Lösungen zu Aufgabe 1, Zettel 8

Jendrik Stelzner

17. Juli 2016

1 Vorbereitung: Basiswechselmatrizen

Lemma 1. Es sei $A \in M_n(\mathbb{K})$. Dann sind die folgenden Bedingungen äquivalent:

- 1. Die Matrix A ist invertierbar mit $A^{-1} = A^*$.
- 2. Es gilt $AA^* = I$.
- 3. Es gilt $A^*A = I$.
- 4. Die Spalten von A sind eine Orthonormalbasis von \mathbb{K}^n (als Spaltenvektoren gesehen).
- 5. Die Zeilen von A sind eine Orthonormalbasis von \mathbb{K}^n (als Zeilenvektoren gesehen).

Beweis. Die Äquivalenz der ersten drei Aussagen folgt, wie aus Lineare Algebra I bekannt, mithilfe der Dimensionsformel.

Die Gleichheit $A^*A=I$ ist in den Einträgen äquivalent dazu, dass $\sum_{l=1}^n \overline{a_{lj}}a_{lk}=\delta_{jk}$ für alle $j,k=1,\ldots,n$. Durch komplexe Konjugation ist dies äquivalent zu $\sum_{l=1}^n a_{lj}\overline{a_{lk}}=\delta_{j,k}$ für alle $j,k=1,\ldots,n$. Da der Ausdruck $\sum_{l=1}^n a_{lj}\overline{a_{lk}}$ das Standardskalarprodukt der jten und k-ten Spaltenvektoren von A ist, bedeutet dies gerade, dass die Spalten von A eine Orthonormalbasis von \mathbb{K}^n bilden.

Analog ergibt sich, dass $AA^* = I$ äquivalent dazu ist, dass die Zeilen von A eine Orthonormalbasis von \mathbb{K}^n bilden.

Im Folgenen sei

$$D(\varphi) \coloneqq \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

die Drehmatrix mit Winkel $\varphi\in\mathbb{R}$. Für Skalare $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$ sei

$$\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\coloneqq \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_p \end{pmatrix} \in \operatorname{M}_n(\mathbb{C})$$

die entsprechende Diagonalmatrix. Für Matrizen $A_1\in \mathrm{M}_{n_1}(\mathbb{C}),\ldots,A_r\in \mathrm{M}_{n_r}(\mathbb{C})$ sei

$$\operatorname{block}(A_1,\ldots,A_r) = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_r \end{pmatrix} \in \operatorname{M}_{n_1+\cdots+n_r}(\mathbb{C})$$

die entsprechende Blockdiagonalmatrix.

- **Theorem 2.** 1. Ist $A \in M_n(\mathbb{C})$ normal, so gibt es eine unitäre Matrix $U \in U(n)$, so dass UAU^{-1} in Diagonalgestalt ist. Die Diagonaleinträge sind dabei bis auf Permutation eindeutig bestimmt.
- 2. Ist $A \in M_n(\mathbb{C})$ selbstadjungiert, so gibt es eine unitäre Matrix $U \in U(n)$, so dass UAU^{-1} in Diagonalgestalt mit reellen Diagonaleinträgen ist. Die Diagonaleinträge sind dabei bis auf Permutation eindeutig bestimmt.
- 3. Ist $A \in M_n(\mathbb{C})$ antiselbstadjungiert, so gibt es eine unitäre Matrix $U \in U(n)$, so dass UAU^{-1} in Diagonalgestalt mit rein imaginären Diagonaleinträgen ist. Die Diagonaleinträge sind dabei bis auf Permutation eindeutig bestimmt.
- 4. Ist $A \in M_n(\mathbb{C})$ unitär, so gibt es eine unitäre Matrix $U \in U(n)$, so dass UAU^{-1} in Diagonalgestalt ist, und alle Diagonaleinträge haben Betrag 1. Die Diagonaleinträge sind dabei bis auf Permutation eindeutig bestimmt.
- 5. Ist $A \in M_n(\mathbb{R})$ normal, so gibt es eine orthogonale Matrix $O \in O(n)$, so dass

$$OAO^{-1} = block(\lambda_1, \dots, \lambda_p, r_1D(\varphi_1), \dots, r_qD(\varphi_q)).$$

 $mit \ \lambda_1, \ldots, \lambda_p \in \mathbb{R}, r_1, \ldots, r_q > 0 \ und \ \varphi_1, \ldots, \varphi_q \in (0, \pi).$ Die Zahlen p und q sind dabei eindeutig bestimmt, und die Skalare $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ und Paare $(r_1, \varphi_1), \ldots, (r_q, \varphi_q)$ sind jeweils bis auf Permutation eindeutig bestimmt.

- 6. Ist $A \in M_n(\mathbb{R})$ selbstadjungiert, so gibt es eine orthogonale Matrix $O \in O(n)$, so dass OAO^{-1} in Diagonalgestalt ist. Die Diagonaleinträge sind dabei bis auf Permutation eindeutig bestimmt.
- 7. Ist $A \in M_n(\mathbb{R})$ orthogonal, so gibt es eine orthogonale Matrix $O \in O(n)$, so dass

$$OAO^{-1} = block(1, ..., 1, -1, ..., -1, D(\varphi_1), ..., D(\varphi_r)).$$

mit Winkeln $\varphi_1, \ldots, \varphi_r \in (0, \pi)$. Dabei ist eindeutig bestimmt, wie häufig die Diagonaleinträge 1 und -1 vorkommen, und die Winkel $\varphi_1, \ldots, \varphi_n$ sind bis auf Permutation eindeutig bestimmt.

Beweis. Wir betrachten den Fall, dass $A \in M_n(\mathbb{C})$ normal ist. Es sei $\mathcal{B} = (e_1, \dots, e_n)$ die Standardbasis von \mathbb{C}^n und $f \colon V \to V$ der eindeutige Endomorphismus mit $M_{\mathcal{B}}(f) = A$. Da \mathcal{B} eine Orthonormalbasis ist, folgt aus der Normalität von A, dass der Endomorphismus f

normal ist. Da \mathbb{C}^n endlichdimensional ist, gibt es eine Orthonormalbasis $\mathcal{C}=(c_1,\ldots,c_n)$ von \mathbb{C}^n aus Eigenvektoren von f. Für die Basiswechselmatrix $U\coloneqq T_{\mathcal{C}}^{\mathcal{B}}$ gilt nun, dass

$$UAU^{-1} = T_{\mathcal{C}}^{\mathcal{B}} \, \mathcal{M}_{\mathcal{B}}(f) T_{\mathcal{B}}^{\mathcal{C}} = \mathcal{M}_{\mathcal{C}}(f)$$

eine Diagonalmatrix ist. Die Spalten der Matrix $U^{-1}=T_{\mathcal{B}}^{\mathcal{C}}$ sind genau die Spaltenvektoren $c_1,\ldots,c_n\in\mathbb{C}^n$. Also sind die Spalten von U^{-1} eine Orthonormalbasis von \mathbb{C}^n , und U^{-1} ist somit unitär. Deshalb ist auch U unitär.

Das zeigt die erste Aussage. Die anderen Aussagen ergeben sich analog über die jeweilige Normalform der entsprechenden Endomorphismen. \Box

Im Folgenden seien $I, J \in M_2(\mathbb{C})$ mit

$$I \coloneqq \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \quad \text{und} \quad J \coloneqq \begin{pmatrix} & -1 \\ 1 & \end{pmatrix}.$$

Lemma 3. Für alle $r, \theta \in \mathbb{R}$ ist $rD(\theta) = \exp(\log(r)I + \theta J)$.

Beweis. Da I und J kommutieren (denn I ist die Einheitsmatrix), kommutieren auch $\log(r)I$ und θJ . Daher ist

$$\exp(\log(r)I + \theta J) = \exp(\log(r)I) \exp(\theta J) = e^{\log(r)}I \exp(\theta J) = r \exp(\theta J).$$

Aus $J^2=-I$ ergibt sich für alle $n\in\mathbb{N}$, dass

$$J^n = \begin{cases} I & \text{falls } n \equiv 0 \pmod{4}, \\ J & \text{falls } n \equiv 1 \pmod{4}, \\ -I & \text{falls } n \equiv 2 \pmod{4}, \\ -J & \text{falls } n \equiv 3 \pmod{4}. \end{cases}$$

Damit ergibt sich, dass

$$\begin{split} \exp(\theta J) &= \sum_{n=0}^{\infty} \frac{(\theta J)^n}{n!} = \sum_{k=0}^{\infty} \frac{(\theta J)^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(\theta J)^{2k+1}}{(2k+1)!} \\ &= \sum_{k=0}^{\infty} (-1)^k \frac{\theta^{2k} I}{(2k)!} + \sum_{k=0}^{\infty} (-1)^k \frac{\theta^{2k+1} J}{(2k+1)!} = \cos(\theta) I + \sin(\theta) J = D(\theta). \end{split}$$

Zusammengefasst ist also $\exp(\log(r)I + \theta J) = r \exp(\theta J) = rD(\theta)$.

Bemerkung 4. Lemma 3 lässt sich auch konzeptioneller begründen: Es sei

$$C \coloneqq \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\} \subseteq \mathrm{M}_2(\mathbb{R}).$$

Die Abbildung $\Phi\colon \mathbb{C} \to C$ mit

$$\Phi(a+ib) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = aI + bJ \quad \text{für alle } a,b \in \mathbb{R}$$

ist bijektiv, und durch direktes Nachrechnen ergibt sich, dass Φ bezüglich der üblichen Matrixaddition und -multiplikation ein Ringhomomorphismus ist. (D.h. für alle $z_1,z_2\in\mathbb{C}$ gilt $\Phi(z_1+z_2)=\Phi(z_1)+\Phi(z_2),\,\Phi(z_1\cdot z_2)=\Phi(z_1)\cdot\Phi(z_2)$ und $\Phi(1)=I$.) Also ist Φ ein Ringisomorphismus.

Da $\mathbb C$ ein Körper ist, folgt damit, dass C mit der üblichen Matrixaddition und -multiplikation ebenfalls ein Körper ist, und dass Φ ein Isomorphismus von Körpern ist. Dabei ist $\Phi(a+ib)=aI+bJ$ für alle $a,b\in\mathbb R$ und $\Phi(re^{i\varphi})=rD(\varphi)$ für alle $r\geq 0$ und $\varphi\in\mathbb R$.

Neben diesen algebraischen Eigenschaft sind Φ und Φ^{-1} auch stetig. Somit ist Φ auch ein Homöomorphismus. (Insgesamt ist Φ also ein Isomorphismus von topologischen Körpern.)

Für alle $z_1, z_2 \in \mathbb{C}$ ist deshalb genau dann $z_2 = \exp(z_1)$, wenn $\Phi(z_2) = \exp(\Phi(z_1))$. Somit lassen sich Aussagen über das Matrixexponential auf C auf Aussagen über die Exponentialabbildung auf \mathbb{C} zurückführen.

Inbesondere übersetzt sich das Problem, einen Logarithmus einer Matrix $rD(\varphi) \in C$ zu finden, dazu, einen Logarithmus einer komplexen Zahl $re^{i\varphi}$ zu finden. Konkret ergibt sich aus $\exp(\log(r) + i\varphi) = re^{i\varphi}$, dass

$$rD(\varphi) = \Phi(re^{i\varphi}) = \Phi(\exp(\log(r) + i\varphi)) = \exp(\Phi(\log(r) + i\varphi)) = \exp(\log(r)I + \varphi J).$$

Man bemerke, dass unter diesem Blickwinkel der obige Beweis von Lemma 3 eine Übersetzung des üblichen Beweises für $\exp(i\varphi) = \cos \varphi + i \sin \varphi$ ist.

Der Vorteil an unitären (und damit auch orthogonalen) Basiswechselmatrizen besteht darin, dass sie mit dem Matrixadjungieren verträglich sind:

Lemma 5. Es sei
$$A \in M_n(\mathbb{C})$$
 und $U \in U(n)$. Dann ist $(UAU^{-1})^* = UA^*U^{-1}$. Beweis. Es ist $(UAU^{-1})^* = (U^{-1})^*A^*U^* = (U^*)^{-1}A^*U^* = (U^{-1})^{-1}A^*U^{-1} = UAU^{-1}$.

Korollar 6. Es sei $A \in M_n(\mathbb{C})$ und $U \in U(n)$.

- 1. Die Matrix A ist genau dann normal, wenn UAU^{-1} normal ist.
- 2. Die Matrix A ist genau dann selbstadjungiert, wenn UAU^{-1} selbstadjungiert ist.
- 3. Die Matrix A ist genau dann antiselbstadjungiert, wenn UAU^{-1} antiselbstadjungiert ist.
- 4. Die Matrix A ist genau dann unitär, wenn UAU^{-1} unitär ist.

Bemerkung 7. Für nicht-unitäre Basiswechselmatrizen gilt zu zu Lemma 5 analoge Aussage nicht notwendigerweise.

Allgemeiner gilt für $S\in \mathrm{GL}_n(\mathbb{C})$ genau dann $(SAS^{-1})^*=SA^*S^{-1}$ für alle $A\in \mathrm{M}_n(\mathbb{C})$, wenn $S=\lambda U$ für eine unitäre Matrix $U\in \mathrm{U}(n)$ und einen invertierbaren Skalar $\lambda\in\mathbb{C}^\times$. Durch passende Wahl von U lässt sich dabei λ als $\lambda=\sqrt{\mathrm{tr}(S^*S)/n}$ wählen, also als positiver reeller Skalar.

2 Lösungen zu Aufgabe 1

Es sei $A \in GL_n(\mathbb{R})$.

a)

Angenommen, es ist $A=\exp(B)$ für eine selbstadjungierte Matrix $B\in \mathrm{M}_n(\mathbb{R})$. Da B selbstadjungiert ist, gibt es nach Theorem 2 eine orthogonale Basiswechselmatrix $O\in \mathrm{O}(n)$, so dass $OBO^{-1}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$ mit $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$. Da B selbstadjungiert ist, ist auch $A=\exp(B)$ selbstadjungiert, also symmetrisch. Außerdem ist

$$OAO^{-1} = O\exp(B)O^{-1} = \exp(OBO^{-1}) = \exp(\operatorname{diag}(\lambda_1, \dots, \lambda_n)) = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$$

mit $\exp(\lambda_1), \dots, \exp(\lambda_n) > 0$. Also sind alle Eigenwerte von A positiv.

Angenommen, A ist symmetrisch mit positiven Eigenwerten. Da A symmetrisch und reell ist, ist A selbstadjungiert. Da A selbstadjungiert ist, gibt es nach Theorem 2 eine orthogonale Basiswechselmatrix $O \in \mathrm{O}(n)$, sodass $OAO^{-1} = \mathrm{diag}(\lambda_1,\ldots,\lambda_n)$ mit $\lambda_1,\ldots,\lambda_n \in \mathbb{R}$. Nach Annahme ist dabei $\lambda_1,\ldots,\lambda_n>0$. Für $D\coloneqq \mathrm{diag}(\log(\lambda_1),\ldots,\log(\lambda_n))$ ist

$$OAO^{-1} = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = \exp(\operatorname{diag}(\log(\lambda_1), \dots, \log(\lambda_n))) = \exp(D),$$

und somit $A=O^{-1}\exp(D)O=\exp(O^{-1}DO)$. Da D als reelle Diagonalmatrix selbstadjungiert ist und O normal ist, ist nach Korollar 6 auch $O^{-1}DO\in \mathrm{M}_n(\mathbb{R})$ selbstadjungiert.

b)

Angenommen, es ist $A=\exp(B)$ für antiselbstadjungiertes $B\in \mathrm{M}_n(\mathbb{R})$. Da B reell und antiselbstadjungiert ist, ist $\exp(A)$ reell und unitär, also orthogonal. Da B reell und antiselbstadjungiert ist, ist B schiefsymmetrisch. Deshalb sind sind alle Diagonaleinträge von B Null, weshalb tr B=0 und deshalb det $A=\det\exp(B)=\exp(\operatorname{tr} B)=\exp(0)=1$.

Angenommen, A ist orthogonal mit det A=1. Da A orthogonal ist, gibt es nach Theorem 2 eine orthogonale Matrix $O \in O(n)$, so dass

$$OAO^{-1} = block(1, \dots, 1, \underbrace{-1, \dots, -1}_{r}, D(\varphi_1), \dots, D(\varphi_r)),$$

Die Vielfachheit r des Einträges -1 muss gerade sein, da

$$1 = \det A = \det(OAO^{-1}) = 1 \cdots 1 \cdot \underbrace{(-1) \cdots (-1)}_r \cdot \underbrace{\det D(\varphi_1)}_{=1} \cdots \underbrace{\det D(\varphi_r)}_{=1} = (-1)^r$$

Für s = r/2 ist deshalb

$$OAO^{-1} = block(1, \dots, 1, \underbrace{-I, \dots, -I}_{s}, D(\varphi_1), \dots, D(\varphi_r)).$$

Für die Matrix

$$B := \operatorname{block}\left(0, \dots, 0, \underbrace{\frac{\pi}{2}J, \dots, \frac{\pi}{2}J}_{s}, \varphi_{1}J, \dots, \varphi_{r}J\right)$$

gilt nach Lemma 3, dass $OAO^{-1}=\exp(B)$, und somit $A=O^{-1}\exp(B)O=\exp(O^{-1}BO)$. Da B antiselbstadjungiert ist (denn J ist antiselbstadjungiert) und O orthogonal ist, ist nach Korollar 6 auch OBO^{-1} antiselbstadjungiert.

Angenommen, es ist $A=\exp(B)$ für normales $B\in \mathrm{M}_n(\mathbb{R})$. Als normale Matrix ist B über \mathbb{C} diagonalisierbar, d.h. es gibt $S\in \mathrm{GL}_n(\mathbb{C})$ mit $SBS^{-1}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. (Nach Theorem 2 lässt sich S orthogonal wählen, dies ist hier aber nicht nötig.) Da B eine reelle Matrix ist, ist für jeden nicht reellen Eigenwert λ von B auch $\overline{\lambda}$ ein Eigenwert von B, und λ und $\overline{\lambda}$ haben die gleichen algebraischen (und geometrischen) Vielfachheiten. Durch passende Wahl von S ist deshalb o.B.d.A.

$$SBS^{-1} = \operatorname{diag}(\mu_1, \dots, \mu_r, \lambda_1, \overline{\lambda_1}, \dots, \lambda_s, \overline{\lambda_s})$$

mit $\mu_1, \ldots, \mu_r \in \mathbb{R}$ und $\lambda_1, \ldots, \lambda_s \in \mathbb{C}$ nicht reell. Daher ist

$$SAS^{-1} = S\exp(B)S^{-1} = \exp(SBS^{-1}) = \operatorname{diag}(e^{\mu_1}, \dots, e^{\mu_r}, e^{\lambda_1}, e^{\overline{\lambda_1}}, \dots, e^{\lambda_s}, e^{\overline{\lambda_s}}).$$

Die Eigenwerte $e^{\mu_1},\ldots,e^{\mu_r}$ von A sind alle positiv. Ist λ ein negativer, reeller Eigenwert von A, so ist für alle $j=1,\ldots,s$ genau dann $\lambda=e^{\lambda_j}$, wenn $\lambda=\overline{e^{\lambda_j}}=e^{\overline{\lambda_j}}$. Also ist λ ein Eigenwert mit gerader Vielfachheit.

Angenommen, $A \in \mathrm{M}_n(\mathbb{R})$ ist normal und invertierbar, so dass alle negativen reellen Eigenwerte von A gerade Vielfachheit haben. Da A reell und normal ist, gibt es nach Theorem 2 eine orthogonale Matrix $O \in \mathrm{O}(n)$ mit

$$\begin{split} OAO^{-1} &= \operatorname{block}(\lambda_1, \dots, \lambda_p, \mu_1, \mu_1, \dots, \mu_q, \mu_q, r_1D(\varphi_1), \dots, r_sD(\varphi_s)) \\ &= \operatorname{block}(\lambda_1, \dots, \lambda_p, \mu_1I, \dots, \mu_qI, r_1D(\varphi_1), \dots, r_sD(\varphi_s)), \\ &= \operatorname{block}(\lambda_1, \dots, \lambda_p, |\mu_1|(-I), \dots, |\mu_q|(-I), r_1D(\varphi_1), \dots, r_sD(\varphi_s)), \\ &= \operatorname{block}(\lambda_1, \dots, \lambda_p, |\mu_1|D(\pi), \dots, |\mu_q|D(\pi), r_1D(\varphi_1), \dots, r_sD(\varphi_s)), \end{split}$$

wobe
i $\lambda_1,\dots,\lambda_p>0$ die positiven reellen Eigenwerte von
 A sind, $\mu_1,\dots,\mu_q<0$ die negativen reellen Eigenwerte von
 $A,r_1,\dots,r_s>0$ Radien und $\varphi_1,\dots,\varphi_s\in(0,\pi)$ Drehwinkel. Für die Matrix

$$B := \operatorname{block}\left(\log(\lambda_1), \dots, \log(\lambda_p), \log(|\mu_1|)I + \pi J, \dots, \log(|\mu_q|)I + \pi J, \dots, \log(r_1)I + \varphi_1 J, \dots, \log(r_s)I + \varphi_s J\right)$$

gilt nach Lemma 3, dass $OAO^{-1}=\exp(B)$ und somit $A=O^{-1}\exp(B)O=\exp(O^{-1}BO)$. Die Matrix B ist normal: Es ist

$$\begin{split} B^* = B^T = \operatorname{block} \Bigl(\log(\lambda_1), \dots, \log(\lambda_p), \log(|\mu_1|)I - \pi J, \dots, \log(|\mu_q|)I - \pi J, \\ \log(r_1)I - \varphi_1 J, \dots, \log(r_s)I - \varphi_s J \Bigr), \end{split}$$

und es genügt zu überprüfen, dass die einzelnen Blöcke von B und B^* jeweils miteinander kommutieren.

Für die (1×1) -Blöcke $\log(\lambda_j)$ mit $j=1,\ldots,p$ ist dies klar. Für die (2×2) -Blöcke $\log(|\mu_j|)I + \pi J$ und $\log(|\mu_j|)I - \pi J$ mit $j=1,\ldots,q$, sowie auch für die die (2×2) -Blöcke $\log(r_j)I + \varphi_j J$ und $\log(r_j)I - \varphi_j J$ mit $j=1,\ldots,s$ folgt dies daraus, dass I und J kommutieren. Also kommutieren B und B^* , weshalb B normal ist. Da O orthogonal ist, ist nach Korollar 6 damit auch $O^{-1}BO$ normal.