Chapter 1

Data

1.1 Introduction

The identification of code smells is critical for enhancing software maintainability and scalability in software engineering. This chapter presents the datasets used to analyze code smells in two Java projects: xerces-2.7.0 and fineract. The xerces-2.7.0 dataset, with 865 instances and 12 attributes, focuses on detecting Blob Class, Spaghetti Code, and Swiss Army Knife smells. The fineract dataset, referred to as code_smells_extended, contains 4059 instances and is evaluated in two configurations (57 and 16 attributes), targeting Spaghetti Code detection. Two classifiers, J48 and RandomForest, are assessed using 10-fold cross-validation to evaluate their effectiveness. The chapter also outlines plans to incorporate additional Java projects and results from SMURF and modern code smell detection tools for microservices, aligning with the objectives of this MSc AI capstone project.

1.2 Dataset Descriptions

1.2.1 Xerces-2.7.0 Dataset

The xerces-2.7.0 dataset, derived from WekaNose's analysis, initially contained 1000 instances, reduced to 865 after preprocessing to eliminate incomplete data. It includes 12 attributes, as detailed in Table 1.1, comprising nine numerical metrics and three binary labels for Blob Class, Spaghetti Code, and Swiss Army Knife.

The dataset is imbalanced, with 42 instances labeled "yes" (indicating at least one code smell) and 823 labeled "no," reflecting the rarity of code smells in software projects.

1.2.2 Fineract Dataset

The fineract dataset, code_smells_extended, contains 4059 instances and is analyzed in two configurations: one with 57 attributes and another with 16 attributes, both focusing on detecting Spaghetti Code (is_spaghetti). The 57-attribute set includes detailed metrics such as fan-in, fan-out, and quantities of specific code elements (e.g., loops, try-catch blocks), as listed in Table 1.2. The 16-attribute set is a subset, focusing on core metrics and smell indicators, as shown in Table 1.3.

Table 1.1: Xerces-2.7.0 Dataset Attributes

Attribute	Type	Description
loc	Numeric	Lines of Code - measures class size
wmc	Numeric	Weighted Methods per Class - indicates class complexity
cbo	Numeric	Coupling Between Objects - measures class coupling
lcom	Numeric	Lack of Cohesion of Methods - assesses method relatedness
rfc	Numeric	Response For a Class - counts invocable methods
dit	Numeric	Depth of Inheritance Tree - measures inheritance depth
noc	Numeric	Number of Children - counts immediate sub- classes
totalMethodsQty	Numeric	Total number of methods in the class
totalFieldsQty	Numeric	Total number of fields in the class
is_blob_class	$\{yes, no\}$	Indicates if the class is a Blob Class
$is_spaghetti_code$	$\{yes, no\}$	Indicates if the code is Spaghetti Code
is_swiss_army_knife	$\{yes, no\}$	Indicates if the class is a Swiss Army Knife

The fineract dataset is highly imbalanced, with 17 instances labeled "yes" for Spaghetti Code and 4042 labeled "no" in both configurations, posing a significant challenge for detecting the minority class.

1.2.3 Additional Java Projects

Additional Java projects are planned for inclusion in the dataset to enhance the robustness and generalizability of the code smell detection analysis. These projects will be analyzed similarly, with results integrated once available, focusing on consistent metrics and classifiers to enable cross-project comparisons.

1.3 Experimental Setup

The J48 and RandomForest classifiers were implemented using Weka with 10-fold cross-validation. J48 was configured with a confidence factor of 0.25 and a minimum of 2 instances per leaf. RandomForest used 100 trees with a minimum of 1 instance per leaf and a variance threshold of 0.001. The classifiers were evaluated on the xerces-2.7.0 dataset (predicting any code smell) and the fineract dataset (predicting Spaghetti Code) in its 57- and 16-attribute configurations.

1.4 Results for Xerces-2.7.0 Dataset

1.4.1 J48 Classifier

The J48 classifier produced a pruned decision tree with 5 leaves, emphasizing class size (loc) and coupling (cbo):

```
loc <= 474: no (816.0)

loc > 474

| cbo <= 12

| | cbo <= 5: no (5.0)

| cbo > 5

| | loc <= 1021: yes (3.0)

| loc > 1021: no (2.0)

| cbo > 12: yes (39.0)
```

Performance metrics are summarized in Table 1.4, showing 99.19% accuracy.

Detailed accuracy by class is shown in Table 1.5, with a confusion matrix in Table 1.6.

1.4.2 RandomForest Classifier

RandomForest, with 100 trees, achieved identical accuracy (99.19%) to J48, as shown in Table 1.7. It outperformed J48 in ROC Area (0.999 vs. 0.963) and PRC Area for the "yes" class (0.985 vs. 0.880), as detailed in Table 1.8.

1.5 Results for Fineract Dataset

1.5.1 J48 Classifier (57 Attributes)

For the 57-attribute configuration, J48 produced a simple tree with 3 leaves, relying on is blob and totalmethodsqty:

```
is_blob = yes

| totalmethodsqty <= 22: no (2.0)

| totalmethodsqty > 22: yes (17.0)

is_blob = no: no (4040.0)
```

The classifier achieved 99.9261% accuracy, as shown in Table 1.10, with a high Kappa statistic (0.9139).

Detailed accuracy is shown in Table 1.11, with a confusion matrix in Table 1.12.

1.5.2 J48 Classifier (16 Attributes)

The 16-attribute configuration produced an identical J48 tree, achieving a slightly higher accuracy of 99.9507%, as shown in Table 1.13. The perfect recall (1.000) for the "yes" class is notable, as seen in Table 1.14.

1.5.3 RandomForest Classifier (57 Attributes)

RandomForest on the 57-attribute set achieved 99.9015% accuracy, slightly lower than J48, with a lower Kappa statistic (0.8745), as shown in Table 1.16. The recall for the "yes" class (0.824) is lower than J48, indicating missed Spaghetti Code instances (Table 1.17).

1.5.4 RandomForest Classifier (16 Attributes)

RandomForest on the 16-attribute set matched J48's accuracy (99.9261%) and Kappa statistic (0.9139), as shown in Table 1.19. It achieved high recall (0.941) for the "yes" class, as detailed in Table 1.20.

1.6 Comparison of Classifiers and Datasets

1.6.1 Xerces-2.7.0 Dataset

Both J48 and RandomForest achieved 99.19% accuracy on the xerces-2.7.0 dataset, with identical confusion matrices (39 TP, 3 FN, 4 FP, 819 TN). RandomForest outperformed J48 in ROC Area (0.999 vs. 0.963) and PRC Area for the "yes" class (0.985 vs. 0.880), indicating better ranking performance for code smells. J48's simpler tree (5 leaves) offers interpretability, highlighting loc and cbo as key predictors.

1.6.2 Fineract Dataset

The fineract dataset's larger size (4059 instances) and focus on Spaghetti Code present a more challenging task due to greater imbalance (17 "yes" vs. 4042 "no"). Key observations include:

- J48 (16 Attributes): Achieved the highest accuracy (99.9507%) and perfect recall (1.000) for the "yes" class, with only 2 misclassifications. The tree structure, relying on is_blob and totalmethodsqty, suggests a strong correlation between Blob Class and Spaghetti Code.
- J48 (57 Attributes): Slightly lower accuracy (99.9261%) with 3 misclassifications, but an identical tree structure, indicating that the additional 41 attributes did not enhance decision-making.
- RandomForest (16 Attributes): Matched J48's accuracy (99.9261%) and Kappa (0.9139), with strong recall (0.941) for the "yes" class and superior PRC Area (0.990 vs. 0.975).
- RandomForest (57 Attributes): Lower accuracy (99.9015%) and recall (0.824) for the "yes" class, with 4 misclassifications, suggesting that the additional attributes introduced noise or complexity that reduced performance.

The identical J48 trees across both attribute sets indicate that is_blob and totalmethodsqty are dominant predictors for Spaghetti Code in fineract. The 16-attribute configuration generally outperformed the 57-attribute set, suggesting that a focused feature set improves classification performance for this imbalanced dataset.

1.6.3 Cross-Project Comparison

The xerces-2.7.0 dataset, with a smaller size (865 instances) and broader smell detection (three smells), shows lower accuracy (99.19%) than the fineract dataset (up to 99.9507%) but a higher number of positive instances (42 vs. 17). The fineract dataset's extreme imbalance makes perfect recall more critical, which J48 (16 attributes) achieves. RandomForest's superior ranking metrics (ROC and PRC) in both datasets highlight its robustness for imbalanced data, though J48's interpretability is valuable for understanding key predictors like loc, cbo, and is_blob.

1.7 Future Work

This chapter will be expanded to include additional Java projects to enhance the generalizability of the findings. These projects will be analyzed using consistent metrics and classifiers to enable cross-project comparisons. Additionally, results from SMURF, an SVM-based method for uncovering refactoring opportunities, and modern code smell detection tools for microservices (e.g., leveraging Convolutional Neural Networks or Neutrosophic logic [1]) will be integrated. These additions will provide a comprehensive evaluation of code smell detection across traditional and modern software architectures.

1.8 Conclusion

The J48 and RandomForest classifiers demonstrate high accuracy in detecting code smells in the xerces-2.7.0 (99.19%) and fineract (up to 99.9507%) datasets. For xerces-2.7.0, RandomForest's superior ROC and PRC metrics make it preferable for ranking code smells, while J48's simplicity aids interpretability. For fineract, J48 with 16 attributes achieves the best performance, with perfect recall for Spaghetti Code, highlighting the effectiveness of a focused feature set. The inclusion of additional Java projects and tools like SMURF will further strengthen this capstone project's contribution to software quality assessment.

Table 1.2: Fineract Dataset Attributes (57 Attributes)

Attribute	Type	Description
cbo	Numeric	Coupling Between Objects
cbomodified	Numeric	Modified Coupling Between Objects
fanin	Numeric	Number of classes calling this class
fanout	Numeric	Number of classes called by this class
wmc	Numeric	Weighted Methods per Class
dit	Numeric	Depth of Inheritance Tree
noc	Numeric	Number of Children
rfc	Numeric	Response For a Class
lcom	Numeric	Lack of Cohesion of Methods
lcom*	Numeric	Normalized Lack of Cohesion
tec	Numeric	Tight Class Cohesion
lcc	Numeric	Loose Class Cohesion
totalmethodsqty	Numeric	Total number of methods
staticmethodsqty	Numeric	Number of static methods
publicmethodsqty	Numeric	Number of public methods
privatemethodsqty	Numeric	Number of private methods
protectedmethodsqty	Numeric	Number of protected methods
defaultmethodsqty	Numeric	Number of default methods
visiblemethodsqty	Numeric	Number of visible methods
abstractmethodsqty	Numeric	Number of abstract methods
finalmethodsqty	Numeric	Number of final methods
synchronizedmethodsqty	Numeric	Number of synchronized methods
totalfieldsqty	Numeric	Total number of fields
staticfieldsqty	Numeric	Number of static fields
publicfieldsqty	Numeric	Number of static fields Number of public fields
privatefieldsqty	Numeric	Number of private fields
protectedfieldsqty	Numeric	Number of protected fields
defaultfieldsqty	Numeric	Number of default fields
finalfieldsqty	Numeric	Number of default fields Number of final fields
1 0	Numeric	
synchronizedfieldsqty	Numeric Numeric	Number of synchronized fields Number of statements in the class
nosi		Lines of Code
loc	Numeric	
returnqty	Numeric	Number of return statements
loopqty	Numeric	Number of loops
comparisonsqty	Numeric	Number of comparison operations
trycatchqty	Numeric	Number of try-catch blocks
parenthesizedexpsqty	Numeric	Number of parenthesized expressions
stringliteralsqty	Numeric	Number of string literals
numbersqty	Numeric	Number of numeric literals
assignmentsqty	Numeric	Number of assignments
mathoperationsqty	Numeric	Number of mathematical operations
variablesqty	Numeric	Number of variables
maxnestedblocksqty	Numeric	Maximum number of nested blocks
anonymousclassesqty	Numeric	Number of anonymous classes
innerclassesqty	Numeric	Number of inner classes
lambdasqty	Numeric	Number of lambda expressions
uniquewordsqty	Numeric	Number of unique words
modifiers	Numeric	Modifier flags
logstatementsqty	Numeric	Number of log statements
$is_functional_decomposition$	$\{yes, no\}$	Indicates Functional Decomposition smell

Table 1.3: Fineract Dataset Attributes (16 Attributes)

Attribute	Type	Description
loc	Numeric	Lines of Code
wmc	Numeric	Weighted Methods per Class
cbo	Numeric	Coupling Between Objects
lcom	Numeric	Lack of Cohesion of Methods
m rfc	Numeric	Response For a Class
noc	Numeric	Number of Children
total method sqty	Numeric	Total number of methods
total field sqty	Numeric	Total number of fields
$is_functional_decomposition$	$\{yes, no\}$	Indicates Functional Decomposition smell
is_data_class	$\{yes, no\}$	Indicates Data Class smell
is_lazy_class	$\{yes, no\}$	Indicates Lazy Class smell
$is_spaghetti$	$\{yes, no\}$	Indicates Spaghetti Code smell
is_swiss _a rmy _ $knife$	$\{yes, no\}$	Indicates Swiss Army Knife smell
is_blob	$\{yes, no\}$	Indicates Blob Class smell
has_long_method	{yes, no}	Indicates Long Method smell
has_long_parameter_list	$\{yes, no\}$	Indicates Long Parameter List smell

Table 1.4: J48 Performance Metrics (Xerces-2.7.0 Dataset)

Metric	Value
Correctly Classified Instances	858 (99.1908%)
Incorrectly Classified Instances	7~(0.8092%)
Kappa Statistic	0.9134
Mean Absolute Error (MAE)	0.0078
Root Mean Squared Error (RMSE)	0.086
Relative Absolute Error (RAE)	8.3432%
Root Relative Squared Error (RRSE)	40.0059%

Table 1.5: J48 Detailed Accuracy by Class (Xerces-2.7.0 Dataset)

			· ·					
Class	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Are
yes	0.929	0.005	0.907	0.929	0.918	0.913	0.963	0.88
no	0.995	0.071	0.996	0.995	0.996	0.913	0.963	0.99
Weighted Avg.	0.992	0.068	0.992	0.992	0.992	0.913	0.963	0.99

Table 1.6: J48 Confusion Matrix (Xerces-2.7.0 Dataset)

	Predicted Yes	Predicted No
Actual Yes	39	3
Actual No	4	819

Table 1.7: RandomForest Performance Metrics (Xerces-2.7.0 Dataset)

Metric	Value
Correctly Classified Instances	858 (99.1908%)
Incorrectly Classified Instances	7~(0.8092%)
Kappa Statistic	0.9134
Mean Absolute Error (MAE)	0.0134
Root Mean Squared Error (RMSE)	0.0733
Relative Absolute Error (RAE)	14.3392%
Root Relative Squared Error (RRSE)	34.0957%

Table 1.8: RandomForest Detailed Accuracy by Class (Xerces-2.7.0 Dataset)

Class	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Are
yes	0.929	0.005	0.907	0.929	0.918	0.913	0.999	0.98
no	0.995	0.071	0.996	0.995	0.996	0.913	0.999	1.00
Weighted Avg.	0.992	0.068	0.992	0.992	0.992	0.913	0.999	0.99

Table 1.9: RandomForest Confusion Matrix (Xerces-2.7.0 Dataset)

	Predicted Yes	Predicted No
Actual Yes	39	3
Actual No	4	819

Table 1.10: J48 Performance Metrics (Fineract Dataset, 57 Attributes)

Metric	Value
Correctly Classified Instances	4056 (99.9261%)
Incorrectly Classified Instances	3~(0.0739%)
Kappa Statistic	0.9139
Mean Absolute Error (MAE)	0.0008
Root Mean Squared Error (RMSE)	0.0261
Relative Absolute Error (RAE)	8.9412%
Root Relative Squared Error (RRSE)	40.4741%

Table 1.11: J48 Detailed Accuracy by Class (Fineract Dataset, 57 Attributes)

Class	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Are
yes	0.941	0.000	0.889	0.941	0.914	0.914	0.971	0.91
no	1.000	0.059	1.000	1.000	1.000	0.914	0.971	1.00
Weighted Avg.	0.999	0.059	0.999	0.999	0.999	0.914	0.971	0.99

Table 1.12: J48 Confusion Matrix (Fineract Dataset, 57 Attributes)

	Predicted Yes	Predicted No
Actual Yes	16	1
Actual No	2	4040

Table 1.13: J48 Performance Metrics (Fineract Dataset, 16 Attributes)

Metric	Value
Correctly Classified Instances	4057 (99.9507%)
Incorrectly Classified Instances	2(0.0493%)
Kappa Statistic	0.9442
Mean Absolute Error (MAE)	0.0005
Root Mean Squared Error (RMSE)	0.0209
Relative Absolute Error (RAE)	6.08%
Root Relative Squared Error (RRSE)	32.365%

Table 1.14: J48 Detailed Accuracy by Class (Fineract Dataset, 16 Attributes)

Class	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Are
yes	1.000	0.000	0.895	1.000	0.944	0.946	1.000	0.97
no	1.000	0.000	1.000	1.000	1.000	0.946	1.000	1.00
Weighted Avg.	1.000	0.000	1.000	1.000	1.000	0.946	1.000	1.00

 ${\bf Table~1.15:~\underline{J48~Confusion~Matrix~(Fineract~Dataset,~16}~Attributes)}$

	Predicted Yes	Predicted No
Actual Yes	17	0
Actual No	2	4040

Table 1.16: RandomForest Performance Metrics (Fineract Dataset, 57 Attributes)

Metric	Value
Correctly Classified Instances	4055 (99.9015%)
Incorrectly Classified Instances	4 (0.0985%)
Kappa Statistic	0.8745
Mean Absolute Error (MAE)	0.0021
Root Mean Squared Error (RMSE)	0.0264
Relative Absolute Error (RAE)	23.9332%
Root Relative Squared Error (RRSE)	40.8019%

Table 1.17: RandomForest Detailed Accuracy by Class (Fineract Dataset, 57 Attributes)

Class	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Are
yes	0.824	0.000	0.933	0.824	0.875	0.876	1.000	0.97
no	1.000	0.176	0.999	1.000	1.000	0.876	1.000	1.00
Weighted Avg.	0.999	0.176	0.999	0.999	0.999	0.876	1.000	1.00

Table 1.18: RandomForest Confusion Matrix (Fineract Dataset, 57 Attributes)

	Predicted Yes	Predicted No
Actual Yes	14	3
Actual No	1	4041

Table 1.19: RandomForest Performance Metrics (Fineract Dataset, 16 Attributes)

Metric	Value
Correctly Classified Instances	4056 (99.9261%)
Incorrectly Classified Instances	3~(0.0739%)
Kappa Statistic	0.9139
Mean Absolute Error (MAE)	0.0014
Root Mean Squared Error (RMSE)	0.0212
Relative Absolute Error (RAE)	15.7365%
Root Relative Squared Error (RRSE)	32.7691%

Table 1.20: RandomForest Detailed Accuracy by Class (Fineract Dataset, 16 Attributes)

Class	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Are
yes	0.941	0.000	0.889	0.941	0.914	0.914	1.000	0.99
no	1.000	0.059	1.000	1.000	1.000	0.914	1.000	1.00
Weighted Avg.	0.999	0.059	0.999	0.999	0.999	0.914	1.000	1.00

Table 1.21: RandomForest Confusion Matrix (Fineract Dataset, 16 Attributes)

	Predicted Yes	Predicted No
Actual Yes	16	1
Actual No	2	4040

Bibliography

[1] Cerny, T., et al. (2023). On Code Smells and Microservices: A Systematic Literature Review. Software: Practice and Experience.