

South China University of Technology

The Experiment Report of Machine Learning

SCHOOL: SCHOOL OF SOFTWARE ENGINEERING

SUBJECT: SOFTWARE ENGINEERING

Author: Supervisor: Zhaohui Huang Qingyao Wu

Student ID: 201720145112 Grade: Graduate

December 15, 2017

Linear Regression, Linear Classification and Gradient Descent

Abstract—

I. INTRODUCTION

The main purposes of this report can be concluded as the following:

- Compare and understand the difference between gradient descent and stochastic gradient descent.
- 2. Compare and understand the differences and relationships between Logistic regression and linear classification.
- 3. Further understand the principles of SVM and practice on larger data.
 - II. METHODS AND THEORY

III. EXPERIMENT

Dataset

Experiment uses a9a of LIBSVM Data, including 32561/16281(testing) samples and each sample has 123/123 (testing) features.

Experiment Step

Logistic Regression and Stochastic Gradient Descent

- 1. Load the training set and validation set.
- 2. Initalize logistic regression model parameters, you can consider initalizing zeros, random numbers or normal distribution.
- 3. Select the loss function and calculate its derivation, find more detail in PPT.
- Calculate gradient toward loss function from partial samples.
- 5. Update model parameters using different optimized methods(NAG, RMSProp, AdaDelta and Adam).
- 6. Select the appropriate threshold, mark the sample whose predict scores greater than the threshold as positive, on the contrary as negative.

Linear Classification and Stochastic Gradient Descent

- 1. Load the training set and validation set.
- 2. Initalize SVM model parameters, you can consider initalizing zeros, random numbers or normal distribution.
- 3. Select the loss function and calculate its derivation, find more detail in PPT.
- 4. Calculate gradient toward loss function from **partial** samples.
- 5. Update model parameters using different optimized methods(NAG, RMSProp, AdaDelta and Adam).
- 6. Select the appropriate threshold, mark the sample whose predict scores greater than the threshold as positive, on the contrary as negative.

Result

IV. CONCLUSION