

Nome:

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Campus de Bauru

2^a. Prova

30/Novembro/2012

Bacharelado em Ciência da Computação – **BCC** Curso: (4634A) Inteligência Artificial Disciplina:

Simone das Graças Domingues Prado **Professora:**

Total	10,0
Questão 05	2,0
Questão 04	2,0
Questão 03	2,0
Questão 02	2,0
Questão 01	2,0

(Questão 01) Considere a tabela abaixo

	Alto	Baixo	Não Baixa	Muito Alta	Pessoa Normal
1,65 m	0.15	0.90			
1,70 m	0.30	0.75			
1,75 m	0.50	0.50			
1,80 m	0.80	0.30			
1,85 m	0.90	0.10			
1,95 m	1.00	0.00			

RA:

- a) (1,2pt) Complete a tabela, sabendo que: muito $(A^+ = A^2)$, não $(A^+ = 1 A)$ e normal é União do baixa com alto.
- b) Determine as possibilidades para as afirmações abaixo para uma população que esteja entre 1,7m e 1,85m
 - b.1) (**0,4pt**) Qual a possibilidade do X ser considerado de estatura muito Alta?
 - b.2) (0.4pt) Qual a possibilidade do Y ser considerado uma pessoa de estatura não baixa?

(Questão 02) Considere os seguintes padrões de escolhas para uso de uma linguagem de programação em um projeto:

Comercial	Distribuída	Internet	Matemática	Tempo Real	Linguagem
S	n	n	S	n	Delphi
S	S	n	S	S	C++
S	S	S	S	n	Java
n	n	S	n	S	Java
n	n	n	S	S	C++
n	S	S	n	n	Java

- a) (0,5pt) Qual a arquitetura de uma Rede Neural do tipo **Perceptron** que poderia ser utada para realizar estas escolhas (nro de entradas, saídas)?
- b) (1,5pt) Qual a matriz de pesos após o treinamento com os três primeiros conjuntos de teste? Considerando que a taxa de aprendizado é 1 e os pesos iniciais da matriz são zero e a função de transferência é a abaixo:

$$f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

Algoritmo do PERCEPTRON de uma camada

- 1. Inicializar matriz de pesos (W) com valores nulos.
- 3. Repita

Para cada entrada (X) pertencente ao conjunto de treinamento

O := saída da rede para entrada, <math>O = f(X * W)

T := saída esperada para entrada

Erro := T - O

W := W + tx * X * Erro

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Campus de Bauru

(**Questão 03**) Sabe-se que, no Processamento de Linguagem Natural, temos de fazer as análises sintática, semântica e pragmática. Na análise sintática podemos construir as árvores gramaticais.

- **3.1.** (1,2pt) Escreva as árvores gramaticais das frases abaixo:
 - a) Maurício fez uma viagem à Europa
 - b) Marta trabalha numa empresa multinacional.
 - c) Ana quer um livro de presente.
- 3.2. (0,8 pt) Crie novos discursos que mostrem os relacionamentos dados na análise pragmática.
 - a) entidades envolvidas em ações
 - b) cadeias casuais.

(Questão 04) Robótica

Suponha um robô dentro de um labirinto, conforme figura ao lado. O problema consiste em locomover o robô de um ponto a outro, do ponto (2,2) para (5,3). O robô só pode andar na direção de sua cabeça (na figura representada com a seta) e não pode tocar em nenhum obstáculo. Construa o vetor de representação do robô e os predicados abaixo para que o robô consiga sair do seu estado inicial (2,2) e ir para o ponto (5,3) com sua "cabeça" paralela ao eixo X.

estado_inicial (Posição_inicial).

meta (Posição_final).

transforma (Estado1, Estado2, Mensagem).

Sabendo-se que: obstaculo([2,2],[2,1]). obstaculo([2,1],[2,2]).

obstaculo([2,2],[2,3]). obstaculo([2,3],[2,2]).

obstaculo([4,2],[4,1]). obstaculo([4,1],[4,2]).

(Questão 05) Agentes Inteligentes

Existem várias definições de agentes desde o AGENTE REATIVO até o AGENTE COGNITIVO BDI (Belief, Desire and Intention) passando pelos agentes BASEADO EM MODELO, BASEADO EM OBJETIVOS, BASEADO EM UTLIDADE e o COM APRENDIZAGEM. Sabe-se, também, que existem algumas ARQUITETURAS. Elas podem ser classificadas dependendo do tipo de agentes utilizados no sistema. Fale sobre os agentes (citados em letras maiúsculas) e sobre os tipos de arquiteturas de agentes estudados.

Boa Prova!