POLYMERS WITH SPIRO ATOMS AND THEIR USE AS ELECTROLUMINESCENT MATERIALS

Patent number:

EP0894107

Publication date:

1999-02-03

Inventor:

1

KREUDER WILLI (DE); SPREITZER HUBERT (DE)

Applicant:

HOECHST RES & TECH GMBH & CO (DE)

Classification:

- international:

C08G61/00; C08G73/06; C09K11/06; G03G5/07; H05B33/14; C08G61/00; C08G73/00; C09K11/06; G03G5/07; H05B33/14; (IPC1-7): C08G61/00;

C09K11/06

- european:

C08G61/00; C08G73/06; C09K11/06; G03G5/07B;

G03G5/07B2; G03G5/07D2; G03G5/07S; H05B33/14

Application number: EP19970917294 19970407

Priority number(s): DE19961014971 19960417; WO1997EP01717

19970407

Also published as:

WO9739045 (A1) DE19614971 (A1) EP0894107 (B1)

Report a data error here

Abstract not available for EP0894107
Abstract of corresponding document: **DE19614971**

A conjugated polymer containing structural units of formula (I) in which: D, E, F<1>, G are the same or different -CR<1>R<1>-, -O-, -S-, -NR<3>- or a chemical bond; Ar<1>, Ar<2> are carbo or heterocyclene; U<1>, V<1> are the same or different -CR<5>=CR<6>-, -CR<7>R<8>-, -CR<9>R<10>-CR<11>R<12>-, -NR<13>-, -SiR<14>R<15>-, -O-, -S-, -SO-, -SO2-, -CO- or a chemical bond; Ar<5>, Ar<6>, X, Y<1> are the same or different cyclic or acyclic conjugated hydrocarbons, X and/or Y<1> may also be H or R<1>; m is 1, 2, 3 or 4; n, p are the same or different 0, 1, 2, 3 or 4; is suitable as electroluminescent material.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

(12)

EUROPÄISCHE PATENTSCHRIFT

- (45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung: 22.12.1999 Patentblatt 1999/51
- (21) Anmeldenummer: 97917294.7
- (22) Anmeldetag: 07.04.1997

- (51) Int Cl.6: C08G 61/00, C09K 11/06
- (86) Internationale Anmeldenummer: PCT/EP97/01717
- (87) Internationale Veröffentlichungsnummer: WO 97/39045 (23.10.1997 Gazette 1997/45)
- (54) VERBINDUNGEN MIT SPIROATOMEN UND IHRE VERWENDUNG ALS ELEKTROLUMINESZENZMATERIALIEN

COMPOUNDS WITH SPIRO ATOMS AND THEIR USE AS ELECTROLUMINESCENT MATERIALS.
COMPOSES A SPIRO-ATOMES ET LEUR UTILISATION COMME MATERIAUX
ELECTROLUMINESCENTS

- (84) Benannte Vertragsstaaten:
 AT CH DE ES FR GB IT LI NL SE
- (30) Priorität: 17.04.1996 DE 19614971
- (43) Veröffentlichungstag der Anmeldung: 03.02.1999 Patentblatt 1999/05
- (73) Patentinhaber: Aventls Research & Technologies
 GmbH & Co KG
 65926 Frankfurt am Main (DE)
- (72) Erfinder:
 - KREUDER, Willi D-55126 Mainz (DE)
 - SPREITZER, Hubert D-65926 Frankfurt am Main (DE)
- (56) Entgegenhaltungen: EP-A- 0 676 461

EP-A- 0 707 020

P 0 894 107 B1

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

5

15

20

25

30

35

[0001] Es besteht ein hoher industrieller Bedarf an großflächigen Festkörper-Lichtquellen für eine Reihe von Anwendungen, überwiegend im Bereich von Anzeigeelementen, der Bildschirmtechnologie und der Beleuchtungstechnik. Die an diese Lichtquellen gestellten Anforderungen können zur Zeit von keiner der bestehenden Technologien völlig befriedigend gelöst werden.

[0002] Als Alternative zu herkömmlichen Anzeige- und Beleuchtungselementen, wie Glühlampen, Gasentladungslampen und nicht selbstleuchtenden Flüssigkristallanzeigeelementen, sind bereits seit einiger Zeit Elektrolumineszenz (EL)materialien und -vorrichtungen, wie lichtemittierende Dioden (LED), in Gebrauch.

10003] Neben anorganischen sind seit etwa 30 Jahren auch niedermolekulare organische Elektrolumineszenzmaterialien und -vorrichtungen bekannt (siehe z.B. US-A-3,172,862). Bis vor kurzem waren aber solche Vorrichtungen in ihrer praktischen Verwendbarkeit stark eingeschränkt.

[0004] In WO 90/13148 und EP-A 0-443 861 sind Elektrolumineszenzvorrichtungen beschrieben, die einen Film aus einem konjugierten Polymer als lichtemittierende Schicht (Halbleiterschicht) enthalten. Solche Vorrichtungen bieten zahlreiche Vorteile wie die Möglichkeit, großflächige, flexible Displays einfach und kostengünstig herzustellen. Im Gegensatz zu Flüssigkristalldisplays sind Elektrolumineszenzdisplays selbstleuchtend und benötigen daher keine zusätzliche rückwärtige Beleuchtungsquelle.

[0005] Eine typische Vorrichtung nach WO 90/13148 besteht aus einer lichtemittierenden Schicht in Form eines dünnen, dichten Polymerfilms (Halbleiterschicht), der wenigstens ein konjugiertes Polymer enthält. Eine erste Kontaktschicht steht in Kontakt mit einer ersten Oberfläche, eine zweite Kontaktschicht mit einer weiteren Oberfläche der Halbleiterschicht. Der Polymerfilm der Halbleiterschicht hat eine genügend geringe Konzentration von extrinsischen Ladungsträgern, so daß beim Anlegen eines elektrischen Feldes zwischen den beiden Kontaktschichten Ladungsträger in die Halbleiterschicht eingebracht werden, wobei die eine Kontaktschicht positiv gegenüber der anderen wird, und die Halbleiterschicht Strahlung aussendet. Die in solchen Vorrichtungen verwendeten Polymere sind konjugiert. Unter konjugiertem Polymer versteht man ein Polymer, das ein delokalisiertes Elektronensystem entlang der Hauptkette besitzt. Das delokalisierte Elektronensystem verleiht dem Polymer Halbleitereigenschaften und gibt ihm die Möglichkeit, positive und/oder negative Ladungsträger mit hoher Mobilität zu transportieren.

[0006] In WO 90/13148 wird als polymeres Material für die lichtemittierende Schicht Poly(p-phenylenvinylen) verwendet, und es wird vorgeschlagen, die Phenylgruppe in einem solchen Material durch ein heterocyclisches oder ein kondensiertes carbacyclisches Ringsystem zu ersetzen. Daneben wird auch Poly(p-phenylen), PPP, als elektrolumineszierendes Material verwendet.

[0007] Obwohl mit diesen Materialien gute Ergebnisse erzielt wurden, ist beispielsweise die Farbreinheit noch unbefriedigend. Weiterhin ist es mit den bisher bekannten Polymeren kaum möglich, eine blaue oder weiße Emission zu erzeugen.

[0008] Da zudem die Entwicklung von Elektrolumineszenzmaterialien, insbesondere auf Grundlage von Polymeren, noch in keiner Weise als abgeschlossen betrachtet werden kann, sind die Hersteller von Beleuchtungs- und Anzeigevorrichtungen an den unterschiedlichsten Elektrolumineszenzmaterialien für solche Vorrichtungen interessiert.

[0009] Dies liegt unter anderem auch daran, weil erst das Zusammenwirken der Elektrolumineszenzmaterialien mit den weiteren Bauteilen der Vorrichtungen Rückschlüsse auf die Qualität auch des Elektrolumineszenzmaterials zuläßt.
[0010] Aufgabe der vorliegenden Erfindung war es daher, neue Elektrolumineszenzmaterialien bereitzustellen, die bei Verwendung in Beleuchtungs- oder Anzeigevorrichtungen geeignet sind, das Eigenschaftsprofil dieser Vorrichtungen zu verbessem.

[0011] Verbindungen, bei denen zwei Polymere über ein einziges Spirozentrum verknüpft sind, sind beispielsweise in US-A 5,026,894 und bei J. M. Tour et al., J. Am. Chem. Soc. 1990, 112, 5662; J. M. Tour et al., J. Am. Chem. Soc. 1991, 113, 7064 und J. M. Tour et al., Polym. Prepr. 1990, 408 als Materialien für molekulare Elektronik vorgeschlagen. Eine mögliche Eignung solcher Verbindungen als Elektrolumineszenzmaterialien läßt sich daraus nicht ableiten.

[0012] In der EP-A-0 676 461 sind niedermolekulare Spiroverbindungen zur Verwendung als Elektrolumineszenzmaterialien beschrieben. Das Eigenschaftsprofil dieser Verbindungen läßt aber noch durchaus Raum für Verbesserungen.

[0013] Es wurde nun überraschend gefunden, daß sich bestimmte konjugierte Verbindungen, die mehrere Spirozentren enthalten, in besonderer Weise als Elektrolumineszenzmaterialien eignen.

[0014] Gegenstand der Erfindung sind daher konjugierte Verbindungen, enthaltend Struktureinheiten der Formel (I)

wobei die Symbole und Indizes folgende Bedeutungen haben:

D, E, F1, G

Ar¹, Ar²

10

15

20

25

30

35

40

45

50

55

Ar3, Ar4

U1, V1

Ar5, Ar6, X, Y1

R1,R2,R5,R6,R7,R8,R9,R10,R11,R12

R3, R14, R15

R4

m

sind gleich oder verschieden -CR¹R¹-, -O-, -S-, -NR³- oder eine chemische Bindung:

sind gleich oder verschieden Benzol-triyl, Thiophen-triyl, Furan-triyl, Pyrroltriyl, Pyridin-triyl, Pyrimidin-triyl, Pyrazin-triyl oder Pyridazin-triyl, wobei jede dieser Gruppen unabhängig voneinander mit 1 bis 3, vorzugsweise 1, gleichen oder verschiedenen Resten R⁴ substituiert sein kann;

haben gleich oder verschieden die bei Ar¹, Ar² angegebenen Bedeutungen oder sind Cyclohexan-triyl, Cyclopentan-triyl, Cyclohexentriyl oder Cyclopenten-triyl, wobei jede dieser Gruppen unabhängig voneinander mit 1 bis 3 gleichen oder verschiedenen Resten R⁴ substituiert sein kann;

sind gleich oder verschieden -CR 5 =CR 6 -, -CR 7 R 8 -, -CR 9 R 10 -CR 11 R 12 -, -NR 13 -, -SiR 14 R 15 -, -O-, -S-, -SO-, -SO $_2$ -, -CO- oder eine chemische Bindung;

sind gleich oder verschieden cyclische oder acyclische, konjugierte Kohlenwasserstoffe mit 2 bis 100, vorzugsweise 2 bis 20, Kohlenstoffatomen, die auch Heteroatome, vorzugsweise 0, N und/oder S, enthalten können und die durch einen oder mehrere Reste R⁴ substituiert sein können, X und/oder Y¹ können auch gleich oder verschieden H oder R¹ sein;

sind gleich oder verschieden H, eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, wobei eine oder mehrere vorzugsweise eine, -CH₂-Gruppen durch -O-, -CO-O-, -O-CO- oder ersetzt sein können und wobei ein oder mehrere Wasserstoffatome durch F ersetzt sein können, eine Aryl- oder Aryloxygruppe mit vorzugsweise 2 bis 20 C-Atomen, vorzugsweise Phenyl oder Phenyloxy, die auch Heteroatome, vorzugsweise N, S und/oder O enthalten kann, und die mit einem oder mehreren Resten R⁶ substituiert sein kann, Br, Cl, F, CN, NO₂, CF₃, wobei R¹ und R², R⁷ und R⁸, R⁹ und R¹⁰ sowie R¹¹ und R¹² jeweils zusammen ein Ringsystem bilden können;

sind gleich oder verschieden H oder, bevorzugt, eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, wobei auch eine oder mehrere, nicht direkt an N gebundene, CH₂-Gruppen durch -O-, -CO-O-, -O-CO- ersetzt sein können, eine Arylgruppe mit vorzugsweise 2 bis 20 C-Atomen, die auch Heteroatome, vorzugsweise N, S und/oder O enthalten kann, und die mit einem oder mehreren, gleichen oder verschienen Resten R⁴ substituiert sein kann;

ist gleich oder verschieden F, Cl, Br, CN, NO₂, CF₃ oder eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, bei der auch eine oder mehrere, nicht direkt aneinander gebundene CH₂-Gruppen durch -O-, -CO-O-, -O-CO- ersetzt sein können und wobei auch ein oder mehrere H-Atome durch F ersetzt sein können;

ist 1, 2, 3 oder 4, vorzugsweise 1;

n, p sind gleich oder verschieden 0, 1, 2, 3 oder 4, vorzugsweise 0 oder 1;

wobei folgende Verbindungen ausgenommen sind:

5

20

25

30

45

50

55

- a) Verbindungen, bei denen Ar¹, Ar², Ar³ und Ar⁴ Benzol-triyl sind, D, E, F¹, G, U¹ und V¹ Einfachbindungen sind und X und Y¹ cyclische oder acyclische, konjugierte Kohlenwasserstoffe sind, die auch Heteroatome enthalten können und die auch substituiert sein können, und
- b) Poly[2,7-(9,9'-spirobifluorenylen)-4,4'-biphenylen]

15 n

und Poly-2,7-(9,9'-spirobifluoren)ylen

35 Bevorzugt sind konjugierte Verbindungen, enthaltend Strukturelemente der Formel (I), bei denen die Symbole und Indizes folgende Bedeutungen haben:

Ar⁵, Ar⁶ sind gleich oder verschieden jeweils eine bis 5 gleiche oder verschiedene Arylen- und/oder Heteroarylenund/oder Vinylengruppen, die gegebenenfalls substituiert sein können;

40 m ist 1 und

n, p sind gleich oder verschieden 0 oder 1

wobei die obengenannten Verbindungen ausgenommen sind.

[0015] Die erfindungsgemäßen Verbindungen, enthaltend Struktureinheiten der Formel (I) zeichnen sich insbesondere durch eine hohe Farbreinheit der Emission aus.

[0016] Polymer bedeutet im Sinne der Erfindung eine Verbindung, deren Elektrolumineszenzspektrum bei Anfügen weiterer Wiederholeinheiten im wesentlichen gleich bleibt.

[0017] Spiroverbindungen sind Verbindungen in denen zwei Ringsysteme durch ein einziges, vierbindiges Atom verknüpft sind. Dieses Atom wird als Spiroatom bezeichnet, wie in Handbook of Chemistry and Physics 62nd ed. (1981-2), CRC Press, Seite C-23 bis C-25 ausgeführt.

[0018] Die erfindungsgemäßen konjugierten Verbindungen, enthaltend Struktureinheiten der Formel (I), weisen im allgemeinen 2 bis 1000, vorzugsweise 4 bis 500, besonders bevorzugt 10 bis 100, Struktureinheiten der Formel (I) auf. [0019] Bevorzugt sind weiterhin solche konjugierten Verbindungen, enthaltend Struktureinheiten allgemeinen Formel (I), bei denen die Symbole und Indizes folgende Bedeutungen haben:

Ar¹, Ar², Ar³, Ar⁴ sind gleich oder verschieden Benzol-triyl, Pyridin-triyl, Thiophen-triyl, Pyrazin-triyl oder Pyrimidin-triyl;

Ar⁵, Ar⁶ sind gleich oder verschieden

X, Y¹ sind gleich oder verschieden H, eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, wobei eine oder mehrere -CH₂-Gruppen durch -O-, -CO-O-, -O-CO- ersetzt sein können und wobei ein oder mehrere Wasserstoffatome durch F ersetzt sein können, Br, Cl, F, CN, NO₂, CF₃ oder

$$R^{27} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

$$\begin{array}{c|c}
R^{30} & R^{31} \\
\hline
R^{32} & K^{1}
\end{array}$$

10

15

20

11, J, L, M K¹, N¹ R16-R42

sind gleich oder verschieden =CR38-, =N-;

sind gleich oder verschieden -O-, -S-, $CR^{39}R^{40}$, $-CR^{41}=CR^{42}$ -, $-NR^{43}$ -, $-CR^{44}=N$ -;

sind gleich oder verschieden und haben, gleich oder verschieden von R1 die gleichen Bedeu-

tungen wie R1 in der Formel (I);

R43, R44 25

sind gleich oder verschieden und haben gleich oder verschieden von R3 die gleichen Bedeu-

tungen wie R3 in der Formel (I);

q, r, s, t, u

sind gleich oder verschieden 0, 1, 2, 3, 4 oder 5, wobei die oben angegebenen Verbindungen

ausgenommen sind.

30 [0020] Besonders bevorzugt sind konjugierte Verbindungen, enthaltend Struktureinheiten der Formel (I), bei denen gilt:

Ar⁵, Ar⁶ sind gleich oder verschieden

35

40

45

50

sind gleich oder verschieden 0 oder 1;

n, p X, Y¹ sind gleich oder verschieden H, oder eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, wobei eine oder mehrere -CH2-Gruppen durch -O-, -CO-O-, -O-CO- ersetzt sein können und wobei ein oder mehrere Wasserstoffatome durch F ersetzt sein können, Br, Cl, F, CN, NO₂, CF₃ oder

$$R^{3}N^{-1}$$

, wobei die obengenannten Verbindungen ausgenommen sind.

[0021] Ganz besonders bevorzugt sind konjugierte Verbindungen, enthaltend Struktureinheiten der Formel (I), bei denen gilt

Ar⁵, Ar⁶ sind gleich oder verschieden

15

25

30

35

40

45

50

$$N-N$$

n + p ist 0 oder 1; X, Y¹ sind gleich oder verschieden H, oder eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, wobei eine oder mehrere -CH₂-Gruppen durch -O-, -CO-O-, -O-CO- ersetzt sein können und wobei ein oder mehrere Wasserstoffatome durch F ersetzt sein können, Br, Cl, F, CN, NO₂, CF₃ oder

, wobei die obengenannten Verbindungen ausgenommen sind.

10

[0022] Für einige Anwendungen kann es vorteilhaft sein, eines, mehrere oder alle Wasserstoffatome, bevorzugt solche an aromatischen Ringen, durch F-Atome zu ersetzen.

[0023] Die erfindungsgemäßen konjugierten Verbindungen, enthaltend Struktureinheiten der Formel (I) sind Homooder Copolymere, d.h., daß sie auch unterschiedliche Wiederholeinheiten der Formel (I) aufweisen können.

[0024] Vorzugsweise bestehen die erfindungsgemäßen konjugierten Verbindungen aus Struktureinheiten der Formel (I).

[0025] Die erfindungsgemäßen Verbindungen zeichnen sich weiterhin durch eine beträchtliche Steigerung der Löslichkeit in organischen Solventien und gute Filmbildungseigenschaften aus. Dadurch wird die Herstellung von Elektrolumineszenzvorrichtungen erleichtert und ihre Lebensdauer erhöht. Darüber hinaus erlaubt die kovalent gebundene Anordnung der Substituenten über die Spiroatome, senkrecht zur konjugierten Hauptkette, einen molekularen Aufbau in der Weise, daß ohne Störung der Konjugation in der Hauptkette bestimmte Eigenschaften eingestellt werden können. So kann die Polymerkette z.B. Ladungstransport- oder Ladungsinjektionseigenschaften besitzen, während die Substituenten lichtemittierende Eigenschaften besitzen. Die Emissionseigenschaften der erfindungsgemäß eingesetzten Verbindungen können durch die Wahl geeigneter Substituenten über den ganzen Bereich des sichtbaren Spektrums eingestellt werden. Die durch die kovalente Anknüpfung fixierte räumliche Nähe der beiden Hälften ist dabei günstig für die Energieübertragung (siehe z.B. B. Liphardt, W. Lüttke Liebigs Ann. Chem. 1981, 1118).

Die erfindungsgemäßen Polymere mit Wiederholeinheiten der Formel (I) sind zur Erzielung blauer Elektrolumineszenz aut geeignet.

[0026] Die Herstellung der erfindungsgemäßen Verbindungen kann nach an sich literaturbekannten Methoden, wie sie in Standardwerken zur Organischen Synthese, z.B. Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart und in den Bänden der Serie "The Chemistry of Heterocyclic Compounds, A. Weissberger, E. C. Taylor (eds.), insbesondere Band 13/5, S. 30-87, beschrieben werden, erfolgen.

[0027] Die Herstellung erfolgt dabei unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch gemacht werden.

[0028] Als Ausgangsverbindungen für die Herstellung der erfindungsgemäßen Verbindungen kommen zum Beispiel Monomere mit einem 4,5-Diaza-9,9'-spirobifluoren- (CAS-Reg.-Nr.: 171856-25-0), einem Spirocyclo(dithiopheno)pentan-4,9'-fluoren- (CAS-Reg.-Nr.: 28687-00-5), einem Spiro-9-fluoren-9'-xanthen- (CAS-Reg.-Nr.: 159-62-6), einem Spiro-dibenzocycloheptan-5,9'-fluoren- (CAS-Reg.-Nr.: 120788-49-0) oder auch einem 9,9'-Spirobixanthen-Baustein (CAS-Reg.-Nr.: 159-49-9) zum Einsatz, die in 2,7- bzw. gegebenenfalls 2',7'-Position substituiert sind.

[0029] Eine Methode zur Synthese dieser Monomeren beruht in der Regel auf der Grignardreaktion von beispielsweise 2-Brombiphenyl mit einem entsprechenden cyclischen Keton, wie dies z. B. für das 4,5-Diaza-9,9'-spirobifluoren von P. Piotrowiak et al., Bull. Pol. Acad. Sci., Chem. 1995, 1994, 42, 445 beschrieben wird. Für Spiro-9-fluoren-9'-xanthen und 9,9'-Spirobixanthen wird dies analog von R. G. Clarkson und M. Gomberg, J. Am. Chem. Soc. 1930, 52, 2881 beschrieben. Für Spiro-5-dibenzocycloheptan-9'-fluoren wird dies von D. Hellwinkel et al., Chem. Ber. 1989, 122, 1595 beschrieben. Für das Spiro-4-cyclo(dithiopheno)pentan-9'-fluoren ist dies von H. Wynberg et al., Recl. Trav. Chim. Pays-Bas 1970, 89, 545 beschrieben. Die derart erhaltenen Grundkörper können weiter funktionalisiert werden. [0030] Möglichkeiten zur Funktionalisierung sind in Analogie der verwandten Verbindung 9,9'-Spirobifluoren gegeben; diese sind z. B. beschrieben in J. H. Weisburger, E. K. Weisburger, F. E. Ray, J. Am. Chem. Soc. 1959, 72, 4253; F. K. Sutcliffe, H. M. Shahidi, D. Paterson, J. Soc. Dyers Colour 1978, 94, 306; und G. Haas, V. Prelog, Helv. Chim. Acta 1969, 52, 1202.

[0031] Es kann von Vorteil sein, das gewünschte Substitutionsmuster des gewünschten zentralen Grundkörpers durch Spiroverknüpfung von bereits geeignet substituierten Edukten zu erreichen, z.B. mit 2,7-difunktionalisiertem Xanthenon, und die noch freien 2',7'-Positionen nach Aufbau des Spirozentrums dann gegebenenfalls weiter zu funktionalisieren (z.B. durch Halogenierung oder Acylierung, mit anschließender C-C-Verknüpfung nach Umwandlung der Acetylgruppen in Aldehydgruppen, oder durch Heterocyclenaufbau nach Umwandlung der Acetylgruppen in Carbonsäuregruppen).

- [0032] Die weitere Funktionalisierung kann nach an sich literaturbekannten Methoden erfolgen, wie sie in Standardwerken zur Organischen Synthese, z.B Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme Verlag, Stuttgart und in den entsprechenden Bänden der Serie "The Chemistry of Heterocyclic Compounds" von A. Weissberger und E. C. Taylor (Herausgeber) beschrieben werden.
- [0033] Für die Synthese der Gruppen Ar⁵, Ar⁶, X, Y sei beispielsweise verwiesen auf DE-A 23 44 732, 24 50 088, 24 29 093, 25 02 904, 26 36 684, 27 01 591 und 27 52 975 für Verbindungen mit 1,4-Phenylen-Gruppen DE-A 26 41 724 für Verbindungen mit Pyrimidin-2,5-diyl-Gruppen; DE-A 40 26 223 und EP-A 03 91 203 für Verbindungen mit Pyridin-2,5-diyl-Gruppen; DE-A 32 31 462 für Verbindungen mit Pyridazin-3,6-diyl-Gruppen; N. Miyaura, T. Yanagi und A. Suzuki in Synthetic Communications 1981, 11, 513 bis 519; DE-C 39 30 663; M. J. Sharp, W. Cheng, V. Snieckus in Tetrahedron Letters 1987, 28, 5093; G. W. Gray in J.Chem.Soc. Perkin Trans II 1989, 2041 und Mol. Cryst. Liq. Cryst. 1989, 172, 165, Mol. Cryst. Liq. Cryst. 1991, 204, 43 und 91; EP-A 0 449 015; WO 89/12039; WO 89/03821; EP-A 0 354 434 für die direkte Verknüpfung von Aromaten und Heteroaromaten.
 - [0034] Die Herstellung disubstituierter Pyridine, disubstituierter Pyrazine, disubstituierter Pyridine und disubstituierter Pyridazine findet sich beispielsweise in den entsprechenden Bänden der Serie "The Chemistry of Heterocyclic Compounds" von A. Weissberger und E. C. Taylor (Herausgeber).

15

- [0035] Ausgehend von den oben angegebenen Monomeren ist die Polymerisation zu den erfindungsgemäßen Polymeren mit Wiederholeinheiten der Formel (I) nach mehreren Methoden möglich.
- [0036] Beispielsweise können Derivate der o. g. bevorzugten Grundkörper oxidativ (z.B. mit FeCl₃, siehe u.a. P. Kovacic, N. B. Jones, Chem. Ber. 1987, 87, 357 bis 379; M. Weda, T. Abe, H. Awano, Macromolecules 1992, 25, 5125) oder elektrochemisch (siehe z.B. N. Saito, T. Kanbara, T. Sato, T. Yamamoto, Polym. Bull. 1993, 30, 285) polymerisiert werden.
- [0037] Ebenso können die erfindungsgemäßen Polymere aus 2,7-difunktionalisierten Derivaten hergestellt werden. Dihalogenaromaten lassen sich unter Kupfer/Triphenylphosphan- (siehe z.B. G. W. Ebert, R. D. Rieke, J. Org. Chem. 1988, 53, 44829 oder
- 25 Nickel/Triphenylphosphan-Katalyse (siehe z.B. H. Matsumoto, S. Inaba, R. D. Rieke, J. Org. Chem. 1983, 48, 840) polymerisieren.
 - [0038] Aromatische Diboronsäuren und aromatische Dihalogenide oder gemischte aromatische Halogen-Boronsäuren lassen sich unter Palladiumkatalyse durch Kupplungsreaktionen polymerisieren (siehe z.B. M. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun. 1981, 11, 513; R. B. Miller, S. Dugar, Organometallics 1984, 3, 1261).
- 30 [0039] Aromatische Distannane lassen sich z.B., wie bei J. K. Stille, Angew. Chem. Int. Ed. Engl. 1986, 25, 508 angegeben, unter Palladiumkatalyse polymerisieren.
 - [0040] Weiterhin können die oben erwähnten Dibromverbindungen in die Dilithio- oder Digrignardverbindungen übergeführt werden, die dann mit weiterer Dibromverbindung mittels CuCl₂ (siehe z.B. G. Wittig, G. Klar, Liebigs Ann. Chem. 1967, 704, 91; H. A. Staab, F. Bunny, Chem. Ber. 1967, 100, 293; T. Kaufmann, Angew. Chem. 1974, 86, 321 bis 354) oder durch Elektronentransfer ungesättigter 1,4-Dihalogenverbindungen (siehe z.B. S. K. Taylor, S. G. Bennett, K. J. Harz, L. K. Lashley, J. Org. Chem. 1981, 46, 2190) polymerisiert werden.
 - [0041] Die Synthese der erfindungsgemäßen Polymeren mit Wiederholeinheiten der Formel (I) kann aber auch durch Polymerisation eines 2,7-difunktionalisierten Derivates mit einer weiteren, geeignet difunktionalisierten Verbindung erfolgen.
- [0042] So kann z.B. 2',7'-Dibrom-4,5-diaza-9,9'-spirobifluoren mit Biphenyl-4,4'-bisboronsäure polymerisiert werden. Auf diese Weise ist gleichzeitig mit dem Polymerisationsschritt der Aufbau verschiedener heterocyclischer Einheiten möglich, z.B. die Bildung von Oxadiazoleinheiten aus difunktionellen Carbonsäurehalogeniden und difunktionellen Carbonsäurehydraziden oder aus der entsprechenden Dicarbonsäure und Hydrazinsulfat (B. Schulz, E. Leibnitz, Acta Polymer. 1992, 43, Seite 343; JP-A 05/178, 990, oder alternativ aus Dicarbonsäurehalogeniden und Bistetrazolen (C. A. Abshire, C. S. Marvel, Makromol. Chem. 1961, 44 bis 46, Seite 388).
 - [0043] Zur Herstellung von Copolymeren können beispielsweise unterschiedliche Monomere mit Strukturelementen der Formel (I) gemeinsam polymerisiert werden.
 - [0044] Die Aufarbeitung erfolgt nach bekannten, dem Fachmann geläufigen Methoden, wie sie beispielsweise bei R. J. Young, P. A. Lovell, Introduction to Polymers, Chapman & Hall, London, 1991, beschrieben sind. Beispielsweise kann man die Reaktionsmischung filtrieren, mit wäßriger Säure verdünnen, extrahieren und das nach Trocknen und Abziehen des Lösungsmittels erhaltene Rohprodukt durch Umfällen weiter reinigen.
 - [0045] Endständige Bromatome können beispielsweise mit LiAlH $_4$ reduktiv entfernt werden (siehe z.B. J. March, Advanced Organic Chemistry, 3. Aufl. McGraw-Hill, S. 510).
 - [0046] Die erfindungsgemäßen Verbindungen können als Elektrolumineszenzmaterialien Verwendung finden.
- 55 [0047] Gegenstand der Erfindung ist daher auch die Verwendung von Verbindungen enthaltend Struktureinheiten der Formel (I), als Elektrolumineszenzmaterial.
 - [0048] Als Elektrolumineszenzmaterial im Sinne der Erfindung gelten Stoffe, die als aktive Schicht in einer Elektrolumineszenzvorrichtung Verwendung finden können. Aktive Schicht bedeutet, daß die Schicht befähigt ist, bei Anlegen

eines elektrischen Feldes Licht abzustrahlen (lichtemittierende Schicht) und/oder daß sie die Injektion und/oder den Transport der positiven und/oder negativen Ladungen verbessert (Ladungsinjektions- oder Ladungstransportschicht). Hervorzuheben sind die hervorragenden Lochleitereigenschaften der erfindungsgemäßen Materialien, die z.B. als Lochtransportschicht Anwendung in Photokopierern und Laserdruckern finden können.

[0049] Gegenstand der Erfindung ist daher auch ein Elektrolumineszenzmaterial, enthaltend ein oder mehrere Verbindungen, enthaltend Struktureinheiten der Formel (I).

[0050] Üblicherweise enthält das erfindungsgemäße Elektrolumineszenzmaterial ein oder mehrere erfindungsgemäße Verbindungen als Hauptkomponente, d.h. zu größer als 50 Gew.-%, oder als Additiv.

[0051] Um als Elektrolumineszenzmaterialien Verwendung zu finden, werden Lösungen von Verbindungen enthaltend Struktureinheiten der Formel (I), im allgemeinen nach bekannten, dem Fachmann geläufigen Methoden, wie Gießen (Casting), Eintauchen (Dipping), Aufschleudern (Spincoating) oder Vorhangbeschichtung in Form eines Films auf ein Substrat aufgebracht.

[0052] Weiterhin Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung eines Elektrolumineszenzmaterials, dadurch gekennzeichnet, daß man ein oder mehrere Verbindungen, enthaltend Struktureinheiten der Formel (I), in Form eines Films auf ein Substrat aufbringt.

[0053] Gegenstand der Erfindung ist zudem eine Elektrolumineszenzvorrichtung mit einer oder mehreren aktiven Schichten, wobei mindestens eine dieser aktiven Schichten ein oder mehrere erfindungsgemäße Verbindungen enthaltend Strukturelemente der Formel (I), enthält. Die aktive Schicht kann beispielsweise eine lichtemittierende Schicht und/oder eine Transportschicht und/oder eine Ladungsinjektionsschicht sein.

[0054] Der allgemeine Aufbau solcher Elektrolumineszenzvorrichtungen ist beispielsweise in US-A-4,539,507 und US-A-5,151,629 beschrieben. Polymere enthaltende Elektrolumineszenzvorrichtungen sind beispielsweise in WO 90/13148 oder EP-A 0 443861 beschrieben.

[0055] Sie enthalten üblicherweise eine elektrolumineszierende Schicht zwischen einer Kathode und einer Anode, wobei mindestens eine der Elektroden transparent ist. Zusätzlich kann zwischen der elektrolumineszierenden Schicht und der Kathode eine Elektroneninjektions- und/oder Elektronentransportschicht eingebracht sein und/oder zwischen der elektrolumineszierenden Schicht und der Anode eine Lochinjektions- und/oder Lochtransportschicht eingebracht sein. Als Kathode können Metalle und/oder Metallegierungen, vorzugsweise mit niedriger Austrittsarbeit, z.B. Ca, Mg, Al, In, Mg/Ag dienen. Als Anode können neben Metallen wie Au auch leitfähige Metalloxide wie ITO (Indiumoxid/Zinnoxid) auf einem transparenten Substrat, z.B. aus Glas oder einem transparenten Polymer, dienen.

Im Betrieb wird die Kathode auf negatives Potential gegenüber der Anode gesetzt. Dabei werden Elektronen von der Kathode in die

Elektroneninjektionsschicht-/Elektronentransportschicht bzw. direkt in die lichtemittierende Schicht injiziert. Gleichzeitig werden Löcher von der Anode in die Lochinjektionsschicht/ Lochtransportschicht bzw. direkt in die lichtemittierende Schicht injiziert

[0056] Die injizierten Ladungsträger bewegen sich unter dem Einfluß der angelegten Spannung durch die aktiven Schichten aufeinander zu. Dies führt an der Grenzfläche zwischen Ladungstransportschicht und lichtemittierender Schicht bzw. innerhalb der lichtemittierenden Schicht zu Elektronen/Loch-Paaren, die unter Aussendung von Licht rekombinieren.

Die Farbe des emittierten Lichtes kann durch die als lichtemittierende Schicht verwendete Verbindung variiert werden, wobei ausdrücklich neben Copolymeren auch Abmischungen der erfindungsgemäßen Polymere mit anderen elektrooptisch-aktiven oder -passiven Stoffen miteingeschlossen sein sollen.

[0057] Elektrolumineszenzvorrichtungen finden Anwendung z.B. als selbstleuchtende Anzeigeelemente, wie Kontrollampen, alphanumerische Displays, Hinweisschilder, und in optoelektronischen Kopplern. Die erfindungsgemäßen Materialien sind aufgrund ihrer guten Lochtransporteigenschaften auch als Fotoleiterelemente, z.B. in Fotokopierem und Laserdruckem geeignet.

[0058] Die Erfindung wird durch die Beispiele näher erläutert, ohne sie dadurch beschränken zu wollen.

Beispiele

20

Beispiel 1: 4,5-Diaza-9,9'-spirobifluoren

[0059] Zu einer siedenden Lösung von 0.1 mol Grignardreagenz aus 2-Brombiphenyl und Magnesium in trockenem Diethylether (100 ml) wird innerhalb von 10 Minuten 0.1 mol 4,5-Diazafluorenon (käuflich bei Maybridge Chemical Co. Ltd.) gelöst in 300 ml ebenfalls trockenem Diethylether zugetropft. Man refluxiert für weitere 3 Stunden. Nach Abkühlen wird der ausgefallenen gelbe Mg-Komplex abgesaugt, mit wenig Diethylether nachgewaschen und schließlich mit neutral gepuffertem Eiswasser hydrolysiert. Das so gebildete 9-(2-Biphenyl)-4,5-diazafluoren-9-ol wird nach längerem Rühren abgesaugt und getrocknet. Die gewünschte Spiroverbindung wird daraus durch ca. 3 h Refluxieren in 100 ml Eisessig/5 ml HCl (37%) erhalten. Das Produkt kristallisiert aus der Reaktionslösung in Form des Dihydrochlorids aus.

Die neutrale Form wird durch Rühren dieses Salzes mit NaHCO₃-Lösung erhalten. Nach Umkristallisation aus Ethanol erhält man ca. 55-70% farbloses Produkt bezogen auf 4,5-Diazafluorenon.

¹H NMR (CDCl₃) [δ, Multiplizität, Integral, Zuordnung] 6.73 (dd, 2 H, H-1/8'), 7.10 (dt, 2 H, H-2'/7'), 7.25 (m, 4 H, H-3/6', H-2/7), 7.37 (dd, 2 H, H-1/8), 7.72 (dd, 2 H, H-4/5'), 8.63 (dd, 2 H, H-3/6).

Beispiel 2: Spiro-9-fluoren-9'-xanthen

5

10

20

25

30

45

50

[0060] Zu einer siedenden Lösung des Grignardreagenz aus 8.9 g 2-loddiphenylether und 0.73 g Magnesium in trockenem Diethylether (250 ml) wird innerhalb von 10 Minuten 4.5 g Fluorenon gelöst in 100 ml ebenfalls trockenem Diethylether zugetropft. Man refluxiert für weitere 10 Stunden. Nach Abkühlen wird der ausgefallenen gelbe Mg-Komplex abgesaugt, mit wenig Diethylether nachgewaschen und schließlich mit Eiswasser/NH₄Cl hydrolysiert. Das so gebildete Fluorenolderivat wird nach längerem Rühren abgesaugt und getrocknet. Die gewünschte Spiroverbindung wird daraus durch ca. 3 h Refluxieren in 100 ml Eisessig/5 ml HCl (37%) erhalten. Das Produkt kristallisiert aus der Reaktionslösung in Form farbloser Nadeln. Nach Umkristallisation aus Ethanol erhält man ca. 50-60% farbloses Produkt bezogen auf Fluorenon.

¹H NMR (CDCl₃) [δ, Multiplizität, Integral, Zuordnung] 6.55 (dd, 2 H, H-1/8'), 6.68 (dd, 2 H, H-1/8), 7.12 (m, 4 H, H-2/7, H-2'/7'), 7.25 (m, 4 H, H-3/6, H-3/6'), 7.45 (dd, 2 H, H-4/5'), 7.77 (dd, 2 H, H-4/5).

Beispiel 3: Spiro-5-dibenzocycloheptan-9'-fluoren

[0061] Zu einer siedenden Lösung von 75 mmol Grignardreagenz aus 2-Brombiphenyl und Magnesium in trockenem Diethylether (100 ml) wird innerhalb von 10 Minuten 55 mmol Dibenzosuberon gelöst in 100 ml ebenfalls trockenem Diethylether zugetropft. Man refluxiert für weitere 24 Stunden. Nach Abkühlen wird die gelbe Suspension mit NH₄Cl/Eiswasser hydrolysiert. Die Phasen werden getrennt, die wässrige Phase wird noch mehrfach mit Diethylether ausgeschüttelt. Die vereinigten organische Phasen werden eingeengt und der entstehende Feststoff kann direkt für die weitere Umsetzung verwendet werden. Die gewünschte Spiroverbindung wird daraus durch ca. 3 h Refluxieren in 100 ml Trifluoressigsäure erhalten. Das Produkt kristallisiert aus der Reaktionslösung in Form farbloser Nadel aus. Nach Umkristallisation aus Petrolether (80/110) erhält man ca. 50-70% farbloses Produkt bezogen auf Dibenzosuberon.

¹H NMH (CDCl₃) [δ, Multiplizitat, Integral, Zuordnung] 3.35 (s, 4H, -CH₂-CH₂-), 6.38 (dd, 2 H, H-4/6), 6.68 (dd, 2 H, H-1/8), 6.74 (dt, 2 H, H-3/7), 6.97 (dt, 2 H, H-2',7'), 7.15 (m, 4 H, H-2/8, H-3'/6'), 7.31 (dd, 2 H, H-1/9), 7.79 (dd, 2 H, H-4/5').

Beispiel 4: 2',7'-Dibrom-4,5-diaza-9,9'-spirobifluoren

25 [0062] Zu einer refluxierenden Lösung von 10 g 4,5-Diaza-9,9'-spirobifluoren (gemäß Beispiel 1) in 50 ml Chloroform die mit 100 mg FeCl₃ versetzt wurde, werden innerhalb von 5 Minuten 10 ml Brom (verdünnt mit 10 ml Chloroform) zugegeben. Die entstehende Reaktionsmischung wird für weitere 2 Stunden refluxiert. Danach wird der Bromüberschuß schnell durch Einrühren von ca. 100 ml Na₂SO₃ vernichtet. Die so entstehenden Phasen werden separiert, die organische Phase wird noch mit NaHCO₃-Lösung und Wasser ausgeschüttelt und anschließend auf ca. 30 ml Gesamtvolumen eingeengt. Nach Stehenlassen über Nacht bei -18°C kann das gewünschte Produkt als farbloses Pulver abgesaugt werden. Eine weitere Reinigung ist in der Regel nicht notwendig: ca. 75% Ausbeute bezogen auf 4,5-Diaza-9,9'-spirobifluoren.

¹H NMR (CDCl₃) [δ, Multiplizität, Integral, Zuordnung] 6.85 (d, 2 H, H-1'/8'), 7.28 (t, 2 H, H-2/7), 7.34 (dd, 2 H, H-1/8), 7.67 (dd, 2 H, H-3/6'), 7.85 (d, 2 H, H-4'/5'), 8.60 (dd, 2 H, H-3/6).

Beispiel 5: Spiro-2,7-dibrom-9-fluoren-9'-xanthen

[0063] Zu einer Lösung von 10 g Spiro-9-fluoren-9'-xanthen (gemäß Beispiel 2) in 50 ml Chloroform die mit 100 mg FeCl₃ versetzt wurde, werden innerhalb von 15 Minuten 9.6 g Brom (verdünnt mit 10 ml Chloroform) zugegeben. Die entstehende Reaktionsmischung wird für weitere 2 Stunden bei Raumtemperatur gerührt. Danach wird die organische Phase zunächst mit NaSO₃-Lösung, anschließend mit NaHCO₃-Lösung und Wasser ausgeschüttelt. Die organische Phase wird schließlich auf ein Gesamtvolumen von 40 ml eingeengt. Nach Stehenlassen über Nacht bei -18°C kann das gewünschte Produkt als farbloses Pulver abgesaugt werden. Eine weitere Reinigung ist in der Regel nicht notwendig: ca. 45% Ausbeute.

⁵⁵ ¹H NMR (CDCl₃) [δ, Multiplizität, Integral, Zuordnung] 6.58 (dd, 2 H, H-1'/8'), 6.85 (d, 2 H, H-1/8), 7.08 (dt, 2 H, H-2'/7'), 7.20 (dt, 2 H, H-3'/6'), 7.43 (dd, 2 H, H-4'/5'), 7.55 (dd, 2 H, H-3/6), 7.67 (d, 2 H, H-4/5).

Beispiel 6: Spiro-2',7'-dibrom-5-dibenzocycloheptan-9'-fluoren

[0064] Zu einer abgedunkelten Lösung von 10.3 g Spiro-5-dibenzocycloheptan-9'-fluoren (gemäß Beispiel 3) in 50 ml Chloroform die mit 100 mg FeCl₃ versetzt wurde, werden innerhalb von 15 Minuten 9.6 g Brom (verdünnt mit 10 ml Chloroform) zugegeben. Die entstehende Reaktionsmischung wird für weitere 4 Stunden bei Raumtemperatur gerührt. Danach wird die organische Phase zunächst mit NaSO₃-Lösung, anschließend mit NaHCO₃-Lösung und Wasser ausgeschüttelt. Die organische Phase wird zur Trockene einrotiert. Das erhaltene gelbliche Rohprodukt wird durch Säulenchromatographie (SiO₂, Dichlormethan) vorgereinigt und schließlich aus Chloroform/Hexan umkristallisiert: ca. 50% Ausbeute.

¹H NMR (CDCl₃) [δ, Multiplizität, Integral, Zuordnung] 3.32 (s, 4H, -CH₂-CH₂-), 6.38 (dd, 2 H, H-4/6), 6.74 (dt, 2 H, H-3/7), 6.82 (d, 2 H, H-1/8'), 7.18 (dt, 2 H, H-2/8), 7.33 (dd, 2 H, H-1/9), 7.58 (dd, 2 H, H-3',6'), 7.69 (d, 2 H, H-4/5').

Beispiel 7: Polymerisation von 2',7'-Dibrom-4,5-diaza-9,9'-spirobifluoren (Polymer 1)

[0065]

10

15

20

25

30

35

40

45

55

[0066] 1 mmol NiCl₂(PPh₃)₂, 20 mmol PPh₃, 2 mmol 2,2'-Bipyridyl, 40 mmol Zn-Staub werden unter Argon getrocknet. Zu diesem Feststoffgemisch werden 5 g 2',7'-Dibrom-4,5-diaza-9,9'-spirobifluoren gelöst in 40 ml über Na/Benzophenon getrocknetem Tetrahydrofuran gegeben. Die Reaktionsmischung wird unter kräftigen Rühren für ca. 3 Tage refluxiert. Man filtriert den erkalteten Reaktionsansatz und engt diesen anschließend zur Trockene ein. Der Reaktionsansatz wird erneut in Chloroform gelöst, zunächst mehrfach in 2 N HCl geschüttelt um Zn-Reste zu beseitigen. Die organische Phase wird anschließend mit NaHCO₃-Lösung und H₂O neutral gewaschen. Die kombinierten HCl-Waschlösungen werden mit NaHCO₃-Lösung vorsichtig neutralisiert und mit Chloroform rückgeschüttelt. Die vereinigten Chloroformlösungen werden auf ca. 30 ml eingeengt und das Polymer durch Eingiesen in das 10 fache Volumen Methanol ausgefällt. Zur weiteren Reinigung und zur Abtrennung niedermolekularer Bestandteile wird insgesamt noch dreimal in Chloroform aufgenommen und in Methanol gefällt.

Man emält schließlich ca. 2.5 g hellgelbes Polymer (ca. 75%). M_w (GPC, PS-Standard, THF): 15000 ($P_D = 2.3$).

Beispiel 8: Polymerisation von Spiro-2,7-dibrom-9-fluoren-9'-xanthen (Polymer 2)

[0067]

[0068] Die Polymerisation von Spiro-2,7-dibrom-9-fluoren-9'-xanthen verläuft analog zu den Angaben in Beispiel 7. Die Aufarbeitung verläuft ebenfalls analog; hier ist jedoch eine Neutralisation der HCI-Phase und ein Rückschütteln

nicht notwendig.

Man erhält schließlich ein hellgelbes Polymer (ca. 55%).

M_w (GPC, PS-Standard, THF mit 1% Ameisensäure): 22000 (P_D = 2.9).

5 Beispiel 9: Polymerisation von Spiro-2',7'-dibrom-5-dibenzocycloheptan-9'-fluoren (Polymer 3)

[0069]

10

15

[0070] Die Polymerisation von Spiro-2',7'-dibrom-5-dibenzocycloheptan-9'-fluoren verläuft analog zu den Angaben in Beispiel 7. Die Aufarbeitung verläuft ebenfalls analog; hier ist jedoch ebenfalls eine Neutralisation der HCI-Phase und ein Rückschütteln nicht notwendig.

Man erhält schließlich ein hellgelbes Polymer (ca. 60%).

M_w (GPC, PS-Standard, THF mit 1% Ameisensäure): 10000 (P_D = 2.1).

25

Beispiel 10: Polymerisation von Spiro-2',7'-dibrom-5-dibenzocycloheptan-9'-fluoren mit Biphenyl-4,4'-diboronsäure (Polymer 4)

[0071]

30

35

40

45

50

[0072] In eine Mischung aus 25 ml THF und 10 ml Ethanol wurden 2 mmol Spiro-2',7'-dibrom-5-dibenzocycloheptan-9'-fluoren und 2.2 mmol Biphenyl-4,4'-ylendiboronsäure gegeben. Dazu wurden 20 ml 1 molare wäßrige Kaliumcarbonatlösung gegeben. Die Mischung wurde unter Stickstoff am Rückfluß gekocht und 50 mg Tetrakis(triphenylphosphino)palladium, gelöst in 5 ml THF wurden zugegeben. Nach 48 Stunden Refluxieren wurde auf Raumtemperaur abgekühlt. Das gebildete gelbe Polymer wurde abgesaugt, mit verdünnter Salzsäure 2 Stunden gekocht und nach erneutem Absaugen mit Wasser säurefrei gewaschen. Das Polymer wird (analog der Beschreibung in Beispiel 7) mehrfach aus Chloroform in Methanol eingefällt.

Man erhält schließlich ein gelbes Polymer (ca. 40%).

 M_w (GPC, PS-Standard, THF mit 1% Ameisensäure): 7000 ($P_D = 2.7$).

Beispiel 11: Photolumineszenzmessung an den Polymeren 1 bis 4

[0073] Die Photolumineszenzspektren dieser Polymere wurden sowohl in verdünnter Lösung (<1 mg/100 ml CHCl₃)
als auch als Filme (Dicke jeweils ca. 80 bis 100 nm) aufgenommen. Die Polymere weisen dabei ausnahmslos blaue
Emission auf. Die Emissionsmaxima sind in der folgende Tabelle zusammengefaßt.

	λ _{max} [nm] in Lösung;	λ _{max} [nm] im Film;
	Anregung: 343 nm	Anregung 366 nm
Polymer 1	415, 440	425, 449
Polymer 2 390, 414 405, 430		405, 430
Polymer 3	392, 418	400, 430
Polymer 4	394, 419, 444	404, 429, 505

Beispiel 12: Elektrolumineszenz-Vorrichtung

[0074] Eine Lösung des zu vermessenden Polymers in Chloroform (Konzentration: 15 mg/ml) wird unter Stickstoff durch Spin-Coating bei 1000 upm auf einen mit ITO (Indium-Zinn-Oxid) beschichteten Glasträger (strukturiert, Streifen 2 mm breit) aufgebracht. Der Glasträger wurde über eine Schleuse unter Beibehaltung der Schutzgasatmosphäre in eine Hochvakuum-Bedampfungsanlage überführt. Bei 2x10⁻⁵ mbar wurden quer zu den ITO-Streifen unter Verwendung einer Maske Ca-Streifen (2 mm breit, 230 nm dick) auf die Polymerschicht aufgedampft. Die so erhaltene Vorrichtung, ITO/Polymer/Ca, wurde in einen Probenhalter gegeben und die Elektroden über Federkontakte mit einer Stromquelle verbunden, wobei ein ITO-Streifen positiv und ein Ca-Streifen negativ gepolt wurden. Beim Anlegen einer Spannung von mehr als 7 V wurde an dem entsprechenden Matrixelement eine blaue Elektrolumineszenz beobachtet, deren spektrale Form nahezu identisch mit den oben angegebenen Filmphotolumineszenzen sind. Für die Polymere 1 bis 4 wurde bei einer genügend hohen Spannung jeweils eine Leuchtdichte von mehr als 500 Cd/m² erhalten.

Patentansprüche

1. Konjugierte Verbindung, enthaltend Struktureinheiten der Formel (I),

wobei die Symbole und Indizes folgende Bedeutungen haben:

D, E, F¹, G sind gleich oder verschieden -CR¹R¹-, -O-, -S-, -NR³- oder eine chemische Bindung;

Ar¹, Ar² sind gleich oder verschieden Benzol-triyl, Thiophen-triyl, Furan-triyl,

sind gleich oder verschieden Benzol-triyl, Thiophen-triyl, Furan-triyl, Pyrrol-triyl, Pyridin-triyl, Pyrimidin-triyl, Pyrazin-triyl oder Pyridazin-triyl, wobei jede dieser Gruppen unabhängig voneinander mit 1 bis 3 gleichen oder verschiedenen Resten R4 substituiert sein kann;

haben gleich oder verschieden die bei Ar¹, Ar² angegebenen Bedeutungen oder sind Cyclohexan-triyl, Cyclopentan-triyl, Cyclohexen-triyl oder Cyclopenten-Triyl, wobei jede dieser Gruppen unabhängig voneinander mit 1 bis 3 gleichen oder verschiedenen Resten R⁴ substituiert sein kann;

15

10

25

20

: .35

30

40

45

50

55

Ar3, Ar4

sind gleich oder verschieden -CR5=CR6-, -CR7R8-, -CR9R10-CR11R12-, U1, V1 -NR13-, -SiR14R15-, -O-, -S-, -SO- -SO2-, -CO- oder eine chemische Bindung: sind gleich oder verschieden cyclische oder acyclische, konjugierte Ar5, Ar6, X, Y1 Kohlenwasserstoffe mit 2 bis 100 Kohlenstoffatomen, die auch Hete-5 roatome enthalten können und die durch einen oder mehrere Reste R4 substituiert sein können, X und/oder Y1 können auch gleich oder verschieden H oder R1 sein; R1,R2,R5,R6,R7,R8,R9,R10,R11,R12 sind gleich oder verschieden H, eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, wobei eine oder mehrere vorzugs-10 weise eine, -CH₂-Gruppen durch -O-, -CO-O-, -O-CO- oder ersetzt sein können und wobei ein oder mehrere Wasserstoffatome durch F ersetzt sein können, eine Aryl- oder Aryloxygruppe die auch Heteroatome enthalten können und die mit einem oder mehreren Resten R⁶ substituiert sein kann; Br, Cl, F, CN, NO₂, CF₃, wobei R¹ und R², R⁷ und R⁸, R⁹ 15 und R10 sowie R11 und R12 jeweils zusammen ein Ringsystem bilden können: sind gleich oder verschieden Hoder eine geradkettige oder verzweigte R3, R14, R15 Alkylgruppe mit 1 bis 22 C-Atomen, wobei auch eine oder mehrere, 20 nicht direkt an N gebundene, CH2-Gruppen durch -O-, -CO-O-, -O-COersetzt sein können; eine Arylgruppe mit vorzugsweise 2 bis 20 C-Atomen, die auch Heteroatome enthalten können und die mit einem oder mehreren, gleichen oder verschiedenen Resten R4 substituiert sein R4 ist gleich oder verschieden F, Cl, Br, CN, NO2, CF3 oder eine geradket-25 tige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, bei der auch eine oder mehrere, nicht direkt aneinander gebundene CH2-Gruppen durch -O-, -CO-C-, -O-CO- ersetzt sein können und wobei auch ein oder mehrere H-Atome durch F ersetzt sein können; 30 ist 1, 2, 3 oder 4; m sind gleich oder verschieden 0, 1, 2, 3 oder 4; n, p

wobei folgende Verbindungen ausgenommen sind:

a) Verbindungen, bei denen Ar¹, Ar², Ar³ und Ar⁴ Benzol-triyl sind; D, E, F¹, G, U¹ und V¹ Einfachbindungen sind und X und Y¹ cyclische oder acyclische, konjugierte Kohlenwasserstoffe sind, die auch Heteroatome enthalten können und die auch substituiert sein können, und b) Poly[2,7-(9,9'-spirobifluorenylen)-4,4'-biphenylen]

und Poly-2,7-(9,9'-spirobifluoren)ylen

55

35

40

45

10

20

25.

30

- 2. Konjugierte Verbindung gemäß Anspruch 1, dadurch gekennzeichnet, daß es 2 bis 1000 Struktureinheiten der Formel (I) aufweist.
- - 4. Konjugierte Verbindung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Symbole und Indizes in der Formel (I) folgende Bedeutungen haben:
 - Ar⁵, Ar⁶ sind gleich oder verschieden jeweils eine bis 5 gleiche oder verschiedene Arylen- und/oder Heteroarylen- und/oder Vinylengruppen, die gegebenenfalls substituiert sein können;
 - m ist 1 und
 - n, p sind gleich oder verschieden 0 oder 1
 - wobei die obengenannten Verbindungen ausgenommen sind.
 - 5. Konjugierte Verbindung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Symbole und Indizes in der Formel (I) folgende Bedeutungen haben:
 - Ar¹, Ar², Ar³, Ar⁴ sind gleich oder verschieden Benzol-triyl, Pyridin-triyl, Thiophen-triyl, Pyrazin-triyl oder
 - Pyrimidin-triyl;
 Ar⁵, Ar⁶ sind gleich oder verschieden

35

40

 $\begin{bmatrix}
I^{1}-J \\
K
\end{bmatrix}$ $\begin{bmatrix}
R^{16} \\
K
\end{bmatrix}$ $\begin{bmatrix}
L-M \\
K
\end{bmatrix}$

45

50

$$\begin{bmatrix} P_1 & P_1 & P_2 & P_3 & P_4 & P_$$

10

X, Y1

5

15

20

25

30

35

40

50

55

sind gleich oder verschieden H, eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, wobei eine oder mehrere -CH2-Gruppen durch -O-, -CO-O-, -O-CO- ersetzt sein können und wobei ein oder mehrere Wasserstoffatome durch F ersetzt sein können; Br, Cl, F, CN, NO₂, CF₃ oder

$$R^{24} \begin{bmatrix} I^{1} - J \\ K^{1} \end{bmatrix}_{u} \begin{bmatrix} R^{26} \\ R^{25} \end{bmatrix}_{t}$$

$$R^{27} \begin{bmatrix} I^{1} - J \end{bmatrix} \begin{bmatrix} R^{28} \\ K^{1} \end{bmatrix} \begin{bmatrix} I^{1} - J \\ R^{29} \end{bmatrix} \begin{bmatrix} I^{1} - J \\ K^{1} \end{bmatrix} U$$

45

K1, N1

sind gleich oder verschieden =CR38-, =N-; 11, J, L, M

R16-R42

sind gleich oder verschieden -O-, -S-, $CR^{39}R^{40}$, - CR^{41} = CR^{42} -, - NR^{43} -, - CR^{44} = N-; sind gleich oder verschieden und haben, gleich oder verschieden von R1 die gleichen Bedeutungen wie R1 in der Formel (i);

R43, R44

sind gleich oder verschieden und haben gleich oder verschieden von R3 die gleichen Bedeutungen wie R3 in der Formel (I);

- q, r, s, t, u
- sind gleich oder verschieden 0, 1, 2, 3, 4 oder 5, wobei die oben angegebenen Verbindungen ausgenommen sind.

are identical or different and are -CR1R1-, -O-, -S-, -NR3- or a chemical

- 6. Verwendung einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 5 als Elektrolumineszenzmaterial.
- Elektrolumineszenzmaterial, enthaltend eine oder mehrere Verbindungen nach einem oder mehreren der Ansprüche 1 bis 5.
- 8. Elektrolumineszenzmaterial nach Anspruch 7, dadurch gekennzeichnet, daß es ein lichtemittierendes Material, ein Ladungstransportmaterial oder ein Ladungsinjektionsmaterial ist.
 - 9. Verfahren zur Herstellung eines Elektrolumineszenzmaterials, dadurch gekennzeichnet, daß man eine oder mehrere Verbindungen nach einem oder mehreren der Ansprüche 1 bis 5 in Form eines Films auf ein Substrat aufbringt.
- 15 10. Elektrolumineszenzvorrichtung mit einer oder mehreren aktiven Schichten, wobei mindestens eine dieser Schichten eine oder mehrere Verbindungen nach einem oder mehreren der Anprüche 1 bis 5 enthält.

Claims

20

25

30

35

40

D, E, F1, G

10

1. A conjugated compound comprising structural units of the formula (I),

where the symbols and indices have the following meanings:

		bond;
	Ar ¹ , Ar ²	are identical or different and are benzenetriyl, thiophenetriyl, furantriyl, pyrroletriyl, pyridinetriyl, pyrimidinetriyl, pyrazinetriyl or pyridazinetriyl,
45		where each of these groups can, independently of one another, be substituted by from 1 to 3 identical or different radicals R4;
	Ar ³ , Ar ⁴	are identical or different and as defined for Ar ¹ , Ar ² or are cyclohexan- etriyl, cyclopentanetriyl, cyclohexenetriyl or cyclopentenetriyl, where each of these groups can, independently of one another, be substituted
•	•	by from 1 to 3 identical or different radicals R4;
50	U1, V1	are identical or different and are -CR5=CR6-, -CR7R8-, -CR9R10-
		CR ¹¹ R ¹² -, -NR ¹³ -, -SiR ¹⁴ R ¹⁵ -, -O-, -S-, -SO-, -SO ₂ - , -CO- or a chemical bond;
	Ar ⁵ , Ar ⁶ , X, Y ¹	are identical or different cyclic or acyclic, conjugated hydrocarbons having from 2 to 100 carbon atoms which can also contain heteroatoms
55		and which can be substituted by one or more radicals R ⁴ , X and/or Y ¹ can also be, identical or different, H or R ¹ ;
٠	R ¹ ,R ² ,R ⁵ ,R ⁶ ,R ⁷ ,R ⁸ ,R ⁹ ,R ¹⁰ ,R ¹¹ ,R ¹²	are identical or different and are H, a straight-chain or branched alkyl group having from 1 to 22 carbon atoms, where one or more, preferably

one, -CH₂- groups can be replaced by -O-, -CO-O- or -O-CO- and one or more hydrogen atoms can be replaced by F; an aryl or aryloxy group which can also contain heteroatoms and be substituted by one or more radicals R⁶; Br, Cl, F, CN, NO₂, CF₃, where R¹ and R², R⁷ and R⁸, R⁹ and R¹⁰ as well as R¹¹ and R¹² can in each case together form a ring system;

are identical or different and are H or, a straight-chain or branched alkyl group having from 1 to 22 carbon atoms, where one or more CH_2 groups not directly bonded to N can also be replaced by -O-, -CO-O- or -O-CO-; an aryl group preferably having from 2 to 20 carbon atoms which can also contain heteroatoms and which can be substituted by one or more, identical or different radicals F^4 ;

are identical or different and are F, Cl, Br, CN, NO_2 , CF_3 or a straight-chain or branched alkyl group having from 1 to 22 carbon atoms, in which one or more CH_2 groups not bonded directly to one another can also be replaced by -C, -CO-O- or -O-CO- and one or more H atoms can also be replaced by F;

is 1, 2, 3 or 4;

are identical or different and are 0, 1, 2, 3 or 4;

R3, R14, R15

R4

n, p

m

20

25

30

35

40

45

50

5

10

15

with the following compounds being excepted:

a) compounds in which Ar¹, Ar², Ar³ and Ar⁴ are benzenetriyl; D, E, F¹, G, U¹ and V¹ are single bonds and X and Y¹ are cyclic or acyclic, conjugated hydrocarbons which can also contain heteroatoms and can also be substituted, and

b) poly[2,7-(9,9'-spirobifluorenylene)-4,4'-biphenylene]

and poly-2,7-(9,9'-spirobifluorene)ylene

- 2. A conjugated compound as claimed in claim 1, comprising from 2 to 1000 structural units of the formula (I).
- 3. A conjugated compound as claimed in claim 1 and/or 2, comprising various structural units of the formula (I).
 - 4. A conjugated compound as claimed in one or more of the preceding claims, wherein the symbols and indices in the formula (I) have the following meanings:

- Ar⁵, Ar⁶ are identical or different and are each from one to 5 identical or different arylene and/or heteroarylene and/or vinylene groups which may be substituted or unsubstituted;
- m is 1 and
- n,.p are identical or different and are 0 or 1,

with the abovementioned compounds being excepted.

5. A conjugated compound as claimed in one or more of the preceding claims, wherein the symbols and indices in the formula (I) have the following meanings:

Ar1, Ar2, Ar3, Ar4

are identical or different and are benzenetriyl, pyridinetriyl, thiophenetriyl, pyrazinetriyl or pyrimidinetriyl;

Ar5, Ar6

are identical or different and are

15

20

5

10

$$\begin{bmatrix} I^{1}-J \\ K \end{bmatrix} = \begin{bmatrix} R^{16} \\ R^{17} \end{bmatrix}_{q} \begin{bmatrix} L-M \\ N^{1} \end{bmatrix}_{r}$$

25 .

$$\begin{array}{c|c}
 & & & & \\
\hline
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & &$$

35

30

45

50

55

40

X, Y¹

are identical or different and are H, a straight-chain or branched alkyl group having from 1 to 22 carbon atoms, where one or more -CH $_2$ - groups can be replaced by -O-, -CO-O-, -O-CO- and one or more hydrogen atoms can be replaced by F; Br,Cl, F, CN, NO $_2$, CF $_3$ or

$$\begin{array}{c|c}
R^{23} \\
\hline
 & I^1 \\
\hline$$

$$R^{27} \begin{bmatrix} I^{1} - J \end{bmatrix} \begin{bmatrix} R^{28} \\ K^{1} \end{bmatrix} \begin{bmatrix} I^{1} - J \\ K^{29} \end{bmatrix} \begin{bmatrix} I^{1} - J \\ K^{1} \end{bmatrix} U$$

30

35

40

50

5

10

15

20

25

11, J, L, M K1, N1 R16-R42

are identical or different and are =CR38-, =N-;

are identical or different and are -O-, -S-, CR39R40, -CR41=CR42-, -NR43-, -CR44=N-; are identical or different and are, identical or different from R1, as defined for R1 in the formula (I);

R43, R44

are identical or different and are, identical or different to R3, as defined for R3 in the formula

q, r, s, t, u

are identical or different and are 0, 1, 2, 3, 4 or 5, with the abovementioned compounds

being excepted.

- Use of a compound as claimed in one or more of claims 1 to 5 as electroluminescence material.
- An electroluminescence material comprising one or more compounds as claimed in one or more of claims 1 to 5.
- An electroluminescence material as claimed in claim 7 which is a light-emitting material, a charge transport material 45 8. or a charge injection material.
 - A process for producing an electroluminescence material, which comprises applying one or more compounds as claimed in one or more of claims 1 to 5 in the form of a film to a substrate.
 - 10. An electroluminescence device comprising one or more active layers, wherein at least one of these layers comprises one or more compounds as claimed in one or more of claims 1 to 5.

55 Revendications

Composé conjugué, contenant des motifs structuraux de formule (I):

$$\begin{bmatrix}
Ar^{5}]_{n} & C & Ar^{2} & Ar^{2} \\
D & E & Ar^{4} &$$

dans laquelle les symboles et indices ont les significations suivantes :

10

15

20

25.

30

35

40

45

55

D, E, F¹, G, sont identiques ou différents et représentent -CR¹R¹-, -O-, -S-, -NR³- ou une liaison chimique ; Ar¹, Ar², sont identiques ou différents et représentent un groupe benzènetriyle, thiophènetriyle, furanetriyle, pyrroletriyle, pyridinetriyle, pyrimidinetriyle, pyrazinetriyle ou pyridazinetriyle, chacun de ces groupes pouvant indépendamment des autres être substitué par 1 à 3 radicaux R⁴ identiques ou différents ;

Ar³, Ar⁴ sont identiques ou différents et ont les significations données pour Ar¹, Ar² sont des groupes cyclohexanetriyle, cyclopentanetriyle, cyclohexènetriyle ou cyclopentènetriyle, chacun de ces groupes pouvant indépendamment des autres être substitué par 1 à 3 radicaux R⁴ identiques ou différents :

U¹, V¹ sont identiques ou différents et représentent -CR⁵=CR⁶-, -CR⁷R⁸-, -CR⁹R¹⁰-CR¹¹R¹²-, -NR¹³-, -SiR¹⁴R¹⁵-, -O-, -S-, -SO₂-, -CO- ou une liaison chimique ;

Ar⁵, Ar⁶, X, Y¹ sont des groupes hydrocarbonés conjugués, cycliques ou acycliques, identiques ou différents, ayant de 2 à 100 atomes de carbone qui peuvent aussi contenir des hétéroatomes et qui peuvent être substitués par un ou plusieurs radicaux R⁴, X et/ou Y¹ pouvant aussi être identiques ou différents et représenter H ou R¹;

R¹, R², R⁵, R⁶, R³, R³, R¹0, R¹¹, R¹² sont identiques ou différents et représentent H, un groupe alkyle à chaîne droite ou ramifiée ayant de 1 à 22 atomes de carbone, un ou plusieurs groupes -CH₂-, de préférence un, pouvant être remplacés par -O-, -CO-O-, -O-CO- et un ou plusieurs atomes d'hydrogène pouvant être remplacés par F, ou représentent un groupe aryle ou aryloxy, qui peut aussi contenir des hétéroatomes et qui peut être substitué par un ou plusieurs radicaux R⁶; ou représentent Br, CI, F, CN, NO₂, CF₃, chacune des paires R¹ et R², R³ et R³, R9 et R¹0, ainsi que R¹¹ et R¹², pouvant former un système cyclique;

R³, R¹4, R¹5 sont identiques ou différents et représentent H ou un groupe alkyle à chaîne droite ou ramifiée ayant de 1 à 22 atomes de carbone, auquel cas aussi un ou plusieurs groupes CH₂ qui ne sont pas directement liés à N peuvent être remplacés par -O-, -CO-O-, -O-CO-, ou représentent un groupe aryle ayant de préférence de 2 à 20 atomes de carbone, qui peut aussi contenir des hétéroatomes et qui peut être substitué par un ou plusieurs radicaux R⁴ identiques ou différents ;

les radicaux R⁴ sont identiques ou différents et représentent F, Cl, Br, CN, NO₂, CF₃ ou un groupe alkyle à chaîne droite ou ramifiée ayant de 1 à 22 atomes de carbone, dans lequel aussi un ou plusieurs groupes CH₂ qui ne sont pas directement liés les uns aux autres peuvent être remplacés par -O-, -CO-O-, -O-CO- et aussi un ou plusieurs atomes d'hydrogène pouvant être remplacés par F; m vaut 1, 2, 3 ou 4;

n, p sont identiques ou différents et valent 0, 1, 2, 3 ou 4;

à l'exception des composés suivants :

a) les composés dans lesquels Ar¹, Ar², Ar³ et Ar⁴ sont des groupes benzènetriyle, D, E, F¹, G, U¹ et V¹ sont des liaisons simples, et X et Y¹ sont des groupes hydrocarbonés conjugués cycliques ou acycliques qui peuvent aussi contenir des hétéroatomes et qui peuvent aussi être substitués, et

b) le poly[2,7-(9,9'-spirobifluorénylène]-4,4'-biphénylène]

et

le poly-2,7-(9,9'-spirobifluorèn)ylène

15

20

10

5

 Composé conjugué selon la revendication 1, caractérisé en ce qu'il présente de 2 à 1000 motifs structuraux de formule (I).

3. Composé conjugué selon les revendications 1 et/ou 2, caractérisé en ce qu'il présente différents motifs structuraux de formule (I).

30

4. Composé conjugué selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que les symboles et indices dans la formule (I) ont les significations suivantes :

35

Ar⁵, Ar⁶ sont identiques ou différents et représentent chacun 1 à 5 groupes arylène et/ou hétéroarylène et/ou vinylène identiques ou différents, qui peuvent être éventuellement substitués ; m vaut 1, et

n, p sont identiques ou différents et valent 0 ou 1,

40

à l'exception des composés mentionnés ci-dessus.

5. Composé conjugué selon l'une ou plusieurs des revendications précédentes, caractérisé en ce que les symboles et indices de la formule (I) ont les significations suivantes :

45

Ar¹, Ar², Ar³, Ar⁴ sont identiques ou différents et représentent des groupes benzènetriyle, pyridinetriyle, thiophènetriyle, pyrazinetriyle ou pyrimidinetriyle; Ar⁵, Ar⁶ sont identiques ou différents et représentent:

55

$$\begin{bmatrix}
R^{18} \\
R^{19}
\end{bmatrix}_{s} \\
K^{1} \\
R^{20}
\end{bmatrix}_{s}$$
10

$$\begin{bmatrix}
R^{20} \\
R^{21}
\end{bmatrix}_{s}$$
20
$$\begin{bmatrix}
R^{20} \\
R^{21}
\end{bmatrix}_{s}$$

X, Y¹ sont identiques ou différents et représentent H, un groupe alkyle à chaîne droite ou ramifiée ayant de 1 à 22 atomes de carbone, un ou plusieurs groupes -CH₂- pouvant être remplacés par -O-, -CO-O-, -O-CO- et un ou plusieurs atomes d'hydrogène pouvant être remplacés par F ; ou représentent Br, Cl, F, CN, NO₂, CF₃ ou

$$R^{23}$$

$$R^{24}$$

$$R^{24}$$

$$R^{25}$$

$$R$$

I¹, J, L, M sont identiques ou différents et représentent =CR³⁸-, =N-;
K¹, N¹ sont identiques ou différents et représentent -O-, -S-, -CR³⁹R⁴⁰-, -CR⁴¹=CR⁴²-, -NR⁴³-, -CR⁴⁴=N-;
R¹6-R⁴2 sont identiques ou différents et, identiques à R¹ ou différents de R¹, ont les mêmes significations que

R1 dans la formule (I);

5

10

20

25

30

35

40

45

50

55

 R^{43} , R^{44} sont identiques ou différents et, identiques à R^3 ou différents de R^3 , ont les mêmes significations que R^3 dans la formule (I);

q, r, s, t, u sont identiques ou différents et représentent 0, 1, 2, 3, 4 ou 5, à l'exception des composés indiqués ci-dessus.

- 6. Utilisation d'un composé selon l'une ou plusieurs des revendications 1 à 5 en tant que matériau électroluminescent.
- 7. Matériau électroluminescent contenant un ou plusieurs composés selon l'une ou plusieurs des revendications 1 à 5.
- 8. Matériau électroluminescent selon la revendication 7, caractérisé en ce qu'il s'agit d'un matériau émetteur de lumière, d'un matériau de transport de charges ou d'un matériau d'injection de charges.
- Procédé de fabrication d'un matériau électroluminescent, caractérisé en ce qu'on applique sur un substrat un ou plusieurs composés selon l'une ou plusieurs des revendications 1 à 5, sous forme d'un film.
 - 10. Dispositif électroluminescent ayant une ou plusieurs couches actives, au moins l'une de ces couches contenant un ou plusieurs composés selon l'une ou plusieurs des revendications 1 à 5.