Nous innovons pour votre réussite!

École d'ingénierie

Contrôle en Algèbre linéaire

Durée (1 h: 30 mn)

CPI2

Prof.: A.Ramadane

28-04-2014

Exercice 1 (6.5 points)

Soit V^3 et sa base usuelle $C = (\vec{i}, \vec{j}, \vec{k})$, soit une application linéaire

 $T: V^3 \longrightarrow V^3$ telle que

$$T(x \vec{i} + y\vec{j} + z\vec{k}) = (x+y+3z) \vec{i} + (x+2y+z) \vec{j} + (x+y+3z) \vec{k}$$

- a) Donner [T]_C la matrice représentative de T dans la base de C
- b) Quelle est la dimension de Ker(T)
- c) Donner une base de Im(T) et le rang de T.
- d) Montrer que le vecteur $-\vec{i} + 2\vec{j} \vec{k}$ appartient à l'image de T.
- e) Résoudre le système $\begin{cases} x + y + 3z = -1 \\ x + 2y + z = 2 \\ x + y + 3z = -1 \end{cases}$

Exercice 2 (6.5 points)

Soit B=($\overrightarrow{b_1}$, $\overrightarrow{b_2}$, $\overrightarrow{b_3}$) une base de V³ telle que

Soit
$$\overrightarrow{b_1} = 2\vec{i} + 2\vec{j} + \vec{k}$$
, $\overrightarrow{b_2} = -2\vec{i} - 8\vec{j} + 2\vec{k}$ et $\overrightarrow{b_3} = 3\vec{i} + 3\vec{j} + 6\vec{k}$ des vecteurs de V^3

- a) Trouver la base orthonormale B'', obtenue à partir de B par le procédé de Gram-Schmidt
- b) Donner la matrice de transition de B à B'', $_{B}$, $_{P_{B}}$
- c) Donner la matrice de transition de C à B", $B^{"}$ P_{C.} Avec C= $(\vec{i}, \vec{j}, \vec{k})$
- d) Soit $\vec{U} = \vec{i} + \vec{j} 4\vec{k}$, Donner [\vec{U}]_{B''}.
- e) Soit $W = [\overrightarrow{b_1}, \overrightarrow{b_2}]$. Exprimer \overrightarrow{U} sous la forme $\overrightarrow{U} = \overrightarrow{W_1} + \overrightarrow{W_2}$ où $\overrightarrow{W_1} \in W$ et $\overrightarrow{W_2} \in W$.

Nous innovons pour votre réussite!

Exercice 3 (3.5 points)

Soit U = { $\vec{U} \in V^3 / \vec{U} = x \vec{i} + y\vec{j} + z\vec{k}$ où x-9y+3z=0 }

- a) Donner une base de U et sa dimension
- b) Soit U le complément orthogonal de U. Donner une base de U .
- c) Soit $\vec{U} = 9\vec{i} 12\vec{j} + 4\vec{k}$. Calculer proj_U \vec{U}

Exercice 4 (3.5 points)

a) Soit $A = (\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)$ et $B = (\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n)$ deux bases orthonormées d'un espace vectoriel V.

Montrer que
$${}_{A}\mathbf{P}_{B} = ({}_{B}\mathbf{P}_{A})^{t} = ({}_{B}\mathbf{P}_{A})^{-1}$$

a) Définir la projection orthogonale de \vec{U} sur \vec{a} , montrer que c'est une application linéaire, donner sa matrice.

