Vector Calculus Week 2 - More Suffix Notation

James Arthur

September 30, 2020

Contents

Gradient
Curl
binations of gradient, divergence and curl Divergence of Gradient
Divergence of Gradient
Curl of Gradient
Gradient of Divergence
Divergence of Curl
Curl of Curl

1 Gradient, Divergence and 2 Curl

1.1 Gradient

Assume we have a f = f(x, y, z) or $f = f(x_1, x_2, x_3)$, so a scalar calued function. Then we define grad f as:

$$\underline{\nabla} f = \left(\frac{\partial}{\partial x} \hat{\imath} + \frac{\partial}{\partial y} \hat{\jmath} + \frac{\partial}{\partial z} \hat{k} \right) f$$

We say grad of f is a differential operator. So:

$$\underline{\nabla} f = \left(\frac{\partial f}{\partial x} \hat{\boldsymbol{\imath}} + \frac{\partial f}{\partial y} \hat{\boldsymbol{\jmath}} + \frac{\partial f}{\partial z} \hat{\boldsymbol{k}} \right)$$

and we can write it in suffix notation aswell:

$$[\underline{\nabla} f]_i = \frac{\partial}{\partial x_i} \qquad i = 1, 2, 3$$

1.2 Divergence

Assume we have a vector field, $\underline{\mathbf{u}} = \underline{\mathbf{u}}(x, y, z, t)$. We define the divergence of this vector field as;

$$\underline{\nabla} \cdot \underline{\mathbf{u}} = \left(\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} \right)$$

Placing this in suffix notation, we get that:

$$[\underline{\nabla} \cdot \underline{\mathbf{u}}]_j = \frac{\partial u_j}{\partial x_j}$$

1.3 Curl

the curl of a vector field can be written as:

$$\underline{\nabla} \times \underline{\mathbf{u}}$$

To write this in suffix notation, we can just use the cross produce formula:

$$[\underline{\nabla} \times \underline{\mathbf{u}}]_i = \varepsilon_{ijk} \underline{\nabla}_j u_k$$

which then can be manipulated into:

$$[\underline{\nabla} \times \underline{\mathbf{u}}]_i = \varepsilon_{ijk} \frac{\partial u_k}{\partial x_i}$$
 $j, k = 1, 2, 3$

where i is a free index and j,k are dummy suffixes, so j,k=1,2,3

2 Combinations of gradient, divergence and curl

2.1 Divergence of Gradient

If we take $\nabla \cdot \nabla f$ where $f = (x_1, x_2, x_3, t)$. We can write the div of grad as:

$$\begin{split} \underline{\nabla} \cdot \underline{\nabla} f &= \left(\frac{\partial}{\partial x} \hat{\mathbf{i}} + \frac{\partial}{\partial y} \hat{\mathbf{j}} + \frac{\partial}{\partial z} \hat{\mathbf{k}} \right) \cdot \left(\frac{\partial f}{\partial x} \hat{\mathbf{i}} + \frac{\partial f}{\partial y} \hat{\mathbf{j}} + \frac{\partial f}{\partial z} \hat{\mathbf{k}} \right) \\ &= \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_1} + \frac{\partial}{\partial x_2} \frac{\partial f}{\partial x_2} + \frac{\partial}{\partial x_3} \frac{\partial f}{\partial x_3} \\ &= \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2} \\ &= \Delta f \end{split}$$

Where the $\Delta = \underline{\nabla}^2$ is the laplacian. So how do we write this in suffix notation?

$$\underline{\nabla} \cdot \underline{\nabla} f = \underline{\nabla}_j [\underline{\nabla} f]_j$$

$$= \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_j}$$

$$= \frac{\partial^2 f}{\partial x_i}$$

2.2 Curl of Gradient

We can write the curl of gradient as:

$$\begin{split} [\underline{\nabla} \times \underline{\nabla} \, f]_i &= \varepsilon_{ijk} \underline{\nabla}_j \underline{\nabla} \, f_k \\ &= \varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_k} \\ &= \varepsilon_{ikj} \frac{\partial}{\partial x_k} \frac{\partial f}{\partial x_j} \\ &= -\varepsilon_{ijk} \frac{\partial}{\partial x_k} \frac{\partial f}{\partial x_j} \\ &= -\varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_k} \qquad \text{if } f \in c^2 \\ &\Longrightarrow \nabla \times \nabla \, f = 0 \end{split}$$

2.3 Gradient of Divergence

Assume we have a $\underline{\mathbf{u}}$, vector field, and we want $\nabla f \nabla \cdot$.

$$\begin{split} [\nabla f \nabla \cdot]_i &= \nabla_i \frac{\partial u_j}{\partial x_j} \\ &= \frac{\partial}{\partial x_i} \frac{\partial u_j}{\partial x_j} \\ &= \frac{\partial^2 u_j}{\partial x_i \partial x_j} \end{split}$$

2.4 Divergence of Curl

We can write divergence of curl as:

$$\begin{split} [\underline{\nabla} \cdot \underline{\nabla} \times \underline{\mathbf{u}}]_i &= \frac{\partial}{\partial x_i} [\underline{\nabla} \times \underline{\mathbf{u}}]_i \\ &= \frac{\partial}{\partial x_i} \varepsilon_{ijk} \frac{\partial u_k}{\partial x_j} \\ i, j, k = 1, 2, 3, \text{ so } i \leftrightarrow j \\ &= \frac{\partial}{\partial x_j} \varepsilon_{jik} \frac{\partial u_k}{\partial x_i} \\ &= -\varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial u_k}{\partial x_i} \\ &= -\varepsilon_{ijk} \frac{\partial}{\partial x_i} \frac{\partial u_k}{\partial x_j} \quad \text{as } \underline{\mathbf{u}} \in c^2 \end{split}$$

As $\underline{\nabla} \cdot (\underline{\nabla} \times \underline{\mathbf{u}}) = -\underline{\nabla} \cdot (\underline{\nabla} \times \underline{\mathbf{u}})$, then we know that $\underline{\nabla} \cdot (\underline{\nabla} \times \underline{\mathbf{u}}) = 0$

2.5 Curl of Curl

We can write curl of curl, $\nabla \times (\nabla \times \mathbf{u})$, as:

$$\begin{split} [\underline{\nabla} \times (\underline{\nabla} \times \underline{\mathbf{u}})]_i &= \varepsilon_{ijk} \frac{\partial}{\partial x_j} (\underline{\nabla} \times \underline{\mathbf{u}})_k \\ &= \varepsilon_{ijk} \frac{\partial}{\partial x_j} \varepsilon_{klm} \frac{\partial u_m}{\partial x_l} \\ &= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \frac{\partial^2 u_m}{\partial x_j \partial x_l} \\ &= \delta_{il} \delta_{jm} \frac{\partial^2 u_m}{\partial x_j \partial x_l} - \delta_{im} \delta_{jl} \frac{\partial^2 u_m}{\partial x_j \partial x_l} \\ &= \frac{\partial^2 u_j}{\partial x_j \partial x_i} - \frac{\partial^2 u_i}{\partial x_j \partial x_j} \\ &= \frac{\partial}{\partial x_i} \frac{\partial u_j}{\partial x_j} - \frac{\partial^2 u_i}{\partial x_j^2} \\ &= [\underline{\nabla} (\underline{\nabla} \cdot \underline{\mathbf{u}})]_i - [\underline{\Delta} \underline{\mathbf{u}}]_i \\ &= [\underline{\nabla} (\underline{\nabla} \cdot \underline{\mathbf{u}}) - \underline{\nabla}^2 \underline{\mathbf{u}}]_i \end{split}$$

3 Scalar Field / Vector Fields Defintions

A scalar or vector quantity is said to be a field if it is a function of position. Examples

- 1. Temperature is a scalar field, $T = T(x, y, z) = T(\underline{\mathbf{r}})$
- 2. Pressure and Density are also scalr fields $P = P(\underline{\mathbf{r}})$ and $\rho = \rho(\underline{\mathbf{r}})$
- 3. if a physical quantity is a scalar we speak of a scalar field or function of position.

If a physical quantity is a vector, such as force $\underline{\mathbf{F}} = \underline{\mathbf{F}}(x,y,z)$. We speak of a vector field or vector function.

A vector-valued function is an $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$. So, for each $\underline{\mathbf{x}} = (x_1, \dots, x_n) \in A$, f assigns a value $f(\underline{\mathbf{x}})$, an m-tuple, in \mathbb{R}^m . These functions, f, are called vector-valued functions if m > 1 and scalar if m = 1.

Example 1 Take the function, $f:(x,y,z)\mapsto (x^2+y^2+z^2)^{\frac{3}{2}}$

Solution 1 It's a scalar function from \mathbb{R}^3 to \mathbb{R} .

Example 2 Take the function $g:(x_1,x_2,x_3)\mapsto (x_1x_2x_3,\sqrt{x_1x_3})$

Solution 2 This is a vector valued function from \mathbb{R}^3 to \mathbb{R}^2

To specify a temperature T in a region A of space requires a function $T,\ T:A\subset\mathbb{R}^m\mapsto\mathbb{R}.$ T=T(x,y,z).

To specify the velocity of a fluid moving in space requires a map, $\underline{\mathbf{v}}: \mathbb{R}^4 \mapsto \mathbb{R}^3$ where $\underline{\mathbf{v}}(x,y,z,t)$ is the velocity of the fluid at (x,y,z) at time t.

When $f: U \subset \mathbb{R}^n \to \mathbb{R}$, we say that f is a real valued function of n-variables with domain U.

Let $f: U: \mathbb{R}^n \to \mathbb{R}$, then graph $f = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^{n+1} : (x_1, \dots, x^n)\}$ If n = 1,

then we can conclude that graph f is curve in \mathbb{R}^2 and if n=2, then graph f is a surface in \mathbb{R}^3 .

3.1 Level Sets, Curves and Surfaces

A level set is a subset of \mathbb{R}^3 on which f is constant. For example, for $f(x,y,z)=x^2+y^2+z^2$, the set where $x^2+y^2+z^2=1$ is alevel set. A level set is a set of (x,y,z):f(x,y,z)=c where $c\in\mathbb{R}$.

For functions f(x,y), we speak of level curves or contours. example, $f:\mathbb{R}^2\mapsto\mathbb{R},\ f(x,y)=x+y+2$, has as it's graph the inclined plane z=x+y+2. The plane intersects the xy plan where z=0 in the line y=-x-2 and the z-axis at (0,0,2). For any $c\in\mathbb{R}$, the level curve of c is the straight line: $y=-x+(c-2):L_c\{(x,y):y=-x+c-2\}\subset\mathbb{R}^2$