COM 424 E: NEURAL NETWORKS

Lecture 03: The Perceptron

The Perceptron

- A single artificial neuron that computes its weighted input and uses a threshold activation function.
- It effectively separates the input space into two categories by the hyperplane:

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{b} = \mathbf{0}$$

Perceptron: Applications

 The perceptron is used for classification: classify correctly a set of examples into one of the two classes C₁, C₂:

- If the output of the perceptron is +1 then the input is assigned to class C₁
- If the output is -1 then the input is assigned to C₂

The Perceptron

The *Perceptron* can automatically learn to categorise or classify input vectors into types.

It obeyed the following rule:

If the sum of the weighted inputs exceeds a threshold, output 1, else output -1.

1 if Σ input_{i*} weight_i > threshold

-1 if Σ input_i * weight_i < threshold

Perceptron: Classification

The equation below describes a hyperplane in the input space. This hyperplane is used to separate the two classes C1 and C2

Perceptron: Limitations

- The perceptron can only model linearly separable functions.
- The perceptron can be used to model the following Boolean functions:
- AND
- OR
- COMPLEMENT

But it cannot model the XOR. Why?

Perceptron: Limitations

The XOR is not linear separable It is impossible to separate the classes C_1 and C_2 with only one line

Perceptron: Learning Algorithm

Variables and parameters

```
\mathbf{x}(n) = input vector
  = [+1, x_1(n), x_2(n), ..., x_m(n)]^T
\mathbf{w}(n) = \text{weight vector}
  = [b(n), w_1(n), w_2(n), ..., w_m(n)]^T
b(n) = bias
y(n) = actual response
d(n) = desired response
    = learning rate parameter
```

The fixed-increment learning algorithm

- Initialization: set w(0) =0
- Activation: activate perceptron by applying input example (vector x(n) and desired response d(n))
- Compute actual response of perceptron:

$$y(n) = sgn[\mathbf{w}^{T}(n)\mathbf{x}(n)]$$

 Adapt weight vector: if d(n) and y(n) are different then

$$\mathbf{w}(n + 1) = \mathbf{w}(n) + , \quad [d(n)-y(n)]\mathbf{x}(n)$$
Where $d(n) = \begin{cases} +1 & \text{if } \mathbf{x}(n) \square C_1 \\ -1 & \text{if } \mathbf{x}(n) \square C_2 \end{cases}$

 Continuation: increment time step n by 1 and go to Activation step

Example

Consider a training set $\{C_1, C_2\}$ where: $C_1 = \{(1,1), (1, -1), (0, -1)\}$ elements of class 1 $C_2 = \{(-1,-1), (-1,1), (0,1)\}$ elements of class -1

Use the perceptron learning algorithm to classify these examples.

$$\mathbf{w}(0) = [1, 0, 0]^{\mathsf{T}}$$

Example

Beyond perceptrons

- Need to learn the features, not just how to weight them to make a decision.
- Need to make use of recurrent connections, especially for modeling sequences.
 - The network needs a memory (in the activities) for events that happened some time ago, and we cannot easily put an upper bound on this time.
- Need to learn representations without a teacher.
 - » This makes it much harder to define what the goal of learning is.