Informed search algorithms

CS4881 Artificial Intelligence Jay Urbain, Ph.D.

Review: Tree search

function Tree-Search (problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to *strategy*if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree

 A search strategy is defined by picking the order of node expansion.

Uniformed Search

- We described a goal-based agent called a problem-solving agent.
- We looked at a specific category of problems: observable, deterministic, known environments where the solution is a sequence of actions.
- We characterized how *uniformed search algorithms*, i.e., algorithms given no information about the problem other that its definition (state space) can be used to find a solution.
- Although these algorithms can solve any solvable problem, none of them can do so efficiently!

Informed Search

- Relax previous assumptions about observable, deterministic, known environments to move closer to real world.
- If the environment is not fully observable, we can not be sure about the current state.
- If an environment is not deterministic, we can not be sure of our actions.
- If the environment is not known, we can not search it a priori to find a solution.

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Local Search Algorithms

- Perform purely local search in the state space, evaluating and modifying one or more current states rather than systematically exploring paths from an initial state.
- Suitable for problems in which all that matters is the solution state, not the path cost to reach it.

Best-first search

- Idea: use an evaluation function f(n) for each node
 - Need estimate of "desirability"
 - → Expand most desirable unexpanded node
- Implementation:

Order the nodes in fringe in decreasing order of desirability.

- Special cases:
 - greedy best-first search
 - A* search

Romania with step costs in km

Straight-line distance	
to Bucharest	
Arad	266
Bucharest	366
	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374
2011111	2/4

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
 = estimate of cost from n to goal
- e.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Properties of greedy best-first search

- Complete? No can get stuck in loops, e.g., Lasi → Neamt → Lasi → Neamt → ...
- <u>Time?</u> $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? $O(b^m)$ -- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t \sin t \cos r \cot n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.
- Example: h_{SLD}(n) (never overestimates the actual road distance)
- Theorem: If *h(n)* is admissible, A* using TREE-SEARCH is optimal.

Optimality of A* (proof)

Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

•
$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$

•
$$f(G) = g(G)$$
 since $h(G) = 0$

•
$$g(G_2) > g(G)$$
 since G_2 is suboptimal

•
$$f(G_2) > f(G)$$
 from above

•
$$h(n) \le h^*(n)$$
 since h is admissible

•
$$g(n) + h(n) \le g(n) + h^*(n)$$

•
$$f(n) \le f(G)$$

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion

Consistent heuristics

- A heuristic is consistent (monotonic) if for every node n, every successor n' of n generated by any action a, h(n) ≤ c(n,a,n') + h(n').
- Where c is the step cost.
- Triangle inequality, which requires that each side of a triangle cannot be longer than the sum of the other two sides.
- If h is consistent, we have
 f(n') = g(n') + h(n')
 = g(n) + c(n,a,n') + h(n')
 ≥ g(n) + h(n)
 = f(n)

i.e., f(n) is non-decreasing along any path.

• Theorem: If *h(n)* is consistent, A* using GRAPH-SEARCH is optimal.

Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$

Properties of A* Search

- Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))
- <u>Time?</u> Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

	1	2
В	4	5
6	7	8

Goal State

•
$$h_1(S) = ?$$

•
$$h_2(S) = ?$$

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

- $h_1(S) = ?8$
- $h_2(S) = ? 3+1+2+2+3+3+2 = 18$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- then h₂ dominates h₁
- h₂ is better for search
- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes $A^*(h_1) = 227$ nodes $A^*(h_2) = 73$ nodes
- d=24 IDS = too many nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution.

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution.
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens.
- In such cases, we can use local search algorithms
- Keep a single "current" state, try to improve it

Example: *n*-queens

 Put n queens on an n × n board with no two queens on the same row, column, or diagonal

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing (problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, \text{ a node} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) loop do neighbor \leftarrow \text{a highest-valued successor of } current if \text{Value}[\text{neighbor}] \leq \text{Value}[\text{current}] then return \text{State}[current] current \leftarrow neighbor
```

Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima

Hill-climbing search: 8-queens problem

- h = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves, but gradually decrease their frequency.

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem, a problem
          schedule, a mapping from time to "temperature"
local variables: current, a node
                     next, a node
                     T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-Node(Initial-State[problem])
for t \leftarrow 1 to \infty do
     T \leftarrow schedule[t]
     if T = 0 then return current
     next \leftarrow a randomly selected successor of current
     \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
     if \Delta E > 0 then current \leftarrow next
     else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1.
- Widely used in VLSI layout, airline scheduling, etc.

Local beam search

- Keep track of k states rather than just one.
- Start with k randomly generated states.
- At each iteration, all the successors of all k states are generated.
- If any one is a goal state, stop; else select the *k* best successors from the complete list and repeat.

Genetic algorithms

- A successor state is generated by combining two parent states.
- Start with k randomly generated states (population).
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s).
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation.

Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

Genetic algorithms

Summary

Focused on application of *heuristics* to reduce search costs:

- **Best-first search** basically graph search with *minimum-cost* unexpanded nodes are selected. *Minimum g(n)*.
- Greedy best-first search expands node with minimum h(n)
- A* Search expands nodes with $min\ f(n) = g(n) + h(n)$. Is complete, & optimal provided h(n) is admissible. Space complexity prohibitive.
- Performance of heuristic search dependent on quality of heuristic.
- Good heuristics can be found by relaxing the problem definition, by pre-computing solution costs for sub-problems in a pattern database, or *learning* from experience.

Summary

Local search problems operate on complete-state formulations, keeping only a small number of nodes in memory.

- Hill climbing/gradient descent.
- Several stochastic algorithms have been developed:
 - Simulated annealing returns optimal solution given appropriate "cooling" schedule.
 - Beam search K paths, choose fittest number of K's for each iteration.
 - Genetic Algorithms stochastic hill climbing search in which a large population of states is maintained. New states generated by mutation and cross-over.

Summary

RBFS (recursive best first search) and SMA* (simplified memory-bounded A* search) are robust, optimal search algorithms that use limited amounts of memory; given enough time can solve A* problems that A* can't solve due to running out of memory.