Your	Nam	ne Goes	Here
Math	387	Analysi	is I
Home	work	5	

Problem List

2.4 {1,2,4}

2.5 {1,2}

H/T: Last Names Spring 2016 Due: Wednesday, March 2

Unassigned, but suggested: Problems 3,5 in Section 2.4 Unassigned, but suggested: Problems 4,5,6,11 in Section 2.5

5.1 Problem 2.4.1

Prove that $\left\{\frac{n^2-1}{n^2}\right\}$ is Cauchy using directly the definition of Cauchy sequences.

 \Box

5.2 Problem 2.4.2

Let $\{x_n\}$ be a sequence such that there exists a 0 < C < 1 such that

$$|x_{n+1} - x_n| \le C |x_n - x_{n-1}|$$
.

Prove that $\{x_n\}$ is Cauchy. Hint: You can freely use the formula (for $C \neq 1$)

$$1 + C + C^2 + \dots + C^n = \frac{1 - C^{n+1}}{1 - C}.$$

 \Box

5.3 Problem 2.4.4

Let $\{x_n\}$ and $\{y_n\}$ be sequences such that $\lim y_n = 0$. Suppose that for all $k \in \mathbb{N}$ and for all $m \ge k$ we have

$$|x_m - x_k| \le y_k.$$

Show that $\{x_n\}$ is Cauchy.

Solution. \Box

5.4 Problem 2.5.1

For $r \neq 1$, prove

$$\sum_{k=0}^{n-1} r^k = \frac{1-r^n}{1-r}.$$

Hint: Let $s := \sum_{k=0}^{n-1} r^k$, then compute s(1-r) = s - rs, and solve for s.

Solution. \Box

5.5 Problem 2.5.2

Prove that for -1 < r < 1 we have

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}.$$

Hint: Use the previous exercise.

Solution. \Box