СПбГУ ИТМО

Кафедра ЭТ и ПЭМС

ОТЧЕТ

по лабораторной работе

Исследование явлений резонанса в линейных электрических цепях

Группа ХХХХ.

Работу выполнил: *студ. Иванов И.И.*Дата защиты:
Контрольный срок защиты:

Количество баллов:

 $C\Pi6 - 2011$

Лист измерений к лабораторной работе 3 «Исследование явлений резонанса в линейных электрических цепях»

Выполнил *студ.* **Иванов И.И.** гр. **ХХХХ** Провел _____ Дата **_13.11.11**

Параметры цепи и питающего напряжения

U	Ψu	R	$L_{\scriptscriptstyle m K}$	$R_{\scriptscriptstyle m K}$	C
В	градус	Ом	мГн	Ом	мкФ
50	135	70	41	30	2.2

Последовательная *RLC*-цепь

<i>f</i> , Гц	ф, градус	I, A	U_R , B	$U_{ ext{ iny K}}, ext{B}$	U_c , B
280	-63	0.25	16	18	61
380	-45	0.38	26	38	70
480	-18	0.49	34	61	73
$f_{\rm p} = 530$	0	0.5	35	70	68
580	15	0.49	34	74	61
680	36	0.42	29	73	44
780	48	0.35	24	70	31

Цель работы — экспериментальное исследование частотных характеристик линейных двухполюсников, содержащих индуктивный и емкостной элементы и анализ резонансных режимов их работы.

І. Схемы измерений и перечень приборов

Схема лабораторной установки

Лабораторная установка содержит генератор типа Г6-15, усилитель типа 100У-101, амперметр, вольтметр, двухканальный осциллограф типа С1-83 и контактную панель. Схемы двухполюсников собирают с помощью магазина сопротивлений Р4830, магазина индуктивностей Р567 и магазина конденсаторов Р5025.

При выполнении лабораторной работы к зажимам « a_1 » и « b_1 » контактной панели стенда (см. *Схема лабораторной установки*) подключаются электрические цепи, собранные по схемам, представленным на (см. *Схемы измерений*).

II. Заполненные таблицы. Расчетные формулы и расчеты.

	$U = \underline{50}$ В; $R_1 = \underline{70}$ Ом; $R_K = \underline{30}$ Ом; $L = \underline{41}$ мГн; $C = \underline{2.2}$ мкФ									
f	Расчет				Эксперимент					
	$f_{0p} = \underline{529.9} \Gamma$ ц; $Q_p = \underline{1.365}$				$f_{09} = \underline{530} \Gamma$ ц; $Q_{9} = \underline{1.36}$					
	φ	I	U_{R1}	$U_{\scriptscriptstyle m K}$	U_C	φ	I	U_{R1}	$U_{\scriptscriptstyle m K}$	U_C
Гц	град	A	В			град	A	В		
280	-61.8	0.237	16.6	18.5	61.1	-63	0.25	16	18	61
380	-42.8	0.367	25.7	37.6	69.9	-45	0.38	26	38	70
480	-15.1	0.483	33.8	61.4	72.7	-18	0.49	34	61	73
530	0	0.5	35	70	68.2	0	0.5	35	70	68
580	13.9	0.485	34	74	60.5	15	0.49	34	74	61
680	34.5	0.412	28.8	73.2	43.8	36	0.42	29	73	44
780	47.3	0.339	23.8	69	31.5	48	0.35	24	70	31

$$f_{0p}=1/(2\cdot\pi\cdot\sqrt{(L\cdot C)})=1/(2\cdot\pi\cdot\sqrt{(41\cdot10^{-3}\cdot2.2\cdot10^{-6})})=529.9$$
 [Гц] $Q_p=\sqrt{(L/C)/(R_1+R_\kappa)}=\sqrt{(41\cdot10^{-3}/2.2\cdot10^{-6})/(70+30)}=1.365$ $Q_9=U_{C0}/U=68/50=1.36$

 $w=2\cdot\pi\cdot f$ [рад/с], $X_L=w\cdot L$ [Ом], $X_C=1/(w\cdot C)$ [Ом], $R=R_1+R_{\kappa}$ [Ом], $X=X_L-X_C$ [Ом], $z=\sqrt{(R^2+X^2)}$ [Ом], I=U/z [А], $\varphi=arctg(X/R)$ [°], $U_R=I\cdot R$ [В], $U_C=I\cdot X_C$ [В], $U_{\kappa}=I\cdot\sqrt{(R_{\kappa}^2+X_L^2)}$ [В].

1) для *f*=280 [Гц]

 $w=2\cdot\pi\cdot280=1759$ [рад/с], $X_L=1759\cdot41\cdot10^{-3}=72$ [Ом], $X_C=1/(1759\cdot2.2\cdot10^{-6})=258$ [Ом], R=70+30=100 [Ом], X=72-258=-186 [Ом],

 $z=\sqrt{(100^2+186^2)}=211$ [OM], I=50/211=0.237 [A], $\varphi=arctg(-186/100)=-61.8^\circ$, $U_R=0.237\cdot70=16.6$ [B], $U_C=0.237\cdot258=61.1$ [B], $U_R=0.237\cdot\sqrt{(30^2+72^2)}=18.5$ [B].

2) для f=380 [Гц]

 $w=2\cdot\pi\cdot380=2388$ [рад/с], $X_L=2388\cdot41\cdot10^{-3}=98$ [Ом], $X_C=1/(2388\cdot2.2\cdot10^{-6})=190$ [Ом], R=70+30=100 [Ом], X=98-190=-92 [Ом], $z=\sqrt{(100^2+92^2)}=136$ [Ом], I=50/136=0.367 [А], $\varphi=arctg(-92/100)=-42.8^\circ$, $U_R=0.367\cdot70=25.7$ [В], $U_C=0.367\cdot190=69.9$ [В], $U_R=0.367\cdot\sqrt{(30^2+98^2)}=37.6$ [В].

3) для *f*=480 [Гц]

 $w=2\cdot\pi\cdot480=3016$ [рад/с], $X_L=3016\cdot41\cdot10^{-3}=124$ [Ом], $X_C=1/(3016\cdot2.2\cdot10^{-3})$

 6)=151 [OM], R=70+30=100 [OM], X=124-151=-27 [OM],

 $z=\sqrt{(100^2+27^2)}=104 \text{ [OM]}, I=50/104=0.483 \text{ [A]}, \varphi=arctg(-27/100)=-15.1^\circ,$

 U_R =0.483·70=33.8 [B], U_C =0.483·151=72.7 [B], U_K =0.483· $\sqrt{(30^2+124^2)}$ =61.4 [B].

4) для *f*=530 [Гц]

 $w=2\cdot\pi\cdot530=3330$ [рад/с], $X_L=3330\cdot41\cdot10^{-3}=136$ [Ом], $X_C=1/(3330\cdot2.2\cdot10^{-1})$

⁶)=136 [OM], R=70+30=100 [OM], X=136-136=0 [OM], z= $\sqrt{(100^2+0^2)}$ =100 [OM], I=50/100=0.5 [A], φ =arctg(0/100)=0°, U_R =0.5·70=35 [B], U_C =0.5·136=68 [B], U_K =0.5· $\sqrt{(30^2+136^2)}$ =70 [B].

5) для *f*=580 [Гц]

 $w=2\cdot\pi\cdot580=3644$ [рад/с], $X_L=3644\cdot41\cdot10^{-3}=149$ [Ом], $X_C=1/(3644\cdot2.2\cdot10^{-6})=125$ [Ом], R=70+30=100 [Ом], X=149-125=24 [Ом], $z=\sqrt{(100^2+24^2)=103}$ [Ом], I=50/103=0.485 [А], $\phi=arctg(24/100)=13.9^\circ$, $U_R=0.485\cdot70=34$ [В], $U_C=0.485\cdot125=60.5$ [В], $U_R=0.485\cdot\sqrt{(30^2+149^2)=74}$ [В].

6) для *f*=680 [Гц]

 $w=2\cdot\pi\cdot680=4273$ [рад/с], $X_L=4273\cdot41\cdot10^{-3}=175$ [Ом], $X_C=1/(4273\cdot2.2\cdot10^{-6})=106$ [Ом], R=70+30=100 [Ом], X=175-106=69 [Ом], $z=\sqrt{(100^2+69^2)}=121$ [Ом], I=50/121=0.412 [А], $\varphi=arctg(69/100)=34.5^\circ$, $U_R=0.412\cdot70=28.8$ [В], $U_C=0.412\cdot106=43.8$ [В], $U_K=0.412\cdot\sqrt{(30^2+175^2)}=73.2$ [В].

7) для *f*=780 [Гц]

 $w=2\cdot\pi\cdot780=4901$ [рад/с], $X_L=4901\cdot41\cdot10^{-3}=201$ [Ом], $X_C=1/(4901\cdot2.2\cdot10^{-6})=93$ [Ом], R=70+30=100 [Ом], X=201-93=108 [Ом], $z=\sqrt{(100^2+108^2)=147}$ [Ом], I=50/147=0.339 [А], $\varphi=arctg(147/100)=47.3^\circ$, $U_R=0.339\cdot70=23.8$ [В], $U_C=0.339\cdot93=31.5$ [В], $U_K=0.339\cdot\sqrt{(30^2+201^2)=69}$ [В].

III. Графики характеристик I(f), $U_{\kappa}(f)$, $U_{C}(f)$, $U_{R}(f)$, $\varphi(f)$

На графиках сплошной линией изображены экспериментально снятые характеристики, пунктирной линией – расчетные характеристики.

IV. Векторные диаграммы для состояния резонанса.

Отобразим на векторной диаграмме $\underline{U} = \underline{U}_R + \underline{U}_C + \underline{U}_{\kappa}$.

Согласно данным измерений $\underline{U} = U e^{j\psi u} = 50 \cdot e^{j135^{\circ}}$ и $\phi = 0^{\circ}$, тогда начальная фаза тока $\psi_i = \psi_u - \phi = 135^{\circ} - 0^{\circ} = 135^{\circ}$.

Угол сдвига фаз между током и напряжением на резистивном элементе $\varphi_R=0^\circ$, тогда начальная фаза напряжения на резистивном элементе $\psi_{uR}=\varphi_R+\psi_i==0^\circ+135^\circ=135^\circ$, т.о. $\underline{U}_R=U_R\cdot e^{j\psi uR}=35\cdot e^{j135^\circ}$.

Угол сдвига фаз между током и напряжением на емкостном элементе ϕ_{c} =90°, тогда начальная фаза напряжения на емкостном элементе $\psi_{uc} = \phi_{c} + \psi_{i} =$

=-90°+135°=45°, t.o.
$$\underline{U}_C = U_C \cdot e^{j\psi uC} = 68 \cdot e^{j45°}$$
.

Угол сдвига фаз между током и напряжением на катушке индуктивности определяется как ϕ_{κ} = $arctg(X_L/R_{\kappa})$ =arctg(136/30)= 77° , тогда начальная фаза напряжения на катушке индуктивности $\psi_{u\kappa} = \phi_{\kappa} + \psi_i = 77^{\circ} + 135^{\circ} = 212^{\circ}$, т.о.

$$\underline{U}_{K} = U_{K} \cdot e^{j\psi u_{K}} = 70 \cdot e^{j212^{\circ}} = 70 \cdot e^{-j148^{\circ}}.$$

Представленная векторная диаграмма отображает, что $\underline{U} = \underline{U}_R + \underline{U}_C + \underline{U}_K$ или $50 \cdot e^{j135^\circ} = 35 \cdot e^{j135^\circ} + 68 \cdot e^{j45^\circ} + 70 \cdot e^{-j148^\circ}$.

V. Выводы по работе.