Exp. III — Diodos e Fontes de Tensão Contínua

1. Objetivos

Neste experimento iremos determinar experimentalmente as curvas características de um transistor MOSFET. Em seguida iremos projetar e construir um amplificador de áudio usando o mesmo transistor.

2. Recomendação importante

- Façam as conexões com muita atenção para evitar a queima o transistor.
- Este circuito será usado na próxima aula pelo grupo. Portanto, garantam que a montagem está correta e que é de fácil interpretação.

3. Componentes

Transistor: 2x BSS100 Resistor de potência: 100Ω (5 W)

Capacitores: 2x 680 nF Resistores: 47Ω , 55Ω , 68Ω , 82Ω , 240

 $k\Omega$, 270 $k\Omega$, 1 $M\Omega$, 3,9 $M\Omega$

4. Parte Experimental

- 4.1. Conecte o transistor MOSFET (de canal N tipo intensificação) de forma a garantir o controle de V_{GS} e V_{DS} (como mostrado na Figura 1). Para limitar a corrente de dreno, use uma resistência de $100\Omega(5W)$. Atente para a polarização da fonte de corrente contínua.
- 4.1.1. Determine Vth.
- 4.1.2. Trace a curva $V_{DS} \times I_D$ para $V_{GS} = 2V$. Obtenha pontos para V_{DS} de 0 a 10V (ajuste os passos para uma curva representativa).
- 4.1.3. A partir dos gráficos anteriores, encontre o valor de k= $\mu_n C_{OX}W/2L$ e da modulação de tamanho de canal λ para o transistor em questão. Lembrando: $I_{D.sat} = k(V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$ e $I_{D.tri} = k[2(V_{GS} - V_{TH})V_{DS} - V_{DS}^2]$.
- 4.1.4. Utilizando os valores de k, λ e as equações de I_D , trace as curvas teóricas e compare com os valores obtidos experimentalmente.

Figura 1: Circuito para caracterização do transistor MOSFET.

- 4.1.5. Indique no próprio gráfico do MOSFET caracterizado cada região de operação (linear ou triodo, saturação e corte).
- 4.2. Repita somente o passo 4.1.2 para os valores de V_{GS} =1V e 4V.
- 4.3. Para uma tensão de alimentação de 12V na malha do resistor varie a tensão de V_{GS} de forma a extrair a curva $V_{GS} \times V_{DS}$. Alimente V_{GS} com o gerador de funções usando uma função dente-de-serra com off-set adequado. Atente ao limite de potência do resistor para definir a faixa de valores de V_{GS} a serem medidos.
- 4.3.1. Indique no próprio gráfico do MOSFET caracterizado cada região de operação (linear ou triodo, saturação e corte).
- 4.3.2. Explicite no gráfico qual a região de interesse para o transistor funcionar como um amplificador. Porquê?

5. Projeto

5.1. Vamos agora projetar um amplificador de áudio (classe A) com este transistor, como mostrado na Figura 2. Para o projeto deverá ser considerado

um ganho A_V =-10, uma alimentação (CC) de 12V e R_2 = 1 M Ω . Dimensione R_1 e R_D para atender ao requisito de máxima excursão (tensão quiescente V_D projetada para ficar a meia distância entre o limiar triodo-saturação (V_{GS} - V_{TH}) e a tensão de alimentação).

Figura 2: Circuito amplificador com transistor NMOS.

- 5.2. Monte o circuito projetado. Aplique na entrada do circuito uma onda senoidal de 100mVpp e frequência 1kHz (atenção para o tipo de impedância no gerador--mais detalhes <u>aqui</u>). Meça o ponto de operação e o ganho de tensão do amplificador.
- 5.2.1. O ganho verificado está de acordo com o ganho teórico?
- 5.2.2. Eleve gradativamente o valor da amplitude de entrada e verifique o que ocorre com a forma de onda na saída.

5.3. Conecte uma carga de baixa impedância (pode ser um alto-falante ou um resistor de baixa resistência) na saída do amplificador e verifique o que ocorre com o ponto de operação e com o ganho de tensão.

6. Bibliografia

- B. Razavi, Fundamentos de Microeletrônica, LTC
- S. Sedra, K.C.Smith, Microeletrônica, Makron Books Ltda
- R. Boylestad e L. Nashelsky, Dispositivos Eletrônicos e Teoria de Circuitos, Prentice-Hall.