Temporal Analysis of Individual Influence in Twitter

Motivation

- * Understand an individual activity's influence on its neighbors and the social network
 - How many retweets/favorites interaction can I get?
 - * How long will my tweet be active in the network?
 - * How do i fare in reach compared to other information sources?
 - * Will my friends like what I post?
 - What to post to make me popular?
- * Analyze the temporal pattern of retweets (favorites)

Hypothesis

- * The temporal variation of number of retweets follows certain patterns
- * Certain factors have effect on the pattern of retweet
 - * Time of day
 - * Initial reaction
 - * Content
 - * Personal weight in the network
 - * immediate network...
- * Time series of reaction can be predicted

Pattern Classification

- * Classify temporal patterns of number of retweets
- * How to measure similarity of time series
 - * Total number of retweets
 - * Shape of the time series
- * Clustering algorithms

Pattern Prediction

- * Predict what pattern the time series will follow based on the observation in the beginning
 - * Post time
 - * Number of retweets/favorites
 - * Users who retweeted
 - * Number of followers of the user who retweet
 - * Hashtag ..?
 - * ...

Data

- * Twitter
- * ~20 known active users from different fields
 - * active users are the ones who post consistently, have a healthy following and interact actively.
- * 2 weeks of monitor. status check every 30 minutes?
- * @ 12 tweets per profile. ~ 240 tweets per day.
- * Aim to collect 2000 tweet charts.
- * Select only tweets with activity.
- * Train on subset and test on the rest.

Data

- * post time (hour)
- * number of rewteets in the first hour
- * number of favorites in the first hour
- * number of followers
- * active time (if the number of retweets remains the same for an hour)
- * total number of retweets (the number of retweets during active time)
- * ...

Related Work

- * "Modeling information diffusion in implicit networks". *ICDM*'
 - * Not require the knowledge of the social network
 - Model the number of newly infected nodes as a function of nodes got infected in the past
- * "Patterns of temporal variation in online media". WSDM'11.
 - Define the similarity metric based on scaling and shifting.
 - * Develop a clustering algorithm to finds cluster centroids