1.

(a) \mathcal{R} não é REFLEXIVA, ou seja, o dobro de qualquer elemento $x \in \mathbb{N}$ resultará num número par; portanto \mathcal{R} é IRREFLEXIVA.

 \mathcal{R} é SIMÉTRICA pois considerando o par $\langle x; y \rangle \in \mathcal{R}$, tais que x é par e y é impar (ou x é impar e y é par) a soma será um número impar, então garantimos que o par $\langle y; x \rangle \in \mathcal{R}$ pois a soma é comutativa; e assim, \mathcal{R} não é ASSIMÉTRICA.

 \mathcal{R} não é ANTI-SIMÉTRICA pois temos os pares $\langle x;y\rangle\in\mathcal{R}$ e $\langle y;x\rangle\in\mathcal{R}$ com $x\neq y$.

 \mathcal{R} não é TRANSITIVA: considerando os pares $\langle x; y \rangle \in \mathcal{R}$ e $\langle y; z \rangle \in \mathcal{R}$ não garantimos $\langle x; z \rangle \in \mathcal{R}$; contra-exemplo: $\langle 1; 2 \rangle \in \mathcal{R}$ e $\langle 2; 1 \rangle \in \mathcal{R} \not\Rightarrow \langle 1; 1 \rangle \in \mathcal{R}$, pois 1 + 1 = 2 é par.

 \mathcal{R} não é CONECTADA porque não conseguiremos uma conecção entre todos os números naturais, i.é, não teremos pares ordenados formados entre os números pares ou entre os números ímpares; consequentemente, $\langle x;y\rangle \notin \mathcal{R}$ se x for par e y par ou, se x for ímpar e y ímpar, ou se x=y.

 \mathcal{R} não é de EQUIVALÊNCIA porque não é reflexiva e nem transitiva.

(b) \mathcal{R} não é REFLEXIVA, ou seja, $\forall x \in \mathbb{Z}^*, \langle x; x \rangle \notin \mathcal{R}$ pois $x \neq 2x$. \mathcal{R} não é IRREFLEXIVA porque o par $\langle 0; 0 \rangle \in \mathcal{R}$ pois 0 = 2.0.

 \mathcal{R} não é SIMÉTRICA pois considerando o par $\langle x; y \rangle \in \mathcal{R}$, tais que x é múltiplo de y o par $\langle y; x \rangle \notin \mathcal{R}$; pois $y = \frac{1}{2}x$; e assim, \mathcal{R} é ASSIMÉTRICA.

 \mathcal{R} é ANTI-SIMÉTRICA pois, como $\langle x;y\rangle\in\mathcal{R}$ e $\langle y;x\rangle\notin\mathcal{R}$ não precisamos concluir x=y. \mathcal{R} não é TRANSITIVA: considerando os pares $\langle x;y\rangle\in\mathcal{R}; x=2y$ e $\langle y;z\rangle\in\mathcal{R}; y=2z\Rightarrow\langle x;z\rangle\notin\mathcal{R}$, pois x=2y=2(2z)=4z.

 \mathcal{R} não é CONECTADA porque não conseguiremos pares ordenados entre todos os números inteiros, i.é, não teremos pares ordenados formados entre os números inteiros tais que o primeiro não seja o dobro do segundo.

 $\mathcal R$ não é de EQUIVALÊNCIA porque não é reflexiva, nem simétrica e nem transitiva.

(c) \mathcal{R} não é REFLEXIVA, ou seja, $\forall x \in \mathbb{R}^*, \langle x; x \rangle \notin \mathcal{R}$ pois $x \neq -x$. \mathcal{R} não é IRREFLEXIVA porque o par $\langle 0; 0 \rangle \in \mathcal{R}$ pois 0 = -0.

 \mathcal{R} é SIMÉTRICA pois considerando o par $\langle x;y\rangle\in\mathcal{R}$, tais que x é o oposto de y o par $\langle y;x\rangle\in\mathcal{R}$; pela comutatividade; e assim, \mathcal{R} não é ASSIMÉTRICA.

 \mathcal{R} não é ANTI-SIMÉTRICA pois, $\langle x, y \rangle \in \mathcal{R}$ e $\langle y, x \rangle \in \mathcal{R}$ para $x \neq y$.

 \mathcal{R} não é TRANSITIVA; porque considerando a condição: $\langle x;y\rangle\in\mathcal{R}; x=-y$ e $\langle y;z\rangle\in\mathcal{R}; y=-z(sse,z=x)\Rightarrow\langle x;z\rangle\notin\mathcal{R}; (i.\acute{e},\langle x;x\rangle\notin\mathcal{R}).$

 \mathcal{R} não é CONECTADA porque não conseguiremos pares ordenados entre todos os números reais, i.é, não teremos pares ordenados formados entre os números reais iguais diferentes de zero, entre os positivos, e entre os negativos.

 \mathcal{R} não é de EQUIVALÊNCIA porque não é reflexiva e nem transitiva.

(d) \mathcal{R} não é REFLEXIVA, ou seja, $\forall x \in \mathbb{R}, \langle x; x \rangle \notin \mathcal{R}$ pois $x \neq x + 1$. \mathcal{R} é IRREFLEXIVA. \mathcal{R} não é SIMÉTRICA pois considerando o par $\langle x; y \rangle \in \mathcal{R}$, tal que x = y + 1; o par $\langle y; x \rangle \notin \mathcal{R}$; pois y = x - 1; e assim, \mathcal{R} é ASSIMÉTRICA.

 \mathcal{R} é anti-simétrica pois, $\langle x;y\rangle \notin \mathcal{R}$ e $\langle y;x\rangle \notin \mathcal{R}$ então não precisa verificar a conclusão x=y.

 \mathcal{R} não é TRANSITIVA: considerando os pares $\langle x;y\rangle\in\mathcal{R}; x=y+1$ e $\langle y;z\rangle\in\mathcal{R}; y=z+1\Rightarrow\langle x;z\rangle\notin\mathcal{R}$, pois x=y+1=(z+1)+1=z+2.

 \mathcal{R} não é CONECTADA porque não conseguiremos pares ordenados entre todos os números reais, i.é, não teremos pares ordenados formados entre os números tais que $x \neq y + 1$.

 ${\cal R}$ não é de EQUIVALÊNCIA porque não é reflexiva e nem transitiva.

2.

(a)
$$ref(\mathcal{R}) = \mathcal{R} \cup \Delta_{\mathbb{N}} = \mathcal{R} \cup \{\langle x; x \rangle; \forall x \in \mathbb{N}\}$$

 $sim(\mathcal{R}) = \mathcal{R} \cup \mathcal{R}^{-1} = \mathcal{R}$
 $tra(\mathcal{R}) = \bigcup_{m \in \mathbb{N}^*} \mathcal{R}^m = \mathcal{R} \cup \mathcal{R}^2 = \nabla_{\mathbb{N}};$
 $pois, \mathcal{R}^2 = RoR = \{\langle x; y \rangle; \forall x, y \in \mathbb{N} \mid x + y \text{ \'e par }\} = \overline{\mathcal{R}};$
 $\mathcal{R}^3 = RoR^2 = \mathcal{R}, \dots$

(b)
$$ref(\mathcal{R}) = \mathcal{R} \cup \Delta_{\mathbb{Z}} = \mathcal{R} \cup \{\langle x; x \rangle; \forall x \in \mathbb{Z}\}$$

 $sim(\mathcal{R}) = \mathcal{R} \cup \mathcal{R}^{-1} = \mathcal{R} \cup \{\langle y; x \rangle \mid \langle x; y \rangle \in \mathcal{R}\} = \mathcal{R} \cup \{\langle y; x \rangle \mid y = \frac{1}{2}x\}$

$$tra(\mathcal{R}) = \bigcup_{m \in \mathbb{N}^*} \mathcal{R}^m = \mathcal{R} \cup \mathcal{R}^2 \cup \mathcal{R}^3 \cup \mathcal{R}^4 \cup \mathcal{R}^5 \cup \ldots = \{\langle x; y \rangle \mid x = 2y \lor x = 4y \lor x = 8y \lor x = 16y \lor \ldots\} = \{\langle x; y \rangle \mid x = 2^m y; \forall m \in \mathbb{N}^*\};$$

$$pois, \mathcal{R}^2 = \{\langle x; y \rangle \mid x = 4y\}, \mathcal{R}^3 = \{\langle x; y \rangle \mid x = 8y\}, \mathcal{R}^4 = \{\langle x; y \rangle \mid x = 16y\}, \mathcal{R}^5 = \{\langle x; y \rangle \mid x = 32y\};$$

$$\vdots$$

$$\mathcal{R}^m = \{\langle x; y \rangle \mid x = 2^m y; m \in \mathbb{N}^*\}$$

$$\mathcal{R}^m = \{ \langle x; y \rangle \mid x = 2^m y; m \in \mathbb{N}^* \}$$

(c)
$$ref(\mathcal{R}) = \mathcal{R} \cup \Delta_{\mathbb{R}} = \mathcal{R} \cup \{\langle x; x \rangle ; \forall x \in \mathbb{R}\}$$

 $sim(\mathcal{R}) = \mathcal{R} \cup \mathcal{R}^{-1} = \mathcal{R}$
 $tra(\mathcal{R}) = \bigcup_{m \in \mathbb{N}^*} \mathcal{R}^m = \mathcal{R} \cup \mathcal{R}^2 \cup \mathcal{R} \cup \mathcal{R}^2 \cup \ldots = \mathcal{R} \cup \mathcal{R}^2 = \mathcal{R} \cup \Delta_{\mathbb{R}} = \{\langle x; y \rangle \in \mathbb{R} \mid x = -y \lor x = y\}.$

(d)
$$ref(\mathcal{R}) = \mathcal{R} \cup \Delta_{\mathbb{N}} = \mathcal{R} \cup \{\langle x; x \rangle; \forall x \in \mathbb{R}\}$$

 $sim(\mathcal{R}) = \mathcal{R} \cup \mathcal{R}^{-1} = \mathcal{R} \cup \{\langle y; x \rangle \mid \langle x; y \rangle \in \mathcal{R}\} = \mathcal{R} \cup \{\langle y; x \rangle \in \mathbb{R} \times \mathbb{R} \mid y = x - 1\}$
 $tra(\mathcal{R}) = \bigcup_{m \in \mathbb{N}^*} \mathcal{R}^m = \mathcal{R} \cup \mathcal{R}^2 \cup \mathcal{R}^3 \cup \mathcal{R}^4 \cup \ldots = \{\langle x; y \rangle \in \mathcal{R} \mid x = y + 1 \lor x = y + 2 \lor x = y + 3 \lor \ldots\} = \{\langle x; y \rangle \in \mathcal{R} \mid x = y + n; \forall n \in \mathbb{N}^*\}.$

3. $\mathcal{R} := \{\langle 3; 3 \rangle, \langle 3; 5 \rangle, \langle 3; 7 \rangle, \langle 5; 3 \rangle, \langle 5; 5 \rangle, \langle 5; 7 \rangle, \langle 7; 3 \rangle, \langle 7; 5 \rangle, \langle 7; 7 \rangle\} \in \mathcal{S} := \{\langle 3; 3 \rangle, \langle 5; 5 \rangle, \langle 7; 7 \rangle\};$ note que $\mathcal{R} = \nabla_A$ e $\mathcal{S} = \Delta_A$.

(a)
$$\widetilde{\mathcal{R}} = \{\langle 3; 3 \rangle, \langle 5; 3 \rangle, \langle 7; 3 \rangle, \langle 3; 5 \rangle, \langle 5; 5 \rangle, \langle 7; 5 \rangle, \langle 3; 7 \rangle, \langle 5; 7 \rangle, \langle 7; 7 \rangle\} = \mathcal{R};$$

 $\widetilde{\mathcal{R} \cup \mathcal{S}} = \widetilde{\mathcal{R}} \cup \widetilde{\mathcal{S}} = \mathcal{R} \cup \mathcal{S} = \mathcal{R}; \ e^{\widetilde{\widetilde{\mathcal{S}}}} = \mathcal{S}.$

(b)
$$\overline{\mathcal{R}} = \emptyset$$
: $\overline{\mathcal{R} \cup \mathcal{S}} = \overline{\mathcal{R}} = \emptyset$: $\overline{\overline{\mathcal{R}}} = \mathcal{R}$.

(c)
$$S \circ R = R$$
; $R \circ S = R$; $R^2 = R \circ R = R$; $S^3 = S^2 \circ S = S \circ S = S$.

(d)
$$[A]_{\mathcal{R}} = \{[3]_{\mathcal{R}}, [5]_{\mathcal{R}}, [7]_{\mathcal{R}}\} = \{\{3, 5, 7\}\} \text{ pois, } [3]_{\mathcal{R}} = [5]_{\mathcal{R}} = [7]_{\mathcal{R}} = \{3, 5, 7\} = A.$$

 $[A]_{\mathcal{S}} = \{[3]_{\mathcal{S}}, [5]_{\mathcal{S}}, [7]_{\mathcal{S}}\} = \{\{3\}, \{5\}, \{7\}\} \text{ pois, } [3]_{\mathcal{S}} = \{3\}, [5]_{\mathcal{S}} = \{5\}, [7]_{\mathcal{S}} = \{7\}.$

4.

(a) Considerando $A_1 = \{0, 6, 8\}, A_2 = \{2, 4\}, A_3 = \{10\}$ então, o conjunto \mathcal{P} é uma cobertura para A pois $A = A_1 \cup A_2 \cup A_3$.

(b) $\mathcal{R} = \{\langle 0; 0 \rangle, \langle 0; 6 \rangle, \langle 0; 8 \rangle, \langle 6; 0 \rangle, \langle 6; 6 \rangle, \langle 6; 8 \rangle, \langle 8; 0 \rangle, \langle 8; 6 \rangle, \langle 8; 8 \rangle, \langle 2; 2 \rangle, \langle 2; 4 \rangle, \langle 4; 2 \rangle, \langle 4; 4 \rangle, \langle 10; 10 \rangle\}$ é uma relação de equivalência.

- 5. É possível determinar por \mathcal{R} uma partição de A porque é uma relação de Equivalência. Para tal, vamos determinar as classes de equivalência : $[1]_{\mathcal{R}} = [3]_{\mathcal{R}} = [5]_{\mathcal{R}} = \{1,3,5\},$; $[7]_{\mathcal{R}} = \{7\}$, $[9]_{\mathcal{R}} = [11]_{\mathcal{R}} = \{9,11\}$, $[13]_{\mathcal{R}} = \{13\}$, Assim, uma partição $\mathcal{P} = \{[1]_{\mathcal{R}}, [7]_{\mathcal{R}}, [9]_{\mathcal{R}}, [13]_{\mathcal{R}}\}$; i.é., $\mathcal{P} = \{\{1,3,5\}, \{7\}, \{9,11\}, \{13\}\}$.
- 6. É possível determinar por $\mathcal{R} := \{\langle x; y \rangle \mid x + y \text{ \'e par } \}$ uma partição de $A := \{0, 1, 2, 3\}$ porque é uma relação de Equivalência em A.

Determinando as classes de equivalência: $[0]_{\mathcal{R}} = [2]_{\mathcal{R}} = \{0, 2\},; [1]_{\mathcal{R}} = [3]_{\mathcal{R}} = \{1, 3\}, \text{ Assim,}$ uma partição $\mathcal{P} = \{[0]_{\mathcal{R}}, [1]_{\mathcal{R}}\}; \text{ i.é., } \mathcal{P} = \{\{0, 2\}, \{1, 3\}\}.$

7.

(a)
$$[0]_{\equiv_4} = \{\dots, -12, -8, -4, 0, 4, 8, 12, \dots\}$$

 $[1]_{\equiv_4} = \{\dots, -11, -7, -3, 1, 5, 9, 13, \dots\}$
 $[2]_{\equiv_4} = \{\dots, -10, -6, -2, 2, 6, 10, 14, \dots\}$
 $[3]_{\equiv_4} = \{\dots, -9, -5, -1, 3, 7, 11, 15, \dots\}$

$$(b) = (c) \ \mathcal{P} = [\mathbb{Z}]_{\equiv_4} = \{[0]_{\equiv_4}, [1]_{\equiv_4}, [2]_{\equiv_4}, [3]_{\equiv_4}\}.$$

8.

- (a) $\mathcal{R}:=\{\langle x;y\rangle\mid x$ é mais alto que $y\}.$ \mathcal{R} é IRREFLEXIVA, ASSIMÉTRICA , ANTI-SIMÉTRICA E TRANSITIVA.
- (b) $\mathcal{R} := \{ \langle x; y \rangle \mid x \in y \text{ nasceram no mesmo dia } \}.$ \mathcal{R} é REFLEXIVA, SIMÉTRICA e TRANSITIVA.
- (c) $\mathcal{R} := \{ \langle x; y \rangle \mid x \in y \text{ tem um avô em comum } \}.$ $\mathcal{R} \notin \text{REFLEXIVA}, \text{SIMÉTRICA e TRANSITIVA}.$

- (a) $\mathcal{R} := \{\langle x; y \rangle \mid \text{Todos que visitaram a página } x \text{ também visitaram a página } y\}.$ \mathcal{R} é REFLEXIVA e TRANSITIVA.
- (b) $\mathcal{R} := \{\langle x; y \rangle \mid \text{Não existem links em comum na página } x \text{ e na página } y\}.$ \mathcal{R} é SIMÉTRICA.
- (c) $\mathcal{R} := \{\langle x; y \rangle \mid \text{ Existe pelo menos um link em comum nas duas páginas } x \in y\}.$ \mathcal{R} é SIMÉTRICA.
 - 10. (V) \mathcal{R} é uma relação REFLEXIVA se, e somente se, $\forall x \in A; \langle x; x \rangle \in \mathcal{R}$.
- (F)Se $\mathcal{R} := \{\langle 1; 1 \rangle, \langle 1; 2 \rangle, \langle 2; 2 \rangle, \langle 2; 1 \rangle\}$ uma relação em $A = \{1, 2, 3\}$; então \mathcal{R} não é REFLE-XIVA pois o par ordenado $\langle 3; 3 \rangle \notin \mathcal{R}$; e ref $(\mathcal{R}) = \mathcal{R} \cup \Delta_A = \mathcal{R} \cup \{\langle 1; 1 \rangle, \langle 2; 2 \rangle, \langle 3; 3 \rangle\}$.
- (F)Se uma relação \mathcal{R} em A não é REFLEXIVA então $\exists x \in A$ tal que $\langle x; x \rangle \notin \mathcal{R}$ e para \mathcal{R} ser IR-REFLEXIVA temos que $\forall x \in A, \langle x; x \rangle \notin \mathcal{R}$. Contra-exemplo: $\mathcal{R} := \{\langle 1; 1 \rangle, \langle 1; 2 \rangle, \langle 2; 2 \rangle, \langle 2; 1 \rangle\}$ uma relação em $A = \{1, 2, 3\}$; \mathcal{R} não é reflexiva (porque $\langle 3; 3 \rangle \notin \mathcal{R}$) e não é irreflexiva ($\langle 1; 1 \rangle, \langle 2; 2 \rangle \in \mathcal{R}$).
- (F)Se $\mathcal S$ uma relação em A é SIMÉTRICA então $\mathcal S$ não é ASSIMÉTRICA mas $\mathcal S$ pode ser uma relação ANTI-SIMÉTRICA.
- (F) Contra-exemplo: $\mathcal{R} := \{\langle 1; 1 \rangle, \langle 1; 2 \rangle, \langle 2; 2 \rangle, \langle 2; 1 \rangle, \langle 3; 3 \rangle, \}$ uma relação em $A = \{1, 2, 3\}$; é REFLEXIVA todavia, \mathcal{R} não é ANTI-SIMÉTRICA.
- (V)Se \mathcal{R} é uma relação de equivalência em A; então \mathcal{R} é reflexiva, simétrica e transitiva, logo os seus fechos: $\operatorname{ref}(\mathcal{R}) = \sin(\mathcal{R}) = \operatorname{tra}(\mathcal{R}) = \mathcal{R}$.
- (F) Uma relação \mathcal{R} é dita ser conectada se, e somente se, $\nexists x, y \in A$ tais que $\langle x; y \rangle \notin \mathcal{R} \land \langle y; x \rangle \notin \mathcal{R}$. Neste caso, $\mathcal{R} := \{\langle x; y \rangle \in \mathbb{Z} \times \mathbb{Z} \mid x \leq y\}$ é CONECTADA pois garantimos uma conecção entre todos os elementos do conjunto, enquanto que $\mathcal{S} := \{\langle a; b \rangle \in \mathbb{N} \times \mathbb{N} \mid a = b + 1\}$ não é CONECTADA porque teremos elementos do conjunto que não estarão conectados num par ordenado em \mathcal{S} , por exemplo nem o par $\langle 1; 3 \rangle \in \mathcal{S}$ e nem o par $\langle 3; 1 \rangle \in \mathcal{S}$.
- (V) $\forall \mathcal{R}$ em A, temos que: $\operatorname{ref}(\mathcal{R})$ é a menor relação reflexiva em A que contém \mathcal{R} ; $\operatorname{sim}(\mathcal{R})$ é a menor relação simétrica em A que contém \mathcal{R} ; e $\operatorname{tra}(\mathcal{R})$ é a menor relação transitiva em A que contém \mathcal{R} ; porém, nada nos garante que a união destes conjuntos será uma relação de EQUIVALÊNCIA. Por exemplo: Seja $\mathcal{R} := \{\langle 1; 3 \rangle, \langle 3; 2 \rangle\}$ uma relação em $A = \{1, 2, 3\}$; assim temos: $\operatorname{ref}(\mathcal{R}) = \mathcal{R} \cup \Delta_A = \{\langle 1; 3 \rangle, \langle 3; 2 \rangle, \langle 1; 1 \rangle, \langle 2; 2 \rangle, \langle 3; 3 \rangle\}$; $\operatorname{sim}(\mathcal{R}) = \mathcal{R} \cup \widetilde{\mathcal{R}} = \{\langle 1; 3 \rangle, \langle 3; 2 \rangle, \langle 3; 1 \rangle, \langle 2; 3 \rangle\}$; e $\operatorname{tra}(\mathcal{R}) = \mathcal{R} \cup \mathcal{R}^2 = \{\langle 1; 3 \rangle, \langle 3; 2 \rangle, \langle 1; 2 \rangle\}$; fazendo a união destes conjuntos: $\operatorname{ref}(\mathcal{R}) \cup \operatorname{sim}(\mathcal{R}) \cup \operatorname{tra}(\mathcal{R}) = \mathbb{R}$

 $\left\{\left\langle 1;3\right\rangle ,\left\langle 3;2\right\rangle ,\left\langle 1;1\right\rangle ,\left\langle 2;2\right\rangle ,\left\langle 3;3\right\rangle ,\left\langle 3;1\right\rangle ,\left\langle 2;3\right\rangle ,\left\langle 1;2\right\rangle \right\} \text{ temos uma relação que não é de equivalência.}$

- 11. (i) Por definição, uma FAMÍLIA $\{A_i\}_{\{i\in I\}}$ de subconjuntos não vazios de A é uma COBERTURA de A se, e somente se, $\bigcup_{\{i\in I\}} \{A_i\} = A$. Logo a afirmação é falsa.
- (ii) Uma COBERTURA de A será também uma PARTIÇÃO de A quando tivermos que os elementos da família $\{A_i\}_{\{i\in I\}}$ são dois a dois disjuntos. Logo a afirmação é falsa.
- (iii) Uma relação $\mathcal R$ definida em A determinará uma PARTIÇÃO de A apenas quando $\mathcal R$ for uma relação de equivalência em A.

12.

- (i) $\mathcal{R} \cup \mathcal{S} = \{ \langle x, y \rangle \mid \langle x, y \rangle \in \mathcal{R} \lor \langle x, y \rangle \in \mathcal{S} \}.$
 - (1) $\mathcal{R} \cup \mathcal{S}$ é relação reflexiva: $\forall x \in A \Rightarrow \langle x; x \rangle \in \mathcal{R} \cup \mathcal{S}$; pois, $\langle x; x \rangle \in \mathcal{R} \Rightarrow (V)$ ou $\langle x; x \rangle \in \mathcal{S} \Rightarrow (V)$ visto que \mathcal{R} e \mathcal{S} são reflexivas.
 - (2) $\mathcal{R} \cup \mathcal{S}$ é relação simétrica: $(\forall x, y \in A)(\langle x; y \rangle \in \mathcal{R} \cup \mathcal{S} \Rightarrow \langle y; x \rangle \in \mathcal{R} \cup \mathcal{S}); \text{ pois, } \langle x; y \rangle \in \mathcal{R} \Rightarrow \langle y; x \rangle \in \mathcal{R} \text{ ou}$ $\langle x; y \rangle \in \mathcal{S} \Rightarrow \langle y; x \rangle \in \mathcal{S} \text{ visto que } \mathcal{R} \text{ e } \mathcal{S} \text{ são simétricas.}$
 - (3) R∪S não é relação transitiva:
 (∀x, y, z ∈ A)(⟨x; y⟩ ∈ R∪S ∧ ⟨y; z⟩ ∈ R∪S ⇒ ⟨x; z⟩ ∈ R∪S); pois, ⟨x; y⟩ ∈
 R∧⟨y; z⟩ ∈ R ⇒ ⟨x; z⟩ ∈ R ou ⟨x; y⟩ ∈ S ∧ ⟨y; z⟩ ∈ S ⇒ ⟨x; z⟩ ∈ S visto que R e
 S são transitivas.

Todavia, podemos ter $\langle x; y \rangle \in \mathcal{R} \land \langle y; z \rangle \in \mathcal{S} \not\Rightarrow \langle x; z \rangle \in \mathcal{R} \lor \langle x; z \rangle \in \mathcal{S} \Rightarrow \langle x; z \rangle \notin \mathcal{R} \cup \mathcal{S}$.

Logo, generalizando, por (1),(2) e (3) concluimos que $\mathcal{R} \cup \mathcal{S}$ não é relação de Equivalência.

- (ii) $\mathcal{R} \cap \mathcal{S} = \{ \langle x; y \rangle \mid \langle x; y \rangle \in \mathcal{R} \land \langle x; y \rangle \in \mathcal{S} \}.$
 - (1) $\mathcal{R} \cap \mathcal{S}$ é relação reflexiva: $\forall x \in A \Rightarrow \langle x; x \rangle \in \mathcal{R} \cap \mathcal{S}$; pois, $\langle x; x \rangle \in \mathcal{R} \wedge \langle x; x \rangle \in \mathcal{S}$ visto que \mathcal{R} e \mathcal{S} são reflexivas.
 - (2) $\mathcal{R} \cap \mathcal{S}$ é relação simétrica: $(\forall x, y \in A)(\langle x; y \rangle \in \mathcal{R} \cap \mathcal{S} \Rightarrow \langle y; x \rangle \in \mathcal{R} \cap \mathcal{S}); \text{ pois, } \langle x; y \rangle \in \mathcal{R} \wedge \langle y; x \rangle \in \mathcal{R} \text{ e}$

 $\langle x; y \rangle \in \mathcal{S} \land \langle y; x \rangle \in \mathcal{S}$ visto que \mathcal{R} e \mathcal{S} são simétricas.

(3) $\mathcal{R} \cap \mathcal{S}$ é relação transitiva:

$$(\forall x, y, z \in A)(\langle x; y \rangle \in \mathcal{R} \cap \mathcal{S} \wedge \langle y; z \rangle \in \mathcal{R} \cap \mathcal{S} \Rightarrow \langle x; z \rangle \in \mathcal{R} \cap \mathcal{S}); \text{ pois, } \langle x; y \rangle \in \mathcal{R} \wedge \langle y; z \rangle \in \mathcal{R} \Rightarrow \langle x; z \rangle \in \mathcal{R} \text{ e } \langle x; y \rangle \in \mathcal{S} \wedge \langle y; z \rangle \in \mathcal{S} \Rightarrow \langle x; z \rangle \in \mathcal{S} \text{ visto que } \mathcal{R} \text{ e } \mathcal{S}$$
 são transitivas.

Logo, por (1),(2) e (3) concluimos que $\mathcal{R} \cap \mathcal{S}$ é relação de Equivalência.

- (iii) $\mathcal{R} \mathcal{S} = \{ \langle x; y \rangle \mid \langle x; y \rangle \in \mathcal{R} \land \langle x; y \rangle \notin \mathcal{S} \}.$
 - (1) $\mathcal{R} \mathcal{S}$ não é relação reflexiva. \mathcal{R} e \mathcal{S} são reflexivas; então, $\forall x \in A \Rightarrow \langle x; x \rangle \in \mathcal{R} \land \langle x; x \rangle \in \mathcal{S}$; logo, $\langle x; x \rangle \notin \mathcal{R} - \mathcal{S}$.
 - (2) $\mathcal{R} \mathcal{S}$ é relação simétrica: $(\forall x, y \in A)(\langle x; y \rangle \in \mathcal{R} \mathcal{S} \Rightarrow \langle y; x \rangle \in \mathcal{R} \cap \mathcal{S})$; verificando esta afirmação: $\langle x; y \rangle \in \mathcal{R} \Rightarrow \langle y; x \rangle \in \mathcal{R}$ pois \mathcal{R} é relação simétrica. Temos que, \mathcal{S} também é relação simétrica porém, $\langle x; y \rangle \in \mathcal{S} \wedge \langle y; x \rangle \in \mathcal{S} \Rightarrow \langle x; y \rangle \notin \mathcal{R} \mathcal{S} \wedge \langle y; x \rangle \notin \mathcal{R} \mathcal{S}$ o que nos levaria a uma contradição.
 - (3) (i) Supondo que $\mathcal{R} \mathcal{S}$ é relação transitiva: $(\forall x,y,z \in A)(\langle x;y \rangle \in \mathcal{R} \mathcal{S} \wedge \langle y;z \rangle \in \mathcal{R} \mathcal{S} \Rightarrow \langle x;z \rangle \in \mathcal{R} \mathcal{S}).$ Neste caso, \mathcal{R} é relação transitiva; $\langle x;y \rangle \in \mathcal{R} \wedge \langle y;z \rangle \in \mathcal{R} \Rightarrow \langle x;z \rangle \in \mathcal{R}$. E, assim, os pares $\langle x;y \rangle \notin \mathcal{S} \wedge \langle y;z \rangle \notin \mathcal{S} \wedge \langle x;z \rangle \notin \mathcal{S}$ já que pertencem ao conjunto \mathcal{R} . (ii) por outro lado, $\forall x,y,z,w \in A$ tais que $x \neq y \wedge x \neq z \wedge y \neq z \wedge x \neq w \wedge y \neq w \wedge z \neq w; \langle x;y \rangle \in \mathcal{R} \wedge \langle y;z \rangle \in \mathcal{R} \Rightarrow \langle x;z \rangle \in \mathcal{R}$. E os pares, $\langle x;z \rangle \in \mathcal{S} \wedge \langle z;w \rangle \in \mathcal{S} \wedge \langle x;w \rangle \in \mathcal{S}$; então, $(\forall x,y,z \in A)(\langle x;y \rangle \in \mathcal{R} \mathcal{S} \wedge \langle y;z \rangle \in \mathcal{R} \mathcal{S} \max \langle x;z \rangle \notin \mathcal{R} \mathcal{S})$. Logo, não é transitiva.

Logo, por (1),(2) e (3) concluimos que $\mathcal{R} - \mathcal{S}$ não é relação de Equivalência.

- (iv) $\mathcal{R}o\mathcal{S} = \{\langle x; z \rangle \mid \langle x; y \rangle \in \mathcal{S} \land \langle y; z \rangle \in \mathcal{R} \}.$
 - (1) $\mathcal{R}o\mathcal{S}$ é relação reflexiva: $\forall x \in A \Rightarrow \langle x; x \rangle \in \mathcal{R}o\mathcal{S}$; pois, $\langle x; x \rangle \in \mathcal{R} \land \langle x; x \rangle \in \mathcal{S}$ visto que \mathcal{R} e \mathcal{S} são reflexivas.
 - (2) $(\forall x, y, z \in A)(\langle x; z \rangle \in \mathcal{R}o\mathcal{S} \Rightarrow \langle x; y \rangle \in \mathcal{S} \land \langle y; z \rangle \in \mathcal{R})$; como, \mathcal{R} e \mathcal{S} são simétricas temos que $(\langle x; y \rangle \in \mathcal{S} \Rightarrow \langle y; x \rangle \in \mathcal{S}) \land (\langle y; z \rangle \in \mathcal{R} \Rightarrow \langle z; y \rangle \in \mathcal{R})$. Então, para $\mathcal{R}o\mathcal{S}$

ser uma relação simétrica: $\langle x; z \rangle \in \mathcal{R}o\mathcal{S} \Rightarrow \langle z; x \rangle \in \mathcal{R}o\mathcal{S} \Rightarrow \langle z; y \rangle \in \mathcal{S} \land \langle y; x \rangle \in \mathcal{R}$ o que seria uma falsidade. Logo, $\mathcal{R}o\mathcal{S}$ não é relação simétrica.

(3) \mathcal{R} e \mathcal{S} são transitivas; temos que,

$$(\langle x; y \rangle \in \mathcal{S} \land \langle y; w \rangle \in \mathcal{S} \Rightarrow \langle x; w \rangle \in \mathcal{S}) \land (\langle y; z \rangle \in \mathcal{R} \land \langle z; t \rangle \in \mathcal{R} \Rightarrow \langle y; t \rangle \in \mathcal{R});$$
 consequentemente, $\langle x; y \rangle \in \mathcal{S} \land \langle y; z \rangle \in \mathcal{R} \Rightarrow \langle x; z \rangle \in \mathcal{R}o\mathcal{S}.$

Agora, verificando a composta: $\langle x; z \rangle \in \mathcal{R}o\mathcal{S} \land \langle z; w \rangle \in \mathcal{R}o\mathcal{S} \not\Rightarrow \langle x; w \rangle \in \mathcal{R}o\mathcal{S}$.

Exemplo: Sejam $A = \{1, 2, 3\}$, e as relações de equivalência em A:

$$\mathcal{R} = \{ \langle 1; 2 \rangle, \langle 2; 1 \rangle, \langle 1; 1 \rangle, \langle 2; 2 \rangle, \langle 3; 3 \rangle \} \ \mathcal{S} = \{ \langle 1; 3 \rangle, \langle 3; 1 \rangle, \langle 1; 1 \rangle, \langle 2; 2 \rangle, \langle 3; 3 \rangle \},$$
 e a composta
$$\mathcal{R}o\mathcal{S} = \{ \langle 1; 3 \rangle, \langle 3; 1 \rangle, \langle 3; 2 \rangle, \langle 1; 2 \rangle, \langle 1; 1 \rangle, \langle 2; 1 \rangle, \langle 2; 2 \rangle, \langle 3; 3 \rangle \}.$$

Note que: $\langle 2; 1 \rangle \in \mathcal{R}o\mathcal{S} \land \langle 1; 3 \rangle \in \mathcal{R}o\mathcal{S} \land \langle 2; 3 \rangle \notin \mathcal{R}o\mathcal{S}$; pois $\langle 2; 2 \rangle \in \mathcal{S} \land \langle 2; 3 \rangle \notin \mathcal{R}$, consequentemente, a composta $\mathcal{R}o\mathcal{S}$ não é transitiva.

Concluimos por (1),(2) e (3) que a composta $\mathcal{R}o\mathcal{S}$ não é relação de equivalência.

(v) $\mathcal{R}^m = \mathbb{R} \text{ o } \mathbb{R}^{m-1}; m \in \mathbb{N}^*.$