Design Philosophy of DARPA Internet Protocols

Baris Kasikci

Checkpoint

- By tonight
 - Email me with your group information (names, topics you are interested in)
 - Fill in https://goo.gl/forms/3QvYHQjlvwTWczFs1
 - I will finalize the presentation assignments after 8 PM today
- 9 People missed reviews
 - You can miss 4 without penalty
- Watch the conference talk example

Fundamental Goal

"The top level goal for the DARPA Internet Architecture was to develop an effective technique for **multiplexed** utilization of existing **interconnected** networks."

- Multiplexing (single channel used by many communicating parties)
 - Circuit switching versus packet switching
- Connecting multiple heterogeneous networks
 - Gateways are key

Secondary Goals

- 1. Internet communication must continue despite loss of networks or gateways.
- 2. The Internet must support **multiple types of communications** service.
- 3. The Internet architecture must accommodate a variety of networks.
- 4. The Internet architecture must permit **distributed management** of its resources.
- 5. The Internet architecture must be cost effective.
- The Internet architecture must permit host attachment with a low level of effort.
- 7. The resources used in the internet architecture must be accountable.

Datagrams

- Connectionless service
 - No state established ahead of time
- Key building block for switching
- UDP is an app-level interface to the datagram service of the Internet
- Building block for other protocols (TCP)

TCP vs. UDP

- TCP: Reliability (ssh, email)
- UDP: Loss is OK (video, voice)
- No QoS guarantees in the lower levels

Supporting Varieties of Networks

- How do you support a heterogeneous set of networks?
- How do you shield applications from the heterogeneity?

Fate Sharing

- Move state to the end point
 - Survivability
- OK to lose the state information of an entity if the entity is also lost
 - TCP state versus router state

Weaknesses, Strengths, Open Questions?

- Strengths
 - Simple idea of datagrams
 - Scalability
 - *Immense success of the Internet*
- Weaknesses
 - Narrow IP interface hurts innovation at the IP level
 - Hiding secrets may hurt efficiency
 - Can be overcome by not hiding power (e.g, <u>DPDK</u>)

End-to-End Arguments In System Design

Baris Kasikci

End to End Principle

- Placing functions at lower levels of a system may not be beneficial
 - Functions can be redundant at low levels
 - Low-level function placement may be costly
- A correct communication system can only be built with the help of the endpoints
 - Examples: Detecting crashes, delivering messages, sequencing messages, etc.

Low-Level Functionality

- The paper argues that low-level functionality is mainly a performance optimization
- When does it make sense to stick to the end-to-end argument?

Weaknesses, Strengths, Open Questions?

Discussion Point: Congestion Control

Is congestion control amenable to an end-to-end implementation?

- <u>Criticism</u> of the end-to-end principle
 - Some functions are better suited for lower-levels