PROJET: RENDU AVEC MAP D'ENVIRONNEMENT Synthèse d'image

Principe de l'environnement map

- On utilise une texture pour obtenir de l'information sur l'environnement de la scène pour le rendu.
- Lorsque le rayon est suffisamment loin de la scène, il reçoit la couleur de la texture d'environnement. Ici, on a utilisé un mapping de Blinn/Newell.
- On détermine le point de collision avec une sphère qui englobe la scène.
- \circ On accède au texel correspondant à la coordonnée (φ , θ).

ι

Premiers résultats

Limite de la lumière indirecte

Shininess = 50

Shininess = 180

Illumination Global: Théorie

- Chaque point de l'environnement map sont considérée comme des sources lumineuses.
- On utilise la méthode de Monte-Carlo pour approximé la lumière reçu au point de calcul.

• En pratique, on trace plusieurs rayon qui seront moyennés

Illumination Global: Résultats

Alpha = 0,35

Alpha = 0,2

Alpha = 0,1

Illumination Global: Limite

Conclusion

- Bénéfice de l'envMap
 - Possibilité de reproduire la luminosité d'un environnement simplement
- Inconovéniant de l'envMap
 - Distrotion aux pôles de la sphère d'environnement.
 - Il est possible d'utiliser un mapping cubique pour éviter ce phénomène
- Amélioration possible
 - o Temps de calcul long, peuvent être améliorée avec l'importance sampling