

Inteligência Artificial Aplicada

UniSenai PR-São José dos Pinhais

Categoria	Descrição	Algoritmos/técnicas	Exemplos de aplicação
Métodos de busca	Encontram soluções em um espaço de estados.	BFS, A*	GPS traçando a melhor rota.
Raciocínio temporal	Modelam eventos ao longo do tempo.	Cadeias de Markov, Redes Bayesianas	Previsão do tempo, reconhecimento de fala.
Lógica fuzzy	Lida com incertezas e valores intermediários.	Conjuntos fuzzy, Inferência fuzzy	Controle de temperatura em ar-condicionado.
Modelos de aprendizado	Ajustam pesos para identificar padrões em dados.	Redes Neurais (Perceptron, MLP)	Reconhecimento facial, chatbots.

Um dos primeiros modelos de rede neural (1958);

Modelo matemático inspirado em neurônios biológicos.

Composto por:

- 1. Entradas: vetor $x[x_1, x_2, ..., x_n]$
- 2. Pesos: vetor $w[w_1, w_2, ..., w_n]$
- 3. Soma ponderada: $y = f(x_1w_1 + x_2w_2 + \cdots + x_nw_n + b)$
- 4. Bias b (termo de ajuste)
- 5. Função de ativação (degrau): $f(u) = \begin{cases} 1, se \ u \ge 0 \\ 0, se \ u < 0 \end{cases}$

Elemento	Símbolo	Função
Entrada	x_1, x_2, \dots, x_n	Características do dado de entrada.
Pesos	W_1, W_2, \dots, W_n	Definem a importância de cada entrada.
Bias (viés)	b	Constante adicionada à soma ponderada; permite deslocar a decisão.
Soma ponderada	$u = \vec{x}^* \vec{w} + b$	Combina entradas com seus pesos e o bias
Função de ativação	f(u)	Define a saída com base na soma: degrau

Elemento	Símbolo	Função
Saída prevista	y _{pred}	Resultado da função de ativação; a predição do modelo.
Saída real	y	Valor esperado nos dados de treinamento.
Erro	$\varepsilon = y - y_{pred}$	Diferença entre saída esperada e prevista
Taxa de aprendizado	π	Controla o tamanho do ajuste nos pesos e no bias.
Época		Rodadas de treinamento.

- 1. Iniciar pesos e bias com 0 ou valores aleatórios;
- 2. Para cada registro:
 - Calcular a saída do perceptron (y_{pred}) ;
 - Comparar com a saída desejada ($y_{real} y_{pred}$);
 - Ajustar os pesos e o bias:
 - $w_i = w_i + n * erro * x_i$
 - b = b + n * erro
 - 3. Repetir por várias épocas, até o erro ser zero ou muito baixo.

