		Selection Sort	
List	Size	Comparisons	Time (seconds)
1,000	(observed)	499500	0.030
2,000	(observed)	1999000	0.130
4,000	(observed)	7998000	0.496
8,000	(observed)	31996000	2.021
16,000	(observed)	127992000	8.378
32,000	(observed)	511984000	32.039
100,000	(estimated)	30000000000000000000000000000000000000	1282188 337.77
500,000	(estimated)	800000 1251 66776600	30004 8585.40
1,000,000	(estimated)	BBBBBBBBBBBB 500711227800	900000000 34587.67
10,000,000	(estimated)	13203ABOY 50111726780000	8208 agen 3541777.3
Insertion Sort			
List	Size	Comparisons	Time (seconds)
1,000	(observed)	249607	0.030
2,000	(observed)	992890	0.110
4,000	(observed)	3999 429	0.460
8,000	(observed)	16115116	1,888
16,000 ((observed)	64321667	7.528
32,000 ((observed)	257455590	30.297
100,000 ((estimated)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4212188 323.31
500,000 ((estimated)	40000000 63517000000	48242782 8167.79
1,000,000 ((estimated)	4847008877780 25465000000	48341008 32818.69
10,000,000 ((estimated)	6888888888 26659000000000	72800000 3331357.61
Merge Sort			
List S	Size	Comparisons	Time (seconds)
1,000 (observed)	8703	0.000
2,000 (observed)	19409	0.010
4,000 (observed)	42774	0.010
8,000 (observed)	9 3 5 9 1	0.020
16,000 (observed)	203267	0.037
32,000 (observed)	438603	0.085
100,000 (estimated)	8202002 1536618	10.533
500,000 (estimated)	8837121	2.695
1,000,000 (estimated)	18674232	5.271
10,000,000 (e	estimated)	220101127	75.321

32

 $\frac{7}{X} = \frac{32}{100}$

1. Comparing the sorts at a general level, is one sort always better than the others?

Merge sort is always better than selection and insertion sort. At a list size of 10,000,000, merge sort took only 0.0000004% of selection sort's comparisons and 0.000008% of insertion sort's comparisons, and only around 0.000024% of selection/insertion's time to complete.

2. Which sort is better when sorting a list that is already sorted (or mostly sorted)?

Insertion is the best sort for a mostly/already so steel list. Best (age for insertion sort is O(n), while best case for selection is $O(n^2)$ and merge is $O(n \log n)$.

- 3. You probably found that insertion sort has about half as many comparisons as selection sort. Why?

 Selection south Insertion sort only scans the dements until it finds the one
 it reeds (i.e. j+1). Meaning, insertion does not always have to seascan all the
 elements. Selection sort, however, must scan all remaining elements to find j+1.
 So on average, insertion sort usually only executes about half as many
 comparisons as selection sort by design.
- 4. Given the above observation, why are the times for insertion sort not half what they are for selection sort? (For part of the answer, think about what insertion sort has to do more of compared to selection sort.)

 Insertion 5 ort takes more work modifying the list than selection 5 ort does.

 Insertion 5 ort has to push everyn element one farther when insuring an element in place, whereas selection 5 ort only switches two elements wen 5 orthy.

 So while selection 5 ort takes more time 5 canning all the elements, it takes less time movins/5 orthy the elements.