Traffic forecasting on traffic movie snippets

Nina Wiedemann and Martin Raubal

Chair of Geoinformation Engineering, ETH Zürich

Motivation

- Generalization to new cities in the Extended Challenge
- Advantages patch-based approach:
 - Reduce input dimensionality
 - Not required to compress all cities into a raster of the same size
 - Patch-wise processing yields multiple outputs per pixel

Related work

- Patch-based processing was proposed in multiple Computer Vision applications
 - Natural image segmentation [1]
 - Tumor segmentation [2, 3]
 - o Brain image segmentation [4]
 - Tree bark classification [5]
- Usually, predictions are summarised by averaging or majority voting
- [1] Zhang, Lei, et al. "An image segmentation framework based on patch segmentation fusion." 18th International Conference on Pattern Recognition (ICPR'06). Vol. 2. leee, 2006.
- [2] Ghimire, Kanchan, Quan Chen, and Xue Feng. "Patch-based 3D UNet for head and neck tumor segmentation with an ensemble of conventional and dilated convolutions." 3D Head and Neck Tumor Segmentation in PET/CT Challenge. Springer, Cham, 2020.
- [3] Do, Nhu-Tai, et al. "Multi-Level Seg-Unet Model with Global and Patch-Based X-ray Images for Knee Bone Tumor Detection." Diagnostics 11.4 (2021): 691.
- [4] Zhang, Wenlu, et al. "Deep convolutional neural networks for multi-modality isointense infant brain image segmentation." NeuroImage 108 (2015): 214-224.
- [5] Misra, Debaleena, Carlos Crispim-Junior, and Laure Tougne. "Patch-based CNN evaluation for bark classification." European Conference on Computer Vision. Springer, Cham, 2020.

Training

 \rightarrow Extract patches randomly and pass through Unet++ [1]

[1] Zhou, Zongwei, et al. "Unet++: A nested u-net architecture for medical image segmentation." Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2018. 3-11.

Split and merge at test time

- Split new city into overlapping patches in a regular grid (move window with stride s)
- 2) Predict patches
- 3) Average predictions per pixel

Results - Leaderboard

- Unet++ outperformed the standard U-Net architecture in our experiments
- Training on patches rather than whole cities significantly improves the result in the extended challenge
- Lowering the stride improves performance

Model	Patch size (d x d)	Stride	Score (MSE)	
U-Net	495 x 436	=	64.2	
Unet++	495 x 436	-	60.93	
U-Net	100 x 100	50	61.32	
Unet++	100 x 100	50	60.134	
Unet++	60 x 60	30	60.44	
Unet++	100 x 100	10	59.93	

Results - Stride analysis

Model	Patch size (d x d)	Stride	Score (MSE)		
U-Net	495 x 436	12	64.2		
Unet++	495 x 436	1.5	60.93		
U-Net	100 x 100	50	61.32		
Unet++	100 x 100	50	60.134		
Unet++	60 x 60	30	60.44		
Unet++	100 x 100	10	59.93		

Only weak decrease of the MSE when convolving the test data with more overlapping patches (low "stride")

→ The main advantage comes from the patch-wise processing itself, not from the ensemble-type averaging

Results - Analysis of prediction averaging

Is averaging of the predictions the best aggregation method?

Hypothesis: The more central a pixel is in the patch, the better the prediction.

Three methods tested to aggregate predictions:

- Simple average over patch-wise prediction
- Use the pixel prediction from the **one** patch where the pixel is most central
- Weighted average with weights ~ centrality of the pixel in the patch

	Average	Most central	Weighted by pixel centrality
→ Averaging works best (on validation data)	43.81	43.98	43.85

Conclusion

- Patch-wise processing has multiple advantages:
 - o Better generalization
 - Faster training
 - Ensemble-like output averaging
- Compressing all cities into a predefined raster is probably not necessary or even disadvantagous
- Combine patch-based approach with better model architectures might achieve best performance
- Further work:
 - Adapt loss functions (e.g. masking)
 - Test methods developed for *sparse* image data

Acknowledgements

Thanks to Martin Raubal and my colleagues at MIE Lab for their support!

- Traffic4cast code: https://github.com/NinaWie/NeurlPS2021-traffic4cast
- arXiv paper:
 https://arxiv.org/abs/2110.1438
 3
- ➤ Website: http://mie-lab.ethz.ch
- Our GitHub page: https://github.com/mie-lab

