Etude d'une courbe en coordonnées polaires

On munit le plan \mathbb{R}^2 de son repère orthonormé direct canonique $\mathcal{R} = (O; \vec{i}, \vec{j})$. Pour $\theta \in \mathbb{R}$ on note $\vec{u}_{\theta} = \cos\theta \, \vec{i} + \sin\theta \, \vec{j}$ et $\vec{v}_{\theta} = -\sin\theta \, \vec{i} + \cos\theta \, \vec{j}$ les vecteurs de la base polaire d'angle θ . Soit Γ la courbe d'équation polaire $\rho = \rho(\theta) = \cos^3(\theta/3)$ avec $\theta \in \mathbb{R}$ i.e. la courbe de point courant $M(\theta)$ défini par $\overrightarrow{OM(\theta)} = \rho(\theta) \vec{u}_{\theta}$.

- 1.a Comparer $M(\theta)$ et $M(\theta + 3\pi)$.
- 1.b Comparer $M(\theta)$ et $M(-\theta)$. On limite désormais l'étude de Γ à $\theta \in [0,3\pi/2]$
- 1.c Dresser le tableau de variation de $\theta \mapsto \rho(\theta) = \cos^3(\theta/3) \text{ sur } [0, 3\pi/2]$.
- 1.d Donner l'allure de la courbe Γ autour du point de paramètre $\theta=3\pi/2$. On y précisera le sens de parcours des θ croissants.
- 2.a Obtenir une détermination angulaire $\alpha(\theta)$ en tout point de paramètre $\theta \in [0, 3\pi/2]$.
- 2.b Calculer la courbure de Γ en tout point de paramètre $\theta \in [0,3\pi/2[$
- 3.a Tracer l'intégralité de la courbe Γ en prenant une unité égale à 5 cm. On précisera les tangentes aux points de paramètres $\theta=0,\pi/2$ et π .
- 3.b Calculer la longueur de la courbe Γ .