Exercise 1.

Check the Reflexivity, Symmetry and Transitivity properties of the following binary relations:

- 1. $\forall x, y \in \mathbb{Z}, \ x\mathcal{R}y \iff (x-y) \ is \ a \ multiple \ of \ 2 \ and \ of \ 3.$
- 2. $\forall x, y \in \mathbb{Z}, \ x\mathcal{P}y \iff (x-y) \text{ is a multiple of 2 } \mathbf{or} \text{ of 3.}$
- 3. $\forall (a, a')(b, b') \in \mathbb{N} \times \mathbb{N}, (a, a')\mathcal{S}(b, b') \iff a + a' = b + b'.$

Among the previous relations, are there equivalence relations?

Exercise 2.

Show that the relation \mathcal{P} defined on \mathbb{R} by :

$$x\mathcal{P}y \iff \cos^2 x + \sin^2 y = 1$$

is an equivalence relation.

Exercise 3.

Let \mathcal{R} be the relation defined on \mathbb{Z} by :

$$x\mathcal{R}y \iff \exists m \in \mathbb{Z}, \ x-y=7m$$

- 1. Show that \mathcal{R} is an equivalence relation on \mathbb{Z} .
- 2. What are the equivalence classes?
- 3. Determine the quotient set.

Exercise 4.

Let \mathcal{T} be the relation defined on \mathbb{N}^* by :

$$p\mathcal{T}q \iff \exists n \in \mathbb{N}^*, \ p^n = q$$

- 1. Show that \mathcal{T} is an order relation.
- 2. Is this order total or partial?