CRY 2024

Anneaux et Corps

Alexandre Duc

- 1. Anneaux et Corps
- 2. Polynômes sur un Corps
- 3. Corps de Galois

Retour sur \mathbb{Z}_m

- L'ensemble $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$ muni de l'addition modulo m forme un groupe additif.
- L'ensemble $\{1, \ldots, m-1\}$ muni de la multiplication modulo m ne forme **pas forcément** un groupe multiplicatif.
- Néanmoins, si l'on munit l'ensemble $\{0, 1, ..., m-1\}$ de l'addition modulo m et de la multiplication modulo m, on constate les propriétés suivantes pour tout $a, b, c \in \{0, 1, ..., m-1\}$:

$$a \cdot (b+c) \equiv a \cdot b + a \cdot c \pmod{m}$$

 $(b+c) \cdot a \equiv b \cdot a + c \cdot a \pmod{m}$

 Ces propriétés s'appellent distributivité à gauche et à droite de la multiplication par rapport à l'addition, respectivement.

Alexandre Duc CRY 2024 3/ 29

Anneau

Un **anneau** $(\mathbb{A}, +, \times)$ est un ensemble \mathbb{A} muni de deux opérations + et \times qui vérifient les propriétés suivantes :

- (A, +) est un groupe abélien.
- L'opération × est une loi de composition interne et associative sur A.
- L'opération × est distributive à gauche et à droite par rapport à +.
- L'opération × admet un élément neutre dans A.

Anneau

- Un anneau $(\mathbb{A}, +, \times)$ pour lequel \times est également commutatif s'appelle un **anneau commutatif**.
- On remarque que $(\mathbb{A}\setminus\{0\},\times)$ forme **presque** un groupe : il ne lui manque que l'exigence d'inverse!
- Ainsi, $\{0, 1, \dots, m-1\}$ muni de l'addition et de la multiplication modulo m forme un anneau.

\mathbb{Z}_m : Résumé

- \mathbb{Z}_m est toujours un **anneau** (muni de l'addition et de la multiplication modulo m).
- \mathbb{Z}_m muni uniquement de l'addition modulo m est un **groupe** additif.
- \mathbb{Z}_m^* muni uniquement de la multiplication modulo m est un groupe multiplicatif.

Retour sur \mathbb{Z}_n

- On remarque que $\mathbb{Z}_p \setminus \{0\} = \{1, \dots, p-1\}$ muni de la multiplication modulo p forme de plus un groupe (abélien).
- On dit que $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ muni de l'addition et de la multiplication modulo p forme un corps.

CRY 2024 7/29

Corps

Définition (Corps)

Un **corps** est un anneau dans lequel l'ensemble des éléments non nuls forme un groupe.

- En résumé, un corps est un ensemble muni d'une addition et d'une multiplication avec lequel il est possible de calculer (additioner, soustraire, multiplier, diviser) selon les règles habituelles de l'arithmétique.
- Exemples de corps : $\mathbb Q$ (les nombres rationnels), $\mathbb R$ (les nombres réels), $\mathbb C$ (les nombres complexes) munis de l'addition et de la multiplication.
- Un corps comportant un nombre fini d'éléments est appelé un corps fini.

Nombre d'Élements d'un Corps Fini

Théorème (Corps Fini)

- Si \mathbb{F} est un corps fini, alors \mathbb{F} contient p^m éléments, avec p premier et $m \geq 1$.
- Pour chaque puissance p^m d'un nombre premier, il existe un unique corps fini d'ordre p^m .
- Le corps à p^m éléments est noté $GF(p^m)$, en honneur du mathématicien français **Évariste Galois** (1811-1832).
- Le nombre p est appelé caractéristique du corps $GF(p^m)$.
- Le plus petit corps fini est GF(2). Il ne comporte que les éléments 0 et 1.

- 1. Anneaux et Corps
- 2. Polynômes sur un Corps
- 3. Corps de Galois

Polynômes sur un Corps

Définition (Anneau des Polynômes sur un Corps)

On note $\mathbb{Z}_p[x]$ **l'anneau** formé de l'ensemble des polynômes en x possédant des cœfficients dans \mathbb{Z}_p .

- $x^5 + x^2 + x + 1 \in \mathbb{Z}_2[x],$
- $3x^5 + 2x^2 + x \in \mathbb{Z}_5[x],$
- On appelle $0 \in \mathbb{Z}_p[x]$ le **polynôme nul**.
- Un polynôme dont le monôme de plus haut degré possède un cœfficient égal à 1 s'appelle un polynôme **unitaire**.
- Il est possible d'additionner et de multiplier des polynômes entre eux, le calcul sur les cœfficients se faisant dans le corps sous-jacent.

Polynômes sur un Corps

Question

- Sur $\mathbb{Z}_2[x]$, que vaut $(x+1)^2$?
- Sur $\mathbb{Z}_2[x]$, que vaut $(x^2 + x + 1) \cdot (x^8 + x + 1)$?
- Sur $\mathbb{Z}_5[x]$, que vaut $(x^5 + 4)^2$?

Division Euclidienne de Polynômes

Définition (Division Euclidienne de Polynômes)

Soit $a(x), b(x) \in \mathbb{Z}_p[x]$, avec $b(x) \neq 0$. La division euclidienne de a(x) par b(x) consiste à écrire a(x) = q(x)b(x) + r(x), où le degré de r(x) est strictement inférieur au degré de b(x).

- On note $a(x) \equiv r(x) \pmod{b(x)}$, ou $r(x) = a(x) \pmod{b(x)}$.
- Par exemple, sur \mathbb{Z}_2 :

$$x^4 + x + 1 = (x + 1)(x^3 + x^2 + x) + 1$$

 $x^2 + 1 = (x + 1)^2$
 $x^4 + x + 1 = (x^2 + 1)(x^2 + 1) + x$

Polynômes Irréductibles

Polynômes Irréductibles

Un polynôme $p(x) \in \mathbb{Z}_p[x]$ est **irréductible** s'il est **non-constant** et si ses seuls diviseurs sont des polynômes constants et de polynômes de la forme $\alpha p(x)$, pour $\alpha \in \mathbb{Z}_p$.

Factorisation de Polynômes

• $x^2 + x + 1$ est **irréductible** dans $\mathbb{Z}_2[x]$: on ne peut pas l'écrire sous forme de produits de polynômes de degrés inférieurs à 2.

Théorème (Factorisation de Polyômes)

Tout polynôme $a(x) \in \mathbb{Z}_p[x]$ non-nul est, à l'ordre près, le produit unique de $\alpha \in \mathbb{Z}_p$ et de polynômes unitaires irréductibles.

Les polynômes irréductibles jouent un rôle similaire aux nombres premiers.

Irréductibilité des Polynômes

- Un polynôme de degré deux ou trois est irréductible si et seulement si il n'a pas de racine.
- **Exemple**: $x^2 + 1$ est irréductible dans $\mathbb{Z}_3[x]$ mais pas dans $\mathbb{Z}_2[x]$.
- Attention: Contrairement à la factorisation des entiers, il existe des algorithmes efficaces pour factoriser un polynôme (algorithme de Cantor-Zassenhaus).
- A la main, pour des degrés k > 2, la solution la plus facile est de tester si le polynôme est divisible par tous les polynômes irréductible de degrés $\leq k/2$.

PGCD de Polynômes

Définition (PGCD de Polynômes)

Le $\operatorname{pgcd}(a(x),b(x))$, avec $a(x),b(x)\in\mathbb{Z}_p[x]$ est défini comme étant l'unique polynôme **unitaire** de degré maximal qui divise a(x) et b(x).

- L'algorithme d'Euclide s'applique également aux polynômes : $\operatorname{pgcd}(a(x),b(x))=\operatorname{pgcd}(b(x),a(x) \bmod b(x))$, si le degré de a(x) est supérieur au degré de b(x).
- De manière similaire, on peut calculer l'identité de Bézout sur les polynômes au moyen de l'algorithme d'Euclide étendu.

Opération Polynômes

Question

- Sur $\mathbb{Z}_2[x]$, que vaut $\operatorname{pgcd}(x^4 + x^2 + 1, x^3 + 1)$?
- Sur $\mathbb{Z}_2[x]$, donnez l'identité de Bézout entre $x^4 + x + 1$ et $x^2 + 1$.
- Sur $\mathbb{Z}_3[x]$, donnez l'identité de Bézout entre $x^4 + x^2$ et $x^3 + 2x^2$.

Anneau $\mathbb{F}[x]/(m(x))$

- Étant donné un corps \mathbb{F} et un polynôme $m(x) \in \mathbb{F}[x]$, on peut définir l'anneau $\mathbb{F}[x]/(m(x))$:
 - Les éléments de l'anneau sont les polynômes de degré inférieur à m(x) possédant des cœfficients dans F.
 - Les deux opérations de l'anneau sont l'addition et la multiplication modulo m(x), respectivement.

Corps $\mathbb{F}[x]/(m(x))$

- Étant donné un anneau $\mathbb{F}[x]/(m(x))$, et en exigeant que m(x) soit **irréductible** sur \mathbb{F} , on obtient une structure de **corps**.
- En effet, il est possible de calculer un inverse modulo m(x) pour tout élément de l'anneau (à part 0) en utilisant l'algorithme d'Euclide étendu.
- Par exemple, $\mathbb{Z}_2[x]/(x^8 + x^4 + x^3 + x^2 + 1)$ forme un corps possédant 256 éléments, qui sont les polynômes de degré au plus 7 avec des cœfficients égaux à 0 ou à 1.

Corps $\mathbb{F}[x]/(m(x))$

Question

Listez tous les éléments du corps $\mathbb{Z}_3[x]/(x^2+2x+2)$. Combien d'éléments possède-t-il ?

- 1. Anneaux et Corps
- 2. Polynômes sur un Corps
- 3. Corps de Galois

Construction d'un Corps de Galois (premier)

Pour un corps de Galois de type GF(p), avec p premier :

- On utilise simplement le corps \mathbb{Z}_p , i.e., les entiers modulo p.
- Exemple : GF(3) peut être construit comme les entiers modulo 3.

GF(2)

- GF(2) consiste en l'ensemble {0,1} avec l'addition et la multiplication modulo 2.
- Sur GF(2), a b = a + b pour tout $a, b \in GF(2)$.
- On peut remplacer les soustractions par des additions!
- Sur GF(2), a + a = 0.
- On a donc $(2k) \cdot a = 0$ pour tout $a \in GF(2)$ et $k \in \mathbb{Z}$.

Construction d'un Corps de Galois (non premier)

Pour un corps de Galois de type $GF(p^m)$, avec p premier et m > 1:

- On choisit un polynôme p(x) de degré m irréductible sur \mathbb{Z}_p .
- Les éléments de $GF(p^m)$ sont les polynômes de degrés au plus m-1 possédant des cœfficients dans \mathbb{Z}_p .
- Nous travaillons donc dans $\mathbb{Z}_p[x]$ et les multiplications sont faites modulo p(x).

Corps de Galois de Type $GF(p^k)$ – Exemples

- Le corps à 9 éléments peut être construit au moyen d'un polynôme de degré 2 irréductible sur \mathbb{Z}_3 .
- Le corps à 81 éléments peut être construit au moyen d'un polynôme de degré 4 irréductible sur \mathbb{Z}_3 .
- Le corps à 65536 éléments peut être construit au moyen d'un polynôme de degré 16 irréductible sur Z₂.

Construction de $GF(2^2)$

- Le corps à 4 éléments peut être construit au moyen du polynôme irréductible $p(x) = x^2 + x + 1$ sur \mathbb{Z}_2 .
- Les éléments de GF(4) sont les polynômes de la forme ax + b, avec $a, b \in \{0, 1\}$.
- L'addition et la multiplication s'effectuent modulo $x^2 + x + 1$.

Alexandre Duc CRY 2024 27/ 29

Construction de $GF(3^2)$

- Le corps à 9 éléments peut être construit au moyen du polynôme irréductible $p(x) = x^2 + 2x + 2$ sur \mathbb{Z}_3 .
- Les éléments de GF(9) sont les polynômes de la forme ax + b, avec $a, b \in \{0, 1, 2\}$.
- L'addition et la multiplication s'effectuent modulo $x^2 + 2x + 2$.

Alexandre Duc CRY 2024 28/29

Corps de Galois

Question

Effectuez les tables d'addition et de multiplication pour le corps $\mathbb{Z}_2[x]/(x^2+x+1)$. Vérifiez l'existence d'un inverse multiplicatif pour chaque élément.

Alexandre Duc CRY 2024 29/ 29

Solutions

Polynômes sur un Corps

Solution

•
$$(x+1)^2 = x^2 + 2x + 1 = x^2 + 1$$

$$(x^{2} + x + 1) \cdot (x^{8} + x + 1) =$$

$$x^{10} + x^{9} + x^{8} + x^{3} + 2x^{2} + 2x + 1 =$$

$$x^{10} + x^{9} + x^{8} + x^{3} + 1$$

$$(x^5 + 4)^2 =$$

$$x^{10} + 8x^5 + 16 =$$

$$x^{10} + 3x^5 + 1$$

Alexandre Duc CRY 2024 31/ 29

Opérations Polynômes

- Sur $\mathbb{Z}_2[x]$, $\operatorname{pgcd}(x^4 + x^2 + 1, x^3 + 1) = x^2 + x + 1$.
- Sur $\mathbb{Z}_2[x]$, l'algorithme d'Euclide étendu entre $x^4 + x + 1$ et $x^2 + 1$ donne

$$\begin{array}{c|cccc} (x^4+x+1,1,0) & (x^2+1,0,1) & x^2+1 \\ (x^2+1,0,1) & (x,1,x^2+1) & x \\ (x,1,x^2+1) & (1,x,x^3+x+1) & x \\ (1,x,x^3+x+1) & (0,\dots) & \end{array}$$

On a donc $1 = (x^4 + x + 1)x + (x^2 + 1)(x^3 + x + 1)$.

Alexandre Duc CRY 2024 32/ 29

Opérations Polynômes (suite)

• Sur $\mathbb{Z}_3[x]$, l'algorithme d'Euclide étendu entre $x^4 + x^2$ et $x^3 + 2x^2$ donne

$$\begin{array}{c|cccc} & & & q \\ \hline (x^4 + x^2, 1, 0) & (x^3 + 2x^2, 0, 1) & x + 1 \\ (x^3 + 2x^2, 0, 1) & (2x^2, 1, 2x + 2) & 2x + 1 \\ (2x^2, 1, 2x + 2) & (0, \dots) & \end{array}$$

On a donc
$$2x^2 = (x^4 + x^2) \cdot 1 + (x^3 + 2x^2)(2x + 2)$$
.

 $2x^2$ n'est pas unitaire. Ce n'est donc pas le pgcd. On peut diviser par 2 et on obtient :

$$x^2 = (x^4 + x^2) \cdot 2 + (x^3 + 2x^2)(x+1)$$
.

Alexandre Duc CRY 2024 33/ 29

Corps $\mathbb{F}[x]/(m(x))$

Solution

0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2.

Il a donc 9 éléments. Il s'agit d'une représentation de GF(9).

Alexandre Duc CRY 2024 34/29

Corps de Galois

Alexandre Duc CRY 2024 35/ 29