IIT Kanpur Certificate Program on PYTHON

for Artificial Intelligence, Machine Learning and Deep Learning

1st to 27th December 2024 Assignment #2

1 mark for each correct response and $-\frac{1}{4}$ for each incorrect response

1. The centroid of the *i*th cluster in *l*th iteration, denoted by $\overline{\mu}_i^{(l)}$, is

a.
$$\frac{\sum_{j=1}^{M} \alpha_i^{(l)}(j) \bar{\mathbf{x}}(j)}{M}$$

b.
$$\sum_{j=1}^{M} \bar{\mathbf{x}}(j)$$

c.
$$\frac{\sum_{j=1}^{M} \bar{\mathbf{x}}(j)}{\sum_{j=1}^{M} \alpha^{(l)}(j)}$$

d.
$$\frac{\sum_{j=1}^{M} \alpha_i^{(l)}(j) \bar{\mathbf{x}}(j)}{\sum_{j=1}^{M} \alpha_j^{(l)}(j)}$$

- 2. The entropy H(X) of a source with 8 equiprobable symbols is _____
- 3. Consider the table below showing preferences for Avengers and Harry Potter movies. The quantity $H(y|x_1 = \overline{\mathbf{HPotter}})$ equals _____

	$\frac{x_1 = 0}{\text{HPotter}}$	$x_1 = 1$ HPotter
$\frac{y=0}{\text{Avengers}}$	60	20
y = 1 Avengers	40	80

4. Consider the example below. Let Y denote the final decision. The quantity H(Y|Italian) =

5. Consider the raw outputs for the classes as below. The softmax output corresponding to camera is ______

	logit
woman	-3.50
man	-2.37
camera	1.54
tv	5.23

6. The categorical cross-entropy loss for example below is ____

- 7. In a CNN it is recommended
 - a. starting with filters in the range [32, 64, 128] in the earlier and increasing up to [256, 512, 1024] in the deeper layers
 - b. starting with filters in the range [256, 512, 1024] in the earlier and decreasing up to [32, 64, 128] in the deeper layers
 - c. keeping filters constant in the range [32, 64, 128] across all layers
 - d. keeping filters constant in the range [256, 512, 1024] across all layers
- 8. Dropout layer
 - a. lowers complexity but leads to Overfitting
 - b. increases complexity and avoids Overfitting
 - c. lowers complexity and avoids Overfitting
 - d. increases complexity and leads to Overfitting
- 9. Given a kernel of size 5×5 , for the output to have **same size** as original image, we must have number of zero padding layers p as _____
- 10. In the network below the size of $\mathbf{W}^{[3]}$ is

- 11. Convolutional neural nets are primarily suited for
 - a. Gaussian datasets
 - b. Purchase datasets
 - c. Random datasets
 - d. Images/ video datasets
- 12. Consider the frame with kernel as shown below. the dot product for the (1,2) element with same padding is _____

- 13. Consider an 256×256 image and 5×5 filter. The output matrix after convolution with valid padding will have the dimension of _____
- 14. Consider the simple image below. Max pooling with 2 × 2 filters and stride 2 leads to the output _____

2	2	3	1
4	3	4	2
2	2	1	1
3	5	2	3

15. Consider the simple image below. Average pooling with 2×2 filters and stride 2 leads to _____

2	2	3	1
4	3	4	2

2	2	1	1
3	5	2	3

