

Word representation

Word representation

```
V = [a, aaron, ..., zulu, <UNK>]
```

1-hot representation

				1	1
Man (5391)	Woman (9853)	King (4914)	Queen (7157)		Orange (6257)
241	1				

N= 10,000

I want a glass of orange _____.

I want a glass of apple______.

Featurized representation: word embedding

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)		
1	(5551)	(3033)	(4314)	(1131)	(450)	(0257)		
1 Gender	-1		-0.95	0.97	0.00	0.01		
300 Royal	0.01	0.62	0.93	0.95	-0.01	0.00		
Age.	0.03	0.02	0.7	0.69	0.03	-0.02		
Food	6.09	0.01	0.02	0.01	0.95	0.97		
size cost		:.		I want a glass of orange juice				
I alix verb	, 62341	e 9853	I want a glass of apple juice					

Visualizing word embeddings

Using word embeddings

Named entity recognition example

Transfer learning and word embeddings

- 1. Learn word embeddings from large text corpus. (1-100B words)

 (Or download pre-trained embedding online.)
- 2. Transfer embedding to new task with smaller training set. (say, 100k words) → 10,000 → 300
 - 3. Optional: Continue to finetune the word embeddings with new data.

Properties of word embeddings

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97
CS391 Cman = Cwaman ≈ [-2] Cman = Cwaman ≈ [-2]						
		0	1 dues			

[Mikolov et. al., 2013, Linguistic regularities in continuous space word representations]

Andrew Ng

Analogies using word vectors

 $e_{man} - e_{woman} \approx e_{king} - e_{y} e_{w}$

Find word wi arg max

Cosine similarity

$$\Rightarrow sim(e_w, e_{king} - e_{man} + e_{woman})$$

Man:Woman as Boy:Girl

Ottawa:Canada as Nairobi:Kenya

Big:Bigger as Tall:Taller

Yen:Japan as Ruble:Russia

Embedding matrix

In practice, use specialized function to look up an embedding.

> Embedding

Learning word embeddings

Other context/target pairs

I want a glass of orange juice to go along with my cereal.

s kip grom

Context: Last 4 words.

4 words on left & right

Last 1 word

Nearby 1 word

a glass of orage ? to go aly with

arge -?

glass -

Word2Vec

Skip-grams

I want a glass of orange juice to go along with my cereal.

Model

Vocab size = 10,000k

Contest c ("orang")
$$\rightarrow$$
 Turpet \pm ("juin")

Contest c ("orang") \rightarrow Turpet \pm ("juin")

 4834
 $0_c \rightarrow E \rightarrow e_c$
 $0_c = E \circ c$
 $0_c = E \circ$

Andrew Ng

Problems with softmax classification

$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$
Hierahil sales six a s

How to sample the context c?

Negative sampling

Defining a new learning problem

I want a glass of orange juice to go along with my cereal.

Model

Softmax:
$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

$$p(t|c) = \frac{e^{\theta_t^T e_$$

Andrew Ng

Selecting negative examples

GloVe word vectors

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

Model

A note on the featurization view of word embeddings

		_			
		Woman		-	
	(5391)	(9853)	(4914)	(7157)	_
Gender	-1	1	-0.95	0.97	-
Royal		0.02	0.93	0.95	-
Age	0.03	0.02	0.70	0.69	<
Food	0.09	0.01	0.02	0.01	-

minimize
$$\sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i - b_j' - \log X_{ij})^2$$

$$(A0_i)^T (A^T e_j) = 0.7447$$

Sentiment classification

Sentiment classification problem

 $x \rightarrow y$

The dessert is excellent.

Service was quite slow.

Good for a quick meal, but nothing special.

Completely lacking in good taste, good service, and good ambience.

Simple sentiment classification model

RNN for sentiment classification softmax $a^{<4>}$ $a^{<2>}$ $a^{<3>}$ <10> e_{330} e_{1852} e_{4966} e_{4427} e_{3882} Completely lacking ambience good many-to-one

Debiasing word embeddings

The problem of bias in word embeddings

Man:Woman as King:Queen

Man:Computer_Programmer as Woman:Homemaker X

Father:Doctor as Mother: Nurse X

Word embeddings can reflect gender, ethnicity, age, sexual orientation, and other biases of the text used to train the model.

Addressing bias in word embeddings

1. Identify bias direction.

- 2. Neutralize: For every word that is not definitional, project to get rid of bias.