Research Methods

EDA for Time Series & Experiment Design

Dr. Sven Magg, Prof. Dr. Stefan Wermter

http://www.informatik.uni-hamburg.de/WTM/

Plan for today!

- 1. EDA with time series data
 - visualising time series
 - correlations
 - trend & periodic features
 - cross- & autocorrelation
- Experiment Design
 - The first steps

Time Series Data

- Values recorded over time
 - values separated by constant time interval, or
 - data points are pairs of value and time of recording
- ⇒ Time series data is 2-dimensional!
- Time series of 325 years of tree growth:

Visualising Time Series

- First question: Do we have gaps?
 - If data is one vector, how can we be sure?
 - Always record the time as well and plot both!

 Plotting over both helps to avoid errors and makes interpretation easier

Visualising Time Series

- Time series often have high variation
- Difficult to spot general trends or areas of interest
- What is of interest?
 - Trend, periodic events, areas with a consistent deviation of the average over a period of time

Smoothing

- Use neighbourhood information
- Replace value with average of neighbourhood
 - Different averages can be used: mean, median, hanning,...
 - Size of neighbourhood: Window size
 - Beginning and end of the series are handled separately
- Mean/Median smoothing
 - n-smooth (window size = n)
 - $x_i = f(x_{i-\lfloor \frac{n}{2} \rfloor}, \dots, x_i, \dots, x_{i+\lfloor \frac{n}{2} \rfloor})$
 - f either mean() or median()

Mean: 3 3 4 4 5 5 6 4 3

Median: 334443533

Group Task!

What is the advantage/disadvantage of mean compared to median smoothing

How can I avoid the disadvantages?

Smoothing

- Mean smoothing
 - sensitive to outliers, which affect nearby values
 - creates "smoother" graphs than median smoothing
- Median smoothing
 - ignores single outliers
 - produces mesas (areas with same values)
- Mesas can be handled by re-smoothing with mean smoothing
- Sequences can be smoothed several times with different smoothing techniques

Bigger window = more general features become visible

but: more local features are lost

Dr. Sven Magg

Research Methods - Intro

Bigger window = mesas become larger

Dr. Sven Magg

Research Methods - Intro

Re-smoothing with mean "cleans" up the graph

Median+Mean Smooth 11

Dr. Sven Magg

Research Methods - Intro

13

Statistics for Time Series

- For one time series:
 - Correlation between value and time: Positive (or negative) linear trend
 - Correlation between different time steps with a given lag
 evidence of recurring or periodic events
- What do we want to see when dealing with two or more time series?
 - Cross-Correlation (Correlation at each time step)
 - Correlation with lag ⇒ One series is indicator or predictor of the other

Correlations Between Time Series

- Remember: Pearson's coefficient measures linear correlation!
- Correlation means there is evidence that one influences the other, or that both are affected by a set of other factors!

Trend

- Positive correlation between values and time
- Pearson's correlation coefficient for x and y: 0.64
- ⇒ positive linear trend
- But: Trend does not have to be linear!

Correlations Between Time Series

- Two comparable time series:
 - Both individually have positive trend: Coefficients: 0.64 and 0.59
- Do they correlate?
 - Coefficient Series1 vs. Series2: 0.79

Group Task!

Both series correlate (0.79) Any doubts or questions?

Correlations Between Time Series

- Two comparable time series:
 - Both individually have positive trend: Coefficients: 0.64 and 0.59
- Do they correlate?
 - Coefficient Series1 vs. Series2: 0.79
- Trend obscures correlation! Coefficient without trend: 0.67

De-Trending

- To see the features that are superimposed on the trend more clearly, we have to remove the trend!
- De-Trending in general: Once we have a fit for our data, remove this fit from our time series
- Simple version: Differencing $x_{i_diff} = x_i x_{i-1}$
 - Discrete version of subtracting the first derivative (=trend)
 - If the trend is of higher order: successive differencing
- Other common forms of de-trending
 - Removing a linear (or polynomial) fit

De-trending

- Before I said that the correlation coefficient of the data (before adding an artificial trend) was 0.67....
- Did we do something wrong?

Correlations with Lag

- Often events that correlate at different time steps are interesting:
 - Events that predict another event
 - Periodically occurring features
- How can we capture that statistically?
- Cross-Correlation between two series a and b
 - Calculate the correlations $corr(a_i, b_{i+lag})$ for $lag = -n, \cdots, -1, 0, 1, \cdots n$
 - Result is a vector of correlations

Cross-Correlation

Example with some fabricated data:

- Tree2 seems to be a predictor of Tree1 in the smoothed series
- Calculate cross-correlation up to a lag of 10 to check

Cross-Correlation

- There is a high correlation at lag +5
- This would be good evidence that factors affecting Tree2, affect Tree1 with a delay of 5 years.
- Tree2 could be used to make predictions about Tree1
- Again: Be carful with trend!

Periodic Series

 Cross-Correlation can be used to find periodic events (e.g. seasonal influences) in data

- What can we see?
 - Trend superimposed by a periodic cycle
 - Periodic peaks always in May

Periodic Series

First remove the trend by differencing

Suddenly we have more peaks? What does that mean?

Group Task!

First one peak, now many? Is that correct?

Periodic Series

Calculate cross-correlation with itself: Autocorrelation!

Zoom to +/- 24 lag

Time Series ...

- ...are 2-dimensional data
 - Check for gaps and record and plot explicitly over time
- ...often show high-frequency fluctuations (e.g. noise)
 - Remove by smoothing (and maybe repeated re-smoothing)
- ...can have a trend
 - Fit functions to estimate trend or calculate correlation with time
 - Remove by differencing or subtracting fitted function
- Cross/Auto-correlation can reveal
 - predictors or indicators
 - periodic features (e.g. season)
 - Beware of trend in series!

EDA Summary

- With EDA we search for patterns and structure in data to
 - learn and understand the behaviour of our system
 - find factors that influence our outcome
 - find interactions between factors
 - form hypotheses about the behaviour and the causal connections in our system

$$y = f(x, \varepsilon)$$

- We try to find factors x that influence y in our model
 - Try to identify how the combine/interact: f()
 - Look for evidence of hidden factors in ε

EDA Summary

- Visualisations to exploit human pattern recognition abilities
 - Frequency diagrams and boxplots
 - Scatterplots and line plots
 - Contingency tables and proportion charts
- Different measures in our toolset:
 - Central tendency (Mean, Median, Mode)
 - Dispersion (variance, standard deviation, range, IQR)
 - Shape (skew, kurtosis)
 - Association (chi-square, covariance, correlation coefficients)
 - Time series (trend, cross/auto-correlation)

EDA Summary

- Allowed is everything that helps you understand the data, but
 - be careful to remember what the graph/number represents,
 e.g. after transformation and smoothing
 - you only find evidence for causal relations, interactions, dependencies
- EDA can be useful to
 - build up a preliminary causal model
 - check early hypotheses
 - define and refine hypotheses for experiments

Experiment Design

- Why experiments?

 To answer a question!
 Hypothesis
 (about a causal relationship of factors)

 General Hypothesis:

 Factor X affect behaviour/outcome Y
- We have preliminary ideas of X, Y, and the effect, through EDA, a model, maybe just from an idea,

Finding X

- Step 1:
 - Define factors X_M and X_{1...n}
 - Define outcome Y
 - One by one, find valid and reliable ways to measure Xs and Y

- Example: Evolving a neural controller for a simulated robot:
 - Leg servos are controlled by neural network
 - Simulated flat environment without obstacles but linear slope
 - Question: How does network layout affect the robustness of the walking gait

Finding X and Y

Factors X

- Neural Network
 - Layout, Parameters, Weights
- Evolution
 - Parameters, Operators, Fitness Function
- Environment
 - Slope
- Agent
 - Initial Condition

Factor Y

- Walking gait
- Robustness
 - Stability, Distance

Finding X and Y

Measuring X

- NN:
 - Layout: #hidden neurons
 - Parameters: Snapshot of all values
 - Weights: double over generations
- Environment:
 - Slope as angle relative to initial direction
- Agent: Initial servo values

Measuring Y

- Walking gait
 - servo values over t and generations
- Distance
 - Euclidian distance to end point
 - Integrated path?
 - Position over time?
- Stability?

|| •

Finding X and Y

- Outcome of step 1:
 - A tree for X and Y, listing all factors and their measurements (=variables)
 - Decision of which variable(s) to manipulate and control
 - Optimal: A diagram of interactions between variables (model)
- The diagram and the tree of factors are your thinking aids!
 - Aid as a representation of your thinking process and progress
- Pilot study + EDA to check the validity and reliability of the chosen measurements

What have we learned?

- 1. Time series are two-dimensional data
- Visualise them over time and use smoothing to reveal trends and general features
- 3. Be careful with trend and correlations
- Cross-Correlations with lags can reveal interactions with time delay or periodic features
- 5. Step one of experimental design: Lay out all factors in front of you and have a long and close look at them!
- 6. The better you do this step, the better the experiment will be