Problem Of The Day 2022

1. (27 Jun) If y varies inversely as x and can be represented by the equation $y = (m-1)x^{m^2-2}$, find the value of constant m.

Solution:

$$y = (m-1)x^{m^2-2} = \frac{k}{x}$$
$$k = (m-1)x^{m^2-1}$$
$$= (m-1)x^{(m+1)(m-1)} \ (x \neq 0)$$

By definition, $y \neq 0$ as well, hence

$$(m-1)x^{(m+1)(m-1)} \neq 0$$
$$\therefore m \neq 1$$

2. **(28 Jun)** Which of the following is a possible plot of y = x + m and $y = \frac{m}{x}$ on the same axes? (The graphs are not drawn to scale.)

Figure 1: y = x + m and $y = \frac{m}{x}$.

Solution: B.

- The straight line should be increasing, since the coefficient of x is positive. C and D
 are eliminated.
- If m > 0, the y-intercept of the straight line could not be negative. A is eliminated,
 since the hyperbola in the same graph shows that m > 0.
- 3. **(29 Jun)** Given that points $A(-2, y_1)$, $B(-1, y_2)$, $C(1, y_3)$ are all on the graph of $y = -\frac{1}{x}$, arrange y_1, y_2 and y_3 in ascending order.

Solution: $y_3 < y_1 < y_2$.

Subst. x = -2 into $y = -\frac{1}{x}$:

$$y_1 = -\frac{1}{-2}$$
$$= \frac{1}{2}$$

Subst. x = -1 into $y = -\frac{1}{x}$:

$$y_2 = -\frac{1}{-1}$$
$$= 1$$

Subst x = 1 into $y = -\frac{1}{x}$:

$$y_3 = -\frac{1}{1}$$

4. (30 Jun) Given that points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are all on the graph of $y = \frac{3}{x}$, also $x_1 < x_2 < o < x_3$, arrange y_1, y_2 and y_3 in ascending order.

2

Solution: $y_2 < y_1 < y_3$.

- $y_3 > 0$ since $x_3 > 0$. Hence, y_3 is the greatest.
- $o > x_2 > x_1$, hence $y_2 < y_1 < o$.
- 5. (1 Jul) Given that y varies inversely as x such that $y = (a-2)x^{a^2-5}$, also when x > 0, as x increases, y increases. Find the equation of the hyperbola.

Solution:

$$\frac{k}{x} = (a-2)x^{a^2-5}$$

$$k = (a-2)x^{a^2-4}$$

$$= (a-2)x^{(a+2)(a-2)}$$

$$\therefore y = \frac{(a-2)x^{(a+2)(a-2)}}{x}$$

$$\therefore (a-2)x^{(a+2)(a-2)} < 0$$

$$\therefore a-2 < 0 \text{ and } (a+2)(a-2) \ge 0$$

$$\therefore a+2 = 0$$

$$\therefore a = -2$$

$$\therefore y = -\frac{(-2-2) \times x^{(-2+2) \times (-2-2)}}{x}$$

$$= -\frac{4}{x}$$

6. (5 Jul) If a straight line y = (2m-1)x and a hyperbola $y = \frac{3-m}{x}$ has an intersection point each in Quadrant 1 and 3, what is the range of values of the constant m?

$$y = \frac{3-m}{x}$$

$$m < 3$$

$$y = x(2m-1)$$

$$2m-1 > 0$$

$$0.5 < m < 3$$

7. **(6 Jul)** Points *A* and *B* are on the hyperbola $y = \frac{k}{x}$. Right $\triangle AOC$ and $\triangle BOD$ are drawn by perpendicular lines drawn from the two points and connecting the points with the origin. Compare the sizes of the areas of the two triangles.

Figure 2: $\triangle AOC$ and $\triangle BOD$.

Solution: $S_{\triangle AOC} < S_{\triangle BOD}$. As Point *B*'s *y*-coordinate approaches o, its *x*-coordinate approaches infinity, resulting in a triangle which approaches an infinite area. Point *A* is further from $(\infty, 0)$ than Point *B*, so $S_{\triangle AOC} < S_{\triangle BOD}$.

8. (7 Jul) Points A and B are on the hyperbola $y = \frac{3}{x}$. Rectangles are drawn from the two points as shown. The areas bounded by the two rectangles are labelled S_1 and S_2 . If the shaded area is 1 sq. unit, find the sum $S_1 + S_2$.

Figure 3: The shaded areas, S_1 and S_2 .

$$S_1 = (1 - 0) \times \left(\frac{3}{1} - 1\right)$$

$$= 2 \text{ sq. units}$$

$$S_2 = \left(\frac{3}{3} - 0\right) \times \left(3 - 1\right)$$

$$= 2 \text{ sq. units}$$

$$S_1 + S_2 = 2 + 2$$

$$= 4 \text{ sq. units}$$

- 9. **(8 Jul)** If a hyperbola $y = -\frac{3m}{x}$ and a straight line y = kx 1 both pass through the point P(m, -3m),
 - (a) find the coordinates of *P* and the equations of the hyperbola and the straight line.

Solution:

$$y = -\frac{3m}{x} \tag{1}$$

$$y = kx - 1 \tag{2}$$

Subst. x = m, y = -3m into (1):

$$-3m = -\frac{3m}{m}$$

$$\therefore m = 1$$

$$\therefore P(1, -3) \tag{3}$$

We can substitute the values obtained in (3) into (2):

$$-3=k-1$$

$$k = -2$$

The equations of the hyperbola and the straight line, are, thus:

$$y = -\frac{3}{x}$$

$$y = -2x - 1$$

(b) If the points $M(a, y_1)$ and $N(a + 1, y_2)$ are both on the straight line, explain clearly why $y_1 > y_2$.

Solution: Substitute the *x*- and *y*-coordinates of both points into the equation of the line.

$$y_1 = -2a - 1$$

$$y_2 = -2(a+1)-1$$

$$=-2a-3$$

 \therefore -2a-1 > -2a-3, where $a \in \mathbb{R}$

$$\therefore y_1 > y_2$$

10. (12 Jul) The line y = x meets the hyperbola $y = \frac{1}{x}$ at points A and C. Vertical lines from A and C meet the x-axis at points B and D respectively. Find the area of the quadrilateral ABCD. (The diagram is not drawn to scale.)

Figure 4: Quadrilateral ABCD.

$$\therefore x = \pm 1$$

$$\therefore A(1,1) \text{ and } C(-1,-1)$$

$$S_{ABCD} = 1 \times [1 - (-1)]$$

= 2 sq. units

11. (13 Jul) A ladder AB of length 2.5 m has its foot B 1.5 m away from a wall. The ladder is then moved to a new position ED. The foot of the ladder is moved 0.5 m from the original position B. Find the distance the top of the ladder drops, the length of AE.

Figure 5: The ladder, before and after.

$$AC = \sqrt{2.5^2 - 1.5^2}$$

$$= 2 \text{ m}$$

$$EC = \sqrt{2.5^2 - (1.5 + 0.5)^2}$$

$$= 1.5 \text{ m}$$
height dropped = 2 - 1.5
$$= 0.5 \text{ m}$$

12. (14 Jul) In $\triangle ABC$, $\angle B = 22.5^{\circ}$. The perpendicular bisector of AB intersects BC at point D and $BD^2 = 72$. $AE \perp BC$. Find AE.

Figure 6: Triangle $\triangle ABC$.

$$\angle FAD = \angle B$$

$$= 22.5^{\circ}$$

$$BD = AD$$

$$= \sqrt{72}$$

$$\angle FDA = 90 - 22.5$$

$$= 67.5^{\circ}$$

$$\angle FDB = \angle FDA = 67.5^{\circ}$$

$$\therefore \angle ADE = 180 - 67.5 \times 2$$

$$= 45^{\circ}$$

$$\sin \angle ADE = \frac{AE}{\sqrt{72}}$$

$$AE = \sqrt{72} \times \sin 45^{\circ}$$

$$= \frac{\sqrt{72}}{\sqrt{2}}$$

$$= 6$$

13. **(15 Jul)** In $\triangle ABC$, $\angle A = 90^{\circ}$. The point *P* is the midpoint of *AC*. $PD \perp BC$, BC = 9 and DC = 3. Find *AB*.

Figure 7: Triangle $\triangle ABC$.

$$\sqrt{3^2 + PD^2} = \sqrt{6^2 + PD^2 - AB^2}$$

$$PD^2 + 9 = PD^2 + 36 - AB^2$$

$$27 - AB^2 = 0$$

$$\therefore AB = \sqrt{27}$$

14. (18 Jul) In $\triangle ABC$, AB = 7, BC = 6, AC = 4, and AD and AE are the height and the median on the side BC, such that BE = EC and $AD \perp BC$. Find the length of DE.

Figure 8: $\triangle ABC$.

Solution:

$$3^{2} + DE^{2} = 7^{2}$$

$$DE^{2} = 7^{2} - 3^{2}$$

$$= 40$$

$$DE = \sqrt{40}$$

15. (19 Jul) The lengths of three sides of a triangle are $m^2 - n^2$, $m^2 + n^2$ and 2mn, where m and n are positive integers and m > n. Determine if this triangle is a right triangle or not. Show your reason clearly.

Solution: Yes. Assuming that the triangle **is** a right triangle, $m^2 + n^2$ would be the hypotenuse.

$$(2mn)^2 + (m^2 - n^2)^2 = (m^2 + n^2)^2$$

 $4m^2n^2 + m^4 - 2m^2n^2 + n^4 = m^4 + 2m^2n^2 + n^4$ (true, proven.)

16. (20 Jul) The lengths of the three sides of a triangle satisfy $a^2c^2 - b^2c^2 = a^4 - b^4$. Determine the type of triangle it is. Show your reason clearly.

Solution: It is a right triangle.

$$a^{2}c^{2} - b^{2}c^{2} = a^{4} - b^{4}$$

$$c^{2}(a - b)(a + b) = (a^{2} + b^{2})(a - b)(a + b)$$

$$c^{2} = a^{2} + b^{2}$$

17. **(21 Jul)** A corner of a rectangle *ABCD* is folded along the line *AE*, such that the vertex *D* lands exactly on the opposite side *BC* at point *F*. If AB = 8 and BC = 10, find the length of *EC*.

Figure 9: Rectangle ABCD.

$$BC = AD = AF = 10$$

$$BF = \sqrt{10^2 - 8^2}$$

$$= 6$$

$$\therefore FC = 10 - 6$$

$$= 4$$

$$\angle BAF = \angle EFC \text{ (alt. ext. angles)}$$

$$\angle ECF = \angle ABF \text{ (given)}$$

$$\therefore \triangle ABF \simeq \triangle FCE \text{ (AA)}$$

$$\therefore \frac{EC}{AB} = \frac{CF}{BF}$$

$$\frac{EC}{8} = \frac{4}{6}$$

$$\therefore EC = \frac{16}{3}$$

18. (22 Jul) In an isosceles $\triangle ABC$, AB = AC. P is a random point on BC. Show that $AB^2 - AP^2 = PB \times PC$.

Figure 10: Isosceles $\triangle ABC$.

Solution: We can construct a line $AO \perp BC$, thereby bisecting BC.

$$AB^{2} - AP^{2} = AO^{2} + OB^{2} - (AO^{2} + PO^{2})$$

$$= OB^{2} - PO^{2}$$

$$= (OB + PO)(OB - PO)$$

$$= PC \times PB$$

$$= PB \times PC$$

19. (25 Jul) In $\triangle ABC$, $\angle A = 30^{\circ}$ and $\angle B = 45^{\circ}$. Points D and E are on sides AB and AC respectively, such that AE = ED = EC. Find the ratio $\frac{AD^2}{BC^2}$.

Figure 11: $\triangle ABC$.

20. (26 Jul) In $\triangle ABC$, a, b and c are the three sides. $\angle C = 90^{\circ}$, $\angle A = 60^{\circ}$, $a + b = 3 + \sqrt{3}$. Find a, b and c.

Solution: By using trigonometric ratios,

$$AB:AC:BC=2:1:\sqrt{3}$$

Multiply the ratio by $\sqrt{3}$:

$$AB:AC:BC = 2\sqrt{3}:\sqrt{3}:3$$

$$\therefore a+b=3+\sqrt{3}$$

$$\therefore BC+AC=a+b$$

$$\therefore c=AB=2\sqrt{3}$$

However, we cannot determine a and b because of the commutative law of addition.

$$\begin{cases} a = 3 \text{ if } b = \sqrt{3} \text{ else } \sqrt{3} \\ b = 3 \text{ if } a = \sqrt{3} \text{ else } \sqrt{3} \\ c = 2\sqrt{3} \end{cases}$$

21. (27 Jul) In $\triangle ABC$, $\angle ACB = 90^{\circ}$, $AB \perp CD$, $AC = \sqrt{5}$, BC = 2. Find $\sin \angle ACD$.

Figure 12: $\triangle ABC$.

$$\angle CAB = \arctan \frac{2\sqrt{5}}{5}$$

$$\angle ACD = \left(90 - \arctan \frac{2\sqrt{5}}{5}\right)^{\circ}$$

$$\therefore \sin \angle ACD = \sin \left(90 - \arctan \frac{2\sqrt{5}}{5}\right)$$

$$= \frac{2}{3}$$

22. (28 Jul) For acute angle α , fill in the blanks with >, =, or <.

Solution:

$$\begin{cases} :: \alpha = 45^{\circ} :: \sin \alpha = \cos \alpha \\ :: \alpha < 45^{\circ} :: \sin \alpha < \cos \alpha \\ :: \alpha > 45^{\circ} :: \sin \alpha > \cos \alpha \end{cases}$$