CS2290 – COMPUTER ORGANIZATION AND ARCHITECTURE I

Floating-Point Processing

Dr. Mohammad Mirbagheri

Science Department

Northwestern Polytechnic

Adapted from slides and textbook by Kip Irvine. Assembly Language for x86 Processors, Pearson, 2015 Copyright © 2024. All rights reserved.

Real Number Encodings

First Normalize

• 1.101×2^0

• Sign bit: 0

• Exponent: 01111111

Fraction: 1010000000000000000000

Exponent (E)	Biased (E + 127)	Binary
+5	132	10000100
0	127	01111111
-10	117	01110101
+127	254	11111110
-126	1	0000001
-1	126	01111110

Real Number Encodings

Value	Sign, Exponent, Significand		
Positive zero	0	00000000	000000000000000000000000000000000000000
Negative zero	1	00000000	000000000000000000000000000000000000000
Positive infinity	0	11111111	000000000000000000000000000000000000000
Negative infinity	1	11111111	000000000000000000000000000000000000000

Real Number Encodings

Value	Sign, Exponent, Significand		
Positive zero	0 00000000 0000000000000000000000000000		
Negative zero	1 00000000 0000000000000000000000000000		
Positive infinity	0 1111111 00000000000000000000000000000		
Negative infinity	1 1111111 00000000000000000000000000000		
QNaN	x 1111111 1xxxxxxxxxxxxxxxxxxxxxxxxxxx		
SNaN	x 1111111 Oxxxxxxxxxxxxxxxxxx		

SNaN significand field begins with 0, but at least one of the remaining bits must be 1

Converting Fractions to Binary Reals

• Express as a sum of fractions having denominators that are powers of 2

Decimal Fraction	Factored As	Binary Real
1/2	1/2	.1
1/4	1/4	.01
3/4	1/2 + 1/4	.11
1/8	1/8	.001
7/8	1/2 + 1/4 + 1/8	.111
3/8	1/4 + 1/8	.011
1/16	1/16	.0001
3/16	1/8 + 1/16	.0011
5/16	1/4 + 1/16	.0101

Converting Fractions to Binary Reals

- Binary long division method
 - First convert the numerator and denominator to binary and then perform long division

convert decimal 0.2 (2/10) to binary using the binary long division method

Converting Single-Precision to Decimal

- 1. If the MSB is 1, the number is negative; otherwise; positive.
- 2. The next 8 bits represent the exponent. **Subtract** binary 01111111 (decimal 127), producing the unbiased exponent. Convert the unbiased exponent to decimal.
- 3. The next 23 bits represent the significand. Notate a "1.", followed by the significand bits. Trailing zeros can be ignored. Create a floating-point binary number, using the significand, the sign determined in step 1, and the exponent calculated in step 2.
- 4. Denormalize the binary number produced in step 3.
- 5. From left to right, use weighted positional notation to form the decimal sum of the powers of 2 represented by the floating-point binary number.

Converting Single-Precision to Decimal

• FPU has its own set of registers called a *register stack*.

- FPU has its own set of registers called a register stack.
- FPU instructions evaluate mathematical expressions in *postfix* format

- FPU has its own set of registers called a register stack.
- FPU instructions evaluate mathematical expressions in *postfix* format
 - The postfix equivalent
 - (5 * 6) 4

?

• (A + B) * (C + D)

?

- FPU has its own set of registers called a *register stack*.
- FPU instructions evaluate mathematical expressions in *postfix* format
 - The postfix equivalent
 - (5 * 6) 4
 - (A + B) * (C + D)

- 56*4-
- A B + C D + *

<u>Mir</u>bagheri

- FPU has its own set of registers called a register stack.
- FPU instructions evaluate mathematical expressions in *postfix* format
 - The postfix equivalent
 - (5 * 6) 4
 - (A + B) * (C + D)

56*4-

AB

Evaluating the Postfix Expression 5 6 * 4 -.

B + C D + *	Left to Right	Stack		Action
	5	5	ST (0)	push 5
	5 6	5	ST (1) ST (0)	push 6
	5 6 *	30	ST (0)	Multiply ST(1) by ST(0) and pop ST(0) off the stack.
	5 6 * 4	30 4	ST (1) ST (0)	push 4
	5 6 * 4 -	26	ST (0)	Subtract ST(0) from ST(1) and pop ST(0) off the stack.

- FPU attempts to round an infinitely accurate result from a floating-point calculation
 - may be impossible because of storage limitations
- We could either round a number up to the next higher value or round it downward

- FPU attempts to round an infinitely accurate result from a floating-point calculation
 - may be impossible because of storage limitations
- We could either round a number up to the next higher value or round it downward
 - Round to nearest even (default); pick the closest even number: e.g. 6.5 rounds to 6, but
 7.5 rounds to 8
 - Round down toward negative infinity
 - Round up toward positive infinity
 - Round toward zero (truncate)

Method	Precise Result	Rounded
Round to nearest even	1.0111	
Round down toward -∞	1.0111	
Round toward +∞	1.0111	
Round toward zero	1.0111	

Method	Precise Result	Rounded
Round to nearest even	1.0111	1.100
Round down toward -∞	1.0111	1.011
Round toward +∞	1.0111	1.100
Round toward zero	1.0111	1.011

Method	Precise Result	Rounded
Round to nearest even	-1.0111	
Round down toward -∞	-1.0111	
Round toward +∞	-1.0111	
Round toward zero	-1.0111	

Method	Precise Result	Rounded
Round to nearest even	-1.0111	-1.100
Round down toward -∞	-1.0111	-1.100
Round toward +∞	-1.0111	-1.011
Round toward zero	-1.0111	-1.011

Floating-Point Addition

- Match Exponents
- 2. Add the Two Mantissas (significands)
- 3. Normalize the Result
- 4. Check for Overflow/Underflow
- Round to available bits
- 6. May need further normalization; go back to step 3

Floating-Point Addition

 1.10101×2^3

+

 1.0011×2^2

Floating-Point Multiplication

- 1. Add the two exponents
- 2. Multiply the mantissas and set the sign
- Normalize the Result
- Check for Overflow/Underflow
- Round to available bits
- 6. May need further normalization; go back to step 3

Floating-Point Multiplication

 1.101×2^3

X

 1.01×2^2