BITS – PILANI, K K BIRLA GOA CAMPUS

COURSE HANDOUT; 1ST SEMESTER 2017-18

Course Name: MECHANICS OSCILLATION & WAVES (MOW, PHY F111)

Course Number: PHY F 111

Instructor In Charge: Dr. T K Jha (B-106; VOIP: 177)

Team: Dr. G. Dar, Dr. Toby Joseph, Dr. V Sunilkumar, Dr. Ram Shanker Patel, Dr. T K Jha

Course Description: Mechanics is a mature science and is considered to be the backbone of pure & applied sciences. Starting with the evolution of the Universe to industrial growth in the present era, the physics is governed by their principles. We focus on understanding so that those underlying principles can be further applied to a variety of physical problems. The course is divided between the two paradigms i.e., Mechanics, Oscillation & Waves.

Textbook:

1) Introduction to Mechanics by Kleppner & Kolenkow.

2) Vibration & Waves by A P French

Consultancy Hours: TBA

Distribution of Lectures: MECHANICS

LECTURE NO.	TOPICS	CHAPTER/ SECTION NO SAMPLE PROBLEMS							
MODULE I: MECHANICS									
1	INTRODUCTION TO THE								
	COURSE								
2	REVIEW: NEWTONS LAWS	CHAP 1 – 4	1.17, 1.19,1.20						
			2.30, 2.33						
3	MOTION IN POLAR		4.25 - 4.30						
	COORDINATES								
4	ROCKET EQUATION	SECTION 3.5, 3.6							
5,6,7	ANGULAR MOMENTUM AND	6.4 - 6.7	6.2, 6.6, 6.9, 6.14, 6.18,						
	FIXED AXIS ROTATION		6.22, 6.32, 6.37, 6.41						
	MOMENT OF INERTIA								
	TENSOR								
8,9,10	RIGID BODY MOTION	7.1 - 7.6, Note 7.2	7.1, 7.4, 7.6, 7.11						
	A: Angular momentum & Torque, Example: 7.4: Rotating Skew Rod								

	B: Gyroscope			
11,12,13	NON INERTIAL SYSTEMS AND FICTITIOUS FORCES	8.1-8.5	8.1, 8.3, 8.4, 8.7, 8.11	
	equivalence principle, rotating systems, deflection: falling mass			
14,15,16	CENTRAL FORCE	9.1-9.6	9.3, 9.6, 9.8	
	Planetory Motion & Orbits			
	Central force motion, Equation of ellipse, planetory motion			
MODULE II: OSC	CILLATIONS & WAVES			
1,2,3	SIMPLE HARMONIC MOTION	CHAPTER 1-4		
	FREE, FORCES & DAMPED			
4,5	COUPLED OSCILLATORS	CHAPTER 5		
	What are coupled oscillators - examples; Uncoupling the equations & normal coordinates; Determine normal modes			
6	WAVE	CHAPTER 7		
	1-D Wave equation on a string			
	Traveling wave solutions			
7,8	Imposition of boundary conditions - stationary wave (normal mode) solutions for string tied at both ends, solutions for string forced at one end & tied at the other	CHAPTER 7		
	2-D wave equation on a stretched elastic sheet			
9,10,11	Fourier analysis	CHAPTER 6		
	Superposition of normal modes - Fourier series; Determining fourier coeffiecients of an oscillating string			
	Superposition of waves - beats, wave pulses; Dispersion - phase & group velocity			
12,13	BOUNDARY EFFECTS & INTERFERENCE	CHAPTER 8		

EVALUATION COMPONENTS

EXAMS	FORMAT	MARKS	WEIGHT (%)	DATE	TIME
QUIZ I	CLOSED BOOK	30	10	SEPTEMBER	30 Min
QUIZ II	CLOSED BOOK	30	10	OCTOBER	30 Min
MID-SEMESTER	OPEN BOOK	90	30	OCTOBER	90 Min
COMPREHENSIVE	OPEN BOOK	135	45	DECEMBER	180 Min
ATTENDANCE	TUTORIAL	15	5		5.5 hrs
TOTAL		300	100		

Make up Policy: Only for valid and medical reasons with proper documentation.

IC

(T K Jha)

Department of Physics

BITS Pilani K K Birla Goa Campus