METODY NUMERYCZNE – LABORATORIUM

Zadanie 1 – Rozwiązywanie równań nieliniowych metodą bisekcji oraz stycznych

Opis rozwiązania

Metoda bisekcji

Aby móc skorzystać z metody bisekcji funkcja f(x) musi spełniać poniższe założenia:

- jest ciągła na przedziale domkniętym [a, b],
- w punktach a i b wartości funkcji f(x) mają przeciwne znaki, tzn. $f(a) \cdot f(b) < 0$.

Metoda ta, znajduje tylko jeden pierwiastek w przedziale [a, b] z dowolną zadaną dokładnością epsilon lub ilością iteracji.

Osiągnięcie zadanej dokładności obliczeń:

Dzielimy przedział na dwie połówki punktem $x_0 = \frac{a+b}{2}$, jeżeli $|f(x_0)| < \varepsilon$, to x_0 jest szukanym pierwiastkiem. W przeciwnym wypadku z otrzymanych przedziałów wybieramy ten, w którym wartości f(x) na krańcach przedziału mają przeciwne znaki. a) jeżeli $f(x_0) \cdot f(b) < 0$, to $a = x_0$,

b) w przeciwnym razie $b = x_0$.

Algorytm wykonuje się tak długo dla kolejnych przedziałów, dopóki $|f(x_0)| < \varepsilon$.

Wykonanie określonej przez użytkownika liczby iteracji:

Algorytm działa analogicznie do powyższego, jedynie zamiast dokładności obliczeń użytkownik podaje liczbę iteracji, po której algorytm ma zakończyć działanie.

Metoda stycznych (Metoda Newton'a)

Aby móc skorzystać z metody bisekcji funkcja f(x) musi spełniać poniższe założenia:

- jest ciągła na przedziale domkniętym [a, b],
- w punktach a i b wartości funkcji f(x) mają przeciwne znaki, tzn. $f(a) \cdot f(b) < 0$.
- druga pochodna funkcji f(x) jest ciągła na przedziale [a, b].
- znak pierwszej i drugiej pochodny funkcji f(x) są stałe w przedziale [a, b].

Osiągnięcie zadanej dokładności obliczeń:

Przyjmujemy punkt startowy x_0 z przedziału [a, b], jeżeli wartość funkcji $f(x_0) = 0$, to x_0 jest szukanym pierwiastkiem.

W przeciwnym wypadku w punkcie o współrzędnych $(x_0, f(x_0))$ prowadzimy styczną do wykresu funkcji.

Punkt przecięcia stycznej z osią OX stanowi pierwsze przybliżenie x_1 szukanego pierwiastka.

Kolejne przybliżenia obliczamy według wzoru rekurencyjnego:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Obliczenia kończymy, gdy $|f(x_i)| < \varepsilon$

Wykonanie określonej przez użytkownika liczby iteracji:

Algorytm działa analogicznie do powyższego, jedynie zamiast dokładności obliczeń użytkownik podaje liczbę iteracji, po której algorytm ma zakończyć działanie.

Wyniki

 $f(r) = 4r^3 + 3r^2 + 2r - 1$

f(x) = 1x + 3x + 2x + 1						
Metoda	Kraniec x	Kraniec y	Epsilon	Ilość iteracji	Miejsce zerowe	
Bisekcja	-1	1	0.01	8	0.3046875	
Metoda stycznych	-1	1	0.01	4	0.3045298	
Bisekcja (podana ilość iteracji)	-1	1	-	4	0.375	
Metoda stycznych (podana ilość iteracji)	-1	1	-	8	0.3044810	

 $f(x) = 2\sin x + \cos x$

Metoda	Kraniec x	Kraniec y	Epsilon	Ilość iteracji	Miejsce zerowe
Bisekcja (z podanym eps)	1	3	0.01	8	2.6796875

 $f(x) = 7^x - 4$

Metoda	Kraniec x	Kraniec y	Epsilon	Ilość iteracji	Miejsce zerowe
Bisekcja	0	2	0.01	10	0.712890625
Metoda stycznych	0	2	0.01	5	0.712647029
Bisekcja (podana ilość iteracji)	0	2	-	5	0.6875
Metoda stycznych (podana ilość iteracji)	0	2	-	10	0.712414374

 $f(x) = x^3 + 5^x - \sin x$

Metoda	Kraniec x	Kraniec y	Epsilon	Ilość iteracji	Miejsce zerowe
Bisekcja	-2	1	0.01	6	-1.015625
Metoda stycznych	-2	1	0.01	4	-1.014866
Bisekcja (podana ilość iteracji)	-2	1	-	4	-1.0625
Metoda stycznych (podana ilość iteracji)	-2	1	-	6	-1.014664

Wnioski

- w przypadku funkcji trygonometrycznej możemy skorzystać tylko z metody bisekcji, ponieważ dla metody stycznych nie jest spełniony warunek mówiący, że pierwsza i druga pochodna funkcji mają stały znak na tym przedziale,
- warto wspomnieć, że obie metody wskazują tylko jedno miejsce zerowe, nawet jeśli na zadanym przedziale znajduje się ich więcej,
- metoda stycznych zapewnia większą dokładność obliczeniową niż metoda bisekcji i osiąga ją przy mniejszej liczbie iteracji.