The group G is isomorphic to the group labelled by [60, 5] in the Small Groups library. Ordinary character table of $G \cong A5$:

		5b	5a	3a	2a	1a	
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	1	1	1	χ_1
$\begin{bmatrix} \chi_3 & 3 & -1 & 0 & -E(5)^2 - E(5)^3 & -E(5) - E \end{bmatrix}$	$E(5)^3$	$-E(5)^2 - E(5)^2$	$-E(5) - E(5)^4$	0	-1	3	
	$(5)^4$	-E(5) - E(5)	$-E(5)^2 - E(5)^3$	0	-1	3	χ_3
$ \chi_4 4 0 1 -1 -1$		-1	-1	1	0	4	
$ \chi_5 5 1 -1 0 0$		0	0	-1	1	5	

Trivial source character table of $G \cong A5$ at p = 2:

Normalisers N_i			N_1		N_2		N_3	
p-subgroups of G up to conjugacy in G			P_1		P_2		P_3	
Representatives $n_j \in N_i$	1a	3a	5a	5b	1a	1a	3b	3a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	12	0	2	2	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	8	-1	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	8	-1	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5$	4	1	-1	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	6	0	1	1	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	5	-1	0	0	1	1	$E(3)^{2}$	E(3)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	5	-1	0	0	1	1	E(3)	$E(3)^{2}$

$$\begin{split} P_1 &= Group([()]) \cong 1 \\ P_2 &= Group([(2,4)(3,5)]) \cong \mathbf{C2} \\ P_3 &= Group([(2,4)(3,5),(2,3)(4,5)]) \cong \mathbf{C2} \times \mathbf{C2} \end{split}$$

$$N_1 = AlternatingGroup([1..5]) \cong A5$$

 $N_2 = Group([(2, 4)(3, 5), (2, 3)(4, 5)]) \cong A5$

$$N_2 = Group([(2,4)(3,5),(2,3)(4,5)]) \cong C2 \times C2$$

$$N_3 = AlternatingGroup([2..5]) \cong A4$$