Division Hardware

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

CSULB

1

MIPS Division

- Use HI/LO registers for result
 - •HI: 32-bit remainder
 - ■LO: 32-bit quotient
- Instructions
 - •div rs, rt / divu rs, rt
 - ■No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

CSULB

Floating Point

- Representation for non-integral numbers
 - •Including very small and very large numbers
- Like scientific notation
 - -2.34×10^{56} normalized $\rightarrow +2.0 \times 10^{-7}$ $\rightarrow +987.02 \times 10^{9}$ not normalized $\rightarrow +9.8702 \times 10^{9}$
- In binary
 - $=\pm 0.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

CSULB

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

- •S: sign bit $(0 \Rightarrow \text{non-negative}, I \Rightarrow \text{negative})$
- •Normalize significand: $1.0 \le |significand| < 2.0$
 - Always has a leading pre-binary-point I bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "I." restored
- Exponent: excess representation: actual exponent + Bias
- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1263 1023

Single-Precision Range

- Exponents 00000000 and IIIIIII reserved
- Smallest absolute value
 - Exponent: \Rightarrow actual exponent = $90 \sim 1 \Rightarrow -126$
 - Fraction: $000...00 \Rightarrow \text{ significand} =$
- Largest absolute value
 - Exponent: $|1|| \sim 0$ \Rightarrow actual exponent = 254 - |27 = |27
 - Fraction: III...II ⇒ significand ≈

 ±1,999... × 2¹²⁷

```
1 \times 1^{-127}
```

S Exponent

Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{Exponent - Bias}$

CSULB

Double-Precision Range

- Exponents 0000...00 and IIII...II reserved
- Smallest value
 - Exponent: 00000000001⇒ actual exponent = (-1023) = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

S Exponent Fraction

Largest value

$$x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

$$\Rightarrow \text{actual exponent} = 2046 + 1023 + 1023$$

- Fraction: III...II ⇒ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Denormal Numbers

•Exponent = 000...0 \Rightarrow hidden bit is 0

■ Denormal with fraction = 000...0

$$X = (-1)^{S} \times (0 + 0) \times 2^{-Bias} = 0.0$$
Two representations of 0.0!

Sign	Exponent (e)	Fraction (f)	Value
0	00…00	00…00	+0
1	00…00	00…00	-0

CSULB

Denormal Numbers

■Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

Smaller than normal numbers

0.0000 1 X2

 allow for gradual underflow, with diminishing precision

Sign	Exponent (e)	Fraction (f)	Value
0	00…00	00···01 : 11···11	Positive Denormalized Real $0.f \times 2^{(-b+1)}$
1	00…00	00···01 : 11···11	Negative Denormalized Real $-0.f \times 2^{(-b+1)}$

Infinities and NaNs

- - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- ■Exponent = III...I, Fraction \neq 000...0
 - ■Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - •e.g., $0.0 / 0.0, 0.0 * \infty$
 - Can be used in subsequent calculations

SULB

Floating-Point Precision 1, 9999x (03) Relative precision = 1999 x = 3 digits

Relative precision

•all fraction bits are significant

■Single: approx 2²³

• Equivalent to $\frac{\log 2^{\frac{2}{3}} + \log 2^{\frac{2}{3}}}{\log 2^{\frac{2}{3}} + \log 2^{\frac{2}{3}}}$ decimal digits of precision

■Double: approx 2⁵²

• Equivalent to $l_{q_2}^{52} \approx l_b$ decimal digits of precision

Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

•Fraction =
$$010 \sim 0 = 0100 \sim 0_2$$

•Exponent =
$$|00000| = 129$$

•Exponent =
$$|00000| = 129$$

•x = $(-1)^{1} \times (1 + 01_{2}) \times 2^{129 - 127}$
= $(-1)^{1} \times 1.25 \times 2^{2}$

$$\frac{1.01_{2}=1.25_{10}}{+1\times2+0\times2+1\times2}$$

SULB

Floating-Point Example

■Represent -0.75

$$-0.75 = -0.5 - 0.25 = -0.11_2 = -1.1 \times 2^{-1}$$

•Exponent =
$$\chi - 127 = -1$$
, $\chi = 126$

- Single:
- Double:
- Single:
- Double: 0

1/9/28