Package MFA01 Presentation

Wenzhe Ding, Shiying Zhou, Sheng Liu, Haochi Zhang 12/1/2016

About the presentation

In this presentation, we will briefly introduce the following things

- summary of the package tools
- a brief introduction of multiple factor analysis
- showcase of the package functionalities

About MFA01 package

In this package, we created tools for multiple factor analysis (MFA), an extension of principle component analysis (PCA) to process multiple data sets and their correlations. The package include tools to compute the following outputs from MFA

- eigenvalues, common factor scores, partial factor scores, loadings
- visualization tools: generic functions for print, plot and tabularizing results
- lacktriangled auxiliary functions: summaries of eigenvalues, contributions, R_V coefficients, coefficients to study the between table structure, L_q coefficients and Bootstrap method to estimate the stability of the compromise factor scores.
- A shiny application

What is MFA?

- Multiple factor analysis is a generalization of principle component analysis.
- The goal of MFA is to "analyze several data sets of variables collected on the same set of observations, orâ"as in its dual versionâseveral sets of observations measured on the same set of variables"
- MFA can be summarized into five steps, nicely illustrated by figure 1 by Abdi et al. (2013):
- Step I: K tables of J_k variables collected on the same observations
- Step 2: Compute generalized PCA on each of the K tables (where \ddot{l} is the first singular value of each table)
- Step 3: Normalize each table by dividing by its first singular value (Ï)
- Step 4: Concatenate the K normalized tables
- Step 5: Compute a generalized PCA on the concatenated table

What is MFA?

Step 1: K tables of J_k variables collected on the same observations

Step 2: Compute generalized PCA on each of the K tables (where Υ is the first singular value of each table)

Step 3: Normalize each table by dividing by its first singular value (Υ)

What is MFA?

Step 4: Concatenate the K normalized tables

Step 5: Compute a generalized PCA on the concatenated table

step 4 to 5

How to install the package?

- To install the package, go to the R file 'install.R', use 'setwd()' to change the working directory to 'your_path/MFA01', and run the file.
- Then the MFA package should be installed. To create an 'mfa' object with default data set, simply run

```
## object "mfa"
##
Number of tables/blocks for analysis: 10
## Weight of tables:
## 0.240983 0.2386034 0.2748748 0.2728329 0.3065003 0.3023908 0.4167984 0.2724079 0.2635522 0.308608
## First two eigenvalues: 0.7702551 0.1229254
## First component of common factor scores:
## -0.9802057 -0.8088651 -0.7610058 -1.114984 1.372757 1.264015 0.8082827 0.9253423 -0.6689538 0.07316059 -0.4761088 0.3665652
## Facor loadings for the first table (1st component):
## -0.2943913 -0.2665541 -0.2599726 0.2411168 0.2863237 -0.232907
```

The mfa object computes the eigenvalues of the grand data table, which can be visualized by

plot_eig(mfa_obj)

eigenvalues histogram

A matrix of the common factor score can be accessed by

```
mfa_obj$cfs
                1.11
                           Γ.21
                                                 Γ.41
                                      [,3]
 ## [1,] -0.98020575  0.16325474 -0.02833247 -0.122967423 -0.138960264
    [3,] -0.76100584 -0.45418702 -0.00567849 -0.134631905 -0.061412658
    [4,] -1.11498367 -0.16586214 -0.22362954 0.567155437 0.006220427
    [5,] 1.37275684 -0.12838880 0.12163879 -0.315803256 -0.228652248
    [6,] 1.26401538 -0.10813651 -0.37010578 0.087703704 0.413438110
     [7,] 0.80828274 0.20466790 0.25317711 -0.085518365 0.247645688
    [8,] 0.92534231 0.40775212 -0.37972251 0.264344947 -0.505067639
     ## [10,] 0.07316059 -0.75677932 -0.04550557 -0.003904788 0.043136934
    [11,] -0.47610885 0.51276640 0.40040815 0.173699464 0.217286089
 ## [12,] 0.36656519 -0.07623359 0.54904503 0.288851074 -0.039734711
               [,6]
                         [,7]
                                    [,8]
                                               [,9]
    [1,] 0.21752965 -0.220051492 0.26947251 -0.21850438 0.077474226
     [2,] -0.13572321  0.147904830 -0.02638970  0.22079673  0.123996699
    [3,] -0.07115109 -0.279400608 -0.03095015 0.15088378 -0.008565486
    [4,] -0.30152727  0.002219817  0.01083609 -0.03067018 -0.117655827
     [5,] -0.06585165 -0.138077283 -0.07701356 -0.08147074 -0.230493449
     [6,] 0.12748875 -0.156705743 0.08745239 0.16910491 0.072655724
     [7,] -0.42605557 0.046374939 0.09309193 -0.14630764 0.122837767
    [8,] 0.03296264 0.058573490 -0.07536367 0.02332136 0.095377250
    [9,] 0.07862601 0.250187914 0.01424231 -0.00850599 -0.155918796
 ## [10,] 0.17500807 0.223444581 -0.18009379 -0.18214255 0.104045535
    [11,] 0.16511358 -0.138517707 -0.32629392 -0.01128101 0.006704255
 ## [12,] 0.20358008 0.204047262 0.24100955 0.11477572 -0.090457898
               [,11]
                           [,12]
    [1,] -0.059739737 1.580398e-16
     [2,] -0.162685833 1.580398e-16
    [3,] 0.221691315 1.580398e-16
     [4,] -0.104911814 1.580398e-16
     [5,] -0.094639543 1.580398e-16
     [6,] -0.101440700 1.580398e-16
     [7,] 0.086496068 1.580398e-16
     [8,] 0.087305272 1.580398e-16
    [9,] 0.087365252 1.580398e-16
 ## [10,] -0.001839931 1.580398e-16
 ## [11,] -0.014311737 1.580398e-16
    [12,] 0.056711388 1.580398e-16
```

Other elements of the mfa object include:

```
## [1] "assessors" "index_lists" "weights" "eigen" "cfs" ## [6] "fl" "pfl" "pfs"
```

To see a summary of what the object returns

First two eigenvalues: 0.7702551 0.1229254

```
## object "mfa"
##
## Number of tables/blocks for analysis: 10
## Weight of tables:
## 0.240983 0.2386034 0.2748748 0.2728329 0.3065003 0.3023908 0.4167984 0.2724079 0.2635522 0.308608
```

First component of common factor scores: ## -0.9802057 -0.8088651 -0.7610058 -1.114984 1.372757 1.264015 0.8082827 0.9253423 -0.6689538 0.07316059 -0.4761088 0.3665652 ## Facor loadings for the first table (1st component): ## -0.2943913 -0.2665541 -0.2599726 0.2411168 0.2863237 -0.232907

Eigenvalues

Our "ev.summary" takes the "mfa" object and returns a table with the singular values, the eigenvalues, cumulative, percentage of intertia, cumulative percentage of inertia, for all the extracted components.

```
setwd("C:/Users/Sheng/Google Drive/Berkeley16Fall/STAT243/Stats-243/final")
library(MFA01)
mfa_obj <- MFA()
data <- get(load("data/wine.rda"))
ev.summary(mfa_obj)</pre>
```

#:	#	SingularValue	Eigenvalue	CumulativeEigenvalue	Inertia	CumulativeInertia
#:	# 1	0.88	0.77	0.77	62	62
#:	# 2	0.35	0.12	0.89	10	72
#:	# 3	0.30	0.09	0.98	7	79
# :	# 4	0.28	0.08	1.06	6	85
# :	# 5	0.24	0.06	1.12	5	90
# :	# 6	0.20	0.04	1.16	3	93
# :	# 7	0.17	0.03	1.19	2	95
# :	# 8	0.14	0.02	1.21	2	97
# :	# 9	0.14	0.02	1.23	2	99
# :	# 10	0.10	0.01	1.24	1	100
# :	# 11	0.10	0.01	1.25	1	101
#:	# 12	0.00	0.00	1.25	0	101

Contributions

We include three functions to calculate *contributions*: I. "ctr.obs": contribution of an observation to a dimension I. "ctr.var": contribution of a variable to a dimension I. "ctr.table": contribution of a table to a dimension

For instance, we call "ctr.obs" as follows:

```
ctr.obs(mfa_obj)
                                [,31
                                                  [,51
               1.11
                       1,21
                                         r.41
                                                          r,61
 ## [1,] 0.103949 0.018068 7.37e-04 1.66e-02 2.70e-02 0.10059 1.31e-01
 ## [2,] 0.070784 0.000722 2.41e-02 1.56e-01 5.67e-02 0.03916 5.90e-02
 ## [3,] 0.062656 0.139845 2.96e-05 1.99e-02 5.27e-03 0.01076 2.10e-01
 ## [4,] 0.134500 0.018650 4.59e-02 3.53e-01 5.41e-05 0.19326 1.33e-05
 ## [5,] 0.203878 0.011175 1.36e-02 1.09e-01 7.31e-02 0.00922 5.14e-02
 ## [6,] 0.172858 0.007927 1.26e-01 8.43e-03 2.39e-01 0.03455 6.62e-02
 ## [7,] 0.070682 0.028397 5.89e-02 8.02e-03 8.57e-02 0.38586 5.80e-03
    [8,] 0.092638 0.112712 1.32e-01 7.66e-02 3.57e-01 0.00231 9.25e-03
     [9,] 0.048415 0.092067 1.72e-01 1.28e-01 8.56e-02 0.01314 1.69e-01
 ## [10,] 0.000579 0.388254 1.90e-03 1.67e-05 2.60e-03 0.06510 1.35e-01
 ## [11,] 0.024524 0.178244 1.47e-01 3.31e-02 6.60e-02 0.05795 5.17e-02
 ## [12,] 0.014537 0.003940 2.77e-01 9.15e-02 2.21e-03 0.08810 1.12e-01
              [,8]
                       [,9]
                               [,10]
                                        [,11] [,12]
    [1,] 0.242454 0.213206 0.037223 0.026319 0.0833
     [2,] 0.002325 0.217703 0.095350 0.195187 0.0833
     [3,] 0.003198 0.101663 0.000455 0.362450 0.0833
    [4,] 0.000392 0.004201 0.085848 0.081171 0.0833
    [5,] 0.019803 0.029640 0.329472 0.066054 0.0833
    [6,] 0.025535 0.127700 0.032737 0.075888 0.0833
    [7,] 0.028935 0.095590 0.093576 0.055175 0.0833
    [8,] 0.018964 0.002429 0.056415 0.056212 0.0833
    [9,] 0.000677 0.000323 0.150764 0.056290 0.0833
 ## [10,1 0.108292 0.148150 0.067135 0.000025 0.0833
 ## [11,] 0.355483 0.000568 0.000279 0.001511 0.0833
 ## [12,] 0.193941 0.058827 0.050745 0.023719 0.0833
```

Coefficients to study the Between-Table Structure

To evaluate the similarity between two tables we can use the R_{V} coefficient.

table1=mfa_obj\$assessors[[1]]
table2=mfa_obj\$assessors[[2]]
RV(table1,table2)

[1] 0.868

Coefficients to study the Between-Table Structure (Continued)

We can also get a matrix of $R_{\it V}$ coefficients by the following function.

```
RV_table(data, sets = list(2:3, 4:5, 6:10))

## [,1] [,2] [,3]
## [1,] 1.000 0.907 0.984
## [2,] 0.907 1.000 0.946
## [3,] 0.984 0.946 1.000
```

${\cal L}_g$ Coefficients

We design two functions for L_g coefficients similar to R_V coefficients.

```
Lg(table1,table2)

## [1] 0.918

Lg_table(data, sets = list(2:3, 4:5, 6:10))

## [,1] [,2] [,3]
## [1,] 1.000 0.919 0.988
## [2,] 0.919 1.027 0.962
## [3,] 0.988 0.962 1.006
```

Bootstrap

We also write a function that allows the user to perform bootstrapping in order to estimate the stability of the compromise factor scores.

```
bt <- bootStrap(mfa_obj)
bt$mean
                  [,2]
                           [,3]
                                  F.41
   [1,] -0.8369
                0.1136 -0.00903 -0.0847 -0.1265
                                               0.187868 -0.1805
                                                                0.2354
  [2,] -0.6916  0.0218  0.16424 -0.3106 -0.1800 -0.117732  0.1409
                                                               -0.0147
## [3,] -0.6422 -0.3764  0.00302 -0.1287 -0.0605 -0.039700 -0.2478 -0.0164
  [4,] -0.9404 -0.0920 -0.19393 0.4456 -0.0292 -0.238235 0.0030 0.0234
  [5,] 1.1602 -0.1322 0.09118 -0.2582 -0.1650 -0.075963 -0.1226 -0.0645
  [6,] 1.0845 -0.0937 -0.34623 0.0589 0.3783 0.103660 -0.1503 0.0735
   [7,] 0.6912 0.1786 0.19142 -0.0760 0.2098 -0.382844 0.0393 0.0628
   [8,] 0.7801 0.3266 -0.30946 0.2548 -0.3869 0.000482 0.0646 -0.0495
   [9,] -0.5629 0.2776 -0.37118 -0.2603 0.2191
                                              0.046573 0.2262 0.0177
  [10,] 0.0653 -0.6177 -0.05599 -0.0484 0.0319
                                              0.174356 0.1795 -0.1697
  [11,] -0.4064 0.4267 0.36770 0.1703 0.1691 0.152271 -0.1038 -0.2776
## [12,] 0.2992 -0.0329 0.46826 0.2373 -0.0601 0.189266 0.1513 0.1796
           [,9] [,10]
                          [,11]
                                   [,12]
   [1,] -0.17805 0.0531 -0.06320 -0.016624
   [2,] 0.18843 0.1076 -0.15323 -0.026391
   [3,] 0.12647 -0.0171 0.19616 -0.004610
   [4,] -0.03640 -0.1194 -0.08142 0.006257
   [5,] -0.07544 -0.1822 -0.08387 0.000254
   [6,] 0.13833 0.0650 -0.07460 0.024776
   [9,] -0.01560 -0.1270 0.06452 -0.026728
## [10,] -0.17547 0.0896 -0.00035 0.024127
## [11,] 0.00999 0.0125 -0.00454 0.010913
## [12,] 0.11822 -0.0667 0.05101
                                 0.016169
```

Bootstrap (Continued)

```
bt$sd
             [,1]
                    [,2]
                                  [,4]
                                        [,5]
                           [,3]
  ## [1,] 0.0521 0.0886 0.0580 0.1221 0.0754 0.1150 0.1489 0.1418 0.1585
  ## [2,] 0.0826 0.0908 0.0919 0.1369 0.0936 0.1188 0.1256 0.1258 0.0911
  ## [3,] 0.0825 0.0703 0.0817 0.1245 0.0829 0.1475 0.1367 0.0998 0.1199
  ## [4,] 0.0646 0.1143 0.1024 0.1199 0.1385 0.2012 0.1328 0.1476 0.1128
  ## [5,] 0.0701 0.1058 0.0803 0.1189 0.1442 0.2283 0.1424 0.1540 0.1963
  ## [6,] 0.0872 0.1045 0.1597 0.1973 0.1408 0.1859 0.2094 0.1830 0.1714
  ## [7,] 0.0919 0.0811 0.0770 0.0736 0.0960 0.1390 0.1119 0.0996 0.1230
     [8,] 0.0540 0.0824 0.1316 0.1669 0.1388 0.1650 0.1683 0.1680 0.1439
     [9,] 0.0894 0.0984 0.0692 0.1040 0.0613 0.1281 0.0886 0.0590 0.1187
  ## [10,] 0.0638 0.0970 0.0678 0.0810 0.0949 0.1018 0.0552 0.1052 0.1059
    [11,] 0.0702 0.0659 0.1157 0.0981 0.1034 0.1395 0.1243 0.0898 0.1515
  ## [12,] 0.0625 0.0985 0.0718 0.0700 0.0666 0.0927 0.0770 0.1083 0.1027
            [,10] [,11] [,12]
     [1,] 0.1494 0.2074 0.0690
     [2,] 0.0877 0.2056 0.1055
     [3,] 0.1021 0.1463 0.0869
     [4,] 0.1809 0.1750 0.1377
  ## [5,] 0.1780 0.2335 0.1055
    [6,] 0.1586 0.2334 0.1083
  ## [7,] 0.1148 0.1885 0.0633
    [8,] 0.0989 0.1577 0.1048
  ## [9,] 0.0864 0.1612 0.1121
  ## [10,] 0.0985 0.0760 0.1341
  ## [11,] 0.0859 0.0667 0.0856
  ## [12,] 0.0640 0.0801 0.0941
```

Shiny App

Multiple Factor Analysis Application

1.23

0.02

99