Howard Straubing «Finite Automata, Formal Logic, and Circuit Complexity»

Лекция 1(01.03.2012).

```
1. Логика для слов.
```

```
\Sigma = \{a, b, ...\}; |\Sigma| < +\infty; x, y, z позиции в слове; x < y позиция x стоит перед позицией y; Q_a x предикат в позиции x стоит буква a.
```

Пример. $\exists x (Q_a x \& \forall y \ (x \leq y))$ определяет язык $a\Sigma^*$.

```
(a^*)^2 записать нельзя;
```

X, Y, Z — множества позиций;

```
Пример. \forall x \ Q_a x \ \& \ \exists X \ \forall x \ (x \in X \longleftrightarrow x+1 \notin X) \ \& \ (x \notin X \leftrightarrow x+1 \in X)  & \forall x (\forall y \ (x \leq y) \to x \in X) \ \& \ \forall x (\forall y \ (y \leq x) \to x \notin X)  описывает язык (a^2)^*.
```

Логика 1-го порядка. Переменные x, y, z, ...

```
числовые предикаты (<, следует за, делит и т.п.); специальные предикаты для каждой буквы алфавита (Q_a, Q_b,...); логические связки (\&, \lor, \neg, \to, \leftrightarrow);
```

кванторы (\forall, \exists) ;

формулы, свободные и связанные переменные.

Если P n-местный предикат, то выражение $P(x_1, x_2, ..., x_n)$ — это формула (атомарная), в которой все переменные свободны.

Если Φ и Ψ формулы, в которых переменные $x_1,...,x_n$ свободны, а переменные $y_1,...,y_n$ связаны, то $\Phi\&\Psi,\Phi\vee\Psi,\Phi\to\Psi,\Phi\leftrightarrow\Psi,\neg\Phi$ — формулы в которых $x_1,...,x_n$ — свободные, $y_1,...,y_n$ — связанные.

Если Φ — формула, в которой x - свободная переменная, то $\forall x(\Phi)$ и $\exists x(\Phi)$ — формулы, в которых x — связанная, а остальные переменные свободны, если они были свободны в Φ и связаны, если они были связаны в Φ .

Логика 2-го порядка. Переменные x, y, z, ..., X, Y, Z, ...

```
числовые предикаты (<, следует за, делит и т.п.); специальные предикаты для каждой буквы алфавита (Q_a, Q_b,...); предикат (\in); логические связки (\&, \lor, \neg, \rightarrow, \leftrightarrow); кванторы(\forall, \exists); формулы, свободные и связанные переменные.
```

Если P n-местный предикат, то выражение $P(x_1, x_2, ..., x_n)$ —это формула (атомарная), в которой все переменные свободны, кроме того, атомарная формула может иметь вид $x \in Y$.

Если Φ и Ψ формулы, в которых переменные $x_1,...,x_n,X_1,...X_m$ свободны, а переменные $y_1,...,y_n,Y_1,...Y_m$ связаны, то $\Phi \& \Psi, \Phi \lor \Psi, \Phi \to \Psi, \Phi \leftrightarrow \Psi, \neg \Phi$ — формулы, в которых $x_1,...,x_n,X_1,...X_m$ — свободные, $y_1,...,y_n,Y_1,...Y_m$ — связанные.

Если Φ — формула, в которой X — свободная монадическая переменная, то $\forall X(\Phi)$ и $\exists X(\Phi)$ — формулы, в которых X — связанная, а остальные переменные свободны, если они были свободны в Φ и связаны, если они были связаны в Φ .

2. ТЕОРЕМА БЮХИ.

Теорема (Бюхи(1960)). Язык $L \subseteq \sum^* pаспознается конечным недетермини$ рованным автоматом тогда и только тогда, когда он задается некоторой замкнутой формулой монадической теории <math>2-го порядка c отношением = uединственным числовым предикатом «следует за».

 \mathcal{A} оказательство. Необходимость. Пусть \mathcal{A} — конечный автомат, который распознает L:

 $Q - \{q_0, q_1, ..., q_{k-1}\};$

 q_0 — начальное состояние;

 $F \subseteq Q$ — множество заключительных состояний;

 $E \subseteq Q \times \Sigma \times Q$ — множество переходов (q, a, q').

 $w \in L \iff$ существует путь из q_0 в F такой, что метки ребер из этого пути составляют слово w.

 $w \in L \iff$ существуют множества $X_0, X_1, ..., X_{k-1} \subseteq \{1, 2, ..., |w|\}$, такие что выполняются условия:

- $(1) \bigcup_{i=0}^{k-1} X_i = \{1, 2, ..., |w|\};$ $(2) i \neq j \Rightarrow X_i \cap X_j = \varnothing;$

- (4) $i \in X_j, i+1 \in X_l$ и a-i-ая буква в слове w, то $(q_j,a,q_l) \in E;$
- (5) Если $|w| \in X_j$ и a последняя буква в w, то есть такое $q \in F$, что $(q_j, a, q) \in E$.

Возьмем путь, помеченный w, и положим $i \in X_i \iff$ прочтя вдоль этого пути первые i-1 букву, мы окажемся в состоянии q_i .

Пример. Рассмотрим язык, задаваемый автоматом:

и слово $w = b^3 a^2 b$. Тогда:

$$1 \in X_0, \ 2 \in X_4, \ 3 \in X_4, \ 4 \in X_4, \ 5 \in X_5, \ 6 \in X_1;$$

 $X_0 = \{1\}, \ X_2 = X_3 = \emptyset, \ X_1 = \{6\}, \ X_4 = \{2, 3, 4\}, \ X_5 = \{5\}.$

Лекция 2(08.03.2012).

Доказательство. Необходимость. Более подробно. Пусть L регулярен. Возьмем НКА, который распознает $L(Q, \Sigma, q_0, F, E)$:

$$E \subseteq Q \times \Sigma \times Q;$$

$$Q = \{q_0, q_1, ..., q_{k-1}\}.$$

(*) $w \in L \iff$ существуют множества $X_0, X_1, ..., X_{k-1} \subseteq \{1, 2, ..., |w|\}$, такие что:

(1)
$$\bigcup_{i=0}^{k-1} X_i = \{1, 2, ..., |w|\},\$$

на логическом языке $\Phi_1: \ (\forall x)(\bigvee_{i=0}^{k-1}(x\in X_i));$

$$(2)i \neq j \Rightarrow X_i \cap X_j = \emptyset,$$

$$(2)i \neq j \Rightarrow X_i \cap X_j = \varnothing,$$

$$\Phi_2 : (\forall x) [\underset{0 \leq i < j < k}{\&} \neg (x \in X_i \& x \in X_j)];$$

 $(3) 1 \in X_0,$

 $\Phi_3: (\forall x)[\forall y (x \neq y+1) \to x \in X_0];$

(4)
$$i\in X_j, i+1\in X_l$$
 и $a-i$ -ая буква в слове w , то $(q_j,a,q_l)\in E$, $\Phi_4: (\forall x)[\forall y\,(y=x+1\to \bigvee_{0\leqslant i,l< k}(x\in X_i\,\&\,y\in X_l\to \bigvee_{S_{i,l}}Q_ax))],$

где $S_{i,l} = \{ a \mid (q_i, a, q_l) \in E \};$

(5) Если $|w| \in X_j$ и a — последняя буква в w, то есть такое $q \in F$, что

$$(q_{j}, a, q) \in E$$

$$\Phi_{5}: (\forall x)[\forall y (y \neq x + 1) \rightarrow \bigvee_{1 \leqslant j \leqslant k - 1} (x \in X_{j} \rightarrow \bigvee_{T_{j}} Q_{a}x)],$$

$$(q_{j}, a, q) \in E$$

$$\Phi_{5}: (\forall x)[\forall y (y \neq x + 1) \rightarrow \bigvee_{1 \leqslant j \leqslant k - 1} (x \in X_{j} \rightarrow \bigvee_{T_{j}} Q_{a}x)],$$

где $T_j = \{a \mid \exists a \in E \ (q_j, a, q) \in E\}.$

Если обосновать (*), то получится, что язык задаётся формулой

$$\exists X_0, \exists X_1, ..., \exists X_{k-1} \quad \Phi_1 \& \Phi_2 \& \Phi_3 \& \Phi_4 \& \Phi_5.$$

Если $w \in L$, то существует путь из q_0 в $q \in F$, метки которого образуют слово w. Тогда положим $i \in X_i$ тогда и только тогда, когда прочтя приставку слова w длины i-1, мы оказываемся в состоянии q_i .

Обратно, пусть множества $X_0, X_1, ..., X_{k-1}$ со свойствами (1)-(5) существуют. По индукции по длине приставке w' слова w построим такой путь из q_0 в q_i , вдоль которого читается w'. Взяв приставку длины |w|-1, получим путь в q_0 , из которой есть стрелка j в состояние F, помеченное последней буквой

Определение. Пусть Φ — формула первого порядка, в которой есть свободные переменные.

Пусть V — некоторое множество переменных, содержащее все свободные переменные из Ф.

Будем рассматривать «слова» над алфавитом $\Sigma \times 2^V$, т.е. «буквы» — это пары (a, U), где $U \subseteq V$.

$$V$$
-слово — это последовательность букв из $\Sigma \times 2^V$: $(a_1,U_1)(a_2,U_2)...(a_n,U_n)$ такая, что $\bigcup_{i=1}^n U_i=V$ и $U_i\cap U_j=\varnothing$, при $i\neq j$.

Будем рассматривать такие формулы Ф, что каждая связанная переменная связывается ровно одним квантором.

Определение. Скажем, что формула Φ выполнена на V-слове

 $w=(a_1,U_1)(a_2,U_2)...(a_n,U_n)$ (или V-слово w служит моделью для Φ), при некоторой интерпретации *I*. Обозначение: $w \models_I \Phi$. Если:

 $w \models_I Q_a x \iff$ в w есть буква вида (a, S), где $x \in S$;

 $w \models_I R(x_1,...,x_k) \iff \bar{R}(j_1,...,j_k)$, где \bar{R} — это то отношение на множестве 1,...,|w|, которым интерпретируется R, а $j_1,...,j_k$ — это позиции, которые занимают переменные $x_1, ..., x_k$;

$$w \models_I \Phi \& \Psi \iff w \models_I \Phi \text{ if } w \models_I \Psi$$
;

```
w \models_I \neg \Phi \iff w не служит моделью для \Phi при I; w \models (\exists x)\Phi \iff существует такое i \quad 1 \leq i \leq n, что (a_1, U_1)...(a_{i-1}, U_{i-1})(a_i, U_i \cup \{x\})(a_{i+1}, U_{i+1})...(a_n, U_n) \models \Phi. \forall x \Phi(x) \sim \neg \exists x \neg \Phi(x)
```

Пример. $\Theta(x) \stackrel{I}{\rightleftharpoons}$ позиция x четна

 $\exists x \forall y \ \neg(x < y) \& \Theta(x)$

Для формулы $\neg (x < y) \& \Theta(x)$

 $V = \{x, y\}, (a, \{y\})(b, \{x\})$ – пример V-слова.

Для формулы $\forall y \, \neg (x < y) \, \& \, \Theta(x)$ —множество четной длины, x в последней позиции

 $V = \{x\}, (a,\varnothing)(b,\{x\}) - V$ -слово, удовлетворяющее этому множеству.

Лекция 3(15.03.2012).

 Φ — формула монадической теории 2-го порядка (MSO), в которой есть свободные переменные как 1-го так и 2-го порядка.

Рассмотрим множества V_1, V_2 .

 V_i — множество переменных i-го порядка, содержащее все свободные переменные i-го порядка из Φ .

Будем рассматривать (V_1, V_2) -слова над алфавитом $\Sigma \times 2^{V_1} \times 2^{V_2}$; типичная буква (a, S, T), где $a \in \Sigma$, $S \subseteq V_1$, $T \subseteq V_2$; типичное (V_1, V_2) -слово $(a_1, S_1, T_1)(a_2, S_2, T_2) \dots (a_k, S_k, T_k)$; $w \models_T \Phi$.

К атомарным формулам 1-го порядка относятся: $Q_a x$, $P(x_1, \ldots, x_n)$, к атомарным формулам 2-го порядка относится ещё $x \in X$.

 $w\models_I (x\in X)$ — означает, что в w есть такая буква (a_i,S_i,T_i) , что $x\in S_i,\ X\in T_i.$

Говорят, что $w \models_I (\exists X) \Psi$, если существует (возможно пустое) множество позиций $\mathcal{Y} \subseteq \{1, 2, \dots, k\}$, такое что слово w, полученное заменой каждой буквы (a_i, S_i, T_i) , где $i \in \mathcal{Y}$, на букву $(a_i, S_i, T_i \cup \{x\})$, удовлетворяет Ψ .

Теорема (Бюхи(1960)). Язык $L \subseteq \sum^*$ распознается конечным недетерминированным автоматом тогда и только тогда, когда он задается некоторой замкнутой формулой монадической теории 2-го порядка с отношением = u единственным числовым предикатом «следует за».

Доказательство. Достаточность. Пусть Φ — любая MSO формула. Докажем, что язык L_{Φ} всех (V_1,V_2) -слов, удовлетворяющих Φ , является регулярным (при любых V_1,V_2). Тогда теорема Бюхи — частный случай этого утверждения при $V_1=V_2=\varnothing$. Индукция по построению формулы.

Пусть L — множество всех (V_1,V_2) -слов. Легко проверить с помощью конечного автомата над алфавитом $\Sigma \times 2^{V_1} \times 2^{V_2}$, что каждая переменная первого порядка в V_1 встречается в точности один раз во входной строке, таким образом L — регулярный язык. Надо проверить, что если Φ — это атомарная формула, то то что ею задается — это регулярный язык.

 $w \models Q_a x \iff$ в w есть буква (a, S, T), где $x \in S$. Легко проверить с помощью конечного автомата встречается ли конкретная переменная первого порядка в букве, чья первая компонента a. Пересечение множества всех таких слов с языком L – множество всех слов, удовлетворяющих $Q_a x$. Участвуют

только предикаты $x=y,\ y=x+1\ (w\models (y=x+1)\iff$ в w есть фактор $(a_1,S_1,T_1)(a_2,S_2,T_2)$ такой, что $x\in S_1,y\in S_2)$. Эти условия задаются конечными автоматами, упражнение построить автомат. С помощью конечного автомата можно проверить имеет ли любая буква x во второй компоненте и X в третьей, поэтому $x\in X$ – регулярный язык. Таким образом, утверждение доказано для атомарных формул.

Если утверждение верно для формул Φ и Ψ , то оно верно и для $\Phi\&\Psi$ и¬ Φ . В самом деле, т.к. регулярные языки замкнуты относительно пересечения и дополнения: $L_{\Phi\cap\Psi}=L_{\Phi}\cap L_{\Psi}\cap L$ и $L_{\neg\Phi}=L\setminus L_{\Phi}$ — регулярны.

Напомним, что $w \models (\exists x) \Phi \iff$ есть такое i, что

 $(a_1, S_1, T_1)(a_2, S_2, T_2) \dots (a_i, S_i \cup \{x\}, T_i) \dots (a_k, S_k, T_k) \models \Phi.$

Пусть $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ — это тот автомат, который распознает язык $L_{\Phi}.$

Построим новый автомат $\mathcal{M} = (Q \times \{0,1\}, \Sigma, \delta', (q_0,0), F \times \{1\}).$

Пусть $q \in Q, u \in \{0, 1\}$, переходы

 $((q,u),(a,S,T),(q',u))\in \delta',$ если $(q,(a,S,T),q')\in \delta$ и $x\notin S;$

 $((q,0),(a,S\setminus\{x\},T),(q',1))\in\delta',$ если $(q',(a,S,T),q')\in\delta$ и $x\in S$.

Легко видеть, что w принимается автоматом \mathcal{M} тогда и только тогда, когда существует путь, соединяющий x со средней компонентой буквы слова w, так чтобы получилось слово, принимаемое автоматом \mathcal{A} . Таким образом, \mathcal{M} распознает язык $L_{(\exists x)\Phi}$.

Напомним, что $w \models (\exists X) \Phi \iff$ есть такое \mathcal{Y} , что слово

$$(a_1, S_1, T_1)(a_2, S_2, T_2)\dots(a_i, S_i, T_i \cup \{x\})\dots(a_k, S_k, T_k) \models \Phi$$
, где $i \in \mathcal{Y}$.

Пусть $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ — это тот автомат, который распознает язык L_{Φ} .

Построим новый автомат $\mathcal{N} = (Q, \Sigma, \delta', q_0, F),$

 $\delta' = \{ (q, (a, S, T \setminus \{x\}), q') | (q, (a, S, T), q') \in \delta \}.$

Автомат \mathcal{N} распознает язык $L_{(\exists X)\Phi}$.

3. РЕГУЛЯРНЫЕ ПРЕДИКАТЫ.

Пусть Φ —формула MSO(y=x+1), в которой есть предметные переменные. Она определяет предикат на множестве позиций. А именно $(a_1,\ldots,a_k)\in P_\Phi$ тогда и только тогда, когда $\Phi(a_1,\ldots,a_k)=M$.

Пример. x < y – регулярный предикат.

$$x < y \leftrightharpoons y = x+1 \ \lor \exists X \ (\forall z \ (z = x+1 \to z \in X) \& \forall t \ (y = t+1 \to t \in X) \& \ \forall u \ (u \in X \& u+1 \neq y \to \forall v \ (v = u+1 \to v \in X))).$$

Пример. x + y = z – нерегулярный предикат.

Докажем о/п. Пусть $\Phi(x,y,z) \leftrightharpoons x+y=z$. Тогда формула

 $\Psi(x) \leftrightharpoons (\exists z) \ ((\forall y) \ (y \leqslant z) \& \Phi(x,x,z))$ определяет предикат «x – половина длины». Тогда $\exists x \ (\Psi(x) \& (\forall y) (y \leqslant x \to Q_a x) \& (y > x \to Q_b x))$ определяет нерегулярный язык $\{a^n b^n : n > 0\}$. Противоречие.

Домашнее задание. предикат - номер позиции делится на 3. Попробовать доказать (придумать формулу).

Лекция 4(22.03.2012).

Пусть $\Sigma = \{a\}$. Тогда предикат $Q_a x$ теряет свой смысл. $(a, S, \emptyset) = (a, S)$.

Предикат регулярен, тогда и только тогда, когда он задается конечным автоматом.

Пример. Предикат x < y, тогда его распознает автомат:

Пример. Предикат «x делится на m», при m=3 его распознает автомат:

Можно теперь применить алгоритм из доказательства теоремы Бюхи для нахождения формулы.

Определение. Порядковый тип слова.

Рассмотрим язык всех слов над алфавитом $\{(a,S)|S\subseteq\{x_1,\ldots,x_n\}\}$, задаваемый Φ . Обозначим через L_{Φ} . Берём слово w, берём все его буквы (a_i,S_i) . Они образуют разбиение $\{x_1,\ldots,x_n\}$: $\{S_1,S_2,\ldots,S_h\}$ $(h\leqslant n)$. Записываем все переменные из S_i через знак =, а между ставим знак <. Такое выражение — порядковый тип w.

Пример. Пусть n = 3, переменные $\{x, y, z\}$.

Порядковый тип x < y < z, слово имеет вид

$$(a,\varnothing)\dots(a,\varnothing)(a,\{x\})(a,\varnothing)\dots(a,\varnothing)(a,\{y\})(a,\varnothing)\dots(a,\varnothing)(a,\{z\})(a,\varnothing)\dots(a,\varnothing).$$

Пример. Пусть n = 3, переменные $\{x, y, z\}$.

Порядковый тип x = y < z, слово имеет вид

$$(a,\varnothing)\dots(a,\varnothing)(a,\{x,y\})(a,\varnothing)\dots(a,\varnothing)(a,\{z\})(a,\varnothing)\dots(a,\varnothing).$$

Теорема (Страубинг, 1991). Предикат регулярен тогда и только тогда, когда он может быть задан формулой первого порядка, использующей предикаты «x < y» и «x делится на <math>m».

Доказательство. Достаточность очевидна. Подставляя формулы второго порядка в эти предикаты, получим, что задается с отношением «следует за», значит регулярен.

Необходимость. Пусть $P(x_1,\ldots,x_n)$ – какой-то предикат и пусть он регулярен, т.е. задаётся какой-то формулой Φ MSO(y=x+1). Пусть τ – порядковый тип. Обозначим через L_{τ} – множество всех слов типа τ . Достаточно доказать теорему для $L_{\Phi} \cap L_{\tau}$.

Итак, зафиксируем порядковый тип τ . Для простоты будем вместо (a, \varnothing) писать a. Слово $w \in L_{\Phi} \cap L_{\tau}$ имеет вид $a^{m_0}(a, S_1)a^{m_1} \dots (a, S_j)a^{m_j}$, где S_1, \dots, S_j однозначно определены типом au. Пусть \mathcal{A} – автомат, который распознает язык $L_{\Phi} \cap L_{\tau}$. Следом слова w в \mathcal{A} назовем последовательность состояний

$$(p_0, q_0, p_1, q_1, \ldots, p_j, q_j),$$

такую что a^{m_i} метит путь из p_i в q_i , а буква (a, S_i) помечает ребро из (q_{i-1}, p_i) .

Через $L_{q,q'}$ обозначим множество всех слов вида a^m , которые метят путь из q в q'. Язык $L_{q,q'}$ – регулярный и является конечным объединением слов вида $(a^r) * a^s$, где $r, s \ge 0$.

 $L_{\Phi} \cap L_{\tau}$ – это конечное объединение языков

$$L_{p_0, q_0}(a, S_1)L_{p_1, q_1}(a, S_2)\dots(a, S_j)L_{p_j, q_j}$$
 (*),

где объединение берётся по всевозможным следам.

Итак, достаточно написать формулу для языков вида (*). Язык описывается следующими условиями:

- (1) порядковый тип τ ,
- (2) $x_i = x_l + s + 1$,
- (3) $x_i > x_l + s$,
- (4) $x_i \equiv x_l + s \pmod{r}$.

Расположение букв в слове выражается через булеву комбинаций условий (2),(3),(4).

Соответствующие формулы.

$$x_i = x_l \rightleftharpoons \neg(x_i < x_l) \& \neg(x_l < x_i);$$

(1) конъюнкция выражений вида $x_i = x_l$ и $x_i < x_l$.

$$x_i = x_l + 1 \rightleftharpoons (x_l < x_i) \& (\forall y)((x_l < y) \to (x_i = y) \lor (x_i < y));$$

$$(2) (\exists y_1, \dots, y_s)((y_1 = x_i + 1) \& (x_l = y_s + 1) \& \bigvee_{1 \le m \le s-1} (y_{m+1} = y_m + 1))$$

$$(2) (\exists y_1, \dots, y_s)((y_1 = x_i + 1) \& (x_l = y_s + 1) \& \underbrace{\begin{cases} y_1, \dots, y_s \\ 1 \le m \le s - 1 \end{cases}}_{1 \le m \le s - 1} (y_{m+1} = y_m + 1)).$$

$$(3) (\exists y_1, \dots, y_s)((y_1 = x_i + 1) \& (y_s < x_l) \& \underbrace{\begin{cases} y_1, \dots, y_s \\ 1 \le m \le s - 1 \end{cases}}_{1 \le m \le s - 1} (y_{m+1} = y_m + 1)).$$

Если
$$0 < m < r$$
, то $x_i \equiv m \pmod{r} \Rightarrow \exists z ((z \equiv 0 \pmod{r})) \land (x_i = z + m);$

(4)
$$z \equiv x_i + s \pmod{r} \rightleftharpoons \bigvee_{m \in Z_r} ((x_i \equiv m \pmod{r})) \land (z = m + s \pmod{r})).$$

Пример.
$$(a^3)^*a^2(a, \{x_1\})(a^3)^*a(a, \{x_2\})(a^6)^*a^3;$$

 $x_2 > x_1, \quad x_2 = x_1 + 1 \pmod{3}.$

Лекция 5(05.04.2012).

4. Языки бесконечных слов.

В логическом языке на самом деле не важно, чтобы слова были конечными. Всё сохраняет смысл для бесконечных слов. Идея Бюхи: использовать этот подход, чтобы определить регулярный язык бесконечных слов. Бесконечные слова имеют осязаемое практическое применение. Слова - протоколы некоторых процессов. Когда работает компьютер, то это потенциально бесконечная последовательность операций.

$$MSO(+1)$$

 $\Sigma \quad Q_a$ Σ^ω — множество всех бесконечных вправо слов.

Определение. Язык $L\subseteq \Sigma^{\omega}$ назовем регулярным, если он состоит из всех слов, удовлетворяющих некой системе Φ формул MSO(+1).

Пусть \mathcal{A} – конечный (недетерминированный) автомат.

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F);$$

$$\delta:Q\times\Sigma\to 2^Q.$$

Определение. Скажем, что такой автомат $\mathcal A$ принимает слово $w \in \Sigma^\omega$ (в смысле Бюхи), если при чтении w автомат оказывается в состояниях из Fбесконечное число раз.

Пример. Недетерминированный автомат:

распознает язык
$$L(\mathcal{A}) = \{a, b\}^* a^{\omega}$$
, $(\exists y)(\forall x)(x > y \to Q_a x)$.

Пример. Детерминированный автомат:

распознает дополнение языка $L(\mathcal{A})$.

$$L(\mathcal{B}) = (a^*ba^*)^{\omega},$$

$$(\forall y)(\exists x)(x > y \& Q_b x).$$

Определение. Назовем таблицей некоторое множество множества состояний. Скажем, что автомат принимает слово в смысле Мюллера, если мы его читаем и выписываем те состояния, которые он посещает бесконечное число раз. Эти состояния должны быть в таблице.

Утверждение (Ландвебер, 1969). Язык $\{a,b\}^*a^\omega$ не распознается по Бюхи никаким детерминированным автоматом.

Доказательство. о/п. Пусть существует детерминированный автомат, который распознает язык $\{a,b\}^*a^\omega$. Он принимает слово ba^ω . Значит, это слово метит какой-то путь, который бесконечно много раз проходит через состояния из F. В силу детерминированности этот путь единственный. Пусть k_1 таково, что ba^{k_1} метит путь из q_0 в состояния из F. Рассмотрим слово $ba^{k_1}ba^{\omega}\in L$. Значит, оно тоже метит какой-то путь, в котором бесконечно много раз встречаются состояния из F. Возьмем k_2 такое, что слово $ba^{k_1}ba^{k_2}$ заканчивается в состоянии из F. Рассмотрим $ba^{k_1}ba^{k_2}ba^{\omega}\in L$. Отсюда $ba^{k_1}ba^{k_2}\dots ba^{k_n}\dots$ бесконечно много раз посещает состояния из F. Но это слово содержит бесконечное число букв b. Противоречие.

Теорема (Бюхи). Пусть $L \subseteq \Sigma^{\omega}$, L распознается (по Бюхи) конечным автоматом тогда и только тогда, когда L задается некоторым набором формул MSO(+1).

Доказательство необходимости повторяет доказательство в случае конечных слов, за исключением одной модификации. А именно, вместо условия (5) нужно такое условие: одно из множеств X_q – бесконечно, где $q \in F$. $(\forall x)(\exists y)(y > x \& y \in X) \rightleftharpoons X$ бесконечно.

Доказательство достаточности повторяет доказательство в конечном случае для конечных слов, если принять на веру такой факт. Если $L_1, L_2 \subseteq \Sigma^{\omega}$ распознаются, то $L_1 \cup L_2$, $L_1 \cap L_2$, $\Sigma^{\omega} \setminus L_2$ распознаются.

Утверждение. Если $L_1, L_2 \subseteq \Sigma^{\omega}$ – распознаваемы, то и $L_1 \cup L_2$ распознаваем.

 \mathcal{A} оказательство. Пусть $\mathcal{A}_i=(Q_i,\Sigma,q_0^{(i)},\delta_i,F_i),\ i=1,2$ – автомат, который распознает L_i . Будем считать, что $Q_1\cap Q_2=\varnothing$. Определим \mathcal{A} так:

 $Q=Q_1\cup Q_2\cup \{q_0\},\ q_0$ — новое начальное состояние, $F=F_1\cup F_2$ — множество заключительных состояний,

$$\delta = \delta_1 \cup \delta_2 \cup \{(q_0, a, q) | (\exists q \in Q_i) : (q_0^{(i)}, a, q) \in \delta_i \}.$$
 Тогда автомат $\mathcal A$ распознает язык $L_1 \cup L_2$.

Предложение. $L \in \Sigma^{\omega}$ распознается конечным автоматом (по Бюхи) тогда u только тогда, когда L можно представить в виде конечного объединения языков вида JK^{ω} , где J – регулярный язык в Σ^* , а K – регулярный язык в Σ^+ .

Доказательство. Необходимость. Пусть автомат $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ распознает язык L. Пусть J – это тот язык, который распознается этим автоматом в «конечном смысле», а K – это моножество тех непустых слов, которые в ${\mathcal A}$ читаются на пути из F в F. Через $L_{p,q}$ обозначим язык конечных слов, которые можно прочесть на пути из $p\in Q$ в $q\in Q$. Тогда $L=\bigcup_{q\in F}L_{q_0,q}L_{q,q}^\omega.$

Достаточность. Чтобы доказать, достаточно (в силу предложения 1) проверить, что каждый язык вида JK^{ω} распознается по Бюхи конечным автоматом. Пусть $\mathcal{B} = (Q, q_0, F, \delta)$ – автомат, который распознает K. Возьмем новое состояние q_0' и для каждой стрелки $q_0 \stackrel{a}{\to} q$ нарисуем стрелку $q_0' \stackrel{a}{\to} q$, а для каждой стрелки $q \xrightarrow{a} f \in F$ нарисуем стрелку $q \xrightarrow{a} q_0'$. Обозначим через δ' расширенное множество переходов. Тогда автомат $\mathcal{B}' = (Q \cup \{q_0'\}, q_0', \{q_0'\}, \delta')$ распознает по Бюхи язык K^{ω} . Пусть автомат (P, p_0, T, Δ) – автомат, который распознает язык

J. Полагаем, что $P\cap (Q\cup \{q_0'\})=\varnothing$. Пусть $\Delta'=\{(p,a,q_0'):\exists t\in T,\ (p,a,t)\in \Delta\}$. Тогда автомат

$$(P \cup Q \cup \{q'_0\}, p_0, \{q'_0\}, \Delta' \cup \Delta \cup \delta')$$

распознает язык JK^{ω} .

Лекция 6 (12.04.2012)

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F);$$

 $w \in \Sigma^+;$

 $s(q,q',w) \rightleftharpoons$ есть путь из q в q', помеченный словом w;

 $t(q, q', w) \rightleftharpoons -//-$ и проходящий через одно из состояний из F.

Введем отношение эквивалентности:

 $u \sim v \rightleftharpoons$ для всех $q, q' \in Q, \ s(q, q', u) \longleftrightarrow s(q, q', v) \ \& \ t(q, q', u) \longleftrightarrow t(q, q', v).$

Пемма 1. $y \sim конечное число классов и каждый класс — регулярный язык.$

Доказательство. \sim -класс слова w определяется набором таких пар (q,q'), что s(q,q',w) & t(q,q',w). Поэтому число классов не больше, чем число множеств таких пар. Введем множества слов $S(q,q')=\{u|\ s(q,q',u)\$ истинно $\}$ и $T(q,q')=\{u|\ t(q,q',u)\$ истинно $\}$. Каждый класс — это булева комбинация таких множеств. Для слова w его \sim - класс:

$$(\bigcup_{\substack{(q,q'),\\ \text{free } s(q,q',w)\\ \text{inctuitho}}} S(q,q') \cap \bigcup_{\substack{(q,q'),\\ \text{free } t(q,q',w)\\ \text{inctuitho}}} T(q,q')) \setminus (\bigcup_{\substack{(p,p'),\\ \text{free } s(p,p',w)\\ \text{subsets}}} S(p,p') \cap \bigcup_{\substack{(p,p'),\\ \text{free } t(p,p',w)\\ \text{subsets}}} T(p,p')).$$

Поэтому осталось доказать, что регулярны S(q, q') и T(q, q').

$$S(q, q') = L(q, q'),$$

$$T(q, q') = \bigcup_{f \in F} L_{q,f} \cdot L_{f,q}.$$

Так как множества вида L(q, q') — регулярные языки, все доказано.

Лемма 2. Пусть J, K – \sim -классы, $L \subseteq \Sigma^{\omega}$ и $L = L(\mathcal{A})$. Если $JK^{\omega} \cap L \neq \varnothing$, то $JK^{\omega} \subseteq L$.

Доказательство. Пусть $\alpha \in JK^{\omega} \cap L$. Тогда $\alpha = \alpha_0\alpha_1\alpha_2 \dots$, где $\alpha_0 \in J, \alpha_i \in K$. Значит, в \mathcal{A} есть последовательность состояний $q_0, q_1, q_2 \dots$ такая, что $s(q_l, q_{l+1}, \alpha_l)$ истинно для всех l и $t(q_j, q_{j+1}, \alpha_j)$ истинно для бесконечного множества индексов j. Пусть β — любое слово из JK^{ω} . Тогда $\beta = \beta_0\beta_1\beta_2 \dots$, где $\beta_0 \in J, \beta_i \in K$ при i > 0. Имеем $\alpha_i \sim \beta_i$ для всех i, откуда $s(q_l, q_{l+1}, \beta_l)$ истинно для всех l и $t(q_j, q_{j+1}, \beta_j)$ истинно для бесконечно многих j. Значит, $\beta \in L$.

Теорема (Рамсей, конечный вариант). Пусть k – любое число. Найдется такое R = R(k), что в любом графе c R вершинами есть либо полный подграф c k вершинами, либо пустой подграф c k вершинами.

Доказательство. Пусть r(m,n) — наименьший размер графа, у которого всегда есть либо полный подграф с m вершинами либо пустой подграф с n вершинами. Тогда R(k) = r(k,k). Ясно, что r(2,n) = n, r(m,2) = m. Докажем, что $r(m,n) \leqslant r(m,n-1) + r(m-1,n)$. Возьмем граф с N = r(m,n-1) + r(m-1,n) вершинами и пусть v — любая вершина. Рассмотрим множество G всех вершин, смежных с v. Если в G по крайней мере r(m-1,n) вершин, то все хорошо. В

противном случае в исходном графе по крайней мере r(m,n-1) вершин, не смежных с v и опять все хорошо.

Пример. Задача про знакомства: R(3) = 6.

Обобщение. Пусть k,c любые числа. Тогда $\exists R=R(k,c),$ что если ребра полного графа с R вершинами покрасить в c цветов, то найдется одноцветный полный граф с k вершинами.

```
Пример. R(3,3) = 17.
```

Обобщение. Пусть k,c,s — любые числа. Тогда $\exists R=R(k,c,s)$, что в любом подмножестве из R элементов покрасить все s-подмножеств в c цветов, то найдется k- подмножество, у которого все s-подмножества будут покрашены в один цвет.

Лемма 3. Пусть $\alpha \in \Sigma^{\omega}$. Тогда существуют \sim -классы J,K такие, что $\alpha \in JK^{\omega}$.

Доказательство. Пусть i < j. Обозначим через $\alpha[i,j]$ кусок слова α от i-ой позиции до j-1-й позиции. Покрасим все 2-х элементные подмножества в $\mathbb N$ красками, соответствующими \sim -классам так: $\{i,j\}$,где i < j – это \sim -классы слова $\alpha[i,j]$. По теореме Рамсея в $\mathbb N$ есть бесконечное подмножество $\{i_1 < i_2 < i_3 < \ldots\}$, у которого все 2-х элементные подмножества покрашены одним цветом. Пусть K – это \sim -класс, который отвечает этому цвету $\alpha[i_1,i_2], \alpha[i_2,i_3], \ldots \in K$. Пусть Y - это класс слова $\alpha[1,i_1]$. Тогда $\alpha = \alpha[1,i_1]\alpha[1,i_2] \ldots \in JK^\omega$.

 $\mathit{Утверждение}.$ Если $L\subseteq \Sigma^\omega$ — распознаваемый язык, то $\Sigma^\omega\setminus L$ — распознаваемый язык.

Доказательство. По лемме 3 для любого $\alpha \in \Sigma^{\omega} \setminus L$ существуют \sim -классы J, K, такие что $\alpha \in JK^{\omega}$. Значит, $\Sigma^{\omega} \setminus L$ лежит в объединении множеств JK^{ω} . Если бы $JK^{\omega} \cap L \neq \varnothing$, то по лемме 2 множество $JK^{\omega} \subseteq L$, но JK^{ω} содержит слова из дополнения языка L. Получили, что $JK^{\omega} \cap L = \varnothing$. Отсюда имеем, что объединение множеств JK^{ω} лежит $\Sigma^{\omega} \setminus L$. Значит дополнение языка L – это объединение множеств JK^{ω} . По лемме 1 объединение конечное и J, K — регулярные языки. По предложению $\Sigma^{\omega} \setminus L$ — распознаваемо.

Лекция 7 (19.04.2012).

Следствие 1. Монадическая теория 2-го порядка множества \mathbb{N} с отношением «следует за» разрешима.

S2S - то же разрешима (деревья).

Теперь под формулами понимаем формулы первого порядка.

Любую формулу первого порядка можно заменить на эквивалентную ей префиксную формулу, т.е. формулу вида:

```
 \forall x \; \exists y \; \forall z \; \exists w \; \Phi(x,y,z,\ldots,w) \leftarrow \text{ бескванторная часть.} \\ \neg(\forall x \; \Phi(x)) \sim \exists x \; \neg \Phi(x), \\ \neg(\exists x \; \Phi(x)) \sim \forall x \; \neg \Phi(x), \\ \forall x \; \Phi(x) \, \& \, \forall x \; \Psi(x) \sim \forall x \; (\Phi(x) \, \& \, \Psi(x)), \\ \exists x \; \Phi(x) \; \lor \; \exists x \; \Psi(x) \sim \exists x \; (\Phi(x) \; \lor \; \Psi(x)), \\ \forall x \; \Phi(x) \; \lor \; \forall x \; \Psi(x) \; \nsim \; \forall x \; (\Phi(x) \; \lor \; \Psi(x)), \\ \forall x \; \Phi(x) \; \lor \; \forall x \; \Psi(x) \; \sim \; \forall x \forall y \; (\Phi(x) \; \lor \; \Psi(y)),
```

```
\exists x \ \Phi(x) \& \exists x \ \Psi(x) \nsim \exists x \ (\Phi(x) \& \Psi(x)),
\exists x \ \Phi(x) \& \exists x \ \Psi(x) \sim \exists x \exists y \ (\Phi(x) \& \Psi(y)).
```

5. Игры Эренфойхта-Фрессе.

Определение. Сложность формулы (c):

Если
$$\Phi$$
 – атомарная формула, $c(\Phi) = 0$, $c(\neg \Phi) = c(\Phi)$, $c(\Phi \& \Psi) = \max\{c(\Phi), c(\Psi)\}$, $c(\exists x \ \Phi) = c(\Phi) + 1$.

Предложение. Пусть v – конечный набор переменных. Тогда существует только конечное число формул первого порядка в префиксной форме, у которых сложность < c, а все переменные лежат в v.

Доказательство. Число атомарных формул ограничено в терминах числа предикатных символов и числа подмножеств в v. Дальше можно применить индукцию по c.

Пусть
$$w_1, w_2$$
 - v -слова

$$(a_1,X_1)(a_2,X_2)\dots(a_n,X_n), X_i\cap X_j=\varnothing,$$
 при $i\neq j,$ $\bigcup_{i=1}^n X_i=v.$ $w_1\sim_r w_2\rightleftarrows w_1$ и w_2 удовлетворяют одному и тому же набору формул

сложности $\leq r$.

Из предложения следует, что \sim_r эквивалентность конечного индекса.

Определение. Определим r-раундовую игру на (w_1, w_2) . Алиса хочет доказать, что w_1 и w_2 различны, а Боб хочет доказать противоположное. У каждого игрока r жетонов. На i-ом ходу Алиса кладет жетон z_i на букву в одном из слов. В ответ Боб должен положить свой жетон z с тем же номером на какую-то букву в другом слове. Когда игра заканчивается, у нас есть два $(v \cup \{z_1, \dots z_n\})$ слова w_1' и w_2' . Боб выигрывает, если для каждой атомарной формулы α :

$$\alpha$$
 выполнена на $w_1' \iff \alpha$ выполнена на w_2' .

В противном случае Алиса выигрывает.

Лекция 8 (26.04.2012).

 $u \sim_r v \rightleftharpoons u$ и v удовлетворяют одним и тем же формулам сложности $\leqslant r$.

Теорема. $u \sim_r v \iff \textit{Боб имеет выигрышную стратегию в <math>r$ -раундовой игре $\mu a (u,v).$

 \mathcal{A} оказательство. Необходимость. Индукция по r. Если r=0, то Боб сразу выиграл, т.к. w_1 и w_2 удовлетворяют одним и тем же формулам. Пусть утверждение верно для r-1 и не верно для r. Это значит, что для какой-то пары слов (u,v) со свойством $u \sim_r v$ у Алисы есть выигрышная стратегия. Позволим Алисе сделать первый ход этой стратегии. Можно считать, что она ставит жетон на букву из слова u. В результате получится такая структура u', что при любом ответе Боба получится такая пара (u', v'), на которой Алиса имеет выигрышную стратегию в игре с r-1 раундом. По предположению индукции $u' \nsim_{r-1} v'$. Пусть Φ – это конъюнкция нормальных форм всех формул сложности < r, которые выполнены в u'. Тогда Φ не выполнена в v' при любом

способе получения v'. Это значит, что формула $\exists z_1 \Phi$ не выполнена на v, но она выолнена на u. Отсюда $u \nsim_r v$. Противоречие.

Достаточность. Индукция по r. Если r = 0, то $u \sim_0 v$. Пусть утверждение верно для r-1 и предположим, что у Боба есть выигрышная стратегия на (u,v), но $u \nsim_r v$. Последнее означает, что существует формула Φ сложности $\leq r$ такая, что она выполнена на u, но не выполнена на v. Можно считать, что Ф имеет вид $\exists z \ \Psi$, где Ψ – формула сложности $\leqslant r-1$. Если Алиса положит свой жетон на то место, которое делает истинным формулу Ψ на u, то Боб может отметить какое-то место в слове v. Получится новая пара слов (u', v'), в которой у Боба есть выигрышная стратегия в r-1 ходов. По предположению индукции имеем, что u' и v' удовлетворяют одним и тем же формулам сложности $\leqslant r-1$. В частности, v' удовлетворяет Ψ . Но тогда слово v удовлетворяет формуле $\exists z \ \Psi = \Phi$. Противоречие.

Следствие. С помощью теоремы можно доказать, что $(\mathbb{R},<)$ и $(\mathbb{Q},<)$ удовлетворяют одним и тем же формулам 1-го порядка.

```
Пример. V = \emptyset, w_1 = ab, w_2 = baa. Отношение — отношение =.
```

В однораундовой игре выигрывает Боб.

В двухраундовой игре выигрывает Алиса:

Алиса $w_2 = b \mathop{a}_{z_1 z_2} a$, Боб $w_1 = \mathop{a}_{z_1 z_2} b$. Соответствующая формула $\exists x \ \exists y \ (\neg(x=y) \& Q_a x \& Q_a y)$.

Пример. $2)w_1$ – слово, которое кончается на a, w_2 – слово, которое кончается на b. Отношение <.

Алиса выигрывает за два раунда. Первым ходом она ставит z_1 на последнюю букву в w_1 . Если в w_2 нет буквы a, то Боб сразу проиграл. Если есть, он вынужден поставить z_1 на эту букву. Тогда Алиса ставит свой жетон на последнюю букву в w_2 . Боб отвечает и проигрывает.

```
B w_2 z_1 < z_2, B w_1 z_2 < z_1.
\exists x \ (\forall y \neg (x < y) \& Q_b x).
\begin{array}{l} \operatorname{Reg} = \operatorname{MSO}(<) = \operatorname{MSO}(y = x + 1) \\ \operatorname{Reg} \geqslant \operatorname{FO}(<) \geqslant \operatorname{FO}(y = x + 1) \end{array}
```

Теорема. Множество слов четной длины не лежит в FO(<).

Доказательство. О/п. Допустим, что есть формула Φ , которая определяет множество слов четной длины. Пусть $c(\Phi)=r$. Тогда Φ выполнена на $a^k \iff k$ чётно. Покажем, что $a^{2^r} \sim_r a^{2^r-1}$. Мы построим выигрышную стратегию для Боба r-раундовой игры на паре (a^k, a^{k+1}) при $k \geqslant 2^r - 1$. Это делается индукцией по r. При r=1 любой ответ Боба — выигрышный. Пусть r>1 и утверждение верно при r-1. Допустим, что Алиса положила z_1 на одно из двух слов, получив структуру $a^s(a,\{z_1\})a^t$. Тогда либо $s\leqslant \frac{k-1}{2}$, либо $t\leqslant \frac{k-1}{2}$. Считаем, что $s\leqslant \frac{k-1}{2}$, если иначе выполняем все симметрично. Боб ставит свой жетон на (s+1)-ую букву 2-го слова: $a^s(a,\{z_1\})a^{t'}$, где t'=t+1 или t'=t-1. Так как $2^{r-1}-1\leqslant k=min\{t,t'\}+s+1\leqslant min\{t,t'\}+\frac{k-1}{2}+1$, получаем, что $min\{t,t'\}\geqslant \frac{k-1}{2}\geqslant 2^{r-1}-1$. По предположению индукции Боб имеет выигрышную стратегию в (r-1) раундовой игре на $(a^t, a^{t'})$. Если теперь Алиса ставит жетон на i-ую букву с $i \leq s$, тогда Боб отвечает ходом на i-ую букву второго слова. Иначе Боб действует согласно своей выигрышной стратегии для пары $(a^t,a^{t'})$. Докажем, что Боб выигрывает. В результате получается две (z_1,\ldots,z_r) - структуры. Надо показать, что они удовлетворяют одинаковым атомарным формулам $z_i < z_j$. Пусть первая структура удовлетворяет этой формуле. Если z_i и z_j появляются среди первых (s+1) буквы. То они стоят на тех же позициях во второй структуре. Если они стоят среди последних t(t') букв, то можно считать, что они появились в результате какой-то игры на паре $(a^t,a^{t'})$, а поскольку Боб придерживался выигрышной стратегии, $z_i < z_j$ выполнено и во втором слове. Если z_i - в голове, а z_j - в хвосте, то и во втором слове это верно.

Лекция 9(03.05.2012).

$$FO(x = y + 1) \subseteq FO(<) \subset Reg = MSO(<) = MSO(x = y + 1)$$

6. Локально барьерно тестируемые языки.

Рассмотрим на множестве слов Σ^* отношение \thickapprox_r^k .

 $w_1 \approx_r^k w_2 \iff$ выполняются следующие три условия:

- 1) у w_1 и w_2 одинаковые приставки длины k-1,
- 2) у w_1 и w_2 одинаковые суффиксы длины k-1,
- 3) если w слово длины k, то число вхождений слова w в w_1 в качестве фактора равно числу вхождений слова w в w_2 в качестве фактора, если оба этих числа < r; либо оба этих числа > r.

Определение. Если $w_1 = uwv$, где $u, v \in \Sigma^*$, то w — фактор слова w_1 .

Пример. В слове *abbaabbba* слово *bb* входит 3 раза.

Сканирующее устройство:

Два слова находятся в отношении $w_1 \approx_r^k w_2$, если сканирующее устройство не может их отличить.

 $w_1 \approx_r^k w_2$ — это эквивалентность конечного индекса.

Определение. Язык L называется локально барьерно тестируемым, если он является объединением классов \approx_r^k для некоторых r и k.

Мы хотим доказать, что именно эти языки соответствуют FO(x = y + 1).

Пемма. Любой локально барьерно тестируемый язык задаётся формулой теории первого порядка с отношением (x = y + 1).

Доказательство. Достаточно доказать, что для всех k и r каждый \approx_r^k класс задаётся FO(x=y+1). Выпишем формулу соответствующую условиям 1),2),3).

1) Пусть
$$u$$
 – какое-то фиксированное слово длины $k-1, u=a_1a_2\dots a_{k-1}$. $\exists x_1\exists x_2\dots\exists x_{k-1}(First(x_1)\ \&\ x_2=x_1+1\ \&\dots\&\ x_{k-1}=x_{k-2}+1\ \&\ \bigvee_{1\leqslant i\leqslant k-1}Q_{a_i}x_i),$

где First(x) – сокращение для формулы $\neg \exists y (x = y + 1)$.

2) Аналогично.

3) Пусть $v = a_1 a_2 \dots a_k$ – слово длины k и t – число меньше r.

Теорема. Языки из FO(x = y + 1) – это в точности локально барьерно тестируемые языки.

Доказательство. Пусть \sim_r – это отношение, определяемое правилом $w_1 \sim_r w_2 \iff$ на w_1 и w_2 выполнены одни и те же $\mathrm{FO}(x=y+1)$ -формулы сложности $\leqslant r$. Докажем, что если $R=3^r$ и $w_1 \approx_{3R}^r w_2$, то $w_1 \sim_r w_2$, т.е. у Боба есть выигрышная r-раундовая стратегия.

$$\frac{\phi$$
актор $j=1$

Множество $\{i, ..., j\}$ назовём носителем фактора. Два фактора разделены, если их носители не пересекаются. Все неразделенные факторы объединим — это объединение множества исходных факторов. Допустим, что i раундов уже сыграли. Это значит, что z_1, \ldots, z_i уже поставлены в каждом слове. Для каждой позиции m,на k-ую поставлен жетон в слове w_i , (i=1 или 2). Рассмотрим фактор $w_i[m-3^{r-i}+1,m+3^{r-i}]$. Если $m-3^{r-i}+1<1$ или $m + 3^{r-i} > |w_i| + 1$, то соответственно рассматриваем префикс $w_i[1, m + 3^{r-i}]$ или суффикс $w_i[m-3^{r-i}+1,|w_i|]$. Рассмотрим объединение в каждом слове. Пусть это объединение состоит из $k_{i,j}$ факторов $u_{i,j,1}, \ldots, u_{i,j,k_{i,j}}$. Объясним, как Боб должен играть, чтобы для каждого $p,1\leqslant p\leqslant j$ фактор $u_{i,1,n},$ в котором стоит жетон z_p в первом слове был равен фактору $u_{i,2,n}$, в котором этот же жетон стоит во втором слове, и при этом z_n стоит в обоих факторах на той же позиции. Индукция по i. Если i=0, доказывать нечего. Допустим, что утверждение верно для і. Пусть есть выигрышная г-раундовая стратегия. Пусть Алиса поставила z_{i+1} на какую-то позицию m слова w_1 . Если фактор $v=w_1[m-3^{r-i-1},m+3^{r-i-1}]$ целиком попал в один из факторов $u_{i,1,n}$, то Боб просто ставит свой жетон на соответствующую позицию в $u_{i,2,n}$. Если это не так, то v разделен от факторов $u_{i+1,1,h}$, которые содержат жетоны z_1,\ldots,z_i . В слове w_2 берем фактор нужной длины, отделенный от всех факторов вида $u_{i+1,2,h}$ и ставим z_{i+1} в его середину.

Лекция 10 (10.05.2012).

Следствие. $FO(y = x + 1) \subset FO(<)$.

Доказательство. Пусть $\Sigma = \{a,b,c\}$ и $L = a^*ba^*ca^*$. Докажем, что $L \in FO(<)$. Просто напишем формулу:

$$\exists x \; \exists y \; (x < y) \; Q_b x \& Q_c y \& \forall z \; (x \neq z \& y \neq z \rightarrow Q_a z).$$

Для доказательства того, что $L \notin FO(y=x+1)$, воспользуемся теоремой. Допустим, что язык L является объединением \thickapprox_r^k -классов для каких-то r и

k. Рассмотрим $a^kba^kca^k$ и $a^kca^kba^k$. Видно, что они находятся в одном \approx_k^r -классе (при любом r). У них одинаковые слова длины k: $a^{l-1}ba^{k-l}$, $a^{l-1}c^{k-l}$. Но $a^kba^kca^k\in L$, а $a^kca^kba^k\notin L$. Противоречие.

7. АЛГЕБРАИЧЕСКАЯ ХАРАКТЕРИЗАЦИЯ FO(<).

Определение. Если L - язык в Σ^* , то \sim_L (синтаксическая конгруэнция) определяется так:

$$w_1 \sim_L w_2 \iff (\forall u, v \in \Sigma^* \ uw_1 v \in L \iff uw_2 v \in L).$$

Синтаксический моноид — это Σ^*/\sim_L .

Моноид апериодический, если все подгруппы тривиальны или, что эквивалентно, \mathcal{H} -тривиальны или, что эквивалетно, $x^k=x^{k+1}$ для любого x и для некоторого k.

Теорема (Макнотон). Язык задаётся формулой первого порядка с предикатом < тогда и только тогда, когда его синтаксический моноид – апериодический

Доказательство. Необходимость. Индукция по построению формулы.

База индукции. Формула атомарна. Если $uw^2v \models Q_ax$, то x появляется либо в u, либо в v. Но тогда $uw^3v \models Q_ax$ и обратно, если $uw^3v \models Q_ax$, то $uw^2v \models Q_ax$. Отсюда uw^2v и uw^3v одновременно принадлежат или не принадлежат L. Поэтому $w^3 \sim w^2$ и в $\Sigma^*/\sim x^3 = x^2$ для любого x. Значит, моноид языка $L(Q_ax)$ апериодический. Если $uw^2v \models x < y$, то x и y появляются либо в u, либо в v. Но тогда $uw^3v \models x < y$ и обратно, если $uw^3v \models x < y$, то $uw^2v \models x < y$.

Шаг индукции. Пусть Φ и Ψ — такие формулы, что $M(L(\Phi))$ и $M(L(\Psi))$ — апериодические. Докажем, что и $M(L(\Phi \& \Psi))$ апериодический. Пусть k такое, что $x^k = x^{k+1}$ для всех $x \in M(L(\Phi))$ и всех $x \in M(L(\Psi))$. Возьмем любые слова u, w, v. Имеем $w^{k+1} \sim_{L(\Phi)} w^k$, откуда $uw^{k+1}v \models \Phi \iff uw^kv \models \Phi$ и $w^{k+1} \sim_{L(\Psi)} w^k$, откуда $uw^kv \models \Psi \iff uw^kv \models \Psi$. Поэтому $uw^{k+1}v \models \Phi \& \Psi \iff uw^kv \models \Phi \& \Psi$. Отсюда $w^k \sim_{L(\Phi \& \Psi)} w^{k+1}$ и $x^k = x^{k+1}$ в $M(L(\Phi \& \Psi))$. С отрицанием тоже легко. Допустим, что $uw^{2k+1}v \models \exists x\Phi$. Можно x куда-то «положить» так, что получится слово, удовлетворяющее Φ : $(a, X) \to (a, X \cup \{x\})$. Это слово можно представить в виде $u'w^kv' \models \Phi$. Поэтому и $u'w^{k+1}v' \models \Phi$. Отсюда следует, что обратное тоже верно

$$uw^{2k+1}v \in L(\exists x\Phi) \iff uw^{2k+2}v \in L(\exists x\Phi).$$

Следовательно, $w^{2k+1}\sim_{L(\exists x\Phi)}w^{2k+2}$, т.е. в $M(L(\exists x\Phi))$ выполнено равенство $x^{2k+1}=x^{2k+2}$

Достаточность. Нужно доказать, что если моноид языка L апериодический, то $L \in FO(<)$. Мы воспользуемся теоремой Шютценберже, согласно которой, L - беззвездный язык. Формула строится индукцией по построению беззвездного языка из одноэлементных и единственный сложный элемент — произведение. Пусть $L_1 = L(\Phi), L_2 = L(\Psi)$ как построить формулу, задающую L_1, L_2 ? Нужно научиться по данной формуле Φ строить новую формулу Φ' , такую что $w \models \Phi' \iff y \ w$ есть приставка, удовлетворяющая Φ .

Лекция 11 (17.05.2012).

$$L_1L_2 = \{w | \exists u \in L_1 \ \exists v \in L_2 \ w = uv \}.$$

Пусть w — слово. Скажем, что φ выполнена на w между i и j, где i < j, если $w = a_1 a_2 \dots a_i a_{i+1} \dots a_{j-1} a_j \dots a_n$ и слово $a_i a_{i+1} \dots a_{j-1}$ удовлетворяет формуле φ .

Предложение (о регуляризации). Для любой формулы φ теории 1-го порядка c отношением < существует формула $\varphi(x,y)$ c двумя новыми свободными переменными x u y такая, что для любого слова w u для любых i,j таких, что $1 \le i < j \le |w|$, слово w удовлетворяет $\varphi(i,j) \iff w$ удовлетворяет φ между i u j.

Доказательство. Для атомарной формулы φ полагаем $\varphi(x,y)=\varphi$. Если $\varphi=\neg \psi$, то $\varphi(x,y)=\neg \psi(x,y)$. Если $\varphi=\psi_1\vee\psi_2$, то $\varphi(x,y)=\psi_1(x,y)\vee\psi_2(x,y)$. Если $\varphi=\exists z\psi$, то $\varphi(x,y)=\exists z((x\leqslant z)\&(z< y)\&\psi(x,y))$.

Точечная иерархия.

Языки уровня 1 — кусочно-тестируемые (нет перемен кванторов).

 $\exists x_1 \exists x_2 \dots \exists x_n (x_1 < x_2 < x_3 < \dots < x_n \& Q_a x_1 \& Q_a x_2 \& \dots \& Q_a x_n).$

Языки уровня k — это булева комбинация языков вида $L_1a_1L_2a_2\dots L_na_nL_{n+1}$, где $a_1,a_2,\dots,a_n\in\Sigma$, а L_1,L,\dots,L_{n+1} — языки уровня $\leqslant k-1$. Это в точности языки, задаваемые формулами первого порядка с k-1 переменой кванторов. $FO(x=y+1)\subsetneq FO(<)$.

Теорема (Боке, Пэн). Язык принадлежит к классу FO(x=y+1) тогда и только тогда, когда его синтаксический моноид M апериодический и для любых e, e', s, s', s'' из образа языка в синтаксическом моноиде, где e и e' – идемпотенты ese's'es'' = es''e's'ese'.