Design and Analysis of Algorithms

CS3230

Lecture 8

Dynamic Programming

Warut Suksompong

Fibonacci Number F(n)

- F(0) = 0
- F(1) = 1
- F(n) = F(n-1) + F(n-2) for n>1

Problem: Given n, m, compute $F(n) \mod m$

- Recursive algorithm
- Iterative algorithm

Two algorithms for Fibonacci (mod m)

Recursive Algorithm

```
RFIB(n,m) {
    if n=0 return 0;
    else if n=1 return 1;
    else return((RFIB(n-1) + RFIB(n-2)) mod m);
}
```

Iterative Algorithm

Compare two algorithms for F(n) mod m

- \triangleright No. of instructions by recursive algorithm RFIB(n,m) is $\geq 2^{(n-2)/2}$ (exponential in n)
- \triangleright No. of instructions by iterative algorithm IFIB(n,m) is $\approx 5n$ (linear in n)

Can you see why IFIB() is much faster than RFIB()?

Recursion tree for F(n)

Pruning recursion tree by memoization

Longest Common Subsequence

Applications in Computational Biology, Text Processing and many more

What is a subsequence?

Sequence $A:a_1,a_2,...,a_n$ Can be stored in an array $A[1..n],\ A[j]:a_j$ $A[1..k]:a_1,a_2,...,a_k$

Definition: C is said to be a <u>subsequence</u> of A if we can obtain C by removing zero or more elements from A.

A more formal definition:

C is a <u>subsequence</u> of A if there exists k integers: $1 \le i_1 < \cdots < i_k \le n$ s.t. for all $1 \le j \le k$ $C[j] = A[i_j]$

Longest Common Subsequence - Definition

Given: Two sequences A[1..n] and B[1..m],

Aim: To compute a (not "the") longest sequence C such that

C is subsequence of A as well as B

Answer: a s d e b

Question: How to compute a LCS of A and B efficiently.

Finding LCS: Trivial Brute-Force Solution

Given: two sequences A[1..n] and B[1..m]

 $A: a_1, a_2, ..., a_n$

 $B: b_1, b_2, ..., b_m$

Check <u>all the possible subsequences</u> of A to see if it is <u>also a subsequence</u> of B, and then output a <u>longest</u> one.

Analysis:

- Checking whether a particular subsequence of A is a subsequence of B takes O(m) time.
- How many possible subsequences of A are there?
 (Each bit-vector of length n determines a distinct subsequence)
- So total time = $O(m2^n)$

Can we do

better?

Finding LCS: Recursive Formulation

Given: two sequences A[1..n] and B[1..m]

 $A: a_1, a_2, ..., a_n$

 $B:b_1,b_2,...,b_m$

Notation for recursive formulation:

LCS(i, j): Longest common subsequence of A[1...i] and B[1...j]

Aim: To express LCS(i, j) recursively.

Base Case:

LCS
$$(i, 0) = \emptyset$$
 for all i
LCS $(0, j) = \emptyset$ for all j Since one of the sequences is **empty**

Recursive Formulation of LCS(n,m)

Intuition: LCS(n,m) should terminate with a_n

Lemma: If $a_n = b_m$ then

 $LCS(n,m) = LCS(n-1,m-1) :: a_n$

Proof Idea:

- LCS(n,m) must terminate with the symbol same as a_n ; otherwise we could **extend the solution** by concatenating a_n
- Observe, it is fine to $\underline{\mathbf{match}} \ a_n$ with b_m

- If the last symbol in S = LCS(n,m) is <u>not the same</u> as $a_n (= b_m)$, then that <u>last</u> symbol must be part of a_1, \dots, a_{n-1} and b_1, \dots, b_{m-1} .
- So, S is actually a subsequence of a_1, \dots, a_{n-1} and b_1, \dots, b_{m-1} .

This type of argument is also referred to as cutand-paste argument

- Now we can append a_n with S (i.e., $S :: a_n$) and get a subsequence of <u>length one more</u>
- Thus S cannot be the largest subsequence of a_1, \dots, a_n and b_1, \dots, b_m (Contradiction)

- Recall, we need to prove $LCS(n, m) = LCS(n 1, m 1) :: a_n$
- So far, we only argued that a_n must the last symbol in LCS(n, m)

- Observe, it is fine to <u>match</u> a_n with b_m (since a_n is the last symbol in the LCS(n, m))
- So we conclude $LCS(n, m) = LCS(n 1, m 1) :: a_n$

Intuition: Either a_n or b_m is not the last symbol of LCS(n,m)

Observation: If a_n is not the last symbol of LCS(n,m) LCS(n,m) = LCS(n-1,m)

Intuition: Either a_n or b_m is not the last symbol of LCS(n,m)

Observation: If a_n is not the last symbol of LCS(n,m) LCS(n,m) = LCS(n-1,m)

Observation: If b_m is not the last symbol of LCS(n,m) LCS(n,m) = LCS(n,m-1)

Intuition: Either a_n or b_m is not the last symbol of LCS(n,m)

Lemma: If $a_n \neq b_m$ then

LCS(n,m) is either LCS(n-1,m) or LCS(n,m-1)

Finding LCS: Recursive Formulation

Base Case:

$$LCS(i, 0) = \emptyset$$
 for all i

$$LCS(0, j) = \emptyset$$
 for all j

General Case:

If
$$a_n = b_m$$
 then $LCS(n,m) = LCS(n-1,m-1) :: a_n$

If
$$a_n \neq b_m$$
 then $LCS(n,m) = \underline{bigger}$ of $LCS(n,m-1)$ or $LCS(n-1,m)$

Simplified Problem: Find the length of LCS

Let
$$L(n,m)$$
: Length of LCS of $A[1..n]$ and $B[1..m]$

$$L(n,m) = 0$$
 if n or m is 0

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems

Finding LCS: Recursive Formulation

Base Case:

$$LCS(i, 0) = \emptyset$$
 for all i

$$LCS(0, j) = \emptyset$$
 for all j

General Case:

If
$$a_n = b_m$$
 then $LCS(n,m) = LCS(n-1,m-1) :: a_n$

If
$$a_n \neq b_m$$
 then $LCS(n,m) = \underline{bigger}$ of $LCS(n,m-1)$ or $LCS(n-1,m)$

Simplified Problem: Find the length of LCS

Let
$$L(n,m)$$
: Length of LCS of $A[1..n]$ and $B[1..m]$

$$L(n,m) = 0$$
 if n or m is 0

If
$$a_n = b_m$$
 then $L(n,m) = L(n-1,m-1) + 1$

If
$$a_n \neq b_m$$
 then $L(n,m) = \text{Max}(L(n,m-1),L(n-1,m))$

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems


```
L(n,m)
{ If (n = 0 \text{ or } m = 0)
        return 0;
   Else
  { If a_n = b_m then
        return (L(n-1,m-1)+1);
    Else
    \{ l_1 \leftarrow L(n-1,m) ;
         l_2 \leftarrow L(n,m-1);
         return Max(l_1, l_2);
```

```
T(n,m): Worst case running time of L(n,m)
T(n,m) = T(n-1,m) + T(n,m-1)

A simple exercise from discrete math (not important, you can skip):
T(n,m) \ge \binom{n+m}{n} > 2^n (assuming m \approx n)

Exponential!!
```

But why? Let us explore

```
L(n,m)
{ If (n = 0 \text{ or } m = 0)
        return 0;
   Else
  { If a_n = b_m then
        return (L(n-1,m-1)+1); L(n-2,m)
    Else
         l_1 \leftarrow L(n-1,m);
         l_2 \leftarrow L(n,m-1);
          return Max(l_1, l_2); \bigcirc
```


- Solving same sub-problem multiple times!!
- But how many **distinct** sub-problems are there?
- Only $(n + 1) \times (m + 1)$

Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times

```
L(n,m)
L(n,m)
{ If (n = 0 \text{ or } m = 0)
                                                                   L(n,m-1)
                                  L(n-1,m)
       return 0;
  Else
  { If a_n = b_m then
       return (L(n-1,m-1)+1); L(n-2,m)
                                                                       L(n,m-2)
                                                  L(n-1,m-1)
   Else
                                   Solving same sub-problem multiple times!!
        l_1 \leftarrow L(n-1,m);
                                    But how many sub-problems are there?
        l_2 \leftarrow L(n,m-1);
                                   Only (n+1) \times (m+1)
        return Max(l_1, l_2);
                                    Can we compute them efficiently?
                                    Get inspiration from algorithm for Fibonacci
                                    number!
```

```
T[i,j] = L(i,j)
L(n,m)
{ If (n = 0 \text{ or } m = 0)
                                                m
                                                       0
       return 0;
                                                       0
  Else
                                                       0
  { If a_n = b_m then
                                                       0
        return (L(n-1,m-1)+1);
                                                       0
    Else
    \{ l_1 \leftarrow L(n-1,m) ;
                                                       0
         l_2 \leftarrow L(n,m-1);
                                                            0
                                                       0
                                                                 0
                                                                           0
                                                                               0
                                                                                     0
                                                 0
         return Max(l_1, l_2);
                                                       0
                                                                                     n
```

```
T[i,j] = L(i,j)
L(n,m)
{ For (i = 0 \text{ to } n) T[i,0] \leftarrow 0;
                                                              m
                                                                      0
   For (j = 0 \text{ to } m) T[0,j] \leftarrow 0;
                                                                      0
   For (j = 1 \text{ to } m){
                                                                      0
          For (i = 1 \text{ to } n){
                                                                     \theta
              If a_i = b_i then
                                                                      0
                     T[i,j] \leftarrow T[i-1,j-1] + 1;
              Else {
                                                                      0
                     l_1 \leftarrow T[i-1,j];
                                                                            0
                                                                      0
                                                                                  0
                                                                                                    0
                                                                                                           0
                     l_2 \leftarrow T[i,j-1];
                                                                                      ia_i
                                                                                                            n
                     T[i,j] \leftarrow Max(l_1, l_2);
             } } }
```

```
T[i,j] = L(i,j)
L(n,m)
{ For (i = 0 \text{ to } n) T[i,0] \leftarrow 0;
                                                          m
                                                                 0
   For (j = 0 \text{ to } m) T[0,j] \leftarrow 0;
                                                                 0
   For (j = 1 \text{ to } m){
                                                                 0
         For (i = 1 \text{ to } n){
             If a_i = b_i then
                                                                 0
                   T[i,j] \leftarrow T[i-1,j-1] + 1;
             Else {
                                                                 0
                    l_1 \leftarrow T[i-1,j];
                                                                 0
                                                                       0
                                                                             0
                                                                                         0
                                                                                              0
                                                                                                    0
                                                           0
                   l_2 \leftarrow T[i,j-1];
                                                                                 ia_i
                                                                 0
                                                                       1
                                                                                                     n
                   T[i,j] \leftarrow Max(l_1, l_2);
                                                 Time per table entry = 0(1)
            } } }
                                                       Total time = O(nm)
```

```
T[i,j] = L(i,j)
L(n,m)
{ For (i = 0 \text{ to } n) T[i,0] \leftarrow 0;
                                                                                                     3
                                                                                                           3
                                                                          0
                                                                   \boldsymbol{a}
    For (j = 0 \text{ to } m) T[0,j] \leftarrow 0;
                                                                          0
    For (j = 1 \text{ to } m){
                                                                          0
                                                                                                                  3
          For (i = 1 \text{ to } n){
                                                                          0
                                                                   \boldsymbol{a}
               If a_i = b_i then
                                                                          0
                                                                   d
                      T[i,j] \leftarrow T[i-1,j-1] + 1;
                                                                   d
               Else {
                                                                          0
                       l_1 \leftarrow T[i-1,j];
                                                                          0
                                                                                                                  0
                      l_2 \leftarrow T[i,j-1];
                                                                                       d
                                                                                              c d
                                                                                                           S
                                                                                \boldsymbol{a}
                                                                                                                  a
                      T[i,j] \leftarrow Max(l_1, l_2);
              } } }
```

```
L(n,m)
{ For (i = 0 \text{ to } n) T[i,0] \leftarrow 0;
   For (j = 0 \text{ to } m) T[0,j] \leftarrow 0;
   For (j = 1 \text{ to } m){
          For (i = 1 \text{ to } n)
              If a_i = b_i then
                      T[i,j] \leftarrow T[i-1,j-1] + 1;
               Else {
                      l_1 \leftarrow T[i-1,j];
                     l_2 \leftarrow T[i,j-1];
                      T[i,j] \leftarrow Max(l_1, l_2);
              } } }
```

Note, you need to store the table T. So space requirement is O(mn).

Exercise:

- How can you reduce the space requirement to $O(\min\{m, n\})$?
- Can you modify the algorithm so that you can output a LCS?

Dynamic Programming algorithm paradigm

- Expressing the solution <u>recursively</u>
- Overall there are only <u>polynomial number of subproblems</u>
- But there is a <u>huge overlap</u> among the subproblems. So the recursive algorithm takes exponential time (solving same subproblem multiple times)
- So we compute the recursive solution <u>iteratively in a bottom-up fashion</u> (like in case of Fibonacci numbers). This avoids wastage of computation and leads to an efficient implementation

Knapsack Problem

Knapsack Problem

What is the maximum value you can get?

Formal Definition

KNAPSACK

Input:

$$(w_1, v_1), (w_2, v_2), ..., (w_n, v_n), \text{ and } W$$

Output: A subset $S \subseteq \{1, 2, ..., n\}$ that maximizes

$$\sum_{i \in S} v_i$$
 such that $\sum_{i \in S} w_i \leq W$

2ⁿ subsets, so naïve algorithm is too costly!

Dynamic Programming

Problem:
$$(w_1, v_1), ..., (w_n, v_n), W$$

Is there optimal substructure?

Dynamic Programming

Case 1: Item n (the last one) is taken

Have optimal solution to subproblem defined by $(w_1, v_1), ..., (w_{n-1}, v_{n-1}), W-w_n$

Dynamic Programming

Case 2: Item n (the last one) is **not** taken

Have optimal solution to subproblem defined by $(w_1, v_1), ..., (w_{n-1}, v_{n-1}), W$

Otherwise, by *cut and paste* argument, we can get a better solution

Recursive Solution

Let m[i,j] be the maximum value that can be obtained using:

- a subset of items in $\{1,2,\ldots,i\}$
- with total weight no more than j

$$m[i,j] = \begin{cases} 0, & \text{if } i = 0 \text{ or } j = 0 \\ \max\{m[i-1,j-w_i] + v_i, m[i-1,j]\}, & \text{if } w_i \leq j \\ m[i-1,j], & \text{otherwise} \end{cases}$$

Pseudocode

```
\mathsf{KNAPSACK}(v, w, W):
\mathbf{for}\ j = 0, ..., W:
m[0,j] \leftarrow 0
\mathbf{for}\ i = 1, ..., n:
m[i,0] \leftarrow 0
\langle \mathit{Recursive cases} \rangle
\mathsf{return}\ m[n,W]
```

Pseudocode

```
\langle \textit{Recursive cases} \rangle
\textbf{for } i = 1, ..., n:
\textbf{for } j = 0, ..., W:
\textbf{if } j \geq w[i]:
m[i,j] \leftarrow \max(m[i-1,j-w[i]] + v[i], m[i-1,j])
\textbf{else:}
m[i,j] \leftarrow m[i-1,j]
```


	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0															
2	0															
3	0															
4	0															
5	0				Ar	alvsis	and D	esion	of Algo	orithm.	8					30

$$m[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max\{m[i-1,j-w_i] + v_i, m[i-1,j]\} & \text{if } w_i \le j \\ m[i-1,j] & \text{otherwise} \end{cases}$$

$$v[1..5] = \{4, 2, 10, 1, 2\}$$

 $w[1..5] = \{12, 1, 4, 1, 2\}$
 $W = 15$

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	0	0	4				
i	2	0																
	3	0																
	4	0																
	5	0															31	

$$m[i,j'] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max\{m[i-1,j-w_i] + v_i, m[i-1,j']\} & \text{if } w_i \le j \\ m[i-1,j] & \text{otherwise} \end{cases}$$

i

$$v[1..5] = \{4, 2, 10, 1, 2\}$$

 $w[1..5] = \{12, 1, 4, 1, 2\}$
 $W = 15$

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4	
i	2	0	2_	2	2	2	2	2	2	2	2	2	2	4	6	6	6	
	3	0	2	2	2	10	12											
	4	0																
	5	0																

$$m[i,j'] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max\{m[i-1,j'-w_i] + v_i, m[i-1,j']\} & \text{if } w_i \le j \\ m[i-1,j] & \text{otherwise} \end{cases}$$

$$v[1..5] = \{4, 2, 10, 1, 2\}$$

 $w[1..5] = \{12, 1, 4, 1, 2\}$
 $W = 15$

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	j
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4	
i	2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6	
	3	0	2	2	2	10	12	12	12	12	12	12	12	12	12	12	12	
	4	0	2	3	3	10	12	1										
	5	0																

$$m[i,j'] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max\{m[i-1,j'-w_i] + v_i, m[i-1,j']\} & \text{if } w_i \le j \\ m[i-1,j] & \text{otherwise} \end{cases}$$

i

$$v[1..5] = \{4, 2, 10, 1, 2\}$$

 $w[1..5] = \{12, 1, 4, 1, 2\}$
 $W = 15$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4	
2	0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6	
3	0	2	2	2	10	12	12	12	12	12	12	12	12	12	12	12	
4	0	2	3	3	10	12	13	13	13	13	13	13	13	13	13	13	
5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15	

Pseudocode

```
(Recursive cases)

for i=1,...,n:

for j=0,...,W:

if j \geq w[i]:

m[i,j] \leftarrow \max(m[i-1,j-w[i]] + v[i],m[i-1,j])

else:

m[i,j] \leftarrow m[i-1,j]
```

We have n cents and need to get change in terms of denominations d_1, d_2, \dots, d_k . Goal is to use the fewest total number of coins.

Example: If denominations are 25c, 10c, and 1c, then solution for n = 30c should be 10c+10c+10c.

Let M[j] be the fewest number of coins needed to change j cents. Write a recursive formula for M[j] in terms of M[i] with i < j.

Optimal substructure: Suppose M[j] = t, meaning that $j = d_{i_1} + d_{i_2} + \cdots + d_{i_t}$

for some $i_1, ..., i_t \in \{1, ..., k\}$. Then, if $j' = d_{i_1} + d_{i_2} + \cdots + d_{i_{t-1}}$, M[j'] = t - 1, because otherwise if M[j'] < t - 1, by **cut-and-paste** argument, M[j] < t.

$$M[j] = \begin{cases} 1 + \min_{i \in [k]} M[j - d_i], & j > 0 \\ 0, & j = 0 \\ \infty, & j < 0 \end{cases}$$

Using the above, derive a DP algorithm to compute the minimum number of coins of denomination d_1, \dots, d_k needed to change n cents.

```
NUM-COINTS-DP(n,d):

for \ j=0,\dots,n:
M[j] \leftarrow \infty
M[0] \leftarrow 0
for \ j=1,\dots,n:
for \ i=1,\dots,k:
if \ (j-d_i \geq 0) \land (M[j-d_i]+1 < M[j]):
M[j] \leftarrow M[j-d_i]+1
return \ M[n]
```

Acknowledgement

- The slides are modified from
 - The slides from Prof. Surender Baswana
 - The slides from Prof. Erik D. Demaine and Prof. Charles E. Leiserson
 - The slides from Prof. Diptarka Chakraborty
 - The slides from Prof. Arnab Bhattacharyya