Modified Ibarra-Medina-Krawinkler deterioration model with peak-oriented hysteretic response – Suitable for the simulation of RC structural components that exhibit peak-oriented hysteretic response

(DLL executable for any OpenSees version)

Refined C++ code validated with MATLAB-based equivalent

This command is used to construct an IMKPeakOriented material. This material model simulates the modified Ibarra-Medina-Krawinkler deterioration model with peak-oriented hysteretic response (Ibarra et al. 2005; Lignos and Krawinkler 2011, 2013).

Command Syntax:

uniaxialMaterial IMKPeakOriented \$Mat_Tag \$Ke \$Up_pos \$Upc_pos \$Uu_pos \$Fy_pos \$FmaxFy_pos \$FresFy_pos \$Upc_neg \$Upc_neg \$Upc_neg \$FmaxFy_neg \$FresFy_neg \$Lamda_S \$Lamda_C \$Lamda_A \$Lamda_K \$c_S \$c_C \$c_A \$c_K \$D_pos \$D_neg

Model Parameters Definitions:

\$Mat_Tag	Integer identifying the material
קיייק _	miceber racintarying the material

\$Ke Elastic stiffness

\$dp pos Pre-capping deformation in positive loading direction

\$dpc_pos Post-capping deformation in positive loading direction

\$du_pos Ultimate deformation in positive loading direction

\$Fy_pos Yield strength in positive loading direction

\$FmaxFy_pos Maximum-to-yield strength ratio in positive loading direction

\$FresFy_pos Residual-to-yield strength ratio in positive loading direction

\$dp_neg Pre-capping deformation in negative loading direction

\$dpc_neg Post-capping deformation in negative loading direction

\$du_neg Ultimate deformation in negative loading direction

\$Fy_neg Yield strength in negative loading direction

\$FmaxFy_neg Maximum-to-yield strength ratio in negative loading direction

\$FresFy_neg Residual-to-yield strength ratio in negative loading direction

\$Lamda_S Cyclic deterioration parameter for strength deterioration

\$Lamda_C Cyclic deterioration parameter for post-capping strength deterioration

\$Lamda_A Cyclic deterioration parameter for accelerated reloading stiffness deterioration

\$Lamda K Cyclic deterioration parameter for unloading stiffness deterioration

\$c_S Rate of strength deterioration

\$c_C	Rate of post-capping stregth deterioration
\$c_A	Rate of accelerated reloading stiffness deterioration
\$c_K	Rate of unloading stiffness deterioration
\$D_pos	rate of cyclic deterioration in the positive loading direction (this parameter is used to create asymmetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic response use 1.0.
\$D_neg	rate of cyclic deterioration in the negative loading direction (this parameter is used to create asymmetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic response use 1.0.

NOTE: All material model parameters in the negative direction shall be specified in positive values.

Validation with II-DAP Version 1.1 available from here:

References:

- Ibarra, L. F., Medina, R. A., and Krawinkler, H. (2005). "Hysteretic models that incorporate strength and stiffness deterioration." *Earthquake Engineering & Structural Dynamics*, 34(12), 1489-1511, Doi: 10.1002/eqe.495.
- Lignos, D. G., and Krawinkler, H. (2011). "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading." *Journal of Structural Engineering*, 137(11), 1291-1302, Doi: 10.1061/(ASCE)ST.1943-541X.0000376.
- Lignos, D. G., and Krawinkler, H. (2013). "Development and utilization of structural component databases for performance-based earthquake engineering." Journal of Structural Engineering, 139(8), 1382-1394, Doi: 10.1061/(ASCE)ST.1943-541X.0000646.