1. Regarding the proof of problem 23(b).

Since \mathbf{x}_0 is an extreme point it lies on n LI hyperplanes defining $Fea(P) = \{\mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ and it lies on at least n defining hyperplanes of Fea(P).

WLOG let the set of normals to those chosen set of n LI hyperplanes (if \mathbf{x}_0 lies on more than n defining hyperplanes of Fea(P)) be $\tilde{\mathbf{a}}_j$, j = 1, 2, ..., n,

hence \mathbf{x}_0 satisfies $\tilde{\mathbf{a}}_j^T \mathbf{x}_0 = \tilde{b}_j, j = 1, \dots, n$.

Let $\mathbf{d}_i \in \mathbb{R}^n$ be such that $\tilde{\mathbf{a}}_j^T \mathbf{d}_i = 0$, for all $j = 1, \dots, i - 1, i + 1, \dots, n$, and $\tilde{\mathbf{a}}_i^T \mathbf{d}_i < 0$ (that is \mathbf{d}_i is orthogonal to the normals of all the chosen LI hyperplanes on which \mathbf{x}_0 lies except the i th one).

We have to show that all the \mathbf{d}_i 's defined above cannot be directions, and hence by moving in the positive direction of one of them, starting from \mathbf{x}_0 we hope to find an obstruction, which will give an extreme point adjacent to \mathbf{x}_0 .

Check that $\{\mathbf{d}_1, \dots, \mathbf{d}_n\}$ is LI hence forms a basis of \mathbb{R}^n .

If \mathbf{y}_0 is an extreme point of Fea(P), then $(\mathbf{y}_0 - \mathbf{x}_0) \in \mathbb{R}^n$ can be expressed as a linear combination of $\mathbf{d}_1, \dots, \mathbf{d}_n$.

Let
$$\mathbf{y}_0 - \mathbf{x}_0 = \alpha_1 \mathbf{d}_1 + \ldots + \alpha_n \mathbf{d}_n$$
. (**)

Case 1: All the α_i 's are nonnegative.

Since $\mathbf{y}_0 - \mathbf{x}_0$ can be expressed as a nonnegative linear combination of $\mathbf{d}_1, \dots, \mathbf{d}_n$, and \mathbf{y}_0 is an extreme point $\mathbf{y}_0 - \mathbf{x}_0$ is not a direction hence at least one of the \mathbf{d}_i 's is not a direction. Choose a \mathbf{d}_i such that $\mathbf{x}_0 + \alpha \mathbf{d}_i$ does not belong to Fea(P) for $\alpha > 0$ large but $\mathbf{x}_0 + \alpha \mathbf{d}_i \in Fea(P)$ for $\alpha > 0$ sufficiently small

(will there always exist such a d_i ? Consider the exercise given below).

Let $\beta = \max\{\alpha : \mathbf{x}_0 + \alpha \mathbf{d}_i \in Fea(P)\}$, then $\beta > 0$ and check that $\mathbf{x}_0 + \beta \mathbf{d}_i \neq \mathbf{x}_0$ is an extreme point which lies on (n-1) LI hyperlanes in common with \mathbf{x}_0 , that is an adjacent extreme point of \mathbf{x}_0 .

Case 2: If not then WLOG let $\alpha_1 < 0$, which implies for all $\gamma > 0$,

```
\tilde{\mathbf{a}}_{1}^{T}(\mathbf{x}_{0} + \gamma(\mathbf{y}_{0} - \mathbf{x}_{0})) 

= \tilde{\mathbf{a}}_{1}^{T}(\mathbf{x}_{0} + \gamma(\alpha_{1}\mathbf{d}_{1} + \ldots + \alpha_{n}\mathbf{d}_{n})) 

= \tilde{\mathbf{a}}_{1}^{T}\mathbf{x}_{0} + (\gamma\alpha_{1})\tilde{\mathbf{a}}_{1}^{T}\mathbf{d}_{1} > \tilde{b}_{1} 

(***)
```

But since $\mathbf{x}_0 + \gamma(\mathbf{y}_0 - \mathbf{x}_0) \in Fea(P)$ for all $0 \le \gamma \le 1$,

 $\tilde{\mathbf{a}}_{j}^{T}(\mathbf{x}_{0}+\gamma(\mathbf{y}_{0}-\mathbf{x}_{0})) \leq b_{j}$ for all $0 \leq \gamma \leq 1$, for all $j=1,\ldots,n$, which contradicts (***). (The above proof was given by a student Debanjan chakrabarty of CSE in the 2016 batch, also almost the same proof was given by a student yesterday, I dont remember his name).

Aliter: let \mathbf{y}_0 be another extreme point of Fea(P). Let $\bar{S} = S \cap H$ where H is a halfspace such that \bar{S} is bounded and includes no other extreme point of S except \mathbf{x}_0 (check that you can do it, for example consider a positive vector \mathbf{a} such that $\mathbf{a}^T\mathbf{x}_0 \neq \mathbf{a}^T\mathbf{x}_i$ for all other extreme points \mathbf{x}_i of S. Consider $H = {\mathbf{x} : \mathbf{a}^T\mathbf{x} \leq \mathbf{a}^T\mathbf{x}_0 + \epsilon}$, where $\epsilon > 0$ is sufficiently small).

Then \bar{S} is a bounded polyhedral set and check that a part of the line segment joining \mathbf{x}_0 and \mathbf{y}_0 must be inside \bar{S} , that is $\mathbf{x}_0 + \gamma(\mathbf{y}_0 - \mathbf{x}_0) \in \bar{S}$ for $\gamma > 0$ small, (*) hence \bar{S} must have at least two extreme points and the extreme points of \bar{S} are \mathbf{x}_0 and points of the form $\mathbf{x}_0 + \alpha_i \mathbf{d}_i$, (where the \mathbf{d}_i 's are as defined above) which lie on (n-1) LI hyperplanes in common with \mathbf{x}_0 and on the hyperplane associated with H. Also by

(*) and the representation theorem, $\mathbf{x}_0 + \gamma(\mathbf{y}_0 - \mathbf{x}_0) \in \bar{S}$ can be written as a convex combination of the extreme points of \bar{S} , which implies that $(\mathbf{y}_0 - \mathbf{x}_0)$ can be written as a nonnegative linear combination of the \mathbf{d}_i 's, and since $(\mathbf{y}_0 - \mathbf{x}_0)$ is not a direction (because \mathbf{y}_0 is an extreme point), all the \mathbf{d}_i 's cannot be directions.

Hence by starting from \mathbf{x}_0 and moving along the positive direction of one such \mathbf{d}_i we hope to find an adjacent extreme point of \mathbf{x}_0 .

Exercise: Check that if \mathbf{x}_0 is an extreme point then there can exist \mathbf{d}_i not a direction (where \mathbf{d}_i is as defined in the previous proof) such that none of $\mathbf{x}_0 + \alpha \mathbf{d}_i$, and $\mathbf{x}_0 - \alpha \mathbf{d}_i$ belong to the feasible region for any $\alpha > 0$. So the initial choice of the \mathbf{d}_i 's in the above proof has to be done judiciously.

Hint: Think of an extreme point for a feasible region in \mathbb{R}^2 lying on three defining hyperplanes of the feasible region.

- 2. There are also errors (the transpose sign are missing, the word LI missing etc) and gaps in the Hint of 23(a). I am trying to correct it, I will send it to you as soon as possible.
- 3. Regarding the proof of the existence of a direction if the set is unbounded is not done for a general convex set, but for a polyhedral set the existence of direction if the set is unbounded is sort of included in the proof of **Representation theorem** (go through the proof carefully).
- 4. Regarding the question of a student that whether the extreme directions are LI. I had given a counterexample for a general polyhedral set (a single half space) which was not like the feasible region of a LPP, a better counterexample is given below:

Consider the feasible region of a LPP in \mathbb{R}^3 as:

$$-x_1 + x_2 - x_3 \le 1$$

$$-x_1 - x_2 + x_3 \le -2$$

$$-x_1 - x_2 - x_3 \le -5$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

Check that the above feasible region has more than three extreme directions (as far as I have calculated), hence the extreme directions are LD.

5. Regarding the **Exercise** given in notes(2) immediately before Example 2 (revisited), there is an issue with the statement as pointed out by the student Manan (maybe that is his name), so I have rephrased the statement of the problem as follows:

Exercise: Check that if a $\mathbf{d} \in D$ lies on (n-1) LI hyperplanes (out of the (m+n) defining hyperplanes of D) given by $\{H_1, \ldots, H_{n-1}\}$, then $\{H, H_1, \ldots, H_{n-1}\}$ is LI where $H = \{\mathbf{d} \in \mathbb{R}^n : [1, 1, \ldots, 1]\mathbf{d} = 1\}$.