«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет программной инженерии и компьютерной техники
Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчет По лабораторной работе №4 Вариант 4

Студент:

Ильин Н. С.

P3210

Преподаватель:

Наумова Н. А.

Оглавление

Цель работы:	3
1 Вычислительная реализация задачи:	3
2. Программная реализация	5
Блок схемы	5
Листинг программы	9
Примеры и результаты работы программы	11
Выводы:	13

Цель работы:

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

1 Вычислительная реализация задачи:

Линейная аппроксимация:

$$y = \frac{15x}{x^4+4}$$
; $n = 11$; $x \in [-4; 0]$; $h = 0.4$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0	1.490	2.721	2.964	2.274	1.500	0.968	0.642	0.441	0.314	0.231

$$\varphi(x) = a + bx$$

Вычисляем суммы:
$$sx = 22$$
, $sxx = 61.6$, $sy = 13,55$ $sxy = 20,55$

$$\begin{cases} n*a + sx*b = sy \\ sx*a + sxx*b = sxy \end{cases} \begin{cases} 11*a + 22*b = 13,55 \\ 22*a + 61.6*b = 20,55 \end{cases}$$

$$\begin{cases} a = 1.976 \\ b = -0.372 \end{cases}$$

$$\varphi(x) = 1.976 - 0.372 * x$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0	1,49	2,721	2,964	2,274	1,5	0,968	0,642	0,441	0,314	0,231
φ(xi)	1,976	1,827	1,678	1,530	1,381	1,232	1,083	0,934	0,786	0,637	0,488
(φ(xi)- yi)^2	3,905	0,114	1,087	2,058	0,798	0,072	0,013	0,085	0,119	0,104	0,066

$$\sigma = \sqrt{\frac{\sum (\phi(xi) - yi)^2}{n}} = 0.875$$

Квадратичная аппроксимация:

$$y = \frac{15x}{x^4+4}$$
; $n = 11$; $x \in [-4; 0]$; $h = 0.4$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0	1.490	2.721	2.964	2.274	1.500	0.968	0.642	0.441	0.314	0.231

$$\varphi(x) = a + bx + cx^2$$

Вычисляем суммы:

$$sx = 22$$
, $sxx = 61.6$, $sxxx = 193.6$; $sxxxx = 648.5248$; $sy = 13.55$; $sxy = 20.55$; $sxxy = 40.96$

$$\begin{cases} n*a + sx*b + sxx*c = sy \\ sx*a + sxx*b + sxxx*c = sxy \\ sxx*a + sxxx*b + sxxxx*c = sxxy \end{cases}$$

$$\begin{cases} 11*a + 22*b + 61.6*c = 13,55 \\ 22*a + 61.6*b + 193,6*c = 20,55 \\ 61.6*a + 193,6*b + 648.52*c = 40,96 \end{cases}$$

$$\begin{cases} a = 1.017 \\ b = 1.227 \\ c = -0.4 \end{cases}$$

$$\varphi(x) = 1.017 + 1.227x - 0.4x^2$$

i	1	2	3	4	5	6	7	8	9	10	11
xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0	1.490	2.721	2.964	2.274	1.500	0.968	0.642	0.441	0.314	0.231
φ(xi)	1,017	1,444	1,743	1,913	1,956	1,871	1,658	1,317	0,847	0,250	-0,475
(φ(xi)-											
yi)^2	1,034	0,002	0,957	1,104	0,101	0,138	0,476	0,455	0,165	0,004	0,498

$$\sigma = \sqrt{\frac{\sum (\phi (xi) - yi)^2}{n}} = 0.67$$

0.67 < 0.875 у квадратичной аппроксимации среднеквадратичное отклонение меньше, поэтому это приближение лучше.

2. Программная реализация

Блок схемы

МНК

Линейная фукнция

Полиномиальная функция 3-й степени

Листинг программы

```
import math

def calculate_mse(errors):
    """Расчет среднеквадратичного отклонения"""
    return sum(e * e for e in errors) / len(errors)

def calculate_pearson_correlation(x, y, coeffs=None):
    """Расчет коэффициента корреляции Пирсона"""
```

```
mean_x = sum(x) / len(x)
  mean_y = sum(y) / len(y)
  numerator = 0.0
  denominator_x = 0.0
  denominator_y = 0.0
  for xi, yi in zip(x, y):
     numerator += (xi - mean_x) * (yi - mean_y)
     denominator_x += (xi - mean_x) ** 2
     denominator_y += (yi - mean_y) ** 2
  return numerator / math.sqrt(denominator_x * denominator_y)
def fit_linear(x, y):
   ''"Линейная функция: y = a*x + b"""
  X = [[xi, 1.0] \text{ for } xi \text{ in } x]
  return solve_least_squares(X, y)
def fit_quadratic(x, y):
   ''"'Полиномиальная функция 2-й степени: y = a*x^2 + b*x + c"""
  X = [[xi ** 2, xi, 1.0] \text{ for } xi \text{ in } x]
  return solve_least_squares(X, y)
def fit_cubic(x, y):
   """Полиноми́альная функция 3-й степени: y = a*x^3 + b*x^2 + c*x + d"""
  X = [[xi ** 3, xi ** 2, xi, 1.0] \text{ for } xi \text{ in } x]
  return solve_least_squares(X, y)
def fit_exponential(x, y):
   """Экспоненциальная функция: y = a * exp(b*x)"""
  X = [[1.0, math.exp(xi)] for xi in x]
  y_log = [math.log(yi) for yi in y]
  coeffs = solve_least_squares(X, y_log)
  a = math.exp(coeffs[0])
  b = coeffs[1]
  return [a, b]
def fit_logarithmic(x, y):
   """Логарифмическая функция: y = a + b*ln(x)"""
  X = [[1.0, math.log(xi)]  for xi in x]
  return solve_least_squares(X, y)
def fit_power(x, y):
   """Степенная функция: y = a * x^b"""
  X = [[1.0, math.log(xi)] for xi in x]
  y_log = [math.log(yi) for yi in y]
  coeffs = solve_least_squares(X, y_log)
  a = math.exp(coeffs[0])
  b = coeffs[1]
  return [a, b]
def solve_least_squares(X, y):
"""Решение системы уравнений методом наименьших квадратов"""
  Xt = transpose(X)
  XtX = multiply_matrix(Xt, X)
  XtY = multiply_matrix_vector(Xt, y
  return solve_linear_system(XtX, XtY)
def transpose(matrix):
  """Транспонирование матрицы"""
```

```
return [list(row) for row in zip(*matrix)]
def multiply_matrix(a, b):
"""Умножение двух матриц"""
  m, k = len(a), len(a[0])
  n = len(b[0])
  result = [[0.0] * n for _ in range(m)]
  for i in range(m):
     for j in range(n):
        for I in range(k):
          result[i][j] += a[i][l] * b[l][j]
  return result
def multiply_matrix_vector(matrix, vector):
   """Умножение матрицы на вектор""'
  m = len(matrix)
  n = len(matrix[0])
  result = [0.0] * m
  for i in range(m):
     for j in range(n):
        result[i] += matrix[i][j] * vector[j]
  return result
def solve_linear_system(A, b):
   """Решение системы линейных уравнений Ах = b методом Гаусса с выбором
главного элемента""
  n = len(A)
  M = [row[:] + [b_i] for row, b_i in zip(A, b)]
  # Прямой ход
  for i in range(n):
     max_row = max(range(i, n), key=lambda r: abs(M[r][i]))
     M[i], M[max\_row] = M[max\_row], M[i]
     pivot = M[i][i]
     for j in range(i, n + 1):
        M[i][j] /= pivot
     for k in range(i + 1, n):
        factor = M[k][i]
        for j in range(i, n + 1):
          M[k][j] = factor * M[i][j]
  # Обратный ход
  x = [0.0] * n
  for i in range(n - 1, -1, -1):
     x[i] = M[i][n] - sum(M[i][j] * x[j] for j in range(i + 1, n))
```

Примеры и результаты работы программы

Approximation Results

Linear Model

Coefficients: [-1.2343574745311559, 12.237401110822024]

MSE: 0.461343, R²: 0.840771

Достоверность аппроксимации: Удовлетворительная аппроксимация (модель в целом адекватно описывает явление)

Pearson r: -0.916936, r2: 0.840771

x	у	y_pred	error
2.9200	7.9488	8.6331	-0.6843
4.5000	7.6088	6.6828	0.9260
5.4400	6.0687	5.5225	0.5462
6.0000	4.8687	4.8313	0.0374
6.5000	3.3887	4.2141	-0.8254

Quadratic Model

Coefficients: [-0.5178247146614562, 3.6043876500755245, 1.8443283422265697]

MSE: 0.001218, R²: 0.999580

Достоверность аппроксимации: Высокая точность аппроксимации (модель хорошо описывает явление)

Y	V	v pred	error

Github: https://github.com/MrTheFall/computational_math/tree/main/lab4

Выводы:

В рамках лабораторной работы были исследованы численные методы интегрирования с использованием языка Python. В процессе работы были изучены различные подходы к вычислению определенных интегралов, включая методы прямоугольников (левых, правых и средних), метод трапеций, метод Ньютона-Котеса и метод Симпсона.

Была разработана программа, которая позволяет выбрать одну из предложенных функций, задать пределы интегрирования, точность и начальное значение числа разбиений интервала. После реализации всех рассмотренных методов вычисления интегралов было установлено, что метод Симпсона является наиболее точным и быстрым.

В ходе выполнения работы были проведены расчеты интегралов различными методами, а также выполнено сравнение полученных результатов с точными значениями интегралов.

Кроме того, была решена дополнительная задача, связанная с исследованием сходимости несобственных интегралов второго рода и их вычислением с использованием рассмотренных численных методов в случаях, когда подынтегральная функция имеет бесконечный разрыв в точке а, точке b или на отрезке интегрирования.