

Formulas de Estadística

Estadística Descriptiva

Frecuencias

Tamaño muestral n número de individuos en la muestra

Frecuencia Absolulta n_i (nº de x_i en la muestra)

Frecuencia Relativa $f_i = n_i/n$

Frec. Absoluta Acumulada $N_i = \sum_{k=0}^{i} n_i$

Frec. Relativa Acumulada $F_i = N_i/n$

Estadísticos de tendencia central

Media
$$\bar{x} = \frac{\sum x_i}{n}$$

Mediana me El valor con frec. rel. acumulada $F_{me} = 0.5$

Moda mo El valor más frecuente.

Estadísticos de posición

Cuartiles Q_1,Q_2,Q_3 dividen la distribución en 4 partes iguales. Sus frec. rel. acumuladas son $F_{Q_1}=0.25,F_{Q_2}=0.5$ and $F_{Q_3}=0.75$.

Percentiles P_1, P_2, \cdots, P_{99} dividen la distribución en 100 partes iguales.

Su frec. rel. acumulada es $F_{P_i} = i/100$.

Interpolación

Estadísticos de dispersión

Rango intercuartílico $IQR = Q_3 - Q_1$

Varianza
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n} = \frac{\sum x_i^2}{n} - \bar{x}^2$$

Desviación típica $s = +\sqrt{s^2}$

Coeficiente de variación $cv = \frac{s}{|\bar{x}|}$

Estadísticos de forma

Coeficiente de asimetría $g_1 = \frac{\sum (x_i - \bar{x})^3}{ns^3}$

Coeficiente de apuntamiento $g_2 = \frac{\sum (x_i - \bar{x})^4}{ns^4} - 3$

Transformaciones lineales

Transformación lineal y = a + bx

$$\bar{y}=a+b\bar{x}$$

$$s_y = bs_x$$

Tipificación
$$z = \frac{x - \bar{x}}{s_x}$$

Regresión y correlación

Regresión lineal

Covarianza
$$s_{xy} = \frac{\sum x_i y_j}{n} - \bar{x}\bar{y}$$

Rectas de regresión :

$$y ext{ on } x: y = \bar{y} + rac{s_{xy}}{s_x^2}(x - \bar{x})$$

$$x$$
 on $y: x = ar{x} + rac{s_{xy}}{s_y^2}(y - ar{y})$

Coeficientes de regresión

$$(y \text{ on } x) b_{yx} = \frac{s_{xy}}{s_x^2} (x \text{ on } y) b_{xy} = \frac{s_{xy}}{s_y^2}$$

Coeficiente de determinación

$$r^2 = \frac{s_{xy}^2}{s_x^2 s_y^2} \qquad 0 \le r^2 \le 1$$

Coeficiente de correlación

$$r = \frac{s_{xy}}{s_x s_y}. \qquad -1 \le r \le 1$$

Regresión no lineal

Modelo exponencial $y = e^{a+bx}$

Aplicar el logaritmo a la variable dependiente y calcular la recta de regresión $\log y = a + bx$.

Modelo logarítmico $y = a + b \log x$

Aplicar el logaritmo a la variable independiente y calcular la recta de regresión $y = a + b \log x$.

Modelo potencial $y = ax^b$

Aplicar el logaritmo a ambas variables y calcular la recta de regresión $\log y = a + b \log x$.

Probabilidad

Álgebra de sucesos

Idempotencia $A \cup A = A$, $A \cap A = A$

Conmutativa $A \cup B = B \cup A$, $A \cap B = B \cap A$

Asociativa $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$

Distributiva $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$, $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Elemento neutro $A \cup \emptyset = A$, $A \cap \Omega = A$

Elemento absorvente $A \cup \Omega = \Omega$, $A \cap \emptyset = \emptyset$.

Elemento simétrico complementario $A \cup \overline{A} = \Omega$, $A \cap \overline{A} = \emptyset$

Doble contrario $\overline{A} = A$

Leyes de Morgan $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Operaciones de sucesos

Unión

Intersección

Contrario

Diferencia

Probabilidad básica

Unión $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Intersección $P(A \cap B) = P(A)P(B|A)$

Diferencia $P(A - B) = P(A) - P(A \cap B)$

Contrario $P(\overline{A}) = 1 - P(A)$

Probabilidad condicionada

Probabilidad condicionada $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Sucesos independientes P(A|B) = P(A). Teorema de la probabilidad total

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

Teorema de Bayes

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$

Riesgos

	Ε	Ē	
Tratamiento	а	Ь	
Control	С	d	

Prevalencia Proporción de individuos con el suceso E: P(E)

Tasa de incidencia o riesgo absoluto $R(E) = \frac{a}{a+b}$

Odds $O(E) = \frac{a}{b}$

Riesgo relativo $RR(E) = \frac{a/(a+b)}{c/(c+d)}$

Odds ratio $OR(E) = \frac{a/b}{c/d} = \frac{a \cdot d}{b \cdot c}$

Test diagnósticos

	Enfermo <i>E</i>	Sano <i>E</i>
Test +	V P	FP
Test –	FN	VN

Sensibilidad
$$P(+|E) = \frac{VP}{VP + FN}$$

Especificidad
$$P(-|\overline{E}) = \frac{VN}{FP + VN}$$

Valor predictivo positivo (VPP) $P(E|+) = \frac{VP}{VP + FP}$

Valor predictivo negativo (VPN) $P(\overline{E}|-) = \frac{VN}{FN + VN}$

Razón de verosimilitud positiva (RV+) $\frac{P(+|E)}{P(+|\overline{E})}$

Razón de verosimilitud negativa (RV-) $\frac{P(-|E|)}{P(-|\overline{E}|)}$

Variables Aleatorias

Discretas

Función de probabilidad Binomial B(n,p)

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x} = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

Función de probabilidad Poisson $P(\lambda)$

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

Ley de los casos raros $B(n,p) \approx P(np)$ para $n \ge 30$ y $p \le 0.1$.

Continuas

Normal $N(\mu, \sigma)$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Normal Estándar N(0,1)

Chi-cuadrado $\chi^2(n)$

$$X=Z_1^2+\cdots+Z_n^2,$$

donde $Z_i \sim N(0,1)$.

T de Student T(n)

$$T = \frac{Z}{\sqrt{X/n}},$$

donde $Z \sim N(0,1)$ y $X \sim \chi^2(n)$.

F de Fisher F(n, m)

$$F=\frac{X/m}{Y/n},$$

donde $X \sim \chi^2(m)$ y $Y \sim \chi^2(n)$.