Fibonacci Numbers and Binet's Formula

Roadmap (Überblick)

■ The generalized Fibonacci equation

■ 0. A remark on the historical development

In his *Liber abaci* (1202), Leonardo of Pisa (called *Fibonacci*, ca. 1170 - 1250) formulated a problem giving rise to the following famous sequence of numbers now called the "Fibonacci" numbers:

Its most important property is that every member of the sequence is the sum of its two immediate predecessors (except for the initial values):

$$F_{k+2} = F_{k+1} + F_k$$

It took several centuries until J. P. M. Binet (1786-1856) finally presented the following formula for the Fibonacci numbers:

$$F_k = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^k - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^k$$

■ 1. Generalisation

$$y_{k+2} + a_1 \cdot y_{k+1} + a_0 \cdot y_k = 0$$
 (* GFE *)

This equation clearly generalizes the Fibonacci equation; we will, therefore, call it the *generalized Fibonacci equation* (GFE) for short.

■ 2. Applying standard methodology: Introducing new parameters (in this case: a "tuning" parameter)

Due to this result we have to handle the decomposition in a slightly more subtle way by introducing an extra parameter called t (for "tuning") in the following way.

$$y_{k+2} + (a_1 + t) \cdot y_{k+1} = 0$$

 $-t \cdot y_{k+1} + a_0 \cdot y_k = 0$

GFE can be thought of as being the sum of these first-order equations. If, by choosing a suitable "tuning" value for *t*, we can make these two first-order equations identical, then they will have the same closed form representations and we can try to combine their individual solutions into a solution for the generalized Fibonacci equation.

■ 3. The tuning process

Written in the "standard" form for geometric sequences the last two first-order equations read

$$y_{k+2} = -(a_1 + t) \cdot y_{k+1}$$
 (* GS-1 *)

$$y_{k+1} = \frac{a_0}{t} \cdot y_k$$
 (* GS-2 *)

These difference equations for geometric sequences are identical if their coefficients $-(a_1 + t)$ and $\frac{a_0}{t}$ are equal. (The "index-shift" by 1 is irrelevant, since the equations are valid for all values of k). A necessary condition for equality, hence, is

$$-(a_1+t)=\frac{a_0}{t}$$

■ 4. The characteristic polynomial

$$t^2 + a_1 \cdot t + a_0 = 0$$

Thus, the above geometric sequences are identical if the "tuning" parameter t satisfies the so-called *characteristic* equation of (* GFE *):

$$x^2 + a_1 \cdot x + a_0 = 0$$

We finally obtain the tuning parameters

$$t_1 = \frac{-a_1 + \sqrt{a_1^2 - 4a_0}}{2}$$

$$t_2 = \frac{-a_1 - \sqrt{a_1^2 - 4a_0}}{2}$$

■ 5. Solutions - by applying the results on geometric series

Thus, the geometric sequences adding up to (* GFE *) are

1. By using the root t_1 :

$$y_{k+2} = -\left(a_1 + \frac{-a_1 + \sqrt{a_1^2 - 4a_0}}{2}\right) \cdot y_{k+1}$$

$$y_{k+1} = \frac{a_0}{\frac{-a_1 + \sqrt{a_1^2 - 4a_0}}{2}} \cdot y_k$$

2. By using the root t_2 :

$$y_{k+2} = -\left(a_1 + \frac{-a_1 - \sqrt{a_1^2 - 4a_0}}{2}\right) \cdot y_{k+1}$$

$$y_{k+1} = \frac{a_0}{\frac{-a_1 - \sqrt{a_1^2 - 4a_0}}{2}} \cdot y_k$$

■ 6. Vieta's formulae

The tuning parameters t_1 and t_2 , being the roots of the quadratic equation

$$x^2 + a_1 \cdot x + a_0 = 0$$

must satisfy Vieta's equations:

$$t_1 + t_2 = -a_1$$
 and $t_1 \cdot t_2 = a_0$

Thus, by substituting either t_1 or t_2 for t and applying Vieta's formulae we can rewrite (* GS-1 *) and (GS-2 *) in the following way:

$$y_{k+2} = t_1 \cdot y_{k+1}$$
 (* GS-1.1 *)

$$y_{k+2} = t_2 \cdot y_{k+1}$$
 (* GS-1.2 *)

$$y_{k+1} = t_1 \cdot y_k$$
 (* GS-2.1 *)

$$y_{k+1} = t_2 \cdot y_k$$
 (* GS-2.2 *)

By pure combinatorics, substituting two roots into two equations formally gives four cases, but by algebra (Vieta) these melt down to two essentially different cases.

■ 7. Results

Theorem (solutions of the generalized Fibonacci equation)

(cf. [DZ 1989], Satz 13.1, page 90)

The generalized Fibonacci equation

$$y_{k+2} + a_1 \cdot y_{k+1} + a_0 \cdot y_k = 0$$

has the following "solutions" (i.e. closed form representations):

(a1)
$$y_k = \left(\frac{-a_1 + \sqrt{a_1^2 - 4a_0}}{2}\right)^k$$

and

(a2)
$$y_k = \left(\frac{-a_1 - \sqrt{a_1^2 - 4a_0}}{2}\right)^k$$

■ 8. Obtaining more solutions

Theorem (combining solutions)

If the sequences

 $(u_k)_{k=0,...,\infty}$ and $(v_k)_{k=0,...,\infty}$

are solutions of the generalized Fibonacci equation

$$y_{k+2} + a_1 \cdot y_{k+1} + a_0 \cdot y_k = 0$$

then their "sum"

(a1) $(u_k)_{k=0,...,\infty} \oplus (v_k)_{k=0,...,\infty} := (u_k + v_k)_{k=0,...,\infty}$

and for any real number $\,C\,$ the "scalar multiple"

(a2) $C \odot (u_k)_{k=0,\dots,\infty} := (C \cdot u_k)_{k=0,\dots,\infty}$

also are solutions of the generalized Fibonacci equation.

Henceforth we will use the simpler operation symbols + and \cdot instead of \oplus and \odot .

Corollary (linear combination of solutions):

If the sequences

$$(u_k)_{k=0,...,\infty}$$
 and $(v_k)_{k=0,...,\infty}$

are solutions of the generalized Fibonacci equation

$$y_{k+2} + a_1 \cdot y_{k+1} + a_0 \cdot y_k = 0$$

then for any real numbers C_1 and C_2 the "linear combination"

$$C_1 \cdot (u_k)_{k=0,\dots,\infty} + C_2 \cdot (v_k)_{k=0,\dots,\infty}$$

also are solutions of the generalized Fibonacci equation.

Corollary

The generalized Fibonacci equation

$$y_{k+2} + a_1 \cdot y_{k+1} + a_0 \cdot y_k = 0$$

has the following "solutions" (i.e. closed form representations):

$$C_1 \cdot \left(\frac{-a_1 + \sqrt{a_1^2 - 4a_0}}{2}\right)^k + C_2 \cdot \left(\frac{-a_1 - \sqrt{a_1^2 - 4a_0}}{2}\right)^k$$
 (* S-GFE *)

where C_1 and C_2 are arbitrary real (or complex) numbers.

In other words: The set of all solutions of the generalized Fibonacci equation is a *vector space* over a suitable scalar field (usually the field the coefficients are taken from); cf. [DZ 1989], Satz 14.1, page 91.

Furthermore, it is not difficult to see that the dimension of this vector space is 2 and that, in case the solutions t_1 and t_2 of GFE's characteristic equation do not coincide, then the sequences $(t_1)^k$ and $(t_2)^k$ are a basis of this vector space.

■ 9. Initial values

The above results were valid independent of any initial values y_0 and y_1 of the GFE. Let us now assume that the solution (* S-GFE *), additionally, is to satisfy these initial values. Then for k = 0 and k = 1 the following two linear equations will have to be satisfied by C_1 and C_2 :

Corollary

The initial values of the generalized Fibonacci equation

$$y_{k+2} + a_1 \cdot y_{k+1} + a_0 \cdot y_k = 0$$

can be expressed in the following way:

$$C_{1} \cdot \left(\frac{-a_{1} + \sqrt{a_{1}^{2} - 4 a_{0}}}{2}\right)^{0} + C_{2} \cdot \left(\frac{-a_{1} - \sqrt{a_{1}^{2} - 4 a_{0}}}{2}\right)^{0} = y_{0}$$
 (* LE-1 *)

$$C_{1} \cdot \left(\frac{-a_{1} + \sqrt{a_{1}^{2} - 4 a_{0}}}{2}\right)^{1} + C_{2} \cdot \left(\frac{-a_{1} - \sqrt{a_{1}^{2} - 4 a_{0}}}{2}\right)^{1} = y_{1}$$
 (* LE-2 *)

i.e.

$$C_1 + C_2 = y_0$$

$$C_1 \cdot \frac{-a_1 + \sqrt{a_1^2 - 4a_0}}{2} + C_2 \cdot \frac{-a_1 - \sqrt{a_1^2 - 4a_0}}{2} = y_1$$

Notwithstanding the algebraic complexity of these equations, they are two simple linear equations in the two unknowns C_1 and C_2 which can be solved by straightforward algebraic procedures.

Exercise: Show that

$$C_1 = -\frac{-a_1 y_0 - \sqrt{-4 a_0 + a_1^2} y_0 - 2 y_1}{2 \sqrt{-4 a_0 + a_1^2}}$$

and

$$C_2 = -\frac{a_1 y_0 - \sqrt{-4 a_0 + a_1^2} y_0 + 2 y_1}{2 \sqrt{-4 a_0 + a_1^2}}$$

are solutions of (* LE-1 *) and (* LE-2 *).

■ 10. Applying the results to the sequence of the standard Fibonacci numbers - Binet's formula

The sequence of the standard Fibonacci numbers, equivalently either starting with index 0 or index 1 is given by

$$y_0$$
 y_1 y_2 y_3 y_4 y_5 y_6 y_7 ... 0 1 1 2 3 5 8 13 ...

Specializing from GFE, its parameters are:

$$a_1 = -1$$
 and $a_0 = -1$.

Hence, the homogeneous equation

$$y_{k+2} - y_{k+1} - y_k = 0$$

has the "general" solution

$$y_k = C_1 \cdot \left(\frac{-a_1 + \sqrt{a_1^2 - 4a_0}}{2}\right)^k + C_2 \cdot \left(\frac{-a_1 - \sqrt{a_1^2 - 4a_0}}{2}\right)^k$$

$$y_{k} = C_{1} \cdot \left(\frac{1+\sqrt{5}}{2}\right)^{k} + C_{2} \cdot \left(\frac{1-\sqrt{5}}{2}\right)^{k}$$

$$\left\{\left\{C_{1} \rightarrow -\frac{-a_{1} y_{0} - \sqrt{-4 a_{0} + a_{1}^{2}} y_{0} - 2 y_{1}}{2 \sqrt{-4 a_{0} + a_{1}^{2}}}, C_{2} \rightarrow -\frac{a_{1} y_{0} - \sqrt{-4 a_{0} + a_{1}^{2}} y_{0} + 2 y_{1}}{2 \sqrt{-4 a_{0} + a_{1}^{2}}}\right\}\right\}$$

$$C_{1} = -\frac{-a_{1} y_{0} - \sqrt{-4 a_{0} + a_{1}^{2}} y_{0} - 2 y_{1}}{2 \sqrt{-4 a_{0} + a_{1}^{2}}} /. \left\{a_{0} \rightarrow -1, a_{1} \rightarrow -1, y_{0} \rightarrow 0, y_{1} \rightarrow 1\right\}$$

$$\frac{1}{\sqrt{5}}$$

$$C_{2} = -\frac{a_{1} y_{0} - \sqrt{-4 a_{0} + a_{1}^{2}} y_{0} + 2 y_{1}}{2 \sqrt{-4 a_{0} + a_{1}^{2}}} /. \left\{a_{0} \rightarrow -1, a_{1} \rightarrow -1, y_{0} \rightarrow 0, y_{1} \rightarrow 1\right\}$$

$$-\frac{1}{\sqrt{5}}$$

■ 11. Binet's Formula

Theorem (Binet)

The Fibonacci equation

$$y_{k+2} = y_{k+1} + y_k$$

has the following "solution" (i.e. closed form representations):

$$y_k = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^k - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^k$$

■ 12. Check

$$Table \left[\text{Simplify} \left[\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^k - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^k \right], \left\{ k, 0, 30 \right\} \right]$$

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040}