CR6 Results Analysis C

assume 2 level categorical

Python Imports

```
import numpy as np
import pandas as pd
from prettypandas import PrettyPandas
import patsy
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api
from pyomo.environ import *
from sklearn.linear model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from IPython.display import display, Markdown, HTML
%matplotlib inline
PlotWidth = 6
import warnings
warnings.filterwarnings('ignore')
# helper functions for this notebook
# use SVG for matplotlib-based figures
%matplotlib inline
%config InlineBackend.figure format = 'svg'
def coded_to_actual(coded_data, actual_lows, actual_highs):
    """Converts a pandas DataFrame from coded units to actuals."""
    actual data = coded data.copy()
    for col in actual data.columns:
        if not (col in actual_highs and col in actual_lows):
            continue
        try:
            # convert continuous variables to their actual value
            actual data[col] *= 0.5 * (float(actual highs[col]) - float(actual lows[co
1]))
            # don't need to cast to float here, if either are not a float exception wi
11 have been thrown
            actual_data[col] += 0.5 * (actual_highs[col] + actual_lows[col])
        except ValueError:
```

```
actual_data[col] = actual_data[col].map({-1: actual_lows[col], 1: actual_h
ighs[col]})
    return actual data
def get tick labels(key, lows, highs, units):
    """Returns a list of low/high labels with units (e.g. [8mm, 10mm])"""
    return [str(lows[key]) + units[key], str(highs[key]) + units[key]]
def backward regression(X, y,
                           threshold out,
                           verbose=True):
    included=list(X.columns)
    while True:
       changed=False
        model = sm.OLS(y, sm.add constant(pd.DataFrame(X[included]))).fit()
        # use all coefs except intercept
        pvalues = model.pvalues.iloc[1:]
        worst pval = pvalues.max() # null if pvalues is empty
        if worst pval > threshold out:
            changed=True
            worst feature = pvalues.idxmax()
            included.remove(worst feature)
            if verbose:
                print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval
))
        if not changed:
            break
    return included
def build model(X, values, verbose=True):
    X = [sub.replace('alh', 'model.X1') for sub in X]
    X = [sub.replace('aps', 'model.X2') for sub in X]
    X = [sub.replace('aid', 'model.X3') for sub in X]
   X = [sub.replace('arw', 'model.X4') for sub in X]
    X = [sub.replace('awt', 'model.X5') for sub in X]
    X = [sub.replace(':', '*') for sub in X]
    model = str(values[0])
    i=1
    for v in X:
        model += " + " + str(values[i]) + " * " + v
        i += 1
    if verbose:
       print(model)
    return model
```

Process CSV Files

```
# importing the pandas library
import pandas as pd
# reading the csv file using read csv
# storing the data frame in variable called df
df cost = pd.read csv('https://raw.githubusercontent.com/wilsongis/3DP Experiments/mai
n/Data/cr6 cost rework.txt', sep='\t')
df_time = pd.read_csv('https://raw.githubusercontent.com/wilsongis/3DP Experiments/mai
n/Data/cr6_time_rework.txt', sep='\t')
# creating a list of column names by
# calling the .columns
list of columns cost = list(df cost.columns)
list_of_columns_time = list(df_time.columns)
# displaying the list of column names
print('List of Cost column names : ',
      list of columns cost)
print('List of Time column names : ',
      list_of_columns_time)
List of Cost column names : ['trial', 'lh', 'ps', 'id', 'rw', 'wt', 'alh', 'aps', 'ai
d', 'arw', 'awt', 'rep', 'cost']
List of Time column names : ['trial', 'lh', 'ps', 'id', 'rw', 'wt', 'alh', 'aps', 'ai
d', 'arw', 'awt', 'rep', 'time']
display((Markdown("### Statistics for Cost")))
df cost.cost.describe()
```

Statistics for Cost

plt.show()

```
count
         80.00000
         0.596712
mean
          0.095422
std
min
          0.530000
25%
          0.561500
50%
          0.568000
75%
          0.585000
          1.103000
Name: cost, dtype: float64
plt.figure(figsize=(PlotWidth, PlotWidth))
sns.boxplot(data=df cost['cost'])
plt.title('Box Plot of Cost')
plt.ylabel('Cost')
```

```
plt.figure(figsize=(PlotWidth, PlotWidth))
df_cost['cost'].hist()
plt.title('cost')
plt.xlabel('cost)')
plt.show()

plt.figure(figsize=(PlotWidth*2, PlotWidth))
plt.scatter(df_cost['trial'], df_cost['cost'])
plt.title('cost vs. trial')
plt.xlabel('trial')
plt.ylabel('cost')
plt.show()
```

Box Plot of Cost


```
display((Markdown("### Statistics for Time")))
df_time.time.describe()
```

Statistics for Time

```
80.00000
count
         12685.900000
mean
          3360.237079
std
min
          8480.000000
25%
          9464.250000
         12989.000000
50%
75%
         15482.500000
         18098.000000
Name: time, dtype: float64
```

```
plt.figure(figsize=(PlotWidth, PlotWidth))
sns.boxplot(data=df_time['time'])
plt.title('Box Plot of Time')
plt.ylabel('Time')
plt.show()

plt.figure(figsize=(PlotWidth, PlotWidth))
df_time['time'].hist()
plt.title('time')
```

```
plt.xlabel('time)')
plt.show()

plt.figure(figsize=(PlotWidth*2, PlotWidth))
plt.scatter(df_time['trial'], df_time['time'])
plt.title('time vs. trial')
plt.xlabel('trial')
plt.ylabel('time')
plt.show()
```

Cost Analysis

```
f = 'cost ~ (alh+aps+aid+arw+awt)**2'
y, X = patsy.dmatrices(f, df_cost, return_type='dataframe')
print(y[:5])
print(X[:5])
   cost
  0.564
0
 0.536
1
  0.583
 1.103
  0.584
  Intercept
            alh
                         aid arw awt
                                       alh:aps alh:aid alh:arw alh:awt \
                    aps
0
        1.0 0.16 50.0 0.25 0.4
                                   0.8
                                            8.0
                                                   0.040
                                                            0.064
                                                                     0.128
1
        1.0 0.28 50.0 0.25 0.4 1.2
                                           14.0
                                                   0.070
                                                            0.112
                                                                     0.336
2
        1.0 0.16 60.0
                         0.25 0.4
                                  1.2
                                           9.6
                                                   0.040
                                                            0.064
                                                                     0.192
3
        1.0 0.28 60.0
                         0.25 0.4
                                  0.8
                                           16.8
                                                   0.070
                                                            0.112
                                                                     0.224
        1.0 0.16 50.0
                         0.15
                               0.4
                                  1.2
                                            8.0
                                                   0.024
                                                            0.064
                                                                     0.192
4
  aps:aid aps:arw
                   aps:awt aid:arw aid:awt arw:awt
0
     12.5
              20.0
                      40.0
                                0.10
                                        0.20
                                                 0.32
1
                                                 0.48
     12.5
              20.0
                       60.0
                                0.10
                                        0.30
2
     15.0
              24.0
                      72.0
                                0.10
                                        0.30
                                                 0.48
3
     15.0
              24.0
                      48.0
                                0.10
                                        0.20
                                                 0.32
      7.5
              20.0
                       60.0
                                0.06
                                        0.18
                                                 0.48
```

```
## An intercept is not added by default, so we need to add that here
X = sm.add_constant(X)
results = sm.OLS(y, X).fit()
results.summary()

print(results.summary())

plt.figure(figsize=(PlotWidth, PlotWidth))
sns.regplot(x=results.predict(X), y=y)
```

```
plt.xlabel('Predicted cost')
plt.ylabel('Actual cost')
plt.title('Actual vs. Predicted cost')
plt.show()
```

Dep. Variable: cost			ost R-squa	R-squared: 0.3				
Model:		(_	-squared:		0.226		
Method:		Least Squa	res F-stat	istic:		2.534		
Date:	Sa	t, 31 Jul 2	021 Prob (F-statistic):			
Time:		18:19	:29 Log-Li	kelihood:		93.594		
No. Observat	cions:		80 AIC:			-155.2		
Df Residuals	5:		64 BIC:			-117.1		
Df Model:			15					
Covariance T	Type:	nonrob	ust					
			 t					
Intercept	-0.9161	0.906		0.316		0.893		
alh	0.8129		0.396					
	0.0107		0.713					
-	-0. 6871		-0.281					
arw	0.9958	0.624	1.597	0.115	-0. 250			
awt	1.6889		2.840	0.006				
alh:aps	0.0039	0.031	0.124	0.902				
alh:aid	2.3708	3.129	0.758	0.451	-3 .881	8.623		
alh:arw	-0. 5906	0.782	-0. 755	0.453	<mark>-2.</mark> 154	0.972		
alh:awt	-1.2406	0.782	-1.586	0.118	-2. 804	0.322		
aps:aid	0.0493	0.038	1.311	0.194	-0. 026	0.124		
aps:arw	-0. 0124	0.009	-1. 319	0.192	-0. 031	0.006		
aps:awt	-0. 0129	0.009	-1. 378	0.173	-0. 032	0.006		
aid:arw	1.3663	0.939	1.455	0.150	-0. 509	3.242		
aid:awt	<mark>-2.8437</mark>	0.939	-3 .029	0.004	-4. 719	-0 .968		
arw:awt	-0. 3709	0.235	-1. 580	0.119	-0. 840	0.098		
Omnibus:			======= 477 Durbin	======= -Watson:		2.187		
Prob(Omnibus): 0.000		000 Jarque	-Bera (JB):		524.930			
Skew:		2.	338 Prob(J	B):		1.03e-11		
Kurtosis: 14.646			646 Cond.	No.		3.13e+04		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.13e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Actual vs. Predicted cost

Reduced Cost Model

```
cost_included = backward_regression(X,y,.05)
cost included.pop(0)
print(cost included)
Drop alh:aps
                                     with p-value 0.901841
Drop aid
                                     with p-value 0.77787
Drop alh:aid
                                     with p-value 0.475609
Drop alh:arw
                                     with p-value 0.444672
Drop aps
                                     with p-value 0.294638
                                     with p-value 0.351045
Drop aps:awt
Drop alh
                                     with p-value 0.146827
Drop alh:awt
                                     with p-value 0.362181
Drop aid:arw
                                     with p-value 0.11887
Drop arw:awt
                                     with p-value 0.116793
['arw', 'awt', 'aps:aid', 'aps:arw', 'aid:awt']
```

```
y = df_cost['cost']
#y = df_cost['time']
X = X[cost_included]

## An intercept is not added by default, so we need to add that here
X = sm.add_constant(X)
results = sm.OLS(y, X).fit()
results.summary()

print(results.summary())

plt.figure(figsize=(PlotWidth, PlotWidth))
sns.regplot(x=results.predict(X), y=y)
plt.xlabel('Predicted cost')
plt.ylabel('Actual cost')
plt.title('Actual vs. Predicted cost')
plt.show()
```

========		ода кед	:=======	:=====================================	-=======	
Dep. Variab	le:	CO	st R-squ	ared:		0.266
Model:		C	LS Adj.	R-squared:		0.216
Method:		Least Squar	es F-sta	tistic:		5.364
Date:	Sa	t, 31 Jul 20	21 Prob	(F-statistic)	:	0.000291
Time:		18:19:	31 Log-I	ikelihood:		87.314
No. Observa	tions:		80 AIC:			-162.6
Df Residuals	S:		74 BIC:			-148.3
Df Model:			5			
Covariance '	Type:	nonrobu	st			
=======	coef	std err	t	P> t	[0.025	0.975]
const	0.0222	0.164	0.135	0.893	-0.305	0.349
arw	0.9805	0.288	3.408	0.001	0.407	1.554
awt	0.4210	0.160	2.631	0.010	0.102	0.740
aps:aid	0.0554	0.014	3.950	0.000	0.027	0.083
aps:arw	-0. 0162	0.005	-3. 149	0.002	-0. 027	-0. 006
aid:awt	-2. 5398	0.765	-3. 322	0.001		
Omnibus:	=======	64.2	======== 65 Durbi	 .n-Watson:		2.150
Prob(Omnibus	s):	0.0	00 Jarqu	ie-Bera (JB):		376.325
Skew:	,	2.4	58 Prob	JB):		1.91e-82
Kurtosis:		12.4	20 Cond.	No.		3.20e+ <mark>03</mark>
========		========	=======			

OLS Regression Results

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.2e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Actual vs. Predicted cost


```
cost_eq = build_model(cost_included,results.params,False)
print("Cost = " + cost_eq)

Cost = 0.022179997348888314 + 0.9805362539766707 * model.X4 + 0.4210264448568395 * mod
el.X5 + 0.055398409331918294 * model.X2*model.X3 + -0.016249522799575436 * model.X2*model.X4 + -2.5398197242841984 * model.X3*model.X5
```

Time Analysis

```
f = 'time ~ (alh+aps+aid+arw+awt)**2'
y, X = patsy.dmatrices(f, df_time, return_type='dataframe')
print(y[:5])
print(X[:5])

time
0 18098.0
```

```
1
 8741.0
2
  14493.0
3 10281.0
 14914.0
  Intercept
           alh
                       aid arw awt alh:aps alh:aid alh:arw alh:awt \
                  aps
                                                               0.128
0
        1.0 0.16 50.0 0.25 0.4
                                0.8
                                        8.0
                                               0.040
                                                       0.064
       1.0 0.28 50.0 0.25 0.4 1.2
                                       14.0
                                               0.070
                                                       0.112
                                                               0.336
1
2
       1.0 0.16 60.0
                       0.25 0.4 1.2
                                        9.6 0.040
                                                       0.064
                                                               0.192
3
       1.0
           0.28
                 60.0
                       0.25
                           0.4
                                0.8
                                        16.8
                                               0.070
                                                       0.112
                                                               0.224
4
       1.0 0.16 50.0 0.15 0.4 1.2
                                        8.0
                                               0.024
                                                       0.064
                                                              0.192
  aps:aid aps:arw aps:awt aid:arw aid:awt arw:awt
     12.5
             20.0
                             0.10
                                     0.20
                                             0.32
0
                     40.0
1
     12.5
             20.0
                     60.0
                             0.10
                                     0.30
                                             0.48
2
                     72.0
     15.0
             24.0
                             0.10
                                     0.30
                                             0.48
3
     15.0
             24.0
                    48.0
                             0.10
                                     0.20
                                             0.32
4
     7.5
             20.0
                     60.0
                             0.06
                                     0.18
                                             0.48
## An intercept is not added by default, so we need to add that here
X = sm.add constant(X)
results = sm.OLS(y, X).fit()
results.summary()
print(results.summary())
plt.figure(figsize=(PlotWidth, PlotWidth))
sns.regplot(x=results.predict(X), y=y)
plt.xlabel('Predicted Time')
plt.ylabel('Actual Time')
plt.title('Actual vs. Predicted Time')
plt.show()
                         OLS Regression Results
______
Dep. Variable:
                             time
                                   R-squared:
                                                                 0.985
Model:
                              OLS
                                  Adj. R-squared:
                                                                 0.982
Method:
                     Least Squares
                                  F-statistic:
                                                                 287.3
Date:
                  Sat, 31 Jul 2021
                                  Prob (F-statistic):
                                                              1.18e-52
Time:
                          18:19:33
                                   Log-Likelihood:
                                                               -593.61
No. Observations:
                               80
                                   AIC:
                                                                 1219.
Df Residuals:
                               64
                                   BIC:
                                                                 1257.
Df Model:
                               15
Covariance Type:
                         nonrobust
______
                                            P>|t|
               coef
                      std err
                                     t
                                                      [0.025
                                                                0.975]
Intercept 3.864e+04 4869.987
                                 7.934
                                            0.000
                                                    2.89e+04
                                                              4.84e+04
alh
         -9.356e+04
                     1.1e+04
                                 -8.477
                                           0.000
                                                   -1.16e+05
                                                             -7.15e+04
           -99.8583
                      81.064
                                -1.232
                                                   -261.803
                                                                62.086
aps
                                           0.223
```

aid	6098.6667	1.31e+04	0.464	0.644	-2.02e+04	3.24e+04
arw	2199.0000	3353.358	0.656	0.514	-4500.103	8898.103
awt	-8271.6667	3197.704	-2. 587	0.012	-1.47e+04	-1883.518
alh:aps	302.8333	168.300	1.799	0.077	-33. 385	639.052
alh:aid	-4.944e+04	1.68e+04	-2. 938	0.005	-8.31e+04	-1.58e+04
alh:arw	9968.7500	4207.505	2.369	0.021	1563.292	1.84e+04
alh:awt	2.89e+04	4207.505	6.868	0.000	2.05e+04	3.73e+04
aps:aid	307.9000	201.960	1.525	0.132	-95. 562	711.362
aps:arw	-138. 6250	50.490	-2. 746	0.008	-239.490	-37. 760
aps:awt	-20. 9250	50.490	-0. 414	0.680	-121. 790	79.940
aid:arw	5980.0000	5049.006	1.184	0.241	-4106.550	1.61e+04
aid:awt	-1.326e+04	5049.006	-2. 626	0.011	-2.33e+04	-3173. 450
arw:awt	1607.5000	1262.252	1.274	0.207	-914. 137	4129.137
=======	=========			=======		=======
Omnibus:		117.	962 Durbin	-Watson:		1.969
Prob(Omnik	bus):	0.	000 Jarque	-Bera (JB)):	3764.993
Skew:		4.	734 Prob(J	B):		0.00
Kurtosis:		35.	247 Cond.	No.		3.13e+ <mark>04</mark>

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.13e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Actual vs. Predicted Time

Time Reduced Model

```
time_included = backward_regression(X,y,.05)
time_included.pop(0)
print(time included)
Drop aps:awt
                                     with p-value 0.679939
Drop aid
                                     with p-value 0.642097
                                     with p-value 0.529019
Drop arw
Drop aid:arw
                                     with p-value 0.112705
                                     with p-value 0.0748668
Drop alh:aps
                                     with p-value 0.0727373
Drop arw:awt
['alh', 'aps', 'awt', 'alh:aid', 'alh:arw', 'alh:awt', 'aps:aid', 'aps:arw', 'aid:awt'
y = df_time['time']
X = X[time\_included]
```

```
## An intercept is not added by default, so we need to add that here
X = sm.add_constant(X)
results = sm.OLS(y, X).fit()
results.summary()

print(results.summary())

plt.figure(figsize=(PlotWidth, PlotWidth))
sns.regplot(x=results.predict(X), y=y)
plt.xlabel('Predicted Time')
plt.ylabel('Actual Time')
plt.title('Actual vs. Predicted Time')
plt.show()
```

Dep. Variable:		time		R-squared:			0.983
Model:		OLS Least Squares Sat, 31 Jul 2021 18:19:35 80		Adj. F	0.981		
Method:				F-stat	452.5 2.41e-58 -599.37		
Date:	Sa			Prob (
Time:				Log-Li			
No. Obser	vations:			AIC:		1219.	
Df Residu	als:		70	BIC:			1243.
Df Model:			9				
Covariance Type:		nonrol	oust				
=======	coef	std err	=====	====== t	P> t	[0.025	0.975
const	3.938e+04	1156.066	34	.066	0.000	3.71e+04	4.17e+04
alh	-7.9e+04	6038.177	-13	.083	0.000	-9.1e+04	-6.7e+04
aps	-129. 4774	25.189	-5	.140	0.000	-179. 715	-79.240
awt	-8759 .9115	1371.420	-6	.387	0.000	-1.15e+04	-6024.70 1
alh:aid	-4.575e+ <mark>04</mark>	1.66e+ <mark>04</mark>	-2	.764	0.007	-7.88e+04	-1.27e+04
alh:arw	1.223e+ <mark>04</mark>	4103.145	2	.980	0.004	4042.360	2.04e+04
alh:awt	2.89e+ <mark>04</mark>	4323.322	6	.684	0.000	2.03e+ <mark>04</mark>	3.75e+ <mark>0</mark> 4
aps:aid	440.7227	102.894	4	.283	0.000	235.507	645.938
aps:arw	-57. 3703	16.942	-3	.386	0.001	-91. 160	-23. 580
aid:awt	-1.175e+04	4766.692		.465	0.016	-2.13e+04	-2243.7 83
Omnibus:	=========		====== .225		======= 1-Watson:		1.901
Prob(Omni	bus):	0	.000	Jarque	e-Bera (JB)):	2123.126
Skew:		3	.995	Prob(J	ГВ):		0.00
Kurtosis:		26	.939	Cond.	No.		2.14e+ <mark>0</mark> 4

OLS Regression Results

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.14e+04. This might indicate that there are


```
time_eq = build_model(time_included,results.params,False)
print("Time = " + time_eq)

Time = 39383.12499999856 + -78995.06592013844 * model.X1 + -129.4773731249602 * model.
X2 + -8759.911472760796 * model.X5 + -45752.146814405125 * model.X1*model.X3 + 12225.8
25471698428 * model.X1*model.X4 + 28897.916666666522 * model.X1*model.X5 + 440.7227146
814413 * model.X2*model.X3 + -57.37028301886791 * model.X2*model.X4 + -11750.650969529
073 * model.X3*model.X5
```

Equations

```
display(Markdown("Cost = "))
print(cost_eq)
```

```
print("----")

display(Markdown("Time = "))
print(time_eq)
```

Cost =

```
0.022179997348888314 + 0.9805362539766707 * model.X4 + 0.4210264448568395 * model.X5 + 0.055398409331918294 * model.X2*model.X3 + -0.016249522799575436 * model.X2*model.X4 + -2.5398197242841984 * model.X3*model.X5 -----
```

Time =

```
39383.12499999856 + -78995.06592013844 * model.X1 + -129.4773731249602 * model.X2 + -8
759.911472760796 * model.X5 + -45752.146814405125 * model.X1*model.X3 + 12225.82547169
8428 * model.X1*model.X4 + 28897.916666666522 * model.X1*model.X5 + 440.7227146814413
* model.X2*model.X3 + -57.37028301886791 * model.X2*model.X4 + -11750.650969529073 * model.X3*model.X5
```

Optimization

```
model = ConcreteModel()
model.X1 = Var(within=NonNegativeReals)
model.X2 = Var(within=NonNegativeReals)
model.X3 = Var(within=NonNegativeReals)
model.X4 = Var(within=NonNegativeReals)
model.X5 = Var(within=NonNegativeReals)
model.C1 = Constraint(expr = model.X1 <= .28)</pre>
model.C2 = Constraint(expr = model.X2 <= 60)</pre>
model.C3 = Constraint(expr = model.X3 <= .25)</pre>
model.C4 = Constraint(expr = model.X4 <= .8)</pre>
model.C5 = Constraint(expr = model.X5 <= 1.2)</pre>
model.C6 = Constraint(expr = model.X1 >= .16)
model.C7 = Constraint(expr = model.X2 >= 50)
model.C8 = Constraint(expr = model.X3 >= .15)
model.C9 = Constraint(expr = model.X4 >= .4)
model.C10 = Constraint(expr = model.X5 >= .8)
model.f1 = Var()
model.f2 = Var()
model.C f1 = Constraint(expr = model.f1 == (0.022179997348888314 + 0.9805362539766707
* model.X4 + 0.4210264448568395 * model.X5 + 0.055398409331918294 * model.X2*model.X3
```

```
+ -0.016249522799575436 * model.X2*model.X4 + -2.5398197242841984 * model.X3*model.X5)
model.C f2 = Constraint(expr = model.f2 == (39383.12499999856 + -78995.06592013844 * m
odel.X1 + -129.4773731249602 * model.X2 + -8759.911472760796 * model.X5 + -45752.14681
4405125 * model.X1*model.X3 + 12225.825471698428 * model.X1*model.X4 + 28897.916666666
522 * model.X1*model.X5 + 440.7227146814413 * model.X2*model.X3 + -57.37028301886791 *
model.X2*model.X4 + -11750.650969529073 * model.X3*model.X5))
model.0 f1 = Objective(expr = model.f1, sense=minimize)
model.O_f2 = Objective(expr = model.f2, sense=minimize)
# max f1 separately
# install glpk solver: sudo apt-get install glpk-utils
model.0 f2.deactivate()
solver = SolverFactory('ipopt') #'cplex', 'ipopt'
solver.solve(model)
print('( X1 , X2, X3, X4, X5 ) = ( ' + str(value(model.X1)) + ' , ' + str(value(model.X1))
X2)) + ' , ' + str(value(model.X3)) + ' , ' + str(value(model.X4)) + ' , ' + str(value
(model.X5)) + ' )')
print('f1 = ' + str(value(model.f1)))
print('f2 = ' + str(value(model.f2)))
f2 min = value(model.f2)
# max f2 separately
model.0_f2.activate()
model.0 f1.deactivate()
solver = SolverFactory('ipopt') #'cplex', 'ipopt'
solver.solve(model)
print('( X1 , X2, X3, X4, X5 ) = ( ' + str(value(model.X1)) + ' , ' + str(value(model.
X2)) + ' , ' + str(value(model.X3)) + ' , ' + str(value(model.X4)) + ' , ' + str(value
(model.X5)) + ' )')
print('f1 = ' + str(value(model.f1)))
print('f2 = ' + str(value(model.f2)))
f2_max = value(model.f2)
# apply augmented $\epsilon$-Constraint
# max
                    f1 + delta*s
\# constraint f2 - s = e
model.O_f1.activate()
model.0 f2.deactivate()
model.del_component(model.0_f1)
model.del component(model.0 f2)
model.e = Param(initialize=0, mutable=True)
model.delta = Param(initialize=0.00001)
model.slack = Var(within=NonNegativeReals)
model.0_f1 = Objective(expr = model.f1 + model.delta * model.slack, sense=minimize)
model.C e = Constraint(expr = model.f2 - model.slack == model.e)
```

```
n = 100
step = int((f2 max - f2 min) / n)
steps = list(range(int(f2_min),int(f2_max),step)) + [f2_max]
x1_1, x2_1, x3_1, x4_1, x5_1 = [], [], [], [], []
f1_1, f2_1 = [], []
for i in steps:
   model.e = i
   solver.solve(model)
   x1 l.append(value(model.X1))
   x2 l.append(value(model.X2))
   x3 l.append(value(model.X3))
   x4_l.append(value(model.X4))
   x5 l.append(value(model.X5))
   f1 l.append(value(model.f1))
   f2 l.append(value(model.f2))
   # print(i, value(model.X1), value(model.X2), value(model.f1), value(model.slack),
value(model.f2))
(X1, X2, X3, X4, X5) = (0.22777655237840858, 50.0000009450316, 0.149999993211437)
95 , 0.400000038314072 , 0.8000000479253332 )
f1 = 0.5369349015047474
f2 = 13472.566567809765
(X1, X2, X3, X4, X5) = (0.2800000099999455, 60.00000059996157, 0.250000009994645)
44 , 0.800000009867982 , 1.200000011999305 )
f1 = 0.6008938634299353
```

"python

f2 = 8561.47631366192
