Chapter 11 A Hierarchy of Formal Languages and Automata

The Chomsky Hierarchy
Recursive and Recursively Enumerable Languages
Unrestricted Grammars
Context –Sensitive Grammars and Languages

The Chomsky Hierarchy

- Each of the four grammar classes has a simple yet powerful automaton
- A useful connection between grammars, automata, and languages
 - Type: 0, 1, 2, 3
 - Languages: r.e.L, CSL, CFL, RL
 - Grammar production restrictions: (X and Y)
 - $X \to Y$
 - Automata: TM, LBM, PDA, FA

To prove a language to be in certain language class

- You may show the language can be generated from associated grammar class
- For example,
 - $G = 2 \Rightarrow Automata = PDA$
 - $G = 0 \Rightarrow Automata = TM$

Chomsky Hierarchy of Grammars

The Chomsky Hierarchy of Grammars

Type	Name of Languages Generated	Production Restrictions $X \to Y$	Acceptor
0	Phrase-structure = recursively enumerable	X = any string with nonterminalsY = any string	ТМ
1	Context- sensitive	 X = any string with nonterminals Y = any string as long as or longer than 	TM's with bounded (not infinite) TAPE, called linear- bounded automata LBA's‡
2	Context-free	X = one nonterminalY = any string	PDA
3	Regular	X = one nonterminal Y = t N or Y = t t terminal N nonterminal	FA

‡The size of the tape is a linear function of the length of the input.

Note: exceptions

- Which type (0, 1, 2, 3) of grammar is the following grammar belong to?
 - S \rightarrow aSb | λ

THE CHOMSKY HIERARCHY

These six classes of languages form a nested set as shown in the Venn diagram below.

No two of these categories are really the same

- {aⁿbⁿ} is deterministic context-free but not regular
- Palindrome is context free but not deterministic context-free
- {aⁿbⁿCⁿ} is context-sensitive but not context-free

Chomsky Hierarchy of Grammars

(Make sure that you are able to fill it up!)

Туре	Language	Production Restrictions	Acceptor	Representative

Every TM T over the alphabet Σ divides the set of strings Σ^* into three classes

- 1. ACCEPT (T) is the set of all strings leading to a final state. This is also called the language accepted by T.
- 2. REJECT (T) is the set of all strings that halt in a non-final state.
- LOOP (T) is the set of all other strings that loop forever while running on T.

 A language L is said to be recursively enumerable if there exists a TM that accepts it

- A language L on Σ is said to be recursive if there exists a TM T that accepts L and that halts on every w in Σ^+
- In other words, a language is recursive if and only if there exists a membership algorithm
 - Note, in this case Loop(T) = ∅

Question:

Is recursive language a subset of recursively enumerable language or the other way around?

Unrestricted Grammar

- A grammar G = (V, T, S, P) is called unrestricted if all the productions are of the form
 - $u \rightarrow V$
 - Where u is in $(V \cup T)^+$ and v is in $(V \cup T)^*$
 - u should contain at least one non-terminal

Theorem 11.6 Any language generated by an unrestricted grammar is recursively enumerable

- Proof (highlight)
 - We can simulate the derivations of unrestricted grammar on a TM \Rightarrow it is recursively enumerable

- A grammar G = (V, T, S, P) is said to be context-sensitive if all productions are of the form
 - X → Y
 - Where $x, y \in (V \cup T)^+$
 - and |x| ≤ |y|

A language L is said to be contextsensitive if there exists a context sensitive grammar G, such that L = L(G).

Context Sensitive Grammar Construction

- None of the examples is easy
- The next fifty years will see natural language processing as a dominant issue

Example 11.2

Show that $L = \{a^nb^nc^n : n \ge 1\}$ is CSL

- Construct a CSG for L
 - S \rightarrow abc |aAbc
 - \bullet Ab \rightarrow bA
 - Ac \rightarrow Bbcc
 - $bB \rightarrow Bb$
 - lacksquare aB ightarrow aa \vert aaA
- Note: "A" is playing a role of messenger

In-class exercises

(need to be turned in together with HW)

- Page 294 #1 (b)
 - Find context-sensitive grammars for the following language:
 - L= $\{a^nb^na^{2n} : n \ge 1\}$
- Turing Machine as Computer:
 - (a) 3-interger adder;
 - (b) adder for any number of integers

Definitions Review

- NPDA, DPDA
- Turing Machine
- Chomsky Hierarchy
- CSL, CSG

Review Exercises -1

- Give a formal definition for the following terms: TM, CSG, Chomsky Hierarchy
- Construct a PDA in two steps (algorithm and TG) for the following languages:
 - L= $\{a^nb^m : n \le m \le 2n\}$
 - L= $\{a^nb^{3n} : n \ge 0\}$
 - L={wcw R : w \in {a, b}*

Review Exercises -2

- Construct a TM in TG that will accept the following languages on {a, b},
 - L = {w: |w| is multiple of 2}
 - L= $\{a^nb^{3n} : n \ge 0\}$

 Construct a TM in TG that is an adder for any number of integers