FACULTAD:	UAI-ONLINE					
CARRERA:	Analista Programador a Distancia					
ALUMNO/A:	Franco Fernandez Sica					
SEDE:	Online		LOCALIZACIÓN:	OnLine		
ASIGNATURA:	Tecnologia de las Comunicaciones					
CURSO:	2K		TURNO:	On Line		
PROFESOR:	Ing. Semeria		FECHA:	15 julio 2023		
TIEMPO DE RESOLUCIÓN:		Del 15/7 9hs	EXAMEN Parcial	2do		
		Al 15/7 21hs				
MODALIDAD DE RESOLUCIÓN:			Virtual / Escrito / Inividual			

RESULTADOS DE APRENDIZAJE: RA1: [Analiza]+ [las Redes de Comunicaciones de datos] +[para aplicar los conceptos básicos de los modelos de referencia en búsqueda de soluciones creativas] + [Utilizando las normas del IEEE / ANSI

Las respuestas no numéricas **DEBEN SER CONCISAS**. Responda SOLO lo preguntado.

Sea **MUY PROLIJO**, la desprolijidad puede hacer fracasar su examen. recuadre los resultados numéricos

Se aprueba con 3,5 puntos sobre un total de 6. En ese caso la nota es 4

Suban su examen en un UNICO PDF, NO ZIP.

Por dudas en los enunciados marcelo.semeria@uai.edu.ar

Cada punto vale

- 1 bien contestado
- 0.5 con un error menor no conceptual
- 0 con un error conceptual o falta de respuesta.
- No se restan puntos por preguntas mal contestadas

NO ESPERE A ULTIMO MINUTO PARA SUBIR A ULTRA SU EXAMEN

Cuando responda NO elimine este encabezado ni modifique los enunciados dados

1. Sean dos estaciones separadas **600 km** que se comunican mediante **parar y esperar** via radio usando tramas de **1000 bit**. ¿Cual debería ser la velocidad de transmisión si se busca un rendimiento de **aprox 40%?**

Desarrolle prolijamente y pegue una foto con su respuesta.

1	04			_
RENDIMIENTO =	40% =	0,4		_
TRAMA = 1000 b	167			_
DISTANCIA = 60				_
VELOCIDAD = ?		-D TRANS	MISION	_
VELOCIO 40 = 30	0.000	km/c -1	PROPAGACION	_
2600000 - 1.2	00 KM	→ 10#	+ L LOFTY	_
TIEMPO = 1.2001	<m =<="" td=""><td>300.000</td><td>M/s</td><td>_</td></m>	300.000	M/s	_
TIEMPO = 0,000	segundo	s = 4 mili	seg undo	_
RENDIMIGNED = A				<u></u>
(A+	B)			
				_
0,4 = X = x:A:	- 2,6	6, ms		_
(x + 4)				
				_
Thrule		Hellin.		_
A M				
2,66 + 4				_
	2,0	56 _{ms}	1000	ы
		00/101	· /	
	-10			<u> </u>
ovtonC		375,9	39 bims - 0,376	5
aytonGro	up	www.ba	aytongroup.cor	n

2. **300 estaciones ALOHA puro** comparten un canal. ¿Cual deberá ser la capacidad de ese canal para que en promedio el sistema funcione adecuadamente si cada estacion transmite a **1000bps**?

Desarrolle prolijamente y pegue una foto con su respuesta.

2
ALVERT TELEVISION OF THE PARTY
TAJA DE TRAUSMICION : N ESTA CION ES X TASA DE TEMPS
300 x 1000 bps - 300 000 bps
ALOHA RENDIMIENTO MÁXIMO PURO = 18%
CAPACIDAD MINIMA = 300.000 bys =
1,666,666 bps = 1,66 Mbps

3. Nos llega el mensaje m = **1000110110111.** ¿Cuál será el mensaje efectivamente transmitido luego de agregar las redundancias de según el método de HAMMING para corregir 1 bit?

Desarrolle prolijamente y pegue una foto con su respuesta.

	bits - TAMAÑ	ОМ
R	M +R +1	€ 2 「
1 1	16	2
2	柳族 1 7	CANT REDUNDANCE
3	18	8
4	19	16 M+ 0= 19 61ts
	20	32
The No.		() () () () () () () () () ()
	1 0 0	0 1 10 11 00 11
1 5	THE RESIDENCE TO SELECT A SECOND SECO	7 16
+	Bit	S OF CONTROL
	991	0 10 1 1- 14
	40 (4 8)	9 8,1 17 16,
2 1	n 2	10 8,2 18 16,
3 1	, 2	11 9,2,2 19 16,
4/1	1.	12 8 4
5 0	LT ALL MARKET	13 8 9,1
6 4	1, 2	14 8,4,2
WINTERSON CONTRACTOR		15 8,4,2,1

4. ¿En qué tipo de red (LAN, WAN, MAN, PAM) aplicaría el método Hamming y donde CRC?. ¿Explique Por qué?

El método **Hamming** se utiliza principalmente en redes de área local (LAN) y redes de almacenamiento de datos. Como hemos visto, este método se emplea para la detección y corrección de errores en la transmisión de datos. El objetivo del código de Hamming es detectar errores de bit y corregirlos siempre que sea posible. Al utilizarlo, es posible detectar y corregir errores de un solo bit en los datos transmitidos. Y esto resulta una ventaja en una LAN, donde se busca una comunicación rápida y confiable entre dispositivos conectados en un área geográfica limitada. En definitiva, este método es importante para detectar y corregir errores en los datos transmitidos garantizando la integridad y exactitud de la información.

El CRC, por otro lado, se utiliza comúnmente en redes de área amplia (WAN) y enlaces de comunicación de datos de largo alcance. Como vimos, es un método de detección de errores que utiliza un algoritmo matemático para calcular un valor de verificación que se adjunta a los datos transmitidos. En una WAN, donde los datos pueden viajar a través de largas distancias y diferentes medios de transmisión, como cables de fibra óptica o enlaces de radio, es más probable que se produzcan errores en la transmisión debido al ruido, la atenuación o las interferencias. En definitiva, este método permite detectar estos errores en los datos recibidos y, si se detecta un error, se solicita una retransmisión de los datos afectados.

5. Repetición selectiva retransmite solo la trama con problemas con lo cual evita cargar la red con tramas exitosas ya recibidas. ¿Porque entonces se utiliza mas volver a N? Explique

A diferencia de repetición selectiva, volver a N es un enfoque más simple en el que el receptor descarta todas las tramas recibidas después de una trama errónea y solicita la retransmisión de todas las tramas a partir de la trama errónea. Esto implica que se vuelvan a transmitir no solo las tramas con problemas, sino también las tramas que se han recibido correctamente. La razón principal por la que se utiliza más es su simplicidad y facilidad de implementación. Volver a N solo requiere un temporizador en el receptor para detectar pérdidas de tramas y un buffer limitado para almacenar las tramas recibidas. Esto hace que sea más fácil de implementar en sistemas con recursos limitados o en situaciones donde la complejidad del control de errores no es crítica.

6. ¿Cuánto espacio medido en metros ocupa una trama de 100 000 bits que viaje sobre una onda de radio si el transmisor es de 10Mbps?

6	
TDAM A = 100,000 B	ios
TOANSMISDE = 10Mbp	5
	10N= 300.000 KH/S
10 Mbps - 10.000	-000 Bps
TIEMPO DE TRANSMIC	CION - TAMANO TRAMA
	VELO CLOAD TRANS
- 100.000bits -	0.015 = 10ms
10.000.000 Bps	
ESPACIO - VELOCIO	AOX TIEMPO
= 300,000 km/s x	0,015
= 3.000 km = 3.0	00.000M

Desarrolle prolijamente y pegue una foto con su respuesta.