Lecture 7: **Expected Values of Random Variables**

CPE251 Probability Methods in Engineering

Dr. Zaid Ahmad, MIEEE Advisor, IEEE CÚI Lahore COMSATS University Islamabad, Lahore Campus

2

Characteristics of Random Data

Measures of central tendency: Mean, Average Median, Expected Value Measures of dispersion: Variance, Standard Deviation, Mode

CPE251 PROBABILITY METHODS IN ENGINEERING (DR. ZAID AHMAD, PHD. MIEEE)

Expected Value

Let X be a random variable with probability distribution f(x). The mean, or expected value, of X is

$$\mu = E(X) = \sum_x x f(x)$$

if X is discrete, and

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) \ dx$$

if X is continuous.

CPE251 PROBABILITY METHODS IN ENGINEERING (DR. ZAID AHMAD, PHD, MIEEE)

3

Example

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

CPE251 PROBABILITY METHODS IN ENGINEERING (DR. ZAID AHMAD, PHD, MIEEE)

4

Example

Let X be the random variable that denotes the life in hours of a certain electronic device. The probability density function is

$$f(x) = \begin{cases} \frac{20,000}{x^3}, & x > 100, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected life of this type of device.

CPE251 PROBABILITY METHODS IN ENGINEERING (DR. ZAID AHMAD, PHD, MIEEE)

5

Variance

Let X be a random variable with probability distribution f(x) and mean μ . The variance of X is

$$\sigma^2 = E[(X - \mu)^2] = \sum_x (x - \mu)^2 f(x), \quad \text{if } X \text{ is discrete, and}$$

$$\sigma^2 = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \ dx, \quad \text{if } X \text{ is continuous.}$$

The positive square root of the variance, σ , is called the standard deviation of X.

CPE251 PROBABILITY METHODS IN ENGINEERING (DR. ZAID AHMAD, PHD. MIEEE)

6

Standard Deviation

The square root of variance σ_X^2 of a random variable X is known as standard deviation, denoted by σ .

 $\sqrt{Var(X)} = \sqrt{\sigma_X^2} = SD(X) = \sigma$

CPE251 PROBABILITY METHODS IN ENGINEERING (DR. ZAID AHMAD, PHD, MIEEE)

7

Variance: Alternative Expression

The variance of a random variable X is

$$\sigma^2 = E(X^2) - \mu^2.$$

For the discrete case, we can write

$$\begin{split} \sigma^2 &= \sum_x (x - \mu)^2 f(x) = \sum_x (x^2 - 2\mu x + \mu^2) f(x) \\ &= \sum_x x^2 f(x) - 2\mu \sum_x x f(x) + \mu^2 \sum_x f(x). \end{split}$$

Since $\mu=\sum_x xf(x)$ by definition, and $\sum_x f(x)=1$ for any discrete probability distribution, it follows that

$$\sigma^2=\sum x^2f(x)-\mu^2=E(X^2)-\mu^2.$$

For the continuous case the proof is step by step the same, with summations replaced by integrations. \blacksquare

CPE251 PROBABILITY METHODS IN ENGINEERING (DR. ZAID AHMAD, PHD, MIEEE)

Example (DRV)

Let the random variable X represent the number of defective parts for a machine when 3 parts are sampled from a production line and tested. The following is the probability distribution of X.

Using Theorem 4.2, calculate σ^2 .

Example (CRV)

The weekly demand for a drinking-water product, in thousands of liters, from a local chain of efficiency stores is a continuous random variable X having the probability density

$$f(x) = \begin{cases} 2(x-1), & 1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the mean and variance of X.

9

10

References

- 1. Walpole, R.E., Myers, R.H., Myers, S.L. and Ye, K. (2007) Probability & Statistics for Engineers & Scientists. 9th Edition, Pearson Education, Inc.
- 2. Leon-Garcia, A. (2008). Probability, Statistics, and Random Processes for Electrical Engineering. 3rd Edition, Pearson/Prentice Hall.

CPE251 PROBABILITY METHODS IN ENGINEERING (DR. ZAID AHMAD, PHD. MIEEE)