Assignment 5 - Asymptotics

CS 234

Daniel Lee

1 Asymptotic Proofs

Prove the following by giving constants and then showing that the inequalities hold:

$$D.4 \ 2n^2 + 4n = O(n^2)$$

Proof. Let n be an arbitrary real number that is at least 4. Then the following inequality holds:

$$2n^2 + 4n \le 2n^2 + n^2 \quad [n \ge 4]$$

= $3n^2$.

Thus $2n^2+4n\leq 3n^2$, so picking $n_0=4$ and c=3 witnesses $\exists n_0,c>0$. $\forall n\geq n_0.\ 2n^2+4n\leq c\cdot n^2.$ Thus, by the definition of big-O, $2n^2+4n\in O\left(n^2\right).$

D.5 $3n^2 - 4n + 5 = O(n^2)$

Proof. Let n be an arbitrary real number that is at least 1. Then the following inequality holds:

$$3n^2 - 4n + 5 \le 3n^2 + n^2 + 5n^2$$
 [as $-4n \le n^2$ and $5 \le 5n^2$ for all $n \ge 1$]
= $9n^2$.

Thus $3n^2 - 4n + 5 \le 9n^2$, so picking $n_0 = 1$ and c = 9 witnesses $\exists n_0, c > 0$. $\forall n \ge n_0$. $3n^2 - 4n + 5 \le c \cdot n^2$. Thus, by the definition of big-O, $3n^2 - 4n + 5 \in O(n^2)$.

D.9
$$4n^2 - 3n = \Omega(n^2)$$

Proof. Let n be an arbitrary real number that is at least 1 and let c be 1. We want to show that there exists $n_0, c > 0$ such that for all $n \geq n_0$ we have that $4n^2 - 3n \ge c \cdot n^2$.

Observe the following inequality:

$$4n^2 - 3n = n(4n - 3) \ge c \cdot n \cdot n = n^2$$
 [c = 1].

Since we initially assumed that n is an arbitrary real number that is at least 1, we know by arithmetic that

$$4n-3 \ge n$$
 [math].

Therefore,

$$3(n-1) \ge 0$$
 [math].

Thus picking $n_0 = 1$ and c = 1 witnesses

 $\exists n_0, c > 0. \quad \forall n \ge n_0. \quad 4n^2 - 3n \ge c \cdot n^2.$

Thus, by the definition of big- Ω , $4n^2 - 3n \in \Omega$ (n^2) .

D.10
$$n^2 - 2n + 3 = \Omega(n^2)$$

Proof. Let n be an arbitrary real number that is at least 1 and let c be $\frac{1}{2}$. We want to show that there exists $n_0, c > 0$ such that for all $n \geq n_0$ we have that $n^2 - 2n + 3 \ge c \cdot n^2$.

Observe the following inequality:

$$n^{2} - 2n + 3 \ge c \cdot n \cdot n = \frac{1}{2} \cdot n^{2} \quad \left[c = \frac{1}{2}\right].$$

Therefore, by arithmetics, we know that

$$\frac{1}{2}n^2 - 2n + 3 \ge 0$$
 [math].

We can rewrite the above mathematical expression as

$$\frac{1}{2}(n^2 - 4n) + 3 \ge 0$$
 [math].

Therefore, by arithmetics, we know that

$$\frac{1}{2}(n-2)^2 - 2 + 3 = \frac{1}{2}(n-2)^2 + 1 \ge 0 \quad [\text{ math }].$$

Thus picking $n_0 = 1$ and $c = \frac{1}{2}$ witnesses $\exists n_0, c > 0$. $\forall n \ge n_0$. $n^2 - 2n + 3 \ge c \cdot n^2$.

Thus, by the definition of big- Ω , $n^2 - 2n + 3 \in \Omega$ (n^2) .

D.13
$$n + 8 = \Theta(n)$$

Proof. To show this, by definition of big- Θ , it suffices to show $n+8 \in O(n)$ and $n+8 \in \Omega(n)$.

Let n be an arbitrary real number that is at least 1.

Then the following inequality holds:

$$n+8 \le n+8n \quad [n \ge 1]$$
$$= 9n.$$

Thus $n + 8 \le 9n$, so picking $n_0 = 1$ and $c_1 = 9$ witnesses

 $\exists n_0, c_1 > 0. \quad \forall n \geq n_0. \quad n+8 \leq c_1 \cdot n.$

Thus, by the definition of big-O, $n + 8 \in O(n)$.

Also, let n be an arbitrary real number that is at least 1 and let c_2 be 1. Observe the following inequality:

$$n+8 \ge n \quad [n \ge 1].$$

Thus picking $n_0 = 1$ and $c_2 = 1$ witnesses

 $\exists n_0, c_2 > 0. \quad \forall n \ge n_0. \quad n+8 \ge c_2 \cdot n.$

Thus, by the definition of big- Ω , $n + 8 \in \Omega(n)$.

Finally, because both $n+8 \in O(n)$ and $n+8 \in \Omega(n)$, it follows that $n+8 \in \Theta(n)$ by definition.

D.14
$$n^2 + 2n = \Theta(n^2)$$

Proof. To show this, by definition of big- Θ , it suffices to show $n^2 + 2n \in O(n^2)$ and $n^2 + 2n \in O(n^2)$.

Let n be an arbitrary real number that is at least 1.

Then the following inequality holds:

$$n^2 + 2n \le n^2 + 2n^2 \quad [n \ge 1]$$

= $3n^2$.

Thus $n^2 + 2n \le 3n^2$, so picking $n_0 = 1$ and $c_1 = 3$ witnesses

 $\exists n_0, c_1 > 0. \quad \forall n \ge n_0. \quad n^2 + 2n \le c_1 \cdot n^2.$

Thus, by the definition of big-O, $n^2 + 2n \in O(n^2)$.

Also, let n be an arbitrary real number that is at least 1 and let c_2 be 1. Observe the following inequalities:

$$n^2 + 2n \ge n^2 \quad [n \ge 1].$$

By arithmetic, we know that

$$2n \geq 0$$
 [math].

```
Thus picking n_0=1 and c_2=1 witnesses \exists n_0,c_2>0. \ \forall n\geq n_0. \ n^2+2n\geq c_2\cdot n^2. Thus, by the definition of big-\Omega,\ n^2+2n\in\Omega\left(n^2\right). Finally, because both n^2+2n\in O\left(n^2\right) and n^2+2n\in\Omega\left(n^2\right), it follows that n^2+2n\in\Theta(n^2) by definition.
```

D.16
$$n^2 = o(n^3)$$

Proof. Let c be an arbitrary positive real number.

Then let n be an arbitrary real number that is strictly greater than $\frac{1}{c}$. Observe the following inequalities that they hold.

$$\begin{aligned} c \cdot n^3 &> c \cdot \frac{1}{c} \cdot n^2 & \left[n > \frac{1}{c} \right] \\ &= n^2 & \left[\text{ math } \right]. \end{aligned}$$

Thus picking an arbitrary positive real number n_0 to be strictly greater than $\frac{1}{c}$ witnesses that $\forall c > 0$. $\exists n_0 > 0$. $\forall n \ge n_0$. $n^2 < c \cdot n^3$. By the definition of little-o, this means that $n^2 \in o(n^3)$.

D.17 $100n^3 = o(n^4)$

Proof. Let c be an arbitrary positive real number.

Then let n be an arbitrary real number that is strictly greater than $\frac{100}{c}$. Observe the following inequalities that they hold.

$$c \cdot n^4 > c \cdot \frac{100}{c} \cdot n^3 \quad \left[n > \frac{100}{c} \right]$$
$$= 100n^3 \quad \left[\text{ math } \right].$$

Thus picking an arbitrary positive real number n_0 to be strictly greater than $\frac{100}{c}$ witnesses that $\forall c > 0$. $\exists n_0 > 0$. $\forall n \ge n_0$. $100n^3 < c \cdot n^4$. By the definition of little-o, this means that $100n^3 \in o(n^4)$.

D.18 $n^5 = \omega (n^4)$

Proof. Let c be an arbitrary positive real number. Then let n be an arbitrary real number that is strictly greater than c. We want to show that for all c > 0, there exists a constant $n_0 > 0$ such that for all $n \ge n_0$, $n^5 > c \cdot n^4$. Observe the following inequalities that they hold.

$$n^5 > c \cdot n^4 \quad [n > c > 0]$$

$$\longleftrightarrow n > c \quad [\text{ math }].$$

We earlier assumed that n > c so we can observe that for all $n \ge n_0$, $n \ge n_0 > c$. Thus picking n_0 to be strictly greater than c witnesses that $\forall c > 0$. $\exists n_0 > 0$. $\forall n \ge n_0$. $n^5 > c \cdot n^4$.

By the definition of little- ω , it follows that $n^5 \in \omega$ (n^4) .

D.19
$$10n^3 = \omega(n^2)$$

Proof. Let c be an arbitrary positive real number. Then let n be an arbitrary real number that is strictly greater than $\frac{c}{10}$. We want to show that for all c>0, there exists a constant $n_0>0$ such that for all $n\geq n_0$, $10n^3>c\cdot n^2$. Observe the following inequalities that they hold.

$$\begin{split} &10n^3>c\cdot n^2\quad \left[n>\frac{c}{10}>0\right]\\ &\longleftrightarrow n>\frac{c}{10}\quad [\text{ math }]. \end{split}$$

We earlier assumed that $n>\frac{c}{10}$ so we can observe that for all $n\geq n_0$, $n\geq n_0>\frac{c}{10}$. Thus picking n_0 to be strictly greater than $\frac{c}{10}$ witnesses that $\forall c>0$. $\exists n_0>0$. $\forall n\geq n_0$. $10n^3>c\cdot n^2$. By the definition of little- ω , it follows that $10n^3\in\omega\left(n^2\right)$.