

软件项目管理与产品运维

7 项目成本管理

成本:为达到一个特定的目标而牺牲或放弃的资源

直接成本	间接成本
与具体项目相关的成本, 一般项目经理可控	可分摊到组织的各个项目 中的成本
例如: 参与项目的人员成本 材料费 外包外购成本等等	例如:

项目成本管理:

- (1) 重点关注完成项目活动所需资源的成本
- (2) 应考虑项目决策对项目成本的影响

成本管理的核心:成本估算(预测项目耗费成本的过程)

成本超支

以非常模糊的 项目需求为基 础估算 涉及到新的 技术或商业 过程

成本估算的不 准确

软件项目成本估算的基础: 工作量估算

人与时间的乘积

单位: 人月PM或者人天PD

成本(货币) = 工作量 * 单位工作量的资源费率

目 录

7.1 规划成本管理
7.2 估算成本 规划过程组
7.3 制定预算
7.4 控制进度 监控过程组

项目成本管理各过程的数据关系

学习目标

- 1、理解成本管理各个过程的作用
- 2、了解成本管理各个过程的重要输入和输出
- 3、掌握估算成本的常用方法
- 4、掌握制定预算的基本方法
- 5、重点掌握挣值管理技术

7.1

规划成本管理

■ 规划成本管理

确定如何估算、预算、管理、监控项目成本

输入

- 1、项目章程
- 2、项目管理计划
- 3、事业环境因素

工具与技术

- 1、专家判断
- 2、规划会议
- 3、数据分析

输出

成本管理计划

事业环境因素:

组织文化结构、市场条件、货币汇率、不同市场生产力差异等

输入

- 1、项目章程
- 2、项目管理计划
- 3、事业环境因素

工具与技术

- 1、专家判断
- 2、规划会议
- 3、数据分析

輸出

成本管理计划

数据分析:

- (1)备选方案分析: 自筹资金、股权投资、借贷投资等
- (2)筹资项目资源的方法: 自制、采购、租用/租赁等
- (3)是否建立决策阈值和财务控制限 (某些组织)

输入

- 1、项目章程
- 2、项目管理计划
- 3、事业环境因素

工具与技术

- 1、专家判断
- 2、规划会议
- 3、数据分析

输出

成本管理计划

成本管理计划: 项目管理计划的组成部分

如何规划、安排和控制项目成本

成本管理计划

项目名称:

.....

日期:

准确度	计量单位	控制临界值	
估算可接受的区间,如: ±10%	资源的计量单位,如:人时/人天	允许出现的最大偏差,如: 10%	
绩效测量规则: 如: 挣值管理 (EVM) 规则	成本报告格式及频率: 如:报告格式,每月报告一次;		
过程管理 1、估算成本: 2、制定预算:			

启动阶段,偏离达 ±150%或更高 估算的准确性 需求及高层设计已稳定, 软件项目估算容易出错 偏差可能有±50% 软件项目成本 管理计划 A) 人时或人天 计量单位 B) 功能点、用例、用户 故事、特性和测试用例 货币或工作量 (软件项目更常用工作量)

7.2

估算成本

7.2 估算成本

■ 估算成本:

对完成项目活动所需资金(或工作量)进行近似估算

软件项目经理倾向于使用多种 估算方法,然后调和不同估算 结果之间的差异

7.2 成本估算的类型

成本估算的类型

估算类型	何时做	做什么	精度如何
量级估算	在项目生命周期中非常早,通 常在项目完成之前的3~5年	为项目决策提供成本估算	$-25\% \sim +75\%$
预算估算	在项目完成前 1~2 年	将资金拨入预算计划	$-10\% \sim +25\%$
最终估算 或确定性估算	项目的后期,项目完成前不足1年	为采购提供决策依据, 估算实际成本	-5%~+10%

7.2 项目成本估算的典型问题

■ 软件项目成本估算通常非常不精确

7.2 项目成本估算的典型问题

■ 成本估算的基本步骤:

估算成本的数据流向图

7.2 估算成本

输入

- 1、范围基准
- 2、成本管理计划
- 3、项目进度计划
- 4、资源需求

工具与技术

- 1、类比估算法
- 2、自下而上估算法
- 3、三点估算法
- 4、专家判断法
- 5、代码行估算法
- 6、功能点估算法
- 7、参数估算法
- 8、其他

- 1、活动成本估算
- 2、估算依据

7.2 工具与技术: 通用

(1) 类比估算法 (自上而下估算法)

根据以往的完成类似项目所消耗的总成本(或工作量),推算将要开发的软件的总成本(或工作量)

- □ 要求和用途:
- □1) 有类似的历史项目数据
- □ 2) 信息不足 (例如市场招标) 的时候
- □ 3) 要求不是非常精确估算的时候

7.2 工具与技术:通用

(1) 类比估算法 (自上而下估算法)

根据以往的完成类似项目所消耗的总成本(或工作量),推算将要开发的软件的总成本(或工作量)

■ 优点: 简单易行,耗时少,花费少

■ 缺点:由于项目的独特性,该方法的估算准确

性可能较低

- 7.2 工具与技术:通用
 - (2) 自下而上估算法
- 2.1 对单个工作包或活动的成本进行最具体、细致的估算,
- 2.2 把细节性成本向上汇总或"滚动"到更高层次

- 准确性通常取决于:
- □单个活动或工作包的规模或其他属性

7.2 工具与技术:通用

(2) 自下而上估算法

- 2.1 对单个工作包或活动的成本进行最具体、细致的估算,
- 2.2 把细节性成本向上汇总或"滚动"到更高层次

□ 优点:详细且准确

■ 缺点: 耗时,而且估算本身费用很高

7.2 工具与技术: 通用

(3) 三点估算法

- □ 最可能成本 (Cм):比较现实的估算成本
- □ 最乐观成本 (C_o):最好情况所得到的估算成本
- □ 最悲观成本 (C_P): 最差情况所得到的估算成本

期望成本C﹝:

- □ 三角分布: C_E = (C_O + C_M + C_P) / 3
- □ 贝塔分布: CE = (Co + 4 CM + CP) / 6

7.2 工具与技术:通用

(4) 专家判断法

1、确定专家, 专家互相不见

2、给每位专家 发送一份软件规 格说明

- 3、专家以匿名形式给 出软件规模3个估算值:
- ①最小ai
- ②最可能的mi
- ③最大bi

6、如果各个专家的估算差异超出规定的范围(例如:15%),则需重复上述过程

5、获得一个多数专 家共识的软件规模: (E=E1+E2+···En)/n

(n:表示n 个专家)

4、计算每位专家的

Ei=(ai+4mi+bi)/6

(5) 代码行估算法

- > 与具体的编程语言有关
- > 分解足够详细
- ▶ 有一定的经验数据

(6) 功能点(FP)估算法

用系统的功能数量来测量规模

- ▶与实现的语言和技术无关
- ▶通过评估、加权、量化得出 功能点

功能点 公式 FP = UFC * TCF

➤ UFC: 未调整功能点计数

➤ TCF: 技术复杂度(调整)因子

(6) 功能点(FP)估算法

(6) 功能点(FP)估算法

a) 获取用户五类功能需求

序号	功能需求	说明	举例
1	内部逻辑文件ILF	内部维护的逻辑数据	平面文件或关系型数 据库中的表
2	外部逻辑文件EIF	由外部维护、内部调用的数据	外部接口文件
3	外部输入EI	维护内部数据或改变应用程序 属性行为	比如增删改操作
4	外部输出EO	数据的逻辑处理	至少含一个计算公式
5	外部查询EQ	直接输入输出的简单查询方式	简单的输入引出即时 的输出反馈

(6) 功能点(FP)估算法

(6) 功能点(FP)估算法

b) 求得UFC: b.1 确定加权因子

功能计数项的复杂度等级表

复杂度 功能点项	简单 (低)	一般(中)	复杂 (高)
1 外部输入	3	4	6
2 外部输出	4	5	7
3 外部查询	3	4	6
4 外部接口文件	5	7	10
5 内部逻辑文件	7	10	15

(6) 功能点(FP)估算法

复杂度

b) 求得UFC: b.2 未调整功能点计数

简单 (低)

外部输出:1项(复杂1) 外部查询:1项(一般1) 外部接口文件:1项(一般1) 内部逻辑文件:2项(简单1+一般1) **一般**(中) 复杂(高)

外部输入:3项(简单2+一般1)

假设一个软件项目:

功能点项	11-0- 1- (140)	13X (°1°)	
1 外部输入	2 * 3	1 * 4	0 * 6
2 外部输出	0 * 4	0 * 5	1 * 7
3 外部查询	0 * 3	1 * 4	<mark>0</mark> * 6
4 外部接口文件	0 * 5	1 * 7	<mark>0</mark> * 10
5 内部逻辑文件	1 * 7	1 * 10	<mark>0</mark> * 15
总计	UFC=45		

(6) 功能点(FP)估算法

c) 求得TCF: 公式TCF = 0.65+0.01*(sum(Fi))

Fi: 14项技术复杂度因子				
F1	可靠的备份和恢复	F2	数据通信	
F3	分布式函数	F4	性能	
F5	大量使用的配置	F6	联机数据输入	
F7	操作简单性 Fi取值	拉围:0-5	在线升级	
F9	复杂界面	F10	复杂数据处理	
F11	重复使用性	F12	安装简易性	
F13	多重站点	F14	易于修改	

(6) 功能点(FP)估算法

Fi 取值范围	描述
0	不存在或者没有影响
1	不显著的影响
2	相当的影响
3	平均的影响
4	显著的影响
5	强大的影响

(6) 功能点(FP)估算法

d) 求得功能点数FP: FP = UFC * TCF

已知: UFC=45

TCF=0.65+0.01*(14*3)=1.07

那么:功能点FP=UFC*TCF=45*1.07=48

如果: PF=15工时/功能点 则:

以工时计的工作量=48*15=720工时

(6) 功能点(FP)估算法

功能点与代码行的转换

编程语言	代码行/FP
Assembly	320
C	150
COBOL	105
FORTRAN	105
PASCAL	91
ADA	71
******	******

(6) 功能点(FP)估算法

功能点与代码行的转换

因为: UFC=45

TCF=0. 65+0. 01 (14*3)=1. 07

所以:功能点FP=UFC*TCF=45*1.07=48

如果使用C语言: PF=150行/功能点

则代码行: 48*150=7.1(KLOC)

(7) 参数估算法: 通过历史数据, 进行回归分析, 得出回归模型

回归模型名称	公式
Walston-Felix(IBM)	E= 5.2*(KL0C)^0.91
Balley-Basili	E=5. 5+0. 73*(KL0C) ^1. 16
COCOMO	E=3. 2*(KL0C) ^1. 05
Doty	E=5. 288*(KL0C) ^1. 047

E: 工作量(人月)

KLOC: 软件规模 (干行代码)

7.2 工具与技术: 其他

■ **储备分析**: 为应对成本的不确定性,成本估算中可以包括应急储备 (有时称为"应急费用")

■ 卖方投标分析: 根据合格卖方的投标情况, 分析项目成本

■ 价格策略: 客户愿意支付什么样的价格

■ 质量成本 (COQ) : 为保证质量付出的成本

7.2 估算成本

- 1、范围基准
- 2、成本管理计划
- 3、项目进度计划
- 4、资源需求

工具与技术

- 1、活动成本估算
- 2、估算依据

活动成本估算: 对完成项目工作可能需要的成本的量化估算

覆盖活动所使用的全部资源,包括直接人工、材料、设备、服务、设施、信息技术,以及一些特殊的成本种类,如融资成本(包括利息)、通货膨胀补贴、汇率或成本应急储备。

7.2 估算成本

活动成本估算表

WBS编号	活动编号	资源内容	直接成本	间接成本	融资成本	储备金	估算额	估算方法	假设条件 /制约因素	估算区间
										±10%
			N N							
			9							
		0	8 8			-		8	0	> .

7.2 估算成本

输入

- 1、范围基准
- 2、成本管理计划
- 3、项目进度计划
- 4、人力资源管理计划

工具与技术

输出

- 1、活动成本估算
- 2、估算依据

估算依据: 成本估算所需的支持信息

清晰、完整地说明成本估算是如何得出的

7.3

制定预算

- 制定预算(预算---经批准用于项目的全部资金):
 - (1) 汇总所有单个活动或工作包的估算成本
 - (2) 建立一个经批准的成本基准

■ 作用: 为监督和控制项目成本绩效提供依据

估算成本与成本预算的区别

估算成本	成本预算
输出活动成本估算	输出成本基准
用于成本估计	用于成本控制
通常是一个数值	通常是一条S曲线
由项目团队来做	需要管理层参与

制定预算的数据流向图

输入

- 1、成本管理计划
- 2、活动成本估算
- 3、估算依据
- 4、项目进度计划

工具与技术

- 1、专家判断
- 2、历史信息审核
- 3、成本汇总
- 4、储备分析
- 5、资金限制平衡

输出

- 1、成本基准
- 2、项目资金需求

输入

- 1、成本管理计划
- 2、活动成本估算
- 3、估算依据
- 4、项目进度计划

工具与技术

- 1、专家判断
- 2、历史信息审核
- 3、成本汇总
 - 储备分析

资金限制平衡

输出

- 1、成本基准
- 2、项目资金需求

历史信息审核:

基于历史关系,利用项目特征(参数)来建立数学模型,预测项目总成本

输入

- 1、成本管理计划
- 2、活动成本估算
- 3、估算依据
- 4、项目进度计划

工具与技术

- 1、专家判断
- 2、历史信息审核
- 3、成本汇总
- 4、储备分析
- 5、资金限制平衡

输出

- 1、成本基准
- 2、项目资金需求

成本汇总:

先把成本估算汇总到WBS中的工作包,再由工作包汇总至 WBS更高层次(如控制账户),最终得出整个项目的总成本。

WBS项	子功能成本 (万元)	功能成本 (万元)	项目总成本 (万元)
项目A			
1. 功能1			
1.1 子功能1			
1.2 子功能2			
2. 功能2			
2.1 子功能1			
2.2 子功能2			
2.3 子功能3			
3. 功能3			

WBS项	子功能成本 (万元)	功能成本 (万元)	项目总成本 (万元)
项目A			
1. 功能1			
1.1 子功能1	5		
1.2 子功能2	3		
2. 功能2			
2.1 子功能1	3		
2.2 子功能2	2		
2.3 子功能3	1		
3. 功能3			

WBS项	子功能成本 (万元)	功能成本 (万元)	项目总成本 (万元)
项目A			
1. 功能1		8	
1.1 子功能1	5		
1.2 子功能2	3		
2. 功能2		6	
2.1 子功能1	3		
2.2 子功能2	2		
2.3 子功能3	1		
3. 功能3		2	

WBS项	子功能成本 (万元)	功能成本 (万元)	项目总成本 (万元)
项目A			16
1. 功能1		8	
1.1 子功能1	5		
1.2 子功能2	3		
2. 功能2		6	
2.1 子功能1	3		
2.2 子功能2	2		
2.3 子功能3	1		
3. 功能3		2	

输入

- 1、成本管理计划
- 2、活动成本估算
- 3、估算依据
- 4、项目进度计划

工具与技术

- 1、专家判断
- 2、历史关系
- 3、成本汇总
- 4、储备分析
- 5、资金限制平衡

输出

- 1、成本基准
- 2、项目资金需求

7.3 工具与技术

■ 储备分析

储	备分析	应急储备	管理储备
1	成本管理过程	成本估算	制定预算
2	应对风险	"已知 — 未知"风险 (已知风险,未知风险概率和 影响)	"未知— 未知"风险 (未知风险,未知风险概率和 影响)
3	授权使用	项目经理可以直接使用	需要授权才能应用
4	是否纳入成本基准	纳入成本基准	不纳入成本基准
5	是否纳入挣值管理	纳入挣值管理	不纳入挣值管理

输入

- 1、成本管理计划
- 2、活动成本估算
- 3、估算依据
- 4、项目进度计划

工具与技术

- 1、专家判断
- 2、历史信息审核
- 3、成本汇总
- 4、储备分析
- 5、资金限制平衡

輸出

- 1、成本基准
- 2、项目资金需求

资金限制平衡: 根据对项目资金的任何限制,来平衡资金支出

如果发现资金限制与计划支出之间的差异,则可能需要调整工作的进度计

划,以平衡资金支出水平。

输入

- 1、成本管理计划
- 2、活动成本估算
- 3、估算依据
- 4、项目进度计划

工具与技术

- 1、专家判断
- 2、历史关系
- 3、成本汇总
- 4、储备分析
- 5、资金限制平衡

输出

- 1、成本基准
- 2、项目资金需求

7.3 输出:成本基准

1、成本基准:经过批准的项目预算,是不同进度活动预算的总和

项目预算的组成

7.3 输出: 成本基准

1、成本基准: 应按时间段分配

WBS项	子功能成本 (万元)	功能成本 (万元)	项目总成本 (万元)
项目A			16
1. 功能1		8	
1.1 子功能1	5		
1.2 子功能2	3		
2. 功能2		6	
2.1 子功能1	3		
2.2 子功能2	2		
2.3 子功能3	1		
3. 功能3		2	

7.3 输出: 成本基准

1、成本基准: 应按时间段分配

周次	任务	费用(万元)
1	规划	1
2	需求	3
3	设计	5
4	开发1	8
5	开发2	12
6	测试	14
7	验收	16

7.3 输出:项目资金需求

2、项目资金需求:根据成本基准,确定总资金需求和阶段性(年/季度)资金需求

7.4

控制成本

7.4 控制成本

■ 控制成本:

监督项目状态,更新项目成本、管理成本基准变更

(1) 发现计划 的偏离 纠正和预防措施

降低风险

控制成本的数据流向图

7.4 控制成本

输入

- 1、项目管理计划
- 2、成本基准
- 3、项目资金需求
- 4、工作绩效数据

工具与技术

- 1、挣值管理
- **2**、趋势分析
- 3、储备分析

输出

- 1、成本预测
- 2、工作绩效信息
- 3、变更请求

7.4 工具与技术: 挣值管理

■ 挣值管理 (Earned Value Management, EVM, 挣值分析)

综合考虑范围、进度和资源绩效,评估项目绩效和进展

7.4 工具与技术: 挣值管理

<u>挣值管理针对每个工作包和控制账户</u>,计算并监测三个关键指标:

序号	指标	简称	涵义
1	计划价值	PV	为计划工作分配的经批准的预算,不包括管理储备 A)对应成本基准 B)完工预算(BAC):项目的总计划价值
2	挣值	EV	对已完成工作的测量值,用分配给该工作的预算表示
3	实际成本	AC	执行某工作而实际发生的成本 (在给定时段内)

- 例子: 一个软件项目
 - (1) 预计需10000行代码
 - (2) 计划项目工时10天
 - (3) 预计每天完成1000行
 - (4) 假设每1行代码预算1元

总完工预算 (BAC): 1*10000=10000元

完工时, EV应达到BAC

- 在第4天的监测结果:
 - (1) 计划价值 (PV): PV=4*1000*1=4000元
 - (2) 挣值 (EV) ,假设实际只完成了3000行: EV=3000*1=3000元
 - (3) 实际成本 (AC): 实际花费5000元

给定时点,实际绩效与基准之间的偏差/绩效指标

偏差/绩效指标	计算公式	意义
1) 进度偏差 (SV)	SV = EV - PV	在给定时点,项目提前或落后的进度 进度偏差最终将等于零
2) 成本偏差 (CV)	CV = EV - AC	在给定时点,预算的亏空或盈余量 负的CV一般都是不可挽回的
3) 进度绩效指数 (SPI)	SPI = EV / PV	测量进度效率
4) 成本绩效指数 (CPI)	CPI = EV / AC	测量预算资源的成本效率

CPI是最关键的EVM指标

7.4 工具与技术: 完工估算(EAC)

预测EAC值的三种常用计算方法:

序号	方法	EAC计算公式	
1	假设将按预算单价完 成ETC工作	EAC = AC + (BAC - EV) ETC	
2	假设以当前CPI完成 ETC工作	EAC = BAC/CPI	= [EV+(BAC-EV)]/CPI =EV/CPI+ [(BAC-EV)]/CPI =AC +[(BAC-EV)]/CPI
3	假设SPI与CPI将同时 影响ETC工作	$EAC = AC + [(BAC - EV) / (CPI \times SPI)]$	

7.4 工具与技术:完工尚需绩效指数 (TCPI)

■ 完工尚需绩效指数 (TCPI) :

为了实现特定的管理目标,剩余资源的使用必须达到的成本绩效指标

两种情况	TCPI计算公式
为 <u>完成计划</u> 必须保持 的效率	TCPI = (BAC - EV) / (BAC - AC) 要求当前BAC可行 (当前AC <bac)< td=""></bac)<>
为 <u>完成当前完工估算</u> 必须保持的效率	TCPI = (BAC - EV) / (EAC - AC)

TCPI>1 难以完成 TCPI=1 等于完成 TCPI<1 轻易完成

7.4 控制成本

输入

- 1、项目管理计划
- 2、成本基准
- 3、项目资金需求
- 4、工作绩效数据

工具与技术

- 1、挣值管理
- 2、趋势分析
- 3、储备分析

输出

- 1、成本预测
- 2、工作绩效信息
- 3、变更请求

7.4 工具与技术: 趋势分析

趋势分析: 审查项目绩效随时间的变化情况, 以判断绩效是正在改

善还是正在恶化

7.4 控制成本

输入

- 1、项目管理计划
- 2、成本基准
- 3、项目资金需求
- 4、工作绩效数据

工具与技术

- 1、挣值管理
- 2、绩效审查
- 3、储备分析

输出

- 1、成本预测
- 2、工作绩效信息
- 3、变更请求

7.4 工具与技术:储备分析

储备分析:

监督项目中应急储备和管理储备的使用情况

判断是否还需要这些储备, 或者是否需要增加额外的储备

7.4 控制成本

输入

- 1、项目管理计划
- 2、成本基准
- 3、项目资金需求
- 4、工作绩效数据

工具与技术

- 1、挣值管理
- 2、趋势分析
- 3、储备分析

- 1、成本预测 (EAC)
- 2、变更请求
- 3、工作绩效信息

工作绩效信息: 记录到《挣值状态报告》中

WBS各组件(尤其是工作包与控制账户)的CV、SV、CPI、

SPI、TCPI和VAC值,都需要记录下来,并传达给相关干系人。

总结

- 7.1 规划成本管理
- 7.2 估算成本
- 7.3 制定预算
- 7.4 控制进度

规划过程组

监控过程组

7 项目成本管理

项目成本管理各过程的数据关系

学习目标

- 1、理解成本管理各个过程的作用
- 2、了解成本管理各个过程的重要输入和输出
- 3、掌握估算成本的常用方法
- 4、了解制定预算的基本方法
- 5、重点掌握挣值管理技术