```
In [1]: from dsc80_utils import *
```

Lecture 3 – Aggregating

DSC 80, Fall 2025

Announcements 🌭

- Lab 1 is due Monday at 11:59pm.
- Project 1 is released.
 - The checkpoint (Questions 1-7) is due on **Thursday**, **Oct 9th**.
 - The full project is due on **Tuesday**, **Oct 16th**.
- Lab 2 will be released by Monday.

Agenda

- Adding and modifying columns
- Data granularity and the **groupby** method.
- DataFrameGroupBy objects and aggregation.
- Other DataFrameGroupBy methods.
- Pivot tables using the pivot_table method.

You will need to code **a lot** today – make sure to pull the course repository to follow along.

Adding and modifying columns

Adding and modifying columns, using a copy

- DSC 10: To add a new column to a DataFrame, you can use the assign method.
 - To change the values in a column, add a new column with the same name as the existing column.
- Like most pandas methods, assign returns a new DataFrame.
 - Pro : This doesn't inadvertently change any existing variables.
 - Con X: It is not very space efficient, as it creates a new copy each time it is called.

```
In [2]: dogs = pd.read_csv(Path('data') / 'dogs43.csv', index_col='breed')
In [3]: dogs.assign(cost_per_year=dogs['lifetime_cost'] / dogs['longevity'])
```

Out[3]:		kind	lifetime_cost	longevity	size	weight	height	cost_per_year
	breed							
	Brittany	sporting	22589.0	12.92	medium	35.0	19.0	1748.37
	Cairn Terrier	terrier	21992.0	13.84	small	14.0	10.0	1589.02
	English Cocker Spaniel	sporting	18993.0	11.66	medium	30.0	16.0	1628.90
	•••		•••					
	Bullmastiff	working	13936.0	7.57	large	115.0	25.5	1840.95
	Mastiff	working	13581.0	6.50	large	175.0	30.0	2089.38
	Saint Bernard	working	20022.0	7.78	large	155.0	26.5	2573.52

43 rows × 7 columns

In [4]:	dogs						
Out[4]:		kind	lifetime_cost	longevity	size	weight	height
	breed						
	Brittany	sporting	22589.0	12.92	medium	35.0	19.0
	Cairn Terrier	terrier	21992.0	13.84	small	14.0	10.0
	English Cocker Spaniel	sporting	18993.0	11.66	medium	30.0	16.0
	•••	•••			•••	•••	•••
	Bullmastiff	working	13936.0	7.57	large	115.0	25.5
	Mastiff	working	13581.0	6.50	large	175.0	30.0
	Saint Bernard	working	20022.0	7.78	large	155.0	26.5

43 rows × 6 columns

Pro-Tip: Method chaining

Chain methods together instead of writing long, hard-to-read lines.

```
In [5]: # Finds the rows corresponding to the five cheapest to own breeds on a per-y
        (dogs
         .assign(cost_per_year=dogs['lifetime_cost'] / dogs['longevity'])
         .sort_values('cost_per_year')
         .iloc[:5]
```

Out[5]:		kind	lifetime_cost	longevity	size	weight	height	cost_per_year
	breed							
	Maltese	toy	19084.0	12.25	small	5.0	9.00	1557.88
	Lhasa Apso	non- sporting	22031.0	13.92	small	15.0	10.50	1582.69
	Cairn Terrier	terrier	21992.0	13.84	small	14.0	10.00	1589.02
	Chihuahua	toy	26250.0	16.50	small	5.5	5.00	1590.91
	Shih Tzu	toy	21152.0	13.20	small	12.5	9.75	1602.42

Pro-Tip: assign for column names with special characters

You can also use assign when the desired column name has spaces (and other special characters) by unpacking a dictionary:

In [6]:	dogs.assign(**{'cost	per year 🐚	': dogs[']	lifetime_	_cost']	/ dogs['longevity']
Out[6]:		kind	lifetime_cost	longevity	size	weight	height	cost per year ಟ
	breed							
	Brittany	sporting	22589.0	12.92	medium	35.0	19.0	1748.37
	Cairn Terrier	terrier	21992.0	13.84	small	14.0	10.0	1589.02
	English Cocker Spaniel	sporting	18993.0	11.66	medium	30.0	16.0	1628.90
	Bullmastiff	working	13936.0	7.57	large	115.0	25.5	1840.95
	Mastiff	working	13581.0	6.50	large	175.0	30.0	2089.38
	Saint Bernard	working	20022.0	7.78	large	155.0	26.5	2573.52

43 rows × 7 columns

Adding and modifying columns, in-place

- You can assign a new column to a DataFrame in-place using [].
 - This works like dictionary assignment.
 - This **modifies** the underlying DataFrame, unlike assign, which returns a new DataFrame.

- This is the more "common" way of adding/modifying columns.
 - ▲ Warning: Exercise caution when using this approach, since this approach changes the values of existing variables.

Out[7]:		kind	lifetime_cost	longevity	size	weight	height
	breed						
	Brittany	sporting	22589.0	12.92	medium	35.0	19.0
	Cairn Terrier	terrier	21992.0	13.84	small	14.0	10.0

In [8]:	<pre>dogs_copy['cost_per_year'] = dogs_copy['lifetime_cost'] / dogs_copy['longevi</pre>	
	dogs_copy	

Out[8]:		kind	lifetime_cost	longevity	size	weight	height	cost_per_year
	breed							
	Brittany	sporting	22589.0	12.92	medium	35.0	19.0	1748.37
	Cairn Terrier	terrier	21992.0	13.84	small	14.0	10.0	1589.02
	English Cocker Spaniel	sporting	18993.0	11.66	medium	30.0	16.0	1628.90
	•••							
	Bullmastiff	working	13936.0	7.57	large	115.0	25.5	1840.95
	Mastiff	working	13581.0	6.50	large	175.0	30.0	2089.38
	Saint Bernard	working	20022.0	7.78	large	155.0	26.5	2573.52

43 rows × 7 columns

Note that we never reassigned dogs_copy in the cell above – that is, we never wrote dogs_copy = ... – though it was still modified.

Mutability

DataFrames, like lists, arrays, and dictionaries, are **mutable**. As you learned in DSC 20, this means that they can be modified after being created. (For instance, the list **append** method mutates in-place.)

Not only does this explain the behavior on the previous slide, but it also explains the following:

In [9]:	dogs_copy							
Out[9]:		kind	lifetime_cost	longevity	size	weight	height	cost_per_year
	breed							
	Brittany	sporting	22589.0	12.92	medium	35.0	19.0	1748.37
	Cairn Terrier	terrier	21992.0	13.84	small	14.0	10.0	1589.02
	English Cocker Spaniel	sporting	18993.0	11.66	medium	30.0	16.0	1628.90
	•••	•••			•••	•••	•••	
	Bullmastiff	working	13936.0	7.57	large	115.0	25.5	1840.95
	Mastiff	working	13581.0	6.50	large	175.0	30.0	2089.38
	Saint Bernard	working	20022.0	7.78	large	155.0	26.5	2573.52

43 rows × 7 columns

```
In [10]: def cost_in_thousands():
    dogs_copy['lifetime_cost'] = dogs_copy['lifetime_cost'] / 1000
In [11]: # What happens when we run this twice?
    cost_in_thousands()
In [12]: dogs_copy
```

> Out[12]: kind lifetime_cost longevity size weight height cost_per_year breed Brittany sporting 22.59 12.92 medium 35.0 19.0 1748.37 Cairn terrier 21.99 13.84 small 14.0 10.0 1589.02 **Terrier English** Cocker sporting 18.99 11.66 medium 30.0 16.0 1628.90 Spaniel **Bullmastiff** working 13.94 7.57 large 115.0 25.5 1840.95 Mastiff working 6.50 2089.38 13.58 large 175.0 30.0 Saint

7.78

large

155.0

26.5

2573.52

43 rows × 7 columns

Bernard

working

Avoid mutation when possible

20.02

Note that dogs_copy was modified, even though we didn't reassign it! These unintended consequences can influence the behavior of test cases on labs and projects, among other things!

To avoid this, it's a good idea to avoid mutation when possible. If you must use mutation, include df = df.copy() as the first line in functions that take DataFrames as input.

Also, some methods let you use the inplace=True argument to mutate the original. Don't use this argument, since future pandas releases plan to remove it.

pandas and numpy

pandas is built upon numpy!

- A Series in pandas is a numpy array with an index.
- A DataFrame is like a dictionary of columns, each of which is a numpy array.
- Many operations in pandas are fast because they use numpy 's implementations, which are written in fast languages like C.
- If you need access the array underlying a DataFrame or Series, use the to_numpy method.

```
In [13]: dogs['lifetime_cost']
Out[13]: breed
          Brittany
                                    22589.0
          Cairn Terrier
                                    21992.0
          English Cocker Spaniel
                                    18993.0
          Bullmastiff
                                    13936.0
         Mastiff
                                    13581.0
          Saint Bernard
                                    20022.0
         Name: lifetime_cost, Length: 43, dtype: float64
In [14]: dogs['lifetime_cost'].to_numpy()
Out[14]: array([22589., 21992., 18993., ..., 13936., 13581., 20022.])
```

Axes

- The rows and columns of a DataFrame are both stored as Series.
- The **axis** specifies the direction of a **slice** of a DataFrame.

- Axis 0 refers to the index (rows).
- Axis 1 refers to the columns.
- These are the same axes definitions that 2D numpy arrays have!

DataFrame methods with axis

- Many Series methods work on DataFrames.
- In such cases, the DataFrame method usually applies the Series method to every row or column.
- Many of these methods accept an axis argument; the default is usually axis=0.

In [15]:	dogs						
Out[15]:	•	kind	lifetime_cost	longevity	size	weight	height
	breed						
	Brittany	sporting	22589.0	12.92	medium	35.0	19.0
	Cairn Terrier	terrier	21992.0	13.84	small	14.0	10.0
	English Cocker Spaniel	sporting	18993.0	11.66	medium	30.0	16.0
	•••					•••	
	Bullmastiff	working	13936.0	7.57	large	115.0	25.5
	Mastiff Saint Bernard	working working	13581.0 20022.0	6.50 7.78	large large	175.0 155.0	30.0 26.5
		Working	20022.0	7.70	large	100.0	20.0
	43 rows × 6 columns						
In [16]:	<pre># Max element in eac dogs.max()</pre>	h column					
Out[16]:	lifetime_cost 260 longevity size	rking 586.0 16.5 small 175.0 30.0					
In [17]:	<pre># Max element in eac # dogs.max(axis=1)</pre>	h row —	errors, sinc	e there ar	e diffe	rent typ	es in e
In [18]:	<pre># The number of uniq dogs.nunique()</pre>	ue value	s in each co	lumn.			
Out[18]:	kind 7 lifetime_cost 43 longevity 40 size 3 weight 37 height 30 dtype: int64						
T. [10].	# describe doesn't a	ccent an	axis argume	nt: it wor	rks on a	very num	oric co

Ο.		Γа	\cap	1
U	иt	IТ	9	

	lifetime_cost	longevity	weight	height
count	43.00	43.00	43.00	43.00
mean	20532.84	11.34	49.35	18.34
std	3290.78	2.05	39.42	6.83
•••			•••	
50%	21006.00	11.81	36.50	18.50
75%	22072.50	12.52	67.50	25.00
max	26686.00	16.50	175.00	30.00

8 rows × 4 columns

Data granularity and the groupby method

Example: Palmer Penguins

Artwork by @allison_horst

The dataset we'll work with for the rest of the lecture involves various measurements taken of three species of penguins in Antarctica.

In [20]: IFrame('https://www.youtube-nocookie.com/embed/CCrNAHXUstU?si=-DntSyUNp5Kwit width=560, height=315)

Out[20]:

Highly trained penguins perform thorough truck & trailer ins...

import seaborn as sns
penguins = sns.load_dataset('penguins').dropna()
penguins

\cap		+	Γ	γ	1	1	i
U	u	L	L	Z	Т	J.	i

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
0	Adelie	Torgersen	39.1	18.7	181.0	3
1	Adelie	Torgersen	39.5	17.4	186.0	3
2	Adelie	Torgersen	40.3	18.0	195.0	3
•••	•••					
341	Gentoo	Biscoe	50.4	15.7	222.0	5
342	Gentoo	Biscoe	45.2	14.8	212.0	5
343	Gentoo	Biscoe	49.9	16.1	213.0	5

333 rows × 7 columns

Here, each row corresponds to a single penguin, and each column corresponds to a different attribute (or feature) we have for each penguin. Data formatted in this way is called tidy data.

Granularity

- Granularity refers to what each observation in a dataset represents.
 - Fine: small details.
 - Coarse: bigger picture.

• If you can control how your dataset is created, you should opt for **finer granularity**, i.e. for more detail.

- You can always remove details, but it's difficult to add detail that isn't already there.
- But obtaining fine-grained data can take more time/money.
- Today, we'll focus on how to **remove** details from fine-grained data, in order to help us understand bigger-picture trends in our data.

Aggregating

Aggregating is the act of combining many values into a single value.

What is the mean 'body_mass_g' for all penguins?

Naive approach: looping through unique values

- For each unique 'species', we make a pass through the entire dataset.
 - The asymptotic runtime of this procedure is $\Theta(ns)$, where n is the number of rows and s is the number of unique species.
- While there are other loop-based solutions that only involve a single pass over the DataFrame, we'd like to avoid Python loops entirely, as they're slow.

dtype: float64

Grouping

A better solution, as we know from DSC 10, is to use the groupby method.

In [25]: penguins.groupby('species')['body_mass_g'].mean()

Out[25]: species

Adelie 3706.16 Chinstrap 3733.09 Gentoo 5092.44

Name: body_mass_g, dtype: float64

Somehow, the groupby method computes what we're looking for in just one line. How?

"Split-apply-combine" paradigm

The groupby method involves three steps: **split**, **apply**, and **combine**. This is the same terminology that the pandas documentation uses.

- **Split** breaks up and "groups" the rows of a DataFrame according to the specified **key**. There is one "group" for every unique value of the key.
- **Apply** uses a function (e.g. aggregation, transformation, filtration) within the individual groups.
- Combine stitches the results of these operations into an output DataFrame.
- The split-apply-combine pattern can be **parallelized** to work on multiple computers or threads, by sending computations for each group to different processors.

More examples

Before we dive into the internals, let's look at a few more examples.

Code: dream

What proportion of penguins of each 'species' live on 'Dream' island?

Your output should look like:

species

Adelie 0.38 Chinstrap 1.00 Gentoo 0.00

In [26]: # Fill this in

DataFrameGroupBy objects and aggregation

DataFrameGroupBy objects

We've just evaluated a few expressions of the following form.

Ιn	[27]:	penguins
		pengariis

Out[27]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
	0	Adelie	Torgersen	39.1	18.7	181.0	3
	1	Adelie	Torgersen	39.5	17.4	186.0	3
	2	Adelie	Torgersen	40.3	18.0	195.0	3
	•••	•••					
	341	Gentoo	Biscoe	50.4	15.7	222.0	5
	342	Gentoo	Biscoe	45.2	14.8	212.0	5
	343	Gentoo	Biscoe	49.9	16.1	213.0	5

333 rows × 7 columns

In [28]: penguins.groupby('species')['bill_length_mm'].mean()

Out[28]: species

Adelie 38.82 Chinstrap 48.83 47.57

Name: bill_length_mm, dtype: float64

There are two method calls in the expression above: .groupby('species') and

.mean() . What happens in the .groupby() call?

```
In [29]: penguins.groupby('species')
```

Out[29]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x111e0c9d0>

Peeking under the hood

If df is a DataFrame, then df.groupby(key) returns a DataFrameGroupBy object.

This object represents the "split" in "split-apply-combine".

```
In [30]: # Simplified DataFrame for demonstration:
    penguins_small = penguins.iloc[[0, 150, 300, 1, 251, 151, 301], [0, 5, 6]]
    penguins_small
```

Out[30]:		species	body_mass_g	sex
	0	Adelie	3750.0	Male
	156	Chinstrap	3725.0	Male
	308	Gentoo	4875.0	Female
	1	Adelie	3800.0	Female
	258	Gentoo	4350.0	Female
	157	Chinstrap	3950.0	Female
	309	Gentoo	5550.0	Male

```
In [31]: # Creates one group for each unique value in the species column.
penguin_groups = penguins_small.groupby('species')
penguin_groups
```

DataFrameGroupBy objects are iterable:

```
In [32]: for key, group in penguins.groupby('species'):
    print(key, type(group))
```

Adelie <class 'pandas.core.frame.DataFrame'> Chinstrap <class 'pandas.core.frame.DataFrame'> Gentoo <class 'pandas.core.frame.DataFrame'>

DataFrameGroupBy objects have a groups attribute, which is a dictionary in which the keys are group names and the values are lists of row labels.

```
In [33]: penguin_groups.groups
Out[33]: {'Adelie': [0, 1], 'Chinstrap': [156, 157], 'Gentoo': [308, 258, 309]}
```

DataFrameGroupBy objects also have a get_group(key) method, which returns a
DataFrame with only the values for the given key.

```
In [34]:
         penguin_groups.get_group('Chinstrap')
Out[34]:
                species body_mass_g
                                         sex
          156 Chinstrap
                               3725.0
                                        Male
                              3950.0 Female
          157 Chinstrap
In [35]: # Same as the above!
         penguins_small[penguins_small['species'] == "Chinstrap"]
Out[35]:
                species body_mass_g
                                         sex
              Chinstrap
                               3725.0
                                        Male
          157 Chinstrap
                               3950.0 Female
```

We usually don't use these attributes and methods, but they're useful in understanding how groupby works under the hood.

• groupby is "lazy"

- The actual groups aren't computed until needed.
- This is an optimization that helps when working with really large datasets.

```
In [36]: 
    n = 1_000_000
    large_df = pd.DataFrame({
        'letter': np.random.choice(['A', 'B', 'C'], n),
        'number': np.random.uniform(size=n)
})
large_df
```

Out[36]:		letter	number
	0	А	0.27
	1	В	0.24
	2	В	0.14
	•••		
	999997	С	0.84
	999998	Α	0.66
	999999	В	0.92

1000000 rows × 2 columns

```
In [37]: %*timeit

# notice how this doesn't take longer when we change n to 10_000_000

grouped = large_df.groupby('letter')

5.73 µs ± 39 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [38]: %*timeit

# we can't avoid computing the groups now...

len(large_df.groupby('letter'))
```

26.7 ms \pm 426 μ s per loop (mean \pm std. dev. of 7 runs, 10 loops each)

Aggregation

- Once we create a DataFrameGroupBy object, we need to apply some function to each group, and combine the results.
- The most common operation we apply to each group is an aggregation.
 - Remember, aggregation is the act of combining many values into a single value.
- To perform an aggregation, use an aggregation method on the
 DataFrameGroupBy object, e.g. _mean() , _max() , _median() , etc.

Let's look at some examples.

```
In [39]:
         penguins small
Out[39]:
                species body_mass_g
                                          sex
            0
                  Adelie
                                3750.0
                                         Male
          156 Chinstrap
                                3725.0
                                         Male
          308
                 Gentoo
                                4875.0 Female
                  Adelie
                                3800.0 Female
          258
                 Gentoo
                               4350.0 Female
          157 Chinstrap
                                3950.0 Female
          309
                 Gentoo
                                5550.0
                                         Male
          penguins_small.groupby('species')['body_mass_g'].mean()
In [40]:
Out[40]: species
          Adelie
                        3775.0
```

Chinstrap

Gentoo

3837.5 4925.0

Name: body_mass_g, dtype: float64

penguins_small.groupby('species').sum()

In [41]: # Whoa, what happened in the sex column?

Out[41]:		body_mass_g		sex
	species			
	Adelie	7550.0		MaleFemale
	Chinstrap	7675.0		MaleFemale
	Gentoo	14775.0	Female	FemaleMale
In [42]:	penguins_	_small.groupby	('speci	es').first
Out[42]:		body_mass_g	sex	
	species			
	Adelie	3750.0	Male	
	Chinstrap	3725.0	Male	
	Gentoo	4875.0	Female	
In [43]:	nenguine	_small.groupby	(!speci	ec!) may()
	penguins_			Les / illiax()
Out[43]:		body_mass_g	sex	
	species			
	Adelie	3800.0	Male	
	Chinstrap	3950.0	Male	
	Gentoo	5550.0	Male	

Column independence

Within each group, the aggregation method is applied to each column independently.

```
In [44]: penguins_small.groupby('species').max()

Out[44]: body_mass_g sex

species

Adelie 3800.0 Male

Chinstrap 3950.0 Male

Gentoo 5550.0 Male

It is not telling us that there is a 'Male' 'Adelie' penguin with a 'body_mass_g' of 3800.0!
```

```
Prind the species, island, and body_mass_g of the heaviest Male and
Female penguins in penguins (not penguins_small).

Hint: there's usually more than one way to do things. Do you need .groupby() for this? Can you use .groupby() for this?
```

```
In [46]: # Your code goes here.
In []:
In []:
In []:
In []:
```

Column selection and performance implications

- By default, the aggregator will be applied to all columns that it can be applied to.
 - max, min, and sum are defined on strings, while median and mean are not.
- If we only care about one column, we can select that column before aggregating to save time.
 - DataFrameGroupBy objects support [] notation, just like DataFrame s.

```
In [47]: # Back to the big penguins dataset!
penguins
```

Out[47]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
	0	Adelie	Torgersen	39.1	18.7	181.0	3
	1	Adelie	Torgersen	39.5	17.4	186.0	3
	2	Adelie	Torgersen	40.3	18.0	195.0	3
	•••						
	341	Gentoo	Biscoe	50.4	15.7	222.0	5
	342	Gentoo	Biscoe	45.2	14.8	212.0	5
	343	Gentoo	Biscoe	49.9	16.1	213.0	5
	333 ro	ws × 7 co	lumns				
In [48]:					since the other ill_length_mm']	r columns had to b	e aggreg
Out[48]:	Gent	ie strap oo	5668.3 3320.7 5660.6 ength_mm,	dtype: float64	ı		
In [49]:				pBy object! cies')['bill_le	ngth_mm']		
Out[49]:	<pand< td=""><td>das.core</td><td>.groupby.g</td><td>generic.Series@</td><td>GroupBy object</td><td>at 0x111e40510></td><td></td></pand<>	das.core	.groupby.g	generic.Series@	GroupBy object	at 0x111e40510>	
In [50]:				cies')['bill_le	ngth_mm'].sum())	
Out[50]:	Adel: Chins Gent	ie strap oo	5668.3 3320.7 5660.6 ength_mm,	dtype: float64	ı		
					an the latter, we can the latter, we can be a solu	an use %%timeit .F ution.	or
In [51]:			ıpby(' <mark>spec</mark>	cies').sum()['b	ill_length_mm']	l	
2	236 μs	± 5.89	μs per lo	op (mean ± std	. dev. of 7 rur	ns, 1000 loops eac	h)
In [52]:			ıpby('spec	cies')['bill_le	ngth_mm'].sum())	
8	30.7 μ	s ± 879	ns per lo	op (mean ± std	. dev. of 7 rur	ns, 10000 loops ea	ch)
In [53]:			∍pd.Serie	es([], dtype=fl	oat)		

```
for species in penguins['species'].unique():
    species_only = penguins.loc[penguins['species'] == species]
    species_map.loc[species] = species_only['body_mass_g'].mean()
species_map
```

```
621 \mus \pm 22.3 \mus per loop (mean \pm std. dev. of 7 runs, 1000 loops each)
```

Takeaways

• It's important to understand *what* each piece of your code evaluates to – in the first two timed examples, the code is almost identical, but the performance is quite different.

```
# Slower
penguins.groupby('species').sum()['bill_length_mm']
# Faster
penguins.groupby('species')['bill_length_mm'].sum()
```

- The groupby method is much quicker than for -looping over the DataFrame in Python. It can often produce results using just a **single**, **fast pass** over the data, updating the sum, mean, count, min, or other aggregate for each group along the way.
- You should always select the columns you want after groupby, unless you really know what you're doing!

Beyond default aggregation methods

- There are many built-in aggregation methods.
- What if you want to apply different aggregation methods to different columns?
- What if the aggregation method you want to use doesn't already exist in pandas?

The aggregate method

- The DataFrameGroupBy object has a general aggregate method, which aggregates using one or more operations.
 - Remember, aggregation is the act of combining many values into a single value.
- There are many ways of using aggregate; refer to the documentation for a comprehensive list.
- Example arguments:
 - A single function.
 - A list of functions.
 - A dictionary mapping column names to functions.
- Per the documentation, agg is an alias for aggregate.

Example

How many penguins are there of each 'species', and what is the mean 'body_mass_g' of each 'species'?

Example

```
What is the maximum 'bill_length_mm' of each 'species', and which 'island's is each 'species' found on?
```

```
In [55]: (penguins
    .groupby('species')
    .aggregate({'bill_length_mm': 'max', 'island': 'unique'})
)
```

```
Out [55]: bill_length_mm island
```

		species
[Torgersen, Biscoe, Dream]	46.0	Adelie
[Dream]	58.0	Chinstrap
[Biscoe]	59.6	Gentoo

Example

What is the interquartile range of the 'body_mass_g' of each 'species'?

```
(penguins
  .groupby('species')
['body_mass_g']
  .agg(iqr)
)
```

Out[56]: species

Adelie 637.5 Chinstrap 462.5 Gentoo 800.0

Name: body_mass_g, dtype: float64

Other DataFrameGroupBy methods

Split-apply-combine, revisited

When we introduced the split-apply-combine pattern, the "apply" step involved **aggregation** – our final DataFrame had one row for each group.

Instead of aggregating during the apply step, we could instead perform a:

- Transformation, in which we perform operations to every value within each group.
- **Filtration**, in which we keep only the groups that satisfy some condition.

Transformations

Suppose we want to convert the 'body_mass_g' column to to z-scores (i.e. standard units):

$$z(x_i) = rac{x_i - ext{mean of } x}{ ext{SD of } x}$$

```
In [57]: def z_score(x):
    return (x - x.mean()) / x.std(ddof=0)
In [58]: z_score(penguins['body_mass_g'])
```

```
Out[58]: 0 -0.57

1 -0.51

2 -1.19

...

341 1.92

342 1.23

343 1.48

Name: body_mass_g, Length: 333, dtype: float64
```

Transformations within groups

- Now, what if we wanted the z-score within each group?
- To do so, we can use the transform method on a DataFrameGroupBy object.

 The transform method takes in a function, which itself takes in a Series and returns a new Series.
- A transformation produces a DataFrame or Series of the same size it is not an aggregation!

```
In [59]: z mass = (penguins
                    .groupby('species')
                    ['body_mass_g']
                    .transform(z_score))
         z_{mass}
Out[59]: 0
                 0.10
                 0.21
          1
                -1.00
                 . . .
          341
                 1.32
          342
                 0.22
          343
                 0.62
          Name: body_mass_g, Length: 333, dtype: float64
In [60]:
         penguins.assign(z_mass=z_mass)
```

Out[60]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
	0	Adelie	Torgersen	39.1	18.7	181.0	3
	1	Adelie	Torgersen	39.5	17.4	186.0	3
	2	Adelie	Torgersen	40.3	18.0	195.0	3
	•••			•••	•••		
	341	Gentoo	Biscoe	50.4	15.7	222.0	5
	342	Gentoo	Biscoe	45.2	14.8	212.0	5
	343	Gentoo	Biscoe	49.9	16.1	213.0	5

333 rows × 8 columns

In [61]: display_df(penguins.assign(z_mass=z_mass), rows=8)

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mas
0	Adelie	Torgersen	39.1	18.7	181.0	375
1	Adelie	Torgersen	39.5	17.4	186.0	380
2	Adelie	Torgersen	40.3	18.0	195.0	325
4	Adelie	Torgersen	36.7	19.3	193.0	345
•••				•••		
340	Gentoo	Biscoe	46.8	14.3	215.0	485
341	Gentoo	Biscoe	50.4	15.7	222.0	575
342	Gentoo	Biscoe	45.2	14.8	212.0	520
343	Gentoo	Biscoe	49.9	16.1	213.0	54(

333 rows × 8 columns

Note that above, penguin 340 has a larger 'body_mass_g' than penguin 0, but a lower 'z_mass'.

- Penguin O has an above average 'body_mass_g' among 'Adelie' penguins.
- Penguin 340 has a below average 'body_mass_g' among 'Gentoo' penguins. Remember from earlier that the average 'body_mass_g' of 'Gentoo' penguins is much higher than for other species.

In [62]: penguins.groupby('species')['body_mass_g'].mean()

```
Out[62]: species
          Adelie
                       3706.16
                       3733.09
          Chinstrap
                       5092.44
```

Gentoo

Name: body_mass_g, dtype: float64

Filtering groups

- To keep only the groups that satisfy a particular condition, use the filter method on a DataFrameGroupBy object.
- The filter method takes in a function, which itself takes in a DataFrame/Series and return a single Boolean. The result is a new DataFrame/Series with only the groups for which the filter function returned True.

For example, suppose we want only the 'species' whose average 'bill_length_mm' is above 39.

```
In [63]:
         (penguins
         .aroupbv('species')
```

		lter(lamb		df['bill_length	_mm'].mean() >	39)	
Out[63]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mas
	152	Chinetran	Dream	16.5	17.0	102.0	35(

Chinstrap 46.5 192.0 50.0 19.5 196.0 390 **153** Chinstrap Dream **154** Chinstrap 51.3 19.2 193.0 365 Dream 341 Gentoo Biscoe 50.4 15.7 222.0 575 342 520 Gentoo Biscoe 45.2 14.8 212.0 343 Gentoo Biscoe 49.9 16.1 54(213.0

187 rows × 7 columns

No more 'Adelie' s!

Or, as another example, suppose we only want 'species' with at least 100 penguins:

```
In [64]:
         (penguins
          .groupby('species')
          .filter(lambda df: df.shape[0] > 100)
```

Out[64]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
	0	Adelie	Torgersen	39.1	18.7	181.0	3
	1	Adelie	Torgersen	39.5	17.4	186.0	3
	2	Adelie	Torgersen	40.3	18.0	195.0	3
	•••	•••		•••			
	341	Gentoo	Biscoe	50.4	15.7	222.0	5
	342	Gentoo	Biscoe	45.2	14.8	212.0	5
	343	Gentoo	Biscoe	49.9	16.1	213.0	5

265 rows × 7 columns

No more 'Chinstrap's!

Answer the following questions about grouping:

- In .agg(fn), what is the input to fn? What is the output of fn?
- In .transform(fn), what is the input to fn? What is the output of fn?
- In .filter(fn), what is the input to fn? What is the output of fn?

Grouping with multiple columns

When we group with multiple columns, one group is created for **every unique combination** of elements in the specified columns.

In [65]:	penguins						
Out[65]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
	0	Adelie	Torgersen	39.1	18.7	181.0	3
	1	Adelie	Torgersen	39.5	17.4	186.0	3
	2	Adelie	Torgersen	40.3	18.0	195.0	3
	•••						
	341	Gentoo	Biscoe	50.4	15.7	222.0	5
	342	Gentoo	Biscoe	45.2	14.8	212.0	5
	343	Gentoo	Biscoe	49.9	16.1	213.0	5

333 rows \times 7 columns

Out[66]:

bill_ler	ngth_	_mm	body_	_mass	_ g
----------	-------	-----	-------	-------	------------

species	island		
Adelie	Biscoe	38.98	3709.66
	Dream	38.52	3701.36
	Torgersen	39.04	3708.51
Chinstrap	Dream	48.83	3733.09
Gentoo	Biscoe	47.57	5092.44

Grouping and indexes

- The groupby method creates an index based on the specified columns.
- When grouping by multiple columns, the resulting DataFrame has a MultiIndex .
- Advice: When working with a MultiIndex , use reset_index or set as_index=False in groupby .

In [67]: species_and_island

Out[67]:

	bill	length	mm	body	mass	a
--	------	--------	----	------	------	---

species	island		
Adelie	Biscoe	38.98	3709.66
	Dream	38.52	3701.36
	Torgersen	39.04	3708.51
Chinstrap	Dream	48.83	3733.09
Gentoo	Biscoe	47.57	5092.44

```
In [68]: species_and_island['body_mass_g']
```

Out[68]: species island

Adelie Biscoe 3709.66
Dream 3701.36
Torgersen 3708.51
Chinstrap Dream 3733.09
Gentoo Biscoe 5092.44
Name: body_mass_g, dtype: float64

species_and_island.loc['Adelie'] Out[69]: bill_length_mm body_mass_g island 38.98 **Biscoe** 3709.66 Dream 38.52 3701.36 39.04 Torgersen 3708.51 In [70]: species_and_island.loc[('Adelie', 'Torgersen')] Out[70]: bill_length_mm 39.04 body_mass_g 3708.51 Name: (Adelie, Torgersen), dtype: float64 In [71]: species_and_island.reset_index() Out[71]: species island bill_length_mm body_mass_g 0 Adelie Biscoe 38.98 3709.66 1 Adelie Dream 38.52 3701.36 2 39.04 Adelie Torgersen 3708.51 Chinstrap 48.83 3733.09 Dream Gentoo Biscoe 47.57 5092.44 In [72]: (penguins .groupby(['species', 'island'], as_index=False) [['bill_length_mm', 'body_mass_g']] .mean() Out[72]: species island bill_length_mm body_mass_g 0 Adelie Biscoe 38.98 3709.66 1 Adelie Dream 38.52 3701.36 2 39.04 Adelie Torgersen 3708.51 3 Chinstrap 48.83 3733.09 Dream 4 Gentoo Biscoe 47.57 5092.44

Question ⁽¹⁾

Find the most popular Male and Female baby Name for each Year in baby.

Exclude Year s where there were fewer than 1 million births recorded.

```
In [73]: baby_path = Path('data') / 'baby.csv'
baby = pd.read_csv(baby_path)
baby
```

Out[73]:

	Name	Sex	Count	Year
0	Liam	М	20456	2022
1	Noah	М	18621	2022
2	Olivia	F	16573	2022
•••				
2085155	Wright	М	5	1880
2085156	York	М	5	1880
2085157	Zachariah	М	5	1880

2085158 rows × 4 columns

In [74]: # Your code goes here.

Pivot tables using the pivot_table method

Pivot tables: an extension of grouping

Pivot tables are a compact way to display tables for humans to read:

Sex	F	М
Year		
2018	1698373	1813377
2019	1675139	1790682
2020	1612393	1721588
2021	1635800	1743913
2022	1628730	1733166

- Notice that each value in the table is a sum over the counts, split by year and sex.
- You can think of pivot tables as grouping using two columns, then "pivoting" one of the group labels into columns.

pivot_table

The pivot_table DataFrame method aggregates a DataFrame using two columns. To use it:

The resulting DataFrame will have:

- One row for every unique value in index_col.
- One column for every unique value in columns_col .
- Values determined by applying func on values in values_col.

```
In [75]: last_5_years = baby.query('Year >= 2018')
last_5_years
```

Out[75]:		Name	Sex	Count	Year
	0	Liam	М	20456	2022
	1	Noah	М	18621	2022
	2	Olivia	F	16573	2022
	•••			•••	
	159444	Zyrie	М	5	2018
	159445	Zyron	М	5	2018
	159446	Zzyzx	М	5	2018

159447 rows × 4 columns

```
      Out[76]:
      Sex
      F
      M

      Year
      2018
      1698373
      1813377

      2019
      1675139
      1790682

      2020
      1612393
      1721588

      2021
      1635800
      1743913

      2022
      1628730
      1733166
```

Out[77]:

Count

Year	Sex	
2018	F	1698373
	М	1813377
2019	F	1675139
•••	•••	
2021	М	1743913
2022	F	1628730
	М	1733166

10 rows × 1 columns

Example

Find the number of penguins per 'island' and 'species'.

In [78]: penguins

Out[78]:

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_ma
0	Adelie	Torgersen	39.1	18.7	181.0	3
1	Adelie	Torgersen	39.5	17.4	186.0	3
2	Adelie	Torgersen	40.3	18.0	195.0	3
•••			•••	•••		
341	Gentoo	Biscoe	50.4	15.7	222.0	5
342	Gentoo	Biscoe	45.2	14.8	212.0	5
343	Gentoo	Biscoe	49.9	16.1	213.0	5

333 rows × 7 columns

```
In [79]: penguins.pivot_table(
    index='species',
    columns='island',
    values='bill_length_mm', # Choice of column here doesn't actually matter
```

```
aggfunc='count',
)
```

Out [79]: island Biscoe Dream Torgersen

species			
Adelie	44.0	55.0	47.0
Chinstrap	NaN	68.0	NaN
Gentoo	119.0	NaN	NaN

Note that there is a NaN at the intersection of 'Biscoe' and 'Chinstrap', because there were no Chinstrap penguins on Biscoe Island.

We can either use the fillna method afterwards or the fill_value argument to fill in NaN s.

```
In [80]: penguins.pivot_table(
    index='species',
    columns='island',
    values='bill_length_mm',
    aggfunc='count',
    fill_value=0,
)
```

Out[80]: island Biscoe Dream Torgersen

species			
Adelie	44	55	47
Chinstrap	0	68	0
Gentoo	119	0	0

Granularity, revisited

Take another look at the pivot table from the previous slide. Each row of the original penguins DataFrame represented a single penguin, and each column represented features of the penguins.

What is the granularity of the DataFrame below?

```
In [81]: penguins.pivot_table(
    index='species',
    columns='island',
    values='bill_length_mm',
    aggfunc='count',
    fill_value=0,
)
```

Out[81]:	island	Biscoe	Dream	Torgersen
	species			
	Adelie	44	55	47
	Chinstrap	0	68	0
	Gentoo	119	0	0

Reshaping

- pivot_table reshapes DataFrames from "long" to "wide".
- Other DataFrame reshaping methods:
 - melt: Un-pivots a DataFrame. Very useful in data cleaning.
 - pivot : Like pivot_table , but doesn't do aggregation.
 - stack : Pivots multi-level columns to multi-indices.
 - unstack: Pivots multi-indices to columns.
 - Google and the documentation are your friends!

We will most likely end lecture here.

Distributions

Joint distribution

When using aggfunc='count', a pivot table describes the **joint distribution** of two categorical variables. This is also called a **contingency table**.

```
In [82]: counts = penguins.pivot_table(
    index='species',
    columns='sex',
    values='body_mass_g',
    aggfunc='count',
    fill_value=0
)
counts
```

Out[82]:

species		
Adelie	73	73
Chinstrap	34	34
Gentoo	58	61

sex Female Male

We can normalize the DataFrame by dividing by the total number of penguins. The resulting numbers can be interpreted as **probabilities** that a randomly selected penguin from the dataset belongs to a given combination of species and sex.

Marginal probabilities

If we sum over one of the axes, we can compute **marginal probabilities**, i.e. unconditional probabilities.

```
In [84]:
          joint
Out[84]:
               sex Female Male
            species
                       0.22
                            0.22
             Adelie
          Chinstrap
                       0.10
                             0.10
                       0.17 0.18
            Gentoo
In [85]: # Recall, joint.sum(axis=0) sums across the rows,
          # which computes the sum of the **columns**.
          joint.sum(axis=0)
Out[85]: sex
          Female
                     0.5
          Male
                     0.5
          dtype: float64
In [86]: joint.sum(axis=1)
Out[86]:
          species
          Adelie
                        0.44
          Chinstrap
                        0.20
                        0.36
          Gentoo
          dtype: float64
          For instance, the second Series tells us that a randomly selected penguin has a 0.36
          chance of being of species 'Gentoo'.
```

Conditional probabilities

Using counts, how might we compute conditional probabilities like

$$P(\text{species} = \text{``Adelie''} \mid \text{sex} = \text{``Female''})?$$

In [87]:	counts				
Out[87]:	sex	Female	Male		
	species				
	Adelie	73	73		
	Chinstrap	34	34		
	Gentoo	58	61		

$$P(\text{species} = c \mid \text{sex} = x) = \frac{\# (\text{species} = c \text{ and sex} = x)}{\# (\text{sex} = x)}$$

▶ □ Click **here** to see more of a derivation.

Answer: To find conditional probabilities of 'species' given 'sex', divide by column sums. To find conditional probabilities of 'sex' given 'species', divide by row sums.

Conditional probabilities

To find conditional probabilities of 'species' given 'sex', divide by column sums.

To find conditional probabilities of 'sex' given 'species', divide by row sums.

```
In [88]: counts

Out[88]: sex Female Male species

Adelie 73 73

Chinstrap 34 34

Gentoo 58 61
```

In [89]: counts.sum(axis=0)

```
Out[89]: sex
```

Female 165 Male 168 dtype: int64

The conditional distribution of 'species' given 'sex' is below. Note that in this new DataFrame, the 'Female' and 'Male' columns each sum to 1.

```
In [90]: counts / counts.sum(axis=0)
```

Out[90]:

```
sex Female Male
 species
   Adelie
            0.44 0.43
Chinstrap
             0.21 0.20
  Gentoo
            0.35 0.36
```

For instance, the above DataFrame tells us that the probability that a randomly selected penguin is of 'species' 'Adelie' given that they are of 'sex' 'Female' is 0.442424.

```
Question (Answer at dsc80.com/q)
Code: dist
Find the conditional distribution of 'sex' given 'species'.
Hint: Use .T.
```

In [91]: # Your code goes here.

Summary, next time

Summary

- Grouping allows us to change the level of granularity in a DataFrame.
- Grouping involves three steps split, apply, and combine.
 - Usually, what is applied is an aggregation, but it could be a transformation or filtration.
- pivot_table aggregates data based on two categorical columns, and reshapes the result to be "wide" instead of "long".

Next time

- Simpson's paradox.
- Merging.
 - Review this diagram from DSC 10!
- The pitfalls of the apply method.