

David Hadley

Outline

T2K and ND280 Experiments

ND280 EM Calorimeter

EM Calorimeter usage and performance in current analysis

Far Detector (Super-K)

- 1. Create intense beam of (anti-) muon neutrinos.
- 2. Measure neutrino interactions in near and far detector.
- 3. Compare rates.
- 4. Infer neutrino oscillation parameters.

Also: study neutrino-nucleus interactions, exotics (eg steriles, NSI)

ND280 Flux

Phys. Rev. Lett. 113, 241803 (2014)

In neutrino-mode

$$v_{\mu} : \langle E \rangle = 0.85 \text{ GeV}, (\sim 90\%)$$

 $v_e: \langle E \rangle = 1.3 \text{ GeV}, (\sim 1\%)$

Dominant Reaction: CCQE Single Pion Production

ND280 Detector

Fine Grained Detectors (FGD)

Carbon and Oxygen Target Mass, Vertex reconstruction

Time Projection Chambers (TPC)

Momentum and Charge Measurement Particle ID

Solenoid Coil

Neutral Particle Reconstruction Additional PID and energy measurement Tag entering backgrounds

*P0D and P0D ECal detectors not be discussed here.

See arXiv:1111.5030 and arXiv:1308.3445 for information on these detectors.

ND280 Input to T2K Oscillation Analysis

ND280 data split based on reconstructed topology enhanced in different interaction types

Fit flux + interaction model and propagate to far detector

As statistics increase and analysis becomes more sophisticated incorporate more channels

ND280 ECal

WARWICK
THE UNIVERSITY OF WARWICK

1 Downstream, 6 Barrel modules

Sampling calorimeter
40 x 10 mm scintillating polystyrene bars
sandwiched between 1.75 mm lead
absorber layers
22,336 channels in total

Scintillation light carried by wavelength shifting fibres to multi-pixel photon counters (MPPCs)

Orthogonal even and odd layers allow 3D reconstruction

Hard constraint on detector size to fit inside pre-existing UA1 magnet 31 - 34 layers ~10 radiation lengths

JINST 8 P10019 (2013) arXiv:1308.3445 [physics.ins-det]

ND280 ECal Reconstruction

Hit preparation

Calibration applied to MPPC hit charge and time Bars with double ended readout are merged

2D Clustering

Independent clustering in each of the 2D views

3D Matching

Likelihood-based matching of clusters between views to form 3D objects

Can be seeded with information from other detectors

Energy Reconstruction and Particle ID

Orthogonal adjacent layers

Energy Reconstruction

 $\sigma(E) \sim 8\%$ at 1 GeV $\sim 10~X_0$ to contain showers up to 3 GeV

Particle ID

TPC dE/dx PID

ECal PID Discriminator

ECal provides independent particle identification Important for momentum regions where the TPC dE/dx curves overlap

Also provides proton and pion tagging

Muon Analysis

In standard muon analysis TPC+FGD work well enough ECal is currently not directly used

Used as an independent detector in some cases to construct control samples for systematics evaluation

Potential to veto π^0 (p) to improve purity of $\nu_\mu CC0\pi^0$ and $\overline{\nu}_\mu CC$

Phys. Rev. D 95, 012010 (2017)

ECal π^0 veto used in recent CC1 μ -1 π + cross section analysis

Signal Efficiency: 27% → 26%

Sample Purity: 45% → 52%

Muon Analysis

Super-K has 4π acceptance
Important to measure interactions at high angle in ND280
Short TPC tracks, Bad direction for orientation of FGD bars
Orthogonal to Barrel ECal bar orientation
Use ECal reconstruction and PID
Momentum by range

Muon Analysis

Improving acceptance at high angles is one of the main motivations for planned upgrades to the ND280

Electron Analysis

Important for v_e appearance to measure intrinsic v_e contamination in v_μ beam

Large muon backgrounds Large proton backgrounds in anti-neutrino analysis

Electron Analysis

ECal provides additional PID information improving selection purity ECal veto entering backgrounds

Electron Analysis

v_e ECal Proton PID

Extra PID cuts are applied in the $\overline{\nu}_e$ analysis to reduce the large proton background

π⁰ Reconstruction

Multiple Tracker $\pi^0 \rightarrow \gamma \gamma$ analyses based on γ conversion location

 γ from π^0 can often be low energy ~24% both photons detected

Typically low efficiencies are achieved in ND280 π⁰ measurements using ECal

π⁰ Reconstruction

					signal	prim.	prim.
	ECal objects	real		data/MC	reaction	π^0	π^0
No.	after cut:	data	MC	ratio	purity	pur.	eff.
1.	all isolated	17625	15895	1.109	40.9%	31.7%	100%
	ECal objects						
2.	shower-like objects	9906	8936	1.108	49.0%	41.6%	73.7%
3.	electromagnetic	9532	8642	1.103	49.0%	41.5%	71.2%
	$\rm energy > 50~MeV$						

M Batkiewicz, CCvπ⁰ inc., PhD Thesis (2016)

~40% the selected ECal objects from the primary π^0 Main backgrounds:

Pile-up

e/γ from secondary interactions

Even more difficult: NC π^0 , exclusive final states π^0 kinematics

π⁰ Reconstruction

On going efforts to improve reconstruction for better π^0 reconstruction

ECal as a Target

D Brailsford, PhD Thesis (2016)

ECal is largest active tracking detector in ND280 ~ 40,000 kg target mass

Mostly lead

High event rates

Potential access to rare processes (eg v+e- elastic)?

Also a source for out-of-fiducial volume backgrounds for smaller mass inner detectors

21

Summary

ND280 ECal highly successful in reconstructing e[±] and μ for v_e and v_μ analyses

Provides useful PID and energy measurement Tag entering backgrounds

Large target mass, viable vertex detector

Poor reconstruction of low energy γ makes π⁰ reconstruction difficult

Expect improvements from on-going software development but π^0 reconstruction will likely always be difficult for this detector

David Hadley

Backup

ND280 ECal Properties WARV

	DS-Ecal Barrel ECa		P0D ECal	
Length (mm) 2300		4140	2454	
Width (mm) 2300		1676 top/bottom	1584 top/bottom	
		2500 side	2898 side	
Depth (mm)	500	462	155	
Weight (kg)	6500	8000 top/bottom	1500 top/bottom	
		10000 side	3000 side	
Num. of layers	34	31	6	
Bar orientation	x/y	Longitudinal and Perpendicular	Longitudinal	
Num. of bars 1700		2280 Longitudinal top/bottom	912 Longitudinal top/bottom	
		1710 Longitudinal sides	828 Longitudinal sides	
		6144 Perp top/bottom		
		3072 Perp sides		
Bars per layer	50	38 Longitudinal top/bottom	38 Longitudinal top/bottom	
		57 Longitudinal side	69 Longitudinal sides	
		96 Perp top/bottom/sides		
Bar length (mm) 2000		3840 Longitudinal	2340 Longitudinal	
		1520 Perp top/bottom		
		2280 Perp sides		
Pb thickness (mm)	1.75	1.75	4.0	

JINST 8 P10019 (2013), arXiv:1308.3445 [physics.ins-det]

Flux at ND280

Neutrino Mode Flux at ND280

Antineutrino Mode Flux at ND280

Flux at ND280

ND280: Neutrino Mode, ν_{μ}

ND280: Antineutrino Mode, ν_{μ}

ve Event Displays

T2K-TN-149

T2K-TN-149

Anti-ve Event Displays w

