

On the Parameterized Complexity of SEMITOTAL DOMINATING SET on Graph Classes

Lukas Retschmeier

Theoretical Foundations of Artificial Intelligence School of Computation Technical University of Munich

February 28th, 2023

Quack!

Motivation

Theor

Landscap

W[2]

Kerne

Rule 1 Rule 2 Rule 3

Canalusian

References

Quack!

Retschmeie

Motivation

Landscap

W[2]

Bipartite

Definition

Rule 1 Rule 2

Kernel Size

Conclusions

References

Lukas Retschmeier

Motivation

Theory

Landscape

W[2]

Split Bipartite

Kerne

Rule 1
Rule 2
Rule 3

Conclusion

Reference

Our Plan for Today

ТИП

- Motivation
- 2 Theory
- 3 Landscape
- W[2] hardness Split Bipartite
- 5 Kernel Definitions

Dula 1

Rule 1

Rule 2

Rule 3

Kernel Size

6 Conclusions

Lukas Retschmeier

Motivation

Theor

Landscap

hardnes

Split Bipartite

Kerne

Definition

Rule 2 Rule 3 Kernel Siz

Conclusions

Reference

Motivation

DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

- The domination number is the minimum cardinality of a ds of G, denotes as $\gamma(G)$
- Observation: In connected G every $v \in D$ has another $z \in D$ with $d(v, z) \leq 3$.

Lukas Retschmeier

Motivation

Motivation

Theory

Landscap

W[2] hardnes

hardnes
Split
Bipartite

Kerne Definition

Definition Rule 1 Rule 2 Rule 3 Kernel Siz

Conclusions

Reference

DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that N[D] = V?

- The domination number is the minimum cardinality of a ds of G, denotes as $\gamma(G)$
- **Observation:** In connected G every $v \in D$ has another $z \in D$ with $d(v, z) \leq 3$.

Lukas Retschmeier

Motivation

Theor

Landscap

W[2]

hardnes
Split
Bipartite

Kerne Definition

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

Reference

Motivation

DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that N[D] = V?

- The domination number is the minimum cardinality of a ds of G, denotes as $\gamma(G)$
- **Observation:** In connected G every $v \in D$ has another $z \in D$ with $d(v, z) \leq 3$.

Lukas Retschmeier

Motivation

Question

Motivation

Theory

Landscap

Zumassap

hardnes

Split

Kerne

Definiti

Rule 1 Rule 2

Rule 3 Kernel S

Conclusions

Reference

TOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists ds $D \subseteq V$ with $|D| \le k$ such that

- The total domination number is the minimum cardinality of a tds of G, denoted as $\gamma_t(G)$.
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Question

Motivation

Theory

Landscap

hardne

Split

Kerne

Definitio Rule 1 Rule 2

Rule 3 Kernel Si

Conclusion

Reference

TOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists ds $D \subseteq V$ with $|D| \le k$ such that

- The total domination number is the minimum cardinality of a tds of G, denoted as $\gamma_t(G)$.
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Question

Motivation

Theory

Landscap

hardne

Split
Bipartite

Kerne

Rule 1
Rule 2

Kernel Size

Conclusions

Reference

TOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists ds $D \subseteq V$ with $|D| \le k$ such that

- The total domination number is the minimum cardinality of a tds of G, denoted as $\gamma_t(G)$.
- We say d_1 witnesses d_2 (and vice versa)

Retschmeier

Motivation

Motivation

Question

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists ds $D \subseteq V$ with $|D| \leq k$ such that

- The semitotal domination number is the minimum cardinality of an sds of G,
- Observation: $\gamma(G) < \gamma_{t2}(G) < \gamma t(G)$

Retschmeier

Motivation

Motivation

Question

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists ds $D \subseteq V$ with $|D| \leq k$ such that

- The semitotal domination number is the minimum cardinality of an sds of G. denoted as $\gamma_{t2}(G)$.
- Observation: $\gamma(G) \leq \gamma_{t,2}(G) \leq \gamma t(G)$

Retschmeier

Motivation

Motivation

Question

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists ds $D \subseteq V$ with $|D| \leq k$ such that

- The semitotal domination number is the minimum cardinality of an sds of G. denoted as $\gamma_{t2}(G)$.
- Observation: $\gamma(G) < \gamma_{t2}(G) < \gamma t(G)$

Lukas Retschmeier

Motivation

Question

Motivation

Theory

Landscap

W[2] hardnes

hardnes
Split
Bipartite

Kerne

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

Reference

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists ds $D \subseteq V$ with $|D| \le k$ such that

- The semitotal domination number is the minimum cardinality of an sds of G, denoted as $\gamma_{t2}(G)$.
- Observation: $\gamma(G) \leq \gamma_{t2}(G) \leq \gamma t(G)$
- We say d_1 witnesses d_2 (and vice versa)

Example: $\gamma(G) < \gamma_{t2}(G) < \gamma_t(G)$

Retschmeier Motivation

Theory

Landscan

TTT[0]

hardne

Bipartite

Kerne

Definitio

Rule 1 Rule 2

Rule 3 Kernel Siz

Conclusions

References

DOMINATING SET

SEMITOTAL DOMINATING SET

TOTAL DOMINATING SET

Retschmeier

Theory

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- In this work: by solution size
- Techniques: Kernelization, Bounded Search Trees. ...

Retschmeier

Theory

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- **Goal:** Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for **some** parameter k
- In this work: by solution size
- Techniques: Kernelization, Bounded Search Trees. ...

Retschmeier

Theory

- NP-hard? We expect problem to be at least exponential
- **Idea:** Limit combinatorial explosion to some aspect of the problem
- **Goal:** Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for **some** parameter k
- In this work: by solution size
- Techniques: Kernelization, Bounded Search Trees. ...

Retschmeier

Theory

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- **Goal:** Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for **some** parameter k
- In this work: by solution size
- Techniques: Kernelization, Bounded Search Trees. ...

Lukas Retschmeier

Motiva

Theory

Landscap

W[2]

Split
Bipartite

Kerne

Rule 1
Rule 2
Rule 3

Conclusion

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- Techniques: Kernelization, Bounded Search Trees, ...
 If possible, the problem is fixed-parameter tractable.

Lukas Retschmeier

Motiv

Theory

Landscap

W[2]
hardnes

Kerne

Rule 1
Rule 2
Rule 3
Kernel Size

Conclusion:

References

Parameterized Complexity

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ...

If possible, the problem is **fixed-parameter tractable**.

Retschmeier

Theory

- Class **NP** splits into whole hierarchy W[i] in parameterized setting
- Problems at least W[1]-hard probably fixed-parameter intractable
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeier

Fixed-Parameter Intractability

Theory

.....

Landscap

hardnes

Split
Bipartite

Kerne

Definitio Rule 1 Rule 2

Rule 3 Kernel Size

Conclusions

References

- Class **NP** splits into whole hierarchy W[i] in parameterized setting
- ullet Problems at least W[1]-hard probably fixed-parameter intractable
- DOMINATING SET is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Retschmeier

Theory

- Class **NP** splits into whole hierarchy W[i] in parameterized setting
- Problems at least W[1]-hard probably fixed-parameter intractable

Lukas Retschmeier

Motiva

Theory

Landscap

Lanasca

hardnes

Kerne

Definitio

Rule 3 Kernel Size

Conclusion

References

- Class **NP** splits into whole hierarchy W[i] in parameterized setting
- ullet Problems at least W[1]-hard probably **fixed-parameter intractable**
- Dominating Set is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the paramete

Lukas Retschmeier

Theory

Landscap

hardnes

Kernel

Definition Rule 1 Rule 2

Kernel Size

Conclusions

References

- Class **NP** splits into whole hierarchy W[i] in parameterized setting
- ullet Problems at least W[1]-hard probably **fixed-parameter intractable**
- Dominating Set is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas

Complexity Landscape I

Motivat

Theory

Landscap

W[2] hardnes

Split
Ripartite

Kernel

Rule 1 Rule 2

Kernel Siz

Conclusions

References

Graph Class	DOMINATING SET		SEMITOTAL DOMINATING SET		TOTAL DOMINATING SET	
	classical	Parameterized	classical	Parameterized	classical	Parameterized
bipartite	NPc [4]	W[2] [40]	NPc [26]	W[2] (We)	NPc [33]	?
line graph of bipartite	NPc [29]	?	NPc [19]	?	NPc [36]	?
circle	NPc [27]	W[1][7]	NPc [28]	?	NPc [36]	W[1][7]
chordal	NPc [6]	W[2] [40]	NPc [26]	W[2] (We)	NPc [38]	W[1] [11]
s-chordal , $s > 3$	NPc [34]	W[2] [34]	?	?	NPc [34]	W[1] [34]
split	NPc [4]	W[2] [40]	NPc [26]	W[2] (We)	NPc [38]	W[1] [11]
3-claw-free	NPc [14]	FPT [14]	?	?	NPc [36]	?
t-claw-free, $t > 3$	NPc [14]	W[2] [14]	?	?	NPc [36]	?
chordal bipartite	NPc [37]	?	NPc [26]	?		P [15]
planar	NPc [20]	FPT [2]	NPc	FPT (We)	NPc	FPT [21]
undirected path	NPc [6]	FPT [18]	NPc [25]	?	NPc [32]	?
dually chordal	P [8]			?1	P [31]	
strongly chordal	P [17]			P [41]	NPc [17]	
AT-free	P [30]			P [28]	P [30]	
tolerance	P [23]			?		?
block	P [17]			P [25]		P [10]
interval	P [12]			P [39]	P [5]	
bounded clique-width	P [13]			P [13]	P [13]	
bounded mim-width	P [3, 9]			P [19] P [3, 9]		P [3, 9]

Lukas Retschmeier

Motivat

Theory

Landscape

W[2] hardnes

Biparti

Kerne

Definiti

Rule 1

Rule 3 Kernel Siz

Conclusions

Reference

Complexity Landscape II

Lukas Retschmeier

MOTIV

Theory

Landscape

W[2] hardness

Split

Bipartit

Kerne

Definition

Rule 1

Rule 2

Kernel Si

Conclusions

References

Warmup: Intractability Results

W[2]-hard on split, chordal and bipartite graphs

• Split Graph: G = Clique + IndependentSet

Lukas Retschmeier

Motivat

Theory

Landscar

W[2]

Split

Kerne

Definiti

Rule 1

Rule 2 Rule 3

Conclusion

Reference

Split Graphs

Semitotal Dominating Set on split and $\mathit{chordal}$ graphs is W[2]-hard

Proof by fpt-reduction from DOMINATING SET on split graphs:

- **1 Observe**: Any ds *D* directly admits a sds *D*'.
- 2 Length of longest shortest path exactly 3
- 3 If $d \in (I \cap D)$, flip into K
- 4 Parameter k' = k

Lukas Retschmeier

Motiva

Theory

Landecar

W[2] hardnes

Split Bipartite

Kerne

Pule 1
Rule 2

Rule 3 Kernel Si

Conclusions

Reference

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is W[2]-hard

- **1 Observe**: Any ds D directly admits a sds D'.
- 2 Length of longest shortest path exactly 3
- 3 If $d \in (I \cap D)$, flip into K
- 4 Parameter k' = k

Lukas Retschmeier

Motiva

Theory

Landecar

W[2]
hardnes

Kerne

Pule 3

Conclusion

Reference

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is W[2]-hard

- **1 Observe**: Any ds *D* directly admits a sds *D*'.
- 2 Length of longest shortest path exactly 3
- 4 Parameter k' = k

Lukas Retschmeier

Motiva

Theory

Landscar

W[2]
hardnes

Kerne

Definition Rule 1 Rule 2 Rule 3

Conclusion

Reference

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is W[2]-hard

- **1 Observe**: Any ds *D* directly admits a sds *D*'.
- 2 Length of longest shortest path exactly 3
- 4 Parameter k' = k

Lukas Retschmeier

Motiva

Thoon

Landscar

W[2]
hardnes

Kerne

Pule 1
Rule 2
Rule 3

Conclusion:

Reference

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is W[2]-hard

- **1 Observe**: Any ds *D* directly admits a sds *D*'.
- 2 Length of longest shortest path exactly 3
- 3 If $d \in (I \cap D)$, flip into K
- 4 Parameter k' = k

Lukas Retschmeier

Motiva

Theory

Landscar

W[2]
hardnes

Kerne

Definition Rule 1 Rule 2 Rule 3

Conclusions

Reference

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is W[2]-hard

- **1 Observe**: Any ds *D* directly admits a sds *D*'.
- 2 Length of longest shortest path exactly 3
- 3 If $d \in (I \cap D)$, flip into K
- 4 Parameter k' = k

Lukas Retschmeier

Motivat

Thoon

Landeca

hardne

narane

Bipartite

Kerne

Rule

Dula 0

Kernel Size

Conclusions

Referenc

Bipartite Graphs

Semitotal Dominating Set on bipartite graphs is W[2]-hard

Proof by fpt-reduction from DOMINATING SET on bipart. graphs:

- **1 Construct** Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- ② If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- 3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

Motiva

Theory

Landscar

W[2] hardnes

Bipartite

Kerne

Rule 1

Rule 3

Conclusion

Referenc

Bipartite Graphs

Semitotal Dominating Set on bipartite graphs is W[2]-hard

- **1** Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- ② If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- 3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

WOUVa

тпеогу

Landscap

W[2]
hardnes

Bipartite

Kerne

Rule 1

Rule 3 Kernel Siz

Conclusions

Referenc

Bipartite Graphs

Semitotal Dominating Set on bipartite graphs is W[2]-hard

- **1** Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- 2 If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- 3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

Motivat

Theren

Landecar

W[2] hardness

Bipartite

Kerne

Rule 1 Rule 2

Rule 3 Kernel S

Conclusion

referenc

Bipartite Graphs

Semitotal Dominating Set on bipartite graphs is W[2]-hard

- **1** Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- 2 If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- 3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

....

Landager

Lanusca

W[2]
hardnes

Bipartite

Kerne

Rule 1 Rule 2 Rule 3

Rule 3 Kernel Size

Conclusion

reterenc

Bipartite Graphs

Semitotal Dominating Set on bipartite graphs is W[2]-hard

- **1** Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- 2 If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- **3** Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeie

Motivati

Landscap

hardnes

Trair arrio

Kernel

Definitio

Dule 0

....

Vormal Cir

Conclusions

References

A Linear Kernel for Planar Semitotal Dominating Set

Retschmeier

Kernel

Kernelization

• Idea: Preprocess an instance using Reduction Rules until hard kernel bounded by f(k) is found.

Kernel

Kernelization

Idea: Preprocess an instance using *Reduction Rules* until hard *kernel* is found.

Retschmeier

Kernel

Kernelization

Idea: Preprocess an instance using *Reduction Rules* until hard *kernel* is found.

Related Works

Lukas Retschmeie

Landscan

Lundscap

hardnes

Split

Dipartite

Kernel

Definit

Rule

Rule 2

Kernel Siz

Conclusions

References

Problem	Size	Source
PLANAR DOMINATING SET	67k	[16]
PLANAR TOTAL DOMINATING SET	410k	[21]
PLANAR SEMITOTAL DOMINATING SET	358k	Slide 20
PLANAR EDGE DOMINATING SET	14k	[24]
PLANAR EFFICIENT DOMINATING SET	84k	[24]
PLANAR RED-BLUE DOMINATING SET	43k	[22]
PLANAR CONNECTED DOMINATING SET	130k	[35]
PLANAR DIRECTED DOMINATING SET	Linear	[1]

Kernel

Main Theorem

The Main Theorem

PLANAR SEMITOTAL DOMINATING SET parameterized by solution size admits a linear kernel of size $|V(G')| \leq 358 \cdot k$.

Retschmeier

Kernel

The Big Picture

Retschmeier

Kernel

The Big Picture

- Split the neighborhoods of the graph G = (V, E);

The Big Picture

Retschmeier

Th - - --

Landscap

hardnes

Biparti

Kernel

.....

Rule 1 Rule 2

Rule 3 Kernel Size

Conclusions

References

- **1** Split the neighborhoods of the graph G = (V, E);
 - 2 Define three reduction rules
 - Use a region decomposition to analyze the size of each region

The Big Picture

Retschmeier

Landscap

W[2] hardnes

Kernel

Rule 1
Rule 2
Rule 3
Kernel Siz

Conclusions

References

- Split the neighborhoods of the graph G = (V, E);
- 2 Define three reduction rules
- 3 Use a region decomposition to analyze the size of each region

Lukas Retschmeier

Motivat

Theory

Landscap

W [2]

Split

Kerne

Definitions

Rule:

Rule 3 Kernel Si:

Conclusions

References

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)

Lukas Retschmeier

Motivat

Theory

Landscap

W[2]
hardnes

Kerne

Definitions

Rule 1

Rule 3 Kernel Siz

Conclusions

References

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v,w\in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v,w)

Lukas Retschmeier

Motivat

Theory

Landscap

W[2]
hardnes

Kerne

Definitions

Rule 1

Rule 3 Kernel Size

Conclusions

References

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)

D-Region Decomposition

Retschmei

Landscap

hardne

Split

Kerne

Definitions

Rule

Rule 2

Kernel Siz

Conclusions

References

Lukas Retschmeier

Motiva

Theory

Landscan

W [2]
hardnes

Kernel

Definitions Rule 1

Rule 3

Conclusion

Reference

D-Region Decomposition (cont.)

D-region decomposition (Alber, Fellows, Niedermeier [2])

Given G = (V, E) and sds $D \subseteq V$, a D-region decomposition is a set \mathfrak{R} of regions with poles in D such that:

- The poles $v,w\in D\cap V(R)$ are only dominating vertices in the region.
- Regions are disjoint but can share border vertices

A region is **maximal**, if no $R \in \mathfrak{R}$ such that $\mathfrak{R}' = \mathfrak{R} \cup \{R\}$ is a *D-region decomposition* with $V(\mathfrak{R}) \subsetneq V(\mathfrak{R}')$.

Lukas Retschmeier

Motiva

Theory

Landscar

W[2]
hardnes

Kerne Definition

Rule 1 Rule 2 Rule 3

O----

Conclusions

References

D-Region Decomposition (cont.)

D-region decomposition (Alber, Fellows, Niedermeier [2])

Given G = (V, E) and sds $D \subseteq V$, a D-region decomposition is a set \mathfrak{R} of regions with poles in D such that:

- The poles $v,w\in D\cap V(R)$ are only dominating vertices in the region.
- Regions are disjoint but can share border vertices

A region is **maximal**, if no $R \in \mathfrak{R}$ such that $\mathfrak{R}' = \mathfrak{R} \cup \{R\}$ is a *D-region decomposition* with $V(\mathfrak{R}) \subsetneq V(\mathfrak{R}')$.

Retschmeier

Splitting Up N(v)

ТШП

Motiv

Theory

Landscap

W [2] hardne

Split

Kerne

Definitions

Rule 1 Rule 2

Rule 3

Conclusion

References

We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$

$$V_3(v) = N(v) \setminus (N_1(v) \cup N_2(v))$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$

Retschmeier

Splitting Up N(v)

ТШП

Motiv

Ineory

Landscap

W[2] hardne:

Split
Bipartite

Kernel Definitions

> Rule 1 Rule 2

Rule 3 Kernel Size

Conclusions

leferences

We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$

$$N_3(v) = N(v) \setminus (N_1(v) \cup N_2(v))$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$

(1)

Retschmeier

Definitions

Splitting Up N(v)

We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$

$$V_3(v) = N(v) \setminus (N_1(v) \cup N_2(v))$$

For
$$i, j \in [1, 3]$$
, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$

(2)

(1)

Retschmeier

Splitting Up N(v)

Motiv

Theory

Landscar

W[2]

Kernel Definitions

Rule 1 Rule 2

Rule 3 Kernel Size

Conclusions

References

We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$

$$N_3(v) = N(v) \setminus (N_1(v) \cup N_2(v))$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$.

(1)

26 / 50

Lukas Retschmeier

Motivat

There

Landscar

Lanusca

W[2]

Split
Bipartite

Kerne

Defini

Rule 1 Rule 2

Rule 3 Kernel Siz

Conclusions

Reference

Rule 1: Shrinking $N_3(v)$

Let G = (V, E) be a graph and let $v \in V$. If $|N_3(v)| \ge 1$:

- remove $N_{2,3}(v)$ from G,
- add $\{v, v'\}$.

• **Idea:** v better choice than $N_{2,3}(v)$

Splitting up N(v, w)

Retschmeier

Landscar

.

hardne

Split

Kerne

Definit

Rule 2

Rule 3

Conclusion

Reference

$$N_1(v, w) = \{ u \in N(v, w) \mid N(u) \setminus (N(v, w) \cup \{v, w\}) \neq \emptyset \}$$

$$(4)$$

$$N_2(v, w) = \{ u \in N(v, w) \setminus N_1(v, w) \mid N(u) \cap N_1(v, w) \neq \emptyset \}$$

$$N_3(v, w) = N(v, w) \setminus (N_1(v, w) \cup N_2(v, w))$$
 (

For $i, j \in [1, 3]$, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$

Lukas Retschmeier

Motiva

Theor

Landscar

W[2]

Split

Kerne

Definiti

Rule 2

Rule 3 Kernel Si

Conclusions

References

Splitting up N(v, w)

$$N_1(v,w) = \{ u \in N(v,w) \mid N(u) \setminus (N(v,w) \cup \{v,w\}) \neq \emptyset \}$$
(4)

$$N_2(v, w) = \{ u \in N(v, w) \setminus N_1(v, w) \mid N(u) \cap N_1(v, w) \neq \emptyset \}$$

$$N_3(v,w) = N(v,w) \setminus (N_1(v,w) \cup N_2(v,w))$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$

Retschmeier

Rule 2

Splitting up N(v, w)

$$N_1(v,w) = \{u \in N(v,w) \mid N(u) \setminus (N(v,w) \cup \{v,w\}) \neq \emptyset\}$$
(4)

$$N_2(v,w) = \{ u \in N(v,w) \setminus N_1(v,w) \mid N(u) \cap N_1(v,w) \neq \emptyset \}$$

$$N_3(v,w) = N(v,w) \setminus (N_1(v,w) \cup N_2(v,w))$$

$$(v,w) = N(v,w) \setminus (N_1(v,w) \cup N_2(v,w)) \tag{6}$$

(5)

"

Retschmeier

Motiv

Theory

Landscap

W[2]

Kernel

Definition

Rule 3

Conclusion

Reference

Splitting up N(v, w)

$$N_1(v,w) = \{u \in N(v,w) \mid N(u) \setminus (N(v,w) \cup \{v,w\}) \neq \emptyset\}$$
(4)

$$N_2(v, w) = \{ u \in N(v, w) \setminus N_1(v, w) \mid N(u) \cap N_1(v, w) \neq \emptyset \}$$

$$N_3(v,w) = N(v,w) \setminus (N_1(v,w) \cup N_2(v,w))$$

(5)

For $i, j \in [1, 3]$, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$.

Lukas Retschmeier

Motiv

Theory

Landsca

W[2] hardne

Split

Kern

Kern

Defini

Rule 1

Rule 3

Conclusion

Reference

Rule 2

$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v, w) \mid N_3(v, w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$
 (7)

$$\mathcal{D}_{v} = \{ D \subseteq N_{2,3}(v, w) \cup \{v\} \mid N_{3}(v, w) \subseteq \cup_{v \in \tilde{D}} N(v), \mid D \mid \leq 3, \ v \in D \}$$
 (8)

$$\mathcal{D}_{w} = \{ D \subseteq N_{2,3}(v, w) \cup \{w\} \mid N_{3}(v, w) \subseteq \cup_{v \in \tilde{D}} N(v), \mid D \mid \leq 3, \ w \in D \}$$
 (9)

Key Idea: $N_{2,3}(v,w)$ can **always** be semitotally dominated with 4 vertices. **Lemma:** $\mathcal{D} = \emptyset$ and $\mathcal{D}_v = \emptyset$, then any solution contains w.

Lukas Betschmeier

Motivat

тпеогу

Landscap

W[2]
hardnes

Kerne

Definiti

Rule 2 Rule 3 Kernel Siz

Conclusions

Reference

Rule 2

$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v, w) \mid N_3(v, w) \subseteq \cup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$

$$(7)$$

$$\mathcal{D}_v = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \cup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D} \}$$
 (8)

$$\mathcal{D}_{w} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{w\} \mid N_{3}(v,w) \subseteq \cup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ w \in \tilde{D} \}$$
 (9)

Key Idea: $N_{2,3}(v,w)$ can **always** be semitotally dominated with 4 vertices. **Lemma:** $\mathcal{D} = \emptyset$ and $\mathcal{D}_v = \emptyset$, then any solution contains w.

Lukas Retschmeier

Motiva

Theory

Landscar

W[2]
hardnes

Kerne

Definiti Rule 1 Rule 2

Rule 3 Kernel Size

Conclusions

Reference

Rule 2

$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v, w) \mid N_3(v, w) \subseteq \cup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$

$$(7)$$

$$\mathcal{D}_v = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \cup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D} \}$$
 (8)

$$\mathcal{D}_w = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{w\} \mid N_3(v,w) \subseteq \cup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ w \in \tilde{D} \}$$
 (9)

Key Idea: $N_{2,3}(v,w)$ can **always** be semitotally dominated with 4 vertices.

Lemma: $\mathcal{D} = \emptyset$ and $\mathcal{D}_v = \emptyset$, then any solution contains w.

Lukas Retschmeier

Motiva

Theory

Landscap

W[2]
hardnes

Kerne

Rule 1
Rule 2

Conclusion

Reference

Rule 2

$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v, w) \mid N_3(v, w) \subseteq \cup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$

$$(7)$$

$$\mathcal{D}_v = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \cup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D} \}$$
 (8)

$$\mathcal{D}_{w} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{w\} \mid N_{3}(v,w) \subseteq \cup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ w \in \tilde{D} \}$$
 (9)

Key Idea: $N_{2,3}(v,w)$ can **always** be semitotally dominated with 4 vertices.

Lemma: $\mathcal{D} = \emptyset$ and $\mathcal{D}_v = \emptyset$, then any solution contains w.

Rule 2

Retschmeier

Wotivat

Landscap

W[2] hardnes

Bipartite

Kerne

Definition

Rule 3

Conclusions

Reference

Case 1: If $\mathcal{D}=\emptyset$ and $\mathcal{D}_v=\emptyset$ and $D_w=\emptyset$

- Remove $N_{2,3}(v,w)$
- Add vertices v' and w' and two edges $\{v, v'\}$ and $\{w, w'\}$
- Preserve d(v, w)

Lukas Retschmeie

wotivat

Lanusca

W [2]
hardne

Kerne

Rule 1

Rule 3 Kernel Siz

Conclusion

Reference

Rule 2

If $\mathcal{D} = \emptyset$ we apply the following:

Case 2/3: if $\mathcal{D} = \emptyset$ and $\mathcal{D}_v \neq \emptyset$ and $\mathcal{D}_w = \emptyset$

- Remove $N_{2,3}(v)$
- Add $\{v, v'\}$

Motivat

Theory

Landscap

hardnes

Split

Ripartite

Kerne

Definiti

Rule :

Rule

Rule 3

Kernel Size

Conclusions

References

Simple Region [21]

A simple vw-region is a vw-region such that:

- 1 its boundary paths have length at most 2, and
- $2 V(R) \setminus \{v, w\} \subseteq N(v) \cap N(w).$

Lukas Retschmeier

Motivat

Theory

Landscap

W [2] hardnes

Split

Bipartite

Kerne

Definit

Rule 1

Rule 3

Kernel Siz

Conclusions

References

Simple Regions

Simple Region [21]

A simple vw-region is a vw-region such that:

- 1 its boundary paths have length at most 2, and
- $2 V(R) \setminus \{v, w\} \subseteq N(v) \cap N(w).$

Lukas Retschmeier

Motivat

Пеогу

Landscap

W[2]
hardnes

Kerne

Rule 1

Rule 2 Rule 3

Potoronoo

Rule 3

Let G=(V,E) be a plane graph, $v,w\in V$ and R be a simple region between v and w. If $|V(R)\setminus \{v,w\}|\geq 5$ apply the following:

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add path (v, y, w)

Lukas Retschmeie

Motivat

Theory

Landscap

W[2] hardnes

Kerne

Rule 1 Rule 2

Rule 3 Kernel Size

Conclusions

References

Rule 3

Let G=(V,E) be a plane graph, $v,w\in V$ and R be a simple region between v and w. If $|V(R)\setminus \{v,w\}|\geq 5$ apply the following:

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add path (v, y, w)

Lukas Retschmeier

Motivat

Theory

Landscap

W[2]

Bipartit

Rerne

Rule 1 Rule 2

Rule 3

Conclusion

Reference:

Rule 3

Let G=(V,E) be a plane graph, $v,w\in V$ and R be a simple region between v and w. If $|V(R)\setminus \{v,w\}|\geq 5$ apply the following:

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add new path (v, y, y', w)

Lukas Retschmeier

Motivat

Theory

Landscap

W[2] hardnes

Biparti

Definition

Rule 1 Rule 2

Rule 3 Kernel Siz

Conclusions

References

Rule 3

Let G=(V,E) be a plane graph, $v,w\in V$ and R be a simple region between v and w. If $|V(R)\setminus \{v,w\}|\geq 5$ apply the following:

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add new path (v, y, y', w)

Lukas

Retschmeier

Landscap

hardnes

Split

Kerne

Definiti

Rule 1

Rule 3

Kernel Size

Conclusions

References

Notes

- all these rules are sound,
- only change the solution size by a function in f(k)
- and can be applied in poly-time.

Lukas Retschmeier

Landesan

Landscap

hardnes

Split

Kerne

Definition

Rule 1 Rule 2

Rule 3

Conclusions

References

Notes

- all these rules are sound,
- only change the solution size by a function in f(k)
- and can be applied in poly-time.

Notes

Retschmeier

Londoon

Lanuscap

hardnes

Split

Kerne

Definition

Rule 1

Rule 3

Conclusion

References

- all these rules are sound,
- only change the solution size by a function in f(k),
- and can be applied in poly-time.

Notes

Retschmeier

Theory

Landscap

W[2]

Split

Kerne

Definition

Rule 2

Rule 3 Kernel Size

Conclusions

References

- all these rules are sound,
- only change the solution size by a function in f(k),
- and can be applied in poly-time.

Retschmeier

Kernel Size

Bounding the Kernel: Vertices Outside any Region

Lukas Retschmeier

Motiva

Theory

Landscar

W[2]

Split

Kerne

Definiti

Rule 1

Rule 2 Rule 3

Kernel Size

Boforono

Bounding the Kernel: Vertices Outside any Region

- $|N_1(v) \setminus V(\mathfrak{R})| \leq 0$ [2], On Border
- $|V_2(v) \setminus V(\mathfrak{R})| \le 96$ [2]: Simple regions to $N_1(v, w)$
- 3 $|N_3(v) \setminus V(\mathfrak{R})| \leq 1$, by Rule 1

Lukas Retschmeier

Motiva

Landscar

hardne

Split
Bipartite

Kerne

Definit

Rule 1 Rule 2

Kernel Size

Conclusion

Reference

Bounding the Kernel: Vertices Outside any Region

- $|N_2(v) \setminus V(\mathfrak{R})| \leq 96$ [2]: Simple regions to $N_1(v, w)$
- $|N_3(v) \setminus V(\mathfrak{R})| \leq 1$, by Rule 1

Lukas Retschmeier

Motiva

Theory

Landscap

W [2]
hardnes

Kerne

Definition

Rule 2

Kernel Size

Conclusion

Reference

Bounding the Kernel: Vertices Outside any Region

- $|N_2(v) \setminus V(\mathfrak{R})| \leq 96$ [2]: Simple regions to $N_1(v,w)$

Lukas Retschmeier

Motiva

Theory

Landscap

W [2]
hardnes

Kerne

Definition

Rule 2 Rule 3

Kernel Size

Conclusion

Reference

Bounding the Kernel: Vertices Outside any Region

- $|N_1(v) \setminus V(\mathfrak{R})| \leq 0$ [2], On Border
- $|N_2(v) \setminus V(\mathfrak{R})| \leq 96$ [2]: Simple regions to $N_1(v,w)$
- $(3) |N_3(v) \setminus V(\mathfrak{R})| \leq 1,$ by Rule 1

Retschmeier

Kernel Size

Bounding the Kernel: Inside a region

For each vw-region, we have

Total: $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| \le 87$

Retschmeier

Kernel Size

Bounding the Kernel: Inside a region

For each vw-region, we have

- $|N_1(v,w)| \leq 4$ (vertices on border [2])

Total: $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| \le 87$

Retschmeier

Kernel Size

Bounding the Kernel: Inside a region

For each vw-region, we have

- $|N_1(v,w)| \leq 4$ (vertices on border [2])
- $|N_2(v,w)| \le 6 \cdot 4$ (simple regions to $N_1(v,w)$, Rule 3)

Total: $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| < 87$

Lukas Retschmeier

Motivat

Theory

Landscar

W[2] hardnes

Kerne

Definitio Rule 1 Rule 2

Rule 3 Kernel Size

Conclusion:

Reference

Bounding the Kernel: Inside a region

For each vw-region, we have

- 1 $|N_1(v,w)| \le 4$ (vertices on border [2])
- 2 $|N_2(v,w)| \le 6 \cdot 4$ (simple regions to $N_1(v,w)$, Rule 3)
- $|N_3(v,w)| \le 57$ (Rule 2 / 3)

Total: $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| \le 87$

Lukas Retschmeier

Motiva

Theory

Landscap

W[2]

Split

Kerne

Definiti

Rule 1

Rule 2

Kernel Size

Conclusion

Reference

Bounding the Kernel: Number of Regions

Number of Regions [2]

Let G be a plane graph and let D be a SEMITOTAL DOMINATING SET with $|D|\geq 3.$ There is a maximal D-region decomposition of G sucht that $|\mathfrak{R}|\leq 3\cdot |D|-6.$

Lukas Retschmeier

Motiva

Theory

Landscap

W[2] hardnes

Kerne

Definiti

Rule 1 Rule 2

Kernel Size

Conclusions

Reference:

Bounding the Kernel: Number of Regions

Number of Regions [2]

Let G be a plane graph and let D be a SEMITOTAL DOMINATING SET with $|D| \geq 3$. There is a maximal D-region decomposition of G such tthat $|\mathfrak{R}| \leq 3 \cdot |D| - 6$.

Retschmeier

Kernel Size

Summary: Bounding Kernel Size

Let D be sds of size k. There exists a maximal D-region decomposition \Re such that:

- \mathfrak{R} has only at most 3k-6 regions (Alber, Fellows Niedermeier [2]):
- There are at most $97 \cdot k$ vertices outside of any region;
- Each region $R \in \mathfrak{R}$ contains at most 87 vertices.

Hence:
$$|V| = \bigcup_{v \in D} N(v) = 87 \cdot (3k - 6) + 97 \cdot k < 358 \cdot k$$

Retschmeier

Kernel Size

Main Theorem

All reduction rules can be applied in poly/time, hence:

The Main Theorem

The SEMITOTAL DOMINATING SET problem parameterized by solution size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that, given a planar graph (G, k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that $|V(G')| < 358 \cdot k'.$

Lukas Retschmeier

Motivat

Theory

Landscap

W[2] hardnes

Split

Kerne

Definition

Rule 1

Kernel Si

Conclusions

leferences

Conclusions

Results:

- Given an overview over the status
- Semitotal Dominating Set is W[1] for chordal, split and bipartite graphs
- exists linear kernel of size $358 \cdot k$ when parameterized by solution size

- Improve kernel size and do an empirical evaluation
- Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivat

THEOLY

Landscar

W[2] hardnes

Bipartite

Kerne

Rule 1
Rule 2
Rule 3

Kernel Size

Conclusions

leferences

Conclusions

Results:

- Given an overview over the status
- Semitotal Dominating Set is W[1] for chordal, split and bipartite graphs
- exists linear kernel of size $358 \cdot k$ when parameterized by solution size

- Improve kernel size and do an empirical evaluation
- Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivat

Theory

Landscar

W[2] hardness

Kerne

Rule 1
Rule 2
Rule 3
Kernel Siz

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- ullet Semitotal Dominating Set is W[1] for *chordal, split* and *bipartite* graphs
- exists linear kernel of size $358 \cdot k$ when parameterized by solution size

- Improve kernel size and do an empirical evaluation
- Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motiva

Theory

Landscap

W[2]
hardness

Kerne

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- Semitotal Dominating Set is W[1] for *chordal, split* and *bipartite* graphs
- ullet exists linear kernel of size $358 \cdot k$ when parameterized by solution size

- Improve kernel size and do an empirical evaluation
- Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motiva

Theory

Landscar

W[2]
hardness

Kerne

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- Semitotal Dominating Set is W[1] for *chordal, split* and *bipartite* graphs
- exists linear kernel of size $358 \cdot k$ when parameterized by solution size

- Improve kernel size and do an empirical evaluation
- Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motiva

Theory

Landscar

W[2]
hardness

Kerne

Definition
Rule 1
Rule 2
Rule 3

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- Semitotal Dominating Set is W[1] for *chordal, split* and *bipartite* graphs
- exists linear kernel of size $358 \cdot k$ when parameterized by solution size

- Improve kernel size and do an empirical evaluation
- Resolve complexities for Circle, chordal bipartite and undirected path graphs

Retschmeier

Conclusions

? Any Questions ? ... Thank you for your attention! ...

References I

Jochen Alber, Britta Dorn, and Rolf Niedermeier. "A General Data Reduction Scheme for Domination in Graphs". In: SOFSEM 2006: Theory and Practice of Computer Science, 32nd Conference on Current Trends in Theory and Practice of Computer Science, Merin, Czech Republic, January 21-27, 2006, Proceedings. Ed. by Jiri Wiedermann et al. Vol. 3831. Lecture Notes in Computer Science. Springer, 2006, pp. 137–147.

Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. "Polynomial-time data reduction for dominating set". In: (May 2004), pp. 363–384.

Rémy Belmonte and Martin Vatshelle. "Graph Classes with Structured Neighborhoods and Algorithmic Applications". In: *Proceedings of the 37th International Conference on Graph-Theoretic Concepts in Computer Science*. WG'11. Teplá Monastery, Czech Republic: Springer-Verlag, 2011, pp. 47–58.

Alan A. Bertossi. "Dominating sets for split and bipartite graphs". English. In: *Information Processing Letters* 19 (1984), pp. 37–40.

Alan A. Bertossi. "Total domination in interval graphs". In: *Information Processing Letters* 23.3 (1986), pp. 131–134.

References II

Kellogg S. Booth and J. Howard Johnson. "Dominating Sets in Chordal Graphs". In: *SIAM J. Comput.* 11.1 (Feb. 1982), pp. 191–199.

Nicolas Bousquet et al. "Parameterized Domination in Circle Graphs". In: *Proceedings of the 38th International Conference on Graph-Theoretic Concepts in Computer Science*. WG'12. Jerusalem, Israel: Springer-Verlag, 2012, pp. 308–319.

Andreas Brandstädt, Victor D. Chepoi, and Feodor F. Dragan. "The Algorithmic Use of Hypertree Structure and Maximum Neighbourhood Orderings". In: *Discrete Appl. Math.* 82.1–3 (Mar. 1998), pp. 43–77.

Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. "Fast Dynamic Programming for Locally Checkable Vertex Subset and Vertex Partitioning Problems". In: *Theor. Comput. Sci.* 511 (Nov. 2013), pp. 66–76.

Gerard J Chang. "Total domination in block graphs". In: *Operations Research Letters* 8.1 (1989), pp. 53–57.

Gerard J. Chang. "Algorithmic Aspects of Domination in Graphs". In: *Handbook of Combinatorial Optimization: Volume1–3.* Ed. by Ding-Zhu Du and Panos M. Pardalos. Boston, MA: Springer US, 1998, pp. 1811–1877.

References III

Maw-Shang Chang. "Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs". In: *SIAM Journal on Computing* 27.6 (1998), pp. 1671–1694. eprint: https://doi.org/10.1137/S0097539792238431.

Bruno Courcelle. "The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs". In: *Inf. Comput.* 85.1 (Mar. 1990), pp. 12–75.

Marek Cygan et al. "Dominating set is fixed parameter tractable in claw-free graphs". In: *Theoretical Computer Science* 412.50 (2011), pp. 6982–7000.

Peter Damaschke, Haiko Müller, and Dieter Kratsch. "Domination in Convex and Chordal Bipartite Graphs". In: *Inf. Process. Lett.* 36.5 (Dec. 1990), pp. 231–236.

Volker Diekert and Bruno Durand, eds. STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, February 24-26, 2005, Proceedings. Vol. 3404. Lecture Notes in Computer Science. Springer, 2005.

Martin Farber. "Domination, independent domination, and duality in strongly chordal graphs". In: *Discrete Applied Mathematics* 7.2 (1984), pp. 115–130.

References IV

Celina M. H. de Figueiredo et al. "Parameterized Algorithms for Steiner Tree and Dominating Set: Bounding the Leafage by the Vertex Leafage". In: WALCOM: Algorithms and Computation: 16th International Conference and Workshops, WALCOM 2022, Jember, Indonesia, March 24–26, 2022, Proceedings. Jember, Indonesia: Springer-Verlag, 2022, pp. 251–262.

Esther Galby, Andrea Munaro, and Bernard Ries. "Semitotal Domination: New Hardness Results and a Polynomial-Time Algorithm for Graphs of Bounded Mim-Width". In: *Theor. Comput. Sci.* 814.C (Apr. 2020), pp. 28–48.

M. R. Garey and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman, Mar. 29, 2007.

Valentin Garnero and Ignasi Sau. "A Linear Kernel for Planar Total Dominating Set". In: *Discrete Mathematics & Theoretical Computer Science* Vol. 20 no. 1 (May 2018). Sometimes we explicitly refer to the arXiv preprint version: https://doi.org/10.48550/arXiv.1211.0978. eprint: 1211.0978.

Valentin Garnero, Ignasi Sau, and Dimitrios M. Thilikos. "A linear kernel for planar red-blue dominating set". In: *Discret. Appl. Math.* 217 (2017), pp. 536–547.

References V

Archontia C. Giannopoulou and George B. Mertzios. "New Geometric Representations and Domination Problems on Tolerance and Multitolerance Graphs". In: *SIAM Journal on Discrete Mathematics* 30.3 (2016), pp. 1685–1725. eprint: https://doi.org/10.1137/15M1039468.

Jiong Guo and Rolf Niedermeier. "Linear Problem Kernels for NP-Hard Problems on Planar Graphs". In: *Automata, Languages and Programming.* Ed. by Lars Arge et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 375–386.

Michael A. Henning, Saikat Pal, and D. Pradhan. "The semitotal domination problem in block graphs". English. In: *Discussiones Mathematicae. Graph Theory* 42.1 (2022), pp. 231–248.

Michael A. Henning and Arti Pandey. "Algorithmic aspects of semitotal domination in graphs". In: *Theoretical Computer Science* 766 (2019), pp. 46–57.

J. Mark Keil. "The Complexity of Domination Problems in Circle Graphs". In: *Discrete Appl. Math.* 42.1 (Feb. 1993), pp. 51–63.

Ton Kloks and Arti Pandey. "Semitotal Domination on AT-Free Graphs and Circle Graphs". In: Algorithms and Discrete Applied Mathematics: 7th International Conference, CALDAM 2021, Rupnagar, India, February 11–13, 2021, Proceedings. Rupnagar, India: Springer-Verlag, 2021, pp. 55–65.

References VI

D. V. Korobitsin. "On the complexity of domination number determination in monogenic classes of graphs". In: 2.2 (1992), pp. 191–200.

Dieter Kratsch. "Domination and Total Domination on Asteroidal Triple-Free Graphs". In: *Proceedings of the 5th Twente Workshop on on Graphs and Combinatorial Optimization.* Enschede, The Netherlands: Elsevier Science Publishers B. V., 2000, pp. 111–123.

Dieter Kratsch and Lorna Stewart. "Total domination and transformation". In: *Information Processing Letters* 63.3 (1997), pp. 167–170.

James K. Lan and Gerard Jennhwa Chang. "On the algorithmic complexity of k-tuple total domination". In: Discrete Applied Mathematics 174 (2014), pp. 81–91.

J. Pfaff; R. Laskar and S.T. Hedetniemi. *NP-completeness of Total and Connected Domination, and Irredundance for bipartite graphs*. Technical Report 428. Department of Mathematical Sciences: Clemson University, 1983.

Chunmei Liu and Yinglei Song. "Parameterized Complexity and Inapproximability of Dominating Set Problem in Chordal and near Chordal Graphs". In: *J. Comb. Optim.* 22.4 (Nov. 2011), pp. 684–698.

References VII

Weizhong Luo et al. "Improved linear problem kernel for planar connected dominating set". In: *Theor. Comput. Sci.* 511 (2013), pp. 2–12.

Alice Anne McRae. "Generalizing NP-Completeness Proofs for Bipartite Graphs and Chordal Graphs". UMI Order No. GAX95-18192. PhD thesis. USA. 1995.

Haiko Müller and Andreas Brandstädt. "The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs". In: *Theor. Comput. Sci.* 53.2 (June 1987), pp. 257–265.

R. Laskar; J. Pfaff. *Domination and irredundance in split graphs*. Technical Report 428. Department of Mathematical Sciences: Clemson University, 1983.

D. Pradhan and Saikat Pal. "An \$\$O(n+m)\$\$time algorithm for computing a minimum semitotal dominating set in an interval graph". In: *Journal of Applied Mathematics and Computing* 66.1 (June 2021), pp. 733–747.

Venkatesh Raman and Saket Saurabh. "Short Cycles Make W-hard Problems Hard: FPT Algorithms for W-hard Problems in Graphs with no Short Cycles". In: *Algorithmica* 52.2 (2008), pp. 203–225.

References VIII

Vikash Tripathi, Arti Pandey, and Anil Maheshwari. A linear-time algorithm for semitotal domination in strongly chordal graphs. 2021.