3EE200

Fiche n°2 d'exercices : Conduction électrique dans les semi-conducteurs

1. Silicium intrinsèque

Soit un cristal de silicium pur à 300 K. Son gap vaut $E_g = 1,12$ eV et son niveau de Fermi est situé au milieu du gap.

- ✓ Quelle est la probabilité qu'un état d'énergie W situé dans le bas de la bande de conduction (donc à $W = W_c$) soit occupé ?
- ✓ Quelle est la probabilité qu'un état d'énergie W situé dans le haut de la bande de valence (donc à $W = W_v$) soit vide ?
- ✓ Calculer la densité d'états dans la bande de conduction à 26 meV au-dessus de W_c .
- ✓ Déterminer l'expression de la concentration en électrons libres dans la bande de conduction.
- ✓ On considère que tous les états d'énergie sur une largeur de 0,1 eV à partir du bas de la bande de conduction sont occupés par des électrons libres. Calculer le nombre d'états occupés dans la bande de conduction.

2. Silicium extrinsèque

Pour chacun des cas considérés ci-dessous, calculer la concentration en porteurs de charge libres dans le silicium.

- ✓ T = 300 K; $N_D = 10^{13} \text{ cm}^{-3}$, $N_A = 0$
- ✓ T = 300 K; $N_D = 10^{17} \text{ cm}^{-3}$, $N_A = 3 \times 10^{17} \text{ cm}^{-3}$
- ✓ T = 700 K; $N_D = 5 \times 10^{16} \text{ cm}^{-3}$, $N_A = 0$

3. Semi-conducteur compensé à 27°C

Soit un cristal semi-conducteur dopé. On donne les grandeurs suivantes :

$$E_{\rm g} = 0.7 \text{ eV}$$
; $N_{\rm D} = 2 \times 10^{15} \text{ cm}^{-3}$; $N_{\rm A} = 1.6 \times 10^{15} \text{ cm}^{-3}$; $N_{\rm C} = 10^{19} \text{ cm}^{-3}$; $N_{\rm V} = 6 \times 10^{18} \text{ cm}^{-3}$.

On suppose que tous les atomes d'impuretés sont ionisés.

- ✓ Calculer les concentrations n_i , n et p.
- \checkmark Calculer la position du niveau de Fermi extrinsèque W_F par rapport à celle de W_{Fi} .
- \checkmark Calculer la position du niveau de Fermi extrinsèque W_F par rapport à W_C .