

# Evolution météorologique en France et dans le monde

Caio Iglesias, Luca Mainini, Marc Argaud, Amine Louzar, Sandra Nihama, Antoine Naccache

https://gitlab-cw8.centralesupelec.fr/2019nihamas/groupe5\_3



Pourquoi? Sensibilisation par rapport au réchauffement climatique

Pour qui? Grand publique

# Ce qu'on a fait

01

Visualisation de l'évolution du climat en France 02

Visualisation de l'évolution du climat dans le monde

03

Visualisation de l'évolution de la concentration en CO2

04

Corrélation entre CO2 et température



Le Read me

## Structure du code





```
Preview [Preview]README.md
                               dataframe_years.py ×
                                                                                                                                          TEMPERATURE FRANCE > dash > auxiliaryfunctions > 🍨 dataframe years.py > ...
       def separate means years():
           #parameters
           initial year = 2010
           final year = 2019
           df all years = all dataframes generator()["observation-meteorologique-historiques-france-synop-orly"]
           df all years['Date'] = pd.to datetime(df all years['Date'], utc = True)
           dict year = {}
           for year in range (initial_year, final year+1):
               data year = df all years[df all years['Date'].dt.year == year]
               data months = []
               for month in range (1,13):
                   data month = data year[data year['Date'].dt.month == month]
                   data months.append(data month['Température (°C)'].mean())
               dict year[year] = data months
           return dict_year
                                                                                                          1: powershell
 PROBLEMS 2
              OUTPUT DEBUG CONSOLE TERMINAL
PS C:\Users\Anton\Desktop\Coding weeks semaine 2\TEMPERATURE_FRANCE>
```

```
riew [Preview]README.md
                               🕏 graph_temp_france.py 🗡
                                                                   RATURE_FRANCE > dash > 🏓 menu_dash.py > ...
                                                                    # callback function of graph_temp_france
:RATURE_FRANCE > dash > components > 🕏 graph_temp_france.py >
                                                                                                                                                                                                  > temp_france
                                                                                                                                                                                                                       As 函。* 4 of 5
                                                                        Output('graph', 'figure'), [Input('my-dropdown', 'value')]
 dict years = separate means years()
                                                                    def show temp_france(value):
                                                                        y_array_dict = {
 graph temp france layout = html.Div([
                                                                             2010': dict_years[2010],
                                                                            '2011': dict_years[2011],
      dcc.Dropdown(
                                                                            '2012': dict_years[2012],
           id='my-dropdown',
                                                                            '2013': dict years[2013],
                                                                             2014 : dict years[2014].
           options=[
                                                                            '2015': dict_years[2015],
                                                                            '2016': dict_years[2016],
                                                                            '2817': dict_years[2017],
                 {'label': '2010', 'value': '2010'},
                                                                            '2018': dict_years[2018],
                 {'label': '2011', 'value': '2011'},
                                                                            '2019': dict_years[2019]
                 {'label': '2012', 'value': '2012'},
                                                                        data = {
                 {'label': '2013', 'value': '2013'},
                                                                            'data : [],
                                                                            'layout': dict(
                 {'label': '2014', 'value': '2014'},
                                                                               title='Temperature(°C) in France X Months',
                 {'label': '2015', 'value': '2015'},
                                                                               titlefont={
                                                                                    'size':'30'
                 {'label': '2016', 'value': '2016'},
                 {'label': '2017', 'value': '2017'},
                                                                               height='500px',
                                                                               plot_bgcolor=app_color["graph_bg"],
                 {'label': '2018', 'value': '2018'},
                                                                               paper bgcolor=app_color["graph_bg"],
                 { 'label': '2019', 'value': '2019'}
                                                                               font={"color": "graph_text", "size":"15"},
                                                                               autosize=True,
                                                                               bargap=0.01,
           ],
                                                                               bargroupgap=0,
                                                                                hovermode="closest",
           multi = True,
                                                                               legend={
                                                                                   "orientation": "h",
           value = ['2019','2010']
                                                                                   "yanchor": "bottom",
       ),
                                                                                   "xanchor": "center",
                                                                                   "y": 1,
      dcc.Graph(
                                                                                   "x": 0.5,
           id='graph',
                                                                               xaxis={'title': 'Months', 'titlefont':{'size':20}},
           config={
                                                                               yaxis={'title': 'Temperature', 'titlefont':{'size':20}},
                 'showSendToCloud': True,
                 'plotlyServerURL': 'https://plot.ly'
                                                                        for element in value:
                                                                            data['data'].append({'type':'scatter', 'x': ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'], 'y':y_array_dict[element], 'name':element})
                                                                        return data
                                                                    # callback function of graph_cities_eu
                                                                    @app.callback(
                                                                    conda) @1A0
                                                                                                                                                                                                                                In 245. Co
```

```
temperatures_europe > 🕏 load_usefull_data_in_dataframe.py > ...
      def create_dataframe():
                  This function creates the dataframe
          OUTPUT: DataFrame with cities as rows and temperatures of the years as columns
          cities = load_city_codes()
          list city name = cities["city names"]
          list_city_code = cities["city_codes"]
          #creating a Dataframe empty (with all "NaN values")...
          n = len(list_city_code)
          list_dates = list(range(1756, 2020))
          iterables = [list city name, list dates]
          multi_index=pd.MultiIndex.from_product(iterables, names=['city name', 'year'])
          list_nan=[np.nan]*2904
          df = pd.DataFrame(list nan, index=multi index)
          df_unstack = df.unstack(level=-1)
          #putting Data in DataFrame...
          for i in range(n):
               city = list_city_code[i]
              city_name = list_city_name[i]
 48
              filename = "Data/ECA_indexTG/indexTG" + str(city) + ".txt"
              D = load one file(filename)
              list_interm=create_list(D)
               df_unstack.iloc[i]=list_interm
          return df unstack
```

| year          | 1756 | 1757 | 1758 | 1759 | 1760 | 1761 | 1762 | 1763 | 1764 | 1765 | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019 |
|---------------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| city name     |      |      |      |      |      |      |      |      |      |      |       |       |       |       |       |       |       |       |       |      |
| BERLIN-DAHLEM | NaN  | 8.25  | 10.04 | 9.55  | 9.40  | 11.04 | 10.72 | 10.22 | 10.11 | 11.15 | NaN  |
| CORFU         | NaN   | NaN  |
| KIEV          | NaN  | 9.48  | 9.28  | 9.11  | 9.77  | 9.81  | 10.79 | 9.80  | 10.10 | 9.91  | NaN  |
| MADRID        | NaN  | 14.75 | 16.06 | 15.54 | 15.05 | 16.10 | 16.62 | 16.05 | 16.74 | 15.57 | NaN  |
| MOSCOW        | NaN  | 6.59  | 6.82  | 5.86  | 6.76  | 6.93  | 7.45  | 6.68  | 6.36  | 6.69  | NaN  |
| PARIS         | NaN  | 11.80 | 13.74 | 12.71 | 12.20 | 13.68 | 13.47 | 12.88 | 13.39 | 14.04 | NaN  |
| ROMA          | NaN  | 15.97 | 16.63 | 16.75 | 16.32 | 16.59 | NaN   | NaN   | NaN   | 16.90 | NaN  |
| SHAWBURY      | NaN   | NaN  |
| STOCKHOLM     | 4.9  | 5.93 | 4.75 | 6.33 | 5.26 | 6.59 | 5.86 | 5.1  | 6.34 | 5.87 | 6.03  | 8.54  | 7.25  | 7.85  | 8.84  | 8.73  | 8.17  | 8.00  | 8.89  | NaN  |
| VAN           | NaN   | NaN  |
| WIEN          | NaN  | 10.41 | 11.63 | 11.83 | 11.34 | 12.51 | 12.62 | 12.04 | 12.16 | 13.00 | NaN  |

```
def temp values(i):
   data_serie=df.iloc[i][0]
   #removing NaN values
   data_final=data_serie.dropna()
   #df=pd.DataFrame(data final)
   #data for the graph
   x=data_final.index
   y=data_final.tolist()
   return {'x':x, 'y':y}
graph_cities_eu_layout = html.Div(children=[
    #html.H1(children='Temperature trend in Europe'),
   dcc.Dropdown(
       id='my-dropdown-graph_cities_eu',
       options=[
           {'label': 'BERLIN-DAHLEM', 'value': 'BERLIN-DAHLEM'},
            {'label': 'CORFU', 'value': 'CORFU'},
            {'label': 'KIEV', 'value': 'KIEV'},
            {'label': 'MADRID', 'value': 'MADRID'},
           {'label': 'MOSCOW', 'value': 'MOSCOW'},
           {'label': 'PARIS', 'value': 'PARIS'},
           {'label': 'ROMA', 'value': 'ROMA'},
           {'label': 'SHAWBURY', 'value': 'SHAWBURY'},
            {'label': 'STOCKHOLM', 'value': 'STOCKHOLM'},
            {'label': 'VAN', 'value': 'VAN'},
           {'label': 'WIEN', 'value': 'WIEN'},
       ],
       multi = True,
       value = ['ROMA', 'PARIS']
   dcc.Graph(
       id='graph-graph_cities_eu',
       config={
           'showSendToCloud': True
```

Dash

Assets: Images

Auxiliary functions : toutes les fonctions utilisés pour le traitement de la data

Components: Tous les graphiques

Menu dash

### Comment?

#### Le MVP

- Température en France par mois
- Température en France par année
- Température dans différentes villes d'Europe par année

#### La suite

- Emissions de CO2 dans le monde
- Humidité pression précipitations en France
- Corrélation entre CO2 et température
- Dash
- La présentation

Types de graphes

(DASH





# Présentation du dashboard

## Analysis of the evolution of the temperature in France

Average temperature in France



Average temperature in France from 2010 to 2019



