# **Iowa Liquor Sales**

**Khatereh Mohajery** 

Scenario 1: State tax board

Dec 16, 2016

## **Summary**

- To be presented to lowa state tax board.
- Goal:

Summarizes the current class E liquor sales in the Iowa state and the projections of the sale for the rest of the year of 2016.

- Includes:
  - The source of the data
  - Steps and assumptions in exploring, processing and mining the dataset
  - The methods and models used for the projections of the sale in 2016.
  - The results of the models

### **The Data**

- The original data from <u>lowa.gov</u>
- This data in csv format contains only 10% of the available data
- It is assumed that this 10% was collected randomly and therefore can represent the whole dataset.
- Each entry:
  - Information on a single transaction between a liquor store and the state vendor
  - Store information (location,zip code, ..)
  - Amount, type and value of the liquor
  - Vendor information and dates

## **Initial Cleaning Steps**

- Handling missing values in Category\_Name, County (County\_Number)
- Removing \$ sign, change to numerical values for calculation purposes
- Parsing date column
- Liquors were assigned to 9 general categories
- A new column for projected profit based on state bottle cost and the retail price of the same bottle.
- Invalid Zip\_Code: 712-2

#### **Total Sales**

- 2,174,546 bottles
- 1,985,754.2 liters
- retail sale value of \$28,516,695.5
- Average price of \$13.1 per bottle.
- The average sales of stores in 2015 was \$20,784.77
- High sales: Central City
  Liquors and Hy-Vee number
  #3 in Des Moines city





Highest sales in 2015: City of Des Moines and Polk County Cities average sales:\$75,044 Counties average sales:\$288047.4



It is interesting that the first three months of the year have below average sales i.e. \$2,376,391

# While Vodka category has the highest volume of sales, Whiskies have higher sale values.





#### Mine and Refine the Data

- Creating a column for 1st-Quarter sales
- Separating 2015 and 2016
- Group by stores
- Sales vs 1st-quarter sales for each store
- Few stores with very high ratioNew stores maybe!!



 There is very strong correlation between sales in the 1st-quarter and the annual sales

| Correlation matrix | 1st quarter | annual  |
|--------------------|-------------|---------|
| 1st quarter        | 1.0         | 0.98144 |
| annual             | 0.98144     | 1.0     |



#### First 3 Models

Model 1: Using linear regression with train and test split gave R<sup>2</sup> score of 0.945.

Model 2: Using linear regression with train and test split and 5 fold cross validation gave the same R<sup>2</sup> score of 0.945.

Model 3: Using linear regression with no train and test split gave R<sup>2</sup> score of 0.963.

formula of : Total sale =282.065 + 4.4688 \* 1st\_quarter sale

| Dep. Variable:    | Sale_Dollars_2015 | R-squared:             | 0.963         |  |
|-------------------|-------------------|------------------------|---------------|--|
| Model:            | OLS               | Adj. R-squared:        | 0.963         |  |
| Method:           | Least Squares     | F-statistic:           | 3.300e+0<br>4 |  |
| No. Observations: | 1262              | Prob<br>(F-statistic): | 0.00          |  |
| Df Residuals:     | 1260              | Log-Likelihood:        | -13428.       |  |
| Df Model:         | 1                 | AIC:                   | 2.686e+0<br>4 |  |
| Covariance Type:  | nonrobust         | BIC:                   | 2.687e+0<br>4 |  |

|             | coef   | std<br>err | t       | P> t  | [95.0% Conf. Int.] |  |
|-------------|--------|------------|---------|-------|--------------------|--|
| const       | 282.06 | 308.993    | 0.913   | 0.361 | -324.132 888.262   |  |
| 1st quarter | 4.4688 | 0.025      | 181.662 | 0.000 | 4.421 4.517        |  |

#### **Models - Outliers Removed**

Model 4: Using linear regression with train and test split gave R<sup>2</sup> score of 0.952.

Model 5: Using linear regression with train and test split and 5 fold cross validation gave the same score of 0.952.

Model 6: Using linear regression with no train and test split gave R<sup>2</sup> score of 0.933

Total sale = 698.5949 + 4.4688\*1st\_quarter sale

| Dep. Variable:       | Sale_Dollars_20<br>15 | R-squared:             | 0.933         |  |
|----------------------|-----------------------|------------------------|---------------|--|
| Model:               | OLS                   | Adj. R-squared:        | 0.933         |  |
| Method:              | Least Squares         | F-statistic:           | 1.752e+0<br>4 |  |
| No.<br>Observations: | 1260                  | Prob<br>(F-statistic): | 0.00          |  |
| Df Residuals:        | 1258                  | Log-Likelihood:        | -13369.       |  |
| Df Model:            | 1                     | AIC:                   | 2.674e+0<br>4 |  |
| Covariance<br>Type:  | nonrobust             | BIC:                   | 2.675e+0<br>4 |  |

|             | coef   | std err | t     | P> t  | [95.0% Conf.<br>Int.] |
|-------------|--------|---------|-------|-------|-----------------------|
| const       | 698.59 | 314.99  | 2.218 | 0.027 | 80.627 1316.56        |
| 1st quarter | 4.3699 | 0.033   | 132.3 | 0.000 | 4.305 4.435           |

### **Final Results**

All models predicted to have around 4% increase in sales in 2016 compare to 2015 based on the sales in 1st quarter of the 2016.

|                                                             | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
|-------------------------------------------------------------|---------|---------|---------|---------|---------|---------|
| Ratio of predicted total sale in 2016 to total sale in 2015 | 1.037   | 1.037   | 1.040   | 1.040   | 1.039   | 1.059   |

## Steps to Improve the Model

 Using Lasso regularization and counties as dummy variables for the linear regression

 Replacing the value of 1st-quarter sales for the stores with high ratio of total sales to 1st-quarter with the median value