Lab 4: Operational Amplifiers – Part II

Name: Wan-Yu Liao

ECEN 325 Section 514

TA: Mandela

Lab Date: September 27, 2019

Lab Report Due Date: September 30, 2019

Calculations

$$V_{0} = -\left(\frac{R_{3}}{R_{1}}V_{i,1} + \frac{R_{3}}{R_{2}}V_{i,2}\right) = -\left(V_{i,1} + 2V_{i,2}\right), \quad R_{3} = 15k\Omega$$

$$\frac{R_{3}}{R_{1}} = 1 \implies R_{1} = 15k\Omega \qquad \frac{R_{3}}{R_{2}} = 2 \implies R_{2} = 7.5k\Omega$$

(2)
$$V_0 = \frac{R_2}{R_1} (V_{i_2} - V_{i_1}) = V_{i_2} - V_{i_1}$$
, $R_2 = R_3 = R_4 = 10 \text{ k} \Omega$

$$\frac{R_2}{R_1} = 1 \implies R_1 = 10 \text{ k} \Omega$$

(3)
$$V_0 = \left(1 + \frac{2R}{R_{\text{gain}}}\right) \left(V_{i2} - V_{i1}\right) = 3\left(V_{i2} - V_{i1}\right), R_{\text{gain}} = 1 + \Omega$$

$$1 + \frac{2R}{R_{\text{gain}}} = 3 \implies \frac{2R}{1 + \Omega} = 2 \implies \boxed{R = 1 + \Omega}$$

(4)
$$V_{i1} = 0.2 \sin(2\pi looot)$$
, $V_{i2} = 0.3 V$
Circuit 1: $V_0 = -(V_{i1} + 2V_{i2}) = -0.2 \sin(2\pi looot) - 0.6$
Circuit 2: $V_0 = V_{i2} - V_{i1} = 0.3 - 0.2 \sin(2\pi looot)$
Circuit 3: $V_0 = 3(V_{i2} - V_{i1}) = 0.9 - 0.6 \sin(2\pi looot)$

Simulations

Circuit 1 (Summing Amplifier):

(a)

(b)

 $V_{i1} = 0.2 \sin(2\Pi 1000t)$

 $v_0 = -0.2 \, sin(2 \Pi 1000 t) - 0.6 \qquad \text{, which is opposite the V_{i1} and shift down by 0.6}.$

Circuit 2 (Differential Amplifier):

(b)

 $V_{i1} = 0.2 \sin(2\Pi 1000 t)$

 $v_0 = -0.2 \, sin(2\Pi 1000t) + 0.3 \qquad \text{, which is opposite the V_{i1} and shift up by 0.3.}$

Circuit 3 (Instrumentation Amplifier):

(a)

(b)

$$V_{i1} = 0.2 \sin(2 \Pi 1000 t)$$

$$v_0 = -0.6\sin(2\Pi 1000t) + 0.9$$

which is opposite the V_{i1} with amplitude of 0.6 and shift up by 0.9.

Measurements

Circuit 1 (Summing Amplifier):

Time-Domain Waveform

 V_o (C2) shifted down 0.6 and is opposite to V_1 (C1).

Clipping Waveform Generator

$$V_2 = 1.5V$$

Clipping Time-Domain Waveform

Circuit 2 (Differential Amplifier):

Time-Domain Waveform

 $V_o(C1)$ shifted up 0.3 and opposite to $V_1(C2)$.

ADM Time-Domain Waveform

$$A_{DM} = \frac{V_{out}}{V_{in}} = \frac{0.201}{0.200} = 1.005$$

ACM Time-Domain Waveform

$$A_{CM} = \frac{V_{out}}{V_{in}} = \frac{0.168 * 10^{-3}}{0.199} = 0.000844$$

$$CMRR = \frac{A_{DM}}{A_{CM}} = \frac{1.005}{0.000844} = 1190.76$$

Circuit 3 (Instrumentation Amplifier):

Time-Domain Waveform

 V_o (C2) shifted up 0.9 and is opposite to V_1 (C1) and the amplitude increase to 0.6.

Saturated Point for UA741 (Extra Question):

Positive $V_{sat} = 4.381V$

Negative $V_{sat} = -3.129V$

Tables

	Amplitude	Average	Opposite to V ₁
Circuit 1 Calculated	0.2	-0.6	Yes
Circuit 1 Simulated	0.2	-0.6	Yes
Circuit 1 Measurement	0.202	-0.592	Yes
Circuit 2 Calculated	0.2	0.3	Yes
Circuit 2 Simulated	0.2	0.3	Yes
Circuit 2 Measurement	0.201	0.300	Yes
Circuit 3 Calculated	0.6	0.9	Yes
Circuit 3 Simulated	0.6	0.9	Yes
Circuit 3 Measurement	0.596	0.886	Yes

Comments

The results from calculated part, simulated part, and measurement part are similar. The slightly different for measurement results are due to the real-world amplifiers and resistors have some tolerance.

CMRR value calculated in Circuit 2 Measurement part is 1190.76. The ideal CMRR value supposed to be infinity, A_{DM} supposed to be 1, and A_{CM} supposed to be 0. However, in real-world, A_{DM} can only be close to 1, and A_{CM} can only be close to 0. Therefore, CMRR value cannot be infinity but it would be a large value.