Flight delay prediction in JFK airport using machine learning classifiers

Objectiu del projecte

Predir el delay dels vols que surten de New York

	dep_delay	is_delay
0	-1	0
1	-7	0
2	40	1
3	-2	0
4	-4	0
28813	2	0
28814	2	0
28815	283	1
28816	5	0
28817	-1	0

Per tant, és un problema de classificació binària:

{ X: 16 features, y: 1 binary target }

Attribute	Description	Туре
month	Month of the year (1-12)	int64
day_of_month	Day of the month (1-31)	int64
day_of_week	Day of the week (1-7)	int64
op_unique_carrier	Airline code (9 total)	object
tail_num	Aircraft registration (plate number) (2092 total)	object
dest	Destination airport IATA code (3 letters) (65 total)	object
dep_delay	Departure delay with respect to scheduled time (min)	int64
crs_elapsed_time	Elapsed time of flight (from take-off to landing) (min)	int64
distance	Flight distance (miles)	int64
crs_dep_m	Scheduled departure time (min of the day)	int64
dep_time_m	Actual departure time (min of the day)	int64
crs_arr_m	Scheduled arrival time (min of the day)	int64

temperature	Airport temperature (°F)	int64
dew_point	Dew point temperature (°F)	int64
humidity	Humidity level (0-100%)	int64
wind	Wind direction (16 cardinal directions + CALM + VAR) (18 total)	object
wind_speed	Wind speed (mph)	int64
wind_gust	Wind gust (brief increase in the speed of the wind) (mph)	int64
pressure	Atmospheric pressure (inHg)	float64
condition	Sky condition (clouds, rain, fog, snow, etc.) (25 total)	object
sch_dep	Number of flights scheduled for departure	int64
sch_arr	Number of flights scheduled for arrival	int64
taxi_out	Taxi out time (min)	int64
		<u>"</u>

An imbalanced dataset

Exploratory Data Analysis (EDA)

- Dataset molt net, només 2 files amb NaNs → ELIMINADES
- Drop de la columna 'tail_num' (matrícula de l'aeronau)
- Per mostrar els resultats de l'EDA, s'ha fet un dashboard:

https://jfkdepartures.herokuapp.com

Comparació dels classificadors

```
models = {
    "KNN" : KNeighborsClassifier(),
    "SVM" : svm.SVC(),
    "Decision Tree" : DecisionTreeClassifier(),
    "Random Forest" : RandomForestClassifier(),
    "Gaussian N-B" : GaussianNB(),
    "Logistic Regression" : LogisticRegression(),
    "Gradient Boosting" : GradientBoostingClassifier()
}
```

$$egin{aligned} Accuracy &= rac{TP + TN}{TP + TN + FP + FN} \end{aligned} \qquad egin{aligned} Recall &= rac{TP}{TP + FN} \end{aligned} \qquad F1 ext{-}score &= rac{2 imes Precision imes Recall}{Precision + Recall} \end{aligned}$$

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
def get results(model name, model, X train, X test, y train, y test):
   model.fit(X train, y train)
   y pred = model.predict(X test)
    # Get the confusion matrix
    cm = confusion_matrix(y_test, y_pred)
    print(f"{model name} results:")
    cm display = ConfusionMatrixDisplay(cm).plot()
    plt.show()
    # Get the scores
    acc = accuracy score(y test, y pred)
    pre = precision score(y test, y pred)
    rec = recall score(y test, y pred)
    f1 = f1 score(y test, y pred)
    # Print the results
    print(f"- Accuracy score: {acc:.4f}")
    print(f"- Precision score: {pre:.4f}")
    print(f"- Recall score: {rec:.4f}")
    print(f"- F1 score: {f1:.4f}")
    print()
    return acc, pre, rec, f1
```

KNN results:

- Accuracy score: 0.9325 - Precision score: 0.9739

- Recall score: 0.5425

- F1 score: 0.6968

Scores comparison for each classifier

Synthetic Minority Oversampling Technique (SMOTE)

```
Counter({0: 19858, 1: 3196})
Class 0 elements: 86.14 %
Class 1 elements: 13.86 %
from imblearn.over sampling import SMOTE
oversample = SMOTE(random state=42)
X train over, y train over = oversample.fit resample(X train, y train)
counter = Counter(y train over)
print(counter)
print(f"Class 0 elements: {counter[0]/(counter[0]+counter[1])*100:.2f} %")
print(f"Class 1 elements: {counter[1]/(counter[0]+counter[1])*100:.2f} %")
Counter({0: 19858, 1: 19858})
Class 0 elements: 50.00 %
Class 1 elements: 50.00 %
```


F1 Score comparison: original vs oversampled dataset

Decision tree tuning

train_test_split(X, y, stratify=y, test_size=0.2, random_state=42)

clf_tree = DecisionTreeClassifier(class_weight='balanced', random_state=42) Original Decision Tree results: Decision Tree results: nsamples 4000 4000 4841 99 4911 49 0 $n_{classes} \cdot \text{np.bincount}(y)$ 3000 - 3000 Fue label 2000 - 2000 93 63 Adjust weight - 1000 - 1000 inversely prop. to class frequency Predicted label Predicted label - Accuracy score: 0.9667 - Accuracy score: 0.9806 Precision score: 0.9380 - Precision score: 0.8807 - Recall score: 0.8871 - Recall score: 0.9216 - F1 score: 0.8839 - F1 score: 0.9297

Grid Search CV

```
max_depth = [25, 26, 27, 28, 29, 30, None]
min samples split = [4, 5, 6]
min samples leaf = [2, 3]
max features = ['auto', 'sqrt', None]
param grid = {'max depth': max depth,
               'min samples split': min samples split,
               'min samples leaf': min samples leaf,
               'max features': max features}
tree grid = GridSearchCV(estimator = clf tree,
                          param grid = param grid,
                          cv = 5.
                           scoring = ['f1', 'accuracy', 'precision', 'recall'],
                          refit = 'f1'.
                          verbose = 3.
                          n \text{ jobs} = -1)
tree grid.fit(X train, y train)
tree grid.best_params_
Last executed at 2022-05-12 12:23:04 in 10ms
{ 'max depth': 25,
 'max features': None,
 'min samples leaf': 2,
 'min samples split': 5}
```


- Precision score: 0.9325
- Recall score: 0.9453
- F1 score: 0.9389

Misclassified flights

Conclusions

- Hi ha algoritmes que "toleren" millor els datasets desbalancejats.
- El mateix passa quan s'estandaritzen les dades i es fa un oversampling, per alguns algoritmes és beneficiós i per altres no.
- Per aquest problema en concret, s'han obtingut els millors scores fent servir un Decision Tree, classificant de forma correcta el 98% dels vols.

Gràcies per la vostra atenció!

Si teniu algun dubte... 🙄