DAY 11 - Routing Fundamental

Purinat33

Routing Fundamental

What is Routing

- 1. Routing is the process that routers use to determine the path that IP packets should take over a network to reach their destination.
 - (a) Routers store routes to all of their known destinations in a **Routing**Table.
 - (b) When routers receive packets, they look in their **Routing Table** to find the best route to forward that packet.
- 2. There are *two* main routing methods (methods that routers use to learn routes):
 - (a) **Dynamic Routing**: Routers use Dynamic Routing Protocols (eg. OSPF) to share routing information with each other automatically and build their routing tables.
 - (b) **Static Routing**: A network engineer/admin manually configures routes on the router.
- - (a) Or, if the destination is directly connected to the router, send the packet directly to the **Destination**.
 - (b) Or, if the destination is the router's own IP address, then **Receive the** Packet for Yourself (and don't forward).

Example Topology:

Pre-routing setup:

- Example:
 - R1> en
 - R1# conf t
 - R1(config)# interface g0/0
 - R1(config-if)# ip address 192.168.1.1 255.255.255.0
 - R1(config-if)# no shutdown
- Repeat for all PC, Routers & Interfaces.
 - **R**1:

RI#snow ip interface n	riei				
Interface	IP-Address	OK?	Method	Status	Protocol
GigabitEthernet0/0	192.168.1.1	YES	NVRAM	up	up
GigabitEthernet0/1	192.168.12.1	YES	NVRAM	up	up
GigabitEthernet0/2	192.168.13.1	YES	NVRAM	up	up
R2: R2#show ip int br					

Interface IP-Address OK? Method Status Protocol GigabitEthernet0/0 192.168.12.2 YES NVRAM up up 192.168.24.2 GigabitEthernet0/1 YES NVRAM up up GigabitEthernet0/2 YES NVRAM administratively down down unassigned

- **R3**:

Interface	IP-Address	OK? Method	Status	Protocol
GigabitEthernet0/0	192.168.13.3	YES manual	up	up
GigabitEthernet0/1	192.168.34.3	YES manual	up	up
GigabitEthernet0/2	unassigned	YES unset	administratively down	down

IP-Address	OK? Method Status	Protocol
192.168.24.4	YES manual up	up
192.168.34.4	YES manual up	up
192.168.4.4	YES manual up	up
	192.168.24.4 192.168.34.4	192.168.24.4 YES manual up 192.168.34.4 YES manual up

View Routing Table (R1) using show ip route:

```
R1#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
        192.168.1.0/24 is directly connected, GigabitEthernet0/0
\mathbf{C}
        192.168.1.1/32 is directly connected, GigabitEthernet0/0
L
     192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
        192.168.12.0/24 is directly connected, GigabitEthernet0/1
C
L
        192.168.12.1/32 is directly connected, GigabitEthernet0/1
     192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks
C
        192.168.13.0/24 is directly connected, GigabitEthernet0/2
L
        192.168.13.1/32 is directly connected, GigabitEthernet0/2
```

Dissecting routing table (R1):

1. Codes:

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter are
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
```

The **Codes** section is the legend for the table which lists the different protocols which routers can use to learn routes.

2. Routes:

We automatically get 2 Routes without even configuring anything.

• L : Local route, a route to the Actual IP Address configured on the interface (With a /32 netmask).

```
R1#show ip int brief
Interface
                                IP-Address
                                192.168.1.1
GigabitEthernet0/0
GigabitEthernet0/1
                                192.168.12.1
GigabitEthernet0/2
       192.168.1.1/32 is directly connected, GigabitEthernet0/0
    192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
       192.168.12.0/24 is directly connected, GigabitEthernet0/1
C
       192.168.12.1/32 is directly connected, GigabitEthernet0/1
L
    192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks
C
       192.168.13.0/24 is directly connected, GigabitEthernet0/2
       192.168.13.1/32 is directly connected, GigabitEthernet0/2
L
```

• C: Connected route, a route to the Network ID the interface is connected to (with the actual netmask configured on the interface.)

192.168.13.0/24 is directly connected, GigabitEthernet0/2

192.168.13.1/32 is directly connected, GigabitEthernet0/2

Connected vs. Local Routes:

L

- A Connected Route is a route to the network the *interface* is connected to:
 - **G0/2** of **R1**: 192.168.1. **1** /24
 - Network Address: 192.168.1. 0 /24
 - It provides a route to all hosts in that network:
 - * 192.168.1. **3**
 - * 192.168.1. **135**
 - * 192.168.1. **254** etc.

- R1 knows:
 - * "If I need to send a packet to any host in the network, I should send it out using the G0/2 Interface"
 - 192.168.1. 87 = Within that network, send packet out of $\mathbf{G0/2}$
 - · 192.168. 2 .1 = Not Within the same Network, Send out via a different interface or drop the packet.
- A Local Route is a route to the *exact* IP address configured on the interface.
 - A /32 netmask is used to specify the exact IP address of the interface.
 - R1 knows:
 - * "If I receive a packet destined to this IP address, the message is for me"

Route Selection:

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.1.0/24 is directly connected, GigabitEthernet0/0
L 192.168.1.1/32 is directly connected, GigabitEthernet0/0

Imagine a packet with **Destination**: 192.168.1.1 coming from G0/0 R3.

- The packet is matched by two routes:
 - C route: 192.168.0/24 for the network IP.
 - L route: 192.168.1.1/32 for the R1's G0/0 IP.
- Which route will R1 use?
 - It will choose the *MOST SPECIFIC* Matching Route.
 - * The route to 192.168.1.0/24 includes 256 different IP addresses (192.168.1.1 to 192.168.1.255)
 - * The route to 192.168.1.1/32 includes 1 IP address (only 192.168.1.1)

- We can see that 192.168.1.1/32 route is the most specific.
- Thus, the route **R1** uses is **L** 192.168.1.1/32.

Misc.

```
192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks

192.168.1.0/24 is directly connected, GigabitEthernet0/0

192.168.1.1/32 is directly connected, GigabitEthernet0/0

192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks

192.168.12.0/24 is directly connected, GigabitEthernet0/1

192.168.12.1/32 is directly connected, GigabitEthernet0/1

192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks

192.168.13.0/24 is directly connected, GigabitEthernet0/2

192.168.13.1/32 is directly connected, GigabitEthernet0/2
```

These three lines are not routes, they mean:

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks

- (a) In the routing table, there are **Two Routes** to subnets that fit within the 192.168.1.0/24 class C network, with **two different netmasks** (24 and 32)
- 2 192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
 - (a) In the routing table, there are **Two Routes** to subnets that fit within the 192.168.12.0/24 class C network, with **two different net-masks** (24 and 32)
- 3 192.168.13.0/24 is variably subnetted, 2 subnets, 2 masks
 - (a) In the routing table, there are **Two Routes** to subnets that fit within the 192.168.13.0/24 class C network, with **two different net-masks** (24 and 32)

We will cover **Subnetting** later, for now just know that these three lines are not routes.

Route Selection (Practice):

1. **Packet 1**:

• Most matching route: 192.168.13.0/24 via G0/0 interface.

2. **Packet 2**:

192.168.1.0/24 via G0/2 interface. • Most matching route:

3. Packet 3 (192.168.12.1):

• Most matching route: 192.168.12.1/32 At the G0/1 interface.

4. **Packet 4**:

• Most matching route: None, R1 will drop the packet.

Summary

- Routers store information about destinations they know in their *Routing* Table.
 - When they receive packets, they look in the routing table to find the best route to forward the packet.
- Each **Route** in the routing table is an instruction:
 - To reach destinations in **Network X**, send the packet to **Next-Hop Y** (The next router in the path to the destination).
 - * If the destination is directly connected (Connected Route), then send the packet directly to the destination.
 - * If the destination is your own IP Address (**Local Route**), then receive the packet for yourself.
- When you configured an IP address on an interface and enable the interface, **Two Routes** are automatically added to the routing table:
 - Connected Route (Code C in the routing table): A route to the network connected to the interface.

- * If the interface's IP is 192.168.1.1/24, the C route will be to 192.168.1.0/24
- * Tells the router: "To send a packet to a destination in this network, send it out of the interface specified in the route."
- Local Route (Code L in the routing table): A route to the exact
 IP address configured on the interface.
 - * If the interface's IP is 192.168.1.1/24 , the L route will be to 192.168.1.1/32
 - * Tells the router: "Packets to this destination are for you, you should receive them for yourself only".
- A route **Matches** a destination if the packet's destination IP address is part of the network specified in the route.
 - A packet to 192.168.1.70 is matched by a route to 192.168.1.0/24 but not 192.168.0.0/24
- If a router receives a packet and it doesn't have a route that matches the packet's destination, it will **Drop** the packet.
 - This is different from Switches, which will Flood the frames if they don't have a MAC Entry for the Frame's destination.
- If a router receives a packet and it has multiple routes that match the packet's destination, it will use the **Most Specific** matching route to forward the packet.
 - Most Specific Matching Route = The matching route with the longest prefix length.
 - * **192.168.1.1** : 192.168.1.1/32 > 192.168.1.0/24
 - This is different from **Switches**, which look for an **Exact Match**.