RK-XCKU5P-F V1.2 开发板 用户手册

文档变更记录				
版本	时间	描述		
V0.1	2025.05.10	初版		

目录

_	开发板简介	4
	1.1 FPGA	5
	1.2 DDR4	5
	1.3 QSPI	5
	1.4 SD CARD	6
	1.5 DEBUG	6
	1.6 千兆以太网	7
	1.7 MIPI	8
	1.8 PCIE	8
	1.9 FMC HPC	9
	1.10 40PIN IO	9
	1.11 QSFP28	.10
	1.12 时钟	.11
	1.13 FAN	.12
	1.14 LED	.13
	1.15 KEY	.14
	1.16 电源	. 14
	1.17 结构图	.16
=	用户快速体验	.17
	2.1 使用前的准备	.17
	2.2 常规测试	.20
	2.3 GTY 测试	.23
Ξ	烧录出厂 bit	.28

一 开发板简介

RK-XCKU5P-F 开发板采用 XILINX 公司的 Kintex Ultrascale+芯片 xcku5p-2ffvb676l。 采用整版设计,扩展了丰富的外围接口。

其中包括核心部分由 xcku5p-2ffvb676l+2 片 1GB DDR4+1 片 512Mb 的 QSPI FLASH 组成。

扩展的接口有: 一路千兆以太网、一路 QSFP28 100G 光口、一个 SD 卡、板载 JTAG、一个 PCIE3.0 x4 接口、MIPI CSI(4 lane)、FMC HPC、40PIN IO、四个 LED 和按键。 RK-XCKU5P-F 开发板结构示意图:

1.1 FPGA

采用 XILINX 公司的 Kintex Ultrascale+芯片 xcku5p-2ffvb676l。 其主要参数如下:

AMD Kintex™ UltraScale+™ FPGAs – Resources

AND MILEX SILUSCULET TO AS - NESOUTES								
						Impo	ortant: Verify all data in this docu	ment with the device data sheets.
	Device Name	KU3P	KU5P	KU9P	KU11P	KU13P	KU15P	KU19P
Logic	System Logic Cells (K)	356	475	600	653	747	1,143	1,843
	CLB Flip-Flops (K)	325	434	548	597	683	1,045	1,685
	CLB LUTs (K)	163	217	274	299	341	523	842
	Max. Distributed RAM (Mb)	4.7	6.1	8.8	9.1	11.3	9.8	11.6
Memory	Total Block RAM (Mb)	12.7	16.9	32.1	21.1	26.2	34.6	60.8
	UltraRAM (Mb)	13.5	18.0	0	22.5	31.5	36.0	81.0
Clocking	Clock Mgmt Tiles (CMTs)	4	4	4	8	4	11	9
	DSP Slices	1,368	1,824	2,520	2,928	3,528	1,968	1,080
Integrated	PCIE4 (PCIe® Gen3 x16)	1	1	0	4	0	5	0
ĬP	PCIE4C (PCIe® Gen3 x16 / Gen4 x8)	0	0	0	0	0	0	3
	150G Interlaken	0	0	0	1	0	4	0
	100G Ethernet w/ KR4 RS-FEC	0	1	0	2	0	4	1
I/O	Max. Single-Ended HD I/Os	96	96	96	96	96	96	72
	Max. Single-Ended HP I/Os	208	208	208	416	208	572	468
	GTH 16.3 Gb/s Transceivers	0	0	28	32	28	44	0
	GTY 32.75 Gb/s Transceivers	16	16	0	20	0	32	32
Speed	Extended ⁽¹⁾	-1 -2 -2L -3	-1 -2 -2L -3					

1.2 DDR4

开发板上配有 2 片 Micron 的 1GB 的 DDR4 芯片,型号为 **MT40A512M16LY-062E**,连接在 FPGA 的 HP 端,组成 32 位数据总线带宽和 2GB 的容量。DDR4 在 FPGA 端的最高运行数据速率 2666Mbps。

1.3 QSPI

核心板配有 1 片 512MBit 大小的 QSPI FLASH 芯片, 型号为 **MX25U51245GZ4I00**, 它 使用 1.8V CMOS 电压标准。由于 QSPI FLASH 的非易失特性, 在使用中, 它可以存储 FPGA 的配置 Bin 文件以及其它的用户数据文件。

1.4 SD CARD

开发板包含了一个 Micro 型的 SD 卡接口,以提供用户访问 SD 卡存储器,用于用户数据文件。SDIO 信号与 FPGA 的 IO 信号相连,支持 SPI 模式和 SD 模式,使用的 SD 卡为 MicroSD 卡。

1.5 DEBUG

开发板使用了一个 FT2232HQ 芯片,转换出一个 UART、一个 JTAG 电路。FT2232HQ 是一颗双通道的下载器芯片。可通过一个 USB 线,在电脑上识别到多个设备,其中包括我们的串口设备和 JTAG 转换设备。下载器最高支持 30M,可完成赛灵思 FPGA 的在线调试等基本调试功能。

1.6 千兆以太网

开发板有 1 路千兆以太网接口,PHY 芯片采用 REALTEK 公司的 RTL8211F-CG 以太网 PHY 芯片为用户提供网络通信服务。RTL8211F-CG 芯片支持 10/100/1000 Mbps 网络传输速率,通过 RGMII 接口跟 FPGA 进行数据通信。

1.7 MIPI

开发板上包含了一个 MIPI CSI (4 LANE) 摄像头接口, 可以用来接正点原子的 MIPI imx415 摄像头模块 (**详情请查看用户快速体验**),配合 FH1159 子卡实现 4K60 视频采集和显示。

1.8 PCIE

开发板上有一个 PCle3.0 x4 的接口(采用 PCle x8 的接口形式,使连接更加牢固),4 对收发器连接到 PCIE 的金手指上,能实现 PClEex4,PClex2,PClex1 的数据通信。

PCle 接口的收发信号直接跟 FPGA BANK224 的 GTY 收发器相连接, 4 路 TX 信号和 RX 信号都是以差分信号方式连接到 FPGA 的收发器上,单通道通信速率可高达 8G bit 带宽。

1.9 FMC HPC

开发板带有一个标准的 FMC HPC 的扩展口,可以外接 FMC 子卡。FMC 扩展口包含 34 对差分 IO 信号和 8 路高速 GTY 收发信号。

其中 FMC 的 GTY 收发满足 25Gbps 速率。

FMC 扩展口的 34 对差分信号连接到 FPGA 芯片的 BANK67 67 的 HP IO 上,IO 电平是由 BANK 电压 VADJ1 决定的(**默认 1.8V**),这个电源可以通过更改 DCDC 芯片的 FB 电阻来改变输出电压(**详情请查看 1.16 电源**)。另外 8 路 GTY 收发信号和参考时钟信号分别连接到 FPGA BANK226,BANK227 的 GTY 收发器和时钟输入。

1.10 40PIN IO

开发板留有一个 2.54mm 间距的 40 针的扩展口 (兼容黑金),用于连接黑金的各个模块或者用户自己设计的外围电路,扩展口有 40 个信号,其中,5V 电源 1 路,3.3V 电源 2 路,GND 3 路,IO 34 路 (17 对差分走线,且全部等长)。

扩展口的 IO 连接至 FPGA 芯片 PL 的 BANK86 87 上, 电平标准默认为 3.3V (不可更改)。

1.11 QSFP28

开发板上有 1 路 QSFP28 光纤接口,用户可以购买 100G 光模块插入到这个光纤接口中进行光纤数据通信。

光纤接口和 FPGA 的 BANK225 的 GTY 收发器的 4 路 RX/TX 相连接, TX 信号和 RX 信号都是以差分信号方式连接 FPGA 和光模块, 每路 TX 发送和 RX 接收数据速率高达 25Gb/s。参考时钟由板上的 156.25M 差分时钟提供。

1.12 时钟

开发板上分别为 FPGA 提供了参考时钟,一路差分时钟,一路单端时钟。

(1) 一颗 50MHZ 的有源晶振;

(2) 一颗 200MHZ 差分晶振,可用于 DDR4 的参考时钟或用户逻辑电路;

1.13 FAN

FPGA 正常工作时会产生大量的热量,所以在板上为芯片增加了一个散热片和风扇,防止芯片过热。

风扇为两线风扇,不支持 PWM 调速。

1.14 LED

开发板上包含 4 个用户 LED、一个电源指示灯和一个 FPGA DONE 灯。

1.15 KEY

开发板上包含4个用户按键。

1.16 电源

开发板的输入电源为 12V(输入范围 10-14V), 配有一个按键开关来控制电源开关。输入带有过流、防反接及 TVS 过压保护功能。

也可通过 PCIE 供电, PCIE 供电为 12V (PCIE 供电时,按键开关不起作用)。

其中 FMC 电压可更改为 1.2V/1.8V, 只需修改 RA 标识的电阻即可(1.2V 则修改 RA 为 1K 电阻)。

1.17 结构图

开发板的尺寸为: 131.064x107.62x39.5 (单位: mm)

二 用户快速体验

2.1 使用前的准备

出厂前开发板 QSPI FLASH 已烧写测试 bit, xdma 驱动请参考教程,这里不再赘述。

必须物品:

序号	名称	数量
1	测试版卡	1
2	TYPEC 线束	1
3	电脑	1
4	12V3A 电源	1

选配物品

序号	名称	数量
1	网线	1
2	100G 光模块	1
3	正点原子 IMX415 摄像头	1
4	SD卡 (2.0、8G-32G)	1
5	FMC 回环卡	1

1) 网口

开发板的默认 IP 是 192.168.1.10, 所以在网络适配器中修改对应的 IP 地址为 192.168.1.102, 保证在同一网段内;

2) 100G 光模块

测试使用的是 intel CWDM4 100G 光模块(闲鱼大概 90 一只,请自行选择)+LC 光纤;

3) 正点原子 IMX415 摄像头

MIPI CSI(4 lane)接口兼容正点原子的 IMX415 摄像头,实现 4K 60 视频采集,但要做一些小修改,如下图所示,需要将 R6 的电阻改到 R3 上,使用摄像头模块板载的 37.125 MHz 的晶振。

2.2 常规测试

按照下图所示连接 (注意 mipi 为上接):

- 注: 使用的是雷电拓展坞测试, 也可直接插在电脑主板上, 不需要外部供电。
 - 1) 按下电源开关(若电源插在拓展坞上,或开发板插在主板上,电源开关不起作用)
 - 2) 插入电脑的雷电接口
 - 3) done 灯(白色)亮起后,点开网盘内的测试工具

全部文件 / RIGUKE 网盘资料 / 9.RK-XCKU5P-F开发板网盘资料 / 5 出场相关

4) 摄像头会默认自动显示,且在右下角显示帧率,点击右上角的开始按钮

5) 使用网盘内的两个工具分别测试 ETH 和 UART, 两者都为回环测试

ETH:

UART:

- 6) SDCARD: 开发板向 SD 卡指定的扇区地址中写入 512 个字节的数据, 写完后将数据读出, 并验证数据是否正确
- 7) KEY LED:按下按键后对应的 LED 会翻转,四个按键都按过以后,测试通过
- 8) FMC LA 和 40PIN 是出厂时使用工装测试 IO 的工具,用户测试时的错误请忽略。

2.3 GTY 测试

按照下图所示连接(回环卡非必需):

1) 使用 vivado23.1 点开网盘内的工程

全部文件 / RIGUKE 网盘资料 / 9.RK-XCKU5P-F开发板网盘资料 / 5_出场相关

2) 点击 Open Target-Auto Connect

3) 关闭该提示

4) 按下电源开关, 可以看到 JTAG 识别到芯片

5) 点击 Program flash

6) 点击 Auto-detect links,可以看到 12 条链路(如果没插入回环卡的话,只有 QSFP28 的 4 条)

7) 眼图测试

QSFP28 眼图:

FMC GTY 眼图:

三 烧录出厂 bit

1) 使用网盘内的 bat 脚本烧录 FLASH, 修改 bat 脚本, 对应用户电脑内的 vivado 路径

- 2) 连接好开发板 JTAG 和电源
- 3) 双击 bat 脚本,即可开始烧录,大概需要五分钟
- 4) 烧录完成, 重启即可启动出厂 bit