

ون تعليم الآلة

القسم الثاني: التوقع

التوقع الخطي لأكثر من متغير

تعليم الآلة

محتويات الكورس:

```
• القسم الأول : مقدمة
```

• القسم الثاني : التوقع Regression

• القسم الثالث : التقسيم Classification

• القسم الرابع : الشبكات العصبية NN

• القسم الخامس : نظام الدعم الألي SVM

• القسم السادس : التعليم بدون اشراف Unsupervised ML

• القسم السابع : مواضيع هامة (القيم الشاذة, نظام الترشيحات . . .)

التعامل مع اكثر من بعد:

- تحدثنا سابقا, عن التعامل مع متغير واحد (قيمة لـ X و نجيب منها قيمة Y) الان نتعامل مع اكثر من متغير
- أكثر من متغير معناها ان البيانات الداخلة لها اكثر معلومة لكل صف , فبدلًا من ادخال مساحة البيت لمعرفة سعره (X واحدة) , نقوم بادخال مساحة البيت و عدد غرفه , وعمره, و موقعه , وحالته , ولونه , لتحديد سعره , وهذه الأشياء تسمى features

معادلة التوقع الخطي Linear Regression Equation

X	Y	
1	7	
2	8	
2	7	
3	9	
4	11	
5	10	
5	12	

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
*1	Xz	×3	*4	9	
2104	5	1	45	460 7	
1416	3	2	40	232	M= 41
1534	3	2	30	315	
852	2	1	36	178	
Natation	人	1	1	-	

Notation:

- $\rightarrow n$ = number of features n = 4
 - $x^{(i)}$ = input (features) of i^{th} training example.
 - $x_j^{(i)}$ = value of feature j in i^{th} training example.

التعامل مع اكثر من بعد:

- فنري ان سعر البيت (Y) يتاثر
 بعدد من العوامل (Xs
 - عدد الاكسات نسميه n, بينما عدد الصفوف لازال m

$$x_{j}^{(i)} = \text{value of feature } j \text{ in the } i^{th} \text{ training example}$$

• الرقم اللي فوق يكون رقم الصف (انهي ريكورد فيهم m) و الرقم اللي تحت هيكون رقم العمود (انهي معلومة فيهم n)

التوقع الخطي Linear Regression

• و یسمي أیضا (Regression (Regression) او (Regression

معادلة التوقع الخطي Linear Regression Equation

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Goal: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

• الهدف تقليل الفارق بين قيمة (h(x) و هي القيمة المتوقعة من المعادلة الخطية و قيمة y و هي القيمة الحقيقية

• يتم القسمة علي 2m لربط قيمة الخطا بعدد القيم بالعينة

• الهدف ايجاد قيم ثبتا 1 و ثبتا 2 , والتي تجعل من ل (نسبة الخطا) اقل ما يمكن

• تسمي احيانا Cost error function

معادلة التوقع الخطى Linear Regression Equation

Theta0 = 5, theta 1 = 2 Equation h(x) = 5 + 2x

$$h(x) = 5 + 2x$$

X	Y	h(x)	h(x) - y	(h(x) - y) ²
1	7	7	0	0
2	8	9	1	1
2	7	9	2	4
3	9	11	2	4
4	11	13	2	4
5	10	15	5	25
5	12	15	3	9

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J = 1 / 14 (0+1+4+4+4+25+9)$$

$$J = 47/14 = 3.3$$

• وقتها الفنكشن, هتكون متعددة الحدود زي كدة,

• ليه بنعمل ترانزبوس ؟ لان الثيتا و الاكس اصلا هما فيكتور (عمود واحد في كذا صف), فلازم اعمل ترانزبوس لواحد فيهم و اضربه في التاني, عشان تكون المصفوفة الاولى صف واحد في 5 عواميد مثلا, والتانية زي ما هي 5 صفوف في عمود واحد, يتضربو يبقو رقم واحد بس

$$h_{\theta}(x) = \underline{\theta_0} + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

- وخد بالك الصيغة القديمة اللي كانت للـ ل هيكون فيها شوية تعديل , عشان مبقاش عامل واحد , نفس المعادلة , لكن دلوقتى H بقت فيها ثيتات كتيرة
 - لما اعمل تفاضل, هتظل اتش زي هي, وهتختفي كل الثيتات التانية عدا الثيتا اللي باعمل تفاضل علي اساسها اللي هتتبقي في الاخر

• القانون الجديد

```
repeat until convergence: {
	heta_0 := 	heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}
	heta_1 := 	heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}
	heta_2 := 	heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)}
```

الصيغة المجمعة

repeat until convergence:
$$\{$$
 $heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \qquad ext{for j} := 0...n \}$