Contents

맥주 추천 NLP 모델

방한관광객수 예측 모형

코스타리카 빈곤선 예측 모형

예방 가능 사망자수 예측 모형

맥주 추천 NLP모델

• 사용 언어

(Keras, Numpy, Pandas)

- 사용 알고리즘
- Word2Vec에 기반한 워드 임베딩
- LSTM with attention mechanism

- Work Flow(담당 역할은 강조 표시)
- 데이터 수집(크롤링)
- ① 인스타그램
- ②다음 까페
- ③ratebeer
- 데이터 양식 통합 및 데이터 전처리
- ① Word2Vec 사전 훈련
- ② 이모티콘 제거
- 모델 작성 및 적합
- ① 1단계 모형 : 단순 LSTM
- ② 2단계 모형 : LSTM with attention Mechanism
- ③ 워드 임베딩에 기반한 이상형 월드컵
- 서버 구축 및 서비스화
- ① start-polling 방식 서버 구축
- ② 텔레그램 챗봇 서비스화

분류 정확도 48~52%

각 맥주 사이의 단어 분포 차이가 뚜렷하지 않으면 분류 정확도가 떨어지는 문제 발생

Word Embedding

유저의 단계별 맥주 선택으로 최종 선호도에 대한 정보를 데이터 베이스에 저장한다.

→ 맥주 추천 시 유저의 선호도를 반영하는 데에 사용.

- 맥주라는 상품 특성상 차이가 뚜렷하지 않음
- 인스타그램, 맥주 리뷰 사이트, 다음 까페등에서 자연어 데이터를 **10만건 정도 크롤링**하 여 학습 데이터로 활용
- 다만 맥주는 맛의 특성 차이가 뚜렷하지 않았고, 모형이 패턴을 제대로 학습하지 못함.
 1단계로 적합한 단순 LSTM모형에선 예측 정확도가 50%에 불과한 문제점이 발생

• Attention-mechanism 구현의 어려움

- 특성 차이가 뚜렷하지 않은 문제를 해결하기 위해 언어번역 분야에서 광범위하게 쓰이는 attention-mechanism을 고려
- 역전파 과정에서 최대 두번의 학습 기회를 갖지만, 언어 번역에만 최적화된 코드들만 있어 첫봇용으로 새로 구축할 필요가 있었음
- 논문에 의존하여 Keras의 저수준 API로 직접 구축. 행렬의 차원이 맞지 않거나 버그로 인하여 알 수 없는 오류가 발생하는 등 소스코드를 직접 수정해가면서 모델 작성
- 최종적으로 val-acc 82% 수준의 모델 작성

- 문장 판독과 소비자 취향의 적절한 Trade-off
- 문장은 소비자의 **현재 상태를 나타내는 데이터**에 불과. '<u>기분 꿀꿀한데 좋은 맥주 추천해</u> 줘 ' 란 문장은 소비자의 현재 상태만 나타남
- 소비자의 근원적인 취향을 고려한 답을 제시할 필요가 존재
- 워드 임베딩된 단어 벡터를 활용, Attention-mechanism의 Decoder에 각 맥주의 단어 벡터를 주입하여 Encoder의 문장 입력과 Decoder의 맥주 단어 벡터간 연관도를 학습
- 소비자가 이상형 월드컵을 실시하면 해당 유저의 취향이 취향 벡터로 저장, 예측시에 입력 문장과 함께 이를 함께 고려

방한관광객수 예측 모델

• 사용 언어

(arima, ggplot, dplyr)

- 사용 알고리즘
- ARIMA(파라미터 적합)
- Box-Ljung(최적 적합 판단)

- Work Flow
- 데이터 수집
- ①관광지식정보시스템(방한관광객수)
- ②일본 경제산업성(일본 산업생산지수)
- ③한국은행 환율 통계(원-엔 환율)
- 탐색적 데이터 분석
- 데이터 전처리
- ① Time-Table로 데이터프레임 변환
- ② 모델 적합용 투입변수 예측값 생성
- ③ 수치 예측용 투입변수 예측값 생성
- 모델 작성 및 적합
- ① 파라미터 적합: ARIMA
- ② 예측값 생성 : 회귀분석(lm)의 predict 함수

방한관광객수 예측 모델

Summary

< 데이터셋 >

				Fri_ab	Fri_almost	Cur
1	1988	1124149	85.72	12.2	38.7	570.56
2	1989	1379523	90.21	7.6	33.1	487.51
3	1990	1460291	94.39	9.6	33.1	491.58
4	1991	1455090	96.98	10.7	32.4	545.95
5	1992	1398604	95.43	8.5	34.4	617.08
6	1993	1492069	95.59	8.9	34.5	725.67
7	1994	1644097	96.64	7.9	34.0	787.91
8	1995	1667203	97.99	7.6	34.6	824.45
9	1996	1526559	100.19	6.6	29.2	739.59
10	1997	1676434	101.17	6.2	32.7	784.02
11	1998	1954416	99.11	10.9	36.9	1074.41
12	1999	2184121	99.68	12.8	35.5	1048.64
13	2000	2472054	101.40	14.8	36.6	1048.92
14	2001	2377321	100.84	11.9	28.4	1062.41
15	2002	2320837	100.38	13.5	40.5	999.57
16	2003	1802542	101.27	13.7	41.3	1029.76
17	2004	2443070	102.92	9.0	46.5	1058.76
18	2005	2440139	104.62	12.5	38.7	930.66
19	2006	2338921	106.57	12.3	35.9	821.49
20	2007	2235963	107.51	14.9	39.9	789.75
21	2008	2378102	105.55	13.3	43.8	1076.63

<추세성의 제거>

차분 전

차분 후

방한관광객수 예측 모델

< 교차상관함수 그래프 > y&z

지연모수: 0, 투입모수: 1, 산출모수: 5 or 1

<가적합 후 여과된 잔차의 ACF, PACF>

ARMA(6,0) 모형을 고려

방한관광객수 예측 모델

• 회귀분석 모형 사용의 제한

- 프로젝트 초기 단계에선 중회귀분석 방법론을 사용, 적합을 시도
- 파라미터는 유의한 것으로 나왔으나 오차가 심각. 원인 분석 결과 결과변수(방한관광객수)에 자기상관성이 존재. 계수에 대한 t검증을 신뢰할 수 없게됨.
- 회귀분석에서 시계열분석으로 방법론 전환

• 시계열 분석에 대한 지식

- 적용보다 시계열 분석 방법론 자체에 대한 지식이 부족
- ARIMA를 적용하기로 하고, 이를 위해 **시계열 분석 전공서적**과 **20여개의 논문**으로 3개월 동안 학습

코스타리카 빈곤선 예측 모델

• 사용 언어

(Scikit-learn , Numpy, Pandas)

- 사용 알고리즘
- SMOTE (타겟 불균형 해소 업샘플링)
- xtreeRegressor (결측값 대체값 생성)
- LightGBM (모델 적합)

- Work Flow(담당 역할은 강조)
- 과업정의(그룹 스터디)
- ① 기존 분석방법론(Proxy) 탐구
- ② 코스타리카 현재 상황 탐구
- ③ 변수의 의미에 대한 분석
- 탐색적 데이터 분석
- 결측 처리 및 데이터 전처리
- ① 대체값 생성(xtreeRegressor)
- ② 업샘플링(SMOTE)
- 모델 적합
- ① 하이퍼파라미터 최적화(그리드 서치)
- ② LightGBM 적합

- 결측값의 처리
- XtreeRegressor를 이용해 특성들이 비슷한 것으로 분류된 샘플들의 **평균값으로 결측값을 예측**한다.
- 앙상블 기법에 기반한 트리모형의 회귀예측은 여러 약분류기(트리)들의 동일 그룹 평균값의 평균 값을 토대로 예측치를 생산한다.

Ensemble Model: example for regression Tree 1 Tree 2 Tree 3 O.2 O.5 < 앙상블 모형의 회귀 예시>

코스타리카 빈곤선 예측모델

Summary

• 타겟 불균형의 처리

SMOTE 알고리즘을 통해 업샘플링(Up-sampling) 실시

• 모델 적합

<업샘플링 데이터셋>

f1_score 0.5점 상승 확인, Kaggle 최다점 0.410점에 근접

코스타리카 빈곤선 예측모델

- 결측값의 처리
- 몇몇 변수들에서 결측값이 발생
- 이 결측값이
- ①데이터 부족으로 인한 누락 사항인지,
- ②어떤 의도를 갖고 기재하지 않은것인지 불분명
- 데이터셋 구조를 통해 결측값의 의미를 추리
- ① 데이터 부족으로 인한 누락의 경우 회귀트리를 통해 결측값을 예측
- ② 0을 결측값으로 처리한 경우엔 0으로 일괄 처리

코스타리카 빈곤선 예측모델

• 도메인 지식의 부족

- 코스타리카 현지의 경제 사정과 빈곤 상황에 대한 도메인지식이 부족
- 프로젝트를 함께 진행하는 사람들과 **공동 스터디**를 통해 과업을 이해하고 **데이터 전처리 에 적극 활용**함

• 친절하지 않은 변수명

- 스페인어권인 코스타리카 특성상 변수명도 스페인어로만 간략하게 기재
- 변수에 대한 특별한 설명이 없어서 무엇을 조사한 변수인지, 왜 이런 파생변수를 만들었는지 이해하기 어려움
- 공동 스터디를 통해 변수를 이해하고, **데이터 전처리에 적극 활용함**

예방가능 사망자수 예측 모델

• 사용 언어

(pandas, numpy)

- 사용 알고리즘
- 푸아송 회귀분석

- Work Flow
- 데이터 수집
- ① 경찰청(연도별 고속도로별 사망자 수)
- ② 한국도로공사(연도별 고속도로별 평균속도)
- ③ 통계청(연도별 실업률)
- 탐색적 데이터 분석
- ① 연도별 고속도로별 평균속도 확인(aggregate)
- ② 부트스트랩(평균속도의 평균 확인)
- 데이터 전처리
- ① 평균속도 데이터셋 통합(10만 point)
- ② 월별 평균속도를 연도별 평균속도로 변환
- -모형 적합
- ① 푸아송 회귀분석
- ② 과산포 여부 확인

예방가능 사망자수 예측 모델

<연도별 사망자수 확률분포(예상)>

Lambda = 29X = seq(1,70)

<평균속도의 부트스트랩>

Histogram of theta_boot_mean

Mean = 94.65

예방가능 사망자수 예측 모델

<모델 적합 결과(과산포 조정 이전)>

<모델 적합 결과(과산포 조정 이후)>

예방가능 사망자수 예측 모델

- 데이터셋 통합
- 한국도로공사에서 제공하는 평균속도 데이터셋은 연도별이 아니라 월별로, 또 모든 고속 도로를 하나의 데이터셋에 통합하여 제공
- 월별로 분할 압축되어 있는 데이터들을 하나의 데이터 프레임으로 통합하여 분석 대상 고속도로의 연도별 데이터로 재가공할 필요성
- 파이썬의 os모듈을 사용해 하나의 폴더로 통합시킨 후, 폴더의 목록을 불러와 이 목록을 토대로 csv파일을 하나씩 임포트, 데이터프레임에 통합하는 방식으로 코드를 작성