Maths Problems for 2017 — CHEN10072 Bill Lionheart, Michael Crabb March 2017

Week 6

1. Solve the following linear ODEs by finding an integrating factor:

(a)
$$\frac{dy}{dx} + y = \exp(-x)$$
; $y = 2$ when $x = 0$.

(b)
$$\frac{dy}{dx} + y \cos x = \cos x$$
; $y = 1$ when $x = 0$.

$$(c)^* \frac{dy}{dx} + \frac{y}{x} = \sin x$$
; $y = 0$ when $x = 0$.

2. Let C be concentration of dissolved Oxygen in bioreactor and C_s concentration of dissolved Oxygen at saturation, and $D = C_s - C$ the 'deficit'. Let L be the constant Biological Oxygen Demand of organisms in the reactor. The following differential equation is given as a model

$$\frac{\mathrm{d}D}{\mathrm{d}t} = k_d L - k_r D$$

where k_d and k_r are constants and t is time.

- (a) What does this equation mean?
- (b) Solve the differential equation, assuming $D=D_0$ at t=0
- (c) What shape is this curve?