<матан, 4 сем>

Лектор: А. А. Лодкин Записал : ta_xus

31 мая 2017 г.

Оглавление

1	L Теория меры и интегралы по мере			
	§ 1	Системы множеств	2	
	§ 2	Борелевская сигма-алгебра	2	
	§ 3	Mepa	3	
	§ 4	Свойства меты	3	
	§ 5	Объём в \mathbb{R}^n . Мера Лебега	ŗ	
	§ 6	Измеримые функции	(
	§ 7	Интеграл по мере	6	
	§8	Теорема Беппо Ле́ви		
	§ 9	Свойства интеграла от суммируемых функций	7	
	§ 10	Счётная аддитивность интеграла	8	
	§ 11	Абсолютная непрерывность интеграла	8	
٨	A. Обозначения			

Глава 1: Теория меры и интегралы по мере

§1 Системы множеств

Определение 1. Пусть здесь (и дальше) X — произвольное множество. Тогда $\mathcal{P}(X) \equiv 2^X$ — множество всех подмножеств X.

E.g. $X = \{1 ... n\} \Rightarrow \#\mathcal{P}(X) = 2^n \text{ (это количество элементов, если что)}$

Определение 2 (Алгебра). Пусть $\mathcal{A}\subset\mathcal{P}(X)$. Тогда \mathcal{A} — алгебра множеств, если

- 1. $\varnothing \in \mathcal{A}$
- 2. $X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \cap B, A \cup B, A \setminus B \in \mathcal{A}$

Замечание. Заметим, что в алгебре пересечение (или объединение) *конечного* числа её элементов лежит в алгебре. Это можно доказать простой индукцией. А вот для бесконечных объединений пользоваться индукцией уже нельзя, ведь ∞ ∉ №.

Определение 3 (σ -алгбера). Пусть $\mathcal{A} \in \mathcal{P}(X)$. Тогда $\mathcal{A} - \sigma$ -алгебра, если

- 1. A -алгебра
- 2. $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}, \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$

Определение 4. Пусть $\mathcal{E} \subset \mathcal{P}(X)$. Тогда

$$\sigma(\mathcal{E}) := \bigcap \left\{ \mathcal{A} \mid \mathcal{A} - \sigma$$
-алгебра, $\mathcal{A} \supset \mathcal{E}
ight\}$

эта конструкция — сигма-алгебра, просто аксиомы проверить.

§ 2 Борелевская сигма-алгебра

Определение 1. Пусть \mathcal{O} — все открытые множества в \mathbb{R}^n . Тогда $\mathcal{B}_n = \sigma(\mathcal{O})$ — борелевская σ -алгебра в \mathbb{R}^n .

Определение 2 (Ячейка в \mathbb{R}^n). Обозначать её будем Δ^n , по размерности соответствующего пространства.

$$\Delta^{1} = \begin{cases} [a; b) \\ (-\infty; b) \\ [a; +\infty) \\ (-\infty; +\infty) \end{cases} \quad \forall n \ \Delta = \prod_{k=1}^{n} \Delta_{k}^{1}$$

Ещё введём алгебру $\mathcal{A} = \mathcal{C}ell_n = \{A \mid A = \bigcup_{k=1}^p \Delta_k\}$

Лемма 1. Пусть \mathcal{E}_1 , $\mathcal{E}_2 \subset \mathcal{P}(X)$, $\sigma(\mathcal{E}_1) \supset \mathcal{E}_2$. Тогда $\sigma(\mathcal{E}_1) \supset \sigma(\mathcal{E}_2)$

Теорема 2. $\mathcal{B}_n = \sigma(\mathcal{Cell}_n)$.

Пример 1. Все множества нижё — борелевские.

 $\langle 1 \rangle \mathcal{O}$.

$$\langle 2 \rangle \ \mathcal{F} = \{ A \mid \overline{A} \in \mathcal{O} \}.$$

$$\langle 3 \rangle \left(A = \bigcap_{\substack{k=1 \ G_k \in \mathcal{O}}}^{\infty} G_k \right) \in G_{\delta}.$$

$$\langle 4 \rangle \left(B = \bigcup_{\substack{k=1 \\ F_k \in \mathcal{F}}}^{\infty} F_k \right) \in F_{\sigma}.$$

$$\langle 5 \rangle \left(C = \bigcup_{\substack{k=1 \ A_k \in G_\delta}}^{\infty} A_k \right) \in G_{\delta\sigma}.$$

У всех этих множеств со сложными индексами δ — пересечение, σ — объединение, G — операция над открытыми в самом начале, F — над замкнутыми.

§3 Mepa

Определение 1. Пусть задано X, $\mathcal{A} \subset \mathcal{P}(X)$, $A_k \in \mathcal{A}$. Тогда $\mu \colon \mathcal{A} \to [0; +\infty]$ — мера, если

1. $\mu(\emptyset) = 0$

2.
$$\mu\left(\bigsqcup_{k=1}^{\infty}A_{k}\right)=\sum_{k=1}^{\infty}\mu(A_{k})$$
. Здесь никто не обещает, что будет именно σ -алгебра.

Множества $A \in \mathcal{A}$ в таком случае называются μ -измеримыми.

Пример 1.
$$a \in X$$
, $\mu(A) = \begin{cases} 1, & a \in A \\ 0, & a \not\in A \end{cases}$ — δ -мера Дирака.

Пример 2. $a_k \in X$, $m_k \geqslant 0$, $\mu(a) := \sum_{k \colon a_k \in a} m_k - «молекулярная» мера.$

она считает, не считывает \because Пример 3. $\mu(A) = \#A$ — считающая мера.

§ 4 Свойства меты

Здесь всюду будем рассматривать тройку $(X,\mathcal{A}\subset\mathcal{P}(X),\mu)$

Утверждение 1 (Монотонность меры). Пусть $A, B \in \mathcal{A}, A \subset B$. Тогда $\mu(A) \leqslant \mu(B)$.

Утверждение 2. Пусть $A, B \in \mathcal{A}, A \subset B, \mu(B) < +\infty.$ Тогда $\mu(B \setminus A) = \mu(B) - \mu(A).$

Утверждение 3 (Усиленная монотонность). Пусть $A_{1..n}$, $B \in \mathcal{A}$, $A_{1..n} \subset B$ и дизъюнктны.

Тогда
$$\sum_{k=1}^{n} \mu(A_k) \leqslant \mu B$$

Утверждение 4 (Полуаддитивность меры). Пусть $B_{1..n}$, $A \in \mathcal{A}$, $A \subset \bigcup_{k=1}^n B_k$.

Тогда
$$\mu A \leqslant \sum_{k=1}^n \mu(B_k)$$
.

▼

Сделать B_k дизъюнктными: $C_k = B_k \setminus \bigcup_{j < k} B_k$. Затем представить A как дизъюнктное объединение D_k : $D_k = C_k \cap A$. Так можно сделать, потому что

$$A = A \cap \bigcup_{k=1}^{n} B_k = A \cap \bigcup_{k=1}^{n} C_k = \bigcup_{k=1}^{n} A \cap C_k$$

Ну а тогда

$$\mu(A) = \sum_{k} \mu D_{k} \leqslant \sum_{k} \mu C_{k} \leqslant \sum_{k} \mu B_{k}$$

Опять-таки никто не сказал, что \mathcal{A} — σ -алгебра.

Утверждение 5 (Непрерывность меры снизу). Пусть $A_1 \subset A_2 \subset \cdots$, $A_k \in \mathcal{A}$, $A = \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$.

$$T$$
огда $\mu A = \lim_{n \to \infty} \mu A_n$

Утверждение 6 (Непрерывность меры сверху). Пусть $A_1 \supset A_2 \supset \cdots$, $A_k \in \mathcal{A}$, $A = \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$, $\mu A_1 < +\infty$.

$$T$$
огда $\mu A = \lim_{n \to \infty} \mu A_n$

<+Тут будет картинка про метод исчерпывания Евдокса+>

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Тогда μ — полная, если

$$\forall \in \mathcal{A}: \mu A = 0 \ \forall B \subset A, B \in \mathcal{A} :: \mu B = 0$$

Определение 2. Мера μ на $\mathcal A$ называется σ -конечной, если

$$\exists X_n \in \mathcal{A}, \mu X_n < +\infty :: \bigcup_{n=1}^{\infty} X_n = X$$

Определение 3. Пусть \mathcal{A}_1 , \mathcal{A}_2 — сигма-алгебры подмножеств X, $\mathcal{A}_1 \subset \mathcal{A}_2$, $\mu_1 \colon A_1 \to [0; +\infty]$, $\mu_2 \colon A_2 \to [0; +\infty]$. Тогда μ_2 называется продолжением μ_1 .

Теорема 7 (Лебега-Каратеодора). Пусть μ — сигма-конечная мера на \mathcal{A} . Тогда

- 1. Существуют её полные сигма-конечные продожения
- 2. Среди них есть наименьшее: $\overline{\mu}$. Её ещё называют стандартным продолжением.

<+идея доказательства+> Пока надо запомнить, что стандратное продолжение — сужение внешней «меры» на хорошо разбивающие множества.

$\S 5$ Объём в \mathbb{R}^n . Мера Лебега

Определение 1. Пусть $\Delta = \Delta_1 \times \cdots \times \Delta_n$, $\Delta_k = [a_k, b_k)$. Тогда

$$v_1\Delta_k\equiv |\Delta_k|:=egin{cases} b_k-a_k, & a_k\in\mathbb{R}\wedge b_k\in\mathbb{R}\ \infty, & ext{иначе} \end{cases}$$

Для всего, что $\in \mathcal{Cell}_n$, представим его в виде дизъюнктного объединения Δ_j . Тогда $vA := \sum_{i=1}^q v\Delta_j$.

Замечание. Здесь радикально всё равно, входят ли концы — у них мера ноль.

Теорема 1. V - конечно-аддитивен, то есть

$$\forall A, A_{1..p} \in Cell, A = \bigsqcup_{k=1}^{p} A_k \Rightarrow vA = \sum_{k=1}^{p} vA_k$$

Теорема 2. v - cчётно-аддитивен, то есть

$$\forall A, A_{1..} \in Cell, A = \bigsqcup_{k=1}^{\infty} A_k \Rightarrow vA = \sum_{k=1}^{\infty} vA_k$$

□ Здесь в конспекте лишь частный случай про ячейки.

Определение 2 (Мера Лебега). $X = \mathbb{R}^n$, $\mathcal{A} = \mathcal{C}ell_n$. Тогда $\lambda_n = \overline{\nu_n}$, $\mathcal{M} = \overline{\mathcal{A}}$ — мера Лебега и алгебра множеств, измеримых по Лебегу, соответственно.

Свойства меры Лебега

- $(1) \triangleright \lambda\{x\} = 0$
- $(2) \triangleright \lambda(\{x_k\}_k) = 0$
- $(3) \triangleright \mathcal{B} \subset \mathcal{M}$
- $(4) \triangleright L \subset \mathbb{R}^m, m < n \Rightarrow \lambda_n L = 0$

А это уже целая теормема.

Теорема 3 (Регулярность меры Лебега). Пусть $A \in \mathcal{M}$, $\varepsilon > 0$. Тогда

$$\exists G \in \mathcal{O}, F \in \mathcal{F} :: F \subset A \subset G \land \begin{cases} \lambda(G \setminus A) < \varepsilon \\ \lambda(A \setminus F) < \varepsilon \end{cases}$$

 \square куча скучных оценок квадратиками. \blacksquare

§ 6 Измеримые функции

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Пусть ещё $f: X \to \mathbb{R}$. Тогда f называется измеримой относительно \mathcal{A} , если

$$\forall \Delta \subset \mathbb{R} :: f^{-1}(\Delta) \in \mathcal{A}$$

Теорема 1. Пусть f измеримо относительно Я. Тогда измеримы и следующие (Лебеговы) множества

1 типа $\{x \in X \mid f(x) < a\} \equiv X[f < a]$

2 типа $\{x \in X \mid f(x) \leqslant a\} \equiv X[f \leqslant a]$

3 типа $\{x \in X \mid f(x) > a\} \equiv X[f > a]$

4 типа $\{x \in X \mid f(x) \geqslant a\} \equiv X[f \geqslant a]$

При этом верно и обратное: если измеримы множества какого-то отдного типа, то f измерима.

Теорема 2. Пусть f_1, \ldots, f_n измеримы относительно $\mathcal A$ и $g \colon \mathbb R^n \to R$ — непрерывна. Тогда измерима $\varphi(x) = g(f_1(x), \ldots, f_n(x))$

Замечание. В частности, $f_1 + f_2$ измеримы.

Теорема 3. Пусть f_1, f_2, \ldots измеримы относительно $\mathcal A$. Тогда измеримы $\sup f_n, \inf f_n, \limsup f_n, \lim f_n$. Последний, правда, может не существовать.

□ Следует из непрерывности меры. ■

Определение 2. Пусть $f: X \to \mathbb{R}$ — измерима. Тогда она называется простой, если принимает конечное множество значений.

Определение 3 (Индикатор множества).

$$E \subset X, \mathbb{1}_E := \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$$

Он, как видно совсем простая функция.

Утверждение 4. $f - простая \Rightarrow f = \sum_{k=1}^{p} c_k \mathbb{1}_{E_k}$

Теорема 5. Пусть $f: X \to \mathbb{R}$, измерима, $f \geqslant 0$. Тогда

$$\exists (\varphi_n) : 0 \leqslant \varphi_1 \leqslant \varphi_2 \leqslant \cdots :: \varphi_n \nearrow f$$
 (поточечно)

§7 Интеграл по мере

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu), f$ — измерима.

[1] f — простая.

$$\int\limits_X f\,\mathrm{d}\mu:=\sum\limits_{k=1}^p c_k\mu E_k$$

[2] $f \ge 0$.

$$\int\limits_X f \,\mathrm{d}\mu := \sup \left\{ \int\limits_X g \,\mathrm{d}\mu \, \middle| \, g$$
-простая, $0\leqslant g\leqslant f
ight\}$

[3] f общего вида.

$$f_{+} = \max\{f(x), 0\}$$

$$f_{-} = \max\{-f(x), 0\}$$

$$\int\limits_{X} f \, \mathrm{d}\mu = \int\limits_{X} f_{+} \, \mathrm{d}\mu - \int\limits_{X} f_{-} \, \mathrm{d}\mu$$

Здесь нужно, чтобы хотя бы один из интегралов в разности существовал.

Замечание.
$$\int\limits_A f \,\mathrm{d}\mu := \sum_{k=1}^p c_k \mu(E_k \cap A)$$

Утверждение 1.
$$\int\limits_{\Delta}f\,\mathrm{d}\mu=\int\limits_{X}f\cdot\mathbb{1}_{A}\,\mathrm{d}\mu.$$

Свойства интеграла от неотрицательных функций Здесь всюду функции неотрицательны и измеримы, что не лишено отсутствия внезапности.

$$oxed{A_1}$$
 $0\leqslant f\leqslant g$. Тогда $\int\limits_X f\,\mathrm{d}\mu\leqslant\int\limits_X g\,\mathrm{d}\mu.$

$$oxed{A_2}$$
 $A\subset B\subset X$, $A,B\in \mathcal{A},\ f\geqslant 0$, измерима. Тогда $\int\limits_A f\,\mathrm{d}\mu\leqslant \int\limits_B f\,\mathrm{d}\mu$

А₃ см теорему 1.8.1.

$$\boxed{\mathsf{A}_4} \int\limits_{\mathsf{X}} (f+g) \, \mathrm{d}\mu = \int\limits_{\mathsf{X}} f \, \mathrm{d}mu + \int\limits_{\mathsf{X}} g \, \mathrm{d}mu$$

§8 Теорема Беппо Ле́ви

Теорема 1. Пусть (f_n) — измеримы на X, $0 \leqslant f_1 \leqslant \cdots$, $f = \lim_n f_n$. Тогда

$$\int\limits_X f \, \mathrm{d}\mu = \lim_{n \to \infty} \int\limits_X f_n \, \mathrm{d}\mu$$

§ 9 Свойства интеграла от суммируемых функций

Определение 1. f — суммируемая (на X,μ), если $\int\limits_X f \,\mathrm{d}\mu < \infty$. Весь класс суммируемых (на X,μ) функций обозначается через $\mathcal{L}(X,\mu)$.

$$\boxed{\mathsf{B}_1} \ f \leqslant g \Rightarrow \int\limits_{\mathsf{X}} f \, \mathrm{d}\mu \leqslant \int\limits_{\mathsf{X}} g \, \mathrm{d}\mu.$$

$$\boxed{\mathsf{B}_2} \int\limits_{\mathsf{Y}} (f\pm g)\,\mathrm{d}\mu = \int\limits_{\mathsf{Y}} f\,\mathrm{d}\mu \pm \int\limits_{\mathsf{Y}} g\,\mathrm{d}\mu.$$

$$\boxed{\mathsf{B}_3} \int\limits_{\mathsf{Y}} \lambda f \, \mathrm{d}\mu = \lambda \int\limits_{\mathsf{Y}} f \, \mathrm{d}\mu.$$

$$\boxed{\mathsf{B}_4} \ |f| \leqslant g \Rightarrow \left| \int\limits_{\mathsf{X}} f \, \mathrm{d} \mu \right| \leqslant \int\limits_{\mathsf{X}} g \, \mathrm{d} \mu.$$

$$\boxed{\mathsf{B}_5} \left| \int\limits_X f \, \mathrm{d}\mu \right| \leqslant \int\limits_X |f| \, \mathrm{d}\mu.$$

$$\boxed{\mathsf{B}_7} |f| \leqslant M \leqslant +\infty \Rightarrow \left| \int\limits_X f \, \mathrm{d}\mu \right| \leqslant M\mu X$$

§ 10 Счётная аддитивность интеграла

Теорема 1. Пусть задана тройка (X, \mathcal{A}, μ) , f — измерима и $f \geqslant 0 \lor f \in \mathcal{L}$. Пусть к тому же

$$A, A_{1..} \subset X, A = \bigcup_{n=1}^{\infty} A_n$$

Тогда

$$\int\limits_A f \, \mathrm{d}\mu = \sum_{n=1}^\infty \int\limits_{A_n} f \, \mathrm{d}\mu$$

§ 11 Абсолютная непрерывность интеграла

Теорема 1. Пусть $f \in \mathcal{L}(X, \mathcal{A}, \mu)$. Тогда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ :: \ \forall A \in \mathcal{A}, A \subset X : \ \mu A < \delta \ :: \ \left| \int_A f \ \mathrm{d}\mu \right| < \varepsilon$$

Глава А: Обозначения

Обозначения с лекции

```
a := b — определение a. \bigsqcup_k A_k \ \ \ \ - объединение дизъюнктных множеств. \mathcal A Алгебра множеств
```

Нестандартные обозначения

★ — ещё правится. Впрочем, относится почти ко всему.

□ · · · ■ — начало и конец доказательства теоремы

▼… ▲ — начало и конец доказательства более мелкого утверждения

:set aflame — набирающему зело не нравится билет

<+что-то+> — тут будет что-то, но попозже

 $a..b - [a;b] \cap \mathbb{Z}$

≡ — штуки эквивалентны. Часто используется в этом смысле в определениях, когда вводится два разных обозначения одного и того же объекта.

:: В кванторах, «верно, что»

 \mathcal{A}_{σ} Сигма-алгебра множеств