ВВЕДЕНИЕЕЕЕЕ

ВВЕДЕНИЕ

Рассмотрим симметрическую группу $S(\Omega)$ на множестве Ω из n элементов.

• Расстоянием между подстановками $f,g\in S(\Omega)$ называется величина

$$d(f,g) = |\{x \in \Omega \mid f(x) \neq g(x)\}|$$

ullet Расстоянием между подгруппами $G,G'\leq S(\Omega)$ назовем

$$d(G,G') = \min_{\substack{g \in G \setminus \{e\} \\ g' \in G' \setminus \{e\}}} d(g,g')$$

Утверждение

Пусть разложение в произведение независимых циклов $f,g\in S(\Omega)$ имеет вид:

$$f = (x_1, y_1)...(x_s, y_s)\tau_1...\tau_k,$$

$$g = (x_1, y_1)...(x_s, y_s)\sigma_1...\sigma_I,$$

где au_i, σ_j различные транспозиции.

Тогда

$$d(f,g) = n - 2s - |fix(f) \cap fix(g)|,$$

где

$$fix(\pi) = \{x \in \Omega \mid \pi(x) = x\}.$$

- ullet Далее будем рассматривать $\Omega = \mathbb{F}_{2^n}$
- Любой элемент поля $\alpha \in \mathbb{F}_{2^n}$ определяет биективное отображение

$$\tau_{\alpha} \colon \mathbb{F}_{2^{n}} \to \mathbb{F}_{2^{n}}$$

$$x \mapsto x + \alpha$$

• Множество таких отображений $T=\{ au_{lpha}\mid lpha\in \mathbb{F}_{2^n}\}$ образует подгруппу симметрической группы $S(\mathbb{F}_{2^n})$

В работе использовалась следующая комбинаторная характеризация дифференциальной равномерности:

Утверждение

Пусть $f \in S(\mathbb{F}_{2^n})$, T – группа сдвигов, определенная выше, а

$$G = f^{-1} \cdot T \cdot f = \{ f^{-1} \cdot t \cdot f | t \in T \}.$$

Тогда подстановка f является дифференциально δ -равномерной $\iff d(G,T)=2^n-\delta$

Утверждение

Пусть $G\cong T$ и d(G,T)=lpha. Тогда если π - транспозиция, то

$$\alpha + 4 \ge d(\pi^{-1} \cdot G \cdot \pi, T) \ge \alpha - 4$$

Т.е. дифференциальная равномерность не может изменится более чем на 4 при умножении на транспозицию. 1

¹Yu, Y., Wang, M., Li, Y.: Constructing Differentially 4 Uniform
Permutations from Known Ones. Chin. J. Electron. 22(3), 495–499 (201₃)

₃

- Рассмотрим $\pi \in S(\mathbb{F}_{2^n})$ и $G = \pi^{-1} \cdot T \cdot \pi$.
- Пусть $N = |\mathbb{F}_{2^n}|$, $G = \{g_1, \dots, g_{N-1}\}$, $T = \{t_1, \dots, t_{N-1}\}$.
- ullet Каждый элемент t_i раскладывается в произведение независимых транспозиций $t_i= au_1^i\dots au_{rac{N}{N}}^i.$
- ullet Зафиксируем некоторый элемент $g=\sigma_1\dots\sigma_{rac{N}{2}}\in G.$
- Определим множество $I(t_i,g) \stackrel{\mathsf{def}}{:=} t_i \cap g$.

Утверждение

Сложность построения множества $I(t_i,g)$ равна O(N) и $d(t_i,g)=N-2|I(t_i,g)|$

• Определим

$$I(g) \stackrel{\text{def}}{:=} \{I(t_i, g) \mid t_i \in T\},$$
 $D(g) \stackrel{\text{def}}{:=} (I(g), \max_{i \in I(g)} \{2 \cdot |i|\})$

Утверждение

Сложность построения D(g) равна $O(N^2)$.

• Определим множество $\Delta(G) \stackrel{\mathsf{def}}{:=} \{ D(g) \mid g \in G \}.$

Утверждение

Дифференциальная равномерность подстановки π равна

$$\delta = \max_{(d_1, d_2) \in \Delta(G)} \{d_2\}.$$

Сложность вычисления δ равна $O(N^3)$.

Сложность классического алгоритма $O(N^2)$...

Пусть $I(t_i,g)$ уже построено и $\sigma=(\alpha\beta)$ – некоторая транспозиция.

Тогда вычислить $I(t_i, \sigma^{-1}g\sigma)$ можно следующим образом:

- ullet Если $\sigma=\sigma_i$, то $I(t_i,g)=I(t_i,\sigma^{-1}g\sigma)$
- ullet Пусть $\sigma
 eq \sigma_i$. Тогда $\exists \sigma_s = (\alpha, \alpha'), \sigma_r = (\beta, \beta')$ в разложении g. Тогда

$$\sigma^{-1}g\sigma=\sigma_1...\sigma'_s...\sigma'_r...\sigma'_{\frac{N}{2}},$$
 где $\sigma'_s=(\beta,\alpha'),\sigma'_r=(\alpha,\beta').$

Таким образом $I(t_i, \sigma^{-1}g\sigma)$ получается из $I(t_i, g)$ удалением σ_s, σ_r (если они там есть) и добавлением σ'_s, σ'_r (при условии, что они есть в разложении t_i)

Утверждение

Сложность вычисления $I(t_i, \sigma^{-1}g\sigma)$ по известному $I(t_i, g)$ равна O(1).

Для вычисления множества $D(\sigma^{-1}g\sigma)$ по D(g)=(I(g),d) нужно:

- ullet Если $\sigma=\sigma_i$, то D(g) не изменится
- Найти сдвиги $t(\sigma_s), t(\sigma_r), t(\sigma_s'), t(\sigma_r')$ и пересчитать $I(t(\sigma_s), g), I(t(\sigma_r), g), I(t(\sigma_s'), g), I(t(\sigma_r'), g)$
- Обновить максимальное значение d.

Утверждение

Сложность вычисления $D(\sigma^{-1}g\sigma)$ по известному D(g) равна O(1).

Утверждение

Сложность вычисления $\Delta(\sigma^{-1}G\sigma)$ по известному $\Delta(G)$ равна O(N).

Подходы к построению подстановок с низкой дифф. равномерностью

Наиболее удачные подходы:

- Полный перебор транспозиций.
- Перебор образующих транспозиций.
- Перебор транспозиций, образованных элементами пересечения.

"Комбинированный" подход

После многочисленных экспериментов оказалось, что лучше всего справляется с задачей уменьшения дифференциальной равномерности "комбинированный" подход, который состоит из поочерёдного применения подходов с перебором образующих транспозиций и с перебором транспозиций, образованных элементами пересечения. Такой "комбинированный" подход позволяет стабильно снижать дифференциальную равномерность S-блока размерности 8 до значения 6.

ЭКСП

ВЫЧИСЛИТЕЛЬНЫЕ ЭКСПЕРИМЕНТЫ

Направления дальнейшего исследования

- Придумать и опробовать новые эвристики.
- Переписать код на более "быстрый" язык.
- Использовать более мощный компьютер для перебора.

Спасибо за внимание!