

Mesh networking with ZigBee

A dive into the ZigBee ecosystem

Agenda

- THEORETICAL PART
 - What is ZigBee
 - ZigBee Networking
 - ZigBee Application Support
 - ZigBee Security
- PRACTICAL PART
 - XBee intro
 - Exercise A
 - Exercise B

WHAT IS ZIGBEE

- Characteristics
- Protocol stack

What is ZigBee: characteristics

- Wireless protocol
- Mesh networking: self-organizing & self-healing
- Lost cost
- Long battery life
- Scalable
- Open standard build upon IEEE 802.15.4 adding:
 - Networking
 - Application support

What is ZigBee: Protocol stack

IEEE 802.15.4

- PHY Layer
- MAC Layer
- Comparison

IEEE 802.15.4: PHY Layer

- Unlicensed bands
 - 2.4 GHz (16ch) globally
 - 915MHz (10ch) /868MHz (1ch / Europe)
- Half-duplex
- Modulation
 - B/Q/O-QPSK
 - DSSS
- 2 km LoS
- Data rates of 250 kbps, 20 kbps and 40kpbs.

IEEE 802.15.4: PHY Layers

- Data services
 - Data request
 - Data confirm
 - Data indication
- Management services
 - Clear Channel Assessment (CSMA/CA)
 - Energy detention
 - Tx/Rx state
- Vendor specific
- PHY Frame format

- Provide access control to the shared channel and reliable data delivery
 - One device transmits at the time
 - Handshaking acknowlegement on receive
- Beacon vs non-beacon mode
- CSMA/CA
- Device types: FFD & RFD
- MAC Topologies: PTP & Star Network
- No routing → ZigBee network layer

Clustered Star Network

- Frame Formats
 - PHY Header, MAC Header, MAC data payload & Checksum
 - General frame format
 - Beacon frame format
 - Date frame format
 - Command frame format
 - Ack frame format
- Addressing (8byte, 2byte)
- Indirect Data Transfers
- Network & energy scanning
- Association

- MAC Data Service
 - Data Request
 - Data Confirm
 - Data Indication
- MAC Management Service
 - (Des)association
 - Beacon Notify
 - Scan
 - Orphan Notify
 - . . .

IEEE 802.15.4: Comparison

ZigBee's Network Layer (NWK)

- Building blocks
- Topology
- Addressing
- Routing
- Communication

NWK Layer: Building blocks

- Coordinator
 - Network creation & node addition
 - Only one
 - FFD
- Router
 - FDD
 - Extend range of network
 - Routing, buffering
- End device
 - FFD/RFD
 - Can sleep
 - Communicates with routers/coordinator

NWK layer: topologies

NWK Layer: Addressing

- Pan ID
- Channel
- 64-bit address
- 16-bit address
- Node identifier

Distributed addressing

NWK Layer: Routing

- AODV routing
- Tree routing optimization (Not supported in XBee)
- Many-to-one routing (ZigBee Pro)
- Source routing (ZigBee Pro)

Depending on the network topology:

- Star network
- Cluster tree network
- Mesh network

NWK Layer: Routing

- NWK route = # MAC hops
- Check Neighbor Table
- If destination present
 - NWK route = 1 MAC hop
- Else
 - Route discovery is allowed
 - Next MAC hop based on discovery
 - Route discovery is not allowed
 - Tree routing
 - Next MAC hop to parent

NWK Layer: Communication

- Unicast
 - From NWK source to NWK destinations
 - Network ACK (vs MAC ACK)
- Broadcast
 - To router, to non-sleeping, to all
 - Group broadcast
 - Passive ACK
- Frame types:
 - Data frames
 - Command frames

ZigBee Application Support (APS)

- Application profiles
- Device types
- Clusters
- Endpoints
- Bindings
- •

APS Layer: Responsibilities

- Filtering out packets for non-registered endpoints, or profiles that don't match
- Generating end-to-end acknowledgment with retries
- Maintaining the local binding table
- Maintaining the local groups table
- Maintaining the local address map

ZigBee APS - Terminology

Application profile

- A domain space of related applications and devices
- Mini protocol on top of ZigBee defining application-level features
- Profile ID
- Public vs private
- The ZigBee Cluster Library

Devices

- Represents a physical device equiped with a ZB radio
- Performs a well-defined role within a profile
- Groups of functionality
- E.g. On/off switch in Home Automation

ZigBee APS - Terminology

- Clusters
 - A set of message types related to a certain device function.
 - E.g. metering cluster, temperature sensing cluster
 - Cluster ID
 - ZCL ZigBee Cluster Library
 - Defines attributes and commands
 - Client and server clusters
 - Group into functional domains
 - Downloadable from ZB Alliance website
 - Compose application profiles
 - Interoperability

ZigBee APS - Terminology

Endpoints

- Service point with a ZigBee node/device
- One application profile through one endpoint
- Multiple endpoints per device
- Comparable to IP ports
- Range: 1 240
- Special endpoint 0: ZDO
- Endpoints 240-255 reserved
- Endpoint numbers are **not** standardised
- Service discovery
- Application objects
 - Software at an endpoint that controls the ZigBee device

An example endpoint implementation:

Endpoint # - Profile Name: Device Type

0 - ZigBee Device Profile (ZDP): ZDO

1 - HA: Thermostat

2 - HA: On/Off Output

3 - SE: In-Premise Display

4 – MSP: proprietary vendor extensions

Application Support (APS)

- Bindings
 - Endpoints numbers not standardized
 - Client / server clusters
 - Connections between endpoints
 - Unidirectional
- Binding storage
 - Direct binding / source binding
 - Indirect binding / binding cache

Standard application profiles

Application profiles:

- ZigBee Building Automation
- ZigBee Remote Control
- ZigBee Smart Energy
- ZigBee Energy Profile 2
- ZigBee Health Care
- ZigBee Home Automation

- ZigBee Telecom Services
- ZigBee Network Devices
- ZigBee Input Device
- ZigBee Light Link
- ZigBee Retail Services

E.g.: ZigBee Home Automation

Smarter, more energy-efficient and secure homes

• Generic

- On/Off Switch
- Level Control Switch
- On/Off Output
- Level Controllable Output
- Scene Selector
- Configuration Tool
- Remote Control
- Combined Interface
- Range Extender
- Mains Power Outlet
- Door Lock
- Door Lock Controller
- Simple Sensor
- Consumption Awareness Device
- Home Gateway/Energy Management System
- Smart Plug
- White Goods
- Meter Interface

Closures Shade

- Shade Controller
- Window Covering Device
- Window Covering Controller

Lighting

- On/Off Light
- Dimmable Light
- Color Dimmable Light
- On/Off Light Switch
- Dimmer Switch
- Color Dimmer Switch
- Light Sensor
- Occupancy Sensor

HVAC

- Heating/Cooling Unit
- Thermostat
- Temperature Sensor
- Pump
- Pump Controller
- Pressure Sensor
- Flow Sensor

Intruder Alarm Systems

- IAS Control and Indicating Equipment
- IAS Ancillary Control Equipment
- IAS Zone
- IAS Warning Device

ZDO & AF

- ZigBee Device Profile Reflective services
 - Device and service discovery
 - Binding management
 - Network management
- Application Framework
 - Application Object Registry
 - No over-the-airframe

ZigBee Security

- Security services
- •Trust center
- Security keys
- Security modes
- Attacks

Security services

- Key establishment
- Key transport
- Frame protection
- Device authorization

Security services

- Symmetric key encryption
- How are these key distributed
 - Pre-installation
 - Out-of-band
 - Commission
 - Transport
 - Send out by the trust center
 - Establishment
 - Device negotiates with trust center
 - Keys are established without transport
 - E.g. Symmetric Key Key Establishment

ZigBee Security: trust center

- Decides whether new devices can add to the network
- Updates and switch the network keys:
 - It first broadcasts the new key encrypted with the old Network Key.
 - Later, it tells all devices to switch to the new key.
- Usually the network coordinator

ZigBee Security: security keys

- Symmetric key encryption
- Authenticaton

ZigBee Security: security keys

- Network key
 - Hop-to-hop encryption
 - Private networks
 - Network Layer security
 - Global key used by all devices in the network
- Link key
 - End-to-end encryption
 - Public networks
 - Application layer security
 - Only used by source and destination node
- Master key (only in SKKE)

ZigBee Security: security modes

- Standard security mode
- High security mode

Feature	Standard	High
Network Layer security provided using Network key	V	V
APS layer security provided using Link keys	V	V
Centralized control and update of keys	V	V
Ability to switch from active to secondary keys		V
Ability to derive Link keys between devices		V
Entity authentication and permissions table supported		V

ZigBee Security: attacks

- Common attacks
 - Replay attacks
 - Message identification
 - DOS attacks
 - Difficult to prevent.
 - Easy to detect and trace
 - Jamming (man in the middle attacks)
 - Mask packets
 - Using the protocol response to missing packets
 - E.g. ACKs jamming triggers a resend and can lead to excess of traffic

ZigBee Alternatives

- X10
- CEBus
- LonWorks
- HomePlug 1.0
- Z-Wave
- Insteon

IEEE 802.15.4 Based Protocols

- MiWi Mesh and MiWi P2P
 - Microchip's proprietary mesh and P2P protocols
- 6LoWPAN
 - IPv6 over 802.15.4
- WirelessHART
 - Industrial Automation
- ISA100.11a
 - Manufacturing, Control, Automation

Digi's XBee

- Overview
- X-CTU
- Operation modes
- •AT commands
- XBee's API
- •I/O sampling
- •Frame types

XBee Overview

X-CTU

- Upload the right firmware
 - Depending on the role the radio will play
 - Coordinator, router or end device
- Range test
- Terminal
- Initial configuration
- Runs only on Windows
- Requires FTDI driver

XBee modes

- Transparant mode
 - Talk through the XBee radio
- Command mode
 - Talk to the Xbee
 - +++ in terminal
 - Send AT commands to it
 - Cfr. Application Framework
- API mode
 - Allow external application to talk to it
 - Cfr. Application Framework

XBee AT Commands

- ATID
- ATSH/ATSL
- ATDH/ATDL
- ATCN
- ATWR
- ATMY

- See X-CTU configuration
- See XBee AT reference guide

XBee's API

- API frames
 - AT Commands/Responses
 - Transmit Request/Status
 - Receive Packet
 - I/O Data Sample Rx Indicator
 - extension of the Receive Packet
 - Remote AT Command Request/Response

Xbee Libraries

- Arduino & C/C++
- Processing & Java
- .NET
- Python
- Max/MS
- PureData

. . .

XBee and other protocol

- Gateways
 - Embedded: RX/TX —Radio
 - Other gateways:
 - WiFi, X-10, Z-Wave, USB, RFID
 - •
 - Internet gateways
 - Data storage
 - Data presentation
 - Remove actuation
 - Digi's ConnectPorts with embedded Python environment
 - iDigi remote management system

ZigBee Tooling

- Development kits
- Reference implementation
- Application builders
- Test automation tools
- Frameworks
- Attack and analyser tools
 - Sniffer
 - KillerBee

Exercise A (1)

- A Simple Chat application
- Peer-to-peer topology
- Transparant mode
- Caution!
 - XBee only 3.3 V
 - Breakout boards also allow 5V
 - **Don't** inverse tension
- Common mistakes:
 - http://www.faludi.com/projects/common-xbee-mistakes

Exercise A (2)

Coordinator

- Upload Coordinator AT firmware (X-CTU)
- Go to terminal tab
- Enter Command mode +++
- Set Pan ID (ATID)
- Set destination address to router address (ATDH/ATDL)
- Write the new configuration to the radio (ATWR)
- Exit Command mode (ATCN)

Router

- Upload Router AT firmware (X-CTU)
- Go to terminal tab
- Enter Command mode +++
- Set Pan ID (ATID)
- Set destination address to coordinator address (ATDH/ATDL)
- Write the new configuration to the radio (ATWR)
- Exit Command mode(ATCN)

Exercise B (1)

Exercise B (2)

- Teams:
 - Push Button sender team (XBee I/O Sampling)
 - Java Button interpreter team (Java programming)
 - Light (Arduino/XBee programming)
 - Optional: LCD (Arduino/XBee programming)
- Help:
 - https://code.google.com/p/xbee-arduino/
 - https://code.google.com/p/xbee-api/
 - http://playground.arduino.cc/Interfacing/Java
 - http://learn.adafruit.com/tmp36-temperature-sensor
 - Code Snippets

