FUNDAMENTALS OF REGRESSION ANALYSIS

Ventje Jeremias Lewi Engel, M.T., CEH Prodi Informatika Institut Teknologi Harapan Bangsa

2020

REFRESHMENT

 Jelaskan hubungan antara variabel ekspetasi hidup vs penghasilan yang ada di scatter plot berikut!

REFRESHMENT

- 2 Sebutkan contoh hubungan regresi dari tabel 1!
- 3. Sebutkan contoh hubungan Canonical Correlation Analysis dari tabel 1!

Tabel 1

Country	Income per person (\$, 2012)	Life expectancy (years, 2012)
Afghanistan	1359.7	60.254
Albania	6969.3	77.185
Algeria	6419.1	70.874
•••	•••	•••
Zimbabwe	545.3	58.142

REFRESHMENT

MANOVA.

4. Jelaskan hubungan yang terdapat pada bagan berikut:

TUJUAN PEMBELAJARAN

Setelah mengikuti perkuliahan ini, diharapkan mahasiswa mampu:

- 1. Membuat model regresi linier sederhana dari dataset
- 2. Membedakan regresi dengan korelasi
- 3. Mengevaluasi model regresi linier yang dihasilkan

OUTLINE

Hubungan & Model Regresi Linier

Regression vs Correlation

Langkah-langkah dan Asumsi Regresi Linier

Evaluasi Regresi

REGRESI ADALAH CARA MENCARI PARAMETER MODEL UNTUK HUBUNGAN INPUT & OUTPUT

SETELAH PARAMETER MODEL DIESTIMASI, KITA BISA MELAKUKAN PREDIKSI

ILUSTRASI PREDIKSI BERAT BADAN MENGGUNAKAN TINGGI BADAN

Prediksi menggunakan regresi linier (error y_2) menghasilkan total error lebih kecil dibandingkan total error dari dugaan rata-rata.

TUJUAN ANALISIS REGRESI

Bendbuln = 20 + 0.64 T, 9: Bur.

Regresi linier adalah teknik statistik untuk:

- Menganalisis efek (explanation) dari variabel-variabel independen (predictor) terhadap variable dependen (criterion).
- Memprediksi (prediction) nilai sebuah variable dependen dengan menggunakan satu (simple regression) atau lebih variable independen (multiple regression).

JENIS ANALISIS REGRESI

hm/mes

- Berapa jumlah variabel independen?
 - 1 : Simple regression
 - >1 : Multiple regression
- Bagaimana bentuk garis regresi?
 - Linear : Linear regression
 - Nonlinear : Nonlinear regression
- Apa jenis data variable dependen?
 - Kontinyu/Met : Simple & Multiple regression
 - Binomial/binary : Logistic regression

MODEL REGRESI LINEAR SEDERHANA

 $Y = b_0 + bX_1 + e$ $\hat{Y} = b_0 + bX_1$

Y = Berat badan actual (kg)

Y hat = berat badan yang diprediksi (kg)

 $X_1 = Tinggi badan (cm)$

 $b_0 = konstanta$

e = error

MODEL MULTIPLE REGRESI LINEAR

$$Y = b_0 + b_1 X_1 + b_2 X_2 + ... + b_n X_n + e$$

 $\widehat{Y} = b_0 + b_1 X_1 + b_2 X_2 + ... + b_n X_n$

Y = Konsumsi rumah tangga (rupiah per bulan)

Y hat = Konsumsi rumah tangga yang diprediksi (rupiah per bulan)

 X_1 = Pendapatan rumah tangga (rupiah per bulan)

X₂ = Jumlah anggota keluarga (orang)

X₃ = Lokasi tempat tinggal (kota atau desa)

 $b_n = konstanta$

MODEL MULTIPLE REGRESI LINEAR

Variate (Y hat) =
$$X_1b_1 + X_2b_2 + \ldots + X_nb_n$$

- Nilai variat (Y hat) akan dihitung untuk setiap respon.
- Nilai Y hat adalah kombinasi linear dari seluruh gabungan variable yang menghasilkan prediksi paling baik.

REGRESI NONLINIER JUGA BISA DILAKUKAN

$$Y = b_0 + b_1 X - lind$$

$$Y = b_0 * X^{b_1} - lind$$

$$Y = b_0 + b_i X^2$$

$$Y = b_0 + \exp(b_1 X) \rightarrow non - limes$$

$$Y = b_0 + \cos(b_1 X) + \sin(b_1 X) \longrightarrow \text{Non-linear}$$

KULIAH INI BERFOKUS PADA REGRESI LINIER $=2+25.2^{2}-7$ Ventje Jeremias Lewi Engel & ITHB © 17

OUTLINE

Hubungan & Model Regresi Linier

Regression vs Correlation

Langkah-langkah dan Asumsi Regresi Linier

Evaluasi Regresi

Hoge Ruch = both, * LB + In * LT

KORELASI BUKAN REGRESI

Peurson -1 3/d +1

- Analisis regresi menganalisis efek antara variable independen dengan variable dependen.
- Efek ini bisa dilihat sebagai korelasi, tetapi keduanya berbeda. Korelasi untuk melihat apakah ada hubungan dan bagaimana bentuk hubungannya.
- Sedangkan, regresi menjelaskan hubungan tersebut secara satu arah dari variabel independen ke variabel dependen

Kurden .

7Bvs.BD -7 +0.75 Japan vs. 11/2 - + v. 2 V

CORRELATION VS REGRESSION

Aspek	Correlation	Regression
Hubungan	Hanya melihat hubungan (relationship) yang terjadi	Melihat efek dari variabel independen ke variabel dependen
Arah Hubungan	Korelasi antara A dan B adalah sama dengan korelasi antara B dan A	Arah hubungan adalah dari variabel independen ke variabel dependen
Representasi	Sebuah nilai	Sebuah formula statistik
Kausalitas	Bukan kausalitas	Bisa menjadi dasar untuk peneltian kausalitas menggunakan SEM

OUTLINE

Hubungan & Model Regresi Linier

Regression vs Correlation

Langkah-langkah dan Asumsi Regresi Linier

Evaluasi Regresi

PERTIMBANGAN SEBELUM MELAKUKAN ANALISIS REGRESI

Tiga pertimbangan utama dalam penggunaan analisis regresi:

- Kecocokan dengan masalah yang diteliti (prediction atau explanation)
- Penentuan statistical relationship 2.
- Pemilihan variable dependen dan independen 3.
 - Pastikan ada teori yang mendukung pemilihan variable.
 - Adanya measurement error pada variable, terutama pada variable dependen. Bisa diatasi dengan summated scales atau SEM
 - (Specification error: inclusion of irrelevant variables or exclusion of relevant variables.

Specification Error permithen VI

RULE OF THUMB

- Dengan analisis regresi, error yang dihasilkan tidak dapat dipisahkan antara error karena kesalahan prediksi atau error karena pengukuran (measurement).
- Lebih baik menggunakan variable independen yang banyak walaupun tampak tidak relevan (karena dampaknya hanya kesulitan interpretasi), daripada mengambil resiko mengabaikan sebuah variable yang relevan (yang dapat menghasilkan bias terhadap hasil regresi).

DUMMY VARIABLES

 Dalam analisis regresi dan model machine learning, lebih aman untuk membuat variabel dummy menggunakan one-hot encoding

Label Encoding				Mu	v	One Hot Encoding		
	Food Name	Categorical #	Calories		Apple	Chicken	Broccoli	Calories
	Apple	1)	95	\rightarrow	1	0	0	95
	Chicken	2)	231		0	1	0_	231
	Broc¢oli	3	50		0	0	1_	50
				•	-			

Jumlah variabel dummy = Jumlah Variasi Data - 1

ASUMSI REGRESI LINIER

DATASET (

- Normality
 - Menurut Central Limit Theorem (CLT) bila data diambil dari sampling random dan berjumlah besar, maka distribusi data akan semakin mendekati normal. Asal data tidak bersifat binomial.
- No Autocorrelation
 - Autocorrelation = Hubungan antar observasi data harus tidak ada kaitan atau saling mempengaruhi. Observasi data direpresentasikan sebagai baris dalam tabel.

ASUMSI REGRESI LINIER

- Homoscedasticity / / / / / /
 - Keadaan ketika error variance adalah sama pada setiap level variabel independen (prediktor)

ASUMSI REGRESI LINIER

- dihitro

- No Multicollinearity
 - Multicollinearity = Situasi yang menunjukkan adanya korelasi atau hubungan kuat antara dua variabel independen atau lebih dalam sebuah model regresi.
 - Biasa diuji menggunakan nilai VIF (Variation Inflation Factor) dari setiap variabel independen.

```
VIF = 1 : no multicollinearity

1 < VIF < 6 : ada sedikit multicolliearity, masih bisa diterima
6 < VIF: ada multicollinearity
```

 Untuk mendapatkan multicollinearity di bawah 6 bisa dibilang adalah jarang. Kadang kita bisa menerima nilai VIF > 6 dengan catatan.

OUTLINE

Hubungan & Model Regresi Linier

Regression vs Correlation

Langkah-langkah dan Asumsi Regresi Linier

Evaluasi Regresi

REGRESI LINIER AKAN MENGHASILKAN PREDIKSI DENGAN ERROR YANG LEBIH KECIL

Prediksi menggunakan regresi linear (error y_2) menghasilkan total error lebih kecil dibandingkan total error dari dugaan rata-rata.

MENILAI OVERALL FIT (KECOCOKAN MODEL): GUNAKAN R²

TSS = Total Sum of Square (Total Variance) = RSS + ESS)

RSS = Residual Sum of Square (Unexplained Variance)

ESS = Explained Sum of Square (Explained Variance)

Dfreg = jumlah koefisien dalam model – 1

Dfres = jumlah sampel – jumlah koefisien dalam model

$$R^2 = \frac{ESS}{TSS}$$

R² adalah persentase explained dibandingkan total variance

$$F = \frac{ESS/dfreg}{RSS/dfres}$$

degra of fredom

MENILAI SIGNIFIKANSI HUBUNGAN IV DAN DV SECARA KESELURUHAN: F-TEST

- Dalam statistik, signifikan artinya nilai sebuah estimasi memang nyata, bukan nol, dan hal ini terjadi bukan karena kebetulan (sampel acak). Signifikan artinya peluang bahwa nilai sesungguhnya dari sebuah estimasi = nol sangatlah kecil (<5%)</p>
- Bila uji F test menunjukkan konstan dan koefisien signifikan, artinya keterkaitan (korelasi) independent variable terhadap dependent variabel memang nyata, dan bukan terjadi karena kebetulan.

- Nilai F dihitung untuk melakukan F test (ANOVA)
- F test dilakukan untuk menguji apakah konstanta dan koefisien masing-masing independen variable tidak sama dengan 0.
- Model regresi $Y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$
- \blacksquare $H_0: b_0 = b_1 = b_2 = ... = b_n = 0$
- H₁: ada koefisien yang tidak nol

MENILAI SIGNIFIKANSI MASING-MASING KOEFISIEN: T-TEST

- Uji t (t-test) akan menguji signifikansi masing-masing konstant dan koefisien secara individual (tepisah) dan menentukan apakah setiap estimasi tersebut berbeda dari nol bukan karena kebetulan (peluang bahwa angka sesungguhnya adalah nol < 5%)</p>
- Bila koefisien dari sebuah variabel independent signifikan, artinya variabel tersebut memang memiliki pengaruh (sekecil apapun itu) terhadap variabel dependent, dan hal ini bukan terdeteksi secara kebetulan akibat sampel acak.

CONTOH OUTPUT MULTIPLE LINEAR REGRESSION

TABLE 15	Multiple Regression Results Adding X_3 (Firm Size) as an Independent Variable by Using
	a Dummy Variable

Stepwise Regression with Transformed Variables

Multiple R	.895
Coefficient of Determination (R ²)	.801
Adjusted R ²	.788
Standard error of the estimate	.548

Analysis of Variance

	Sum of		Mean		
	Squares	df	Square	F	Sig.
Regression	112.669	6	18.778	62.464	.000
Residual	27.958	93	.301		
Total	140.628	99			

Variables Entered into the Regression Model

	Regression Coefficients		Statistical Significance		Correlations			Collinearity Statistics		
Variables Entered	Std. B Error Beta		t	Zero- Sig. order Part		Dartial	Part	Tolerance	VIF	
		Error	Beta		Sig. .013	order	raitiai	rait	lolerance	VIF
(Constant)	-1.250	.492		-2.542		1				
X ₉ Complaint Resolution	.300	.060	.304	4.994	.000	603	.460	.231	.576	1.736
X ₆ Product Quality	.365	.046	.427	7.881	.000	.486	.633	.364	.727	1.375
X ₁₂ Salesforce Image	.701	.093	.631	7.507	.000	.500	.614	.347	.303	3.304
X ₇ E-Commerce	333	.135	196	-2.473	.015	.283	248	114	.341	2.935
X ₁₁ Product Line	.203	.061	.224	3.323	.001	551	.326	.154	.469	2.130
X ₃ Firm Size	.271	.123	.114	2.207	030	.229	.223	.102	.798	1.253

APA YANG SUDAH DIPELAJARI?

THANK YOU

Ventje Jeremias Lewi Engel, M.T. Prodi Informatika Institut Teknologi Harapan Bangsa