Worksheet: Set-theoretic notations and terminology

- 1. Write the following sets using "set builder" notation:
 - (a) The set of real solutions to $x^2 2x < 3$.
 - (b) The set of integer solutions to $x^2 2x < 3$.
 - (c) The set of odd integers.
 - (d) The set of odd natural numbers.
 - (e) The set $\{1, 4, 7, 10, \dots\}$.
 - (f) The set of integers that can be written as sums of two integer squares. (The first few such integers are $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2 = 1$, $2 = 1^2 + 1^2$, $4 = 0^2 + 2^2$.)
- 2. Given $A = \{1, 2, 3, 4\}$, $B = \{0, 1\}$, find the following sets. Be sure to use correct set-theoretic notation.
 - (a) A B
 - (b) B-A
 - (c) $A \times B$
 - (d) P(B)
 - (e) $B \times \mathbb{N}$
- 3. In the following, E, O denote, respectively, the sets of even integers and odd integers. In each case, write the given set in simpler form.
 - (a) $\{p/q: p, q \in E, q \in \mathbb{Z}, q \neq 0\}$
 - (b) $\{1/q : q \in \mathbb{Q}, q \neq 0\}$
 - (c) $(\mathbb{N} \times \mathbb{Z}) \cap (\mathbb{Z} \times \mathbb{N})$
 - (d) $(\mathbb{Z} E) \cup (\mathbb{Z} O)$
- 4. Let $A = \{1, 2\}$ and $B = \{\{1\}, 2\}$. Determine which of the following relations are true:
 - (a) $\{1\} \in A$
 - (b) $\{1\} \subseteq A$
 - (c) $\{1\} \in P(A)$
 - (d) $\{1\} \subseteq P(A)$
 - (e) $\{1\} \in B$
 - (f) $\{1\} \subseteq B$
 - (g) $\{1\} \in P(B)$
 - (h) $\{1\} \subseteq P(B)$