

Sharif University of Technology Department of Computer Engineering

Digital System Design Static Timing Analysis (STA)

Siavash Bayat-Sarmadi

Timing Analysis

- To check if the circuit meets timing constraints
 - Timing the most important among all constraints
 - Design not working if not met
 - Compared with area, power, etc.
 - Timing constraints
 - Setup time
 - Hold time
 - Maximum clock frequency

Timing Analysis (Cont.)

Timing Analysis (Cont.)

Static

- Checks every path
- Fast
- Timing only
- Synchronous only
- No input/output vectors

Dynamic

- Difficult to cover all paths
- Time and computation intensive
- Functionality and timing
- Both syn. and async.
- Uses input/output vectors

STA Outline

- Timing paths
- Calculating setup and hold times
- Checking setup and hold violations
- Calculating maximum frequency
- Fixing setup and hold violations

Timing Paths

- Data path
 - ■Start point
 - Input port of the design
 - Clock pin of the sequential cell (flip-flop, etc.)
 - End point
 - Output port of the design
 - Data input pin of the sequential cell
 - Four different combinations

Data path

- Clock path
 - ■Start point
 - Clock input port
 - ■End point
 - Clock pin of the sequential cell

Clock path

- Asynchronous path
 - ■Start point
 - Input port of the design
 - End point
 - Asynchronous set/reset/clear pin of the sequential cell

Asynchronous path

- Critical path
 - Path with the longest delay in a design
 - Limits maximum clock frequency
- Launch path
 - Clock path of launch flip-flop
 - Responsible for launching the data
- Capture path
 - Clock path of capture flip-flop
 - Responsible for capturing the data
- Data path

- Launch flip-flop: UFF0
- Capture flip-flop: UFF1

Setup and Hold Time

- Setup time
 - Minimum amount of time that the synchronous data signal must be stable before the active edge of the clock
- Hold time
 - Minimum amount of time that the synchronous data signal must be stable after the active edge of the clock
- Dependent on the internal circuitry of the flip-flop

- Setup violation
 - ■If the data is not stable T_{su} time before the active clock edge
- Hold violation
 - If the data is not stable T_{hd} time after the active clock edge

What is the minimum time DIN must be stable before/after the active clock edge so that there's no violations?

- Setup analysis
 - □ It takes DIN signal T_{pd} (DIN) time to reach D input
 - Must be there T_{su} (D) time before the CLK edge
 - T_{su} (DIN) = T_{pd} (DIN) + T_{su} (D)

- Hold analysis
 - DIN must be stable at D input T_{hd} (D) time after the CLK edge
 - It means that the next DIN must not reach DIN till then
 - T_{hd} (DIN) = T_{hd} (D) T_{pd} (DIN)

2. How about this one?

- Setup analysis
 - ■Same as previous
 - But clock edge arrives a little later
 - So DIN has a bit more time to reach D
 - $\Box T_{su}$ (DIN) = T_{pd} (DIN) + T_{su} (D) T_{pd} (CLK)

- Hold analysis
 - Clock edge arrives a little later at C input
 - So DIN must be at D a bit more time to meet its edge
 - $\Box T_{hd} (DIN) = T_{hd} (D) T_{pd} (DIN) + T_{pd} (CLK)$

- Cell and wire delays
 - Not constant under
 - Environmental variations
 - PVT (process, voltage and temperature) variations
- In setup analysis, consider
 - Data path maximum delay
 - Clock path minimum delay
- In Hold analysis, consider
 - Data path minimum delay
 - Clock path maximum delay

- Setup analysis
 - $\Box T_{su}$ (DIN) = Max T_{pd} (DIN) + T_{su} (D) Min T_{pd} (Clk)
 - If Max T_{pd} (DIN) + T_{su} (D) > Min T_{pd} (Clk), otherwise 0

- Hold analysis
 - $T_{hd} (DIN) = T_{hd} (D) Min T_{pd} (DIN) + Max T_{pd} (Clk)$ $If T_{hd} (D) + Max T_{pd} (Clk) > Min T_{pd} (DIN), otherwise 0$

- The case for two flip-flops with same delay in launch and capture paths
 - Data path
 - FF1.C \rightarrow FF1.Q \rightarrow Combinational logic \rightarrow FF2.D
 - Launch flip-flop: FF1
 - □ Capture flip-flop: FF2

- To have no setup violation
 - Data launched at FF1 should arrive at FF2.D T_{su} time before the active edge of FF2.C
 - $T_{clk-to-q} + T_{pd} \le clock period T_{su}$

- To have no hold violation
 - Data must be stable T_{hd} after the active edge of FF2.C
 - It means that the next data launched at FF1 must not reach FF2.D till then

$$\Box T_{clk-to-q} + T_{pd} >= T_{hd}$$

- The case for two FFs with different delays in launch and capture paths
 - ■There's skew on the clock signal of FF2

- □ To have no setup violation
 - Data launched at FF1 must become stable T_{su} time before the active edge of CLKB

$$T_{pd}$$
 (CLK) = T_{pd} (capture path) - T_{pd} (launch path)

$$T_{clk-to-q} + T_{pd} \le clock period + T_{pd} (CLK) + -T_{su}$$

- Remember to check the worst case
- Setup slack = RHS LHS of the above inequality
 - Positive when no violation

- To have no hold violation
 - Data must be stable T_{hd} after the active edge of CLKB
 - It means the data launched at the next active edge of CLK at FF1must not reach FF2.D till then

$$T_{pd}$$
 (CLK) = T_{pd} (capture path) - T_{pd} (launch path)

$$T_{clk-to-q} + T_{pd} >= T_{hd} + T_{pd} (CLK)$$

- Always check the worst possible case
- Hold slack = LHS RHS of the above inequality
 - Positive when no violation

Example 1

- Check if there's any violation.
 - □ Clock period: 15 ns

Example 1 (Cont.)

Max T _{clk-to-q}	11
Max T _{pd}	2+9+2

Clock period	15
Min T _{pd} (capture)	2+5+2
Max T _{pd} (launch)	2
FF setup time	4

$$T_{clk-to-q} + T_{pd}$$

clock period + T_{pd} (capture path) - T_{pd} (launch path) - T_{su}

Not satisfied → Setup violation

Min T _{clk-to-q}	9
	1+6+1

FF hold time	2
Max T _{pd} (capture)	3+9+3
Min T _{pd} (launch)	1

$$T_{clk-to-q} + T_{pd}$$

 $T_{hd} + T_{pd}$ (capture path) $- T_{pd}$ (launch path)

Satisfied > No hold violation

Calculating Max Frequency

- To calculate maximum operating frequency (minimum clock period)
 - Calculate path delays
 - Flop to flop
 - Input to clock
 - Clock to output
 - Input Pin to output pin
 - Min clock period is equal to the max delay

Example 2

- Calculate
 - setup and hold times at input A.
 - minimum clock period (maximum operating freq.).

- Setup time at A
 - List all paths from A to FFs
 - $A \rightarrow U7 \rightarrow U4 \rightarrow U2$

$$T_{pd} = 1 + 7 = 8$$

 $A \rightarrow U7 \rightarrow U3 \rightarrow U1$

$$T_{pd} = 1 + 8 = 9$$

- Use the longest paths for setup analysis
- $\Box T_{su}(A) = Max T_{pd}(A) + T_{su} Min T_{pd}(Clk)$

$$9 + 3 - 2 = 10 \text{ ns}$$

- Hold time at A
 - List all paths from A to FFs
 - $A \rightarrow U7 \rightarrow U4 \rightarrow U2$

$$T_{pd} = 1 + 7 = 8$$

 $A \rightarrow U7 \rightarrow U3 \rightarrow U1$

$$T_{pd} = 1 + 8 = 9$$

- Use the shortest paths for hold analysis
- $\Box T_{hd}(A) = T_{hd} Min T_{pd}(A) + Max T_{pd}(Clk)$

$$-4 - 8 + 2 = -2 < 0 \rightarrow T_{hd}(A) = 0 \text{ ns}$$

- Calculating max freq.
 - List all flop to flop paths
 - $U1 \rightarrow U4 \rightarrow U2$
 - = 5 + 7 + 3 = 15 ns
 - **U**2→U3→U1
 - = 5 + 8 + 3 = 16 ns

- Calculating max freq.
 - List all flop to output paths
 - **■**U1→U5→U6
 - 2 + 5 + 9 + 6 = 22 ns
 - **■**U2→U5→U6
 - 2 + 5 + 9 + 6 = 22 ns
 - List all input to flop paths
 - $A \rightarrow U7 \rightarrow U4 \rightarrow U2$
 - 1+7+3-2=9 ns
 - $A \rightarrow U7 \rightarrow U3 \rightarrow U1$
 - 1+8+3-2 = 10 ns

- Calculating max freq.
 - ■List all input to output path
 - $A \rightarrow U7 \rightarrow U5 \rightarrow U6$
 - $\blacksquare 1 + 9 + 6 = 16 \text{ ns}$
 - Minimum period=max(15,16,22,22,16,9,10)
 = 22 ns
 - Maximum frequency = 1/22 = 45.45 MHz

Example 3

- Increase the operating frequency by using only two flip-flops
 - ■FF specifications are given

- Insert the FF into the critical path
 - $\square U1 \rightarrow U5 \rightarrow U6$
 - $\square U2 \rightarrow U5 \rightarrow U6$
 - Best choice is to place it between U5 and U6
- All delays must be re-computed
 - Flop to flop
 - □ Flop to output
 - Input to output
 - Input to flop
- □ Insert the 2nd FF in the new critical path

Exceptions

- False path
 - A path that is never activated
 - Must be excluded from timing analysis
 - ■When using EDA tools
 - Must be introduced to the tool by the designer
 - The tool neither tries to meet timing in this path nor optimizes it

Exceptions (Cont.)

False path examples

Exceptions (Cont.)

- False path examples
 - Configuration inputs tied to Vcc/Gnd
 - Test inputs tied to Vcc/Gnd
 - Asynchronous inputs to the chip that have some sort of synchronizing circuit
- Multi-cycle path
 - A path through which multiple cycles are allowed for the data to propagate

Fixing Setup and Hold Violations

- Hold violations are more serious.
 - A chip
 - with setup violation operates in a lower frequency.
 - doesn't operate at all with hold violation.

- Increasing data path delay
 - For hold violation
 - Example

Setup	Hold	Clock period	T _{clk-to-q}	Net delay	Combo. delay
2 ns	1 ns	10 ns	0 ns	0 ns	0.5 ns

- T_{pd} <=clock period setup \rightarrow No setup violation
- $T_{pd} < Hold \rightarrow Hold violation$
 - Min acceptable combo. delay = 1 ns
 - Add buffers to the data path
 - No setup or hold violations

- Increasing clock period
 - For setup violations
 - Example

Setup	Hold	Clock period	T _{clk-to-q}	Net delay	Combo. delay
6 ns	5 ns	10 ns	0 ns	0 ns	0.5 ns

- $T_{pd} <= clock period setup \rightarrow No setup violation$
- $T_{pd} < Hold \rightarrow Hold violation$
 - Min acceptable combo. delay = 5 ns
 - Causes setup violation

- ■Example (cont.)
 - Increasing data path delay doesn't work alone
 - ■5 ns = Hold <= T_{pd} <= period setup = 10 -6 = 4 ns
 - Not satisfiable
 - Min clock period = 11 ns
- For violations to be fixable
 - □Clock period >= setup + hold

- Manipulating clock paths
 - Example

Setup	Hold	Clock period	T _{clk-to-q}	Net delay	Combo. delay
4 ns	3 ns	10 ns	0 ns	0 ns	8 ns

■ Example (cont.)

Setup	Hold	Clock period	T _{clk-to-q}	Net delay	Combo. delay
4 ns	3 ns	10 ns	0 ns	0 ns	8 ns

- $T_{pd} > clock period setup \rightarrow Setup violation$
- $T_{pd} >= Hold \rightarrow No hold violation$
- Remember?

$$T_{clk-to-q} + T_{pd}$$

clock period + T_{pd} (capture path) - T_{pd} (launch path) - T_{su}

Setup violation solved if capture path delay += 2

■ Example (cont.)

Setup	Hold	Clock period	T _{clk-to-q}	Net delay	Combo. delay	Capture delay
4 ns	3 ns	10 ns	0 ns	0 ns	8 ns	2 ns

Neither setup nor hold violation

$$T_{clk-to-q} + T_{pd}$$

clock period + T_{pd} (capture path) - T_{pd} (launch path) - T_{su}

$$T_{clk-to-q} + T_{pd}$$
 >=

 $T_{hd} + T_{pd}$ (capture path) – T_{pd} (launch path)

Summary

Calculating setup and hold times

$$T_{su}$$
 (DIN) = Max T_{pd} (DIN) + T_{su} (D) – Min T_{pd} (Clk)

$$T_{hd}$$
 (DIN) = T_{hd} (D) - Min T_{pd} (DIN) + Max T_{pd} (Clk)

Summary (Cont.)

Checking setup and hold violations

$$T_{clk-to-q} + T_{pd}$$

clock period + T_{pd} (capture path) - T_{pd} (launch path) - T_{su}

$$T_{clk-to-q} + T_{pd}$$
 >=

 $T_{hd} + T_{pd}$ (capture path) – T_{pd} (launch path)

Summary (Cont.)

- Calculating minimum clock period
 - Maximum of
 - Flop to flop delays
 - Flop to output delays
 - Input to output delays
 - Input to flop delays

Summary (Cont.)

- Fixing setup violations
 - Decreasing data path delay
 - Using FFs with smaller setup times
 - Increasing clock period
 - Increasing capture path delay
- Fixing hold violations
 - Increasing data path delay
 - Using FFs with smaller hold times
 - Increasing launch path delay