Résumé de cours : Semaine 34, du 20 juin au 24 juin.

Familles sommables (fin)

Théorème. Sommation par paquets pour des familles de complexes.

Soit $(I_q)_{q \in \mathbb{N}}$ une partition de I et $(u_i)_{i \in I}$ une famille sommable de complexes. Alors, pour tout $q \in \mathbb{N}$, $(u_i)_{i \in I_q}$ est sommable, et $\left(\sum_{i \in I_q} u_i\right)_{q \in \mathbb{N}}$ est sommable. De plus, $\sum_{i \in I} u_i = \sum_{q \in \mathbb{N}} \sum_{i \in I_q} u_i$.

Corollaire. Interversion de sommations pour des suites doubles de complexes.

Soit $(u_{p,q})_{(p,q)\in\mathbb{N}^2}\in\mathbb{C}^{\mathbb{N}^2}$ une suite double sommable de complexes. Pour tout $q_0\in\mathbb{N},\;(u_{p,q_0})$ est

sommable, pour tout
$$p_0 \in \mathbb{N}$$
, $(u_{p_0,q})$ est sommable, et les suites $\left(\sum_{p \in \mathbb{N}} u_{p,q}\right)_{q \in \mathbb{N}}$ et $\left(\sum_{q \in \mathbb{N}} u_{p,q}\right)_{p \in \mathbb{N}}$ sont

sommables. De plus
$$\sum_{(p,q)\in\mathbb{N}^2}u_{p,q}=\sum_{q=0}^{+\infty}\left(\sum_{p=0}^{+\infty}u_{p,q}\right)=\sum_{p=0}^{+\infty}\left(\sum_{q=0}^{+\infty}u_{p,q}\right).$$

Exemple. Soient $\sum a_n$ et $\sum b_n$ deux séries absolument convergentes de complexes. Alors la famille

$$(a_pb_q)_{(p,q)\in\mathbb{N}^2} \text{ est une suite double sommable et } \sum_{(p,q)\in\mathbb{N}^2} a_pb_q = \left(\sum_{p\in\mathbb{N}} a_p\right) \left(\sum_{q\in\mathbb{N}} b_q\right).$$

Il faut savoir le démontrer.

Définition. Produit de Cauchy de deux séries. Soient $\sum u_n$ et $\sum v_n$ deux séries de complexes.

Pour tout
$$n \in \mathbb{N}$$
, on pose $w_n = \sum_{p+q=n} u_p v_q = \sum_{p=0}^n u_p v_{n-p}$.

La série $\sum w_n$ est appelée le produit de Cauchy des deux séries $\sum u_n$ et $\sum v_n$.

Propriété. Le produit de Cauchy de deux séries absolument convergentes est absolument convergent.

Si
$$\sum u_n$$
 et $\sum v_n$ sont absolument convergentes, alors $\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$.

Il faut savoir le démontrer

Les probabilités (début)

1 Espaces probabilisés

Définition. On appelle tribu, ou σ -algèbre sur un ensemble Ω tout ensemble \mathcal{F} de parties de Ω

vérifiant : $\Omega \in \mathcal{F}$, \mathcal{F} est stable par passage au complémentaire (si $F \in \mathcal{F}$ alors $\Omega \setminus F \in \mathcal{F}$) et \mathcal{F} est stable par réunion dénombrable (si $(F_n)_{n \in \mathbb{N}} \in \mathcal{F}^{\mathbb{N}}$, alors $\bigcup F_n \in \mathcal{F}$).

Vocabulaire spécifique aux probabilités: Avec les notations précédentes,

- \diamond Ω s'appelle l'univers.
- \diamond Les éléments de \mathcal{F} s'appellent les **événements**.
- \diamond Si $\{\omega\} \in \mathcal{F}$, on dit que c'est un **événement élémentaire**.
- ⋄ Ø est l'événement impossible.
- \diamond Si A est un événement, $\Omega \setminus A$ est l'événement contraire de A.
- \diamond Si A et B sont deux événements, $A \cap B$ est l'événement "A et B", $A \cup B$ est l'événement "A ou B". Lorsque $A \cap B = \emptyset$, les deux événement A et B sont dits incompatibles.

Définition. Soit \mathcal{F} une tribu sur un univers Ω . On appelle système complet d'événements toute famille $(A_i)_{i\in I}$ (où I est fini ou dénombrable) d'événements 2 à 2 disjoints dont la réunion vaut Ω .

Définition. Si \mathcal{F} est une tribu sur un univers Ω , on dit que (Ω, \mathcal{F}) est un espace probabilisable.

Définition. Soit (Ω, \mathcal{F}) un espace probabilisable. On dit que P est une probabilité sur (Ω, \mathcal{F}) si et seulement si P est une application de \mathcal{F} dans [0,1] telle que $P(\Omega) = 1$ et pour toute suite $(F_n)_{n \in \mathbb{N}}$

d'événements de
$$\mathcal{F}$$
 deux à deux disjoints, $P\left(\bigcup_{n=0}^{\infty} F_n\right) = \sum_{n=0}^{\infty} P(F_n)$.

Dans ce cas, le triplet (Ω, \mathcal{F}, P) est appelé un espace probabilisé.

Propriété. Avec les notations précédentes, pour $F, G, H, F_n \in \mathcal{F}$ on a :

- $\diamond P(\emptyset) = 0,$
- \diamond Si F_0, \ldots, F_p sont p+1 événements deux à deux disjoints, où $p \ge 1$,

alors
$$P\left(\bigcup_{n=0}^{p} F_n\right) = \sum_{n=0}^{p} P(F_n).$$

- $\diamond P(\overline{F}) = 1 P(F)$ (où \overline{F} désigne $\Omega \setminus F$),
- \diamond si $G \subset H$, $P(H \setminus G) = P(H) P(G)$.
- \diamond si $G \subset H$, $P(G) \leq P(H)$ (on dit que P est croissante),
- $\Rightarrow P(G \cup H) = P(G) + P(H) P(G \cap H),$
- $\diamond \quad \text{Inégalité de Boole} : P\left(\bigcup_{n=0}^{\infty} F_n\right) \leq \sum_{n=0}^{\infty} P(F_n) \ .$

Il faut savoir le démontrer.

Notation. On notera souvent $P(G, H) \stackrel{\Delta}{=} P(G \cap H)$.

Propriété: Probabilité sur un univers dénombrable. Lorsque Ω est fini ou dénombrable, on prendra toujours $\mathcal{F} = \mathcal{P}(\Omega)$. Dans ce cas, pour se donner une probabilité P sur (Ω, \mathcal{F}) , il faut et il suffit de donner une famille sommable $(p_{\omega})_{\omega \in \Omega}$ de réels positifs telle que $\sum_{\omega \in \Omega} p_{\omega} = 1$. On définit alors

$$P$$
 par : pour tout $F \in \mathcal{F}$, $P(F) = \sum_{\omega \in F} p_{\omega}$.

Définition. Supposons que Ω est de cardinal fini. On dit que P est la probabilité uniforme lorsque tous les événements élémentaires sont équiprobables. Dans ce cas, avec les notations de la propriété précédente, pour tout $\omega \in \Omega$, $p_{\omega} = \frac{1}{\operatorname{Card}(\Omega)}$, et pour tout $F \in \mathcal{F}$, $P(F) = \frac{\operatorname{Card}(F)}{\operatorname{Card}(\Omega)}$.

Propriété de continuité : dans un espace probabilisé (Ω, \mathcal{F}, P) ,

si
$$(F_n)$$
 est une suite croissante d'événements, $P\left(\bigcup_{n=0}^{\infty} F_n\right) = \lim_{n \to +\infty} P(F_n)$.

Si (F_n) est une suite décroissante d'événements, $P\left(\bigcap_{n=1}^{\infty}F_n\right)=\lim_{n\to+\infty}P(F_n)$.

Il faut savoir le démontrer.

Définition. On dit que l'événement F est négligeable si et seulement si P(F) = 0.

On dit que l'événement F est presque sûr si et seulement si P(F) = 1.

Si \mathcal{Q} est une propriété dépendant de $\omega \in \Omega$, lorsque $\{\omega \in \Omega/\mathcal{Q}(\omega)\}$ est un événement presque sûr, on dit que " $\mathcal{Q}(\omega)$ presque sûrement".

Propriété. Une réunion finie ou dénombrable d'événements négligeables est négligeable. Une intersection finie ou dénombrable d'événements presque sûrs est presque sûre.

2 Probabilité conditionnelle et indépendance

Définition. Si P(G) > 0, $\left| P(H|G) \stackrel{\triangle}{=} \frac{P(H \cap G)}{P(G)} \right|$: c'est la probabilité conditionnelle de H sachant que G est réalisé. L'application $H \longmapsto P(H|G)$ est une probabilité sur Ω , notée P_G .

Ainsi,
$$P(H|G) = P_G(H) = \frac{P(H \cap G)}{P(G)}$$
.

Formule des probabilités composées :

si G_1, \ldots, G_k sont k événements tels que $P(G_1 \cap \cdots \cap G_{k-1}) > 0$, alors

$$P(\bigcap_{i=1}^{k} G_i) = P(G_1) \times P(G_2|G_1) \times P(G_3|G_1 \cap G_2) \times \dots \times P(G_k|G_1 \cap \dots \cap G_{k-1}).$$

Formule des probabilités totales : si $(G_i)_{i\in I}$ est un système complet de sur ou dénombrable, et si pour tout $i\in I$, $P(G_i)>0$, alors $P(G)=\sum_{i\in I}P(G|G_i)P(G_i)$.

Formule de Bayes : Si $P(G)\in]0,1[$ et P(H)>0, alors $P(G|H)=\frac{P(H|G)P(G)}{P(H|G)P(G)+P(H|\overline{G})P(\overline{G})}$

Si $(G_i)_{i\in I}$ est un système complet d'événements avec pour tout $i\in I, P(G_i)>$

alors
$$P(G_i|H) = \frac{P(H|G_i)P(G_i)}{\sum_{j \in I} P(H|G_j)P(G_j)}.$$

Il faut savoir le démontrer.

H et G sont indépendants si et seulement si $P(G \cap H) = P(G)P(H)$ Définition.

Propriété. Si H et G sont indépendants, alors H et \overline{G} sont aussi indépendants.

Remarque. Un événement A est indépendant de lui-même si et seulement si $P(A) \in \{0,1\}$.

Définition. I étant un ensemble quelconque, les événements de la famille $(G_i)_{i \in I}$ sont mutuellement indépendants si et seulement si pour toute partie finie J de I, $P\left(\bigcap_{i\in J}G_i\right)=\prod_{i\in J}P(G_i)$.

Remarque. "mutuellement indépendants" => "2 à 2 indépendants", mais la réciproque est fausse.

Propriété. Soit $(G_i)_{i\in I}$ une famille d'événements mutuellement indépendants. Si l'on remplace certains G_i par leur conjugué G_i , alors c'est encore une famille d'événements mutuellement indépendants.

3 Variables aléatoires discrètes

Définition. Soit (Ω, \mathcal{F}, P) un espace de probabilité. Une variable aléatoire à valeurs dans un ensemble E muni d'une tribu \mathcal{E} est une fonction $X:\Omega\longrightarrow E$ telle que, pour tout $A\in\mathcal{E},\,X^{-1}(A)\in\mathcal{F}$. On note souvent " $X\in A$ " au lieu de $X^{-1}(A)$.

Remarque. Lorsque $E = \mathbb{R}$, on dit que X est une variable aléatoire réelle. Lorsque $E = \mathbb{N}$, on dit que X est une variable aléatoire entière.

Propriété. Avec les notations précédentes, si l'on pose, pour tout $A \in \mathcal{E}$, $P_X(A) = P(X \in A)$, alors P_X est une probabilité sur (E, \mathcal{E}) que l'on appelle la loi de X.

Définition. Si B est un événement de Ω , la loi de X conditionnée par B désigne l'application $A \longmapsto P(X \in A|B) = \frac{P((X \in A) \cap B)}{P(B)}$, de \mathcal{E} dans [0,1]. C'est encore une probabilité sur (E,\mathcal{E}) .

Définition. On dit qu'une variable aléatoire X est discrète si et seulement si $X(\Omega)$ est fini ou dénombrable et si $\mathcal{E} = \mathcal{P}(E)$.

Remarque. Le programme de MP ne prévoit que l'étude des variables aléatoires discrètes, ce que nous supposerons donc dorénavant.

Propriété. Soit (Ω, \mathcal{F}, P) un espace de probabilité et X une application de Ω dans un ensemble quelconque E. X est une variable aléatoire discrète si et seulement si $X(\Omega)$ est fini ou dénombrable et si, pour tout $d \in X(\Omega)$, $X^{-1}(\{d\}) \in \mathcal{F}$.

Dans ce cas, la loi de X est entièrement déterminée par la famille $(P(X=d))_{d\in X(\Omega)}$.

Remarque. Toute variable aléatoire entière est discrète.

Définition. Soit X une variable aléatoire discrète de Ω dans E et f une application de E dans un ensemble F. Alors $Y = f(X) \stackrel{\triangle}{=} f \circ X$ est une nouvelle variable aléatoire discrète dont la loi est donnée

$$\mathrm{par}: \forall y \in F, \ P_Y(y) = P(X \in f^{-1}(\{y\})) = \sum_{\substack{x \in X(\Omega) \\ f(x) = y}} P_X(x).$$

Il faut savoir le démontrer.

Définition. Soit X une variable aléatoire de Ω dans un ensemble E de cardinal fini. On dit que X suit une loi uniforme (souvent notée \mathcal{U}) si et seulement si P_X est la probabilité uniforme, c'est-à-dire si et seulement si pour tout $k \in E$, $P(X = k) = \frac{1}{\operatorname{Card}(E)}$.

Définition. On fixe une variable aléatoire X à valeurs dans \mathbb{N} .

Les lois classiques au programme sont les suivantes :

- Loi de dirac, lorsqu'il existe $n_0 \in \mathbb{N}$ tel que $P(X = n_0) = 1$ et P(X = n) = 0 pour tout $n \neq n_0$. On dit alors que X est une variable aléatoire déterministe, ou bien constante.
- Loi de Bernoulli de paramètre $p \in [0, 1]$, notée $\mathcal{B}(p)$: P(X = 1) = p et P(X = 0) = 1 p.

C'est le cas lorsque X représente le succès (X = 1) ou l'échec (X = 0) d'une épreuve.

— Loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$, notée $\mathcal{B}(n,p)$:

Pour tout $k \in \{0, ..., n\}$, $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$ (et P(X = m) = 0 pour $m \notin \{0, ..., n\}$). C'est le cas lorsque X désigne le nombre de succès parmi une suite de n épreuves indépendantes de loi de Bernoulli de paramètre p.

— Loi géométrique de paramètre $p \in]0,1[,$ notée $\mathcal{G}(p)$:

Pour tout $n \in \mathbb{N}^*$, $P(X = n) = (1 - p)^{n-1}p$ (et P(X = 0) = 0).

C'est le cas lorsque \overline{X} représente l'instant du premier succès lors d'une suite d'épreuves indépendantes de loi de Bernoulli de paramètre p.

— Loi de Poisson de paramètre
$$\lambda \in \mathbb{R}_+^*$$
, notée $\mathcal{P}(\lambda)$: pour tout $n \in \mathbb{N}$, $P(X = n) = e^{-\lambda} \frac{\lambda^n}{n!}$

Notation. On utilisera la notation $X \sim \mathcal{L}$ pour indiquer que la variable aléatoire X suit la loi \mathcal{L} et la notation $X \sim Y$ pour indiquer que les deux variables aléatoires suivent la même loi.

Propriété. X est une variable aléatoire à valeurs dans $\{0,1\}$ si et seulement si il existe un événement A tel que $X=1_A$. Dans ce cas, on a $X=1_A\sim \mathcal{B}(p)$ où p=P(A).

Définition. Si X est une variable aléatoire réelle, l'application $x \mapsto P(X \le x)$ est la fonction de répartition de X.

Définition. Hors programme : Convergence en loi :

Soit $(X_k)_{k\in\mathbb{N}}$ une suite de variables aléatoires réelles et X une autre variable aléatoire réelle. On dit que X_k converge en loi vers X lorsque k tend vers $+\infty$ si et seulement si pour tout $x\in\mathbb{R}$ tel que $P(X=x)=0,\,P(X_k\leq x) \underset{k\to+\infty}{\longrightarrow} P(X\leq x).$ on note alors $X_k \xrightarrow[k\to+\infty]{\mathcal{L}} X.$

Propriété. Soit $(X_k)_{k\in\mathbb{N}}$ une suite de variables aléatoires entières et X une autre variable aléatoire entière. $X_k \xrightarrow[k \to +\infty]{\mathcal{L}} X \iff [\forall n \in \mathbb{N}, \ P(X_k = n) \xrightarrow[k \to +\infty]{\mathcal{L}} P(X = n)].$

Propriété. Pour les variables aléatoires entières, les lois géométriques sont les seules lois sans mémoire. Plus précisément, si X est une variable aléatoire à valeurs dans \mathbb{N}^* , elle est sans mémoire, c'est-à-dire qu'elle vérifie pour tout $(n,k) \in \mathbb{N}^2$ P(X>n+k|X>n) = P(X>k), si et seulement si il existe $p \in]0,1[$ tel que $X \sim \mathcal{G}(p)$. Il faut savoir le démontrer.

4 Variables aléatoires indépendantes

4.1 Lois conjointes et lois marginales

Définition. Soit $n \in \mathbb{N}^*$. Si X_1, \ldots, X_n est une suite de n variables aléatoires discrète de Ω dans des ensemble E_i , alors, en posant pour tout $\omega \in \Omega$, $X(\omega) = (X_1(\omega), \ldots, X_n(\omega))$, on définit une variable aléatoire discrète $X \stackrel{\Delta}{=} (X_1, \ldots, X_n)$ de Ω dans $E_1 \times \cdots \times E_n$.

On dit que la loi de X est la loi conjointe des variables aléatoires X_1, \ldots, X_n . Pour tout $i \in \{1, \ldots, n\}$, la loi de X_i est appelée la ième loi marginale de X.

Exemple. Soit $X = (X_1, X_2)$ un couple de variables aléatoires entières. On note $(p_{1,k}) = (P(X_1 = k))$ la première loi marginale de X et $(p_{2,k}) = (P(X_2 = k))$ la seconde loi marginale.

On note également
$$c_{h,k} = P(X = (h,k))$$
 la loi conjointe. Alors $p_{1,k} = \sum_{h \in \mathbb{N}} c_{k,h}$ et $p_{2,k} = \sum_{h \in \mathbb{N}} c_{h,k}$.

Définition. Soit $X = (X_1, X_2)$ un couple de variables aléatoires discrètes. Pour tout $h \in X_2(\Omega)$ tel que $P(X_2 = h) > 0$, la loi conditionnelle de X_1 sachant que $X_2 = h$ désigne la probabilité $A \mapsto P(X_1 \in A | X_2 = h)$ (définie sur $P(X_1(\Omega))$). Elle est caractérisée par la suite des $(P(X_1 = k | X_2 = h))_{k \in \mathbb{N}}$. On définit de même la loi conditionnelle de X_2 sachant que $X_1 = k$.

Exemple. Avec les notations de l'exemple précédent, $P(X_1 = k | X_2 = h) = \frac{c_{k,h}}{p_{2,h}}$.

4.2 Indépendance

Définition. Soit $X=(X_1,\ldots,X_n)$ un n-uplet de variables discrètes. Elles sont mutuellement indépendantes si et seulement si pour tout $k=(k_1,\ldots,k_n)\in\prod_{i=1}^n X_i(\Omega),\ P(X=k)=\prod_{i=1}^n P(X_i=k_i).$

Propriété. X_1, \ldots, X_n sont indépendantes si et seulement si pour toute famille K_1, \ldots, K_n de parties de $X_1(\Omega), \ldots, X_n(\Omega), P(X_1 \in K_1, \ldots, X_n \in K_n) = \prod_{i=1}^n P(X_i \in K_i).$

Remarque. Si X_1, \ldots, X_n sont des variables aléatoires mutuellement indépendantes, alors elles sont 2 à 2 indépendantes, mais la réciproque est fausse.

Définition. Si $(X_i)_{i\in I}$ est une famille de variables aléatoires discrètes, avec I de cardinal infini, on dit que ces variables aléatoires sont mutuellement indépendantes si et seulement si pour toute partie finie J incluse dans I, les variables aléatoires X_j pour $j \in J$ sont mutuellement indépendantes.

Propriété. Soit X et Y deux variables aléatoires discrètes indépendantes de Ω dans E et F respectivement. Soit $f: E \longmapsto E'$ et $g: F \longmapsto F'$ deux fonctions. Alors f(X) et g(Y) sont encore deux variables aléatoires discrètes indépendantes.

Il faut savoir le démontrer.

Remarque. On peut généraliser l'énoncé et la démonstration au cas suivant : Si $(X_i)_{i\in I}$ est une famille de variables aléatoires mutuellement indépendantes, alors pour toute famille de fonctions $(f_i)_{i\in I}$ correctement définies, $(f_i(X_i))_{i\in I}$ est encore une famille de variables aléatoires mutuellement indépendantes.

Corollaire. Soit $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ des variables aléatoires discrètes mutuellement indépendantes. Alors pour toutes fonctions f et g correctement définies, les variables aléatoires $f(X_1, \ldots, X_m)$ et $g(Y_1, \ldots, Y_n)$ sont indépendantes.

Remarque. Là encore, on peut généraliser . . .

Propriété. Soit X_1, \ldots, X_m des variables aléatoires entières mutuellement indépendantes. On suppose qu'il existe $p \in [0,1]$ tel que, pour tout $i \in \{1,\ldots,m\}$, $X_i \sim \mathcal{B}(n_i,p)$, où $n_i \in \mathbb{N}^*$ (p ne dépend pas de i). Alors $X_1 + \cdots + X_m \sim \mathcal{B}(n_1 + \cdots + n_m, p)$. Il faut savoir le démontrer.

Remarque. On en déduit que le nombre de succès parmi une suite de m épreuves indépendantes de loi de Bernoulli de paramètre p suit une loi binomiale de paramètres m et p.

Exercice. Soit X_1, \ldots, X_m des variables aléatoires entières mutuellement indépendantes telles que chaque X_i suit une loi de Poisson de paramètre $\lambda_i > 0$. Montrer que $X = X_1 + \cdots + X_n$ suit une loi de Poisson de paramètre $\lambda = \lambda_1 + \cdots + \lambda_m$. Il faut savoir le démontrer.

Propriété. Soit $(p_n) \in]0,1[^{\mathbb{N}}$ telle que $np_n \underset{n \to +\infty}{\longrightarrow} \lambda \in \mathbb{R}_+^*$. Soit (X_n) une suite de variables aléatoires telle que $X_n \sim \mathcal{B}(n,p_n)$. Alors X_n converge en loi vers la loi de Poisson de paramètre λ . Il faut savoir le démontrer.

Remarque. Vue la démonstration, l'approximation de la loi de X_n par une loi de Poisson est d'autant plus valable que $k \ll n$ et $\lambda \ll n$.

Application : Dans une file d'attente, supposons que le nombre moyen d'individus arrivant entre les temps 0 et 1 vaut $\lambda > 0$. On note N la variable aléatoire égale au nombre d'individus arrivant dans la file d'attente entre les temps 0 et 1. On suppose que, pour n suffisamment grand, au plus un individu arrive entre les temps $\frac{i-1}{n}$ et $\frac{i}{n}$ (c'est l'hypothèse des événements rares). Alors N suit une loi de Poisson de paramètre λ .

Définition. Une loi discrète sur un ensemble E est la donnée d'une probabilité sur E muni de sa tribu pleine $\mathcal{P}(E)$ telle que $A = \{x \in E/P(x) > 0\}$ est fini ou dénombrable et telle que $\sum_{x \in A} P(x) = 1$.

Théorème. Soit $(E_n)_{n\in\mathbb{N}}$ une suite d'ensembles et pour tout $n\in\mathbb{N}$, soit \mathcal{L}_n une loi discrète sur E_n . Alors il existe un espace probabilisé (Ω, \mathcal{F}, P) et une suite (X_n) de variables aléatoires mutuellement indépendantes telle que, pour tout $n\in\mathbb{N}$, $X_n\sim\mathcal{L}_n$.

©Éric Merle 6 MPSI2, LLG

Remarque. Ce théorème prouve l'existence d'une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes telles que pour tout $n\in\mathbb{N}^*$, $X_n\sim\mathcal{B}(p)$, où $p\in]0,1[$ ne dépend pas de n. Cette suite modélise une succession infinie d'épreuves indépendantes qui ont toutes la même probabilité de succès, égale à p.

Propriété. Avec les notations de cette remarque, si X est la variable aléatoire égale à l'instant du premier succès : $X(\omega) = \min\{k \in \mathbb{N}^*/X_k(\omega) = 1\}$. Alors $X \sim \mathcal{G}(p)$.