

Cambridge International AS & A Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

BLANK PAGE

Find th	e value of th	e constant	k.							
•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••							•••••			
•••••				•••••	•••••	•••••				
	•••••			•	•	•		•••••	•	
•••••										
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••								
••••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••		•••••	•••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••
•••••			•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••			•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
				•••••	•••••			••••		
	/									
	•••••									
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

4

Find the sum to infinity of the progression.	[5]

5

Show that, for all values of m , the line intersects the curve at two distinct points.	[5]

4	The sum, S_n , of the first n terms of an arithmetic progression is given by
	$S_n = n^2 + 4n.$
	The <i>k</i> th term in the progression is greater than 200.
	Find the smallest possible value of k . [5]

© UCLES 2020	9709/12/O/N/20

5 Functions f and g are defined by

$$f(x) = 4x - 2$$
, for $x \in \mathbb{R}$,
 $g(x) = \frac{4}{x+1}$, for $x \in \mathbb{R}$, $x \neq -1$.

(a)	Find the value of $fg(7)$.	[1]
(b)	Find the values of x for which $f^{-1}(x) = g^{-1}(x)$.	[5]
		•••••
		•••••
		•••••

[·		$ \equiv \frac{1}{\tan x}.$	$\frac{1}{\sin x} + 1$	$-\tan x$	ntity $\left(\frac{1}{\cos x}\right)$	Prove the iden
				·•••••••••••••••••••••••••••••••••••••		
		•••••	•••••			
$x \le 180^{\circ}$.	$= 2 \tan^2 x \text{ for } 0^\circ \leqslant x$	$\left(\frac{1}{\ln x} + 1\right) =$	$\tan x$ $\left(\frac{1}{s}\right)$	$\left(\frac{1}{\cos x} - \frac{1}{\cos x}\right)$	he equation	Hence solve th
	•••••	•••••	•••••			

7	The	point (4, 7) lies on the curve $y = f(x)$ and it is given that $f'(x) = 6x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}}$.
	(a)	A point moves along the curve in such a way that the <i>x</i> -coordinate is increasing at a constant rate of 0.12 units per second.
		Find the rate of increase of the y-coordinate when $x = 4$. [3]
	(b)	Find the equation of the curve. [4]

In the diagram, ABC is an isosceles triangle with AB = BC = r cm and angle $BAC = \theta$ radians. The point D lies on AC and ABD is a sector of a circle with centre A.

(a)	Express the area of the shaded region in terms of r and θ .	[3]

11

•••••
••••••
 •••••
 •••••
•••••
•••••
•••••
•••••
•••••
•••••
 ••••••

Find the equation of the circle.	[3]
	•••••
	•••••
	•••••
	•••••
t C is such that AC is a diameter of the circle. Point D has coordinates (5, 16). Show that DC is a tangent to the circle.	[4]
Show that DC is a tangent to the circle.	[4]
Show that DC is a tangent to the circle.	
Show that <i>DC</i> is a tangent to the circle.	
Show that <i>DC</i> is a tangent to the circle.	
Show that <i>DC</i> is a tangent to the circle.	
Show that <i>DC</i> is a tangent to the circle.	
Show that <i>DC</i> is a tangent to the circle.	
Show that <i>DC</i> is a tangent to the circle.	
Show that <i>DC</i> is a tangent to the circle.	
Show that <i>DC</i> is a tangent to the circle.	

The other tangent from D to the circle touches the circle at E.

	Find the coordinates of E .	[2
		••••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

The diagram shows part of the curve $y = \frac{2}{(3-2x)^2} - x$ and its minimum point M, which lies on the x-axis.

(a)	Find expressions for $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\int y dx$. [6]

15

	 	•••••
	 	•••••
	 	•••••
•••••	 	••••••
•••••	 	•••••
•••••	 	• • • • • • • • • • • • • • • • • • • •
	 	•••••

		16	
11	A cı	urve has equation $y = 3\cos 2x + 2$ for $0 \le x \le \pi$.	
	(a)	State the greatest and least values of y.	[2]
			· ·····
	(b)	Sketch the graph of $y = 3\cos 2x + 2$ for $0 \le x \le \pi$.	[2]
	(c)	By considering the straight line $y = kx$, where k is a constant, state the number of solutions equation $3 \cos 2x + 2 = kx$ for $0 \le x \le \pi$ in each of the following cases.	of the
		(i) $k = -3$	[1]

(i)	k = -3	.1]
		•••

(ii)
$$k = 1$$

.....

(iii)
$$k = 3$$

Functions f, g and h are defined for $x \in \mathbb{R}$ by

$$f(x) = 3\cos 2x + 2,$$

$$g(x) = f(2x) + 4,$$

$$h(x) = 2f\left(x + \frac{1}{2}\pi\right).$$

(d)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2]
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.