

RECEIVED #10

AUG 20 2002

TECH CENTER 1600/2900

SEQUENCE LISTING

<11> Roche Vitamins AG
<12> Microbial process for producing L-ascorbic acid and D-erythorbic acid
<13> Alicyclobacillus NA20, 21, FJ21 16S nuc
<14> US 09/938, 035
<141> 1001-08-23
<15> EP Application No. 00118059.5
<151> 1000-08-23
<16>
<17> PatentIn version 3.1
<21> 1
<211> 1529
<212> DNA
<213> Alicyclobacillus sp.
<22>
<221> rRNA
<222> 1) .. (1529)
<223> NA-20 partial 16SrRNA gene sequence

<224>
<225> misc_feature
<226> (1) .. (1529)
<227> n can be a or t or g or c

<40> 1
agagtttgccttgggttcag gacgaaacgct ggccggcgtgc ctaatacatg caagtgcaggc 60
gggtctcttc ggaggccagc ggccggacggg tgaggaacac gtgggttaatc tgcctttcag 120
ggccggaaataa cggccggaaa cggggcgatcaa tgcggataac gcccgcgagg aggcattttc 180
ttggggggga aggcccaatt gggccgtgtga gagaggagcc cgccggcgat tagctngttg 240
ggggggtaac ggcccaccaa ggccgacgtg cgtccggcac ctgagagggt gaccggccac 300
actgggactg agacacggcc cagacttcta cgggaggcag cagtagggaa tcttccgcaa 360
tggggcgcaag cctgacggag caacggcgcg tggcgaaaga aggccttcgg gttgtaaagc 420

tctgttgc	ggggagagcg	gcatggggaa	tggaaagccc	catgcgagac	ggtaccgagt	480
gaggaagccc	cggctaacta	cgtgccagca	gccgcgttaa	aacgttaggg	gcgagcgttg	540
tccggaaatca	ctgggcgtaa	agggtgcgt	ggcggtcgag	caagtctgga	gtgaaagtcc	600
atggctcaac	catgggatgg	ctttggaaac	tgttgactt	gagtgttgaa	gaggcaagg	660
gaattccaa	tgttagcgg	aatgcgtag	agatgtggag	gaataccagt	ggcgaaggc	720
ccttgcgtgg	caatgcgt	cgctgaggca	cgaaagcgtg	gggagcaaac	aggattagat	780
accctggtag	tccacgcgt	aaacgatgag	tgttaggtgt	tggggggaca	cacccagt	840
cggaaaggaaa	cccaataaagc	actccgcgt	gggagtacgg	tcgcaagact	gaaactcaa	900
ggaaatgaa	ggggcccgca	caaggagtgg	agcatgttgt	ttaattcgaa	gcaacgcgaa	960
gaaccttacc	agggtttgac	atccctctga	cacnctcaga	gatgaggggt	cccttcgggg	1020
caggaggac	aggtggtgca	tggttgttgt	cagctgtgt	cgtgagatgt	tgggttcagt	1080
ccggcaacgt	ggccaaacct	tgacctgtgt	taccagcgcg	ttgaggcggg	gactcacagg	1140
tgtatgcgt	cgtaagtccgg	aggaaaggcgg	ggatgacgtc	aaatcatcat	gccctgtat	1200
ttttgggttt	cacaatgtgt	acaatgggg	gaacaaagg	aggcgaagcc	gcgaggcgga	1260
ggaaaaccct	aaaagccgt	cgtagttgg	attgcaggct	gcaactcgcc	tgcataa	1320
ttttttttgtt	atgtatcgcg	gtatcagcatg	ccgcgttgaa	tacgttcccc	ggccttgcac	1380
aaaaatccat	ttcacaccacg	agatcggca	acacccgaag	tcggtgaggt	aacccctnnng	1440
tttttttttttt	cgccgaaggt	ggggtcgtatg	attgggggtga	agtcttaaca	agtagccgt	1500
tttttttttttt	ggggctggat	ccatcattt				1529

<1>: 2
 <2>: 1529
 <3>: DNA
 <4>: Allochrybocillaceae sp

<5>
 <6>: rRNA
 <7>: (1)..(1529)
 <8>: NA-21 Partial 16SrRNA gene

<9>
 <10>: misc_feature
 <11>: (1)..(1529)

<223> n can be a or t or g or c

<400> 2
a~~g~~at~~t~~ttt~~g~~at c~~t~~gg~~g~~tc~~a~~g i~~a~~c~~g~~a~~a~~cg~~t~~ g~~g~~gg~~g~~gtgc c~~t~~aata~~a~~cat~~g~~ ca~~a~~gt~~c~~gag~~c~~ 60
g~~g~~gtctt~~t~~tc~~g~~ g~~g~~agg~~c~~ag~~c~~ g~~g~~gg~~g~~ac~~g~~g t~~g~~agg~~a~~ac~~c~~ g~~t~~gg~~g~~taat~~c~~ t~~g~~c~~t~~ttc~~a~~g 120
g~~g~~gg~~a~~at~~a~~ a~~g~~gg~~g~~aa~~a~~ a~~g~~gg~~g~~at~~a~~ a~~t~~gg~~g~~at~~a~~c g~~cc~~cg~~g~~agg~~g~~ ag~~g~~at~~t~~tc~~g~~ 180
t~~g~~gg~~g~~gg~~g~~ a~~g~~gg~~c~~aa~~t~~t g~~g~~gg~~c~~act~~g~~a g~~g~~agg~~g~~ac~~g~~ a~~g~~gg~~g~~cg~~at~~ t~~g~~ctng~~t~~tg 240
g~~g~~gg~~g~~ta~~a~~ a~~g~~gg~~c~~ac~~aa~~ a~~g~~gg~~g~~ac~~g~~at~~g~~ c~~t~~ag~~g~~cg~~ac~~ a~~t~~g~~g~~agagg~~g~~ g~~ac~~gg~~g~~ca~~c~~ 300
a~~t~~gg~~g~~ac~~t~~g a~~g~~ac~~a~~gg~~g~~ c~~a~~g~~g~~tc~~ta~~ a~~g~~gg~~g~~ag~~g~~ c~~a~~gttaggg~~aa~~ t~~c~~tcc~~g~~ca~~a~~ 360
t~~g~~gg~~g~~ca~~ag~~ a~~t~~g~~g~~ac~~gg~~g~~g~~ c~~a~~ac~~g~~gg~~g~~ t~~g~~agg~~g~~aa~~g~~ a~~g~~gg~~c~~tt~~cg~~ g~~t~~t~~g~~taa~~ag~~ 420
t~~t~~gt~~t~~g~~g~~tc~~g~~ a~~g~~gg~~g~~ag~~g~~g~~g~~ g~~at~~gg~~g~~gg~~g~~ a~~t~~g~~g~~ag~~ac~~ g~~g~~tacc~~g~~at~~g~~ 480
g~~g~~gg~~a~~ag~~cc~~ a~~g~~gg~~c~~aa~~t~~a a~~t~~gg~~g~~ac~~g~~a g~~cc~~gg~~g~~ta~~a~~ a~~a~~cg~~g~~agg~~gg~~ g~~g~~g~~g~~eg~~tt~~g 540
t~~g~~gg~~g~~at~~ca~~ a~~t~~gg~~g~~gt~~aa~~ a~~g~~gg~~t~~g~~g~~ta~~g~~ g~~g~~gg~~g~~tg~~g~~g~~g~~ c~~a~~ag~~t~~tg~~g~~ga g~~t~~gaa~~ag~~tc~~c~~ 600
a~~t~~gg~~g~~ca~~ac~~ a~~t~~gg~~g~~at~~gg~~ a~~t~~gg~~g~~aa~~ac~~ t~~g~~tt~~g~~act~~t~~ g~~g~~gt~~g~~ct~~g~~ga g~~agg~~ca~~ag~~gg~~g~~ 660
g~~a~~at~~cc~~aa~~gg~~ t~~g~~tag~~gg~~tg~~g~~ a~~a~~at~~g~~gt~~g~~g~~g~~ a~~g~~at~~g~~gg~~g~~ g~~a~~at~~acc~~agt~~g~~ g~~g~~oga~~agg~~g~~g~~ 720
c~~tt~~gt~~gg~~ga~~g~~ c~~g~~t~~g~~act~~g~~a~~g~~ c~~g~~t~~g~~agg~~g~~ca~~g~~ a~~g~~aa~~ag~~gt~~g~~ g~~g~~ag~~ca~~aa~~ac~~ a~~g~~gatt~~at~~g~~at~~ 780
a~~cc~~tt~~gg~~tg~~g~~ t~~cc~~at~~gg~~gt~~g~~ a~~a~~at~~g~~at~~gg~~g~~g~~ t~~g~~tt~~g~~agg~~g~~g~~g~~ c~~ac~~cc~~cc~~at~~gg~~g~~g~~ 840
c~~g~~aa~~gg~~aa~~aa~~ c~~cc~~at~~aa~~aa~~gg~~ a~~cc~~cc~~gg~~at~~gg~~ g~~gg~~gg~~at~~ac~~gg~~ t~~cc~~ca~~aa~~act~~aa~~aa~~gg~~ 900
g~~g~~aa~~at~~tg~~g~~g~~g~~ a~~g~~gg~~gg~~aa~~gg~~ c~~aa~~gg~~gg~~at~~gg~~ g~~gg~~at~~gg~~tg~~gg~~ t~~ta~~at~~cc~~g~~aa~~ g~~ca~~ac~~gg~~aa~~gg~~ 960
g~~aa~~at~~cc~~aa~~cc~~ a~~cc~~cc~~cc~~aa~~cc~~ at~~cc~~cc~~cc~~tg~~g~~a c~~cc~~cc~~cc~~aa~~cc~~ g~~at~~g~~gg~~gg~~gg~~ g~~cc~~tt~~cg~~gg~~gg~~ 1020
c~~g~~ag~~gg~~ag~~gg~~ a~~g~~gg~~gg~~tg~~g~~ca t~~g~~gt~~gg~~tg~~g~~gt~~g~~ c~~g~~gt~~gg~~tg~~g~~gt~~g~~ a~~g~~t~~g~~ag~~at~~gt~~g~~ t~~g~~gg~~tt~~ca~~gg~~ 1080
c~~cc~~gg~~aa~~ac~~gg~~g~~g~~ g~~gg~~aa~~cc~~cc~~cc~~ t~~g~~ac~~cc~~tg~~g~~gt~~g~~ t~~cc~~at~~gg~~gg~~g~~ g~~act~~ca~~cc~~gg~~g~~ 1140
t~~g~~act~~gg~~gg~~g~~ c~~g~~t~~g~~at~~gg~~gg~~g~~ a~~g~~ga~~gg~~gg~~g~~g~~g~~ g~~g~~at~~gg~~ac~~gt~~ g~~a~~at~~cc~~at~~cc~~at~~gg~~ g~~cc~~cc~~cc~~tg~~g~~at~~g~~ 1200
t~~cc~~tt~~gg~~gg~~g~~ta~~g~~ a~~cc~~at~~gg~~gg~~g~~g~~g~~ g~~a~~ac~~aa~~gg~~g~~gg~~g~~ a~~g~~gg~~g~~ca~~gg~~cc~~gg~~ g~~g~~g~~g~~gg~~g~~gg~~g~~ 1260
g~~g~~g~~aa~~ac~~cc~~ca~~cc~~ a~~aa~~at~~gg~~gg~~g~~g~~g~~ c~~gt~~at~~tt~~gg~~g~~g~~g~~ att~~gg~~gg~~g~~gg~~g~~g~~g~~ a~~cc~~act~~cc~~cc~~cc~~cc~~cc~~ 1320
c~~gg~~aa~~tt~~tg~~g~~t~~g~~ a~~gt~~at~~cc~~cc~~cc~~ g~~at~~ca~~gg~~at~~gg~~ c~~gg~~gg~~g~~gt~~g~~g~~g~~ a~~t~~ac~~tt~~cc~~cc~~cc~~cc~~cc~~cc~~ 1380
a~~cc~~cc~~cc~~cc~~cc~~g~~g~~ t~~cc~~ac~~cc~~cc~~cc~~g~~g~~ a~~g~~ag~~t~~cc~~cc~~ca~~cc~~ a~~cc~~cc~~cc~~aa~~gg~~ t~~cc~~gg~~tt~~gag~~gg~~ a~~ac~~cc~~cc~~tt~~cc~~ag~~g~~ 1440
g~~gg~~gg~~cc~~cc~~cc~~g~~g~~ c~~gg~~gg~~cc~~aa~~gg~~g~~g~~ a~~gg~~gt~~cc~~gt~~cc~~g~~g~~ att~~gg~~gg~~gg~~gt~~g~~g~~g~~ a~~gt~~cg~~ta~~aa~~cc~~ a~~gg~~tg~~cc~~cc~~cc~~gt~~g~~ 1500

accggaaggt gcggctggat cacctcctt 1529

 <210> 3
 <211> 1495
 <212> DNA
 <213> Alicyclobacillus sp.

 <214>
 <215> rRNA
 <216> (1)..(1495)
 <217> FJ-21 Partial 16SrRNA gene sequence

 <218>
 <219> misc_feature
 <220> (1)..(1495)
 <221> n can be a or t or g or c

 <222> 3
 a~~gg~~acgaacg ctggcg~~gg~~gt gc~~taata~~ca tgcaagt~~c~~ga gcggac~~ct~~tct tctgagg~~t~~ca 60
 gg~~gg~~gg~~gg~~acg ggt~~gg~~g~~gg~~aa~~c~~ ac~~gt~~gg~~gg~~taa tctgc~~c~~tttc agaccg~~ga~~at aacgccc~~gg~~a 120
 a~~cc~~gg~~gg~~get aat~~gc~~ggat ac~~gc~~cc~~gg~~ga ggaggcatct tcttg~~cgggg~~ aaaggccc~~ga~~ 180
 tt~~gg~~cc~~gg~~get gagag~~gg~~g~~gg~~g~~gg~~ attagctngt tggc~~gggg~~ta acggcccacc 240
 a~~gg~~cc~~gg~~ac~~ga~~ tg~~c~~gt~~ag~~ccg ac~~tt~~gagagg gtgacc~~gg~~cc acact~~gg~~ac tgagaca~~gg~~ 300
 cc~~ta~~gactcc tac~~gg~~g~~gg~~g~~gg~~ ag~~ca~~gttaggg aatcttcc~~gc~~ aat~~gg~~cg~~ca~~ agc~~ct~~gac~~gg~~ 360
 ag~~ca~~ac~~gg~~ccg cgt~~g~~ag~~cg~~aa gaaggc~~tt~~c gg~~tt~~tg~~aaa~~ gctctgtt~~gc~~ tc~~gggg~~ag~~ag~~ 420
 c~~gg~~cat~~gggg~~ agt~~gg~~aa~~ag~~c~~cc~~at~~gc~~g~~ag~~ ac~~gg~~tacc~~ga~~ gtgagg~~aa~~ag~~c~~ cccggct~~aa~~ac 480
 ta~~c~~gt~~gc~~ca~~g~~ c~~ag~~cc~~gg~~gt a~~aa~~ac~~gt~~tag~~gg~~ g~~gg~~g~~gg~~ac~~gt~~ t~~gt~~cc~~gg~~aa~~t~~ cact~~gggg~~gt 540
 a~~aa~~agg~~gt~~gc~~g~~ tag~~gg~~g~~gt~~cg ag~~ca~~gtct~~g~~ g~~ag~~t~~g~~aa~~ag~~t~~g~~ c~~ca~~t~~gg~~ct~~ca~~ accat~~ggg~~at 600
 g~~ac~~t~~ct~~gg~~aa~~ act~~gt~~tt~~g~~ac tt~~g~~ag~~gt~~gt~~g~~ g~~ag~~agg~~ca~~ag~~g~~ gg~~ga~~att~~cc~~a cgt~~gt~~ag~~cg~~gg 660
 tg~~aa~~at~~gg~~gt~~g~~ ag~~ag~~at~~gt~~gg ag~~ga~~at~~ac~~ca gtgg~~gg~~aa~~gg~~ cg~~c~~ctt~~g~~ct~~g~~ g~~ac~~agt~~gt~~act 720
 g~~ac~~ct~~gt~~g~~agg~~ ca~~g~~aaa~~ag~~cg t~~gg~~g~~ag~~caa acaggatt~~ag~~ atacc~~ct~~g~~gt~~t agtccac~~gc~~cc 780
 g~~tt~~aa~~ac~~gt~~g~~ agt~~gt~~ct~~ag~~gt~~g~~ gtt~~gggg~~gg~~gg~~aa~~cc~~ag~~g~~ tgcc~~ga~~agg~~g~~ aacc~~ca~~ata~~aa~~ 840
 g~~ca~~ct~~cc~~g~~cc~~ t~~gggg~~g~~ag~~t~~ac~~ g~~gt~~cg~~ca~~aga~~g~~ ctg~~aa~~act~~ca~~ a~~ag~~gaatt~~tg~~a c~~gggg~~cc~~cc~~g 900
 caca~~aa~~g~~ca~~gt~~g~~ gg~~ag~~cat~~gt~~g~~g~~ t~~tt~~taatt~~cg~~ a~~ag~~caac~~g~~cg~~g~~ a~~ag~~aa~~cc~~t~~ta~~ cc~~agg~~g~~tt~~g~~g~~ 960

acatccctct gacgggtgca gagatgcacc ttccccttcgg ggcagaggag acaggtggtg 1020
catggttgtc gtcagctcggt gtcgtgagat gttgggttca gtcccgcaac gagcgcaacc 1080
cttgcacctgt gttaccagcg cgnntangggcg gggactcaca ggtgactgcc ggctgttaa 1140
ggagggaaaggc ggggatgacg taaaatcatc atgcaccctga tgtcctgggc tacacacgtg 1200
ctacaatggg cggtaaaaaag ggaggcgaag ccgcggaggcg gagcgaaacc caaaaagccg 1260
ctcgtagttc ggattgcagg ctgcaactcg cctgcatgaa gccggaatttg ctagtaatcg 1320
cgatcagca tgccgcggtg aatacgttcc cgggccttgt acacaccgcc cgtcacaccca 1380
cgagagtccgg caacacccga agtcggtgag gtaaccccgaa aaggggagcc agccgcccggaa 1440
ggtggggtcg atgattgggg tgaagtcgtt acaaggttagc cgtaccggaa ggtgc 1495