Отчет о выполнении лабораторной работы 5.1.2 Исследование эффекта Комптона

Выполнил: Голубович Тимур, группа Б01-110 01.11.2023

Цель работы

С помощью сцинтилляционного спектрометра исследовать энергетический спектр γ -квантов, рассеянных на графите. Определить энергию рассеянных γ -квантов в зависимости от угла рассеяния, а также энергию покоя частиц, на которых происходит комптоновское рассеяние.

Оборудование и приборы

Источник γ -квантов со свинцовым коллиматором; набор поглотителей из различных материалов; сцинтилляционный счётчик; пересчётный прибор.

Теоретическое введение

Рассеяние γ -лучей в веществе относится к числу явлений, в которых особенно ясно проявляется двойственная природа излучения. Волновая теория, хорошо объясняющая рассеяние длинноволнового излучения, испытывает трудности при описании рассеяния рентгеновских и γ -лучей. Эта теория, в частности, не может объяснить, почему в составе рассеянного излучения, измеренного Комптоном, кроме исходной волны с частотой ω_0 появляется дополнительная длинноволновая компонента, отсутствующая в спектре первичного излучения.

Появление этой компоненты легко объяснимо, если считать, что γ -излучение представляет собой поток квантов (фотонов), имеющих энергию $\hbar\omega$ и импульс $p=\hbar\omega/c$. Эффект Комптона — увеличение длины волны рассеянного излучения по сравнению с падающим — интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

Нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\Delta \lambda = \lambda_1 - \lambda_0 = \Lambda_{\kappa} (1 - \cos \theta), \tag{1}$$

где λ_0 и λ_1 – длины волн γ -кванта до и после рассеяния, а величина

$$\Lambda_{\rm K} = \frac{h}{mc} = 2.42 \cdot 10^{-10} \text{ cm}$$

называется комптоновской длиной волны электрона.

Кроме рассеяния γ -кванты испытывают в среде поглощение, вызываемое фотоэффектом и рождением электрон позитронных пар. Процесс рождения пар пороговый,

он возможен лишь при энергии γ -квантов больше $2mc^2=1.02$ МэВ и в рассматриваемом энергетическом диапазоне не происходит. При фотоэффекте из атома выбивается электрон, а квант поглощается. Импульс кванта делится между вылетевшим электроном и атомом, а его энергия частично передается электрону, а частично тратится на возбуждение атома. Атом практически мгновенно (за время порядка 10^{-8} с) возвращается в нормальное состояние. Его энергия возбуждения либо излучается в виде мягкого фотона, либо передается какому-нибудь другому электрону, который покидает атом (Оже-эффект). И в том, и в другом случае энергия возбуждения обычно поглощается соседними атомами рассеивателя. Основной целью данной работы является проверка соотношения (1). Применительно к условиям нашего опыта формулу (1) следует преобразовать от длин волн к энергии γ -квантов. Как нетрудно показать, соответствующее выражение имеет вид

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon(0)} = 1 - \cos\theta. \tag{2}$$

Здесь $\varepsilon(0) = \frac{E_0}{mc^2}$ – выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ – выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , а m – масса электрона.

Экспериментальная установка

Блок-схема установки изображена на рис. 1. Источником излучения 1 служит $^{137}\mathrm{Cs}$, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диаметром 40 мм и высотой 100 мм).

Рис. 1: Экспериментальная установка

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее ФЭУ) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на аноде ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с

этим блоком может вращаться относительно мишени, угол поворота отсчитывается по лимбу 6.

Головная часть сцинтилляционного блока закрыта свинцовым коллиматором 5, который формирует входной пучок и защищает детектор от постороннего излучения. Основной вклад в это излучение вносят γ -кванты, проходящие из источника 1 через 6-сантиметровые стенки защитного контейнера. Этот фон особенно заметен при исследовании комптоновского рассеяния на большие углы ($\simeq 120^{\circ}$), когда расстояние между детектором и источником уменьшается.

Под действием монохроматического излучения на выходе ФЭУ возникает распределение электрических импульсов. В амплитудном распределении импульсов имеется так называемый фотопик, возникающий в результате фотоэффекта, и обязанное комптоновскому рассеянию сплошное распределение. Часто фотопик называется также пиком полного поглощения, его положение однозначно связана с энергией регистрируемого γ -излучения. Нас будет интересовать положение (номер канала) вершины этого пика в зависимости от угла поворота детектора.

Ход работы

- 1. Включим все измерительные устройства и компьютер.
- 2. Запустим программу и войдем в режим измерения спектра.
- 3. Устанавливая сцинтилляционный счетчик под разными углами θ к первоначальному направлению полета γ -квантов и вводя значения этих углов в ЭВМ, снимем амплитудные спектры и определим положения фотопиков для каждого значения угла θ ; измерения проведем с шагом 10° в диапазоне от 0° до 120° . Результаты запишем в таблицу 1.

Рис. 2: Распределения на экране компьютера: а) угол $\theta = 20^{\circ}$; б) угол $\theta = 80^{\circ}$

Погрешность σ_N складывается из погрешностей определения N самого прибора $\sigma_N^{\text{приб}}=0,01N$ и погрешности измерения по прибору $\sigma_N^{\text{изм}}=1$. Суммарно: $\sigma_N=\sqrt{(\sigma_N^{\text{приб}})^2+(\sigma_N^{\text{изм}})^2}.$

Рис. 3: Распределение на экране компьютера: угол $\theta = 110^{\circ}$

ℓ	9°	0	10	20	30	40	50	60	70	80	90	100	110	120
	N	900	1011	819	779	702	621	553	470	437	378	346	313	298
O	σ_N	10	11	9	8	8	7	6	5	5	4	4	4	3

Таблица 1: Зависимость номера канала N от угла θ

Заменим в формуле (2) энергию квантов, испытавших комптоновское рассеяние на угол θ , номером канала $N(\theta)$, соответствующего вершине фотопика при указанном угле θ . Обозначая буквой A неизвестный коэффициент пропорциональности между $\varepsilon(\theta)$ и $N(\theta)$, найдем:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta). \tag{3}$$

Возвращаясь от переменной ε к энергии E, мы получаем, что при $\theta=90^\circ$ формула (2) принимает вид

$$mc^2\left(\frac{1}{E(90)} - \frac{1}{E(0)}\right) = 1,$$

или

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_\gamma \frac{N(90)}{N(0) - N(90)}.$$
 (4)

В этой формуле $E(0)=E_{\gamma}$ – энергия электронов, рассеянных вперед, – просто равна энергии γ -лучей, испускаемых источником.

Используя экспериментальные результаты, построим график, откладывая по оси абсцисс величину $1-\cos\theta$, по оси ординат — $1/N(\theta)$. Так как мы знаем ошибку σ_N для каждого значения, будем использовать метод минимума χ^2 . Примем также во внимание, что изначально устройство было, возможно, не откалибровано, поэтому углы были не совсем точными. Подставим для каждого значения угла $\theta \longrightarrow \theta + \Delta\theta$ в косинус и проварьируем по $\Delta\theta$ так, чтобы точки лучше легли на прямую, то есть $\chi^2 \to \min$.

В нашем случае получаем: $\Delta \theta = -0.28^{\circ}$.

И значение $\chi^2 \simeq 161$ — это говорит о том, что экспериментальные значения колеблются в пределах $\sim 3\sigma$ от истинного значения.

Рис. 4: Зависимость $\frac{1}{N(\theta)}$ от $1 - \cos \theta$

Из данного графика получаем следующие значения для наклона и пересечения с осью ординат соответственно:

•
$$k = (156 \pm 3) \cdot 10^{-5}$$

$$\bullet \ \ b = (107 \pm 2) \cdot 10^{-5}$$

Найдем N(0). N(0) = 1/b

Тогда получаем:

$$N(0) = (940 \pm 20)$$

Найдем N(90). Это значение N, при котором $\cos\theta=0$. То есть, другими словами, $1-\cos\theta=1$. Тогда:

$$N(90) = \frac{1}{k \cdot 1 + b} = \frac{1}{k + b}$$

В итоге находим:

$$N(90) = (380 \pm 10)$$

Используя (4), и то, что $E_{\gamma}=662$ кэВ, найдем:

$$mc^2 = (450 \pm 20)$$
 кэВ

Как видно, данное значение имеет ошибку $\sim 5\%$. Табличное значение 511 кэВ, что, как и было сказано, укладывается в $\sim 3\sigma$.

Вывод

В работе мы исследовали эффект Комптона. Качественно пронаблюдали энергии рассеянных γ -квантов в зависимости от угла рассеяния. Также, была определена энергия покоя частиц, на которых происходит рассеяние (электронах): $mc^2=(450\pm20)$ кэВ, что достаточно близко к табличному значению в 511 кэВ. Ошибка составляет порядка 5%.

Список литературы

[1] Лабораторный практикум по общей физике. В 3 томах. Том 3. Квантовая физика: учебное пособие под ред. Ю. М. Ципенюка