0 - Course Notations

October 26, 2020

0.1 Course Notations

For simplicity and avoiding confusion, we shall stick to the following notations throughout our course. Note that these notations may vary across disciplines and even person to person. I will try to use most common notations when possible.

Symbol / Notations	Typical meaning
$\overline{a,b,c,lpha,eta,\gamma}$	Scalars are lowercase
$\mathbf{x}, \mathbf{y}, \mathbf{z}$	Vectors are bold lowercase
X, Y, Z	Matrices are bold uppercase
$\mathbf{x}^{ op}, \mathbf{X}^{ op}$	Transpose of a vector or matrix
\mathbf{X}^{-1}	Inverse of a matrix
$\langle \mathbf{x}, \mathbf{y} angle$	Inner product of \mathbf{x} and \mathbf{y}
$\mathbf{x}^{ op}\mathbf{y}$	Dot product of \mathbf{x} and \mathbf{y}
$\mathbb Z$	set of integers
\mathbb{R}	set of real numbers
\mathbb{R}^n	<i>n</i> -dimensional vector space of real
	numbers
$\mathbf{x} \in \mathbb{R}^n$	x is member of n -dimensional vector space
	of real numbers, i.e., x has n features
$\forall x$	for all x
$\exists x$	there exists x
a := b	a is defined as b
a =: b	b is defined as a
$a \propto b$	a is proportional to b, i.e., $a = \text{constant} * b$
\iff	if and only if
\Longrightarrow	implies
I_m	Identify matrix of size $m \times m$
$0_{m,n}$	Matrix of zeros of size $m \times n$
I(a=b)	Indicator function; True will evaluate to
	1, and False will evaluate to 0
$rk(\mathbf{A})$	Rank of matrix A
$tr(\mathbf{A})$	Trace of matrix A
$det(\mathbf{A})$	Determinant of matrix A
a	Norm of a; Euclidean unless specified
λ	Eigenvalue or Lagrange multiplier or
· ·	learning rate

Symbol / Notations	Typical meaning
α	Equality lagrange multiplier or learning
	rate
β	Inequality lagrange multiplier
heta	Model weights
w	Model weights
π	Model weights
f(x)	Function of x
∂	Partial derivatives
d	Derivatives
f'(x)	Derivatives of $f(x)$
Δ	Delta, i.e., differences
∇	Gradient
\mathscr{L}	Lagrangian
\mathcal{L}	Negative log-likelihood
$\mathbb{V}_X[x]$	Variance of x with respect to the random
21[]	variable X
$\mathbb{E}_X[x]$	Expectation of x with respect to the
21[]	$\overline{\mathbf{r}}$ random variable X
$\mathbb{E}_X[x]$	Expectation of x with respect to the
	random variable X
μ	Mean
$ar{ar{x}}$	Mean of x
Σ	Covariance
$Cov_{X,Y}[x,y]$	Covariance between x and y
σ	Standard deviation
p(x)	Probability of x
p(x y)	Probability of x given y
$p(x y;\theta)$	Probability of x given y parametrize by θ
$X \sim p$	Random variable X is distributed
71 · · · p	according to p
$\mathcal{N}(\mu,\pm)$	Gaussian distribution with mean μ and
· · ([~, ±]	covariance Σ
\sum	Summation
Π	Products
11	1 IOddou

Course-Specific Notations	Meaning
\overline{M}	Number of samples; indexed by
	$m=1,\cdots,M$
N	Number of features; indexed by
	$n=1,\cdots,N$
K	Number of classes / clusters; indexed by
	$k=1,\cdots,K$
$a \times b$	Matrix shape of (a, b) , i.e., a rows, b
	columns
x	Vector of a sample with shape of n

Course-Specific Notations	Meaning
$egin{array}{c} \overline{x^{(1)}, x^{(i)}} \ x_1, x_i \ x_1^{(1)}, x_i^{(1)} \end{array}$	First sample; <i>i</i> -th sample First feature; <i>i</i> -th feature First feature of first sample; <i>i</i> -th feature
X	of first sample Matrices are all samples, with shape $M \times N$, i.e., X shall have m rows of samples, and n columns of features
y	Vector of targets with shape of m

Acronym	Meaning
e.g.,	For example
i.e., i.i.d.	That is Independent, identically distributed

[]: