FFM234, Klassisk fysik och vektorfält -Föreläsningsanteckningar

Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige

Oct 2, 2018

10. Värmeledning, diffusionsekvation

Betrakta ett temperaturfält $T(\vec{r},t)$

- \bullet På ett område V.
- Med randvillkor längs ∂V .
- I närvaro av eventuella värmekällor.
- Med ett explicit tidsberoende.

Vi söker nu en differentialekvation för detta fält.

Värmeledning (diffusion)

Vi vet att värme strömmar från varmare till kallare. Det innebär att vi har ett flöde av värmeenergi i en riktning som är motsatt $\vec{\nabla}T$.

Antagande 1

Värmeströmmen kan skrivas

$$\vec{q} = -\lambda \vec{\nabla} T, \tag{1}$$

där λ är värmekonduktiviteten (värmeledningsförmågan), och \vec{q} är själva värmeflödet med enheten J s $^{-1}$ m $^{-2}$.

Antagande 2

Värmetätheten ε är proportionell mot temperaturen

$$\varepsilon = c\rho T$$
,

där c är värmekapacitiviteten och ρ är densiteten. $\bullet \ [\varepsilon] = J/m^3$ $\bullet \ [c] = Jkg^{-1}K^{-1}$ $\bullet \ [\rho] = kgm^{-3}$

Betrakta nu en volym V, vilken begränsas av en sluten yta $S = \partial V$.

• Värmeenergin i denna volym är

$$H = \int_{V} Tc\rho dV \tag{2}$$

• Utflödet av värme från denna volym är

$$\oint_{\partial V} \vec{q} \cdot d\vec{S}. \tag{3}$$

Förutsatt att det inte finns några värmekällor i V måste utflödet motsvara förändringen per tidsenhet av värmen i V

$$\frac{\partial H}{\partial t} = -\oint_{\partial V} \vec{q} \cdot dS. \tag{4}$$

Med insättning av ekv. (2) i VL och användande av Gauss sats i HL fås

$$\int_{V} \frac{\partial}{\partial t} (Tc\rho) \, dV = -\int_{V} \vec{\nabla} \cdot \vec{q} \, dV.$$
 (5)

Volymen V är helt godtyckligt vald, så likheten måste gälla för alla volymer V. I så fall kan vi sätta integranderna lika med varandra

$$\frac{\partial}{\partial t} (Tc\rho) = -\vec{\nabla} \cdot \vec{q} = \vec{\nabla} \cdot \lambda \vec{\nabla} T = \lambda Delta T.$$
 (6)

Om vi nu antar att c, ρ och λ är konstanter, så kan vi skriva ekvationen som

$$\frac{\partial T}{\partial t} = k\Delta T,\tag{7}$$

där

$$k \equiv \frac{\lambda}{c\rho}.\tag{8}$$

Den här ekvationen kallas för värmeledningsekvationen.

Kommentar

Värmeledningsekvationen är en kontinuitetsekvation för värmeenergin. Ni känner antagligen igen härledningen från det liknande bevis som gjordes i kap. 4 i kurskompendiet.

Stationär lösning. För en tidsoberoende värmefördelning gäller $\partial T/\partial t=0$ och därmed

$$\Delta T = 0 \tag{9}$$

som vi kallar för Laplace-ekvation.

Värmekälla. Vad händer nu om vi har en värmekälla i volymen V? Antag att värme produceras av en källa med tätheten $s = s(\vec{r}, t)$ med enheten W m⁻³. Då måste vi komplettera ekv. (5) med en term för denna uppvärmning

$$\int_{V} \frac{\partial}{\partial t} (Tc\rho) \, dV = \int_{V} \lambda \Delta T dV + \int_{V} s dV.$$
 (10)

Värmeledningsekvationen (med konstant c, ρ) blir då

$$\frac{\partial T}{\partial t} = k\Delta T + \frac{s}{c\rho}.\tag{11}$$

Kommentar 1: Vi använder ibland beteckningen $u = s/(c\rho)$, som också kallas för $v\ddot{a}rmek\ddot{a}llt\ddot{a}thet$.

Om temperaturfördelningen är tidsoberoende kan vi skriva ekvationen som

$$\Delta T = -\frac{s}{\lambda} \tag{12}$$

som är ett exempel på Poissons ekvation. Högerledet kallar vi då för en källterm.

Exempel: En-dimensionell värmeledning

Betrakta ett område $x \in [0, L]$ i en dimension med följande villkor på temperaturfördelningen T = T(x, t)

- Begynnelsevillkor: $T(x,0) = T_0 \sin \frac{\pi x}{L}$.
- Randvillkor: T(0,t) = T(L,t) = 0 (dvs Dirichlets homogena RV).

Kommentar 2: Teckna T(x,0) och jämför gärna med Neumanns homogena randvillkor som hade stoppat värmetransport genom ändarna eftersom $\partial T/\partial x=0$ (vid x=0 och x=L).

Finn temperaturfördelningen för t>0 i avsaknad av någon värmekälla.

Lösning: Värmeledningsekvationen är

$$\frac{\partial T(x,t)}{\partial t} - k \frac{\partial^2 T(x,t)}{\partial x^2} = 0.$$

Notera att

$$\frac{\partial^2}{\partial x^2} \sin \frac{\pi x}{L} = -\frac{\pi^2}{L^2} \sin \frac{\pi x}{L},$$

vilket gör det naturligt att ansätta lösningen $T(x,t) = f(t) \sin \frac{\pi x}{L}$.

Denna ansats uppfyller randvillkoren och begynnelsevillkoret om f(0) = T_0 . Insättning i värmeledningsekvationen ger

$$f'(t)\sin\frac{\pi x}{L} + kf(t)\frac{\pi^2}{L^2}\sin\frac{\pi x}{L} = 0,$$

vilket har lösningen

$$f(t) = Ae^{-\pi^2 kt/L^2}.$$

där
$$A=T_0$$
 bestäms av begynnelsevillkoret. Lösningen
$$T(x,t)=T_0e^{-\pi^2kt/L^2}\sin\frac{\pi x}{L}$$

innebär att temperaturen minskar kontinuerligt (flödar ut genom ändarna) och att en stationär lösning, T=0, erhålls för stora t.

Exempel: Värmeledning med källterm

Granitberggrunden i Sverige innehåller en viss mängd radium, vars radioaktiva sönderfall ger en uppvärming som av en rymdkälla för värme med konstant källtäthet $\rho_{\rm T}$. Granitens värmeledningsförmåga är λ (i W m⁻¹ K⁻¹). Låt oss göra det orealistiska antagandet att Jorden alltigenom bestod av granit med dessa egenskaper. Hur skulle i så fall den stationära temperaturfördelningen i Jordens inre se ut? Vad blir temperaturen i centrum?

Lösning: Vi kan ställa upp differentialekvationen

$$\Delta T = -\frac{\rho_{\rm T}}{\lambda} \tag{13}$$

I sfäriska koordinater under antagande om sfärisk symmetri blir ekvationen

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right) = -Q,\tag{14}$$

där $Q = \rho_{\rm T}/\lambda$. Vi kan skriva detta som

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) = -Qr^2, \tag{15}$$

och sedan integrera en gång.

$$r^2 \frac{\partial T}{\partial r} = -\frac{1}{3} Q r^3 + A, \tag{16}$$

där A är en integrationsvariabel. Om vi dividerar med r^2 får vi

$$\frac{\partial T}{\partial r} = -\frac{1}{3}Qr + \frac{A}{r^2}. (17)$$

Integrerar vi än en gång får vi

$$T(r) = -\frac{1}{6}Qr^2 - \frac{A}{r} + B,$$
(18)

där B är ännu en integrationsvariabel. Vi måste nu bestämma värden på de båda integrationsvariablerna. Först kan vi notera att det inte finns någon värmepunktkälla, så temperaturen inte bör bli oändlig i Jordens inre, dvs A=0.

För det andra noterar vi att temperaturen vid jordytan, r=R, är praktiskt taget 0 jämfört med temperaturen i Jordens centrum, så vi får ekvationen

$$0 = -\frac{1}{6}QR^2 + B. (19)$$

vilket ger $B=QR^2/6$. Fysikaliskt så är B temperaturen i Jordens centrum. Om vi sätter in realistiska värden på $\rho_{\rm T}=5\times10^{-8}~{\rm W\,m^{-3}},~\lambda=3,5~{\rm W\,m^{-1}\,K^{-1}}$ och $R=6,4\times10^6$ m, så får vi $B=6\times10^5$ K, vilket är en grov överskattning av den verkliga temperaturen.

Greensfunktioner för värmeledningsekvationen

- Kan vi använda Greensfunktioner för att teckna lösningar till allmänna källfördelningar?
- Notera att fälten (temperatur, värmekälla) är både rums- och tidsberoende.
- Ja, det kan man Greensfunktionen är då lösningen (med givna randvillkor) till värmeledningsekvationen för en punktkälla i både tid och rum.

Kommentar 3: En punktlik energikälla som bara existerar under ett ögonblick, men är precis så stark att den tillförda energimängden är ändlig. Fundera på hur temperaturfältet borde se ut.

 $\mbox{\sc Vi}$ söker alltså lösningen till Greensfunktionsekvationen svarande mot värmeledningsekvationen:

$$\left(\frac{\partial}{\partial t} - k\Delta\right) G(\vec{r}, t; \vec{r}', t') = \delta^D(\vec{r} - \vec{r}') \delta(t - t')$$

på hela D-dimensionella rummet \mathbb{R}^D . Finner vi lösningen till denna ekvation, kan lösningen till värmeledningsekvationen för godtycklig källfördelning u skrivas

$$T(\vec{r},t) = \int_{-\infty}^{\infty} dt' \int d^{D}x' G(\vec{r},t;\vec{r}',t') u(\vec{r}',t')$$

vilket ses genom direkt insättning

$$\left(\frac{\partial}{\partial t} - k\Delta\right) T(\vec{r}, t) = \int_{-\infty}^{\infty} dt' \int d^D x' \left(\frac{\partial}{\partial t} - k\Delta\right) G(\vec{r}, t; \vec{r}', t') u(\vec{r}', t')
= \int_{-\infty}^{\infty} dt' \int d^D x' \, \delta^D(\vec{r} - \vec{r}') \delta(t - t') u(\vec{r}', t') = u(\vec{r}, t).$$
(20)

som alltså visar att värmeledningsekvationen uppfylls för detta T.

- Vi studerar lösningen på ett oändligt, D-dimensionellt rum.
- För det första kan vi använda translationsinvarians i rum och tid för att skriva $G(\vec{r},t;\vec{r}',t') = \tilde{G}(\vec{r}-\vec{r}',t-t')$.
- Följande lösning uppfyller ekvationen

$$\tilde{G}(\vec{r}-\vec{r}',t-t') = \frac{\sigma(t-t')}{(4\pi k(t-t'))^{D/2}} e^{-\frac{|\vec{r}-\vec{r}'|^2}{4k(t-t')}},$$

där $\sigma(t)$ är stegfunktionen som tar värdet 0 för t < 0 och 1 för t > 0.

Faktorn $\sigma(t-t')$ gör att en källa vid tidpunkten t' bara kan påverka vad som händer vid senare tidpunkter $t \geq t'$, så vi har kausalitet.

Skissa Greensfunktionens utseende för olika t:

- den börjar som en deltafunktion vid $t t' = 0^+$
- för att när tiden går bli bredare och lägre, hela tiden med Gaussisk form.

Kommentar

Det faktum att rumsintegralen av G är konstant i tiden för t-t'>0,

$$\int_{\mathbb{R}^D} d^Dx\, G(\vec{r},\vec{r}^{\,\prime},t,t^{\prime}) = 1, \label{eq:continuous}$$

är ett uttryck för energins bevarande, och naturlig om vi
 minns att vi kan se värmeledningsekvationen som en kontinuitetsekvation.

Värmeledningsekvationen heter på engelska "the heat equation". Dess Greensfunktion kallas "heat kernel", på svenska ibland "värmekärna".

Värmeledning (konvektion)

- Ovan har vi enbart behandlat värmeledning via diffusion.
- Konvektion erbjuder betydligt effektivare värmetransport för fluider (vätskor och gaser) genom att varm materia strömmar.
- Vi beskriver detta med en värmeström

$$\vec{q}_{\mathrm{konv}} = \rho c T \vec{v}$$

som skall adderas till diffusionsströmmen från tidigare

$$\vec{q}_{\text{diff}} = -\lambda \vec{\nabla} T.$$

Kontinuitetsekvationen för värmeenergin säger att

$$\frac{\partial T}{\partial t}(Tc\rho) = -\vec{\nabla}\cdot\vec{q} = -\vec{\nabla}\cdot(\vec{q}_{\rm diff} + \vec{q}_{\rm konv}).$$

Antar vi återigen att c, ρ och λ är konstanter (notera att detta innebär att $\vec{\nabla} \cdot \vec{v} \propto \partial \rho / \partial t = 0$) får vi

$$\frac{\partial T}{\partial t} + \vec{v} \cdot \vec{\nabla} T = k\Delta T + \frac{u}{c\rho}, \tag{21}$$

där vi också inkluderat möjligheten att det finns värmekällor.