Python Profiling

Amjith Ramanujam (@amjithr)

Utah Open Source Conf

2012

Profiling a Python Script

What is Profiling?

Where is the time spent?

Profiling a Python Script

What is Profiling?

Where is the time spent?

Why?

- Know the bottle-necks.
- Optimize intelligently.

In God we trust everyone else bring data.

Profiling Tools

Standard Library

- cProfile
- Profile (older pure python implementation)
- hotshot (deprecated)
- timeit

Third Party

- line_profiler
- memory_profiler

Commercial - Web Application

New Relic

cProfile

cProfile

Introduction

Let's use cProfile

\$ python -m cProfile lcm.py
7780242 function calls in 4.474 seconds

Ordered by: standard name

ncalls	tottime	percall	cumtime	percall	filenam
1	0.000	0.000	4.474	4.474	<pre>lcm.py:</pre>
1	2.713	2.713	4.474	4.474	<pre>lcm.py:</pre>
3890120	0.881	0.000	0.881	0.000	{max}
1	0.000	0.000	0.000	0.000	{method
3890119	0.880	0.000	0.880	0.000	{min}

Lowest Common Multiplier

Problem

Given two numbers a,b find the lowest number c that is divisible by both a and b. eg: lcm(2,3) is 6

Lowest Common Multiplier

Problem

Given two numbers a,b find the lowest number c that is divisible by both a and b. eg: lcm(2,3) is 6

Algorithm:

- 1. Start i from the max(a,b)
- 2. If i is perfectly divisible by a and b i is the answer
- 3. Increment i by max(a,b). Goto Step 1.

Lowest Common Multiplier (ver 1)

```
# lcm.py
def lcm(arg1, arg2):
    i = max(arg1, arg2)
    while i < (arg1 * arg2):
        if i % min(arg1, arg2) == 0:
            return i
        i += max(arg1, arg2)
        return(arg1 * arg2)</pre>
```

Let's Profile (ver 1)

\$ python -m cProfile lcm.py
7780242 function calls in 4.474 seconds

Ordered by: standard name

ncalls	tottime	percall	cumtime	percall	filenam
1	0.000	0.000	4.474	4.474	<pre>lcm.py:</pre>
1	2.713	2.713	4.474	4.474	<pre>lcm.py:</pre>
3890120	0.881	0.000	0.881	0.000	{max}
1	0.000	0.000	0.000	0.000	{method
3890119	0.880	0.000	0.880	0.000	{min}

Lowest Common Multiplier (ver 2)

```
# lcm.py
def ver_2(arg1, arg2):
    mx = max(arg1, arg2)
    mn = min(arg1, arg2)
    i = mx
    while i < (arg1 * arg2):
        if i % mn == 0:
            return i
        i += mx
    return(arg1 * arg2)</pre>
```

Let's Profile (ver 2)

```
$ python -m cProfile lcm.py
5 function calls in 0.774 seconds
```

```
Ordered by: standard name
ncalls tottime percall cumtime percall filename
1 0.000 0.000 0.763 0.763 lcm.py:2
1 0.763 0.763 0.763 0.763 lcm.py:2
1 0.000 0.000 0.000 0.000 {max}
1 0.000 0.000 0.000 0.000 {method}
1 0.000 0.000 0.000 0.000 {min}
```

pstats

cProfile

Large Programs

Profiling Large Programs

\$ python -m cProfile shorten.py
95657 function calls (93207 primitive calls) in 1

Ordered by: standard name

ncalls	tottime	percall	cumtime	percall	filename
39	0.000	0.000	0.001	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	0.000	<string< th=""></string<>
1	0.000	0.000	0.000	- 0 E 0 0 Q	<pre><string< pre=""></string<></pre>
	Amiith Paman	uiam (@amiithr) Py	thon Profiling		

Profiling Large Programs

Problem:

- Profiles of bigger programs are messy.
- Ordering by function name is useless.

Profiling Large Programs

Problem:

- Profiles of bigger programs are messy.
- Ordering by function name is useless.

Solution:

- Save the profile to a file.
- Reload the profile and analyze using pStat.

Save the Profile

Let's save the profile to a file.

```
$ python -m cProfile -o shorten.prof shorten.py
$ ls
shorten.py shorten.prof
```

Analyze the Profile

```
>>> import pstats
>>> p = pstats.Stats('script.prof')
>>> p.sort_stats('calls')
>>> p.print_stats(5)
   95665 function calls (93215 primitive calls) in
  Ordered by: call count
  List reduced from 1919 to 5 due to restriction <
  ncalls tottime percall cumtime percall filen
10819/10539 0.002 0.000 0.002 0.000 {le
      9432 0.002 0.000 0.002 0.000 {me
      6061 0.003 0.000 0.003 0.000 {is
      3092 0.004 0.000 0.005 0.000 /ho
      2617 0.001 0.000 0.001 0.000 {me
```

RunSnakeRun

RunSnakeRun

Profile Viewer GUI

GUI Profile Viewer

- A GUI viewer for python profiles
- Shows the bigger picture
- Requires wxPython
- \$ pip install SquareMap RunSnakeRun

Smart Optimization

\$ runsnake script.prof

Clearly shows which parts are worth optimizing.

Decorators

Profiling with Decorators

Fine grained control

Profiling Decorator

- Easy to use.
- Profiling specific functions in a larger program.

https://gist.github.com/1283366

Using Profiling Decorator

```
from profile_func import profile_func
@profile_func()
def convert id to code (row id):
    digits = []
    base = len(ALPHABET)
    while row id > 0:
        digits.append(row_id % base)
        row id = row id / base
    digits.reverse()
    short_code = ''.join([ALPHABET[i] for i in digi
    return short code
$ ls .profile
```

convert_id_to_code.profile

Line Profiler

Line Profiler

Fine Grain

Line Profiler

- What?
 - line-by-line stats on execution time.
- Why?
 - Sometimes function calls aren't enough information.
- How?
 - \$ pip install line_profiler

Usage and Output

```
@profile
def compute(tokens):
    op_s = tokens[0]
    nums = map(int, tokens[1:])
    if op_s == "power":
        result = reduce(op.pow, nums)
    elif op_s == "plus":
        result = reduce(op.add, nums)
    return result
```

Usage and Output

\$ kernprof.py -v -l compute.py data.txt

Line #	Hits	Time	Per Hit	% Time	Li
4			=======		=== qp
5					de
6	606	843	1.4	2.9	
7	606	2607	4.3	8.9	
8	606	873	1.4	3.0	
9	101	20931	207.2	71.6	
10	505	624	1.2	2.1	
11	101	224	2.2	0.8	
12	606	794	1.3	2.7	

Memory Profiler

Memory Profiler

Awesome - Experimental & Slow

Memory Profiler

- memory_profiler is a third party library for determining memory consumption.
- pip install memory_profiler
- line-by-line stats on cumulative memory usage.

Usage and Output

```
@profile
def func():
    a = [0] * 10
    b = [0] * 1000
    c = [0] * 10000000
    return a, b, c
```

Usage and Output

```
$ python -m memory_profiler -l -v mem_ex.py
```

Line #	Mem usage	Line Contents	
=======		-	
3		@profile	
4	6.65 MB	<pre>def func():</pre>	
5	6.66 MB	a = [0] *	10
6	6.67 MB	b = [0] *	1000
7	82.97 MB	C = [0] *	10000000
8	82.97 MB	return a,	b, c

Web Application Profiling

New Relic

Web Application Profiling

- New Relic is a commercial offering that specializes in web app performance monitoring.
- Provides real-time statistics on production servers.

Metrics

- Time spent in Python vs Database.
- Slowest database queries.
- Water-fall graph of Web Transactions.
- etc...

New Relic

Demo

http:

//productivemeter.herokuapp.com/productive

Questions

slides:

• http://bit.ly/Izm3WI

code:

• http: //github.com/amjith/utosc_python_profiling

twitter: @amjithr

Micro Benchmarks

timeit module

Micro Benchmarks with timeit

- timeit module can be used to profile individual statements or blocks in the code.
- Runs the code multiple times to collect more data points.
- Turns off Garbage Collector for accuracy.

```
$ python -m timeit 'range(0,1000)'
100000 loops, best of 3: 12 usec per loop
$ python -m timeit 'xrange(0,1000)'
1000000 loops, best of 3: 0.253 usec per loop
```