TD 22. Intégration sur un segment.

Exercice 1. Soit $f:[0,1] \to [0,1]$ une fonction continue telle que $\int_0^1 f(t) dt = \int_0^1 (f(t))^2 dt$. Montrer que f est constante sur [0,1], égale à 0 ou à 1.

Exercice 2. (Lemme de Riemann-Lebesgue) Soit f une fonction de classe \mathcal{C}^1 sur le segment [a,b]. Montrer que $\lim_{\lambda \to +\infty} \int_a^b f(t) \sin(\lambda t) dt = 0$.

Exercice 3. On pose, pour tout $n \in \mathbb{N}$ supérieur ou égal à 2, $u_n = \int_0^1 \sqrt[n]{\sin x} dx$.

- a) Montrer que $(u_n)_n$ est monotone, en déduire qu'elle converge.
- b) Montrer que pour tout $x \in [0, \frac{\pi}{2}], \frac{2x}{\pi} \le \sin x \le x$.
- c) En déduire la limite de $(u_n)_n$.

Exercice 4. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 t^n \sqrt{1+t} dt$.

- a) Montrer que I_n converge, et déterminer sa limite.
- b) Déterminer un équivalent de I_n quand n tend vers $+\infty$.

Exercice 5. Déterminer les fonctions f continues sur \mathbb{R} qui vérifient :

$$\forall x \in \mathbb{R}, \quad f(x) + \int_0^x (x - t)f(t)dt = 1.$$

Exercice 6. Pour $x \neq 0$, on pose $f(x) = \int_{x}^{2x} \frac{e^{-t}}{t} dt$.

- a) Montrer que f est définie et dérivable sur \mathbb{R}^* , et déterminer l'expression de f' sur \mathbb{R}^* . Étudier les variations de f.
- b) Montrer que pour tout $x \in \mathbb{R}_+^*$, $e^{-2x} \ln 2 \le f(x) \le e^{-x} \ln 2$. Déterminer un encadrement similaire pour $x \in \mathbb{R}_-^*$.
- c) À l'aide de la question précédente, étudier les limites de f en $+\infty$, et $-\infty$ et en 0; on montrera en particulier que f peut être prolongée par continuité en 0.
- d) Étudier la dérivabilité de f en 0.
- e) Tracer l'allure du graphe de f.

Exercice 7. On définit f par $f(x) = \int_x^{x^2} \frac{dt}{\ln t}$.

- 1) a) Déterminer le domaine de définition de f, et étudier son signe.
 - b) Montrer que f est dérivable sur son domaine de définition, et déterminer f'. Étudier les variations de f.
- 2) Étude en 0 :
 - a) Montrer que pour tout $x \in]0,1[,\frac{x^2-x}{2\ln x} \le f(x) \le \frac{x^2-x}{\ln x}.$ En déduire que f est prolongeable par continuité en 0.
 - b) Montrer que ce prolongement est dérivable en 0.

Exercice 8. Montrer:

$$\forall (x,h) \in \mathbb{R}^2, \quad \left| \sin(x+h) - \sin(x) - h\cos(x) + \frac{h^2}{2}\sin(x) \right| \le \frac{|h|^3}{6}.$$

Exercice 9. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite :

$$u_n = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}$$

Exercice 10. Montrer que les suites suivantes convergent, déterminer leurs limites :

$$u_n = \frac{1}{n} \sum_{k=0}^{n} \cos \left(\frac{k\pi}{2n} \right) \quad ; \quad v_n = \sum_{k=1}^{n} \frac{k^2}{n^2 (n^3 + k^3)^{\frac{1}{3}}} \quad ; \quad w_n = \prod_{k=1}^{n} \left(1 + \frac{k}{n} \right)^{\frac{1}{n}} \quad ; \quad t_n = n \sum_{k=n}^{2n-1} \frac{1}{k^2}$$

Exercice 11. (Intégrales de Wallis) Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$.

- 1) Montrer que $(I_n)_{n\in\mathbb{N}}$ converge.
- 2) Pour tout $n \geq 2$, déterminer une relation entre I_n et I_{n-2} ; en déduire I_{2n} et I_{2n+1} pour tout
- 3) Montrer que $\lim_{n \to +\infty} \frac{I_{n+1}}{I_n} = 1$.
- 4) Montrer que pour tout n∈ N, (n+1)I_nI_{n+1} = π/2.
 5) Déduire des deux questions précédentes un équivalent de I_n quand n tend vers +∞.
- 6) Montrer que pour tout $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{2}} \cos^n(x) dx$.