MAS UG 1.) R. Ling pr. v. Mabe and R a) ==: (p+v) == p*+v* Sei (Bn) new in R mit A = UBn tel. $E_1 := B_1$ $E_2 := B_2 \setminus B_1$ $E_3 := B_3 \setminus (B_1 \cup B_2)$... => A = Z En (= UBi) M(Ei) = M(Bi) VIEN => m*(A)=inf(Zm(En): EnER, A = Z En) ist eine agnivalente Definition $(\mu + \nu)^*(A) = \inf \{ \sum_{n \in \mathbb{N}} |\mu + \nu| |E_n \} : EneR, A \subseteq \sum_{n \in \mathbb{N}} E_n \}$ when $(\mu + \nu)(A) = \mu(A) + \nu(A)$ = inf{In(En)+v(En): EneR, ASIEn} = inf{In(En): EneR, ASIEn} + inf { Z v(En): En ER, A = Z En } = m*(A) + v*(A) = (4) = p*(A) + v*(A) Sei An ER mit $\sum A_n \ge A$ mit $\mu^*(A) \le \sum \mu(A_n) \le \mu^*(A) + E$. Sei $B_n \in R$ mit $\sum_{n \in \mathbb{N}} B_n \ge A$ mit $\nu^*(A) \le \sum_{n \in \mathbb{N}} \nu(B_n) \le \nu^*(B) + E$ ⇒ Z AnnBm ≥ A I make M (Ann Bm) = Z m (An) E V(An nBm) ≤ EV(Bm) (m+v) (A) = [(m+v) (An nBm) = [m(An) + [v(Bn) = m*(A) + m*(B) + 2 E => (p+v)*(A) = p*(A)+v*(A) b) My* n My* = My +++ = My +++ + Sei A∈ MM+ nMV+ bel. Sei B nit (p1+v) (B) 400 bel. (p+v)*(B) = p *(B) + v*(B) = p *(B) + p *(B) A) + v *(B) A) + v *(B) A) = (n+v)*(BnA) + (n+v)*(B)A) => A ∈ MM*+v*