

Lecture 13: Visual Bag of Words

Visual bag of words: method

Juan Carlos Niebles and Jiajun Wu

CS131 Computer Vision: Foundations and Applications

What will we learn today?

- Visual bag of words: method
 - Background
 - Algorithm

Object

Bag of 'words'

Example textures (from Wikipedia)

Texture is characterized by the repetition of basic elements or textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Universal texton dictionary

Origin 2: Bag-of-words models for text analysis

• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Bags of features for object recognition

face, flowers, building

Works pretty well for image-level classification and for recognizing object instances

Bags of features for object recognition

class	bag of features	bag of features	Parts-and-shape model
	Zhang et al. (2005)	Willamowski et al. (2004)	Fergus et al. (2003)
airplanes	98.8	97.1	90.2
cars (rear)	98.3	98.6	90.3
cars (side)	95.0	87.3	88.5
faces	100	99.3	96.4
motorbikes	98.5	98.0	92.5
spotted cats	97.0		90.0

What will we learn today?

- Visual bag of words: method
 - Background
 - Algorithm

Bag of features

First, take a set of images, extract features, and build up a "dictionary" or "visual vocabulary" – a list of common features

 Given a new image, extract features and build a histogram – for each feature, find the closest visual word in the dictionary

1. Extract features

- 1. Extract features
- 2. Learn "visual vocabulary"

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

1. Feature extraction

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005

1. Feature extraction

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005

1. Feature extraction

Regular grid

- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005
- Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation-based patches (Barnard et al. 2003)

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

Image patch examples of visual words

2. Learning the visual vocabulary

2. Learning the visual vocabulary

2. Learning the visual vocabulary

24

Example visual vocabulary

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting
- Computational efficiency
 - Vocabulary trees(Nister & Stewenius, 2006)

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

3. From clustering to vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

4. Image representation

Summary

- Visual bag of words: method
 - Background
 - Algorithm