# **Assignment-5**

Name: K Naga Sai Krishna

# Assignment:

# Market Basket Magic: Extracting Insights for Retail Success

Customer segmentation is a crucial aspect of retail and marketing strategy. Mall Customer Segmentation is a common data analysis project that involves categorizing mall customers into distinct groups or segments based on various characteristics and behaviors. This segmentation is valuable for tailoring marketing efforts, optimizing store layouts, and enhancing customer experiences.

Dataset link: Here

Task:

Understand the data

Data Preprocessing

Machine Learning approach with clustering algorithm

```
Data Preprocessing and data understanding
```

```
[3] import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
```

[4] from google.colab import files uploaded = files.upload()

Browse... Mall\_Customers.csv

Mall\_Customers.csv(application/vnd.ms-excel) - 3981 bytes, last modified: n/a - 100% done Saving Mall\_Customers.csv to Mall\_Customers.csv

```
[14] import io
    df = pd.read_csv(io.BytesIO(uploaded['Mall_Customers.csv']))
```

[15] df.head()

|   | CustomerID | Gender | Age | Annual Income (k\$) | Spending Score (1-100) |     |
|---|------------|--------|-----|---------------------|------------------------|-----|
| 0 | 1          | Male   | 19  | 15                  | 39                     | 11. |
| 1 | 2          | Male   | 21  | 15                  | 81                     |     |
| 2 | 3          | Female | 20  | 16                  | 6                      |     |
| 3 | 4          | Female | 23  | 16                  | 77                     |     |
| 4 | 5          | Female | 31  | 17                  | 40                     |     |

[16] df.describe().T

|                        | count | mean   | std       | min  | 25%   | 50%   | 75%    | max   | $\blacksquare$ |
|------------------------|-------|--------|-----------|------|-------|-------|--------|-------|----------------|
| CustomerID             | 200.0 | 100.50 | 57.879185 | 1.0  | 50.75 | 100.5 | 150.25 | 200.0 | 11.            |
| Age                    | 200.0 | 38.85  | 13.969007 | 18.0 | 28.75 | 36.0  | 49.00  | 70.0  |                |
| Annual Income (k\$)    | 200.0 | 60.56  | 26.264721 | 15.0 | 41.50 | 61.5  | 78.00  | 137.0 |                |
| Spending Score (1-100) | 200.0 | 50.20  | 25.823522 | 1.0  | 34.75 | 50.0  | 73.00  | 99.0  |                |

[17] df.isnull().sum()

CustomerID 0
Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

[18] df.drop(df.columns[[0]], axis=1, inplace=True)

# Data Visualization:

```
[19] plt.figure(figsize=(8, 5))
    sns.histplot(data=df, x='Age', bins=20, kde=True)
    plt.title('Age Distribution')
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.show()
```

# Age Distribution 20 15 10 20 30 Age Age

```
plt.figure(figsize=(8, 5))
sns.histplot(data=df, x='Annual Income (k$)', bins=15, kde=True)
plt.title('Annual Income Distribution')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Count')
plt.show()
```



```
plt.figure(figsize=(8, 5))
sns.histplot(data=df, x='Spending Score (1-100)', bins=15, kde=True)
plt.title('Spending Score Distribution')
plt.xlabel('Spending Score (1-100)')
plt.ylabel('Count')
plt.show()
```

# Spending Score Distribution



```
plt.figure(figsize=(8, 5))
sns.boxplot(data=df, x='Gender', y='Age', palette='pastel')
plt.title('Age Distribution by Gender')
plt.xlabel('Gender')
plt.ylabel('Age')
plt.show()
```



Gender





```
plt.figure(figsize=(6, 4))
sns.countplot(data=df, x='Gender', palette='pastel')
plt.title('Gender Distribution')
plt.xlabel('Gender')
plt.ylabel('Count')
plt.show()
```



### Label Encoding

```
[26] from sklearn import preprocessing
  label_encoder = preprocessing.LabelEncoder()
  df['Gender'] = label_encoder.fit_transform(df['Gender'])
```

# Applying K Means

```
[27] a = []
   k_values = range(1, 11)
   for k in k_values:
        kmeans = KMeans(n_clusters=k, init='k-means++', random_state=42,n_init=10)
        kmeans.fit(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])
        a.append(kmeans.inertia_)
```

## [28] a

```
[308812.78,
212840.1698209719,
143342.751571706,
104366.15145556197,
75378.76464074483,
58302.40630860368,
51118.949931647294,
44312.46881207722,
40894.98978213978,
37468.51571576572]
```

```
plt.figure(figsize=(8, 5))
plt.plot(k_values, a, marker='o', linestyle='-', color='b')
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of Clusters (K)')
plt.ylabel('Within-Cluster Sum of Squares (WCSS)')
plt.grid(True)
plt.show()
```



```
[30] from sklearn import cluster
   km_model = cluster.KMeans(n_clusters=3,init = 'k-means++',random_state=0)
[31] km_model.fit(df)
   /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: Fut
     warnings.warn(
               KMeans
   KMeans(n_clusters=3, random_state=0)
   pred = km_model.predict(df)
   pred
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1,
        0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
        0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
        0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
        0, 1], dtype=int32)
 Predicting with random values
[36] print(km_model.predict([[1,20,19,40]]))
     [2]
     /usr/local/lib/python3.10/dist-packages/skle
      warnings.warn(
[47] print(km_model.predict([[1,20,115,40]]))
     /usr/local/lib/python3.10/dist-packages/skle
      warnings.warn(
[48] print(km model.predict([[0,43,190,89]]))
    /usr/local/lib/python3.10/dist-packages/skle
      warnings.warn(
[51] print(km_model.predict([[0,27,69,96]]))
     /usr/local/lib/python3.10/dist-packages/skle
      warnings.warn(
```