Propositional Equivalence

フ
_

Equivalence	Name
P ^ T ⇔ P P V F ⇔ P	Identity Laws
P V T ⇔ T P ^ F ⇔ F	Domination Laws
P V P ⇔ P P ^ P ⇔ P	Idempotent Laws
¬ (¬ P) ⇔ P	Double Negation Law
$\begin{array}{c} P \ V \ Q \Leftrightarrow Q \ V \ P \\ P \ ^{} \ Q \Leftrightarrow Q \ ^{} \ P \end{array}$	Commutative Law

Equivalence	Name
Z (P V Q) V R ⇔ P V (Q V R), (P Λ Q) Λ R	Associative Law
$\Leftrightarrow P \land (Q \land R)$ $P \lor (Q \land R)$ $\Leftrightarrow (P \lor Q) \land (P \lor R)$ $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$	Distributive Law De Morgan's Laws
$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$	De Morgan 3 Laws
P [] Q ⇔ ¬P V Q	Implication Equivalence
$P \; [] \; Q \; \Leftrightarrow \neg Q \; [] \; \neg P$	Contrapositive Law

Note: equivalent expressions can always be substituted for each other in a more complex expression - useful for simplification.

Logic in Proof

- A theorem is a proposition that can be proved to be true.
- An argument that establishes the truth of a theorem is called a proof.
- An argument is a process by which a conclusion is drawn from a set of propositions.
- The given set of propositions are called premises or hypotheses.
- The final proposition derived from the given propositions is called a conclusion.

Logic in Proof....

- Am argument is said to be logically valid argument if and only if the conjunction of the premises implies the conclusion.
- Im other words, a valid argument is one when:

$$P_1 \wedge P_2 \wedge P_3 \dots \wedge P_n \longrightarrow C$$

is a tautology.