

Final datasheet

XHP™2 module with CoolSiC™ Trench MOSFET and NTC

Features

- · Electrical features
 - $V_{DSS} = 2300 V$
 - $I_{DN} = 2000 \text{ A} / I_{DRM} = 4000 \text{ A}$
 - High current density
 - Low inductive design
 - Low switching losses
 - $T_{vj,op} = 175$ °C
- Mechanical features
 - Substrate for low thermal resistance
 - Copper base plate
 - High creepage and clearance distances
 - High power density
 - Package with CTI > 600

Potential applications

- Central inverter
- Wind power generation
- · Energy storage systems
- Industrial drives
- · Traction drives
- DC/DC converter
- High-power converters
- High-frequency switching application

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

XHP™2 module

Table of contents

	Description	1
	Features	1
	Potential applications	1
	Product validation	1
	Table of contents	2
1	Package	3
2	MOSFET Inverter	3
3	Body diode (MOSFET Inverter)	5
4	NTC-Thermistor	6
5	Characteristics diagrams	7
6	Circuit diagram	3
7	Package outlines	4
8	Module label code	5
	Revision history 1	6
	Disclaimer	7

XHP™2 module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	4.0	kV
Material of module baseplate			Cu	
Comparative tracking index	СТІ		> 600	

Table 2 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Stray inductance module	L _{sCE}				10		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T_C = 25 °C, per switch			0.4		mΩ
Storage temperature	$T_{\rm stg}$			-40		150	°C
Maximum baseplate operation temperature	T_{BPmax}					150	°C
Mounting torque for module mounting	М	- Mounting according to valid application note	M6, Screw	3		6	Nm
Terminal connection	М	- Mounting according to	M3, Screw	0.9		1.1	Nm
torque		valid application note	M8, Screw	8		10	
Weight	G		•		1020		g

2 MOSFET Inverter

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	$V_{\rm DSS}$		T _{vj} = 25 °C	2300	V
Implemented drain current	I _{DN}			2000	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 15 V	T _C = 75 °C	1330	A
Repetitive peak drain current	I _{DRM}	verified by design, t _p lim	ited by T _{vjmax}	4000	А
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01		-10/23	V
Gate-source voltage, max. static voltage	V _{GS}			-7/20	V

XHP™2 module

2 MOSFET Inverter

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-5	V

Table 5 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 2000 A	$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		0.95	1.19	mΩ
			V _{GS} = 15 V, T _{vj} = 125 °C		1.7	2.13	
			V _{GS} = 15 V, T _{vj} = 175 °C		2.3	2.88	
Gate threshold voltage	V _{GS(th)}	I_D = 900 mA, V_{DS} = V_{GS} , T_{Vj} after 1ms pulse at V_{GS} = +		3.45	4.2	5.15	V
Total gate charge	Q _G	$V_{\rm DD}$ =1500 V, $V_{\rm GS}$ = -5/15 V,	T _{vj} = 25 °C		5.3		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			1.1		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 1500 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		190		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 1500 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		4.1		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 1500 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.2		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ = 1500 V, $V_{\rm GS}$ = -5/15 V	', T _{vj} = 25 °C		5.8		mJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 2300 V, $V_{\rm GS}$ = -5 V	T _{vj} = 25 °C			930	μА
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			3200	nA
Turn-on delay time	t _{d on}	$I_{\rm D}$ = 2000 A, $R_{\rm Gon}$ = 0.1 Ω ,	T _{vj} = 25 °C		225		ns
(inductive load)		$V_{DD} = 1500 \text{ V},$ $V_{GS} = -5/15 \text{ V},$	T _{vj} = 125 °C		215		
		$t_{\text{dead}} = 3000 \text{ ns}, 0.1 \text{ V}_{\text{GS}}$ to 0.1 I _D	T _{vj} = 175 °C		215		
Rise time (inductive load)	t _r	$I_{\rm D}$ = 2000 A, $R_{\rm Gon}$ = 0.1 Ω ,	T _{vj} = 25 °C		100		ns
		$V_{DD} = 1500 \text{ V},$ $V_{GS} = -5/15 \text{ V},$	T _{vj} = 125 °C		100		1
		$t_{\text{dead}} = 3000 \text{ ns}, 0.1 \text{ I}_{\text{D}} \text{ to}$ 0.9 I _D	T _{vj} = 175 °C		105		

(table continues...)

XHP™2 module

3 Body diode (MOSFET Inverter)

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-off delay time	$t_{\sf doff}$	$I_{\rm D} = 2000 \text{A}, R_{\rm Goff} = 1 \Omega,$	T _{vj} = 25 °C		375		ns
(inductive load)		$V_{DD} = 1500 \text{ V},$ $V_{GS} = -5/15 \text{ V}, 0.9 \text{ V}_{GS} \text{ to}$	T _{vj} = 125 °C		420		
		0.9 I _D	T _{vj} = 175 °C		450		
Fall time (inductive load)	t _f	$I_{\rm D} = 2000 \text{A}, R_{\rm Goff} = 1 \Omega,$	T _{vj} = 25 °C		105		ns
		$T_{DD} = 1500 \text{ V},$ $T_{CS} = -5/15 \text{ V}, 0.9 \text{ I}_D \text{ to } 0.1$	T _{vj} = 125 °C		130		
		I _D	T _{vj} = 175 °C		145		
Turn-on time (resistive load)	t _{on_R}	$I_{\rm D}$ = 500 A, $V_{\rm DD}$ = 2000 V, $V_{\rm GS}$ = -5/15 V, $R_{\rm Gon}$ = 0.1 Ω	T _{vj} = 25 °C	625.00			ns
Turn-on energy loss per	E _{on}	$I_{\rm D}$ = 2000 A, $V_{\rm DD}$ = 1500 V,	T _{vj} = 25 °C		410		mJ
pulse		L_{σ} = 14 nH, V_{GS} = -5/15 V, R_{Gon} = 0.1 Ω , di/dt =	T _{vj} = 125 °C		540		
		16.3 kA/ μ s (T_{vj} = 175 °C), t_{dead} = 3000 ns	T _{vj} = 175 °C		640		
Turn-on energy loss per	E _{on,o}	$I_{\rm D}$ = 2000 A, $V_{\rm DD}$ = 1500 V,	T _{vj} = 25 °C		390		mJ
pulse, optimized		$L_{\sigma} = 14 \text{ nH}, V_{GS} = -5/15 \text{ V},$ $R_{Gon,o} = 0.1 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		410		
		15.2 kA/ μ s (T _{vj} = 175 °C), t_{dead} = 500 ns	T _{vj} = 175 °C		470		
Turn-off energy loss per	E _{off}	$I_{\rm D}$ = 2000 A, $V_{\rm DD}$ = 1500 V,	T _{vj} = 25 °C		330		mJ
pulse		$L_{\sigma} = 14 \text{ nH}, V_{GS} = -5/15 \text{ V},$ $R_{Goff} = 1 \Omega, \text{ dv/dt} = 10.8$	T _{vj} = 125 °C		370		
		$kV/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		400		
SC data	I _{SC}	$V_{GS} = -5/15 \text{ V},$ $V_{DD} = 1500 \text{ V}, V_{DSmax} = V_{DSS} - L_{SDS} + \text{di/dt}$	$t_{\rm P} \le 3 \mu{\rm s},$ $T_{\rm vj} = 175 ^{\circ}{\rm C}$		12000		A
Thermal resistance, junction to case	R _{thJC}	per MOSFET				20.2	K/kW
Thermal resistance, case to heat sink	R _{thCH}	per MOSFET, λ _{grease} = 5 W/	/(m*K)		5.80		K/kW
Temperature under switching conditions	T _{vj op}			-40		175	°C

3 Body diode (MOSFET Inverter)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward current	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -5 V	T _C = 74 °C	1145	А

XHP™2 module

Table 6 (continued) Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
I ² t - value	I ² t	$V_{\rm DS} = 0 \text{ V}, V_{\rm GS} = -5 \text{ V},$	T _{vj} = 125 °C	600	kA ² s
		$t_{\rm P}$ = 10 ms	T _{vj} = 175 °C	500	

Table 7 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Forward voltage	$V_{\rm SD}$	$I_{SD} = 2000 \text{ A}, V_{GS} = -5 \text{ V}$	T _{vj} = 25 °C		5	6.25	V
			T _{vj} = 125 °C		4.4	5.5	
			T _{vj} = 175 °C		4.2	5.25	
Reverse recovery energy	E _{rec}	$I_{SD} = 2000 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		5.8		mJ
		16.3 kA/ μ s (T _{vj} = 175 °C), V_{DD} = 1500 V,	T _{vj} = 125 °C		39.2		
		$V_{GS} = -5/15 \text{ V},$ $t_{dead} = 3000 \text{ ns}$	T _{vj} = 175 °C		64.1		
Reverse recovery energy,	$E_{\rm rec,o}$	$I_{SD} = 2000 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		5.8		mJ
optimized		15.2 kA/ μ s (T _{vj} = 175 °C), V_{DD} = 1500 V,	T _{vj} = 125 °C		11.8		
		$V_{GS} = -5/15 \text{ V},$ $t_{dead} = 500 \text{ ns}$	T _{vj} = 175 °C		19.6		

4 NTC-Thermistor

Table 8 Characteristic values

Parameter	Symbol	Note or test condition		Values		Unit
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		К
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		K
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Note: For an analytical description of the NTC characteristics please refer to AN2009-10, chapter 4

5 Characteristics diagrams

5 Characteristics diagrams

Output characteristic (typical), MOSFET Inverter

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic field (typical), MOSFET Inverter

 $I_D = f(V_{DS})$

T_{vj} = 175 °C

Drain source on-resistance (typical), MOSFET Inverter

 $R_{DS(on)} = f(I_D)$

V_{GS} = 15 V

Drain source on-resistance (typical), MOSFET Inverter

 $R_{DS(on)} = f(T_{vj})$

 $V_{GS} = 15 V$

XHP™2 module

5 Characteristics diagrams

Transfer characteristic (typical), MOSFET Inverter

$$I_D = f(V_{GS})$$

$$V_{DS} = 20 V$$

Gate-source threshold voltage (typical), MOSFET Inverter

$$V_{GS(th)} = f(T_{vj})$$

$$V_{GS} = V_{DS}$$

Gate charge characteristic (typical), MOSFET Inverter

$$V_{GS} = f(Q_G)$$

$$I_D = 2000 \text{ A}, T_{vj} = 25 \,^{\circ}\text{C}$$

Capacity characteristic (typical), MOSFET Inverter

$$C = f(V_{DS})$$

$$f = 100 \text{ kHz}, T_{vj} = 25 \,^{\circ}\text{C}, V_{GS} = 0 \text{ V}$$

XHP™2 module

Switching times (typical), MOSFET Inverter

 $t = f(I_D)$

 R_{Goff} = 1 $\Omega,\,R_{Gon}$ = 0.1 $\Omega,\,V_{DD}$ = 1500 V, T_{vj} = 175 °C, V_{GS} = -5/15 V

Switching times (typical), MOSFET Inverter $t = f(R_G)$

 $V_{DD} = 1500 \text{ V}, I_D = 2000 \text{ A}, T_{vi} = 175 \,^{\circ}\text{C}, V_{GS} = -5/15 \text{ V}$

Current slope (typical), MOSFET Inverter

 $di/dt = f(R_G)$

 V_{DD} = 1500 V, t_{dead} = 3000 ns, I_{D} = 2000 A, V_{GS} = -5/15 V

Voltage slope (typical), MOSFET Inverter

 $dv/dt = f(R_G)$

 $V_{DD} = 1500 \text{ V}, I_D = 2000 \text{ A}, V_{GS} = -5/15 \text{ V}$

XHP™2 module

Switching losses (typical), MOSFET Inverter

$$E_{on} = f(I_D)$$

$$R_{Gon} = 0.1 \Omega$$
, $V_{DD} = 1500 V$, $R_{Gon,o} = 0.1 \Omega$, $V_{GS} = 15/-5 V$

Switching losses (typical), MOSFET Inverter

$$E_{off} = f(I_D)$$

$$R_{Goff} = 1 \Omega$$
, $V_{DD} = 1500 V$, $V_{GS} = -5/15 V$

Switching losses (typical), MOSFET Inverter

 $E = f(R_G)$

$$V_{DD} = 1500 \text{ V}, t_{dead} = 3000 \text{ ns}, I_D = 2000 \text{ A}, V_{GS} = -5/15 \text{ V}$$

Switching losses (typical), MOSFET Inverter

 $E_{on} = f(t_{dead})$

$$R_{Gon} = 0.1 \Omega$$
, $I_D = 2000 A$, $V_{DD} = 1500 V$, $V_{GS} = -5/15 V$

XHP™2 module

Reverse bias safe operating area (RBSOA), MOSFET Inverter

 $I_D = f(V_{DS})$

$$R_{Goff} = 1 \Omega, T_{vj} = 175 \,^{\circ}C, V_{GS} = -5/15 \,^{\circ}V$$

Transient thermal impedance, MOSFET Inverter $Z_{th} = f(t)$

Forward characteristic body diode (typical), MOSFET Inverter

$$I_{SD} = f(V_{SD})$$

$$V_{GS} = -5 V$$

Forward characteristic body diode (typical), MOSFET Inverter

$$I_{SD} = f(V_{SD})$$

$$V_{GS} = 15 V$$

XHP™2 module

Switching losses body diode (typical), MOSFET Inverter

 $E_{rec} = f(I_{SD})$

$$R_{Gon} = 0.1 \Omega$$
, $R_{Gon,o} = 0.1 \Omega$, $V_{DD} = 1500 V$

Switching losses body diode (typical), MOSFET Inverter

 $E_{rec} = f(R_G)$

$$t_{dead}$$
 = 3000 ns, I_{SD} = 2000 A, V_{DD} = 1500 V

Switching losses body diode (typical), MOSFET Inverter

 $E_{rec} = f(t_{dead})$

$$R_{Gon}$$
 = 0.1 $\Omega,$ I_{D} = 2000 A, $R_{Gon,o}$ = 0.1 $\Omega,$ V_{DD} = 1500 V, V_{GS} = 15/-5 V

Temperature characteristic (typical), NTC-Thermistor $R = f(T_{NTC})$

6 Circuit diagram

6 Circuit diagram

Figure 1

7 Package outlines

7 Package outlines

14

Figure 2

XHP™2 module

8 Module label code

8 Module label code

Code format	Data Matrix		Barcode (Code128
Encoding	ASCII text		Code Set	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1 - 5 6 - 11 12 - 19 20 - 21 22 - 23		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			#6550549911530

Figure 3

XHP™2 module

Revision history

Document revision	Date of release	Description of changes
0.10	2022-08-09	Initial version
0.20	2024-04-23	Target datasheet
0.30	2025-05-08	Preliminary datasheet
1.00	2025-07-07	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-07-07 Published by Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-AAK120-004

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.