Section ____

1. Consider the piecewise defined function:

$$f(x) = \begin{cases} x - 1 & \text{if } x < 0 \\ x^2 + 1 & \text{if } x \ge 0 \end{cases}$$

Find the following limits:

1a.
$$\lim_{x\to 0^-} \frac{f(x)-5}{x-2} \stackrel{?}{=}$$

1b.
$$\lim_{x\to 2} \frac{f(x)-5}{x-2} \stackrel{?}{=}$$

1c. Is f(x) continuous at x = 0? Use limit to explain your conclusion.

1d. Circle the following properties that apply to f(x) at x = 0.

Continuous

 ${\rm Jump\ Discontinuity}$

Removable Discontinuity

Left Continuous

Right Continuous

Section _____

2.

2a. Find the **average** rate of change of the function f(x) over the interval [3, 5].

2b. Find the **instantaneous** rate of change of the function f(x) at x=3.

2c. Is the **instantaneous** rate of change of the function f(x) at x=4 positive or negative?

2d. Order the **instantaneous** rates of change of the function f(x) at x = 1, 2, 4 and 5 from smallest to largest in value.

(Smallest rate) $x = \underline{\hspace{1cm}}; \quad x = \underline{\hspace{1cm}}; \quad x = \underline{\hspace{1cm}}; \quad x = \underline{\hspace{1cm}}$ (Greatest rate)

3.	Consider an account with principle is \$2000 paying interest at an annual rate of 4%
cor	npounded quarterly.
3a	• Find the balance of the account after 8 years. Simplify as far as possible and leave
you	ar answer in the form $k \cdot a^b$.

3b. How long will it take the balance of the account to increase 8 fold?