

Instructions:

- Your R code shall be written in a single script file.
- Name the script file lab1_[your_id].R. For example, lab1_5123700044.R.
- Separate your answers/code into sections according to task_id and part_id. For example,

```
# Task 1 part (a)
tmp.df = data.frame( x = rnorm(10), y = rbinom(10, size = 1, prob = 0.3))

# Task 1 part (b)
# Task 1 part (b)
## A percentile is a measure used in statistics indicating the value below
## which a given percentage of observations in a group of observations fall.
## For example, the 20th percentile is the value (or score) below which
## 20% of the observations may be found.

# Task 1 part (c)
# Task 1 part (c)
# Task 1 part (c)
# Task 2 part (a)

. . . .

# Task 2 part (a)

cut(tmp.df$x, breaks = seq(-3, 3, length.out = 5))

rm(list = ls())
```

Task 1 (5 points)

This task is about R basics and being able to use the R environment productively.

- (a) (1 point) Describe the difference between a single? and a double??.
 - > ?round
 - > ??regression
- (b) (1 point) By default, R stores everything in double precision and prints 7 significant digits of numerical values, but you can ask R to print more by explicitly calling the print function. Create a double precision numerical variable called x, whose value is 1/7, then display 15 significant digits of x.
- (c) (1 point) Study the output of the following R command. When should we use a coplot? > demo(graphics)
- (d) (1 point) What do the following R commands illustrate?

```
> .1 == 0.1

[1] TRUE

> .1 + .2 == .3

[1] FALSE
```

(e) (1 point) Write simple R expressions to generate a vector y.vec containing

$$1, -1, 2, -1, 3, -1, \dots, 100, -1$$

Task 2 (14 points)

```
This task is about subsetting in R.
```

```
> z = sample(c(sample(-100:100, 27), rep(NA, 3)))
 tmp = runif(1, min = 3, max = 4)
> m.mat = matrix(c(1:4, tmp, 6L:9L), nrow = 3)
> colnames(m.mat) = c("A", "B", "A")
> m.df = data.frame(A = 1:3, B = c(4, tmp, 6L), A = 7L:9L)
```

- (a) What expressions would you extract the following subsets from z?
 - i. (1 point) The first value of z.
 - ii. (1 point) The second through fifth values of z.
 - iii. (1 point) All values of z except for the last two. (Don't rely on z having any particular fixed length.)
 - iv. (1 point) The 2nd, 4th, 6th, etc. values of z
 - v. (1 point) All the positive values in z.
 - vi. (1 point) All the non-NA values in z.
 - vii. (1 point) Every third value of z, starting with the second.
- (b) (1 point) What do the following R commands illustrate?

```
> z.named = setNames(z, state.name[1:length(z)])
> z.named[c("Michigan")]
```

- (c) What expressions would you extract the following subsets from m.mat?
 - i. (1 point) The first two rows of m.mat.
 - ii. (1 point) All elements that are bigger than $\log_2(10)$ in the second column of m.mat.
- (d) (1 point) What does the following R command illustrate?

```
> m.mat[1:9]
```

- (e) What expressions would you extract the following subsets from m.df?
 - i. (1 point) The first two rows of m.df.
 - ii. (1 point) All elements that are bigger than $\log_2(10)$ in the second column of m.df.
- (f) (1 point) What do the following R commands and their outputs illustrate?

```
> m.mat[1, 1] == m.df[1, 1]
> m.mat[,"B"] == m.df[,"B"]
> m.mat$B
> m.df$B
  colnames(m.mat); colnames(m.df);
> m.mat[, 3] == m.df[, 3]
> is.integer(m.mat[, 3])
> is.integer(m.df[, 3])
```


Task 3 (4 points)

This task is about creating and manipulating a data frame in R.

> gradebook.df # 40 students

	gindex	grade	desc	fail	gender	proj
1	3		Satisfactory			18
2	3	C	Satisfactory	FALSE	Female	18
3	4	D	Poor	FALSE	Female	18
4	1	A	Excellent	FALSE	Female	18
5	1	A	Excellent	FALSE	Female	18
6	2	В	Good	FALSE	Female	18
7	2	В	Good	FALSE	Female	17
8	2	В	Good	FALSE	Female	17
9	2	В	Good	FALSE	Female	17
10	1	A	Excellent			17
11	2	В			Female	16
12	3		Satisfactory			
13	1		Excellent			16
14	2	В			Female	15
15	5	F				
16	1	r A	Excellent			
17	2	В			Female	15
18	1	A	Excellent			15
19	4	D			Female	15
20	1	A	Excellent			15
21	1	A			Male	18
22	1		Excellent			18
23	3		Satisfactory			18
24	3	C	Satisfactory	FALSE	Male	18
25	1	A	Excellent	FALSE	Male	18
26	3	C	Satisfactory	FALSE	Male	17
27	2	В	Good	FALSE	Male	17
28	2	В	Good	FALSE	Male	17
29	1	A	Excellent	FALSE	Male	17
30	2	В	Good	FALSE	Male	16
31	3	С	Satisfactory	FALSE	Male	16
32	2	В		FALSE	Male	16
33	1	A			Male	
34	1	A	Excellent		Male	
35	2	В		FALSE	Male	15
36	3		Satisfactory		Male	15
37	3		Satisfactory			
					Male	
38	2	В		FALSE	Male	
39	3		Satisfactory			15
40	2	В	Good	FALSE	Male	15

> sapply(gradebook.df, class)

gindex	grade	desc	fail	gender	proj
"integer"	"factor"	"factor"	"logical"	"factor"	"integer"

- (a) (1 point) Create the data frame gradebook.df. [Hint: It doesn't involve a lot of typing.]
- (b) (1 point) Create a data frame that contains the number of students for each grade.
- (c) (1 point) Create a data frame that contains the mean proj for each grade.
- (d) (1 point) Create a random sample of size 10 as a data frame out of those 40 students.

Task 4 (3 points)

This task is about 4 functions for every statistical distribution function. For example, the normal distribution has pnorm, qnorm, dnorm, and rnorm. The first 3 are for computing cumulative probabilities, quantiles and density values, respectively, and the last one is for generating random numbers.

- (a) (1 point) Use rnorm to generate a random sample of size 100 from $N(4, 2^2)$, and then use hist to plot a histogram (for frequencies).
- (b) (1 point) One can also use hist to plot a histogram representing an density estimate. Do this with the above sample, and superimpose it with the true density curve.
- (c) (1 point) Generate a sample mixed with 300 random values drawn from N(0,1) and 700 ones from $N(4,2^2)$ by using rnorm only once.

Task 5 (3 points)

This task is about plotting using different colours.

- (a) (1 point) Create a graph of the density of the chi-square distribution. Write your solution as an R function chisqdens.plot that depends on a parameter nu (degrees of freedom) so that it is easy to try different values of nu. The lower end of the plot should always be x=0, and upper value should be set to qchisq(0.999, nu) by default. Use your function to create a graph for the density of χ^2_2 .
- (b) (1 point) Modify your function chisqdens.plot so that it can take a vector nu.vec and create a single graph with multiple densities on it, one for each element of nu.vec using different colours and line types. Use this version of your function to create a graph that shows the chi-square densities with degrees of freedom 2, 4, 8 and 16.
- (c) (1 point) Modify your function chisqdens.plot again so that the areas under the different density curve are filled using different colours generated with the hsv function using an alpha value of 0.25.

Task 6 (4 points)

This task is about investigating the unknown distribution that generated real data.

- (a) (1 point) Study the following
 - > data("faithful") # load built in data set
 - > ?faithful

What information do the variables eruptions and waiting contain?

- (b) (1 point) Produce a histogram and a density plot of the waiting variable. First use the default bandwidth and then try to find a better value.
- (c) (1 point) Produce a normal QQ plot of the waiting variable. What does the plot show?
- (d) (1 point) Produce a plot of waiting against eruptions and add a smooth curve to the plot using lowess. Can you interpret what the plot is saying?

Task 7 (2 points)

This task is about trellis plots. To produce these plots you will first need to run the following

> library(lattice)

The R data set ethanol contains data on tests of a single cylinder engine to investigate how the amount of nitrous oxides (NOx) produced by the engine depend on how the engine is tuned. Use xyplot to investigate the effect of C and E on Nox graphically.