# Topic discovery & diversity in a social network - a toy model

**Tuan Pham**Net in Ecol & Evol Spr 21
Project presentation



# Why does it matter?

- Possibly (most definitely) not ...
- Diversity of topics (knowledge) as a result of self-learning and social influence
- Bigger picture would be be to consider growing/dynamic changes of agents and networks
- A fun *unrealistic* thought experiment: consider the *apocalypse*

# Set up



A: adj. mat. agent graph

T: adj. mat. **topic graph** 

 $\tau$ : adj. mat. **learnt topics** 

# How to update



α - "rabbit hole"



β - "recommender"

new topic = related to the known topics or learnt from friends

$$P = \alpha \psi \left( \left[ \left[ T \tau \right]_{\star} - \tau \right]_{\star} \right) + \beta \psi \left( \left[ \left[ \tau A \right]_{\star} - \tau \right]_{\star} \right)$$
 $au(t+1) \leftarrow \tau(t) + \operatorname{sample}(P)$ 
 $[x]_{\star} = 1 \text{ if } x > 0, 0 \text{ otherwise}$ 
 $\psi(X) \text{ as column norm. for matrix } X$ 

currently ignore serendipity, wandering & forgetting, strengths, directions

# Intralayer <u>block</u> model generation



# **Diversity metric**

# **Population**

**H\_p**: Topic entropy

**N\_T**: # of topics

**R\_T**: robustness due to removal of agents

# Evolution of population indices of SF models intralayer models



# **Diversity metric**

## Individual

d\_g: mean distance between
agent's topic nodes in topic graph

Js\_T: mean pairwise overlap between topics of different agents

n\_cc: # of conn comp in induced topic subgraphs

### Evolution of individual indices of SF models



# Across different intralayer *nonblock* models



# Intralayer <u>block</u> model generation



lower modularity

# **Population diversity**

### lower modularity





# **Group diversity**

### lower modularity





# **Individual diversity**

### lower modularity

Evolution of individual indices of SBMs models



0.7 0.5



# Does initialization matter? *Group correspondence*

10 groups of topics 10 groups of agents

At initialization, connection between groups with prob **p\_sg** 

### Interlayer initiatiors for block models



higher group correspondence

**Does initialization matter?** 

0.00 0.25 0.50 0.75 1.00



### **Conclusion**

- Rabbit hole generally increases pop. div., reccomm increases ind. div.
- Group modularity and initial correspondence generally decreases diversity

### **Future directions**

- Modularity in the block models
- Distribution of specialists and generalists
- Subsample real networks (FB + Wiki) or connected papers
- Other probabilities (serendipity/wandering, forgetting)
- Consider strengths + direction in networks + cost and bias
- Figure out if analytical results are possible
- Growing networks

Thank you!

### Evolution of individual indices of PA models



### Evolution of population indices of PA models



### Evolution of population indices of ER models



### Evolution of individual indices of ER models



### Evolution of population indices of WS models



### Evolution of individual indices of WS models



### Interlayer initiatiors for nonblock models



### Summarized of diversity indices for nonblock models (at the end, minmax norm)



