

AD-A104 335

NAVAL SURFACE WEAPONS CENTER DAHLGREN VA  
GLOBAL OCEAN TIDES, PART V. THE DIURNAL PRINCIPAL LUNAR TIDE (O-ETC(U)  
MAY 81 E W SCHWIDERSKI

F/8 8/3

UNCLASSIFIED

NSWC/TR-81-144

NL

101  
AL  
404354



END  
DATE FILMED  
40-811  
DTIC

AD A104335

2200 UNIVERSITY AVENUE

SEATTLE, WASHINGTON

206-467-1234

206-467-1235

206-467-1236

206-467-1237

206-467-1238

206-467-1239

206-467-1240

206-467-1241

206-467-1242

206-467-1243

206-467-1244

206-467-1245

206-467-1246

206-467-1247

206-467-1248

206-467-1249

206-467-1250

206-467-1251

206-467-1252

206-467-1253

206-467-1254

206-467-1255

206-467-1256

206-467-1257

206-467-1258

206-467-1259

206-467-1260

206-467-1261

206-467-1262

206-467-1263

206-467-1264

206-467-1265

206-467-1266

206-467-1267

206-467-1268

206-467-1269

206-467-1270

206-467-1271

206-467-1272

206-467-1273

206-467-1274

206-467-1275

206-467-1276

206-467-1277

206-467-1278

206-467-1279

206-467-1280

206-467-1281

206-467-1282

206-467-1283

206-467-1284

206-467-1285

206-467-1286

206-467-1287

206-467-1288

206-467-1289

206-467-1290

206-467-1291

206-467-1292

206-467-1293

206-467-1294

206-467-1295

206-467-1296

206-467-1297

206-467-1298

206-467-1299

206-467-1300

206-467-1301

206-467-1302

206-467-1303

206-467-1304

206-467-1305

206-467-1306

206-467-1307

206-467-1308

206-467-1309

206-467-1310

206-467-1311

206-467-1312

206-467-1313

206-467-1314

206-467-1315

206-467-1316

206-467-1317

206-467-1318

206-467-1319

206-467-1320

206-467-1321

206-467-1322

206-467-1323

206-467-1324

206-467-1325

206-467-1326

206-467-1327

206-467-1328

206-467-1329

206-467-1330

206-467-1331

206-467-1332

206-467-1333

206-467-1334

206-467-1335

206-467-1336

206-467-1337

206-467-1338

206-467-1339

206-467-1340

206-467-1341

206-467-1342

206-467-1343

206-467-1344

206-467-1345

206-467-1346

206-467-1347

206-467-1348

206-467-1349

206-467-1350

206-467-1351

206-467-1352

206-467-1353

206-467-1354

206-467-1355

206-467-1356

206-467-1357

206-467-1358

206-467-1359

206-467-1360

206-467-1361

206-467-1362

206-467-1363

206-467-1364

206-467-1365

206-467-1366

206-467-1367

206-467-1368

206-467-1369

206-467-1370

206-467-1371

206-467-1372

206-467-1373

206-467-1374

206-467-1375

206-467-1376

206-467-1377

206-467-1378

206-467-1379

206-467-1380

206-467-1381

206-467-1382

206-467-1383

206-467-1384

206-467-1385

206-467-1386

206-467-1387

206-467-1388

206-467-1389

206-467-1390

206-467-1391

206-467-1392

206-467-1393

206-467-1394

206-467-1395

206-467-1396

206-467-1397

206-467-1398

206-467-1399

206-467-1400

206-467-1401

206-467-1402

206-467-1403

206-467-1404

206-467-1405

206-467-1406

206-467-1407

206-467-1408

206-467-1409

206-467-1410

206-467-1411

206-467-1412

206-467-1413

206-467-1414

206-467-1415

206-467-1416

206-467-1417

206-467-1418

206-467-1419

206-467-1420

206-467-1421

206-467-1422

206-467-1423

206-467-1424

206-467-1425

206-467-1426

206-467-1427

206-467-1428

206-467-1429

206-467-1430

206-467-1431

206-467-1432

206-467-1433

206-467-1434

206-467-1435

206-467-1436

206-467-1437

206-467-1438

206-467-1439

206-467-1440

206-467-1441

206-467-1442

206-467-1443

206-467-1444

206-467-1445

206-467-1446

206-467-1447

206-467-1448

206-467-1449

206-467-1450

206-467-1451

206-467-1452

206-467-1453

206-467-1454

206-467-1455

206-467-1456

206-467-1457

206-467-1458

206-467-1459

206-467-1460

206-467-1461

## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>NSWC TR 81-144 ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2. GOVT ACCESSION NO.<br><i>(A) A104</i> | 3. RECIPIENT'S CATALOG NUMBER<br><i>335</i>                                                         |
| 4. TITLE (and Subtitle)<br>GLOBAL OCEAN TIDES, PART V:<br>THE DIURNAL PRINCIPAL LUNAR TIDE ( $O_1$ ),<br>ATLAS OF TIDAL CHARTS AND MAPS                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | 5. TYPE OF REPORT & PERIOD COVERED<br>Final                                                         |
| 7. AUTHOR(s)<br>E. W. Schwiderski                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | 8. CONTRACT OR GRANT NUMBER(s)                                                                      |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Naval Surface Weapons Center (K104)<br>Dahlgren, Virginia 22448                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>61152N/R0000-1<br>ZR000-01-01/1K01AA |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Chief of Naval Material<br>Department of the Navy<br>Washington, DC 20360                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | 12. REPORT DATE<br>May 1981                                                                         |
| 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 13. NUMBER OF PAGES<br>85                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 15. SECURITY CLASS. (of this report)<br>UNCLASSIFIED                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                          |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                                                     |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                                                     |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                                                     |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Ocean Tides and Currents<br>Numerical Modeling<br>Tidal Charts                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                     |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br><br>In Part I (Schwiderski, 1978a) of this report, a unique hydrodynamical interpolation technique was introduced, extensively tested, and evaluated in order to compute partial global ocean tides in great detail and with a high degree of accuracy. This novel method has been applied to construct the diurnal principal lunar ( $O_1$ ) ocean tide with a relative accuracy of better than 5 cm anywhere in the open oceans. The resulting tidal amplitudes and phases are tabulated on a |                                          |                                                                                                     |
| (see back)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                                                     |

**UNCLASSIFIED**

**SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)**

(20)

$1^\circ \times 1^\circ$  grid system in an atlas of  $42^\circ \times 71^\circ$  overlapping charts covering the whole oceanic globe. A corresponding atlas of global corange and cotidal maps is included to provide the reader with a quick general overview of the major tidal phenomena. The specifying hydrodynamical parameters of the model are listed along with quoted sources of empirical tide data, and significant tidal features are explained and discussed. The diurnal  $O_1$  ocean tide is found to resemble closely the diurnal  $K_1$  tide and qualitatively also the semidiurnal  $S_2$  and  $M_2$  tides which were presented in Parts IV, III, and II of this report, respectively.

**UNCLASSIFIED**

**SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)**

## FOREWORD

In Part I of this report (Schwiderski, 1978a), a combined hydrodynamical-empirical method was introduced to compute numerically harmonic partial tides in the world oceans with an accuracy of better than 5 cm, which is needed in various military and civil applications of today. In this report, the computed diurnal principal lunar tide ( $O_1$ ) is displayed in an atlas of tabulated tidal charts and plotted corange and cotidal maps.

This project was supported by the Naval Surface Weapons Center's Independent Research Fund and by a grant from the National Geodetic Survey of the Department of Commerce/NOS/NOAA.\* It is the author's most pleasant obligation to acknowledge the sustained and generous sponsorship of Mr. R. T. Ryland, Jr., Head of the Strategic Systems Department, his Associate, Mr. R. J. Anderle, and Mr. D. R. Brown, Jr., Head of the Space and Surface Systems Division. Many critical and stimulating suggestions were gratefully received from the author's colleagues, Drs. C. J. Cohen, C. Oesterwinter, and B. Zondek. The involved computer programs were all prepared by Mr. L. T. Szeto in a competent and effective manner.

The date of completion was May 20, 1981.

Released by



R. T. RYLAND, JR., Head  
Strategic Systems Department



\*National Ocean Survey (NOS)  
National Oceanographic and Atmospheric Administration (NOAA)

## CONTENTS

|                                                                                                 | Page |
|-------------------------------------------------------------------------------------------------|------|
| FOREWORD.....                                                                                   | iii  |
| ABSTRACT .....                                                                                  | vii  |
| 1. INTRODUCTION .....                                                                           | 1    |
| 2. O <sub>1</sub> OCEAN-TIDE PARAMETERS .....                                                   | 3    |
| 3. O <sub>1</sub> OCEAN-TIDE FEATURES.....                                                      | 5    |
| 4. CONCLUSIONS .....                                                                            | 8    |
| REFERENCES .....                                                                                | 9    |
| APPENDIXES                                                                                      |      |
| A. ATLAS OF 1° x 1° O <sub>1</sub> OCEAN-TIDE AMPLITUDE AND PHASE CHARTS FOR<br>42° x 71° AREAS |      |
| B. ATLAS OF GLOBAL O <sub>1</sub> OCEAN-TIDE CORANGE AND COTIDAL MAPS                           |      |

## ABSTRACT

In Part I (Schwiderski, 1978a) of this report, a unique hydrodynamical interpolation technique was introduced, extensively tested, and evaluated in order to compute partial global ocean tides in great detail and with a high degree of accuracy. This novel method has been applied to construct the diurnal principal lunar ( $O_1$ ) ocean tide with a relative accuracy of better than 5 cm anywhere in the open oceans. The resulting tidal amplitudes and phases are tabulated on a  $1^\circ \times 1^\circ$  grid system in an atlas of  $42^\circ \times 71^\circ$  overlapping charts covering the whole oceanic globe. A corresponding atlas of global corange and cotidal maps is included to provide the reader with a quick general overview of the major tidal phenomena. The specifying hydrodynamical parameters of the model are listed along with quoted sources of empirical tide data, and significant tidal features are explained and discussed. The diurnal  $O_1$  ocean tide is found to resemble closely the diurnal  $K_1$  tide and qualitatively also the semidiurnal  $S_2$  and  $M_2$  tides which were presented in Parts IV, III, and II of this report, respectively.

## 1. INTRODUCTION

Part I of this report (Schwiderski, 1978a) introduced a unique combination of hydrodynamical and empirical methods to model detailed ocean tides with a relative component accuracy of better than 5 cm anywhere in the open oceans. This enormous accuracy is well above minimum requirements set by, for instance, the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) to map the geoid at sea by satellite altimetry to within 10 cm. The following features of this unique hydrodynamical interpolation model made the achievement of this accuracy possible.

- a. A spherically graded  $1^\circ \times 1^\circ$  grid system is set up in connection with a corresponding  $1^\circ \times 1^\circ$  bathymetry to assure a sufficient resolution of all important tidal phenomena.
- b. The bathymetry of the gridwise, simply connected ocean basin is hydrodynamically defined (Schwiderski, 1978c) by appropriate modifications of earlier realistic depth data collections. The hydrodynamical redefinition was needed in order to model the well-known strong distortion and retardation effects of shallow continental shelves, narrow ocean ridges or island chains, and other significant bottom irregularities.
- c. The Boussinesq substitution of the turbulent Reynolds stresses is applied in the form of eddy dissipation with a novel physically meaningful eddy viscosity that depends linearly on the lateral grid-cell area and, hence, directly on the ocean depth.
- d. The linear law of bottom friction is introduced with a bottom-friction coefficient depending linearly on the bottom grid-cell area which is independent of the ocean depth. In boundary cells, the otherwise constant friction coefficient is subjected to an indirect cellwise adjustment in order to permit a consistent hydrodynamical interpolation (see h., below) of empirical tide data known from tide gauge stations at continental shores, islands, or other shallow-ocean bottom irregularities.
- e. The effects of the terrestrial tide and the oceanic tidal load are included as simple second-order approximations in the sense of Love and Accad and Pekeris (1978).
- f. The Hansen-Zahel (Zahel, 1970 and 1977; Estes, 1977) finite differencing technique is modified by a new differencing scheme in time which improved decay, dispersion, and stability characteristics of the numerical procedure and facilitates the simple indirect adjustment of the bottom-friction coefficient in the hydrodynamical interpolation technique (see d. and h.).
- g. At land-ocean cell walls, the conditions of no-flow across and free-slip along the boundaries are enforced. The no-flow condition is subsequently relaxed by allowing controlled periodic inflows and outflows over the mathematically assumed boundaries. This allowance redefines indirectly more realistic shorelines in order to further improve the consistency of the hydrodynamical interpolation of empirical data (see d. and h.).

h. A unique hydrodynamical interpolation technique is introduced which incorporates into the theoretical model empirical tidal constants collected from over 2 000 tide-gauge stations around the world in a hydrodynamically consistent fashion (see d., f., and g., above).

i. A new higher order approximation of Arctic Ocean tides is used, that is described in Schwiderski (1981c).

With these features, the new model was successfully applied to chart the semidiurnal principal lunar ( $M_2$ ) ocean tide with the desired accuracy. The technique and accuracy of the model were extensively described and discussed in Part I of this report as well as in subsequent journal publications and symposia presentations by the author (Schwiderski 1978a, b; 1979a, b, c, d, e; and 1980).

The same hydrodynamical interpolation technique has been applied to chart the diurnal principal lunar ( $O_1$ ) ocean tide with the same relative accuracy as  $M_2$ . Again, it must be emphasized that the enormous accuracy achieved over all open ocean regions diminishes somewhat near coastal areas where known empirical data are marginal in quantity and/or quality.

A complete listing of all sources of empirical ocean tide data, which were interpolated into the  $O_1$  tidal charts, is presented in Appendix A. In the meantime, Section 2 of this report lists the significant hydrodynamical input parameters that specified the constructed  $O_1$  ocean tide. The major features of the global  $O_1$  tide are discussed in Section 3. A complete numerical display is presented in Appendix A where all tidal amplitudes and phases are gridwise tabulated in map-like charts. Corange (equi-amplitude) and cotidal (equi-phase) maps of the  $O_1$  ocean tide are plotted in Appendix B.

## 2. O<sub>1</sub> OCEAN-TIDE PARAMETERS

The astronomical diurnal principal lunar (O<sub>1</sub>) equilibrium tide  $\eta$  (or tide-generating potential  $G\eta$ ; see Schwiderski, 1978a) at the geographical point ( $\lambda, \phi$ ) and instant ( $Y, D, t$ ) is determined by

$$\eta = K \sin 2\phi \cos(\sigma t + X + \lambda) \quad (1)$$

where

$G$  = 9.81 m/sec<sup>2</sup> earth gravity acceleration

$\lambda$  = longitude (east in rad)

$\phi$  = latitude (north in rad)

$Y$  ( $\geq 1975$ ) = year number

$D$  = day number of year  $Y$  ( $D = 1$  for January 1)

$t$  = universal standard time of day  $D$  (in sec)

$K$  = 0.100 574 m = O<sub>1</sub> equilibrium tide amplitude

$\sigma$  = 0.67598  $\cdot 10^{-4}$  sec<sup>-1</sup> = O<sub>1</sub> tide frequency

$X$  =  $\pi(h_O - 2s_O - 90)/180$  = O<sub>1</sub> astronomical argument (in rad)

$h_O$  =  $279.696\ 68 + 36\ 000.768\ 930\ 485T + 3.03 \cdot 10^{-4} T^2$   
= mean longitude of the sun relative to Greenwich midnight of day  $D$  (in deg)

$s_O$  =  $270.434\ 358 + 481\ 267.883\ 141\ 37T - 0.001\ 133T^2 + 1.9 \cdot 10^{-6} T^3$   
= mean longitude of the moon relative to Greenwich midnight of day  $D$  (in deg)

$T$  = [27 392.500 528 + 1.000 000 035 6D/36 525]

$D$  =  $D + 365(Y - 1975) + \text{Int}[(Y - 1973)/4]$

Int[x] = integral part of x

The corresponding instantaneous ocean partial tide (Schwiderski, 1978a) is determined by

$$\xi = \xi \cos(\sigma t + X - \delta), \quad (2)$$

where the local harmonic constants

$\xi$  =  $\xi(\lambda, \phi)$  = O<sub>1</sub> ocean tide amplitude (in m)

and

$\delta$  =  $\delta(\lambda, \phi)$  = O<sub>1</sub> ocean tide Greenwich phase (in rad)

must be determined, say, by linear interpolation in the tidal charts of Appendix A.

A simple second-order approximation in the sense of Love and Accad and Pekeris (see Part I, Schwiderski, 1978a, 1979c, and 1980; and Accad and Pekeris, 1978) yields

$$\xi^e \approx 0.612\eta \text{ and } \xi^{eo} \approx -0.0667\xi, \quad (3)$$

i.e., the corresponding terrestrial tide  $\xi^e$  and the earth dip  $\xi^{eo}$  (yielding) under the oceanic tidal load  $\xi$ , respectively. A more elaborate and probably slightly more accurate earth dip  $\xi^{eo}$  may be computed by using Farrell's Green function (see Farrell, 1972 and 1973; and Schwiderski, 1980). In linear superposition, one finds the corresponding instantaneous geocentric partial  $O_1$  tide:

$$\xi^o = \xi + \xi^e + \xi^{eo}. \quad (4)$$

A detailed description of the hydrodynamical-empirical model to compute the ocean tidal amplitudes  $\xi$  and phases  $\delta$  (listed in Appendix A) was given in Schwiderski (1978a, 1979c, d, and 1980). In particular, all model input parameters such as the dimensionless eddy coefficient  $\epsilon$  (Eq's. 103 and 123), the bottom-friction parameter  $b$  (Eq's. 4a and b), and the differencing parameters  $\kappa$  and  $\bar{\kappa}$  (Eq's. 64 and 72) were all specified in Schwiderski (1978a) (referenced equations). These parameters were determined for  $M_2$  by extensive trial-and-error computations and remained unchanged for the construction of  $O_1$ .

In the computation of the  $O_1$  tide model, the following mode-dependent parameters were used (see referenced equations in Schwiderski, 1978a):

- a. The time step  $\Delta t$  (Eq's. 64, 123):

$$\Delta t = 193.6443 \text{ sec} \quad (5)$$

- b. The hydrodynamical interpolation control limits,  $k_1$ ,  $k_2$ , and  $k_3$  (Eq's. 88, 89, 94, 97, and 99)

$$k_1 = 0.025, k_2 = 0.040, k_3 = 0.5. \quad (6)$$

It may be noted that the input parameters  $k_1$  and  $k_2$  of Equations 6 are the same as for the diurnal  $K_1$  component, but different from those values used for the semidiurnal  $S_2$  and  $M_2$  species (see Parts IV, III, and II).

### 3. O<sub>1</sub> OCEAN-TIDE FEATURES

The entire constructed O<sub>1</sub> ocean tide is gridwise displayed in map-like amplitude and phase tables in Appendix A. The 42° x 71° charts cover the whole globe north of colatitude 169° (Antarctica) in three zones: a northern zone N from 0° to 71° colatitude, a middle zone M from 48° to 118° colatitude, and a southern zone S from 98° to 168° colatitude. The overlapping geographical areas of the tidal charts have been chosen to provide a worldwide coverage for special applications and to allow the reader to scan the large amplitude and phase charts together in order to evaluate their quality and visualize the important tidal features. In addition, a generally superficial overview of some tidal features can be recognized by inspecting the more schematically plotted corange and cotidal maps provided in Appendix B.

For an easy evaluation of the tidal charts in Appendix A, all hydrodynamically interpolated empirical tidal amplitudes and phases have been visibly marked by subbars for all shore data and subbrackets for all near-shore deep-sea input constants. Furthermore, the charts display the approximate locations of distant off-shore deep-sea stations by subtildes under the computed amplitude and phase data. The corresponding empirical data, which were excluded from hydrodynamical interpolation (see Sect. 1 and Schwiderski, 1978a, 1979d, and 1980), are listed and compared with the modeled data in Tables 1, 2, and 3. Finally, the approximate geographical locations of the important amphidromic points of zero amplitudes are marked by a circled  $\otimes$ .

The tidal charts and maps permit the viewer to follow the tidal waves, that is the high water fronts (crests), in forward (or backward) direction, for instance, on their rotation around the amphidromic points. In the tidal phase charts of Appendix A, it is best to start from the prominently visible 0° = 360° or 100° cotidal lines. Since the Greenwich phases specify the time lags (in degrees: 15° ≈ 1 hour) of the tidal crests relative to the cresting time of the corresponding equilibrium tide along Greenwich meridian, one gathers a vivid impression of the significant global and local tidal phenomena.

By following the tidal waves on their periodic rotations, one finds these waves passing through the specially marked stations in empirically correct time and with the correct height. In fact, all over the globe over 2 000 tidal phases and 2 000 amplitudes are coherently integrated. This is particularly impressive for the charts of the Pacific Ocean, where the empirical data from so many clustered and scattered island stations fit smoothly into the surrounding computed tides. From the smoothness features of erratically interpolated tidal data (see Parts I and II), one concludes that this result is not an artifact of the interpolation applied but constitutes a vivid manifestation of the excellent compatibility of both the empirical and hydrodynamical procedures combined.

On the basis of this observation, it can again (see Schwiderski, 1978a, b; 1979a, b, d, e; 1980, and 1981a, b) be estimated that the O<sub>1</sub> tidal charts permit a tide prediction with a uniform accuracy relative to M<sub>2</sub> of better than 5 cm anywhere in the open oceans. Naturally, near rough ocean basin reliefs (e.g., Arctic and Antarctic shores), where empirical tide (and depth) data are marginal in quality and quantity, a somewhat lesser accuracy must be expected. The estimated

accuracy of the computed  $O_1$  tide is, of course, fully validated by all 32 empirical tide data from distant off-shore deep-sea tide gauge stations, which are listed along with the computed data in Tables 1, 2, and 3. The differences (not necessarily errors) range from 0 to 1 cm in amplitudes and  $0^\circ$  to  $11^\circ$  (44 minutes) in phases and thus verify the estimated prediction accuracy. In this connection one may recall the accuracy evaluation of the deep-sea empirical data presented in Part IV of this report.

Table 1. North Atlantic Ocean Deep-Sea Empirical and Modeled  $O_1$  Tides

| LONG W | LAT N  | EMP $\xi$ | MOD $\xi$ | $\Delta\xi$ | EMP $\delta$ | MOD $\delta$ | $\Delta\delta$ | IAPSO NR | SOURCES |
|--------|--------|-----------|-----------|-------------|--------------|--------------|----------------|----------|---------|
| 13°51' | 58°16' | 7         | 6         | -1          | 16           | 13           | -3             | 1.1.37   | C       |
| 24°43' | 62°50' | 6         | 6         | 0           | 75           | 64           | -11            | 1.1.29   | C       |
| 28°46' | 60°12' | 5         | 5         | 0           | 66           | 66           | 0              | 1.1.30   | C       |
| 29°58' | 57°01' | 5         | 4         | -1          | 66           | 58           | -8             | 1.1.31   | C       |
| 30°10' | 53°39' | 3         | 3         | 0           | 57           | 51           | -6             | 1.1.32   | C       |
| 25°06' | 53°31' | 4         | 4         | 0           | 19           | 25           | +6             | 1.1.33   | C       |
| 20°00' | 53°39' | 5         | 5         | 0           | 9            | 9            | 0              | 1.1.34   | C       |
| 28°11' | 48°45' | 3         | 2         | -1          | 26           | 22           | -4             | 1.1.38   | C       |
| 28°09' | 45°21' | 2         | 2         | 0           | 10           | 8            | -2             | 1.1.39   | C       |
| 27°57' | 41°25' | 2         | 2         | 0           | 342          | 343          | +1             | 1.1.40   | C       |
| 20°05' | 37°09' | 4         | 3         | -1          | 318          | 319          | +1             | 1.1.41   | C       |
| 14°15' | 36°41' | 6         | 5         | -1          | 316          | 314          | -2             | 1.1.42   | C       |
| 75°38' | 32°42' | 8         | 7         | -1          | 192          | 191          | -1             | 1.2. 3   | C, M    |
| 76°25' | 30°26' | 7         | 7         | 0           | 194          | 196          | +2             | 1.2.11   | C, P    |
| 76°48' | 28°27' | 7         | 7         | 0           | 196          | 198          | +2             | 1.2.15   | C       |
| 76°47' | 28°01' | 7         | 7         | 0           | 202          | 198          | -4             | 1.2.14   | C       |
| 67°32' | 28°14' | 6         | 5         | -1          | 197          | 200          | +3             | 1.2. 5   | C, Z    |
| 69°45' | 28°08' | 6         | 6         | 0           | 198          | 199          | +1             | 1.2. 4   | C, Z    |
| 69°40' | 27°59' | 7         | 6         | -1          | 201          | 201          | 0              | 1.2. 8   | C, Z    |
| 69°40' | 27°58' | 6         | 6         | 0           | 196          | 201          | +5             | 1.2. 7   | C, Z    |
| 69°20' | 26°28' | 6         | 6         | 0           | 200          | 204          | +4             | 1.2.10   | C, Z    |
| 69°19' | 26°27. | 6         | 6         | 0           | 199          | 204          | +5             | 1.2. 9   | C, Z    |

$\xi$  = Amplitudes (cm)

$\delta$  = Greenwich Phases (deg)

IAPSO = Int. Assoc. for the Phys. Sci. of the Oceans

C = Cartwright et al. (1979)

M = Mofjeld (1975)

P = Pearson (1975)

Z = Zetler et al. (1975)

Table 2. Northeastern Pacific Ocean Deep-Sea Empirical and Modeled O<sub>1</sub> Tides

| LONG W  | LAT N  | EMP $\xi$ | MOD $\xi$ | $\Delta\xi$ | EMP $\delta$ | MOD $\delta$ | $\Delta\delta$ | IAPSO NR | SOURCES |
|---------|--------|-----------|-----------|-------------|--------------|--------------|----------------|----------|---------|
| 144°22' | 56°08' | 27        | 28        | +1          | 250          | 253          | +3             | 2.1.17   | C       |
| 135°38' | 53°19' | 28        | 28        | 0           | 244          | 244          | 0              | 2.1.16   | C       |
| 132°47' | 49°35' | 26        | 26        | 0           | 231          | 235          | +4             | 2.1.15   | C       |
| 145°00' | 34°00' |           | 15        | -           | -            | 227          | -              | ...      | ..      |
| 145°00' | 34°00' |           | 15        | -           | -            | 227          | -              | ...      | ..      |
| 124°26' | 27°45' | 18        | 17        | -1          | 199          | 199          | 0              | 2.1.13   | C, M    |
| 129°01' | 24°47' | 16        | 15        | -1          | 201          | 204          | +3             | 2.1.10   | C, M    |

$\xi$  = Amplitudes (cm)

$\delta$  = Greenwich Phases (deg)

IAPSO = Int. Assoc. for the Phys. Sci. of the Oceans

C = Cartwright et al. (1979)

M = Munk et al. (1970)

Table 3. Southeast Indian Ocean Deep-Sea Empirical and Modeled O<sub>1</sub> Tides

| LONG E  | LAT S  | EMP $\xi$ | MOD $\xi$ | $\Delta\xi$ | EMP $\delta$ | MOD $\delta$ | $\Delta\delta$ | IAPSO NR | SOURCES |
|---------|--------|-----------|-----------|-------------|--------------|--------------|----------------|----------|---------|
| 132°01' | 37°01' | 14        | 13        | -1          | 218          | 219          | +1             | 4.1. 1   | C, IS   |
| 132°09' | 50°02' | 12        | 11        | -1          | 220          | 221          | +1             | 4.1. 2   | C, IS   |
| 132°07' | 60°01' | 15        | 16        | +1          | 215          | 214          | -1             | 4.1. 3   | C, IS   |

$\xi$  = Amplitudes (cm)

$\delta$  = Greenwich Phases (deg)

IAPSO = Int. Assoc. for the Phys. Sci. of the Oceans

C = Cartwright et al. (1979)

IS = Irish and Snodgrass (1972)

From the tidal charts and maps in Appendixes A and B, one concludes that the rotating tidal waves of the diurnal O<sub>1</sub> tide resemble closely those of the diurnal K<sub>1</sub> tide. There is also a qualitative similarity to the semidiurnal S<sub>2</sub> and M<sub>2</sub> tides. However, the distribution of the amphidromic systems between the diurnal and semidiurnal species varies considerably (compare Parts II, III, and IV). Also, as was mentioned for K<sub>1</sub>, the computed and empirical distortions and retardations of the O<sub>1</sub> waves by boundary and bottom irregularities are generally significantly subdued when compared to the rougher semidiurnal tides as S<sub>2</sub> and M<sub>2</sub>.

#### 4. CONCLUSIONS

The hydrodynamical interpolation technique has been applied to construct the diurnal principal lunar tide ( $O_1$ ) with a relative accuracy of better than 5 cm anywhere in the open oceans. The constructed tide is displayed by tabulated charts in Appendix A and by corange and cotidal maps in Appendix B. The major features of the  $O_1$  tide are discussed in Section 3. A comparison with the earlier computed diurnal  $K_1$  tide reveals close similarities. However, only qualitative similarities exist between the diurnal and semidiurnal species as  $M_2$  and  $S_2$ .

## REFERENCES

1. Accad, Y. and Pekeris, C. L., 1978. "Solution of the Tidal Equations for the  $M_2$  and  $S_2$  Tides in the World Oceans from a Knowledge of the Tidal Potential Alone," *Phil. Trans. Roy. Soc., London, Ser. A*, 290, p. 235.
2. British Admiralty Tide Tables, 1977. Vols. 1, 2, and 3.
3. Cartwright, D. E., Zetler, B. D., and Haimon, B. V., 1979. *Pelagic Tidal Constants*, IAPSO Publication Scientifique No. 30.
4. Defant, A., 1961. *Physical Oceanography, Vol. II*, Pergamon Press, New York.
5. Estes, R. H., 1977. *A Computer Software System for the Generation of Global Ocean Tides Including Self-Gravitation and Crustal Loading Effects*, Goddard Space Flight Center, TR-X-920-77-82, Greenbelt, Maryland.
6. Farrell, W. E., 1972. "Deformation of the Earth by Surface Loads," *Rev. Geophys. Space Phys.*, 10, p. 261.
7. Farrell, W. E., 1973. "Earth Tides, Ocean Tides and Tidal Loading," *Phil. Trans. Roy. Soc., London, Ser. A*, 274, p. 253.
8. Harris, R. A. 1904. *Manual of Tides, Part IV b, Report of the Superintendent*, U.S. Coast and Geodetic Survey, p. 313.
9. International Hydrographic Bureau, 1978. *Tides, Harmonic Constants*, Computer Tape, Monaco.
10. Irish, J. D., Munk, W. H., and Snodgrass, F. E., 1971. " $M_2$  Amphidrome in the Northeast Pacific," *Geophys. Fluid Dyn.*, 2, p. 355.
11. Irish, J. D. and Snodgrass, F. E., 1972. "Australian-Antarctic Tides," *Antarctic Res. Ser., Vol. 19: Antarctic Oceanology II: The Australian-New Zealand Sector*, edited by D. E. Hayes, AGU, p. 101.
12. Luther, D. S. and Wunsch, C., 1975. "Tidal Charts of the Central Pacific Ocean," *J. Phys. Oce.*, 5, p. 227.
13. Miyazaki, M., Juronuma, S., and Inoue, T., 1967. "Tidal Constants Along the Coast of Japan," *Oceanogr. Mag.*, 19, p. 13.

14. Mofjeld, H. O., 1975. *Empirical Model for Tides in the Western North Atlantic Ocean*, NOAA, TR-ERL 340-AOML 19, Boulder, Colorado.
15. Munk, W. H., Snodgrass, F. E., and Wimbush, M., 1970. "Tides Offshore: Transition from California Coastal to Deep-Sea Waters," *Geophys. Fluid Dyn.*, 1, p. 161.
16. National Ocean Survey, 1942. *Tidal Harmonic Constants*, U.S. Coast and Geodetic Survey, Washington, D.C.
17. Nowroozi, A. A., 1972. "Long-Term Measurements of Pelagic Tidal Height off the Coast of Northern California," *J. Geophys. Res.*, 77, p. 434.
18. Nowroozi, A. A., Kuo, J. T., and Ewing, M., 1969. "Solid Earth and Oceanic Tides Recorded on the Ocean Floor of the Coast of Northern California," *J. Geophys. Res.*, 24, p. 605.
19. Pearson, C. A., 1975. *Deep-Sea Tide Observations off the Southeastern United States*, NOAA T. Memo. No. 17, Rockville, Maryland.
20. Pugh, D. 1979. "Sea Levels at Aldabra Atoll, Mombasa and Mahé, Western Equatorial Indian Ocean, Related to Tides, Meteorology and Ocean Circulation," *Deep-Sea Research*, 26A, p. 237.
21. Schwiderski, E. W. 1978a. *Global Ocean Tides. Part I: A Detailed Hydrodynamical Interpolation Model*, NSWC/DL TR-3866.
22. Schwiderski, E. W., 1978b. "A Detailed Hydrodynamical Interpolation Model of Worldwide Ocean Tides," presented at the Int. Symp. on Interaction of Marine Geodesy and Ocean Dynamics, Miami, Florida, October 10-15.
23. Schwiderski, E. W., 1978c. *Hydrodynamically Defined Ocean Bathymetry*, NSWC/DL TR-3888.
24. Schwiderski, E. W., 1979a. "NSWC Ocean Tide Program," presented at the NASA SEASAT ALT/POD Calibration Workshop, Austin, Texas, June 11-15.
25. Schwiderski, E. W., 1979b. "Detailed Ocean Tide Models of ( $N_2$ ,  $M_2$ ,  $S_2$ ,  $K_2$ ) and ( $K_1$ ,  $P_1$ ,  $O_1$ ,  $Q_1$ ) Including an Atlas of Tidal Charts and Maps," presented at the XVIIth General Assembly of the International Union of Geodesy and Geophysics in Canberra, Australia, December 2-15.
26. Schwiderski, E. W., 1979c. "Ocean Tides, Part I: Global Tidal Equations," *Marine Geodesy*, 3, p. 161.
27. Schwiderski, E. W., 1979d. "Ocean Tides, Part II: A Hydrodynamical Interpolation Model," *Marine Geodesy*, 3, p. 219.

28. Schwiderski, E. W., 1979c. *Global Ocean Tides, Part II: The Semidiurnal Principal Lunar Tide ( $M_2$ )*, *Atlas of Tidal Charts and Maps*, NSWC TR 79-414.
29. Schwiderski, E. W., 1980. "On Charting Global Ocean Tides," *Reviews of Geophysics and Space Physics*, 18, No. 1.
30. Schwiderski, E. W., 1981a. *Global Ocean Tides, Part III: The Semidiurnal Principal Solar Tide ( $S_2$ )*, *Atlas of Tidal Charts and Maps*, NSWC TR 81-122.
31. Schwiderski, E. W., 1981b. *Global Ocean Tides, Part IV: The Diurnal Luni-Solar Declination Tide ( $K_1$ )*, *Atlas of Tidal Charts and Maps*, NSWC TR 81-142.
32. Schwiderski, E. W., 1981c. *Exact Expansions of Arctic Ocean Tides*, Naval Surface Weapons Center Technical Report in preparation.
33. Zahel, W., 1970. "Die Reproduktion Gezeitenbedingter Bewegungsvorgänge im Weltozean Mittels des Hydrodynamisch-Numerischen Verfahrens," *Mitteilungen des Inst. f. Meereskunde der Univ. Hamburg*, XVII.
34. Zahel, W., 1977. "The Influence of Solid Earth Deformations on Semidiurnal and Diurnal Oceanic Tides," *Proc. IRIA Int. Colloq. on Numerical Methods of Science and Technical Computation*, Springer, Berlin.
35. Zetler, B. D., Munk, W. H., Mofjeld, H. O., Brown, W., and Dormer, F., 1975. "MODE Tides," *J. Phys. Oceanogr.*, 5, p. 430.

**APPENDIX A**

**ATLAS OF  $1^{\circ} \times 1^{\circ}$  O<sub>1</sub> OCEAN TIDE AMPLITUDE  
AND PHASE CHARTS FOR  $42^{\circ} \times 71^{\circ}$  AREAS**

## APPENDIX A

### ATLAS OF $1^\circ \times 1^\circ$ OCEAN TIDE AMPLITUDE AND PHASE CHARTS FOR $42^\circ \times 71^\circ$ AREAS

#### 1. GUIDE TO TIDAL CHARTS

|                |                                                                                                                                  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| M              | = m: Longitude Number                                                                                                            |
| N              | = n: Colatitude Number                                                                                                           |
| $\lambda_m$    | = $(m - 0.5)^\circ$ : Geographical Longitude East                                                                                |
| $\theta_n$     | = $(n - 0.5)^\circ$ : Geographical Colatitude                                                                                    |
| $\xi_{m,n}$    | = $\xi(\lambda_m, \theta_n)$ : Amplitude (in cm)                                                                                 |
| $\delta_{m,n}$ | = $\delta(\lambda_m, \theta_n)$ : Greenwich Phases (in deg.; $15^\circ \approx 1$ h)                                             |
| $\otimes$      | = Amphidromic Points                                                                                                             |
| ...            | = Subbars Mark Empirical Input Data at Shore Stations                                                                            |
| —              | = Subbrackets Mark Empirical Input Data at Near-Shore Deep-Sea Stations                                                          |
| ~              | = Subtildes Mark Approximately Distant Offshore Deep-Sea Stations with Excluded Empirical Tide Data Listed in Tables 1, 2, and 3 |

#### 2. SOURCES OF EMPIRICAL TIDE DATA

##### Publications:

National Ocean Survey (1942), British Admiralty (1977), International Hydrographic Bureau (1978), Defant (1961), Miyazaki et al. (1967), Nowroozi et al. (1969), Munk et al. (1970), Zaher (1970), Irish et al. (1971), Irish and Snodgrass (1972), Nowroozi (1972), Luther and Wunsh (1975), Mofjeld (1975), Pearson (1975), Zetler et al. (1975), Cartwright et al. (1979), and Pugh (1979).

##### Private Communications:

D. C. Simpson (1977), National Ocean Survey, Rockville, Maryland; S. K. Gill and D. L. Porter (1978), National Ocean Survey, Rockville, Maryland; K. Wyrtki (1978), University of Hawaii, Honolulu, Hawaii, and D. E. Cartwright and D. Pugh (1978), Institute of Oceanographic Sciences, Bidston Observatory, U.K.

TABLE 1.  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES § (CM)

TABLE I:  $1^{\circ} \times 1^{\circ}$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

EUROPEAN USSR

INTERVIEW

101

TABLE 2N:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

CENTRAL USSR

|    | IRAN | PAKISTAN | WESTERN INDIA |
|----|------|----------|---------------|
| 63 | 1.9  | 2.1      | 2.0           |
| 64 | 1.9  | 2.0      | 1.9           |
| 65 | 1.9  | 2.0      | 1.9           |
| 66 | 1.9  | 2.0      | 1.9           |
| 67 | 1.9  | 2.0      | 1.9           |
| 68 | 1.9  | 2.0      | 1.9           |
| 69 | 1.9  | 2.0      | 1.9           |
| 70 | 1.9  | 2.0      | 1.9           |
| 71 | 1.9  | 2.0      | 1.9           |

TABLE 2N:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

| W  | 33  | 40  | 41  | 42   | *3  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80 |  |
|----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|--|
| N  | 1   | 289 | 288 | 289  | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 | 288 |     |     |    |  |
| 1  | 301 | 300 | 299 | 298  | 297 | 296 | 295 | 294 | 293 | 292 | 292 | 291 | 291 | 290 | 289 | 289 | 288 | 287 | 287 | 286 | 285 | 285 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 | 284 |    |  |
| 2  | 317 | 316 | 315 | 314  | 313 | 312 | 311 | 310 | 309 | 308 | 307 | 306 | 305 | 304 | 303 | 302 | 301 | 300 | 299 | 298 | 297 | 296 | 295 | 294 | 293 | 292 | 291 | 290 | 289 | 288 | 287 | 286 | 285 | 284 | 283 | 282 | 281 | 280 | 280 |     |     |    |  |
| 3  | 324 | 321 | 319 | 317  | 315 | 314 | 312 | 310 | 308 | 307 | 305 | 307 | 306 | 305 | 303 | 301 | 301 | 300 | 298 | 296 | 294 | 292 | 290 | 288 | 286 | 285 | 284 | 283 | 282 | 281 | 280 | 279 | 278 | 277 | 276 | 275 | 274 |     |     |     |     |    |  |
| 4  | 322 | 316 | 315 | 315  | 312 | 312 | 308 | 307 | 305 | 307 | 306 | 305 | 304 | 303 | 301 | 301 | 300 | 298 | 296 | 294 | 292 | 290 | 288 | 286 | 285 | 284 | 283 | 282 | 281 | 280 | 279 | 278 | 277 | 276 | 275 | 274 |     |     |     |     |     |    |  |
| 5  | 318 | 312 | 307 | 301  | 296 | 290 | 286 | 284 | 277 | 271 | 270 | 266 | 265 | 263 | 261 | 261 | 260 | 259 | 258 | 257 | 256 | 256 | 255 | 255 | 254 | 254 | 253 | 252 | 251 | 250 | 250 | 249 | 248 | 247 | 246 | 245 | 244 |     |     |     |     |    |  |
| 6  | 314 | 329 | 326 | 326  | 311 | 302 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 | 293 |     |     |     |    |  |
| 7  | 327 | 326 | 325 | 325  | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 | 325 |     |     |     |    |  |
| 8  | 321 | 316 | 316 | 316  | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 | 316 |     |     |     |    |  |
| 9  | 310 | 307 | 307 | 307  | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 | 307 |     |     |     |    |  |
| 10 | 305 | 305 | 305 | 305  | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 | 305 |     |     |     |    |  |
| 11 | 299 | 298 | 298 | 298  | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 | 298 |     |     |     |    |  |
| 12 | 293 | 292 | 292 | 292  | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 | 292 |     |     |     |    |  |
| 13 | 287 | 287 | 287 | 287  | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 |     |     |     |    |  |
| 14 | 285 | 285 | 285 | 285  | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 | 285 |     |     |     |    |  |
| 15 | 283 | 283 | 283 | 283  | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 | 283 |     |     |     |    |  |
| 16 | 281 | 281 | 281 | 281  | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 |     |     |     |    |  |
| 17 | 276 | 276 | 276 | 276  | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 | 276 |     |     |     |    |  |
| 18 | 274 | 274 | 274 | 274  | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 |     |     |     |    |  |
| 19 | 272 | 272 | 272 | 272  | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 272 |     |     |     |    |  |
| 20 | 270 | 270 | 270 | 270  | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 |     |     |     |    |  |
| 21 | 268 | 268 | 268 | 268  | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 | 268 |     |     |     |    |  |
| 22 | 266 | 266 | 266 | 266  | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 | 266 |     |     |     |    |  |
| 23 | 264 | 264 | 264 | 264  | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 | 264 |     |     |     |    |  |
| 24 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 25 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 26 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 27 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 28 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 29 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 30 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 31 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 32 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 33 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 34 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 35 |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |
| 36 |     |     |     | </td |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |  |

TABLE 3N:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

SIBERIAN USSR

TABLE 3N:  $1^\circ \times 1^\circ$  O<sub>i</sub> OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

SIBERIAN USSA

TABLE 4N:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

TABLE 4N:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 5N:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

EASTERN SIBERIAN USSR

TABLE 5N:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 6N:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

TABLE 6N:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

NORTHWESTERN CANADA

USA

ALASKA



TABLE 7N:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 8N:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES { (CM)}

TABLE 8N:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 9N:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

| Lat                 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 |    |   |   |   |   |   |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|---|---|---|---|---|
| 1                   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1  | 1 | 1 | 1 | 1 | 1 |
| 2                   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1  | 1 | 1 | 1 | 1 | 1 |
| 3                   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2  | 2 | 2 | 2 | 2 | 2 |
| 4                   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2  | 2 | 2 | 2 | 2 | 2 |
| 5                   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3  | 3 | 3 | 3 | 3 | 3 |
| 6                   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3  | 3 | 3 | 3 | 3 | 3 |
| 7                   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3  | 3 | 3 | 3 | 3 | 3 |
| 8                   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50 |   |   |   |   |   |
| GREENLAND           |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |   |   |   |   |   |
| ISLAND              |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |   |   |   |   |   |
| FRANCE              |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |   |   |   |   |   |
| IBERIA              |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |   |   |   |   |   |
| NORTHWESTERN AFRICA |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |   |   |   |   |   |
| MADERIA             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |   |   |   |   |   |

NORTHWESTERN AFRICA

MADERIA

IBERIA

FRANCE

NORTHWESTERN AFRICA

TABLE 9N:  $1^{\circ} \times 1^{\circ}$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

|   |     |     |
|---|-----|-----|
| 9 | 308 | 308 |
| 6 | 305 | 305 |
| 5 | 305 | 305 |
| 4 | 303 | 303 |
| 3 | 302 | 302 |
| 2 | 301 | 301 |
| 1 | 299 | 299 |

TABLE 1M:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

TABLE 1:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 2M:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

|                     | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| INDIA               | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  |
| PAKISTAN            | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  | 87  |
| IRAN                | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| ARABIA              | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  | 87  |
| CENTRAL EAST AFRICA | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 |
| WESTERN INDIA       | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |
| MADAGASCAR          | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 |
| CHADOS              | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 |
| MAURITIUS LACDAVIE  | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 |
| PAKISTAN            | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 |
| IRAN                | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 |
| ARABIA              | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 |
| CENTRAL EAST AFRICA | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 |
| WESTERN INDIA       | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 |
| MAURITIUS LACDAVIE  | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 |
| PAKISTAN            | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 |
| IRAN                | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 |
| ARABIA              | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 |
| CENTRAL EAST AFRICA | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 |
| WESTERN INDIA       | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 |
| MAURITIUS LACDAVIE  | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 |
| PAKISTAN            | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 |
| IRAN                | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 |
| ARABIA              | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 |
| CENTRAL EAST AFRICA | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 |
| WESTERN INDIA       | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 |
| MAURITIUS LACDAVIE  | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 |
| PAKISTAN            | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 |
| IRAN                | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 |
| ARABIA              | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 |
| CENTRAL EAST AFRICA | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 |
| WESTERN INDIA       | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 |
| MAURITIUS LACDAVIE  | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 |
| PAKISTAN            | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 |
| IRAN                | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 |
| ARABIA              | 770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 |
| CENTRAL EAST AFRICA | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 | 813 |
| WESTERN INDIA       | 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 | 823 | 824 | 825 | 826 | 827 | 828 | 829 | 830 | 831 | 832 | 833 | 834 | 835 |
| MAURITIUS LACDAVIE  | 836 | 837 | 838 | 839 | 840 | 841 | 842 | 843 | 844 | 845 | 846 | 847 | 848 | 849 | 850 | 851 | 852 | 853 | 854 | 855 | 856 | 857 |
| PAKISTAN            | 858 | 859 | 860 | 861 | 862 | 863 | 864 | 865 | 866 | 867 | 868 | 869 | 870 | 871 | 872 | 873 | 874 | 875 | 876 | 877 | 878 | 879 |
| IRAN                | 882 | 883 | 884 | 885 | 886 | 887 | 888 | 889 | 890 | 891 | 892 | 893 | 894 | 895 | 896 | 897 | 898 | 899 | 900 | 901 | 902 | 903 |
| ARABIA              | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 | 925 |
| CENTRAL EAST AFRICA | 926 | 927 | 928 | 929 | 930 | 931 | 932 | 933 | 934 | 935 | 936 | 937 | 938 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 |
| WESTERN INDIA       | 948 | 949 | 950 | 951 | 952 | 953 | 954 | 955 | 956 | 957 | 958 | 959 | 960 | 961 | 962 | 963 | 964 | 965 | 966 | 967 | 968 | 969 |
| MAURITIUS LACDAVIE  | 970 | 971 | 972 | 973 | 974 | 975 | 976 | 977 | 978 | 979 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 980 | 981 |
| PAKISTAN            | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 980 | 981 | 982 | 983 |
| IRAN                | 984 | 985 | 986 | 987 | 988 | 989 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 980 | 981 | 982 | 983 | 984 | 985 |
| ARABIA              | 986 | 987 | 988 | 989 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 |
| CENTRAL EAST AFRICA | 988 | 989 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 | 980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 |
| WESTERN INDIA       | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 |
| MAURITIUS LACDAVIE  | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 |
| PAKISTAN            | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 |
| IRAN                | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 |
| ARABIA              | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 |
| CENTRAL EAST AFRICA | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 |
| WESTERN INDIA       | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 | 990 | 991 | 9   |     |

**TABLE 2M:**  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

**TABLE 3M:**  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

| W                      | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| N                      | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| EASTERN INDIA          | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 |     |
| BANGLADESH             | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 |     |
| SOUTHEAST ASIA         | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 |     |     |     |     |
| SOUTH CHINA            | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| POLYNESIA              | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| NORTHWESTERN AUSTRALIA | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 |

TABLE 3M 1° x 1° 0. Ocean Tide Greenwich Phases δ (DEG)

TABLE 4M:  $1^\circ \times 1^\circ O_1$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

| N  | W 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |          |               |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 54 | 19 20 15 20 25                                                                                                                                                            | 24 26 27 | SEA OF JAPAN  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 55 | 15 14 12 15 16                                                                                                                                                            | 24       | GULF OF CHINA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 56 | 12 10 8 15 12                                                                                                                                                             | 24       | EASTERN CHINA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 57 | 2 1 9 12 17                                                                                                                                                               | 16       | KOREA         | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 58 | 1 1 15 17 17                                                                                                                                                              | 16       | TAIWAN        | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 59 | 6 7 15 16 17                                                                                                                                                              | 16       | MALAYSIA      | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 60 | 20 17 17 17 17                                                                                                                                                            | 16       | SINGAPORE     | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 61 | 20 17 17 17 17                                                                                                                                                            | 16       | INDONESIA     | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 62 | 20 13 19 16 17                                                                                                                                                            | 16       | PHILIPPINES   | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 63 | 20 13 19 16 17                                                                                                                                                            | 16       | THAILAND      | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 64 | 20 13 17 17 17                                                                                                                                                            | 16       | LAOS          | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 65 | 20 13 17 17 17                                                                                                                                                            | 16       | MYANMAR       | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 66 | 20 17 14 16 16                                                                                                                                                            | 16       | BRUNEI        | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 67 | 18 16 13 13                                                                                                                                                               | 13       | VIETNAM       | 13 | 13 | 13 | 16 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 |
| 68 | 18 16 13 13                                                                                                                                                               | 13       | CAMBODIA      | 13 | 13 | 13 | 16 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 |
| 69 | 17 15 17 18                                                                                                                                                               | 16       | LAOS          | 16 | 16 | 16 | 19 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 | 19 | 16 | 16 |
| 70 | 16 16 13 13                                                                                                                                                               | 13       | LAOS          | 13 | 13 | 13 | 16 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 | 16 | 13 | 13 |
| 71 | 16 17 14 14                                                                                                                                                               | 14       | LAOS          | 14 | 14 | 14 | 17 | 14 | 17 | 14 | 14 | 17 | 14 | 14 | 17 | 14 | 14 | 17 | 14 | 14 | 17 | 14 | 14 | 17 | 14 | 14 | 17 | 14 | 14 | 17 | 14 | 14 |
| 72 | 20 16 17                                                                                                                                                                  | 17       | LAOS          | 17 | 17 | 17 | 20 | 17 | 20 | 17 | 17 | 20 | 17 | 17 | 20 | 17 | 17 | 20 | 17 | 17 | 20 | 17 | 17 | 20 | 17 | 17 | 20 | 17 | 17 | 20 | 17 | 17 |
| 73 | 21 19                                                                                                                                                                     | 19       | LAOS          | 19 | 19 | 19 | 22 | 19 | 22 | 19 | 19 | 22 | 19 | 19 | 22 | 19 | 19 | 22 | 19 | 19 | 22 | 19 | 19 | 22 | 19 | 19 | 22 | 19 | 19 | 22 | 19 | 19 |
| 74 | 23 22                                                                                                                                                                     | 22       | LAOS          | 22 | 22 | 22 | 25 | 22 | 25 | 22 | 22 | 25 | 22 | 22 | 25 | 22 | 22 | 25 | 22 | 22 | 25 | 22 | 22 | 25 | 22 | 22 | 25 | 22 | 22 | 25 | 22 | 22 |
| 75 | 25 25                                                                                                                                                                     | 25       | LAOS          | 25 | 25 | 25 | 28 | 25 | 28 | 25 | 25 | 28 | 25 | 25 | 28 | 25 | 25 | 28 | 25 | 25 | 28 | 25 | 25 | 28 | 25 | 25 | 28 | 25 | 25 | 28 | 25 | 25 |
| 76 | 26 26                                                                                                                                                                     | 26       | LAOS          | 26 | 26 | 26 | 29 | 26 | 29 | 26 | 26 | 29 | 26 | 26 | 29 | 26 | 26 | 29 | 26 | 26 | 29 | 26 | 26 | 29 | 26 | 26 | 29 | 26 | 26 | 29 | 26 | 26 |
| 77 | 27 27                                                                                                                                                                     | 27       | LAOS          | 27 | 27 | 27 | 30 | 27 | 30 | 27 | 27 | 30 | 27 | 27 | 30 | 27 | 27 | 30 | 27 | 27 | 30 | 27 | 27 | 30 | 27 | 27 | 30 | 27 | 27 | 30 | 27 | 27 |
| 78 | 28 28                                                                                                                                                                     | 28       | LAOS          | 28 | 28 | 28 | 31 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 |
| 79 | 28 28                                                                                                                                                                     | 28       | LAOS          | 28 | 28 | 28 | 31 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 | 31 | 28 | 28 |
| 80 | 30                                                                                                                                                                        | 30       | LAOS          | 30 | 30 | 30 | 33 | 30 | 33 | 30 | 30 | 33 | 30 | 30 | 33 | 30 | 30 | 33 | 30 | 30 | 33 | 30 | 30 | 33 | 30 | 30 | 33 | 30 | 30 | 33 | 30 | 30 |
| 81 | 31                                                                                                                                                                        | 31       | LAOS          | 31 | 31 | 31 | 34 | 31 | 34 | 31 | 31 | 34 | 31 | 31 | 34 | 31 | 31 | 34 | 31 | 31 | 34 | 31 | 31 | 34 | 31 | 31 | 34 | 31 | 31 | 34 | 31 | 31 |
| 82 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 83 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 84 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 85 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 86 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 87 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 88 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 89 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 90 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 91 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 92 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 93 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 94 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 95 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 96 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 97 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 98 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 32 | 32 | 35 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 | 35 | 32 | 32 |
| 99 | 32                                                                                                                                                                        | 32       | LAOS          | 32 | 3  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

TABLE 4M:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 5M:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

TABLE 5M:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 6M:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES (CM)

TABLE 6M:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 7M:  $1^\circ \times 1^\circ O_1$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

NW 239 248 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

## SOUTHERN USA

| CALIFORNIA |    | FLORIDA        |    | AMERICA |    |
|------------|----|----------------|----|---------|----|
| 39         | 23 | 22             | 22 | 12      | 12 |
| 36         | 21 | 21             | 21 | 12      | 12 |
| 35         | 21 | 21             | 21 | 12      | 12 |
| 34         | 20 | 20             | 20 | 12      | 12 |
| 33         | 20 | 20             | 20 | 12      | 12 |
| 32         | 19 | 19             | 19 | 12      | 12 |
| 31         | 18 | 18             | 18 | 12      | 12 |
| 30         | 18 | 18             | 18 | 12      | 12 |
| 29         | 17 | 17             | 17 | 12      | 12 |
| 28         | 17 | 17             | 17 | 12      | 12 |
| 27         | 16 | 16             | 16 | 12      | 12 |
| 26         | 16 | 16             | 16 | 12      | 12 |
| 25         | 16 | 16             | 16 | 12      | 12 |
| 24         | 15 | 15             | 15 | 12      | 12 |
| 23         | 15 | 15             | 15 | 12      | 12 |
| 22         | 15 | 15             | 15 | 12      | 12 |
| 21         | 15 | 15             | 15 | 12      | 12 |
| 20         | 15 | 15             | 15 | 12      | 12 |
| 19         | 15 | 15             | 15 | 12      | 12 |
| 18         | 14 | 14             | 14 | 12      | 12 |
| 17         | 14 | 14             | 14 | 12      | 12 |
| 16         | 14 | 14             | 14 | 12      | 12 |
| 15         | 14 | 14             | 14 | 12      | 12 |
| 14         | 14 | 14             | 14 | 12      | 12 |
| 13         | 13 | 13             | 13 | 12      | 12 |
| 12         | 13 | 13             | 13 | 12      | 12 |
| 11         | 13 | 13             | 13 | 12      | 12 |
| 10         | 12 | 12             | 12 | 12      | 12 |
| 9          | 12 | 12             | 12 | 12      | 12 |
| 8          | 12 | 12             | 12 | 12      | 12 |
| 7          | 12 | 12             | 12 | 12      | 12 |
| 6          | 12 | 12             | 12 | 12      | 12 |
| 5          | 12 | 12             | 12 | 12      | 12 |
| 4          | 12 | 12             | 12 | 12      | 12 |
| 3          | 12 | 12             | 12 | 12      | 12 |
| 2          | 12 | 12             | 12 | 12      | 12 |
| 1          | 12 | 12             | 12 | 12      | 12 |
| 0          | 12 | 12             | 12 | 12      | 12 |
| MEXICO     |    | MIDDLE AMERICA |    | SAL     |    |
| 13         | 14 | 14             | 14 | 14      | 14 |
| 12         | 14 | 14             | 14 | 14      | 14 |
| 11         | 14 | 14             | 14 | 14      | 14 |
| 10         | 14 | 14             | 14 | 14      | 14 |
| 9          | 14 | 14             | 14 | 14      | 14 |
| 8          | 14 | 14             | 14 | 14      | 14 |
| 7          | 14 | 14             | 14 | 14      | 14 |
| 6          | 14 | 14             | 14 | 14      | 14 |
| 5          | 14 | 14             | 14 | 14      | 14 |
| 4          | 14 | 14             | 14 | 14      | 14 |
| 3          | 14 | 14             | 14 | 14      | 14 |
| 2          | 14 | 14             | 14 | 14      | 14 |
| 1          | 14 | 14             | 14 | 14      | 14 |
| 0          | 14 | 14             | 14 | 14      | 14 |
| EQUATOR    |    | SAL            |    | SAL     |    |
| 13         | 14 | 14             | 14 | 14      | 14 |
| 12         | 14 | 14             | 14 | 14      | 14 |
| 11         | 14 | 14             | 14 | 14      | 14 |
| 10         | 14 | 14             | 14 | 14      | 14 |
| 9          | 14 | 14             | 14 | 14      | 14 |
| 8          | 14 | 14             | 14 | 14      | 14 |
| 7          | 14 | 14             | 14 | 14      | 14 |
| 6          | 14 | 14             | 14 | 14      | 14 |
| 5          | 14 | 14             | 14 | 14      | 14 |
| 4          | 14 | 14             | 14 | 14      | 14 |
| 3          | 14 | 14             | 14 | 14      | 14 |
| 2          | 14 | 14             | 14 | 14      | 14 |
| 1          | 14 | 14             | 14 | 14      | 14 |
| 0          | 14 | 14             | 14 | 14      | 14 |

TABLE 7M:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

SOUTHERN USA

TABLE 8 Mt.  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

**LEGEND**

- Tree Symbols:**
  - Circle: **Maple**
  - Square: **Hickory**
  - Triangle: **Chestnut**
  - Diamond: **Beech**
  - Plus: **Oak**
  - Star: **Pine**
  - Circle with dot: **Walnut**
  - Circle with cross: **Elm**
  - Circle with dot and cross: **Cherry**
  - Circle with diagonal line: **Poplar**
  - Circle with horizontal line: **Birch**
  - Circle with vertical line: **Willow**
  - Circle with diagonal line and dot: **Aspen**
  - Circle with diagonal line and cross: **Maple**
  - Circle with diagonal line and dot and cross: **Hickory**
  - Circle with diagonal line and dot and cross and dot: **Chestnut**
  - Circle with diagonal line and dot and cross and cross: **Beech**
  - Circle with diagonal line and dot and cross and cross and dot: **Oak**
  - Circle with diagonal line and dot and cross and cross and cross: **Pine**
  - Circle with diagonal line and dot and cross and cross and cross and dot: **Walnut**
  - Circle with diagonal line and dot and cross and cross and cross and cross: **Elm**
  - Circle with diagonal line and dot and cross and cross and cross and cross and dot: **Cherry**
  - Circle with diagonal line and dot and cross and cross and cross and cross and cross: **Poplar**
  - Circle with diagonal line and dot and cross and cross and cross and cross and cross and dot: **Birch**
  - Circle with diagonal line and dot and cross and cross and cross and cross and cross and cross: **Willow**
  - Circle with diagonal line and dot and cross and cross and cross and cross and cross and cross and dot: **Aspen**
- Other Symbols:**
  - Small circle: **Apple**
  - Small square: **Cherry**
  - Small triangle: **Walnut**
  - Small diamond: **Elm**
  - Small plus: **Poplar**
  - Small star: **Birch**
  - Small circle with dot: **Willow**
  - Small circle with cross: **Aspen**

**Regions:**

- Eastern USA:** Labeled with states like New York, New Jersey, Connecticut, Rhode Island, Massachusetts, Vermont, New Hampshire, Maine, New England, and the Great Lakes.
- Florida:** Labeled with the state of Florida.
- Long Island:** Labeled with the island of Long Island.
- Hispaniola:** Labeled with the island of Hispaniola.
- Caribbean:** Labeled with the region of the Caribbean.
- NORTHERN SOUTH AMERICA:** Labeled with the region of Northern South America.

TABLE 8M:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 9 Mt.  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDE § (CM)

TABLE 9M:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES (DEG)

TABLE I:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES (CM)

SOUTHERN AFRICA

ANTARCTICA

TABLE 1:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

卷之三

TABLE 28:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

ANTARCTICA

TABLE 28:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\hat{\phi}$  (DEG)

卷之三

TABLE 3S:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES (CM)

ANTARCTICA

TABLE 3S:  $1^\circ \times 1^\circ$  O<sub>1</sub> OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

INTERACTICA

TABLE 4S:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES & (CM)

ANTARCTICA

TABLE 4S:  $1^\circ \times 1^\circ$  O<sub>1</sub> OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 5S:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES (CM)

**TABLE 5S:**  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 6S:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

TABLE 6S:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

卷之三

TABLE 7:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES  $\xi$  (CM)

**TABLE 7S:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)**

| NH | 246 | 245 | 244 | 243 | 242 | 241 | 240 | 239 | 238 | 237 | 236 | 235 | 234 | 233 | 232 | 231 | 230 | 229 | 228 | 227 | 226 | 225 | 224 | 223 | 222 | 221 | 220 | 219 | 218 | 217 | 216 | 215 | 214 | 213 | 212 | 211 | 210 | 209 | 208 | 207 | 206 | 205 | 204 | 203 | 202 | 201 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 96 | 225 | 227 | 230 | 232 | 235 | 238 | 243 | 246 | 253 | 261 | 270 | 281 | 291 | 300 | 308 | 314 | 320 | 325 | 330 | 334 | 338 | 344 | 348 | 353 | 358 | 363 | 368 | 373 | 378 | 383 | 388 | 393 | 398 | 403 | 408 | 413 | 418 | 423 | 428 | 433 | 438 | 443 | 448 | 453 | 458 | 463 | 468 | 473 | 478 | 483 | 488 | 493 | 498 | 503 | 508 | 513 | 518 | 523 | 528 | 533 | 538 | 543 | 548 | 553 | 558 | 563 | 568 | 573 | 578 | 583 | 588 | 593 | 598 | 603 | 608 | 613 | 618 | 623 | 628 | 633 | 638 | 643 | 648 | 653 | 658 | 663 | 668 | 673 | 678 | 683 | 688 | 693 | 698 | 703 | 708 | 713 | 718 | 723 | 728 | 733 | 738 | 743 | 748 | 753 | 758 | 763 | 768 | 773 | 778 | 783 | 788 | 793 | 798 | 803 | 808 | 813 | 818 | 823 | 828 | 833 | 838 | 843 | 848 | 853 | 858 | 863 | 868 | 873 | 878 | 883 | 888 | 893 | 898 | 903 | 908 | 913 | 918 | 923 | 928 | 933 | 938 | 943 | 948 | 953 | 958 | 963 | 968 | 973 | 978 | 983 | 988 | 993 | 998 | 1003 | 1008 | 1013 | 1018 | 1023 | 1028 | 1033 | 1038 | 1043 | 1048 | 1053 | 1058 | 1063 | 1068 | 1073 | 1078 | 1083 | 1088 | 1093 | 1098 | 1103 | 1108 | 1113 | 1118 | 1123 | 1128 | 1133 | 1138 | 1143 | 1148 | 1153 | 1158 | 1163 | 1168 | 1173 | 1178 | 1183 | 1188 | 1193 | 1198 | 1203 | 1208 | 1213 | 1218 | 1223 | 1228 | 1233 | 1238 | 1243 | 1248 | 1253 | 1258 | 1263 | 1268 | 1273 | 1278 | 1283 | 1288 | 1293 | 1298 | 1303 | 1308 | 1313 | 1318 | 1323 | 1328 | 1333 | 1338 | 1343 | 1348 | 1353 | 1358 | 1363 | 1368 | 1373 | 1378 | 1383 | 1388 | 1393 | 1398 | 1403 | 1408 | 1413 | 1418 | 1423 | 1428 | 1433 | 1438 | 1443 | 1448 | 1453 | 1458 | 1463 | 1468 | 1473 | 1478 | 1483 | 1488 | 1493 | 1498 | 1503 | 1508 | 1513 | 1518 | 1523 | 1528 | 1533 | 1538 | 1543 | 1548 | 1553 | 1558 | 1563 | 1568 | 1573 | 1578 | 1583 | 1588 | 1593 | 1598 | 1603 | 1608 | 1613 | 1618 | 1623 | 1628 | 1633 | 1638 | 1643 | 1648 | 1653 | 1658 | 1663 | 1668 | 1673 | 1678 | 1683 | 1688 | 1693 | 1698 | 1703 | 1708 | 1713 | 1718 | 1723 | 1728 | 1733 | 1738 | 1743 | 1748 | 1753 | 1758 | 1763 | 1768 | 1773 | 1778 | 1783 | 1788 | 1793 | 1798 | 1803 | 1808 | 1813 | 1818 | 1823 | 1828 | 1833 | 1838 | 1843 | 1848 | 1853 | 1858 | 1863 | 1868 | 1873 | 1878 | 1883 | 1888 | 1893 | 1898 | 1903 | 1908 | 1913 | 1918 | 1923 | 1928 | 1933 | 1938 | 1943 | 1948 | 1953 | 1958 | 1963 | 1968 | 1973 | 1978 | 1983 | 1988 | 1993 | 1998 | 2003 | 2008 | 2013 | 2018 | 2023 | 2028 | 2033 | 2038 | 2043 | 2048 | 2053 | 2058 | 2063 | 2068 | 2073 | 2078 | 2083 | 2088 | 2093 | 2098 | 2103 | 2108 | 2113 | 2118 | 2123 | 2128 | 2133 | 2138 | 2143 | 2148 | 2153 | 2158 | 2163 | 2168 | 2173 | 2178 | 2183 | 2188 | 2193 | 2198 | 2203 | 2208 | 2213 | 2218 | 2223 | 2228 | 2233 | 2238 | 2243 | 2248 | 2253 | 2258 | 2263 | 2268 | 2273 | 2278 | 2283 | 2288 | 2293 | 2298 | 2303 | 2308 | 2313 | 2318 | 2323 | 2328 | 2333 | 2338 | 2343 | 2348 | 2353 | 2358 | 2363 | 2368 | 2373 | 2378 | 2383 | 2388 | 2393 | 2398 | 2403 | 2408 | 2413 | 2418 | 2423 | 2428 | 2433 | 2438 | 2443 | 2448 | 2453 | 2458 | 2463 | 2468 | 2473 | 2478 | 2483 | 2488 | 2493 | 2498 | 2503 | 2508 | 2513 | 2518 | 2523 | 2528 | 2533 | 2538 | 2543 | 2548 | 2553 | 2558 | 2563 | 2568 | 2573 | 2578 | 2583 | 2588 | 2593 | 2598 | 2603 | 2608 | 2613 | 2618 | 2623 | 2628 | 2633 | 2638 | 2643 | 2648 | 2653 | 2658 | 2663 | 2668 | 2673 | 2678 | 2683 | 2688 | 2693 | 2698 | 2703 | 2708 | 2713 | 2718 | 2723 | 2728 | 2733 | 2738 | 2743 | 2748 | 2753 | 2758 | 2763 | 2768 | 2773 | 2778 | 2783 | 2788 | 2793 | 2798 | 2803 | 2808 | 2813 | 2818 | 2823 | 2828 | 2833 | 2838 | 2843 | 2848 | 2853 | 2858 | 2863 | 2868 | 2873 | 2878 | 2883 | 2888 | 2893 | 2898 | 2903 | 2908 | 2913 | 2918 | 2923 | 2928 | 2933 | 2938 | 2943 | 2948 | 2953 | 2958 | 2963 | 2968 | 2973 | 2978 | 2983 | 2988 | 2993 | 2998 | 3003 | 3008 | 3013 | 3018 | 3023 | 3028 | 3033 | 3038 | 3043 | 3048 | 3053 | 3058 | 3063 | 3068 | 3073 | 3078 | 3083 | 3088 | 3093 | 3098 | 3103 | 3108 | 3113 | 3118 | 3123 | 3128 | 3133 | 3138 | 3143 | 3148 | 3153 | 3158 | 3163 | 3168 | 3173 | 3178 | 3183 | 3188 | 3193 | 3198 | 3203 | 3208 | 3213 | 3218 | 3223 | 3228 | 3233 | 3238 | 3243 | 3248 | 3253 | 3258 | 3263 | 3268 | 3273 | 3278 | 3283 | 3288 | 3293 | 3298 | 3303 | 3308 | 3313 | 3318 | 3323 | 3328 | 3333 | 3338 | 3343 | 3348 | 3353 | 3358 | 3363 | 3368 | 3373 | 3378 | 3383 | 3388 | 3393 | 3398 | 3403 | 3408 | 3413 | 3418 | 3423 | 3428 | 3433 | 3438 | 3443 | 3448 | 3453 | 3458 | 3463 | 3468 | 3473 | 3478 | 3483 | 3488 | 3493 | 3498 | 3503 | 3508 | 3513 | 3518 | 3523 | 3528 | 3533 | 3538 | 3543 | 3548 | 3553 | 3558 | 3563 | 3568 | 3573 | 3578 | 3583 | 3588 | 3593 | 3598 | 3603 | 3608 | 3613 | 3618 | 3623 | 3628 | 3633 | 3638 | 3643 | 3648 | 3653 | 3658 | 3663 | 3668 | 3673 | 3678 | 3683 | 3688 | 3693 | 3698 | 3703 | 3708 | 3713 | 3718 | 3723 | 3728 | 3733 | 3738 | 3743 | 3748 | 3753 | 3758 | 3763 | 3768 | 3773 | 3778 | 3783 | 3788 | 3793 | 3798 | 3803 | 3808 | 3813 | 3818 | 3823 | 3828 | 3833 | 3838 | 3843 | 3848 | 3853 | 3858 | 3863 | 3868 | 3873 | 3878 | 3883 | 3888 | 3893 | 3898 | 3903 | 3908 | 3913 | 3918 | 3923 | 3928 | 3933 | 3938 | 3943 | 3948 | 3953 | 3958 | 3963 | 3968 | 3973 | 3978 | 3983 | 3988 | 3993 | 3998 | 4003 | 4008 | 4013 | 4018 | 4023 | 4028 | 4033 | 4038 | 4043 | 4048 | 4053 | 4058 | 4063 | 4068 | 4073 | 4078 | 4083 | 4088 | 4093 | 4098 | 4103 | 4108 | 4113 | 4118 | 4123 | 4128 | 4133 | 4138 | 4143 | 4148 | 4153 | 4158 | 4163 | 4168 | 4173 | 4178 | 4183 | 4188 | 4193 | 4198 | 4203 | 4208 | 4213 | 4218 | 4223 | 4228 | 4233 | 4238 | 4243 | 4248 | 4253 | 4258 | 4263 | 4268 | 4273 | 4278 | 4283 | 4288 | 4293 | 4298 | 4303 | 4308 | 4313 | 4318 | 4323 | 4328 | 4333 | 4338 | 4343 | 4348 | 4353 | 4358 | 4363 | 4368 | 4373 | 4378 | 4383 | 4388 | 4393 | 4398 | 4403 | 4408 | 4413 | 4418 | 4423 | 4428 | 4433 | 4438 | 4443 | 4448 | 4453 | 4458 | 4463 | 4468 | 4473 | 4478 | 4483 | 4488 | 4493 | 4498 | 4503 | 4508 | 4513 | 4518 | 4523 | 4528 | 4533 | 4538 | 4543 | 4548 | 4553 | 4558 | 4563 | 4568 | 4573 | 4578 | 4583 | 4588 | 4593 | 4598 | 4603 | 4608 | 4613 | 4618 | 4623 | 4628 | 4633 | 4638 | 4643 | 4648 | 4653 | 4658 | 4663 | 4668 | 4673 | 4678 | 4683 | 4688 | 4693 | 4698 | 4703 | 4708 | 4713 | 4718 | 4723 | 4728 | 4733 | 4738 | 4743 | 4748 | 4753 | 4758 | 4763 | 4768 | 4773 | 4778 | 4783 | 4788 | 4793 | 4798 | 4803 | 4808 | 4813 | 4818 | 4823 | 4828 | 4833 | 4838 | 4843 | 4848 | 4853 | 4858 | 4863 | 4868 | 4873 | 4878 | 4883 | 4888 | 4893 | 4898 | 4903 | 4908 | 4913 | 4918 | 4923 | 4928 | 4933 | 4938 | 4943 | 4948 | 4953 | 4958 | 4963 | 4968 | 4973 | 4978 | 4983 | 4988 | 4993 | 4998 | 5003 | 5008 | 5013 | 5018 | 5023 | 5028 | 5033 | 5038 | 5043 | 5048 | 5053 | 5058 | 5063 | 5068 | 5073 | 5078 | 5083 | 5088 | 5093 | 5098 | 5103 | 5108 | 5113 | 5118 | 5123 | 5128 | 5133 | 5138 | 5143 | 5148 | 5153 | 5158 | 5163 | 5168 | 5173 | 5178 | 5183 | 5188 | 5193 | 5198 | 5203 | 5208 | 5213 | 5218 | 5223 | 5228 | 5233 | 5238 | 5243 |  |

TABLE 8:  $1^\circ \times 1^\circ$  OCEAN TIDE AMPLITUDES & (CM)

TABLE 8S:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

TABLE 9S:  $1^\circ \times 1^\circ$  O<sub>1</sub> OCEAN TIDE AMPLITUDES  $\xi$  (CM)

ANTARCTICA

TABLE 9S:  $1^\circ \times 1^\circ$  OCEAN TIDE GREENWICH PHASES  $\delta$  (DEG)

卷之三

**APPENDIX B**

**ATLAS OF GLOBAL O<sub>1</sub> OCEAN TIDE  
CORANGE AND COTIDAL MAPS**

## **APPENDIX B**

### **ATLAS OF CORANGE AND COTIDAL MAPS OF THE O<sub>1</sub> OCEAN TIDE**

Amplitudes  $\xi$  of corange lines in cm.

Greenwich phases  $\delta$  of cotidal lines in 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 360 = 0° where 15° ≈ 1 hour.





2











ARCTIC CORANGE MAP OF O<sub>1</sub> OCEAN TIDE  
AMPLITUDES  $\xi$  IN CM

◎ AMPHIDROMES \* P NORTH POLE



ARCTIC COTIDAL MAP OF O<sub>1</sub> OCEAN TIDE  
GREENWICH PHASES  $\delta$  IN DEGREES

$15^\circ \approx 1$  HOUR

◎ AMPHIDROMES      ★ P NORTH POLE

## DISTRIBUTION

|                                                                                                                                                                |      |                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Library of Congress<br>Washington, DC 20540<br>ATTN: Gift and Exchange Division                                                                                | (4)  | Oceanographer of the Navy<br>U. S. Naval Observatory<br>34 and Massachusetts Ave. NW<br>Washington, DC 20390                                                                  |
| Defense Technical Information Center<br>Cameron Station<br>Alexandria, VA 22314                                                                                | (12) | Naval Oceanographic Office<br>NSTL Station<br>Bay St. Louis, MS 39522<br>ATTN: Dr. T. Davis<br>L. B. Bourquin                                                                 |
| Director<br>Defense Mapping Agency, HQ<br>Washington, DC 20360<br>ATTN: Dr. C. F. Martin<br>P. W. Schwimmer                                                    |      | Technical Director (SP-20)<br>Strategic Systems Project Office<br>Washington, DC 20390                                                                                        |
| Defense Mapping Agency<br>Hydrographic-Topographic Center<br>6500 Brooks Lane<br>Washington, DC 20315<br>ATTN: MAJ J. Jerome<br>Randy Smith<br>Mrs. I. Fischer |      | Naval Postgraduate School<br>Monterey, CA 93940<br>ATTN: Prof. R. L. Haney<br>Prof. M. L. Elsberry<br>Prof. D. C. Gallacher<br>Prof. R. W. Garwood, Jr.<br>Prof. N. K. Mooers |
| Defense Mapping Agency<br>Aerospace Center<br>St. Louis, MO 63118<br>ATTN: William P. Wall<br>Don McEntee                                                      |      | Fleet Numerical Oceanography Center<br>Monterey, CA 93940<br>ATTN: CDR B. Schramm                                                                                             |
| Office of Naval Research<br>800 N. Quincy St.<br>Arlington, VA 22203<br>ATTN: G. R. Hamilton<br>Dr. W. S. Wilson<br>J. G. Heacock<br>R. S. Andrews             |      | Director<br>Naval Research Laboratory<br>Washington, DC 20360<br>ATTN: V. E. Noble<br>B. S. Yaplee<br>A. Shapiro<br>D. T. Chen                                                |
|                                                                                                                                                                |      | Army Engineers Topographic Laboratory<br>Ft. Belvoir, VA 22060<br>ATTN: Dr. A. Mancini                                                                                        |

## DISTRIBUTION (Continued)

National Science Foundation  
1951 Constitution Ave., N.W.  
Washington, DC 20550  
ATTN: Mathematical Sciences Division  
J. G. Gross  
R. E. Wall

Scripps Institution of Oceanography  
University of California at San Diego  
LaJolla, CA 92037  
ATTN: Dr. W. H. Munk  
Dr. M. C. Hendershott  
Prof. B. D. Zetler  
Prof. S. M. Smith  
Prof. H. W. Menard  
Dr. J. H. Filloux  
Dr. B. Bernstein  
Dr. D. S. Luther

Dr. C. Wunsch  
MIT/Dept. Earth & Planetary Sciences  
Cambridge, MA 02139

Woods Hole Oceanographic Institute  
Woods Hole, MA 02543  
ATTN: Dr. H. M. Stommel  
Dr. G. Veronis  
Dr. N. P. Fofonoff  
Dr. J. Whitehead  
Dr. P. G. Brewer

Battelle Columbus Laboratories  
505 King Ave.  
Columbus, OH 43201  
ATTN: A. G. Mourad

Dr. J. W. Chamberlain  
Rice University  
Houston, TX 77001

Dr. R. H. Rapp  
Ohio State University  
Dept. of Geodetic Science  
1958 Neil Ave.  
Columbus, OH 43210

Dr. R. O. Reid  
Texas A&M University  
College Station, TX 77843

Florida State University  
Dept. of Oceanography  
Tallahassee, FL 32306  
ATTN: Dr. J. J. O'Brien  
Dr. W. Sturges  
Ms. L. Vasant

Prof. F. E. Snodgrass  
Inst. of Geophysics and Planetary Physics  
University of California at San Diego  
LaJolla, CA 92037

Prof. K. Wyrtki  
University of Hawaii  
Honolulu, HI 96822

Prof. B. Tapley  
Dept. of Aerospace Eng. & Eng. Mechanics  
WRW 402  
University of Texas  
Austin, TX 78712

Prof. D. Lynch  
Thayer School of Engineering  
Dartmouth College  
Hanover, NH 03755

## DISTRIBUTION (Continued)

Air Force Geodetic Laboratory  
L. G. Hanscom Field  
Bedford, MA 01730

David T. Haislip  
U. S. Coast Guard  
400 7th Street, S.W.  
Washington, DC 20590

NOAA/National Ocean Survey  
National Geodetic Survey  
Rockville, MD 20852  
ATTN: Dr. B. Chovitz  
Dr. J. M. Diamante  
Dr. B. C. Douglas  
Dr. C. C. Goad  
Dr. F. Morrison

NOAA/National Ocean Survey  
Oceanographic Division  
Rockville, MD 20852  
ATTN: D. C. Simpson  
D. L. Porter  
R. A. Smith  
B. B. Parker

NOAA Atlantic Oceanographic and  
Meteorological Lab.  
Physical Oceanography Laboratory  
15 Rickenbacker Causeway  
Miami, FL 33149  
ATTN: G. A. Maud  
H. M. Byrne

NOAA Pacific Marine Environmental Lab.  
Seattle, WA 98105  
ATTN: Dr. J. R. Apel  
J. O. Mofield  
C. A. Pearson  
M. Byrne

NOAA/Geophysical Fluid Dynamics Lab.  
Princeton University  
Princeton, NJ 08540  
ATTN: Dr. J. Smagorinsky  
Dr. K. Bryan  
Dr. M. D. Cox

NOAA/National Center for Atmospheric  
Research  
Boulder, CO 80303  
ATTN: Dr. W. R. Holland

NASA/Goddard Space Flight Center  
Greenbelt, MD 20771  
ATTN: Dr. J. W. Siry  
D. E. Smith  
J. G. Marsh  
T. L. Felsentreger  
J. Zwally

NASA/Wallops Station  
Information Processing and Analysis  
Branch  
Wallops Island, VA 23337  
ATTN: C. D. Leitao  
N. E. Huang  
W. B. Kocabill  
B. Speciel

Director  
U.S. Army Ballistic Research Laboratory  
Aberdeen Proving Ground, MD 21005  
ATTN: DRDAR-TBS-S (STINFO)

Smithsonian Astrophysical Observatory  
60 Garden St.  
Cambridge, MA 02138  
ATTN: Dr. E. M. Gaposchkin  
Dr. G. C. Wiffenbach  
B. Stevens

### DISTRIBUTION (Continued)

|                                                                                                                                           |                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| University of Washington<br>Dept. of Oceanography WB-10<br>Seattle, WA 98195                                                              | Dr. S. K. Jordan<br>The Analytic Sciences Corporation<br>6 Jacob Way<br>Reading, MA 01867 |
| ATTN: Dr. A. J. Clarke<br>Prof. D. Winter<br>Prof. M. Jamart                                                                              | The Rand Corporation<br>Santa Monica, CA 90406<br>ATTN: Director, Climate Program         |
| Jet Propulsion Laboratory<br>California Institute of Technology<br>4800 Oak Grove Drive<br>Pasadena, CA 91103                             | Local:                                                                                    |
| ATTN: Dr. M. Parke<br>Dr. J. Lorell<br>Dr. G. Born                                                                                        | C<br>D<br>E31 (GIDEP)<br>E41                                                              |
| Prof. J. T. Kuo<br>Lamont-Doherty Geological Observatory<br>Columbia University<br>Palisades, NY 10964                                    | K<br>K02<br>K04<br>K05<br>K10                                                             |
| Prof. W. J. Pierson, Jr.<br>1641 Rosalind Ave.<br>Elmont, NY 11003                                                                        | K102<br>K1040<br>K104U<br>K104S (300)                                                     |
| Prof. Morris Schulkin<br>Applied Physics Laboratory<br>University of Washington<br>Seattle, WA 98105                                      | K104Z<br>K12<br>K12G<br>K12M<br>K12S                                                      |
| Dr. R. H. Estes<br>Business and Technological Systems, Inc.<br>Aerospace Building, Suite 605<br>10210 Greenbelt Rd.<br>Seabrook, MD 20801 | K12T<br>K12 W<br>K13<br>K13H<br>K14<br>K14S                                               |
| T. V. Martin<br>Sci. Res. and Appl. Group<br>Washington Analytical Services Center, Inc.<br>6801 Kenilworth Ave.<br>Riverdale, MD 20840   | K20<br>K204<br>K21<br>K21D<br>K30                                                         |

**DISTRIBUTION (Continued)**

K40

K404A

K404S

K41

K42

K44

K50

K51B

R

R02

R04

R31G

R40

R44

R44VT

X210            (6)

