

Bounding slopes of p -adic modular forms

Lawren Smithline

June 21, 2001

Abstract

Let p be prime, N be a positive integer prime to p , and k be an integer. Let $P_k(t)$ be the characteristic series for Atkin's U operator as an endomorphism of p -adic overconvergent modular forms of tame level N and weight k . Motivated by conjectures of Gouv  a and Mazur, we strengthen a congruence in [W] between coefficients of P_k and $P_{k'}$ for k' p -adically close to k . For $p - 1 \mid 12$, $N = 1$, $k = 0$, we compute a matrix for U whose entries are coefficients in the power series of a rational function of two variables. We apply this computation to show for $p = 3$ a parabola below the Newton polygon \mathbf{N}_0 of P_0 , which coincides with \mathbf{N}_0 infinitely often. As a consequence, we find a polygonal curve *above* \mathbf{N}_0 . This tightest bound on \mathbf{N}_0 yields the strongest congruences between coefficients of P_0 and P_k for k of large 3-adic valuation.

1 Overview and background

Let p be a prime number, N be a positive integer relatively prime to p , and k be an integer. Let B be a p -adic ring between \mathbf{Z}_p and \mathcal{O}_p , the ring of integers in \mathbf{C}_p . Denote by $\mathcal{M}_k(N, B)$ the p -adic overconvergent modular forms of tame level N and weight k and by $\mathcal{S}_k(N, B)$ the subspace of overconvergent cusp forms.

For every weight k , Atkin's U operator is an endomorphism of $\mathcal{M}_k(N, B)$ stabilizing $\mathcal{S}_k(N, B)$. Denote by $U^{(k)}$ the restriction of U to $\mathcal{M}_k(N, B)$ and by $U_{(k)}$ the restriction to $\mathcal{S}_k(N, B)$. These are compact operators, so the characteristic series

$$P_k(t) = \det(1 - tU^{(k)}), \quad Q_k(t) = \det(1 - tU_{(k)})$$

exist.

Let $a_m(P_k)$ be the coefficient of t^m in $P_k(t)$. As a function on a suitably defined space of weights k , $a_m(P_k)$ is a rigid analytic function of k .

Wan[W], and Buzzard[B] construct $\hat{\mathbf{N}}(m)$, which grows as $O(m^2)$ and depends on p and N and not on k such that $v_p(a_m(P_k)) > \hat{\mathbf{N}}(m)$.

Gouv  a and Mazur[GM] note, in an earlier work, the existence of $\hat{\mathbf{N}}(m)$ and show, for prime $p \geq 5$, integer l and positive integer n ,

$$v_p(a_m(P_k) - a_m(P_{k+lp^n(p-1)})) \geq n + 1. \tag{1}$$

Following a remark in [Ka], the result in Equation (1) extends to $p = 2, 3$.

In section 2, we show

$$v_p(a_m(P_k) - a_m(P_{k+lp^n(p-1)})) \geq \hat{\mathbf{N}}(m-2) + n + 1. \quad (2)$$

In section 3, for each $p = 2, 3, 5, 7, 13$, $N = 1$, we construct a matrix M for $U_{(0)}$ with respect to an explicit basis. We show, for M_{ij} the entries of M ,

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} M_{ij} x^i y^j$$

is the power series expansion of a rational function of two variables.

In section 4, we show for $p = 3$,

$$v_p(a_m(Q_0)) \geq 3 \binom{m}{2} + 2m,$$

with equality if and only if there is positive integer j such that $m = (3^j - 1)/2$. The secant segments joining these vertices of the Newton polygon \mathbf{N}'_0 of Q_0 form a polygonal curve *above* \mathbf{N}'_0 . We find evidence in support of a conjecture in [G] on the distribution of slopes of classical modular forms.

1.1 Motivating conjectures

The zeros of $P_k(t)$ are reciprocals of $U^{(k)}$ eigenvalues. For rational number α , let $d(k, \alpha)$ denote the number of $U^{(k)}$ eigenvalues with p -adic valuation α .

Conjecture 1.1 (Gouv  -Mazur) *Let k, l be integers, n be a positive integer, and $\alpha < n$. Then $d(k, \alpha) = d(k + lp^n(p-1), \alpha)$.*

Wan [W] uses Equation (1) and the construction of $\hat{\mathbf{N}}(m)$ to compute a quadratic concave up function $f_{Wan}(n)$ such that the conclusion of Conjecture 1.1 holds for $\alpha < f_{Wan}(n)$.

The stronger congruence in Equation (2) together with the method of [W] shows there is quadratic $f(n)$ with quadratic term smaller than that of $f_{Wan}(n)$ such that the conclusion of Conjecture 1.1 holds for $\alpha < f(n)$.

Conjecture 1.2 (Gouv  ) *Let R_k be the multiset of slopes with multiplicity of classical p -oldforms in $\mathcal{M}_k(N, \mathbf{Z}_p)$. The probability that an element of R_k chosen with uniform distribution is in the interval $(\frac{k-1}{p+1}, \frac{p(k-1)}{p+1})$ diminishes to zero as k increases without bound.*

1.2 Spaces of overconvergent modular forms

For $p \geq 5$, let E_{p-1} be the level one Eisenstein series. Let $M_k(N, B)$ be the classical weight k level N modular forms with coefficients in B .

Proposition 1.3 (Katz) *For $p \geq 5$ and any $f \in M_k(N, B)$, there are $b_j \in M_{k+j(p-1)}(N, B)$ for $j \geq 0$ and $r \in \mathcal{O}_p$ of positive valuation such that*

$$f = b_0 + \sum_{j=1}^{\infty} r^j b_j / E_{p-1}^j, \quad (3)$$

There is a distinguished choice of b_j after choosing r and direct sum decompositions

$$M_{k+j(p-1)} = E_{p-1} \cdot M_{k+(j-1)(p-1)} \oplus W_{k+j(p-1)},$$

such that $b_j \in W_{k+j(p-1)}(N, B)$ for $j > 0$.

See [Ka], Propositions 2.6.1 and 2.8.1. The parameter r is the *growth condition* and $v_p(r)$ is bounded above by the given f .

Let $\mathcal{M}_k(N, B, r)$ be the space of modular forms with growth condition r . The space $\mathcal{M}_k(N, B)$ is $\bigcup_{v_p(r) > 0} \mathcal{M}_k(N, B, r)$.

Remark 1.3.1 *For $p = 3$, $N > 2$ and prime to 3, Theorem 1.7.1 of [Ka] shows there is a level N lift of the characteristic 3 Hasse invariant, so an analogous expansion result holds. Proposition 2.8.2 of loc. cit. shows the expansion result for $N = 2$.*

Proposition 1.4 *Suppose $p = 2$ or 3 and N relatively prime to p . For any $f \in \mathcal{M}_k(N, B)$ there are $b_j \in M_{k+4j}(N, B)$ and $r \in \mathcal{O}_p$ of positive valuation such that*

$$f = b_0 + \sum_{j=1}^{\infty} r^{4j/(p-1)} b_j / E_4^j,$$

There is a distinguished choice of b_j after choosing r and direct sum decompositions

$$M_{k+4j} = E_4 \cdot M_{k+4(j-1)} \oplus W_{k+4j}(N, B),$$

such that $b_j \in W_{k+4j}(N, B)$ for $j > 0$.

PROOF. We follow the remark at the end of Subsection 2.1 of *loc. cit.*. Let B be the fourth power of the Hasse invariant A for $p = 2$ and the square of A for $p = 3$. In either case, B is a weight 4 level 1 modular form defined over \mathbf{F}_p . A version of Deligne's congruence holds: $B \equiv E_4 \pmod{2^4}$ and $B \equiv E_4 \pmod{3}$.

For $N > 2$, and relatively prime to p , the functor “isomorphism classes of elliptic curves with level N structure” is representable by a scheme which is smooth over $\mathbf{Z}[\frac{1}{N}]$ and the formation of modular forms commutes with base change to a ring in which p is topologically nilpotent. So we repeat the construction of p -adic modular forms for $p = 2, 3$ and Katz expansions with powers of $r^{4/(p-1)} E_4^{-1}$.

For $p = 2, 3$ (and 5), and $N = 1$, Section 1.4 of [Se2] states weight zero forms have expansions in powers of ΔE_4^{-3} where Δ is the weight 12 level 1 cusp form. Coleman[C2] shows

$$E_k \cdot \mathcal{M}_0(N, B) = \mathcal{M}_k(N, B).$$

$M_k(N, B)$ is a free B module, so $M_k(N, B) = E_4 \cdot M_{k-4}(N, B) \oplus W_k(N, B)$ for some $W_k(N, B) \subset M_k(N, B)$. \square

Theorem 1.5 (Coleman) *Let k_1, k_2 be weights. Let $G(q) \in M_{k_1-k_2}(N, B)$. Let Ξ be the operator multiplication by $G(q)/G(q^p)$. If $1/G \in \mathcal{M}_{k_2-k_1}(N, B)$ then $U^{(k_1)}$ is similar to $U^{(k_2)}\Xi$.*

Remark 1.5.1 *The Eisenstein series satisfy the hypothesis of Theorem 1.5.*

1.3 Notations for matrices and Newton Polygons

Let M be a matrix over a ring, possibly of infinite rank. Let n be a nonnegative integer. Let $s = (s_1, s_2, s_3, \dots, s_n)$ be a sequence of n distinct natural numbers.

The $n \times n$ *diagonal major* of M associated to s is the $n \times n$ matrix A whose entry A_{ij} is M_{s_i, s_j} .

A *selection* of a M associated to s and degree n permutation π is a sequence of n elements, $(M_{s_1, s_{\pi(1)}}, M_{s_2, s_{\pi(2)}}, \dots, M_{s_n, s_{\pi(n)}})$.

The $n \times n$ *diagonal minor* of M associated to s is the determinant of the $n \times n$ diagonal major of M associated to s .

The *upper* $n \times n$ *diagonal major* of M is the diagonal major associated to the sequence $(1, 2, 3, \dots, n)$.

The diagonal matrix $D = \text{diag}(d_i : i \geq 1)$ is the matrix with entries $D_{ii} = d_i$ and zero elsewhere.

The Newton polygon of power series $P(t)$ is the function $\mathbf{N}(m)$ which is the lower convex hull of the set $(m, v_p(a_m(P)))$, defined for real $m \geq 0$.

A vertex of the Newton polygon $\mathbf{N}(m)$ is a point $(m, \mathbf{N}(m))$ such that $\mathbf{N}(m) = v_p(a_m(P))$.

A side of a Newton polygon $\mathbf{N}(m)$ is a line segment whose endpoints are vertices.

The slopes of a Newton polygon are the slopes of its sides.

The multiplicity of a slope is the difference of the first coordinates of its endpoints.

We denote by $\mathbf{N}_k(m)$ the Newton polygon of P_k , and by $\hat{\mathbf{N}}_k(m)$ a function such that $\mathbf{N}_k(m) \geq \hat{\mathbf{N}}_k(m)$. We indicate by $\hat{\mathbf{N}}(m)$ a function such that for all weights k , $\mathbf{N}_k(m) \geq \hat{\mathbf{N}}(m)$.

We denote by $\mathbf{N}'_k(m)$ the Newton polygon of Q_k , and by $\hat{\mathbf{N}}'_k(m)$ a function such that $\mathbf{N}'_k(m) \geq \hat{\mathbf{N}}'_k(m)$.

We state as Lemma 3.2 that if $p - 1 \mid 12$ and $N = 1$, then $P_k(t) = (1 - t)Q_k(t)$. For these cases, $\mathbf{N}'_k(m) = \mathbf{N}_k(m + 1)$.

2 Comparing Newton polygons for U in different weights

Retain p, N, k as before, and let l be an integer and n be a positive integer. For $p = 2$, we require $n \geq 2$. Let $k' = k + l(p - 1)p^n$. At the end of the section, we show there is a quadratic $\hat{\mathbf{N}}(m)$ such that

$$v_p(a_m(P_k) - a_m(P_{k'})) \geq \hat{\mathbf{N}}(m - 2) + n + 1.$$

We now describe only the case $p > 3$ for clarity. Section 1.2 reviews the differences for $p = 2, 3$ from the case $p > 3$.

Let $r = p^{1/(p+1)}$. Choose a basis $\{b_{0,s}\}$ for the module $M_k(N, B)$. For $i > 0$, choose a basis $b_{i,s}$ for the module $W_{k+i(p-1)}(N, B)$.

Let $e_{i,s} = r^i E_{p-1}^{-i} b_{i,s}$. Let M be the matrix for $U^{(k)}$ with respect to the basis $\{e_{i,s}\}$.

Let $\mathbf{N}_k(m)$ be the Newton polygon of $P_k(t)$.

Lemma 3.1 of [W] includes

Lemma 2.1 *Let $M_{i,s}^{u,v}$ be the coefficient of $e_{u,v}$ in $U^{(k)}(e_{i,s})$.*

Then $v_p(M_{i,s}^{u,v}) \geq u(p-1)/(p+1)$.

Let $d_u = \dim M_{k+u(p-1)}(N, B) \otimes \mathbf{C}_p$. For $u > 0$, let $m_u = d_u - d_{u-1}$.

Lemma 2.2 (Wan) *Let k be a weight. If $d_v \leq m < d_{v+1}$ for some $v \geq 0$, then*

$$\mathbf{N}_k(m) \geq \frac{p-1}{p+1} \left(\sum_{u=0}^v um_u + (v+1)(m - d_v) \right) - m. \quad (4)$$

Definition 2.1 *Let $\hat{\mathbf{N}}_k(m)$ be the right side of Equation (4).*

The m_u have an upper bound, depending on p and N , so $\hat{\mathbf{N}}_k(m)$ grows quadratically. Wan shows $\mathbf{N}_k(m) = \hat{\mathbf{N}}_k(m)$ when both are less than $n + 1$.

Lemma 2.3 *Let A be the matrix for $U^{(k)}$ with respect to basis $\epsilon_{i,s} = r^{-i} e_{i,s}$. Then*

$$v_p(A_{i,s}^{u,v}) \geq (up - i)/(p+1)$$

and also at least zero.

PROOF. $U^{(k)}$ stabilizes $\mathcal{M}_k(N, B, 1)$, as shown in [GM]. □

Proposition 2.4 $E_{p-1}^{p^n}(q)/E_{p-1}^{p^n}(q^p) \in 1 + p^{n+1} \mathcal{M}_0(1, \mathbf{Z}_p, 1)$.

PROOF. In weight zero, the only $\epsilon_{i,s}$ not 0 at the cusp ∞ is the constant function 1. The q -expansion of $(E_{p-1} - 1)/p$ is in $q\mathbf{Z}[[q]]$. □

Theorem 2.5 *For k, k' as above, $v_p(a_m(P_k) - a_m(P_{k'})) \geq \hat{\mathbf{N}}_k(m - 2) + n + 1$.*

PROOF. Let C be the matrix with respect to the basis $\epsilon_{i,s}$ for multiplication by $E_{p-1}^{p^n}(q)/E_{p-1}^{p^n}(q^p)$ considered as an operator on $\mathcal{M}_k(N, B, r)$.

Let $M^{(k')} = MC$. By Theorem 1.5, $M^{(k')}$ is a matrix for an operator similar to $U^{(k')}$ on $\mathcal{M}_{k'}(N, B, r)$ and $M^{(k')}$ acts on $\mathcal{M}_k(N, B, r)$.

By Proposition 2.4, the matrix $C - 1$ is a matrix with entries in $p^{n+1}B$, so $M - M^{(k')}$ has entries in $p^{n+1}B$.

The difference $a_m(P_k) - a_m(P_{k'})$ is equal to

$$\text{tr } \bigwedge^m M - \text{tr } \bigwedge^m M^{(k')}.$$

These traces are the sums of all the different $m \times m$ diagonal minors of M and $M^{(k')}$, so the difference contains terms (up to sign)

$$\prod_{i=1}^m M_{s_i, s_{\pi(i)}}^{(k')} - \prod_{i=1}^m M_{s_i, s_{\pi(i)}}, \quad (5)$$

where s is a sequence of m integers, π is a permutation of degree m .

Let

$$Z = \prod_{i=1}^m (z_i + w_i) - \prod_{i=1}^m (z_i), \quad (6)$$

where $z_i \in B$ and $w_i \in p^{n+1}B$, be instance of equation (5).

The sequence (z_1, z_2, \dots, z_m) is a selection of M . By Lemma 2.3, the product of any $m-j$ of them has valuation at least $\hat{\mathbf{N}}_k(m-2j)$. The product of any j of the w_i has valuation at least $j(n+1)$.

Rewrite (6) as

$$Z = \sum_{\emptyset \neq s \subset \{1, 2, \dots, m\}} \prod_{i \in s} w_i \prod_{i \notin s} z_i. \quad (7)$$

For any subset s of size j ,

$$v_p \left(\prod_{i \in s} w_i \prod_{i \notin s} z_i \right) \geq \hat{\mathbf{N}}_k(m-2j) + j(n+1).$$

The set s is nonempty, so,

$$v_p(Z) \geq \hat{\mathbf{N}}_k(m-2) + n+1,$$

for every instance of Equation (6). □

Corollary 2.5.1 *There is a quadratic $\hat{\mathbf{N}}(m)$ independent of k such that the conclusion of Theorem 2.5 holds.*

PROOF. Given p, N , Wan[W] shows there are finitely many different $\hat{\mathbf{N}}_k(m)$. Let $\hat{\mathbf{N}}(m)$ be the infimum of them. □

3 Computing tame level 1 U for $p \in \{2, 3, 5, 7, 13\}$

Let p be a prime such that $X_0(p)$ has genus 0, that is, $p \in \{2, 3, 5, 7, 13\}$ and $N = 1$. We show how to compute $U_{(0)}$ with respect to an explicit basis.

The curve $X_0(p)$ has a uniformizer

$$d_p = \sqrt[p-1]{\Delta(q^p)/\Delta(q)}$$

with simple zero at the cusp ∞ , pole at the cusp 0 , and leading q expansion coefficient 1.

Let $\pi : X_0(p) \rightarrow X_0(1)$ be the map which ignores level p structure. Let $\hat{j} = \pi^*(j)$. The map π is ramified above $j = 0, 1728, \infty$ only.

Proposition 3.1 *There is a degree $p + 1$ polynomial H_p over \mathbf{Z} with constant term 1 such that*

$$d_p \hat{j} = H_p(d_p).$$

PROOF. The map π has degree $p + 1$. The product $d_p \hat{j}$ has a pole only at the cusp 0 . Hence, there is a polynomial H_p satisfying the proposition.

H_p has integer coefficients, because the q -expansion of $d_p \hat{j}$ at ∞ is in $1 + q\mathbf{Z}[[q]]$ \square

Remark 3.1.1 *The ramification degrees of π over $j = 0$ are 1 and 3, yielding roots of multiplicity 1 or 3 of $H_p(d_p)$. Points over $j = 1728$ are roots of multiplicity 1 or 2 of $H_p(d_p) - 1728d_p$. We calculate H_p by equating q -expansions.*

Lemma 3.2 $P_k(t) = (1 - t)Q_k(t)$

PROOF. $X_0(p)$ has genus 0, so the only weight zero noncuspidal eigenforms are constants and the eigenvalue is 1. By a theorem of [H], or as a consequence of Theorem 1.5, in every weight k , $d(k, 0) = 1$ and a slope zero eigenform is noncuspidal. \square

Let $t_2 = 4$, $t_3 = 3$. For $p \geq 5$, let $t_p = 1$.

Let $c_2 = 0$, $c_3 = 1728$, $c_5 = 0$, $c_7 = 1728$, and $c_{13} = 432000/691$.

Let $e = 12/(p^2 - 1)$.

Lemma 3.3 *The Newton polygon of $H_p(d_p) - c_p d_p$, as a polynomial in d_p , has a single side of slope ep .*

Lemma 3.4 *The weight 12 power of $E_{t_p(p-1)}$ is $(j - c_p)\Delta$.*

The lemmas are direct computations.

Proposition 3.5 *Let $r < p/(p + 1)$. The disc $D = \{z : z \in X_0(1), v_p(E_{t_p(p-1)}(z)) < t_p r\}$ is isomorphic to $\{z : z \in X_0(p), v_p(d_p(z)) > -er(p + 1)\}$.*

PROOF. When $z \in X_0(1)$ is a point of supersingular reduction, $\Delta(z)$ is a unit. At a point of ordinary reduction, $E_{t_p(p-1)}(z)$ is a unit and $v_p(\Delta(z)) \geq 0$. By Lemma 3.4, $D = \{z : v_p(j(z) - c_p) < er(p+1)\}$.

Lemma 3.3 shows the relation $(\hat{j} - c_p)d_p = H_p - c_p d_p$ is uniquely invertible for d_p such that $v_p(d_p(z)) > -er(p+1)$, establishing the isomorphism. \square

Corollary 3.5.1 $S_0(1, \mathbf{Z}_p) \subset d_p \mathbf{Z}_p[[d_p]]$. $U_{(0)}$ acts as a matrix M on a basis of powers of d_p .

Let \mathcal{W} be the rigid subspace of $X_0(p)$ where $v_p(\pi^*(E_{t_p(p-1)})) < t_p/(p+1)$. The section s of π over $\pi(\mathcal{W})$ such that for elliptic curve E , $s(E)$ is the pair (E, C) for C the canonical order p subgroup of E is an isomorphism.

Let V be the pullback of ϕ , the Deligne-Tate lift of Frobenius on $X_0(1)/\mathbf{F}_p$. Let w_p be the Atkin-Lehner involution on $X_0(p)$.

Lemma 3.6 For points of \mathcal{W} ,

$$V(j) \circ \pi = \hat{j} \circ w_p.$$

PROOF. The Atkin-Lehner involution acts as

$$w_p : (E, C) \rightarrow (E/C, E[p]/C).$$

E has a canonical subgroup of order p , and

$$V : E \rightarrow E/\ker \phi^*,$$

coincides with $s^* \circ w_p^* \circ \pi^*$. \square

We identify \mathcal{W} with $\pi(W)$ via section s .

Proposition 3.7 For points of \mathcal{W} ,

$$H_p(p^{12/(1-p)}/d_p)V(d_p) - p^{12/(1-p)}H_p(V(d_p)/d_p) = 0. \quad (8)$$

PROOF. The modular equation

$$H_p(w_p^*(d_p))V(d_p) = H_p(V(d_p))w_p^*(d_p)$$

holds on \mathcal{W} and $w_p(d_p) = (p^{12/(1-p)}/d_p)$. \square

Theorem 3.8 There is an algebraic function $I_p(y, x)$ and a matrix M for $U_{(0)}$ with respect to the basis d_p^n such that entries M_{ij} satisfy a generating function equation

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} M_{ij} x^i y^j = \frac{y}{p} \frac{d}{dy} \log I_p(x, y). \quad (9)$$

PROOF. Clear denominators and factor $V(d_p) - w_p^*(d_p)$ from Equation (8) to determine an algebraic relation

$$d_p^p I_p(V(d_p), 1/d_p)$$

between d_p and $V(d_p)$, of degree p in d_p . The inverse of V applied to coefficient of d_p^{p-1} is $\text{tr } V(d_p) = pU(d_p)$.

The values of $U(d_p^n)$ for $n = 0$ to $p-1$ and the coefficients of I_p determine a recurrence for $U(d_p^n)$ for $n \geq p$. \square

Remark 3.8.1 The $I_p(x, y)$ for $p = 2, 3, 5, 7, 13$ are

$$\begin{aligned} I_2 &= 1 - (2^{12}x^2 + 3 \cdot 2^4x)y - xy^2, \\ I_3 &= 1 - (3^{12}x^3 + 4 \cdot 3^8x^2 + 10 \cdot 3^3x)y - (3^6x^2 + 4 \cdot 3^2x)y^2 - xy^3, \\ I_5 &= 1 - (5^{12}x^5 + 6 \cdot 5^{10}x^4 + 63 \cdot 5^7x^3 + 52 \cdot 5^5x^2 + 63 \cdot 5^2x)y \\ &\quad - (5^9x^4 + 6 \cdot 5^7x^3 + 63 \cdot 5^4x^2 + 52 \cdot 5^2x)y^2 \\ &\quad - (5^6x^3 + 6 \cdot 5^4x^2 + 63 \cdot 5x)y^3 - (5^3x^2 + 6 \cdot 5x)y^4 - xy^5, \\ I_7 &= 1 - (7^{12}x^7 + 4 \cdot 7^{11}x^6 + 46 \cdot 7^9x^5 + 272 \cdot 7^7x^4 + \\ &\quad 845 \cdot 7^5x^3 + 176 \cdot 7^2x^2 + 82 \cdot 7x)y - \dots - xy^7, \\ I_{13} &= 1 - (13^{12}x^{13} + 2 \cdot 13^{12}x^{12} + 25 \cdot 13^{11}x^{11} + 196 \cdot 13^{10}x^{10} + \\ &\quad 1064 \cdot 13^9x^9 + 4180 \cdot 13^8x^8 + 12086 \cdot 13^7x^7 + \\ &\quad 25660 \cdot 13^6x^6 + 39182 \cdot 13^5x^5 + 41140 \cdot 13^4x^4 + \\ &\quad 27272 \cdot 13^3x^3 + 9604 \cdot 13^2x^2 + 1165 \cdot 13x)y - \dots - xy^{13}. \end{aligned}$$

Proposition 3.9 The p -adic valuation of M_{ij} is at least $e(pi - j) - 1$. There is a parabola $\hat{\mathbf{N}}(m)$ with quadratic coefficient $6/(p+1)$ such that $\mathbf{N}_0(m) \geq \hat{\mathbf{N}}(m)$.

PROOF. Let $M'_{ij} = p^{e(j-i)}M_{ij}$. The matrix (M'_{ij}) is similar to (M_{ij}) . Theorem 3.8 shows

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} M'_{ij} x^i y^j = \frac{y}{p} \frac{d}{dy} \log I_p(p^{-e}x, p^e y). \quad (10)$$

Direct calculation shows $I_p(p^{-e}x, p^e y)$, for the I_p displayed in Remark 3.8.1, is a polynomial in $p^{e(p-1)}x$ and y with integer coefficients. Hence, $v_p(M'_{ij}) \geq i \cdot e(p-1)$. \square

3.1 Tame level 1 and $p = 2$ or 3

Emerton[E] calculates the lowest positive slope 2-adic modular forms of every weight. Concise expressions for the q -expansions of a few forms facilitate computation.

Serre[Se] observes that for a compact operator M expressed as a matrix on a basis of a Banach space, if c_i is the infimum of the valuations of column i of M , then $\text{tr } (\wedge^n M)$ has valuation at least the sum of the n smallest c_i .

Proposition 3.10 *For $p = 2$ and even weight k , there is an \mathcal{O}_2 basis $\{e_n\}_{n \geq 1}$ of $\mathcal{S}_k(1, \mathcal{O}_2)$ such that the image of $U_{(k)}$ is a subset of $\bigoplus 8^n e_n \mathcal{O}_2$.*

PROOF. This is a rewriting of Proposition 3.21 of [E] in language amenable to the noted observation of Serre. The basis element e_n is $F_k d_2^m$ for a certain weight k form F . \square

Recall $\mathbf{N}'_k(m)$ is the Newton polygon of $Q_k(t)$.

Corollary 3.10.1 $\mathbf{N}'_k(m) \geq 3\binom{m+1}{2}$.

Lemma 3.11 *Suppose $p = 3$. Let $S = \sqrt[8]{\Delta^3/V(\Delta)}$. S^2 is in $\mathcal{M}_6(1, \mathbf{Z}_p)$ and does not vanish at the cusp ∞ . The quotient $S/V(S)$ is in $M_0(1, \mathcal{O}_3, 3/2)$ and as a power series in $\mathbf{Z}[[d_3]]$, $S/V(S) - 1$ is in the ideal $(9d_3, 27d_3^2)$.*

PROOF. Direct calculation and comparison of q expansions shows S is the Eisenstein series for level 3, weight 3 and character τ , the 3-adic Teichmuller character. S^2 is a level 3 weight 6 classical modular form and thus a tame level 1 weight 6 overconvergent modular form.

The curve $X_0(9)$ has genus zero and uniformizer

$$d_9 = \sqrt[8]{V(V(\Delta))/\Delta}.$$

The ramification of the forgetful map to $X_0(3)$ shows

$$d_3 = d_9 + 9d_9^2 + 27d_9^3.$$

Reversal of this relation between d_3 and d_9 and the observation

$$S/V(S) = d_9/d_3$$

shows $S/V(S)$ is in $M_0(1, \mathcal{O}_3, 3/2)$, has constant term 1, and $S/V(S) - 1 \in (9d_3, 27d_3) \subset \mathbf{Z}[[d_3]]$. \square

Proposition 3.12 *For $p = 3$ and even weight k divisible by 3, $\mathbf{N}'_k(m) \geq 3\binom{m}{2}$.*

PROOF. Let R be the multiplication by $(S/V(S))^{k/3}$ operator. Theorem 1.5 shows the composition $U_{(0)}R$ is similar to $U_{(k)}$. Lemma 3.11 shows the conclusions of Proposition 3.9 hold for $U_{(0)}R$. \square

3.2 Further example for $p = 3, N = 1, k = 0$.

Let $p = 3, N = 1$ and

$$\hat{\mathbf{N}}'_0(m) = \frac{3}{2}m(m-1) + 2m.$$

We work an example of Proposition 3.9.

Lemma 3.13 $\mathbf{N}'_0(m) \geq \hat{\mathbf{N}}'_0(m)$.

PROOF. Recall $e = 3/2$. Equation (10) shows

$$3 \sum_{i,j} M'_{ij} x^i y^j = \frac{9(10xy + 8\sqrt{3}xy^2 + 3xy^3) + 3^5(4\sqrt{3}x^2y + 2x^2y^2) + 3^8x^3y}{1 - 3^3(10xy + 4\sqrt{3}xy^2 + xy^3) - 3^6(4\sqrt{3}x^2y + x^2y^2) - 3^9x^3y}. \quad (11)$$

Following the last step of Proposition 3.9, substitute $\delta = 3^3x$ into the right side of Equation (11) to get

$$G(\delta, y) = \frac{10\delta y + 8\sqrt{3}\delta y^2 + 3\delta y^3 + 4\sqrt{3}\delta^2 y + 2\delta^2 y^2 + \delta^3 y}{1 - 10\delta y - 4\sqrt{3}(\delta y^2 + \delta^2 y) - (\delta y^3 + \delta^2 y^2 + \delta^3 y)}. \quad (12)$$

The valuation of M'_{ij} is at least $i \cdot e(p-1) - 1 = 3i - 1$. So

$$\mathbf{N}'_0(m) \geq \sum_{i=1}^m 3i - 1 = \hat{\mathbf{N}}'_0(m).$$

□

4 For $p = 3, N = 1, \hat{\mathbf{N}}'_0$ is a sharp parabola below \mathbf{N}'_0

Let $p = 3$ and $N = 1$ and

$$m_i = \sum_{j=0}^{i-1} 3^j = \frac{3^i - 1}{2}.$$

Theorem 4.1 The set $E = \{m : m \in \mathbf{Z}, \mathbf{N}'_0(m) = \hat{\mathbf{N}}'_0(m)\}$ is the same as $\{m_i : i \geq 0\}$.

PROOF. We show for all $m \geq 0$, that $m \in E$ if and only if $(m-1)/3 \in E$.

The leading coefficient of P_0 is 1, so $0 \in E$.

Let M' be the matrix for $U_{(0)}$ with respect to basis $\{3^{3m/2}d^m\}$.

Lemma 3.13 shows M'_{ij} has valuation at least $3i - 1$, so there is a matrix K over $\mathbf{Z}[\sqrt{3}]$ and diagonal matrix $D = \text{diag}(3^{3i-1})$ such that $M' = DK$.

Let $\bar{K} = K \bmod \sqrt{3}\mathbf{Z}[\sqrt{3}]$ and let $c_m(\bar{K})$ be its upper $m \times m$ diagonal minor.

Every $m \times m$ diagonal minor of M' has valuation at least $\hat{\mathbf{N}}'_0(m)$ and the inequality is strict except for the upper $m \times m$ diagonal minor. So we have reduced the theorem to showing that $m \in E$ if and only if $c_m(\bar{K}) \neq 0$.

Call a degree m permutation π *excellent* if the selection of \bar{K} associated to $(1, 2, \dots, m)$ and π is a sequence of nonzero entries of \bar{K} .

Claim 1. If there is a degree m excellent π , then $m = m_i$ for some i .

We establish Claim 1 by induction. The trivial degree 0 permutation is excellent.

The entries of K satisfy a linear recurrence. Equation (12) with x substituted for δ is

$$G(x, y) = \frac{10xy + 4\sqrt{3}xy(x+2y) + xy(x^2 + 2xy + 3y^2)}{1 - xy(10 + 4\sqrt{3}(x+y) + x^2 + xy + y^2)}.$$

The coefficient of $x^i y^j$ is the entry of K in row i and column j .

Let \bar{G} be the generating function for entries of \bar{K} . \bar{G} is the reduction of G to $\mathbf{F}_3[[x, y]]$.

Let

$$R(i) = (1 + (xy + x^3y + x^2y^2 + xy^3) + (xy + x^3y + x^2y^2 + xy^3)^2)^{3^i},$$

and

$$\bar{G}_0(x, y) = xy(1 - xy + y^2).$$

Let

$$\bar{G}_j = \bar{G}_0 \cdot \prod_{i=0}^{j-1} R(i)$$

and

$$\bar{C}_j = \prod_{i=j}^{\infty} R(i).$$

For all nonnegative integers j , $\bar{C}_j^3 = \bar{C}_{j+1}$ and $\bar{G} = \bar{G}_j \bar{C}_j$.

By direct computation,

$$\bar{G}_1 = (x^{-1}y + 1 - xy^{-1} + y^{-2})\bar{G}_0^3 + xy + x^2y^4 + x^6y^2, \quad (13)$$

and so

$$\bar{G} = (x^{-1}y + 1 - xy^{-1} + y^{-2})\bar{G}^3 + (xy + x^2y^4 + x^6y^2)\bar{C}_1. \quad (14)$$

Equation (14) shows the coefficient of $x^i y^{3j}$ in \bar{G} is the same as the coefficient of $x^i y^{3j}$ in \bar{G}^3 . This coefficient is zero if i is not divisible by 3.

Suppose degree m permutation π is excellent. The only unit in row 1 is in column 1, so $\pi(1) = 1$. The functions

$$\sigma(i) = \pi(3i)/3, \quad \sigma'(i) = (\pi(3i-1)-1)/3, \quad \sigma''(i) = (\pi(3i+1)+1)/3 \quad (15)$$

are excellent degree $\lfloor m/3 \rfloor$ permutations, and $3 \mid (m-1)$.

The inductive step is complete.

Claim 2. For any m_i , there is a unique degree m_i excellent π .

We proceed by induction. The unique degree 0 permutation is excellent.

Equation (14) shows for excellent degree $\frac{m-1}{3}$ permutations $\sigma, \sigma', \sigma''$, there is an excellent degree m permutation π , computed by reversing Equations (15).

If there is a unique degree $(m-1)/3$ excellent σ , then there is a unique degree m excellent π . Claim 2 is established.

Claim 1 shows for m not equal to any m_i , that $c_m(\bar{K}) = 0$. Claim 2 shows for each m_i , there is a unique selection of the upper $m_i \times m_i$ diagonal major of \bar{K} which contributes a nonzero term to $c_{m_i}(\bar{K})$. Hence, $c_m(\bar{K}) \neq 0$ if and only if there is i such that $m = m_i$. \square

Corollary 4.1.1 *Let L be the secant line such that $L(m_i) = \hat{\mathbf{N}}'_0(m_i)$ and $L(m_{i+1}) = \hat{\mathbf{N}}'_0(m_{i+1})$. If m is such that $m_i < m < m_{i+1}$, then*

$$\hat{\mathbf{N}}'_0(m) < \mathbf{N}'_0(m) \leq L(m).$$

Proposition 4.2 *Let l be an integer, n be a nonnegative integer. Let $k = 2 \cdot 3^{n+1} \cdot l$. Let s be an integer, $0 \leq s < 2 \cdot 3^{n-1}$. If $\mathbf{N}'_0(s) = \hat{\mathbf{N}}'_0(s)$, then $\mathbf{N}'_k(s) = \hat{\mathbf{N}}'_0(s)$.*

PROOF. Let $R = (S/V(S))^{k/3}$. The binomial theorem shows the coefficient of d_3^m in R has valuation at least $\lceil 3m/2 \rceil + n - v_3(m)$.

Let C be the matrix for the multiplication by R operator on $\mathcal{S}_0(1, \mathcal{O}_p)$ with respect to the basis $\{3^{3m/2} d^m\}$.

Let M' be the matrix for $U_{(0)}$ with respect to the same basis.

By Theorem 1.5, $M'C$ is similar to a matrix for $U_{(k)}$.

For all i, j , $v_3(M'_{ij}) \geq 3i - 1$. For $i > 3j$ or $j > 3i$, $M'_{ij} = 0$.

For all $j > 0$, $C_{jj} = 1$. For $j, m > 0$, $v_3(C_{j+m,j}) \geq n - v_3(m)$ and $C_{j,j+m} = 0$.

For odd m , including $m = 3^{n-1}$, $v_3(C_{j+m,j}) \geq \frac{1}{2}$.

For all i , $v_3(M'_{ij} - (M'C)_{ij}) \geq 3i - 1$.

For $i \leq s$, $v_3(M'_{ij} - (M'C)_{ij}) > 3i - 1$, because

$$(M'C)_{ij} = \sum_{k=j}^{3i} M'_{ik} C_{kj},$$

and $3i \leq 3s < 2 \cdot 3^n$.

If $\mathbf{N}'_0(s) = \hat{\mathbf{N}}'_0(s)$ then $\mathbf{N}'_k(s) = \mathbf{N}'_0(s)$. \square

Corollary 4.2.1 *Let l be an integer and n be a nonnegative integer. Let $k = 2 \cdot 3^{n+1} \cdot l$.*

For integer i , $0 \leq i < n-1$, there are exactly 3^i overconvergent 3-adic modular forms of weight k with slope in $[m_{i+1} + 1, m_{i+2} - 2]$, and these have average slope $3^{i+1} - 1$.

PROOF. By Proposition 4.2, $\mathbf{N}'_k(m_i) = \mathbf{N}'_0(m_i)$ and $\mathbf{N}'_k(m_{i+1}) = \mathbf{N}'_0(m_{i+1})$. There are $3^i = m_{i+1} - m_i$ slopes with multiplicity accounted for by the edges joining these vertices of the Newton polygon \mathbf{N}'_k . The difference $\mathbf{N}'_k(m_{i+1}) - \mathbf{N}'_k(m_i)$ is $3^i(3^{i+1} - 1)$.

The average slope is $3^{i+1} - 1$. The minimum of these slopes is at least $3m_i + 2$ and the maximum at most $3m_{i+1} - 1$. \square

Corollary 4.2.2 *Let k be an even integer and i be a positive integer. If*

$$v_3(k) \geq [\hat{\mathbf{N}}'_0(m_{i+1}) + \hat{\mathbf{N}}'_0(m_i)]/2 - \hat{\mathbf{N}}'_0((m_{i+1} + m_i)/2) + i + 2,$$

then for $m \leq m_{i+1}$, $\mathbf{N}'_0(m) = \mathbf{N}'_k(m)$.

PROOF. The Newton polygons \mathbf{N}'_0 and \mathbf{N}'_k both have vertices $(m_i, \hat{\mathbf{N}}'_0(m_i))$ and $(m_{i+1}, \hat{\mathbf{N}}'_0(m_{i+1}))$.

By Corollary 4.1.1 and Theorem 2.5, $v_3(a_m(P_k)) = v_3(a_m(P_0))$ for every m between m_i and m_{i+1} . \square

Affirming a pattern noticed by Gouvêa[G],

Corollary 4.2.3 *Let $k = 2 \cdot 3^{n+1}$. The classical weight k level 3 oldforms have slopes outside $[k/4, 3k/4]$.*

PROOF. There are $m_n = \frac{k}{12} - \frac{1}{2}$ cuspidal level 1 normalized eigenforms. There are $2m_i + 2$ classical level 3 oldforms, and one pair of these comes from the weight k Eisenstein series. The slopes of the forms in this pair are 0 and $k - 1$.

By Proposition 4.2, $\mathbf{N}'_k(m_n) = \hat{\mathbf{N}}'_0(m_n)$, because $m_n < 2 \cdot 3^{n-1}$.

The slope $\mathbf{N}'_k(m_n) - \mathbf{N}'_k(m_n - 1)$ is less than

$$\hat{\mathbf{N}}'_0(m_n) - \hat{\mathbf{N}}'_0(m_n - 1) = 3m_n - 1 = \frac{k}{4} - 1.$$

The mates of these m_i oldforms have slopes greater than $\frac{3k}{4}$. \square

References

- [B] K. Buzzard, *Families of modular forms*. Proceedings of Journéé Arithmetic 2000.
- [C] R. Coleman, Classical and overconvergent modular forms. Journal de Théorie des Nombres de Bordeaux 7 (1995) 333–365.
- [C2] R. Coleman, *p -adic Banach spaces and families of modular forms*. Inv. Math. 127 (1997) 417–479.
- [E] M. Emerton, *\mathcal{O} -adic Modular forms of minimal slope*. Doctoral thesis, Harvard University, 1998.
- [G] F. Gouvêa, *Where the slopes are*. Unpublished notes, 1999.
- [GM] F. Gouvêa and B. Mazur, *On the characteristic series of the U operator*. Ann. Inst. Fourier 43 (1993) 301–312.
- [H] H. Hida, *Elementary theory of L -functions and Eisenstein series*, Cambridge University Press, 1993.
- [Ka] N. Katz, *p -adic properties of modular schemes and modular forms*. Springer Lecture Notes in Mathematics 350 (1972) 69–190.

- [Se] J. P. Serre, *Endomorphismes complètement continues des espaces de Banach p-adique*, Publ. Math. IHES 12 (1962), 69–85.
- [Se2] J. P. Serre, Formes modulaires et fonctions zêta p-adiques. Springer Lecture Notes in Mathematics 350 (1972) 191–268.
- [W] D. Wan, *Dimension Variation of Classical and p-adic Modular Forms*. Inv. Math. 133 (1998) 449–463.

Department of Mathematics
Malott Hall
Cornell University
Ithaca, NY 14853
USA

lawren@math.cornell.edu