CODING CLUB IITG

IMAGE SEGMENTATION

ML MODULE

CONTENT

01

ABSTRACT

02-04 DATASET

05

MODEL ARCHITECTURE

06

HYPERPARAMETERS

07

RESULTS

08

FUTURE SCOPES

ABSTRACT

In an image classification task, the network assigns a label (or class) to each input image. However, suppose you want to know the shape of that object, which pixel belongs to which object, etc. In this case, you need to assign a class to each pixel of the image—this task is known as segmentation. A segmentation model returns much more detailed information about the image. Image segmentation has many applications in medical imaging, self-driving cars and satellite imaging, just to name a few.

DATASET

Images for segmentation of optical coherence tomography images with diabetic macular edema.

One with diabetic macular edema

DATASET

Contains 10 MATALB files for 10 Subjects

Each MATLAB file contains:

61 retina images, and their manually segmented diabetic edema part of the fluid layer, and automatically segmented images using DME

We have trained our model on just the images, and segmented it.

DATASET

Image[25]

MODEL USED

HYPERPARAMETERS

BATCH_SIZE = 64

EPOCHS = 1000

THRESHOLD = 0.3

LEARNING_RATE = 0.005

MOMENTUM = 0.99

LOSS FUNCTION = CROSS ENTROPYLOSS

OPTIMIZER = SGD

Image

RESULTS

Segmented Image with Localization

FUTURE SCOPES

PREPROCESSING THE IMAGE, BEFORE GIVING INPUTS TO THE MODEL

BUILDING A BINARY CLASSIFIER TO
ACTUALLY PREDICT WHETHER A PERSON
HAS DIABETIC MACULAR EDEMA

THANK YOU

