



Fig.1



Fig.2A



Fig.2B



Fig.3







7/19



SELECTABLE OP RESISTORS TO BE USED WITH PADXFER METAL (LM) TOTAL RESISTANT MATCHING UP TO 3 OHMS

ONE RESISTOR L=2.1U AND W=93.0U = 3.0 OHMS
ONE RESISTOR L=2.1U AND W=111.0U = 2.5 OHMS
ONE RESISTOR L=2.1U AND W=139.0U = 2.0 OHMS
ONE RESISTOR L=2.1U AND W=185.0U = 1.5 OHMS
ONE RESISTOR L=2.1U AND W=278.0U = 1.0 OHMS
THE RESISTOR L=2.1U AND W=278.0U IN PARAMETER = 0.5 OHMS SHOWN

TWO RESISTORS L=2.1U AND W=278.0U IN PARALLEL = 0.5 OHMS SHOWN ZERO RESISTORS TO BE USED FOR 0 OHMS

Fig.5





TITLE: GTL + DRIVER
INVENTORS NAME: Rodney Ruesch
SERIAL NO.: 09/620,679



₹

1 3



Fig.7-2



Fig.8

TITLE: GTL + DRIVER
INVENTORS NAME: Rodney Ruesch
SERIAL NO.: 09/620,679



### 14/19

#### **DESCRIPTION:**

Non-inverting bi-directional driver/receiver that interfaces 1.8V internal functions with 1.1V enhanced gTL+ off-chip bi-directional data bus. The driver operates with a 1.8V supply. The driver has off-chip termination of 45 ohm to 1.1V ( $v_{TT}$ ) at each end of the bus (double termination). The receiver has external reference  $v_{ref}$  ( $v_{TT}$ \*2/3).

| NECEIVEN 115 | S EXTERNAL REPERENCE TIES (1) 2/0).                              |
|--------------|------------------------------------------------------------------|
| AO           | DRIVER DATAO INPUT                                               |
| A1           | DRIVER DATA1 INPUT                                               |
| ANO          | DRIVER DATAO INPUT                                               |
| AN1          | DRIVER DATA1 INPUT                                               |
| SA           | DRIVER DATA SELECT INPUT                                         |
| DI           | DRIVER INHIBIT INPUT (DI IN) IN-PHASE DRIVER THREE-STATE CONTROL |
| TS           | IN-PHASE DRIVER THREE-STATE CONTROL                              |
| TSN          | OUT-PHASE DRIVER THREE-STATE CONTROL                             |
| PVTP[8:0]    | PMOS EDGE RATE CONTROL BUS INPUT                                 |
| PVTN[8:0]    | NMOS IMPEDANCE CONTROL BUS INPUT                                 |
| RE           | REFERENCE ENABLE                                                 |
| RI           | RECEIVER INHIBIT INPUT (RI IN)                                   |
| VREF         | (Vtt*2/3) INPUT SIGNAL                                           |
| PAD          | IN-PHASE DRIVER OUTPUT/RECEIVER INPUT                            |
| PADN         | OUT-PHASE DRIVER OUTPUT/RECEIVER INPUT                           |
| ZDI          | DRIVER INHIBIT OUTPUT (DI OUT)                                   |
| ZRI<br>Z     | RECEIVER INHIBIT OUTPUT (RI OUT)                                 |
| Z            | IN-PHASE RECEIVER OUTPUT                                         |
| ZN           | OUT-PHASE RECEIVER OUTPUT                                        |
| ZA           | DATAO TEST OUTPUT (AO OR A1 OUT)                                 |
| ZAN          | DATANO TEST OUTPUT (ANO OR AN1 OUT)                              |
| ZBSR         | PAD TEST OUTPUT (PAD OUT)                                        |
| ZNBSR        | PADN TEST OUTPUT (PADN OUT)                                      |
| LT           | LEAKAGE TEST INPUT                                               |
|              |                                                                  |



Fig.10

|   | AO                                                    |     |     | AD          | —ф           |
|---|-------------------------------------------------------|-----|-----|-------------|--------------|
|   | A1                                                    |     |     | PADN        | —ф           |
|   | ANO                                                   |     |     |             | Ì            |
|   | AN1                                                   |     |     | Z           | ф            |
|   | DI                                                    |     |     | ZN          | <b>—</b> ф   |
|   | SA                                                    |     |     |             |              |
|   | PVTN0                                                 |     |     | ZRI         | Щ-           |
|   | PVTN1                                                 |     |     | ZDI         | <u> </u>     |
|   | PVTN2                                                 |     |     | 201         |              |
|   | PVTN3                                                 |     |     |             |              |
|   | PVTN4                                                 |     |     |             |              |
|   | PVTN5                                                 |     |     | ZBSR        | <del> </del> |
|   | PVTN3<br>PVTN6                                        |     |     | ZNBSR       | 中            |
|   |                                                       |     |     |             |              |
|   | PVTN7                                                 |     |     | ZA          | L            |
|   | PVTN8                                                 |     |     |             | <u>`</u>     |
|   |                                                       |     |     | ZAN         | $\sqcap$     |
|   | PVTP0 PVTP1 PVTP2 PVTP3 PVTP4 PVTP5 PVTP6 PVTP7 PVTP8 |     |     |             |              |
|   | RI<br>LT                                              |     |     |             |              |
|   | TS                                                    |     |     |             |              |
| - | TSN                                                   |     |     |             |              |
|   | RE                                                    |     |     |             |              |
|   | VREF                                                  |     |     |             |              |
|   | L                                                     | 12, | 1 1 | <del></del> |              |

Fig.11

16/19

|        |          |                     |                     |               |               |               |                 |                 |                          |                          |                           |                          |                          | ,                        |
|--------|----------|---------------------|---------------------|---------------|---------------|---------------|-----------------|-----------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|
|        | COMMENTS | HIGH IMPEDANCE MODE | HIGH IMPEDANCE MODE | PVT TEST MODE | PVT TEST MODE | PVT TEST MODE | PVT TEST MODE 3 | PVT TEST MODE 3 | FUNCTIONAL, AO DATA MODE | FUNCTIONAL, 10 OHMS @ BC | FUNCTIONAL, 10 OHMS @ NOM | FUNCTIONAL, 10 OHMS @ WC | FUNCTIONAL, AO DATA MODE | FUNCTIONAL, A1 DATA MODE |
| OUTPUS | PAD      | H-Z <sup>1</sup>    | 12-IH               | 12-H          | 12-IH         | 12-IH         | 03              | 13              | 03                       | 03                       | 03                        | 03                       | 13                       | A1                       |
|        | PVIN     | ı                   | -                   | 02            | 0.5           | 1             | 0,              | -               | 0<                       | 1                        | 4                         | 8                        | 0<                       | 0<                       |
|        | PVTP     | -                   | -                   | 70            | 1             | 70            | _               | 0<              | 0<                       | 1                        | <b>†</b>                  | 8                        | 0<                       | 0<                       |
|        | Ю        | 1                   | 0                   | ı             | 1             | ı             | 1               | 1               | 1                        | 1                        |                           | ļ                        | ļ                        | 1                        |
|        | IS       | 0                   | -                   | _             | -             |               | 1               | l               | 1                        |                          | 1                         | 1                        |                          | 1                        |
|        | SA<br>S  | ı                   | -                   | _             | 0             | 0             | 0               | 0               | 0                        | 0                        | 0                         | 0                        | 0                        | 1                        |
|        | A1       | -                   | -                   | _             | _             | -             | _               | _               | _                        | _                        | _                         | _                        | -                        | _                        |
| INPUTS | A0       | _                   | _                   | _             | 0             | -             | 0               | -               | 0                        | 0                        | 0                         | 0                        | +                        | -                        |

DRIVER TRUTH TABLE

1. PAD IS AT "V77" WHEN CONNECTED TO OFF-CHIP TERMINATOR.

2. WHEN PVT=0 ALL PVT BITS GO TO  $V_{SS}$  AND ARE OFF. 3. PAD LOGICAL "1"= $V_{tt}$ =1.1 $V_{tt}$  LOGICAL "0"= $0.4V_{tt}$  OR LESS.

NOTES: A. Vdd=1.8(+/-0.1)V, Vtt=1.1(+/-0.02)V

B. DURING MODULE EXTERNAL I/O TEST AND SYSTEM MODE, DRIVER OUTPUT PULLUP IS MADE BY THE EXTERNAL 22.5 OHM RESISTOR TO Vtt.

NDR WILL BE BASED ON DRIVER TERMINATED OFF-CHIP.

AO, A1, ANO, AND AN1 ARE INDEPENDENT FROM EACH OTHER.

ENTRIES IN COLUMNS PVTP, PVTN REPRESENT NUMBER OF LINES HELD AT LOGIC "1" STATE. FOR TESTING, THE IMPEDANCE CONTROLLER FORCES PVTP AND PVTN TO 4 (i.e. PVIP[8:0]=PVIN[8:0]=[000011110]) FOR ALL SUPPLY VOLTAGE LEVELS .. نا نے ن

17/19

|        | COMMENTS | HIGH IMPEDANCE MODE | HIGH IMPEDANCE MODE | PVT TEST MODE | PVT TEST MODE | PVT TEST MODE | PVT TEST MODE 3 | PVT TEST MODE 3 | FUNCTIONAL, AO DATA MODE | FUNCTIONAL, 10 OHMS @ BC | FUNCTIONAL, 10 OHMS @ NOM | FUNCTIONAL, 10 OHMS @ WC | FUNCTIONAL, AO DATA MODE | FUNCTIONAL, A1 DATA MODE |
|--------|----------|---------------------|---------------------|---------------|---------------|---------------|-----------------|-----------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|
| OUTPUS | PADN     | 12-IH               | 12-IH               | 12-IH         | , Z-IH        | 12-H          | 03              | 13              | 03                       | 03                       | 03                        | 0.3                      | 13                       | A1                       |
|        | PVTN     | 1                   | 1                   | 0.5           | 0.5           | 1             | 0<              | ı               | 0<                       | 1                        | <b>þ</b>                  | 8                        | 0<                       | <u></u>                  |
|        | PVTP     | ,                   | -                   | 05            | 1             | ZÖ            | 1               | 0<              | 0<                       | 1                        | <b>þ</b>                  | 8                        | 0<                       | 0<                       |
|        | 0        | ı                   | 0                   | 1             | -             | 1             | 1               | 1               | 1                        | 1                        | -                         | -                        | 1                        | ļ                        |
|        | NSI      | 0                   | -                   | -             | ı             | _             | 1               | 1               | -                        | -                        | 1                         | -                        | -                        | -                        |
|        | ₩S       | -                   | _                   | _             | 0             | 0             | 0               | 0               | 0                        | 0                        | 0                         | 0                        | 0                        | -                        |
|        | AN1      | -                   | 1                   | 1             | ı             | ı             | 1               | 1               | -                        | 1                        | 1                         | 1                        | 1                        | ı                        |
| INPUTS | ANO      | ŧ                   | 1                   | 1             | 0             | -             | 0               | _               | 0                        | 0                        | 0                         | 0                        | -                        | ı                        |

DRIVER TRUTH TABLE

1. PAD IS AT " $V_{77}$ " WHEN CONNECTED TO OFF-CHIP TERMINATOR.

2. When PVT=0 all PVT bits GO TO  $V_{SS}$  and are off. 3. Pad logical "1"=Vtt=1.1V, logical "0"=0.4V or less.

NOTES: A. Vdd=1.8(+/-0.1)V, Vtt=1.1(+/-0.02)V

B. DURING MODULE EXTERNAL 1/O TEST AND SYSTEM MODE, DRIVER OUTPUT PULLUP IS MADE BY THE EXTERNAL 22.5 OHM RESISTOR TO VH.

NDR WILL BE BASED ON DRIVER TERMINATED OFF-CHIP.

D. AO, A1, ANO, AND AN1 ARE INDEPENDENT FROM EACH OTHER.

ENTRIES IN COLUMNS PVTP, PVTN REPRESENT NUMBER OF LINES HELD AT LOGIC "1" STATE. FOR TESTING, THE IMPEDANCE CONTROLLER FORCES PVTP AND PVTN TO 4 (i.e. PVIP[8:0]=PVIN[8:0]=[000011110]) FOR ALL SUPPLY VOLTAGE LEVELS.

| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                     |                        | 18        | 8/                | 19     | γ     | ·        | 1     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------|------------------------|-----------|-------------------|--------|-------|----------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | V <sub>dd</sub> =1.9 <sup>2</sup> V | V <sub>tt</sub> =1.12V | 1;=25°C   | PROCESS=FAST      | 0.8ns  | 0.8ns | 0.8ns    | 0.80  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 'std)                                              | $V_{dd}=1.8V$                       | V <sub>tt</sub> =1.15V | 2°08= ¡T  | PROCESS=NOM.      | 1.0ns  | 1.0ns | 1.00     | 1.00S |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DELAY ( ns )=INTERCEOT+SLOPE (0 <sub>S</sub> td) ' | $V_{dd}=1.7^2V$                     | V <sub>ft</sub> =1.08V | T;=100°C  | PROCESS=SLOW      | 1.2ns  | 1.2ns | 1.2ns    | 1.2ns |
| 013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                  |                                     |                        |           | PARAMETER         | tPLH   | ТНА   | HTdq     | tрн   |
| MACHINE MACHINE OF THE COMPONENT OF THE |                                                    |                                     |                        |           | PERFORMANCE LEVEL |        |       | V        | ¥     |
| אואבאי דייטן אטאיוט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                     | PATH                   | (INPUT TO | OUTPUT)           | AO_DAD |       | ANO-PADN |       |

<sup>1.</sup> D<sub>S</sub>td is the number of standard loads. 2. Voltage at the Package Pin. 3. Design is optimized for Vit=1.1V, can be used for Vit=1.0V to 1.2V.



Fig.15