Discrete Optimization

Linear Programming: Part V

Goals of the Lecture

- Linear programming
 - duality theory

min subject to

c x

 $Ax \ge b$ $x_j \ge 0$

primal

max

y b

subject to

 $yA \le c$ $y_i \ge 0$

dual

How do We Obtain this Dual?

min
$$\begin{bmatrix} 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
subject to
$$\begin{bmatrix} 2 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \ge \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$
max
$$\begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$
subject to
$$\begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \le \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}$$

primal

min subject to

c x

 $Ax \geq b$

dual

 $\begin{array}{ccc} \max & y b \\ \text{subject to} & & & \\ yA \leq a \\ y > 0 & & \end{array}$

► Theorem: If the primal has an optimal solution, the dual has an optimal solution with the same cost

Let x and Π be feasible solutions to the primal and dual respectively. We have that $cx \geq \Pi Ax \geq \Pi b$.

- since the primal has a feasible solution, the dual cannot be unbounded.

Testing if a Basis is Optimal

What are the costs in the basic feasible solution?

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$
$$cx = \Pi b + (c - \Pi A) x$$

- The basis is optimal if these costs are nonnegative
- So the simplex multiplier are a feasible solution to the dual

► Theorem: If the primal has an optimal solution, the dual has an optimal solution with the same cost

Consider the optimal solution x^* .

It has an associated basis B

$$x_B^* = A_B^{-1}b.$$

The dual has a feasible solution

$$y^* = c_B A_B^{-1}$$

by the optimality of the primal. Hence,

$$y^*b = c_B A_B^{-1}b = c_B x^*.$$

General Form of the Dual

```
min
              C \mathcal{X}
subject to
             x_j \geq 0 \quad (j \in P)
               x_j \in \mathcal{R} \ (j \in O)
              y b
max
subject to
               y_i \in \mathcal{R} \ (i \in E)
               y_i \geq 0 \quad (i \in I) Dual
             yA_j \leq c_j \quad (j \in P)
             yA_j = c_j \quad (j \in O)
```

Properties of Duality

► The dual of the dual is the primal

	Finite Primal	Unbounded Primal	Infeasible Primal
Finite Dual	Yes	?	?
Unbounded Dual	?	?	?
Infeasible Dual	?	?	?

Primal and Dual

Properties of Duality

► The dual of the dual is the primal

	Finite Primal	Unbounded Primal	Infeasible Primal
Finite Dual	Yes	?	?
Unbounded Dual	?	?	?
Infeasible Dual	?	?	?

Primal and Dual

Primal

We have that $cx \ge \Pi Ax \ge \Pi b$.

Dyal

Properties of Duality

► The dual of the dual is the primal

	Finite Primal	Unbounded Primal	Infeasible Primal
Finite Dual	Yes	?	?
Unbounded Dual	?	?	?
Infeasible Dual	?	?	?

Primal / Dual Relationships

min
$$x_1$$
 subject to
$$x_1 + x_2 \ge 1$$

$$-x_1 - x_2 \ge 1$$

infeasible primal

infeasible dual

Primal / Dual Relationships

min
$$x_1$$
 subject to
$$x_1 + x_2 \geq 1$$

$$-x_1 - x_2 \geq 1$$

$$x_j \geq 0$$

infeasible primal

unbounded dual

Certificate of Optimality

- ► NP-Complete Problems
 - certificate of feasibility
- Can you provide
 - a certificate of optimality?
- Consider now a linear program.
 - -can you convince me that you have found an optimal solution?

Certificate of Optimality

primal

min

subject to
$$Ax \ge b$$

$$x_j \ge 0$$

c x

dual

 $\begin{array}{ll} \max & y \ b \\ \text{subject to} & \\ yA \leq c \\ y \geq 0 & \end{array}$

- ► Give me a x^* that satisfies $Ax^* \ge b$
- ► Give me a y* that satisfies y* A ≤ c
- Show me that $c x^* = y^* b$.

Until Next Time

Citations

MGerman_postcard_from_1888.png German postcard (1888) (http://en.wikipedia.org/wiki/File:German_postcard_from_1888.png) by Anonymous, [Public Domain] via Wikimedia Commons.