工作汇报 0421

1. 模型效果(调参后)

ACC	99.29
F1 Score	98.52
AUC	99.53
AUPRC	99.35

2. 消融实验

	ACC	F1 Score	AUC	AUPRC
Full Model	99.29	98.52	99.53	99.35
w/o TS	50.94	48.51	86.02	74.77
w/o Image	95.51	91.32	99.40	98.72
w/o Laboratory	94.81	90.18	99.41	98.97
AllShared	87.50	79.05	98.59	96.77

1. ECG 时序信号(TS)是核心驱动因素

- 去掉 TS 后,模型准确率直接跌到~50%(接近随机猜测),F1 也跌到~48%,AUC 下降到~86%, AUPRC 更是跌到~75%。
- 说明绝大多数判别能力都来自于时序特征,图像和化验都没法单独承担诊断任务。

2. 图像与化验各有增益,但次要

- **去掉图像**: ACC 从 99.29% 降至 95.51%(-3.8%),F1 从 98.52% 降至 91.32%,AUC 仍然保持在 99.40%,AUPRC≈98.7%。
- **去掉化验**: ACC≈94.81% (-4.5%), F1≈90.18%, AUC≈99.41%, AUPRC≈98.97%。
- 两者的影响接近,说明图像和化验各自都能提供额外信息,但即便缺失其中之一,模型仍能保持较高的判别性能(AUC > 99%)。

3. AllShared 结构(仅用共享编码器,无模态特定编码器)表现逊色

- ACC ≈ 87.50%,F1 ≈ 79.05%,AUC ≈ 98.59%,AUPRC ≈ 96.77%,比起原始"先各自编码再共享融合" 的架构,平均性能出现明显下滑。
- 验证了"模态特定编码器 + 共享 Transformer"设计能更好地提取各模态特征,再进行跨模态交互,比单纯把原始输入拼在一起、交给同一个 Transformer 更强。

3. 对比实验计划(正在设计与进行中)

1. 尝试使用公开数据集(没有Laboratory模态)进行实验观察效果(公开数据集相对于我们的数据集规模要 大得多,在数据处理和训练方面都更加耗时,且缺少Laboratory模态的数据,最终效果如何有待进一步考 证)

模型的架构,但	下比较具有参考下的工作作为对比实 我们的模型尚未引入预训练的设计, 方法尚未公开源代码)。	