

(nn)
iPPi
STOUCTION & INVESTME

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0
Sheet No.

Page 1 of 23

COMPANY : PT. PERTAMINA PATRA NIAGA

CONTRACTOR : PT. PP (PERSERO), Tbk

PROJECT TITLE : Pembangunan Dermaga Kapasitas 50,000 DWT di Fuel

Terminal Biak

LOCATION: Kabupaten Biak Numfor, Papua Barat, Indonesia.

CONTRACT NO :

JOB NO : 723002

PT. PERTAMINA PATRA NIAGA						
APPROVED						
APPROVED WITH COMMENT						
NOT APPROVED						
DATE CHECKED APPROVED						

				79r				
0	Issued for Approval	12/01/2024	€ ELT	ABP / TRN	SAW	AFM	ATH	AP
1			PREPARED	CHECKED	APPROVED	REVIE	EWED	APPROVED
REV	DESCRIPTION	DATE	PT.	PT. Pertamina Patra Niaga				
Œ			PREPAR	REVIE	NED & AF	PPROVED BY		

(55)
(PP)
ONSTRUCTION & INVESTMENT

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

CONSTRUCTION & INVESTMENT						
REV	:	0				
Sheet No.						
Page 2 of 23						

REVISION CONTROL SHEET

REV. NO.	DATE	DESCRIPTION
0	12/01/2024	Issued For Approval

DISTRIBUTION ORDER

EXTERNAL ISSUE	PT. PP (Persero) Tbk - INTERNAL ISSUE					
☑ PT. PERTAMINA PATRA NIAGA	⊠ PROJECT MANAGER	☐ LEAD ADMINISTRATION				
		□ LEAD SHE				
	□ CONSTRUCTION MANAGER					
	□ PROCUREMENT MANAGER					
	□ PROJECT CONTROL ■ MANAGER					
	☐ SHE MANAGER					
	☐ QC MANAGER					
	□ LEAD ENGINEERING					

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0
Sheet No.
Page 3 of 23

TABLE OF CONTENT

1.	PENDAHULUAN	4
2.	DEFINISI	5
	REFERENSI	
4.	KRITERIA DESAIN	6
5.	METODE PERHITUNGAN	7
6.	HASIL PERHITUNGAN	11
7.	LAMPIRAN – LAMPIRAN	17

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0
Sheet No.

Page 4 of 23

1. PENDAHULUAN

Untuk dapat menjawab peningkatan permintaan BBM, fasilitas terminal distribusi harus memiliki kapasitas yang memadai yang perlu dikembangkan. Fasilitas tersebut sangat penting untuk dapat mengantarkan produk "BBM" ke konsumen akhir. Oleh karena itu, agar semua proses pendistribusian dapat berjalan dengan lancar, PERTAMINA membutuhkan pembangunan dan pembangunan fasilitas untuk TBBM Biak, Papua Barat.

PT. PERTAMINA (PERSERO) bermaksud untuk melaksanakan pembangunan Dermaga baru berkapasitas 3.500 DWT – 50.000 DWT dalam rencana pembangunan Terminal BBM Biak bertujuan antara lain:

Peningkatan ketahanan stok BBM, khususnya di Papua bagian utara, seperti program peningkatan kebutuhan BBM satu harga oleh pemerintah. Mendukung program pemerintah sebagai Proyek Strategi Nasional pembangunan infrastruktur di Kawasan Timur Indonesia (KTI) Mengurangi beban operasional TBBM Wayame sehingga total keandalan pasokan BBM di wilayah Maluku – Papua semakin baik. Mengurangi risiko operasional yang berdampak pada ekonomi, politik dan keamanan wilayah Maluku – Papua serta meningkatkan ketersediaan layanan BBM/BBK kepada pemegang saham.

Gambar 1.1. Gambaran Lokasi TBBM Biak, Papua.

1.1. TUJUAN

Dokumen *Hydraulic dan Line Sizing* ini bertujuan untuk mengevaluasi data ukuran pipa dan desain pompa guna memenuhi kebutuhan proses dan *sizing criteria* proyek.

1.2. DESKRIPSI PROYEK

Lokasi pengerjaan EPC pembangunan Terminal BBM Biak terletak di Kabupaten Biak Numfor, Papua Barat, Indonesia.

PT PERTAMINA (Persero) berencana membangun Dermaga di Terminal BBM Biak dan fasilitas pendukung lainnya yang direncanakan sebagai fasilitas docking/tambat kapal dan juga sebagai area loading. Kapal yang akan beroperasi adalah tanker 3.500 DWT sampai dengan 50.000 DWT.

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0
Sheet No.

Page 5 of 23

Gambar 1.2. Plot Plant Dermaga TBBM Biak.

Lingkup pekerjaan TBBM Biak untuk pembangunan dermaga dengan kapasitas 50.000 DWT meliputi pelaksanaan umum kegiatan *Engineering, Procurement, Construction* (EPC) mengacu pada dokumen teknis (RKS, BoQ, FEED).

Menyiapkan Detail Engineering Design (DED) berdasarkan dokumen FEED, pekerjaan konstruksi sipil dan struktur dermaga (*Trestle, Jetty Head, Breasting Dolphin (4 Unit), Mooring Dolphin (4 Unit), Catwalk* dan *Steel Structure, Tugboat Jetty, Fire Pump Platform* dan *Shelter* serta *Guard House*), pekerjaan perpipaan dan mekanik, keselamatan kerja dan sistem proteksi kebakaran, pekerjaan kelistrikan dan instrumentasi, pekerjaan pengujian, inspeksi dan *commissioning*.

2. DEFINISI

Definisi berikut akan berlaku di seluruh dokumen Hydraulic & Line Sizing :

PROYEK:

Pembangunan Dermaga Kapasitas 50,000 DWT di Fuel Terminal Biak

PERUSAHAAN:

PT. Pertamina Patra Niaga

KONTRAKTOR:

PT. PP (Persero) Tbk

VENDOR/PABRIKAN/SUBKONTRAKTOR:

Semua organisasi/perorangan yang ditunjuk oleh KONTRAKTOR untuk melaksanakan semua pekerjaan yang ditentukan dalam lingkup kerja pada proyek yang dimaksud.

3. REFERENSI

Daftar dokumen dibawah ini adalah sebagai acuan bagi **KONTRAKTOR** untuk memenuhi seluruh standar dan spesifikasi yang telah ditentukan untuk menyelesaikan **PROYEK**.

Tabel 1 - Referensi Dokumen

BIAK-DB-10-001-A4	Process Design Basis
BIAK-PID-10-002-A3	Piping & Instrumentation Diagram Jetty – 1 (Existing)
BIAK-PID-10-003-A3	Piping & Instrumentation Diagram Jetty – 2 (New)
BIAK-PID-10-004-A3	Piping & Instrumentation Diagram Valve Matrix Onshore
API RP 14E	Offshore Production Platform Piping System

4. KRITERIA DESAIN

4.1 LINE SIZING

Kecepatan aliran dalam pipa umumnya harus dijaga cukup rendah untuk mencegah masalah erosi, lonjakan tekanan *water hammer*, kebisingan, getaran, *electrostatic discharge*, dan *reaction forces*. Kecepatan maksimum yang direkomendasikan dan *pressure drop* untuk kriteria penentuan ukuran pipa dapat dilihat dalam tabel di bawah ini.

Tabel 2 - Kriteria Line Sizing

No	Produk	Maximum Pressure Drop/ 100 m (kgf/cm²/100 m)	Maximum Velocity (m/s)
1	Pump Suction		
	(a) Saturate liquid	0.12	0.6 – 1.8
	(b) Sub-cool liquid	0.23	1.2 – 2.5
2	Pump Discharge		
	(a) General BBM	0.46	4.57
	(b) Avtur	0.46	3.0

Terdapat juga persyaratan kecepatan minimum yaitu 0,91 m/s untuk meminimalkan penimbunan pasir dan padatan lainnya (API RP 14E). Jika hasil perhitungan kecepatan aliran general BBM dalam pipa melebihi nilai maksimum nya yaitu 4,57 m/s dengan jarak aliran pipa tidak jauh dan nilai *pressure drop* yang tidak signifikan, maka kecepatan aliran BBM tersebut masih dalam kategori *acceptable*.

5. METODE PERHITUNGAN

Metode perhitungan Hydraulic & Line Sizing ditentukan dengan merujuk pada diagram alir di bawah ini:

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0
Sheet No.

Page 8 of 23

- A) Sebelum perhitungan hidrolik, beberapa data perlu dimasukkan, yaitu sifat-sifat fluida, data pipa, panjang pipa, dan elevasi, serta maksimum *destination pressure*. Untuk maksimum *destination pressure* yang diinput yaitu sebesar 1 atm atau 0 kg/cm²g sesuai dengan tekanan di *storage tank*.
- B) Selanjutnya, dilakukan perhitungan kecepatan rata-rata aliran fluida, dan hasil perhitungan ini kemudian digunakan untuk menentukan *pressure drop* per 100 m.
- C) Hasil dari kedua perhitungan, yaitu kecepatan dan *pressure drop*, kemudian dibandingkan dengan kriteria desain, di mana kecepatan maksimum adalah 4,57 m/s, dan *pressure drop* maksimum per 100 m adalah 0,46 bar. Sementara itu, kecepatan minimum yang diperlukan adalah 0,91 m/s untuk meminimalkan pengendapan pasir dan padatan lainnya (API RP 14E).
- D) Jika hasilnya kurang atau melebihi kriteria desain, ukuran pipa harus disesuaikan hingga sesuai dengan kriteria desain. Setelah hasil perhitungan sesuai dengan kriteria desain, nilai dari total *line loss* kemudian dihitung.
- E) Hasil perhitungan total *line loss* dapat digunakan untuk melakukan perhitungan desain pompa, termasuk *discharge pressure, suction pressure, differential pressure,* dan *head*.

5.1 KEBUTUHAN DATA UNTUK PERHITUNGAN POMPA

- A) Kondisi Operasi:
 - Fluid condition
 - Pumping temperature
 - · Vapor pressure at pumping temperature
 - · Specific gravity
 - Viskositas
 - Kapasitas
- B) Material Pipa

5.2 KECEPATAN RATA-RATA

Kecepatan rata-rata dihitung melalui persamaan berikut:

$$V_{\rm l} = \frac{0.012Q_{\rm l}}{d_1^2}$$
 (Eq. 5.1)

dimana:

 V_1 = Average liquid flow velocity, ft/s

 Q_1 = Liquid flow rate, barrels/day

 d_1 = Pipe inside diameter, inche

5.3 PRESSURE DROP

Pressure drop dihitung dengan persamaan Fanning berikut:

$$\Delta P_l = \frac{0.00115S_g Q_l^2 f_m}{ID^5}$$
 (Eq. 5.2)

dimana:

 ΔP_l = Pressure drop, psi/100 ft

 f_m = Moody friction factor, dimensionless (Friction Factor Chart, figure 2.3 API 14E)

 Q_l = Liquid flow rate, barrels/day

 S_a = Liquid specific gravity, dimensionless

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV :

. .

Sheet No.

Page 9 of 23

ID = Pipe inside diameter, inches

Moody friction factor dihitung menggunakan pendekatan korelasi Colebrook.

5.4 DIFFERENTIAL PRESSURE

Differential pressure dihitung melalui persamaan berikut:

$$\Delta P = Discharge \ Pressure - Suction \ Pressure \ \dots (Eq. 5.3)$$

dimana:

 ΔP = Differential pressure, kg/cm²

5.5 HEAD

Head Pompa dihitung melalui persamaan berikut:

$$H = \frac{\Delta P}{(10^3 \times S_g)} \times 10^4$$
 (Eq. 5.4)

dimana:

H = Head, m

 ΔP = Differential pressure, kg/ cm^2

 S_q = Liquid specific gravity, dimensionless

5.6 HYDRAULIC POWER

Hydraulic power pompa dihitung melalui persamaan berikut:

Hydraulic Power (kW) =
$$\frac{H \times Q \times S_g}{367.2}$$
 (Eq. 5.5)

dimana:

H = Head, m

Q = Capacity pressure, m^3/h

 S_a = Liquid specific gravity, dimensionless

5.7 NPSHA (NET POSITIVE HEAD AVAILABLE)

NPSHA pompa dihitung melalui persamaan berikut:

$$NPSHA = \frac{10}{S_q} \times (P - Pv) + Hs - HI - Ha$$
 (Eq. 5.6)

dimana:

 S_q = Liquid specific gravity, dimensionless

 $P = Drum Pressure, kg/cm^2$

 $Pv = Vapor Pressure, kg/cm^2$

Hs = Net Height, m

HI = Line Loss, m

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

Sheet No.
Page 10 of 23

Ha = Acceleration Loss, m (di dalam kasus sentrifugal atau rotary, Ha dapat diabaikan)

5.8 MAXIMUM SHUT-OFF PRESSURE

Maximum shut-off pressure pompa dihitung melalui persamaan berikut:

Max. Shut Off Press = $Max.Suc.Press + 1,2 \times \Delta P$ (Eq. 5.7)

dimana:

 ΔP = Differential pressure, kg/cm²

Maximum shut-off pressure pompa harus dikonfirmasi dengan informasi dari pihak vendor.

PERTAMINA PATRA NIAGA	CALCULATION	CONSTRUCTION A INVESTMENT			
Document No.		REV : 0			
BIAK-CAL-10-001-A4	HYDRAULIC & LINE SIZING	Sheet No.			
DIAN-CAL-10-001-A4		Page 11 of 23			

6. HASIL PERHITUNGAN

6.1 HASIL PERHITUNGAN LINE SIZING

Tabel 3 – Hasil Perhitungan *Line Sizing*

		Vol				ol Result		Criteria			
No	Line No.	PID No.	Service	Flow, kL/hr		Vel, m/s	DP/100m, bar	Vel, m/s	DP/100m, bar	Status	Remarks
1	20"-P-A1A-002	723002-CD- 000-PRO-PID- 003	Pertalite to Storage Tank	2000	488,95	2,959	0,089	4,57	0,460	ОК	From Jetty-2, Size is based on ITB
2	20"-PX-A1A-002	723002-CD- 000-PRO-PID- 003	Pertamax to Storage Tank	2000	488,95	2,959	0,089	4,57	0,460	ОК	From Jetty-2, Size is based on ITB
3	20"-S-A1A-002	723002-CD- 000-PRO-PID- 003	Solar to Storage Tank	2000	488,95	2,959	0,118	4,57	0,460	OK	From Jetty-2, Size is based on ITB
4	10"-K-A1A-002	723002-CD- 000-PRO-PID- 003	Kerosine to Storage Tank	500	254,51	2,730	0,223	4,57	0,460	ОК	From Jetty-2, Optimum Size is based on ITB
5	10"-AV-A1B-002	723002-CD- 000-PRO-PID- 003	Avtur to Storage Tank	500	254,51	2,730	0,221	3,00	0,460	OK	From Jetty-2, Optimum Size is based on ITB

(PP)

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0

Sheet No.

Page 12 of 23

				Flow,		Re	sult	С	riteria		
No	Line No.	PID No.	Service	kL/hr	ID, mm	Vel, m/s	DP/100m, bar	Vel, m/s	DP/100m, bar	Status	Remarks
6	6"-BS-A1A-102	723002-CD- 000-PRO-PID- 003	Bio Solar to Jetty-2	138	154,05	2,057	0,243	4,57	0,460	ОК	From Jetty-2, Optimum Size is based on ITB
7	10"-P-A1A-001	723002-CD- 000-PRO-PID- 002/003	Pertalite to Storage Tank	500	254,51	2,730	0,167	4,57	0,460	OK	From Jetty-1 (TP- 005A/B), Optimum Size is based on ITB
8	10"-PX-A1A-001	723002-CD- 000-PRO-PID- 002/003	Pertamax to Storage Tank	300	254,51	1,638	0,062	4,57	0,460	OK	From Jetty-1 (TP- 006A/B), Size is based on ITB
9	10"-S-A1A-001	723002-CD- 000-PRO-PID- 002/003	Solar to Storage Tank	500	254,51	2,730	0,223	4,57	0,460	OK	From Jetty-1 to solar storage tank (TP-003A/B)
10	10"-K-A1A-001	723002-CD- 000-PRO-PID- 002/003	Kerosine to Storage Tank	500	254,51	2,730	0,223	4,57	0,460	OK	From Jetty-1 to kerosine storage tank(TP-001A/B)
11	10"-AV-A1B-001	723002-CD- 000-PRO-PID- 002/003	Avtur to Storage Tank	200	254,51	1,092	0,042	3,00	0,460	OK	From Jetty-1 to avtur storage tank (TP-002A/B)
12	6"-BS-A1A-101	723002-CD- 000-PRO-PID- 002	Bio Solar to Jetty-1	150	154,05	2,236	0,283	4,57	0,460	OK	To Jetty-1 (TP- 004A/B)

(PP)

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0

Sheet No.

Page 13 of 23

				Flow,		Re	sult	Cı	riteria		
No	Line No.	PID No.	Service	kL/hr	ID, mm	Vel, m/s	DP/100m, bar	Vel, m/s	DP/100m, bar	Status	Remarks
13	10"-MP-A1A- 001	723002-CD- 000-PRO-PID- 003	Multi Product to Storage Tank	1000	254,51	5,460	0,815	4,57	0,460	Acceptable	From Jetty-2
14	10"-MP-A1A- 002	723002-CD- 000-PRO-PID- 003	Multi Product to Storage Tank	1000	254,51	5,460	0,815	4,57	0,460	Acceptable	From Jetty-2
15	10"-S-A1A-004	723002-CD- 000-PRO-PID- 002/003	Solar to Jetty- 1	300	254,51	1,638	0,087	4,57	0,460	ОК	To Jetty-1 (TP- 003A/B)
16	10"-PX-A1A-001	723002-CD- 000-PRO-PID- 002	Pertamax to Jetty-2 header	300	254,51	1,638	0,062	4,57	0,460	ОК	from Jetty-1 to Jetty-2 header (TP-006A/B)
17	10"-K-A1A-002	723002-CD- 000-PRO-PID- 003	Kerosene to Jetty-2	500	254,51	2,730	0,223	4,57	0,460	ОК	To Jetty-2
18	20"-S-A1A-002	723002-CD- 000-PRO-PID- 003	Solar to Storage Jetty- 2	2000	488,95	2,959	0,118	4,57	0,460	ОК	To Jetty-2
19	20"-P-A1A-002	723002-CD- 000-PRO-PID- 003	Pertalite to Storage Jetty- 2	2000	488,95	2,959	0,089	4,57	0,460	ОК	To Jetty-2

(PP)

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0

Sheet No.

Page 14 of 23

No	Line No.	PID No.	Service	Flow,	ID, mm	Re	esult	Cı	riteria	Status	Remarks
				kL/hr	,	Vel, m/s	DP/100m, bar	Vel, m/s	DP/100m, bar		
20	20"-PX-A1A-002	723002-CD- 000-PRO-PID- 003	Pertamax to Storage Jetty- 2	2000	488,95	2,959	0,089	4,57	0,460	ОК	To Jetty-2
21	10"-P-A1A-004	723002-CD- 000-PRO-PID- 003	Pertalite to Jetty 1	300	254,51	1,638	0,062	4,57	0,460	ОК	To Jetty-1
22	10"-PX-A1A-004	723002-CD- 000-PRO-PID- 003	Pertamax to Jetty 1	300	254,51	1,638	0,062	4,57	0,460	ОК	To Jetty-1
23	10"-S-A1A-005	723002-CD- 000-PRO-PID- 003	Solar to Jetty 2 (NNF)	300	254,51	1,638	0,087	4,57	0,460	ОК	To Jetty-2
24	10"-P-A1A-005	723002-CD- 000-PRO-PID- 003	Pertalite to Jetty 2	500	254,51	2,730	0,167	4,57	0,460	ОК	To Jetty-2

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0

Sheet No.

Page 15 of 23

				Flow,		Re	sult	Cı	riteria		
No	Line No.	PID No.	Service	kL/hr	ID, mm	Vel, m/s	DP/100m, bar	Vel, m/s	DP/100m, bar	Status	Remarks
25	10"-PX-A1A-005	723002-CD- 000-PRO-PID- 003	Pertamax to Jetty 2	500	254,51	2,730	0,167	4,57	0,460	ОК	To Jetty-2
26	4"-SW-C1A-102	723002-CD- 000-PRO-PID- 003	Service water to Jetty-2	65,99	102,26	2,232	0,450	4,57	0,460	ОК	To Jetty-2

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

CONSTR	OCTION & IN	PESTMENT
REV	:	0
S	heet N	lo.
Pa	ne 16 (of 23

6.2 HASIL PERHITUNGAN DESAIN MULTI PRODUCTS STRIPPING PUMP

Berdasarkan metode perhitungan yang telah dijelaskan sebelumnya, maka didapatkan hasil perhitungan desain *multi products stripping pump* sebagai berikut.

Tabel 4 - Hasil Perhitungan Multi Product Stripping Pump

Kondisi Operasi	Data Sheet ITB	Hasil Perhitungan	Selected Design
Kapasitas (m³/h)	10	10	10
Suction Pressure (kg/cm^2g)	0,07	-0,14	-0,14
Discharge Pressure (kg/cm^2g)	5,14	5,12	5,20
Differential Pressure (m)	60	57,5	60
NPSHA (m)	2,9	2,9	2,9

6.3 HASIL PERHITUNGAN DESAIN AVTUR STRIPPING PUMP

Berdasarkan metode perhitungan yang telah dijelaskan sebelumnya, maka didapatkan hasil perhitungan desain *avtur stripping pump* sebagai berikut.

Tabel 5 - Hasil Perhitungan Avtur Stripping Pump

Kondisi Operasi	Data Sheet ITB	Hasil Perhitungan	Selected Design
Kapasitas (m³/h)	10	10	10
Suction Pressure (kg/cm^2g)	0,07	-0,2	-0,2
Discharge Pressure (kg/cm^2g)	5,14	4,75	4,84
Differential Pressure (m)	60	58,9	60
NPSHA (m)	2,9	9,79	9,79

(PP)

REV

0

Sheet No.

Page 17 of 23

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

7. LAMPIRAN – LAMPIRAN

7.1 LAMPIRAN PERHITUNGAN LINE SIZING

			LINE No.					FLUID	PROPERTIES		PII	PE DATA		R	ESULT	CR	RITERIA		
No.	Size	e Ser	v. Sp	ec.	Seq.	P&ID No.	SERVICE	Vol Flow, kL/hr	rho, kg/m3	visc, cP	rough, micr	SCH	ID, mm	Vel, m/s	ΔP/100m, bar	Vel, m/s	ΔP/100m, bar	STATUS	REMARKS
					·						-								
	20"	P	A	1A-	002	723002-CD-000-PRO-PID-003	Pertalite to Storage Tank	2000	770,000	0,63	50	STD	488,95	2,959	0,089	4,57	0,460	OK	From Jetty-2, Size is based on ITB
1	18"	P	A	1A-	002	723002-CD-000-PRO-PID-003	Pertalite to Storage Tank	2000	770,000	0,63	50	STD	438,15	3,685	0,156	4,57	0,460	OK	From Jetty-2, Optimum Size
	16"	P	A	1A-	002	723002-CD-000-PRO-PID-003	Pertalite to Storage Tank	2000	770,000	0,63	50	STD	387,35	4,714	0,292	4,57	0,460	NOT GOOD	From Jetty-2
	20"	P)	ζA	1A-	002	723002-CD-000-PRO-PID-003	Pertamax to Storage Tank	2000	770,000	0,63	50	STD	488,95	2,959	0,089	4,57	0,460	OK	From Jetty-2, Size is based on ITB
2	18"	P)	ζA	1A-	002	723002-CD-000-PRO-PID-003	Pertamax to Storage Tank	2000	770,000	0,63	50	STD	438,15	3,685	0,156	4,57	0,460	OK	From Jetty-2, Optimum Size
	16"	P)	ζA	1A-	002	723002-CD-000-PRO-PID-003	Pertamax to Storage Tank	2000	770,000	0,63	50	STD	387,35	4,714	0,292	4,57	0,460	NOT GOOD	From Jetty-2
	20"	S	A	1A-	002	723002-CD-000-PRO-PID-003	Solar to Storage Tank	2000	860,000	3,87	50	STD	488,95	2,959	0,118	4,57	0,460	OK	From Jetty-2, Size is based on ITB
3	18"	S	A	1A-	002	723002-CD-000-PRO-PID-003	Solar to Storage Tank	2000	860,000	3,87	50	STD	438,15	3,685	0,202	4,57	0,460	OK	From Jetty-2, Optimum Size
	16"	S	A	1A-	002	723002-CD-000-PRO-PID-003	Solar to Storage Tank	2000	860,000	3,87	50	STD	387,35	4,714	0,373	4,57	0,460	NOT GOOD	From Jetty-2
4	10"	K	A	1A-	002	723002-CD-000-PRO-PID-003	Kerosine to Storage Tank	500	860,000	3,87	50	S40	254,51	2,730	0,223	4,57	0,460	OK	From Jetty-2, Optimum Size is based on ITB
	8"	K	A	1A-	002	723002-CD-000-PRO-PID-003	Kerosine to Storage Tank	500	860,000	3,87	50	S40	202,72	4,303	0,686	4,57	0,460	NOT GOOD	From Jetty-2
5	10"	A\	/A	1B-	002	723002-CD-000-PRO-PID-003	Avtur to Storage Tank	500	840,000	4,15	50	S40	254,51	2,730	0,221	3,00	0,460	OK	From Jetty-2, Optimum Size is based on ITB
	8"	A\	/A	1B-	002	723002-CD-000-PRO-PID-003	Avtur to Storage Tank	500	840,000	4,15	50	S40	202,72	4,303	0,678	3,00	0,460	NOT GOOD	From Jetty-2
6	6"	BS	6A	1A-	102	723002-CD-000-PRO-PID-003	Bio Solar to Jetty-2	138	840,000	4,15	50	S40	154,05	2,057	0,243	4,57	0,460	OK	From Jetty-2, Optimum Size is based on ITB
	4"	BS	6A	1A-	102	723002-CD-000-PRO-PID-003	Bio Solar to Jetty-2	138	840,000	4,15	50	S40	102,26	4,667	1,824	4,57	0,460	NOT GOOD	To Jetty-2
7	10"	P	A	1A-	001	723002-CD-000-PRO-PID-002/003	Pertalite to Storage Tank	500	770,000	0,63	50	S40	254,51	2,730	0,167	4,57	0,460	OK	From Jetty-1 (TP-005A/B), Optimum Size is based on ITB
	8"	P	A	1A-	001	723002-CD-000-PRO-PID-002	Pertalite to Storage Tank	500	770,000	0,63	50	S40	202,72	4,303	0,532	4,57	0,460	NOT GOOD	From Jetty-1 to Pertalite storage tank(TP-005A/B)
	10"	P)	ζA	1A-	001	723002-CD-000-PRO-PID-002/003	Pertamax to Storage Tank	300	770,000	0,63	50	S40	254,51	1,638	0,062	4,57	0,460	OK	From Jetty-1 (TP-006A/B), Size is based on ITB
8	8"	P)	ΚA	1A-	001	723002-CD-000-PRO-PID-002	Pertamax to Storage Tank	300	770,000	0,63	50	S40	202,72	2,582	0,197	4,57	0,460	OK	From Jetty-1 (TP-006A/B), Optimum Size
	6"	P)	ΚA	1A-	001	723002-CD-000-PRO-PID-002	Pertamax to Storage Tank	300	770,000	0,63	50	S40	154,05	4,471	0,799	4,57	0,460	NOT GOOD	From Jetty-1 (TP-006A/B)
				············															
	1				<u> </u>			l	1	1	I	<u> </u>	1	1	1	I	1		

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0

Sheet No.

Page 18 of 23

No	LINE No.		P&ID No.	SERVICE	FLUID	PROPERTIES		PIF	PE DATA		R	RESULT	CF	RITERIA	STATUS	REMARKS
					Vol Flow, kL/hr	rho, kg/m3	visc, cP	rough, micr	SCH	ID, mm	Vel, m/s	ΔP/100m, bar	Vel, m/s	ΔP/100m, bar		
9	10"SA1A-	001	723002-CD-000-PRO-PID-002/003	Solar to Storage Tank	500	860,000	3,87	50	S40	254,51	2,730	0,223	4,57	0,460	OK	From Jetty-1 to solar storage tank (TP-003A/B)
Ĭ	8"SA1A-	001	723002-CD-000-PRO-PID-002	Solar to Storage Tank	500	860,000	3,87	50	S40	202,72	4,303	0,686	4,57	0,460	NOT GOOD	From Jetty-1 to solar storage tank (TP-003A/B)
10	10"KA1A-	001	723002-CD-000-PRO-PID-002/003	Kerosine to Storage Tank	500	860,000	3,87	50	S40	254,51	2,730	0,223	4,57	0,460	OK	From Jetty-1 to kerosine storage tank(TP-001A/B)
	8"KA1A-	001	723002-CD-000-PRO-PID-002	Kerosine to Storage Tank	500	860,000	3,87	50	S40	202,72	4,303	0,686	4,57	0,460	NOT GOOD	From Jetty-1 to kerosine storage tank(TP-001A/B)
	10"AVA1B-	001	723002-CD-000-PRO-PID-002/003	Avtur to Storage Tank	200	840,000	4,15	50	S40	254,51	1,092	0,042	3,00	0,460	OK	From Jetty-1 to avtur storage tank (TP-002A/B)
11	8"AVA1B-	001	723002-CD-000-PRO-PID-002	Avtur to Storage Tank	200	840,000	4,15	50	S40	202,72	1,721	0,125	3,00	0,460	OK	From Jetty-1 to avtur storage tank (TP-002A/B)
ŀ	6"AVA1B-	001	723002-CD-000-PRO-PID-002	Avtur to Storage Tank	200	840,000	4,15	50	S40	154,05	2,981	0,480	3,00	0,460	NOT GOOD	From Jetty-1 to avtur storage tank (TP-002A/B)
12	6"BSA1A-	101	723002-CD-000-PRO-PID-002	Bio Solar to Jetty-1	150	840,000	4,15	50	S40	154,05	2,236	0,283	4,57	0,460	OK	To Jetty-1 (TP-004A/B)
12	4"BSA1A-	101	723002-CD-000-PRO-PID-002	Bio Solar to Jetty-1	150	840,000	4,15	50	S40	102,26	5,073	2,131	4,57	0,460	NOT GOOD	To Jetty-1 (TP-004A/B)
13	10"MPA1A-	001	723002-CD-000-PRO-PID-003	Multi Product to Storage Tank	1000	860,000	3,87	50	S40	254,51	5,460	0,815	4,57	0,460	Acceptable	From Jetty-2
	12"MPA1A-	001	723002-CD-000-PRO-PID-003	Multi Product to Storage Tank	1000	860,000	3,87	50	STD	304,80	3,807	0,333	4,57	0,460	OK	From Jetty-2.
14	10"MPA1A-	002	723002-CD-000-PRO-PID-003	Multi Product to Storage Tank	1000	860,000	3,87	50	S40	254,51	5,460	0,815	4,57	0,460	Acceptable	From Jetty-2
	12"MPA1A-	002	723002-CD-000-PRO-PID-003	Multi Product to Storage Tank	1000	860,000	3,87	50	STD	304,80	3,807	0,333	4,57	0,460	OK	From Jetty-2.
	10"SA1A-	004	723002-CD-000-PRO-PID-002/003	Solar to Jetty-1	300	860,000	3,87	50	S40	254,51	1,638	0,087	4,57	0,460	OK	To Jetty-1 (TP-003A/B)
15	8"SA1A-	004	723002-CD-000-PRO-PID-002	Solar to Jetty-1	300	860,000	3,87	50	S40	202,72	2,582	0,266	4,57	0,460	OK	To Jetty-1 (TP-003A/B)
•	6"SA1A-	004	723002-CD-000-PRO-PID-002	Solar to Jetty-1	300	860,000	3,87	50	S40	154,05	4,471	1,030	4,57	0,460	NOT GOOD	To Jetty-1 (TP-003A/B)
	10"PXA1A-	001	723002-CD-000-PRO-PID-002	Pertamax to Jetty-2 header	300	770,000	0,63	50	S40	254,51	1,638	0,062	4,57	0,460	OK	from Jetty-1 to Jetty-2 header (TP-006A/B)
16	8"PXA1A-	001	723002-CD-000-PRO-PID-002	Pertamax to Jetty-2 header	300	770,000	0,63	50	S40	202,72	2,582	0,197	4,57	0,460	OK	from Jetty-1 to Jetty-2 header (TP-006A/B)
•	6"PXA1A-	001	723002-CD-000-PRO-PID-002	Pertamax to Jetty-2 header	300	770,000	0,63	50	S40	154,05	4,471	0,799	4,57	0,460	NOT GOOD	from Jetty-1 to Jetty-2 header (TP-006A/B)
17	10"KA1A-	002	723002-CD-000-PRO-PID-003	Kerosene to Jetty-2	500	860,000	3,87	50	S40	254,51	2,730	0,223	4,57	0,460	OK	To Jetty-2
	8"KA1A-	002	723002-CD-000-PRO-PID-003	Kerosene to Jetty-2	500	860,000	3,87	50	S40	202,72	4,303	0,686	4,57	0,460	NOT GOOD	To Jetty-2
	20"SA1A-	002	723002-CD-000-PRO-PID-003	Solar to Storage Jetty-2	2000	860,000	3,87	50	STD	488,95	2,959	0,118	4,57	0,460	OK	To Jetty-2
18	18"SA1A-	002	723002-CD-000-PRO-PID-003	Solar to Storage Jetty-2	2000	860,000	3,87	50	STD	438,15	3,685	0,202	4,57	0,460	OK	To Jetty-2
ŀ	16"SA1A-	002	723002-CD-000-PRO-PID-003	Solar to Storage Jetty-2	2000	860,000	3,87	50	STD	387,35	4,714	0,373	4,57	0,460	NOT GOOD	To Jetty-2

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0

Sheet No.

Page 19 of 23

No		LINE	No.		P&ID No.	SERVICE	FLUID	PROPERTIES		PIF	PE DATA		R	ESULT	CR	ITERIA	STATUS	REMARKS
NO		LINE	NO.		Paid No.	SERVICE	Vol Flow, kL/hr	rho, kg/m3	visc, cP	rough, micr	SCH	ID, mm	Vel, m/s	ΔP/100m, bar	Vel, m/s	ΔP/100m, bar	SIAIUS	REWARNS
	20"-	-P-	-A1A-	002	723002-CD-000-PRO-PID-003	Pertalite to Storage Jetty-2	2000	770,000	0,63	50	STD	488,95	2,959	0,089	4,57	0,460	OK	To Jetty-2
19	18"-	-P-	-A1A-	002	723002-CD-000-PRO-PID-003	Pertalite to Storage Jetty-2	2000	770,000	0,63	50	STD	438,15	3,685	0,156	4,57	0,460	OK	To Jetty-2
	16"-	-P-	-A1A-	002	723002-CD-000-PRO-PID-003	Pertalite to Storage Jetty-2	2000	770,000	0,63	50	STD	387,35	4,714	0,292	4,57	0,460	NOT GOOD	To Jetty-2
	20"-	-PX-	-A1A-	002	723002-CD-000-PRO-PID-003	Pertamax to Storage Jetty-2	2000	770,000	0,63	50	STD	488,95	2,959	0,089	4,57	0,460	OK	To Jetty-2
20	18,0"-	-PX-	-A1A-	002	723002-CD-000-PRO-PID-003	Pertamax to Storage Jetty-2	2000	770,000	0,63	50	STD	438,15	3,685	0,156	4,57	0,460	OK	To Jetty-2
	16,0"-	-PX-	-A1A-	002	723002-CD-000-PRO-PID-003	Pertamax to Storage Jetty-2	2000	770,000	0,63	50	STD	387,35	4,714	0,292	4,57	0,460	NOT GOOD	To Jetty-2
	10"-	-P-	A1A	004	723002-CD-000-PRO-PID-003	Pertalite to Jetty 1	300	770,000	0,63	50	S40	254,51	1,638	0,062	4,57	0,460	OK	To Jetty-1
21	8"-	-P-	A1A	004	723002-CD-000-PRO-PID-003	Pertalite to Jetty 1	300	770,000	0,63	50	S40	202,72	2,582	0,197	4,57	0,460	OK	To Jetty-1
	6"-	-P-	A1A	004	723002-CD-000-PRO-PID-003	Pertalite to Jetty 1	300	770,000	0,63	50	S40	154,05	4,471	0,799	4,57	0,460	NOT GOOD	To Jetty-1
	10"-	-PX-	A1A	004	723002-CD-000-PRO-PID-003	Pertamax to Jetty 1	300	770,000	0,63	50	S40	254,51	1,638	0,062	4,57	0,460	OK	To Jetty-1
22	8"-	-PX-	A1A	004	723002-CD-000-PRO-PID-003	Pertamax to Jetty 1	300	770,000	0,63	50	S40	202,72	2,582	0,197	4,57	0,460	OK	To Jetty-1
	6"-	-PX-	A1A	004	723002-CD-000-PRO-PID-003	Pertamax to Jetty 1	300	770,000	0,63	50	S40	154,05	4,471	0,799	4,57	0,460	NOT GOOD	To Jetty-1
	10"-	-S-	A1A	005	723002-CD-000-PRO-PID-003	Solar to Jetty 2 (NNF)	300	860,000	3,87	50	S40	254,51	1,638	0,087	4,57	0,460	OK	To Jetty-2
23	8"-	-S-	A1A	005	723002-CD-000-PRO-PID-003	Solar to Jetty 2 (NNF)	300	860,000	3,87	50	S40	202,72	2,582	0,266	4,57	0,460	OK	To Jetty-2
	6"-	-S-	A1A	005	723002-CD-000-PRO-PID-003	Solar to Jetty 2 (NNF)	300	860,000	3,87	50	S40	154,05	4,471	1,030	4,57	0,460	NOT GOOD	To Jetty-2
24	10"-	-P-	A1A	005	723002-CD-000-PRO-PID-003	Pertalite to Jetty 2	500	770,000	0,63	50	S40	254,51	2,730	0,167	4,57	0,460	OK	To Jetty-2
≟-#	8"-	-P-	A1A	005	723002-CD-000-PRO-PID-003	Pertalite to Jetty 2	500	770,000	0,63	50	S40	202,72	4,303	0,532	4,57	0,460	NOT GOOD	To Jetty-2
25	10"-	-PX-	A1A	005	723002-CD-000-PRO-PID-003	Pertamax to Jetty 2	500	770,000	0,63	50	S40	254,51	2,730	0,167	4,57	0,460	OK	To Jetty-2
	8"-	-PX-	A1A	005	723002-CD-000-PRO-PID-003	Pertamax to Jetty 2	500	770,000	0,63	50	S40	202,72	4,303	0,532	4,57	0,460	NOT GOOD	To Jetty-2
26	4"-	-SW-	C1A	102	723002-CD-000-PRO-PID-003	Service water to Jetty-2	65,99	996,000	1,00	50	S40	102,26	2,232	0,450	4,57	0,460	OK	To Jetty-2
20	3,0"-	-SW-	C1A	102	723002-CD-000-PRO-PID-003	Service water to Jetty-2	65,99	996,000	1,00	50	S40	77,93	3,843	1,791	4,57	0,460	NOT GOOD	To Jetty-2
			•••••															

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0
Sheet No.
Page 20 of 23

7.2 PERHITUNGAN MULTI PRODUCTS STRIPPING PUMP

		PUMP H	YDRAU	LIC CALCULATI	ON		
CLIENT :	PT. PERTAMINA PA						
PROJECT :			TAS 50.000 I	OWT FUEL TERMINAL B	IAK		
LOCATION :	BIAK NUMFOR, PAR	PUA					
DOC. NO.	-						
P&I	ID No.	Item	No	Service			REV
)-10-003-A3	P-3		Multi Product Stripping Pu	ımp		0
-	T						
Suction (Liq. Level)						Discha	arge (Elev. mm
Max. Elev. mm	17.400 mm					40.	.000 mm
Min. Elev. mm	1.700 mm					_	
Hose Tower		→"```					
	4	→ 2" 37 m	n	10 948		Discharge 3	
	2" 8 m			948		Discharge 2 Each product stora	
		Discha (to Ho:	-		(E	acii product stold	Be talik)
		(to Hea	auerj				
Height Skirt/Saddle		0 mm		Pump type	Positive Displace	cement Pump	
Pedestal		0 mm					
Pump Nozzle Elev.							
Foundation Height		300 mm					
From Base Plate to Cer	nter Line						
From Base Plate to Cer Suction	nter Line	250 mm					
From Base Plate to Cer Suction Discharge	nter Line 2			DISCHARGE COND	DITIONS	Disc	h 1 Disch 2
	nter Line 2	250 mm		DISCHARGE CONE Line Size	DITIONS mm	Discl	
From Base Plate to Cer Suction Discharge OPERATING CONDITI	nter Line 2 6 ONS	250 mm 600 mm					,0 250,0
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name	nter Line 2 6 ONS	250 mm 600 mm Gasoline non boiling 30		Line Size	mm	50,	,0 250,0 6 0,11
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/ Temp SGr.	onter Line 2 6 ONS non boiling) C	250 mm Gasoline non boiling 30 0,890		Line Size Velocity Actual Length Equiv. Length Total	mm m/s m	50, 1,4 48 32,	,0 250,0 6 0,11 3 1185 ,5 8,4
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/i Temp SGr. Vap. Press Max	onter Line ONS non boiling) C kgf/cm²A	250 mm Gasoline non boiling 30 0,890 0,630	ч.	Line Size Velocity Actual Length Equiv. Length Total Friction Loss	mm m/s m	50, 1,4	,0 250,0 6 0,11 3 1185 5 8,4
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max	onter Line 2 6 ONS non boiling) C kgf/cm²A cP	250 mm Gasoline non boiling 30 0,890 0,630 4,95		Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss	mm m/s m m Kgf/cm²/100m	50, 1,4 48 32, 0,60	0 250,0 66 0,11 3 1185 5 8,4 00 0,00
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor	onter Line ONS non boiling) C kgf/cm²A cP m3/h	250 mm Gasoline non boiling 30 0,890 0,630 4,95 10,00	- Z.	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line	mm m/s m m Kgf/cm ² /100m	50, 1,4 48 32, 0,60	0 250,0 66 0,11 3 1185 5 8,4 00 0,00
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Design	nter Line 2 6 ONS non boiling) C kgf/cm²A cP m3/h m3/h	250 mm Gasoline non boiling 30 0,890 0,630 4,95	max	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE	mm m/s m m Kgf/cm²/100m	50, 1,4 48 32, 0,60	0 250,0 6 0,11 3 1185 5 8,4 00 0,00 93
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor	nter Line 2 6 ONS non boiling) C kgf/cm²A cP m3/h m3/h	250 mm Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00	max 50,0	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line	mm m/s m m Kgf/cm ² /100m Kgf/cm ² Kgf/cm ²	50, 1,4 48 32, 0,60 0,48	0 250,0 16 0,11 3 1185 15 8,4 00 0,00 93 00 00
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Design SUCTION CONDITION	nter Line 2 6 ONS non boiling) C kgf/cm²A cP m3/h m3/h	250 mm Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min		Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm²	50, 1,4 48, 32, 0,60 0,00 0,00 1,00 0,00	0 250,0 66 0,11 3 1185 ,5 8,4 00 0,00 93 00 00 00
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Design SUCTION CONDITION Line Size Velocity Actual Length	nter Line 2 6 ONS non boiling) C kgf/cm²A cP m3/h m3/h S NPS	250 mm Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7	50,0 1,46 10,7	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press.	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm²	50, 1,4 48 32, 0,60 0,41 0,00 1,00 0,00 0,00	0 250,1 16 0,11 3 1185 15 8,4 00 0,00 93 00 00 00 00
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Design SUCTION CONDITION Line Size Velocity Actual Length	non boiling) C kgf/cm²A cP m3/h m3/h S NPS m/s m	250 mm Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9	50,0 1,46 10,7 11,9	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head	mm m/s m m Kgf/cm²/100m Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm²G	50, 1,4 48, 32, 0,6(0,0(0,0(0,0(0,0(0,0(0,0(0,0	0 250,1 6 0,11 3 1185 5 8,4 00 0,00 93 00 00 00 00 00
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Nor Cap. Design SUCTION CONDITION Line Size Velocity Actual Length Equiv. Length Total Friction Loss	non boiling) C kgf/cm²A cP m3/h m3/h S NPS m/s m Kgf/cm²/100m	250 mm Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600	50,0 1,46 10,7 11,9 0,600	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press.	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm²	50, 1,4 48 32, 0,60 0,41 0,00 1,00 0,00 0,00	0 250,1 6 0,11 3 1185 5 8,4 00 0,00 93 00 00 00 00 00
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Design SUCTION CONDITION Line Size Velocity Actual Length Equiv. Length Total Friction Loss	non boiling) C kgf/cm²A cP m3/h m3/h S NPS m/s m Kgf/cm²/100m Kgf/cm²G	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000	50,0 1,46 10,7 11,9 0,600 0,000	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press.	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm²G Kgt/cm²G	50, 1,4 48, 32, 0,6(0,0(0,0(0,0(0,0(0,0(0,0(0,0	0 250,1 6 0,11 3 1185 5 8,4 00 0,00 93 00 00 00 00 00
From Base Plate to Cer Suction Discharge DPERATING CONDITI Fluid Name Fluid condition (Boiling/I Femp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Design SUCTION CONDITION Line Size Velocity Actual Length Equiv. Length Total Friction Loss Tank Press. Norm/Min Static Head	non boiling) C kgf/cm²A cP m3/h m3/h \$ NPS m/s m Kgf/cm²/100m Kgf/cm²G Kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102	50,0 1,46 10,7 11,9 0,600 0,000 1,500	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press.	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Ggt/cm²G	50, 1,4 44 32, 0,6i 0,44 0,0i 0,0i 0,0i 0,0i 0,0i 4,9;	00 250, 16 0,11 3 1184 5 8,4 00 0,00 93 00 00 00 00 00 00 00 00 00 0
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid condition (Boiling/i Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Design SUCTION CONDITION Line Size Velocity Actual Length Equiv. Length Total Friction Loss Tank Press. Norm/Min Static Head Line Loss	non boiling) C kgf/cm²A cP m3/h m3/h S NPS m/s m Kgf/cm²/100m Kgf/cm²G	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102 0,136	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press.	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm²G Kgt/cm²G	50, 1,4 48, 32, 0,6(0,0(0,0(0,0(0,0(0,0(0,0(0,0	00 250,166 0,113 1186,5 8,4 000 0,000 000 000 000 000 000 000 000
From Base Plate to Cer Suction Discharge OPERATING CONDITI Fluid Name Fluid condition (Boiling/I Temp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Design SUCTION CONDITION Line Size Velocity Actual Length Equiv. Length Total Friction Loss Tank Press. Norm/Min Static Head	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m kgf/cm²/100m kgf/cm²G kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009	50,0 1,46 10,7 11,9 0,600 0,000 1,500	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Ggt/cm²G Kgt/cm²G Kgt/cm²G	50, 1,4 46 32, 0,60 0,00 0,00 1,00 0,00 3,44 4,9	00 250, 16 0,11 3 1189 15 8,4 00 0,00 93 00 00 00 00 00 00 00 00 00 0
From Base Plate to Cer Suction Discharge DPERATING CONDITI Fluid Name Fluid condition (Boiling/Inference Fluid Press Max Vis. Nor. Max Cap. Press Max Vis. Nor. Max Cap. Design SulCTION CONDITION Line Size Velocity Actual Length Equiv. Length Total Friction Loss Tank Press. Norm/Min Static Head Line Loss Velocity head loss	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m kgf/cm²/100m kgf/cm² kgf/cm² kgf/cm² kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136 0,009	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Onfice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure Vap. Pres.	mm m/s m m Kgf/cm²/100m Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² G Kgf/cm²G Kgf/cm²G Kgf/cm²G Kgf/cm²G Kgf/cm²G	50, 1,4 48 32, 0,60 0,00 0,00 0,00 0,00 3,44 4,9	00 250,166 0,113 1186 5,5 8,4 000 0,000 000 000 000 000 000 000 000
From Base Plate to Cer Suction Discharge DPERATING CONDITI Fluid Name Fluid condition (Boiling/Inference /Ap. Press Max //is. Nor. Max Cap. Nor Cap. Design SUCTION CONDITION Line Size /elocity Actual Length Equiv. Length Total Friction Loss fank Press. Norm/Min Static Head Line Loss /elocity head loss Other Loss	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m m Kgf/cm²/100m Kgf/cm²G Kgf/cm² Kgf/cm² Kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136 0,009 0,100	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orfice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure Vap. Pres. Net	mm m/s m m Kgf/cm²/100m Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² Kgf/cm² G Kgf/cm²G Kgf/cm²G Kgf/cm²G Kgf/cm²G Kgf/cm²G Kgf/cm²G Kgf/cm²G	50, 1,4 48 32, 0,6 0,0 0,0 0,0 0,0 0,0 0,0 3,4 4,9	00 250, 16 0,11 3 1184, 5 8,4 00 0,00 93 00 00 00 0
From Base Plate to Cer Suction Discharge DPERATING CONDITI Fluid Name Fluid condition (Boiling/Infemp SGr. Vap. Press Max Vis. Nor. Max Cap. Nor Cap. Design BUCTION CONDITION Line Size Velocity Actual Length Equiv. Length Total Friction Loss Fank Press. Norm/Min Static Head Line Loss Velocity head loss Dither Loss Suc. Press	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m m Kgf/cm²/100m Kgf/cm²/G Kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009 1) 0,100 -0,143	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136 0,009 0,100	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure Vap. Pres. Net NPSHA Selec. NPSHA MAX. SHUT OFF PI	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² G Rgt/cm²	50, 1,4 44, 32, 0,6i 0,4i 0,0i 0,0i 0,0i 4,9; -0,1, -0,4 0,2i 2,9, 2,9	00 250, 16 0,11 3 1184, 5 8,4 00 0,00 93 00 00 00 0
From Base Plate to Cersuction Discharge DPERATING CONDITI Fluid Name Fluid condition (Boiling/ Femp SGr. /ap. Press Max /is. Nor. Max Cap. Nor Cap. Nor Cap. Design SUCTION CONDITION Line Size /elocity Actual Length Equiv. Length Total Friction Loss Fank Press. Norm/Min Static Head Line Loss /elocity head loss Other Loss Suc. Press DIFFERENTIAL PRES. Disch. Pressure	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m m Kgf/cm²/100m Kgf/cm²/6 Kgf/cm²	250 mm Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009 1) 0,100 -0,143	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136 0,009 0,100	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure Vap. Pres. Net NPSHA Selec. NPSHA MAX. SHUT OFF PI Max. Suc. Tank Pres	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² G Kgt/cm²G	50, 1,4 44 32, 0,6i 0,44 0,0i 0,0i 1,0i 0,0i 3,4i 4,9' -0,1 -0,4 0,2i 2,9 2,8 Kgf/cm²G 0,0i	00 250, 16 0,11 3 1184, 5 8,4 00 0,00 93 00 00 00 0
From Base Plate to Cersuction Discharge DPERATING CONDITI Fluid Name Fluid condition (Boiling/Inference Joseph Press Max Joseph Nor	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m kgf/cm²/100m kgf/cm²/6 kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 11,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009 1) 0,100 -0,143	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136 0,009 0,100	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure Vap. Pres. Net NPSHA Selec. NPSHA MAX. SHUT OFF PI Max. Suc. Tank Pres Max. Liq. Static. Pre Max. Liq. Static. Pre	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² G Kgt/cm	50, 1,4 44 32, 0,6i 0,44 0,0i 0,0i 1,0i 0,0i 3,4i 4,9' -0,1 -0,4 0,2; 2,9 2,9 Kgf/cm²G 0,0i Kgf/cm² 1,5i	00 250, 16 0,11 3 118: 15 8,4 00 0,00 93 00 00 00 00 00 00 00 00 00 0
From Base Plate to Cersuction Discharge DPERATING CONDITI Fluid Name Fluid condition (Boiling/Inference) GGr. /ap. Press Max //is. Nor. Max Cap. Nor Cap. Design SUCTION CONDITION Line Size /elocity Actual Length Equiv. Length Total Friction Loss Istatic Head Line Loss /elocity head loss Other Loss Suc. Press Suc. Press DIFFERENTIAL PRES Disch. Pressure Suc. Pressure Suc. Pressure Suc. Pressure	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m m Kgf/cm²/100m Kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009 1) 0,100 -0,143	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136 0,009 0,100	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Onfice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure Vap. Pres. Net NPSHA Selec. NPSHA MAX. SHUT OFF PI Max. Suc. Tank Pres Max. Liq. Static. Pre Max. Suc. Pressure	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² G Kgt/cm² ETION HEAD Mgt/cm² M	50, 1,4 48 32, 0,68 0,04 0,00 0,00 1,00 0,00 3,44 4,9 -0,1 -0,4 0,22 2,8 2,9 Kgt/cm²G 0,00 Kgt/cm² 1,5t Kgt/cm²G 1,2t	00 250, 16 0,1113 1183, 15 8,400 0,000 000 000 000 000 000 000 000 0
From Base Plate to Cer Suction Discharge DPERATING CONDITION Unid Name Fluid Condition (Boiling/Femp) For. Vap. Press Max Vis. Nor. Max Dap. Nor Design Suction Condition United Size Velocity Actual Length Equiv. Length Total Friction Loss Tank Press. Norm/Min Static Head Line Loss Velocity head loss Other Loss Suc. Press Suc. Press DIFFERENTIAL PRES Disch. Pressure Suc. Pressure Suc. Pressure Suc. Pressure	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m kgf/cm²/100m kgf/cm²/6 kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 11,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009 1) 0,100 -0,143	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136 0,009 0,100	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure Vap. Pres. Net NPSHA Selec. NPSHA MAX. SHUT OFF PI Max. Suc. Tank Pres Max. Liq. Static. Pre Max. Liq. Static. Pre	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² G Kgt/cm²G Kgt/cm²G Kgt/cm²G Kgt/cm²G Kgt/cm²G Kgt/cm²G Kgt/cm²G Sgt/cm²G	50, 1,4 48 32, 0,68 0,04 0,00 0,00 1,00 0,00 3,44 4,99 -0,1 -0,4 0,22 2,9 2,9 Kgt/cm²G 0,00 Kgt/cm² 1,56 Kgt/cm²G 1,28 Kgt/cm²G 1,28 Max. Suc. P + 1.20	00 250, 16 0,11 3 118 5 8,4 00 0,00 93 00 00 00 00 00 00 80 773 43 04 61 33 13 00 00 00 00 00 65 K Diff. P.
From Base Plate to Cer Suction Discharge DPERATING CONDITI Fluid Name Fluid condition (Boiling/Inference Joseph Press Max Joseph Press Joseph	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m m Kgf/cm²/100m Kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009 1) 0,100 -0,143	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136 0,009 0,100	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Orifice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure Vap. Pres. Net NPSHA Selec. NPSHA MAX. SHUT OFF PI Max. Suc. Tank Pres Max. Liq. Static. Pre Max. Suc. Pressure Shut. Off Press.	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² G Kgt/cm² ETION HEAD Mgt/cm² M m m m m m m m m m m m m m m m m m m	50, 1,4 48 32, 0,68 0,04 0,00 0,00 1,00 0,00 3,44 4,9 -0,1 -0,4 0,22 2,8 2,9 Kgt/cm²G 0,00 Kgt/cm² 1,5t Kgt/cm²G 1,2t	00 250, 16 0,11 3 118 5 8,4 00 0,00 93 00 00 00 00 00 00 80 773 43 04 61 33 13 00 00 00 00 00 65 K Diff. P.
From Base Plate to Cersuction Discharge DPERATING CONDITI Fluid Name Fluid condition (Boiling/ Femp SGr. /ap. Press Max /is. Nor. Max Cap. Nor Cap. Nor Cap. Design SUCTION CONDITION Line Size /elocity Actual Length Equiv. Length Total Friction Loss Fank Press. Norm/Min Static Head Line Loss /elocity head loss Other Loss Suc. Press DIFFERENTIAL PRES. Disch. Pressure	non boiling) C kgf/cm²A cP m3/h m3/h s NPS m/s m m Kgf/cm²/100m Kgf/cm²	Gasoline non boiling 30 0,890 0,630 4,95 10,00 10,00 min 50,0 1,46 10,7 11,9 0,600 0,000 0,102 0,136 0,009 1) 0,100 -0,143	50,0 1,46 10,7 11,9 0,600 0,000 1,500 0,136 0,009 0,100	Line Size Velocity Actual Length Equiv. Length Total Friction Loss Pressure Loss a. Line b. Onfice/FE c. Exchanger d. other loss Control Valve Max. Desti. Press. Static head Disch. Press. NET POSITIVE SUC Min Suc. Pressure Vap. Pres. Net NPSHA Selec. NPSHA MAX. SHUT OFF PI Max. Suc. Tank Pres Max. Liq. Static. Pre Max. Suc. Pressure	mm m/s m m Kgt/cm²/100m Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² Kgt/cm² G Kgt/cm² ETION HEAD Mgt/cm² M m m m m m m m m m m m m m m m m m m	50, 1,4 44 32, 0,6i 0,4i 0,0i 0,0i 1,0i 0,0i 3,4i 4,9 -0,1 -0,4 0,2i 2,9 2,9 Kgf/cm²G 0,0i Kgf/cm²G 1,2i Kgf/cm²G 7, Kgf/cm²G 7,	00 250,166 0,113 1186 0,55 8,4 000 0,000 000 000 000 000 000 000 000

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV

Sheet No. Page 21 of 23

PUMP HYDRAULIC CALCULATION

EQUIVALENT LENGTH CALCULATION

	SI	uction		
Suction's fittings	Qty	Eq. Length, m 3,7		
90 deg ELL long rad.	4			
hard T (flow turns)	1	3,0		
gate valve	1	0,6		
soft T (flow straight)	2	1,8		
globe valve	0	0,0		
angle valve	0	0,0		
swing check valve	0	0,0		
plug valve	0	0,0		
ball valve	0	0,0		
		0.4		

PRESSURE DROP PER 100 m CALCULATION

	Suct	
Line Class	sch80	
Nominal Size (mm)	50,0	
SG	0,890	
Viscosity (cP)	4,95	
Flow (m3/hr)	10,00	
Flow (kg/hr)	8.900	
Line Length (m)	8	
Roughness	0,05	
ID (mm)	49,25	
Velocity (m/s)	1,46	
Max velocity (m/s)	2,5	OK
Re	12918	turbule
f	0,0306	
Pressure Drop/100 m (kg/cm2)	0,6000	
Act. Length + 30 % margin (m)	10,71	
Equiv.Length + 30 % margin (m)	11,887	
Line Loss (kg/cm2)	0,136	
Total line loss (kg/cm2)	0.136	

Discharge

		Discharge 1	Discharge 2			
Discharge's fittings	Qty	Eq. Length, m	Qty	Eq. Length, m		
90 deg ELL long rad.	10	9,1	5	4,6		
swing check valve	2	10,4	0	0,0		
gate valve	1	0,6	2	1,2		
hard T (flow turns)	1	3,0	0	0,0		
soft T (flow straight)	2	1,8	1	0,9		
ball valve	0	0,0	0	0,0		
ball check valve	0	0,0	0	0,0		
sudden enlargement d/D = 1/4	0	0,0	0	0,0		
Inlet nozzle tank	0	0,0	0	0,0		
		25,0		6,7		

f calculation

- [Darcy
f1	0,005
f2	0,039378
f3	0,029688
f4	0,030709
f5	0,030582
f6	0,030598
f7	0,030596

Line Class	sch80	
Nominal Size (mm)	50,0	
SG	0,890	
Viscosity (cP)	4,950	
Flow (m3/hr)	10,00	
Flow (kg/hr)	8.900	
Line Length (m)	37	
Roughness	0,05	
ID (mm)	49,25	
Velocity (m/s)	1,46	
Max velocity (m/s)	3	OK
Re	12918	turt
f	0,0306	
Pressure Drop/100 m (kg/cm2)	0,6000	
Act. Length +30 % margin (m)	48	
Equiv.Length + 30 % margin (m)	32,492	
Line Loss (kg/cm2)	0,483	
Total line loss (kg/cm2)	0.483	

Line Class

2 Nominal Size (mm)

SG

Viscosity (cP) Flow (m3/hr) Flow (kg/hr) Line Length (m) Roughness ID (mm) 0,05 Velocity (m/s)
Max velocity (m/s)
Re
f 0,0376 f Pressure Drop/100 m (kg/ci Act. Length +25 % margin Equiv.Length +25% margin Line Loss (kg/cm2) Total line loss (kg/cm2) 0,010

f calculation

	Darcy
f1	0,005
f2	0,039378
f3	0,029688
f4	0,030709
f5	0,030582
f6	0,030598
f7	0.030596

	Darcy	
f1	0,005	
f2	0,054309	
f3	0,035435	
f4	0,037985	
f5	0,037551	
f6	0,037623	
f7	0.037611	

Discharge

- Note

 1. Other loss takes unknown losses into account.

 2. Hydraulic Horser Power is preliminary estimated using efficiency 100%, however it should be determined by Pump manufacture.

 3. Shut-off pressure is preliminary estimated according to API 610, however actual shut-off pressure to be determined by Pump manufacture.

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV : 0 Sheet No.

Page 22 of 23

7.3 PERHITUNGAN AVTUR STRIPPING PUMP

Document No.

BIAK-CAL-10-001-A4

HYDRAULIC & LINE SIZING

REV :

Sheet No.

Page 23 of 23

0						to the same				
Suction	Sucti	ion			<u>D</u>	<u>ischarge</u>	Discharge 1			Discharge 2
Suction's fittings	Qty	Eq. Length, m			D	ischarge's fittings	Qty	Eq. Length, m	Qty	Eq. Length, m
90 deg ELL long rad.	4	3,7			90	deg ELL long rad.	10	9,1	5	4,6
hard T (flow turns)	1	3,0				ving check valve	2	10,4	0	0,0
gate valve	1	0,6				ate valve	1	0,6	2	1,2
soft T (flow straight)	0	1,8 0.0				ard T (flow turns)	-1	3,0	0	0,0
globe valve	0	0,0				oft T (flow straight) all valve	0	1,8 0,0	0	0,0
angle valve swing check valve	0	0.0				all check valve	0	0.0	0	0.0
plug valve	0	0,0				udden enlargement d/D = 1/4	0	0,0	0	0,0
ball valve	0	0,0				let nozzle tank	0	0,0	0	0,0
PRESSURE DROP PER 100 I	m CALCULATION	9,1						25,0	-	6,7
Suction						f calculation			ī	
	Suct	1						Darcy		
Line Class Nominal Size (mm)	sch80 50,0						f1 f2		_	
Nominal Size (mm) SG	0,840	2					f3			
Viscosity (cP)	4,15	1					13 f4		1	
Flow (m3/hr)	10.00						f5			
Flow (kg/hr)	8.400	1					f6			
Line Length (m)	17	1					f7			
Roughness	0,05									
ID (mm)	49,25	-								
Velocity (m/s)	1,46									
Max velocity (m/s)		ок								
Re		turbulent								
f	0,0298									
Pressure Drop/100 m (kg/cm2)	0,5521	-								
Act. Length + 30 % margin (m)	22,24									
Equiv.Length + 30 % margin (m)	11,887									
Line Loss (kg/cm2) Total line loss (kg/cm2)	0,188									
Discharge						f calculation		Darcy	1	Darcy
Line Class	sch80	1	Line Class	STD			f1		f	
Nominal Size (mm)	50,0		Nominal Size (mm)	250,0	10		f2		f	
SG	0,840		SG	0,840			f3		f.	
Viscosity (cP)	4,150		Viscosity (cP)	4,150			f4		f-	
Flow (m3/hr)	10,00		Flow (m3/hr)	20,00			f5		f	
Flow (kg/hr)	8.400	1	Flow (kg/hr)	16.800			f6		fe	
Line Length (m)	38		Line Length (m)	977			17	0,029830	f	7 0,036379
Roughness	0,05	4	Roughness	0,05						
ID (mm)	49,25 1,46	1	ID (mm)	254,50 0.11						
Velocity (m/s) Max velocity (m/s)		ок	Velocity (m/s) Max velocity (m/s)	0,11 3 OK						
Max velocity (m/s) Re		turbulent	Re	5629 turbul	ent					
f	0,0298	turbulent	f	0,0364	un.					
Pressure Drop/100 m (kg/cm2)	0,5521	1 1	Pressure Drop/100 m (kg/cn	0,0007						
Act. Length +30 % margin (m)	50	1	Act. Length +25 % margin	1221						
Equiv.Length + 30 % margin (m)	32,492		Equiv.Length + 25% margin	8,382						
Line Loss (kg/cm2)	0,455		Line Loss (kg/cm2)	0,009						
Total line loss (kg/cm2)	0,455		Total line loss (kg/cm2)	0,009						