Métodos Cuantitativos

Distribuciones de Probabilidad

Vladimiro González-Zelaya Semestre 2023-2

Universidad Panamericana — Campus México Facultad de Ciencias Económicas y Empresariales Academia de Matemáticas

Variables Aleatorias

Una variable aleatoria (VA) es una descripción numérica de los resultados de un experimento. Una VA x puede ser:

Discreta Asume un número *finito* o *numerable* de valores, e.g., $x \in \{1, 2, 3, 4, ...\}$. **Continua** Asume un número *infinito* y *continuo* de valores, e.g., $x \in [0, 1]$.

Ejemplos de VAs Discretas

Experimento

Llamar a cinco clientes

Inspeccionar un embarque de 50 radios Encargarse de un restaurante por un día Vender un automóvil

Variable aleatoria (x)

Número de clientes que hace un pedido

Número de radios defectuosos

Número de clientes

Género del cliente

Valores posibles de la variable aleatoria

0, 1, 2, 3, 4, 5

 $0, 1, 2, \ldots, 49, 50$

0, 1, 2, 3, . . .

0 si es hombre, 1 si es mujer

Ejemplos de VAs Continuas

Experimento	Variable aleatoria (x)	Valores posibles de la variable aleatoria
Operar un banco	Tiempo en minutos entre las llegadas de los clientes	$x \ge 0$
Llenar una lata de bebida refrescante (máx. = 12.1 onzas)	Cantidad de onzas	$0 \le x \le 12.1$
Construir una nueva biblioteca	Porcentaje completado del proyecto después de seis meses	$0 \le x \le 100$
Probar un nuevo proceso químico	Temperatura a la que ocurre la reacción (mín. 150 °F; máx. 212 °F)	$150 \le x \le 212$

Distribuciones de Probabilidad

- ► La distribución de probabilidad de una VA describe como se distribuyen las probabilidades entre los valores de la misma.
- Para una VA x, la distribución se define mediante su función de probabilidad (FDP), que se denota f(x).

x		f(x)
0		0.18
1		0.39
2		0.24
3		0.14
4		0.04
5		0.01
	Total	1.00

Condiciones Necesarias para una FDP Discreta

$$f(x) \geqslant 0 \tag{1}$$

$$\sum f(x) = 1 \tag{2}$$

Distribución Uniforme Discreta

 $f(x) = \frac{1}{n}$, donde *n* es el número de valores que puede asumir la VA.

FDP de un dado:

Número obtenido x	Probabilidad de x $f(x)$	
1	1/6	
2	1/6	
3	1/6	
4	1/6	
5	1/6	
6	1/6	

Valor Esperado y Varianza

Valor Esperado

El valor esperado, o media, de una VA es una medida de su *ubicación central*. Se calcula mediante la fórmula:

$$E(x) = \mu = \sum x f(x)$$

Varianza

La <mark>varianza</mark> se usa para resumir la *variabilidad* en los valores de una VA. Su fórmula es:

$$Var(x) = \sigma^2 = \sum (x - \mu)^2 f(x)$$

Distribución Binomial

Un experimento binomial tiene las siguientes propiedades:

- 1. Consiste en una secuencia de *n* ensayos idénticos
- 2. Hay dos resultados posibles: éxito (S) y fracaso (F)
- 3. La probabilidad de éxito, que se denota p, no cambia de un ensayo a otro.
- 4. La probabilidad de fracaso (1-p) tampoco cambia.
- 5. Los ensayos son independientes.

Ejemplo de Experimento Binomial

Propiedad 1. El experimento consta de n = 8 ensayos idénticos.

Propiedad 2. Cada ensayo da como resultado un éxito (S) o un fracaso (F).

Ejemplo con Tres Ensayos

- ► Tres clientes entran en una tienda
- ▶ Probabilidad de que un cliente realice una compra: p = 0.3
- ¿Cuál es la probabilidad de que dos de los tres clientes realicen una compra?

x Éxitos en n Ensayos

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

donde

$$n! = n(n-1)(n-2)\cdots(3)(2)(1)$$

y por definición,

$$0! = 1$$

Ejemplo de la Tienda

$$\binom{3}{2} = \frac{3!}{2!(3-2)!} = \frac{3!}{2!0!} = \frac{6}{2} = 3$$

FDP Binomial

$$f(x) = \binom{n}{x} p^{x} (1-p)^{(n-x)}$$

donde

x = número de éxitos

p = probabilidad de éxito

n = número de ensayos

Distribución de Clientes que Realizan una Compra

x	f(x)
0	$\frac{3!}{0!3!}(0.30)^0(0.70)^3 = 0.343$
1	$\frac{3!}{1!2!}(0.30)^1(0.70)^2 = 0.441$
2	$\frac{3!}{2!1!}(0.30)^2(0.70)^1 = 0.189$
3	$\frac{3!}{3!0!}(0.30)^3(0.70)^0 = \frac{0.027}{1.000}$

$$E(x) = np$$
$$Var(x) = np(1-p)$$

Distribución de Poisson

- ► La distribución de Poisson se utiliza para estimar el número de ocurrencias de un evento en un intervalo específico de tiempo o espacio.
- ► Por ejempo, el número de llegadas a un centro de lavado en una hora, o el número de baches en un kilometro de autopista.

FDP de Poisson

$$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$

donde μ es el número medio de ocurrencias en un intervalo

Ejemplo

Queremos conocer el número de llegadas al cajero de un banco durante un periodo de 15 minutos. Si $\mu=$ 10, entonces

$$f(x) = \frac{10^x e^{-10}}{x!}$$

La probabilidad de exactamente cinco llegadas en 15 minutos será:

$$f(5) = \frac{10^5 e^{-10}}{5!} = 0.0378$$

Distribuciones Continuas

- ► En una VA *continua*, en lugar de la función de probabilidad, tendremos una función de densidad.
- ightharpoonup También denotaremos a la función de densidad como f(x).
- Sin embargo, una función de densidad no proporciona directamente probabilidades
- ► En este caso, la probabilidad se obtendrá mediante el área bajo la curva de la función de densidad.

Distribución Uniforme Continua

Cuando la probabilidad de que ocurra cualquier valor en un intervalo [a, b] es la misma, diremos que una VA está distribuida uniformemente.

Función de Densidad Uniforme

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{para } a \leqslant x \leqslant b \\ 0 & \text{en cualquier otro caso} \end{cases}$$

Ejemplo — Duración de un Vuelo

Ejemplo — Duración de un Vuelo

Valor Esperado y Varianza de Distribución Uniforme

$$E(x) = \frac{a+b}{2}$$

$$Var(x) = \frac{(b-a)^2}{12}$$

Ejemplo de Tiempo de Vuelo

$$E(x) = \frac{120 + 140}{2} = 130$$

$$Var(x) = \frac{(140 - 120)^2}{12} = 33.33$$

Distribución Normal

La distribución **más importante** para describir una VA continua es la distribución normal. Esta se puede usar para una gran variedad de aplicaciones, como son:

- ▶ Estatura
- Peso
- ► Calificaciones
- ► Mediciones Científicas
- ► Precipitación Pluvial

Curva de la Distribución Normal

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

Propiedades de la Distribución Normal

- 1. Las distribuciones normales se especifican mediante dos parámetros: la media μ y la desviación estándar σ .
- 2. El punto más alto de una curva normal se encuentra sobre la media μ .
- 3. La media μ puede tomar cualquier valor numérico: $\mu \in (-\infty, \infty)$.
- 4. La distribución normal es simétrica: su forma a la izquierda de μ es un reflejo de su forma a la derecha de μ .
- 5. La desviación estándar determina qué tan plana y ancha es la curva normal.
- 6. Las probabilidades están determinadas por el área bajo la curva entre dos valores de x.

Probabilidades Comunes en la Distribución Normal

Ejemplo — Duración de Neumáticos

x = millas que durará un neumático

 $\mu = 36500 \text{ millas}$

 $\sigma = 5000 \; millas$

¿Qué porcentaje de los neumáticos se espera que dure más de 40000 millas?

Duración de Neumáticos — Solución

Distribución Exponencial

La distribución exponencial puede usarse para VAs temporales, tales como el tiempo requerido para cargar un camión, los tiempos entre llegadas a un autolavado o la distancia entre los baches de una carretera.

Función de Densidad Exponencial

$$f(x) = \frac{1}{\mu} e^{-x/\mu} \text{ para } x \geqslant 0$$

Probabilidades de la Distribución Exponencial

Tarea Open Class

Realizar una tabla con las distribuciones estudiadas, incluyendo lo siguiente:

- 1. Si son continuas o discretas
- 2. Su función de probabilidad/densidad f(x)
- 3. Su valor esperado μ
- 4. Su varianza σ^2
- 5. Su función en **Excel**, con ejemplos de cómo usarlas

¿Preguntas?

cvgonzalez@up.edu.mx

@vladoxNCL

@v1ad0x

