Intervalles et inégalités

Définition d'un intervalle. L'ensemble des nombres réels compris entre a (inclus) et b (inclus) est appelé **intervalle** et se note [a; b]. a et b sont **les bornes de l'intervalle**. Les autres types d'intervalles sont :

Ensemble des réels <i>x</i> tels que	Signification	Notation	Représentation
$a \le x \le b$	x est entre a inclus et b inclus	$x \in [a;b]$	
$a < x \le b$	x est entre a exclus et b inclus	$x \in]a;b]$	a b
$a \le x < b$	x est entre a inclus et b exclus	$x \in [a; b[$	a b
a < x < b	x est entre a exclus et b exclus	$x \in]a;b[$	a b
$x \ge a \text{ (ou } a \le x)$	x est supérieur ou égal à a	$x \in [a; +\infty[$	— [a
$x > a ext{ (ou } a < x)$	x est (strictement) supérieur à a	$x \in]a; +\infty[$	a
$x \le b \text{ (ou } b \ge x)$	x est inférieur ou égal à a	$x \in]-\infty;b]$	—————————————————————————————————————
x < b (ou b > x)	x est (strictement) inférieur ou égal à a	$x \in]-\infty; b[$	—————————————————————————————————————

Définition. $-\infty$ et $+\infty$ se disent respectivement « moins l'infini » et « plus l'infini ». Le crochet est toujours vers l'extérieur en $+\infty$ et $-\infty$.

Définition. L'ensemble des nombres réels \mathbb{R} est $]-\infty;+\infty[$. L'ensemble des nombres réels <u>positifs</u> s'écrit \mathbb{R}_+ ou $[0;+\infty[$ et l'ensemble des nombres réels <u>négatifs</u> s'écrit \mathbb{R}_- ou $]-\infty;0]$.

Définition. L'intersection de deux intervalles I et J est l'ensemble noté $I \cap J$ qui contient les nombres qui appartiennent à I et à J.

Définition. L'union de deux intervalles I et J est l'ensemble noté $I \cup J$ qui contient les nombres qui appartiennent à I ou à J.

Exemple. Si I = [0; 12] et J = [3; 20], $I \cap J = [3; 12]$ et $I \cup J = [0; 20]$.

Définition. L'ensemble des réels non nuls s'écrit \mathbb{R}^* ou $]-\infty$; $0[\cup]0$; $+\infty[$ ou $\mathbb{R}\setminus\{0\}$.

Règles (manipulation des inégalités). Soit a, b, c, k des réels.

- Si a < b alors a + c < b + c. (Ajouter un réel aux 2 côtés d'une inégalité conserve l'inégalité)
- Si a < b alors a c < b c. (Soustraire un réel aux 2 côtés d'une inégalité conserve l'inégalité)
- Si a < b et k > 0 alors ka < kb. (Multiplier une inégalité par un réel > 0 conserve l'inégalité)
- Si a < b et k < 0 alors ka > kb. (Multiplier une inégalité par un <u>réel < 0 inverse</u> l'inégalité)
- Si a < b et k > 0 alors $\frac{a}{b} < \frac{b}{b}$. (Diviser une inégalité par un <u>réel > 0</u> conserve l'inégalité)
- Si a < b et k < 0 alors $\frac{a}{k} > \frac{b}{k}$. (Diviser une inégalité par un <u>réel < 0</u> <u>inverse</u> l'inégalité)
- Ces règles restent valables en remplaçant < par \le et > par \ge . (mais k doit rester \ne 0 pour \div)

Définition. **Une inéquation** est une inégalité dans laquelle est présente une inconnue. **Résoudre une inéquation** revient à déterminer l'ensemble de toutes les valeurs de l'inconnue qui vérifient l'inégalité.

Exemple. Résoudre (1): $2x + 6 \ge x - 5$ sur \mathbb{R} . L'inconnue ici est la variable x que l'on va isoler.

Soit $x \in \mathbb{R}$. $(I) \Leftrightarrow 2x - x \ge -6 - 5 \Leftrightarrow x \ge -11$. Donc l'ensemble des solutions de (I) est $[-11; +\infty[$.

Définition de la valeur absolue. Etant donné un réel a, on définit |a| = a si $a \ge 0$, |a| = -a si $a \le 0$. **Exemple.** |3| = 3; |-4| = 4; |-1,5| = 1,5; |5,6| = 5,6. La valeur absolue « enlève » le signe -.

Définition. La distance entre deux réels *a, b*

quelconques est d(a; b) = |a - b|

(Car si a > b c'est a - b, et si a < b c'est b - a).

Exemples. d(2,5;7) = |2,5-7| = |-4,5| = 4,5.

d(1;-3) = |1 - (-3)| = |4| = 4.

Propriété. Pour $x, a \in \mathbb{R}$ et $r \in \mathbb{R}_+$ on a : $|x - a| \le r \Leftrightarrow x \in [a - r; a + r]$

20