Національний стандарт України ДСТУ 7624:2014 (шифр «Калина»)

Симетричні криптоалгоритми, що використовуються в Україні

- ДСТУ ГОСТ 28147:2009;
- AES (у складі операційних систем загального
- призначення);
- RC4 та ін. (іноземні реалізації засобів захисту Web-з'єднань відповідно до протоколів SSL/TLS);
- Triple DES (Національний банк України, іноземні реалізації засобів захисту мережевого трафіка IPsec).

ДСТУ ГОСТ 28147:2009

• Переваги:

- відомий шифр, який добре досліджений
 міжнародною спільнотою більш ніж 20 років;
- прийнятний рівень швидкодій (32-бітові платформи), достатньо зручний для апаратної реалізації, в т.ч. для малоресурсної (lightweight) криптографії;
- вузли заміни (S-блоки) із гарними
 властивостями забезпечують практичну
 стійкість шифра;

ДСТУ ГОСТ 28147:2009

• Недоліки:

- наявність теоретичних атак із складністю,
 значно меншою повного перебора ключів;
- великі класи слабких ключів;
- використання вузлів заміни спеціального виду дозволяє зменшити рівень стійкості до реалізації практичних атак (виключно на основі шифртекстів) з використанням одного персонального комп'ютера;
- швидкодія на сучасних системах суттєво нижча порівняно із іншими блоковими шифрами.

Triple DES

• Переваги

- відомий шифр, який добре досліджений міжнародною спільнотою більш ніж 30 років;
- □ забезпечує припустиму практичну стійкість (2¹¹²);
- поширений у банківських системах, що
 імпортовані або орієнтовані на застарілі стандарти.

• Недоліки

- практична стійкість значно нижче теоретичної;
- наявність класів слабких ключів;
- швидкодія на сучасних системах суттєво нижча навіть порівняно із ДСТУ ГОСТ 2814:2009 і іншими блоковими шифрами.

Заміна ГОСТ 28147-89 в інших країнах

- СТБ 34.101.31-2011 (Білорусь)
 - блок 128 біт, ключ 128, 192 або 256 біт;
 - 8 циклів, які складаються з комбінації ланцюга Фейстеля та схеми Лая-Мессі;
 - □ один S-блок (8-біт-в-8) із гарними властивостями;
 - відсутність схеми розгортання ключів;
 - невідомі практичні атаки, ефективніші повного перебору;
 - □ швидший ніж ГОСТ 28147-89, але повільніший, ніж AES.

• "Кузнечик" ("Коник", РФ)

- блок 128 біт, ключ 256 біт;
- 9 циклів AES-подібного перетворення;
- один S-блок (8-біт-в-8), нециркулянтна матриця лінійного перетворення: 16x16 над полем $GF(2^8)$
- схема розгортання ключів на базі циклового перетворення і ланцюга Фейстеля (конструкція CS-cipher);
- однаковий S-блок із новою функцією ґешування "Стрибог" (ГОСТ Р 34.11-2012), але різні матриці лінійного перетворення (ускладнена реалізація систем криптографічного захисту);
- великий розмір таблиць для оптимальної програмної реалізації ;
- швидкодія нижча за AES.

Основні параметри алгоритму

- Apxiтектура: Substitution-Permutation network (SP-мережа);
- Вхідний блок: 128/256/512 бітів; за цикл обробляється цілий блок;
- Довжина ключа: 128/256/512 бітів.
- К-сть раундів: 10/14/18 (залежить від довжин вхідного блоку та ключа):

$ m N_{r}$	$N_b = 2$	$N_b = 4$	$N_b = 8$
	(128 бітів)	(256 бітів)	(512 бітів)
$N_k = 2$ (128 бітів)	10	14	-
$N_k = 4$ (256 бітів)	-	14	18
$N_k = 8 (512 \text{ fitib})$	-	-	18

Блок-схема алгоритму

Всі операції виконуються над 64-бітовим станом. Процедури відповідають таким в AES.

- 1. Процедура SubBytes використовує 8 таблиць заміни, побудованих випадковим чином.
- 2. Інший зсув рядків.
- 3. Використовується додавання за модулем 2 та за модулем 2³².
- 4. Процедура MixColumns використовує інші матриці для множення, побудовані на інших незвідних поліномах.
- 5. Інша процедура розгортання ключа.

Зсув рядків

Процедура розгортання ключа

Ліворуч – операція розгортання ключів з непарними індексами; Праворуч – для ключів з парними індексами. Операції ті ж, що виконуються під час шифрування.

Оцінка криптографічної стійкості (128-бітовий блок)

Метод криптоаналізу	Найменша кількість циклів, для якої шифр є стійким	Показники атак		
		Макс. кілкість циклів	Обчисл. складність, екв. оп. шифрув.	Пам'ять, байтів
Диференційний	5	4	2 ⁵⁵	
Лінійний	5	3	252,8	
Усіч. диференц.	4	3		
Інтегральний	6	5	297	233+4
Нездійсн. дифер.	6	5	262	266
Бумеранг	5	4	2120	

Оцінка криптографічної стійкості (256-бітовий блок)

Метод криптоаналізу	Найменша кількість циклів, для якої шифр є стійким	Показники атак		
		Макс. кілкість циклів	Обчисл. складність, екв. оп. шифрув.	Пам'ять, байтів
Диференційний	7	6	2 ²³⁰	
Лінійний	7	5	$2^{220,8}$	
Усіч. диференц.	4	3	B	
Інтегральний	7	6	2145	264+5
Нездійсн. дифер.	6	5	2 ⁶¹	266
Бумеранг	6	5	2 ²²⁰	

Оцінка криптографічної стійкості (512-бітовий блок)

Метод криптоаналізу	Найменша кількість циклів, для якої шифр є стійким	Показники атак		
		Макс. кілкість циклів	Обчисл. складність, екв. оп. шифрув.	Пам'ять, байтів
Диференційний	9	8	2 ⁴⁹⁰	
Лінійний	9	7	2470,4	
Усіч. диференц.	4	3		
Інтегральний	7	6	2137	264+5
Нездійсн. дифер.	6	5	260	266
Бумеранг	7	6	2340	

Запас криптостійкості

- Стійкість забезпечується (наявність запасу):
- 128-битовий блок: 6 раундів (із 10 або 14, залежно від довжини ключа);
- 256-битовий блок: 7 раундів (із 14 або 18, залежно від довжини ключа);
- 512-битовий блок: 9 раундів (із 18).

Порівняння швидкодії

Висновки

Алгоритм «Калина» демонструє:

- високий і надвисокий рівень стійкості із запасом на випадок появи нових атак та вдосконалення криптоаналітичних комплексів протягом тривалого часу;
- високу швидкодію програмної реалізації на сучасних та перспективних платформах;
- вищу або порівняну ефективність щодо найкращих світових рішень;
- наявність різних режимів роботи, необхідних для ефективної реалізації сучасних засобів криптографічного захисту;
- можливість ефективної інтеграції двох національних алгоритмів в одному засобі криптографічного захисту;
- зручність реалізації для розробників засобів криптографічного захисту.

Автори шифру «Калина»

- Р.В.Олійников; І.Д.Горбенко; О.В.Казимиров;
- В.І.Руженцев; О.О.Кузнєцов; Ю.І.Горбенко;
- В.І.Долгов; О.В.Дирда; А.І.Пушкарьов;
- Р.І.Мордвинов; Д.С.Кайдалов