EECS660

Topic 3: Solving Linear Recurrence Equations

Kong

Given a sequence of functions $\{t_n, t_{n-1}, t_{n-2}, ..., t_1, t_0\}$, a recurrence equation (RE) has the form:

$$F(t_n, t_{n-1}, t_{n-2}, ..., t_1, t_0) = 0.$$

A Special Case:

kth-order Linear Recurrence Equation with Constant Coefficients (LRECC):

$$C_0 \mathbf{t_n} + C_1 \mathbf{t_{n-1}} + C_2 \mathbf{t_{n-2}} + \dots + C_k \mathbf{t_{n-k}} = f(n),$$
 (*)

where $C_i = \text{constant}$, $\forall i$, and $C_0 \neq 0$ and $C_k \neq 0$.

If $f(n) = 0 \Rightarrow (*)$ is a **homogeneous LRE**; otherwise, (*) is an **inhomogeneous LRE**.

Dfn: A *solution* of (*) is any function g(n) such that by assigning $\mathbf{t_n} = g(n)$, $\mathbf{t_{n-1}} = g(n-1)$, $\mathbf{t_{n-2}} = g(n-2)$, ..., $\mathbf{t_{n-k}} = g(n-k)$, $C_0g(n) + C_1g(n-1) + C_2g(n-2) + ... + C_kg(n-k) = f(n)$.

A *general solution* of (*) is a solution of (*) with k unspecified constants such that any solution of (*) can be generated from the general solution by assigning specific value to these k constants. Once the k constants of a solution are specified, we have a *particular solution* of (*).

Remark:

In order to determine the k unspecified constants in the general solution, k initial conditions of (*) must be provided in order to set up a system of k linear equations in k unknowns (the constants). Standard method, such as Gaussian Eliminations, for solving systems of linear equations can then be used to solve for the k constants.

Solving a k-order LRE (*):

- (1) If k initial conditions are not given, compute a general solution for (*) with k unspecified constants.
- (2) If k initial conditions are given, compute a (particular) solution for (*) that will satisfy (*) and all of the k initial conditions.

Examples: Some REs.

1.
$$3\mathbf{t_n} + 5\mathbf{t_{n-1}} - 2\mathbf{t_{n-2}} = 0$$
, 2^{nd} -order HLRECC

2.
$$t_n + 2t_{n-2} + 2t_{n-4} = 0$$
, 4th-order HLRECC

3.
$$\mathbf{t}_n = \mathbf{t}_{n-1} + n - 1$$
, $\mathbf{t}_{n-1} = \mathbf{t}_{n-1} + n - 1$

4.
$$\mathbf{t_n} = \mathbf{nt_{n-3}} + 1$$
. 3^{rd} -order LRE

5.
$$\mathbf{t_n} + \mathbf{t_{n-1}t_{n-2}} + 2\mathbf{t_{n-4}} = 1$$
, Non-Linear RE

I. Solving HLRECC:

Consider the following kth-order HLRE with CC:

$$C_0t_n + C_1t_{n-1} + C_2t_{n-2} + ... + C_kt_{n-k} = 0$$
(1)

 \mathbf{Q} : How can we find a solution of (1)?

Easy! Take $\mathbf{t_n} = 0$.

This is a trivial solution of (1).

 \mathbf{Q} : How can we find a nontrivial solution of (1)?

Let's try $\mathbf{t_n} = \mathbf{x^n} \neq 0$.

Substituting $\mathbf{t_n} = \mathbf{x^n}$ into (1) to get

$$C_0x^n + C_1x^{n-1} + C_2x^{n-2} + \dots + C_kx^{n-k} = 0.$$

Divide the above equation by $x^{n-k} \neq 0$ to get

$$C_0 x^k + C_1 x^{k-1} + C_2 x^{k-2} + \ldots + C_k = 0 \ldots (2)$$

Equation (2) is called the *characteristic equation* of (1).

Remarks:

- 1. The standard kth-order HLRECC (1) can be transformed into an algebraic equation (2) of degree k with the same coefficients.
- 2. From the *Fundamental Theorem of Algebra*, any polynomial equation of degree k has exactly k roots. Hence, the characteristic equation (2) must have exactly k roots, say $r_1, r_2, ..., r_k$.
- 3. The solution of a HLRECC (1) is completely characterized by the roots of its characteristic equation (2).
- 4. In order to solve (1), we need to solve for the k roots of (2).
- 5. The most difficult computational step in solving the kth-order HLRECC (1) requires the computation of these k roots.
- 6. There is no simple algorithm for finding the k roots of a k^{th} -order algebraic equation when $k \ge 5$ (Galois Theorem).

Some Important Results:

Lemma 1: If r is a root of (2), then $\mathbf{t_n} = dr^n$ is a solution of (1) for any constant d. **Proof:** Verify it by substituting $\mathbf{t_n} = dr^n$ back into (1).

Remark: The k roots of (2) generate k solutions $d_1r_1^n$, $d_2r_2^n$, ..., $d_kr_k^n$ of (1).

Lemma 2: If $S_1(n)$, $S_2(n)$, ..., $S_m(n)$ are m solutions of (1), $m \ge 1$, then any linear combination of these solutions $d_1S_1(n) + d_2S_2(n) + ... + d_mS_m(n)$ also forms a solution of (1), where each d_i , $1 \le i \le m$, is an arbitrary constant.

Proof: Use induction on m.

Corollary 3: $d_1r_1^n + d_2r_2^n + ... + d_kr_k^n$ is a solution of (1).

Q: Observe that the function $\mathbf{t_n} = d_1 r_1^n + d_2 r_2^n + ... + d_k r_k^n$ is a solution of (1) with exactly k constants. Will $\mathbf{t_n}$ be the general solution of (1)? If not, can we generate the general solution of (1) from the k solutions of (1)?

Need concept of linear independence of functions!

Defn: A set of functions $f_1(n)$, $f_2(n)$, ..., $f_m(n)$ is *linearly independent* if $h_1f_1(n) + h_2f_2(n) + ... + h_mf_m(n) = 0$, $h_i = constant$, $\forall i$, implies $h_1 = h_2 = ... = h_m = 0$; otherwise, they are *linearly dependent*.

Remark:

If a set of functions $\{f_1(n), f_2(n), ..., f_m(n)\}$ is linearly dependent, then any function $f_i(n)$ in the set can be represented as a linear combination of the remaining functions such that $f_i(n) = h_1 f_1(n) + ... + h_{i-1} f_{i-1}(n) + h_{i+1} f_{i+1}(n) + ... + h_m f_m(n)$, for some constants h_j , $1 \le j \le m, j \ne i$.

Examples:

- 1. $\{1, x, x^2, x^3\}$ is linearly independent since $h_1 + h_2x + h_3x^2 + h_4x^3 = 0$ implies $h_1 = h_2 = h_3 = h_4 = 0$. (HW: Prove it.)
- 2. $\{1, 2x-1, 2x+1, x^2\}$ is linearly dependent since $h_1 + h_2(2x-1) + h_3(2x+1) + h_4x^2 = 0$ if we choose $h_1 = 2$, $h_2 = 1$, $h_3 = -1$, $h_4 = 0$.

Theorem 4: If $\{S_1(n), S_2(n), ..., S_k\}$ is a set of k linearly independent solutions of (1), then $t_n = d_1S_1(n) + d_2S_2(n) + ... + d_kS_k(n)$ forms the general solution of (1), where $d_i = constant$, $\forall i$.

Remark: If we can extract k linearly independent solutions of (1) from $\{r_1, r_2, ..., r_k\}$, then we can form the general solution of (1) by taking a linear combination of them.

Q: How do we extract k linearly independent solutions from $\{r_1, r_2, ..., r_k\}$?

Theorem 5: Let $r_1, r_2, ..., r_q$ be the q distinct roots of (2) such that r_i has multiplicity $m_i, \forall i$, where $m_i \geq 1$, and $m_1 + m_2 + ... + m_t = k$. Then $\{r_i^n, nr_i^n, n^2r_i^n, ..., n^{m_i-1}r_i^n \mid 1 \leq i \leq q\}$ forms a set of k linearly independent solutions of (1).

Corollary 6: The general solution of (1) is given by

$$\begin{split} t_n &= d_{11}r_1^n + d_{12}nr_1^n + d_{13}n^2r_1^n + \ldots + d_{1m_1}n^{m_1-1}r_1^n \\ &+ d_{21}r_2^n + d_{12}nr_2^n + d_{13}n^2r_2^n + \ldots + d_{1m_2}n^{m_2-1}r_2^n \\ &+ \ldots \\ &+ d_{q1}r_t^n + d_{q2}nr_t^n + d_{q3}n^2r_t^n + \ldots + d_{qm_t}n^{m_t-1}r_q^n. \end{split}$$

Method for solving a kth-order HLRE with CC:

- 1. Generate the corresponding characteristic equation.
- 2. Solve for the k roots of the characteristic equation.
- 3. Extract the set of k linearly independent solutions from the roots.
- 4. Form the general solution by taking a linear combination of the k linearly independent solutions.
- 5. Determine the k constants using k initial conditions if given.
- 6. Verify the correctness of the solution.

Examples: Solving HLRECC.

- 1. If the roots of a 3^{rd} -order HLRE with CC are 3, 5, $\frac{1}{2}$, then the general solution is $t_n = d_1 3^n + d_2 5^n + d_3 (1/2)^n$.
- 2. If the roots of a 10^{th} -order HLRE with CC are 1(3), 3(2), 7(4), 8(1), then the general solution is: $t_n = d_1 + d_2n + d_3n^2 +$

$$\begin{array}{l} d_4 3^n + d_5 n 3^n + \\ d_6 7^n + d_7 n 7^n + d_8 n^2 7^n + d_9 n^3 7^n + \\ d_{10} 8^n \end{array}$$

- 3. Given $t_0 = 1$, $t_1 = 2$, $3t_n + 5t_{n-1} = 2t_{n-2}$, $\forall n \ge 2$.
 - **Characteristic equation:**

$$3x^2 + 5x - 2 = 0$$
$$(x + 2)(3x - 1) = 0$$

Roots are: −2, 1/3

General solution: $t_n = d_1(-2)^n + d_2(1/3)^n$

Determining constants:

$$\begin{split} t_0 &= 1 \colon \ d_1(-2)^0 + d_2(1/3)^0 = d_1 + d_2 = 1, \\ t_1 &= 2 \colon \ d_1(-2)^1 + d_2(1/3)^1 = -2d_1 + (1/3)d_2 = 2. \end{split}$$

On solving, $d_1 = -5/7$, $d_2 = 12/7$.

Hence, the solution is $t_n = (-5/7)(-2)^n + (12/7)(1/3)^n$.

Verification of Solution:

1. Verification using *Strong Induction*:

Define P(n):
$$t_n = (-5/7)(-2)^n + (12/7)(1/3)^n$$
 is the solution to $t_0 = 1$, $t_1 = 2$, $3t_n + 5t_{n-1} = 2t_{n-2}$, $\forall n \ge 2$.

(i) **Basis step**:

When
$$n = 0$$
, $t_0 = (-5/7)(-2)^0 + (12/7)(1/3)^0$
 $= (-5/7) + (12/7)$
 $= 1$.
When $n = 1$, $t_1 = (-5/7)(-2)^1 + (12/7)(1/3)^1$
 $= (10/7) + (12/21)$

Hence, P(0) and P(1) are both true.

(ii) *Inductive step*:

Assume that P(k) is true for all k, $2 \le k < n$. Need to prove that $t_{k+1} = (-5/7)(-2)^{k+1} + (12/7)(1/3)^{k+1}$.

$$t_{k+1}$$

$$= (-5t_k + 2t_{k-1})/3 \quad (From RR)$$

$$= \{ [(-5) (-5/7)(-2)^k + (-5)(12/7)(1/3)^k] + \\ [(2)(-5/7)(-2)^{k-1} + (2)(12/7)(1/3)^{k-1}] \}/3$$

$$= \{ [(-25/14)(-2)^{k+1} + (-180/7)(1/3)^{k+1}] + \\ [(-5/14)(-2)^{k+1} + (216/7)(1/3)^{k+1}] \}/3$$

$$= [(-30/14)(-2)^{k+1} + (36/7)(1/3)^{k+1}]/3$$

$$= (-5/7)(-2)^{k+1} + (12/7)(1/3)^{k+1}.$$
(I.H.)

Hence, $P(2) \wedge P(3) \wedge ... \wedge P(k) \rightarrow P(k+1)$. By strong induction, P(n) is true for all $n \ge 2$.

2. Using Backward Substitutions:

(i) Verifying the initial conditions:

n = 0:
$$t_0 = (-5/7)(-2)^0 + (12/7)(1/3)^0 = 1$$
.
n = 1: $t_1 = (-5/7)(-2)^1 + (12/7)(1/3)^1 = 2$.

Observe that this is the same as in the basis step of an induction proof.

(ii) Verifying the general recurrence:

Substitute t_n , t_{n-1} , t_{n-2} , ... back into the given recurrence equation to verify that $C_0 \mathbf{t_n} + C_1 \mathbf{t_{n-1}} + C_2 \mathbf{t_{n-2}} + \ldots + C_k \mathbf{t_{n-k}} = f(n) = 0$.

Hence, we need to verify that

$$\begin{split} 3t_n + 5t_{n\text{-}1} - 2t_{n\text{-}2} \\ &= 3[(-5/7)(-2)^n + (12/7)(1/3)^n] \\ &\quad + 5[(-5/7)(-2)^{n\text{-}1} + (12/7)(1/3)^{n\text{-}1}] \\ &\quad - 2[(-5/7)(-2)^{n\text{-}2} + (12/7)(1/3)^{n\text{-}2}] \\ &= 0. \end{split}$$

4. Given $t_0 = 0$, $t_1 = 1$, $t_n = t_{n-1} + t_{n-2}$, $\forall n \ge 2$.

Characteristic equation:

$$x^2 - x - 1 = 0$$

Roots are: $(1+\sqrt{5})/2$, $(1-\sqrt{5})/2$

General solution: $t_n = d_1[(1+\sqrt{5})/2]^n + d_2[(1-\sqrt{5})/2]^n$

Determining constants:

$$d_1 = 1/\sqrt{5},$$

 $d_2 = -1/\sqrt{5},$

The solution:

$$t_n = (1/\sqrt{5})[(1+\sqrt{5})/2]^n + (-1/\sqrt{5})[(1-\sqrt{5})/2]^n$$

Verification: HW

- (1) Use backward substitutions.
- (2) Use induction.

5. Given $t_0 = 0$, $t_1 = 1$, $t_2 = 2$, $t_n = 5t_{n-1} - 8t_{n-2} + 4t_{n-3}$, $\forall n \ge 3$.

Characteristic equation:

$$x^3 - 5x^2 + 8x - 4 = 0$$
$$(x-1)(x-2)^2 = 0$$

Roots are: 1, 2(2)

General solution: $t_n = d_1 + d_2 2^n + d_3 n 2^n$

Determining constants:

$$t_0 = 0$$
: $d_1 + d_2 = 0$,

$$t_1 = 1$$
: $d_1 + 2d_2 + 2d_3 = 1$,

$$t_2 = 2; \qquad d_1 \qquad + \qquad 4d_2 \quad + \qquad 8d_3 \quad = \qquad 2.$$

On solving,

$$d_1 = -2$$
, $d_2 = 2$, $d_3 = -(1/2)$

The solution:

$$\begin{array}{ll} t_n & = (-2) + 2^*2^n - \!\! (1/2)n2^n \\ & = 2^{n+1} - n2^{n-1} - 2 \end{array}$$

Verification: HW

II. Solving IHLRECC:

Consider the following kth-order IHLRE with CC:

$$C_0t_n + C_1t_{n-1} + C_2t_{n-2} + ... + C_kt_{n-k} = f(n)$$
(*)

The corresponding HLRECC of (*) is given by

$$C_0 t_n + C_1 t_{n-1} + C_2 t_{n-2} + \ldots + C_k t_{n-k} = 0 \ldots (**)$$

Theorem 7: Let p(n) be any particular solution of (*) and h(n) be the general solution of (**). Then the general solution of (*) is given by $t_n = h(n) + p(n)$.

Method for Solving a kth-order IHLRECC:

- 1. Compute the general solution h(n) for the corresponding HLRECC (**) using previous method.
- 2. Compute a particular solution p(n) for the given IHLRECC (*).
- 3. Form the general solution $t_n = h(n) + p(n)$ for (*).
- 4. Determine the k constants using k initial conditions if given.
- 5. Verify the correctness of the solution.

Q: How do we compute a particular solution p(n) for (*)?

- 1. Educated "guess".
- 2. From existing books/tables.
- 3. Use computer to analyze the behavior of t_n. Conjecture a solution and then verify using backward substitutions.

Some Suggestions for Possible p(n):

If $f(n) =$	Then try: $p(n) =$
$B_0 + B_1 n + B_2 n^2 + \ldots + B_m n^m$	$E_0 + E_1 n + E_2 n^2 + \ldots + E_m n^m$
B _i 's are constants	E _i 's are constants
Bs ⁿ , B and s are constants	Es ⁿ , E and s are constants
$B_0 + B_1 n + B_2 n^2 + + B_m n^m + B s^n$,	$E_0 + E_1 n + E_2 n^2 + + E_m n^m + E_s^n$,
B _i 's and s are constants	E _i 's and s are constants
$(B_0 + B_1 n + B_2 n^2 + + B_m n^m) s^n,$	$(E_0 + E_1 n + E_2 n^2 + + E_m n^m) s^n,$
B _i 's and s are constants	E _i 's and s are constants

Remark:

In order to verify that p(n) is indeed a (particular) solution of (*), one must verify the correctness of p(n) by substituting $t_n = p(n)$ back into the given IHLRECC (*). In the process, the constant(s) in p(n) must also be determined.

Examples: Solving IHLRECC.

1. Given $t_0 = 1$, $t_n - 2t_{n-1} = 1$, $\forall n \ge 1$.

Solving corresponding Homogeneous LRE:

For
$$t_n - 2t_{n-1} = 0$$
, $x - 2 = 0$, $x = 2$.
Hence, $h(n) = d2^n$.

Computing p(n):

Try p(n) = E = constant and verify (by substituting p(n) back into the given IHLRE). $t_n - 2t_{n-1} = 1$: E - 2E = 1, E = -1. Hence, p(n) = -1.

Computing general solution t_n:

$$t_n = d2^n - 1$$
.

Determining constant in t_n:

$$t_0=1\text{: }d2^0-1=1,\,d=2.$$
 Hence, $t_n=2^{n+1}-1.$

Verification: HW

2. Given $t_0 = 1$, $t_n - 2t_{n-1} = n$, $\forall n \ge 1$.

From previous example, we know that $h(n) = d2^n$.

Computing p(n):

Since f(n) = n, try $p(n) = E_1n + E_0$, $E_i = constant$. From $t_n - 2t_{n-1} = n$, we have $E_1n + E_0 - 2[E_1(n-1) + E_0] = n,$ $E_1n + E_0 - 2E_1n + 2E_1 - 2E_0 = n,$ $(E_1n - 2E_1n - n) + (E_0 + 2E_1 - 2E_0) = 0$ Hence, we obtain $-E_1 - 1 = 0,$ $2E_1 - E_0 = 0.$ On solving, $E_1 = -1$, $E_0 = -2$. Hence, p(n) = -n - 2.

Computing general solution t_n:

$$t_n=d2^n-n-2.\\$$

Determining constant in t_n:

$$t_0 = 1$$
: $d2^0 - 0 - 2 = 1$, $d = 3$.
Hence, $t_n = 3*2^n - n - 2$.

Verification: HW

3. Given $t_1 = 8$, $t_n - t_{n-1} = n - 1$, $\forall n \ge 2$.

Solving corresponding Homogeneous LRE:

 $t_n-t_{n\text{-}1}=0$ implies that $x-1=0,\,h(n)=d=constant.$

Computing p(n):

Since f(n) = n - 1, try $p(n) = E_1n + E_0$, E_1 and E_0 are constant.

From
$$t_n - t_{n-1} = n - 1$$
, we have

$$E_1n + E_0 - [E_1(n-1) + E_0] = n-1,$$

$$E_1n + E_0 - E_1n + E_1 - E_0 = n - 1$$
,

 $E_1 = n - 1$, which is a contradiction since E_1 must be a constant.

Q: What is wrong?

Wrong guess of p(n); it doesn't work. Try again!

Motivated by Theorem 5, let's try $p(n) = (E_1n + E_0)*n = E_1n^2 + E_0n$ again.

Verification:

$$E_1 n^2 + E_0 n \ - [E_1 (n-1)^2 + E_0 (n-1)] = n-1, \label{eq:energy}$$

$$E_1n^2 + E_0n - E_1n^2 + 2E_1n - E_1 - E_0n + E_0 = n - 1$$
,

$$2E_1n - (E_1 - E_0) = n - 1.$$

Hence,
$$E_1 = 1/2$$
, $E_0 = -1/2$.

$$p(n) = n^2/2 - n/2$$
.

Computing general solution t_n:

$$t_n = d + n^2/2 - n/2$$

Determining constant in t_n:

$$t_1 = 8$$
: $1/2 - 1/2 + d = 8$, $d = 8$.

Hence,
$$t_n = n^2/2 - n/2 + 8$$
.

Verification: HW

Some Questions:

- 1. What happened to our selection of p(n) in the above example? Why did it fail?
- 2. What if it fails again after multiplied by n?
- 3. Can we determine p(n) without guessing?

A Useful Theorem for Determining p(n):

Theorem 8: Given k^{th} -order IHLRECC $C_0 t_n + C_1 t_{n-1} + C_2 t_{n-2} + ... + C_k t_{n-k} = f(n)$, where $f(n) = (B_0 + B_1 n + B_2 n^2 + ... + B_q n^q) *Bs^n$, B_i 's and s are constants. If s is a root of multiplicity m of the characteristic equation of the corresponding HLRECC

 $C_0\textbf{t_n} + C_1\textbf{t_{n-1}} + C_2\textbf{t_{n-2}} + \ldots + C_k\textbf{t_{n-k}} = 0, \text{ then } p(n) = (E_0 + E_1n + E_2n^2 + \ldots + E_qn^q)*n^ms^n \text{ is a solution of (*) for some constants } E_i\text{'s.}$

4. Consider the previous recurrence equation

$$t_1 = 8$$
, $t_n - t_{n-1} = n - 1$, $\forall n \ge 2$.

The characteristic equation of the corresponding HLRECC is x-1=0 with root x=1. Since $f(n)=n-1=(n-1)1^n$, 1 is a root of multiplicity 1 of the characteristic equation of the corresponding HLRECC. Hence, from Theorem 8, $p(n)=(E_1n+E_0)*n*1^n=E_1n^2+E_0n$. On solving, as in previous example, $p(n)=n^2/2-n/2$.

Another Very Useful Theorem:

Theorem 9: $C_0 \mathbf{t_n} + C_1 \mathbf{t_{n-1}} + C_2 \mathbf{t_{n-2}} + \ldots + C_k \mathbf{t_{n-k}} = b_1^n P_1(n) + b_2^n P_2(n) + \ldots$, where $b_i = \text{constant}$, $b_i \neq b_j$, $\forall i \neq j$, and $P_i(n)$ is a polynomial function of degree e_i , $\forall i$. The general solution $\mathbf{t_n}$ is given by taking a linear combination of the linearly independent solutions generated by the roots of the following characteristic equation:

$$(C_0x^k+C_1x^{k\text{-}1}+\ldots+C_k)(x-b_1)^{e1+1}(x-b_2)^{e2+1}\ldots=0.$$

5. Consider the previous recurrence equation $t_1=8,\,t_n-t_{n\text{-}1}=n-1,\,\forall\,n\geq 2.$

Applying the above theorem, $f(n) = n - 1 = (n - 1) \cdot 1^n$,

$$b_1 = 1$$
, $P_1(n) = n - 1$, $e_1 = 1$.

Characteristic equation of IHLRECC:

$$(x-1)(x-1)^2 = 0$$
, $x = 1(3)$.

Hence, $t_n = d_1 + d_2n + d_3n^2$.

Observe that there are two extraneous constants in the general solution that we must remove.

From $t_1 = 8$, we have $t_2 = t_1 + 2 - 1 = 9$ and $t_3 = t_2 + 3 - 1 = 11$.

From $t_1 = 8$, $d_1 + d_2 + d_3 = 8$.

From $t_2 = 9$, $d_1 + 2d_2 + 4d_3 = 9$.

From $t_3 = 11$, $d_1 + 3d_2 + 9d_3 = 11$.

On solving, $d_1 = 8$, $d_2 = -1/2$, and $d_3 = 1/2$.

Hence, $t_n = n^2/2 - n/2 + 8$.

6. Given $t_0 = 4$, $t_n - 2t_{n-1} = 3^n$, $\forall n \ge 1$.

Applying the above theorem, $f(n) = 3^n$, we have

$$b_1 = 3$$
, $P_1(n) = 1$, $e_1 = 0$.

Characteristic equation of IHLRECC:

$$(x-2)(x-3) = 0$$
, $x = 2(1)$, $3(1)$.

Hence,
$$t_n = d_1 2^n + d_2 3^n$$

Observe that there is again an extraneous constant in the general solution that we must remove.

$$t_0 = 4$$
, $t_n - 2t_{n-1} = 3^n$ implies $t_1 - 2t_0 = 3^1$, $t_1 = 11$.

$$t_0 = 4$$
: $d_1 + d_2 = 4$;

$$t_1 = 11$$
: $2d_1 + 3d_2 = 11$.

On solving,
$$d_1 = 1$$
, $d_2 = 3$.

Hence,
$$t_n = 2^n + 3^{n+1}$$
. (Verify!)

Given $t_0 = 0$, $t_n - 2t_{n-1} = n + 2^n$, $\forall n \ge 1$.

Applying the above theorem, $f(n) = n + 2^n$, we have

$$b_1 = 1$$
, $P_1(n) = n$, $e_1 = 1$,

$$b_2 = 2$$
, $P_2(n) = 1$, $e_2 = 0$.

Characteristic equation of IHLRECC:

$$(x-1)^2(x-2)^2=0$$
,

$$x = 1(2), 2(2).$$

Hence, $t_n = d_1 + d_2n + d_32^n + d_4n2^n$

Observe that there are 4 constants in t_n. Hence, we need 4 initial conditions for computing the constants. Since the given equation is a 1st-order equation, there are three extraneous constants in t_n. To order to solve for the 4 constants, we need to generate 3 more initial conditions from the given initial condition and the recurrence equation as follow:

$$t_0 = 0,$$
 $d_1 + d_3 = 0,$

$$t_1 = 2t_0 + 1 + 2^1 = 3, \qquad \qquad d_1 \ + \ d_2 \ + \ 2d_3 + \ 2d_4 = \ 3,$$

$$t_3 = 2t_2 + 3 + 2^3 = 35$$
, $d_1 + 3d_2 + 8d_3 + 24$
On solving, $d_1 = -2$, $d_2 = -1$, $d_3 = 2$, $d_4 = 1$. (Verify!)

Hence, $t_n = n2^n + 2^{n+1} - n - 2$. (Verify!)

8. Given $t_n - 2t_{n-1} = n3^n + 5*3^n$.

Observe that $f(n) = n3^n + 5*3^n = 3^n(n+5)$.

Applying the above theorem, we have

$$b_1 = 3$$
, $P_1(n) = n + 5$, $e_1 = 1$.

Characteristic equation of IHLRECC:

$$(x-2)(x-3)^2=0.$$

$$x = 2, 3(2).$$

Hence, $t_n = d_1 2^n + d_2 3^n + d_3 n 3^n$.

Since there is no initial condition given, you will not be able to determine all three of the constants in a_n . However, you must eliminate the two extraneous constants in t_n . By substituting $t_n = d_1 2^n + d_2 3^n + d_3 n 3^n$ back into the recurrence equation, we have

$$d_1 2^n + d_2 3^n + d_3 n 3^n - 2[d_1 2^{n-1} + d_2 3^{n-1} + d_3 (n-1) 3^{n-1}] = n 3^n + 5*3^n,$$

$$d_1 2^n + d_2 3^n + d_3 n 3^n - d_1 2^n - \frac{2}{3} d_2 3^n - \frac{2}{3} d_3 n 3^n + \frac{2}{3} d_3 3^n = n 3^n + 5 * 3^n.$$

Hence,

$$d_3n3^n - \frac{2}{3}d_3n3^n = n3^n$$
,

$$d_2 3^n - \frac{2}{3} d_2 3^n + \frac{2}{3} d_3 3^n = 5*3^n.$$

On solving,
$$d_2 = 13$$
, $d_3 = 1$.

Hence, $t_n = d_1 2^n + 13*3^n + n3^n$. (Verify!)

Divide-and-Conquer Algorithms and Recurrence Equations

General recurrence equation from divide-and-conquer:

T(n) = constant, for $n \le n_0$,

 $T(n) = aT(n/c) + bn^k$, for $n = c^k > n_0$.

It can be solved by converting it into a LRE using the following *domain transformation* method.

Substituting $n = c^m$ into the general recurrence to get

$$T(c^{m}) = aT(c^{m-1}) + bc^{km}$$

Let $t_m = T(c^m)$ to obtain the LRE

 $t_m = t_{m-1} + bc^{km}$

Remark: The same approach can be used to solve more general REs from DAC algorithms.

Examples: Solving REs using domain transformation.

1. T(2) = 1,

$$T(n) = 2T(n/2) + 2,$$
 for $n = 2^m > 2.$

Substituting $n = 2^m$ into the general recurrence to get

$$T(2^m) = 2T(2^{m-1}) + 2$$

Let $t_m = T(2^m)$ to obtain the LRE

 $t_m = 2t_{m-1} + 2$,

$$t_1 = T(2^1) = 1.$$

Characteristic equation: (x-2)(x-1) = 0

Roots: 1, 2

Solution: $t_m = d_1 + d_2 2^m$

 $t_1 = 1$ implies $t_2 = 2t_1 + 2 = 4$.

 $t_1 = 1$: $d_1 + 2d_2 = 1$,

 $t_2 = 4$: $d_1 + 4d_2 = 4$.

On solving, $d_1 = -2$, $d_2 = 3/2$.

Hence, $t_m = (3/2)2^m - 2$.

Recall that $t_m = T(2^m) = T(n)$ and $n = 2^m$, we have

$$T(n) = (3/2)n - 2.$$

2.
$$T(1) = 0$$
,

$$T(n) = 2T(n/2) + n - 1$$
, for $n = 2^m > 1$.

Substituting $n = 2^m$ into the general recurrence to get

$$T(2^m) = 2T(2^{m-1}) + 2^m - 1$$

Let $t_m = T(2^m)$ to obtain the LRE

$$t_m = 2t_{m-1} + 2^m - 1$$
,

$$t_0 = T(2^0) = 0.$$

Characteristic equation: (x-2)(x-2)(x-1) = 0

Roots: 1, 2(2)

Solution: $t_m = d_1 + d_2 2^m + d_3 m 2^m$

$$t_0 = 0$$
 implies $t_1 = 2t_0 + 2^1 - 1 = 1$,

$$t_1 = 1$$
 implies $t_2 = 2t_1 + 2^2 - 1 = 5$.

$$t_0 = 0$$
: $d_1 + d_2 = 0$,

$$t_1 = 1$$
: $d_1 + 2d_2 + 2d_3 = 1$,

$$t_2 = 5$$
: $d_1 + 4d_2 + 8d_3 = 5$.

On solving, $d_1 = 1$, $d_2 = -1$, $d_3 = 1$.

Hence,
$$t_m = m2^m - 2^m + 1$$
.

Recall that $t_m = T(2^m) = T(n)$ and $n = 2^m$, we have

$$T(n) = nlgn - n + 1.$$

3. Consider the following recurrence equation:

$$T(1) = 0$$
,

$$T(2) = 1$$
,

$$T(n) = 5T(\frac{n}{2}) - 6T(\frac{n}{2^2}) + n, n = 2^k > 1.$$

Substituting $n = 2^k$ into the given recurrence equation to get

$$T(2^{k}) = 5T(2^{k-1}) - 6T(2^{k-2}) + 2^{k}$$
.

Let
$$t_k = T(2^k)$$
, we have

$$t_{k} = 5t_{k-1} - 6t_{k-2} + 2^{k}$$
,

$$t_0 = 0, \ t_1 = 1.$$

Solving the corresponding LRECC:

$$t_k - 5t_{k-1} + 6t_{k-2} = 2^k,$$

$$t_0 = 0, \ t_1 = 1.$$

Characteristic equation for the inhomogeneous equation:

$$(x^2 - 5x + 6)(x - 2) = 0,$$

$$(x-3)(x-2)^2 = 0$$
,

$$x = 2(2), 3.$$

$$t_k = d_1 2^k + d_2 k 2^k + d_3 3^k$$

$$t_0 = 0$$
, $t_1 = 1$, $t_2 = 5t_1 - 6t_0 + 2^2 = 9$.

$$t_0 = 0 : d_1 + d_3 = 0,$$

$$t_1 = 1: 2d_1 + 2d_2 + 3d_3 = 1,$$

$$t_2 = 9:4d_1 + 8d_2 + 9d_3 = 9.$$

On solving,
$$d_1 = -5$$
, $d_2 = -2$, $d_3 = 5$.

$$t_k = 5 * 3^k - 2k2^k - 5 * 2^k,$$

$$T(n) = 5n^{\lg 3} - 2n\lg n - 5n.$$

9/9/14