PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-294980

(43)Date of publication of application: 20.10.2000

(51)Int.Cl.

H05K 9/00 B32B 7/02 B32B 9/00 C03C 17/36 H01J 29/88

(21)Application number: 11-098785

(71)Applicant: NIPPON SHEET GLASS CO LTD

(22)Date of filing:

06.04.1999

(72)Inventor: ANZAKI TOSHIAKI

OGINO ETSUO

(54) TRANSLUCENT ELECTROMAGNETIC WAVE FILTER AND FABRICATION THEREOF

(57) Abstract:

PROBLEM TO BE SOLVED: To suppress defects, e.g. pinholes, by employing a dielectric layer including an antistatic metal oxide layer having refractive index at a specified wavelength within a specified range.

SOLUTION: A translucent electromagnetic wave shut—off film 2 is formed by laminating a dielectric layer 10 and a silver layer 11 alternately on one surface of a transparent substrate 1. A metal oxide layer forming the dielectric layer 10 contains a metal oxide having refractive index of 1.6–2.7 at a wavelength of 550 nm. A layer ensuring a preferably antistatic properties preferably has a specific resistance of 5 Ocm or less. Since the metal oxide layer forming the dielectric layer 10 has antistatic properties, these layers can be protected against being charged when they are formed through sputtering. Consequently, microarcing can be suppressed, and a layer free of pinholes or foreign material adhesion can be obtained.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特別2000-294980 (P2000-294980A)

(43)公開日 平成12年10月20日(2000.10.20)

(51) Int.Cl.7	識別記号	FΙ	ァーマコート*(参考)
H05K 9/00		H05K 9/00	V 4F100
B 3 2 B 7/02		B 3 2 B 7/02	4G059
9/00		9/00	A 5 C 0 3 2
C 0 3 C 17/36		C 0 3 C 17/36	5 E 3 2 1
НО1Ј 29/88		H 0 1 J 29/88	
		審査請求未請求請求	水項の数16 OL (全 17 頁)
(21)出顧番号	特膜平 11-98785	(71)出顧人 000004008 日本板硝子	株式会社
(22) 出願日	平成11年4月6日(1999.4.6)	大阪府大阪	市中央区道修町3丁目5番11号
		(72)発明者 安崎 利明	1
		大阪府大阪	市中央区道修町3丁目5番11号
		日本板硝	子株式会社内
		(72)発明者 荻野 悦男	(
			市中央区道修町3丁目5番11号
		日本板硝	i子株式会社内
		(74)代理人 100069084	
		弁理士 大	野 精市

最終頁に続く

(54) 【発明の名称】 透光性電磁波フィルタおよびその製造方法

(57)【要約】

【課題】 銀層の赤外線反射特性を利用した電磁波遮蔽膜がガラス板上に被覆されたPDP用の前面電磁波フィルタで、実用的な耐久性を有し、かつ膜のピンホール等の欠点が少ないフィルタは得られなかった。

【解決手段】 ガラス板の一方の面に、酸化アルミニウムを含有する酸化亜鉛の層とパラジウムを 0.4 重量% 含む銀層とを交互に繰り返して積層し、7層からなるシート抵抗が 2 Ω/□以下の積層体を被覆した。この積層体の表面にPETフィルムを粘着剤により貼付て電磁波フィルタとした。また、この酸化亜鉛層は、導電性の酸化アルミニウムと酸化亜鉛の混合物の焼結体をターゲットとするスパッタリングにより成膜した。

【特許請求の範囲】

【請求項1】 透明基板の一方の面に、前記透明基板側から誘電体層と銀層とがこの順に交互に繰り返し積層された(2n+1(n≥1))層の積層体を含む透光性電磁波遮断膜が被覆された電磁波遮断膜付き基板において、前記誘電体層は、550nmの波長における屈折率が1.6~2.7の帯電防止性金属酸化物層を含むことを特徴とする透光性電磁波フィルタ。

【請求項2】 前記帯電防止性金属酸化物層の比抵抗が 5Ωcm以下であることを特徴とする請求項1に記載の 透光性電磁波フィルタ。

【請求項3】 前記帯電防止性金属酸化物層を、錫を含む主成分が酸化インジウムの層で構成したことを特徴とする請求項1または2に記載の透光性電磁波フィルタ。

【請求項4】 前記帯電防止性金属酸化物層を、アンチモン、ビスマス、亜鉛およびインジウムからなる群から選ばれたいずれかを含む主成分が酸化錫の層で構成したことを特徴とする請求項1または2に記載の透光性電磁波フィルタ。

【請求項5】 前記帯電防止性金属酸化物層を、アルミニウム、ガリウムおよびインジウムからなる群から選ばれたいずれかを含む主成分が酸化亜鉛の層で構成したことを特徴とする請求項1または2に記載の透光性電磁波フィルタ。

【請求項6】 前記帯電防止性金属酸化物層を、バナジウム、ニオブおよびタンタルからなる群から選ばれたいずれかを含む主成分が酸化ジルコニウムの層で構成したことを特徴とする請求項1または2に記載の透光性電磁波フィルタ。

【請求項7】 前記帯電防止性金属酸化物層を、プラセオジウムを含む主成分が酸化セリウムの層で構成したことを特徴とする請求項1または2に記載の透光性電磁波フィルタ。

【請求項8】 前記帯電防止性金属酸化物層を、モリブデンを含む主成分が酸化ニオブの層で構成したことを特徴とする請求項1または2に記載の透光性電磁波フィルタ。

【請求項9】 前記帯電防止性金属酸化物層を、バナジウムおよびニオブからなる群から選ばれたいずれかを含む主成分が酸化チタニウムの層で構成したことを特徴とする請求項1または2に記載の透光性電磁波フィルタ。

【請求項10】 前記誘電体層のうち、少なくとも最表面の誘電体層が、前記帯電防止性金属酸化物層と、窒化シリコン、酸窒化シリコンおよび酸化錫からなる群から選ばれたいずれかのバリア層との積層体であることを特徴とする請求項2~9のいずれかに記載の透光性電磁波フィルタ。

【請求項11】 前記銀層は、パラジウムを $0.1\sim3$ 重量%含み、かつ、チタン、銅またはその両者を $0.1\sim3$ 重量%含むことを特徴とする請求項 $1\sim10$ のいず

れかに記載の透光性電磁波フィルタ。

【請求項12】 視感度透過率を60%以上、波長850nmにおける透過率を20%以下としたことを特徴とする請求項1~11のいずれかに記載の透光性電磁波フィルタ。

【請求項13】 前記nの値を3、前記透明基板に最も近い誘電体層の厚みを $28\sim52$ nm、前記誘電体層の厚み比率を透明基板から近い順に、 $36\pm4:71\pm7:70\pm7:32\pm3$ 、前記透明基板に最も近い銀層の厚みを $7\sim18$ nm、前記銀層の厚み比率を透明基板から近い順に、 $10\pm1:12\pm1:10\pm1$ としたことを特徴とする請求項12に記載の透光性電磁波フィルタ

【請求項14】 前記透光性電磁波遮断膜の表面に、樹脂フィルムを粘着剤により貼りつけたことを特徴とする請求項12または13に記載のプラズマディスプレイ用透光性電磁波フィルタ。

【請求項15】 透明基板の一方の面に、帯電防止性金属酸化物層を含む誘電体層と銀層とを前記透明基板側からこの順に交互に繰り返し積層して、(2n+1(n≥1))層からなる透光性電磁波遮断膜を成膜した透光性電磁波フィルタの製造方法において、前記銀層を銀をターゲットとするスパッタリングにより成膜し、前記帯電防止性金属酸化物層を表面シート抵抗が50Ω/□以下の金属酸化物粉末の焼結体をターゲットとするスパッタリングにより成膜することを特徴とする透光性電磁波フィルタの製造方法。

【請求項16】 前記金属酸化物粉末の焼結体ターゲットを、相隣り合うように配設した1対のマグネトロンカソードに設置し、前記カソードに、その極性が10Hz~1MHzの周波数で互いに反転するように負電圧を印加して生起させたグロー放電プラズマにより、前記金属酸化物粉末の焼結体ターゲットをスパッタリングすることを特徴とする請求項15に記載の透光性電磁波フィルタの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、陰極線管(CRT)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル等の表示装置の前面に設置して、表示装置から放出される電磁波をカットする電磁波フィルタおよびその製造方法に関する。また本発明の透光性電磁波フィルタは、透光性かつ導電性であるため、透明導電膜としても用いることができ、近赤外域およびそれ以上の長波長域の広範囲にわたって電磁波遮断能を有するので、建築物や自動車の熱線遮断性窓ガラスとして用いることができる。

[0002]

【従来の技術】ガラス板の如き透明基板の表面上に電磁 波遮断膜が被覆された可視域で透明な電磁波フィルタと しては、基板側から透明金属酸化物のような誘電体層と 銀層とがこの順に交互に積層されたものが知られてい る。

【0004】特開平9-85893号公報には、誘電体層と銀層を交互に繰り返し積層した構造を有する熱線遮断膜が被覆されたガラス板が開示されている。この熱線遮断膜は、たとえば実施例11に見られるように、ガラス/A1含有ZnO/Pd(パラジウム)含有Ag/A1含有ZnOの銀について2層、全体として5層の積層体(n=2)である。また、最表面の誘電体層をA1含有ZnOとSi含有SnO $_2$ 層の積層体としたものが実施例13に記載されている。そして、これらの誘電体層は、いずれも金属酸化物層を構成するその金属をターゲットとして酸素または酸素とアルゴンの混合ガスを雰囲気とする酸素反応性スパッタリングにより成膜することが表1に示されている。

【0005】特開平8-104547号公報には、熱線 遮断膜をガラス板上に成膜した断熱ガラスが開示されている。この熱線遮断膜は、銀層と金属酸化物層の積層体で構成され、その積層体の実施の態様が表1および表6に記載されている。たとえば、実施例13には、ガラス/2n $0:A1_2$ O $_3$ /Ag/2n $0:A1_2$ O $_3$ /Ag/2n $0:A1_2$ O $_3$ で表される銀2層、全体として5層構成の積層体 (n=2)が示されている。そして、この2n $0:A1_2$ O $_3$ 層は2n0にA 1_2 O $_3$ を2重量%添加した焼結体をターゲットするスパッタリングで成膜することが記載されている。

[0006]

【発明が解決しようとする課題】プラズマディスプレイパネルは、高輝度の表示を実現するために、放電セル内で強力なプラズマ放電が行われる。このために、放電セルからプラズマディスプレイパネルの前方に向かって、電磁波とともに近赤外線が放出される。放出される電磁波は、人体に悪影響があるとされ、また放出される近赤外線は、プラズマディスプレイの近くにある家電製品のリモコン受光部で検知され、そのスイッチを誤動作させるという課題があった。

【0007】この課題を達成するために、プラズマディスプレイパネルの前面に電磁波遮断能を有する透明体を

設けることが提案されており、誘電体層と銀層を交互に 積層した積層体をガラス板の一方の面に被覆した電磁波 フィルタを、プラズマディスプレイパネルの前面に貼り つけることが行われている。このような電磁波フィルタ には、次の性能が要求される。

- 1)電磁波遮断能がある。すなわち、電磁波遮断膜のシート抵抗が低い。
- 2) リモコンスイッチによる遠隔操作に用いられる近赤外線領域(800~900nm域)の熱線に対して透過率が小さい。
- 3)明るい画像表示を得るために、視感度透過率が高い
- 4)空気中に暴露された状態で使用されるので、耐湿熱性などの耐久性がある。
- 5)電磁波遮断膜には微小なピンホール、異物付着がない

【0008】本発明では、1)~4)の性能を同時に満足するために、可視域で高透過、近赤外域で低透過、すなわち可視域と近赤外域の境界で急速に透過率が低くなる、いわゆる光学ローパスフィルタとしての特性を効果的に得るような誘電体層と銀層との積層体とすること、また5)の課題を達成するために、積層体の誘電体層を新規な層にすることにより、上記課題を同時に解決するようにした。

【0009】上記の特開平5-42624号公報に記載された電磁波遮断体は、銀1層を積層体構造を有する誘電体層で挟んでいる。電磁波遮断性能を確保する作用を有する銀層は、その遮断性能をよくするために、厚みを大きくする必要がある。しかし可視域の透過率が低下してしまう。このため同時に1)、2)、3)について良好な性能が得られない。また、誘電体層を構成する2 の層や2 の気に気絶縁性であるため、これらの層の成膜をスパッタリングにより行うときに、安定したグロー放電プラズマが得られず、得られる膜はピンホールや異物付着が多いという課題があった。

【0010】また、特開平9-85893号公報に記載されたA1含有ZnO層とPd含有Ag層とを含む積層体は、銀について2層の積層であるので、上記1)および3)の性能は改善されるが、2)の誤動作防止機能を有するまでには至らず、プラズマディスプレイの前面に設ける電磁波遮断フィルタとしては、性能が十分でない。さらに、この電磁波遮断膜の成膜に際しては、その誘電体層を構成する金属酸化物層を、金属をターゲットとして、酸素または酸素とアルゴンの混合ガスを雰囲気とする酸素反応性スパッタリングにより成膜しているので、電気絶縁性の金属酸化物がターゲット表面付近に付着したり、基板上に形成される。このため、ターゲット表面や基板表面に電荷が溜まりやすくなり、スパークやアーキングが生じやすく、成膜時の安定なグロー放電が得られず、金属酸化物層には成膜時のマイクロスパーク

によるピンホールや異物の付着が多く見られるという課 題があった。

【 ○ ○ ○ 1 1】さらに、特開平8 - 1 ○ 4 5 4 7 号公報に開示されてい熱線遮断膜は、銀層については2層の積層であるので、前記の従来技術と同様に、高電磁遮断性能、低近赤外線透過、高可視光透過の要求を満足することは困難であった。この積層体は、実施例1 3 で示されるように、2 重量%の Z n ○ を含有する Z n ○ と A 1 2 ○ 3 の混合物をターゲットとする酸化亜鉛主成分の誘電体層であり、金属酸化物のターゲットをスパッタリングがス雰囲気中の酸素との反応性スパッタリングで成膜されている。しかし、基板に成膜される誘電体層の電気抵抗は高く、その表面には成膜中に帯電が生じ、その結果膜にピンホールが生じるという課題があった。

【 O O 1 2 】本発明は、従来技術が有する上記課題を解決するためになされたものであって、実用的で高性能のフィルタとして要求される性能を具備する電磁波遮断フィルタを提供することを目的とする。

[0013]

【課題を解決するための手段】上記の課題を解決するためになされた請求項1は、透明基板の一方の面に、前記透明基板側から誘電体層と銀層とがこの順に交互に繰り返し積層された(2n+1 ($n \ge 1$))層の積層体を含む透光性電磁波遮断膜が被覆された電磁波遮断膜付き基板において、前記誘電体層は、550nmの波長における屈折率が $1.6\sim2.7$ の帯電防止性金属酸化物層を含むことを特徴とする透光性電磁波フィルタである。

【0014】本発明の積層体の誘電体層は、帯電防止性を有している。したがって、銀層が導電性であり、誘電体層が帯電防止性であるため、本発明の透明基板上に成膜される透光性電磁波遮断膜には電荷が溜まることがない。このため、銀層の上に誘電体層をスパッタリングにより積層するに際して異常放電の発生が抑制され、異常放電に伴って生成するピンホールや異物の付着が少なく、ピンホールなどの欠点が生じにくい積層体とすることができる。

【0015】また、本発明の誘電体層を構成する金属酸化物の層は、550nmの波長における屈折率が1.6~2.7である。屈折率が1.6より小さいと、光干渉作用による増透効果が小さくなり、可視光域における透過率を高くすることが困難になる。可視域の透過率を高くする上で、屈折率は1.9以上とするのがさらに好ましい。本発明においては、上記の金属酸化物層の550nmの波長における屈折率の上限は、最も大きな屈折率の値を有する二酸化チタンの屈折率の2.7とする。

【0016】本発明に用いることのできる透明基板としては、ソーダライムシリカ組成のガラスや硼珪酸ガラス、無アルカリガラスなどの公知のガラス基板、PP(ポリプロピレン)、PE(ポリエステル)、PET(ポリエチレンテレフタレート)、PMMA(ポリメチ

ルメタクリレート) TAC (トリアセチルセルロース)、ポリカーボネート (PC) などのプラスチック板やフィルムを例示することができる。これらは完全な平面でなくてもよく、曲面形状や形状可変の基体でもよい。

【0017】請求項2の透光性電磁波フィルタは、請求項1において、帯電防止性の金属酸化物層の比抵抗が5 Ω c m以下であることを特徴とする。金属酸化物層の厚みは、可視の波長域で透過率が増加するように設定される。この層の比抵抗が5 Ω c m以下とすることにより、減圧された雰囲気中でのスパッタリングにより成膜するときに、プラズマアーキング(異常放電)が抑制され、ピンホールなどの発生を効果的に抑制できるからである。

【0018】請求項3の透光性電磁波フィルタは、請求項1または2において、帯電防止性金属酸化物層が、錫を含む主成分が酸化インジウムの層(ITO層)で構成したことを特徴とする。酸化インジウム中に含有させる錫は、酸化物ベースで0.1重量%以上10重量%以下で含有させるのが好ましい。

【0019】請求項4の透光性電磁波フィルタは、請求 項1または2において、帯電防止性金属酸化物層を、ア ンチモン、ビスマス、亜鉛およびインジウムからなる群 から選ばれたいずれかを含む主成分が酸化錫の層で構成 したことを特徴とする。酸化錫中に含有させるこれらの 金属酸化物は、0.1~10重量%とするのが好まし い。これにより、酸化錫層は導電性を有するようにな り、帯電防止性能を有するようになる。0.1重量%未 満では実質的に電気絶縁性になるので帯電防止性が得ら れなくなる。さらに4重量%以上とするのが好ましい。 【0020】請求項5の透光性電磁波フィルタは、請求 項1または2において、帯電防止性金属酸化物層を、ア ルミニウム、ガリウムおよびインジウムからなる群から 選ばれた少なくともいずれかを含む主成分が酸化亜鉛の 層で構成したことを特徴とする。酸化亜鉛にアルミニウ ム、ガリウム、インジウムを含有させることにより、酸 化亜鉛層は半導体的性質を有するようになり、これによ り帯電防止能を保持するようになる。これらの金属の含 有させる量は、金属酸化物として0.1重量%以上、さ らに4重量%以上がよい。0.1重量%未満では電気的 絶縁性の酸化物になり、有効な帯電防止性が得られな い。また10重量%を越えて含有させても帯電防止能が 効果的に向上しない。

【0021】請求項6の透光性電磁波フィルタは、請求項1または2において、帯電防止性金属酸化物層を、バナジウム、ニオブおよびタンタルからなる群から選ばれたいずれかを含む主成分が酸化ジルコニウムの層で構成したことを特徴とする。酸化ジルコニウムにバナジウム、ニオブあるいはタンタルを含有させることにより、酸化ジルコニウム層は半導体的性質を有するようにな

り、帯電防止性能を有するようになる。これらの金属は 金属酸化物ベースで $0.1\sim10$ 重量%とするのが好ま しい。0.1重量%未満では電気的絶縁性の金属酸化物 層になり、帯電防止性が得られない。

【0022】請求項7の透光性電磁波フィルタは、請求項1または2において、帯電防止性金属酸化物層を、プラセオジウムを含む主成分が酸化セリウムの層で構成したことを特徴とする。含有させるプラセオジウムは、酸化プラセオジウムベースで、0.1~10重量%とするのが、上記と同様の理由で好ましい。

【0023】請求項8の透光性電磁波フィルタは、請求項1または2において、帯電防止性金属酸化物層を、モリブデンを含む酸化ニオブの層で構成したことを特徴とする。モリブデンは、酸化ニオブベースで0.1~10重量%とするのが上記と同様の理由で好ましい。

【0024】請求項9の透光性電磁波フィルタは、請求項1または2において、帯電防止性金属酸化物層を、バナジウムおよびニオブからなる群から選ばれたいずれかを含む主成分が酸化チタニウムの層で構成したことを特徴とする。これらの含有させる金属は、金属酸化物ベース(酸化チタニウムベース)で0.1~10重量%とするのが、上記と同様の理由で好ましい。

【0025】請求項10の透光性電磁波フィルタは、請求項2~9のいずれかにおいて、誘電体層のうち少なくとも最表面の誘電体層が、帯電防止性金属酸化物層と窒化シリコン、酸窒化シリコンおよび酸化錫からなる群から選ばれたバリア層との積層体であることを特徴とする。

【0026】誘電体層を構成する帯電防止性金属酸化物層の厚み方向についてその一部を、窒化シリコン、酸窒化シリコンおよび酸化錫のいずれかのバリア層で置換して、金属酸化物層とバリア層の積層体とすることにより、電磁波遮断膜の耐湿熱性を向上させることができる。ここで、酸窒化シリコン層は、原子比で表した〇/(O+N)の比率が0.5以下で酸素を含有することが好ましい。上記範囲内とすることにより、その層の微視的格子構造が緩和し、その層の内部応力が低下する。これにより、大気中や後述する粘着剤から浸透してくる腐食性の不純物を効果的に阻止するとともに、積層体の層間剥離を生じないようにすることができるからである。

【0027】上記のバリア層の厚みは、各誘電体層の厚みの2分の1以下の比較的薄い厚みでよい。バリア層は電気絶縁性であるが、厚みを薄く設定することで、成膜時にこの層に溜まる電荷が多くならず、ピンホールの発生原因にならない。

【0028】誘電体層を帯電防止性金属酸化物層とバリア層の積層体とするとき、バリア層を銀層の上に接しないように金属酸化物層を介在させて積層するのが好ましい。バリア層の成膜時の窒素プラズマあるいは酸素プラズマの影響を銀層に与えることなく、大気や樹脂フィル

ムの粘着剤などからくる腐食性の不純物成分の銀層への 侵入を効果的に抑制できるからである。

【0029】請求項11の透光性電磁波フィルタは、請求項1~10のいずれかにおいて、銀層にパラジウムを銀に対して0.1~3重量%含み、かつチタンを、または銅を、またはその両者を(この場合はその合量で)0.1~3重量%含むことを特徴とする。銀に第1添加金属としてパラジウムを、第2添加金属としてチタニウム、銅またはそれらの両者を添加することにより、銀層の耐湿熱性をパラジウムのみの添加よりも一層向上させることができる。

【0030】請求項12の透光性電磁波フィルタは、請求項 $1\sim11$ のいずれかにおいて、視感度透過率を60%以上、波長850nmにおける透過率を20%以下としたことを特徴とする。

【0031】請求項13の透光性電磁波フィルタは、請求項12において、nの値が3、誘電体層について、透明基板に最も近い誘電体層の厚みが28~52nm、誘電体層の厚み比率が透明基板から近い順に記して、36±4:71±7:70±7:32±3とし、銀層について、透明基板に最も近い銀層の厚みが7~18nm、銀層の厚み比率が透明基板から近い順に、10±1:12±1:10±1であることを特徴とする。

【0032】誘電体層の厚みを上記の範囲とすることにより、可視域での透過率を高く反射率を低くすると共に、プラズマディスプレイ用の前面フィルタとして好ましい反射色調を中性色ないし薄紫色に、透過色調を中性色にすることができる。銀層の厚みを上記範囲にすることにより、電磁波遮断性および近赤外線遮断性をプラズマディスプレイ用の前面フィルタとして要求されるものとなる。また、性能を確保する上から n ≥ 3 とするのがよい。また、製造コストを低減する上から n ≤ 5 とするのがよい。透光性電磁波遮断膜は、銀層を 3 層以上に誘電体層により分割して、それぞれの銀層の厚みを選ぶことにより、850 n m の波長における透過率を 20%以下とすることができる。

【0033】誘電体層の厚みを選ぶことにより、視感度透過率を60%以上にすることができる。これによりプラズマディスプレイの表示を明るく、かつ、近赤外線のプラズマディスプレイパネルからの漏れを効果的に抑制することができる。誘電体層の厚みを適宜調整することにより、透明基板の表面と垂直な方向から見たときの反射色が、Cealabe座標における a^* 、 b^* で表して、 $-1 \le a^* \le 10$ 、 $-10 \le b^* \le 0$ 、 $-a^* - <1.5 \times -b^* -$ とすることができる。この色座標の数値範囲内の色は、表示の色特性に影響を与えないので実用的に好ましい。

【0034】請求項12のプラズマディスプレイ用透光性電磁波フィルタは、請求項12または13において、透光性電磁波遮断膜の表面に、樹脂フィルムを粘着剤に

より貼りつけたことを特徴とする。

【0035】本発明に用いられる樹脂フィルムは、透光性電磁波遮断膜の大気雰囲気からの化学的な保護や透明基板が割れたときの飛散防止等の物理的な保護のために設けられる。この樹脂フィルムの550nmの波長における屈折率は、視感度透過率を低下させないために1.40~1.70を越すと、この樹脂フィルムと透光性電磁波遮断膜との屈折率差が大きくなり、この界面で生じる光の反射が大きくなり、電磁波フィルタの透過率を下げてしまうので好ましくない。一方樹脂フィルムの屈折率が1.40より小さいと、本発明を使用者側から見たときの反射色が中性色から大きく外れてしまうので、外観上好ましくない。

【0036】樹脂フィルムの厚さは、1μm~5mmの 範囲のものが用いられる。本発明に用いることのできる フィルムの材質としては、PP(ポリプロピレン)、P E(ポリエステル)、PET(ポリエチレンテレフタレ ート)やPE(ポリエステル)、TAC(トリアセチル セルロース)、PW(ポリウレタン)を例示できる。ま た薄いガラス板やその他無機材料の基板でもよい。

【0037】本発明では、上記の樹脂フィルムを透光性 電磁波遮断膜に接着剤で接着させてもよく、粘着層を介 して接着させてもよい。粘着層としては、アクリル樹脂 系粘着層が、耐久性がよい点で好ましい。この粘着層の 厚さは、 $20\sim500\mu$ mとするのが好ましい。 20μ mより薄いと、貼りつけ時に異物を噛み込んだときに生 じる段差を吸収しにくく、目視で判別できる製品欠陥が 生じやすくなるからである。また、500μmより厚い と外部環境からの水分の浸入などを抑制し難くなるた め、電磁波遮断膜の耐湿熱性を低下させる原因になりや すいからである。樹脂フィルムには、反射防止(AR、 LR) コーティング、反射拡散 (AG) 処理が施されて いてもよい。粘着層はあらかじめ、ろ過処理を施すこと により固形物を含有させないようにするのがよい。固形 物があると貼付加工時に透光性電磁波遮断膜に傷をつけ てしまうからである。

【0038】請求項15は、透明基板の一方の面に、前記透明基板側から誘電体層と銀層とをこの順に交互に繰り返し積層して(2n+1(n≥1))層からなる透光性電磁波遮断膜を被覆した透光性電磁波フィルタを製造する方法であって、銀層を銀をターゲットとするスパッタリングにより成膜し、誘電体層を表面シート抵抗が50Ω/□以下の金属酸化物をターゲットとするスパッタリングにより成膜することを特徴とする透光性電磁波フィルタの製造方法である。

【0039】請求項16の透光性電磁波フィルタの製造方法は、請求項15において、金属酸化物粉末の焼結体ターゲットを、相隣り合うように配設した1対のマグネトロンカソードに設置し、前記カソードに、その極性が

10Hz~1MHzの周波数で互いに反転するように負電圧を印加して生起させたグロー放電プラズマにより、前記金属酸化物粉末の焼結体ターゲットをスパッタリングすることを特徴とする。

[0040]

【発明の実施の形態】図1(a)には、本発明の透光性電磁波フィルタ6の一実施形態の断面図が示されている。透明基板1の一方の表面に誘電体層10と銀層11とが交互に積層された透光性電磁波遮断膜2が成膜されている。

【0041】本発明の誘電体層を形成する金属酸化物層 は、550 nmの波長における屈折率が1.6~2.7 の帯電防止性の金属酸化物を含むことが必要である。本 発明で用いられる金属酸化物層の主成分は、酸化インジ ウム、酸化錫、酸化亜鉛、酸化ジルコニウム、酸化セリ ウム、酸化ニオブ、酸化チタニウムが例示できる。これ らの金属酸化物に少量の金属酸化物を添加させて半導体 的性質を付与し、帯電防止性を付与する。好ましい帯電 防止性を確保するための層の比抵抗は5Ωcm以下であ るのが好ましい。0.5Ωcm以下であるのがより好ま しく、 0.05Ω cm以下であるのがさらに好ましい。 【0042】本発明の誘電体層を構成する金属酸化物層 は帯電防止性能を有するので、それらの層がスパッタリ ングで成膜されるときに帯電することが防止される。こ のためマイクロアーキングが起こるのが抑制され、ピン ホールや異物付着のない層とすることができる。

【0043】上記の金属酸化物のうち、酸化インジウムのみその単独成分で導電性の金属酸化物層となり、したがって帯電防止性を有する。錫を含有させることにより、さらに帯電防止性が大きくなる。他の金属酸化物の層は、単独成分では実質的に電気絶縁性である。これらの金属酸化物に、少量の金属を含有させることにより、N型またはP型の半導体的性質に基づく帯電防止性の透明金属酸化物の層とすることができる。

【0044】帯電防止性の金属酸化物層は、屈折率が 1.6~2.7である。本発明の帯電防止性の金属酸化 物層としては、酸化インジウムまたは錫を含む酸化イン ジウム層(ITO層)で構成することができる。アンチ モン、ビスマス、亜鉛、インジウムからなる群から選ば れたいずれかを含む主成分が酸化錫の層で構成すること ができる。また、アルミニウム、ガリウム、インジウム からなる群から選ばれたいずれかを含む主成分が酸化亜 鉛の層で構成することができる。また、バナジウム、ニ オブおよびタンタルからなる群から選ばれたいずれかを 含む主成分が酸化ジルコニウムの層で構成することがで きる。プラセオジウムを含む主成分が酸化セリウム層で 構成することができる。また、モリブデンを含む主成分 が酸化ニオブの層で構成することができる。また、バナ ジウムおよびニオブからなる群から選ばれたいずれかを 含む主成分が酸化チタニウムの層で構成することができ

る。

【0045】本発明の導電性金属酸化物の層は、その金属酸化物の焼結体あるいは成形固化体をターゲットに用いて減圧した雰囲気内で行うスパッタリングにより好適に得られる。上記の金属酸化物ターゲットは、その表面抵抗が500/□以下であることが必要である。50/□以下が好ましく、さらに0.50/□以下が好ましい。表面シート抵抗が500/□以下となるように、その組成比や粉体粒度、焼結条件などを調整する。これにより、直流電源や極性が反転する交互反転電源により生起させるグロー放電を容易に安定して放電させ、ピンホールのない誘電体膜とすることができる。以下に本発明に好んで用いることができる金属酸化物層の成膜法を示す。

【0046】・ITO層:酸化インジウムに酸化錫換算で10重量%まで含有する酸化インジウムと酸化錫との混合酸化物焼結体をターゲットとする。酸素を少量含有するアルゴン雰囲気内でのスパッタリングで成膜する。・アルミニウム含有酸化亜鉛層(AZO層):酸化亜鉛に二酸化アルミニウム換算で二酸化アルミニウムを4~10重量%の範囲で含有する酸化亜鉛と二酸化アルミニウムの混合酸化物焼結体をターゲットとする。少量の酸素を含有するアルゴン雰囲気内でのスパッタリングで成膜する。

- ・アンチモン含有酸化錫層:酸化錫に酸化アンチモン換算でアンチモンを $0.1\sim10$ 重量%の範囲で含有する酸化錫と酸化アンチモンの混合酸化物焼結体をターゲットとする。少量の酸素を含有するアルゴン雰囲気内でのスパッタリングで成膜する。
- ・セリウム含有酸化インジウム層(ICO層):酸化インジウムに酸化セリウム換算で酸化セリウムを20重量%以下の範囲で含有する酸化インジウムと酸化セリウムの混合酸化物の焼結体をターゲットとする。少量の酸素を含有するアルゴン雰囲気でのスパッタリングで成膜する。
- ・亜鉛含有酸化インジウム層(IZO層):酸化インジウムに酸化亜鉛換算で酸化亜鉛を0.1~10重量%以下の範囲で含有する混合酸化物焼結体をターゲットとする。酸素を含有するアルゴン雰囲気内でのスパッタリングで成膜する。
- ・亜鉛含有酸化錫層:酸化錫に酸化亜鉛を酸化亜鉛換算で0.1~10重量%の範囲で含有する混合酸化物焼結体をターゲットとするスパッタリング。
- ・バナジウムまたはニオブを含有する酸化ジルコニウム 層:酸化バナジウムまたは酸化ニオブを酸化物ベースで酸化ジルコニウムに〇.1~1〇重量%含有する混合物焼結体をターゲットとする。少量の酸素を含有するアルゴン雰囲気でのスパッタリングで成膜する。
- ・モリブデンを含む酸化ニオブ層:酸化モリブデンを酸化物ベースで0.1~10重量%含有する酸化ニオブ焼

結体をターゲットとする。少量の酸素を含有するアルゴ ン雰囲気でのスパッタリングで成膜する。

・バナジウムまたはニオブを含有する酸化チタニウム層:酸化バナジウムまたは酸化ニオブを酸化物ベースで 0.1~10重量%含有する酸化チタニウム焼結体をターゲットとする。少量の酸素を含有するアルゴン雰囲気でのスパッタリングで成膜する。

【0047】本発明の銀層は、銀に少量の金属を銀層の 耐湿熱性を向上させるために含有させることができる。 含有させることができる金属は、パラジウム、白金、 金、銅およびチタニウム等が例示できる。なかでもパラ ジウムは、銀層の透過率を大きく低下させることなく、 銀層の耐湿熱性を向上させるので好ましい。パラジウム の含有量は銀に対して重量%で0.1以上とするのが好 ましく、さらに0.5以上とするのが好ましい。一方パ ラジウムを多く含有すると、銀層の近赤外線の遮断性能 が低下する、すなわち800~900 n mの近赤外線域 の透過率が大きくなるので、重量%で3.0以下とする のが好ましく、さらに1.0%以下とするのが好まし い。さらに、外部環境から進入してくる硫黄成分や塩化 物成分に対する銀の耐久性を上げるために、パラジウム に加えて第2の添加成分としてチタニウムあるいは銅を 含有させるのがよい。この場合、0.1~3重量%の範 囲で含有させるのが、光学特性および電気特性を大きく 低下させないので好ましい。

【0048】本発明においては、透光性電磁波遮断膜の耐久性を向上させるために、バリア層を設けることができる。バリア層は最表面の誘電体層を構成する金属酸化物層の外側あるいは金属酸化物を上下に分割するように、すなわち銀層と接しないように設けるのが好ましい。バリア層は銀層の腐食に有害な湿気、塩素分、硫黄分どが透光性電磁波遮断膜の表面から侵入することを一層防止する。また、このバリア層をスパッタリングにより成膜するときに使用する窒素プラズマや酸素プラズマが、銀層を劣化させないようにするために、銀に接して成膜しないのが好ましい。

【0049】図1(b)に、透明基板1の上に、誘電体層10と銀層11とが積層された本発明の透光性電磁波遮断膜2が積層された他の実施の形態を示す。透明基板1から数えて3番目の誘電体層10中にバリア層12が誘電体層を金属酸化物層10a、10aに分割するように設けられており、また、最表面の誘電体層10を金属酸化物層10bとバリア層12との積層体構成になっている。

【0050】銀層の厚みについては、透明基板1に最も近い銀層の厚さを $7\sim13\,\mathrm{nm}$ の比較的薄い範囲にすることは、可視光透過率を高透過率にするのに適し、また $10\sim18\,\mathrm{nm}$ の比較的厚い範囲にするは、 $850\,\mathrm{nm}$ 付近の波長での透過率を低くするのに適している。

【0051】たとえば、誘電体層については、透明基板

1に銀層の厚みを12nmとすると、最も近い誘電体層の厚みを約40nmとしたとき、シート抵抗を約2Ω/□、視感度透過率を60%以上、波長850nmにおける透過率を20%以下、透光性電磁波遮断フィルタとすることができる。

【0052】図2は、本発明の透光性電磁波遮断フィルタ6の他の実施の形態であって、透明基板1の周辺部の一部に電磁波遮断膜2を外部と電気的に接続するために銀ペーストを塗布して作成したブスバー5が設けられ、ブスバー5と透明基板1の上に透光性電磁波遮断膜2が設けられている。透光性電磁波遮断膜2は、粘着層3によりPETフィルム4で被覆され保護されている。このブスバーの厚みは20μm以下とするのがよい。着色セラミックパターンをブスバーの目隠しとして透明基板の周辺部に形成してもよい。また本発明では可視光色補正用の色素を有したフィルムをいずれかの位置に挿入することにより、総合的な透過に近くすることができる。

【0053】図3は、本発明の透光性電磁波フィルタ6がプラズマディスプレイの前面フィルタとして用いられるときの使用例を示す図であって、透光性電磁波フィルタ6は、プラズマディスプレイ7の表示面7aに貼りつけられ、それらは筐体8内に収納固定されている。透光性電磁波遮断膜の表面、PETフィルムの外側表面あるいは内側表面、透明基板の電磁波遮断膜を被覆しない表面などに反射防止処理を施して視感度透過率を65%以上にすることができる。本発明の電磁波フィルタを、プラズマディスプレイの放電空間を形成する前面ガラスとして用いることができる。

【0054】図4および図5は、本発明において、誘電体層の厚みが与える可視域での反射率曲線および透過率曲線への影響を説明する図である。誘電体層の厚みは、薄い順からa、b、cであり、誘電体層の厚みにより、反射率が最小にまたは透過率が最大になる中心波長が、短波長から長波長にシフトすることが分かる。

【○○55】本発明の透光性電磁波フィルタの製造方法によれば、誘電体層を構成する金属酸化物層は、表面シート抵抗が50公/□以下の金属酸化物焼結体をターゲットとするスパッタリングで成膜される。表面シート抵抗が50公/□以下の金属酸化物焼結体のターゲットをアルゴンまたはアルゴンと酸素とを含有するスパッタリングガス雰囲気でスパッタリングすることにより、透明基板上に帯電防止性を有する金属酸化物層を成膜することができる。

【0056】スパッタリングによる成膜に際しては、金属酸化物層中の酸素欠陥を少なくし、可視域の光吸収を少なくするために、必要に応じて雰囲気中に数%程度の酸素を含有させる。本発明においては、透明な金属酸化物を成膜するための雰囲気内に導入するガス中の酸素は少量でよく通常5容量%以下でよい。また、金属酸化物層中の酸素不足を生じないようにするために、金属酸化

物によって一律に論ずることはできないが。0.1容量 %以上、好ましくは2容量%以上の酸素を含有させるの が好ましい。

【0057】本発明において設けられるバリア層の窒化シリコン層および酸窒化シリコン層は、シリコンターゲットをそれぞれ窒素とアルゴンの混合ガスおよび窒素と酸素とアルゴンの混合ガスのスパッタリングガス雰囲気で行う反応性スパッタリングにより成膜することができる。この場合、シリコンにはボロン、アルミ、リンのいずれかを数PPMのオーダーで含有させ、ターゲットの表面シート抵抗を約50Ω/□以下にするのが好ましい。

【 O O 5 8 】上述のように、本発明の誘電体層を構成する金属酸化物層は、金属をターゲットに用いてアルゴンと通常透明な金属酸化物層とするために大量に必要な酸素との混合ガス雰囲気中でスパッタリングをするのでなく、金属酸化物ターゲットを用いてアルゴンを含む雰囲気で行う。本発明では、金属酸化物をスパッタリングする雰囲気ガスの主成分はアルゴンなどの不活性ガスであり、必要とする酸素は少量でよい。少ない酸素プラズマで帯電防止性の金属酸化物ターゲットをスパッタリングすることにより、誘電体層を帯電防止性の層とすることができる。

【0059】誘電体層を帯電防止性の層とすることで、 誘電体層の成膜時および誘電体層の上に積層するバリア 層の成膜時のマイクロアーキングの発生を回避できる。 この結果、透光性電磁波遮断膜のピンホールの発生を効 果的に減少させることができる。

【0060】また誘電体層を構成する金属酸化物の成膜を金属酸化物焼結体をスパッタリングして成膜することにより、スパッタリング雰囲気ガスに含ませる酸素が少量でよいので、すでに基板上に成膜されている銀層が、銀層の上に金属酸化物層が成膜されるときの酸素プラズマによる劣化が抑えられる。また、銀層の結晶性を劣化させることがない。これにより、銀層を保護するための犠牲層(極薄い亜鉛などの金属層でこれ自体が酸化されることでその下の銀層を保護する)が必要でなくなり、光学的に吸収のない優れた透光性電磁波遮断膜とすることができる。

【0061】本発明の誘電体層の金属酸化物層をスパッタリングにより成膜するにあたっては、直流(DC)スパッタリング法を用いることができる。また、1対のマグネトロンスパッタリングカソードに金属酸化物の焼結体ターゲットを設置して、交互にその極性が10Hz~1MHzの周波数で反転するように各々のカソードに印加する電圧を極性反転させるのが好ましい。

【0062】本発明の誘電体層を構成する窒化シリコン層または酸窒化シリコン層をスパッタリングにより成膜するにあたっては、シリコンの焼結体ターゲットをDCスパッタリングする方法を用いることができる。この場

合も金属酸化物層と同じように2つのカソードを1組とし、それらの極性を反転させるマグネトロンスパッタリングカソードを用いるのが好ましい。

【0063】金属酸化物焼結体あるいはシリコンのター ゲット表面は、カソードに印加される極性が短時間に反 転するので、ターゲット表面上に堆積する窒化シリコン や酸窒化シリコンの帯電性の膜の除電が実施でき、また 基板およびその周辺は電極として働かないため、成膜さ れる酸化物層や窒化物層による電位変動に影響されず安 定なグロー放電状態が維持される。1対のターゲットの 表面が互いにカソードおよびアノードとなるため、表面 をスパッタリングによりクリーニングしながらグロー放 電を維持できる。このため、たとえば窒化シリコンのバ リア層をシリコン(微量のボロンないしアルミニウムを ドープして若干の導電性をもたせる)ターゲットから窒 素プラズマによる反応性スパッタリングで成膜する場 合、ターゲットのエロージョン域とそうでない域の境界 近傍に堆積する窒化シリコンの膜は、除電作用により帯 電せずアーキングが発生しない。

【0064】上記の安定した放電を確保するために、反転周波数は $10kHz\sim100kHz$ とするのが好ましく、さらに放電プラズマの安定性を得る観点から、 $40\sim50kHz$ が最も好ましい。その印加電圧の波形や電流波形には、正弦波や両極パルス波など時間軸に対してプラス時とマイナス時のターゲット表面の蓄積電荷が長時間でみれば全体的にほぼゼロになっていることが除電作用の点で好ましい。したがって、フーリエ分解可能な時間軸に対し対象な波形を有する電圧を印加するのが好ましい。

【0065】本発明の銀層は、DCマグネトロンスパッタリング法で成膜できる。この層は極めて導電性が高い材料で構成されるため、その放電安定性には何ら問題はない。この際使用する雰囲気ガスは純アルゴンが好ましい。

【0066】本発明の透光性電磁波遮断膜は、通常室温で成膜される。また銀の結晶性を飛躍的に改善するために、約200℃以下の温度で基板を加熱しながら行ってもよい。また、室温で成膜した後、得られた積層体を大気中または窒素雰囲気中で約300℃までの温度で加熱処理を施すのは、誘電体層中の光吸収を解消し、かつ銀層の比抵抗を改善することができるので好ましい。特に成膜時で100℃以上に加熱するか、成膜後で150℃以上の加熱を行うことにより、透光性電磁波遮断膜のシート抵抗の大気中での加熱(たとえば200℃、15分)での抵抗変化を0.9~1.1倍に安定化することができる。可視光線透過率の熱安定性(大気中200℃、15分)を変化透過率の変化倍率で0.95~1.05に安定化することができる。

【0067】また、膜構造が窒化シリコンや酸窒化シリコンのバリア層を1層以上含み、銀層に第1、第2の添

加金属を含有させることにより、その耐熱性が著しく向上し、透明基板をガラス板としたとき、600℃以上の加熱曲げや強化熱処理工程を経ても、劣化しない電磁波遮断膜付きガラス板とすることができる。本発明おいては、透明基板は、通常ガラス板や樹脂板が用いられる。【0068】以下に本発明を実施例と比較例により詳しく説明する。透光性電磁波遮断膜を構成する金属酸化物層、バリア層および銀層の成膜条件は表2にまとめて示す。

(帯電防止性金属酸化物層の成膜)

- 実施例について
- 1)帯電防止性の金属酸化物層の成膜については、表面抵抗が制御された金属酸化物焼結体をターゲットに用いて、光学特性と電気特性の両方に着目して誘電体層が透明でかつ帯電防止性を有するように、微量の酸素を含むアルゴンガス雰囲気でのDCマグネトロンスパッタリングで成膜した(以下焼結体DC法)。実施例2、3、4、5については2つのターゲットを用いた極性反転マグネトロンスパッタリング法(以下DM法)で、より高速に成膜を行った。
- 2) スパッタリング雰囲気の全圧は $1 \sim 8 \, \text{mTorre}$ した。
- 3)成膜中の基板は200℃以上に上昇しないようにした。
- ・比較例について
- 1)金属(合金)または表面抵抗が制御されていない金属酸化物をターゲットとして、酸素反応性DCマグネトロンスパッタリング(以下酸素DC法)により成膜した。ここで雰囲気ガスの酸素量は、光学特性のみに着目して誘電体層が完全に透明な金属酸化物層となるのに十分な量の酸素を導入した。
- 2) スパッタリング雰囲気の全圧は $1\sim8mTorre$ した。
- 3)成膜中の基板は200℃以上に上昇しないようにした。

【0069】(バリア層の成膜)

- 1)窒素とアルゴンの混合ガスによる窒素反応性マグネトロンスパッタリングにより窒化シリコン層を、酸素と窒素とアルゴンの混合ガスによる窒素酸素反応性マグネトロンスパッタリングによりシリコンの酸窒化層を成膜した。シリコンターゲットは、それ自身の導電性を確保するために少量の不純物をドープした。電気的に絶縁性である酸化錫層は、金属錫ターゲットを酸素を含む雰囲気中での酸素反応性DCマグネトロンスパッタリング法により成膜した。実施例3、4、5については、2つのターゲットを用いた酸素あるいは酸素窒素反応性極性反転マグネトロンスパッタリング法(以下反応性DM法)によった。
- 2) スパッタリング雰囲気の全圧は $1\sim8\,\mathrm{mTorre}$ した。

- 3)成膜中の基板温度は200℃までとした。
- 【0070】(銀層の成膜)
- 1)銀または銀にパラジウム、銅、チタンなどを含有させた金属ターゲットをアルゴンガス雰囲気中でスパッタリングした。全圧は $1\sim8\,\mathrm{m\,T\,o\,r\,r\,c}$ した。

(表1の説明)

- 1)層の略号の説明
- ・IZO層:酸化インジウム90重量%、酸化亜鉛10 重量%のターゲットを使用して得た層。
- ・AZO層:酸化亜鉛98重量%、酸化アルミニウム2 重量%のターゲットを使用して得た層。
- ・TBO層:酸化錫98重量%、酸化ビスマス2重量%のターゲットを使用して得た層。
- ・ I T O 層:酸化インジウム 9 5 重量%、酸化錫 5 重量%のターゲットを使用して得た層。
- ・ZrNbO層:酸化ジルコニウム96重量%、酸化ニオブ4重量%のターゲットを使用して得た層。
- ・TNO層:酸化チタン97重量%、酸化ニオブ3重量%のターゲットを使用して得た層。
- ・NMO層:酸化ニオブ98重量%、酸化モリブデン換算2重量%のターゲットを使用(モリブデンは金属粉末で混合した。)して得た層。
- 2) AgPd層は、総量に対して銀を99.6重量%パラジウムを0.4重量%含有させた層。AgPdCuは総量に対して銀を98.4重量%、パラジウムを0.8%、銅を0.8%含有させた層。AgPdTiは総量に対して銀を99.0重量%、パラジウムを0.5%、チタンを0.5%含有させた層。
- 3) SiN層、SiNO層: それぞれシリコンの窒化物層、酸窒化物層。
- 4)()内の数値は厚みで、単位は透光性電磁波遮断膜はnm、粘着層および樹脂フィルムはμmである。層は、上から下に積層順に記載されている。

【0071】(サンプルの評価)

- 1) 耐湿熱試験:温度60℃、湿度90%に維持して目視でヒロック、曇りなどの発生の程度や発生時間を調べた。
- 2) ピンホール欠点レベル(目視検査)
- ◎:1個/100cm²以下
- ○:2~5個/100cm²
- △:6~10個/100cm²
- ×:10個/100cm2以上
- 2)シート抵抗:四端子法抵抗計で測定した。
- 3)透過率:分光光度計により測定した。視感度透過率はD65光源による。

【0072】実施例1

2mmの厚みで縦横30cmのソーダライムシリカ組成 のガラス板に、ガラス板/IZ〇層/銀層/IZ〇層/ 銀層/IZ〇層/銀層/IZO層/Sn〇₂層で示され る積層構成(表1の実施例1の欄)の透光性電磁波遮断 膜を被覆した。さらに、透光性電磁波遮断膜の表面に粘 着層を有するPETフィルムを貼りつけ、表面を傷など から保護したサンプル1を作成した。透光性電磁波遮断 膜の各層は、スパッタリングにより表2の実施例1の欄 に示す条件で成膜した。また、得られたサンプル1の性 能特性を表3に示した。ブルー、グリーン、レッドに相 当する450nm、550nm、650nmでの透過率 はいずれも60%以上と高く、近赤外線遮断性能は実用 的に必要とされる性能(20%以下)よりも優れた13 %と低いものであった。また、シート抵抗は、必要とさ れる性能 $(3\Omega/\square$ 以下)よりも小さい1. $9\Omega/\square$ で あった。耐湿熱性は、必要とされる1000時間を越え るものであった。また、誘電体層に帯電防止性の金属酸 化物を用いたので、ピンホール欠点レベルは◎評価であ った。

【0073】 【表1】

===== 例	===== 実施例 1	===== 実施例2	===== 実施例3	===== 実施例4	===== 実施例5
透明基板	板	板	—————— 板	板	板
電磁波遮断膜					
第1誘電体層	I ZO (40)	SiN(20) AZO(20)	ITO(40)	TBO(40)	AZO(41)
第1銀層	AgPd(11)	AgPdTi (11)	AgPd(11)	AgPdCu(11)	AgPd(11)
第2誘電体層	IZO (79)	AZO(31) SiN(20) AZO(30)	ITO(78)	TBO(40)	AZO(78)
第2銀層	AgPd(11)	AgPdTi (14)	AgPd (14)	AgPdCu(14)	AgPd (14)
第3誘電体層	IZO (78)	AZO(28) SiN(20)	ITO(60) SiNO(18)	TBO(79)	AZO(79)
		AZO(30)			

		IZO(20) SnO ₂ (16)	AZO(16)) SiN(20	ITO(24))) SiNO(1	AgPdCu(11) TBO(18) 2) SiNO(18) 0.012	AZO(37)
	属酸化物層の 比抵抗 (Ωcm)		V. VJ4	0.0021	V.VIZ	v. v.j
	粘着層 樹脂フィルム	PET (100)	TAC (75)	PET (100)	PET (100)	(100) PET (50)
[0074]				【表2		
	例 帯電	===== 防止性金属 物層の成腸	Tion Ti	===== 層の成膜	=======	
	(重	組成	雰囲気 Ar:0 ₂	組成 (重量%) 表面 抵抗	$Ar:O_2:N_2$	
				(Ω/□)		_
		90.0 0 10.0 024	97:3	Sn <0.005	2:98:0	
	Al	0 96.0 20 ₃ 4.0 021		B Si 0.68	60:0:40	
		$0_{2} 0_{3} 95.0$ $0_{2} 5.0$ 0020		B Si 0.68	50:10:40	
	Bi	0 ₂ 98.0 ₂ 0 ₃ 2.0 052	98:2 0	Al Si	55: 5:40	
	0.	20 ₃ 2.0		_	_	
	<	0.005		Al Si 0.55	50:10:40	
	比較例2 Zn <	100.0 0.005	3:97		_	
		0.005		_	_	==
[0075]				【表3		
		実施例			比較例 5 1	
	 透過率(%) 450 n m	66	72 70	69	71 65	64 70

	550 n m	70	74	70	70	72	66	65	72
	650 n m 視感度 (D65)	62	69 71	65 68	65 68	68 71	64 64	63	68 70
	近赤外(850nm		15	18	18	14	22	64 23	70 21
	判定	0	©	0	0	©	Δ	Δ	∠ 1
	 シート抵抗 (Ω/□)	1.9	1.8	2.0	2.0	1.7	2.6	2.5	2.6
	ーーーーー ピンホール 発生レベル		 ⊚	©	©	©	×	×	×
	耐湿熱 性 (Hr) 1920	2040 — —	2040	3624 	1920 	720 	576 	62 4
	総合判定	0	© 	0	© 	© ====	×	×	×
[0076]					 【表				
	————— 例	 実施例6		実施例7	実施例	——— 列8	 実施例9		
	透明基板	板		板		板	板		
	電磁波遮断膜								
	第1誘電体層	ZrNb0(40	0)	SiN(20) TNO(20)	TNO(4	0)	NMO(38)		
	第1銀層	AgPd(11))	AgPdTi (11)	AgPd(11)	Ag (11)		
	第2誘電体層	ZrNb0(79	9)	TNO(30) SiN(20) TNO(30)	TNO(7	(8)	NMO(40)		
	第2銀層	AgPd(11))	AgPdTi (13)	AgPd(12)	Ag (13)		
		ZrNb0(7	7)	TNO(29) SiN(20) TNO(30)	TNO(7	8)	NMO(79)		
		AgPd(11) ZrNb0(20 SiN(16)		AgPdTi (11) TNO(16) SiN(20)		11) 6)	Ag(11) NMO(20) SiNO(18)		
	帯電防止性金 属酸化物層の 比抵抗 (Ωcm)			0.04	0.04		0.09		
	 粘着層 樹脂フィルム	(100) PET (50)		(100) PET (100)	(10 PE (7	Т	(100) PET (100)		
[0077]	=====	====	==	=====	==== 【表		====		
		==== 防止性金 物層の成	属	===== ;	■=== 層の成脈		====		
	(重量	組成 1%)		雰囲気 :0 ₂ (重:	組成 量%)		雰囲気 r:0 ₂ :N ₂		

ā	長面抵抗		表面抵抗	亢	
	(Ω/□)	(容量%)	$(\Omega/[$	□)	(容量%)
	70 00 0	00 . 2	 В	 Si	60:0:40
実施例6	Zr0 ₂ 98.0		_	51	60:0:40
	Nb_2O_5 2.0		0.68		
	0.11				
実施例7	TiO_2 97.0	98:2	В	Si	60:0:40
	Nb_2O_5 3.0		0.68		
	0.08				
実施例8	TiO ₂ 97.0	98:2	_		
	Nb_2O_5 3.0				
	0.08				
実施例9	Nb_2O_5 98.	0 98:2	A1	Si	55 : 5 : 40
	Mo金属(MoO	2換算2.0)	0.55		
	0.2				
		=====	=====	===	

【0078】 【表6】

特性 実施例 7 8 透過率(%) 72 72 69 450 n m 68 76 70 550 n m 75 70 650 n m 66 70 71 67 視感度 (D65) 68 73 74 68 近赤外透過率 15 14 16 17 850 n m (%) 判定 0 0 0 シート抵抗 1.9 2.0 1.9 (Ω/\Box) 0 ピンホール O 0 0 発生レベル 耐温熱性 (Hr) 2424 3624 2376 1896 総合判定 0 0 \circ

【0079】実施例2~実施例9

実施例1とは、透光性電磁波遮断膜の積層構成と樹脂フィルムのいずれかまたは両方を変えたサンプル2~9を作成(積層構成を表1、表4に示す)し、実施例1と同じ方法により評価した結果を表3、表6に示す。また、これらのサンプルの透光性電磁波遮断膜の成膜方法を表2に示した。表3、表6に示すように、可視域で高透過で、かつ赤外線対して低透過の特性を有する透光性電磁波フィルタが得られたことが分かる。これらの電磁波フ

ィルタは、シート抵抗が2Ω/□以下の低抵抗であり、 優れた電磁波遮断性能を有するものであった。また、ピンホールレベルが低く耐湿熱性が大きく、実用的に有用 な電磁波フィルタであることが分かった。

[0080]

【表7】

	比較例1	比較 例 2	比較例3
透明基板	カ [*] ラス 板	カ [*] ラス 板	がうス板
電磁波遮断膜			
第1誘電体層	SiN(16)	ZAO (40)	SnO_2 (40)
	ZnO (20)		
第1銀灣	AgPd (9)	Ag(11)	Ag (11)
第2誘軍体層	ZAO (31)	ZAO (79)	SnO ₂ (79)
	SiN(20)		
	ZnO (30)		
第2銀層	AgPd(11)	Ag(14)	Ag (14)
第3誘氧体層	ZnO(28)	ZAO (78)	SnO ₂ (79)
	SiN(20)		
	ZnO(30)		
第3銀層	AgPd (9)	Ag(11)	Ag (11)
第4誘電体層	Zn0(16)	ZAO (35)	SnO ₂ (36)
	SiN(20)		
誘電体層の	絕縁性	絶縁性	絶縁性
電気特性			
 粘齊層	(50)	(50)	(50)
樹脂フィルム	PET	PET	PET
	(50)	(100)	(100)

【0081】比較例1

表7に示す積層構成の透光性電磁波遮断膜を有するフィルタを作成した。この透光性電磁波遮断膜の各層の成膜法を表2に示す。得られた比較サンプル1の評価結果を表3に示した。比較サンプル1の透光性電磁波遮断膜の誘電体層は電気絶縁性であるため、マイクロアーキングが成膜中に多発し、誘電体層にピンホールが多数発生し、良好な外観が得られなかった。また、耐湿熱性試験では、ピンホールの部分から劣化が急速に進行した。

【0082】比較例2

表7に示す積層構成の透光性電磁波遮断膜を有するフィルタを作成した。この透光性電磁波遮断膜の各層の成膜法を表2に示す。得られた比較サンプル2の評価結果を表3に示した。比較サンプル2の透光性電磁波遮断膜の誘電体層は電気絶縁性であるため、誘電体層にピンホールが多数発生し、良好な外観が得られなかった。また、このピンホールが発生したために、耐湿熱性評価試験ではそこを起点として劣化が早い時間に生じた。

【0083】比較例3

表7に示す積層構成の透光性電磁波遮断膜を有するフィルタを作成した。この透光性電磁波遮断膜の各層の成膜法を表2に示す。得られた比較サンプル3の評価結果を表3に示した。比較サンプル3の透光性電磁波遮断膜の誘電体層は電気絶縁性であるため、マイクロアークングが成膜中に多発し、誘電体層にピンホールが多数発生し、良好な外観が得られなかった。比較例2と同様に耐湿熱性試験で良好な特性を示さなかった。

【0084】実施例10

誘電体層を構成する帯電防止性金属酸化物層の比抵抗が 積層体のピンホール発生に与える影響を調べた。表8に 示す透光性電磁波遮断膜の誘電体層に種々の金属酸化物 を用いてサンプルを作成した。表9には、誘電体層を構 成する金属酸化物層、その層を成膜するための出発原料 (スパッタリングターゲット)、成膜中に観察されたマ イクロアーキング発生頻度、得られた積層体のピンホー ル密度をまとめて示した。

[0085]

【表8】

透明基板	板	
第1誘電体層		$40\mathrm{nm}$
第1銀層 (PdO.	5重量%含有)	11nm
第2誘電体層		79 n m
第2銀層(PdO.	5重量%含有)	$14\mathrm{nm}$
第3誘電体層		78 n m
第3銀層(PdO.	5重量%含有)	13 n m
第4誘電体層		$36\mathrm{nm}$

【0086】金属酸化物層をその金属酸化物をターゲットとして少量の酸素を含むガスでスパッタリングして比抵抗が小さい金属酸化物層としたとき、成膜中にターゲットや基板近傍でマイクロアーキングが生じるのが抑制され、これにより発生するピンホールの数が少なくなることが認められた。一方ターゲットを金属とする場合は、その透明な金属酸化物層とするには、スパッタリング雰囲気中に多量の酸素を必要とし、これにより成膜される誘電体層は大きな比抵抗、あるいは電気絶縁性の金属酸化物層になってしまうことが分かった。

【 0 0 8 7 】 (バリア層についての実験) 実施例 1 1

実施例10で得られる透光性電磁波遮断膜の積層体で、銀層をパラジウムを0.5重量%含有させたものとし、この積層体に第4誘電体層であるAZOの表面の半分の厚みをバリア層に置換して、第4誘電体層を帯電防止性のAZO層と種々のバリア層の積層構成としたサンプル71~74を作成した。これらのサンプルを樹脂フィルムを貼りつけない状態で、温度90℃、相対湿度60%の高温環境試験を行った。目視により銀の凝集欠点等の発生が認められた時間を観測し、その結果を表7に示した。

【0088】 【表9】

誘電体層	(重量%)	_	秀電体層 の比抵抗	発生頻度	積層体の 密	評価 度
	雰囲気(0 ₂ 容量%)		$(\Omega c m)$) (回/分)	(個/100)cm ²)
$SnO_2 : Bi$	 SnO ₂ 98 Bi ₂ O ₃ 2 の混合物焼結体	 焼結体D(C 0.5	23	2	0
AZO	ZnO 95 Al ₂ O ₃ 5 の混合物焼結体	焼結体DC	0.2	11	1	0
TNO	TiO ₂ 97 Nb ₂ O ₅ 3 の混合物焼結体	焼結体DC	0.01	6	0.1	0
ZrNb0	ZrO ₂ 98 Nb ₂ O ₅ 2 の混合物焼結体	焼結体DI	VI 0.01	0	0	©

====	========	=====	====	====	=====	
ZnO	Zn	反応性DC	絶縁性	>200	36	×
AZO	Zn95A15の合金	反応性DC	絶縁性	96	17	\times
	の混合物焼結体					
I ZO	In_2O_3 90 ZnO 10	焼結体DM	0.05	5	0.2	\bigcirc

【0089】表10から、バリア層を設けることは、誘電体層の90℃という高温の耐湿熱性を顕著に向上させることが分かる。バリア層を設けることにより、大気中の硫黄酸化物や硫化水素など銀層に好ましくない不純物成分や、用いる樹脂フィルムの粘着層の中に存在する塩

素や硫黄などの不純物を含んだ溶剤などが、銀層に浸透するのを防止し、銀層を保護することが分かった。

【0090】 【表10】

==:		=====	======	======	
	層			反応	銀凝集欠点発生(時間)
71	 窒化		 反応性DC	 窒素	1008
72	酸窒化		反応性DC	窒素と酸素	1512
73	酸窒化		反応性DM	窒素と酸素	1680
74	酸化錫	錫	反応性DC	酸素	504
75	なし				72
					

[0091]

【発明の効果】本発明の透光性電磁波遮断膜は、誘電体層と銀層とがこの順に交互に繰り返した積層体とし、誘電体層を550nmの波長における屈折率が1.6~2.7の帯電防止性の金属酸化物で構成したので、可視域での透過率が高い電磁波遮断性フィルタとすることができると同時に、誘電体層をスパッタリングで成膜するに際して層が帯電することが抑制されるので、マイクロアークの発生が抑制され、これによりピンホールの発生が少ない。

【0092】また、誘電体層のうち、少なくとも最表面の誘電体層を、帯電防止性金属酸化物層と窒化シリコン、酸窒化シリコンあるいは酸化錫からなるバリア層との積層体とすることにより成膜時に発生するピンホールを抑止し、透光性電磁波遮断膜の耐湿熱性を向上させ、また不純物の侵入による劣化が防止される。

【0093】本発明の透光性電磁波フィルタの製造方法によれば、誘電体層を構成する金属酸化物層を、表面シート抵抗が所定の抵抗値以下に調整された金属酸化物をターゲットとするアルゴンまたはアルゴンと少量の酸素とを含む減圧した雰囲気内で行うスパッタリングにより成膜するので、ターゲット表面および成膜される金属酸化物層は電気的に絶縁性とならない。これにより、基板表面やスパッタリングターゲットの周辺にスパッタされた膜が付着堆積して、グロー放電プラズマから供給される電荷が溜まることが抑制され、この帯電に起因する微小なプラズマアークが発生することがない。この結果、本発明の透光性電磁波遮断膜には、アーク放電により生じるピンホールの発生が抑制される。

【0094】また、本発明の透光性電磁波フィルタの製造方法によれば、酸素量の少ない雰囲気中で透明な金属

酸化物層とすることができるので、その下の銀層の酸素 プラズマによる電気的および光学的劣化が効果的に抑制 できる。これにより電気的、光学的に性能が優れた電磁 波遮断膜の形成が可能となる。

【0095】さらに、誘電体層を形成するための金属酸化物のターゲットを、1対のマグネトロンスパッタリングカソードに設置して、交互にその極性が反転するようにスパッタリングすれば、よりピンホールの発生を抑制することができる。

【図面の簡単な説明】

【図1】本発明の透光性電磁波フィルタの一実施例の断面図である。

【図2】本発明の透光性電磁波フィルタの他の実施例の 断面図である。

【図3】本発明の電磁波フィルタの使用状態を説明する ための概略断面図である。

【図4】本発明の誘電体層の厚みが可視域の反射特性に 与える影響を説明する図である。

【図5】本発明の誘電体層の厚みが可視域の透過特性に 与える影響を説明する図である。

【符号の説明】

1:透明基板

2:透光性電磁波遮断膜

3:粘着層

4:樹脂フィルム

5:ブスバー

6:透光性電磁波フィルタ

7:プラズマディスプレイ

8:筐体

10:誘電体層

10a:帯電防止性金属酸化物層

10b:バリア層

11:銀層

[図1]

(a)

【図2】

フロントページの続き

Fターム(参考) 4F100 AA17B AA17D AA19B AA19D

AA25B AA25D AA29B AA29D

AA33B AA33D AB24C AB24E

AB40C AB40E AD05B AD05D

AK42 AT00A BA03 BA05

BA07 BA10A BA10C BA10E

EH66 GB08 GB33 GB41 GB90

JD08 JG01B JG01D JG03B

JGO3D JGO5B JGO5D JNO1

JN01A JN18B JN18D YY00B

YYOOC YYOOD YYOOE

4G059 AA01 AC20 EA03 EA18 GA01

GA02 GA04 GA12

5C032 AA02 AA07 EE02 EE03 EF05

5E321 AA46 BB23 GG05 GH01