

Correction to "Correlating Aggregation Kinetics and Stationary Diffusion in Protein—Sodium Salt Systems Observed with Dynamic Light Scattering" [The Journal of Physical Chemistry B 2010, 114, 4383–4387. DOI: 10.1021/jp912126w]. Jonathan Rubin, Adriana San Miguel, Andreas S. Bommarius,* and Sven H. Behrens

The calculation of the coagulation rate constant k_{11} presented in this paper was performed incorrectly due to a unit conversion error. The corrected plots of Figure 3 differ only in the scale of the ordinates. The corrected values for k_{11} suggest a new choice of $k_{11} = 10^{-28}$ m³/s as the reference rate constant at which to evaluate the ionic strength $I_{\rm s}$ used as a measure of stability in Figure 4. The corrected $I_{\rm s}$ values (Figure 4) are shifted very slightly with respect to the values originally reported, but the corrected data still provide strong support for our original conclusions.

Figure 3. Coagulation rate constant, k_{11} , as a function of ionic strength. (a) Lysozyme experiments were run at pH 4.25 and $T=25~^{\circ}\mathrm{C}$ in a 0.1 M sodium acetate buffer (top). (b) BSA experiments were run at pH 4.0 and $T=25~^{\circ}\mathrm{C}$ in a 0.1 M sodium acetate buffer (bottom).

The correlation we propose is still robust, as we maintain \mathbb{R}^2 values of 0.92 or above for both proteins. Characteristic differences between the investigated proteins and the different electrolytes used remain unaffected and our theory and conclusion are still valid.

Figure 4. Relating ν and ionic strength at $k_{11} = 10^{-28} \, \text{m}^3/\text{s}$: (a) correlation for lysozyme; (b) correlation for BSA.

DOI: 10.1021/jp206633a Published on Web 08/18/2011