

Оглавление

1	Kop	рректирующие коды, код Хемминга	3								
	1.1	Общие определения									
	1.2	Расстояние Хемминга и исправление ошибок									
	1.3	Граница Хемминга									
	1.4	Граница Варшамова-Гильберта									
		Граница Плоткина									
	1.6	Асимптотика границ	8								
2	Матрицы и коды Адамара										
	2.1	Матрицы и коды Адамара, общее представление	10 10								
	2.2	Построение матрицы Адамара по способу Пэли									
3	Птата	нейные коды	12								
J	3.1										
	$\frac{3.1}{3.2}$	Смежные классы и декодирование по синдрому									
		Полиномиальные коды									
	3.4	Совершенные линейные коды									
	$\frac{3.4}{3.5}$										
	5.5	Двоичные циклические коды									
		3.5.1 Свойства циклического кода									
	2.6	3.5.2 Порождающая и проверочная матрицы циклического кода									
	3.6	Модификации линейных кодов									
	3.7	Бинарные коды Голея									
	3.8	Бинарные CRC-коды	18								
4	Реги	Регистры сдвига и линейная сложность									
	4.1	Регистры сдвига с линейной обратной связью									
	4.2	Линейная сложность, алгоритм Берлекэмпа-Мэсси									
	4.3	Порождение симплексного кода с помощью регистра сдвига	22								
5	Бул	иевы функции	23								
	5.1	Определения. Алгебраическая нормальная форма	23								
		5.1.1 Алгебраическая нормальная форма	23								
		5.1.2 Быстрое преобразование Мёбиуса	24								
	5.2	Коды Рида-Маллера	25								
		5.2.1 Взаимосвязь кодов Рида-Маллера разных порядков	25								
		5.2.2 Выколотые коды Рида-Маллера	26								
		$5.2.3$ Декодирование кода $\mathcal{R}(1,m)$	26								
	5.3	Преобразование Фурье и Уолша-Адамара для булевых функций	27								
		5.3.1 Функция Уолша									
		5.3.2 Преобразование Фурье и Уолша-Адамара	28								
		5.3.3 Связь АНФ и коэффициентов Уолша-Адамара	30								
		5.3.4 Быстрое вычисление коэффициентов Уолша-Адамара	31								
		5.3.5 Свёртка и преобразование Фурье	31								
	5.4	Произволная будевой функции по направлению	31								

И. Агафонова: Корректирующее кодирование и криптография

6	Кри	Криптографические свойства булевых функций									
	6.1	Нелинейность	33								
	6.2	Автокорреляция	34								
	6.3	Уравновешенность, устойчивость и корреляционная имунность	35								
		6.3.1 Уравновешенность	35								
		6.3.2 Корелляционная имунность	35								
		6.3.3 Устойчивость	35								
	6.4	Бент-Функции	37								
		6.4.1 Определение и базовые свойства	37								
		6.4.2 Дуальная функция	37								
		6.4.3 Критерий Ротхауза	38								
		6.4.4 Конструкция Мэйорана — Мак-Фарланда	38								
		6.4.5 Частично бент-функции	39								

Глава 1

Корректирующие коды, код Хемминга

1.1 Общие определения

Кодируется последовательность бит. При **непрерывном коде** кодируется вся последовательность, при **блочном** последовательность разбивается на блоки по k бит и каждый блок кодируется отдельно.

Определение 1.1. Инъективное отображение $f: K \to \{0,1\}^n$, $K \subset \{0,1\}^k$ называется кодом. Образ любого слова из $\{0,1\}^k$ называется кодовым словом или кодом. Множество $C = f(\{0,1\}^k)$ также называется кодом.

Определение 1.2. Код называется раздельным, если $[n] = A \cup B$, $A \cap B = \emptyset$, |A| = k и $\forall x \in K : f(x)|_A = x$, то есть, для некоторого подмножества бит кода оно совпадает с прообразом как строка. Биты множества A называются информационными, а из множества B — проверочными.

Определение 1.3. Код называется линейным, если соответствующее отображение f линейно.

Определение 1.4. Раздельный код называется систематическим, если проверочные символы являются линейной комбинацией информационных. То же самое, что раздельный линейный код.

Определение 1.5. Два кода f и g назовем эквивалентными, если $g(x) = f(\pi(x))$, где $\pi(x)$ — это x под действием некоторой перестановки π .

Определение 1.6. Скорость кода $C \subset \{0,1\}^n$ — это величина $R = \frac{1}{n} \log_2 |C|$. При $|C| = 2^k$ имеет место $R = \frac{k}{n}$. Избыточность кода — это величина 1 - R

1.2 Расстояние Хемминга и исправление ошибок

Определение 1.7. Расстоянием Хемминга между строками $x, y \in \{0,1\}^n$ будем называть величину

$$d(x,y) = |\{i \colon x_i \neq y_i\}|$$

Определение 1.8. $d(C) = \min_{\substack{x,y \in C \\ x \neq y}} d(x,y)$ — кодовое расстояние кода C.

Обозначение: (n, k, d)-код, код с длиной кодируемого слова k, кодового слова n и минимальным кодовым расстоянием d. [n, K, d]-код — код с длиной кодового слова n, количеством слов K и минимальным кодовым расстоянием d.

Определение 1.9. Код обнаруживает ошибки в r битах, если существует отображение $g:\{0,1\}^n \to \{0,1\}$, такое, что $\forall x \in \{0,1\}^k, |z| \le r \colon g(f(x) \oplus z) = 1$

Определение 1.10. Код исправляет ошибки в r битах, если существует отображение $g: \{0,1\}^n \to \{0,1\}^k$, такое, что $\forall x \in \{0,1\}^k, |z| \le r : g(f(x) \oplus z) = x$

Теорема 1.1. Для того, чтобы код C позволял обнаружить ошибки в r битах, необходимо и достаточно, чтобы $d(C) \ge r + 1$

Теорема 1.2. Для того, чтобы код С позволял исправить ошибки в r битах, необходимо и достаточно, чтобы $d(C) \ge 2r + 1$

 \mathcal{A} оказательство. \Leftarrow

 $g(x)=rg\min_{x\in X}d(x,f(y))$. Пусть x=f(y)+z и $|z|\leq r$ и g(x)
eq y. Тогда $d(f(g(x)),x)\leq r$, а, значит $d(f(y),f(g(x)))\leq r$

 $d(x, f(y)) + d(x, f(g(x))) \le 2r$. Противоречие.

Рассмотрим $x,y\in C$ такие, что $d(x,y)\leq 2r$. Тогда легко видеть, что существует z, такое, что $d(x,z)\leq r$ и $d(y,z) \leq r$. Тогда, как бы мы не определили g(z), мы получим противоречие с x или y.

1.3Граница Хемминга

Определение 1.11. Шаром радиуса r с центром в x назовем множество точек

$$B_r(x) = \{y \colon d(x,y) \le r\}$$

Количество вершин в шаре в пространстве $\{0,1\}^n$ обозначим $S_r(n)$

Замечание 1.1. $S_r(x) = \sum_{i=0}^r C_n^i$.

Доказательство. $S_r(n) = |B_r(0)|$. Строки в $B_r(0)$ — это строки с не более чем r единичными битами.

Определение 1.12. Энтропией дискретной случайной величины ξ принимающей значения $1, \dots n$ с вероятностями p_1, \ldots, p_n называется

$$H(\xi) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

Лемма 1.1.

$$\frac{1}{n+1}2^{nH(\frac{r}{n})} \leq C_n^r \leq 2^{nH(\frac{r}{n})}$$

Доказательство. По формуле Стирлинга

$$C_n^r \simeq \frac{\sqrt{2\pi n}}{\sqrt{2\pi k}\sqrt{2\pi(n-k)}} \cdot \frac{n^n}{k^k(n-k)^{n-k}}$$

С другой стороны

$$2^{nH(\frac{r}{n})} = 2^{n\left(-\frac{r}{n}\log_2\frac{r}{n} - (1 - \frac{r}{n})\log_2(1 - \frac{r}{n})\right)} = \frac{\left(\frac{r}{n}\right)^{-r}}{\left(1 - \frac{r}{n}\right)^{n-r}} = \frac{n^n}{r^r(n-r)^{n-r}}$$

Тогда для достаточно больших n достаточно показать

$$\frac{1}{n+1} \le \frac{\sqrt{2\pi n}}{\sqrt{2\pi k}\sqrt{2\pi(n-k)}} \le 1$$

Второе неравенство очевидно, поскольку в знаменателе квадратичная зависимость.

$$\frac{\sqrt{2\pi n}}{\sqrt{2\pi k}\sqrt{2\pi(n-k)}} = \sqrt{\frac{n}{k(n-k)}}\frac{1}{\sqrt{2\pi}}$$

 $k(n-k) \leq \frac{n^2}{4}$, тогда имеем

$$\frac{\sqrt{2\pi n}}{\sqrt{2\pi k}\sqrt{2\pi(n-k)}} \ge \frac{2}{\sqrt{2\pi n}}$$

для достаточно больших n последнее $\geq \frac{1}{n+1}$

Теорема 1.3. Для достаточно больших n и при условии $0 < r \le \frac{n}{2}$ верно

$$\frac{\log_2 S_r(n)}{n} = H(\frac{r}{n}) + O(\frac{\log_2 n}{n})$$

где $H(\frac{r}{n})$ — энтропия случайной величины, принимающей значения 0 и 1 c вероятностями $\frac{r}{n}$ и $1-\frac{r}{n}$.

Доказательство. Покажем, что при $r \leq \frac{n}{2}$ наибольшим слагаемым будет C_n^r .

$$\frac{C_n^i}{C_n^{i+1}} = \frac{n!(i+1)!(n-i-1)!}{n!i!(n-i)!} = \frac{i+1}{n-i}$$

Возрастание C_n^i равносильно $\frac{C_n^i}{C_n^{i+1}} \le 1 \iff i+1 \le n-i \iff 2i \le n-1$. То есть C_n^i больше предыдущего сочетания, если $2(i-1) \le n-1$ то есть $i \le \frac{n+1}{2}$. Тогда имеем

$$C_n^r \leq S_r(n) \leq (r+1)C_n^r$$

Воспользуемся леммой, прологарифмируем формулу оттуда:

$$-\log_2(n+1) + nH(\frac{r}{n}) \le \log_2 S_r(n) \le \log_2(r+1) + nH(\frac{r}{n})$$

Поделим три части на n

$$-\frac{\log_2(n+1)}{n} + H(\frac{r}{n}) \leq \frac{\log_2 S_r(n)}{n} \leq \frac{\log_2(r+1)}{n} + H(\frac{r}{n})$$

Тогда получили, что требовалось,

$$\frac{\log_2 S_r(n)}{n} = H(\frac{r}{n}) + \underbrace{c}_{|\cdot| \le 1} \frac{\log_2(r+1)}{n}$$

Теорема 1.4. (Граница Хемминга) Для любого (n,k)-кода, исправляющего r ошибок верно

$$n-k \ge \log_2\left(\sum_{i=0}^r C_n^i\right)$$

Доказатель ство. Рассмотрим прообразы исправляющей функции $g.\ g^{-1}(y)$. По определению $|g^{-1}(y)| \geq S_r(n)$ и $y_1 \neq y_2 \implies g^{-1}(y_1) \cap g^{-1}(y_2) = \emptyset$. Тогда для завершения доказательства достаточно расписать

$$2^{n} = |\{0,1\}^{n}| = \Big|\bigcup_{y \in \{0,1\}^{k}} g^{-1}(y)\Big| \ge \sum_{y \in \{0,1\}^{k}} S_{r}(k) = 2^{k} S_{r}(n)$$

Теорема 1.5. Если $n-k \ge \log_2(n+1)$, то существует (n,k,3) код, то есть, граница Хемминга достигается.

Доказательство. Построим явно такой линейный код. $C = \{Hx = 0\}$, где H — матрица $(n-k) \times n$. Пусть H_ij — это i-й бит числа j $(1 \le i \le n-k; 1 \le j \le n)$. Заметим, что в условиях теоремы в матрице нет двух одинаковых столбцов, то есть, ее ранг не меньше 2. Пусть существуют $x, y \in C$, такие, что $d(x,y) \le 2$ тогда $d(0,x \oplus y) \le 2$. То есть $x \oplus y$ имеет не более двух единиц в двоичной записи $H(x \oplus y) = H_{j_1} \oplus H_{j_2} = 0$, что противоречит выводу о ранге. Тогда кодовое расстояние полученного кода равно 3.

Пример 1.1. Построим систематический (n, k) код Хемминга.

Пусть $a \in \{0,1\}^k$; $b \in \{0,1\}^n$. Кодирующее преобразование E(a) = b. Наложим следующие ограничения:

$$\begin{cases} b_i = a_i & i \le k \\ b_{i+k} = (\Gamma_i, a) & i \le n - k \end{cases}$$

То есть $b = a(E_k|\Gamma^T)$. То есть, мы построили порождающую матрицу кодирующей функции. Построим теперь проверочную матрицу:

$$b_{i+k} = (\Gamma_i, (b_1, \dots, b_k)) \iff b_{i+k} \oplus (\Gamma_i, (b_1, \dots, b_k)) = 0$$

То есть, $H = (\Gamma | E_{n-k})$. Условие Hb = 0 является необходимым и достаточным для того, чтобы b является кодом, поскольку образом такого b является (b_1, \ldots, b_k) .

Если стоблцы матрицы H различны, то по 1.5 мы можем исправлять одну ошибку. Давайте построим явно исправляющую функцию.

Пусть $b'=b\oplus e_i$, где $e_i=(\underbrace{0,\ldots,0}_{i-1},1,0,\ldots,0)$. Тогда $Hb'=H_i-i-$ столбец матрицы H. Так как все столбцы

различны, мы можем узнать, в каком бите была ошибка. Hb' называется cundpomom вектора b'.

1.4 Граница Варшамова-Гильберта

Теорема 1.6. Существует (n,k)-код с минимальным расстоянием d, такой, что

$$n-k \leq \log_2 S_{d-1}(n)$$

Доказательство. Выберем точку c_1 . Рассмотрим $B_{d-1}(c_1)$ и пометим точки в нем. Пока есть непомеченные точки будем выбирать c_i и помечать точки в шаре $B_{d-1}(C_i)$. Так мы построим последовательность точек c_1,\ldots,c_K , такую, что $i\neq j\implies d(c_i,d_j)\geq d$. Все точки $\{0,1\}^n$ покрыты хотя бы одним шаром, то есть $K\cdot S_{d-1}(n)\geq 2^n$. $K\geq 2$, если d-1< n, так как $d((0,\ldots,0),(1,\ldots,1))=n$. Выберем $k=\lceil \log_2 K \rceil$, тогда $2^kS_{d-1}(n)\geq 2^n\implies S_{d-1}(n)\geq 2^{n-k}$. \square

Следствие 1.1. Существует (n, k)-код, исправляющий г ошибок и удовлетворяющий

$$n - k \le \log_2(S_{2r}(n))$$

Замечание 1.2. Мы получили верхнюю границу на количество исправляющих символов. Граница Хемминга нижняя граница, то есть

$$\log_2 S_r(n) \le n - k \le \log_2 S_{2r}(n)$$

1.5 Граница Плоткина

Теорема 1.7. Для [n,K,d]-кода выполнено $d \leq \frac{n \cdot \frac{K}{K-1}}{K-1}$. В частности, для (n,k,d)-кода верно $d \leq \frac{n2^{k-1}}{2^k-1}$. Доказательство. Рассмотрим $D = \sum_{x,y \in C} d(x,y)$. С одной стороны

$$D \ge 2_K^2 d = K(K-1)d$$

С другой стороны, нассмотрим каждый бит строк и обозначим

$$d_i(x,y) = \begin{cases} 0 & x_i = y_i \\ 1 & x_i \neq y_i \end{cases}$$

Тогда $d(x,y) = d_1(x,y) + \ldots + d_n(x,y)$. Тогда

$$D = \sum_{i=1}^{n} \underbrace{\sum_{x,y \in C} d_i(x,y)}_{D_i}$$

Заметим, что

$$D_i = 2|\{x \in C \colon x_i = 0\}| \cdot |\{x \in C \colon x_i = 1\}|$$

Тогда $D_i \leq 2\left(\frac{K}{2}\right)^2$, а, значит

$$D \le \frac{nK^2}{2}$$

Таким образом,

$$\frac{nK^2}{2} \ge K(K-1)d \iff \frac{nK}{K-1} \ge d$$

Теорема 1.8. Если существует, (n,k)-код C, такой, что $d(C) \geq \frac{n}{2}$, то

$$k \le \log_2(2n) \iff \frac{\overbrace{K}^{2^k}}{2} \le n$$

Доказательство. Рассмотрим преобразование

$$\underbrace{(b_1,\ldots,b_n)}_{\in\{0,1\}^n} \mapsto ((-1)^{b_1},\ldots,(-1)^{b_n})$$

Пусть $v^{(1)},\dots,v^{(K)}$ — векторы, полученные этим преобразованием из векторов кода. $d(b^{(i)},b^{(j)})\geq \frac{n}{2}\iff (v^{(i)},v^{(j)})\leq \frac{n}{2}$

Пусть $\frac{K}{2} > n$, тогда покажем, что не может существовать набора $v^{(1)}, \dots, v^{(K)}$ с требуемым свойством. Рассмот-

рим $x \in \mathbb{R}^{n}$, такой, что $(x, v^{(i)}) \neq 0$ для всех i. Например, можно рассмотреть $(1, 0, \dots, 0)$. Тогда $(x, v^{(i)}) > 0$ для не менее чем $\frac{K}{2}$ векторов, либо $(x, v^{(i)}) < 0$ для не менее чем $\frac{K}{2}$ векторов. НУО верно первое иначе рассмотрим -x.

Тогда у нас есть набор из $\frac{K}{2} > n$ векторов, таких, что $(x, v^{(i)}) > 0$ для всех i. Количество векторов превышает n, тогда

$$\exists \lambda \colon \sum_{i=1}^{n+1} \lambda_i v^{(i)} = 0$$

НУО $\exists \lambda_i > 0$, иначе поменяем знак всем λ , тогда обозначим $I = \{i \colon \lambda_i > 0\} \neq \emptyset$. Можем записать

$$\sum_{i=1}^{n+1} \lambda_i v^{(i)} = \underbrace{\sum_{i \in I} \lambda_i v^{(i)}}_{z} + \sum_{i \notin I} \lambda_i v^{(i)} = 0$$

• $z \neq 0$. Тогда (z, z) > 0, с другой стороны

$$(z, 0 - z) = \left(\sum_{i \in I} \lambda_i v^{(i)}, -\sum_{i \notin I} \lambda_i v^{(i)}\right) = -\sum_{\substack{i \in I \\ j \notin I}} \underbrace{\lambda_i}_{>0} \underbrace{\lambda_j}_{<0} \underbrace{(v^{(i)}, v^{(j)})}_{<0} \le 0$$

Получаем противоречие

• z = 0. Тогда (z, x) = 0, но

$$(z,x) = \left(\sum_{i \in I} \lambda_i v^{(i)}, x\right) = \sum_{i \in I} \underbrace{\lambda_i}_{>0} \underbrace{\left(v^{(i)}, x\right)}_{>0} > 0$$

Теорема 1.9. Для (n,k) кода, такого, что $n \geq 2d(C)$ выполнено

$$n - k \ge 2d(C) - \log_2 4d(C)$$

Доказатель ство. При n=2d воспользуемся 1.8 и получим $-k \geq -\log_2(2n)$ и прибавим к обеим частям n=2dПри n > 2d обозначим n = 2d + t и рассмотрим два случая:

- 1. $t \geq k$. Тогда сразу $n \geq 2d + k$ и теорема доказана
- 2. t < k. Тогда выберем в коде t информационных символов I_0 тогда рассмотрим код $C' = \{x|_{[n]\setminus I_0} : x \in C \land x|_{I_0} = t \}$ a} для произвольного $a \in \{0,1\}^t$. Кодовое расстояние этого кода не менее d, поскольку мы вычеркивали одинаковые символы, n'=2d. Тогда $k-t < \log_2(2n')$. Тогда

$$n - k = 2d - (k - t) > 2d - \log_2(4d)$$

1.6 Асимптотика границ

 $R = \frac{k}{n}$ — скорость кода.

Обозначим $\delta(C) = \frac{d(C)}{n}$ — относительное кодовое расстояние. Обозначим $\mathcal{U} = \{(R, \delta)\} \subset [0, 1] \times [0, 1]$ множество пар, таких, что существует последовательность (n_i, k_i, d_i) кодов, таких, что

$$n_i \underset{i \to \infty}{\to} \infty$$

$$\frac{k_i}{n_i} \underset{i \to \infty}{\to} R$$

$$\frac{d_i}{n_i} \underset{i \to \infty}{\to} \delta$$

Оценим величину $\bar{R}(\delta) = \sup\{R \colon (R, \delta) \in \mathcal{U}\}$

Замечание 1.3. При $\delta > \frac{1}{2} \; \bar{R}(\delta) = 0$

Доказательство.

$$d \le \frac{n2^{k-1}}{2^k - 1} \implies \delta + \frac{O(1)}{n} \le \frac{2^{k-1}}{2^k - 1}$$

При $n \to \infty$ получим (пользуясь $2\delta-1>0$) $2^k \le \frac{2\delta}{2\delta-1}$, тогда $k \le \log_2 \frac{2\delta}{2\delta-1}$, и значит $R=\frac{k}{n} \to 0$

Утверждение 1.1. $\bar{R}(\delta) \leq 1 - H(\frac{\delta}{2})$

 \mathcal{A} оказатель cmso. $n-k \geq \log_2 S_{\lceil \frac{d(C)-1}{2} \rceil}(n)$ известно из теоремы о границе Хемминга. $d(C) = \lfloor \delta n \rfloor$ имеем

$$1 - \frac{k}{n} \ge \frac{\log_2 S_{\lfloor \frac{\lfloor n\delta \rfloor - 1}{2} \rfloor}(n)}{n}$$

По следствию

$$\frac{\log_2 S_r(n)}{n} = H(\frac{r}{n}) + O(\frac{\log_2 n}{n})$$

тогда

$$1-R \geq O(\frac{\log_2 n}{n}) + H(\lfloor \frac{\lfloor n\delta \rfloor - 1}{2} \rfloor)$$

пренебрегая округлениями

$$R + O(\frac{\log_2 n}{n}) \leq 1 - H(\frac{\delta}{2})$$

и при $n \to \infty$

$$\bar{R}(\delta) \le 1 - H(\frac{\delta}{2})$$

Утверждение 1.2. $\bar{R}(\delta) \geq 1 - H(\delta) \ npu \ \delta \leq \frac{1}{2}$

Доказательство. Из теоремы о границе Варшамова-Гильберта знаем, что

$$n - k \le \log_2 S_{d-1}(n)$$

в нашем случае

$$1 - \frac{k}{n} \le \frac{\log_2 S_{\lfloor n\delta \rfloor - 1}(n)}{n}$$

по следствию из теоремы о границе Хемминга

$$1 - \frac{k}{n} \leq H(\frac{\lfloor n\delta \rfloor - 1}{n}) - O(\frac{\log_2 n}{n})$$

тогда при $n \to \infty$ получаем требуемое.

Утверждение 1.3. $\bar{R}(\delta) \leq 1 - 2\delta \ npu \ \delta \leq \frac{1}{2}$

Доказательство. Из последней теоремы о границе Плоткина

$$n-k \geq 2n\delta - \log_2(4n\delta)$$

можно переписать как

$$\frac{k}{n} \le 1 - 2\delta + \frac{\log_2 4n\delta}{n}$$

тогда при $n \to \infty$ имеем $\bar{R} \le 1 - 2\delta$

Глава 2

Матрицы и коды Адамара

2.1 Матрицы и коды Адамара, общее представление

Определение 2.1. Матрицей Адамара называется матрица $H \in \{-1,1\}^{n \times n}$, такая, что $H \cdot H^T = nE_n$.

Матрица адамана в нормализованном виде — это матрица, у которой первая строка и первый столбец состоят из единиц.

Двоичная матрица Адамара, это матрица, полученная из матрицы Адамара заменой –1 на 1 а 1 на 0.

 ${f Y}$ тверждение ${f 2.1.}$ Умножение строчки или столбца матрицы Aдамара на -1 переводит ее в матрицу Aдамара.

Доказатель ство. Умножение строчки или столбца на единицу, это доножение слева или справа на матрицу $d = diag(1, \ldots, 1, -1, 1, \ldots, 1)$. Тогда в первом случае

$$(dH) \cdot (dH)^T = dHH^T d^T = d(nE)d^T = nEdd^T = nE$$

а во стором

$$(Hd) \cdot (Hd)^T = Hdd^TH^T = HH^T = nE$$

Теорема 2.1. Если существует матрица Адамара порядка n, то $n \in \{1,2\} \cup \{4k\}$

Доказательство. Пусть $n \ge 3$ и существует H. Тогда представим ее в нормализованном виде и разделим столбцы на четыре типа:

- 1. Начинается с (1,1,1)-i штук
- 2. Начинается с (1, 1, -1) j штук
- 3. Начинается с (1, -1, 1) k штук
- 4. Начинается с (1, -1, -1) l штук

Запишем условия ортогональности строк (1,2), (2,3) и (1,3):

$$\left\{ \begin{array}{l} i+j-k-l = 0 \\ i-j+k-l = 0 \\ i-j-k+l = 0 \end{array} \right.$$

Тогда i=j=k=l, тогда n=4i

Утверждение 2.2. Если H — матрица $A \partial$ амара, то

$$\begin{pmatrix} H & H \\ H & -H \end{pmatrix}$$

— тоже матрица Адамара.

Доказательство.

$$\begin{pmatrix} H & H \\ H & -H \end{pmatrix} \cdot \begin{pmatrix} H^T & H^T \\ H^T & -H^T \end{pmatrix} = \begin{pmatrix} HH^T + HH^T & HH^T - HH^T \\ HH^T - HH^T & HH^T + HH^T \end{pmatrix} = 2nE_{2n}$$

Такие матрицы Адамара называются матрицами Сильвестра.

Определение 2.2. Симплексным кодом Адамара называется $[K-1,K,\frac{K}{2}]$ -код, состоящий из строк двоичной матрицы Адамара из которой удален первый столбец.

Утверждение 2.3. Для симплексного кода Адамара выполнено $K = \frac{2d}{2d-n}$.

Доказательство. Очевидно.

Замечание 2.1. Если матрица Адамара, построена по способу Сильвестра, то симплексный код, построенный по ней, линеен.

2.2 Построение матрицы Адамара по способу Пэли

Определение 2.3. Пусть $p \in \mathbb{P} \setminus \{2\}$. $\{a \in \{0, \dots, p-1\} \colon \exists b \colon b^2 = a\}$ называется множеством квадратичных вычетов.

Определение 2.4. Функция

$$\chi(i) = \begin{cases} 0 & i \text{ кратно } p \\ 1 & i \mod p \text{ вычет} \\ -1 & i \mod p \text{ невычет} \end{cases}$$

называется символом Лежандра.

Теорема 2.2. $\forall c \neq 0 \mod p$ выполнено $\sum_{b=0}^{p-1} \chi(b)\chi(b+c) = -1$

Конструкция 2.1. Матрица Джекобстола. $Q = \{q_{ij}\}_{p \times p}.$ $q_{ij} = \chi(j-i).$

Лемма 2.1.
$$Q \cdot Q^T = pE - \mathbf{1}_{p \times p}$$

 $Q\mathbf{1}_{p \times p} = \mathbf{1}_{p \times p}Q = 0$

 \mathcal{A} оказательство. $Q\mathbf{1}_{p \times p} = \mathbf{1}_{p \times p}Q = 0$, так как по модулю p существует $\frac{p-1}{2}$ вычетов и $\frac{p-1}{2}$ невычетов. Рассмотрим $P = \{p_{ij}\} = Q \cdot Q^T$. Тогда

$$p_{ii} = \sum_{k=0}^{p-1} q_{ik}^2 = p$$

$$p_{ij} = \sum_{k=0}^{p-1} q_{ik} q_{jk}$$

$$p_{ij} = \sum_{k=0}^{p-1} \chi(i-k)\chi(j-k) = \sum_{k=0}^{p-1} \chi(i-k) + \chi((i-k) + (j-i)) = -1$$

 Π емма 2.2. Π усть

$$H = \begin{pmatrix} 1 & \mathbf{1}_p \\ \mathbf{1}_p & Q - E \end{pmatrix}$$

Tог $\partial a\ H\ -$ мampuuu $a\ A$ ∂a мapa

Доказательство.

$$H \cdot H^T = \begin{pmatrix} 1 & \mathbf{1}_p \\ \mathbf{1}_p & Q - E \end{pmatrix} \cdot \begin{pmatrix} 1 & \mathbf{1}_p \\ \mathbf{1}_p & Q^T - E \end{pmatrix} = \begin{pmatrix} p+1 & \mathbf{0}_p \\ \mathbf{0}_p & \mathbf{1}_{p \times p} + (Q - E)(Q^T - E) \end{pmatrix}$$

Распишем

$$\mathbf{1}_{p imes p} + (Q-E)(Q^T-E) = \mathbf{1}_{p imes p} + QQ^T - Q - Q^T + E\mathbf{1}_{p imes p} + QQ^T - Q - Q^T + E$$
 заметим, что $q_{ij} = \chi(i-j) = \chi(-1)\chi(j-i) = -\chi(j-i)$, тогда $Q^T = -Q^T$, тогда $\mathbf{1}_{p imes p} + QQ^T - Q - Q^T + E = \mathbf{1}_{p imes p} + QQ^T + E = (p+1)E$

Глава 3

Линейные коды

3.1 Базовые факты, коды Адамара

Определение 3.1. Код называется линейным, если множество кодовых слов C является линейным подпространством $\{0,1\}^n$.

Определение 3.2. Весом Хэмминга $a \in \{0,1\}^n$ назовем $w(a) = \{i : a_i = 1\}$

Замечание 3.1. $d(a,b) = w(a \oplus b)$

Лемма 3.1. Пусть C — линейный код. Тогда $d(C) = \min_{\substack{x \in C \\ x \neq 0}} w(x)$

Доказатель ство.
$$d(C) = \min_{a \neq b \in C} d(a,b) = \min_{\substack{a \neq b \in C \\ x \neq 0}} w(a \oplus b) = \min_{\substack{x \in C \\ x \neq 0}} w(x)$$

Определение 3.3. Пусть C — некоторый линейный код с порождающей матрицей G и проверочной матрицей H. Тогда дуальным к нему называется код C^{\perp} с порождающей матрицей H и проверочной матрицей G.

Если C являлся (n,k)-кодом, то C^{\perp} будет (n,n-k)-кодом.

Теорема 3.1. Дуальный код Хэмминга $(2^m - 1, 2^m - 1 - m)$ является кодом Адамара с матрицей Сильвестра.

Доказательство. Будем доказывать по индукции.

База: m=2. Тогда $n=2^m-1=3, \, k=2^m-1-m=1$. Тогда проверочная матрица такого кода Хемминга имеет

вид
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 Тогда все векторы дуального кода выглядят как: $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Этот код совпадает с соответствующим

кодом Адамара.

Переход: пусть доказано для $n=2^{m-1}-1$. Пусть $\bar{H}\in\{0,1\}^{(m-1)\times 2^{m-1}}$ — проверочная матрица для кода Хэмминга $(2^{m-1}-1,2^{m-1}-1-(m-1))$.

Покажем, что матрица

$$H = \begin{pmatrix} 0 \dots 0 & 1 & 1 \dots 1 \\ \bar{H} & \mathbf{0}_{m-1} & \bar{H} \end{pmatrix}$$

является проверочной матрицей кода Хэмминга $(2^m-1,2^m-1-m)$. Это почти очевидно, достаточно заметить, что столбцы матрицы различны и ее размерность $m\times(2^m-1)$ (следует из того же свойства для \bar{H} и отсутствия в \bar{H} нулевого столбца.

По индукционному предположению матрица \bar{H} порождает строки матрицы \mathcal{A}' — усеченной бинарной матрицы Адамара размера $2^{m-1} \times 2^{m-1} - 1$. Тогда матрица $(\bar{H}|\mathbf{0}_{m-1}|\bar{H})$ порождает строки матрицы $(\mathcal{A}'|\mathbf{0}_{2^{m-1}}|\mathcal{A}')$.

Добавим в $(\bar{H}|\mathbf{0}_{m-1}|\bar{H})$ первую строку H_1 , чтобы получить матрицу H. Тогда можно сделать вывод, что матрица H порождает все строки матрицы $(\mathcal{A}'|\mathbf{0}_{2^{m-1}}|\mathcal{A}')$ и строки, полученные из них прибавлением H_0 . Тогда в итоге мы получим коды

$$egin{pmatrix} \mathcal{A}' & \mathbf{0}_{2^{m-1}} & \mathcal{A}' \ \mathcal{A}' & \mathbf{1}_{2^{m-1}} & \mathbf{1} - \mathcal{A}' \end{pmatrix}$$

Припишем слева столбец из нулей и получим, что новая матрица — это в точности матрица, полученная из $(\mathbf{0}_{2^{m-1}}|\mathcal{A}')$ по правилу Сильвестра. Таким образом, теорема доказана.

Следствие 3.1. Код Адамара с матрицей Сильвестра является линейным.

Теорема 3.2. Пусть C — линейный код, H — его проверочная матрица.

- 1. В проверочной матрице H любые d-1 столбцов линейно независимы $\iff d(C) \geq d$
- 2. Если любые d-1 столбцов матрицы H линейно независимы и существуют d линейно зависимых столбцов, то d(C)=d

 \mathcal{A} оказательство. \Rightarrow

По лемме $d(C) = \min_{x \in C} w(x)$. Пусть существует $x \in C$ такое, что w(x) < d. Hx = 0. Пусть i_1, \ldots, i_r — номера ненулевых компонент x (r < d). Тогда $H_{i_1} \oplus H_{i_2} \oplus \ldots \oplus H_{i_r} = 0$, но это противоречит условию линейной независимости столбцов.

 \Leftarrow Если $H_{i_1}\oplus\ldots\oplus H_{i_r}=0$, то рассмотрим вектор $x=\{x_j\},\ x_j=egin{cases} 0&\exists l\colon j=i_l\\1&$ иначе , Для такого вектора Hx=0, но w(x)=r< d.

Пункт 2 непосредственно следует из пункта 1.

3.2 Смежные классы и декодирование по синдрому

Определение 3.4. Смежным классом группы G по подгруппе C называется множество вида

$$Cb = \{xb \colon x \in C\}$$
 правый $bC = \{bx \colon x \in C\}$ левый

Определение 3.5. Синдром вектора x относительно линейного кода C с проверочной матрицей H называется вектор Hx

Теорема 3.3. Пусть $x, y \in \{0,1\}^n$. Тогда $x, y \in Cz$ для некоторого $z \iff Hx = Hy$

Доказательство. $\Rightarrow x = a + z, y = b + z, a, b \in C$. Тогда

$$Hx = Ha + Hz = Hz = Hb + Hz = Hy$$

$$\Leftarrow Hx = Hy \implies H(x+y) = 0$$
, тогда $x, y \in Cx$.

Пусть $b \in C$, b' = b + e, где e — вектор ошибок. Тогда Hb' = He, то есть, ошибку для b' нужно искать в его смежном классе по C.

Лидер — это слово наименьшего веса в смежном классе. Лидер является наиболее вероятным вектором ошибок.

Утверждение 3.1. Будем полагать вектором ошибок лидера соответствующего смежного класса. Составим матрицу $A = \{A_{ij}\}_{2^{n-k} \times 2^k}, \ A_{i,0} - \text{лидер}$ смежного класса $i, \ A_{0,i} \in C \ u \ A_{ij} = A_{i,0} \oplus A_{0,j}$.

- 1. Исправим все ошибки, являющиеся лидерами
- 2. Для любого слова A_{ij} слово $A_{0,j}$ является ближайшим к A_{ij} кодовым словом.

2. $A_{ij} = A_{0,j} + A_{i,0}$. $A_{i,0} - \text{лидер.} d(A_{ij}, A_{0,j}) = w(A_{i,0})$. Рассмотрим другое кодовое слово $A_{0,i'}$.

$$d(A_{ij}, A_{0,j'}) = w(A_{ij} \oplus A_{0,j'})$$
$$A_{ij} \oplus A_{0,j'} = A_{i,0} \oplus \underbrace{A_{0,j} \oplus A_{0,j'}}_{\in C}$$

Тогда $A_{ij} \oplus A_{0,j'}$ лежит в смежном классе i, значит $w(A_{ij} \oplus A_{0,j'}) \ge w(A_{i,0})$, что и требовалось.

3.3 Полиномиальные коды

Определение 3.6. Установим взаимно однозначной соответствие между многочленами степени < n и двоичными векторами из $\{0,1\}^n$.

$$\sum_{i=0}^{n-1} g_i x^i \mapsto (x_0, \dots, x_{n-1}) \mapsto \sum_{i=0}^{n-1} g_i x^i$$

. Тогда рассмотрим некоторый многочлен g(x), тогда кодовые многочлены получаются по правилу b(x) = a(x)g(x), где deg(a(x)) < k. Тогда, если deg(g(x)) = n - k, то получается (n, k) код.

Пример 3.1. (6,4) код, с порождающим многочленом $1+x+x^2$

 $0001 \quad \stackrel{x^3}{\rightarrow} \quad 000111$

 $\begin{array}{ccc} 0\,0\,1\,0 & \stackrel{x^2}{\rightarrow} & 0\,0\,1\,1\,1\,0 \\ 0\,1\,0\,0 & \stackrel{x}{\rightarrow} & 0\,1\,1\,1\,0\,0 \end{array}$

 $1000 \xrightarrow{1} 111000$

3.4 Совершенные линейные коды

Определение 3.7. Линейный (n,k)-код, исправляющий r ошибок называется совершенным, если для него достигается граница Хэмминга:

$$2^{n-k} = S_r(n)$$

Замечание 3.2. Для нелинейных кодов граница Хэмминга имеет вид

$$K = \frac{2^n}{S_r(n)}$$

Пример 3.2. (2m+1,1) код. Кодовые слова $\begin{pmatrix} 0 & \dots & 0 \\ 1 & \dots & 1 \end{pmatrix}$. Этот код исправляет m ошибок.

$$S_m(2m+1) = \sum_{i=0}^m C_{2m+1}^i = \frac{1}{2} \sum_{i=0}^m (C_{2m+1}^i + C_{2m+1}^{2m+1-i}) = 2^{2m}$$

Тогда $2^{2m+1-1} = 2^{2m} = S_m(2m+1)$, что и требуется по определению.

Пример 3.3. Код Хэмминга с $n=2^m-1, \, k=2^m-1-m, \, m\geq 2$. Код исправляет одну ошибку, $S_1(n)=1+n=2^m$. Тогда

$$2^{n-k} = 2^{2^m - 1 - (2^m - 1 - m)} = 2^m = S_1(n)$$

Теорема 3.4. Следующие условия равносильны

- 1. Существует двоичный совершенный код C в $\{0,1\}^n$, который исправляет одну ошибку
- 2. $n=2^m-1$

Доказательство. 2 \implies 1 Должно выполняться $K = \frac{2^n}{n+1}$. K может быть целым, только если $n+1=2^m$ для

 $1 \implies 2$ Доказали в примере 3.3.

Пример 3.4. (23, 12)-код Голея, исправляющий 3 ошибки. $S_3(23) = 1 + 23 + C_{23}^2 + C_{23}^3 = 2048 = 2^{11}$. Тогда $2^{23} = 2048 = 2^{11}$. $S_3(23) \cdot 2^{12}$

3.5 Двоичные циклические коды

3.5.1 Свойства циклического кода

Определение 3.8. Линейный код C называется циклическим, если $\forall b \in C \colon b^{(1)} \in C$, где $(b_0, \dots, b_{n-1})^{(1)} = (b_{n-1}, b_0, \dots, b_{n-2})$

Аналогично обозначим $b^{(j)} = (b^{(j-1)})^{(1)} -$ сдвиг на j позиций вправо.

Определение 3.9. Кодовым многочленом, соответствующим $b \in C$ назовем многочлен $\sum_{i=0}^{n-1} b_i x^i$

Теорема 3.5. $b^{(j)}(x) = x^j b(x) \mod (x^n + 1)$

Доказательство. Распишем $x^{j}b(x)$:

$$x^{j}b(x) = \sum_{i=0}^{n-j-1} b_{i}x^{i+j} + \sum_{i=n-j}^{n-1} b_{i}x^{i+j} = \sum_{i=0}^{n-j-1} b_{i}x^{i+j} + x^{n} \underbrace{\sum_{i=n-j}^{n-1} b_{i}x^{i+j-n}}_{g(x)}$$

Рассмотрим многочлен $q(x) = b_{n-j} + b_{n-j+1}x + \ldots + b_{n-1}x^{j-1}$ и прибавм его дважды к $x^{j}b(x)$ (q(x) + q(x) = 0):

$$x^{j}b(x) = \underbrace{b_{n-j} + b_{n-j+1}x + \dots + b_{n-1}x^{j-1}}_{q(x)} + b_{0}x^{j} + \dots + b_{n-j-1}x^{n-1} + x^{n}q(x) + q(x)$$

Тогда по модулю $x^n + 1$ получаем $b^{(j)}(x)$

Теорема 3.6. В циклическом коде существует только один ненулевой многочлен минимальной степени.

Доказательство. Пусть есть два таких многочлена $q_1(x) = x^m + \ldots; q_2(x) = x^m + \ldots$ Тогда из линейности кода $q_1(x) + q_2(x) \in C(x)$. Но

$$(q_1 + q_2)(x) = \underbrace{x^m + x^m}_{=0} + \underbrace{\dots}_{deg < m}$$

тогда q_1 и q_2 не минимальны по степени. противоречие.

Определение 3.10. Кодовый многочлен g(x) минимальной степери среди многочленов C(x) называется порождающим многочленом C.

Теорема 3.7. Свободный член g(x) — порождающего многочлена циклического кода, равен 1.

Доказательство. Пусть $g_0 = 0$, тогда $g_1 + g_2 x + \ldots + g_{n-1} x^{n-2} \in C(x)$, но его степень меньше, чем у g. Противоречие.

Теорема 3.8. Пусть g(x) — порождающий многочлен для циклического кода длины n. Тогда $b(x) \in C(x) \iff b(x)$ кратно g(x).

Доказатель ство. $\Leftarrow \Pi$ усть $b(x) = g(x) \cdot a(x)$. $deg(a) \le n - m - 1$, тогда

$$b(x) = g(x) \sum_{i=0}^{n-m-1} a_i x^i = \sum_{i=0}^{n-m-1} a_i \underbrace{g(x)x^i}_{=g^{(i)}(x)}$$

таким образом, b(x) представлен в виде линейной комбинации циклических сдвигов g(x), то есть $b(x) \in C(x)$ \Rightarrow Пусть $b(x) \in C(x)$. Можно записать $b(x) = g(x) \cdot q(x) + r(x)$. Нужно показать, что r(x) = 0

$$r(x) = \underbrace{b(x)}_{\in C(x)} + \underbrace{g(x)q(x)}_{\in C(x)}$$

Тогда $r(x) \in C(x)$. deg(r(x)) < deg(g(x)), тогда по теореме 3.6 r(x) = 0.

Теорема 3.9. Пусть код порождается многочленом g(x). Тогда следующие условия равносильны

1. С является циклическим

2.
$$g(x) - \partial e \lambda u m e \lambda b x^n + 1$$

Доказатель ство. $1 \implies 2$ Рассмотрим $b \in C$. По теореме 3.5 имеем $b(x)x^j = b^{(j)}(x) + (x^n + 1)q(x)$. Выберем j так, чтобы $deg(b(x)x^j) = n$, тогда q(x) = 1. Тогда

$$\exists j \in \{0, \dots, n-1\}: x^j b(x) = b^{(j)}(x) + (x^n + 1)$$

Так как C циклический и порождается g(x), то $b^{(j)}(x) = g(x)a_j(x)$. Тогда

$$\underbrace{x^{j}b(x)}_{\text{кратно }q(x)} = \underbrace{b^{(j)}(x)}_{\text{кратно }q(x)} + (x^{n} + 1)$$

Тогда и $x^n + 1$ кратно g(x). $2 \implies 1$ Снова запишем

$$x^{j}b(x) = b^{(j)}(x) + (x^{n} + 1)q(x)$$

Тогла

$$b^{(j)}(x) = \underbrace{x^j b(x)}_{\text{кратно } g(x)} + \underbrace{(x^n + 1)}_{\text{кратно } g(x)} q(x)$$

Таким образом, код циклический.

3.5.2 Порождающая и проверочная матрицы циклического кода

Пусть C — циклический код с порождающим многочленом $g(x) = 1 + g_1 x + \ldots + g_{r-1} x^{r-1} + x^r$. Тогда все кодовые многочлены имеют вид

$$b(x) = g(x) \underbrace{a(x)}_{deg=k-1} = a_0 g(x) + a_1 x g(x) + \dots + a_{k-1} x^{k-1} g(x)$$

То есть, любой кодовый многочлен представляется как линейная комбинация многочленов $x^j g(x)$. Тогда порождающая матрица имеет вид:

$$G = \begin{pmatrix} 1 & g_1 & g_2 & \dots & g_{r-1} & 1 & 0 & \dots & 0 \\ 0 & 1 & g_1 & \dots & g_{r-2} & g_{r-1} & 1 & \dots & 0 \\ \dots & \dots \\ 0 & \dots & \dots & 1 & g_1 & \dots & g_{r-1} & 1 \end{pmatrix}$$

Теперь построим проверочную матрицу. Рассмотрим h(x), такой, что $x^n + 1 = h(x)g(x)$. Тогда рассмотрим произвольный кодовый многочлен b(x) = q(x)g(x).

$$b(x)h(x) = q(x)g(x)h(x) = q(x)(x^{n} + 1) = q(x) + x^{n}a(x)$$

Заметим, что $deg(a(x)) \leq k-1$, а мономы $x^n a(x)$ имеют степень не менее n тогда коэффициенты b(x)h(x) при $x^k, x^{k+1}, \dots, x^{n-1}$ равны нулю. Давайте выразим эти коэффициенты через коэффициенты b и h:

$$\sum_{i=0}^{k} b_i h_{k-i} = 0$$

$$\sum_{i=0}^{k} b_{i+1} h_{k-i} = 0$$

Тогда в матричном виде это выглядит как:

$$H = \begin{pmatrix} h_k & h_{k-1} & h_{k-2} & \dots & h_1 & h_0 & 0 & \dots & 0 \\ 0 & h_k & g_{k-1} & \dots & h_2 & h_1 & h_0 & \dots & 0 \\ \dots & \dots \\ 0 & \dots & \dots & h_k & g_{k-1} & \dots & h_1 & h_0 \end{pmatrix}$$

Замечание 3.3. Строки в G и H линейно независимы, поскольку у каждой строки есть компонент, отсутствующий во всех строках с большими номерами. Формально можно доказать по индукции.

Замечание 3.4. Порождающим многочленом дуального кода, порожденного многочленом g(x) с проверочным многочленом h(x) является многочлен $x^k h(x^{-1})$.

Доказательство. Многочлен $x^k h(x^{-1}) = h_k + x h_{k-1} + \ldots + x^{k-1} h_1 + x^k h_0$, то есть, это многочлен h(x) с развернутыми коэффициентами. Тогда порождающая матрица для этого многочлена совпадает с проверочной для кода, порожденного C.

3.6 Модификации линейных кодов

Определение 3.11. (n+1,k)-код, полученный из (n,k)-кода добавлением одного контрольного бита (иначе говоря, дополнительной переменной), называется расширенным кодом (extended code).

Вообще говоря, добовлять можем любой бит, но это не всегда имеет смысл.

Утверждение 3.2. Любой (n,k,d)-код с нечётным кодовым расстоянием можно расширить до (n+1,k,d+1)-кода добавлением бита проверки чётности.

Доказатель cmво. Если между двумя словами было расстояние d, то одно из них имеет чётный вес, а другое нечётный, т.к. d нечётно. Тогда очевидно, что добавление бита проверки чётности увеличит расстояние между ними. \square

Определение 3.12. (n-1,k)-код, полученный из (n,k)-кода удалением одного из контрольных битов (удалением переменной), называется *проколотым кодом (punctured code)*.

Если расширим код, а затем уменьшим его на тот же контрольный бит, на который увеличивали, получим исходный код.

Если удаляемый бит принимает значение 1 в кодовом слове минимального веса, то минимальное кодовое расстояние уменьшается.

Определение 3.13. Код, полученный удалением информационных битов, называется *укороченным кодом (shortened code)*.

Это значит удаление строки из порождающей матрицы и удаление столбца из проверочной. Т.е. (n,k)-код превращается в (n-1,k-1)-код.

Определение 3.14. Код, полученный добавлением информационного бита, называется $y\partial лин\ddot{e}$ нным кодом (lengthened code).

Это значит, что мы добавили строку в порождающую матрицу и столбец в проверочную. Т.е. (n,k)-код превращается в (n+1,k+1)-код.

Утверждение 3.3. При удлинении и при укорочении минимальное кодовое расстояние не меняется.

Доказательство.

- 1. При удлинении очевидно.
- 2. При укорочении происходит следующее: из G вычёркивается строка и соответствующий её столбец edunuunou nodmampuuu. Соответственно, вычёркивается столбец из проверочной матрицы. Любая линейная комбинация строк G имеет вес как минимум d.

$$a_1g_1 + \ldots + a_ng_n \ge d, \ \forall \{a_i\}$$

Вычёркивание *i*-ой строки и соответствующего ей столбца — это линейная комбинация с $a_i = 0$.

Определение 3.15. Код, полученный удалением некоторых кодовых слов, называется *суженным кодом (expurgated code)*.

Возможно построить суженный код так, чтобы он оставался линейным. Минимальное кодовое расстояние может увеличиться.

Определение 3.16. Код, полученный добавлением новых кодовых слов, называется дополненным кодом (augmented code).

Пример 3.5. (7,4)-код Хэмминга.

Построим расширенный код двум способами: начиная с проверочной матрицы и начиная с порождающей. Новая переменная — дополнительная проверка чётности для всех битов.

1. Проверочная матрица

Последняя строка соответствует уравнению $\sum\limits_{i=0}^6 x_i = x_7$, то есть x_7 — бит проверки четности. Линейными преобразованиями получим

Ей соответствует порождающая матрица

$$G = \left[\begin{array}{cccccc} 1 & 0 & 1 & |1| & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & |0| & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & |1| & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & |1| & 0 & 0 & 0 & 1 \end{array} \right]$$

соответствующая начальной порождающей, к которой добавили 1 столбец (4-ый).

2. Порождающая матрица

$$G = \left[\begin{array}{cccccc} 1 & 0 & 1 & |?| & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & |?| & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & |?| & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & |?| & 0 & 0 & 0 & 1 \end{array} \right]$$

. Добавим такой столбец, что количество единиц в каждой строке чётно. Легко видеть, что это тот же столбец, который мы получили в первом случае и других быть не может.

Почему появляется условие чётности по строкам? Вспомним, $G = (\Gamma^t|E)$, $H = (E|\Gamma)$. От H хотим, чтобы линейными преобразованиями над строками можно было получить строку из всех единиц. Поскольку в H есть единичная подматрица, единственный способ это сделать — просуммировать все строки с коэффициентами 1. Тогда нам необходимо, чтобы все столбцы Γ были веса 1, то есть чтобы все строки Γ^t были веса 1. Следовательно, все строки G должны иметь вес 0.

3.7 Бинарные коды Голея

Чтобы бинарный (n,k,d)-код был совершенным, необходимо выполнение условия плотной упаковки:

$$2^k \sum_{k=0}^{\left\lfloor \frac{d-1}{2} \right\rfloor} C_n^k = 2^n$$

Голей нашел два возможных кандидата: (23, 12, 7) и (90, 78, 5).

Теорема 3.10. Не существует бинарного (90, 78, 5)-кода.

Пусть $Y = \{y \in \{0,1\}^{90} : y_0 = y_1 = 1 \land w(y) = 3\}$. Очевидно, |Y| = 88. Так как C — совершенный код, каждому $y \in Y$ соответствует единственный $x \in C$ причем d(x,y) = 2. Тогда $1 \le w(x) \le 5$, но $d(x,0) \ge 5$ и тогда мы можем заключить, что w(x) = 5. Тогда $y \in x$, то есть $y_i = 1 \implies x_i = 1$.

Пусть $X = \{x \in C : x_0 = x_1 = 1 \land w(x) = 5\}$. Каждому $y \in Y$ соответствует единственный $\phi(y) = x \in X$, такой, что d(x,y) = 2. С другой стороны, рассмотрим $x \in X$. Заменяя две из трех единиц, стоящих на позициях $\{2,\ldots,89\}$ на нули мы получим три различных $y_1,y_2,y_3 \in Y$, при этом $d(x,y_1) = d(x,y_2) = d(x,y_3) = 2$, тогда $\phi(y_1) = \phi(y_2) = \phi(y_3) = x$. Для любых других $y \in Y$ d(x,y) > 2. Тогда все элементы Y должны разбиться на тройки по значению $\phi(y)$. Но 88 не делится на 3. Противоречие.

Определение 3.17. Расширенным кодом Голея назовем (24,12)-код, построенный с помощью порождающей матрицы $G = (E_{12}|A)$, где A — фиксированная матрица 12×12 , обладающая следующими свойствами:

- \bullet $A = A^T$
- $i \neq j \implies A_i \perp A_j$ (где A_i, A_j строки матрицы A)

Утверждение 3.4. Так построенный код обладает кодовым расстоянием 8 и исправляет три ошибки.

Замечание 3.5. Удалив один проверочный бит из (24, 12, 8)-кода получим (23, 12, 7)-код — совершенный код Голея.

Утверждение 3.5. Код Голея самодуален, то есть $G^{\perp} = G$

Доказательство. Заметим, что строки матрицы G ортогональны. Это следует из того, что строки E ортогональны и строки A ортогональны. Тогда $G \subset G^{\perp}$. Но размерности G и G^{\perp} равны 12, тогда $G = G^{\perp}$

3.8 Бинарные CRC-коды

Определение 3.18. CRC-код — это циклический код, используемый для *обнаружения* ошибок. Пусть порождающий многочлен нашего кода — g(x). Тогда будем производить кодирование по правилу

$$c(x) = x^k m(x) + (x^k m(x) \mod g(x))$$

Будем проверять наличие ошибок в $\bar{c}(x)$ следующим образом:

$$\begin{cases} \text{ошибка} & \text{если } \bar{c}(x) \neq 0 \\ \text{принимаем} & \text{если } \bar{c}(x) = 0 \end{cases}$$

Обозначим $e(x) = \bar{c}(x) + c(x)$.

Замечание 3.6. В одну сторону наша проверка корректна, если ошибки нет, то мы точно примем вектор. Но мы можем принять и вектор с ошибкой.

Определение 3.19. Вектор ошибок содержит пакет ошибок длины B, если расстояние между первой и поледней ошибкой равно B, то есть, существует i, такое, что

$$e(x) = x^{i}(1 + e_{1}x + \ldots + x^{B-1})$$

Утверждение 3.6. Верны следующие утверждения

- 1. Ошибка $e(x)=x^i$ для $i\in\{0,\ldots,n-1\}$ будет найдена
- 2. Если $g(x)=(1+x)\bar{g}(x)$, то $\forall e(x)\colon w(e)\mod 2=1$ будет найдена
- 3. Если e(x) содержит пакет ошибок длины n-k, то такая ошибка будет найдена
- 4. Если e(x) содержит пакет ошибок длины n-k+1, то она не будет найдена только если $e(x)=x^iq(x)$
- 5. Вероятность, что ошибка с блоком длины l > n k + 1 не будет найдена равна 2^{k-n}

Доказательство. 1. $g(x) = 1 + \ldots + x^r$. r > 0. Рассмотрим произвольный многочлен $a(x) = x^{d_l} + \ldots + x^{d_r}$. Тогда $g(x)a(x) = x^{d_l} + \ldots + x^{r+d_r}$. Следовательно, так как $d_l < r + d_r$, x^i не может делиться на g(x)

2.

$$c(x) = (1+x)\bar{g}(x)m(x) = (1+x)\left(\sum_{i=0}^{n-2} t_i x^i\right) = t_0 + x(t_0 + t_1) + \dots + t_{n-2}x^{n-1}$$

Посчитаем сумму коэффициентов: $t_0 + (t_0 + t_1) + (t_1 + t_2) + \ldots + t_{n-2} = 2(\sum_{i=0}^{n-2} t_i) = 0$. То есть, если ошибка содержит нечетное число единиц, то она не поделится на g(x)

3. Пусть e(x) содержит пакет ошибок длины n-k. Тогда

$$e(x) = x^{i}(1 + e_{1}x + \dots + x^{n-k-1})$$

 $i \in \{0, ..., k\}$. Пусть e(x) = f(x)g(x).

$$deg(f) = deg(e) - deg(g) = (i + n - k - 1) - (n - k) = i - 1$$

Тогда вспомним, что g не кратно x^j ни для каких j. Таким образом f кратно x^i , но deg(f) < i. Значит, e(x) не делится на g(x) и мы обнаружим такую ошибку.

- 4. Если $e(x) = x^i(1 + e_1x + \ldots + x^{n-k})$, тогда ошибка может не распознаться только если $e(x) = x^ig(x)$
- 5. Пусть e(x) содержит пакет ошибок длины l > n k + 1. Тогда можем записать $e(x) = x^i a(x) g(x)$, опять исходя из факта, что g не кратно x^j для всех j > 0. Тогда deg(a) = l (n k) 1 и свободный член a равен 1. Тогда возможных вариантов выбора a существует $2^{l-n+k-2}$.

Будем считать e равномерно распределенным по всем возможным ошибкам с блоком длины l. Тогда вероятность того, что такая ошибка поделится на g(x) равна

$$\frac{(n-l+1)}{2^{l-2}(n-l+1)} = 2^{k-n}$$

Глава 4

Регистры сдвига и линейная сложность

4.1 Регистры сдвига с линейной обратной связью

Хотим генерировать поток битов из некоторого начального конечного количества. Рассмотрим следующий алгоритм:

Алгоритм 4.1. Имеем $s_0, s_1, \ldots, s_{l-1}$, где l будем называть длиной регистра сдвига. Пусть $f: \{0,1\}^l \to \{0,1\}$. Тогда будем генерировать дальнейшие биты по рекуррентному соотношению $s_i = f(s_{i-1}, s_{i-2}, \ldots, s_{i-l})$.

f будем называть функцией обратной связи.

 s_i — выход регистра на шаге i.

Рассмотрим регистр сдвига с линейной функцией обратной связи (РСЛОС)

Определение 4.1. Если $f(x_0,\ldots,x_{l-1})=\sum\limits_{i=0}^{l-1}c_ix_i$, то многочлен, ассоциированный с РСЛОС: $c(x)=1+c_0x+\ldots+c_{l-1}x^l$.

Определение 4.2. Периодом регистра называется число $\min\{N \in \mathbb{N} : \forall i \geq N \, S_{N+i} = S_i\}$

Свойства:

- 1. $s_0 = \ldots = s_{l-1} = 0 \implies \forall i : s_i = 0$
- 2. Период регистра конечен.

Доказательство. Если

$$\begin{cases} s_i = s_j \\ s_{i+1} = s_{j+1} \\ \dots \\ s_{i+l-1} = s_{j+l-1} \end{cases}$$

То $s_{i+l} = s_{j+l}$ по определению. Тогда $\forall k \geq 0$: $s_{i+k} = s_j + k$. Таким образом $(s_i, s_{i+1}, \ldots) = (s_j, s_{j+1}, \ldots)$. Но тогда существует не более 2^l различных типов таких последовательностей.

- 3. $T \leq 2^l 1$. Непосредственно следует из доказательства предыдущего пункта.
- 4. $c_{l-1} = 0 \implies$ период начинается не с начала последовательности (c_T не всегда равно c_0)
- 5. $c_{l-1} = 1 \implies c_T = c_0$
- 6. c(x) неприводим над $\mathbb{F}_2 \implies 2^l-1$ кратно T
- 7. c(x) примитивный над $\mathbb{F}_2 \implies T = 2^l 1$

Утверждение 4.1. Пусть известны s_i, \ldots, s_{i+2l-1} и известно, что регистр имеет длину l. Тогда можно найти регистр сдвига, порождающий такую последовательность.

Доказательство. Составим систему уравнений, относительно c_i :

$$\begin{cases} s_{i+l} &= c_0 s_{i+l-1} + c_1 s_{i+l-2} + \ldots + c_{l-1} s_0 \\ s_{i+l+1} &= c_0 s_{i+l} + c_1 s_{i+l-1} + \ldots + c_{l-1} s_1 \\ \ldots &= \ldots \\ s_{i+2l-1} &= c_0 s_{i+2l-2} + c_1 s_{i+2l-3} + \ldots + c_{l-1} s_{i+l-1} \end{cases}$$

Система совместна по построению s_i , тогда решение — подходящий регистр сдвига. Если уранения линейно-независимы, регистр сдвига определяется однозначно.

4.2 Линейная сложность, алгоритм Берлекэмпа-Мэсси

Определение 4.3. Регистр сдвига порождает последовательность s, если для начальных значений s_0, \ldots, s_{l-1} регистр выдает последовательность s.

Определение 4.4. Линейной сложностью последовательности бит (конечной или бесконечной) s назовем

- 0, если s = (0, 0, ...)
- ∞ , если $\not\exists$ РСЛОС, порождающего s.
- \bullet Длина минимального регистра сдвига, порождающего s.

Обозначим L(s).

Определение 4.5. Пусть s — последовательность бит. Тогда пусть

$$L_N = L(s_0, \dots, s_{N-1})$$

Последовательность L_1, L_2, \ldots назовем профилем линейной сложности последовательности s.

Утверждение 4.2. Верны следующие утверждения

- 1. $j > i \implies L_i \ge L_i$
- $2. L_N \le \frac{N}{2} \implies L_{N+1} > L_N$
- 3. $L_{N+1} > L_N \implies L_N + L_{N+1} = N+1$

Сам алгоритм базируется на этих трех утверждениях. [Можно его дописать сюда].

4.3 Порождение симплексного кода с помощью регистра сдвига

Определение 4.6. Рассмотрим C_m , $(2^m-1, 2^m-m-1)$ -код Хэмминга. Дуальный к нему код S_m является кодом Адамара с матрицей Сильвестра — симплексным кодом.

Замечание 4.1. S_m является циклическим кодом с проверочным многочленом

$$h(x) = 1 + h_1 x + \ldots + h_{m-1} x^{m-1} + x^m$$

Тогда, вспоминая структуру проверочной матрицы циклического кода, можем записать условия на то, что $(s_0,\ldots,s_{2^m-2})\in S_m$:

$$\forall i \in \{0, \dots 2^m - 2 - m\} : s_{i+m} = s_i + s_{i+1}h_{m-1} + \dots + s_{i+m-1}h_1$$

Тогда каждое кодовое слово $s \in S_m$ порождается регистром сдвига с характеристическим многочленом h(x) и начальными входами s_0, \ldots, s_{m-1} .

Глава 5

Булевы функции

5.1 Определения. Алгебраическая нормальная форма

5.1.1 Алгебраическая нормальная форма

Определение 5.1. Функция $f:\{0,1\}^m \to \{0,1\}$ называется булевой функцией

Мы поймем, что *любую* булеву функцию можно представить в виде многочлена от m переменных в \mathbb{F}_2 и даже выведем явную формулу.

С помощью таблицы истинности можно легко заметить, что для любой булевой функции f верно

$$f(v_1, \dots, v_m) = \bigvee_{i_1, \dots, i_m \in \{0,1\}} f(i_1, \dots, i_m)(w_1^{i_1} \wedge \dots \wedge w_m^{i_m})$$

Где $w_i^1 = v_i$ и $w_i^0 = \neg v_i$.

Это просто функция в дизъюнктивной нормальной форме.

Определение 5.2. Будем обозначать $x \leq y$ для $x,y \in \{0,1\}^n,$ если $x_i \leq y_i$ для всех $i \in \{1,\dots,n\}$

Теорема 5.1. Любая булева функция f может быть записана как

$$f(v_1, \dots, v_m) = \sum_{a \in \{0,1\}^m} g(a)v_1^{a_1} \dots, v_m^{a_m}$$

$$\operatorname{ede} g(a) = \sum_{b \leq a} f(b_1, \dots, b_m)$$

3десь и далее, если не указано иное, все суммы в \mathbb{F}_2

Доказательство. Зафиксируем набор значений v_1, \ldots, v_m и проверим, что получается то, что нужно. Пусть $A = \{i \colon v_i = 1\} = \{\alpha_1, \ldots, \alpha_k\}; B = \{i \colon v_i = 0\}.$

Во-первых, можно выбросить слагаемые, где $a_i=1$ для $i\in B$, так как они обращаются в ноль.

$$\sum_{a \leq \mathbf{1}_A} g(a) v_1^{a_1} \dots, v_m^{a_m} = \sum_{a \leq \mathbf{1}_A} g(a)$$

Здесь $\mathbf{1}_A$ — характеристический вектор A, он равен (v_1,\ldots,v_m) .

Так как во всех остальных слагаемых $v_1^{a_1}\dots,v_m^{a_m}=1$. Тогда, подставляя g(a), получаем

$$= \sum_{a<\mathbf{1}_A} \sum_{b< a} f(b_1, \dots, b_m)$$

Давайте поймем, сколько раз каждое слагаемое входит в сумму:

$$= \sum_{b \leq \mathbf{1}_A} \sum_{\mathbf{1}_A \geq a \geq b} f(b_1, \dots, b_m)$$

Осталость посчитать сколько бывает таких a. Легко видеть, что их количество равно $2^{w(a)-w(b)}$ и тогда все слагаемые, кроме $b = \mathbf{1}_A = (v_1, \dots v_m)$ по четности обращаются в ноль

$$= f(v_1, v_2, \dots, v_m)$$

Определение 5.3. Представление

$$f(v_1, \dots, v_m) = \sum_{a \in \{0,1\}^m} g(a)v_1^{a_1} \dots, v_m^{a_m}$$

называется алгебраической нормальной формой функции f.

5.1.2 Быстрое преобразование Мёбиуса

Определение 5.4. Пусть $f \in \{0,1\}^{2^n}$. Поставим вектору f в соответствие будеву функцию $\in \operatorname{Map}(\{0,1\}^n,\{0,1\})$ следующим образом

$$f \mapsto (\underbrace{x}_{\in \{0,1\}^n} \mapsto f_x)$$

где f_x — компонента вектора f с номером, соответствующим двоичной записи x. Мы будем отождествлять вектор f и соответствующую ему функцию и записывать $f(x) = f_x$.

Отображение $\mu:\{0,1\}^{2^n} \to \{0,1\}^{2^n}$ называется npeofpasoванием M"ebuyca, если выполнено:

$$f \mapsto g \iff \forall a \colon g(a) = \bigoplus_{b \le a} f(b)$$

Вычисление преобразования Мёбиуса по определению требует 3^n операций (это количество пар $x, y \in \{0, 1\}^n \colon x \le y$). Но можно выполнить его оптимальнее, используя $2^n \cdot n$ операций. Действительно, рассмотрим f и $g = \mu(f)$.

$$g(a_1,\ldots,a_n) = \bigoplus_{b \leq a} f(b_1,\ldots,b_n) = \bigoplus_{\substack{b \leq a \\ b_1=0}} f(b_1,\ldots,b_n) \oplus \bigoplus_{\substack{b \leq a \\ b_1=1}} f(b_1,\ldots,b_n)$$

Теперь разберем два случая: $a_1 = 0$ и $a_1 = 1$:

$$g(0, a_2, \dots, a_n) = \bigoplus_{\substack{b \le a \\ b_1 = 0}} f(b_1, \dots, b_n)$$

в этом случае второе слагаемое обращается в ноль, поскольку $b_1=1\implies b\nleq a$.

$$g(1, a_2, \dots, a_n) = \bigoplus_{\substack{b \le a \\ b_1 = 0}} f(b_1, \dots, b_n) \oplus \bigoplus_{\substack{b \le a \\ b_1 = 1}} f(b_1, \dots, b_n)$$

Заметим, что теперь в обоих случаях условие $b \le a \iff (b_2,\ldots,b_n) \le (a_2,\ldots,a_n)$. Это дает нам возможность рассмотреть функции $f_0(a') = f(0,a'_1,\ldots,a'_{n-1})$ и $f_1(a') = f(0,a'_1,\ldots,a'_{n-1})$ и, используя прошлые рассуждения, записать

$$q(0, a_2, \dots, a_n) = \mu(f_0)(a_2, \dots, a_n)$$

И

$$g(1, a_2, \dots, a_n) = \mu(f_0)(a_2, \dots, a_n) \oplus \mu(f_1)(a_2, \dots, a_n)$$

Таким образом, мы свели задачу нахождения преобразования Мёбиуса для вектора из $\{0,1\}^{2^n}$ к двум задачам нахождения преобразования Мёбиуса для вектора из $\{0,1\}^{2^{n-1}}$ тогда время работы нашего алгоритма равно $T(n)=2^n+2T(n-1)$. Из этого соотношения легко видеть, что $T(n)=2^n\cdot n$.

5.2 Коды Рида-Маллера

Определение 5.5. Для произвольного $r \in \{0, \dots, m\}$ двоичный код Рида-Маллера $\mathcal{R}(r, m)$ порядка r и длины 2^m определяется как

$$Lin\{v_{\alpha_1} \cdot \ldots \cdot v_{\alpha_n} : p \leq r; 1 \leq \alpha_i \leq m\}$$

то есть линейная оболочка мономов степени $\leq r$ или, что то же самое, множество всех многочленов от m переменных над \mathbb{F}_2 степени не больше r.

Собственно кодами будут характеристические векторы этих многочленов.

Очевидно, что этот код является линейным. Значит, можно говорить о его размерности.

Замечание 5.1. Размерность $\mathscr{R}(r,m)$ равна $\sum\limits_{k=0}^{r} C_m^k$

Доказательство. Из теоремы 5.1 все мономы линейно независимы, а количество мономов степени $\leq r$ равно $\sum_{k=0}^{r} C_m^k$

5.2.1 Взаимосвязь кодов Рида-Маллера разных порядков

Теорема 5.2.

$$\mathcal{R}(r+1, m+1) = \{|u|u+v| : u \in \mathcal{R}(r+1, m), v \in \mathcal{R}(r, m)\}$$

3 dec b |x|y| - конкатенация <math>x u y

Лемма 5.1. Пусть $f(v_1, \ldots, v_m) -$ булева функция с характеристическим вектором ϕ . Тогда характеристические векторы функций $g(v_1, \ldots, v_{m+1}) = f(v_1, \ldots, v_m)$ и $h(v_1, \ldots, v_{m+1}) = v_{m+1} f(v_1, \ldots, v_m)$ равны, соответственно $|\phi|\phi|$ и $|\mathbf{0}|\phi|$

 \mathcal{A} оказательство. Здесь m+1 считается старшей степенью. Тогда левой части соответствуют те значения переменных где $v_{m+1}=0$, а правой — те, где $v_{m+1}=$. Тогда в обеих частях характеристического вектора f будет вектор ϕ . Левой части характеристического вектора h будет соответствовать тождественный 0, поскольку мы умножили на 0.

Доказательство. Рассмотрим $f \in \mathcal{R}(r+1,m+1)$. Давайте запишем

$$f(v_1, \dots, v_{m+1}) = \underbrace{g(v_1, \dots, v_m)}_{deg \le r+1} + v_{m+1} \underbrace{h(v_1, \dots, v_m)}_{deg \le r}$$

Вспомним лемму и заметим, что характеристические векторы слагаемых этой формулы равны $|\mathbf{1}_g|\mathbf{1}_g|$ и $|\mathbf{0}|\mathbf{1}_h|$ соответственно. Тогда характеристический вектор их суммы равен $|\mathbf{1}_g|\mathbf{1}_g+\mathbf{1}_h|$.

Замечание 5.2. Похоже на формулу для биномиальных коэффициентов.

Теперь мы готовы к тому, чтобы найти расстояние между кодовыми словами в коде Рида-Маллера.

Теорема 5.3. Минимальное расстояние между словами в коде $\Re(r,m)$ равно 2^{m-r}

Доказательство. Индукция по m. При m = 0 существует один код Рида Миллера: $\mathcal{R}(0,0)$. Он состоит из слов 0 и 1, расстояние между ними равно 1.

Пусть для всех $m < m_0$ доказано, докажем для m_0 . Из прошлой теоремы $\mathcal{R}(r,m) = \mathcal{R}(r,m-1) + \mathcal{R}(r-1,m-1)$. Рассмотрим $a_1, a_2 \in \mathcal{R}(r,m)$. Они имеют вид $|u_1|u_1 + v_1|$ и $|u_2|u_2 + v_2|$ соответственно. Тогда

$$d(a_1, a_2) = d(u_1, u_2) + d(u_1 + v_1, u_2 + v_2) \ge d(u_1, u_2) + |\underbrace{d(u_1, u_2)}_{\geq 2^{m-r-1}} - \underbrace{d(v_1, v_2)}_{\geq 2^{m-r}}|$$

Поймём, что это неравенство действительно верно (здесь сумма вещественных чисел):

$$d(u_1 + v_1, u_2 + v_2) = \sum_{i=1}^{2^m} d_i(u_1 + v_1, u_2 + v_2)$$

где $d_i(x,y)=1$, если i-е символы x и y различаются и 0, если совпадают. Теперь разбором случаев можно доказать, что $d_i(a+b,c+d) \leq |d_i(a,c)-d_i(b,d)|$:

a	b	С	d	$d_i(a+b,c+d)$	$d_i(a,c)$	$d_i(b,d)$	
0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	1
0	0	1	0	1	1	0	1
0	0	1	1	0	1	1	0

Здесь можно считать a=b=0, так как иначе можно перейти к $a\to a+a; b\to b+b; c\to c+a; d\to d+b$, не изменив обе части формулы и обратив a,b в ноль. Таким образом можем записать

$$\sum_{i=1}^{2^m} d_i(u_1 + v_1, u_2 + v_2) \le \sum_{i=1}^{2^m} |d_i(u_1, u_2) - d_i(v_1, v_2)| \le |\sum_{i=1}^{2^m} (d_i(u_1, u_2) - d_i(v_1, v_2))| = |d(u_1, u_2) - d(v_1, v_2)|$$

Теперь нужно разобрать два случая:

- $d(u_1, u_2) \ge d(v_1, v_2)$. Тогда $d(a_1, a_2) \ge 2^{m-r} + |\ldots| \ge 2^{m-r}$
- $d(v_1, v_2) > d(u_1, u_2)$. Тогда $d(a_1, a_2) \ge d(u_1, u_2) + d(v_1, v_2) d(u_1, u_2) = d(v_1, v_2) \ge 2^{m-r}$

5.2.2 Выколотые коды Рида-Маллера

Определение 5.6. Для произвольного $r \in \{0, \dots, m-1\}$ выколотый двоичный код Рида-Маллера $\mathscr{R}^*(r,m)$ порядка r и длины 2^m определяется как

$$\{x_1x_2\dots x_{2^m-1}: x\in \mathcal{R}(r,m)\}$$

то есть, получается из $\mathscr{R}(r,m)$ вычеркиванием элемента вектора, соответствующего $v_1=\ldots=v_m=0$

Очевидно, что $\mathscr{R}^*(r,m)$ имеет длину 2^m-1 , минимальное расстояние $2^{m-r}-1$.

Утверждение 5.1. Для
$$r < m$$
 верно $dim(\mathscr{R}^*(r,m)) = \sum\limits_{k=0}^r C_m^k$

Доказательство. То есть, нужно доказать, что размерность равна размерности кода до выкалывания. Заметим, что по лемме о рандомизации, в каждой строке порождающей матрицы четное количество единиц (так как r < m и строки, соответствующей $v_1 \cdot \ldots \cdot v_m$, где только одна единица, в матрице нет).

Тогда сложим все столбцы, кроме первого, и получим столбец вида $(1,0,\ldots,0)^T$.

Таким образом, размерность линейной оболочки всех столбцов $\mathscr{R}(r,m)$ равна размерности линейной оболочки всех столбцов, кроме первого, то есть $dim(\mathscr{R}^*(r,m))$

5.2.3 Декодирование кода $\Re(1, m)$

Рассмотрим на примере m=3. Порождающая матрица $\mathcal{R}(1,m)$ будет иметь размер $(m+1)\times 2^m$ и будет состоять из векторов $\mathbf{1},\mathbf{1}_{x_1},\mathbf{1}_{x_2},\mathbf{1}_{x_3}$:

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Кодирование, как и в любом линейном коде — домножение кодируемой строки на порождающую матрицу.

Все возможные 16 кодов получаются линейными комбинациями строк матрицы:

$$A = \mathscr{R}(1,3) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Закодируем какое-нибудь слово. Например y=(1,0,0,1). z=yG=(1,1,1,1,0,0,0,0). Кодовое расстояние равно $2^{3-1}=4$. Поэтому код способен исправить только одну ошибку. Тогда пусть z'=(0,1,1,1,0,0,0,0). Преобразуем матрицу A так, чтобы можно посчитать расстояния от декодируемого вектора до всех кодовых слов. $H_{ij}=2A_{ij}-1$. Можно заметить, что H— это две матрицы Адамара, поставленные друг на друга. Преобразуем z' тем же образом: $z_i''=2z_i'-1$.

Рассмотрим $H(z'')^T$. i-й компонент этого вектора равен $(2^m - d(H_i, z')) - d(H_i, z') = 2^m - 2d(H_i, z')$. Тогда вектор с минимальным расстоянием соответствует максимуму среди компонент $H(z'')^T$.

Тогда

$$H(z^{\prime\prime})^T=(2,-2,2,-2,2,-2,2,-6,6,2,-2,2,-2,2,-2)^T$$

Максимальная компонента соответсвтует 10-й строке матрицы, а это и есть вектор (1, 1, 1, 1, 0, 0, 0, 0), который мы шифровали.

5.3 Преобразование Фурье и Уолша-Адамара для булевых функций

5.3.1 Функция Уолша

Определение 5.7. Экспонента булевой функции $f(x) = (-1)^{f(x)}$

T.e.
$$\exp f: V_n \xrightarrow{f} \{0,1\} \longrightarrow \{-1,1\}$$

Определение 5.8. Дискретная функция Уолша

$$v(a,x):=(-1)^{\langle a,x\rangle}, a,x\in V_n$$

$$v: \{0,1\}^n \times \{0,1\}^n \longrightarrow \{1,-1\}$$

На a и x мы смотрим одновременно и как на двоичные векторы из $\{0,1\}^n$, и как на целые числа, двоичная запись которых, дополненная при необходимости слева нулями, совпадает с этими векторами.

Свойства функции Уолша:

- 1. v(a, x) = v(x, a)
- 2. |v(a,x)| = 1
- 3. v(0,x) = v(x,0) = 1
- 4. E линейное подпространство $\{0,1\}^n$ $a \not\in E^\perp$ Тогда

$$\sum_{x \in E} v\left(a, x\right) = 0$$

Доказательство. E_0 : = $\{x \in E : \langle a, x \rangle = 0\}, E_1$: = $\{x \in E : \langle a, x \rangle = 1\}$

Покажем, что $|E_0| = |E_1|$, тогда число +1 и -1 в сумме будет одинаково.

$$a \notin E^{\perp} \Rightarrow \exists x \in E : \langle a, x \rangle \neq 0 \Rightarrow E_1 \neq \emptyset \ (E^{\perp} = \{u \in \{0, 1\}^n : \langle u, x \rangle = 0, \forall x \in E\})$$

Пусть $y \in E_1$. Рассмотрим равенство x + y = z. Скалярно домножив на a получим

$$\langle a, x \rangle + \underbrace{\langle a, y \rangle}_{1} = \langle a, z \rangle$$

То есть если $x \in E_1$, то $z \in E_0$. И наоборот, если $x \in E_0$, то $z \in E_1$. Отсюда легко видеть, что, прибавляя y ко всем элементам E_1 , получим элементы E_0 . Значит, $E_1 + y \subset E_0 \Rightarrow |E_1| \leq |E_0|$. Так же прибавляя y ко всем элементам E_0 , получим элементы E_1 . Значит, $E_0 + y \subset E_1 \Rightarrow |E_0| \leq |E_1|$.

Следствие 5.1. $T.\kappa. \{0,1\}^{n^{\perp}} = \{0\},$

$$\sum_{x \in \{0,1\}^n} v(a, x) = \delta_0(a) 2^n$$

 $e \partial e$

$$\delta_0(a) = \begin{cases} 1, & ecnu \ a = 0 \\ 0, & ecnu \ a \neq 0 \end{cases}$$

5.3.2 Преобразование Фурье и Уолша-Адамара

Определение 5.9. Преобразованием Φ урье булевой функции f называется целочисленная функция на $\{0,1\}^n$, определяемая следующим равенством

$$F_{f}(u) = \sum_{x \in \{0,1\}^{n}} f(x) v(x, u)$$

Для каждого $u \in \{0,1\}^n$ значение $F_f(u)$ называется коэффициентом Фурье.

Определение 5.10. Преобразованием Уолша-Адамара булевой функции f называется целочисленная функция на $\{0,1\}^n$, определяемая следующим равенством

$$W_f(u) = F_f(\exp f(u)) = \sum_{x \in \{0,1\}^n} \exp f(x) v(x, u) =$$

$$= \sum_{x \in \{0,1\}^n} (-1)^{f(x)} (-1)^{\langle x,u \rangle} = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus \langle x,u \rangle} =$$
$$= \sum_{x \in \{0,1\}^n} \exp(f(x) \oplus \langle x,u \rangle)$$

Для каждого $u \in \{0,1\}^n$ значение $W_f(u)$ называется коэффициентом Уолша-Адамара.

Уолш: от функции Уолша.

Адамар: функцию Уолша можно получить из матрицы Адамара. Рекурсивно умеем формировать матрицы Адамара размера 2^n (мы полученные таким спобом матрицы матрицами Сильвестра).

$$H_{new} = \left[\begin{array}{cc} H & H \\ H & -H \end{array} \right]$$

Тогда строчки — функции Уолша. То есть x соответствует номеру столбца, a соответствует номеру строки. Элемент $H_{a,x} = v(a,x)$.

Пример 5.1.

$$H_4 = \begin{bmatrix} x_1 = 00 & x_2 = 01 & x_3 = 10 & x_4 = 11 \\ a_1 = 00 & 1 & 1 & 1 & 1 \\ a_2 = 01 & 1 & -1 & 1 & -1 \\ a_3 = 10 & 1 & 1 & -1 & -1 \\ a_4 = 11 & 1 & -1 & -1 & 1 \end{bmatrix}$$

Определение 5.11. Часто коэффициенты Фурье и коэффициенты Уолша-Адамара называются *спектральными* коэффициентами.

Теорема 5.4. Коэффициенты Фурье и Уолша-Адамара связаны соотношением

$$W_f(u) = 2^n \delta_0(u) - 2F_f(u)$$

Доказательство.

$$W_{f}(u) = \sum_{x \in \{0,1\}^{n}} \exp f(x) v(x,u) = \sum_{x \in \text{Supp } f} \underbrace{\exp f(x)}_{1} v(x,u) + \sum_{x \in \{0,1\}^{n} \setminus \text{Supp } f} \underbrace{\exp f(x)}_{1} v(x,u) = \underbrace{\exp f(x)}_{1} v(x,u) + \underbrace{\exp f(x)}_{1} v(x,u) + \underbrace{\exp f(x)}_{1} v(x,u) = \underbrace{\exp f(x)}_{1} v(x,u) + \underbrace{\exp f(x)}_{1} v(x,u) + \underbrace{\exp f(x)}_{1} v(x,u) = \underbrace{\exp f(x)}_{1} v(x,u) + \underbrace{\exp f(x)}_{1} v(x,u) + \underbrace{\exp f(x)}_{1} v(x,u) = \underbrace{\exp f(x)}_{1} v(x,u) + \underbrace{\exp f(x)}_{1} v(x$$

$$= -\sum_{x \in \text{Supp } f} v\left(x, u\right) + \sum_{x \in \{0,1\}^n \setminus \text{Supp } f} v\left(x, u\right)$$

По замечанию к 4-ому свойству

$$\sum_{x \in \{0,1\}^n \setminus \text{Supp } f} v(a, x) = \delta_0(a) 2^n$$

$$\sum_{x \in \{0,1\}^n \setminus \text{Supp } f} v(x, u) = \underbrace{\sum_{x \in \{0,1\}^n} v(x, u)}_{=\delta_0(u)2^n} - \sum_{x \in \text{Supp } f} v(x, u)$$

Кроме того

$$F_f(u) = \sum_{x \in \{0,1\}^n} f(x) v(u,x) = \sum_{x \in \text{Supp } f} v(u,x)$$

Итого

$$W_f(u) = \delta_0(u) 2^n - 2 \sum_{x \in \text{Supp } f} v(x, u) = \delta_0(u) 2^n - 2F_f(u)$$

Теорема 5.5 (формула обращения). Для преобразования Уолша-Адамара справедлива формула обращения.

$$\exp f(x) = 2^{-n} \sum_{u \in \{0,1\}^n} W_f(u) v(x, u)$$

Доказательство.

$$2^{-n} \sum_{u \in \{0,1\}^n} W_f(u) v(x,u) = 2^{-n} \sum_{u \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} (-1)^{f(y)} \underbrace{(-1)^{\langle y,u \rangle} (-1)^{\langle x,u \rangle}}_{(-1)^{\langle x \oplus y,u \rangle} = v(x \oplus y,u)} =$$

$$= 2^{-n} \sum_{y \in \{0,1\}^n} (-1)^{f(y)} \sum_{u \in \{0,1\}^n} v(x \oplus y,u) =$$

$$\sum_{u \in \{0,1\}^n} v(x \oplus y,u) = \begin{cases} 2^n, & x \oplus y = 0 \\ 0, & x \oplus y \neq 0 \end{cases}$$

Т.е. от всех сумм останется только одно слагаемое при y=x

$$=2^{-n}(-1)^{f(x)}2^n = \exp f(x)$$

Таким образом, коэффициенты Уолша-Адамара однозначно определяют булеву функцию. Вместе с тем, не любой набор из 2^n чисел может быть набором коэффициентов Уолша-Адамара некоторой булевой функции.

Теорема 5.6 (равенство Парсеваля). Коэффициенты Уолша-Адамара удовлетворяют соотношению:

$$\sum_{u \in \{0,1\}^n} W_f^2(u) = 2^{2n}$$

Доказательство.

$$\sum_{u \in \{0,1\}^n} W_f^2(u) = \sum_{u \in \{0,1\}^n} \left(\sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus \langle x,u \rangle} \right)^2 = \sum_{u \in \{0,1\}^n} \left(\sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus \langle x,u \rangle} \right) \left(\sum_{y \in \{0,1\}^n} (-1)^{f(y) \oplus \langle y,u \rangle} \right) = \sum_{u \in \{0,1\}^n} \sum_{x,y \in \{0,1\}^n} (-1)^{f(x) \oplus \langle x,u \rangle \oplus f(y) \oplus \langle y,u \rangle} = \sum_{x,y \in \{0,1\}^n} (-1)^{f(x) \oplus f(y)} \sum_{u \in \{0,1\}^n} (-1)^{\langle x \oplus y,u \rangle} = \sum_{x \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus f(x)} = 2^{2n}$$

5.3.3 Связь АНФ и коэффициентов Уолша-Адамара

Утверждение 5.2. Коэффициенты алгебраический нормальной формы $g_f(u)$ выражаются через коэффициенты Уолша-Адамара следующим образом:

$$g_f(u) = 2^{wt(u)-1} - 2^{wt(u)-n-1} \sum_{\alpha \leq u \oplus 1} W_f(\alpha)$$

Доказательство. Подставим формулу для коэффициентов Уолша-Адамара:

$$g_f(u) = 2^{wt(u)-1} - 2^{wt(u)-n-1} \sum_{\alpha \le u \oplus \mathbf{1}} \sum_{x \in \{0,1\}^n} \exp(f(x) \oplus \langle x, \alpha \rangle) = 2^{wt(u)-1} - 2^{wt(u)-n-1} \sum_{x \in \{0,1\}^n} \exp(f(x)) \sum_{\alpha \le u \oplus \mathbf{1}} \exp(\langle x, \alpha \rangle)$$

Величина $\sum_{\alpha \leq u \oplus \mathbf{1}} \exp(\langle x, \alpha \rangle)$ обращается в 0 при x не ортогональном $\{y \leq u \oplus \mathbf{1}\}$ и равна $2^{n-wt(u)}$ при $x \perp \{y \leq u \oplus \mathbf{1}\}$ $\iff x \in \{y \leq u\}.$

$$= 2^{wt(u)-1} - 2^{wt(u)-n-1} \sum_{x \le u} \exp(f(x)) 2^{n-wt(u)} = \frac{1}{2} 2^{wt(u)} - \frac{1}{2} \sum_{x \le u} \exp(f(x)) = \frac{1}{2} \sum_{x \le u} \underbrace{(1 - \exp(f(x)))}_{=2f(x)} = \sum_{x \le u} f(x)$$

5.3.4 Быстрое вычисление коэффициентов Уолша-Адамара

Коэффициенты Уолша-Адамара — это коэффициенты Фурье для функции $\exp f$, поэтому достаточно научиться вычислять коэффициенты Фурье. Будем действовать аналогично вычислению преобразования Мёбиуса. Пусть $u \in \{0,1\}^n$. Обозначим $u' = (u_2,\ldots,u_n)$, аналогично для $x \in \{0,1\}^n$ обозначим $x' = (x_2,\ldots,x_n)$

$$F_f(u) = \sum_{x \in \{0,1\}^n} f(x_1, x') \exp(x_1 v_1 + \langle x', u' \rangle) = \sum_{x \in \{0,1\}^{n-1}} f(0, x) \exp(\langle x, u' \rangle) + f(1, x) \exp(u_1) \exp(\langle x, u' \rangle)$$

Пусть $f_0(x) = f(0,x)$ и $f_1(x) = f(1,x)$, тогда

$$F_f(u) = F_{f_0}(u') + \exp u_1 F_{f_1}(u')$$

Таким образом, мы свели задачу преобразования Фурье для вектора $\in \{0,1\}^{2^n}$ к задаче вычисления преобразования Фурье для двух векторов из $\{0,1\}^{2^{n-1}}$. Аналогично вычислению преобразования Мёбиуса, имеем время работы $T(n) = 2^n + 2T(n-1) = 2^n \cdot n$

5.3.5 Свёртка и преобразование Фурье

Определение 5.12. Пусть $f, g \in \mathscr{F}_n$ определим свёртку f и g следующим образом:

$$(f * g)(x) = \sum_{y \in \{0,1\}^n} f(x \oplus y)g(y) = \sum_{y \in \{0,1\}^n} f(y)g(x \oplus y)$$

Теорема 5.7. Для любых $f, g \in \mathscr{F}_n$ выполняется

$$\forall u \in \{0,1\}^n : F_{f*q}(u) = F_f(u)F_q(u)$$

Доказательство.

$$F_{f*g}(u) = \sum_{x \in \{0,1\}^n} (f*g)(x) \exp(\langle x, u \rangle) = \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} f(y) \oplus g(x \oplus y) \exp(\langle x \oplus y \oplus y, u \rangle) =$$

$$\sum_{y \in \{0,1\}^n} f(y) \exp(\langle y, u \rangle) \sum_{x \in \{0,1\}^n} g(x \oplus y) \exp(\langle x \oplus y, u \rangle) = F_f(u) F_g(u)$$

5.4 Производная булевой функции по направлению

Определение 5.13. Производной булевой функции f по направлению $u \in \{0,1\}^n$ называется булева функция

$$D_u f(x) = f(x \oplus u) \oplus f(x)$$

Определение 5.14. Производной булевой функции f по направлению подпространства $L \subset \{0,1\}^n$ называется функция

$$D_u f(x) = \bigoplus_{u \in F} f(x \oplus u)$$

Замечание 5.1. Если $L = \langle u_1, \dots, u_k \rangle$, то $D_L f = D_{u_k} D_{u_{k-1}} \dots D_{u_1} f$

Доказательство. Индукция по k. Для k=1 очевидно. Пусть L=Lin(u,L'), докажем, что $D_Lf(x)=D_uD_{L'}(x)$.

$$D_u D_{L'}(x) = D_u \bigoplus_{v \in L'} f(x \oplus v) = \bigoplus_{v \in L'} f(x \oplus v) \oplus \bigoplus_{v \in L'} f(x \oplus v \oplus u) = \bigoplus_{v \in L} f(x \oplus v)$$

1. $\forall L \subset \{0,1\}^n$ подпространства $\forall f \in \text{Map}(\{0,1\}^n,\{0,1\}), u \in L, x \in \{0,1\}^n$ верно

$$D_L f(x) = D_L f(x \oplus u)$$

2. $\forall f,g \in \mathrm{Map}(\{0,1\}^n,\{0,1\}), \ \forall \ noд npocmpancmea \ L \subset \{0,1\}^n$

$$D_L(f \oplus g) = D_L f \oplus D_L g$$

3. $\forall f \in \text{Map}(\{0,1\}^n, \{0,1\}), \forall u, v, x \in \{0,1\}^n$

$$D_{u\oplus v}f(x) = D_uf(x) \oplus D_vf(x \oplus u)$$

- 4. $\forall u, x \in \{0,1\}^n D_u f(x) = 0 \iff f = const$
- 5. $\forall u \in \{0,1\}^n \ D_u f = const \iff \exists \alpha \in \{0,1\}^n, \beta \in \{0,1\} \colon f = \langle \alpha, x \rangle \oplus \beta$ то есть f афинная.

Доказатель ство. 1.
$$D_L f(x) = \bigoplus_{v \in L} f(x \oplus v) = \bigoplus_{v \in L} f(x \oplus (u \oplus v)) = \bigoplus_{v \in L} f((x \oplus u) \oplus v) = D_L f(x \oplus u)$$

- 2. $D_L(f \oplus g)(x) = \bigoplus_{u \in L} f(x \oplus u) \oplus g(x \oplus v) = D_L f(x) \oplus D_L g(x)$
- 3. $D_u f(x) \oplus D_v f(x \oplus u) = f(u \oplus x) \oplus f(x) \oplus f(x \oplus u \oplus v) \oplus f(x \oplus u) = f(x) \oplus f(x \oplus u \oplus v) = D_{u \oplus v} f(x)$
- 4. Очевидно по определению
- 5. $D_u f(x) = \alpha_u \implies f(x) \oplus f(x \oplus u) = \alpha_u$ Тогда $f(u) = f(0) + \alpha_u$, тогда $f(x) \oplus f(y) = \alpha_{x \oplus y} = f(0) \oplus f(x \oplus y)$. Тогда $\sum_{i=1}^k f(x_i) = f(\sum_{i=1}^k x_i) + k f(0)$. Пусть e_1, \dots, e_n единичные векторы. Тогда

$$f(x) = \langle (f(e_1), \dots, f(e_n)), x \rangle \oplus (w(x) \mod 2 \oplus 1) \\ f(0) = \langle (f(e_1), \dots, f(e_n)) + (f(0), \dots, f(0)), x \rangle \oplus f(0)$$

Глава 6

Криптографические свойства булевых функций

6.1 Нелинейность

Определение 6.1. Нелинейностью булевой функции $f:\{0,1\}^n \to \{0,1\}$ называется число

$$\mathcal{N}_f = \min_{g \in \mathscr{A}_n} d(f, g)$$

где \mathscr{A}_n — пространство афинных функций (имеющих как многочлены степень не более 1) и $d(f,g)=|\{x\colon f(x)\neq g(x)\}|$

Замечание 6.1. Легко видеть, что для любой $f \in \mathscr{A}_n$ существует $u \in \{0,1\}^n$ и $b \in \{0,1\}$ такой, что $f(x) = (u,x) \oplus b$ **Теорема 6.1.**

$$\mathcal{N}_f = 2^{n-1} - \frac{1}{2} \max_{u \in \{0,1\}^n} |W_f(u)|$$

Доказательство.

$$W_f(u) = \sum_{x \in \{0,1\}^n} \exp f(x) v(x, u) = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus (u,x)} = \sum_{x \in \{0,1\}^n} \exp(f \oplus (u,x))(x) \underbrace{v(x,0)}_{=1} = W_{f \oplus u}(0) = |\{x \colon f(x) \oplus (u,x) = 0\}| - |\{x \colon f(x) \oplus (u,x) = 1\}|$$
$$= (2^n - d(f(x), (u,x))) - d(f(x), (u,x)) = 2^n - 2d(f(x), (u,x))$$

Выражая из этой формулы расстояние

$$d(f(x), (u, x)) = 2^{n-1} - \frac{1}{2}W_f(u)$$

теперь выразим расстояние до функции $(u,x) \oplus 1$

$$d(f(x), (u, x) \oplus 1)) = 2^{n} - (2^{n-1} - \frac{1}{2}W_f(u)) = 2^{n-1} + \frac{1}{2}W_f(u)$$

Тогда

$$\min\{d(f(x),(u,x)),d(f(x),(u,x)\oplus 1)\}=2^{n-1}-\frac{1}{2}|W_f(u)|$$

и, наконец

$$\mathcal{N}_f = \min_{g \in \mathscr{A}_n} d(f, g) = \min_{\substack{u \in \{0, 1\}^n \\ b \in \{0, 1\}}} d(f, (u, x) \oplus b) = \min_{\substack{u \in \{0, 1\}^n \\ b \in \{0, 1\}}} \left| 2^{n-1} - \frac{1}{2} |W_f(u)| \right| =$$

$$= 2^{n-1} - \frac{1}{2} \max_{u \in \{0, 1\}^n} |W_f(u)|$$

6.2 Автокорреляция

Определение 6.2. Пусть $f, g \in \mathscr{F}_n = \operatorname{Map}(\{0,1\}^n, \{0,1\})$. Определим функцию $\Delta_{f,g} : \{0,1\}^n \to \mathbb{Z}$ следующим образом:

$$\Delta_{f,g}(u) = \sum_{x \in \{0,1\}^n} \exp(f(x) \oplus g(x \oplus u))$$

Назовем эту функцию функцей взаимной корреляции.

Утверждение 6.1. $\forall u \in \{0,1\}^n, \forall f, g \in \mathscr{F}_n : \Delta_{f,g}(u) = \Delta_{g,f}(u)$

Определение 6.3. Для $f \in \mathscr{F}_n$ функция $\Delta_f(u) = \Delta_{f,f}(u)$ называется функцией автокорреляции.

Замечание 6.1. Автокорреляция f в точке $u \in \{0,1\}^n$ равна нулевому коэффициенту Уолша-Адамара производной f по направлению u:

$$\Delta_f(u) = W_{D_u f}(0)$$

Доказательство.

$$W_{D_f u}(0) = \sum_{x \in \{0,1\}^n} \exp(D_u f(x)) = \sum \exp(f(x+u) + f(x)) = \Delta_f(u)$$

Замечание 6.2. Не любой набор из 2^n чисел может быть набором значений автокорреляции.

Теорема 6.2. Пусть $f, g \in \mathscr{F}_n$. Тогда

$$(\Delta_{f,q}(0), \dots, \Delta_{f,q}(2^n - 1))H_n = (W_f(0) \cdot W_q(0), \dots, W_f(2^n - 1) \cdot W_q(2^n - 1))$$

 $\operatorname{гde} H_n$ — матрица Силь вестра размера $2^n \times 2^n$

Доказательство. Без доказательства

Следствие 6.1. Пусть $f \in \mathscr{F}_n$ тогда

$$(\Delta_f(0), \dots, \Delta_f(2^n - 1))H_n = (W_f^2(0), \dots, W_f^2(2^n - 1))$$

unu

$$\sum_{x \in \{0,1\}^n} \Delta_f(x) \exp(\langle x, u \rangle) = W_f^2(u)$$

 ∂ ля всех $u \in \{0,1\}^n$.

Теорема 6.3. Определим $h \in \mathscr{F}_{n+m}$ как h(x,y) = f(x) + g(y), где $f \in \mathscr{F}_n$, $g \in \mathscr{F}_m$. Тогда

$$\forall \alpha \in \{0,1\}^n, \beta \in \{0,1\}^m : \Delta_h(\alpha,\beta) = \Delta_f(\alpha)\Delta_g(\beta)$$

Доказательство.

$$\Delta_h(\alpha,\beta) = \sum_{\substack{x \in \{0,1\}^n \\ y \in \{0,1\}^m}} \exp(h(x,y) \oplus h(x+\alpha,y+\beta)) =$$

$$\sum_{\substack{x \in \{0,1\}^n \\ y \in \{0,1\}^m}} \exp(f(x) \oplus g(y) \oplus f(x+\alpha) \oplus g(y+\beta)) = \Delta_f(\alpha) \Delta_g(\beta)$$

Следствие 6.2. $\forall f \in \mathscr{F}_n$ выполнено $|\operatorname{Supp} \Delta_f| \cdot |\operatorname{Supp} W_f| \geq 2^n$, где $\operatorname{Supp} \Delta_f = \{x \colon \Delta_f(x) \neq 0\}$; $\operatorname{Supp} W_f = \{x \colon W_f(x) \neq 0\}$.

6.3 Уравновешенность, устойчивость и корреляционная имунность

6.3.1 Уравновешенность

Определение 6.4. Функция $f:\{0,1\}^n \to \{0,1\}$ называется, уравновешенной, если для

$$|\{x \colon f(x) = 0\}| = 2^{n-1}$$

, то есть, если она принимает значение 0 ровно в половине случаев.

Если функция уравновешена, то она наиболее оптимально сужает множество возможных прообразов, то есть, сообщает ровно 1 бит информации о прообразе.

Утверждение 6.2. f уравновешенна $\iff W_f(0^n) = 0$, где F_f — преобразование Фурье функции f.

Доказатель ство.
$$W_f(0^n) = \sum_{x \in \{0,1\}^n} (-1)^{f(x)} \underbrace{v(x,0^n)}_{=1} = \sum_{x \in \{0,1\}^n} (-1)^{f(x)} = |\{x \colon f(x)=0\}| - |\{x \colon f(x)=1\}|$$

Так как $\{x: f(x) = 0\} \cap \{x: f(x) = 1\} = \emptyset$, получили, что требовалось.

6.3.2 Корелляционная имунность

Определение 6.5. Пусть $f:\{0,1\}^n \to \{0,1\}, \ 1 \le i_1 < \ldots < i_m \le n, \ a_1,\ldots,a_m \in \{0,1\}.$ Тогда обозначим $f^{a_1,\ldots,a_m}_{i_1,\ldots,i_m}$ функцию из $\{0,1\}^{n-m}$ полученную как сужение функции f на множество $\{x\colon x_{i_k}=a_k\}$ с введением естественных координат.

Определение 6.6. Пусть $f:\{0,1\}^n \to \{0,1\}$. f называется корелляционно-имунной, если для любых $1 \le i_1 < \ldots < i_m \le n, a_1, \ldots, a_m \in \{0,1\}$ выполнено

$$w(f_{i_1,\dots,i_m}^{a_i,\dots,a_m}) = \frac{w(f)}{2^m}$$

6.3.3 Устойчивость

Определение 6.7. Функция $f:\{0,1\}^n \to \{0,1\}$ называется m-устойчивой, если для любых $1 \le i_1 < \ldots < i_m \le n$ и любых $a_1,\ldots,a_m \in \{0,1\}$ функция, полученная из f сужением на множество $\{x\colon x_{i_k}=a_k\}$ уравновешенна.

Вспомним несколько свойств преобразования Уолша-Адамара.

Утверждение 6.3. Пусть E — линейное подпространство $\{0,1\}^n$. Тогда $F_{\mathbf{1}_E}=|E|\mathbf{1}_{E^\perp}$

Определение 6.8. Обозначим $\mathscr{F}(f) = W_f(0)$

Определение 6.9. Бинарной производной функции $f:\{0,1\}^n \to \{0,1\}$ называется функция $D_b f(x) = f(x) \oplus f(x+b)$

Утверждение 6.4. Для бинарной f выполняется $W_f^2(u) = \sum_{b \in \{0,1\}^n} \mathscr{F}(D_b(f))(-1)^{(u,b)}$

Доказательство. Распишем правую часть:

$$\sum_{b \in \{0,1\}^n} \mathscr{F}(D_b(f))(-1)^{(u,b)} = \sum_{b \in \{0,1\}^n} \sum_{g \in \{0,1\}^n} (-1)^{f(g) \oplus f(g+b)} (-1)^{(u,b)}$$

поменяем обозначения

$$\sum_{h \in \{0,1\}^n} \sum_{g \in \{0,1\}^n} (-1)^{f(g) \oplus f(h)} (-1)^{(u,g \oplus h)}$$

и по линейности скалярного произведения получаем

$$\left(\sum_{h \in \{0,1\}^n} (-1)^{f(h)} (-1)^{(u,h)}\right) \cdot \left(\sum_{g \in \{0,1\}^n} (-1)^{f(g)} (-1)^{(u,g)}\right) = W_f^2(u)$$

Теорема 6.4. $f:\{0,1\}^n \to \{0,1\}$ является m-устойчивой $\iff \forall u\colon w(u) \le m$ выполняется $W_f(u)=0$

Уравновешенные функции являются 0-устойчивыми и для них мы эту теорему уже доказали.

Лемма 6.1. Пусть E и E' — $nodnpocmpaнства <math>\{0,1\}^n$ такие, что $\underbrace{E+E'}_{npsmas\ cymma} = \{0,1\}^n$ и $E\cap E' = \{0\}$. Пусть

 h_a — сужение f на сдвинутое подпространство E+a. Тогда выполняется

$$\sum_{u \in E^{\perp}} W_f^2(u) = |E^{\perp}| \sum_{a \in E'} W_{h_a}^2(0)$$

Доказательство.

$$\sum_{u \in E^{\perp}} W_f^2(u) =$$

по второму утверждению

$$\sum_{u\in E^\perp}\sum_{b\in\{0,1\}^n}\mathscr{F}(D_bf)(-1)^{(u,b)}=$$

поменяем местами суммы

$$\sum_{b \in \{0,1\}^n} \mathscr{F}(D_b f) \underbrace{\sum_{u \in E^{\perp}} (-1)^{(u,b)}}_{F_{\mathbf{1}_{F^{\perp}}}(b)} =$$

по первому утверждению

$$\sum_{b \in \{0,1\}^n} \mathscr{F}(D_b f) |E^{\perp}| \mathbf{1}_E(b) = |E^{\perp}| \sum_{b \in E} \mathscr{F}(D_b f)$$

теперь, так как $\{0,1\}^n$ является прямой суммой E и E' можно записать $f=\sum\limits_{e\in E'}h_e$

$$|E^{\perp}| \sum_{b \in E} \mathscr{F} \left(D_b \sum_{e \in E'} h_e \right)$$

производная и преобразование Уолша-Адамара линейны, поэтому вынесем сумму по е вовне

$$= |E^{\perp}| \sum_{e \in E'} \left(\sum_{b \in E} \mathscr{F}(D_b h_e) \right)$$

теперь применим второе утверждение еще раз, пользуясь тем, что E — линейное пространство

$$|E^{\perp}| \sum_{e \in E'} \mathscr{F}^2(D_e f)$$

Доказательство. Рассмотрим произвольное множество $I \subset \{1, \dots, n\}$ такое, что |I| = m. Обозначим $E = \{x \colon \forall i \in I \ x_i = 0\}$. Тогда легко видеть, что $E^{\perp} = \{x \colon \forall i \notin I \ x_i = 0\}$. Прямая сумма E и E^{\perp} дает всё $\{0, 1\}^n$.

Тогда можем записать утверждение леммы

$$\sum_{u \in E^{\perp}} W_f^2(u) = |E^{\perp}| \sum_{a \in E^{\perp}} W_{h_a}^2(0)$$

Левая часть равна нулю тогда и только тогда, когда для всех $u \in E^{\perp}$ верно $W_f(u) = 0$, вторая часть равна нулю тогда и только тогда, когда для всех $a \in E^{\perp}$ верно $W_{h_a}(0) = 0$, что, в свою очередь, равносильно уравновешенности h_a . Здесь h_a — сужение на сдвинутое подпространство a + E, то есть сужение из определения устойчивости.

Так как эта равносильность выполнена для любых I, теорема доказана.

6.4 Бент-Функции

6.4.1 Определение и базовые свойства

Определение 6.10. Функция $f \in \mathscr{F}_n$ называется максимально нелинейной если $f = \argmax_{f \in \mathscr{F}_n} \mathcal{N}_f$

Определение 6.11. Функция $f \in \mathscr{F}_n$ называется бент-функцией, если

$$\forall u \in \{0,1\}^n \colon W_f(u) \in \{2^{\frac{n}{2}}, -2^{\frac{n}{2}}\}\$$

Замечание 6.3. Бент-функции существуют только для четных n, поскольку $W_f(u) \in \mathbb{Z}$

Замечание 6.4. Если n четно, то f бент-функция $\iff f$ максимально нелинейна.

 \mathcal{A} оказательство. Вспомним, что $\mathcal{N}_f = 2^{n-1} - \frac{1}{2} \max_{u \in \{0,1\}^n} |W_f(u)|$. Кроме того, по неравенству Парсеваля

$$\sum_{x \in \{0,1\}^n} W_f^2(x) = 2^{2n}.$$

Тогда

$$\sum_{x \in \{0,1\}^n} W_f^2(x) \le 2^n \max_{x \in \{0,1\}^n} W_f^2(x) \implies \max_{x \in \{0,1\}^n} W_f^2(x) \ge 2^n \implies \mathcal{N}_f \le 2^{n-1} - \frac{1}{2} 2^{\frac{n}{2}}$$

Тогда на бент-функциях достигается максимум нелинейности, а это и требовалось показать.

ΟK

Теорема 6.5. $f \in \mathscr{F}_{2n}$ является максимально нелинейной тогда и только тогда, когда $Q = \left\{\frac{1}{2^n}W_f(\alpha \oplus \beta)\right\}_{\alpha,\beta \in \{0,1\}^{2n}}$ является матрицей Aдамара.

Доказательство. Все элементы матрицы принадлежат $\{1, -1\}$, осталось проверить ортогональность строк:

$$\langle Q_{\alpha}, Q_{\beta} \rangle = \sum_{x \in \{0,1\}^{2n}} \frac{1}{2^{2n}} W_f(x \oplus \alpha) W_f(x \oplus \beta) = \frac{1}{2^{2n}} \sum_{x' \in \{0,1\}^{2n}} W_f(x') W_f(x' \oplus \alpha \oplus \beta)$$

теперь по свойству ортогональности коэффициентов Уолша-Адамара имеем

$$\langle Q_{\alpha}, Q_{\beta} \rangle = \begin{cases} 0 & \text{если } \alpha \neq \beta \\ 2^{2n} & \text{иначе} \end{cases}$$

Тогда Q — матрица Адамара.

В обратную сторону аналогично.

6.4.2 Дуальная функция

Определение 6.12. Пусть $f \in \mathscr{F}_{2n}$ — максимально нелинейная булева функция. Тогда $\widetilde{f} \in \mathscr{F}_{2n}$ называется ∂y -альной κ f, если $W_f(\alpha) = 2^n (-1)^{\widetilde{f}(\alpha)}$

Пример 6.1. Имея пример максимально-нелинейной функции легко построить дуальную к ней:

x	f	$\exp f$		W_f	$ \widetilde{f} $
00	1	-1	0	2	0
01	0	1	2	-2	1
10	0	1	-2	-2	1
11	0	1	0	-2	1

Теорема 6.6. Пусть $f \in \mathscr{F}_{2n}$ является бент-функцией, то \widetilde{f} тоже является бент-функцией.

Доказательство. Воспользуемся формулой обращения преобразования Уолша-Адамара (5.5):

$$\exp f(x) = \frac{1}{2^{2n}} \sum_{u \in \{0,1\}^{2n}} W_f(u) \exp\langle x, u \rangle$$

Рассмотрим преобразование Уолша-Адамара для \widetilde{f} :

$$W_{\widetilde{f}}(u) = \sum_{x \in \{0,1\}^{2n}} \exp(\widetilde{f}(x) \oplus \langle x, u \rangle)$$

По определению дуальной функции $\exp \widetilde{f}(x) = \frac{1}{2^n} W_f(x)$, тогда, подставляя в предыдущую формулу:

$$W_{\widetilde{f}}(u) = \frac{1}{2^n} \sum_{x \in \{0,1\}^{2n}} W_f(x) \exp(\langle x, u \rangle) = 2^n \exp f(x) \in \{2^n, -2^n\}$$

 ${
m A}$ это и значит, что \widetilde{f} является бент-функцией.

Замечание 6.5. $\widetilde{\widetilde{f}}=f$. Следует из теоремы об обращении преобразования Уолша-Адамара.

6.4.3 Критерий Ротхауза

Теорема 6.7 (критерий Ротхауза). $f \in \mathscr{F}_{2n}$ является бент-функцией тогла и только тогда, когда

$$\forall u \in \{0,1\}^{2n} \setminus \{0\}$$
: $D_u f$ уравновешенна

Доказательство. Вспомним теорему 6.5 о связи бент-функции с матрицей Адамара. Мы поняли, что

$$\left\{\frac{1}{2^n}W_f(a\oplus b)\right\}_{a,b\in\{0,1\}^{2n}}$$

является матрицей Адамара. Запишем это условие для функции \widetilde{f} , учитывая

$$W_{\widetilde{f}}(u) = 2^n \exp f(u).$$

Скалярное произведение двух строк матрицы $Q=\left\{\frac{1}{2^n}W_{\widetilde{f}}(a\oplus b)\right\}_{a.b\in\{0,1\}^{2n}}$:

$$\langle Q_{\mathbf{0}},Q_{\alpha}\rangle = \sum_{x \in \{0,1\}^{2n}} \frac{1}{2^{2n}} W_{\widetilde{f}}(x) W_{\widetilde{f}}(x \oplus \alpha) = \sum_{x \in \{0,1\}^{2n}} \exp(f(x) \oplus f(x \oplus \alpha)) = \sum_{x \in \{0,1\}^{2n}} \exp D_{\alpha}f(x)$$

Тогда $\alpha=0\iff D_{\alpha}f$ уравновешенна. Мы записываем только произведения с первой строкой, поскольку $\langle Q_a,Q_b\rangle=\langle Q_0,Q_{a\oplus b}\rangle$

6.4.4 Конструкция Мэйорана — Мак-Фарланда

Теорема 6.8. Пусть $\pi:\{0,1\}^n \to \{0,1\}^n$ — перестановка (биекция). $\psi \in \mathscr{F}_n$. Тогда

$$f \in \mathscr{F}_2 n: f(x,y) = \langle \pi(y), x \rangle \oplus \psi(y)$$

является бент-функцией.

Доказательство. Воспользуемся критерием Ротхауза (6.7) об уравновещенности производных.

$$D_u f(x,y) = f(x \oplus u_1, y \oplus u_2) \oplus f(x,y) = \langle \pi(y+u_2), x+u_1 \rangle \oplus \psi(x \oplus u_2) \oplus \langle \pi(y), x \rangle \oplus \psi(y)$$

Чтобы доказать уравновешенность, достаточно вычислить нулевой коэффициент Уолша-Адамара для $D_u f(x,y)$:

$$W_{D_uf}(0) = \sum_{v_1, v_2 \in \{0,1\}^n} \exp(\langle \pi(v_2 + u_2), v_1 + u_1 \rangle \oplus \psi(v_2 \oplus u_2) \oplus \langle \pi(v_2), v_1 \rangle \oplus \psi(v_2))$$

Распишем по линейности скалярного произведения и вынесем за скобки всё, зависящее только от v₂:

$$\dots = \sum_{v_2 \in \{0,1\}^n} \exp(\langle \pi(v_2 \oplus u_2), u_1 \rangle \oplus \psi(v_2) \oplus \psi(v_2 \oplus u_2)) \sum_{v_1 \in \{0,1\}^n} \exp(\langle \pi(v_2 \oplus u_2) \oplus \pi(v_2), v_1 \rangle)$$

Из свойств функции Уолша знаем, что

$$\sum_{v_1 \in \{0,1\}^n} \exp(\langle \pi(v_2 \oplus u_2) \oplus \pi(v_2), v_1 \rangle) = \begin{cases} 0 & \text{если } \pi(v_2 \oplus u_2) \oplus \pi(v_2) \neq 0 \iff u_2 \neq 0 \\ 2^n & \text{иначе} \end{cases}$$

Тогда можем переписать сумму как

$$\ldots = 2^n \cdot \begin{cases} 0 & \text{если } u_2 \neq 0 \\ \sum\limits_{v_2 \in \{0,1\}^n} \exp(\langle \pi(v_2), u_1 \rangle \oplus \underbrace{\psi(v_2) \oplus \psi(v_2)}_{=0}) & \text{если } u_2 = 0 \end{cases}$$

Тогда, из тех же соображений, можем записать

$$W_{D_u f}(0) = \begin{cases} 0 & u \neq 0 \\ 2^{2n} & u = 0 \end{cases}$$

Это доказывает условие критерия Ротхауза и завершает доказательство теоремы.

Определение 6.13. Класс функций, построенных по теореме выше, называется классом Мэйорана — Мак-Фарланда и обозначается \mathcal{M} .

Утверждение 6.5. $|\mathcal{M}| = (2^n)! \cdot 2^{2^n}$

Доказательство. Любая функция из \mathcal{M} однозначно задается поответствующими π и ψ . Пусть существует π_1, π_2 и ψ_1, ψ_2 , такие, что

$$\langle \pi_1(y), x \rangle \oplus \psi_1(y) \equiv \langle \pi_2(y), x \rangle \oplus \psi_2(y)$$

тогда

$$\langle \pi_1(y) \oplus \pi_2(y), x \rangle \equiv \psi_1(y) \oplus \psi_2(y)$$

Но левая часть зависит от x, а правая не зависит, положив x=0 получаем $\psi_1 \equiv \psi_2$ и тогда сразу $\pi_1 \equiv \pi_2$.

Утверждение 6.6. Пусть $f(x,y) = \langle \pi(y), x \rangle \oplus \psi(y)$. Тогда

$$\widetilde{f}(x,y) = \langle y, \pi^{-1}(x) \rangle \oplus \psi(\pi^{-1}(x))$$

 ∂ ля $x,y \in \{0,1\}^n$

Доказатель ство. Нужно проверить $W_f(\alpha) = 2^n (-1)^{\widetilde{f}(\alpha)}$:

$$W_f(\alpha_1,\alpha_2) = \sum_{x,y \in \{0,1\}^n} \exp(\langle \pi(y),x \rangle \oplus \psi(y) \oplus \langle \alpha_1,x \rangle \oplus \langle \alpha_2,y \rangle) = \sum_{y \in \{0,1\}^n} \exp(\psi(y) \oplus \langle \alpha_2,y \rangle) \sum_{x \in \{0,1\}^n} \exp(\langle \pi(y) \oplus \alpha_1,x \rangle)$$

По свойству функции Уолша

$$\sum_{x \in \{0,1\}^n} \exp(\langle \pi(y) \oplus \alpha_1, x \rangle) = \begin{cases} 2^n & \pi(y) = \alpha_1 \\ 0 & \text{иначе} \end{cases}$$

Тогда в итоге получаем

$$W_f(\alpha) = 2^n \exp(\langle \alpha_2, \pi^{-1}(\alpha_1) \rangle \oplus \psi(\pi^{-1}(\alpha_1))) = 2^n \exp(\widetilde{f}(\alpha))$$

Утверждение 6.7. На множестве \mathscr{F}_{2n} существуют бент-функции степеней $2, 3, \ldots, n$.

Доказательство. Рассмортим $f(x,y) = \langle \pi(y), x \rangle \oplus \psi(y)$.

Второе слагаемое зависит только от y. Пусть $\forall y : \pi(y) = y$. Тогда

$$f(x,y) = x_1y_1 \oplus \ldots \oplus x_ny_n \oplus \psi(y)$$

 $deg(\psi) \in \{0, ..., n\}$, кроме того, он не содержит мономов $x_i y_i$, то есть, коэффициенты при них в f равны 1. Тогда $degf \in \{2, ..., n\}$.

6.4.5 Частично бент-функции