The HDF5_BLS package and its user interface

Pierre Bouvet

August 21, 2025

Contents

In	atroduction	7
Pı	reamble: The project in a nutshell HDF5 file structure	10 12 13
Ι	The HDF5_BLS Python package	15
In 1	Installation and presentation 0.1 Installation 0.2 Presentation 0.3 Module structure The wrapper module 1.1 The Wrapper object 1.2 Adding data to the HDF5 file (from script) 1.2.1 General approach to adding data to the HDF5 file 1.2.2 Exception 1: Adding treated data 1.2.3 Exception 2: Adding an abscissa 1.3 Importing data to the HDF5 file (from external files) 1.3.1 General approach to importing data 1.3.2 Arguments of the import functions 1.4 Adding and merging HDF5 files	18 19 19 20 21 22 23 24
2	The analyze module	27
3	The treat module	29
4	How do I? (Hands-on tutorial) 4.1 Seamless integration in existing Python scripts	3 1
Η	HDF5_BLS GUI tutorial	33
1	Installation and presentation	35

In	stalla	· · · · · · · · · · · · · · · · · · ·	35
	1.1	Installation	35
	1.2	Presentation	35
2	\mathbf{Cre}		37
	2.1		37
	2.2	Visualizing the structure of the file	37
II	I I	Development Guide	39
1	Wra		41
	1.1	A little tour of the class	41
	1.2	Dunder methods of the Wrapper class	43
		1.2.1 Wrapper. init \rightarrow Wrapper()	43
		1.2.2 Wrappergetitem> Wrapper[key]	43
		1.2.3 Wrapperadd> Wrapper + Wrapper	43
	1.3	Principal methods of the Wrapper class	45
	1.0	1.3.1 Wrapper add hdf5	45
		1.3.2 Wrapper.add_dictionary	46
		1.3.3 Wrapper.create_group	48
		1.3.4 Wrapper.delete_element	49
		1.3.5 Wrapper.get_attributes	50
		1.3.6 Wrapper.get_structure	51
		1.3.7 Wrapper.save_as_hdf5	52
		1.3.8 Wrapper.set attributes data	53
	1.4	Derived methods of the Wrapper class	53
		1.4.1 Wrapper.add abscissa	53
		1.4.2 Wrapper.add frequency	54
		1.4.3 Wrapper.add PSD	54
		1.4.4 Wrapper.add raw data	55
		1.4.5 Wrapper.add treated data	55
		1.4.6 Wrapper.import_abscissa	56
		1.4.7 Wrapper.import_frequency	57
		1.4.8 Wrapper.import_PSD	57
		1.4.9 Wrapper.import_raw_data	58
		1.4.10 Wrapper.import_treated_data	59
		1.4.11 Wrapper.import_properties_data	59
		1.4.12 Wrapper.update property	60
	1.5	Console-specific methods of the Wrapper class	61
			61
			61
		The property of the property o	0.2
2	Loa	nd data	63
	2.1		65
	2.2	Improving an already supported function	66
	$\frac{2.2}{2.3}$		66
	2.3	Adding a function to a new format	00
3	Δns	alyze data	69
9	3.1	The attributes of the classes of the analysis moduel	69
	0.1		
		3.1.1 The _algorithm attribute	70
		3.1.2 The x and y attributes	72
		3.1.3 Points	72
		3.1.4 Windows	72
		3.1.5 The _history attribute	73

	3.2	The classes of the analysis module and the implementation of algorithms 3.2.1 The _algorithm attribute	74 76 76 77
4	Tre 4.1 4.2 4.3	at data Treat data to obtain a Power Spectral Density and a frequency vector	81
C	ontac	ets	83
A	ppe	ndix	87
A	A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10	Multiple measures converted to a Power Spectrum Density with a time-independent spectrometer A single measure with a treatment	87 88 88 89 89 89 90
В		amples of treatment pipelines Treatment of a TFP spectrometer	93 93
\mathbf{C}	Spe	ecification sheet of the project	101

Introduction

Welcome to the HDF5_BLS tutorial. This document is designed to help you get started with the HDF5_BLS package.

The HDF5_BLS package is a Python library for handling Brillouin light scattering (BLS) data and converting it into a standardized HDF5 format. The library provides functions to open raw data files, store their properties, convert them into a Power Spectral Density (PSD) and analyze the PSD with a standardized treatment protocol. The library is currently compatible with the following file formats:

- *.dat files: spectra returned by the GHOST software or obtained using Time Domain measurements
- *.tif files: an image format that can be used to export 2D detector images.
- *.npy files: an arbitrary numpy array
- *.sif files: image files obtained with Andor cameras

The package comes with a graphical user interface (GUI) that allows users to easily open, edit, and save data. This interface is the preferred way to use the package and the subject of this tutorial. The GUI is currently compatible with the following spectrometers:

- Tandem Fabry-Perot (TFP) spectrometers
- 1-VIPA spectrometers
- Angle-resolved VIPA (ar-VIPA) spectrometers
- Time-domain spectrometers

Preamble: The project in a nutshell

HDF5 file structure

Basic file structure

This project aims at defining a standard for storing Brillouin Light Scattering measures and associated treatment in a HDF5 file.

HDF5 stands for "Hierarchical Data Format" and is a file format that allows the storage of data in a hierarchical structure. This structure allows to store data in a way that is both human and machine readable. The structure of the file is based on the following base structure, which corresponds to the structure of a file containing a single measure (*Measure*) where no parameters have been stored:

```
file.h5
+-- Brillouin (group)
| +-- Measure (group)
| | +-- Measure (dataset)
```

The dimensionality of the dataset is free, there are therefore by design virtually no restrictions on the data that can be stored in this format.

The organization of the file is based on the following principles:

- The file is organized in groups and datasets, which allows to store data in a hierarchical structure.
- Only one dataset corresponding to a measure can be stored per group.
- The groups are used to organize the file and store metadata and parameters related to the measure, and the datasets are used to store the actual data.

Meta-files

The Hierarchical Data Format (HDF5) finds its interest in storage for our community, of different measures. These result in "meta-files" where data corresponding to different experiments can be found. The organization of such a file will follow a structure similar to this one:

```
file.h5
+-- Brillouin (group)
| +-- RWPE1 organoids (group)
| | +-- Morphogenesis day 1 (group)
| | | +-- Sample 1 (group)
| | | | +-- Measure (dataset)
| | | +-- Sample 2 (group)
| | | +-- ...
| | +-- Morphogenesis day 2 (group)
| | +-- ...
| +-- H6C7 organoids
| ...
```

Although no rules are imposed on the way to organize the file, we propose to associate a hierarchical level to an hyperparameter that has been varied for the experiment. In the given example:

- The first hierarchical level is associated to the cell line that is observed
- The second hierarchical level is associated to the day of the experiment
- The third hierarchical level is associated to the sample that was measured

Note that the format does not impose any restriction on the names of the groups nor the measures. This choice allows you to create user-friendly files that can be opened with any software that can read HDF5 files (e.g. HDFView, HDFCompass, Fiji, H5Web, etc.).

Attributes

Storing the attributes of the data in its metadata

HDF5 file format allows the storage of attributes in the metadata of the groups and datasets. We therefore propose to store all the attributes concerning an experiment in the metadata of its parent group:

```
file.h5
+-- Brillouin (group)
| +-- Measure (group) -> attributes of the measure
| | +-- Measure (dataset)
```

Being a hierarchical format, we also propose to store attributes hierarchically: all attributes of parent group apply to childre groups (if not redefined in children groups). Storing attributes in large files can therefore be done the following way:

```
file.h5
+-- Brillouin (group) -> attributes shared by Measure 0 and Measure 1
| +-- Measure 0 (group) -> other attributes specific to Measure 0
| | +-- Measure (dataset)
| +-- Measure 1 (group) -> other attributes specific to Measure 1
| | +-- Measure (dataset)
```

Note that the access to the whole list of attributes applying to a group or dataset will be possible with the HDF5 BLS package (see Wrapper.get attributes).

Types of attributes

In an effort to avoid any incompatibility, we propose to store the values of the attributes as ascii-encoded text. The library will then convert the strings to the appropriate type (e.g. float, int, etc.).

Organization of the attributes

Prefix We differentiate 5 types of attributes, that we differentiate using the following prefixes:

- SPECTROMETER Attributes that are specific to the spectrometer used, such as the wavelength of the laser, the type of laser, the type of detector, etc. These attributes are recognized by the capital letter word "SPECTROMETER" in the name of the attribute.
- MEASURE Attributes that are specific to the sample, such as the date of the measure, the name of the sample, etc. These attributes are recognized by the capital letter word "MEASURE" in the name of the attribute.

• FILEPROP - Attributes that are specific to the original file format, such as the name of the file, the date of the file, the version of the file, the precision used on the storage of the data, etc. These attributes are recognized by the capital letter word "FILEPROP" in the name of the attribute.

- **PROCESS** Attributes that are specific to the storage of algorithms. These attributes are recognized by the capital letter word "PROCESS" in the name of the attribute.
- Attributes that are used inside the HDF5 file, such as the "Brillouin_type" attribute. These attributes are the only ones without a prefix.

Units The name of the attributes contains the unit of the attribute if it has units, in the shape of an underscore followed by the unit in parenthesis. Some parameters will also be given following a given norm, such as the ISO8601 for dates. These norms are not specified in the name of the attribute. Here are some examples of attributes:

- "SPECTROMETER.Detector_Type" is the type of the detector used.
- "MEASURE.Sample" is the name of the sample.
- "MEASURE.Exposure (s)" is the exposure of the sample given in seconds
- "MEASURE.Date_of_measurement" is the date of the measurement, stored following the ISO8601 norm.
- "FILEPROP.Name" is the name of the file.

Unifification and Versioning of attributes

To unify the name of attributes between laboratories, we propose to use a spreadsheet that contains the list of attributes, their definition, their unit and an example of value. This spreadsheet is available on the project repository and is updated as new attributes are added to the project. Each attribute has a version number that is also stored in the attributes of each data attribute (under FILEPROP.version).

This spreadsheet will also be the preferred way to define attributes for the measures and the HDF5_BLS package allows to read and import the attributes directly from this spreadsheet (see Wrapper.import properties data).

Storing analysis and treatment processes

Analysis and treatment processes are stored in the "PROCESS" attribute of the treatment groups. This attribute is a JSON file converted to a string, which contains the list of treatment steps performed on the data. This JSON file has the following structure:

When the treatment is performed using the modules of the HDF5_BLS package, this attribute is automatically updated. Note that custom treatments can also be stored in this attribute by the user.

This attribute can be exported to a standalone JSON file using the library. This attribute also allows the library to re-apply the treatment to the data, and modify steps of the treatment if needed.

The BLS type attribute

To improve user-friendliness of the format for the BioBrillouin community, we propose to add a new attribute: BLS_type to the groups and datasets of the file. This attribute will allow the user to quickly differentiate the content of the groups and datasets, and will also allow the automation of certain tasks.

For groups, this attribute can have the following values:

- "Calibration spectrum": the group contains a calibration spectrum.
- "Impulse response": the group contains an impulse response function.
- "Measure": the group contains a measure (value by default).
- "Root": used to specify that the group is a structure group that contains other groups.
- "Treatment": the group contains treated data derived from a PSD and frequency arrays located in its parent group.

For datasets, this attribute can have the following values:

- "Abscissa_...": An abscissa array for the measures where the dimensions on which the dataset applies are given after the underscore.
- "Amplitude": The dataset contains the values of the fitted amplitudes.
- "Amplitude err": The dataset contains the error of the fitted amplitudes.
- "BLT": The dataset contains the values of the fitted amplitudes.
- "BLT err": The dataset contains the error of the fitted amplitudes.
- "Frequency": A frequency array associated to the power spectral density
- "Linewidth": The dataset contains the values of the fitted linewidths.
- "Linewidth err": The dataset contains the error of the fitted linewidths.
- "PSD": A power spectral density array
- "Raw data": The dataset containing the raw data obtained after a BLS experiment.
- "Shift": The dataset contains the values of the fitted frequency shifts.
- "Shift err": The dataset contains the error of the fitted frequency shifts.
- "Other": The dataset contains other data that will not be used by the library.

Example of an abscissa dataset: Let's consider a dataset consisting of 10x10 point mappings of cells in a grid of $10\mu m$ by $10\mu m$. We can store the abscissa in two ways:

- We can store the abscissa as two 1D array of 10 elements each, for axis x and y for example. The array corresponding to the x axis will be stored in the dataset with the attribute "Brillouin_type" set to "Abscissa_0_1". The array corresponding to the y axis will be stored in the dataset with the attribute "Brillouin_type" set to "Abscissa_1_2".
- We can store the abscissa as a 2D array of 10x10 elements. This array will be stored in the dataset with the attribute "Brillouin_type" set to "Abscissa_0_2".

A dedicated function is meant to do this step without the user having to worry about the attribute names.

Note: The "Brillouin_type" attribute is not mandatory, but it is highly recommended to use it to differentiate the content of the groups and datasets. If this parameter is not present, the library will assume that group are "Root" group if they contain other groups and a "Measure" dataset if not, and that datasets are "Other" datasets.

A base example

A single measure that has been treated, together with a calibration spectrum and an impulse response (both stored as a couple of Power Spectra Density and Frequency), will be stored in the following structure (the "Brillouin_type" attribute is indicated in slanted text):

```
+ Brillouin (group, Root)
   + IRF (group, Impulse response)
       + PSD (dataset, PSD)
       + Frequency (dataset, Frequency)
   + Calibration Water (group, Calibration spectrum)
       + PSD (dataset, PSD)
       + Frequency (dataset, Frequency)
   + Measure (group, Measure)
       + Raw measure (dataset, Raw data)
       + PSD (dataset, PSD)
       + Frequency (dataset, Frequency)
       + Treatment (dataset, Treatment)
           + Shift (dataset, Shift)
           + Linewidth (dataset, Linewidth)
           + Shift error (dataset, Shift err)
           + Linewidth error (dataset, Linewidth err)
```

Note: The name of the groups and datasets are left to the user, note that the Brillouin_type attribute allows to unambiguously differentiate each group and dataset.

Other examples can be found in appendix

A unified way to go from Measure to Results

This format is designed to unify the way to store data in the BioBrillouin Community. From there, we propose to unify the treatment and analysis of the data. The storage being independent from the analysis, we propose to create an intermediate step where a Power Spectral Density is obtained.

The treatment of any PSD being essentially the same: a fitting of one or several lineshapes that takes into account the response of the instrument to deconvolve its effect, we further propose to unify the analysis after obtaining the PSD. This results in the following pipeline for any BLS experiment

Figure 1: Flowchart of the pipeline

On this figure, the left side represents the steps of the pipeline, while the right side represents the steps that the ${\rm HDF5_BLS}$ package is designed to perform.

$$\operatorname{Part} \ I$$ The HDF5_BLS Python package

Installation and presentation

0.1 Installation

To install the package, you can either download the source code from the GitHub repository or use pip to install the package. We recommend using pip for users who do not intend on working on the package as it is the easiest way to install the package.

Using pip To install the package using pip, run the following command:

```
pip install HDF5_BLS
```

Downloading the source code The source code can be downloaded from the GitHub repository: https://github.com/bio-brillouin/HDF5_BLS. To download the source code, click on the green button "Code" and then click on the "Download ZIP" button. Once the download is complete, unzip the file and open a terminal in the folder where the code is stored. To install the package, run the following command:

```
pip install .
```

This will install the package and all its dependencies. To check if the package was installed correctly, run the following command:

```
python -c "import HDF5_BLS"
```

If the package was installed correctly, the command will not return any error.

0.2 Presentation

The HDF5_BLS library is a Python package meant to interface Python code with a HDF5 file with the structure defined in Preamble.

The goal of this package is to allow the user to semalessly integrate the proposed standard to their existing code. A detailed description of the package will be given in the later sections of this tutorial. Here is however a quick code example to show the integration of the package in a simple case:

```
wrp.add_raw_data(data = data, parent_group = "Brillouin/path/in/the/file", name
14
    = "Name of the dataset")
  16
  # Existing code extracting a PSD and a frequency vector from the data
  18
  # Store the frequency vector together with the raw data
20
  wrp.add_frequency(data = frequnecy, parent_group = "Brillouin/path/in/the/file",
21
     name = "Frequency vector")
  # Store the PSD dataset together with the raw data
  wrp.add_PSD(data = PSD, parent_group = "Brillouin/path/in/the/file", name = "PSD
  # Existing code extracting the shift and linewidth of the data
27
  28
  # Store the PSD dataset together with the raw data
  wrp.add_treated_data(shift = shift, linewidth = linewidth, parent_group = "
    Brillouin/path/in/the/file", name = "PSD")
```

This package also aims at unifying both the way to extract PSD from raw data and extract Brillouin shift and linewidth from the PSD. We will describe later how to do this, we encourage interested readers to already try and add the above code to their code and see how it works.

0.3 Module structure

The HDF5 BLS package is built around the following different modules:

- wrapper: This module is used to interact with HDF5 files. It is used to read the data, to write the data and to modify any aspect of the HDF5 file (dataset, groups or attributes).
- analyze: This module is used to convert raw data taken from a spectrometer into a physically meaningful Power Spectral Density (PSD) array. This process is done to be reliable
- treat: This module is used to extract information from the PSD array, such as the frequency shift and line width of the spectral lines.
- load_data: This module is used to import data from any formats of interest. This module is an interface between physical files stored on the PC and the wrapper module. It has been designed to be easily extended to any format of data.

In the following chapters, we will focus on the different modules.

The wrapper module

1.1 The Wrapper object

The "wrapper" module has one main object: Wrapper. This object is used to interact with the HDF5 file. It is used to read the data, to write the data and to modify any aspect of the HDF5 file (dataset, groups or attributes). The module also provides different error objects used to recognize errors when using the Wrapper object and raise exceptions.

The Wrapper object is initialized by running the following command:

```
wrp = Wrapper()
```

This will create a new Wrapper object with no attributes or data, and with the following structure:

```
file.h5
+-- Brillouin (group)
```

By default, the attributes of the "Brillouin" group are the following:

```
file.h5
+-- Brillouin (group)
| +-- Brillouin_type -> "Root"
| +-- HDF5_BLS_version -> "0.1"
```

As long as no filepaths are given to the Wrapper object, the file is stored in the library folder. Note that this temporary file is deleted either when the Wrapper object is destroyed or when the file is stored elsewhere. It is therefore good practice to specify a non-temporary filepath to the file when creating a new Wrapper object, with the "filepath" parameter:

```
wrp = Wrapper(filepath = "path/to/file.h5")
```

Note that this works both for new files, and for files that already exist, in the latter case, the wrapper object applies to the file located at "path/to/file.h5".

1.2 Adding data to the HDF5 file (from script)

The addition of any type of data or attribute to the HDF5 file has been centralized in the Wrapper.add_dictionary method. This method is safe but complex and not user-friendly. Methods derived from this method are meant to simplify the process of adding data to the HDF5 file, specific to each type of data. To get a better understanding on how to use the add_dictionary method, please refer to the developper guide section.

To add a single dataset to a group, we first need to specify the type of dataset we want to add, following the ones presented in preamble:

- "Abscissa_...": An abscissa array for the measures where the dimensions on which the dataset applies are given after the underscore.
- "Amplitude": The dataset contains the values of the fitted amplitudes.
- "Amplitude err": The dataset contains the error of the fitted amplitudes.
- "BLT": The dataset contains the values of the fitted amplitudes.
- "BLT err": The dataset contains the error of the fitted amplitudes.
- "Frequency": A frequency array associated to the power spectral density
- "Linewidth": The dataset contains the values of the fitted linewidths.
- "Linewidth err": The dataset contains the error of the fitted linewidths.
- "PSD": A power spectral density array
- "Raw data": The dataset containing the raw data obtained after a BLS experiment.
- "Shift": The dataset contains the values of the fitted frequency shifts.
- "Shift err": The dataset contains the error of the fitted frequency shifts.
- "Other": The dataset contains other data that will not be used by the library.

From there, the following functions are available to add the dataset to the HDF5 file:

- add raw data: To add raw data to a group
- add_PSD: To add a PSD to a group
- add_frequency: To add a frequency axis to a group
- add abscissa: To add an abscissa to a group
- add_treated_data: To add a shift, linewidth and their respective errors to a dedicated "Treatment" group
- add other: To add a shift, linewidth and their respective errors to a dedicated "Treatment" group

1.2.1 General approach to adding data to the HDF5 file

Adding a dataset to the file always come with three other pieces of information:

- Where to add the dataset in the file
- What to call the added dataset
- What is the type of the dataset we want to add

To add a dataset to the file, we'll therefore call type-specific functions with the data to add, the place where to add it and the name to give the dataset as arguments, following:

Figure 1.1: General approach for adding data to the HDF5 file

This approach is the one used for

- add raw data
- add PSD
- add frequency
- add other

Example Let's consider the following example: we have just initialized a wrapper object and want to add a spectrum obtained from our spectrometer. We have already converted this spectrum to a numpy array, and named it *data*. Now we want to add this data in a group called "Water spectrum" in the root group of the HDF5 file and call this raw data "Measure of the year". Then we will write:

Now let's say that we have analyzed this spectrum and obtained a PSD (stored in the variable "psd") and frequency array (stored in the variable "freq"). We want to add these two arrays in the same group, and call them "PSD" and "Frequency" respectively. We will write:

1.2.2 Exception 1: Adding treated data

Adding treated data differs slightly from adding individual datasets as we'll usually collect a number of different results to store. Therefore, instead of using different functions to store a shift or linewidth array, we have chosen to use a single function to add all the results of treatment. The function follows therefore a slightly more complex logic:

Figure 1.2: Flowchart of the add abscissa method

Example Let's consider the following example: we have treated our data and have obtained a shift array (shift), a linewidth array (linewidth) and their errors (shift_err and linewidth_err). We want to add these arrays in the same group as the PSD, that is the group "Test". The treated data are stored in a separate group nested in the "Test" group by the choices made while building the structure of the file. This is so the name of the treatment group can be chosen freely. Let's say that in this case, we have performed a non-negative matrix factorization (NnMF) on the data, and extracted the shift values closest to 5GHz. We will therefore call this treatment "NnMF - 5GHz". We will write:

1.2.3 Exception 2: Adding an abscissa

Adding abscissa also differs from the general case as we might want to add an abscissa array that is multi-dimensional and be able to know which dimensions of the PSD the abscissa corresponds to. The add_abscissa method therefore asks the user to specify the dimension of the PSD to use as well as the units of the axis:

Figure 1.3: Flowchart of the add abscissa method

Example Let's consider the following example: we have just initialized a wrapper object and want to add an abscissa axis corresponding to our measures that have been stored in the group "Brillouin/Temp". Say that this abscissa axis corresponds to temperature values, from 35 to 40 degrees and that there are 10 points in the axis. We will therefore call this abscissa axis "Temperature". We will write:

```
dim_start = 0,
dim_end = 1)
```

Of course if you want to import saved values for this axis, you can also specify them directly in the function call:

1.3 Importing data to the HDF5 file (from external files)

Importing datasets to the HDF5 file from independent data files, through the HDF5_BLS package, is always done following to successive steps:

- 1. Extracting the data and the metadata that can be extracted from the data files. This is done using the load data module.
- 2. Adding the data and metadata to the HDF5 file. This is done using the Wrapper.add_dictionary method.

To make the process more user friendly, we have developed a set of derived methods that are specific to each type of data that is to be added (Raw data, PSD, Frequency, Abscissa or treated data).

In this section, we will present these methods. We encourage interested readers to refer to the chapter dedicated to the load data module for more information on the extraction of the data and the metadata.

1.3.1 General approach to importing data

Much like adding data from a script, we can import data from external files by using type-specific functions. These functions are:

- Wrapper.import abscissa: To import an abscissa array.
- Wrapper.import frequency: To import a frequency array.
- Wrapper.import PSD: To import a PSD array.
- Wrapper.import raw data: To import raw data.
- Wrapper.import treated data: To import the data arrays resulting from a treatment.

The logic behind the import functions is the following:

Figure 1.4: Flowchart of the import functions

1.3.2 Arguments of the import functions

The import functions combine both the arguments needed for the "add_" functions and the arguments needed to extract the data and metadata from the files. These are the following arguments:

- filepath: The path to the file containing the data to import. Note that for the "Wrapper.import_ treated_data" function, there are 4 different files to import (for the fshift, the linewidth, the shift_err and the linewidth_err arrays).
- parent group: The path to the group or dataset where the data will be added in the form "Brillouin/Measure/...".
- **creator** (optional, default None): Some file extensions are not structured in the same way. Depending on how particular labs store their data, the "creator" argument can be used to specify the structure of the file that has to be loaded. In most cases, this argument is not used and can be left to None. If it however has to be used, a LoadError creator will be raised.
- parameters (optional, default None): The parameters that are to be used to import the data correctly. These parameters are specific to the techniques used to obtain the data. In most cases, this argument is not used and can be left to None. If it however has to be used, a LoadError_parameters will be raised.
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to whatever the type of data is (e.g. "Frequency").
- reshape (optional, default None): The new shape of the array. If None, the shape is not changed.
- **overwrite** (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they already exist in the file.

1.4 Adding and merging HDF5 files

Creating a new HDF5 file based on two existing ones can be done one of two ways depending on the desired end result.

• The <u>__add__</u> dunder method. If we want to combine two HDF5 files into a single one "plainly", for example if we are generating a new HDF5 after each measure, with this structure:

```
20250214_HVEC_03.h5
+-- Brillouin (group)
| +-- 20250214_HVEC_02
| | +-- Measure (dataset)
```

and we already have a HDF5 file containing the data of the previous experiment:

```
20250214_HVEC.h5
+-- Brillouin (group)
| +-- 20250214_HVEC_01
| | +-- Measure (dataset)
| +-- 20250214_HVEC_02
| | +-- Measure (dataset)
```

We can simply add the first HDF5 file to the second one with:

```
wrp1 = Wrapper(filepath = ".../20250214_HVEC.h5")
wrp2 = Wrapper(filepath = ".../20250214_HVEC_02.h5")
wrp = wrp1 + wrp2
```

This will create a new HDF5 file with the following structure:

WARNING: The new file is a temporary file, it would therefore be interesting to save it after the addition of the two files with:

```
wrp.save_as_hdf5(filepath = wrp1.filepath)
```

Note that from there, wrp1 and wrp will be the same as the wrapper does not store any data in memory but just acts as an access facilitator to the file.

• The add_hdf5 method. If we want to import the HDF5 as a new group, for example if we have this HDF5 file containing the data of a cell study:

```
Neuronal_cell_study.h5
+-- Brillouin (group)
| +-- Neuronal (group)
| | +-- GT 1-7 (group)
```

And we want to import data done on another neuronal cell line, say "MOV", that have been stored in the following HDF5 file:

```
MOV.h5
+-- Brillouin (group)
| +-- MOV (group)
| | +-- ...
```

We can simply add the second HDF5 file to the first one by specifying the path to the second file in the Wrapper.add_hdf5 method:

```
wrp1 = Wrapper(filepath = ".../Neuronal_cell_study.h5")
wrp1.add_hdf5(filepath = ".../MOV.h5", parent_group = "Brillouin/Neuronal")
```

This will create a new HDF5 file with the following structure:

The analyze module

The "analyze" module is meant to allow users relying on any spectrometer to convert the data they have extracted using their instrument to a physically meaningful format: a couple of datasets storing the Power Spectral Density and the frequency axis.

This module is built around a hierarchical structure of classes with a mother class meant to be the backbone of the module and children classes meant to be instrument-specific.

Using the analyze module essentially consists in the following steps:

- 1. The user calls the class corresponding to the type of spectrometer they have
- 2. The user either opens an existing algorithm to apply to the data or creates a new one
 - (a) If an algorithm is opened, the user adapts the parameters of the algorithm to their data
- 3. The user runs the code and obtains a Power Spectral Density and a frequency axis

The *treat* module

How do I? (Hands-on tutorial)

This chapter is dedicated to presenting ways to use the package concretely. Concrete examples are given as sections of this chapter as a quick start guide.

4.1 Seamless integration in existing Python scripts

If you already have a script dedicated to the opening, reading, treating and saving of your data, you can use the package to just create a HDF5 file where all your data will be stored. This is the easiest way to

the most straightforward way to use the package, and it is the one we recommend to use when you are not familiar with the package, as it is meant to be fast, easy and simple to do.

you can save what you already have in the proposed file format. This option is the most straightforward one, and it is the one we recommend to use when you are not familiar with the package, as it is meant to be fast, easy and simple to do.

Usually, you find yourself with the following datasets:

- The raw array that came from your spectrometer
- A power spectral density array with its associated frequency axis
- Some extracted information from the raw array (e.g. shift, linewidth, amplitude, etc.)

One idea would be to save these datasets in the following structure:

```
file.h5
+-- Brillouin (group)
| +-- Measure (group)
| | +-- Raw data (dataset)
| | +-- PSD (dataset)
| | +-- Frequency (dataset)
| | +-- Results of fit (group)
| | +-- Shift (dataset)
| | | +-- Linewidth (dataset)
| | | +-- Amplitude (dataset)
```

To create this structure, you can add these lines to your script:

```
# Existing code extracting the raw data
 10
 # Add the raw data
1.1
 wrp.add_raw_data(data = raw_data, parent_group = "Brillouin/Measure", name = "
12
    Raw data")
 14
 # Existing code converting the raw data into a PSD and frequency axis
1.5
 16
 # Add the PSD
 wrp.add_PSD(data = psd, parent_group = "Brillouin/Measure", name = "PSD")
19
 # Add the frequency axis
20
 wrp.add_frequency(data = frequency, parent_group = "Brillouin/Measure", name = "
21
    Frequency")
22
 23
 # Existing code extracting shift, linewidth, amplitude
24
 \mbox{\tt\#} Add the shift, linewidth, amplitude, etc.
 wrp.add_treated_data(shift = shift, linewidth = linewidth, amplitude = amplitude
    , parent_group = "Brillouin/Measure/", name_group = "Results of fit")
```

To access the datasets in the resulting file, you can then use the following code:

```
from HDF5_BLS import Wrapper

wrp = Wrapper(filepath = "path/to/file.h5") # Replace with the path to your file

raw_data = wrp["Brillouin/Measure/Raw data"]

psd = wrp["Brillouin/Measure/PSD"]

frequency = wrp["Brillouin/Measure/Frequency"]

shift = wrp["Brillouin/Measure/Results of fit/Shift"]

linewidth = wrp["Brillouin/Measure/Results of fit/Linewidth"]

amplitude = wrp["Brillouin/Measure/Results of fit/Amplitude"]
```

Part II HDF5_BLS GUI tutorial

Installation and presentation

1.1 Installation

To get started, you need to install the repository. Follow the instructions below:

- Step 1: Make sure you have Python 3.10 or higher installed. You can download Python at this link.
- Step 2: Clone the repository at this link.
- Step 3: Create a virtual environment and install the requirements. To do so, open a terminal, navigate to the repository folder and install the requirements. For windows users, you can open the terminal into the cloned and extracted repository (shift+left click over the folder -> Open in terminal) and use the following command:

```
python -m venv venv
.\venv\Scripts\activate
pip install -r requirements_GUI.txt
```

For Mac users, you can navigate to the repository, make sure you can view the path bar at the bottom of Finder (if not, check View/Show Path Bar in the menu bar), then press control and left click on the folder and select "Open in Terminal". Then, use the following command:

```
python -m venv venv
source venv/bin/activate
pip install -r requirements_GUI.txt
```

For Linux users, you can navigate to the repository, open a terminal in the folder and use the same command as for Mac users.

• Step 4: Run the HDF5_BLS_GUI/main.py file with

```
python HDF5\_BLS\_GUI/main.py
```

1.2 Presentation

The HDF5_BLS_GUI is a graphical user interface for the HDF5_BLS package, designed to facilitate the exploration and analysis of HDF5 files. It provides a user-friendly environment for users to interact with their data, visualize results, and manage their workflows.

The GUI is built using the PySide6 library, which is a Python binding for the Qt framework. This library allows the GUI to be developed using a similar syntax to traditional Python code, making it easier to understand and maintain.

The GUI opens to the following window:

Figure 1.1: HDF5 BLS GUI Main Window

The window is divided into four main sections:

- Top: Contains a series of buttons to perform actions on the HDF5 file. The buttons are divided into three categories.
- Left: Displays the hierarchical structure of the HDF5 file, allowing users to navigate through its contents.
- Right: Shows the properties and metadata of the selected HDF5 object, providing detailed information to the user.
- Bottom: Contains a logging area to display messages and information about the current operations.

The GUI also comes with left and right clicks capabilities. Left clicking on any item in the hierarchical structure will display its properties in the right panel, while right clicking will open a context menu with additional options. A double click on any of the properties of the right pannel will allow us to edit the property.

The GUI finally comes with a menu where all the properties are recapitulated as well as a few other options.

Chapter 2

Creating and editing HDF5 files

2.1 Adding data or opening an existing file

When opening the GUI, a temporary HDF5 file is automatically created in a temporary folder. From there, you can either populate this temporary file with data or open another non-temporary file. In both cases, you can choose to add data or open an existing file a few different ways:

- Drag and drop your data or a file into the left pannel.
- Click on the "Open" (respectively "Add data") button in the toolbar to select a file from your filesystem
- To add data, you can also right-click on the left pannel and select "Add data" to select a file from your filesystem.

Note that all these methods are equivalent and will achieve the same result. Their use is a matter of personal preference.

2.2 Visualizing the structure of the file

Once a file is opened or data is added, the left pannel will display the structure of the HDF5 file. This structure is organized in a tree format, where each node represents a group or dataset within the HDF5 file. You can expand or collapse these nodes to navigate through the hierarchy of your data.

Figure 2.1: HDF5_BLS_GUI Main Window with an opened file

Part III Development Guide

Chapter 1

Wrapper

1.1 A little tour of the class

The "Wrapper" class is the main class of the package. Its role is to interface the file and the software while ensuring a user-friendly access to the data and a conservation of the structure of the file. This class is meant to do these four actions:

- 1. Creates a structure that is universal to the BioBrillouin community in a seamless manner.
- 2. Allow the user to acces the data and attributes of the file.
- 3. Allow the user to add data to the file with attributes that are specific to the BioBrillouin community.
- 4. Allow the user to add or modify attributes of the file.

1.1.0.0.1 Memory management: HDF5 files are notorious for behing heavy. Storing a whole HDF5 file in flash memory is therefore generally a bad idea. As such, the "Wrapper" class works by accessing a file on the disk. By default this file is a temporary file stored in the project's directory. The class is however designed to work on existing HDF5 files stored in permanent locations.

1.1.0.0.2 Private attributes: At initialization:

- self.filepath: The path to the HDF5 file. By default, the path to the temporary file is used.
- self.save: A boolean that indicates whether the file has been saved or is still in the temporary file.

1.1.0.0.3 Dunders: The "Wrapper" class has the following dunder methods that are described in the following sections:

- Wrapper.__init__ -> Wrapper(): The method that initializes the object
- Wrapper.__getitem__ -> Wrapper[key]: The preferred method to access an element located at a given path, it allows to access an element by placing its path in the brackets of the "Wrapper" object.
- Wrapper.__add__ -> Wrapper + Wrapper: A magic command to merge two wrappers together. It merges the contents of the "Brillouin" group.

1.1.0.0.4 Main Methods: The "Wrapper" class has a number of methods that will be described in the following sections. The construction of the object has been done with a bottleneck strategy, where the critical interactions with the file are done with these methods:

- add hdf5: A method to populate the file from a HDF5 file.
- add dictionary: A method to populate the file from a dictionary.
- create_group: A method to create a new group inside the HDF5 file.
- delete_element: A method to delete a dataset or group in the HDF5 file.
- get attributes: A method to extract the attributes of a group or dataset.
- get structure: A method to extract the structure of the file.
- save as hdf5: A method to save the file to a desired location.
- set attributes data: A method to set the attributes of a group or dataset.

1.1.0.0.5 Derived Methods: To simplify however the creation and use of the file, these other methods also exist:

- add abscissa: A method to add an abscissa arrayto the file.
- add frequency: A method to add a frequency array to the file.
- add psd: A method to add a PSD to the file.
- add raw data: A method to add raw data to the file.
- add treated data: A method to add a shift, linewidth and their respective errors to the file.
- import abscissa: A method to import an abscissa array to the file.
- import frequency: A method to import a frequency array to the file.
- import psd: A method to import a PSD array to the file.
- import raw data: A method to import raw data to the file.
- import treated data: A method to import the data arrays resulting from a treatment.
- import properties data: A method to import the attributes of a dataset or group from a spreadsheet.
- update property: A method to update the attributes of a dataset or group.

1.1.0.0.6 Console specific Methods: Additionally, the "Wrapper" class has a few methods specifically to interact with the file from a terminal:

- print structure: A method to print a tree view of the file in the terminal.
- print_metadata: A method to print all the attributes of a dataset or group at a given path in the terminal.

1.1.0.0.7 Wrapper Errors: The "Wrapper" class has a number of errors that can be raised by its methods:

- WrapperError_StructureError: Raised when a problem occurs with the structure of the file.
- WrapperError FileNotFound: Raised when a file stored in the disk is not found.
- WrapperError_Overwrite: Raised when a group or dataset already exists in the file.
- WrapperError_ArgumentType: Raised when the arguments given to the function are not of the expected type.

1.2 Dunder methods of the Wrapper class

1.2.1 Wrapper. init -> Wrapper()

This magic command allows the user to initialize the wrapper. This dunder method is called with the following syntax:

```
wrp = Wrapper(filepath)
```

1.2.1.0.1 Attributes:

• filepath: optional, default None The path to the HDF5 file. By default, a temporary file is created in the project's directory.

This method is called automatically when the "Wrapper" object is created. If it has to create a HDF5 file, it automatically creates the following structure:

```
file.h5
+-- Brillouin (group)
```

By default, the attributes of the "Brillouin" group are the following:

```
file.h5
+-- Brillouin (group)
| +-- Brillouin_type -> "Root"
| +-- HDF5_BLS_version -> "1.0" # The version of the package
```

If the file already exists, the wrapper object just stores the path to the file and does not overwrite it.

$1.2.2 \quad \text{Wrapper.} __\text{getitem} __ -> \text{Wrapper[key]}$

This magic command allows the user to access an element located at a given path. This dunder method is called with the following syntax:

```
wrp["Brillouin/Measure/PSD"]
```

Of course, the path can be changed.

If the path leads to a group, the entire group is returned as a closed group. If the path leads to a dataset, the dataset is returned as a numpy array.

1.2.2.0.1 Attributes:

• path: The path to the element to access in the form "Brillouin/Measure/PSD".

1.2.2.0.2 Raises:

• WrapperError_StructureError: Raises an error if the path does not lead to a valid element in the file.

1.2.3 Wrapper. add \rightarrow Wrapper + Wrapper

This magic command allows the user to add two wrappers together. This dunder method is called with the following syntax:

```
new_wrapper = wrp1 + wrp2
```

In this example, wrp1 and wrp2 are two wrappers that are added together. The resulting wrapper is stored in the variable new_wrapper. The addition of the two wrappers is done by adding the elements stored in the "Brillouin" group of both wrappers. The addition is possible only if the two wrappers have the same "HDF5_BLS_version" attribute. If the two wrappers have different "HDF5_BLS_version" attributes, the addition is not possible and an error is raised.

If you prefer to add a second wrapper to a dedicated group of the first wrapper, please use the Wrapper.add hdf5 method.

The addition of the two wrappers also affects the addition of attributes. Common attributes to all the groups will be set to the root group whereas attributes specific to each file will be set to their respective groups. Access to attributes is guaranteed by the Wrapper.get attributes method.

1.2.3.0.1 Attributes:

• wrp2: A wrapper to add to the current wrapper wrp1

1.2.3.0.2 Raises:

- WrapperError FileNotFound: If one of the two wrappers leads to a temporary file.
- WrapperError StructureError: If the two wrappers don't have the same version.
- WrapperError Overwrite: If the two wrappers share a group of same name.
- WrapperError: If an error occured while adding the data.

Figure 1.1: Flowchart of the __add__ method

1.3 Principal methods of the Wrapper class

1.3.1 Wrapper.add hdf5

This method allows the user to add an HDF5 file to the file under a specific group. The group is created if it does not exist. The attributes of the HDF5 file are only added to the created group if they are different from the parent's attribute.

```
def add_hdf5(self, filepath, parent_group = None, overwrite = False):
```

1.3.1.0.1 Attributes:

- filepath: The path to the HDF5 file to add.
- parent_group (optional, default None): The parent group where to store the data of the HDF5 file, by default the parent group is the top group "Brillouin". The format of this group should be "Brillouin/Measure/...".
- overwrite (optional, default False): If True, the group of same name than the HDF5 file that is added is overwritten. If False, only new attributes are added to the existing ones.

1.3.1.0.2 Returns: Nothing

1.3.1.0.3 Raises:

- WrapperError_FileNotFound: Raises an error if the filepath of the HDF5 file does not exist.
- WrapperError_StructureError: Raises an error if the parent group does not exist in the HDF5 file.
- WrapperError_Overwrite: Raises an error if the file name already exists in the selected group.
- WrapperError: Raises an error if the addition of the HDF5 file failed.

1.3.1.0.4 Flowchart: The function's logic is represented in the following flowchart:

Figure 1.2: Flowchart of the add hdf5 method

1.3.2 Wrapper.add dictionary

This method is the preferred way to add datasets or attributes to the HDF5 file. One or more datasets can be added at once by specifying them as keys of the dictionary to add. Each key is a dictionary composed of at least two keys for datasets: "Data" and "Name". Attributes can also be added to the dataset by adding a key "Attributes" to the dictionary. Please refer to the dedicated section of the tutorial

```
def add_dictionary(self, dic = None, parent_group = "Brillouin", create_group =
    False, brillouin_type_parent_group = None, overwrite = False):
```

Attributes:

- dic: The dictionary to add to the wrapper. The keys of the dictionary correspond to the type of data to be added. These keys are identical to the Brillouin_types for dataset defined in preamble. Each element of the dictionary is another dictionary with the following keys:
 - "Name": The name of the dataset that will be stored. This can be any name that the user wants and find useful.
 - "Data": The array that will be stored, or the dictionary if we are adding attributes
 - "Units": Specific to "Abscissa_..." keys. The unit of the abscissa
 - "Dim_start": Specific to "Abscissa_..." keys. The first dimension to which the abscissa corresponds.

- "Dim_end": Specific to "Abscissa_..." keys. The last dimension (excluded) to which the abscissa corresponds
- parent_group: The parent group where to store the data of the HDF5 file, by default the parent group is the top group "Brillouin". The format of this group should be "Brillouin/Measure/...".
- **create_group**: An argument to indicate whether to create the group if it does not exist. If False, the function will raise an error if the group does not exist. Default is False.
- brillouin_type_parent_group (optional, default None): The type of the group that will store the elements of the dictionary. The possible values are the ones attributed to groups, defined earlier on in the preamble
- overwrite (optional, default False): If True, all the elements of the file with a name corresponding to a name given in the dictionary will be overwritten. Similarly any existing argument will be overwritten and Brillouin type will be redefined. Default is False.

Here are typical examples of a dictionary passed as attribute:

```
dic_raw = {
2
       "Raw_data": {
           "Name": "Raw water spectrum",
3
           "Data": np.array([...])}
   } # a dictionary with a raw data array straight from the spectrometer - for
      example if you want to do the whole anylisis process with the library.
6
   dic_treated = {
       "Shift": {
8
           "Name": "Shift",
           "Data": np.array([...])}
10
       "Linewidth": {
           "Name": "Shift",
12
           "Data": np.array([...])}
13
       "Abscissa_x": {
14
           "Name": "x"
15
           "Data": np.array([...]),
16
           "Unit": "microns",
17
18
           "Dim_start": 0,
           "Dim_end": 1}
19
       "Abscissa_y": {
20
           "Name": "y",
21
           "Data": np.array([...]),
           "Unit": "microns",
           "Dim_start": 1,
           "Dim_end": 2},
25
       "Attributes": {"MEASURE.Sample": "Water"
26
                       "SPECTROMETER.Type": "TFP"}
   } # a dictionary of measures analyzed by a custom treatment - for example if you
       have your own data and just want to send them following the library's
      format.
```

Returns: Nothing

Raises:

- WrapperError_StructureError: Raises an error if the parent group does not exist in the HDF5 file or if the type of group is not logical for the data to be added.
- WrapperError Overwrite: Raises an error if there is a risk of overwriting the data.
- WrapperError_ArgumentType: Raises an error if arguments given to the function do not match the expected type.

Flowchart: The function's logic is represented in the following flowchart:

Figure 1.3: Flowchart of the add dictionary method

1.3.3 Wrapper.create group

This method allows the user to create a new group inside the HDF5 file. This is done by verifying that no overwritting occurs and that the parent group exists.

```
def create_group(self, name, parent_group = None):
```

1.3.3.0.1 Attributes:

- name: The name of the group to create.
- parent_group (optional, default None): The parent group where to store the data of the HDF5 file, by default the parent group is the top group "Brillouin". The format of this group should be "Brillouin/Measure/...".
- brillouin_type (optional, default "Root"): The type of the group that has been created. By default "Root". The possible values are listed in preamble

• **overwrite** (optional, default False): If True, if a group of the same name already exists in the selected parent group, all its elements will be deleted.

1.3.3.0.2 Returns: Nothing

1.3.3.0.3 Raises:

- WrapperError_Overwrite: Raises an error if the group name already exists at the selected parent path.
- WrapperError_StructureError: Raises an error if the parent group does not exist in the HDF5 file.

1.3.3.0.4 Flowchart: The function's logic is represented in the following flowchart:

Figure 1.4: Flowchart of the create group method

1.3.4 Wrapper.delete element

This method allows the user to delete a dataset or group in the HDF5 file.

```
def delete_element(self, path = None):
```

1.3.4.0.1 Attributes:

• path (optional, default None): The path to the group or dataset we want to delete in the form "Brillouin/Measure/PSD". If None, the whole file is deleted.

1.3.4.0.2 Raises:

- WrapperError StructureError: If the path does not lead to a valid element in the file.
- WrapperError: If there are errors in the deleting process.

50 CHAPTER 1. WRAPPER

1.3.4.0.3 Flowchart: The function's logic is represented in the following flowchart:

Figure 1.5: Flowchart of the delete_element method

1.3.5 Wrapper.get_attributes

This method allows the user to extract all the attributes of a dataset or group in a hierarchical way. This means that this method opens the file, goes from the root to the selected group, and extracts all the attributes associated to the groups along the way. The function returns a dictionary, where the keys are the names of the attributes and the values are their values.

```
def get_attributes(self, path = None):
```

1.3.5.0.1 Attributes:

• path (optional, default None): The path to the group or dataset which attributes we want to extract in the format "Brillouin/Measure/PSD". If None, the attributes of the root group are returned.

1.3.5.0.2 Returns: A dictionary containing the attributes of the selected group or dataset where the keys are the names of the attributes and the values are their values. The keys of the attributes are listed in the spreadsheet located in the spreadsheets folder of the project.

1.3.5.0.3 Raises:

• WrapperError_StructureError: Raises an error if the path does not lead to a valid element in the file.

1.3.5.0.4 Flowchart: The function's logic is represented in the following flowchart:

Figure 1.6: Flowchart of the get attributes method

1.3.6 Wrapper.get structure

{'Brillouin': {'Brillouin_type': 'Root',

This method allows the user to extract the structure in the form of a dictionary. This dictionary is composed of all the elements of the file and their "Brillouin_type" attribute, in the form of a JSON file or dictionary similar to this one:

1.3.6.0.1 Attributes:

- filepath (optional, default None): The filepath to a HDF5 file. If None, the file of the wrapper is used.
- 1.3.6.0.2 Returns: A dictionary representing the structure of the file as detailed before
- 1.3.6.0.3 Flowchart: The function's logic is represented in the following flowchart:

Figure 1.7: Flowchart of the get structure method

1.3.7 Wrapper.save as hdf5

This method allows the user to save the file to a specified location.

```
def save_as_hdf5(self, filepath = None, remove_old_file = True):
```

1.3.7.0.1 Attributes:

- filepath (optional, default None): The filepath to the HDF5 file to save to.
- remove_old_file (optional, default True): A boolean that indicates whether the old file should be removed or not.

1.3.7.0.2 Raises:

- WrapperError_Overwrite: If the file already exists.
- WrapperError: If an error occured while saving the file.

1.3.7.0.3 Flowchart: The function's logic is represented in the following flowchart:

Figure 1.8: Flowchart of the save as hdf5 method

1.3.8 Wrapper.set attributes data

This method allows the user to update the attributes of the wrapper with the values of a dictionary. This is the preferred way to update the attributes of a group or dataset of the HDF5 file.

```
def set_attributes_data(self, properties, path = None, overwrite = False):
```

1.3.8.0.1 Attributes:

- **properties**: A dicitonnary of the property(ies) to be updated.
- path (optional, default None): The path to the group or dataset whose metadata we want to update. If None, the metadata of the root group are updated.
- overwrite (optional, default False): If True, the attributes of the selected group or dataset are overwritten. If False, only new attributes are added to the existing ones.

1.3.8.0.2 Raises:

• WrapperError: If an error occurred while updating the metadata in the HDF5 file

1.3.8.0.3 Flowchart: The function's logic is represented in the following flowchart:

Figure 1.9: Flowchart of the set_attributes_data method

1.4 Derived methods of the Wrapper class

1.4.1 Wrapper.add_abscissa

This method allows the user to add an abscissa to the HDF5 file. It adds the data by calling the Wrapper.add dictionary method.

```
def add_abscissa(self, data, parent_group=None, name=None, unit = "1",
    dim_start = 0, dim_end = None, overwrite = False):
```

1.4.1.0.1 Attributes:

- data: The abscissa array to add to the wrapper.
- parent_group: The path to the group or dataset whose the raw data will be added in the form "Brillouin/Measure/...".
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to "Raw data".
- unit (optional, default "1"): The unit of the abscissa (e.g. "microns").
- dim start (optional, default 0): The first dimension of the abscissa.
- dim_end (optional, default None): The last dimension of the abscissa. If None, the abscissa is considered to be a vector.
- overwrite (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.1.0.2 Raises:

• All the errors of the Wrapper.add dictionary method.

1.4.2 Wrapper.add frequency

This method allows the user to add a frequency array to the HDF5 file. It adds the data by calling the Wrapper.add_dictionary method. By default, the frequency array is stored in "GHz". Note however that this will just affect the presentation of the results and not the process itself.

```
def add_frequency(self, data, parent_group, name = None, overwrite = False):
```

1.4.2.0.1 Attributes:

- data: The frequency array to add to the wrapper.
- parent_group: The path to the group or dataset where the frequency will be added in the form "Brillouin/Measure/...".
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to "Frequency".
- **overwrite** (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.2.0.2 Raises:

- WrapperError StructureError: If the parent group does not exist in the HDF5 file.
- All the errors of the Wrapper.add dictionary method.

1.4.3 Wrapper.add PSD

This method allows the user to add a Power Spectral Density array to the HDF5 file. It adds the data by calling the Wrapper.add dictionary method.

```
def add_PSD(self, data, parent_group, name = None, overwrite = False):
```

1.4.3.0.1 Attributes:

- data: The PSD array to add to the wrapper.
- parent_group: The path to the group or dataset where the frequency will be added in the form "Brillouin/Measure/...".
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to "PSD".
- **overwrite** (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.3.0.2 Raises:

- WrapperError StructureError: If the parent group does not exist in the HDF5 file.
- All the errors of the Wrapper.add dictionary method.

1.4.4 Wrapper.add raw data

This method allows the user to add raw data to the HDF5 file. It adds the data by calling the Wrapper.add dictionary method.

```
def add_raw_data(self, data, parent_group, name = None, overwrite = False):
```

1.4.4.0.1 Attributes:

- data: The data to add to the wrapper.
- parent_group: The path to the group or dataset whose the raw data will be added in the form "Brillouin/Measure/...".
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to "Raw data".
- overwrite (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.4.0.2 Raises:

- WrapperError StructureError: If the parent group does not exist in the HDF5 file.
- All the errors of the Wrapper.add dictionary method.

1.4.5 Wrapper.add treated data

This method allows the user to add the result of a treatment to the HDF5 file. It adds the data by calling the Wrapper.add dictionary method.

```
def add_treated_data(self, shift, linewidth, shift_err, linewidth_err,
    parent_group, name_group = None, overwrite = False):
```

1.4.5.0.1 Attributes:

- **shift**: The shift array to add to the wrapper.
- linewidth: The linewidth array to add to the wrapper.
- **shift err**: The error of the shift array to add to the wrapper.
- linewidth err: The error of the linewidth array to add to the wrapper.
- parent_group: The path to the group or dataset whose the raw data will be added in the form "Brillouin/Measure/...".
- name_group (optional, default None): The name that will be given to the group containing all the treated dataset. If None, the name is set to "Treat_i" where "i" is an integer that ensures that the name is unique.
- **overwrite** (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.5.0.2 Raises:

- WrapperError StructureError: If the parent group does not exist in the HDF5 file.
- All the errors of the Wrapper.add dictionary method.

1.4.6 Wrapper.import abscissa

This method allows the user to add an abscissa to the HDF5 file from a measure file. It adds the data by calling the Wrapper.add abscissa method.

1.4.6.0.1 Attributes:

- filepath: The path to the file containing the abscissa to import.
- parent_group: The path to the group or dataset whose the raw data will be added in the form "Brillouin/Measure/...".
- **creator** (optional, default None): The structure of the file that has to be loaded. If None, a LoadError can be raised.
- parameters (optional, default None): The parameters that are to be used to import the data correctly. If None, a LoadError can be raised.
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to "Raw data".
- unit (optional, default "1"): The unit of the abscissa (e.g. "microns").
- dim_start (optional, default 0): The first dimension of the abscissa.
- dim_end (optional, default None): The last dimension of the abscissa. If None, the abscissa is considered to be a vector.
- reshape (optional, default None): The new shape of the array. If None, the shape is not changed.
- overwrite (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.6.0.2 Raises:

- WrapperError FileNotFound: If the file could not be found.
- All the errors of the Wrapper.add abscissa method.
- All the LoadError errors of the load data module.

1.4.7 Wrapper.import frequency

This method allows the user to import a frequency array to the HDF5 file. It adds the data by calling the Wrapper.add_frequency method. By default, the frequency array is stored in "GHz". Note however that this will just affect the presentation of the results and not the process itself.

```
def import_frequency(self, filepath, parent_group, creator = None, parameters =
   None, name = None, reshape = None, overwrite = False):
```

1.4.7.0.1 Attributes:

- filepath: The frequency array to add to the wrapper.
- parent_group: The path to the group or dataset where the frequency will be added in the form "Brillouin/Measure/...".
- creator (optional, default None): The structure of the file that has to be loaded. If None, a LoadError can be raised.
- parameters (optional, default None): The parameters that are to be used to import the data correctly. If None, a LoadError can be raised.
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to "Frequency".
- reshape (optional, default None): The new shape of the array. If None, the shape is not changed.
- overwrite (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.7.0.2 Raises:

- WrapperError_FileNotFound: If the file could not be found.
- All the errors of the Wrapper.add frequency method.
- All the LoadError errors of the load data module.

1.4.8 Wrapper.import PSD

This method allows the user to import raw data to the HDF5 file. It adds the data by calling the Wrapper.add raw data method.

```
def import_raw_data(self, filepath, parent_group, creator = None, parameters =
    None, name = None, reshape = None, overwrite = False):
```

1.4.8.0.1 Attributes:

- filepath: The filepath to the raw data to import.
- parent_group: The path to the group or dataset where the frequency will be added in the form "Brillouin/Measure/...".
- creator (optional, default None): The structure of the file that has to be loaded. If None, a LoadError can be raised.
- parameters (optional, default None): The parameters that are to be used to import the data correctly. If None, a LoadError can be raised.
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to "Frequency".
- reshape (optional, default None): The new shape of the array. If None, the shape is not changed.
- **overwrite** (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.8.0.2 Raises:

- WrapperError FileNotFound: If the file could not be found.
- All the errors of the Wrapper.add frequency method.
- All the LoadError errors of the load data module.

1.4.9 Wrapper.import raw data

This method allows the user to add a Power Spectral Density array to the HDF5 file from a file. It adds the data by calling the Wrapper.add_PSD method.

```
def import_PSD(self, filepath, parent_group, creator = None, parameters = None,
    name = None, reshape = None, overwrite = False):
```

1.4.9.0.1 Attributes:

- filepath: The path to the file containing the PSD to import.
- parent_group: The path to the group or dataset where the frequency will be added in the form "Brillouin/Measure/...".
- creator (optional, default None): The structure of the file that has to be loaded. If None, a LoadError can be raised.
- parameters (optional, default None): The parameters that are to be used to import the data correctly. If None, a LoadError can be raised.
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to "PSD".
- reshape (optional, default None): The new shape of the array. If None, the shape is not changed.
- **overwrite** (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.9.0.2 Raises:

- WrapperError FileNotFound: If the file could not be found.
- All the errors of the Wrapper.add PSD method.
- All the LoadError errors of the load data module.

1.4.10 Wrapper.import treated data

This method allows the user to import the arrays resulting from a treatment to the HDF5 file. It adds the data by calling the Wrapper.add PSD method.

```
def import_treated_data(self, filepath_shift, filepath_linewidth,
    filepath_shift_err, filepath_linewidth_err, parent_group, creator = None,
    parameters = None, name = None, reshape = None, overwrite = False):
```

1.4.10.0.1 Attributes:

- filepath shift: The path to the file containing the shift array to import.
- filepath_linewidth: The path to the file containing the linewidth array to import.
- filepath_shift_err: The path to the file containing the shift error array to import.
- filepath linewidth err: The path to the file containing the linewidth error array to import.
- parent_group: The path to the group or dataset where the frequency will be added in the form "Brillouin/Measure/...".
- **creator** (optional, default None): The structure of the files that have to be loaded. If None, a LoadError can be raised.
- parameters (optional, default None): The parameters that are to be used to import the data correctly. If None, a LoadError can be raised.
- name (optional, default None): The name that will be given to the dataset. If None, the name is set to "PSD".
- reshape (optional, default None): The new shape of the array. If None, the shape is not changed.
- overwrite (optional, default False): If True, the attributes of the selected group or dataset are overwritten if they exist in the file.

1.4.10.0.2 Raises:

- WrapperError FileNotFound: If one of the files could not be found.
- All the errors of the Wrapper.add treated data method.
- All the LoadError errors of the load data module.

1.4.11 Wrapper.import properties data

This method allows the user to import data from a CSV, XLS or XLSX file to a dataset or group of the HDF5 file. It reads the data from the file and updates the metadata by calling the Wrapper.set_attributes_data method.

```
def import_properties_data(self, filepath, path = None, overwrite = False):
```

1.4.11.0.1 Attributes:

- filepath: The filepath to the file containing the updated properties.
- path (optional, default None): The path to the group or dataset whose metadata we want to update in the form: "Brillouin/Measure". If None, the metadata of the root group are updated.
- **overwrite** (optional, default False): If True, the attributes of the selected group or dataset are overwritten. If False, only new attributes are added to the existing ones.

1.4.11.0.2 Raises:

- WrapperError FileNotFound: If the file with the properties is not found or not valid.
- All the errors of the Wrapper.set attributes data method.

1.4.11.0.3 Flowchart: The function's logic is represented in the following flowchart:

Figure 1.10: Flowchart of the import properties data method

1.4.12 Wrapper.update property

This method allows the user to update one attribute of the wrapper. This method is based on the Wrapper.set attributes data method.

```
def update_property(self, name, value, path = None):
```

1.4.12.0.1 Attributes:

- name: The name of the attribute to update.
- value: The new value of the attribute.
- path (optional, default None): The path to the group or dataset whose metadata we want to update in the form: "Brillouin/Measure". If None, the metadata of the root group are updated.

1.4.12.0.2 Raises:

• All the errors of the Wrapper.set attributes data method.

1.4.12.0.3 Flowchart: The function's logic is represented in the following flowchart:

Figure 1.11: Flowchart of the import_properties_data method

1.5 Console-specific methods of the Wrapper class

1.5.1 Wrapper.print structure

This method allows the user to print in the console the structure of the file.

```
def print_structure(self, lvl = 0):
```

1.5.1.0.1 Attributes:

• lvl (optional, default 0): This parameter is used by the function to display the tree of the file recursively. It is not meant to be used by the user.

1.5.2 Wrapper.print metadata

This method allows the user to print in the console all the attributes that apply to a dataset or group.

```
def print_metadata(self, path = None, lvl=0):
```

1.5.2.0.1 Attributes:

• path (optional, default None): The path to the group or dataset which attributes we want to extract in the format "Brillouin/Measure/PSD". If None, the attributes of the root group are displayed.

Chapter 2

Load data

Are you using a format that is already supported by the HDF5_BLS package?

- Yes but it doesn't work with my data.
- $\bullet\,$ Yes but I would like to improve the code.
- $\bullet\,$ No, I would like to add support for my data.

In any of these situations, the pipeline to load the data is fixed. Here we schematize this pipeline as a call graph:

In order to allow other formats to be used or other techniques to be applied to load files from the same format, the two functions that will be modified are:

- load_general: This function acts as a switch to launch different functions depending on the extension of the file and the way the file is loaded.
- load <u>extension</u> file: This function is specific to a file extension and is called by load_general to load the file. It itself act as a switch to lauch different functions from the HDF5_BLS.load_formats.load_extension.py.

2.1 Adding a user-specific function to an already supported format

You are in the situation where you are using a format that is already supported by the HDF5_BLS package (for example ".dat") but that doesn't work with your data.

Here are the steps to follow:

- 1. Locate the python file that handles your data format in the load_formats folder of the HDF5_BLS package. The name of the file should correspond to the name of the format you are using (for example "load dat.py" if you are using ".dat" files).
- 2. Add the function that will load your data to the file. The function should have the following signature:

```
def load_dat_Wien(filepath, parameters = None):
```

In the case where you don't need to load the data with parameters, the function should have the following signature:

```
def load_dat_Wien(filepath):
```

- 3. Write the code that will load your data. Your function should return a dictionary with at least two keys: "Data" and "Attributes". The "Data" key should contain the data you are loading and the "Attributes" key should contain the attributes of the file. You can also add abscissa to your data if you want to, in that case, add the key "Abscissa_name" where name is the name you want to give to the abscissa (for example "Abscissa_Time").
- 4. Go to the load_data.py file in the HDF5_BLS package and locate the function dedicated to the format you are using (for example "load_dat_file" if you are using ".dat" files)
- 5. Make sure that you are importing the function you just created:

```
from HDF5_BLS.load_formats.load_dat import load_dat_Wien
```

6. Then, define an identifier for your function (for example "Wien") and either create or add your identifier to the if-else statement. Don't forget to add your identifier to the "creator_list" list in the "else" statement:

7. Add a test to the function in the "tests/load_data_test.py" file with a test file placed in the "test-s/test_data" folder. This test is important as they are run automatically when the package is pushed to GitHub (ie: it makes my life easier i.

8. You can now use your data format with the HDF5_BLS package, and in particular, the GUI. You are invited to push your code to GitHub and create a pull request to the main repository:)

2.2 Improving an already supported function

You are in the situation where you want to improve a load function of the HDF5_BLS package (for example ".dat").

Here are the steps to follow:

- 1. Locate the python file that handles your data format in the load_formats folder of the HDF5_BLS package. The name of the file should correspond to the name of the format you are using (for example "load dat.py" if you are using ".dat" files).
- 2. Locate the function that loads your data. The function should have a name similar to (might not have parameters):

```
def load_dat_Wien(filepath, parameters = None):
```

- 3. Update the code. One good measure is to duplicate the function and comment one of the two versions. Then, write your code and run the tests. If the tests fail, you can always go back to the previous version. Note that if the test fails, the code cannot be pushed to GitHub.
- 4. If everything is sound, you can now use your new function with the HDF5_BLS package. You are invited to push your code to GitHub and create a pull request to the main repository:)
- 5. Note: If you want to improve the loading of the data to the hdf5 file (chunking for example), please contact the maintainer directly.

2.3 Adding a function to a new format

You are in the situation where you are using a new format that is not supported by the HDF5_BLS package.

Here are the steps to follow:

- 1. Navigate to the load_formats folder of the HDF5_BLS package.
- 2. Create a new python file with the name of the format you are using (for example "load_unicorn.py" if you are using ".unicorn" files).
- 3. Add the function that will load your data to the file. The function should have the following signature:

```
def load_unicorn_Wien(filepath, parameters = None):
```

In the case where you don't need to load the data with parameters, the function should have the following signature:

```
def load_dat_Wien(filepath):
```

4. Write the code that will load your data. Your function should return a dictionary with at least two keys: "Data" and "Attributes". The "Data" key should contain the data you are loading and the "Attributes" key should contain the attributes of the file. You can also add abscissa to your data if you want to, in that case, add the key "Abscissa_name" where name is the name you want to give to the abscissa (for example "Abscissa Time").

- 5. Go to the load_data.py file in the HDF5_BLS package and create the function dedicated to the format you are using (for example "load_unicorn_file" if you are using ".unicorn" files)
- 6. Make sure that you are importing the function you just created:

```
from HDF5_BLS.load_formats.load_unicorn import load_unicorn_Wien
```

- 7. Add a test to the function in the "tests/load_data_test.py" file with a test file placed in the "tests/test_data" folder. This test is important as they are run automatically when the package is pushed to GitHub (ie: it makes my life easier i.
- 8. You can now use your data format with the HDF5_BLS package, and in particular, the GUI. You are invited to push your code to GitHub and create a pull request to the main repository:)

Chapter 3

Analyze data

The analysis module is built following a Object-Oriented approach. It is composed of classes called *Analy-sis_type* where "type" refer to the type of technique being used to acquire the data. These classes are the main classes of the module. They rely on 5 core attributes:

- algorithm: A JSON file describing a particular sequence of functions to be applied for the analysis
- x: The abscissa of the data on which we perform the analysis
- y: The data points that are to be analyzed
- points: A dictionary of points on which to base the analysis
- windows: A dictionary of windows on which to base the analysis

This chapter will present successively:

- The different attributes of the class, their structure, the conditions that they must fulfill, and their intended uses (see section 3.1).
- The modular approach of the analysis module and the way functions are to be implemented.
- The creation of an algorithm for reusable analysis.
- The versioning of the analysis module and of its functions.
- The testing strategy.

3.1 The attributes of the classes of the analysis moduel

All the classes of the analysis module are built following a Object-Oriented approach and rely on 5 core attributes:

- algorithm: A JSON file describing a particular sequence of functions to be applied for the analysis
- x: The abscissa of the data on which we perform the analysis
- y: The data points that are to be analyzed
- points: A dictionary of points on which to base the analysis
- windows: A dictionary of windows on which to base the analysis

Additionally, a sixth attribute, _history is used to store the evolution of each attribute during the analysis. This is however a "silent" attribute that the developper should not consider as it is automatically updated as will be explained in the following sections.

3.1.1 The algorithm attribute

The _algorithm attribute is a JSON file describing a particular sequence of functions to be applied for the analysis. It is built with two ideas in mind:

- Store the sequence of functions that are applied for the analysis, with all their parameters, so that it is possible to reproduce the analysis or improve it by changing the parameters of the functions.
- Store a human-readable description of the sequence of functions that are applied for the analysis, so
 that it is possible to understand what is done in the analysis even for someone who is not familiar with
 the code.

The algorithm attribute is a JSON file that is built with the following structure:

- name: The name of the algorithm used for the analysis
- version: The version of the algorithm
- author: The author of the algorithm (laboratory or person)
- description: A human-readable short presentation of the algorithm
- functions: A list of functions to be applied for the analysis following this structure:
 - function: The name of the function to be applied. This name does not include the name of the class as this name depends on the name of "SPECTROMETER. Type" attribute of the data to be treated.
 - version: The version of the function
 - parameters: A dictionary of parameters to be passed to the function
 - description: A human-readable presentation of the function

As an example, the following JSON file describes a simple analysis that consists in taking the mean of the data points:

```
"name": "Mean",
      "version": "1.0",
      "author": "Pierre Bouvet - Medical University of Vienna",
      "description": "Mean of the data points",
      "functions": [
               "function": "mean",
               "version": "1.0",
               "parameters": {
10
                   points: None
11
12
               "description": "Mean of the data points"
13
      ]
15
```

This description of the algorithm is "blank" meaning that the parameters are not defined. This is useful when the algorithm is stored as a sequence of functions that have to be adapted. However, if the analysis concerns a specific data set, then we can pass the attribute names as parameters, as well as any other parameters that are used for the analysis. For example, if we want to perform a polynomial fit with a polynomial of order 2 on the data points windowed around the first anti-stokes peak as defined in the "window" attribute, we can write the following JSON file:

```
"name": "Polynomial fit",
      "version": "1.0",
      "author": "Pierre Bouvet - Medical University of Vienna",
      "description": "Polynomial fit of the data points",
      "functions": [
              "function": "polyfit",
              "version": "1.0",
              "parameters": {
10
                   "x": "self.x",
11
                   "y": "self.y",
12
                   "window": "self.windows['anti_stokes_1']",
13
                   "degree": 2
14
              "description": "Polynomial fit of the data points performed
16
                  on x=self.x and y=self.y, around the window defined by
                  self.windows['anti_stokes_1'], with a polynomial of order
                   2"
17
      ]
18
19
```

Storing algorithms composed of a sequence of function is done by adding a function to the list of functions, following the same structure as the one described above:

```
"name": "Polynomial fit",
          "version": "1.0",
           "author": "Pierre Bouvet - Medical University of Vienna",
           "description": "Polynomial fit of the data points",
           "functions": [
                   "function": "function_1",
                   "version": "1.0",
                   "parameters":
10
                       "x": "self.x",
11
                        "degree": 2
12
13
                   "description": "The first function of the analysis
14
                       performed on x=self.x with a degree of 2"
15
16
                   "function": "function_2",
17
                   "version": "1.0",
18
                   "parameters": {
19
                       "y": "self.y";
20
                       "resampling": True
21
22
                   "description": "The second function of the analysis
23
                       performed on y=self.y with resampling=True"
24
          ]
25
```

Note that these examples are meant to present the principle at the core of the treatment but do not represent the actual implementation of the functions. The actual implementation of the functions is detailed in the following sections. Full examples will also be given at the end of this chapter.

3.1.2 The x and y attributes

The x and y attributes are respectively the abscissa and the ordinate of the data on which the analysis is performed. They are both numpy arrays of the same length. The x attribute is the abscissa of the data points, while the y attribute is the data points themselves. These arrays are 1D as they are plotted on a 1D graph.

These arrays are subject to evolve during the analysis, for example if a normaliation occurs. To store their evolution and maximize the speed of the algorithm, whenever these arrays are changed, the *history* attribute is updated.

3.1.3 Points

The *points* attributes is a dictionary of points referenced in the self.x arrays. The keys of the dictionary have a nomenclature constrained by the type of points. This nomenclature is of the following form:

```
prefix number
```

where prefix is a string describing the type of point and number is an integer describing the position of the point in the list of points of this type. The prefix can be one of the following:

- anti-stokes: A point corresponding to an anti-stokes peak
- stokes: A point corresponding to a stokes peak
- elastic: A point corresponding to an elastic peak
- peak: A point corresponding to an other peak

Example:

```
self.points ={
    "anti-stokes\_1" = 5.5542
    "stokes\_1" = -5.4363
}
```

Note that all the position are stored as float. Note also that the keys of the *points* attribute are excatly the same as the keys of the *windows* attribute.

3.1.4 Windows

The *windows* attributes is a dictionary of tuple stored as values in the *self.x* array. The keys of the dictionary have a nomenclature constrained by the type of points. This nomenclature is of the following form:

```
prefix number
```

where prefix is a string describing the type of point and number is an integer describing the position of the point in the list of points of this type. The prefix can be one of the following:

- anti-stokes: A point corresponding to an anti-stokes peak
- stokes: A point corresponding to a stokes peak
- elastic: A point corresponding to an elastic peak
- peak: A point corresponding to an other peak

Example:

```
self.windows ={

"anti-stokes\_1" = (3.0, 8.0)

"stokes\_1" = (-8.0, -3.0)

}
```

Note that all the position are stored as float. Note also that the keys of the *points* attribute are excatly the same as the keys of the *points* attribute.

3.1.5 The history attribute

The _history attribute resembles the algorithm attribute in the sense that it is also a list of dictionnaries where each element corresponds to a step of the analysis. However, the main difference is that the _history attribute is not a JSON file but a "silent" attribute that is automatically updated whenever a function is called. This means that the _history attribute is not meant to be used by the user but is rather used internally by the module to store the evolution of the attributes during the analysis and speed up the analysis whenever the user decides to change a parameter during the analysis.

The elements of the *history* attribute are dictionnaries that contain 5 keys, 4 of which are optional to minimize the size of the memory used:

- function: The algorithm used for the analysis
- x (optional): The abscissa of the data on which we perform the analysis (only if the attribute has been changed at this step)
- y (optional): The data points that are to be analyzed (only if the attribute has been changed at this step)
- points (optional): A dictionary of points on which to base the analysis (only if the attribute has been changed at this step)
- windows (optional): A dictionary of windows on which to base the analysis (only if the attribute has been changed at this step)

Example:

```
self._history = [
2
           "function": "__init__",
3
           "x": np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]),
           "y": np.array([0.0, 1.0, 4.0, 2.0, 3.0, 3.0, 5.0, 3.0, 2.0, 1.0]),
           "points": {},
6
           "windows": {}
       },
           "function": "normalize",
10
            "y": np.array([0.0, 0.2, 0.8, 0.4, 0.6, 0.6, 1.0, 0.6, 0.4, 0.2])
12
13
           "function": "get_point_window",
            "points": {"anti-stokes\_1": 5.5542},
15
           "windows": {"anti-stokes\_1": (3.0, 8.0)},
16
       }
17
   ]
```

3.2 The classes of the *analysis* module and the implementation of algorithms

All the classes of the analysis module are built following a Object-Oriented approach and rely on 5 core attributes:

- _ algorithm: A JSON file describing a particular sequence of functions to be applied for the analysis
- \bullet x: The abscissa of the data on which we perform the analysis
- y: The data points that are to be analyzed
- points: A dictionary of points on which to base the analysis
- windows: A dictionary of windows on which to base the analysis

Additionally, a sixth attribute, _history is used to store the evolution of each attribute during the analysis. This is however a "silent" attribute that the developper should not consider as it is automatically updated as will be explained in the following sections.

3.2.1 The algorithm attribute

The _algorithm attribute is a JSON file describing a particular sequence of functions to be applied for the analysis. It is built with two ideas in mind:

- Store the sequence of functions that are applied for the analysis, with all their parameters, so that it is possible to reproduce the analysis or improve it by changing the parameters of the functions.
- Store a human-readable description of the sequence of functions that are applied for the analysis, so that it is possible to understand what is done in the analysis even for someone who is not familiar with the code.

The algorithm attribute is a JSON file that is built with the following structure:

- name: The name of the algorithm used for the analysis
- version: The version of the algorithm
- author: The author of the algorithm (laboratory or person)
- description: A human-readable short presentation of the algorithm
- functions: A list of functions to be applied for the analysis following this structure:
 - function: The name of the function to be applied. This name does not include the name of the class as this name depends on the name of "SPECTROMETER. Type" attribute of the data to be treated
 - version: The version of the function
 - parameters: A dictionary of parameters to be passed to the function
 - description: A human-readable presentation of the function

As an example, the following JSON file describes a simple analysis that consists in taking the mean of the data points:

```
"name": "Mean",
"version": "1.0",
"author": "Pierre Bouvet - Medical University of Vienna",
"description": "Mean of the data points",
"functions": [

"function": "mean",
"version": "1.0",
"parameters": {
    points: None
```

This description of the algorithm is "blank" meaning that the parameters are not defined. This is useful when the algorithm is stored as a sequence of functions that have to be adapted. However, if the analysis concerns a specific data set, then we can pass the attribute names as parameters, as well as any other parameters that are used for the analysis. For example, if we want to perform a polynomial fit with a polynomial of order 2 on the data points windowed around the first anti-stokes peak as defined in the "window" attribute, we can write the following JSON file:

```
"name": "Polynomial fit",
      "version": "1.0",
      "author": "Pierre Bouvet - Medical University of Vienna",
      "description": "Polynomial fit of the data points",
      "functions": [
              "function": "polyfit",
              "version": "1.0",
              "parameters": {
10
                   "x": "self.x"
11
                   "y": "self.y",
12
                   "window": "self.windows['anti_stokes_1']",
                   "degree": 2
14
              "description": "Polynomial fit of the data points performed
16
                  on x=self.x and y=self.y, around the window defined by
                  self.windows['anti_stokes_1'], with a polynomial of order
                   2"
17
      ]
18
19
```

Storing algorithms composed of a sequence of function is done by adding a function to the list of functions, following the same structure as the one described above:

```
"name": "Polynomial fit",
          "version": "1.0",
          "author": "Pierre Bouvet - Medical University of Vienna",
          "description": "Polynomial fit of the data points",
          "functions": [
                   "function": "function_1",
                   "version": "1.0",
                   "parameters": {
10
                       "x": "self.x",
11
                       "degree": 2
12
13
                   "description": "The first function of the analysis
14
                      performed on x=self.x with a degree of 2"
15
16
```

Note that these examples are meant to present the principle at the core of the treatment but do not represent the actual implementation of the functions. The actual implementation of the functions is detailed in the following sections. Full examples will also be given at the end of this chapter.

3.2.2 The x and y attributes

The x and y attributes are respectively the abscissa and the ordinate of the data on which the analysis is performed. They are both numpy arrays of the same length. The x attribute is the abscissa of the data points, while the y attribute is the data points themselves. These arrays are 1D as they are plotted on a 1D graph.

These arrays are subject to evolve during the analysis, for example if a normaliation occurs. To store their evolution and maximize the speed of the algorithm, whenever these arrays are changed, the *history* attribute is updated.

3.2.3 Points

The *points* attributes is a dictionary of points referenced in the self.x arrays. The keys of the dictionary have a nomenclature constrained by the type of points. This nomenclature is of the following form:

```
prefix number
```

where prefix is a string describing the type of point and number is an integer describing the position of the point in the list of points of this type. The prefix can be one of the following:

- anti-stokes: A point corresponding to an anti-stokes peak
- stokes: A point corresponding to a stokes peak
- elastic: A point corresponding to an elastic peak
- peak: A point corresponding to an other peak

Example:

```
self.points ={
    "anti-stokes\_1" = 5.5542
    "stokes\_1" = -5.4363
}
```

Note that all the position are stored as float. Note also that the keys of the *points* attribute are excatly the same as the keys of the *windows* attribute.

3.2.4 Windows

The windows attributes is a dictionary of tuple stored as values in the self.x array. The keys of the dictionary have a nomenclature constrained by the type of points. This nomenclature is of the following form:

```
prefix number
```

where *prefix* is a string describing the type of point and *number* is an integer describing the position of the point in the list of points of this type. The *prefix* can be one of the following:

- anti-stokes: A point corresponding to an anti-stokes peak
- stokes: A point corresponding to a stokes peak
- elastic: A point corresponding to an elastic peak
- peak: A point corresponding to an other peak

Example:

```
self.windows ={
    "anti-stokes\_1" = (3.0, 8.0)
    "stokes\_1" = (-8.0, -3.0)
}
```

Note that all the position are stored as float. Note also that the keys of the *points* attribute are excatly the same as the keys of the *points* attribute.

3.2.5 The history attribute

The _history attribute resembles the algorithm attribute in the sense that it is also a list of dictionnaries where each element corresponds to a step of the analysis. However, the main difference is that the _history attribute is not a JSON file but a "silent" attribute that is automatically updated whenever a function is called. This means that the _history attribute is not meant to be used by the user but is rather used internally by the module to store the evolution of the attributes during the analysis and speed up the analysis whenever the user decides to change a parameter during the analysis.

The elements of the *history* attribute are dictionnaries that contain 5 keys, 4 of which are optional to minimize the size of the memory used:

- function: The algorithm used for the analysis
- x (optional): The abscissa of the data on which we perform the analysis (only if the attribute has been changed at this step)
- y (optional): The data points that are to be analyzed (only if the attribute has been changed at this step)
- points (optional): A dictionary of points on which to base the analysis (only if the attribute has been changed at this step)
- windows (optional): A dictionary of windows on which to base the analysis (only if the attribute has been changed at this step)

Example:

Chapter 4

Treat data

The treatment of the data consist in extracting the relevant information from an already obtained Power Spectral Density and a frequency vector. This information is then used to perform the analysis. The treatment module works similarly to the analysis module: a series of functions are defined and an algorithm is created with these functions and then applied to the data. Additionally, the treatment module also contains functions to identify outliers and errors.

The general treatment approach on which the module is based is the following:

The goal of the treatment module is then to allow the user to define and apply an algorithm to the data. The treatment module is composed of a series of functions that can be used to define the algorithm. The user can also add his own functions to the module and then use them in the algorithm. The treatment module is designed to be flexible and adaptable to the user's needs.

4.1 Treat data to obtain a Power Spectral Density and a frequency vector

This is a call graph of the functions that are used when asking for a conversion to a PSD. The functions that we will develop have names in bold font. The functions have a fixed nomenclature that we will detail later on, based on the type of spectrometer being used. For this call graph, we will call our spectrometer: type:

To add a routine to convert raw data into a PSD, we'll therefore need to implement the two following functions:

$4.1.0.0.1 \quad \text{HDF5_BLS.conversion_PSD.check_conversion_} type$

• Parameters:

- wrp: the wrapper associated to the main h5 file. You should always use the parent file as some properties might be inherited.
- path: the path to the data we want to treat in the form "Data/Data 0/..."

• Returns:

A boolean: True if the conversion is possible, False otherwise.
Depending on the type of spectrometer, the conditions for conversion might be different.
In some cases, like for Time Domain experiments, the conversion to PSD will require the user to enter parameters by hand, in other cases, like for TFP, the conversion can only be performed if the scan amplitude is given. The goal of this function is to block any further processing if the conversion is not possible, if the conversion is possible with arguments that are meant to be entered afterwards, it should return True.

Here is an example of the function check_conversion_ar_BLS_VIPA:

```
def check_conversion_ar_BLS_VIPA(wrapper, path):
    attributes = wrapper.get_attributes_path(path)
    if "TREAT.Center" in attributes.keys():
        return True
    else:
        return False
```

4.1.0.0.2 HDF5 BLS GUI.conversion ui.conversion type :

• Parameters:

- parent: the parent GUI window. This is usefull when you want to open other windows to ask the user for some parameters.
- wrp: the wrapper associated to the main h5 file. You should always use the parent file as some properties might be inherited.
- path: the path to the data we want to treat in the form "Data/Data 0/..."

• Returns:

- A dictionary with the following keys:
 - * "PSD": the PSD dataset
 - * "Frequency": the frequency dataset
 - * "Process": a text decribing the process of converting the raw data into a PSD. This text is meant to inform the user of the process of converting the data into a PSD.

4.2 Treat data to extract information from a Power Spectral Density

This is a call graph of the functions that are used when asking treat a PSD and frequency. The functions that we will develop have names in bold font. The functions have a fixed nomenclature that we will detail later on, based on the type of spectrometer being used. For this call graph, we will call our spectrometer: unicorn:

To add a routine to extract information from our PSD, we'll therefore need to implement the following functions:

• HDF5_BLS_GUI.conversion_ui.treat_unicorn: This function will be used to allow the user to perform a treatment on its data. This function will open a GUI window in the form of a dialog to allow the user to select the parameters of the treatment. Note that this function will not return anything.

For GUI compatibility, the function must be called *treat_type*, where "type" is the type of the spectrometer being used, and placed in the "HDF5_BLS_GUI/treat_ui.py" file. For example if your spectrometer type is "Unicorn", add the following function:

```
def treat_unicorn
```

This function must have the following parameters:

- parent: the parent GUI window
- wrp: the wrapper associated to the main h5 file
- path: the path to the data we want to treat in the form "Data/Data/..."

```
def treat_unicorn(parent, wrp, path):
```

From there, there are no guidelines to define your function. The GUI comes however with a few windows that can be inherited from to make the development of custom treatment processes easier. You can find an example of how it was done for the "TFP" treatment in the appendix.

4.3 Adding a new treatment function

To do

Contact

For questions or suggestions, please contact the maintainer at:

pierre.bouvet@meduniwien.ac. at.

Appendix

Appendix A

Examples of file structures

A.1 A single measure with no treatment

In this first example, we want to store a single measure of a water sample.

The following structure represents the base structure of the file:

```
file.h5
+-- Data (group) -> Name = "Measure"
| +-- Data_0 (group) -> Name = "Water"
| | +-- Raw_data (dataset)
```

Note that we have here added arrows and an example of the "Name" attributes.

A.2 A series of measures with no treatment

In this second example, we want to store a series of measures taken on three different samples: Water, Ethanol and Glycerol.

The following structure represents the base structure of the file:

Note that we have here added arrows and an example of the value of the "Name" attributes.

A.3 A series of series of measures with no treatment but with a calibration spectrum and an impulse response measure

In this third example, we want to store a series of two measures taken on two different samples: Water and Ethanol. We also want to store a calibration curve and an impulse response curve.

The following structure represents the base structure of the file:

```
file.h5
+-- Data (group) -> Name = "Measure"
| +-- Data_0 (group) -> Name = "Impulse_Response"
```

Note that we have here added arrows and an example of the value of the "Name" attributes.

A.4 A single measure converted to a Power Spectrum Density

In this fourth example, we want to store a single measure of a water sample. This measure has been converted into a Power Spectrum Density.

The following structure represents the base structure of the file:

Note that we have here added arrows and an example of the value of the "Name" attributes. In this case, all the steps of the conversion to PSD are stored in the "Data_0" group. The nomenclature of the attribute(s) used to store the parameters of the treatment is not specified.

A.5 Multiple measures converted to a Power Spectrum Density with a time-independent spectrometer

In this fifth example, we are in the situation where a time-independent spectrometer has been used to acquire multiple measures. In this case, the hierarchy of the file can be used to reduce the number of datasets, by considering that all the PSD share the same frequency axis.

The following structure represents the base structure of the file:

Note that we have here added arrows and an example of the value of the "Name" attributes.

A.6 A single measure with a treatment

In this sixth example, we want to store a single measure of a water sample that has been treated. The following structure represents the base structure of the file:

Note that we have here added arrows and an example of the value of the "Name" attributes. In this case, all the steps of the treatment are stored in the "Treat_0" group. The nomenclature of the attribute(s) used to store the parameters of the treatment is not specified.

A.7 A single measure with two distinct treatments

In this seventh example, we will store a single measure where two different treatments have been performed (for example a measure at an interface between two materials).

The following structure represents the base structure of the file:

```
file.h5
+-- Data (group) -> Name = "Measure"
    +-- Data_0 (group) -> Name = "Water"
        +-- Raw_data (dataset)
        +-- PSD (dataset)
        +-- Frequency (dataset)
        +-- Treat_0 (group) -> Name = "Treat_5GHz"
            +-- Shift (dataset)
            +-- Shift_err (dataset)
            +-- Linewidth (dataset)
            +-- Linewidth_err (dataset)
        +-- Treat_1 (group) -> Name = "Treat_10GHz"
            +-- Shift (dataset)
            +-- Shift_err (dataset)
            +-- Linewidth (dataset)
            +-- Linewidth_err (dataset)
```

Note that we have here added arrows and an example of the value of the "Name" attributes. In this case, all the steps of the treatment around 5GHz are stored in the "Treat_0" group and the ones around 10GHz in the "Treat_1" group. The nomenclature of the attribute(s) used to store the parameters of the treatment is not specified.

A.8 A single mapping stored as a single measure

In this eighth example, we want to store a mapping of a sample. This mapping has been obtained with a spectrometer that returns an array of points for all the points mapped. To clarify this example, we will indicate the dimension of each dataset here between brackets.

The following structure represents the base structure of the file:

Note that we have here added arrows and an example of the value of the "Name" attributes.

A.9 A series of mapping over the same field of view stored as a single measure

In this ninth example, we are in the situation where multiple mappings of same dimension have been obtained with a spectrometer that returns an array of points for all the points mapped. In this case, the hierarchy of the file can be used to reduce the number of datasets, by considering that all the PSD share the same frequency axis and the same field of view.

The following structure represents the base structure of the file:

```
file.h5
+-- Data (group) -> Name = "Measure"
   +-- Abscissa_0 (dataset) [X] -> Name = "x (mm)"
    +-- Abscissa_1 (dataset) [Y] -> Name = "y (mm)"
    +-- Frequency (dataset) [N]
    +-- Data_0 (group) -> Name = "Day_1"
        +-- Raw_data (dataset) [X, Y, M]
        +-- PSD (dataset) [X, Y, N]
        +-- Treat_1 (group) -> Name = "Treat"
            +-- Shift (dataset) [X, Y]
            +-- Shift_err (dataset) [X, Y]
            +-- Linewidth (dataset) [X, Y]
            +-- Linewidth_err (dataset) [X, Y]
    +-- Data_1 (group) -> Name = "Day_2"
        +-- Raw_data (dataset) [X, Y, M]
        +-- PSD (dataset) [X, Y, N]
        +-- Treat_1 (group) -> Name = "Treat"
            +-- Shift (dataset) [X, Y]
            +-- Shift_err (dataset) [X, Y]
            +-- Linewidth (dataset) [X, Y]
            +-- Linewidth_err (dataset) [X, Y]
```

Note that we have here added arrows and an example of the value of the "Name" attributes.

A.10 A series of mapping over the same field of view stored as multiple measures

In this tenth example, we are in the situation where multiple mappings of same dimension have been obtained with a spectrometer that can't return an array of points for all the points mapped, but returns them one by

one. Because it would be impractical to create groups for each point, we encourage users to compile their data into a single dataset, and refer to example 9.

A.11 A series of mapping obtained with different spectrometers and with different field of view

In this eleventh example, we are in the situation where multiple mappings of different dimensions have been obtained with different spectrometers that all return an array of points for all the points mapped. In this case, the hierarchy of the file cannot be used to reduce the number of datasets, and each group will need its own abscissa and frequency datasets.

The following structure represents the base structure of the file:

```
file.h5
+-- Data (group) -> Name = "Measure"
    +-- Data_0 (group) -> Name = "VIPA"
        +-- Raw_data (dataset) [X, Y, M]
        +-- PSD (dataset) [X, Y, N]
        +-- Abscissa_0 (dataset) [X] -> Name = "x (mm)"
        +-- Abscissa_1 (dataset) [Y] -> Name = "y (mm)"
        +-- Frequency (dataset) [N]
        +-- Treat_1 (group) -> Name = "Treat"
            +-- Shift (dataset) [X, Y]
            +-- Shift_err (dataset) [X, Y]
            +-- Linewidth (dataset) [X, Y]
            +-- Linewidth_err (dataset) [X, Y]
        +-- Data_1 (group) -> Name = "TFP"
        +-- Raw_data (dataset) [X, Y, M]
        +-- PSD (dataset) [X, Y, N]
        +-- Abscissa_0 (dataset) [X] -> Name = "x (mm)"
        +-- Abscissa_1 (dataset) [Y] -> Name = "y (mm)"
        +-- Frequency (dataset) [N]
        +-- Treat_1 (group) -> Name = "Treat"
            +-- Shift (dataset) [X, Y]
            +-- Shift_err (dataset) [X, Y]
            +-- Linewidth (dataset) [X, Y]
            +-- Linewidth_err (dataset) [X, Y]
```

Note that we have here added arrows and an example of the value of the "Name" attributes.

Appendix B

Examples of treatment pipelines

B.1 Treatment of a TFP spectrometer

We here present the code that was used to treat the data obtained from a TFP spectrometer. This code is meant to be used as an example of how to write a treatment function for the GUI compatibility.

1. We first extract all the PSDs and frequency arrays that are child of the element that has been selected. To do that, we need to go through all the higher layers of our wrapper until our data is found. This is done using the following code:

```
def get_paths_childs(wrp, path = "", frequency = None):
   child, freq = [], []
  if "Frequency" in wrp.data.keys():
   frequency = path+"/Frequency"
   for e in wrp.data.keys():
   if isinstance(wrp.data[e], wrapper.Wrapper):
       ce, fe = get_paths_childs(wrp.data[e], path+"/"+e, frequency=frequency)
       child += ce
       freq += fe
9
   else:
10
       if e == "Power Spectral Density":
11
           freq.append(frequency)
           child.append(path+"/"+e)
   return child, freq
14
  # Get the selected data wrapper and frequency array
  wrp_temp = wrp
  path_loc = path.split("/")[1:]
  if "Frequency" in wrp.data.keys(): frequency = wrp.data["Frequency"]
   else: frequency = None
   for e in path_loc:
   if "Frequency" in wrp_temp.data[e].data.keys():
   frequency = wrp_temp.data[e].data["Frequency"]
   if isinstance(wrp_temp.data[e], wrapper.Wrapper):
   wrp_temp = wrp_temp.data[e]
   childs, frequency = get_paths_childs(wrp_temp, path)
```

2. From there we have a choice to make: either we treat each PSD individually or all at once, from some globally defined parameters. We therefore need to ask the user if he wants to treat all of them with the same parameters or each one individually. This is done using the following code:

```
# Display a dialog box to ask the user if he wants to treat all of them with the same parameters or each one individually
```

3. In both cases, we will want to open a window to enter the parameters of the treatment. In the first case, where all the spectra are treated at once, we open the window with all the spectra as parameters. In the second case, where each spectrum is treated individually, we will have a "for" loop to open the window for each spectrum. This is done using the following code:

Note that here we are importing another GUI window from the ParameterCurve package. The definition of this GUI window is therefore the next step. Let's now look into this TFP_treat class.

- 4. Opening the "HDF5_BLS_GUI/ParameterCurve/main.py" file, we define the TFP_treat class as a daughter of the ParameterCurve class, which is a GUI window with 4 distinct elements:
 - A combobox to select the curves to plot at the top left of the window.
 - A combobox to select the function to apply at the top right of the window.
 - A graph frame to display the curves at the bottom left of the window.
 - A frame to display the parameters of the treatment at the bottom right of the window, together with buttons to apply the treatment and to close the window.

```
class TFP_treat(ParameterCurve):
    def __init__(self, parent=None, wrp_base = None, path_base = None,
        path_curves = None, path_frequency = None):
    super().__init__(parent, wrp_base.get_child(path_base))
```

This initializes the ParameterCurve class with the wrapper corresponding to all the curves we are going to treat. Giving the class the path of the selected curves displays them by default in the combobox. Here is an image of a raw ParameterCurve window after this simple initialization:

5. We can now add functionailities to the GUI. First, we display the curve that we select in the combobobx. To do so, we will call the handle_data function when the combobox is changed. This function will extract the data from the wrapper corresponding to the selected curve and plot it on the graph.

```
def __init__(self, parent=None, wrp_base = None, path_base = None,
      path_curves = None, path_frequency = None, frequency = None):
   super().__init__(parent, wrp_base.get_child(path_base))
   if frequency is None:
   self.path_curves = path_curves
   self.path_frequency = path_frequency
   self.path_frequency_unique = None
   else:
   self.path_curves = None
   self.path_frequency = None
10
   self.path_frequency_unique = frequency
11
12
   # Initializes the graph
13
   self.cb_curves.currentIndexChanged.connect(self.handle_data)
```

Note that we have also stored the paths to the frequencies associated to the curves in respectively the path_frequency and path_curves attributes. In the case where only one array is shown, then the path to the frequency array is stored in the path_frequency_unique attribute.

6. The handle_data function extracts the path associated to a value in the combobox and gets both the Power Spectral Density and the frequency array from the wrapper corresponding to the selected curve. It then plots the data on the graph.

```
def handle_data(self):
```

```
0.00
2
   Plots the curve that is currently selected in the combobox. This function
      also defines self.data and updates the parameters.
   0.00
   # Extract the raw data from the wrapper corresponding to the selected curve
5
       in the combobox
   wrp = self.wrapper
   if len(self.combobox_curve_codes) > 1:
8
   path = self.combobox_curve_codes[self.combobox_curve_names.index(self.
9
      cb_curves.currentText())]
   path = path[5:]
   if type(path) == list:
12
       for e in path:
13
           wrp = wrp.data[e]
14
15
   else:
       wrp = wrp.data[path]
16
17
   self.data = wrp.data["Power Spectral Density"]
18
   if self.path_frequency is None:
19
       self.frequency = wrp.get_child(self.path_frequency_unique)[:]
20
   else:
21
       self.frequency = wrp.get_child(self.path_frequency[self.path_curves.
22
           index(path+"/Power Spectral Density")])[:]
23
   # Plot the data
24
   self.graph_canvas.axes.cla()
25
   self.graph_canvas.axes.plot(self.frequency, self.data)
   self.graph_canvas.axes.set_xlabel("Frequency Shift (GHz)")
   self.graph_canvas.axes.set_ylabel("Intensity (AU)")
   self.graph_canvas.draw()
   self.update_parameters()
```

Note that the last line of this function is calling the function update_parameters. This function will update the list of parameters needed to run the treatment.

7. We can define the update_parameters function. This function will most likely be common to most treatments. Its goal is to inspect the "treat" module from the HDF5_BLS package and extract the list of functions and parameters that are needed automatically. Then it displays the list of functions in the dedicated combobox and the list of parameters in the dedicated frame. If the nomenclature of the parameters and the definition of the treatment function follow a fixed nomenclature, this function automatically links the graph with the relevant parameters so that the graph becomes interactive. Further information about how to develop new treatment functions can be found in section Adding a new treatment function. Out of curiosity, here is the detail of the code of this function:

```
def update_parameters(self):
   def initialize_parameters(self, module):
   functions = [func for func in getmembers(module, isfunction)]
   function_names = [func[0] for func in functions]
   functions = [func[1] for func in functions]
   self.cb_functions.clear()
   self.cb_functions.addItems(function_names)
   self.cb_functions.setCurrentIndex(0)
9
   self.cb_functions.currentIndexChanged.connect(lambda: self.
      show_parameters_function(functions, function_names))
   return functions, function_names
12
13
   def setup_button_help_function(self, functions, function_names):
14
  def show_help_function():
```

```
docstring = functions[function_names.index(self.function_name)].__doc__
       msgBox = HelpFunction(self, self.function_name, docstring)
       msgBox.exec_()
18
19
   self.b_helpFunction.clicked.connect(show_help_function)
20
   def onclick_x0(event = None):
22
   if event.inaxes:
23
       x = float(event.xdata) * 1e6//1
24
       x = x/1e6
       self.parameters["center_frequency"]["line_edit"].setText(str(x))
27
   def onclick_linewidth(event = None):
28
   if event.inaxes:
29
       self.temp_linewidth = float(event.xdata)
       self.graph_canvas.mpl_connect('motion_notify_event', on_drag)
31
32
   def on_drag(event):
33
34
   if event.inaxes and event.button == 1:
       x1 = float(event.xdata)
35
   linewidth = abs(x1 - self.temp_linewidth) * 1e6//1
36
   linewidth = linewidth/1e6
37
   self.parameters["linewidth"]["line_edit"].setText(str(linewidth))
38
   # Define the module to be used
40
   import HDF5_BLS.treat as module
41
42
   # Extracts the functions and the function names from the module
   self.functions, self.function_names = initialize_parameters(self, module)
44
45
   # Sets the combobox with the functions
46
   self.show_parameters_function(self.functions, self.function_names)
47
   # Adds the models in the dedicated combobox.
49
   Models = module.Models()
50
   self.parameters["c_model"]["combobox"].addItems(Models.models.keys())
   # Connects the QLineEdit widget to the onclick_x0 function
53
   self.parameters["center_frequency"]["line_edit"].mousePressEvent = lambda
       event: self.graph_canvas.mpl_connect('button_press_event', onclick_x0)
   # Connects the QLineEdit widget to the onclick_linewidth function
56
   self.parameters["linewidth"]["line_edit"].mousePressEvent = lambda event:
57
      self.graph_canvas.mpl_connect('button_press_event', onclick_linewidth)
   # Sets the help button to display the function's docstring
   setup_button_help_function(self, self.functions, self.function_names)
```

Note that the last line of this function is calling the function button_help_function. This function is meant to display the docstring of the function in a dedicated window when the "Help" button is pressed on the interface.

8. The next step is to allow the user to apply the selected function with the parameters defined in the dedicated frame. To do so, we will setup a "Treat" button in the "setup apply button" function.

```
def setup_button_apply(self):
    """

Creates the layout for the buttons to apply the function.

layout = qtw.QGridLayout(self.frame_confirmParam)

button_treat = qtw.QPushButton()
button_treat.setText("Treat")
```

```
button_treat.clicked.connect(self.apply_function)
layout.addWidget(button_treat, 0, 0, 1, 1)
```

Note that the button is connected to the apply_function function. This function returns the entered parameters of the treatment so that it can be performed.

9. The apply_function function is meant to read the parameters of the treatment and return an object that will allow the treatment on either one or multiple arrays. This function is developped as a switch between the different treatment functions that were defined in the dedicated combobox. Therefore its structure is the following:

```
def apply_function(self):
    """

Creates the layout for the buttons to apply the function.

func = self.functions[self.function_names.index(self.function_name)]

fself.function_name == "unicorn":
    # Extract the parameters proper to the "unicorn" treatment
    elif self.function_name == "elf":
    # Extract the parameters proper to the "elf" treatment
```

As a more concrete example, here is the code for the fit_model_v0 treatment function:

```
def apply_function(self):
2
   Extracts the parameters from the GUI and pplies the treatment to the data.
3
   func = self.functions[self.function_names.index(self.function_name)]
5
   if self.function_name == "fit_model_v0":
   # Extract the parameters of the function
   dic = \{\}
9
10
   try:
       dic["center_frequency"] = float(self.parameters["center_frequency"]["
          line_edit"].text())
       dic["linewidth"] = float(self.parameters["linewidth"]["line_edit"].text
12
13
       dic["normalize"] = not bool(self.parameters["normalize"]["checkbox"].
           text())
       dic["c_model"] = str(self.parameters["c_model"]["combobox"].currentText
14
           ())
       dic["fit_S_and_AS"] = not bool(self.parameters["fit_S_and_AS"]["
15
           checkbox"].checkState())
       dic["window_peak_find"] = float(self.parameters["window_peak_find"]["
16
           line_edit"].text())
       dic["window_peak_fit"] = float(self.parameters["window_peak_fit"]["
17
           line_edit"].text())
       dic["correct_elastic"] = not bool(self.parameters["correct_elastic"]["
18
          checkbox"].checkState())
       IR_wndw = self.parameters["IR_wndw"]["line_edit"].text()
19
       if IR_wndw == "None":
20
           dic["IR_wndw"] = None
       else:
22
           dic["IR_wndw"] = IR_wndw.replace("(","").replace(")","").replace("
23
           dic["IR_wndw"] = tuple(map(float, dic["IR_wndw"].split(",")))
25
       self.parameter_return["Parameters"] = dic
26
27
       self.parameter_return["Function"] = func
28
```

```
qtw.QMessageBox.information(self, "Treatment parameters stored", "The
parameters for the treatment have been stored. You can now close the
window to apply the treatment.")

except:
qtw.QMessageBox.warning(self, "Error while retrieving parameters", "An
error happened while retrieving the parameters")
```

Note that the parameters are stored in the "parameter_return" dictionary. This dictionary is meant to be returned to the treat_ui module, which will then apply the treatment to the data.

Appendix C

Specification sheet of the project

1	Format			
1.1	Simplicity			
1.1.1	The format should be conceptually simple, unambiguous and easy to create and use.			
1.1.1.1	Storing a single measure should be easy and unambiguous.			
1.1.1.2	Storing arguments associated with a measure should be easy and unambiguous. The arguments should have a predefined nomenclature.			
1.1.1.3	Storing measures performed with changes of different hyper parameters should be easy and unambiguous.			
1.1.1.4	Storing a PSD and Frequency arrays extracted from a measure should be easy and unambiguous.			
1.1.1.5	Storing the result of a treatment should be easy and unambiguous.			
1.2	Universality			
1.2.1	The format should be compatible with existing HDF5 softwares.			
1.2.1.1	Opening the file with an HDF5 viewer should give us access to a user-friendly hierarchical structure.			
1.2.2	The format should allow the storage of complemetary datasets obtained with other modalities (e.g. Raman, NMR, fluorescence, etc.).			
1.2.2.1	The format should make a clear distinction between datasets related to BLS measurements and other datasets.			
1.2.2.2	The format should allow user to store datasets related to other modalities with an arbitrary structure in the first description of the format.			
1.2.3	The format should be adapted for storing Brillouin spectra obtained with different techniques.			
1.2.3.1	The format should allow measures obtained with all techniques to be stored. This includes the sotrage of datasets with arbitrary dimensions, additional technique-specific datasets and additional technique-specific attributes.			
1.3	Expandability			
1.3.1	The format should accomodate future needs			
1.3.1.1	The format should classify the data preferably by the hyper parameters that were varied for the experiment.			
2	Analysis and treatment			
2.1	Power Spectral Density			

2.1.1	It must be possible to obtain a Power Spectral Density.
2.1.1.1	All relevant information and datasets for the obtention of the PSD should be in the same file at the moment of treatment.
2.1.1.2	All relevant information and datasets should be unambiguously and simply accessible.
2.1.1.3	The PSD and Frequency arrays should be stored unambiguously in the file so that we know which arrays and parameters were used to obtain them.
2.1.1.4	The process of obtaining the PSD should be documented in the file in a reusable way.
2.1.2	It must be possible to create custom algorithms to extract the PSD and frequency.
2.1.2.1	The function(s) extracting the PSD and frequency should have a fixed nomenclature for their name.
2.1.2.2	The function(s) extracting the PSD and frequency should all return the same type of data.
2.1.2.3	The function(s) extracting the PSD and frequency should all use the same type of documentation.
2.1.2.4	All function(s) extracting the PSD and frequency should be stored in the same module.
2.1.2.5	All function(s) extracting the PSD and frequency should also return the parameters they used to obtain the PSD and frequency, with which it is possible to reproduce the PSD and frequency.
2.2	Extraction of peak information
2.2.1	The PSD and Frequency datasets should allow for a unified way of extracting information, independent on the spectrometer used.
2.2.1.1	It should be unambiguous to assign a frequency axis to a PSD dataset based on the PSD and Frequency arrays.
2.2.2	The format should allow the user to extract information with different treatment and store all the results in the same file.
2.2.2.1	The treatments should have an identifier that can be incremented to allow the user to store different treatments.
2.2.2.2	Each new treatment should also store the parameters used to obtain the information in a way that the user can reproduce the information.
3	Graphical User Interface
3.1	Simplicity
3.1.1	Interaction with files and attributes should be as intuitive as possible.
3.1.1.1	Adding a file (attribute file or data file) to the format should be possible by dragging and dropping it in the GUI.
3.1.1.2	Changing a visible property of a dataset or group should be possible by left clicking on it and editing its value in the GUI.
3.1.1.3	A right click on a file or group should open a context menu with the action options to perform on the file or group.
3.1.1.4	It should be possible to perform the same action in the GUI by at least 2 redundant ways.
3.1.1.5	The GUI should be idiot proof and be able to flag all actions that might damage the file, make a treatment impossible, or induce any type of incompatibility.