Analysis – Exercise Problems and Solutions

Real and Complex Numbers

- 1. If r is a nonzero rational number and x is irrational, prove that r + x and rx are irrational.
- 2. Convert $0.456123123123\cdots$ into the form of m/n where m and n are co-prime integers. Why does the presence of a repeating block in the decimal form imply that the number is rational?
- 3. Give an example of two irrational numbers whose product is rational. Is it true that for every irrational number x there exists another irrational number y such that xy is rational?
- 4. Let p denote a prime number. Prove that \sqrt{p} is irrational.
- 5. Prove that there is no rational number whose square is 12.
- 6. Prove that for every $n \in \mathbb{N}$, $\sqrt{n+1} + \sqrt{n-1}$ is irrational.
- 7. Prove that the least upper bound of a set in an ordered set is unique.
- 8. Prove that a nonempty finite set in an ordered set contains its supremum and infimum.
- 9. Let $A \subset \mathbb{R}$ and A nonempty, and denote $-A = \{-x \mid x \in A\}$. Prove that $\inf A = -\sup(-A)$.
- 10. Find the supremum and infimum of set $\{x \in \mathbb{R} \mid 3x^2 + 3 < 10x\}$. Do they belong to this set?
- 11. Find the supremum and infimum of set $\{1/n \mid n \in \mathbb{N}\}$. Do they belong to this set?
- 13. Let $A, B \subset \mathbb{R}$ and $C = A \cap B$, how are the numbers inf A, inf B, and inf C related? If $C = A \cup B$, how are the numbers $\sup A$, $\sup B$, and $\sup C$ related?
- 14. Let $A \subset \mathbb{R}$, and $A^2 = \{x^2 \mid x \in A\}$. Is there any relation between $\sup A$ and $\sup(A^2)$?
- 15. Let $a, b \in \mathbb{R}$ and b-a>1. Prove that there exists at least one integer $c\in\mathbb{N}$ such that
- 16. Prove that there exists a real number x > 0 such that $x^3 = 5$.
- 17. Under what condition is $\sup A$ not a limit point of the set A?
- 18. Prove that no order can be defined in the set of complex numbers to turn it into an ordered field.
- 19. Suppose z = (a, b), w = (c, d), where $a, b, c, d \in \mathbb{R}$. Define z < w if a < c and also if a = c but b < d. Prove that this turns the set of complex numbers into an ordered set (this is called the dictionary order or lexicographic order). Does this set have the least-upper-bound property?
- 20. Let $z_i \in \mathbb{C}$ for $i = 1, 2, \dots, n$. Prove that $|\sum_i z_i| \leq \sum_i |z_i|$.
- 21. Prove that $||z| |w|| \le |z| + |w|$ for all $z, w \in \mathbb{C}$.
- 22. Suppose that $z \in \mathbb{C}$ and |z| = 1. Compute $|1 + z|^2 + |1 z|^2$.
- 23. Prove that $|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} \mathbf{y}|^2 = 2(|\mathbf{x}|^2 + |\mathbf{y}|^2)$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- 24. If $n \ge 2$ and $\mathbf{x} \in \mathbb{R}^n$, prove that there exists $\mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{y} \ne \mathbf{0}$ but $\mathbf{x} \cdot \mathbf{y} = 0$. Is this also true for n = 1?
- 25. Suppose that $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Find $\mathbf{c} \in \mathbb{R}^n$ and r > 0 such that $|\mathbf{x} \mathbf{a}| = 2|\mathbf{x} \mathbf{b}|$ if and only if $|\mathbf{x} \mathbf{c}| = r$.

- 1. Give the definition in formula of the sequence $\{2, 1, 4, 1, 6, 1, 8, 1, \cdots\}$.
- 2. Find $x \in \mathbb{R}$ and an $N \in \mathbb{N}$ such that $|x_n x| \le 10^{-3}$ for all $n \le N$:
 - (a) $x_n = \frac{2}{\sqrt{n+1}}$.
 - (b) $x_n = 1 \frac{1}{n^3}$.
 - (c) $x_n = 2 + 2^{-n}$.
- 3. Prove convergence or divergence of the sequences defined as follows.
 - (a) $x_n = \frac{2n^2 + 5n 6}{n^3}$.
 - (b) $x_n = \frac{3n^5}{6n+11}$.
 - (c) $x_n = \frac{n\sqrt{n+2}+1}{n^2+4}$.
 - (d) $x_n = \sqrt{n}(\sqrt{n+1} \sqrt{n}).$
- 4. Suppose that $x_n \in \mathbb{Z}$. Under what conditions does this sequence converge?
- 5. Show that the sequences $\{x_n\}$ and $\{y_n\}$ where $y_n = x_{n+100}$ for all $n \in \mathbb{N}$ are either both convergent or both divergent.
- 6. Let $x_1 = 1$ and $x_{n+1} = \sqrt{x_n + 1}$. List the first few terms of this sequence. Prove that the sequence converges to $(1 + \sqrt{5})/2$.
- 7. Determine which of the followings about numerical sequences are true and justify your answer.
 - (a) If $\{x_n\}$ is unbounded, then either $\lim_{n\to\infty} x_n = \infty$ or $\lim_{n\to\infty} x_n = -\infty$.
 - (b) If $\{x_n\}$ is unbounded, then $\lim_{n\to\infty} |x_n| = \infty$.
 - (c) If $\{x_n\}$ and $\{y_n\}$ are both bounded, then so is $\{x_n + y_n\}$.
 - (d) If $\{x_n\}$ and $\{y_n\}$ are both unbounded, then so is $\{x_n + y_n\}$.
 - (e) If $\{x_n\}$ and $\{y_n\}$ are both bounded, then so is $\{x_ny_n\}$.
 - (f) If $\{x_n\}$ and $\{y_n\}$ are both unbounded, then so is $\{x_ny_n\}$.
- 8. Determine which of the followings about numerical sequences are true and justify your answer.
 - (a) If $\{x_n\}$ and $\{y_n\}$ are both divergent, then so is $\{x_n + y_n\}$.
 - (b) If $\{x_n\}$ and $\{y_n\}$ are both divergent, then so is $\{x_ny_n\}$.
 - (c) If $\{x_n\}$ and $\{x_n + y_n\}$ are both convergent, then so is $\{y_n\}$.
 - (d) If $\{x_n\}$ and $\{x_ny_n\}$ are both convergent, then so is $\{y_n\}$.
 - (e) If $\{x_n\}$ is convergent, then so is $\{x_n^2\}$.
 - (f) If $\{x_n\}$ is convergent, then so is $\{1/x_n\}$.
 - (g) If $\{x_n^2\}$ is convergent, then so is $\{x_n\}$.
- 9. Suppose that a sequence $\{x_n\}$ satisfies $|x_{n+1}-x_n|<2^{-n}$ for all $n\in\mathbb{N}$. Prove that $\{x_n\}$ is Cauchy. Is this result true under the condition $|x_{n+1}-x_n|<\frac{1}{n}$?
- 10. Let $x_1 = 1$ and $x_{n+1} = (x_n + 1)/3$ for all $n \in \mathbb{N}$. Find the first five terms in this sequence. Use induction to show that $x_n > 1/2$ for all $n \in \mathbb{N}$. Prove that this sequence is non-increasing, convergent, and find the limit.
- 11. Let $x_1 = 1$ and $x_{n+1} = (1 \frac{1}{4n^2})x_n$ for $n \in \mathbb{N}$. Determine if the sequence converges.
- 12. Which statements are true?
 - (a) a sequence is convergent if and only if all its subsequences are convergent.

- (b) a sequence is bounded if and only if all its subsequences are bounded.
- (c) a sequence is monotone if and only if all its subsequences are monotone.
- (d) a sequence is divergent if and only if all its subsequences are divergent.
- 13. The sequence $\{x_n\}$ has the property that $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, such that $|x_{n+1} x_n| < \epsilon$ for all $n \geq N$. Is this sequence necessarily a Cauchy sequence?
- 14. Prove that the convergence of $\{x_n\}$ implies the convergence of $\{|x_n|\}$. Is the converse true?
- 15. Calculate $\lim_{n\to\infty} (\sqrt{n^2+n}-n)$.
- 16. Let $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2 + \sqrt{x_n}}$ for all $n \in \mathbb{N}$. Prove that $\{x_n\}$ converges and $x_n < 2$ for all $n \in \mathbb{N}$.
- 17. Find the upper and lower limits of the sequence $\{x_n\}$ defined by $x_0=0,\ x_{2m}=x_{2m-1}/2,$ and $x_{2m+1}=\frac{1}{2}+x_{2m}$ for all $m\in\mathbb{N}$.
- 18. For any two real numerical sequences $\{x_n\}, \{y_n\}$, prove that

$$\lim_{n \to \infty} \sup (x_n + y_n) \le \lim_{n \to \infty} \sup x_n + \lim_{n \to \infty} \sup y_n$$

- 19. Prove that the convergence of $\sum_{n=1}^{\infty} a_n$ implies the convergence of $\sum_{n=1}^{\infty} \sqrt{a_n}/n$ if $a_n \ge 0$.
- 20. If $\sum_{n=1}^{\infty} a_n$ converges and $\{b_n\}$ is monotonic and bounded, prove that $\sum_{n=1}^{\infty} a_n b_n$ converges.
- 21. Suppose that $\{x_n\}$ and $\{y_n\}$ are Cauchy. Prove that $\{|x_n-y_n|\}$ is Cauchy.

Basic Topology

- 1. Find all the interior points, isolated points, accumation points and boundary points for the following sets:
 - (a) $\mathbb{N}, \mathbb{Q}, \mathbb{R}$.
 - (b) (a,b), (a,b] and [a,b] as intervals in \mathbb{R} .
 - (c) $\mathbb{R} \setminus \mathbb{N}$.
 - (d) $\mathbb{R} \setminus \mathbb{Q}$.
- 2. Give an example of:
 - (a) A set with no accumulation points.
 - (b) A set with infinitely many accumulation points, none of which belong to the set.
 - (c) A set that contains some, but not all, of its accumulation points.
- 3. Give an example of a nonempty set with the following properties or explain why no such set can exist:
 - (a) a set with no accumulation points and no isolated points.
 - (b) a set with no interior points and no isolated points.
 - (c) a set with no boundary points and no isolated points.
- 4. Is every interior point of a set A an accumulation point? Is every accumulation point of a set A an interior point?
- 5. Let x be an interior point of set A and suppose $\{x_n\}$ is a sequence of points, not necessarily in A, but converging to x. Show that there exists an integer N such that $x_n \in A$ for all $n \geq N$.
- 6. Prove that a set F is closed if and only if F contains all its boundary points.

- 7. Find the interior and boundary of each of the sets $\{1/\sqrt{n}:n\in\mathbb{N}\}$ and $\{x\in\mathbb{Q}:0< x^2<2\}$.
- 8. Is the set of irrational real numbers countable? Justify your claim.
- 9. Construct a bounded set of real numbers with exactly three limit points.
- 10. Let E' be the set of all limit points of a set E. Prove that E' is closed. Prove that E and $\overline{E} := E \cup E'$ have the same limit points. Do E and E' always have the same limit points?
- 11. Let A_1, A_2, \cdots be subsets of a metric space. (a) If $B_n = \bigcup_{i=1}^n A_i$, prove that $\overline{B_n} = \bigcup_{i=1}^n \overline{A_i}$, for $n = 1, 2, \cdots$. (a) If $B = \bigcup_{i=1}^{\infty} A_i$, prove that $\bigcup_{i=1}^{\infty} \overline{A_i} \subset \overline{B}$. Show, by an example, that this inclusion can be proper.
- 12. Is every point of every open set $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2 .
- 13. Let X be an infinity set. For $p, q \in X$, define d(p, q) = 1 if $p \neq q$ and 0 otherwise. Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed? Which are compact?
- 14. For $x, y \in \mathbb{R}$, define $d_1(x, y) = (x y)^2$, $d_2(x, y) = \sqrt{|x y|}$, $d_3(x, y) = |x^2 y^2|$, $d_4(x, y) = |x 2y|$, and $d_5(x, y) = \frac{|x y|}{1 + |x y|}$. Determine, for each of these, whether it is a metric or not.
- 15. Prove directly from the definition that the set $E := \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ is compact.
- 16. Construct a compact set of real numbers whose limit points form a countable set.
- 17. Give an example of an open cover of the segment (0,1) which has no finite sub-cover.
- 18. Regard \mathbb{Q} , the set of all rational numbers, as a metric space with d(x,y) = |x-y|. Let E be the set of all $x \in \mathbb{Q}$ such that $2 < x^2 < 3$. Show that E is closed and bounded in \mathbb{Q} , but that E is not compact. Is E open in \mathbb{Q} ?

Functions and Continuity

1. Suppose f is a real function defined on \mathbb{R} which satisfies

$$\lim_{h \to 0} (f(x+h) - f(x-h)) = 0$$

for every $x \in \mathbb{R}$. Does this imply that f is continuous?

- 2. If f is a continuous mapping of a metric space X into a metric space Y, prove that $f(\overline{E}) \subset \overline{f(E)}$ for every set $E \subset X$. Show, by an example, that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$.
- 3. Let f be a continuous real function on a metric space X. Let $Z(f) := \{x \in X : f(x) = 0\}$. Prove that Z(f) is closed in X.
- 4. Let f and g be continuous mappings of a metric space X into a metric space Y, and let E be a dense set in X. Prove that f(E) is dense in f(X). If g(p) = f(p) for all $p \in E$, prove that g(p) = f(p) for all $p \in X$.
- 5. If f is defined on E, the graph of f is the set $\{(x, f(x)) : x \in E\}$. In particular, if E is a set of real numbers, and f is real-valued, the graph of f is a subset of the plane. Suppose E is compact, prove that f is continuous on E if and only if its graph is compact.
- 6. Let $E \subset X$ and if f is a function defined on X, the restriction of f to E is the function g whose domain is E such that g(p) = f(p) for all $p \in E$. Define f and g on \mathbb{R}^2 by: f(0,0) = g(0,0) = 0, $f(x,y) = xy^2/(x^2+y^4)$, $g(x,y) = xy^2/(x^2+y^6)$ if $(x,y) \neq (0,0)$. Prove that f is bounded on \mathbb{R}^2 , that g is unbounded in every neighborhood of (0,0), and that f is not continuous at (0,0); nevertheless, the restrictions of both f and g to every straight line in \mathbb{R}^2 is continuous.

- 7. Let f be a real uniformly continuous functions on the bounded set E in \mathbb{R} . Prove that f is bounded on E. Show that the conclusion is false if boundedness of E is omitted from the hypothesis.
- 8. Show that the requirement in the definition of uniform continuity can be rephrased as follows, in terms of diameters of sets: To every $\epsilon > 0$, there exists a $\delta > 0$ such that $\operatorname{diam}(f(E)) < \epsilon$ for all $E \subset X$ with $\operatorname{diam}(E) < \delta$, where $\operatorname{diam}(E) := \sup\{d(x,y) : x,y \in E\}$ is the diameter of a set E.
- 9. Suppose f is a uniformly continuous mapping of a metric space (X, d) into a metric space (Y, ρ) , and prove that $\{f(x_n)\}$ is a Cauchy sequence in Y for every Cauchy sequence $\{x_n\}$ in X.
- 10. Prove that a uniformly continuous function of a uniformly continuously function is uniformly continuous
- 11. Let I = [0,1] be the closed unit interval in \mathbb{R} . Suppose f is a continuous mapping of I onto I. Prove that f(x) = x for at least one $x \in I$.
- 12. Call a mapping of X into Y open if f(V) is open in Y whenever V is open in X. Prove that every continuous open mapping of \mathbb{R} to \mathbb{R} is monotonic.
- 13. Let $\lfloor x \rfloor$ denote the integer that $x 1 < \lfloor x \rfloor \le x$, and let $(x) = x \lfloor x \rfloor$ denote the fractional part of x. What discontinuities do the function |x| and (x) have?
- 14. Every rational number x can be written as m/n for integers m, n such that n > 0 and m, n having no common divisors. When x = 0, take n = 1. Consider the function f defined on \mathbb{R} by f(x) = 1/n if x = m/n is rational, and f(x) = 0 if x is irrational. Prove that f is continuous at every irrational point, and that f has simple discontinuity at every rational point.
- 15. Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X into Y, let g be a continuous one-to-one mapping of Y into Z, and put h(x) = g(f(x)) for $x \in X$. Prove that f is uniformly continuous if h is uniformly continuous. Prove also that f is continuous if h is continuous.

Differentiation of real functions

- 1. Suppose g is a real function on \mathbb{R} with bounded derivatives, i.e., $\exists M > 0$ such that $|g'(x)| \leq M$ for all $x \in \mathbb{R}$. Fix $\epsilon > 0$ and define $f(x) = x + \epsilon g(x)$. Prove that f is one-to-one if ϵ is small enough.
- 2. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to \infty$. Put g(x) = f(x+1) f(x). Prove that $g(x) \to 0$ as $x \to \infty$.
- 3. Suppose that f is defined in a neighborhood of x, and f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

In addition, show by an example that this limit may exist even if f''(x) does not.

4. Suppose $a \in \mathbb{R}$ and f is twice differentiable in (a, ∞) , and M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)|, and |f''(x)| in (a, ∞) , respectively. Prove that $M_1^2 \leq 4M_0M_2$.

Riemann integrals

- 1. Suppose f is a bounded real function on [a, b], and f^2 is Riemann integrable on [a, b]. Does it follow that f is Riemann integrable on [a, b]? Does the answer change if we assume that f^3 is Riemann integrable?
- 2. For fixed $a \in \mathbb{R}$, suppose f is integrable on [a, b] for all b > a. Define

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

if this limit exists and is finite. In this case we say that the integral on the left converges. Assume that $f(x) \ge 0$ and f is non-increasing on $[1, \infty)$. Prove that $\int_1^\infty f(x) \, \mathrm{d}x$ converges if and only if $\sum_{n=1}^\infty f(n)$ converges.

- 3. Let p and q be positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. Prove the following statements:
 - (a) If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

- and the equality holds if and only if $u^p = v^q$. [Hint: apply the convex function " $-\log$ " on both sides.] (b) If f and g are Riemann integrable, $f, g \ge 0$, and $\int_a^b f^p \, \mathrm{d}x = \int_a^b g^q \, \mathrm{d}x = 1$, then $\int_a^b fg \, \mathrm{d}x \le 1$.
- (c) If f and g are Riemann integrable, then

$$\left| \int_a^b f g \, \mathrm{d}x \right| \le \left(\int_a^b |f|^p \, \mathrm{d}x \right)^{1/p} \left(\int_a^b |g|^q \, \mathrm{d}x \right)^{1/q}.$$

4. For Riemann integrable function $u:[a,b]\to\mathbb{R}$, define

$$||u||_2 := \left(\int_a^b |u|^2 \, \mathrm{d}x\right)^{1/2}.$$

Suppose $f, g, h : [a, b] \to \mathbb{R}$ are integrable, prove the triangle inequality

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2.$$

[Hint: take square on both sides and apply the inequality from previous homework].

5. Suppose $f:[a,b]\to\mathbb{R}$ is bounded and Riemann integrable. Prove that for any $\epsilon>0$, there exists a continuous function $g:[a,b]\to\mathbb{R}$ such that $\|f-g\|_2<\epsilon$. [Hint: Find a suitable partition P= $\{x_0, x_1, \dots, x_n\}$ of [a, b] and define

$$g(t) = \frac{x_{k+1} - t}{x_{k+1} - x_k} f(x_k) + \frac{t - x_k}{x_{k+1} - x_k} f(x_{k+1}),$$

for $t \in [x_k, x_{k+1}]$.

Sequence of Functions

- 1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 2. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a subset E of a metric space, prove that $\{f_n+g_n\}$ converges uniformly on E. If in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.
- 3. Prove a comparison test for uniform convergence of series: if f_n and g_n are functions and $0 \le f_n \le g_n$, and the series $\sum_n g_n$ conveges uniformly then so also does the series $\sum_n f_n$.
- 4. If $f_n \to f$ uniformly on a domain E and if f_n , f never vanish on E (i.e. $f_n(x) \neq 0$ and $f(x) \neq 0$ for all $x \in E$ and $n \in \mathbb{N}$) then does it follow that functions $1/f_n$ converge uniformly to 1/f on E?
- 5. A function is called "piecewise linear" if it is (i) continuous and (ii) its graph consists of finitely many linear segments. Prove that a continuous function on an interval [a, b] is the uniform limit of a sequence of piecewise linear functions.
- 6. Let $f_n(x) = \frac{x}{1+nx^2}$ for all $x \in \mathbb{R}$ and $n = 1, 2, \ldots$. Show that $\{f_n\}$ converges uniformly to a function f and that the equation $f'(x) = \lim_{n \to \infty} f'_n(x)$ is correct if $x \neq 0$ but false if x = 0.
- 7. Consider the functions $f_n : \mathbb{R} \to \mathbb{R}$ for $n = 1, 2, \cdots$ defined by $f_n(x) = \frac{x}{n} \sin\left(\frac{x}{n}\right)$. (a) Give the set of all points in \mathbb{R} where $\{f_n\}$ converges pointwisely. (b) Does $\{f_n\}$ converge uniformly on \mathbb{R} ? Justify your claim.

- 8. If I(x) = 0 if $x \le 0$ and I(x) = 1 if x > 0, and if $\{x_n\}$ is a distinct sequence in [a, b], and $\sum_n |c_n|$ converges, prove that the series $f(x) = \sum_{n=1}^{\infty} c_n I(x x_n)$ for $a \le x \le b$ converges uniformly, and that f is continuous for every $x \ne x_n$.
- 9. Let $\{f_n\}$ be a sequence of functions where $f_n(x) = \frac{x^2}{x^2 + (1 nx)^2}$ for $x \in [0, 1]$ and $n \in \mathbb{N}$. Prove that $\{f_n\}$ is uniformly bounded but does not contain uniformly convergent subsequence.
- 10. Prove that every function in an equicontinuous family of functions is uniformly continuous.
- 11. Suppose $\{f_n\}$ is an equicontinuous sequence of functions on a compact set K and $\{f_n\}$ converges pointwise on K. Prove that $\{f_n\}$ converges uniformly on K.
- 12. Let $\{f_n\}$ be a uniformly bounded sequence of functions which are Riemann-integrable on [a, b], and put $F_n(x) = \int_a^x f_n(t)dt$ for $x \in [a, b]$. Prove that there exists a subsequence $\{F_{n_k}\}$ which converges uniformly on [a, b].
- 13. Let $f:[a,b]\to\mathbb{R}$ be a bounded and Riemann integrable function. Prove that there are polynomials P_n such that $\lim_{n\to\infty}\int_a^b |f-P_n|^2 dx = 0$.
- 14. If f is continuous on [0,1] and if $\int_0^1 f(x)x^n dx = 0$ for all $n = 0, 1, 2, \ldots$ Prove that f(x) = 0 on [0,1]. [Hint: The integral of the product of f with any polynomial is zero. Use the Weierstrass theorem to show that $\int_0^1 f^2(x) dx = 0$.]
- 15. Let K be a compact metric space, and S be a subset of C(K), the set of continuous real-valued functions on K. Equip C(K) with the norm $||f|| := \sup_{x \in K} |f(x)|$ for every $f \in C(K)$ and define the metric d(f,g) = ||f-g|| for $f,g \in C(K)$. Prove that S is compact with respect to this metric if and only if S is uniformly closed, pointwise bounded, and equicontinuous.
- 16. Suppose $\{f_n\}$ is an equicontinuous sequence of functions on a compact set K, and $\{f_n\}$ converges pointwise on K. Prove that $\{f_n\}$ converges uniformly on K.
- 17. Suppose f is a real continuous function on \mathbb{R} , and $f_n(t) = f(nt)$ for $n = 1, 2, \ldots$, and $\{f_n\}$ is equicontinuous on [0, 1]. What conclusion can you draw about f and justify it.
- 18. Suppose X is a metric space. Let S be a subset of C(X), the set of continuous real-valued functions on X. If S is equicontinuous and bounded, and define $g: X \to \mathbb{R}$ such that for every $x \in X$ there is $g(x) = \sup_{f \in S} f(x)$. Prove that $g \in C(X)$.

Functions of Several Variables

- 1. Let $\mathbf{y} \in \mathbb{R}^n$ and define $A : \mathbb{R}^n \to \mathbb{R}$ such that $A\mathbf{x} = \mathbf{x} \cdot \mathbf{y}$. Prove that $A \in L(\mathbb{R}^n, \mathbb{R})$ and ||A|| = |y|.
- 2. Give an example of two 2×2 matrices such that the operator norm of the product is less than the product of the operator norms.
- 3. Suppose \mathbf{f} is a differentiable mapping of \mathbb{R} to \mathbb{R}^3 such that $|\mathbf{f}(t)| = 1$ for every $t \in \mathbb{R}$. Prove that $\mathbf{f}'(t) \cdot \mathbf{f}(t) = 0$.
- 4. Show that both partial derivatives of the function

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if}(x,y) \neq (0,0) \\ 0 & \text{otherwise} \end{cases}$$

exist at (0,0) but the function is not differentiable there.