Introduction to Neural Network Verification

Book Written by Prof. Aws Albarghouthi
UW-Madison

Presented by Yang Yang and Klaus Peng 2023/10/11

Neural Network Verification

Neural network (f) works as a black box. $f: \mathbb{R}^n \to \mathbb{R}^m$

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Challenge

The network could behave unexpectedly and produce wrong results.

Goal

We want to make **NN** have some desired properties we can formally trust.

Neural Network Properties

We want to make NN have some desired properties we can formally trust.

{precondition}

{function calls}

{postcondition}

For any values of x_1, \ldots, x_n that make the precondition true,

let $r_1 = f(x_1), r_2 = g(x_2), \dots$

Then the postcondition is true.

 $pre \land F \Rightarrow post$

Neural Network Verification

Assuming $f(x_{\theta}) > 0$, we solve the optimization problem to find the worst case:

$$f^* = \min \{f(x)\}, x \in P$$
 Where P is usually a perturbation set on x_{θ} , e.g.,
$$f^* > 0$$

$$P = \{x \mid ||x - x_{\theta}||_{p} \leq \varepsilon\}$$

Challenge

In real-world case, non-linear, non-convex constraints and generally leads to NP-complete.

Review

Goal

We want to make **NN** have some desired **properties** we can **formally trust**.

Challenge

In real-world case, non-linear, non-convex constraints and generally leads to NP-complete.

NEXT?

Precondition, postcondition, true, false, NP-complete, ... $pre \land F \Rightarrow post$ Boolean Logic

Propositional Logic Recap

Proposition is a **sentence** that could be either **true** or **false**.

A: SE4ML is an interesting course. (X) B: SE4ML is a graduate-level course. ($\sqrt{}$)

Formula is a string that could be generated using proposition.

Implication:
$$A \Rightarrow B := \neg A \lor B$$

$$pre \land F \Rightarrow post$$

Interpretation is a **set** that assigns true or false to fv's elements.

$$F := F \land F \mid F \lor F \mid \neg F$$

$$F \triangleq (p \land q) \lor \neg r$$

$$fv(F) = \{p, q, r\}$$

$$I = \{p \mapsto true, q \mapsto true, r \mapsto false\}$$

Formula F is <u>satisfiable (SAT)</u> if there <u>exists</u> an interpretation I such that <u>eval(I(F))=true</u>.

P: **Solve** the problem in polynomial time, bubble sort.

NP: Validate a solution in polynomial time, TSP.

NP-Complete: An **NP problem** that every NP problem is **reducible to it**, The Satisfiability Problem(**SAT**).

SAT:
$$\forall n_1, ..., n_N$$
, whether eval($\mathbf{F}(n_1, ..., n_N)$)=true How you solve it?

$$\mathbf{F} := \mathbf{A} \vee \neg \mathbf{A}$$

[STOC 1971, Stephen Cook] The Complexity of Theorem-Proving Procedures

Proved SAT to be the first NP-Complete using Turing Machine. ⇒ 1982 ACM Turing Award

Arithmetic Logic

Satisfiability Modulo Theories (SMT)

Non-Linear Arithmetic

Arithmetic Logic

Figure 1: Overview of logics in SMT-LIB

Advantages of SMT Solvers

- Allows encoding using various theories/logics
- Ability to combine multiple theories

MILP Solver

VS.

Figure 2: provided by Matlab

Advantages of MILP Solver

• Sometimes, **faster** compared to SMT solver

Review

We have tools how it could be used in NNV? Why we need such logic?

Use SMT to define the **specifications** of our neural network Apply SMT solvers to **verify** if our model is robust or of other properties

NEXT?

Encoding Nodes

Example of Nodes:

$$f_v(x,y) = 3x - 2y$$

$$\downarrow$$

$$F_v \triangleq v^o = 3x - 2y$$

$$\longrightarrow \hspace{-0.5cm} (v) \hspace{-0.5cm} \longrightarrow$$

$$f_v(x,y) = 3x - 2y$$

$$f_v(x) = relu(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$F_v \triangleq v^o = 3x - 2y$$

$$F_v \triangleq (x > 0 \Rightarrow v^o = x) \land (x \le 0 \Rightarrow v^o = 0)$$

Formalized definition:

$$f_{v}(\mathbf{x}) = \begin{cases} \sum_{j=1}^{n_{v}} c_{j}^{1} \cdot x_{j} + b^{1} & \text{if } S_{1} \\ \vdots \\ \sum_{j=1}^{n_{v}} c_{j}^{l} \cdot x_{j} + b^{l} & \text{if } S_{l} \end{cases}$$

$$F_{v} \triangleq \bigwedge_{i=1}^{l} [S_{i} \Rightarrow (v^{o} = \sum_{j=1}^{n_{v}} c_{j}^{i} \cdot v^{in,j} + b^{i})]$$

$$\vdots$$

$$v^{o} \text{- output of node } v$$

$$F_v \triangleq \bigwedge_{i=1}^l [S_i \Rightarrow (v^o = \sum_{j=1}^{n_v} c_j^i \cdot v^{in,j} + b^i)]$$

 $v^{in,i}$ - ith input to node v

Encoding Neural Network

1. Encoding Semantics of Nodes

$$F_V \triangleq \bigwedge_{v \in V \setminus V^{in}} F_i$$

$$V^{in} = \{v_1, v_2\}, V^o = \{v_4\}, f_{v_3} = 2x_1 - 3x_2, f_{v_4} = relu(x)$$

Formula for each non-input nodes:

$$F_{v_3} \triangleq v_3^o = 2v_3^{in,1} - 3v_3^{in,2} F_{v_4} \triangleq (v_4^{in,1} > 0 \Rightarrow v_4^o = v_4^{in,1}) \land (v_4^{in,1} \le 0 \Rightarrow v_4^o = 0)$$

Put them together:

$$F_V \triangleq F_{v_3} \wedge F_{v_4}$$

Encoding Neural Network

2. Encoding Edges Between Nodes

$$F_{o \to v} \triangleq \bigwedge_{i=1}^{n} v^{in,i} = v_j^o$$

$$F_E \triangleq \bigwedge_{v \in V \setminus V^{in}} F_{o \to v}$$

$$V^{in} = \{v_1, v_2\}, V^o = \{v_4\}, f_{v_3} = 2x_1 - 3x_2, f_{v_4} = relu(x)$$

Formula for each edge:

$$F_{o \to v_3} \triangleq (v_3^{in,1} = v_1^o) \land (v_3^{in,2} = v_2^o)$$

 $F_{o \to v_4} \triangleq v_4^{in,1} = v_3^o$

Put them together:
$$F_E \triangleq F_{o \to v_3} \land F_{o \to v_4}$$

Encoding Neural Network

3. All Together

$$F_G \triangleq F_V \wedge F_E$$

$$V^{in} = \{v_1, v_2\}, V^o = \{v_4\}, f_{v_3} = 2x_1 - 3x_2, f_{v_4} = relu(x)$$

Node & Edge:

$$F_{v_3} \triangleq v_3^o = 2v_3^{in,1} - 3v_3^{in,2}$$

$$F_{v_4} \triangleq (v_4^{in,1} > 0 \Rightarrow v_4^o = v_4^{in,1}) \land (v_4^{in,1} \le 0 \Rightarrow v_4^o = 0)$$

$$F_{o \to v_3} \triangleq (v_3^{in,1} = v_1^o) \land (v_3^{in,2} = v_2^o)$$

$$F_{o \to v_4} \triangleq v_4^{in,1} = v_3^o$$

$$F_{o \to v_3} \stackrel{\triangle}{=} (v_3^{in,1} = v_1^o) \land (v_3^{in,2} = v_2^o)$$

$$F_{o \to v_4} \stackrel{\triangle}{=} v_4^{in,1} = v_3^o$$

$$F_V \triangleq F_{v_3} \wedge F_{v_4}$$

$$F_E \triangleq F_{o \to v_3} \land F_{o \to v_4}$$

Finally:

$$F_G \triangleq F_{v_3} \wedge F_{v_4} \wedge F_{o \to v_3} \wedge F_{o \to v_4}$$

Encoding Correctness Properties

School: 2+2 = 4

Homework: 2+3+4 = 9

Exam: David has 4 apples, his train is 7 minutes early, calculate mass of the sun.

Recall previously:

$$\{ |x-c| \leqslant \mathbf{0.1} \}$$
 $r_1 \leftarrow f(x)$
 $r_2 \leftarrow f(c)$
 $\{ \operatorname{class}(r_1) = \operatorname{class}(r_2) \}$

 $pre \land F \Rightarrow post$

$$F_{i} \triangleq \underbrace{F_{G_{i}}}_{\text{neural network}} \land \underbrace{\left(\bigwedge_{j=1}^{n} x_{i,j} = v_{j}^{o}\right)}_{\text{network input}} \land \underbrace{\left(\bigwedge_{j=1}^{m} r_{i,j} = v_{n+j}^{o}\right)}_{\text{network output}}$$

$$\underbrace{\left(\bigwedge_{i=1}^{n}|x_{i}-c_{i}|\leq0.1\right)}_{\text{pre-condition}} \wedge \underbrace{F_{G}}_{\text{Neural Network}} \wedge \underbrace{\left(\left(\bigwedge_{i=1}^{n}x_{i}=v_{i}^{o}\right)\wedge\left(r_{1}=v_{n+1}^{o}\right)\right)}_{F_{1}:r_{1}=f(x)} \wedge \underbrace{\left(\left(\bigwedge_{i=1}^{n}c_{i}=v_{i}^{o}\right)\wedge\left(r_{2}=v_{n+1}^{o}\right)\right)}_{F_{2}:r_{2}=f(c)}$$

$$\Rightarrow \underbrace{(\text{class}(r_1) = \text{class}(r_2))}_{\text{post-condition}}$$

Soundness & Completeness

If you are interested, check Rice's Theorem, PL and Static Analysis.

Conclusion

Why Neural Network Verification?

We want to make **NN** have some desired **properties** we can **formally trust**.

How We Form it?

 $pre \land F \Rightarrow post$

SAT: $\forall n_1, ..., n_N$, whether eval($\mathbf{F}(n_1, ..., n_N)$)=true

How We Solve and Use it?

Use SMT to define the **specifications** of our neural network.

Apply SMT solvers to verify if our model is robust or of other properties.

Encode nodes, edges, properties and the network.

Questions?

Neural Network Verification IN ACTION

Instructions: https://elio-yang.github.io/res/NNV