Convolution & Laplace Transform

HuStar

2020.07.

이성윤

Convolution

Continuous Time

$$y(t) = h(t) * u(t) = \int_{\tau=0}^{\infty} h(t-\tau)u(\tau)d\tau$$

Discrete Time

$$\int_{\tau=0}^{\infty} h(t-\tau)u(\tau)d\tau \approx \lim_{a\to 0} \sum_{k=0}^{\infty} h_a[n-ka]u(ka)a, \qquad \tau = ka$$
$$y[n] = h[n] * u[n] = \sum_{k=0}^{\infty} h[n-k]u[k]$$

Convolution

• 길이 n의 신호 u가 다음과 같이 정의

$$u[n] = \sum_{k=0}^{n} u[k]\delta[n-k] = u[0]\delta[n] + \dots + u[n]\delta[0] = 0 + \dots + u[n]$$

• LTI 시스템에서

$$\sum_{k=0}^{n} u[k]\delta[n-k] \to \sum_{k=0}^{n} u[k]h[n-k] \text{ (additivity)}$$

$$u[n] \to h[n]u[0] + h[n-1]u[1] + \dots + h[1]u[n-1] + h[0]u[n]$$

$$y[n] = h[n]u[0] + h[n-1]u[1] + \dots + h[1]u[n-1] + h[0]u[n]$$

Convolution

- 따라서, 다음과 같이 convolution이 성립함을 알수 있음
 - y[0] = h[0]u[0]
 - y[1] = h[0]u[1] + h[1]u[0]
 - y[2] = h[0]u[2] + h[1]u[1] + h[2]u[0]
 - $y[n] = h[0]u[n] + h[1]u[n-1] + \dots + h[n-1]u[1] + h[n]u[0]$
 - 현재출력 = (첫 임펄스응답 * 현재입력) + (1지난 임펄스응답 * 현재-1입력) + ...
 → convolution
- Impulse response h[n]을 알고 있다면, 입력 u[n]과 convolution하여 모든 출력 y[n]을 계산 가능 \rightarrow 따라서 impulse response가 system model임

Laplace Transform

$$X(s) = \mathcal{L}[x(t)] = \int_0^\infty x(t)e^{-st}dt$$

$$x(t) = \mathcal{L}^{-1}[X(s)] = \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} X(s)e^{st}ds$$

$$\mathcal{L}[y(t)] = \mathcal{L}[h(t) * u(t)] \rightarrow Y(s) = H(s)U(s)$$

$$\frac{output}{input} = \frac{Y(s)}{U(s)} = H(s), \qquad transfer \ function$$

- Transfer function을 알고 입력을 알고 있다면 출력을 계산할 수 있음
 - $y(t) = \mathcal{L}^{-1}[H(s)U(s)]$
 - Transfer function → impulse response의 라플라스 변환, 시스템 모델

	Table of Laplace Transforms					
		$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\{f(t)\}\$		$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\{f(t)\}$
	1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$
	3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p > -1$	$\frac{\Gamma\left(p+1\right)}{s^{^{p+1}}}$
	5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
	7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2+a^2}$
	9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
dt	11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
s)e st ds	13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
	15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
=H(s)U(s)	17.	$\sinh(at)$	$\frac{a}{s^2-a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
· function	19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$e^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
들력을 계산할 수 있음	21.	$\mathbf{e}^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$\mathbf{e}^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
	23.	$t^n \mathbf{e}^{at}$, $n=1,2,3,\ldots$	$\frac{n!}{\left(s-a\right)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
스 변환, 시스템 모델	25.	$u_c(t) = u(t-c)$ Heaviside Function	$\frac{\mathbf{e}^{-cs}}{s}$	26.	$\delta(t-c)$ Dirac Delta Function	\mathbf{e}^{-cs}
	27.	$u_c(t)f(t-c)$	$\mathbf{e}^{-cs}F\left(s ight)$	28.	$u_{c}(t)g(t)$	$\mathbf{e}^{-cs}\mathfrak{L}\left\{ g\left(t+c ight) ight\}$
	29.	$\mathbf{e}^{ct}f(t)$	F(s-c)	30.	$t^n f(t), n=1,2,3,$	$\left(-1\right)^{n}F^{(n)}\left(s\right)$
	31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty}F\left(u\right) du$	32.	$\int_0^t f(v) dv$	$\frac{F\left(s\right)}{s}$
	33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T)=f(t)	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$
Characteristics of Signals & Sys	35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$
- Characteristics of Signals & Sys		$f^{(n)}(t)$	$s^n F(s) - s$	$f^{n-1} f($	$0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}$	$(0)-f^{(n-1)}(0)$

Example 1

• 다음 두 신호를 plot (T는 임의로 설정)

$$u(t = nT) = u[n] = \begin{cases} 1 & t < 2 \\ 0 & t \ge 2 \end{cases}$$
$$r(t = nT) = r[n] = \begin{cases} t & t \le 1 \\ 0 & t > 1 \end{cases}$$

- 두 신호를 이용하여 다음 convolution을 각각 계산하고 plot (함수 conv 사용)
 - 1) $y_1 = u * u$
 - (2) $y_2 = u * r$
 - (3) $y_3 = r * u$
 - 4) $y_4 = r * r$

Example 2

• 다음 1차 선형미분방정식의 impulse respons와 transfer function 계산

$$2\frac{dy(t)}{dt} + y(t) = u(t)$$

- 다음 세 가지 방식으로 step response를 계산하여 비교
 - 1) Impulse response h(t)를 구한 후 step input과 convolution (함수 conv 사용)
 - 2) Transfer function H(s)를 구한 후 $\frac{1}{s}$ 를 곱한 뒤 \mathcal{L}^{-1} 을 통해 계산 (함수 ilaplace, eval 사용)
 - 3) 함수 step을 사용하여 계산