超并行机器学习与海量数据挖掘

贾冬雨 孙翛然

实验一

命令	想法	Accuracy
train	L2R_L2L0SS_SVC_DUAL	96. 49%
train -w1 1 -w-1 3	不平衡	95. 96%
train -s 4	不同的 svm, MCSVM_CS	96. 45%
train -B 1	增加 bias	96. 46%

⇒由于训练样本中 A 类样 本数量少于非 A 类,我们思考认为调节对不同类别样本的罚值权重或许可以对平衡问题 有所帮助,由于 A 类和非 A 类的比例为 1:3 左右。即对于 A 类问题,罚值权重为 3,非 A 类罚值权重为 1,希望这种方式可以部分解决非平衡问题。然而实验结果告诉我们 并不是这样。

修改liblinear 源代码

- > 修改liblinear源代码,直接输出预测值,而不是分类结果.
- 多修改 liblinear 源代码,使之能够读入两个文件,并在内部 随机的对输入样本进行重排序.
- 今使用MPI多进程方案分别训练每个子问题,制作并行训练。
- minmax 预测方法直接通过多个模型生成预测结果.不需要存储每个模型的中间结果。

最大最小模块化网络

- > 完全先验
- > A类先验,其他随机
- > A类随机,其他先验
- > 引入重叠

因为第二问中随机结果偶然的出现了98%的正确率,所以我们决定实验随机和先验结合的情况。

引入重叠

Boundaries of M³-SVM Using Three Methods

random

Y-axis

Y-axis & overlap*

*overlap means two subsets share the training data along the y-axis

分组与结果

A is split to 3 groups.

[0,46]

[47,61]

[62,63]

B&D is split to 7 groups:

B[0,21]; B[22,27];

B[28,32][42,44];

B[41]; B[60]; B[65];

B[61-64][66-82]D;

C is split to 2 groups:

C[1,8]

C[9,30]

我们用C++ stl 中的map 来统计不同标号的出现数目,并且累加结果。

类别	Accuracy	时间	F1
A 类先验,其他 随机	96.4881%	7.56s	0.926068
A 类随机, 其他 先验	96.1282%	7.24s	0.921407
完全先验	96.7025%	7.45s	0.931236
完全随机	96.1573%	7.36s	0.921207
引入重叠(少)	96.7634%	7.96s	0.932554
引入重叠(多)	96.6866%	9.59s	0.931216

首先,我们把单独标号数目较大者拿出来,单独算作一组,然后把连续的标号分为一组.

我们对边界部分的重叠了200个左右的样本,可以看到升还是了准确率和F1值。当引入重叠较多时,我们重叠了1000个左右的样本,准确率轻微下降了。原因可能是对于引入重叠较多的情况下,子问题规模变大,复杂度上升,线性方法刻画难度上升导致的。而对于少量的重叠,可以较好地处理边界情况而导致准确度上升。

ROC

训练时间分析

类别	第一次执行时间 (s)	第二次执行时间 (s)	第三次执行 时间(s)	二三次平均 时间 (s)
串行(1 个子问 题)	8.98	6.01	6.12	6.065
串行(27 个子问 题)	20.76	16.63	17.16	16.895
并行(随机 27 个 子问题)	13.2	7.336	7.23	7.283

- > 由于我们目前的计算机体系结构,反复命中可以大大提升程序执行效率,因为数据都在内存或者cache里面。每次运行时间可能不一样,第一次时间往往较长,我们采用第二第三次的测试时间平均值分析。
- > 并行化程度来看,在27个子问题的程序中,并行程序的执行速度 大约是串行的两倍,这也许是因为虚拟机仅有两个核的缘故。

LMS & Perceptron

修改了 liblinear 源代码,. 这样只用调用参数 -s 14和 -s 15 就可 以使用 Perceptron和 LMS 分类器.

model 存储方式保持与原来一致,从而保证兼容。

LMS Learning Rule

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla F(\mathbf{x}) \Big|_{\mathbf{X} = \mathbf{X}_k}$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + 2\alpha e(k)\mathbf{z}(k)$$

$$\mathbf{w}(k+1) = \mathbf{w}(k) + 2\alpha e(k)\mathbf{p}(k)$$

$$b(k+1) = b(k) + 2\alpha e(k)$$

Perceptron Learning Rule

$${}_{1}\mathbf{w}^{new} = {}_{1}\mathbf{w}^{old} + e\mathbf{p} = {}_{1}\mathbf{w}^{old} + (t-a)\mathbf{p}$$
$$b^{new} = b^{old} + e$$

Sequential Mode VS Batch Mode

种类	Accuracy
Perceptron Sequential	89.3%
Perceptron Batch	95.7947%
LMS Sequential	88.1%
LMS Batch	93.831%

- > 我们刚开始使用的是Sequential mode,后来发现准确率不高,改用Batchmode 后大大提升了准确率。
- > LMS Sequential 之所以这么低并不全是Sequential mode 决定的,而是由于参数选取不合理,学习系数选取不合理导致了收敛过慢。
- > LMS 比Perceptron 低是因为学习系数选取较小,其收敛不到位导致的,并不是LMS 本身比较差

结果分析

种类	子问题数	Accuracy	时间(s)
LMS	1	93.831%	32.36
Perceptron	1	95.7947%	19.5
LMS(随机)	27	94.4609%	77.8
Perceptron(随机)	27	95.8741%	30.07
LMS(先验)	27	95.6677%	101.57
Perceptron (先验)	27	96.3558%	32.97

- > 先验>随机>单一问题, Perceptron 好于LMS, 这和我们经验中的结果是不一样的。分析肯能有以下几种可能。一是我们的步长选取不合适,导致收敛速度慢或者总是过冲震荡。二是我们选取得迭代次数不够多,三是我们选取的误差上限过大。
- > 时间上Lms 大于同组Perceptron 时间。

迭代次数分析

- 全200次左右,Perceptron 就已经收敛到较好水平。LMS 实际上在1000次时还有降低误差的余地。
- > 可以进一步调大学习系数,来弥补收敛过慢的问题
- > Perceptron 中由于没有学习系数的概念,每次修改可能会对结果影响很大,导致结果不稳定。

MLP分类器

- ⇒ 1个output node
- > 5001维输入
- > 激活函数sigmoid

• The local gradient is given by

$$\delta_j(n) = e_j(n)\varphi_j'(v_j(n)) \tag{4.14}$$

when the neuron j is in the output layer.

• In the hidden layer, the local gradient is

$$\delta_j(n) = \varphi_j'(v_j(n)) \sum_k \delta_k(n) w_{kj}(n)$$
(4.24)

computed recursively from the local gradients of the following layer, back-propagating error

MLP

#]			
类别	任务数	时间	准确率
MLP	1	108.2s	82.52%
MLP 并行随机	27	245.4s	85.21%
MLP 并行先验	27	236.23s	86.35%

- 》然而由于问题是分线性的,一次迭代就要花费数十秒时间,给我们的训练带来很大难度,仅仅迭代10次。
- 少如果全部猜非A,正确率75%,所以提升并不明显,由于训练时间 比较长,我们没有进行次数更多的迭代,另外学习参数的选取也 仅仅是根据结果的人为判断,没有科学的依据,所以准确率不是 很尽如人意。但是更多的迭代次数或许能够带来更高的准确率。