Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Свободные колебаний в электрическом контуре [3.2.4]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Аннотация		
	1.1	Цель работы	
		В работе используются:	
	1.3	Теоретическое вступление и модель	
2	Экс	спериментальная установка	
3	Ход работы		
	3.1	Снятие данных	
	3.2	Аппроксимация полученных данных	
	3.3	Графики и таблицы	
	3.4	Вывод	
4	Спі	исок используемой литературы	

1 Аннотация

1.1 Цель работы

1. Исследование свободных колебаний в электрическом контуре.

1.2 В работе используются:

- Генератор импульсов
- электронное реле
- магазин сопротивлений
- магазин емкостей
- катушка индуктивности
- электронный осциллограф
- универсальный измерительный мост

1.3 Теоретическое вступление и модель

В работе планируется:

1. Исследовать зависимость периода свободных колебаний контура от емкости. Согласно теории, зависимость должна иметь вид (Формула Томпсона):

$$T = 2\pi\sqrt{LC} \tag{1}$$

где T - период колебаний, L и C - индуктивность и емкость контура соответственно.

Период планируется измерять с помощью осциллографа.

2. Исследовать зависимость логарифмического декремента затухания от сопротивления.

Расчет логарифмического декремента затухания будет производиться по следующей формуле:

$$\lambda = \frac{1}{n} \ln \frac{W_k}{W_{k+n}} \tag{2}$$

где W_i - энергия контура после i-того колебания.

Энергию контура планируется высчитывать используя напряжение на конденсаторе, которое в свою очередь, измеряется с помощью осциллографа.

Согласно теории, логарифмический декремент затухания пропорционалени сопротивлению

$$\lambda \propto R$$
 (3)

3. Определить критическое сопротивление. Критическое сопротивление вычисляется по формуле:

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}} \tag{4}$$

4. Определить добротность контура. Добротность планируется вычислить двумя способами, с последующим сравнением результатов.

Первый способ - Через формулу для логарифмического декремента затухания.

Второй способ - используя параметры контура R, L, C.

Формула для вычисления добротности через логарифмический декремент затухания:

 $Q = \frac{\pi}{\lambda} \tag{5}$

Формула для вычисления добротности с использованием параметров контура

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \tag{6}$$

2 Экспериментальная установка

Схема установки представлена на рисунке 1.

Рис. 1. Схема установки

3 Ход работы

3.1 Снятие данных

XXX.

3.2 Аппроксимация полученных данных

XXX

3.3 Графики и таблицы

XXX

3.4 Вывод

XXX

4 Список используемой литературы

- Гладун А. Д. Лабораторный практикум по общей физике. Термодинамика и молекулярная физика
- Описание лабораторных работ на кафедре общей физики МФТИ