Collaboration haptique étroitement couplée pour la déformation moléculaire interactive

Jean SIMARD

Université de Paris-Sud

CNRS-LIMSI

12 mars 2012

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- **3** Étude du travail collaboratif
- 4 Aide au travail collaboratif
- **5** Conclusion et perspectives

Sommaire

- Introduction
 - Docking moléculaire
 - Distribution des charges de travail
 - Objectifs de la thèse
- 2 Plateforme de manipulation moléculaire Shaddock
- 3 Étude du travail collaboratif
- 4 Aide au travail collaboratif
- 5 Conclusion et perspectives

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Figure: Docking moléculaire

Définition

ou amarrage moléculaire, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

- Nombreux atomes
- Orientation

Définition

ou amarrage moléculaire, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

- Nombreux atomes
- Orientation
- Flexibilité

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

- Nombreux atomes
- Orientation
- Flexibilité
- Facteurs chimiques

Définition

ou amarrage moléculaire, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

- Nombreux atomes
- Orientation
- Flexibilité
- Facteurs chimiques
- Complémentarité
 - géométrique
 - électrostatique

Définition

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Travaux sur la collaboration

Figure: Système cognitif distribué

Définition

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Travaux sur la collaboration

manipulation colocalisée [Kriz-2003]

Figure: Système cognitif distribué

Définition

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Travaux sur la collaboration

- manipulation colocalisée [Kriz-2003]
- un manipulateur guidé par deux partenaires [Park-2006]

Figure: Système cognitif distribué

Définition

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Travaux sur la collaboration

- manipulation colocalisée [Kriz-2003]
 - un manipulateur guidé par deux partenaires [Park-2006]
- inter-référencement [Chastine-2007]

Figure: Système cognitif distribué

Définition

Etendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Figure: Système cognitif distribué

Travaux sur la collaboration

- manipulation colocalisée [Kriz-2003]
- un manipulateur guidé par deux partenaires [Park-2006]
- inter-référencement [Chastine-2007]
- gestion des droits [Ma-2007]

Objectifs de la thèse

Problématique

- Quels sont les avantages du travail en collaboration?
- Quelles problématiques supplémentaires la collaboration apporte-t-elle?
- Comment améliorer la collaboration dans un environnement de travail complexe?

Objectifs

Analyser le travail collaboratif dans le contexte du docking moléculaire pour proposer des outils haptique adaptés.

- Étudier le travail collaboratif dans les tâches de manipulation moléculaire
- Identifier les faiblesses de cette configuration de travail
- Proposer des solutions appropriées pour assister le travail
- 4 Évaluer ces solutions en situation réelle

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
 - Cahier des charges
 - Organisation logicielle de la plateforme Shaddock
 - Organisation matérielle de la plateforme Shaddock
 - Outils supplémentaires proposés
- Étude du travail collaboratif
- 4 Aide au travail collaboratif
- 5 Conclusion et perspectives

Cahier des charges

Objectif

Élaborer une plateforme pour étudier le travail collaboratif dans le contexte de la manipulation interactive de molécules.

Contraintes

- Travail en collaboration
- Interaction temps-réel avec des molécules
- Manipulation à l'aide d'interface haptique
- Simulation temps-réel de la dynamique des molécules

Solutions

- Modularité
- Composant logiciels existants en biologie
- Modules dédiés à la réalité virtuelle
- Développement de nouveaux outils

Organisation logicielle de la plateforme Shaddock

Figure: Diagramme de déploiement UML de la plateforme Shaddock

Figure: Plate-forme expérimentale

■ Configuration colocalisée et synchrone

Figure: Plate-forme expérimentale

■ Communication orale et gestuelle autorisée

Figure: Plate-forme expérimentale

Outil de déformation de la molécule (Omni de SensAble®)

Figure: Plate-forme expérimentale

Outil pour déplacer la molécule (Omni de SensAble®)

Figure: Plate-forme expérimentale

■ Vue monoscopique, unique, publique et vidéoprojetée

Figure: Plate-forme expérimentale

Affichage déporté des objectifs

Figure: Plate-forme expérimentale

■ Outil pour orienter la molécule (SpaceTraveler de 3Dconnexion®)

Figure: Plate-forme expérimentale

■ Nombre d'outils quasiment illimité

Figure: Plate-forme expérimentale

■ Collaboration asymétrique entre les participants

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

■ Pointage d'une cible difficile

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

Modèle haptique d'attraction sur les atomes

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

■ Possibilité de pointer un atome. . .

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

... ou un résidue (ou d'autres structures moléculaires)

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

■ Pour enfin le sélectionner

Basé sur les PCV de Fuchs-2006

Description

Basé sur les PCV de **Fuchs-2006**Recherche Identifier une tâche

élémentaire

Description

Description Basé sur les PCV de Fuchs-2006 Recherche Identifier une tâche élémentaire Sélection Sélectionner une structure moléculaire (atome, résidue, . . .)

Description Basé sur les PCV de Fuchs-2006 Recherche Identifier une tâche élémentaire Sélection Sélectionner une structure moléculaire (atome, résidue, ...) Manipulation Déplacer ou déformer la molécule

Description Basé sur les PCV de Fuchs-2006 Recherche Identifier une tâche élémentaire Sélection Sélectionner une structure moléculaire (atome, résidue, ...) Déplacer ou déformer la Manipulation molécule Évaluation Évaluer l'équilibre physico-chimique de la molécule

Figure: Manipulation moléculaire

Figure: Manipulation moléculaire

Description Basé sur les PCV de Fuchs-2006 Recherche Identifier une tâche élémentaire Sélection Sélectionner une structure moléculaire (atome, résidue, ...) Déplacer ou déformer la Manipulation molécule Évaluation Évaluer l'équilibre physico-chimique de la molécule Recommencer Si l'évaluation n'est pas satisfaisante

Sommaire

- Introduction
- Plateforme de manipulation moléculaire Shaddock
- **3** Étude du travail collaboratif
 - Étude 1 Recherche collaborative de résidus
 - Objectifs
 - Protocole expérimental
 - Résultats
 - Synthèse
 - Étude 2 Déformation collaborative de molécule
 - Étude 3 Dynamique de groupe
- 4 Aide au travail collaboratif
- 5 Conclusion et perspectives

Figure: Manipulation moléculaire

Objectifs

Objectif principal

Étudier la contribution et les contraintes de la collaboration dans une tâche de recherche de structures moléculaires dans un environnement complexe

Hypothèses

- **I** Amélioration des performances (individuel \rightarrow collaboratif)
 - Comparer les performances en collaboration et seul
 - Valider le contexte de travail (tâche complexe)
- Identifier les stratégies de travail
 - Identifier et caractériser les stratégies de travail
 - Identifier les conflits de coordination et de communication
- Utilisabilité de la plate-forme
 - Évaluer les outils proposés
 - Identifier les faiblesses

La tâche

Residue 4 and 9 Residue 5 and 10

Figure: Répartitions des residues sur les molécules (TRP-Cage et Prion)

Protocole

Sujets

- 24 participants
- Différents niveaux d'expertise
- Étude intra-population

Variables

Nombre de participants un (24 sujets) ou deux (12 couples)

Taille de la molécule une petite (TRP-Cage) et une grande (Prion)

Caractéristiques du residue Forme, nature, position, similarités...

Amélioration des performances en collaboration

Figure: Temps de réalisation de la tâche

Figure: Temps de recherche et de sélection comparés

Amélioration des performances en collaboration

Figure: Temps de réalisation de la tâche

Figure: Temps de recherche et de sélection comparés

Amélioration des performances en collaboration

Figure: Temps de réalisation de la tâche

Figure: Temps de recherche et de sélection comparés

Figure: Distance moyenne entre le curseur des sujets

Figure: Affinité entre les sujets pour chaque binômes

Sommaire

- Introduction
- Plateforme de manipulation moléculaire Shaddock
- **3** Étude du travail collaboratif
 - Étude 1 Recherche collaborative de résidus
 - Étude 2 Déformation collaborative de molécule
 - Objectifs
 - Protocole expérimental
 - Résultats
 - Synthèse
 - Étude 3 Dynamique de groupe
- 4 Aide au travail collaboratif
- Conclusion et perspectives

Figure: Manipulation moléculaire

Objectifs

Objectif principal

Quantifier et qualifier les conflits de coordination en fonction de la complexité de la tâche

Hypothèses

- **I** Amélioration des performances (individuel \rightarrow collaboration)
 - Coordination étroitement couplée
- La complexité de la tâche influence différemment les performances individuelles et collaboratives
 - Tâches de difficulté variable
 - Identifier les tâches nécessitant une collaboration
- Évaluation du travail collaboratif par les sujets
 - Questionnaire pour valider les améliorations de la plate-forme
 - Évaluation de la configuration de travail collaboratif

La tâche

Figure: Tâche de déformation

Protocole

Sujets

- 36 participants (12 couples et 12 sujets seuls)
- Sujets avec différents niveaux d'expertise
- Couples choisis pour leurs affinités
- Étude inter-population

Variables

Complexité de la molécule 2 molécules (1 petite et 1 grande)

Outil de déformation 2 configuration de déformation (atom et residue)

Amélioration des performances

Figure: Distances passive et active

Figure: Nombre de sélections par main dominante/dominée

Influence de la complexité de la tâche

Figure: Temps de réalisation des scénarios

Difficulté	Description	Exemple
Simple	- 1 outil est nécessaire	Tâche 1a
	- 1 manipulation	
Avancé	 1 outil est suffisant mais 2 sont préférables 	Tâche 2a, 2b
	 2 manipulations peuvent être coordonnées 	
Expert	 2 outils sont nécessaires 	Tâche 1b
	 2 manipulations doivent être coordonnées 	

Table: Classification des tâches

Sommaire

- Introduction
- Plateforme de manipulation moléculaire Shaddock
- 3 Étude du travail collaboratif
 - Étude 1 − Recherche collaborative de résidus
 - Étude 2 Déformation collaborative de molécule
 - Étude 3 − Dynamique de groupe
 - Travaux existants
 - Objectifs
 - Protocole expérimental
 - Résultats
 - Synthèse
- 4 Aide au travail collaboratif
- Conclusion et perspectives

Travaux existants

Dynamique de groupe

- facilitation sociale [Ringelmann-1913]
- paresse sociale [Roethlisberger-1939]
- brainstorming [Osborn-1963, Tuckman-1965]

Problématique

■ Aucune étude de dynamique de groupe sur des tâches avec une interaction étroitement couplée

Objectifs

Objectif principal

Observer la dynamique de groupe lors d'une coordination étroitement couplée

Hypothèses

- 1 Amélioration des performances en quadrinôme
 - Variation de la taille d'un groupe
 - Quantification des conflits dans des groupes
- Émergence d'un meneur
 - Observer la dynamique des groupes
 - Caractériser les différents rôles
- Le brainstorming améliore les performances
 - Période pour organiser le travail
 - Limiter les conflits a priori

La tâche

Figure: Tâche de déformation

Protocole

Sujets

- 16 participants
- Sujets avec expérience sur la plate-forme
- Étude intra-population

Variables

Nombre de participants 8 couples et 4 groupes

Tâche différente 2 molécules (1 faiblement et 1 fortement couplée)

Stratégie Possibilité ou non d'établir une stratégie

Analyse

Figure: Temps de réalisation des scénarios en fonction du nombre de participants

Travail collaboratif

- Pas de différences entre couples et groupes
- Conflits très importants dans les groupes

Figure: Temps de réalisation des scénarios en fonction des groupes avec ou sans brainstorming

Pré-élaboration d'une stratégie

- La pré-élaboration d'une stratégie est nécessaire pour un groupe
- L'organisation dans un couple n'apporte rien
- Sans stratégie, la perte d'efficacité est due aux conflits

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- 3 Étude du travail collaboratif
- 4 Aide au travail collaboratif
 - Étude 4 Assistance haptique et stratégie de travail
 - Synthèse des études effectuées
 - Objectifs
 - Protocole expérimental
 - Résultats
 - Synthèse
- Conclusion et perspectives

Solutions

Solutions

Solutions

Solutions

Solutions

Solutions

Solutions

Solutions

Objectifs

Objectif principal

Proposer et évaluer des outils haptiques pour assister la coordination

Hypothèses

- 1 Performances améliorées par l'assistance haptique
 - Rapidité d'exécution
 - Qualité de la solution atteinte
- 2 L'assistance haptique améliore la communication
 - Temps de réaction réduits
 - Meilleure compréhension des intentions de chacun
- Les experts sont satisfaits des outils proposés
 - Évaluer les outils proposés
 - Identifier les faiblesses

Protocole

Sujets

- 24 participants
- Sujets avec expérience sur la plate-forme
- Étude intra-population

Variables

Nombre de participants 8 trinômes

Tâche différente 2 molécules (1 déformation et 1 docking moléculaire)

Assistance Avec ou sans assistance haptique

Analyse

Figure: Temps pour atteindre le score RMSD minimum avec et sans haptique pour chaque scénario

Assistance haptique

- Pas de différences sur les tâches simples
- Apport important sur les tâches complexes

Figure: Temps moyen d'acceptation d'une désignation avec et sans haptique

Communication haptique

- Amélioration du temps de réaction
- Communication haptique et non verbale

Conclusion

Travail collaboratif

- Adapté pour l'appréhension de tâches très complexes
- Nécessité d'améliorer les canaux de communication

Communication haptique

- Remplace la communication verbale dans certains cas
- Plus efficace et plus rapide

Plateforme Shaddock

- Plateforme validée
- Des améliorations sont encore nécessaires

Perspectives

Travail collaboratif

- Collaboration distante
- Collaboration multi-experts
- Apprentissage en collaboration

Expérimenter le travail collaboratif

- Comment mesurer les conflits de coordination et de communication?
- Comment définir un protocole expérimental pour le collaboratif?

Questions

Merci pour votre attention

Références