

BAHRIA UNIVERSITY (KARACHI CAMPUS)

Computing Fundamentals (CSC - 110)

Assignment 02 Fall 2022

Shift: Morning

Class: BSE 1B [CLO-3]

Course Instructor: ENGR. MAHAWISH Submission: 2 Dec 2022

Date: 26 Nov 2022 Marks: 05 Points

Student Name: ABDULLAH Registration #: 02131222099

Question no. 01 [5 Marks]

Perform the following logical operations justify through truth tables and draw circuit diagrams.

• (A AND B)

• NOT (A XOR B)

• NOT(A) OR NOT(B)

• C XOR (A OR B)

• {(A NAND B) XNOR (C AND D)}

Solution:

• (A AND B):

Truth Table:

Input A	Input B	Output A AND B
0	0	0
1	0	0
0	1	0
1	1	1

Circuit Diagram:

• NOT (A XOR B):

For A XOR B

Truth Table:

Input A	Input B	Output A XOR B
0	0	0
1	0	1
0	1	1
1	1	0

Circuit Diagram:

Now For NOT (A XOR B)

Truth Table:

Input (A XOR B)	Output NOT (A XOR B)
0	1
1	0
1	0
0	1

Circuit Diagram:

• NOT(A) OR NOT(B):

For NOT (A)

Truth Table:

Input (A)	Output NOT (A)
0	1
1	0

Circuit Diagram:

For NOT (B)

Truth Table:

Input (B)	Output NOT (B)
0	1
1	0

Circuit Diagram:

For NOT (A) OR NOT (B)

Truth Table:

Input NOT (A)	Input NOT (B)	Output NOT (A) OR NOT (B)
1	1	1
0	0	0

Circuit Diagram:

• C XOR (A OR B):

For (A OR B)

Truth Table:

Input A	Input B	Output A OR B
0	0	0
1	0	1
0	1	1
1	1	1

Circuit Diagram:

For C XOR (A OR B)

Truth Table:

Input (A OR B)	Input C	Output CXOR (A OR B)
0	0	0
1	1	0
1	0	1

Circuit Diagram:

• {(A NAND B) XNOR (C AND D)}:

For (A NAND B)

Truth Table:

Input A	Input B	Output A NAND B
0	0	1
1	0	1
0	1	1
1	1	0

Circuit Diagram:

For (C AND D)

Truth Table:

Input C	Input D	Output C AND D
0	0	0
1	0	0
0	1	0
1	1	1

Circuit Diagram:

For {(A NAND B) XNOR (C AND D)}

Truth Table:

Input (A NAND B)	Input (C AND D)	Output {(A NAND B) XNOR (C AND D)}
1	0	0
1	0	0
1	0	0
0	1	0

Circuit Diagram:

