

Return to "Deep Learning" in the classroom

DISCUSS ON STUDENT HUB

Predicting Bike-Sharing Patterns

REVIEW
CODE REVIEW
HISTORY
Meets Specifications
Nice work!
Code Functionality
All the code in the notebook runs in Python 3 without failing, and all unit tests pass.
The sigmoid activation function is implemented correctly
Forward Pass
The forward pass is correctly implemented for the network's training.
The run method correctly produces the desired regression output for the neural network.
Backward Pass
The network correctly implements the backward pass for each batch, correctly updating the weight change.
Updates to both the input-to-hidden and hidden-to-output weights are implemented correctly.
Hyperparameters
The number of epochs is chosen such the network is trained well enough to accurately make predictions but is not overfitting to the training data.
The number of hidden units is chosen such that the network is able to accurately predict the number of bike riders, is able to generalize, and is not overfitting.

 $https://review.udacity.com/?utm_campaign=ret_000_auto_ndxxx_submission-reviewed\&utm_source=blueshift\&utm_medium=email... \ 1/2 \ and a construction of the construct$

he network successfully converges, but is still time efficient.
ly selected to solve the desired problem.
unlidation loss is below 0.40
validation loss is below 0.18.
loss = 0.153
ı∳ı DOWNLOAD PROJECT

RETURN TO PATH

Rate this review