Defensive Honeypots for IP IoT Devices: Quantitive Comparison between Vanilla and Sandboxed

Franek Kruczynski

Honeypots

September 2025

Contents

1	Inti	coduction	1
	1.1	Background	1
	1.2	Aims & Objectives	1
		1.2.1 Aim	1
		1.2.2 Objectives	1
	1.3	Product Review	2
		1.3.1 Scope	2
		1.3.2 Audience	2
2	Bac	ekground Review	3
	2.1	Existing Approaches	3
	2.2	Related Literature	3
3	Methodology & Techniques		
	3.1	Approach	4
	3.2	Technologies	4
	3.3	Version Control & Management	4
4	Project Management		
	4.1	Activities	5
	4.2	Schedule and Time Management	5
	4.3	Data Management	5
	4.4	Deliverables	5
5	Ref	erences	6

Introduction

1.1 Background

Abstract of the project goes here

The Internet of Things (IoT) is vastly expanding, driving a brand new and complex wave of device inter-connectivity worldwide, with an approximate 27-billion devices by the end of 2025 (Jinesh, 2025)

1.2 Aims & Objectives

1.2.1 Aim

To evaluate the effectiveness of isolation and containment mechanisms (sandboxing and segmentation) at preventing malware progratation within IP IoT honeypot encironments, compared to a non-contained (vanilla) honeypot – whilst utilizing the same data set.

1.2.2 Objectives

The objectives are as follows:

- To design and deploy a controlled Honeypot framework for IoT IP devices, seated within secure machines (VMs),
- To deploy a minimum of two separate honeypots:
 - 1. Low-interaction Vanilla Honeypot, mimicking usual IoT devices,
 - 2. High-interaction Honeypot within a secure container,

- To create a virtual network, where each IoT device and VM have logical addressing and are protected using subnets,
- To collect and store the following malware properties for quantitative comparison and analysis:
 - 1. Network traffic,
 - 2. Payloads,
 - 3. Malware type
 - 4. Activity data
 - **5.** Propagation attempts outside the container.

1.3 Product Review

1.3.1 Scope

The project involves the development and deployment of a **contained IoT Honeypot environment** for IP devices, comparing two separate deployments (segmented vs vanilla). It is designed to help understand the theoretical importance of creating honeypots within a secure container, and evaluating its success against low-interaction vanilla honeypots (Kocaogullar, 2023); further supporting research of malware propagation.

The honeypots will be implemented using Cowrie, a medium-interaction SSH/Telnet based honeypot framework (Oosterhof, n.d.), that has capabilities for both medium and high-interaction modes (shell and proxy). The sandboxed honeypot will be deployed using a combination of Cowrie, FireJail, Doker and, Linux-based kernel security (AppArmour/seccomp). The framework will exist within a Linux-based Virtual Machine, where a separate VM is used for malware data analysis.

1.3.2 Audience

Who is this project for?

Background Review

2.1 Existing Approaches

Add on to 1.1, provide overview of similar products and why they aren't sufficient

2.2 Related Literature

Self explanatory

- Look through thesis provided by supervisor

Methodology & Techniques

3.1 Approach

- Link back to objectives?
 - Two separate VMs
 - Lab VM = honeypots

Analysis VM = protected

3.2 Technologies

3.3 Version Control & Management

Introduce GitHub & Supervisor Google Drive

Project Management

4.1 Activities

4.2 Schedule and Time Management

- Calendar - Allocating times during week

4.3 Data Management

- How is this data going to be stored? (Analysis VM using pcaps) - CSV files for extracting

4.4 Deliverables

References

Bibliography

```
Jinesh (2025). How Many IoT Devices Are There in 2025? URL: https://autobitslabs.com/how-many-iot-devices-are-there/.
```

Kocaogullar, Y et al. (2023). Hunting High or Low: Evaluating the Effectiveness of High-Interaction and Low-Interaction Honeypot. URL: https://kar.kent.ac.uk/102122/1/STAST2022.pdf.

Oosterhof, Michel (n.d.). What is Cowrie? URL: https://docs.cowrie.org/en/latest/README.html#what-is-cowrie.