

Device Features

- +5V/355mA at operating bias condition
- Gain = 20.7 dB @ 3.5 GHz
- P1dB = 31.5 dBm @ 3.5GHz
- LTE 20M ACLR = 21.8dBm Output Power at -50dBc @ 3.5GHz
- Intergrated interstage matching
- Green/RoHS2-compliant QFN3x3 SMT package

The BMT352 is a high dynamic range two-stage power amplifier, housed in a green/RoHS2 compliant 3x3mm² QFN package. The BMT352 uses a high reliability InGaP/GaAs HBT process technology. The BMT352 is designed for use where high linearity and gain are required. The BMT352 is able to deliver over 22 dBm output power from 3.0 to 4.0GHz while maintaining superior ACLR performance with a few external matching components. All devices are 100% RF/DC screened.

Applications

- Base station / Repeaters Infrastructure / Small Cell
- Commercial/Industrial/Military wireless system
- LTE / WCDMA /CDMA Wireless Infrastructure

Application Circuits

Typical Performance¹

Parameter	Frequency Unit					
	3400	3500	3600	3700	3800	MHz
Gain	20.8	20.7	20.6	20.5	20.4	dB
S11	-18.0	-15.0	-16.5	-16.0	-17.0	dB
S22	-9.0	-8.0	-7.0	-6.0	-5.0	dB
OIP3 ²	47.0	45.0	47.0	45.0	41.5	dBm
P1dB	31.4	31.5	31.8	31.7	31.4	dBm
LTE 20M ACLR	21.8	21.8	22.2	21.7	20.6	dBm
WCDMA ACLR	22.1	22.1	22.4	22.0	21.0	dBm
Noise Figure	5.1	5.1	5.2	5.5	5.8	dB

 $^{^{1}}$ Device performance $_$ measured on a BeRex evaluation board at 25°C, 50 Ω

- LTE set-up: 3GPP LTE, FDD E-TM3.1, 20MHz BW, ±5MHz offset, PAR 9.75 @0.01% Prob.
- WCDMA set-up: 3GPP WCDMA, TM1+64DPCH, +5MHz offset, PAR 9.78 at 0.01% Prob.

	Min.	Typical	Max.	Unit
Bandwidth	3.0		4.0	GHz
l _{bias}		26		mA
$I_{cq} @ (I_{cq1} + I_{cq2})$		330		mA
V_{CC}/V_{bias}		5.0		V
R _{TH}		12.9		°C/W

Absolute Maximum Ratings

Parameter	Rating	Unit
Operating Case Temperature	-40 to +85	°C
Storage Temperature	-55 to +155	°C
Junction Temperature	+175	°C
Operating Voltage	+6.0	V
Supply Current	1.5	Α
Input RF Power	26	dBm

^{*}Operation of this device above any of these parameters may result in permanent damage.

BeRex

•website: www.berex.com

•email: sales@berex.com

1

 $^{^{2}}$ OIP3 _ measured on two tones with a output power 17dBm/ tone , F2—F1 = 1 MHz..

^{*}ACLR Channel Power measured at -50dBc.

Pin Configuration

Pin No.	Label
1,10,12	N/C
2,3	RF IN
4	I _{REF1}
5	I _{REF2}
6	V_{Bias}
7,8,9	RF OUT/V _{CC2}
11	V _{CC1}
Backside Paddle	GND

V-I Characteristics

BeRex Evaluation Board

Figure about the reference position of components

BeRex

•website: www.berex.com

•email: sales@berex.com

2

Typical Device Data

S-parameters (V_{cc} & V_{Bias} = +5V, I_{cq} =330mA, T_a =25°C)

S-Parameter

(V_{cc} & V_{Bias} = +5V, I_{cq} = 330mA, T_a = 25 °C, calibrated to device leads)

Freq	S11	S11	S21	S21	S12	S12	S22	S22
[GHz]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]
3.0	0.85	-169.83	6.80	131.45	0.01	84.90	0.70	-163.38
3.1	0.85	-171.29	7.13	125.18	0.01	82.11	0.72	-157.60
3.2	0.85	-172.08	7.15	112.90	0.01	84.13	0.77	-155.37
3.3	0.84	-173.58	7.13	104.15	0.01	85.52	0.80	-154.65
3.4	0.84	-174.18	7.12	91.77	0.01	83.96	0.84	-154.26
3.5	0.84	-175.94	6.78	80.60	0.01	79.18	0.87	-154.55
3.6	0.84	-176.75	6.57	68.06	0.02	83.97	0.91	-155.12
3.7	0.85	-177.94	6.03	53.82	0.02	76.55	0.95	-156.77
3.8	0.84	-179.59	5.55	42.73	0.02	73.93	0.96	-158.27
3.9	0.84	179.08	4.86	28.34	0.02	68.24	0.98	-160.44
4.0	0.84	177.56	4.28	18.35	0.02	63.23	0.98	-162.53

BeRex

•website: www.berex.com

●email: <u>sales@berex.com</u>

Application Circuit: 3.4 GHz

In table below can be changed per substrate conditions

Notice

Reference	Object	Distance
Input pin	C17	9.3mm
Input pin	C16	1.5mm
Output pin	C18	2.1mm

 C8 & C17 & C16 & C18: We recommend High-Q capacitor for better output power performance. We used Johanson Tech's capacitor.

BeRex

•website: www.berex.com

Typical Performance

Typical Performance

3GPP LTE E-TM3.1 20MHz

Application Circuit: 3.5 GHz

In table below can be changed per substrate conditions

Notice

Reference	Object	Distance
Input pin	C17	8.9mm
Input pin	C16	1.5mm
Output pin	C18	2.0mm

 C8 & C17 & C16 & C18: We recommend High-Q capacitor for better output power performance. We used Johanson Tech's capacitor.

BeRex

•website: www.berex.com

Typical Performance

Typical Performance

3GPP LTE E-TM3.1 20MHz

Application Circuit: 3.6 GHz Schematic Diagram

Notice

In table below can be changed per substrate conditions

Reference	Object	Distance
Input pin	C17	8.5mm
Input pin	C16	1.5mm
Output pin	C18	1.6mm

C8 & C17 & C16 & C18: We recommend High-Q capacitor for better output power performance. We used Johanson Tech's capacitor.

BeRex

•website: www.berex.com

Typical Performance

Typical Performance

3GPP LTE E-TM3.1 20MHz

Application Circuit: 3.7 GHz

In table below can be changed per substrate conditions

Notice

Reference	Object	Distance
Input pin	C17	8.6mm
Input pin	C16	1.5mm
Output pin	C18	1.3mm

 C8 & C17 & C16 & C18: We recommend High-Q capacitor for better output power performance. We used Johanson Tech's capacitor.

BeRex

•website: www.berex.com

Typical Performance

Typical Performance

3GPP LTE E-TM3.1 20MHz

R2

R3

0603

0603

Application Circuit: 3.8 GHz

In table below can be changed per sub-

strate conditions

470 Ω

20 Ω

Notice

Reference	Object	Distance
Input pin	C17	8.0mm
Input pin	C16	1.5mm
Output pin	C18	1.4mm

C8 & C17 & C16 & C18: We recommend High-Q capacitor for better output power performance. We used Johanson Tech's capacitor.

BeRex

•website: www.berex.com

Typical Performance

Typical Performance

3GPP WCDMA TM1 +64DPCH 1FA

Package Outline Dimension

BOTTOM VIEW

ş	COMMON						
SYMBOL	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
٢]	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	0.85	0.90	0.95	0.034	0.036	0.038	
A3	0.203 REF				0.008 REF		
A1	0.00	0.02	0.05	0.000	0.001	0.002	
b	0.20	0.25	0.30	0.008	0.010	0.012	
D	2.90	3.00	3.10	0.115	0.119	0.123	
DS	1.525	1.625	1.725	0.061	0.064	0.068	
Ε	2.90	3.00	3.10	0.115	0.119	0.123	
E2	1.525	1.625	1.725	0.061	0.064	0.068	
е	0.50 BSC				0.020 BS	C	
L	0.35	0.40	0.45	0.014	0.016	0.018	

NOTES :

- 1. DIMENSION AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- CONTROLLING DIMENSIONS : MILLIMETER. CONVERTED INCH DIMENSION ARE NOT NECESSARILY EXACT.
- 3. DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM. FROM TERMINAL TIP.
- 4. INSULATION THICKNESS, CLEARANCE OF OVERLAP ARE USER DEFINED.
- 5. INSULATION NOT COMPLETELY SHOWN FOR REASONS OF CLARITY.

BeRex

•website: www.berex.com

●email: <u>sales@berex.com</u>

Suggested PCB Land Pattern and PAD Layout

Unit: mm

• Notes

- 1. Use 1 oz. copper minimum for top and bottom layer metal.
- 2. A heatsink underneath the area of the PCB for the mounted device is required for proper thermal operation.
- 3. Ground / thermal vias are critical for the proper performance of this device.

Package Marking

YY = Year, WW = Working Week, XX = Wafer No.

BeRex

•website: www.berex.com

Tape & Reel

QFN 3x3

Packaging information :

Tape width(mm): 12

Reel Size (inches): 7

Device Cavity Pitch(mm): 8

Devices Per Reel: 1000

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 1C

 Value:
 Passes ≥ 1000V to < 2000 V</td>

 Test:
 Human Body Model (HBM)

 Standard:
 JEDEC Standard JESD22-A114B

ESD Rating: Class C3

Value: Passes >1000V

Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101F

MSL Rating: Level 1 at +260°C convection reflow

Standard: JEDEC Standard J-STD-020

NATO CAGE code:

NOTICE

BeRex Corporation reserves the right to make changes of product specification or to discontinue product at any time without notice.