Определения и формулировки по алгебре II семестр

Тамарин Вячеслав

6 июня 2020 г.

Оглавление

Вопрос 1 Подгруппа, порожденная множеством. Явное описание. Примеры образующих в D_n и $\mathrm{GL}_n(K)$. Понятие циклической группы.

і Подгруппа, порожденная множеством

Определение 1: Подгруппа, прожденная множеством

G- группа, $X\subset G$. Наименьшая группа $H\leqslant G$, содержащая X называется подгруппой, порожденной X.

Обозначение. $\langle X \rangle$.

Замечание. Эта группа всегда существует и совпадает с $\bigcap_{X\subset L\leqslant G}L=\langle X\rangle$

Утверждение (Явное описание порожденной подгруппы).

$$\langle X \rangle = \{ x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n} \mid x_i \in X, \ \varepsilon_i = \pm 1 \}.$$

Для n=1 считаем, что такое произведение равно нейтральному элементу.

Определение 2: Группа, порожденная множеством

Группа G называется порожденной множеством X, если $\langle X \rangle = G$. Если X конечно, имеет место обозначение $G = \langle x_1, \ldots, x_n \rangle$. Все x_i называются образующими G. Если для группы G существует такой конечный набор, она называется конечно порожденной.

Определение 3: Циклическая подгруппа

G- группа, $g\in G$. Подгруппа вида $\langle g \rangle = \{g^n \mid n\in \mathbb{Z}\}$ называется циклической подгруппой, порожденной g.

Определение 4: Циклическая группа

Группа G называется циклической, если она порождена одним элементом, то есть $\exists g \in G \colon G = \langle g \rangle$.

іі Примеры образующих в D_n и $\mathrm{GL}_n(K)$

Образующие D_n Заметим, что одним элементом эта группа порождена быть не может, так как она не абелева.

Утверждение. Поворот f_{φ} на угол $\varphi = \frac{2\pi}{n}$ и симметрия f_l относительно одной из разрешенных прямых. Тогда $\langle f_{\varphi}, f_l \rangle = D_n$.

Образующие $GL_n(K)$ Здесь образующими будут матрицы элементарных преобразований: транспозиций (которые можно выразить через оставшиеся), псевдоотражения (домножение на число) и трансвекции (прибавление одной строки к другой, умноженной на число).

Вопрос 2 Порядок элемента. Эквивалентное определение. Соотношение $g^n = e$ и порядок элемента g. Порядок элемента в группе \mathbb{Z}/n

Определение 5: Порядок элемента

Порядок элемента $g \in G$ — количество элементов в подгруппе $\langle g \rangle$.

Обозначение. ord q

Лемма 1

Пусть $g \in G$. Если ord g конечен, то ord g = n, где n — наименьшее натуральное число, что $g^n = e$, иначе такого n не существует.

Утверждение. Пусть $g \in G$, $g^n = e$, $n \in \mathbb{N}$. Тогда n ord n.

Лемма 2

Пусть G — группа, $g \in G$. Тогда существует такой единственный гомоморфизм $f \colon \mathbb{Z} \to G, \ f(1) = g$.

Теорема 1: Об изоморфмности циклической группы

Пусть $g \in G$ Если ord g = n, то $\langle g \rangle$ изоморфна группе \mathbb{Z}/n . Если ord $g = \infty$, то $\langle g \rangle$ изоморфна \mathbb{Z} .

Вопрос 3 Классификация циклических групп. Порядок элемента в циклической группе. Критерий для определения порядка, если известно отношение $q^n=e$

Лемма 3: Порядок элемента \mathbb{Z}/n

Пусть $k \in \mathbb{Z}/n$. Тогда ord $k = \frac{n}{(n,k)}$.

Следствие 1: Порядок элемента в циклической группе

G — группа, $g \in G$, ord g = n. Тогда ord $g^k = \frac{n}{(n,k)}$.

Лемма 4: Критерий определения порядка

Пусть $g \in G$: $g^n = e$ и $n = p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k}$. Тогда если $g^{\frac{n}{p_i}} \neq e$ i, то n = ord g.

Вопрос 4 Подгруппы циклических подгрупп. Прообраз подгрупп.

Теорема 2

Пусть G циклическая и H < G. Тогда H тоже циклическая.

Более того, если |G|=n, то $\forall d \ n \ | \ d \colon \exists ! H \leqslant \mathbb{Z}/n \colon |H|=d$.

Доказательство

Рассмотрим два случая.

• $G \simeq \mathbb{Z}$.

Лемма 5

Пусть H — подгруппа в \mathbb{Z} . Тогда H циклическая.

• $G \simeq \mathbb{Z}/n$. Рассмотрим гомоморфизм, $\pi \colon \mathbb{Z} \to \mathbb{Z}/n$, $\pi(x) = \overline{x}$.

Лемма 6

Пусть $f\colon G_1\to G_2$ — гомоморфизм групп, $H\leqslant G_2$. Тогда $f^{-1}(H)\leqslant G_1$.

Мы знаем, что $H \leqslant G = \mathbb{Z}/n$. По прошлой лемме $\pi^{-1}(H) \leqslant \mathbb{Z}$, поэтому $\pi^{-1}(H)$ циклическая. Из этого следует, что и H циклическая.

Докажем существование и единственность подгруппы порядка d, если $n \in d$. Рассмотрим элемент $\frac{n}{d} \in \mathbb{Z}/n$, его порядок равен d, поэтому порожденная им группа будет иметь такой же порядок.

Пусть $H=\langle x\rangle$, ord x=d. Если отождествить этот элемент с числом, $d=\frac{n}{(n,x)}$. Тогда $\frac{n}{d}=(n,x)\Longrightarrow x:\frac{n}{d}\Longrightarrow H\subseteq\langle\frac{n}{d}\rangle$. Кроме этого в обоих группах d элементов, следовательно, они совпали.

Вопрос 5 Классы смежности. Теорема Лагранжа. Следствия.

Определение 6: Отношение эквивалентности по подгруппе

Пусть $H \leqslant G$. Определим отношение эквивалентности $\sim_H: g_1 \sim_H g_2 \iff \exists h \in H: g_1 = g_2 h$.

Комментарий. Это отношение эквивалентности.

- $g = ge \Longrightarrow g \sim_H g$
- $g_1 \sim_H g_2 \Longrightarrow \exists h \in H : g_1 = hg_2 \Longrightarrow h^{-1}g_1 = g_2 \Longrightarrow g_2 \sim_H g_1$
- $g_1 \sim_H g_2 \sim_H g_3 \Longrightarrow \exists h_1, h_2 \in H \colon g_1 = hg_2, \ g_2 = h_2g_3 \Longrightarrow g_1 = h_1h_2g_3 \Longrightarrow g_1 \sim_H g_3$

Определение 7: Класс эквивалентности относительно \sim_H

Пусть G — группа, $H \leqslant G$, $g \in G$. Тогда множество $gH = \{gh \mid h \in H\}$ называется классом эквивалентности относительно \sim_H . gH — левый смежный класс g по подгруппе H.

Определение 8: Индекс

Множество всех левых смежных классов будем обозначать G/H. Количество элементов в G/H называется индексом H в G и обозначается [G:H].

Следствие 2

Группа G разбивается в дизъюнктное объединение левых смежных классов $G = \bigsqcup_{gH \in G/H} gH$.

Утверждение. Пусть H — подгруппа G и $g \in G$. Тогда отображение $H \to gH$, заданное по правилу $h \to gh$ — биекция.

Определение 9: Порядок группы

Порядок группы G — число элементов в G.

Теорема 3: Теорема Лагранжа

Пусть G — группа, $H \leq G$. Пусть порядок H и индекс [G:H] конечны. Тогда

$$|G| = |H| \cdot [G:H].$$

Следствие 3

Пусть G — конечная группа, $H \leqslant G$. Тогда $|G| \in |H|$.

Следствие 4

Пусть G — конечная группа, $g \in G$. Тогда |G| ; ord g.

Следствие 5

Пусть G — конечная группа порядка $n, g \in G$. Тогда $g^n = e$.

Следствие 6

Пусть G — конечная группа порядка $p \in \mathbb{P}$. Тогда $G \simeq \mathbb{Z}/p$.

Следствие 7

Пусть G — конечная группа порядка 4. Тогда $G \simeq \mathbb{Z}/4$ или $G \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

Следствие 8

Пусть $n \in \mathbb{N}$, $a \in \mathbb{Z}/n^*$. Тогда $a^{\varphi(n)} = 1$.

Вопрос 6 Количество элементов данного порядка в циклической группе. Тождество для функции Эйлера. Критерий цикличности. Конечные подгруппы в мультипликативной группе поля.

Лемма 7

Пусть $n \in \mathbb{N}$. Тогда $n = \sum_{d \mid n} \varphi(d)$.

Лемма 8

Пусть H — конечная группа, в которой число элементов $x^d = e$ не больше d. Тогда H — циклическая.

Теорема 4: Конечные подгруппы в мультипликативной группе поля

Пусть H — конечная подгруппа в K^* , K — поле. Тогда H циклическая.

Следствие 9

Пусть $p \neq 2 \in \mathbb{P}$. Тогда группа $\mathbb{Z}/p^* \simeq \mathbb{Z}/(p-1)$.

Определение 10: Первообразный корень по модулю

Если $n \in \mathbb{N}$, число $a: \langle a \rangle = \mathbb{Z}/n^*$ называется первообразным корнем по модулю n.

Вопрос 7 Представление перестановки в виде произведения независимых циклов. Порядок перестановки. Обратная перестановка и ее циклическая запись.

Определение 11: Цикл

Пусть $\{a_1,\ldots a_k\}\subset \{1,\ldots n\}$. Цикл (a_1,\ldots,a_k) — такой элемент c из S_n , что

$$c(x) = \begin{cases} x, & x \notin \{a_1, \dots a_k\} \\ a_{i+1}, & x = a_i \land 1 \leqslant i < k \\ a_1, & x = a_k \end{cases}$$

Замечание. Порядок (a_1, \ldots, a_k) равен k.

Определение 12: Неподвижная точка

Пусть $\sigma \in S_n$. Неподвижная точка — такой $x \in \{1,\dots,n\},$ что $\sigma(x) = x.$

Обозначение. $Fix(\sigma)$ — множество всех неподвижных точек относительно σ .

Определение 13: Носитель

Hоситель перестановки $\sigma \in S_n$ — множество $\{1,\ldots,n\} \setminus \mathrm{Fix}(\sigma)$.

Обозначение. supp σ .

Определение 14: Независимость перестановок

Перестановки $\sigma_1, \sigma_2 \in S_n$ называются независимыми, если $\sup \sigma_1 \cap \sup \sigma_2 = \varnothing$.

Свойства. Две независимые перестановки коммутируют.

Теорема 5: Разложение в произведение циклов

Пусть $\sigma \in S_n$. Тогда существует единственный с точностью до порядка набор независимых циклов $c_1, \ldots, c_k, c_i \neq 0$

id, что $\sigma = c_1 \dots c_k$.

Теорема 6: Порядок перестановки

Пусть $\sigma \in S_n$ и $\sigma = c_1 \dots c_k$. Обозначим d_i за длину c_i . Тогда ord $\sigma = (d_1, \dots d_k)$

Теорема 7: Обратная перестановка в циклической записи

Пусть $c=(a_1,\dots a_k)$. Тогда $c^{-1}=(a_k,\dots a_1)$. Если $\sigma=c_1c_2\dots c_s$, где c_i — независимые циклы, то $\sigma^{-1}=c_1^{-1}c_2^{-1}\dots c_s^{-1}$.

Вопрос 8 Разложение в произведение транспозиций. Знак перестановки. Знак как гомоморфизм. Знак и число транспозиций в разложении.

Определение 15: Транспозиция

Цикл вида $(ij), i \neq j$ называется транспозицией.

Утверждение. Любая перестановка раскладывается в произведение транспозиций.

Определение 16: Инверсия

Пара i < j образует инверсию, если $\sigma(i) > \sigma(j)$.

Определение 17: Четность и знак перестановки

Четность перестановки — четность числа инверсий $Inv(\sigma)$ в ней.

Знак перестановки — число

$$\operatorname{sgn}(\sigma) = (-1)^{\operatorname{Inv}(\sigma)} = \prod_{i>j} \frac{\sigma(i) - \sigma(j)}{i - j}.$$

Пример 1

sgn(1,2) = -1

Утверждение. Отображение $\operatorname{sgn}: S_n \to \{\pm 1\}$ является гомоморфизмом групп.

Лемма 9

 $g \in S_n$. Тогда $g(1,2)g^{-1} = (g(1),g(2))$. Знак любой транспозиции равен -1.

Теорема 8

Пусть $\sigma = \tau_1 \dots \tau_k, \, \tau_i$ — транспозиция. Тогда sgn $\sigma = (-1)^k$.

Вопрос 9 Разные способы вычисления знака перестановки. Знак обратной перестановки. Знакопеременная группа. Задача о пятнадцати.

Утверждение. $\operatorname{sgn} \sigma = \operatorname{sgn} \sigma^{-1}$

Утверждение. Пусть $\sigma = c_1 \dots c_n$, c_i — независимые циклы. Тогда $\operatorname{sgn} \sigma = (-1)^{\operatorname{кол-во} c_i}$ четной длины $= (-1)^{n-k}$, где k — количество орбит σ .

Определение 18: Знакопеременная группа

Знакопеременная группа $A_n - \text{группа}$

$$A_n = \{ \sigma \in S_n \mid \sigma - \text{четная} \} = \ker (\text{sgn}).$$

$$|A_n| = \frac{n!}{2}.$$

Вопрос 10 Образующие S_n . Сопряжение. Цикленный тип и сопряженность. Класс сопряженности прозвольной перестановки.

Утверждение. Пусть $g_1, \ldots g_k$ — образующие S_n . Набор $h_1, \ldots h_l \in G$ порождает G тогда и только тогда, когда все g_i выражаются через h_j

Утверждение. S_n порождена перестановками $(12), \dots (1n)$.

Утверждение. Пусть $g \in S_n, c = (a_1, \dots a_k) \in S_n$. Тогда

$$gcg^{-1} = (g(a_1), \dots g(a_n)).$$

Утверждение. Пусть $\sigma = c_1 \dots c_k$, где c_k — независимые циклы. Тогда для любого $g \in S_n$:

$$g\sigma g^{-1} = (gc_1g^{-1})\dots(gc_kg^{-1}).$$

Определение 19: Цикленный тип

Пусть $g \in S_n$. Цикленный тип перестановки g — набор упорядоченных пар $(1, k_1), \dots (n, k_n)$, где k_i — число орбит элемента i относительно g.

Определение 20: Сопряженный элемент

Пусть $g, h \in G$. Сопряженный элемент к h при помощи g — такой элемент ghg^{-1} . Два элемента h_1, h_2 сопряжены, если $\exists g \in G \colon gh_1g^{-1} = h_2$.

Теорема 9

 $\sigma_1, \sigma_2 \in S_n$, сопряжены тогда и только тогда, когда у них одинаковые цикленные типы.

Вопрос 11 S_n порождена двумя образующими. Образующие A_n — два типа.

Утверждение. Группа S_n порождена перестановками (12), (1...n).

Утверждение. Группа A_n порождена перестановками (123),...(12n).

Утверждение. Группа A_n порождена перестановками (123), (12...n), если n нечетно, и (123), (23...n), если четно.

Вопрос 12 Прямое произведение. Порядок элемента в прямом произведении. Прямое произведение и подгруппы. Образующие прямого произведения. Критерий разложимости в прямое произведение.

Утверждение. Пусть $(g,h) \in G \times H$. Тогда ord (g,h) = HOK(ord g, ordh).

Теорема 10

Пусть $G=\langle g_1,\ldots g_k\rangle,\, H=\langle h_1,\ldots h_l\rangle.$ Тогда $(g_1,e),\ldots (g_k,e),(e,h_1),\ldots (e,h_l)$ — образующие $G\times H$.

Определение 21: Разложение в произведение подгрупп

Группа G раскладывается в произведение своих подгрупп G_1, G_2 , если отображение $f \colon G_1 \times G_2 \to G, f(g,h) = gh$, является гомоморфизмом.

Обозначение. $G = G_1 \times G_2$.

Теорема 11: Критерий разложимости в прямое произведение подгрупп

Пусть $G_1, G_2 \leqslant G$. $G_1 \times G_2 = G$ тогда и только тогда, когда

- $G_1 \cap G_2 = \{e\}$
- $g_1 \in G_1, g_2 \in G_2 \Longrightarrow g_1g_2 = g_2g_1$
- $\langle G_1, G_2 \rangle = G$.

Замечание. Последнее условие равносильно тому, что $\forall g \in G \ \exists g_1 \in G_1, g_2 \in G_2 \colon g = g_1g_2$, при условии первого пункта.

Вопрос 13 Пемма про возведение в степень по модулю p^{α} . Строение группы $\mathbb{Z}/_{p^{\alpha}}^*$ при простом p. Ответ в зависимости от разложения p на множители.

Лемма 10

Пусть $p \in \mathbb{P}$, если n нечетно, то $s \geqslant 1$, если p = 2, то $s \geqslant 2$. Тогда

$$x \equiv 1 + cp^s \pmod{p}^{s+1} \Longrightarrow x^p \equiv 1 + cp^{s+1} \pmod{p}^{s+2}.$$

Утверждение.

• Пусть $p \in \mathbb{P}$ и p нечетно. Тогда $\mathbb{Z}/_{p^{\alpha}}^*$ изоморфна циклической группе

$$\mathbb{Z}/_{p^{\alpha-1}(p-1)} \cong \mathbb{Z}/_{p-1} \times \mathbb{Z}/_{p^{\alpha-1}}.$$

• Если p = 2:

$$lpha=1$$
 группа $\mathbb{Z}/_{p^{lpha}}^*$ тривиальна $lpha\geqslant 2~\mathbb{Z}/_{p^{lpha}}^*\cong \mathbb{Z}/_2 imes\mathbb{Z}_{2^{lpha-2}}.$

Теорема 12: Ответ в зависимости от разложения

Пусть $n=2^kp_1d\alpha_1\dots p_s^{\alpha_s}$. Тогда

$$k = 0, 1$$

$$\mathbb{Z}/_n^* \cong \prod_{i=1}^s \mathbb{Z}/_{p_i^{\alpha_i - 1}(p_i - 1)}$$

$$k \geqslant 2$$

$$\mathbb{Z}/_n^* \cong \mathbb{Z}/_2 \times \mathbb{Z}/_{2^{k-2}} \times \prod_{i=1}^s \mathbb{Z}/_{p_i^{\alpha_i - 1}(p_i - 1)}$$

Вопрос 14 Доказательство теоремы Рабина

Теорема 13: Рабин

Пусть n нечетное составное число, n > 9. Тогда $S(n) \leqslant \frac{\varphi(n)}{4}$, где S(n) — множество свидетелей простоты в тесте Миллера-Рабина.

Вопрос 15 Сюрьективный гомоморфизм и образующие. Сюрьективный гомоморфизм и порядок. Нормальная подгруппа. Переформулировки. Примеры.

Утверждение. Пусть дан сюрьективный гомоморфизм $f: G \to H$, $\ker f = \langle g_1, \dots g_k \rangle$, $H = \langle h_1, \dots h_l \rangle$. Если взять $h_i' \in G$ такие, что $g(h_i') = h_i$, то группа G будет порождена $h_1', \dots h_l', g_1, \dots g_k$.

Лемма 11

Пусть $f: G \to H$ — гомоморфизм. Тогда $f(g_1) = f(g_2)$ тогда и только тогда, когда $g_1 \in g_2 \ker f$.

Утверждение. Пусть G конечна, $f\colon G\to H$ — сюрьективный гомоморфизм. Тогда $|G|=|\ker f|\cdot |H|$.

Определение 22: Нормальная подгруппа

Подгруппа $H \leqslant G$ называется нормальной, если для любых $g \in G$ и $h \in H$ выполнено следующее: $ghg^{-1} \in H$.

Обозначение. $H ext{ ≤ } G$.

Утверждение (Переформулировки). Пусть $H \leqslant G$. Следующие утверждения эквивалентны:

- $\forall g \in G \colon gHg^{-1} \subseteq H$
- $\forall g \in G \colon gHg^{-1} = H$
- $\forall g \in G \colon gH = Hg$
- $\forall g \in G \colon gH \subseteq Hg$

Вопрос 16 Фактор-группа. Корректность. Универсальное свойство фактора. Теорема об изоморфизме. Примеры. Простые группы.

Определение 23: Фактор-группа

Пусть $H \leq G$. Определим на множестве смежных классов G/H структуру группы: $g_1Hg_2H = g_1g_2H$.

Теорема 14: Универсальное свойство фактора

Пусть G, G_1 — группы, $H \leqslant G$. Тогда для любого гомоморфизма $f: G \to G_1$, такого, что $H \leqslant \ker f$, существует единственный гомоморфизм $\varphi: G/H \to G_1$ такой, что $f = \pi \circ \varphi$.

Теорема 15: Теорема об изоморфизме

Пусть $f: G \to G_1$ — гомоморфизм. Тогда $G/\ker f \cong \operatorname{Im} f$. Этот изоморфизм переводит $g \ker f$ в f(g).

Определение 24: Простая группа

Группа G называется простой, если в G нет нормальных подгрупп отличных от G и $\{e\}$.

Вопрос 17 Действие группы на множестве. Примеры. Действия и гомоморфизмы. Описание группы самосовмещений тетраэдра. Теорема Кэли.

Определение 25: Действие группы на множестве

Действие группы G на множестве X — отображение $\cdot : G \times X \to X$, удовлетворяющее аксиомам:

- $\forall x \in X : e \cdot x = x$
- $\forall x \in X, g, h \in G: (gh) \cdot x = g \cdot (h \cdot x)$

Обозначение. $G \curvearrowright X$

Теорема 16

Пусть заданы группа G и множество X. Тогда для каждого действия $G \curvearrowright X$ существует гомоморфизм, переводящий $g \to T_g$, где $T_g(x) = gx$ — биекция, заданная домножением на g.

Теорема 17: Кэли

Любая группа G вкладывается в S_G . Если |G|=n, то есть подгруппа $H\leqslant S_n\cong G$.

Вопрос 18 Инвариантное подмножество. Орбита. Стабилизатор. Связь орбиты и стабилизатора. Следствие про делимость. Вычисление орбиты. Пример.

Определение 26: Инвариантное подмножество

Пусть $G \curvearrowright X$. Подмножество $Y \subseteq X$ называется инвариантным относительно данного действия, если для всех $g \in G$ выполнено g(Y) = Y.

Определение 27: Орбита

Орбита элемента x — множество элементов, которые можно получить при помощи группы G:

$$O_x = G \cdot x := \{ y \in X \mid \exists g \in G \colon g \cdot x = y \}.$$

Определение 28: Стабилизатор

Стабилизатор точки x — множество элементов группы G, оставляющих ее на месте:

Stab
$$_x = G_x := \{ g \in G \mid g \cdot x = x \}.$$

Теорема 18: О связи орбиты и стабилизатора

Пусть $G \curvearrowright X$ и задана точка $x \in X$. Тогда для любой точки $y \in O_x$ множество $\{h \in G \mid hx = y\}$ является левым смежным классом группы G по стабилизатору Stab x.

Обратно, для любого элемента $h \in g\operatorname{Stab}_x$ верно, что hx = gx. В частности, корректно определены отношения, задающее биекцию между $O_x \longleftrightarrow G/\operatorname{Stab}_x$, заданные так

$$y \in O_x \to \{h \in G \mid hx = y\}$$
 $gStab_x \to gx \in O_x$.

Следствие 10: про делимость

Пусть G — конечная группа, действующая на множестве X. Если задан элемент $x \in X$, то $|G| = |O_x| \cdot |\operatorname{Stab}_x|$.

Вопрос 19 Теорема Коши. Ограничение числа образующих у подгруппы в S_n

Теорема 19: Коши

Пусть G — конечная группа, |G| : $p \in \mathbb{P}$. Тогда в группе G есть элемент порядка p.

Теорема 20: Об ограничении числа образующих

Пусть $G \leqslant S_n$. Тогда существует набор образующих из не более чем $\frac{n(n-1)}{2}$ элементов.

Вопрос 20 Лемма Шрайера. Понятие о цепочке стабилизаторов и о сильном порождающем множестве. Алгоритм проверки принадлежности элемента, если известна полная цепочка стабилизаторов.

Теорема 21: Лемма Шрайера

Пусть группа $G = \langle S \rangle$ действует на множестве X. Пусть $x \in X$ и для всех $y \in O_x$ задан $h_g \in G$ такой, что $h_g x = y$. Если x = y, $h_x = e$. Тогда

Stab
$$_x = \langle h_{(sy)}^{-1} s h_y \rangle$$
 по всем $y \in O_x$ и $s \in S$.

Определение 29: База

Пусть группа G действует на множестве X. Назовем набор $(b_1, \dots b_k)$ базой, если для всех $g \in G$ выполнено $(\forall i \colon gb_i = bi) \Longrightarrow g = e$.

Определение 30: Дерево Шрайера

Пусть G — группа с конечным множеством образующих S действует на множестве X. Дерево Шрайера для элемента $x \in X$ относительно множества S — дерево (ребра направлены к корню), вершины которого соответствуют элементам орбиты O_x (x — корень), на ребрах стоят пометки из элементов S, что ребро из u в v с меткой s проведено, если su=v.

Определение 31: Полная цепочка стабилизаторов

Пусть G действует на множестве X, дана база $B=(b_1,\ldots b_k)$. Полной цепочкой стабилизаторов относительно базы B будем называть цепочку подгрупп

$$G = G_0 \geqslant G_1 \geqslant \ldots \geqslant G_k = \{e\},\$$

обладающую свойствами:

- 1. $G_{i+1} = \operatorname{Stab}_{b_{i+1}}^{G_i}$, при $0 \leqslant i \leqslant k-1$
- 2. G_i заданы с помощью образующих S_i
- $3. \ \forall i\geqslant 0$ задано T_i дерево Шрайера для b_{i+1} относительно S_i
- 4. дополнительно $G_i = G_{i+1}$

Определение 32: Сильное порождающее множество

Пусть группа G действует на множестве X и задана база B. Тогда множество S называется сильным порождающим множеством относительно B, если $S \cap G_i$ — образующие для G_i .

Вопрос 21 Лемма Бренсайда. Пример с раскраской квадрата.

Определение 33: Множество орбит

Пусть группа G действует на множестве X. Множество всех орбит относительно этого действия будем обозначать X/G.

Определение 34: Множество неподвижных точек

Пусть так же задан элемент $g \in G$. Тогда обозначим за $\mathrm{Fix}(f)$ — множество неподвижных точек элюента g:

$$Fix(g) = \{x \in X \mid gx = x\}.$$

Теорема 22: Бренсайд

Пусть конечная группа G действует на конечном множестве X. Тогда

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$