COL352 Lecture 25

1

Contents

1 Recap

2	Definitions	1
3	Content 3.1 2-tape DTM	2 2
1	Recap	
С	ompleted PDAs and grammars last time.	
2	Definitions	_
	Definition 1	
	A <u>Deterministic Turing Machine</u> (DTM) is a 8-tuple of the form $(Q, \Sigma, \Gamma, \delta, q_0, _, q_{acc}, q_{rej})$ where	
	1. Q is a finite set of states	
	2. Σ is a finite alphabet	
	3. $\Gamma \supseteq \Sigma$ is the tape alphabet	
	4. $q_0 \in Q$ is the initial state	
	5. $\bot \in \Gamma \setminus \Sigma$ is a blank symbol (tape initially contains input $x \in \Sigma^*$ followed by infinitely many \bot).	
	6. $q_{acc} \in Q$ is the accepting state, $q_{rej} \in Q$ is the rejecting state, and $q_{acc} \neq q_{rej}$	
	7. $\delta: (Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma \to Q \times \Gamma \times \{L, R\}$. Here the first input is the current state, second input is current tape content, the first component of the output is the new state, second is new tape content.	3

Definition 2

doesn't change.

A DTM M accepts $x \in \Gamma^*$ if $\exists x_1, x_2 \in \Gamma^* : (\epsilon, q_0, x) \vdash_M^* (x_1, q_{acc}, x_2)$.

and third is the direction in which we need to move.

Definition 3

 $L \in \Sigma^*$ is said to be recognised by M if $\forall x \in \Sigma^*$: $x \in L \iff M$ accepts x.

Definition 4

L is said to be Turing-recognisable if it is recognised by some DTM.

Definition 5

A Turing machine M is called a <u>decider</u> if it halts on every input $x \in \Sigma^*$, i.e.,

$$\forall x \in \Sigma^* : \exists x_1, x_2 \in \Gamma^* : (\epsilon, q_0, x) \vdash^* (x_1, q_{acc}, x_2) \text{ or } (\epsilon, q_0, x) \vdash^* (x_1, q_{rej}, x_2)$$

If the machine is reading the leftmost tape cell and it makes a leftward move, the location of the head

A language $L \in \Sigma^*$ is said to be <u>decided</u> by M if M is a decider and L is recognised by M.

Definition 6

 $L \in \Sigma^*$ is said to be decidable if it is decided by some DTM M.

Definition 7

A 2-tape DTM is $(Q, \Sigma, \Gamma, \delta, q_0, _, q_{acc}, q_{rej})$, where $Q, \Sigma, \Gamma, q_0, _, q_{acc}, q_{rej}$ are as before, and $\delta : (Q \setminus \{q_{acc}, Q_{rej}\}) \times \Gamma^2 \to Q \times \Gamma^2 times\{L, R, S\}^2$.

For now, S is used since moving both tape heads preserves parity of sum of locations, except for the borders. The language recognised or decided by 2-tape DTM is defined analogously.

Definition 8

Non-Deterministic Turing Machines

A nondeterministic Turing Machine is an 8-tuple $(Q, \Sigma, \Gamma, \Delta, q_0, _, q_{acc}, q_{rej})$, where $Q, \Sigma, \Gamma, q_0, _, q_{acc}, q_{rej}$ are the same as in the definition of DTMs.

 Δ is a relation on $(Q \setminus \{q_{acc}, q_{rej}\} \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$.

Definition 9

A nondeterministic Turing Machine N accepts $x \in \Sigma^*$ if there exists an accepting run of N on x.

Language recognized by N is the set of all x accepted by N.

Definition 10

An NTM is called a <u>nondeterministic decider</u> if $\forall x \in \Sigma^*$ every run of N on x halts.

A language decided by a nondetermistic decider N: set of all x accepted by N.

3 Content

Question 1

What is the set of instantaneous descriptions of a DTM?

Answer. Set of instantaneous description = $\Gamma^* \times Q \times \Gamma^*$, and a state (x_1, q, x_2) is the following: x_1 is the part of the tape that is strictly to the left of the current head, and x_2 is the remaining part (leaving out the trailing blanks).

Exercise: Formally define the "changes to" relation \vdash_M on the set of instantaneous descriptions.

 \vdash_M^* is the reflexive transitive closure of \vdash_M .

Claim 0.1

 $\forall L \in \Sigma^*, L \text{ is decidable } \Longrightarrow L \text{ is Turing-recognisable.}$

Proof. Definition. \Box

Note that we will see later on that the opposite direction is not true.

3.1 2-tape DTM

We now have two tapes.

Observe that

Theorem 1

L recognised by a DTM \iff L recognised by a 2-tape DTM.

Proof. The forward implication is obvious (just don't use the second tape).

Consider the instantaneous description of the 2-tape DTM – (x_1, y_1) and (x_2, y_2) being the corresponding strings before and not before the tape head on both tapes, and let \square be the blank symbol of the 2-tape DTM.

Our single tape DTM would have the following: $\triangleright x_1 \to y_1 \square \dots \square \# x_2 \to y_2 \square \dots \square \square \dots$

Call the 2-tape one M_2 and the 1-tape one M_1 .

$$M_1 = (Q, \Sigma, \Gamma, \delta, q_0, \square, q_{acc}, q_{rej})$$

$$M_2 = (Q', \Sigma, \Gamma \cup \{\triangleright, \rightarrow, \#, _\}, q'_0, _, q'_{acc}, q'_{rej})$$

Behaviour of M_1

1. Preprocess phase

To establish the invariant, we need to change $x \perp \dots$ to $\triangleright \rightarrow x \# \rightarrow \perp \dots$

2. Simulation phase

We shall store (state of M_2 , symbol from Γ , symbol from Γ , L/R/S, L/R/S).

For each transition of M_2 , M_1 makes three passes over the tape.

- (a) Insert \square before the # and overwrite the leftmost \square by \square .
- (b) Read the symbols after the two \rightarrow s and save them in the state.
- (c) Execute the transitions of M_2 in M_1 (doesn't need a complete pass of its own).
- (d) Implement the transitions on the tape: overwrite the cells next to the \rightarrow s and move the \rightarrow s.

For instance, if $\delta(q, a, b) = (c, d, R, L)$, then the state changes from $(q, a, b, _, _, \ldots)$ to (q', c, d, R, L, \ldots) , where the dots are for more information maintained in other passes, and also stores pass number.

Question 2

Suppose M_2 runs in time T(n) on inputs of length n. What is the running time of M_1 ?

Answer. $O(T(n)^2)$, since the length of the content on the tape of M_1 after simulating t steps of M_2 is |x| + 2t + c where c is a constant, so the simulation of the (t+1)-th step of M_2 of M_2 takes time $\approx 3(|x| + 2t + c)$, and if we sum it from t = 1 to $T(n)^2$.

Note 1

It might be much easier to exhibit a 2-tape Turing machine instead of a 1-tape Turing machine, and more efficient too.

Example 1

Set of palindromes over Σ : on a 1-tape DTM, the obvious algorithm takes time $\Omega(n^2)$ in the worst case – pass from char 1 to char n to char 2 and so on.

On a 2-tape DTM, copy the reverse of x on tape 2, and then compare – this is O(n).

Exercise: Prove that the classes of Turing-recognisable and decidable languages are closed under union and intersection.

Answer. Just run in parallel on both tapes after copying to second tape – acceptance criteria – and/or.

Exercise: Prove that DTMs with 2-way ∞ tape can be simulated by 2-tape DTMs.

Question 3

Can we simulate an NTM by a 2-tape DTM?

Answer. Yes, we can.

Theorem 2

If L is recognised (respectively decided) by an NTM, then L is recognised (resp. decided) by a 2-tape DTM, and therefore also by a DTM.

Proof. Recognisability:

Label transitions in Δ as $T_0, T_1, \ldots, T_{m-1}$, where $m = \Delta$.

Idea: iterate over all possible strings ρ in $\{0,\ldots,m-1\}^*$, and hold ρ on tape 2.

Simulate the run given by ρ on tape 1.

- 1. If it terminates and accepts x, then accept.
- 2. If for some i, the $i^{\rm th}$ transition in ρ is not applicable, then break the simulation.
- 3. If you run out of transitions, i.e., ρ is too small, then break the simulation.

N accepts x iff there exists an accepting run of N on x. Let ρ^* be the sequence of transitions taken in the accepting run. When tape 2 contains ρ^* , then the simulation accepts x.

Conversely, if the simulation accepts, look at the content of tape 2. That must be an accepting run of N on x.

Implementation details:

- 1. Store $x \# \rho$ on tape 2 instead of just ρ (for each ρ , erase tape 1, copy x on tape 2, then start the simulation).
- 2. Observe that given any ρ , the next ρ can be computed by a single tape DTM.