Day 07

Measuring associations

- Calculating correlation
- Limitations
- False positives
- Visual inference

Calculating correlation

Variables			Attributes / Features								
x	10	8	13	9	11	14	6	4	12	7	5
у	8.04	6.95	7.58	8.81	8.33	9.96	7.24	4.26	10.84	4.82	5.68

Correlation coefficient

Pearson Correlation Coefficient

Measures <u>linear</u> relationship between variables.

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

- n is the sample size
- $ullet x_i, y_i$ are the single samples indexed with i
- $ullet ar x = rac{1}{n} \sum_{i=1}^n x_i$ (the sample mean); and analogously for ar y

Correlation coefficient

Pearson Correlation Coefficient

- Captures the relationship between 2 vectors after centering each vector by its mean and scaling by its standard deviation.
- The final quantities for each vector are called z-scores.

Correlation coefficient

Pearson Correlation Coefficient

 Measures 'linear' relationship between variables.

$$m{r} = rac{1}{n-1} \sum_{i=1}^n \left(rac{x_i - ar{x}}{s_x}
ight) \left(rac{y_i - ar{y}}{s_y}
ight)$$

$$-1 \le r \le +1$$

-1 is total -ve correlation | 0 is no correlation | +1 is total +ve correlation

Anscombe's quartet: "calculation are exact; graphs are rough!"

11 data points

- Mean (x) = 9
- Var(x) = 11
- Mean (y) = 7.50
- Var (y) ~ 4.12
- Cor(x, y) = 0.816
- Linear regression line:

$$\circ$$
 y = 3.00 + 0.500x

Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician 27 (1): 17–21.

Correlation = -0.06

Correlation = 0.7

Simpson's Paradox

Simpson's Paradox

Success rates of kidney stone removal surgeries							
Treatment	Diameter < 2 cm	Dia. ≥ 2 cm	Overall				
Open surgery	93%	73%	78%				
Percutaneous nephrolithotomy	87%	69%	83%				

Spurious correlations

What does Nicholas Cage have to do with people drowning in swimming pools?

Checkout https://www.google.com/trends/correlate

Spurious correlations

Simulate fluctuations in correlation coefficients

- Repeat 10,000: Calculate correlation coefficients of n = 10 samples of two independent uniformly distributed variables between (0, 1). Plot a histogram.
- Mark statistically significant coefficients ($\alpha = 0.05$).
- Plot the samples with the three largest and smallest correlation coefficients (statistically significant).
- Vary sample size $n = \{5, 10, 20, 50\}$.

Correlation does not imply causation

There is a significant correlation between annual chocolate consumption and number of Nobel laureates for different countries $(r(20)=.79; p<0.001) \rightarrow chocolate intake$ provides nutritional ground for sprouting Nobel laureates.

- Correlation can occur by random chance.
- Confounding variables could lead to correlation.
- Even when there is causation, there might not be obvious correlation.

Interpreting comparison b/w two correlation w/o comparing them

Conclusion regarding the impact of an intervention based on correlation in treatment group vs. correlation in control group.

Spurious correlations – But it *looks* assoc<u>iated!</u>

Create a <u>lineup</u> for visual inference

- Place the plot of the real data amongst a set of null plots to create a lineup; Null plots are generated in a way consistent with the null hypothesis.
- If the observer can pick the real data as different from the others, this puts weight on the statistical significance of the structure in the plot.

Spurious correlations – But it *looks* associated!

Spurious correlations – But it *looks* associated!

	Mathematical Inference	Visual Inference		
Hypothesis	$H_0: \mu_1 = \mu_2 \text{ vs } H_a: \mu_1 \neq \mu_2$	$H_0: \mu_1 = \mu_2 \text{ vs } H_a: \mu_1 \neq \mu_2$		
Test Statistic	$T(y) = \frac{\bar{y}_1 - \bar{y}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$T(y)=rac{rac{1}{2}}{8} rac{1}{150}$ site A		
Sampling Distribution	$f_{T(y)}(t);$	$f_{T(y)}(t);$ $egin{array}{cccccccccccccccccccccccccccccccccccc$		
Reject H_0 if	$\downarrow \\ \text{observed } T \text{ is extreme}$	\downarrow observed plot is identifiable		