Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Team ID	PNT2022TMID38591
Project Name	Digital Naturalist - AI Enabled tool for Biodiversity Researchers
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Ui design	USN-1	The home page looks attractive. When you click on the button "Drop the Scan"	4	LOW	ARAVIND P
		USN-2	You will be redirected to predict section with responsive UI DESIGN	4	LOW	T THARUN KUMAR
Sprint-2	Image uploading	USN-3	The user can upload the picture of flora and fauna and get the detailed information of the species	5	MEDIUM	JANAKIRAMAN
		USN-4	Collecting the datasets of flora & fauna. Choosing the one among picture of the datasets and getting the information of the species	5	MEDIUM	MUKESH KUMAR
Sprit-3	Training Phase	USN-5	Dataset collection- Datasets are collected to train the model.	4	HIGH	JANAKIRAMAN
		USN-6	Data Pre-processing- The data is loaded and Pre-processed to train the model.	5	HIGH	T THARUN KUMAR
		USN-7	Build and Train the model- The model is trained using Training dataset.	8	HIGH	ARAVIND
	Testing Phase	USN-8	Unit test. Check the correctness of individual model components	4	HIGH	MUKESH KUMAR
		USN-9	Minimum Functionality Test- The minimum functionality test helps you decide whether individual model components behave as you expect		HIGH	ARAVIND
		USN-10	Model testing involves explicit checks for behaviors that we expect our model to follow.	5	HIGH	MUKESH KUMAR S

Sprint-4	Predict the species	USN-11	Connecting the frontend and backend using API	4	MEDIUM	ARAVIND
			calls			
		USN-12	cloud deployment - Deployment of application	5	HIGH	MUKESH KUMAR
			using IBM cloud			
		USN-13	The detailed information of the species is	3	MEDIUM	JANAKIRAMAN
			displayed in the webpage			

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	8	6 Days	24 Oct 2022	29 Oct 2022		
Sprint-2	10	6 Days	31 Oct 2022	05 Nov 2022		
Sprint-3	30	6 Days	07 Nov 2022	12 Nov 2022		
Sprint-4	12	6 Days	14 Nov 2022	19 Nov 2022		

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

average velocity (AV) per iteration unit (story points per day) Velocity:

For Sprint-1 the Average Velocity (AV) is:

$$AV = Sprint Duration / velocity = 8 / 6 = 1.3$$

For Sprint-2 the Average Velocity (AV) is:

$$AV = Sprint Duration / velocity = 10/6 = 1.6$$

For Sprint-3 the Average Velocity (AV) is:

$$AV = Sprint Duration / velocity = 30 / 6 = 5$$

For Sprint-4 the Average Velocity (AV) is:

$$AV = Sprint Duration / velocity = 12/6 = 2$$

TOTAL AVERAGE VELOCITY = 2.475

Burndown Chart:

Sprint 3

Sprint 4

