Lab Report 8 – Design and Implementation of a Digital Up/Down Counter from 0 to 99

Arnav Yadnopavit – EE24BTECH11007 Prajwal – EE24BTECH11051

1 First digit

BCD Up Counter State Transition Table (0 to 9 with Don't Cares)

F	resen	t Stat	e		Next	State			T In	puts		Remark
Q_3	Q_2	Q_1	Q_0	Q_3^+	Q_2^+	Q_1^+	Q_0^+	T_3	T_2	T_1	T_0	
0	0	0	0	0	0	0	1	0	0	0	1	$0 \rightarrow 1$
0	0	0	1	0	0	1	0	0	0	1	1	$1 \rightarrow 2$
0	0	1	0	0	0	1	1	0	0	0	1	$2 \rightarrow 3$
0	0	1	1	0	1	0	0	0	1	1	1	$3 \rightarrow 4$
0	1	0	0	0	1	0	1	0	0	0	1	$4 \rightarrow 5$
0	1	0	1	0	1	1	0	0	0	1	1	$5 \rightarrow 6$
0	1	1	0	0	1	1	1	0	0	0	1	$6 \rightarrow 7$
0	1	1	1	1	0	0	0	1	1	1	1	$7 \rightarrow 8$
1	0	0	0	1	0	0	1	0	0	0	1	$8 \rightarrow 9$
1	0	0	1	0	0	0	0	1	0	0	1	$9 \rightarrow 0$
1	0	1	0	X	X	X	X	X	X	X	X	Don't Care
1	0	1	1	X	X	X	X	X	X	X	X	Don't Care
1	1	0	0	X	X	X	X	X	X	X	X	Don't Care
1	1	0	1	X	X	X	X	X	X	X	X	Don't Care
1	1	1	0	X	X	X	X	X	X	X	X	Don't Care
1	1	1	1	X	X	X	X	X	X	X	X	Don't Care

Karnaugh Maps for T Flip-Flop Inputs

Up Counter (Controlled by $B_u \cdot \overline{B_d}$)

 T_0 (Up)

$$(T_0)_{up} = B_u \cdot \overline{B_d} \cdot 1 = B_u \cdot \overline{B_d}$$

	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

 T_1 (Up)

$$(T_1)_{up} = Q_0 \cdot \overline{Q_3} \cdot B_u \cdot \overline{B_d}$$

	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	X	X	X	X
10	0	0	X	X

 T_2 (Up)

$$(T_2)_{up} = Q_0 \cdot Q_1 \cdot B_u \cdot \overline{B_d}$$

	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	X	X	X	X
10	0	0	X	X

 T_3 (Up)

$$(T_3)_{up} = Q_0 \cdot (Q_3 + Q_2 Q_1) \cdot B_u \cdot \overline{B_d}$$

	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	X	X	X	X
10	0	1	X	X

BCD Down Counter State Transition Table (9 to 0 with Don't Cares)

F	resen	t Stat	e		Next	State			T In	puts		Remark
Q_3	Q_2	Q_1	Q_0	Q_3^-	Q_2^-	Q_1^-	Q_0^-	T_3	T_2	T_1	T_0	
1	0	0	1	1	0	0	0	0	0	0	1	$9 \rightarrow 8$
1	0	0	0	0	1	1	1	1	1	1	1	$8 \rightarrow 7$
0	1	1	1	0	1	1	0	0	0	0	1	$7 \rightarrow 6$
0	1	1	0	0	1	0	1	0	0	1	1	$6 \rightarrow 5$
0	1	0	1	0	1	0	0	0	0	0	1	$5 \rightarrow 4$
0	1	0	0	0	0	1	1	0	1	1	1	$4 \rightarrow 3$
0	0	1	1	0	0	1	0	0	0	0	1	$3 \rightarrow 2$
0	0	1	0	0	0	0	1	0	0	1	1	$2 \rightarrow 1$
0	0	0	1	0	0	0	0	0	0	0	1	$1 \rightarrow 0$
0	0	0	0	1	0	0	1	1	0	0	1	$0 \rightarrow 9$
1	0	1	0	X	X	X	X	X	X	X	X	Don't Care
1	0	1	1	X	X	X	X	X	X	X	X	Don't Care
1	1	0	0	X	X	\mathbf{X}	X	X	X	X	X	Don't Care
1	1	0	1	X	X	X	X	X	X	X	X	Don't Care
1	1	1	0	X	X	X	X	X	X	X	X	Don't Care
1	1	1	1	X	X	X	X	X	X	X	X	Don't Care

Down Counter (Controlled by $\overline{B_u} \cdot B_d$)

 T_0 (Down)

$$T_0 = \overline{B_u} \cdot B_d$$

	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

$$T_1$$
 (Down)
$$T_1 = \overline{Q_0} \cdot (Q_1 + Q_2 + Q_3) \cdot \overline{B_u} \cdot B_d$$

	00	01	11	10
00	0	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	X	X

 T_2 (Down)

$$T_2 = \overline{Q_1} \cdot \overline{Q_0} \cdot (Q_2 + Q_3) \cdot \overline{B_u} \cdot B_d$$

	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	X	X	X	X
10	1	0	X	X

 T_3 (Down)

$$T_3 = \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} \cdot \overline{B_u} \cdot B_d$$

	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	X	X	X	X
10	1	0	X	X

Combined T Flip-Flop Expressions (Up and Down Modes)

$$T_0$$
 (Overall)
$$T_0 = B_u \cdot \overline{B_d} + \overline{B_u} \cdot B_d$$

$$T_1 \text{ (Overall)}$$

$$T_1 = Q_0 \cdot \overline{Q_3} \cdot B_u \cdot \overline{B_d} + \overline{Q_0} \cdot (Q_1 + Q_2 + Q_3) \cdot \overline{B_u} \cdot B_d$$

$$T_2$$
 (Overall)
$$T_2 = Q_0 \cdot Q_1 \cdot B_u \cdot \overline{B_d} + \overline{Q_1} \cdot \overline{Q_0} \cdot (Q_2 + Q_3) \cdot \overline{B_u} \cdot B_d$$

$$T_3$$
 (Overall)
$$T_3 = Q_0 \cdot (Q_3 + Q_2 Q_1) \cdot B_u \cdot \overline{B_d} + \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} \cdot \overline{B_u} \cdot B_d$$

2 Second Digit

We know that the state transition table and k-maps for the second digit will be same but we have to ensure that second digit only changes when first digit either transits form 9 to 0 or 0 to 9 i.e

				Next							Remark	
Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0	T_3	T_2	T_1	T_0	
0	0	0	0	1	0	0	1	1	0	0	1	$0 \rightarrow 9$
1	0	0	1	0	0	0	0	1	0	0	1	$9 \rightarrow 0$

Therefore,

$$\begin{split} T_0' &= (T_0)_{up} \cdot \overline{Q_3} \cdot \overline{Q_0} + (T_0)_{down} \cdot \overline{Q_3} \cdot \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} \\ T_1' &= (T_1)_{up} \cdot \overline{Q_3} \cdot \overline{Q_0} + (T_1)_{down} \cdot \overline{Q_3} \cdot \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} \\ T_2' &= (T_2)_{up} \cdot \overline{Q_3} \cdot \overline{Q_0} + (T_2)_{down} \cdot \overline{Q_3} \cdot \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} \\ T_3' &= (T_3)_{up} \cdot \overline{Q_3} \cdot \overline{Q_0} + (T_3)_{down} \cdot \overline{Q_3} \cdot \overline{Q_2} \cdot \overline{Q_1} \cdot \overline{Q_0} \end{split}$$

3 Circuit Design

Mainly the circuit is built using logic gates and jk flip-flop

3.1 Components

• Arduino Uno – 1

Provides 5V power and possibly input control (button pulse or clock).

• Breadboards – 3

Two medium-sized for ICs and one large for extra wiring space.

• 74HC73 (JK Flip-Flop) – 6

Dual JK flip-flops with Clear; used for BCD counting and acts as T flip flop when J and K are shorted (4 bits per digit).

 \bullet 74HC00 (Quad 2-input NAND gate) – 3

Used for implementing logic conditions.

- 74HC08 (Quad 2-input AND gate) 3 Used to enable logic outputs as per Karnaugh expressions.
- 74HC32 (Quad 2-input OR gate) 3 Used to combine logic signals.
- 74HC04 (Hex Inverter / NOT gate) 2 Used for inverting control and data signals.
- CD4511 (BCD to 7-segment decoder) 2 Drives 7-segment displays using 4-bit BCD input.
- 7-Segment Displays 2 Likely common cathode; used to visually represent counter value.
- Push Buttons 3 Used for manual Up, Down, and Reset controls.
- Resistors approximately 10–15 Used for pull-down configurations and current limiting on LEDs.
- Jumper Wires Multiple
 For all the required interconnections across components and breadboards.

3.2 Circuit Schematic

Figure 1: Breadboard implementation of a BCD up/down counter using T flip-flops and logic gates.

3.3 Wiring

3.4 Simulation

4 Conclusion

The above circuit performs number counting from 0 to 99. When up button is pressed the number increases by one and down button is pressed number decreases by one