

Traveling Salesman Problem: Classical and SOM-Based Methods

March 18, 2025

Participants

Name	Registration Number	Student Number
Mujuni Innocent	24/U/07155/PS	2400707155
Wangoda Francis	24/U/11855/PS	2400711855
Bwanika Robert	24/U/23908/PSA	2400723908
Kinda Kelsey Naluwafu	24/U/05862/PS	2400705862
Naluyima Pauline Olive	24/U/08847/PS	2400708847

Introduction

The Traveling Salesman Problem (TSP) requires determining the shortest route that visits each city exactly once and returns to the starting point. In this assignment, we solve a TSP instance defined on a graph of 7 cities (with City 1 as the origin) using two approaches: a classical exact method via dynamic programming (Held-Karp algorithm) and a heuristic method based on Self-Organizing Maps (SOM). Detailed code is provided in the separate files tsp_dynamic_programming_solution.py and tsp_som.py.

TSP Representation and Data Structures

Graph Representation

```
adjacency_matrix = [
        [0, 12, 10, inf, inf, inf, 12],  # Node 1-start (index 0)
        [12, 0, 8, 12, inf, inf],  # Node 2 (index 1)
        [10, 8, 0, 11, 3, inf, 9],  # Node 3 (index 2)
        [inf, 12, 11, 0, 11, 10, inf],  # Node 4 (index 3)
        [inf, inf, 3, 11, 0, 6, 7],  # Node 5 (index 4)
        [inf, inf, inf, 10, 6, 0, 9],  # Node 6 (index 5)
        [12, inf, 9, inf, 7, 9, 0]  # Node 7 (index 6)
]
```

Justification

Adjacency matrix provides O(1) lookup time for distances between cities. For this small problem (7 cities), the $O(n^2)$ space complexity is acceptable, and the representation naturally handles the symmetric, bidirectional nature of the routes.

Problem Statement

The formal problem statement is: "Visit each city exactly once and return to the starting city while minimizing the total travel distance."

Assumptions

- The graph is undirected and symmetric; hence, the distance from city A to city B equals the distance from city B to city A.
- All distances are non-negative.
- Although the adjacency matrix uses inf to denote missing direct connections, it is assumed that the graph is connected ensuring a valid tour exists.

- Each city is visited exactly once, and the tour concludes at the starting city.
- The problem size (7 cities) is small enough for the dynamic programming approach to be computationally feasible.

Classical TSP Solution

Algorithm: Dynamic Programming

- Uses state representation (mask, city) where the mask tracks visited cities.
- Builds solutions incrementally using memoization to avoid recalculations.
- Guarantees an optimal solution by exploring all possible paths systematically.

Results

Route: 1 > 3 > 5 > 7 > 6 > 4 > 2

Total Distance: 63

Self-Organizing Map (SOM) Approach

Conceptual Overview

SOM represents the TSP tour as a ring of neurons that adapts to city positions:

- Cities are represented as points in 2D space.
- Neurons form a ring that gradually adapts to city positions.
- Training involves selecting random cities and updating nearby neurons.
- The final tour is constructed by mapping cities to their closest neurons.

Implementation Key Points

- 1. Convert the adjacency matrix to 2D coordinates using a force-directed approach.
- 2. Initialize neurons in a circle around the cities' center.
- 3. Train the network with a decreasing learning rate and neighborhood size.
- 4. Construct the tour by mapping cities to the closest neurons.

Results

```
Route (Random): 1 > 7 > 5 > 6 > 4 > 2 > 3 > 1
Total Distance (Average): 66
```

Challenges

- Parameter tuning (learning rate, iterations, neuron count).
- Coordinate conversion while preserving distances.
- No guarantee of finding the global optimum.
- Ensuring valid routes when direct connections are missing.

Analysis and Comparison

Route Quality

The dynamic programming approach guarantees the optimal route, while the SOM method yields a near-optimal solution.

Complexity Analysis

- Dynamic Programming: $O(n^2 \times 2^n)$ time, $O(n \times 2^n)$ space.
- **SOM**: $O(k \times n \times m)$ time, O(n+m) space, where k= iterations, n= cities, m= neurons.

Practical Considerations

Criterion	Dynamic Programming	SOM Approach
Problem Size	Small instances (<20 cities)	Scalable to larger instances
Optimality	Guarantees optimal solution	Heuristic, potentially subopti-
	Guarantees optimal solution	mal
Computation	Exponential complexity	Polynomial complexity
Memory	High for larger instances	Modest requirements
Use Cases	Exact solutions for small prob-	Fast approximations for larger
	lems	problems

Extensions and Improvements

- 1. Hybrid Approaches: Use SOM for an initial solution, then refine with local search.
- 2. Parameter Optimization: Implement adaptive learning rates and neighborhood functions.
- 3. Enhanced SOM Variants: Consider Growing Neural Gas for dynamic neuron adjustment.
- 4. Constraint Handling: Improve handling of situations with no direct connection between cities.
- 5. Parallel Implementation: Explore GPU acceleration for larger instances.