Geometrie - Curs 2

Victor Vuletescu

Universitatea București, Facultatea de Matematică și Informatică

24 Martie 2018

Definitie

Fie U, V spații vectoriale peste același corp K. O funcție $f: U \to V$ se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori $u_1, u_2 \in U$ și orice doi scalari $\alpha, \beta \in K$ avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

Definitie

Fie U, V spații vectoriale peste același corp K. O funcție $f: U \to V$ se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori $u_1, u_2 \in U$ și orice doi scalari $\alpha, \beta \in K$ avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

Exemple

Definiție

Fie U,V spații vectoriale peste același corp K. O funcție $f:U\to V$ se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori $u_1,u_2\in U$ și orice doi scalari $\alpha,\beta\in K$ avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

Exemple

• Fie
$$U = V = \mathbb{R}^2$$
 și $f : U \to V$, $f(x_1, x_2) = 3(x_1, x_2)$.

Definiție

Fie U,V spații vectoriale peste același corp K. O funcție $f:U\to V$ se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori $u_1,u_2\in U$ și orice doi scalari $\alpha,\beta\in K$ avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

Exemple

- Fie $U = V = \mathbb{R}^2$ și $f : U \to V$, $f(x_1, x_2) = 3(x_1, x_2)$.
- Putem extinde exemplul anterior astfel. Fie $A \in Mat_{22}(\mathbb{R})$ o matrice arbitrară,

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Definim $f_A: \mathbb{R}^2 \to \mathbb{R}^2$ prin

Definiție

Fie U, V spații vectoriale peste același corp K. O funcție $f: U \to V$ se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori $u_1, u_2 \in U$ și orice doi scalari $\alpha, \beta \in K$ avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

Exemple

- Fie $U = V = \mathbb{R}^2$ și $f : U \to V$, $f(x_1, x_2) = 3(x_1, x_2)$.
- Putem extinde exemplul anterior astfel. Fie $A \in Mat_{22}(\mathbb{R})$ o matrice arbitrară,

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Definim $f_A: \mathbb{R}^2 \to \mathbb{R}^2$ prin

$$f_A(x_1, x_2) = (ax_1 + bx_2, cx_1 + dx_2)$$

Definiții

Fie $f: U \rightarrow V$ o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

Definiții

Fie $f: U \rightarrow V$ o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

Definiții

Fie $f: U \to V$ o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

Nucleul lui f, Ker(f), prin:

Definiții

Fie $f: U \to V$ o aplicație liniară. Definim:

Imaginea lui f, Im(f), prin:

$$Im(f) = \{ v \in V | \exists u \in U, f(u) = v \}.$$

• *Nucleul* lui f, *Ker*(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

Definiții

Fie $f: U \rightarrow V$ o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

• Nucleul lui f, Ker(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

Teoremă

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

Definiții

Fie $f: U \rightarrow V$ o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

• Nucleul lui f, Ker(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

Teoremă

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

• $Ker(f) \subset U$ și $Im(f) \subset V$ sunt subspații vectoriale;

Definiții

Fie $f: U \rightarrow V$ o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

• Nucleul lui f, Ker(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

Teoremă

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

- $Ker(f) \subset U$ și $Im(f) \subset V$ sunt subspații vectoriale;
- f este surjectivă dacă și numai dacă Im(f) = V;

Definiții

Fie $f: U \to V$ o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

• Nucleul lui f, Ker(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

Teoremă

Fie $f: U \to V$ o aplicație liniară. Atunci:

- $Ker(f) \subset U$ și $Im(f) \subset V$ sunt subspații vectoriale;
- f este surjectivă dacă și numai dacă Im(f) = V;
- f este injectivă dacă și numai dacă $Ker(f) = \{0_U\}.$

Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

• $dim_K(U) < dim_K(V)$ atunci

Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

• $dim_K(U) < dim_K(V)$ atunci nu există nici o aplicație surjectivă liniară $f: U \to V$:

Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

- $dim_K(U) < dim_K(V)$ atunci nu există nici o aplicație surjectivă liniară $f: U \to V$:
- $dim_K(U) > dim_K(V)$ atunci

Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie $f: U \rightarrow V$ o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

- $dim_K(U) < dim_K(V)$ atunci nu există nici o aplicație surjectivă liniară $f: U \to V$;
- $dim_K(U) > dim_K(V)$ atunci nu există nici o aplicație injectivă liniară $f: U \to V$;

Definiție

Fie U, V două spații vectoriale, $f: U \to V$ o aplicație liniară și $B_U = \{e_1, \dots, e_n\} \subset U, \ B_V = \{f_1, \dots, f_m\} \subset V$ baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea $A = (a_{ii})$ definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Definiție

Fie U, V două spații vectoriale, $f: U \to V$ o aplicație liniară și $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$ baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea $A = (a_{ii})$ definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie
$$U = V = \mathbb{R}^2$$
, $B_U = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$ și $f: U \to V$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Avem:

Definiție

Fie U, V două spații vectoriale, $f: U \to V$ o aplicație liniară și $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$ baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea $A = (a_{ii})$ definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie
$$U = V = \mathbb{R}^2$$
, $B_U = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$ și $f: U \to V$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Avem: $f(e_1) = (1,3) =$

Definiție

Fie U,V două spații vectoriale, $f:U\to V$ o aplicație liniară și $B_U=\{e_1,\ldots,e_n\}\subset U,\ B_V=\{f_1,\ldots,f_m\}\subset V$ baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea $A=(a_{ij})$ definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie
$$U = V = \mathbb{R}^2$$
, $B_U = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$ și $f: U \to V$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Avem: $f(e_1) = (1,3) = e_1 + e_2$,

Definiție

Fie U,V două spații vectoriale, $f:U\to V$ o aplicație liniară și $B_U=\{e_1,\ldots,e_n\}\subset U,\ B_V=\{f_1,\ldots,f_m\}\subset V$ baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea $A=(a_{ij})$ definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie
$$U = V = \mathbb{R}^2$$
, $B_U = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$ și $f: U \to V$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Avem: $f(e_1) = (1,3) = e_1 + e_2$, $f(e_2) = (-2,6) =$

Definiție

Fie U,V două spații vectoriale, $f:U\to V$ o aplicație liniară și $B_U=\{e_1,\ldots,e_n\}\subset U,\ B_V=\{f_1,\ldots,f_m\}\subset V$ baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea $A=(a_{ij})$ definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie
$$U = V = \mathbb{R}^2$$
, $B_U = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$ și $f: U \to V$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Avem: $f(e_1) = (1,3) = e_1 + e_2$, $f(e_2) = (-2,6) = -2e_1 + 4e_2$,

Definiție

Fie U, V două spații vectoriale, $f: U \to V$ o aplicație liniară și $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$ baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea $A = (a_{ii})$ definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Exemplu

Fie $U = V = \mathbb{R}^2$, $B_{II} = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$ și $f: U \to V, f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Avem: $f(e_1) = (1,3) = e_1 + e_2$, $f(e_2) = (-2,6) = -2e_1 + 4e_2$, deci matricea lui f va fi

$$A = \left(\begin{array}{cc} 1 & -2 \\ 1 & 4 \end{array}\right)$$

Caracterizarea în coordonate a unei aplicații liniare

Teoremă

Fie U, V două spații vectoriale, $f: U \to V$ o funcție, și $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$ baze fixate. Atunci f este aplicație liniară dacă și numai dacă există o matrice A astfel încât, pentru orice $u \in U$ avem

$$Y = AX$$

unde

Caracterizarea în coordonate a unei aplicații liniare

Teoremă

Fie U, V două spații vectoriale, $f: U \to V$ o funcție, și $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$ baze fixate. Atunci f este aplicație liniară dacă și numai dacă există o matrice A astfel încât, pentru orice $u \in U$ avem

$$Y = AX$$
unde $X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{pmatrix}$ respectiv $Y = \begin{pmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ y_m \end{pmatrix}$

sunt cordonatele lui

Caracterizarea în coordonate a unei aplicații liniare

Teoremă

Fie U, V două spații vectoriale, $f: U \to V$ o funcție, și $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$ baze fixate. Atunci f este aplicație liniară dacă și numai dacă există o matrice A astfel încât, pentru orice $u \in U$ avem

$$Y = AX$$
unde $X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{pmatrix}$ respectiv $Y = \begin{pmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ y_m \end{pmatrix}$

sunt cordonatele lui $u : u = \sum_{i=1}^{n} x_i e_i$ respectiv $f(u) : f(u) = \sum_{i=1}^{m} y_j f_j$.

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Se numește: valoare proprie pt f, un scalar $\lambda \in K$ pentru care există un vector $v \in V$ nenul astfel încât

$$f(v) = \lambda v$$

Pentru o valoare proprie fixată λ , un vector ν astfel încât $f(\nu) = \lambda \nu$ se numește vector propriu asociat valorii proprii λ .

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Se numește: valoare proprie pt f, un scalar $\lambda \in K$ pentru care există un vector $v \in V$ nenul astfel încât

$$f(v) = \lambda v$$

Pentru o valoare proprie fixată λ , un vector ν astfel încât $f(\nu) = \lambda \nu$ se numeste vector propriu asociat valorii proprii λ .

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Se numește: valoare proprie pt f, un scalar $\lambda \in K$ pentru care există un vector $v \in V$ nenul astfel încât

$$f(v) = \lambda v$$

Pentru o valoare proprie fixată λ , un vector ν astfel încât $f(\nu) = \lambda \nu$ se numeste vector propriu asociat valorii proprii λ .

Fie
$$f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (2x_1 - x_2, 3x_2)$$
. Atunci

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Se numește: valoare proprie pt f, un scalar $\lambda \in K$ pentru care există un vector $v \in V$ nenul astfel încât

$$f(v) = \lambda v$$

Pentru o valoare proprie fixată λ , un vector ν astfel încât $f(\nu) = \lambda \nu$ se numeste vector propriu asociat valorii proprii λ .

Exemplu

Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Atunci

• $\lambda = 2$ este valoare proprie, pentru că f(1,0) =

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Se numește: valoare proprie pt f, un scalar $\lambda \in K$ pentru care există un vector $v \in V$ nenul astfel încât

$$f(v) = \lambda v$$

Pentru o valoare proprie fixată λ , un vector ν astfel încât $f(\nu) = \lambda \nu$ se numeste vector propriu asociat valorii proprii λ .

Exemplu

Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Atunci

• $\lambda = 2$ este valoare proprie, pentru că f(1,0) = (2,0) =

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Se numește: valoare proprie pt f, un scalar $\lambda \in K$ pentru care există un vector $v \in V$ nenul astfel încât

$$f(v) = \lambda v$$

Pentru o valoare proprie fixată λ , un vector ν astfel încât $f(\nu) = \lambda \nu$ se numeste vector propriu asociat valorii proprii λ .

Exemplu

Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Atunci

• $\lambda = 2$ este valoare proprie, pentru că f(1,0) = (2,0) = 2(1,0);

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Se numește: valoare proprie pt f, un scalar $\lambda \in K$ pentru care există un vector $v \in V$ nenul astfel încât

$$f(v) = \lambda v$$

Pentru o valoare proprie fixată λ , un vector ν astfel încât $f(\nu) = \lambda \nu$ se numește vector propriu asociat valorii proprii λ .

Exemplu

Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Atunci

- $\lambda = 2$ este valoare proprie, pentru că f(1,0) = (2,0) = 2(1,0);
- $\lambda = 3$ este valoare proprie, pentru că f(1, -1) =

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Se numește: valoare proprie pt f, un scalar $\lambda \in K$ pentru care există un vector $v \in V$ nenul astfel încât

$$f(v) = \lambda v$$

Pentru o valoare proprie fixată λ , un vector ν astfel încât $f(\nu) = \lambda \nu$ se numește vector propriu asociat valorii proprii λ .

Exemplu

Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Atunci

- $\lambda = 2$ este valoare proprie, pentru că f(1,0) = (2,0) = 2(1,0);
- $\lambda = 3$ este valoare proprie, pentru că f(1, -1) = (3, -3) =

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Se numește: valoare proprie pt f, un scalar $\lambda \in K$ pentru care există un vector $v \in V$ nenul astfel încât

$$f(v) = \lambda v$$

Pentru o valoare proprie fixată λ , un vector ν astfel încât $f(\nu) = \lambda \nu$ se numește *vector propriu* asociat valorii proprii λ .

Exemplu

Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Atunci

- $\lambda = 2$ este valoare proprie, pentru că f(1,0) = (2,0) = 2(1,0);
- $\lambda = 3$ este valoare proprie, pentru că f(1, -1) = (3, -3) = 3(1, -1).

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Fie $\lambda \in K$ arbitrar; definim

$$V_{\lambda} = \{ v \in V | f(v) = \lambda v \}.$$

Definiție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Fie $\lambda\in K$ arbitrar; definim

$$V_{\lambda} = \{ v \in V | f(v) = \lambda v \}.$$

Propoziție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară și $\lambda\in K$ arbitrar. Atunci

Definiție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Fie $\lambda\in K$ arbitrar; definim

$$V_{\lambda} = \{ v \in V | f(v) = \lambda v \}.$$

Propoziție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară și $\lambda\in K$ arbitrar. Atunci

• $V_{\lambda} \subset V$ este subspațiu vectorial;

Definiție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Fie $\lambda\in K$ arbitrar; definim

$$V_{\lambda} = \{ v \in V | f(v) = \lambda v \}.$$

Propoziție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară și $\lambda\in K$ arbitrar. Atunci

- $V_{\lambda} \subset V$ este subspaţiu vectorial;
- λ este valoare proprie dacă și numai dacă $dim_K(V_{\lambda}) > 0$.

Definitie

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Fie $\lambda \in K$ arbitrar: definim

$$V_{\lambda} = \{ v \in V | f(v) = \lambda v \}.$$

Propozitie

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară și $\lambda\in K$ arbitrar. Atunci

- $V_{\lambda} \subset V$ este subspațiu vectorial;
- λ este valoare proprie dacă și numai dacă $dim_K(V_\lambda) > 0$.

Definitie

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară și $\lambda \in K$ o valoare proprie a lui f. Se numește multiplicitate geometrică a lui λ numărul natural g_{λ} definit prin

Definitie

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Fie $\lambda \in K$ arbitrar: definim

$$V_{\lambda} = \{ v \in V | f(v) = \lambda v \}.$$

Propozitie

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară și $\lambda\in K$ arbitrar. Atunci

- $V_{\lambda} \subset V$ este subspațiu vectorial;
- λ este valoare proprie dacă și numai dacă $dim_K(V_\lambda) > 0$.

Definitie

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară și $\lambda \in K$ o valoare proprie a lui f. Se numește multiplicitate geometrică a lui λ numărul natural g_{λ} definit prin

$$g_{\lambda} = dim_{K}(V_{\lambda})$$

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară și $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie A= matricea lui f în baza B. Se numește polinom caracteristic al lui f, polinomul $P_A(X)$ definit prin

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară și $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie A= matricea lui f în baza B. Se numește polinom caracteristic al lui f, polinomul $P_A(X)$ definit prin

$$P_{f,A}(X) = det(A - X\mathbb{I}_n)$$

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară și $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie A= matricea lui f în baza B. Se numește polinom caracteristic al lui f, polinomul $P_A(X)$ definit prin

$$P_{f,A}(X) = det(A - X\mathbb{I}_n)$$

Exemplu

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară și $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie A= matricea lui f în baza B. Se numește polinom caracteristic al lui f, polinomul $P_A(X)$ definit prin

$$P_{f,A}(X) = det(A - X\mathbb{I}_n)$$

Exemplu

Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Considerăm în \mathbb{R}^2 baza canonică. Atunci matricea lui f este

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară și $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie A= matricea lui f în baza B. Se numește polinom caracteristic al lui f, polinomul $P_A(X)$ definit prin

$$P_{f,A}(X) = det(A - X\mathbb{I}_n)$$

Exemplu

Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Considerăm în \mathbb{R}^2 baza canonică. Atunci matricea lui f este $A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$

Definiție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară și $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie A= matricea lui f în baza B. Se numește polinom caracteristic al lui f, polinomul $P_A(X)$ definit prin

$$P_{f,A}(X) = det(A - X\mathbb{I}_n)$$

Exemplu

Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Considerăm în \mathbb{R}^2 baza canonică. Atunci matricea lui f este $A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$ deci polinomul caracteristic este $P_{f,A}(X) = det \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} - X \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară și $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie A= matricea lui f în baza B. Se numește polinom caracteristic al lui f, polinomul $P_A(X)$ definit prin

$$P_{f,A}(X) = det(A - X\mathbb{I}_n)$$

Exemplu

Fie
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Considerăm în \mathbb{R}^2 baza canonică. Atunci matricea lui f este $A = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$ deci polinomul caracteristic este $P_{f,A}(X) = \det \begin{pmatrix} \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} - X \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$ Așadar $P_{f,A}(X) = \begin{vmatrix} 2-X & -1 \\ 0 & 3-X \end{vmatrix} = (2-X)(3-X)$

Teoremă

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Atunci:

Teoremă

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Atunci:

• a) polinomul caracteristic al lui f nu depinde de baza aleasă a lui V. Ca atare, vom nota P_f polinomul caracteristic al lui f.

Teoremă

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Atunci:

- a) polinomul caracteristic al lui f nu depinde de baza aleasă a lui V. Ca atare, vom nota P_f polinomul caracteristic al lui f.
- b) Un scalar $\lambda \in K$ este valoare proprie dacă și numai dacă λ este rădăcină a polinomului caracteristic, $P_f(\lambda) = 0$.

Teoremă

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Atunci:

- a) polinomul caracteristic al lui f nu depinde de baza aleasă a lui V.
 Ca atare, vom nota P_f polinomul caracteristic al lui f.
- b) Un scalar $\lambda \in K$ este valoare proprie dacă și numai dacă λ este rădăcină a polinomului caracteristic, $P_f(\lambda) = 0$.

Definiție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Fie λ o valoare proprie a lui f. Se numește *multiplicitate algebrică* a lui λ numărul natural

Teoremă

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Atunci:

- a) polinomul caracteristic al lui f nu depinde de baza aleasă a lui V.
 Ca atare, vom nota P_f polinomul caracteristic al lui f.
- b) Un scalar $\lambda \in K$ este valoare proprie dacă și numai dacă λ este rădăcină a polinomului caracteristic, $P_f(\lambda) = 0$.

Definiție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Fie λ o valoare proprie a lui f. Se numește multiplicitate algebrică a lui λ numărul natural

$$m_{\lambda} = \max\{k \text{ astfel încât } (X - \lambda)^k | P_f(X) \}$$

Definiție

Fie V un spațiu vectorial, $f:V\to V$ o aplicație liniară. Spunem că f este diagonalizabilă dacă există o bază $B=\{e_1,\ldots,e_n\}$ a lui V în raport cu care matricea A a lui f are formă diagonală,

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Spunem că f este diagonalizabilă dacă există o bază $B = \{e_1, \dots, e_n\}$ a lui V în raport cu care matricea A a lui f are formă diagonală,

$$A = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{array}\right)$$

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Spunem că f este diagonalizabilă dacă există o bază $B = \{e_1, \dots, e_n\}$ a lui V în raport cu care matricea A a lui f are formă diagonală,

$$A = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{array}\right)$$

Observație

Cu notațiile de mai sus, f este diagonalizabilă în baza B dacă și numai dacă pentru orice i = 1, ..., n avem $f(e_i) = \lambda_i e_i$.

Definiție

Fie V un spațiu vectorial, $f: V \to V$ o aplicație liniară. Spunem că f este diagonalizabilă dacă există o bază $B = \{e_1, \dots, e_n\}$ a lui V în raport cu care matricea A a lui f are formă diagonală,

$$A = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{array}\right)$$

Observație

Cu notațiile de mai sus, f este diagonalizabilă în baza B dacă și numai dacă pentru orice i = 1, ..., n avem $f(e_i) = \lambda_i e_i$.

Cu alte cuvinte, f este diagonalizabilă dacă și numai dacă există o bază a lui V formată doar din vectori proprii pentru f.

Teoremă

Fie V un spațiu vectorial peste un corp K, $f:V\to V$ o aplicație liniară. Atunci f este diagonalizabilă dacă și numai dacă au loc simultan condițiile:

Teoremă

Fie V un spațiu vectorial peste un corp $K, f: V \to V$ o aplicație liniară. Atunci f este diagonalizabilă dacă și numai dacă au loc simultan condițiile:

• Polinomul caracteristic P_f al lui f are toate rădăcinile în corpul K, și

Teoremă

Fie V un spațiu vectorial peste un corp K, $f: V \to V$ o aplicație liniară. Atunci f este diagonalizabilă dacă și numai dacă au loc simultan condițiile:

- Polinomul caracteristic P_f al lui f are toate rădăcinile în corpul K, și
- pentru orice valoare proprie λ avem $g_{\lambda} = m_{\lambda}$.

Teoremă

Fie V un spațiu vectorial peste un corp $K, f: V \to V$ o aplicație liniară. Atunci f este diagonalizabilă dacă și numai dacă au loc simultan condițiile:

- Polinomul caracteristic P_f al lui f are toate rădăcinile în corpul K, și
- pentru orice valoare proprie λ avem $g_{\lambda} = m_{\lambda}$.

Observații

Teoremă

Fie V un spațiu vectorial peste un corp $K, f: V \to V$ o aplicație liniară. Atunci f este diagonalizabilă dacă și numai dacă au loc simultan condițiile:

- Polinomul caracteristic P_f al lui f are toate rădăcinile în corpul K, și
- pentru orice valoare proprie λ avem $g_{\lambda} = m_{\lambda}$.

Observații

• Pentru orice valoare proprie λ a lui f avem

$$g_{\lambda} \leq m_{\lambda}$$
;

Teoremă

Fie V un spațiu vectorial peste un corp $K, f: V \to V$ o aplicație liniară. Atunci f este diagonalizabilă dacă și numai dacă au loc simultan condițiile:

- Polinomul caracteristic P_f al lui f are toate rădăcinile în corpul K, și
- pentru orice valoare proprie λ avem $g_{\lambda} = m_{\lambda}$.

Observații

• Pentru orice valoare proprie λ a lui f avem

$$g_{\lambda} \leq m_{\lambda}$$
;

• Ca și consecință, avem că dacă polinomul caracteristic pf are toate rădăcinile în K și acestea sunt toate simple, atunci f este diagonalizabilă.

• Fie $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Am văzut că

• Fie $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Am văzut că $P_f(X) = (2 - X)(3 - X);$

• Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Am văzut că $P_f(X) = (2-X)(3-X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple.

• Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$. Am văzut că $P_f(X) = (2 - X)(3 - X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2 - X)(3 - X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2 - X)(3 - X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem

$$P_f =$$

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2 - X)(3 - X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem $P_f = \left| \begin{array}{cc} -X & -1 \\ 1 & -X \end{array} \right| = X^2 + 1.$

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2 - X)(3 - X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem $P_f = \left| \begin{array}{cc} -X & -1 \\ 1 & -X \end{array} \right| = X^2 + 1$. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2 - X)(3 - X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem $P_f = \left| \begin{array}{cc} -X & -1 \\ 1 & -X \end{array} \right| = X^2 + 1$. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, x_2)$. Matricea A a lui f în baza canonică este

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2 - X)(3 - X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem $P_f = \left| \begin{array}{cc} -X & -1 \\ 1 & -X \end{array} \right| = X^2 + 1$. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, x_2)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; deducem

$$P_f =$$

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2-X)(3-X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem $P_f = \left| \begin{array}{cc} -X & -1 \\ 1 & -X \end{array} \right| = X^2 + 1$. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, x_2)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; deducem $P_f = \left| \begin{array}{cc} 1 - X & 1 \\ 0 & 1 - X \end{array} \right| = (X - 1)^2.$

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2-X)(3-X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem $P_f = \left| \begin{array}{cc} -X & -1 \\ 1 & -X \end{array} \right| = X^2 + 1$. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, x_2)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; deducem $P_f = \left| \begin{array}{cc} 1-X & 1 \\ 0 & 1-X \end{array} \right| = (X-1)^2$. Acum $P_f(X)$ are toate rădăcinile reale: $\lambda = 1$ cu multiplicitate algebrică

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2-X)(3-X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem $P_f = \left| \begin{array}{cc} -X & -1 \\ 1 & -X \end{array} \right| = X^2 + 1$. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, x_2)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; deducem $P_f = \begin{vmatrix} 1-X & 1 \\ 0 & 1-X \end{vmatrix} = (X-1)^2$. Acum $P_f(X)$ are toate rădăcinile reale: $\lambda=1$ cu multiplicitate algebrică $m_{\lambda}=2$.

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2-X)(3-X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem
 - $P_f = \begin{vmatrix} -X & -1 \\ 1 & -X \end{vmatrix} = X^2 + 1$. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, x_2)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; deducem

$$P_f=egin{array}{c|c} 1-X & 1 \ 0 & 1-X \end{array}=(X-1)^2.$$
 Acum $P_f(X)$ are toate rădăcinile reale: $\lambda=1$ cu multiplicitate algebrică $m_\lambda=2$. Calculând însă V_λ găsim

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2-X)(3-X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem

$$P_f = \begin{vmatrix} -X & -1 \\ 1 & -X \end{vmatrix} = X^2 + 1$$
. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.

• Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, x_2)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; deducem

$$P_f=egin{array}{c|c} 1-X & 1 \ 0 & 1-X \end{array}=(X-1)^2.$$
 Acum $P_f(X)$ are toate rădăcinile reale: $\lambda=1$ cu multiplicitate algebrică $m_\lambda=2$. Calculând însă V_λ găsim $g_\lambda=1$

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2-X)(3-X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem
 - $P_f = \begin{vmatrix} -X & -1 \\ 1 & -X \end{vmatrix} = X^2 + 1$. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, x_2)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; deducem

$$P_f = \left| \begin{array}{cc} 1 - X & 1 \\ 0 & 1 - X \end{array} \right| = (X - 1)^2. \text{ Acum } P_f(X) \text{ are toate}$$
 rădăcinile reale: $\lambda = 1$ cu multiplicitate algebrică $m_\lambda = 2$. Calculând însă V_λ găsim $g_\lambda = 1 \neq m_\lambda$

- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, 3x_2)$. Am văzut că $P_f(X) = (2-X)(3-X)$; deci P_f are toate rădăcinile în \mathbb{R} și acestea sunt toate simple. Deducem că f este diagonalizabilă.
- Fie $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x_1, x_2) = (-x_2, x_1)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; deducem

$$P_f = \left| \begin{array}{cc} -X & -1 \\ 1 & -X \end{array} \right| = X^2 + 1$$
. Cum $X^2 + 1$ nu are rădăcini reale, deducem că f nu este diagonalizabilă.

• Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 + x_2, x_2)$. Matricea A a lui f în baza canonică este $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; deducem

$$P_f = \left| \begin{array}{cc} 1-X & 1 \\ 0 & 1-X \end{array} \right| = (X-1)^2$$
. Acum $P_f(X)$ are toate rădăcinile reale: $\lambda=1$ cu multiplicitate algebrică $m_\lambda=2$. Calculând însă V_λ găsim $g_\lambda=1\neq m_\lambda$ deci f nu este diagonalizabilă.

Definiție

Fie V un spațiu vectorial peste un corp K. Se numește formă biliniară o funcție $g:V\times V\to K$ care este liniară în fiecare argument, i.e.

$$g(\alpha v_1 + \beta v_2, u) = \alpha g(v_1, u) + \beta g(v_2, u), \forall \alpha, \beta \in K, \forall v_1, v_2, u \in V;$$

Definiție

Fie V un spațiu vectorial peste un corp K. Se numește formă biliniară o funcție $g:V\times V\to K$ care este liniară în fiecare argument, i.e.

$$g(\alpha v_1 + \beta v_2, u) = \alpha g(v_1, u) + \beta g(v_2, u), \forall \alpha, \beta \in K, \forall v_1, v_2, u \in V;$$

$$g(u, \alpha v_1 + \beta v_2) = \alpha g(u, v_1) + \beta g(u, v_2), \forall \alpha, \beta \in K, \forall v_1, v_2, u \in V.$$

Definiție

Fie V un spațiu vectorial peste un corp K. Se numește formă biliniară o funcție $g:V\times V\to K$ care este liniară în fiecare argument, i.e.

$$g(\alpha v_1 + \beta v_2, u) = \alpha g(v_1, u) + \beta g(v_2, u), \forall \alpha, \beta \in K, \forall v_1, v_2, u \in V;$$

$$g(u, \alpha v_1 + \beta v_2) = \alpha g(u, v_1) + \beta g(u, v_2), \forall \alpha, \beta \in K, \forall v_1, v_2, u \in V.$$

Exemple

Definiție

Fie V un spațiu vectorial peste un corp K. Se numește formă biliniară o funcție $g:V\times V\to K$ care este liniară în fiecare argument, i.e.

$$g(\alpha v_1 + \beta v_2, u) = \alpha g(v_1, u) + \beta g(v_2, u), \forall \alpha, \beta \in K, \forall v_1, v_2, u \in V;$$

$$g(u, \alpha v_1 + \beta v_2) = \alpha g(u, v_1) + \beta g(u, v_2), \forall \alpha, \beta \in K, \forall v_1, v_2, u \in V.$$

Exemple

•
$$g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
,

$$g((x_1,x_2),(y_1,y_2))=x_1y_1+x_2y_2.$$

Definiție

Fie V un spațiu vectorial peste un corp K. Se numește formă biliniară o funcție $g: V \times V \to K$ care este liniară în fiecare argument, i.e.

$$g(\alpha v_1 + \beta v_2, u) = \alpha g(v_1, u) + \beta g(v_2, u), \forall \alpha, \beta \in K, \forall v_1, v_2, u \in V;$$

$$g(u, \alpha v_1 + \beta v_2) = \alpha g(u, v_1) + \beta g(u, v_2), \forall \alpha, \beta \in K, \forall v_1, v_2, u \in V.$$

Exemple

• $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$,

$$g((x_1,x_2),(y_1,y_2))=x_1y_1+x_2y_2.$$

• $h: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$,

$$h((x_1,x_2),(y_1,y_2)) = 2x_1y_1 + 3x_1y_2 + 5x_2y_2.$$

Definiție

Fie V un spațiu vectorial peste un corp K, $g:V\times V\to K$ o biliniară și $B=\{e_1,\ldots,e_n\}$ o bază fixată a lui V. Se numește *matricea asociată lui g în baza* B matricea $A=A_{g,B}=(a_{ij})$ definită prin

Definiție

Fie V un spațiu vectorial peste un corp K, $g: V \times V \to K$ o biliniară și $B = \{e_1, \ldots, e_n\}$ o bază fixată a lui V. Se numește *matricea asociată lui g în baza B* matricea $A = A_{g,B} = (a_{ij})$ definită prin

$$a_{ij}=g(e_i,e_j), i,j=1,\ldots,n.$$

Definiție

Fie V un spațiu vectorial peste un corp K, $g: V \times V \to K$ o biliniară și $B = \{e_1, \ldots, e_n\}$ o bază fixată a lui V. Se numește *matricea asociată lui g în baza B* matricea $A = A_{g,B} = (a_{ij})$ definită prin

$$a_{ij}=g(e_i,e_j), i,j=1,\ldots,n.$$

Exemple

Definiție

Fie V un spațiu vectorial peste un corp K, $g: V \times V \to K$ o biliniară și $B = \{e_1, \ldots, e_n\}$ o bază fixată a lui V. Se numește *matricea asociată lui g în baza B* matricea $A = A_{g,B} = (a_{ij})$ definită prin

$$a_{ij}=g(e_i,e_j), i,j=1,\ldots,n.$$

Exemple

Să fixăm în \mathbb{R}^2 baza canonică. Atunci:

• Pentru $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, g((x_1, x_2), (y_1, y_2)) = x_1y_1 + x_2y_2$ matricea asociată este A =

Definiție

Fie V un spațiu vectorial peste un corp K, $g: V \times V \to K$ o biliniară și $B = \{e_1, \ldots, e_n\}$ o bază fixată a lui V. Se numește *matricea asociată lui g în baza B* matricea $A = A_{g,B} = (a_{ij})$ definită prin

$$a_{ij}=g(e_i,e_j), i,j=1,\ldots,n.$$

Exemple

Să fixăm în \mathbb{R}^2 baza canonică. Atunci:

• Pentru $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $g((x_1, x_2), (y_1, y_2)) = x_1y_1 + x_2y_2$ matricea asociată este $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;

Definiție

Fie V un spațiu vectorial peste un corp K, $g: V \times V \to K$ o biliniară și $B = \{e_1, \ldots, e_n\}$ o bază fixată a lui V. Se numește *matricea asociată lui g în baza B* matricea $A = A_{g,B} = (a_{ij})$ definită prin

$$a_{ij}=g(e_i,e_j), i,j=1,\ldots,n.$$

Exemple

- Pentru $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $g((x_1, x_2), (y_1, y_2)) = x_1y_1 + x_2y_2$ matricea asociată este $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;
- Pentru $h: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \ h((x_1, x_2), (y_1, y_2)) = 2x_1y_1 + 3x_1y_2 + 5x_2y_2$

Definiție

Fie V un spațiu vectorial peste un corp K, $g: V \times V \to K$ o biliniară și $B = \{e_1, \dots, e_n\}$ o bază fixată a lui V. Se numește *matricea asociată lui g în baza B* matricea $A = A_{g,B} = (a_{ij})$ definită prin

$$a_{ij}=g(e_i,e_j), i,j=1,\ldots,n.$$

Exemple

- Pentru $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $g((x_1, x_2), (y_1, y_2)) = x_1y_1 + x_2y_2$ matricea asociată este $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;
- Pentru $h: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \ h\left((x_1, x_2), (y_1, y_2)\right) = 2x_1y_1 + 3x_1y_2 + 5x_2y_2$ matricea asociată este A =

Definiție

Fie V un spațiu vectorial peste un corp K, $g: V \times V \to K$ o biliniară și $B = \{e_1, \dots, e_n\}$ o bază fixată a lui V. Se numește *matricea asociată lui g în baza B* matricea $A = A_{g,B} = (a_{ij})$ definită prin

$$a_{ij}=g(e_i,e_j), i,j=1,\ldots,n.$$

Exemple

- Pentru $g: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $g((x_1, x_2), (y_1, y_2)) = x_1y_1 + x_2y_2$ matricea asociată este $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;
- Pentru $h: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $h((x_1, x_2), (y_1, y_2)) = 2x_1y_1 + 3x_1y_2 + 5x_2y_2$ matricea asociată este $A = \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$.

Biliniare simetrice

Definiție

O biliniară $g:V\times V\to K$ se numește $simetric \check{a}$ dacă

$$g(u, v) = g(v, u), \forall u, v \in V.$$

Biliniare simetrice

Definiție

O biliniară g:V imes V o K se numește $\emph{simetric} \emph{a}$ dacă

$$g(u, v) = g(v, u), \forall u, v \in V.$$

Definiție

Fie $g: V \times V \to K$ o biliniară simetrică. Se numește forma pătratică asociată lui g, funcția $q_g: V \to K$ dată prin

$$q_g(v) = g(v, v), \forall v \in V.$$

Biliniare simetrice

Definiție

O biliniară g:V imes V o K se numește simetrică dacă

$$g(u, v) = g(v, u), \forall u, v \in V.$$

Definiție

Fie $g:V\times V\to K$ o biliniară simetrică. Se numește forma pătratică asociată lui g, funcția $q_g:V\to K$ dată prin

$$q_{\sigma}(v) = g(v, v), \forall v \in V.$$

Observație

O biliniară simetrică pe un spațiu vectorial K cu $char(K) \neq 2$ este complet determinată de forma pătratică asociată ei q_g deoarece avem identitatea:

$$g(u,v) = \frac{1}{2} (q_g(u+v) - q_g(u) - q_g(v)), \forall u,v \in V.$$

Teoremă

Fie V un spațiu vectorial, $g:V\times V\to K$ o biliniară, $B=\{e_1,\ldots,e_n\}\subset V$ o bază fixată a lui V. Fie $A=(a_{ij})$ matricea lui g

în baza B. Atunci

i,j=1

Exprimarea unei biliniare în coordonate

Teoremă

Fie V un spațiu vectorial, $g:V\times V\to K$ o biliniară, $B=\{e_1,\ldots,e_n\}\subset V$ o bază fixată a lui V. Fie $A=(a_{ij})$ matricea lui g în baza B. Atunci $g(u,v)=\sum_{i=1}^n a_{ij}x_iy_j$ unde

Teoremă

Fie V un spațiu vectorial, $g: V \times V \to K$ o biliniară, $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie $A = (a_{ij})$ matricea lui gîn baza B. Atunci $g(u, v) = \sum_{i=1}^{n} a_{ij}x_iy_j$ unde $u = \sum_{i=1}^{n} x_ie_i, v = \sum_{i=1}^{n} y_je_j$. i,j=1

Teoremă

Fie V un spațiu vectorial, $g: V \times V \to K$ o biliniară,

$$B=\{e_1,\ldots,e_n\}\subset V$$
 o bază fixată a lui $V.$ Fie $A=(a_{ij})$ matricea lui g

în baza
$$B$$
. Atunci $g(u, v) = \sum_{i,j=1}^{n} a_{ij} x_i y_j$ unde $u = \sum_{i=1}^{n} x_i e_i, v = \sum_{j=1}^{n} y_j e_j$.

Corolar

O biliniară $g: V \times V \to K$ este simetrică dacă și numai dacă matricea ei A este simetrică,

Teoremă

Fie V un spațiu vectorial, $g: V \times V \to K$ o biliniară, $B=\{e_1,\ldots,e_n\}\subset V$ o bază fixată a lui V. Fie $A=(a_{ij})$ matricea lui gîn baza B. Atunci $g(u,v)=\sum a_{ij}x_iy_j$ unde $u=\sum x_ie_i, v=\sum y_je_j$. i, i=1

Corolar

O biliniară $g: V \times V \to K$ este simetrică dacă și numai dacă matricea ei A este simetrică, $A = A^t$; $a_{ii} = a_{ii}, \forall i, j = 1, \dots n$.

Teoremă

Fie V un spațiu vectorial, $g: V \times V \to K$ o biliniară, $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie $A = (a_{ii})$ matricea lui gîn baza B. Atunci $g(u,v)=\sum a_{ij}x_iy_j$ unde $u=\sum x_ie_i, v=\sum y_je_j$. i, j=1

Corolar

O biliniară $g:V\times V\to K$ este simetrică dacă și numai dacă matricea ei A este simetrică, $A=A^t$; $a_{ij}=a_{ji}, \forall i,j=1,\ldots n$. În particular, dacă geste o biliniară simetrică de matrice $A = (a_{ij})$ atunci expresia în coordonate a formei pătratice q_g asociată ei este:

Teoremă

Fie V un spațiu vectorial, $g: V \times V \to K$ o biliniară, $B = \{e_1, \dots, e_n\} \subset V$ o bază fixată a lui V. Fie $A = (a_{ii})$ matricea lui gîn baza B. Atunci $g(u,v)=\sum a_{ij}x_iy_j$ unde $u=\sum x_ie_i, v=\sum y_je_j$.

Corolar

O biliniară $g:V\times V\to K$ este simetrică dacă și numai dacă matricea ei A este simetrică, $A = A^t$; $a_{ii} = a_{ji}, \forall i, j = 1, ... n$. În particular, dacă geste o biliniară simetrică de matrice $A = (a_{ii})$ atunci expresia în coordonate a formei pătratice q_g asociată ei este:

$$q_g(x_1,...,x_n) = \sum_{i=1}^n a_{ii}x_i^2 + \sum_{1 \leq i < j \leq n} 2a_{ij}x_ix_j.$$

Baze canonice pentru biliniare simetrice

Definiție

Fie $g: V \times V \to K$ o bliniară simetrică. O bază $B = \{e_1, \dots, e_n\}$ a lui Vse numește bază canonică pentru g dacă matricea $A = (a_{ii})$ a lui g în această bază este matrice diagonală, i.e. $a_{ii} = 0 \ \forall i \neq j$.

Baze canonice pentru biliniare simetrice

Definiție

Fie $g: V \times V \to K$ o bliniară simetrică. O bază $B = \{e_1, \dots, e_n\}$ a lui Vse numește bază canonică pentru g dacă matricea $A = (a_{ii})$ a lui g în această bază este matrice diagonală, i.e. $a_{ii} = 0 \ \forall i \neq j$.

Remarcă

Fie $g: V \times V \to K$ o bliniară simetrică. O bază $B = \{e_1, \dots, e_n\}$ a lui Veste bază canonică pentru g dacă și numai dacă expresia formei pătratice q_{φ} asociată lui g

Baze canonice pentru biliniare simetrice

Definiție

Fie $g: V \times V \to K$ o bliniară simetrică. O bază $B = \{e_1, \dots, e_n\}$ a lui Vse numește bază canonică pentru g dacă matricea $A = (a_{ii})$ a lui g în această bază este matrice diagonală, i.e. $a_{ii} = 0 \ \forall i \neq j$.

Remarcă

Fie $g: V \times V \to K$ o bliniară simetrică. O bază $B = \{e_1, \dots, e_n\}$ a lui Veste bază canonică pentru g dacă și numai dacă expresia formei pătratice q_g asociată lui g conține numai "pătrate veritabile", i.e.

$$q_g(x_1,\ldots,x_n)=\sum_{i=1}^n a_{ii}x_i^2$$

"Algoritmul lui Gauss"

Fie $g: V \times V \to K$ o biliniară simetrică și q_g forma pătratică asociată ei. Fie $B = \{e_1, \dots, e_n\}$ o bază fixată a lui V. Prespunem că q_g are în baza B expresia:

$$q_g(x_1, \ldots, x_n) = \sum_{i=1}^n a_{ii} x_i^2 + \sum_{1 \leq i < j \leq n} 2a_{ij} x_i x_j.$$

Anulăm, prin inducție după $i=1,\ldots,n-1$ termenii de forma a_{ij} cu j>idupă cum urmează.

• Dacă $a_{ii} \neq 0$ atunci putem scrie

$$q_{g}(x_{1},...,x_{n}) =$$

$$= \sum_{l=1}^{i-1} a_{ll} x_{i}^{2} + a_{ii} \left(x_{i}^{2} + \sum_{j \leq n} 2 \frac{a_{ij}}{a_{ii}} x_{i} x_{j} \right) + \sum_{i+1 \leq s,t \leq n} a_{st} x_{s} x_{t}$$

$$= \sum_{l=1}^{i-1} a_{ll} x_{i}^{2} + a_{ii} \left(x_{i}^{2} + \sum_{j \leq n} 2 \frac{a_{ij}}{a_{ii}} x_{i} x_{j} \right) + \sum_{i+1 \leq s,t \leq n} a_{st} x_{s} x_{t}$$

$$= \sum_{l=1}^{i-1} a_{ll} x_{i}^{2} + a_{ii} \left(x_{i}^{2} + \sum_{j \leq n} 2 \frac{a_{ij}}{a_{ii}} x_{i} x_{j} \right) + \sum_{i+1 \leq s,t \leq n} a_{st} x_{s} x_{t}$$

"Algoritmul lui Gauss"

$$q_{g}(x_{1},...,x_{n}) =$$

$$= \sum_{l=1}^{i-1} a_{ll} x_{i}^{2} + a_{ii} \left(x_{i}^{2} + \sum_{j \leq n} 2 \frac{a_{ij}}{a_{ii}} x_{i} x_{j} \right) + \sum_{i+1 \leq s < t \leq n} 2 a_{st} x_{s} x_{t} =$$

$$= \sum_{l=1}^{i-1} a_{ll} x_{i}^{2} + a_{ii} \left(x_{i} + \sum_{j \leq n} 2 \frac{a_{ij}}{a_{ii}} x_{i} x_{j} \right)^{2} + \sum_{i+1 \leq s, t \leq n} \left(a_{st} - \frac{a_{is} a_{it}}{a_{ii}^{2}} \right) x_{s} x_{t}.$$

"Algoritmul lui Gauss"

$$q_{g}(x_{1},...,x_{n}) =$$

$$= \sum_{l=1}^{i-1} a_{ll} x_{i}^{2} + a_{ii} \left(x_{i}^{2} + \sum_{j \leq n} 2 \frac{a_{ij}}{a_{ii}} x_{i} x_{j} \right) + \sum_{i+1 \leq s < t \leq n} 2 a_{st} x_{s} x_{t} =$$

$$= \sum_{l=1}^{i-1} a_{ll} x_{i}^{2} + a_{ii} \left(x_{i} + \sum_{j \leq n} 2 \frac{a_{ij}}{a_{ii}} x_{i} x_{j} \right)^{2} + \sum_{i+1 \leq s, t \leq n} \left(a_{st} - \frac{a_{is} a_{it}}{a_{ii}^{2}} \right) x_{s} x_{t}.$$

"Algoritmul lui Gauss"

$$\begin{split} q_g(x_1,\dots,x_n) &= \\ &= \sum_{l=1}^{i-1} a_{ll} x_i^2 + a_{ii} \left(x_i^2 + \sum_{j \le n} 2 \frac{a_{ij}}{a_{ii}} x_i x_j \right) + \sum_{i+1 \le s < t \le n} 2 a_{st} x_s x_t = \\ &= \sum_{l=1}^{i-1} a_{ll} x_i^2 + a_{ii} \left(x_i + \sum_{j \le n} 2 \frac{a_{ij}}{a_{ii}} x_i x_j \right)^2 + \sum_{i+1 \le s, t \le n} \left(a_{st} - \frac{a_{is} a_{it}}{a_{ii}^2} \right) x_s x_t. \end{split}$$

Făcând schimbarea de coordonate

$$\begin{cases} y_k = x, \forall k \neq i, \\ y_i = x_i + \sum_{j \leq n} \frac{a_{ij}}{a_{ii}} x_j, \end{cases}$$

expresia lui q_g devine:

"Algoritmul lui Gauss"

$$q_{g}(y_{1},...,y_{n}) =$$

$$= \sum_{l=1}^{i-1} a_{ll} y_{l}^{2} + a_{ii} y_{i}^{2} + \sum_{i+1 \leq s,t \leq n} \left(a_{st} - \frac{a_{is} a_{it}}{a_{ii}^{2}} \right) y_{s} y_{t}.$$

"Algoritmul lui Gauss"

$$q_{g}(y_{1},...,y_{n}) =$$

$$= \sum_{l=1}^{i-1} a_{ll} y_{l}^{2} + a_{ii} y_{i}^{2} + \sum_{i+1 \leq s,t \leq n} \left(a_{st} - \frac{a_{is} a_{it}}{a_{ii}^{2}} \right) y_{s} y_{t}.$$

Aşadar, nu mai avem termeni nediagonali de forma a_{ii} , i < j; iterativ, anulăm toți termenii nediagonali.

Remarcă

Dacă nu există termeni a_{ii} nenuli. i.e. $a_{ii}=0, \forall i$, atunci considerăm un termen de forma $2a_{ij}x_ix_j$ cu $a_{ij}\neq 0$; trebuie să existe un astfel de termen, altfel forma pătratică ar fi identic nulă. Facem schimbarea de coordonate

$$\begin{cases} x_k = y_k, \forall k \neq i, j \\ x_i = y_i + y_j \\ x_j = y_i - y_j \end{cases}$$

și deci va apărea termenul

$$2a_{ij}(y_i + y_j)(y_i - y_j) = 2a_{ij}(y_i^2 - y_j^2)$$

deci vom avea la dispoziție două "pătrate veritabile" nenule! Ca atare, vom putea reveni la pasul anterior.

Forme canonice pentru forme pătratice

Observație

Putem reformula rezultatul algoritmului lui Gauss și astfel: pentru orice formă pătratică q pe un spațiu vectorial de dimensiune n există o bază a lui V în raport cu care q are expresia

$$q(x_1,\ldots,x_n)=\lambda_1x_1^2+\lambda_2x_2^2+\cdots+\lambda_nx_n^2.$$

O astfel de bază se numește bază canonică pentru forma pătratică q iar o expresie ca mai sus pentru q se numește formă canonică a lui q.

Forme canonice pentru forme pătratice

Observație

Putem reformula rezultatul algoritmului lui Gauss și astfel: pentru orice formă pătratică q pe un spațiu vectorial de dimensiune n există o bază a lui V în raport cu care q are expresia

$$q(x_1,\ldots,x_n)=\lambda_1x_1^2+\lambda_2x_2^2+\cdots+\lambda_nx_n^2.$$

O astfel de bază se numește bază canonică pentru forma pătratică q iar o expresie ca mai sus pentru q se numește formă canonică a lui q.

Remarcă

Evident, pentru o aceeași formă pătratică q pot exista mai multe forme canonice. Apare deci întrebarea:

Forme canonice pentru forme pătratice

Observație

Putem reformula rezultatul algoritmului lui Gauss și astfel: pentru orice formă pătratică q pe un spațiu vectorial de dimensiune n există o bază a lui V în raport cu care q are expresia

$$q(x_1,\ldots,x_n)=\lambda_1x_1^2+\lambda_2x_2^2+\cdots+\lambda_nx_n^2.$$

O astfel de bază se numește bază canonică pentru forma pătratică q iar o expresie ca mai sus pentru q se numește formă canonică a lui q.

Remarcă

Evident, pentru o aceeași formă pătratică q pot exista mai multe forme canonice. Apare deci întrebarea:

Putem alege o formă canonică "distinsă"?

Forme normale pentru forme pătratice

Teoremă: existența formelor normale

• Pentru orice formă pătratică definită peste un spațiu vectorial V peste corpul complex $(K = \mathbb{C})$, există o bază a lui V (numită bază normală) în raport cu care q are expresia

$$q(x_1,...,x_n) = x_1^2 + x_2^2 + \cdots + x_r^2$$
. $(r \le n)$;

Forme normale pentru forme pătratice

Teoremă: existența formelor normale

• Pentru orice formă pătratică definită peste un spațiu vectorial V peste corpul complex $(K = \mathbb{C})$, există o bază a lui V (numită bază normală) în raport cu care q are expresia

$$q(x_1,...,x_n) = x_1^2 + x_2^2 + \cdots + x_r^2$$
. $(r \le n)$;

• Pentru orice formă pătratică definită peste un spațiu vectorial V peste corpul real $(K = \mathbb{R})$, există o bază a lui V (numită bază normală) în raport cu care q are expresia

$$q(x_1,\ldots,x_n)=x_1^2+x_2^2+\cdots+x_p^2-x_{p+1}^2-\cdots-x_r^2.$$
 $(r \le n);$

Forme normale pentru forme pătratice

Teoremă: existența formelor normale

• Pentru orice formă pătratică definită peste un spațiu vectorial V peste corpul complex $(K=\mathbb{C})$, există o bază a lui V (numită bază normală) în raport cu care q are expresia

$$q(x_1,...,x_n) = x_1^2 + x_2^2 + \cdots + x_r^2$$
. $(r \le n)$;

• Pentru orice formă pătratică definită peste un spațiu vectorial V peste corpul real $(K=\mathbb{R})$, există o bază a lui V (numită bază normală) în raport cu care q are expresia

$$q(x_1,\ldots,x_n)=x_1^2+x_2^2+\cdots+x_p^2-x_{p+1}^2-\cdots-x_r^2.$$
 $(r \le n);$

Teorema de inerție Sylvester

Forma normală a unei forme pătratice peste \mathbb{R} este unică.

Definiție

Fie V un spațiu vectorial peste un corp K. Se numește *spațiu afin* de direcție V o mulțime \mathcal{A} înzestrată cu o funcție $\varphi: \mathcal{A} \times \mathcal{A} \to V$,

$$\varphi(A,B) = \overrightarrow{AB}$$

ce satisface:

Definiție

Fie V un spațiu vectorial peste un corp K. Se numește *spațiu afin* de direcție V o mulțime \mathcal{A} înzestrată cu o funcție $\varphi: \mathcal{A} \times \mathcal{A} \to V$,

$$\varphi(A,B) = \overrightarrow{AB}$$

ce satisface:

• ("Regula lui Chasles", sau "regula triunghiului")

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}, \forall A, B, C \in \mathcal{A}$$

Definiție

Fie V un spațiu vectorial peste un corp K. Se numește *spațiu afin* de direcție V o mulțime \mathcal{A} înzestrată cu o funcție $\varphi: \mathcal{A} \times \mathcal{A} \to V$,

$$\varphi(A,B) = \overrightarrow{AB}$$

ce satisface:

• ("Regula lui Chasles", sau "regula triunghiului")

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}, \forall A, B, C \in \mathcal{A}$$

• Există un punct $O \in \mathcal{A}$ astfel încât funcția $\varphi_O : \mathcal{A} \to V$

$$\varphi_O(A) = \overrightarrow{OA}$$

Definiție

Fie V un spațiu vectorial peste un corp K. Se numește *spațiu afin* de direcție V o mulțime \mathcal{A} înzestrată cu o funcție $\varphi : \mathcal{A} \times \mathcal{A} \to V$,

$$\varphi(A,B) = \overrightarrow{AB}$$

ce satisface:

• ("Regula lui Chasles", sau "regula triunghiului")

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}, \forall A, B, C \in \mathcal{A}$$

• Există un punct $O \in \mathcal{A}$ astfel încât funcția $\varphi_O : \mathcal{A} \to V$

$$\varphi_O(A) = \overrightarrow{OA}$$

este bijectivă.

Propoziție

ullet Din regula lui Chasles rezultă că pentru orice $A\in\mathcal{A}$ avem

$$\overrightarrow{AA} = 0_V$$

şi

Propoziție

ullet Din regula lui Chasles rezultă că pentru orice $A\in\mathcal{A}$ avem

$$\overrightarrow{AA} = 0_V$$

şi

$$\overrightarrow{AB} = -\overrightarrow{BA}, \forall A, B \in \mathcal{A};$$

Propoziție

ullet Din regula lui Chasles rezultă că pentru orice $A\in\mathcal{A}$ avem

$$\overrightarrow{AA} = 0_V$$

şi

$$\overrightarrow{AB} = -\overrightarrow{BA}, \forall A, B \in \mathcal{A};$$

• Dacă $\mathcal A$ este un spațiu afin, atunci pentru **orice** $O \in \mathcal A$ funcția $\varphi_O: \mathcal A \to V$

$$\varphi_O(A) = \overrightarrow{OA}$$

este bijectivă.

Terminologie

Dacă ${\mathcal A}$ este un spațiu afin, atunci:

Terminologie

Dacă A este un spațiu afin, atunci:

• spațiul vectorial V se va numi și *spațiu director* al lui \mathcal{A} (sau *direcția lui* \mathcal{A}) și se nota și $dir(\mathcal{A})$;

Terminologie

Dacă A este un spațiu afin, atunci:

- spațiul vectorial V se va numi și *spațiu director* al lui \mathcal{A} (sau *direcția lui* \mathcal{A}) și se nota și $dir(\mathcal{A})$;
- elementele lui \mathcal{A} le vom numi *puncte*, iar elementele lui $dir(\mathcal{A})$ vor fi numiți și *vectori liberi*.

Terminologie

Dacă \mathcal{A} este un spațiu afin, atunci:

- spațiul vectorial V se va numi și *spațiu director* al lui \mathcal{A} (sau *direcția lui* \mathcal{A}) și se nota și $dir(\mathcal{A})$;
- elementele lui \mathcal{A} le vom numi *puncte*, iar elementele lui $dir(\mathcal{A})$ vor fi numiți și *vectori liberi*.

Exemplu de spațiu afin

Fie V un spațiu vectorial arbitrar. Luăm $\mathcal{A}=V$ și definim funcția $\varphi:V\times V\to V$ prin

$$\varphi(u,v)=v-u.$$

Terminologie

Dacă A este un spațiu afin, atunci:

- spațiul vectorial V se va numi și *spațiu director* al lui \mathcal{A} (sau *direcția lui* \mathcal{A}) și se nota și $dir(\mathcal{A})$;
- elementele lui \mathcal{A} le vom numi *puncte*, iar elementele lui $dir(\mathcal{A})$ vor fi numiți și *vectori liberi*.

Exemplu de spațiu afin

Fie V un spațiu vectorial arbitrar. Luăm $\mathcal{A}=V$ și definim funcția $\varphi:V\times V\to V$ prin

$$\varphi(u,v)=v-u.$$

Această structură de spațiu afin pe un spațiu vectorial se va numi structura afină canonică.

Teoremă

Fie \mathcal{A} un spațiu afin, $P_1, \ldots, P_n \in \mathcal{A}$ și $x_1, \ldots x_n \in \mathcal{K}$ fixate. Alegem $O \in \mathcal{A}$ un punct arbitrar; definim punctul $P_O \in \mathcal{A}$ prin

$$\overrightarrow{OP_O} = \sum_{i=1}^n x_i \overrightarrow{OP_i}$$

Teoremă

Fie \mathcal{A} un spațiu afin, $P_1, \ldots, P_n \in \mathcal{A}$ și $x_1, \ldots x_n \in \mathcal{K}$ fixate. Alegem $O \in \mathcal{A}$ un punct arbitrar; definim punctul $P_O \in \mathcal{A}$ prin

$$\overrightarrow{OP_O} = \sum_{i=1}^n x_i \overrightarrow{OP_i}$$

Atunci, dacă $\sum_{i=1}^{n} x_i = 1$ punctul P_O nu depinde de alegerea lui O.

Teoremă

Fie \mathcal{A} un spațiu afin, $P_1, \ldots, P_n \in \mathcal{A}$ și $x_1, \ldots x_n \in K$ fixate. Alegem $O \in \mathcal{A}$ un punct arbitrar; definim punctul $P_O \in \mathcal{A}$ prin

$$\overrightarrow{OP_O} = \sum_{i=1}^n x_i \overrightarrow{OP_i}$$

Atunci, **dacă** $\sum_{i=1}^{n} x_i = 1$ punctul P_O nu depinde de alegerea lui O.

În acest caz, vom nota

$$P_O = \sum_{i=1}^n x_i P_i$$

Teoremă

Fie \mathcal{A} un spațiu afin, $P_1, \ldots, P_n \in \mathcal{A}$ și $x_1, \ldots x_n \in K$ fixate. Alegem $O \in \mathcal{A}$ un punct arbitrar; definim punctul $P_O \in \mathcal{A}$ prin

$$\overrightarrow{OP_O} = \sum_{i=1}^n x_i \overrightarrow{OP_i}$$

Atunci, **dacă** $\sum_{i=1}^{n} x_i = 1$ punctul P_O nu depinde de alegerea lui O.

În acest caz, vom nota

$$P_O = \sum_{i=1}^n x_i P_i$$

și vom spune că punctul P este o *combinație afină* a punctelor P_1,\ldots,P_n .

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

sistem afin independent, dacă

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

 sistem afin independent, dacă nici unul dintre punctele sistemului nu se poate obține ca și o combinație afină de ceilalți;

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

- sistem afin independent, dacă nici unul dintre punctele sistemului nu se poate obține ca și o combinație afină de ceilalți;
- ullet sistem afin de generatori pentru ${\mathcal A}$ dacă

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

- sistem afin independent, dacă nici unul dintre punctele sistemului nu se poate obține ca și o combinație afină de ceilalți;
- sistem afin de generatori pentru $\mathcal A$ dacă orice punct din $\mathcal A$ se poate obține ca și combinație afină de punctele lui $\mathcal S$.

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

- sistem afin independent, dacă nici unul dintre punctele sistemului nu se poate obține ca și o combinație afină de ceilalți;
- sistem afin de generatori pentru $\mathcal A$ dacă orice punct din $\mathcal A$ se poate obține ca și combinație afină de punctele lui $\mathcal S$.

Teoremă

Fie $\mathcal A$ un spaţiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Atunci, S este:

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

- sistem afin independent, dacă nici unul dintre punctele sistemului nu se poate obține ca și o combinație afină de ceilalți;
- sistem afin de generatori pentru $\mathcal A$ dacă orice punct din $\mathcal A$ se poate obține ca și combinație afină de punctele lui $\mathcal S$.

Teoremă

Fie $\mathcal A$ un spaţiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Atunci, S este:

sistem afin independent,

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

- sistem afin independent, dacă nici unul dintre punctele sistemului nu se poate obține ca și o combinație afină de ceilalți;
- sistem afin de generatori pentru $\mathcal A$ dacă orice punct din $\mathcal A$ se poate obține ca și combinație afină de punctele lui $\mathcal S$.

Teoremă

Fie $\mathcal A$ un spaţiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Atunci, S este:

• sistem afin independent, dacă și numai dacă sistemul de vectori din dir(A): $\{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}\}$ este sistem liniar independent;

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

- sistem afin independent, dacă nici unul dintre punctele sistemului nu se poate obține ca și o combinație afină de ceilalți;
- sistem afin de generatori pentru $\mathcal A$ dacă orice punct din $\mathcal A$ se poate obține ca și combinație afină de punctele lui $\mathcal S$.

Teoremă

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\ldots,P_n\}\subset\mathcal A$ un sistem de puncte. Atunci, S este:

- sistem afin independent, dacă și numai dacă sistemul de vectori din dir(A): $\{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}\}$ este sistem liniar independent;
- ullet sistem afin de generatori pentru ${\cal A}$ dacă și numai dacă

Definiție

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\dots,P_n\}\subset\mathcal A$ un sistem de puncte. Spunem că S este:

- sistem afin independent, dacă nici unul dintre punctele sistemului nu se poate obține ca și o combinație afină de ceilalți;
- sistem afin de generatori pentru $\mathcal A$ dacă orice punct din $\mathcal A$ se poate obține ca și combinație afină de punctele lui $\mathcal S$.

Teoremă

Fie $\mathcal A$ un spațiu afin, $S=\{P_0,\ldots,P_n\}\subset\mathcal A$ un sistem de puncte. Atunci, S este:

- sistem afin independent, dacă și numai dacă sistemul de vectori din dir(A): $\{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}\}$ este sistem liniar independent;
- sistem afin de generatori pentru \mathcal{A} dacă și numai dacă sistemul de vectori $\{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}\}$ este sistem de generatori pentru $dir(\mathcal{A})$.

Definiție

Fie \mathcal{A} un spațiu afin. Un sistem de puncte $S=\{P_0,\ldots,P_n\}\subset\mathcal{A}$ se numește *reper afin* al lui \mathcal{A} dacă

Definiție

Fie $\mathcal A$ un spațiu afin. Un sistem de puncte $S=\{P_0,\ldots,P_n\}\subset \mathcal A$ se numește *reper afin* al lui $\mathcal A$ dacă este simultan sistem afin independent și sistem afin de generatori pentru $\mathcal A$.

Definitie

Fie \mathcal{A} un spațiu afin. Un sistem de puncte $S = \{P_0, \dots, P_n\} \subset \mathcal{A}$ se numește *reper afin* al lui \mathcal{A} dacă este simultan sistem afin independent și sistem afin de generatori pentru \mathcal{A} .

Teoremă

Fie \mathcal{A} un spațiu afin. Un sistem de puncte $S = \{P_0, \dots, P_n\} \subset \mathcal{A}$ este reper afin dacă și numai dacă sistemul de vectori

$$dir_{P_0}(S) = \{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}\} \subset dir(\mathcal{A})$$

este

Definitie

Fie \mathcal{A} un spațiu afin. Un sistem de puncte $S = \{P_0, \dots, P_n\} \subset \mathcal{A}$ se numește *reper afin* al lui \mathcal{A} dacă este simultan sistem afin independent și sistem afin de generatori pentru \mathcal{A} .

Teoremă

Fie \mathcal{A} un spațiu afin. Un sistem de puncte $S = \{P_0, \dots, P_n\} \subset \mathcal{A}$ este reper afin dacă și numai dacă sistemul de vectori

$$dir_{P_0}(S) = \{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}\} \subset dir(\mathcal{A})$$

este bază pentru dir(A).

Definiție

Fie \mathcal{A} un spațiu afin. Un sistem de puncte $S = \{P_0, \dots, P_n\} \subset \mathcal{A}$ se numește *reper afin* al lui \mathcal{A} dacă este simultan sistem afin independent și sistem afin de generatori pentru \mathcal{A} .

Teoremă

Fie \mathcal{A} un spațiu afin. Un sistem de puncte $S = \{P_0, \dots, P_n\} \subset \mathcal{A}$ este reper afin dacă și numai dacă sistemul de vectori

$$dir_{P_0}(S) = \{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}\} \subset dir(\mathcal{A})$$

este bază pentru dir(A).

Definiție

Fie $\mathcal A$ un spațiu afin de direcție spațiul vectorial $dir(\mathcal A)$ peste corpul $\mathcal K$. Se numește dimensiunea lui

Definiție

Fie \mathcal{A} un spațiu afin. Un sistem de puncte $S = \{P_0, \dots, P_n\} \subset \mathcal{A}$ se numește *reper afin* al lui \mathcal{A} dacă este simultan sistem afin independent și sistem afin de generatori pentru \mathcal{A} .

Teoremă

Fie \mathcal{A} un spațiu afin. Un sistem de puncte $S = \{P_0, \dots, P_n\} \subset \mathcal{A}$ este reper afin dacă și numai dacă sistemul de vectori

$$dir_{P_0}(S) = \{\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}\} \subset dir(\mathcal{A})$$

este bază pentru dir(A).

Definiție

Fie \mathcal{A} un spațiu afin de direcție spațiul vectorial $dir(\mathcal{A})$ peste corpul K. Se numește $dimensiunea\ lui\ \mathcal{A}:\ dim(\mathcal{A})=dim_K(dir(\mathcal{A})).$

Definiție

Fie ${\cal A}$ un spațiu afin.

Definiție

Fie ${\cal A}$ un spațiu afin.

• Se numește reper cartezian al lui \mathcal{A} un cuplu de forma $\mathcal{R}=(O,B)$ unde $O\in\mathcal{A}$ este un punct iar $B=\{e_1,\ldots,e_n\}\subset dir(\mathcal{A})$ este o bază a lui $dir(\mathcal{A})$.

Definiție

Fie \mathcal{A} un spațiu afin.

- Se numește reper cartezian al lui \mathcal{A} un cuplu de forma $\mathcal{R}=(O,B)$ unde $O\in\mathcal{A}$ este un punct iar $B=\{e_1,\ldots,e_n\}\subset dir(\mathcal{A})$ este o bază a lui $dir(\mathcal{A})$.
- dacă \mathcal{R} este un reper cartezian fixat pentru \mathcal{A} iar $P \in \mathcal{A}$ este un punct arbitrar, scalarii $(x_1, \dots, x_n) \in K^n$ unic definiți de

$$\overrightarrow{OP} = \sum_{i=1}^{n} x_i e_i$$

se vor numi

Definiție

Fie \mathcal{A} un spațiu afin.

- Se numește reper cartezian al lui \mathcal{A} un cuplu de forma $\mathcal{R}=(O,B)$ unde $O\in\mathcal{A}$ este un punct iar $B=\{e_1,\ldots,e_n\}\subset dir(\mathcal{A})$ este o bază a lui $dir(\mathcal{A})$.
- dacă \mathcal{R} este un reper cartezian fixat pentru \mathcal{A} iar $P \in \mathcal{A}$ este un punct arbitrar, scalarii $(x_1, \dots, x_n) \in \mathcal{K}^n$ unic definiți de

$$\overrightarrow{OP} = \sum_{i=1}^{n} x_i e_i$$

se vor numi coordonate carteziene ale lui P în raport cu reperul \mathcal{R} .

Definiție

Fie \mathcal{A} un spațiu afin. O submulțime $\mathcal{A}' \subset \mathcal{A}$ se numește subspațiu afin dacă există un punct $O' \in \mathcal{A}'$ astfel încât

$$dir_{O'}(\mathcal{A}') = \{\overrightarrow{O'P}|P \in \mathcal{A}'\}$$

este subspațiu vectorial al lui dir(A).

Definiție

Fie \mathcal{A} un spațiu afin. O submulțime $\mathcal{A}' \subset \mathcal{A}$ se numește subspațiu afin dacă există un punct $O' \in \mathcal{A}'$ astfel încât

$$dir_{O'}(\mathcal{A}') = \{\overrightarrow{O'P}|P \in \mathcal{A}'\}$$

este subspațiu vectorial al lui dir(A).

Observatie

Dacă $\mathcal{A}' \subset \mathcal{A}$ este un subspațiu afin, atunci:

Definiție

Fie \mathcal{A} un spațiu afin. O submulțime $\mathcal{A}' \subset \mathcal{A}$ se numește subspațiu afin dacă există un punct $O' \in \mathcal{A}'$ astfel încât

$$dir_{O'}(\mathcal{A}') = \{\overrightarrow{O'P}|P \in \mathcal{A}'\}$$

este subspațiu vectorial al lui dir(A).

Observatie

Dacă $\mathcal{A}' \subset \mathcal{A}$ este un subspațiu afin, atunci:

• $dir_{O'}(\mathcal{A}')$ nu depinde de punctul $O' \in \mathcal{A}'$ ales;

Definiție

Fie \mathcal{A} un spațiu afin. O submulțime $\mathcal{A}' \subset \mathcal{A}$ se numește subspațiu afin dacă există un punct $O' \in \mathcal{A}'$ astfel încât

$$dir_{O'}(\mathcal{A}') = \{\overrightarrow{O'P}|P \in \mathcal{A}'\}$$

este subspațiu vectorial al lui dir(A).

Observatie

Dacă $\mathcal{A}' \subset \mathcal{A}$ este un subspațiu afin, atunci:

- $dir_{O'}(\mathcal{A}')$ nu depinde de punctul $O' \in \mathcal{A}'$ ales;
- \mathcal{A}' devine un spațiu afin de direcție $dir_{\mathcal{O}'}(\mathcal{A}')$.

Teoremă

Fie A un spațiu afin de dimensiune n în care am fixat un reper cartezian Rși $\mathcal{A}' \subset \mathcal{A}$ o submulțime. Atunci \mathcal{A}' este subspațiu afin dacă și numai dacă

Teoremă

Fie $\mathcal A$ un spațiu afin de dimensiune n în care am fixat un reper cartezian $\mathcal R$ și $\mathcal A'\subset \mathcal A$ o submulțime. Atunci $\mathcal A'$ este subspațiu afin dacă și numai dacă există o matrice $A\in Mat_{n,m}(K)$ și $B\in Mat_{m,1}(K)$ astfel încât

$$A' = \{ P \in A \text{ de coordonate } X | AX = B \}.$$

Teoremă

Fie \mathcal{A} un spațiu afin de dimensiune n în care am fixat un reper cartezian \mathcal{R} și $\mathcal{A}' \subset \mathcal{A}$ o submulțime. Atunci \mathcal{A}' este subspațiu afin dacă și numai dacă există o matrice $A \in Mat_{n,m}(K)$ și $B \in Mat_{m,1}(K)$ astfel încât

$$A' = \{P \in A \text{ de coordonate } X | AX = B\}.$$

Propoziție

Fie $\mathcal A$ un spațiu afin de dimensiune n în care am fixat un reper cartezian $\mathcal R$ și $\mathcal A'\subset \mathcal A$ dat de sistemul de ecuații AX=B. Atunci $dir(\mathcal A')$ este subspațiul vectorial definit de sistemul de ecuații omogene

Teoremă

Fie \mathcal{A} un spațiu afin de dimensiune n în care am fixat un reper cartezian \mathcal{R} și $\mathcal{A}' \subset \mathcal{A}$ o submulțime. Atunci \mathcal{A}' este subspațiu afin dacă și numai dacă există o matrice $A \in Mat_{n,m}(K)$ și $B \in Mat_{m,1}(K)$ astfel încât

$$A' = \{P \in A \text{ de coordonate } X | AX = B\}.$$

Propoziție

Fie $\mathcal A$ un spațiu afin de dimensiune n în care am fixat un reper cartezian $\mathcal R$ și $\mathcal A'\subset \mathcal A$ dat de sistemul de ecuații AX=B. Atunci $dir(\mathcal A')$ este subspațiul vectorial definit de sistemul de ecuații omogene

$$(dir(A')): AX = 0.$$

Teoremă

Fie \mathcal{A} un spațiu afin de dimensiune n în care am fixat un reper cartezian \mathcal{R} și $\mathcal{A}' \subset \mathcal{A}$ o submulțime. Atunci \mathcal{A}' este subspațiu afin dacă și numai dacă există o matrice $A \in Mat_{n,m}(K)$ și $B \in Mat_{m,1}(K)$ astfel încât

$$A' = \{P \in A \text{ de coordonate } X | AX = B\}.$$

Propoziție

Fie $\mathcal A$ un spațiu afin de dimensiune n în care am fixat un reper cartezian $\mathcal R$ și $\mathcal A'\subset \mathcal A$ dat de sistemul de ecuații AX=B. Atunci $dir(\mathcal A')$ este subspațiul vectorial definit de sistemul de ecuații omogene

$$(dir(A')): AX = 0.$$

În particular,

$$dim(A') = dim(A) - rang(A)$$
.

Drepte afine

ullet Se numște dreaptă afină un subspațiu $afin~\mathcal{A}'$ de dimensiune

Drepte afine

ullet Se numște *dreaptă afină* un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=1.$

• Se numște dreaptă afină un subspațiu afin \mathcal{A}' de dimensiune

Cazuri particulare remarcabile

Drepte afine

- $dim(\mathcal{A}')=1.$ Dacă A este un spațiu afin raportat la reperul cartezian $\mathcal R$ atunci
- Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci dreapta afină ce trece prin punctul A de coordonate $A = (x_1^A, \dots, x_n^A)$ și are direcția generată de vectorul $v = (v_1, \dots, v_n)$ este

• Se numște dreaptă afină un subspațiu afin \mathcal{A}' de dimensiune

Cazuri particulare remarcabile

Drepte afine

- $dim(\mathcal{A}')=1.$ Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci
- Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci dreapta afină ce trece prin punctul A de coordonate $A = (x_1^A, \dots, x_n^A)$ și are direcția generată de vectorul $v = (v_1, \dots, v_n)$ este

$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \dots = \frac{x_n - x_n^A}{v_n}$$

• Se numște dreaptă afină un subspațiu afin \mathcal{A}' de dimensiune

Cazuri particulare remarcabile

Drepte afine

- $dim(\mathcal{A}')=1.$ Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci
- Dacă A este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci dreapta afină ce trece prin punctul A de coordonate $A = (x_1^A, \dots, x_n^A)$ și are direcția generată de vectorul $v = (v_1, \dots, v_n)$ este

$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \dots = \frac{x_n - x_n^A}{v_n}$$

• Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} iar $A \neq B$ sunt două puncte distincte din \mathcal{A} , atunci ecuația dreptei determinată de A și B este:

Drepte afine

- Se numște dreaptă afină un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=1.$
- ullet Dacă ${\mathcal A}$ este un spațiu afin raportat la reperul cartezian ${\mathcal R}$ atunci dreapta afină ce trece prin punctul A de coordonate $A = (x_1^A, \dots, x_n^A)$ și are direcția generată de vectorul $v = (v_1, \dots, v_n)$ este

$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \dots = \frac{x_n - x_n^A}{v_n}$$

• Dacă $\mathcal A$ este un spațiu afin raportat la reperul cartezian $\mathcal R$ iar A
eq Bsunt două puncte distincte din A, atunci ecuația dreptei determinată de A și B este:

$$\frac{x_1 - x_1^A}{x_1^B - x_1^A} = \frac{x_2 - x_2^A}{x_2^B - x_2^A} = \dots = \frac{x_n - x_n^A}{x_n^B - x_n^A}$$

Plane afine

ullet Se numște *plan afin* un subspațiu afin \mathcal{A}' de dimensiune

Plane afine

• Se numște plan afin un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=2$.

Plane afine

- ullet Se numște *plan afin* un subspațiu afin \mathcal{A}' de dimensiune $\dim(\mathcal{A}')=2.$
- Dacă \mathcal{A} este un spațiu afin de dimensiune $dim(\mathcal{A})=3$ raportat la reperul cartezian $\mathcal{R},\ A\in\mathcal{A}'$ este un punct iar $V'\subset dir(\mathcal{A})$ este un subspațiu vectorial de dimensiune $dim_K(V')=2$ generat de vectorii $V'=< v=(v_1,v_2,v_3), u=(u_1,u_2,u_3)>$ atunci planul afin \mathcal{A}' ce trece prin A și are direcția V' are ecuația:

Plane afine

- Se numște *plan afin* un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=2$.
- Dacă \mathcal{A} este un spațiu afin de dimensiune $dim(\mathcal{A})=3$ raportat la reperul cartezian $\mathcal{R},\ A\in\mathcal{A}'$ este un punct iar $V'\subset dir(\mathcal{A})$ este un subspațiu vectorial de dimensiune $dim_K(V')=2$ generat de vectorii $V'=< v=(v_1,v_2,v_3), u=(u_1,u_2,u_3)>$ atunci planul afin \mathcal{A}' ce trece prin \mathcal{A} și are direcția V' are ecuația:

$$\begin{vmatrix} x_1 - x_1^A & v_1 & u_1 \\ x_2 - x_2^A & v_2 & u_2 \\ x_3 - x_3^A & v_3 & u_3 \end{vmatrix} = 0$$

Plane afine

- Se numște *plan afin* un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=2$.
- Dacă \mathcal{A} este un spațiu afin de dimensiune $dim(\mathcal{A})=3$ raportat la reperul cartezian $\mathcal{R},\ A\in\mathcal{A}'$ este un punct iar $V'\subset dir(\mathcal{A})$ este un subspațiu vectorial de dimensiune $dim_K(V')=2$ generat de vectorii $V'=< v=(v_1,v_2,v_3), u=(u_1,u_2,u_3)>$ atunci planul afin \mathcal{A}' ce trece prin \mathcal{A} și are direcția V' are ecuația:

$$\begin{vmatrix} x_1 - x_1^A & v_1 & u_1 \\ x_2 - x_2^A & v_2 & u_2 \\ x_3 - x_3^A & v_3 & u_3 \end{vmatrix} = 0$$

• Ca atare, ecuația planului determinat de trei puncte A, B, C va fi

Cazuri particulare remarcabile

Plane afine

- Se numşte plan afin un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}') = 2$.
- Dacă \mathcal{A} este un spațiu afin de dimensiune $dim(\mathcal{A}) = 3$ raportat la reperul cartezian \mathcal{R} , $A \in \mathcal{A}'$ este un punct iar $V' \subset dir(\mathcal{A})$ este un subspațiu vectorial de dimensiune $dim_K(V') = 2$ generat de vectorii $V' = \langle v = (v_1, v_2, v_3), u = (u_1, u_2, u_3) \rangle$ atunci planul afin \mathcal{A}' ce trece prin A și are direcția V' are ecuația:

$$\begin{vmatrix} x_1 - x_1^A & v_1 & u_1 \\ x_2 - x_2^A & v_2 & u_2 \\ x_3 - x_3^A & v_3 & u_3 \end{vmatrix} = 0$$

• Ca atare, ecuația planului determinat de trei puncte A, B, C va fi

$$\begin{vmatrix} x_1 - x_1^A & x_1^B - x_1^A & x_1^C - x_1^A \\ x_2 - x_2^A & x_2^B - x_2^A & x_2^C - x_2^A \\ x_3 - x_3^A & x_3^B - x_3^A & x_3^C - x_3^A \end{vmatrix} = 0$$

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și A_2 sunt paralele (notat $A_1 \parallel A_2$) dacă are loc măcar una dintre incluziunile $dir(A_1) \subset dir(A_2)$ sau invers, $dir(A_2) \subset dir(A_1)$.

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și \mathcal{A}_2 sunt paralele (notat $\mathcal{A}_1 \parallel \mathcal{A}_2$) dacă are loc măcar una dintre incluziunile $dir(\mathcal{A}_1) \subset dir(\mathcal{A}_2)$ sau invers, $dir(\mathcal{A}_2) \subset dir(\mathcal{A}_1)$.

Observații

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și \mathcal{A}_2 sunt paralele (notat $\mathcal{A}_1 \parallel \mathcal{A}_2$) dacă are loc măcar una dintre incluziunile $dir(\mathcal{A}_1) \subset dir(\mathcal{A}_2)$ sau invers, $dir(\mathcal{A}_2) \subset dir(\mathcal{A}_1)$.

Observații

• Relația de paralelism *nu este* tranzitivă, i.e. dacă $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3$ sunt trei subspații astfel încât $\mathcal{A}_1 \parallel \mathcal{A}_2, \mathcal{A}_2 \parallel \mathcal{A}_3$ nu rezultă $\mathcal{A}_1 \parallel \mathcal{A}_3$.

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și \mathcal{A}_2 sunt paralele (notat $\mathcal{A}_1 \parallel \mathcal{A}_2$) dacă are loc măcar una dintre incluziunile $dir(\mathcal{A}_1) \subset dir(\mathcal{A}_2)$ sau invers, $dir(\mathcal{A}_2) \subset dir(\mathcal{A}_1)$.

Observații

- Relația de paralelism *nu este* tranzitivă, i.e. dacă $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3$ sunt trei subspații astfel încât $\mathcal{A}_1 \parallel \mathcal{A}_2, \mathcal{A}_2 \parallel \mathcal{A}_3$ nu rezultă $\mathcal{A}_1 \parallel \mathcal{A}_3$.
- Dacă A_1, A_2 sunt subspații afine de acceeași dimensiune atunci $A_1 \parallel A_2$ dacă și numai dacă $dir(A_1) = dir(A_2)$.

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și \mathcal{A}_2 sunt paralele (notat $\mathcal{A}_1 \parallel \mathcal{A}_2$) dacă are loc măcar una dintre incluziunile $dir(\mathcal{A}_1) \subset dir(\mathcal{A}_2)$ sau invers, $dir(\mathcal{A}_2) \subset dir(\mathcal{A}_1)$.

Observații

- Relația de paralelism *nu este* tranzitivă, i.e. dacă $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3$ sunt trei subspații astfel încât $\mathcal{A}_1 \parallel \mathcal{A}_2, \mathcal{A}_2 \parallel \mathcal{A}_3$ nu rezultă $\mathcal{A}_1 \parallel \mathcal{A}_3$.
- Dacă A_1, A_2 sunt subspații afine de acceeași dimensiune atunci $A_1 \parallel A_2$ dacă și numai dacă $dir(A_1) = dir(A_2)$.
- Ca și consecință, în categria spațiilor afine are loc "postulatul paralelelor": dacă $\mathcal{A}' \subset \mathcal{A}$ este un subspațiu afin și $A \in \mathcal{A}$ este un punct arbitrar, atunci există și este unic un subspațiu afin \mathcal{A} " astfel încât

$$A \in \mathcal{A}$$
", \mathcal{A} " $\parallel \mathcal{A}'$, și $dim(\mathcal{A}$ ") = $dim(\mathcal{A}')$.

Exemple: drepte paralele

• Fie dreptele

$$(d_1): \ \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\frac{x_3-x_3^A}{v_3}$$

Exemple: drepte paralele

• Fie dreptele

$$(d_1): \ \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\frac{x_3-x_3^A}{v_3}$$

şi

$$(d_2): \frac{x_1-x_1^B}{u_1}=\frac{x_2-x_2^B}{u_2}=\frac{x_3-x_3^B}{u_3}$$

Exemple: drepte paralele

• Fie dreptele

$$(d_1): \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\frac{x_3-x_3^A}{v_3}$$

şi

$$(d_2): \frac{x_1-x_1^B}{u_1}=\frac{x_2-x_2^B}{u_2}=\frac{x_3-x_3^B}{u_3}$$

Atunci $d_1 \parallel d_2$ dacă și numai dacă

Exemple: drepte paralele

• Fie dreptele

$$(d_1): \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\frac{x_3-x_3^A}{v_3}$$

şi

$$(d_2): \frac{x_1 - x_1^B}{u_1} = \frac{x_2 - x_2^B}{u_2} = \frac{x_3 - x_3^B}{u_3}$$

Atunci $d_1 \parallel d_2$ dacă și numai dacă

$$\frac{u_1}{v_1} = \frac{u_2}{v_2} = \frac{u_3}{v_3}$$

Exemple: plane paralele

• Fie planele

$$(\pi_1)$$
: $A_1x_1 + B_1x_2 + C_1x_3 = D_1$

Exemple: plane paralele

• Fie planele

$$(\pi_1): A_1x_1 + B_1x_2 + C_1x_3 = D_1$$

şi

$$(\pi_2)$$
: $A_2x_1 + B_2x_2 + C_2x_3 = D_2$

Exemple: plane paralele

• Fie planele

$$(\pi_1): A_1x_1 + B_1x_2 + C_1x_3 = D_1$$

şi

$$(\pi_2)$$
: $A_2x_1 + B_2x_2 + C_2x_3 = D_2$

Atunci $\pi_1 \parallel \pi_2$ dacă și numai dacă

Exemple: plane paralele

Fie planele

$$(\pi_1): A_1x_1 + B_1x_2 + C_1x_3 = D_1$$

şi

$$(\pi_2)$$
: $A_2x_1 + B_2x_2 + C_2x_3 = D_2$

Atunci $\pi_1 \parallel \pi_2$ dacă și numai dacă

$$\frac{A_1}{B_1} = \frac{A_2}{B_2} = \frac{A_3}{B_3}$$

Exemple: plan paralel cu dreaptă

Fie planul

$$(\pi)$$
: $Ax_1 + Bx_2 + Cx_3 = D$

Exemple: plan paralel cu dreaptă

• Fie planul

$$(\pi)$$
: $Ax_1 + Bx_2 + Cx_3 = D$

și dreapta

(d):
$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \frac{x_3 - x_3^A}{v_3}$$

Exemple: plan paralel cu dreaptă

• Fie planul

$$(\pi): Ax_1 + Bx_2 + Cx_3 = D$$

și dreapta

(d):
$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \frac{x_3 - x_3^A}{v_3}$$

Atunci $\pi \parallel d$ dacă și numai dacă

Exemple: plan paralel cu dreaptă

• Fie planul

$$(\pi): Ax_1 + Bx_2 + Cx_3 = D$$

și dreapta

(d):
$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \frac{x_3 - x_3^A}{v_3}$$

Atunci $\pi \parallel d$ dacă și numai dacă

$$Av_1 + Bv_2 + Cv_3 = 0$$

Aplicații afine

Definiție

Fie A_1,A_2 spații afine peste un acelasși corp K. O funcție $\tau:A_1\to A_2$ se numește *aplicație afină* dacă

Aplicații afine

Definiție

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un acelasși corp K. O funcție $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ se numește *aplicație afină* dacă există un punct $O \in \mathcal{A}_1$ astfel încât aplicația $T_{O,\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_2)$ definită prin

$$T_{O,\tau}(\overrightarrow{OP}) = \overrightarrow{\tau(O)\tau(P)}$$

este aplicație liniară.

Aplicații afine

Definiție

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un acelasși corp K. O funcție $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ se numește *aplicație afină* dacă există un punct $O \in \mathcal{A}_1$ astfel încât aplicația $T_{O,\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_2)$ definită prin

$$T_{O,\tau}(\overrightarrow{OP}) = \overrightarrow{\tau(O)\tau(P)}$$

este aplicație liniară.

Propoziție

Dacă $au: \mathcal{A}_1 \to \mathcal{A}_2$ este o aplicație afină, atunci aplicația liniară $T_{O,\tau}$ de mai sus *nu depinde de alegerea lui O*. Ea se numește *urma vectorială* a lui au și este notată T_{τ} .

Caracterizarea aplicațiilor afine utilizând combinații afine

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Atunci τ este transformare afină dacă și numai dacă **pentru orice** $n \geq 2$, și orice alegeri $P_1, \ldots, P_n \in \mathcal{A}_1$ și $a_1, \ldots, a_n \in K$ cu $\sum_{i=1}^n a_i = 1$ avem

$$\tau\left(\sum_{i=1}^n a_i P_i\right) = \sum_{i=1}^n a_i P_i.$$

Caracterizarea aplicațiilor afine utilizând combinații afine

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Atunci τ este transformare afină dacă și numai dacă **pentru orice** $n \geq 2$,

și orice alegeri
$$P_1,\ldots,P_n\in\mathcal{A}_1$$
 și $a_1,\ldots,a_n\in\mathcal{K}$ cu $\sum_{i=1}^n a_i=1$ avem

$$\tau\left(\sum_{i=1}^n a_i P_i\right) = \sum_{i=1}^n a_i P_i.$$

Remarcă

În cazul afin, spre deosebire de cel vectorial, nu ne putem limita la a testa egalitatea de mai sus doar pentru n = 2!!!

Caracterizarea aplicațiilor afine utilizând combinații afine

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Atunci τ este transformare afină dacă și numai dacă **pentru orice** $n \geq 2$,

și orice alegeri
$$P_1,\ldots,P_n\in\mathcal{A}_1$$
 și $a_1,\ldots,a_n\in\mathcal{K}$ cu $\sum_{i=1}^n a_i=1$ avem

$$\tau\left(\sum_{i=1}^n a_i P_i\right) = \sum_{i=1}^n a_i P_i.$$

Remarcă

În cazul afin, spre deosebire de cel vectorial, nu ne putem limita la a testa egalitatea de mai sus doar pentru n=2!!!

Se poate demonstra că dacă avem $char(K) \neq 2$ atunci ne putem limita la a testa egalitatea de mai sus doar pentru n = 2puncte.

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K de dimensiuni n (respectiv m) și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Fie \mathcal{R}_1 (respectiv \mathcal{R}_2) repere afine pentru \mathcal{A}_1 (respectiv \mathcal{A}_2) fixate. Atunci τ este aplicație afină dacă și numai dacă

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K de dimensiuni n (respectiv m) și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Fie \mathcal{R}_1 (respectiv \mathcal{R}_2) repere afine pentru \mathcal{A}_1 (respectiv \mathcal{A}_2) fixate. Atunci τ este aplicație afină dacă și numai dacă există o matrice $A \in Mat_{m,n}(K)$ și o matrice $B \in Mat_{m,1}(K)$ astfel încât

$$\tau(X) = AX + B$$

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K de dimensiuni n (respectiv m) și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Fie \mathcal{R}_1 (respectiv \mathcal{R}_2) repere afine pentru \mathcal{A}_1 (respectiv \mathcal{A}_2) fixate. Atunci τ este aplicație afină dacă și numai dacă există o matrice $A \in Mat_{m,n}(K)$ și o matrice $B \in Mat_{m,1}(K)$ astfel încât

$$\tau(X) = AX + B$$

Remarcă

Dacă $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ este o transformare afină ce are expresia

$$\tau(X) = AX + B$$

în raport cu reperele $\mathcal{R}_1=(O_1,B_1)$ respectiv $\mathcal{R}_2=(O_2,B_2)$ atunci matricea urmei vectoriale T_{τ} a lui τ în raport cu bazele B_1 respectiv B_2 este

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K de dimensiuni n (respectiv m) și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Fie \mathcal{R}_1 (respectiv \mathcal{R}_2) repere afine pentru \mathcal{A}_1 (respectiv \mathcal{A}_2) fixate. Atunci τ este aplicație afină dacă și numai dacă există o matrice $A \in Mat_{m,n}(K)$ și o matrice $B \in Mat_{m,1}(K)$ astfel încât

$$\tau(X) = AX + B$$

Remarcă

Dacă $au: \mathcal{A}_1 o \mathcal{A}_2$ este o transformare afină ce are expresia

$$\tau(X) = AX + B$$

în raport cu reperele $\mathcal{R}_1=(O_1,B_1)$ respectiv $\mathcal{R}_2=(O_2,B_2)$ atunci matricea urmei vectoriale T_{τ} a lui τ în raport cu bazele B_1 respectiv B_2 este A, i.e.

$$T_{\tau}(X) = AX$$
.

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $\mathcal{T}_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Omotetii

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Omotetii

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *omotetie* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_1)$ este de forma

$$T_{\tau}(v) = \lambda v, \ \lambda \in K, \lambda \neq 1.$$

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Omotetii

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *omotetie* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_1)$ este de forma

$$T_{\tau}(v) = \lambda v, \ \lambda \in K, \lambda \neq 1.$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este omotetie dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Omotetii

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *omotetie* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_1)$ este de forma

$$T_{\tau}(v) = \lambda v, \ \lambda \in K, \lambda \neq 1.$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este omotetie dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = \lambda X + B$

Hipercuadrice în spații afine

Definiție

Fie $\mathcal A$ un spaţiu afin de dimensiune n raportat la un reper cartezian $\mathcal R$. Se numeşte hipercuadrică în $\mathcal A$ o submulţime $\mathcal Q\subset\mathcal A$ care este mulţimea zerourilor ununi polinom de gradul doi $F\in\mathcal K[X_1,\ldots,X_n]$,

$$\mathcal{Q} = \{(x_1,\ldots,x_n)|F(x_1,\ldots,x_n) = 0\}$$

Hipercuadrice în spații afine

Definiție

Fie $\mathcal A$ un spațiu afin de dimensiune n raportat la un reper cartezian $\mathcal R$. Se numește hipercuadrică în $\mathcal A$ o submulțime $\mathcal Q\subset\mathcal A$ care este mulțimea zerourilor ununi polinom de gradul doi $F\in\mathcal K[X_1,\ldots,X_n]$,

$$Q = \{(x_1, \ldots, x_n) | F(x_1, \ldots, x_n) = 0\}$$

Observație

Cu alte cuvinte, o hipercuadrică este o mulțime de forma

$$Q = \{\{(x_1, \dots, x_n) | \sum_{1 \le i \le j \le n} a_{ij} x_i x_j + 2 \sum_{i=1}^n b_i x_i + c = 0\}$$

Hipercuadrice în spații afine

Terminologie

ullet Dacă ${\mathcal Q}$ este o hipercuadrică ca mai sus, vom nota

$$q_F = \sum_{1 \le i \le j \le n} a_{ij} x_i x_j$$

și respectiv

$$I_F = \sum_{i=1}^n b_i x_i;$$

 q_F este evident o formă pătratică (vectorială), numită forma pătratică asociată hipercuadricei.

• În cazul dim(A) = 2 hipercuadricele se numesc *conice*, iar în cazul dim(A) = 3 hipercuadricele se numesc *cuadrice*.