Symmetries in Predicate Formulas

Menno Bartels Formal System Analysis, TU/e

20-3-2025

$$(Color_1, Color_2) \mapsto (Color_2, Color_1)$$

$$\{(Red, Red)\}$$

$$\downarrow \downarrow \downarrow$$

$$\{(Green, Red), (Red, Green)\}$$

$$\downarrow \downarrow \downarrow$$

$$(Green, Green)$$

- What is a (proper) definition of symmetry for predicate formulas?
- How can we extend this to the setting of PBESs?
- How do we benefit from symmetries?

- What is a (proper) definition of symmetry for predicate formulas?
- How can we extend this to the setting of PBESs?
- How do we benefit from symmetries?

- What is a (proper) definition of symmetry for predicate formulas?
- How can we extend this to the setting of PBESs?
- How do we benefit from symmetries?

Table of Contents

- 1. Preliminaries
- 2. Permutations on Predicate Formulas
- 3. Symmetries
- 4. Preserving Solutions
- 5. On Finding Symmetries

Group

A *group* is a pair (\mathcal{G}, \circ) consisting of a non-empty set \mathcal{G} and a binary operator $\circ : \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ such that for any $\alpha, \beta, \gamma \in \mathcal{G}$ we have

•
$$\alpha \circ (\beta \circ \gamma) = (\alpha \circ \beta) \circ \gamma$$
 (Associativity)

•
$$\alpha \circ id = \alpha = id \circ \alpha$$
 (Identity element)

•
$$\alpha \circ \alpha^{-1} = id = \alpha^{-1} \circ \alpha$$
 (Inverse element)

The pair $(\mathbb{Z},+)$ forms a group as for any $a,b,c\in\mathbb{Z}$ we have a+(b+c)=(a+b)+c, the identity element is 0 and for any $a\in\mathbb{Z}$ we have inverse -a.

The pair (D_4, \circ) where $D_4 = \{id, r_1, r_2, r_3\}$ and for any $a, b \in D_4$, $a \circ b$ is defined by composition, forms a group.

Permutation groups

Let X be a set. A *permutation* is a bijection $\pi \colon X \to X$. Let $\operatorname{per}(X)$ be the set of all permutations on X, then the pair $(\operatorname{per}(X), \circ)$ where \circ is defined as function composition, is a group.

Permutation groups

Let X be a set. A *permutation* is a bijection $\pi: X \to X$. Let per(X) be the set of all permutations on X, then the pair $(per(X), \circ)$ where \circ is defined as function composition, is a group.

Permutation groups

Let X be a set. A *permutation* is a bijection $\pi \colon X \to X$. Let per(X) be the set of all permutations on X, then the pair $(per(X), \circ)$ where \circ is defined as function composition, is a group.

Permutation groups

Let X be a set. A *permutation* is a bijection $\pi\colon X\to X$. Let $\operatorname{per}(X)$ be the set of all permutations on X, then the pair $(\operatorname{per}(X),\circ)$ where \circ is defined as function composition, is a group.

Permutation groups

Let X be a set. A *permutation* is a bijection $\pi: X \to X$. Let per(X) be the set of all permutations on X, then the pair $(per(X), \circ)$ where \circ is defined as function composition, is a group.

Table of Contents

- 1. Preliminaries
- 2. Permutations on Predicate Formulas
- 3. Symmetries
- 4. Preserving Solutions
- 5. On Finding Symmetries

Predicate Formulas

A predicate formula is generated by the following grammar

$$\varphi := b \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid X(f_1, \dots, f_n) \mid \forall e : D.\varphi \mid \exists e : D.\varphi$$

The set of all predicate formulas is denotes as Φ . We assume a set of parameters $P = \{d_1, \dots, d_n\}$ that are never bound.

$$\varphi = (\neg(d_1 = R) \vee X(G, d_2))) \wedge (\neg(d_1 = G) \vee X(R, d_2)))$$

Predicate Formulas

A predicate formula is generated by the following grammar

$$\varphi := b \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid X(f_1, \dots, f_n) \mid \forall e : D.\varphi \mid \exists e : D.\varphi$$

The set of all predicate formulas is denotes as Φ . We assume a set of parameters $P = \{d_1, \dots, d_n\}$ that are never bound.

$$\varphi = ((d_1 = R) \Rightarrow X(G, d_2)) \wedge ((d_1 = G) \Rightarrow X(R, d_2)))$$

Predicate Formulas

A predicate formula is generated by the following grammar

$$\varphi := b \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid X(f_1, \ldots, f_n) \mid \forall e : D.\varphi \mid \exists e : D.\varphi$$

The set of all predicate formulas is denotes as Φ . We assume a set of parameters $P = \{d_1, \dots, d_n\}$ that are never bound.

$$arphi = ((d_1 = R) \Rightarrow X(G, d_2)) \land ((d_1 = G) \Rightarrow X(R, d_2)))$$
 $\pi = (12)$

Permutations on Predicate Formulas

$$\pi(b) = b[d_i := d_{\pi(i)}]_{i \in [n]}
\pi(\varphi_1 \wedge \varphi_2) = \pi(\varphi_1) \wedge \pi(\varphi_2)
\pi(\varphi_1 \vee \varphi_2) = \pi(\varphi_1) \vee \pi(\varphi_2)
\pi(X(f_1, ..., f_n)) = X(f_{\pi(1)}, ..., f_{\pi(n)})[d_i := d_{\pi(i)}]_{i \in [n]}
\pi(\forall e : D.\varphi) = \forall e : D.\pi(\varphi)
\pi(\exists e : D.\varphi) = \exists e : D.\pi(\varphi)$$

$$\pi = (12) \qquad \varphi = ((d_1 = R) \Rightarrow X(G, d_2)) \land ((d_1 = G) \Rightarrow X(R, d_2))$$

Permutations on Predicate Formulas

$$\pi(b) = b[d_i := d_{\pi(i)}]_{i \in [n]}
\pi(\varphi_1 \wedge \varphi_2) = \pi(\varphi_1) \wedge \pi(\varphi_2)
\pi(\varphi_1 \vee \varphi_2) = \pi(\varphi_1) \vee \pi(\varphi_2)
\pi(X(f_1, ..., f_n)) = X(f_{\pi(1)}, ..., f_{\pi(n)})[d_i := d_{\pi(i)}]_{i \in [n]}
\pi(\forall e : D.\varphi) = \forall e : D.\pi(\varphi)
\pi(\exists e : D.\varphi) = \exists e : D.\pi(\varphi)$$

$$\pi = (12) \qquad \varphi = ((d_1 = R) \Rightarrow X(G, d_2)) \land ((d_1 = G) \Rightarrow X(R, d_2))$$

$$\pi(\varphi) = ((d_2 = R) \Rightarrow X(d_1, G)) \land ((d_2 = G) \Rightarrow X(d_1, R))$$

Permutations on Predicate Formulas

$$\pi(b) = b[d_i := d_{\pi(i)}]_{i \in [n]}
\pi(\varphi_1 \wedge \varphi_2) = \pi(\varphi_1) \wedge \pi(\varphi_2)
\pi(\varphi_1 \vee \varphi_2) = \pi(\varphi_1) \vee \pi(\varphi_2)
\pi(X(f_1, ..., f_n)) = X(f_{\pi(1)}, ..., f_{\pi(n)})[d_i := d_{\pi(i)}]_{i \in [n]}
\pi(\forall e : D.\varphi) = \forall e : D.\pi(\varphi)
\pi(\exists e : D.\varphi) = \exists e : D.\pi(\varphi)$$

$$\pi = (12)$$
 $\psi = ((d_1 = R) \Rightarrow X(G, d_2)) \land ((d_2 = R) \Rightarrow X(d_1, G))$

Permutations on Predicate Formulas

$$\begin{array}{lll} \pi(b) & = & b[d_i := d_{\pi(i)}]_{i \in [n]} \\ \pi(\varphi_1 \wedge \varphi_2) & = & \pi(\varphi_1) \wedge \pi(\varphi_2) \\ \pi(\varphi_1 \vee \varphi_2) & = & \pi(\varphi_1) \vee \pi(\varphi_2) \\ \pi(X(f_1, \dots, f_n)) & = & X(f_{\pi(1)}, \dots, f_{\pi(n)})[d_i := d_{\pi(i)}]_{i \in [n]} \\ \pi(\forall e : D.\varphi) & = & \forall e : D.\pi(\varphi) \\ \pi(\exists e : D.\varphi) & = & \exists e : D.\pi(\varphi) \end{array}$$

$$\pi = (12) \qquad \psi = ((d_1 = R) \Rightarrow X(G, d_2)) \land ((d_2 = R) \Rightarrow X(d_1, G))
\pi(\psi) = ((d_2 = R) \Rightarrow X(d_1, G)) \land ((d_1 = R) \Rightarrow X(G, d_2))$$

Lemma

Let $\pi \in \operatorname{per}([n])$ be a permutation for $\varphi \in \Phi$. Let η and δ be some predicate and data environment. Then we have that $[\![\pi(\varphi)]\!]\eta\delta = [\![\varphi]\!]\pi(\eta)\pi(\delta)$.

Permutations also "behave nicely" regarding semantics.

Filling in a value for a permutated predicate formula is equal to filling in the permutated value to the original predicate formula.

Lemma

Let $\pi \in \operatorname{per}([n])$ be a permutation for $\varphi \in \Phi$. Let η and δ be some predicate and data environment. Then we have that $[\![\pi(\varphi)]\!]\eta\delta = [\![\varphi]\!]\pi(\eta)\pi(\delta)$.

Permutations also "behave nicely" regarding semantics.

Filling in a value for a permutated predicate formula is equal to filling in the permutated value to the original predicate formula.

Corollary:

$$\llbracket \varphi \rrbracket \eta \delta = \llbracket \pi(\varphi) \rrbracket \pi^{-1}(\eta) \pi^{-1}(\delta)$$

Table of Contents

- 1. Preliminaries
- 2. Permutations on Predicate Formulas
- 3. Symmetries
- 4. Preserving Solutions
- 5. On Finding Symmetries

Symmetry for Predicate Formulas

Let $\pi \in \text{per}([n])$ be a permutation and $\varphi \in \Phi$ be a predicate formula. We say that π is a symmetry for φ if and only if

$$\pi(\varphi) \equiv \varphi$$

Symmetry for Predicate Formulas

Let $\pi \in \text{per}([n])$ be a permutation and $\varphi \in \Phi$ be a predicate formula. We say that π is a symmetry for φ if and only if

$$\pi(\varphi) \equiv \varphi$$

$$\pi = (12) \qquad \varphi = ((d_1 = R) \Rightarrow X(G, d_2)) \land ((d_1 = G) \Rightarrow X(R, d_2))$$

$$\pi(\varphi) = ((d_2 = R) \Rightarrow X(d_1, G)) \land ((d_2 = G) \Rightarrow X(d_1, R))$$

Symmetry for Predicate Formulas

Let $\pi \in \text{per}([n])$ be a permutation and $\varphi \in \Phi$ be a predicate formula. We say that π is a symmetry for φ if and only if

$$\pi(\varphi) \equiv \varphi$$

$$\pi = (12) \qquad \varphi = ((d_1 = R) \Rightarrow X(G, d_2)) \land ((d_1 = G) \Rightarrow X(R, d_2))$$

$$\pi(\varphi) = ((d_2 = R) \Rightarrow X(d_1, G)) \land ((d_2 = G) \Rightarrow X(d_1, R))$$

$$\pi(\varphi) \not\equiv \varphi$$

So π not a symmetry for φ .

Symmetry for Predicate Formulas

Let $\pi \in \text{per}([n])$ be a permutation and $\varphi \in \Phi$ be a predicate formula. We say that π is a symmetry for φ if and only if

$$\pi(\varphi) \equiv \varphi$$

Symmetry for Predicate Formulas

Let $\pi \in \text{per}([n])$ be a permutation and $\varphi \in \Phi$ be a predicate formula. We say that π is a symmetry for φ if and only if

$$\pi(\varphi) \equiv \varphi$$

$$\pi = (12) \qquad \psi = ((d_1 = R) \Rightarrow X(G, d_2)) \land ((d_2 = R) \Rightarrow X(d_1, G))
\pi(\psi) = ((d_2 = R) \Rightarrow X(d_1, G)) \land ((d_1 = R) \Rightarrow X(G, d_2))$$

Symmetry for Predicate Formulas

Let $\pi \in \text{per}([n])$ be a permutation and $\varphi \in \Phi$ be a predicate formula. We say that π is a symmetry for φ if and only if

$$\pi(\varphi) \equiv \varphi$$

$$\pi = (12) \qquad \psi = ((d_1 = R) \Rightarrow X(G, d_2)) \land ((d_2 = R) \Rightarrow X(d_1, G))$$

$$\pi(\psi) = ((d_2 = R) \Rightarrow X(d_1, G)) \land ((d_1 = R) \Rightarrow X(G, d_2))$$

$$\pi(\psi) \equiv \psi$$

So π is a symmetry for ψ .

Table of Contents

- 1. Preliminaries
- 2. Permutations on Predicate Formulas
- 3. Symmetries
- 4. Preserving Solutions
- 5. On Finding Symmetries

Preserving Solutions

PBES

A Parametrized Boolean Equation System (PBES) is a sequence of equations generated by the following grammar.

$$\mathcal{E} := \emptyset \mid (\sigma X(d_1:D,\ldots,d_n:D) = \varphi_X)\mathcal{E}$$

Here $\sigma \in \{\nu, \mu\}$ and $\varphi_X \in \Phi$.

$$u X(d_1:D,d_2:D) = (d_1=G) \Rightarrow X(R,d_2) \land (d_1=R) \Rightarrow X(G,d_2) \land (d_2=G) \Rightarrow X(d_1,R) \land (d_2=R) \Rightarrow X(d_1,G)$$

PBES

A Parametrized Boolean Equation System (PBES) is a sequence of equations generated by the following grammar.

$$\mathcal{E} := \emptyset \mid (\sigma X(d_1:D,\ldots,d_n:D) = \varphi_X)\mathcal{E}$$

Here $\sigma \in \{\nu, \mu\}$ and $\varphi_X \in \Phi$.

$$u X(d_1:D,d_2:D) = (d_1=G) \Rightarrow X(R,d_2) \land$$

$$(d_1=R) \Rightarrow X(G,d_2) \land$$

$$(d_2=G) \Rightarrow X(d_1,R) \land$$

$$(d_2=R) \Rightarrow X(d_1,G) \land$$

$$(\neg(d_1=G) \lor \neg(d_2=G))$$

$$\mathcal{E} := \nu X(d_1 : D, d_2 : D) = (d_1 = G) \Rightarrow X(R, d_2) \land$$

$$(d_1 = R) \Rightarrow X(G, d_2) \land$$

$$(d_2 = G) \Rightarrow X(d_1, R) \land$$

$$(d_2 = R) \Rightarrow X(d_1, G) \land$$

$$(\neg (d_1 = G) \lor \neg (d_2 = G))$$

$$\mathcal{E} := \nu X(d_1 : D, d_2 : D) = (d_1 = G) \Rightarrow X(R, d_2) \land$$

$$(d_1 = R) \Rightarrow X(G, d_2) \land$$

$$(d_2 = G) \Rightarrow X(d_1, R) \land$$

$$(d_2 = R) \Rightarrow X(d_1, G) \land$$

$$(\neg (d_1 = G) \lor \neg (d_2 = G))$$

If we start from (R, G), can we reach (G, G)?

$$\mathcal{E} := \nu X(d_1 : D, d_2 : D) = (d_1 = G) \Rightarrow X(R, d_2) \land$$

$$(d_1 = R) \Rightarrow X(G, d_2) \land$$

$$(d_2 = G) \Rightarrow X(d_1, R) \land$$

$$(d_2 = R) \Rightarrow X(d_1, G) \land$$

$$(\neg (d_1 = G) \lor \neg (d_2 = G))$$

If we start from
$$(R,G)$$
, can we reach (G,G) ? Yes, so
$$(R,G)\notin [\![\mathcal{E}]\!]\eta\delta(X)$$

Symmetry for PBES

Let \mathcal{E} be a PBES let $\pi \in \text{per}([n])$. Then π is a symmetry for \mathcal{E} if it is a symmetry for every right hand side in \mathcal{E} .

Symmetry for PBES

Let \mathcal{E} be a PBES let $\pi \in \text{per}([n])$. Then π is a symmetry for \mathcal{E} if it is a symmetry for every right hand side in \mathcal{E} .

$$arphi_X = (d_1 = G) \Rightarrow X(R, d_2) \land \ (d_1 = R) \Rightarrow X(G, d_2) \land \ (d_2 = G) \Rightarrow X(d_1, R) \land \ (d_2 = R) \Rightarrow X(d_1, G) \land \ (\neg(d_1 = G) \lor \neg(d_2 = G))$$

Symmetry for PBES

Let \mathcal{E} be a PBES let $\pi \in \text{per}([n])$. Then π is a symmetry for \mathcal{E} if it is a symmetry for every right hand side in \mathcal{E} .

$$\varphi_{X} = (d_{1} = G) \Rightarrow X(R, d_{2}) \land \qquad \qquad \pi(\varphi_{X}) = (d_{2} = G) \Rightarrow X(d_{1}, R) \land \qquad (d_{1} = R) \Rightarrow X(d_{1}, R) \land \qquad (d_{2} = G) \Rightarrow X(d_{1}, R) \land \qquad (d_{1} = G) \Rightarrow X(d_{1}, G) \land \qquad (d_{1} = G) \Rightarrow X(G, d_{2}) \land \qquad (d_{1} = R) \Rightarrow X(G, d_{2}) \land \qquad (\neg(d_{1} = G) \lor \neg(d_{2} = G))$$

$$(R,G) \notin \llbracket \mathcal{E} \rrbracket \eta \delta(X)$$

$$(R,G) \notin \llbracket \mathcal{E} \rrbracket \eta \delta(X) \iff (G,R) \notin \llbracket \mathcal{E} \rrbracket \eta \delta(X)$$

Main takeaway: If we know the solution for some value we also know the solution to all its symmetric counterparts.

Main takeaway: If we know the solution for some value we also know the solution to all its symmetric counterparts.

Theorem

Let \mathcal{E} be a PBES and $\pi \in \text{per}([n])$ be a symmetry for \mathcal{E} . Then for all predicate variables X and values $\bar{v} = (v_1, \dots, v_n) \in \mathbb{D}^n$ it holds that

$$\bar{v} \in \llbracket \mathcal{E} \rrbracket \eta \delta(X) \iff \pi(\bar{v}) \in \llbracket \mathcal{E} \rrbracket \eta \delta(X)$$

Table of Contents

- 1. Preliminaries
- 2. Permutations on Predicate Formulas
- 3. Symmetries
- 4. Preserving Solutions
- 5. On Finding Symmetries

Future work

- Up until now we have assumed that we have a symmetry
- The next challenge is in finding symmetries, without looking at the solution beforehand.
- We aim to achieve this with the use of control flow parameters

$$d_1 = R$$
 $d_2 = R$
 $\begin{pmatrix} \uparrow \\ \downarrow \end{pmatrix}$
 $d_1 = G$ $d_2 = G$

• Implement the use of symmetries

Thanks!

Multiple Equations

$$\nu X(d_1: D, d_2: D) = (d_1 = G) \Rightarrow Y(R, d_2) \land (d_2 = G) \Rightarrow Y(d_1, R)$$

$$\nu Y(d_1: D, d_2: D) = (d_1 = R) \Rightarrow X(G, d_2) \land (d_2 = R) \Rightarrow X(d_1, G)$$