Basics of Convex Optimization

Shusen Wang

Convex Sets

Convex Set

Definition (Convex Set).

A set \mathcal{C} is convex if and only if for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and any $\eta \in (0, 1)$, the point $\eta \mathbf{x} + (1 - \eta)\mathbf{y}$ is also in \mathcal{C} .

A convex set \mathcal{C} .

Convex Set

Definition (Convex Set).

A set \mathcal{C} is convex if and only if for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and any $\eta \in (0, 1)$, the point $\eta \mathbf{x} + (1 - \eta)\mathbf{y}$ is also in \mathcal{C} .

A convex set \mathcal{C} .

A non-convex set.

Convex Set: Examples

Definition (Convex Set).

A set \mathcal{C} is convex if and only if for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and any $\eta \in (0, 1)$, the point $\eta \mathbf{x} + (1 - \eta)\mathbf{y}$ is also in \mathcal{C} .

Convex Set: Examples

Example: The
$$\ell_1$$
-norm ball $\left\{\mathbf{x}: \ \left|\left|\mathbf{x}\right|\right|_1 \leq 1\right\}$.

Convex Set: Examples

Example: The
$$\ell_2$$
-norm ball $\left\{\mathbf{x}: \ \left|\left|\mathbf{x}\right|\right|_2 \le 1\right\}$.

Convex Functions

Convex Function

Definition (Convex Function).

- Let \mathcal{C} be a convex set and $f:\mathcal{C}\mapsto\mathbb{R}$ be a function.
- f is convex if for any \mathbf{w}_1 , $\mathbf{w}_2 \in \mathcal{C}$ and any $\eta \in (0, 1)$,

$$f(\eta \mathbf{w}_1 + (1 - \eta)\mathbf{w}_2) \leq \eta f(\mathbf{w}_1) + (1 - \eta)f(\mathbf{w}_2).$$

Convex Function: Properties

Properties of convex function:

1.
$$f(\mathbf{w}_0) + \nabla f(\mathbf{w}_0)^T(\mathbf{w} - \mathbf{w}_0) \le f(\mathbf{w})$$
. (Assume f is differentiable).

Convex Function: Properties

Properties of convex function:

- 1. $f(\mathbf{w}_0) + \nabla f(\mathbf{w}_0)^T(\mathbf{w} \mathbf{w}_0) \le f(\mathbf{w})$. (Assume f is differentiable).
- 2. The Hessian matrix is everywhere positive semi-definite: $\nabla^2 f(\mathbf{w}) \geq \mathbf{0}$.
 - Assume *f* is twice differentiable.
 - $\mathbf{H} \in \mathbb{R}^{d \times d}$ is positive semi-definite \longleftrightarrow for all $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{x}^T \mathbf{H} \mathbf{x} \geq 0$.

Convex Functions

Question: Are they convex functions?

- $f(w) = w^2 + w 1$, for $w \in \mathbb{R}$.
- $f(w) = w^4$, for $w \in \mathbb{R}$.
- $f(w) = \log_e w$, for w > 0.
- $f(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2$, for $\mathbf{w} \in \mathbb{R}^d$.
- $f(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$, for $\mathbf{w} \in \mathbb{R}^d$.

Convex Function: Properties

Property: Combination of convex functions is convex function.

- Let g and h be convex functions.
- Then $h(g(\mathbf{w}))$ is convex function.

Example:

- Linear function $\mathbf{g}(\mathbf{w}) = \mathbf{X}^T \mathbf{w} \mathbf{y}$ is convex.
- Vector norm $h(\mathbf{w}) = ||\mathbf{w}||_2^2$ is convex.
- $\rightarrow h(g(w)) = ||Xw y||_2^2$ is convex function.

Convex Function: Properties

Property: Combination of convex functions is convex function.

- Let f_1, \dots, f_k be convex functions.
- Then $f(\mathbf{w}) = \lambda_1 f_1(\mathbf{w}) + \cdots + \lambda_k f_k(\mathbf{w})$ is convex function.

Example:

- $f_1(\mathbf{w}) = ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$ is convex function.
- $f_2(\mathbf{w}) = ||\mathbf{w}||_2^2$ is convex function.
- $\rightarrow f_1(\mathbf{w}) + \lambda f_2(\mathbf{w}) = ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2 + \lambda ||\mathbf{w}||_2^2$ is convex function.

Convex Optimization

Convex Optimization

Definition (Convex Optimization).

- Optimization: $\min_{\mathbf{w}} f(\mathbf{w})$; s.t. $\mathbf{w} \in C$.
- It is convex optimization if it has two properties:
 - 1. \mathcal{C} (feasible set) is convex set,
 - 2. *f* (objective function) is convex function.

Convex Optimization: Examples

- Least squares regression: $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$.
- Logistic regression: $\min_{\mathbf{w}} \sum_{j} \log(1 + \exp(-y_j \mathbf{w}^T \mathbf{x}_j))$.
- SVM: $\min_{\mathbf{w},b} ||\mathbf{w}||_2^2 + \lambda \sum_j [1 y_j(\mathbf{w}^T \mathbf{x}_j + b)]_+$.
- LASSO: $\min_{\mathbf{w}} \left| \left| \mathbf{X} \mathbf{w} \mathbf{y} \right| \right|_{2}^{2}$; $s.t. \left| \left| \mathbf{w} \right| \right|_{1} \leq t$.

Local and Global Optima

Convex Optimization: Properties

Property: For convex optimization, every local minimum is global minimum.

Convex Optimization: Properties

First-order optimality condition (necessary condition):

- Consider the unconstrained optimization: $\min_{\mathbf{w}} f(\mathbf{w})$.
- If \mathbf{w}^* is local minimum, then the gradient $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$ at \mathbf{w}^* is zero.

Convex Optimization: Properties

First-order optimality condition (necessary condition):

- Consider the unconstrained optimization: $\min_{\mathbf{w}} f(\mathbf{w})$.
- If \mathbf{w}^* is local minimum, then the gradient $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$ at \mathbf{w}^* is zero.

Property of convex optimization (sufficient condition):

- Let min f(w) be convex optimization.
 If \frac{\partial f(w)}{\partial w} \text{ at } w^* \text{ is zero, then } w^* \text{ is global minimum.}

Subgradient and Subdifferential

Non-Differentiable Functions

• Example of non-differentiable functions: f(w) = |w|

$$\frac{\partial f}{\partial w} = \begin{cases} +1, & \text{if } w > 0; \\ \text{undefined,} & \text{if } w = 0; \\ -1, & \text{if } w < 0. \end{cases}$$

Subgradient of Convex Function

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Subgradient of Convex Function

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Subgradient of Convex Function

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subdifferential). The set containing all the subgradients of f at \mathbf{w}_0 is called the subdifferential. Denote the set by $\partial f(\mathbf{w}_0)$.

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subdifferential). The set containing all the subgradients of f at \mathbf{w}_0 is called the subdifferential. Denote the set by $\partial f(\mathbf{w}_0)$.

Example: f(w) = |w|

• $\partial f(3) = \{1\}.$

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subdifferential). The set containing all the subgradients of f at \mathbf{w}_0 is called the subdifferential. Denote the set by $\partial f(\mathbf{w}_0)$.

Example: f(w) = |w|

- $\partial f(3) = \{1\}.$
- $\partial f(-0.1) = \{-1\}.$

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subdifferential). The set containing all the subgradients of f at \mathbf{w}_0 is called the subdifferential. Denote the set by $\partial f(\mathbf{w}_0)$.

Example: f(w) = |w|

- $\bullet \quad \partial f(3) = \{1\}.$
- $\partial f(-0.1) = \{-1\}.$
- $\partial f(0) = [-1, 1].$

A Property of Convex Optimization

```
Let f be a convex function.

Property: \mathbf{w}^* = \min_{\mathbf{w}} f(\mathbf{w}) \longleftrightarrow 0 \in \partial f(\mathbf{w}^*).
```

```
Example: \min_{w} \{ f(w) = |w + 5| \}
```

- $\partial f(-5) = [-1, 1].$
- Obviously $0 \in \partial f(-5)$.
- $w^* = -5$ minimizes f.