Métodos Estocásticos da Engenharia I Capítulo 1 - Introdução à Probabilidade

Prof. Magno Silvério Campos

2024/2

Bibliografia

Estas notas de aula foram baseadas nas obras de:

- (1) CANCHO, V.G. Notas de Aulas sobre Noções de Estatística e Probabilidade. São Paulo: USP, 2010.
- MINES, W.W.; et al. Probabilidade e Estatística na Engenharia. 4. ed. Rio de Janeiro: LTC, 2006.
- MEYER, P.L. Probabilidade: Aplicações à Estatística. 2. ed. Rio de Janeiro: LTC, 1983.
- MENDES, F. C. T. Probabilidade para Engenharias. Rio de Janeiro: LTC, 2010.
- MONTGOMERY, D.C.; Runger, G.C. Estatística Aplicada e Probabilidade para Engenheiros. 6. ed. Rio de Janeiro: LTC, 2016.
- O ROCHA, S. Estatística Geral e Aplicada para Cursos de Engenharia. 2. ed. São Paulo: Atlas, 2015.
- ROSS, S. Probabilidade: um curso moderno com aplicações. 8. ed. Porto Alegre: Bookman, 2010.
- URBANO, J. Estatística: uma nova abordagem. Rio de Janeiro: Ed. Ciência Moderna, 2010.

Aconselha-se pesquisá-las para se obter um maior aprofundamento e um melhor aproveitamento nos estudos.

Conteúdo Programático

- Seção 1 Conceitos básicos
 - Experimentos aleatórios;
 - Espaço amostral;
 - Eventos aleatórios e operações;
- Seção 2 Probabilidade
 - Definição clássica ou a priori;
 - Definição frequentista ou a posteriori;
 - Definição axiomática;
- 3 Seção 3 Probabilidade condicional e independência de eventos
- Seção 4 Teorema de Bayes
 - Partição de um espaço amostral;
 - Teorema da probabilidade total;
 - Teorema de Bayes;
- 6 Apêndice I Convenção para arredondamentos de números
- 6 Apêndice II Notação por índice
- Apêndice III Análise combinatória

Experimento

Um experimento é qualquer procedimento que envolva observação. Assim, quando se efetuam medidas da massa de um elétron ou quando se observam as sucessivas posições de um corpo, estão sendo realizados experimentos.

Experimentos determinísticos

Para certos experimentos, realizados sob determinadas condições, é possível prever um resultado particular. Exemplos:

- quando a água é aquecida a 100^oC, sob pressão normal, ela entra em ebulição;
- \bullet um corpo colocado a 200 m de altura e depois solto, cai por ação da gravidade.

Esses experimentos são chamados experimentos determinísticos.

Experimentos aleatórios

Para outros experimentos, realizados sob idênticas condições, não é possível prever um resultado particular. Exemplos:

- Se um dado é lançado sobre a superfície plana, não é possível afirmar que ocorra a face 6. Se esse experimento é realizado várias vezes, em condições idênticas, observaremos, em geral, resultados distintos;
- O número de pacientes que chegam a um hospital, num intervalo de tempo de duas horas, em um dia, varia de dia para dia;
- O número de lâmpadas que queimarão, 500 horas depois de 1000 delas serem instaladas, não pode ser previsto com certeza.

A estes experimentos denominamos de **experimentos aleatórios**(ε).

Exemplo

Considere os seguintes experimentos:

 ε_1 : Um dado é lançado sobre uma superfície plana e observamos a face superior;

 ε_2 : Um moeda é lançada e observamos a face superior;

Observação

Cada experimento tem vários resultados possíveis que são descritos com antecedência e com precisão. Por exemplo em ε_1 tal conjunto é $\{1,2,3,4,5,6\}$ e, em ε_2 , é $\{cara,coroa\}$.

Mais exemplos - [Cancho(2010)]

Os seguintes experimentos são experimentos aleatórios:

- ε_3 : Escolher um representante ao acaso num grupo de 30 alunos.
- ε_4 : Examinar o sexo (feminino = F ou masculino = M) dos filhos em famílias com 3 filhos.
- $\varepsilon_5\colon$ Uma moeda é lançada três vezes sobre uma mesa e é observado o número de caras.
- ε_6 : Observar o tempo de vida de uma lâmpada num período de um ano.
- ε_7 : Escolher ao acaso 2 vacinas de um lote que tem 2 tipos vacinas (A , B).

Conclusão

Um experimento que pode fornecer diferentes resultados, muito embora seja repetido toda vez da mesma maneira, é chamado de um experimento aleatório.

Espaço amostral

O objetivo é construir um modelo matemático que descreva os experimentos aleatórios. Esse modelo deve ser genérico para englobar os exemplos mencionados e outros que, facilmente, possamos imaginar. Para este fim, introduzimos o conceito de espaço amostral.

Definição: denomina-se espaço amostral associado a um experimento aleatório, ao conjunto de resultados possíveis de dito experimento.

```
espaço amostral é denotado
                                                           por \Omega.
                                                                            Assim,
                          espaços amostrais associados
exemplo.
                  os
                                                                                aos
                                                                                          res-
pectivos experimentos
                                         dos exemplos anteriores
                                                                                          são:
 \varepsilon_1: \Omega_1 = \{1, 2, 3, 4, 5, 6\}
       \Omega_2 = \{C, K\}, C = \text{cara e } K = \text{coroa}
 \varepsilon_2:
       \Omega_3 = \{R_1, \dots, R_{30}\}, R_i representa cada aluno: Pedro, João, Maria, etc.
 \varepsilon_3:
        \Omega_4 = \{MMM, MMF, MFM, FMM, MFF, FMF, FFM, FFF\}
 \varepsilon_4:
        \Omega_5 = \{CCC, CCK, CKC, KCC, CKK, KCK, KKC, KKK\}
 \varepsilon_5 :
 \varepsilon_6:
        \Omega_6 = \{t \in \Re; t > 0\}
        \Omega_7 = \{AA, AB, BA, BB\}
 \varepsilon_7 :
```

por

Espaço amostral

Espaços amostrais discretos e contínuos

Um espaço amostral é discreto se ele consiste em um conjunto finito ou infinito contável de resultados. Um espaço amostral é contínuo se ele contém um intervalo (tanto finito como infinito) de números reais.

Exemplos

 ε_1 : $\Omega_1 = \{1, 2, 3, 4, 5, 6\}$ é um espaço amostral discreto

 $\varepsilon_6: \quad \Omega_6 = \{t \in \Re; t \geq 0\}$ é um espaço amostral contínuo

Eventos aleatórios

Muitas vezes, tem-se interesse na ocorrência de alguns resultados do experimento aleatório. Por exemplo, ao lançar um dado tem-se interesse em saber se o resultado é um número maior do que 3 ou, ao medir o tempo de vida de um equipamento, tem-se interesse em saber se ele durará mais de 10.000 horas.

Os pontos amostrais de Ω são chamados eventos simples e são denotados por w. Um evento aleatório será representado por um conjunto de eventos simples. Ou seja, um evento aleatório (ou simplesmente evento) será representado por um subconjunto de Ω e denotado pelas letras A, B, C, etc.

Eventos aleatórios

Exemplos - [Cancho(2010)]

Considerando os experimentos aleatórios dos exemplos anteriores, são apresentados exemplos de eventos aleatórios associados a seus respectivos Ω .

Assim, A_i será o evento relacionado com o experimento cujo espaço amos-

 A_1 : o número observado é par;

 A_2 : resulte cara;

 A_3 : o representante escolhido seja João: {João}

 A_4 : os filhos são do mesmo sexo: $\{MMM, FFF\}$

 A_5 : o número de caras seja 3: $\{CCC\}$

 A_6 : a lâmpada dure menos que 200 horas;

 A_7 : as 2 vacinas selecionadas sejam do tipo B: $\{BB\}$.

tral é Ω_i , $i = 1, \ldots, 7$.

Como o espaço amostral Ω é representado por um conjunto e os eventos são definidos como subconjuntos de Ω , são definidas operações entre eventos que correspondem às operações entre conjuntos. Sendo assim, valem aqui todas as propriedades da Álgebra de Conjuntos!

União de eventos

A união dos eventos A e B é o evento que ocorre se pelo menos um dos eventos A ou B ocorre. A notação A+B ou $A\cup B$ é usada para representar a união de A e B. Matematicamente, representa-se por : $A\cup B=\{w\in\Omega;w\in A\text{ ou }w\in B\}.$

Interseção de eventos

A interseção de dois eventos A e B é o evento que ocorre se e somente se ambos ocorrem. É denotado por AB ou $A\cap B$, o evento interseção. Matematicamente, esse evento é representado por: $A\cap B=\{w\in\Omega;w\in A\ e\ w\in B\}$

Complementar de um evento

O complementar de um evento A é o evento em que A não ocorre. É denotado por A^c , A' ou \bar{A} e matematicamente, $A^c = \{w \in \Omega; w \notin A\}$.

Diagrama de Venn

Eventos mutuamente exclusivos

Dois eventos A e B definidos no mesmo espaço amostral, são mutuamente exclusivos se não podem ocorrer juntos. Ou seja, a ocorrência de um exclui a ocorrência do outro. Em símbolos, $A \cap B = \emptyset$.

Evento seguro

O evento que contém todos os elementos de um espaço amostral e que, portanto, coincide com o espaço amostral é chamado evento seguro. Essa designação reflete o fato de que, na realização de um experimento aleatório correspondente, um dos resultados nele contido ocorre com certeza.

Evento impossível

O evento impossível representa-se através de um conjunto que não contém nenhum elemento do espaço amostral. Tal conjunto é representado por um conjunto vazio, ou seja, \emptyset .

16 / 79

Resultados adicionais envolvendo eventos são resumidos a seguir:

A definição de complemento de um evento implica que

$$(A^c)^c = A$$

A lei distributiva para operações com conjuntos implica que

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

 \mathbf{e}

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Leis de DeMorgan

$$(A \cup B)^c = A^c \cap B^c \ e \ (A \cap B)^c = A^c \cup B^c$$

Interpretação de Probabilidade

Motivação - [Montgomery e Runger(2016)]

É frequentemente útil quantificar a chance (ou probabilidade) de ocorrência do resultado de um experimento aleatório.

"A chance de chover hoje é de 60%" é uma afirmação que quantifica nosso sentimento acerca da possibilidade de chuva.

A probabilidade de um resultado é quantificada atribuindo-se um número do intervalo [0, 1] ao resultado (ou uma percentagem de 0 a 100%). Números maiores indicam que o resultado é mais provável que números menores. Um zero indica que um resultado não ocorrerá. O número "um" indica que um resultado ocorrerá com certeza.

Interpretação de Probabilidade

Equívoco sobre probabilidade (ver [Montgomery e Runger(2016)])

A probabilidade de um resultado poderia ser interpretada como a nossa probabilidade subjetiva, ou grau de crença, de que o resultado ocorrerá.

Indivíduos diferentes, sem dúvida, atribuirão probabilidades diferentes para os mesmos resultados!!!

Se a probabilidade matemática é a medida quantitativa do grau de certeza do observador, então a teoria das probabilidades não seria diferente de um ramo da psicologia.

O resultado final do uso consistente de tal interpretação subjetiva da probabilidade será inevitavelmente idealismo subjetivo!!!

Interpretação de Probabilidade

A idéia de que a probabilidade de um evento aleatório A, sob certas condições, possa ser estimada quantitativamente por meio de um certo número

$$p = P(A)$$

foi pela primeira vez desenvolvida sistematicamente no século XVII. Desde então a teoria das probabilidades se desenvolveu continuamente como disciplina matemática, sendo constantemente enriquecida com novos e importantes resultados. Hajam vistas, as inúmeras contribuições e aplicações para a Engenharia.

Seção 2 - Probabilidade

O conceito de probabilidade pode ser definido de diferentes maneiras. Apresentam-se seguidamente, três definições distintas: a clássica, a frequentista e a axiomática.

Definição clássica ou a priori

Na origem, a teoria de probabilidade esteve associada aos jogos de azar (por exemplo, de dados ou de cartas). Dessa associação nasceu a definição clássica de probabilidade: se um experimento aleatório tiver $n(\Omega)$ resultados exclusivos e igualmente prováveis e se um acontecimento A tiver n(A) desses resultados, então a probabilidade de ocorrer o evento A é dada por:

$$P(A) = \frac{n(A)}{n(\Omega)} \tag{1}$$

ou seja, a probabilidade de acorrer o evento A é a razão entre o número de resultados favoráveis à ocorrência de A e o número resultados possíveis do experimento aleatório.

Como resultado da definição acima, as probabilidades satisfazem algumas propriedades:

- $0 \le P(A) \le 1;$
- P(A) = 0 se A é o evento impossível.
- P(A) = 1 se A é o evento seguro.
- Se todos os pontos amostrais de $\Omega = \{w_1, w_2, \dots, w_n\}$ são igualmente prováveis tem-se: $P(\{w_i\}) = \frac{1}{n}, i = 1, \dots, n$ e $P(\Omega) = 1$. Se A é um evento em Ω , então

$$P(A) = \sum_{w_i \in A} P(\{w_i\})$$

 \bullet Se A e B são dois eventos em Ω e são mutuamente exclusivos, então

$$P(A \cup B) = P(A) + P(B)$$

Exemplo - [Cancho(2010)]

Considere o lançamento de 2 dados justos (não viciados). Calcular a probabilidade de:

- (a) obter soma 7;
- (b) obter soma 6;
- (c) obter soma maior que 5;
- (d) que o resultado do primeiro dado seja superior ao resultado do segundo.

Solução

Espaço amostral associado a este experimento aleatório:

$$\Omega = \left\{ \begin{array}{cccccc} (1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\ (2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\ (3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\ (4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\ (5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\ (6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6) \end{array} \right\}$$

onde cada ponto amostral é da forma (w_1, w_2) , sendo w_1 o ponto amostral correspondente ao resultado do primeiro dado e w_2 , correspondendo ao resultado do segundo dado. Sejam os seguintes eventos:

$$A = \{(w_1, w_2) \in \Omega; w_1 + w_2 = 7\} = \text{obter soma 7}$$

$$B = \{(w_1, w_2) \in \Omega; w_1 + w_2 = 6\} = \text{obter soma 6}$$

$$C = \{(w_1, w_2) \in \Omega; w_1 + w_2 > 5\} = \text{obter soma maior que 5}$$

$$D = \{(w_1, w_2) \in \Omega; w_1 > w_2\} = \text{o resultado do primeiro dado ser}$$

$$extbf{P}(A) =$$

$$\mathbf{P}(B) =$$

3
$$P(C) =$$

$$extbf{9} P(D) =$$

Definição frequentista ou a posteriori

A definição clássica não pode ser utilizada no cálculo da probabilidade de acontecimentos associados à realização da maioria dos experimentos com interesse prático, aos quais a equiprobabilidade dos resultados não se aplica.

Obtendo alguns dados empíricos com a intenção de estimar as probabilidades, vem o seguinte raciocínio:

Suponha que seja realizado um experimento n vezes (n grande) e o evento A ocorra exatamente $r \le n$ vezes. Então, a frequência relativa de vezes que ocorreu o evento A, " $f_{r_A} = \frac{r}{r}$ ", é a estimação da probabilidade que ocorra o evento A, ou seja,

$$P(A) = \lim_{n \to \infty} f_{r_A} = \lim_{n \to \infty} \frac{r}{n}.$$

As probabilidades ainda satisfazem as propriedades apresentadas anteriormente.

Métodos Estocásticos da Engenharia

Exemplo - [Cancho(2010)]

Suponha que uma moeda balanceada é lançada 1000 vezes. Os resultados desse experimento são apresentados na tabela a seguir:

Tabela: Lançamento de um moeda 1000 vezes.

Número de lançamentos	Número de caras	Frequência relativa	Frequência acumulada	Frequência ac. relativa
1 - 100	52	0,52	52	0,520
101-200	53	0,53	105	0,525
201-300	52	$0,\!52$	157	0,523
301-400	47	0,47	204	0,510
401-500	51	0,51	255	0,510
501-600	53	0,53	308	0,513
601-700	48	0,48	356	0,509
701-800	46	$0,\!46$	402	0,503
801-900	52	$0,\!52$	454	0,504
901-1000	54	$0,\!54$	508	0,508

Definição axiomática

As definições anteriores são puramente empíricas ou experimentais. No entanto, após estabelecer uma forma de se determinar a probabilidade experimentalmente, pode-se deduzir leis ou propriedades da probabilidade em forma lógica ou computacional sob certas suposições chamadas de axiomas da probabilidade.

A probabilidade de um evento A é definida como o número P(A), que satisfaz aos seguintes axiomas:

1 Axioma 1 A probabilidade P(A) de qualquer evento satisfaz a relação

$$0 \le P(A) \le 1$$

f 2 Axioma f 2 A probabilidade do evento certo $f (\Omega)$ é

$$P(\Omega) = 1$$

3 Axioma 3 Se A_1, A_2, \ldots, A_k são eventos mutuamente exclusivos, então

$$P(A_1 \cup A_2 \cup, \dots, \cup A_k) = P(A_1) + P(A_2) + \dots + P(A_k)$$

Toda a teoria elementar da probabilidade está construída sobre a base destes três simples axiomas.

Propriedades que são consequência imediata dos axiomas acima:

- Se \emptyset é um evento impossível, então $P(\emptyset) = 0$
- 2 Para um evento A, tem-se:

$$P(A^c) = 1 - P(A)$$
 ou $P(A) = 1 - P(A^c)$

lacksquare Se A e B são eventos tais que $A\subset B$, então

$$P(A) \le P(B)$$

 \bullet Se A e B são eventos em Ω , então

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 \bullet Se A, B e C são três eventos em Ω , então

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) -$$

$$P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

Generalização da propriedade 5

Se $A_1, A_2, A_3, \ldots, A_k$ são eventos quaisquer em Ω então

$$P(A_1 \cup A_2 \cup A_3 \cup ... \cup A_k) = \sum_{i=1}^k P(A_i) - \sum_{i< j=2}^k P(A_i \cap A_j) +$$

+
$$\sum_{i < j < r=3}^{k} P(A_i \cap A_j \cap A_r) + \ldots + (-1)^{k-1} \cdot P(A_1 \cap A_2 \cap \ldots \cap A_k).$$

Colocando em palavras, essa generalização diz que a probabilidade da união de k eventos é igual à soma das probabilidades individuais desses eventos, menos a soma das probabilidades desses eventos dois a dois, mais a soma das probabilidades desses eventos três a três, e assim por diante.

Métodos Estocásticos da Engenharia

32 / 79

Exemplo 1 - [Montgomery e Runger(2016)]

Amostras de emissões de três fornecedores são classificadas com relação a satisfazer as especificações de qualidade do ar. Os resultados de 100 amostras são resumidos a seguir:

		conforme	
		sim	não
fornecedor	1	22	8
	2	25	5
	3	30	10

Seja A o evento em que uma amostra seja proveniente do fornecedor 1 e B o evento em que uma amostra atenda às especificações. Se uma amostra for selecionada ao acaso, determine as seguintes probabilidades:

- $P(A^c)$
- \bullet $P(A \cap B)$
- $P(A \cup B)$
- $P(A^c \cup B)$

Exemplo 2 - [Cancho(2010)]

São apresentados a cor da pele e o sexo de uma população de certo país:

	Se		
Cor	Masculino	Feminino	Total
Branca	1.726.384	2.110.253	3.836.637
Outra	628.309	753.125	1.381.434
Total	2.354.693	2.863.378	5.218.071

Suponha que seja selecionado um habitante desse país e considere os eventos:

H: "o habitante selecionado é do sexo masculino"

 ${\cal H}^c$: "o habitante selecionado é do sexo feminino"

B: "o habitante selecionado é da cor branca"

 B^c : "o habitante selecionado é de outra cor"

 $H \cap B$: "o habitante selecionado é do sexo masculino e da cor branca"

 $H \cup B$: "o habitante selecionado é do sexo masculino ou da cor branca" $H^c \cap B$: "o habitante selecionado é do sexo feminino e da cor branca"

 $H^c \cup B$: "o habitante selecionado é do sexo feminino ou da cor branca"

 $H^c \cap B^c$: "o habitante selecionado é do sexo feminino e de outra cor"

 $H^c \cup B^c$: "o habitante selecionado é do sexo feminino ou de outra cor"

As probabilidades de ocorrência de cada um desses eventos são, respectivamente:

Probabilidade Condicional

Sejam A e B dois eventos em um mesmo espaço amostral Ω . A probabilidade condicional de A dado que ocorreu o evento B, denotada por P(A|B), é definida como:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0.$$
 (2)

Caso P(B) = 0, adotaremos P(A|B) = P(A)

Exemplo 1

A tabela a seguir fornece um exemplo de 800 itens classificados por falhas mecânicas e por falhas elétricas.

		Falhas Elétricas		
		Sim	Não	Total
Falhas Mecânicas	Sim	20	36	56
	Não	60	684	744
	Total	80	720	800

Qual é a probabilidade de um item ter falhas mecânicas dado que possui falhas elétricas?

O diagrama em forma de árvore da figura abaixo também pode ser usado para dispor as probabilidades condicionais.

Da definição de probabilidade condicional e das propriedades axiomáticas, podem ser mostrados o seguintes resultados:

Se B é um evento em Ω , tal que, P(B) > 0 então

- $P(\emptyset|B) = 0$
- \bullet o $A \subset \Omega$ então

$$P(A^c|B) = 1 - P(A|B)$$
 ou $P(A|B) = 1 - P(A^c|B)$

lacktriangle Se A e C são eventos em Ω tal que, $A\subset C$, então

$$P(A|B) \le P(C|B)$$

 \bullet Se A e C são eventos em Ω , então

$$P(A \cup C|B) = P(A|B) + P(C|B) - P(A \cap C|B)$$

2024/2

Exemplo 2 - [Cancho(2010)]

Em uma cidade, a probabilidade de chuva no primeiro dia de setembro é 0,50 e a probabilidade de chuva nos dois primeiros dias de setembro é 0,40. Se no primeiro dia de setembro choveu, qual é a probabilidade que no dia seguinte não chova ?

Exemplo 3 - Adaptado de [Cancho(2010)]

Uma faculdade tem três cursos: Medicina, Administração e Engenharia. A classificação dos alunos por sexo, é apresentada na tabela a seguir:

Sexo	Medicina	Administração	Engenharia	Total
Masculino	250	350	200	800
Feminino	100	50	50	200
Total	350	400	250	1000

Um estudante é selecionado ao acaso.

- (a) Sabe-se que o estudante escolhido é do sexo masculino, qual é a probabilidade de que ele curse Medicina?
- (b) Sabe-se que o estudante cursa Engenharia, qual é a probabilidade de que seja do sexo feminino?
- (c) Sabe-se que o estudante é do sexo feminino, qual é a probabilidade de que curse Medicina ou Administração?

Exemplo 5 - [Montgomery e Runger(2016)]

A probabilidade de que o primeiro estágio de uma operação de usinagem atenda às especificações é igual a 0,90.

Falhas são devidas a variações no metal, alinhamento de acessórios, condição da lâmina de corte, vibração e condições ambientais.

Dado que o primeiro estágio atende às especificações, a probabilidade de que o segundo estágio também atenda é de 0,95. Qual é a probabilidade de ambos os estágios atenderem as especificações?

Existem muitas situações em que saber a ocorrência de algum evento Bnão altera a probabilidade de ocorrência de outro evento A. Dizemos, então, que os eventos A e B são independentes. Assim, podemos escrever que

$$P(A|B) = P(A)$$
 ou $P(B|A) = P(B)$

Como consequência da independência entre os eventos $A \in B$, podemos definir, então, que os eventos A e B são independentes se, e somente se,

$$P(A \cap B) = P(A) \cdot P(B).$$

2024/2

Consideremos agora, três eventos, digamos, A, B e C. Os três eventos serão mutuamente independentes se, e somente se, <u>todas</u> as condições seguintes forem válidas:

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A \cap C) = P(A) \cdot P(C)$$

$$P(B \cap C) = P(B) \cdot P(C)$$

$$P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C).$$

Generalização

Para n eventos, A_1, A_2, \ldots, A_n , todas as condições seguintes devem ser válidas:

$$P(A_i \cap A_j) = P(A_i) \cdot P(A_j) , \forall i, j = 1, 2, \dots, n \ e \ i \neq j$$

$$P(A_i \cap A_j \cap A_k) = P(A_i) \cdot P(A_j) \cdot P(A_k) , \quad \forall i, j, k = 1, 2, \dots, n \ e \ i \neq j \neq k$$

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) \cdot P(A_2) \cdot \ldots \cdot P(A_n).$$

Uma consequência imediata da definição de independência entre dois eventos é o teorema seguinte:

Se A e B, eventos em Ω , são eventos independentes, então

- (i) A e B^c são independentes;
- (ii) A^c e B são independentes;
- (iii) A^c e B^c são independentes.

Ou seja:

O teorema mostra que se os eventos A e B são independentes, então os complementares também são independentes.

Exemplo 1 - [Cancho(2010)]

Sejam A e B dois eventos independentes, tais que a probabilidade de que ocorram simultaneamente é 1/6 e a probabilidade de que nenhum dos eventos ocorra é 1/3. Determine P(A) e P(B).

Teorema

Se A_1, A_2, \ldots, A_n são n eventos independentes em Ω , então

$$P(\bigcup_{i=1}^{n} A_i) = 1 - [1 - P(A_1)] \cdot [1 - P(A_2)] \cdot \dots \cdot [1 - P(A_n)]$$

Exemplo 2 - [Cancho(2010)])

A probabilidade de que falhe um motor em um avião é 0,10. Com quantos motores deve estar equipado um avião, para se ter uma seguridade de 0,999 de voo? (Suponhamos que é suficiente ter um motor funcionando para que o avião se mantenha em voo).

Exemplo 3 - Sistema em Série

O seguinte sistema opera somente se houver um caminho de dispositivos funcionais da esquerda para a direita. A probabilidade de cada dispositivo funcionar é mostrada no gráfico. Suponha que os dispositivos falhem independentemente. Qual é a probabilidade de o sistema operar?

Exemplo 4 - Sistema em Paralelo

O seguinte sistema opera somente se houver um caminho de dispositivos funcionais da esquerda para a direita. A probabilidade de cada dispositivo funcionar é mostrada no gráfico. Suponha que os dispositivos falhem independentemente. Qual é a probabilidade de o sistema operar?

Exemplo 5 - Sistema Avançado- [Montgomery e Runger(2016)])

O seguinte sistema opera somente se houver um caminho de dispositivos funcionais da esquerda para a direita. A probabilidade de cada dispositivo funcionar é mostrada no gráfico. Suponha que os dispositivos falhem independentemente. Qual é a probabilidade de o sistema operar?

Exercício - [Ross(2010)])

O seguinte sistema opera somente se houver um caminho de dispositivos funcionais da esquerda para a direita. A probabilidade de cada dispositivo funcionar é mostrada no gráfico. Suponha que os dispositivos falhem independentemente. Qual é a probabilidade de o sistema falhar?

Partição de um espaço amostral

Uma coleção de eventos B_1, B_2, \ldots, B_k forma uma partição do espaço amostral, se eles não tem interseção entre si e se a união dos mesmos é igual ao espaço amostral completo.

Teorema da probabilidade total

Se B_1, B_2, \ldots, B_k formam uma partição do espaço amostral Ω , então qualquer evento A, em Ω , satisfaz :

$$P(A) = \sum_{i=1}^{\kappa} P(B_i)P(A|B_i) = P(B_1)P(A|B_1) + \dots + P(B_k)P(A|B_k)$$

Se B_1, B_2, \ldots, B_k formam uma partição do espaço amostral, Ω e A é qualquer evento em Ω , como mostrado na figura abaixo,

então,

$$P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_{i=1}^{k} P(B_i)P(A|B_i)}$$

Esse teorema resulta de uma consequência imediata do teorema da probabilidade total.

2024/2

Exemplo 1 - [Cancho(2010)]

Das pacientes de uma clínica de Ginecologia com idade acima de 40 anos, 70% são ou foram casadas e 30% são solteiras. E sendo solteira, a probabilidade de ter um distúrbio hormonal é 20% enquanto para as demais a probabilidade aumenta para 40%. Se uma paciente é escolhida ao acaso entre todas as pacientes da clínica,

(a) qual é a probabilidade dela ter distúrbio hormonal?

(b) se a paciente escolhida resultou ter distúrbio hormonal, qual é probabilidade dela ser solteira?

Exemplo 2

Três empresas fornecem microprocessadores para um fabricante de equipamentos de telefonia. Todos são supostamente feitos segundo as mesmas especificações. No entanto, o fabricante testou por vários anos os microprocessadores, e os registros fornecem as seguintes informações:

Unidade Fornecedora	Fração Defeituosa	Fração Fornecida
1	0,02	0,15
2	0,01	0,80
3	0,03	0,05
Total	0,05	1

O fabricante parou os testes por causa dos custos envolvidos, mas é possível assumir que as frações de defeituosos e a composição do inventário sejam as mesmas do período de levantamento dos registros. O diretor de produção seleciona aleatoriamente um microprocessador, submete-o a testes e constata que é defeituoso. De qual unidade fornecedora é mais provável que tenha vindo?

Métodos Estocásticos da Engenharia

Apêndice I - Convenção para arredondamentos de números

De acordo com a Resolução do IBGE nº 886/66, deve-se adotar a seguinte convenção para arredondamentos de números:

Seja considerar uma representação genérica de um número composto por 6 algarismos:

$A B C \mid D E F$

Se o desejo for arredondar esse número para a casa onde se encontra o algarismo \mathbf{C} , deve-se observar:

[I] - Se $D < 5 \longrightarrow \text{conserva-se o valor de } C;$

Exemplo: arredondar 2,784 para o centésimo mais próximo \rightarrow 2,78

[II] - Se $\mathbf{D} > 5 \longrightarrow \text{adiciona-se}$ uma unidade ao valor de \mathbf{C} ;

Exemplo: arredondar 2,787 para o centésimo mais próximo \rightarrow 2,79

[III] - Se $\mathbf{D} = 5$:

- se ${\bf C}$ for impar \longrightarrow adiciona-se uma unidade ao valor de ${\bf C}$;
 - Exemplo: arredondar 2,775 para o centésimo mais próximo \rightarrow 2,78
- se C for par:
 - a) se não houver nenhum algarismo diferente de 0 após $\mathbf{D} \longrightarrow$ conserva-se o valor de \mathbf{C} ;
 - Exemplo: arredondar 2,745 para o centésimo mais próximo \rightarrow 2,74
 - b) se houver algum algarismo diferente de 0 após $\mathbf{D} \longrightarrow$ adiciona-se uma unidade ao valor de \mathbf{C} ;

Exemplo: arredondar 2,7451 para o centésimo mais próximo \rightarrow 2,75

Exercício 1

Some os números: 7,74 9,25 12,71 6,28 14,47.

- a) arredonde para a casa dos inteiros;
- b) arredonde para a casa decimal;

Exercício 2 Multiplique os números: 7,74 9,25 12,71 6,28 14,47.

- a) arredonde para a casa dos inteiros;
- b) arredonde para a casa decimal;
- c) arredonde para a casa centesimal;
- d) arredonde para a casa milesimal;
- e) arredonde para a casa décimo-milesimal;
- f) arredonde para a casa centésimo-milesimal;
- f) arredonde para a casa milionesimal;

Exercício 3

Arredonde o resultado de $\left[P_5\left(\frac{A_{10}^2}{C_{10}^2}\right)\right]^{e^{-4}}$ para a casa centesimal.

Apêndice II - Notação por índice

Dois símbolos para operadores matemáticos serão muito utilizados ao longo deste curso: símbolo de somatório e símbolo de produtório.

[1] - Símbolo de Somatório

É utilizado para representar a soma de todos os possíveis valores de uma variável X:

$$\sum_{i=1}^{n} X_i = X_1 + X_2 + X_3 + \ldots + X_n$$

Lê-se: somatório dos valores de X, com o índice i variando de 1 até n.

Propriedades:

i) - O somatório de uma constante é igual a n vezes a própria constante:

$$\sum_{i=1}^{n} C = nC$$

ii) - O somatório do produto de uma constante por uma variável é igual ao produto desta constante pelo somatório da variável:

$$\sum_{i=1}^{n} CX_i = C\sum_{i=1}^{n} X_i$$

iii) - O somatório da adição/subtração de duas ou mais variáveis é igual à adição/subtração dos somatórios das variáveis:

$$\sum_{i=1}^{n} (X_i \pm Y_i) = \sum_{i=1}^{n} X_i \pm \sum_{i=1}^{n} Y_i$$

iv) - O somatório do produto de duas ou mais variáveis é igual à soma dos produtos das variáveis de mesmos índices:

$$\sum_{i=1}^{n} (X_i \cdot Y_i) = X_1 Y_1 + X_2 Y_2 + X_3 Y_3 + \ldots + X_n Y_n$$

Observe que:

$$\sum_{i=1}^{n} (X_i \cdot Y_i) \neq (\sum_{i=1}^{n} X_i) \cdot (\sum_{i=1}^{n} Y_i)$$

v) - O somatório do quociente de duas ou mais variáveis é igual à soma dos quocientes das variáveis de mesmos índices:

$$\sum_{i=1}^{n} \left(\frac{X_i}{Y_i} \right) = \frac{X_1}{Y_1} + \frac{X_2}{Y_2} + \frac{X_3}{Y_3} + \ldots + \frac{X_n}{Y_n}$$

Exercício

Dadas as séries de valores:

$$X_i = \{4, 7, 10, 13, 14, 17, 21\}$$
 e $Y_i = \{2, 6, 22, 26, 27, 33, 40\}$, calcular:

- a) $\sum_{i=1}^{7} (2X_i + 3Y_i)$
- b) $\sum_{i=1}^{7} (X_i Y_i)$
- c) $\sum_{i=1}^{3} (X_i^2 Y_i)$
- $\frac{\mathbf{d}}{\sum_{i=1}^{4} (X_i Y_i)} \frac{\sum_{i=1}^{4} (X_i Y_i)}{\sum_{i=1}^{3} Y_i^3}$
- e) $\frac{1}{\sum_{i=1}^{4} Y_i} \left[\sum_{i=1}^{3} X_i^3 Y_i \frac{(\sum_{i=4}^{7} X_i Y_i)^2}{\sum_{i=5}^{7} Y_i} \right]$

[2] - Símbolo de Produtório

È utilizado para representar o produto de todos os possíveis valores de uma variável X:

$$\prod_{i=1}^{n} X_i = X_1 \cdot X_2 \cdot X_3 \cdot \ldots \cdot X_n$$

Lê-se: produtório dos valores de X, com o índice i variando de 1 até n.

Observação:

Quando os valores da variável aparecem com repetição, o produtório será indicado por:

$$\prod_{i=1}^{n} X_i^{f_i} = X_1^{f_1} \cdot X_2^{f_2} \cdot X_3^{f_3} \cdot \ldots \cdot X_n^{f_n},$$

onde f_i representa o número de vezes que a variável aparece repetida.

Exercício

Dada a série de valores $X_i = \{4, 4, 7, 7, 7, 10, 13\}$, calcular:

$$\sqrt[10]{\prod_{i=1}^{7} X_i^{f_i}}$$

Apêndice III - Análise Combinatória

Princípio Fundamental da Contagem

Se um evento pode ocorrer por várias etapas sucessivas e independentes, de tal modo que:

 n_1 é o número de possibilidades disponíveis para a primeira etapa; n_2 é o número de possibilidades disponíveis para a segunda etapa; :

 n_k é o número de possibilidades disponíveis para a k-ésima etapa;

Então, o *número total de possibilidades desse evento* ocorrer é dado por:

$$n_1 \cdot n_2 \cdot n_3 \cdot \ldots \cdot n_k$$

Exemplo

Quantas equipes compostas por 1 engenheiro, 1 técnico e 1 estagiário podem ser formadas sabendo que existem 3 engenheiros, 2 técnicos e 2 estagiários disponíveis? Solução:

Arranjo simples

Um arranjo simples representa todos os agrupamentos de p elementos, sem repetição, que pode-se formar com n elementos distintos, sendo $p \le n$.

Cada um desses agrupamentos se diferencia do outro pela ordem <u>ou</u> pela natureza de seus elementos.

$$A_n^p = \frac{n!}{(n-p)!}$$

Lê-se: arranjo simples de n elementos tomados p a p.

Exemplo 1

Quantos números de 3 algarismos distintos são possíveis de serem formados a partir dos algarismos de 0 a 9?

Exemplo 2

Quantos anagramas de 4 letras distintas são possíveis de serem formados a partir das letras A, C, E, M, O, R, S?

Permutação simples

Permutação simples de n elementos distintos é qualquer agrupamento ordenado, **sem repetição**, em que entram **todos** os elementos disponíveis.

Logo, os agrupamentos diferem entre si somente pela ordem dos elementos.

$$P_n = A_n^n = n!$$

Lê-se: permutação simples de n elementos.

Exemplo 1

De quantas maneiras distintas podemos organizar uma fila indiana com 5 pessoas?

Exemplo 2

Quantos anagramas distintos são possíveis de serem formados a partir das letras A, C, E, M, O, R, S?

Combinação simples

Uma combinação simples representa todos os agrupamentos de p elementos, sem repetição, que pode-se formar com n elementos distintos, sendo $p \leq n$.

Cada um desses agrupamentos se diferencia do outro apenas pela natureza de seus elementos.

$$C_n^p = \binom{n}{p} = \frac{n!}{p!(n-p)!}$$

Lê-se: combinação simples de n elementos tomados p a p.

Exemplo 1

Quantas duplas podem ser formadas a partir de 5 pessoas?

Exemplo 2

Quantas amostras de 5 produtos podem ser retiradas de um lote que contém 10 produtos?

Combinações complementares

Quando a soma de dois números quaisquer, p_1 e p_2 , for igual ao número total de elementos n, então pode-se escrever que:

$$\binom{n}{p_1} = \binom{n}{p_2}$$

Exemplo

$$C_{1000}^{998} = C_{1000}^2$$

Apêndice III - Análise Combinatória

- Cancho, V., 2010. Notas de aulas sobre noções de estatística e probabilidade São Paulo: USP.
- Montgomery, D., Runger, G., 2016. Estatística Aplicada e Probabilidade para Engenheiros. Rio de Janeiro: LTC.
- Ross, S., 2010. Probabilidade: um curso moderno com aplicações. Porto Alegre: Bookman.

