1. gyakorlat

VISSZATEKINTÉS DIFFERENCIÁL- ÉS INTEGRÁLSZÁMÍTÁSBÓL TANULTAKRA

Egyváltozós valós értékű függvények deriváltja

 $\pmb{Eml\'e keztet\~o}$. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény $\pmb{differenci\'alhat\'o}$ (vagy $\pmb{deriv\'alhat\'o}$) az $a \in \operatorname{int} \mathcal{D}_f$ pontban, ha létezik és véges az

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \quad \left(= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \right)$$

határérték. Jelben: $f \in D\{a\}$. Ez egy 0/0 típusú határérték.

Ha $f \in \mathbb{R} \to \mathbb{R}$ és $\{x \in \text{int } \mathcal{D}_f \mid f \in D\{x\}\} \neq \emptyset$, akkor az

$$\{x \in \operatorname{int} \mathcal{D}_f \mid f \in D\{x\}\} \ni x \mapsto f'(x)$$

függvényt az f deriváltfüggvényének (vagy differenciálhányados-függvényének) nevezzük, és az f' szimbólummal jelöljük. Néhány elemi függvény deriváltját tartalmazza ez a táblázat.

Tétel. Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$ és $f, g \in D\{a\}$ valamilyen $a \in \operatorname{int}(\mathcal{D}_f \cap \mathcal{D}_g)$ pontban. Ekkor

1. a szorzó konstansokat ki tudjuk emelni a deriválásból, azaz

$$cf \in D\{a\}$$
 és $(cf)'(a) = cf'(a)$ $(c \in \mathbb{R})$

2. tagokból álló függvényeket tagonként deriválhatjuk, azaz

$$f + g \in D\{a\}$$
 és $(f + g)'(a) = f'(a) + g'(a)$,

3. egy szorzat deriváltja az az összeg, amelynek tagjai az egyik tényező deriváltja megszorozva a másik tényezővel, azaz

$$f \cdot g \in D\{a\}$$
 és $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$,

4. ha még a $g(a) \neq 0$ feltétel is teljesül, akkor

$$\frac{f}{g} \in D\{a\} \quad \text{\'es} \quad \left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}.$$

Tétel. Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$ és valamilyen $a \in \operatorname{int} \mathcal{D}_g$ pontban $g \in D\{a\}$, továbbá $f \in D\{g(a)\}$. Ekkor $f \circ g \in D\{a\}$, és

$$(f \circ q)'(a) = f'(q(a)) \cdot q'(a).$$

1

1. Feladat. Adjuk meg a következő függvények deriváltját!

a)
$$f(x) := (5x^2 + 3x)^{2022}$$
 $(x \in \mathbb{R})$

b)
$$f(x) := \sqrt{x + \sqrt{x}}$$
 $(x \ge 0)$,

c)
$$f(x) := \sin \frac{x^2 + 1}{x + 3}$$
 $(x > -3),$

d)
$$f(x) := \sin^2(\ln\sqrt{1 + \cos^2 x} + 1)$$
 $(x \in \mathbb{R}).$

Megoldás.

a) Az f függvény a $h(t):=t^{2022}$ $(t\in\mathbb{R})$ külső és a $g(x):=5x^2+3x$ $(x\in\mathbb{R})$ belső függvény kompozíciója:

$$f(x) = (h \circ g)(x) = h(g(x)) = (g(x))^{2022} = (5x^2 + 3x)^{2022} \quad (x \in \mathbb{R})$$

Mivel $\forall x \in \mathbb{R}$ pontban $g \in D\{x\}$ és g'(x) = 10x + 3, illetve $h \in D\{g(x)\}$ és $h'(t) = 2022\,t^{2021}$ $(t \in \mathbb{R})$, ezért az összetett függvény deriválására vonatkozó tétel feltételei teljesülnek. Így $f = h \circ g \in D(\mathbb{R})$ és

$$f'(x) = (h \circ g)'(x) = h'(g(x)) \cdot g'(x) = 2022 (g(x))^{2021} \cdot g'(x) =$$
$$= 2022 (5x^2 + 3x)^{2021} \cdot (10x + 3).$$

b) Az f függvény a $h(t):=\sqrt{t}\ (t\geq 0)$ külső és a $g(x):=x+\sqrt{x}\ (x\geq 0)$ belső függvény kompozíciója:

$$f(x) = (h \circ g)(x) = h(g(x)) = \sqrt{g(x)} = \sqrt{x + \sqrt{x}} \quad (x \ge 0).$$

Mivel $\forall x > 0$ pontban $g \in D\{x\}$, $g'(x) = 1 + \frac{1}{2\sqrt{x}}$, és $h \in D\{g(x)\}$, $h'(t) = \frac{1}{2\sqrt{t}}$ (t > 0), ezért az összetett függvény deriválására vonatkozó tétel feltételei ezekben a pontokban teljesülnek. Így $f = h \circ g \in D(0, +\infty)$ és

$$f'(x) = \left(h \circ g\right)'(x) = h'\left(g(x)\right) \cdot g'(x) = \frac{1}{2\sqrt{g(x)}} \cdot g'(x) =$$
$$= \frac{1}{2\sqrt{x + \sqrt{x}}} \cdot \left(1 + \frac{1}{2\sqrt{x}}\right).$$

Az f függvény a 0 pontban nem deriválható.

c) Az f függvény a $h(t) := \sin t$ $(t \in \mathbb{R})$ külső és a $g(x) := \frac{x^2 + 1}{x + 3}$ (x > -3) belső függvény kompozíciója. Ezek a függvények az értelmezési tartományuk minden pontjában deriválhatók, ezért az összetett függvény deriválására vonatkozó tétel szerint $f \in D(-3, +\infty)$, és a deriváltfüggvény:

$$f'(x) = \left(\sin\frac{x^2 + 1}{x + 3}\right)' = \cos\frac{x^2 + 1}{x + 3} \cdot \left(\frac{x^2 + 1}{x + 3}\right)' =$$

$$= \cos\frac{x^2 + 1}{x + 3} \cdot \frac{\left(x^2 + 1\right)' \cdot (x + 3) - \left(x^2 + 1\right) \cdot \left(x + 3\right)'}{(x + 3)^2} =$$

$$= \cos\frac{x^2 + 1}{x + 3} \cdot \frac{2x \cdot (x + 3) - \left(x^2 + 1\right) \cdot 1}{(x + 3)^2} = \cos\frac{x^2 + 1}{x + 3} \cdot \frac{x^2 + 6x - 1}{(x + 3)^2}.$$

d) Többszörösen összetett függvényről van szó. Az elemi függvények deriváltjait, valamint az összetett függvény deriválására vonatkozó tételt többször egymás után (kívülről befele haladva) alkalmazva azt kapjuk, hogy $f \in D(\mathbb{R})$, és a deriváltfüggvény:

$$f'(x) = \left(\sin^2\left(\ln\sqrt{1+\cos^2x} + 1\right)\right)' =$$

$$= 2\sin\left(\ln\sqrt{1+\cos^2x} + 1\right) \cdot \left(\sin\left(\ln\sqrt{1+\cos^2x} + 1\right)\right)' =$$

$$= 2\sin\left(\ln\sqrt{1+\cos^2x} + 1\right) \cdot \cos\left(\ln\sqrt{1+\cos^2x} + 1\right) \cdot \left(\ln\sqrt{1+\cos^2x} + 1\right)' =$$

$$= \sin\left(2\left(\ln\sqrt{1+\cos^2x} + 1\right)\right) \cdot \frac{1}{\sqrt{1+\cos^2x}} \cdot \left(\sqrt{1+\cos^2x}\right)' =$$

$$= \frac{\sin\left(2\left(\ln\sqrt{1+\cos^2x} + 1\right)\right)}{\sqrt{1+\cos^2x}} \cdot \frac{1}{2\sqrt{1+\cos^2x}} \cdot (1+\cos^2x)' =$$

$$= \frac{\sin\left(2\left(\ln\sqrt{1+\cos^2x} + 1\right)\right)}{\sqrt{1+\cos^2x}} \cdot \frac{1}{2\sqrt{1+\cos^2x}} \cdot 2\cos x \cdot (-\sin x) =$$

$$= \frac{\sin\left(2\left(\ln\sqrt{1+\cos^2x} + 1\right)\right)}{2\left(1+\cos^2x\right)} \cdot \sin 2x.$$

A fenti átalakításokban kétszer alkalmaztuk a $\sin 2\alpha = 2 \sin \alpha \cos \alpha$ azonosságot.

Egyváltozós valós értékű függvények határozatlan integrálja

Emlékeztető. Legyen adott az $I \subset \mathbb{R}$ nyílt intervallumon értelmezett $f: I \to \mathbb{R}$ függvény. Azt mondjuk, hogy a $F: I \to \mathbb{R}$ függvény f **primitív függvénye**, ha $F \in D(I)$ és F'(x) = f(x) $(x \in I)$.

Az $I \subset \mathbb{R}$ nyílt intervallumon értelmezett f függvény primitív függvényeinek a halmazát f határozatlan integráljának nevezzük, és így jelöljük:

$$\int f := \int f(x) dx := \{F : I \to \mathbb{R} \mid F \in D \text{ \'es } F' = f\}.$$

Ha $F \in \int f$, akkor ezt az alábbi formában fogjuk írni:

$$\int f(x) dx = F(x) + c \quad (x \in I).$$

Az alapintegrálokat ebben a táblázatban soroltuk fel.

Tétel. (A határozatlan integrál linearitása) Legyen $I \subset \mathbb{R}$ nyílt intervallum. Ha az $f,g:I \to \mathbb{R}$ függvényeknek létezik primitív függvénye, akkor tetszőleges $\alpha, \beta \in \mathbb{R}$ mellett $(\alpha f + \beta g)$ -nek is létezik primitív függvénye és

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx \qquad (x \in I).$$

Tétel. (Az első helyettesítési szabály) Legyenek $I, J \subset \mathbb{R}$ nyílt intervallumok és $g: I \to \mathbb{R}$, $f: J \to \mathbb{R}$ függvények. Tegyük fel, hogy $g \in D(I)$, $\mathcal{R}_g \subset J$ és az f függvénynek van primitív függvénye. Ekkor az $(f \circ g) \cdot g'$ függvénynek is van primitív függvénye és

$$\int f(g(x)) \cdot g'(x) dx = F(g(x)) + c \qquad (x \in I),$$

ahol F az f függvény egy primitív függvénye.

Ennek speciális esetei

• $\int \frac{f'}{f}$ alakú integrálok: Ha $f: I \to \mathbb{R}, f > 0$ és $f \in D(I)$, akkor

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c \quad (x \in I)$$

• $\int f^{\alpha} \cdot f'$ alakú integrálok: Ha $f: I \to \mathbb{R}, f > 0, f \in D(I)$ és $\alpha \in \mathbb{R} \setminus \{-1\}$, akkor

$$\int f^{\alpha}(x)f'(x) dx = \frac{f^{\alpha+1}(x)}{\alpha+1} + c \quad (x \in I).$$

Ha $\alpha \in \mathbb{N}$, akkor az f > 0 feltétel nem szükséges.

 $\int f(ax+b) dx$ alakú integrálok (lineáris helyettesítés): Ha a $f:I \to \mathbb{R}$ függvénynek van egy $F:I\to\mathbb{R}$ primitív függvénye, $a,b\in\mathbb{R}$ és $a\neq 0$, akkor

$$\int f(ax+b) dx = \frac{F(ax+b)}{a} + c \quad (ax+b \in I).$$

Tétel. (A parciális integrálás szabálya) Legyen $I \subset \mathbb{R}$ nyílt intervallum. Tegyük fel, hogy $f, g \in D(I)$ és az f'g függvénynek létezik primitív függvénye I-n. Ekkor az fg' függvénynek is van primitív függvénye és

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \quad (x \in I).$$

2. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \frac{(x+1)^2}{x^3} dx \quad \left(x \in (0, +\infty)\right), \qquad b) \quad \int \operatorname{tg}^2 x dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right),$$

b)
$$\int \operatorname{tg}^2 x \, dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right)$$

c)
$$\int \frac{8x+14}{\sqrt[4]{(2x^2+7x+8)^5}} dx \quad (x \in \mathbb{R}), \qquad d) \quad \int \operatorname{tg} x \, dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right),$$

d)
$$\int \operatorname{tg} x \, dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right)$$

$$e)$$
 $\int \sin^2 x \quad (x \in \mathbb{R}),$

$$f) \quad \int x^2 \sin 2x \, dx \quad (x \in \mathbb{R}).$$

Megoldás. Az integrandusok "alkalmas" átalakítása után:

a) Elemi átalakítások után, ha $x \in (0, +\infty)$, akkor

$$\int \frac{(x+1)^2}{x^3} dx = \int \frac{x^2 + 2x + 1}{x^3} dx = \int \left(\frac{1}{x} + \frac{2}{x^2} + \frac{1}{x^3}\right) = \int \left(\frac{1}{x} + 2x^{-2} + x^{-3}\right) dx =$$

$$= \ln x + 2\frac{x^{-1}}{-1} + \frac{x^{-2}}{-2} + c = \ln x - \frac{2}{x} - \frac{1}{2x^2} + c.$$

b) Elemi átalakítások után, ha $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, akkor

$$\int tg^2 x \, dx = \int \frac{\sin^2 x}{\cos^2 x} \, dx = \int \frac{1 - \cos^2 x}{\cos^2 x} \, dx = \int \left(\frac{1}{\cos^2 x} - 1\right) \, dx = tg \, x - x + c.$$

4

c) Ha $x \in \mathbb{R}$, akkor

$$\int \frac{8x+14}{\sqrt[4]{(2x^2+7x+8)^5}} dx = 2\int (2x^2+7x+8)^{-5/4} (4x+7) dx = (f^{\alpha} \cdot f' \text{ típus}) =$$

$$= 2\frac{(2x^2+7x+8)^{-1/4}}{-1/4} + c = -\frac{8}{\sqrt[4]{2x^2+7x+8}} + c$$

d) Ha $x \in (-\pi/2, \pi/2)$, akkor

$$\int \operatorname{tg} x \, dx = \int \frac{\sin x}{\cos x} \, dx = \left(\frac{f'}{f} \operatorname{típus}\right) = -\int \frac{-\sin x}{\cos x} \, dx = -\ln \cos x + c.$$

e) A már ismert

$$\sin^2 x = \frac{1 - \cos 2x}{2} \quad (x \in \mathbb{R})$$

összefüggésből (azt mondjuk, hogy sin² x-et "linearizáltuk")

$$\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx = \frac{x}{2} - \frac{1}{2} \int \cos 2x \, dx = \left(\text{line\'aris helyettes\'it\'es} \right) =$$

$$= \frac{x}{2} - \frac{1}{2} \cdot \frac{\sin 2x}{2} + c = \frac{x}{2} - \frac{\sin 2x}{4} + c \quad (x \in \mathbb{R}).$$

f) Kétszer fogunk egymás után parciálisan integrálni.

$$\int x^2 \sin 2x \, dx = \int x^2 \left(\frac{-\cos 2x}{2}\right)' \, dx = x^2 \left(\frac{-\cos 2x}{2}\right) - \int 2x \left(\frac{-\cos 2x}{2}\right) \, dx =$$
$$= -\frac{x^2 \cos 2x}{2} + \int x \cos 2x \, dx.$$

Másrészt

$$\int x \cos 2x \, dx = \int x \left(\frac{\sin 2x}{2}\right)' \, dx = x \left(\frac{\sin 2x}{2}\right) - \int 1 \cdot \left(\frac{\sin 2x}{2}\right) \, dx =$$

$$= \frac{x \sin 2x}{2} - \frac{1}{2} \int \sin 2x \, dx = \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} + c$$

Összefoglalva

$$\int x^2 \sin 2x \, dx = -\frac{x^2 \cos 2x}{2} + \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} + c \quad (x \in \mathbb{R}).$$

Eml'e keztető. Tetszőleges $\frac{P}{Q}$ racionális törtfüggvény integrálását az teszi lehetővé, hogy minden ilyen tört felírható egy polinomnak és elemi törteknek (az ún. parciális törteknek) az összegeként.

1. lépés A polinom "leválasztása" (maradékos osztás).

Legyenek P és $Q \not\equiv 0$ polinomok. Ekkor egyértelműen léteznek olyan T és P^* polinomok, hogy a P^* polinom fokszáma kisebb, mint a Q polinom fokszáma, és

$$\frac{P(x)}{Q(x)} = T(x) + \frac{P^*(x)}{Q(x)} \qquad (x \in \mathcal{D}_Q).$$

A felbontást polinomosztással, de néhány esetben egyszerű átalakításokkal kaphatjuk meg.

2. lépés. A nevező szorzatra bontása.

A nevezőben levő Q polinomot (ameddig csak lehet) valós együtthatós polinomok szorzatára bontjuk. A felbontásban csak elsőfokú tényezők, illetve olyan másodfokú tényezők szerepelhetnek, amelyeknek nincsenek valós gyökei.

3. lépés. Alkalmazzuk az elemi törtek összegére bontásának a módszerét.

Itt már csak olyan $\frac{P}{Q}$ alakú törteket tekintünk, amelyeknél a számláló fokszáma kisebb, mint a nevező fokszáma, és sikerült Q szorzatrabontását elvégezni, azaz túl vagyunk az első két lépésen. Az ilyen törtek a nevezőtől függően elemi törtek összegére bonthatók. A felbontást határozatlan együtthatókkal keressük.

Tétel. (A második helyettesítési szabály) Legyenek $I, J \subset \mathbb{R}$ nyílt intervallumok. Tegyük fel, hogy $f: I \to \mathbb{R}$, $g: J \to I$, $\mathcal{R}_g = I$, $g \in D(J)$, g' > 0 J-n (vagy g' < 0 J-n) és az $(f \circ g) \cdot g': J \to \mathbb{R}$ függvénynek van primitív függvénye. Ekkor az f függvénynek is van primitív függvénye és

$$\int f(x) dx = \int_{x=g(t)} \int f(g(t)) \cdot g'(t) dt \Big|_{t=g^{-1}(x)} \qquad (x \in I).$$

3. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \frac{x^3 + x^2 - x + 3}{x^2 - 1} dx$$
 $(x \in (-1, 1)),$ b) $\int \frac{1}{e^{2x} + 4} dx$ $(x \in \mathbb{R}).$

Megoldás.

a) A számláló fokszáma **nagyobb**, mint a nevező fokszáma, ezért először maradékos osztást kell végeznünk:

(*)
$$\frac{x^3 + x^2 - x + 3}{x^2 - 1} = \frac{x(x^2 - 1) + (x^2 - 1) + 4}{x^2 - 1} = x + 1 + \frac{4}{x^2 - 1}.$$

A fennmaradó törtet parciális törtekre bontjuk:

$$\frac{4}{x^2 - 1} = \frac{4}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1} = \frac{A(x + 1) + B(x - 1)}{(x - 1)(x + 1)}.$$

A bal és jobb oldali tört számlálója megegyezik minden $x \in \mathbb{R}$ esetén.

Ha x = 1, akkor $4 = A \cdot 2 + B \cdot 0 \implies A = 2$.

Ha x = -1, akkor $4 = A \cdot 0 + B \cdot (-2)$ \Longrightarrow B = -2.

Ezért

$$\frac{4}{x^2 - 1} = \frac{2}{x - 1} - \frac{2}{x + 1}.$$

(*) és (**) alapján azt kapjuk, hogy ha -1 < x < 1, akkor

$$\int \frac{x^3 + x^2 - x + 3}{x^2 - 1} dx = \int \left(x + 1 + \frac{2}{x - 1} - \frac{2}{x + 1} \right) dx =$$

$$= \frac{x^2}{2} + x + 2\ln(1 - x) - 2\ln(x + 1) + c = \frac{x^2}{2} + x + \ln\left(\frac{1 - x}{x + 1}\right)^2 + c.$$

b) Alkalmazzuk a $t = e^x$ helyettesítést. Ekkor

$$x = \ln t =: g(t).$$

Mivel $x \in \mathbb{R}$, ezért $\mathcal{R}_g = \mathbb{R}$, következésképpen $\mathcal{D}_g = (0, +\infty)$. A g függvény deriválható, és

$$g'(t) = \frac{1}{t} > 0 \quad (\forall t \in (0, +\infty))$$

alapján g szigorúan monoton növekvő, következésképpen invertálható és

$$q^{-1}(x) = e^x = t \quad (x \in \mathbb{R}).$$

A második helyettesítési szabályt alkalmazva azt kapjuk, hogy

$$\int \frac{1}{e^{2x} + 4} \, dx = \int \frac{1}{t^2 + 4} \cdot \frac{1}{t} \, dt = \int \frac{1}{t(t^2 + 4)} \, dt.$$

Parciális törtekre bontással, közös nevezőre hozással és átrendezéssel:

$$\frac{1}{t(t^2+4)} = \frac{A}{t} + \frac{Bt+C}{t^2+4} = \frac{(A+B)t^2+Ct+4A}{t(t^2+4)}.$$

Az együtthatók egyenlőségéből azt kapjuk, hogy $C=0,\,A=1/4$ és $A+B=0,\,$ azaz B=-1/4. Ezért, ha $x>0,\,$ akkor

$$\int \frac{1}{t(t^2+4)} dx = \frac{1}{4} \int \frac{1}{t} dx - \frac{1}{4} \int \frac{t}{t^2+4} dx = \frac{1}{4} \int \frac{1}{x} dx - \frac{1}{8} \int \frac{2t}{t^2+4} dx = \frac{1}{4} \ln t - \frac{1}{8} \ln(t^2+4) + c.$$

Ezért

$$\int \frac{1}{e^{2x} + 4} dx = \frac{1}{4} \ln t - \frac{1}{8} \ln(t^2 + 4) + c \Big|_{t=c^x} = \frac{x}{4} - \frac{\ln(e^{2x} + 4)}{8} + c.$$

Egyváltozós valós értékű függvények határozott integrálja

Emlékeztető. Tétel. (Newton-Leibniz-formula) Tegyük fel, hogy

- $f \in R[a,b]$ és
- az f függvénynek van primitív függvénye az [a, b] intervallumon.

Ekkor

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) =: \left[F(x) \right]_{a}^{b},$$

ahol F az f függvény egy primitív függvénye.

4. Feladat. Számítsuk ki az

$$\int_{10}^{66} \frac{1}{x - \sqrt[3]{x - 2} - 2} \, dx$$

határozott integrált!

Megoldás. A $t = \sqrt[3]{x-2}$ helyettesítést alkalmazzuk:

$$t = \sqrt[3]{x-2} \quad (10 < x < 66) \quad \Longrightarrow \quad x = t^3 + 2 =: g(t) \quad (2 < t < 4) \quad \Longrightarrow$$

$$\Longrightarrow \quad g'(t) = 3t^2 > 0 \quad (2 < t < 4) \quad \Longrightarrow \quad g \uparrow \quad (2,4) \text{-en} \quad \Longrightarrow \quad \exists g^{-1}.$$

A második helyettesítési szabály alapján, ha 10 < x < 66, akkor

$$\int_{10}^{66} \frac{1}{x - \sqrt[3]{x - 2} - 2} dx = \int_{2}^{4} \frac{1}{t^3 + 2 - t - 2} \cdot 3t^2 dt = \frac{3}{2} \cdot \int_{2}^{4} \frac{2t}{t^2 - 1} dt = (f'/f) \text{ típus} = \frac{3}{2} \cdot \left[\ln(t^2 - 1) \right]_{2}^{4} = \frac{3}{2} \cdot \left(\ln 15 - \ln 3 \right) = \frac{3}{2} \cdot \ln 5.$$

Emlékeztető. Két $f, g : [a, b] \to \mathbb{R}$ korlátos és Riemann-integrálható függvény esetében, ha $g(x) \le f(x)$ minden $x \in [a, b]$ esetén, akkor a függvények az x = a és x = b egyenesekkel által közrezárt

$$B = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ g(x) \le y \le f(x)\}$$

síkidom területét a

$$T(B) = \int_{a}^{b} (f(x) - g(x)) dx$$

határozott integrállal értelmezzük.

5. Feladat. Számítsa ki az

$$y = \frac{1}{9+x^2}, \quad y = \frac{2x^2-17}{18} \qquad (x \in \mathbb{R})$$

egyenletű görbék által közrezárt korlátos síkidom területét!

Megoldás. A szóban forgó síkidom meghatározásához először meg kell keresnünk a görbék metszéspontjait. Ehhez szükséges megoldani a

$$\frac{1}{9+x^2} = \frac{2x^2 - 17}{18}$$

egyenletet. A $t := x^2$ helyettesítéssel:

$$\frac{1}{9+t} = \frac{2t-17}{18} \implies 18 = (2t-17)(9+t) = 2t^2 + t - 153 \implies$$

$$\implies 2t^2 + t - 171 = 0 \implies t_{1,2} = \frac{-1 \pm \sqrt{1369}}{4} = \frac{-1 \pm 37}{4} \implies t_1 = -\frac{38}{4}, \ t_2 = 9.$$

Ebből csak az $x^2 = t = 9$ lehetséges, amiből x = -3 és x = 3 adódik. Az előző eredmények alapján a síkidom

$$B := \left\{ (x, y) \in \mathbb{R}^2 \mid -3 \le x \le 3, \ \frac{2x^2 - 17}{18} \le y \le \frac{1}{9 + x^2} \right\},\,$$

ami az alábbi ábrán látható.

Ekkor

$$T(B) = \int_{-3}^{3} \left(\frac{1}{9 + x^2} - \frac{2x^2 - 17}{18} \right) dx = \int_{-3}^{3} \left(\frac{1}{9} \cdot \frac{1}{1 + \frac{x^2}{9}} - \frac{2x^2}{18} + \frac{17}{18} \right) dx =$$

$$\int_{-3}^{3} \left(\frac{1}{9} \cdot \frac{1}{1 + \left(\frac{x}{3} \right)^2} - \frac{x^2}{9} + \frac{17}{18} \right) dx = \left[\frac{1}{9} \cdot \frac{\arctan \operatorname{tg} \frac{x}{3}}{1/3} - \frac{x^3}{27} + \frac{17}{18} x \right]_{-3}^{3} =$$

$$= \left[\frac{1}{3} \arctan \operatorname{tg} \frac{x}{3} - \frac{x^3}{27} + \frac{17}{18} x \right]_{-3}^{3} = \left(\frac{1}{3} \arctan \operatorname{tg} 1 - 1 + \frac{17}{6} \right) - \left(\frac{1}{3} \arctan \operatorname{tg} (-1) + 1 - \frac{17}{6} \right) =$$

$$= \frac{2}{3} \arctan \operatorname{tg} 1 - 2 + \frac{17}{3} = \frac{2}{3} \cdot \frac{\pi}{4} + \frac{11}{3} = \frac{\pi}{6} + \frac{11}{3}.$$

Improprius integrálok

 $\pmb{Eml\'e keztet\~o}$. Legyen $-\infty \le a < b < +\infty$ és $f:(a,b] \to \mathbb{R}$. Tegyük fel, hogy $f \in R[x,b]$ minden $x \in (a,b)$ esetén. Vezessük be a

$$G(x) := \int_{x}^{b} f(t) dt \qquad (x \in (a, b))$$

függvényt. Azt mondjuk, hogy az f függvény impropriusan integrálható, ha $\exists \lim_a G \in \mathbb{R}$ véges határérték. Ekkor az

$$\int_{a}^{b} f := \lim_{x \to a} G(x)$$

számot az f improprius integráljának nevezzük.

Ha $f \in R[a, b]$, akkor az improprius integrál megegyezik a szokásos határozott integrállal.

Analóg módon értelmezhető $-\infty < a < b \le +\infty$ esetén az $f:[a,b) \to \mathbb{R}$ függvény improprius integrálja az

$$\int_{a}^{b} f := \lim_{x \to b} G(x), \qquad G(x) := \int_{a}^{x} f(t) dt \qquad (x \in (a, b))$$

összefüggéssel.

Legyen $-\infty \le a < b \le +\infty$ és $f:(a,b) \to \mathbb{R}$. Tegyük fel, hogy $f \in R[x,y]$ minden a < x < y < b esetén. Azt mondjuk, hogy az f függvény **impropriusan integrálható**, ha minden $c \in (a,b)$ esetén $f_{|(a,c]}$ és $f_{|[c,b)|}$ impropriusan integrálható. Ekkor

$$\int_{a}^{b} f := \int_{a}^{c} f + \int_{a}^{b} f.$$

Nem nehéz meggondolni, hogy a c értéke nem befolyásolja az $\int_a^b f$ eredményét.

6. Feladat. Számítsuk ki az alábbi improprius integrálokat!

a)
$$\int_{0}^{+\infty} xe^{-2x} dx$$
, b) $\int_{0}^{2} \frac{1}{\sqrt{x(2-x)}} dx$.

Megold'as.

a) Parciális integrálással

$$\int xe^{-2x} dx = \int x \cdot \left(\frac{e^{-2x}}{-2}\right)' dx = x \cdot \left(\frac{e^{-2x}}{-2}\right) - \int (x)' \cdot \left(\frac{e^{-2x}}{-2}\right) dx =$$

$$= -\frac{xe^{-2x}}{2} + \frac{1}{2} \int e^{-2x} dx = -\frac{xe^{-2x}}{2} - \frac{e^{-2x}}{4} + c \qquad (x \in \mathbb{R}).$$

Ezért

$$\int_{0}^{+\infty} xe^{-2x} dx = \lim_{t \to +\infty} \int_{0}^{t} xe^{-2x} dx = \lim_{t \to +\infty} \left[-\frac{xe^{-2x}}{2} - \frac{e^{-2x}}{4} \right]_{0}^{t} =$$

$$= -\lim_{t \to +\infty} \left(\frac{t}{2e^{2t}} + \frac{1}{4e^{2t}} - \left(\frac{1}{4} \right) \right) = \frac{1}{4},$$

hiszen

$$\lim_{t\to +\infty}\frac{t}{2e^{2t}}=\left(\frac{+\infty}{+\infty}\right)^{\text{L'Hospital}}\lim_{t\to +\infty}\frac{1}{4e^{2t}}=\frac{1}{+\infty}=0.$$

b) Ha 0 < x < 2. akkor

$$\int \frac{1}{\sqrt{x(2-x)}} dx = \int \frac{1}{\sqrt{1-(x-1)^2}} dx = \arcsin(x-1) + c.$$

Ezért

$$\int_{0}^{1} \frac{1}{\sqrt{x(2-x)}} dx = \lim_{t \to 0+0} \int_{t}^{1} \frac{1}{\sqrt{x(2-x)}} dx = \lim_{t \to 0+0} \left[\arcsin(x-1) \right]_{t}^{1} = \lim_{t \to 0+0} \left(0 - \arcsin(t-1) \right) = \frac{\pi}{2},$$

$$\int_{1}^{2} \frac{1}{\sqrt{x(2-x)}} dx = \lim_{t \to 2-0} \int_{1}^{t} \frac{1}{\sqrt{x(2-x)}} dx = \lim_{t \to 2-0} \left[\arcsin(x-1) \right]_{1}^{t} = \lim_{t \to 2-0} \left(\arcsin(t-1) - 0 \right) = \frac{\pi}{2}.$$

Így

$$\int_{0}^{2} \frac{1}{\sqrt{x(2-x)}} dx = \int_{0}^{1} \frac{1}{\sqrt{x(2-x)}} dx + \int_{1}^{2} \frac{1}{\sqrt{x(2-x)}} dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

10