Recommender System: Basic and Why AutoML is Needed?

Yong Li (Tsinghua University)

Outline

1. What is recommender system

- 2. Recent advances in recommender system
 - a) Deep Learning
 - ы) Graph Neural Networks

3. Problem of human-crafted recommender system and why AutoML is needed

Outline

1. What is recommender system

- 2. Recent advances in recommender system
 - a) Deep Learning
 - b) Graph Neural Networks

3. Problem of human-crafted recommender system and why AutoML is needed

Recommender System

Modelling users' preference towards items based on historical behaviours, such as click, like, follow, etc.

Problem Formulation

- Input: historical user-item interactions or additional side information (e.g., user profile, item profile)
- Output: given a target Item (e.g., movie, song, product), how likely a user would interact with it (e.g., click, view, or purchase)

Outline

1. What is recommender system

- 2. Recent advances in recommender system
 - a) Deep Learning
 - **b) Graph Neural Networks**

3. Problem of human-crafted recommender system and why AutoML is needed

Deep Learning for Recommendation

- Deep Learning is utilized to substitute nearly all components in recommender system.
 - Feature extraction
 - Representation learning
 - Matching function learning
- Deep Learning shows great power in modeling high-order similarity in recommender system, e.g. multi-behavior and social relationship in recommendation...

Neural Multi-Task Recommendation from Multi-Behavior Data

(Gao et al, ICDE'19)

Target behavior

Auxiliary behaviors

Neural Multi-Task Recommendation from Multi-Behavior Data (Gao et al, ICDE'19)

		Beibei Dataset							
Group	Method	HR@50	NDCG@50	HR@100	NDCG@100				
	NMTR-GMF	0.2050	0.0590	0.3119	0.0741				
Our NMTR Model	NMTR-MLP	0.1928	0.0560	0.2690	0.0762				
	NMTR-NeuMF	0.2079	0.0609	0.3193	0.0760				
	CMF	0.1596	0.0481	0.2829	0.0663				
	MC-BPR	0.1743	0.0503	0.2659	0.0647				
Multi-behavior	MC-GMF	0.1822	0.0508	0.2975	0.0690				
	MC-MLP	0.1810	0.0534	0.2810	0.0684				
	MC-NeuMF	0.2014	0.0577	0.3010	0.0719				
	BPR	0.1199	0.0348	0.2002	0.0463				
Single-behavior	GMF	0.1792	0.0475	0.2920	0.0665				
Single-ochavior	MLP	0.1711	0.0483	0.2679	0.0617				
	NeuMF	0.1828	0.0573	0.2929	0.0714				

NMTR achieves the best overall performance.

NMTR achieves the best performance under different sparsity.

Outline

1. What is recommender system

- 2. Recent advances in recommender system
 - a) Deep Learning
 - ы) Graph Neural Networks

3. Problem of human-crafted recommender system and why AutoML is needed

Collaborative Filtering (CF)

- Revisit CF via high-order connectivity
 - The paths that reach u_1 from any node with the path length l larger than 1
 - A natural way to encode collaborative signal is to encode it by the interaction graph structure

11

Price-aware Recommendation with Graph Convolutional Networks (Zheng et al, ICDE2020)

Unified graph of user, item, price, and category

Graph convolutional encoder to learn robust representations for different entities

Pair-wise decoder to learn both global and local price awareness.

Price-aware Recommendation with Graph Convolutional Networks (Zheng et al, ICDE2020)

PUP successfully captures users' price awareness and achieves best performance compared to strong baselines.

PUP tackles cold-start problem with the help of price awareness modeling.

Bundle Recommendation with Graph Convolutional Networks (Chang et al, SIGIR2020)

The probability of the user 1 interacting with bundle 2.

Construct heterogeneous graph of user, item and bundle Item-level and bundlelevel propagation

Item-level and bundlelevel prediciton

Bundle Recommendation with Graph Convolutional Networks (Chang et al, SIGIR2020)

Table 2: Performance comparisons on two real-world datasets with six baselines

Method Recall@2		Netease					Youshu					
	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
MF-BPR	0.0355	0.0181	0.0600	0.0246	0.0948	0.0323	0.1959	0.1117	0.2735	0.1320	0.3710	0.1543
GCN-BG	0.0370	0.0189	0.0617	0.0255	0.1000	0.0342	0.1982	0.1141	0.2661	0.1322	0.3633	0.1541
GCN-TG	0.0402	0.0204	0.0657	0.0272	0.1051	0.0362	0.2032	0.1175	0.2770	0.1371	0.3804	0.1605
NGCF-BG	0.0395	0.0207	0.0646	0.0274	0.1021	0.0359	0.1985	0.1143	0.2658	0.1324	0.3542	0.1524
NGCF-TG	0.0384	0.0198	0.0636	0.0266	0.1015	0.0350	0.2119	0.1165	0.2761	0.1343	0.3743	0.1561
DAM	0.0411	0.0210	0.0690	0.0281	0.1090	0.0372	$\overline{0.2082}$	0.1198	0.2890	0.1418	0.3915	0.1658
BGCN	0.0491	0.0258	0.0829	0.0346	0.1304	0.0453	0.2347	0.1345	0.3248	0.1593	0.4355	0.1851
% Improv.	19.67%	22.89%	20.17%	23.18%	19.65%	21.76%	10.77%	12.22%	12.36%	12.33%	11.23%	11.62%

BGCN achieves the best performance.

Multi-behavior Recommendation with Graph Convolutional

Networks (Jin&Gao et al, SIGIR2020)

Item-item propagation to capture different behavior semantics. User-item propagation to capture different behavior strength.

Multi-behavior Recommendation with Graph Convolutional Networks (Jin&Gao et al, SIGIR2020)

Table 2: Comparisons on Tmall and improvement comparing with the best baseline.

	Method	Recall@10	NDCG@10	Recall@20	NDCG@20	Recall@40	NDCG@40	Recall@80	NDCG@80
One-behavior	MF-BPR	0.02331	0.01306	0.03161	0.01521	0.04239	0.01744	0.05977	0.02049
	NCF	0.02507	0.01472	0.03319	0.01683	0.04502	0.01931	0.06352	0.02252
	GraphSAGE-OB	0.01993	0.01157	0.02521	0.01296	0.03368	0.01474	0.04617	0.01693
	NGCF-OB	0.02608	0.01549	0.03409	0.01757	0.04612	0.02010	0.06415	0.02324
Multi-behavior	MCBPR	0.02299	0.01344	0.03178	0.01558	0.04360	0.01813	0.06190	0.02132
	NMTR	0.02732	0.01445	0.04130	0.01831	0.06391	0.02279	0.09920	0.02891
	GraphSAGE-MB	0.02094	0.01223	0.02805	0.01406	0.03804	0.01616	0.05351	0.01887
	NGCF-MB	0.03076	0.01754	0.04196	0.02042	0.05857	0.02389	0.08408	0.02833
	RGCN	0.01814	0.00955	0.02627	0.01165	0.03877	0.01426	0.05749	0.01750
	MBGCN	0.04006	0.02088	0.05797	0.02548	0.08348	0.03079	0.12091	0.03730
	Improvement	30.23%	19.04%	37.04%	24.78%	24.91%	28.88%	8.90%	26.40%

MBGCN performs the best against state-of-the-art algorithms.

Summary: GNN for CF

- Encode high-order connectivity via GNN → collaborative signals
- Enhance representation learning of users and items → combine user-item bipartite with other features (such as price, bundle, behavioral type, etc.)

Outline

1. What is recommender system

- 2. Recent advances in recommender system
 - a) Deep Learning
 - ы) Graph Neural Networks

3. Problem of human-crafted recommender system and why AutoML is needed

Evolution of recommendation tasks

Social recommendation

Recommendation tasks are getting more diverse!

Sequential recommendation

Product rating prediction

Help | Close window

Bundle recommendation

Evolution of recommendation models

Recommendation models are getting more complicated!

The Model Collaborative Filtering
Sep Learning User Engagement

Logical Case Study
Knowledge Graph
Itention Network
Meta Learning

Neural Network Deep Convolutional Neural Network

Simple KNN

DNN, GNN, KG, Attention,...

Conversational Recommender System Network Embedding

Too many decisions to be made!

- 1. Input Features feature selection, feature crossing, ...
- 2. Model Architecture#layers, #blocks, activation functions,...
- 3. Interaction Function inner product, minus/plus, min/max, MLP, ...
- 4. Hyper-parameters embedding size, regularization, learning rate,...

How to make decisions?

Designed manually by experts

2. Enumerated by experiments

Both are suboptimal and inefficient! Why?

Designed manually by experts

- 1. Introduce noise?
 - E.g. unnecessary features
- 2. Miss counter-intuitive design?
 - E.g. novel model architecture
- 3. High labor cost

2. Enumerated by experiments

1. Large memory and computation cost

- Most importantly, there is no silver bullet that is universally optimal.
- Performance of different choices on feature/model architecture/interaction function/hyper-parameter depends on datasets and tasks.

How to always make good decisions on different datasets and tasks?

AutoML for Recommendation

Massive human efforts

Automatically build recommendation models

What to be automated?

Feature Engineering is a tedious and task-specific work. AutoML helps to generate informative and discriminative features

What to be automated?

Model Design/Hyperparameter Tuning requires heavy human and computation cost. AutoML helps to identify better architectures than handcrafted ones.

What to be automated?

Algorithm Selection. Optimization algorithms greatly influence model performance. AutoML helps to set the right configurations for the optimization algorithm.

Recent Advances in Automated RecSys

- Yao et al., Efficient Neural Interaction Functions Search for Collaborative Filtering. **WWW 2020.**
- Chen et al., lambdaOpt: Learn to Regularize Recommender Models in Finer Levels. **KDD 2019**.
- Luo et al., AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD 2019.

Will be introduced in detail by next tutor.

Summary

- Advanced techniques are incorporated into recommender systems, such as deep learning, graph neural networks and knowledge graph.
 Better performance is achieved.
- Human-crafted recommender system requires heavy manual designs or computation cost on multiple components, including feature engineering, model architecture design and algorithm selection.
- AutoML help automatically make reasonable decisions on different datasets and tasks.

Thank You!

liyongo7@Tsinghua.edu.cn