When is a locally optimal solution also globally optimal?

- For minimization problems
 - The feasible region is convex.
 - The objective function is convex.

1. Convexity set and Extreme Points

We say that a set S is *convex*, if for every two points x and y in S, and for every real number λ in [0,1], $\lambda x + (1-\lambda)y \in S$.

The feasible region of a linear program is convex.

We say that an element $w \in S$ is an extreme point (vertex, corner point), if w is not the midpoint of any line segment contained in S.

On convex feasible regions

 If all constraints are linear, then the feasible region is convex.

The intersection of convex regions is convex.

Recognizing convex sets

 Rule of thumb: suppose for all x, y ∈ S, the midpoint of x and y is in S. Then S is convex.

It is convex if the entire line segment is always in S.

Which are convex?

2. Convex and Concave Functions

Convex Functions: $f(\lambda y + (1-\lambda)z) \le \lambda f(y) + (1-\lambda)f(z)$ for every y and z and for $0 \le \lambda \le 1$.

We say "strict" convexity if sign is "<" for $0 < \lambda < 1$.

Concave Functions

Concave Functions: $f(\lambda y + (1-\lambda)z) \ge \lambda f(y) + (1-\lambda)f(z)$ for every y and z and for $0 \le \lambda \le 1$.

We say "strict" concavity if sign is "<" for $0 < \lambda < 1$.

Classify as convex or concave or both or neither.

Properties on convex functions (1)

If f(x) is convex, then f(-x) is convex.

Properties on convex functions (2)

If f(x) is convex, then K - f(x) is concave.

Properties on convex functions (3)

If f(x) is convex and g(x) is convex, then so is f(x) + g(x).

Properties on convex functions (4)

If f(x) is convex and g(x) is convex, then so is max [f(x), g(x)].

Properties on convex functions (5)

If f(x) is a twice differentiable function of one variable, and if f''(x) > 0 for all x, then f(x) is convex.

$$f(x) = x^2$$
$$f'(x) = 2x, f''(x) = 2$$

$$f(x) = -\ln x \text{ for } x > 0$$

$$f'(x) = -\frac{1}{x}, f''(x) = \frac{1}{x^2}$$

What functions are convex?

•
$$f(x) = 4x + 7$$

all linear functions

•
$$f(x) = 4x^2 - 13$$

some quadratic functions

•
$$f(x) = e^x$$

•
$$f(x) = 1/x$$
 for $x > 0$

•
$$f(x) = |x|$$

•
$$f(x) = -ln(x)$$
 for $x > 0$

3. Convex functions vs. convex sets

If y = f(x) is convex, then $\{(x,y) : f(x) \le y\}$ is a convex set.

4. Local Minimum or Maximum Property

- A local min (max) of a convex (concave) function on a convex feasible region is also a global min.
- Strict convexity (concavity) implies that the global minimum is unique.
- The following NLPs can be solved
 - Minimization Problems with a convex objective function and linear constraints
 - Maximization Problems with a concave objective function and linear constraints

There is a unique local minimum for the function below. The local minimum is a global minimum

There is a unique local maximum for the function below. The local maximum is a global minimum.

More on local optimality

- The techniques for non-linear optimization minimization usually find local optima.
- This is useful when a locally optimal solution is a globally optimal solution.
- Conclusion: if you solve an NLP, try to find out how good the local optimal solutions are.