

awesome micro:bit

IIPOEKT ARDUINO. BBC:MicroBit

🦖 Можем да управляваме хардуера, като изпращаме набор от инструкции към микроконтролера на платката. За да направим това, ние използваме езика за програмиране APL (базиран на Wiring) и софтуера Arduino (IDE), базиран на Processing.

Arduino е създаден в Ivrea Interaction Design Institute като лесен инструмент за бързо създаване на прототипи, насочен към студенти без опит в електрониката и програмирането;

Веднага след като достига до по-широка общност, Arduino базирания хардуер започна да се променя, за да се адаптира към новите нужди и предизвикателства до продукти за IoT приложения, носими, 3D печат и вградени среди;

Благодарение на своя прост и достъпен начин за програмиране, Arduino е използван в хиляди различни проекти и приложения. Софтуерът Arduino е лесен за използване от начинаещи, но и достатъчно гъвкав за напреднали потребители;

Работи на Mac, Windows и Linux. Учителите и учениците го използват, за да създават евтини научни инструменти, да доказват принципи на химията и физиката или да започнат с програмирането и роботиката;

Дизайнери и архитекти изграждат интерактивни прототипи, музиканти и художници го използват за инсталации и за експериментиране с нови музикални инструменти;

 Arduino също така опростява процеса на работа с микроконтролери, като в същото време предлага известно предимство за учители, студенти и заинтересовани аматьори пред други системи;

1.1 Предимства

- Евтин хардуер платките Arduino са сравнително евтини в сравнение с други платформи за микроконтролери. Най-евтината версия на модула Arduino може да се сглоби на ръка и дори предварително сглобените модули Arduino струват по-малко от \$50;
- Междуплатформен Софтуерът Arduino (IDE) работи на операционни системи Windows, Macintosh OSX и Linux. Повечето микроконтролерни системи са ограничени до Windows.

🍆 Проста, ясна среда за програмиране -Софтуерът Arduino (IDE) е лесен за използване от начинаещи, но достатъчно гъвкав, за да се възползват и от напреднали потребители. За учителите е удобно, че е базиран на средата за програмиране Processing, така че учениците, които се учат да програмират в тази среда, ще бъдат запознати с това как работи Arduino IDE;

2.MicroBit

Місто Bit (BBC:Micro Bit) е хардуерна ARMбазирана вградена система с отворен код, проектирана от BBC за използване в компютърното обучение в Обединеното кралство;

Устройството има процесор ARM Cortex-M0, сензори за акселерометър и магнитометър, Вluetooth и USB свързаност, дисплей, състоящ се от 25 светодиода, два програмируеми бутона и може да се захранва от USB или външна батерия;

Входовете и изходите на устройството са през пет пръстеновидни конектора, които формират част от по-голям 25-пинов краен конектор;

3.Карта на пиновете

🦖 Картата на пиновете дава информация за хардуерното предназначение на всеки един от входно/изходнит е конектори на MicroBit;

4. Езици за програмиране

- Визуално програмиране SCRATCH, APL, MicroPython, Python;
- **APL** Arduino Programming Language;
- MicroPython версия на Python за микроконтролери;
- Python скриптов език за програмиране;
- С++ обектен език за програмиране

5.Coфтуер Mind+

- Mind+ е базирана на Scratch3.0 платформа за графично програмиране, която поддържа всички видове хардуер с отворен код като Microbit, Arduino и mPython;
- Потребителите могат да плъзгат и прихващат кодови блокове, за да правят програми или да използват разширен език python, c/c++, за да създават програмен код;

5.1. Добавяне на MicroBit

Board

Kit

Shield

Sensor

Actuator

Communication

Can't find what you want? Click here to find more

micro:bit

Connect your projects with the physical world.

0221

Leonardo

Device controlled by Leonardo

DFR0216

Arduino Uno

Arduino Uno main control board module

RoboMaster TT(ESP32)

Educational drone with DJI top flight control algorithms, safe & stable

1013/10110040

Main control board based on K210 chip

Maixduino

5.2 Добавяне на разширения

User-Ext

micro:IO-BOX

Micro:bit dedicated lithium

battery motor expansion

board

5.3 Добавяне на сензори

5.5 Добавяне на дисплеи

6.Основни функции

Основните функции са две:

- SETUP функцията се изпълнява еднократно при стартиране на микроконтролера и служи за изпълнение на код, който настройва системата или задава начални състояния на крайните устройства;
- LOOP функцията се изпълнява циклично докато микроконтролера е включен към захранването и служи за изпълнение на основния програмен код;

6.1 Блокове

Всички блокове, които са разположени между двата блока се записват във функцията SETUP

Всички блокове, които са разположени в блока FOREVER се записват във функцията LOOP

```
micro:bit starts

micro:bit starts

micro:bit starts

micro:bit starts

// Main program start

void setup() {
    Serial.begin(115200);
    12 void loop() {
    13
    14
    15
```


В програмирането променливата съхранява информация, която е нужна за изпълнението на дадената програма. Това може да бъдат точки от тест, име на потребител, изтекло или оставащо време и други. Тази информация е променлива;

Тя зависи от условието и действията на потребителя. Програмистите създават променливите според нуждите на своята програма. Една програма може да има повече от една променлива;

7.1.Създаване на променливи


```
Blocks
          Variables
              Make a Numeric Variable
            my float variable
 Control
           set my float variable ▼ to 0
Operators
           change my float variable ▼ by
              Make a String \1 able
Variables
            my string variable
           set my string variable ▼ to "he
My Blocks
              my string variable • start with
micro:bit
              Make a List
          My Blocks
```


7.2 Блокове

Блок	Функция
my float variable	Блок за използване на числова променлива
set my float variable ▼ to 0	Блок за поставяне на стойност в числова променлива
change my float variable → by 1	Блок за увеличаване на стойността на числова променлива с определена стойност
my string variable	Блок за използване на символна променлива
set my string variable ▼ to "hello"	Блок за поставяне на стойност в символна променлива
my string variable ▼ start with "a"	Блок за стартиране на символната променлива

8.Свързване

9. Зареждане на код

При зареждането на кода в микроконтролера се появява индикация за етапа на зареждане на кода;

		-									
, , , , , , , , , , , , , , , , , , ,	Bur micr Upl	o:bit	t-arc								
se forever		Out		9.	3.3	-					

10.Събитие

- Събитие се нарича всяко действие, което е предизвикано от потребителя, от сензор или от крайно устройство;
- Всяко събитие може да предизвика изпълнението на определена част от алгоритъма в микроконтролера;
- За събитие се счита и включването на захранването на микроконтролера;

11.Сериен монитор

- Серийния монитор е вид терминал за връзка между микроконтролера и компютъра. Този терминал се използва от потребителя, за да може да комуникира с микроконтролера;
- Серийния монитор е базиран на UART комуникация, която е асинхронна серийна комуникация.
- Всеки микроконтролер има поне един UART канал, като някои видове микроконтролери може да имат по няколко серийни канала;

<u>11.1.Настройки</u>

12.Бутон

- Бутонът е хардуерен елемент, който ни позволява да прекъсваме или включваме електронен сигнал;
- МістоВіt разполага с два интегрирани бутона, които се асоциират като събитията Button A и Button B;

Бутонът А е свързан с цифров пин 5 а бутон В е свързан с цифров пин 11 на MicroBit и може да се прочитат и с използването на блока за прочитане на състоянието на цифров пин;

При използването на бутоните А и В в условни или други управляващи конструкции, събитието може да се провери чрез използването на блока за проверка на състоянието на бутоните;

13.1.Блокове за управление

Пример

Да се направи програма, която при натискане на бутон А да визуализира плътен квадрат 3х3 светодиода, а при натискане на бутон В да се изчиства дисплея;

УПРАЖНЕНИЕ

- Да се направи програма, която при всяко
 натискане на Бутон А да светва последователно
 светодиод от 1-ия ред на светодиодната матрица;
- При всяко натискане на Бутон В да се изгася последователно светодиод от 1-ия ред на светодиодната матрица;
- При натискането на двата бутона А и В да се изчистват светнатите светодиоди;
- Да се извежда на сериен монитор при всяко натискане на бутон поредния номер на светвания светодиод;

Решение


```
micro:bit starts
    set serial-port baud rate to 115200 •
                                                   when button A+B • pressed
 set | Xled → | to (-1)
 set Yled ▼ to 0
• when button A → pressed
change Xled ▼ by 1
     show ▼ coordinates of point (x: Xled), y: Yled)
    serial output (Xled) in string • , Wrap •
when button B • pressed
    serial output (Xled) in String → , Wrap →
     hide ▼ coordinates of point (x: Xled), y: Yled)
change Xled → by -1
```


- Да се направи програма, която при всяко натискане на Бутон А да светва последователно светодиод от 1-та колона на светодиодната матрица;
- При всяко натискане на Бутон В да се изгася последователно светодиод от 1-та колона на светодиодната матрица;
- При натискането на двата бутона А и В да се изчистват светнатите светодиоди;

Решение


```
micro:bit starts
     set serial-port baud rate to 115200 ▼
                                                   ● when button A+B • pressed
 set Xled → to 0
                                                       clear all dot matrixes
 set | Yled ▼ | to (-1
• when button A → pressed
change Yled ▼ by 1
     show • coordinates of point (x: Xled), y: Yled)
    serial output (Yled) in string • , Wrap •
    when button B → pressed
    serial output Yled in string → , Wrap →
     hide ▼ coordinates of point (x: Xled), y: Yled)
change Yled → by -1
```


- Да се направи програма, която при всяко натискане на Бутон А да светва последователно светодиод по диагонала на светодиодната матрица;
- При всяко натискане на Бутон В да се изгася последователно светодиод от диагоналана светодиодната матрица;
- При натискането на двата бутона А и В да се изчистват светнатите светодиоди;

Решение


```
micro:bit starts
     set serial-port baud rate to 115200 ▼
                                                        when button A+B ▼ pressed
  set Xled ▼ to (-1
                                                       clear all dot matrixes
  set Yled ▼ to -1
when button A → pressed
change Yled → by 1
change Xled → by 1
    show • coordinates of point (x: Xled), y: Yled
    when button B ▼ pressed
     hide • coordinates of point (x: Xled), y: Yled
change Yled ▼ by (-1)
change Xled → by
```


Да се направи задача, която демонстрира примерни възможните събития за MicroBit;

