Let a, b, c, d be fixed (constant) real numbers. Let u, v, and y be functions of x.

(1)
$$\frac{d}{dx}(au + bv) =$$
 _____ (linearity)

(2)
$$\frac{d}{dx}(uv) =$$
 _____ (product rule)

(3)
$$\frac{d}{dx} \left(\frac{u}{v} \right) =$$
 (quotient rule)

(4)
$$\frac{d}{dx}y(u) =$$
 _____ (chain rule)

$$(5) \frac{d}{dx}u^a = \underline{\qquad \qquad } \cdot \frac{du}{dx}$$

(6)
$$\frac{d}{dx}a^u = \underbrace{\qquad \qquad } \cdot \frac{du}{dx}$$
, where $a > 0$

$$(7) \frac{d}{dx}e^u = \underline{\qquad \qquad } \cdot \frac{du}{dx}$$

(8)
$$\frac{d}{dx} \ln(u) = \frac{du}{dx} \ln(u)$$

(9)
$$\frac{d}{dx}\sin(u) = \frac{du}{dx}\sin(u)$$

(10)
$$\frac{d}{dx}\cos(u) = \frac{du}{dx}\cos(u)$$

(11)
$$\frac{d}{dx}\tan(u) = \frac{du}{dx}$$

(12)
$$\frac{d}{dx} \sec(u) = \frac{du}{dx}$$

(13)
$$\frac{d}{dx}\arcsin(u) =$$

(15)
$$\frac{d}{dx} \arctan(u) = \frac{du}{dx}$$

(16)
$$\frac{d}{dx}\operatorname{arcsec}(u) = \underline{\qquad \qquad } \cdot \frac{du}{dx}$$

(17)
$$\int u^a du = +C$$
, where $a \neq -1$

(18)
$$\int u^a du =$$
______+ C, where $a = -1$

(19)
$$\int a^u du =$$
_____+ C, where $a > 0$

(20)
$$\int e^u du =$$
_____+ C

(21)
$$\int \sin(u) du =$$
_____+ C

$$(22) \int \cos(u) \, du = \underline{\qquad} + C$$

(23)
$$\int \tan(u) du =$$
_____+ C

(24)
$$\int \sec^2(u) du =$$
 _____+ C

(25)
$$\int \csc^2(u) du =$$
 _____+ C

(26)
$$\int \tan^2(u) du =$$
 _____+ C

(27)
$$\int \sin^2(u) du =$$
 _____+ C

(28)
$$\int \cos^2(u) \, du =$$
 _____+ C

(29)
$$\int \sec(u) \tan(u) du =$$
_____+ C

(30)
$$\int \frac{1}{\sqrt{1-u^2}} du =$$
 ______+ C

(31)
$$\int \frac{1}{1+u^2} du =$$
 _____+ C

(32)
$$\int \frac{1}{|u|\sqrt{u^2-1}} du =$$
_____+ C