A Zeroth-Order Block Coordinate Descent Algorithm for Huge-Scale Black-Box Optimization

HanQin Cai ¹ Yuchen Lou ² Daniel McKenzie ¹ Wotao Yin³

¹Department of Mathematics, University of California, Los Angeles

²Department of Mathematics, The University of Hong Kong

³DAMO Academy, AliBaba US

International Conference on Machine Learning
July 22nd, 2021

Authors

HanQin Cai

Yuchen Lou

Dainel McKenzie

 $\mathsf{Wotao}\ \mathsf{Yin}$

Zeroth-Order Optimization

Goal

Using only noisy function queries (no gradients) to find $x^\star \approx \arg\min_{x \in \mathbb{R}^d} f(x)$.

Applications:

- Simulation-based optimization.
- Adversarial attacks.
- Hyperparameter tuning.
- Reinforcement learning.
- · Climate modelling.

Figure: Left: Clean signal. Middle: attacking perturbation (scaled up). Right: Attacked signal.

In all these applications, function queries are **expensive**.

Scaling to huge dimensions

• Can estimate gradient via finite differencing: $\nabla_i f(x) \approx \frac{f(x+\delta e_i) - f(x)}{\tilde{\lambda}}.$

- This requires $\mathcal{O}(d)$ queries per iteration too expensive for large d.
- Recent work¹ uses *compressed sensing* to estimate $\nabla f(x)$:

$$y_i = \frac{f(x + \delta z_i) - f(x)}{\delta} \approx z_i^{\top} \nabla f(x) \text{ for } i = 1, \dots, m.$$

$$\nabla f(x) \approx \operatorname*{arg\,min}_{v \in \mathbb{R}^d} \|Zv - y\|_2 \text{ s.t. } \|v\|_0 := \#\{i : v_i \neq 0\} \le s. \tag{1}$$

- If $\|\nabla f(x)\|_0 \leq s$ then can take $m = \mathcal{O}(s \log d)$. Query efficient.
- However, solving (1) is computationally expensive.

Motivating Question

Is there a query and computationally efficient Zeroth-Order Opt algorithm?

¹Wang et al, 2018. Cai et al, 2020.

²Approximate gradient sparsity indeed observed in many applications. See Fig. 1 in (Cai *et al*, 2020).

The ZO-BCD Algorithm

Our algorithm combines:

- Compressed sensing gradient estimator.
- Block coordinate descent using randomized blocks.

Algorithm 1 Zeroth-Order Block Coordinate Descent (ZO-BCD)

1:
$$\pi \leftarrow \operatorname{randperm}(d)$$
 \lhd Create random permutation
2: $\operatorname{for} j = 1, \cdots, J$ \lhd Create J blocks
3: $x^{(j)} \leftarrow [x_{\pi((j-1)\frac{d}{J}+1)}, \cdots, x_{\pi(j\frac{d}{J}+1)}]$ \lhd Assign variables to blocks
4: $\operatorname{for} k = 1, \cdots, K$ \lhd Do K iterations
5: $j \leftarrow \operatorname{randint}(\{1, \cdots, J\})$ \lhd Randomly select a block
6: $\operatorname{for} i = 1, \cdots, m$ \lhd Query objective function
7: $y_i = \frac{f(x + \delta z_i) - f(x)}{\delta}$ \lhd Approximate $z_i^\top \nabla f(x)$
8: $\hat{g}^{(j)} \leftarrow \arg\min_{v: \|v\|_0 \leq s} \|Zv - y\|_2$ \lhd Approximate block gradient
9: $x_{k+1} \leftarrow x_k - \alpha \hat{g}^{(j)}$ \lhd Approximated minimizer
10: $\operatorname{return} x_K$ \lhd Approximated minimizer

ZO-BCD Is Theoretically Sound

Main Theorem

Assume $\|\nabla f(x)\|_0 \le s$ for all $x \in \mathbb{R}^d$. Choose $J \ll d$ random blocks. ZO-BCD returns x_K satisfying

$$f(x_K) - f_{\star} \le \varepsilon$$

using $\tilde{\mathcal{O}}(s/\varepsilon)$ total queries and $\tilde{\mathcal{O}}(sd/J^2)$ FLOPS per iteration (w.h.p.).

Sketch of proof.

- Randomization ensures $\|\nabla^{(j)}f(x)\|_0 \approx s/J$.
- Compressed sensing^a guarantees $\hat{g}^{(j)} \approx \nabla^{(j)} f(x)$.
- Apply convergence for inexact^b block coordinate descent.

aNeedell et al. 2008.

^bTappenden et al, 2016.

A More Efficient Variant: ZO-BCD-RC

• Replace Z with a Rademacher circulant (RC) matrix³:

$$\mathcal{C}(z) = egin{pmatrix} z_1 & z_2 & \cdots & z_{d/J} \ z_{d/J} & z_1 & \cdots & z_{d/J-1} \ dots & \ddots & dots \ z_2 & \cdots & z_{d/J} & z_1 \end{pmatrix}.$$

- Only need to store a vector z. Memory efficient.
- Matrix product calculation can be accelerated by fft & ifft. Even faster.

$$C(z) \cdot x = \mathcal{F}\left(\mathcal{F}(z) \cdot \mathcal{F}^{-1}(x)\right)$$

for all z and x.

 $^{^3 \}text{We}$ actually only use m randomly selected rows from $\mathcal{C}(z).$

Experimental Results: Synthetic

Benchmarked ZO-BCD on two functions exhibiting gradient sparsity:

- Sparse quadric: $f(x) = \sum_{i=1}^{s} x_i^2$.
- Max-s-squared-sum: $f(x) = \sum_{i=1}^s x_{\sigma(i)}^2$ where $|x_{\sigma(1)}| \geq |x_{\sigma(2)}| \geq \cdots$

ZO-BCD exceeds prior state-of-the-art.

Figure: Comparing ZO-BCD against various SOTA Zeroth-Order Opt algorithms. **Left:** Sparse quadric. **Right:** Max-s-squared-sum.

Experimental Results: Adversarial Attack

• Sparse wavelet transform attack⁴:

$$x_{\star} = \underset{x}{\operatorname{arg \, min}} f(\operatorname{IWT}(\operatorname{WT}(\tilde{x}) + x))$$

 $\tilde{x} = \text{clean image/audio signal.} \ f = \text{Carlini-Wagner loss function}^5.$

- Image Attack. model: Inception-v3⁶. Wavelet: 'db45'. $d \approx 675,000$.
- Audio Attack. model: commandNet⁷. Wavelet: Morse. $d \approx 1,700,000$.

Image Attack				Audio Attack	Audio Attack	
Метнор	ASR	ℓ_2 dist	Queries	Метнор	ASR	
ZO-SCD	78%	57.5	2400	Alzantot <i>et al</i> , 2018	89.0%	
ZO-SGD	78%	37.9	1590	Vadillo <i>et al</i> , 2019	70.4%	
ZO-AdaMM	81%	28.2	1720	Li <i>et al</i> , 2020	96.8%	
ZORO	90%	21.1	2950	Xie <i>et al</i> , 2020	97.8%	
ZO-BCD	96 %	13.7	1662	ZO-BCD	97.9 %	

 $^{^4\}mathrm{WT}$ & IWT stand for some fixed wavelet transform & inverse wavelet transform, respectively.

⁵Carlini & Wagner, 2016. Chen et al., 2017.

⁶Szegedy et al, 2016. Trained on ImageNet (Deng et al 2009).

⁷Matlab model trained on SpeechCommand dataset (Warden et al, 2018).