Secret Sharing Schemes Cryptography - CS 411 / CS 507

Erkay Savaş

Department of Computer Science and Engineering Sabanci University

December 12, 2023

Problem Statement

 Distribution of a secret among multiple users in a secure way such that only a coalition of users is able to construct the secret.

Secret Splitting

- Consider a case where a secret message s is to be shared among a group of w people.
- Choose an integer p larger than all possible messages. s < p.
- Choose w-1 random numbers $r_1, r_2, \ldots, r_{w-2} < p$ and give them to w-1 people in the group, and

$$r_{w-1} = s - \sum_{k=0}^{w-2} r_k \mod p$$

to the last person.

 All the people must get together to construct the secret message s.

Threshold Schemes

- allow a subset of people in a trusted group to reconstruct the secret.
 - During the cold war, Russia employed a safety mechanism, where two out of three important people are needed in order to launch missiles.
- Definition:
 - - ullet any subset consisting of at least t participants can reconstruct the message ullet,
 - but no subset of smaller size can.

Shamir Threshold Scheme

- Also known as Lagrange Interpolation Scheme.
 - A prime p, which must be larger than all possible messages, is chosen.
 - The secret message s < p, will be split among w people in such a way that at least t of them are needed to reconstruct it.
- Method
 - Select t-1 integers at random,
 - $0 < s_1, s_2, \dots, s_{t-1} < p$
 - Construct a secret polynomial
 - $S(x) = s + s_1 x + s_2 x^2 + \ldots + s_{t-1} x^{t-1} \mod p$
 - $s = S(0) \bmod p = s_0$

Shamir Threshold Scheme

- For w participants,
 - Evaluate the polynomial at w different values of x
 - $-y_k = S(x_k) \bmod p \quad k = 1, 2, \dots, w$
 - each person is given a pair (x_k, y_k) (e.g., (k, y_k))
- The polynomial S(x) is kept secret, p is known.
- Any t people can reconstruct the message s by using linear system approach.
 - Assume their pairs are $(x_{i_0}, y_{i_0}), \ldots, (x_{i_{t-1}}, y_{i_{t-1}})$.
 - $-y_k = S(x_k) = s + s_1 x_k + s_2 x_k^2 + \ldots + s_{t-1} x_k^{t-1} \mod p$ for $k \in \Lambda$, where $\Lambda = \{i_0, i_1, \ldots, i_{t-1}\}$ and $|\Lambda| = t$.
 - Let us denote $s_0 = s$.

Shamir Threshold Scheme

We can come up with the following linear system

$$\begin{bmatrix} 1 & x_{i_0} & \cdots & x_{i_0}^{t-1} \\ 1 & x_{i_1} & \cdots & x_{i_1}^{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{i_{t-1}} & \cdots & x_{i_{t-1}}^{t-1} \end{bmatrix} \cdot \begin{bmatrix} s_0 \\ s_1 \\ \vdots \\ s_{t-1} \end{bmatrix} \equiv \begin{bmatrix} y_{i_0} \\ y_{i_1} \\ \vdots \\ y_{i_{t-1}} \end{bmatrix} \mod p$$

• If the determinant of the matrix V is nonzero, the linear system has a unique solution $\operatorname{mod} p$.

$$\det V = \prod_{1 \le j < k \le t} (x_k - x_j) \bmod p$$

• The determinant of V is nonzero, hence the system has a unique solution, as long as we have distinct x_k 's.

Reconstruction of the Polynomial

- An alternative approach that leads to a formula for the reconstruction of the polynomial.
- Our goal is to reconstruct the polynomial S(x) given that we know of t of its values (x_k, y_k) .
- Assume $k \in \Lambda \subset \{1, 2, \dots, w\}$, where $|\Lambda| = t$ (namely, Λ is the coalition of t share holders)
- First,

$$l_k(x) = \prod_{\substack{j \in \Lambda \\ j \neq k}} \frac{x - x_j}{x_k - x_j} \bmod p \qquad k \in \Lambda$$

$$l_k(x_i) = \begin{cases} 1 & \text{when } k = i \\ 0 & \text{when } k \neq i \end{cases}$$

Reconstruction of the Polynomial

The Lagrange interpolation polynomial

$$p(x) = \sum_{k \in \Lambda} y_k l_k(x)$$

satisfies the requirement $p(x_k) = y_k$ for $k \in \Lambda$.

- We know S(x) = P(x).
- To reconstruct the secret message we have to evaluate the polynomial at x = 0 (i.e., s = P(0)).

$$s = \sum_{k \in \Lambda} y_k \prod_{\substack{j \in \Lambda \\ j \neq k}} \frac{-x_j}{x_k - x_j} \bmod p \qquad s = \sum_{k \in \Lambda} y_k \lambda_k \bmod p$$
$$\lambda_k = \prod_{\substack{j \in \Lambda \\ j \neq k}} \frac{-x_j}{x_k - x_j} \bmod p \qquad k \in \Lambda$$

Reconstruction of the Polynomial

Generally,

$$-x_k = k$$

$$-s = \sum_{k \in \Lambda} y_k \lambda_k \mod p$$

$$-\lambda_k = \prod_{\substack{j \in \Lambda \\ j \neq k}} \frac{j}{j-k} \mod p \qquad k \in \Lambda$$

Example 1/3

- (3,8)-threshold scheme:
 - we have 8 people and we want any 3 of them to be able to determine the secret.
- Let the secret message s = 19;
 - and we choose the next prime p = 23.
- Choose random integer as $s_1=6$ and $s_2=11$; hence

$$-S(x) = 19 + 6x + 11x^2 \mod 23.$$

• We now give eight people pairs (x_k, y_k) :

Example 2/3

• Suppose the participants 3, 5, and 6 come together and collaborate to calculate the secret (i.e., $\Lambda = \{3, 5, 6\}$). -(3, 21), (5, 2), (6, 14)

They have to calculate

$$p(x) = y_3 l_3(x) + y_5 l_5(x) + y_6 l_6(x)$$

$$l_3(x) = \frac{x - x_5}{x_3 - x_5} \cdot \frac{x - x_6}{x_3 - x_6} = \frac{(x - 5)(x - 6)}{6}$$

$$l_5(x) = \frac{x - x_3}{x_5 - x_3} \cdot \frac{x - x_6}{x_5 - x_6} = -\frac{(x - 5)(x - 6)}{2}$$

$$l_6(x) = \frac{x - x_3}{x_6 - x_3} \cdot \frac{x - x_5}{x_6 - x_5} = \frac{(x - 3)(x - 5)}{3}$$

Example 3/3

$$\begin{array}{l} \bullet \ \ y_3 = 21, \ y_5 = 2, \ \mathrm{and} \ y_6 = 14, \ \mathrm{then} \\ \\ p(x) = \frac{21}{6}(x-5)(x-6) - \frac{2}{2}(x-3)(x-6) + \frac{14}{3}(x-3)(x-5) \\ \\ = \frac{21(x^2-11x+7) - 6(x^2-9x+18) + 5(x^2-8x+15)}{6} \\ \\ = \frac{20x^2-10x-1}{6} \ \mathrm{mod} \ 23 \\ \\ \mathrm{since} \ 6^{-1} \equiv 4 \ \mathrm{mod} \ 23 \\ \\ \to 4 \cdot 20x^2 - 4 \cdot 10x - 4 \cdot 1 \equiv 11x^2 + 6x + 19 \ \mathrm{mod} \ 23 \end{array}$$

Variations on Threshold Schemes

- Hybrid schemes (Access Structures)
 - Two companies A and B share a bank vault.
 - Four employees from A and three employees from B are needed in order to obtain the secret combination (s) to the vault.
 - Apply, first, secret splitting: $s \equiv s_A + s_B \mod p$.
 - Apply, then, (t, w)-threshold schemes
 - $(4, w_A)$ -threshold scheme for s_A .
 - $(3, w_B)$ -threshold scheme for s_B .
- By giving certain persons more shares, it is possible to make some people more important than the others.

Complex Threshold Schemes

- A certain military office, which is in control of a powerful missile, consists of one general, two colonels, 5 captains.
- The following combinations can launch the missile
 - One general
 - 2 Two colonels
 - 5 captains
 - \bullet One colonel + 3 captains.
- Describe the threshold scheme which implements this.

Recall: ElGamal Encryption Algorithm

- Setup:
 - $p,\ q$ are two large primes with q|p-1 and g is a generator in $G_q\subset\mathbb{Z}_p^*$
- Key Generation:
 - $-s \leftarrow \mathbb{Z}_q$ (secret key)
 - $-h = g^s \mod p$ (public key)
- Encryption:
 - -m: message
 - $-k \leftarrow \mathbb{Z}_a$
 - $-(c_0, c_1) = (g^k \mod p, h^k m \mod p)$ (ciphertext)
- Decryption:
 - $c_1 c_0^{-s}$

Threshold ElGamal Encryption Algorithm

- ullet The secret key is shared among w parties, y_k , $1 \leq k \leq w$
- Party P_k holds y_k
- ullet Let Λ be a subset of t participants;
 - e.g., $\Lambda = \{k_1, k_2, \dots, k_t\}$ $s \equiv \sum_{k \in \Lambda} y_k \lambda_k \bmod q$, where $\lambda_k = \prod_{\substack{j \in \Lambda \\ j \neq k}} \frac{j}{j-k} \bmod q$
- Encryption: $(c_0, c_1) = (g^k \mod p, h^k m \mod p)$
- Decryption:
 - Party P_k computes and publishes $\gamma_k = c_0^{y_k} \mod p$
 - We, then, compute $c_1(\prod_{k\in\Lambda}\gamma_k^{\lambda_k})^{-1} \bmod q$