INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:
A61K 37/12, A61F 2/02
C07K 13/00

A1

(11) International Publication Number:

WO 92/15323

(43) International Publication Date:

17 September 1992 (17.09.92)

(21) International Application Number:

PCT/US92/01968

(22) International Filing Date:

11 March 1992 (11.03.92)

(30) Priority data:

667,274

11 March 1991 (11.03.91)

US

(71) Applicant: CREATIVE BIOMOLECULES, INC. [US/US]; 35 South Street, Hopkinton, MA 01748 (US).

(72) Inventors: COHEN, Charles, M.; 98 Winthrop Street, Medway, MA 02053 (US). KUBERASAMPATH, Thangavel; 6 Spring Street, Medway, MA 02053 (US). PANG, Roy, H., L.; 16 Kimberly Drive, Medway, MA 02053 (US). OPPERMANN, Hermann; 25 Summer Hill Road, Medway, MA 02053 (US). RUEGER, David, C.; 19 Downey Street, Hopkinton, MA 01748 (US).

- (74) Agent: PITCHER, Edmund, R.; Testa, Hurwitz & Thibeault, Exchange Place, 53 State Street, Boston, MA 02109-2809 (US).
- (81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent).

Published

With international search report.

BEST AVAILABLE COPY

(54) Title: PROTEIN-INDUCED MORPHOGENESIS

(57) Abstract

Disclosed are 1) amino acid sequence data, structural features, homologies and various other data characterizing morphogenic proteins, 2) methods of producing these proteins from natural and recombinant sources and from synthetic constructs, 3) morphogenic devices comprising these morphogenic proteins and a suitably modified tissue-specific matrix, and 4) methods of inducing non-chondrogenic tissue growth in a mammal.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCI on the front pages of pamphlets publishing international applications under the PCI.

AT.	Austria	FI	Finland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
RB	Barbidos	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NI.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin ·	HU	Hungary	PL	Poland
BR	Brazil	IE	Ireland	RO	Romania
CA	Canada	Τí	Italy ·	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
СН	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Canteroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	us	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

PROTEIN-INDUCED MORPHOGENESIS

Background of the Invention

This invention relates to morphogenic proteins which can induce tissue morphogenesis in mammals; to 5 methods of identifying these proteins and obtaining them from natural sources or producing synthetic forms of these proteins by expressing recombinant DNA encoding the proteins; to the fabrication of tissue-specific acellular matrices; and to methods for 10 promoting tissue stasis, repair and regeneration, and methods for increasing progenitor cell populations using these proteins.

Cell differentiation is the central

15 characteristic of morphogenesis which initiates in the embryo, and continues to various degrees throughout the life of an organism in adult tissue repair and regeneration mechanisms. The degree of morphogenesis in adult tissue varies among different tissues and is

20 related, among other things, to the degree of cell turnover in a given tissue. On this basis, tissues can be divided into three broad categories: (1) tissues with static cell populations such as nerve and skeletal muscle where there is no cell division and most of the

المصالات فطر ماية

cells formed during early development persist
throughout adult life; (2) tissues containing
conditionally renewing populations such as liver where
there is generally little cell division but, in

5 response to an appropriate stimulus, cells can divide
to produce daughters of the same differentially defined
type; and (3) tissues with permanently renewing
populations including blood, testes and stratified
squamous epithelia which are characterized by rapid and
10 continuous cell turnover in the adult. Here, the
terminally differentiated cells have a relatively short
life span and are replaced through proliferation of a
distinct subpopulation of cells, known as stem or
progenitor cells.

15

The cellular and molecular events which govern the stimulus for differentiation of these cells is an area of intensive research. In the medical field, it is anticipated that the discovery of factor(s) which control cell differentiation and tissue morphogenesis will significantly advance medicine's ability to repair and regenerate diseased or damaged mammalian tissues and organs. Particularly useful areas include reconstructive surgery and in the treatment of tissue degenerative diseases including arthritis, emphysema, osteoporosis, cardiomyopathy, cirrhosis, and degenerative nerve diseases.

isolated in recent years which appear to play a role in cell differentiation. Some of these factors are gene transcription activators such as the NOTCH gene, identified in Drosophila and the related XOTCH gene identified in Xenopus, as well as a number of transcription activators identified in Caenorhabditis elegans.

The hemopoietic system, because of its continually renewing cell population, is an area of concentrated study. Factors identified in this system which may be involved in cell renewal include interleukin 3 (IL-3), erythropoietin, the CSFs (GM-CSF, G-CSF, M-CSF et al.) and various stem cell growth factors.

Other proteins thought to play a role in cell
differentiation include proteins that are members of
the family of insulin-like growth factors (IGF),
members of the family of heparin-binding growth
factors, (e.g., FGF - acidic and basic fibroblast
growth factors, and ECDGF - embryonal carcinoma-derived
growth factor) as well as several transforming
oncogenes (hst and int-2, see for example, Heath et
al., (1988), J. Cell Sci. Suppl. 10:256-256.) DIF
(Differentiation Inducing Factor), identified in
Dictyostelium discoideum, is another bioregulatory
protein, directing prestock cell differentiation in
that organism.

The structurally related proteins of the TGF-B superfamily of proteins also have been identified as involved in a variety of developmental events. 25 example, TGF-β and the polypeptides of the inhibin/activin group appear to play a role in the regulation of cell growth and differentiation. (Mullerian Inhibiting Substance) causes regression of the Mullerian duct in development of the mammalian male 30 embryo, and DPP, the gene product of the Drosophila decapentaplegic complex is required for appropriate dorsal-ventral specification. Similarly, Vg-1 is involved in mesoderm induction in Xenopus, and Vgr-1 has been identified in a variety of developing murine 35 tissues.

30

35

Another source that has revealed a wealth of information is in the area of bone morphogenesis. development and study of a bone model system has 5 identified the developmental cascade of bone differentiation as consisting of chemotaxis of mesenchymal cells, proliferation of these progenitor cells, differentiation of these cells into chrondroblasts, cartilage calcification, vascular invasion, bone formation, remodeling, and finally, 10 marrow differentiation (Reddi (1981) Collagen Rel. Res. 1:209-206). Proteins capable of inducing endochondral bone formation in a mammal when implanted in association with a matrix now have been identified in a 15 number of different mammalian species, as have the genes encoding these proteins, (see, for example, U.S. Patent No. 4,968,590 and U.S. Patent No. 5,011,691, Ozkaynak, et al., (1990) EMBO J 9:2085-2093, and Ozkaynak et al., (1991) Biochem. Biophys. Res. Commn. 20 179:116-123 and USSN 07/841,646, filed February 21, 1992.) These proteins, which share significant amino acid sequence homology with one another as well as structural similarities with various members of the TGF-β super family of proteins, have been shown to induce endochondral bone formation and/or cartilage 25 formation when implanted in a mammal in association with a suitably modified matrix. Proteins capable of inducing a similar developmental cascade of tissue morphogenesis of other tissues have not been identified.

It is an object of this invention to provide morphogenic proteins ("morphogens"), and methods for identifying these proteins, which are capable of inducing the developmental cascade of tissue

morphogenesis for a variety of tissues in mammals different from bone or cartilage. This morphogenic activity includes the ability to induce proliferation and differentiation of progenitor cells, and the 5 ability to support and maintain the differentiated phenotype through the progression of events that results in the formation of adult tissue. Another object is to provide genes encoding these proteins as well as methods for the expression and isolation of 10 these proteins, from either natural sources or biosynthetic sources, using recombinant DNA techniques. Still another object is to provide tissue-specific acellular matrices that may be used in combination with these proteins, and methods for their production. 15 Other objects include providing methods for increasing a progenitor cell population in a mammal, methods for stimulating progenitor cells to differentiate in vivo or in vitro and maintain their differentiated phenotype, methods for inducing tissue-specific growth 20 in vivo and methods for the replacement of diseased or damaged-tissue in vivo. These and other objects and features of the invention will be apparent from the

description, drawings, and claims which follow.

35

Summary of the Invention

This invention provides morphogenic proteins ("morphogens") capable of inducing the developmental cascade of tissue morphogenesis in a mammal. In particular, these proteins are capable of inducing the proliferation of uncommitted progenitor cells, and inducing the differentiation of these stimulated progenitor cells in a tissue-specific manner under 10 appropriate environmental conditions. In addition, the morphogens are capable of supporting the growth and maintenance of these differentiated cells. These morphogenic activities allow the proteins of this invention to initiate and maintain the developmental cascade of tissue morphogenesis in an appropriate, morphogenically permissive environment, stimulating stem cells to proliferate and differentiate in a tissue-specific manner, and inducing the progression of events that culminate in new tissue formation. 20 morphogenic activities also allow the proteins to stimulate the "redifferentiation" of cells previously induced to stray from their differentiation path. Under appropriate environmental conditions it is anticipated that these morphogens also may stimulate the "dedifferentiation" of committed cells (see infra.)

In one aspect of the invention, the proteins and compositions of this invention are useful in the replacement of diseased or damaged tissue in a mammal, 30 particularly when the damaged tissue interferes with normal tissue or organ function. Accordingly, it is anticipated that the proteins of this invention will be useful in the repair of damaged tissue such as, for example, damaged lung tissue resulting from emphysema, cirrhotic kidney or liver tissue, damaged heart or

blood vessel tissue, as may result from cardiomyopathies and/or atherothrombotic or cardioembolic strokes, damaged stomach tissue resulting from ulceric perforations or their repair, damaged 5 neural tissue as may result from physical injury, degenerative diseases such as Alzheimer's disease or multiple sclerosis or strokes, damaged dentin tissue as may result from disease or mechanical injury. When the proteins of this invention are provided to, or their expression stimulated at, a tissue-specific locus, the 10 developmental cascade of tissue morphogenesis is induced (see infra). Cells stimulated ex vivo by contact with the proteins or agents capable of stimulating morphogen expression in these cells also may be provided to the tissue locus. In these cases the existing tissue provides the necessary matrix requirements, providing a suitable substratum for the proliferating and differentiating cells in a morphogenically permissive environment, as well as 20 providing the necessary signals for directing the -tissue-specificity of the-developing tissue. Alternatively, the proteins or stimulated cells may be combined with a formulated matrix and implanted as a device at a locus in vivo. The formulated matrix should be a biocompatible, preferably biodegradable, appropriately modified tissue-specific acellular matrix having the characteristics described below.

In many instances, the loss of tissue function results from scar tissue, formed in response to an initial or repeated injury to the tissue. The degree of scar tissue formation generally depends on the regenerative properties of the injured tissue, and on the degree and type of injury. Thus, in another

aspect, the invention includes morphogens that may be used to prevent or substantially inhibit the formation of scar tissue by providing the morphogens, or morphogen-stimulated cells, to a newly injured tissue loci (see infra).

The morphogens of this invention also may be used to increase or regenerate a progenitor or stem cell population in a mammal. For example, progenitor 10 cells may be isolated from an individual's bone marrow, stimulated ex vivo for a time and at a morphogen concentration sufficient to induce the cells to proliferate, and returned to the bone marrow. Other sources of progenitor cells that may be suitable include biocompatible cells obtained from a cultured cell line, stimulated in culture, and subsequently provided to the body. Alternatively, the morphogen may be provided systemically, or implanted, injected or otherwise provided to a progenitor cell population in an individual to induce its mitogenic activity in vivo. 20 For example, an agent capable of stimulating morphogen expression in the progenitor cell population of interest may be provided to the cells in vivo, for example systemically, to induce mitogenic activity. 25 Similarly, a particular population of hemopoietic stem cells may be increased by the morphogens of this invention, for example by perfusing an individual's blood to extract the cells of interest, stimulating these cells ex vivo, and returning the stimulated cells to the blood. It is anticipated that the ability to 30 augment an individual's progenitor cell population will significantly enhance existing methods for treating disorders resulting from a loss or reduction of a renewable cell population. Two particularly significant applications include the treatment of blood 35

disorders and impaired or lost immune function. Other cell populations whose proliferation may be exploited include the stem cells of the epidermis, which may be used in skin tissue regeneration, and the stem cells of the gastrointestinal lining, for example, in the healing of ulcers.

In still another aspect of the invention, the morphogens also may be used to support the growth and maintenance of differentiated cells, inducing existing 10 differentiated cells to continue expressing their phenotype. It is anticipated that this activity will be particularly useful in the treatment of tissue disorders where loss of function is caused by cells becoming senescent or quiescent, such as may occur in osteoporosis. Application of the protein directly to the cells to be treated, or providing it by systemic injection, can be used to stimulate these cells to continue expressing their phenotype, thereby significantly reversing the effects of the dysfunction -(-see_infra). Alternatively, administration of an agent capable of stimulating morphogen expression in vivo also may be used. In addition, the morphogens of this invention also may be used in gene therapy protocols to stimulate the growth of quiescent cells, thereby potentially enhancing the ability of these cells to incorporate exogenous DNA.

In yet another aspect of the invention, the

morphogens of this invention also may be used to induce
"redifferentiation" of cells that have strayed from
their differentiation pathway, such as can occur during
tumorgenesis. It is anticipated that this activity of
the proteins will be particularly useful in treatments
to reduce or substantially inhibit the growth of

ē

בשכבו ושע שי

neoplasms. The method also is anticipated to induce the de-and re-differentiation of these cells. As described supra, the proteins may be provided to the cells directly or systemically, or an agent capable of stimulating morphogen expression in vivo may be provided.

Finally, modulations of endogenous morphogen levels may be monitored as part of a method for detecting tissue dysfunction. Specifically, modulations in 10 endogenous morphogen levels are anticipated to reflect changes in tissue or organ stasis. Tissue stasis may be monitored by detecting changes in the levels of the morphogen itself. For example, tissue samples may be obtained at intervals and the concentration of the morphogen present in the tissue detected by standard protein detection means known to those skilled in the art. As an example, a binding protein capable of interacting specifically with the morphogen of interest, such as an anti-morphogen antibody, may be 20 used to detect the morphogen in a standard immunoassay. The morphogen levels detected then may be compared, the changes in the detected levels being indicative of the status of the tissue. Modulations in endogenous morphogen levels also may be monitored by detecting fluctuations in the body's natural antibody titer to morphogens (see infra.)

The morphogenic proteins and compositions of
this invention can be isolated from a variety of
naturally-occurring sources, or they may be constructed
biosynthetically using conventional recombinant DNA
technology. Similarly, the matrices may be derived
from organ-specific tissue, or they may be formulated
synthetically, as described below.

A key to these developments was the discovery and characterization of naturally-occurring osteogenic proteins followed by observation of their remarkable properties. These proteins, originally isolated from bone, are capable of inducing the full developmental cascade of bone formation, including vascularization, mineralization, and bone marrow differentiation, when implanted in a mammalian body in association with a suitably modified matrix. Native proteins capable of inducing this developmental cascade, as well as DNA 10 sequences encoding these proteins now have been isolated and characterized for a number of different species (e.g., human and mouse OP-1, OP-2, and CBMP-2. See, for example, U.S. Patent Nos. 4,968,590 and 5,011,691; U.S. Application Serial No. 841,646, filed February 21, 1992; Sampath et al. (1990) J. Bio. Chem 265:13198-13205; Ozkaynak, et al. (1990) EMBO J 9:2085-2 093 and Ozkaynak, et al. (1991) Biochem. Biophys. Res. Commn. 179:116-123.) The mature forms of these proteins share substantial amino acid sequence 20 homology, especially in the C-terminal regions of the mature proteins. In particular, the proteins share a conserved six or seven cysteine skeleton in this region (e.g., the linear arrangement of these C-terminal cysteine residues is essentially conserved in the different proteins, in addition to other, apparently required amino acids (see Table II, infra)).

Polypeptide chains not normally associated
with bone or bone formation, but sharing substantial
amino acid sequence homology with the C-terminus of the
osteogenic proteins, including the conserved six or
seven cysteine skeleton, also have been identified as
competent for inducing bone in mammals. Among these
are amino acid sequences identified in Drosophila and

Xenopus, (e.g., DPP and Vgl; see, for example, U.S. Patent No. 5,011,691 and Table II, infra). In addition, non-native biosynthetic constructs designed based on extrapolation from these sequence homologies, including the conserved six or seven cysteine skeleton, have been shown to induce endochondral bone formation in mammals when implanted in association with an appropriate matrix (see U.S. Pat. No. 5,011,691 and Table III, infra).

10

It has now been discovered that this "family" of proteins sharing substantial amino acid sequence homology and the conserved six or seven cysteine skeleton are true morphogens, capable of inducing, in 15 addition to bone and cartilage, tissue-specific morphogenesis for a variety of other organs and tissues. The proteins apparently bind to surface receptors or otherwise contact and interact with progenitor cells, predisposing or stimulating the cells to proliferate and differentiate in a morphogenically 20 permissive environment. The morphogens are capable of inducing the developmental cascade of cellular and molecular events that culminate in the formation of new organ-specific tissue, including any vascularization, connective tissue formation, and nerve ennervation as required by the naturally occurring tissue.

It also has been discovered that the way in which the cells differentiate, whether, for example, they differentiate into bone-producing osteoblasts, hemopoietic cells, or liver cells, depends on the nature of their local environment (see infra). Thus, in addition to requiring a suitable substratum on which to anchor, the proliferating and differentiating cells also require appropriate signals to direct their

tissue-specificity. These signals may take the form of cell surface markers.

<

5 When the morphogens (or progenitor cells stimulated by these morphogens) are provided at a tissue-specific locus (e.g., by systemic injection or by implantation or injection at a tissue-specific locus, or by administration of an agent capable of 10 stimulating morphogen expression in vivo), the existing tissue at that locus, whether diseased or damaged, has the capacity of acting as a suitable matrix. Alternatively, a formulated matrix may be externally provided together with the stimulated progenitor cells or morphogen, as may be necessary when the extent of injury sustained by the damaged tissue is large. The matrix should be a biocompatible, suitably modified acellular matrix having dimensions such that it allows the influx, differentiation, and proliferation of migratory progenitor cells, and is capable of providing a morphogenically permissive environment (see infra). The matrix preferably is tissue-specific, and biodegradable.

Formulated matrices may be generated from dehydrated organ-specific tissue, prepared for example, by treating the tissue with solvents to substantially remove the non-structural components from the tissue. Alternatively, the matrix may be formulated synthetically using a biocompatible, preferably in vivo

-14-

biodegradable, structural polymer such as collagen in association with suitable tissue-specific cell attachment factors. Currently preferred structural polymers comprise tissue-specific collagens. Currently 5 preferred cell attachment factors include glycosaminoglycans and proteoglycans. The matrix further may be treated with an agent or agents to increase the number of pores and micropits on its surfaces, so as to enhance the influx, proliferation and differentiation of migratory progenitor cells from the body of the mammal.

Among the proteins useful in this invention are proteins originally identified as osteogenic 15 proteins, such as the OP-1, OP-2 and CBMP2 proteins, as well as amino acid sequence-related proteins such as DPP (from Drosophila), Vgl (from Xenopus), Vgr-1 (from mouse, see Table II and Seq. ID Nos.5-14), and the recently identified GDF-1 protein (Seq. ID No. 14). The members of this family, which include members of 20 the TGF-\$\beta\$ super-family of proteins, share substantial amino acid sequence homology in their C-terminal regions. Table I, below, describes the various morphogens identified to date, including their 25 nomenclature as used herein, and Seq. ID references.

TABLE I

Refers generically to the group of "OP-1" 30 morphogenically active proteins expressed from part or all of a DNA sequence encoding OP-1 protein, including allelic and species variants thereof, e.g., human OP-1 ("hOP-1", Seq. ID No. 5, mature 35

protein amino acid sequence), or mouse · OP-1 ("mOP-1", Seq. ID No. 6, mature protein amino acid sequence.) The conserved seven cysteine skeleton is 5 defined by residues 38 to 139 of Seq. ID Nos. 5 and 6. The cDNA sequences and the amino acids encoding the full length proteins are provided in Seq. Id Nos. 16 and 17 (hOP1) and Seq. ID Nos. 18 and 19 10 (mOP1.) The mature proteins are defined by residues 293-431 (hOP1) and 292-430 (mOP1). The "pro"regions of the proteins, cleaved to yield the mature, morphogenically active proteins are 15 defined essentially by residues 30-292 (hOP1) and residues 30-291 (mOP1). "OP-2" refers generically to the group of active proteins expressed from part or all of a 20 DNA sequence encoding OP-2 protein, including allelic and species variants thereof, e.g., human OP-2 ("hOP-2", Seg. ID No. 7, mature protein amino acid sequence) or mouse OP-2 ("mOP-2", Seq. ID 25 No. 8, mature protein amino acid sequence). The conserved seven cysteine skeleton is defined by residues 38 to 139 of Seq. ID Nos. 7 and 8. The cDNA sequences and the amino acids encoding the 30 full length proteins are provided in Seq. Id Nos. 20 and 21 (hOP2) and Seq. ID Nos. 22 and 23 (mOP2.) The mature proteins are defined essentially by residues 264-402 (hOP2) and 261-399 (mOP2). The "pro"

regions of the proteins, cleaved to yield

the mature, morphogenically active proteins are defined essentially by residues 18-263 (hOP2) and residues 18-260 (mOP1).

- "CBMP2" refers generically to the morphogenically active proteins expressed from a DNA sequence encoding the CBMP2 proteins, including allelic and species variants thereof, e.g., human CBMP2A ("CBMP2A(fx)", Seq ID No. 9) or human CBMP2B DNA ("CBMP2B(fx)", Seq. ID No. 10).
- "DPP(fx)" refers to protein sequences encoded by the

 Drosophila DPP gene and defining the

 conserved seven cysteine skeleton (seq. ID

 No. 11).
- "Vgl(fx)" refers to protein sequences encoded by the

 Xenopus Vgl gene and defining the

 conserved seven cysteine skeleton (Seq. ID

 No. 12).
- "Vgr-1(fx)" refers to protein sequences encoded by the

 murine Vgr-1 gene and defining the

 conserved seven cysteine skeleton (Seq. ID

 No. 13).
- "GDF-1(fx)" refers to protein sequences encoded by the human GDF-1 gene and defining the conserved seven cysteine skeleton (seq. ID No. 14).

The OP-2 proteins have an additional cysteine residue in this region (e.g., see residue 41 of Seq. ID Nos. 7 and 8), in addition to the conserved cysteine skeleton in common with the other proteins in this family. The GDF-1 protein has a four amino acid insert within the conserved skeleton (residues 44-47 of Seq. ID No. 14) but this insert likely does not interfere with the relationship of the cysteines in the folded structure. In addition, the CBMP2 proteins are missing one amino acid residue within the cysteine skeleton.

The morphogens are inactive when reduced, but are active as oxidized homodimers and when oxidized in combination with other morphogens of this invention. Thus, as defined herein, a morphogen of this invention is a dimeric protein comprising a pair of polypeptide chains, wherein each polypeptide chain comprises at least the C-terminal six cysteine skeleton defined by residues 43-139 of Seq. ID No. 5, including functionally equivalent arrangements of these cysteines 20 (e.g., amino acid insertions or deletions which alter the linear arrangement of the cysteines in the sequence but not their relationship in the folded structure), such that, when the polypeptide chains are folded, the dimeric protein species comprising the pair of polypeptide chains has the appropriate threedimensional structure, including the appropriate intraor inter-chain disulfide bonds such that the protein is capable of acting as a morphogen as defined herein. 30 Specifically, the protein is capable of any of the following biological functions in a morphogenically permissive environment: stimulating proliferation of progenitor cells; stimulating the differentiation of progenitor cells; stimulating the proliferation of differentiated cells; and supporting the growth and 35 maintenance of differentiated cells, including the

20

- U- while while with a contract to the second to the seco

"redifferentiation" of these cells. In addition, it is also anticipated that the morphogens of this invention will be capable of inducing dedifferentiation of committed cells under appropriate environmental conditions.

In one preferred aspect, the morphogens of this invention comprise one of two species of generic amino acid sequences: Generic Sequence 1 (Seq. ID No. 1) or Generic Sequence 2 (Seq. ID No. 2); where each Xaa indicates one of the 20 naturally-occurring L-isomer, α-amino acids or a derivative thereof. Generic Sequence 1 comprises the conserved six cysteine skeleton and Generic Sequence 2 comprises the conserved six cysteine identified in OP-2 (see residue 36, Seq. ID No. 2). In another preferred aspect, these sequences further comprise the following additional sequence at their N-terminus:

Cys Xaa Xaa Xaa Xaa (Seq. ID No. 15)

Preferred amino acid sequences within the

foregoing generic sequences include: Generic Sequence

(Seq. ID No. 3) and Generic Sequence 4 (Seq. ID

No. 4), listed below, which accommodate the homologies
shared among the various preferred members of this
morphogen family identified to date (see Table II), as

well as the amino acid sequence variation among them.
Generic Sequences 3 and 4 are composite amino acid
sequences of the proteins presented in Table II and
identified in Seq. ID Nos. 5-14. The generic sequences
include both the amino acid identity shared by the

sequences in Table II, as well as alternative residues

for the variable positions within the sequence. Note that these generic sequences allow for an additional cysteine at position 41 or 46 in Generic Sequences 3 or 4, respectively, providing an appropriate cysteine skeleton where inter- or intramolecular disulfide bonds can form, and contain certain critical amino acids which influence the tertiary structure of the proteins.

Generic Sequence 3

10 Leu Tyr Val Xaa Phe

1

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

10

Xaa Ala Pro Xaa Gly Xaa Xaa Ala

15 15 20

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

25 30

Xaa Pro Xaa Xaa Xaa Xaa

35

20 Xaa Xaa Xaa Asn His Ala Xaa Xaa

40 41

Xaa Xaa Leu Xaa Xaa Xaa Xaa

50

Xaa Xaa Xaa Xaa Xaa Xaa Cys

25 55 60

Cys Xaa Pro Xaa Xaa Xaa Xaa

1-11 mayan at 200

Xaa Xaa Xaa Leu Xaa Xaa Xaa

70 75

Xaa Xaa Xaa Val Xaa Leu Xaa

80

5 Xaa Xaa Xaa Met Xaa Val Xaa

85 90

Xaa Cys Gly Cys Xaa

95

wherein each Xaa is independently selected from a group of one or more specified amino acids defined as "Res." means "residue" and Xaa at res.4 = follows: (Ser, Asp or Glu); Xaa at res.6 = (Arg, Gln, Ser or Lys); Xaa at res.7 = (Asp or Glu); Xaa at res.8 = (Leu or Val); Xaa at res.11 = (Gln, Leu, Asp, His or Asn); Xaa at res.12 = (Asp, Arg or Asn); Xaa at res.14 = (Ile or Val); Xaa at res.15 = (Ile or Val); Xaa at res.18 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.20 = (Tyr or Phe); Xaa at res.21 = (Ala, Ser, Asp, Met, His, Leu or Gln); Xaa at res.23 = (Tyr, Asn or Phe); Xaa at res.26 = (Glu, His, Tyr, Asp or Gln); Xaa at res.28 = 20 (Glu, Lys, Asp or Gln); Xaa at res.30 = (Ala, Ser, Pro or Gln); Xaa at res.31 = (Phe, Leu or Tyr); Xaa at res.33 = (Leu or Val); Xaa at res.34 = (Asn, Asp, Ala or Thr); Xaa at res.35 = (Ser, Asp, Glu, Leu or Ala); 25 Xaa at res.36 = (Tyr, Cys, His, Ser or Ile); Xaa at res.37 = (Met, Phe, Gly or Leu); Xaa at res.38 = (Asn or Ser); Xaa at res.39 = (Ala, Ser or Gly); Xaa at res.40 = (Thr, Leu or Ser); Xaa at res.44 = (Ile or Val); Xaa at res.45 = (Val or Leu); Xaa at res.46 = 30 (Gln or Arg); Xaa at res.47 = (Thr, Ala or Ser); Xaa at res.49 = (Val or Met); Xaa at res.50 = (His or Asn); Xaa at res.51 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa

at res.52 = (Ile, Met, Asn, Ala or Val); Xaa at res.53 = (Asn, Lys, Ala or Glu); Xaa at res.54 = (Pro or Ser); Xaa at res.55 = (Glu, Asp, Asn, or Gly); Xaa at res.56 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser or Ala); Xaa at res.57 = (Val, Ala or Ile); Xaa at res.58 = (Pro or Asp); Xaa at res.59 = (Lys or Leu); Xaa at res.60 = (Pro or Ala); Xaa at res.63 = (Ala or Val); Xaa at res.65 = (Thr or Ala); Xaa at res.66 = (Gln, Lys, Arg or Glu); Xaa at res.67 = (Leu, Met or Val); Xaa at res.68 = (Asn, Ser or Asp); Xaa at res.69 = (Ala, Pro 10 or Ser); Xaa at res.70 = (Ile, Thr or Val); Xaa at res.71 = (Ser or Ala); Xaa at res.72 = (Val or Met); Xaa at res.74 = (Tyr or Phe); Xaa at res.75 = (Phe, Tyr or Leu); Xaa at res.76 = (Asp or Asn); Xaa at res.77 = (Asp, Glu, Asn or Ser); Xaa at res.78 = (Ser, Gln, Asn or Tyr); Xaa at res.79 = (Ser, Asn, Asp or Glu); Xaa at res.80 = (Asn, Thr or Lys); Xaa at res.82 = (Ile or Val); Xaa at res.84 = (Lys or Arg); Xaa at res.85 = (Lys, Asn, Gln or His); Xaa at res.86 = (Tyr or His); 20 Xaa at res.87 = (Arg, Gln or Glu); Xaa at res.88 = (Asn, Glu or Asp); Xaa at res.90 = (Val, Thr or Ala); Xaa at res.92 = (Arg, Lys, Val, Asp or Glu); Xaa at res.93 = (Ala, Gly or Glu); and Xaa at res.97 = (His or Arg); and Generic Seq. 4:

25

Generic Sequence 4

Xaa Pro Xaa Xaa Xaa Xaa Xaa 40

Xaa Xaa Xaa Asn His Ala Xaa Xaa 45

5 Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa 55

Xaa Xaa Xaa Xaa Xaa Xaa Cys 60 65

Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa

10 70

Xaa Xaa Xaa Leu Xaa Xaa Xaa 75 80

Xaa Xaa Xaa Val Xaa Leu Xaa 85

15 Xaa Xaa Xaa Met Xaa Val Xaa 90 95

> Xaa Cys Gly Cys Xaa 100

wherein each Xaa is independently selected from a group of one or more specified amino acids as defined by the following: "Res." means "residue" and Xaa at res.2 = (Lys or Arg); Xaa at res.3 = (Lys or Arg); Xaa at res.4 = (His or Arg); Xaa at res.5 = (Glu, Ser, His, Gly, Arg or Pro); Xaa at res.9 = (Ser, Asp or Glu); Xaa at res.11 = (Arg, Gln, Ser or Lys); Xaa at res.12 = (Asp or Glu); Xaa at res.13 = (Leu or Val); Xaa at res.16 = (Gln, Leu, Asp, His or Asn); Xaa at res.17 = (Asp, Arg, or Asn); Xaa at res.19 = (Ile or Val); Xaa at res.20 = (Ile or Val); Xaa at res.23 = (Glu, Gln, Leu, Lys, Pro or Arg); Xaa at res.25 = (Tyr or Phe); Xaa at res.26 = 30 (Ala, Ser, Asp, Met, His, Leu, or Gln); Xaa at res.28 = (Tyr, Asn or Phe); Xaa at res.31 = (Glu, His, Tyr, Asp or Gln); Xaa at res.33 = Glu, Lys, Asp or Gln); Xaa at res.35 = (Ala, Ser or Pro); Xaa at res.36 = (Phe, Leu or Tyr); Xaa at res.38 = (Leu or Val); Xaa at res.39 = 35

(Asn, Asp, Ala or Thr); Xaa at res.40 = (Ser, Asp, Glu,Leu or Ala); Xaa at res.41 = (Tyr, Cys, His, Ser or Ile); Xaa at res.42 = (Met, Phe, Gly or Leu); Xaa at res.44 = (Ala, Ser or Gly); Xaa at res.45 = (Thr, Leu or Ser); Xaa at res.49 = (Ile or Val); Xaa at res.50 = (Val or Leu); Xaa at res.51 = (Gln or Arg); Xaa at res.52 = (Thr, Ala or Ser); Xaa at res.54 = (Val or Met); Xaa at res.55 = (His or Asn); Xaa at res.56 = (Phe, Leu, Asn, Ser, Ala or Val); Xaa at res.57 = (Ile, Met, Asn, Ala or Val); Xaa at res.58 = (Asn, Lys, Ala or Glu); Xaa at res.59 = (Pro or Ser); Xaa at res.60 = (Glu, Asp, or Gly); Xaa at res.61 = (Thr, Ala, Val, Lys, Asp, Tyr, Ser or Ala); Xaa at res.62 = (Val, Ala or Ile); Xaa at res.63 = (Pro or Asp); Xaa at res.64 = 15 (Lys or Leu); Xaa at res.65 = (Pro or Ala); Xaa at res.68 = (Ala or Val); Xaa at res.70 = (Thr or Ala); Xaa at res.71 = (Gln, Lys, Arg or Glu); Xaa at res.72 = (Leu, Met or Val); Xaa at res.73 = (Asn, Ser or Asp); Xaa at res.74 = (Ala, Pro or Ser); Xaa at res.75 = 20 (Ile, Thr or Val); Xaa at res.76 = (Ser or Ala); Xaa at res.77_= (Val_or Met); Xaa at res.79 = (Tyr or Phe); Xaa at res.80 = (Phe, Tyr or Leu); Xaa at res.81 = (Asp or Asn); Xaa at res.82 = (Asp, Glu, Asn or Ser); Xaa at res.83 = (Ser, Gln, Asn or Tyr); Xaa at res.84 = (Ser, Asn, Asp or Glu); Xaa at res.85 = (Asn, Thr or Lys); Xaa at res.87 = (Ile or Val); Xaa at res.89 = (Lys or Arg); Xaa at res.90 = (Lys, Asn, Gln or His); Xaa at res.91 = (Tyr or His); Xaa at res.92 = (Arg, Gln or Glu); Xaa at res.93 = (Asn, Glu or Asp); Xaa at res.95 = (Val, Thr or Ala); Xaa at res.97 = (Arg, Lys, Val, 30 Asp or Glu); Xaa at res.98 = (Ala, Gly or Glu); and Xaa at res. 102 = (His or Arg).

Particularly useful sequences for use as morphogens in this invention include the C-terminal

لسات مسال عطفائرفونية الالونية المو

domains, e.g., the C-terminal 96-102 amino acid residues of Vgl, Vgr-1, DPP, OP-1, OP-2, CBMP-2A, CBMP-2B and GDF-1 (see Table II, infra, and Seq. ID Nos. 5-14) which include at least the conserved six or 5 seven cysteine skeleton. In addition, biosynthetic constructs designed from the generic sequences, such as COP-1, 3-5, 7, 16 (see Table III, infra) aso are useful. Other sequences include the C-terminal CBMP3 and the inhibins/activin proteins (see, for example, 10 U.S. Pat. Nos. 4,968,590 and 5,011,691). Accordingly, other useful sequences are those sharing at least 70% -amino acid sequence homology, and preferably 80% homology with any of the sequences above. These are anticipated to include allelic and species variants and 15 mutants, and biosynthetic muteins, as well as novel members of this morphogenic family of proteins. Particularly envisioned in the family of related proteins are those proteins exhibiting morphogenic activity and wherein the amino acid changes from the 20 preferred sequences include conservative changes, e.g., those as defined by Dayoff et al., Atlas of Protein Sequence and Structure; vol. 5, Suppl. 3, pp. 345-362, (M.O. Dayoff, ed., Nat'l BioMed. Research Fdn.,

25

Washington, D.C. 1979).

The currently most preferred protein sequences useful as morphogens in this invention include those having greater than 60% identity, preferably greater than 65% identity, with the amino acid sequence defining the conserved six cysteine skeleton of hOP1 (e.g., residues 43-139 of Seq. ID No. 5). These most preferred sequences include both allelic and species variants of the OP1 and OP2 proteins.

The invention thus provides proteins comprising any of the polypeptide chains described above, whether isolated from naturally-occurring sources, or produced by recombinant DNA techniques, and includes allelic and species variants of these proteins, naturally-occurring or biosynthetic mutants thereof, as well as various truncated and fusion constructs. Deletion or addition mutants also are envisioned to be active (see infra), including those 10 which may alter the conserved C-terminal cysteine skeleton, provided that the alteration does not functionally disrupt the relationship of these cysteines in the folded structure. Accordingly, such active forms are considered the equivalent of the specifically described constructs disclosed herein. 15 The proteins may include forms having varying glycosylation patterns, varying N-termini, a family of related proteins having regions of amino acid sequence homology, and active truncated or mutated forms of native or biosynthetic proteins, produced by expression 20 of recombinant DNA in host cells.

The morphogenic proteins can be expressed from intact or truncated cDNA or from synthetic DNAs in procaryotic or eucaryotic host cells, and purified, cleaved, refolded, and dimerized to form morphogenically active compositions. Currently preferred host cells include <u>E. coli</u> or mammalian cells, such as CHO, COS or BSC cells.

30

35

Thus, in view of this disclosure, skilled genetic engineers can isolate genes from cDNA or genomic libraries of various different species which encode appropriate amino acid sequences, or construct DNAs from oligonucleotides, and then can express them

in various types of host cells, including both procaryotes and eucaryotes, to produce large quantities of active proteins capable of inducing tissue-specific cell differentiation and tissue morphogenesis in a variety of mammals including humans.

The invention thus further comprises these methods of inducing tissue-specific morphogenesis using the morphogenic proteins of this invention and pharmaceutical and therapeutic agents comprising the morphogens of this invention. The invention further comprises the use of these morphogens in the manufacture of pharmaceuticals for various medical procedures, including procedures for inducing tissue growth, procedures for inducing progenitor cell proliferation, procedures to inhibit neoplasm growth and procedures to promote phenotypic cell expression of differentiated cells.

Brief Description of the Drawings

The foregoing and other objects and features of this invention, as well as the invention itself, may be more fully understood from the following description, when read together with the accompanying drawings, in which:

FIGURE 1 is a photomicrograph of a Northern

10 Blot identifying Vgr-1 specific transcripts in various adult murine tissues;

FIGURE 2 is a photomicrograph of a Northern Blot identifying mOP-1-specific mRNA expression in various murine tissues prepared from 2 week old mice (panel A) and 5 week old mice (Panel B);

FIGURE 3 is a photomicrograph of Northern
Blots identifying mRNA expression of EF-Tu

(A, control), mOP-1 (B, D), and Vgr-1 (C) in (1) 17-day
embryos_and_(2) 3-day post natal mice;

FIGURE 4A and 4B are photomicrographs showing the presence of OP-1 (by immunofluorescence staining)
in the cerebral cortex (A) and spinal cord (B);

FIGURE 5A and 5B are photomicrographs illustrating the ability of morphogen (OP-1) to induce undifferentiated NG108 calls (5A) to undergo differentiation of neural morphology (5B).

FIGURE 6A-6D are photomicrographs showing the effect of morphogen (OP-1) on human embryo carcinoma cell redifferentiation;

لاعلالاء اعرالالا

FIGURE 7 is a photomicrograph showing the effects of phosphate buffered saline (PBS, animal 1) or morphogen (OP-1, animal 2) on partially hepatectomized rats;

5

FIGURE 8A - 8C are photomicrographs showing the effect of no treatment (8A), carrier matrix treatment (8B) and morphogen treatment (OP-1,8C) on dentin regeneration.

Detailed Description

Purification protocols first were developed which enabled isolation of the osteogenic (bone inductive) protein present in crude protein extracts from mammalian bone. (See PCT US 89/01453, and U.S. 4,968,590.) The development of the procedure, coupled with the availability of fresh calf bone, enabled isolation of substantially pure bovine osteogenic protein (BOP). BOP was characterized 10 significantly; its ability to induce cartilage and ultimately endochondral bone growth in cat, rabbit, and rat were demonstrated and studied; it was shown to be able to induce the full developmental cascade of bone formation previously ascribed to unknown protein or 15 proteins in heterogeneous bone extracts. This dose dependent and highly specific activity was present whether or not the protein was glycosylated (see U.S. Patent No. 4,968,958, filed 4/8/88 and Sampath et al., (1990) J. Biol. Chem. 265: pp. 13198-13205). Sequence 20 data obtained from the bovine materials suggested probe designs which were used to isolate genes encoding osteogenic proteins from different species. Human and murine osteogenic protein counterparts have now been identified and characterized (see, for example, U.S. 25 Pat. No. 5,011,691, Ozkaynak, et al., (1990) EMBO J 9:2085-2093, and Ozkaynak et al., (1991) Biochem. Biophys. Res. Commn. 179:116-123, and USSN 841,646, filed February 21, 1992, the disclosures of which are herein incorporated by reference.) 30

Sequence data from the bovine materials also suggested substantial homology with a number of proteins known in the art which were not known to play a role in bone formation. Bone formation assays

4444 444 4444

performed with these proteins showed that, when these proteins were implanted in a mammal in association with a suitable matrix, cartilage and endochondral bone formation was induced (see, for example, U.S. Patent No. 5,011,691.) One of these proteins is DPP, a Drosophila protein known to play a role in dorsalventral specification and required for the correct morphogenesis of the imaginal discs. Two other proteins are related sequences identified in Xenopus and mouse (Vgl and Vgr-1, respectively), thought to play a role in the control of growth and differentiation during embryogenesis. While DPP and Vgr-1 (or Vgr-1-like) transcripts have been identified in a variety of tissues (embryonic, neonatal and adult, Lyons et al., (1989) PNAS 86:4554-4 558, and see infra), Vgl transcripts, which are maternally inherited and spacially restricted to the vegetal endoderm, decline dramatically after gastrulation.

From these homologies a generic consensus 20 sequence was derived which encompasses the active sequence required for inducing bone morphogenesis in a mammal when implanted in association with a matrix. The generic sequence has at least a conserved six cysteine skeleton (Generic Sequence 1, Seq. ID No. 1) 25 or, optionally, a 7-cysteine skeleton (Generic Sequence 2, Seq. ID No. 2), which includes the conserved six cysteine skeleton defined by Generic Sequence 1, and an additional cysteine at residue 36, accomodating the additional cysteine residue identified 30 in the OP2 proteins. Each "Xaa" in the generic sequences indicates that any one of the 20 naturallyoccurring L-isomer, «-amino acids or a derivative

thereof may be used at that position. Longer generic sequences which also are useful further comprise the following sequence at their N-termini:

5

Cys Xaa Xaa Xaa Xaa (Seq. ID No. 15)
1

Biosynthetic constructs designed from this generic consensus sequence also have been shown to 10 induce cartilage and/or endochondral bone formation (e.g., COP-1, COP-3, COP-4, COP-5, COP-7 and COP-16, described in U.S. Patent No. 5,011,691 and presented below in Table III.) Table II, set forth below, compares the amino acid sequences of the active regions of native proteins that have been identified as morphogens, including human OP-1 (hOP-1, Seq. ID Nos. 5 and 16-17), mouse OP-1 (mOP-1, Seq. ID Nos. 6 and 18-19), human and mouse OP-2 (Seq. ID Nos. 7, 8, and 20-20 22), CBMP2A (Seq. ID No. 9), CBMP2B (Seq. ID No. 10), -DPP_(from Drosophila, Seq. ID No.-11), Vgl, (from Xenopus, Seq. ID No. 12), Vgr-1 (from mouse, Seq. ID No. 13), and GDF-1 (Seq. ID No. 14.) In the table, three dots indicates that the amino acid in that 25 position is the same as the amino acid in hOP-1. Three dashes indicates that no amino acid is present in that position, and are included for purposes of illustrating homologies. For example, amino acid residue 60 of CBMP-2A and CBMP-2B is "missing". Of course, both these amino acid sequences in this region comprise Asn-Ser (residues 58, 59), with CBMP-2A then comprising Lys and Ile, whereas CBMP-2B comprises Ser and Ile.

4

4 1

TABLE II

	hOP-1	Cys	Lys	Lys	His	Glu	Leu	Tyr	Val	
	mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
5	h0P-2	• • •	Arg	Arg	• • •	• • •	• • •	• • •	• • •	
	mOP-2	• • •	Arg	Arg	• • •	• • •	• • •	• • •		
	DPP	• • •	Arg	Arg	• • •	Ser	• • •	• • •	• • •	
	Vgl	• • •	• • •	Lys	Arg	His	• • •	• • •	• • •	
	-Vgr-1	• • •	·· • •	• • • •	• • •	Gly	• • •	• • •	• • •	
10	CBMP-2A	• • •	• • •	Arg	• • •	Pro	• • •	•••	• • •	
	CBMP-2B	• • •	Arg	Arg	• • •	Ser	• • •	• • •	• • •	
	GDF-1	• • •	Arg	Ala	Arg	Arg	• • •	• • •	• • •	
		1				5				
15				•						
	hOP-1	Ser	Phe	Arg	Asp	Leu	Gly	Trp	Gln	Asp
	mOP-1	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	hOP-2	• • •	• • •	Gln.	• • •	• • •	• • •	• • •	Leu	• • •
	mOP-2	Ser	• • •	• • •	• • •	• • •	• • •	• • •	Leu	• • •
20	DPP	Asp	• • •	Ser	• • •	Val	• • •	• • •	Asp	• • •
	Vgl	Glu	• • •	Lys	• • •	Val	• • •	• • •	• • •	Asn
	Vgr-1	• • •	• • •	Gln	• • •	Val	• • •	• • •	• • • .	• • •
	CBMP-2A	Asp	• • •	Ser	• • •	Val	• • •	• • •	Asn	• • •
	CBMP-2B	Asp	• • •	Ser	• • •	Val	• • •	• • •.	Asn	• • •
25	GDF-1	• • •	. • • •	• • •	Glu	Val	• • •	• • •	His	Arg
			10					15		
		٠					•			
	h0P-1	Trp	Ile	Ile	Ala	Pro	Glu	Gly	Tyr	Ala
	mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
30	h0P-2	• • •	Val	• • •	• • •	• • •	Gln	• • •	• • •	Ser
	mOP-2	• • •	Val	• • •	• • •	• • •	Gln	• • •	• • •	Ser
	DPP	• • •	• • •	Val ·	• • •	• • •	Leu	• • •	• • •	Asp
	Vgl	• • •	Val	• • •	• • •	• • •	Gln	• • •	• • •	Met
	Vgr-1	• • •	• • •	• • •	• • •	• • •	Lys	• • •	• • •	• • •

	CBHP-2A	• • •	• • •	Val	• • •	• • •	Pro	• • •	• • •	His
	CBMP-2B	•••	• • •	Val	• • •	• • •	Pro	• • •	• • •	Gln
	GDF-1	• • •	Val	• • •	• • •	• • •	Arg	• • •	Phe	Leu
				20					25	
5										
	hOP-1	Ala	Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ala
	mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	hOP-2	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	Ser
10	mOP-2	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	DPP	• • •	• • •	• • •	• • •	His	• • •	Lys	• • • .	Pro
	Vgl	• • •	Asn	• • •	, • • •	Tyr	• • •	• • •	• • •	Pro
	Vgr-1	• • •	Asn	• • •	• • •	Asp	• • •	• • •	• • •	Ser
	CBMP-2A	• • •	Phe	• • •	• • •	His	• • •	Glu	• • •	Pro
15	CBMP-2B	• • •	Phe	• •, •	• • •	His	• • •	Asp	• • •	Pro
	GDF-1	• • •	Asn	• • •	• • •	Gln	• • •	Gln	• • •	• • •
					30			•		35
					•		•		•	
	hOP-1	Phe	Pro	Leu	Asn	Ser	Tyr	Met	Àsn	Ala
20	mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	h0P-2		- •••		Asp	• • •	Cys	• • •	• • •	• • •
	mOP-2		• • •		Asp	• • •	_	• • •		• • •
•	DPP	• • •	* • •		Ala	Asp	His	Phe	• • •	Ser
	Vgl	Tyr	4. • •	• • •	Thr	Glu	Ile	Leu	• • •	Gly
25	Vgr-1	• • •	• • •	• • •	• • •	Ala	His	• • •	• • •	• • •
	CBMP-2A	• • •	• • •	• • •	Ala	Asp	His	Leu	• • •	Ser
	CBMP-2B	• • •	• • •	• • •	Ala	Asp	His	Leu	• • •	Ser
	GDF-1	Leu	• • •	Val	Ala	Leu	Ser	Gly	Ser**	
						40				
30		•			•					
	h0P-1	Thr	Asn	His	Ala	Ile	Val	Gln	Thr	Leu
	mOP-1	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •
	h0P-2	• • •	• • •	• • •	• • •	• • •	Leu	• • •	Ser	• • •
	mOP-2	• • •	• • •	• • •	• • •	• • •	Leu	• • •	Ser	• • •
35	DPP	• • •	• • •	• • •	• • •	Val	• • •	• • •	• • •	• • •
			•	•	- -	·	-	-	→ →	

	Vgl	Ser	• • •	• • •	• • •	• • •	Leu	• • •	• • •	• • •
	Vgr-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	CBMP-2A	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	CBMP-2B	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• • •
5	GDF-1	Leu	• • •	• • •	• • •	Val	Leu	Arg	Ala	• • •
	•	45					50			
	h0P-1	Val	His	Phe	Ile	Asn	Pro	Glu	Thr	Val
	mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	Asp	•••	• • •
10	hOP-2	• • •	His	Leu	Met	Lys	• • •	Asn	Ala	• • •
	mOP-2	• • •	His	Leu	Met	Lys	• • •	Asp	Val	• • •
	DPP	• • •	Asn	Asn	Asn	• • •	• • •	Gly	Lys	• • •
	Vgl	• • •	• • •	Ser	• • •	Glu	• • •	• • •	Asp	Ile
	Vgr-1	• • •	• • •	Val	Met	• • •	• • •		Tyr	• • •
15	CBHP-2A	• • •	Asn	Ser	Val	•••	Ser		Lys	Ile
	CBMP-2B	• • •	Asn	Ser	Val	• • •	Ser		Ser	Ile
	GDF-1	Met	. • • •	Ala	Ala	Ala	• • •	Gly	Ala	Ala
			55					60		
										•
20										•
•	h0P-1	Pro	Lys	Pro	Cys	Cys	Ala	Pro	Thr	Gln
	mOP-1 ·	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •
	h0P-2	• • •	• • •	Ala	• • •	• • •	• • •	• • •	• • •	Lys
	mOP-2	• • •	• • •	Ala	• • •	• • •	• • •	• • •	• • •	Lys
25	DPP	• • •	• • •	Ala	• • •	• • •	Val	• • •	• • •	• • •
	Vgl	• • •	Leu	• • •	• • •	• • •	Val	• • •	• • •	Lys
	Vgr-1	• • •	• • •	• • •	• • •	• • •	••• • -	• • •	• • •	Lys
	CBMP-2A	• • •	• • •	Ala	• • •	• • •	Val	• • •	• • •	Glu
	CBMP-2B	• • •	• • •	Ala	• • •	• • •	Val	• • •	• • •	Glu
30	GDF-1	Asp	Leu	• • •	• • •	• • •	Val.	• • •	Ala	Arg
				65					70	
	h0P-1	Leu	Asn	Ala	Ile	Ser	Val	Leu	Tyr	Phe
35	mOP-1	• • •	• • •	••• .	• • •	• • •	• • •	• • •	• • •	• • •

•••

		h0P-2	• • •	Ser	• • •	Thr	• • •	• • •	• • •	• • •	Tyr
		mOP-2	• • •	Ser	• • •	Thr	• • •	• • •	• • •	• • •	Tyr
• •		Vgl	Met	Ser	Pro	• • •	• • •	Met	• • •	Phe	Tyr
		Vgr-1	Val	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
•	5	DPP	• • •	Asp	Ser	Val	Ala	Met	• • •	• • •	Leu
		CBMP-2A	• • •	Ser	• • •	• • •	• • •	Met	• • •	• • •	Leu
•		CBMP-2B	• • •	Ser	• • •	• • •	• • •	Met	• • •	• • •	Leu
		GDF-1	• • •	Ser	Pro	• • •	• • •	• • •	• • •	Phe	• • •
						75					80
	10	hOP-1	Asp	Asp	Ser	Ser	Asn	Val	Ile	Leu	Lys
		mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
		hOP-2	• • •	Ser	• • •	Asn	• • •	• • •	• • •	• • •	Arg
		mOP-2	• • •	Ser	• • •	Asn	• • •	• • •	• • •	• • •	Arg
		DPP	Asn	• • •	Gln	• • •	Thr	• • •	Val	• • •	• • •
	15	Vgl	• • •	Asn	Asn	Asp	• • •	• • •	Val	• • •	Arg
•		Vgr-1	• • •	• • •	Asn	• • •	• • •	• • •	• • •	• • •	• • •
		CBMP-2A	• • •	Glu	Asn	Glu	Lys	• • •	Val	• • •	• • •
•		CBMP-2B	• • •	Glu	Tyr	Asp	Lys	• • •	Val	• • •	• • •
		GDF-1	• • •	Asn	• • •	Asp	• • • ·	• • •	Val	• • •	Arg
	20						85				
·		·	•		•						
		h0P-1	Lys	Tyr	Arg	Asn	Met	Val	Val	Arg	
		mOP-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
• • •	25	hOP-2	• • •	His	• • •	• • •	• • •	• • •	• • •.	Lys	
•		mOP-2	• • •	His	• • •	• • •	• • •	• • •	• • •	Lys	
•		DPP	Asn	• • •	Gln	Glu	• • •	Thr	• • •	Val	
· ·		Vgl	His	• • •	Glu	• • •	• • •	Ala	• • •	Asp	
		Vgr-1	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
	30	CBMP-2A	Asn	• • •	Gln	Asp	• • •	• • •	• • •	Glu	
	-	CBMP-2B	Asn	• • •	Gln	Glu	• • •	• • •	• • •	Glu	
		GDF-1	Gln	• • •	Glu	Asp	• • •	• • •	• • •	Asp	
.i.			90					95			

	hOP-1	Ala	Cys	Gly	Cys	His
	mOP-1	• • •	• • •	• • •	• • •	• • •
	hOP-2	• • •	• • •	• • •	• • •	• • •
	mOP-2	• • •	• • •	• • •	• • •	• • •
5	DPP	Gly	• • •	• • •	• • •	Arg
	Vgl	Glu	• • •	• • •	• • •	Arg
	Vgr-1	• • •	• • •	• • •	• • •	• • •
	CBHP-2A	Gly	• • •	• • •	• • •	Arg
	CBHP-2B	Gly	• • •	• • •	• • •	Arg.
10	GDF-1	Glu	• • •	• • •	• • •	Arg
				100		

**Between residues 43 and 44 of GDF-1 lies the amino acid sequence Gly-Gly-Pro-Pro.

Table III, set forth below, compares the amino acid sequence data for six related biosynthetic constructs designated COPs 1, 3, 4, 5, 7, and 16.

These sequences also are presented in U.S. Pat. No. 5,011,691. As with Table II, the dots mean that in that position there is an identical amino acid to that of COP-1, and dashes mean that the COP-1 amino acid is missing at that position.

TABLE III

	COP-1	Leu	Tyr	Val	Asp	Phe	Gln.	Arg	Asp	Val
	COP-3		•		_					
	COP-4	• • •	• • •	• • •	• • •	• • •	Ser		. •••	• • •
30	COP-5	• • •	• • •	• • •	• • •		Ser		• • •	• • •
•	COP-7	• • •	• • •	• • •	• • •	• • •	Ser		• • •	• • •
	COP-16	• • •	• • •	• • •	• • •	• • •	Ser		• • •	• • •
		1				5				

		COP-1	Gly	Trp	Asp	Asp	Trp	Ile	Ile	Ala		
		COP-3	• • •	• • •	• • •	• • •	• • •	• • •	Val	• • •		
		COP-4	• • •	• • •	• • •	• • •	• • •	• • •	Val	• • •	•	
	·	COP-5	• • •	• • •	•••	• • •	• • •	• • •	Val	• • •		-
•	5	COP-7	• • •	• • •	Asn	. • • •	• • •	• • •	Val	• • •		
		COP-16	• • •	• • •	Asn	• • •	• • •	• • •	Val	• • •		
•			10					15				
		COP-1	Pro	Val	Asp	Phe	Asp	Ala	Tyr	Tyr		
	10	COP-3	• • •	Pro	Gly	Tyr	Gln	• • •	Phe	• • •		
		COP-4	• • •	Pro	Gly	Tyr	Gln	• • •	Phe	• • •		
		COP-5	• • •	Pro	Gly	Tyr	Gln	• • •	Phe	• • •		
		COP-7	• • •	Pro	Gly	Tyr	His	• • •	Phe	• • •		
	•	COP-16	• • •	Pro	Gly	Tyr	Gln	• • •	Phe	• • •		
	15				20					25		
•					·							-
								•				
		COP-1	Cys	Ser	Gly	Ala	Cys	Gln	Phe	Pro		
		COP-3	. • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		
	20	COP-4	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		
		COP-5	•••	His	• • •	Glu	• • •	Pro	• • •	• • •		** ***********************************
		COP-7	• • •	His	• • •	Glu	• • •	Pro	• • • •	• • •		
·	•	COP-16	• • •	His	• • •	Glu	•, • •	Pro	• • •	• • •		
	•					30						
· .	25											
		COP-1	Ser	Ala	Asp	His	Phe	Asn	Ser	Thr		
		COP-3	• • •	• • •	• • •	• • •	• • •	••••	• • •	• • •		
		COP-4	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		
		COP-5	Leu	• • •	• • •	• • •	• • •	• • •	• • •	• • • .	•	
	30	COP-7	Leu	• • •	• • •	• • •	Leu	• • •	• • • •	• • •		
	*****	COP-16	Leu	• • •	• • •	• • •	• • •	• • •		• • •		
	·			35					. 40			

·

	COP-1	Asn	His	Ala	Val	Val	Gln	Thr	Leu	Va
	COP-3	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •
	COP-4	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •
	COP-5	• • •	• • •	• • •	• • •	• • •	. • • •	• • •	• • •	• •
5	COP-7	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •
	COP-16	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •
					45					50
10 "	COP-1	Asn	Asn	Met	Asn	Pro	Gly	Lys	Val	
	COP-3	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
	COP-4	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
·	COP-5	• • •	Ser	Val	• • •	Ser	Lys	Ile		
	COP-7	• • •	Ser	Val	• • •	Ser	Lys	Ile		₩1
15	COP-16	• • •	Ser	Val	• • •	Ser	Lys	Ile		•
						55			•	
							· A			
	COP-1	Pro	Lys	Pro	Cys	Cys	Val	Pro	Thr	
20	COP-3	• • •	• • •	• • •		• • •	• • •	• • •	• • •	•
	COP-4	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
	COP-5	• • •	• • •	Ala	• • •	• • •	• • •	• • •	• • •	-
	COP-7	• • •	• • •	Ala	• • •		• • •	• • •	• • •	
	COP-16	• • •	• • •	Ala	• • •	• • •	• • •	• • •	• • •	
25			60	٠				65		
					•					
	COP-1	Glu	Leu	Ser	Ala	Ile	Ser	Met	Leu	
	COP-3	• • •	• • •	• • •	• • •	• • •	• • •	• • •	· • • •	
30	COP-4	• • •	• • •	• • •	• • •	• • •	• • •	* • •		
	COP-5	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
	COP-7	• • •	• • •	• • •		• • •	• • •	• • •	• • •	
	COP-16	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
					70					

	COP-1	Tyr	Leu	Asp	Glue	Asn	Ser	Thr	Val
	COP-3	• • •	• • •	• • •	• • •	• • •	Glu	Lys	• • •
	COP-4	• • •	• • •	• • •	• • •	• • •	Glu	Lys	• • •
5	COP-5	• • •	• • •	• • •	. • • •	• • •	Glu	Lys	• • •
	COP-7	• • •	• • •	• • •	• • •	• • •	Glu	Lys	• • •
	COP-16	• • •	• • •	• • •	• • •	• • •	Glu	Lys	• • •
		75					80		
10									
	COP-1	Val	Leu	Lys	Asn	Tyr	Gln	Glu	Met.
	COP-3	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	COP-4		• • •	• • •	• • •	• • •	• • •	• • •	• • •
	COP-5	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
15	COP-7	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	COP-16	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	•			85					90
					. •				
20	COP-1	Thr	Val	Val	Gly	Cys	Gly	Cys	Arg
	COP-3	Val	• • •	Glu	• • •	• • •	• • •	• • •	• • •
	COP-4	Val	• • •	Glu	• • •	• • • •	• • •	• • •	• • •
·	COP-5	Val	• • •	Glu	• • •	•. • •	• • •	• • •	• • •
•	COP-7	Val	• • •	Glu	• • •	• • •	•••	• • •	• • •
25	COP-16	Val	• • •	Glu	• • •	• • •	• • •	• • •	• • •
						95			

As is apparent from the foregoing amino acid sequence comparisons, significant amino acid changes can be made within the generic sequences while retaining the morphogenic activity. For example, while the GDF-1 protein sequence depicted in Table II shares only about 50% amino acid identity with the hOP1

sequence described therein, the GDF-1 sequence shares greater than 70% amino acid sequence homology with the hOP1 sequence, where homology is defined by allowed conservative amino acid changes within the sequence as defined by Dayoff, et al., Atlas of Protein Sequence and Structure vol.5, supp.3, pp.345-362, (M.O. Dayoff, ed., Nat'l BioMed. Res. Fd'n, Washington D.C. 1979.)

proteins described by these sequences also is capable of initiating and maintaining the tissue-specific developmental cascade in tissues other than bone and cartilage. When combined with naive progenitor cells as disclosed herein, these proteins, termed morphogens, are capable of inducing the proliferation and differentiation of the progenitor cells. In the presence of appropriate tissue-specific signals to direct the differentiation of these cells, and a morphogenically permissive environment, these

morphogens are capable of reproducing the cascade of cellular and molecular events that occur during embryonic development to yield functional tissue.

A key to these developments was the creation

of a mammalian tissue model system, namely a model
system for endochondral bone formation, and
investigation of the cascade of events important for
bone tissue morphogenesis. Work on this system has
enabled discovery not only of bone inductive

morphogens, but also of tissue inductive morphogens and
their activities. The methods used to develop the bone
model system, now well known in the art, along with the
proteins of this invention, can be used to create model
systems for other tissues, such as liver (see infra).

Using the model system for endochondral bone formation, it also has been discovered that the local environment in which the morphogenic material is placed is important for tissue morphogenesis. As used herein, "local environment" is understood to include the tissue structural matrix and the environment surrounding the tissue. For example, in addition to needing an appropriate anchoring substratum for their proliferation, the morphogen-stimulated cells need 10 signals to direct the tissue-specificity of their differentiation. These signals vary for the different tissues and may include cell surface markers. addition, vascularization of new tissue requires a local environment which supports vascularization. Using the bone model system as an example, it is known that, under standard assay conditions, implanting osteoinductive morphogens into loose mesenchyme in the absence of a tissue-specifying matrix generally does not result in endochondral bone formation unless very 20 high concentrations of the protein are implanted. By contrast, implanting relatively low concentrations of the morphogen in association with a suitably modified bone-derived matrix results in the formation of fully 25 functional endochondral bone (see, for example, Sampath et al. (1981) PNAS 78:7599-7 603 and U.S. Patent No. 4,975,526). In addition, a synthetic matrix comprised of a structural polymer such as tissuespecific collagen and tissue-specific cell attachment 30 factors such as tissue-specific glycosylaminoglycans, will allow endochondral bone formation (see, for example, PCT publication US91/03603, published December 12, 1991 (WO 91/18558), incorporated herein by reference). Finally, if the morphogen and a suitable bone or cartilage-specific matrix (e.g., comprising Type I cartilage) are implanted together in loose mesenchyme, cartilage and endochondral bone formation will result, including the formation of bone marrow and

a vascular system. However, if the same composition is provided to a nonvascular environment, such as to cultured cells in vitro or at an cartilage-specific locus, tissue development does not continue beyond cartilage formation (see infra). Similarly, a morphogenic composition containing a cartilage-specific matrix composed of Type 2 collagen is expected to induce formation of non-cartilage tissue in vivo (e.g., hyaline). However, if the composition is provided to a 10 vascular-supporting environment, such as loose mesenchyme, the composition is capable of inducing the differentiation of proliferating progenitor cells into chondrocytes and osteoblasts, resulting in bone formation.

-42-

15

30

It also has been discovered that tissue morphogenesis requires a morphogenically permissive environment. Clearly, in fully-functioning healthy tissue that is not composed of a permanently renewing 20 cell population, there must exist signals to prevent continued tissue growth. Thus, it is postulated that there exists a control mechanism, such as a feedback control mechanism, which regulates the control of cell growth and differentiation. In fact, it is known that both $TGF-\beta$, and MIS are capable of inhibiting cell growth when present at appropriate concentrations. addition, using the bone model system it can be shown that osteogenic devices comprising a bone-derived carrier (matrix) that has been demineralized and guanidine-extracted to substantially remove the noncollagenous proteins does allow endochondral bone formation when implanted in association with an

osteoinductive morphogen. If, however, the bonederived carrier is not demineralized but rather is washed only in low salt, for example, induction of endochondral bone formation is inhibited, suggesting the presence of one or more inhibiting factors within the carrier.

Another key to these developments was
determination of the broad distribution of these
morphogens in developing and adult tissue. For
example, DPP is expressed in both embryonic and
developing Drosophila tissue. Vgl has been identified
in Xenopus embryonic tissue. Vgr-l transcripts have
been identified in a variety of murine tissues,
including embryonic and developing brain, lung, liver,
kidney and calvaria (dermal bone) tissue. Recently,
Vgr-l transcripts also have been identified in adult
murine lung, kidney, heart, and brain tissue, with
especially high abundance in the lung (see infra).

20

-OP-1-and the CBMP2-proteins, both first identified as bone morphogens, have been identified in mouse and human placenta, hippocampus, calvaria and osteosarcoma tissue as determined by identification of OP-1 and CMBP2-specific sequences in cDNA libraries constructed from these tissues (see Ozkaynak, et al., (1990) EMBO J 9:2085-2093, and Ozkaynak et al., (1991) Biochem. Biophys. Res. Commn. 179:116-123). Additionally, the OP-1 protein is present in a variety of embryonic and developing tissues including kidney, 30 liver, heart, adrenal tissue and brain as determined by Western blot analysis and immunolocalization (see infra). OP-1-specific transcripts also have been identified in both embryonic and developing tissues, 35 most abundantly in developing kidney, bladder and brain (see infra). OP-1 also has been identified as a
mesoderm inducing factor present during embryogenesis
(see infra). Moreover, OP-1 has been shown to be
associated with in satellite muscle cells and
5 associated with pluripotential stem cells in bone
marrow following damage to adult murine endochondral
bone, indicating its morphogenic role in tissue repair
and regeneration. In addition, the recently identified
protein GDF-1 (see Table II) has been identified in
10 neural tissue (Lee, (1991) PNAS 88 4250-4254).

Exemplification

IDENTIFICATION AND ISOLATION OF MORPHOGENS

15

Among the proteins useful in this invention are proteins originally identified as bone inductive proteins, such as the OP-1, OP-2 and the CBMP proteins, as well as amino acid sequence-related proteins such as 20 DPP (from Drosophila), Vgl (from Xenopus) and Vgr-1 (from mouse, see Table II and Sequence Listing). The members of this family, which include particular members of the TGF- β super family of structurally related proteins, share substantial amino acid sequence homology in their C-terminal regions. The OP-2 25 proteins have an extra cysteine residue in this region (position 41 of Seq. ID Nos. 7 and 8), in addition to the conserved cysteine skeleton in common with the other proteins in this family. The proteins are 30 inactive when reduced, but are active as oxidized homodimeric species as well as when oxidized in combination with other morphogens.

Accordingly, the morphogens of this invention 35 can be described by either of the following two species

of generic amino acid sequences: Generic Sequence 1 or Generic Sequence 2, (Seq. ID Nos. 1 and 2), where each Xaa indicates one of the 20 naturally-occurring L-isomer, «-amino acids or a derivative thereof.

5 Particularly useful sequences that fall within this family of proteins include the 96-102 C-terminal residues of Vgl, Vgr-1, DPP, OP-1, OP-2, CBMP-2A, CBMP-2B, and GDF-1, as well as their intact mature amino acid sequences. In addition, biosynthetic

10 constructs designed from the generic sequences, such as COP-1, COP-3-5, COP-7, and COP-16 also are useful (see, for example, U.S. Pat. No. 5,011,691.)

Generic sequences showing preferred amino
acids compiled from sequences identified to date and
useful as morphogens (e.g., Tables II and III) are.
described by Generic Sequence 3 (Seq. ID No. 3) and
Generic Sequence 4 (Seq. ID No. 4). Note that these
generic sequences have a 7 or 8-cysteine skeleton where
inter- or intramolecular disulfide bonds can form, and
contain certain critical amino acids which influence
the tertiary structure of the proteins. It is also
contemplated that the differing N-termini of the
naturally occurring proteins provide a tissue-specific
or other, important modulating activity of these
proteins.

Given the foregoing amino acid and DNA sequence information, the level of skill in the art,

30 and the disclosures of U.S. Patent Nos. 4,968,590 and
5,011,691, PCT application US 89/01469, published
October 19, 1989 (WO89/09788), and Ozkaynak, et al.,
(1990) EMBO J 9:2085-2093, and Ozkaynak et al., (1991)
Biochem. Biophys. Res. Commn. 179:116-123 the

35 disclosures of which are incorporated herein by
reference, various DNAs can be constructed which encode

at least the active region of a morphogen of this
invention, and various analogs thereof (including
allelic variants and those containing genetically
engineered mutations), as well as fusion proteins,

truncated forms of the mature proteins, deletion and
insertion mutants, and similar constructs. Moreover,
DNA hybridization probes can be constructed from
fragments of the genes encoding any of these proteins,
including sequences encoding the active regions or the
pro regions of the proteins (see infra), or designed de
novo from the generic sequence. These probes then can
be used to screen different genomic and cDNA libraries
to identify additional morphogenic proteins from
different tissues.

15

The DNAs can be produced by those skilled in the art using well known DNA manipulation techniques involving genomic and cDNA isolation, construction of synthetic DNA from synthesized oligonucleotides, and cassette mutagenesis techniques. 15-100mer oligonucleotides may be synthesized on a Biosearch DNA Model 8600 Synthesizer, and purified by polyacrylamide gel electrophoresis (PAGE) in Tris-Borate-EDTA buffer. The DNA then may be electroeluted from the gel.

25 Overlapping oligomers may be phosphorylated by T4 polynucleotide kinase and ligated into larger blocks which also may be purified by PAGE.

The DNA from appropriately identified clones
then can be isolated, subcloned (preferably into an
expression vector), and sequenced. Plasmids containing
sequences of interest then can be transfected into an
appropriate host cell for expression of the morphogen
and further characterization. The host may be a

procaryotic or eucaryotic cell since the former's inability to glycosylate protein will not destroy the protein's morphogenic activity. Useful host cells include E. coli, Saccharomyces, the insect/baculovirus cell system, myeloma cells, and various other mammalian cells. The vectors additionally may encode various sequences to promote correct expression of the recombinant protein, including transcription promoter and termination sequences, enhancer sequences, preferred mrna leader sequences, preferred signal sequences for protein secretion, and the like.

The DNA sequence encoding the gene of interest 15 also may be manipulated to remove potentially inhibiting sequences or to minimize unwanted secondary and tertiary structure formation. The recombinant morphogen also may be expressed as a fusion protein. After being translated, the protein may be purified from the cells themselves or recovered from the culture 20 _medium. _All_biologically_active protein forms comprise dimeric species joined by disulfide bonds or otherwise associated, produced by refolding and oxidizing one or more of the various recombinant polypeptide chains within an appropriate eucaryotic cell or in vitro after expression of individual subunits. A detailed description of morphogens expressed from recombinant DNA in E. coli and in numerous different mammalian cells is disclosed in PCT publication US90/05903, 30 published May 2, 1991 (WO91/05802) and U.S. Serial No. 841,646 filed February 21, 1992, the disclosures of which are hereby incorporated by reference.

Alternatively, morphogenic polypeptide chains

35 can be synthesized chemically using conventional peptide synthesis techniques well known to those having

WU 74/13343

ordinary skill in the art. For example, the proteins may be synthesized intact or in parts on a Biosearch solid phase peptide synthesizer, using standard operating procedures. Completed chains then are deprotected and purified by HPLC (high pressure liquid chromatography). If the protein is synthesized in parts, the parts may be peptide bonded using standard methodologies to form the intact protein. In general, the manner in which the morphogens are made can be conventional and does not form a part of this invention.

MORPHOGEN DISTRIBUTION

The generic function of the morphogens of this 15 invention throughout the life of the organism can be evidenced by their expression in a variety of disparate mammalian tissues. Determination of the tissue distribution of morphogens also may be used to identify 20 different morphogens expressed in a given tissue, as well as to identify new, related morphogens. The proteins (or their mRNA transcripts) are readily identified in different tissues using standard methodologies and minor modifications thereof in tissues where expression may be low. For example, protein distribution may be determined using standard Western blot analysis or immunofluorescent techniques, and antibodies specific to the morphogen or morphogens of interest. Similarly, the distribution of morphogen transcripts may be determined using standard Northern hybridization protocols and transcript-specific probes.

Any probe capable of hybridizing specifically to a transcript, and distinguishing the transcript of interest from other, related transcripts may be used.

Because the morphogens of this invention share such high sequence homology in their active, C-terminal domains, the tissue distribution of a specific morphogen transcript may best be determined using a 5 probe specific for the pro region of the immature protein and/or the N-terminal region of the mature protein. Another useful sequence is the 3' non-coding region flanking and immediately following the stop These portions of the sequence vary codon. substantially among the morphogens of this invention, and accordingly, are specific for each protein. example, a particularly useful Vgr-1-specific probe sequence is the PvuII-SacI fragment, a 265 bp fragment encoding both a portion of the untranslated pro region and the N-terminus of the mature sequence (see Lyons et 15 al. (1989) PNAS 86:4554-4558 for a description of the cDNA sequence). Similarly, particularly useful mOP-1specific probe sequences are the BstX1-BglI fragment, a 0.68 Kb sequence that covers approximately two-thirds of the mOP-1 pro region; a StuI-StuI fragment, a 0.2 Kb 20 __sequence immediately upstream_of the 7-cysteine domain; and the Earl-Pstl fragment, an 0.3 Kb fragment containing a portion of the 3'untranslated sequence (See Seq. ID No. 18, where the pro region is defined essentially by residues 30-291.) Similar approaches 25 may be used, for example, with hOP1 (Seq. ID No. 16) or human or mouse OP2 (Seq. ID Nos. 20 and 22.)

Using these morphogen-specific probes, which
may be synthetically engineered or obtained from cloned
sequences, morphogen transcripts can be identified in
mammalian tissue, using standard methodologies well
known to those having ordinary skill in the art.
Briefly, total RNA is prepared from various adult
murine tissues (e.g., liver, kidney, testis, heart,

المحاليات المحافظ المالات

brain, thymus and stomach) by a standard methodology such as by the method of Chomczyaski et al. ((1987) Anal. Biochem 162:156-159) and described below. Poly (A)+ RNA is prepared by using oligo (dT)-cellulose 5 chromatography (e.g., Type 7, from Pharmacia LKB Biotechnology, Inc.). Poly (A)+ RNA (generally 15 μ g) from each tissue is fractionated on a 1% agarose/formaldehyde gel and transferred onto a Nytran membrane (Schleicher & Schuell). Following the 10 transfer, the membrane is baked at 80°C and the RNA is cross-linked under UV light (generally 30 seconds at 1 mW/cm²). Prior to hybridization, the appropriate probe (e.g., the PvuII-SacI Vgr-1 fragment) is denatured by heating. The hybridization is carried out in a lucite cylinder rotating in a roller bottle apparatus at approximately 1 rev/min for approximately 15 hours at 37°C using a hybridization mix of 40% formamide, 5 x Denhardts, 5 x SSPE, and 0.1% SDS. Following hybridization, the non-specific counts are washed off 20 the filters in 0.1 x SSPE, 0.1% SDS at 50°C. Northern blots performed using Vgr-1 probes specific to the variable N terminus of the mature sequence indicate that the Vgr-1 message is approximately 3.5 Kb.

Northern blot analysis probing a number of adult murine tissues with the Vgr-1 specific probes: liver, kidney, testis, heart, brain, thymus and stomach, represented in lanes 3-10, respectively. Lanes 1 and 12 are size standards and lanes 2 and 11 are blank. Among the tissues tested, Vgr-1 appears to be expressed most abundantly in adult lung, and to a lesser extent in adult kidney, heart and brain. These results confirm and expand on earlier studies identifying Vgr-1 and Vgr-1-like transcripts in several embryonic and adult

murine tissue (Lyons et al. (1989) PNAS 86:4554-4558), as well as studies identifying OP-1 and CBMP2 in various human cDNA libraries (e.g., placenta, hippocampus, calvaria, and osteosarcoma, see Ozkaynak et al., (1990) EMBO 9:2085-2093).

Using the same general probing methodology, mOP-1 transcripts also have been identified in a variety of murine tissues, including embryo and various 10 developing tissues, as can be seen in Figures 2 and 3. Details of the probing methodology are disclosed in Ozkaynak, et al., (1991) Biochem. Biophys. Res. Commn. 179:116-123, the disclosure of which is incorporated herein. The Northern blots represented in Figure 2 15 probed RNA prepared from developing brain, spleen, lung, kidney (and adrenal gland), heart, and liver in 13 day post natal mice (panel A) or 5 week old mice (panel B). The OP-1 specific probe was a probe containing the 3' untranslated sequences described 20 supra (0.34 Kb Earl-Pst I fragment). As a control for RNA recovery, EF-Tu (translational elongation factor) mRNA expression also was measured (EF-Tu expression is assumed to be relatively uniform in most tissues).

The arrowheads indicate the OP1-specific messages observed in the various tissues. As can be seen in Fig. 2, OP-1 expression levels vary significantly in the spleen, lung, kidney and adrenal tissues, while the EF-Tu mRNA levels are constant. Uniformly lower levels of EF-Tu mRNA levels were found in the heart, brain and liver. As can be seen from the photomicrograph, the highest levels of OP-1 mRNA appear to be in kidney and adrenal tissue, followed by the brain. By contrast, heart and liver did not give a detectable signal. Not

shown are additional analyses performed on bladder tissue, which shows significant OP-1 mRNA expression, at levels close to those in kidney/adrenal tissue. The Northern blots also indicate that, like GDF-1, OP-1 mRNA expression may be bicistonic in different tissues. Four transcripts can be seen: 4 Kb, 2.4 Kb, 2.2 Kb, and 1.8 Kb transcripts can be identified in the different tissues, and cross probing with OP-1 specific probes from the proregion and N-terminal sequences of the gene indicate that these transcripts are OP-1 specific.

المحطاليات لمطال المهالا المالا

A side by side comparison of OP-1 and Vgr-1 in Figure 3 shows that the probes distinguish between the morphogens Vgr-1 and OP-1 transcripts in the different tissues, and also highlights the multiple transcription of OP-1 in different tissues. Specifically, Fig. 3 compares the expression of OP-1 (Panels B and D), Vgr-1 (Panel C) and EF-Tu (Panel A) (control) mRNA in 17 day 20 embryos (lane 1) and 3 day post-natal mice (lane 2). The same filter was used for sequential hybridizations with labeled DNA probes specific for OP-1 (Panels B and D), Vgr-1 (Panel C), and EF-Tu (Panel A). Panel A: the EF-Tu specific probe (control) was the 0.4 Kb HindIII-SacI fragment (part of the protein coding region), the SacI site used belonged to the vector; Panel B: the OP-1 specific probe was the 0.68 Kb BstXI-BglI fragment containing pro region sequences; Panel D; the OP-1 specific probe was the 0.34 Kb EarI-PstI fragment containing the 3' untranslated sequence; 30 Panel C: the Vgr-1 specific probe was the 0.26 Kb PvuII-SacI fragment used in the Vgr-1 blots described above.

The 1.8-2.5 Kb OP-1 mRNA appears approximately two times higher in three day post natal mice than in 17 day embryos, perhaps reflecting phases in bone and/or kidney development. In addition, of the four messages 5 found in brain, the 2.2 Kb transcript appears most abundant, whereas in lung and spleen the 1.8 Kb message predominates. Finally, careful separation of the renal and adrenal tissue in five week old mice reveals that the 2.2 Kb transcripts were derived from renal tissue 10 and the 4 Kb mRNA is more prominent in adrenal tissue (see Figure 2).

Similarly, using the same general probing methodology, BMP3 and CBMP2B transcripts recently have 15 been identified in abundance in lung tissue.

Morphogen distribution in embryonic tissue can be determined using five or six-day old mouse embryos and standard immunofluorescence techniques in concert 20 with morphogen-specific antisera. For example, rabbit anti-OP-1 antisera is readily obtained using any of a number of standard antibody protocols well known to those having ordinary skill in the art. The antibodies then are fluorescently labelled using standard procedures. A five or six-day old mouse embryo then is thin-sectioned and the various developing tissues probed with the labelled antibody, again following standard protocols. Using this technique, OP-1 protein has been detected in developing brain and heart.

30

35

25

- This method also may be used to identify morphogens in adult tissues undergoing repair. For example, a fracture site can be induced in a rat long bone such as the femur. The fracture then is allowed to heal for 2 or 3 days. The animal then is sacrificed and the fractured site sectioned and probed for the presence of the morphogen e.g., OP-1, with fluorescently labelled rabbit anti-OP-1 antisera using standard immunolocalization methodology. This technique identifies OP-1 in muscle satellite cells, the progenitor cells for the development of muscle, cartilage and endochondral bone. In addition, OP-1 is detected with potential pluripotential stem cells in the bone marrow, indicating its morphogenic role in tissue repair and regeneration.

OP-1 protein also has been identified in rat brain using standard immunofluorescence staining technique. Specifically, adult rat brain (2-3 months old) and spinal cord is frozen and sectioned. Anti-OP-1, raised in rabbits and purified on an OP-1 affinity column prepared using standard methodologies, was added to the sections under standard conditions for specific binding. Goat anti-rabbit IgG, labelled with fluorescence, then was used to visualize OP-1 antibody binding to tissue sections.

As can be seen in FIG 4A and 4B, immunofluorescence staining demonstrates the presence of OP-1 in adult rat central nervous system (CNS.) Similar and extensive staining is seen in both the brain (4A) and spinal cord (4B). OP-1 appears to be predominantly localized to the extracellular matrix of the grey matter, present in all areas except the neuronal cell bodies. In white matter, staining appears to be confined to astrocytes. A similar staining pattern also was seen in newborn rat (10 day old) brain sections.

CELL DIFFERENTIATION

The ability of morphogens of this invention to induce cell differentiation can be determined by culturing early mesenchymal cells in the presence of the morphogen and then studying the histology of the cultured cells by staining with toluidine blue. For example, it is known that rat mesenchymal cells destined to become mandibular bone, when separated from the overlying epithelial cells at stage 11 and cultured in vitro under standard tissue culture conditions, will 10 not continue to differentiate. However, if these same cells are left in contact with the overlying endoderm for an additional day, at which time they become stage 12 cells, they will continue to differentiate on their own in vitro to form chondrocytes. Further differentiation into obsteoblasts and, ultimately, mandibular bone, requires an appropriate local environment, e.g., a vascularized environment.

It has now been discovered that stage 11 20 mesenchymal cells, cultured in vitro in the presence of a morphogen, e.g., OP-1, continue to differentiate in vitro to form chondrocytes. These stage 11 cells also continue to differentiate in vitro if they are cultured with the cell products harvested from the overlying endodermal cells. Moreover, OP-1 can be identified in the medium conditioned by endodermal cells either by Western blot or immunofluorescence. This experiment may be performed with other morphogens and with different mesenchymal cells to assess the cell differentiation capability of different morphogens, as 30 well as their distribution in different developing tissues.

As another example of morphogen-induced cell differentiation, the effect of OP-1 on the

differentiation of neuronal cells has been tested in culture. Specifically, the effect of OP-1 on the NG108-15 neuroblastoma x glioma hybrid clonal cell line has been assessed. The cell line shows a fibroblastic-type morphology in culture. The cell line can be induced to differentiate chemically using 0.5 mM butyrate, 1% DMSO or 500 mM Forskolin, inducing the expression of virtually all important neuronal properties of cultured primary neurons. However, chemical induction of these cells also induces cessation of cell division.

In the present experiment NG108-15 cells were subcultured on poly-L-lysine coated 6 well plates. 15 Each well contained 40-50,000 cells in 2.5 ml of chemically defined medium. On the third day 2.5 $\mu 1$ of OP-1 in 60% ethanol containing 0.025% trifluoroacetic was added to each well. OP-1 concentrations of 0, 1, 10, 40 and 100 ng/ml were tested. The media was 20 changed daily with new aliquots of OP-1. After four days with 40 and 100 ng OP-1/ml concentrations, OP-1 induced differentiation of the NG108-15 cells. Figure 5 shows the morphological changes that occur. The OP-1 induces clumping and rounding of the cells and the production of neurite outgrowths (processes). Compare FIG 5A (naive NG108-15 cells) with FIG 5B, showing the effects of OPI-treated cells. Thus the OP-1 can induce the cells to differentiate into a neuronal cell morphology. Some of the outgrowths appear to join in a synaptic-type junction. This 30 effect was not seen in cells incubated with TGF-B1 at concentrations of 1 to 100 ng/ml.

The neuroprotective effects of OP-1 were demonstrated by comparison with chemical

differentiation agents on the NG108-15 cells. 50,000 cells were plated on 6 well plates and treated with butyrate, DMSO, Forskolin or OP-1 for four days. Cell counts demonstrated that in the cultures containing the 5 chemical agents the differentiation was accompanied by a cessation of cell division. In contrast, the cells induced to differentiate by OP-1 continued to divide, as determined by H³-thymidine uptake. The data suggest that OP-1 is capable of maintaining the stability of the cells in culture after differentiation.

As yet another, related example, the ability of the morphogens of this invention to induce the "redifferentiation" of transformed cells also has been 15 assessed. Specifically, the effect of OP-1 on human EC cells (embryo carcinoma cells, NTERA-Z CL.D1) is disclosed herein. In the absence of an external stimulant these cells can be maintained as undifferentiated stem cells, and can be induced to grow in serum free media (SFM). In the absence of morphogen 20 _treatment the cells proliferate rampantly and are anchorage-independent. The effect of morphogen treatment is seen in Figs. 6A-D. Figs 6A and 6B show 4 days of growth in SFM in the presence of OP-1 (25ng/ml, 6A) or the absence of morphogen (6B). 25 Figs. 6C and 6D are 5 days growth in the presence of 10ng/ml OP-1 (6C) or no morphogen (6D). Figs. 6C and 6D are at 10x and 20x magnification compared to FIGs 6A and 5B. As can readily be seen, in the presence of OP-1, EC cells grow as flattened cells, becoming 30 anchorage dependent. In addition, growth rate is reduced approximately 10 fold. Finally, the cells are induced to differentiate.

44 w 1544 LUDAU

The morphogens of this invention also may be used to maintain a cell's differentiated phenotype. This morphogenic capability is particularly useful for inducing the continued expression of phenotype in senescent or quiescent cells.

The phenotypic maintenance capability of morphogens is readily assessed. A number of 10 differentiated cells become senescent or quiescent after multiple passages under standard tissue culture conditions in vitro. However, if these cells are cultivated in vitro in association with a morphogen of this invention, the cells are induced to maintain expression of their phenotype through multiple 15 passages. For example, the alkaline phosphatase activity of cultured osteoblasts, like cultured osteoscarcoma cells and calvaria cells, is significantly reduced after multiple passages in vitro. 20 However, if the cells are cultivated in the presence of a morphogen (e.g., OP-1), alkaline phosphatase activity is maintained over extended periods of time. Similarly, phenotypic expression of myocytes also is maintained in the presence of the morphogen. experiment may be performed with other morphogens and 25 different cells to assess the phenotypic maintenance capability of different morphogens on cells of differing origins.

Phenotypic maintenance capability also may be assessed in vivo, using a rat model for osteoporosis, disclosed in co-pending USSN 752,857, filed August 30, 1991,, incorporated herein by reference. As disclosed therein, Long Evans rats are ovariectomized to produce an osteoporotic condition resulting from decreased

estrogen production. Eight days after ovariectomy, rats are systemically provided with phosphate buffered saline (PBS) or OP-1 (21 μ g or 20 μ g) for 22 days. The rats then are sacrificed and serum alkaline phosphatase levels, serum calcium levels, and serum osteocalcin levels are determined, using standard methodologies. Three-fold higher levels of osteocalcin levels are found in rats provided with 1 or 20 μ g of OP-1. Increased alkaline phosphatase levels also were seen. Histomorphometric analysis on the tibial diaphysical bone shows OP-1 can reduce bone mass lost due to the drop in estrogen levels.

CELL STIMULATION

15

10

The ability of the morphogens of this invention to stimulate the proliferation of progenitor cells also can be assayed readily in vitro. Useful naive stem cells include pluripotential stem cells,

which may be isolated from bone marrow or umbilical cord—blood—using conventional methodologies, (see, for example, Faradji et al., (1988) Vox Sang. 55

(3):133-138 or Broxmeyer et al., (1989) PNAS 86

(10):3828-3832), as well as naive stem cells obtained from blood. Alternatively, embryonic cells (e.g., from a cultured mesodermal cell line) may be useful.

Another method for obtaining progenitor cells and for determining the ability of morphogens to stimulate cell proliferation is to capture progenitor cells from an in vivo source. For example, a biocompatible matrix material able to allow the influx of migratory progenitor cells may be implanted at an in vivo site long enough to allow the influx of migratory progenitor cells. For example, a bone-derived,

guanidine-extracted matrix, formulated as disclosed for example in Sampath et al. ((1983) PNAS 80:6591-6595), or U.S. Patent No. 4,975,526, may be implanted into a rat at a subcutaneous site, essentially following the method of Sampath et al. (ibid). After three days the implant is removed, and the progenitor cells associated with the matrix dispersed and cultured.

incubated in vitro with a suspected morphogen under standard cell culture conditions well known to those having ordinary skill in the art. In the absence of external stimuli, the progenitor cells do not, or minimally proliferate on their own in culture.

However, if the cells are cultured in the presence of a morphogen, such as OP-1, they are stimulated to proliferate. Cell growth can be determined visually or spectrophotometrically using standard methods well known in the art.

20

PROLIFERATION OF PROGENITOR CELL POPULATIONS

progenitor cells may be stimulated to proliferate in vivo or ex vivo. The cells may be stimulated in vivo by injecting or otherwise providing a sterile preparation containing the morphogen into the individual. For example, the hemopoietic pluripotential stem cell population of an individual may be stimulated to proliferate by injecting or otherwise providing an appropriate concentration of the morphogen to the individual's bone marrow.

Progenitor cells may be stimulated <u>ex vivo</u> by contacting progenitor cells of the population to be enhanced with a morphogen under sterile conditions at a

concentration and for a time sufficient to stimulate proliferation of the cells. In general, a period of from about 10 minutes to about 24 hours should be sufficient. The stimulated cells then are provided to the individual as, for example, by injecting the cells to an appropriate in vivo locus. Suitable biocompatible progenitor cells may be obtained by any of the methods known in the art or described herein.

10 REGENERATION OF DAMAGED OR DISEASED TISSUE

The morphogens of this invention may be used to repair diseased or damaged mammalian tissue. The tissue to be repaired is preferably assessed, and excess necrotic or interfering scar tissue removed as needed, by surgical, chemical, ablating or other methods known in the medical arts.

The morphogen then may be provided directly to 20 the tissue locus as part of a sterile, biocompatible -composition, either by surgical implantation or injection. Alternatively, a sterile, biocompatible composition containing morphogen-stimulated progenitor cells may be provided to the tissue locus. existing tissue at the locus, whether diseased or damaged, provides the appropriate matrix to allow the proliferation and tissue-specific differentiation of progenitor cells. In addition, a damaged or diseased tissue locus, particularly one that has been further assaulted by surgical means, provides a morphogenically 30 permissive environment. For some tissues, it is envisioned that systemic provision of the morphogen will be sufficient.

In some circumstances, particularly where tissue damage is extensive, the tissue may not be capable of providing a sufficient matrix for cell influx and proliferation. In these instances, it may be necessary to provide the morphogen or morphogenstimulated progenitor cells to the tissue locus in association with a suitable, biocompatible formulated matrix, prepared by any of the means described below. The matrix preferably is tissue-specific, in vivo biodegradable, and comprises particles having dimensions within the range of 70-850µm, most preferably 150-420µm.

The morphogens of this invention also may be used
to prevent or substantially inhibit scar tissue
formation following an injury. If a morphogen is
provided to a newly injured tissue locus, it can induce
tissue morphogenesis at the locus, preventing the
aggregation of migrating fibroblasts into nondifferentiated connective tissue. The morphogen
preferably is provided as a sterile pharmaceutical
preparation injected into the tissue locus within five
hours of the injury. Several non-limiting examples
follow, illustrating the morphogens regenerate
capabilities in different issues. The proteins of this
invention previously have been shown to be capable of
inducing cartilage and endochondral bone formation
(See, for example U.S. Patent No. 5,011,691).

As an example, protein-induced morphogenesis of substantially injured liver tissue following a partial hepatectomy is disclosed. Variations on this general protocol may be used to test morphogen activity in other different tissues. The general method involves excising an essentially nonregenerating portion of a

tissue and providing the morphogen, preferably as a soluble pharmaceutical preparation to the excised tissue locus, closing the wound and examining the site at a future date. Like bone, liver has a potential to regenerate upon injury during post-fetal life.

Morphogen, (e.g., purified recombinant human OP-1, mature form), was solubilized (1 mg/ml) in 50% ethanol (or compatible solvent) containing 0.1% trifluoroacetic acid (or compatible acid). The injectable OP-1 solution was prepared by diluting one volume of OP-1/solvent-acid stock solution with 9 volumes of 0.2% rat serum albumin in sterile PBS (phosphate-buffered saline).

15

30

35

Growing rats or aged rats were anesthetized by using ketamine. Two of the liver lobes (left and right) were cut out (approximately 1/3 of the lobe) and the OP-1 was injected locally at multiple sites along the cut ends. The amount of OP-1 injected was 100 µg in 100 of PBS/RSA (phosphate buffered saline/rat serum albumin) injection buffer. Placebo samples are injection buffer without OP-1. Five rats in each group were used. The wound was closed and the rats were allowed to eat normal food and drink tap water.

After 12 days, the rats were sacrificed and liver regeneration was observed visually. The photomicrograph in Fig. 7 illustrates dramatically the regenerative effects of OP-1 on liver regeneration. The OP-1-injected group showed complete liver tissue regeneration and no sign remained of any cut in the liver (animal 2). By contrast, in the control group into which only PBS was injected only minimal regeneration was evidenced (animal 1). In addition, the incision remains in this sample.

As another example, the ability of the morphogens of this invention to induce dentinogenesis also was assessed. To date, the unpredictable response of dental pulp tissue to injury is a basic clinical problem in dentistry. Cynomolgus monkeys were chosen as primate models as monkeys are presumed to be more indicative of human dental biology than models based on lower non-primate mammals.

10

Using standard dental surgical procedures, small areas (e.g., 2mm) of dental pulps were surgically exposed by removing the enamel and dentin immediately above the pulp (by drilling) of sample teeth, performing a partial amputation of the coronal pulp tissue, inducing hemostasis, application of the pulp treatment, and sealing and filling the cavity by standard procedures.

Pulp treatments used were: OP-1 dispersed in a 20 carrier matrix; carrier matrix alone and no treatment. Twelve teeth per animal (four for each treatment) were prepared, and two animals were used. At four weeks, teeth were extracted and processed histologically for analysis of dentin formation, and/or ground to analyze dentin mineralization. FIG.8 illustrates dramatically the effect of morphogen on osteodentin reparation. FIG. 8A is a photomicrograph of the control treatment (PBS) and shows little or no reparation. FIG. 8B is a photomicrograph of treatment with carrier alone, 30 showing minimal reparation. By contrast, treatment with morphogen (FIG. 8C) shows significant reparation. The results of FIG. 8 indicate that OP-1-CM (OP-1 plus

carrier matrix) reliably induced formation of reparative or osteodentin bridges on surgically exposed healthy dental pulps. By contrast, pulps treated with carrier matrix alone, or not treated failed to form reparative dentin.

As another example, the morphogen-induced regenerative effects on central nervous system (CNS) repair may be assessed using a rat brain stab model.

10 Briefly, male Long Evans rats are anesthesized and the head area prepared for surgery. The calvariae is exposed using standard surgical procedures and a hole drilled toward the center of each lobe using a 0.035K wire, just piercing the calvariae. 25µl solutions

15 containing either morphogen (OP-1, 25µg) or PBS then is provided to each of the holes by Hamilton syringe. Solutions are delivered to a depth approximately 3 mm below the surface, into the underlying cortex, corpus callosum and hippocampus. The skin then is sutured and the animal allowed to recover.

Three days post surgery, rats are sacrificed by decapitation and their brains processed for sectioning. Scar tissue formation is evaluated by immunofluoresence staining for glial fibrillary acidic protein, a marker protein for glial scarring, to qualitatively determine the degree of scar formation. Sections also are probed with anti-OP-1 antibodies to determine the presence of OP-1. Reduced levels of glial fibrillary acidic protein are anticipated in the tissue sections of animals treated with morphogen, evidencing the ability of morphogen to inhibit glial scar formation, thereby stimulating nerve regeneration.

20

سائد مدت المطائرات المدات المدات

Antibodies to morphogens of this invention have been identified in healthy human sera. In addition, implanting devices comprising morphogens (e.g., OP-1) have been discovered to induce an increase in antimorphogen antibodies (e.g., anti-OP-1 antibodies). It is anticipated that these antibodies comprise part of the body's regulation of morphogen activity in vivo. The presence of the antibodies, and fluctuations in 10 their levels, which are readily monitored, can provide a useful method for monitoring tissue stasis and tissue viability (e.g., identification of a pathological state). For example, standard radioimmunoassays or ELISA may be used to detect and quantify endogeous anti-morphogen antibodies in sera. Antibodies or other binding proteins capable of detecting anti-morphogen antibodies may be obtained using standard methodologies.

MATRIX PREPARATION

The morphogens of this invention may be implanted surgically, dispersed in a biocompatible, preferably in vivo biodegradable matrix appropriately modified to provide a structure in which the morphogen may be dispersed and which allows the influx, differentiation and proliferation of migrating progenitor cells. The matrix also should provide signals capable of directing the tissue specificity of the differentiating cells, as well as a morphogenically permissive environment, being essentially free of growth inhibiting signals.

In the absence of these features the matrix

35 does not appear to be suitable as part of a morphogenic composition. Recent studies on osteogenic devices

(morphogens dispersed within a formulated matrix) using matrices formulated from polylactic acid and/or polyglycolic acid biopolymers, ceramics (a-tri-calciumphosphate), or hydroxyapatite show that these 5 materials, by themselves, are unable to provide the appropriate environment for inducing de novo endochondral bone formation in rats by themselves. addition, matrices formulated from commercially available highly purified, reconstituted collagens or naturally-derived non-bone, species-specific collagen (e.g., from rat tail tendon) also are unsuccessful in inducing bone when implanted in association with an osteogenic protein. These matrices apparently lack specific structurally-related features which aid in 15 directing the tissue specificity of the morphogenstimulated, differentiating progenitor cells.

The formulated matrix may be shaped as desired in anticipation of surgery or may be shaped by the physician or technician during surgery. Thus, the material may be used in topical, subcutaneous, intraperitoneal, or intramuscular implants to repair tissue or to induce its growth de novo. The matrix preferably is biodegradable in vivo, being slowly absorbed by the body and replaced by new tissue growth, in the shape or very nearly in the shape of the implant.

Details of how to make and how to use the 30 matrices useful in this invention are disclosed below.

TISSUE-DERIVED MATRICES

Suitable biocompatible, <u>in vivo</u> biodegradable 35 acellular matrices may be prepared from naturally-

occurring tissue. The tissue is treated with suitable agents to substantially extract the cellular, nonstructural components of the tissue. The agents also should be capable of extracting any growth inhibiting components associated with the tissue. The resulting material is a porous, acellular matrix, substantially depleted in nonstructurally-associated components.

WU 92/15323

The matrix also may be further treated with 10 agents that modify the matrix, increasing the number of pores and micropits on its surfaces. Those skilled in the art will know how to determine which agents are best suited to the extraction of nonstructural 15 components for different tissues. For example, soft tissues such as liver and lung may be thin-sectioned and exposed to a nonpolar solvent such as, for example, 100% ethanol, to destroy the cellular structure of the tissue and extract nonstructural components. The material then is dried and pulverized to yield 20 nonadherent porous particles. Structural tissues such as cartilage and dentin where collagen is the primary component may be demineralized and extracted with guanidine, essentially following the method of Sampath 25 et al. (1983) PNAS 80:6591-6595. For example, pulverized and demineralized dentin is extracted with five volumes of 4M guanidine-HCl, 50mM Tris-HCl, pH 7.0 for 16 hours at 4°C. The suspension then is filtered. The insoluble material that remains is collected and 30 used to fabricate the matrix. The material is mostly collagenous in manner. It is devoid of morphogenic activity. The matrix particles may further be treated with a collagen fibril-modifying agent that extracts potentially unwanted components from the matrix, and alters the surface structure of the matrix material.

Useful agents include acids, organic solvents or heated aqueous media. A detailed description of these matrix treatments are disclosed in U.S. Patent No. 4,975,526 and PCT publication US90/00912, published September 7, 1990 (WO90/10018).

The currently most preferred agent is a heated aqueous fibril-modifying medium such as water, to increase the matrix particle surface area and porosity.

The currently most preferred aqueous medium is an acidic aqueous medium having a pH of less than about 4.5, e.g., within the range of about pH 2 - pH 4 which may help to "swell" the collagen before heating. 0.1% acetic acid, which has a pH of about 3, currently is most preferred. 0.1 M acetic acid also may be used.

Various amounts of delipidated, demineralized guanidine-extracted bone collagen are heated in the aqueous medium (1g matrix/30ml aqueous medium) under constant stirring in a water jacketed glass flask, and maintained at a given temperature for a predetermined period of time. Preferred treatment times are about one hour, although exposure times of between about 0.5 to two hours appear acceptable. The temperature employed is held constant at a temperature within the range of about 37°C to 65°C. The currently preferred heat treatment temperature is within the range of about 45°C to 60°C.

After the heat treatment, the matrix is filtered, washed, lyophilized and used for implant. Where an acidic aqueous medium is used, the matrix also is preferably neutralized prior to washing and lyophilization. A currently preferred neutralization buffer is a 200mM sodium phosphate buffer, pH 7.0. To

I WILL WORM W.

neutralize the matrix, the matrix preferably first is allowed to cool following thermal treatment, the acidic aqueous medium (e.g., 0.1% acetic acid) then is removed and replaced with the neutralization buffer and the matrix agitated for about 30 minutes. The neutralization buffer then may be removed and the matrix washed and lyophilized.

Other useful fibril-modifying treatments include acid treatments (e.g., trifluoroacetic acid and hydrogen fluoride) and solvent treatments such as dichloromethane, acetonitrile, isopropanol and chloroform, as well as particular acid/solvent combinations.

15

After contact with the fibril-modifying agent, the treated matrix may be washed to remove any extracted components, following a form of the procedure set forth below:

20

35

- 1. Suspend matrix preparation in TBS (Trisbuffered saline) 1g/200 ml and stir at 4°C for 2 hrs; or in 6 M urea, 50 mM Tris-HCl, 500 mM NaCl, pH 7.0 (UTBS) or water and stir at room temperature (RT) for 30 minutes (sufficient time to neutralize the pH);
 - 2. Centrifuge and repeat wash step; and
- Centrifuge; discard supernatant; water
 wash residue; and then lyophilize.

SYNTHETIC TISSUE-SPECIFIC MATRICES

In addition to the naturally-derived tissue-

specific matrices described above, useful tissuespecific matrices may be formulated synthetically if appropriately modified. These porous biocompatible, in vivo biodegradable synthetic matrices are disclosed in 5 PCT publication US91/03603, published December 12, 1991 (WO91/18558), the disclosure of which is hereby incorporated by reference. Briefly, the matrix comprises a porous crosslinked structural polymer of biocompatible, biodegradable collagen and appropriate, 10 tissue-specific glycosaminoglycans as tissue-specific cell attachment factors. Collagen derived from a number of sources may be suitable for use in these synthetic matrices, including insoluble collagen, acidsoluble collagen, collagen soluble in neutral or basic aqueous solutions, as well as those collagens which are commercially available.

Glycosaminoglycans (GAGs) or
mucopolysaccharides are hexosamine-containing
polysaccharides of animal origin that have a tissue
specific distribution, and therefore may be used to
help determine the tissue specificity of the morphogenstimulated differentiating cells. Reaction with the
GAGs also provides collagen with another valuable
property, i.e., inability to provoke an immune reaction
(foreign body reaction) from an animal host.

Chemically, GAGs are made up of residues of hexoseamines glycosidically bound and alternating in a more-or-less regular manner with either hexouronic acid or hexose moieties (see, e.g., Dodgson et al. in Carbohydrate Metabolism and its Disorders (Dickens et al., eds.) Vol. 1, Academic Press (1968)). Useful GAGs include hyaluronic acid, heparin, heparin sulfate, chondroitin 6-sulfate, chondroitin 4-sulfate, dermatan

sulfate, and keratin sulfate. Other GAGs are suitable for forming the matrix described herein, and those skilled in the art will either know or be able to ascertain other suitable GAGs using no more than 5 routine experimentation. For a more detailed description of mucopolysaccharides, see Aspinall, Polysaccharides, Pergamon Press, Oxford (1970). For example, as disclosed in U.S. Application Serial No. 529,852, chondroitin-6-sulfate can be used where endochondral bone formation is desired. Heparin sulfate, on the other hand, may be used to formulate synthetic matrices for use in lung tissue repair.

Collagen can be reacted with a GAG in aqueous acidic solutions, preferably in diluted acetic acid solutions. By adding the GAG dropwise into the aqueous collagen dispersion, coprecipitates of tangled collagen fibrils coated with GAG results. This tangled mass of fibers then can be homogenized to form a homogeneous dispersion of fine fibers and then filtered and dried.

De raised to the desired degree by covalently crosslinking these materials, which also serves to raise the resistance to resorption of these materials. In general, any covalent cross-linking method suitable for cross-linking collagen also is suitable for crosslinking these composite materials, although crosslinking by a dehydrothermal process is preferred.

30

35

When dry, the crosslinked particles are essentially spherical, with diameters of about 500 $\mu \rm m$. Scanning electron miscroscopy shows pores of about 20 $\mu \rm m$ on the surface and 40 $\mu \rm m$ on the interior. The interior is made up of both fibrous and sheet-like

structures, providing surfaces for cell attachment. The voids interconnect, providing access to the cells throughout the interior of the particle. The material appears to be roughly 99.5% void volume, making the material very efficient in terms of the potential cell mass that can be grown per gram of microcarrier.

The morphogens described herein can be combined and dispersed in an appropriately modified tissue-specific matrix using any of the methods described below:

1. Ethanol Precipitation

- Matrix is added to the morphogen dissolved in guanidine-HCl. Samples are vortexed and incubated at a low temperature. Samples are then further vortexed. Cold absolute ethanol is added to the mixture which is then stirred and incubated. After centrifugation

 20 (microfuge, high speed) the supernatant is discarded. The matrix is washed with cold concentrated ethanol in water and then lyophilized.
- 2. Acetonitrile Trifluoroacetic25 Acid Lyophilization

In this procedure, morphogen in an acetonitrile trifluroacetic acid (ACN/TFA solution is added to the carrier material. Samples are vigorously vortexed many times and then lyophilized.

3. Buffered Saline Lyophilization

Morphogen preparations in physiological saline may also be vortexed with the matrix and lyophilized to

produce morphogenically active material.

BIOASSAY

-74-

5

10

The following sets forth various procedures for evaluating the in vivo morphogenic utility of the morphogens and morphogenic compositions of this The proteins and compositions may be invention. injected or surgically implanted in a mammal, following any of a number of procedures well known in the art. For example, surgical implant bioassays may be performed essentially following the procedure of Sampath et al. (1983) PNAS 80:6591-6595.

15

35

Histological Evaluation

Histological sectioning and staining is preferred to determine the extent of morphogenesis in 20 vivo, particularly in tissue repair procedures. Excised implants are fixed in Bouins Solution, embedded in paraffin, and cut into 6-8 μm sections. Staining with toluidine blue or hemotoxylin/eosin demonstrates clearly the ultimate development of the new tissue. Twelve day implants are usually sufficient to determine whether the implants contain newly induced tissue.

Successful implants exhibit a controlled progression through the stages of induced tissue 30 development allowing one to identify and follow the tissue-specific events that occur. For example, in endochondral bone formation the stages include: (1) leukocytes on day one; (2) mesenchymal cell migration and proliferation on days two and three; (3) chondrocyte appearance on days five and six;

- (4) cartilage matrix formation on day seven;
- (5) cartilage calcification on day eight; (6) vascular invasion, appearance of osteoblasts, and formation of new bone on days nine and ten; (7) appearance of osteoblastic and bone remodeling and dissolution of the implanted matrix on days twelve to eighteen; and (8) hematopoietic bone marrow differentiation in the ossicle on day twenty-one.

10 Biological Markers

In addition to histological evaluation, biological markers may be used as a marker for tissue morphogenesis. Useful markers include tissue-specific enzymes whose activities may be assayed (e.g., spectrophotometrically) after homogenization of the implant. These assays may be useful for quantitation and for obtaining an estimate of tissue formation quickly after the implants are removed from the animal.

20 For example, alkaline phosphatase activity may be used as a marker for osteogenesis.

Incorporation of systemically provided morphogens may be followed using tagged morphogens (e.g., radioactively labelled) and determining their 25 localization in new tissue, and/or by monitoring their disappearance from the circulatory system using a standard pulse-chase labeling protocol. The morphogen also may be provided with a tissue-specific molecular tag, whose uptake may be monitored and correlated with 30 the concentration of morphogen provided. As an example, ovary removal in female rats results in reduced bone alkaline phosphatase activity, rendering the rats predisposed to osteoporosis. If the female rats now are provided with a morphogen, e.g., OP-1, a 35

reduction in the systemic concentration of calcium (CA²⁺) is seen, which correlates with the presence of the provided morphogen and can be shown to correspond to increased alkaline phosphatase activity.

5

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: COHEN, CHARLES M.

KUBERASAMPATH, THANGAVEL

PANG, ROY H.L.

OPPERMANN, HERMANN RUEGER, DAVID C.

- (ii) TITLE OF INVENTION: PROTEIN-INDUCED MORPHOGENESIS
- (iii) NUMBER OF SEQUENCES: 23
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: TESTA, HURWITZ & THIBEAULT
 - (B) STREET: 53 STATE STREET
 - (C) CITY: BOSTON
 - (D) STATE: MASSACHUSETTS
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 02109
- (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 667,274
 - (B) FILING DATE: 11-MAR-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 752,764
 - (B) FILING DATE: 30-AUG-1991
- ---- (-2)- INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:
 - (A) NAME: Generic Sequence 1
 - (D) OTHER INFORMATION: Each Xaa indicates one of the 20 naturallyoccurring L-isomer, α-amino acids or a derivative thereof.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

 Xaa Xaa Xaa Xaa Xaa Xaa Xaa

·

Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa 20 25

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 55

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 85

Xaa Cys Xaa 95

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 2
 - (D) OTHER INFORMATION: Each Xaa indicates one of the 20 naturallyoccurring L-isomer, α-amino acids or a derivative thereof.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Xaa Xaa Xaa Xaa Xaa 1

Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa 20 25

Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa 35

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 55

Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 70

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys 85

Xaa Cys Xaa 95

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 3
 - (D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Leu Tyr Val Xaa Phe

Xaa Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

10

Xaa Ala Pro Gly Xaa Xaa Xaa Ala

15 20

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa

25 30

Xaa Pro Xaa Xaa Xaa Xaa

35

Xaa Xaa Xaa Asn His Ala Xaa Xaa

40 45

Xaa Xaa Leu Xaa Xaa Xaa Xaa

50

Xaa Xaa Xaa Xaa Xaa Xaa Cys

55 60

Cys Xaa Pro Xaa Xaa Xaa Xaa Xaa

65

_ Xaa Xaa Xaa Leu Xaa Xaa Xaa

70 75

Xaa Xaa Xaa Val Xaa Leu Xaa

80

Xaa Xaa Xaa Met Xaa Val Xaa

85 · 90

Xaa Cys Gly Cys Xaa

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 102 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: Generic Sequence 4
 - (D) OTHER INFORMATION: wherein each Xaa is independently selected from a group of one or more specified amino acids as defined in the specification.
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Cys Xaa Xaa Xaa Leu Tyr Val Xaa Phe
1 5 10

Xaa Xaa Gly Trp Xaa Xaa Trp Xaa

15

Xaa Ala Pro Xaa Gly Xaa Xaa Ala 20 25

Xaa Tyr Cys Xaa Gly Xaa Cys Xaa 30 35

Xaa Pro Xaa Xaa Xaa Xaa Xaa 40

Asn Xaa Xaa Asn His Ala Xaa Xaa 45

Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa 55

Xaa Xaa Xaa Xaa Xaa Cys 60 65

Cys Xaa Pro Xaa Xaa Xaa Xaa

Xaa Xaa Xaa Leu Xaa Xaa Xaa 75 80
Xaa Xaa Xaa Xaa Val Xaa Leu Xaa 85
Xaa Xaa Xaa Xaa Met Xaa Val Xaa 90 95
Xaa Cys Gly Cys Xaa 100

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: hOP-1 (mature form)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Ser Thr Gly Ser Lys Gln Arg Ser Gln Arg Ser Lys Thr Pro Lys Asn Gln Asn 15 10 Glu Ala Leu Arg Met Ala Asn Val Ala 20 25 Glu Asn-Ser Ser Ser Asp Gln Arg Gln 30 35 Ala Cys Lys His Glu Leu Tyr 45 40 Ser Phe Arg Asp Leu Gly Trp Gln Asp 50 Ile Ile Ala Pro Glu Gly Tyr Ala 60 55 Tyr Tyr Cys Glu Gly Glu Cys Ala Ala 65 70

Phe	Pro	Leu	Asn	Ser	Tyr	Met	Asn	Ala
		75					80	
Thr	Asn	His	Ala	Ile	Val	Gln	Thr	Leu
			85					90
Val	His	Phe	Ile	Asn	Pro	Glu	Thr	Val
	٠			95				
Pro	Lys	Pro	Cys	Cys	Ala	Pro	Thr	Gln
100					105			
Leu	Asn	Ala	Ile	Ser	Val	Leu	Tyr	Phe
	110					115		
Asp	Asp	Ser	Ser	Asn	Val	Ile	Leu	Lys
		120					125	
Lys	Tyr	Arg	Asn	Met	Val	Val	Arg	Ala
		•	130				,	135
Cys	Gly	Cys	His					

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: mOP-1 (mature form)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Ser Thr Gly Gly Lys Gln Arg Ser Gln
1 5

Asn Arg Ser Lys Thr Pro Lys Asn Gln
10 15

Glu Ala Leu Arg Met Ala Ser Val Ala
20 25

لبالد تربيات المطائر فيانت الأبديات الداليات

135

(2) INFORMATION FOR SEQ ID NO:7:

Cys Gly Cys His

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 139 amino acids
 - (B) TYPE: amino acids

- (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: hOP-2 (mature form)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala 1	Val	Arg	Pro	Leu 5	Arg	Arg	Arg	Gln
Pro	Lys	Lys	Ser		Glu	Leu	Pro	Gln
10					15			
Ala	Asn	Arg	Leu	Pro	Gly	Ile	Phe	Asp
	20					25		
Asp	Val	His	Gly	Ser	His	Gly	Arg	Gln
		30					35	
Val	Cys	Arg	Arg	His	Glu	Leu	Tyr	Val
			40					45
Ser	Phe	Gln	Asp	Leu	Gly	Trp	Leu	Asp
				50				
Trp	Val	Ile	Ala	Pro	Gln	Gly	Tyr	Ser
55					60			
Ala	Tyr	Tyr	Cys	Glu	Gly	Glu	Cys	Ser
	65					70		
Phe	Pro	Leu	Asp	Ser	Cys	Met	Asn	Ala
		75					80	
Thr	Asn	His	Ala	Ile	Leu	Gln	Ser	Leu
			85	٠				90
Val	His	Leu	Met	Lys	Pro	Asn	Ala	Val
				95				
	Lys	Ala	Cys	Cys	Ala	Pro	Thr	Lys
100					105			
Leu		Ala	Thr	Ser	Val	Leu	Tyr	Tyr
	110					115		
Asp	Ser	Ser	Asn	Asn	Val	Ile	Leu	Arg
		120					125	-
Lys	His	Arg	Asn	Met	Val	Val	Lys	Ala
			130					135
Cys	Gly	Cys	His					

							٠		
(2)	(i) (ii)	SE(A) (B) (C) MOI FER	ON FOOD TOPO LECULE ATURE: NAME	CHAICHAICE CHAICE AND CONTRACT CHAICE CH	RACTER 139 a nino a lin E: pr	RISTIC amino acids near roteir	acids		8:
	Ala 1	Ala	Arg	Pro	Leu 5	Lys	Arg	Arg	Gln
	Pro 10	Lys	Lys	Thr		Glu 15	Leu	Pro	His
	Pro	Asn 20	Lys	Leu	Pro	Gly	Ile 25	Phe	Asp
	Asp	Gly	His 30	Gly	Ser	Arg	Gly	Arg 35	Glu
	Val	Cys	Arg	Arg 40	His	Glu	Leu	Tyr	Val 45
	Arg	Phe	Arg	Asp	Leu 50	Gly	Trp	Leu	Asp
•	Trp 55	Val	Ile	Ala	Pro	Gln 60	Gly	Tyr	Ser
	Ala	Tyr 65	Tyr	Cys	Glu	Gly	Glu 70`	Cys	Ala

Phe Pro Leu Asp Ser Cys Met Asn Ala

Thr Asn His Ala Ile Leu Gln Ser Leu

Val His Leu Met Lys Pro Asp Val Val

Pro Lys Ala Cys Cys Ala Pro Thr Lys

95

105

75

----85

100

80

. 90

Ala Thr Ser Val Leu Ser Tyr Leu 115 110 Ser Asn Asn Val Ile Leu Arg Ser Asp 125 120 His Asn Met Val Val Lys Arg Lys 130 135 Cys Gly Cys His

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME: CBMP-2A(fx)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Asp Val Gly Trp Asn Asp Trp Ile Val Ala Pro 15 20

Pro Gly Tyr His Ala Phe Tyr Cys His Gly Glu
25

Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser 35

Thr Asn His Ala Ile Val Gln Thr Leu Val Asn 45 50 55

Ser Val Asn Ser Lys Ile Pro Lys Ala Cys Cys 60 65

Val Pro Thr Glu Leu Ser Ala Ile Ser Met Leu
70 75

Tyr Leu Asp Glu Asn Glu Lys Val Val Leu Lys 80 85 Asn Tyr Gln Asp Met Val Val Glu Gly Cys Gly 90 95 Cys Arg 100

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 101 amino acids
 - (B) TYPE: amino acids
 - (C) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (ix) FEATURE:

85

- (A) NAME: CBMP-2B(fx)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Cys Arg Arg His Ser Leu Tyr Val Asp Phe Ser Asp Val Gly Trp Asn 10 15 Asp Trp Ile Val Ala Pro Pro Gly Tyr Gln Ala 20 25 Phe Tyr Cys His Gly Asp Cys Pro Phe Pro Leu 35 30 Ala Asp His Leu Asn Ser Thr Asn His Ala Ile 40 Val Gln Thr Leu Val Asn Ser Val Asn Ser Ser 60 55 50 Ile Pro Lys Ala Cys Cys Val Pro Thr Glu Leu 70 65 Ser Ala Ile Ser Met Leu Tyr Leu Asp Glu Tyr 75 80 Asp Lys Val Val Leu Lys Asn Tyr Gln Glu Met

(2) INFORMATION FOR SEQ ID NO:11: SEQUENCE CHARACTERISTICS: (i)(A) LENGTH: 102 amino acids (B) TYPE: amino acids (C) TOPOLOGY: linear MOLECULE TYPE: protein (ii) FEATURE: (ix) (A) NAME: DPP(fx) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: Cys Arg Arg His Ser Leu Tyr Val Asp Phe Ser 5 10 . Asp Val Gly Trp Asp Asp Trp Ile Val Ala Pro 15 20 Leu Gly Tyr Asp Ala Tyr Tyr Cys His Gly Lys 25 30 Cys Pro Phe Pro Leu Ala Asp His Phe Asn Ser 35 40 Thr Asn His Ala Val Val Gln Thr Leu Val Asn 45 50 55 Asn Asn Pro Gly Lys Val Pro Lys Ala Cys 60 65 Cys Val Pro Thr Gln Leu Asp Ser Val Ala Met 70 75 Leu Tyr Leu Asn Asp Gln Ser Thr Val Val Leu 80 85 Lys Asn Tyr Gln Glu Met Thr Val Val Gly Cys 90 95 Gly Cys Arg

(2)	INF	ORMA	TION	FOF	SEQ	ID	NO:1	2:			
	(i)	S	EQUE	NCE	CHAR	ACTE	RIST	ICS:			
		(A) L	ENGI	'H:	102	amin	o ac	ids		
		(B) T	YPE:	am	ino	acid	S			
		(C) T	OPOL	OGY:	li	near	•			
	(ii	:) M	OLEC	ULE	TYPE	: p	rote	in"			
	(ix	;) F	EATU	RE:							
		(A) N	AME:	Vg	l(fx)				
	(xi	.) S	EQUE	NCE	DESC	RIPT	ION:	SE	Q ID	NO:	12:
	Cys	Lys	Lys	Arg	His	Leu	Tyr	Val	Glu	Phe	Lys
	1				5					10	
	Asp	Val	Gly	Trp	Gln	Asn	Trp	Val	Ile	Ala	Pro
				15					20		
	Gln	Gly	Tyr	Met	Ala	Asn	Tyr	Cys	Tyr	Gly	Glu
			25					30			
	Cys	Pro	Tyr	Pro	Leu	Thr	Glu	Ile	Leu	Asn	Gly
	** ***	35					40				_
	Ser	Asn	His	Ala	Ile		Gln	Thr	Leu	Val	
	45					50				_	55
•	Ser	Ile	Glu	Pro		Asp	Ile	Pro	Leu		Cys
					60					65	
	Cys	Val	Pro		Lys	Met	Ser	Pro		Ser	Met
				70					75		_
	Leu	Phe	Tyr			Asn	Asp		Val	Val	Leu
				•- ·			_	85			
	Arg		Tyr	Glu	Asn	Met		Val	Asp	Glu	Cys
		90					95				
	Gly	Cys	Arg	•						•	

(2)	INI	FORMA	TION	I FOF	R SEC] ID	NO: J	3:			
	(i)		SEQUE	ENCE	CHAF	RACTE	RIST	CICS:	}		
		(A) I	LENGT	H:	102	amir	o ac	ids		
		(B) 1	YPE:	ап	ino	acid	ls			
		(C) 1	OPOI	OGY:	li	near	•			
	(ii	.) M	OLEC	ULE	TYPE	: p	rote	in			
	(ix	:) F	EATU	RE:							
		(A) N	AME:	Vg	r-1(fx)				
	(xi	.) S	EQUE	NCE	DESC	RIPT	ION:	SE	Q ID	NO:	13:
	Cys	Lys	Lys	His	Glu	Leu	Tyr	Val	Ser	Phe	Gln
	1				5					10	
	Asp	Val	Gly			Asp	Trp	Ile	Ile	Ala	Pro
				15					20		
	Xaa	Gly		Ala	Ala	Asn	Tyr	_	Asp	Gly	Glu
			25					30			
	Cys	Ser	Phe	Pro	Leu	Asn		His	Met	Asn	Ala
	mh	35	** * -		- 1		40		_		
		Asn	Hls	Ala	TTe		GIn	Thr	Leu	Val	
	45	Mak	3	D	63	50	**- 7	D	•		55
	AGT	Met	ASN	Pro	610	туг	vaı	Pro	гЛS		Cys
	Cve	Ala	Pro	መት ም		172]	λcn	7 7 a	Tlo	65	77 n 1
	Cy S.	73±U	110	70	Dy S	AGT	non	WTG	75	Set	AGT
	Leu	Tyr	Phe		Asp	Asn	Ser	Asn		Tle	T.en
		-3 -	80	<u>-</u> -	<u></u>			85			200
	Lys	Lys		Arq	Asn	Met	Val	_		Ala	Cvs
	•	90	•				95		5		
•	Gly	Cys	His								
	100	-									•

(2) INFORMATION FOR SEQ ID NO:14:

- SEQUENCE CHARACTERISTICS: LENGTH: 106 amino acids (i)
- (A)
- TYPE: protein STRANDEDNESS: single TOPOLOGY: linear (B) (C)
- (D)
- (ii) MOLECULE TYPE: protein

ساب البلدليد المقلة الدينونية المسامية الت

- (vi) ORIGINAL SOURCE:
- (A) ORGANISH: human
- (F) TISSUE TYPE: BRAIN
- (ix) FEATURE:
- (D) OTHER INFORMATION:
 /product= "GDF-1 (fx)"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Cys Arg Ala Arg Arg Leu Tyr Val Ser Phe Arg Glu Val Gly
1 10

Trp His Arg Trp Val Ile Ala Pro Arg Gly Phe Leu Ala Asn Tyr
15 20 25

Cys Gln Gly Gln Cys Ala Leu Pro Val Ala Leu Ser Gly Ser Gly 30 40

Gly Pro Pro Ala Leu Asn His Ala Val Leu Arg Ala Leu Met His 50 55

Ala Ala Pro Gly Ala Ala Asp Leu Pro Cys Cys Val Pro Ala 60 65 70

Arg Leu Ser Pro Ile Ser Val Leu Phe Phe Asp Asn Ser Asp Asn 75 80 85

Val Val Leu Arg Gln Tyr Glu Asp Het Val Val Asp Glu Cys Gly 90 95 100

Cys Arg 105

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Cys Xaa Xaa Xaa

(2)	IN	FORE	IATIC	N FC	R SE	Q II	NO:	16:								
		(i	´ (A) B) C)	NCE LENG TYPE STRA TOPO	TH: : nu NDED	1822 clei NESS	bas c ac	e pa id ngle	irs						
		(ii	.) H	OLEC	ULE	TYPE	: cD	NA								
		(vi	(A)	NAL ORGA TISS	NISH	: HO						·			
		(ix	, (B)	RE: NAME LOCA OTHE	TION	: 49	13		tand	ard_	name	= "h	OP1"		
•		(xi) S	EQUE	NCE :	DESC	RIPT	ION:	SEQ	· ID	NO:1	6:				
GGT	GCGG(GCC	CGGA	GCCC	GG A	GCCC	GGGT.	A GC	GCGT	AGAG	CCG	GCGC			C GTG s Val	57
				_										TGG Trp		105
							_					•	-	GAC Asp		153
_					_	_								GAG Glu 50		201
													-	CAC His		249
														TTC Phe	•	297
CTG	GAC	CTG	TAC	AAC	GCC	ATG	GCG	GTG	GAG	GAG	GGC	GGC	GGG	CCC	GGC	345

Leu Asp Leu Tyr Asn Ala Met Ala Val Glu Glu Gly Gly Gly Pro Gly

GGC CAG GGC TTC TCC TAC CCC TAC AAG GCC GTC TTC AGT ACC CAG GGC

Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser Thr Gln Gly

CC Pr	C CC	T CT	G GC(C AGO Sei 120	Let	G CAA	GAI Asi	C AGO	CAT His	Phe	CT(C ACC	C GA(GC(Ala 13(C GAC Asp	441
AT(G GT(C ATO	G AGO E Ser 135	TT(GTC Val	AAC Asn	CTC Lev	GT0 Val 140	. Glu	CAT His	C GA(C AAC Lys	GA# Glu 145	1 Phe	TTC Phe	489
CA(C CCA	A CG() Arg 15(y Tyr	CAC His	CAT His	CGA Arg	GAG Glu 155	Phe	CGG Arg	TTI Phe	GAT Asp	CTI Leu 160	Ser	Lys	ATC Ile	537
		ı Gly					Ala					Ile			GAC Asp	585
	Ile		GAA Glu								Arg				TAT Tyr 195	633
			CAG Gln		His				_						_	681
		Arg	ACC Thr 215										_			729
			ACC Thr													777
			CTC													825
Lys	Leu	Ala	GGC Gly	Leu	Ile		Arg	His	Gly							873
			GCT Ala				_	_	_	_		_			_	921
			GGG Gly 295				Arg									969
	Asn		GAA Glu			Arg :					Ala					1017

AGC Ser	GAC Asp 325	CAG Gln	AGG Arg	CAG Gln	GCC Ala	TGT Cys 330	AAG Lys	AAG Lys	CAC His	GAG Glu	CTG Leu 335	TAT Tyr	GTC Val	AGC Ser	TTC	106
			GGC Gly													111
			TGT Cys						_							116
			AAC Asn 375													1209
			GTG Val													1257
ATC Ile												_				1305
TAC Tyr 420				Val					Gly		_	TAGC	TCCI	CC		1351
GAGA	ATTC	AG A	CCCI	TTGG	G GC	CAAG	TTTT	TCT	GGAT	CCT	CCAT	TGCT	CG C	CTTG	GCCAG	1411
GAAC	CAGC	AG A	CCAA	CTGC	C TT	TTGT	GAGA	CCT	TCCC	CTC	CCTA	TCCC	CA A	CTTT	AAAGG	1471
TGTG	AGAG	TA T	TAGG	AAAC	A TG	AGCA	GCAT	ATG	GCTT	TTG	ATCA	GTTT	TT C	AGTG	GCAGC	1531
ATCC.	AATG	AA C	AAGA	TCCT	A CA	AGCT	GTGC	AGG	CAAA	ACC	TAGC	AGGA	AA A	AAAA	ACAAC	1591
GCAT	AAAG.	AA A	AATG	GCCG	G GC	CAGG'	TCAT	TGG	CTGG	GAA	GTCT	CAGC	CA T	GCAC	GGACT	1651
CGTT	TCCA	GA G	GTAA'	TAT	G AG	CGCC	TACC	AGC	CAGG	CCA	CCCA	GCCG	TG G	GAGG.	A:AGGG	1711
GGCG:	TGGC.	AA G	GGGT(GGGC.	A CA	TTGG'	TGTC	TGT	GCGA	AAG	GAAA	ATTG.	AC C	CGGA	AGTTC	1771
CTGT	ATA	AA T	GTCA	CAAT	A AA	ACGA	ATGA	ATG	AAAA	AAA .	AAAA	AAAA	AA A			1822

(2) INFORMATION FOR SEQ ID NO:17:

- SEQUENCE CHARACTERISTICS: (i)
 - (A) LENGTH: 431 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- MOLECULE TYPE: protein (ii)

- (ix) FEATURE:
 (D) OTHER INFORMATION: /Product="OP1-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met His Val Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala 1 5 10 15

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30

Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser 35 40 45

Gln Glu Arg Arg Glu Het Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu 50 60

Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro 65 70 75 80

Het Phe Met Leu Asp Leu Tyr Asn Ala Het Ala Val Glu Glu Gly Gly 85 90 95

Gly Pro Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser 100 105 110

Thr Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr
115 120 125

Asp Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys
130 135 140

Glu Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu 145 150 150 160

Ser Lys Ile Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile 165 170 . 175

Tyr Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Arg Ile 180 185 190

Ser Val Tyr Gln Val Leu Gln Glu His Leu Gly Arg Glu Ser Asp Leu 195 200 205.

Phe Leu Leu Asp Ser Arg Thr Leu Trp Ala Ser Glu Glu Gly Trp Leu 210 220

Val Phe Asp Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg 225 230 240

His Asn Leu Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser 245 250 255

Ile Asn Pro Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn 260 265 270

Lys Gln Pro Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe 275 280 285

Arg Ser Ile Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser 290 295 300

Lys Thr Pro Lys Asn Gln Glu Ala Leu Arg Met Ala Asn Val Ala Glu 305 310 315 320

Asn Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr 325 330 335

Val Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu 340 345 350

Gly Tyr Ala Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn 355 360 365

Ser Tyr Met Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His 370 380

Phe Ile Asn Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln 385 390 395 400

Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile
405 410 415

Leu Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His
420 425 430

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - -(A) LENGTH: 1873 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: MURIDAE
 - (F) TISSUE TYPE: EMBRYO
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 104..1393
 - (D) OTHER INFORMATION: /note= "MOP1 (CDNA)"

		(xi	i) S	SEQUE	ENCE	DESC	RIPI	CION:	SEC	ID	NO: 1	18:					
CIG	CAGO	CAAG	TGAC	CTC	GG 1	CGTG	GACC	CG CI	CCCC	TGCC	CCC	CTCCG	CTG	CCAC	CTGGG	G	60
CGG	CGCG	GGC	CCGG	TGCC	CC G	GATO	GCG(G TA	GAGC	CGGC	GCG	ATG Het	CAC His	GTG Val	G CGC Arg.		115
TCG Ser 5	Leu	CGC Arg	GCI Ala	GCG Ala	GCG Ala 10	Pro	CAC His	AGC Ser	TTC Phe	GTG Val	Ala	CTC Leu	TGG	GCG Ala	CCT Pro 20		163
CTG Leu	TTC	Leu	CTG Leu	CGC Arg 25	TCC Ser	GCC	CTG Leu	GCC Ala	GAT Asp 30	Phe	AGC Ser	CTG Leu	GAC Asp	AAC Asn 35	GAG Glu		211
GTG Val	CAC	TCC	AGC Ser 40	Phe	ATC	CAC	CGG	CGC Arg 45	CTC	CGC Arg	AGC Ser	CAG Gln	GAG Glu 50	CGG	CGG		259
GAG Glu	ATG Het	CAG Gln 55	Arg	GAG Glu	ATC	CTG Leu	TCC Ser 60	Ile	TTA Leu	GGG Gly	TTG Leu	CCC Pro 65	CAT	CGC	CCG Pro		307
		His	CTC												TTG Leu		355
GAC Asp 85	CTG Leu	TAC	AAC Asn	GCC Ala	ATG Het 90	GCG Ala	GTG Val	GAG Glu	GAG Glu	AGC Ser 95	GGG Gly	CCG Pro	GAC Asp	GGA Gly	CAG Gln 100		403
GGC Gly	TTC Phe	TCC Ser	TAC Tyr	CCC Pro 105	TAC Tyr	AAG Lys	GCC Ala	GTC Val	TTC Phe 110	AGT Ser	ACC Thr	CAG Gln	GGC Gly	CCC Pro 115	CCT Pro		451
TTA Leu	GCC Ala	AGC Ser	CTG Leu 120	CAG Gln	GAC Asp	AGC Ser	CAT His	TTC Phe 125	CTC Leu	ACT Thr	GAC Asp	GCC Ala	GAC Asp 130	ATG Met	GTC Val	,	499
			GTC Val														547
Arg	TAC Tyr 150	CAC His	CAT His	ÇGG Arg	GAG Glu	TTC Phe 155	CGG Arg	TTT Phe	GAT Asp	CTT Leu	TCC Ser 160	AAG Lys	ATC Ile	CCC Pro	GAG Glu		595
GGC Gly 165																	643

						Asn			,		ı Ile					G TGG	691
•					Ser					Asp					. Asp	AGC Ser	739
•				Trp					Gly					Asp		ACA Thr	787
			Ser					Val					Asn	_		TTA Leu	835
	CAG Gln 245	Leu	TCT Ser	GTG Val	GAG Glu	ACC Thr 250	Leu	GAT Asp	GGG Gly	CAG Gln	AGC Ser 255	Ile	AAC Asn	CCC	AAG Lys	TTG Leu 260	883
	GCA Ala	GGC Gly	CTG Leu	ATT Ile	GGA Gly 265	CGG Arg	CAT	GGA Gly	CCC	CAG Gln 270	Asn	AAG Lys	CAA	CCC	TTC Phe 275	ATG Met	931
·	GTG Val	GCC Ala	TTC Phe	TTC Phe 280	AAG Lys	GCC Ala	ACG Thr	GAA Glu	GTC Val 285	CAT	CTC	CGT Arg	AGT Ser	ATC Ile 290	CGG Arg	TCC Ser	979
	ACG Thr	GGG Gly	GGC Gly 295	AAG Lys	CAG Gln	CGC Arg	AGC Ser	CAG Gln 300	AAT Asn	CGC	TCC Ser	AAG Lys	ACG Thr 305	CCA Pro	AAG Lys	AAC Asn	1027
	CAA Gln	GAG Glu 310	GCC Ala	CTG Leu	AGG Arg	ATG Met	GCC Ala 315	AGT Ser	GTG Val	GCA Ala	GAA Glu	AAC Asn 320	AGC Ser	AGC Ser	AGT Ser	GAC Asp	1075
	CAG Gln 325	AGG Arg	CAG Gln	GCC Ala	Cys	AAG Lys 330	AAA Lys	CAT His	GAG Glu	Leu	TAC Tyr 335	GTC Val	AGC Ser	TTC Phe	CGA Arg	GAC Asp 340	1123
·	CTT Leu	GGC Gly	TGG Trp	CAG Gln	GAC Asp 345	TGG Trp	ATC Ile	ATT Ile	GCA Ala	CCT Pro 350	GAA Glu	GGC Gly	TAT Tyr	GCT Ala	GCC Ala 355	TAC Tyr	1171
:	TAC Tyr	TGT Cys	Glu	GGA Gly 60	GAG Glu	TGC Cys	GCC Ala	TTC Phe	CCT Pro 365	CTG Leu	AAC Asn	TCC Ser	Tyr	ATG Met 370	AAC Asn	GCC Ala	1219
•	ACC .	Asn :	CAC His 375	GCC A	ATC (GTC (Val (Gln	ACA Thr 380	CTG Leu	GTT Val	CAC His	Phe	ATC . Ile . 385	AAC Asn	CCA Pro	GAC Asp	1267

.

.

•

.

ACA GTA C Thr Val P 390	CCC AAG (Pro Lys 1	Pro Cys (Cys Ala	CCC ACC Pro Thr	CAG CTC Gln Leu 400	AAC GCC Asn Ala	Ile Se	T 1315
GTC CTC T Val Leu T 405	CAC TTC Carry Phe A	GAC GAC A Asp Asp S 410	GC TCT Ser Ser	AAT GTC Asn Val	ATC CTG Ile Leu 415	AAG AAG Lys Lys	TAC AG Tyr Ar 42	g
AAC ATG G Asn Met V	Val Val A	CGG GCC TATE Ala C	GT GGC Cys Gly	TGC CAC Cys His 430	TAGCTCTT	CC TGAG	ACCCTG	1413
ACCTTTGCG	G GGCCAC	CACCT TTC	CAAATCT	TCGATGT	CTC ACCA	TCTAAG !	TCTCTCA	CTG 1473
CCCACCTTG	G CGAGGA	AGAAC AGA	CCAACCT	CTCCTGA	GCC TTCC	CTCACC :	TCCCAAC	CGG 1533
AAGCATGTA	A GGGTTC	CAGA AAC	CTGAGCG	TGCAGCA	GCT GATG	AGCGCC (CTTTCCTT	rct 1593
GGCACGTGA	C GGACAA	GATC CTA	CCAGCTA	CCACAGC	AAA CGCC	TAAGAG (CAGGAAA	AAT 1653
GTCTGCCAG	G AAAGTG	TCCA GTG	TCCACAT	GGCCCCT	GGC GCTC	TGAGTC 1	rttgagg <i>a</i>	AGT 1713
AATCGCAAG	C CTCGTT	CAGC TGC	AGCAGAA	GGAAGGG	CTT AGCC	AGGGTG (GCGCTGG	GCG 1773
TCTGTGTTG	A AGGGAA	ACCA AGC	AGAAGCC	ACTGTAA	TGA TATG	TCACAA]	CAAAACCC	CAT 1833
GAATGAAAA	AAAAA A	AAA AAA	AAAAAA	AAAAGAA'	PTC	٠		1873

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 430 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (D) OTHER INFORMATION: /product= "mOP1-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Het His Val Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala 1 5 10 15

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 20 25 30

Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser 35 40 45

Gln	Glu 50	Arg	Ārg	Glu	Het	Gln 55	Arg	Glu	Ile	Leu	Ser 60	Ile	Leu	Gly	Leu
			Pro			His	Leu	Gln	Gly	Lys 75	His	Asn	Ser	Ala	Pro 80

Het Phe Het Leu Asp Leu Tyr Asn Ala Het Ala Val Glu Glu Ser Gly 85 90 95

Pro Asp Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser Thr 100 105 110

Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr Asp 115 120 125

Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys Glu
130 135 140

Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu Ser 145 150 155 160

Lys Ile Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile Tyr 165 170 175

Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Gln Ile Thr 180 185 190

Val Tyr Gln Trp Leu Gln Glu His Ser Gly Arg Glu Ser Asp Leu Phe 195 200 205

Theu Leu Asp Ser Arg Thr Ile Trp Ala Ser Glu Glu Gly Trp Leu Val 210 215 220

Phe Asp Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg His 225 230 235 240

Asn Leu Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser Ile 245 250 255

Asn Pro Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn Lys 260 265 270

Gln Pro Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Leu Arg 275 280 285

Ser Ile Arg Ser Thr Gly Gly Lys Gln Arg Ser Gln Asn Arg Ser Lys 290 295 300

Thr Pro Lys Asn Gln Glu Ala Leu Arg Met Ala Ser Val Ala Glu Asn 305 310 315 320

Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr Val 325 330 335

المالة لالمال المهاولاتونية المالانية المالانية

Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu Gly 340

Tyr Ala Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser 355

Tyr Het Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His Phe 370 375 380

Ile Asn Pro Asp Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln Leu 385 390 395 400

Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu 405 410 415

Lys Lys Tyr Arg Asn Het Val Val Arg Ala Cys Gly Cys His 420 425 430

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1723 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- (F) TISSUE TYPE: HIPPOCAMPUS

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 490..1696
- (D) OTHER INFORMATION: /note= "hOP2 (cDNA)"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

60	TGGCACGGCA	GAGCAGGAGG	GCTGTGGTTG	GGCTGGAGGA	GAGCAGGAGT	GGCGCCGGCA
120	GCAACAGCTC	AGGCGCTGGA	ACGGCCCAGG	AGTGGCGGAG	GCTCCCTATG	GGGCTGGAGG
180	TGCTCGGACC	GCCCCTGCGC	CTCGCCCATC	GCTGCAGGAG	CCAAGCGGTG	CCACACCGCA
240	GAGTCCCAGT	CATTGGCCGA	GCGACAGAGG	GGGTACGGCG	CCGGACTGGC	GCGGCCACAG
300	CAGGAGCCAG	CCTCTCCGTC	GCGTCCCGGT	CGAGGCGGTG	GCCCCGGCCT	CCGCAGAGTA
360	CCGCCCGTCC	GGCCGGCTGC	CCGCGCCTGA	GCTCCAGGGA	GCGCGGCGGG	GACAGGTGTC
420	GGGCGTCCCC	CTTGCCGTCG	GCCCAGCCTC	CCCCCCCCA	רמרומרותר	cccccccc

AGO	GCCC:	rggg	TCG	GCCGC	GG A	AGCCC	ATG	CG CC	GCCC	CTGA	GC	GCCC	CAGC	TGA	GCGCC	CC 480
CGG	CCT			ACC G												528
		Cys					Gly	_		_		ı Arş			CCC Pro	576
	Cys					Leu					Arg				G CAG Gln 45	624
					Val					Gly					CGC	672
				Ala					Ala						ATG Met	720
			Tyr										Asp		GCG	768
				CGC								Het				816
	Met			CGA Arg												864
AAG Lys	GAG Glu	TTC Phe	CGC Arg	TTT Phe 130	GAC Asp	CTG Leu	ACC Thr	CAG Gln	ATC Ile 135	CCG Pro	GCT Ala	GGG Gly	GAG Glu	GCG Ala 140	GTC Val	912
				TTC Phe												960
AAC Asn	AGG Arg	ACC Thr 160	CTC	CAC His	GTC Val	AGC Ser	ATG Met 165	TTC Phe	CAG Gln	GTG Val	GTC Val	CAG Gln 170	GAG Glu	CAG Gln	TCC Ser	1008
				GAC Asp						Leu						1056
				TGG Trp					Val							1104

						r		CAC	י רידור	CCA	CTC	· ccc	י רידר	ጉ ጥልባ	י כידנ	GAG	1152
	Tr	G TTO Let	g Cr	G AAU u Lys	210	g His	Lys	Asp	Leu	Gly 215	Leu	Arg	Lev	Тут	Val 220	GAG Glu	
	ACT	GA(G GA(GGG Gly 225	His	G AGC	GTG Val	GAI Asp	CCT Pro 230	Gly	CTG	GCC	GGC Gly	Leu 235	Leu	GGT	1200
	CAA Gln	CGC	G GC(g Ala 24(a Pro	CGC Arg	TCC Ser	CAA Gln	CAG Gln 245	Pro	TTC Phe	GTG Val	GTC Val	Thr 250	Phe	TTC Phe	AGG	1248
			Pro	G AGT				Thr					Arg			AGG	1296
	Arg	Arg	Glr	CCG Pro			Ser					Gln					1344
				TTT Phe													1392
				GAG Glu 305	Leu												1440
				-GCT Ala													1488
				CCA Pro													1536
•				CTG Leu						Pro		Ala					1584
				CCC Pro					Ala								1632
				AAC Asn 385									Met		_		1680
		Cys		TGC Cys		T GA	GTCA	GCCC	GCC	CAGC	CCT	ACTG	CAG				1723

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A)OTHER INFORMATION: /product= "hOP2-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
- Met Thr Ala Leu Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys
 1 10 15
- Ala Leu Gly Gly Gly Pro Gly Leu Arg Pro Pro Pro Gly Cys Pro 25 30
- Gln Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Val Gln Arg Glu Ile
 35 40 45
- Leu Ala Val Leu Gly Leu Pro Gly Arg Pro Arg Pro Arg Ala Pro Pro 50 60
- Ala Ala Ser Arg Leu Pro Ala Ser Ala Pro Leu Phe Met Leu Asp Leu 65 70 75 80
- Tyr His Ala Met Ala Gly Asp Asp Glu Asp Gly Ala Pro Ala Glu
 85 90 95
- Arg Arg Leu Gly Arg Ala Asp Leu Val Met Ser Phe Val Asn Met Val 100 105 110
- Glu Arg Asp Arg Ala Leu Gly His Gln Glu Pro His Trp Lys Glu Phe 115 120 125
- Arg Phe Asp Leu Thr Gln Ile Pro Ala Gly Glu Ala Val Thr Ala Ala 130 135 140
- Glu Phe Arg Ile Tyr Lys Val Pro Ser Ile His Leu Leu Asn Arg Thr
 145 150 155 160
- Leu His Val Ser Met Phe Gln Val Val Gln Glu Gln Ser Asn Arg Glu 165 170 175
- Ser Asp Leu Phe Phe Leu Asp Leu Gln Thr Leu Arg Ala Gly Asp Glu 180 185 190
- Gly Trp Leu Val Leu Asp Val Thr Ala Ala Ser Asp Cys Trp Leu Leu 195 200 205

Lys Arg His Lys Asp Leu Gly Leu Arg Leu Tyr Val Glu Thr Glu Asp 210 220

Gly His Ser Val Asp Pro Gly Leu Ala Gly Leu Leu Gly Gln Arg Ala 235 230 235 240

Pro Arg Ser Gln Gln Pro Phe Val Val Thr Phe Phe Arg Ala Ser Pro 245 250 255

Ser Pro Ile Arg Thr Pro Arg Ala Val Arg Pro Leu Arg Arg Gln 260 265 270

Pro Lys Lys Ser Asn Glu Leu Pro Gln Ala Asn Arg Leu Pro Gly Ile 275 280 285

Phe Asp Asp Val His Gly Ser His Gly Arg Gln Val Cys Arg Arg His 290 295 300

Glu Leu Tyr Val Ser Phe Gln Asp Leu Gly Trp Leu Asp Trp Val Ile 305 310 315 320

Ala Pro Gln Gly Tyr Ser Ala Tyr Tyr Cys Glu Gly Glu Cys Ser Phe 325 330 335

Pro Leu Asp Ser Cys Het Asn Ala Thr Asn His Ala Ile Leu Gln Ser 340 345 350

Leu Val His Leu Het Lys Pro Asn Ala Val Pro Lys Ala Cys Cys Ala 355 360 365

Pro Thr Lys Leu Ser Ala Thr Ser Val Leu Tyr Tyr Asp Ser Ser Asn 370 375 380

Asn Val Ile Leu Arg Lys His Arg Asn Met Val Val Lys Ala Cys Gly 385 390 395 400

Cys His

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1926 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: MURIDAE
 - (F) TISSUE TYPE: EMBRYO
 - (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 93..1289

(D) OTHER INFORMATION: /note= "mOP2 cDNA"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

		•	•											
	GCCAG	GCACA	GGTG	CGCC	GT C	TGGI	CCTC	c cc	GTCI	GCC	TCA	GCCG	AGC	50
CCGACCA	GCT AC	CAGTGĠ	AT G	CGCG	CCGG	C TG	AAAG	TCCG			_	ATG Het	-	104
CCC GGG Pro Gly 5														152
GGC CAC Gly His	_												Gly	200
GCG CGC Ala Arg										_				248
CTA CCG Leu Pro														296
CCA GCG Pro Ala 70														344
GAT GAC Asp Asp 85														392
CTG GTC Leu Val			Val		Met	Val								440
TAC CAG Tyr Gln		o His												488
CCT GCT Pro Ala				Thr										536
CCC AGC APro Ser 150			Leu					His						584

GT Va 16	l Va	C CA 1 Gl	A GAO	G CA	C TCC s Ser 170	Asr	AG(G GA(g Glu	G TC	GAC Asi 175	Lei	G TT(u Phe	TT: Pho	r TT(G GAT L Asp 180	
					g Ser					7 Trp					C ATC o Ile	
				Ası					ı Asn					Let	G GGA	
		_	ı Tyr					Asp					Asp		GGC Gly	
		Gly										Arg			TTC Phe	824
-	Val		TTC Phe		_	_					_				CGG Arg 260	872
			CCA Pro		Lys											920
			AAC Asn 280				_					_		_		968
	-		GAG Glu													1016
		Gly	TGG													1064
			GAG Glu													1112
		_	CAT His					Ser								1160
			CCC Pro 360				Cys					Leu				1208

TCT GTG CTG TAC TAT Ser Val Leu Tyr Tyr 375	GAC AGC AGC Asp Ser Ser 380	AAC AAT GTC Asn Asn Val	ATC CTG CGT AAA CAC Ile Leu Arg Lys His 385	125
CGT AAC ATG GTG GTC Arg Asn Het Val Val 390			TGAGGCCCCG CCCAGCATCC	1309
TGCTTCTACT ACCTTACCA	r ctggccgggc	CCCTCTCCAG	AGGCAGAAAC CCTTCTATGT	1369
TATCATAGCT CAGACAGGG	G CAATGGGAGG	CCCTTCACTT	CCCCTGGCCA CTTCCTGCTA	1429
AAATTCTGGT CTTTCCCAG	TCCTCTGTCC	TTCATGGGGT	TTCGGGGCTA TCACCCCGCC	1489
CTCTCCATCC TCCTACCCC	A AGCATAGACT	GAATGCACAC	AGCATCCCAG AGCTATGCTA	1549
ACTGAGAGGT CTGGGGTCAG	CACTGAAGGC	CCACATGAGG	AAGACTGATC CTTGGCCATC	1609
CTCAGCCCAC AATGGCAAA	TCTGGATGGT	CTAAGAAGGC	CGTGGAATTC TAAACTAGAT	1669
GATCTGGGCT CTCTGCACCA	TTCATTGTGG	CAGTTGGGAC	ATTTTTAGGT ATAACAGACA	1729
CATACACTTA GATCAATGCA	TCGCTGTACT	CCTTGAAATC	AGAGCTAGCT TGTTAGAAAA	1789
AGAATCAGAG CCAGGTATAC	CGGTGCATGT	CATTAATCCC	AGCGCTAAAG AGACAGAGAC	1849
AGGAGAATCT CTGTGAGTTC	AAGGCCACAT	AGAAAGAGCC	TGTCTCGGGA GCAGGAAAAA	1909
AAAAAAAAC GGAATTC		•		1926

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 399 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (D) OTHER INFORMATION: /product= "mOP2-PP"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Ala Met Arg Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys
1 10 15

Ala Leu Gly Gly His Gly Pro Arg Pro Pro His Thr Cys Pro Gln
20 25 30

Arg Arg Leu Gly Ala Arg Glu Arg Arg Asp Met Gln Arg Glu Ile Leu Ala 35 40 45

Val Leu Gly Leu Pro Gly Arg Pro Arg Pro Arg Ala Gln Pro Ala Ala 50 55 60 65

Ala Arg Gln Pro Ala Ser Ala Pro Leu Phe Het Leu Asp Leu Tyr His Ala
70 75 80

Het Thr Asp Asp Asp Gly Gly Pro Pro Gln Ala His Leu Gly Arg 85 90 95

Ala Asp Leu Val Met Ser Phe Val Asn Met Val Glu Arg Asp Arg Thr 100 105 110

Leu Gly Tyr Gln Glu Pro His Trp Lys Glu Phe His Phe Asp Leu Thr
115 120 125 130

Gln Ile Pro Ala Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile Tyr 135 140 145

Lys Glu Pro Ser Thr His Pro Leu Asn Thr Thr Leu His Ile Ser Met
150 155 160

Phe Glu Val Val Gln Glu His Ser Asn Arg Glu Ser Asp Leu Phe Phe 165 170 175

Leu Asp Leu Gln Thr Leu Arg Ser Gly Asp Glu Gly Trp Leu Val Leu 180 185 190

Asp Ile Thr Ala Ala Ser Asp Arg Trp Leu Leu Asn His His Lys Asp 195 200 205 210

Leu Gly Leu Arg Leu Tyr Val Glu Thr Ala Asp Gly His Ser Met Asp 215 220 225

Pro Gly Leu Ala Gly Leu Leu Gly Arg Gln Ala Pro Arg Ser Arg Gln 230 235 240

Pro Phe Met Val Thr Phe Phe Arg Ala Ser Gln Ser Pro Val Arg Ala 245 250 255

Pro Arg Ala Ala Arg Pro Leu Lys Arg Arg Gln Pro Lys Lys Thr Asn 260 265 270

Glu Leu Pro His Pro Asn Lys Leu Pro Gly Ile Phe Asp Asp Gly His 275 280 285 290

Gly Ser Arg Gly Arg Glu Val Cys Arg Arg His Glu Leu Tyr Val Ser 295 300 305

Phe Arg Asp Leu Gly Trp Leu Asp Trp Val Ile Ala Pro Gln Gly Tyr 310 315 320

Ser Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asp Ser Cys 325 330 335

Met Asn Ala Thr Asn His Ala Ile Leu Gln Ser Leu Val His Leu Met 340 355 350

Lys Pro Asp Val Val Pro Lys Ala Cys Cys Ala Pro Thr Lys Leu Ser 355 360 365 370

Ala Thr Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg 375 380 385

Lys His Arg Asn Het Val Val Lys Ala Cys Gly Cys His 390

25

What is claimed is:

- 1. A composition for increasing the progenitor cell population in a mammal comprising:

 progenitor cells, stimulated <u>ex vivo</u> by exposure to a morphogen at a concentration and for a time sufficient such that said progenitor cells are stimulated to proliferate.
- 3. The composition of claim 1 or 2 wherein 20 said progenitor cells are hemopoietic pluripotential stem cells.
 - 4. The composition of claim 1 or 2 wherein said progenitor cells are of mesenchymal origin.
 - 5.____ A_composition for inducing the formation of non-chondrogenic replacement tissue at a tissue locus in a mammal comprising:
- a biocompatible, acellular matrix

 30 having components specific for said tissue and
 capable of providing a morphogenically permissive,
 tissue-specific environment; and
 - a morphogen such that said morphogen, when absorbed on said matrix and provided to a

tissue-specific locus requiring replacement tissue, is capable of inducing the developmental cascade of tissue morphogenesis at said locus.

5 6. A composition for inducing the formation of non-chondrogenic replacement tissue at a tissue locus in a mammal comprising:

a biocompatible, acellular matrix capable of providing a morphogenically permissive environment; and

10

a morphogen such that said morphogen, when absorbed on said matrix and provided to a tissue-specific locus requiring replacement tissue, is capable of inducing the developmental cascade of tissue morphogenesis at said locus.

- 7. The composition of claim 5 or 6 wherein said matrix is biodegradable.
- 20 8. The composition of claim 5 or 6 wherein said matrix is derived from organ-specific tissue.
- 9. The composition of claim 5 or 6 wherein said matrix comprises collagen and cell attachment
 25 factors selected from the group consisting of glycosaminoglycans and proteoglycans.
- 10. The composition of claim 5 or 6 wherein said matrix defines pores of a dimension sufficient to permit the influx, differentiation and proliferation of migratory progenitor cells from the body of said mammal.

11.	The composition of claim 1, 2, 5 or 6
	morphogen comprises an amino acid
	ing at least 70% homology with one of
the sequences	selected from the group consisting of:
hOP1 (Seq. ID	No. 5); mOP1 (Seq. ID No. 6); hOP2
(Seq. ID No.	7); mOP2 (Seq. ID No. 8); CBMP2A(fx)
(Seq. ID No.	9); CBMP2B(fx) (Seq. ID No. 10); DPP(fx)
(Seq. ID No.	11); Vgl(fx) (Seq. ID No. 12); Vgr-1(fx)
(Seg. ID No.	13); and GDF-1(fx) (Seq. ID No. 14).

5

12. The composition of claim 11 wherein said morphogen comprises an amino acid sequence sharing at least 80% homology with one of the sequences selected from said group.

15

20

- 13. The composition of claim 12 wherein said morphogen conprises an amino acid sequence having greater than 60% amino acid identity with the sequence defined by residues 43-139 of Seq. ID No.5 (hOP1).
- 14. The composition of claim 13 wherein said morphogen comprises an amino acid sequence having greater than 65% identity with the sequence defined by residues 43-139 of Seq. ID No.5 (hOP1).
 - 15. A method of increasing a population of progenitor cells comprising the step of:

contacting progenitor cells with a morphogen at a concentration and for a time sufficient such that said progenitor cells are stimulated to proliferate.

- progenitor cells in a mammal comprising the additional step of supplying said stimulated progenitor cells to a mammal to increase the progenitor cell population in said mammal.
 - 17. A method of inducing non-chondrogenic tissue growth in a mammal comprising the step of: contacting progenitor cells with a
- 10 morphogen at a concentration and for a time sufficient such that said progenitor cells, when provided to a tissue-specific locus in a mammal, are capable of nonchondrogenic tissue-specific differentiation and proliferation at said locus.
 - 18. The method of claim 14 or 16 wherein said progenitor cells are of mesenchymal origin.

30

19. A method of maintaining the phenotypic expression of differentiated cells in a mammal comprising the steps of:

contacting said differentiated cells with a morphogen at a concentration and for a time sufficient such that said cells are stimulated to express their phenotype.

- 20. The method of claim 19 wherein said differentiated cells are senescent or quiescent cells.
- A method of inducing non-chondrogenic tissue growth at a tissue locus in a mammal comprising:

providing said locus with a morphogen at a concentration and for a time sufficient such that said protein, when provided to a morphogenically permissive tissue-specific locus, is capable of inducing the developmental cascade of tissue morphogenesis at said locus.

- 22. The method of claim 21 wherein said nonchondrogenic tissue is hepatic tissue, and said tissue locus is the liver.
 - The method of claim 22 wherein said protein is provided to said locus in association with a biocompatible, acellular matrix.
 - The method of claim 23 wherein said matrix has components specific for said tissue.
- 25. The method of claim 23 wherein said matrix is biodegradable.
 - The method of claim 23 wherein said matrix is derived from organ-specific tissue.
- 25 27. The method of claim 23 wherein said matrix comprises collagen and cell attachment factors specific for said tissue.
- The method of claim 23 wherein said matrix defines pores of a dimension sufficient to permit the influx, differentiation and proliferation of migratory progenitor cells from the body of said mammal.

where said morphogen comprises an amino acid sequence sharing at least 70% homology with one of the sequences selected from the group consisting of hOP1 (Seq. ID No. 5); mOP1 (Seq. ID No. 6); hOP2 (Seq. ID No. 7); mOP2 (Seq. ID No. 8); CBMP2A(fx) (Seq. ID No. 9); CBMP2B(fx) (Seq. ID No. 10); DPP(fx) (Seq. ID No. 11); Vgl(fx) (Seq. ID No. 12); Vgr-l(fx) (Seq. ID No. 13); and GDF-l(fx) (Seq. ID No. 14).

- 30. A method for inducing hepatic tissue formation at a damaged tissue locus in a mammalian liver comprising providing to said locus a therapeutic amount of a morphogen comprising at least residues 43-139 of hOP-1 (Seq. ID No. 5).
 - A method for diagnosing tissue dysfunction in a human, the method comprising the steps of:
- 20 (a) repeating, at intervals, the step of detecting the concentration of endogenous anti-morphogen antibody present in a human; and
- (b) comparing said detected concentrations, wherein changes in the detected concentrations are indicative of status of said tissue.
- 32. A method for evaluating the status of a tissue, the method comprising the step of detecting the concentration of a morphogen present in said tissue.
 - 33. The method of claim 32 comprising the additional steps of:
- (a) repeating, at intervals, the step of detecting the concentration of morphogen present in said tissue; and

(b) comparing said detected concentrations, wherein changes in said detected concentrations are indicative of the status of said tissue.

5

- The method of claim 33 wherein said morphogen is selected from the group consisting of: hOP1 (Seq. ID No. 5); mOP1 (Seq. ID No. 6); hOP2 (Seq. ID No. 7); mOP2 (Seq. ID No. 8); CBMP2A(fx) (Seq. ID No. 9); CBMP2B(fx) (Seq. ID No. 10); DPP(fx) (Seq. ID No. 11); Vgl(fx) (Seq. ID No. 12); Vgr-1(fx) (Seq. ID No. 13); and GDF-1(fx) (Seq. ID No. 14).
- 35. A morphogen useful in the manufacture 15 of a pharmaceutical for use in the induction of nonchondrogenic mammalian tissue growth.
- 36. A morphogen useful in the manufacture of a pharmaceutical for use as an inducer of progenitor cell proliferation.
- 37. A morphogen useful in the manufacture of a pharmaceutical for use in maintaining the phenotypic expression of differentiated cells in a mammal.
 - 38. A morphogen useful in the manufacture of a pharmaceutical for use in the induction of hepatic tissue growth.
- 39. The morphogen of claims 35, 36, 37, or 38 wherein said morphogen comprises an amino acid sequence sharing at least 70% homology with a sequence selected from the group consisting of: hOP1 (Seq. ID No. 5); mOP1 (Seq. ID No. 6); hOP2 (Seq. ID

No. 7); mOP2 (Seq. ID No. 8); CBMP2A(fx) (Seq. ID No. 9); CBMP2B(fx) (Seq. ID No. 10); DPP(fx) (Seq. ID No. 11); Vgl(fx) (Seq. ID No. 12); Vgr-l(fx) (Seq. ID No. 13); and GDF-l(fx) (Seq. ID No. 14).

5

40. The morphogen of Claim 39 wherein said morphogen comprises an amino acid sequence sharing at least 80% homology with one of the sequences selected from said group.

10

- 41. A morphogen useful in the manufacture of a pharmaceutical to inhibit neoplastic cell growth.
- 42. A cancer therapeutic agent comprising a morphogen.
 - 43. A therapeutic agent for tissue growth induction, the therapeutic agent comprising a morphogen.

- A therapeutic agent for inducing phenotypic expression of differentiated cells, the therapeutic agent comprising a morphogen.
- 25 45. A therapeutic agent for inducing progenitor cell proliferation, the therapeutic agent comprising a morphogen.

Fig. 1

Fig. 2

1 2 1 2 1 2

Fig. 3

SUBSTITUTE SHEET

Fig. 4A

Fig. 4B

Fig. 5A

Fig. 5B

SUBSTITUTE SHEET

Fig. 6A

Fig. 6B SUBSTITUTE SHEET

Fig. 6C

Fig. 6D substitute sheet

Service Service Service

Fig. 8A

rig. «B

WO 92/15323 PCT/US92/01968

11/11 -

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US92/01968

L. CLASSIFICATION OF SUBJECT MATTER (if soveral electification symbols apply, indicate all)											
I. CLAS	I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ³ According to International Patent Classification (IPC) or to both National Classification and IPC										
IPC (5) US CL	IPC (5): A61K 37/12; A61F 2/02; C07K 13/00 US CL : 350/356, 402; 424/423, 426; 435/240.243										
II. FIELD	S SEAR										
			tentation Searched ⁴								
Classificati	dassification System Classification Symbols										
U.S.	U.S. 350/356, 402; 424/423, 426; 435/240.243										
	Documentation Searched other than Minimum Documentation										
	to the extent that such Documents are included in the Fields Searched b										
CHEMIC	CHEMICAL ABSTRACTS, APS										
III. DOC	UMENTS	CONSIDERED TO BE RELEVANT 14									
Category*	Citatio	on of Document, 16 with indication, where app	ropriate, of the relevant passages 17	Relevant to Claim No. 18							
X/Y		89/09788 (OPPERMANN ET AL. e document.) 19 OCTOBER 1989, see	1/5-45							
X/Y		89/09787 (KUBERASAMPATH E	r AL.) 19 OCTOBER 1989,	1/5-45							
		•		•							
			•								
		and the state of t									
				·							
				•							
		•	•								
											
	1		. •								
	[•									
]	•									
100		of aited decrements 15	"T" later document published after	r the international filing							
"A" doc	Oppliadital and all all and all and all and all and all all and all and all all all all all all all all all al										
"E" earl	not considered to be of particular relevance "E" earlier document but published on or after the "X" document of particular relevance; the claimed										
"L" doc	International filing date invention cannot be considered novel of cannot be "L" document which may throw doubts on priority claim(s) considered to involve an inventive step										
"O" doc	another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition inventive step when the document is combined with										
"P" doc	or other means one or more other such documents, such combination										
	TIFICATI		G GOOGINGILLIONSON OF THE OUT								
		Completion of the International Search ²	Date of Mailing of this Internationa	Search Report ²							
12	12 June 1992 International Searching Authority Signature of Authorized Officer 20 //										
Internation	International Searching Authority ¹ Signature of Authorized Officer ²⁰										
IS	A/US		JAMES KETTER 7								