|          | is there a |      |         |
|----------|------------|------|---------|
| Deadline | Party ?    | Lazy | Achrity |
| Urgent   | yes        | yes  | party   |
| orgent   | no         | yes  | study   |
| Near     | yes        | yes  | party   |
| None     | yes        | no   | party   |
| None     | no         | yes  | pub     |
| None     | yes        | no   | party   |
| Near     | No         | no   | study   |
| Near     | no         | yes  | TV      |
| Near     | yes        | yes  | party   |
| Urgent   | no         | No   | study   |

$$F(s) = -\frac{5}{10} \log_2 \frac{5}{10} - \frac{3}{10} \log_2 \frac{3}{10} - \frac{1}{10} \log_2 \frac{1}{10} - \frac{1}{10} \log_2 \frac{1}{10}$$

= 1.6855

$$= 1.6855 - \frac{3}{10} \left( -\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \right)$$

$$-\frac{4}{10}\left(-\frac{2}{4}\log_{2}\frac{2}{4}-\frac{1}{4}\log_{2}\frac{1}{4}-\frac{1}{4}\log_{2}\frac{1}{4}\right)$$

$$-\frac{3}{10}\left(-\frac{1}{3}\log_{2}\frac{1}{3}-\frac{2}{3}\log_{2}\frac{2}{3}\right)$$

: 
$$G(s, deadline) = 1.6855 - 0.2755 - 0.6 - 0.2755$$

$$= 0.5345$$

$$G(s, party) = 1.6855 - \frac{5}{5}(-\frac{5}{5}log_{2}\frac{5}{5})$$
Forty (activity)

= 1.6855 - 0 - 0.6855

$$G(S, parky) = 1.0$$

$$G(S, lazy) = 1.6855 - G(-\frac{3}{6}log_2\frac{3}{6} - \frac{1}{6}log_2\frac{1}{6} - \frac{1}{6}log_2\frac{1}{6}$$

$$-\frac{1}{6}log_2\frac{1}{6}$$

= 1.6855 - 1.0755 - 0.4

-5 (-3 log 2 3 - 1 log 2 1 - 1 log 2 1 5)

No Kstudy Rpub RTV

→ Since Gr(S, party) is max, party feature will be the good node with possible values "yes" & "no". Item, for all 5 "yes" in the data, the activity is "party".

For the "no"s we need forther features to decide

→ After seemoving the "yes" for Party grows from the data:

| Peadline | Party? | Lazy   | Activity |
|----------|--------|--------|----------|
| Urgent   | N.     | yes    | shody    |
| Non      | No     | yes    | Pub      |
| Neur     | No     | No     | study    |
| Near     | No     | yes    | TV       |
| Urgent   | No     | you no | study    |

$$\frac{1}{E(s)} = -P_s \log_2 P_s - P_{pub} \log_2 P_{pub} - P_{TV} \log_2 P_{TV}$$

$$= -\frac{3}{5} \log_2 \frac{3}{5} - \frac{1}{5} \log_2 \frac{1}{5} - \frac{1}{5} \log_2 \frac{1}{5}$$

$$= 0.4421 + 0.4643 + 0.4643$$

$$\begin{array}{l} \text{Calcolating info. gain:} \\ \text{Calcolating info.} \\ \text{Calcolating i$$

$$= |371 - 0.9509 - 0$$

$$: G(s, |azy) = 0.42$$

rext node. Wherever deadline is "urgent", activity is "study" so that will lead to a leaf node. For none and "near" we need to calculate forther. For none "it leads to "pub" as a leaf node.

| Peadline | Purty? | Lazy | Activity |
|----------|--------|------|----------|
| near     | no     | no   | study    |
| hear     | no     | yes  | TV       |

- -> From the simplified table, it is devious that when lozy is "yes" activity is TV & lazy is "no", activity is study
- -> Complete decision tree:

