11/8/2017 Udacity Reviews



### PROJECT SPECIFICATION

# Finding Donors for CharityML

# **Exploring the Data**

| CRITERIA         | MEETS SPECIFICATIONS                                                                                                                                                                                                |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Exploration | Student's implementation correctly calculates the following:                                                                                                                                                        |
|                  | <ul> <li>Number of records</li> <li>Number of individuals with income &gt;\$50,000</li> <li>Number of individuals with income &lt;=\$50,000</li> <li>Percentage of individuals with income &gt; \$50,000</li> </ul> |

# Preparing the Data

| CRITERIA           | MEETS SPECIFICATIONS                                                           |
|--------------------|--------------------------------------------------------------------------------|
| Data Preprocessing | Student correctly implements one-hot encoding for the feature and income data. |

# **Evaluating Model Performance**

| CRITERIA                                             | MEETS SPECIFICATIONS                                                                                                                |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| <b>Question 1:</b><br>Naive Predictor<br>Performance | Student correctly calculates the benchmark score of the naive predictor for both accuracy and F1 scores.                            |
| Question 2:<br>Model Application                     | The pros and cons or application for each model is provided with reasonable justification why each model was chosen to be explored. |
|                                                      | Please list all the references you use while listing out your pros and cons.                                                        |
| Creating a Training and<br>Predicting Pipeline       | Student successfully implements a pipeline in code that will train and predict on the supervise learning algorithm given.           |

| CRITERIA                 | MEETS SPECIFICATIONS                                                                                    |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| Initial Model Evaluation | Student correctly implements three supervised learning models and produces a performance visualization. |

# Improving Results

| CRITERIA                                                  | MEETS SPECIFICATIONS                                                                                                                                                                                                         |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 3:<br>Choosing the Best Model                    | Justification is provided for which model appears to be the best to use given computational cost, model performance, and the characteristics of the data.                                                                    |
| <b>Question 4:</b> Describing the Model in Layman's Terms | Student is able to clearly and concisely describe how the optimal model works in layman's terms to someone who is not familiar with machine learning nor has a technical background.                                         |
| Model Tuning                                              | The final model chosen is correctly tuned using grid search with at least one parameter using a least three settings. If the model does not need any parameter tuning it is explicitly stated with reasonable justification. |
| <b>Question 5:</b><br>Final Model Evaluation              | Student reports the accuracy and F1 score of the optimized, unoptimized, models correctly in the table provided. Student compares the final model results to previous results obtained.                                      |

### **Feature Importance**

| CRITERIA                                         | MEETS SPECIFICATIONS                                                                                                                                                                                                                                             |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Question 6:</b> Feature Relevance Observation | Student ranks five features which they believe to be the most relevant for predicting an individual's' income. Discussion is provided for why these features were chosen.                                                                                        |
| Question 7:<br>Extracting Feature<br>Importances | Student correctly implements a supervised learning model that makes use of the feature_importances_ attribute. Additionally, student discusses the differences or similarities between the features they considered relevant and the reported relevant features. |
| <b>Question 8:</b> Effects of Feature Selection  | Student analyzes the final model's performance when only the top 5 features are used and compares this performance to the optimized model from <b>Question 5</b> .                                                                                               |

Student FAQ