Zadanie 1.

N - Pan X przegrał, W - Pan X wygrał

A₁ - grał na automacie I

A₂ - grał na automacie II

A₁ - grał na automacie III

$$P(A_1) = \frac{\binom{13}{3} + \binom{13}{2} \binom{39}{1}}{\binom{52}{3}} = \frac{286 + 78 \cdot 39}{22100} = 0,151$$

$$P(A_2) = \frac{\binom{13}{1}\binom{39}{2}}{\binom{52}{3}} = \frac{13 \cdot 741}{22100} = 0,436$$

$$P(A_3) = \frac{\binom{39}{3}}{\binom{52}{3}} = \frac{9139}{22100} = 0,413$$

$$P(W|A_1)= 1/4$$
 => $P(N|A_1)= \frac{3}{4}$
 $P(W|A_2)= 1/5$ => $P(N|A_2)= 4/5$
 $P(W|A_3)= 1/6$ => $P(N|A_3)= 5/6$

Korzystamy ze wzoru na p-stwo calkowite:

$$P(N) = P(N \mid A_1)P(A_1) + P(N \mid A_2)P(A_2) + P(N \mid A_3)P(A_3)$$

Zadanie 2.

C - wylosowano kulę czarną

 U_2 - losowano z U_2

U₃ - losowano z U₃

$$P(U_2) = \frac{\binom{4}{2}}{\binom{7}{2}} = \frac{6}{21} = \frac{2}{7}$$
 => $P(U_3) = \frac{5}{7}$

$$P(C|U_2) = \frac{6}{10}$$
 ; $P(C|U_3) = \frac{2}{8}$

Korzystamy ze wzoru Bayesa:

$$P(U_2 \mid B) = \frac{P(B \mid U_2)P(U_2)}{P(B \mid U_2)P(U_2) + P(B \mid U_3)P(U_3)} = \frac{\frac{6}{10} \cdot \frac{2}{7}}{\frac{6}{10} \cdot \frac{2}{7} + \frac{2}{8} \cdot \frac{5}{7}}$$

Zadanie 3.

Zbiór wszystkich zdarzeń elementarnych to ilość takich par (k, l), gdzie k i l może przyjmować wartości liczb naturalnych (liczbę oczek) od 1 .. 6. Odpowiednio k na pierwszej kostce i l na drugiej.

Zatem wszystkich zdarzeń elementarnych będzie $6^2 = 36$

Zmienna losowa X(s) = k + l

Zmienna losowa może przyjmować zatem następujące wartości: {2, 3, ...,11, 12}

Rozkład zmiennej losowej X ma zatem postać:

$\boldsymbol{\mathcal{X}}$	2	3	4	5	6	7	8	9	10	11	12
p(x)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Zadanie 4.

Punktu skoków dystrybuanty są wartościami zmiennej losowej, a wartości tych skoków są wartościami prawdopodobieństw.

Zatem:

Χ	-5	-1	2	6
p(x)	0,2	0,4	C-0,6	1-C

gdzie parametr C może przyjąć wartości z przedziału [0,6; 1].

Wynika to z tego, ze p(x) musza być w przedziale [0,1] albo z niemalenia dystrybuanty.

$$P(-4 < X < 4) = P(X=-1) + P(X=2) = 0,4 + (C - 0,6) = C-0,2$$

 $P(X > 2) = 1 - P(X \le 2) = 1 - F(2) = 1 - C$
 $lub\ P(X > 2) = P(X=6) = 1 - C$