

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Local Stability and Linearized Dynamics of Nonlinear Systems at Equilibrium Points

Lumped Nonlinear Systems

Lumped continuous-time nonlinear system:

$$\dot{x}(t) = f(x, u, t), \qquad y(t) = g(x, u, t)$$

• $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$, $g: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^p$

Lumped discrete-time nonlinear system:

$$x[k+1] = f(x[k], u[k], k), y[k] = g(x[k], u[k], k)$$

• $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{Z} \to \mathbb{R}^n$, $g: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{Z} \to \mathbb{R}^p$

Time-Invariant Autonomous Nonlinear Systems

Given a time-invariant autonomous nonlinear system $\dot{x} = f(x)$, it has an equilibrium point x_e if $f(x_e) = 0$

• $x(t) = x_e$ for all t is a solution of the system

Definition (Local Asymptotic Stability)

 $\dot{x} = f(x)$ is locally asymptotically stable at the equilibrium point $x_{\rm e}$ if there exists some r > 0 such that

$$||x(0) - x_{e}|| < r \quad \Rightarrow \quad \lim_{t \to \infty} ||x(t) - x_{e}|| \to 0$$

- All solutions starting in a ball of radius r around x_e converge to it
- If r can be chosen to be ∞ , we get global asymptotic stability
- Can similarly define local exponential stability

Linearized Dynamics at Equilibrium Points

Suppose $\dot{x} = f(x)$ has an equilibrium point $x_{\rm e}$ and f is differentiable The linearized dynamics of the nonlinear system at $x_{\rm e}$ is

$$\dot{z}(t) = Df(x_e) z(t)$$

- $Df(x) = \left[\frac{\partial f_i}{\partial x_j}(x)\right]_{i,j=1,...,n}$ is the Jacobian matrix of $f: \mathbb{R}^n \to \mathbb{R}^n$
- $x(t) pprox x_{
 m e} + z(t)$ if $\|x(t) x_{
 m e}\|$ is sufficiently small

Example: Simple Pendulum

Dynamics: $\ddot{\theta} = -mg\ell \sin \theta - \eta \dot{\theta}$

• $\eta > 0$ is damping coefficient

State $x = \begin{bmatrix} \theta & \dot{\theta} \end{bmatrix}^T$ has dynamics

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = f(x) = \begin{bmatrix} x_2 \\ -mg\ell \sin x_1 - \eta x_2 \end{bmatrix}$$

Two equilibrium points $x_{e1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $x_{e2} = \begin{bmatrix} \pi \\ 0 \end{bmatrix}$, with linearized dynamics:

$$\frac{d}{dt}z(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ -mg\ell & -\eta \end{bmatrix}}_{Df(x_{c1})}z(t), \qquad \frac{d}{dt}z(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ mg\ell & -\eta \end{bmatrix}}_{Df(x_{c2})}z(t)$$