Results from Y as Normal and (X,Z,W) as a truncated mixture

Contents

Definition of Parameters	1
Figures	2
Code for simulation	2

Definition of Parameters

The causal effect is $\Delta = E(Y(1) - Y(0))$. We define a logistic regression model for the propensity score p = P(T = 1), where T is the indicator of treatment assigned, $f(T \mid X, Z, \psi) \sim Bernoulli(expit(\gamma_0 + \gamma_X X + \gamma_z Z))$.

We generate X, Z as follows. We construct X with $f(X_1) \sim F(200, 100)$, $f(X_2) \sim \chi^2(1)$, $f(X_3) \sim N(0, 1)$, and define $X = (X_1 + -2X_2 + \frac{1}{2}X_3)$ if X > -4, else X = 4. We then generate Z to have the same distribution and $cor(X, Z) = \rho$.

We use the measurement error model as $f(W \mid T, X, Z) \sim N(\beta_0 + \beta_1 X, \sigma^2)$, and a distribution of the potential outcomes as $f(Y(T) \mid T, X, Z) \sim N(\Delta T + \delta_X X + \delta_Z Z, \tau^2)$.

The original values used in their simulation are:

Distribution	Parameter	Value	Distribution	Parameter	Value
Simulation	N_{sim}	5000	\overline{W}	β_0	0
	n_{calib}	500		β_1	1
	n_{main}	2500		small σ^2	0.111
T	γ_0	0		moderate σ^2	0.667
	γ_Z	0.4		large σ^2	2.333
	small γ_X	0.4	Y	Δ	2
	large γ_X	1.2		δ_X	0.5
(X,Z)	low ρ	0.3		δ_Z	0.1
	medium ρ	0.6		$ au^{\overline{2}}$	1
	high ρ	0.9			

Figures

0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 Reliability

Congenial MI-EC

Uncongenial MI-EC

Code for simulation

25

```
#####################################
   Simulation of propensity score with
     covariates measured with error
##
   This code was based on 'Y_normal_XWZ_mixture.R', which
   was purled from Y_normal_XWZ_mixture.Rmd,
##
    and modified to be run on Enigma:
##
     - Adds intro, and command to import the iteration from
       the terminal 'i'
##
##
     - Changes location of sourced file
##
     - Changes number of simulations to 50
##
     - Changes seed to XXX+i
##
     - Eliminates the part that creates the table
     - Changes the name of the saved results Rdata file
##
##
    This simulation includes the following changes:
##
     - Added reliabilities of 0.3, 0.6
##
     - Uses m=12, n=3 (as all the previous simulations)
##
   It also does:
     - Runs reliabilities 0.9 and 0.999
##
     - Modified the 'sampling' function to also run an 'extra small' variance (with reliability = 0.99)
     - Eliminates CC, RP. Only calculates naive.
```

```
- Uses 4 types of MIEC
##
    - Sets reliabilities instead of variances
##
    - Uses both a correct model (uses X and Z in the
       estimation model) as well as IPTW
##
## We use this code to evaluate how sensitive MIEc is to the distributional assumptions. To do that
##
    - We assume that Y has a normal distribution and
    - We assume that X comes from a truncated mixted distribution
##
    - We add the library "ecodist" (this allows the creation of variables with certain correlation)
## We also changed the parameter Delta, the treatment effect, to 2. This reduces the unbalances in Y (
## the values for Y1 were 1, in the bernoulli case)
## We update the definition of reliability
temp <- commandArgs(TRUE)</pre>
  <-as.numeric(temp[1])
## ----load_libraries, message=FALSE, warning=FALSE------
library(mvtnorm)
library(mitools)
library(MCMCpack)
library(xtable)
library(survey)
library(ecodist)
#library(Gmisc, verbose=FALSE) #verbose option does nothing when using knitr
source("MI-EC algorithm.r")
## ----def_params------
# Sample size and number of simulations
n main <- 2500
n_calib <- 500
N_sim <- 50
# Distribution of T | X,Z
gamma_0 <- 0 #This will determine the proportion receiving treatment
gamma_Z <- 0.4
gamma_Xs \leftarrow 0.4
gamma_X1 <- 1.2
# Distribution of (X,Z)
rho_1 <- 0.3
rho_m <- 0.6
      <- 0.9
rho_h
# Distribution of W / Y,X,Z
beta_0 <- 0
beta_1 <- 1
```

```
#The variance of X is obtain by doing
\#X = rf(10000000, 200, 100) - 2*rchisq(10000000, 1) + 0.5*rnorm(10000000, 0, 1)
# X[X< -4]=4
# var(X)
var x
         = 3.39
rels <-c(0.3,0.6,0.9,0.999)
sigmas <- var_x*((1/rels) - beta_1^(2))
sigma2_xs <- sigmas[4]</pre>
sigma2_s <- sigmas[3]
sigma2_m <- sigmas[2]
sigma2_l <- sigmas[1]</pre>
# Distribution of Y(T) / T, X, Z
Delta <- 2
delta_X <- 0.5
delta_Z <- 0.1
tau2 <- 1
## ---expitlogit------
expit <- function(x) \exp(x)/(1+\exp(x))
logit \leftarrow function(p) log(p/(1-p))
## ----sampling_fun-------
sampling <- function(cor_level, X_effect, m_error){</pre>
X = rf(n_main+n_calib,200,100)-2*rchisq(n_main+n_calib,1)+0.5*rnorm(n_main+n_calib,0,1)
X[X < -4] = 4
if(cor_level == "low"){
 X_Zl = corgen(n_main+n_calib,X, rho_l, epsilon=0)
}else if(cor_level == "med") {
 X_Zl = corgen(n_main+n_calib, X, rho_m, epsilon=0)
}else if(cor_level == "high") {
 X_Zl = corgen(n_main+n_calib, X, rho_h, epsilon=0)
}else {stop("Correlation level must be 'high', 'med', or 'low'")}
X_Z = matrix(NA, ncol = 2, nrow=n_main+n_calib)
X_Z[,1] = X_Z[[1]]
X_Z[,2] = X_Z[[2]]
colnames(X_Z) \leftarrow c("X", "Z")
    # Sample Y(0), Y(1) \setminus mid X, Z
   Y0 <- rnorm(n_main+n_calib, mean=(delta_X*X_Z[,"X"] + delta_Z*X_Z[,"Z"]),
               sqrt(tau2))
   Y1 <- rnorm(n_main+n_calib, mean=(Delta + delta_X*X_Z[,"X"] + delta_Z*X_Z[,"Z"]), sqrt(tau2))
```

```
#Y1 <- YO + Delta # rank preserving
    # Sample from the distribution of T \in X, Z, psi
    if(X effect == "small"){
       logit_T <- gamma_0 + gamma_Xs*X_Z[,"X"] + gamma_Z*X_Z[,"Z"]</pre>
     } else if(X effect == "large") {
       logit_T <- gamma_0 + gamma_X1*X_Z[,"X"] + gamma_Z*X_Z[,"Z"]</pre>
     } else {stop("Effect of X must be 'small' or 'large'")}
    T <- rbinom(n_main+n_calib, 1, p= expit(logit_T))
    # Creating Y_obs given Y(0), Y(1), T
    Y_{obs} \leftarrow Y1*T + Y0*(1-T)
    \#Sample from the distribution of $W \setminus T, X, Z$
    if(m_error == "small"){
        W <- rnorm(n_main+n_calib, mean= (beta_0+beta_1*X_Z[,"X"]), sd=sqrt(sigma2_s))
     } else if(m_error == "moderate") {
        W <- rnorm(n_main+n_calib, mean= (beta_0+beta_1*X_Z[,"X"]), sd=sqrt(sigma2_m))
     } else if(m_error == "large") {
        W <- rnorm(n_main+n_calib, mean= (beta_0+beta_1*X_Z[,"X"]), sd=sqrt(sigma2_1))
     } else if(m_error == "extra small") {
        W <- rnorm(n_main+n_calib, mean= (beta_0+beta_1*X_Z[,"X"]), sd=sqrt(sigma2_xs))
     } else {stop("Measurement error must be 'extra small', 'small', 'moderate', or 'large'")}
    #Setting datasets for calibration and for main inference
    i.calib <- 1:n_calib</pre>
    i.main <- (n_calib+1):(n_calib+n_main)
    data.main <- data.frame(W = W[i.main], T = T[i.main], Z=X Z[i.main,"Z"],</pre>
                              Y_obs = Y_obs[i.main])
    data.cause <- data.frame(p= expit(logit_T[i.main]), X= X_Z[i.main,"X"], Y0 = Y0[i.main], Y1 = Y1[i.main]
    data.calib <- data.frame(X= X_Z[i.calib,"X"], W = W[i.calib])</pre>
    return(list(main=data.main, calib=data.calib, cause=data.cause))
## ----Correction_functions-----
true_regression <- function(data_main, Xtrue){</pre>
  data_main$Xtrue <- Xtrue
  model <- glm(T~Xtrue+Z, data=data_main, family=binomial)</pre>
  p_hat <- predict(model,type="response")</pre>
```

```
data_main$wt <- ifelse(data_main$T==1, 1/p_hat, 1/(1-p_hat))</pre>
  design.ate <- svydesign(ids=~1, weights=~wt, data=data_main)</pre>
  survey.model <- svyglm(Y_obs~T, design=design.ate)</pre>
  coef
               <- summary(survey.model)$coeff["T",c("Estimate", "Std. Error")]</pre>
  CI_low <- coef["Estimate"] + qnorm(0.025)*coef["Std. Error"]</pre>
  CI_upp <- coef["Estimate"] + qnorm(0.975)*coef["Std. Error"]</pre>
  coef <- cbind(coef["Estimate"],coef["Std. Error"],CI_low, CI_upp)</pre>
  colnames(coef) <- c("results", "se", "(lower", "upper)")</pre>
 return(coef)
naive_regression <- function(data_main){</pre>
  model <- glm(T ~ W + Z, data=data_main, family=binomial)</pre>
 p_hat <- predict(model,type="response")</pre>
 data_main$wt <- ifelse(data_main$T==1, 1/p_hat, 1/(1-p_hat))</pre>
  design.ate <- svydesign(ids=~1, weights=~wt, data=data_main)</pre>
  survey.model <- svyglm(Y_obs~T, design=design.ate)</pre>
               <- summary(survey.model)$coeff["T",c("Estimate", "Std. Error")]</pre>
 CI low <- coef["Estimate"] + qnorm(0.025)*coef["Std. Error"]
 CI_upp <- coef["Estimate"] + qnorm(0.975)*coef["Std. Error"]</pre>
  coef <- cbind(coef["Estimate"],coef["Std. Error"],CI_low, CI_upp)</pre>
  colnames(coef) <- c("results", "se", "(lower", "upper)")</pre>
 return(coef)
}
## ----MIEC funs------
multiple_imputation_EC <- function(data_main, data_calib, option="Ycov"){</pre>
  #Option: select 'Ycov', 'noT', 'noY', 'noT'
  # Ycov (Y covariate) uses $T$ as outcome, $Z$ and $Y_{obs}$ as helpful covariates
  # noY (no Y) uses T as outcome, Z as helpful covariate
  # noT (no T) uses $Y_{obs}$ as outcome, $Z$ as helpful covariate
  # noTY (no T, nor Y) uses no outcome, $Z$ as helpful covariate
  # Other parameters for MIEC/ two-stage imputation procedure
  m <- 12 #Number of draws from parameter distribution
  n \leftarrow 3 #Number of samples (and imputations) for each m
  # Generating Multiple Imputations:
  if(option=="Yout"){ # Y as a helpful covariate
    q \leftarrow 2 #Dimension of T. T = (T, Y_obs)
    r \leftarrow 1 #Dimension of Z. Z = (Z)
```

```
MIEC_data <- MIEC(data_main[,c("W","T","Y_obs","Z")],data_calib,n_calib,n_main,M=m,N=n,K=q,S=r)
}else if(option=="noY"){
  q \leftarrow 1 #Dimension of T. T = T
  r \leftarrow 1 #Dimension of Z. Z = Z
  MIEC_data <- MIEC(data_main[,c("W","T","Z")],data_calib,n_calib,n_main,M=m,N=n,K=q,S=r)
}else if(option=="noT"){
  q \leftarrow 1 #Dimension of T. T = Y
  r \leftarrow 1 #Dimension of Z. Z = Z
  MIEC_data <- MIEC(data_main[,c("W","Y_obs","Z")],data_calib,n_calib,n_main,M=m,N=n,K=q,S=r)
}else if(option=="noTY"){
  q \leftarrow 0 #Dimension of T. T = NULL
  r \leftarrow 1 #Dimension of Z. Z = Z
  MIEC_data <- MIEC(data_main[,c("W","Z")],data_calib,n_calib,n_main,M=m,N=n,K=q,S=r)
}else {stop("Only options 'Ycov', 'noT', 'noY', 'noT' are accepted")}
imputed_cols <- (q+r+1):ncol(MIEC_data)</pre>
delta_MI <- matrix(NA,ncol=length(imputed_cols),nrow=2)</pre>
MI data <- data.frame(
  T = data main[,"T"],
  Z = data main[,"Z"],
  Y_obs = data_main[,"Y_obs"])
for(k in imputed_cols){
  MI_data$X <- MIEC_data[,k]</pre>
  model <- glm(T ~ X + Z, data=MI_data, family=binomial)</pre>
  p_hat <- predict(model,type="response")</pre>
  MI_data$wt <- ifelse(data_main$T==1, 1/p_hat, 1/(1-p_hat))
  design.ate <- svydesign(ids=~1, weights=~wt, data=MI_data)</pre>
  survey.model <- svyglm(Y_obs~T, design=design.ate)</pre>
  delta_MI[,k-(q+r)] <- summary(survey.model)$coeff["T",c("Estimate", "Std. Error")]</pre>
}
estimate.mitools <- summary(MIcombine(results = as.list(delta_MI[1,]),
                                        variances = as.list(delta MI[2,]^2)))[,-5]
combine_foo <- function(coef, vars){</pre>
  # coefficient of interest (qamma_x_hat)
  gamma_hat_MI <- mean(coef)</pre>
  # The following code gives non-sensical results
  #Calculating W,B,U
```

```
gamma_matrix <- matrix(coef, ncol=n, byrow=TRUE)</pre>
    mean_n_gamma_hat <- apply(gamma_matrix, 1, mean)</pre>
    W <- sum(sapply(1:m, function(x){</pre>
      sum((gamma_matrix[x,] - mean_n_gamma_hat[x])^2)
    ))/(m*(n-1))
    B <- sum((mean_n_gamma_hat - gamma_hat_MI)^2)/(m-1)</pre>
    U <- mean(vars)
    # Calculating variance of our coefficient of interest
    T_MI \leftarrow U - W + (1+1/m)*B - W/n
    if (T MI < 0) T MI < (1+1/m)*B
    # Confidence intervals are done with t-distribution with these
    # degrees of freedom
    df \leftarrow 1/(((((1+1/m)*B)^2)/((m-1)*T_MI^2)) +
                ((((1+1/n)*W)^2)/(m*(n-1)*T_MI^2))) #Note that here was the mistake
    if(T_MI < 0) df <- m-1
    CI_low <- gamma_hat_MI + qt(0.025, df=df)*sqrt(T_MI)
    CI_upp <- gamma_hat_MI + qt(0.975, df=df)*sqrt(T_MI)
    return(c(coef=gamma_hat_MI,se=sqrt(T_MI), CI_low=CI_low, CI_upp=CI_upp))
  estimate.reiter <- combine_foo(delta_MI[1,], delta_MI[2,]^2)</pre>
 return(rbind(estimate.mitools,estimate.reiter))
## ----simulation_fun-----
full_simulation <- function(cor_level = "low", X_effect = "large", m_error = "large"){</pre>
  data <- sampling(cor_level = cor_level, X_effect = X_effect, m_error = m_error)</pre>
  Xtrue
            <- true_regression(data$main, data$cause$X)</pre>
            <- naive regression(data$main)</pre>
  MIEC_Yout <- multiple_imputation_EC(data$main, data$calib, "Yout")</pre>
 MIEC_noY <- multiple_imputation_EC(data$main, data$calib, "noY")</pre>
 MIEC_noT <- multiple_imputation_EC(data$main, data$calib, "noT")</pre>
 MIEC_noTY <- multiple_imputation_EC(data$main, data$calib, "noTY")</pre>
 result_table
                     <- rbind(Xtrue, naive,MIEC_Yout, MIEC_noY, MIEC_noT, MIEC_noTY)</pre>
  mean_insample
                     <- mean(data$cause$Y1 - data$cause$Y0)</pre>
 result_string
                    <- c(mean_insample,t(result_table))
  names(result_string) <- c("insample mean",</pre>
                             paste0("Xtrue.", colnames(Xtrue)),
                             paste0("naive.", colnames(Xtrue)),
                             paste0("MIEC_Yout_mi.", colnames(Xtrue)),
```

```
paste0("MIEC_Yout_re.", colnames(Xtrue)),
                            paste0("MIEC_noY_mi.", colnames(Xtrue)),
                            paste0("MIEC_noY_re.", colnames(Xtrue)),
                            paste0("MIEC_noT_mi.", colnames(Xtrue)),
                            paste0("MIEC_noT_re.", colnames(Xtrue)),
                            paste0("MIEC_noTY_mi.", colnames(Xtrue)),
                            paste0("MIEC_noTY_re.", colnames(Xtrue))
  )
  return(result string)
}
## ----simulations,cache=TRUE, eval=TRUE------
time1 <- Sys.time()</pre>
set.seed(62382+i)
results <- list()
results[["gamma_Xs"]][["sigma2_xs"]][["rho_1"]] <- sapply(1:N_sim, function(x)
  full_simulation(cor_level = "low", X_effect = "small", m_error = "extra small"))
results[["gamma Xs"]][["sigma2 xs"]][["rho m"]] <- sapply(1:N sim, function(x)
  full_simulation(cor_level = "med", X_effect = "small", m_error = "extra small"))
results[["gamma Xs"]][["sigma2 xs"]][["rho h"]] <- sapply(1:N sim, function(x)
  full simulation(cor level = "high", X effect = "small", m error = "extra small"))
results[["gamma_X1"]][["sigma2_xs"]][["rho_1"]] <- sapply(1:N_sim, function(x)
  full_simulation(cor_level = "low", X_effect = "large", m_error = "extra small"))
results[["gamma_X1"]][["sigma2_xs"]][["rho_m"]] <- sapply(1:N_sim, function(x)
  full_simulation(cor_level = "med", X_effect = "large", m_error = "extra small"))
results[["gamma_X1"]][["sigma2_xs"]][["rho_h"]] <- sapply(1:N_sim, function(x)</pre>
  full_simulation(cor_level = "high", X_effect = "large", m_error = "extra small"))
results[["gamma_Xs"]][["sigma2_s"]][["rho_1"]] <- sapply(1:N_sim, function(x)
  full_simulation(cor_level = "low", X_effect = "small", m_error = "small"))
results[["gamma_Xs"]][["sigma2_s"]][["rho_m"]] <- sapply(1:N_sim, function(x)
  full_simulation(cor_level = "med", X_effect = "small", m_error = "small"))
results[["gamma_Xs"]][["sigma2_s"]][["rho_h"]] <- sapply(1:N_sim, function(x))</pre>
  full_simulation(cor_level = "high", X_effect = "small", m_error = "small"))
results[["gamma_X1"]][["sigma2_s"]][["rho_1"]] <- sapply(1:N_sim, function(x))</pre>
 full_simulation(cor_level = "low", X_effect = "large", m_error = "small"))
```

```
results[["gamma_X1"]][["sigma2_s"]][["rho_m"]] <- sapply(1:N_sim, function(x))</pre>
  full_simulation(cor_level = "med", X_effect = "large", m_error = "small"))
results[["gamma X1"]][["sigma2 s"]][["rho h"]] <- sapply(1:N sim, function(x)
  full_simulation(cor_level = "high", X_effect = "large", m_error = "small"))
results[["gamma_Xs"]][["sigma2_m"]][["rho_1"]] <- sapply(1:N_sim, function(x)</pre>
  full_simulation(cor_level = "low", X_effect = "small", m_error = "moderate"))
results[["gamma_Xs"]][["sigma2_m"]][["rho_m"]] <- sapply(1:N_sim, function(x))</pre>
  full_simulation(cor_level = "med", X_effect = "small", m_error = "moderate"))
results[["gamma_Xs"]][["sigma2_m"]][["rho_h"]] <- sapply(1:N_sim, function(x))</pre>
  full_simulation(cor_level = "high", X_effect = "small", m_error = "moderate"))
results[["gamma X1"]][["sigma2 m"]][["rho 1"]] <- sapply(1:N sim, function(x)</pre>
  full simulation(cor level = "low", X effect = "large", m error = "moderate"))
results[["gamma_X1"]][["sigma2_m"]][["rho_m"]] <- sapply(1:N_sim, function(x)
  full_simulation(cor_level = "med", X_effect = "large", m_error = "moderate"))
results[["gamma_X1"]][["sigma2_m"]][["rho_h"]] <- sapply(1:N_sim, function(x))</pre>
  full_simulation(cor_level = "high", X_effect = "large", m_error = "moderate"))
results[["gamma_Xs"]][["sigma2_1"]][["rho_1"]] <- sapply(1:N_sim, function(x)
  full_simulation(cor_level = "low", X_effect = "small", m_error = "large"))
results[["gamma_Xs"]][["sigma2_1"]][["rho_m"]] <- sapply(1:N_sim, function(x))</pre>
  full_simulation(cor_level = "med", X_effect = "small", m_error = "large"))
results[["gamma Xs"]][["sigma2 1"]][["rho h"]] <- sapply(1:N sim, function(x)
  full_simulation(cor_level = "high", X_effect = "small", m_error = "large"))
results[["gamma_X1"]][["sigma2_1"]][["rho_1"]] <- sapply(1:N_sim, function(x)
  full_simulation(cor_level = "low", X_effect = "large", m_error = "large"))
results[["gamma_X1"]][["sigma2_1"]][["rho_m"]] <- sapply(1:N_sim, function(x)</pre>
  full_simulation(cor_level = "med", X_effect = "large", m_error = "large"))
results[["gamma_X1"]][["sigma2_1"]][["rho_h"]] <- sapply(1:N_sim, function(x)
  full_simulation(cor_level = "high", X_effect = "large", m_error = "large"))
time2 <- Sys.time()</pre>
```

```
## ----save_results, eval=TRUE-----
time2-time1
save(results,file=paste("Simulation_Y_normal_XZW_mixture_", i, "-", format(Sys.time(), "%Y%m%d-%H%M"),"
```