3) Per il doppio bipolo di figura determinare la matrice dei parametri H:

$$R=5 \Omega$$

 $L=20mH$
 $C=500\mu F$
 $\alpha=4A/V$
 $\omega=500 \text{ rad/s}$

4) Nel il circuito trifase simmetrico ed equilibrato mostrato in figura determinare la corrente sui carichi \overline{Z}_3 le potenze attive e reattive erogate della terna E_1 , E_2 E_3 (\overline{Z}_2 è l'impedenza interna del generatore).

$$\dot{E}_{1} = 380 e^{j\frac{\pi}{4}} V_{eff}; \quad \dot{V}_{1} = 800 e^{j\frac{\pi}{3}} V_{eff}; \quad \dot{U}_{1} = 820 e^{j\frac{\pi}{6}} V_{eff};$$

 $\bar{Z}_{2} = 2 + j2 \Omega; \quad \bar{Z}_{1} = 1 + j3 \Omega; \quad \bar{Z}_{3} = 30 + j60 \Omega; \quad f = 50 Hz;$

ASINCRONO		
Prova a vuo	to	
$V_{10} = 800 V;$	$I_{10} = 3.8 A;$	$P_{10} = 600 W;$
Prova incort	to	10
	$I_{1cc} = 20 A; P_1$	$_{cc} = 500 W;$
n=2;		