Script 3

Introducing a Continuum

3.1 Journal

10/20: Axiom 1. A continuum is a nonempty set C.

Definition 3.1. Let X be a set. An **ordering** on the set X is a subset < of $X \times X$ with elements $(x, y) \in <$ written as x < y, satisfying the following properties:

- a) (Trichotomy) For all $x, y \in X$, exactly one of the following holds: x < y, y < x, or x = y.
- b) (Transitivity) For all $x, y, z \in X$, if x < y and y < z, then x < z.

Remark 3.2.

- a) In mathematics, "or" is understood to be inclusive unless stated otherwise. So in Definition 3.1a above, the word "exactly" is needed.
- b) x < y may also be written as y > x.
- c) By $x \le y$, we mean x < y or x = y; similarly for $x \ge y$.
- d) We often refer to elements of a continuum C as **points**.

Axiom 2. A continuum C has an ordering <.

Definition 3.3. If $A \subset C$, then a point $a \in A$ is a **first** point of A if for every element $x \in A$, either a < x or a = x. Similarly, a point $b \in A$ is called a **last** point of A if, for every $x \in A$, either x < b or x = b.

Lemma 3.4. If A is a nonempty, finite subset of a continuum C, then A has a first and last point.

Lemma. Let A be a nonempty, finite set (i.e., |A| = n for some $n \in \mathbb{N}$), let a be any element of A, and let the set $B = A \setminus \{a\}$. Then |B| = n - 1.

Proof. We first prove that $|\{a\}| = 1$. By Definition 1.33, to do so, it will suffice to find a bijection $f : \{a\} \to [1]$. Since $[1] = \{1\}$ by Definition 1.29, $f : \{a\} \to \{1\}$ defined by f(a) = 1 is clearly such a bijection. We now demonstrate that $B \cap \{a\} = (A \setminus \{a\}) \cap \{a\} = \emptyset$. The previous two results combined with the fact that $B \cup \{a\} = (A \setminus \{a\}) \cup \{a\} = A$ imply by Theorem 1.34b that $|A| = |B| + |\{a\}|$. It follows that n = |B| + 1, so |B| = n - 1.

Proof of Lemma 3.4. We consider first points herein (the proof is symmetric for last points). If A is a finite set, then by Definition 1.30, |A| = n for some $n \in \mathbb{N}$. Thus, if we prove the claim for each $n \in \mathbb{N}$ individually, we will have proven the claim. To prove a property pertaining to any natural number, we induct on n.

For the base case n = 1, there is only one element (which we may call a) in A. Since a = a, i.e., "for every $x \in A$, either a < x or a = x" is a true statement, it follows by Definition 3.3 that A has a first point. Now suppose inductively that we have proven the claim for n, i.e., we know that if A is a nonempty,

Script 3 MATH 16110

finite subset of a continuum C with |A| = n, then A has a first point. We wish to prove the same claim if |A| = n + 1. Let a be an arbitrary element of A, and consider the set $B = A \setminus \{a\}$. By the lemma, |B| = n. Consequently, the induction hypothesis applies and asserts that B has a first point a_0 . Clearly, a_0 is also an element of A, but it may or may not be the first point of A (the first point may now be a). Since C has an ordering < (see Axiom 2), Definition 3.1 asserts that either $a < a_0$, $a_0 < a$, or $a = a_0$. We now divide into three cases. If $a < a_0$, then since $a_0 \le x$ for all $x \in A$ by Definition 3.3, Definition 3.1 implies that $a \le x$ for all $x \in A$. Thus, by Definition 3.3, a is the first point in A, and we have proven the claim for |A| = n + 1 in this case. If $a_0 < a$, then it is still true that $a_0 \le x$ for all $x \in A$. This means by Definition 3.3 that a_0 is still the first point in A, proving the claim for |A| = n + 1 in this case. If $a = a_0$, then $a \in B$, contradicting the fact that $a \in A$ and $a \in B$, so we need not consider this final case. This closes the induction.

Theorem 3.5. Suppose that A is a set of n distinct points in a continuum C, or in other words, $A \subset C$ has cardinality n. Then the symbols a_1, \ldots, a_n may be assigned to each point of A so that $a_1 < a_2 < \cdots < a_n$, i.e., $a_i < a_{i+1}$ for all $1 \le i \le n-1$.

Proof. We divide into two cases $(|A| = 0 \text{ and } |A| \in \mathbb{N})$.

If |A| = 0, then the statements "the symbols a_1, \ldots, a_n may be assigned to each point of A" and " $a_i < a_{i+1}$ for all $1 \le i \le n-1 = -1$ " are both vacuously true.

If $|A| \in \mathbb{N}$, we induct on |A| = n. For the base case n = 1, denote the single element of A by a_1 . Since $a_i < a_{i+1}$ for all $1 \le i \le n-1=0$ is vacuously true, the base case holds. Now suppose inductively that we have proven the claim for n, i.e., for a set $A \subset C$ satisfying |A| = n, the symbols a_1, \ldots, a_n may be assigned to each point of A so that $a_1 < a_2 < \cdots < a_n$. We now wish to prove the claim with regards to a set $A \subset C$ with |A| = n+1. By Lemma 3.4, there is a last point $a_{n+1} \in A$, which may be denoted as such (we will rigorously confirm this later). Since the set $A \setminus \{a_{n+1}\}$ has cardinality n (see the lemma from Lemma 3.4), we have by the induction hypothesis that its n elements can be named a_1, \ldots, a_n and ordered $a_1 < a_2 < \cdots < a_n$. Clearly these n elements are elements of A and all that's left to do is determine where a_{n+1} fits into the established order. But by Definition 3.3, $x \le a_{n+1}$ for all $x \in A$, i.e., $x < a_{n+1}$ for all $x \in A \setminus \{a_{n+1}\}$. Consequently, as its name would suggest, it is true that $a_1 < a_2 < \cdots < a_n < a_{n+1}$, as desired.

Definition 3.6. If $x, y, z \in C$ and either (i) both x < y and y < z or (ii) both z < y and y < x, then we say that y is **between** x and z.

Corollary 3.7. Of three distinct points in a continuum, one must be between the other two.

Proof. Let A be a subset of the described continuum containing the three distinct points. It follows by Theorem 3.5 that the symbols a_1, a_2, a_3 may be assigned to each point of A so that $a_1 < a_2 < a_3$. Thus, $a_1 < a_2$ and $a_2 < a_3$, so a_2 is between a_1 and a_3 by Definition 3.6.

Axiom 3. A continuum C has no first or last point.

Definition 3.8. We define an ordering on \mathbb{Z} by m < n if n = m + c for some $c \in \mathbb{N}$.

Exercise 3.9.

a) Prove that with this ordering \mathbb{Z} satisfies Axioms 1-3.

Proof. Clearly, \mathbb{Z} is a nonempty set, so Axiom 1 is immediately satisfied.

Axiom 2 asserts that $\mathbb Z$ must have an ordering <. As such, we must verify that the ordering given by Definition 3.8 satisfies the stipulations of Definition 3.1. To prove that < satisfies the trichotomy, it will suffice to show that for all $x,y\in\mathbb Z$, exactly one of the following holds: x< y, y< x, or x=y. Let x,y be arbitrary elements of $\mathbb Z$. We divide into three cases. First, suppose for the sake of contradiction that x< y and y< x. By Definition 3.8, this implies that y=x+c and x=y+c' for some $c,c'\in\mathbb N$. Substituting, we have y=y+c'+c, or 0=c'+c by the cancellation law of addition. But since $c',c\in\mathbb N$, the closure of addition on $\mathbb N$ implies that $(c'+c)\in\mathbb N$. Therefore, $c'+c\neq 0$, a contradiction. Second, suppose for the sake of contradiction that x< y and x=y. By Definition 3.8, this implies that y=x+c for some $c\in\mathbb N$. Substituting, we have y=y+c, or 0=c by the cancellation law of

Script 3 MATH 16110

addition. But since $c \in \mathbb{N}$, $c \neq 0$, a contradiction. The proof of the third case (y < x and x = y) is symmetric to that of the second case. To prove that < is transitive, it will suffice to show that for all $x, y, z \in \mathbb{Z}$, if x < y and y < z, then x < z. Let x, y, z be arbitrary elements of \mathbb{Z} for which it is true that x < y and y < z. By Definition 3.8, we have y = x + c and z = y + c' for some $c, c' \in \mathbb{N}$. Substituting, we have z = x + c + c'. Since $(c + c') \in \mathbb{N}$ by the closure of addition on \mathbb{N} , Definition 3.8 implies that x < z.

Axiom 3 asserts that \mathbb{Z} must have no first or last point. Suppose for the sake of contradiction that \mathbb{Z} has some first point a. Then by Definition 3.3, $a \leq x$ for every $x \in \mathbb{Z}$. However, under the closure of subtraction on \mathbb{Z} , $(a-1) \in \mathbb{Z}$. Since (a-1)+1=a, Definition 3.8 asserts that a-1 < a, a contradiction. The proof is symmetric for the last point.

b) Show that for any $p = \begin{bmatrix} \frac{a}{b} \end{bmatrix} \in \mathbb{Q}$, there is some $(a_1, b_1) \in p$ with $0 < b_1$.

Proof. Let $\left[\frac{a}{b}\right]$ be an arbitrary element of \mathbb{Q} . It follows by Definition 2.5 that $(a,b) \in X$. Since we also have $(a,b) \sim (a,b)$ by Exercise 2.2e, Definition 2.5 implies that $(a,b) \in \left[\frac{a}{b}\right]$. By the trichotomy (see Definition 3.1) of the ordering defined by Definition 3.8 on \mathbb{Z} which Exercise 3.9a just proved is valid, we have 0 < b, b < 0, or 0 = b. We divide into three cases. First, suppose that 0 < b. Then (a,b) is an element $(a_1,b_1) \in \left[\frac{a}{b}\right]$ for which $0 < b_1$, and we are done. Second, suppose that b < 0. Since (-a)(b) = (-b)(a), we have by the definition of \sim that $(-a,-b) \sim (a,b)$. Additionally, we have by the closure of integer multiplication that $-a, -b \in \mathbb{Z}$, and since $b \neq 0$ by Exercise 2.2e, $-b \neq 0$. Thus, by Exercise 2.2e, $(-a,-b) \in X$. This coupled with the previously proven fact that $(-a,-b) \sim (a,b)$ implies by Definition 2.5 that $(-a,-b) \in \left[\frac{a}{b}\right]$. Now recall that b < 0 by hypothesis, so we may use Definition 3.8 to see that b+c=0 for some $c \in \mathbb{N}$. It follows that -(b+c)=0, i.e., -b-c=0, i.e., -b=0+c, meaning that 0 < -b by Definition 3.8. Thus, (-a,-b) is an element $(a_1,b_1) \in \left[\frac{a}{b}\right]$ for which $0 < b_1$. Third, suppose that b=0. But this contradicts Exercise 2.2e which asserts that $b \neq 0$, so we need not consider this case.

c) Define an ordering $<_{\mathbb{Q}}$ on \mathbb{Q} as follows. For $p,q \in \mathbb{Q}$, let $(a_1,b_1) \in p$ be such that $0 < b_1$ and let $(a_2,b_2) \in q$ be such that $0 < b_2$. Then we define $p <_{\mathbb{Q}} q$ if $a_1b_2 < a_2b_1$. Show that $<_{\mathbb{Q}}$ is a well-defined relation on \mathbb{Q} .

Proof. For the relation $<_{\mathbb{Q}}$ to be well-defined, Definition 3.1 tells us that it must satisfy the trichotomy and be transitive.

To prove that $<_{\mathbb{Q}}$ satisfies the trichotomy, it will suffice to show that for all $p,q\in\mathbb{Q}$, exactly one of the following holds: $p<_{\mathbb{Q}}q$, $q<_{\mathbb{Q}}p$, or p=q. Let p,q be arbitrary elements of \mathbb{Q} , let $(a,b)\in p$ be such that 0< b (we know that such an element exists by Exercise 3.9b), and let $(c,d)\in q$ be such that 0< d. We divide into three cases. First, suppose for the sake of contradiction that $p<_{\mathbb{Q}}q$ and $q<_{\mathbb{Q}}p$. Then ad< bc and cb< da by the definition of $<_{\mathbb{Q}}$. But this violates the trichotomy known to hold for the ordering < on the integers by Exercise 3.9a, a contradiction. Second, suppose for the sake of contradiction that $p<_{\mathbb{Q}}q$ and p=q. By the definition of $<_{\mathbb{Q}}$, ad< bc. Additionally, by Exercise 2.6, $(a,b)\sim(c,d)$, implying by Exercise 2.2e that ad=bc. But once again, the simultaneous results that ad< bc and ad=bc violate the trichotomy of the integers, a contradiction. The proof of the third case is symmetric to that of the second.

To prove that $<_{\mathbb{Q}}$ is transitive, it will suffice to show that for all $p,q,r\in\mathbb{Q}$, if $p<_{\mathbb{Q}}q$ and $q<_{\mathbb{Q}}r$, then $p<_{\mathbb{Q}}r$. Let p,q,r be arbitrary elements of \mathbb{Q} for which it is true that $p<_{\mathbb{Q}}q$ and $q<_{\mathbb{Q}}r$, let $(a,b)\in p$ be such that 0< b, let $(c,d)\in q$ be such that 0< d, and let $(e,f)\in r$ such that 0< f. By the definition of $<_{\mathbb{Q}}$, we have ad< bc and cf< de. By Definition 3.8, this implies that bc=ad+g and de=cf+g' for some $g,g'\in\mathbb{N}$. Thus, by the multiplicative property of equality,

$$bcf = adf + gf$$
 $bde = bcf + bg'$

so that by the additive property of equality

$$bcf + bde = adf + gf + bcf + bg'$$

 $bde = adf + gf + bg'$

Script 3 MATH 16110

Since 0 < b and 0 < f for $b, f \in \mathbb{Z}$, we know that $b, f \in \mathbb{N}$. Since $g, g' \in \mathbb{N}$ as well by hypothesis, the closures of multiplication and subsequently of addition for \mathbb{N} guarantee that $(gf + bg') \in \mathbb{N}$. Thus, by Definition 3.8, adf < bde. Now suppose for the sake of contradiction that $af \not< be$. By Definition 3.1, this implies that either af = be or be < af. We divide into two cases. First, suppose that af = be. Then by the multiplicative property of equality, adf = bde, contradicting the fact that adf < bde. Second, suppose that be < af. Then by Definition 3.8, af = be + g for some $g \in \mathbb{N}$. Thus, adf = bde + gd where $gd \in \mathbb{N}$ by the closure of multiplication for the natural numbers $(d \in \mathbb{N} \text{ since } d \in \mathbb{Z} \text{ and } 0 < d$ by hypothesis). Thus, bcd < adf by Definition 3.8, contradicting the fact that adf < bde. Therefore, it must be true that af < be. It follows by the definition of $<_{\mathbb{Q}}$ that $p <_{\mathbb{Q}} r$.

d) Show that \mathbb{Q} with the ordering $<_{\mathbb{Q}}$ satisfies Axioms 1-3.

Proof. Clearly, \mathbb{Q} is a nonempty set, so Axiom 1 is immediately satisfied.

By Exercise 3.9c, \mathbb{Q} has an ordering, so Axiom 2 is satisfied.

Axiom 3 asserts that $\mathbb Q$ must have no first or last point. Suppose for the sake of contradiction that $\mathbb Q$ has some first point p. Then by Definition 3.3, $p <_{\mathbb Q} x$ or p = x for all $x \in \mathbb Q$. Let $(a,b) \in p$ be such that 0 < b (see Exercise 3.9b). Under the closure of integer subtraction, $(a-1) \in \mathbb Z$, so $\left[\frac{a-1}{b}\right] \in \mathbb Q$. Since ba = ba - b + b = b(a-1) + b where $b \in \mathbb N$ since $b \in \mathbb Z$ and 0 < b, Definition 3.8 implies that (a-1)b < ba. It follows by the definition of $<_{\mathbb Q}$ that $\left[\frac{a-1}{b}\right] <_{\mathbb Q} \left[\frac{a}{b}\right] = p$, a contradiction. The argument is symmetric for the last point.

Definition 3.10. If $a, b \in C$ and a < b, then the set of points between a and b is called a **region** and denoted by \underline{ab} .

Remark 3.11. One often sees the notation (a, b) for regions. We will reserve the notation (a, b) for ordered pairs in a product $A \times B$. These are very different things.

Theorem 3.12. If x is a point of a continuum C, then there exists a region \underline{ab} such that $x \in \underline{ab}$.

Proof. Let x be an arbitrary point in a continuum C. By Axiom 2, C has an ordering <, which we will frequently make use of throughout the remainder of this proof. By Axiom 3, C has no first or last points, so it cannot be true that $x \leq y$ for all $y \in C$, nor can it be true that $x \geq y$ for all $y \in C$. This implies that there exists an $a \in C$ such that a < x and that there exists a $b \in C$ such that b > x. Since a < x and x < b, Definition 3.6 implies that x is between a and b. Note also that by Definition 3.1 (specifically transitivity), a < b. Therefore, since $a, b \in C$, a < b, and x is between a and b, Definition 3.10 implies that $x \in \underline{ab}$.

Definition 3.13. Let A be a subset of a continuum C. A point p of C is called a **limit point** of A if every region R containing p has nonempty intersection with $A \setminus \{p\}$. Explicitly, this means:

for every region R with $p \in R$, we have $R \cap (A \setminus \{p\}) \neq \emptyset$.

Notice that we do not require that a limit point p of A be an element of A. We will use the notation LP(A) to denote the set of limit points of A.

Theorem 3.14. If p is a limit point of A and $A \subset B$, then p is a limit point of B.

Lemma. Let A, B, C be sets such that $A \subset B$. Then $A \cap C \subset B \cap C$.

Proof. Let x be an arbitrary element of $A \cap C$. By Definition 1.6, this implies that $x \in A$ and $x \in C$. Since $x \in A$ and $A \subset B$, Definition 1.3 implies that $x \in B$. Thus, $x \in B$ and $x \in C$, so $x \in B \cap C$ by Definition 1.6.

Proof. To prove that a limit point p of $A \subset B$ is a limit point of B, Definition 3.13 tells us that it will suffice to show that for every region R with $p \in R$, we have $R \cap (B \setminus \{p\}) \neq \emptyset$. Let p be a limit point of A, and let R be an arbitrary region with $p \in R$. Then by Definition 3.13, we have $R \cap (A \setminus \{p\}) \neq \emptyset$. Thus, by Definition 1.8, there is an element $x \in R \cap (A \setminus \{p\})$. Since $A \setminus \{p\} \subset B \setminus \{p\}$ (because $A \subset B$ and $\{p\} = \{p\}$), it follows by the lemma that $R \cap (A \setminus \{p\}) \subset R \cap (B \setminus \{p\})$. Consequently, by Definition 1.3, the previously referenced object $x \in R \cap (A \setminus \{p\})$ is also an element of $R \cap (B \setminus \{p\})$. Thus, by Definition 1.8, $R \cap (B \setminus \{p\}) \neq \emptyset$, as desired.