Problem 1

Given two chains (C, \leq) and (D, \leq) , define the lexicographic product of C and D to be the chain defined on the Cartesian product of their universes such that (a, b) < (c, d) in the sense of $C \times D$ if b < d in the sense of D, or b = d and a < c in the sense of C.

- 1. Show that a discrete chains without endpoints are those that can be written in the form $\mathbb{Z} \times C$, where C is a linear order.
- 2. Show that if $C \sim_{\omega} C'$ and $D \sim_{\omega} D'$, then so is $C \times D \sim_{\omega} C' \times D'$.

Problem 2

Given two chains (C, \leq) and (D, \leq) , by C + D we mean the china

$$C \times \{0\} \cup D \times \{1\}$$

such that $C \times \{0\}$ is a copy of C, $D \times \{1\}$ is a copy of D, and each element of $C \times \{0\}$ is smaller that each element of $D \times \{1\}$.

- 1. Show that the linear orders \mathbb{R} and $\mathbb{R} + \mathbb{Q}$ are not isomorphic;
- 2. Construct two discrete linear orders such that they are ∞ -equivalent but not isomorphic.

Problem 3

Let (M, R) and (M', R') be structures. A local isomorphism s is in $S_{\omega+1}(M, M')$ iff it satisfis the following conditions:

- for any $a \in M$, there is $b \in M'$ such that $s \cup \{(a,b)\} \in S_{\omega}(M,M')$;
- for any $b \in M'$, there is $a \in M$ such that $s \cup \{(a,b)\} \in S_{\omega}(M,M')$;

Let $p \in \mathbb{N}$, a local isomorphism s is in $S_{\omega+p+1}(M, M')$ iff it satisfis the following conditions:

- for any $a \in M$, there is $b \in M'$ such that $s \cup \{(a,b)\} \in S_{\omega+p}(M,M')$;
- for any $b \in M'$, there is $a \in M$ such that $s \cup \{(a,b)\} \in S_{\omega+p}(M,M')$;

We say that M and M' are $\omega + p$ -equivalent if $S_{\omega+p}(M,M') \neq \emptyset$, where p = 1,2,3,...

- 1. Show that $\mathbb{Z} + \mathbb{Z}$ and \mathbb{Z} are $\omega + 1$ -equivalent but not $\omega + 2$ -equivalent;
- 2. Construct two discrete linear orders such that they are $\omega+n$ -equivalent but not $\omega+n+1$ -equivalent for each $n \in \mathbb{N}$;