	$\Delta_{1}^{\#1}{}_{lphaeta}$	$\Delta_{1}^{\#2}{}_{\alpha\beta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1}^{\#1}{}_{lpha}$	$\Delta_{1}^{#2}{}_{lpha}$	$\Delta_{1^{-}\alpha}^{\#3}$	$\Delta_1^{\#4}{}_{lpha}$	$\Delta_{1-lpha}^{\#5}$	$\Delta_{1}^{\#6}{}_{lpha}$	${\mathcal T}_{1^{-}\alpha}^{\sharp 1}$
$\Delta_1^{\#1} \dagger^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
$\Delta_1^{#2} \dagger^{\alpha \beta}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2 (a_0^2 - 14 a_0 a_1 k^2 - 35 a_1^2 k^4)}{a_0^2 (a_0 - 29 a_1 k^2)}$	$\frac{40\sqrt{2} a_1 k^2}{a_0^2 - 29 a_0 a_1 k^2}$	0	0	0	0	0	0	0
$\Delta_1^{#3} \dagger^{\alpha \beta}$	0	$\frac{40\sqrt{2}a_1k^2}{a_0^2-29a_0a_1k^2}$	$\frac{4}{a_0-29a_1k^2}$	0	0	0	0	0	0	0
$\Delta_1^{#1} \dagger^c$	α 0	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} a_0 (2+k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$	0	$-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$
$\Delta_1^{#2} + ^c$	α 0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{a_0^2 (4+k^2)^2 - 30 a_0 a_1 k^2 (4+k^2) (4+3 k^2) + a_1^2 k^4 (6416 + 7928 k^2 + 1901 k^4)}{2 a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{k^2 (a_0^2 (-2+k^2) + a_0 a_1 (560 + 302 k^2 + 71 k^4) - 2 a_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+a_1 (40-31 k^2))}{2 a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{k^2 (2 a_0^2 (5 + 2 k^2) - a_0 a_1 (880 + 778 k^2 + 199 k^4) + a_1^2 k^2 (9440 + 1901 k^2 (4 + k^2)))}{2 \sqrt{3} a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{k^2 \left(-a_0 + a_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{i k (-30 a_0 a_1 k^4 + a_0^2 (4 + k^2) + 27 a_1^2 k^4 (-28 + 3 k^2))}{a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$
$\Delta_1^{#3} \dagger^{c}$	ο 0	0	0	$-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$	$\frac{k^2 (a_0^2 (-2+k^2) + a_0 a_1 (560 + 302 k^2 + 71 k^4) - 2 a_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{-a_0^2 (76 + 52 k^2 + 3 k^4) + 4 a_0 a_1 k^2 (472 + 214 k^2 + 19 k^4) + 4 a_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{12 a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{\sqrt{5} (10 a_0 + (3 a_0 - 328 a_1) k^2 - 62 a_1 k^4)}{12 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{2a_0^2 (-2+k^2) + a_0 a_1 k^2 (472 + 934 k^2 + 289 k^4) - 2a_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{6 \sqrt{2} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$-\frac{2 a_0 + (3 a_0 - 56 a_1) k^2 + 86 a_1 k^4}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{i k (54 a_1^2 k^4 (40 + 3 k^2) + a_0^2 (6 + 5 k^2) - 3 a_0 a_1 k^2 (86 + 23 k^2))}{\sqrt{6} a_0^2 (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$
$\Delta_1^{\#4} + ^c$	ο 0	0	0	0	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0 + a_1 (40 - 31 k^2))}{2 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{\sqrt{5} (10 a_0 + k^2 (3 a_0 - 2 a_1 (164 + 31 k^2)))}{12 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$\frac{1}{12 a_0 - 396 a_1 k^2}$	$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + a_1 k^2 \left(164 + 31 k^2\right)\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{i\sqrt{\frac{5}{6}}k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$
$\Delta_1^{\#5} + ^c$	0	0	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	$\frac{k^2 \left(2 a_0^{ 2} (5 + 2 k^2) - a_0 a_1 (880 + 778 k^2 + 199 k^4) + a_1^{ 2} k^2 (9440 + 1901 k^2 (4 + k^2))\right)}{2 \sqrt{3} a_0^{ 2} (2 + k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{2a_0^2 (-2+k^2) + a_0 a_1 k^2 (472 + 934 k^2 + 289 k^4) - 2a_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{6 \sqrt{2} a_0^2 (2+k^2)^2 (a_0 - 33 a_1 k^2)}$	$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + a_1 k^2 \left(164 + 31 k^2\right)\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$\frac{4a_0^2 (17 + 14k^2 + 3k^4) - 4a_0a_1k^2 (236 + 287k^2 + 77k^4) + a_1^2k^4 (5120 + 7280k^2 + 1901k^4)}{6a_0^2 (2 + k^2)^2 (a_0 - 33a_1k^2)}$	$-\frac{a_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{i k (2 a_0^2 (3+k^2)-27 a_1^2 k^4 (40+3 k^2)+3 a_0 a_1 k^2 (34+7 k^2))}{\sqrt{3} a_0^2 (2+k^2)^2 (a_0-33 a_1 k^2)}$
$\Delta_1^{\#6} \dagger^c$	0	0	0	0	$\frac{k^2 \left(-a_0 + a_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} \ a_0 \left(2 + k^2\right) \left(a_0 - 33 a_1 k^2\right)}$	$-\frac{2 a_0 + (3 a_0 - 56 a_1) k^2 + 86 a_1 k^4}{6 a_0 (2 + k^2) (a_0 - 33 a_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{a_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 a_1 k^2)}$	$\frac{5}{3(a_0-33a_1k^2)}$	$-\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$
$\mathcal{T}_1^{\sharp 1} \dagger^c$	0	0	0	$\frac{2i\sqrt{2}k}{2a_0+a_0k^2}$	$\frac{i(-30a_0a_1k^5 + a_0^2k(4+k^2) + 27a_1^2k^5(-28+3k^2))}{a_0^2(2+k^2)^2(a_0-33a_1k^2)}$	$-\frac{i\left(54a_{1}^{2}k^{5}(40+3k^{2})+a_{0}^{2}k(6+5k^{2})\cdot3a_{0}a_{1}k^{3}(86+23k^{2})\right)}{\sqrt{6}a_{0}^{2}(2+k^{2})^{2}(a_{0}\cdot33a_{1}k^{2})}$	$\frac{i\sqrt{\frac{5}{6}}k(a_0-51a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	$-\frac{i(2a_0^2k(3+k^2)-27a_1^2k^5(40+3k^2)+3a_0a_1k^3(34+7k^2))}{\sqrt{3}a_0^2(2+k^2)^2(a_0-33a_1k^2)}$	$\frac{i\sqrt{\frac{2}{3}}k(a_0+57a_1k^2)}{a_0(2+k^2)(a_0-33a_1k^2)}$	$\frac{2k^2(a_0^2+30a_0a_1k^2-459a_1^2k^4)}{a_0^2(2+k^2)^2(a_0-33a_1k^2)}$

	$\Gamma^{\#1}_{1^+ lphaeta}$	$\Gamma_{1}^{\#2}_{\alpha\beta}$	$\Gamma_{1}^{\#3}{}_{\alpha\beta}$	$\Gamma_{1}^{\#1}{}_{\alpha}$	Γ ₁ ^{#2} α	Γ ₁ ⁻³ α	Γ ₁ - α	Γ ₁ - α	Γ ₁ - α	$h_{1}^{\#1}{}_{\alpha}$
$\Gamma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4} \left(-a_0 - 15 a_1 k^2 \right)$	$-\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	0	0	0	0	0
$\Gamma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_{1}^{#3} + \alpha \beta$	$5 a_1 k^2$	0	$\frac{1}{4}(a_0-29a_1k^2)$	0	0	0	0	0	0	0
$\Gamma_1^{\#1} \dagger^{\alpha}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 a_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2} \sqrt{3} a_1 k^2$	$-\frac{5}{2} \sqrt{\frac{5}{3}} a_1 k^2$	$5\sqrt{\frac{3}{2}}a_1k^2$	$-\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{2}}$
$\Gamma_{1}^{#2} \uparrow^{\alpha}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_1^{#3} \dagger^{\alpha}$	0	0	0	$\frac{5}{2} \sqrt{3} a_1 k^2$	0	$-\frac{a_0}{3}$	$\frac{1}{6} \sqrt{5} (a_0 - 8 a_1 k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	$\frac{i a_0 k}{4 \sqrt{6}}$
$\Gamma_{1}^{\#4} + \alpha$	0	0	0	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	0	$\frac{1}{6} \sqrt{5} (a_0 - 8 a_1 k^2)$	$\frac{1}{3}(a_0 + 7 a_1 k^2)$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 a_1 k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	$-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$
$\Gamma_{1}^{\#5} \uparrow^{\alpha}$	0	0	0	$5\sqrt{\frac{3}{2}}a_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 a_1 k^2)$	<u>a₀</u> 3	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$
$\Gamma_{1}^{\#6} \uparrow^{\alpha}$	0	0	0	$-\frac{5a_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12} (a_0 - 17 a_1 k^2)$	<u>ia₀k</u> 4√6
$h_1^{\#1} + \alpha$	0	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0

Lagrangian density $\frac{1}{2}a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2}a_0 \Gamma^{\alpha}_{\beta} \Gamma^{\chi}_{\beta\chi} + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} - \frac{1}{2}a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2}a_0 \Gamma^{\alpha}_{\beta} \Gamma^{\chi}_{\lambda\chi} + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} - \frac{1}{2}a_1 \partial^{\alpha}\Gamma^{\chi}_{\delta} \partial_{\beta}\Gamma^{\alpha}_{\alpha} + \frac{1}{2}a_1 \partial^{\alpha}\Gamma^{\chi}_{\delta} \partial_{\beta}\Gamma^{\alpha}_{\alpha} - \frac{1}{2}a_0 h_{\alpha\chi} \partial_{\beta}\Gamma^{\alpha\beta\chi} + \frac{11}{2}a_1 \partial^{\alpha}\Gamma^{\chi}_{\delta} \partial_{\beta}\Gamma_{\chi\alpha}^{\beta} + \frac{1}{2}a_1 \partial^{\alpha}\Gamma^{\chi}_{\lambda} \partial_{\beta}\Gamma^{\alpha}_{\alpha} - \frac{1}{2}a_1 \partial_{\alpha}\Gamma^{\chi}_{\delta} \partial_{\beta}\Gamma^{\alpha\beta\chi} - \frac{1}{2}a_1 \partial_{\alpha}\Gamma^{\chi}_{\delta} \partial_{\beta}\Gamma^{\alpha}_{\alpha} - \frac{1}{2}a_1 \partial_{\alpha}\Gamma^{\chi}_{\delta} \partial_{\alpha}\Gamma^{\alpha}_{\alpha} - \frac{1}{2}a_1 \partial_{\alpha}\Gamma^{\chi}_{\alpha} \partial_{\alpha}\Gamma^{\alpha}_{\alpha} \partial_{\alpha}\Gamma^{\chi}_{\alpha} - \frac{1}{2}a_1 \partial_{\alpha}\Gamma^{\chi}_{\alpha} \partial_{\alpha}\Gamma^{\chi}_{\alpha} - \frac{1}{2}a_1 \partial_{$

$\Gamma_3^{\#1}_{\alpha\beta\chi}$		$\Delta_{3}^{\#1}{}_{\alpha\beta\chi}$
$+^{\alpha\beta\chi}$ $\frac{1}{2} (-a_0 - 7 a_1 k^2)$	$\Delta_3^{#1} \dagger^{\alpha\beta\chi}$	$-\frac{2}{a_0+7a_1k^2}$

$\frac{1}{2} \left(-a_0 + a_1 k^2 \right)$	0	0	0	0	0	0	Γ ₀ -1 †
0	0	0	$-\frac{ia_0k}{4\sqrt{2}}$	1 a 0 k	0	0	$h_{0+}^{#2} \dagger$
0	0	0	$\frac{ia_0k}{4\sqrt{6}}$	$-\frac{ia_0k}{4\sqrt{3}}$	0	$\frac{i a_0 k}{2 \sqrt{2}}$	$h_{0+}^{\#1} \dagger$
0	$\frac{\bar{i} a_0 k}{4 \sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{1}{6} (3 a_0 + 23 a_1 k^2)$	$-\frac{3a_0+46a_1k^2}{6\sqrt{2}}$	$\frac{a_0}{2\sqrt{2}}$	$-\frac{10 a_1 k^2}{\sqrt{3}}$	Γ ₀ ^{#4} †
0	$-\frac{1}{4}\bar{i}a_0k$	$\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{3a_0+46a_1k^2}{6\sqrt{2}}$	23 <i>a</i> 1 k ²	$\frac{a_0}{2}$	$10\sqrt{\frac{2}{3}}a_1k^2$	Γ ₀ ^{#3} †
0	0	0	$-\frac{a_0}{2\sqrt{2}}$	2 2	0	0	Γ ₀ ^{#2} †
0	0	$-\frac{i a_0 k}{2 \sqrt{2}}$	$-\frac{10 a_1 k^2}{\sqrt{3}}$	$10\sqrt{\frac{2}{3}}a_1k^2$	0	$\frac{1}{2}\left(-a_0+25a_1k^2\right)$	Γ ₀ ^{#1} †
Γ#1	$h_{0^{+}}^{#2}$	$h_{0+}^{#1}$	Γ#4 0+	Γ#3 0+	Γ ₀ ^{#2}	Γ#1 0+	
				8		#:	Total #:
				$\alpha = 0$ 3	+ Δ ₁ -3	$2 \Delta_{1^{-}}^{\#6\alpha} + \Delta_{1^{-}}^{\#4\alpha} + 2 \Delta_{1^{-}}^{\#5\alpha} + \Delta_{1^{-}}^{\#3\alpha} ==$	$2 \Delta_{1-}^{\#6\alpha}$
				$\frac{1}{2}\alpha$) == 0 3	$^{\alpha}$ + $\Delta_{1}^{\#3}$ $^{\alpha}$)	$6 \mathcal{T}_{1}^{\#1\alpha} - ik(3 \Delta_{1}^{\#2\alpha} - \Delta_{1}^{\#5\alpha})$	$5 {\cal T}_{1^{-}}^{\#1}{}^{c}$
				1		$\Delta_{0+}^{#3} + 2 \Delta_{0+}^{#4} + 3 \Delta_{0+}^{#2} == 0$	_0+3 + 2
				1		$2\mathcal{T}_{0+}^{*2} - i k \Delta_{0+}^{*2} == 0$	$2\mathcal{T}_{0+}^{\#2}$ -
				#		irreps	SO(3) irreps
						Source constraints	source

0	$\frac{2i\sqrt{6}k}{a_0+3a_0k^2}$	$\frac{2i\sqrt{2}}{a_0k}$	8 16 <i>a</i> ₀ +3 <i>a</i> ₀ <i>k</i> ²)	$4\sqrt{\frac{2}{3}}$ $3a_0+3a_0k^2$	$\frac{4\sqrt{6}}{a_0+3a_0k^2}$	0	$\Delta_{0}^{\#1}$
0	$-\frac{24 i k (3 a_0 + 197 a_1 k^2)}{{a_0}^2 (16 + 3 k^2)^2}$	$\frac{8i\sqrt{3}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$\frac{16(19a_0 + (3a_0 + 197a_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{48(3a_0+197a_1k^2)}{{a_0}^2(16+3k^2)^2}$	$\frac{4 \sqrt{6}}{16a_0 + 3a_0 k^2}$	$\Delta_0^{\#2}$
0	$\frac{8ik(19a_0 + (3a_0 + 197a_1)k^2)}{{a_0}^2(16 + 3k^2)^2}$	$\frac{8i(a_0-65a_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$-\frac{16 (35 a_0 + (6 a_0 + 197 a_1) k^2)}{3 a_0^2 (16 + 3 k^2)^2}$	$\frac{16(19a_0 + (3a_0 + 197a_1)k^2)}{{a_0}^2(16 + 3k^2)^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\Delta_{0}^{\#3}$
0	$-\frac{4i\sqrt{2}k(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8i\sqrt{\frac{2}{3}}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{32(13a_0+(3a_0-197a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394a_1)k^2)}{3a_0^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$	$\Delta_0^{\#4}$
0	$\frac{4\sqrt{3}(a_0-65a_1k^2)}{a_0^2(16+3k^2)}$	$\frac{4(a_0-25a_1k^2)}{a_0^2k^2}$	$\frac{8i\sqrt{\frac{2}{3}}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{8i(a_0-65a_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8i\sqrt{3}(a_0-65a_1k^2)}{a_0^2k(16+3k^2)}$	$-\frac{2i\sqrt{2}}{a_0k}$	${\mathcal T}^{\#1}_{0^+}$
0	$-\frac{12 k^2 (3 a_0 + 197 a_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	$\frac{4\sqrt{3}(a_0-65a_1k^2)}{a_0^2(16+3k^2)}$	$\frac{4i\sqrt{2}k(10a_0+(3a_0-394a_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8ik(19a_0+(3a_0+197a_1)k^2)}{{a_0}^2(16+3k^2)^2}$	$\frac{24ik(3a_0+197a_1k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	${\cal T}_{0}^{\#2}$
$-\frac{2}{a_0-a_1 k^2}$	0	0	0	0	0	0	$\Delta_{0}^{\#1}$

	$\Delta_{2}^{\#1}_{lphaeta}$	$\Delta^{\#2}_{2}{}^{+}\alpha\beta$	$\Delta^{\#3}_{2}{}^{+}_{lphaeta}$	${\cal T}^{\sharp 1}_{2^+lphaeta}$	$\Delta_{2}^{\#1}_{\alpha\beta\chi}$	$\Delta_{2}^{#2} \alpha \beta \chi$
$\Delta_{2}^{#1} \dagger^{\alpha}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{4}{\sqrt{3} a_0}$	$\frac{4i\sqrt{2}}{a_0k}$	0	0
$\Delta_{2}^{#2} \dagger^{\alpha}$	$\beta \frac{2\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{8(a_0+13a_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2}(a_0+52a_1k^2)}{3a_0^2}$	$-\frac{4i(a_0+31a_1k^2)}{\sqrt{3}a_0^2k}$	0	0
$\Delta_2^{#3} \dagger^{\alpha}$	$\beta \frac{4}{\sqrt{3} a_0}$	$-\frac{2\sqrt{2}(a_0+52a_1k^2)}{3a_0^2}$	$\frac{8(a_0-26a_1k^2)}{3a_0^2}$	$-\frac{4i\sqrt{\frac{2}{3}}(a_0+31a_1k^2)}{a_0^2k}$	0	0
${\mathcal T}_2^{\sharp 1}\dagger^{lpha}$	$\frac{4 i \sqrt{2}}{a_0 k}$	$\frac{4i(a_0+31a_1k^2)}{\sqrt{3}a_0^2k}$	$\frac{4i\sqrt{\frac{2}{3}}(a_0+31a_1k^2)}{a_0^2k}$	$-\frac{8(a_0+11a_1k^2)}{a_0^2k^2}$	0	0
$\Delta_2^{\#1} \dagger^{\alpha\beta}$	0	0	0	0	$\frac{4}{a_0 - a_1 k^2}$	0
$\Delta_2^{\#2} \dagger^{\alpha\beta}$	0	0	0	0	0	$\frac{4}{a_0-5a_1k^2}$

$\Gamma_{-2}^{#2} + \alpha\beta\chi$	$\Gamma_{2^{-}}^{#1} \uparrow^{\alpha\beta\chi}$	$h_{2}^{#1} + \alpha \beta$	$\Gamma_{2+}^{#3} + \alpha\beta$	$\Gamma_{2+}^{\#2} + \alpha\beta$	$\Gamma_{2+}^{#1} \dagger^{\alpha\beta}$	
0	0	$-\frac{ia_0k}{4\sqrt{2}}$	$\frac{5a_1k^2}{\sqrt{3}}$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\left[\Gamma_{2+}^{\#1} + \alpha \beta \right] \frac{1}{4} (a_0 + 11 a_1 k^2) -5 \sqrt{\frac{2}{3}} a_1 k^2$	$\Gamma_{2}^{\#1}{}_{lphaeta}$
0	0	$-\frac{ia_0k}{4\sqrt{3}}$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{1}{6} \left(-3 a_0 + a_1 k^2 \right)$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\Gamma_{2}^{#2} + \alpha \beta$
0	0	$\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{1}{12} \left(3 a_0 + a_1 k^2 \right) \left -\frac{i a_0 k}{4 \sqrt{6}} \right $	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{5 a_1 k^2}{\sqrt{3}}$	$\Gamma_{2}^{#3} + \alpha \beta$
0	0	0	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{2}}$	$h_{2}^{\#1}{}_{lphaeta}$
0	$\frac{1}{4} (a_0 - a_1 k^2)$	0	0	0	0	$\Gamma_{2^{-}}^{\#1}{}_{lphaeta\chi}$
$\frac{1}{2}(a_0-5a_1k^2)$	0	0	0	0	0	$\Gamma_{2}^{\#2}\alpha\beta\chi$

**	MassiveAnalysisOfSector		Nii