Processamento Digital de Sinais

Introdução => PDS

O que é um sinoul? -Grandezai lísica que variai ao longo do tempo, espaço ou qualquer outra variavel. U Contem informação sobre uma quantidade em interesse.

=> Tipos de Sivuais

sinal no tempo continuo. = s(t) sinal no tempo discreto. sinal quantizado em amplitude. Y Sinal Digital

=> Tipos de Sistemas

no tempo contínuo. $\Rightarrow x(E) \Rightarrow y(t)$ no tempo discreto. $\Rightarrow xEnJ \Rightarrow yEnJ$ Y Entradas e saídas no mesmo domínio.

De Foca no processamento digital de sinais.

y Vantagens desse processamento: - Funções sofisticadas podem ser implementadas emi dispositivos digitaris de baixo custo.
- Digital é menos sensivel e mais confiavel.

- Compartilhamento de tempo entre processadores (multitaxetas).

Tentativa de

Desvantagens:
- Conversos A/D e D/A (quase) sempre necessairias.
de - Rivido de quaintização.
r - Bandou larga baixa é ruim. aproximar

um valor digital a

UW

Etapas de PDS

Armazena valores proximos ao digital.

Sinais no Tempo Discreto

x[(n)] ~ Vaniavel é um inteiro.

4 Listagemi:

Principal no tempo discreto.

- d'[n] é um impulso discreto e un e um degrau
- Sequência de duração finita: energia finita, povém potencia yero.

$$\mathcal{E}_{x} = \sum_{N=-\infty}^{\infty} |x|^{2}$$

$$\mathcal{E}_{x} = \sum_{N=-\infty}^{\infty} |sc[N]|^{2} \quad \mathcal{P}_{z} = \lim_{L \to \infty} \left[\frac{L}{2L + L} \sum_{N=-L}^{L} |sc[N]|^{2} \right]$$

· Senoide

$$A[n] = A cos (won+\phi)$$

· Exponencial Complexa

$$x [n] = Ae^{\int w_0 N} = Acos(w_0 N) + \int A sen(w_0 N)$$

Sistemas no Tempo Discreto

=> Operanções com Sinais

- Seja uma sequencia discretar decompostar em impulsos.

 $y[w] = \sum_{k=-\infty}^{\infty} x[k] w[n-k]$ Aplicada à entrada de um sistema Y Vaviante no tempo

linear.

Pesposta Impulso
- É um "histórico" de toda a função, poderdo
supor possíveis valores de saída.
> teste definitivo

- Função identidade é a SIENJ (impulso n).
- >> Causalidade e estabilidade

causailidade: W[n] =0, N < 0 Saída adval não depende de voulves de entrado.

estabilidade: Z' |WEW] < 00 Y Caso a soma de todos os elementos seja menor que os, é estáve). Soma de fir: sistemas com resposta ao impulso finita. 9 Sistema rai a zero por tempo tinito. Pava saber que é, Il sistemas com respostar as impulso infinita. substituir a entradar iir: sistemas com respostar as impulso infinita. polo impulso e f y se mantém + 0 por tempo indefinido. ver se continua 0. Sistemais Recursivos 4> Saída atual depende de saídas paissadas. ex: ecò e reverbevação.

Senoides e Frequencia Digital

Pava obter uma senoide real a partir de duas cumplexas, somar uma com a sua conjugada.

Senoides no Tempo Discreto
Ly possuem duais frequências: normalizada
digital (angular)

Quanto que cada a mostra representa em um cido.

F: Hz ou ciclos/segundoF_s: Hz ou amostras/segundo

w -> freq. digital -> rad/ amostra

<u>Riesumão</u>:

▶ $f = F/Fs$: (ciclos/segundo)*(segundo/amostras) = ciclos/amostra ▶ $ω$: radianos*(ciclos/amostra) = radianos/amostra			
	Sinais no tempo contínuo		Sinais no tempo discreto
	$\Omega = 2\pi F$		$\omega=2\pi f$
	$\frac{\text{radianos}}{\text{segundos}} \text{ Hz}$		$\frac{\text{radianos}}{\text{amostra}} \frac{\text{ciclos}}{\text{amostra}}$
		$ \begin{aligned} \omega &= \Omega T \\ f &= F/F_s \\ \Rightarrow \end{aligned} $	
	$-\infty < \Omega < \infty$	1	$-\pi < \omega < \pi$
	$-\infty < F < \infty$		$-\frac{1}{2} < f < \frac{1}{2}$

→ Conversão plo tempo discreto.

Ex: senvoides discretars. xENJ = cos (un), p

w=T1/LO -> cossencide hormal.

§ São recessarias 20 armostras para completar 4 ciclo.