ამოცანა 1: ძალის გეგმილების პოვნა ox და oy ღერძებზე

მითითება: ox ღერძზე გეგმილის საპოვნელად F ძალა გაამრავლეთ მოცემული კუთხის კოსინუსზე, ხოლო oy ღერძზე გეგმილის საპოვნელად — სინუსზე.

გაითვალისწინეთ, თუ მოცემულ ნახაზზე ძალის ვექტორის მიმართულება ემთხვევა ღერძის მიმართულებას, შესაბამისი გეგმილი დადებითი ნიშნისაა, წინააღმდეგ შემთხვევაში — უარყოფითი.

მაგალითი 1: $\alpha=30^\circ$, F=20 წ. იპოვეთ F_x და F_y .

ამოხსნა:

$$F_x = F \cdot \cos \alpha = F \cdot \cos 30^\circ = 20 \cdot \frac{\sqrt{3}}{2} = 10\sqrt{3} \approx 17 \ \delta$$
$$F_y = F \cdot \sin \alpha = F \cdot \sin 30^\circ = 20 \cdot \frac{1}{2} = 10 \ \delta$$

მაგალითი 2: $\alpha=45^\circ$, F=16 წ. იპოვეთ F_x და F_v .

ამოხსნა:

$$F_x = F \cdot \cos \alpha = -F \cdot \cos 45^\circ = -16 \cdot \frac{\sqrt{2}}{2} = -8\sqrt{2} \approx -11.3 \ 6$$

 $F_y = F \cdot \sin \alpha = F \cdot \sin 45^\circ = 16 \cdot \frac{\sqrt{2}}{2} = 8\sqrt{2} = 11.3 \ 6$

მაგალითი 3: $\alpha=60^\circ$, F=40 წ. იპოვეთ F_x და F_y .

ამოხსნა:

$$F_{x} = F \cdot \cos \alpha = -F \cdot \cos 60^{\circ} = -40 \cdot \frac{1}{2} = -20 \, \delta$$

$$F_{y} = F \cdot \sin \alpha = -F \cdot \sin 60^{\circ} = -40 \cdot \frac{\sqrt{3}}{2} = -20\sqrt{3} \approx 34.6 \, \delta$$

შაგალითი 4: $\alpha=30^\circ$, F=8 წ. იპოვეთ F_x და $\overline{F_y}$.

ამოხსნა:

$$F_x = F \cdot \cos \alpha = F \cdot \cos 30^\circ = 8 \cdot \frac{\sqrt{3}}{2} = 4\sqrt{3} \approx 6.9 \, \delta$$
$$F_y = F \cdot \sin \alpha = -F \cdot \sin 30^\circ = -8 \cdot \frac{1}{2} = -4 \, \delta$$

მაგალითი 5: $\alpha=90^\circ$, F=12 წ. იპოვეთ F_x და F_y .

ამოხსნა:

$$F_x = F \cdot \cos \alpha = F \cdot \cos 90^\circ = 8 \cdot 0 = 0$$

$$F_y = F \cdot \sin \alpha = F \cdot \sin 90^\circ = 8 \cdot 1 = 8 \, 6$$

ამოცანა 2: დაჭიმულობის ძალის პოვნა დალამბერის პრინციპით

მითითება: ნახაზის აგებისას, სხეულზე მოდეთ ქვევით მიმართული $m\vec{g}$ სიმძიმის ძალა, ზევით მიმართული \vec{S} დაჭიმულობის ძალა, აჩქარების საწინააღმდეგოდ მიმართული ϕ ინერციის ძალა. z ღერძი და აჩქარება მიმართეთ მოძრაობის (ზევით ან ქვევით) მიმართულებით.

მაგალითი 1: თოკზე დაკიდებული 15 კგ მასის ტვირთი მოძრაობს ქვევით a=0.6 მ/წმ 2 აჩქარებით. იპოვეთ თოკის დაჭიმულობა დალამბერის პრინციპის გამოყენებით. ამოხსნა:

$$m\vec{a} = \vec{S} + m\vec{g}$$

$$\vec{S} + m\vec{g} - (m\vec{a}) = 0$$

$$\vec{S} + m\vec{g} + \vec{\phi} = 0$$

$$\phi = ma$$

z-ღერმზე:

$$mg - S - \phi = 0$$

 $mg - S - ma = 0$
 $S = mg - ma = m(g - a) = 15(10 - 0.6) = 15 \cdot 9.4 = 141 \, \delta$

მაგალითი 2: თოკზე დაკიდებული 15 კგ მასის ტვირთი მოძრაობს **ზევით** a=0.6 მ/წმ 2 აჩქარებით. იპოვეთ თოკის დაჭიმულობა დალამბერის პრინციპის გამოყენებით.

ამოხსნა:

$$m\vec{a} = \vec{S} + m\vec{g}$$

$$\vec{S} + m\vec{g} - (m\vec{a}) = 0$$

$$\vec{S} + m\vec{g} + \vec{\phi} = 0$$

$$\phi = ma$$

$$z$$
-ღერმზე:

 $-mg + S - \phi = 0$

$$-mg + S - ma = 0$$

 $S = mg + ma = m(g + a) = 15(10 + 0.6) = 15 \cdot 10.6 = 159 \, \delta$

ამოცანა 3: ძალის მუშაობა

მითითება: გამოიყენეთ ფორმულა

$$A = \int_0^x F \cos \alpha \, dx$$

სადაც ინტეგრალის ზედა ზღვარი x ამოცანაში მოცემული გადაადგილების წერტილის კოორდინატია.

მაგალითი: სხეულზე მოქმედებს მუდმივი მიმართულების $F=3x^3$ ძალა, რომელიც ox ღერძთან ადგენს $\alpha=30^\circ$ კუთხეს. იპოვეთ ამ ძალის მუშაობა, როცა სხეული კოორდინატთა სათავიდან გადაადგილდება წერტილში, რომლის კოორდინატია x=4. *ამოხსნა:*

$$A = \int_0^4 F \cos \alpha \, dx = \int_0^4 3x^3 \cos 30^0 \, dx = \int_0^4 3x^3 \frac{\sqrt{3}}{2} \, dx = \frac{3\sqrt{3}}{2} \int_0^4 x^3 \, dx$$
$$= \frac{3\sqrt{3}}{2} \cdot \frac{x^4}{4} \Big|_0^4 = \frac{3\sqrt{3}}{2} \cdot \frac{4^4}{4} = \frac{3\sqrt{3}}{2} \cdot 4^3 = 96\sqrt{3} \approx 166.3$$

ამოცანა 4: ნორმალური აჩქარება

მითითეზა: გამოიყენეთ ნორმალური აჩქარეზის ფორმულა $a_n = \frac{v^2}{r}$, სადაც სიჩქარე v ტოლია S-ის წარმოებულის (იგივე \dot{S}).

მაგალითი: წერტილი მომრაობს r=1.5 მ რადიუსის წრეწირზე $S=2t^2$ კანონით. იპოვეთ ნორმალური აჩქარება t=1 წმ მომენტში. ამოხსნა:

$$a_n = \frac{v^2}{r}$$

$$v = \dot{S} = (2t^2)' = 4t$$

როცა t=1 წმ,

$$v = 4t = 4 \cdot 1 = 4 \frac{\partial}{\partial \partial}$$

ამრიგად,

$$a_n = \frac{4^2}{1.5} = \frac{16}{1.5} = 10\frac{2}{3} \approx 10.6\frac{0}{60^2}$$

ამოცანა 5: კუთხური სიჩქარე და კუთხური აჩქარება

მითითება: კუთხური სიჩქარე ω ტოლია φ -ის წარმოებულის (იგივე $\dot{\varphi}$), ხოლო კუთხური აჩქარება ε ტოლია კუთხური სიჩქარის ω წარმოებულის (იგივე $\dot{\omega}$). წარმოებულთა პოვნის შემდეგ, ჩასვით დროის მნიშვნელობა თითოეულ მათგანში.

მაგალითი: სხეული ზრუნავს უძრავი ღერძის გარშემო $\varphi=3t^2+1$ კანონით. იპოვეთ კუთხური სიჩქარე და კუთხური აჩქარება t=1 წმ მომენტში.

ამოხსნა:

$$\omega = \dot{\varphi} = (3t^2 + 1)' = 6t + 0 = 6t$$

 $\varepsilon = \dot{\omega} = (6t)' = 6$

როცა t=1 წმ,

$$\omega = 6t = 6 \cdot 1 = 6 \frac{\partial}{\delta}$$

$$\varepsilon = 6 \frac{\partial}{\delta}$$

ამოცანა 6: მოძრაობის რაოდენობა და კინეტიკური ენერგია

მითითება: იპოვეთ სხეულის სიჩქარე v მოცემული მომრაობის კანონის გაწარმოებით (იგივე \dot{x}). მიღებულ ფორმულაში ჩასვით დროის მნიშვნელობა და განსაზღვრეთ სიჩქარე. სიჩქარის მიღებული შედეგით იპოვეთ მოძრაობის რაოდენობა q=mv და კინეტიკური ენერგია $T=\frac{1}{2}mv^2$.

მაგალითი: m=20 კგ მასის მატერიალური წერტილი მოძრაობს წრფეზე $\mathbf{x}=4t+2t^2$ კანონით. იპოვეთ წერტილის მოძრაობის რაოდენობა და კინეტიკური ენერგია t=1 წმ მომენტში. ამოხსნა:

$$v = \dot{x} = (4t + 2t^2)' = 4 + 4t$$

როცა t = 1, ამიტომ

$$v = 4 + 4t = 4 + 4 \cdot 1 = 4 + 4 = 8 \frac{\partial}{\partial \theta}$$

მოძრაობის რაოდენობა:

$$q = mv = 20 \cdot 8 = 160 \text{ B} \cdot \frac{\partial}{\partial \theta}$$

კინეტიკური ენერგია:

$$T = \frac{1}{2}mv^2 = \frac{1}{2} \cdot 20 \cdot 8^2 = 10 \cdot 64 = 640 \,\chi$$

ამოცანა 7: ძალის მომენტი

მითითება: გამოიყენეთ ფორმულა $M_O(\vec{F}) = hF$, სადაც h ტოლია მოცემული წერტილის x კოორდინატის.

მაგალითი: გამოთვალეთ F ძალის მომენტი კოორდინატთა სათავის მიმართ, თუ წერტილის კოორდინატია (10; 12), ხოლო ძალა F=20 წ. *ამოხსნა:*

$$M_O(\vec{F}) = hF = 10 \cdot 20 = 200 \, 6 \cdot \partial$$

ამოცანა 8: მალა

მითითეზა: გამოიყენეთ ფორმულა $F=\sqrt{F_x^2+F_y^2}$, სადაც $F_x=m\ddot{x}$ და $F_y=m\ddot{y}$.

მაგალითი: 12 კგ მასის სხეული მოძრაობს სიბრტყეზე. $x = 4t^2$, $y = 3t^2$. იპოვეთ წერტილზე მოქმედი ძალა. *ამოხსნა:*

$$\dot{x} = (4t^2)' = 8t$$

$$\ddot{x} = (8t)' = 8$$

$$\dot{y} = (3t^2)' = 6t$$

$$\ddot{y} = (6t)' = 6$$

$$F_x = m\ddot{x} = 12 \cdot 8 = 96 \text{ 5}$$

$$F_y = m\ddot{y} = 12 \cdot 6 = 72 \text{ 5}$$

$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{96^2 + 72^2} = \sqrt{14400} = 120 \text{ 5}$$