02. Estudio de los esfuerzos en un punto

secciones 2.7 a 2.10

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales
Departamento de Ingeniería Civil
Mecánica Tensorial

2023a

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Álvarez, 2022).

3 / 51

20232

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

1 2.7. Esfuerzos normales y tangenciales sobre un plano

- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Moni en dos difficisiones
 - 2.9.2. Gráfica e interpretación del círculo de Moh
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Esfuerzos normales y tangenciales sobre un plano

Entendamos el vector del esfuerzo normal σ_n como la proyección del vector de esfuerzos q sobre el vector normal al plano \hat{n} :

$$oldsymbol{\sigma}_n = \operatorname{Proy} \, oldsymbol{q}/oldsymbol{\hat{n}} = rac{\langle oldsymbol{q}, oldsymbol{\hat{n}}
angle}{\langle oldsymbol{\hat{n}}, oldsymbol{\hat{n}}
angle} oldsymbol{\hat{n}}$$

Michael H.P. Mecánica tensorial, Unidad 2 2023a

 $\mathrm{d} v$

en 3D

1 7

Esfuerzos normales y tangenciales sobre un plano

• El valor del esfuerzo normal:

$$\sigma_n = \sigma_x \alpha^2 + \sigma_y \beta^2 + \sigma_z \gamma^2 + 2\tau_{xz} \alpha \gamma + 2\tau_{yz} \beta \gamma + 2\tau_{xy} \alpha \beta$$

El valor del esfuerzo tangencial o cortante:

$$\tau_n^2 = (\sigma_x \alpha + \tau_{xy} \beta + \tau_{xz} \gamma)^2 + (\tau_{xy} \alpha + \sigma_y \beta + \tau_{yz} \gamma)^2 + (\tau_{xz} \alpha + \tau_{yz} \beta + \sigma_z \gamma)^2 - \sigma_n^2$$

Código

• 02_07.ipynb

en 2D

Esfuerzos normales y tangenciales sobre un plano

$$\sigma'_x \to \sigma_n \qquad \tau_{x'y'} \to \tau_n$$

El valor del esfuerzo normal:

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$= \sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta + 2\tau_{xy}$$

• El valor del esfuerzo tangencial o cortante:

$$\tau_n(\theta) = \tau_{xy} \cos 2\theta - \frac{\sigma_x - \sigma_y}{2} \sin 2\theta$$

8 / 51

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- Referencias

9 / 51

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Esfuerzos principales en 2D

$$(\sigma_1)_{xy} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$(\sigma_2)_{xy} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Tensiones y direcciones principales

Debemos dar solución a los siguientes sistemas de ecuaciones:

$$(\sigma_x - (\sigma_1)_{xy}) \alpha_1 + \tau_{xy} \beta_1 = 0 \qquad (\sigma_x - (\sigma_2)_{xy}) \alpha_2 + \tau_{xy} \beta_2 = 0$$

$$\tau_{xy} \alpha_1 + (\sigma_y - (\sigma_1)_{xy}) \beta_1 = 0 \quad \text{y} \quad \tau_{xy} \alpha_2 + (\sigma_y - (\sigma_2)_{xy}) \beta_2 = 0$$

$$\alpha_1^2 + \beta_1^2 = 1 \qquad \alpha_2^2 + \beta_2^2 \qquad = 1$$

Tensiones y direcciones principales 2D

m ?

2023a

Tensiones y direcciones principales

¿Cuándo tenemos un discriminante nulo?

R//. Estado de esfuerzos hidrostáticos

η - 2 η **(7**

Tensiones y direcciones principales

¿Cuándo tenemos un discriminante nulo? R//. Estado de esfuerzos hidrostáticos

Tensiones y direcciones principales

Código

• 02_08_01_ejemplo_01.ipynb

15 / 51

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

3D

Expandiendo el determinante $\det (\underline{\boldsymbol{\sigma}} - \sigma_n \boldsymbol{I}) = 0$

$$(\sigma_x - \sigma_n) \left[(\sigma_y - \sigma_n)(\sigma_z - \sigma_n) - \tau_{yz}^2 \right]$$

$$- \tau_{xy} \left[\tau_{xy}(\sigma_z - \sigma_n) - \tau_{yz}\tau_{xz} \right]$$

$$+ \tau_{xz} \left[\tau_{xy}\tau_{yz} - (\sigma_y - \sigma_n)\tau_{xz} \right] = 0;$$

Agrupando y reduciendo términos:

Ecuación característica de $\underline{\sigma}$ tridimensional

$$-\sigma_n^3 + I_1 \sigma_n^2 - I_2 \sigma_n + I_3 = 0$$

donde,

3D

$$\Theta := I_1 := \operatorname{tr}(\underline{\underline{\sigma}})$$

$$I_2 := \frac{1}{2} \left(\left(\operatorname{tr}(\underline{\underline{\sigma}}) \right)^2 - \operatorname{tr}(\underline{\underline{\sigma}})^2 \right)$$

$$I_3 := \det(\underline{\sigma}).$$

Código

• 02_08_02.ipynb

Tensiones y direcciones principales 3D

Tensiones y direcciones principales 3D

Código

• 02_08_02_ejemplos.ipynb

20 / 51

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Eiemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Método de Newton-Raphson

para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica

Estudio autónomo

Sería interesante:

- ¿Cómo lo programo en Python o Matlab?
- ¿Ya está implementado en Python o Matlab? ¿Cómo funciona?

22 / 51

20232

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Eiemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Estudio autónomo

• Verifique la ortogonalidad de los vectores propios del ejercicio anterior

Código

• 02_08_04_ejemplo.ipynb

24 / 51

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

La circunferencia de Mohr fue propuesta por el ingenierio civil aleman Otto Mohr (1835 - 1918) en 1882 con el objeto de representar gráficamente el estado de esfuerzos en un punto.

Ω ?

Aplicaciones

Criterio de falla de Mohr-Coulomb

Este criterio es altamente utilizado en el análisis de cimentaciones.

27 / 51

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Estudio autónomo

Estudiar los siguientes videos:

- 02.09 Círculo de Mohr en 2D (Parte 1/3) Deducción del círculo de Mohr para tensión plana
- 02.09 Círculo de Mohr en 2D (Parte 2/3) Esfuerzos normales y cortantes máximos y mínimos
- 02.09 Círculo de Mohr en 2D (Parte 3/3) Deducción del círculo de Mohr para tensión plana

Michael H.P.

Mecánica tensorial, Unidad 2

2023a

Interpretación física

Representa el lugar geométrico de las posibles combinaciones de esfuerzos normales σ_n y cortantes τ_n que actúan sobre la superficie inclinada \overline{AB} a medida que el ángulo θ varía entre 0° y 180° .

Interpretación matemática

Curva paramétrica $(\sigma_n(\theta), \tau_n(\theta))$ que aparecen al variar el parámetro θ en el intervalo $[0^\circ, 180^\circ)$. Dicha curva empieza a graficarse en el punto de coordenadas (σ_x, σ_y) y se traza en sentido horario. La circunferencia resultante

tiene centro en
$$(\frac{\sigma_x+\sigma_y}{2},0)$$
 y radio $\sqrt{\left(\frac{\sigma_x-\sigma_y}{2}\right)^2+\tau_{xy}^2}$

Nos planteamos dos preguntas:

- ¿Cuál es la inclinación θ para la cual se producen los esfuerzos normales σ_n máximos y mínimos sobre el punto en cosideración?
- ¿Qué magnitud tienen?

Círculo de Mohr en dos dimensiones

33 / 51

$$\sin 2\theta_1 = \frac{\tau_{xy}}{R}$$

$$\cos 2\theta_1 = \frac{\sigma_x - \sigma_y}{2R}$$

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\sin 2\theta_2 = -\frac{\tau_{xy}}{R}$$

$$\cos 2\theta_2 = -\frac{\sigma_x - \sigma_y}{2R}$$

Círculo de Mohr en dos dimensiones

Resumen de equaciones

• Construcción de la curva paramétrica

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$\tau_n(\theta) = \tau_{xy} \cos 2\theta - \frac{\sigma_x - \sigma_y}{2} \sin 2\theta$$

Direcciones principales

$$\tan 2\theta_1 = \frac{+\tau_{xy}}{+\frac{\sigma_x - \sigma_y}{2}} \qquad \tan 2\theta_2 = \frac{-\tau_{xy}}{-\frac{\sigma_x - \sigma_y}{2}}$$

Esfuerzos principales

$$(\sigma_1)_{xy} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$(\sigma_2)_{xy} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Resumen de equaciones

Esfuerzos cortantes máximos y mínimos

$$(\tau_{\text{máx}})_{xy} = +\frac{(\sigma_1)_{xy} - (\sigma_2)_{xy}}{2} = +\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$(\tau_{\text{mín}})_{xy} = -\frac{(\sigma_1)_{xy} - (\sigma_2)_{xy}}{2} = -\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

• Dirección de los esfuerzos cortantes máximos y mínimos

$$\cot 2\theta_{c1} = \frac{+\tau_{xy}}{-\frac{\sigma_x - \sigma_y}{2}} \qquad \cot 2\theta_{c2} = \frac{-\tau_{xy}}{+\frac{\sigma_x - \sigma_y}{2}}$$

Relación entre ángulos

Comentario

Veremos que θ_{c1} y θ_{c2} se producen a 45° de los planos principales, más explícitamente:

$$\theta_{c1} = \theta_1 - 45^{\circ} = \theta_2 + 45^{\circ}$$

$$\theta_{c2} = \theta_1 + 45^\circ = \theta_2 - 45^\circ$$

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Gráfica e interpretación del círuclo de Mohr

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

2023a

40 / 51

Es una función $\mathbf{R} \times \mathbf{R} \to (-\pi,\pi]$ que retorna el ángulo correcto en radiante entre un vector $[x,y]^T$ y el eje x positivo teniendo en cuenta que para ubicar el cuadrante, se utilizan los signos de los argumentos x y y. Está definida por:

$$\operatorname{atan2}(y,x) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{si } x > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{si } y \geq 0, x < 0 \\ \arctan\left(\frac{y}{x}\right) - \pi & \text{si } y < 0, x < 0 \\ \frac{\pi}{2} & \text{si } y > 0, x = 0 \\ -\frac{\pi}{2} & \text{si } y < 0, x = 0 \\ \infdefinido & \text{si } y = 0, x = 0 \end{cases}$$

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- Referencias

Ejemplo

Círculo de Mohr en dos dimensiones

Considere un punto sujeto a los esfuerzos $\sigma_x = 1Pa$, $\sigma_y = 2Pa$ y $\tau_{xy} = -3Pa$; calcule los esfuerzos principales y sus direcciones para el punto en consideración.

Código

- 02_09_04_ejemplo.ipynb
- circulo mohr 2d.py

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Estudio autónomo

Estudiar los siguientes videos:

- 02.09 Círculo de Mohr en 3D (Parte 1/3) Deducción del círculo de Mohr tridimensional
- 02.09 Círculo de Mohr en 3D (Parte 2/3) Ubicando los planos donde actuan los esfuerzos en 3D
- 02.09 Círculo de Mohr en 3D (Parte 3/3) ¿Donde actúan los esfuerzos cortantes máximos en 3D?

Círculo de Mohr en tres dimensiones

Círculo de Mohr en tres dimensiones

Ejemplo 2

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.0.4. Ortogorialidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2 9 3 La función atan?
 - 2.9.4. Eiemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- Referencias

48 / 51

Estudio autónomo

Prestar atención a:

• La analogía del bombillo y la caja :)

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Monr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Eiemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- Referencias

50 / 51

Álvarez, D. A. (2022). *Teoría de la elasticidad*, volume 1. Universidad Nacional de Colombia.

- Lista de resproducción: 02 Esfuerzos o Tensiones
- Repositorio del curso: github/medio_continuo