Classifying skin lesions

By Mohamed Elghetany, Megan Martin, Mike Khor

Background & Objective

- Skin cancer is the most common cancer worldwide¹
- Early and correct classification impacts treatment
- Lesion appearance is main driver of biopsy/treatment

Objective:

Train a model to classify skin lesion images for different types of cancers and benign lesions

Benign
Asymmetry
Both sides match other

Border: Regular Edges

Colour: Consistent Shades

Diameter
Lesion is smaller than 6mm

Melanoma

Asymmetry
One side does not match other

Border: Irregular or Blurred

Colour: Different Shades

Diameter
Lesion is larger then 6mm

About the Data

- Dataset obtained from International Skin Imaging Collaboration (ISIC)³
- Utilizing ISIC 2019 dataset which contains dermoscopic images for 8 diagnostic categories
 - Patient metadata for each image
- Dataset contains 25,331 images
 - 21,311 images with complete metadata
 - Unbalanced dataset most are labeled as benign

	image	age_approx	anatom_site_general	lesion_id	sex
0	ISIC_0000000	55.0	anterior torso	NaN	female
1	ISIC_0000001	30.0	anterior torso	NaN	female
2	ISIC_0000002	60.0	upper extremity	NaN	female
3	ISIC_0000003	30.0	upper extremity	NaN	male
4	ISIC_0000004	80.0	posterior torso	NaN	male
25326	ISIC_0073247	85.0	head/neck	BCN_0003925	female
25327	ISIC_0073248	65.0	anterior torso	BCN_0001819	male
25328	ISIC_0073249	70.0	lower extremity	BCN_0001085	male
25329	ISIC_0073251	55.0	palms/soles	BCN_0002083	female
25330	ISIC_0073254	50.0	upper extremity	BCN_0001079	male
25331 ı	rows × 5 colun	nns			

Metadata for ISIC 2019 dataset.

Addressing Class Imbalance

 >50% images in a single class (benign moles)

	MEL	NV	BCC	AK	BKL	DF	VASC	scc
4	522.0	12875.0	3323.0	867.0	2624.0	239.0	253.0	628.0

- Downsampled or upsampled classes to 2,000 images each, resulting in 16,000 total images for balanced dataset
- Augmentation including random flips, rotations, saturation, contrast, brightness changes were utilized to upsample

Image pre-processing

- Scaled down varied image sizes to 224 x224
- 25% of images had black regions surrounding lesion
 - Detection: does this image need cropping? Use value difference between corner and center.
 - Mask: find all pixels that are above a threshold value "light region"
 - Determine crop border: min/max position of "light region"
 - o *Crop*: produce final image

Block Diagram

Tech Stack

- Jupyter Lab in Amazon Sagemaker (varying EC2 sizes)
- Python 3 image: Tensorflow 2.6, Python 3.8 GPU optimized
- Scikit-Learn
- Keras
- Numpy, Matplotlib, Pandas

Evaluation and Success Parameters

Success defined as:

• Recall: > 60%

Precision: >50%

• ROC AUC: >60%

Accuracy: >55%

Models and Methods

- 1. Logistic Regression
- 2. K-Nearest Neighbors (KNN)
- 3. Random Forest
- 4. Convolutional Neural Network (CNN)
- 5. CNN + hyperparameter tuning using Optuna
- 6. CNN + transfer learning using EfficientNet
- 7. CNN + Optuna + EfficientNet
- 8. CNN + XGBoost
- 9. CNN+ EfficientNet + Metadata (mixed image and structured data)
- 10. Clustering of Meta data using K-means and K-prototypes

Logistic Regression, KNN, Random Forest

First, we tried standard algorithms- results were not promising

- Logistic regression: noisy validation results
- K-nearest neighbor: many false positives for MEL
- Random forest: n=3 (best accuracy), also false positives for MEL

Figure: Training history of logistic regression

Figure: Random forests across number of trees

CNN

Brief description of approach

- Convolutional Neural Network (CNN)
- CNN + hyperparameter tuning using Optuna
- CNN + transfer learning using EfficientNet
- 4. CNN + Optuna + EfficientNet
- 5. CNN + XGBoost
- 6. CNN+ EfficientNet + Metadata (mixed image and structured data)

Figure: CNN + metadata input (normal dense layers; left) and image data input (CNN; right), which gets concatenated and put through a dense layer before classification.

Accuracy: top CNN models

Model abbreviations:

- *CNN-2k*: small dataset
- *CNN-16k-ht*: big dataset Optuna-tuned
- CNN-ENb0: EfficientNetB0
- CNN-ENb3-ht: EfficientNetB3 with Optuna hyperparameter-tuning
- CNN-EN-meta: EfficientNet with metadata

Note: these are categorical accuracies (based on model output probabilities)

Recall: top CNN models

Model abbreviations:

- *CNN-2k*: small dataset
- *CNN-16k-ht*: big dataset Optuna-tuned
- CNN-ENb0: EfficientNetB0
- CNN-ENb3-ht: EfficientNetB3 with Optuna hyperparameter-tuning
- CNN-EN-meta: EfficientNet with metadata

Precision: top CNN models

Model abbreviations:

- *CNN-2k*: small dataset
- *CNN-16k-ht*: big dataset Optuna-tuned
- CNN-ENb0: EfficientNetB0
- CNN-ENb3-ht: EfficientNetB3 with Optuna hyperparameter-tuning
- CNN-EN-meta: EfficientNet with metadata

AUC-ROC: top CNN models

Model abbreviations:

- *CNN-2k*: small dataset
- *CNN-16k-ht*: big dataset Optuna-tuned
- CNN-ENb0: EfficientNetB0
- CNN-ENb3-ht: EfficientNetB3 with Optuna hyperparameter-tuning
- CNN-EN-meta: EfficientNet with metadata

Metadata Clustering

K-Means vs K-Prototypes

- Our metadata contains a mix of numerical and categorical data
- The standard K-means algorithm isn't directly applicable to categorical data
 - Categorical data is discrete
 - A Euclidean distance isn't really meaningful
- k-prototypes is a combination of k-means and k-modes.
 - Can handle both numerical and categorical features simultaneously

30.0 anterio	or torso Nat	N female
60.0 upper ext	tremity NaM	N female
30.0 upper ex	,	
	tremity Nat	N male
90.0 nontonio		
80.0 posterio	or torso Nah	N male
85.0 hea	ad/neck BCN_000392	5 female
65.0 anterio	or torso BCN_0001819	9 male
70.0 lower ex	tremity BCN_000108	5 male
55.0 palm	ns/soles BCN_0002083	3 female
	tremity BCN_0001079	9 male
	50.0 upper ex	50.0 upper extremity BCN_000107

K-prototypes: Choosing K

Elbow method [1:10]

K-prototypes

Model Conclusions

- Overall, model performance was poor
- None of our models met performance thresholds
- All models had difficulty with NV vs. MEL classification
 - CNN and Logistic Regression had best recall score for melanoma
 - CNN + tuning or transfer learning improved performance more for benign classes
- Performance not sufficient for clinical use

Logistic regression weights for each skin class

Strengths

- Real-world dataset representing real variability
- Image Augmentation implemented for class balance
- Cropping method implemented
- Optimization utilized across models
 - Optimized K in KNN and n_estimators in random forest
 - Elbow method for selecting number of clusters in K-prototypes
 - Tested performance across different EfficientNet versions

Constraints and Limitations

- Smaller training sets due to computational limitations
- Reduced generalizability for different races
- Future directions:
 - Principal component analysis
 - Further image augmentation
 - Assessing impact of presence of rulers, marks, hair, etc for certain classes

References

[1] International Skin Imaging Collaboration (ISIC) on Kaggle, 2020: https://www.kaggle.com/competitions/siim-isic-melanoma-classification/overview

[2] Cancer.net, February 2022. Melanoma: Statistics. https://www.cancer.net/cancer-types/melanoma/statistics#:":text=lt%20is%20estimated%20that%207%2C650,people%20worldwide%20died%20from%20melanoma.

[3] ISIC Archive: https://www.isic-archive.com/

[4] Tschandl P., Rosendahl C. & Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 doi:10.1038/sdata.2018.161 (2018)

[5] Noel C. F. Codella, David Gutman, M. Emre Celebi, Brian Helba, Michael A. Marchetti, Stephen W. Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, Allan Halpern: "Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC)", 2017; arXiv: 1710.05006.

[6] Marc Combalia, Noel C. F. Codella, Veronica Rotemberg, Brian Helba, Veronica Vilaplana, Ofer Reiter, Allan C. Halpern, Susana Puig, Josep Malvehy: "BCN20000: Dermoscopic Lesions in the Wild", 2019; arXiv:1908.02288.

[7] Haenssle, H. A., et al. (2018). Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Annals of oncology: official journal of the European Society for Medical Oncology, 29(8), 1836–1842. https://doi.org/10.1093/annonc/mdy166

[8] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD. https://optuna.org/

[9] Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv. https://doi.org/10.48550/arXiv.1905.11946

[10] dmlc XGBoost read-the-docs website (2022). https://xgboost.readthedocs.io/en/stable/index.html

[11] Ren, X., Guo, H., Li, S., Wang, S., Li, J. (2017). A Novel Image Classification Method with CNN-XGBoost Model. In: Kraetzer, C., Shi, YQ., Dittmann, J., Kim, H. (eds) Digital Forensics and Watermarking. IWDW 2017. Lecture Notes in Computer Science(), vol 10431. Springer, Cham. https://doi.org/10.1007/978-3-319-64185-0_28

[12] Chollet, F (2020) Keras, Transfer learning & fine-tuning. https://keras.io/guides/transfer_learning/

Appendix

CNN + Metadata structure

Example structure of model using metadata input (normal dense layers; left) and image data input (CNN; right), which gets concatenated and put through a dense layer before classification.

Optuna Hyperparameter Tuning

Hyperparameter tuning of CNN structure

- 1. **A** sets of: (options: 2, 3)
 - o Conv2D with:
 - **B** filters (options: 5 to 16)
 - C kernel size (options: 3 to 5)
 - D setting of padding/no padding (options: True/False)
 - activation: relu
 - MaxPooling
 - **E** pool size (options: 2, 3)
 - **F** stride (options: 2, 3)
 - o Dropout: 0.1
- 2. Flatten
- B. **G** layers of Dense (options: 0 to 3)
 - H units (options: 5 to 20)
 - Activation: relu
 - o Dropout: 0.1
- 4. One output layer of Dense
 - o output units: 8
 - Activation: softmax

Optimization History Plot

Image size distributions

Variable, but two main groups:

10,014 images of 600 x 450

12,410 images of 1024 x 1024

Visualizing logistic regression weights for each skin class

Logistic Regres	ssion Class precision		Report f1-score	support	KNN Classificat	-				Random Forest	Classificat	ion Report			CNN Classific	ation Papart			
•					F	recision	recall	f1-score	support	1	precision	recall	f1-score	support	CNN CIASSITIC	precision	recall	f1-score	support
MEL NV BCC AK BKL DF	0.464 0.708 0.000 0.000 0.243 0.000	0.153 0.788 0.000 0.000 0.054 0.000	0.230 0.746 0.000 0.000 0.088 0.000	895 2592 684 160 502 44	MEL NV BCC AK BKL DF VASC	0.540 0.836 0.257 0.179 0.238 0.047	0.076 0.280 0.142 0.274 0.160 0.556 0.357	0.133 0.420 0.183 0.217 0.192 0.086 0.057	355 1017 260 62 212 18 14	MEL NV BCC AK BKL DF VASC	0.336 0.832 0.295 0.132 0.138 0.043	0.164 0.281 0.094 0.169 0.076 0.205 0.319	0.221 0.420 0.142 0.148 0.098 0.071 0.105	895 2592 684 160 502 44	MEL NV BCC AK BKL DF	0.187 0.513 0.133 0.007 0.137 0.000	0.254 0.185 0.325 0.006 0.040 0.000	0.215 0.272 0.189 0.007 0.062 0.000	895 2592 684 160 502 44
VASC SCC	0.500 0.064	0.170 0.782	0.254 0.118	47 142	VASC	0.031	0.357	0.057	14 62	SCC	0.107	0.141	0.122	142	VASC SCC	0.006 0.000	0.106 0.000	0.011 0.000	47 142
accuracy macro avg weighted avg	0.247 0.475	0.243 0.459	0.459 0.180 0.437	5066 5066 5066	micro avg macro avg weighted avg samples avg	0.354 0.282 0.590 0.210	0.210 0.241 0.210 0.210	0.263 0.173 0.292 0.210	2000 2000 2000 2000	micro avg macro avg weighted avg samples avg	0.396 0.243 0.547 0.207	0.207 0.181 0.207 0.207	0.272 0.166 0.293 0.207	5066 5066 5066 5066	macro avg weighted avg	0.123 0.327	0.114 0.189	0.189 0.094 0.209	5066 5066 5066

Accuracy: 0.4591 Accuracy: 0.21

ROC AUC: 0.5760 ROC AUC: 0.5933327707205982

Accuracy: 0.20706671930517173 ROC AUC: 0.5672968987988957 Accuracy: 0.1885 ROC AUC: 0.4760

											CNN+Optuna+Ef	ficientNet C	lassifica	tion Report	
CNN + Optuna	Classificati		CNN + Efficien	tNet Classi	fication	Report			precision	recall	f1-score	support			
	precision	recall	f1-score	support			precision	recall	f1-score	support					
											MEL	0.171	0.187	0.179	895
MEL	0.206	0.126	0.157	895		MEL	0.204	0.147	0.171	895	NV	0.500	0.371	0.426	2592
NV	0.517	0.535	0.526	2592		NV	0.511	0.430	0.467	2592	BCC	0.118	0.140	0.128	684
BCC	0.157	0.028	0.047	684		BCC	0.136	0.151	0.143	684	AK	0.024	0.031	0.027	160
AK	0.025	0.006	0.010	160		AK	0.026	0.025	0.025	160	BKL	0.092	0.155	0.116	502
BKL	0.092	0.293	0.140	502		BKL	0.092	0.145	0.112	502	DF	0.000	0.000	0.000	44
DF	0.000	0.000	0.000	44		DF	0.006	0.023	0.009	44	VASC	0.000	0.000	0.000	47
VASC	0.000	0.000	0.000	47	1	VASC	0.000	0.000	0.000	47					
SCC	0.000	0.000	0.000	142		SCC	0.025	0.049	0.033	142	SCC	0.052	0.063	0.057	142
accuracy			0.329	5066		accuracy			0.283	5066	accuracy			0.260	5066
macro avg	0.125	0.124	0.110	5066		macro avg	0.125	0.121	0.120	5066	macro avg	0.120	0.118	0.117	5066
weighted avg	0.332	0.329	0.317	5066		weighted avg	0.326	0.283	0.301	5066	weighted avg	0.314	0.260	0.281	5066

Accuracy: 0.3293 ROC AUC: 0.4918 Accuracy: 0.2831 ROC AUC: 0.4891 Accuracy: 0.2598 ROC AUC: 0.4937