This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT SPECIFICATION

(22) Filed 24 May 1977 (21) Application No. 21849/77

(31) Convention Application No. 691160 (32) Filed 28 May 1976 in

(33) United States of America (US)

(44) Complete Specification Published 18 Jul. 1979

(51) INT. CL.² F16L 27/04

(52) Index at Acceptance F2G 10A 23G 5C 6A3 6C2

(54) TUBE AND CYLINDRICAL SURFACE SEALING APPARATUS

Maryland, United States of America, of 11642 Old Baltimore Pike, Beltsville, State of Maryland 20705, United States of America do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed to be particularly described in and by the following statement:

The present invention relates to a fluidtight sealing apparatus for sealing a tube to a cylindrical surface, where the tube and cylindrical surface are likely to be subjected to axial, rotational and angular misalign-

ment and/or movement.

35

45

pressure flowing therethrough must generally be designed to provide for some degree of being coaxially connected, when in use, to flexibility to allow for dimensional tolerances, thermal expansion and contraction, and vibrational deflections between the various components which are connected by ing a curved surface which has a free diathe piping. Lightweight compact means, which are particularly desirable in aircraft and missible systems, for providing such flexibility are known in the prior art; however, these prior art devices generally employ elastomeric, plastics, rubber or asbestos type seals to prevent leakage of the fluid flowing in the flexible system. Unfortunately, these types of seals tend to fail when exposed to high temperatures (above 400°F.-500°F.) at very low temperatures, or in environments subjected to radiation.

ble piping systems in environments beyond the capability of seals made of elastomers having a ring portion at the larger end therecircumferential corrugations (i.e., bellows) the free diameter of the curved surface prior expansion loops, or devices containing pisto installation is greater than the interior space, and are prone to failure and, there- vides a spring loaded interference fit be- on

We, PRESSURE SCIENCE IN- fore, leakage due to fragility and wear. CORPORATED, a corporation organised Moreover, these sealing systems often reand existing under the laws of the State of quire exact tolerances and are difficult to manufacture and install.

According to the present invention, there is provided a fluid-tight sealing apparatus for sealingly connecting a tube to a cylindrical surface where the tube and the cylindrical surface are likely to be subjected to relative angular misalignment, axial movement and rotation, the apparatus compris-ing an annular metallic, resilient sealing member comprising a tapering portion and a ring portion which is integrally and coaxially connected to one end of the tapering portion so that the ring portion and the tapering portion are located on opposite sides of Various piping systems having fluid under a radial plane containing said one end of the tapering portion, the sealing member the end of a tube so that the tapering portion is disposed between said end of the tube and said ring portion, the ring portion havmeter as herein defined which is different from the diameter of the cylindrical surface whereby when the sealing member is connected to the cylindrical surface so that the curved surface of the ring portion contacts said cylindrical surface, said ring portion is elastically deformed to produce an interference fit between the curved surface of the ring portion and said cylindrical surface which constitutes a fluid-tight seal therebetween.

The cylindrical surface may be the in-Typically, sealing assemblies used in flexi- terior surface of a bore with the sealing member including a frustoconical portion and the like employ sections of piping with of and fitting into the bore. In this instance, ton rings. However, these devices are gener- diameter of the bore and, since the sealing ally very heavy, require large amounts of member is resilient, the curved surface pro-

60

tween itself and the bore.

portion having the ring portion at the smal- to its elastic deformation, whether comler end thereof and fitting around the con- pression or expansion. duit. In this instance, the curved surface has thereby providing a spring loaded interfer- vention and of which: ence fit between the curved surface and the outer surface of the conduit.

dinal section of the curved surface of the ring portion which contacts the cylindrical surface, may be equal to the radius of the tacting surfaces is related to the contact atus shown in Figure 1; stress, which is defined by the force tending making the radius of curvature in longitu- drical bore in the body shown in Figure 2; dinal section of the curved surface on the

In addition, by decreasing the radius in the body; longitudinal section of the curved surface, the contacting surfaces are not necessary.

temperatures and in environments subjected to radiation.

Since the frustoconical tapering portion

coupled is such that, while an interference minated; fit is utilized, the dimensions and materials Thus, the sealing member is reusable.

As used herein, the phrase "interference to installation slightly different from the dia-therein are misaligned; and meter of the cylindrical surface, and since the curved surface into or around the cylin- curvature equal to X/2. drical surface causes the ring portion of the 65 tic deformation.

As used herein, the phrase "free dia-Alternatively, the cylindrical surface may meter" means the diameter of the ring porbe the exterior surface of a conduit with the tion curved surface prior to installation with sealing member including a frustoconical the cylindrical surface, and therefore prior

Reference is now made to the accoma free diameter prior to installation which is panying drawings which illustrate, by way of less than the outer diameter of the conduit, example, embodiments of the present in-

Figure 1 is a side elevational view in longitudinal section of a tube having a fluid-tight Whilst the radius of curvature in longitu- sealing apparatus thereon in accordance with the present invention, the apparatus being in its elastically undeformed state;

Figure 2 is a side elevational view in longicylindrical surface, it has been found that a tudinal section of the tube shown in Figure 1 smaller radius of curvature in longitudinal in its elastically deformed state in which it section of the curved surface can reduce the has been installed in the cylindrical bore of a leakage rate of the sealing apparatus. That body, the bore having a diameter of X which is, since leakage of fluid between two con- is less than the free diameter A of the appar-

Figure 3 is an end elevational view in secto push the contacting surfaces together di- tion taken along lines 3-3 in Figure 2 showvided by the area of contact, an increase in ing a keeper assembly which prevents the the contact stress reduces leakage. Thus, by sealing member from exiting from the cylin-

Figure 4 is a side elevational view in longiring portion smaller, the area of contact is tudinal section similar to Figure 2 except reduced, thereby increasing the contact with the tube angularly misaligned relative to the centre line of the cylindrical bore in

Figure 5 is a side elevation view in partial exact tolerances and/or very high polish on section showing a tube having a fluid-tight sealing apparatus at both ends, these two Moreover, since the sealing apparatus is ends being received in two bodies having formed of metal, it can exist under extreme cylindrical bores therein and maintained in that position by means of keeper assemblies;

Figure 6 is a side elevational view in parand the ring portion are preferably made of tial section of a tube having two fluid tight very thin, high strength alloys, the sealing sealing apparatus at opposite ends, these member can be compact and light in weight. ends being received in two bodies having Additionally, the difference in diameters cylindrical bores therein, but the use of the of the tube and the cylindrical surface to be keeper assemblies, being unnecessary is eli-

Figure 7 is a side elevational view in longiare chosen so that the elastic limit of the sea- tudinal section of a second embodiment of ling member is not exceeded so that it will the present invention in which the cylindricreturn to its initial size after the tube and al surface is the exterior surface of a cylinthe cylindrical surface are disconnected. drical conduit and the sealing member fits around the cylindrical conduit;

Figure 8 is a side elevational view in longifit" means that because the curved surface tudinal section showing the assembly of Fiof the ring portion has a free diameter prior gure 7 in which the two conduits shown

Figure 9 is the same as Figure 2 except the the curved surface is resilient, the forcing of ring portion curved surface has a radius of

Referring to Figure 1, a fluid-tight sealing sealing member to be elastically deformed apparatus in accordance with one embodiand thus maintained in intimate circum- ment of the present invention includes a seaferential sealing contact with the cylindrical ling member 10 at the end of a tube 12, the surface due to the reactive force of the elas- sealing member comprising a ring portion 14, a frustoconical elongate tapering portion 16,

75

80

85

90

100

105

110

115

120

125

65

a frustoconical short portion 18 and a cylindrical portion 20. These elements comprising the sealing member 10 are integrally formed and, as shown in Figure 1, the cylindrical portion 20, which has the same outer diameter as the tube 12, is welded along weld line 22 to the end of the tube 12. The other end of the cylindrical portion 20 is integral with the smaller end of the frustoconical short portion 18 which has its larger end integral with the smaller end of the frustoconical tapering portion 16. The larger end of the tapering portion 16 is integral with the ring portion 14 which is at the end of the sealing member 10, and which is located on the other side of a plane containing the larger end of the tapering portion.

The thickness x of the cylindrical wall forming the cylindrical portion 20 can be the same or different from the thickness of the cylindrical wall forming the tube 12. As seen in Figure 1, the thickness of the wall forming the sealing member 10 decreases along the frustoconical short portion 18 from the thickness x to a thickness t which continues substantially the same along the wall forming the frustoconical tapering portion 16 and the ring portion 14. Thus, the ring portion and the tapering portion have substantially equal longitudinal cross-sectional thicknesses. This reduction in thickness from x to tenhances the resiliency of the sealing member 10. The thickness can be from 0.003 to

cipitation hardenable alloys. The ring portion 14 has an outer curved surface 24 and is arcuate in longitudinal cross-section. The exterior free diameter A (as defined above) of the curved surface 24 of the ring portion 14 is greater than the diameter X of a cylindrical bore 26 in a body 28 shown in Figure 2. Sealing between the inch diameter seals work well with a 0.003 to member 10 and the cylindrical bore 26 when the member 10 is inserted into the cylindrical bore 26 is provided by the intimate spring loaded contact between the curved surface 24 and the surface of the bore 26 which is a cirumferential contact line at the seal inter- 26

as high strength nickel base austenitic pre-

face 30 (Figure 2). tion 16.

Referring now to Figure 2, the tube 12 with the sealing member 10 thereon is shown as being fitted, or installed into the cylindrical bore 26 in the body 28, such body being, for example, a port on a valve, actuator or similar component formed of metal or ceramic material and the tube 12 being a pipe or conduit having fluid under pressure flowing therethrough and into or out of the body 28. The fit of the sealing member 10 with the cylindrical bore 26 is an interference fit as defined above insofar as the maximum free diameter A of the curved surface 24 is greater than the inner diameter X of the cylindrical bore 26 and the sealing member 10 has therefore been forced into the cylindrical bore, remaining there by means of the outwardly directed spring force of the resilient ring portion 14 and the resilient tapering portion 16.

As shown in Figure 2, the curved surface 24 contacts the inner surface of the cylindrical bore 26 along the seal interface or contact line 30 which extends circumferentially around the curved surface 24 where it continuously contacts the inner surface of the cylindrical bore 26, thereby providing the seal between these two elements.

The interference fit must be relatively light to enable the sealing member 10 to be inserted or removed by normal hand pressure and to ensure that the resilient sealing element is not stressed beyond its elastic 0.020 inch in the range of tube diameters limit. This relatively light interference fit, from 0.125 to 15.00 inches with the material which keeps friction forces low, permits reforming the sealing member 10 comprising a lative sliding and rotation of the sealing high strength alloy such as "Inconel" 718 or "Waspaloy" (both "Inconel" and "Waspaloy" (both "Inconel" and "Waspaloy" are Registered Trade Marks) which the stating and totalism of the stating and the statin have excellent spring properties at extreme istics are present since the pressure of the temperatures, and which are both definable fluid in the tube and the bore tends to force the sealing member outwardly into its sealing contact, thereby making the seal "pressure energized". With a cylindrical bore diameter X of 0.420 to 0.422 inch, a free diameter A of the curved surface 24 of 0.424 to 0.425 inch (i.e. the interference fit is 0.002-0.005 inch) has been found advantageous for a seal of this diameter (0.421 inch). Two 0.007 inch interference fit.

The contained pressure in the tube being sealed would, in most applications greater than pressures of about 1 psi, be sufficient to blow the sealing member 10 out of the bore

Consequently, a keeper assembly 32, Referring again to Figure 1, the curved shown in Figures 2, 3, 4, and 5 is utilized to surface 24 of the ring portion extends out-side the frustoconical containing the outer the cylindrical bore 26. As best seen in Fisurface of the frustoconical tapering portion gures 2 and 3, this keeper assembly 32 com-16, and therefore, the diameter A of the prises a main member 34 having a cutout 36 ring portion 14 is greater than the maximum therein, the main member 34 being coupled diameter of the frustoconical elongate por- to the surface 40 of the body 26 adjacent the entrance 42 of the cylindrical bore 26 by

10

15

20

25

30

35

40

50

65

means of a bolt 38 passing through an aper- while as seen on the left hand side of Figure ture 44 therein and being received in 6, the sealing member 62 is integrally threaded bore 46 in the surface 40 of body formed with tube 64, thereby eliminating 28.

The keeper assembly 32 is coupled to the body 28 after the sealing member 10 has flections of the components such as bodies been manoeuvred into the cylindrical bore 54 and 56 in Figure 6 to be connected, the 26 by manoeuvring the cutout 36 over the sealing member 10 may not be in perfect cylindrical portion 20 and passing bolt 38 alignment with the cylindrical bore 26 as

maximum dimension of the cutout 36 is less 4. In general the tolerance and deflections than the maximum diameter of the frustoco- are such as to require angle a to be less than nical short portion 18 so that, when the tube 6° and most applications are covered by 12 experiences a force tending to pull it angle a being less than 12°. axially out of the cylindrical bore, the main member 34 around the cutout 36 prevents ture Y of the longitudinal section of the such axial exiting by contacting the frustoco-

nical short portion 18.

at each of its ends the sealing members 10 spective keeper assembly 32 is utilized on of Helium. each of the bodies 28, 50. As shown the seawelded thereto.

59, each of which is adjacent to the respective surface from 0.125 to 0.250 inch. end of tube 64. In this instance, if the bodies 54 and 56 are rigidly supported against relatube 64 to strike the face of the respective greater than zero). bore 59 before the other end of the tube 64 and 62 to have frustoconical short portions and relative rotation therebetween. like the portion 18 of Figure 1 interposed frustoconical tapering portion 16.

the necessity of a weld line.

In practice, because of tolerances and dethrough aperture 44 into threaded bore 46. shown in Figure 2, but will tend to be mis-As shown best in Figures 2 and 3, the aligned by some angle a as shown in Figure

As shown in Figure 4, the radius of curvacurved surface 24 is less than the radius of the cylindrical bore 26, i.e., less than X/2 Referring now to Figure 5, a curved tube which increases the contact stress between 48 is shown having a respective sealing surface 24 and bore 26, thereby decreasing member 10 such as that illustrated in Figure the leakage rate of the contained fluid. It 1 in accordance with the present invention has been found that the radius of curvature Y can be reduced to about 20% of the radius being received respectively in a body 28 and of the bore 26 and still maintain a "bubble a body 50. Since the pressure of fluid flow-tight" seal with Nitrogen at 500 psi for ing through curved tube 48, as indicated by angles a of misalignment as great as 5° with a the arrows, would possibly tend to pull the 0.3125 diameter tube. A "bubble tight" seal curved tube 48 from bodies 28 and 50, a re- is one which has a leakage rate of 10⁻³ cc/sec.

The high contact stress resulting from the ling members 10 are integrally formed with reduced radius of curvature gives excellent the curved tube 48 so that the cylindrical leakage control at relatively small values of portion 52 adjacent to the frustoconical angles a but if larger values of angle a are short portion 18 of each member 10 is integ-required then the radius of curvature can be ral with the tube and therefore need not be increased to meet such requirements, elded thereto.

Referring now to Figure 6, bodies 54 and be experienced at small angles. Thus, on a 56 are shown as having cylindrical bores 58 2.25 inch diameter seal, the pivotal capabilin which are accommodated respective sea- ity of the sealing element (i.e. the variation ling members 60 and 62 located at opposite possible in the value of angle a) can be inends of a tube 64. Each of the cylindrical creased from an angle a=3° to a=5° by bores 58 leads to a reduced diameter bore changing the radius of curvature of the outer

Whilst the circumferential seal interface 30 in Figure 2 would be substantially a circutive movement and fluid flows through tube lar line with the axis of the ring portion (i.e. 64 in the direction shown by the arrows, of curved surface 24) and the axis of bore 26 there is no necessity for any keeper assembbeing coincident (i.e. a = 0) in the arrangelies since there is no tendency for tube 64 to ment of Figure 4 the seal interface becomes be axially displaced from the cylindrical substantially an elliptical line with the axes bores 58 because any slight axial displace- of the tube 12 (i.e. of curved surface 24) and ment of the tube 64 causes one end of the bore 26 out of alignment (i.e. the angle a is

Thus, the sealing member 10 provides a exits from the other body. With the removal viable seal with bore 26 during relative of the necessity for any keeper assemblies, axial, sliding movement therebetween, relathere is no need for the sealing members 60 tive angular misalignment therebetween,

Figures 7 and 8 disclose an alternative between the cylindrical portion 20 and the embodiment of the invention which has the same basic concept as the embodiment of As seen on the right hand side of Figure 6, Figures 1 to 6 the difference being that in sealing member 60 has its cylindrical portion the embodiment of Figures 7 and 8 the cylin-20 welded along weld line 22 to the tube 64, drical surface with which the sealing mem**70**

75

85

90

95

100

105

110

115

120

125

10.

11

11

12

12

10

15

20

25

30

35

40

45

50

55

60

65

ber is to effect a seal is the exterior cylindric-sealing members 72 and 74. al surface of a cylindrical conduit and the sealing member includes a frustoconical open end 98 extending beyond sealing memportion having a ring portion at the smaller ber 72 and receives therein one end of conend thereof, the ring portion fitting around duit 88, the diameter of the first open end 98 and sealingly engaging the outside surface of being larger than the outer diameter of the the cylindrical conduit. In this instance, the conduit 88. interference fit between the sealing member meter of the cylindrical conduit.

70 has a first sealing member 72 at one end of the second cylindrical conduit 94 and a second sealing member 74 at the other end, both of these sealing members being integrally formed with the tube 70. The first tapering portion 76 and a ring portion 78 exend of tube 70.

Similarly, the second sealing member 74 is comprised of a second frustoconical tapering portion 80 and a second ring portion 82 extending from the smaller end of the second tapering portion 80. The larger end the end of the tube opposite the tapering portion 76.

Ring portion 78 has a curved surface 84 er cylindrical surface 86 of a first cylindrical conduits 88 and 94 are misaligned by an conduit 88 through which fluid under pressure is to flow and which is secured to a rigid erances or vibrational or other mechanical structure (not shown).

curved surface 90 which engages, in an interference fit, the outer cylindrical surface 92 of a second cylindrical conduit 94 through shown).

surfaces 84, 90 and the respective outer cylindrical surfaces 86, 92 of the conduits 88, 94 is the same as that discussed above with not be discussed again in detail. However, it is apparent from Figure 7 that fluid flowing between conduits 88 and 94 will be prevented from leaking out of the closed system formed by tube 70 and sealing members 72 and 74 by means of the seal formed respecand the outer cylindrical surfaces 86 and 92 2 as shown in Figure 9. of the conduits.

ter 96, having an inside diameter equal to the outer diameter of tube 70, is welded to vibrational forces for the tube 70 and its thin of angular misalignment than can the embo-

As seen in Figure 7, canister 96 has a first

Similarly, the other end 100 of the canisand the conduit is provided by the minimum ter 96 is also open and extends beyond the free diameter of the curved surface on the end of the second sealing member 74 and ring portion being less than the outer dia- receives the end of the second cylindrical conduit 94, the diameter of the second open Referring specifically to Figure 7, a tube end 100 being larger than the outer diameter

The second cylindrical conduit 94 has, adjacent the end thereof, a first annular portion 102 which is raised slightly above the sealing member 72 comprises a frustoconical cylindrical surface 92, and a second annular portion 104 extending from the cylindrical tending from the smaller end of the frusto- surface 92 at a location which is spaced leftconical tapering portion 76. The larger end wards of the portion 102 and to the left of of the tapering portion 76 extends from the the second open end 100 of canister 96, as shown in Figure 7. These first and second annular portions on the cylindrical surface 92 enable unwanted disengagement of the tube 70 and canister 94 due to various vibrational forces encountered by the conduits 88 and 94 to be prevented. While these annular of the second tapering portion extends from portions 102 and 104 are shown only on conduit 94, they could also be provided on conduit 88.

Figure 8 shows the arrangement of Figure which engages, in an interference fit, the out- 7 but in a condition in which the axes of the angle b due to for example dimensional tolforces to which the conduits 88 and 94 are Similarly, the second ring portion 82 has a subjected. It has been found that a misalignment angle b of up to about 5° can be tolerated by the sealing apparatus and leakage will occur at a very low rate. The interferwhich fluid under pressure is to flow and ence fit between the curved surface 84 and which is secured to a rigid structure (not the cylindrical surface 86 and the curved surface 90 and the cylindrical surface 92 main-The sealing engagement of the curved tains the necessary contact between these parts to maintain the seal during such misalignment.

The embodiment of the fluid-tight sealing regard to Figures 1 to 6, and therefore will apparatus in accordance with the present invention shown in Figure 9 is the same as that shown in Figure 2 except the curved surface 106 of the ring portion 108 has a radius of curvature in longitudinal section which is equal to the radius of the cylindrical bore 26. Thus, the curved surface has a radius of tively between curved surfaces 84 and 90 curvature in longitudinal section equal to X/

Whilst the contact stress of the seal inter-As shown in Figure 7, a cylindrical canis- face between the curved surface 106 and the surface of the cylindrical bore 26 is less than the contact stress in the embodiment of Fithe tube 70 along their contacting margins gure 2 since the area of contact is greater, and, since the canister 96 is of thicker mate- the embodiment of Figure 9 can maintain a rial than tube 70, it provides protection from contacting seal interface over a wider range

diment of Figure 2.

Thus, a sealing apparatus as described herein according to the invention is usuable and diameter of the curved surfaces of the ring re-usuable at extreme temperatures or in en-5 viornments subjected to radiation, in which cylindrical surface. leakage is minimised even when the appar- 7. A fluid-tight sealing apparatus atus is subjected to axial rotational and according to claim 6, in which said curved angular misalignment and movement is surface of the ring portion is disposed radiallightweight, easy to make and install and ly outwards of the frustocone containing the 10 which does not require exact tolerances or outer surface of said frustoconical tapering finely machined contacting sealing surfaces. portion.

WHAT WE CLAIM IS:-

sealingly connecting a tube to a cylindrical surface where the tube and the cylindrical short portion of which one end is coaxially lar metallic, resilient sealing member comprising a tapering portion and a ring portion to the other end of said frustoconical short which is integrally and coaxially connected to one end of the tapering portion so that the ring portion and the tapering portion are according to claim 8, in which said body located on opposite sides of a radial plane having said bore formed therein has retainer containing said one end of the tapering portion, the sealing member being coaxially connected, when in use, to the end of a tube so that the tapering portion is disposed between said end of the tube and said ring por-sealing member is inserted therein. tion, the ring portion having a curved surface which has a free diameter as herein defined which is different from the diameter of means comprises a member having an arcuthe cylindrical surface whereby when the ate cutout therein for at least partially resealing member is connected to the cylinceiving said cylindrical portion of the sealing drical surface so that the curved surface of the ring portion contacts said cylindrical surface, said ring portion is elastically deformed to produce an interference fit be- the sealing member. tween the curved surface of the ring portion tutes a fluid-tight seal therebetween.

according to claim 1, in which said ring por- rally connected to the end of said frustocotion and said tapering portion have substan- nical tapering portion which is opposite to tially equal longitudinal cross-sectional said ring portion.

thicknesses.

according to claim 1 or claim 2 in which said bination with a tube, in which said cylindricsection.

4. A fluid-tight sealing apparatus lingly connected to said cylindrical surface. according to claim 3, in which said curved surface of the ring portion has a radius of according to any of claims 8 to 11, in comcurvature in longitudinal section which is bination with a tube, in which said cylindriccylindrical surface.

according to any of claims 1 to 4, in which said tapering portion is frustoconical.

connected to the larger end of said frustoconical tapering portion, and in which the free portion is greater than the diameter of the

8. A fluid-tight apparatus according to 1. A fluid-tight sealing apparatus for claim 6 or claim 7, in which said sealing member further comprises a frustoconical surface are likely to be subjected to relative and integrally connected to the end of said angular misalignment, axial movement and frustoconical tapering portion opposite to rotation, the apparatus comprising an annusaid ring portion, and a cylindrical portion which is coaxially and integrally connected

9. A fluid-tight sealing apparatus means, mounted on the outer surface of the body which is adjacent the entrance of said bore, for inhibiting accidental removal of said sealing member from said bore once the

10. A fluid-tight sealing apparatus according to claim 9, in which said retainer ceiving said cylindrical portion of the sealing member, said arcuate cutout having a maximum dimension smaller than the larger diameter of said frustoconical short portion of

11. A fluid-tight sealing apparatus and said cylindrical surface which consti- according to claim 6 or claim 7, in which said sealing member further comprises a cylin-2. A fluid-tight sealing apparatus drical portion which is coaxially and integ-

12. A fluid-tight sealing apparatus 3. A fluid-tight sealing apparatus according to any of claims 8 to 11, in comring portion is arcuate in longitudinal cross al portion of the sealing member is integral with the end of the tube which is to be sea-

13. A fluid-tight sealing apparatus 55 equal to or less than half the diameter of the al portion of said sealing member is welded to the end of the tube which is to be sealingfluid-tight sealing apparatus ly connected to the cylindrical surface.

14. A fluid-tight sealing apparatus according to claim 5, in which said cylindric-6. A fluid-tight sealing apparatus al surface is the exterior surface of a conduit according to claim 5, in which said cylindric- around which said sealing member is located al surface is the interior surface of a bore to effect said fluid-tight seal, in which said formed in a body into which the sealing ring portion is integrally connected to the member is inserted to effect said fluid-tight smaller end of said frustoconical tapering 65 seal, in which said ring portion is integrally portion, and in which the free diameter of

70

75

80

85

90

95

100

105

110

115

120

125

40

5

15

20

of the cylindrical surface.

15. An assembly comprising a tube, a pair of fluid-tight sealing apparatuses as claimed in claim 14, each sealing apparatus being connected to a respective end of the tube, and a pair of conduits having cylindrical exterior surfaces, each sealing apparatus being fitted over the end of a respective one of said conduits so that the curved surface of its ring portion forms an interference fit con-

16. An assembly according to claim 15, ing drawings. in which an open-ended cylindrical cannister is mounted around the tube so that each end of the cannister surrounds a respective one of the conduits and extends beyond the ring portion of the respective sealing apparatus.

17. An assembly according to claim 16,

said cutved surface is less than the diameter in which either or both of said conduits has thereon means for inhibiting accidental disengagement of said cylindrical cannister therefrom.

> 18. A fluid-tight sealing apparatus substantially as hereinbefore described with reference to and as illustrated in Figures 1 to 6, Figures 7 and 8 or Figure 9 of the accompanying drawings.

19. An assembly as claimed in any of claims 15 to 17, substantially as hereinbestituting a fluid-tight seal with the exterior fore described with reference to and as illuscylindrical surface of the respective conduit. trated in Figures 7 and 8 of the accompany-

> PRESSURE SCIENCE INCORPORATED Per: BOULT, WADE & TENNANT 34 Cursitor Street, London EC4A 1PQ Chartered Patent Agents.

Printed for Her Majesty's Stationery Office, by Croydon Printing Company Limited, Croydon Surrey, 1979 Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

COMPLETE SPECIFICATION

3 SHEETS

This drawing is a reproduction of the Original on a reduced scale Sheet 1

FIG. 1

FIG. 3

FIG. 2

FIG. 4

1548852 COMPLETE SPECIFICATION

This drawing is a reproduction of the Original on a reduced scale Sheet 2

COMPLETE SPECIFICATION

3 SHEETS

This drawing is a reproduction of the Original on a reduc d scale
Sheet 3

FIG. 7

FIG. 8