Лабораторная работа № 2

Числовые характеристики дискретной случайной величины.

Цель работы: получить навыки построения кривой закона распределения дискретной случайной величины, вычисления математического ожидания, дисперсии случайной величины средствами табличного редактора.

Nº 1

Постановка задачи:

1. Известны законы распределения вероятности попадания в мишень для двух стрелков X и Y (см. таблицу). Из таблицы видно, что вероятность попадания в 10 (центр мишени) для первого стрелка выше, чем для второго, но и вероятность того, что первый стрелок промажет так же выше.

Определите какой из двух стрелков стреляет лучше. Для этого постойте многоугольник распределения вероятностей, найдите математическое ожидание и среднее квадратичное отклонение.

xi	0	1	2	3	4	5	6	7	8	9	10
pi	0,15	0,11	0,04	0,05	0,04	0,10	0,10	0,04	0,05	0,12	0,20
yi	0	1	2	3	4	5	6	7	8	9	10
qi	0,01	0,03	0,05	0,09	0,11	0,24	0,21	0,10	0,10	0,04	0,02

Формулы, использованные для решения:

Математическое ожидание:

$$M(x) = \sum_{i}^{n} x_{i} p_{i}$$

Дисперсия:

$$D(x) = \sum_{i}^{n} (x_i - M(x))^2 p_i$$

Среднеквадратичное отклонение:

$$\sigma(x) = \sqrt{D(x)}$$

Nº 2

Постановка задачи:

2. В лотерее разыгрывается: автомобиль стоимостью 5000 ден. ед., 4 телевизора стоимостью 250 ден. ед., 5 видеомагнитофонов стоимостью 200 ден. ед. Всего продается 1000 билетов.

Вычислить математическое ожидание случайной величины X – средний выигрыш на билет. Определите, какова должна быть стоимость билетов, чтобы устроители лотерее не остались в проигрыше.

Формулы, использованные для решения:

Математическое ожидание:

$$M(x) = \sum_{i}^{n} x_{i} p_{i}$$

Дисперсия:

$$D(x) = \sum_{i}^{n} (x_i - M(x))^2 p_i$$

Среднеквадратичное отклонение:

$$\sigma(x) = \sqrt{D(x)}$$

Х	0,01						
n	1000						
χi	pi	Ден. Ед.	M(x)	D(x)	S(x)		
1	0,1	5000	500	48860,1	695,801		
4	0,4	250	100	193766,4	695,801		
5	0,5	200	100	241512,5	695,801		
10			700	484139	695,801		
Сто	Стоимость одного билета должна быть больше						

Nº 3

Постановка задачи:

3. Случайная величина задана следующим рядом распределения:

I	х	2	4	7	10	12
ı	Р	0,1	0,2	0,4	0,2	0,1

Найти математическое ожидание и дисперсию этой величины.

Формулы, использованные для решения:

Математическое ожидание:

$$M(x) = \sum_{i}^{n} x_{i} p_{i}$$

Дисперсия:

$$D(x) = \sum_{i}^{n} (x_i - M(x))^2 p_i$$

х	р	M(x)	D(x)
2	0,1	0,2	2,5
4	0,2	0,8	1,8
7	0,4	2,8	0
10	0,2	2	1,8
12	0,1	1,2	2,5
		7	8,6

Постановка задачи:

4. Дан закон распределения дискретной случайной величины Х

х	2	4	5	6	8	9
P	0.2	0.25	0.3	0.1	0.1	0.05

Найти математическое ожидание, дисперсию этой величины и среднее квадратичное отклонение.

Формулы, использованные для решения:

Математическое ожидание:

$$M(x) = \sum_{i}^{n} x_{i} p_{i}$$

Дисперсия:

$$D(x) = \sum_{i}^{n} (x_i - M(x))^2 p_i$$

Среднеквадратичное отклонение:

$$\sigma(x) = \sqrt{D(x)}$$

i	,,		-		_
	X	р	M(x)	D(x)	S(x)
	2	0,2	0,4	1,5125	1,94615
	4	0,25	1	0,140625	1,94615
	5	0,3	1,5	0,01875	1,94615
	6	0,1	0,6	0,15625	1,94615
	8	0,1	0,8	1,05625	1,94615
	9	0,05	0,45	0,903125	1,94615
			4,75	3,7875	1,94615
1					