Delaunay Triangulation Spanner Notes Simon Pratt March 20, 2013

Dobkin's Results

The Delaunay triangulation of a set of points in the plane is a spanner with spanning ratio $c \leq ((1+\sqrt{5})/2)\pi \approx 5.08$. This was proven in the paper "Delaunay Graphs Are Almost as Good as Complete Graphs" by Dobkin, Friedman, and Supowit ¹ ².

Introduction

Let S be a set of points in the plane and DT(S) be the edges of the Delaunay triangulation of S.

We consider the path between two arbitray points $a, b \in S$. Let the line connecting a, b be the *direct line*. We construct a path along the Delaunay edges by

- ¹ David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are almost as good as complete graphs. In *Proceedings of the 28th Annual Symposium on Foundations of Computer Science*, SFCS '87, pages 20–26, Washington, DC, USA, 1987. IEEE Computer Society
- ² David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are almost as good as complete graphs. *Discrete Comput. Geom.*, 5(4):399–407, May 1990

One-Sided Path: The Easy Case

If all edges along the direct DT path between points $a, b \in S$ are either all above or all below the direct line, we say that this is a one-sided path.

Lemma 1. Points along a direct DT path are monotonic in x.

Lemma 2. All points along the direct DT path from a to b are contained within or on the boundary of the circle with a and b diametrically opposed. **Lemma 3.** The boundary of a connected union of circles has boundary at most $\pi \cdot (x_r - x_l)$ where x_r and x_l are the extreme x coordinates of any of the circles.

From these lemmas, it follows that the one-sided path is at most $\pi/2$ times as long as the euclidean distance between the endpoints.

The Harder Case

The direct DT path may cross the direct line $\Omega(n)$ times, which can yield a much longer path.

Keil's Results

TODO

References

- [1] David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are almost as good as complete graphs. In *Proceedings of the 28th Annual Symposium on Foundations of Computer Science*, SFCS '87, pages 20–26, Washington, DC, USA, 1987. IEEE Computer Society.
- [2] David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are almost as good as complete graphs. *Discrete Comput. Geom.*, 5(4):399–407, May 1990.