Gib bei allen Rechnungen immer die Formel an, die du verwendest und was gegeben und gesucht ist.

Aufgabe 1:

Generationszeit – (Verdopplungszeit)

Die Zeit, in der sich bei exponentieller Zunahme die Ausgangsgröße verdoppelt. Der Wachstumsfaktor für diese Zeitspanne ist $\mathbf{a} = \mathbf{2}$.

Halbwertszeit T - Die Zeit, in der sich bei exponentieller Abnahme die Ausgangsgröße halbiert. Der Wachstumsfaktor für diese Zeitspanne ist $\mathbf{a} = \mathbf{0}, \mathbf{5}$.

n steht in diesem Fall für eine Zeiteinheit abhängig von der Halbwertszeit bzw. der Generationszeit.

Beispiel: Bei einer Halbwertszeit von 4 Stunden wären:
4 Stunden: n = 1 (eine Zeiteinheit)
8 Stunden: n =
1 Tag: n =
3 Tage: n =
1 Stunde: n =

Aufgabe 2:

Generationszeit

20 Minuten: n =

Die Anzahl von Milchsäurebakterien hat bei 37° eine Generationszeit von etwa 30 Minuten. Zu Beginn sind 100 Bakterien vorhanden.

Wie viele Bakterien sind nach 10 Minuten; 5,5 Stunden und nach einem Tag vorhanden?

Aufgabe 3:

Halbwertszeit

Radium hat eine Halbwertszeit von 10 Tagen. Zu Beginn der Messungen sind 300mg vorhanden. Wie viel mg Radium sind nach zwei Monaten (je 30 Tage) noch vorhanden?

Aufgabe 4:

Eine Bakterienkultur besteht zu Anfang aus 1 000 Bakterien. Die Generationszeit dieses Bakteriums beträgt 10 Stunden.

a)	Stelle die Anzahl der Bakterien nach n Stunden als Funktion dar.
b)	Stunden -> n = 1
	Stunden -> n =
	Stunden -> n =

- c) Wie viele Bakterien sind nach 20 Stunden vorhanden?
- d) Wie viele Bakterien sind nach 2 Stunden vorhanden?
- e) Wie viele Bakterien waren es 30 Stunden vor der Zählung?

Aufgabe 5:

Unter günstigen Bedingungen haben Bakterien eine Generationszeit von 20 min.

Um 17 Uhr wurden 7.864.320 Bakterien gezählt.

- a) Wie viele Bakterien waren es um 11 Uhr?
- b) Wie viele Bakterien waren es um 11.15 Uhr?

Aufgabe 6:

Escherichia-coli-Bakterien haben eine Generationszeit von 20 Minuten.

Berechne die Anzahl der E-coli-Bakterien nach 3 Stunden, wenn anfangs fünf Millionen Bakterien in einer Lösung vorhanden sind.

Aufgabe 7:

Ein radioaktiver Stoff hat eine Halbwertszeit von 20 Jahren. Im Moment sind 30 g vorhanden.

- a) Wie viel Gramm sind nach 120 Jahren vorhanden?
- b) Wie viel Gramm waren noch vor 4 Jahren vorhanden?