Centre Universitaire de Mila Institut Sciences et technologies Département Math & Informatique

 L_1^+

09 Novembre 2020 2 ^{eme} année LMD Informatique Théorie des Langages

1:	Prénom :	Groupe :
	Examen Final	
Partie 1 Exercice 1 (5 pts) Soient les grammaires suivantes 1. trouver le type de chaque règl	, , ,	
Les règles	Type de règle	Type de grammaire
G1: $ \begin{array}{c} S \rightarrow aA \mid \epsilon \\ A \rightarrow Sb \end{array} $		
G2: $A \rightarrow AB \mid \epsilon$ $B \rightarrow aAb \mid ab$ $B \rightarrow bBc \mid bc$		
G3: $S \rightarrow abS \mid Sbc \mid AB$ $A \rightarrow 0A \mid \epsilon$ $0Bb \rightarrow 0bb$		
2. donner une dérivation pour le 3. déterminer le langage généré L (G) = Exercice 2 (05 pts)	par la grammaire G2	naire G3
	a dáfinia nar i	
Soient L1, L2 et L3 trois langage	_	
$L_1 = \{\epsilon, aa\}, L_2 = \{a_i b_j / i, j \ge 0\}$ et I		
Calculer : $L_1.L_2$, $L_1.L_3$, $L_{1} \cup L_2$, L_2	$\cap L_3, L_1^{10}, L_1^*, L_1^+, L_2^R$.	
$L_1.L_2$		
$L_1.L_3$		
$L_{1\cup}L_{2}$		
$L_2 \cap L_3$		
L ₁ ¹⁰		

Partie 2

Exercice 1 (4pts)

Voici l'automate A suivant représenté par sa table :

1. dessiner l'automate A.

2. Eliminez les ϵ -transitions.

Exercice 2 (3 pts)

1. soit A l'automate d'etat finis donné par ($\{\{a,b\}, \{0,1,2,3,4,5\}, 0, \{0,3,4\}, \Delta$) où la relation de transition est définie par la table suivante :

	а	b
0	1,2	
1		3
2		4
3	5	
2 3 4 5		
5		0

1. Minimisez l'automate A

Eversion 2 (2 mts)
Exercice 3 (3 pts)
1. construire l'expression reguliere associée à l'automate suivant, en suivant les deux méthodes vues en cours :
- methode de la reduction d'automate (on donne (R+SU*T)*SU* si $q_0 \neq q_f$) - methodes des equations d'arden
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1. Méthode de la réduction
2. les équations d'Arden

Bon Courage (^_^) !