Cap. 8

Seção 8.1

8.1.1

Como hipótese do exercício, suponha que $V_{p^{m+1}}=V_{p^m}$ para algum $m\geq 0$, e por hipótese de indução seja $k\in\mathbb{Z}_{\geq 1}$ tal que $V_{p^m}=V_{p^{m+k}}$. Seja $v\in V$ um vetor qualquer. Pelas hipóteses acima,

$$p^{m}(T)(v) = 0 \iff p^{m+1}(T)(v) = 0$$
 (1)

$$p^{m}(T)(p(T)(v)) = 0 \iff p^{m+k}(T)(p(T)(v)) = 0.$$
 (2)

Mas:

$$p^{m}(T)(p(T)(v)) = p^{m+1}(T)(v)$$
$$p^{m+k}(T)(p(T)(v)) = p^{m+k+1}(T)(v)$$

assim, o lado direito de (1) é igual ao lado esquerdo de (2), e portanto

$$p^{m+k+1}(T)(v) = 0 \iff p^m(T)(v) = 0$$

como queríamos. Para provar (8.1.5), note que como $V_{p^i} \subseteq V_{p^{i+1}}$ e a dimensão de V é finita, $\dim(V_{p^i}) \le \dim(V_{p^{i+1}})$ e vale a igualdade se, e somente se, $V_{p^i} = V_{p^{i+1}}$. Assim,

$$V_{p^0} \subseteq V_p \subseteq V_{p^2} \subseteq \cdots \subseteq V_{p^n}$$

deve ser tal que $\dim(V_{p^m}) = \dim(V_{p^{m+1}})$ para algum $0 \le m \le n$, caso contrário teríamos $\dim(V_{p^{n+1}}) > n = \dim(V)$, um absurdo. Usando o resultado acima, concluímos que $V_p^\infty = V_{p^n} = V_{p^m}$.

8.1.2

Suponha que houvesse um polinômio aniquilador de grau menor m'. Então a família seria l.d. com os m' < m primeiros termos, contradizendo a construção.

8.1.5

Se $p \in \mathcal{P}(\mathbb{F})$ é tal que p(T)(X) = 0 para todo $X \in M_n(\mathbb{F})$, então p(A) = 0, e sabemos que o menor polinômio com essa propriedade é m_A .

8.1.6

Para todo $p \in \mathcal{P}(\mathbb{F})$, seja $m = \operatorname{gr}(p)$. Então $p(T)(t^m) = m! \neq 0$ e $t^m \in \mathcal{C}^{\infty}(\mathbb{R})$.

8.1.7

Ideal: mostrar que é subgrupo aditivo (checar se a soma é fechada e inversos) e que é fechado por multiplicação. Para ver que m_v divide todos os seus elementos, note que todo $p \in \mathcal{A}_{T,v}$ é tal que $p(T)(C_T(v)) = 0$, e reciprocamente todo $p \in \mathcal{A}_S$ com $S = T|_{C_T(v)}$ é tal que p(T)(v) = 0. Logo $\mathcal{A}_{T,v} = \mathcal{A}_S$ e $m_v = m_S = \min \mathcal{A}_{T,v}$.

8.1.8

Se $v \in V_p$, então $m_v|p$ pois $p \in \mathcal{A}_{T,v}$ e porque sabemos que o polinômio mínimo existe sempre que o ideal for diferente de $\{0\}$. Além disso, como $\dim(C_T(v)) = \deg(m_v)$, a dimensão é limitada superiormente por $\deg(p)$.

8.1.9

Sequências com suporte finito e T = shift.

8.1.10

8.1.11

Demonstração do corolário: se $V_p \neq \{0\}$, então deve existir um fator primo f de p com $V_f \neq \{0\}$, pelo seguinte motivo: suponha que os núcleos de f e g são triviais. Suponha $V_{fg} \ni v \neq 0$, ou seja (fg)(T)(v) = 0, mas isso implicaria $v \in V_g$ ou $0 \neq g(T)(v) \in V_f$, contradição. Por outro lado, se $f \in \mathrm{Div}(m_T)$, então $\{0\} \neq V_f \subset V_{fg}$. Por fim, se g não tem fatores primos em $\mathrm{Div}(m_T)$, isso significa que o núcleo de todos os seus fatores primos é $\{0\}$. Como vimos anteriormente, isso significa que o núcleo de g, que é o produto dos fatores, também é $\{0\}$. Mas então para todo $v \in V_p$, (gf)(T)(v) = 0, o que implica $f(T)(v) \in V_g = \{0\}$, portanto $v \in V_f$. Logo $V_f \subset V_p \supset V_f$. Na segunda parte, sejam f_i os divisores de p com multiplicidade k_i . Sabemos que podemos tomar um vetor não nulo em $v_i \in V_{f_i^{k_i}} \setminus V_{f_i^{k_i-1}}$ pois um está contido estritamente no outro. Além disso, $m_{v_i} = f_i^{k_i}$ pelo seguinte motivo: $m_{v_i} | f_i^{k_i}$ já que $v_i \in V_{f_i^{k_i}}$, o que implica $m_{v_i} = f^{k'}$ com $k' \leq k_i$, mas para todo $k' < k_i, v_i \notin V_{f_i^{k'}}$, portanto $k' = k_i$. Seja $v = \sum_i v_i$, de forma que temos

 $m_v \mid \prod_i m_{v_i}$. Por contradição, suponha que $\prod_i m_{v_i} \nmid m_v$. Então existe um $f_j^{k_j} \nmid m_{\sum_i v_i}$, e nesse caso $m_v(T)(v) = \sum_i m_v(T)(v_i) \neq 0$ pois sempre que polinômios são coprimos, a restrição de um ao núcleo de outro é injetora, e os $m_v(T)(v_i)$ moram em subespaços diferentes para i distintos, de forma que a soma de todos é não nula pois por hipótese pelo menos $m_v(T)(v_j) \neq 0$. Ou seja, $m_v(T)(v) \neq 0$, contradição.

- 8.1.12
- 8.1.13
- 8.1.14
- 8.1.15
- 8.1.19
- 8.1.20
- 8.1.21
- 8.1.22
- 8.1.23
- 8.1.24

Cap. 9

Seção 9.2

9.2.5

Seja $W = \mathbb{F}^m$ e considere $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ dado por $T(v) = \sum_{i=1}^m f_i(v)e_i$, onde $\{e_i\}_{i=1}^m$ é a base canônica de W. Suponha por contradição que T não é sobrejetora, de forma que poderíamos escrever $W = U \oplus T(V)$ onde $U \neq \{0\}$. Seja $g \in W^*$ o funcional linear definido por g(u) = 1 para todo u em uma base $\{u_i\}_{i \in I}$ de U e g(w) = 0 se $w \in T(V)$, ou seja, $g \neq 0$ e $g \circ T = 0$. Então:

$$(g \circ T)(v) = g\left(\sum_{i=1}^{m} f_i(v)e_i\right)$$
$$= \sum_{i=1}^{m} g(e_i)f_i(v)$$
$$\implies g \circ T = \sum_{i=1}^{m} g(e_i)f_i = 0$$

Mas como $\{e_i\}_{i=1}^m$ é base de W, $g(e_i) \neq 0$ para algum i; ou seja, um dos coeficientes da última combinação linear é diferente de zero, contradizendo a hipótese que $\{f_i\}_{i=1}^m$ é l.i.. Portanto, T é sobrejetora e basta, para cada $1 \leq j \leq m$, escolher v tal que $T(v) = e_j$.

9.2.11

(a) Claro que $0 \in V_{\lambda}$, e se $a, b \in V_{\lambda}$, então $T(a + \gamma b) = T(a) + \gamma T(b) = \lambda(T)a + \gamma \lambda(T)b = \lambda(T)(a + \gamma b)$ para toda $T \in \mathcal{T}$. Agora, seja $V'_{\lambda} = \{v \in V : T(v) = \lambda(T)v, \ \forall \ T \in \mathbb{T}\}$. Claro que $V'_{\lambda} \subset V_{\lambda}$. Se $v \in V_{\lambda}$, então para toda $Q = \sum_{i} x_{i}T_{i}$ com $T_{i} \in \mathcal{T}$,

$$Q(v) = \sum_{i} x_i T_i(v) = \sum_{i} x_i \lambda(T_i) v = \lambda\left(\sum_{i} x_i T_i\right) v = \lambda(Q) v.$$

(b) Suponha que $\lambda, \lambda' \in \mathbb{T}^*$ com $\lambda \neq \lambda'$. Seja $v \in V_{\lambda} \cap V_{\lambda'}$. Então existe ao menos um

 $T \in \mathbb{T}$ tal que $\lambda(T) \neq \lambda'(T)$. Mas pelo item (a) sabemos que $T(v) = \lambda'(T)v = \lambda(T)v$, logo v = 0.

(c) Seja $\{\tau_i\}_{i\in\mathcal{I}}$ a referida base de \mathbb{T} , e note que a questão é equivalente a existir uma base $\nu=\{v_j\}_{j\in\mathcal{J}}$ de V em que os elementos de τ são simultaneamente diagonais: se isso é verdade, para cada $j\in\mathcal{J}$, seja $\lambda_j\in\mathbb{T}^*$ o funcional definido por $\lambda_j(\tau_i)=([\tau_i]^\nu_\nu)_{j,j}$. Assim, $v_j\in V_{\lambda_j}$, e como $\{v_j\}_{j\in\mathcal{J}}$ é base, fica claro que $V=\bigoplus_{j\in\mathcal{J}}V_{\lambda_j}$. Por outro lado, se $V=\bigoplus_{\lambda\in\mathbb{T}^*}V_\lambda$, tomando α_j base de V_{λ_j} para todo $j\in\mathcal{J}$ a família $\nu=\bigcup_{j\in\mathcal{J}}\alpha_j$ é uma base de V com $[\tau_i]^\nu_\nu$ diagonal para todo $i\in\mathcal{J}$.

Agora, precisamos mostrar que $\{v_j\}_{j\in\mathcal{J}}$ existe. Fixando $i\in\mathcal{I}$, seja $\omega=\{w_j\}_{j\in\mathcal{J}}$ base de V que diagonaliza τ_i e para cada $j\in\mathcal{J}$ defina $a_j=([\tau_i]_\omega^\omega)_{j,j}$. Como da primeira hipótese temos $\tau_{i'}\tau_i=\tau_i\tau_{i'}$ para todo $i'\in\mathcal{I}$ (estão no subespaço gerado por \mathcal{T}), vale $\tau_i(\tau_{i'}w_j)=\tau_{i'}\tau_iw_j=a_j(\tau_{i'}w_j)$, ou seja, o subespaço $\mathcal{N}(\tau_i-a_j\mathrm{id})$ é invariante por $\tau_{i'}$.

9.2.12

Seja $K = \mathbb{F}^m$ e considere $T \in \operatorname{Hom}_{\mathbb{F}}(V,K)$ dado por $T(v) = \sum_{i=1}^m f_i(v)e_i$, onde $\alpha = \{e_i\}_{i=1}^m$ é a base canônica de K. Claro que $W = \bigcap_{j=1}^m \mathcal{N}(f_j) = \mathcal{N}(T)$. Por isso, $V/W \cong T(V) \subset K$, e segue que $\dim(V/W) \leq \dim(K) = m$. Além disso, vimos no exercício 9.2.5 que se $\{f_i\}_{i=1}^m$ for l.i., então T(V) = K, e reciprocamente, se $\dim(V/W) = m$ então T é sobrejetora; nesse caso, considere $a_i \in \mathbb{F}$ tal que $a_1f_1 + \cdots + a_mf_m = 0$. Podemos definir um funcional $g \in K^*$ por $g(e_i) = a_i$ para $1 \leq i \leq m$, e dessa forma:

$$(T^{t}g)(v) = g\left(\sum_{i=1}^{m} f_{i}(v)e_{i}\right) = \sum_{i=1}^{m} g(e_{i})f_{i}(v) = \sum_{i=1}^{m} a_{i}f_{i}(v) = 0$$

Mas como T é sobrejetora, para todo $1 \le i \le m$ existe $v_i \in V$ tal que $T(v_i) = e_i$, de forma que $a_i = g(e_i) = (T^t g)(v_i) = 0$, ou seja, $\{f_i\}_{i=1}^m$ é l.i..

Seção 9.4

9.4.6

Seja $\psi(v, w) = \langle v, w \rangle$. abc