

Permutation & combination

Fundamental Principles of - Counting

(1) Multiplication Principle

If an operation can be performed In 'm' different way, following which a second operation can be performed in 'n' different ways, then the two operations in succession can be performed in m × n ways. This can be extended to any finite number of operations

Permutation

Each of the different arrangements which can be made by taking some or all of a number of things is called permutations. Factorial notation: $n! = n(n-1)(n-2).....3 \cdot 2 \cdot 1$ n! = n(n - 1)! 0! = 1! = 1 $2n! = 2n \times n! [1, 3, 5, 7 \dots (2n - 1)]$ Factorials of negative integers are not defined.

The number of permuation of n things taken all at a time, p are alike of one kind, q are alike of seond kind r are alike of a third kind and n=p+q+r; $\frac{n!}{p!q!r!}$

Number of permutation of n different things taken r at a time, when a particular things is never taken in each arrangement is n-1P,

(2) Addition Principle

If an operation can be performed in 'm' different ways & another operation, Which is independent of the first operation, can be performed in 'n' different ways, then either of the two operations can be performed in (m + n) ways. This can be extended to any finite number of mutually exclusive operations.

Important results

Number of permutations of n different things, taking r at a the is denoted by p, or P(n,r).

$${}^{\mathsf{n}}\mathsf{P}_{\mathsf{r}} = \frac{n!}{(n-r)!} = n(n-1)(n-2)\cdots(n-r+1)$$

Number of permutations of n different things taken all at a time = ${}^{n}p_{n}$ = n!

$$^{n}P_{0} = 1, ^{n}P_{1} = n, ^{n}P_{n} = n!$$
 $^{n}P_{r} = n(^{n-1}P_{r-1}) = n(n-1)(n-2)(^{n-2}P_{r-2})$
 $^{n-1}P_{r} = (n-r)^{n-1}P_{n-1}$
 $^{n}P_{n} = n!$
 $^{n}P_{r} = ^{n-1}P_{r} + r^{n-1}P_{r-1}$

The number of permutations of n different things taken r at a time when each thing may be repeated any numbr of times is n^r.

Number of permutations of n different things, taken all at a time, when m specified things always come together is $m! \times (n - m + 1)!$

Number of permutations of n different things taken r at a time when a particular thing is to be always included in each arrangement, is r $^{\rm n-1}P_{\rm r-1}$ Number of permutations of n different things, taken r at time, when p particular things is to be always included in each arrangement, is $p! (r - (p - 1))^{n-p}P_{r-p}$

Number of permutations of n different things, taken all at a time, when m specified things never come together is n! - m! × (n - m + 1)!

Circular Permutations

Arrangement round a circular table: Number of circular permutations of n different things taken all at a time is (n-1)!, if clockwise & anticlockwise orders are taken as different.

Arrangement of beads around a circular necklace: Number of circular permutations of n different things taken all at a time is $\frac{1}{2}(n-1)!$ if clockwise & anticlockwise orders are taken as not different

Number of circular permutations of n different things taken r at a time is-

(i) $\frac{{}^{n}P_{r}}{r}$, when anti clockwise & clockwise orders are taken as different. (ii) $\frac{^{n}P_{r}}{^{2}r}$, when anticlockwise & clockwise orders are not different.

each of the different selections made by taking some or all at a time, irrespective of their arrangements, is called a combination. The number of all combinations of n objects taken r at a time is denoted by c(n, r) or ${}^{n}C_{r}$ or ${n \choose r}$

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$
 ${}^{n}C_{r} = \frac{n(n-1)(n-2).....(n-r+1)}{1.2.3....r}$ ${}^{n}C_{n} = {}^{n}C_{0} = 1$ ${}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!}$

Number of Combinations without Repetition

The number of combination (selections or groups) that can be formed from n different objects taken $r(0 \le r \le n)$ at a time is $n_{C_r} = \frac{n!}{r!(n-1)!}$

- ${}^{n}C_{r}$ is a natural number ${}^{n}C_{0} = {}^{n}C_{0} = 1$, ${}^{n}C_{1} = n$ ${}^{n}C_{r} = {}^{n}C_{n-r}$ ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ ${}^{n}C_{x} = {}^{n}C_{y} \Leftrightarrow x = y \text{ or } x + y = n$ $n \cdot {}^{n-1}C_{r-1} = (n-r+1) \cdot {}^{n}C_{r-1} = ($
 - If n is even, then the greatest value of ${}^{n}C_{r}$ is ${}^{n}C_{n/2}$. If n is odd, then the greatest value of ${}^{n}C_{r}$ is $\frac{{}^{n}C_{n+1}}{2}$ or $\frac{{}^{n}C_{n-1}}{2}$.

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

•
$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$$

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$$

$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$$

$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$$

$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$$

$$^{\circ}$$
 $^{2n+1}C_0 + ^{2n+1}C_1 + ^{2n+1}C_2 + ... + ^{2n+1}C_n = 2^{2n}$

$${}^{\text{n}}C_{\text{n}} + {}^{\text{n+1}}C_{\text{n}} + {}^{\text{n+2}}C_{\text{n}} + {}^{\text{n+3}}C_{\text{n}} + ... + {}^{2n-1}C_{\text{n}} = {}^{2n}C_{\text{n+1}}$$

Total number of divisors of a given natural number

The number of factors of a given natural number greater than 1 we can write as, $N = P_1^{\alpha_1} P_2^{\alpha_2} P_3^{\alpha_3} \dots P_n^{\alpha_n}$ where p_1, p_2, \dots, p_n are distinct prime numbers and are non - negative integers. $(\alpha_1 + 1)(\alpha_2 + 1) \dots (\alpha_n + 1)$ ways. Sum of all the divisors of n is given by $\left(\frac{p_1^{\alpha_1+1}-1}{p_1-1}\right) \cdot \left(\frac{p_2^{\alpha_2+1}-1}{p_2-1}\right) \cdot \left(\frac{p_3^{\alpha_3+1}-1}{p_3-1}\right) \cdots \left(\frac{p_n^{\alpha_n+1}-1}{p_n-1}\right)$

Derangements

Any change in the existing order of things is called a derangement. If 'n' things are arranged in a row, the number of ways in which they can be deranged so that none of them occupies its

original place is n! $\left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right) = n! \sum_{n=0}^{n} (-1)^n \frac{1}{r!}$ And it is denoted by D(n).

Distribution

09 Multinomial Theorem

Let x_1 , x_2 , ... x_m be integers. Then number of solutions to the equation $\chi_1 + \chi_2 + ... + \chi_m = n$

subject to the conditions $a_1 \le x_1 \le b_1$, $a_2 \le x_2 \le b_2$, ... $a_m \le x_m \le b_m$ is equal to the coefficient of x^n in

$$(x^{a_1} + x^{a_1+1} + ... + x^{b_1}) (x^{a_2} + x^{a_2+1} + ... + x^{b_2}) ... (x^{a_m} + x^{a_{m+1}} + ... + x^{b_m}) ...$$

This is because the number of ways in which sum of m integers in (i) subject to given conditions (ii) equals n is the same as the number of times xn comes in (iii).

Multinomial Theorem

If there are n₁ objects of one kind, n₂ objects of second kind and so on n, objects of kth kind, then the number of ways of choosing r objects out of these objects is = coeff of x^r in (1 + x)

$$+ \chi^{2} + ... + \chi^{n_{1}} (1 + \chi + \chi^{2} + ... + \chi^{n_{2}}) ... (1 + \chi + \chi^{2} + ...).$$

The number of possible arrangements permutations of p objects out of n_1 objects of kind 1, n_2 of kind 2 and so on is = p! times the coefficient of x^p in the expansion

$$\left(1+x+\frac{x^2}{2!}+\ldots+\frac{x^{n_1}}{n_1!}\right)\ldots\left(1+x+\frac{x^2}{2!}+\ldots+\frac{x^{n_k}}{n_k!}\right)$$

If one object of each kind is to be included in selection of (1), then the number of ways of choosing r objects is: = coeff of x^r in $(x + x^2 + ... + x^n_1)$

$$(x + x^2 + ... + x^{n_2}) ... (x + x^2 + ... + x^{n_k})$$