Complex Analysis Homework

Deadline: 20/1/2020 at 12:00

- (I) Let $\Omega \subset \mathbb{C}$ be an open subset and let \mathcal{F} be a family of holomorphic functions from Ω to \mathbb{C} .
 - (a) Show that \mathcal{F} is a normal family if and only if $\mathcal{F}_{|_D} := \{f_{|_D} : f \in \mathcal{F}\}$ is a normal family for every disk $D \subset \Omega$;
 - (b) assume that there exists $a \in \Omega$ such that $\{f(a) : f \in \mathcal{F}\} \subset \mathbb{C}$ is bounded. Prove that \mathcal{F} is a normal family if $\mathcal{F}' := \{f' : f \in \mathcal{F}\}$ is uniformly bounded.
- (II) Let $n \in \mathbb{N}$ and $a_n, b_n \in \mathbb{R}$ such that $0 < b_n < a_n < n$.
 - (a) Show that there exists a polynomial p_n such that $|p_n(z)| > n$ for $z \in \mathbb{D}(0, n)$ and $\Im(z) = b_n$ and $|p_n(z)| < \frac{1}{n}$ for $z \in \mathbb{D}(0, n)$ and $\Im(z) > a_n$ or $\Im(z) < 0$.
 - (b) Construct a sequence of polynomials pointwise converging to 0 and such that the convergence is uniform on compact subsets of $\mathbb{C} \setminus \mathbb{R}$, but not in any neighborhood of a real point.
 - (c) Costruct a sequence of polynomials pointwise converging to 0 on the real line and pointwise converging to 1 on $\mathbb{C} \setminus \mathbb{R}$.
- (III) Let $f, g, h : \mathbb{C} \to \mathbb{C}$ be holomorphic functions satisfying $h = e^f + e^g$.
 - (a) Prove that the equation h(z) = 0 has either infinitely many solution or none at all.
 - (b) Prove that the equation $e^z = p(z)$ admits a solution for any non-constant polynomial p.

Hint: Assuming there are no solutions, prove the existence of a logarithm and use part (a).

- (IV) Let $f: \mathbb{D} \to \mathbb{C}$ be an injective holomorphic function such that f(0) = 0 and f'(0) = 1 (i.e. $f \in \mathcal{S}$ is schlicht). Assume that $D = f(\mathbb{D})$ is convex and let $r \in (0,1)$ and $e^{i\theta} \in \partial \mathbb{D}$.
 - (a) Prove that

$$\frac{1}{2}re^{i\theta} = \frac{1}{2\pi i} \int_{|z|=r} f(z) \left(1 + \frac{z}{2re^{i\theta}} + \frac{re^{i\theta}}{2z} \right) \frac{dz}{z}.$$

(b) Using part (a), show that

$$\frac{1}{2}re^{i\theta} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(re^{i\phi})cos^{2}\left(\frac{\theta - \phi}{2}\right)d\phi.$$

1

(c) Show that $\frac{1}{2}re^{i\theta} \in D$ and conclude that $\mathbb{D}(0, \frac{1}{2}) \subset D$. Hint: Use that $\int_{-\pi}^{\pi} \cos^2\left(\frac{\phi}{2}\right) d\phi = \pi$ and that D is convex. In particular, use the fact that given $z_0 \notin D$, there exists $z \in \mathbb{C}$ such that $\langle z, z_0 \rangle > \langle z, w \rangle$ for every $w \in D$, where $\langle z, w \rangle$ denotes the standard scalar product between $w, z \in \mathbb{C}$ see as elements of \mathbb{R}^2 .

Use of computer is allowed, collaboration with colleagues is forbidden.

Please include and sign the following statement:

I declare that I solved the homework problems by myself.

You can send the solutions via email to riccardo.ugolini@fmf.uni-lj.si or place them in my mailbox at the ground floor of Jadranska 19.