# Development of Computer Vision and Image Processing at NSLS-II

William Watson

### Purpose

- Development of image analysis software backed by OpenCV
- To provide an easy use python module to access computer vision functions
- Optimized results for fast computation, via C++, Intel IPP/TBB
- Automate processes from image input such as:
  - Position, spread, and intensity of X-Ray Beams
  - Isolating and computing data on multiple objects
  - Provide assistance to mounting samples and report any errors

### OpenCV and CVLIB

- Small Programs call upon functions in CVLIB
- CVLIB calls upon OpenCV, which has a Python Wrapper for C++
- OpenCV 3.0 supports optimization via Intel's IPP Low Level Functions, Intel TBB
- Computation is done on a dedicated IBM Image Server





Sergey Sivolgin, 2014-08-11 11:25 am

# BPM-1 X-Ray Analysis (IXS)

#### Purpose:

- Discover Position of Beam
- Discover Spread of Beam
- Discover Intensity of Beam
- Discover the Centroid of the Beam

E = 9.1 keV Scintillator: YAG Camera: Prosilica Magnification: 5x





Images Courtesy of: Yong Cai, Alessandro Cunsolo, Alexey Suvorov, and the IXS Beamline Staff

# BPM-1 Image Results

#### Process:

- Threshold
- Find Contours
- Interpret Contour Data (Plot, Draw, and Print)



Images Courtesy of: Yong Cai, Alessandro Cunsolo, Alexey Suvorov, and the IXS Beamline Staff

### BPM-1 Data Results

#### Console Output:

mean intensity: 227.842390577

```
Object Details:

perimeter: 2356.99022925

orientation: 179.838363647

max: (925, 198)

height: 372

extrema: {'B': (938, 568), 'R': (1054, 415), 'L': (813, 377), 'T': (914, 196)}

area: 65058.5

min: (1047, 564)

sum intensity: 20426526

width: 241

centroid: (933, 382)
```

### **BPM-1** Results

- Use Centroid and Extrema to adjust beam within image
- Sum of the Pixels displays the total intensity of the beam
- The Maximum point of intensity, and maximum intensity discovered
- Area and Perimeter of Beam
- Height and Width of the current Beam
- Average Intensity of the Beam

### BPM-1 Time

### BPM-1 (Single):

Real 0m0.350s

User 0m0.300s

Sys 0m0.068s



# Analysis - Merlin Quad X-Ray Detector (IXS)

Data Retrieved from the Merlin Detector at IXS.

#### Purpose:

- Isolate Individual Streaks
- Process each Streak to learn Position, Center,
   Spread, Intensity, Max Values, etc.
- Count Intensity in each streak



E = 9.1 keV Direct detection PEL size = 55 [um]

### Merlin Image Results



#### Process:

- Convert to Grayscale
- Threshold Image
- Find and filter contours by size
- For each object:
  - Print Object's Data
  - Plot Points of Interest
- Draw Contours
- Apply JET



# Merlin Data Results for First Object (Largest)

### Console Output:

```
Object 1:
perimeter: 125.840619564
orientation: 179.981033325
\max: (131, 78)
height: 55
extrema: {'B': (129, 122), 'R': (135, 98),
          'L': (126, 92), 'T': (132, 67)}
area: 270.5
min: (134, 83)
sum intensity: 62689
width: 9
centroid: (130, 95)
mean intensity: 126.64444444
```



### Merlin - Time

### Merlin (1 Image Standalone):

Real 0m0.321s

User 0m0.284s

Sys 0m0.036s



# ABBIX Beamlines (AMX): Pins in a Robot Gripper

Images are from AMX, Displays a Pin and a Gripper, in an attempt to grab the pin



### Robot Gripper - Purpose

#### Purpose:

- Find if Pin is in the Gripper
- Determine if Pin is properly mounted
  - Analyze the position of the Gripper and Pin within the image
  - Find the Region of Interest (ROI) for the Pin and Gripper
  - Compare the Pin and Gripper to a 'Perfect' Image to determine if anomalies are present
  - Advise the user to any potential problems



# Robot Gripper- 'Perfect' vs Test Cases



### Robot Gripper- Results

#### **Console Output:**

Template: 0.0 Disim

Image-1: 1.36311088973 Disim

Image-2: 0.0286209618648 Disim

Image-3: 0.0045508842333 Disim

Image-4: 0.190357587177 Disim



'Perfect'



Image 1



Image 4



Images Courtesy of: Jean Jakoncic, AMX Beamline

# $Robot\ Gripper\ Time-1-19\ Images_{\tiny Total\ Computation\ Time}$

| Number of<br>Images | Total Time | Average Time |
|---------------------|------------|--------------|
| 1                   | 0.526      | 0.526        |
| 2                   | 0.716      | 0.358        |
| 3                   | 0.886      | 0.29533333   |
| 4                   | 1.066      | 0.2665       |
| 5                   | 1.256      | 0.2512       |
| 6                   | 1.429      | 0.23816667   |
| 7                   | 1.6        | 0.22857143   |
| 8                   | 1.783      | 0.222875     |
| 9                   | 1.962      | 0.218        |
| 10                  | 2.131      | 0.2131       |
| 11                  | 2.324      | 0.21127273   |
| 12                  | 2.493      | 0.20775      |
| 13                  | 2.692      | 0.20707692   |
| 14                  | 2.875      | 0.20535714   |
| 15                  | 3.046      | 0.20306667   |
| 16                  | 3.335      | 0.2084375    |
| 17                  | 3.42       | 0.20117647   |
| 18                  | 3.543      | 0.19683333   |
| 19                  | 3.74       | 0.19684211   |







### Pin/Gripper – 'Perfect' vs Test Cases



# Pin/Gripper Detailed Analysis

#### Purpose:

- Find Pin and Gripper ROI's
- Compare Apparatus to 'Perfect' for anomalies
- Discover Possible Kinks within image
- Discover if Pin is not properly mounted
- Discover the Center of Mass
- Use Extreme Points as an assist for Alignment, along with Centroid

#### Console Output on Image 1:

```
Image 1:
```

```
perimeter: 2017.74725473
\max: (745, 1)
height: 217
extrema: {'B': (1203, 218), 'R': (1567, 129),
         'L': (745, 114), 'T': (748, 1)}
area: 168731.5
min: (793, 1)
sum intensity: 4280971
width: 822
centroid: (1161, 104)
mean intensity: 23.999971969
```

#### **Match Metrics:**

```
Image Dissimilarity: 1.36080901012
Mount Centroid: Too High: 104
Missing Component / Gripper Not Aligned
```



#### **Console Output:**

```
Image 2:
```

```
perimeter: 3512.21232665
\max: (497, 66)
height: 664
extrema: {'B': (1206, 665), 'R': (1450, 31),
           'L': (497, 1), 'T': (497, 1)}
aspect ratio: 1.43458646617
area: 532620.5
min: (515, 1)
sum intensity: 30095708
width: 953
centroid: (968, 310)
mean intensity: 47.5601903943
```

#### Match Metrics:

Image Dissimilarity: 0.0274253192917

Possible Kinks Detected

41 Possible Kink Points Detected: Adjust Gripper

Possible Kink Distance on R: 115.004347744

Possible Kink Distance on L: 27.3130005675

Pin Not Mounted Correctly: Distance: 329



Images Courtesy of: Jean Jakoncic, AMX Beamline

#### Console Output:

#### Image 3:

```
perimeter: 3272.13917053
max: (496, 1)
height: 677
extent: 0.902237973263
extrema: {'B': (593, 678), 'R': (1452, 189),
          'L': (496, 22), 'T': (503, 1)}
area: 585413.5
min: (525, 1)
sum intensity: 20199272
width: 956
centroid: (974, 323)
mean intensity: 31.2096685476
```

#### **Match Metrics:**

Image Dissimilarity: 0.00487836456791



Images Courtesy of: Jean Jakoncic, AMX Beamline

#### **Console Output:**

```
Image 4:
perimeter: 3790.45496655
\max: (1443, 1)
height: 821
extrema: {'B': (828, 822), 'R': (1447, 125),
           'L': (492, 1), 'T': (492, 1)}
aspect ratio: 1.16301703163
area: 664209.0
min: (503, 1)
sum intensity: 35452804
width: 955
centroid: (974, 387)
mean intensity: 45.2172411374
```

```
Match Metrics:
Image Dissimilarity: 0.190836638543
Possible Kinks Detected
44 Possible Kink Points Detected: Adjust Gripper
Possible Kink Distance on R: 125.015998976
Possible Kink Distance on L: 157.003184681
Pin Not Mounted Correctly: Distance: 411
```



# Pin/Gripper Time – 1-19 Images

| Number of Images | Total Time | Average Time |
|------------------|------------|--------------|
| 1                | 0.544      | 0.544        |
| 2                | 0.751      | 0.3755       |
| 3                | 0.945      | 0.315        |
| 4                | 1.162      | 0.2905       |
| 5                | 1.361      | 0.2722       |
| 6                | 1.565      | 0.26083333   |
| 7                | 1.802      | 0.25742857   |
| 8                | 1.999      | 0.249875     |
| 9                | 2.192      | 0.24355556   |
| 10               | 2.429      | 0.2429       |
| 11               | 2.621      | 0.23827273   |
| 12               | 2.803      | 0.23358333   |
| 13               | 3.064      | 0.23569231   |
| 14               | 3.264      | 0.23314286   |
| 15               | 3.482      | 0.23213333   |
| 16               | 3.637      | 0.2273125    |
| 17               | 3.824      | 0.22494118   |
| 18               | 4.1        | 0.22777778   |
| 19               | 4.302      | 0.22642105   |

#### **Average Time Per Photo**



#### **Total Time**



# Crystal Rotational Alignment - AMX

#### Purpose:

- Locate the Crystal
- Center the Crystal in Goniostat
- Plot as a function of angles the Y Pixel coordinate of Crystal during rotation



Images Courtesy of: Jean Jakoncic, AMX Beamline

# Crystal Rotational Alignment - AMX

#### • Centering Crystal:

Total Time (24 Img): 0.858s Average Time: 0.035s



Images Courtesy of: Jean Jakoncic, AMX Beamline



### Conclusion

- Computer Vision provides:
  - Center Samples in Goniostat (ABBIX, IXS, etc.)
  - Automated Robotic Mounting and Sample Detection (AMX)
  - Assist in alignments of samples, crystals, and beams
  - Discovers and reports information about objects within an image
  - Prevent potential problems by alerting users of anomalies
- With OpenCV 3.1.0 and the Intel IPP Library, all CV functions run at optimized speeds, providing the best computational results currently available.

### Future Plans - XPD

- XPD X-Ray Diffraction
   Scoring Analysis:
  - Discover Diffraction Circles
  - Integrate Intensities
  - Count Number of Circles
  - Count Total
     Diffraction in each
     Frame



Images Courtesy of: Sanjit Ghose, XPD Beamline