Form Kesediaan Membimbing Proyek Tingkat

Tanggal: 9 December 2020

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : DUM

Nama: Dadan Nur Ramadan, S.Pd.,M.T.

CALON PEMBIMBING 2

Kode : IDI

Nama : Indrarini Dyah Irawati, S.T.,M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Tingkat bagi mahasiswa berikut,

NIM 6705184036

Nama Chikita Dwi Putri

Prodi / Peminatan : TT/_____(contoh: MI / SDV)

Calon Judul PA

Rancang Bangun Sistem Deteksi Titik Kebakaran Dengan Metode Naive Bayes Menggunakan Sensor Suhu dan Sensor Api Berbasis Arduino

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

Dadan Nur Ramadan, S.Pd.,M.T.

Calon Pembimbing 2

tl

Indrarini Dyah Irawati, S.T.,M.T.)

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Rancang Bangun Sistem Deteksi Titik Kebakaran Dengan Metode Naive Bayes Menggunakan Sensor Suhu dan Sensor Api Berbasis Arduino

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

Chikita Dwi Putri

6705184036

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Kebakaran merupakan terjadinya reaksi kimia dioksidasi pada bahan bakar yang terjadi sangat cepat dan menghasilkan panas. Menurut NFPA kebakaran adalah suatu reaksi oksidasi terdiri dari 3 unsur yaitu, bahan bakar, oksigen, dan sumber panas, yang mempunyai dampak kerugian harta benda, cidera, bahkan kematian (NFPA, 1896). Sedangkan menurut departemen tenaga kerja kebakaran merupakan peristiwa yang terjadi karena adanya reaksi oksidasi ekosimetris berlangsung dalam kurun waktu sangat cepat dan disertai dengan timbulnya api (Departemen Tenaga Kerja, n.d.). Data Statistik yang dikeluarkan oleh Dinas Kebakaran DKI Jakarta menunjukkkan bahwa : peringkat pertama penyebab kebakaran adalah Listrik, kemudian Kompor, dan yang terakhir rokok (http://www.jakartafire.net/statistic, 2016). Menurut data dari Badan Nasional Penanggulangan Bencana (BNPB) dalam kurun waktu 7 tahun sejak 2010 hingga 2017 telah terjadi bencana kebakaran sebanyak 1212 kejadian (BNPB, 2017). Jumlah ini mengakibatkan bencana kebakaran menenempati peringkat pertama bencana non alam. Teknologi yang ada saat ini hanya dapat membantu memberi peringatan dini, tetapi mempunyai kemampuan yang sangat terbatas untuk memberi waktu persiapan dan pertolongan dalam menghadapi bahayanya. [6]

Fire Sprinkler adalah sistem pemadam kebakaran berbasis air yang memiliki 2 fungsi utama. yakni, untuk mendeteksi suhu panas yang terjadi akibat kebakaran, dan sekaligus sebagai eksekutor pemadam secara langsung. Sprinkler merupakan sistem yang sangat efektif, Namun menurut (Hall, 2011) dalam sebuah laporan Tingkat efektivitas sprinkler masih rendah. Mikrokontroler merupakan suatu sistem komputer dimana sebagian besar dari elemennya dikemas dalam satu chip IC, atau dapat disebut microcomputer (Chamim, 2012). Mikrokontroler bekerja dengan sangat spesifik, salah satu jenis mikrokontroller yang umum digunakan saat ini adalah arduino. Karena arduino memiliki keunggulan sifatnya yang open source. Arduino Mega 2560 adalah mikrokontroler yang berbasis Arduino dengan menggunakan chip ATmega2560. Board ini memiliki pin I/O yang cukup banyak, sejumlah 54 buah digital I/O. Metode klasifikasi Naive Bayes adalah salah metode untuk mengklasifikasi dengan menggunakan teknik prediksi peluang kejadian yang sederhana dan mendasar. Dalam penerapannya aturan bayes mengasumsikan bahwa setiap atribut memiliki independensi yang kuat artinya bahwa setiap nilai pada sebuah atribut tidak berkaitan dengan adanya nilai yang sama atau tidaknya dengan atribut lain dalam data yang sama. Metode *Naive Bayes* merupakan salah satu metode klasifikasi yang efektif dan efisien karena proses pengklasifikasian *Naive Bayes* bekerja secara independen pada setiap fitur objek yang akan diklasifikasi [1]

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literatur terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian / Karya Ilmiah	Tahun	Keterangan			
1.	Rancang Bangun Sistem	2013	Dalam penelitian ini penulis merancang sebuah Rancang Bangun			
	Detektor Kebakaran Via		Sistem Detektor Kebakaran Via <i>Handphone</i> Berbasis			
	Handphone [2]		Mikrokontroler sistem yang dapat mendeteksi kebakaran sedini			
			mungkin sehingga pemilik dapat mencegah kebakaran denga			
			cepat Handphone difungsikan sebagai perangkat pengirim dar			
			penerima SMS jika sensor mendeteksi adanya indikasi kebakaran			
			dalam suatu ruangan. Sistem ini dapat diaktifkan dari jarak jauh			
			dengan menggunakan handphone.			
2.	Sistem Pendukung	2016	Dalam penelitian ini penulis membuat Sistem Pakar Deteksi Dini			
	Deteksi Dini		Penyakit Stroke Menggunakan Metode Naïve Bayes-Certainty			
	Penyakit Stroke		Factor sistem yang dapat mempercepat dan mempermudah dalam			
	Menggunakan		mendeteksi resiko untuk mengurangi angka seseorang terserang			
	Metode Naïve Bayes-		penyakit stroke. Metode yang digunakan dalam proses pendeteksian			
	Certainty Factor . [3]		adalah Naïve Bayes-Certainty Factor. Metode Naïve Bayes			
			digunakan untuk mencari peluang kemunculan dari tingkat resikd			
			penyakit stroke. Untuk metode certainty factor digunakan untuk			
			mencari nilai keyakinanya.			
3.	Implementasi Metode	2015	Dalam penelitian Implementasi Metode Klasifikasi Naïve Bayes			
	Klasifikasi <i>Naïve</i>		Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga			
	Bayes Dalam		penulis merancang sebuah motode klasifikasi dalam memprediksi			
	Memprediksi		pentingnya peranan listrik tentu saja berdampak pada permintaan			
	Besarnya Penggunaan		listrik yang semakin besar tapi hal ini kiranya tidak linier dengan			
	Listrik Rumah		persediaan listrik yang belum mampu memenuhi permintaan listrik			
	Tangga. [5]		yang begitu besar tersebut. Untuk mengatasi hal ini perlu adanya			
			campur tangan pemerintah dan masyarakat dalam menggunakan			
			listrik dengan bijak sehingga kebutuhan listrik tidak dengan bijak			
			sehingga kebutuhan listrik tidak menjadi lebih besar dari persediaan			
			listrik.			

Rancangan Sistem

Gambar 1. Diagram Blok Sistem

Sistem Deteksi Titik Kebakaran Dengan Metode *Naive Bayes* Menggunakan Sensor Panas dan Sensor Api. Merupakan suatu sistem yang dapat menentukan lokasi titik kebakaran dengan parameter suhu ruangan dan ada api atau tidak pada ruangan tersebut. Nilai suhu dari ruangan akan dibaca dengan sensor LM35 sedangkan ada atau tidaknya api dengan sensor *Flame*. Pada penelitian ini menggunkan empat Sensor LM35 yang di tempatkan pada setiap sudut ruangan. Berdasarkan nilai dari ke empat.

sensor LM35 maka dapat dilakukan kalsifikasi hasinya menggunakan metode *Naive Bayes*. Sistem ini membantu menyelesaikan permasalahan penanganan kebakaran, dimana selama ini sistem pendeteksi kebakaran hanya memberikan informasi ada kebakaran atau tidak, tanpa memberitahu di mana lokasi titik kebakaran. Penggunaan metode *Naive Bayes* pada sistem ini dikarenakan dalam melakukan klasifikasi, sudah diketahui terlebih dahulu jenis klasifikasi yang akan ditentukan yakni, daerah 1, daerah 2, daerah 3, dan daerah 4. Selain itu metode *Naive Bayes* menjadi metode yang tepat karena dapat menghasilkan tingkat akurasi yang tinggi sesuai dengan jumlah peluang fakta yang dianggap benar berdasarkan data sebenarnya atau yang disebut data latih. Semakin banyak jumlah data latih maka tingkat keakuratan sistem akan semakin tinggi. Hasil dari pengolahan sistem ini akan secara otomatis ditampilkan pada layar LCD 16x2.

Komponen Hardware yang digunakan

1. Algoritma Naive Bayes

Algoritma naive bayes merupakan sebuah metoda klasifikasi menggunakan metode probabilitas dan statistik yg dikemukakan oleh ilmuwan *inggris thomas bayes*. Algoritma *naive bayes* memprediksi peluang di masa depan berdasarkan pengalaman di masa sebelumnya sehingga dikenal sebagai *teorema bayes*. Ciri utama dari *naive bayes classifier* ini adalah asumsi yg sangat kuat (*naif*) akan independensi dari masing-masing kondisi / kejadian. Keuntungan penggunan adalah bahwa metode ini hanya membutuhkan jumlah data pelatihan (*training* data) yang kecil untuk menentukan estimasi parameter yang diperlukan dalam proses pengklasifikasian. Karena yang diasumsikan sebagai variable independent, maka hanya varians dari suatu variable dalam sebuah kelas yang dibutuhkan untuk menentukan klasifikasi, bukan keseluruhan dari matriks kovarians.

Gambar 2. contoh perhitungan bayes

$$P(C \mid X) = \frac{P(x \mid c)P(c)}{P(x)}$$
(1.1)

X = Data dengan *class* yang belum diketahui

c = Hipotesis data merupakan suatu *class* spesifik

P(c|x) = Probabilitas hipotesis berdasar kondisi (posteriori probability)

P(c) = Probabilitas hipotesis (prior probability)

P(x | c) = Probabilitas berdasarkan kondisi pada hipotesis

P(x) = Probabilitas c

Rumus diatas menjelaskan bahwa peluang masuknya sampel karakteristik tertentu dalam kelas C (*Posterior*) adalah peluang munculnya kelas C (sebelum masuknya sampel tersebut, seringkali disebut prior), dikali dengan peluang kemunculan karakteristik karakteristik sampel pada kelas C (disebut juga likelihood), dibagi dengan peluang kemunculan karakteristik sampel secara global (disebut juga *evidence*). Karena itu, rumus diatas dapat pula ditulis sebagai berikut:

$$Posterior = \frac{Prior \ x \ likelihood}{evidence}$$
 (1.2)

Nilai *Evidence* selalu tetap untuk setiap kelas pada satu sampel. Nilai dari *posterior* tersebut nantinya akan dibandingkan dengan nilai nilai posterior kelas lainnya untuk menentukan ke kelas apa suatu sampel akan diklasifikasikan.

2 Sensor suhu LM35

Gambar 3. Sensor suhu LM35

Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. sensor suhu LM35 yang dipakai dalam penelitian berupa komponen elektronika yang diproduksi oleh *National Semiconductor*.

Sensor suhu LM35 sebuah komponen elektronik dalam bentuk chip IC dengan 3 kaki (3 pin) yang berfungsi untuk mengubah besaran fisis, berupa suhu atau *temperature* sekitar sensor menjadi besaran elektris dalam bentuk perubahan tegangan. Sensor suhu LM35 memiliki parameter bahwa setiap kenaikan 1 °C tegangan keluarannya naik sebesar 10 mV dengan batas maksimal keluaran sensor adalah 1,5 V pada suhu 150 °C. Misalnya pada perancangan menggunakan sensor suhu LM35 kita tentukan keluaran adc mencapai *full scale* pada saat suhu 100 °C, sehingga saat suhu 100 °C tegangan keluaran transduser (10mV/°C x 100 °C) = 1V.

3. Sensor api *Flame*

Gambar 4. Sensor api flame

Flame sensor merupakan sensor yang mempunyai fungsi sebagai pendeteksi nyala api yang dimana api tersebut memiliki panjang gelombang antara 760nm – 1100nm. Sensor ini menggunakan infrared sebagai tranduser dalam mensensing kondisi nyala api. Jangkauan spektrum : 760 - 1100 (nm),mempunyai sudut yang terdeteksi 0° - 60°, Catu Daya 3,3V - 5,3V, Temperatur Kerja -25°C sampai 85°C, Dimensi : 27,3 x 15,4 (mm).

Cara kerja sensor ini yaitu dengan mengidentifikasi atau mendeteksi nyala api dengan menggunakan metode optik. Pada sensor ini menggunakan tranduser yang berupa infrared (IR) sebagai sensing sensor. Tranduser ini digunakan untuk mendeteksi akan penyerapan cahaya pada panjang gelombang tertentu. Yang dimana memungkinkan alat ini untuk membedakan antara spectrum cahaya pada api dengan spectrum cahaya lainnya seperti spectrum cahaya lampu.

4. LCD (Liquid Crystal Display)

Gambar 5. LCD (*Liquid Crystal Display*)

LCD (*Liquid Crystal Display*) adalah suatu jenis media tampil yang menggunakan kristal cair sebagai penampil utama. LCD sudah digunakan diberbagai bidang misalnya alal—alat elektronik seperti televisi, kalkulator, atau pun layar komputer. Pada postingan aplikasi LCD yang dugunakan ialah LCD dot matrik dengan jumlah karakter 2 x 16. LCD sangat berfungsi sebagai penampil yang nantinya akan digunakan untuk menampilkan status kerja alat.

LCD (*Liquid Cristal Display*) salah satu jenis display elektronik yang dibuat dengan teknologi CMOS logic yang bekerja dengan tidak menghasilkan cahaya tetapi memantulkan cahaya yang ada di sekelilingnya terhadap front-lit atau mentransmisikan cahaya dari back-lit.

5. Buzzer

Buzzer adalah sebuah komponen elektronika yang berfungsi untuk mengubah getaran listrik menjadi getaran suara getaran listrik menjadi getaran suara.

Wiring Sistem

Gambar 7. Wiring Sistem Alat Pendeteksi Kebakaran

Wiring Skematik

Gambar 8. Wiring skematik Alat Pendeteksi Kebakaran

Referensi

- [1] M. Dhanashree S, B. Mayur P, and D. Shruti D, "Prediction System For Heart Disease Us-ing Naive Bayes," Int. J. Adv. Comput. Math. Sci., vol. 3, no. 3, pp. 290–294, 2012.
- [2] Apryandi, S., 2013. RANCANG BANGUN SISTEM DETEKTOR KEBAKARAN VIA HANDPHONE.
- [3] Astuti, E. H., 2016. Sistem Pendukung Keputusan Deteksi Dini Penyakit Stroke menggunakan Metode Naive Bayes.
- [4] David Barber, 2010. Bayesian Reasoning and Machine Learning. London: Cambridge University Press.
- [5] Saleh, A., 2015. Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. Citec Journal, Volume II, pp. 207-217.
- [6] Anon., t.thn. Departemen Tenaga Kerja. [Online].

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk Mahasiswa) : 6705184036

Dosen Wali Program Studi : HPT / HASANAH PUTRI

Nama

: CHIKITA DWI PUTRI

: D3 Teknologi Telekomunikasi

2018/2019 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	A	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	AB	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	AB	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	ВС	
DUH1A2	LITERASI TIK	ICT LITERACY	2	A	
HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	AB	
	Jumlah SKS		20		
	IPS				

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	AB	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	С	
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	В	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	AB	

Jumlah SKS	21	
IPS	2.98	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	В	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	A	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	В	
	Jumlah SKS				
	IPS				

2018/2019 - ANTARA

Kode M	Kode Mata Kuliah		Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nila i	Status
		Jumlah SKS			0		
		IPS			0		

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	AB	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	A	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	AB	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	AB	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	ВС	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	AB	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	С	
	19				
	IPS				

2019/2020 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	A	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	A	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	В	
	21				
	3.5				

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	A	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	ВС	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB	
DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	AB	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	AB	
	Jumlah SKS				
IPS			3.5		

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2020/2021 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2		
UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2		
UWI3E1	HEI	неі	1		
VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	3		
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2		
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3		
VTI3B3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3		
VTI3D3	VTI3D3 KEAMANA N JARINGAN		3		
	Jumlah SKS				
	IPS				

2020/2021 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SK S	Nila i	Status
	Jumlah SKS		0		
	IPS		0		

 Tingkat I
 : 41 SKS
 Belum Lulus
 IPK : 2.99

 Tingkat II
 : 81 SKS
 Belum Lulus
 IPK : 3.17

 Tingkat III
 : 81 SKS
 Belum Lulus
 IPK : 3.17

 Jumlah SKS
 : 81 SKS
 IPK : 3.17

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 03 Desember 2020 11:13:45 oleh CHIKITA DWI PUTRI