MATH 312: HOMEWORK 2

In all the questions below, show your work.

Question 1. Show that every metric space is normal.

Question 2. Show that every compact Hausdorff space is normal.

Question 3. Let $\{f_n : K \to \mathbb{R}\}_{n \in \mathbb{N}}$ be a sequence of L-Lipschitz functions where $K \subset \mathbb{R}$ is a compact set. Show that $\{f_n\}$ is equicontinuous.

Question 4. Prove/disprove the following statement: the sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ defined by

$$f_n(x) = \cos(n+x) + \ln\left(1 + \frac{1}{n+2}\sin^2(n^n x)\right)$$

is equicontinuous.

Question 5. Let (M,d) be a metric space. A family of functions \mathcal{F} mapping from $M \to \mathbb{R}$ is said to be pointwise equicontinuous if for every $x \in M$ and $\varepsilon > 0$ there exists $\delta_x > 0$ such that for every $f \in \mathcal{F}$, $|f(x) - f(y)| < \varepsilon$ whenever $d(x,y) < \delta_x$.

Suppose that every pointwise equicontinuous sequence of functions $M \to \mathbb{R}$ is uniformly equicontinuous. Does this mean (M, d) is a compact metric space?

Question 6. A continuous, strictly increasing function $\mu:(0,\infty) \to (0,\infty)$ is called a modulus of continuity if $\mu(s) \to 0$ as $s \to 0$. A function $f:[a,b] \to \mathbb{R}$ has modulus of continuity μ if $|f(s) - f(t)| \le \mu(|s-t|)$ for all $s,t \in [a,b]$. Prove

- (1) A function is uniformly continuous if and only if it has a modulus of continuity.
- (2) A family of functions is equicontinuous if and only if its members have a common modulus of continuity.

Question 7. (Challenging) Given $\lambda \in (0,1)$, a function $u_{\lambda} : B(0,1) \subseteq \mathbb{R} \to \mathbb{R}$ is said to be a solution to a static discount Hamilton-Jacobi equation¹ on the ball $B(0,1) \subseteq \mathbb{R}$

$$\lambda u_{\lambda}(x) + H(u'_{\lambda}(x)) = 1$$
 when $x \in B(0,1)$.

Here, u'_{λ} denotes the derivative of u_{λ} . The function $H : \mathbb{R} \to \mathbb{R}$ is a continuous function called the Hamiltonian of the equation and typically has the following property

(H)
$$\lim_{|p| \to \infty} H(p) = \infty.$$

Date: February 26, 2025.

¹This equation is fundamental in optimal control theory and all kinds of engineering

Suppose magically that you know that there exists a number M > 0 such that for every $\lambda \in (0,1)$,

$$||u_{\lambda}||_{\infty} \leqslant M$$
.

Assuming (H), show that the family $\{u_{\lambda}\}$ is uniformly equicontinuous. Deduce then there exists a function \bar{u} such that for some subsequence $\lambda_j \to 0$ as $j \to \infty$,

$$\lim_{j\to\infty} ||u_{\lambda_j} - \bar{u}||_{\infty} = 0.$$

Guess (NO PROOF²) the equation for \bar{u} .

 $^{^2}$ A proof for this fact will result in an automatic A+ in this class