VE203 Discrete Math

Spring 2022 — HW2 Solutions

March 19, 2022

Exercise 2.1

Base Case: (A is a set of order 1)

If $A = \{a\}$ then the largest and smallest elements are both a.

Inductive Step: Suppose all sets of order n have a largest and smallest element. Let A be a set of order n+1. Further, since we already proved the base case we can assume that A has at least 2 elements. We need to show that A has a largest and smallest element.

A is nonempty so let $x \in A$. Consider the set $A_0 = A \setminus \{x\}$. This is a set of order n. Thus, by the inductive hypothesis, A_0 has a largest and smallest element.

- Let a be the smallest element of A_0 .
- Let b be the largest element of A_0 .

Observe that $A = A_0 \cup \{x\}$. We can identify the largest and smallest elements of A as follows.

- If x < a then x is smaller than all other elements of A meaning x is the smallest element of A. Otherwise, a is smaller than all other values of A.
- If x > b then x is larger than all other elements of A meaning x is the largest element of A. Otherwise, b is larger than all other values of A.

End of proof.

Exercise 2.2

In this proof, in order to find $a^k(P(k+1))$, $a^{k-1}(P(k))$ and $a^{k-2}(P(k-1))$ are used as value 1. However, for the base case, it only proves that for n=1, $a^{n-1}(P(1))=1$. That is to say, if we check the case n=2, $a^1=\frac{a^0\cdot a^0}{a^{-1}}$, the value of $a^{-1}(P(0))$ is actually unknown and doesn't necessarily equals to 1. So the proof is invalid.

Exercise 2.3

- 1) If the "nonempty sorted list" is $\langle x, \langle \rangle \rangle$. Then the statement is vacuously true.
- 2) If the "nonempty sorted list" is $\langle x, \tilde{L} \rangle$ where $\tilde{L} = \langle y, L \rangle$ and the statement is true, i.e., y is the smallest number in L and $x \leqslant y$. Denote the number of elements in $\langle y, L \rangle \rangle$ as n. Then for the number of elements is n+1, say the "additional" element is k. The "nonempty sorted list" now is $\langle x, \langle k, \tilde{L} \rangle \rangle$.

By definition, since $\langle k, \tilde{L} \rangle$ is a nonempty sorted list, $k \leqslant y$. Since $\langle x, \langle k, \tilde{L} \rangle \rangle$ is a nonempty sorted list, $x \leqslant k$. Therefore, every element z in $\langle k, \tilde{L} \rangle$ satisfies $z \geqslant x$.

Therefore, in a nonempty sorted list $\langle x, L \rangle$, every element z in L satisfies $z \ge x$.

Exercise 2.4

(i) Base case: φ is a variable. No need for connectives from the set $\{\downarrow\}$. Let $A(\varphi)$, be the property that there exists $a\{\downarrow\}$ -only proposition logically equivalent to φ . Inductive case: 1. φ is a negation. $\varphi = \neg p$. Assume the HA(p). By H. there exists a $\{\downarrow\}$ -only proposition $q \Leftrightarrow P$.

Here $\neg p \Leftrightarrow \neg q \Leftrightarrow q \downarrow q$. therefore. $A(\neg p)$ follows

I1. φ is a conjunction. disjunction. or implication. $\varphi = P_1 \wedge P_2, \varphi = P_1 \vee P_2, \varphi \cdot P_1 \rightarrow P_2$ P_1 . Assume. $\mid HA(p_1)$. $A(p_2)$, there exists $\{\downarrow\}$ -only proposition $q_1 \Leftrightarrow p_1, q_2 \Leftrightarrow p_2$ Here. $p_1 \wedge p_2 \Leftrightarrow q_1 \wedge q_2 \Leftrightarrow (q_1 \downarrow q_1) \downarrow (q_2 \downarrow q_2).$

$$p_1 \lor p_2 \Leftrightarrow q_1 \lor q_2 \qquad \Leftrightarrow \qquad (q_1 \downarrow q_2) \downarrow (q_1 \downarrow q_2)$$
$$p_1 \to p_2 \Leftrightarrow q_1 \to q_2 \Leftrightarrow \qquad ((q_1 \downarrow q_1) \downarrow q_2) \downarrow ((q_1 \downarrow q_1) \downarrow q_2).$$

Therefore. $A(P_1 \wedge P_2)$. $A(P_1 \vee P_2)$. $A(P_1 \rightarrow P_2)$ follows.

Hence. the statement is true.

(ii) Here. let $A(\varphi)$ denote the property that there exists a $\{|\}$ only proposition logically equivalent to φ , and we need to prove $A(\varphi)$ holds for any well-formed formula φ .

Base case: φ is a variable. $\varphi = x$. No need for connectives from the set {|}. $A(\varphi)$ is vacuously true.

Inductive case: $I.\varphi$ is a negation. $\varphi = \neg p$. Assume the IHA(P) there exists a $\{\}$ only proposition $q \Leftrightarrow p$.

Here. $\neg p \Leftrightarrow \neg q \Leftrightarrow q \mid q$. therefore $A(\neg p)$ follows 11. φ is a conjunction. or implication. $\varphi = p_1 \wedge p_2 \quad \varphi = p_1 v p_2, \varphi = p_1 \rightarrow p_2.$

Assume $IHA(p_1)$. A(p, there exists a {|}- only proposition $q_1 \Leftrightarrow p_1, q_2 \Leftrightarrow p_2$.

$$p_1 \lor p_2 \Leftrightarrow q_1 \lor q_2 \Leftrightarrow (q_1 | q_1) | (q_2 | q_2).$$

 $p_1 \to p_1 \Leftrightarrow q_1 \to q_2 \Leftrightarrow q_1 | (q_2 | q_2).$

 $A(p_1 \wedge p_2)$. $A(p_1 \vee p_2)$. $A(p_1 \rightarrow p_2)$ follows. Hence, the statement is true.

Exercise 2.5

(i) mergesort:

Base case: n = 1, there is only one element in $A[D] \Rightarrow A[]$ is sorted.

Inductive case: Assume that for n element, $A[1, \ldots, n]$ can be sorted through mergesort, where $n=1,2,3,\ldots,k-1$ Then for k elements. L contains $\frac{k}{2}$ elements. $\therefore 1 \leqslant \frac{k}{2} \leqslant k-1 \lesssim L$ can be sorted.

R contains $\frac{k}{2}$ elements. $\because 1 \le \frac{k}{2} \le k-1 \therefore R$ can be sorted. Then by using merge (L,R), A[1..k] an be sorted in increasing order.

(ii) merge:

Base case:

can be sorted

- (1) n=0 then X is empty, only return Y, which is sorted
- (2) m=0 then Y is empty. only return X, which is sorted.

Inductive case: Assume that for n-i elements in X and for m-elements in Y. $X \cup Y$ an be sort through merge namely merge $(X[1 \dots n-1], Y)$ and merge X. $Y[1 \dots -1]$ hold.

Then for n elements in X and m elements in Y, namely X[1.n] and Y[1..m]

We compare X[1] and Y[1]:(1)X[1] < Y[1], return X[1] followed by merge (X[2..n], Y)As X[2...n] contains n-1 elements, merge (X[2.n], Y) holds $\Rightarrow x[1...n] \cup Y[1...n]$

(2) $X[1] \geqslant Y[1]$, return Y[1] followed by merge (X.Y[2...m-1])

As Y[2...m-1] contains m-1 elements, merge (X. Y[2...m-1]) holds $\Rightarrow X[1...n] \cup$ $Y[1 \dots n]$ can be sorted

Exercise 2.6

(i) Reflexive:

For any $a \in \mathbb{Z}$, a - a = 0. Since $2 \mid 0, a \sim a$. Therefore, \sim is reflexive.

Symmetric:

If $m \sim n$, then $2 \mid (n-m)$. Let n-m = 2k, where $k \in \mathbb{Z}$. Then $m-n = -2k = 2 \cdot (-k)$, which implies that $2 \mid (m-n)$. Thus, $n \sim m$, which shows that $m \sim n \Rightarrow n \sim m$.

The reverse direction, i.e. $n \sim m \Rightarrow m \sim n$, is also valid with the same process given above.

Therefore, $m \sim n \Leftrightarrow n \sim m$, and \sim is symmetric. Transitive:

Suppose that $m \sim n \wedge n \sim s$. Then, $2 \mid (n-m)$ and $2 \mid (s-n)$. We assume that $n-m=2k_1, \ s-n=2k_2$. Then, $s-m=(s-n)+(n-m)=2k_2+2k_1=2(k_1+k_2)$. This shows that $2 \mid (s-m)$, which implies that $m \sim s$.

Therefore, \sim is transitive.

- (ii) $\mathbb{Z}_2 = \mathbb{Z}/\sim = \{[0], [1]\}.$
- (iii) We arbitrarily take 2 representatives m_1, m_2 from the first equivalence class [m], and 2 representatives n_1, n_2 from the second equivalence class [n].

-
$$[m_1] + [n_1] = [m_1 + n_1] = \{t \in \mathbb{Z} \mid (m_1 + n_1) \sim t\}.$$

For $t \in [m_1 + n_1], 2 \mid (t - m_1 - n_1)$. Let $t - m_1 - n_1 = 2k(k \in \mathbb{Z})$, then $t = 2k + m_1 + n_1$.

Since $m_1, m_2 \in [m_1]$, $m_1 \sim m_2$. Let $m_2 - m_1 = 2k_m$ $(k_m \in \mathbb{Z})$. Similarly, let $n_2 - n_1 = 2k_n$ $(k_n \in \mathbb{Z})$.

Thus,

$$t - m_2 - n_2 = 2k + m_1 + n_1 - m_2 - n_2$$

$$= 2k - (m_2 - m_1) - (n_2 - n_1)$$

$$= 2k - 2k_m - 2k_n$$

$$= 2(k - k_m - k_n)$$

Because $k - k_m - k_n \in \mathbb{Z}$, $2 \mid (t - m_2 - n_2)$, which means that $m_2 + n_2 \sim t$.

It shows that $t \in [m_2 + n_2]$, which implies that $[m_1 + n_1] \subset [m_2 + n_2]$.

The proof of $[m_2 + n_2] \subset [m_1 + n_1]$ is done with the same process shown above.

Therefore, $[m_1 + n_1] = [m_2 + n_2]$. This implies that the definition of addition on \mathbb{Z} is independent of the representatives m and n.

- For any $t \in [m_1] \cdot [n_1] = [m_1 \cdot n_1], 2 \mid (t - m_1 n_1)$. Let $t - m_1 n_1 = 2k(k \in \mathbb{Z})$, then $t = 2k + m_1 n_1$.

Then, $t - m_2 n_2 = 2k + m_1 n_1 - m_2 n_2$.

As is assumed in the previous section, $m_2 - m_1 = 2k_m, n_2 - n_1 = 2k_n (k_m, k_n \in \mathbb{Z}).$

Thus,

$$t - m_2 n_2 = 2k + m_1 n_1 - (m_1 + 2k_m) (n_1 + 2k_n)$$

$$= 2k + m_1 n_1 - (m_1 n_1 + 2k_m n_1 + 2k_n m_1 + 4k_m k_n)$$

$$= 2k - 2k_m n_1 - 2k_n m_1 - 4k_m k_n$$

$$= 2(k - k_m n_1 - k_n m_1 - 2k_m k_n)$$

Since $k - k_m n_1 - k_n m_1 - 2k_m k_n \in \mathbb{Z}, 2 \mid (t - m_2 n_2)$. This shows that $t \in [m_2 \cdot n_2]$, which implies that $[m_1 \cdot n_1] \subset [m_2 \cdot n_2]$.

The proof of $[m_2 \cdot n_2] \subset [m_1 \cdot n_1]$ is done with the same process shown above.

Therefore, $[m_1 \cdot n_1] = [m_2 \cdot n_2]$. This implies that the definition of multiplication on \mathbb{Z} is independent of the representatives m and n.

(iv) For the following section, we keep in mind that

$$\mathbb{Z}_2 = \{[0], [1]\}.$$

(a)
$$[0] + [0] = [0] \in \mathbb{Z}_2$$

$$[0] + [1] = [1] \in \mathbb{Z}_2$$

$$[1] + [1] = [2] = [0] \in \mathbb{Z}_2$$

Thus, $(\mathbb{Z}_2, +, \cdot)$ is closure under addition.

(b)
$$[0] \cdot [0] = [0] \in \mathbb{Z}_2$$

$$[0] \cdot [1] = [0] \in \mathbb{Z}_2$$

$$[1] \cdot [1] = [1] \in \mathbb{Z}_2$$

Thus, $(\mathbb{Z}_2, +, \cdot)$ is closure under multiplication.

- (c) Let the representatives of m and n be m_r and n_r respectively. Then, $m+n=[m_r+n_r]=[n_r+m_r]=n+m$. Therefore, m+n=n+m, and commutativity of the addition "+" is valid for $(\mathbb{Z}_2,+,\cdot)$.
- (d) Let the representatives of m and n be m_r and n_r respectively. Then, $m \cdot n = [m_r \cdot n_r] = [n_r \cdot m_r] = n \cdot m$. Therefore, $m \cdot n = n \cdot m$, and commutativity of the multiplication "." is valid for $(\mathbb{Z}_2, +, \cdot)$.
- (e) For this section, we refer to table 1. Clearly, (m+n) + k = n + (m+k).

\overline{m}	n	k	(m+n)+k	n + (m + k)	$(m \cdot n) \cdot k$	$n \cdot (m \cdot k)$	$k \cdot (m+n)$	$k \cdot m + k \cdot n$
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[0]	[0]	[1]	[1]	[1]	[0]	[0]	[0]	[0]
[0]	[1]	[0]	[1]	[1]	[0]	[0]	[0]	[0]
[0]	[1]	[1]	[0]	[0]	[0]	[0]	[1]	[1]
[1]	[0]	[0]	[1]	[1]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[0]	[0]	[0]	[0]	[1]	[1]
[1]	[1]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[1]	[1]	[1]	[1]	[1]	[0]	[0]

- (f) For this section, we refer to table 1. Clearly, $(m \cdot n) \cdot k = n \cdot (m \cdot k)$.
- (g) For this section, we refer to table 1 . Clearly, $k \cdot (m+n) = k \cdot m + k \cdot n$.
- (h) 0 = [0], since [0] + [0] = [0] and [1] + [0] = [1].
- (i) 1 = [1], since $[0] \cdot [1] = [0]$ and $[1] \cdot [1] = [1]$.
- (j) For [0], [0] + [0] = [0] = 0. For [1], [1] + [1] = [0] = 0.
- (k) For [0], since [0] = 0, we ignore this case. For [1], $[1] \cdot [1] = [1] = 1$.
- (l) $0 = [0] \neq [1] = 1$.

Exercise 2.7

	reflexive	symmetric	transitive
x + y = 0	Т	Т	
$2 \mid (x - y)$	Т	Т	Т
xy = 0	\perp	Т	\perp
x = 1 or y = 1	\perp	Т	\perp
$x = \pm y$	Т	Т	Т
x = 2y	\perp	\perp	\perp
$xy \ge 0$	Т	Т	\perp
x = 1	\perp	\perp	Т

Exercise 2.8

(i)
$$f(A \cup B) = \{f(x) \mid x \in A \cup B\}$$
$$= f(x \mid x \in A) \cup f(x \mid x \in B)$$
$$= f(A) \cup f(B)$$
$$\therefore f(A \cup B) = f(A) \cup f(B)$$

(ii)
$$f(A \cap B) \subset f(A), f(A \cap B) \subset f(B) \\ \Leftrightarrow f(A \cap B) \subset f(A) \cap f(B)$$

Now, if f is an injective function, let $y \in f(A) \cap f(B)$. Then, there exists x_1 in A that satisfies $f(x_1) = y$ and x_2 in B that satisfies $f(x_2) = y$. By injectivity, $x_1 = x_2$.

$$x_1 = x_2 \in A \cap B \Leftrightarrow y = f(x_1) = f(x_2) \in f(A \cap B)$$

 $\Leftrightarrow f(A) \cap f(B) \subset f(A \cap B)$

Since the two sets are subset of each other, $f(A \cap B) = f(A) \cap f(B)$. Therefore, we can conclude that $f(A \cap B) \subset f(A) \cap f(B)$, where equality holds if f is injective.

(iii) There exists $y \in f(A) - f(B)$ and x such that y = f(x)

$$y \in f(A) - f(B) \Leftrightarrow y \in f(A) \land x \notin f(B)$$

Then, there exists $a \in A$ that y = f(a).

Also, $a \notin B$ because $x = f(a) \in f(B)$ violates the initial condition that $y \notin f(B)$. So, $a \in A - B$ and $x = f(a) \in f(A - B)$

$$\therefore f(A) - f(B) \subset f(A - B)$$

If f is injective, let $y \in f(A - B)$. There exists $x \in A - B$ such that y = f(x). By injectivity, $f(x) \in f(A)$ but $f(x) \notin f(B)$.

$$\therefore f(A - B) \subset f(A) - f(B)$$

$$\Rightarrow f(A - B) = f(A) - f(B)$$

Therefore, we can conclude that $f(A) - f(B) \in f(A - B)$, where equality holds if f is injective.

- (iv) f^{-1} exists only when f is bijective. Then, $f: X \to Y$ implies $f^{-1}: Y \to X$. From the conclusion of (i) that $f(A \cup B) = f(A) \cup f(B)$ when f is injective, we can also conclude that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
- (v) f^{-1} exists only when f is bijective. Then, $f: X \to Y$ implies $f^{-1}: Y \to X$. From the conclusion of (ii) that $f(A \cap B) = f(A) \cap f(B)$ when f is injective, we can also conclude that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- (vi) f^{-1} exists only when f is bijective. Then, $f: X \to Y$ implies $f^{-1}: Y \to X$. From the conclusion of (iii) that f(A) f(B) = f(A B) when f is injective, we can also conclude that $f^{-1}(A B) = f^{-1}(A) f^{-1}(B)$.