Ch 2. 矩阵

钟友良

zhongyl@scut.edu.cn

Outline

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.5 初等矩阵

Outline

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.5 初等矩阵

Outline

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.5 初等矩阵

数域

定义 1.1 (数域)

对于一个集合 F 以及上面的两个运算 + 和 \times ,我们称 $(F,+,\times)$ 为一个 数域 (number field) 如果 F 关于 $+,\times$ 以及它们的逆是封闭的.

矩阵

定义 1.2 (矩阵)

对 $a_{i,j} \in F$, $i = 1, \ldots, m$, $j = 1, \ldots, n$, 称

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix}$$

为数域 F 上的一个 $m \times n$ 矩阵. 记号 $F^{m \times n}$

- $\blacktriangleright A = (a_{i,j})_{m,n}, A_{m,n}, A_{m\times n}$
- ► m 维欧氏空间 R^m R R², R³
- ➤ 实矩阵 R^{m×n}. 复矩阵 C^{m×n}

同型与相等

定义 (同型)

称两个矩阵 同型, 如果它们的行数和列数相同.

定义 (相等)

称两个矩阵 相等, 如果它们同型而且相同位置的元素相等 $(a_{i,j} = b_{i,j})$.

向量

定义 (向量)

- ▶ 行向量 1 × n
- ▶ 列向量 m×1

$$A_{3m,n} = \begin{pmatrix} a_{11} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}$$

$$U = (V_1, V_2)$$

$$U_1 = (U_1, U_2)$$

$$A = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\xrightarrow{\Upsilon_2 + \Upsilon_1} \begin{pmatrix} U \\ U + U \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$\sum_{k} a_{ik} |A_{jk}| = 0 \quad (i \neq j)$$

$$= (a_{i1} - a_{ik} - a_{in}) \cdot (|A_{ji}|) = 0$$

一个方阵 $A = (a_{i,j})_{n,n}$ 的 \dot{w} (trace) 为

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i}.$$

对角矩阵

定义 (对角矩阵, 单位矩阵, 零矩阵)

- ▶ 对角矩阵 diag(a_{1,1},..., a_{n,n})
 ▶ 单位矩阵 E_n = diag(1,...,1)
- ▶ 零矩阵 0

标量也可看作 1×1 矩阵.