Universidade do Minho

Problemas de Mecânica Analítica e Ondas

Série 5 - Centro de Massa

1- Calcule o centro de massa de um sistema constituído por três pontos materiais de massas m_1 , m_2 e m_3 e colocados, respetivamente, nos pontos de coordenadas Cartesianas,

$$ec{r_1} = \left[egin{array}{c} 0 \ -1 \ 0 \end{array}
ight], \qquad ec{r_2} = \left[egin{array}{c} 0 \ 0 \ 0 \end{array}
ight], \qquad ec{r_3} = \left[egin{array}{c} 1 \ 1 \ 1 \end{array}
ight].$$

As coordenadas Cartesianas do centro de massa devem ser expressas apenas em termos dos dois quocientes $A = (m_3/M)$ e $B = (m_1/m_3)$ onde $M = m_1 + m_2 + m_3$.

- 2- Considere um sólido homogéneo de massa m e decomponha-o em n porções disjuntas de massas $m_1, m_2,...,m_n$ e centros de massa $\vec{R}_1, \vec{R}_2,...,\vec{R}_n$, respetivamente. Mostre que o centro de massa do sólido dado coincide com o centro de massa de um sistema constituído por n partículas de massas $m_1, m_2,...,m_n$ cujos vetores posição são, respetivamente, $\vec{r}_1 = \vec{R}_1, \vec{r}_2 = \vec{R}_2,...,\vec{r}_n = \vec{R}_n$.
- 3- Determine o centro de massa do sistema plano de massa total M e superfície S desenhado no quadro constituído por três retângulos supondo que é homogéneo e expresse as suas componentes Cartersianas apenas e termos das distâncias a,b,c,d,e,f da figura. Faz-se notar que a massa de cada retângulo é igual à densidade superficial constante ρ vezes a correspondente área.
- 4- Determine o centro de massa dos seguintes sistemas:
 - (a) Um fio homogéneo semi-circular de massa M e raio R.
 - (b) Uma placa homogénea semi-circular de massa M e raio R.
- 5- Considere uma placa retangular de massa M e lados a e b cuja densidade é proporcional à distância de cada ponto ao lado de comprimento a, sendo pois dada por $\rho=K\,y$ onde K é uma constante.
 - (a) Determine o centro de massa da placa.
- (b) Expresse as componentes Cartesianas do vetor centro de massa apenas em termos de a e b.

1

- 6- Considere um cone homogéneo invertido de massa M, volume V e altura h cujo eixo coincide com o eixo OZ e cujo vértice corresponde à origem do sistema de referência.
 - (a) Determine o centro de massa do cone.
- (b) Expresse as componentes Cartesianas do vetor centro de massa apenas em termos da altura do cone h.
- 7- Determine as coordenadas do centro de massa de uma semi-esfera homogénea de massa M e raio R e expresse as mesmas apenas em termos de R.

Dados auxiliares

Centro de massa de sistemas discretos formados por N partículas de massa m_i e vetor posição $\vec{r_i}$ onde i=1,...,N:

$$\vec{R}_{\text{CM}} = \frac{\sum_{i=1}^{N} m_i \, \vec{r_i}}{\sum_{i=1}^{N} m_i}$$

Centro de massa de sistemas contínuos de densidade $\rho(\vec{r})$ que pode ser diferente em cada ponto de vetor posição \vec{r} :

$$\vec{R}_{\rm CM} = \frac{\int d\vec{r} \, \vec{r} \, \rho(\vec{r})}{\int d\vec{r} \, \rho(\vec{r})}$$

onde os integrais se referem ao espaço interior ao sistema com $d\vec{r} = dx \, dy \, d_z$, $d\vec{r} = dx \, dy$ e $d\vec{r} = dx$ no caso de sistemas com três dimensões, duas dimensões e uma dimensão, respetivamente.