COMPUTADORES CLÁSSICOS E QUÂNTICOS:

ESTUDOS, IMPLEMENTAÇÕES E IMPACTOS SOCIAIS

Gabriel R. Zsigmond

INICIAÇÃO CIENTÍFICA

ESCOLA SUPERIOR DE PROPAGANDA E MARKETING

Sistemas de Informação em Comunicação e Gestão

Brasil

05 de maio de 2020

Gabriel R. Zsigmond

COMPUTADORES CLÁSSICOS E QUÂNTICOS:

ESTUDOS, IMPLEMENTAÇÕES E IMPACTOS SOCIAIS

Projeto de Iniciação Científica para a Escola Superior de Propaganda e Marketing, sob a orientação do Professor Doutor Humberto Sandmann.

Orientador: Prof. Dr. Humberto Sandmann

Brasil

05 de maio de 2020

ESTUDOS, IMPLEMENTAÇÕES E IMPACTOS SOCIAIS:

ESTUDOS, IMPLEMENTAÇÕES E IMPACTOS SOCIAIS

Gabriel R. Zsigmond

Resumo

O presente projeto, "Computadores Clássicos e Quânticos: Estudos, Implementação, Simuladores e Impactos Sociais", se propõe a estudar a história do computador e sua evolução. A mais recente inovação na área é a computação quântica, que certamente, inaugura a próxima geração de computadores. A computação quântica muda toda uma arquitetura na forma de computação, permitindo que os novos computadores sejam exponencialmente mais eficientes quando comparados aos mais modernos da atualidade. O projeto se propõe a entender e prototipar um computador tradicional de 8 bits em hardware, usando apenas portas lógicas simples, a fim de ilustrar, de forma clara, o funcionamento de um computador tradicional. Também, esse projeto busca entender e estimar as consequências sociais que os avanços da tecnologia e o desenvolvimento da computação quântica pode gerar. Entende-se que para essa análise, se faz necessário, inicialmente, uma ampla revisão bibliográfica, a fim de comparar esses dois tipos de computadores. Para ilustrar esta, será desenvolvida uma aplicação web que simula um computador tradicional e um computador quântico executando o mesmo algoritmo. É esperado que ao final do projeto, esse estudo traga um amplo e aprofundado conhecimento da área, além de, uma contribuição em relação ao impacto social do uso computação da quântica.

Sumário

1	Intro	odução		4
	1.1	Defini	ção justificada dos objetivos e da sua relevância	4
	1.2	Metod	lologia a ser empregada	7
2	Con	nputaç	ão Clássica	8
	2.1	A com	nputação clássica e sua evolução	10
3	Con	nputaç	ão Quântica	13
	3.1	A com	nputação quântica e sua evolução	13
4	Con	nputad	or	13
	4.1	Módul	os	13
		4.1.1	Clock	13
		4.1.2	Registers	13
		4.1.3	Arithmetic logic unit (ALU)	14
		4.1.4	Random access memory (RAM)	14
		4.1.5	Program counter	14
		4.1.6	Output register	14
		4.1.7	CPU control logic	15
		4.1.8	Materiais Necessários	15
5	Sim	ulador		16
6	Crip	tografi	ia	16
	6.1	Conce	eitos básicos de criptografia	16
	6.2	Cripto	grafia aplicada computação clássica	16
	6.3	Cripto	grafia aplicada computação quântica	16
7	Pró	ximos	passos	16
	7 1	Plano	de Redação	16

	7.2 Cronograma	16
	7.3 Problemas	16
8	Impactos sociais	16
9	Conclusões	16
	9.1 Perspectivas	16

1 Introdução

1.1 Definição justificada dos objetivos e da sua relevância

A palavra "computador" é usada desde o século XVII, tendo a sua primeira referência escrita datada de 1613. No entanto, por muito tempo "computador" não tinha o mesmo significado que leva hoje, sendo utilizada, até a década de 1940, como nome da profissão de alguém que calcula, segundo o dicionário Michaelis: "Aquele ou aquilo que calcula baseado em valores digitais; calculador, calculista". [4]

Tendo em vista o antigo significado da palavra "computador", pode-se questionar sobre como passamos a utilizar de uma palavra usada para se referir à pessoas, para mera maquinas. A fim de responder essa pergunta, recuperaremos a origem dos computadores. Pode parecer uma pergunta simplista que não precisa ser respondida, porém, é uma pergunta para a qual muitas pessoas não sabem a verdadeira resposta. Computadores existem há muito mais tempo que o transistor – dispositivo semicondutor usado para amplificar ou alternar sinais eletrônicos e eletricidade. – na forma mecânica e teórica. A definição real de um computador foi elaborada por Alan Turing (Reino Unido, 1912-1954), um matemático, lógico, criptógrafo e herói de guerra que se preocupava exatamente com a questão relacionada ao que era computável e o que não era. Ele foi responsável por elaborar a definição do computador, descrevendo a Maquina de Turing, trabalho publicado em 1937 que deu origem aos computadores e celulares que você, leitor, pode estar usando para ler o presente trabalho.

A Maquina de Turing, considerado o modelo mais poderoso computador, é similar a um automato finito ¹, porém com uma mémoria ilimitada e irrestrita, constituindo um modelo mais exato de um computador de forma geral. Esta é composta por três principais componentes: fita infinita; processador; máquina de estado finito.

A fita infinita é dividida em células, cada uma contendo um simbolo de um alfabeto

¹Um sub-tópico da Ciência da computação teórica, também chamado máquina de estados finita determinística — é uma máquina de estados finita que aceita ou rejeita cadeias de símbolos gerando um único ramo de computação para cada cadeia de entrada.

finito. O processador é responsável por se deslocar para a direita ou esquerda e efetuar a leitura ou escrita em uma célula. Assim, a explicação adaptada do material do Prof. Dr. Fabio Gagliardi Cozman [3], ilustra seu funcionamento da seguinte forma:

- Inicialmente a fita contém somente a cadeia de entrada, disposta no "meio"
 da fita, com o processador posicionado no início da cadeia (o resto está em branco);
- 2. Para armazenar algo, a máquina escreve na fita;
- 3. O processador pode ser movido livremente para a esquerda ou direita, afim de ler ou escrever valores em qualquer célula;
- As saídas aceita e rejeita são obtidas ao entrar nos estados de aceitação e rejeição;
- 5. Se não entrar em um estado de aceitação ou rejeição, continuará sua computação para sempre (loop infinito).

Já o primeiro computador digital eletrônico de grande escala, foi criado em fevereiro de 1946 por cientistas norte-americanos, John Presper Eckert e John W. Mauchly, da Electronic Control Company . No final de sua operação em 1956, o ENIAC (Electrical Numerical Integrator and Calculator), continha 20.000 tubos de vácuo 7.200 diodos de cristal 1.500 relés 70.000 resistores 10.000 capacitores e aproximadamente 5.000.000 juntas soldadas à mão. Ele pesava mais de 27 toneladas, tinha aproximadamente 2,4m * 0,9m * 30m de tamanho, ocupava 167 m2 e consumia 150 kW de eletricidade.

A partir do ENIAC, as possibiliades tecnologicas tomaram uma nova proporção. Em 1969, apenas 13 anos após o desligamento do primeiro computador digital eletronico, o computador de bordo da Apollo 11, missão que levou o homem a lua, tinha 32.768 bits [para uma explicação elaborada sobre bits refira-se ao cápitilo 2 pagina 8] de RAM, o suficiente para armazenar apenas um texto não formatado, com cerca de

²Meio é algo abstrato nesse sentido pois não existe meio de um valor infinito

2.000 palavras. Em 2018, o iPhone XS, com 4GB de RAM (ou 34.359.738.368 bits), tem cerca de 1 milhão de vezes mais memória que o Apollo Guinche Computer. [9] (falar da Spacex e falcon9 e CRS-12 Dragon 2020)

Durante o século XX, além do aumento de poder computacional dos dispositivos, outro fator impactante foi a refatoração de seus tamanhos. Assim, com tecnologias wearables ³, os computadores se tornam ativamente presentes no cotidiano.

Levando em consideração o rápido avanço e desenvolvimento computacional, mencionados anteriormente, entende-se que os computadores agregam à sociedade, seja facilitando a comunicação e o compartilhamento de conhecimentos, como em outros aspectos. No entanto, a agilidade pela qual se deu tais transformações da tecnologia da computação, também gera grandes expectativas e incertezas sobre o que ainda está por vir, tanto nas questões de mudanças tecnológicas quanto nos impactos relevantes na sociedade.

Tendo em vista a incerteza sobre o futuro da computação em relação aos proximos grandes avanços, nessa pesquisa serão estudados os conceitos da física clássica e da física quântica aplicados à computação, além disso, será estudado os princípios de criptografia ⁴. Assim, a presente pesquisa irá prototipar um computador clássico de 8 bits em hardware usando apenas portas lógicas simples, dessa forma, ilustrando claramente o seu funcionamento. Junto a isso também será desenvolvida uma aplicação web que ilustre o funcionamento de um processador quântico. Ao final, conceitos de criptografia serão ultilizados para exemplificar possíveis mudanças sociais que os próximos avanços tecnologicos podem gerar.

³A tecnologia em questão não somente pode ser usada como uma peça de roupa ou um acessório, como também tem que possuir características que a conectem a outros aparelhos ou à internet.

⁴Criptografia é um sistema de algoritmos matemáticos que codificam dados para que só o destinatário possa ler.

1.2 Metodologia a ser empregada

Para a realização da pesquisa de iniciação científica, é indispensável o uso de pesquisa bibliográfica, assim recuperando conhecimento científico acumulado sobre o assunto. Segundo Telma Cristiane Sasso de Lima, o conhecimento da realidade não é apenas a simples transposição dessa realidade para o pensamento, pelo contrário, consiste na reflexão crítica que se dá a partir de um conhecimento acumulado e que irá gerar uma síntese, o concreto pensado [5]. E também a utilização do processo científico para a elaboração e efetivação do projeto em si. Ambas metodologias citadas acima, são cruciais para o desenvolvimento do relatório final na área de pesquisa em computação, já que na grande parte dos estudos científicos, a utilização do processo científico é frequentemente utilizada para um maior entendimento da obra e a construção do projeto se tornar mais facilmente executável.

Para o desenvolvimento da entrega do protótipo, computador de 8-bits, e para o simulador do computador quântico web, a principal metodologia utilizada será Project Based Learnig (PBL). De acordo com David Van Andel, o PBL envolve os alunos em um processo rigoroso de investigação, onde eles fazem perguntas, encontram recursos e aplicam informações para resolver problemas do mundo real [2]. Assim, assumisse que esta é a melhor metodologia para desenvolver um protótipo físico de um computador e programar um site.

2 Computação Clássica

Entende-se a importância de se compreender a origem e o desenvolvimento da computação clássica para o desenrolar da pesquisa, o que será apresentado em meio a este capítulo.

A computação clássica consiste em computadores que dependem da física clássica para operar. Estes são os computadores tradicionais que usamos em nosso dia-a-dia – seja eles Apple, Samsung, Dell ou qualquer outro –, também classificados como computadores binários, pois processam as instruções a partir de números binários, compostos apenas pelos símbolos "1" e "0", ligado e desligado respectivamente. Assim, julga-se importante e de larga relevância ao tema compreender essa representação numérica.

Números binários ou números em base 2 são compostos por apenas dois dígitos, [0...1]. Dessa forma, seu funcionamento é similar ao sistema decimal, ou base 10, que são compostos por dez dígitos, [0...9]. No sistema decimal, é simples contar até nove, porém não existe um simbolo ou dígito para representar o número dez, sendo então representado dois dígitos, "10". Isto é uma simples lógica de posicionamento. Mais uma vez, após o número "99", é necessário utilizar a mesma regra para representar o número cem, "100". Em base 2, o número zero é representado pelo simbolo 0, e o número um por 1. O mesmo dilema é enfrentado ao chegar no próximo valor, dois. E então é usada a mesma lógica de posicionamento, em base dois. O número dois é representado por "10", o três por "11", quatro por "100" e assim por diante. Dessa forma, números binários podem se tornar longos e compostos por muitos dígitos. Em computação, esses dígitos são chamados de bits. [7] É com base nos bits ⁵ ligados e desligados que o computador baseia sua linguagem. Para transforma-lo em base dez é preciso avaliar o valor de cada bit de acordo com a sua posição.

Exemplo: número binário 1011:

⁵A menor unidade de informação que pode ser armazenada ou transmitida na comunicação de dados.

$$1011(b) = 1 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 1 * 2^{0}$$
$$= 8 + 0 + 2 + 1 = 11(decimal)$$

O peso de cada bit de um número binário depende da sua posição relativa ao número completo, sempre partindo da direita para a esquerda.

- O peso do primeiro bit é $bit*2^0$
- O peso do segundo bit é $bit*2^1$
- O peso do terceiro bit é $bit*2^2$
- O peso do quarto bit é $bit * 2^3$

A formúla ilustrada acima, pode ser exemplificada em uma fórmula genérica:

$$= nth \ bit * 2^{n-1}$$

É possível notar que a regra para números binários, se repete para números em base 10.

Exemplo: número decimal 4392:

- O peso do primeiro bit é $2 * 10^0$
- O peso do segundo bit é $9*10^1$
- O peso do terceiro bit é $3*10^2$
- O peso do quarto bit é $4 * 10^3$

$$4392 = 4 * 10^{3} + 3 * 10^{2} + 9 * 10^{1} + 2 * 10^{0}$$
$$= nth \ bit * 10^{n-1}$$

Essa regra se mantem verdadeira para qualquer base númerica.

$$= nth \; bit * (base)^{n-1}$$

Ao decorrer do texto serão referidos números em base 2, 10 e 16.

2.1 A computação clássica e sua evolução

Alan Turing, Matemático inglês, cientista da computação, lógico, criptoanalista, filósofo e biólogo teórico, publicou o artigo "On Computable Numbers with an Application to the Entscheidungs-problem" [11] em 12 de novembro de 1937, esse formaria a teoria básica da computabilidade por várias décadas.

O mecanismo abstrato descrito no artigo de Turing fornece os conceitos fundamentais de computadores que outros engenheiros conceberam posteriormente. Na sua essência, uma Máquina de Turing é um dispositivo que manipula símbolos em uma tira de fita de acordo com uma tabela de regras. Forneceu formalização dos conceitos de "algoritmo" e "computação" na infância da ciência da computação. Apesar de sua simplicidade, uma Máquina de Turing pode ser adaptada para simular a lógica de qualquer algoritmo de computador e é útil para explicar as funções de uma CPU.

Turing é identificado não apenas como o pai da ciência da computação, mas também como o pai do computador clássico. O fundamento para isso é o seguinte, o diagrama do computador moderno pode ser encontrada no projeto EDVAC de Von Neumann [6] e hoje os computadores clássicos são geralmente descritos como tendo a chamada arquitetura de Von Neumann. Uma idéia fundamental do design do EDVAC é a idéia de programa armazenado. Isso significa o armazenamento de instruções e dados na mesma memória, permitindo a manipulação de programas como dados. Existem razões para supor que Von Neumann conhecia os principais resultados do trabalho de Turing [1]. Assim, pode-se argumentar que o conceito de programa armazenado se origina da noção de máquina de Turing e, destacando isso como a característica definidora do computador clássico, alguns podem alegar que Turing é o pai do computador até o estado da arte. Outro argumento relacionado é que Turing foi o primeiro a explorar a idéia de uma máquina de uso geral por meio de sua noção de máquina universal e que, nesse sentido, ele também "inventou" o computador moderno. Esse argumento é reforçado pelo fato de que Turing também estava envolvido na construção de uma classe importante de dispositivos de computação, o Bombe 6.

⁶um dispositivo eletromecânico usado pelos criptologistas britânicos para ajudar a decifrar as men-

Posteriormente, ele propôs o design do ACE (Automatic Computing Engine), explicitamente explicado. identificado como um tipo de realização física da máquina universal pelo próprio Turing:

"Some years ago I was researching on what might now be described as an investigation of the theoretical possibilities and limitations of digital computing machines. [...] Machines such as the ACE may be regarded as practical versions of this same type of machine." [10]

Baseando na teoria da máquina de Turing, o físico e matemático John von Neumann desenvolveu uma arquitetura que era capaz de executar tais tarefas.

Figura 1: Diagrama arquitetura de Von Neumann

Nessa arquitetura, o cabeçalho passa a ser uma CPU (Central Processing Unit), a fita se transforma em memória RAM e as operações são construidas e executadas em circuitos formados por portas logicas chamado ALU (Arithmetic/Logic Unit). [8]

Atualmente, a maioria dos computadores modernos são construídos sobre a praxis da arquitetura von Neumann. A fim de simular um processador moderno de forma didática, foi elaborado o ASM 24bits este apresenta as principais características de sagens secretas criptografadas pela máquina alemã Enigma durante a Segunda Guerra Mundial.

um processador moderno e permite a sua programação utilizando um Assembly de 20 instruções, sua Documentação. Similar à arquitetura de von Neumann esse emulador é composto por memória e CPU.

	Registradores					
Nome	Descrição					
Accumulator	Este é o registro mais usado para armazenar da-					
(ACC)	dos extraídos da memória. Está em diferentes					
	números em diferentes microprocessadores.					
Instruction Re-	É o registro que contém a instrução que está					
gister (IR)	sendo executada atualmente.					

3 Computação Quântica

3.1 A computação quântica e sua evolução

4 Computador

Construir um computador parece uma tarefa complicada e assustadora. Porém, uma CPU ⁷ é bastante simples em operação depois que os fundamentos por trás de todos os seus processos são compreendidos. Este capítulo destina-se a executar o passo a passo para que qualquer pessoa interessada seja capaz em construir seu próprio computador e obter o conhecimento que acompanha o processo.

4.1 Módulos

Para facilitar o compreendimento, e também o desenvolvimento do computador, este capítulo será dividido em alguns subcapitulos, assim cada um abordará uma parte do computador.

4.1.1 Clock

O clock do computador é uma parte essencial para o seu funcionamento. Este tem a função de sincronizar todas as operações. A ação mais rápida que o computador consegue executar é equivalente a uma vibração do seu clock.

4.1.2 Registers

A maioria das CPUs possuem vários registradores que armazenam pequenas quantidades de dados que a CPU está processando. Em nossa CPU de breadboard,

⁷CPU é a sigla para Central Process Unit, ou Unidade Central de Processamento. É o principal item de hardware do computador, que também é conhecido como processador, essa é a parte responsável por calcular e realizar tarefas determinadas pelo usuário.

criaremos três registradores de 8 bits: A, B e IR. Os registradores A e B são registradores de uso geral. O IR (instruction register) funciona da mesma forma, porém apenas o usamos para armazenar a instrução atual que está sendo executada.

4.1.3 Arithmetic logic unit (ALU)

A parte da unidade lógica aritmética (ALU) de uma CPU geralmente é capaz de executar várias operações aritméticas, bit a bit e de comparação em números binários. Em nossa CPU de breadboard, a ALU pode apenas adicionar e subtrair. Ele está conectado aos registros A e B e gera a soma de A + B ou a diferença de A-B.

4.1.4 Random access memory (RAM)

A memória de acesso aleatório (RAM) armazena o programa que o computador está executando, bem como todos os dados que o programa precisa. Nosso computador de breadboard utiliza endereços de 4 bits, o que significa que ele terá apenas 16 bytes de RAM, limitando o tamanho e a complexidade dos programas que ele pode executar.

4.1.5 Program counter

O contador do programa (Program counter) conta em binário para acompanhar qual instrução o computador está executando no momento.

4.1.6 Output register

O registro de saída é semelhante a qualquer outro registro (como os registros A e B), exceto que, em vez de exibir seu conteúdo em binário em 8 LEDs, ele exibe seu conteúdo em decimal em um display de 7 segmentos. Fazer isso requer alguma lógica complexa.

4.1.7 CPU control logic

A lógica de controle é o coração da CPU. É o que define os códigos de operação (opcode) que o processador reconhece e o que acontece quando ele executa cada instrução.

4.1.8 Materiais Necessários

- 5 Simulador
- 6 Criptografia
- 6.1 Conceitos básicos de criptografia
- 6.2 Criptografia aplicada computação clássica
- 6.3 Criptografia aplicada computação quântica
- 7 Próximos passos
- 7.1 Plano de Redação
- 7.2 Cronograma
- 7.3 Problemas
- 8 Impactos sociais
- 9 Conclusões
- 9.1 Perspectivas

Referências

- [1] A Half-Century Survey on The Universal Turing Machine, USA, 1988. Oxford University Press, Inc.
- [2] Grand Rapids Business Journal David Van Andel. Project-based learning is the future of education, out. 2019.
- [3] Fabio Gagliardi Cozman. Turing e complexidade. University Lecture, 2000.
- [4] Melhoramentos Itda. Michaels. Computador, out. 2019.
- [5] Regina Célia Tamaso Mioto. Procedimentos metodológicos na construção do conhecimento científico: a pesquisa bibliográfica. Revista Katálysis, 10(SPE):37– 45, 2007.
- [6] John von Neumann. First draft of a report on the edvac. Technical report, 1945.
- [7] B. Ram. *Computer Fundamentals: Architecture and Organization*. New Age International, 2000.
- [8] Humberto Rodrigo Sandmann. Ambiente de produção. personal website, 2019.
- [9] UOL Bruno Santana. Iphone 6 é 120 milhões de vezes mais poderoso que o computador de bordo da apollo 11, jul. 2019.
- [10] A. M. Turing, Michael Woodger, B. E. Carpenter, and R. W. Doran. A. M. Turing's ACE Report of 1946 and Other Papers. The MIT Press, Cambridge, Mass.: Los Angeles, April 1986.
- [11] Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. *Proceedings of the London Mathematical Society*, 2:230–265, 1936.
- [12] Paul Wazlawick. *História da computação*. Elsevier, Rio de Janeiro, RJ, 2016.