Machine Learning Project

Predicting Trip Retention: A Data Science Approach to Travel Agency Churn Rate

Francesco Tumminello Riccardo Perego Giovanni Piva

Problem Recap: The Return at the Yeti

Context

- Travel agency specialized in school trips, observed a drop in sales, especially among regular clients.
- Company relies heavily on loyalty due to the niche nature of their service.

Objective

- **Predict** customer churn using historical client data.
- Use the model to identify key features influencing loyalty.
- Ultimately, design targeted
 strategies to retain at-risk clients.

- Data Preparation
- Feature Engineering
- Train the Models
- Identify a good Strategy

Data Preparation

- Variable type formatting
- Cat. variables encoding
- Missing values (& Filling Strategies)

Missing Values

Table 1: Missing Values (NaN Counts) by Feature

Feature	NaN Count
$From_Grade$	226
To_Grade	269
$\operatorname{Early_RPL}$	1167
${ m Latest_RPL}$	36
$Initial_System_Date$	16
$FPP_to_School_enrollment$	159
FirstMeeting	596
LastMeeting	596
${\bf Difference Travel to First Meeting}$	596
${\bf Difference Travel to Last Meeting}$	596
${\bf School Size Indicator}$	159

Table 2: Count of Zero Values by Feature

Feature	Zero Count
FRP_Active	221
$\operatorname{FRP}_{\operatorname{-}}\operatorname{Cancelled}$	822
$Num_of_Non_FPP_PAX$	27
$Cancelled_Pax$	417
$Total_Discount_Pax$	27
$Total_School_Enrollment$	159
Number Of Meetings with Parents	596

Missing Values

- 4000+ observations in 50+ columns
- Some columns lack almost 25% of values
- Filling missing values (Examples):
 - 'From_Grade' and 'To_Grade'
 - 'LastMeeting'

Missing Values: From_Grade + To_Grade

Both From_Grade and To_Grade are missing

- For each **Group_State**, compute the most frequent **(From_Grade, To_Grade) pair**.
- If both are missing → impute using this pair.

Conditional Imputation (One Value Missing)

If only To_Grade is missing → Use the most frequent
 To_Grade for the given From_Grade in the same
 Group_State.

Missing Values: LastMeeting

Reference-Based Median Shifts

- 1. **Departure_Date:** reference point, (no missing entries) + forward-looking event in time.
- 2. For each incomplete date column:
 - Compute median time delta (days) between column and Departure_Date, using rows where both dates are available.
- 3. Fill missing values by **subtracting** the median delta from Departure_Date.

This method preserves realistic temporal relationships between events

New Columns

Table 1: Engineered Time-Based Features

Feature Name	Construction Formula
Days_from_Initial_System_to_Departure	Departure_Date - Initial_System_Date
$Days_from_Latest_RPL_to_Departure$	$Departure_Date - Latest_RPL$
Days_from_FirstMeeting_to_Departure	$Departure_Date - FirstMeeting$
Days_from_LastMeeting_to_Departure	$Departure_Date - LastMeeting$
Days_from_Deposit_to_Departure	Departure_Date - Deposit_Date
Days_from_Departure_to_Return	Return_Date - Departure_Date
$Months_to_Departure$	(Departure_Date - Deposit_Date) * 12
	+ (Departure_Date - Deposit_Date)
$Days_between_Meetings$	LastMeeting - FirstMeeting
$Days_between_System_and_FirstMeeting$	FirstMeeting - Initial_System_Date
$Days_between_System_and_LastMeeting$	$Last Meeting - Initial_System_Date$

Table 2: Engineered Business Logic Features

Feature Name	Construction Formula
Cancellation_Rate	Cancelled_Pax / (Total_Pax + Cancelled_Pax)
Revenue_per_PAX	SPR_Group_Revenue / Total_Pax
Deposit_Ratio	Tuition / Total_Pax
$In surance_Cancellation_Rate$	FRP_Cancelled / FRP_Active
Past_Bookings	Grouped rank by [Program_Code, Group_State]
	on $Initial_System_Date$
$Initial_Year$	Initial_System_Date.year
Initial_Season	Initial_System_Date.month $\%$ 12 // 3
$\operatorname{Grade_Span}$	$To_Grade - From_Grade$
Departure_Season	Departure_Date.quarter

Models

Model	$\mathbf{F}_{0.5}$ Score (Threshold = 0.5)	$\mathbf{F}_{0.5}$ Score (Threshold = 0.6)
Random Forest	90.16%	91.09%
XGB Classifier	87.45%	87.67%
Logistic Regression	77.88%	78.92%
MLP	87.57%	88.02%
AdaBoost Classifier	77.40%	65.37%
GradientBoost Classifier	85.72%	86.68%

Models - Random Forest

- F(0.5) Score = 91.09%
- Only 29 False Positives

Table 1: Random Forest Performance (Threshold = 0.6)

\mathbf{Metric}	Class 0	Class 1	Weighted Avg
Precision	0.77	0.93	0.87
Recall	0.91	0.83	0.86
F1-score	0.84	0.88	0.86

Confusion Matrix			
Predicted 0 Predicted 1			
Actual 0	294	29	
Actual 1	87	415	

Models - Random Forest

Models - Random Forest

Table 2: Optimal Random Forest Hyperparameters

Parameter	Optimal Value
${\tt n_estimators}$	200 trees
criterion	Gini impurity
$\mathtt{max_depth}$	Unlimited (None)
$max_features$	$\sqrt{\text{total features}}$
${\tt min_samples_split}$	2 samples
min_samples_leaf	1 sample
bootstrap	False (uses full dataset)

Feature Importance - the Shapley Value

- Shapley values are a game theory concept. They quantify the **contribution** of each feature to a model's output for a specific prediction, fairly distributing the "payout" (prediction difference from the baseline) among all input features.
- Example: if a trip's 'Total_Pax' has a Shapley value of +0.2, it means this feature increases the retention probability by 20% compared to the baseline.

$$\phi_i(f) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(|N| - |S| - 1)!}{|N|!} [f(S \cup \{i\}) - f(S)]$$

Distribution of Numerical Features by Retention Status

Business Strategy - Increase Retention

- Goal: Implement strategies to keep current clients.
 - Reward groups with a larger grade span with volume discounts.
 - Reduce deposit requirements, especially for repeating customers.
 - Avoid being pushy about the meeting dates, especially the first.
 - Offer discounts or other benefits to schools who are canceling passengers and insurance.

Business Strategy - Lead Generation

- Goal: Target marketing activities to find new clients.
 - Target schools in high income area.
 - Prioritize marketing towards larger schools more stable budget.
 - Focus on schools with a narrow grade span, such as those that offer only high school classes.
 - Prioritize schools with a high tuition.

What if...?

- What if reducing FP wasn't actually the best strategy?
- During the analysis we have assumed (like it is common) that FPs cost significantly more than FNs: it costs much more to loose a client rather than implementing strategies to try and keep him.
- But in some particular condition, this does not hold.
- For example, suppose that the travel agency has a very low profit margin and it requires a lot of volume to be profitable. In that case offering discount promotions to retain customers can be quite relatively expensive, leading us to want to prioritize FN minimization rather than FP
- In this cases, we should prioritize **Recall** \longrightarrow F2 Score.

Random Forest - prioritizing Recall

• F(2) Score = **94.27**%

Table 1: Random Forest Performance (Threshold = 0.4)

Metric	Class 0	Class 1	Weighted Avg
Precision	0.95	0.83	0.88
Recall	0.69	0.98	0.86
F1-score	0.80	0.90	0.86

Confusion Matrix			
Predicted 0 Predicted 1			
Actual 0	222	101	
Actual 1	12	490	

Thank you