## TESTING THE MODEL

- Various reactions are performed at known Enzyme and Substrate concentrations.
- The initial rates of the reactions are plotted against the substrate concentrations
- If the graph is hyperbolic, then it can be assumed the enzyme obeys the Michaelis-Menten model.
  - $\blacktriangleright$  We can calculate  $K_M$  and  $V_{max}$



## CALCULATING KM AND VMAX

- $\blacktriangleright$   $V_{max}$  is inherently hard to calculate or measure because the graph of enzyme velocities is hyperbolic.
  - Velocity asymptotically approaches its maximum
  - $\blacktriangleright$  Even at 10-20 times the K<sub>M</sub> we are only reaching 90-95% of the maximum
- ➤ To solve this issue, Hans Lineweaver and Dean Burk rearranged the Michailis-Menten equation into a linear function (y = mx + b), and then took the reciprocal.

$$\frac{1}{v} = \left(\frac{K_M}{V_{max}}\right) * \frac{1}{[S]} + \frac{1}{V_{max}}$$

$$y = m \qquad x + b$$

- This double reciprocal plot is called the Lineweaver-Burk Plot
  - It can be used to approximate both  $K_M$  and  $V_{max}$