KUBIG Data Science and Machine Learning

Week 6. Ensemble Learning

What is Ensemble Learning?

Ensemble Learning

- 병렬적 모델결합
- 독립적으로 모델 구성
- 매 sampling마다 동일 가중치 부여

- 직렬적 모델결합
- 이전 모델의 <mark>오류</mark>를 바탕으로 새 모델 구성
- 학습오류 큰 데이터에 가중치 부여
- 단일 모델의 성능 낮을 경우

Ensemble Learning – Voting Classifier

Figure 7-2. Hard voting classifier predictions

Ensemble Learning – Bagging

Bagging (Bootstrap Aggregating)

Figure 7-4. Pasting/bagging training set sampling and training

Jackknife Estimator

- Let $\hat{\theta}_{[i]}$ denotes the "Leave-One-Out" estimator
- Jackknife pseudo-values are defined by

$$\hat{\theta}_{ps,i} = n\hat{\theta} - (n-1)\hat{\theta}_{[i]}$$

Bias-adjusted Jackknife estimator is

$$\hat{\theta}_J = \frac{1}{n} \sum \hat{\theta}_{ps,i} = \hat{\theta} - (n-1)(\overline{\theta}_{[n]} - \hat{\theta})$$

Jackknife Estimator

▶ Illustration of the bias corrected version of the sample maximum $\hat{\theta}$ for $U_i \stackrel{iid}{\sim} (0,1)$. (i.e. $\theta = 1$)

 Bootstrap is a general technique for estimating unknown quantities associated with sampling distribution of estimators such as

- Standard Errors
- Confidence Intervals
- p-values

- Suppose F(x) is the true population distribution.
- We estimate the functional of F based on the sample $X_1, ..., X_n$. Ex) Population expectation

$$\mu = E[X] = \int x f(x) dx \quad (= \int x dF(x))$$

$$\hat{\mu} = \overline{X}_n = \frac{1}{n} \sum X_i \qquad \left(= \int x \, dF_n(x) \right)$$

• $F_n(x)$ denotes the empirical distribution of $(X_1, ..., X_n)$.

$$F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(x \le X_i)$$

Underlying fundamentals of this idea is

$$F_n(x) \rightarrow F(x)$$

Uncertainty / Randomness comes from

$$F(x) - F_n(x)$$

• Uncertainty quantification is not trivial since we only have a single $F_n(x)$ for unknown F(x)

- Given a set of sample $(X_1, ..., X_n)$, a bootstrap sample denoted by $(X_1^*, ..., X_n^*)$ is a random drawing samples **with replacement** from $(X_1, ..., X_n)$.
- The idea of bootstrap is

$$F_n^*(x) \rightarrow F_n(x) \approx F_n(x) \rightarrow F(x)$$

▶ Comparison of variance estimator for sample maximum $\hat{\theta}$ for $U_i \stackrel{iid}{\sim} (0,1)$. (i.e. $\theta = 1$)

Figure: Histogram of variance estimator for 500 independent repetitions: Monte Carlo MSE is .00903 for the jackknife estimator and .00108 for the bootstrap estimator.

Ensemble Learning – Bagging

Bagging (Bootstrap Aggregating)

Figure 7-4. Pasting/bagging training set sampling and training

Ensemble Learning – Random Forest

Random Forest Training Set bootstrap bootstrap bootstrap n_{tree} samples samples samples Class₁ Class Class₂ **Majority-Voting** Class

Ensemble Learning – Random Forest

Random Forest

- 1. From $\mathbf{X}_{n \times p}$, obtain $\mathbf{X}_{n \times p}^*$ bootstrap samples.
- 2. For $\mathbf{X}_{n \times p}^*$, fit a decision tree by using randomly selected k ($\leq p$) features. In general, $k = \sqrt{p}$.
- 3. Repeat 1-2 M times. (M = # of trees)

Note 2. Decision Trees

특성	로지스틱	KNN	LDA	SVM	의사결정 나무	최소제곱 선형모형	Neural network
자료 type 민감성	상	상	상	상	하	상	상
결측 자료 영향	상	중	상	상	하	상	상
이상치 민감성	상	하	상	상	하	상	상
표준화	선택	선택	선택	선택	불필요	불필요	필요
해석의 용이성	용이	난해	난해	난해	용이	용이	매우 난해
성능	중간	중간	중간	중간	중간	중간	높음

Ensemble Learning - Boosting

Boosting

Figure 7-7. AdaBoost sequential training with instance weight updates

Ensemble Learning - Boosting

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

Ensemble Learning - Boosting

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

1.
$$\mathcal{D}_1(x) = 1/m$$

2.
$$for t = 1, 2, ..., T do$$

3.
$$h_t = \mathfrak{L}(D, \mathcal{D}_t)$$

4.
$$e_t = P_{x \sim D_t}(h_t(x) \neq f(x))$$

5. if
$$e_t > 0.5$$
 then break

6.
$$\alpha_t = \frac{1}{2} \ln(\frac{1 - e_t}{e_t})$$

7.
$$\mathcal{D}_{t+1}(\mathbf{x}) = \frac{\mathcal{D}_t(x) \exp(-\alpha_t f(\mathbf{x}) h_t(\mathbf{x}))}{Z_t}$$

- 8. end for
- 9. $\mathcal{H}(\mathbf{x}) = sign(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}))$

Change little bit…

(c)
$$as_m = \frac{1}{2} log \left(\frac{1 - err_m}{err_m} \right)$$

→ amount of say

(d)
$$w_i^{(m+1)} = \begin{cases} e^{-as_m} & \text{if } y_i = G_{m-1}(x_i) \\ e^{as_m} & \text{if } y_i \neq G_{m-1}(x_i) \end{cases}$$

$$\rightarrow \sum w_i^{(m)} \neq 1$$

관측치	1	2	3	4	5	6	7	8
X	5	10	15	20	25	30	35	40
у	-1	-1	1	1	1	-1	-1	1
가중치	1	1	1	1	1	1	1	1
71871	8	8	8	8	8	8	8	8

<표 11.1> adaboost를 위한 학습데이터

관측치	1	2	3	4	5	6	7	8
X	5	10	15	20	25	30	35	40
y	-1	-1	1	1	1	-1	-1	1
가중치	0.577	0.577	0.577	0.577	0.577	1.733	1.733	0.577
조정가중치	0.083	0.083	0.083	0.083	0.083	0.251	0.251	0.083

<표 11.2> 아다부스트를 위한 조정된 가중치의 계산

관측치	1	2	3	4	5	6	7	8
X	5	10	20	30	30	35	35	40
у	-1	-1	1	-1	-1	-1	-1	1
っしろう	1	1	1	1	1	1	1	1
가중시	8	8	8	8	8	8	8	8

<표 11.3> 두 번째 tree stump를 위한 데이터셋

관측치	1	2	3	4	5	6	7	8
X	5	10	15	20	25	30	35	40
у	-1	-1	1	1	1	-1	-1	1
가중치	0.379	0.379	2.638	2.638	2.638	0.379	0.379	0.379
					0.270			

<표 11.2> 아다부스트를 위한 조정된 가중치의 계산

 AdaBoost is a special case of Forward Stagewise Additive Modeling (=Boosting) when we use Exponential Loss!

■ Gradient Boosting은 임의의 differentiable loss function에 대해 Forward Stagewise Additive Model의 최적화 문제를 근사적으로 해결하는 알고리즘이다.

$$\begin{split} \sum_{i=1}^{n} L(y_i, f(\boldsymbol{x}_i)) & \qquad f_m(\boldsymbol{x}_i) = f_{m-1}(\boldsymbol{x}_i) - \eta_m \frac{\partial L(y_i, f(\boldsymbol{x}_i))}{\partial f(\boldsymbol{x}_i)} |_{f(\boldsymbol{x}_i = f_{m-1}(\boldsymbol{x}_i))} \\ = f_{m-1}(x_i) - \eta_m g_{im} \end{split}$$

For regression..

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

For classification...

Algorithm 10.4 Gradient Boosting for K-class Classification.

- 1. Initialize $f_{k0}(x) = 0, k = 1, 2, \dots, K$.
- 2. For m=1 to M:
 - (a) Set

$$p_k(x) = \frac{e^{f_k(x)}}{\sum_{\ell=1}^K e^{f_\ell(x)}}, \ k = 1, 2, \dots, K.$$

- (b) For k = 1 to K:
 - i. Compute $r_{ikm} = y_{ik} p_k(x_i), i = 1, 2, ..., N$.
 - ii. Fit a regression tree to the targets r_{ikm} , $i=1,2,\ldots,N$, giving terminal regions R_{jkm} , $j=1,2,\ldots,J_m$.
 - iii. Compute

$$\gamma_{jkm} = \frac{K-1}{K} \frac{\sum_{x_i \in R_{jkm}} r_{ikm}}{\sum_{x_i \in R_{jkm}} |r_{ikm}| (1-|r_{ikm}|)}, \ j = 1, 2, \dots, J_m.$$

iv. Update
$$f_{km}(x) = f_{k,m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jkm} I(x \in R_{jkm}).$$

3. Output
$$\hat{f}_k(x) = f_{kM}(x), k = 1, 2, \dots, K$$
.

Ensemble Learning – XGBoost

$$L^{(m)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}^{(m-1)} + \phi_m(x_i)\right) + \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2$$

- 모델에 대한 규제화
- 결측치 학습 기능
- 특성변수를 임의로 일부만 뽑아 사용
- 자료의 크기가 작은 정형화 자료에서는 가장 강력한 머신러닝 기법

Ensemble Learning – LightGBM

- Leaf-wise 증가하는 의사결정나무 사용
- GOSS 기법
- Exclusive feature bundling

reference

자료

19-2 STAT424 통계적 머신러닝 - 박유성 교수님

교재

파이썬을 이용한 통계적 머신러닝 (2020) - 박유성

ISLR (2013) - G. James, D. Witten, T. Hastie, R. Tibshirani

The elements of Statistical Learning (2001) - J. Friedman, T. Hastie, R. Tibshirani

Hands on Machine Learning (2017) - Aurelien Geron

