

Исследование алгоритмов обнаружения и локализации объектов на видеоизображении в робототехнических задачах

Автор: Терентьев Р.А., гр. R3442

Руководитель: Шаветов С.В., к.т.н.

Актуальность

1. Обзор существующих алгоритмов обнаружения и локализации

1.1 Цветовой фильтр

1.1.1 RGB

1.1.2 HSV

1.1.3 Lab

1.2 Метод ключевых точек

1.2.1 SIFT

1.2.2 SURF

1.2.3 ORB

1.3 Метод Виолы-Джонса

3. «Центральные» признаки

2. Линейные признаки

2. Программная реализация выбранных алгоритмов

2.1 Цветовой фильтр

- Преобразование цветовой модели
- 2) Низкочастотная фильтрация
- 3) Цветовая фильтрация
- 4) Морфологические преобразования
- 5) Нахождение контура
- 6) Вычисление площади
- Определение координат центра

2.2 Метод ключевых точек

- 1) Преобразование цветовой модели
- 2) Выбор алгоритма, нахождение и описание ключевых точек
- 3) Поиск совпадений
- 4) Нахождение «хороших точек»
- 5) Проективное преобразование
- 6) Перспективное преобразование
- 7) Вычисление площади
- 8) Определение координат центра

3. Проверка работы алгоритмов в реальных условиях

Robotino

Демонстрация работы программ Цветовой фильтр Метод ключевых точек

4. Сравнение алгоритмов

Алгоритм	Цветовой фильтр			Метод ключевых точек		
	RGB	HSV	Lab	SIFT	SURF	ORB
FPS	25			8	10	16
Быстродействие,	40			125	100	62,5
MC						
Зависимость от	Briconad	средняя	низкая		LIMANAG	
освещения	высокая			низкая		
Зависимость от	низкая			низкая	низкая	высокая
масштабирования						
Зависимость от	низкая			низкая		
вращения						
Зависимость от	Сродияя	HMSN3G	HIMSNOG	HMSN3G	HIMSKAG	Сродиаа
перекрытия	средняя	низкая	низкая	низкая	низкая	средняя
Робастность	низкая	высокая	высокая	высокая	средняя	средняя

Рекомендации

- Среди цветовых фильтров по всем параметрам выигрывает Lab;
- ▼ Среди методов ключевых точек выигрыш в скорости даёт проигрыш в точности, и наоборот;
- Для быстродвижущихся объектов следует использовать Lab (если объект имеет характерный цвет) или ORB (если объект имеет неоднородную структуру);
- ▼ Если скорость не важна, лучше использовать SIFT как самый точный;
- У Если объект может сильно отдалиться, не стоит пользоваться ORB.

Спасибо за внимание!