PROVA 2 DE PROCESSO ESTOCÁSTICOS

Rafael de Acypreste (200060023) e Rafael Lira (190115858)

Professor Felipe Quintino

UnB

Questão 1

Aplicação ao modelo empírico

Trata-se de um modelo para avaliar as probabilidades de transição entre os estados de precipitação de chuvas.

```
# Importing data
dados <-
    read.delim("dados.txt",
        header = TRUE,
        sep = ";"
    ) |>
    select(-X) |>
    filter(!is.na(Precipitacao))

# Summary statistics
dados$Precipitacao |> summary()
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 0.000 0.000 4.173 2.400 131.000
```

a)

O primeiro passo é discretizar a variável de precipitação, que é feita com a função cut () do pacote base. Para esse exemplo, a variável será dividida em 3 categorias: sem chuva (precipitação até 0,1), chuva fraca (precipitação maior que 0,1 e menor que 10) e chuva forte.

```
# Discretization of the variable
quantiles <- quantile(dados$Precipitacao,
    probs = seq(0.7, 0.9, length.out = 3)
)
breaks <- c(-Inf, 0.001, quantiles, Inf)
state labels <- factor(</pre>
    c(
        "sem chuva",
        "garoa",
        "chuva fraca",
        "chuva moderada",
        "chuva forte"
    ),
    levels = c(
        "sem chuva",
        "garoa",
        "chuva fraca",
        "chuva moderada",
        "chuva forte"
```



```
)
)

# Discretization
dados <-
    dados |>
    # Discretization
    mutate(rain_status = cut(Precipitacao,
        breaks = breaks,
        labels = state_labels
    ))

hist(dados$Precipitacao)
```

Histogram of dados\$Precipitacao

b)

Para esse exemplo, serão separadas as 10 últimas observações para avaliar as estimações.

```
dados_teste <- tail(dados, 10)
dados_treinamento <- dados[1:(nrow(dados) - 10), ]</pre>
```

Para estimar as transições de estado, é necessário criar uma variável que identifique o estado atual e o estado seguinte. Para isso, é necessário criar uma variável defasada, que pode ser feita com a função lag() do pacote dplyr. Depois disso, basta avaliar as proporções das transições de estado.

```
# Creating the lagged variable
transicoes_chuva <-
    dados_treinamento |>
    # Lag variable
```



```
mutate(rain_status_lag = lag(rain_status)) |>
# Exclude the last state
filter(!is.na(rain_status_lag)) |>
# Count the transitions
count(rain_status, rain_status_lag) |>
# Calculates the estimator
mutate(
    Prop = round(n / sum(n), digits = 3),
    .by = rain_status
)
```

A matriz de transição estimada entre os estados sem chuva, garoa, chuva fraca, chuva moderada, chuva forte, nesta ordem, é dada por:

$$P = \begin{pmatrix} 0.822 & 0.041 & 0.051 & 0.045 & 0.04 \\ 0.334 & 0.12 & 0.186 & 0.177 & 0.183 \\ 0.306 & 0.133 & 0.187 & 0.184 & 0.19 \\ 0.306 & 0.121 & 0.171 & 0.193 & 0.21 \\ 0.282 & 0.118 & 0.174 & 0.204 & 0.223 \end{pmatrix}$$
 (0.1)

Agora, pode-se recuperar a matriz de transição para fazer as estimativas de transição de estado.

```
# Transition matrix
matriz_transicao <-
    transicoes_chuva |>
    select(-n) |>
    pivot_wider(
        names_from = rain_status_lag,
        values_from = Prop
) |>
    column_to_rownames("rain_status") |>
    as.matrix()

ultimo_estado <- dados_treinamento |>
    tail(1) |>
    pull(rain_status)
```

c)

Com a matriz de transição, basta considerar o último estado dos dados (garoa) — consequência da propriedade de Markov — de treinamento para fazer as estimativas de transição de estado.


```
# Simulation of the stochastic process
for (i in 1:n) {
    # Sample of the next state
    y[i + 1] <- sample(estados, size = 1, prob = P[y[i], ])
}

return(y[-1])
}
# Excecution of the function
previsoes <- simula_cadeia_markov(
    valor_inicial = ultimo_estado,
    matriz_transicao = matriz_transicao,
    estados = state_labels,
    n = 10
)</pre>
```

E, então, pode-se comparar as previsões com os dados de teste. Para o gráfico, os acertos são indicados pela linha tracejada vermelha.

```
comparacao <-
    data.frame(
        observado = dados_teste$rain_status,
        previsao = previsoes
    )

# Imprime a tabela
comparacao</pre>
```

```
observado
                      previsao
  chuva moderada chuva moderada
1
2
  chuva moderada
                   chuva fraca
3
     chuva forte chuva moderada
4
       sem chuva
                         garoa
5
       sem chuva chuva fraca
6
       sem chuva
                   sem chuva
7
                    sem chuva
       sem chuva
       sem chuva
                    sem chuva
8
9
     chuva fraca
                    sem chuva
10
           garoa
                 chuva forte
```

```
# Constroi o gráfico
comparacao |>
    ggplot(aes(x = observado, y = previsao)) +
    geom_jitter(
        size = 3, shape = 2,
        width = 0.15, height = 0.15
) +
    geom_abline(
        intercept = 0,
        slope = 1,
        color = "red",
        linetype = "dashed"
```



```
) +
theme_bw() +
labs(
    x = "Observado",
    y = "Previsão",
    title = "Previsões vs. Observações"
)
```

Previsões vs. Observações

UnB

Questão 2 Acypreste

Aplicação ao modelo empírico

Trata-se de um modelo para avaliar o comportamento dos preços de fechamentos dos valores das ações do BBAS3 no ano de 2023.

```
# Define the stock symbol and specify the start and end dates
stock_symbol <- "BBAS3.SA"
start_date <- "2023-01-01"
end_date <- "2024-01-01"

# Use getSymbols to fetch historical stock data
getSymbols(stock_symbol,
    src = "yahoo",
    from = start_date,
    to = end_date
)</pre>
```

[1] "BBAS3.SA"

```
# Check the loaded data and get the closing values
stock_values <- as.vector(Cl(get(stock_symbol)))
# Summary statistics
summary(stock_values)</pre>
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 32.64 40.78 47.00 45.49 49.07 55.39
```

a)

Obtendo o número de observações no vetor de valores da ação, é possível gerar simulações do movimento Browniano e do processo de Poisson com a mesma quantidade de pontos que a base de dados. Considerando um intervalo de 0 a 1, em anos, é gerado um vetor t relativo ao tempo decorrido do início da contagem ao momento de cada observação. Para simular o movimento Browniano, basta fazer a soma cumulativa de n valores da distribuição Normal padrão, enquanto para o processo de Poisson é feita a soma de valores da distribuição Poisson com parâmetro $\lambda=1/n$.

```
n <- length(stock_values) - 1
t <- seq(0, 1, length.out = n + 1)
B <- c(0, cumsum(rnorm(n, mean = 0, sd = 1)))
N <- c(0, cumsum(rpois(n, lambda = 1)))
N_compensated <- c(0, cumsum(rpois(n, lambda = 1)) - seq(1, n, by = 1))</pre>
```

UnB

b)

Em seguida, é criada uma função para prever a k-ésima observação do modelo, usando os tempos, o histórico do processo, o parâmetro θ e o valor do processo $\xi(t_k)$

```
simulate_Xtk <- function(t, X, theta, csi) {</pre>
    timeline <- as.vector(t)</pre>
    history <- as.vector(X)
    csi <- as.vector(csi)</pre>
    stop
    if (length(timeline) != length(history) ||
         length(timeline) != length(csi) ||
         length(history) != length(csi)) {
         stop("The timeline, the history and the csi vector must have the same length!")
    }
    n <- length(timeline)</pre>
    tj <- timeline[-1]
    tj_1 <- timeline[-n]
    Xtj_1 <- history[-n]</pre>
    fatork <- Xtj_1 * (tj - tj_1)</pre>
    sumk <- cumsum(fatork)</pre>
    Xtk <- Xtj_1 - theta * sumk + csi[-1]</pre>
    return(Xtk)
}
```

c)

Para estimar o parâmetro θ por meio do método dos mínimos quadrados, é criada uma função que recebe os mesmos *inputs* da função de simulação, porém retornando a soma de quadrados do resíduo.

```
least_squares <- function(t, X, theta, csi) {
   observed_values <- X[-1]
   predicted_values <- simulate_Xtk(t, X, theta, csi)

   return(sum((observed_values - predicted_values)^2))
}</pre>
```

Utilizando a função optim, e escolhendo um valor inicial inicial para θ , é possível encontrar o ponto onde a soma de quadrados é mínima. Assim, são gerados os estimadores para cada o movimento Browniano e para o processo de Poisson.

```
initial_theta <- 100

(estim_theta_browniano <- optim(
   par = initial_theta,
   fn = least_squares,</pre>
```



```
X = stock_values,
t = t,
csi = B ## Trajetória do movimento Browniano
)$par)
```

[1] 0.01953125

```
(estim_theta_poisson <- optim(
   par = initial_theta,
   fn = least_squares,
   X = stock_values,
   t = t,
   csi = N ## Trajetória do processo de Poisson
)$par)</pre>
```

[1] 5.9375

```
(estim_theta_poisson_compensated <- optim(
   par = initial_theta,
   fn = least_squares,
   X = stock_values,
   t = t,
   csi = N_compensated ## Trajetória do processo de Poisson
)$par)</pre>
```

[1] -0.5078125

hist(residuo_browniano)

d)

```
X_prev_browniano <-
        simulate_Xtk(t, stock_values, estim_theta_browniano, B)
X_prev_poisson <-
        simulate_Xtk(t, stock_values, estim_theta_poisson, N)
X_prev_poisson_compensated <-
        simulate_Xtk(t, stock_values, estim_theta_poisson_compensated, N_compensated)
residuo_browniano <- stock_values[-1] - X_prev_browniano
shapiro.test(residuo_browniano)

Shapiro-Wilk normality test

data: residuo_browniano
W = 0.97457, p-value = 0.000208</pre>
```


qqnorm(residuo_browniano)
qqline(residuo_browniano)

Normal Q-Q Plot

residuo_poisson <- stock_values[-1] - X_prev_poisson
shapiro.test(residuo_poisson)</pre>

Shapiro-Wilk normality test

data: residuo_poisson
W = 0.93173, p-value = 2.835e-09

qqnorm(residuo_poisson)
qqline(residuo_poisson)

Normal Q-Q Plot

residuo_poisson_compensated <- stock_values[-1] - X_prev_poisson_compensated
shapiro.test(residuo_poisson_compensated)</pre>

Shapiro-Wilk normality test

data: residuo_poisson_compensated

hist(residuo_poisson_compensated)

Histogram of residuo_poisson_compensated

qqnorm(residuo_poisson_compensated)
qqline(residuo_poisson_compensated)

Normal Q-Q Plot

e)


```
dados_mod <- data.frame(
    t = t[-1],
    X = stock_values[-1],
    X_prev_browniano = X_prev_browniano,
    X_prev_poisson = X_prev_poisson,
    X_prev_poisson_compensated = X_prev_poisson_compensated
)
dados_sim <- dados_mod |>
    pivot_longer(
        cols = c(X, X_prev_browniano, X_prev_poisson, X_prev_poisson_compensated),
        names_to = "Variavel",
        values_to = "Valor"
)

dados_sim |>
    filter(Variavel %in% c("X", "X_prev_browniano")) |>
```

```
dados_sim |>
  filter(Variavel %in% c("X", "X_prev_browniano")) |>
  ggplot() +
  geom_line(aes(x = t, y = Valor, color = Variavel)) +
  labs(
      x = "Tempo",
      y = "Valor das ações do BBAS3",
      color = NULL,
      title = "Ajuste do modelo de movimento Browniano
      aos dados de ações do BBAS3 em 2023"
  ) +
  theme_minimal()
```

Ajuste do modelo de movimento Browniano aos dados de ações do BBAS3 em 2023


```
dados_sim |>
   filter(Variavel %in% c("X", "X_prev_poisson")) |>
   ggplot() +
   geom_line(aes(x = t, y = Valor, color = Variavel)) +
   labs(
        x = "Tempo",
        y = "Valor das ações do BBAS3",
        color = NULL,
        title = "Ajuste do modelo de processos de Poisson
        aos dados de ações do BBAS3 em 2023"
   ) +
   theme_minimal()
```

Ajuste do modelo de processos de Poisson aos dados de ações do BBAS3 em 2023

Ajuste do modelo de processos de Poisson Compensado aos dados de ações do BBAS3 em 2023

f) Definindo o melhor modelo

```
(mse_browniano <- mean(residuo_browniano**2))</pre>
```

[1] 8.369757

```
modelo_browniano <- lm(data = dados_mod, X ~ X_prev_browniano)
(r2_browniano <- summary(modelo_browniano)$r.squared)</pre>
```

[1] 0.7351166

```
(aic_browniano <- AIC(modelo_browniano))</pre>
```

[1] 1190.829

```
(mse_poisson <- mean(residuo_poisson**2))</pre>
```

[1] 51.26353

```
modelo_poisson <- lm(data = dados_mod, X ~ X_prev_poisson)
(r2_poisson <- summary(modelo_poisson)$r.squared)</pre>
```

[1] 0.1688992

[1] 1473.264

g) Previsão de valores de 2024

```
# Define the stock symbol and specify the start and end dates
start_date_valid <- "2024-01-01"
end_date_valid <- "2024-01-15"

# Use getSymbols to fetch historical stock data
getSymbols(stock_symbol,
    src = "yahoo",
    from = start_date_valid,
    to = end_date_valid
)</pre>
```

[1] "BBAS3.SA"

```
# Check the loaded data and get the closing values
stock_values_valid <- as.vector(Cl(get(stock_symbol)))
# Summary statistics
summary(stock_values)</pre>
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 32.64 40.78 47.00 45.49 49.07 55.39
```



```
n_valid <- length(stock_values_valid) - 1</pre>
t_valid <- seq(0, 1, length.out = n_valid + 1)
N_{\text{valid\_browniano}} \leftarrow c(0, \text{cumsum(rnorm(n_valid, mean = 0, sd = 1))})
N_valid_poisson <- c(0, cumsum(rpois(n_valid, 1)))</pre>
N_valid_poisson_compenstated <- c(0, cumsum(rpois(n_valid, 1)) -
    seq(1, n_valid, by = 1))
X_prev_valid_browniano <- simulate_Xtk(</pre>
    t_valid,
    stock_values_valid,
    estim_theta_browniano,
    N_valid_browniano
X_prev_valid_poisson <- simulate_Xtk(</pre>
    t_valid,
    stock_values_valid,
    estim_theta_poisson,
    N_valid_poisson
)
X_prev_valid_poisson_compensated <-</pre>
    simulate_Xtk(
        t_valid,
        stock_values_valid,
        estim_theta_poisson_compensated,
        N_valid_poisson_compenstated
    )
dados_valid <- data.frame(</pre>
    t = t_valid[-1],
    X = stock_values_valid[-1],
    X_prev_valid_browniano = X_prev_valid_browniano,
    X_prev_valid_poisson = X_prev_valid_poisson,
    X_prev_valid_poisson_compensated = X_prev_valid_poisson_compensated
) |>
    pivot_longer(
        cols = c(
             X_prev_valid_browniano,
```

As previsões geradas pelos três modelos são:

),

)

X_prev_valid_poisson,

names_to = "Variavel",
values_to = "Valor"

X_prev_valid_poisson_compensated

```
dados_valid |>
    ggplot() +
    geom_line(aes(x = t, y = Valor, color = Variavel)) +
    labs(
```



```
x = "Tempo",
y = "Valor das ações do BBAS3",
color = NULL,
title = "Ajuste do modelo do Movimento Browniano aos dados
    de ações do BBAS3 nas primeiras semanas de 2024"
) +
theme_minimal()
```

Ajuste do modelo do Movimento Browniano aos dados de ações do BBAS3 nas primeiras semanas de 2024

O modelo que ajustou melhor os dados foi o modelo estimado pelo movimento Browniano.

```
dados_valid |>
    filter(Variavel %in% c("X", "X_prev_valid_browniano")) |>
    ggplot() +
    geom_line(aes(x = t, y = Valor, color = Variavel)) +
    labs(
        x = "Tempo",
        y = "Valor das ações do BBAS3",
        color = NULL,
        title = "Ajuste do modelo do Movimento Browniano aos dados
        de ações do BBAS3 nas primeiras semanas de 2024"
    ) +
    theme_minimal()
```


Ajuste do modelo do Movimento Browniano aos dados de ações do BBAS3 nas primeiras semanas de 2024

