Derivatives Definition and Notation

If y = f(x) then the derivative is defined to be $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

If y = f(x) then all of the following are equivalent notations for the derivative.

$$f'(x) = y' = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}(f(x)) = Df(x)$$

If y = f(x) all of the following are equivalent notations for derivative evaluated at x = a.

$$f'(a) = y'\Big|_{x=a} = \frac{df}{dx}\Big|_{x=a} = \frac{dy}{dx}\Big|_{x=a} = Df(a)$$

Interpretation of the Derivative

If y = f(x) then,

- 1. m = f'(a) is the slope of the tangent line to y = f(x) at x = a and the equation of the tangent line at x = a is given by y = f(a) + f'(a)(x-a).
- 2. f'(a) is the instantaneous rate of change of f(x) at x = a.
- 3. If f(x) is the position of an object at time x then f'(a) is the velocity of the object at x = a.

Basic Properties and Formulas

If f(x) and g(x) are differentiable functions (the derivative exists), c and n are any real numbers,

1.
$$(cf)' = cf'(x)$$

2.
$$(f \pm g)' = f'(x) \pm g'(x)$$

3.
$$(fg)' = f'g + fg' -$$
Product Rule

4.
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$
 – Quotient Rule

5.
$$\frac{d}{dx}(c) = 0$$

6.
$$\frac{d}{dx}(x^n) = n x^{n-1}$$
 - Power Rule

7.
$$\frac{d}{dx} (f(g(x))) = f'(g(x))g'(x)$$
This is the **Chain Rule**

Common Derivatives

$$\frac{d}{dx}(x) = 1$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(a^x) = a^x \ln(a)$$

$$\frac{d}{dx}(\mathbf{e}^x) = \mathbf{e}^x$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}, \quad x > 0$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}, \quad x \neq 0$$

$$\frac{d}{dx}(\log_a(x)) = \frac{1}{x \ln a}, \quad x > 0$$

Chain Rule Variants

The chain rule applied to some specific functions.

1.
$$\frac{d}{dx} \left(\left[f(x) \right]^n \right) = n \left[f(x) \right]^{n-1} f'(x)$$

2.
$$\frac{d}{dx}(\mathbf{e}^{f(x)}) = f'(x)\mathbf{e}^{f(x)}$$

3.
$$\frac{d}{dx} \left(\ln \left[f(x) \right] \right) = \frac{f'(x)}{f(x)}$$

4.
$$\frac{d}{dx} \left(\sin \left[f(x) \right] \right) = f'(x) \cos \left[f(x) \right]$$

5.
$$\frac{d}{dx} \left(\cos \left[f(x) \right] \right) = -f'(x) \sin \left[f(x) \right]$$

6.
$$\frac{d}{dx} \left(\tan \left[f(x) \right] \right) = f'(x) \sec^2 \left[f(x) \right]$$

7.
$$\frac{d}{dx} \left(\sec[f(x)] \right) = f'(x) \sec[f(x)] \tan[f(x)]$$

8.
$$\frac{d}{dx}\left(\tan^{-1}\left[f(x)\right]\right) = \frac{f'(x)}{1+\left[f(x)\right]^2}$$

Higher Order Derivatives

The Second Derivative is denoted as

$$f''(x) = f^{(2)}(x) = \frac{d^2 f}{dx^2}$$
 and is defined as

$$f''(x) = (f'(x))'$$
, *i.e.* the derivative of the first derivative, $f'(x)$.

The nth Derivative is denoted as

$$f^{(n)}(x) = \frac{d^n f}{dx^n}$$
 and is defined as

$$f^{(n)}(x) = (f^{(n-1)}(x))'$$
, *i.e.* the derivative of the $(n-1)^{st}$ derivative, $f^{(n-1)}(x)$.

Increasing/Decreasing - Concave Up/Concave Down

Critical Points

x = c is a critical point of f(x) provided either 1. f'(c) = 0 or 2. f'(c) doesn't exist.

Increasing/Decreasing

- 1. If f'(x) > 0 for all x in an interval I then f(x) is increasing on the interval I.
- 2. If f'(x) < 0 for all x in an interval I then f(x) is decreasing on the interval I.
- 3. If f'(x) = 0 for all x in an interval I then f(x) is constant on the interval I.

Concave Up/Concave Down

- 1. If f''(x) > 0 for all x in an interval I then f(x) is concave up on the interval I.
- 2. If f''(x) < 0 for all x in an interval I then f(x) is concave down on the interval I.

Inflection Points

x = c is a inflection point of f(x) if the concavity changes at x = c.

Extrema

Relative (local) Extrema

- 1. x = c is a relative (or local) maximum of f(x) if $f(c) \ge f(x)$ for all x near c.
- 2. x = c is a relative (or local) minimum of f(x) if $f(c) \le f(x)$ for all x near c.

1st Derivative Test

If x = c is a critical point of f(x) then x = c is

- 1. a rel. max. of f(x) if f'(x) > 0 to the left of x = c and f'(x) < 0 to the right of x = c.
- 2. a rel. min. of f(x) if f'(x) < 0 to the left of x = c and f'(x) > 0 to the right of x = c.
- 3. not a relative extrema of f(x) if f'(x) is the same sign on both sides of x = c.

2nd Derivative Test

If x = c is a critical point of f(x) such that f'(c) = 0 then x = c

- 1. is a relative maximum of f(x) if f''(c) < 0.
- 2. is a relative minimum of f(x) if f''(c) > 0.
- 3. may be a relative maximum, relative minimum, or neither if f''(c) = 0.

Finding Relative Extrema and/or Classify Critical Points

- 1. Find all critical points of f(x).
- 2. Use the 1st derivative test or the 2nd derivative test on each critical point.

Integrals Definitions

Definite Integral: Suppose f(x) is continuous on [a,b]. Divide [a,b] into n subintervals of width Δx and choose x_i^* from each interval.

Then $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{\infty} f(x_{i}^{*}) \Delta x$.

Anti-Derivative : An anti-derivative of f(x) is a function, F(x), such that F'(x) = f(x). **Indefinite Integral :** $\int f(x) dx = F(x) + c$ where F(x) is an anti-derivative of f(x).

Fundamental Theorem of Calculus

Part I : If f(x) is continuous on [a,b] then $g(x) = \int_a^x f(t) dt$ is also continuous on [a,b] and $g'(x) = \frac{d}{dx} \int_a^x f(t) dt = f(x)$.

Part II : f(x) is continuous on [a,b], F(x) is an anti-derivative of f(x) (i.e. $F(x) = \int f(x) dx$) then $\int_{-b}^{b} f(x) dx = F(b) - F(a)$.

Variants of Part I:

$$\frac{d}{dx} \int_{a}^{u(x)} f(t) dt = u'(x) f[u(x)]$$

$$\frac{d}{dx} \int_{v(x)}^{b} f(t) dt = -v'(x) f[v(x)]$$

$$\frac{d}{dx} \int_{v(x)}^{u(x)} f(t) dt = u'(x) f[u(x)] - v'(x) f[v(x)]$$

Properties

 $\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$ $\int cf(x) dx = c \int f(x) dx, c \text{ is a constant}$ $\int_a^b f(x) \pm g(x) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$ $\int_a^b cf(x) dx = c \int_a^b f(x) dx, c \text{ is a constant}$ $\int_a^b f(x) dx = 0$ $\int_a^b f(x) dx = -\int_b^a f(x) dx$ $\int_a^b f(x) dx = \int_a^b f(x) dx$ If $f(x) \ge g(x)$ on $a \le x \le b$ then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

If $f(x) \ge 0$ on $a \le x \le b$ then $\int_a^b f(x) dx \ge 0$ If $m \le f(x) \le M$ on $a \le x \le b$ then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$

Common Integrals

$$\int k \, dx = k \, x + c$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int \sin u \, du = -\cos u + c$$

$$\int x^{-1} \, dx = \int \frac{1}{x} \, dx = \ln|x| + c$$

$$\int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln|ax+b| + c$$

$$\int \ln u \, du = u \ln(u) - u + c$$

$$\int \mathbf{e}^u \, du = \mathbf{e}^u + c$$

Calculus Cheat Sheet

Standard Integration Techniques

Note that at many schools all but the Substitution Rule tend to be taught in a Calculus II class.

u Substitution: The substitution u = g(x) will convert $\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u) du$ using du = g'(x)dx. For indefinite integrals drop the limits of integration.

$$\mathbf{Ex.} \int_{1}^{2} 5x^{2} \cos(x^{3}) dx \qquad \int_{1}^{2} 5x^{2} \cos(x^{3}) dx = \int_{1}^{8} \frac{5}{3} \cos(u) du$$

$$u = x^{3} \implies du = 3x^{2} dx \implies x^{2} dx = \frac{1}{3} du$$

$$x = 1 \implies u = 1^{3} = 1 :: x = 2 \implies u = 2^{3} = 8$$

$$= \frac{5}{3} \sin(u) \Big|_{1}^{8} = \frac{5}{3} (\sin(8) - \sin(1))$$