Определение петли гистерезиса ферроманетика магнитооптическим методом

Лабораторная работа № 12

Экспериментальная часть

Измерение петли гистререзиса производится магнитооптическим методом с использованием эффекта Фарадея, который заключается во вращении плоскости поляризации света при прохождении через намагниченное вещество.

Блок-схема установки представленна на рисунке ниже:

1) лазер 2) образец 3) катушка 4) анализатор 5) фотоприёмник 6) усилитель 7) амперметр 8) резистор 9) осциллограф

Получение гистерезиса на осциллографе

Соберём установку согласно схеме. Для начала воспользуемся лабораторным осциллографом. Включим установку и получим на осциллографе изображение гистерезиса. Начнём вращать анализатор, заметим что размер гистерезиса меняется, размер гистерезиса будем максимальными когда угол \$ \gamma \$ между осями поляризации и анализатора будет равен \$\gamma = 45^0\$

Измерение данных при помощи АЦП

Для снятия данных подключим выходы к АЦП. Максимальное напряжение считываемое АЦП равно 5 В. Чтобы не превысить это напряжение выставим нужный коэффициент усиления на усилистеле, споротивление резистора R = 1.8 Ом. Далее по полученными данным построим график

```
In [8]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from matplotlib import rcParams
        rcParams['font.family'] = 'serif'
        rcParams['mathtext.fontset'] = 'dejavuserif'
        rcParams['figure.figsize'] = (10, 7)
        rcParams['figure.dpi'] = 100
        rcParams['axes.grid'] = True
        rcParams['font.size'] = 14
        # rcParams
In [3]: with open("kartashov.csv") as f:
            data = pd.read csv(f)
In [4]: 2.5 / 2 ** 0.5
        1.7677669529663687
Out[4]:
In [9]:
        x = data.y # напряжение на резисторе
        y = data.x # напряжение на фотодетекторе
        print(np.mean(x), np.mean(y))
        \# x = x - np.mean(x)
        y = y - np.mean(y)
        plt.scatter(x, y, alpha=0.1, zorder=3)
        plt.xlabel("Напряжение на резисторе $U R$, В")
        plt.ylabel("Напряжение на фотодетекторе $U ф$, В")
        plt.axvline(color="black", alpha=0.5)
        plt.axhline(color="black", alpha=0.5)
        plt.savefig("plot 1.pdf")
```

$0.03145248127340825 \ 0.06586395131086142$

Рассчёт коэрцитивной силы и поля нассыщения

По напряжениею на реисторе рассчитаем ток в катушке. Напряжённость магнитного поля найдём из коэффициента калибровки катушки 150 Э/А

```
In [10]: x = data.y \# напряжение на резисторе
         y = data.x # напряжение на фотодетекторе
         R = 2.5 / 2 ** 0.5 # сопротивление резистора
         print(R)
         print(np.mean(x), np.mean(y))
         \# x = x - np.mean(x)
         y = y - np.mean(y)
         x = x / R # I = U/R
         x = 150 * x # H = I * 150 E/A
         plt.scatter(x, y, alpha=0.2, zorder=3, marker='.', label="Измеренные точки")
         plt.xlabel("Напряженность магнитного поля $\mathbf{H}$, Э")
         plt.ylabel("Напряжение с фотодетектора $U ф$, В")
         plt.axvline(color="black", alpha=0.5)
         plt.axhline(color="black", alpha=0.5)
         plt.axvline(x = -110, color="black", alpha=0.3, ls='--')
         plt.text(-110, 0 , "$-H_C$", ha="right", va="bottom")
         plt.axvline(x = 110, color="black", alpha=0.3, ls='--')
         plt.text(110, 0 , "$H C$", ha="right", va="bottom")
         plt.axvline(x = 260, color="black", alpha=0.3, ls='--')
         plt.text(260, 0 , "$-H_S$", ha="right", va="bottom")
         plt.axvline(x = -260, color="black", alpha=0.3, ls='--')
         plt.text(-260, 0 , "$-H S$", ha="right", va="bottom")
         plt.xlim((-300, 300))
         plt.legend()
         plt.savefig("plot 2.pdf")
```

1.7677669529663687

 $0.03145248127340825 \ 0.06586395131086142$

По графику видим, что коэр цитивная сила по модулю примерно равна 110 Э, поле насыщения по модулю примерно равно 260 Э.

Убедимся в действительности этого проанализировав измеренные данные

In [21]: # Значения напряжённости магнитного поля при которых напряжение с фотодетект x[np.abs(y) < 0.04]

```
110.622613
Out[21]:
          99
                 -110.622613
          200
                  110.622613
          299
                 -108.136426
                  110.622613
          400
          499
                 -108.136426
          600
                  109.791056
          699
                 -108.967983
         800
                  109.791056
         801
                  113.312447
          899
                 -107.304868
          1000
                  108.136426
                 -107.304868
          1099
          1200
                  108.136426
          1299
                 -108.136426
          1400
                 108.967983
          1499
                 -107.304868
          1700
                 -108.967983
          1800
                 108.136426
          1801
                  111.454171
          1899
                 -107.304868
          1900
                 -109.791056
          2000
                  108.136426
          2001
                  112.277243
         2100
                 -110.622613
         Name: y, dtype: float64
         Видим что коэцитивная сила действительно примерно равна 110 Э с разбросом в +- 3
         Э
In [20]:
         # максимальное минимальное значение напряжённости магнитного поля
          np.max(x), np.min(x)
          (259.36111048497617, -260.1926680596515)
Out[20]:
         Видим, что минимальное и максимальное значение по модулю равны 260 Э, возможно
         при увеличении амплитуды удастся найти более точное значение поля насыщения
In [ ]:
```