

Robótica Móvel

Paradigmas robóticos / Arquiteturas de controle

Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br

Organização das primitivas principais

Percepção (SENSE)

Planejamento (PLAN)

Atuação (ACT)

- Diferentes nomenclaturas
 - Paradigmas robóticos/de controle
 - Arquiteturas de controle/robóticas

Aquisição e processamento das informações sensoriais.

Criação de modelos e deliberação (raciocínio) sobre as possíveis ações a serem executadas pelo robô.

Execução das ações pelos atuadores.

Três paradigmas principais

Hierárquico

Reativo

Híbrido

*Deliberativo

- Introduzido na década de 1970
- Foco principalmente na criação de modelos pela percepção do mundo, seguida de deliberação sobre essa representação
- Baseado nas técnicas clássicas de IA
 - Modelo completo do mundo
 - Ações determinísticas
 - Tempo suficiente para deliberar

- Robô observa o mundo, cria/atualiza uma modelo, realiza um planejamento dos próximos passos, e finalmente atua
 - Foco principal no planejamento

Stanford CART (1973)

- Segue linhas utilizando uma câmera
- Para/Anda
 - Pausa a cada 1 metro
 - Gasta entre 10 15 minutos para percepção/planejamento

Fonte: Stanford AI Laboratory / CMU (Moravec)

https://news.stanford.edu/2019/01/16/stanfords-robotics-legacy/

- 1. Adquire nove imagens, identifica pontos de interesse em uma das imagens e utiliza as restantes para se estimar profundidade;
- 2. Integra as novas informações no modelo global do mundo;
- Correlaciona as novas imagens com as antigas para se estimar a movimentação do robô;
- 4. Considerando o movimento desejado, o movimento estimado e o conhecimento do ambiente, escolhe a direção de movimento;
- Executa o movimento.

https://youtu.be/ypE64ZLwC5w

https://youtu.be/kr58r0b5LKM

Hierárquico (deliberativo) Problemas

- Dificuldade para construir e manter um modelo (complexidade)
 - Closed world assumption: modelo tem tudo que o robô poderia precisar saber
 - Frame problem: como manter o tamanho gerenciável se precisa ter "tudo"?
- Não há muito tempo para deliberar
 - Nem sempre é possível realizar uma busca completa no espaço de estados
- Não existe nenhum tipo de reatividade (sense/act)
 - E se o mundo é dinâmico e mudou após a criação do modelo?

- Introduzido na década de 1980
- Robótica difere da IA clássica
 - Situatedness
 - Agente está inserido no mundo, não é uma representação abstrata
 - Embodiment
 - Agente (robô) possui um corpo físico (que deve ser considerado)
 - Emergence
 - Inteligência é resultado da interação do agente com o ambiente

- Resposta ao paradigma hierárquico
 - "The world is its own best model"
 - "Elephants don't play chess"
 - "Planning is just a way of avoiding figuring out what to do next"
 - Rodney Brooks
- Robótica comportamental (Behavioral robotics)
- Inspiração na natureza (sistemas biológicos)

- Não existe um modelo do mundo
- Não existe uma fase de planejamento
- Ligação direta entre a Percepção e a Ação

Reativo Comportamentos

- Mapeamento direto da percepção (sensores) para um padrão de ação dos motores que são usados para realizar uma tarefa simples
- Comportamentos emergentes: comportamento final (complexo) resultante da união de diferentes sub-comportamentos (simples)

https://youtu.be/V4f_1_r80RY

Reativo Características

- O robô é parte integral do mundo (situated)
- Alto acoplamento entre percepção e atuação
- Alto grau de modularidade
- Sensoriamento local e específico para tarefa
 - Representação egocêntrica
- Não existe o conceito de memória
 - Controlado pela interação com o mundo

Reativo Subsumption Architecture

- Proposta por Rodney Brooks (1986)
- Rede de módulos Percepção-Ação
 - Organizados em níveis de competência
 - Comportamentos básicos em níveis baixos
 - Task Achieving Modules
 - Podem ser executados em paralelos
- Augmented Finite State Machine (AFSMs)

Reativo Subsumption Architecture

Sensors
$$\longrightarrow$$
 $\begin{bmatrix} Sensors \\ Wodel \\ Actuators \end{bmatrix}$ $\xrightarrow{Actuators}$

Explore

Wander around

Avoid obstacles

Avoid collision

| Avoid collision | Avoi

Decomposição Horizontal (Tradicional)

Decomposição Vertical (Comportamental)

Reativo Subsumption Architecture

Subsumption Architecture

Level 2: FOLLOW CORRIDORS

Level 1:WANDER

Level 0:AVOID

Fonte: Introduction to AI Robotics

Prós

- Fácil de implementar
- Comportamentos emergentes
- Interessante para robótica cooperativa

Contras

- Pode não ser suficiente para tarefas muito complexas
- Não existe garantia de completude/otimalidade da tarefa
- Combinação dos comportamentos é difícil (ciência ou arte?)

Híbrido

- Introduzido na década de 1990
- Combinar o melhor dos outros paradigmas
 - Planejamento em alto nível a médio/longo prazo
 - Resposta em tempo real aos estímulos externos

Híbrido

Arquitetura de 3 camadas (Gat, 1998)

- Camada Deliberativa
 - Planejamento mais complexo/alto nível
- Camada Executiva (sequenciador)
 - Aciona os módulos necessários pelos planos definidos
 - Monta uma representação do mundo
- Camada Reativa
 - Módulos Percepção-Ação
 - Controle de baixo nível

Híbrido

Arquitetura de 3 camadas (Gat, 1998)

Fonte: Springer Handbook of Robotics

Considerações finais

