6.1200 Problem Set 2

$Problem \ 1 \ ({\it Collaborators: None})$

Case: $\mathbf{d} > \mathbf{20}$ If $d \leq 20$, then that means that $a, b, c \leq 20$. Adding together a, b, c we get that $a + b + c + d \leq 80$. Plugging in the values to the equation $100 - (\leq 80) = e$. We get that $e \geq 20$.

$Problem \ 2 \ ({\it Collaborators: None})$

If $\log_2 3$ is rational, then it can be represented by $\frac{a}{b}$ where a and b are coprime natural numbers. We can rearange the inequality to $2^{\frac{p}{q}} = 3$ and further to $2^a = 3^b$. This means that 2 is only 2^a is only divisible by 2 and 3^b is only divisible by 3. Since both 2 and 3 are prime numbers, this will never be true except for zero, and we know that $\log_2 3$ is a non zero number.

Problem 3 (Collaborators: None)

Proof:

The proof is by induction, using the inductive hypothesis $F(n)F(n+1) = F(0)^2 + F(1)^2 + \dots + F(n)^2$

BaseCase:

$$F(0)^2 = F(0) \times F(1)$$
: $0 = 0$ is true

InductiveStep:

If we're trying to evaluate $F(n) \times F(n+1)$ that means by induction $F(n-1) \times F(n)$ is assumed to be true, therefore:

Assume
$$n \ge 1$$
 $F(n-1) \times F(n) + F(n)^2 = F(n) \times F(n+1)$

$$F(n) \times (F(n-1) + F(n)) = F(n) \times F(n+1)$$

And we know that because of the fibbonacci sequence F(n-1) + F(n) = F(n+1), so:

$$F(n) \times F(n+1) = F(n) \times F(n+1)$$

This means that
$$\forall n \in \mathbb{N}. F(n)F(n+1) = F(0)^2 + F(1)^2 + \ldots + F(n)^2$$

$Problem \ 4 \ ({\it Collaborators: None})$

Part 4(a)

Part 4(b)

Shivam never mentions $x_1
otin 0$, however just brings it out of thin air in the end of the inductive step.

Part 4(c)

Zach's problem is that when saying the statment $x_i = 4x_{i-1}$ for all $i \ge 0$ he is wrong. Also, in the $x_{i+1} = 6x_i - 8x_{i-1}$, when i = 1 $8x_{i-1}$ relys on x_0 which is not defined.

Part 4(d)

Proof:

Using regular induction on the hypothesis $R(i) := "x_i \ge 3x_{i-1}ANDx_i > 0"$.

$Problem \ 5 \ \textit{(Collaborators: None)} \\$

Part 5(a)

P(k) := "for all pairs m, n > 0 with $m \times n = k$, we have (k-1) is the splits needed to break up the chocolate bar"

Part 5(b)

$\mathbf{Proof}:$

The proof is by induction, using P(k) as our inductive hypothesis

${\bf Base Case:}$

If k=1 then m, n=1 and there are no splits we have to do. And k-1=0

InductiveStep: