EE787 Autumn 2019 Jong-Han Kim

Least Squares Linear Regression

Jong-Han Kim

EE787 Machine learning Kyung Hee University

Least squares linear regression

- ▶ linear predictor $\hat{y} = g_{\theta}(x) = \theta^{\mathsf{T}} x$
- $m{ ilde{ heta}}$ $heta \in \mathbf{R}^d$ is the model parameter
- we'll use square loss function $\ell(\hat{y}, y) = (\hat{y} y)^2$
- empirical risk is MSE

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n (heta^\mathsf{T} x^i - y^i)^2$$

- \blacktriangleright ERM: choose model parameter θ to minimize MSE
- called linear least squares fitting or linear regression

Least squares formulation

express MSE in matrix notation as

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\mathsf{T}} x^{i} - y^{i})^{2} = \frac{1}{n} \left\{ (\theta^{\mathsf{T}} x^{1} - y^{1})^{2} + \dots (\theta^{\mathsf{T}} x^{n} - y^{n})^{2} \right\}$$

$$= \frac{1}{n} \left\| \begin{bmatrix} (x^{1})^{\mathsf{T}} \theta - y^{1} \\ \vdots \\ (x^{n})^{\mathsf{T}} \theta - y^{n} \end{bmatrix} \right\|^{2}$$

$$= \frac{1}{n} \left\| \underbrace{\begin{bmatrix} (x^{1})^{\mathsf{T}} \\ \vdots \\ (x^{n})^{\mathsf{T}} \end{bmatrix}}_{\mathbf{x}} \theta - \underbrace{\begin{bmatrix} y^{1} \\ \vdots \\ y^{n} \end{bmatrix}}_{\mathbf{x}} \right\|^{2} = \frac{1}{n} \|X\theta - y\|^{2}$$

► ERM is a *least squares problem*: choose θ to minimize $||X\theta - y||^2$ (factor 1/n doesn't affect choice of θ)

3

Least squares solution

(see Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares)

ightharpoonup assuming X has linearly independent columns (which implies $n \geq d$), there is a unique optimal θ

$$\theta^{\star} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y = X^{\dagger}y$$

- standard algorithm:
 - compute QR factorization X = QR (e.g., Gram-Schmidt) (with orthogonal Q and invertible upper triangular R)
 - \triangleright compute $Q^{\mathsf{T}}y$
 - $lackbox{ solve } R heta^\star = Q^\mathsf{T} y$ by back substitution
- ▶ in Julia: theta_opt = X\y
- ightharpoonup complexity is $2d^2n$ flops

Data matrix

 \blacktriangleright the $n \times d$ matrix

$$X = \left[egin{array}{c} (x^1)^{\mathsf{T}} \ dots \ (x^n)^{\mathsf{T}} \end{array}
ight]$$

is called the data matrix

- ▶ ith row of X is ith feature vector, transposed
- \blacktriangleright jth column of X gives values of jth feature x_j across our data set
- $ightharpoonup X_{ij}$ is the value of jth feature for the ith data point

Constant fit

- ▶ the simplest feature vector is constant: $x = \phi(u) = 1$ (doesn't depend on u!)
- lacktriangle corresponding predictor is a constant function: $g(x)= heta_1$
- ightharpoonup data matrix is $X = \mathbf{1}_n$
- ightharpoonup so $X^{\dagger} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}} = (1/n)\mathbf{1}^{\mathsf{T}}$ and

$$heta^\star = X^\dagger y = \mathbf{1}^{\mathsf{T}} y/n = \mathsf{avg}(y)$$

- ▶ the average of the outcome values is the best constant predictor (for square loss)
- optimal RMSE is standard deviation of outcome values

$$\left(\frac{1}{n}\sum_{i=1}^n(\operatorname{avg}(y)-y^i)^2\right)^{1/2}$$

Regression

- lacksquare with $u\in \mathbf{R}^{d-1}\colon x=\phi(u)=(1,u)$
- ightharpoonup same as $x_1=1$ (the first feature is constant)
- predictor has form

$$\hat{y} = \theta^{\mathsf{T}} x = \theta_1 + \theta_{2:d}^{\mathsf{T}} u$$

an affine function of $\boldsymbol{\mathit{u}}$

Straight line fit

- ightharpoonup with $u \in \mathbb{R}$, $x = (1, u) \in \mathbb{R}^2$
- ightharpoonup model is $\hat{y} = g(x) = \theta_1 + \theta_2 u$
- ▶ this model is called *straight-line fit*
- ▶ when u is time, it's called the trend line
- \blacktriangleright when u is the whole market return, and y is an asset return, θ_2 is called ' β '

Straight line fit

- ▶ data from Federal Highway Administration road monitoring stations
- ▶ total number of vehicle-miles traveled per year in U.S.

Constant versus straight-line fit models

 \blacktriangleright for the constant model, we choose θ_1 to minimize

$$\frac{1}{n}\sum_{i=1}^n(\theta_1-y^i)^2$$

▶ for the straight-line model, we choose (θ_1, θ_2) to minimize

$$rac{1}{n}\sum_{i=1}^n(heta_1+ heta_2u^i-y^i)^2$$

- for optimal choices, this value is less than or equal to the one above (since we can take $\theta_2 = 0$ in the straight-line model)
- ▶ so the RMS error of the straight-line fit is no more than the standard deviation

Example: Diabetes

- \blacktriangleright u consists of 10 explanatory variables (age, bmi, ...)
- with constant feature $x_1 = 1$, $x \in \mathbb{R}^{11}$
- ightharpoonup outcome y is measure of diabetes progression over after 1 year
- we'd like to predict y given the features
- ightharpoonup constant model (mean) is g(x)=152, with MSE 5930, RMS error 77

Example: Diabetes

lacktriangle scatter plots of each explanatory variable versus y

Straight-line fits using each explanatory variable

- lacktriangle a separate regression of each variable against y
- ▶ best single predictor is BMI, with MSE 3890

Straight-line fit with BMI

- lacktriangle left-hand plot shows optimal predictor $\hat{y}=-118+10.2\,\mathrm{bmi}$
- lacktriangleright right-hand plot shows y versus \hat{y}
- ▶ ideal plot would have all points on the diagonal

Regression with all explanatory variables

- ▶ left-hand plot uses only BMI to predict y, achieves loss ≈ 3890
- ightharpoonup right-hand plot uses all features, achieves loss pprox 2860
- ▶ model is

$$g(x) = -335 - 0.0364 \,\text{age} - 22.9 \,\text{sex} + 5.6 \,\text{bmi} + 1.12 \,\text{bp} - 1.09 s_1 \\ + 0.746 s_2 + 0.372 s_3 + 6.53 s_4 + 68.5 s_5 + 0.28 s_6$$