INF601 : Algorithme et Structure de données

Cours 5 : Table de hachage

B. Jacob

IC2/LIUM

9 mars 2010

Plan

- Présentation
- Utilisation d'une table de hachage
- Méthodes de hachage
 - Méthode par Extraction
 - Méthode par Compression
 - Méthode par Division
 - Méthode par Multiplication
- Taux de remplissage d'une table
- 6 Résolutions des collisions
 - Méthodes indirectes
 - Méthodes directes

Plan

Présentation

Introduction

Table de hachage =

- Tableaux associatifs
- Hash tables

Accès aux éléments TDA précédents

Pour trouver la position d'un élément **e** dans un TDA de *n* éléments :

TDA liste : comparaison de la valeur des éléments de la liste avec e

- → au pire : comparaison jusqu'au dernier élément
- \rightarrow recherche en O(n)

TDA arbre : comparaison de la valeur des éléments de l'arbre avec e

- → au pire : comparaison jusqu'à une feuille
- \rightarrow recherche en $O(\log(n))$
- ⇒ dépend du nombre d'éléments dans le TDA
- \Rightarrow si $n \nearrow$ alors temps de la recherche \nearrow

Avec une table de hachage :

Pour trouver la position d'un élément e dans une table de hachage de n éléments :

- \rightarrow calcul de la position de **e** dans la table
- → accès direct à e
- → un seul accès pour accéder à e
- \rightarrow recherche en O(1)
- \Rightarrow ne dépend pas de nombre d'éléments n
- $\Rightarrow \forall n$ temps de la recherche rapide
- \Rightarrow même si $n \nearrow$ alors temps de la recherche = 1

Principe

- la place d'un élément dans la table est calculée à partir de sa propre valeur
- calcul réalisé par une fonction de hachage : transforme la valeur de l'élément en une adresse dans un tableau
- recherche d'un élément : nombre constant de comparaisons O(1). Ne dépend pas du nombre d'éléments dans le tableau

Plan

2 Utilisation d'une table de hachage

Fonction de hachage

Une table de hachage :

- utilisation d'une fonction de hachage
- l'indice d'un élément est donné par la fonction de hachage en fonction de la valeur de l'élément
- Pour une table T et un élément e \exists une fonction de hachage h telle que T[h(e)] = e (si $e \in T$)

Principe par l'exemple

Par exemple SI

- E
- = Ensemble des éléments à stocker
- = { serge, odile, luc, anne, annie, julie, basile, paula, marcel, elise }
- N
 - = Taille de la table
 - = 13

ALORS rôle de la fonction de hachage h

= associer à chaque élément e une position $h(e) \in [0..12]$

Fontion de hachage

Exemple d'algorithme de fonction h:

- ① Attribuer aux lettres a,b,...,z les valeurs 1,2,...,26
- 2 $N \leftarrow \sum$ valeurs des lettres de e
- **③** $N \leftarrow N +$ nombre des lettres de e
- $0 N \leftarrow mod(13)$

Calcul positions

La position de l'élément serge est donnée par h(serge)

- $\rightarrow h(serge) = (54 + 5) mod 13 = 7$
- → serge est à la position 7 dans la table de hachage

De même :

- h(odile) = (45 + 5) mod 13 = 11
- h(luc) = (36+3) mod 13 = 0
- h(anne) = (34 + 4) mod 13 = 12
- h(annie) = (43 + 5) mod 13 = 9
- h(jean) = 8, h(julie) = 10, h(basile) = 2, h(paule) = 4, h(elise) = 3, h(marcel) = 6

0	luc
1	
2	basile
3	elise paula
4	paula
5	_
6	marcel
7	serge
123456789	jean
-	annie
10	julie
11	odile
12	anne

serge?

0	luc
1	
2	basile
3	elise paula
4	paula
5	
6	marcel
7	serge
123456789	jean
9	annie
10	julie
11	odile
12	anne

Plan

- Méthodes de hachage
 - Méthode par Extraction
 - Méthode par Compression
 - Méthode par Division
 - Méthode par Multiplication

Rôle de la fonction

Une méthode de hachage

- transforme la valeur d'un élément en position
- doit être déterministe (pour retrouver les éléments c'est mieux)
- doit être facilement calculable (temps d'exécution de la fonction rapide sinon on perd le bénéfice de l'accès en O(1))

Choix de la fonction

Avoir une "bonne" fonction de hachage

ightarrow dépend de l'ensemble des éléments sur lequel on travaille

Exemple:

- éléments = chaines de caractères
- fonction = codes binaires des 2 premières lettres

Cette fonction est

- → OK pour les prénoms
- → KO pour les noms de fonction des TDA en C (commencent tous par les mêmes lettres, le nom du TDA)

Principe de hachage

Principe montré sur un exemple

Base : dans la suite les éléments seront

- éléments :
 - des mots (chaines de caractères)
 - leur valeur est une suite de bits formées par la concaténation des codes binaires de leurs lettres sur 5 bits
- fonction = construction d'un indice à partir de cette suite de bits

Exemples de valeurs d'éléments

```
Code binaires des lettres :
 A = 00001
           F = 00110
                       K = 01011
                                   P = 10000
                                               U = 10101
 B = 00010
            G = 00111
                       L = 01100
                                   Q = 10001 \quad V = 10110
 C = 00011 H = 01000
                       M = 01101
                                   R = 10010 \quad W = 10111
 D = 00100
          I = 01001
                       N = 01110
                                   S = 10011
                                              X = 11000
 E = 00101
            J = 01010
                        O = 01111
                                   T = 10100
                                              Y = 11001
Z = 11010
```

Valeurs:

- mot "LES" = 01100 00101 10011
- \bullet mot "CAR" = 00011 00001 10010

But : construire une fonction h telle que $h(mot) \rightarrow \text{indice dans } [0..T-1]$ (T taille de la table)

Méthodes de hachage

Présentation de quelques principes de construction de fonctions de hachage qui permettent :

- → de dégager quelques techniques utiles
- → d'éviter les pièges les plus courants

Principales méthodes :

Méthodes pour la valeur

Le but est de transformer la valeur de l'élément en une valeur "représentable"

- un mot mémoire
- la place mémoire d'un entier . . .

Présentation de 2 méthodes :

- par extraction
- par compression

Plan.

- Méthodes de hachage
 - Méthode par Extraction
 - Méthode par Compression
 - Méthode par Division
 - Méthode par Multiplication

Principe

ightarrow On extrait une partie de la valeur (de la chaîne de bits) de l'élément e

Par exemple

- seulement certains bits
- seulement certaines zones de bits

Exemple

extraction des bits 1,2,7 et 8 de l'élément

élément	représentation	h(élément) ₂	$h(élément)_{10}$
ET	0010110100	1000	8
OU	0111110101	1101	13
NI	0111001001	1101	13
IL	0100101100	0000	0

Avantages/Inconvénients

Avantages:

- calcul facile à mettre en oeuvre
- si $N = 2^p 1$ alors $h \to un$ indice dans T

Inconvénients:

adaptée seulement à des cas particuliers

- quand on connaît la valeur des éléments a priori
- quand on sait que certains bits ne sont pas significatifs

En général, méthode par extraction \rightarrow pas de bons résultats car ne dépend pas de la totalité de la valeur de l'élément.

Règle:

Une bonne fonction de hachage utilise toute la valeur de e

Plan

- Méthodes de hachage
 - Méthode par Extraction
 - Méthode par Compression
 - Méthode par Division
 - Méthode par Multiplication

Principe

 \rightarrow On utilise tous les bits de *e* pour calculer son indice dans la table.

Par exemple

- on découpe la chaîne de bits de l'élément en morceaux d'égale longueur
- on additionne les morceaux. Pour éviter les débordements on peut utiliser, à la place de l'addition, l'opération booléenne "ou exclusif" (xor)

Exemple

Elément	Calcul	h(élément) ₂	h(élément) ₁₀
ET	00101 xor 10100	10001	17
OU	01111 xor 10101	11010	26
NI	01110 xor 01001	00111	7
CAR	00011 xor 00001 xor 10010	10000	16

Inconvénient

Problème:

- Hache de la même façon toutes les permutations d'un même mot
 - $\rightarrow h(CAR) = h(ARC)$
- Vient du fait que toutes les sous chaines de bits sont des représentations de caractères
 - ightarrow plusieurs sous-chaines peuvent être identiques

Règle : une "bonne" fonction de hachage doit briser les sous-chaînes de bits

Solution

Par exemple décaler circulairement les sous-chaînes de bits

- ullet 1 sous-chaîne o 1 bit vers la droite
- 2^{ieme} sous-chaîne \rightarrow 2 bits vers la droite
- 3^{ieme} sous-chaîne $\rightarrow 3$ bits vers la droite. . .

Dans ce cas

Elément	Calcul	h(élément) ₂	$h(élément)_{10}$
CAR	10001 xor 01000 xor 01010	10011	19
ARC	10000 xor 10100 xor 01100	01000	8

Avantages:

- \rightarrow valeur de e = taille d'un mot mémoire
- → combinaison possible avec les méthodes qui suivrent

Méthodes pour l'indice

Le but est de ramener la représentation de e dans à indice de la table T.

- indice $\in [0..T 1]$
- indice $\in [1..T]$

Présentation de 2 méthodes :

- par division
- par multiplication

Méthodes de hachage Méthode par Division

Plan

- Méthodes de hachage
 - Méthode par Extraction
 - Méthode par Compression
 - Méthode par Division
 - Méthode par Multiplication

Principe

 \rightarrow On calcule le reste de la division de la valeur de e par N, la taille de la table.

$$h(e) = e \mod N$$

Exemple

Taille de la table N = 37

Elément	$(Elément)_{10}$	Calcul	$h(élément)_{10}$
ET	180	180 mod 37	32
OU	501	501 mod 37	20

Avantages/Inconvénients

Avantages:

• facile et rapide à calculer

Inconvénients:

- dépend trop de N Par exemple
 - si N est pair alors tous les éléments vont aller dans les indices pairs de T
 - si N est impair alors tous les éléments vont aller dans les indices impairs de T
 - si N a des petits diviseurs...
 - → h n'est pas uniforme
 - → il faudrait que la taille N de T soit un nombre premier (comme dans l'exemple) . . . mais il peut tout de même y avoir des phénomènes d'accumulation

Plan.

- Méthodes de hachage
 - Méthode par Extraction
 - Méthode par Compression
 - Méthode par Division
 - Méthode par Multiplication

Principe

ightarrow Basé sur la multiplication de e par un nombre réel heta (0 < heta < 1)

Algorithme:

- 2 on garde la partie décimale de r
- **③** $r \leftarrow r \times N$: on multiplie par la taille du tableau
- \bullet on garde la partie entière de r

$$h(e) = [((e \times \theta) \bmod 1) \times N]$$

Exemple

Supposons que:

- $\theta = 0.6125423371$
- N = 30

Alors h(ET)

- $= [((180 \times \theta) \mod 1) \times N]$
- $= [(110.87016302 \bmod 1) \times 30]$
- $= [0.87016302 \times 30]$
- = 26

Avantages/Inconvénients

Avantages:

• la taille du tableau est sans importance

Inconvénients:

- la valeur de θ doit être choisie avec soin
 - ightarrow pas trop près de 0 ni de 1 pour éviter les accumulations aux extrémités de la table

Des études théoriques montrent que les valeurs de θ qui répartissent uniformément les éléments sont :

$$\theta = (\sqrt{5} - 1)/2 \approx 0.6180339887$$

$$\theta = 1 - (\sqrt{5} - 1)/2 \approx 0.3819660113$$

Conclusion sur les méthodes de hachage

- pas de fonction de hachage universelle
- une "bonne" fonction doit être
 - rapide à calculer
 - répartir uniformément les éléments dans T
- mais cela dépend
 - de la machine
 - de l'application (contenu/valeur des éléments)

Limites de la fonction de hachage

But de la fonction h: attribuer 1 élément à chaque position de $T \rightarrow$ pas toujours possible.

- il peut y avoir des positions de T qui ne sont pas utilisées
 - ⇒ pb de "gaspillage mémoire"
 - ⇒ pb de taux de remplissage trop bas
- il y peut y avoir une place de T qui est attribuée à plusieurs éléments
 - ⇒ pb des collisions

Plan

4 Taux de remplissage d'une table

Calcul du taux

bon taux de remplissage \Leftrightarrow nb de positions vides \searrow

taux de remplissage =
$$\frac{nombre de positions occupees}{nombre total de positions}$$

avec nombre total de positions

- = taille de la table
- = T

But:

- avoir un taux le plus proche de 1
 - \rightarrow toutes les positions de T sont remplies
- avoir le moins de collisions possible
 - → qu'il n'y ait qu'un élément par position

Plan

- 6 Résolutions des collisions
 - Méthodes indirectes
 - Méthodes directes

Introduction

Rappel : collisions = plusieurs éléments à la même position

On montre qu'il est pratiquement impossible, même pour la meilleure des fonctions de hachage d'éviter les collisions. Il est donc nécessaire de savoir les résoudre.

2 méthodes de résolution :

- résolution par chaînage : les éléments qui ont la même position sont chaînés entre eux, à l'extérieur ou à l'intérieur de T
- résolution par calcul : lorsqu'il y a collision, on calcule à partir de l'élément une nouvelle place dans T

Plan

- 5 Résolutions des collisions
 - Méthodes indirectes
 - Méthodes directes

Types de méthodes indirectes

Rappel : hachage indirect = les éléments en collision sont chaînés entre eux

2 types de gestion des collisions indirectes :

- Par hachage avec chaînage séparé
- Par hachage coalescent

- les éléments de T sont alors des LISTES
- recherche, ajout, suppression d'un élément en collision idem TDA LISTE
- la liste doit elle être triée?

- les éléments de T sont alors des LISTES
- recherche, ajout, suppression d'un élément en collision idem TDA LISTE
- la liste doit elle être triée?
 - SI fonction hachage "bonne" ALORS nb collisions
 - → recherche séquentielle dans liste non triée suffit

- les éléments de T sont alors des LISTES
- recherche, ajout, suppression d'un élément en collision idem TDA LISTE
- la liste doit elle être triée?
 - SI fonction hachage "bonne" ALORS nb collisions \
 - → recherche séquentielle dans liste non triée suffit
 - SINON (nb collisions ∕)?

- les éléments de T sont alors des LISTES
- recherche, ajout, suppression d'un élément en collision idem TDA LISTE
- la liste doit elle être triée?
 - SI fonction hachage "bonne" ALORS nb collisions \
 - → recherche séquentielle dans liste non triée suffit SINON (nb collisions /)?
 - → Liste triée (+ algo de recherche adapté)

- les éléments de T sont alors des LISTES
- recherche, ajout, suppression d'un élément en collision idem TDA LISTE
- la liste doit elle être triée?
 - SI fonction hachage "bonne" ALORS nb collisions \
 - → recherche séquentielle dans liste non triée suffit SINON (nb collisions /)?
 - → Liste triée (+ algo de recherche adapté)
 - → Arbre binaire de recherche (équilibré)

Hachage coalescent

Tous les éléments en collision sont chaînés entre eux à l'intérieur de la table de hachage T

- pourquoi? chaînage séparé ⇒ allocation dynamique de la mémoire : pas toujours possible
- réserver alors a priori tout l'espace mémoire nécessaire (positions "normales" + positions collisions)
- la taille N de T est donc fixe

Dans ce cas on divise T en 2 zones :

- une zone d'adresses primaires de capacités p pour les positions "normales"
- une zone d'adresses de réserve de capacités r pour les collisions

Les valeurs p et r sont fixées elles aussi a priori

Fusion des zones avec hachage coalescent

On peut penser à fusionner la zone primaire et la réserve

MAIS

- mélanges entre
 - les éléments qui sont en collision et chaînés entre eux
 - les éléments primaires
 - → hachage avec coalescence de listes (ou hachage coalescent)
- coalescences des listes ⇒ nouvelles collisions : les collisions secondaires
- ullet temps de recherche alors plus long que le chaînage en dehors de T

Suppression avec chaînage coalescent

Supprimer un élément dans T:

- problème plus compliqué que l'adjonction
- il faut décaler les éléments pour mettre à jour un chaînage dans T
 - → plutôt que supprimer physiquement un élément, on préfère souvent marquer sa place comme vide (pas de chaînage à modifier)

Plan

- 5 Résolutions des collisions
 - Méthodes indirectes
 - Méthodes directes

Types de méthodes directes

Rappel : hachage direct = les éléments en collision sont mis à de nouvelles positions dans T. Ces nouvelles positions sont gérées par calcul

2 types de gestion des collisions directes :

- Par hachage linéaire
- Par double hachage

Hachage linéaire

Si collision à la position $i \rightarrow$ on essaie $i + 1 \mod N$

```
Algorithme d'ajout d'un élément :
```

```
i <-- h(e)
SI i occupée ALORS
    j <-- 1
    i <-- (h(e)+j) mod N
    TQ ((i occupée) ET (j<T-1)) FRE
        j <-- j + 1
        i <-- (h(e)+j) mod N
    FTQ
FSI</pre>
```


Recherche chaînage linéaire

Algorithme de recherche d'un élément e dans T

```
i <-- h(e)
j <-- 1
TQ (T[i] != e) ET (T[i] != vide) ET (j < N-1) FRE
    i <-- (h(e)+j) mod N
FTQ
SI T[i] == e ALORS
    --> trouve
SINON
    --> pas trouve
FSI
```

Double hachage

Si collision à la position $i \rightarrow$ on essaie $k \times i + 1 \mod N$ (avec k nombre fixé)

Ceci pour éviter les regroupements aux alentours de i + 1 mod N

MAIS regroupement quand même

- \rightarrow il faut que k dépende de e
- \rightarrow calcul de k par une seconde fonction de hachage h'(e) (d'où le double hachage)
- \rightarrow si *N* premier, il suffit que $h'(e) \rightarrow [1..N-1]$
- \rightarrow si $N=2^p$, il suffit que $h'(e) \rightarrow$ indice impair

FTQ

FSI

Bibliographie

• Type de Données et Algorithmes

Auteurs: Marie-Claude Gaudel, Michèle Soria, Christine

Froidevaux

Volume: Vol. II "Recherche, Tri, Algorithmes sur les

graphes"

Editeur: Collection Didactique, Editions INRIA

ISBN: 2-7261-0490-8

That all folks...

