## University of California at Riverside

### **Department of Electrical Engineering**

**EE 110A: Signals and Systems** 

Final Exam (Dec 8th, 2012)

| First name |
|------------|
|            |
|            |
|            |
|            |
|            |

| Question | MAX | GRADE |
|----------|-----|-------|
| 1        | X   |       |
| 2        | X   |       |
| 3        | X   |       |
| 4        | X   |       |
| 5        | X   |       |
| 6        | X   |       |
| TOTAL    | 100 |       |

Time: 150 Minutes

#### **Instructions:**

- Attempt all questions.
- One page of <u>one-sided hand-written letter-size</u> information sheet is allowed.
- No other reference material is allowed.
- No calculator of any kind is allowed.
- All answers should be written in booklet.
- In addition to final answers, you need to include necessary steps to show your derivations.
- Enjoy your exam, and Good Luck!

Instructor's Name: Dr. Hamed Mohsenian-Rad

### **Question One:**

**Part 1)** Consider an LTI system with unit impulse response h(t):



Plot the output of this system to the following input?



**Part 2)** Given the following signal, sketch signal y(t) = x(1-t)u(t).



# **Question Two:**

Part 1) A continuous-time periodic signal x(t) is real-valued and has a fundamental period T=4. The nonzero Fourier series coefficients for x(t) are  $a_0=2$ ,  $a_2=a_{-2}=4$ , and  $a_4=a_{-4}=5$ .

Express x(t) in form of  $x(t) = \sum_{k=-\infty}^{\infty} A_k \cos(\omega_k t + \phi_k)$ .

**Part 2)** Determine the Fourier series representation, and its coefficients  $a_k$  (i.e., for k = 0 and  $k \neq 0$ ) of the following periodic signal:



### **Question Three:**

**Part 1)** Let  $X(j\omega)$  be the Fourier Transform of signal x(t). Determine the Fourier Transform of signal y(t) = x(1-2t) - x(-2-t) + 2x(t+1) in terms of  $x(j\omega)$ .

**Part 2)** Find the signal x(t) that has Fourier Transform  $X(j\omega) = 2\delta(\omega - 2) - 5\delta(\omega + 3) + \delta(\omega)$ .

**Question Five:** Consider the following RLC circuit with two resistors, one capacitor, and one inductor. The input signal is x(t) and the output signal is y(t). The parameters are  $R_1 = R_2 = 2$ , L = 1,  $C = \frac{1}{3}$ .



Part 1) Obtain the transfer function of the system.

Part 2) Identify the zeros and poles of the transfer function.

Part 3) Is the system stable? Justify your answer.

**Part 4)** Assume that h(t) denotes unit impulse response and s(t) denote the unit step response for this system. Calculate the following signal values:

$$h(0^{+}) =$$

$$s(+\infty) =$$

**Question Four:** Consider an LTI system with the following Transfer Function:  $H(s) = \frac{1}{s+1}$ .

**Part 1)** What is the output of this system to an **aperiodic** signal x(t) with Fourier Transform:

$$X(j\omega) = \frac{1}{2 + j\omega}?$$

**Part 2)** What is the output a **periodic** signal x(t) with Fourier series representation:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\pi t},$$
  $a_k = \begin{cases} 1 & k=0\\ 0.5 & k=1,-1\\ 0 & otherwise \end{cases}$ 

**Question Four:** Assume that signal y(t) = x(t) \* h(t), where  $x(t) = e^{-2t}u(t)$  and  $h(t) = e^{-(t-3)}u(t-3)$ . **Part 1)** Find the Fourier Transform  $Y(j\omega)$  for signal y(t).

**Part 2)** Find an expression for signal y(t) itself.

[Hint: You can either use the results in Part 1 or directly calculate the convolution integral].

**Appendix**: The following Laplace Transformation table may assist you:

• 
$$\mathcal{L}[a_1x_1(t) + a_2x_2(t)] = a_1\mathcal{L}[x_1(t)] + a_2\mathcal{L}[x_2(t)]$$

• 
$$\mathcal{L}[x(t-t_0)] = e^{-st_0}\mathcal{L}[x(t)]$$

• 
$$\mathcal{L}[e^{s_0t}x(t)] = X_L(s-s_0)$$

• 
$$\mathcal{L}[x(at)] = \frac{1}{|a|} X_L(\frac{s}{a})$$

$$\bullet \ \mathcal{L}[x^*(t)] = X_L^*(s^*)$$

• 
$$\mathcal{L}[x(t) * y(t)] = X_L(s)Y_L(s)$$

• 
$$\mathcal{L}\left[\frac{d}{dt}x(t)\right] = sX_L(s)$$

• 
$$\mathcal{L}[tx(t)] = -\frac{dX_L(s)}{ds}$$

• 
$$\mathcal{L}\left[\int_{-\infty}^{t} x(\tau)d\tau\right] = \frac{1}{s}X_L(s)$$