Deep Generative Models

Lecture 14

Roman Isachenko

2024, Spring

Recap of previous lecture

SDE basics

Let define stochastic process $\mathbf{x}(t)$ with initial condition $\mathbf{x}(0) \sim p_0(\mathbf{x})$:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w},$$

where $\mathbf{w}(t)$ is the standard Wiener process (Brownian motion)

$$\mathbf{w}(t) - \mathbf{w}(s) \sim \mathcal{N}(0, (t-s)\mathbf{I}), \quad d\mathbf{w} = \epsilon \cdot \sqrt{dt}, \text{ where } \epsilon \sim \mathcal{N}(0, \mathbf{I}).$$

Langevin dynamics

Let \mathbf{x}_0 be a random vector. Then under mild regularity conditions for small enough η samples from the following dynamics

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \eta \frac{1}{2} \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

will comes from $p(\mathbf{x}|\boldsymbol{\theta})$.

The density $p(\mathbf{x}|\boldsymbol{\theta})$ is a **stationary** distribution for the Langevin SDE.

Welling M. Bayesian Learning via Stochastic Gradient Langevin Dynamics, 2011

Outline

1. Probability flow ODE

2. The worst course overview

Outline

1. Probability flow ODE

2. The worst course overview

Probability flow ODE

Stochastic differential equation

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

Theorem (Kolmogorov-Fokker-Planck)

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x},t)p(\mathbf{x},t)\right] + \frac{1}{2}g^{2}(t)\frac{\partial^{2}p(\mathbf{x},t)}{\partial \mathbf{x}^{2}}\right)$$

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt = \tilde{\mathbf{f}}(\mathbf{x}, t)dt$$

Probability flow ODE

Theorem (Kolmogorov-Fokker-Planck)

$$\begin{split} \frac{\partial p(\mathbf{x},t)}{\partial t} &= \operatorname{tr} \left(-\frac{\partial}{\partial \mathbf{x}} \left[\mathbf{f}(\mathbf{x},t) p(\mathbf{x},t) \right] + \frac{1}{2} g^2(t) \frac{\partial^2 p(\mathbf{x},t)}{\partial \mathbf{x}^2} \right) = \\ &= \operatorname{tr} \left(-\frac{\partial}{\partial \mathbf{x}} \left[\mathbf{f}(\mathbf{x},t) p(\mathbf{x},t) + \frac{1}{2} g^2(t) \frac{\partial p(\mathbf{x},t)}{\partial \mathbf{x}} \right] \right) = \\ &= \operatorname{tr} \left(-\frac{\partial}{\partial \mathbf{x}} \left[\mathbf{f}(\mathbf{x},t) p(\mathbf{x},t) + \frac{1}{2} g^2(t) p(\mathbf{x},t) \frac{\partial \log p(\mathbf{x},t)}{\partial \mathbf{x}} \right] \right) = \\ &= \operatorname{tr} \left(-\frac{\partial}{\partial \mathbf{x}} \left[\left(\mathbf{f}(\mathbf{x},t) + \frac{1}{2} g^2(t) \frac{\partial \log p(\mathbf{x},t)}{\partial \mathbf{x}} \right) p(\mathbf{x},t) \right] \right) \end{split}$$

Probability flow ODE

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$
$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt$$

Outline

1. Probability flow ODE

2. The worst course overview

The worst course overview:)

The worst course overview:)

Xiao Z., Kreis K., Vahdat A. Tackling the generative learning trilemma with denoising diffusion GANs, 2021

The worst course overview:)

Model	Efficient	Sample quality	Coverage	Well-behaved latent space	Disentangled latent space	Efficient likelihood
GANs	✓	✓	Х	✓	?	n/a
VAEs	✓	X	?	✓	?	Х
Flows	✓	X	?	✓	?	✓
Diffusion	×	✓	?	×	Х	Х

Summary

