

# UTAustinX: UT.7.20x Foundations of Data Analysis - Part 2



▶ Important Pre-Course Survey

- Contact Us
- How To Navigate the Course
- Discussion Board
- Office Hours
- Week 0: Introduction to Data (Optional Review)
- ▼ Week 1: Sampling

## Readings

Reading Check due May 03, 2016 at 18:00 UTC

#### **Lecture Videos**

Comprehension Check due May 03, 2016 at 18:00 UTC

## **R Tutorial Videos**

## Pre-Lab

Pre-Lab due May 03, 2016 at 18:00 UTC

Lab due May 03, 2016 at 18:00 UTC

### Problem Set

Problem Set due May 03, 2016 at 18:00 UT 🗗 Week 1: Sampling > Pre-Lab > Prepare for the Analysis

■ Bookmark

# Primary Research Question

How many letters long is the typical UT student's name? How does our estimate change as we increase the size of our sample?

# Breakdown Your Analysis

Let's break this analysis into its required steps:

# **Determine the population parameters:**

- 1. Visualize the shape of the population data by making a histogram.
- 2. Calculate the "true" mean and standard deviation of the population.

# Compare the sample statistics:

- 3. Draw 1,000 samples of size n=5 from the population data. Calculate the mean of each sample.
- 4. Graph these 1,000 sample means in a histogram and examine the shape.
- 5. Calculate the mean and standard deviation of the sampling distribution.
- 6. Repeat this process for samples of size n=15 and n=25.
- 7. Compare the results you get to the predictions of the Central Limit Theorem.

# Here is the code you will use:

# Calculate the population parameters hist(survey\$name\_letters) fivenum(survey\$name\_letters) mean(survey\$name\_letters) sd(survey\$name\_letters)

# Draw 1,000 samples of n=5 and find the mean of each sample. xbar5 <-rep(NA, 1000)

```
for (i in 1:1000)
{x <-sample(survey$name_letters, size =5)
xbar5[i] <- mean(x)
# Graph the histogram of 1,000 sample means.
hist(xbar5,xlim=c(2,10))
# Calculate the mean and sd of the sampling distribution.
mean(xbar5)
sd(xbar5)
# Compare to the std dev predicted by the CTL.
sd(survey$name_letters)/sqrt(5)
#Repeat for samples of size n=15
xbar15 <-rep(NA, 1000)
for (i in 1:1000)
{x <-sample(survey$name_letters, size =15)
xbar15[i] <- mean(x)
hist(xbar15,xlim=c(2,10))
mean(xbar15)
sd(xbar15)
sd(survey$name_letters)/sqrt(15)
#Repeat for samples of size n=25
xbar25 <-rep(NA, 1000)
for (i in 1:1000)
{x <-sample(survey$name_letters, size =25)
xbar25[i] <- mean(x)
hist(xbar25,xlim=c(2,10))
mean(xbar25)
sd(xbar25)
sd(survey$name_letters)/sqrt(25)
(3/3 points)
Focus on this portion of the code in order to answer the following
questions:
xbar5<-rep(NA, 1000)
for (i in 1:1000)
{x<-sample(survey$name letters, size =5)</pre>
```

| xbar5[i] <- mean(x)}                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------|
| 1a) What is <i>x</i> ?                                                                                                       |
| x is the number 5                                                                                                            |
| $\circ$ $x$ is the number of letters in the name of one individual drawn from the population                                 |
| <ul> <li>x is a sample of 5 data values drawn from the population</li> </ul>                                                 |
| 1b) What is mean(x)?                                                                                                         |
| It is the mean of all the values in the population.                                                                          |
| ● It is the mean of the 5 data points drawn in each sample. ✔                                                                |
| It is the mean of 5 sample means.                                                                                            |
| 1c) When the loop is in the 200th iteration (i=200), what will the following code be doing:  xbar5[i] <- mean(x)             |
| Calculating the mean of 200 samples.                                                                                         |
| <ul> <li>Calculating the mean of the 200th sample, and placing it in the</li> <li>200th position of xbar5 vector.</li> </ul> |
| Taking 200 observations from the population and then calculating the mean.                                                   |
| Click here for a video explanation of how to ensure this succeives                                                           |
| Click here for a video explanation of how to answer this question.                                                           |
| You have used 1 of 1 submissions                                                                                             |
|                                                                                                                              |

(1/1 point)

2) The standard deviation of a sampling distribution is called a "standard error." What goes in the denominator of this equation to solve for standard error (SE)?

# $SE=\sigma/?$







Click here for a video explanation of how to answer this question.

You have used 1 of 1 submissions

(1/1 point)

3) We used the following code to try to show the sampling distribution of ages:

```
xbar5 <-rep(NA, 1000)
for (i in 1:1000)
{x <-sample(survey$age, size =5)</pre>
xbar5[i] <- mean(x)
hist(xbar5,xlim=c(2,10))
```

Why was the histogram that R produced blank?

- The xbar5 vector (of sample means) is empty.
- Since we are taking random samples, it is not unusual to have this histogram.
- The scale of the x-axis is set from 2 to 10, but the ages are not in this range.
- The sample size in line 4 needs to be 1000 to match the previous lines.

Click here for a video explanation of how to answer this question. You have used 1 of 1 submissions

© All Rights Reserved



© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

















