

Analysis of U.S. Permanent Visa Decisions

Kiana Alikhademi, Mahdi Kouretchian, Diandra Prioleau

Introduction

Problem Statement:

- Using different set of variables in the data set, how well can a classification model predict a visa decision(case status)?
- Are clustering techniques able to group applicants based on case status (denied, certified, certified-expired, withdrawn) in a meaningful way?

Data Description:

The data set includes **374,362** observations and **154** variables. The target variable is case status. It is a categorical variable with 4 levels:

- Certified
- Certified-Expired
- Denied
- Withdrawn

The data was gathered by the U.S. Department of Labor from 2012 through 2016.

Preliminary Data Anlysis

Preliminary data analysis was conducted using **Multi Dimensional Scaling (MDS)** and **TSNE** applied on sample of data, which shows that the dataset has strong non-convex and nonlinear elements.

Methodology

Pre-processing*:

- Sub-selected predictor variables that best addressed the research question(s)
 to use for training and testing the classification models and for clustering
- Handle missing values for sub-selected predictor variables
- Mapping of certain variables that had too many categories within them
- Created new predictor variable that indicated which U.S. visa center applications
 were processed based on which state the employer was located
- Resulted in reduction of data set from **374,362** observations to **69,552** observations

Applied Methods*:

- Classification: Train data dimension is 48,686 observations by 13 variables.
 - Decision Tree
 - Random Forest (number of trees were set to 1000)
 - Naive Bayes

- Clustering*:
 - Partition Methods (PAM)
 - Hierarchical Clustering (Complete Linkage)
 - Divisive Method (Diana)

*For more detailed information, please refer to our report.

Limitations

- Multiple missing values in the dataset
- Resulted in loss of instances for training and testing
- Mapping of variables
- Inability to acquire proper information about certain variables
- Imbalance in the predictor variable "case status"

Results

• Classification*:

- Decision Tree:
 - Accuracy: **79.32**
- Naive Bayes:
 - Accuracy: 59.41
- Random Forest:
 - Accuracy: 82.5

• Clustering*:

*For more information about the metrics please refer to our report.

Conclusion

- U.S. visa decisions can be predicted using machine learning classification models
 - Although achieved accuracy of 82%, ML techniques may not be viable option for predict visa decisions, which affect livelihood of people, since it does not achieve near perfect accuracy
 - Also we observed that variables which do not show the qualifications of foreign worker such as case received date and employer size is considered as important
- Clustering did not show extreme differences between clusters
 - Showed that individuals in computer science, mathematics, and engineering majors likely to have application certified
 Although small, individuals in education major were more likely to be denied than certified