EEE422/6082 Computational Vision

Keypoint-based Recognition

Ling Shao

Many slides from Derek Hoiem

General Process of Object Recognition

General Process of Object Recognition

Overview of Keypoint Matching

General Process of Object Recognition

Matching Keypoints

- - 1. Training images containing the object
 - 2. Database images
- Given descriptor x_0 , find two nearest neighbors x_1 , x_2 with distances d_1 , d_2
- x₁ matches x₀ if d₁/d₂ < 0.8
 - This gets rid of 90% false matches, 5% of true matches in Lowe's study

Affine Object Model

 Accounts for 3D rotation of a surface under orthographic projection

Affine Object Model

Accounts for 3D rotation of a surface under orthographic projection

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
 Scaling/skew Translation
$$\begin{bmatrix} x & y & 0 & 0 & 1 & 0 \\ 0 & 0 & x & y & 0 & 1 \\ & & \cdots & & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_4 \\ t_5 \end{bmatrix} = \begin{bmatrix} u \\ v \\ \vdots \end{bmatrix}$$

How many matched points do we need?

Finding the objects

- 1. Get matched points in database image
- 2. Get location/scale/orientation
- 3. Geometric verification
- 4. Report object if > T inliers (T is typically 3, can be computed by probabilistic method)

Matched objects

View interpolation

- Training
 - Given images of different viewpoints
 - Cluster similar viewpoints using feature matches
 - Link features in adjacent views
- Recognition
 - Feature matches may be spread over several training viewpoints
 - ⇒ Use the known links to "transfer votes" to other viewpoints

[Lowe01] Slide credit: David Lowe

Applications

- Sony Aibo (Evolution Robotics)
- SIFT usage
- Recognize docking station
 - Communicate with visual cards
- Other uses
 - Place recognition
 - Loop closure in SLAN

K. Grauman, B. Leibe

1

Location Recognition

Lowe0₄] Slide credit: David Lov

Fast visual search

- "Video Google", Sivic and Zisserman, ICCV 2003
- "Scalable Recognition with a Vocabulary Tree", Nister and Stewenius, CVPR 2006.

Slide Credit: Nister

Key Ideas

- Visual Words
 - Cluster descriptors (e.g., K-means)
- · Inverse document file
 - Quick lookup of files given keypoints

Recognition with K-tree

Following slides by David Nister (CVPR 2006)

Example Applications

Mobile tourist guide Self-localization Object/building recognition Photo/video augmentation

2

Application: Image Auto-Annotation

Left: Wikipedia image Right: closest match from Flickr

k CIVR'081 K. Grauman, B.

Things to remember

- Object instance recognition
 - Find keypoints, compute descriptors
 - Match descriptors
 - Vote for / fit affine parameters
 - Return object if # inliers > T
- · Keys to efficiency
 - Visual words
 - Used for many applications
 - Inverse document file
 - Used for web-scale search

