Weight Initialization

01 September 2023 10:35 AM

- Weight Initialization HeU
- Uniform Distribution
- HeUniform
- Glorot

Resources:

- HeUniform: https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeUniform
- GlorotUniform: https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform
- Initialization Visualizer: https://www.deeplearning.ai/ai-notes/initialization/index.html

What not to do during weight Initialization?

- 1.> Zero Initialization
- 2.) Non-Zero Constant Initialization.
- 3> Random Initialization with small weights 4> Random Initialization with large weights -
- 1.) Model does not torain
- 2.) multiple weights update at same time. (Psublem of Symmetry)
- 3. Maybe No training and Vanishing Gradient Problem.
- (4.) Solvetion happens (Ewin; is very high for every neuron), can also have Vanishing Gradient as well as exploding gradient.
 (Sigmoid 4 tanh) (ReLU)

Uniform Distribution

Uniform Distribution weight initialization is generally used with sigmoid activation function.

In the weights are initialized between the range of values:

* Xauier/Glorot Initialization

1.) Xavier Normal \rightarrow Weights are selected from a normally distributed range of values with $(\mu=0)$ and Standard deviation $(\tau) = \int \frac{2}{\int Fan_{-} In + Fan_{-} Out}$

2.) Xavier Uniform-> Weights are selected from a Uniform distribution ranging between

* When touch activation is used, prefer Xanier Weight Initialization

He Weight Snitialization

1.) He Uniform! The initial weights are selected within the range [- \int 6 \ \Fan_In \) \ \ \ Fan_In

2.) He Normal! The initial weights are selected from Normally distributed values with M=0 and $\tau=\sqrt{\frac{2}{Fan-In}}$

I When you have ReLU activation function prefer He Initialization.