Machine Learning Flow (Any algorithm) Linear-regression -45-1624 p Evaluate 10 reprocessiva model 1-2 Exglore - hour date - Algerithm data - Testing 1.3 Selecting 1.4 Train Evaluate data ranable manis 1.3 Prepare here dala Explorativy Date محسد الهمت One HET ENCODING Feature Engineering) -> missing velues, enceding Feature Scaling

xreters to

C3. Feature Engineering She Hot Encoding

		age	sex	bmi	children	smoker	region	charges
-	0	19	female	27.90	0	yes	southwest	16884.9240
	11	62	female	26.29	0	yes	southeast	27808.7251
	14	27	male	42.13	0	yes	southeast	39611.7577
	19	30	male	35.30	0	yes	southwest	36837.4670
(23	34	female	31.92	1	yes	northeast	37701.8768

Sex encoding). So: Female 1: Male

\	Childra Encoding										
_	012	2 3	4 5	Humber	of child						
	0 0 0	00	00	0							
	0 1	o v	00) (
	\circ	(0	00	2							
1	0 0	0 1	0	3							
	00	0	10	4							
	\circ	00	0 (1 5							

	age	5ex 1	5m1	OHE-1	OHE-5/	0 KE-3	045-4)	OHE-5
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	19	0	2390	0	6	0	0	0
	34		31.92					0

D) Split the data I. First shuffle the rows of the date

	Bmi	Charges	Train data		
1 5	J 7	10,000	2.X_train -15	0.3×133	8 = 9337 vous
	-		K-Y-trans is		= 9337 rows
9337		\	Tes oute		
9338	30	50,000	3. X-4054	TS 0.3 × 13	38 - 401 rows
			y - te su	17 0.3 ×	= (fo) 60~5

Zwopen and per 514 hors K-troi: = 0.7 x 274 = 191 K-+051 =0.3 X274 =82

Regression CLR) 1- variable L> 1) One variable LR 2) multi vanable LR 1 = m, x, + m2 x 2 + c) 2 rariable ho(x) - toot >> smi, a How about 11 variebles? What does the egg books like? 4) - (x) = (03 x2 + (03 x3 +...

Linear Regression (CR)

- We are given this insurance csv dataset.

- We want to do some LR on this dataset.

- For example. Can we predict now much a person has to pay for his/her insurance basen on their BMI?

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

	(in put)	Featun	es, var	iable, d	limersio	un, attrib	ite tages	authort,	
	ag	ge_ sex	bmi	children	smoker	region	charges		
	0 1	19 female	27.900	0	yes	southwest	16884.92400		
	1 1	l8 male	33.770	1	no	southeast	1725.55230	. An .	
8005	2 2	28 male	33.000	3	no	southeast	4449.46200	1 " observation	
2 Gberratons	3 3	33 male	22.705	0	no	northwest	21984.47061		
Sam ples	4 3	32 male	28.880	0	no	northwest	3866.85520		
= 6bservations	1 1 2 2 3 3 3	18 male 28 male 33 male	33.770 33.000 22.705	1 3 0	no no	southeast southeast northwest	1725.55230 4449.46200 21984.47061	jith observati	ldh

CONTINUOUS VORIGIOIS

1. 200

2.BW1

3. Charges

Cortegorical variable

1-5-ex

2. Children

35moke,

4. 685,000

Revision of Linear Algebra

Contine

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array}$$

Now when we see a dathset, lets imagine it vectors and matrices

	X	% 2	X 3	Xy	Xs	- X.b	_ y _
	age	sex		children	smoker	region	charges
0	19	^{fe} male	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	rorthwest	21984.47061
4	32	male	28.880	0	no	rorthwest	3866.85520
	U		<u></u>	V.			

Xi: the ith feature/ attributes of the dataset.xiis a cal vector

3 : a col vector of the target output

But how many rows of observation [samples do with the cols = 6 to a 15 to a 15

- We have 6 features.

Obseivation/samples de we have?

X = 15 a 1338 × 6 matrix

Our intuitor y Charges Age XI 9 & Charges 7 BMX3 y Charges BMI X3

1	X.	1/2	X 3	Xy	X5	X6	<u>9</u>
	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

X: feature 5 /attributer, independent variable
y: target output, dependant variable

Linear Regression with one variable

= Linear regression is to find a linear line that fits the dataset.

= We can make predictions for unseen abscruction. For example

what is the insurance charges for a person with SMI = 31?

How do we find the best line (red) that fils the data?

> C'intercept m:slope

- do our job Cfor one variable) is to some

for mand c.

How do we find the best

y=mx+c

Two methods

A) Solve using equation B) Use gradient descent

A) Solve using equation

Ordinary Least Square method (from State

 C_{\prime} $\hat{\underline{\beta}}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x};$

 $\underline{\beta}_{1}, \hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}},$

y=mx+C

y = 130 -1 8, x

Wahot is this?

From our dataset

1	*3	y
index	BMI	Charges
1 2	19 23	
1	Xi = 25	1 y:=20,000
N = 13/38	-	

$$\bar{x}$$
: averge . of $x = \frac{1}{N} \sum_{i=1}^{N} x_i$
 $\bar{y} = x_i$
of $y = -\frac{1}{N} \sum_{i=1}^{N} y_i$

3.) Use gradient Descent h(x) (gradient of the cost function) Cost function h(x) = mx+c N=1338 $J(m,c) = \frac{1}{2H} \sum_{i=1}^{\infty} (h(x^{i}) - y^{i})^{\frac{2}{3}}$ - The cost function calculates the distance 25 30 miles to behave our predictions h(x) and the original data. Du then we need to find the values of m and c that minimites the cost function J

How do we find t	the best m	and c fl	nat minimite
the cost function?			
J(m,c) = 1 5	_ (\(\(\x'\)	-yi) ~	
	<u></u>		Joses like?
	lont know)	Lincher	

find the best in and c that minimites cost function? Let's just imagne our cost function looks like d: learning rate/step = 1/4 Update using gradient desout DUWN THE GRADIENT OF THE COST FUNCTION =

Prock Dr We define the COH J(m/c) M-

- (2) We find the best value of m and c which minimites cost fineron J.
 - 3) This is done by going down the gradient of J Mrw = Mad - of June

Cnew =