BROUILLON - COURBES POLYNOMIALES SIMILAIRES MANQUE DES DESSINS!

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Où allons-nous?	2
2.	Cas des polynômes de degré 3	2
3.	AFFAIRE À SUIVRE	4

Date: 2 Octobre 2020 – 5 Novembre 2020.

1. Où allons-nous?

Il est connu ques les courbes des fonctions affines sont toutes des droites, et celles représentant des trinômes du 2^e degré sont toutes des paraboles. Quand on présente ce résultat au lycée, on n'a pas défini exactement ce qu'est une parabole 1 . On explique que l'on peut passer de la représentation de la fonction carrée $f: x \mapsto x^2$ à celle du trinôme $g: x \mapsto a x^2 + b x + c$ via une translation, une dilatation verticales et/ou une dilatation horizontale. Ceci nous amènes aux deux questions suivantes.

- (1) Peut-on passer de la courbe de $f: x \mapsto x^3$ à celle du polynôme $g: x \mapsto a x^3 + b x^2 + c x + d$ où $a \neq 0$ via une translation, une dilation verticales et/ou une dilatation horizontale.
- (2) Que se passe-t-il plus généralement pour les courbes des fonctions $f: x \mapsto x^k$ lorsque k > 4?

2. Cas des polynômes de degré 3

- 2.1. Une preuve visuelle ou presque. Soit \mathscr{C}_g la courbe de la fonction $g: x \mapsto a\,x^3 + b\,x^2 + c\,x + d$ où $a \neq 0$. Nous allons démontrer que \mathscr{C}_g s'obtient à partir de l'une des courbes suivantes en utilisant une translation horizontale, une translation verticale, une dilatation verticale et/ou une dilatation horizontale.
 - (1) Γ_1 représente $f_1: x \mapsto x^3$.
 - (2) Γ_2 représente $f_2: x \mapsto x^3 x$ de sorte que $f_2(x) = x(x-1)(x+1)$.
 - (3) Γ_3 représente $f_3: x \mapsto x^3 + x$ de sorte que $f_3(x) = x(x \mathbf{i})(x + \mathbf{i})$ où $\mathbf{i} \in \mathbb{C}$.

Démonstration.

- (1) On peut supposer que (a; b; d) = (1; 0; 0).
 - (a) Il est immédiat que l'on peut supposer que a=1. Dans la suite, on supposera donc $g(x)=x^3+b\,x^2+c\,x+d$.
 - (b) En considérant \mathscr{C}_g , on observe un centre de symétrie qui a pour abscisse m celle de l'unique point d'inflexion de \mathscr{C}_g .

$$g''(x) = 0 \iff 6x + 2b = 0$$

 $\iff x = -\frac{b}{3}$

Il devient naturel de poser x = m + t avec $m = -\frac{b}{3}$.

$$g(x) = g(m+t)$$

$$= (m+t)^3 + b(m+t)^2 + c(m+t) + d$$

$$= m^3 + 3m^2t + 3mt^2 + t^3 + bm^2 + 2bmt + bt^2 + cm + ct + d$$

Le coefficient de t^3 reste égal à 1 et celui de t^2 est 3m + b = 0. Ceci montre que l'on peut supposer (a;b) = (1;0). Dans la suite, on supposera donc $g(x) = x^3 + cx + d$.

- (c) Il est immédiat que l'on peut supposer dans la suite que $g(x) = x^3 + cx$.
- (2) Cas 1: c = 0

Nous n'avons rien à faire de plus car ici $\mathscr{C}_g = \Gamma_1$.

^{1.} La définition géométrique des grecques anciens restent la meilleure.

(3) Cas 2: $c = -k^2$ avec k > 0

Ici
$$g(x) = x^3 - k^2 x$$
 soit $g(x) = x(x - k)(x + k)$.

Nous avons donc
$$g(k x) = k^3 x(x - 1)(x + 1) = k^3 f_2(x)$$
 puis $f_2(x) = \frac{1}{k^3} g(k x)$.

On peut ainsi passer de \mathscr{C}_g à Γ_2 , et donc aussi de Γ_2 à \mathscr{C}_g , à l'aide des transformations autorisées.

(4) Cas 3: $c = k^2$ avec k > 0

Ici
$$g(x) = x^3 - (k \mathbf{i})^2 x$$
 soit $g(x) = x(x - k \mathbf{i})(x + k \mathbf{i})$.

Nous avons donc $g(k x) = k^3 x(x-\mathbf{i})(x+\mathbf{i}) = k^3 f_3(x)$ puis comme dans le cas précédent on peut passer de Γ_3 à \mathcal{C}_q à l'aide des transformations autorisées.

On notera que la preuve précédente est constructive, autrement dit on peut donner les applications à appliquer en fonction des coefficients a, b, c, et d de $g(x) = a x^3 + b x^2 + c x + d$.

Il est évident qu'il n'est pas possible de passer de Γ_i à Γ_j à l'aide des transformations autorisées (penser à la conservation géométrique du nombre de tangentes horizontales). On peut donc parler de trois types de courbe pour les polynômes de degré 3 contre un seul pour les fonctions affines, et aussi un seul pour les trinômes du 2^e degré. Alors que se passe-t-il pour les polynômes de degré 4 et plus généralement pour ceux de degré $n \geq 5$?

- 2.2. Une preuve via les calculs différentiel et intégral. Soit \mathscr{C}_g la courbe de la fonction $g: x \mapsto a\,x^3 + b\,x^2 + c\,x + d$ où $a \neq 0$. Nous allons démontrer que \mathscr{C}_g s'obtient à partir de l'une des courbes suivantes en utilisant une translation horizontale, une translation verticale, une dilatation verticale et/ou une dilatation horizontale.
 - (1) Γ_1 représente $f_1: x \mapsto x^3$.
 - (2) Γ_2 représente $f_2: x \mapsto x^3 3x$.
 - (3) Γ_3 représente $f_3: x \mapsto x^3 + 3x$.

 $D\acute{e}monstration$. Distinguons trois cas en notant que l'on peut supposer que a=1.

(1) g'(x) a une unique racine réelle.

Nous avons ici $\alpha \in \mathbb{R}$ tel que $g'(x) = 3(x - \alpha)^2$ et donc $g(x) = (x - \alpha)^3 + k$. Il est immédiat que l'on peut passer de Γ_1 à \mathscr{C}_g à l'aide des transformations autorisées.

(2) g'(x) a deux racines réelles.

Nous avons ici $\alpha \neq \beta$ deux réels tels que $g'(x) = 3(x - \alpha)(x - \beta)$. Les faits suivants montrent que l'on peut passer de \mathscr{C}_g à Γ_2 , et donc aussi de Γ_2 à \mathscr{C}_g , à l'aide des transformations autorisées.

- (a) En posant $\delta = \frac{\alpha + \beta}{2}$, $g'(x + \delta) = 3\left(x + \frac{\beta \alpha}{2}\right)\left(x + \frac{\alpha \beta}{2}\right)$. Ceci nous fournit $g'(x + \delta) = 3(x \lambda)(x + \lambda)$ avec $\lambda \neq 0$ puis ensuite $g'(\lambda x + \delta) = \lambda^2 f_2'(x)$.
- (b) En résumé, $f_2'(x) = \frac{1}{\lambda^2} g'(\lambda x + \delta)$ puis par intégration $f_2(x) = \frac{1}{\lambda^3} g(\lambda x + \delta) + k$.
- (3) g'(x) n'a pas de racine réelle.

La forme canonique de g'(x) est ici $g'(x) = 3(x-p)^2 + m$ où les réels p et m sont tels que m > 0. Les faits suivants montrent que l'on peut passer de \mathscr{C}_g à Γ_3 , et donc aussi de Γ_3 à \mathscr{C}_q , à l'aide des transformations autorisées.

- (a) $g'(x+p) = 3x^2 + m$.
- (b) Notant $\mu = \sqrt{\frac{m}{3}}$, on a ensuite $g'(\mu x + p) = mx^2 + m$ soit $g'(\mu x + p) = \frac{m}{3}f'_3(x)$.
- (c) En résumé, $f_3'(x) = \frac{3}{m}g'(\mu x + p)$ puis par intégration $f_3(x) = \frac{3}{\mu m}g(\mu x + p) + k$.

Il est évident qu'il n'est pas possible de passer de Γ_i à Γ_j à l'aide des transformations autorisées. On peut donc parler de trois types de courbe pour les polynômes de degré 3 contre un seul pour les fonctions affines et un seul pour les trinômes du 2^e degré.

3. Cas des polynômes de degré au moins 4

w Nous allons voir que le passage au degré 4 va faire exploser une vaine conjecture qui supposerait que pour un degré donné il n'y a qu'un nombre fini de types de courbe. L'argument est simple car les polynômes $f_r(x) = x(x^2-4)(x-r)$ où $r \in \mathbb{R} - \{-1; 0; 1\}$ ont des courbes \mathscr{C}_r non similaires deux à deux via les transformations autorisées. Voici pour quoi où $r \neq 2$ par hypothèse.

- (1) Supposons que f_r et f_2 ont des courbes \mathscr{C}_r et \mathscr{C}_2 similaires i.e. $f_r(x) = \lambda f_2(ax+b) + k$ avec nécessairement $\lambda \neq 0$ et $a \neq 0$.
- (2) $f_r(x) = x^4 rx^3 4x^2 + 4rx$
- (3) $f_2(x) = x^4 2x^3 4x^2 + 8x$
- (4) valeurs sur [-1;1] et valeur en 2 évolue tro p différemment!

4. AFFAIRE À SUIVRE...