Data Representation

Sabah Sayed

Data Representation

- makes it possible to convert letters, sounds, and images into a form computers can use for processing
- Bit Patterns are used to represent all types of data
 - Numbers
 - Text characters
 - Images
 - Sound

Data Representation

- In computer (digital device):
 - Everything is represented by series of 0's and 1's called
 Binary Digit (bit, or b)
 - Everything is measured in Byte (B).

Byte	8 bits
Kilobyte	1024 or 2 ¹⁰ bytes
Megabytes	1,048,576 or 2 ²⁰ bytes
Gigabytes	2 ³⁰ bytes
TeraBytes	2 ⁴⁰ bytes
PetaBytes	2 ⁵⁰ bytes
ExaBytes	2 ⁶⁰ bytes

Where is the bit stored?

- Switch open = input logic state 0
- Switch closed = input logic state1
- Lamp off = output logic state 0
- Lamp on = output logic state1

Why Binary System?

- It is easier to implement hardware to deal with binary values than to deal with 10 different values.
 - It can be represented by a transistor being off
 (0) or on (1).
 - It can be a magnetic stripe magnetized with North in one direction (0) or the opposite (1).

Base 10 (Decimal numbers)

• What does 269 mean?

•
$$269 = 2 \times 100 + 6 \times 10 + 9 \times 1$$

= $2 \times 10^2 + 6 \times 10^1 + 9 \times 10^0$

Base 10 vs Base 2

Base 10

$$269 = 2 \times 100 + 6 \times 10 + 9 \times 1$$
$$= 2 \times 10^{2} + 6 \times 10^{1} + 9 \times 10^{0}$$

Base 2

$$1011 = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

 $1011 = 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1$

Base 10 vs Base 2

a. Base ten system

b. Base two system

Decoding A Binary Number

Binary mathematics

- Binary addition
- Binary subtraction
- Binary multiplication

Binary Addition

Two *n*-bit numbers

- Add individual bits
- Propagate carries

Binary Subtraction

Binary Subtraction

Binary Multiplication

• Decimal

	35
X	105
	175
0	000
3	35
3	8675

Binary Multiplication

• Binary, two 1-bit values

A	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Binary Multiplication

- Binary, two *n*-bit values
 - As with decimal values
 - -E.g.,

				1	1	1	0	
		X		1	0	1	1	
				1	1	1	0	
			1	1	1	0		
		0	0	0	0			
	1	1	1	0				
$\overline{1}$	0	0	1	1	0	1	0	

Binary Fractions

• Decimal

$$3.14 \Rightarrow 4 \times 10^{-2} = 0.04$$
 $1 \times 10^{-1} = 0.1$
 $3 \times 10^{0} = 3$
 3.14

Binary Fractions

Binary Fractions

• Decoding the binary representation of 101.101

Hexadecimal

- Binary code is too long in representation. Hex is much shorter.
- Base 16
 - 0 ... 9
 - A-10 B-11 C-12 D-13 E-14 F-15
- How to do hexadecimal with hexadecimal values:
 - Addition
 - Subtraction
 - Multiplication

Octal

- Base 8
 - 0 ... 7
- How to do octal with octal values:
 - Addition
 - Subtraction
 - Multiplication

Conversion Among Bases

• The possibilities:

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

Binary to Decimal

Binary to Decimal

Technique

- Multiply each bit by 2^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

$$101011_2 = ?_{10}$$

 $101011_2 = ??_{10}$

$$101011_2 = ??_{10}$$

$$+ + + + + + = 43_{10}$$

Bit "0"

$$101011_{2} \Rightarrow 1 \times 2^{0} = 1$$

$$1 \times 2^{1} = 2$$

$$0 \times 2^{2} = 0$$

$$1 \times 2^{3} = 8$$

$$0 \times 2^{4} = 0$$

$$1 \times 2^{5} = 32$$

$$43_{10}$$

$$N_B = \sum_{i=0}^{n-1} d_i \cdot B^i = d_{n-1}B^{n-1} + d_{n-2}B^{n-2} + \dots + d_1B^1 + d_0B^0$$

Octal to Decimal

Binary

Hexadecimal

Octal to Decimal

• Technique

- Multiply each bit by 8^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

$$N_B = \sum_{i=0}^{n-1} d_i \cdot B^i = d_{n-1}B^{n-1} + d_{n-2}B^{n-2} + \dots + d_1B^1 + d_0B^0$$

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

$$N_B = \sum_{i=0}^{n-1} d_i \cdot B^i = d_{n-1}B^{n-1} + d_{n-2}B^{n-2} + \dots + d_1B^1 + d_0B^0$$

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

$$N_B = \sum_{i=0}^{n-1} d_i \cdot B^i = d_{n-1}B^{n-1} + d_{n-2}B^{n-2} + \dots + d_1B^1 + d_0B^0$$

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$

$$N_B = \sum_{i=0}^{n-1} d_i \cdot B^i = d_{n-1}B^{n-1} + d_{n-2}B^{n-2} + \dots + d_1B^1 + d_0B^0$$

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$

$$\boxed{468_{10}}$$

$$N_B = \sum_{i=0}^{n-1} d_i \cdot B^i = d_{n-1}B^{n-1} + d_{n-2}B^{n-2} + \dots + d_1B^1 + d_0B^0$$

Hexadecimal to Decimal

Decimal Octal

Binary Hexadecimal

Hexadecimal to Decimal

Technique

- Multiply each bit by 16^n , where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

$$4D2_{16} \Rightarrow 2 \times 16^{0} = 2$$
 $13 \times 16^{1} = 208$
 $4 \times 16^{2} = 1024$
 1234_{10}

$$N_B = \sum_{i=0}^{n-1} d_i \cdot B^i = d_{n-1}B^{n-1} + d_{n-2}B^{n-2} + \dots + d_1B^1 + d_0B^0$$

Decimal to Binary

Decimal to Binary

• Technique

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1
- Etc.

$$125_{10} = ?_2$$

N	NB	R
125 62 31 15 7 3	2 2 2 2 2 2 2	1 0 1 1 1 1
0 $125_{10} = 1111101_{2}$		

 $125_{10} = 1111101_2$

Decimal to Octal

Decimal Octal

Binary

Hexadecimal

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

$$1234_{10} = ?_8$$

$$1234_{10} = 2322_{8}$$

Decimal to Hexadecimal

Decimal Octal

Binary Hexadecimal

Decimal to Hexadecimal

- Technique
 - Divide by <u>16</u>
 - Keep track of the remainder

$$1234_{10} = ?_{16}$$

$$1234_{10} = 4D2_{16}$$

Octal to Binary

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

$$703_8 = ?_2$$

$$703_8 = 111000011_2$$

Hexadecimal to Binary

Decimal Octal

Binary

Hexadecimal

Hexadecimal to Binary

- Technique
 - Convert each hexadecimal digit to a 4-bit equivalent binary representation

$$10AF_{16} = ?_2$$

 $10AF_{16} = 0001000010101111_2$

Binary to Octal

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

 $1011010111_2 = ?_8$

 $1011010111_2 = 1327_8$

Binary to Hexadecimal

Decimal Octal

Binary Hexadecimal

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

 $1010111011_2 = ?_{16}$

Octal to Hexadecimal

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

$$1076_8 = ?_{16}$$

Hexadecimal to Octal

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

 $1F0C_{16} = ?_{8}$

 $1F0C_{16} = 17414_{8}$