

What is claimed is:

1. A compound of a the formula 1:

1

- 5 or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein
- (a) each occurrence of Z is independently CH_2 , $\text{CH}=\text{CH}$, or phenyl, where each occurrence of m is independently an integer ranging from 1 to 9, but when Z is phenyl then its associated m is 1;
- 10 (b) G is $(\text{CH}_2)_x$, where x is 2, 3, or 4, $\text{CH}_2\text{CH}=\text{CHCH}_2$, $\text{CH}=\text{CH}$, $\text{CH}_2\text{-phenyl-CH}_2$, or phenyl;
- (c) W^1 and W^2 are independently L, V, $\text{C}(\text{R}^1)(\text{R}^2)-(\text{CH}_2)_c-\text{C}(\text{R}^3)(\text{R}^4)-(\text{CH}_2)_n-\text{Y}$, or $\text{C}(\text{R}^1)(\text{R}^2)-(\text{CH}_2)_c-\text{V}$ where c is 1 or 2 and n is an integer ranging from 0 to 4;
- 15 (d) each occurrence of R^1 or R^2 is independently $(\text{C}_1\text{-C}_6)\text{alkyl}$, $(\text{C}_2\text{-C}_6)\text{alkenyl}$, $(\text{C}_2\text{-C}_6)\text{alkynyl}$, phenyl, or benzyl or when one or both of W^1 and W^2 is $\text{C}(\text{R}^1)(\text{R}^2)-(\text{CH}_2)_c-\text{C}(\text{R}^3)(\text{R}^4)-\text{Y}$, then R^1 and R^2 can both be H to form a methylene group; or R^1 and R^2 and the carbon to which they are both attached are taken together to form a $(\text{C}_3\text{-C}_7)\text{cycloakyl}$ group;
- 20 (e) each occurrence of R^3 or R^4 is independently H, $(\text{C}_1\text{-C}_6)\text{alkyl}$, $(\text{C}_2\text{-C}_6)\text{alkenyl}$, $(\text{C}_2\text{-C}_6)\text{alkynyl}$, $(\text{C}_1\text{-C}_6)\text{alkoxy}$, phenyl, benzyl, Cl, Br, CN, NO_2 , or CF_3 , with the proviso that when R^1 and R^2 are both H, then one of R^3 and R^4 is not H;
- (f) L is $\text{C}(\text{R}^1)(\text{R}^2)-(\text{CH}_2)_n-\text{Y}$; or R^3 and R^4 and the carbon to which they are both attached are taken together to form a $(\text{C}_3\text{-C}_7)\text{cycloakyl}$ group;
- (g) V is

- (h) each occurrence of Y is independently (C_1-C_6)alkyl, OH, COOH, CHO, $COOR^5$, SO_3H ,

where

(i) R^5 is (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1 - C_6)alkoxy, or phenyl groups,

5

(ii) each occurrence of R^6 is independently H, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, or (C_2 - C_6)alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1 - C_6 alkoxy, or phenyl groups; and

(iii) each occurrence of R^7 is independently H, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, or (C_2 - C_6)alkynyl; and

provided that:

10

- (i) if G is $(CH_2)_x$, x is 2, each occurrence of Z is CH_2 , each occurrence of m is 1, and W^1 is of the structure

then W^2 is not the same as W^1 ;

15

- (ii) if G is $(CH_2)_x$, x is 2, each occurrence of Z is CH_2 , each occurrence of m is 3, and W^1 - $C(CH_3)_2CO_2CH_3$, then W^2 is not the same as W^1 ;

- (iii) if G is $(CH_2)_x$, x is 3, each occurrence of Z is CH_2 , each occurrence of m is 5, and W^1 - $C(CH_3)_2CO_2CH_3$, then W^2 is not the same as W^1 ;

- (iv) if G is $(CH_2)_x$, x is 3, each occurrence of Z is CH_2 , each occurrence of m is 5, and W^1 - $CCl_2CO_2CH_3$, then W^2 is not the same as W^1 ; and

20

- (v) if G is phenyl, each occurrence of Z is CH_2 , each occurrence of m is 4, and W^1 is of the structure

then W^2 is not the same as W^1 .

2. The compound of claim 1, wherein:
- (a) W^1 and W^2 are independently L, V, or $C(R^1)(R^2)-(CH_2)_c-V$ where c is 1 or 2; and
 - (b) R^1 or R^2 are independently (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl.

5

3. The compound of claim 2, wherein W^1 is L.
4. The compound of claim 2, wherein W^1 is V.
5. The compound of claim 2, wherein W^1 is $C(R^1)(R^2)-(CH_2)_c-C(R^3)(R^4)-(CH_2)_n-Y$ where n is an integer from 0 to 4.

10

6. The compound of claim 2, wherein W^1 is $C(R^1)(R^2)-(CH_2)_c-V$.
7. The compound of claim 2, wherein W^1 and W^2 are independent L groups.
8. The compound of claim 1, wherein each occurrence of Y is independently OH, $COOR^5$, or COOH.

9. A compound of the formula Ia:

15

or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein

- (a) each occurrence of Z is independently CH_2 or $CH=CH$, wherein each occurrence of m is independently an integer ranging from 1 to 9;

20

- (b) G is $(CH_2)_x$, $CH_2CH=CHCH_2$, or $CH=CH$, where x is 2, 3, or 4;
- (c) W^1 and W^2 are independently L, V, or $C(R^1)(R^2)-(CH_2)_c-V$, where c is 1 or 2;
- (d) each occurrence of R^1 and R^2 is independently (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, benzyl, or R^1 and R^2 and the carbon to which they are both attached are taken together to form a (C_3-C_7) cycloakyl group;

(e) L is $C(R^1)(R^2)-(CH_2)_n-Y$, where n is an integer ranging from 0 to 4;

(f) V is

(g) each occurrence of Y is independently (C_1-C_6) alkyl, OH, COOH, CHO, $COOR^3$, SO_3H ,

5

where

(i) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,

(ii) each occurrence of R⁴ is independently H, (C₁-C₆)alkyl, (C₂-

5 C_6)alkenyl, or (C_2 - C_6)alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1 - C_6 alkoxy, or phenyl groups; and

(iii) each occurrence of R⁵ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl; and

provided that:

10 (i) if x is 2, each occurrence of Z is CH_2 , each occurrence of m is 1, and W¹ is of the structure

then W^2 is not the same as W^1 .

15 (ii) if x is 2, each occurrence of Z is CH_2 , each occurrence of m is 3, and $\text{W}^1 - \text{C}(\text{CH}_3)_2\text{CO}_2\text{CH}_3$, then W^2 is not the same as W^1 ;

(iii) if x is 3, each occurrence of Z is CH_2 , each occurrence of m is 5, and $\text{W}^1 - \text{C}(\text{CH}_3)_2\text{CO}_2\text{CH}_3$, then W^2 is not the same as W^1 ; and

(iv) if x is 3, each occurrence of Z is CH_2 , each occurrence of m is 5, and $\text{W}^1 - \text{CCl}_2\text{CO}_2\text{CH}_3$, then W^2 is not the same as W^1 .

20

10. The compound of claim 9, wherein W¹ is L.

11. The compound of claim 9, wherein W¹ is V.

12. The compound of claim 9, wherein W¹ is C(R¹)(R²)-(CH₂)_c-V.

13. The compound of claim 9, wherein W^1 and W^2 are independent L groups.

14. The compound of claim 9, wherein each occurrence of Y is independently OH, COOR³, or COOH.

15. A compound of the formula Ib

5

Ib

or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein:

(a) each occurrence of m is independently an integer ranging from 1 to 9;

(b) x is 2, 3, or 4;

(c) each occurrence of n is independently an integer ranging from 0 to 4;

10 (d) each occurrence of R¹ and R² is independently (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, benzyl, or R¹ and R² and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;

(e) each occurrence of R¹¹ and R¹² is independently (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, benzyl, or R¹¹ and R¹² and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;

15 (f) each occurrence of Y is independently (C₁-C₆)alkyl, OH, COOH, CHO, COOR³, SO₃H,

20

where

provided that:

- (i) if x is 2, each occurrence of m is 1, and W^1 is of the structure

then W² is not the same as W¹;

(ii) if x is 2, each occurrence of Z is CH₂, each occurrence of m is 3, and W¹ -C(CH₃)₂CO₂CH₃, then W² is not the same as W¹;

5 (iii) if x is 3, each occurrence of Z is CH₂, each occurrence of m is 5, and W¹ -C(CH₃)₂CO₂CH₃, then W² is not the same as W¹; and

(iv) if x is 3, each occurrence of Z is CH₂, each occurrence of m is 5, and W¹ -CCl₂CO₂CH₃, then W² is not the same as W¹.

16. The compound of claim 15, wherein each occurrence of Y is independently
10 OH, COOR³, or COOH.

17. The compound of claim 15, wherein each R¹ or R² is the same or different
(C₁-C₆)alkyl group.

18. A compound of the formula **Ic**

Ic

or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein:

- (a) each occurrence of m is an independent integer ranging from 1 to 9;
- (b) x is 2, 3, or 4;
- (c) V is

provided that:

- (i) if G is $(CH_2)_x$, x is 2, each occurrence of Z is CH_2 , each occurrence of m is 1, and W^1 is of the structure

5

then W^2 is not the same as W^1 ;

- (ii) if x is 2, each occurrence of Z is CH_2 , each occurrence of m is 3, and $W^1 - C(CH_3)_2CO_2CH_3$, then W^2 is not the same as W^1 ;

- 10 (iii) if x is 3, each occurrence of Z is CH_2 , each occurrence of m is 5, and $W^1 - C(CH_3)_2CO_2CH_3$, then W^2 is not the same as W^1 ; and

- (iv) if x is 3, each occurrence of Z is CH_2 , each occurrence of m is 5, and $W^1 - CCl_2CO_2CH_3$, then W^2 is not the same as W^1 .

19. A compound according to claim 18, having the formula 5-[2-(4-carboxy-4-methyl-pentylsulfanyl)-ethylsufanyl]-2,2-dimethyl-pentanoic acid.

20. A compound of the formula II:

II

or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein

- (a) each occurrence of R¹ or R² is independently (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or R¹ or R² are both H, or R¹, R², or the carbon to which they are both attached are taken together to form (C₃-C₇)cycloalkyl group;
- 5 (b) each occurrence of R¹¹ or R¹² is independently (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or R¹¹ or R¹² are both H, or R³, R⁴, or the carbon to which they are both attached are taken together to form (C₃-C₇)cycloalkyl group;
- (c) each occurrence of n is independently an integer ranging from 0 to 6;
- (d) each occurrence of m is independently an integer ranging from 1 to 8;
- 10 (e) W¹ and W² are independently (C₁-C₆)alkyl, CH₂OH, C(O)OH, CHO, OC(O)R³, C(O)OR³, SO₃H,

where

- 5 (i) R^3 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,
- 10 (ii) each occurrence of R^4 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups; and
- (iii) each occurrence of R^5 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl; and

provided that if each occurrence of R^1 and R^2 is CH_2 , and W^1 is $-CO_2CH_3$, then W^2 is not the same as W^1 .

21. A compound of the formula IIa:

IIa

or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein

- (a) R^1 and R^2 are (C_1-C_6) alkyl, OH, COOH, CHO, $COOR^7$, SO_3H ,

where

- (i) R⁷ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R⁸ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl and is unsubstituted or substituted with one or two halo, OH, C₁-C₆ alkoxy, or phenyl groups,
- (iii) each occurrence of R⁹ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl;

- 10 (b) R³ and R⁴ are (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl;
- (c) R⁵ and R⁶ are H, halogen, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₆)aryloxy, CN, or NO₂, N(R⁵)₂ where R⁵ is H, (C₁-C₄) alkyl, phenyl, or benzyl;
- 15 (d) each occurrence of m is independently an integer ranging from 1 to 5;
- (e) each occurrence of n is independently an integer ranging from 0 to 4; and
- (f) *¹ and *² represent independent chiral-carbon centers.

22. A compound as in claim 21, wherein *¹ is a chiral-carbon center of the stereochemical configuration R or substantially R.

20 23. A compound as in claim 21, wherein *¹ is a chiral-center of the stereochemical configuration S or substantially S.

24. A compound as in claim 21, wherein *² is a chiral-carbon center of the stereochemical configuration R or substantially R.

25. A compound as in claim 21, wherein *2 is a chiral-center of the stereochemical configuration S or substantially S.

26. A compound of the formula III

5

III

or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein:

(a) each occurrence of Z is independently CH_2 , $\text{CH}=\text{CH}$, or phenyl, where each occurrence of m is independently an integer ranging from 1 to 5, but when Z is phenyl then its associated m is 1;

10 (b) G is $(\text{CH}_2)_x$, $\text{CH}_2\text{CH}=\text{CHCH}_2$, $\text{CH}=\text{CH}$, $\text{CH}_2\text{-phenyl-CH}_2$, or phenyl, where x is an integer ranging from 1 to 4;

(c) W^1 and W^2 are independently $\text{C}(\text{R}^1)(\text{R}^2)-(\text{CH}_2)_{n-}\text{Y}$;

(d) each occurrence of n is independently an integer ranging from 0 to 4;

15 (e) R^1 and R^2 are independently $(\text{C}_1\text{-C}_6)\text{alkyl}$, $(\text{C}_2\text{-C}_6)\text{alkenyl}$, $(\text{C}_2\text{-C}_6)\text{alkynyl}$, phenyl, or benzyl or R^1 and R^2 are both H;

(f) Y is $(\text{C}_1\text{-C}_6)\text{alkyl}$, OH, COOH, CHO, COOR^3 , SO_3H ,

where

5

(i) R^3 is (C_1-C_6)alkyl, (C_2-C_6)alkenyl, (C_2-C_6)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6)alkoxy, or phenyl groups,

(ii) each occurrence of R^4 is independently H, (C_1-C_6)alkyl, (C_2-C_6)alkenyl, or (C_2-C_6)alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups,

(iii) each occurrence of R^5 is independently H, (C_1-C_6)alkyl, (C_2-C_6)alkenyl, or (C_2-C_6)alkynyl;

- 10 (f) each occurrence of p is independently 0 or 1 where the broken line represents an optional presence of one or more additional carbon-carbon bonds that when present complete one or more carbon-carbon double bonds; and

15

provided that if G is $(CH_2)_x$, x is 1, each occurrence of Z is CH_2 , each occurrence of m is 1, and W^1 is CH_2OH , then W^2 is not the same as W^1 .

27. The compound of claim 26, wherein W^1 and W^2 are independent $C(R^1)(R^2)-(CH_2)_{n-Y}$ groups and each occurrence of Y is independently OH, $COOR^3$, or COOH.

5 28. The compound of claim 26, wherein p is 0.

29. The compound of claim 26, wherein p is 1.

30. A compound of the formula IIIa:

IIIa

10 or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein

- (a) each occurrence of m is independently an integer ranging from 1 to 5;
- (b) x is an integer ranging from 1 to 4;
- (c) W^1 and W^2 are independently $C(R^1)(R^2)-(CH_2)_{n-Y}$;

15 (d) n is an integer ranging from 0 to 4;

- (e) each occurrence of R^1 or R^2 is independently (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl;

(f) Y is (C_1-C_6) alkyl, OH, COOH, CHO, $COOR^3$, SO_3H ,

5

where

- (i) R^3 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,
- (ii) each occurrence of R^4 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups,
- (iii) each occurrence of R^5 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl;

(g) each occurrence of p is independently 0 or 1; and

10 provided that if x is 1 each occurrence of m is 1, and W^1 is CH_2OH , then W^2 is not the same as W^1 .

31. The compound of claim 30, wherein W¹ and W² are independent C(R¹)(R²)—(CH₂)_n—Y groups and each occurrence of Y is independently OH, COOR³, or COOH.

32. The compound of claim 30, wherein p is 0.

33. The compound of claim 30, wherein p is 1.

5 34. A pharmaceutical composition comprising a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30 and a pharmaceutically acceptable vehicle, excipient, or diluent.

35. A pharmaceutical composition comprising one of the following compounds: 5-[2-(5-hydroxy-4,4-dimethyl-pentasulfanyl)-ethoxysulfanyl]-2,2-dimethyl-pentan-1-ol or 5-[2-(4-Carboxy-4-methyl-pentylsulfanyl)-ethylsulfanyl]-2,2-dimethyl-pentanoic acid or pharmaceutically acceptable salts, hydrates, solvates, clathrates, enantiomers, diasteriomers, 10 racemates or mixtures of stereoisomers thereof and a pharmaceutically acceptable vehicle, excipient, or diluent.

36. A method for treating or preventing a cardiovascular disease in a patient, comprising administering to a patient in need of such treatment or prevention a 15 therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

37. A method for treating or preventing a dyslipidemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

38. A method for treating or preventing a dyslipoproteinemia in a patient, comprising administering to a patient in need of such treatment or prevention a 20 therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

39. A method for treating or preventing a disorder of glucose metabolism in a patient, comprising administering to a patient in need of such treatment or prevention a 25 therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

40. A method for treating or preventing Alzheimer's Disease in a patient, comprising administering to a patient in need of such treatment or prevention a 30 therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

41. A method for treating or preventing Syndrome X in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.
- 5 42. A method for treating or preventing septicemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.
43. A method for treating or preventing a thrombotic disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.
- 10 44. A method for treating or preventing a peroxisome proliferator activated receptor associated disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.
- 15 45. A method for treating or preventing obesity in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.
46. A method for treating or preventing pancreatitis in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.
- 20 47. A method for treating or preventing hypertension in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.
- 25 48. A method for treating or preventing renal disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

49. A method for treating or preventing cancer in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

50. A method for treating or preventing inflammation in a patient, comprising
5 administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

51. A method for treating or preventing impotence in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

10 52. A method for treating or preventing a neurodegenerative disease or disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound claim 1, 9, 15, 18, 20, 21, 26 or 30.

15 53. A method of inhibiting hepatic fatty acid synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

54. A method of inhibiting sterol synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

20 55. A method of treating or preventing metabolic syndrome disorders in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

25 56. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by increasing HDL levels, which comprises administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.

57. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by lowering LDL levels, which comprises administering to such patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26 or 30.