4.3 Algoritmo AES

El 2 de octubre de 2000 el NIST (National Institute for Standards and Technology) anunciaba oficialmente la adopción del algoritmo Rijndael como nuevo Estándar Avanzado de Cifrado (AES) para su empleo en aplicaciones criptográficas no militares, culminando así un proceso de mas de tres años, encaminado a proporcionar a la comunidad internacional un nuevo algoritmo de cifrado potente, eficiente y fácil de implementar.

DES tiene un sucesor

- La palabra *Rijndael* es un acrónimo formado por los nombres de sus dos autores, los belgas
 - 🌘 Vincent Rijmen y Joan Daemen.
- Su interés radica en que todo el proceso de selección, revisión y estudio tanto de este algoritmo como de los restantes candidatos, se ha efectuado de forma pública y abierta, por lo que, prácticamente por primera vez, toda la comunidad criptográfica mundial ha participado en su análisis, lo cual convierte a *Rijndael* en un algoritmo perfectamente digno de la confianza de todos.

- Los tres aspectos básicos sobre los que se ha diseñado Rijndael son los siguientes:
 - Resistencia contra todo tipo de ataque conocido hasta ese momento.
 - Eficiencia computacional en un amplio abanico de plataformas, tanto hardware como software (optimizado para 32 bits).
 - Simplicidad de diseño.

- Rijndael es un sistema de cifrado por bloques, diseñado para manejar longitudes de clave y de bloque variables, ambas comprendidas entre 128 y 256 bits.
- Para el estándar AES se adoptó un tamaño de bloque fijo e igual a 128 bits y tres tamaños de clave:
 - 128 bits (AES128)
 - → 1/92 bits (AES192)
 - 256 bits (AES 256).

```
Longitud de bloque :

128 bits (AES: bloque 128bits

192 bits
Rijndael
```

```
Diferentes modos de cifrado

ECB

CBC

CFB

CTR
```

- Realiza varias de sus operaciones internas a nivel de byte, interpretando estos como elementos de un campo de Galois GF(28).
- El resto de operaciones se efectúan en términos de registros de 32 bits.
- Sin embargo, en algunos casos, una secuencia de 32 bits se toma como un polinomio de grado inferior a 4, cuyos coeficientes son a su vez polinomios en GF(28).

La operación suma en el conjunto Z_n cumple las propiedades asociativa y conmutativa y posee elementos neutro y simétrico por lo que tiene estructura de grupo conmutativo (o abeliano).

Se le denomina grupo finito inducido por n.

• Ya se ha comentado que no tiene por qué existir siempre el inverso para el producto.

• Teorema:

Si mcd(a,n) = 1, a tiene inverso módulo n.

Corolario:

Si n es primo, el grupo finito que induce tiene estructura de cuerpo (*field*), o sea:

todos sus elementos tienen inverso para el producto excepto el cero.

Nota: Estos cuerpos finitos tienen una gran importancia en la Criptografía, se

denominan Campos de Galois y se denotan GF(n)

En el conjunto $\mathbf{Z}_2[x]$ de los polinomios con coeficientes en \mathbf{Z}_2 , todos los coeficientes de los polinomios son 0 ó 1, por lo que un polinomio puede ser representado mediante una secuencia de bits.

Por ejemplo, $f(x)=x^3+x+1$ podría representarse mediante la cadena binaria 1011 y $g(x)=x^2+1$ vendría dado por la cadena 101.

Observemos que $f(x)+g(x)=x^3+x^2+x$, que puede representarse por 1110.

Puesto que las operaciones se realizan en \mathbb{Z}_2 , esta suma podría haber sido realizada mediante una simple operación or-exclusiva entre las cadenas binarias que representan a f(x) y g(x).

Si escogemos un polinomio irreducible en $\mathbb{Z}_2[x]$, podemos generar un cuerpo finito, denominado "campo de Galois".

Dicho conjunto se representa como GF(2ⁿ), siendo n el grado del polinomio irreducible que lo genera.

■ En AES se utiliza el polinomio irreducible $m(x) = x^8+x^4+x^3+x+1$ y se trabaja en un campo de Galois GF(28).

AES Realiza varias de sus operaciones internas a nivel de byte, interpretando estos como elementos de un campo de Galois GF(28).

$$\mathbf{Z}_2 = \{0,1\}$$

Cada byte $\{b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0\}$ se toma como un polinómio de grado 7 con coeficientes en

$$b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x^1 + b_0x^0$$

■ La ventaja esencial que posee este tipo de conjuntos es que permite llevar a cabo implementaciones muy sencillas y paralelizables de los algoritmos aritméticos.

4.3.1 AES: preliminares matemáticos (suma)

La suma y la resta de polinomios en GF(28) se corresponde con XOR.

■ Ejemplo:

Notación polinómica:

$$(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2$$

Notación binaria:

$$\{01010111\} \oplus \{10000011\} = \{11010100\}$$

Notación hexadecimal:

$$\{57_{16}\} \oplus \{83_{16}\} = \{D4_{16}\}$$

La operación producto ⊗ de AES, se corresponde con el producto de polinómios módulo el polinómio irreducible de grado 8

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

Ejemplo:

Motación hexadecimal:

$$\{57_{16}\} \otimes \{83_{16}\} = \{C1_{16}\}$$

Notación binaria:

 $\{01010111\} \otimes \{10000011\} = \{11000001\}$ Veamos porqué

Notación polinómica:

$$(x^6 + x^4 + x^2 + x + 1) \otimes (x^7 + x + 1) = x^7 + x^6 + 1$$

$$(x^{6} + x^{4} + x^{2} + x + 1) (x^{7} + x + 1) = x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{7} + x^{5} + x^{3} + x^{2} + x + 1$$

$$x^{6} + x^{4} + x^{2} + x + 1$$

$$= x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x^{7} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x^{7} + x^{7$$

Esté producto hay que reducirlo módulo $m(x) = x^8 + x^4 + x^3 + x + 1$

$$x^8 + x^4 + x^3 + x + 1 \mod m(x) = 0$$
, luego

$$x^{8} + x^{4} + x^{3} + x + 1 + 1$$
 $+x^{4} + x^{3} + x + 1$
 $mod m(x) = 0 + x^{4} + x^{3} + x + 1$

Esto es: $x^8 \mod m(x) = x^4 + x^3 + x + 1$

$$(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) \mod m(x) =$$

$$= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \mod m(x) =$$

$$= (x^6 + x^3 + x^2 + 1) + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \mod m(x)$$

$$x^{13} \mod m(x) = x^{5} x^{8} \mod m(x)$$

$$= x^{5} (x^{4} + x^{3} + x + 1) \mod m(x)$$

$$= x^{9} + x^{8} + x^{6} + x^{5} \mod m(x)$$

$$= x x^{8} + x^{8} + x^{6} + x^{5} \mod m(x)$$

$$= x (x^{4} + x^{3} + x + 1) + (x^{4} + x^{3} + x + 1) + x^{6} + x^{5} \mod m(x)$$

$$= (x^{5} + x^{4} + x^{2} + x) + (x^{4} + x^{3} + x + 1) + x^{6} + x^{5} \mod m(x)$$

$$= x^{6} + x^{5} + x^{5} + x^{4} + x^{4} + x^{3} + x^{2} + x + 1 \mod m(x)$$

$$= x^{6} + x^{3} + x^{2} + 1$$

$$(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) \mod m(x) =$$

$$= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \mod m(x) =$$

$$= (x^6 + x^3 + x^2 + 1) + (x^7 + x^6 + x^4 + x^3) + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \mod m(x)$$

$$x^{11} \mod m(x) = x^3 x^8 \mod m(x)$$

= $x^3 (x^4 + x^3 + x + 1) \mod m(x)$
= $x^7 + x^6 + x^4 + x^3$

$$(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) \mod m(x) =$$

$$= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \mod m(x)$$

$$= (x^6 + x^3 + x^2 + 1) + (x^7 + x^6 + x^4 + x^3) + (x^5 + x^4 + x^2 + x) + (x^4 + x^3 + x + 1)$$

$$+ x^6 + x^5 + x^4 + x^3 + 1 \mod m(x)$$

$$x^9 \mod m(x) = x x^8 \mod m(x)$$

= $x (x^4 + x^3 + x + 1) \mod m(x)$
= $x^5 + x^4 + x^2 + x$

4.3.1 AES: polinomios con coeficientes en GF(28)

■ En el AES, algunas palabras de 32 bits, se toman como un polinomio de grado menor o igual a 3 cuyos coeficientes son, a su vez, polinomios en GF(28).

$$a(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

Para sumar o multiplicar dos polinomios de este tipo se actúa con la operatoria general definida para polinomios, sustituyendo las operaciones de los coeficientes por las operaciones definidas en GF(2⁸), ⊕ y ⊗.

4.3.1 AES: estructura

- AES, a diferencia de algoritmos como DES, no posee estructura de red Feistel (se denomina cifradores tipo Feistel a aquellos en los que el bloque de datos se divide en dos mitades y en cada vuelta de cifrado se trabaja, alternadamente, con una de las mitades)
- En su lugar se ha definido cada **ronda** como una <u>composición de</u> <u>cuatro funciones invertibles</u> diferentes:
 - DesplazarFila
 - MezclarColumnas
 - ByteSub
 - **■** XOR

formando <u>tres capas</u> (layer)

- capa de mezcla lineal
- capa no lineal
- capa de adición de clave

diseñadas para proporcionar resistencia frente a criptoanálisis lineal y diferencial.

4.3.1 AES: estructura

- Cada una de las funciones tiene un propósito preciso:
 - La capa de mezcla lineal (funciones DesplazarFila y MezclarColumnas) permite obtener un alto nivel de difusión a lo largo de varias rondas.
 - La **capa no lineal** (funcion **ByteSub**) consiste en la aplicación paralela de s-cajas con propiedades óptimas de no linealidad.
 - La capa de adición de clave es un simple XOR entre el estado intermedio y la subclave correspondiente a cada ronda.

4.3.1 AES: elementos

 AES es un algoritmo que se basa en aplicar un número determinado de rondas a un valor intermedio denominado **estado** que puede representarse mediante una matriz rectangular de bytes, que posee 4 filas y 4 columnas

bytes de entrada

in_0	in ₄	in ₈	<i>in</i> ₁₂
in_1	in ₅	in ₉	in_{13}
in ₂	in ₆	<i>in</i> ₁₀	<i>in</i> ₁₄
in ₃	in_7	in_{11}	<i>in</i> ₁₅

matriz de **estado**

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
S _{1,0}	S _{1,1}	S _{1,2}	S _{1,3}
S2,0	S _{2,1}	S _{2,2}	S2,3
\$3,0	S _{3,1}	\$3,2	\$3,3

bytes de salida

out_0	out ₄	out ₈	out_{12}
out_1	out ₅	out ₉	out ₁₃
out ₂	out ₆	out_{10}	out ₁₄
out ₃	out ₇	out_{11}	out ₁₅

NOTA:

- En el algoritmo ganador del concurso AES, **Rijndael**, el tamaño de bloque que se puede elegir es 128, 192 o 256 bits. En el mismo se define N_b como el tamaño del bloque a cifrar dividido por 32.
- Finalmente se adoptó como estándar AES el algoritmo Rijndael con tamaño de bloque 128 bits, por lo que $N_b = \frac{128}{32} = 4$.

4.3.1 AES: elementos (estado)

4.3.1 AES: elementos (estado)

EJEMPLO:

Para la entrada:

se tiene la siguiente matriz de estado

A8	59	12	6C
F2	6A	BA	E4
45	00	8C	23
3D	32	37	63

4.3.1 AES: estado

La clave tiene una estructura análoga a la del estado, y se representa mediante una matriz de bytes con 4 filas y N_k columnas, este valor depende del tamaño de la clave que puede ser 128, 192 ó 256

 $N_k = 4 (128 \text{ bits})$ $N_k = 6 (192 \text{ bits})$ $N_k = 8 (256 \text{ bits})$ Clave de 128 bits

 k_{2,0}
 k_{2,1}
 k_{2,2}
 k_{2,3}

 k_{3,0}
 k_{3,1}
 k_{3,2}
 k_{3,3}

En algunos casos, tanto el estado como la clave se consideran como vectores de registros de 32 bits, estando cada registro constituido por los bytes de la columna correspondiente, ordenados de arriba a abajo.

4.3.1 AES: algoritmo de cifrado

Si B es el bloque a cifrar y S la matriz de estado, el algoritmo AES con N_r rondas queda como sigue:

- •1.- Calcular las subclaves K_0, K_1, \dots, K_{N_r} a partir de la clave K.
- \bullet 2.- S ← B \oplus K₀
- •3.- Para $i=1,2,...,N_r$, aplicar la ronda i-ésima con la subclave K_i

- Como cada ronda es una sucesión de funciones invertibles, el algoritmo de descifrado consiste en
 - aplicar las inversas de cada una de las funciones en el orden contrario, utilizando las mismas subclaves K_i que en el cifrado, en orden inverso.

4.3.1 AES: rondas

- El número de rondas, N_r, depende de la longitud de la clave.
- Para el algoritmo estándar del AES el tamaño del bloque de entrada, del estado y del bloque de salida es de 128 bits.
- \blacksquare El tamaño de la clave, N_k puede variar: 128, 192 ó 256.
- El número de rondas N_r es el siguiente:

	Longitud de clave (N _k palabras de 32 bits)	Número de rondas N _r
AES-128	4	10
AES-192	6	12
AES-256	8	14

4.3.1 AES: rondas

- •1.- Calcular las subclaves K_0, K_1, \dots, K_{N_r} a partir de la clave K.
- \bullet 2.- S ← B \oplus K₀
- •3.- Para $i=1,2,...,N_r$, aplicar la ronda i-ésima con la subclave K_i
- 3.- Ronda i-ésima
 - ightharpoonup 3.1.- S ← ByteSub(S)
 - ■3.2.- DesplazarFila(S)
 - ■3.3.- MezclarColumnas(S)
 - ightharpoonup 3.4.- S ← S ⊕ K_i
 - En la ronda final, no se aplica la función MezclarColumnas(S)

AES: esquema de cifrado

4.3.1 AES: esquema de cifrado

■ La función ByteSub es una sustitución no lineal que se aplica a cada byte de la matriz de estado, mediante una s-caja invertible, que se obtiene componiendo dos transformaciones.

Transformaciones

 1.- Cada byte es considerado como un elemento del GF(28) que genera el polinomio irreducible m(x)=x8+x4+x3+x+1, y sustituido por su inversa multiplicativa. El valor cero queda inalterado.

$$g(x)=x^{-1} \mod m(x), x \in GF(2^8), x \neq 0$$

 $g(0)=0$

2.-Después se aplica la transformación afín en GF(2), definida por y=f(x),

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

siendo $x_0,x_1,x_2,x_3,x_4,x_5,x_6,x_7$, los bits del byte correspondiente, e $y_0,y_1,y_2,y_3,y_4,y_5,y_6,y_7$ los del resultado.

- La s-caja se obtiene con la composición f ∘ g.
- La función inversa de ByteSub se obtiene de

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1} = g \circ f^{-1}$$

La s-caja utilizada, en formato hexadecimal es la que se muestra:

			Y Y														
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
Λ	2	В7	FD	93	26	36	3F	F7	CC	34	A 5	E 5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9 A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5 A	A 0	52	3B	D6	В3	29	E 3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7 F	50	3C	9F	A8
l _x	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
î	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0B	DB
	A	E0	32	3 A	0 A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7 A	AE	80
	С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	В5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E 9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E 6	42	68	41	99	2D	OF	в0	54	BB	16

ESTRATEGIAS DE SEGURIDAD

Cifrado en bloque con clave secreta

Para buscar en esta tabla, se divide el *byte* en 2 bloques xy de 4 bits cada uno. Se busca x en la fila e y en la columna, y el valor que obtengamos es el resultado de realizar las dos transformaciones definidas anteriormente.

■ Para el proceso de descifrado es necesario calcular la función inversa de ByteSub. Se recoge en la siguiente S-Box.

									3	7							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9е	81	f3	d7	fb
	1	7с	е3	39	82	9b	2f	ff	87	34	8e	43	44	с4	de	e9	cb
	2	54	7b	94	32	a6	с2	23	3d	ee	4c	95	0b	42	fa	с3	4e
	3	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	CC	5d	65	b6	92
	5	6с	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
l "]	7	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
X	8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	се	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	с5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	с6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
	С	1f	dd	a8	33	88	07	с7	31	b1	12	10	59	27	80	ec	5f
	d	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9c	ef
	е	a0	e0	3b	4d	ae	2a	f5	b0	с8	eb	bb	3с	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0с	7d

AES: esquema de cifrado

4.3.3 DesplazarFila (ShiftRows)

- Esta transformación consiste en desplazar a la izquierda cíclicamente las filas de la matriz de estado.
- Cada la fila f_i se desplaza un número de posiciones c_i diferente.
- lacktriangle Mientras que c_0 siempre es igual a cero (esta fila siempre permanece /inalterada), el resto de valores se refleja en la tabla

$\mathbf{c_1}$	$\mathbf{c_2}$	c_3
1	2	3

 La función inversa de DesplazarFila es un desplazamiento de las filas de la matriz de estado el mismo número de posiciones que en la tabla pero a la derecha

4.3.3 DesplazarFila (ShiftRows)

- Para el algoritmo estándar del AES, $N_b = 4$.
 - En este caso, para cada fila del estado se efectúa una rotación a izquierda tantos bytes como indique el numero de fila, empezando a contar de 0.

4.3.3 DesplazarFila (ShiftRows)

■ <u>Ejemplo:</u>

AES: esquema de cifrado

4.3.4 MezclarColumnas (MixColumns)

PRECORDEMOS que en AES, algunas palabras de 32 bits, se toman como un polinomio de grado menor o igual a 3 cuyos coeficientes son, a su vez, polinomios en GF(28):

$$a(x)=a_3x^3+a_2x^2+a_1x+a_0$$

- Para sumar o multiplicar dos polinomios de este tipo se actúa con la operatoria general definida para polinomios, sustituyendo las operaciones de los coeficientes por las operaciones definidas en $GF(2^8)$, \oplus y \otimes .
- Para esta función, cada columna de la matriz de estado se interpreta como un palabra de 4 bytes (32 bits) y cada palabra se considera como un polinomio de grado 3 con coeficientes en GF(28).
 - Dicho polinomio se multiplica módulo x⁴ + {01₁₆} por

$$a(x) = \{03_{16}\}x^3 + \{01_{16}\}x^2 + \{01_{16}\}x + \{02_{16}\}$$

 Este producto queda expresado matricialmente de la siguiente manera

$$\begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} \text{ para } 0 \le c < 4$$

S _{0,0}	\$0,1	\$0,2	\$0,3
s _{1,0}	s _{1,1}	\$1,2	s _{1,3}
\$2,0	s _{2,1}	\$2,2	s _{2,3}
s _{3,0}	<i>s</i> _{3,1}	S _{3,2}	s _{3,3}

4.3.4 MezclarColumnas (MixColumns)

Ejemplo

4.3.4 MezclarColumnas (MixColumns)

- La inversa de MezclarColumnas se obtiene multiplicando módulo $x^4 + \{01_{16}\}$ cada columna de la matriz de estado por el polinomio inverso de a (x) módulo $x^4 + \{01_{16}\}$.
- Esto es, por

$$\{OB_{16}\}x^3 + \{OD_{16}\}x^2 + \{O9_{16}\}x + \{OE_{16}\}$$

 Este producto queda expresado matricialmente de la siguiente manera

$$\begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} = \begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0d & 09 & 0E \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} \quad \text{para } 0 \le c < 4$$

\$0,0	s _{0,1}	\$0,2	\$0,3
x _{1,0}	s _{1,1}	s _{1,2}	s _{1,3}
3 _{2,0}	s _{2,1}	\$2,2	s _{2,3}
¥ _{3,0}	s _{3,1}	S _{3,2}	\$3,3

AES: esquema de cifrado

4.3.5 AddRoundKey

- Las diferentes subclaves K_i derivan de la clave principal K mediante el uso de dos funciones: una de **expansión** y otra de **selección**.
 - La función de expansión permite obtener, a partir del valor de K, una secuencia de 16(n+1) bytes (donde n es el número de rondas que se aplican).
 - La función de selección toma (consecutivamente), de la secuencia obtenida en la expansión, bloques del mismo tamaño que la matriz de estado y los va asignando a cada K_i.

La función de expansión tiene dos versiones, según el valor de N_k.

$N_k \le 6$

AES128 AES192

- 1. Para i desde 0 hasta $N_k 1$ hacer
- 2. $W(i) \leftarrow (K(4 \cdot i), K(4 \cdot i + 1), K(4 \cdot i + 2), K(4 \cdot i + 3))$
- 3. Para i desde N_k hasta $N_b \cdot (n+1)$ hacer
- 4. $tmp \leftarrow W(i-1)$
- 5. Si $i \mod N_k = 0$
- 6. $tmp \leftarrow Sub(Rot(tmp)) \oplus R(i/N_k)$
- 7. $W(i) \leftarrow W(i N_k) \oplus tmp$
- K(i) es un vector de bytes de tamaño 4N_k conteniendo la clave.
- W(i) es un vector de 4(n + 1) registros de 4 bytes
- n es el número de rondas.

$N_k > 6$

AES256

- 1. Para i desde 0 hasta $N_k 1$ hacer
- 2. $W(i) \leftarrow (K(4 \cdot i), K(4 \cdot i + 1), K(4 \cdot i + 2), K(4 \cdot i + 3))$
- 3. Para i desde N_k hasta $N_b \cdot (n+1)$ hacer
- 4. $tmp \leftarrow W(i-1)$
- 5. Si $i \mod N_k = 0$
- 6. $tmp \leftarrow Sub(Rot(tmp)) \oplus Rc(i/N_k)$
- 7. Si $i \mod N_k = 4$
- 8. $tmp \leftarrow Sub(tmp)$
- 9. $W(i) \leftarrow W(i N_k) \oplus tmp$
- K(i) es un vector de bytes de tamaño 4N_k conteniendo la clave.
- W(i) es un vector de 4(n + 1) registros de 4 bytes
- n es el número de rondas.

- En los algoritmos anteriores,
 - Sub devuelve el resultado de aplicar la s-caja de AES a cada uno de los bytes del registro de cuatro que se le pasa como parámetro.
 - Rot desplaza a la izquierda una posición los bytes del registro,
 - de la entrada (a; b; c; d) devuelve (b; c; d; a).
 - ightharpoonup Rc(j) es una constante denfinida como: Rc(j) = (R(j); 0; 0; 0)
 - **R(i)** es el elemento de GF(28) correspondiente al valor $x^{(i-1)}$.

i (dec)	temp	Después de Rot()	Después de SubByte ()	Rc(i/N _k)	Después de XOR con Roon	W(i-N _k)	W(i) = temp XOR W(i-N _k)
4	09CF4F3C	CF4F3C09	8A84EB01	01000000	8B84EB01	2B7E1516	A0FAFE17
5	A0FAFE17					28AED2A6	88542CB1
6	88542CB1					ABF71588	23A33939
7	23A33939					09CF4F3C	2A6C7605
8	2A6C7605	6C76052A	50386BE5	02000000	52386BE5	A0FAFE17	F2C295F2
9	F2C295F2					88542CB1	7A96B943
10	7A96B943					23A33939	5935807A
11	5935807A					2A6C7605	7359F67F
12	7359F67F	59F67F73	CB42D28F	04000000	CF42D28F	F2C295F2	3D80477D
13	3D80477D					7A96B943	4716FE3E
14	4716FE3E					5935807A	1E237E44
15	1E237E44					7359F67F	6D7A883B
16	6D7A883B	7A883B6D	DAC4E23C	08000000	D2C4E23C	3D80477D	EF44A541
17	EF44A541					4716FE3E	A8525B7F
18	A8525B7F					1E237E44	в671253в
19	в671253в					6D7A883B	DB0BAD00
20	DB0BAD00	0BAD00DB	2B9563B9	10000000	3в9563в9	EF44A541	D4D1C6F8
21	D4D1C6F8					A8525B7F	7C839D87
22	7C839D87					B671253B	CAF2B8BC
23	CAF2B8BC					DB0BAD00	11F915BC

i (dec)	temp	Después de Rot ()	Después de SubByte ()	Rc(i/N _k)	Después de XOR con Roon	W(i-N _k)	W(i) = temp XOR W(i-N _k)
24	11F915BC	F915BC11	99596582	20000000	В9596582	D4D1C6F8	6D88A37A
25	6D88A37A					7C839D87	110B3EFD
26	110B3EFD					CAF2B8BC	DBF98641
27	DBF98641					11F915BC	CA0093FD
28	CA0093FD	0093FDCA	63DC5474	40000000	23DC5474	6D88A37A	4E54F70E
29	4E54F70E					110B3EFD	5F5FC9F3
30	5F5FC9F3					DBF98641	84A64FB2
31	84A64FB2					CA0093FD	4EA6DC4F
32	4EA6DC4F	A6DC4F4E	2486842F	80000000	A486842F	4E54F70E	EAD27321
33	EAD27321					5F5FC9F3	B58DBAD2
34	B58DBAD2					84A64FB2	312BF560
35	312BF560					4EA6DC4F	7F8D292F
36	7F8D292F	8D292F7F	5DA515D2	1B000000	46A515D2	EAD27321	AC7766F3
37	AC7766F3					B58DBAD2	19FADC21
38	19FADC21					312BF560	28D12941
39	28D12941					7F8D292F	575C006E
40	575C006E	5C006E57	4A639F5B	36000000	7C639F5B	AC7766F3	D014F9A8
41	D014F9A8					19FADC21	C9EE2589
42	C9EE2589					28D12941	E13F0CC8
43	E13F0CC8					575C006E	B6630CA6

AES: referencias

■ Página principal AES (historical purposes):

http://csrc.nist.gov/archive/aes/index.html

Federal Information Processing Standards (FIPS)

J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES Algorithm Submission,

- Primera vulnerabilidad (2011) en el algoritmo de cifrado AES, que reduce la longitud efectiva de clave en 2 bits.
 - Esto significa que las longitudes usuales de clave de 128, 192 y 256 bits son reducidas a 126, 190 y 254 bits.

https://www.ccn-cert.cni.es/seguridad-al-dia/noticiasseguridad/954-primera-vulnerabilidad-en-el-algoritmo-decifrado-aes.html

Entrada = 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34

Clave = 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

Ronda	Inicio de la ronda				spu ubB			Después de ShiftRows						_	és lum			Subclave					
Entra- da	32 43 F6 A8	88 5A 30 8D	31 31 98 A2	E0 37 07 34														⊕	2B 7E 15	28 AE D2 A6	F7	09 CF 4F 3C	=
1	19 3D E3 BE	A0 F4 E2 2B	9A C6 8D 2A	48	D4 27 11 AE	E0 BF 98 F1	B8 B4 5D E5	1E 41 52	D4 BF 5D	E0 B4 52 AE	B8 41 11 F1	1E 27 98 E5		04 66 81 E5	E0 CB 19		28 06 26 4C	⊕	A0 FA FE	88 54 2C B1	23 A3 39	2A 6C 76	=
2	A4 9C 7F	68 9F 35	6B 5B EA	6A	49 DE D2		7F 39 87	77 02 53	49 DB 87	45 39 53	7F 02 D2	77 DE 96		58 4D CA		DB E7 CA	6B	⊕	F2 C2 95	7A 96 B9		73 59 F6	=
	F2	2B	43	49	89	F1	1A	3B	3B	89	F1	1A		F1	AC	A8	E 5		F2	43	7 A	7 F	

32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34 Entrada = Clave 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C Inicio de Después de Después de Después de Ronda la ronda SubBytes ShiftRows MixColumns Subclave AA 61 82 68 AC EF 13 45 AC EF 13 45 75 20 53 BB 3D 47 1E 6D 8F DD D2 32 73 C1 B5 23 C1 B5 23 73 EC 0B C0 25 80 16 23 7A 3 09 63 CF D0 5F E3 4A 46 D6 5A CF 11 47 FE 7E 88 CF 11 D6 5A Ø3 EF D2 9A 7B DF B5 B8 B8 7B DF B5 93 33 7C DC 7D 3E 44 3B 48 67 4D D6 52 85 E3 F6 52 85 E3 F6 0F 60 6F 5E EF A8 B6 DB 6C 1D E3 5F 50 A4 11 CF A4 11 CF 50 D6 31 C0 B3 44 52 71 0B 4E 9D B1 58 2F 5E C8 6A C8 6A 2F 5E DA 38 10 13 A5 5B 25 AD 28 D7 07 94 94 28 D7 07 A9 BF 6B 01 7F 3B 00 0D 38 E7 E0 C8 D9 85 E1 E8 35 97 E1 E8 35 97 25 BD B6 4C D4 7C CA 11 92 63 B1 B8 FB C8 6C 4F 4F FB C8 6C D1 11 3A 4C D1 83 F2 F9 7F 63 35 BE D2 FB 96 AE 96 AE D2 FB A9 D1 33 C0 C6 9D B8 15 E8 C0 50 01 9B BA 53 7C 7C 9B BA 53 AD 68 8E B0 F8 87 BC BC

A

95

Entrada = 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C Clave Inicio de Después de Después de Después de Subclave Ronda la ronda SubBytes ShiftRows MixColumns F1 C1 7C 5D A1 78 10 4C A1 78 10 4C 4B 2C 33 37 6D 11 DB CA 00 92 C8 B5 4F E8 D5 63 86 4A 9D D2 88 OB F9 OO 63 4F E8 D5 6 6F 4C 8B D5 A8 29 3D 03 3D 03 A8 29 8D 89 F4 18 A3 3E 86 93 55 EF 32 OC FC DF 23 FE FE FC DF 23 6D 80 E8 D8 7A FD 41 FD 26 3D E8 FD F7 27 9B 54 F7 27 9B 54 14 46 27 34 4E 5F 84 4E 0E 41 64 D2 AB 83 43 B5 83 43 B5 AB 15 16 46 2A 54 5F A6 A6 2E B7 72 8B 31 A9 40 3D 40 3D 31 A9 B5 15 56 D8 F7 C9 4F DC 17 7D A9 25 BF EC D7 43 0E F3 B2 4F F0 FF D3 3F 3F F0 FF D3 BE D4 OA DA 5A 19 A3 7A BE D4 OA DA 00 B1 54 FA EA B5 31 7F 41 49 E0 8C 83 3B E1 64 3B E1 64 83 51 C8 76 1B D2 8D 2B 8D 2C 86 D4 F2 D4 F2 2C 86 2F 89 6D 99 42 DC 19 04 73 BA F5 29 FE C8 C0 4D 21 D2 60 2F B1 1F 65 0C C8 C0 4D FE D1 FF CD EA

ESTRATEGIAS DE SEGURIDAD

Cifrado en bloque con clave secreta

96

Entrada = 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34

Clave = 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

Ronda	Inicio de la ronda					Después de SubBytes						_	és tRo				spu xCo				Subclave					
9	EA	45	65 5D	85 96		87 EC	F2 6E	4D 4C	97		6E	F2 4C	4D 90			47 37	D4	A3 70	4C 9F	⊕	AC 77	FA	28 D1	5C	=	
	5C F0	33 2D	98 AD	B0 C5		4A 8C	D8		E7		46 A6	E7 8C	4A D8			94 ED	E4 A5	3A A6	BC		66 F3	DC 21	2941	00 6E		
10	EB 40 F2	2E	8B A1	1B C3		E9 09 89	CB 31 07	32	AF 2E 2C		E9 31 7D	CB 32 2C	3D 2E 89	09						⊕	D0 14 F9	C9 EE 25		63	=	
/	1E	84	E7	D2		72	5 F	94	B5		B 5	72	5 F	94							A8	89		A6		
salida	39 25 84	DC	DC 11 85	19 6A 0B		1	4.4	11					1		/		. 1	n		1	1	13	ZD 4	•0		
	1-		00			<u>h</u>	ttp	://\	W	<u>/W.</u>	yoı	<u>itu</u>	be.	CO	<u>m/y</u>	wai	tch	!V=	<u>-m</u>	IZX	<u>kpk</u>		AP3	<u>8</u>		

4.4 Modos de cifrado en bloque

- Se ha convenido en denominar al uso directo de un cifrador en bloque como modo de «Libro Electrónico de Códigos» (Electronic Codebook, ECB).
- Entre otros, el NIST (U.S. National Institute for Standards and Technology) recomienda cuatro modos de uso, tanto para AES como para cualquier cifrado en bloque:
 - Encadenamiento de bloques cifrados (Cipher Block Chaining, CBC)
 - Realimentación del texto cifrado (Cipher Feedback, CFB)
 - Realimentación de la salida (Output Feedback, OFB)
 - Modo contador (Counter mode, CTR)

MODO ECB

Electronic CodeBook: cifra cada bloque con la clave k de forma independiente como si fuese un gran *libro electrónico de códigos*.

Debilidades:

- Se podría reconstruir ese libro electrónico sin necesidad de conocer la clave.
- Aparece el problema denominado de comienzos y finales fijos que permiten un tipo de ataque.
- Ataque mediante repetición de bloques similares.

- El modo ECB es el método más sencillo y obvio de aplicar a un algoritmo de cifrado por bloques.
- Simplemente se subdivide la cadena que se quiere cifrar en bloques del tamaño adecuado y se cifran todos ellos empleando la misma clave.
- Entre las ventajas de este método destaca la posibilidad de dividir el mensaje en bloques y cifrarlos en paralelo o el acceso aleatorio a diferentes bloques.

- Sin embargo, las desventajas de este modo de cifrado son enormes, por lo que se usa cada vez menos.
 - El hecho de cifrar los bloques por separado implica que cuando se cifre un bloque con cierto valor, siempre se obtendrá el mismo resultado.
 - Esto hace posible los ataques de diccionario.

Además, cuando se cifran varios bloques y se envían por un canal inseguro, es posible que un adversario elimine ciertos bloques sin ser detectado, o que capture algunos bloques y los reenvíe más adelante.

Este modo de cifrado es una extensión de ECB que añade cierta seguridad.

El modo de cifrado CBC divide el mensaje en bloques y usa XOR para combinar el cifrado del bloque anterior con el texto en claro del bloque actual.

Como no se dispone de un texto cifrado con el que combinar el primer bloque, se usa un vector de inicialización VI (número aleatorio que puede ser públicamente conocido).

El uso del vector de inicialización es importante, pues de no usarlo, podría ser susceptible de ataques de diccionario.

■ También es necesario que el VI sea aleatorio y no un número secuencial o predecible.

- Para empezar, se carga inicialmente el registro de b bits con un vector inicial (VI) que no importa que sea secreto, pero sí conviene que sea aleatorio.
- Cada bloque m_i de b bits del texto en claro se cifra con la misma clave k y el bloque de salida c_i se realimenta hacia la entrada mediante el registro de b bits
- Se aplica la siguiente recurrencia para cifrar:

$$c_1 = E_k(m_1 \oplus VI); c_i = E_k(m_i \oplus c_{i-1}), para i = 2,3,...,n$$

don de n es el número de bloques a cifrar.

TRATEGIAS DE SEGURIDAD

Cifrador en bloque de b bits

Cifrado en bloque con clave secreta

- Para descifrar, cada bloque c₁ de b bits del criptograma se descifra con la misma clave k y alimenta el registro de b bits que se suma módulo 2 con/la salida D(c₁).
- Se tiene

$$D_k(c_1) = D_k[E_k(m_1 \oplus VI)] = m_1 \oplus VI$$
, luego $m_1 = D_k(c_1) \oplus VI$.

 $D_k(c_i) = D_k[E_k(m_i \oplus c_{i-1})] = m_i \oplus c_{i-1}$, luego $\mathbf{m_i} = D_k(c_i) \oplus c_{i-1}$ para $i = 2,3,\cdots,n$.

ESTRATEGIAS DE SEGURIDAD

Cifrado en bloque con clave secreta

- Sus propiedades son:
 - Cada bloque depende de todos los bloques que le anteceden.
 - Convierte el cifrador en bloque en un cifrador en flujo y, por tanto, oculta los perfiles del mensaje claro.
 - Se puede hacer que cifre mensajes iguales de forma diferente con sólo cambiar cada vez el VI.
 - Limita la propagación de cada error de transmisión a dos bloques.
 - No cambia el tamaño del espacio de claves.

El modo CBC no empieza a cifrar (o descifrar) hasta que no se tiene que transmitir (o se ha recibido) un bloque completo de información (128 bits, por ejemplo, para AES).

Esta circunstancia puede convertirse en un serio inconveniente, por ejemplo en el caso de terminales, que deberían poder transmitir cada carácter que pulsa el usuario de manera individual.

Una posible solución sería emplear un bloque completo para transmitir cada byte y rellenar el resto con ceros, pero esto hará que tengamos únicamente 256 mensajes diferentes en nuestra transmisión y que un atacante pueda efectuar un sencillo análisis estadístico para comprometerla.

Otra opción sería rellenar el bloque con información aleatoria, aunque seguiríamos desperdiciando gran parte del ancho de banda de la transmisión.

El modo de operación CFB (Cipher-Feedback Mode) permitirá cifrar la información en unidades inferiores al tamaño del bloque (128 bits, por ejemplo, para AES), lo cual permite aprovechar totalmente la capacidad de transmisión del canal de comunicaciones, manteniendo además un nivel de seguridad adecuado.

- El vector inicial VI del Registro de Desplazamiento RD se carga, al igual que en el modo CBC, con un valor aleatorio de b bits.
- El mensaje se divide en bloques de s bits (normalmente un byte) que se suma or-exclusivo con los s bits más significativos que resultan de aplicar el algoritmo en bloque a los b bits del anterior registro con la claye k.
- En cada operación, se realimenta el bloque de s bits del criptograma al extremo derecho de dicho registro, produciendo un desplazamiento de s bits a la izquierda.
- Si S_s(x) representa los s bits más significativos de x, se tiene

 $c_i = m_i \oplus S_s[E_k(RD)], i = 1,2,...$

El bloque se va desplazando por el registro

Cifrador en bloque de b bits

ESTRATEGIAS DE SEGURIDAD

Cifrado en bloque con clave secreta

- Para la operación de descifrado, el esquema es básicamente el mismo: se intercambian los valores de c con m y la realimentación hacia el registro de desplazamiento sigue siendo desde el bloque de s bits del criptograma.
- Si/S_s(x) representa los s bits más significativos de x, se tiene

$$\mathbf{m_i} = \mathbf{c_i} \oplus \mathbf{S_s}[\mathbf{E_k}(\mathbf{RD})], i = 1,2,\dots$$

El bloque se va desplazando por el registro

Cifrador en bloque de b bits

Cifrado en bloque con clave secreta

Estrategias de Seguridad

Modo CFB tomando el tamaño de bloque s (habitualmente 1 byte)

Cifrado en bloque con clave secreta

Modo CFB tomando s=tamaño de bloque del algoritmo (para AES s=128 bits)

- Sus propiedades son:
 - Convierte el cifrador en bloque en un cifrador en flujo y, por tanto, oculta los perfiles del mensaje claro.
 - Se puede hacer que cifre mensajes iguales de forma diferente con sólo cambiar cada vez el VI.
 - Limita la propagación de cada error de transmisión a los s bits posteriores al bit afectado.
 - No cambia el tamaño del espacio de claves.

4.4.4 Modo OFB (Output Feedback)

- El modo OFB (Output Feedback) es muy parecido al anterior (CFB) con la única diferencia de que la retroalimentación con la señal de entrada al cifrador en bloque se realiza antes de la operación orexclusiva.
- En este caso la función de cifrado E_k y el registro actúan como un generador de secuencia cifrante de bloques de b bits con la particularidad que al incluirse el vector inicial VI en ella, el efecto es doblar el tamaño de la clave del cifrador.
 - El generador de secuencia cifrante es el que se encuentra encerrado entre líneas de puntos rojos.
- Las operaciones de cifrado y descifrado son exactamente iguales.

Cifrado en bloque con clave secreta

ESTRATEGIAS DE SEGURIDAD

4.4.4 Modo OFB (Output Feedback)

- Sus propiedades son:
 - Convierte el cifrador en bloque en un cifrador en flujo y, por tanto, oculta los perfiles del mensaje claro.
 - Usa el cifrador en bloque como un generador de secuencia cifrante.
 - Se puede hacer que cifre mensajes iguales de forma diferente con sólo cambiar cada vez el VI.
 - Limita la propagación de cada error de transmisión al bit afectado; es decir, no hay propagación de errores.
 - Dobla el tamaño del espacio de claves, que ahora incluye el VI.
 - El cifrado y descifrado son idénticos.

4.4.4 Modo OFB (Output Feedback)

118

TRATEGIAS DE SEGURIDAD

Cifrado en bloque con clave secreta

 Un inconveniente del cifrado por encadenamiento es que para cifrar cada bloque hay que tener previamente el cifrado del anterior.

Esto añade una dependencia de datos en el algoritmo que impide usar procesamiento paralelo, lo que es una importante penalización de rendimiento en la computación actual.

Una variante, que no requiere alimentación de los bloques anteriores, consiste en usar un contador (counter, abreviado CTR) como entrada del bloque de cifrado (AES o similar).

Los datos propiamente dichos no llegan a pasar por el cifrado, sino que simplemente se combinan mediante or-exclusiva con el cifrado.

Al contador se le adjunta un valor aleatorio (similar al vector de inicialización del CBC) para evitar que el cifrado sea siempre idéntico.

Este valor se suele denominar por el término inglés nonce, que tiene difícil traducción y viene a significar "de un solo uso".

- Mientras que ECB y CBC son modos basados en bloques,
 CTR simula un cifrado en flujo.
 - Es decir, se usa un cifrado de bloque para producir una secuencia pseudoaleatorio binaria (conocida como keystream).
 - Esta secuencia se combina con el texto en claro mediante or-exclusiva dando lugar al cifrado (Vernam).

Para generar la secuencia pseudoaleatoria se cifra un contador combinado con un nonce mediante ECB y se va incrementando.

El valor del contador puede ser públicamente conocido, aunque es preferible guardarlo en secreto.

 Es necesario que el valor de [nonce + contador] lo conozcan ambos lados de la comunicación (donde el símbolo + significa concatenación)

- En términos generales el NIST especifica dos tipos de contadores.
 - El primero se compone de un nonce y un contador. El nonce es aleatorio, y los bytes restantes son bytes de contador (que se incrementan).
 - Por ejemplo, un cifrado de bloque de 16 bytes podría utilizar los 8 bytes más significativos como un nonce y los 8 bytes menos significativos como un contador.
 - El segundo es un bloque de contador, donde todos los bytes son bytes de contador y se pueden incrementar a medida que se genera la secuencia cifrante.
 - Por ejemplo, en un cifrado de bloque de 16 bytes, los 16 bytes son bytes de contador.

 Este es el diagrama de bloques donde se observa claramente el procesamiento paralelo:

En un primer vistazo puede parecer arriesgado depender de un valor previsible y sistemático para hacer el cifrado, pero lo cierto es que la caja negra de cifrado (AES, normalmente) inserta por sí mismo suficiente aleatoriedad que se propaga al cifrado final mediante la operación or-exclusiva.

- Otra ventaja de este modo es que el mecanismo de descifrado se hace simplemente invirtiendo el orden en la operación or-exlusiva.
- La parte dura del procesamiento (el bloque AES) es idéntica y no necesitamos un bloque de descifrado. Esto hace que la implementación (ya sea software o hardware) se simplifique enormemente.

Otra representación esquemática del modo CTR

P_i texto en claro C_i criptograma

Si consideramos que $T_1, T_2, \cdots T_N$ es una secuencia de contadores (obtenida en cualquiera de los dos modos aceptados por el NIST), el cifrado se obtiene mediante las expresiones

$$c_i = m_i \oplus E_k(T_i), i = 1,2,\dots,N-1$$

 $c_N = m_N \oplus S_s[E_k(T_N)]$

- lacktriangle donde $S_s(x)$ representa los s bits más significativos de x.
- Obsérvese que para el último bloque a cifrar (que tiene s bits), al contrario que en los modos ECB, CBC y CFB, no se necesita relleno (padding).

■ El descifrado se obtiene mediante las expresiones.

$$\mathbf{m_i} = \mathbf{c_i} \oplus \mathbf{E_k(T_i)}, \quad i = 1, 2, \dots, N-1$$

 $\mathbf{m_N} = \mathbf{c_N} \oplus \mathbf{S_s[E_k(T_N)]}$

 \rightarrow donde $S_s(x)$ representa los s bits más significativos de x.

Resumen de modos de cifrados

TRATEGIAS DE SEGURIDAD

Cifrado en bloque con clave secreta

4.5 Cifrado múltiple. Triple DES

- Si un sistema forma un grupo algebraico (esto es, si está cerrado bajo una operación de composición consistente en el cifrado repetido) cifrar un mensaje m con una clave k₁ y luego el resultado con una clave k₂, es lo mismo que cifrar el mensaje con una única clave k₃.
- Un ejemplo lo constituye el cifrado de Vigenère.
 - Sea k_1 = LUCIA y k_2 = JUANA y el mensaje a cifrar m = ESTO ES UN GRUPO.

$$m_1 = \texttt{ESTOESUNGRUPO}$$
 $k_1 = \texttt{LUCIALUCIALUC}$ $c_1 = \texttt{ONVWEDOOÑRFKQ}$

$$\mathbf{m}_2 = \mathtt{ONVWEDOO} \mathbf{\tilde{N}RFKQ}$$
 $\mathbf{k}_2 = \mathtt{JUANAJUANAJUA}$ $\mathbf{c}_2 = \mathtt{XHVJEMJOAR\tilde{N}EQ}$

 k_3 s fácil comprobar que se obtiene lo mismo al cifrar el texto en claro m_1 con a clave $k_3 = k_1 + k_2 = LUCIA + JUANA = TOCUA$.

DES no es un grupo y, por tanto, el cifrado múltiple permitirá aumentar el tamaño efectivo de la clave.

4.5 Cifrado múltiple. Triple DES

- El procedimiento para aumentar el espacio de claves de un cifrado en bloque consiste en hacer un cifrado múltiple, también denominado supercifrado en medios militares.
- Para una repetición del cifrado en DES n veces, usando n claves independientes, se puede demostrar que la longitud efectiva de la clave en bits es, aproximadamente:

$$l = 56 \left\lceil \frac{n}{2} \right\rceil$$

en vez de 56 n.

- En el caso particular de n = 2, la longitud exacta de la clave frente a un ataque por prueba exhaustiva de claves es solamente de 57 bits.
 - Para n igual a 3, la longitud de la clave se duplica (112 bits)

4.5 Cifrado múltiple. Triple DES

EDE: Encrypt-Decrypt-Encrypt

- En este caso se logra un valor efectivo de longitud de clave igual a 2n bits, es decir 2.56 = 112 bits.
- El método fue propuesto por Matyas y Meyer de IBM y se denomina EDE: *Encrypt-Decrypt-Encrypt*.