Radiative Processes in Astrophysics / Problem Set #2 Due February 24, 2021

Model an interstellar cloud of gas and dust as a uniform, plane-parallel slab 100 pc thick, with a temperature of 50 K, and density dominated by molecular hydrogen with $n \sim 10 \text{ cm}^{-3}$. (Problem from Aaron Parsons' notes).

- 1. Dust is typically made of silicate grains with $\rho \sim 3$ g cm⁻³, $r \sim 0.1$ $\mu \rm m$ and with a mass fraction relative to the gas of 0.01. What is the number density of the dust grains?
- 2. Imagine a backlight with $I_{\nu}=3\times 10^{-9}~{\rm erg~s^{-1}~Hz^{-1}~ster^{-1}~cm^{-2}}$ at $\nu=1$ THz (terahertz). Assume the dust perfectly absorbs across its cross-section. Ignoring thermal radiation by the dust, calculate the profile of I_{ν} through the cloud and the optical depth through the cloud.
- 3. Add in the thermal radiation. Assume each dust grain radiates as a blackbody with T= 50 K across its geometric cross-section. Calculate j_{ν} at 1 THz. Find the functional form for and sketch—for the case of no backlight—the profile I_{ν} through the cloud and the calculate the emergent I_{ν} . Include both emission and self-absorption!
- 4. Now include the backlight and repeat the previous step.