1

Matrix theory Assignment 19

Shivangi Parashar

Abstract—This document contains the concept of matrix diagonalization.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment19/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment19/ Assignment 19.tex

1 Problem

Let A be a 3×3 matrix with real entries. Identify the correct statements.

- 1.A is necessarily diagonalizable over **R**
- 2.If A has distinct real eigen values than it is diagonalizable over ${\bf R}$
- 3.If A has distinct eigen values than it is diagonalizable over C
- 4.If all eigen values are non zero than it is diagonalizable over C

2 Solution

Refer Table 0.

Statement 1.	A is necessarily diagonalizable over R
False statement	matrix A is diagonalizable if and only if there is a basis of \mathbb{R}^3 consisting of eigenvectors of A.
Example:	Consider a matrix $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix}$
	Eigen values are: $\begin{pmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{pmatrix} = 0. \implies \lambda_1 = 1, \lambda_2 = 4$ $\lambda_1 = 1 \text{ has eigen vector } \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ and } \lambda_2 = 4 \text{ has eigen vector } \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$
	$\lambda_1 = 1$ has eigen vector $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $\lambda_2 = 4$ has eigen vector $\begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$
	We have found only two linearly independent eigenvectors for A,Hence not diagonal
Statement 2.	If A has distinct real eigen values than it is diagonalizable over R
True statement Proof:	A has n linearly independent eigenvectors which implies it is diagonalizable. Consider 3 eigen vectors \mathbf{v} , \mathbf{w} and \mathbf{u} with eigen values λ, μ, ν respectively. $\alpha(\mathbf{v}) + \beta(\mathbf{w}) + \gamma(\mathbf{u}) = 0$ $\alpha A(\mathbf{v}) + \beta A(\mathbf{w}) + \gamma A(\mathbf{u}) = 0$ $\alpha \lambda \mathbf{v} + \beta \mu \mathbf{w} + \gamma \nu \mathbf{u} = 0$
	$\beta(\mu - \lambda)\mathbf{w} + \gamma(\nu - \lambda)\mathbf{u} = 0$
$\alpha \mathbf{V} + \beta \mathbf{w} + \gamma \mathbf{u}$ Statement 3.	If all eigen values are non zero than it is diagonalizable over C
True statement	A has n linearly independent eigenvectors which implies it is diagonalizable.
Example:	$A = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix} \implies \lambda_1 = 2, \lambda_2 = 3, \lambda_3 = 6$
	Eigen vectors are: $x_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$, $x_2 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $x_3 = \begin{pmatrix} -1\\-1\\2 \end{pmatrix}$ respectively
Statement 4.	If all eigen values are non zero than it is diagonalizable over C
False statement	counter example same as statement 1 ex. eigen values are non zero but not diagonalis

TABLE 0: Explanation