

# Оглавление

| 1 | Энт | ропия и KL-дивергенция                                                                 | 3 |  |
|---|-----|----------------------------------------------------------------------------------------|---|--|
|   | 1.1 | Разбираемся с энтропией                                                                | 4 |  |
|   | 1.2 | Энтропия посложнее                                                                     | 4 |  |
|   | 1.3 | Сравнение энтропий двух распределений                                                  | 4 |  |
|   | 1.4 | KL неотрицательна                                                                      | 5 |  |
|   | 1.5 | Энтропия ограничена                                                                    | 5 |  |
|   | 1.6 | Данетки                                                                                | 5 |  |
|   | 1.7 | .7 У нормального распределения максимальная энтропия в классе распределений с фиксиро- |   |  |
|   |     | ванным матожиданием и дисперсией                                                       | 6 |  |
|   | 1.8 | Кросс-энтропия дискретного и непрерывного распределений                                | 6 |  |

# Энтропия и КL-дивергенция

$$\begin{split} H(X) &= -\sum_{i} p_{i} \log_{2}(p_{i}) \\ H(X) &= -\int_{a}^{b} f(x) \log_{2}(f(x)) dx \\ H(X,Y) &= -\sum_{x,y} p(x,y) \log_{2} p(x,y) \\ CE(X||Y) &= -\sum_{x,y} p(x) \log_{2} q(x) \\ H(X|Y) &= H(X,Y) - H(Y) \\ I(X,Y) &= H(X) + H(Y) - H(X,Y) \\ D_{KL}(X||Y) &= CE(X||Y) - H(X) &= \sum_{x \in X} p(x) \log_{2} \frac{p(x)}{p(y)} \end{split}$$

## 1.1 Разбираемся с энтропией

#### Условие задачи

Пусть X – случайная величина. Найдите H(X), если

- [a] X равновероятно принимает значения 1, 5, 7.
- [6] X равномерно распределена на [0;a].
- [B]  $X \sim \mathcal{N}(\mu, \sigma^2)$ .

#### Решение

будет!

## 1.2 Энтропия посложнее

#### Условие задачи

Пусть S – радемахеровская случайная величина (принимает значения в  $\pm 1$  с вероятностями 0.5), независимая от  $X \sim Binomial(4,0.5)$ . Найдите энтропию H(S(X+1)).

#### Решение

будет!

## 1.3 Сравнение энтропий двух распределений

#### Условие задачи

В двух островных государствах Аббаввг и Габбавг используют азбуку Морзе, каждая для своего национального языка. Каждый язык использует буквы А,Б,В,Г и они возникают с вероятностями как ниже.

| Буква, х | A   | Б    | В    | Γ   |
|----------|-----|------|------|-----|
| $p_i$    | 0.1 | 0.15 | 0.45 | 0.3 |
| Буква, у | A   | Б    | В    | Γ   |
| $q_i$    | 0.2 | 0.4  | 0.2  | 0.2 |

Таблица 1.1: Частоты возникновения букв в аббавгском  $p_i$  и в габбавгском  $q_i$  языках

Научный прогресс в государствах позволил для каждого из языков построить оптимальный код для азбуки Морзе. В каком языке в среднем кодовые слова будут длиннее? Насколько отличаются средние длины кодовых слов в азбуках Морзе Аббавгского и Габбавгского?

#### Решение

будет!

## 1.4 KL неотрицательна

#### Условие задачи

(Неравенство Гиббса) Пусть даны два распределения вероятностей на конечном или счётном множестве  $I, (p_i)$  и  $(p_i')$ . Тогда для любого b > 1 верно

$$\sum_{i \in I} p_i \log_b \frac{p_i'}{p_i} \le 0.$$

#### Решение

будет!

## 1.5 Энтропия ограничена

#### Условие задачи

Пусть дискретные случайные величины X и Y принимают m значений. Докажите, что

- 1. КL-дивергенция  $D_{KL}\left(X\|Y\right)$  неотрицательна (используйте неравенство Гиббса) и что
- 2. для энтропии верно неравенство

$$0 \le H(X) \le \log_2 m$$
.

#### Решение

будет!

## 1.6 Данетки

#### Условие задачи

Шерлок Холмс и доктор Ватсон играют в данетки; Холмс утверждает, что сможет отгадать в тему первой полосы газеты, которую лежит верхней в стопке. Оба примерно представляют список возможных тем: (1)постройка нового завода, (2)прокладка новой железной дороги, (3)происшествия в порту, (4)политический кризис, (5)новый локальный конфликт на Ближнем Востоке. Ватсон уверен, что с большой вероятностью 0.8 на первой полосе случится новый конфликт на Ближнем Востоке, а остальные события едва ли происходят летом, поэтому он верит в них на 0.05. У Холмса же есть свой бесценный опыт и экспертиза, который он бережёт и обогащает, он считает, что в текущем году примерно так:

- (1) и (2) освещают на первой полосе в 3 случаях из 10 каждый;
- (3) происходит редко: 1 случая из 20;
- (4) бывает, может, в 1 случае из 10;
- (5) в 1 из 4 случаев: ну что ж, такой регион.

Удивительно, но Холмс оказывается в таких вопросах нередко оказывается невероятно точен.

Сколько вопросов нужно задать Холмсу, чтобы угадать тему, если опыт его не подводит?

Сколько вопросов в среднем должен задать Ватсон, чтобы угадать тему при условии, что опыт Холмса не подводит? За сколько вопросов справится Холмс, если его опыт не релевантен и на самом деле прав Ватсон?

#### Решение

будет!

- 1.7 У нормального распределения максимальная энтропия в классе распределений с фиксированным матожиданием и дисперсией
- 1.8 Кросс-энтропия дискретного и непрерывного распределений