	1
Principi programskih jezikov	2
1. izpit, 5. junij 2020	3
	Σ
Ime in priimek	Vpisna številka

NAVODILA

- Ne odpirajte te pole, dokler ne dobite dovoljenja.
- Preden začnete reševati test:
 - Vpišite svoje podatke na testno polo z velikimi tiskanimi črkami.
 - Na vidno mesto položite osebni dokument s sliko in študentsko izkaznico.
 - Preverite, da imate mobitel izklopljen in spravljen v torbi.
- Dovoljeni pripomočki: pisalo, brisalo, in poljubno pisno gradivo.
- Vse rešitve vpisujte v polo.
- Če kaj potrebujete, prosite asistenta, ne sosedov.
- Med izpitom ne zapuščajte svojega mesta brez dovoljenja.
- Testna pola vam bo odvzeta brez nadaljnjih opozoril, če:
 - komunicirate s komerkoli, razen z asistentom,
 - komu podate kak predmet ali list papirja,
 - odrinete svoje gradivo, da ga lahko vidi kdo drug,
 - na kak drug način prepisujete ali pomagate komu prepisovati,
 - imate na vidnem mestu mobitel ali druge elektronske naprave.
- Ob koncu izpita:
 - Ko asistent razglasi konec izpita, **takoj** nehajte in zaprite testno polo.
 - Ne vstajajte, ampak počakajte, da asistent pobere vse testne pole.
 - Testno polo morate nujno oddati.
- Čas pisanja je 120 minut. Na vidnem mestu je zapisano, do kdaj imate čas.
- Predvideni ocenjevalni kriterij:
 - $1. \geq 90$ točk, ocena 10
 - 2. \geq 80 točk, ocena 9
 - $3. \geq 70$ točk, ocena 8
 - 4. \geq 60 točk, ocena 7
 - 5. \geq 50 točk, ocena 6

Veliko uspeha!

1. naloga (30 točk)

a) (6 točk) V Elbonji varčujejo črnilo, zato znaka za množenje ne pišejo, ampak namesto njega pustijo presledek. Operacijo seštevanja označijo s piko ●. V ta namen uporabljajo naslednjo sintakso za zapis aritmetičnih izrazov, kjer _ označuje presledek:

```
\begin{split} \langle izraz \rangle &::= \langle multiplikativni \rangle \ | \ \langle izraz \rangle \bullet \langle multiplikativni \rangle \\ \langle multiplikativni \rangle &::= \langle osnovni \rangle \ | \ \langle osnovni \rangle \Box \langle multiplikativni \rangle \\ \langle osnovni \rangle &::= (\langle izraz \rangle) \ | \ \langle število \rangle \\ \langle število \rangle &::= [0-9] + \end{split}
```

Narišite sintaktično drevo za izraz 20 (4 • 2) 1 • 3 • (19 20).

b) (6 točk) V λ -računu predstavimo števila s Churchovimi numerali, na primer,

$$0 := \lambda f x \cdot x,$$

$$1 := \lambda f x \cdot f x,$$

$$2 := \lambda f x \cdot f(fx),$$

$$3 := \lambda f x \cdot f(f(fx)).$$

Katero število je $\lambda g y$. 3 2 g y?

Odgovor: število	
------------------	--

c) (6 točk) Klemen je v OCamlu definiral vrednost prod:

```
let prod =
  let rec loop acc = function
    | [] -> acc
    | x :: xs -> loop (x * acc) xs
  in
  loop 1
;;
```

Kakšen tip ima prod?

d) (6 točk) Andrej je v OCamlu definiral podatkovni tip

```
type 'a trie = Node of 'a | Trie of ('a trie) list
```

- 1. zapišite vrednost tipa int trie: _____
- 2. zapišite vrednost tipa 'a trie: _____
- 3. zapišite vrednost, ki je različna od prejšnjih dveh:

e) (6 točk) V programskem jeziku z zapisi in podtipi je Marcel definiral tipe

$$\begin{split} \tau &= & \{a:\mathsf{bool}\} \to \{u:\mathsf{bool}\} \\ \sigma &= & \{a:\mathsf{bool},u:\mathsf{bool}\} \\ \rho &= & \{a:\mathsf{bool},b:\mathsf{bool}\} \to \{u:\mathsf{bool},v:\mathsf{bool}\} \end{split}$$

Označite pravilne trditve, kjer ≤ pomeni "podtip (po vrstnem redu, globini in širini)":

- (a) $\tau \leq \sigma$
- (b) $\sigma \leq \tau$
- (c) $\tau \leq \rho$
- (d) $\rho \leq \tau$

2. naloga (40 točk)

a) (30 točk) Dokažite *delno* pravilnost programa:

```
 \{a>0 \land b>0\}  if b = 1 then k := a else k := 0; while b * k < a do k := k + 1 done end  \{a-b\cdot k < b\}
```

b) (10 točk) Dokažite še *popolno* pravilnost zgornjega programa.

3. naloga (40 točk)

Polja na šahovnici velikosti 8×8 označimo s koordinatami (x,y), kjer velja $1\leq x\leq 8$ in $1\leq y\leq 8$, glej sliko, ki prikazuje tudi možne poteze šahovskega skakača.

Polje (X, Y) v prologu zapišemo z izrazom X/Y, saj prolog nima urejenih parov.

a) (5 točk) Sestavite predikat polje (X/Y), ki velja natanko tedaj, ko sta X in Y veljavni koordinati:

```
?- polje(9/2).
false.
?- polje(X/Y).
X = Y, Y = 1;
```

Poskrbite, da poizvedba polje(X/Y) vrne vseh 64 odgovorov. Uporabiti smete programiranje z omejitvami ali kak drug pristop.

b) (10 točk) Sestavite predikat premik (P,Q), ki velja natanko tedaj, ko sta P in Q veljavni polji in se lahko skakač premakne s polja P na polje Q.

```
?- premik(5/8, Q).
Q = 3/7;
Q = 4/6;
Q = 6/6;
Q = 7/7;
false.
?- premik(1/1, 2/2).
false.
?- premik(1/0, Q).
false.
```

c) (15 točk) Sestavite predikat sprehod(L), ki velja natanko tedaj, ko je L seznam veljavnih polj in za vsaki *zaporedni* polji P in Q v seznamu L velja premik(P,Q). Polja v sprehodu se smejo ponavljati.

```
?- sprehod([4/4, P, 5/5]).
P = 3/6;
P = 6/3;
false.
?- sprehod([4/4, 4/5]).
false.
?- sprehod(L).
L = [];
L = [1/1];
L = [1/2];
...
```

d) (10 točk) Zapišite poizvedbo, ki ugotovi, ali obstaja sprehod dolžine 64 od polja 1/1 do polja 8/8.