

MA2012 INTRODUCTION TO MECHATRONICS SYSTEMS DESIGN

Lecture 7

Prof Ang Wei Tech

College of Engineering
School of Mechanical and Aerospace Engineering

MECHATRONICS SYSTEM COMPONENTS

MECHATRONICS SYSTEMS DESIGN

- 1. Understand the task, define the problem
- 2. Sketch a functional block diagram
- 3. Decide & select mechatronics components (type, number, communication protocol, etc.) :
 - Digital control architecture
 - Sensors & input interfacing
 - Actuators & output interfacing
 - Display
- 4. Construct hardware prototype
- 5. Programme software / firmware

EXAMPLE: SIX-LEGGED WALKING ROBOTS

Hexapod robot with 3 DOF robot legs

Hexapod robot with 2 DOF robot legs

HEXAPOD ROBOT WITH 3 DOF LEGS

Click this image to play video

INTELLIGENT HEXAPOD ROBOT WITH 3 DOF LEGS

Click this image to play video

HEXAPOD ROBOT WITH 2 DOF LEGS

Click this image to play video

HOW DOES A BEETLE WALK WITH 6 LEGS?

Click this image to play video

TRIPOD GAIT

TRIPOD GAIT

Click this image to play animation

LEG ACTUATION METHOD

- Leg tip locus
 - Triangle profile passing through 4 nodes:

- Forward (CCW): a-b-c-d-a-...
- Backward (CW): a-d-c-b-a-...
- Time per stage, t = n s
- Time per cycle, T = 4n s

Reference: LF Leg

Click this image to play animation

TRIPOD GAIT CYCLE

\ Time Leg \	n	2 n	3 <i>n</i>	4 <i>n</i>	5 <i>n</i>	Comment
LF	а	b	С	d	а	Phase = 0°
RM						
LB						
RF	С	d	а	b	С	Phase = 180°
LM						
RB						

Click this image to play animation

OBSTACLE AVOIDANCE

- Contact or non-contact sensors
- Avoidance strategy

STEP 2: SKETCH A FUNCTIONAL BLOCK DIAGRAM

STEP 3: DECIDE & SELECT MECHATRONICS COMPONENTS

ACTUATORS: SERVO X 12

- The drive flange can rotate ½ revolution
- It is driven by width of high pulse (Logic 1)
 called 'Mark' length

STEP 3: DECIDE & SELECT MECHATRONICS COMPONENTS

ACTUATORS: SERVO

STEP 3: DECIDE & SELECT MECHATRONICS COMPONENTS

STEP 3: DECIDE & SELECT MECHATRONICS COMPONENTS

SENSORS: LIMIT SWITCH (CONTACT SENSOR) X 2

STEP 3: DECIDE & SELECT MECHATRONICS COMPONENTS

CONTROL ARCHITECTURE: BASIC STAMP BS1 X 4

STEP 4: CONSTRUCT HARDWARE PROTOTYPE

CONTROL CIRCUIT PCB

STEP 4: CONSTRUCT HARDWARE PROTOTYPE

2 DOF LEG MECHANISM

Click this image to play video

BASIC STAMP #1: TIMING CONTROLLER

- To send timing pulses to all other
 Basic Stamps to synchronize the
 movement of the legs:
 - Home pulse ($100\mu s$) + 39 thin pulses ($20\mu s$) at intervals of 20 ms over a period of 800 ms
 - Update frequency = 50 Hz

BASIC STAMP #1: TIMING CONTROLLER

BS#2 & #3: L & R LEG CONTROLLERS

- Control 6 servos each (P2-7)
- Receives timing from BS#1 (P0) & direction from BS#4 (P1)

BASIC STAMP #2 & #3:

Left & Right Legs Controllers

Group 1 Legs

BASIC STAMP #2 & #3: LEFT & RIGHT LEGS CONTROLLERS

 Movement of Group 2 Legs is 180° phase offset from Group 1

TRIPOD GAIT

Click this image to play video

BASIC STAMP #2 & #3: LEFT & RIGHT LEGS CONTROLLERS -**ROTATE RIGHT:**

- Left legs forward
- Right legs backward

RF

C

BASIC STAMP #2 & #3: LEFT & RIGHT LEGS CONTROLLERS -**ROTATE LEFT:**

- Left legs backward
- Right legs forward

RF

C

BASIC STAMP #4: REFLEX CONTROLLER

- BS#4 receives a LOW (0) when
 Left & Right Whisker limit
 switches are closed
- BS#4 sends signals to P0 & P1 of BS#2 & BS#3 respectively to control forward / backward directions:
 - LOW(0)-backward; HIGH(1)forward
 - P0=0 & P1=1: Rotate Right
 - P0=1 & P0=0: Rotate Left

BASIC STAMP #4: REFLEX CONTROLLER

- Obstacle avoidance strategy:
 - If Right Whisker limit switch activated
 - Go backward (P0 = P1 = 0) for 3 cycles (BS#2 & BS#3 receive Home pulse 3 times)
 - Rotate left (P0 = 1, P1 = 0) for 2 cycles
 - Go forward (P0 = P1 = 1)
 - If Left Whisker limit switch activated
 - Go backward (P0 = P1 = 0) for 3 cycles
 - Rotate right (P0 = 0, P1 = 1) for 2 cycles
 - Go forward (P0 = P1 = 1)

OBSTACLE AVOIDANCE

Click this image to play animation

A COMPLETE BLOCK DIAGRAM

REDESIGN THE CONTROL ARCHITECTURE WITH ARDUINO UNO MCU

How many pieces of Arduino UNO MCU would be needed for this application?

- 1
- 2
- 3
- 4

FUNCTIONAL BLOCK DIAGRAM

PROGRAMMING

 Timing Controller Basic Stamp to be replaced with internal timer to trigger movement every 20 ms

 Just 1 MCU to control the left & right legs, i.e. the MCU has total knowledge of all its components, which enables more sophisticated control strategy

HEXAPOD ROBOT WITH 2 DOF LEGS

Click this image to play video

SUMMARY: MECHATRONICS SYSTEMS DESIGN

- Understand the task, define the problem
- 2. Sketch a functional block diagram
- 3. Decide & select mechatronics components (type, number, communication protocol, etc.) :
 - Digital control architecture
 - Sensors & input interfacing
 - Actuators & output interfacing
 - Display
- 4. Construct hardware prototype
- 5. Programme software / firmware