信息论第二次小测

中国科学技术大学《信息论 A》006125.01 班助教组 2024 年 3 月 27 日

第1题

In this exercise, we provide an information-theoretic proof of the well known number-theoretic result that there are infinitely many prime numbers. For this, consider an arbitrary integer n, and denote the number of primes no greater than n by $\pi(n)$. Take a random variable N uniformly distributed over $\{1, 2, ..., n\}$, and write it in its unique prime factorization, $N = p_1^{X_1} p_2^{X_2} \dots p_{\pi(n)}^{X_{\pi(n)}}$, where $\{p_1, p_2, \cdots, p_{\pi(n)}\}$ are primes no greater than n, and each X_i is the largest power $k \geq 0$ such that p_i^k divides N. By inspecting H(N), prove that $\pi(n) \to \infty$ as $n \to \infty$.

证明: 由于 N 是从 $\{1,2,...,n\}$ 中的均匀抽取,从而 $H(N) = \log_2(n)$ 。此外,由素数分解的唯一性得知,一个 N 的抽样结果可以和一组 $x_1,x_2,...,x_{\pi(n)}$ 形成一一对应,从而:

$$\log_2(n) = H(N) = H(X_1, X_2, \dots, X_{\pi(n)}) \le \sum_{i=1}^{\pi(n)} H(X_i).$$

对每个正整数 $i \leq \pi(n)$,均 $2^{X_i} \leq p_i^{X_i} \leq N \leq n$,从而 $0 \leq X_i \leq \lfloor \log_2(n) \rfloor$. 这样对每个正整数 $i \leq \pi(n)$ 有 $H(X_i) \leq \log_2(\lfloor \log_2(n) \rfloor + 1) \leq \log_2(\log_2(n) + 1)$,亦即

$$\log_2(n) \le \pi(n) \log_2(\log_2(n) + 1).$$

又因为 $n \to \infty$ 时,不难得到 $\log_2(n)/\log_2(\log_2(n)+1) \to \infty$,所以 $\pi(n) \to \infty$.