Knowledge Distillation

DistilBERT | MobileBERT | TinyBERT

DistilBERT

A distilled version of BERT: Smaller, faster, cheaper and lighter

What is Knowledge Distillation?

- Knowledge Distillation is a technique in machine learning where a smaller, simpler model (student) is trained to mimic the performance of a larger, more complex model (teacher).
- It is done for Model compression, inference speedup and deployment efficiency

Why Distil BERT?

- During inference, DistilBERT is 60% faster than BERT.
- DistilBERT has 44M fewer parameters and in total is 40% smaller than BERT.
- DistilBERT retains 97% of BERT performance.

BERT vs DistilBERT comparison (on GLUE dataset)

DistilBERT Architecture

- DistilBERT reduces the number of layers from 12 in BERT-base to 6.
- The student model (DistilBERT) is trained to predict the probability distribution over the vocabulary produced by the teacher model (BERT) using the same input text.
- The student model learns to replicate the teacher's attention patterns.
- During training, optimization strategies such as temperature scaling are applied to the softmax outputs.

DistilBERT Loss Function

- DistilBERT learns from BERT and updates its weights by using the loss function which consists of three components:
 - Masked language modeling (MLM) loss
 - Distillation loss
 - Similarity loss

DistilBERT Loss

DistilBERT Performance Comparison

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

Table 2: **DistilBERT yields to comparable performance on downstream tasks.** Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	-	79.1/86.9

Table 3: **DistilBERT is significantly smaller while being constantly faster.** Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

MobileBERT

a Compact Task-Agnostic BERT for Resource-Limited Devices

What is mobile BERT?

- MobileBERT compresses and accelerates BERT to enable deployment on mobile devices with limited resources while maintaining high performance.
- MobileBERT is a versatile, task-agnostic model that can be fine-tuned for various NLP tasks without task-specific modifications.
- MobileBERT uses a "thin" version of BERTLARGE with bottleneck structures and balanced self-attentions and feed-forward networks to reduce computational load.
- MobileBERT is trained by transferring knowledge from an inverted-bottleneck BERTLARGE
 (IB-BERT) model, ensuring the smaller model retains high performance.
- MobileBERT is 4.3 times smaller and 5.5 times faster than BERTBASE, achieving competitive results on benchmarks like GLUE and SQuAD.

MobileBERT Architecture

Figure 1: Illustration of three models: (a) BERT; (b) Inverted-Bottleneck BERT (IB-BERT); and (c) MobileBERT. In (b) and (c), red lines denote inter-block flows while blue lines intra-block flows. MobileBERT is trained by layer-to-layer imitating IB-BERT.

MobileBERT Model Params Settings

			BERT _{LARGE} BERT _{BASE}		IB-BERT _{LARGE}	MobileBERT	MobileBERT _{TINY}					
h _{embedding}		hembedding	1024	768	128 3-convolution							
em	embedding		no-op	no-op								
		h _{inter}	1024	768	512							
	Linear	h _{input} h _{output}			$\left[\left(\begin{array}{c} 512 \\ 1024 \end{array} \right) \right]$	$\left[\left(\begin{array}{c} 512 \\ 128 \end{array} \right) \right]$	$\left[\left(\begin{array}{c} 512 \\ 128 \end{array} \right) \right]$					
hodu	MHA #Head h _{output}	$\left[\left(\begin{array}{c} 1024 \\ 16 \\ 1024 \end{array} \right) \right]_{\times 24}$	$\left[\begin{array}{c} \left(\begin{array}{c} 768\\12\\768 \end{array}\right) \end{array}\right]_{\times 12}$	512 4 1024) ×24	512 4 128 ×24	$ \left \begin{array}{c} 128 \\ 4 \\ 128 \end{array} \right \times 24 $						
body-	FFN	h _{input} h _{FFN} h _{output}	$\left[\begin{pmatrix} 1024 \\ 4096 \\ 1024 \end{pmatrix} \right]^{\times 24}$	$\left[\left(\begin{array}{c} 768 \\ 3072 \\ 768 \end{array} \right) \right]^{\times 12}$	1024 4096 1024	$\left \begin{array}{c} 128 \\ 512 \\ 128 \end{array} \right) \times 4 \right \times 24$	$\left \left(\begin{array}{c} 128 \\ 512 \\ 128 \end{array} \right) \times 2 \right ^{\times 24}$					
	Linear	h _{input} h _{output}			$\left[\left(\begin{array}{c} 1024 \\ 512 \end{array} \right) \right]$	$\left[\left(\begin{array}{c} 128 \\ 512 \end{array} \right) \right]$	$\left[\begin{array}{c} 128 \\ 512 \end{array}\right]$					
	#Params		334M	109M	293M	25.3M	15.1M					

Table 1: The detailed model settings of a few models. h_{inter} , h_{FFN} , $h_{embedding}$, #Head and #Params denote the inter-block hidden size (feature map size), FFN intermediate size, embedding table size, the number of heads in multi-head attention, and the number of parameters, respectively.

MobileBERT Knowledge Distillation

Figure 2: Diagrams of (a) auxiliary knowledge transfer (AKT), (b) joint knowledge transfer (JKT), and (c) progressive knowledge transfer (PKT). Lighter colored blocks represent that they are frozen in that stage.

MobileBERT Benchmarking

	#Params	#EL ODS	Latonov	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	GLUE
	#Fal allis	#FLOFS	Latency	8.5k	67k	3.7k	5.7k	364k	393k	108k	2.5k	GLUE
ELMo-BiLSTM-Attn	-	·-	5	33.6	90.4	84.4	72.3	63.1	74.1/74.5	79.8	58.9	70.0
OpenAI GPT	109M	-	-	47.2	93.1	87.7	84.8	70.1	80.7/80.6	87.2	69.1	76.9
$BERT_{BASE}$	109M	22.5B	342 ms	52.1	93.5	88.9	85.8	71.2	84.6/83.4	90.5	66.4	78.3
BERT _{BASE} -6L-PKD*	66.5M	11.3B	-	-	92.0	85.0	-	70.7	81.5/81.0	89.0	65.5	-
BERT _{BASE} -4L-PKD†*	52.2M	7.6B	-	24.8	89.4	82.6	79.8	70.2	79.9/79.3	85.1	62.3	-
BERT _{BASE} -3L-PKD*	45.3M	5.7B	-	-	87.5	80.7	-	68.1	76.7/76.3	84.7	58.2	1-
DistilBERT _{BASE} -6L†	62.2M	11.3B	-	-	92.0	85.0		70.7	81.5/81.0	89.0	65.5	-
DistilBERT _{BASE} -4L†	52.2M	7.6B	2	32.8	91.4	82.4	76.1	68.5	78.9/78.0	85.2	54.1	- 2
TinyBERT*	14.5M	1.2B		43.3	92.6	86.4	79.9	71.3	82.5/81.8	87.7	62.9	75.4
MobileBERT _{TINY}	15.1M	3.1B	40 ms	46.7	91.7	87.9	80.1	68.9	81.5/81.6	89.5	65.1	75.8
MobileBERT	25.3M	5.7B	62 ms	50.5	92.8	88.8	84.4	70.2	83.3/82.6	90.6	66.2	77.7
MobileBERT w/o OPT	25.3M	5.7B	192 ms	51.1	92.6	88.8	84.8	70.5	84.3/83.4	91.6	70.4	78.5

Table 4: The test results on the GLUE benchmark (except WNLI). The number below each task denotes the number of training examples. The metrics for these tasks can be found in the GLUE paper (Wang et al., 2018). "OPT" denotes the operational optimizations introduced in Section 3.3. †denotes that the results are taken from (Jiao et al., 2019). *denotes that it can be unfair to directly compare MobileBERT with these models since MobileBERT is task-agnosticly compressed while these models use the teacher model in the fine-tuning stage.

TinyBERT

Distilling BERT for Natural Language Understanding

What is TinyBERT?

- **TinyBERT** is created to reduce the size and improve the speed of **BERT** while maintaining high performance on NLP tasks.
- It uses a unique Transformer distillation method to effectively transfer knowledge from a larger **BERT** model to a smaller **TinyBERT** model.
- TinyBERT employs a two-stage learning process involving general distillation from a non-fine-tuned BERT and task-specific distillation from a fine-tuned BERT, enhancing both general and task-specific capabilities.
- TinyBERT with 4 layers achieves over 96.8% of BERTBASE's performance on the GLUE benchmark, while being 7.5 times smaller and 9.4 times faster in inference.

How Similar All These Distilled Models Are?

- All three models—TinyBERT, DistilBERT, and MobileBERT—aim to reduce the size of the original BERT model to make it more efficient and deployable on devices with limited computational resources.
- Each model utilizes knowledge distillation techniques to transfer knowledge from a larger, more complex "teacher" model to a smaller, more efficient "student" model, preserving the teacher's capabilities while reducing computational demands.
- TinyBERT, DistilBERT, and MobileBERT maintain the ability to be fine-tuned for a variety of downstream NLP tasks, making them versatile across different applications without requiring task-specific pre-training.
- Despite their reduced sizes and faster inference times, all three models—TinyBERT, DistilBERT, and MobileBERT—achieve performance that is competitive with or close to the original BERT model on various NLP benchmarks.

TinyBERT Distillation

- It propose a novel two-stage learning framework including the general distillation and the task-specific distillation,
- It has three types of loss functions to fit different representations from BERT layers:
 - a. the output of the embedding layer;
 - b. the hidden states and attention matrices derived from the Transformer layer;
 - c. the logits output by the prediction layer.

Figure 1: The illustration of TinyBERT learning.

Figure 2: The details of Transformer-layer distillation consisting of $Attn_{loss}$ (attention based distillation) and $Hidn_{loss}$ (hidden states based distillation).

TinyBERT Model Performance

System	#Params	#FLOPs	Speedup	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg
BERT _{BASE} (Teacher)	109M	22.5B	1.0x	83.9/83.4	71.1	90.9	93.4	52.8	85.2	87.5	67.0	79.5
$\overline{\mathrm{BERT}_{\mathrm{TINY}}}$	14.5M	1.2B	9.4x	75.4/74.9	66.5	84.8	87.6	19.5	77.1	83.2	62.6	70.2
$\mathrm{BERT}_{\mathrm{SMALL}}$	29.2M	3.4B	5.7x	77.6/77.0	68.1	86.4	89.7	27.8	77.0	83.4	61.8	72.1
BERT ₄ -PKD	52.2M	7.6B	3.0x	79.9/79.3	70.2	85.1	89.4	24.8	79.8	82.6	62.3	72.6
DistilBERT ₄	52.2M	7.6B	3.0x	78.9/78.0	68.5	85.2	91.4	32.8	76.1	82.4	54.1	71.9
MobileBERT _{TINY} †	15.1M	3.1B	-	81.5/81.6	68.9	89.5	91.7	46.7	80.1	87.9	65.1	77.0
TinyBERT ₄ (ours)	14.5M	1.2B	9.4x	82.5/81.8	71.3	87.7	92.6	44.1	80.4	86.4	66.6	77.0
BERT ₆ -PKD	67.0M	11.3B	2.0x	81.5/81.0	70.7	89.0	92.0	-	-	85.0	65.5	_
PD	67.0M	11.3B	2.0x	82.8/82.2	70.4	88.9	91.8	-	-	86.8	65.3	-
DistilBERT ₆	67.0M	11.3B	2.0x	82.6/81.3	70.1	88.9	92.5	49.0	81.3	86.9	58.4	76.8
TinyBERT ₆ (ours)	67.0M	11.3B	2.0x	84.6/83.2	71.6	90.4	93.1	51.1	83.7	87.3	70.0	79.4

Table 1: Results are evaluated on the test set of GLUE official benchmark. The best results for each group of student models are in-bold. The architecture of TinyBERT₄ and BERT_{TINY} is $(M=4, d=312, d_i=1200)$, BERT_{SMALL} is $(M=4, d=512, d_i=2048)$, BERT₄-PKD and DistilBERT₄ is $(M=4, d=768, d_i=3072)$ and the architecture of BERT₆-PKD, DistilBERT₆ and TinyBERT₆ is $(M=6, d=768, d_i=3072)$. All models are learned in a single-task manner. The inference speedup is evaluated on a single NVIDIA K80 GPU. † denotes that the comparison between MobileBERT_{TINY} and TinyBERT₄ may not be fair since the former has 24 layers and is task-agnosticly distilled from IB-BERT_{LARGE} while the later is a 4-layers model task-specifically distilled from BERT_{BASE}.

Thanks