```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
```

In [2]: dataset=pd.read_csv(r"C:\Users\HP\Downloads\tested.csv")
 dataset

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.829
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.000
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.687
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.662
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.287
413	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.05(
414	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.900
415	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.25(
416	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.05(
417	1309	0	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.358

418 rows × 12 columns

In [3]: dataset.shape

Out[3]: (418, 12)

Analysing data

```
In [4]: sns.countplot(x="Survived",data=dataset)
```

Out[4]: <AxesSubplot:xlabel='Survived', ylabel='count'>

Those who did not Survived (more than 500) are greater than those who survived (nearly 300)

```
In [5]: sns.countplot(x="Survived",hue="Sex",data=dataset,palette="muted")
```

Out[5]: <AxesSubplot:xlabel='Survived', ylabel='count'>

Analysis: o represent not survived and 1 is for survived

males are trice more likely to survive than females

```
In [6]: sns.countplot(x="Survived",hue="Pclass",data=dataset,palette="dark")
```

Out[6]: <AxesSubplot:xlabel='Survived', ylabel='count'>

Analysis = the passenger who did not sarvived belong to the 3rd class

1st class passamger are more likely to survive

```
In [7]: dataset["Age"].plot.hist()
```

Out[7]: <AxesSubplot:ylabel='Frequency'>

we notice that highest age group travelling are among the young age between 20-30

very few passenger in age group 60-70

```
In [8]: dataset["Fare"].plot.hist(bins=20,figsize=(10,5))
```

Out[8]: <AxesSubplot:ylabel='Frequency'>

we observe that most of the tickets bought are under fare 100 and very for are on the higher side of fare i.e. 100-300

```
In [9]: sns.countplot(x="SibSp",data=dataset,palette="rocket")
```

Out[9]: <AxesSubplot:xlabel='SibSp', ylabel='count'>

We notice that most of the passanger do not have their sibling aboard

```
In [10]: dataset["Parch"].plot.hist()
```

Out[10]: <AxesSubplot:ylabel='Frequency'>


```
In [11]: sns.countplot(x="Parch",data=dataset,palette="summer")
```

Out[11]: <AxesSubplot:xlabel='Parch', ylabel='count'>

the number of parent and siblingd who aboard the ship are less

Data Wrangling

```
In [12]: dataset.isnull().sum()
Out[12]: PassengerId
                            0
          Survived
                            0
          Pclass
                            0
          Name
                            0
          Sex
                            0
                           86
          Age
                            0
          SibSp
          Parch
                            0
                            0
          Ticket
          Fare
                            1
          Cabin
                          327
          Embarked
          dtype: int64
```

```
In [13]: sns.heatmap(dataset.isnull(),cmap="spring")
```

Out[13]: <AxesSubplot:>

In [14]: sns.boxplot(x="Pclass",y="Age",data=dataset)

Out[14]: <AxesSubplot:xlabel='Pclass', ylabel='Age'>

In [15]: dataset.head()

Out[15]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cab
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	Na
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	Na
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	Na
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	Na
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	Na

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Emt
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	

In [18]: dataset.dropna(inplace=True)

In [19]: dataset.isnull().sum()

Out[19]: PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 0 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Embarked 0 dtype: int64

```
In [20]: sns.heatmap(dataset.isnull(),cmap="spring")
```

Out[20]: <AxesSubplot:>

In [21]: dataset.isnull().sum()

Out[21]:	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	Age	0
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0
	Embarked	0
	dtype: int64	

In [22]: dataset.head()

Out[22]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Emt
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	

In [23]: from sklearn.preprocessing import LabelEncoder
l1=LabelEncoder()

In [24]: dataset["Sex"]=11.fit_transform(dataset["Sex"])
 dataset["Embarked"]=11.fit_transform(dataset["Embarked"])

In [25]: dataset

Out[25]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	892	0	3	Kelly, Mr. James	1	34.5	0	0	330911	7.8292
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	0	47.0	1	0	363272	7.0000
2	894	0	2	Myles, Mr. Thomas Francis	1	62.0	0	0	240276	9.687
3	895	0	3	Wirz, Mr. Albert	1	27.0	0	0	315154	8.662
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	0	22.0	1	1	3101298	12.287{
409	1301	1	3	Peacock, Miss. Treasteall	0	3.0	1	1	SOTON/O.Q. 3101315	13.775(
411	1303	1	1	Minahan, Mrs. William Edward (Lillian E Thorpe)	0	37.0	1	0	19928	90.0000
412	1304	1	3	Henriksson, Miss. Jenny Lovisa	0	28.0	0	0	347086	7.775(
414	1306	1	1	Oliva y Ocana, Dona. Fermina	0	39.0	0	0	PC 17758	108.9000
415	1307	0	3	Saether, Mr. Simon Sivertsen	1	38.5	0	0	SOTON/O.Q. 3101262	7.2500

331 rows × 11 columns

In [26]: dataset.drop(["PassengerId","Name","Ticket","Pclass"],axis=1,inplace=True)

```
In [27]: dataset.head()
Out[27]:
             Survived Sex Age SibSp Parch
                                             Fare Embarked
          0
                   0
                         34.5
                                           7.8292
                                                         1
                                  0
                   1
                       0 47.0
                                           7.0000
                                                         2
          1
                                  1
                                        0
          2
                   0
                       1 62.0
                                  0
                                        0
                                           9.6875
                                                         1
          3
                   0
                       1 27.0
                                  0
                                           8.6625
                                                         2
                   1
                       0 22.0
                                  1
                                        1 12.2875
                                                         2
         Train data
In [28]: x=dataset.drop("Survived",axis=1)
         y=dataset["Survived"]
In [29]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=
In [30]: from sklearn.linear model import LogisticRegression
         lg=LogisticRegression()
         lg.fit(x_train,y_train)
Out[30]: LogisticRegression()
In [31]: y_pred=lg.predict(x_test)
         y_pred
Out[31]: array([0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0,
                 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
                 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0,
                 1], dtype=int64)
In [32]: | from sklearn.metrics import accuracy_score
         ac=accuracy_score(y_test,y_pred)*100
         print(ac)
         100.0
         We have the accuracy of 100% which is good and the model can predict the data
         accurately
 In [ ]:
```