3. Mezní stavy

Hlavní úkol Pružnosti – formulovat a řešit problémy závislosti mezi zatížením tělesa a jeho napjatostí a deformací.

Proč to děláme vyplyne až z druhé části názvu – Pevnost – výsledky analýz napjatosti a deformace využít pro predikci mezních stavů z hlediska deformace a porušování těles, případně zjištění příčiny porušení.

Mezní stav – zatěžovací stav tělesa, při němž se kvalitativně mění schopnost tělesa plnit některou z požadovaných funkcí, příp. těleso tuto schopnost zcela ztrácí.

3.1. Mezní stavy související s deformací tělesa

3.1.1. Mezní stav deformace

Sledovaná deformační charakteristika dosáhne mezní hodnoty (smluvně stanovené). Příklad: lopatka turbíny:

 $u_r + \Delta l < v \quad \rightarrow \quad \text{deformace funkčně přípustná,}$

 $u_r + \Delta l > v \rightarrow \text{deformace funkčně nepřípustná,}$

 $u_r + \Delta l = v \rightarrow \mathbf{mezni}$ stav deformace.

Příklad: průhyb nosníku:

Mezní stav deformace tělesa – deformace funkčně přípustné se mění na funkčně nepřípustné.

3.1.2. Mezní stav pružnosti

pružná (vratná) deformace,

plastická (nevratná, trvalá) deformace.

Mezní stav pružnosti (MSP) tělesa – stav, při jehož překročení vznikají v tělese zjistitelné plastické deformace.

Dosažení MSP – je nutné vyřadit součást z provozu?

^{*3.0 [}PPI, 6 - 12]

3.1.3. Mezní stav deformační stability

Mezní stav deformační stability tělesa je stav, kdy geometrická konfigurace, která byla stabilní před dosažením mezního stavu, se po jeho překročení stává labilní a stabilní se stává jiná geometrická konfigurace tělesa.

mezní stav vzpěrné stability

3.2. Mezní stavy související s porušováním tělesa

3.2.1. Mezní stav porušení

Mezní stav porušení tělesa je takový zatěžovací stav tělesa, při kterém dojde k porušení spojitosti na hranici rozlišitelnosti.

Příklad: změny ve struktuře materiálu, mikroporuchy vlivem silového působení na těleso.

3.2.2. Mezní stav stability trhliny

Mezní stav stability trhliny je takový stav zatěžovaného tělesa s trhlinou, kdy šíření se mění ze stabilního, člověkem řiditelného šíření, na nestabilní, člověkem neovlivnitelné šíření.

Příklad: zatěžování tělesa s trhlinou - trhlina roste, ale když přestaneme těleso zatěžovat, trhlina se zastaví. Ale při dosažení určité hranice zatížení (mezní stav stability trhliny) poroste trhlina, i když přestaneme těleso zatěžovat.

3.2.3. Mezní stav trhlin

Mezní stav trhlin je mezní stav zatěžovaného tělesa, při němž se porušení funkčně přípustné mění na funkčně nepřípustné při zachování celistvosti tělesa.

Příklad: tlaková nádoba s trhlinou ve stěně.

3.2.4. Mezní stav lomu

Mezní stav lomu je takový stav zatěžovaného tělesa, v němž z jednoho celistvého tělesa vzniká více samostatných těles.

3.3. Deformačně-pevnostní spolehlivost

Spolehlivost – schopnost konstrukce plnit požadované funkce za běžných i některých mimořádných podmínek a v různých etapách svého života.

Hodnocení spolehlivosti

- a) Slovní hodnocení spíše intuitivní, u konstrukcí, kde nehrozí velké materiálové škody či škody na životech.
- b) Jednoduchá relace ve tvaru vztahu mezi veličinami α (veličina charakterizující spolehlivost ve vyšetřovaném stavu) a α_M (**mezní hodnota** této veličiny).

```
\alpha \leq \alpha_M – vyhovující \alpha > \alpha_M – nevyhovující
```

c) S ohledem na výpočtové, výrobní a materiálové nepřesnosti se v praxi vychází často z **hodnot dovolených** α_D , které jsou stanoveny s jistou rezervou vůči mezní hodnotě α_M .

```
\alpha \leq \alpha_D – vyhovující \alpha > \alpha_D – nevyhovující
```

d) Kvantifikace spolehlivosti číselnou veličinou zvanou **součinitel bezpečnosti**, zkráceně **bezpečnost** k_M vůči aktuálnímu meznímu stavu

```
k_M = \frac{\alpha_M}{\alpha},

k_M > 1 - vyhovující.
```

e) Pro různé typy konstrukcí a různé souvislosti je stanovena **dovolená bezpečnost** k_D , která je pro danou konstrukci přípustná.

```
k_M \ge k_D – vyhovující k_M < k_D – nevyhovující.
```

Konkrétní velikost k_D závisí na druhu mezního stavu a vychází z praktických zkušeností. Obvyklé hodnoty např. u mezního stavu pružnosti se pohybují v rozmezí 1, 5-3.

f) Životnost - doba, resp. počet zatěžovacích cyklů do vzniku mezního stavu

```
t < t_f, \ N < N_f – vyhovující t \ge t_f, \ N \ge N_f – nevyhovující t, N – doba resp. počet cyklů požadované z důvodu správné funkce konstrukce t_f, N_f – doba resp. počet cyklů do vzniku mezního stavu (většinou lomu).
```

g) Na nejvyšší úrovni je spolehlivost definována jako **pravděpodobnost**, že těleso (soustava) bude vykonávat definovanou funkci po danou dobu.

3.4. Typy úloh v Pružnosti a pevnosti

- 1. **Úlohy o kontrole (pevnostní kontrola)**. Úloha je zadána úplně (známe geometrii tělesa, materiálové charakteristiky, silové působení, vazby k rámu). Úkolem je stanovit spolehlivost vůči potenciálním mezním stavům.
- 2. **Úlohy o určování parametrů (pevnostní návrh)**. Úloha je zadána neúplně. Úkolem je určit nezadané parametry (často rozměry) tak, aby těleso či soustava plnily spolehlivě zadanou funkci a nenastal žádný z možných mezních stavů.
- 3. **Úlohy o optimalizaci**. Úloha je zadána neúplně. Úkolem je stanovit nezadané parametry tak, aby těleso či soustava plnily spolehlivě zadanou funkci bez vzniku mezního stavu a současně byla splněna optimalizační podmínka (typicky např. minimální hmotnost).