Etude de l'équirépartition de suites denses

Lucas WILLEMS

12 juin 2016

Sommaire

Densité:

Equirépartition :

- Introduction à l'équirépartition
 - Approche intuitive
 - Existence de suites équiréparties
- Représentation graphique
 - Coloration du segment [0,1]
 - Fonctions de répartition
- Lien entre densité et équirépartition
- Fonctions conservant l'équirépartition
- Ouverture : vers une généralisation ?

I) Introduction - Approche intuitive

Notion de densité

Definition

 $(u_n) \in [0,1]^{\mathbb{N}}$ dense si pour tout $(a,b) \in [0,1]^2$ avec a < b:

$$\exists n \in \mathbb{N}, u_n \in]a, b[$$

$$u_n = |\cos(n)| \text{ avec } n \in [0, 1000]$$

Notion d'équirépartition

Definition

 $(u_n) \in [0,1]^{\mathbb{N}}$ équirépartie si pour tout $(a,b) \in [0,1]^2$ avec $a \leq b$:

$$\frac{\#\{i \le n | u_i \in [a, b]\}}{n} \xrightarrow[n \to \infty]{} b - a$$

$$v_n = \sqrt{2} \cdot n \mod 1 \text{ avec } n \in \llbracket 0, 1000
rbracket$$

Lien direct entre ces 2 notions

Proposition

$$(u_n) \in [0,1]^{\mathbb{N}}$$
 équirépartie $\Rightarrow (u_n)$ dense

Remarque

Pour $(u_n) \in [0,1]^{\mathbb{N}}$ équirépartie, (v_n) avec $v_{2n} = u_n$ et $v_{2n+1} = 0$ ne l'est pas.

Conclusion

L'équirépartition est un cas particulier de la densité.

I) Introduction - Existence de suites équiréparties

Théorème (Critère de Weyl)

Soit $(u_n) \in [0,1]^{\mathbb{N}}$. Equivalence entre :

- **1** (*u_n*) équirépartie
- ② $\forall f: [0,1] \longrightarrow \mathbb{R}$ continue, $\frac{1}{n} \sum_{k=1}^{n} f(u_k) \underset{n \to \infty}{\longrightarrow} \int_{0}^{1} f(t) dt$

Corollaire

Soit $\alpha \in \mathbb{R}$. Equivalence entre :

- **1** ($\alpha \cdot n \mod 1$) équirépartie
- \mathbf{Q} α irrationnel

Théorème (Koksma)

 $(x^n \mod 1)$ est équirépartie pour presque tout $x \ge 1$ (au sens de la mesure de Lebesgue)

Remarque

On peut exhiber :

- Facilement des x tels que $(x^n \mod 1)$ non équirépartie $(e.g. \sqrt{n})$
- Difficilement des $x \ge 1$ tels que $(x^n \mod 1)$ équirépartie. Conjecture pour $((\frac{3}{2})^n \mod 1)$:

$$w_n = (\frac{3}{2})^n \mod 1 \text{ avec } n \in [0, 50000]$$

Conclusion

De nombreuses suites équiréparties dans [0,1] existent.

II) Représentation graphique - Coloration

Remarque

Le programme donne seulement une idée de l'équirépartition à un instant t

Options disponibles dans le programme :

- Ensemble considéré ([a, b] ou même [a, b] imes [c, d])
- Suite représentée
- Nombre de divisions

Utilisation du programme pour tester le générateur aléatoire de l'ordinateur :

10.000 couples aléatoires 1.000.000 couples aléatoires

II) Représentation graphique - Fonctions de répartition

Definition

Les **fonctions de répartition** (f_n) de (u_n) sont :

$$\forall n \in N, \forall x \in [0, 1], f_n(x) = \frac{\#\{i \le n | u_i \in [0, x]\}}{n} \in [0, 1]$$

Definition

Les indices d'équirépartition (I_n) de (u_n) sont :

$$\forall n \in N, I_n = \int_0^1 |f_n(x) - x| dx$$

 $u_n = |\cos(n)| \text{ avec } n \in [0, 1000]$ $v_n = \sqrt{2} \cdot n \mod 1 \text{ avec } n \in [0, 1000]$

Théorème

Soit $(u_n) \in [0,1]^{\mathbb{N}}$. Equivalence entre :

- (u_n) équirépartie
- (f_n) CVS vers l'identité
- \circ (I_n) converge vers \circ

Proposition

Soit $(u_n) \in [0,1]^{\mathbb{N}}$. (f_n) CVS vers f strictement croissante $\Rightarrow (u_n)$ dense.

Exemple ((|cos(n)|) dense non équirépartie)

Soit
$$u_n = |\cos(n)| = |\cos(\pi \cdot v_n)|$$
 (avec $v_n = \frac{n \mod \pi}{\pi} = \frac{n}{\pi} \mod 1$):

$$f_n(x) = \frac{\#\{i \le n | v_n \in \left[\frac{\arccos(x)}{\pi}, \frac{\arccos(-x)}{\pi}\right]\}}{n} \xrightarrow[n \to \infty]{\text{(Cor. 1)}} \xrightarrow[n \to \infty]{\text{arccos}(-x) - \arccos(x)}$$

III) Lien entre densité et équirépartition

Extraction d'une suite équirépartie depuis une suite dense

Proposition

Soit $(u_n) \in [0,1]^{\mathbb{N}}$ dense.

$$\forall (a_n) \in [0,1]^{\mathbb{N}}, \exists \varphi : \mathbb{N} \longrightarrow \mathbb{N} \text{ extractrice}, u_{\varphi(n)} - a_n \underset{n \to \infty}{\longrightarrow} 0$$

Proposition

Soit $(u_n) \in [0,1]^{\mathbb{N}}$ et $(v_n) \in [0,1]^{\mathbb{N}}$.

$$u_n - v_n \xrightarrow[n \to \infty]{} 0 \Rightarrow [(u_n) \text{ \'equir\'epartie} \Leftrightarrow (v_n) \text{ \'equir\'epartie}]$$

Corollaire

On peut extraire une suite (non) équirépartie d'une suite dense.

Corollaire

Des suites équiréparties de rationnels ou décimaux existent.

Réorganisation équirépartie des termes d'une suite dense

Proposition

Soit $(u_n) \in [0,1]^{\mathbb{N}}$ dense.

$$\forall (a_n) \in [0,1]^{\mathbb{N}} \text{ dense}, \exists \gamma : \mathbb{N} \longrightarrow \mathbb{N} \text{ bijective}, u_{\gamma(n)} - a_n \underset{n \to \infty}{\longrightarrow} 0$$

Corollaire

On peut trouver une réorganisation (non) équirépartie d'une suite dense.

Conclusion

La seule différence entre une suite simplement dense et une suite équirépartie est l'ordre d'apparition des termes. Parler d'ensemble équiréparti n'a pas de sens.

IV) Fonctions convervant l'équirépartition

Approche intuitive

Definition

 $f:[0,1]\longrightarrow [0,1]$ conserve l'équirépartition si :

 $\forall (u_n) \in [0,1]^{\mathbb{N}}$ équirépartie, $(f(u_n))$ est équirépartie

Exemple (Fonctions discontinues et continues conservant l'équirépartition)

Cas des fonctions continues et dérivables

Proposition

Soit $f \in C^0([0,1],[0,1])$. Equivalence entre :

- 1 f conserve l'équirépartition
- $\supseteq \exists (u_n) \in [0,1]^{\mathbb{N}}$ équirépartie, $(f(u_n))$ est équirépartie

Proposition

Soit $f \in C^0([0,1],[0,1])$ dérivable sur [0,1[. Equivalence entre :

- f conserve l'équirépartition

Proposition

 $\forall f \in C^0(\mathbb{R}, [0, 1])$ périodique et dérivable sur]0, 1[, (f(n)) n'est pas équirépartie.

Remarque

En particulier, $(|\cos(n)|)$, $(\frac{1+\cos(n)}{2})$... ne sont pas équiréparties.

V) Ouverture : vers une généralisation ?

Généralisation de l'équirépartition dans $[0,1]^k$ pour $k \in \mathbb{N}^*$

Definition

 $(u_n) \in ([0,1]^k)^{\mathbb{N}}$ est **équirépartie** dans $[0,1]^k$ si :

$$\forall (a_1, ..., a_k, b_1, ..., b_k) \in ([0, 1]^{2k} \text{ avec } a_1 \leq b_1, ..., a_k \leq b_k,$$

$$\lim_{n \to \infty} \frac{\#\{i \leq n | u_i \in \prod_{i=1}^k [a_i, b_i]\}}{n} = \prod_{i=1}^k (b_i - a_i)$$

Généralisation de l'équirépartition dans un espace mesuré

Pour un espace mesuré (E, \mathfrak{M}, μ) de mesure finie, on pourrait dire que $(u_n) \in E^{\mathbb{N}}$ est équirépartie dans E si :

$$\forall A \in \mathfrak{M}, \lim_{n \to \infty} \frac{\#\{i \le n | u_i \in A\}}{n} = \frac{\mu(A)}{\mu(E)}$$

- Problème : aucune suite n'est équirépartie pour $([0,1],\mathfrak{B}([0,1]),\mu)$ (considérer $A=[0,1]\setminus\{u_i|i\in\mathbb{N}\}$ élément de $\mathfrak{B}([0,1])$)
- Solution : ne considérer que les éléments $A\in\mathfrak{M}$ tels que $\mu(\mathring{A})=\mu(\overline{A})$

Definition

Soit (E, \mathfrak{M}, μ) un espace mesuré de mesure finie. $(u_n) \in E^{\mathbb{N}}$ équirépartie dans E si :

$$\forall A \in \mathfrak{M} \text{ avec } \mu(\mathring{A}) = \mu(\overline{A}), \lim_{n \to \infty} \frac{\#\{i \le n | u_i \in A\}}{n} = \frac{\mu(A)}{\mu(E)}$$