## Angles

**Definition 1** (Angle). Let  $\mathcal{P}$  be an ordered geometry and x, o, and y distinct points.

• The set

$$\angle xoy = \overrightarrow{ox} \cup \overrightarrow{oy}$$

is called the angle with vertex o and sides  $\overrightarrow{ox}$  and  $\overrightarrow{oy}$ .

- If [abc], then  $\angle abc$  is called a straight angle, and  $\angle bac$  is called a flat angle.
- Suppose further that x, o, and y are not collinear. In this case, since P is
  an ordered geometry, the lines ox and oy divide P into half-planes. Let
  H₁ be the y half-plane of ox, and let K₁ be the x half-plane of oy. We
  define the interior of ∠xoy to be the set

$$int \angle xoy = H_1 \cap K_1.$$

If x, y, and o are collinear, then the interior of  $\angle xoy$  is not defined.

**Definition 2** (Angle Pairs). Suppose x, y, z, w, and o are distinct points in an ordered geometry.

- $\angle xoy$  and  $\angle yoz$  are called an adjacent pair.
- $\angle xoy$  and  $\angle yoz$  are called a linear pair if [xoz].
- $\angle xoy$  and  $\angle zow$  are called a vertical pair if [xoz] and [yow].

**Theorem 1** (Crossbar Theorem). Suppose O, A, and B are noncollinear points in an ordered geometry, and that  $C \in \text{int} \angle AOB$ . Then  $\overrightarrow{OC}$  cuts  $\overrightarrow{AB}$  at a unique point D.



*Proof.* By the Interpolation property, there is a point P on  $\overrightarrow{OA}$  such that [POA]. Note that A and P are on opposite sides of  $\overrightarrow{OB}$ , so that P and C are on opposite sides of  $\overrightarrow{OB}$ . (Since A and C are on the same side of  $\overrightarrow{OB}$  by definition.) Consider now the triangle  $\triangle PAB$ . Note that the line  $\overrightarrow{OC}$  does not contain A, B, or P,

since C is not on  $\overrightarrow{OA}$  or  $\overrightarrow{OB}$  by hypothesis. Moreover,  $\overrightarrow{OC}$  cuts  $\overline{PA}$  at O. By Pasch's Axiom,  $\overrightarrow{OC}$  must also cut either  $\overline{PB}$  or  $\overline{AB}$ .

Suppose  $\overrightarrow{OC}$  cuts  $\overrightarrow{PB}$  at a (necessarily unique) point Q. Note that  $\overrightarrow{OC} = \overrightarrow{QC}$ . Now P and Q are on the same side of  $\overrightarrow{OB}$ , so that Q and C are on opposite sides of  $\overrightarrow{OB}$ . Thus, there is a unique point R on  $\overrightarrow{OB}$  such that [QRC]. In particular,  $R \in \overrightarrow{OC}$ . Now we have  $O, R \in \overrightarrow{OC}$  and  $O, R \in \overrightarrow{OB}$ , so that  $\overrightarrow{OC} = \overrightarrow{OB}$ , a contradiction.

Hence  $\overrightarrow{OC}$  must cut  $\overrightarrow{AB}$  at a unique point; say D. Now D and A are on the

Hence  $\overrightarrow{OC}$  must cut  $\overline{AB}$  at a unique point; say D. Now D and A are on the same side of  $\overrightarrow{OB}$ , and so C and D are on the same side of  $\overrightarrow{OB}$ ; in particular, we cannot have [DOC]. So in fact  $\overrightarrow{OC}$  cuts  $\overrightarrow{AB}$  at a unique point.