ACÁMICA

¡Bienvenidos/as a Data Science!

Agenda

¿Cómo anduvieron?

Repaso

Hands-On

Break

Explicación: Ampliando el Perceptrón

Hands-On

Cierre

¿Dónde estamos?

¿Cómo anduvieron?

Repaso

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

Pasos

1. Calculamos el costo para ciertos valores al azar de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto. Técnicamente, derivamos o calculamos el gradiente.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto. Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Queremos explorar el mínimo, pero no hicimos una exploración exhaustiva de la función de costo:

- 1. Calculamos el costo para ciertos valores al azar de los parámetros.
- 2. Repetimos hasta converger
 - a. Nos fijamos la dirección de decrecimiento en ese punto.
 Técnicamente, derivamos o calculamos el gradiente.
 - b. Actualizamos los valores de los parámetros.

Descenso por gradiente · Resumen

- 1. Necesitamos una función de costo/pérdida. La función de costo depende del problema (clasificación, regresión, etc).
- 2. La función de costo es una función de los parámetros de la red (bueno, también de los datos que tengo, pero ignoremos eso por ahora).
- Los mejores parámetros de la red son aquellos que minimicen la función de costo.
- 4. Cómo explorar todo ese espacio de parámetros exhaustivamente (simil *grid search*) es imposible, necesitamos una **técnica que lo haga eficientemente**. Esa técnica es **Descenso por Gradiente**.

Descenso por gradiente · Resumen

- 1. Necesitamos una función de costo/pérdida. La función de costo depende del problema (clasificación, regresión, etc).
- 2. La función de costo es una función de los parámetros de la red (bueno, también de los datos que tengo, pero ignoremos eso por ahora).
- Los mejores parámetros de la red son aquellos que minimicen la función de costo.
- 4. Como explorar todo ese espacio de parámetros exhaustivamente (simil *grid search*) es imposible, necesitamos una **técnica que lo haga eficientemente**. Esa técnica es **Descenso por Gradiente**.

Mucha de la jerga en redes neuronales refieren a técnicas para optimizar esta búsqueda

Perceptrón

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Otra representación

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Otra representación

Necesitamos algo que, dado los features, devuelva probabilidades. Las probabilidades deben estar entre 0 y 1

Otra representación

Activación: Función Sigmoidea

¿Qué falta?

¡Falta encontrar los pesos b y w_1 apropiados para nuestros datos!

Para eso necesitamos una función de costo

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$
 Pérdida para una instancia

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$

Pérdida para una instancia

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$
 Pérdida para una instancia

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$

Pérdida para una instancia

$$J(\overline{W}) = \frac{1}{n} \sum_{i=0}^{n-1} L(\widehat{y^{(i)}}, y^{(i)})$$

Costo para todas las instancias

Necesitamos una función de pérdida entre una etiqueta (y) y la probabilidad de pertenecer o no a esa etiqueta. $\widehat{\gamma}$

Caso binario: etiquetas y = 0 y 1.

$$L(\hat{y}, y) = -y * log(\hat{y}) - (1 - y) * log(1 - \hat{y})$$

Pérdida para una instancia

$$J(\overline{W}) = \frac{1}{n} \sum_{i=0}^{n-1} L(\widehat{y^{(i)}}, y^{(i)})$$

Costo para todas las instancias

$$J(w_0, w_1) = \frac{1}{n} \sum_{i=0}^{n-1} L(\widehat{y^{(i)}}, y^{(i)})$$

Costo para todas las instancias, caso 1D

- 1. Descenso por gradiente calcula la derivada/gradiente del costo y con eso actualiza los parámetros. Este proceso lo va a hacer muchas veces hasta llegar al mínimo.
- 2. En cada una de esas iteraciones, tiene que calcular el costo. El costo depende de las instancias de entrenamiento y de los parámetros que tengamos hasta ese momento.

Calcular el costo con las instancias de entrenamiento es lo que se conoce como **Forward Propagation.**

- Con el costo calculado, queremos actualizar los valores de los parámetros según la regla vista en la clase anterior.
- 2. Para eso, tenemos que derivar el costo y propagar esa derivada hacia atrás, hasta llegar a los parámetros w₀ y w₁.

Calcular las derivadas y actualizar los parámetros "hacia atrás" se conoce como **Backpropagation.**

Hands-on training

Hands-on training

DS_Encuentro_31_Perceptron_Multicapa.ipynb

Parte 1

Ampliando el Perceptrón

Problema con el Perceptrón: solo encuentra fronteras lineales.

Ampliando el perceptrón

Ampliando el Perceptrón

Solución: Perceptrón Multicapa

- Cada neurona tiene sus propios pesos/parámetros. En aplicaciones comunes suelen ser desde miles a millones de parámetros para toda la red.
- Deep Learning es encontrar esos pesos de manera eficiente, bajo la condición de realizar correctamente una tarea objetivo.

Ampliando el Perceptrón

Sigue valiendo:

- Forward Propagation
- Backpropagation
- Descenso por gradiente
- Función de costo

Perceptrón MultiCapa

Playground

1. Sigmoide/logística

- 2. Identidad: f(x) = x
- 3. Escalón: $f(x)=0 \text{ si } x<0, 1 \text{ si } x\geq0$
- 4. Tangente Hiperbólica: f(x)=tanh(x)
- 5. ReLU: $f(x)=0 \text{ si } x<0, x \text{ si } x\geq 0$

- 1. Sigmoide/logística
- 2. Identidad: f(x) = x
- 3. Escalón: f(x)=0 si x<0, 1 si x≥0
- 4. Tangente Hiperbólica: f(x)=tanh(x)
- 5. ReLU: $f(x)=0 \text{ si } x<0, x \text{ si } x\geq 0$

- 1. Sigmoide/logística
- 2. Identidad: f(x) = x
- 3. Escalón: f(x)=0 si x<0, 1 si $x\ge0$
- 4. Tangente Hiperbólica: f(x)=tanh(x)
- 5. ReLU: $f(x)=0 \text{ si } x<0, x \text{ si } x\geq 0$

- 1. Sigmoide/logística
- 2. Identidad: f(x) = x
- 3. Escalón: f(x)=0 si x<0, 1 si $x\ge0$
- 4. Tangente Hiperbólica: f(x)=tanh(x)
- 5. ReLU: $f(x)=0 \text{ si } x<0, x \text{ si } x\geq 0$

- 1. Sigmoide/logística
- 2. Identidad: f(x) = x
- 3. Escalón: f(x)=0 si x<0, 1 si $x\ge0$
- 4. Tangente Hiperbólica: f(x)=tanh(x)
- 5. ReLU: f(x)=0 si x<0, x si x≥0

Clasificación:
Io más común es
encontrar ReLU en
las capas interiores
y Sigmoide en la
salida

1. Sigmoide/logística

- 2. Identidad: f(x) = x
- 3. Escalón: $f(x)=0 \text{ si } x<0, 1 \text{ si } x\ge0$
- 4. Tangente Hiperbólica: f(x)=tanh(x)
- 5. ReLU: f(x)=0 si x<0, x si x≥0

Multiclase. La cantidad de neuronas en la capa de salida tiene que ser igual a la cantidad de clases buscadas.

	Funciones de activación	Costos (Keras)
Multiclase	 Sigmoide/logística Softmax 	Categorical_crossentropy

	Funciones de activación	Costos (Keras)
Multiclase	 Sigmoide/logística Softmax 	Categorical_crossentropy

Generalización de la sigmoide, útil cuando las clases son excluyentes.

	Funciones de activación	Costos (Keras)
Multiclase	 Sigmoide/logística Softmax 	Categorical_crossentropy
Regresión	Identidad	 mean_squared_error mean_absolute_error Otras

Generalización de la sigmoide, útil cuando las clases son excluyentes.

	Funciones de activación	Costos (Keras)
Multiclase	 Sigmoide/logística Softmax 	Categorical_crossentropy
Regresión	Identidad	 mean_squared_error mean_absolute_error Otras

Regularización

Objetivo: castigar parámetros/pesos muy grandes.

están asociados a overfitting.

Regularización

Objetivo: castigar parámetros/pesos muy grandes.

están asociados a overfitting.

¿Cómo? Tres técnicas muy comunes

- Regularización L2 y L1: agregan un término a la función de costo que castiga los pesos grandes.
- **Dropout:** funciona como una capa que "apaga" neuronas de la capa anterior al azar.

Regularización

¿Cómo?

Dropout: funciona como una capa que "apaga" neuronas de la capa anterior al azar.

Muy utilizado. Al apagar neuronas, obliga a que ninguna se aprenda "de memoria" una muestra, sino que tengan que aprender entre todas. Otra interpretación: Ensamble

DropOut

Regularización L2

La idea es reducir el valor de los parámetros para que sean pequeños.

Cómo??

Introduce un adicional de **penalización** en la función de coste (L), añadiendo a su valor **la suma de los cuadrados** de los parámetros (ω) .

Regularización L1

La idea es reducir el valor de los parámetros para que sean pequeños.

Cómo??

Introduce un adicional de **penalización** en la función de coste (L), añadiendo a su valor **la suma de los valores absolutos** de los parámetros (ω).

Recursos

Recursos

Optimización de Hiperparámetros

Activaciones

https://keras.io/activations/

Pérdidas

https://keras.io/losses/

Optimizadores

https://keras.io/optimizers/

Regularizadores

https://keras.io/regularizers/

Hands-on training

Hands-on training

Comentario para el Hands-On

Hands-on training

DS_Encuentro_31_Perceptron_Multicapa.ipynb

Parte 2

Recursos

Recursos

- ¿Pero qué "es" una Red neuronal? aprendizaje profundo, Parte 1
- Descenso de gradiente, es como las redes neuronales aprenden
 Aprendizaje profundo, capítulo 2.
- ¿Qué es la retropropagación y qué hace en realidad? Aprendizaje profundo, Capítulo 3.

Para la próxima

- 1. Terminar los notebooks de hoy y atrasados.
- 2. Ver los videos mencionados en "Recursos".

ACAMICA