disc. 12 cs161 su23

DNS, DNSSEC

dog network service

slides bit.ly/cs161-disc

feedback bit.ly/abhifeedback

- <u>DNS resolver insecurities found on thousands of websites out of 7000 sampled</u>

- DNS resolver insecurities found on thousands of websites out of 7000 sampled
 - small/big businesses, governmental services

- <u>DNS resolver insecurities found on thousands of websites out of 7000 sampled</u>
 - small/big businesses, governmental services
 - "...at least 25 were using static source ports...
 thousands of more domains using static
 source ports were discovered."

- <u>DNS resolver insecurities found on thousands of websites out of 7000 sampled</u>
 - small/big businesses, governmental services
 - "...at least 25 were using static source ports...
 thousands of more domains using static
 source ports were discovered."
 - none of the 25 used DNSSEC, etc.

- <u>DNS resolver insecurities found on thousands of websites out of 7000 sampled</u>
 - small/big businesses, governmental services
 - "...at least 25 were using static source ports...
 thousands of more domains using static
 source ports were discovered."
 - none of the 25 used DNSSEC, etc.
 - cache poisoning used to hijack WordPress

general questions, concerns, etc.

remember: computers use IP addresses to communicate

- remember: computers use IP addresses to communicate
- but humans use domain names (google.com)

- remember: computers use IP addresses to communicate
- but humans use domain names (google.com)
- domain name -> IP address?

- a server on the Internet responsible for answering DNS queries
 - "what is the IP of google.com?"
- use a hierarchy of nameservers to find the IP

stub/recursive resolvers

stub/recursive resolvers

stub/recursive resolvers

DNS packets

16-bit random ----

check for corruption --

16 bits, usually 53

Source Port	Destination Port
Checksum	Length
ID number	Flags
Question count	Answer count
-Authority count	Additional count
Question Records	
Answer Records	
Authority Records	
Additional Records	

24

DNS packets

query ID same as response ID

Source Port	Destination Port	
Checksum	Length	
ID number	Flags	
Question count	Answer count	
Authority count	Additional count	
Question Records		
Answer Records		
Authority Records		
Additional Records		

UDP Header

DNS Header

—DNS Payload

DNS packets

variable number of resource records (RRs)

Source Port

UDP Header

Destination Port

DNS Header

—DNS Payload

```
$ dig +norecurse eecs.berkelev.edu @198.41.0.4
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: gr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27
:: OUESTION SECTION:
;eecs.berkelev.edu.
                                  Α
                              IN
;; AUTHORITY SECTION:
edu.
                    172800
                                   NS
                                        a.edu-servers.net.
                              IN
edu.
                    172800
                                        b.edu-servers.net.
                              IN
                                   NS
edu.
                    172800
                              IN
                                   NS
                                        c.edu-servers.net.
;; ADDITIONAL SECTION:
                                         192.5.6.30
a.edu-servers.net.
                    172800
                                  Α
                              IN
                                         192.33.14.30
b.edu-servers.net.
                    172800
                              IN
                                  Α
                                         192.26.92.30
c.edu-servers.net.
                    172800
                              IN
```

pick any one (multiple for redundancy)

this NS record says that a.edu-servers.net is a .edu name server.

```
$ dig +norecurse eecs.berkelev.edu @198.41.0.4
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26114
;; flags: gr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27
:: OUESTION SECTION:
;eecs.berkelev.edu.
                                  Α
                             IN
:: AUTHORITY SECTION:
edu.
                    172800
                                  NS
                                        a.edu-servers.net.
                             IN
edu.
                    172800
                                        b.edu-servers.net.
                             TN
                                  NS
edu.
                    172800
                             IN
                                  NS
                                        c.edu-servers.net.
;; ADDITIONAL SECTION:
                                                                    next nameserver IP to
                                         192.5.6.30
a.edu-servers.net.
                    172800
                             IN
                                                                           contact
                                         192.33.14.30
b.edu-servers.net.
                    172800
                             IN
                                  Α
                                         192.26.92.30
c.edu-servers.net. 172800
                             IN
```

```
$ dig +norecurse eecs.berkeley.edu @192.5.6.30
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36257
;; flags: gr; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 5
:: OUESTION SECTION:
;eecs.berkelev.edu.
                               IN
                                    Α
:: AUTHORITY SECTION:
berkeley.edu.
                     172800
                                    NS
                                         adns1.berkeley.edu.
                               IN
berkeley.edu.
                     172800
                                         adns2.berkeley.edu.
                               IN
                                    NS
berkeley.edu.
                     172800
                               IN
                                    NS
                                         adns3.berkeley.edu.
;; ADDITIONAL SECTION:
adns1.berkelev.edu.
                     172800
                                         128.32.136.3
                               IN
adns2.berkeley.edu.
                     172800
                                         128.32.136.14
                               IN
                                         192.107.102.142
adns3.berkeley.edu.
                     172800
                               IN
                                    Α
. . .
```

. . .

```
$ dig +norecurse eecs.berkeley.edu @192.5.6.30
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36257
;; flags: gr; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 5
:: OUESTION SECTION:
;eecs.berkelev.edu.
                               IN
                                    Α
:: AUTHORITY SECTION:
berkeley.edu.
                     172800
                               IN
                                    NS
                                         adns1.berkeley.edu.
berkeley.edu.
                     172800
                                         adns2.berkeley.edu.
                               IN
                                    NS
berkeley.edu.
                     172800
                               IN
                                    NS
                                         adns3.berkeley.edu.
;; ADDITIONAL SECTION:
                                                                     next nameserver IP to
                     172800
                                         128.32.136.3
adns1.berkeley.edu.
                               IN
                                    Α
                                                                            contact
adns2.berkeley.edu.
                     172800
                                         128.32.136.14
                               IN
                                    Α
                                         192.107.102.142
adns3.berkeley.edu.
                     172800
                               IN
                                    Α
```

```
$ dig +norecurse eecs.berkeley.edu @128.32.136.3

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788
;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:
;eecs.berkeley.edu. IN A

;; ANSWER SECTION:
eecs.berkeley.edu. 86400 IN A 23.185.0.1</pre>
```

```
$ dig +norecurse eecs.berkeley.edu @128.32.136.3
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788
;; flags: gr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OUESTION SECTION:
;eecs.berkeley.edu.
                            IN A
:: ANSWER SECTION:
                                     23.185.0.1
eecs.berkeley.edu. 86400
                            IN A
         one A type record in answer
      Section: eecs.berkeley.edu'S
            IP is 23, 185, 0, 1
```

attack: cache poisoning

```
$ dig +norecurse eecs.berkeley.edu @128.32.136.3
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788
                                                                         We made a query to a
;; flags: gr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
                                                                         malicious berkeley.edu
                                                                             name server...
;; OUESTION SECTION:
;eecs.berkeley.edu.
                               IN
                                    Α
                                                                           ...and it returned a
:: ANSWER SECTION:
                                                                          malicious record for
                                          23.185.0.1
eecs.berkeley.edu.
                      86400
                               IN
                                    Α
                                                                           www.google.com!
:: ADDITIONAL SECTION:
                                          6.6.6.6
www.google.com.
                      172800
                               IN
```

attack: cache poisoning

```
$ dig +norecurse eecs.berkeley.edu @128.32.136.3
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52788
                                                                         We made a query to a
;; flags: gr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
                                                                         malicious berkeley.edu
                                                                             name server...
;; OUESTION SECTION:
; eecs.berkeley.edu.
                               IN
                                    Α
                                                                           ...and it returned a
;; ANSWER SECTION:
                                                                          malicious record for
                                          23.185.0.1
eecs.berkeley.edu.
                      86400
                               IN
                                                                           www.google.com!
:: ADDITIONAL SECTION:
                                          6.6.6.6
www.google.com.
                      172800
                               IN
```

now google.com has IP 6.6.6.6 in our cache! :(

defense: bailiwick checking

 bailiwick checking: the resolver only accepts records if they are in the name server's zone

defense: bailiwick checking

- bailiwick checking: the resolver only accepts records if they are in the name server's zone
 - ex: berkeley.edu NS can provide a record for eecs.berkeley.edu, but not mit.edu

defense: bailiwick checking

- bailiwick checking: the resolver only accepts records if they are in the name server's zone
 - ex: berkeley.edu NS can provide a record for eecs.berkeley.edu, but not mit.edu

 ex: root name server can provide a record for any domain (everything is in bailiwick for the root)

attack: MITM, on-path

- MITM: can change DNS answer, poison cache

attack: MITM, on-path

- MITM: can change DNS answer, poison cache
- <u>on-path:</u> can spoof DNS response, no fields to guess

attack: MITM, on-path

- MITM: can change DNS answer, poison cache
- <u>on-path:</u> can spoof DNS response, no fields to guess
- <u>off-path:</u> need to guess 16-bit ID number

Kaminsky attack

- the attacker includes
 -
 -
 -
 -
- client makes request for domain name for each one
- off-path attacker can guess ID every time & poison

defenses (off-path)

- source port randomization (have to guess 32 bits)
- random domain query capitalization
- glue validation (don't cache glue records)
 - not implemented by all DNS software

worksheet (on 161 website)

DNSSEC

duh, no security sucks. err, cryptography?

- DNS over TLS?

- DNS over TLS?
 - slow

- DNS over TLS?
 - slow
 - doesn't defend against malicious nameservers

- DNS over TLS?
 - slow
 - doesn't defend against malicious nameservers
- we want integrity—no cache poisoning, tampering

- DNS over TLS?
 - slow
 - doesn't defend against malicious nameservers
- we want integrity—no cache poisoning, tampering
- we don't need confidentiality
 - why?

- DNS over TLS?
 - slow
 - doesn't defend against malicious nameservers
- we want integrity—no cache poisoning, tampering
- we don't need confidentiality
 - why?
 - anyone can make a DNS lookup, attackers can see IPs you connect to anyway

DNSSEC (DNS Security Extensions)

- delegate trust—parent signs child's public key

DNSSEC lookup

What is the IP address of eecs.berkeley.edu? I don't know, but you should ask the .edu name server. NS record: Domain of the .edu name server A record: IP address of the .edu name server Recursive Here is a signature on the public key of the .edu name root name server Resolver server. If you trust me, then now you trust them too. DS record: Hash of the .edu name server's public key RRSIG DS record: Signature on the DS record Here is my public key so you can verify the signature. DNSKEY record: The root name server's public key

DNSSEC lookup

What is the IP address of eecs.berkeley.edu?

Recursive Resolver I don't know, but you should ask the berkeley.edu name server.

- NS record: Domain of the berkeley.edu name server
- A record: IP address of the berkeley.edu name server

Here is a signature on the public key of the **berkeley.edu** name server. If you trust me, then now you trust them too.

- DS record: Hash of the berkeley.edu name server's public key
- RRSIG DS record: Signature on the DS record

Here is my public key so you can verify the signature.

DNSKEY record: The .edu name server's public key

.edu name server

DNSSEC lookup

- what do we do if no records exist for query?

- what do we do if no records exist for query?
- do we sign nothing and send it over?

- what do we do if no records exist for query?
- do we sign nothing and send it over?
 - option 1: don't authenticate NXDOMAIN
 - bad (anyone can spoof)

- what do we do if no records exist for query?
- do we sign nothing and send it over?
 - option 1: don't authenticate NXDOMAIN
 - bad (anyone can spoof)
 - option 2: sign a NXDOMAIN response
 - signing in real time is slow

- query for nonexistent.google.com

valid domains

maps one web

- query for nonexistent.google.com
- response: "no domains exist between maps.google.com and one.google.com"
 - can pre-sign all pairs of adjacent domains

maps one

web

NSEC problem

 domain enumeration: can get every pair of domains by asking for arbitrary domains

valid domains

maps one

web

- hash domain names and store pairs of adjacent hashes (instead of adjacent domain names)

- hash domain names and store pairs of adjacent hashes (instead of adjacent domain names)

valid (hashed) domains

c612f3

d810de

- hash domain names and store pairs of adjacent hashes (instead of adjacent domain names)
- query for nonexistent.google.com hashes to d48678...

valid (hashed)
domains

c612f3

- hash domain names and store pairs of adjacent hashes (instead of adjacent domain names)
- query for nonexistent.google.com hashes to d48678...
 - NSEC3 response: "There exist no domains which hash to values between c612f3... and d810de...

valid (hashed) - domains

hack of the day

- <u>DNS resolver insecurities found on thousands of websites out of 7000 sampled</u>
 - small/big businesses, governmental services
 - "...at least 25 were using static source ports...
 thousands of more domains using static
 source ports were discovered."
 - none of the 25 used DNSSEC, etc.
 - cache poisoning used to hijack WordPress

slides: bit.ly/cs161-disc