

Business Understanding

The project aims to address Kenya's lack of real-time health surveillance for respiratory viruses by demonstrating a data-driven forecasting approach using U.S. hospitalization data. By building predictive models, the project showcases how Kenya could anticipate surges, allocate resources effectively, and improve its public health response once a local data infrastructure is established.

Problem Statement

Kenya currently lacks a real-time health surveillance system to track hospitalizations from respiratory viruses, making it hard to respond to surges. This project uses U.S. hospitalization data as a proxy to demonstrate how data-driven forecasting could work in Kenya. The goal is to guide future public health actions, resource planning, and preparedness once Kenya develops its own data infrastructure.

Objectives

The project aims to monitor, model, and forecast respiratory virus-related hospitalizations across U.S. regions to aid in healthcare planning, outbreak response, and policy-making. Key objectives include detecting seasonal patterns, forecasting future trends, assessing the impact of interventions like vaccines and NPIs, and offering real-time dashboards for public health decision-makers.

Stakeholders

- 1. CDC and local health departments
- 2. Hospital administrators and planners
- 3. Epidemiologists and public health researchers
- 4. Policy-makers and emergency response teams

Data Understanding

- This project leverages two core datasets derived from publicly available U.S. health records (e.g., CDC and HHS):
- Weekly COVID-19 hospital admissions used as the primary target variable.
- State-level socioeconomic and demographic indicators providing contextual predictors.
- The hospitalization dataset is a time-series collection containing detailed records of average COVID-related admissions. It includes engineered features such as **lag values**, **rolling statistics**, and **aggregated state-level metrics**.

Data Understanding

Key insights from initial data exploration revealed:

- Clear seasonal trends and admission spikes during outbreak periods.
- Regional variations in admission patterns across states.
- Valuable time-series decompositions into trend, seasonal, and residual components.
- Rich statistical summaries that guided model selection and feature engineering strategies.

Data Preparation

Comprehensive preprocessing included:

- Log transformation of skewed features
- Lag features (1–8 weeks back)
- Rolling statistics (mean, std, min, max for 2, 4, 8 weeks)
- Percentage changes to capture weekly trends
- Time encoding (week, month, quarter, cyclical features)
- Merge of temporal features with state-level aggregates
- · Handling missing values and scaling for classification models

Modeling

Type Model Purpose Predict average hospital admissions XGBoost Regressor Machine Learning (regression) Benchmark regression with **Random Forest Regressor** Machine Learning interpretability Long-term trend and seasonality Prophet Time Series Forecasting modeling with regressors Predict "High" vs "Not High" Logistic Regression Classification admission weeks Classical time series with SARIMA Time Series Forecasting autoregression + seasonality **Exponential Smoothing** Time Series Forecasting Smoothing of trends and seasonality Trend smoothing using fixed window Simple Moving Average Baseline Model sizes (SMA-3, SMA-6...) Sequence modeling using weekly LSTM (Keras) Deep Learning features

Evaluation Metrics

01

Regression: RMSE, MAE, MAPE, R² 02

Classification:
Accuracy,
Confusion Matrix

03

Forecasting:
Visuals for actual vs predicted trends, prediction intervals

Conclusion & Recommendations Signature

Conclusion

Combining ML models (XGBoost, RF) with time series models (Prophet, SARIMA) enhanced robustness.

Logistic Regression gave useful binary signals for critical weeks.

LSTM holds promise but needs further tuning/data.

Exponential smoothing and SMA were useful for interpretability and baseline comparisons.

Recommendations

- Kenya should prioritize developing a centralized, real-time health data collection system.
- Forecasting models should include lag, seasonal, and contextual features.
- Hybrid systems (ML + classical time series) improve both accuracy and explainability.
- Dashboards with alerts based on these models can significantly support the Ministry of Health and county health departments.

THANK YOU!

