

Universidad Nacional de Ingeniería Facultad de Ciencias

ESCUELA PROFESIONAL DE MATEMÁTICA CICLO 2025-I

Curso: Álgebra lineal 1-CM1B2

PRÁCTICA DIRIGIDA 2

- 1. Determinar cuáles de las siguientes aplicaciones son lineales.
 - (a) $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x_1, x_2, x_3) = (2 \cdot x_1 7 \cdot x_3, 0, 3 \cdot x_2 + 2 \cdot x_3)$
 - (b) $f: \mathbb{C} \to \mathbb{C}, f(z) = \bar{z}$ (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial)

(c)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

- 2. Probar la linealidad de las siguientes aplicaciones
 - (a) $t: K^{n \times m} \to K^{m \times n}, t(A) = A^t$
 - (b) $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \delta(f) = f'$
 - (c) $\epsilon_{\alpha}: K[X] \to K, \epsilon_{\alpha}(f) = f(\alpha)$ donde $\alpha \in K$
- 3. (a) Probar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2).
 - (b) ¿Existirá una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (2,6), f(-1,1) = (2,1) y f(2,7) = (5,3)?
 - (c) Sean $f, q: \mathbb{R}^3 \to \mathbb{R}^3$ transformaciones lineales tales que

$$f(1,0,1) = (1,2,1), \quad f(2,1,0) = (2,1,0), \quad f(-1,0,0) = (1,2,1)$$

 $g(1,1,1) = (1,1,0), \quad g(3,2,1) = (0,0,1), \quad g(2,2,-1) = (3,-1,2)$

Determinar si f = g.

- 4. Consideramos la transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^2$ definida por f(x, y, z, w) = (x y z + w, 0). Determine la dimensión del núcleo y la imagen de f.
- 5. Sea $f: V \to W$ una transformación lineal y sean x y y en V tales que f(x) = z. Sabiendo que $f(y) = 0_w$, demostrar que f(x + y) = z.
- 6. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por f(x,y) = (-x,-y). Demuestre que es una transformación lineal.
- 7. La función $f: \mathbb{R}^2 \to \mathbb{R}^3$ es lineal, y verifica f(1,2) = (-1,0,2), f(2,1) = (0,2,-1). Determinar las imágenes de los vectores (3,3) y (0,-1).
- 8. Consideremos un espacio vectorial V sobre un cuerpo K, y dos transformaciones lineales $f: V \to K$ y $g: V \to K$. Sea $F: V \to K^2$ tal que F(v) = (f(v), g(v)). Demuestre que F es una transformación lineal.

- 9. Calcular bases del núcleo y de la imagen para cada tranformación lineal del ejercicio 1. Decidir, en cada caso, si f es epimorfismo, monomorfismo o isomorfismo. En el caso que sea isomorfismo, calcular f^{-1} .
- 10. Sean $g:V\to V'$ y $f:V'\to V''$ transformaciones lineales. Probar:
 - (a) $\operatorname{Nu}(g) \subseteq \operatorname{Nu}(f \circ g)$.
 - (b) $\operatorname{Si} \operatorname{Nu}(f) \cap \operatorname{Im}(g) = \{0\}$, entonces $\operatorname{Nu}(g) = \operatorname{Nu}(f \circ g)$.
 - (c) $\operatorname{Im}(f \circ g) \subseteq \operatorname{Im}(f)$.
 - (d) Si $\operatorname{Im}(g) = V'$, entonces $\operatorname{Im}(f \circ g) = \operatorname{Im}(f)$.
- 11. Determinar si existe (y en caso afirmativo hallar) una transformación lineal $f : \mathbb{R}^3 \to \mathbb{R}^4$ que verifique $\operatorname{Im}(f) = S$ y $\operatorname{Nu}(f) = T$ en los siguientes casos:
 - (a) $S = \{(x_1, x_2, x_3, x_4) / x_1 + x_2 x_3 + 2 \cdot x_4 = 0\}, T = <(1, 2, 1) >$
 - (b) $S = \{(x_1, x_2, x_3, x_4) / x_1 + x_2 = 0, x_3 + x_4 = 0\}, T = <(1, -2, 1) >$
- 12. Sea $S \subset (\mathbb{R}^3)^*$ el subespacio $S = \{ \varphi \in (\mathbb{R}^3)^* : \varphi(1, -1, 2) = 0 \}$. Encontrar una base de S.
- 13. Dada la base B del K-espacio vectorial V, hallar su base dual en cada uno de los siguientes casos:
 - (a) $V = \mathbb{R}^2$, $B = \{(1, -1), (2, 0)\}$.
 - (b) $V = \mathbb{R}^3$, $B = \{(1, -1, 0), (0, 1, 0), (0, 0, 1)\}.$
 - (c) $V = \mathbb{R}_3[X], B = \{-X + 2, X 1, X^2 3X + 2, X^3 3X^2 + 2X\}.$
- 14. Sea V un K-espacio vectorial de dimensión n.
 - (a) Sean $\varphi_1, \varphi_2 \in V^* \{0\}$. Demostrar que Nu $(\varphi_1) = \text{Nu}(\varphi_2) \iff \{\varphi_1, \varphi_2\}$ es linealmente dependiente.
 - (b) Sean $\varphi_i(1 \leq i \leq r)$ formas lineales en V^* y sea $\varphi \in V^*$ tales que

$$\varphi_1(x) = \varphi_2(x) = \ldots = \varphi_r(x) = 0 \Rightarrow \varphi(x) = 0$$

Probar que $\varphi \in \langle \varphi_1, \dots, \varphi_r \rangle$.

(c) Sean $\varphi_i(1 \leq i \leq n)$ formas lineales en V^* . Probar que

$$\{\varphi_1, \dots, \varphi_n\}$$
 es base de $V^* \iff \bigcap_{i=1}^n \operatorname{Nu}(\varphi_i) = 0$

- 15. Sea $\varphi \in (\mathbb{R}^3)^*$ definida por $\varphi(x_1, x_2, x_3) = 2.x_1 + 3.x_2 x_3$ y sea $E^* = \{\delta_1, \delta_2, \delta_3\} \subseteq (\mathbb{R}^3)^*$ la base dual de la canónica.
 - (a) Calcular las coordenadas de φ en E^* .
 - (b) Calcular las coordenadas de φ en la base $B^* = \{\delta_1 + \delta_2 + \delta_3, \delta_1 + \delta_2, \delta_1\}.$
 - (c) Sea $S \subseteq \mathbb{R}^3$ el subespacio $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2 \cdot x_1 + 3 \cdot x_2 x_3 = 0\}$ y sea $B \subset \mathbb{R}^3$ la base $B = \{(0, 0, 1), (0, 1, -1), (1, -1, 0)\}$. Encontrar una ecuación para S en la base B. (Sugerencia: notar que B^* es la base dual de B y no hacer ninguna cuenta.)

- 16. Sean $B = \{(1,1), (1,-1)\} \subset \mathbb{R}^2$ y $B^* = \{\varphi_1, \varphi_2\}$ con $\varphi_1(x,y) = \frac{x+y}{2}$ y $\varphi_2(x,y) = \frac{x-y}{2}$, su base dual.
 - (a) Hallar las coordenadas del vector $v = (7, 9) \in \mathbb{R}^2$ en la base B.
 - (b) Hallar las coordenadas de $\varphi \in (\mathbb{R}^2)^*$ dada por $\varphi(x,y) = 3x + 5y$ en la base B^* .
- 17. Sean B y B_1 las bases de \mathbb{R}^3 definidas por $B = \{(1,1,0),(1,0,1),(0,1,1)\}$ y $B_1 = \{(1,1,-1),(1,-1,1),(-1,1,1)\}$. Si $\varphi \in (\mathbb{R}^3)^*$ tiene coordenadas (1,-3,2) respecto de B^* , calcular sus coordenadas respecto de B_1^* .
- 18. Si $V=\mathbb{R}^3$ y $S=\langle (1,0,1) \rangle$ hallar una base de $\frac{V}{S}.$
- 19. Si $V = \mathbb{R}^4$ y $S = \langle (-1,1,1,-1), (2,1,0,1) \rangle$ hallar una base de $\frac{V}{S}$.
- 20. Sea V un K-espacio vectorial y S un subespacio de V. Pruebe que el anulador S° de S es un subespacio de V^{*} .
- 21. Pruebe que si S_1 y S_2 subespacios de un espacio vectorial V, entonces $\frac{S_1}{S_1 \cap S_2} \approx \frac{S_1 + S_2}{S_2}$.
- 22. Sea $f:K^n\to K^m$ una transformación lineal. Probar
 - (a) Si f es inyectiva, entonces $n \leq m$.
 - (b) Si f es sobreyectiva, entonces $n \geq m$.
 - (c) Si f es un isomorfismo, entonces n = m.
- 23. En \mathbb{R}^3 , hallar la base dual de (1,0,1), (1,1,0), (0,1,1).
- 24. Sean u=(a,b), v=(c,d) tales que ad-bc=1. Hallar la base dual de $\{u,v\}$ en \mathbb{R}^2 .

Lima, 16 de abril del 2025.