1 Aliatges binaris

1.1 Diagrames de fase simples

Considerem un material A, pur, que s'escalfa des de la fase sòlida. La fusió d'aquest material es dona a una temperatura fixa. En el procés, la fase líquida i sòlida coexisteixen.

En el cas d'un aliatge de dos materials A i B es veu que les fases líquida i sòlida "pures" queden separades per una interfície on es barregen sòlid i líquid, amb proporcions que depenen al seu torn de les proporcions de cada component en l'aliatge.

1

La temperatura a la qual es fon l'aliatge ja no és única. El procés es dona en un rang de temperatures, que depèn novament de la composició de l'aliatge. La línia que separa la fase líquida de la barreja sòlid-líquid s'anomena línia de líquids, o Liquidus. La línia que separa la fase sòlida de la barreja sòlid-líquid s'anomena línia de sòlids, o Solidus. Si haguéssim començat considerant el material B les característiques del diagrama serien semblants a las que hem vist per 1^iA .

En el cas dels aliatges el comportament més senzill és el que es mostra a continuació.

- $\bullet\,\,$ Punt de fusió del coure pur, 1083 oC
- $\bullet\,\,$ Punt de fusió del níquel pur, 1455 oC

Aquest és el diagrama de fases de l'aliatge Cu-Ni (que es fa servir típicament per les monedes). En aquest cas la fase sòlida té la mateixa estructura per tot el rang de composicions de l'aliatge. De tota manera, aquest no és el comportament usual. Típicament hi ha un límit per la quantitat de material que es pot dissoldre en un altre.

Considerem per exemple el procés de dissolució de sal en aigua. A mesura que anem afegint sal en un recipient amb aigua pura, la sal és dissol

fins que arriba un moment que tota la sal que afegim precipita. Diem que la solució està sobresaturada. Tenim una fase líquida amb sal dissolta, que coexisteix amb una altra fase sòlida que conté aigua dissolta. Si augmentéssim la temperatura una part de la sal que ha precipitat es dissoldrà. Aquesta quantitat dependrà de la sal feta servir per l'experiment. Al seu torn, la sal precipitada admetrà més aigua en dissolució. Podem representar la situació descrita anteriorment amb un diagrama de fases parcial

- Aquesta regió té una sola fase: aigua amb sal dissolta.
- Aquesta regió té dues fases barrejades: aigua amb sal dissolta i sal amb aigua dissolta.
- Aquesta regió té una sola fase: sal amb aigua dissolta.

Aquestes línies que han aparegut en aquest diagrama s'anomenen línies de *solvus* i són les que separen les regions que tenen una fase de les que en tenen dues.

En relació als diagrames de fase dels aliatges, el problema típic que haurem de resoldre és, coneguda la temperatura i composició de l'aliatge, quina fase tenim i si son dues, en quina proporció es troben.

1.2 El punt eutèctic

Aquest model de la dissolució de sal en aigua que hem presentat es troba en molts aliatges. Per exemple, en el format per Pb-Sn, plom i estany. Si agrupem la informació que tenim fins ara podem representar un diagrama de fases parcial per aquest aliatge. Tindrem,

- lacktriangle Una sola fase sòlida rica en Pb, la descriurem amb el símbol (Pb).
- lacktriangle Una sola fase sòlida rica en Sn, la descriurem amb el símbol (Sn).

Per completar el diagrama, noteu que les línies de Solidus que baixen es trobaran amb les de Solvus que pugen. El lloc on es troben representa el punt de màxima solubilitat en les barreges sòlides que presenten una sola fase (assenyalades al diagrama amb els punts acolorits). Aquest valor s'assoleix a la mateixa temperatura per les dues mescles, (Pb), (Sn). Per sota d'aquesta temperatura tenim una barreja de dues dissolucions sòlides diferents. Per una altra banda, les línies de Liquidus es troben en un mateix punt, de gran importància, anomenat punt eutèctic. El diagrama de fases final mostra tota aquests informació.

- lacktriangle Una sola fase sòlida rica en Pb, (Pb).
- Una sola fase sòlida rica en Sn, (Sn).
- Una sola fase líquida.
- lacktriangle Dues fases sòlides, (Pb) + (Sn).
- Dues fases, L + (Pb).
- Dues fases, L + (Sn).

El punt eutèctic es troba per una proporció de 61,9% en Sn a una temperatura de $183\,^{o}C$. Noteu que en aquestes condicions la fase líquida solidifica a una temperatura constant, tal com ho faria un material "pur".

1.2.1 Composició de fases. Regla de la palanca

Donat un punt qualsevol del diagrama de fases, volem saber quantes fases hi ha presents i quina és la composició de cadascuna d'elles. Les regions que contenen una sola fase es troben sempre etiquetades i la composició de la barreja serà la corresponent a la vertical al punt. En canvi, si ens trobem en una regió en la que hi ha dues fases, el tall de la isoterma corresponent al

punt considerat, amb les fronteres de la regió on es troba, és el que ens dirà quines són les dues fases presents i les respectives proporcions.

Exemple 1.2.1 Dieu quines són les fases presents als punts a i b en el següent diagrama de fases corresponent a l'aliatge binari Cu-Ni. Expliqueu també quin canvis es donen en cada punt al baixar la temperatura progressivament. Representeu qualitativament les diferents situacions que anem trobant amb diagrames que mostrin l'estructura microscòpica.

- Punt de fusió del coure pur, 1083°C
- $\bullet\,$ Punt de fusió del níquel pur, 1455 oC

Punt a. Representem la línia de concentració. És fàcil veure que en aquest punt i a la temperatura inicial hi ha una sola fase, líquida, que té com a composició el 40% Ni i 60% Cu. Si baixem la temperatura aquesta mescla s'anirà refredant fins que al arribar a la línia de Liquidus part de la mescla anirà solidificant de forma que cada vegada la proporció de líquid serà menor i la de sòlid més gran. Al arribar a la línia de Solidus la barreja esdevindrà totalment sòlida.

Punt b. Representem la línia de concentració i la isoterma corresponent a aquest punt. La intersecció de la isoterma amb les línies de Solidus i Liquidus ens diu que en aquest punt hi ha una barreja de fase líquida i de fase sòlida. Els percentatges de cada fase es calculen mitjançant l'anomenada regla de la palanca. Per la fase líquida tenim

$$\% l = \frac{\% b_s - \% b}{\% b_s - \% b_l} = \frac{45 - 25}{45 - 15} = 0,667 = 66,7\%$$

on hem pres com a referència per les concentracions les del Ni. I per la fase sòlida

$$\% s = \frac{\% b - \% b_l}{\% b_s - \% b_l} = \frac{25 - 15}{45 - 15} = 0,333 = 33,3\%$$

El 66, 7% de fase líquida conté un 15% de Ni i un 85% de Cu. El 33, 3% de fase sòlida conté un 45% de Ni i un 55% de Cu.

Al anar disminuint la temperatura, la proporció de sòlid anirà augmentant i la de líquid disminuint, fins arribar a la línia de *Solidus*, moment en que la barreja esdevé sòlida.

Feu ara els exercicis que es troben a la secció 2.

Exemple 1.2.2 A partir del següent diagrama de fases corresponent a l'aliatge binari Pb - Sn, responeu les qüestions Representeu qualitativament l'estructura microscòpica que tindríem en cada punt.

- a) Quines són les variables d'estat (temperatura i concentració) al punt 1?
- b) L'aliatge es refreda lentament des del punt 1. A quina temperatura aproximadament es dona un canvi en les fases presents?
- c) Quines fases hi ha presents al punt 2?
- d) Quines fases hi ha presents al punt 3?
- e) Quines fases hi ha presents al punt 4? Quins són els valors de les variables d'estat?
- f) Si des del punt 4 refredem l'aliatge, a quina temperatura aproximadament hi ha un canvi de fase? Quines apareixen?

* * *

A partir del diagrama i tenint en compte tot el que hem vist abans és fàcil respondre a les preguntes.

- a) La temperatura al punt 1 és de $300^{\circ}C$, i la composició 40% Sn i 60% Pb.
- **b)** A uns $237, 5^{\circ}C$.
- c) Per respondre a aquesta pregunta podem fer servir la línia discontinua que s'ha representat. La seva intersecció amb es fronteres de la regió ens diu quines fases hi ha presents en aquest punt. Per tant, es veu que hi ha dues

fases presents; líquida (mescla dels dos metalls) i sòlida (ric en Pb però que també conté Sn).

- d) El mateix que a l'apartat anterior val aquí. Es comprova que al punt 3 hi ha dues fases sòlides, consistent en una mescla rica en Pb (que també conté Sn) i una altra rica en Sn (que també conté Pb).
- e) Només hi ha una fase, sòlida, rica en Pb (95%) amb un percentatge del 5% de dissolt en el Pb.
- f) Des del punt 4, i refredant l'aliatge, tindrem un canvi d'estat al voltant dels $100^{\circ}C$. Apareixeran dues fases sòlides. Els metalls que formen l'aliatge són insolubles per sota d'aquesta temperatura i per aquesta concentració.

2 Exercicis

- 1. Considereu el diagrama de fases de l'aliatge que es troba a la plana web de la matèria. Cu-Ni. Per cada parella de coordenades (concentració %Ni,temperatura), dieu quines fases estan presents, la proporció de cadascuna i la seva composició.
 - (a) (12.5%, 4.6)
 - (b) (37.5%, 4)
 - (c) (50%, 3.5)
 - (d) (50%, 3)
 - (e) (75%, 2.5)
- 2. Considereu el diagrama de fases de l'aliatge format per bismut, Bi i antimoni, Sb.

Per una concentració del 45% en Sb

- (a) Determineu les fases presents a una temperatura de $550^{\circ} C$.
- (b) Determineu les fases presents a una temperatura de 400° C, el seu percentatge i composició.

3. (Reviseu l'exemple 1.2.2 abans de fer l'exercici). Considereu el següent diagrama de fases corresponent a l'aliatge de plom Pb i estany Sn

- (a) Dieu quantes fases hi ha presents al punt 1. Calculeu la proporció i composició de cadascuna.
- (b) Dieu quantes fases hi ha presents al punt 2. Calculeu la proporció i composició de cadascuna.
- (c) Expliqueu què succeeix amb l'aliatge quan, des del punt 2, es baixa la temperatura progressivament.

