Name: Ting Jun Rui Student ID: A0179506W

Question 1. A point particle is moving in the xy-plane parameterized by φ is as follows:

$$x(\varphi) = a\varphi\cos\varphi, \qquad y(\varphi) = a\varphi\sin\varphi$$
 (1)

where a > 0 and $\varphi \ge 0$. Assume that the particle moves along the trajectory above with $\varphi(t) = \alpha t$ where α is a constant.

- (a) Calculate the Cartesian components fo the velocity \mathbf{v} , acceleration \mathbf{a} , the radius of curvature ρ and the radius of torsion $\sigma \equiv \frac{1}{\tau}$ as a function of time t.
- (b) Calculate the speed v as functions of time t.

Solution: (a)

(b)

Question 2. A particle is projected vertically upwards with speed u_0 and moves under uniform gravity in a medium that exerts a resistance force proportional to the square of its speed and in which the particle's terminal speed is V_{∞} .

- (a) Find the maximum height above the starting point attained by the particle and the time taken to reach that height.
- (b) Show also that the speed of the particle when it returns to its starting point is $\frac{u_0V_\infty}{\sqrt{u_0^2+V_\infty^2}}$.

Solution: (a)

(b)

Question 3. An electron of mass m and charge -e is moving under the combined influence of a uniform electric field $E_0\hat{\mathbf{e}}_y$ and a uniform magnetic field $B_0\hat{\mathbf{e}}_z$. Initially, the electron is at the origin and is moving with velocity $u_0\hat{\mathbf{e}}_x$. Find the trajectory, x(t), y(t), z(t), of the electron in its subsequent motion.

Remark: The general path is called a trochoid which becomes a cycloid in the special case. Cycloidal motion of motion of electrons is used in the magnetron vacuum tube which generates the microwaves in a microwave oven.

Solution:

Question 4. A small block of mass m glides under its own weight $\mathbf{W} = -mg\hat{\mathbf{e}}_z$ frictionless downward along a helical track

$$\mathbf{r}(t) = a\cos\phi(t)\hat{\mathbf{e}}_x + a\sin\phi(t)\hat{\mathbf{e}}_y + b\phi(t)\hat{\mathbf{e}}_z, \tag{2}$$

where a and b are positive constants. The block starts its motion with $\phi(0) = \phi_0$ and $\dot{\phi}(0) = 0$.

- (a) Derive a second order ordinary differential equation for $\phi(t)$ governing the dynamics of the block. Solve for $\phi(t)$ and calculate the magnitude of the velocity v(t) of the block as a function of time.
- (b) Calculate the magnitude of the force F(t) exerted on the block by the helical track as a function of time.

Solution: (a)

(b)