Complete binary trees

Outline

Introducing complete binary trees

- Background
- Definitions
- Examples
- Logarithmic height
- Array storage

Background

A perfect binary tree has ideal properties but restricted in the number of nodes: $n = 2^{h+1} - 1$

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023,

We require binary trees which are

- Similar to perfect binary trees, but
- Defined for all n

Definition

A complete binary tree filled at each depth from left to right:

Definition

The order is identical to that of a breadth-first traversal

Recursive Definition

Recursive definition: a binary tree with a single node is a complete binary tree of height h=0 and a complete binary tree of height h is a tree where either:

- The left sub-tree is a **complete tree** of height h-1 and the right sub-tree is a **perfect tree** of height h-2, or
- The left sub-tree is **perfect tree** with height h-1 and the right sub-tree is **complete tree** with height h-1

Height

Theorem

The height of a complete binary tree with n nodes is $h = \lfloor \log(n) \rfloor$

Proof:

- Base case:
 - When n = 1 then $\lfloor \lg(1) \rfloor = 0$ and a tree with one node is a complete tree with height h = 0
- Inductive step:
 - Assume that a complete tree with n nodes has height $\lfloor \log(n) \rfloor$
 - Must show that $\lfloor \log(n+1) \rfloor$ gives the height of a complete tree with n+1 nodes
 - Two cases:
 - If the tree with n nodes is perfect, and
 - If the tree with n nodes is complete but not perfect

Height

Following proof is optional material Note that **Ig means log base 2**

Case 1 (the tree is perfect):

- If it is a perfect tree then
 - Adding one more node must increase the height
- Before the insertion, it had $n = 2^{h+1} 1$ nodes:

$$2^{h} < 2^{h+1} - 1 < 2^{h+1}$$

$$h = \lg(2^{h}) < \lg(2^{h+1} - 1) < \lg(2^{h+1}) = h + 1$$

$$h \le \lfloor \lg(2^{h+1} - 1) \rfloor < h + 1$$

- Thus, $\lfloor \lg(n) \rfloor = h$

- However,
$$\lfloor \lg(n+1) \rfloor = \lfloor \lg(2^{h+1}-1+1) \rfloor = \lfloor \lg(2^{h+1}) \rfloor = h+1$$

Height

Following proof is optional material

Case 2 (the tree is complete but not perfect):

If it is not a perfect tree then

$$2^{h} \le n < 2^{h+1} - 1$$

$$2^{h} + 1 \le n + 1 < 2^{h+1}$$

$$h < \lg(2^{h} + 1) \le \lg(n+1) < \lg(2^{h+1}) = h + 1$$

$$h \le \lfloor \lg(2^{h} + 1) \rfloor \le \lfloor \lg(n+1) \rfloor < h + 1$$

- Consequently, the height is unchanged: $\lfloor \lg(n+1) \rfloor = h$

By mathematical induction, the statement must be true for all $n \ge 1$

We are able to store a complete tree as an array

Traverse the tree in breadth-first order, placing the entries into the array

We can store this in an array after a quick traversal:

Please note that 0th index is left null for convenience

To insert another node while maintaining the complete-binary-tree structure, we must insert into the next array location

To remove a node while keeping the complete-tree structure, we must remove the last element in the array

Leaving the first entry blank yields a bonus:

- The children of the node with index k are in 2k and 2k + 1
- The parent of node with index k is in $k \div 2$

Leaving the first entry blank yields a bonus:

– It simplifies the calculations:

For example, node 10 has index 5:

Its children 13 and 23 have indices 10 and 11, respectively

For example, node 10 has index 5:

- Its children 13 and 23 have indices 10 and 11, respectively
- Its parent is node 9 with index 5/2 = 2

Question: why not store any tree as an array using breadth-first traversals?

There is a significant potential for a lot of wasted memory

Consider this tree with 12 nodes would require an array of size 32

Adding a child to node K doubles the required memory

Summary

In this topic, we have covered the concept of a complete binary tree:

- A useful relaxation of the concept of a perfect binary tree
- It has a compact array representation