Retake Final Exam #1

- 1. Study the convergence and the absolute convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n(n+1)}}$. 1p
- 2. (a) Draw the interior and the boundary of the set $\{(x,y) \in \mathbb{R}^2 \mid |x-1|+|y+1|<1\}$. **1p**
 - (b) Let $x, y \in \mathbb{R}^n$ with ||x|| = ||y|| = 1. Prove that $||x + y||^2 + ||x y||^2 = 4$. 1p
- 3. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \sin(xy) + \cos(xy)$.
 - (a) In which direction does f decrease the most at $(1, \pi/2)$? **0.5p**
 - (b) In which direction is f constant (zero directional derivative) at $(1, \pi/2)$? **0.5p**
 - (c) Find the first order Taylor polynomial for f around $(1, \pi/2)$. **0.5p**
- 4. Find and classify all the critical points of $f(x,y) = 3x^2 + 2y^3 6xy$. 1p
- 5. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let $b \in \mathbb{R}^n$ be a vector. Consider the function

$$f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = ||Ax - b||^2.$$

- (a) Find the gradient of f. Prove that a critical point x^* satisfies $A^2x^* = Ab$. 1p
- (b) Find the Hessian of f. Give a condition for A s.t. f has a unique minimum. **0.5p**
- 6. Consider the ellipse \mathcal{E} given by the equation

$$\frac{x^2}{3} + \frac{y^2}{4} = 1.$$

Using Lagrange multipliers, find the points on \mathcal{E} the furthest away from the origin. 1p

- 7. (a) Let $D_1 = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, x^2 \le y \le \sqrt{x}\}$. Find the area of D_1 , for example by using a double integral. **1p**
 - (b) Let $D_2 = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, x \le y \le \sqrt{x}\}$. Compute $\iint_{D_2} \frac{e^y}{y} dxdy$ by changing the order of integration. **1p**

Time: 2h. The marks in the final exam add up to 10p.