# Tema 12: Integración múltiple.

José M. Salazar

Noviembre de 2016

## Tema 12: Integración múltiple.

- Lección 17. Integrales dobles.
- Lección 18. Integrales triples.

### Indice

- Integrales en un paralelepípedo rectangular.
  - Primeras definiciones y resultados básicos.
  - Continuidad e integrabilidad. Propiedades básicas de las integrales triples.
  - Integración iterada. Teorema de Fubini.
- 2 Integración sobre regiones más generales.
  - Integración sobre regiones elementales.
- Cambio de variable
  - Teorema del cambio de variable.
  - Cambio de variable a coordenadas cilíndricas.
  - Cambio de variable a coordenadas esféricas.

#### Introducción

Sea  $f: B \subset \mathbb{R}^3 \to \mathbb{R}$  una función acotada de tres variables, definida sobre el paralelepípedo rectangular

$$B = \{(x, y, z) \in \mathbb{R}^3 : a \le x \le b, c \le y \le d, r \le z \le s\}$$
$$= [a, b] \times [c, d] \times [r, s]$$

Se consideran tres particiones P, Q y R de [a,b], [c,d] y [r,s] respectivamente, con

$$\mathcal{P} \equiv \{x_0 = a < x_1 < x_2 < \dots < x_{n_1} = b\}$$

$$\mathcal{Q} \equiv \{y_0 = c < y_1 < y_2 < \dots < y_{n_2} = d\}$$

$$\mathcal{R} \equiv \{z_0 = r < y_1 < y_2 < \dots < z_{n_2} = s\}$$

#### Introducción

Estas particiones determinan los paralelepípedos  $[x_{i-1},x_i] \times [y_{j-1},y_j] \times [z_{k-1},z_k]$  de la partición de B. Se tendrán  $n=n_1n_2n_3$  paralelepípedos,  $B_i$ , con  $i=1,\ldots,n$ . La partición será  $\Delta=\{B_1,\ldots,B_n\}$ . Al volumen de cada  $B_i$  lo denotaremos por  $V(B_i)$ .

#### Introducción

Sean  $M_i$  y  $m_i$  el supremo y el ínfimo de f en  $B_i$ . Consideremos las sumas

$$s_{\Delta} = \sum_{i=1}^{n} m_i V(B_i)$$
  $S_{\Delta} = \sum_{i=1}^{n} M_i V(B_i)$ 

Se cumplen las propiedades:

- 1.  $s_{\Delta} \leq S_{\Delta}$ .
- 2. Si  $\Delta'$  es más fina que  $\Delta$  ( $\mathcal{P}'$  más fina que  $\mathcal{P}$ ,  $\mathcal{Q}'$  más fina que  $\mathcal{Q}$  y  $\mathcal{R}'$  más fina que  $\mathcal{R}$ ), entonces

$$s_{\Delta} \leq s_{\Delta'}$$
  $y$   $S_{\Delta'} \leq S_{\Delta}$ 

- 3. Para todo par de particiones  $\Delta, \Delta'$ , se tiene  $s_{\Delta} \leq S_{\Delta'}$
- 4. Si s es el supremo de los  $s_{\Delta}$  y S es el ínfimo de los  $S_{\Delta}$ , entonces  $s \leq S$ .

#### Definición

Si s = S, se dice que f es integrable en B, y el límite, al que llamamos integral triple de f sobre B, se escribe así:

$$\int \int \int_{B} f(x, y, z) dV \quad \phi \quad \int \int \int_{B} f(x, y, z) dx dy dz$$

#### Teorema

Sea f acotada en B. Entonces f es integrable en B si y sólo si para todo  $\epsilon > 0$  existe una partición  $\Delta$  tal que  $S_{\Delta} - s_{\Delta} < \epsilon$ 

#### Definición

Dada la partición  $\Delta = \{B_1, \ldots, B_n\}$ ,

$$s_{\Delta} \leq \sum_{i=1}^{n} f(x_i^*, y_i^*, z_i^*) V(B_i) \leq S_{\Delta}$$

para cualquier selección de  $(x_i^*, y_i^*, z_i^*) \in B_i$ . A la suma  $\sum_{i=1}^{n} f(x_i^*, y_i^*, z_i^*) V(B_i)$  se la llama suma de Riemann asociada a

#### Definición

Una partición  $\Delta_n$  de  $B = [a, b] \times [c, d] \times [r, s]$  es regular si  $\mathcal{P}_n$ ,  $\mathcal{Q}_n$  y  $\mathcal{R}_n$  son particiones regulares de n+1 puntos de [a, b], [c, d] y [r, s] respectivamente.

#### Observación

Dada la partición regular  $\Delta_n = \{B_1, \dots, B_{n^3}\}$ , la integrabilidad se puede reescribir como la existencia del límite

$$\lim_{n \to \infty} \sum_{i=1}^{n^3} f(x_i^*, y_i^*, z_i^*) V(B_i)$$

para cualesquiera  $(x_i^*, y_i^*, z_i^*) \in B_i$ .

### Integrabilidad de funciones continuas

#### Teorema

Toda función continua  $f: B \to \mathbb{R}$  definida sobre un paralelepípedo rectangular B es integrable. De hecho, basta con que f sea acotada y que el conjunto de puntos de discontinuidad esté formado por una unión finita de gráficas de funciones continuas de dos variables definidas en compactos.

### Propiedades (Propiedades de las integrales triples)

Si f, g son integrables en B, f + g y kf también lo son, cumpliéndose:

- 1.  $\iint_B (f+g) dV = \iint_B f dV + \iint_B g dV.$
- 2.  $\iint \int_B kf \, dV = k \iint \int_B f \, dV$ .
- 3. Si  $f \ge g$ , entonces  $\int \int \int_B f \, dV \ge \int \int \int_B g \, dV$ .
- 4. Si  $B_1, B_2$  son paralelepípedos con un lado común, y  $B = B_1 \cup B_2$ ,  $\int \int \int_{B_1} f \, dV + \int \int \int_{B_2} f \, dV = \int \int \int_{B} f \, dV$ .
- 5.  $\left| \int \int \int_{B} f \, dV \right| \leq \int \int \int_{B} |f| \, dV$

## Integración respecto de una variable

### Definición (Integración parcial)

Sea  $f: B \to \mathbb{R}$  continua en  $B = [a, b] \times [c, d] \times [r, s]$ . La integración parcial de f con respecto a z,  $\int_r^s f(x, y, z) dz$ , consiste en calcular la integral en la que se consideran x, y fijas y se integra f(x, y, z) con respecto a z.

De modo análogo se define la integración parcial de f con respecto a x,  $\int_a^b f(x, y, z) dx$ , o con respecto a y,  $\int_a^d f(x, y, z) dy$ .

En el primer caso,  $V(x,y) = \int_{r}^{s} f(x,y,z) dz$  depende de las variables x e y. En los otros dos casos se obtienen las funciones V(x,z) y V(y,z).

## Integración iterada

### Definición (Integración iterada)

Si se integra la función  $V(x,y) = \int_r^s f(x,y,z) dz$ , respecto de y y respecto de x, se obtiene la integral iterada:

$$\int_{a}^{b} \left[ \int_{c}^{d} V(x, y) \, dy \right] dx = \int_{a}^{b} \left[ \int_{c}^{d} \left[ \int_{r}^{s} f(x, y, z) \, dz \right] dy \right] dx$$

Se denota:

$$\int_a^b \int_c^d \int_r^s f(x, y, z) \, dz \, dy \, dx$$

Obsérvese que existen seis posibles órdenes de integración.

### Teorema de Fubini

### Teorema (Fubini)

Sea f continua en  $B = [a, b] \times [c, d] \times [r, s]$ . Entonces:

$$\int \int \int_B f(x,y,z) dV = \int_a^b \int_c^d \int_r^s f(x,y,z) dz dy dx$$

El valor de la integral no depende del orden de integración elegido.

### Regiones elementales

### Definición (Regiones elementales)

Una región sólida E se dice de tipo 1 si

$$E = \{(x, y, z) : (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$$

con  $u_1, u_2 : D \to \mathbb{R}$  funciones continuas definidas sobre una región elemental del plano xy.

Decimos que E es de tipo 2 si

$$E = \{(x, y, z) : (y, z) \in D, u_1(y, z) \le x \le u_2(y, z)\}$$

con  $u_1, u_2 : D \to \mathbb{R}$  funciones continuas definidas sobre una región elemental del plano yz.

Decimos que E es de tipo 3 si

$$E = \{(x, y, z) : (x, z) \in D, u_1(x, z) \le y \le u_2(x, z)\}$$

con  $u_1, u_2 : D \to \mathbb{R}$  funciones continuas definidas sobre una región elemental del plano xz.

Estas regiones sólidas son regiones elementales en el espacio.

### Integrales sobre regiones elementales

#### Definición (Integral sobre una región elemental)

Dada  $f: E \to \mathbb{R}$  continua, con E región elemental, se define la integral de f sobre E,  $\int \int \int_E f(x,y,z) \, dV$ , del siguiente modo: Sea un paralelepípedo B, con  $E \subset B$ , y sea  $F: B \to \mathbb{R}$ 

$$F(x,y,z) = \begin{cases} f(x,y,z) & si(x,y,z) \in E \\ 0 & si(x,y,z) \notin E \end{cases}$$

**Entonces** 

$$\int \int \int_{E} f(x, y, z) dV = \int \int \int_{B} F(x, y, z) dV$$

La definición no depende del B elegido.

#### Teorema

Si  $f: E \to \mathbb{R}$  es continua en una región E de tipo 1, entonces

$$\int \int \int_{E} f(x,y,z) dV = \int \int_{D} \left[ \int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) dz \right] dA$$

Si la región E es de tipo 2, entonces

$$\int \int \int_{E} f(x,y,z) dV = \int \int_{D} \left[ \int_{u_{1}(y,z)}^{u_{2}(y,z)} f(x,y,z) dx \right] dA$$

Si la región E es de tipo 3, entonces

$$\int \int \int_{E} f(x,y,z) dV = \int \int_{D} \left[ \int_{u_{1}(x,z)}^{u_{2}(x,z)} f(x,y,z) dy \right] dA$$

# Propiedades de la integración en regiones elementales

### Propiedades

- 1.  $\iint_{E} (f+g) dV = \iint_{E} f dV + \iint_{E} g dV.$
- 2.  $\iint \int_{E} kf \, dV = k \iint \int_{E} f \, dV$ .
- 3. Si  $f \ge g$ , entonces  $\iint \int_E f \, dV \ge \iint \int_E g \, dV$ .
- 4. Si  $E = E_1 \cup E_2$  sin que  $E_1$  y  $E_2$  se solapen salvo, quizá, en los bordes, entonces  $\int \int \int_E f \ dV = \int \int \int_{E_1} f \ dV + \int \int \int_{E_2} f \ dV$ .
- 5.  $\int \int_E 1 \, dV = V(E)$  siendo V(E) el volumen de E.
- 6. Si  $m \le f(x, y, z) \le M$  para todo  $(x, y, z) \in E$ , entonces

$$m V(E) \le \int \int \int_E f \, dV \le M \, V(E)$$

7.  $\int \int \int_E f \, dV = f(x_0, y_0, z_0)V(E)$  para algún  $(x_0, y_0, z_0) \in E$ .

## Cambio de variable en integrables triples

Sea  $T: \mathbb{R}^3 \to \mathbb{R}^3$  una transformación  $C^1$  del espacio uvw en xyz, T(u,v,w)=(x,y,z), esto es, con x=x(u,v,w), y=y(u,v,w), z=z(u,v,w).

#### Definición

El jacobiano de T es el determinante de su matriz jacobiana:

$$det\left(JT(u,v,w)\right) = det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{pmatrix}$$

## Cambio de variable en integrales triples

#### Teorema

Sea  $T: S_2 \to S_1$  una transformación  $C^1$  y biyectiva definida entre dos regiones sólidas elementales,  $S_2$  contenida en el espacio uvw y  $S_1$  contenida en el espacio xyz. Entonces, si  $f: S_1 \to \mathbb{R}$  es integrable,

$$\int \int \int_{S_1} f(x, y, z) dx dy dz =$$

$$= \int \int \int_{S_2} f(T(u, v, w)) |det(JT(u, v, w))| du dv dw$$

### Cambio de variable a coordenadas cilíndricas

#### Teorema (Coordenadas cilíndricas)

Si la función T transforma coordenadas cilíndricas en cartesianas,  $T(r, \theta, z) = (x, y, z)$ , con

$$x = r \cos \theta$$
,  $y = r \sin \theta$ ,  $z = z$ 

y con  $r \in [0, \infty)$ ,  $\theta \in [0, 2\pi)$  y  $z \in \mathbb{R}$ , se tiene el jacobiano

$$det(JT(r,\theta,z)) = \begin{vmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r,$$

de modo que el teorema del cambio de variable queda así:

$$\int \int \int_{S_1} f(x,y,z) \, dx \, dy \, dz = \int \int \int_{S_2} f(T(r,\theta,z)) r \, dr \, d\theta \, dz$$

### Cambio de variable a coordenadas cilíndricas



Coordenadas cilíndricas

### Cambio de variable a coordenadas esféricas

### Teorema (Coordenadas esféricas)

Si la función T transforma coordenadas esféricas en cartesianas,  $T(\rho, \theta, \phi) = (x, y, z)$ , con

$$x = \rho \operatorname{sen} \phi \cos \theta, \quad y = \rho \operatorname{sen} \phi \operatorname{sen} \theta, \quad z = \rho \cos \phi$$

y tal que  $\rho \in [0, \infty)$ ,  $\theta \in [0, \pi)$ ,  $\phi \in [0, 2\pi)$ , se tiene el jacobiano

$$\det (JT(\rho, \theta, \phi)) = \begin{vmatrix} \sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\ \sin \phi \sin \theta & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\ \cos \phi & 0 & -\rho \sin \phi \end{vmatrix}$$

$$= -\rho^2 \operatorname{sen} \phi,$$

### Teorema (Coordenadas esféricas)

El teorema del cambio de variable queda así:

$$\int \int \int_{S_1} f(x,y,z) \, dx \, dy \, dz =$$

$$= \int \int \int_{S_2} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi.$$



Coordenadas esféricas