RNAseq: isoform expression quantification and transcript assembly

Slides courtesy from S. Salzberg, C. Trapnell, L. Pachter and K. Okrah

SEC-GEN SEQUENCING

SEC-GEN SEQUENCING PAIRED-ENDS

In paired-end sequencing reads are generated from both ends of a fragment

Recall:

Source: Computational Genome Analysis

Goal: Develop and analyze a statistical model for measuring differential expression of **Isoforms** of the same gene using Rna-Seq.

3' UTR

GENE

5' UTR

Suppose we have a gene with 4 isoforms and 3 alternatively spliced (AS) exons as shown above.

The goal is to estimate the true abundance measure of the 4 isoforms.

Fragmented mRNas: 54 total reads with 18 unique types.

TopHat for second generation RNA-Seq: spliced read alignment

- Suitable for
 - short reads (25-50bp)
 - long reads (100+ bp)
 - paired end reads
- New features since 0.8x (Trapnell et al., *Bioinformatics* 2009)
 - Much faster, almost fully threaded
 - Semi-canonical introns (GC-AG and AT-AC) and some support for microexons

FPKM

Expected number of Fragments Per Kilobase (of transcript) per Million fragments sequenced in an RNA-Seq experiment.

•These units are proportional to the θ_i .

Projective normalization underestimates expression

R reads total, r reads for the gene:

- ra for isoform a
- r_b for isoform b

$$FPKM_g = \frac{1}{R} \left(\frac{r_a}{length_a} \right) + \frac{1}{R} \left(\frac{r_b}{length_b} \right)$$

$$FPKM_{proj(g)} = \frac{1}{R} \left(\frac{r_a + r_b}{length_{proj(g)}} \right)$$

but
$$\frac{r_a}{length_a} \ge \frac{r_a}{length_{proj(g)}}, \frac{r_b}{length_b} \ge \frac{r_b}{length_{proj(g)}}$$
 so

$$FPKM_g \ge FPKM_{proj(g)}$$

How should expression levels be estimated?

- A-B are distinguished by the presence of splice junction (a) or (b).
- A-C are distinguished by the presence of splice junction (a) and change in UTR
- B-C are distinguished by the presence of splice junction (b) and change in UTR

How should expression levels be estimated?

- Longer transcripts contain more reads.
- Reads that could have originated from multiple transcripts are informative.
- Relative abundance estimation requires "discriminatory reads".

Isoform-level expression quantification Jiang and Wong. Bioinformatics, 2009. Salzman, Jiang and Wong. Statistical Science, 2011.

3' UTR

GENE

5' UTR

Suppose we have a gene with 4 isoforms and 3 alternatively spliced (AS) exons as shown above.

The goal is to estimate the true abundance measure of the 4 isoforms.

Fragmented mRNas: 54 total reads with 18 unique types.

Sampling rate:

The ability for each of the 54 reads to be sequenced depends on:

- 1.Transcript fragmentation.
- 2. Size selection.
- 3. Sequence specific amplification of selection.

3.3 Likelihood Function

 n_{ij} matrix = the number of reads type s_i generated by transcript θ_i .

	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11	s12	s13	s14	s15	s16	s17	s18	
θ1	3	3	3	3	3	3	3	3	0	0	0	0	0	0	0	0	0	0	24
θ2	1	1	1	0	0	0	2	2	1	2	1	1	1	0	0	0	0	0	13
θ3	0	0	0	0	0	0	0	0	0	0	2	2	2	2	2	2	0	0	12
θ4	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	5
n_{j}	4	4	4	3	3	3	5	5	1	2	4	4	4	2	2	2	1	1	54

For each read type, we only observe $n_{j.}$

We want to estimate last column (transcript abundance).

Last lecture concentrated on using the sum over the entire table (54) for positions that overlap *every* transcript

3.3 Likelihood Function

 n_{ij} matrix = the number of reads type s_i generated by transcript θ_i .

	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10	s11	s12	s13	s14	s15	s16	s17	s18	
θ1	3	3	3	3	3	3	3	3	0	0	0	0	0	0	0	0	0	0	24
θ2	1	1	1	0	0	0	2	2	1	2	1	1	1	0	0	0	0	0	13
θ3	0	0	0	0	0	0	0	0	0	0	2	2	2	2	2	2	0	0	12
θ4	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	5
n_{j}	4	4	4	3	3	3	5	5	1	2	4	4	4	2	2	2	1	1	54

• In reality we only observe $n_j = \sum_{i=1}^{I} n_{ij}$.

•
$$n_j \sim Poisson(\sum_{i=1}^I \theta_i a_{ij} = \theta^T a_j)$$
, where $\theta = \begin{bmatrix} \theta_1 \\ \dots \\ \theta_I \end{bmatrix}$, $a_j = \begin{bmatrix} a_{1j} \\ \dots \\ a_{Ij} \end{bmatrix}$.

• Likelihood:
$$f_{\theta}(n_1, n_2, ..., n_J) = \prod_{j=1}^{J} \frac{(\theta^T a_j)^{n_j} e^{-\theta^T a_j}}{n_j!}$$
.

Uniform sampling model

Appropriate for single read data. (transcript length is not considered)

Model for A:

 $a_{ij} = 0$ if transcript *i* cannot generate read s_{ij} , otherwise,

 $a_{ij} = n$, where n is the total number of reads.

Interpretation of abundance:

This choice of this A means that $\theta_i = \frac{c_i}{\sum_i l_i c_i}$, Remember FPKM!

where l_i is the length of transcript i and c_i is the number of copies in the ith transcript in the sample.

How do you fit it?

- The use of Poisson model makes things very easy
- The idea is to use *Maximum Likelihood Estimation*: find estimates that maximize the probability of observed data under Poisson model!
- Equivalent to a convex optimization problem:

maximize
$$n^T \log(A^T \theta) - \text{sum}(A^T \theta)$$

s.t. $\theta > 0$

RNAseq: transcript assembly and quantification All Slides courtesy from S. Salzberg, C. Trapnell and L. Pachter
Trapnell, et al. Nature Biotechnology, 2010.

Overview of cufflinks

Comparative transcript assembly

- Desirable properties of an assembly: consistency, parsimony and identifiability.
- Dilworth's theorem and its application to transcript assembly.
- The Cufflinks assembler.
- Promoter discovery and novel isoforms.
- Lessons learned.

Transcriptome assembly with a reference genome

Don't know that two reads came from the same transcripts, but sometimes know that they came from **different** transcripts

How many transcripts?

A partial order on paired end read alignments

- Alignment $x \prec y$ when
 - x starts to the left of y in the reference
 - x and y overlap consistently
 - y is not contained in x

• That is, $x \prec y$ when they could have come from the same transcript

Dilworth's theorem applied to the read partial order

- **Definition:** an *antichain* in the read partial order is a set of alignments with the property that no two are compatible (i.e. could arise from the same transcript).
- Theorem [R.P. Dilworth, "A decomposition theorem for partially ordered sets", Annals of Mathematics, 1950]: The size of the largest antichain is equal to the minimum size of a chain partition.

Dilworth's theorem applied to the read partial order

- **Definition:** an *antichain* in the read partial order is a set of alignments with the property that no two are compatible (i.e. could arise from the same transcript).
- Theorem [R.P. Dilworth, "A decomposition theorem for partially ordered sets", Annals of Mathematics, 1950]: The size of the largest antichain is the minimum number of transcripts needed to explain the alignments.
- There is a constructive proof of the theorem, which reduces the problem to finding a maximum matching in a bipartite graph. The Hopcroft-Karp algorithm solves this problem in $O(\sqrt{V}E)$ time where we have V=M, the number of fragments sequenced.
- We rely instead on a maximum weighted matching algorithm; the best running time for weighted maximum matching is $O(V^2 log V + VE)$.
- This approach builds on ideas from N. Eriksson et al. (*PLoS Computational Biology* 2008) where a similar parsimony approach is used for viral population estimation.

Phasing splicing events using weighted matching

Properties of Cufflinks assemblies

- The assemblies are parsimonious- guarantee that the number of assembled transcripts is minimal.
- In the case of multiple minimal assemblies, likelihoods are compared in order to pick the best phasing.
- Identifiability of the resulting models is a corollary of Dilworth's theorem (the maximum antichain is a permutation submatrix of the read-transcript matrix, hence the latter is full rank).

Discovery is necessary for accurate abundance estimates

Known isoform FPKM, novel included

RNA-Seq time course analysis

- Measuring changes in relative abundances over time.
- losoform switching and generalizations.
- Inference of transcriptional versus post-transcriptional regulation.

The skeletal myogenesis transcriptome

RNA-Seq (2x75bp GAllx) along time course of mouse C2C12 differentiation

Illustration based on: Ohtake et al, J. Cell Sci., 2006; 119:3822-3832

Dynamics of Myc expression

