$$f(x) = e^{x} - 3x^{2}$$
 @ [0,1]
+ $5 \times 1 \times 10^{-2}$

(i) Here,

$$f(0) = e^0 - 3(0)^2 = 1$$

 $f(1) = e^1 - 3(1)^2 = -0.2817$

(ii)
$$n \ge \frac{\log(b-a) - \log(E)}{\log(2)}$$

$$n \geqslant \frac{\log(1) - \log(1 \times 10^{-2})}{\log(2)}$$

$$n \geqslant 6.6435$$

$$n \approx 7$$

@ least 7 iteration should be used

(iii)
$$a_1 = 0$$
 $b_1 = 1$

$$C_1 = \frac{1-0}{2} = 0.5$$

$$f(c_1) = f(c_0.5) = 0.898721 > 0.01$$

$$f(a_1) \cdot f(c_1) = 0.898721 > 0$$

n	а	Ь	Cn	f(cn) f(cn)
1	0	I	0 · 5	0.8987 0.8987 > 0
2	0.5	1	0 · 75	0 · 4295 0 · 3860 > 0
3	0 · 7 5	1	0.875	0.1020 0.0438 > 0
4	0.875	I	0.9375	-0.0831 -0.0085 < 0
5	0.875	0.9375	0.90625	0.01116 0.0014 > 0
6	0.90625	0.9375	0.92187	-0.0356-0.0004 < 0
7	0.90625	0.92187	0.91406	-0.01209 - 0.00013 < 0
	-			

Here,
$$|C(n+i) - C(n)| < E$$

$$|C(n+i) - C(n)| = |0.92187 - 0.90625|$$

$$= 0.01567 > E(0.01)$$

$$|C(7) - C(6)| = |0.91406 - 0.92187|$$

$$= 0.00781 < E(0.01)$$

Therefore,
the roof =
$$x^* = 0.91406$$

(iv) Advantages

- Simple and easy to implement.
- One function evaluation per iteration
- The size of the interval contains the zero is reduce by 50% after each iteration
- The number of iteration can be determine before
- the process.
- No knowlege of derivative is needed.
- The function does not have to be differentiable

Disadvantages

- Slow to converge
- Good intermediate approximations may be discarded.

(ii) Let
$$x = \sqrt{10}$$

$$x^{2} = 10 \implies x^{2} - 10 = 0$$

$$f(x) = x^{2} - 10$$

$$f'(x) = 2x$$

$$x(n+1) = xn - \left(\frac{x^{2} - 10}{2xn}\right)$$

n	2 (n)	9(cn+1)	2 n+1 -2 n
0	3	3 · 16666 6 66 6 7	0.16666 6666 7
1	3.16666667	3 · 1622807018	0.00438 5 9646
2	3.1622801018	3 · 1622776602	0.0000030416
3	3.1622776602	3 · 1622776602	0.0000000000

(iii) If
$$y = (-\sqrt{10} - 1)$$

$$= (-3.1622776602 - 1)$$

$$y = -4.1622776602$$

$$f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$$

@ the interval [-1,0]

'n	X (€n-1)	%(n)	% (n+1)	(2(cn+1))-2n
1	-1	0	-0.02036199	0.02036199
2	O	-0.02036199	-0.04069126	0.02032927
3	-0.02036199	-0.0406.9126	-0·04065926	0.00003199
4	-0.04065926	-0-0406592	-0.04065929	0.0000003

$$|\mathcal{X}_{(5)} - \mathcal{X}_{(4)}| = 0.00000003 < 1 \times 10^{-6}$$

The root = -0.04065929

Advantages

- It converges at faster than a linear rate, so that it is more rapidly convergent than the bisection method.
- It does not require use of the derivative of the function.
- It requires only one evaluation per iteration, as compared Newton's method.

Disadvantages.

- May not converge.
- There is no guaranteed error bound for the computed iterates.
- Likely to have difficulty if f'co = 0.