Macrosystems EDDIE: Climate change effects on lake temperatures

Carey, C.C., S. Aditya, K. Subratie, R. Figueiredo, and K.J. Farrell. 30 June 2017.

Macrosystems EDDIE: Climate Change Effects on Lake Temperatures.

Macrosystems EDDIE Module 1, Version 1.

http://module1.macrosystemseddie.org

Module development supported by NSF DEB 1245707, ACI 1234983, & EF 1702506

Overview of today

- Short overview of lake modeling and some background on the tools we will be working with
- Activity A: Plot water temperatures from a lake model.
- Activity B: Develop a climate scenario, generate hypotheses, and model how your lake responds.
- Activity C: Use distributed computing to run 100s to 1000s of lake model simulations.

Lakes are changing worldwide...

- In response to altered climate, some regions are experiencing different temperature, precipitation, and wind conditions than in the past.
- Because of their position in the landscape and their thermal inertia, lakes can be powerful indicators of climate change.

Image: Wikimedia commons

Our focal question:

How will lake thermal structure **change** in response to altered climate?

What is lake thermal structure?

Lake Sunapee, NH, USA: data from Lake Sunapee Protective Association buoy, 2012

What are the drivers of thermal structure?

- Solar radiation
- Air temperature
- Wind
- Precipitation
- Inflow & outflow streams

 All of these factors will interact to control water temperature, thermocline depth, mixing, and more!

Figure: Hipsey et al. 2014

Using a macrosystems ecology approach to study lake thermal structure

- Drivers of lake thermal structure occur at both local and regional scales
 - Local = e.g., inflow streams
 - Regional = e.g., air temperature
- Macrosystems ecologists study ecological dynamics and feedbacks at multiple interacting spatial and temporal scales
- We can study local and regional drivers using high-frequency sensor data + simulation models

Models to understand multiple drivers

- How can we test the effects of drivers from different scales on lake thermal structure?
 - Impossible to experimentally manipulate all possible drivers in a lake!
- Simulation modeling allows us to explore what would happen if we changed one driver, or multiple drivers at once
 - For example, how would lake thermal structure change if air temperatures were 2°C warmer than they are now? 4°C? 6°C?
 - What if rain also increased 50% on those lakes?

GLM: General Lake Model

Authors: Matt Hipsey, Louise Bruce, and David Hamilton

- The General Lake Model (GLM) is an open-access model for simulating lake dynamics. It simulates vertical stratification and mixing and accounts for the effect of inflows/outflows, surface heating and cooling.
- GLM has been designed to be an open-source community model developed in collaboration with members of the Global Lake Ecological Observatory Network (GLEON) to integrate with lake sensor data.
- Available from: http://aed.see.uwa.edu.au/research/models/GLM/

Figure: Hipsey et al. 2014

Basic structure of the model

- You need to create a new folder (directory) on your computer.
- Within this folder, you will have:
 - A high-frequency meteorological CSV file ('met file') that forces the model
 - e.g., "met_hourly.csv"
 - An 'nml' text file that acts as a 'master' script
 - glm2.nml
 - 3) High-frequency Inflow/outflow CSV files that specify the temperature and flow rate of connected streams
 - Today we're studying a closed lake without inflows or outflows

Images: Wikimedia commons

Example met file

	Α	В	С	D	E	F	G	
1	time	ShortWave	LongWave	AirTemp	RelHum	WindSpeed	Rain	
2	2009-01-01 00:00	0	237.0800018	-12.32001343	71.3469252	11.25574053	0	
3	2009-01-01 01:00	0	237.0800018	-13.0000061	70.61931244	11.61440932	0	
4	2009-01-01 02:00	0	237.0700073	-13.66998901	69.5395646	11.9717879	0	
5	2009-01-01 03:00	0	212.8999939	-14.35001221	68.17292338	12.33103782	0	
6	2009-01-01 04:00	0	212.8899994	-14.85999146	68.26885627	12.45128543	0	
7	2009-01-01 05:00	0	212.8899994	-15.37000122	68.22720667	12.58038186	0	
8	2009-01-01 06:00	0	178.0099945	-15.88001099	68.07701147	12.71270623	0	
9	2009-01-01 07:00	0	178.0099945	-15.82999268	68.560877	12.30275177	0	
10	2009-01-01 08:00	0	178.0099945	-15.78000488	69.0241756	11.90672061	0	
11	2009-01-01 09:00	0	175.9700012	-15.72998657	69.46721996	11.50951766	0	
12	2009-01-01 10:00	0	175.9700012	-15.91000977	70.3181745	11.37918273	0	
13	2009-01-01 11:00	0	175.9600067	-16.10001221	71.21325022	11.24893784	0	
14	2009-01-01 12:00	0	154.0700073	-16.28000488	72.06085374	11.12530937	0	
15	2009-01-01 13:00	77.08799744	154.0700073	-16.13999023	71.84831464	11.38470936	0	
16	2009-01-01 14:00	196.1999969	154.0700073	-16.0000061	71.65033449	11.65082869	0	
17	2009-01-01 15:00	317.9200134	146.8600006	-15.85001221	71.39024308	11.91713029	0	
18	2009-01-01 16:00	391.9039917	146.8600006	-15.13001099	72.36215735	11.65626426	0	
19	2009-01-01 17:00	429.428009	146.8699951	-14.41000977	73.02151614	11.40773869	0	
20	2009-01-01 18:00	371.394989	153.4600067	-13.69000854	73.38292443	11.16527203	0	

Example .nml file

```
🔚 glm2.nml 🗵
91 ! lake details
92 !-----
93
               [string]
94 ! name
95
                 name of the lake
96 ! latitude [float, minimum = -90, maximum = 90, unit = deg North]
97
                 latitude
98 ! longitude [float, minimum = -360, maximum = 360, unit = deg East]
99
                 longitude
              [float]
100 ! base elev
                 base elevation (m)
101
102 ! crest_elev [float]
                crest elevation (m)
103 !
104 ! bsn len [float]
105
                 basin length at crest (m)
             [float]
106 ! bsn wid
107
                 basin width at crest (m)
              [integer]
108 ! bsn vals
109 !
                 number of depth points on height-area relationship
110 ! H
                [float]
111 !
                 elevations (m) (comma separated list, len=bsn vals)
112 ! A
                [float]
                 area (m2) (comma separated list, len=bsn vals)
113 !
114
115 !-----
116 &morphometry
117
    lake name = 'Mendota'
118
    latitude = 43
119
    longitude = -89.41
120
    bsn len = 9500
121
    bsn wid = 7400
122
     bsn vals = 15
123
     ! H(m) A(m2 * 1000) V(m3 * 1000)
     124
125
      A = 0.00000, 2827226.39, 5654452.79, 8481679.18, 11308905.58, 14136131.97, 16963358.37, 19790584.76, 226
```

We will run GLM using R

- R is a statistical environment that can run on different computer operating systems (PC, Mac, Linux)
- R is reproducible, free(!), and easy to download
- R can run stats, make figures, and do a suite of different analyses in many disciplines
- Many packages for R to merge with other tools (including GLM!)
- R is the programming language of choice for most ecologists

GLM-associated R packages

- GLMr: holds the current version of the GLM model and allows you to run GLM on any operating system
- glmtools: has different functions for analyzing and plotting GLM output from GLMr
- Developed by Jordan Read and Luke Winslow
- Available from: https://github.com/USGS-R/glmtools

Learning objectives of today's module

- Set up and run the General Lake Model (GLM) in the R statistical environment to simulate lake thermal structure
- Understand how GLM configuration files, high-frequency driver data, and output files are organized and used
- Modify the input meteorological data for one GLM model to simulate the effects of different climate scenarios on lake thermal structure
- Interpret model output from GLM simulations to understand how changing climate will alter lake thermal characteristics
- Use the GRAPLEr R package to set up hundreds of model simulations that vary input meteorological data, and run those simulations using distributed computing
- Explore the application of distributed computing for modeling climate change effects on lakes

Activity A

With a partner (work in pairs):

- Download the zipped folder of R scripts and other files to run this module. Extract to your Desktop
- Download GLM files and R packages onto your computer
- Run the model and look at the thermal output
- 4) Examine how your model output compares to the observed field data for your lake

Activity B

- Develop a climate scenario for any region and explore how it will affect lake thermal structure
 - Develop a hypothesis about how climate change (e.g., altered temperature) may alter lake thermal structure
 - Create a corresponding meteorological input file
 - Run your model and examine the lake's response:
 - How does your scenario alter the temperature profile in your lake over time?
 - How does the thermocline depth change?
 - How does the timing of stratification and evaporation change?
 - Compare the modeled output to the observed data
 - Create a few figures to highlight your climate scenario and share with the class!

Need ideas for a climate scenario?

- Check out <u>climatedata.us</u>
 - Temperature & precipitation predictions for US across the year under different emission scenarios
 - For global projections, try: <u>climatemodels.uchicago.edu/maps</u>

Converting units?

As you edit the met_hourly file to create your climate scenario, keep the following units in mind!

Variable	Unit	Example	Conversion
AirTemp	°C	20.05	
WindSpeed	meters · sec ⁻¹	1.87	To convert from miles per hour, multiply by 0.447
Rain	meters · day-1	0.000592	To convert from inches per day, multiply by 0.0254

Activity C

- How do you run 1000s of lake simulations quickly?
 Is there a more efficient way to submit and analyze lots of different simulations than editing met files manually?
- YES! = GRAPLEr
- An R package that allows you to create 1000s of simulations, submit them to run via a suite of distributed computing tools, and then return the GLM output

GRAPLEr: a new R package

Authors: K. Subratie, S. Aditya, S.S. Mahesula, R. Figueiredo, C.C. Carey, and P.C. Hanson

- Creates offsets for GLM met file variables (e.g., add +2°C to all temperature values in a met file), submit the jobs via a Web service to run on other computers, and then analyze the output
- See: http://graple.org/

What is distributed computing?

 A model of computing where multiple networked computers work together towards a single problem, dividing the problem into many parts that are solved by different computers

GLM in your computer

GRAPLEr expedites simulation modeling

- Enter distributed computing:
 - Run 100s to 1000s of GLM jobs
 - Take each GLM job and dispatch to a different computer across the Internet
 - Shorten execution times for large numbers of model runs (e.g., climate change offsets)
 - A superhuman could manually submit
 <100 simulations in an 8-hr day
- Distributed computing is not easy but GRAPLEr makes it easy for you!
 - Can submit jobs directly from R user interface

GRAPLEr in action

Get response variables from output.nc file for each simulation, visualize output from 1000's of model runs using glmtools package

GRAPLEr in action

- Web service: A server takes requests from you through R
- IPOP network overlay: Aggregates computers across the Internet as if they belong to the same domain within the cloud
- HTCondor: Distributes GLM jobs to the computers connected by IPOP so they can run concurrently and finish faster

Figure: Subratie et al. 2017

Activity C

- Go through the GRAPLEr demo in the R script
- Once you have finished the demonstration, design your own simulation "experiment" with your partner and use the GRAPLEr to examine the offsets of a meteorological variable and magnitude of "your choice.
- Create some figures from your simulation and share them with the class.

Thank you for participating!

