

Enunciado-P2-19-20.pdf

Aerosafe98

Ampliación de Matemáticas

3º Grado en Ingeniería Aeroespacial

Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio Universidad Politécnica de Madrid

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

18[

Ver mis op

Continúa d

2 🗀 3 🗀

4 🗀 5 🗀

6 🗀

7 =

8 🗀 9 🗀

10 🗀

11 🗀

12 🗀

13 🗀

14 🗀

15 🗀

16 🗀

17 🗀 18 🗀

19 🗀 20 🗀 21 🗀 22 🗀 23 🗀

24 🗀 25 💳

26 == 27 ===

28 💳 29 🗀

30 === 31 🗀

32 🗀

33 🗀

34 🗀 35 🗀 36 ===

37 🗀 38 🗀 39 🗀

40 🗀

41 🗀 42 -43 🗀 44 🗀

45 🗀 46 🗀

47 🗀 48 🗀

49 🗀 50 ==

51 🗀 52 🗀 53 🗀 54 == 55 == 57 🗀 58 === 59 ___ 60 ==

61 === 62 = 63 🗀 65 =

405416 arts esce ues2016juny.pdf

Top de tu gi

Rocio

Curso: ____ Asignatura:

Ampliación de Matemáticas (Versión 1),

(20-12-2019)

A. Sea $u:\mathbb{R}\times]0,+\infty[\to\mathbb{R}$ la solución problema de Cauchy definido por

$$\frac{\partial u}{\partial t} = (1 + \tanh(t)) \frac{\partial^2 u}{\partial x^2} \quad \text{en } (x, t) \in \mathbb{R} \times]0, +\infty[,$$

$$u(x, 0) = \exp(-2x^2) \quad x \in \mathbb{R},$$

u(x,t) uniformemente acotada en $\mathbb{R} \times]0,+\infty[$.

Sea $\hat{u}:\mathbb{R}\times]0,+\infty[\to\mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir, $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$. La función u verifica que:

(1)
$$u(2,2) = \frac{1}{\sqrt{33 + 16\ln(\cosh(2))}} \exp(-\frac{16}{33 + 16\ln(\cosh(2))})$$

(1)
$$u(2,2) = \frac{1}{\sqrt{33 + 16\ln(\cosh(2))}} \exp(-\frac{16}{33 + 16\ln(\cosh(2))}).$$

(2) $u(3,3) = \frac{1}{\sqrt{37 + 12\ln(\cosh(3))}} \exp(-\frac{27}{37 + 12\ln(\cosh(3))}).$

(3)
$$u(4,4) = \frac{1}{\sqrt{33 + 8 \ln(\cosh(4))}} \exp(-\frac{32}{33 + 8 \ln(\cosh(4))})$$
.

(4) No es cierta ninguna de las otras tres respuestas.

Nota.
$$\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$$
, donde $b \in \mathbb{R}$ y $b > 0$.

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}t^2}(t) + 2\frac{\mathrm{d}w}{\mathrm{d}t}(t) + 8w(t) = g(t) \text{ en }]0, +\infty[, \ w(0) = 0, \ \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 1,$$

donde $g:[0,+\infty[\to\mathbb{R}$ es la función definida por $g(t)=\cos(t)$ si $t\in[0,\frac{\pi}{2}[$ y g(t)=0 si $t\in[\frac{\pi}{2},+\infty[$. La transformada de Laplace de la función $w:[0,+\infty[\to\mathbb{R}$ es tal que:

(5)
$$\mathcal{L}[w(t)](2) = \frac{1}{80}(6 + \exp(-\pi)).$$
 (6) $\mathcal{L}[w(t)](2) = \frac{1}{80}(7 + \exp(-\pi)).$

(7)
$$\mathcal{L}[w(t)](2) = \frac{1}{80}(7 - \exp(-\pi))$$
. (8) No es cierta ninguna de las otras tres respuestas.

Nombre:

Fecha:

Firma:

8

29 30 31

EXPEDIENTE

1 2 3 4 5

1 2 3 4 5 A B & P E

		Aux	cilia	r	
1	a	Ь	c	d	e
2	a	b	<u>-</u>	4	е
3	a	Ь	<u>C</u>	4	е
4	a	Ь	C	d	e
5	a	Ь	С	d	е
6	a	<u>b</u>	C	4	e
7	a	Ь	C	d	е
8	a	b	C	d	е
9	a	Ь	c	4	е
10	a	<u>b</u>	c	d	e

Ampliación de Matemáticas (Versión 1)

C. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} - z^3 w = 0$$
 en \mathbb{C} , $w(0) = 0$, $\frac{\mathrm{d}w}{\mathrm{d}z}(0) = \mathrm{i}$.

La solución del problema anterior es una función entera $w:\mathbb{C}\to\mathbb{C}$, cuyo desarrollo en serie de Taylor es $w(z)=\sum\limits_{k=0}^{+\infty}c_kz^k$. La función w cumple que:

cumple que:
$$\underbrace{\frac{w(z) - i(z + \frac{z^6}{30})}{\sum \frac{z \to 0}{w(z_1)} \neq w(\overline{z_1})}}_{= \frac{i}{3300}} = \frac{i}{3300} \text{ y existe algún } z_1 \in \mathbb{C} \text{ tal que}$$

(10)
$$\lim_{z \to 0} \frac{w(z_1) + w(z_1)}{z^{11}} \cdot \frac{z^6}{30} = \frac{i}{3300} \text{ y } \overline{w(z_1)} = w(\overline{z_1}) \text{ para todo } z_1 \in \mathbb{C} .$$

(11)
$$\lim_{\substack{z \to 0 \\ w(\overline{z_1})}} \frac{w(z) - \mathrm{i}(z + \frac{z^6}{30})}{z^{11}} = \infty \text{ y existe algún } z_1 \in \mathbb{C} \text{ tal que } \overline{w(z_1)} \neq$$

(12) No es cierta ninguna de las otras tres respuestas.

D. Considérese la ecuación diferencial

$$z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{\sinh(2z)}{4} \frac{\mathrm{d}w}{\mathrm{d}z} - \sin(z)w = 0.$$

Las soluciones de la ecuación anterior, en $D\subset \mathbb{C},$ verifican que:

- (13) Existe una solución de la ecuación del enunciado, $w_{s1}(z)$, tal que $\lim_{z\to 0} \frac{w_{s1}(z)}{\ln(z)} = 1.$
- Existe una solución de la ecuación del enunciado, $w_{s2}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} w_{s2}(z) = 0$.
- (15) Existe una solución de la ecuación del enunciado, $w_{s3}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_{s3}(z)}{\sqrt{z}} = 0$.
- (16) No es cierta ninguna de las otras tres respuestas.

Ampliación de Matemáticas (Versión 1)

E. Sea $u: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ la solución acotada de la ecuación de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{en } (x,y) \in \mathbb{R} \times]0, + \infty[,$$

con la condición de Dirichlet

$$u(x,0)=1-x^2\quad\text{si }x\in[-1,1],\quad u(x,0)=0\quad\text{si}\quad|x|>1,$$

$$u(x,y)\text{ acotada en }\mathbb{R}\times[0,+\infty[.$$

La función u verifica que:

(17)
$$u(3,1) = \frac{1}{\pi} \left(-2 + 3\ln(\frac{17}{5}) - 7(\arctan(4) - \arctan(2)) \right).$$

(18)
$$u(3,1) = \frac{1}{\pi} \left(3 \ln(\frac{17}{5}) - 7 \left(\arctan(4) - \arctan(2) \right) \right)$$

(18)
$$u(3,1) = \frac{1}{\pi} \left(3 \ln(\frac{17}{5}) - 7 \left(\arctan(4) - \arctan(2) \right) \right).$$

(19) $u(3,1) = \frac{1}{\pi} \left(-2 + 3 \ln(\frac{17}{5}) - 16 \left(\arctan(4) - \arctan(2) \right) \right).$

(20) No es cierta ninguna de las otras tres respuestas.

Nota.
$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \frac{y}{(x-t)^2 + y^2} dt$$
.

Asignatura:

2 🗀

3 🗀

4 🗀 5 📟

6 🗀

7 -

8 🗀 9 🗀

10 🗀

11 🗀

12 🗀 13 🗀

14 🗀

15 🗀

16 🗀

17 🗀 18 🗀

19 ___ 20 🗀 22 🗀 23 🗀

24 🗀 26 🗀 27 -

28 🗀 30 🗀 31 ==

32 🗀 33 💳

34 === 35 == 36 ==

37 🗀

38 🗀 39 ===

40 🗀

41 🗀 42 💳 43 🗀

44 🗀

46 🗀

47 📟

48 🗀

50 -

51 🗀 52 🗀

53 === 54 🗀 55 -

56 == 58 🗀 59 === 60 =

62 = 63 === 65 =

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

18[

Ver mis op

Continúa d

405416 arts esce ues2016juny.pdf

Top de tu gi

Rocio

Ampliación de Matemáticas (Versión 2),

(20-12-2019)

A. Sea $u: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ la solución problema de Cauchy definido por

$$\frac{\partial u}{\partial t} = (1 + \tanh(t)) \frac{\partial^2 u}{\partial x^2} \quad \text{en } (x, t) \in \mathbb{R} \times]0, +\infty[,$$
$$u(x, 0) = \exp(-3x^2) \quad x \in \mathbb{R},$$

u(x,t) uniformemente acotada en $\mathbb{R} \times]0,+\infty[$.

Sea $\hat{u}:\mathbb{R}\times]0,+\infty[\to\mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir, $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$. La función u verifica que:

(1)
$$u(2,2) = \frac{1}{\sqrt{33 + 16\ln(\cosh(2))}} \exp(-\frac{16}{33 + 16\ln(\cosh(2))})$$

(1)
$$u(2,2) = \frac{1}{\sqrt{33 + 16\ln(\cosh(2))}} \exp(-\frac{16}{33 + 16\ln(\cosh(2))}).$$

(2) $u(3,3) = \frac{1}{\sqrt{37 + 12\ln(\cosh(3))}} \exp(-\frac{27}{37 + 12\ln(\cosh(3))}).$

(3)
$$u(4,4) = \frac{1}{\sqrt{33 + 8 \ln(\cosh(4))}} \exp(-\frac{32}{33 + 8 \ln(\cosh(4))})$$
.
(4) No es cierta ninguna de las otras tres respuestas.

Nota.
$$\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$$
, donde $b \in \mathbb{R}$ y $b > 0$.

B. Considérese el problema de Cauchy definido por

$$\frac{d^2w}{dt^2}(t) + 2\frac{dw}{dt}(t) + 8w(t) = g(t) \text{ en }]0, +\infty[, w(0) = 0, \frac{dw}{dt}(0) = 1,$$

donde $g:[0,+\infty[\to\mathbb{R}$ es la función definida por $g(t)=\cos(t)$ si $t\in[0,\frac{\pi}{2}[\ y\ g(t)=0$ si $t\in[\frac{\pi}{2},+\infty[$. La transformada de Laplace de la función $w:[0,+\infty[\to\mathbb{R}$ es tal que:

(5)
$$\mathcal{L}[w(t)](2) = \frac{1}{80}(6 + \exp(-\pi))(6)\mathcal{L}[w(t)](2) = \frac{1}{80}(7 + \exp(-\pi)).$$

(7)
$$\mathcal{L}[w(t)](2) = \frac{1}{80}(7 - \exp(-\pi))$$
. (8) No es cierta ninguna de las otras tres respuestas.

Nombre

Fecha:

Firma:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6

8

9 10

12

13

15

16

21 22 23

29 30 31

1 2 3 4 5 6 7 8 9 10 ABCBE

		Aux	ilia	r	
1	a	Ь	С	d	е
2	a	b	C	d	e
3	a	Ь	C	d	е
4	a	Ь	C	d	e
5	a	Ь	С	d	е
6	a	Ь	6	d	e
7	a	Ь	С	d	е
8	a	<u>b</u>	c	d	e
9	a	Ь	c	d	e
10	a	Ь	C	d	e

Ampliación de Matemáticas (Versión 2)

C. Considérese el problema de Cauchy definido por

$$\frac{d^2w}{dz^2} - z^3w = 0$$
 en \mathbb{C} , $w(0) = 0$, $\frac{dw}{dz}(0) = i$.

La solución del problema anterior es una función entera $w:\mathbb{C}\to\mathbb{C}$, cuyo desarrollo en serie de Taylor es $w(z)=\sum\limits_{k=0}^{+\infty}c_kz^k$. La función w cumple que:

cumple que:
$$\underbrace{ \begin{pmatrix} 9 \end{pmatrix} }_{\substack{z \to 0 \\ \overline{w}(z_1) \neq w(\overline{z_1})}}^{\underline{w}(z) - \mathrm{i}(z + \frac{z^6}{30})} = \frac{\mathrm{i}}{3300} \text{ y existe algún } z_1 \in \mathbb{C} \text{ tal que}$$

(10)
$$\lim_{z \to 0} \frac{w(z_1) \neq w(z_1)}{z^{11}} \cdot \frac{z^6}{300} = \frac{i}{3300} \text{ y } \overline{w(z_1)} = w(\overline{z_1}) \text{ para todo } z_1 \in \mathbb{C}.$$

- (11) $\lim_{\substack{z \to 0 \\ w(\overline{z_1})}} \frac{w(z) \mathrm{i}(z + \frac{z^6}{30})}{z^{11}} = \infty \text{ y existe algún } z_1 \in \mathbb{C} \text{ tal que } \overline{w(z_1)} \neq$
- (12) No es cierta ninguna de las otras tres respuestas.

D. Considérese la ecuación diferencial

$$z^{2}\frac{\mathrm{d}^{2}w}{\mathrm{d}z^{2}} + \frac{\sinh(2z)}{4}\frac{\mathrm{d}w}{\mathrm{d}z} - \sin(z)w = 0.$$

Las soluciones de la ecuación anterior, en $D \subset \mathbb{C}$, verifican que:

- (13) Existe una solución de la ecuación del enunciado, $w_{s1}(z)$, tal que $\lim_{z\to 0}\frac{w_{s1}(z)}{\ln(z)}=1.$
- Existe una solución de la ecuación del enunciado, $w_{s2}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} w_{s2}(z) = 0$.
- (15) Existe una solución de la ecuación del enunciado, $w_{s3}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_{s3}(z)}{\sqrt{z}} = 0$.
- (16) No es cierta ninguna de las otras tres respuestas.

Ampliación de Matemáticas (Versión 2)

E. Sea $u: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ la solución acotada de la ecuación de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{en } (x,y) \in \mathbb{R} \times]0, + \infty[,$$

con la condición de Dirichlet

$$u(x,0)=1-x^2\quad\text{si }x\in[-1,1],\quad u(x,0)=0\quad\text{si}\quad|x|>1,$$

$$u(x,y)\text{ acotada en }\mathbb{R}\times[0,+\infty[.$$

La función u verifica que:

(17)
$$u(3,1) = \frac{1}{\pi} \left(-2 + 3\ln(\frac{17}{5}) - 7(\arctan(4) - \arctan(2)) \right).$$

(18)
$$u(3,1) = \frac{1}{\pi} \left(3 \ln(\frac{17}{5}) - 7 \left(\arctan(4) - \arctan(2) \right) \right)$$

(18)
$$u(3,1) = \frac{1}{\pi} \left(3\ln(\frac{17}{5}) - 7\left(\arctan(4) - \arctan(2)\right) \right).$$

(19) $u(3,1) = \frac{1}{\pi} \left(-2 + 3\ln(\frac{17}{5}) - 16\left(\arctan(4) - \arctan(2)\right) \right).$

Nota.
$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \frac{y}{(x-t)^2 + y^2} dt$$
.

3 🗀

4 🗀

5 🗀

6 🗀

7 🗀

8 🗀

9 🗀

10 🗀

11 🗀

12 🗀 13 🗀

14 🗀

15 🗀

16 🗀

17 🗀 18 🗀

19 🗀 20 🗀 21 🗀 22 🗀 23 🗀 24 🖂 25 🗀 26 🗀 27 🗀

28 🗀 29 🗀

31 🗀

32 🗀

33 🗀

34 🗀 35 🗀

36 === 37 🗀 38 🗀 39 🗀

40 🗀 41 🗀 42 🗀 43 🗀 44 🗀

45 === 46 🖂

47 🗀

48 == 49 🗀 51 🗀 52 🗀 53 🗀 54 === 55 == 56 = 57 🗀 58 🗀 59 🗀 60 =

61 🗀 62 🗀 63 🗀 64 =

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

18[

Ver mis op

Continúa de

Arts Enclosiques
Note the company of the particular of the
NAME AND ADDRESS OF THE OWNER, WHEN PERSONS AND ADDRESS O
territoria de la compansa de la comp
The second secon
MODEL AND STREET
And a self-delication and the

405416 arts esce ues2016juny.pdf

Top de tu gi

Rocio

Asignatura: Curso: ____

Ampliación de Matemáticas (Versión 3),

(20-12-2019)

A. Sea $u:\mathbb{R}\times]0,+\infty[\to\mathbb{R}$ la solución problema de Cauchy definido por

$$\frac{\partial u}{\partial t} = (1 + \tanh(t)) \frac{\partial^2 u}{\partial x^2} \quad \text{en } (x, t) \in \mathbb{R} \times]0, +\infty[,$$
$$u(x, 0) = \exp(-2x^2) \quad x \in \mathbb{R},$$

u(x,t) uniformemente acotada en $\mathbb{R} \times]0,+\infty[$.

Sea $\hat{u}:\mathbb{R}\times]0,+\infty[\to\mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir, $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$. La función u verifica que:

(1)
$$u(2,2) = \frac{1}{\sqrt{33 + 16\ln(\cosh(2))}} \exp(-\frac{16}{33 + 16\ln(\cosh(2))}).$$

(2) $u(3,3) = \frac{1}{\sqrt{37 + 12\ln(\cosh(3))}} \exp(-\frac{27}{37 + 12\ln(\cosh(3))}).$
(3) $u(4,4) = \frac{1}{\sqrt{33 + 8\ln(\cosh(4))}} \exp(-\frac{32}{33 + 8\ln(\cosh(4))}).$
(4) No es cierta ninguna de las otras tres respuestas.

(2)
$$u(3,3) = \frac{1}{\sqrt{37 + 12\ln(\cosh(3))}} \exp(-\frac{27}{37 + 12\ln(\cosh(3))})$$

(3)
$$u(4,4) = \frac{1}{\sqrt{33 + 8\ln(\cosh(4))}} \exp(-\frac{32}{33 + 8\ln(\cosh(4))})$$

Nota. $\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$, donde $b \in \mathbb{R}$ y b > 0.

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d}t^2}(t) + 2\frac{\mathrm{d}w}{\mathrm{d}t}(t) + 8w(t) = g(t) \text{ en }]0, +\infty[, \ w(0) = 0, \ \frac{\mathrm{d}w}{\mathrm{d}t}(0) = 1,$$

donde $g:[0,+\infty[\to\mathbb{R}$ es la función definida por $g(t)=\cos(t)$ si $t\in[0,\frac{\pi}{2}[$ y g(t)=0 si $t\in[\frac{\pi}{2},+\infty[$. La transformada de Laplace de la función $w:[0,+\infty[\to\mathbb{R}$ es tal que: (5) $\mathcal{L}[w(t)](2)=\frac{1}{80}(6+\exp(-\pi)).$

(5)
$$\mathcal{L}[w(t)](2) = \frac{1}{80}(6 + \exp(-\pi)).$$
 (6) $\mathcal{L}[w(t)](2) = \frac{1}{80}(7 + \exp(-\pi))$

(7)
$$\mathcal{L}[w(t)](2) = \frac{1}{80}(7 - \exp(-\pi))$$
. (8) No es cierta ninguna de las otras tres respuestas.

Fecha:

Firma:

Marque asi

	D.N.I.						
0 0 1 1 2 3 3 4 4 5 5 6 6 7 7 8 8	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7	
9 9							

EXPEDIENTE

0	0 0	0	0	0
1	1 .	L 1	1	_1
2	2 2	2 2	2	2
3 .	3 3	3	3	3
4	4 4	4	4	4
		5		
		6		
		<u> </u>		
		3 8		
<u> </u>	9 -	9 8	9	9

9 10 11

29 30 31

_1	2	3	4	_5

Grupo

1	2	3	4	5
6	7	8	9	10
		C		
E	G	H	_	J

Auxiliai					
1	a	Ь	c	d	е
2	a	<u>b</u>	C	4	e
3	a	Ь	C	d	е
4	a	b	C	d	e
5	а	Ь	C	d	e
6	a	<u>b</u>	C	d	e
7	a	Ь	c	d	e
8	a	Ь	C	d	e
9	a	Ь	c	4	e
10	a	<u>b</u>	C	4	e
				200	

Ampliación de Matemáticas (Versión 3)

C. Considérese el problema de Cauchy definido por

$$\frac{d^2w}{dz^2} - z^3w = 0$$
 en \mathbb{C} , $w(0) = 0$, $\frac{dw}{dz}(0) = -i$.

La solución del problema anterior es una función entera $w:\mathbb{C}\to\mathbb{C}$, cuyo desarrollo en serie de Taylor es $w(z)=\sum\limits_{k=0}^{+\infty}c_kz^k$. La función w cumple que:

cumple que:
$$\underbrace{ \begin{pmatrix} \mathbf{9} \end{pmatrix} \lim_{\substack{z \to 0 \\ \overline{w}(z_1) \neq w(\overline{z_1})}}^{w(z) + \mathbf{i}(z + \frac{z^6}{30})} = -\frac{\mathbf{i}}{3300} \text{ y existe algún } z_1 \in \mathbb{C} \text{ tal que} }$$

(10)
$$\lim_{z \to 0} \frac{w(z_1) + i(z + \frac{z^6}{30})}{z^{11}} = -\frac{i}{3300} \text{ y } \overline{w(z_1)} = w(\overline{z_1}) \text{ para todo } z_1 \in \mathbb{C}$$

(11)
$$\lim_{\substack{z \to 0 \\ w(\overline{z_1})}} \frac{w(z) + \mathrm{i}(z + \frac{z^6}{30})}{z^{11}} = \infty \text{ y existe algún } z_1 \in \mathbb{C} \text{ tal que } \overline{w(z_1)} \neq$$

(12) No es cierta ninguna de las otras tres respuestas.

D. Considérese la ecuación diferencial

$$z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{\sinh(2z)}{4} \frac{\mathrm{d}w}{\mathrm{d}z} - \sin(z)w = 0.$$

Las soluciones de la ecuación anterior, en $D\subset \mathbb{C},$ verifican que:

- (13) Existe una solución de la ecuación del enunciado, $w_{s1}(z)$, tal que $\lim_{z \to 0} \frac{w_{s1}(z)}{\ln(z)} = 1.$
- (14) Existe una solución de la ecuación del enunciado, $w_{s2}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} w_{s2}(z) = 0$.
- (15) Existe una solución de la ecuación del enunciado, $w_{s3}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_{s3}(z)}{\sqrt{z}} = 0$.
- (16) No es cierta ninguna de las otras tres respuestas.

Ampliación de Matemáticas (Versión 3)

E. Sea $u: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ la solución acotada de la ecuación de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{en } (x,y) \in \mathbb{R} \times]0, + \infty[,$$

con la condición de Dirichlet

$$u(x,0) = 1 - x^2$$
 si $x \in [-1,1],$ $u(x,0) = 0$ si $|x| > 1,$ $u(x,y)$ acotada en $\mathbb{R} \times [0,+\infty[.$

La función u verifica que:

(17)
$$u(3,1) = \frac{1}{\pi} \left(-2 + 3\ln(\frac{17}{5}) - 7(\arctan(4) - \arctan(2)) \right).$$

(18)
$$u(3,1) = \frac{1}{\pi} \left(3 \ln(\frac{17}{5}) - 7 \left(\arctan(4) - \arctan(2) \right) \right)$$

(18)
$$u(3,1) = \frac{1}{\pi} \left(3\ln(\frac{17}{5}) - 7\left(\arctan(4) - \arctan(2)\right) \right).$$

(19) $u(3,1) = \frac{1}{\pi} \left(-2 + 3\ln(\frac{17}{5}) - 16\left(\arctan(4) - \arctan(2)\right) \right).$

(20) No es cierta ninguna de las otras tres respuestas.

Nota.
$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \frac{y}{(x-t)^2 + y^2} dt$$
.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

18[

Ver mis op

Continúa d

2 ___

3 🗀 4 🗀

5 🗀

6 🗀

7 🗀

8 🗀 9 🗀

10 ___

11 🗀

12 🗀 13 🗀

14

15 🗀

16 🗀

17 🗀 18 🗀

19 🗀 20 🗀 21 ___ 22 ___ 23 🗀

24 🗀 25 🗀 26 27 📖

28 🗀 29 🗀 30 31 🗀

32 🗀

33 🗀

34 🗀 35 🗀 36 🗀

37 ____

38 39 🗀 40 🗀

41 🗀 42 43 🗀 44 🖂

45 ===

46 🗀 47 💳 48 🗀 49 ===

50

51 ___ 52 🗀 53 === 54 55 💳 56 🗀 57 🗀 58 ___

59 🗀 60 💳

61 ===

62

63 🗀

65 =

405416 arts esce ues2016juny.pdf

Top de tu gi

Rocio

Asignatura:

Ampliación de Matemáticas (Versión 4),

(20-12-2019)

A. Sea $u:\mathbb{R}\times]0,+\infty[\to\mathbb{R}$ la solución problema de Cauchy definido por

$$\begin{split} \frac{\partial u}{\partial t} &= (1 + \tanh(t)) \frac{\partial^2 u}{\partial x^2} \quad \text{en } (x, t) \in \mathbb{R} \times]0, +\infty[, \\ u(x, 0) &= \exp(-2x^2) \quad x \in \mathbb{R}, \end{split}$$

u(x,t) uniformemente acotada en $\mathbb{R}\times]0,+\infty[$.

Sea $\hat{u}: \mathbb{R} \times]0, +\infty[\to \mathbb{C}$ la transformada de Fourier de la función u con respecto a la variable x, es decir, $\hat{u}(\omega,t) = \int_{-\infty}^{+\infty} u(x,t) \exp(-\mathrm{i}\omega x) \mathrm{d}x$. La función u verifica que:

(1)
$$u(2,2) = \frac{1}{\sqrt{33 + 16\ln(\cosh(2))}} \exp(-\frac{16}{33 + 16\ln(\cosh(2))}).$$

(2) $u(3,3) = \frac{1}{\sqrt{37 + 12\ln(\cosh(3))}} \exp(-\frac{27}{37 + 12\ln(\cosh(3))}).$

(2)
$$u(3,3) = \frac{1}{\sqrt{37 + 12 \ln(\cosh(3))}} \exp(-\frac{27}{37 + 12 \ln(\cosh(3))})$$

(3)
$$u(4,4) = \frac{1}{\sqrt{33 + 8 \ln(\cosh(4))}} \exp(-\frac{32}{33 + 8 \ln(\cosh(4))})$$
.
(4) No es cierta ninguna de las otras tres respuestas.

Nota.
$$\mathcal{F}[\exp(-bx^2)](\omega) = \sqrt{\frac{\pi}{b}} \exp(-\frac{\omega^2}{4b})$$
, donde $b \in \mathbb{R}$ y $b > 0$.

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d} t^2}(t) + 2 \frac{\mathrm{d} w}{\mathrm{d} t}(t) + 8 w(t) = g(t) \text{ en }]0, +\infty[, \ w(0) = 0, \ \frac{\mathrm{d} w}{\mathrm{d} t}(0) = 1,$$

donde $g:[0,+\infty[\to\mathbb{R}$ es la función definida por $g(t)=\cos(t)$ si $t\in[0,\frac{\pi}{2}[$ y g(t)=0 si $t\in[\frac{\pi}{2},+\infty[$. La transformada de Laplace de la función $w:[0,+\infty[\to\mathbb{R}$ es tal que:

(5)
$$\mathcal{L}[w(t)](2) = \frac{1}{80}(6 + \exp(-\pi)).$$
 (6) $\mathcal{L}[w(t)](2) = \frac{1}{80}(7 + \exp(-\pi)).$

(7)
$$\mathcal{L}[w(t)](2) = \frac{1}{80}(7 - \exp(-\pi))$$
. (8) No es cierta ninguna de las otras tres respuestas.

Fecha:

Firma:

Marque así

	D.N.	
00	2 2 2	
		1 1 1 1
		2 2 2 3 3 3
		4 4 4 4
5 5	5 5	5 5 5
		$\frac{6}{7}$ $\frac{6}{7}$ $\frac{6}{7}$ $\frac{6}{7}$
8 8	8 8	7
		9 9 9 5

_0	0	0	0	0	0
1	1	1	1	1	_1
			2		
3	3	3	3	3	3
			4		
5	5	5	5	5	5
			6		
			7		
			8		
9	9	9	9	9	9

6 7 8

18

27

29

30

31

32

1	2	3	4	5

_1 _2	2 3	4	5
6	7 8	9	10
A	ВС	D	E
- /	S H	I	J

1	a	Ь	С	ď	е		
2	a	b	C	d	е		
3	a	Ь	С	d	е		
4	a	b	C	d	е		
5	a	Ь	С	d	е		
6	a	b	C	d	e		
7	a	Ь	С	d	е		
8	a	b	C	d	e		
9	a	Ь	C	4	e		
10	a	<u>b</u>	c	d	e		

Ampliación de Matemáticas (Versión 4)

C. Considérese el problema de Cauchy definido por

$$\frac{d^2w}{dz^2} - z^3w = 0$$
 en \mathbb{C} , $w(0) = 0$, $\frac{dw}{dz}(0) = -i$.

La solución del problema anterior es una función entera $w:\mathbb{C}\to\mathbb{C}$, cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. La función wcumple que:

(9)
$$\lim_{z \to 0} \frac{w(z) + i(z + \frac{z^6}{30})}{z^{11}} = -\frac{i}{3300} \text{ y existe algún } z_1 \in \mathbb{C} \text{ tal que}$$

$$(10) \lim_{z \to 0} \frac{w(z) + i(z + \frac{z^6}{30})}{z^{11}} = -\frac{i}{3300} \text{ y } \overline{w(z_1)} = w(\overline{z_1}) \text{ para todo } z_1 \in \mathbb{C}$$

(10)
$$\lim_{z \to 0} \frac{w(z) + i(z + \frac{z^6}{30})}{z^{11}} = -\frac{i}{3300} \text{ y } \overline{w(z_1)} = w(\overline{z_1}) \text{ para todo } z_1 \in \mathbb{C}$$

(11)
$$\lim_{\substack{z \to 0 \\ w(\overline{z_1})}} \frac{w(z) + \mathrm{i}(z + \frac{z^6}{30})}{z^{11}} = \infty \text{ y existe algún } z_1 \in \mathbb{C} \text{ tal que } \overline{w(z_1)} \neq$$

(12) No es cierta ninguna de las otras tres respuestas.

D. Considérese la ecuación diferencial

$$z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + \frac{\sinh(2z)}{4} \frac{\mathrm{d}w}{\mathrm{d}z} - \sin(z)w = 0.$$

Las soluciones de la ecuación anterior, en $D\subset \mathbb{C},$ verifican que:

- (13) Existe una solución de la ecuación del enunciado, $w_{s1}(z)$, tal que $\lim_{z \to 0} \frac{w_{s1}(z)}{\ln(z)}$
- Existe una solución de la ecuación del enunciado, $w_{s2}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} w_{s2}(z) = 0$.
- (15) Existe una solución de la ecuación del enunciado, $w_{s3}(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_{s3}(z)}{\sqrt{z}} = 0.$
- (16) No es cierta ninguna de las otras tres respuestas.

Ampliación de Matemáticas (Versión 4)

E. Sea $u: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ la solución acotada de la ecuación de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{en } (x,y) \in \mathbb{R} \times]0, +\infty[,$$

con la condición de Dirichlet

$$u(x,0) = 1 - x^2$$
 si $x \in [-1,1], u(x,0) = 0$ si $|x| > 1,$
 $u(x,y)$ acotada en $\mathbb{R} \times [0,+\infty[.$

La función u verifica que:

(17)
$$u(4,1) = \frac{1}{\pi} \left(-2 + 4\ln(\frac{26}{10}) - 30(\arctan(5) - \arctan(3)) \right).$$

(18)
$$u(4,1) = \frac{1}{\pi} \left(4 \ln(\frac{26}{10}) - 14 \left(\arctan(5) - \arctan(3) \right) \right).$$

(18)
$$u(4,1) = \frac{1}{\pi} \left(4 \ln(\frac{26}{10}) - 14 (\arctan(5) - \arctan(3)) \right).$$
(19) $u(4,1) = \frac{1}{\pi} \left(-2 + 4 \ln(\frac{26}{10}) - 14 (\arctan(5) - \arctan(3)) \right).$
(20) No es cierta ninguna de las otras tres respuestas.

Nota.
$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t) \frac{y}{(x-t)^2 + y^2} dt$$
.

