Formulari i Taules de Química General

Jordi Villà i Freixa

28 d'abril de 2025

Índex

1	Constants	1
2	Fórmules	2
3	Unitats de mesura	3
4	Radi atòmic	5
5	Dades termodinàmiques 5.1 Calor de Combustió	5 7
6	Electroquímica	9
7	Reaccions àcid-base	10
8	Enllaç i propietats moleculars	11
9	Enllaços d'interès	12

1 Constants

Taula 1: Constants rellevants per a aquest curs

Constant	Valor
Número d'Avogadro	$6,022 \times 10^{23} \mathrm{mol}^{-1}$
Càrrega d'un electró	$1,602 \times 10^{-19} \mathrm{C}$
Massa d'un electró	$9{,}109 \times 10^{-31} \mathrm{kg}$
Massa d'un protó	$1,673 \times 10^{-27} \mathrm{kg}$
Massa d'un neutró	$1,675 \times 10^{-27} \mathrm{kg}$
Constant de Planck	$6,626 \times 10^{-34} \mathrm{J s}$
Constant de Boltzmann	$1{,}381 \times 10^{-23}\mathrm{JK^{-1}}$
Constant dels gasos	$8,314\mathrm{JK^{-1}mol^{-1}}$

 $\begin{array}{ll} {\rm Constant~de~Faraday} & 96\,485\,{\rm C\,mol}^{-1} \\ {\rm Constant~de~gravitaci\acute{o}~universal} & 6,674\times10^{-11}\,{\rm N\,m^2\,kg^{-2}} \end{array}$

2 Fórmules

Taula 2: Fórmules rellevants per a aquest curs

Fórmula	Descripció
p = mv	Moment lineal, la massa i la velocitat
$KE = \frac{1}{2}mv^2$	Energia cinètica d'un cos en moviment
$P = \frac{F}{A}$	Definició de pressió
PV = nRT	Llei dels gasos ideals
$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$	Equació de van der Waals
$\dot{w} = -P\Delta V$	Treball exercit sobre un gas
U = q + w	Primera llei de la termodinàmica
H = U + PV	Entalpia
$\mathrm{d}S = \frac{\mathrm{d}q_{\mathrm{rev}}}{T}$	Definició d'entropia
G = H - TS	Energia lliure de Gibbs
$q_v = n\Delta U$	Calor a volum constant
$q_p = n\Delta H$	Calor a pressió constant
$\Delta G = \Delta H - T\Delta S$	Canvi d'energia lliure de Gibbs
$\Delta G^{\circ} = -RT \ln K$	Energia lliure de Gibbs i constant d'equilibri
$E_{\text{pila}}^{\circ} = E_{\text{càtode}}^{\circ} - E_{\text{ànode}}^{\circ}$	Potencial estàndard de la pila
$E = E^{\circ} - \frac{RT}{nF} \ln Q$	Equació de Nernst, f.e.m. (E) i quocient de reacció
$\Delta G = -nFE$	Energia lliure de Gibbs i potencial elèctric
$K = Q_{\text{eq}} = \frac{\prod_{i}^{P} [\text{productes}_{i}]^{\text{coef}_{i}}}{\prod_{j}^{R} [\text{reactius}_{j}]^{\text{coef}_{j}}}$	Constant d'equilibri
$K_p = K_c(RT)^{\Delta n}$	Constant d'equilibri (pressió-concentració)
$K_{sp} = \prod_{i}^{ions} [ions_i]^{coef_i}$	Producte de solubilitat
$K_a = \frac{[\mathrm{H}^+][\mathrm{A}^-]}{[\mathrm{HA}]}$	Constant d'acidesa
$K_b = \frac{[OH^-][BH^+]}{[B]}$	Constant de basicitat
$pK_a = -\log K_a$	Constant d'acidesa i pKa
$pH = -\log[\mathrm{H}^+]$	Definició de pH
$K_w = [\mathrm{H}^+][\mathrm{OH}^-] = K_a \cdot K_b$	Producte iònic de l'aigua
$pK_w = pH + pOH$	pH, pOH i pKw
$pH = pKa + \log \frac{[A^-]}{[HA]}$	Equació de Henderson-Hasselbalch
$C_i = k_H \cdot P_i$	Llei de Henry: concentració d'un gas dissolt i pressió parcial
$C = \frac{n}{V}$	Concentració molar
$P_A = X_A P_A^{\circ}$	Llei de Raoult: pressió parcial component en solució
$X_A = \frac{n_A}{n_A + n_B}$	Fracció molar component solució
nA + nB	-

$m = \frac{n}{m_{\text{solvent}}}$	Definició de molalitat
$\Delta T_b = K_b \cdot m$	Elevació del punt d'ebullició
$\Delta T_f = K_f \cdot m$	Descens del punt de congelació

3 Unitats de mesura

Taula 3: Algunes unitats del SI rellevants per a aquest curs, incloent la seva anàlisi dimensional. El sistema CGS (centímetregram-segon) és un sistema de mesura que utilitza el centímetre, el gram i el segon com a unitats bàsiques de longitud, massa i temps respectivament.

Magnitud	Unitat a SI	Símbol SI	Dimensió
Longitud	metre	m	L
Volum	litre	\mathbf{L}	L^3
Massa	kilogram	kg	M
Temperatura	kelvin	K	Θ
mol	mol	mol	N
temps	segon	S	T
Freqüència	hertz	$_{ m Hz}$	T^{-1}
Energia	joule	J	ML^2T^{-2}
Força	newton	N	MLT^{-2}
Pressió	pascal	Pa	$ML^{-1}T^{-2}$
Potencial elèctric	volt	V	$ML^2T^{-3}I^{-1}$
Potència	watt	W	ML^2T^{-3}

Taula 4: Conversió d'unitats del sistema americà al Sistema Internacional (SI)

Magnitud	Unitat (EUA)	Equivalència en SI
Volum	$1 \mathrm{in}^3$	$16,387{\rm cm}^3$
Volum	$1\mathrm{ft}^3$	$28{,}317\mathrm{L}$
Volum	$1\mathrm{gal}\;(\mathrm{US})$	$3{,}785\mathrm{L}$
Pressió	1 psi	$6,895\mathrm{kPa}$
Pressió	$1\mathrm{atm}$	$101{,}325\mathrm{kPa}$
Pressió	$1\mathrm{inHg}$	$3{,}386\mathrm{kPa}$
Temperatura	1 F	$T_C = (T_F - 32) \times \frac{5}{9}$
Massa	1 oz	$28,\!35{ m g}$
Massa	$1\mathrm{lb}$	$0{,}4536\mathrm{kg}$
Massa	1 t (US)	$907{,}184\mathrm{kg}$

Taula 5: Comparació de les unitats de pressió amb 1 atmosfera

Unitat de Pressió	Pressió (en relació a 1 atm)
Atmosfera (atm)	1 atm
Pascal (Pa)	$101325\mathrm{Pa}$
Kilopascal (kPa)	$101.325\mathrm{kPa}$
Bar	$1.01325\mathrm{bar}$
Mil·límetre de mercuri (mmHg)	$760\mathrm{mmHg}$
Torra (Torr)	$760\mathrm{Torr}$
Pounds per square inch (psi)	$14.696\mathrm{psi}$

Taula 6: Conversió de la constant dels gasos en diferents unitats

Valor de la constant dels gasos R	Unitats
0,082	$\mathrm{atm}\mathrm{L}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
8,3145	${ m m}^3{ m Pa}{ m K}^{-1}{ m mol}^{-1}$
8,3145	$ m JK^{-1}mol^{-1}$
62,363	$L \operatorname{Torr} K^{-1} \operatorname{mol}^{-1}$
$1,9872 \times 10^{-3}$	$\operatorname{kcal} K^{-1} \operatorname{mol}^{-1}$
$8,205 \times 10^{-5}$	$\mathrm{m}^{3}\mathrm{atm}\mathrm{K}^{-1}\mathrm{mol}^{-1}$

4 Radi atòmic

H 25																	He 32
Li 145	Be 105											B 85	C 70	N 65	O 60	F 50	Ne 69
Na 180	Mg 150											Al 125	Si 110	P 100	S 100	Cl 100	Ar 97
K 220	Ca 180	Sc 160	Ti 140	V 135	Cr 140	Mn 140	Fe 140	Co 135	Ni 135	Cu 135	Zn 135	Ga 130	Ge 125	As 115	Se 115	Br 115	Kr 110
Rb 235	Sr 200	Y 180	Zr 155	Nb 145	Mo 145	Tc 135	Ru 130	Rh 135	Pd 140	Ag 160	Cd 155	In 135	Sn 145	Sb 145	Te 140	I 140	Xe 130
Cs 260	Ba 215	La 195	Hf 155	Ta 145	W 135	Re 135	Os 130	Ir 135	Pt 135	Au 135	Hg 150	Tl 190	Pb 180	Bi 160	Po 190	At	Rn 145
Fr	Ra 215	Ac 195															

Figura 1: El radi d'un àtom. Distància entre el nucli d'un àtom i la seva capa exterior d'electrons. Aquesta no és una entitat fixa, per la qual cosa hi ha diverses definicions d'aquest terme, depenent de la mesura utilitzada. El radi atòmic difereix segons l'estat de l'enllaç d'un àtom (per exemple, un àtom no enllaçat d'un element enfront de l'element mateix dins d'un enllaç covalent). Radi empíric per als àtoms en enllaços covalents dels elements en picòmetres (pm) amb una precisió de 5 pm. (Els valors per a la columna de He fins a Xe són per als àtoms lliures.) Tingueu en compte les tendències en el radi atòmic dins de les períodes (files) i famílies (columnes) de la taula periòdica. No apareix cap número on no hi hagi dades disponibles.

5 Dades termodinàmiques

Taula 7: Calor de Fusió i Vaporització d'algunes substàncies pures (específic ΔH en J/g i Molar ΔH en kJ/mol)

Substància	Calor	de Fusió	Calor de Vaporització			
	$\Delta H_{\rm fus} ({\rm J/g}) \Delta H_{\rm fus} ({\rm kJ/mol})$		$\Delta H_{\mathrm{vap}} \; (\mathrm{J/g})$	$\Delta H_{\mathrm{vap}} \; (\mathrm{kJ/mol})$		
Alumini	321	8.66	11400	307.6		
Benzè	127.4	10.0	390	30.5		
Coure	207	13.2	5069	322.1		
Or	67	13.2	1578	310.9		
Ferro	209	11.7	6340	354.1		
Plom	22.4	4.64	871	180.5		
Metà	59	0.946	537	8.61		
Mercuri	11.6	2.33	295	5.92		
Metanol	98.8	3.17	1100	35.2		

Taula 7: Calor de Fusió i Vaporització d'algunes substàncies pures (específic ΔH en J/g i Molar ΔH en kJ/mol)

Substància	Calor	de Fusió	Calor de Vaporització			
	$\Delta H_{\rm fus} \; ({\rm J/g})$	$H_{\rm fus}$ (J/g) $\Delta H_{\rm fus}$ (kJ/mol)		$\Delta H_{\mathrm{vap}} \; (\mathrm{kJ/mol})$		
Nitrogen	25.5	0.715	200	5.60		
Sodi	113	2.60	4237	97.42		
Aigua	334	6.02	2260	40.7		

La taula següent mostra els valors clau de termodinàmica per a diverses substàncies, extrets de la taula CODATA KEY VALUES FOR THERMODY-NAMICS a [2, 3]. La taula inclou l'entalpia estàndard de formació a 298,15 K, l'entropia a 298,15 K i la quantitat H° (298,15 K)- H° (0 K). Un valor de 0 a la columna $\Delta_f H^{\circ}$ per a un element indica l'estat de referència per a aquest element. La pressió de l'estat estàndard és 10^5 Pa (1 bar).

Taula 8: Valors termodinàmics per a diverses substàncies [2]

Substància	$\Delta_f H^{\circ} \ (298.15 \ {\rm K})$	$S^{\circ} (298.15 \text{ K})$	$H^{\circ} (298.15 \text{ K}) - H^{\circ} (0)$
	(kJ/mol)	(J/K/mol)	(kJ/mol)
Ar (g)	0	154.846 ± 0.003	6.197 ± 0.001
C (cr, graphite)	0	5.74 ± 0.10	1.050 ± 0.020
C(g)	716.68 ± 0.45	158.100 ± 0.003	6.536 ± 0.001
CO(g)	-110.53 ± 0.17	197.660 ± 0.004	8.671 ± 0.001
CO_2 (aq, undissoc.)	-413.26 ± 0.20	119.36 ± 0.60	
CO_2 (g)	-393.51 ± 0.13	213.785 ± 0.010	9.365 ± 0.003
CO_3^{2-} (aq)	-675.23 ± 0.25	-50.0 ± 1.0	
$H_2(g)$	0	130.680 ± 0.003	8.468 ± 0.001
$H_2O(g)$	-241.826 ± 0.040	188.835 ± 0.010	9.905 ± 0.005
$H_2O(l)$	-285.830 ± 0.040	69.95 ± 0.03	13.273 ± 0.020
$\mathrm{H_2PO_4^-}\left(\mathrm{aq}\right)$	-1302.6 ± 1.5	92.5 ± 1.5	
H_2S (aq, undissoc.)	-38.6 ± 1.5	126 ± 5	
H_2S (g)	-20.6 ± 0.5	205.81 ± 0.05	9.957 ± 0.010
N(g)	472.68 ± 0.40	153.301 ± 0.003	6.197 ± 0.001
NH_3 (g)	-45.94 ± 0.35	192.77 ± 0.05	10.043 ± 0.010
NH_4^+ (aq)	-133.26 ± 0.25	111.17 ± 0.40	
NO_3^- (aq)	-206.85 ± 0.40	146.70 ± 0.40	
N_2 (g)	0	191.609 ± 0.004	8.670 ± 0.001
S(g)	277.17 ± 0.15	167.829 ± 0.006	6.657 ± 0.001
$SO_2(g)$	-296.81 ± 0.20	248.223 ± 0.050	10.549 ± 0.010
SO_4^{2-} (aq)	-909.34 ± 0.40	18.50 ± 0.40	
C_3H_8 (g)	-104.7 ± 0.4	269.91 ± 0.10	14.66 ± 0.05
$H_2(g)$	0	130.680 ± 0.003	8.468 ± 0.001
$H_2O(g)$	-241.826 ± 0.040	188.835 ± 0.010	9.905 ± 0.005

Substància	$\Delta_f H^{\circ} (298.15 \text{ K}) $ (kJ/mol)	$S^{\circ} (298.15 \text{ K}) (\text{J/K/mol})$	H° (298.15 K)– H° (0) (kJ/mol)
H ₂ O (1)	-285.830 ± 0.040	69.95 ± 0.03	13.273 ± 0.020
H_2PO_4 (aq)	-1302.6 ± 1.5	92.5 ± 1.5	
H ₂ S (aq, undissoc.)	-38.6 ± 1.5	126 ± 5	
$H_2S(g)$	-20.6 ± 0.5	205.81 ± 0.05	9.957 ± 0.010
N(g)	472.68 ± 0.40	153.301 ± 0.003	6.197 ± 0.001
NH_3 (g)	-45.94 ± 0.35	192.77 ± 0.05	10.043 ± 0.010
NH_4^+ (aq)	-133.26 ± 0.25	111.17 ± 0.40	
NO_3^- (aq)	-206.85 ± 0.40	146.70 ± 0.40	
N_2 (g)	0	191.609 ± 0.004	8.670 ± 0.001
S (g)	277.17 ± 0.15	167.829 ± 0.006	6.657 ± 0.001
$SO_2(g)$	-296.81 ± 0.20	248.223 ± 0.050	10.549 ± 0.010
SO_4^{2-} (aq)	-909.34 ± 0.40	18.50 ± 0.40	

Taula 8: Valors termodinàmics per a diverses substàncies [2]

5.1 Calor de Combustió

La calor de combustió d'una substància a 25°C es pot calcular a partir de les dades d'entalpia de formació ($\Delta_f H^{\circ}$). Podem escriure la reacció general de combustió com:

$$X + O_2 \longrightarrow CO_2(g) + H_2O(l) + Y$$

Per a un compost que conté només carboni, hidrogen i oxigen, la reacció és simplement:

$$\mathrm{C_aH_bO_c} + \left(a + \frac{b}{4} - \frac{c}{2}\right)\mathrm{O_2} \, \longrightarrow \, \mathrm{aCO_2(g)} + \frac{b}{2}\,\mathrm{H_2O(l)}$$

i la calor estàndard de combustió $\Delta_c H^{\circ}$, que es defineix com el negatiu del canvi d'entalpia per a la reacció (és a dir, el calor alliberat en el procés de combustió), es dóna per:

$$\Delta_c H^{\circ} = -a\Delta_f H^{\circ}(CO_2, g) - \frac{b}{2}\Delta_f H^{\circ}(H_2O, l) + \Delta_f H^{\circ}(C_a H_b O_c)$$
$$= 393.51a + 142.915b + \Delta_f H^{\circ}(C_a H_b O_c)$$

Aquesta equació s'aplica si els reactius comencen en els seus estats estàndard (25°C i una atmosfera de pressió) i els productes tornen a les mateixes condicions. La mateixa equació s'aplica a un compost que conté un altre element si aquest element acaba en el seu estat de referència estàndard (per exemple, nitrogen, si el producte és N_2); en general, però, els productes exactes que contenen els altres elements han de ser coneguts per calcular el calor de combustió.

Taula 9: Calor estàndard de combustió de diverses substàncies. Adaptat de la taula $Heat\ of\ Combustion\ a\ [3]$

Fórmula Molecular	Nom	$\Delta_c H^{\circ} \text{ (kJ/mol)}$	
C ₃ H ₈ O	1-Propanol (l)	2021.3	
$C_3H_8O_3$	Glicerol (l)	1655.4	
$C_4H_{10}O$	Èter dietílic (l)	2723.9	
$C_5H_{12}O$	1-Pentanol (l)	3330.9	
C_6H_6	Fenol (s)	3053.5	
Substàncies Inorgàniques			
\mathbf{C}	Carboni (grafit)	393.5	
CO	Monòxid de carboni (g)	283.0	
H_2	Hidrogen (g)	285.8	
$\mathrm{H_{3}N}$	Amoníac (g)	382.8	
$\mathrm{H_4N_2}$	Hidrazina (g)	667.1	
N_2O	Òxid nitrós (g)	82.1	
Compostos de Carbonil			
$\mathrm{CH_2O}$	Formaldehid (g)	726.1	
$C_2\overline{H}_2O$	Cetè (g)	1366.8	
C_2H_4O	Acetaldehid (l)	1460.4	
C_3H_6O	Acetona (1)	1189.2	
C_3H_6O	Propanal (l)	1822.7	
C_4H_8O	2-Butanona (l)	2444.1	
Hidrocarburs			
CH_4	Metà (g)	890.8	
C_2H_2	Acetilè (g)	1301.1	
$\mathrm{C_2H_4}$	Etilè (g)	1411.2	
C_2H_6	Età (g)	1560.7	
C_3H_6	Propilè (g)	2058.0	
C_3H_6	Ciclopropà (g)	2091.3	
C_3H_8	Propà (g)	2219.2	
C_4H_6	1,3-Butadiè (g)	2541.5	
C_4H_{10}	Butà (g)	2877.6	
C_5H_{12}	Pentà (l)	3509.0	
$\mathrm{C_6H_6}$	Benzè (l)	3267.6	
C_6H_{12}	Ciclohexà (l)	3919.6	
$\mathrm{C_6H_{14}}$	Hexà (l)	4163.2	
$\mathrm{C_{7}H_{8}}$	Toluè (l)	3910.3	
$\mathrm{C_{7}H_{16}}$	Heptà (l)	4817.0	
$C_{10}H_{8}$	Naftalè (s)	5156.3	
Alcohols i Èters			
$\mathrm{CH_{4}O}$	Metanol (l)	570.7	
C_2H_6O	Etanol (l)	1025.4	
	• •		

Taula 9: Calor estàndard de combustió de diverses substàncies. Adaptat de la taula $Heat\ of\ Combustion\ a\ [3]$

Fórmula Molecular	Nom	$\Delta_c H^{\circ} \text{ (kJ/mol)}$	
C_2H_6O	Èter dimetílic (g)	1166.9	
$C_2H_6O_2$	Etilè glicol (l)	1789.9	
Àcids i Èsters			
$\mathrm{CH_2O_2}$	Àcid fòrmic (l)	254.6	
$\mathrm{C_2H_4O_2}$	Àcid acètic (l)	874.2	
$\mathrm{C_2H_4O_2}$	Formiat de metil (l)	972.6	
$\mathrm{C_3H_6O_2}$	Acetat de metil (l)	1592.2	
$\mathrm{C_4H_8O_2}$	Acetat d'etil (l)	2238.1	
$C_7H_6O_2$	Àcid benzoic (s)	3226.9	
Compostos de Nitrogen			
CHN	Cianur d'hidrogen (g)	671.5	
$\mathrm{CH_{3}NO_{2}}$	Nitrometà (l)	709.2	
$\mathrm{CH_{5}N}$	Metilamina (g)	1085.6	
C_2H_3N	Acetonitril (1)	1247.2	
C_2H_5NO	Acetamida (s)	1184.6	
C_3H_9N	Trimetilamina (g)	2443.1	
$\mathrm{C_5H_5N}$	Piridina (l)	2782.3	
C_6H_7N	Anilina (l)	3392.8	

6 Electroquímica

Taula 10: Sèrie d'Activitat Redox Tipus[1].

Element		
Fàcilment oxidats		
Cesi (Cs)		
Rubidi (Rb)		
Potassi (\mathbf{K})		
Sodi (\mathbf{Na})		
Calci (Ca)		
Magnesi (\mathbf{Mg})		
Alumini (Al)		
Titani (Ti)		
Manganès (Mn)		
$Zinc (\mathbf{Zn})$		
Crom(Cr)		
Ferro (Fe)		
Níquel (Ni)		

Element		
Plom (Pb)		
Coure (Cu)		
Fàcilment reduïts		
Or (Au)		

Taula 11: Potencials REDOX seleccionats amb aplicacions en química automobilística[3]. Reaccions de reducció amb menor probabilitat de passar són a la part superior.

Reacció	E0 (V) a 25°C
$Al(OH)_3 + 3e^- \rightarrow Al + 3OH^-$	-2,31
$\mathrm{Al}_3^+ + 3\mathrm{e}^- \to \mathrm{Al}$	-1,662
$2{\rm H_2O} + 2{\rm e^-} ightarrow {\rm H_2} + {\rm OH^-}$	-0.8277
$\operatorname{Cr}_3^+ + 3\operatorname{e}^- \to \operatorname{Cr}$	-0,744
$Fe(OH)_3 + e^- \rightarrow Fe(OH)_2 + OH^-$	-0.56
$ZnOH^{+} + H^{+} + 2e^{-} \rightarrow Zn + H_{2}O$	-0,479
$\mathrm{Fe_2}^+ + 2\mathrm{e}^- \to \mathrm{Fe}$	-0,447
$\mathrm{PbSO_4} + 2\mathrm{e^-} \rightarrow \mathrm{Pb} + \mathrm{SO_4^{2-}}$	-0,3588
${\rm CrO}_{42}^- + 4{\rm H}_2{\rm O} + 3{\rm e}^- \to {\rm Cr}({\rm OH})_3 + 5{\rm OH}^-$	-0,13
$\mathrm{Fe_3}^+ + 3\mathrm{e}^- \to \mathrm{Fe}$	-0,037
$_2\mathrm{H}^+ + 2\mathrm{e}^- ightarrow \mathrm{H}_2$	0
$CoO_2 + Li^+ + e^- \rightarrow LiCoO_2$	0,36
$Fe(s) + 2e^- \rightarrow Fe_2^+$	0,41
$\text{Cr}_2\text{O}_{72}^- + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}(\text{s}) + 7\text{H}_2\text{O}$	0,59
$\mathrm{Zn} + 2\mathrm{e^-} ightarrow \mathrm{Zn_2}^+$	0,76
$\mathrm{Fe_3}^+ + \mathrm{e}^- \to \mathrm{Fe_2}^+$	0,771
$\mathrm{Pt}_{2}^{+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Pt}$	1,18
$O_2 + 4H^+ + 4e^- \rightarrow {}_2H_2O$	1,229
$\text{Cr}_2\text{O}_{72}^- + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}(\text{s}) + 7\text{H}_2\text{O}$	1,33
$HCrO_4^- + 7H^+ + 3e^- \rightarrow Cr + 4H_2O$	1,350
$PbO_2 + 4H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$	1,6913
${\rm PtO_3} + 2{\rmH^+} + 2{\rme^-} \to {\rm PtO_2} + {\rm H_2O}$	1,7

7 Reaccions àcid-base

Taula 12: Constants d'acidesa d'alguns àcid
s a $25\,^{\circ}\mathrm{C}$

Àcid	$K_a \; (\mathrm{mol} \; \mathrm{dm}^{-3})$	pK_a
Àcid perclòric (HClO ₄)	molt gran	-
Àcid clòric (HClO_3)	molt gran	-
Àcid nítric (HNO ₃)	molt gran	_

Àcid	$K_a \text{ (mol dm}^{-3}\text{)}$	pK_a
Àcid iodhidric (HI)	molt gran	-
Àcid bromhídric (HBr)	molt gran	-
Àcid clorhídric (HCl)	molt gran	-
Àcid sulfúric (H_2SO_4)	molt gran	-
Àcid hidrònic (H_3O^+)	1.00	0.00
Àcid tricloroacètic (CCl ₃ COOH)	5.9×10^{-2}	1.23
Àcid dicloroacètic (CHCl ₂ COOH)	1.40×10^{-2}	1.85
Àcid cloroacètic (CH ₂ ClCOOH)	1.30×10^{-3}	2.89
Àcid fluorhídric (HF)	6.46×10^{-4}	3.19
Àcid fòrmic (HCOOH)	1.77×10^{-4}	3.75
Àcid acètic (CH ₃ COOH)	1.80×10^{-5}	4.75
Àcid benzoic (C_6H_5COOH)	6.30×10^{-5}	4.19
Àcid carbonic (H_2CO_3)	4.30×10^{-7}	6.37
Àcid sulfhídric (H ₂ S)	9.10×10^{-8}	7.04
Àcid cianhídric (HCN)	6.30×10^{-10}	9.31
Aigua (H ₂ O)	1.80×10^{-16}	15.76

Taula 13: Constants de basicitat d'algunes bases a $25\,^{\circ}\mathrm{C}$

Base	$K_b \text{ (mol dm}^{-3}\text{)}$	pK_b
Ió òxid (O^{2-})	molt gran	-
Ió hidrur (H ⁻)	molt gran	-
Ió amida (NH_2^-)	9.1×10^{-3}	2.04
Ió sulfur (S^{2-})	5.9×10^{-3}	2.23
Ió hidrogen sulfur (HS ⁻)	3.7×10^{-4}	3.33
Ió fosfat (PO_4^{3-})	5.4×10^{-4}	3.27
Ió hidrogen fosfat (HPO_4^{2-})	2.1×10^{-5}	4.68
Metilamina (CH ₃ NH ₂)	4.19×10^{-4}	3.68
Dimetilamina $((CH_3)_2NH)$	5.4×10^{-4}	3.27
Trimetilamina $((CH_3)_3N)$	6.1×10^{-5}	4.75
Ió carbonat (CO_3^{2-})	1.8×10^{-4}	3.75
Amoníac (NH_3)	1.79×10^{-5}	4.75
$Hidrazina (N_2H_4)$	9.8×10^{-7}	6.01
Piridina (C_5H_5N)	1.8×10^{-9}	8.75
Anilina $(C_6H_5NH_2)$	4.3×10^{-10}	9.37

8 Enllaç i propietats moleculars

Taula 14: Moments dipolars i polaritzabilitats de molècules comunes.

Molècula	Moment Dipolar (D)	Polaritzabilitat (α, \mathring{A}^3)
H_2	0.00	0.80
$\bar{\mathrm{He}}$	0.00	0.20
Ar	0.00	1.64
Xe	0.00	4.04
N_2	0.00	1.77
CO_2	0.00	2.63
CO	0.11	1.98
$_{ m HF}$	1.82	0.51
HCl	1.08	3.70
HBr	0.82	5.60
$_{ m HI}$	0.42	7.10
CCl_4	0.00	10.5
H_2O	1.85	1.48
NH_3	1.47	2.26
CH_4	0.00	2.60
C_2H_5OH	1.69	4.40
C_6H_6	0.00	10.3
O_2	0.00	1.60
SO_2	1.63	4.00
C_3H_6O	2.91	6.70

Taula 15: Propietats de diversos dissolvents: punts de congelació, punts d'ebullició i constants crioscòpiques i ebulloscòpiques.

Dissolvent	Fórmula	T_f (°C)	$K_f (^{\circ} \mathrm{C} \mathrm{mol}^{-1})$	T_b (°C)	$K_b \ (^{\circ}\mathrm{C}\mathrm{mol}^{-1})$
Aigua	$\mathrm{H_2O}$	0	1.86	100	0.52
Benzè	C_6H_6	5.5	5.12	80.1	2.53
Etanol	C_2H_5OH	-114.6	1.99	78.4	1.22
Àcid acètic	$\mathrm{CH_{3}COOH}$	16.6	3.90	117.9	2.95
Tetraclorur de carboni	CCl_4	-23		76.5	5.03
Cloroform	CHCl_3	-63.5		61.7	3.63

9 Enllaços d'interès

A part de les referències incloses en aquest document, es pot trobar més informació rellevant en les següents fonts:

• Sobre els errors en les mesures i la seva propagació: [4].

Referències

- [1] Geoffrey M. Bowers i Ruth A. Bowers. *Understanding Chemistry through Cars*. en. CRC Press, nov. de 2014. ISBN: 978-1-4665-7184-6. DOI: 10.1201/b17581. URL: https://www.taylorfrancis.com/books/9781466571846.
- [2] J. Cox, D. Wagman i V. Medvedev. "CODATA key values for thermodynamics". A: 1989. URL: https://www.semanticscholar.org/paper/ CODATA-key-values-for-thermodynamics-Cox-Wagman/c2c548403f0478b44fb007d0b0d2acbac313aeb (cons. 22-02-2025).
- [3] David R Lide et al. *CRC Handbook of Chemistry and Physics*. en. Boca Raton, FL: CRC Press, 2005.
- [4] Vern Lindberg. Uncertainties and Error Propagation. 2000. URL: http://www.geol.lsu.edu/jlorenzo/geophysics/uncertainties/Uncertaintiespart1.html (cons. 22-02-2025).

