Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Abstract

• gating machanism을 가진 RNN 위주의 비교를 실시한다.

• polyphonic music modeling과 speech signal modeling을 이용하여 평가했다.

● advanced RNN는 RNN보다 개선되었고, GRU는 LSTM과 비등한 성능이 났다.

Introduction

• LSTM, GRU를 polyphonic music dataset, raw speech data로 실험하겠다.

Backgound: RNN

• RNN의 한계점 : vanishing, exploding

$$\mathbf{h}_t = g\left(W\mathbf{x}_t + U\mathbf{h}_{t-1}\right)$$

- 해결하기 위한 2가지 접근
- 1. clipped gradient (hyperparameter 로 threshold 값을 정해서 이를 넘으면 값을 줄인다.)
- 2. gating unit

Gated Recurrent Neural Networks

Long Short-Term Memory Unit

RNN과 달리 tanh함수와 sigmoid 함수를 통해

$$h_t^j = o_t^j \tanh\left(c_t^j\right)$$

값의 크기를 일정 수준으로 유지한다.

$$o_t^j = \sigma \left(W_o \mathbf{x}_t + U_o \mathbf{h}_{t-1} + V_o \mathbf{c}_t \right)^j$$

Cong Short Term Memory Unit (2)

description of creating new memory cell

$$c_t^j = f_t^j c_{t-1}^j + i_t^j \tilde{c}_t^j$$

$$\tilde{c}_t^j = \tanh\left(W_c \mathbf{x}_t + U_c \mathbf{h}_{t-1}\right)^j$$

Long Short Term Memory Unit (3)

what we calculate in forget gate and input gate

$$f_t^j = \sigma \left(W_f \mathbf{x}_t + U_f \mathbf{h}_{t-1} + V_f \mathbf{c}_{t-1} \right)^j$$

$$i_t^j = \sigma \left(W_i \mathbf{x}_t + U_i \mathbf{h}_{t-1} + V_i \mathbf{c}_{t-1} \right)^j.$$

c LSTM Summary

• overwriting 하는 방식의 RNN과 다르게, 기존 정보를 유지할지 안할지를 Gate를 통해서 결정한다.

• 중요한 feature가 발견되면, 더 길게 정보가 유지되고 long term dependency problem을 해결 할 수 있습니다.

Gated Recurrent Neural Networks

2. Gated Recurrent Unit

- memory cell 이 없다.
- ht를 구하는데, Linear interpolation (선형 보간법) 이 사용되었다.

$$h_t^j = (1 - z_t^j)h_{t-1}^j + z_t^j \tilde{h}_t^j$$

What is Linear interpolation?

- 양 끝점이 주어졌을 때,
- 그 사이에 위치한 점을 추정하는 방법

```
// p1,p2를 d1:d2로 분할하는 p를 리턴한다. (단, d1+d2=1)
float lerp(float p1, float p2, float d1) {
  return (1-d1)+p1 + d1+p2;
}
```


Gated Recurrent Unit (2)

$$z_t^j = \sigma \left(W_z \mathbf{x}_t + U_z \mathbf{h}_{t-1} \right)^j$$

$$\tilde{h}_t^j = \tanh \left(W \mathbf{x}_t + U \left(\mathbf{r}_t \odot \mathbf{h}_{t-1} \right) \right)^j$$

$$r_t^j = \sigma \left(W_r \mathbf{x}_t + U_r \mathbf{h}_{t-1} \right)^j$$

Gated Recurrent Unit (3) (with summary)

Update gate : Content가 업데이트 된 정도

 reset gate : rt 값이 0에 가까워 질 때, 이전에 계산 되었던 모든 unit 값을 잊는다.

candidate activation h는 RNN과 동일하게 동작한다.

Discussion

새로운 기억 방식의 장점

1. 긴 series data 에서 각 unit 에서의 중요한 feature를 잘 기억한다.

2. forget gate, update gate에서 이전 정보 유지 정도를 결정하는 것이다.

3. 덧셈으로 인해 vanishing gradient problem을 해결해준다.

© Discussion (2)

두 unit의 차이점

1. LSTM에는 memory content 노출정도를 output gate에서 조절하지만, GRU에는 그런 부분이 존재 하지 않는다.

2. reset gate에 해당하는 input gate 의 위치가 다르다. 이에 따라 LSTM은 이전의 메모리의 총 양을 조절하는 것과 분리없이 새로운 memory content를 계산한다. 게다가, LSTM unit은 새로운 memory content의 총 양을 forget gate의 독립적인 cell과 더해져서 조절된다.

3. GRU는 이전의 연산에 의하여 정보의 흐름을 조절하지만, 독립적으로 정보의 총 양을 조절하지는 않는다.

Models

• 세 모델을 근사하게 같은 param 수를 가지게 했다.

overfitting을 피하기 위하여적은 param 수를 사용했다.

Unit	# of Units	# of Parameters			
Po	lyphonic mus	ic modeling			
LSTM	36	$\approx 19.8 \times 10^3$			
GRU	46	$\approx 20.2 \times 10^3$			
tanh	100	$\approx 20.1 \times 10^3$			
5	Speech signal	modeling			
LSTM	195	$\approx 169.1 \times 10^3$			
GRU	227	$\approx 168.9 \times 10^3$			
tanh	400	$\approx 168.4 \times 10^3$			

Table 1: The sizes of the models tested in the experiments.

			tanh	GRU	LSTM
Music Datasets	Nottingham	train	3.22	2.79	3.08
		test	3.13	3.23	3.20
	JSB Chorales	train	8.82	6.94	8.15
		test	9.10	8.54	8.67
	MuseData	train	5.64	5.06	5.18
		test	6.23	5.99	6.23
	Piano-midi	train	5.64	4.93	6.49
		test	9.03	8.82	9.03
Ubisoft Datasets	Ubisoft dataset A	train	6.29	2.31	1.44
		test	6.44	3.59	2.70
	Ubisoft dataset B	train	7.61	0.38	0.80
		test	7.62	0.88	1.26

Table 2: The average negative log-probabilities of the training and test sets.

Results and Analysis

 poly music dataset의 경우 GRU는 LSTM과 tanh-RNN보다 좋은 성능을 보여준다.

• music dataset에서는 세 모델의 성능 차이가 크지 않다.

 음성인식 task의 경우 LSTM과 GRU의 성능이 좋았고, tanh-RNN은 좋지 못했다. Thanks for listening!