Name: Ahmet Coskuner

TA: Neha Gupta

ECEN 714-612 Lab 3

1. cell18.spi

```
//Spice netlist for an inverter
simulator lang=spectre
subckt IV (input output VDD VSS)
       parameters wp=0.6u lp=0.2u wn=0.3u ln=0.3u
       M1 output input VDD VDD tsmc18P w=wp l=lp
       M2 output input VSS VSS tsmc18N w=wn l=ln
ends IV
subckt NAND2 (A B output VDD VSS)
   parameters wp=0.6u lp=0.2u wn=0.3u ln=0.3u
   M1 output A VDD VDD tsmc18p w=wp l=lp
   M2 output B VDD VDD tsmc18p w=wp l=lp
   M3 output A n1 VSS tsmc18n w=wn l=ln
   M4 n 1 B VSS VSS tsmc18n w=wn l=ln
ends
subckt XOR2 (A B output VDD VSS)
   parameters wp=0.6u lp=0.2u wn=0.3u ln=0.3u
    Ainv (A Abar VDD VSS) IV wp=wp lp=lp wn=wn ln=ln
   Binv (B Bbar VDD VSS) IV wp=wp lp=lp wn=wn ln=ln
   M1 n13
                      VDD VDD tsmc18p w=wp l=lp // B pmos
   M2 n24 Bbar VDD VDD tsmc18p w=wp l=lp // Bbar pmos M3 output Abar n13 VDD tsmc18p w=wp l=lp // Abar pmos
                    n24 VDD tsmc18p w=wp l=lp // A pmos
   M4 output A
   M5 output Abar n57 VSS tsmc18n w=wn l=ln // Abar nmos
   M6 output A n68 VSS tsmc18n w=wn l=ln // A nmos
   M7 n57 Bbar VSS VSS tsmc18n w=wn l=ln // Bbar nmos
   M8 n68
            B VSS VSS tsmc18n w=wn l=ln // B nmos
ends
```

2. simcap.spi

```
;Spice netlist for an inverter and a capacitor
simulator lang=spectre
include "~/cadence/cellcharacs/model18.spi"
include "~/cadence/cellcharacs/cell18.spi"
vgnd (gnd 0) vsource dc=0
vvdd (vdd 0) vsource dc=1.8
;acinput (IV in 0) vsource dc=0 mag=1
;acinput (NAND in 0) vsource dc=0 mag=1
acinput (XOR in 0) vsource dc=0 mag=1
;R1 (IV in IV_in1) resistor r=0
;R2 (NAND in NAND in1) resistor r=0
R3 (XOR \overline{\text{in}} XOR \overline{\text{in1}}) resistor r=0
;X1 (IV in1 IV out vdd gnd) IV wp=0.9u lp=0.2u wn=0.4u ln=0.2u
;NAND1 (NAND_in1 vdd NAND_out vdd gnd) NAND2 wp=0.9u lp=0.2u wn=0.4u ln=0.2u
XOR1 (XOR in 1 vdd XOR out vdd qnd) XOR2 wp=0.9u lp=0.2u wn=0.4u ln=0.2u
Freq ac start=1e+1 stop=1e+9
; save R1: currents
;save R2:currents
save R3:currents
```

3. Inverter

a. inverter.spi

```
;Spice netlist for an inverter and a capacitor simulator lang=spectre

include "~/cadence/cellcharacs/model18.spi"
include "~/cadence/cellcharacs/cell18.spi"

vgnd (gnd 0) vsource dc=0
vvdd (vdd 0) vsource dc=1.8

vpwl (IV_in 0) vsource type=pwl wave=[0n 0 1n 0 1.2n 1.8 4n 1.8 4.2n 0]

X1 (IV_in IV_out vdd gnd) IV wp=0.9u 1p=0.2u wn=0.3u ln=0.2u

R1 (IV_out 1) resistor r=1
C1 (1 0) capacitor c=100f

TransientAnalysis tran start=0 stop=10ns step=1ps
save IV_in IV_out
```

b. Simulation tests for <10% error

PMOS w (µm)	NMOS w (µm)	Falling Edge Delay (ps)	Rising Edge Delay (ps)	% Error
0.6	0.3	478	696	45.6
0.9	0.3	481	498	3.53

c. Inverter Cell Delay Table

Output Capacitance (fF)	Falling Edge Delay (ps)	Rising Edge Delay (ps)	% Error
100	481	498	3.53
90	439	451	2.73
80	393	410	4.33
70	351	368	4.84
60	306	321	4.90
50	262	277	5.73
40	219	232	5.94
35	197	210	6.60
30	175	188	7.43
25	153	166	8.50
20	131	144	9.92
15	109	122	11.93
10	85.8	101	17.72
5	57.7	74.5	29.12
1	27.1	45.2	66.79

d. Inverter Gate Capacitance (avg) = 3.275 fF

Freq (MHz)	100	200	300	400	500	600	700	800	900	1000
Current (µA)	2.06	4.12	6.17	8.23	10.3	12.3	14.4	16.5	18.5	20.6
Capacitance (fF)	3.279	3.279	3.273	3.275	3.279	3.263	3.274	3.283	3.272	3.279

4. NAND2

a. NAND2.spi

```
;Spice netlist for an inverter and a capacitor simulator lang=spectre

include "~/cadence/cellcharacs/model18.spi"

include "~/cadence/cellcharacs/cell18.spi"

vgnd (gnd 0) vsource dc=0
vvdd (vdd 0) vsource dc=1.8

vpwl (NAND_in 0) vsource type=pwl wave=[0n 0 1n 0 1.2n 1.8 4n 1.8 4.2n 0]

NAND1 (NAND_in vdd NAND_out vdd gnd) NAND2 wp=0.6u lp=0.2u wn=0.3u ln=0.2u

R1 (NAND_out 1) resistor r=1
C1 (1 0) capacitor c=100f

TransientAnalysis tran start=0 stop=10ns step=1ps
save NAND_in NAND_out
```

b. Simulation for <10% error

c. NAND2 Cell Delay Table

Output Capacitance (fF)	Falling Edge Delay (ps)	Rising Edge Delay (ps)	% Error
100	656	701	6.86
90	595	637	7.06
80	534	575	7.68
70	474	511	7.81
60	414	447	7.97
50	351	382	8.83
40	291	320	9.97
35	261	286	9.58
30	229	254	10.92
25	198	221	11.62
20	168	189	12.50
15	137	157	14.60
10	107	125	16.82
5	72.3	92.9	28.49
1	35.4	57.7	62.99

d. NAND2 Gate Capacitance (avg) = 3.275 fF

			,	٥,						
Freq (MHz)	100	200	300	400	500	600	700	800	900	1000
Current (µA)	2.06	4.12	6.17	8.23	10.3	12.3	14.4	16.5	18.5	20.6
Capacitance (fF)	3.279	3.279	3.273	3.275	3.279	3.263	3.274	3.283	3.272	3.279

5. XOR2

a. XOR2.spi

```
;Spice netlist for an inverter and a capacitor simulator lang=spectre

include "~/cadence/cellcharacs/model18.spi"
include "~/cadence/cellcharacs/cell18.spi"

vgnd (gnd 0) vsource dc=0
vvdd (vdd 0) vsource dc=1.8

vpwl (XOR_in 0) vsource type=pwl wave=[0n 0 1n 0 1.2n 1.8 4n 1.8 4.2n 0]

XOR1 (XOR_in vdd XOR_out vdd gnd) XOR2 wp=1.2u lp=0.2u wn=0.3u ln=0.2u

R1 (XOR_out 1) resistor r=1
C1 (1 0) capacitor c=100f

TransientAnalysis tran start=0 stop=10ns step=1ps
save XOR_in XOR_out
```

b. Simulation for <10% error

PMOS w (µm)	NMOS w (µm)	Falling Edge Delay (ps)	Rising Edge Delay (ps)	% Error
0.6	0.3	649	1290	98.77
0.9	0.3	653	898	37.52
0.9	0.4	555	900	62.16
1.2	0.3	656	696	6.10

c. XOR2 Cell Delay Table

Output Capacitance (fF)	Falling Edge Delay (ps)	Rising Edge Delay (ps)	% Error
100	656	696	6.10
90	596	633	6.21
80	535	569	6.36
70	473	503	6.34
60	412	441	7.04
50	351	374	6.55
40	290	311	7.24
35	259	279	7.72
30	228	247	8.33
25	197	214	8.63
20	166	182	9.64
15	134	149	11.19
10	103	117	13.59
5	70.4	81.7	16.05
1	41.3	51.3	24.21

d. XOR2 Gate Capacitance (avg) = 6.548 fF

Freq (MHz)	100	200	300	400	500	600	700	800	900	1000
Current (µA)	4.12	8.23	12.3	16.5	20.6	24.7	28.8	32.9	37	41.1
Capacitance (fF)	6.557	6.549	6.525	6.565	6.557	6.552	6.548	6.545	6.543	6.541

