持つ状況パスを含み、上記状況パスの上記線は、同期及び演算集合線(arithmetic

Tinkage Tines)を含む複数のパスとを有し、各名の上記プロセッサは、それぞれの上記プロセッサは、それぞれの上記プロセッサは、上記状況パスに接続される別々の状況パスマルテプレクサを有し、上記別々の状況パスマルチプレクサは、上記状況パスの選択された線に対し、とのアロセッサを上記では、これに選択的に接続していて、これによって上記各々のプロセッサを上記状況パスに選択的に接続していて、これによって上記各々のプロセッサを上記状況パスを通し上記でカーセッサの解接するものにあるのである。

さらに、本発明は、複数のプロセッサと、それ ぞれが全部の上記プロセッサに接続される複数の パスを有するモノリンツク基板からなり、各々の

サに与えられた命令を上記制御線の状況に応じて 選択的に翻訳するように構成された再構成可能な 集積回路を提供するものである。

本発明はまた、複数のプロセツサと、それぞれ が上記プロセツサの全てに接続される複数のパス と、RAMメモリとを有するモノリシック基板か らなり、上記RAMメモリは複数のRAMメモリ モジュールを有し、上記パスは複数の線を持つデ ータパスを有し、さらに複数のパス制御ユニット が設けられ、各々の上記パス制御ユニットは、上 記プロセッサの1つ、上記 R A M メモリモソユー ルの1つ、および上記アータパスに接続され、上 記パス制御ユニットは選択的に上記プロセッサを 上記データパスに接続するか又は上記の対応する。 RAMメモリモシュールに直接接続するようになり つた再構成可能な集積回路を提供するものである。 本発明はまた、複数のプロセンサと、それぞれ が上記プロセッサの全てに接続される複数のパス とを有するモノリシック基板からなり、それぞれ の上記プロセンサを再構成する手段が設けられ、

これによつて各々のプロセッサは同一の再構成可能集積回路上の1つ又は2つ以上の他のプロセッサといつしよにロックステップ形式で又は独立して、選択的且つプログラムに沿つて作動できるようになった再構成可能な集積回路を提供するものである。

それぞれのプロセッサが上記連続する割込み信号 によつて割合て先として指定されたか否かを決定 するようになつており、上記割込み管理回路は、 現在、上記プロセッサで実行される別々の命令シ ーケンスのいずれかを開始させた上記割込み倡身 の1つの優先性を記憶し、上記割込み管理回路は、 各々の上記プロセッサにアドレスされた上記割込 み信号の各々連続する1つの優先性と、現在、上 記プロセッサで実行されている別々の命令シーケ ンスのいずれかを開始させた上記それぞれの割込 み信号の優先性を比較し、それに相当するコンテ クストスイッチ出力(context switch output) を与えるようになつており、各々の上配別々のプ・ ロセッサは上記割込み管理回路の上記コンテクス トスイッチ線に接続されるスケアユーラ (scheduler)を有し、上記 スケデューラは、上記コン テクストスイッチが新しく受取つた割込み信母が より高い優先レベルであると示す時にいつでも、 現在上配対応するプロセッサで実行されている上 記命令シーケンスの交換を行なりようになつた再

構成可能を集積回路を提供するものである。

以下、本発明に関し実施例を用い図を参照しながら詳細に説明する。

第1図は、再構成可能IC(以下はRICと略 す)のプロック図を示す。 PROからPR3まで の4つのプロセッサは単一チップ上に形成されて おり、全てのプロセツサ間を接続する為、ろつの **パス14、52及び56が散けられている。各々** のペスに対応して外部インターフェース76、 74と75、及び72と73が設けられ、またオ ンチップ R A M メモリ 6 6 及び制御記憶回路 3 8 (第2図)も形成される。より詳細な配置図は、 第2図で示されている。第2図は、1つのプロセ ツサPR3の全体と、それぞれの型の外部インタ ーフェースのうち1つ及び パス線とオンチンプメ モリの一部を含む再構成可能ICの部分的フロア プランを示す。各々のプロセンサの割込み管理回 略12は、制御ペス14上に現われる割込みを常 に監視している。プロセッサPR3にアドレスさ れた割込みだけが、PR3内の割込み管理回路

12によつて認識される。とのような割込み信号 は P R 3 内のスケデューラ16によつて連続して 比較され、これらの信号の優先レベルがプロセッ サPR3で現在実行中の命令シーケンスの優先性 より高いかを調べる。これが高い場合であれば、 新 しい割込みが導入した命令の流れ(このようた 命令の流れは「プロセス」と呼ばれる)の実行の 開始が必要である。スケデューラ16は、対応す る出力を制御DLA22亿与え、こればROM命 令レシスタ18又はRAM命令レシスタ20を作 動させるので制御DLA22が「プロセス」の中 に含まれる命令のシーケンスを受けとり始める。 制御DLA22は、以下に示すようにその構造上 の改良によつてペッキング集積度が非常に向上さ れている点を除けばPLAと同様に機能する。し たがつて、制御DLA22は、その内部のAND マトリクスにミンターム(minterms) を発生し、 次にORマトリクスがこれらのミンタームを次に 選択された論理和出力に変換する。制御DLA 22と隣接するのは、フィードパックプロンク

24である。これを通つていくつかの制御DLA 22の出力はフィードパックされ、DLA22の 入力へと接続される。との意味で一定の状況によ る機械機能がDLA22に与えられるので、DLA 22は例えばある高レベルの命令を低レベルの命 今のシーケンスに翻訳することが可能である。 D L A 2 2 は、デコーダ区域 2 5 及び 2 6 に接続 され、これによつてDLA22の出力はALU 28,40007830,0008771032, メモリマツパー34等に対するハードウエア命令 として選択される。DLA22の出力は、またマ イクロシーケンサ36に接続され、これによつて 制御 4 ス.1 4 及び制御配像回路 3.8 に対するアク セスの制御を行う。マイクロシーケンサ36は制 御イス14上に適当な信号を送ることが可能で制 御記憶アドレスレジスタ40を通つて制御記憶回 略38にアクセスしている。制御配憶回路38か ら呼び出されたアータは、制御記憶アータレジス タ 4 2 を介し制御パス14 に出力され、更に、も しレジスタ18が割込み管理回路12によつて作

動されている場合には、ROM命令レジスタ18 内に入力され、制御DLA22のAND区域に対する入力として接続される。メモリマッパー34、レジスタフアイル32、パレルシフター30、ALU28、シフトレジスタ44及びフラグレジスタ46のオペレーションは、マイクロプロセッサ技術としては既知の従来の主要オペレーションに従い行われる。

ドが入つてくるタイミングでとに適当な状況パス の相互接続が行われる。

プロセツサPR3は、メモリマッパー34を介 してRAMメモリ66にアクセスしている。メモ リマツパー34からの線は、状況パス5.2を54 と交叉しており、ペス制御ユニット58でアータ ペス56とインターフェースしている。ペス制御 ユニット 5 8 は選択的にプログラムに沿つて作動 するので、メモリマッパー34からの出力は、プ ロセツサPR3が好ましくはアクセスするRAM メモリモジュール60亿、アータレジスタ62及 びアドレスレシスタ64を通つて直接接続するか 又はデータペス56を通つてチップ上又はチップ 外のメモリのどこか他の領域に接続される。RAM メモリ66の他の3つのモデュール(図示せず) のりちの1つにアクセスする必要がある場合、と のアクセスはデータパス56を介し、他の3つの メモリスケデュラーユニット 6 8 の 9 ち 適当 な 1 つと接続される。各々のメモリスケアユーラユニ ット68は、先に来たものから先にサービスを行

う方法に従つてメモリアクセスの要求をスケアユーリングし、制御レジスタ70を通つて相当するメモリモアユールへアクセスするよう制御する。 更に、アータバス56は外部アータポート72及び73(第1図参照)に接続され、これを通して 各々のプロセンサは、チンプ外メモリにアクセス 可能となつている。

同様にして、状況パス52及び54は、外部状況ポート74及び75に接続されるので、チップ外プロセッサは、多重チップ間のロックステップ及びパイプラインのオペレーションで同期するようになり、制御パス14が外部割込み管理回路76に接続されるので、チップ外プロセッサとの間で命令の送信受信を行うことができる。

制御配憶回路38は、それぞれの制御記憶モデュール制御器96によつて制御されるモデュール78に分割されている。RAMメモリ666同様にしてモデュール60に分割されている。最後に複数のパッド接続領域80が外部との接続の為にチップ周辺に設けられている。また84ピンパッケージ

を使用することが好ましい。

前述した内容は、再構成可能集積回路の機能及び構造を示す概略的説明である。チップに関する さらに詳しい説明はいくつかの実施可能な応用例 としての提案を行いながらこれから説明する。

量的に多い用途には、マスクプログラムによる DLAを用いることが好ましいが、初期の開発段 階ではフィールドプログラム可能な(又は電気的 に変更可能でさえある) D L A を使用すると、 需 要に対する融通性を拡げることができる。集積度 に関する厳格な最高の限界は所望のミンターム又 はマクスターム (minterm 又は maxterm) の結果 にかかつているが典型的なPLAはトランシスタ 集積度の10%を有しているので、DLAの使用 により4倍の改良がミンタームを「折りたたむ」 ことによつて容易に可能となる。メイナミック論 理配列DLAは、領域をもつと有効に利用する為 に改良されたPLAとして簡単に考えることがで きる。そのかわりにDLAを回路レベルで再構成 可能にしたPLAとして考えることもできる。 DLAによつて多重機能をPLAで実施できるよ うになるが、一度に1つの機能しか利用できなく なるという拘束が与えられてしまう。 D L A は 2 から5倍の率で領域の有効利用が改善される。(マルチプレクサと共働する)DLAはまた単一の

第3図に示すよりに、NMOS技術を用いての PLAのNORケート仕様においては、ORマト リクス内にゲートを形成するトランシスタと共に ANDマトリクス内にゲートを作るトランシスタ は、共通して接地されるソースを全て有している。 特定の機能を作りだすトランシスタのソースがフ ロートされている場合、回路は、これらのトラン

ソスタが取り除かれたかのように働くのでその機 能は働かなくなる。NORゲートDLAの背景に ある基本的思想は、機能を行り為の全てのトラン シスタを制御線に接続し、機能を働かせる時に制 御線は接地され、機能を働かせない時にフロート にするということである。DLAで多重機能を作 りだす為には、各々の機能を作りだすトランツス タのソースを、その機能に対応する別々の制御線 に接続する。第3図は、典型的なNORケート D L A を示している。通常の P L A 回路は、実線 で示され、DLAを作る為の追加的回路は、点線 で示されている。DLAは破線によつて示されて 区分されている。種々の区分は、PlからRBま ての表示が付されている。制御線C1が論理 1 で ある場合、区分P1及びP5に於る回路が作動さ れ、出力 E 及び F は、入力 A 、 B 及び B の関数と たる。制御級C1がOレベルである場合、E及び Fの出力は、いずれの入力の関数としても制御さ れることもない。追加の回路もまた出力E及びF を入力A、B及びBの関数として制御される他の

機能を作り出す為にP3及びP7の区域に追加することができる。

同様にして、第3図の制御線C2は区分P4及びP8に於る回路を作動又は非作動状態にすることができ、追加の出力機能を与える追加の回路を区分P2及びP6内に追加することができる。

この回路は、あらゆる数の区分に対しても一般化することが可能であつて、この区分は様々なサイズが可能である。またANDマトリクスは、ORマトリクスからは分離して制御可能である。

第3図は、スタテインクケートPLAに基づいて改良が行われたDLAを示しているが、明らかなように、上記の説明はダイナミンクケートPLAに基づくDLAにも応用することはできる。ダイナミンクケートDLAを作る為に必要な追加の問辺制御回路は、特にPLAが大規模である場合でも非常にわずかなチンプ領域を増加するだけで足りる。

第4図はNANDゲートDLAを示す。多重化された機能の選択された1つを作り出す為にPLA

翻訳の為にDLAを使用することによつて、各各のプロセンサの翻訳システムは、DLAのオペレーションのモードを選択することによつて容易に再構成可能となる。より高価であるフィールドプログラム可能構造も使用者の開発にとり有用で

あるが、 D L A 2 2 はマスクプログラムによるものを使用することが好ましい。

このよりに、制御DLA22を使用することで、各々のプロセンサ内で必要とされる複雑なマイクロプログラミング機能を得ることができる。マクロ命令を入力としてDLAに与えているパスについて以下に説明する。

DLAO入力線の1つに接続し、その入力とDLA の適当な出力をAND接続することによつてリア ルタイム機能を提供する為に使用されている。

制御記憶回路及び制御パスの構造及び使用する 割込み制御システムにつき以下説明する。

ある実施例に於ては、中央制御記憶回路は、 4 つの全てのプロセンサにアクセス可能で共用が可 能である。ここで示す好ましい選択例では、制御 記憶回路 3 8 のどの部分にも各々のプロセンサが アクセス可能なままにしておきながら、プロセン サの中の制御記憶回路 3 8 は、プロセンサの中の データ記憶部と同様の配置で、配置されている。

4つのマイクロシーケンサ36は、並列アクセス が可能でないが、単に低い平均アクセスタイムは 可能である。もちろん、マイクロシーケンサ36 は(バス制御ユニット38と同様に)並列アクセ スが可能なようにも構成されるが、これにみあり だけの利点は得られずに、追加の回路によって複 雑性は増すことになる。中央共有可能制御回路は、 以下のような利点を与えている。多重プロセッサ で使用されるコードは複製されないので、メモリ 領域をより有効に利用することができる。各々の プロセッサに与えられる創御記憶量を要求に対し て、より良い具合に合わせることが可能になる。 メモリを中央に集中できるのでフィールドプログ ラミングが実用的である。もちろん、中央制御記 億回路にアクセスする単一のチャンネルがシステ ムの障害となるのを避ける為に、制御記憶回路に 記憶される命令のレベルを充分に高くして、各々 のプロセンサが制御配憶回路から受けとつた各々 の単一命令を、実行する為に平均して4又はそれ 以上の完全クロックサイクルを要するようにした

マイクロンーケンサ36は、ROMメモリ内に にはされるのアレスを かった。シンーケンサである。マイクロスを かった。シンーケンサである。マイクロアルーを のアレスをにかられる。マイクロアの のでは、COMがある。マイクロアの のでは、COMがある。マイクロアの のでは、COMがある。マイクロアの のでは、COMがある。マイクロアルーテンクの のでは、COMがある。マイクロアルーテンクの のでは、COMがある。 では、COMがある。 のでは、COMがある。 のでは、COMがある。 のでは、COMがある。 のでは、COMがある。 のでは、COMがある。 のでは、COMがある。 のでは、COMがある。 のでは、COMがある。 のでは、COMがある。 では、COMがある。 では、COMがある。 のでは、COMがある。 では、COMがある。 では、C 図に示すにとどめる。

中央制御記憶回路構造は、中央共有制御パスを含んでいる。中央制御パス14は4つのからPR3の中の制御記憶の路38の中の制御記憶のアーのからPR3の中の制御記憶のアーのからのでは、アーのでは、大力のは、大力のでは、大

本実施例に従つた制御パス14の構造が第5図 に示される。制御パス14は制御アータパス82. アドレスペス84、割あてペス (destination bus) 8 6 、割込み パス 8 8 及びアータルーチン パス90を有している。制御アータパス82は、 制御記憶回路38からとつてきたマイクロ命令を プロセンサPROからPR3までに転送している。 このパスは40本分の線の広さである。アドレス **パス81は、マイクロシーケンサ36によつてそ** れぞれのプロセッサ内で発生されたアドレスを制 御配憶回路38に送り、マイクロ命令をとりだし ている。以下に説明するように、アアレスペス 84もまた割込み期間中は優先性の情報を選んで いる。とのパスは14本分の銀の広さであつて、 制御配憶回路38に16Kクードのアドレス領域 を確保している。割合てパス86はプロセツサが 制御記憶回路38にアクセスする時にいつでも使 用され、1つまたそれ以上のプロセンサPRロー PR 3 及び外部割込み管理回路 7 6 のいずれかで 現在アクセスされている制御記憶回路38内のア

ドレスに記憶されるデータを受けとるかを知らせ る。割合てパス86は、割込み期間中に使用され プロセッサPRQ-PR3及び割込み管理76の りちのいずれが現在の割込みを受け取るか(即ち 割込み先 interruptee)を確定している。割当て パス86は線5本分の広さである。割込みパスー 88は割込みのソースを転送するのに使用される。 とのパスは、割込み先プロセッサに対し割込みが 手元にある中で最も高い優先性のタスクであるか どうかを知らせる為にも(即ち割込み先プロセン サが割込みを受入れるかを知らせる為に)使用さ れる。この型の応答では、ペイプライン型又はロ ックステップ型オペレーションを必要としてプロ セスを迅速に設定(又は延期)する必要がある。 割込みパス88は5本分の線の広さである。アー タルーチンパス90は制御記憶回路92によつて 制御され、PROからPR3のうちの1つ又は2 つ以上のどのプロセッサが現在制御パス82で転 送中のマイクロ命令を受けとるのを示す為に使用 される。データルーチンパス90は5本分の線の

広さである。線 D R 0 - D R 3 は、R O M からとり出されたワードの割当て通りに又は割込みに応じてP R 0 から P R 3 のうちの対応するプロセッサを指定する為に使用される。線 D R 4 は R O M からとり出されたワードの割当て又は割込みに応じて外部割込み管理回路を指定するために使用される。

最後に、制御バス14は、花輪状に連結する、割込み準備線104も有している。 花輪のように連結することによつて割込みを送ろうとしているプロセッサ間でラウンドロビン型の仲載を行つている。プロセッサが制御バス14を支配して、た

によつて実行され、残る機能は、適当をモアユール制御回路 9 6 によつて実行される。モデュール制御 9 6 はここで要求されたアクセスの為のアドレス及び割当て先を待ち行列にしてFIFOのオーダーで要求された制御ワードを飲み出す。

制御パス14による仲数は、プロセッサPROからPR3の間を花輪状に結ぶパス作動線98(第5図参照)を用いて行われる。あるプロセッサは14を設するとき、このプロセッサはフルの分の間制御パス14を変がでした。の第1フュイズの間がではできませんがアータを受けたを制御するではないがアータを受けたを制御するではないがアータを受けたのプロセックのでは、ないないでは、ないがではないがでいる。のははではないないでは、ないがではないができません。のでは、サはには、ないがではないができません。のでは、サはには、ないがではないがではないでは、サインのプロセッサは制御はない。

だちに割込みを発生する時、プロセッサは、花輪 状に連結する割込み準備線104にゼロまで引き 下げる信号を送る。割込みを送るプロセッサは制 88を引き継ぐことができる。割込み元プロセッサ り(interrupting processor)が割当てパス。 86を支配する時、発生した割込みの割当てパス。 86を対部割込み管理回路76上のプロセッサに対 でする割当てパス86内の線の電位を上げる。割 込みを発生した後、発生元のプロセッサは、自分 が割込みの発生元であることを割込みパス88上 に示し知らせる。

割込みが開始された後、他の割込みは少くとも 2パスサイクルの間禁止される:1サイクルは割 込みを送る為で1サイクルは、受け取り側プロセ ッサ(割込み先 Interruptee の)からの応答を発生 元プロセッサ(割込み元 Interruptor)が受けと る為である。割込みをパッファすることだけが必 要な場合、割込み先の割込み管理回路は割込みの プロセスは可能で1から4の追加パスサイクルが

過ぎるまで他の割込みを受けとる用意ができてい る。割込みの受け取り側がロックステップ又はパ イプラインモードで連結するよりにたつた場合、 即ちコンテクストスイツチが必要とされる場合、 割込みパス88は、必要なコンテクストスイツチ を実行する為に使われるタイミングの間プロック される。コンテクストスイツチの長さは、割込ま れたプロセツサ内にどれほどのコンテクストが(即ちレジスタの内容、ALU状況等)保持されて いるかに左右される。以下で説明する通り、いく つかのコンテクストスイッチはプロセッサのコン テクストを本質的に完全に変更することが必要で ある一方、他のスイッチは最小の変更のみを要す る。最も短いコンテクストスイツチでも通常3叉 はそれ以上のパスサイクルを必要とする。この選 延が割込み信号の帯域幅を限定するが、割こみが フルに有効な帯域幅を占めるとは予想されないの でとの方法は適していると思える。この選延は長 い実行を通しての割込み信号の選行の平均したレ ートを落とさずに突然の割込みの発生をスムーズ

にする目的を果たしている。

割込みは、それぞれの命令のシーケンス(即ち 各々の「プロセス」を開始する為に使用される。 上記で示した様に、割込みは優先レベルを特定し、 アータルーチンパス90内を移動しどのプロセツ サがアドレスされるかを特定する4ピットコード を有している。もし割込みによつてアドレスされ る全てのプロセッサが有効な状態にあるたらば、 (即ち、これより高い優先性のタスクは手元にな い場合)プロセス内の命令シーケンスの実行が開 始される。もし、実行すべき命令が制御配憶回路 38に存在している場合、この命令は適当なマイ クロシーケンサる6によつて次々と就出される。 実行すべき命令がRAMメモリ66内にある場合、 この命令は、適当をメモリスケアユーラユニット 6 8 及び イス 制御 ユニット 5 8 によつて R A M メ モリから次々と腕出される。各々の影響をうける プロセツサ内のメモリマツパー 3 4 はこれらの命 **令をRAM命令レジスタ20を通しDLA22K** 転送する。 D L A 2 2 はこれらの R A M 命令を

ROMアドレスにする翻訳を行つていて更にこれ らのROMアドレスはマイクロシーケンサを介し てアクセスされている。また、RAM命令は、 DLA22によつて直接テコードすることができ る。ROM内に記憶される制御ワードはプロセッ サ仕様フィールドを有していない。しかし、制御 ワードは、唯一固定された定型部分がオプコード (op code) である短いピットのストリング (好 ましくはる 2 ピット) である。ROMから呼びだ された制御ワードがプロセッサのDLA22に回 帰され、制御ワードと共にRAMから受取つた命 今によつて特定されるあらゆる定数及びオペラン PがD LA 2 2によつて通訳される。 D L A は、 OPコードと同時に例えばオペランドフィールド、 定数フィールド、マイクロシーケンサ命令、メモ リインターフェース命令、状況パス命令、(命令 が割込みである場合の)割合て及び優先性データ、 割込み管理回路の制御の為の命令、スケデューラ、 パレルシフタ等であるオプコード及び制御ワード に従つて残りの制御ワードフィールドを通訳する。 命令ワードの適当な部分が更にデコードされ、デ コーダ 2 5 及び 2 6 に制御される D L A によつて 適当なハードウエアに直接接続される。

もちろん、このマイクロプログラミング通訳構 造では、ハードウェアでの実行以前にこれ以上の ステージを持つ通訳機構を用いることも可能であ る。例えば、制御記憶回路38から続出された命 令は通訳され、制御配憶回路 3 8 又は R A M 6 6 から眺みだされた他の連続する命令の実行を要求 するようになる。更に、チップ外メモリも命令の 実行に使用される。例えば、アプリケーション質 **語から成る単一命令が非常に長々しいナプルーチ** ンを示している場合、制御記憶回路38内の相当 する制御ワードは、通訳されて、RAMメモリ。 66の特定プロックにあるサブルーチンをロード し、引き続きそのサブルーチンの命令を実行せよう という命令が出る。もちろん、チップ外の記憶容 量に記憶される命令はとりだされ以下にさらに詳 しくのべるように割込み管理回路 7 6 及び/又は 外部データポート72及び73を通つで実行され

Z .

割込みプロトコールに関するこれ以上の説明は 以下で示す。以下で示すRICを異るモードのオペレーションに変更する再構成機構は制御パスのオペレーションに関連づけて説明する。この点に 於て、プロセッサPROーPR3の各々の構造に ついてもさらに詳しく説明する。

供している。(DLA22内の)フラグ発生論理134は、フラグレシスタ46に接続され、出力ラッチ136はシフトレシスタ44に接続される。次にシフトレシスタ44はパスA及びB(108及び110)を通つてレシスタフアイル32に接続されるか又はメモリマツパー32を通してパス制御ユニット58に接続されるので、ALUの出力は、データパス56内を転送されるか又は、将來のオペレーションで使用する為にプロセッサ内に記憶される。

第10 図は、A L U 28内の機能プロック116、 118又は122の1つの一部分の部品レベルの 構造を示す。第11図は、A L U 28内の桁上げ 連鎖プロック120の一部分の構造を示す。マイ クロプロセッサの構造に関するこれ以上の参考は 例えばオズボーンアンドアソシェートに示され、 これは参考としてここにいつしよに示す。

第 1 2 図は、データパスの低略図である。入力 信号は、パス 1 0 8 及び 1 1 0 から入力され、と れらのパスにはそれぞれ入力ラッチ 1 3 0 及び

パスはそれぞれの入力ラッチ112及び114を 介して、P(伝播)機能プロック116、K(遼 断)機能プロック118 、C(桁上げ連鎖)プ ロック120及びR(結果)機能プロック122 に連続して接続される。伝播機能プロック116 は、P制御線124によつて制御され、連断プロ ツク(kill block) はK 制御線126 によつて 制御され、結果プロックはR制御線128によつ て制御される。これらの制御額はDLA22から ALU28までを接続している。更に、桁上け入 力(carry in) 線130及び桁上げ出力(carry out) 線132が提供されていて、C プロック 1 2 0 を状況マルチプレクサ 4 8 及び 5 0 に接続 する。(状況マルチプレクサ48及び50のオペ レーションは、状況パスプロトコールに関連して 以下でさらに詳しく説明する。)Rフロック122 の出力はデュアルパスであつて、フラク発生論理 134を通つて出力ラッチ136に接続されてい る。フラグ発生論理134は状況とエラーの情報 を計算しDLAを介しプログラム状況ワードを提

140が接続されている。とれらのラッチはパレ ルシフタ30の入力と接続する。パレルシフォ 3 0 は、制御根1 4 4 及び 4 ラメータ入力1 4 6 によつて制御されている。これらはまた両方とも D L A 2 2 から提供されている。パラメータ入力 146は、例をはシフトカウントの為、及び抽出 の限界(extraction boundaries)の為の値を与 えている。ペレルシフタ30はパスA及びパスB に出力を与えている。 A L U は、桁上げ、オーパ ーフロー、負数及び/又はゼロといつたよりな液 算状況 信号を発生している。ALUは、整数のオ ーパーフロー、十進数の桁上げ等といつたとの他 の割とみ信号も発生している。とのような信号は、 D L A に送られて D L A は、これらの信号に従っ て論理オペレーションを実行し信号を発生してい る。との信号は、フラグレジスタ内でピットをセ ツトする。との機構によつて状況セット信号を発 生させ、例えばコンピュータ構造の中を循環させ

第13図は、パレルシフタ30によつて形成さ

れるシフトオペレーションで使用する用語を示している。従来、左シフトは、最上位ピットに向かってシフトすることを示す為に使用される。即りである。同様にして最下位ピットは、左シフトに関しても、り、のの他のとのののでは、シフトオペレーションのとの他のピットを示している。第148図は、場を左シフトを示している。

第 1 4 b 図は左循環オペレーションを示しており、入力ラッチ A 1 3 8 の最上位ピットは、入力ラッチ B 1 4 0 の最上位ピットは入力ラッチ B 1 4 0 の最上位ピットは入力ラックを示している。第 1 4 0 の最大にマッピングされ、他のリーは、1 ピットの循環オペレーションは、ペレルシフタ内の1 クロッタサイクル期間中に 1 6 ピットまで石

して示したミード及びコンウエイの「VISIシステム入門」に示されている。

メモリマツパー34はプロセツサ構造としては よく知られる機能を形成する単々るありふれた構 造である。メモリマッパー34によつて受けとら れる仮想的(ヴアーチャル)アドレスは共働する メモリオペレーションによつて16の記憶されい た仮想アドレスと並列に比較が行われ、もし受取 つた仮想的アドレスが記憶されていた仮想的アド レスの一つと整合する場合、これに相当する地域 的アドレスが使用され所望のワードが地域メモリ ーから呼び出される。整合するものがない場合、 仮想的アドレスは(ページテーナル索引のような) テーブル索引によつて翻訳され実際のアドレスを 決定し、レジスタファイルの1つに随意にロード 可能となる。との意味で、メモリマッパー34は 内部的に記憶されるメモリュニットと外部的に記 憧されるメモリユニットを区別しているといえる。 故にメモリマツパー34はテーナル検索をとま切 れにする(hashing)ととができるように構成さ

は左に動きりる。

第14c図は、シフト及び連結オペレーションを示しており、ここで入力ラッチ138は右にシフトし、連結入力線(link-in line)152が最後尾ピットの新しい内容を与えている。先頭ピットの内容は、連結出力線(link-out line)154を通り出力される。本実施例に於て、連結入力 152及び連結出力線154は、入力ラッチ B 140から接続されているので多重ピットシフト及び連結のオペレーションが実行されるが個別の連結入力及び連結出力線を代わるがわるに用いることもできる。

第 1 5 図は、パレルシフタ 3 0 によつて実行される抽出(extraction) オペレーションを示している。とこに示すオペレーションでは、パレルシフタ 3 0 は命令を受けて入力の 3 ー 1 1 ピットを抽出している。これらのピットは出力ラッチ150に先頭ピットとして接続される。このような機能をパレルシフター 3 0 に実行させる為に必要とされる回路は既知のように例えば先に参照と

れ、ハッシュテーブル内の位置を選択する為に使 用されたハッシュ機能はファームウェアによるア ログラムが可能である。ハツシユテープルはマル チウェイセット共働メモリとして作られている。 ハッシュ機能の出力は並行して検索が行われる多 重位置を指示する。所望のアドレスがハッシュテ ープルで多重位置に於て行われた比較と整合しな い場合所望のアドレスは(設計上)テープルに存 在しないということなのでこれ以上の検索は必要 たくなる。故にこのマッピング機能は様々なサイ 犬のメモリのマッピングを行う。 ハッシュ機能が 記憶容量を補助する為に使用される場合、ハッシ ユテーブルエントリーが数10パイトのメモリユ ニットを指示する。ハッシュ機能が仮想的メモリ 翻訳ルツクアサイドペッファを補助する場合、メ モリユニットは典型的に 5 1 2 パイトから2.048 パイトまでにたる。メモリマッパーに適当な構造 をもつ物としては、ナショナルセミコンメクタ社 のチップ番号16082がある。

割込み管理回路12は制御パス14を通つて転

スケデューラ16は256ピットシフトレシスタ内の優先性によつて割込みをパッファする。プロセスが有効に行われている時、スケデューラ16はシフトレジスタ全体をスキャンしてののでは、スケデューラーは優先性を持つプロセスを見つける。現在のプロセスが完了又は時間切れの場合、スケデューラーである。適当なコンテクストを示すがある。適当なコンテクセスしている。適当なコンテクセスしている。適当なコンテクアルにアクセスしている。適当なコンテクアルにアクセスしている。

クストは、スタック/レジスタフアイル 3 2 から、 R A M メモリ 6 6 から又は外部メモリから再び呼 び出される。

第18回は、上記で示したデータパスの総体的 た全体図を示す。 ペスA及びB(108及び110) は、主要な構成部であるアータパス、即ちスタッ ク/レンスタフアイル32、ペレルシフタ30、 A L U 2 8 及びフラグ及びシフトレジスタセット 4 4 及び 4 6 の 側面に 設けられる。 更に左側 ポー ト170はデータパスの入力及び出力の末端に設 けられている。好ましい実施例ではないが、右側 ポートを用意する選択も可能である。とのあるプ ロセッサの右ポートは、隣接するプロセッサの左 ポートに接続する為に使用される。例えば、プロ セッサPR3の右側ポートは、プロセッサPR2 の左側ポートに接続される。リテラルレジスタ 174もまた定数を発生させる為に提供される。 入力はメモリマツパー34から接続する左ポート 170に接続され、右側ポート172からの出力 もメモリマツパー34を通つて接続される。

スタック/レジスタフアイル32は、2本のパス108及び110を十分に利用できるようにする為にテュアルポートのレジスタフアイルでなくてはならない。さもなければレジスタフアイル32は従来と全く同じである。

アータパス 5 6 の組織は、RAMメモリ 6 6、パス制御ユニット 5 8 及びメモリスケアユーラユニット 6 8 のオペレーション及び構造といつしよれ以下で説明する。

第16図は、データバス 5 6 の構造を示している。データバス 5 6 は 1 6 本のアドレス線 1 5 6、1 6 本のアータ線 1 5 8、ラウンドロピン仲裁線 1 6 0、4本のソース線 1 6 2、モデュールピジー線 1 6 4、ソース状況線 1 6 6 及び日 C U モード線 1 6 7を有している。別々のアドレス線 1 5 6 及びデータ線 1 5 8 によつてアータアクセスのオペレーションが単一パスサイクルで実行可能となっている。この場合チンプ上のRAMメモリ 6 6 がアクセス されるので少くともメモリアクセス 速度はこれを可能にしている。こうする代わりに、

アドレス線及びデータ線156及び158を多重 構造にし領域を節約することができる。ラウンド ロピン仲敷銀160は4つのプロセッザPR0-PR3、4つのメモリモデュール60、及び外部 アータポート 7 2 及び 7 3 の間を花輪のような形 で連結しているので、テータパス56へのアクセ スは有効に仲裁が行われる。4本のソース額162 は、現在転送中のメモリアクセス要求のソースで あるプロセツサ又はモアユール又はデータポート を特定している。その代わりに制御線164の状 況に従つて、ソース線163を使つて、どのメモ リモアユール60がメモリモデュールによつて次 にサービスを受けるのかを示している。10本の 割あて粮168は、どのプロセツザ、モテュール 又はポートがデータを受けるかを示す。ソース状 況線166は(もし低論理であれば)ソース線 162は更にプロセッサ、モアユール又はアーダ ポートのどのメモリの要求が次にサービスを受け るのかを示す。ソース状況線166が高電位状態 にあるということは、ソース線が現在のソースを

示しているととを要わしている。また、メモリの 読み出しに使用されるか又はメモリの書込みに使 用される為ペスが停止状況(Idle) にあること を示す2本のペス状況線165も提供されている。

第17図の流れ図はさらにデータパス56内の 鎌の利用をさらに明らかにしている。一度、いず れかのソース(プロセツサPR O-PR3、RAM メモリモデユール60、又はデータポート72又 は13)がデータパスへのアクセスを受けとると (即ち、一度、そのソースが花輪状連結線160 から高電位信号を受けとると)ソースは線162 上に4ピットロードを示す。ソースがRAMメモ リモデュール60であつて、対応するメモリスケ アユーラユット 6 8 が未解決のメモリ要求を有し ている場合、ソーヌ線162はぞのプロセツサ又 はメモリモアユールが次にサービスを受けるかを 示すようになり、蘇166は電位が引き上げられ る。との後で、また未解決のメモリ要求を持つメ モリモアユールがソースでない場合でも、メモリ アクセス割当て線168の電位が引き上げられて 脱出されるべきデータに関する 1 0 個の割当てから成るいずれかの組合せを示す。連動回路(
interlock)は、データの完全性を保つ為に提供されている。もし割当て先に未解決のメモリ要求を持つメモリモアユール 6 0 を 1 つまたは 2 つ以上が含まれる場合、ワイヤー A N D E D 線であるピソー線 1 6 4 の電位が引き上げられ、同一のメモリスペースに対し同時に読みとみ及び脅込みが行われることがないようにしている。

第19図は、RIC内のRAMシステムの組織を総体的に示す概略図である。各々のプロセッサPR3は、メモリマッパー34を介して、アータパス56へのインターフェースとして働くパス制御ユュットBCU58に接続される。各々のBCU58は対応するメモリスケアユーラユニットMSU68の各々は両方とも対応するRAMメモリモアユール60に接続される。

プロセッサが自分のメモリモアユール 6 0 KT クセスする時、プロセッサは自分のB C U 5 8を

通つて自分のMSU68に接続される。MSU 88は未解決のメモリ要求があるか否かを決定す る。未解決のメモリ要求が存在しない場合、アク セスがただちに発生する。アクセスが決定されて いたい場合、MSU68はメモリのサービスを最 初に要求したかを示すタグ(tag)を待ち行列に する。MSU68は先に来たものから先にサービ スを行うスケデュール方針に従つて要求を待ち行 飛にする。特定の要求が列の先頭まで達した時 M S U 6 8 が この ことをプロセツサ又はアータポ ートに信号で知らせる。このプロセッサ又はテー タポートは再び要求を発生し、メモリアクセスが ただちに行われる。プロセッサがそのプロセッサ 以外のメモリモアユールにアクセスする時、パス 制御ユニット58はアータパス56を介して通信 が可能になるよう構成されなくてはならない。故 K例えばプロセツサPR8がプロセツサPR1K 相当するメモリモデユール60亿アクセスする場 合、PR8に対応するペス制御ユニット58は、 プロセッサPR3をアータパス56に接続するよ

うに構成され、PR2に対応するBCU58は、 信号をアータパス56によつて転送できるように 構成され、プロセッサPR1に対応するBCU 5 8 は (プロセッサ P R 3 に向かう方向で) テー メパス 5 6 をプロセッサ P R 1 に対応する R A M メモリモテユール60に接続するよう構成された くてはならない。上記のように、プロセツサはま **ポラウンドロピンのオーターでスケジュールされ** た共有のアータバス56にアクセスできるまで待 接している。プロセッサはパスにアクセスした役 で、プロセッサはメモリ情報及び割当て先メモリ モアユールを示す割当てタクを連送する。各々の プロセッサ又はテータポートは、一度に1つだけ 未解決のメモリ要求を持つことができるので、ど のメモリモデュールも最大でもつまで未解決の要 水を持つことができる。各々のプロセッサのメモ リインターフェースは、アータパス 5 6 を通つて 送られてくるメモリ制御信号を鑑視する回路を有 している。この機能はメモリマッパー34によつ て実行される。

R I C の内部 R A M メモリは、好ましくは最小の微細加工特徴が 1 ミクロン(ラムダ= 0 ・5 ミクロン)である(パスドライパーのようた CMOS 技術を実現する高出力構成素子を用いた) NMOS R I C の中に作られた 1 6 K パイトのダイナミック R A M である。

パスの両方に接続され、パイティレクショナルス イッチはある位置で単にメモリマッパ34をレジ スタ62及び64に直接接続するサービスを行つ ているので各々のプロセッサはそれに対応するメ モリモアユール60亿並列にアクセスすることが できる。他の位置のパイテイレクショナルスイツ チ 1 7 8 は、 M S U 6 8 を (短いパス 1 8 6 を介 し)アータパス56に接続するサービスを行つて いる。同様に、スイッチ182は、(対応するプ ロセッサがその対応するメモリモアユールにアク セスしている時)アータの流れをプロックするか 又は、単に短いパス184をアータパス156に 直接接続するか又は、短いパス184をパイティ レクショナルスイッチ180が封鎖モードである 時に絶縁されている2つのデータパス56の組に 方向を指定して接続するか、これらのいずれかを 行つている。とのオペレーションモードは第21 図に示されていて、パイプラインモードでのRIC のオペレーションが可能にしてある。この場合、 各々のプロセッサはオペレーションの前段階から

アータを受けとり、同時にオペレーションの次に続く取階にテータ出力の流れを与える。故に、パイプラインモードは、隣接するプロセッサの個別な組の間を異るアータの流れを並列に転送させてゆくことを必要とし、この機能は、パイテイレクショナルスイッチ180をプロックモードにすることによつてまたペイティレクショナルスイッチ182を方向を指定して接続することによつて実現される。

メパス 5 6 内の B C U モード制御線 1 6 7 によつ て行われる。いずれかのプロセッサがデータイス を制御する時、そのプロセッサは更にBCUモー ド報167を使つて全てのBCUを制御するとと ができる。仲穀額160がプロセッサがデータバ ス56を制御していることを示す時、全てのBCU 5 8 に於て消たさなくてはならない、唯一の必要 条件は、ペイテイレクショナルスイッチ180が アータパス56をプロックしていないということ、 である。更に、各々のBCU58内のパイティレ クショナルスイツチ178は、データパス58を レンスタ62及び64に接続するように作動して いる。故に各々のアドレスレジスタ 6.4 は、要求 されたアドレスを受取り更に適当なMSU68が、 その中のメモリモアユール 6 0 内の制御レジスタ 70を作動させて必要なデータを供給させている。

BCU58を制御する上記のシステムはできりる範囲で最も有効な例というわけではないが、追加の制御線の必要性を最小にしてプロセンサ間におこる干渉を防止している。好ましくは、各々の

M S U 6 8 は直接アータイスのパス状況線1 6 5 に接続され、R A M 制御レジスタ7 0 が必要とする読出し/書込み及び作動ピットを受取つている。各々のM S U 6 8 は対応するプロセッサに対し直接接続する2 本の線を持つて構成され、R A M 制御アータを与えてアータイス5 6 を使用せずに地域的なアクセスを行つている。

及び2つのテータポート)を待ち行列に並べられ る必要があるので、小さなシフトレジスタがこれ を実行する。同様にしてもし他のメモリの要求が 既に未解決のままである場合、地域的なプロセッ サによつて要求されるメモリアクセスは延期され、 ピソー信号がもどつてくる。メモリ酰出しが実行 される時は、アータパスが使用可能になるのを待 つてから、アータワードを割合て額168を通つ て指示された割合て先に転送しなくてはならない。 書込みが実行される場合には、回帰信号は必要を い。どちらの場合でも、MSU68はただ待ち行 列レジスタから次の未解決のメモリの要求を引き だし、そのソースに信号を送つてメモリアタセス が現在可能であることを知らせる。MSU68は 次のソースが要求を再び発生するまで待機し、そ れから上記のように適当なメモリのアクセスを行 わせる。

当分野に通常の知識を持つ者には明らかなよりに、アドレスレジスタ 6 4 、 アータレジスタ 6 2 及び制御レジスタ 7 0 は M S U 6 8 とそれに対応

するメモリモアユール60の間のインターフェー スとして使用される。

本実施例において、各々のメモリモデユールは、 16ピットアドレスでアドレス指定される。これ によつて、4つのプロセッサの各々に対し直接ア アレス可能な領域を場合によつて64Kペイトま で増やすことが可能である。しかしながら、プロ セッサは2種類の型のアドレス、即ち16及び 32ピットを維持している。プロセッサ自身のメ モリモアユールに直接アクセスする為には16ピ ットのアドレスが使用される。32ピットアドレ スは外部メモリへのアクセスの為使用される。他 のメモリモデユールにアクセスする場合は、プロ セッサは16ピットのアドレスを送り、所望の内 部メモリモアユールと結合する割合て信号を与え るととでメモリモジュールを指定する。 3:2:ヒツ トのアドレスは、プロセッサの制御に従つて外部 アドレス又はマッピングアドレスのうちいずれか となる。外部アドレスとなるようアドレスが指示 される場合、アヤレスは外部メモリインタープエ ースに送られてプロセスが実行される。さもなけ ればアトレスはメモリマッパーに送られる。メモ

リマッパーはアドレスが内部のものか外部のものかを決定する為連合して探索を行う。内部のものであれば、関連した内部アドレスは外部メモリインターフェースに送られる。

(状況 イスのエンド・アラウンド・ループ 5 4 を含む)状況パス52は4つのプロセッサPRO - P R 3 及び外部状況ポート 7 4 及び 7 5 を相互 接続している。状況ペス52は桁上げ状況線190 桁上げ入力出力線191、オーペーフロー線192 負数線1944ロ線196プロセッサ同期線198 及びシフト循環線199から成る1本の線のみを 有している。故に、エンド・アラウンド・ループ 5 4 を含めても状況パスは、たつた 1 4 本の広さ しかない。各々のプロセッサは、プログラム可能 なスイッチである対応する一対の状況マルチプレ クサ48又は50を有している。これらのスイツ テは、選択的に且つプログラムに沿つて各々の ALU28の状況出力又は入力線を状況ペス52 及びエンド・アラウンド・ループ54の両方を含 む状況パス線に、いずれかの方向を指定して接続

本発明である再構成可能な多重プロセンサ機能を提供する為共働する上記で示したような構造的 特徴はこれからさらに詳しく説明する。

第26、27及び28図は、本発明である再構成可能な集積回路のオペレーションの3つの主要なモードを示している。第26図は、全体的に独立するモードの組織を示している。このオペレー

している。 第23から第25回は、状況マルチプ レクサ 4 8 及び 5 0 で選択された状況 バス 接続の いくつかの例を示している。プロセッサが独立し て動作する時、第23図で示すよりに状況線の接 続は必要とされず、状況マルチプレクサ48及び 50は状況パス52及び54に開路を作りだす。 **隣接するプロセッサがパイプライン構造で作動す** る時、(例えばPR3の)データ出力がPR2の 人力として与えられている場合、プロセッサ同期 線198のみが接続される必要がある。最後に、 プロセッサPR3及びPR2が32ピット又はそ れ以上の規模のプロセッサの一部としてロックス テップ 構成で作動される場合、プロセッサ PR 2 の状况出力は、全てプロセッサPR3に対する状 **祝入力として接続される。プロセッサ同期般は、** ロックステップモードで使用され現在のオペレー ションが完了する前には確実に新しいオペレーシ ョンが開始されないようにしている。例えばロッ クステップ構成のプロセッサがアクセスしている 全てのメモリモアユールに対し、他のソースから

ションではプロセッサPRO-PR3は単一チップ上に配置された実質的に4つの独立するプロセッサとして働いている。4つ別々の命令の流れが別個のプロセッサPRO-PR3に与えられ、独立するプロセッサ間に必要とされる唯一のインターフェースは、制御パス及びデータパスプロトコールによつてアクセスされるものである。

同じ構造はまた配列処理オペレーションを行えるようになつている。配列処理に於て、プロセッサ間の相互接続は独立モードの場合と同じである。配列処理と異る点は、各々のプロセッサが、同じ命令の流れを受けとつているということである。もちろん配列処理はまたプロセッサの2次的な組(例えば2つの32ピットプロセッサ)に基づき構成される。

第27回は内部的なロックステップモードで作動されるRICの例を示す。この例では、4つ全部のプロセッサが再構成されて単一の64ピットプロセッサとして作動するようになつている。こ

の構成では、制御ペス14が単一の共通な命令の 流れを選んでいて、この命令の流れを全てのプロ セッサが受け取る。上配のように必要な同期析上 げ及び状況ピットは状況ペス52及び54によつ て通信が行われる。更にシフト及び循環連結が設 けられているので望みのピット又は循環オペレー ションをどれても64ピットワードでデータパス 5 6 を介し実行するととができる。(との連結に 関しては、テータパス56は、上配で示したよう にパイプラインモードで構成される。)1ピツト シット及び循環がシット/循環線199によつて 実行される。RICをとのモードに正確にプログ ラムすることによつて、各々のプロセツサが64 ピットワードの16ピットセグメントの統出し又 は省込みを行い全てのプロセッサが4つのRAM メモリモデュールの対応する位置でこの読出し又 は書込みを同時に行りので、単一クロックサイク ル内においてRAMメモリ66に対する64ピツ トでのアクセスが可能となる。

第28図は、ペイプラインモードで作動するよ

再構成を行う為には、3つの主要な型の割込みが使用される。第1の型の割込みは、他のプロセッサ(即ち、割込み先(Interruptee))の資源にロックステップモードのオペレーションを設定するように要求する。このモードでは、1つのプロ

う構成されたRICの例を示す。との構成におい て、4つのプロセッサは、もともとは単一のテー タの流れであつた連続するオペレーションを実行 している。即ち、全体的な命令の組は、(プログ ラマーによつて) 4 つのオペレーションの組に分 割される。との4つのオペレーションの組はそれ それほぼ同じ時間を必要とする。そこで4つのプ ロセッサは各部分が連続するデータの流れのうち、 分割された命令プロセスの一部分のみを各々で実 行する。故に、このようにして小分けされた命令 の組を用いてテータの流れを操作しなければなら たい場合、スループットは4倍になる。命令の組 はプログラマーによつて4つの命令のサフセット に分割されるので、チップレベルでは、命令の流 れは単に1つ1つがパイプラインモード内の各々 のプロセス段階に向けられた4つの別々で個別の 命令の流れとして現われる。上記で示した通り、 BCU58はアータペス56を小分けして、ペイ プラインモードで連続するステージの間(即ち、 隣接するプロセッサの間)をデータが直接の転送

セッサが共働単位の中の他のプロセッサのオペレ ーションを支配していて、故にとのプロセッサは ロックステップでの共働単位内のマスタプロセッ サと呼ばれる。この型の割込みのプロセスを(プ ロセツサがコンテクストスイッチを実行した後で) すぐに実行することを全てのプロセッサが受理す る場合以外は、割込みはこれ以上の動作をおこす。 ことはなく、マスタープロセッサによつて後で改 めて発生される。との場合、自分の割込みが拒絶 されたマスタプロセツサは、そのプロセスをハッ ファの中に入力しておいて、さらにスケジュール を変更し、次のスケンユールによるプロセスの実 行を開始する。その後再度割込みを送ることもマ スタープロセツサの役割である。故にロックステ ップでの割込みは、すぐにプロセスが実行可能な 時のみ受け入れられる。「どこそこのプロセッサ が必要とされている」「自分のプロセッサは、今 は使用可能である」「自分のプロセッサを解除せ よ」及び「どこそこのプロセッサーが解除される」 等といつたオペレーションを意味するプロセッサ

間での割込みの必要性を最小限にして、このプロトコールはプロセッサ間の通信を最小にしている。 これによつて割込みに使用されるパスサイクルの 数が成つてプロセス及び割込みのスケデューリン ゲが複雑でなくなつている。単に拒絶された割込 みをパッファしたり、延期したりすることは、上 記で示した選択しりる例に比べて複雑なプロセス ではない。

ちば来装置におけるマクロ命令に相当するものを 実行する間に割込みが発生可能である。本実施別 では、マイクロ命令を省略すれば複雑さを被少で きるが、これを使うことも可能である。マイクロ 命令を使用する意義には、2つの要素が存在する。 第1は、大規模CPUに多重チップを使用する場 合のような応用例では、その性能を最大限に利用 する為にマクロ命令が使用されないことである。 第2は、あるマイクロ命令はストリンク操作のよ りに非常に長くなるということである。

ロックステップ構造の中の従属プロセッサ (slave processor)の割込み管理回路は自分を 指示する割込みの存在を知る為に制御パス14の 鑑視を続けている。しかしなから、もしずれのクステップで構成される共働単位内の投行している。 ロセッサがその共働単位内で現在実行している。 ロセスより高い優先性を持つ割込みを鑑視しいます。 では、ロックステックで構成なスタープロセッサは、ロックステックに るマスタープロセッサにを される共働単位内の全てのプロセッサにを される共働単位内の全てのプロセッサにを される共働単位内の全てのプロセッサにを

ロックステップの共働単位内で作動している従属プロセッサがロックステッププロセスより低い優先顧位を持つ割りこみを受けとる場合、従属プロセッサは、低い優先性のプロセスをベッファし、後にスケデュールし直す。故に、マスタープロセッサが、共働単位内の他のプロセッサのいずれかに向けた割込みを確認する必要のある間は、ロックステップより低い優先顧位を持つているいかな

る従属プロセッサの割込みに対し、マスタプロセッサの割込み管理回路はいかなる機能も実行する必要がない。それぞれの従属プロセッサ内の割込み管理回路12は低い優先順位の割込みをパッフアする。

第2の型の割込みは割込み先プロセッサが実行する、いくつかの計算を特定することを要求する。(即ち、これはよく知られる。古典的。な割込みである。)との型の割込みの次には、実行すべきプロセスを特定する命令の流れが与えられる。この型の割込みがサービスの為にスケアユールされた時には、割込みの後で与えられた第1番目の命令に従つてコンテクトスイッチを行っている。

第3の型の割込みは、パイプラインプロセスを 開始させる。パイプラインでの割込みの管理は、 ロックステップ型での割込み管理と同様である。 マスタープロセッサがパイプラインの割込みを送 り出すと、これを受けとつた全てのプロセッサは、

自分がパイプラインプロセスに参加できるかを信 号で知らせる。受取つたプロセッサが全てそろつ て参加できない場合、朝込みは無効となつて後で 再び統行される。同様にペイプラインプロセスに おけるマスタープロセツサは、共働単位内のいず れかのプロセッサに向けられる割込みを鑑視して パイプラインプロセスより高い優先順位を持つ割 込を実行している。従属プロセッサは低い優先性 の割込みのみをペッファする。ペイプラインでの 朝込みの制御とロックステップでの割込みの制御 との間の主な違いは、パイプライン割込みプロセ スでの従属プロセッサがそのそれぞれの持つマイ クロシーケンサ 3 6 を使用し独自のマイクロ命令 の流れを実行していることである。故にそれぞれ の従属プロセッサのマイクロシーケンサ 3 6 内に 含まれるコンテクストは保持されたままである必 要がある。

受源が共用されている場合、前に述べたように アットロックの発生は、非常に危険であつて必ず 疎けなければならない。例えばプロセッサPR1

の8本の低いオーダーの線に示される256の優先順位がシステム内に存在できる。割込みが認められイツファされる時はいつでも、優先順位に関する情報もイツファされる。インファされた割込みがサービスの為にスケジュールされる時、8ピットの優先性に関する情報を含む割込み制御ワードがとりだされプロセスを開始させる。

及びPROがそれぞれプロセッサPR2及びPR3、 両方の費額を使いたい場合、またプロセツサ PRO がプロセッサPR3を支配しようとしている一方 でプロセッサPR1ができ続きプロセッサPR2 を支配している場合、もしもプロセッサPR1及 びPROがそれぞれの可動できないプロセッサ PR 2 又は PR 3 が可動できるようになるのをた だ待つようにだけプログラムされているとすると、 アッドロックが起こりうる。本発明においては、 いくつかの手段を講じてアッドロックを防いでい る。第1に各々の実行中のプロセス及び各々の割 こみには、プログラマによつて独得な優先順位が 与えられる。概念的には、各々のプロセスにその プロセスの優先順位及びプロセスを開始させる割 込みの優先順位と同一の名前をつけると考えるこ とができる。システム内で実行中の全てのプロセ スは、異る優先順位をそれぞれ持つ為、より高い 優先順位を持つ割込みが割合てプロセツサを先取 するので行き詰まりは起こり得ない。本実施例に 於ては、1回の割込み期間中には、アドレスパス

存否といつたロックステップ内の相対位置によつ て時々わずかな違いはある。)ロックステップで 接続するプロセツサ間における違いは、これらプ ロセッサの位置がプロセッサ間のハードウエアの 相互接続を決定していて、マスタプロセッサが共 働単位内の全てのプロセッサに対しより高い優先 順位の割込みを実行していることである。パイプ ラインプロセスでは、各々のプロセツサは、同じ 割込みで割込みが行われ、もともとは各々のプロ セッサは同じ命令の流れを処理しパイプラインプ ロセスを行つている。引き続きパイプラインプロ セス内の各々のプロセツサは、異るマイクロ命令 の流れを実行するととができる。次に、プロセッ サは元の共通なマイクロ命令の流れをそれぞれの 持つ場所の数によつて分岐し、それに対応する道 当な分岐を選択し各々のプロセッサに対する別や のマイクロ命令の流れを作る。パイプラインモー ド内の各々のプロセツサは別々のマイクロ命令ル ーチンを行うことができても、全てのプロセツサ は、チップを管理するといり目的では同じプロセ

スを実行していると考えられる。パイプラインでの共働単位内のマスタープロセンサは、ロックステッププロセスと同様に単位全体に対しより高い優先性を持つ割込みが処理される。 1 つのプロセッサのみを必要とするプロセスは、多重プロセッサでのプロセスを管理する為に必要としたプロトコールは必要としない。

2 5 6 のみの有効なプロセスが存在することを意味する。有効でないプロセスは数に制限なく存在可能である。

例えば本発明による再構成可能な! C を用いて3 2 ピット C P U に対抗することを仮定する。再構成可能を I C におけるプロセスは以下のようなタスクが与えられている。即ち命令とり出し、コンテクストスイッチ、命令間の対抗、外部割込みレベルごとに 1 つのプロセス、自己テスト、リセット等である。この場合 2 5 6 のプロセスで適しているように思える。

各々のプロセッサ内の割込み管理回路12の主なタスクは、割込み信号プロトコールに従って信号を受取りまた発生することである。割込み信母を送信及び受信しいいるのでで理回路12は割込みが受けとつた時はいつもスケテューラ16に信号を送り、現在実行中のプロセを取りを開位と比較した新しい割込み管理回路12は両方とも現在実行中のタスクの優先履位を記憶

256の優先性レベルを用意すればたいていの応用例には充分である。故に本実施例ではこれを採用している。しかし、もつとたくさんの優先性レベルを用意することが望ましい場合、例えば8ピットによる優先順位の特定より10ピットを使うことはもちろんとるにたらない問題である。 256の優先性レベルを用意することは1度に

している必要がある。新しい割込みが現在実行中 のプロセスを統行させる時、スケデューラー1 6 はただちに新しいプロセスがシーケンサ36の内 容を含めた全体的コンテクストを記憶することを 必要とするか否か又は、部分的なコンテクストス イッチのみを必要とするかを確認しなくてはなら ない。必要なコンテクストスイッチについての情 報は、高いオーダのアドレスピット84でコード 化される。優先順位の特定には8ピットしか必要 としないので必要なコンテクストスイッチの程度 といつたような割込みに関する迫加情報をコード 化する為にもピットが使用される。受取つた割込 みの優先順位がより低いものであつてその為パッ ファされる場合、とのようなプロセスは必然的に ロックステッププロセスでないので、パッファさ れた優先順位が最終的にスケアユールされる時に は、全部のコンテクストスイッチが必要となる。 ロックステップのプロセスだけは、全部のコンテ クストスイッチを必要としない。このような場合、

スケデューラは適当なコンテクストを記憶し、現

在のタスクをパツファし、プロセッサが新しいプロセスを開始する用意ができたことを割込み管理 回路12に知らせる。

スケデューラ16の構造及びオペレーションは、 第29図を参照してとれからさらに詳しく説明を 行う。スケデユーラ16は優先順位によつて有効 なプロセスのリストを作つておかたくてはならな い。有効プロセスとは、スケアユールすることの できる最も高い優先順位を持つ時、実行を開始す るプロセスである。ハードウエアを節約する為に 本実施例では、 1.ピット毎の256のリスト即ち、 有効なタスクを記憶する為の有効プロセスパップ ア200を保持している。特定のプロセッサが(と名づける有効プロセス(即ちしの優先性を持ち 実行を待つプロセス)を有している時はいつでも、 スケアユーラ16の中のこのプロセッサに対応す る有効プロセスパッファ200の1番目の位置に 1 含まれている。有効プロセスパツファ200内 のプロセスは実行の為のスケデュールが行われる 時には、パッファ200内に於るこの位置(これ

スケデュー 9 1 6 のオペレーションは第 3 0 図の流れ図で示される。スケデュー 9 1 6 は、割込みの発生、有効なプロセスのプロック、又は、プロセスの完成の 3 つの起こり 9 る原因 (誘発要素) の 1 つによつて作動されるようになる。プロックされるプロセスとは、必要な要源が使用できない為実行の統行を中止させられるものである。例

プロックされたプロセスは、もし必要であれば タイマー206を使つてプログラムすることがで まる。このようなプロセスがプロックされる時、 プロセスは命令でタイマーをプログラムする。タ イマー206がゼロまでカウントグウンする時、

スケデューラ16を作動させる膀発要素が生じる。 この要素によつてスケテューラ16は通常のスケ デュールサイクルを実行するようにたる。タイマ -206をセントしたプロックされたプロセスが 最も高い優先顧位を持つていれば、スケデューリ ングが行われる。しかしながら制御パス14から 割込みを受けとる場合、又は他のプロセスがプロ ツクされる場合又はプロセスが完了した場合には タイマー206は作動したくたる。このよりた場 合には通常のスケアユールサイクルが開始され、 故にタイマー機能が不要になる為タイマー208 は作動しなくなる。とのプロックされたプロセス に対するスケアユーリング法は、一方ではプロツ クされたプロセスに引き続き、チップの資源を使 用させいつ必要を登録の用意ができるが判断させ、 ていて、また他方ではより高い優先順位を持つプ ロセスを必要な時間より長くプロックさせている。 間を調整するものである。との調整は低価格のハ ードウエアですみ、良好をスケテユーリング動作 を得ることが期待される。しかし、現在のプロセ

スの実行を統行しつつ、現在のプロセスより高い 優先順位を次のプロセスが持つようにすることは、 スケアユーラ16のオペレーションをいくらか複 雑にすることになる。

スケアユーラ16が割込みによつて呼び出され る時、(レンスタ202から入力された)現在の プロセスの優先順位及び(レジスタ204から入 力された)次のプロセスの優先顧位の高さと共化 受取つた割込みの優先順位がコンパレータ212 によつて比較される。 新しく受取つた割込みがる つの中で一番高い優先順位を持つ場合のみ先取が 起とる。先取する必要がある場合、現在のプロセ スを停止させコンテクストスイッチが実行された 後でだけ新しく受けとつた割込みが開始される。 スケアユーラは次に次のプロセス及び現在のプロ セヌの優先厭位の高さを次の優先厭位の為のレジ スタ204に入力する。有効プロセスパッファ 200内の対応する優先性レベルに1を書きてむ ととによつて現在のプロセスがパッファされる。 先取する必要がない場合、新しく受けとつた割込

れ、パッファされた割込みに関する情報はこれ以 後受けとり個のプロセッサに記憶される必要はな い。次の優先先順位と割込みの優先順位のうち高 い方が次の優先順位の為のレジスタ204に入力 される。故にある場合では次の優先順位の為のレ シスタ204が有効な情報を内容として持たない ようにするととができる。これは、有効プロセス ペッファ200によつてリニアを検索を行い次に 最も高い優先順位を持つプロセスを発見すること が時として必要になるからである。必要とされる 時に次の優先順位の為のレジスタ204の内容が 有効でなかつた場合、スケアユーラ160オペレ ーションは他に有効なプロセスが発見できない場 合も含めて有効なデータが見つかるまで停止する。 最終的にプロセスを完了することによる作動をお こす原因が受けとられると、(これはプロセス状 況ピットを通してスケテューラ16に知らされる) 次のプロセスが開始し、次に高い優先履位を持つ プロセスの検索が開始される。

みは、有効プロセスパッフア200にパッファさ

I C W の タイプフィールドは命令オプコードに 類似する。タイプフィールドは 4 ピットであるが、 3 つの型の I C W が規定されている。タイプ 0 は 単一プロセッサによるプロセスの為であり、タイ プ1 はロックステッププロセスの為、またタイプ 2 はパイプラインプロセスの為のものである。タイプフィールドは割込み管理回路に対する命令としても使用され以後の割込みの発生を命じている。

位置フィールドは、予定された割込みを受けと つたかを確認している。このフィールドには各々 のプロセッサに対し1ピットが含まれていて各々 のピット位置における内容を使用して、それに対 応するプロセッサが割込みを受けとるべきである ことを示している。

優先性マスクフィールドはプロセスの名前又は 優先履位とは異る実行の優先履位を特定する為に 使用される。首いかえれば、優先性マスクロ位、 ルドが使用される場合、プロセスの優先履位というよりむしろ)と考えを の優先履位というよりむしろ)と考えを使用 のの優先履位というよりなしる。 の優先履位できる。PMピットは、優先性マスクを ができる。PMピットは、優先性である。 のできるのかを特定する必に使用 なるのでまる可能性を のできる。 のできる可能性を のできる。 ののできるのプロセスに のので、 そられていない優先値を使りよりに限定されている。 さもなければ、 2 つのプロセスが同じ優先順位で費碌をとりあり時、アッドロックが起こりりるからである。

次の優先性フィールドは同一プロセスに多重質 先レペルを与えることができる。このフィールド はNTピットが1である場合のみ有効となる。と の機能によつて、ランタイムで規定される優先順 位をプロセスに与えられる。との機能は、プロセ スの非常事態がやがて変化する時に有効となる。 例えばプロセスは、特定の優先性レベルを持つ割 込みを、必要なサービスを予期して発生すること ができる。割込みが直ちに動作を開始させない場 合でも、割込みのイニシェータが後にプロセスを 開始させる。しかしながら、時間的な遅れによつ て(本実施例に於て)割込みのサービスを受ける 必要性がさらに急を要するようになるのでイニシ エータは次に乗も高い優先順位を持つ割込みが発 生可能になる。次に高い優先順位についての情報 は次に高い優先厭位の為のフィールド内に含まれ

ている。この機能を利用する別の方法としては同一プロセスの多重処理を開始する方法がある。このモードのオペレーションでは、ある優先性レベルへと位置フィールドが変わる。同じ位置フィールドが使用される場合には回帰的ルーテンを使用することができる。

最後に、制御記憶アドレスフィールドは現在の 割込みによつて呼び出されたプロセスマイクロル ーヂンのマイクロ命令のアドレスを指示している。

前に述べたように、割込みが送られた時には、 14本の制御記憶アドレス報84のうちの8本の 額のみが使用されて優先性がコード化される。故 に、残る利用可能な6ピットのうち1ピットを ンテクストスイッチを全部統行するか又は一部統 行するかの決定の為に使用することができる。更 にとれ以外のもう1ピットは割込みがただちにア ロセスを実行しない場合、割込みをペッファる かどうかの判断の為に使用される。故に第32図 は割込みが送られる時の制御記憶アドレス線84

のフォーマットを示す。.

劉込みシステムのオペレーションをさらに明ら かにする為に、第33図は、プロセッサPR3が プロセッサPR1に対し割込みを発生した場合の サンプル割込みに相当するタイミング表を示して いる。タイムのにおいてプロセッサPR3が制御 ペス14を支配していて、(線13上に)自分が 割込みのソースであるという信号を与えていて(頼 D R 1上には)割込み先がプロセッサP R 1 で あるという信号を与えている。同じとのタイムに 於ては現在の翻込みが確認されるまでは他の割込 みが制御額14を通つて転送されることはないの でプロセッサPR3は、割込み単備級104の電 位を引き下げる。次のクロック関隔では、プロセ ツサPR1は、割込みパスト1の適当な線の電位 を上げることで劉込みの確認を行い、コンテクス トスイツチを実行した後でプロセッサPR1が割 込みのプロセスを開始させたことを知らせている。 次にプロセツサPR3は、 割込みによつて知らさ れたプロセスを開始させる為のマイクロ命令のア

ドレスを転送するアドレスパス 8 4 を操作する。 プロセッサ P R 1 がそのコンテクストスイッチの 実行を完了すると、プロセッサ P R 1 がこのマイ クロ命令のアドレスをロードし、割込みパス I 3 及び割込み準備線 1 0 4 の電位を引き上げて(又 は引き下げを止めて)割込みが再び受けとれる状 態となつたことを知らせる。

ととまでは再構成可能な機能及び多重プロセッサ機能を提供する割込みプロトコールの組織を説明してきた。再構成可能機能を提供する為に必要な命令構造に使用するこの他の構成要素は、DLA 22及びDLAアコーダ26によつて過訳される時に、状況パスマルチプレクサ48及び50の再構成を特定するか又は、BCU58の内の1つに含まれるパイアイレクショナルスイッチ178、180及び182のオペレーションを特定する命令を有している。

本発明の再構成可能 カ I C の実施例は、 8 4 ピンパッケージの中に含まれる。 (6 4 ピンでデータ及びアドレスをまかなり 1 1 2 ピンパッケージ

も選択できるがあまり経済的でない。)

ある種の構成に関しては、 8 4 ピンパッケージをフルに必要としない。故に、 このような応用例の為に設計された R I C を中間的な量で製造する為には、 もつと安価なパッケージを使用することができる。

本発明のRICの為に好ましいパッケージは、例えばここに参照として示すエレクトロニクスマガシン1981年6月30日号の39から40頁で記載されるような84ピンプラスチック・リード・チップキャリアである。しかし第34図ではRICが超大規模DIPパッケージの中に含まれる場合のピン配置を便宜上示す。

本実施例のIRCは2つの16ピットアータ/
アドレスポートを有している。各々のポートはア ータ及びアドレスを選搬する為の16本のパイテ イレクショナル線を有している。ポート1におけ るアータ/アドレスピンは、1から16まで、ポ ート2のピンは26から41までの番号がふつて ある。アータポート2の対応するアータポート1

ることができる。外部アータポートには主として 2 つの機能がある。 第 1 の機能は、外部データボ ート72及び78としての役目である。アータポ ートの主要機能の一つは、内部テータパス56と 外部データオートピンの間のインターフェースと しての役目である。実際上これの意味することは、 **データポートが内部命令を受けとつてデータ及び** アドレスを外部に送る機能を持つということであ つて、データポートはこの機能を果たし、それを 適当な信号にして外部ピンに送ることができる。 第2にデータポートは、外部ピンから情報を受け とり、次に適当に変換して、適当にその信号を内 部RAMパス5.6 に送つている。第2の主要機能 は、プロック転送モードである。これは、例えば 1 つのアドレス及びデータワードを外部に送る命 今を送るかわりに、内部的に制御及び命令を受け る多重アドレス及びデータワードを送り出してい る比較的一般的な命令を送つている点で上記に説 明した他のオペレーションとはわずかに異つてい **3** •

のピンは、機能的に等しいのでポート1 で働くど ンのみに関し示す。第1及び第2図で示す外部ア ータポートF2及びF3にテータポート1及び2 が対応する。簡単なピンの配線に加えて、外部デ ータポート72及び73は、1個以上のRIC、 外部メモリ、1/0装置及びアドレス装置の間を 結ぶ共有外部ペスの制御に対し仲裁を行う和騰信 号 (handshake signals) (ピン17及び18) を有している。各々のポートは、パスでのデータ 及びアドレスの送信及び受信の同期を行う為の追 加のピン(22及び23)を有している。各々の ポートは、パスの状況、及びパイテイレクショナ ルな一対のプロセッサックアイテンテイフアイヤ - (·2 4 及び 2 5) に 信号を送る パイ デイレクシ ヨナルカる本の線の組(ピン19ー21)も有し ている。アータオート1と2は独立している。し かしながら内部的には、両方のポートに同じオペ レーションを回帰的に実行させ、外部的には2つ のポートを1つのポートのように扱うことでこれ らのポートを単一の大きなポートとして作動させ

従来において、データ又はアドレスの内の最上位の固まり(chunk)は第1のサイクルで送られ、それに連続するサイクルにおいて次次とより下位の固まりが送り出される。全てのアドレス又はデータの固まりは最初の(最上位の)固まりが送られた同じポートから送られる。

これらの2つのデータポートはチップ上の全てのプロセッサに共通する。2つ以上のプロセッサを持ついかなるプロセッサ又はいかなる内部構成も、いずれかのデータポートを使用可能である。ポートは、プロセッサ内のメモリマッパー34によつて選択される。

以下で述べる外部通信プロトコールに関する機能に加えて、外部データポート72及び73もプロセッサによるデータパスプロトコールの使用に関し、上記で説明したものと全く同じ回路を有しているので、外部プロセッサもまたチップ上のメモリにアクセス可能である。

特開昭58-58672(31)

求をDPAV信号でマスターに送つている。マス ターは、 D P G R 信号の電位を上げることでパス が使用可能であることを知らせる。この他のモー ドの仲載機構としてはラウンドロピン機構がある。 この機構では、論理1がデータパスを使用するプ ロセツサの間を循環している。RICがテータル スのオペレーションを完了しているか又は、鋭行 中のものがない場合、RICはそのDPARの電 位を引きあげる。これは、隣接するRICの DPGR信号に接続される。テータパスオペレー ションが統行中である場合、DPGR信号が1化 たると、R I Cがアータパスを支配するようにな る。さもなければRICはそのDPGR信号の包 位を上げる。パスを使用できなかつたRICは他 の資源がいずれもペスの使用を必要としていたい と判断した場合にとのRICは循環している1を トラップする。そとで(もし存在すれば)同期を 維持する為にこのRICはそのDPGRを引きる げて1を再び循環させる。

アータパス状況: 各々のポートがテータパスの

アータペスの仲敬 共有のアータパスを仲載す る機能が備えられている。各々のRICは、外部 仲載回路、マスタースレープ機構、又はラウンド ロピン仲載機構で動作する。RICの動作が開始 すると、仲裁モードが指示される。仲裁信号はア ータパス可動(DPAV)及びデータパス容認 .(DPGR)信号と呼ばれる。信号はポート1に 対してはDPAV1及びDPGRI(ピン17と18)、 ポート2に対しては DPAV2及び DPGR2(ピン 42と43)と表示がつけられる。以後とれらの 信号の表示は2つの同一なポートの間を区別する 為に参照番号を使わずに参照する。外部仲裁回路 モードが使用される時RICがプロセスを開始し、 外部回路に接続するDPAV出力信号の電位を上 けるととによつてパスを支配する。

仲載機構がアロセッサの要求に対しアータルスが使用可能であるか判断し、要求元のDPGR信号の電位がひき上げられる。マスタースレープモードでは、マスターRICが常にバスを制御している。従属RICがバスを使用したい場合には要

状況を示するつのピン(19-21及び44-46)を有する。アータパスを制御している使用 中のプロセッサはパイテイレクショナルピンに出 力してアータパスの状況を知らせる。状況ピンの 配置は、ポート1に関レテーアル1にリストして ある。(ポート2はピン44-46が餌34図の ピン19-12に相当することを除けば同一であ る。)

	テーブル1		アータパスピン配置
ピ ン .		· .	
1 9,	2 0	2 1	機能
0	0	٥.	隣接するRICへの書込み
0	0	1	隣接するRICからの読出し
0	1	0	割合てアドレスへの書込み
0	1	1	割合てアドレスからの銃出し
1	0	0	メモリへの書込み
1	0 .	1	メモリからの読出し
1	1	0	! / O 装置への客込み
1	1	1	1/0 装置からの読出し

アータパスの状況はアータパスオペレーション の型式を示している。アータパスオペレーション に関しては4つの割当て先が存在しりる。即ち、 割当てられたRIC、アータ転送の最初の部分に よつて特定されたアドレスによる割当て、システ ムメモリ又はシステム 1/0 ユニットの4つである。 読出し又は書込みオペレーションはこれら 4 つの 割合てのいずれでも実行可能である。いずれかの 割合て先に転送される16ピットアドレスユニッ ト及び16ピットデータユニットの実際の数は、 RICのプログラムによつて又は、割合てのハー ドウェアによつて決定される。直接的な通僧は隣 接する1つのRICに対してのみ有効である。割 当てアドレスモードはテータパスオペレーション に対し1つ又は複数のソースを特定する一般的な 方法である。テータ転送の第1の部分は1つ以上 の割合てを決定するアドレスを特定している。割 合てアドレスを含む16ピットユニットの数は、 使用者によつて特定される。とのモードでは、ア ドレスは、データパス上の全ての受信プロセッサ

に送られる。受信側は、アドレスが自分の持つアドレスの1つであるかを判断する。全てのアドレスを受取つたプロセッサは、データペスオペレーションの残り部分を分担し続行する。メモリ及びレーションに関してのアドレスの長さ及びデータの長さのフォーマットも使用者によつて特定される。

アータ転送同期: これら2つのピンは、ソースと割あて先の間のアータパス上をデータが正確に 転送されていることを確実にする為に必要とされる。これらのピンは、情報転送可能(IA)と情報受信(IR)である。情報転送に関するプロト

要約すると、 データパスが特定されることで融通のきく仲裁プロセスを持つ仲裁データパス回路網が構成される。情報転送の割当ては、 割当てを アドレスする機能を持つので一般的なものである。 情報のフォーマットは R I C をプログラムし、 メモリ及び 1/0 システムを構成することで特定されるので一般的なものである。最後に、情報の転送

は、ある点からある点の間でも又は間にいくつか の分岐を含むもの(マルチドロップ)であつても よい。

割込みポート(ピン51-58)はこの目的を 果たしている。第1の目的は、従来のマイクロコ ンピュータ及びマイクロプロセッサが行つていた のと同様に外部からの割込みを受けとりプロセス を行りことである。割込みの概念は、他の受信餌 プロセツサに割込みを送信する機能とともにこの 従来的な目的も達成できるよう一般化される。と の一般化によつてチップ内部の通信が可能となる。 チップ内部の通信を可能にするという目的は、 RICにタスクをコーディオイトし情報を転送す る役目である。チップ内部の通信システムはチッ プ間通信の命令 (communique)の部分を転送する 為に使用される。情報転送のデータ部分はメモリ 間で通信される。例えば、テイスク読出しオペレ ーションは、RICの割込みポートを使つてテイ スク制御器に命令を送るととによつて開始される。 アータ転送は、アイスクシステム及びメモリシス …

特開昭58-58G72 (33)

テムの間の個別をデータパスにおいて行われる。 <u>劉込みパス仲載: RICの割込みポートは8本</u> のピン51-58を有している。ピン57-58 は割込みを送信中に使用される共有資源の要求を 仲載する為提供される3つのモードの仲載が維持 されている。第10モードは、ラウンドロピン機 構で仲載される共通の割込みパスを維持している。 との機構の中で「1」の信号がチップの間を循環 して上記で示したように割込み姿々を配分してい る。 あるチップに於る割込み可能(I A) 出力 (ピン58)が欝装するチップの割込み許可(ig) 入力(ピン57)に接続される。IG佰号がある チップで「1」になる時とのチップは割込みを発 生するととができる。送信すべき割込みがそのチ ツプ K 存在しない場合、I A 信号の電位が上昇す る。第2のモードはデータポート仲重の方針で説 明したのと同じマスタースレープモードである。 通常は、マスターRICがパスを制御している。 従属RICがマスターのIG入力信号を上昇させ てアクセスを要求している場合、マスターRÌC

は、好きを時にマスターの!G倌母の電位を上げ て選択的に従属RICに対するバスの支配を得る。 もう1つの仲載モードは各々のチップの割込み可 能及び割込み許可信号を外部仲裁ハードウェアに 接続して行う。RICが送信すべき割込みを有す る時、 R I C は I A 信号の電位を上げる。 割込み ポートが割込みの要求側によつて使用可能な状態 にある時、外部ハードウェアがIG信号の電位を 上げる。3つの仲裁機構を用意する理由は応用に 対する一般性を与える為である。ラウンド-ロピ ン仲載機構では、少数のRICを接続して内部通 倌を可能にする経済的な方法を提供している。 マ スタースレープ機構では、多重な情報処理機能を 持つ装置をコーテイネイトする為の一般的な方法 の使用を可能にする。RICを外部割込み管理回 路に付加できる機能性を有するととで、チップ内 部通信に用いる回路網を思いのままに構成すると とが可能となつている。

割込み情報: ポートの4本のピン53-56は、外部割込み情報専用のものである。外部割込み情報

報プロトコールは、最大限に使用者が規定できる ように特定される部分は最小にしてある。また情 報プロトコールはアドレスとテータとの区別に関 して示している。また、プロトコールはメッセー 2の長さも示している。ととに示すものに関する 特徴を以下に説明する。情報プロトコールは、あ らゆる情報の第1番めの部分が割込みの受取り手 を認定するアドレスであることを示している。ア ドレスの長さは使用者によつて指定される。割込 みが送られる時は、共通な割込みパス上の全ての チップがアドレスを受けとり、それを記憶する。 以下で規定されるように、割込み状況信号は情報 穣がアドレスを選んでいるのかテータを選んでい るのかを知らせる。状況がアドレスピットが送信 されていることを示す限り、受信側のRICはア **ドレス部分をパツァアしておく。割当てアドレス** が送信された後、各々の受信個RICはそのアド レスを使つてチップ上のRAMメモリ66内のピ ツトにアクセスする。N個のアドレスピットが送 られる場合、高いオーダーのN-3個のピットを

通信ポートの残る2本のピン51及び52は、 割込みペスの状況を示す為に使用される。ピンの 配置はテーブル2に示される。

テーナル 2

通信状況ピンの配置・

1	1	受信仰準備
1	. 0	アータ転送
0	1	アドレス転送
0	0	情報転送完了

2本の劉込み状況被は2つの目的に使用される。 第1の目的は、ソースと割あて先の間に非同期の 和職信号を与えるとである。もう1つのととである。もり1つのととである。もり1つのととである。を区別けるとかの転送をの前はいいまる。 かかのででででででででででででででではいます。 第1の状況(即ち」S1=1のでする。第1のことが現代でする。第1のことが現代でするというではできます。 でナルが送られるいっとではいているのででででいます。 を続続れている。1を1のではないのでででででいます。 後続続によりではいっとの状態にする。 がはいかによりではないのでではない。 を続続によりによりではないではないででででででではない。 なはし、S1信号をフロートの状態にする。 がはいっと各々の受信側R1には

味する。もしラウンドロビン仲裁機構が使用される場合、送信例が割込み可能信号の電位を上げて次の割込みを送信するRICの選択を開始させる。マスタースレーアオペレーションが使用され、送信仰が従属RICである場合、マスターが割込み資源の制御を行う。マスターが送信側である場合、従属RICに対し割込み資源をせりあうことができることを知らせる。

IS1信号の電位をゼロに引き下げる。チップが 受取つた情報を処理した後でとのチップはIS1 信号をフロートの状態にする。全ての受取り側 RICが情報のプロセスを完了すると、IS1個 号は「1」を示すようにたる。そして状況は11 となる。送信側は送信可能な状態の次のニアルが もしあればそれを調査する。次のアータの形式は 状況線によつて決定される。状況 0 1 は、アドレ ス情報に対応し、状況10はデータ情報に対応す る。データ情報が送られると、送信側は、アドレ ス情報の転送に使用したのと同じプロトコールを 使用する。唯一の相違点は、情報が送られる後に、 送信側がIS1及びIS2両方の信号をフロート の状態にすることである。最後のニブルが送られ た後で、送信側RICが状況00を出力し、割込 み情報プロックの終了したことを知らせる。選碼 の後に送信側は状況信号をフロートの状態にする。 とのことが受信側に割込みが終了したことを知ら せる。外部仲職機構が使用される場合は、割込み の終了は次の劉込みの開始が可能であることも意

メッセージプロック内の第2のパイトがメッセージ内のパイト数を有している。第2のパイトが(ランタイム情報と同時に)10進法のゼロである場合、次の2パイトがメッセージプロック等の中のパイト数を有している。

祝ピットによつて決定される。とれらのピットが 11であればラウントロピン仲裁機構を使用しこれらのピットが00を示せば外部仲裁機構を使用 する。マスタースレープ仲裁機構は10を示す場合に使用される。

外部割込みがスを支配できるようになる。 が割当の路ではチンプのRAM666かのの を支配できるアスAM666かのの をサンプのRAM666かのの の1 年 AM666かのの の2 年 AM666かのの の2 年 AM666かのの の2 年 AM666かのの の3 年 AM666かのの の3 年 AM666かのの の4 年 AM666かの の4 年 A

上記で示したように、共通割込みパス上の全てのRICは割当てアドレスを受けとり、これをそれぞれの持つ外部割込み管理回路76内にパッフアする。アドレスを受取つた後で、各々の外部割込み管理回路76がひとつのピットにアクセスしそれのあるそれぞれのチップが割込みの割当て先である場合、外部割込み管理回路76は残るメッセージをそのチップの内部RAM内にパッフ

部及び内部に対し回帰的に送信される割込みを示 す為に使用される。との型の割込みは以下で示す よりた、外部ロツクステップに対する割込みに必 要とされる。とのパイトの一番左のニナルは全て 「1」である。右のニブルは、内部のどのプロセ ッサに劉込みを行うかを示す為に使用される。ニ プルの最上位ピットが、PR3に対応し、次の最 上位ピットは、PR2に対応し、以下との通り対 応する。もし、右側ニナルのいずれかのピットに 「1」が含まれる場合、それに対応するプロセッ サは、そのプロセッサに対する割込みを受けとつ ている。割あてアドレスの最後はゼロのパイトで 位置を示される。外部割込み管理76かゼロのパ イトの存在を検索する時、もしゼロが存在すれば 割込みメッセージのテータ部分を送る。テータ部 分の終了は、またゼロのパイトで知らされる。次 に割込み管理回路76はゼロを検知した場合、ア ドレスのソースを送る。内部納込みデータ構造は、 第35図に示される。外部割込み管理回路に知ら されたメッセーソナロックの長さによつて決定さ

アナる。メッセージプロックのアータ部分の終了 までくると、割込み管理回路はゼロのパイトを書 きとみデータ部分の終了を示す。割込み管理回路 は「1」が送られてきた場合側込みのソースアド レスもパツファする。メッセージプロツクを送り おえた後、割当て先 R I C の外部割込み管理回路 7 6 は、割当でアドレスを使用して内部 R A M 66 内の外部割込みマップテーブルにアクセスし、こ れによつてRIC上のどのプロセンサが割込みを 受けとるのか又は割込みは内部的にどの程度の優 先性を持つのかを判断している。内部割込みの侵 先性は、メッセージプロックの開始位置及びメッ セージの長さが書きとまれる外部割込みメッセー ソテーブル内の位置を指定する為に使用される。 さらに、外部割込み管理回路は割込みをチップ上 のプロセッサに送る。割込み管理回路は外部割込 みメツセークテーナル内の情報を使つてメッセー ソプロツクにアクセスしこれのプロセスを行う。

外部割込み管理回路が使用するRAM領域のメモリ管理は、割込みを送つたり受けたりするプロ

セッサーにより行われる。プロセッサが外部割込 みを送る時、削込みはポインタをメツセーシプロ ックにわたしている。外部劉込み管理回路76が 割込みを送つた後に、送信したプロセッサには送 つた劉込みの状況が知らされる。劉込みが誤りな く送られた場合、プロセツサは改めてメツセージ プロックのメモリ領域の使用を請求できる。外部 割込み管理回路 7. 6 は、プロセツサ P. R. O ~ P.R.3 に自分自身のメモリの管理を行わせる機能はない。 故に外部割込み管理回路76は、外部から受けと つたメッセージプロックを書きとむ為の領域を確 保する為にメモリの管理を必要とする。外部割込 み管理回路はメッセージプロックを記憶しておく 為に2つのメモリポインタ:現在のメツセージプ ロックポインタ(CMB)及び次のメッセージプ ロック d イタ (N M B)を有している。 C M B が 有効であれば外部割込み管理回路76はこのポイ ンタをメッセージナロックの開始として使用し、 受取つたメッセージプロックの各々のパイトが普 きとまれた後でアドレスポインタをインクレメン

トする。 割のでは、 ののでは、 ののででは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、

外部割込み管理 7 6 は開始時点で初期化される 最長プロックパラメータを有している。最大の長さより長いメッセージプロックが送信される場合 外部割込み管理回路は「受け取り準備ができてい ない」という信号を割込みの送信側に送る。また 外部割込み管理回路はソースプロセッサを判断し

との割込みインターフェースを提供する目的は、 使用者が割込み機構を規定できるようにスペクト ルを提供する為である。最も簡単を割込み機構は 従来のマイクロプロセッサで使用される割込み機 構と類似している。このより簡単を根構より更に 融通性を拡大する為には内部的にプログラム構造 を形成する必要がある。

状況ポート1(ピン59-67)及び状況ポー ト2(ピン68-76)である2つの状況オート が提供される。状況ポートの信号は同一である。 故に状況ポート1のみに関し説明を行う。状況ポ ートの主要な機能の1つは、異るRIC上のロッ. クステップモードの2つのプロセッサに信号を提 供することである。状況ポート1は、PRO又は PR1、又はロツクステップで接続されるPRO 及びPR1を外部プロセッサにロックステップで 接続する為に使用することができる。状況ポート 2は、PR2又はPR3に関し、あるいは、PR2 又はPR3がロックステップ内で最も重要なマス タープロセッサである内部のロックステップに関 し外部的にロックステップを形成する為に使用す ることができる。各々の状況ポートには、4つの 型のピン機能がある:即ち、ALUの結果状況、 桁上け連結、シフト/循環連結及びチップ内部の 同期である。状況ポート1(ピン59ー67)は、 内部状況パス52及び54に外部状況ポート75

(第1図を参照せよ)を通して接続される。同様にして状況ポート2は、外部状況ポート74(第1及び第2図で示す)を通して接続する。

桁上げ連結 Carry linkage) は桁上げ信号(ピン63)及び桁下げ信号(ピン 64)を有している。あるRICの桁下げ信号は 次に高順位のRICの桁上げ信号と接続される。

ステップからはずれることができる。故にマイク 口命令をとりだす時間は、ロックステップで接続 されるプロセッサを有するRICの間で様々であ る。チップ間の同期ピンはフラグとしての役めを し、各々のプロセッサが先のマイクロ命令を完了 し次のマイクロ命令を取り出したことを知らせて むり次のマイクロ命令を実行する用意ができてい ることを示す。チップ間の同期ピンはワイヤー A'N D 接続される。全ての外部的にロックステッ プで接続されるプロセッサの次のマイクロ命令を 実行する用意ができた時、チップ間の同期級の電 位が上がる。もし1つ以上のPRの用意ができて ない場合、線の電位は低くたる。同期線の電位が 高い時、次のクロックサイクルで実行が開始する。 (共通な外部ロックステップ内のPRを持つ全て のRICは同じシステムクロックを使用したくて はならない。)実行が始まつた少し後で、チップ 内部同期線の電位は全てのPRが次のマイクロ命 今を実行する用意のできた状態になるまで低くな つている。PRが外部的にロックステップで接続

あるRICで発了した演算が使用される場合、最上位プロセッサは最下位プロセッサの桁上げ信号 に接続される。

シフト/循環連結・シフト/循環連結(shift / rotate linkage)は、外部的にロックステップで接結するプロセッサ間のシフトオペレーションを実行する為に使用される。RICのシフト/循環高電位信号(ピン65)は、次に最上位のRICのシフト/循環低電位信号(ピン66)に接続される。最上位RICのシフト/循環低電位信号に接続されて領環連結が形成されている。

チップ間の同期: チップ間の同期(ピン76)を行う為には、外部的にロックステップで接続するプロセッサが確実にフェイズ内で同じ命令を実行するようにしなくてはならない。外部ロックステップ内のプロセッサは、同じRICの中の1つのRICの上に形成される他のプロセッサが外部のロックステップで接続するプロセッサとは独立して作動されることから、同期を行わずにロック

される時、マイクロ命令の実行中はPRに対する 割込みはおとつてはならない。との割込みの制限 によつて、マイクロ命令の実行が開始した後も外 部でロックステップ接続するプロセッサ間の同期 は確実に保たれる。との制限で得る利点は、状況 ポートのピンの為に他の同期手段を設ける必要が たいという点である。外部でロックステップで接 続するプロセッサに関してはもう1つの事項があ る。外部のロックステップ内のプロセッサに対す る割込みは、プロセッサの同期を妨害することに カるので、割込みによる効果を考慮しなくてはな ちない。追加のピンあるいは追加のオーバーヘッ ドを使わずに外部的なロックステップ接続の同期 を維持する為には、外部ロックステップに対する 割込みは、外部ロックステップ内の全てのMSP に対して行われるよう制限されなくてはならない。 劇込みのサプセットに割込みを実行することは可 能なのでこれはあまり厳格な制限ではない。外部 ロックステップ全体に対し割込みを送ることを必 要とするこの制限によつて、外部ロックステップ

内のちょうどプロセスを開始しょうとしているプロセンサに割込みの名前を知らせる必要性を答られるとかできる。外部ロックステップ全体に送みが行われる外部ロックステップを有する全によるのRICが同じの外部割込みを管理回路は、受取つたプロセスの外部のとに関いましたのでである。RICの自己に対する割込み(self

Interrupt)に関しての特徴は、外部ロックステップに対する割込みが割込み先である外部ロックステップ内のプロセッサを有するRIC内で発生される場合に必要となる。前に述べたように、自己に対する割込みは、割込みの送信仰にとつてそ、の送信仰自身が受信も行つているものとして取り扱われる。

上記で説明した通り、外部ロックステップ内の プロセッサはマイクロ命令の実行中は割込みが行 われることはない。マイクロ命令が終了すると割

号を発生することができる。例えば、RICに使用されるCRT制御回路の場合、N信号は内部的に制御されて水平同期信号を発生する。また、チップ間同期信号は内部制御システム(即ち DLA 2 2 等)に対する直接の割込みの時に使用される。例えば、チップ間同期信号は、内部的には、外部クロックとして通訳される。この外部クロックは、各クロックサイクルの期間に所定のオペレーションを発生させる。

外部ロックステップの全てのプロセスは、割込みによつて開始される。RICのリセットによつて外部ロックステップ内のマスタープロセッサが自己に対する割込みを発生し、外部ロックステップを開始させる。プロセスの完成時点で、マスタープロセッサは自己に対する割込みを発生し、最も高い優先順位を持つ別々のプロセスを開始する。

リセットインR I (ピン17)及びリセットアウトR O (ピン78)の2本のチップ制御線が提供されている。全てのRICから接続するRI及びR O 信号は別々に接続される。RI信号はアク

状況ポートにはもり1つ重要な機能がある。外部ALU状況ピンNZCVは、制御DLA22への入力として実際の内部ALU状況ピンを配置することによつて決定される値を持つ。制御DLA22への入力は外部ピンに送られた値を発生する。故に上記で示したような機能によつて、リアルタイム信号を発生する為に使用される実際の外部信

テイプで高い電位である。RI信号が「1」を示すまで電位を上昇されるとRICは自分自分を別別化を開始しオペレーションに値える。RO信号は、有効にワイヤーANDで接続されてした時にないでは、Cが初期化オペレーションを完了した関位を低くしてあるRO信号はフロートの状態になる。全てのRICが初期化を完了したとを示す。

チップが初期化されると、プロセッサPR3はただちに最も高い優先順位255を持つプロセスを開始させる。 この場合プロセッサPR3がマスターである。プロセッサPR3は次にチップ上のRAM66の位置「0」に固定アドレスをロードし、プロセッサPR3はそこで他のプロセッサに対する割込みを行いこれに必要なプロセスを開始する。

好ましい実施例において、この中のRICは、 高出力部分に使用されるCMOSを持つ1マイクロメーターの復細加工によるNMOSに実施され ている。 2 つの出力ピン 8 1 及び 8 2 が 3 ポルト と接地電位で使用される。

更に、本実施例はRIC上にクロック発生器を 設置し、2つのクロック入力(ピン 79 及び 80) の間にのみ結晶を設置する必要がある。その代わ りに、所望の通り例えば多重RICを使つたシス テムに実施する場合では、外部クロック回路をと れらのピンと接続することができる。

第37図から第41図は、1つ又は2つ以上のRICチップを使つて与えられたある特定な構成を示す。第37図は、16ピットパイプラインRIC様成を示す。パイプラインプロセスは4段のプロセスにのみ限られるわけではなく、追加のRICをいつしょに連結することで望むだけの数の段を含むことができることに注意してほしい。

第38図は、32ピットパイプラインを示している。プロセッサ PR1及び PR2は、プロセッサ PR1及び PR2は、プロセッサ PR1及び PR2は、プロセッサ PR1及び PR0と同様ロックステップで接続されるととに注意して欲しい。また、2段のパイプラインのみが示されているが、単に充分を数の

桁上げど桁下げ信号及びシフトと循環高と低信号を除き状況ポートの全てのピンを接続して特定のステージを作り出すことによつてつけ加えらの信号は、ワイヤーANDではつしよに接続されるの時違正に機能する。桁下げ信号はピンと循環低電位ピンは、機能する。(最高位シフトと循環高電位ピンは接続する。)

第40図は、64ピットの規模のステージのパイプラインを示す。このステージは、最初に再構成可能な1C上の4つ全てのプロセッサをロックステップで接続することによつて形成される。第40図では、別々の16ピットの入力及び出力ポートとして示されているので、4つのフェーののまなアータ転送が必要となる。各々のロでの2つのアータボートを統合することも可能でしるので32ピットの並列ポートが形成される。これによつて第40図の64ピットパイプラインのス

R I C チップを連結するだけでパイプラインの段 をいくつでも望みの数にすることができることも 注意していなくてはならない。

第39図は、64ピットの外部ロックステップ パイプライン構成を示している。R I C A のプロ セッサPR3及びPR2及びRICBのプロセツ サPR3及びPR2は、全てのプロセッサーPR1 及びPROと同様にロックステップで接続される。 無る 9 図において、両方の R Ι C から接続する 3 2 ピット出力は、それぞれの単一を 1 6 ピット アータポートにおいて、多重化されているものと して示している。とれはパイプライン構成の中の 1つのデータポートは、前の段から与えられたデ - タを受けとる為に必要とされるからである。異 るチップ上のプロセッサPR 3及びPR2を含む ように外部ロックステップ構造の大きさを拡大す ることによつて、より大きなパイプラインを作る ことさえ可能である。故にパイプラインワードの 規模は、32ピットインクレメントまで拡大する ことができる。32ピットのインクレメントは、

テーソ構成は、4クロックサイクルよりむしろ2クロックサイクルでデータ転送を実行している。 しかしながらこれによつて、32ピットの転送を 可能にし多重ステージパイプラインのステージの 他のペアとの間を並列にする別々の絶縁されたス イッチの組が必要になる。故に、多重16ピット ポートを使用した方がはるかに簡単であり、一般 的に好ましい。

第41図は128ピットの大規模ハイプリッド ロックステッププロセス実行累子を形成するよう に接続された2つのRICテップを示している。 内部的には各々のチップの上の4つのプロセッサーはロックステップで接続されている。各々のチップ上に1つだけの状況ポートが使用されて図で示す通り2つのチップ間にロックステップを形成しているので、いずれかの多重化法によつて64 ピットの規模にした同様のハイブリッドプロセス 実行案子を構成することが可能である。

多重RIC 構成において、割込み操作通信網を 使り樹系図を用いることでのその融通性及び複雑 性をさらに増加することができる。

以下の3種の割込みは、一定の集積形式で割込みは、一定の集積形式で割込みは、一定の集積形式で割込みは、10チップ内部割込みが1つのRICとに存在するのでこれらの割込みが1つの理されるのでとない。(2)チップ間割込みことがあるチップとで割当ている。(3) - / O 割込みにとれらの割込みには 2 つりで発生し、1つ又は2つ以上のRにチップ上に存在するプロセッサに対し行われる。

チップ内部割込みは通常チップ上でダイナミックな再構成を行う為に使用される。例えば、内部的ロックステップモード又はパイプラインモードのオペレーションを実行させる為に使用される。内部的な割込みは、同じRICチップ上の他のプロセッサからサービスを受ける為にも使用される。チップ内部割込みは多重チップ構成に於て重大を役目を果たしており、チップ外又はチップ内のロックステップパイプラインモードのような様々な

多重モードを開始させる為に使用している。チップ間割込みも、異るチップ上に異るプロセッサが使用される時に、多重プロセッサの態機にある。一般の方のでは、異るチップ上に形成された中央プロセッサを含む多重チップ構成である。中央プロセッサ及び「ノロアロセッサ及び」ノロアロセッサ及び「クロセッサと共通イスを共同である。中央プロセッサと共通イスを共同でしている。「人の表徴で行るの転送を行っている。

故に、チップ上のどのプロセッサも3種類のソースから割込みを受けとる可能性がある。: 同一チップ上の他のプロセッサ、又は異るテップ上のどれかのプロセッサ又は「/ O 装置からの割込みである。以下の集積割込み機構は一定の型式でとれらの割込みを処理している。いずれかの割込みを処理している。いずれかの割込みを処理している。いずれかの割込みを処理している。いずれかの割込みを見るといずれなのである。いずれなの割込みを処理している。いずれなの割込みを処理している。いずれなの割込みを処理している。いずれなの割込みの優先履位及び現在実行中のプロセスの優先履

位に従つて適当なプロセスのスケぞユールを行う。 上記で示した様に、各々のRICは外部割込み 管理回路76を有し、との割込み管理回路が外部 ソースから受取つた割込みの受け取り、記憶及び 内部プロセッサへの通知を管理していて、内部プロセッサによつて発生された外部割当て先に対する割込みの送信も管理している。

るチップ間割込み、即ちクラスター内部割込みを 容易に操作することができる。このようなパスは 「クラスター割込みパス」と呼ばれ、第42図に 示されている。このパスはまたクラスター内部で 発生し、クラスタ外部に割当て先を持つクラスタ 一即ちクラスター間割込みを運搬している。同様 にパスはクラスォー外部で発生し、クラスォー内 のチップの内の1つに於るあるプロセッサに割当 てる1/0及びクラスォー間割込みの連搬に使用 されている。この階級的機構をもつと有効に利用 する為には、割込み管理回路218が加えられる。 この割込み管理は外部割込み管理回路 7 6 がRIC チップに対し行つていたと同じ役めをクラスォー に対し行つている。故に各々のチップ216の外 部割込み管理回路76は、クラスター割込みパス 2 1 4 及び クラス 4 一 割込 み 管理 回路 2 1 8 と イ ンターフェースしていたくてはたらたい。

クラスター割込み管理回路 2 1 8 の第 1 の機能は、クラスター割込みパス 2 1 4 と クラスター間及び 1 / O の割込みの間のインターフェースとし

て働くことである。故にクラスォー内で発生した クラスター間割込みは、クラスター割込みパス 214及びクラスター割込み管理回路218を介 し外部クラスォーに送られる。同様に、クラスタ ー外部で発生したがクラスター内にあるチップを 割合て先にするクラスォー間及び1/0の割込み は、クラスター割込み管理回路218及びクラス ター割込みパス214を介し割当てチップに送ら れる。クラスター割込み管理回路218及びクラ スォー内にある(例えば)4つのチップはクラス ォー割込みパス214を共用している。クラスチ - 割込みパス214に関する仲敷方針は、ラウン Pロピンに限られない。RIC割込みインターク エース 7 6 によつて外部的な制御方法によつて仲 戦を行うことが可能である。故に違う仲裁機構を 必要とするクラスターは、それぞれの持つ各々の タラスォー割込み管理回路218内にその機構を 設けている。クラスター割込み管理回路218は 優先顧位又は位置に基づくよりを仲裁方法を使用 するとともできる。優先順位に基づく仲裁方針を

とつた場合、クラスター割込みパスを共用する全 ての競争者(即ち、チップ216及びクラスター 割込み管理回路218は、チップ外部に存在する パス仲裁論理に(他のチップに送る為の)割込み の優先順位の判断をゆだねている。そとで仲裁論 理が最も高い優先願位を持つ競争中の割込みソー スを決定しパスの制御をまかせる。位置に基づく 仲裁方針が使用される場合、ペスの使用権につき 粉争が起きた場合、クラスター内部の競争者の位 置が誰にパスの支配を与えるかを決定する。例え は第42図では、位置に基づく方針を使つて決定 する場合、争いが起つたならばクラスォー割込み 管理 2 1 8 が常に第 1 の優先 順位を持つとするこ とができ、それぞれチップ0、1、2、3が続く。 設計者は、考想中の応用に適合するようにもつと 複雑を仲載方針を自由に選択することができる。 しかし、優先順位に基づくようなより複雑を方針 にはチップ外部にかなりの論理を必要とするが、 ラウンドロピン又は位置に基づくような簡単な方 針はチップ外部に非常にわずかな論理を用意する

だけで使用できる。

この点で生まれる明らかな愛問点としては、 2 つ以上のクラスターを持つシステムでいかにして管理を行うかということである。 これらのクラスターは、自分のクラスター割込みペス及びクラスター 割込み管理回路を介しクラスター間割込みを送つている。 さらに階級的組織による管理機構を発展させて、一組の(例えば4つの)クラスター

を「マクロクラスター」と呼ぶことにする。マクロクラスター222内のクラスター220は、 -

「マクロクラスター割込み管理回路」226に接 娩する「マクロクラスター割込み イス」 2 2 4 を 共有している。マクロクラスター割込みパス 224 及びマクロクラスター割込み管理回路226はマ クロクラスター222内に於て、クラスター削込 み バ ス 2 1 4 及び ク ラ ス タ ー 割 込 み 管 理 回 略 218 がクラスター内部で行つていたのと同じ役目を果 たしている。我々は、この考え方をさらに発展さ せることができる。故に(例えば)4つのマクロ クラスター222で次に高いレベルになるような 奥在を作りだすと考えることができさらにそれ以 上発展させることも可能である。最後に、好きな 数だけレベルを設けた後で割込みを転送するパス を共有する(例えば)4つのサプシステム234 まで拡張し、これらから成るシステムの段階まで 違けるととができる。とのパスはシステム割込み パス232と呼ぶ。

第43図は、サアシステム0及び1である2つ

特開昭58-58672(42)

のサプシステム234から成るシステムを示して いる。サプシステム1は、マクロクラスター0及 び1を含んでいてサフシステム0は、ただ1つの マクロクラスター即ちマクロクラスター0を含ん ている。サプンステム1のマクロクラスター0は 4 つのクラスターから成り、サアシステム1のマ クロクラスター1は2つのクラスターから成りサ プンステム 0 のマクロクラスターは 2 つのクラス メーから成る。各々のクラスターは4つのチップ を有している。との例ではサプシステム1比1つ だけのマクロクラスターを有している。故にとの マクロクラスターの割込み管理機能はサアンステ 40の割込み管理に委託することができる。これ によつてサアシステム0ではマクロクラスター割 込み管理回路及びマクロクラスター割込みパスを 除くことができる。ことでは、劉込みの階級的構 造の考え方を示している。

第44図では、割込みの階級的構造の考え方を 示す樹系図を用いて第43図のシステムが示され ている。RICチップ216内のプロセッサPRO

ップ 7 6 、 クラスター 2 1 8 、 マクロクラスター 2 2 6 … … サプシステム 2 3 0 の割込み管理回路 は次々とより高くなる各々のレベルに存在する。 これらに1、2……nと番号がついている。プロ センサーは、その完全な「アドレス」を与えるこ とによつて即ちシナシステム……、マクロクラス ター、クラスター、チップ及びプロセッサを規定す るととによつてプロセッサーを完全に規定すると とができる。故に各々のアドレスは、サアシステ ム……マクロクラスター、クラスター、チップ及 びプロセッサを区別する為の構成部を有している。 我々は、このアドレス構成部に同様に階級的組織 のレベルを与えることができる。プロセツサ PRO - PRSを規定するアドレス構成部は、最下位階 級即ちレベル0とする。テップ、クラスター、マ クロクラスター、……サプシステムを特定するア **ドレス構成部が欠々と高くなるレベルにそれぞれ** 異する。これらはレベル1、2……nと名づけら れている。

チップ内のプロセッサ間割込みは、最も頻素に

- PR 3 は樹系図の最下位階級に存在し、木にたとえるなら「葉」の部分にあたる。次に高い段階にはRICチップ216を示す節がある。その次の2つの段階にある節はクラスター220、その上はマクロクラスター222を示す。最後に樹系図の根元では完全なシステム全体を示している。

樹来図にはレベルに番号をつけるととができる。 プロセッサはレベルのとする、引き焼きより高い レベルに存在するチップ216、クラスター 220 マクロクラスター 2 2 2 は、それぞれレベル1、 2、3……… n で示すことができる。間様になけるレベルにも番号をひがにあるとができる。をあるとがないには、チップとができる。タラスター 2 1 4、マップレベルに存在する。クラスター 2 1 4、マックラスター 2 2 4、……… サアンステム 2 2 8 及びレベルに存在する。とれぞれれ1、2……… サアンステム 2 2 8 及び存在する。これらはそれぞれ1、2…… 管理的に存むつけられる。プロセッサーのに存在する。チ

起とる割込みであると予想されるのでとれらの割 込みの通信及び処理は一般的にできるだけ迅速に 完了したくてはたらたい。上記に示した通り、1 つの割込みについてのソース、割当て、優先順位 及び関連ランタイムに関する情報は、一度ソース プロセッサがチップ割込みパス88の支配を握る とちよりど1パスサイクル内で通信される。クラ スタ内でのチップ間割込みは2番目に一般的た割 込みであると予想される。本発明の割込み組織で は、クラスター割込みパス214を使つてソース プロセッサからのソースチップ 2 1 6 及びプロセ ツサPRO-PR3、割合でチップ及びプロセッ サ優先性及びランタイムを確定する情報をクタス ター 割込み管理回路218に8 パスサイクルで通 信することが可能となつている。マクロクラスタ 一内のクラスター間削込みはその次に最も一般的 な削込みであると予想される。本発明の割込み組 厳では、ソースプロセッサからの割込みに関して のソースクラスター、テップ、プロセッサ、およ ひ割合てクラスターチップ、プロセッ サ および

優先性及びランタイムを確定する情報は、マクロクラスター割込みパスを用いて10パスサイクルでマクロクラスター割込み管理回路226に通信可能となつている。次々と高くなつてゆく各段階における割込み期間での同様の情報の通信には、レベルの高くなるごとに2パスサイクルのみ追加した期間が必要となる。

スを介しレベル(I - 1)の他の割込み管理回路に移動するかのいずれかである。例えば、第44 図の割込み3は割込み情報がサアシステム1内を移動している間は上昇フェイズである。割込み情報がサアシステム1の割込み管理回路からシステムの割込みでサアシステムのの割込み管理報がサフェイズが始まる。情報なサフェイズが始まる。情報なサフェイズが対するまで非上昇フェイズが継続する。

上記の割込み3のように、ソース及び割当て先プロセツサが異るサアシステム内に存在する場合、割込み情報は最長距離を移動し、最長の時間を受する。一方、割込み1のようにソース及び割当をでする。一方のは、一番もまり発生で及び、一番もまり発生しない割込みが通信又はプロセスに存在する。とのというの時間で通信及びプロセスが行われる。このは最短時間で通信及びプロセスが行われる。とのはましい利点が割込みの階級的組織から直接的に

割込み3は、サプシステム0のマタロクラスター内のクラスター0に属するチップ1、2、及び3上のPR0で発生する。割込み情報は一番下の「葉」から開始し、必要な限り上まで移動してゆく。即ちレベルを上に上つてゆき、次に系図を下まで下つて割めて先プロセッサを示す「葉」の部分まで達する。割込み情報が樹系図内を移動する時間内における割込みの移動を我々は、2つのフェイズに区別している。これらのフェイズは、

生じる。

割込みの上昇フェイズの間、割込みはレベルーの割込み管理回路から送られる。割込みは、レベルーの割込みパスを介し割込みの階級的組織の樹系図を上に上つてゆきレベル(I+1)の割込み管理回路に達する。上昇フェイズ期間中の割込みの移動は、第45図に示されている。

ベスサイクル1から(2n十4)まで; これらのサイクルは、制込みの割当てアドレス、割込みの優先順位、及び制込みのソースアドレスを指定する情報を転送する為に使用される。割当てアドレスは、以下の順で送られる。; サプシステム、…… マクロクラスター、クラスター、チップ及び

割込みの非上昇フェイズの間、割込みは、、にの割込み管理回路によって送り出込みが動し、にないにの割込みで理回路に移動し、レベル(1)の管理回路に移動し、レベル(1)の管理回路にかかったのでで移動のでで移動のでで移動のでで移動のでで移動のでで移動のででである。割込みを動きを第45図に示されているの動きを第45図に示されている。

割込みの上昇フェイズ中に使用するプロトコールが第46図に示される。特に、レベルーの割込みパスみ管理回路2は、割込みをレベルーの割込みパスを介しレベル(1+1)の割込み管理回路に送りだしている。この割込みの期間中以下の動作が行われる。まずレベルーの管理回路2がレベルーの割込みパスを制御する。

ペスサイタル O だついて: レベル I のソース割込み管理が製込み情報線に全てゼロを送つてレベル(i+1)の割込み管理回路をこの割込みの割

PR即ち、関連するアドレス構成要素の最高のも のから開始して、減少オーダーで階級組織内を下 に向つてプロセスが進行し、PRの認定まで至つ ている。第46図では、サナンステム0、マクロ クラスター1、クラスター3、チップ1及び2、 プロセツサPR2及びPR3が割当て先として特 定されている。割込みの優先順位は127であつ てランタイム情報は34である。側込みのソース アドレスはサブンステム 2、マクロクラスター 1、 クラスター2、チップ3 P R O である。ととで関 連する最高レベルのアドレスがサプシステムアド レスであると仮定すると、最悪の場合でもソース 及び割当て先を認定する情報を転送する為には 2 n サイクルが必要とされる。割込みの優先履位 及びその他関連情報を送信する為には、あと4ヶ イクルが必要とされる。例えば、最高レベルの間 連アドレスがマクロクラスターまでだけである場 合、マクロクラスター、クラスター、チップ及び プロセツサだけのシーケンスがパスサイクルーか ら5までで特定される必要がある。 パスサイクル

- 特開昭58-58672 (45)

6 及び 7 は、 割込みの優先順位を転送する為に使用され、 パスサイクル 8 及び 9 は、 割込みについての ランタイム情報を 転送する 為に使用される。 ソースアドレスはパスサイクル 1 0 か 5 1 4 で送 5 れる。

以下の例でとれらのプロトコールをより具体的 に説明する。サブンステム、マクロクラスター、 チンプ及びプロセンサPRから成る階級的組織を

テーナル3

外部からチップへの割込み通信

使用中の割込みペス ソース及び

ソース及び割当て先を確定する 情報を転送するシーケンス

上昇フェイズ

クラスターパス

サプンステム、マクロクラスタ ー、クラスター、チップ、プロ セッサ

マクロクラスターバス サプシステム、マクロクラスタ

、 サアシステム、マクロクラスタ ー、クラスター、チップ、プロ セツサ

サナシステムペス

サプンステム、マクロクラスタ ー、クラスター、チンプ、プロ センサ

システムパス

サプシステム、マクロクラスタ ー、クラスター、チップ、プロ セッサ 持つシステムを考えてみる。あるサプシステムで発生しどれか他のサプシステムに移動するよう制当てられた割込みは、テーブル3で示すように階級の中で移動する。テーブルは各々のレベルでの(我々はチップ外の割込みプロトコールについて説明を行つているのでレベル1から始まっている)割込みテータペス上の割込みの運行を示している。

テーブル3は、以下の点につき示している。割込み非上昇フェイズが開始するととは、割びとなるの中で登る必要のある一番上のレベルをで達したことを意味する。テーブルに示されるルロでは、その最高位レベルはアンスのレベルの間ででは、その最高位レベルはアンスのの非上昇フェインの関アドレスの第1の構成部で示すしているとマッテする。例とは、サブシステム割びないとマッテする。例とは、サブシステム割びないとマッテする。例とは、サブシステム割びないとマッテする。例とは、サブシステム割びないとマッテする。例とは、サブシステム割であるとマクロクラスターを確定するアドレス構成部もレベル3である。

非上昇フェイズ

サプシステムパス

マクロクラスター、クラスター、 チンプ、PR、サナシステム[※]

マクロクラスターパス クラスター、チップ、PR、サ プシステム[※]、マクロクラスタ **

クラスターパス

チップ、PR、サプシステム $^{\times}$ 、 $マクロクラスター<math>^{\circ}$ 、クラスタ

※ このアドレスは割込みの割当てを決めるのには必要ない。故に割当てパス上を送信されない。

割込みの移動が非上昇フェイズの期間中、割当 て先を認定する情報のシーケンスは、割当てアドレスにある簡単な「アドレス構成部を左にシフト せよ」といりオペレーションの実行によつて容易 に導き出される。このことは、割込み管理回路が 手渡された割込みの割当てを認定する情報のシーケンスを構成する為の簡単なアルゴリズムを構成 する為に利用される。 割込み管理回路がバスを制御するようになると、 第1のサイクルで割合て先の割込み管理回路が決定されるとを思いだて しい。 テーブル 3 で で 活 通り、 割込み管理回路がバスを で しい。 テーブル 3 で で 活 過り、 割込み管理回路がバスを で で あいままれて で で あいまれて は で で で るい といる とい とい で た は 、 割当て バス上に全て ゼロを 送信する と に よ つ て 決定する。

割込み管理回路によつて実行されるオーパーオール機能は以下の通りである。我々は、レベル! の割込み管理回路を最初念頭において説明を行う。

一方でレベル!の割込み管理回路がレベル!の割込みパスとインターフェースし、また一方ではレベル(i-1)の割込みパスともインターフェースしている事を思いだしてほしい。これらのパスは様々を方針によつて仲載が行われる。これらの方針の典型的な例はラウンドロピン、優先性の腰によるもの、位置順によるもの等である。チップ割込みパス88はラウンドロピンの順序で仲載

の維持の方が簡単であるが、好ましい削込み管理 回路は、優先順位に基づく方針で待ち行列を維持 している。優先順位に基づき待ち行列の管理を行 り場合、行列の中での到着時間の順にかかわらず、 行列の最前列にある割込みがその列の中で最も高 い優先性を持つ。

情報状况信号は、いつアドレス情報が送信されるかを示している。上記で示した通り、割当てアドレスが最初に送られ次に割込みデータ及び型回路という。割込み管理回る。割込みでいたで、割込みではなったで、割込みではなったで、割込みではなったで、割込みではなったが割込みがあるとにあずる。というまで、は「アリンとなりは、「アリンとなります。」というまでは、非上昇フェイズ)のいずれにするなので、発行するかので、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないでは、ないのでは、ないのでは、ないのでは、いる。

階級的組織情報網は、RIC割込みポート機能 に対する応用の一例として示されている。との割 が行われる。いかなる割込み管理回路も内外両側からの割込みを同時にうまく処理することが可能でなければならない。割込み管理回路と割込みパスの間のインターフェースを示すプロック図が第45図に示される。

込みポートは、割込みトポロジー及び削込みプロ トコールによつてまつたく一般的なものである。 階級的組織割込み情報網は、情報網のある形態 にすぎない。この情報網の中では、トポロヤーに 関しては変化させることが可能でこのことがRIC の外部割込み管理回路に影響し、2種類の変化を 生む。第1の変化はレベルの数が変わると、情報 網の中のアドレスの長さが変化することである。 アドレスの長さが変化すると割込み管理回路内の パツフアスペースも変化する。パツフアスペース の変化は、RIC内に含まれていたい例込み管理 回路のハードウエアの設計を適当に変えることに よつて操作するととができる。トポロソーの変化 によるもう1つの変化は、有効アドレスの組に関 して起こる。この変化も、RICの外部割込み管 理回路を使つてプログラムすることによつて又は 他の割込み管理のハードウェアの仕様を変えると とによつて操作される。

上記説明はRICのみを有する副込み情報網に 限定されて示してある。しかしながら、チャンオ ル、デイスタ、プリンター及び通信網インターフェースといつたようなあらゆる I/O 装置を含む情報網にも同じ様に応用することができる。 この応用性を保持する為に唯一必要とされることは、I/O 装置がRIC 割込みポートと接続可能なインターフェースを有しているということだけである。

以上のように当初の目的を達成し、一般的な構造を持つICを再構成可能にして使用者のニーズにあわせたカスタムなICを安価に提供することができる。このような再構成可能な機能を持つことで本発明はICにより新しい大きな応用の可能性を持たせることができると確信する。

4. 図面の簡単な説明

第1図は、本発明の再構成可能ICの概略的全体図である。

第2図は、1つのプロセッサを全体的に含み各 各の種類の外部インターフェースの内の1つを含 むRICの部分的な平面図である。

第3図はNORゲート仕様として実施された DLAのAND及びORマトリクス部分を示す部

第 1 3 図、第 1 4 (a)、 1 4 (b)、及び 1 4 (c)図は、各 4 のプロセッサ内のパレルシフタで実行されるシフト及び/又は循環オペレーションの例を示すで実行される抽出オペレーションの例を、 図であり、第 / 5 図はパレルシフタデテ図である。

第16図はアータバスの構造を示す図である。

第17図は、アータパスのプロトコールを示す 図である。

第18図は、各4のプロセッサ内のアータバス のプロック図である。

第19図はRICの内部RAMシステムを概略的に示す図である。

第20及び21図はそれぞれのパス制御ユニットの構造及びオペレーションを示す図である。

第22回は、メモリスケデューリングユニット のオペレーションを示すフローチャートである。

第23図〜第25図は隣接するプロセッサの再 構成された異るモードに対応して状況マルチプレ クサが操作を行う状況パスの内部接続を示す図で ある。

第26図、第27図及び第28図は、それぞれ

分図である。

第4図は、ゲート仕様と名前のついた実施例であるDLAのAND及びORマトリクスの部分を示す図である。

第5図は制御パスの構成を示す図である。

第6図は、中央制御記憶制御回路と4つのモデュール制御回路の間の関係を示す図である。

第7 図は、中央制御記憶回路がアクセヌされた 場合の中央制御記憶回路及びそれぞれのモデュー ル制御回路のオペレーションを示すフローチャー トである。

第8図は、花輪状に連結されたペス使用可能線の接続を示す図である。

第9図は各々のプロセッサ内のALUの主要部分を示す概略図である。

第10図及び第11図は、それぞれ各々のプロセンサ内の機能プロンク及び桁上げ連結プロンク 都分の回路図である。

第12図は各々のプロセッサ内のパレルシフターの構造を示すフローチャートである。

独立モードロンクステップモード、パイプライン モードにおけるRIC内のアータ及びコマンド命 令の流れを観略的に示す図である。

第29図は、各々のプロセッサ内のスケアューラ及び割込み管理回路のプロック図である。

第30回は、各々のプロセッサ内のスケアユーラのオペレーションのフローチャートである。

第31図は、割込み管理ワードのフォーマット を示す図である。

第32図は、割込みが送られる時の制御記憶ア ドレス線のフォーマットを示す。

第33図は、プロセッサPR3がプロセッサPR1に対し割込みを送る時の割込みのタイミングの例を示す図である。

第34図は、RICのピンの配置図である。

第35回は、概略的に内部割込みデータ構造を 示す図である。

第36図は、劉込みが送られている間の外部割 込み管理回路のオペレーションを示す図である。

第37図~第41図は、2つ以上のRICチッ

特開昭58-58672 (48)

ア上のプロセッサを連結することで可能となる構成 の例を示す図である。

第42回は、4つのチップからクラスタまでの 組織を示す図である。 (a及び43b)

第43V回は、多数のRICチップが結合された 階級的組織を持つシステムを示す図である。 a及びb

第44回は、第43V回で示した多重チップ組織 に相当する樹系図である。

第45図は、第45V図及び第44図で示したよ 9に階級的組織内の不特定なレベルにおける網込 みレベル管理回路及びパスのオペレーションを概 略的に示す図である。 a及びb

第44回は、第43回及び第44回と同様の多 重チップ階級的組織において削込みが上昇フェイ メである時の情報プロトコールを示すタイミング 図である。

第47図は、各々のプロセンサ内に含まれるマ イクロシーケンサのプロンク図である。

符号の説明

PRO~PR3…プロセッサ、12… 翻込み管

理回路、14 …制御パス、52,54 …状況パス、56 … データパス、16 … スケデューラ、22 … 制御 D L A、28 … A L U、36 … マイクロシーケンサ、38 …制御記憶回路、45,50 …状況マルチプレクサ、60 … R A M メモリモシュール、68 … メモリスケデューラユニット、72~76 …外部インターフェース。

図面の浄費(内容に変更なし)

手 続 補 正 魯 (方式) 57.10 - 7

特許庁 長官 殿

圖

- 1. 事件の表示 昭和 57 年 特許額 第 / 28805 4
- 2. 発明O名称 再構成可能集積回路
- 3. 補正をする者

事件との関係 出願人

名 称 テキサス インストルメンツ

4. 代理人

住所 東京第千代田区丸の内3丁目3番1号 (電話 代表 211-4741署) 小中外 氏名(5995) 弁理士 中 村 稔

- 5. 補正命令の日付 自 発
- 6. 補正の対象 全図面

7. 補正の内容 別紙の通り

図面の浄售(内容に変更なし)。

- (1) 明細書第 / / 3 頁第 / 行に [®] 示す。 [®] とあるを「示す。ととでピット 1 3 にかける C S が / のときは金部のコンテクストスイッチを。 C S が O のときは部分的なコンテクストスイッチを。 またピット 1 2 にかける B U が / のときはすぐ にプロセスされない場合の割込みをペッファ しないことをそれぞれ表わしている。 」と訂正する。
- (2) 同番第 / 8 5 頁第 / 9 行に * ある。 * とあるを「あり、第 2 3 図は独立モード内部接続を、第 2 4 図はパイプラインモード内部接続を、第 2 5 図はロックステップモード内部接続をそれぞれ示している。」と訂正する。
- (3) 阿書第 / 8 6 頁第 7 行 K 『テャートである。』 とあるのを次の通り訂正する。 「テャートであり、この図 K 用いられる、

P(INT)は割込みの優先順位を、

P (N E X T) は次に高い優先性をもつプロ セスの優先駆位を。P (C U R) は現在実行

手続補正書 57.10.-7

昭和 年 月 日

特許庁長官 若 杉 和 央 股

1. 事件の表示 昭和 57 年特許顕第 7位8805 号

- 2. 発明の名称 再構成可能集積回路
- 3. 補正をする者

事件との関係 出願人

名 称 テキサス インストルメンツ インコーポレーテッド

4. 代 理 人

住 所 東京都千代田区九の内3丁目3号1号(電路代表 211-6741号)

氏名(15995)弁理士中 村

5. 補正命令の日付 自 発

明細書の発明の詳細な説明の観かよび関面の簡単な説明の概

8. 補正の内容

中のプロセスの優先順位を、NEXTは次に スケアユールしたプロセスの優先順位を持つ レジスタを、CURRENTは現在実行中のプロ セスの優先順位を持つレジスタを、TEMP は一時的なレジスタを示している。」

(4) 明細書中、下配各個所の誤記を失々訂正する。

Ţ	:15	19 19	fr E
109	18	#1 * 0	タイプの(0000)
	20	£171	タイプ1(0001)
110	1	2	2(0010)
184	/	である。	であり、通常の区面を持つメ イナミック論理配列を示して いる。
•	10	フロー	制御記憶メモリ管理のフロー
•	17	機能	ALUの機能
185	10	RIC	再構成可能(C(RIC)
186	1	独立モードロックステ ップモード	独立モード、ロックステップ・モ ード