

Immune responses to gut bacteria associated with time to diagnosis and clinical response Type 1 to T-cell directed therapy for type 1 diabetes prevention

Quin Yuhui Xie^{1,2}, Sean Oh², Anthony Wong², Christopher Yau^{2,3}, Kevan Herold⁴, Jayne Danska^{1,2,3}

¹Dept of Medical Biophysics, University of Toronto, ON, Canada ²Hospital for Sick Children Research Institute, Toronto, ON, Canada ⁴ Yale School of Medicine, New Haven, CT, USA

Background

Type 1 Diabetes (T1D) is mediated by T cells that destroy insulinsecreting β cells in the pancreatic islets. In TN10, the first human T1D prevention trial, a single treatment course with teplizumab delayed disease onset in participants at high risk for T1D¹. However, heterogeneity in therapeutic responses in TN-10 identify percentage of serum-Ab-bound bacteria. gaps in understanding disease progression and treatment responses.

Figure 1. Teplizumab association with delayed T1D progression Hypothesis

We previously found anti-commensal responses (ACAb) displayed interaction with *HLA-DR*, which accounts for the majority of T1D genetic $\sum_{i=0.25}^{\infty} 0.25$ risk, in its association to future T1D diagnosis. Therefore, we hypothesize that immune reactivities to gut bacteria are associated with progression to T1D and with teplizumab treatment responses.

Methods - ACAb Assay

Serially diluted serum sample were incubated with cultured, live-stained commensal intestinal bacterial species. Antiisotype secondary Ab were added to the serum-incubated bacteria and evaluated by flow cytometry to quantify the

Figure 2. Schematic of the ACAb assay platform Results

IgG2 responses to 3 bacterial species at baseline (before treatment) were associated with time to T1D diagnosis: Bifidobacterium longum (*B.longum*), Enterococcus faecalis (*E.faecalis*) and Dialister invisus (*D. invisus*).

Figure 3. Baseline *B.longum* response association with time to T1D

Baseline ACAb responses, in addition to known T1D risk factors, such as treatment arm, age, HLA-DR4, and C peptide level, improved performance of Cox models in predicting T1D diagnosis.

Figure 4. ROC curves for predicted T1D 550 days postrandomization

	Predictors	Integrated AUC	AIC	P value
Model1	Treatment.Arm	0.59	238.51	-
Model2	Age+Treatment.Arm	0.63	237.42	(vs model1) 0.0318
Model3	Treatment.Arm*DR4+Age	0.70	232.61	(vs Model2) 0.01
Model4	Treatment.Arm*DR4+Age+Di.lgG2*DR4	0.73	231.15	(vs Model3) 0.04
Model5	Treatment.Arm+Age+BMI+mu_cpep	0.68	234.61	(vs Model2) 0.009
Model6	Treatment.Arm+Age+BMI+mu_cpep+Ef.lgG2	0.72	230.84	(vs Model5) 0.009
Model7	Treatment.Arm+Age+BMI+mu_cpep+BI.lgG2	0.71	231.23	(vs Model5) 0.02

Table 1. Predictors and performance metrics of Cox models

References

1. Herold, K. C., et al An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. New England Journal of Medicine 381, 603–613 (2019).