Homework Week 4 (Multiple regression)

For this assignment, select two explanatory variables (X_1, X_2) and an outcome variable (Y) from a dataset of your choosing (see: datasets.zip). Be sure that the variables you choose seem to have a meaningful relationship – one you might be actually interested in for a research question. Also make sure that all of the variables are quantitative/ continuous.

- 1) In **Homework Week 2**, you calculated separate least squares regressions for the regression of Y on X_1 (Problem 2e) and Y on X_2 (Problem 3). In this problem, *using the same variables*, you will **use SPSS** and **ALL OF THE DATA** to calculate the multiple regression of Y on X_1 and X_2 .
 - (a) Write out the regression relationship. Explain what each of the coefficients mean.
 - (b) Find the least squares estimates a, b_1 , and b_2 for the regression of Y on X_1 and X_2 . Also find the standard error of the regression, s_e , and R^2 .
 - (c) Interpret each of the coefficients (a, b_1 , b_2 , s_e , R^2).
 - (d) Compare the estimates for b_1 and b_2 of the multiple regression with the slope estimates of the simple regressions you performed in problems 2(e) and 3 of homework 2.1. If the coefficients differ (or if they do not differ at all), explain why.
 - (e) Calculate the standardized regression coefficients. Explain how each of these coefficients is interpreted. Is the effect of X_1 or X_2 larger? Explain.
- 2) Using SPSS and ALL OF THE DATA, calculate the multiple regression of Y on X_1 and X_2 . Note that this homework builds on the previous homework; use the same Y, X_1 , and X_2 variables from last week.
 - (a) Assuming independently distributed errors, find the standard error of the slope coefficients for X_1 and X_2 (i.e. $SE(b_1)$ and $SE(b_2)$).
 - (b) Construct an analysis-of-variance table for the regression, testing the omnibus null hypothesis H_0 : $\beta_1 = \beta_2 = 0$. Interpret the results.
 - (c) Separately test the null hypothesis H_0 : $\beta_1 = 0$ and H_0 : $\beta_2 = 0$. Interpret the results. (Note: this is asking for two individual t-tests from your multiple regression model)
 - (d) Are the hypotheses tested in (b) the same as that tested in (c)? Explain.
 - (e) Compute an incremental F-test of the hypothesis H_0 : $\beta_2 = 0$ (be sure to state both H_0 and H_a). Verify that the F-statistic for this test is equal to the square of the t-value obtained. Why does this matter?

1. a) SAT Verbali = a+ B. Teacher Pay; + B. Percent Taking; 2 = intercept = average value of + Gi SAT verbol when TeacherPay = MT = U. B1: Shope = effect of a 1-unit increase in pr: effect of a 1-unit increase in PT on Soutrabal. holding constant teacher pary. 9:= 1:- E(Yi) is the residence for i. D) 2= 656.7 B1= 0.54 Br=-1.21 Se= 15.9 C) a = average volve for sat verbol when teucher pry and parcont taking = 0 p, : teacher pary is not signifiant. for every I wit morest in tenher pry, sat verbal increase 0.54, holding constant these other variables. pr: teacher pary is significant for every | unit moved in percent taking, sort varbor decrease 121, holding constant these other variables. Se: on average, the model is incorrect by 159 when predicting sat variable R: the model explormed 77. 2% of variation

in sat verbed

d) bin (2e) and bin (3) are different then b! and br.

Become the coefficient estimated is a partial coefficient. Holding constant. But in simple regression models, they are not

 $b_1 = 0.1$ $b_1 = 0.944$

× r hors langer effect on Y.

Because for I sol increase in teacher pay, Soit Verbal increase 0.1 sol unit, controlling for PT.

increase 0.1 sol mit, controlling for PT.

for 1 sol increase in PT, Scot Verbal
cleaveurse 0.944 sol mit, controlling for teacher pay.

- 2. a) St (b): 0.45 St (b): 0.45
 - 50 at least one of the covariates in the model have effect on Y.
 - c) 1. t=1.18 p=0.24 <0.65 so not sufficient evidence to reject to. so, there is no evidence that shows $-\chi$, and χ has relationship $-\chi$. t=-11.3 p=0.0|<0.05 to was rejected.

 So χ_{γ} and χ has relationship

d) They are different. Omnibus test could be rejected, but the individual tests can not.

They owe using different tests.

e) Ho: pr-b Ha: 13, 70 Tencher pay t=-3.788 F=14.1=tr PT t=-11.31 F=127.1=-tr

P=0.0| < 0.05 the was rejected so the Full model is significantly better.