Continuous Strategies and Rationalizability

ECON 420: Game Theory

Spring 2018

Announcements

- ► Reading: Chapter 5 and 6
- ► Homework due next Monday
- Midterm exam next Wednesday

Continuous strategies

- ► So far: Games with *discrete* strategies
 - Choosing from a finite set of actions
- ► Many games have many (or infinite) available actions
- ▶ Can we generalize the notion of *best response* to these settings?

Price-setting game

- ► Suppose there are two competing restaurants (they make only one dish)
- ▶ Both firms must choose their prices p_1 and p_2
- The number of dishes each restaurant sells is $Q_i = 44 2p_i + p_j$ After a price change, half of your usual customers will leave to go to
- After a price change, half of your usual customers will leave to go to the other restaurant
- ► The dishes cost \$8 to make for each restaurant
- ► Which price should each restaurant choose?

Best response

- ▶ Profit depends on the pricing choice of the other firm
 - ► Restaurants try to profit maximize given the price that they think the other will choose
 - ► This pricing strategy is the *best response* of the restaurant

Can the restaurants do better?

► Suppose an outside company buys both restaurants

▶ What is the optimal price? What are the profits?

- ▶ The firm is now a monopolist, chooses one price for both locations
- I he firm is now a monopolist, chooses one price for both locations

Collusion

- ► The pricing game is a form of a prisoners' dilemma (with continuous strategies)
- ► The firms could cooperate to split the monopolist profits
- ► But each can do better (individually) by choosing something *other* than the monopolist price
- ► Cooperation is *never* a best response

Limitations of NE?

Example:

- ► Player A: Chooses "Up" or "Down"
- ► Player B: Chooses "Left" or "Right"
- ► Payoffs (A, B):
 - ► Up, Left: (2 chocolates, 2 chocolates)
 - ► Up, Right: (1 chocolates, 1 chocolates)
 - ► Down, Left: (3 chocolates, 2 chocolates)
 - ► Down, Right: (50% penalty on midterm, 1 chocolate)

Why might we not see a NE?

- ► Often, player A won't choose Down, because it is risky
- ► Why is it risky?
 - ► A might think B doesn't like chocolate
 - ► A might be concerned the B will try to "spite" them
- \blacktriangleright These options might mean that the game is misspecified
 - ► A has uncertainty about B's payoffs

Example

		COLUMN		
		А	В	C
	Α	2,2	3,1	0,2
ROW	В	1,3	2,2	3,2
	С	2,0	2,3	2,2

Rationalization

- ► Suppose games are properly specified
- ► Nash equilibrium:
- The choice of each player is their best response given their beliefs about what the other players are doing
 The beliefs are accurate
- ▶ Does this mean that purely rational players will achieve the NE?

		COLUMN			
		C1	C2	C3	
ROW	R1	0, 7	2, 5	7, 0	
	R2	5, 2	3, 3	5, 2	
	R3	7, 0	2, 5	0, 7	

Rationalizability

- ▶ Multiple outcomes can be supported by rational "chains" of thought
 - Not necessarily NE
- ▶ But not *every* outcome is supported by rationality
- ► For instance: It is never rational to play a strategy that is *never a best response*

		COLUMN				
		C1	C2	C3	C4	
	R1	0, 7	2, 5	7, 0	0, 1	
ROW	R2	5, 2	3, 3	5, 2	0, 1	
KOW	R3	7, 0	2, 5	0, 7	0, 1	
	R4	0, 0	0, -2	0, 0	10, –1	

Rationalizability

- ▶ Note: Not all strategies that are never a best response are dominated by

some other strategy

► Sometimes rationalizability can lead to a NE (but not always)

Cournot competition

- ► Suppose there are two fishing boats that choose how many fish to catch each day
- ▶ The local fish market buys the fish for a price P = 60 Y
- ▶ Boat one has costs of 30 per fish and boat 2 has costs 36 per fish