MO 8:

LINEÁRNA A KVADRATICKÁ FUNKCIA

<u>Lineárna funkcia</u> – každá funkcia s predpisom f: y = ax + b; $a,b \in R$

 $\underline{\mathbf{a}} = \mathbf{0}$

- konštantná funkcia
- D(f) = R
- $H(f) = \{b\}$
- nie je prostá
- ohraničená zhora aj zdola b
- vo všetkých bodoch je aj maximum aj minimum
- je párna
- periodická (ľubovolná)

<u>a>0</u>

- D(f) = R
- H(f) = R
- rastúca
- prostá
- nie je ohraničená
- nemá maximum ani minimum
- nie je párna ani nepárna (ak $b = 0 \implies$ nepárna)
- nie je periodická

<u>a<0</u>

- D(f) = R
- H(f) = R
- klesajúca
- prostá
- nie je ohraničená
- nemá maximum ani minimum
- ani párna ani nepárna
- nie je periodická

b = číslo, v ktorom graf funkcie pretína y-ovú os, t.j. f(b) = b a – určuje zmenu funkčnej hodnoty, ak zvýšime x o 1

$$f(x) = ax + b$$

 $f(x+1) = a(x+1) + b$
 $ax + a + b = f(x) + a$
 $a = f(x+1) - f(x)$

MO 8: LINEÁRNA A KVADRATICKÁ FUNKCIA
 ak hodnoty D(f) dosadíme do predpisu funkcie, získame H(f)

Lineárna funkcia s absolútnou hodnotou

$$f: y = |x|$$

f:
$$y = -|x|$$

f:
$$y = |x - 2|$$

f:
$$y = |x + 3|$$

f:
$$y = |x-3|-1$$

Kvadratická funkcia – každá funkcia s predpisom $\mathbf{f}: \mathbf{y} = \mathbf{ax}^2 + \mathbf{bx} + \mathbf{c}; \quad \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R} \land \mathbf{a} \neq \mathbf{0}$

• grafom je parabola

 $\underline{a > 0}$

- konvexná
- $x_1, x_2 \text{nulov\'e body}$
- V vrchol paraboly
- D(f) = R
- $H(f) = \left\langle \frac{-D}{4a}; \infty \right\rangle$
- klesajúca na $(-\infty; \frac{-b}{2a})$
- rastúca na $(\frac{-b}{2a}; \infty)$
- ohraničená zdola d = $\frac{-D}{4a}$

- minimum v bode $\frac{-b}{2a}$
- ani párna ani nepárna (ak vrchol leží na osi x, t.j. $v_1 = 0 \Leftrightarrow b = 0$, je párna)
- nie je prostá
- nie je periodická

$\underline{a} < 0$

- D(f) = R
- $H(f) = (-\infty; \frac{-D}{4a})$
- rastúca na $(-\infty; \frac{-b}{2a})$
- klesajúca na $(\frac{-b}{2a}; \infty)$
- maximum v bode $\frac{-b}{2a}$
- ohraničená zhora h = $\frac{-D}{4a}$

- nie je prostá
- nie je periodická
- konkávna
- ani párna ani nepárna (párna, ak b = 0)

$$f: y = x^2$$

$$f_1$$
: $y = 2x^2$

$$f_2$$
: $y = \frac{1}{2} x^2$

Graf kvadratickej funkcie s absolútnou hodnotou:

• funkčné hodnoty sú nezáporné

f:
$$y = |(x-2)^2 - 4|$$

Súradnice V:

(ak poznáme nulové body)

x – ová súradnica V je aritmetickým priemerom x_1 , x_2 (priesečníky s x – ovou osou)

$$x_1 = \frac{-b + \sqrt{D}}{2a}$$

$$x_2 = \frac{-b - \sqrt{D}}{2a}$$

$$x_v = \frac{x_1 + x_2}{2} = \frac{\frac{-b + \sqrt{D}}{2a} + \frac{-b - \sqrt{D}}{2a}}{2} = \frac{-b}{2a}$$

$$y_v = f(x_v) = \frac{-D}{4a}$$

(ak nepoznáme nulové body)

Každá parabola má extrém. ⇒ urobíme deriváciu

$$y` = 2ax + b$$
$$2ax + b = 0$$

$$x = \frac{-b}{2a} = x_v \Rightarrow y = f(x_v) = \frac{-D}{4a} = y_v$$

alebo:

Doplnením na druhú mocninu:

$$y = ax^{2} + bx + c = a. \left(x^{2} + \frac{b}{a}x\right) + c = a. \left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}}\right) - \frac{b^{2}}{4a^{2}} + c = a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a}$$

$$= y_{v}$$

$$\left(x + \frac{b}{2a}\right) = 0 \Rightarrow x_{v} = -\frac{b}{2a}$$