

GRPO: Group Relative Policy Optimization

Apr 30, 2025

PART 01

Review: PPO and DPO

Proximal Policy Optimization (PPO)

- Goal: Optimize a language model to adhere to human preferences.
- Process:
 - 1. Obtain a reference model π_{ref} by supervised fine-tuning (SFT)
 - 2. Obtain a reward model $r_{\varphi}(x, y)$.
 - 3. Training a value function with the reward: $r_t = r_{\varphi}(x, y_{< t}) \beta \log \frac{\pi_{\theta}(y_t | x, y_{< t})}{\pi_{ref}(y_t | x, y_{< t})}$ And then obtain the advantage function A_t by Generalized Advantage Estimation.
 - 4. Then one can optimized the model by gradient methods.

$$\mathcal{L}_{ ext{PPO}}(heta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{ heta_{ ext{old}}}} rac{1}{y} \sum_{t=1}^{|y|} rac{\pi_{ heta}(y_t | x, y_{< t})}{\pi_{ heta_{ ext{old}}}(y_t | x, y_{< t})} A_t$$

5. Get θ as the old parameter and then repeat step 4.

Direct Preference Optimization (DPO)

- Goal: Optimize a language model to adhere to human preferences.
- Process:
 - 1. Obtain a reference model π_{ref} by supervised fine-tuning (SFT)
 - 2. Reparameterizes the reward function:

$$r(x,y) = \beta \log \frac{\pi_{\theta}(y \mid x)}{\pi_{\text{ref}}(y \mid x)} + \beta \log Z(x)$$

3. Taking r(x, y) into Bradley Terry (BT) ranking objective:

$$p(y_w \succ y_l \mid x) = \sigma(r(x, y_w) - r(x, y_l))$$

one can obtain the loss function of DPO:

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right]$$

4. Then one can optimized the model by gradient methods.

PART 02

GRPO: Group Relative Policy Optimization

Background: LLM for math reasoning

DeepSeekMath-7B: outperform other math reasoning models on competition-level MATH benchmark.

- Techniques:
 - Data selection pipeline harness the potential of publicly available web data.
 - 2. GRPO technique for reinforce learning.

Limitations of PPO

- L1: Memory and computational burden. Value function is typically a model of comparable size as the policy model.
- L2: Complicate in value function training. In the LLM context, usually only the last token is assigned a reward score by the reward model.
- A straightforward motivation: Develop a value-model-free framework?

GRPO objective function: Overview

$$\mathcal{L}_{ ext{GRPO}}(heta) = \mathbb{E}_{x \sim \mathcal{D}, \underbrace{\{y_i\}_{i=1}^G \sim \pi_{ heta_{ ext{old}}(x)}}} \left[rac{1}{G} \sum_{i=1}^G rac{1}{|y_i|} \sum_{t=1}^{|y_i|} \left(rac{\pi_{ heta}(y_{i,t}|x_i,y_{i,< t})}{\pi_{ ext{old}}(y_{i,t}|x_i,y_{i,< t})} \hat{A}_{i,t} - eta \mathbb{D}_{KL}(\pi_{ heta}||\pi_{ ext{ref}})
ight)
ight]$$

- Value-model-free.
- Group outputs: Sampled from old policy.
- Group advantage: Calculated on relative rewards inside each group only. Avoid computation of KL-Divergence between reference model and reward model.
- Approximated KL: Can viewed as a normalization term. Use a positive and unbiased estimator with little variance: $\mathbb{D}_{KL}(\pi_{\theta}||\pi_{\mathrm{ref}}) = \frac{\pi_{\theta}(y_{i,t}|x_i,y_{i,< t})}{\pi_{\mathrm{ref}}(y_{i,t}|x_i,y_{i,< t})} \log \frac{\pi_{\theta}(y_{i,t}|x_i,y_{i,< t})}{\pi_{\mathrm{ref}}(y_{i,t}|x_i,y_{i,< t})} 1$

Group advantage with outcome supervision

- ➤ A direct question: How to obtain the advantage? → different for inoutcome/process supervision
- In outcome supervision: One output, one reward.
 - Suppose the reward of $\{r_1, r_2, \cdots, r_G\}$ is denoted as $\mathbf{r} = \{r_1, r_2, \cdots, r_G\}$
 - The relative advantage

$$\hat{A}_{i,t} = ilde{r}_i := rac{r_i - mean(\mathbf{r})}{std(\mathbf{r})}$$

ightharpoonup High reward in the group \rightarrow high advantage \rightarrow more significance in objective function.

$$\mathcal{L}_{ ext{GRPO}}(heta) = \mathbb{E}_{x \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{ heta_{ ext{old}}(x)}} \Bigg[rac{1}{G} \sum_{i=1}^G rac{1}{|y_i|} \sum_{t=1}^{|y_i|} igg(rac{\pi_{ heta}(y_{i,t}|x_i,y_{i,< t})}{\pi_{ ext{old}}(y_{i,t}|x_i,y_{i,< t})} \hat{A}_{i,t} - eta \mathbb{D}_{KL}(\pi_{ heta}||\pi_{ ext{ref}}) igg) \Bigg]$$

Group advantage with process supervision

- In outcome supervision: One output, a series of reward.
 - $\bullet \quad \text{Suppose the reward of } \{r_1, r_2, \cdots, r_G\} \text{ is denoted as } \mathbf{r} = \{\{r_1^1, r_1^2, \cdots, r_1^{index(K_1)}\}, \{r_2^1, r_2^2, \cdots, r_2^{index(K_2)}\}, \cdots, \{r_G^1, r_G^2, \cdots, r_G^{index(K_G)}\}\} \\ \bullet \quad \text{Suppose the reward of } \{r_1, r_2, \cdots, r_G\} \text{ is denoted as } \mathbf{r} = \{\{r_1^1, r_1^2, \cdots, r_1^{index(K_1)}\}, \{r_2^1, r_2^2, \cdots, r_2^{index(K_2)}\}, \cdots, \{r_G^1, r_G^2, \cdots, r_G^{index(K_G)}\}\} \\ \bullet \quad \text{Suppose the reward of } \{r_1, r_2, \cdots, r_G\} \text{ is denoted as } \mathbf{r} = \{\{r_1^1, r_1^2, \cdots, r_1^{index(K_1)}\}, \{r_2^1, r_2^2, \cdots, r_2^{index(K_2)}\}, \cdots, \{r_G^1, r_G^2, \cdots, r_G^{index(K_G)}\}\} \\ \bullet \quad \text{Suppose the reward of } \{r_1, r_2, \cdots, r_G\} \text{ is denoted as } \mathbf{r} = \{\{r_1^1, r_1^2, \cdots, r_1^{index(K_1)}\}, \{r_2^1, r_2^2, \cdots, r_2^{index(K_2)}\}, \cdots, \{r_G^1, r_G^2, \cdots, r_G^{index(K_G)}\}\} \\ \bullet \quad \text{Suppose the reward of } \{r_1, r_2, \cdots, r_G\} \text{ is denoted as } \mathbf{r} = \{r_1^1, r_2^2, \cdots, r_G^{index(K_1)}\}, \{r_2^1, r_2^2, \cdots, r_G^{index(K_G)}\}, \cdots, \{r_G^1, r_G^2, \cdots, r_G^{index(K_G)}\}\} \\ \bullet \quad \text{Suppose the reward of } \{r_1, r_2, \cdots, r_G\} \text{ is denoted as } \mathbf{r} = \{r_1^1, r_2^2, \cdots, r_G^{index(K_G)}\}, \cdots, \{r_G^1, r_G^2, \cdots, r_G^{index(K_G)}\}, \cdots, \{r_G^1, r_G^2, \cdots, r_G^{index(K_G)}\}\} \\ \bullet \quad \text{Suppose the reward of } \{r_1, r_2, \cdots, r_G^{index(K_G)}\}, \cdots, \{r_G^1, r_G^2, \cdots, r_G^{index(K_G)}\}, \cdots, r_G^{index(K_G)}\}, \cdots, \{r_$
 - The relative advantage

$$\hat{A}_{i,t} = \sum_{index(j) \geq t} ilde{r}_i^{index(j)}, \quad ilde{r}_i^{index(j)} := rac{r_i^{index(j)} - mean(\mathbf{r})}{std(\mathbf{r})}$$

➤ High total reward for subsequent tokens → high advantage → more significance in objective function.

$$\mathcal{L}_{ ext{GRPO}}(heta) = \mathbb{E}_{x \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{ heta_{ ext{old}}(x)}} \Bigg[rac{1}{G} \sum_{i=1}^G rac{1}{|y_i|} \sum_{t=1}^{|y_i|} igg(rac{\pi_{ heta}(y_{i,t}|x_i,y_{i,< t})}{\pi_{ ext{old}}(y_{i,t}|x_i,y_{i,< t})} ar{A}_{i,t} - eta \mathbb{D}_{KL}(\pi_{ heta}||\pi_{ ext{ref}}) igg) \Bigg]$$

Group advantage with iteration

Algorithm 1 Iterative Group Relative Policy Optimization

Input initial policy model $\pi_{\theta_{\text{init}}}$; reward models r_{φ} ; task prompts \mathcal{D} ; hyperparameters ε , β , μ

```
    policy model π<sub>θ</sub> ← π<sub>θ<sub>init</sub></sub>
    for iteration = 1, ..., I do
    reference model π<sub>ref</sub> ← π<sub>θ</sub>
    for step = 1, ..., M do
```

5: Sample a batch \mathcal{D}_b from \mathcal{D}

6: Update the old policy model $\pi_{\theta_{old}} \leftarrow \pi_{\theta}$

7: Sample *G* outputs $\{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(\cdot \mid q)$ for each question $q \in \mathcal{D}_b$

8: Compute rewards $\{r_i\}_{i=1}^G$ for each sampled output o_i by running r_{φ}

9: Compute $\hat{A}_{i,t}$ for the *t*-th token of o_i through group relative advantage estimation.

10: **for** GRPO iteration = $1, ..., \mu$ **do**

11: Update the policy model π_{θ} by maximizing the GRPO objective (Equation 21)

12: Update r_{φ} through continuous training using a replay mechanism.

Output π_{θ}

$$GC_{GRPO}(q, o, t, \pi_{\theta_{rm}}) = \hat{A}_{i,t} + \beta \left(\frac{\pi_{ref}(o_{i,t}|o_{i,< t})}{\pi_{\theta}(o_{i,t}|o_{i,< t})} - 1 \right), \tag{21}$$

Update reference model by current policy model. Skip the SFT process.

Experimental results

	de	六东	よ	婆	
1898	PEKING UNIVERSITY				

Model	Size	English Benchmarks		Chinese Benchmarks	
Woder		GSM8K	MATH	MGSM-zh	CMATH
Ch	ain-o	f-Thought	Reasoning		
	Clos	ed-Source	Model		
Gemini Ultra	2	94.4%	53.2%	2	-
GPT-4	2	92.0%	52.9%	2	86.0%
Inflection-2		81.4%	34.8%	-	-
GPT-3.5	+	80.8%	34.1%	*:	73.8%
Gemini Pro	2	86.5%	32.6%	2	2
Grok-1	77	62.9%	23.9%	-	-
Baichuan-3	-	88.2%	49.2%	-	-
GLM-4	-	87.6%	47.9%	¥	-
	Оре	en-Source	Model		
InternLM2-Math	20B	82.6%	37.7%	- 6	-
Qwen	72B	78.9%	35.2%	*	-
Math-Shepherd-Mistral	7B	84.1%	33.0%	÷	2
WizardMath-v1.1	7B	83.2%	33.0%	2	2
DeepSeek-LLM-Chat	67B	84.1%	32.6%	74.0%	80.3%
MetaMath	70B	82.3%	26.6%	66.4%	70.9%
SeaLLM-v2	7B	78.2%	27.5%	64.8%	-
ChatGLM3	6B	72.3%	25.7%	-	-
WizardMath-v1.0	70B	81.6%	22.7%	64.8%	65.4%
DeepSeekMath-Instruct	7B	82.9%	46.8%	73.2%	84.6%
DeepSeekMath-RL	7B	88.2%	51.7%	79.6%	88.8%

Model	Size	English Benchmarks		Chinese Benchmarks	
		GSM8K	MATH	MGSM-zh	CMATH
To	ool-In	tegrated F	Reasoning		
-	Clos	ed-Source	Model		
GPT-4 Code Interpreter	-	97.0%	69.7%	(*)	((*)
	Оре	en-Source	Model		
InternLM2-Math	20B	80.7%	54.3%	927	821
DeepSeek-LLM-Chat	67B	86.7%	51.1%	76.4%	85.4%
ToRA	34B	80.7%	50.8%	41.2%	53.4%
MAmmoTH	70B	76.9%	41.8%	-	(·
DeepSeekMath-Instruct	7B	83.7%	57.4%	72.0%	84.3%
DeepSeekMath-RL	7B	86.7%	58.8%	78.4%	87.6%

GRPO: A quick summary

和桌大学 PEKING UNIVERSITY

- Core technique: Group advantage.
- Equals to approximate the value function according to the sampled group of model

$$\mathcal{L}_{\mathrm{GRPO}}(\theta) = \mathbb{E}_{x \sim \mathcal{D}_{\{\!\{y_i\}_{i=1}^G \sim \pi_{\theta_{\mathrm{old}}(x)}\!\}}} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \left(\frac{\pi_{\theta}(y_{i,t}|x_i,y_{i,< t})}{\pi_{\mathrm{old}}(y_{i,t}|x_i,y_{i,< t})} \middle{\hat{A}_{i,t}} - \beta \mathcal{D}_{KL}(\pi_{\theta}||\pi_{\mathrm{ref}}) \right) \right]$$

- · Value-model-free.
- · Group outputs: Sampled from old policy.
- Group advantage: Calculated on relative rewards inside each group only. Avoid computation
 of KL-Divergence.
- · Approximated KL: Use a positive and unbiased estimator with little variance:

$$\mathbb{D}_{KL}(\pi_{\theta}||\pi_{\text{ref}}) = \frac{\pi_{\theta}(y_{i,t}|x_{i}, y_{i, < t})}{\pi_{\text{ref}}(y_{i,t}|x_{i}, y_{i, < t})} - \log \frac{\pi_{\theta}(y_{i,t}|x_{i}, y_{i, < t})}{\pi_{\text{ref}}(y_{i,t}|x_{i}, y_{i, < t})} - 1$$

PART 03

Insights from reinforcement learning.

A unified paradigm for different training methods

For typical reinforcement training algorithms (SFT, RFT, PPO, DPO, GRPO), the gradient of the parameter has the same formulation:

$$\nabla_{\theta} \mathcal{J}_{\mathcal{A}}(\theta) = \mathbb{E}\left[\underbrace{(q, o) \sim \mathcal{D}}_{\text{Data Source}}\right] \left(\frac{1}{|o|} \sum_{t=1}^{|o|} \underbrace{GC_{\mathcal{A}}(q, o, t, \pi_{rf})}_{\text{Gradient Coefficient}} \nabla_{\theta} \log \pi_{\theta}(o_{t}|q, o_{< t})\right).$$

- Three core components:
 - 1. Data source **1**.
 - 2. Reward function π_{rf} : a rule not changing during training / a model changing during training
 - 3. Algorithm \mathcal{A} : processes the **training data** and the **reward signal** to the **gradient coefficient**, determines the **magnitude** of the penalty or reinforcement.

A unified paradigm for different training methods

> Three core components for existing algorithms:

Methods	Data Source	Reward Function	Gradient Coefficient
SFT	$q, o \sim P_{sft}(Q, O)$		1
RFT	$q \sim P_{sft}(Q), o \sim \pi_{sft}(O q)$	Rule	Equation 10
DPO	$q \sim P_{sft}(Q), o^+, o^- \sim \pi_{sft}(O q)$	Rule	Equation 14
Online RFT	$q \sim P_{sft}(Q), o \sim \pi_{\theta}(O q)$ $q \sim P_{sft}(Q), o \sim \pi_{\theta}(O q)$ $q \sim P_{sft}(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta}(O q)$	Rule	Equation 10
PPO		Model	Equation 18
GRPO		Model	Equation 21

• The detailed Equations can be found in the original paper.

How data source affect the training performance

- Online sampling: Sampling distribution can change during training (e.g. PPO, GRPO).
- Offline sampling: Sampling distribution is fixed during training (e.g. RFT, DPO).

Figure 5 | Performance of the DeepSeekMath-Instruct 1.3B model, which was further trained using various methods, on two benchmarks.

Online sampling performs well in the later stage.

Impact on reward function and gradient coefficients

Model vs Rule:

— Iteration-0 Iteration-1 - Iteration-2 GSM8K MATH 52 51 S 50 3300 2300 3300 1300 2300 4300 1300 4300 Steps Steps

Figure 5 | Performance of the DeepSeekMath-Instruct 1.3B model, which was further trained using various methods, on two benchmarks.

Figure 6 | Performance of iterative reinforcement learning with DeepSeekMath-Instruct 7B on two benchmarks.

- GRPO vs RFT: Model is better than rule.
- GPRO+OS vs GPRO+PS: fine-grained, step-aware gradient coefficients benefits.
- Iteration can improve the training performance, especially in Iteration 1.

Why RL works?

Instruct tuning model vs RL

- Maj@K: generalize first K answer and take majority vote, the voted one is right.
- Pass@K: generalize K answer, at least one is right.
- RL improves Maj@K but not Pass@K!
- ➤ Maybe RL improves the ability for **boosting the correct response from TopK** rather than improves fundamental capabilities.

How to achieve a more efficient RL

- Better performance: using sampling strategy and reward function vary dynamically.
- 堆trick?
- Potential future directions from authors
 - Data source: Queries are all from the instruction tuning stage with simple sampling strategy. → exploration on out-of-distribution samples with advance sampling strategy.
 - 2. Algorithms: Fully trust the reward function, impossible to guarantee the reward signal is always reliable \rightarrow develop algorithms robust against noisy reward signals.
 - 3. Reward function: (1) enhance the **generalization** ability; (2) reflect the **uncertainty**; (3) build high quality **process reward models**.