Chapitre 2 : Recherche du plus court chemin

Nehla DEBBABI

Année Universitaire : 2022-2023

30 septembre 2023

Plan

- Introduction
 - Motivation
- Définitions & Propriétés
- 3 Algorithme de FORD BELLMAN
- Algorithme de FLOYD-WARSHALI
- 6 DIJKSTRA / FORD-BELLMAN / FLOYD-WARSHALI

FLOYD-WARSHALL

Motivation

•0

Google's map: le plus rapide / court chemin vers la destination

Figure - Iténiraire de ESPRIT Ghazela à ESPRIT Charguia

4 D F 4 A F F 4 B F

Motivation

0

Introduction

Le routage : acheminement des paquets par le plus court chemin vers la destination

Figure – Illustration d'un réseaux de communication (source de l'image : interr

FLOYD-WARSHALL

Définitions & Propriétés

Poids / longueur d'un chemin

Définitions

On considère un graphe orienté valué G = (X, A) et une fonction coût $\mathcal{C} : A \longrightarrow \mathbb{R}$.

• On note par $C_{i,j}$ le poids ou encore le coût associer à l'arc $a=(x_i,x_j)\in A$ avec $x_i, x_i \in X \text{ et } 1 < i, j < |X|.$

Le poids $C_{i,j}$ est donné par :

$$C_{i,j} = C(x_i, x_j) = C(a).$$

Poids / longueur d'un chemin

Définitions

On considère un graphe orienté valué G = (X, A) et une fonction coût $\mathcal{C} : A \longrightarrow \mathbb{R}$.

• On note par $C_{i,j}$ le poids ou encore le coût associer à l'arc $a=(x_i,x_j)\in A$ avec $x_i, x_i \in X \text{ et } 1 < i, j < |X|.$

Le poids $C_{i,j}$ est donné par :

$$C_{i,j} = C(x_i, x_j) = C(a).$$

Remarque: les poids peuvent aussi être négatifs.

Poids / longueur d'un chemin

Définitions

On considère un graphe orienté valué G=(X,A) et une fonction coût $\mathcal{C}:A\longrightarrow\mathbb{R}.$

• On note par $C_{i,j}$ le poids ou encore le coût associer à l'arc $a=(x_i,x_j)\in A$ avec $x_i,x_j\in X$ et $1\leq i,j\leq |X|$.

Le poids $C_{i,j}$ est donné par :

$$C_{i,j} = C(x_i, x_j) = C(a).$$

Remarque : les poids peuvent aussi être négatifs.

• Soit $p = \langle s_1, s_2, \cdots, s_k \rangle$ un chemin reliant k sommet de $G: s_i \in X, 1 \le i \le k$. La longueur du chemin p, notée l(p), correspond à la somme des poids associés aux arcs qui le composent :

$$l(p) = \sum_{i=1}^{k-1} \mathcal{C}(s_i, s_{i+1})$$

Poids / longueur d'un chemin

Exemple:

Exemple:

Poids / longueur d'un chemin

• La longueur du chemin $p_1 = \langle x_1, x_2, x_5, x_8 \rangle$ est $l(p_1)$ avec $l(p_1) = C_{1,2} + C_{2,5} + C_{5,8} = 3 - 4 + 4 = 3.$

Poids / longueur d'un chemin Exemple:

- La longueur du chemin $p_1 = \langle x_1, x_2, x_5, x_8 \rangle$ est $l(p_1)$ avec $l(p_1) = C_{1,2} + C_{2,5} + C_{5,8} = 3 - 4 + 4 = 3.$
- La longueur du chemin $p_2 = \langle x_1, x_3, x_6, x_8 \rangle$ est $l(p_2) = \mathcal{C}_{1,3} + \mathcal{C}_{3,6} + \mathcal{C}_{6,8} = 19$.

Poids / longueur d'un chemin Exemple:

- La longueur du chemin $p_1 = \langle x_1, x_2, x_5, x_8 \rangle$ est $l(p_1)$ avec $l(p_1) = C_{1,2} + C_{2,5} + C_{5,8} = 3 - 4 + 4 = 3.$
- La longueur du chemin $p_2 = \langle x_1, x_3, x_6, x_8 \rangle$ est $l(p_2) = \mathcal{C}_{1,3} + \mathcal{C}_{3,6} + \mathcal{C}_{6,8} = 19$.
- La longueur du chemin $p_3 = \langle x_1, x_3, x_6, x_3, x_6, x_8 \rangle$ est $l(p_3) = 22$.

- La longueur du chemin $p_1 = \langle x_1, x_2, x_5, x_8 \rangle$ est $l(p_1)$ avec $l(p_1) = \mathcal{C}_{1,2} + \mathcal{C}_{2,5} + \mathcal{C}_{5,8} = 3 4 + 4 = 3$.
- La longueur du chemin $p_2 = \langle x_1, x_3, x_6, x_8 \rangle$ est $l(p_2) = \mathcal{C}_{1,3} + \mathcal{C}_{3,6} + \mathcal{C}_{6,8} = 19$.
- La longueur du chemin $p_3 = \langle x_1, x_3, x_6, x_3, x_6, x_8 \rangle$ est $l(p_3) = 22$.
- La longueur du chemin $p_4 = \langle x_1, x_4, x_7, x_8 \rangle$ est $l(p_4) = 12$.

- La longueur du chemin $p_1 = \langle x_1, x_2, x_5, x_8 \rangle$ est $l(p_1)$ avec $l(p_1) = C_{1,2} + C_{2,5} + C_{5,8} = 3 4 + 4 = 3$.
- La longueur du chemin $p_2 = \langle x_1, x_3, x_6, x_8 \rangle$ est $l(p_2) = \mathcal{C}_{1,3} + \mathcal{C}_{3,6} + \mathcal{C}_{6,8} = 19$.
- La longueur du chemin $p_3 = \langle x_1, x_3, x_6, x_3, x_6, x_8 \rangle$ est $l(p_3) = 22$.
- La longueur du chemin $p_4 = \langle x_1, x_4, x_7, x_8 \rangle$ est $l(p_4) = 12$.
- La longueur du chemin $p_5 = \langle x_1, x_4, x_7, x_4, x_7, x_8 \rangle$ est $l(p_5) = 9$.

- La longueur du chemin $p_1 = \langle x_1, x_2, x_5, x_8 \rangle$ est $l(p_1)$ avec $l(p_1) = \mathcal{C}_{1,2} + \mathcal{C}_{2,5} + \mathcal{C}_{5,8} = 3 4 + 4 = 3$.
- La longueur du chemin $p_2 = \langle x_1, x_3, x_6, x_8 \rangle$ est $l(p_2) = \mathcal{C}_{1,3} + \mathcal{C}_{3,6} + \mathcal{C}_{6,8} = 19$.
- La longueur du chemin $p_3 = \langle x_1, x_3, x_6, x_3, x_6, x_8 \rangle$ est $l(p_3) = 22$.
- La longueur du chemin $p_4 = \langle x_1, x_4, x_7, x_8 \rangle$ est $l(p_4) = 12$.
- La longueur du chemin $p_4 = \langle x_1, x_4, x_7, x_8 \rangle$ est $l(p_4) = 12$. • La longueur du chemin $p_5 = \langle x_1, x_4, x_7, x_4, x_7, x_8 \rangle$ est $l(p_5) = 9$.
- La longueur du chemin $p_5 = \langle x_1, x_4, x_7, x_4, x_7, x_8 \rangle$ est $l(p_5) = 9$. • La longueur du chemin $p_6 = \langle x_1, x_4, x_7, x_4, x_7, x_4, x_7, x_8 \rangle$ est $l(p_6) = 6$.

Distance / circuit absorbant

Définition et propriété

On considère un graphe orienté valué G=(X,A) et une fonction coût $\mathcal{C}:A\longrightarrow\mathbb{R}.$

- On note par $\delta(x_i, x_j)$ la distance entre les deux sommets x_i et x_j avec $x_i, x_j \in X$ et $1 \le i, j \le |X|$. Cette distance est définie par :
 - $\delta(x_i,x_j) = \left\{ \begin{array}{l} \text{la longueur minimal des chemins existants entre } x_i \text{ et } x_j, \\ +\infty \text{ sinon.} \end{array} \right.$

Distance / circuit absorbant

Définition et propriété

On considère un graphe orienté valué G=(X,A) et une fonction coût $\mathcal{C}:A\longrightarrow\mathbb{R}.$

• On note par $\delta(x_i, x_j)$ la distance entre les deux sommets x_i et x_j avec $x_i, x_j \in X$ et $1 \le i, j \le |X|$. Cette distance est définie par :

$$\delta(x_i, x_j) = \begin{cases} \text{ la longueur minimal des chemins existants entre } x_i \text{ et } x_j, \\ +\infty \text{ sinon.} \end{cases}$$

• S'il existe un chemin entre deux sommets x_i et x_j contenant un circuit de coût total négatif alors $\delta(x_i, x_j) = -\infty$.

Introduction

00000

Distance / circuit absorbant

Définition et propriété

On considère un graphe orienté valué G=(X,A) et une fonction coût $\mathcal{C}:A\longrightarrow\mathbb{R}.$

• On note par $\delta(x_i, x_j)$ la distance entre les deux sommets x_i et x_j avec $x_i, x_j \in X$ et $1 \le i, j \le |X|$. Cette distance est définie par :

$$\delta(x_i, x_j) = \begin{cases} \text{la longueur minimal des chemins existants entre } x_i \text{ et } x_j, \\ +\infty \text{ sinon.} \end{cases}$$

- S'il existe un chemin entre deux sommets x_i et x_j contenant un circuit de coût total négatif alors $\delta(x_i, x_j) = -\infty$.
- Un circuit de coût négatif est appelé un circuit absorbant.

Distance / circuit absorbant

Définition et propriété

On considère un graphe orienté valué G=(X,A) et une fonction coût $\mathcal{C}:A\longrightarrow\mathbb{R}.$

• On note par $\delta(x_i, x_j)$ la distance entre les deux sommets x_i et x_j avec $x_i, x_j \in X$ et $1 \le i, j \le |X|$. Cette distance est définie par :

$$\delta(x_i, x_j) = \begin{cases} \text{ la longueur minimal des chemins existants entre } x_i \text{ et } x_j, \\ +\infty \text{ sinon.} \end{cases}$$

- S'il existe un chemin entre deux sommets x_i et x_j contenant un circuit de coût total négatif alors $\delta(x_i, x_j) = -\infty$.
- Un circuit de coût négatif est appelé un circuit absorbant.
- Une condition nécessaire d'existence de plus court chemin est l'absence de circuit absorbant.

Distance / circuit absorbant

Définition et propriété

On considère un graphe orienté valué G=(X,A) et une fonction coût $\mathcal{C}:A\longrightarrow\mathbb{R}.$

- On note par $\delta(x_i, x_j)$ la distance entre les deux sommets x_i et x_j avec $x_i, x_j \in X$ et $1 \le i, j \le |X|$. Cette distance est définie par :
 - $\delta(x_i, x_j) = \begin{cases} \text{ la longueur minimal des chemins existants entre } x_i \text{ et } x_j, \\ +\infty \text{ sinon.} \end{cases}$
- S'il existe un chemin entre deux sommets x_i et x_j contenant un circuit de coût total négatif alors $\delta(x_i, x_j) = -\infty$.
- Un circuit de coût négatif est appelé un circuit absorbant.
- Une condition nécessaire d'existence de plus court chemin est l'absence de circuit absorbant.
- Le plus court chemin entre deux sommets est composé d'un ensemble de plus courts chemins. La réciproque n'est pas toujours vraie.

Définitions & Propriétés

Distance / Circuit absorbant

$\quad \ Exemple:$

Distance / Circuit absorbant

Exemple:

• La distance entre x_1 et x_2 est $\delta(x_1, x_2) = 3$.

Distance / Circuit absorbant

Exemple:

- La distance entre x_1 et x_2 est $\delta(x_1, x_2) = 3$.
- La distance entre x_8 et x_1 est $\delta(x_8, x_1) = +\infty$.

Distance / Circuit absorbant

Exemple:

- La distance entre x_1 et x_2 est $\delta(x_1, x_2) = 3$.
- La distance entre x_8 et x_1 est $\delta(x_8, x_1) = +\infty$.
- La distance entre x_1 et x_8 est $\delta(x_1, x_8) = -\infty$: il n'existe pas de plus court chemin entre x_1 et x_8 (existence de circuit absorbant).

Distance / Circuit absorbant

Exemple:

00000

- La distance entre x_1 et x_2 est $\delta(x_1, x_2) = 3$.
- La distance entre x_8 et x_1 est $\delta(x_8, x_1) = +\infty$.
- La distance entre x_1 et x_8 est $\delta(x_1, x_8) = -\infty$: il n'existe pas de plus court chemin entre x_1 et x_8 (existence de circuit absorbant).
- La distance entre x_1 et x_5 est $\delta(x_1, x_5) = \delta(x_1, x_2) + \delta(x_2, x_5) = -1$: deux plus courts chemins.

8 / 78

ntroduction	DIJKSTRA	FORD BELLMAN
0	0	0
00	0000	000000000000
0000	000000000000000000000000000000000000000	000000000000

FLOYD-WARSHALL 0 000000000 0 Comparaison 00

Définitions & Propriétés

Recherche du plus court chemin

L'objectif de ce deuxième chapitre est de déterminer le plus court chemin entre deux sommets d'un graphe : déterminer une arborescence optimale. Pour ce faire, nous présentons trois algorithmes utilisés dans des cas différents, à savoir :

FLOYD-WARSHALL 0 0000000000

Définitions & Propriétés

Recherche du plus court chemin

L'objectif de ce deuxième chapitre est de déterminer le plus court chemin entre deux sommets d'un graphe : déterminer une arborescence optimale. Pour ce faire, nous présentons trois algorithmes utilisés dans des cas différents, à savoir :

Graphes à coûts positifs : Application de l'algorithme de <code>DIJKSTRA</code> : détermination des plus courts chemins d'une source fixée s à toutes les différentes destinations.

Recherche du plus court chemin

L'objectif de ce deuxième chapitre est de déterminer le plus court chemin entre deux sommets d'un graphe : déterminer une arborescence optimale. Pour ce faire, nous présentons trois algorithmes utilisés dans des cas différents, à savoir :

Graphes à coûts positifs : Application de l'algorithme de $\overline{\text{DIJKSTRA}}$: détermination des plus courts chemins d'une source fixée s à toutes les différentes destinations.

Graphes à coûts quelconques : Application de l'algorithme de FORD-BELLMAN : détermination des plus courts chemins d'une source fixée s à toutes les différentes destinations.

Recherche du plus court chemin

L'objectif de ce deuxième chapitre est de déterminer le plus court chemin entre deux sommets d'un graphe : déterminer une arborescence optimale. Pour ce faire, nous présentons trois algorithmes utilisés dans des cas différents, à savoir :

Graphes à coûts positifs: Application de l'algorithme de DIJKSTRA: détermination des plus courts chemins d'une source fixée s à toutes les différentes destinations.

Graphes à coûts quelconques : Application de l'algorithme de FORD-BELLMAN : détermination des plus courts chemins d'une source fixée s à toutes les différentes destinations.

Graphes à coûts quelconques : Application de l'algorithme de FLOYED-WARSHALL: une généralisation de l'algothime de FORD-BELLMAN. Détermination d'un plus court chemin entre n'importe quel couple de sommets du graphe.

FLOYD-WARSHALL

FORD BELLMAN

Plan

- 2 Algorithme de DIJKSTRA
 - Principe
 - Application
 - Limitation

DIJKSTRA

Pseudo-code de l'algorithme de DIJKSTRA

On considère un graphe orienté valué G=(X,A) avec |X|=n et $\mathcal{C}:A\longrightarrow\mathbb{R},$ la fonction coût associée.

Notation:

- Pour tout $j \in \{1, \dots, n\}$, on note par dist(j): la longueur optimale du chemin reliant la source x_1 à la destination x_j . Cette longueur sera mise à jour tout au long du processus afin de déterminer $\delta(x_1, x_j)$, le plus court chemin reliant les deux sommets.
- Pour tout $j \in \{1, \dots, n\}$, on note par Pcc(j): le plus court chemin associé au sommet x_j .
- ullet On note par P la liste des sommets dont les *dist* sont fixées de manière Permanente : pour lesquels le plus court chemin a été déterminé.
- On note par *T* la liste des sommets dont les *dist* sont fixées de maniè esperit

FLOYD-WARSHAN

Comparaison

Principe

Pseudo-code de l'algorithme de DIJKSTRA

```
Pseudo-code
```

```
Initialisation:
```

- lacktriangle Pour j de 2 à n faire

$$dist(j) = \begin{cases} \mathcal{C}_{1,j} & \text{si } (x_1, x_j) \in A, \\ +\infty & \text{sinon.} \end{cases}$$

• fin pour

•
$$Pcc(1) = (x_1), P = \{x_1\}, \text{ et } T = \{x_2, \dots, x_n\}$$

Procédure itérative :

• Tant que $T \neq \emptyset$ faire

étape 1 : Choix de
$$dist(k)$$
 optimale

• Détermination de x_k / $dist(k) = min \ dist(j)$

$$x_j\!\in\!T$$
 • Mémorisation de $Pcc(k),\,P=P\cup\{x_k\}$ et $T=T/\{x_k\}$

étape 2 : Mise à jour des dist

- fin Si

• Pour
$$x_j \in T$$
 et x_j successeur de x_k faire

- Si $dist(k) + C_{k,j} < dist(j)$ alors
$$dist(j) = dist(k) + C_{k,j}$$

• fin Pour

- fin Tant que
- Afficher dist et Pcc.

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL 0000

Principe

		Itération 0		Itération 1		Itération 2		Itération 3		Itération 4	
j	x_j	$dist(x_j)$	$Pcc(x_j)$								
2	2										
3	3										
4	4										
5	5										
P											
T										e	sprit*
										_	

Principe

		Itération 0		Itération 1		Itération 2		Itération 3		Itérat	ion 4
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	2	15	(1, 2)								
3	3	∞	(1, 3)								
4	4	∞	(1,4)								
5	5	4	(1, 5)							P	STOP
P		{1}								\sim	Se former autrement
T	{2, 3, 4, 5}		{2, 3, 4, 5}				HONOR	S UNITED UNIVERSITIES			

Principe

		Itération 0		Itération 1		Itération 2		Itération 3		Itérat	ion 4
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	2	15	(1, 2)	15	(1, 2)						
3	3	∞	(1, 3)	11	(1, 5, 3)						
4	4	∞	(1,4)	9	(1, 5, 4)						
5	5	4	(1,5)					_			_
P	{1}		$\{1, 5\}$						\sim	Se former autrement	
T	{2,3,4,5}		$\{2, 3, 4\}$						HONOR	S UNITED UNIVERSITIES	

FLOYD-WARSHALL 0 000000000 0 Comparaison 00

Principe

		Itération 0		Itération 1		Itération 2		Itération 3		Itérat	ion 4
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	2	15	(1, 2)	15	(1, 2)	12	(1, 5, 4, 2)				
3	3	∞	(1, 3)	11	(1, 5, 3)	11	(1, 5, 3)				
4	4	∞	(1,4)	9	(1, 5, 4)	_	_	_	_	_	-
5	5	4	(1, 5)				_	_			_
\overline{P}	{1}		{1,5}		$\{1, 5, 4\}$				HONORIS	UNITED UNIVERSITIES	
\overline{T}	$\{2, 3, 4, 5\}$		{2,3,4}		{2,3}		4.0.5	2 AD 1 2 3	= .	= .000	

Comparaison 00

Principe

		Itération 0		Itération 1		Itération 2		Itération 3		Itération 4	
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	2	15	(1, 2)	15	(1, 2)	12	(1, 5, 4, 2)				
3		∞		11				_			_
4	4	∞	(1,4)	9	(1, 5, 4)	_	_	_	_	_	_
5	5	4	(1, 5)				_	_			_
\overline{P}		{1}		{1,5}		$\{1, 5, 4\}$		{1,5,4,3}		HONORIS UNITED UNIVERSITIES	
T	$\{2, 3, 4, 5\}$		$\{2, 3, 4\}$		{2,3}		{2}			= 200	

FLOYD-WARSHALL Com
0 0000000000

Principe

Illustration de l'algorithme de DIJKSTRA

		Itérat	tion 0	Itérat	ion 1	Itéra	tion 2	Itéra	tion 3	Itération 4		
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	
2	2	15	(1, 2)	15	(1, 2)	12	(1, 5, 4, 2)	12	(1, 5, 4, 2)	_	_	
3		∞ (1,3)				11	(1, 5, 3)	_			_	
4	4	∞	(1,4)	9	(1, 5, 4)	_	_	_	_	_	_	
5	5	4	(1,5)			-	_	_			_	
\overline{P}		{1}		{1,5}		$\{1, 5, 4\}$		$\{1, 5, 4, 3\}$			ring and	
T		$\{2, 3, 4,$	5}	$\{2, 3, 4\}$		$\{2, 3\}$			2}_	· · ·)= ~a~	

DIJKSTRA FORD BELLMAN 0000

FLOYD-WARSHALL

Principe

Illustration de l'algorithme de DIJKSTRA

Arborescence optimale

Application de l'algorithme de DIJKSTRA

On considère le projet de construction d'un réseau routier entre les villes A et G. Le tableau ci-dessous représente les différents tronçons possibles ainsi que les coûts de construction correspondants:

Tronçons	s AB	AC	CB	BD	BF	CE	CF	EB	ED	DG	EG	FG	FE
Coûts	8	5	4	9	7	10	2	1	6	7	11	8	3

Le problème consiste à déterminer l'autoroute de coût total de construction minimal.

Application

Application de l'algorithme de DIJKSTRA

Représentation graphique du problème :

Application

Application

		Itérat	tion 0	Itération 1		Itération 2		Itération 3		Itération 4		Itération 5		Itération 6	
j	x_j	$dist(x_j)$	$Pcc(x_j)$												
2	В	8	(A,B)												
3	С	5	(A,C)												
4	D	∞	(A,D)												
5	Е	∞	(A,E)												
6	F	∞	(A,F)												
7	G	∞	(A,G)												
P		{A}													
T		(BCDEEG)													

Application de l'algorithme de DIJKSTRA : Itération $1\,$

Application de l'algorithme de DIJKSTRA : Itération 1

Application de l'algorithme de DIJKSTRA : Itération $1\,$

Application

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL

Application

		Itération 0		Itération 1		Itération 2		Itération 3		Itération 4		Itération 5		Itération 6	
j	x_j	$dist(x_j)$	$Pcc(x_j)$												
2	В	8	(A,B)	8	(A,B)										
3	С	5	(A,C)	-	-	-	-	-	-	-	-	-	-	-	
4	D	∞	(A,D)	∞	(A,D)										
5	E	∞	(A,E)	15	(A,C,E)										
6	F	∞	(A,F)	7	(A,C,F)										
7	G	∞	(A,G)	∞	(A,G)										
P		{A}		{A	,C}										
T		{B,C,D,E,	F,G}	{B,D,I	E,F,G}										

Application

Application de l'algorithme de DIJKSTRA : Itération $2\,$

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL

Application

		Itérat	tion 0	Itération 1		Itération 2		Itération 3		Itération 4		Itération 5		Itération 6	
j	x_j	$dist(x_j)$	$Pcc(x_j)$												
2	В	8	(A,B)	8	(A,B)	8	(A,B)								
3	С	5	(A,C)	-	-	-	-	-	-	-	-	-	-	-	
4	D	∞	(A,D)	∞	(A,D)	∞	(A,D)								
5	Е	∞	(A,E)	15	(A,C,E)	10	(A,C,F,E)								
6	F	∞	(A,F)	7	(A,C,F)	-	-	-	-	-	-	-	-	-	
7	G	∞	(A,G)	∞	(A,G)	15	(A,C,F,G)								
P		{A}		{A	,C}	{A	,C,F}								
T		{B,C,D,E,	F,G}	{B,D,I	E,F,G}	{B,I	D,E,G}								

Application

Application

		1 *** ** * 1 *** ** *														
		Itérat	tion 0	Itérat	tion 1	Itéra	ation 2	Itéra	ation 3	Itérat	ion 4	Itérat	ion 5	Itérat	tion 6	
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	
2	В	8	(A,B)	8	(A,B)	8	(A,B)	-	-	-	-	-	-	-	-	
3	С	5	(A,C)	-	-	-	-	-	-	-	-	-	-	-	-	
4	D	∞	(A,D)	∞	(A,D)	∞	(A,D)	17	(A,B,D)							
5	Е	∞	(A,E)	15	(A,C,E)	10	(A,C,F,E)	10	(A,C,F,E)							
6	F	∞	(A,F)	7	(A,C,F)	-	-	-	-	-	-	-	-	-	-	
7	G	∞	(A,G)	∞	(A,G)	15	(A,C,F,G)	15	(A,C,F,G)							
P		{A}		{A,C}		{A,C,F}		{A,0	C,F,B}							
T		{B,C,D,E,	F.G}	{B,D,I	E,F,G}	{B,I	D.E.G}	{D	,E,G}							

Application

Application

		Itération 0		Itération 1		Itération 2		Itération 3		Itération 4		Itération 5		Itération 6	
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	В	8	(A,B)	8	(A,B)	8	(A,B)	-	-	-	-	-	-	-	-
3	С	5	(A,C)	-	-	-	-	-	-	-	-	-	-	-	-
4	D	∞	(A,D)	~	(A,D)	∞	(A,D)	17	(A,B,D)	16	(A,C,F,E,D)				
5	E	∞	(A,E)	15	(A,C,E)	10	(A,C,F,E)	10	(A,C,F,E)	-	-	-	-	-	-
6	F	∞	(A,F)	7	(A,C,F)	-	-	-	-	-	-	-	-	-	-
7	G	∞	∞ (A,G)		∞ (A,G)		(A,C,F,G)	15	(A,C,F,G)	15	(A,C,F,G)				
P		{A}		{A,C}		{A,C,F}		{A,0	C,F,B}	{A,0	C,F,B,E}				
T		{B,C,D,E,F,G}		{B,D,E,F,G}		{B,D,E,G}		{D,E,G}		{D,G}					

Application

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL

Application

		Itéra	tion 0	Itérat	ion 1	Itéra	ation 2	Itéra	ation 3	Ité:	ration 4	Ité	ration 5	Itérat	tion 6
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	В	8	(A,B)	8	(A,B)	8	(A,B)	-	-	-	-	-	-	-	
3	С	5	(A,C)	-	-	-	-	-	-	-	-	-	-	-	
4	D	∞	(A,D)	∞	(A,D)	∞	(A,D)	17	(A,B,D)	16	(A,C,F,E,D)	16	(A,C,F,E,D)		
5	E	∞	(A,E)	15	(A,C,E)	10	(A,C,F,E)	10	(A,C,F,E)	-	-	-	-	-	
6	F	∞	(A,F)	7	(A,C,F)	-	-	-	-	-	-	-	-	-	
7	G	∞	(A,G) ∞		(A,G)	15	(A,C,F,G)	15	(A,C,F,G)	15	(A,C,F,G)	-	-	-	-
\overline{P}	{A}		{A,C}		{A,C,F}		{A,0	C,F,B}	{A,0	C,F,B,E}	{A,C	,F,B,E,G}			
T	{B,C,D,E,F,G}		{B,D,E,F,G}		{B,D,E,G}		{D,E,G}		{D,G}		{D}				

Application

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL

Application

		Itéra	tion 0	Itérat	Itération 1 Itération 2				Itération 3 Itération 4				ration 5	Itération 6	
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	В	8	(A,B)	8	(A,B)	8	(A,B)	-	-	-	-	-	-	-	-
3	С	5	(A,C)	-	-	-	-	-	-	-	-	-	-	-	
4	D	∞	(A,D)	∞	(A,D)	∞	(A,D)	17	(A,B,D)	16	(A,C,F,E,D)	16	(A,C,F,E,D)	-	
5	E	∞	(A,E)	15	(A,C,E)	10	(A,C,F,E)	10	(A,C,F,E)	-	-	-	-	-	
6	F	∞	(A,F)	7	(A,C,F)	-	-	-	-	-	-	-	-	-	
7	G	∞	(A,G)	∞	(A,G)	15	(A,C,F,G)	15	(A,C,F,G)	15	(A,C,F,G)	-	-	-	-
P		{A}			,C}		,C,F}		C,F,B}		C,F,B,E}	{A,C	,F,B,E,G}	{A,C,F,I	3,E,G,D]
T		{B,C,D,E,F,G} {B,D,E,F,G}		E,F,G}	{B,D,E,G}		{D,E,G}		{D,G}		{D}			0	

Application

Application de l'algorithme de DIJKSTRA : Arborescence optimale

Comparaison 00

Limitation

Limitation de l'algorithme de DIJKSTRA

Application de l'algorithme de DIJKSTRA sur un graphe valué à poids mixtes

Application de l'algorithme de DIJKSTRA : Itération 0

Application de l'algorithme de DIJKSTRA : Itération $0\,$

Application de l'algorithme de DIJKSTRA : Itération $0\,$

Application de l'algorithme de DIJKSTRA : Itération $0\,$

Application de l'algorithme de DIJKSTRA : Itération 0

Application de l'algorithme de DIJKSTRA : Itération 0

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL

Limitation

Application de l'algorithme de DIJKSTRA : Itération 0

		Itérat	tion 0	Itérat	ion 1	Itérat	tion 2	Itérat	ion 3	Itérat	ion 4	Itérat	ion 5
j	x_j	$dist(x_j)$	$Pcc(x_j)$										
2	2	7	(1,2)										
3	3	8	(1,3)										
4	4	∞	(1,4)										
5	5	∞	(1,5)										
6	6	∞	(1,6)										
\overline{P}		{1}											
T		{2,3,4,5	.6}										

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL

Limitation

Application de l'algorithme de DIJKSTRA : Itération 1

		Itérat	tion 0	Itération 1		Itération 2		Itération 3		Itération 4		Itération 5	
j	x_j	$dist(x_j)$	$Pcc(x_j)$										
2	2	7	(1,2)	-	-	-	-	-	-	-	-	-	
3	3	8	(1,3)	8	(1,3)								
4	4	∞	(1,4)	11	(1,2,4)								
5	5	∞	(1,5)	8	(1,2,5)								
6	6	∞	(1,6)	9	(1,2,6)								
\overline{P}	{1}			{1.	,2}								
\overline{T}	{2.3.4.5.6}		.6}	{3,4,5,6}									

Comparaison 00

Limitation

		Itérat	tion 0	Itérat	tion 1	Itérat	tion 2	Itérat	ion 3	Itérat	ion 4	Itérat	tion 5
j	x_j	$dist(x_j)$	$Pcc(x_j)$										
2	2	7	(1,2)	-	-	-	-	-	-	-	-	-	
3	3	8	(1,3)	8	(1,3)	-	-	-	-	-	-	-	
4	4	∞	(1,4)	11	(1,2,4)	11	(1,2,4)						
5	5	∞	(1,5)	8	(1,2,5)	8	(1,2,5)						
6	6	∞	(1,6)	9	(1,2,6)	9	(1,2,6)						
P		{1}		{1,2}		{1,2,3}							
T		{2,3,4,5,6}		{3,4,5,6}		{4.5.6}							

oduction	DIJKSTRA	FORD BELLMAN	FLOYD-WARSHALL	Compara
	0	0	0	00
	0000	000000000000	00000000	
00	00000000000	0000000000000000	0	

Application de l'algorithme de DIJKSTRA : Itération 2

000000

		Itération 0		Itération 1		Itération 2		Itération 3		Itération 4		Itération 5	
j	x_j	$dist(x_j)$	$Pcc(x_j)$										
2	2	7	(1,2)	-	-	-	-	-	-	-	-	-	
3	3	8	(1,3)	8	(1,3)	-	-	-	-	-	-	-	
4	4	∞	(1,4)	11	(1,2,4)	11	(1,2,4)						
5	5	∞	(1,5)	8	(1,2,5)	8	(1,2,5)						
6	6	∞	(1,6)	9	(1,2,6)	9	(1,2,6)						
P		{1}		{1	,2}	{1,5	2,3}						
T	{2,3,4,5,6}		{3,4,5,6}		{4,5,6}								

• L'algorithme de DIJKSTRA n'a pas détecté le plus court chemin p = <1,2,5,3> pour aller du sommet 1 vers le sommet 3.

roduction	DIJKSTRA	FORD BELLMAN	FLOYD-WAR
	0	0	0
	0000	000000000000	00000000
000	00000000000	000000000000000	0
	000000		

		Itérat	tion 0	Itérat	tion 1	Itérat	tion 2	Itérat	ion 3	Itérat	ion 4	Itérat	ion 5
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	2	7	(1,2)	-	-	-	-	-	-	-	-	-	
3	3	8	(1,3)	8	(1,3)	-	-	-	-	-	-	-	
4	4	∞	(1,4)	11	(1,2,4)	11	(1,2,4)						
5	5	∞	(1,5)	8	(1,2,5)	8	(1,2,5)						
6	6	∞	(1,6)	9	(1,2,6)	9	(1,2,6)						
P		{1}		{1,	,2}	{1,5	2,3}						
T	{2,3,4,5,6}		{3,4,5,6}		$\{4,5,6\}$								

- L'algorithme de DIJKSTRA n'a pas détecté le plus court chemin p = <1, 2, 5, 3 >pour aller du sommet 1 vers le sommet 3.
- l(p) = 5 alors que L'algorithme de DIJKSTRA nous a retourné $\delta(1,3) = 8$.

FLOYD-WARSHALL

Limitation

		Itérat	tion 0	Itérat	tion 1	Itérat	ion 2	Itérat	ion 3	Itérat	tion 4	Itérat	ion 5
j	x_j	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$	$dist(x_j)$	$Pcc(x_j)$
2	2	7	(1,2)	-	-	-	-	-	-	-	-	-	
3	3	8	(1,3)	8	(1,3)	-	-	-	-	-	-	-	
4	4	∞	(1,4)	11	(1,2,4)	11	(1,2,4)						
5	5	∞	(1,5)	8	(1,2,5)	8	(1,2,5)						
6	6	∞	(1,6)	9	(1,2,6)	9	(1,2,6)						
P		{1}		{1,	,2}	{1,5	2,3}						
T	{2,3,4,5,6}		{3,4,5,6}		$\{4,5,6\}$								

- L'algorithme de DIJKSTRA n'a pas détecté le plus court chemin p = <1, 2, 5, 3 >pour aller du sommet 1 vers le sommet 3.
- l(p) = 5 alors que L'algorithme de DIJKSTRA nous a retourné $\delta(1,3) = 8$.
- L'algorithme DIJKSTRA n'est plus utilisable dans le cas d'un graphe valué à poids mixtes.

FLOYD-WARSHALL

Limitation

		Itérat	tion 0	Itérat	tion 1	Itérat	tion 2	Itérat	ion 3	Itérat	ion 4	Itérat	ion 5
j	x_j	$dist(x_j)$	$Pcc(x_j)$										
2	2	7	(1,2)	-	-	-	-	-	-	-	-	-	
3	3	8	(1,3)	8	(1,3)	-	-	-	-	-	-	-	
4	4	∞	(1,4)	11	(1,2,4)	11	(1,2,4)						
5	5	∞	(1,5)	8	(1,2,5)	8	(1,2,5)						
6	6	∞	(1,6)	9	(1,2,6)	9	(1,2,6)						
P		{1}		{1	,2}	{1,5	2,3}						
T		{2,3,4,5,6}		{3,4,5,6}		{4,5,6}							

- L'algorithme de DIJKSTRA n'a pas détecté le plus court chemin p = <1, 2, 5, 3 >pour aller du sommet 1 vers le sommet 3.
- l(p) = 5 alors que L'algorithme de DIJKSTRA nous a retourné $\delta(1,3) = 8$.
- L'algorithme DIJKSTRA n'est plus utilisable dans le cas d'un graphe valué à poids mixtes.
- D'où la nécessité d'une autre démarche qui prend en considération la présent poids négatifs, aussi bien des circuits absorbants : Algorithme de FORD BELLMAN. 4 D > 4 B > 4 B > 4 B > B

Plan

- 3 Algorithme de FORD BELLMAN
 - Principe
 - Application

Rappel & remarques:

On considère un graphe orienté valué G = (X, A) avec |X| = n et $\mathcal{C} : A \longrightarrow \mathbb{R}$, la fonction coût associée.

Rappel & remarques:

On considère un graphe orienté valué G = (X, A) avec |X| = n et $\mathcal{C} : A \longrightarrow \mathbb{R}$, la fonction coût associée.

• Condition d'optimalité : une condition nécessaire pour avoir un plus court chemin est l'absence de circuits absorbants.

Rappel & remarques:

On considère un graphe orienté valué G=(X,A) avec |X|=n et $\mathcal{C}:A\longrightarrow\mathbb{R}$, la fonction coût associée.

- Condition d'optimalité : une condition nécessaire pour avoir un plus court chemin est l'absence de circuits absorbants.
- Le plus court chemin de la source x_1 à une destination quelconque x_k , $1 \le k \le n$, est composé d'au plus n sommets.

Rappel & remarques:

On considère un graphe orienté valué G=(X,A) avec |X|=n et $\mathcal{C}:A\longrightarrow\mathbb{R}$, la fonction coût associée.

- Condition d'optimalité : une condition nécessaire pour avoir un plus court chemin est l'absence de circuits absorbants.
- Le plus court chemin de la source x_1 à une destination quelconque x_k , $1 \le k \le n$, est composé d'au plus n sommets.
- Tout chemin composé de plus de n sommets passe forcément par un circuit absorbant.

Pseudo-code de l'algorithme de FORD BELLMAN

On considère un graphe orienté valué G = (X, A) avec |X| = n et $\mathcal{C} : A \longrightarrow \mathbb{R}$, la fonction coût associée.

Notation:

- Pour tout $j \in \{1, \dots, n\}$, on note par $dist^k(j)$: la longueur optimale du chemin reliant la source x_1 à la destination x_i , composé d'au plus k sommets autre que l'origine. Cette longueur sera mise à jour tout au long du processus afin de déterminer $\delta(x_1, x_i)$, le plus court chemin reliant les deux sommets x_1 et x_i .
- Pour tout $j \in \{1, \dots, n\}$, on note par Pcc(j): le plus court chemin associé au sommet x_i .

Comparaison

Principe

Pseudo-code de l'algorithme de FORD-BELLMAN

Pseudo-code

Étape 0 : Initialisation :

- k = 1
- $dist^k(1) = 0$
- Pour j de 2 à n faire $dist^{1}(j) = \begin{cases} C_{1,j} & \text{si } (x_{1}, x_{j}) \in A, \\ +\infty & \text{sinon.} \end{cases}$
- fin pour

Étape 1 : Mise à jour des $dist^k(j)$:

- Pour j de 1 à n faire $dist^{k+1}(j) = \min(dist^k(j), \min(dist^k(l) + \mathcal{C}_{l,j})), x_l$ sont les prédécesseurs de x_j .
 - fin pour

Étape 2 : Test de convergence :

- Si $\forall i \in \{1, \dots, n\}$, $dist^{k+1}(i) = dist^k(i)$ alors fin : optimalité atteinte
- Sinon et Si k = n 1 alors : il existe un circuit absorbant
- Sinon, faire k = k + 1 et aller à l'étape 1.

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL 000000000000

Principe

		k =	: 1
j	x_j	$dist^1(j)$	Pcc(j)
1	1	0	(1,1)
2	2	7	(1,2)
3	3	8	(1,3)
4	4	∞	(1,4)
5	5	∞	(1,5)
6	6	∞	(1.6)

DIJKSTRA FORD BELLMAN 000000000000

FLOYD-WARSHALL

Principe

			k =	: 1	k = 2		
	\overline{j}	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	
	1	1	0	(1,1)	0	(1,1)	
	2	2	7	(1,2)	7	(1,2)	
	3	3	8	(1,3)	8	(1,3)	
	4	4	∞	(1,4)	11	(1,2,4)	
	5	5	∞	(1,5)	8	(1,2,5)	
	6	6	∞	(1,6)	9	(1,2,6)	

DIJKSTRA FORD BELLMAN 0000000000000

FLOYD-WARSHALL

Principe

			k = 1		k = 2		k = 3	
	j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)
	1	1	0	(1,1)	0	(1,1)	0	(1,1)
	2	2	7	(1,2)	7	(1,2)	7	(1,2)
	3	3	8	(1,3)	8	(1,3)	5	(1,2,5,3)
	4	4	∞	(1,4)	11	(1,2,4)	10	(1,2,5,4)
	5	5	∞	(1,5)	8	(1,2,5)	8	(1,2,5)
	6	6	∞	(1,6)	9	(1,2,6)	9	(1,2,6)

FLOYD-WARSHALL 0 000000000 0

Comparaison 00

Principe

		k = 1		k = 2		k = 3	
j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)
1	1	0	(1,1)	0	(1,1)	0	(1,1)
2	2	7	(1,2)	7	(1,2)	7	(1,2)
3	3	8	(1,3)	8	(1,3)	5	(1,2,5,3)
4	4	∞	(1,4)	11	(1,2,4)	10	(1,2,5,4)
5	5	∞	(1,5)	8	(1,2,5)	8	(1,2,5)
6	6	∞	(1,6)	9	(1,2,6)	9	(1,2,6)

		k	=4
j	x_j	$dist^4(j)$	Pcc(j)
1	1	0	(1,1)
2	2	7	(1,2)
3	3	5	(1,2,5,3)
4	4	10	(1,2,5,4)
5	5	8	(1,2,5)
6	6	7	(1,2,5,3,6)

FLOYD-WARSHALL 0 000000000 0

Principe

		k = 1		k = 2		k = 3	
j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)
1	1	0	(1,1)	0	(1,1)	0	(1,1)
2	2	7	(1,2)	7	(1,2)	7	(1,2)
3	3	8	(1,3)	8	(1,3)	5	(1,2,5,3)
4	4	∞	(1,4)	11	(1,2,4)	10	(1,2,5,4)
5	5	∞	(1,5)	8	(1,2,5)	8	(1,2,5)
6	6	∞	(1,6)	9	(1,2,6)	9	(1,2,6)

			k	=4	k = 5		
	j	x_j	$dist^4(j)$	Pcc(j)	$dist^5(j)$	Pcc(j)	
	1	1	0	(1,1)	0	(1,1)	
	2	2	7	(1,2)	7	(1,2)	
	3	3	5	(1,2,5,3)	5	(1,2,5,3)	
	4	4	10	(1,2,5,4)	10	(1,2,5,4)	
	5	5	8	(1,2,5)	8	(1,2,5)	
	6	6	7	(1,2,5,3,6)	7	(1,2,5,3,6)	

Application

Appliquer l'algorithme de FORD BELLMAN pour trouver le chemin de coût minimal entre les sommets A et F du graphe ci-dessous.

FORD BELLMAN FLOYD-WARSHALL

Application

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL

Application

		k =	: 1
\overline{j}	x_j	$dist^1(j)$	Pcc(j)
1	A	0	(A,A)
2	В	6	(A,B)
3	С	5	(A,C)
4	D	6	(A,D)
5	Е	∞	(A,E)
6	F	∞	(A,F)

FORD BELLMAN FLOYD-WARSHALL

Application

FLOYD-WARSHALL O OOOOOOOOO O

Comparaiso 00

Application

			k =	: 1	k = 2		
ľ	j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	
	1	A	0	(A,A)	0	(A,A)	
	2	В	6	(A,B)	0	(A,C,B)	
•	3	С	5	(A,C)	5	(A,C)	
	4	D	6	(A,D)	3	(A,B,D)	
	5	E	∞	(A,E)	6	(A,C,E)	
	6	F	∞	(A,F)	13	(A,D,F)	

FLOYD-WARSHALL

Application

Application de l'algorithme de FORD BELLMAN : k = 2

			k = 1		k = 2	
ľ	j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)
	1	A	0	(A,A)	0	(A,A)
	2	В	6	(A,B)	0	(A,C,B)
•	3	С	5	(A,C)	5	(A,C)
	4	D	6	(A,D)	3	(A,B,D)
	5	E	∞	(A,E)	6	(A,C,E)
	6	F	∞	(A,F)	13	(A,D,F)

Test d'arrêt non vérifié : $\exists j \in \{1, \dots, 6\}$ tel que $dist^2(x_j) \neq dist^1(x_j)$

FLOYD-WARSHALL FORD BELLMAN

Application

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL

Application

		k =	: 1	k =	= 2		k = 3	
\overline{j}	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)	
1	A	0	(A,A)	0	(A,A)	0	(A,A)	
2	В	6	(A,B)	0	(A,C,B)	0	(A,C,B)	
3	С	5	(A,C)	5	(A,C)	4	(A,B,D,C)	
4	D	6	(A,D)	3	(A,B,D)	-3	(A,C,B,D)	
5	E	∞	(A,E)	6	(A,C,E)	6	(A,C,E)	
6	F	∞	(A,F)	13	(A,D,F)	8	(A,B,E,F)	

Application de l'algorithme de FORD BELLMAN : k=3

		k =	: 1	k =	k=2		=3	
\overline{j}	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)	
1	A	0	(A,A)	0	(A,A)	0	(A,A)	
2	В	6	(A,B)	0	(A,C,B)	0	(A,C,B)	
3	С	5	(A,C)	5	(A,C)	4	(A,B,D,C)	
4	D	6	(A,D)	3	(A,B,D)	-3	(A,C,B,D)	
5	Е	∞	(A,E)	6	(A,C,E)	6	(A,C,E)	
6	F	∞	(A,F)	13	(A,D,F)	8	(A,B,E,F)	

Test d'arrêt non vérifié : $\exists j \in \{1, \dots, 6\}$ tel que $dist^3(x_i) \neq dist^2(x_i)$

FLOYD-WARSHALL FORD BELLMAN

Application

DIJKSTRA FORD BELLMAN FLOYD-WARSHALL

Application

		k =	= 1	k = 2		k = 3	
j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)
1	A	0	(A,A)	0	(A,A)	0	(A,A)
2	В	6	(A,B)	0	(A,C,B)	0	(A,C,B)
3	С	5	(A,C)	5	(A,C)	4	(A,B,D,C)
4	D	6	(A,D)	3	(A,B,D)	-3	(A,C,B,D)
5	E	∞	(A,E)	6	(A,C,E)	6	(A,C,E)
6	F	∞	(A,F)	13	(A,D,F)	8	(A,B,E,F)

			k = 4		
j	x_j	$dist^4(j)$	Pcc(j)		
1	A	0	(A,A)		
2	В	-1	(A,B,D,C,B)		
3	С	-2	(A,C,B,D,C)		
4	D	-3	(A,C,B,D)		
5	E	5	(A,B,D,C,E)		
6	F	4	(A,C,B,D,F)		

		k =	= 1	k = 2		k = 3	
j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)
1	A	0	(A,A)	0	(A,A)	0	(A,A)
2	В	6	(A,B)	0	(A,C,B)	0	(A,C,B)
3	С	5	(A,C)	5	(A,C)	4	(A,B,D,C)
4	D	6	(A,D)	3	(A,B,D)	-3	(A,C,B,D)
5	E	∞	(A,E)	6	(A,C,E)	6	(A,C,E)
6	F	∞	(A.F)	13	(A.D.F)	8	(A.B.E.F)

		k = 4			
j	x_j	$dist^4(j)$	Pcc(j)		
1	1 A 0		(A,A)		
2	В	-1	(A,B,D,C,B)		
3	С	-2	(A,C,B,D,C)		
4	D	-3	(A,C,B,D)		
5	Е	5	(A,B,D,C,E)		
6	F	4	(A,C,B,D,F)		

		k =	: 1	k =	= 2	k	=3	
j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)	
1	A	0	(A,A)	0	(A,A)	0	(A,A)	
2	В	6	(A,B)	0	(A,C,B)	0	(A,C,B)	
3	С	5	(A,C)	5	(A,C)	4	(A,B,D,C)	
4	D	6	(A,D)	3	(A,B,D)	-3	(A,C,B,D)	
5	Ε	∞	(A,E)	6	(A,C,E)	6	(A,C,E)	
6	F	∞	(A,F)	13	(A,D,F)	8	(A,B,E,F)	

			k = 4	k = 5		
j	x_j	$dist^4(j)$	Pcc(j)	$dist^5(j)$	Pcc(j)	
1	A	0	(A,A)	0	(A,A)	
2	В	-1	(A,B,D,C,B)	-7	(A,C,B,D,C,B)	
3	С	-2	(A,C,B,D,C)	-2	(A,C,B,D,C)	
4	D	-3	(A,C,B,D)	-4	(A,B,D,C,B,D)	
5	E	5	(A,B,D,C,E)	-1	(A,C,B,D,C,E)	
6	F	4	(A,C,B,D,F)	4	(A,C,B,D,F)	

FLOYD-WARSHALL

Application

		k = 1		k = 2		k = 3	
j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)
1	A	0	(A,A)	0	(A,A)	0	(A,A)
2	В	6	(A,B)	0	(A,C,B)	0	(A,C,B)
3	С	5	(A,C)	5	(A,C)	4	(A,B,D,C)
4	D	6	(A,D)	3	(A,B,D)	-3	(A,C,B,D)
5	Ε	∞	(A,E)	6	(A,C,E)	6	(A,C,E)
6	F	∞	(A,F)	13	(A,D,F)	8	(A,B,E,F)

				k = 4	k = 5		
ľ	j	x_j	$dist^4(j)$	Pcc(j)	$dist^5(j)$	Pcc(j)	
	1	A	0	(A,A)	0	(A,A)	
•	2	В	-1	(A,B,D,C,B)	-7	(A,C,B,D,C,B)	
•	3	С	-2	(A,C,B,D,C)	-2	(A,C,B,D,C)	
•	4	D	-3	(A,C,B,D)	-4	(A,B,D,C,B,D)	
	5	Е	5	(A,B,D,C,E)	-1	(A,C,B,D,C,E)	
	6	F	4	(A,C,B,D,F)	4	(A,C,B,D,F)	

		k = 1		k = 2		k = 3	
j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)
1	A	0	(A,A)	0	(A,A)	0	(A,A)
2	В	6	(A,B)	0	(A,C,B)	0	(A,C,B)
3	С	5	(A,C)	5	(A,C)	4	(A,B,D,C)
4	D	6	(A,D)	3	(A,B,D)	-3	(A,C,B,D)
5	Е	∞	(A,E)	6	(A,C,E)	6	(A,C,E)
6	F	∞	(A,F)	13	(A,D,F)	8	(A,B,E,F)

			k = 4	k = 5		k = 6	
j	x_j	$dist^4(j)$	Pcc(j)	$dist^5(j)$	Pcc(j)	$dist^6(j)$	Pcc(j)
1	A	0	(A,A)	0	(A,A)	0	(A,A)
2	В	-1	(A,B,D,C,B)	-7	(A,C,B,D,C,B)	-7	(A,C,B,D,C,B)
3	С	-2	(A,C,B,D,C)	-2	(A,C,B,D,C)	-3	(A,B,D,C,B,D,C)
4	D	-3	(A,C,B,D)	-4	(A,B,D,C,B,D)	-10	(A,C,B,D,C,B,D)
5	E	5	(A,B,D,C,E)	-1	(A,C,B,D,C,E)	-1	(A,C,B,D,C,E)
6	F	4	(A,C,B,D,F)	4	(A,C,B,D,F)	1	(A,B,D,C,B,D,F)

FLOYD-WARSHALL O OOOOOOOOO O

Application

Application de l'algorithme de FORD BELLMAN : k=6

		k = 1		k = 2		k = 3	
j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)
1	A	0	(A,A)	0	(A,A)	0	(A,A)
2	В	6	(A,B)	0	(A,C,B)	0	(A,C,B)
3	С	5	(A,C)	5	(A,C)	4	(A,B,D,C)
4	D	6	(A,D)	3	(A,B,D)	-3	(A,C,B,D)
5	Ε	∞	(A,E)	6	(A,C,E)	6	(A,C,E)
6	F	∞	(A,F)	13	(A,D,F)	8	(A,B,E,F)

			k = 4		k = 5		k = 6	
	j	x_j	$dist^4(j)$	Pcc(j)	$dist^5(j)$	Pcc(j)	$dist^6(j)$	Pcc(j)
	1	A	0	(A,A)	0	(A,A)	0	(A,A)
	2	В	-1	(A,B,D,C,B)	-7	(A,C,B,D,C,B)	-7	(A,C,B,D,C,B)
	3	С	-2	(A,C,B,D,C)	-2	(A,C,B,D,C)	-3	(A,B,D,C,B,D,C)
	4	D	-3	(A,C,B,D)	-4	(A,B,D,C,B,D)	-10	(A,C,B,D,C,B,D)
	5	E	5	(A,B,D,C,E)	-1	(A,C,B,D,C,E)	-1	(A,C,B,D,C,E)
	6	F	4	(A,C,B,D,F)	4	(A,C,B,D,F)	1	(A,B,D,C,B,D,F)

Test d'arrêt vérifié : $\exists j \in \{1, \dots, 6\}$ tel que $dist^6(x_j) \neq dist^5(x_j)$ & k = n :

FLOYD-WARSHALL 0 000000000 0

Application

Application de l'algorithme de FORD BELLMAN : k=6

			k = 1		k = 2		k = 3	
	j	x_j	$dist^1(j)$	Pcc(j)	$dist^2(j)$	Pcc(j)	$dist^3(j)$	Pcc(j)
-	1	A	0	(A,A)	0	(A,A)	0	(A,A)
	2	В	6	(A,B)	0	(A,C,B)	0	(A,C,B)
	3	С	5	(A,C)	5	(A,C)	4	(A,B,D,C)
	4	D	6	(A,D)	3	(A,B,D)	-3	(A,C,B,D)
	5	Ε	∞	(A,E)	6	(A,C,E)	6	(A,C,E)
-	6	F	∞	(A,F)	13	(A,D,F)	8	(A,B,E,F)

		k = 4		k = 5		k = 6	
j	x_j	$dist^4(j)$	Pcc(j)	$dist^5(j)$	Pcc(j)	$dist^6(j)$	Pcc(j)
1	A	0	(A,A)	0	(A,A)	0	(A,A)
2	В	-1	(A,B,D,C,B)	-7	(A,C,B,D,C,B)	-7	(A,C,B,D,C,B)
3	С	-2	(A,C,B,D,C)	-2	(A,C,B,D,C)	-3	(A,B,D,C,B,D,C)
4	D	-3	(A,C,B,D)	-4	(A,B,D,C,B,D)	-10	(A,C,B,D,C,B,D)
5	E	5	(A,B,D,C,E)	-1	(A,C,B,D,C,E)	-1	(A,C,B,D,C,E)
6	F	4	(A,C,B,D,F)	4	(A,C,B,D,F)	1	(A,B,D,C,B,D,F)

Test d'arrêt vérifié : $\exists j \in \{1, \dots, 6\}$ tel que $dist^6(x_j) \neq dist^5(x_j)$ & k = n : existence de circuit absorbant.

Plan

- 3 Algorithme de FORD BELLMAN
- 4 Algorithme de FLOYD-WARSHALL
 - Principe
 - Application

Pseudo-code de l'algorithme de FLOYD-WARSHALL

On considère un graphe orienté valué G = (X, A) avec |X| = n et $\mathcal{C} : A \longrightarrow \mathbb{R}$, la fonction coût associée.

Notation:

- Pour tout $i, j \in \{1, \dots, n\}$, on note par dist(i, j): la longueur optimale du chemin reliant la source x_i à la destination x_i . Cette longueur sera mise à jour tout au long du processus afin de déterminer $\delta(x_i, x_i)$, le plus court chemin reliant les deux sommets x_i et x_i .
- Pour tout $i, j \in \{1, \dots, n\}$, on note par Pcc(i, j): le plus court chemin reliant les sommets x_i et x_i .

FLOYD-WARSHALL

Pseudo-code de l'algorithme de FLOYD-WARSHALL

Pseudo-code

$$\text{ Pour } j \text{ de 1 \`{a}} \ n \text{ faire}$$

$$dist(i,j) = \left\{ \begin{array}{ll} 0 & \text{ si } i=j, \\ \mathcal{C}_{i,j} & \text{ si } (x_i,x_j) \in A, \\ +\infty & \text{ sinon.} \end{array} \right.$$

• fin si

$$\forall i \neq j, \, Pcc(i,j) = (x_i, x_j)$$
 Étape 1 : Mise à jour des $dist(i,j)$:

- k = 1
- $\forall i \neq k \text{ et } j \neq k$, si dist(i,k) + dist(k,j) < dist(i,j) faire dist(i, j) = dist(i, k) + dist(k, j), et $Pcc(i, j) = Pcc(i, k) \cup Pcc(k, j)$.

nehla debbabi@esprit.tn

- fin pour
- Étape 2 : Test de convergence : • Si $\exists i$ tel que dist(i,i) < 0 alors fin : il existe un circuit absorbant

 - Sinon et Si k = n alors : optimalité atteinte
 - Sinon, faire k = k + 1 et aller à l'étape 1. Nehla DEBBABI (ESPRIT)

 FLOYD-WARSHALL

O

OO

OO

Comparaison 00

Principe

Illustration de l'algorithme de FLOYD-WARSHALL / initialisation

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(0)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & X & 4 & X & X \\ X & X & X & 5 & X \end{pmatrix}$$

$$\pi^{(0)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & X & 4 & X & X \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & & & \\ \infty & & & \\ 2 & & & & \end{pmatrix}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\pi^{(0)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & X & 4 & X & X \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\pi^{(1)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\pi^{(1)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \qquad \pi^{(1)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} & 3 & & & \\ \infty & 0 & \infty & 1 & 7 \\ & 4 & & & \\ & 5 & & & \\ & \infty & & & \end{pmatrix} \qquad \pi^{(2)} = \begin{pmatrix} & 1 & & & \\ X & X & X & 2 & 2 \\ & 3 & & & \\ & 1 & & & \\ & X & & & \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \cdots & \cdots & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

$$\pi^{(1)} = \begin{pmatrix} X & 1 & 1 & X & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & X & X \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$\pi^{(2)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(2)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$\pi^{(2)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(2)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} & & 8 & & \\ & & \infty & & \\ & & 4 & 0 & 5 & 11 \\ & & -5 & & \\ & & \infty & & \end{pmatrix} \qquad \pi^{(3)} = \begin{pmatrix} & & 1 & & \\ & & X & & \\ X & 3 & X & 2 & 2 \\ & & 4 & & \\ & & X & & \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(2)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 1 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\pi^{(3)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 3 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(3)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 3 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$\pi^{(3)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 3 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

Illustration de l'algorithme de FLOYD-WARSHALL / k=4

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \pi^{(3)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 3 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$\pi^{(3)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 3 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} & & 4 & \\ & & 1 & \\ & & 5 & \\ 2 & -1 & -5 & 0 & -2 \end{pmatrix}$$

$$\pi^{(4)} = egin{pmatrix} & 2 & & 2 & \ & & 2 & \ & & 2 & \ & & 2 & \ & & 1 & 5 & \end{pmatrix}$$

74 / 78

Illustration de l'algorithme de FLOYD-WARSHALL / k = 4

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\pi^{(3)} = \begin{pmatrix} X & 1 & 1 & 2 & 1 \\ X & X & X & 2 & 2 \\ X & 3 & X & 2 & 2 \\ 4 & 3 & 4 & X & 1 \\ X & X & X & 5 & X \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\pi^{(4)} = \begin{pmatrix} X & 1 & 4 & 2 & 1 \\ 4 & X & 4 & 2 & 4 \\ 4 & 3 & X & 2 & 4 \\ 4 & 3 & 4 & X & 1 \\ 4 & 4 & 4 & 5 & X \end{pmatrix}$$

74 / 78

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\pi^{(4)} = \begin{pmatrix} X & 1 & 4 & 2 & 1 \\ 4 & X & 4 & 2 & 4 \\ 4 & 3 & X & 2 & 4 \\ 4 & 3 & 4 & X & 1 \\ 4 & 4 & 4 & 5 & X \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \pi^{(4)} = \begin{pmatrix} X & 1 & 4 & 2 & 1 \\ 4 & X & 4 & 2 & 4 \\ 4 & 3 & X & 2 & 4 \\ 4 & 3 & 4 & X & 1 \\ 4 & 4 & 4 & 5 & X \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} & & & -4 \\ & & & -1 \\ & & & 3 \\ & & & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \pi^{(5)} = \begin{pmatrix} & & & 1 \\ & & & 4 \\ & & & 1 \\ 4 & 4 & 4 & 5 & X \end{pmatrix}$$

Illustration de l'algorithme de FLOYD-WARSHALL / k=5

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\pi^{(4)} = \begin{pmatrix} X & 1 & 4 & 2 & 1 \\ 4 & X & 4 & 2 & 4 \\ 4 & 3 & X & 2 & 4 \\ 4 & 3 & 4 & X & 1 \\ 4 & 4 & 4 & 5 & X \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\pi^{(5)} = \begin{pmatrix} X & 5 & 5 & 5 & 1 \\ 4 & X & 4 & 2 & 4 \\ 4 & 3 & X & 2 & 4 \\ 4 & 3 & 4 & X & 1 \\ 4 & 4 & 4 & 5 & X \end{pmatrix}$$

75 / 78

Application

Appliquer l'algorithme de Floyd sur les deux graphes suivants.

FORD BELLMAN FLOYD-WARSHALL Comparaison

Plan

- 4 Algorithme de FLOYD-WARSHALL
- 5 DIJKSTRA / FORD-BELLMAN / FLOYD-WARSHALL

On considère un graphe orienté valué G = (X, A) avec |X| = n, |A| = met $\mathcal{C}: A \longrightarrow \mathbb{R}$, la fonction coût associée.

	DIJKSTRA	FORD BELLMAN	FLOYD WARSHALL
	d'un sommet	d'un sommet	paires
Type de chemins	vers les autres	vers les autres	de sommets
Complexité			
représentation du graphe	$\theta(n + m \log(n))$	$\theta(n imes m)$	
par listes d'adjacence		,	
Complexité			
représentation du graphe	$\theta(n^2)$	$\theta(n^3)$	$\theta(n^3)$
par matrice d'adjacence		, .	•
	Graphes	Graphes	Graphes
Cas d'utilisation	à poids positifs	à poids quelconques	à poids quelconques

