• Weight of path $p = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k$:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

▶ Shortest-path weight $u \rightsquigarrow v$

$$\delta(u,v) = \left\{ \begin{array}{ll} \min\{w(p): u \overset{p}{\leadsto} v\} & \text{if there exists a path } u \leadsto v \\ \infty & \text{otherwise} \end{array} \right.$$

▶ Shortest-path $u \leadsto v$

any path
$$p$$
 such that $w(p) = \delta(u, v)$

Triangular inequality:

$$\text{ for all } (u,v) \in E, \ \delta(u,v) \leq \delta(u,x) + \delta(x,v).$$

Proof: Note that

Weight of shortest path $s \leadsto v \le w$ eight of any path $s \leadsto v$

The path $s \leadsto u \to v$ is a path $s \leadsto v$, and if we use a shortest path $s \leadsto u$, its weight is $\delta(u,x) + \delta(x,v)$.

Upper-bound property:

Always have $d[v] \ge \delta(s,v)$ for all v. Once $d[v] = \delta(s,v)$, it never changes.

Proof. Initally true. Suppose there exists a vertex such that $d[v] < \delta(s,v)$. Without loss of generality, v is first vertex for which this happens. Let u be the vertex that causes d[v] change. Then d[v] = d[u] + w(u,v). So

$$\begin{split} d[v] &< \delta(s,v) \\ &\leq \delta(s,u) + w(u,v) \\ &\leq d[u] + w(u,v) \end{split}$$

which implies d[v] < d[u] + w(u,v). Contradicts d[v] = d[u] + w(u,v). Once d[v] reaches $\delta(s,v)$, it never goes lower. It never goes up, since relaxations only lower shortest-path weights.

No-path property:

If
$$\delta(s,v)=\infty$$
, then $d[v]=\infty$ always.

$$\textit{Proof.}\ \ d[v] \geq \delta(s,v) = \infty \Rightarrow d[v] = \infty.$$

Convergence property:

If $s \leadsto u \to v$ is a shortest-path, and $d[u] = \delta(s,u)$. Then after "Relax $u \to v$ ", $d[v] = \delta(s,v)$.

Proof. After relaxation

$$d[v] \le d[u] + w(u, v)$$

= $\delta(s, u) + w(u, v)$
= $\delta(s, v)$

On the other hand, we have $d[v] \geq \delta(s,v).$ Therefore, it must have $d[v] = \delta(s,v).$

Path relaxation property

Let $p=v_0 \to v_1 \to \cdots \to v_k$ be a shortest-path. If we relax in order, $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$, even intermixed with other relaxations, then $d[v_k]=\delta(v_0,v_k)$.

Proof. Induction to show $d[v_i] = \delta(s, v_i)$ after (v_{i-1}, v_i) is relaxed.

- ▶ Basis step: i = 0. Initially $d[v_0] = \delta(s, v_0) = \delta(s, s)$
- Inductive step: Assume $d[v_{i-1}] = \delta(s,v_{i-1})$. Relax (v_{i-1},v_i) . By convergence property, $d[v_i] = \delta(s,v_i)$ afterward and $d[v_i]$ never changes.

Correctness of the Bellman-Ford algorithm

It is guaranteed to converge after $\left|V\right|-1$ passes, assuming no negative-weight cycles.

Proof. Use path-relaxation property.

Let v be reachable from s, and let $p=v_0\to v_1\to\cdots\to v_k$ be the shortest path from s to v, where $v_0=s$ and $v_k=v$.

Since p is acyclic, it has $\leq |V|-1$ edges, so that $k \leq |V|-1$ edges.

Each iteration of the for loop realxes all edges:

- ▶ First iteration relaxes (v_0, v_1)
- ▶ Second iteration relaxes (v_1, v_2)
- **.**..
- ▶ kth iteration relaxes (v_{k-1}, v_k)

By the path-relaxation property, $d[v] = d[v_k] = \delta(s, v_k) = \delta(s, v)$.

Correctness of Dijkstra's algorithm

Show that $d[u] = \delta(s, u)$ when u is added to S in each iteration.

Proof:

- ▶ We prove by contradiction. Suppose there exists u such that $d[u] \neq \delta(s,u)$. Without loss of generality, let u be the first vertex for which $d[u] \neq \delta(s,u)$ when u is added to S in each iteration.
- Observation:
 - $u \neq s$, since $d[s] = \delta(s, s) = 0$.
 - ▶ Therefore, $s \in S$ and $S \neq \emptyset$
 - ▶ There must have be some path $s \sim u$, since otherwise $d[u] = \delta(s, u) = \infty$ by no-path property.
 - So, there is a path $s \rightsquigarrow u$. Then there is a shortest path $s \stackrel{p}{\leadsto} u$.
- ▶ Just before u is added to S, path p connects a vertex in S (i.e., s) to a vertex in V S (i.e., u). Let y be first vertex along p that's in V S and and let x be y's predecessor.
- ▶ Decompose *p* into

$$s \stackrel{p_1}{\leadsto} x \to y \stackrel{p_2}{\leadsto} u$$

(could have x=s or y=u, so that p_1 or p_2 may have no edges.)

Correctness of Dijkstra's algorithm, cont'd

- ▶ Claim: $d[y] = \delta(s, y)$ when u is added to S.
- Now we can get a contradiction to $d[u] \neq \delta(s, u)$:

y is on shortest path $s \leadsto u$, and all edge weights are nonnegative

$$\delta(s,y) \overset{\Downarrow}{\leq} \delta(s,u)$$

 $d[y] = \delta(s,y) \le \delta(s,u) \le d[u]$ (upper bound property)

Also, both y and u were in Q when we chose u, so that

$$d[u] \le d[y]$$

Therefore, $d[y] = \delta(s,y) = \delta(s,u) = d[u]$. Contradicts assumption that $d[u] \neq \delta(s,u)$.

▶ Hence, Dijkstra's algorithm is correct.

 $^{^1}$ Proof. $x \in S$ and u is the first vertex such that $d[u] = \delta(s,u)$ when u is added to $S \Rightarrow d[x] = \delta(s,x)$ when x is added to S. Relaxed (x,y) at that time, so by the convergence property, $d[y] = \delta(s,y)$.