4/28- Probabilistic physics w/ variational inference - Last day of class - ned 4/28 -> everyone should be making progress - 9 last chance for feedback -) final presentations 5/9 3-5 in DRLB-AZ - report due by 5/12 Final Course Feedback - Please he honest - first time class and feedback will doastically reshape next iteration -> More HW -> Stricter pre-regs toom ELBO last time Recall E = - E [log p(x1z)] - KL (8(z/x) / p(z)) "vanilla" VAE: We discussed Kingma + Welling 1 Exnz [log P(x12)] ~ log P(Xd 1Zd) (2) p(z) = N(M=0, Z=I)

Which about generative modeling () Sample Z~ N(O, I) (2) Decode using P(x1Z) There is a coast to derigning architectures around different choices of embeddings Z, and priors Computationally tractable ELBO! Two examples Gaussian Gaussian Gaussian! - Denoising Pifferion - Physical Priors (Gohl-Dickstein) Denoising Diffusion Don't jump from X to Z, instead decode in increments Idea Diffusion Forward noising Status) Vanilla data X TIIIX T \times \bigvee \neq \bigvee \times XXX (Parned denoising

Forward/Noving $g(x_0)$ - data distribution $g(x^t|x^{t-1}) = T(x^t|x^{t-1}; \beta_t)$ a kernel to add noise

We'll asket o simple = $= N(x^t; x^{t-1}\sqrt{1-\beta_t}, \beta_t I)$ which is equiv $x_t = \sqrt{1-\beta_t} \times_{t-1} + \sqrt{\beta_t} \in X_t$ to

And we get joint dist $g(x_0^t, x_0^t) = g(x_0^t) \xrightarrow{t=1} g(x_0^t|x^{t-1})$ Lemma $\lim_{t \to \infty} x_t = N(0, I)$

Note Before we prove this lemma, note that we get a unit gaussian embedding by construction instead of using KL to get it by penalty

To prove by induction, check 2 steps Pf X= 11-Be X=1 + 1By Et Xth = VI-Bth VI-Bt Xt-1 + VBth Bt Et + VBth Eth1 products Additive gave. In noise w/ weights Let 05= 1-B5 To as By induction can show $X_t = \sqrt{\alpha_t} \times_0 + \sum_{s=1}^t \sqrt[4]{\alpha_{s-1}} \beta_s \in S$ For gaussians, variance of sum is sum of var X ~ N(Vax Xo, ST AS-1 BS I) $\sum_{i=1}^{t} \overline{\alpha_{s-i}} \beta_{s} = 1 - \overline{\alpha_{t}}$ = \overline{\alpha_{5-1}} \overline{\alpha_{5-1}} = \overline{\alpha_{5-1}} - \overline{\alpha_{5}} = \overline{\alpha_{5-1}} - \overline{\alpha_{

Finally, take linits Let 0 < B << 1 lin | \$\overline{\tau_t} = \lin | \overline{\tau_t} (1-\beta_s) \right| \tau \overline{\tau_t} = \lin | \overline{\tau_t} (1-\beta_s) \right| < lim | T (1- Bmin) | < lin (1-Brin) N(Vax XO, SEI OS, BSI) = lin N(\overline{\sqrt}\alpha\con) 1-\overline{\sqrt}\)
than N(O,I) Ø

Back to forward ingredient $\frac{2}{2}(x^{0}, -1, x^{T}) = \frac{2}{2}(x^{0}) \prod_{t=1}^{T} \frac{2}{2}(x^{t}/x^{t-1})$ $\frac{2}{2}(x^{0}) = \frac{2}{2}(x^{0}) \prod_{t=1}^{T} \frac{2}{2}(x^{t}/x^{t-1})$ $\frac{2}{2}(x^{0}) = \frac{2}{2}(x^{0}) \prod_{t=1}^{T} \frac{2}{2}(x^{t}/x^{t-1})$

Ingredient d
$P(x^{T}) = prior distribution$
P(X° XT) = P(XT) TT P(Xtim /Xt)
going backer
Claim For small B, p(x*1x*) is Gaussian
we will prove this as justification for the parameterization
$P(x^{t-1} x^t) = N(M = S(x^t; \theta_g), Z = g(x^t; \theta_g))$ Learnable NW's
Before we prove recap where we're not known garssian whose project for big enough
X° TTTTTTX
trainable jaussian
Final Hep will be to make steps match w/KL

We'll finally show

8(x1(x1)=3

8(x+1/x+)= 8(x+1/x+,x0) + O(BE)

of reverse transition being Gaussian Justification $g(x^{t-1}|x^t,x^o) = g(x^t|x^{t-1},x^o) g(x^{t-1}|x^o)$ By Bayer g(x 1x°) 3(xt/xt-1)= N(VI-Be XE-1, PtI) From forward As we derived 8(x+1/x0) = N(Vat-, Xo, (1-at-,) I) alterdy product of Gaussians is an un-normalized Gaussian for rowe M*, I', C that we could derive => &(x*/x*1) &(x*1/x) ~ CN(M*, Z'*) Exipping details 3(xx, 1x, x0) = N(Mt(x0, t), Bt I) $M^* = \frac{\sqrt{\alpha_{k_1}} \beta_{k_2}}{1 - \alpha_{k_1}} \times 0 + \frac{\sqrt{\alpha_{k_1}} (1 - \alpha_{k_1})}{1 - \alpha_{k_1}} \times 1$ B# 1- 0x Q How do they depend on By When approximating & (x4.1/x4)?

To remove the conditioning on to we'll use the laws of total expectation + variance: E[X]= E[E[XIY] Var[x]= \E[var[xiy]] + var[E[xiy]] On the mean E[xt-1/xt] = E[E[xt-1/xt,xo] = [M*] ~ O(B2) On the variance Var [xeilxi] = #[var (xhilxhxo)] + vas [#[xeilxixo]] = [B*I] + var [M*] $O(\beta_t^2)$ $O(\beta)$ (We're skipping the estimater on By)

Final Ingredient #3 - the ELBO
E = F _{8(xT x0)} [log p(x0 x _T)] - \(\sum_{t=2}^{T} \) F _{2(xe x₀)} [
KL(8(Xt1 Xt, Xo) N P(Xt-1 Xt))
- Learn to deroise single diffusion steps - Generate by sampling a gaussian + denoising
Some take aways
- Designed an encoding which - Feguired no learning - took us to a latent gaussian - has gaussian increments - Designed a decoding which - is indirectly supervised by encoding
- Designed a decoding which - resigned a decoding which - is indirectly supervised by encoding - gives gaussian increments
- When combined in ELBO - Lots of closed form expressions for KLS

How can you use this in your research? (How much moth do you need to track?) Off-the-shelf VI- just gint one of the implementations - understand that if you mess w/ the architectore, you may break the theory - maybe leave £180 loss alone don't play w/ input loutput of demoising, - do play w/ architectures, B schedules Improve - Many other physical models can give lim XT & N(O, I) V2 - Replace noising w/ some thing physical - Think about challenges + seguirements - Expensive to generate - how can we are shorter T

- SPDES?

- What other SDES allow gaussian reverse process?