TRANSFORMASI LINEAR

TUJUAN INSTRUKSIONAL KHUSUS:

- 1. Mengetahui definisi dan contoh-contoh transformasi linear.
- 2. Menggunakan definisi transformasi linear untuk memeriksa suatu fungsi merupakan suatu transformasi linear atau bukan.
- 3. Mengkaji sifat-sifat transformasi linear.
- 4. Menggunakan definisi ruang kernel dan range untuk menentukan basis dari suatu matriks transformasi
- 5. Menghitung dimensi dari matriks transformasi
- 6. Mengkaji sifat dari matriks transformasi, matriks standar pada operator linear
- 7. Menghitung matriks transisi *P* untuk menentukan matriks transformasi pada suatu basis *B'*

Materi

5.1 Transformasi Linear

Definisi 5.1

Suatu fungsi yang memetakan suatu vektor di ruang vektor V ke ruang vektor W

(dituliskan $T: V \to W$) disebut sebagai *transformasi linear* bila $\forall \overline{u,v} \in V$ dan α skalar berlaku

1.
$$T(\bar{u} + \bar{v}) = T(\bar{u}) + T(\bar{v})$$

2.
$$T(\alpha u) = \alpha T(u)$$

Jika V=W maka transformasi $T:V\to V$ disebut suatu operator linear pada V.

Transformasi $T: V \to W$ dengan $T(u) = \overline{0}$ disebut $transformasi \ nol.$

Transformasi $T_A:V\to W$ dengan $T(\overline{u})=A\overline{u}$ disebut *transformasi matriks*, sedangkan A disebut matriks transformasi.

Transformasi $I: V \to V$ dengan $I(\overline{u}) = \overline{u}$ disebut operator identitas pada V.

Contoh 5.1

Diketahui
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 dengan $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_1 \\ x_2 \end{pmatrix}$. Periksalah apakah T adalah transformasi

linear?

Penyelesaian:

Ambil
$$\overline{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \overline{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in R^2 \text{ sembarang}$$

a.
$$u + v = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix}$$
 maka

$$T(\overline{u} + \overline{v}) = T\left(\begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix}\right) = \begin{pmatrix} (u_1 + v_1) - (u_2 + v_2) \\ u_1 + v_1 \\ u_2 + v_2 \end{pmatrix} = \begin{pmatrix} u_1 - u_2 \\ u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} v_1 - v_2 \\ v_1 \\ v_2 \end{pmatrix} = T(\overline{u}) + T(\overline{v})$$

b. Ambil $\overline{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in R^2$, α suatu skalar sembarang sehingga

$$T(\alpha u) = T\left(\begin{pmatrix} \alpha u_1 \\ \alpha u_2 \end{pmatrix}\right) = \begin{pmatrix} \alpha u_1 - \alpha u_2 \\ \alpha u_1 \\ \alpha u_2 \end{pmatrix} = \begin{pmatrix} \alpha (u_1 - u_2) \\ \alpha u_1 \\ \alpha u_2 \end{pmatrix} = \alpha \begin{pmatrix} u_1 - u_2 \\ u_1 \\ u_2 \end{pmatrix} = \alpha T(u)$$

Jadi dari a) dan b) terbukti bahwa $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_1 \\ x_2 \end{pmatrix}$ adalah transformasi linear.

Contoh 5.2

Diketahui $T: \mathbb{R}^2 \to \mathbb{R}^3$ dengan $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ x_1^2 \\ x_2^2 \end{pmatrix}$. Periksalah apakah T adalah transformasi

linear?

Penyelesaian:

Untuk sebarang $\overline{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in R^2$ dan sebarang α skalar diperoleh

$$T(\alpha u) = \begin{pmatrix} 2 \cdot \alpha u_1 \\ (\alpha u_1)^2 \\ (\alpha u_2)^2 \end{pmatrix} \neq \alpha . T(u) = \alpha . \begin{pmatrix} 2u_1 \\ u_1^2 \\ u_2^2 \end{pmatrix}$$

Sehingga $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ x_1^2 \\ x_2^2 \end{pmatrix}$ bukan merupakan transformasi linear.

∠ Latihan 5.1

Periksa apakah $T: \mathbb{R}^3 \to P_2$ dengan $T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = (abc) + (a+b)x + (a+c)x^2$ merupakan suatu

transformasi linear

Berikut ini adalah sifat-sifat transformasi linear

Teorema 5.1

Jika $T: V \to W$ adalah suatu transformasi linear, maka:

a.
$$T(\bar{0}) = 0$$

b.
$$T(-\bar{v}) = -T(\bar{v})$$

c.
$$T(\bar{v} - \bar{w}) = T(\bar{v}) - T(\bar{w})$$

5.2 Kernel dan Range

Definisi 5.2

Misalkan T transformasi linear $T: V \to W$ dengan $T(u), u \in V$.

Kernel dari T (dinotasikan Ker(T)) adalah $\left\{\overline{u}\in V\,\middle|\,T(\overline{u})=\overline{0}\right\}$. Ker(T) disebut ruang nol dari T. Range dari T (dinotasikan R(T)) adalah $\left\{\overline{b}\in V\,\middle|\,b=T(\overline{u}),$ untuk suatu $\overline{u}\in W\right\}$. R(T) disebut juga dengan bayangan \overline{u} oleh $T(\overline{u})$.

Definisi 5.3

Jika $T:V\to W$ adalah suatu transformasi linear, Ker(T) dan R(T) membentuk suatu subruang. Dimensi daerah hasil dari T dinyatakan sebagai rank dari T (notasi : rank(T)) dan dimensi dari T dinyatakan nullitas dari T (notasi:nullitas(T)).

Teorema 5.2

Jika A adalah suatu matriks transformasi mxn dan $T_A\colon R^n\to R^m$ adalah transformasi matriks maka :

- a. $Nullitas(T_A) = Nullitas(A)$
- b. $Rank((T_A) = Rank(A)$
- c. Rank((T_A) + Nullitas(T_A)=n

Contoh 5.3

Tentukan basis dan dimensi dari $Ker(T_{\scriptscriptstyle A})\,\mathrm{dan}\ R(T_{\scriptscriptstyle A})\,\mathrm{dari}\ \mathrm{transformasi}\ \mathrm{linear}\ T_{\scriptscriptstyle A}:R^3\to R^2$

$$\operatorname{dengan} \ T_{\scriptscriptstyle A}(\overset{-}{u}) = \overset{-}{Au} \text{ , dengan } \overset{-}{u} \in R^3 \operatorname{dan} \ A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix}$$

Penyelesaian:

a. Kernel

 $Ker(T_{\scriptscriptstyle A})$ adalah ruang nol dari $T_{\scriptscriptstyle A}(\overline{u})=A\overline{u}=\overline{0}\,$ maka

$$\begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{sehingga } \overline{u} = \begin{pmatrix} t - 2s \\ t \\ s \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} t + \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} s$$

$$\text{Jadi basis } Ker(T_A) = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\} \text{dan Rank}((T_A) = \dim Ker(T_A) = 2$$

b. Range

 $R(T_{\!\scriptscriptstyle A})$ merupakan himpunan dari \bar{b} dengan $A\bar{u}=b$ maka $R(T_{\!\scriptscriptstyle A})$ adalah ruang kolom dari

$$A$$
. Sehingga basis dari $R(T_A)$ adalah $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ dan Nullitas (T_A) = dim $R(T_A)=1$.

≤ Latihan 5.2

- 1. Tentukan Nullitas (T) berdasarkan informasi berikut ini
 - a. $T: \mathbb{R}^5 \to \mathbb{R}^7$ punya rank (T) =3
 - b. $T: P_4 \rightarrow P_3$ punya rank(T) =1
 - c. Daerah hasil dari $T: \mathbb{R}^6 \to \mathbb{R}^3$ adalah \mathbb{R}^2
- 2. Diketahui transformasi matriks $T_A: R^4 \to R^3$ memiliki matriks transformasi

$$A = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 2 & 1 & 1 \\ 0 & 2 & 3 & -3 \end{pmatrix}$$
. Tentukan basis dan dimensi dari $Ker(T_A)$ dan $R(T_A)$.

3. Anggap $T: \mathbb{R}^2 \to \mathbb{R}^2$ adalah operator linear yang ditentukan dari

$$T(x,y) = (2x - y, -8x + 4y)$$

- a. Tentukan basis dari ruang Kernel dan ruang Rangenya
- b. Periksa apakah vektor (5,0) dan vektor (-3,12) berada pada R(T)
- c. Periksa apakah vektor (3,2) dan vektor (5,10) berada pada Ker(T)

5.3 Matriks Transformasi

Definisi 5.4

Diketahui ruang V,W dengan dimensi ruang vektor berturut-turut n dan m dan transformasi linear $T\colon V\to W$ dengan fungsi $T(\bar x),\, \bar x\in V$. Jika B merupakan basis V, dan B adalah basis dari W. Jika A adalah matriks standar maka $\forall \bar x\in V$ dapat ditentukan dengan

$$A[\bar{x}]_B = [T(\bar{x})]_{B'}$$

A disebut matriks untuk T berkenaan dengan basis B dan B'

A matriks transformasi yang memetakan R^n ke R^m

$$R^n \longrightarrow R^m$$

Diasumsikan $B=\{\overline{u_1},\overline{u_2},...,\overline{u_n}\}$ adalah basis pada ruang V dan $B'=\{\overline{v_1},\overline{v_2},...,\overline{v_m}\}$ adalah basis pada ruang W, maka untuk mengkonstruksi matriks A dapat diperoleh dengan cara mentransformasi basis-basis di B lalu menentukan koordinat vektor dari setiap hasil transformasi matriks terhadap basis-basis B'. Dapat dituliskan

$$A = \left(\left[T(\overline{u_1}) \right]_{R'} \vdots \left[T(\overline{u_2}) \right]_{R'} \vdots \dots \vdots \left[T(\overline{u_n}) \right]_{R'} \right) \text{ atau } \left[T \right]_{R',B} = \left(\left[T(\overline{u_1}) \right]_{R'} \vdots \left[T(\overline{u_2}) \right]_{R'} \vdots \dots \vdots \left[T(\overline{u_n}) \right]_{R'} \right)$$

Sehingga $A[\bar{x}]_B = [T(\bar{x})]_{B'}$ dapat dituliskan menjadi $[T]_{B',B}[\bar{x}]_B = [T(\bar{x})]_{B'}$.

Notasi $[T]_{B',B}$ subscript kanan adalah suatu basis untuk daerah asal T, sedangkan subscript kiri adalah suatu basis untuk ruang bayangan dari T. Jadi untuk notasi $[T]_{B',B}$ basis dari daerah asal adalah B dan basis untuk ruang bayangan adalah B'.

Jika V=W maka B=B' persamaan $[T]_{B',B}[\bar{x}]_B=[T(\bar{x})]_{B'}$ dapat dituliskan menjadi $[T]_B[\bar{x}]_B=[T(\bar{x})]_B$.

Contoh 5.4

Diketahui transformasi linear
$$T: R^2 \to R^3$$
 dengan $T\left({x_1 \choose x_2} \right) = {x_2 \choose -5x_1 + 13x_2 \choose -7x_1 + 16x_2}.$ Jika $A = \{\bar{u}_1, \bar{u}_2\} = \{(3,1)^{\mathsf{T}}, (5,2)^{\mathsf{T}}\}$ adalah basis dari R^2 dan $B = \{\bar{v}_1, \bar{v}_2, \bar{v}_3\} = \{(1,0,-1)^{\mathsf{T}}, (-1,2,2)^{\mathsf{T}}, (0,1,2)^{\mathsf{T}}\}$ adalah dari R^3 .

- a. Tentukan matriks T terhadap basis A dan B.
- b. Untuk $\bar{x} = (2,1)$ Tentukan $T([\bar{x}]_A)$

Penyelesaian:

a. Pertama dihitung nilai $T(\bar{u}_1)$ dan $T(\bar{u}_2)$ (dengan kata lain bayangan dari $\overline{u_1}$ dan $\overline{u_2}$) yaitu

$$T(\overline{u}_1) = T\begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix} \operatorname{dan} T(\overline{u}_1) = T\begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$

Karena $T(\bar{u}_1)$ dan $T(\bar{u}_2)$ berada di R^3 dan $B=\{\bar{v}_1,\bar{v}_2,\bar{v}_3\}$ adalah basis dari R^3 maka masing $T(\bar{u}_1)$ dan $T(\bar{u}_2)$ dapat dinyatakan sebagai kombinasi linear dari $\bar{v}_1,\bar{v}_2,\bar{v}_3$, sehingga

$$T(\overline{u}_1) = \alpha_1 \overline{v_1} + \alpha_2 \overline{v_2} + \alpha_3 \overline{v_3}$$
 dan $T(\overline{u}_2) = \beta_1 \overline{v_1} + \beta_2 \overline{v_2} + \beta_3 \overline{v_3}$

Maka dengan OBE diperoleh vektor koordinat $ar{u}_1$ dan $ar{u}_2$ terhadap basis \emph{B} yaitu

$$[T(\bar{u}_1)]_B = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \mathrm{dan}\, [T(\bar{u}_2)]_B = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}.$$

Jadi matriks transformasi $[T]_{B,A} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \\ -2 & -1 \end{pmatrix}$.

b. Mula-mula dicari $[\bar{x}]_A$ maka

$$\bar{x} = \alpha_1 \overline{u_1} + \alpha_2 \overline{u_2}$$

Sehingga diperoleh $[\bar{x}]_A = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ lalu untuk mendapatkan $T([\bar{x}]_A)$ digunakan matriks

transformasi
$$[T]_{B,A}$$
 sehingga $T([\bar{x}]_A) = \begin{pmatrix} 1 & 3 \\ 0 & 1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

∠ Latihan 5.3

Misal $\{\overline{v_1},\overline{v_2},\overline{v_3}\}$ merupakan basis R^3 . Transformasi linear $T:R^3\to P^2$ memiliki fungsi $T(\overline{v_l})=w_l$ dengan $\overline{v_1}=(1,1,-1),\overline{v_2}=(0,1,-1),\overline{v_3}=(0,0,-1),\quad p(x)=1-x+x^2,q(x)=1+2x^2,r(x)=2x-x^2.$

- a. Tentukan matriks transformasi A sedemikian sehingga $A\overline{v}_i = w_i$
- b. Tentukan bayangan (1,2,1) dari transformasi tersebut

5.4 Matriks baku/standar

Jika T adalah suatu transformasi linear, maka matriks standar untuk T bisa didapatkan dari bayangan vektor-vektor basis standar. Suatu transformasi linear secara lengkap ditentukan oleh bayangan sebarang vektor-vektor basis.

Definisi 5.5

Misalkan $T: R^n \to R^m$ dengan T(x) = Ax memiliki basis standar $S = \{e_1, e_2, ..., e_n\}$. Maka matriks standar untuk T adalah $A = (T(e_1) \quad T(e_2) \quad \quad T(e_n))$.

Contoh 5.5

Diketahui transformasi matriks
$$T: R^3 \to R^4$$
 dengan $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + 2y \\ x - y \\ x + z \\ y + z \end{pmatrix}$

Tentukan matriks standar untuk T.

Penyelesaian:

$$T(\bar{e}_1) = T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2.1 + 2.0 \\ 1 - 0 \\ 1 + 0 \\ 0 + 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad T(\bar{e}_2) = T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2.0 + 2.1 \\ 0 - 1 \\ 0 + 0 \\ 1 + 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

$$T(\bar{e}_3) = T \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2.0 + 2.0 \\ 0 - 0 \\ 0 + 1 \\ 0 + 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$
 Jadi matriks standar $T = A = \begin{pmatrix} 2 & 2 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ dengan $A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + 2y \\ x - y \\ x + z \\ y + z \end{pmatrix}$.

∠ Latihan 5.4

Misalkan $T: P_1 \to P_2$ adalah transformasi linear yang didefinisikan oleh T(p(x)) = xp(x).

a. Tentukan matriks untuk T berkenaan dengan basis-basis standar

$$B = \{\overline{u_1}, \overline{u_2}\} = \{1, x\} \text{ dan } B' = \{\overline{v_1}, \overline{v_2}, \overline{v_3}\} = \{1, x, x^2\}$$

b. Jika p(x) = 2 - 3x Tentukan T(p(x))

5.5 Keserupaan/Similaritas

Matriks operator linear $T:V\to V$ tergantung pada basis yang dipilih untuk V. Salah satu masalah dasar dari aljabar linear adalah memilih suatu basis untuk V yang membuat matriks T sesederhana mungkin, misalnya matriks diagonal atau matriks segitiga.

Masalah

Jika B dan B' adalah dua basis untuk suatu ruang vektor berdimensi terhingga V, dan jika $T: V \to V$ adalah suatu operator linear apa kaitan antara $[T]_B$ dengan $[T]_{B'}$.

Teorema 5.3

Anggap $T:V\to V$ adalah suatu linear pada suatu ruang vektor berdimensi terhinggaV, dan anggap B dan B' adalah basis-basis untuk V. Maka

$$[T]_{B'} = P^{-1}[T]_B P$$

Dimana P adalah matriks transisi dari B' ke B.

Contoh 5.6

Misalkan $T: \mathbb{R}^2 \to \mathbb{R}^2$ didefinisikan oleh

$$T\left(\binom{x_1}{x_2}\right) = \binom{x_1 + x_2}{-2x_1 + 4x_2}$$

- a. Tentukan matriks T berkenaan dengan basis standar $B = \{\overline{e_1}, \overline{e_2}\}$
- b. Jika $B' = \{\overline{u_1'}, \overline{u_2'}\} = \{\binom{1}{1}, \binom{1}{2}\}$, tentukan matriks T berkenaan dengan basis standar $B' = \{\overline{u_1'}, \overline{u_2'}\}$.
- c. Hitunglah $\det([T]_B)$, $\det([T]_{B'})$, $\operatorname{tr}([T]_B)$, $\operatorname{tr}([T]_{B'})$

Penyelesaian:

a. $[T]_B = [T] = [T(\overline{e_1}) : T(\overline{e_2})]$ maka

$$T(\overline{e_1}) = T\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} 1+0 \\ -2.1+4.0 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad \text{dan } T(\overline{e_1}) = T\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 0+1 \\ -2.0+4.1 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Sehingga
$$[T]_B = [T] = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$$

b. Untuk mencari $[T]_{B}$ maka disusun matriks transisi dari B' ke B sehingga

$$P = \left(\begin{bmatrix} \overrightarrow{u}_1 \end{bmatrix}_B \quad \vdots \quad \begin{bmatrix} \overrightarrow{u}_2 \end{bmatrix}_B \right) = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}$$

 $\overrightarrow{u_1} = \overrightarrow{p_{11}e_1} + \overrightarrow{p_{21}e_2}$ dan $\overrightarrow{u_2} = \overrightarrow{p_{12}e_1} + \overrightarrow{p_{22}e_2}$ sehingga diperoleh matriks

$$P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \text{ dan dihitung } p^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

c. Dapat ditunjukkan bahwa $\det([T]_B) = \det([T]_{B'}) \operatorname{dan} \operatorname{tr}([T]_B) = \operatorname{tr}([T]_{B'})$

Secara umum $[T]_{B'}=P^{-1}[T]_BP$ dan $[T]_B$ disebut matriks yang serupa, berikut ini diberikan definisi secara umum andaikan $[T]_B=A$ dan $[T]_{B'}=P^{-1}[T]_BP=B$ maka perhatikan definisi berikut ini.

Definisi 5.6

Jika A dan B adalah matriks-matriks bujur sangkar, B dikatakan **serupa** dengan A jika ada suatu matriks P yang dapat dibalik sedemikian sehingga $B = P^{-1}AP$.

Perhatikan bahwa A juga dapat dituliskan menjadi $A = PBP^{-1}$ sehingga A dan B disebut serupa.

Sifat-sifat matriks yang serupa

Sifat	Uraian
Determinan	A dan $P^{-1}AP$ mempunyai determinan yang
	sama
Dapat dibalik atau tidak	A dapat dibalik jika dan hanya jika P-1AP dapat
	dibalik.
Rank	$A \operatorname{dan} P^{-1}AP$ mempunyai rank yang sama
Nullitas	$A \operatorname{dan} P^{-1}AP$ mempunyai nullitas yang sama
Trace	$A \operatorname{dan} P^{-1}AP$ mempunyai trace yang sama

∠ Latihan 5.5

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ didefinisikan oleh

$$T\!\left(\!\left(\begin{matrix} x_1 \\ x_2 \end{matrix}\right)\!\right) = \!\left(\begin{matrix} x_1 - 2x_2 \\ -x_2 \end{matrix}\right) \, \mathrm{dengan} \, \, B = \!\left\{\!\overline{u_1}, \overline{u_2}\right\} = \!\left\{\!\left(\begin{matrix} 1 \\ 0 \end{matrix}\right)\!, \!\left(\begin{matrix} 0 \\ 1 \end{matrix}\right)\!\right\} \, \, \mathrm{dan} \, \, B = \!\left\{\!\overline{v_1}, \overline{v_2}\right\} = \!\left\{\!\left(\begin{matrix} 2 \\ 1 \end{matrix}\right)\!, \!\left(\begin{matrix} -3 \\ 4 \end{matrix}\right)\!\right\}$$

- a. Tentukan matriks dari T berkenaan dengan B
- b. Tentukan matriks dari T berkenaan dengan B'