4. Álgebra de Conjuntos

Diagramas de Venn

Um diagrama de Venn é uma representação pictórica na qual os conjuntos são representados por áreas delimitadas por curvas no plano. Em geral, o conjunto universo U é representado por um retângulo, e os demais conjuntos por círculos, elipses, etc.

Exemplo: Em cada item abaixo, faça um diagrama que simbolize a situação:

- a) um dado conjunto A
- b) $C = \{1, 2, 3\}$
- c) $A = \{3, 5, 8\}$ e $B = \{4, 5, 6, 8, 9\}$

d) $A \subset B$

e) $C \subset U$

f) $A \subset B \land C \subset B$

Exercícios

- 1) Faça um diagrama que simbolize cada uma das seguintes situações:
 - a) A, B, C e D são conjuntos não-vazios;

$$D \subset C \subset B \subset A$$

b) A, B e D são conjuntos não-vazios;

$$A \supset B, D \subset A \land B \not\subset D; (\exists x)(x \in B \land x \in D)$$

2) Sejam A, B e D três conjuntos tais que:

$$A \subset B \subset D$$
; $a \in A, b \in B \land d \in D$; $e \notin A, f \notin B \land g \notin D$.

Quais das afirmações a seguir são **sempre** verdadeiras?

- a) $a \in D$
- b) $b \in A$

- c) $d \notin A$ d) $e \in B$ e) $f \notin A$ f) $g \notin A$

3) Sejam A, B e D três conjuntos tais que:

$$A \supset B$$
, $A \supset D \land B \not\subset D$; $(\exists x)(x \in B \land x \in D)$; $a \in A$, $b \in B \land d \in D$; $e \notin A$, $f \notin B \land g \notin D$.

Quais das afirmações a seguir são **sempre** verdadeiras?

- a) $a \in D$
- b) $b \in A$
- c) $d \in A$
- d) $e \notin B$ e) $f \notin A$ f) $g \notin A$
- 4) Dentre as relações a seguir, determine as que são corretas. Para as que forem falsas, determine um contra-exemplo:
 - a) $A \subset B \land B \subset C \Rightarrow A \subset C$ b) $A \not\subset B \land B \not\subset C \Rightarrow A \not\subset C$

Respostas:

1) a) (DC)BA

- 2) a) V b) F c) F d) F e) V f) V
- 3) a) F b) V c) V d) V e) F f) F
- 4) a) V b) F contra-exemplo: $A = \{1, 2\}, B = \{3, 4\}, C = \{1, 2, 5\} A \not\subset B \land B \not\subset C \text{ mas } A \subset C$

União de Conjuntos

A <u>união</u> de dois conjuntos A e B denotada por $A \cup B$, é o conjunto de todos os elementos que pertencem a A ou a B; isto é:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

A operação de união pode ser visualizada através de um diagrama de Venn:

Exemplos:

1) Dados os conjuntos $A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\} \in C = \{3, 4, 5, 6\},$ então:

a)
$$A \cup B =$$

d)
$$B \cup B =$$

b)
$$A \cup C =$$

e)
$$(A \cup B) \cup C =$$

c)
$$B \cup C =$$

f)
$$A \cup (B \cup C) =$$

2) Suponha os conjuntos $A = \{x \in \mathbb{N} | 3 < x \le 5\}$ e $B = \{x \in \mathbb{N} | x^2 - 2 = x\}$. Então: $A \cup B =$

3) Considere os conjuntos \mathbb{R} , \mathbb{Q} e II. Então: $\mathbb{R} \cup \mathbb{Q} = \mathbb{R} \cup \mathbb{I} = \mathbb{R}$

4) Para qualquer conjunto universo
$$U$$
 e qualquer $A \subset U$, vale:

$$\emptyset \cup \emptyset =$$

$$U \cup \emptyset =$$

$$U \cup A =$$

$$U \cup U =$$

 $\mathbb{O} \cup \mathbb{I} =$

Intersecção de Conjuntos

A <u>intersecção</u> de dois conjuntos A e B denotada por $A \cap B$, é o conjunto dos elementos que pertencem a A e a B; isto é:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

A operação de intersecção pode ser visualizada através de um diagrama de Venn:

Se $A \cap B = \emptyset$, isto é, se A e B não possuem elementos em comum, então A e B são chamados de conjuntos disjuntos.

Exemplos:

1) Dados os conjuntos $A = \{0, 1, 2, 3, 4\}, B = \{0, 2, 4, 6, 8\} \in C = \{3, 4, 5, 6\},$ então:

a)
$$A \cap B =$$

e)
$$A \cap (B \cap C) =$$

b)
$$A \cap C =$$

f)
$$(A \cap B) \cup C =$$

c)
$$B \cap C =$$

g)
$$(A \cup C) \cap B =$$

d)
$$B \cap B =$$

h)
$$(A \cap B) \cup (A \cap C) =$$

2) Suponha os conjuntos $A = \{x \in \mathbb{N} | 1 \le x < 3\}$ e $B = \{x \in \mathbb{N} | x^2 = x\}$. Então: $A \cap B =$

3) Considere os conjuntos \mathbb{R} , \mathbb{Q} e II. Então: $\mathbb{R} \cap \mathbb{Q} =$

$$\mathbb{R} \cap \mathbb{I} = \mathbb{Q} \cap \mathbb{I} =$$

4) Para qualquer conjunto universo U e qualquer $A \subset U$, vale:

$$\emptyset \cap \emptyset =$$

$$U \cap \varnothing =$$

$$U \cap A =$$

$$U \cap U =$$

Sejam os conjuntos A, B e C. Valem as seguintes propriedades das operações \cup e \cap :

• $A \cup B = B \cup A$ e $A \cap B = B \cap A$ (propriedades comutativas)

•
$$A \cup (B \cup C) = (A \cup B) \cup C$$
 e $A \cap (B \cap C) = (A \cap B) \cap C$ (propriedades associativas)

• $A \cup \emptyset = A$ e $A \cap \emptyset = \emptyset$

• $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ e $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (propriedades distributivas)

Exercícios

1) São dados os conjuntos: $A = \{x \in \mathbb{Z} | -4 < x \le 2\};$

$$C = \{ x \in \mathbb{Z} | -2 < x < 5 \};$$

$$B = \{x \in \mathbb{N} | x \leq 3\};$$

$$D = \{ \mathbf{x} \in \mathbb{Z} | 3 \le x \le 8 \}.$$

Determine:

a) $A \cup B$

d) $A \cap D$

g) $A \cap B \cap C \cap D$

b) $A \cap B$

e) $A \cup B \cup D$

h) $(A \cup D) \cap (B \cup C)$

c) $A \cup D$

f) $A \cap B \cap C$

i) $(A \cap D) \cup (B \cap C)$

- 2) Com base no diagrama ao lado, determine:
 - a) $A \cup B$
- e) $A \cap B \cap C$
- b) $A \cup C$
- f) $A \cup B \cup C$
- c) $A \cap C$
- g) $(A \cup B) \cap C$
- d) $B \cap C$
- h) $(A \cap B) \cup C$
- 3) Considere os conjuntos:

 $A = \{\text{divisores naturais de } 30\}; B = \{\text{múltiplos de } 6\}; C = \{\text{múltiplos de } 3\}. \text{ Calcule:}$

- a) $A \cap C$
- b) $B \cap C$
- c) $A \cap (B \cup C)$

•5

- d) $A \cap B \cap C$
- e) quais os elementos de A que não pertencem a B.
- 4) Sabendo que $A \cap B = \{2, 5\}$, $B = \{2, 5, 9\}$ e $A \cup B = \{2, 3, 5, 8, 9\}$, represente num diagrama os conjuntos $A \in B$.
- 5) Sabendo que $A \cap B = \{1, 2, 3\}$, $A \cap C = \{1, 2, 4, 5\}$, $B \cap C = \{1, 2, 6\}$, $B = \{1, 2, 3, 6, 8, 9\}$, $C = \{1, 2, 4, 5, 6, 10\}$, $A \cap B \cap C = \{1, 2\}$ e $A \cup B \cup C = \{1, 2, 3, 4, 5, 6, 8, 9, 10\}$, represente num diagrama os conjuntos $A, B \in C$.
- 6) Dados os conjuntos $A = \{2, 3\}$ e $B = \{3, 4, 5\}$, determine o conjunto C, tal que $A \cap C = \{2\}$, $B \cap C = \{4\}$ e $A \cup B \cup C = \{2, 3, 4, 5, 6\}$.
- 7) Determine o conjunto C sabendo que: $A \cup B \cup C = \{n \in \mathbb{N} | 1 \le n \le 10\}, A \cap B = \{2, 3, 8\}, A \cap C = \{2, 7\}, B \cap C = \{2, 5, 6\} \in A \cup B = \{n \in \mathbb{N} | 1 \le n \le 8\}.$
- 8) Determine o conjunto A sabendo que: $A \subset \{1, 3, 4, 5, 6, 7, 10, 12\}, A \cap \{1, 4, 5, 10\} = \{4, 5\}, A \cup \{0, 4, 5, 8, 9\} = \{0, 4, 5, 6, 7, 8, 9\}$ e $\{6, 7\} \subset A$.
- 9) Trace o diagrama de Venn para os três conjuntos não-vazios *A*, *B* e *C*, de tal maneira que *A*, *B* e *C* tenham as seguintes propriedades:
 - a) $A \subset B$, $C \subset B$, $A \cap C = \emptyset$

c) $A \subset C$, $A \neq C$, $B \cap C = \emptyset$

b) $A \subset B$, $C \not\subset B$, $A \cap C \neq \emptyset$

- d) $A \subset (B \cap C)$, $B \subset C$, $C \neq B$, $A \neq C$
- 10) Quais das sentenças a seguir são verdadeiras para quaisquer conjuntos A, B e C? Para as que são falsas, determine um contra-exemplo:
- a) $A \cup A = A$

e) Se $A \subset B$ então $A \cap B = B$

b) $B \cap B = B$

f) $A \cap \emptyset = \emptyset$

c) Se $A \cap B = \emptyset$ então $A \subset B$

g) $A \cup \emptyset = \emptyset$

d) Se $A \subset B$ então $A \cup B = B$

Respostas:

- 1) a) $\{-3, -2, -1, 0, 1, 2, 3\}$ b) $\{0, 1, 2\}$ c) $\{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$ d) \emptyset
 - e) $\{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$ f) $\{0, 1, 2\}$ g) \emptyset h) $\{-1, 0, 1, 2, 3, 4\}$ i) $\{0, 1, 2, 3\}$
- 2) a) $\{-4, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9\}$ b) $\{-9, -6, -5, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$ c) $\{-1, 2, 3, 5, 6\}$ d) $\{2, 3, 4\}$ e) $\{2, 3, 4\}$
 - f) $\{-9, -6, -5, -4, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9\}$ g) $\{-1, 2, 3, 4, 5, 6\}$ h) $\{-9, -6, -5, -1, 0, 1, 2, 3, 4, 5, 6\}$
- 3) a) {3, 6, 15, 30} b) B c) {3, 6, 15, 30} d) {6, 30} e) {1, 2, 3, 5, 10, 15}

6) {2, 4, 6} 7) {2, 5, 6, 7, 9, 10} 8) {4, 5, 6, 7}

- 10) a) V b) V c) F contra-exemplo: $A = \{0, 1\}, B = \{2, 3\}$ $A \cap B = \emptyset$ mas $A \not\subset B$ d) V
 - e) F contra-exemplo: $A = \{0, 1\}, B = \{0, 1, 2, 3\}$ $A \subset B \text{ mas } A \cap B \neq B$ f) V
 - g) F contra-exemplo: $A = \{0, 1\}$ e $A \cup \emptyset \neq \emptyset$

Complemento de um Conjunto

Suponha o conjunto universo U. O <u>complemento</u> de um conjunto $A \subset U$, denotado por $\sim A$, é o conjunto dos elementos que não pertencem a A; isto é:

$$\sim A = \{ x \in \boldsymbol{U} \mid x \notin A \}$$

A operação complemento pode ser visualizada através de um diagrama de Venn:

Exemplos:

1) Sejam
$$U = \{1, 2, 3, ..., 8, 9\}, A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\} \in C = \{3, 4, 5, 6\},$$
então:

a)
$$\sim A =$$

d)
$$\sim (A \cup B) =$$

b)
$$\sim B =$$

e)
$$\sim (\sim C) =$$

c)
$$\sim (A \cap C) =$$

f)
$$\sim B \cap \sim C =$$

- 2) Suponha o conjunto universo N. Seja $A = \{0, 1, 2\}$. Então $\sim A =$
- 3) Para qualquer conjunto universo U, vale: $\sim \emptyset$ =

- 4) Suponha o conjunto \mathbb{R} como conjunto universo. Então: $\sim \mathbb{Q} =$

Diferença entre Conjuntos

A diferença entre os conjuntos $A \in B$, denotada por A - B, é o conjunto dos elementos que pertencem a A mas não pertencem a B; isto é: $A - B = \{x \mid x \in A \land x \notin B\}$

A operação de diferença pode ser visualizada através de um diagrama de Venn:

Exemplos:

1) Sejam,
$$U = \{0, 1, 2, 3, 4, 5\}$$
, $A = \{0, 2\}$, $B = \{1, 3, 5\}$ e $C = \{2, 3, 4\}$, então:

a)
$$A - C =$$

e)
$$\sim (B-C)=$$

b)
$$B-C=$$

f)
$$(A \cup B) - C =$$

c)
$$A - B =$$

g)
$$(\sim B - A) \cup C =$$

d)
$$C - A =$$

h)
$$\sim (B \cap C) - (A \cup B) =$$

2) Suponha os conjuntos
$$A = \{x \in \mathbb{N} | x > 4\}$$
 e $B = \{x \in \mathbb{N} | x^2 - 3x + 2 = 0\}$. Então:

$$A - B =$$

$$B - A =$$

3) Considere os conjuntos
$$\mathbb{R}$$
, \mathbb{Q} e II. Então: $\mathbb{R} - \mathbb{Q} = \mathbb{R} - \mathbb{I} = \mathbb{Q} - \mathbb{I} = \mathbb{Q}$

4) Para qualquer conjunto universo U e qualquer $A \subset U$, vale:

$$\emptyset - \emptyset =$$

$$U - \varnothing =$$

$$U - A = U - U =$$

$$U - U =$$

Diferença Simétrica entre Conjuntos

A <u>diferença simétrica</u> dos conjuntos A e B, denotada por $A \oplus B$, é o conjunto de todos os elementos que estão em A mas não em B, ou que estão em B mas não em A, isto é:

$$A \oplus B = \{x \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$$

Podemos ainda dizer que $A \oplus B = (A - B) \cup (B - A)$

A operação de diferença simétrica pode ser visualizada através de um diagrama de Venn:

Exemplos:

1) Sejam,
$$A = \{1, 2, 3, 4, 5, 6\}$$
 e $B = \{4, 5, 6, 7, 8, 9\}$, então: $A \oplus B = \{4, 5, 6, 7, 8, 9\}$, então: $A \oplus B = \{4, 5, 6, 7, 8, 9\}$

2) Para qualquer conjunto universo U e qualquer $A \subset U$, vale:

$$A \oplus A = A \oplus U = \emptyset \oplus A =$$

3) Com o uso de diagramas de Venn mostre que $A \oplus B = (A \cup B) - (A \cap B)$

Exercícios

1) Sejam os conjuntos $U = \{1, 2, 3, ..., 8, 9\}, A = \{x \in \mathbb{Z} | 1 \le x < 6\}, B = \{x \in \mathbb{Z} | 3 < x \le 7\},$

$$C = \{x \in \mathbb{Z} | 5 \le x \le 9\}, D = \{1, 3, 5, 7, 9\}, E = \{2, 4, 6, 8\} \in F = \{1, 5, 9\}, determine:$$

a)
$$\sim A$$

f)
$$E \oplus F$$

b)
$$\sim D$$

g)
$$A \cap (B \cup E)$$

c)
$$A-B$$

h)
$$\sim (A - E)$$

d)
$$F - D$$

i)
$$(A \cap D) - B$$

e)
$$C \oplus D$$

j)
$$(B \cap F) \cup (C \cap E)$$

2) Sejam $U = \{1, 2, 3, ..., 8, 9\}, A = \{1, 2, 5, 6\}, B = \{2, 5, 7\} e$ $C = \{1, 3, 5, 7, 9\},$ determine:

a)
$$\sim C$$

e)
$$A \oplus C$$

b)
$$A - B$$

f)
$$(A \cup C) - B$$

c)
$$A-C$$

g)
$$\sim (A \cup B)$$

d)
$$A \oplus B$$

h)
$$(B \oplus C) - A$$

- 3) Sejam $A = \{a, b, c, d, e\}, B = \{a, b, d, f, g\}, C = \{b, c, e, g, h\} \in D = \{d, e, f, g, h\}, determine:$
 - a) C-D

f) $B \cap C \cap D$

b) $A \cap (B \cup D)$

g) (C-A)-D

c) $B - (C \cup D)$

h) $A \oplus B$

d) $(A \cap D) \cup B$

i) $A \oplus C$

e) $(A \cup D) - C$

- j) $(A \oplus D) B$
- 4) A parte sombreada no diagrama representa:
 - a) $\sim (B \cup C) \cup C$
- d) $A (B \cup C)$

b) $\sim (B \cup C)$

- e) $A (A \cap B \cap C)$
- c) $\sim C \cap \sim B \cap \sim A$

5) Nos diagramas de Venn, sombreie o que se pede:

b)

$$A \cap \sim B$$

A

$$\sim\!\left(B\!-\!A\right)$$

$$A-(B\cup C)$$

В

$$\sim A \cap (B \cup C)$$

- 6) A, B e C são subconjuntos de um conjunto U. Quais das sentenças a seguir são verdadeiras para quaisquer conjuntos A, B e C? Para as que são falsas, determine um contra-exemplo:
 - a) $\sim (A \cap B) = \sim A \cap \sim B$

f) $A - B \subset A$

b) $\sim (\sim A) = A$

g) Se $A \subset B$ então $\sim A = B - A$

c) $A - B = \sim (B - A)$

h) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

d) $(A-B) \cap (B-A) = \emptyset$

i) $A \oplus B = B \oplus A$

e) $(A-B) \cup (B-C) = A-C$

 $j) (A-C) \cap (A-B) = A - (B \cup C)$

- 7) Encontre os conjuntos A e B se $A B = \{1, 5, 7, 8\}, B A = \{2, 10\} \text{ e } A \cap B = \{3, 6, 9\}.$
- 8) Se A e B são dois conjuntos não-vazios, tais que $A B = \{1, 3, 6, 7\}$, $B A = \{4, 8\}$ e $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$, determine o conjunto $A \cap B$.
- 9) Seja X um conjunto tal que $X \{1, 2, 3, 7, 8\} = \{4\}$ e $X \cap \{1, 2, 3, 5, 6\} = \{1, 2, 3\}$. Encontre o conjunto X.

Respostas:

- 1) a) $\{6, 7, 8, 9\}$ b) $\{2, 4, 6, 8\}$ c) $\{1, 2, 3\}$ d) \emptyset e) $\{1, 3, 6, 8\}$
 - f) $\{1, 2, 4, 5, 6, 8, 9\}$ g) $\{2, 4, 5\}$ h) $\{2, 4, 6, 7, 8, 9\}$ i) $\{1, 3\}$ j) $\{5, 6, 8\}$
- 2) a) $\{2, 4, 6, 8\}$ b) $\{1, 6\}$ c) $\{2, 6\}$ d) $\{1, 6, 7\}$ e) $\{2, 3, 6, 7, 9\}$ f) $\{1, 3, 6, 9\}$ gl) $\{3, 4, 8, 9\}$ h) $\{3, 9\}$
- 3) a) $\{b, c\}$ b) $\{a, b, d, e\}$ c) $\{a\}$ d) $\{a, b, d, e, f, g\}$ e) $\{a, d, f\}$
 - f) $\{g\}$ g) ϕ h) $\{c, e, f, g\}$ i) $\{a, d, g, h\}$ j) $\{c, h\}$
- 4) d 5) a)

- 6) a) F contra-exemplo: Sejam $A = \{1, 2\}$, $B = \{2, 3\}$ e $U = \{1, 2, 3, 4\}$ então $\sim (A \cap B) = \{1, 3, 4\}$ e $\sim A \cap \sim B = \{4\}$, portanto $\sim (A \cap B) \neq \sim A \cap \sim B$ b) V
- c) F contra-exemplo: Sejam $A = \{1, 2\}$, $B = \{2, 3\}$ e $U = \{0, 1, 2, 3\}$ então $A B = \{1\}$ e $\sim (B A) = \{0, 1, 2\}$, portanto $A B \neq \sim (B A)$ d) V
- e) F contra-exemplo: Sejam $A = \{1, 2\}$, $B = \{2, 3, 4\}$ e $C = \{1, 2, 5, 6\}$ então $(A B) \cup (B C) = \{1, 3, 4\}$ e $B C = \emptyset$, portanto $(A B) \cup (B C) \neq B C$ f) V g) V h) V j) V 7) $A = \{1, 3, 5, 6, 7, 8, 9\}$, $B = \{2, 3, 6, 9, 10\}$ 8) $\{2, 5\}$ 9) $\{1, 2, 3, 4\}$

Conjuntos Finitos, Princípio da Enumeração

Já sabemos que um conjunto é finito se, ao contarmos seus diferentes elementos, o processo de contagem chega ao fim. Neste caso é correto dizer que um conjunto finito é aquele que possui exatamente n elementos distintos com $n \in \mathbb{N}$.

A notação n(A) será usada para denotar o número de elementos de um conjunto finito A.

Se A e B são dois conjuntos finitos, então $A \cup B$ e $A \cap B$ também são finitos e:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

Para três conjuntos A, B e C, finitos, essa relação será:

$$\left| n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C) \right|$$

Exemplo: Considere os seguintes dados sobre 120 estudantes de matemática no que diz respeito aos idiomas francês, alemão e russo: 65 estudam francês, 45 estudam alemão, 42 estudam russo, 20 estudam francês e alemão, 25 estudam francês e russo, 15 estudam alemão e russo e 8 estudam os três idiomas.

- a) Determine o número de alunos que estudam pelo menos um dos três idiomas;
- b) Preencha o diagrama de Venn com o número correto de estudantes.

Conjunto das Partes

Para um dado conjunto A, o **conjunto das partes** de A, denotado por P(A), é o conjunto de todos os subconjuntos de A. Se A é finito, então P(A) também é, e o número de elementos de P(A) é:

$$nP(A) = 2^{n(A)}$$

Exemplo: Suponha que $A = \{1, 2, 3\}$. Então P(A) =

$$nP(A) =$$

Produto Cartesiano

Sejam dois conjuntos arbitrários A e B. O conjunto de todos os pares ordenados (a,b) onde $a \in A$ e $b \in B$ é chamado de **produto cartesiano** dos conjuntos A e B. Indicamos $A \times B$ e lemos "A cartesiano B".

Por definição: $A \times B = \{(a, b) | a \in A \land b \in B\}$.

Denotamos o produto cartesiano de um conjunto A por ele mesmo como $A \times A = A^2$. Exemplo: Dados os conjuntos $A = \{a\}$, $B = \{a,b\}$ e $C = \{0,1,2\}$, temos:

$$A \times B =$$
 $B \times C =$
 $C \times B =$
 $A \times (B \times C) =$
 $A^2 =$

Observações:

$$A \times B \neq B \times A$$

 $n(A \times B) = n(A) \cdot n(B)$

Exercícios

- 1) Em uma pesquisa com 60 pessoas, verificou-se que: 25 leem a revista A, 26 leem a revista B, 26 leem a revista C, 9 leem as revistas A e C, 11 leem as revistas A e B, 8 leem as revistas B e C e 3 leem as três revistas.
 - a) Ache o número de pessoas que leem pelo menos uma das três revistas;
 - b) Ache o número de pessoas que leem exatamente uma revista.
- 2) Foi realizada uma pesquisa com uma amostragem de 25 carros novos à venda em uma revendedora local para verificar quais dos três opcionais populares, ar-condicionado (A), rádio (B) e vidros elétricos (C), já estavam instalados. A pesquisa concluiu: 15 tinham ar-condicionado, 12 tinham rádio, 11 tinham vidros elétricos, 5 tinham ar-condicionado e vidros elétricos, 9 tinham ar-condicionado e rádio, 4 tinham rádio e vidros elétricos, 3 tinham as três opções. Ache o número de carros que têm:
 - a) Apenas vidros elétricos;
 - b) Apenas ar-condicionado;
 - c) Apenas rádio;
 - d) Rádio e vidros elétricos, mas não ar-condicionado;
 - e) Ar-condicionado e rádio, mas não vidro elétricos;
 - f) Apenas uma das opções;
 - g) Nenhuma das opções.
- 3) Numa pesquisa, verificou-se que, das pessoas consultadas, 100 liam o jornal A, 150 liam o jornal B, 20 liam os dois jornais (A e B) e 110 não liam nenhum dos dois jornais. Quantas pessoas foram consultadas?
- 4) Numa pesquisa de mercado, verificou-se que 2000 pessoas usam os produtos A ou B. O produto B é usado por 800 pessoas, e 320 pessoas usam os dois produtos ao mesmo tempo. Quantas pessoas usam o produto A?
- 5) Sabe-se que o sangue das pessoas pode ser classificado em quatro tipos de antígenos. Em uma pesquisa efetuada num grupo de 120 pacientes de um hospital, constatou-se que 40 deles têm o antígeno A, 35 têm o antígeno B e 14 têm o antígeno AB. Nestas condições, pede-se o número de pacientes cujo sangue tem o antígeno O.

- 6) Num grupo de 99 esportistas, 40 jogam vôlei, 20 jogam vôlei e xadrez, 22 jogam xadrez e tênis, 18 jogam vôlei e tênis e 11 jogam as três modalidades. O número de pessoas que jogam xadrez é igual ao número de pessoas que jogam tênis.
 - a) Quantos esportistas jogam tênis e não jogam vôlei?
 - b) Quantos jogam xadrez ou tênis e não jogam vôlei?
 - c) Quantos jogam vôlei e não jogam xadrez?
- 7) Em uma Universidade são lidos dois jornais, A e B. Exatamente 80% dos alunos lêem o jornal A e 60% o jornal B. Sabendo que todo aluno é leitor de pelo menos um dos jornais, determine o percentual de alunos que leem ambos.
- 8) Numa cidade são consumidos três produtos A, B e C. Feito um levantamento do mercado sobre o consumo desses produtos, obteve-se o resultado disposto na tabela abaixo:

PRODUTOS	Nº de Consumidores
A	150
В	200
C	250
A e B	70
A e C	90
ВеС	80
A, B e C	60
Nenhum dos três	180

Pergunta-se:

- a) Quantas pessoas consomem apenas o produto A?
- b) Quantas pessoas consomem o produto A ou o produto B ou o produto C?
- c) Quantas pessoas consomem o produto A ou o produto B?
- d) Quantas pessoas consomem apenas o produto C?
- e) Quantas pessoas foram consultadas?
- 9) Uma prova era constituída de dois problemas. 300 alunos acertaram somente um dos problemas, 260 acertaram o segundo, 100 alunos acertaram os dois e 210 erraram o primeiro. Quantos alunos fizeram a prova?
- 10) Numa pesquisa sobre a preferência em relação a dois jornais, foram consultadas 470 pessoas e o resultado foi o seguinte: 250 delas leem o jornal A, 180 o jornal B e 60, os jornais A e B.
 - a) Quantas pessoas leem apenas o jornal A?
 - b) Quantas leem apenas o jornal B?
 - c) Quantas leem jornais?
 - d) Quantas não leem jornais?

- 11) Uma cidade com 10.000 habitantes tem dois clubes de futebol: A e B. Numa pesquisa feita com seus habitantes, constatou-se que 1.200 pessoas não apreciam nenhum dos dois clubes, 1.300 apreciam os dois clubes e 4.500 apreciam o clube A.
 - a) Quantas pessoas apreciam apenas o clube A?
 - b) Ouantas apreciam o clube B?
 - c) Quantas apreciam apenas o clube B?
- 12) Determine o conjunto das partes de $A = \{a, b, c, d\}$.
- 13) Dado $A = \{\{a, b\}, \{c\}, \{d, e, f\}\}.$
 - a) Determine se cada uma das seguintes afirmativas é verdadeira ou falsa:
 - (i) $a \in A$

(iv) $\{\{a, b\}\}\subset A$

(ii) $\{c\}\subset A$

 $(v) \varnothing \subset A$

(iii) $\{d, e, f\} \in A$

Ache o conjunto das partes de A.

- 14) Dados $A = \{1, 2, 3\}, B = \{1, 2\} \in C = \{1\}, ache:$
 - a) $A \times B$

c) B^2

b) $B \times C$

- d) $(A \times B) \times C$
- 15) Sejam $A = \{1, 2\}, B = \{a, b, c\} \in C = \{c, d\}, ache:$
 - a) $(A \times B) \cap (A \times C)$ b) $(B \cap C) \times A$
- c) $A \times (B \cup C)$
- 16) Se $n(A \times B) = 10$ e $A = \{1, 3\}$, quantos elementos tem B?
- 17) Se nP(A) = 8 e nP(B) = 32, quantos elementos tem $A \times B$?

Respostas:

- 1) a) 52 b) 30 2) a) 5 b) 4 c) 2 d) 1 f) 11 g) 2 3) 340 e) 6 4) 1520 5) 59
- 6) a) 36 b) 59 c) 20 7) 40% 8) a) 50 b) 420 c) 280 d) 140 e) 600 9) 450
- 10) a) 190 b) 120 c) 370 d) 100 11) a) 3200 b) 5600 c) 4300
- 12) $P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\}$
- 13) a) (i) F (ii) F (iii) V (iv) V (v) V
 - b) $P(A) = \{\emptyset, \{\{a,b\}\}, \{\{c\}\}, \{\{d,e,f\}\}, \{\{a,b\}, \{c\}\}, \{\{a,b\}, \{d,e,f\}\}, \{\{c\}, \{d,e,f\}\}, A\}\}$
- 14) a) $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$ b) $\{(1, 1), (2, 1)\}$ c) $\{(1, 1), (1, 2), (2, 1), (2, 2)\}$
- d) $\{((1, 1), 1), ((1, 2), 1), ((2, 1), 1), ((2, 2), 1), ((3, 1), 1), ((3, 2), 1)\}$
- 15) a) $\{(1, c), (2, c)\}$ b) $\{(c, 1), (c, 2)\}$ c) $\{(1, a), (1, b), (1, c), (1, d), (2, a), (2, b), (2, c), (2, d)\}$
- 16) 5 elementos 17) 15 elementos