Study of real-time n_e profile evolution and control

Minseok Kim¹, SangKyeun Kim², Keith Erickson², Andy Rothstein¹, Youngho Lee³, Hyunsun Han³, ChangMin Shin⁴, JungHoo Hwang^{3,4}, Azarakhsh Jalalvand¹, Peter Steiner¹, Ricardo Shousha², CheolSik Byun¹, Jalal Butt¹, Sang-hee Hahn³, June-Woo Juhn³, Boseong Kim^{3,5}, SeongMoo Yang², Qiming Hu², David Eldon⁴, Nikolas Logan⁷, and Egemen Kolemen^{1,2}

¹Department of Mechanical & Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA

³Korea Institute of Fusion Energy, Daejeon 34133, Republic of Korea

⁴Department of Nuclear and Quantum Engineering, KAIST, Daejeon, 34141, Republic of Korea

⁵Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea

⁶General Atomics, San Diego, CA, 92121, USA

⁷Department of Applied Physics, Columbia University, New York, NY, 10027, USA

Tue, Mar 25, 2025 Minseok Kim

Objectives

- Conducting system identification of n_e with respect to RMP, GAS, Pellet, and SMBI
- Developing pedestal -top n_e controller using multiple actuators
- Developing two -point n_e controller one at core another at edge
- Studying profile evolution with respect to different actuators

Reconstructing n_e profile

System identification w.r.t. RMP

By analyzing the plasma density response w.r.t. RMP (as well as Gas), we designed PI controller.

Controlling pedestal -top n_e using Gas1 and RMP

KSTAR #37650

- The controller could successfully follow the density target by using both actuators.
- When we run out of the Gas, RMP can be applied to further decrease the density.
- Even if the system identification was conducted for n=1, $\phi = 90^{\circ}$ RMP and PVD, the controller was functional for different actuator set.

Conclusion

• Conducting system identification of n_e with respect to RMP, GAS, Pellet, and SMBI

For RMP and Gas are done, and pellet and SMBI can also be done from other's experimental data.

• Developing pedestal -top n_e controller using multiple actuators

Done

• Developing two -point n_e controller one at core another at edge

Can be proposed for the coming campaign

 Studying profile evolution with respect to different actuators

Can be conducted for the coming paper

Successful!

Appendix

(a) Edge model:
$$a_1 \left[\gamma + \frac{1 - \gamma}{2} \left(1 - \frac{\tanh(\frac{\psi - \psi_m}{\Delta/2})}{\tanh(1)} \right) \right]$$

 ψ : Normalized poloidal flux function

 ψ_m : Position of the middle of pedestal $(\psi_m=1-\Delta/2)$

 Δ : Pedestal width

 a_1 : Plasma density at the pedestal top

 γ : The ratio of electron density between pedestal top and LCFS

(b) Core model:
$$a_2 \left| 1 - \left(\frac{\psi}{\psi_t} \right)^{a_3} \right|^{a_4}$$

 ψ_t : Position of the pedestal top $\qquad \qquad (\psi_t = 1 - \Delta)$

 $a_2\;\;$: The difference of the plasma density between axis and pedestal top

 a_3 : Fitting coefficient in the core region

 a_4 : Fitting coefficient in the core region

(c) Scrape off layer multiplier: $4-3\psi$

$$s(\psi) = \begin{bmatrix} 1 & (1 \ge \psi \ge 0) \\ 4 - 3\psi & (\psi > 1) \end{bmatrix}$$

(d)
$$n_{e0}(\psi) = \begin{bmatrix} \text{Edge model} & (\psi \ge \psi_t) \\ \text{Edge model + Core model} & (\psi < \psi_t) \end{bmatrix}$$
$$n_e(\psi) = n_{e0} \times s$$

