

Office de la propriété
intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An Agency of
Industry Canada

R01/04 2004/001968

20 DECEMBER 2004 20.12.04

Bureau canadien
des brevets
Certification

La présente atteste que les documents
ci-joints, dont la liste figure ci-dessous,
sont des copies authentiques des docu-
ments déposés au Bureau des brevets.

Canadian Patent
Office
Certification

This is to certify that the documents
attached hereto and identified below are
true copies of the documents on file in
the Patent Office.

Mémoire descriptif et dessins, de la demande de brevet no: 2,448,843, tel que déposé le 13
novembre 2003, par **BIO-K PLUS INTERNATIONAL INC.**, ayant pour titre: "Effets de
Différents Surnageants de Bactéries Lactiques de Bio-K Plus sur des Lignées Cellulaires
Endothéliales".

Agent certificateur/Certifying Officer

20 décembre 2004

Date

Canada

(CIPO 68)
31-03-04

O P I C C I P O

BEST AVAILABLE COPY

Effets de différents surnageants de bactéries lactiques de *Bio-K Plus* sur des lignées cellulaires endothéliales.

Introduction

La recherche sur le cancer vise à découvrir les moyens par lesquels la croissance agressive des tumeurs solides et de leurs métastases peut être abolie de façon spécifique sans engendrer de résistance au traitement, ni provoquer de toxicité excessive chez les patients traités. Ce défi est de taille puisque la transformation des cellules normales en cellules tumorales est associée à l'acquisition d'une importante résistance à la plupart des agents cytotoxiques actuellement utilisés en thérapie. Plusieurs études réalisées au cours des dernières années ont démontré que les cellules tumorales ne représentent pas le seul déterminant responsable de la croissance des tumeurs. Les vaisseaux sanguins présents au sein de ces tumeurs y jouent également un rôle crucial. Il a été clairement établi que ces vaisseaux sanguins, formés par le processus d'angiogenèse, sont essentiels à la croissance agressive des tumeurs et de leurs métastases. Cette angiogenèse est due à la capacité des cellules tumorales à sécréter un certain nombre de facteurs angiogéniques, tels les facteurs de croissance de l'endothélium vasculaire (VEGF) et fibroblastique (FGF), liant avec une haute affinité la surface des cellules endothéliales. La stimulation de ces cellules endothéliales par ces facteurs résulte non seulement en une hausse de la sécrétion d'enzymes dégradant les composantes de la matrice extracellulaire, mais également en une stimulation de la migration et de la prolifération de ces cellules. Les cellules ainsi stimulées envahissent la matrice entourant les tumeurs, formant un réseau de capillaires qui assure la croissance des cellules tumorales en leur fournissant les nutriments et l'oxygène nécessaires à leur développement. L'inhibition de l'apport sanguin aux tumeurs constitue donc une cible de choix pour le développement de nouvelles approches thérapeutiques anticancéreuses ciblant spécifiquement l'angiogenèse pour restreindre ou éliminer la progression tumorale.

On estime que les habitudes de vie et l'alimentation sont responsables de plus du tiers des nouveaux cas de cancers diagnostiqués. Par conséquent, la prévention (nutra-prévention) suscite présentement un immense intérêt et il est estimé qu'au cours des prochaines années, elle entraînera des réductions des taux de mortalité reliés au cancer plus grandes que celles atteintes par les traitements actuellement disponibles. Il est donc d'actualité et fort intéressant de caractériser le potentiel antiangiogénique des bactéries lactiques des produits alimentaires *Bio-K Plus*.

Objectif de cette étude

Notre intention est de déterminer et de caractériser les propriétés antiangiogéniques des produits alimentaires *Bio-K Plus* (avec et sans produit laitier).

Hypothèse proposée

Les bactéries lactiques composant les produits alimentaires *Bio-K Plus* sécrètent des molécules actives qui ont une activité antiangiogénique.

Approches expérimentales utilisées

- 1- Effet sur la formation des réseaux de capillaires sanguins;
- 2- Effet sur la migration des cellules endothéliales à travers le vaisseau sanguin vers la tumeur;
- 3- Effet sur la prolifération des cellules endothéliales vers la tumeur.

Conclusion générale suite aux résultats obtenus

À la lueur de l'ensemble des résultats obtenus dans cette partie de l'étude, les bactéries lactiques contenues dans les produits *Bio-K Plus* semblent sécréter des molécules actives qui ont un potentiel d'activité antiangiogénique. Ainsi, ces molécules actives ont la capacité d'inhiber la croissance de nouveaux capillaires qui soutient la progression de diverses maladies tels les rétinopathies, les hémangiomes infantiles, l'arthrite rhumatoïde, le psoriasis, les ulcères duodénaux, la resténose post-angioplastie et la croissance tumorale.

Étude : caractérisation des propriétés antiangiogéniques des bactéries lactiques composant le produit alimentaire de *Bio-K Plus* sur les cellules endothéliales de veine ombilicale humaine (HUVECs) et les cellules endothéliales de l'aorte bovine (BAECs).

1.0 Préparation du matériel d'étude

Dans la présente étude, nous avons caractérisé l'action de divers surnageants provenant des bactéries lactiques (milieu sécrété par les bactéries) et des produits alimentaires *Bio-K Plus*.

1.1 Surnageants de bactéries lactiques

Les bactéries ont été reçues dans 9 ml de milieu complexe MRS et 100 µl de cette suspension a été multipliée dans 100 ml du même milieu. Après 18 heures d'incubation à 37°C (agitation à une vitesse de 250 RPM), des aliquots de 1,2 ml ont été prélevés et répartis dans des tubes eppendorfs stériles auxquels nous avons rajouté préalablement 0,4 ml de glycérol à 80%. Ces tubes ont été congelés à -80°C.

Afin d'obtenir les surnageants de bactéries lactiques, un volume de 100 µl de suspension bactérienne provenant d'un tube congelé a été prélevé et cette suspension a été multipliée dans 100 ml de milieu MRS (selon la même procédure que décrite précédemment). Après 18 heures d'incubation, un repiquage a été effectué : 1 ml de suspension bactérienne dans 100 ml de milieu MRS (dilution de 1/100). Ce milieu a été incubé à 37°C jusqu'à l'atteinte de sa phase de croissance « log » correspondant à une densité mesurée à 0,5 à A_{600} . Par la suite, le surnageant a été obtenu par centrifugation (1 000 x g, 15 min) et filtré deux fois (un filtre de 0,45 µm suivi d'un filtre de 0,22 µm). Une partie de ce surnageant a été aliquoté dans des tubes eppendorfs stériles et congelé à -80°C. L'autre partie du surnageant a été concentré 10X à l'aide de tubes Ultrafree-4 (> 5 000 kDa) par centrifugation (3 000 x g, 30 min). Ainsi, nous avons obtenu deux types de

surnageants : un surnageant concentré 10X contenant des molécules dont la taille est plus grande que 5 000 kDa et un filtrat contenant des molécules dont la taille moléculaire est plus petite ou égale à 5 000 kDa. Par la suite, ces surnageants ont été aliquotés et congelés à -80°C.

1.2 Surnageants de produits alimentaires Bio-K Plus

Dans la présente étude, des surnageants ont été obtenus de deux types de produits alimentaires *Bio-K Plus* : un composé avec produit laitier (les protéines du lait sont fermentées) et l'autre sans produit laitier (les protéines du soya sont fermentées). Ces surnageants de ces produits ont été obtenus suite à deux centrifugations (une à 6 000 x g , 15 min, 4°C et une autre à 20 000 RPM, 30 min, 4°C). Par la suite, ils ont été filtrés sur deux filtres (un filtre de 0,45 µm suivi d'un filtre de 0,22 µm) dans le but d'obtenir des surnageants sans bactéries et stériles afin de pouvoir traiter les lignées cellulaires endothéliales. Les surnageants ont été conservés à -80°C jusqu'à utilisation.

2.0 Résultats

2.1 Caractérisation *in vitro* des surnageants de bactéries lactiques et des produits alimentaires *Bio-K Plus* sur la formation de structures capillaires par les HUVECs

Dans un premier temps, nous avons vérifié si les surnageants de bactéries lactiques perturbaient la formation de structures capillaires sur Matrigel par les HUVECs. Les cellules ont été ensemencées sur une matrice contenant un mélange hétérogène de facteurs de croissance (bFGF, TGF-β, VEGF, HGF) ainsi que de plusieurs protéines de la matrice extracellulaire (collagène, laminine, fibrine) et de protéases (MMPs, uPA, tPA), recréant artificiellement le support matriciel retrouvé *in vivo*. Une incubation de 6 heures en présence des différents surnageants (dilution 1/4) à 37°C a permis d'observer un effet inhibiteur (variant de 18,2% à 27,5% inhibition; n=2) des surnageants de bactéries lactiques concentrés 10X (Figures 1A, 1B).

De plus, on observe que les réseaux formés sont incomplets et non structurés comparativement au contrôle.

Dans un deuxième temps, nous avons vérifié si les surnageants de *Bio-K Plus* perturbaient également la formation des structures par les HUVECs (Figures 2A, 2B). Les résultats semblent démontré que leurs effets ne sont pas significatifs. De plus, mentionnons que le pH des surnageants de *Bio-K Plus* ne semble pas affecter la formation des réseaux.

2.2 *Caractérisation in vitro des surnageants de bactéries lactiques et des produits alimentaires Bio-K Plus sur le potentiel migratoire des BAECs et des HUVECs*

La migration des cellules endothéliales a été mesurée à l'aide des chambres de culture de type Boyden. Il s'agit de deux chambres contenant des trous de 6,5 mm séparées par une membrane de polycarbonate ayant des pores de 8,0 μm et préalablement induite de gélatine. Cette membrane constitue la barrière artificielle. Les cellules endothéliales en croissance ont été récoltées avec de la trypsine, comptées, centrifugées et resuspendues à une densité de $1,0 \times 10^6$ cellules/ml dans un tampon de migration approprié. Les cellules ont été ajoutées aux trous de la partie supérieure de la membrane et incubées à 37°C. Après 30 min d'adhésion, les différents surnageants ont été ajoutés dans les trous supérieur et inférieur de la chambre. Après 2 heures, le VEGF a été ajouté comme chemoattractant dans les trous inférieurs. Après 3 heures, les cellules présentes à la surface interne de la membrane, donc celles qui ont envahi la barrière, se sont fixées, colorées et comptées à l'aide d'un microscope à haute résolution. L'activité inhibitrice de chacun des surnageants a été analysée en fonction de la présence ou non du VEGF.

Dans un premier temps, une dilution de 1/4 de chacun des surnageants à tester dans le milieu de culture cellulaire approprié a été utilisée afin de déterminer lequel des surnageants a un effet potentiel sur la migration. Les résultats chez les cellules BAECs démontrent que tous les surnageants ont un effet inhibiteur sur la stimulation de la migration induite par le VEGF (Figures 3A, 3B). De plus, on remarque que pour le surnageant de bactéries lactiques concentré, son inhibition est complète. En ce qui concerne les HUVECs, tous les surnageants inhibent la

stimulation induite par le VEGF, ainsi que le niveau de migration basal (Figures 4A, 4B). L'effet inhibiteur semble plus important pour les surnageants de *Bio-K Plus* (Figure 4B).

Par la suite, nous avons analysé plus en détail l'effet inhibiteur des surnageants en fonction de la dilution. Les résultats obtenus pour les surnageants de *Bio-K Plus* (avec produit laitier) semblent démontrer que l'effet inhibiteur sur la stimulation induite par le VEGF est fonction de la dilution et que la dilution la plus faible (1/7) a un effet inhibiteur également sur le niveau basal de migration (Figure 5A). Des résultats similaires ont été obtenus pour les surnageants de *Bio-K Plus* (sans produit laitier) (Figure 5B). On remarque cependant que la migration des cellules BAECs semblent plus sensibles aux dilutions 1/20 et 1/10, surtout au niveau basal.

2.3 Caractérisation *in vitro* des surnageants des produits alimentaires *Bio-K Plus* sur la prolifération des HUVECs

Le test utilisé pour l'étude de la prolifération cellulaire est le WST-1, une technique qui mesure l'activité mitochondriale des cellules. Pour ce faire, les HUVECs ont été ensemencées dans des plaques de 96 trous à une densité de 4 000 cellules/trou. Après 24 heures d'incubation, les différents surnageants ont été ajoutés séparément dans chacun des trous. Après 30 min d'incubation, du bFGF a été ajouté. Une solution de WST-1 d'un kit de Boehringer a été ajoutée dans chacun des trous après différents temps d'incubation (0 h, 24 h, 48 h et 72 h) et l'activité métabolique a été quantifiée à 450 nm. L'activité inhibitrice de chacun des surnageants a été analysée en fonction de la présence ou non du bFGF.

Les différents surnageants de *Bio-K Plus* ne semblent pas inhiber la prolifération des HUVECs comparativement au temps 0 (Figures 6A, 6B). De plus, si on compare l'effet de différentes dilutions de surnageant de *Bio-K Plus* (avec produit laitier) et *Bio-K Plus* (sans produit laitier), en absence (Figures 6A, 6B) et en présence de bFGF (Figures 7A, 7B), on constate que la prolifération des cellules est augmentée en présence du facteur de croissance, mais que cette

stimulation semble diminuer et atteindre les niveaux du temps 0, aux dilutions 1/10 et 1/7 (Figure 7B) vers 48 et 72 heures pour les surnageants de *Bio-K Plus* (sans produit laitier).

3.0 Conclusions

L'ensemble des résultats obtenus semble démontrer que les bactéries lactiques du *Bio-K Plus* relarguent dans le surnageant des molécules actives qui ont une activité antiangiogénique.

Les principales conclusions des résultats obtenus sont les suivantes :

1-) La fermentation des protéines du lait ne semble pas être responsable de l'action inhibitrice du *Bio-K Plus* puisque lors de la migration, le produit contenant des protéines de soya fermentées inhibe également la stimulation induite par le VEGF;

2-) Les molécules actives semblent être d'un poids moléculaire plus grand que 5 000 kDa;

3-) Pour observer un effet antiangiogénique sur la formation de structures capillaires par les cellules endothéliales, il faut que le surnageant de bactéries en culture soit concentré 10 fois, ceci pourrait expliquer pourquoi on ne retrouve pas cet effet avec les surnageants des produits alimentaires *Bio-K Plus*.

4.0 Prospectives

Les résultats obtenus supportent clairement la présence d'une activité antiangiogénique par les bactéries constituant le *Bio-K Plus*. Il nous apparaît donc très important de poursuivre la caractérisation de ces propriétés afin de mieux comprendre les mécanismes par lesquels le produit

pourrait agir comme agent anticancéreux. Dans cette optique, nous prévoyons réaliser les expériences suivantes :

- 1-) Déterminer le nombre de bactéries lactiques présentes dans la suspension bactérienne avant centrifugation et le comparer au nombre de bactéries retrouvées dans le produit alimentaire; ceci nous permettra d'évaluer, à dilution égale, la concentration équivalente de bactéries retrouvée dans les surnageants;
- 2-) Poursuivre les études de prolifération et de migration avec les surnageants de bactéries lactiques en fonction de leur dilution;
- 3-) Avec les surnageants qui démontrent une activité antiangiogénique, étudier leurs effets sur d'autres événements cellulaires rattachés à l'angiogenèse comme: a) l'état de phosphorylation de certains récepteurs spécifiques aux cellules endothéliales suite à la stimulation aux facteurs de croissance; b) les niveaux d'expression des métalloproétases, famille d'enzymes impliquées dans la dégradation de la matrice extracellulaire, sécrétées par les cellules endothéliales et c) l'induction de l'apoptose dans les cellules endothéliales suite aux traitements.

Effets des bactéries lactiques de *Bio-K Plus* sur des lignées cellulaires endothéliales et cancéreuses

Objectif : caractériser les mécanismes moléculaires du *Bio-K Plus* dans diverses lignées endothéliales et cancéreuses humaines.

1.1 Approches expérimentales :

B. Caractérisation *in vitro* des propriétés antiangiogéniques du *Bio-K Plus* sur les cellules endothéliales de veine ombilicale humaine (HUVECs).

- 1- Effet sur la prolifération cellulaire;
- 2- Effet sur le potentiel migratoire des cellules;
- 3- Effet sur la formation de structures de capillaires sur Matrigel.

C. Caractérisation *in vitro* des propriétés anticancéreuses du *Bio-K Plus* sur la prolifération de 6 lignées de cellules tumorales.

- 1- MCF-7 (adénocarcinome du sein);
- 2- Panc-1 (carcinome épithéloïde du pancréas);
- 3- PC-3 (carcinome de la prostate);
- 4- Daoy (méningoblastome du cerveau);
- 5- U-87 (glioblastome-astrocytome du cerveau);
- 6- Jurkat (lymphocytes de la leucémie).

Ces études permettront de mieux caractériser et d'identifier de nouvelles cibles moléculaires dans les cellules endothéliales et cancéreuses modulées par le *Bio-K Plus*.

1.2 Préparation du matériel d'étude

Dans la présente étude, nous avons caractérisé l'action des surnageants de bactéries lactiques irradiées à 3 kGy (S3), 6 kGy (S6) et 9 kGy (S9). Ces surnageants ont été obtenus suite à deux centrifugations (une à 6 000g, 15 min, 4°C et une autre à 10 000g, 20 min, 4°C). Par la suite, ils ont été filtrés sur deux filtres (un filtre de 0,45µm suivi d'un filtre de 0,22 µm) dans le but d'obtenir des surnageants sans bactéries et stériles afin de pouvoir traiter les diverses lignées cellulaires. Les surnageants ont été conservés à -80°C jusqu'à utilisation.

Pour nos études, nous avons utilisé une concentration de surnageants équivalente à 10^8 bactéries, puisque selon le mémoire de maîtrise de Cindy Baldwin, c'est à cette concentration que l'effet inhibiteur est maximal.

1.3 Résultats

1.3.2 Caractérisation *in vitro* des propriétés antiangiogéniques du Bio-K Plus sur les cellules endothéliales de veine ombilicale humaine (HUVECs).

Nous avons vérifié si les surnageants de bactéries avaient un effet sur les cellules endothéliales. La technique du WST-1, qui mesure l'activité mitochondriale des cellules, nous a permis d'étudier la prolifération des cellules HUVECs. Les surnageants ne semblent pas avoir d'effet inhibiteur sur la prolifération de ces cellules (Figures 4-5; n = 2). Nous avons par la suite évalué le potentiel migratoire des cellules en présence de surnageants de bactéries et les résultats se sont avérés positifs. Nous avons vérifié si les surnageants inhibent la stimulation de la migration des HUVECs sur gélatine induite par le VEGF, le mitogène le plus souvent associé au

phénomène d'angiogenèse. Les surnageants inhibent complètement la migration par le VEGF mais également le niveau de migration basale, à environ 50% (Figure 6). L'effet inhibiteur des surnageants ne semblent donc pas spécifique au VEGF. Les essais de formation de tubes sur Matrigel (une matrice riche en laminine, reconstituant la membrane basale et qui permet la différenciation des cellules endothéliales en des structures similaires aux capillaires des vaisseaux sanguins) démontrent que les surnageants de bactéries inhibent de façon significative la formation des tubes par rapport au témoin chez les HUVECs (Figures 7A-7B; n = 2). L'ensemble de ces résultats indiquent que les surnageants de bactéries contiennent des molécules qui ont un potentiel antiangiogénique.

1.4 Conclusion

L'ensemble des résultats obtenus dans ce projet semblent démontrer qu'il y a, dans les surnageants provenant de bactéries lactiques contenues dans les produits de *Bio-K Plus*, des molécules relarguées par les bactéries qui semblent avoir une activité antiangiogénique.

En résumé, les principales conclusions de ce projet sont les suivantes :

Un effet inhibiteur des surnageants de bactéries a été observé sur la migration des cellules endothéliales de veine ombilicale humaine (HUVECs) et sur la formation de structures de capillaires par ces cellules;

Objectif

Caractériser et identifier de nouvelles cibles moléculaires dans les cellules endothéliales et cancéreuses modulées par le *Bio-K Plus*.

Violet II: Propriétés anti-angiogéniques du Bio-K Plus

Approches expérimentales proposées:

- 1- Effet sur la formation des réseaux de capillaires sanguins,
- 2- Effet sur la migration des cellules endothéliales.

Modèles utilisés

Cellules endothéliales en culture:

- HuvecS
(cellules endothéliales de veine ombilicale humaine)
- BaecS
(cellules endothéliales de l'aorte bovine).

Effet de différents surnageants de
sur la formation de structures capillaires par les
cellules endothéliales (Huvecs)

Effet des surnageants de Bio-K Plus sur la migration des BAECs

Réultats II

Les surnageants de Bio-K Plus semblent démontrer un potentiel antiangiogénique:

- la migration induite par le VEGF est inhibée,
- l'inhibition de la migration est spécifique aux cellules endothéliales.

Volet III: Inhibition des récepteurs

Approches expérimentales:

- 1- Mesure de la phosphorylation de VEGFR;
- 2- Mesure de l'activation des voies de signalisation (Erk).

Effet antagoniste des surnageants de *Bio-K*
Plus sur différents récepteurs de facteurs de
croissance

Résultats III

Le *Bio-K Plus* sans produit laitier semble inhiber la phosphorylation du récepteur VEGFR-2 et celle de la protéine de signalisation Erk induite par le VEGF.

Le *Bio-K Plus* avec produit laitier semble inhiber plus spécifiquement la phosphorylation de Erk induite par le TGF.

Conclusion

Les bactéries lactiques composant les produits Bio-K Plus semblent sécréter des molécules actives qui ont un potentiel d'activité antiangiogénique.

Produits Bio-K Plus

Angiogenèse tumorale

ANGIOGENESIS

Effet de différents surnageants de *Bio-K Plus* sur la formation de structures capillaires par les cellules endothéliales (Huvecs)

Essai de Migration

Migration

Inhibiteur

Effet des surnageants de Bio-K Plus sur la migration cellulaire: Inhibition des cellules endothéliales

Effet des surnageants de l'endothélium sur la migration des cellules endothéliales (Baecs)

Résultats III

Les surnageants de VEGF semblent démontrer un potentiel antiangiogénique.

- la formation de structures capillaires est inhibée par le surnageant,
- la migration induite par le facteur de croissance, VEGF, est inhibée.

Phosphorylation des récepteurs

Effet des surnageants de *Bio-K Plus* sur
la phosphorylation du VEGFR-2

High throughput screening of growth factor Receptor inhibitors in cancer and angiogenesis

Molecular screening Of Receptors antagonists

Effet du surnageant de *Bio-K Plus* sur la phosphorylation de la protéine Erk par le VEGF

$\frac{\text{VEGF}}{\text{Ctl BK}}$

ID : pErk

ID : Erk

Figure 1A

**Effet de différents surnageants de bactéries lactiques
sur la formation de structures capillaires
par les cellules HUVECs**

Légende

- 1: Surnageant de bactéries lactiques
- 2: Surnageant de bactéries lactiques concentré
(molécules > 5 000 kDa)
- 3: Filtrat de surnageant de bactéries lactiques
(molécules ≤ 5 000 kDa)

	X Labels	A
Surnageant		cellules
	X	Y
1	Ctrl	100.0
2	1	96.7
3	2	18.2
4	3	100.0

Figure 1B

**Effet de différents surnageants de bactéries lactiques
sur la formation de structures capillaires
par les cellules HUVECs**

Légende
1: Surnageant de bactéries lactiques
2: Surnageant de bactéries lactiques concentré
(molécules > 5 000 kDa)
3: Filtrat de surnageant de bactéries lactiques
(molécules ≤ 5 000 kDa)

	X Labels	A
	Surnageant	cellules
	X	Y
1	Ctrl	100.0
2	1	90.0
3	2	27.5
4	3	87.5

Figure 2A

**Effet de différents surnageants de *Bio-K Plus*
sur la formation de structures capillaires
par les cellules HUVECs**

	X Labels	A
	Surnageant	Longueur
	X	Y
1	Ctrl	100.0
2	1	94.2
3	2	100.0
4	3	92.7
5	4	95.4

Figure 2B

**Effet de différents surnageants de *Bio-K Plus*
sur la formation de structures capillaires
par les cellules HUVECs**

	X Labels	A
	Surnageant	Longueur
	X	Y
1	Ctrl	100.0
2	1	71.2
3	2	92.2
4	3	93.7
5	4	79.2

Figure 3A**Effet du surnageant de bactéries lactiques sur la migration des cellules BAECs****Légende**

- 1: Surnageant de bactéries lactiques
- 2: Surnageant de bactéries lactiques concentré (molécules > 5 000 kDa)
- 3: Filtrat de surnageant de bactéries lactiques (molécules ≤ 5 000 kDa)

	X Labels	A
	Sumageant	cellules
	X	Y
1.	Ctrl	119.0
2	1	291.0
3	2	409.0
4	3	291.0
5	Ctrl	6694.0
6	1	467.0
7	2	82.0
8	3	1407.0

Figure 3B

X Labels	A
Surnageant	cellules
X	Y
1 Ctrl	119.0
2 1	697.0
3 2	174.0
4 Ctrl	6694.0
5 1	252.0
6 2	866.0

Figure 4A

Légende

- 1: Surnageant de bactéries lactiques
- 2: Surnageant de bactéries lactiques concentré
(molécules > 5 000 kDa)
- 3: Filtrat de surnageant de bactéries lactiques
(molécules ≤ 5 000 kDa)

	X Labels	A
	Sumageant	cellules
	X	Y
1	Ctrl	409.0
2	1	237.0
3	2	262.0
4	3	176.0
5	Ctrl	559.0
6	1	386.0
7	2	231.0
8	3	184.0

Figure 4B

**Effet du surnageant de *Bio-K Plus*
sur la migration des cellules HUVECs**

Légende

- 1: Surnageant de *Bio-K Plus* (avec produit laitier)
- 2: Surnageant de *Bio-K Plus* (sans produit laitier)

	X Labels	A
	Surnageant	cellules
	X	Y
1	Ctrl	409.0
2	1	93.0
3	2	154.0
4	Ctrl	559.0
5	1	102.0
6	2	118.0

Figure 5A

**Effet du surnageant de Bio-K Plus
(avec produit laitier) sur la migration
des cellules BAECs**

	X Labels	A
	Surnageant	cellules
	X	Y
1	Ctrl	3890.0
2	1/20	4993.0
3	1/10	4752.0
4	1/7	2183.0
5	Ctrl	11752.0
6	1/20	7382.0
7	1/10	5647.0
8	1/7	2868.0

Figure 5B

**Effet du surnageant de *Bio-K Plus*
(sans produit laitier) sur la migration
des cellules BAECs**

label	A
imageant	cellules
X	Y
	3890.0
)	3037.0
)	2805.0
)	2096.0
)	11752.0
O	3831.0
O	3618.0
,	2699.0

Figure 6A

**Effet du surnageant de Bio-K
Plus (avec produit laitier) sur la
prolifération des cellules
HUVECs**

X Values Heures	A			B			
	Dilution 1/20			Dilution 1/10			
	X	Y1	Y2	Y3	Y1	Y2	Y3
1 0.00	4.03100	2.70200	1.86700	2.843000	1.788000	2.660000	
2 24.00	5.59700	6.01100	4.96700	6.104000	6.892000	6.818000	
3 48.00	4.76700	5.81500	5.75100	8.413000	6.238000	7.024000	
4 72.00	3.98200	2.62900	3.07200	5.637000	6.281000	5.449000	

	C		
	Dilution1/7		
	Y1	Y2	Y3
1	3.09700	2.22900	2.67500
2	4.47400	5.92900	2.06500
3	5.70900	5.74200	6.01800
4	5.43400	5.56600	4.96000

Figure 6B

**Effet du surnageant de *Bio-K*
Plus (sans produit laitier) sur la
prolifération des cellules
HUVECs**

X Values Heures	A			B			
	Dilution 1/20			Dilution 1/10			
	X	Y1	Y2	Y3	Y1	Y2	Y3
1 0.00	2.96100	2.76600	2.97200	2.746000	3.391000	3.006000	
2 24.00	3.40000	3.94800	4.48500	4.576000	5.848000	6.529000	
3 48.00	2.56700	3.41400	2.48500	4.931000	4.661000	5.303000	
4 72.00	3.15800	3.55000	2.55800	3.782000	3.879000	4.974000	

C		
Dilution1/7		
Y1	Y2	Y3
3.04300	2.95800	3.11600
5.85500	5.48700	4.84600
3.10400	2.40200	2.37000
2.73200	2.38200	2.35500

Figure 7A

**Effet du surnageant de Bio-K
Plus (avec produit laitier) sur la
prolifération des cellules
HUVECs induite par le bFGF**

X Values Heures	A			B		
	Dilution 1/20			Dilution 1/10		
X	Y1	Y2	Y3	Y1	Y2	Y3
0.00	1.74400	2.78100	3.47300	2.638000	2.622000	2.787000
24.00	6.51900	7.21900	7.06900	8.900000	8.645000	9.371000
48.00	9.12700	10.10800	9.36600	12.060000	10.131000	9.658000
72.00	9.51100	11.41700	9.07900	14.073000	7.903000	11.007000

C		
Dilution1/7		
Y1	Y2	Y3
2.56700	2.32100	2.32100
2.72800	5.91100	8.15700
7.39000	7.78200	8.01100
15.61000	12.54400	15.40800

Figure 7B

**Effet du surnageant de Bio-K
Plus (sans produit laitier) sur la
prolifération des cellules
HUVECs induite par le bFGF**

K Values	A			B			C			
	Dilution 1/20			Dilution 1/10			Dilution 1/7			
Heures	X	Y1	Y2	Y3	Y1	Y2	Y3	Y1	Y2	Y3
0.00	2.49300	2.54300	2.19600	2.727000	2.891000	2.651000	2.900000	2.66500	2.92700	
24.00	5.36200	5.32200	4.58300	6.863000	5.192000	8.081001	5.53800	6.07000	6.59500	
48.00	4.19800	4.87500	4.97000	5.099000	4.939000	5.384000	3.56800	4.16800	4.03600	
72.00	4.84200	6.53700	6.21000	3.726000	4.554000	5.018000	5.05000	4.05500	4.22700	

Figure 4

A.

**Effect of lactic bacteria supernatants on
the proliferation of endothelial cells
after 65 h treatment (n =1)**

abels	A		
abels	Huvec		
X	Y1	Y2	Y3
	0.2420	0.3080	0.2100
	0.6950	0.6130	0.5110
	0.6360	0.5810	0.6510
	0.8000	0.7720	0.7330

Figure 4

B.

**Effect of lactic bacteria supernatants on
the proliferation of endothelial cells
after 65 h treatment (n = 2)**

X Labels	A		
X Labels	Huvec		
X	Y1	Y2	Y3
ctrl	0.5800	0.4800	0.3710
i3	0.6890	0.6100	0.7550
i6	0.5940	0.6360	0.6430
i9	0.5090	0.5730	0.6330

Figure 5

Labels cells	A				
	Ctrl				
X	Y1	Y2	Y3	Y4	Y5
EGF	19.0	11.0	19.0	20.0	16.0
EGF	34.0	27.0	25.0	27.0	46.0

B				
S3				
	Y2	Y3	Y4	Y5
4.0	9.0	8.0	7.0	17.0
13.0	7.0	12.0	15.0	13.0

C				
S6				
R1	Y2	Y3	Y4	Y5
6.0	8.0	4.0	7.0	14.0
10.0	7.0	7.0	8.0	20.0

D				
S9				
	Y1	Y2	Y3	Y4
1	8.0	9.0	6.0	10.0
2	10.0	8.0	8.0	10.0
				10.0

Figure 6

Effect of the supernatants of the lactic bacteria on the tube formation by endothelial cells ($n = 1$)

A. HUVECs

Figure 6

Effect of the supernatants of the lactic bacteria on the tube formation by endothelial cells ($n = 2$)

B. HUVECs

Figure 7**A.****Effect of lactic bacteria supernatants on
the proliferation of tumoral cells after
65 h treatment (n = 1)**

X Labels	A			B		
	Cells			S3		
X	Y1	Y2	Y3	Y1	Y2	Y3
Panc-1	0.1490	0.1300	0.1080	0.2640	0.4930	0.2710
PC-3	0.0780	0.0720	0.0620	0.1530	0.1510	0.1570
U-87	0.0700	0.1100	0.1060	0.1600	0.2170	0.1340
Daoy	0.0780	0.0740	0.0680	0.2430	0.2410	0.2760
MCF-7	0.0970	0.0960	0.1110	0.2310	0.2500	0.2980

	C			D		
	S6			S9		
	Y1	Y2	Y3	Y1	Y2	Y3
1	0.4260	0.3330	0.2880	0.2380	0.2670	0.2180
2	0.1180	0.1400	0.1530	0.1130	0.0750	0.0570
3	0.2040	0.1880	0.1940	0.2120	0.2170	0.2030
4	0.2700	0.3140	0.2750	0.2960	0.3130	0.3250
5	0.2820	0.2800	0.2870	0.1790	0.1690	0.1520

Figure 7**B.****Effect of lactic bacteria supernatants on
the proliferation of tumoral cells after
65 h treatment (n = 2)**

X Labels	A			B			
	Cells	Ctrl		S3			
		X	Y1	Y2	Y3	Y1	
1 Panc-1		0.5310	0.4060	0.3770	0.6060	0.8410	0.7170
2 PC-3		0.3930	0.4610	0.4530	0.7470	0.6520	0.5330
3 U-87		0.9860	0.9850	0.9580	0.9410	1.1730	1.0390
4 Daoy		0.5980	0.7780	0.6770	0.6070	0.5940	0.6060
5 MCF-7		0.3330	0.3650	0.3280	0.4620	0.4450	0.4370

C			D		
S6			S9		
Y1	Y2	Y3	Y1	Y2	Y3
0.5780	0.7750	0.5740	0.7150	0.5910	0.6100
0.6740	0.6560	0.6680	0.7050	0.6890	0.6420
1.4980	1.6010	1.5430	1.3420	1.2470	1.0770
0.6850	0.7770	0.7860	0.8610	0.8080	0.9170
0.6480	0.5280	0.4270	0.5960	0.5190	0.6330

Figure 8

**Effect of lactic bacteria supernatants on
the migration of tumoral cells**

X Labels	A				
Cellules	Ctrl				
X	Y1	Y2	Y3	Y4	Y5
Daoy	33.0	66.0	85.0	127.0	95.0
U-87	137.0	209.0	151.0	115.0	148.0

B				
S3				
Y1	Y2	Y3	Y4	Y5
73.0	66.0	61.0	75.0	70.0
149.0	114.0	143.0	125.0	136.0

C				
S6				
Y1	Y2	Y3	Y4	Y5
75.0	72.0	59.0	78.0	85.0
133.0	160.0	120.0	145.0	132.0

	D				
	S9				
	Y1	Y2	Y3	Y4	Y5
1	78.0	58.0	65.0	85.0	55.0
2	140.0	151.0	141.0	164.0	148.0

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/CA04/001968

International filing date: 15 November 2004 (15.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: CA
Number: 2,448,843
Filing date: 13 November 2003 (13.11.2003)

Date of receipt at the International Bureau: 26 January 2005 (26.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.