University of Durham

PROGRESS TEST

Session:

Michaelmas Term

Year:

2021

Title:

PHYS3631 Foundations of Physics 3B / PHYS4261 Foundations of Physics 4B

Statistical Physics

Attempt all questions. The marks shown in brackets for the main parts of each question are given as a guide to the weighting that the markers expect to apply.

Write your answers on A4 paper, and upload them to Gradescope.

Information

Elementary charge: $e = 1.60 \times 10^{-19} \text{ C}$ Speed of light: $c = 3.00 \times 10^8 \text{ m s}^{-1}$

Boltzmann constant: $k_{\rm B}=1.38\times 10^{-23}~{\rm J\,K^{-1}}$ Bohr magneton: $\mu_{\rm B}=9.27\times 10^{-24}~{\rm J\,T^{-1}}$

Electron mass: $m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$

Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Proton mass: $m_{\rm p} = 1.67 \times 10^{-27} \text{ kg}$ Planck constant: $h = 6.63 \times 10^{-34} \text{ J s}$

Permittivity of free space: $\epsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$ Magnetic constant: $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$ Molar gas constant: $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Avogadro's constant: $N_{\rm A} = 6.02 \times 10^{23} \; {\rm mol}^{-1}$

Gravitational acceleration at Earth's surface: $g = 9.81 \text{ m s}^{-2}$

Stefan-Boltzmann constant: $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$

Astronomical Unit: $AU = 1.50 \times 10^{11} \text{ m}$ Parsec: $pc = 3.09 \times 10^{16} \text{ m}$ Solar Mass: $M_{\odot} = 1.99 \times 10^{30} \text{ kg}$

Solar Luminosity: $L_{\odot} = 3.84 \times 10^{26} \text{ W}$

1. (a) Consider an assembly of N weakly-interacting, distinguishable particles contained in a fixed volume V, with fixed internal energy U. Are the various distributions (n_1, n_2, \ldots) of the particles in single-particle states equally probable, or do they have different probabilities? State briefly what distinguishes the Boltzmann distribution from other distributions $\{n_i\}$ of the assembly of distinguishable particles. [4 marks]

(b) In a gas of N weakly-interacting, identical Bosons in a fixed volume V, with fixed total energy U, the i-th single-particle energy level has energy ϵ_i and degeneracy g_i . Consider a distribution $(n_1, n_2, ...)$ of the N Bosons in single-particle energy levels, where n_i Bosons have energy ϵ_i . Show that the number of microstates, $\Omega(n_1, n_2, ...)$, corresponding to the distribution $(n_1, n_2, ...)$ is given by

$$\Omega(n_1, n_2, \ldots) = \prod_i \frac{(n_i + g_i)!}{n_i!g_i!}.$$

What is the limit of $\Omega(n_1, n_2, ...)$ for a dilute gas, $g_i \gg n_i$? [4 marks]

(c) Derive the density of states in energy, $g(\epsilon) \delta \epsilon$, for a particle with energy $\epsilon = \alpha k^{3/2}$ in three dimensions. [4 marks]

Hint: You may use without derivation the 3D density of states in
$$k$$
 space
$$g(k) \, \delta k = \frac{V}{2\pi^2} k^2 \, \delta k \, .$$

- (d) The two lowest-lying energy levels of a hydrogen atom are $E_0 = -13.6$ eV and $E_1 = -3.4$ eV. Treat the hydrogen atoms as distinguishable. Ignoring degeneracies, at what temperature would we find one hundredth as many hydrogen atoms in the first excited state as in the ground state? [4 marks]
- 2. (a) A system of N particles is in thermal equilibrium with a heat bath at a temperature T. The single-particle energy levels ϵ_i are non-degenerate and the single-particle partition function is

$$Z_1 = \sum_{i} \exp(-\beta \, \epsilon_i),$$

where $\beta = 1/k_{\rm B}T$. The average energy per particle is

$$\langle \epsilon \rangle = \sum_{i} p_i \epsilon_i.$$

Show that $\langle \epsilon \rangle$ is given by

$$\langle \epsilon \rangle = -\frac{\partial \ln Z_1}{\partial \beta}$$

where p_i is the probability that the *i*-th single-particle state is occupied. [3 marks]

Page 3 of 3 PHYS3631/PHYS4261

(b) Calculate the partition function and hence average energy per particle $\langle \epsilon \rangle$ for a system of N particles, with two single-particle energy levels, $\epsilon_1 = 0$ and $\epsilon_2 = \Delta > 0$. What is the internal energy U of the system? Comment briefly on the limit of $\langle \epsilon \rangle$ for high and low temperatures. [3 marks]

(c) For the system of particles in (b), show that the entropy S is given by

$$S = Nk_B \left[\frac{\beta \Delta \exp(-\beta \Delta)}{1 + \exp(-\beta \Delta)} + \ln[1 + \exp(-\beta \Delta)] \right].$$

[4 marks]

Hint: Use either Gibbs expression for the statistical entropy
$$S = -Nk_{\rm B} \sum_i p_i \ln p_i,$$
 or alternatively use
$$F = -Nk_{\rm B}T \ln Z_1 \,, \quad S = \frac{U-F}{T} \,.$$