5 Consider a set of N vectors $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ each in \mathbb{R}^d , with average vector \bar{x} . We have seen in class that the direction e such that $\sum_{i=1}^N \|x_i - \bar{x} - (e \cdot (x_i - \bar{x}))e\|^2$ is minimized, is obtained by maximizing e^tCe , where C is the covariance matrix of the vectors in \mathcal{X} . This vector e is the eigenvector of matrix C with the highest eigenvalue. Prove that the direction f perpendicular to e for which f^tCf is maximized, is the eigenvector of C with the second highest eigenvalue. For simplicity, assume that all non-zero eigenvalues of C are distinct and that $\operatorname{rank}(C) > 2$.

Answer:

Let $J(f) = f^t C f$, we need to maxmise J(f) with constraints $f^t e = 0$ (f is orthogonal to e) and we already know that f is a unit vector hence $f^t f = 1$

So, using lagrange's therorm,

Let $\widetilde{J}(f) = f^t C f - \lambda_1 (f^t f - 1) - \lambda_2 (e^t f)$, by lagranges property, for J to be maximim under the given constraints \widetilde{J} 's derivative wrt to f should be 0,

$$\frac{d(\widetilde{J}(f))}{df} = \frac{d}{df}(f^tCf - \lambda_1(f^tf - 1) - \lambda_2(e^tf))$$
$$= 2Cf - 2\lambda_1f - \lambda_2e$$

Hence $2Cf - 2\lambda_1 f - \lambda_2 e = 0$

Taking right vector multiplation with e^t on both sides

$$\implies e^t(2Cf - 2\lambda_1 f - \lambda_2 e) = 0$$

$$2e^tCf - 2\lambda_1 e^t f - \lambda_2 e^t e = 0$$

$$2\lambda_e e^t f - 2\lambda_1 e^t f - \lambda_2 e^t e = 0 \text{ (Where } \lambda_e \text{ is the eigen value corresponding to the eigen vector } e)$$

$$0 - 0 - 2\lambda_2 = 0$$

$$\lambda_2 = 0$$

Hence f is a eigen vector of C, now as f^tCf has to maximised and $f \neq e$, f is the eigen vector cooresponding to the second largest eigen value

- 6 Consider a matrix \mathbf{A} of size $m \times n, m \le n$. Define $\mathbf{P} = \mathbf{A}^T \mathbf{A}$ and $\mathbf{Q} = \mathbf{A} \mathbf{A}^T$. (Note: all matrices, vectors and scalars involved in this question are real-valued).
 - (a) Prove that for any vector \boldsymbol{y} with appropriate number of elements, we have $\boldsymbol{y}^t\boldsymbol{P}\boldsymbol{y}\geq 0$. Similarly show that $\boldsymbol{z}^t\boldsymbol{Q}\boldsymbol{z}\geq 0$ for a vector \boldsymbol{z} with appropriate number of elements. Why are the eigenvalues of \boldsymbol{P} and \boldsymbol{Q} non-negative?

Answer:

$$y^t P y = y^t A^t A y$$

= $(Ay)^t (Ay)$: Ay is a column vector, and $v^t v \ge 0$ (also called norm) for every column vector $v \ge 0$

$$z^tQz=z^tAA^tz\\ =(A^tz)^t(A^tz): A^tz \text{ is a column vector, and } v^tv\geq 0 \text{ (also called norm) for every column vector } v\\ \geq 0$$

Consider any eigenvalue of P, let it be e

We know $Pe = \lambda e \implies e^t Pe = \lambda e^t e \implies e^t Pe = \lambda$, since as LHS is always non negative RHS must be non negative, hence λ is non-negative.

Hence P has only non negative eigen values

Similarly Q also have non-negative eigen values

(b) If u is an eigenvector of P with eigenvalue λ , show that Au is an eigenvector of Q with eigenvalue λ . If v is an eigenvector of Q with eigenvalue μ , show that A^Tv is an eigenvector of P with eigenvalue μ . What will be the number of elements in u and v?

Answer:

$$Pu = \lambda u$$

$$\implies A^t A u = \lambda u$$

$$\implies A A^t A u = \lambda A u$$

$$\implies Q(Au) = \lambda (Au)$$

Hence Au is a eigen vector of Q with eigen value λ

$$Qv = \lambda v$$

$$\implies AA^t u = \lambda v$$

$$\implies A^t AA^v = \lambda A^t v$$

$$\implies P(A^t v) = \lambda (A^t v)$$

Hence $A^t v$ is a eigen vector of P with eigen value λ Number of elements in u are n and in v are m

(c) If \mathbf{v}_i is an eigenvector of \mathbf{Q} and we define $\mathbf{u}_i \triangleq \frac{\mathbf{A}^T \mathbf{v}_i}{\|\mathbf{A}^T \mathbf{v}_i\|_2}$. Then prove that there will exist some real, non-negative γ_i such that $\mathbf{A}\mathbf{u}_i = \gamma_i \mathbf{v}_i$.

Answer:

$$Au_{i} = A \frac{A^{T}v_{i}}{\|A^{T}v_{i}\|_{2}}$$

$$= \frac{AA^{T}v_{i}}{\|A^{T}v_{i}\|_{2}}$$

$$= \frac{Qv_{i}}{\|A^{T}v_{i}\|_{2}}$$

$$= \frac{\lambda_{v_{i}}v_{i}}{\|A^{T}v_{i}\|_{2}}$$

Where λ_{v_i} is the eigen value corresponding to eigen vector v_i Hence there exits $\gamma_i = \frac{\lambda_{v_i}}{\|A^T v_i\|_2}$ and $\gamma_i \geq 0$ (as $\lambda_{v_i} \geq 0$) with $Au = \gamma_i v_i$ (d) It can be shown that $\boldsymbol{u}_i^T\boldsymbol{u}_j=0$ for $i\neq j$ and likewise $\boldsymbol{v}_i^T\boldsymbol{v}_j=0$ for $i\neq j$ for correspondingly distinct eigenvalues. Now, define $\boldsymbol{U}=[\boldsymbol{v}_1|\boldsymbol{v}_2|\boldsymbol{v}_3|...|\boldsymbol{v}_m]$ and $\boldsymbol{V}=[\boldsymbol{u}_1|\boldsymbol{u}_2|\boldsymbol{u}_3|...|\boldsymbol{u}_m]$. Now show that $\boldsymbol{A}=\boldsymbol{U}\boldsymbol{\Gamma}\boldsymbol{V}^T$ where $\boldsymbol{\Gamma}$ is a diagonal matrix containing the non-negative values $\gamma_1,\gamma_2,...,\gamma_m$. With this, you have just established the existence of the singular value decomposition of any matrix \boldsymbol{A} . This is a key result in linear algebra and it is widely used in image processing, computer vision, computer graphics, statistics, machine learning, numerical analysis, natural language processing and data mining.

Answer:

Let
$$K = U^T U$$

$$K(i,j) = \begin{cases} 1 & i \neq j \text{ as } v_i^t v_i = 0\\ 0 & i = j \text{ as } v_i^t v_j = 1 \end{cases}$$

Hence K = I, so U orthogonal matrix, similarly V is also a orthogonal matrix (as v_i are eigenvectors, hence $v_i^t v_j = 0$ for $i \neq j$ and $v_i^t v_i = 1$ So, $UU^T = I$ and $VV^T = I$

$$\begin{aligned} A &= IAI \\ &= UU^TAVV^T \\ &= U(U^TAV)V^T = U\Theta V^T \end{aligned}$$

Now,

$$\Theta(i,j) = U^T A V = \begin{cases} \gamma_i & i = j \text{ as } v_i^t A u_i = v_i^t \gamma_i v_i = \gamma_i \\ 0 & i \neq j \text{ as } v_i^t A u_j = v_i^t \gamma_i v_j = 0 \end{cases}$$

So $\Theta = \Gamma$ Hence $A = U\Gamma V^T$