18.100A Assignment 4

Octavio Vega

February 22, 2023

Problem 1

(a)

Proof. Define the complement of [a, b] via

$$[a,b]^c := \{ x \in \mathbb{R} \mid x < a, \ x > b \}. \tag{1}$$

We can write this complement as the union of two sets:

$$[a,b]^{c} = \{x \in \mathbb{R} \mid x < a\} \cup \{x \in \mathbb{R} \mid x > b\}$$
 (2)

$$= (-\infty, a) \cup (b, \infty). \tag{3}$$

Both the sets $(-\infty, a)$ and (b, ∞) are open, as proved in assignment 3. We also proved that the union of open sets is open. Thus, $[a, b]^c$ is open.

Therefore, we conclude that [a, b] is closed.

(b)

Proof. Consider the complement of the integers in the real numbers, $\mathbb{Z}^c = \mathbb{R} \setminus \mathbb{Z}$. We may write this complement as a union of open sets, where each of the open sets represents the set of numbers between (but not including) consecutive integers:

$$\mathbb{Z}^c = \bigcup_{n \in \mathbb{Z}} (n, n+1). \tag{4}$$

Since the sets being unioned are all open, then so is the union, i.e. \mathbb{Z}^c is open.

Thus, \mathbb{Z} is closed.