V1 - Séries Temporais 25.1

Guilherme Duartes Alves Basso 240805 Pedro Constantino de Freitas 253596 Rafaela da Silva Barril 204368 Vitor Ribas Perrone 245040

Escolha da Série e tratamento dos dados

Escolha da Série e tratamento dos dados

Foi escolhido trabalhar com dados fornecidos mensalmente pela Secretaria de Segurança Pública de SP, referentes aos anos de 2002 a 2024. Cada ano é um banco.

Fonte

Depois de unificar os bancos, foi escolhida a série temporal referente ao crime "Homicídio Culposo por acidente de trânsito" para ser analisada.

```
for (i in 2002:2024) {
  banco ← read_excel(paste0(i, ".xlsx"))
  banco ← t(banco)
  colnames(banco) ← banco[1,]
  banco ← as.data.frame(banco)
  banco ← banco[-c(1,14),]
  banco ← banco %>% mutate(Data = paste0(1:12, "-", i))
  banco ← banco %>% pivot_longer(cols = 1:(ncol(banco)-1), names_to = "Variavel")
  dados_finais ← rbind(dados_finais, banco)
}
dados ← read_csv("DadosCrimesUnidos.csv")
dados ← dados[,-1]
dados$Data ← my(dados$Data)
head(dados_finais)
```

```
# A tibble: 6 × 3
Data Variavel value
<a href="https://www.chr"><a href="https://www.chr">www.chr</a><a href="https://ww
```

Gráfico de sequência

Gráfico de autocorrelação

 Percebe-se que todas as barras ultrapassam a banda de confiança em todos os lags, o que indica autocorrelação significativa e dependência dos dados

 Também se destaca os picos nos lags 12 e 24 (meses), o que indica uma sazonalidade anual

Gráfico de sazonalidade

Decomposição

Ajustando modelos

Modelo Média

Diagnóstico - Modelo de Médias

Modelo Naive (Ingênuo)

Diagnóstico - Modelo Naive

Modelo Snaive (Ingênuo sazonal)

Diagnóstico - Modelo Snaive

Modelo Drift (Tangente)

Diagnóstico - Modelo Drift

Modelo Prophet

Diagnóstico - Modelo Prophet

Modelo de Regressão Linear

Termo	Estimate	Std. Error	T value	Pr(> t)
(Intercept)	348.5	9.778	35.643	< 2e-16 ***
trend()	2.307	3.052	7.559	6.22e-13 ***
I(trend()^2)	-2.576	2.557	-10.071	< 2e-16 ***
I(trend()^3)	6,29e-02	6,07e-03	10.356	< 2e-16 ***

Diagnóstico - Regressão Linear

Modelo de Decaimento Exponencial

Diagnóstico - Modelo Decaimento Exponencial

Modelo Método de Holt

Diagnóstico - Modelo Holt

Modelo Método de Holt-Winters

Diagnóstico - Modelo Holt-Winters

