11-12 TREE AND ARRAY MULTIPLIERS AND VARIATIONS IN MULTIPLIERS

Chapter Goals

Learn additional methods for synthesizing fast multipliers as well as other types of multipliers (bit-serial, modular, etc.)

Chapter Highlights

Building a multiplier from smaller units Performing multiply-add as one operation Using a multiplier for squaring is wasteful Building modular multipliers

TREE AND ARRAY MULTIPLIERS AND VARIATIONS IN MULTIPLIERS: TOPICS

Topics in This Chapter

- 11.1. Full-Tree Multipliers
- 12.1 Divide-and-Conquer Designs
- 12.2 Additive Multiply Modules
- 12.5 The Special Case of Squaring
- 12.6 Modular Multipliers

SLIDE 3

11.1 FULL-TREE MULTIPLIERS

Fig. 10.13 High-radix multipliers as intermediate between sequential radix-2 and full-tree multipliers.

Fig. 11.1 General structure of a full-tree multiplier.

SI IDF A

FULL-TREE VERSUS PARTIAL-TREE MULTIPLIER

Schematic diagrams for full-tree and partial-tree multipliers.

12.1 DIVIDE-AND-CONQUER DESIGNS

Building wide multiplier from narrower ones

Fig. 12.1 Divide-and-conquer (recursive) strategy for synthesizing a $2b \times 2b$ multiplier from $b \times b$ multipliers.

GENERAL STRUCTURE OF A RECURSIVE MULTIPLIER

Fig. 12.2 Using $b \times b$ multipliers to synthesize $2b \times 2b$, $3b \times 3b$, and $4b \times 4b$ multipliers.

PROBLEMAS

Problema 11.1. Para uma multiplicação de dois operandos de 24 bits, aplique o método de dividir para conquistar e obtenha o custo e caminho critico dos blocos considerando A_{FA} e T_{FA} como a área e atraso por *Full-Adder*, e $0.5 \times A_{FA}$ e $0.5 \times T_{FA}$, para o *Half-Adder*, $(a/2) \times A_{FA}$ e $(a/2) \times T_{FA}$ para o $(2^a:1)$ MUX.

12.2 ADDITIVE MULTIPLY MODULES

Fig. 12.4 Additive multiply module with 2×4 multiplier (ax) plus 4-bit and 2-bit additive inputs (y and z).

$$b$$
-bit and c -bit multiplicative inputs $b \times c$ AMM $\begin{cases} b$ -bit and c -bit additive inputs $(b+c)$ -bit output $(2^b-1) \times (2^c-1) + (2^b-1) + (2^c-1) = 2^{b+c}-1 \end{cases}$

Understanding

MULTIPLIER BUILT OF AMMS

Fig. 12.5 An 8×8 multiplier built of 4×2 AMMs. Inputs marked with an asterisk carry 0s.

PROBLEMAS

Problema 12.1. Projete um AMM 2×2 , com duas entradas de soma de dois bits usando unicamente 4 full adders e 4 portas AND.

- a) Mostre como conectar os AMMs projetados para projetar um multiplicador 4×4 .
- b) Determine o caminho critico usando o Full adder como unidade de atraso.
- c) Pode ser usado o multiplicador do apartado a como um AMM 4×4 ?.

Problema 12.2. Projete os seguintes AMMs usando unicamente 2×4 AMMs:

- a) 4×4 AMM;
- *b*) 2×8 AMM;
- *c*) 6×6 AMM
- **d**) 4×8 AMM
- e) 4×8 AMM (usando 4×4 AMMs).
- f) Compare a eficiência de d) e e) em área e atraso considerando A_{FA} e T_{FA} como a área e atraso por *Full-Adder*, e $0.5 \times A_{FA}$ e $0.5 \times T_{FA}$, para o *Half-Adder*.

Problema 12.3. Projete o circuito AMM da seguinte expressão: $A \times B \times C + 2^b D + 2^c E + 2^a F$, onde A, D tem a=4 bits, B, E tem b=3 bits e C, F tem c=2 bits.

12.5 THE SPECIAL CASE OF SQUARING

Fig. 12.18 Design of a 5-bit squarer.

PROBLEMAS

Problema 12.4. Projete a estrutura do multiplicador quadrático RNS para os seguintes módulos:

- a) 29;
- b) 31;
- c) 13.