Formalizing Modal Embeddings of Call-by-Name and Call-by-Value

Floris Reuvers

Supervisor: dr. N.M. van der Weide Second Reader: dr. E.G.M. Hubbers

June 17, 2025

Radboud University

Research Question

How can the unification of call-by-name and call-by-value evaluation strategies using modal logic be formalised in Agda?

Introduction

Let f be defined as

$$f(x) = x * x$$

Let f be defined as

$$f(x) = x * x$$

$$f(3+3) \rightarrow (3+3)*(3+3)$$

Let f be defined as

$$f(x) = x * x$$

$$f(3+3) \rightarrow (3+3)*(3+3)$$

 $\rightarrow 6*(3+3)$

Let f be defined as

$$f(x) = x * x$$

$$f(3+3) \rightarrow (3+3) * (3+3)$$

 $\rightarrow 6 * (3+3)$
 $\rightarrow 6 * 6$

Let f be defined as

$$f(x) = x * x$$

$$f(3+3) \to (3+3)*(3+3)$$

 $\to 6*(3+3)$
 $\to 6*6$
 $\to 36$

Let f be defined as

$$f(x) = x * x$$

Let f be defined as

$$f(x) = x * x$$

$$f(3+3) \rightarrow f(6)$$

Let f be defined as

$$f(x) = x * x$$

$$f(3+3) \rightarrow f(6)$$

$$\rightarrow 6*6$$

Let f be defined as

$$f(x) = x * x$$

$$f(3+3) \rightarrow f(6)$$

$$\rightarrow 6 * 6$$

$$\rightarrow 36$$

Unifying cbn and cbv

- Why unify cbn and cbv?
- Some approaches to unification:
 - Modal logic
 - Linear logic
 - Thunks

Background

Grammar Lambda Calculus (λ -calculus)

$$M, N, P, Q ::= x \mid \lambda x. M \mid MN$$

Call-by-name λ -calculus

Call-by-value λ -calculus

Evaluation Relations

Call-by-box λ -calculus

Evaluation Relations of λ_b

Girard's Translation

Gödel's Translation

Formalisation in Agda

λ -terms in Agda

Propositions

Girard's Translation

Gödel's Translation

Conclusion

Conclusion