M1C03 Lecture 20

Union, Intersection, Complement, and Cartesian Product

Jeremy Lane

Nov 1, 2021

Announcement(s)

- Assignment 3 due Friday.
- Quiz 3 due Friday.

Overview

Proving two sets are equal.

De Morgan's laws for sets.

Cartesian product.

Reference: Lakins, 4.2.

Recap

Definition: $A \subseteq B$ if $(\forall x)(x \in A \implies x \in B)$.

Definition: A = B if $(\forall x)(x \in A \iff x \in B)$.

Note: A = B is equivalent to $A \subseteq B$ and $B \subseteq A$.

Definition: Let A and B be sets. The *union of* A *and* B is

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

Definition: Let A and B be sets. The *intersection of* A *and* B is

$$A\cap B=\{x\mid x\in A \text{ and } x\in B\}.$$

Definition: Let A and B be sets. The *complement of* A *in* B is

$$B-A=\{x\mid x\in B \text{ and } x\not\in A\}.$$

The *complement of* A (in the universe \mathcal{U}) is

$$\overline{A} = \mathcal{U} - A$$
.

An identity

Theorem

Let A and B be subsets of a universe $\mathcal U$. Then,

$$B-A=B\cap \overline{A}.$$

Proof "by double inclusion"

Proof.

Given two sets X and Y. Want to show X=Y.

Proof that $X \subseteq Y$: Fix x arbitrary and assume $x \in X$. We want to show $x \in Y$

Proof that $Y \subseteq X$: Fix x arbitrary and assume $x \in Y$. We want to show $x \in X$

Thus, since $X \subseteq Y$ and $Y \subseteq X$, we have shown that X = Y.

Rolling dice

Recall our example with one red die and one blue die from last week.

- a) Consider the set of rolls that are doubles and satisfy r+b=7. Describe rolls that are not in this set.
- b) Describe the set of rolls that are not doubles or satisfy $r+b \neq 7$.

de Morgan's laws

Theorem (Lakins, Theorem 4.2.6)

Let A and B be subsets of a universe \mathcal{U} .

$$\bullet \ \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

de Morgan's laws

de Morgan's laws

Cartesian product

Definition: Let A and B be sets. The *Cartesian product* of A and B is

$$A\times B=\{(a,b)\mid a\in A \text{ and } b\in B\}.$$